МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

факультет инноваций и высоких технологий

Кафедра дискретной математики

Задача упаковки по корзинам

Индивидуальный проект

Contents

1	Введение	3
2	Задача о $o(\frac{3}{2}-arepsilon)$ - приближении	4
3	Алгоритм, дающий $(1+\varepsilon)OPT+1$ корзин	5
Cı	писок литературы	8
	Солержание	

1 Введение

Постановка задачи

Рассмотрим некоторое множество элементов под номерами $I=\{1,...,n\}$. Каждый элемент $i\in I$ имеет "размер" $a_i\in (0,1]$. Пусть также дано множество так называемых корзин B=1,...,n.

Требуется распределить в все элементы по наименьшему числу корзин так, чтобы сумма размеров всех элементов в каждой корзине не превосходила 1.

Более формально, построить такую функцию $\xi:I\to B,$ что:

$$\forall b \in B \ \sum_{i \in I : \xi(i) = b} s_i \le 1$$

${f 2}$ Задача о $o(rac{3}{2}-arepsilon)$ - приближении

Утверждение: Задача **NP**-трудна

Доказательство: Сведение задачи PARTITION.

Для начала сформулируем задачу PARTITION. Дан конечный набор целых чисел A. Определить существует ли подмножество $B\subset A$, что $\sum_{a\in B}a=\sum_{a\in A\setminus B}a$

Из курса знаем, что PARTITION является **NP** -полной.

Построим полиномиально-вычислимую функцию сведения. Пусть задан набор чисел $a_1,...,a_n$, для которых нужно решить задачу PARTITION. Пусть $S_a = \sum_{i=1}^n a_i$. Тогда $s_i = f(a_i) = \frac{2a_i}{S_a}$. Покажем, что существует подмножество для PARTITION \Leftrightarrow минимальное количество корзин для разбиения $i_1,...,i_n$ с весами $s_1,...,s_n$ равно 2.

Обозначим OPT - решение задачи разбиения на корзины.

- \Rightarrow Заметим, что OPT > 1, т.к. $\sum_{i=1}^{n} s_i = 2$. Если существуют подмножества B и $B \setminus A$ решения задачи PARTITION, то существует разбиение набора $s_1, ..., s_n$ на две корзины, сумма в каждой равна единице.
- \Leftarrow Пусть OPT=2. Тогда сумма весов в каждой корзине равна 1. Следовательно, подмножества исходного набора $a_1,...,a_n$, соответствующие разбиению на корзины, и будут решением задачи PARTITION.

В данном сведении приближение не играет роли, т.к. если решение задачи разбиения на корзины равно 2. То алгоритм, решающий задачу о $o(\frac{3}{2}-\varepsilon)$ - приближении всегда его найдёт, ведь $2\cdot\frac{3}{2}=3$, следовательно ответ 3 - уже будет худше, чем $(\frac{3}{2}-\varepsilon)$ - приближение.

3 Алгоритм, дающий $(1+\varepsilon)OPT+1$ корзин

Теорема: Пусть OPT оптимальное число корзин. Тогда, для любого $\varepsilon \in (0,1]$ существует полиномиальный по п алгоритм, дающий разбиение на $(1+\varepsilon) \cdot OPT + 1$ корзин в худшем случае.

Лемма 1: Пусть $\varepsilon > 0$ и d > 0 - некоторые константы. Пусть также $\forall i \in I$: $s_i \geq \varepsilon$ и количество различных среди всех s_i не превосходит d. Тогда, существует полиномиальный по п алгоритм, дающий в точности оптимальное значение для задачи упаковки по корзинам

Доказательство: Проведём полный перебор всех возможных упаковок. Максимальное число элементов в одной корзине равно $\lfloor \frac{1}{\varepsilon} \rfloor$. Обозначиим это число за m.

Тогда, макимальное количество способов заполнить одну корзину C_{m+d-1}^m (в соответствии с формулой количества сочетаний с повторениями). Тогда, количество способов заполнить все п корзин не превосходит $n \cdot C_{n+m-1}^m$. Последнее выражение полиномиально зависит от n.

Таким образом, алгоритм просто будет перебирать все возможные варианты расстановки.

Лемма 2: Пусть $\forall i \in I : s_i \geq \varepsilon$. Тогда, существует полиномиальный по п алгоритм, дающий разбиение на $(1+\varepsilon)OPT$ корзин , где OPT - оптимальное число корзин

Доказательство: (Во всех случаях мы сравниваем элементы по их рамеру)

Отсортируем элементы для разбинениия по увеличению размера s_i . Полученный набор назовём Q. Затем разделим их на P+1 группу. Тогда в каждой группе будет не более $\lfloor n/P \rfloor$ элементов. Проведём разбиение так, чтобы во всех группах, кроме последней элементов было поровну. Из полученного отсортированного набора элементов построим два новых набора H и J следующим образом:

- L: набор Q, в котором размер $s_{(i)}$ каждого элемента заменён на размер наименьшего по размеру элемента в соответствующей ему группе.
- G: набор Q, в котором размер $s_{(i)}$ каждого элемента заменён на размер наибольшего по размеру элемента в соответствующей ему группе.

Тогда обозначим OPT(L), OPT(Q), OPT(G) - оптимальные решения задачи упаковки по корзинам для наборов Q, H и P соответственно.

Очевидно, что:

$$OPT(L) \leq OPT(Q) \leq OPT(G)$$

Покажем также, что $OPT(G) \leq OPT(L) + \lfloor n/P \rfloor$. Пусть мы решили задачу упаковки для L, получив некоторую функцию соответствия ξ . Построим новую функцию ψ . Заметим, что все элементы в группе i+1 набора L не меньше элементов из группы i набора G(по построению). Тогда $\psi((i,l)) = \xi((i+1,l))$, где i - номер группы, l - номер элемента в группе. Элементы последней группы положим в ещё не заполненные корзины(каждый элемент в отдельную корзину). Всего элементов в последней группе $\leq \lfloor n/P \rfloor$, откуда и следует, что $OPT(G) \leq OPT(L) + \lfloor n/P \rfloor$.

Тогда:

$$OPT(G) \le OPT(L) + \lfloor n/P \rfloor \le OPT(Q) + \lfloor n/P \rfloor$$

Подберём такое P, что $\lfloor n/P \rfloor \leq \varepsilon \cdot OPT(Q)$. Тогда, $OPT(G) \leq (1+\varepsilon) \cdot OPT(Q)$.

Из леммы 1 следует, что существует алгоритм для точного решения задачи упаковки для набора G. Заметим, что по построению набора G (все элементы в нём не меньше элементов из исходного набора Q), полученное данным алогритмом соответствие подойдёт и для набора Q. \square

- ullet набор I', в котором для любого $i\in I'$ размер $s_i\geq arepsilon$
- набор I'', в котором для любого $i \in I''$ размер $s_i < \varepsilon$

Рассмотрим $\delta = \varepsilon/2 < 1/2$

Для набора I' и δ применима Лемма 2. Запустим алгоритм, полученный в Лемме 2 на наборе элементов I'. Получим некоторую упаковку(соответствие).

Затем, для оставшихся элементов из I'' и полученной упаковки применим жадный алгоритм. Отсортируем из по убыванию размера s_i , затем для каждого элемента в порядке сортировки будем класть его в первую корзину, для которой сумма размеров уже лежащих элементов вместе с его размером не превзойдёт 1.

Обозначим полученное количество корзин за В.

Если после приминения жадного алгоритма новых корзин не добавилось, то из *Леммы* 2 получаем, что

$$B \le (1+\delta)OPT \le (1+\epsilon)OPT + 1$$

Иначе, получим некоторую упаковку по корзинам, где для каждой (кроме может быть одной) заполненной нами корзины её остаточная вместимость $(1-\sum_{i:\xi(i)=b_j}s_i)$ не превосходит δ .

Тогда,

$$OPT \ge \sum_{i \in I} s_i \ge (B - 1)(1 - \delta)$$

Используя неравнество $\frac{1}{1-x} \leq 1 + 2x \ (\forall x \in [0,1/2]),$ получаем:

$$B \le \frac{OPT}{1 - \delta} + 1 \le (1 + 2\delta) \cdot OPT + 1 = (1 + \varepsilon) \cdot OPT + 1$$

Список литературы