Números reais

Max Jauregui

15 de novembro de 2022

Conteúdo

1	Linguagem de conjuntos	1
2	Funções	2
3	O corpo dos números reais	6
4	Conjuntos enumeráveis e não-enumeráveis	10

1 Linguagem de conjuntos

Um **conjunto** A é uma coleção de objetos quaisquer, chamados de **elementos** de A. Se x é um elemento de A, diz-se que x **pertence** a A e escreve-se $x \in A$; caso contrário, escreve-se $x \notin A$.

Exemplo. Se $A = \{1, 2, 3\}$, temos que $1 \in A$ e $4 \notin A$.

O conjunto vazio, denotado por \emptyset , é o conjunto que não tem elementos.

Sejam A e B conjuntos. Diz-se que A está **contido** em B ou que A é um **subconjunto** de B se $x \in A$ implica que $x \in B$.

Exemplo. Sejam $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\}$ e $C = \{2, 3, 4, 5\}$. Temos que $A \subset B$; porém, $A \not\subset C$.

Sejam $A \in B$ conjuntos.

1. Define-se a **união** de A e B, denotada por $A \cup B$, como o conjunto

formado por todos os elementos de A e B, ou seja,

$$A \cup B = \{x : x \in A \text{ ou } x \in B\}.$$

2. Define-se a **interseção** de A e B, denotada por $A \cap B$, como o conjunto formado por todos os elementos que A e B têm em comum, ou seja,

$$A \cap B = \{x : x \in A \in x \in B\}.$$

3. Define-se a **diferença** A - B como o conjunto formado por todos os elementos de A que não pertencem a B, ou seja,

$$A - B = \{x \in A : x \notin B\}.$$

4. Define-se o **produto cartesiano** $A \times B$ como o conjunto de todos os pares ordenados (x, y), com $x \in A$ e $y \in B$, ou seja,

$$A \times B = \{(x, y) : x \in A \in y \in B\}.$$

Dois pares ordenados (x_1, y_1) e (x_2, y_2) são iguais se e somente se $x_1 = x_1$ e $y_1 = y_2$.

Exemplo. Sejam $A = \{1, 2, 3, 4\}$ e $B = \{1, 3, 5\}$. Temos que $A \cup B = \{1, 2, 3, 4, 5\}$, $A \cap B = \{1, 3\}$, $A - B = \{2, 4\}$, $B - A = \{5\}$ e

$$A \times B = \{(1,1), (1,3), (1,5), (2,1), (2,3), (2,5), (3,1), (3,3), (3,5), (4,1), (4,3), (4,5)\}.$$

2 Funções

Sejam A e B conjuntos. Uma **função** f de A em B pode ser definida como um subconjunto de $A \times B$ tal que para cada $x \in A$ existe um único par ordenado $(x,y) \in f$.

Exemplo. Se $A = \{1, 2, 3\}$ e $B = \{10, 20\}$, o conjunto

$$f = \{(1, 10), (2, 10), (3, 20)\}$$

é uma função de A em B. No entanto, os conjuntos

$$g = \{(1, 10), (1, 20), (2, 20), (3, 20)\}\$$
 e $h = \{(1, 20), (3, 20)\}\$

não são funções de A em B.

Seja f uma função de A em B. Se $(x, y) \in f$, diz-se que y é o **valor** da função f no ponto x e escreve-se y = f(x).

Exemplo. Para a função f do exemplo anterior temos que f(1) = 10, f(2) = 10 e f(3) = 20.

Uma função f de A em B é denotada simbolicamente por $f:A\to B$. O conjunto A é chamado de **domínio** de f e o conjunto B de **contradomínio** de f. Pode-se definir uma função $f:A\to B$ fornecendo uma regra que permita encontrar o valor $f(x)\in B$ para cada $x\in A$.

Exemplo. Se $A = \{1, 2, 3, 4, 5\}$ e $B = \{1, 3, 5\}$, podemos definir uma função $f: A \to B$ pondo, por exemplo,

$$f(x) = \begin{cases} 1 & \text{se } x \text{ \'e impar} \\ 3 & \text{se } x \text{ \'e par.} \end{cases}$$

Dada uma função $f:A\to B$, define-se a **imagem de um conjunto** $E\subset A$ por f como o conjunto

$$f(E) = \{ f(x) : x \in A \}.$$

O conjunto f(A) é chamado de **imagem da função** f.

Exemplo. A imagem da função f do exemplo anterior é o conjunto $f(A) = \{1, 3\}.$

Diz-se que uma função $f: A \to B$ é **injetiva** se para quaisquer $x_1, x_2 \in A$ com $x_1 \neq x_2$ tem-se que $f(x_1) \neq f(x_2)$.

Exemplo. Sejam $A = \{1, 2, 3\}$ e $B = \{4, 5, 6, 7\}$. A função $f: A \to B$ definida por f(x) = x + 3 é injetiva. No entanto, a função $g: A \to B$ definida por g(x) = 6 não é injetiva.

Uma função $f: A \to B$ é dita sobrejetiva se f(A) = B.

Exemplo. Sejam $A = \{1, 2, 3, 4\}$ e $B = \{4, 5, 6\}$. A função $f: A \rightarrow B$ definida por

$$f(x) = \begin{cases} x+3 & \text{se } x \neq 4\\ 4 & \text{se } x = 4 \end{cases}$$

é sobrejetiva. No entanto, a função $g:A\to B,$ definida por

$$g(x) = \begin{cases} 5 & \text{se } x \text{ \'e impar} \\ 6 & \text{se } x \text{ \'e par} \end{cases}$$

não é sobrejetiva.

Diz-se que uma função $f:A\to B$ é **bijetiva** ou que é uma **bijeção** se ela é injetiva e sobrejetiva.

Exemplo. Sejam $A = \{1, 2, 3\}$ e $B = \{4, 5, 6\}$. A função $f: A \to B$ definida por f(x) = x + 3 é uma bijeção.

Sejam $f: A \to B$ e $g: C \to D$ duas funções. Se $f(A) \subset C$, define-se a função composta $g \circ f: A \to D$ por $(g \circ f)(x) = g(f(x))$.

Exemplo. Dados os conjuntos $A = \{1, 2, 3\}$, $B = \{4, 5, 6\}$ e $C = \{2, 3, 4\}$, consideremos as funções $f: A \to B$ e $g: B \to D$ definidas respectivamente por f(x) = x + 3 e g(x) = x - 2. Notamos que f(A) = B e, por conseguinte, podemos definir a função composta $g \circ f: A \to C$. De fato, vamos ter que

$$(g \circ f)(x) = g(x+3) = (x+3) - 2 = x+1$$

para todo $x \in A$. Por outro lado, como $g(B) = C \not \in A$, a função composta $f \circ g : B \to A$ não pode ser definida.

Teorema. Sejam $f: A \to B \in q: B \to C$ funções. Tem-se o seguinte:

- 1. Se f e g são injetivas, então $g \circ f$ também é injetiva.
- 2. Se f e g são sobrejetivas, então $g \circ f$ também é sobrejetiva.
- 3. Se f e g são bijeções, então $g \circ f$ também é uma bijeção.

Seja $f:A\to B$ uma função. Diz-se que uma função $g:B\to A$ é uma **inversa à esquerda** de f se g(f(x))=x para todo $x\in A$. Por outro lado, diz-se que uma função $h:B\to A$ é uma **inversa à direita** de f se f(h(x))=x para todo $x\in B$.

Teorema. Seja $f: A \to B$ uma função. Se $g: B \to A$ é uma inversa à esquerda de $f \in h: B \to A$ é uma inversa à direita de f, então $g = h = f^{-1}$. Nesse caso, a função $f^{-1}: B \to A$ é chamada de **inversa** de f.

Demonstração. Temos que g(f(x)) = x para todo $x \in A$ e f(h(y)) = y para todo $y \in B$. Como $h(y) \in A$ para todo $y \in B$, então

$$g(y) = g(f(h(y))) = h(y)$$

para todo $y \in B$.

Teorema. Uma função $f:A\to B$ tem uma inversa à esquerda se, e somente se, é injetiva.

Demonstração. (\Rightarrow) Seja $g: B \to A$ uma inversa à esquerda de f. Se $x_1, x_2 \in A$ são tais que $f(x_1) = f(x_2)$, então $x_1 = g(f(x_1)) = g(f(x_2)) = x_2$.

Logo, f é injetiva. (\Leftarrow) Se f é injetiva, para cada $y \in f(A)$ existe um único $x_y \in A$ tal que $y = f(x_y)$. Definimos então uma função $g : B \to A$ pondo

$$g(y) = \begin{cases} x_y & \text{se } y \in f(A) \\ a & \text{se } y \notin f(A), \end{cases}$$

em que $a \in A$ é um elemento arbitrário. Como g(f(x)) = x para todo $x \in A$, temos que g é uma inversa à esquerda de f.

Exemplo. Sejam $A = \{1, 2, 3\}$ e $B = \{4, 5, 6, 7\}$. A função $f : A \to B$ definida por f(x) = x + 3 é injetiva e, por conseguinte, tem uma inversa à esquerda. Por exemplo, a função $g : B \to A$ definida por 1

$$g(x) = \begin{cases} x - 3 & \text{se } x \neq 7 \\ 1 & \text{se } x = 7 \end{cases}$$

é uma inversa à esquerda de f.

Teorema. Uma função $f:A\to B$ tem uma inversa à direita se, e somente se, ela é sobrejetiva.

Demonstração. (\Rightarrow) Seja $g: B \to A$ uma inversa à direita de f. Logo, para cada $y \in B$, temos que f(g(y)) = y. Como $g(y) \in A$, segue que f(A) = B. (\Leftarrow) Se f(A) = B, então para cada $y \in B$ existe pelo menos um $x \in A$ tal que f(x) = y. Logo, a função $g: B \to A$ definida por $g(y) = x_y$, em que $x_y \in A$ é tal que $f(x_y) = y$, é uma inversa à direita de f.

Exemplo. Sejam $A = \{1, 2, 3, 4\}$ e $B = \{4, 5, 6\}$. A função $f: A \rightarrow B$ definida por

$$f(x) = \begin{cases} x+2 & \text{se } x \neq 1 \\ 5 & \text{se } x = 1 \end{cases}$$

é sobrejetiva e, por conseguinte, tem uma inversa à direita. Por exemplo, a função $g: B \to A$ definida por g(x) = x - 2 é uma inversa à direita de f.

Corolário. Uma função $f:A\to B$ tem inversa se, e somente se, é uma bijeção.

 $^{^1{\}rm A}$ expressão de g(x) pode ser obtida resolvendo a equação y=x+3 para xe depois permutando as variáveis xe y.

3 O corpo dos números reais²

Um conjunto F é chamado de um **corpo** se nele estão definidas duas operações, chamadas de **adição** (+) e **multiplicação** (·), que têm as seguintes propriedades:

- 1. $x + y \in F$ para quaisquer $x, y \in F$;
- 2. x + (y + z) = (x + y) + z para quaisquer $x, y, z \in F$;
- 3. x + y = y + x para quaisquer $x, y \in F$;
- 4. existe $0 \in F$ tal que x + 0 = x para todo $x \in F$;
- 5. para cada $x \in F$ existe $-x \in F$ tal que x + (-x) = 0;
- 6. $xy \in F$ para quaisquer $x, y \in F$;
- 7. x(yz) = (xy)z para quaisquer $x, y, z \in F$;
- 8. xy = yx para quaisquer $x, y \in F$;
- 9. existe $1 \in F$, $1 \neq 0$, tal que $x \cdot 1 = x$ para todo $x \in F$;
- 10. para cada $x \in F$, $x \neq 0$, existe $x^{-1} \in F$ tal que $xx^{-1} = 1$;
- 11. x(y+z) = xy + xz para quaisquer $x, y, z \in F$.

Exemplo. O conjunto dos números inteiros será denotado por \mathbb{Z} , ou seja,

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

 $\mathbb Z$ não é um corpo, pois, por exemplo, $2\in\mathbb Z$ mas não existe $m\in\mathbb Z$ tal que 2m=1.

Exemplo. O conjunto dos números racionais será denotado por \mathbb{Q} , ou seja,

$$\mathbb{Q} = \left\{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \right\} .$$

 \mathbb{Q} é um corpo.

Um corpo F é chamado de um **corpo ordenado** se existe uma **ordem** < que tem as seguintes propriedades:

 $^{^2\}mathrm{Em}$ uma primeira leitura podem ser omitidas as demonstrações dos teoremas desta seção.

- 1. dados $x, y \in F$ quaisquer, só uma das seguintes afirmações é verdadeira: x < y, x = y ou y < x;
- 2. se $x, y, z \in F$, x < y e y < z, então x < z;
- 3. se $x, y \in F$ e x < y, então x + z < y + z para todo $z \in F$;
- 4. se $x, y, z \in F$, $x < y \in 0 < z$, então xz < yz.

Exemplo. \mathbb{Q} é um corpo ordenado.

Seja F um corpo ordenado. Diz-se que um conjunto $A \subset F$ é **limitado** superiormente se existe $b \in F$ tal que x < b para todo $x \in A$. Nesse caso, diz-se também que b é uma **cota superior** de A. Seja $A \subset F$ um conjunto limitado superiormente. Se existe $\beta \in F$ tal que

- 1. β é uma cota superior de A;
- 2. se b é uma cota superior de A, então $\beta \leq b$;

então diz-se que β é o **supremo** de A e escreve-se $\beta = \sup A$.

Diz-se que um conjunto $A \subset F$ é **limitado inferiormente** se existe $a \in F$ tal que x > a para todo $x \in A$. Nesse caso, diz-se também que a é uma **cota inferior** de A. Seja $A \subset F$ um conjunto limitado inferiormente. Se existe $\alpha \in F$ tal que

- 1. α é uma cota inferior de A;
- 2. se α é uma cota inferior de A, então $\alpha \geqslant a$;

então diz-se que α é o **ínfimo** de A e escreve-se $\alpha = \inf A$.

Diz-se que um corpo ordenado F é **completo** se todo subconjunto de F não-vazio e limitado superiormente tem um supremo.

Exemplo. Vamos mostrar que \mathbb{Q} não é um corpo ordenado completo. Para isso primeiramente vamos mostrar que não existe $r \in \mathbb{Q}$ tal que $r^2 = 2$. Se isso fosse verdade existiriam inteiros positivos m e n primos relativos tais que r = m/n e $r^2 = 2$. Logo, teríamos que $m^2 = 2n^2$ e, por conseguinte, m = 2k para algum inteiro positivo k. No entanto, isso implicaria que $2k^2 = n^2$ e, por conseguinte, n e m seriam ambos pares, contradizendo a hipótese inicial de que m e n eram primos relativos. Portanto, se $r^2 = 2$, r não pode ser racional. Agora consideremos o conjunto

$$A = \{x \in \mathbb{Q} : x^2 < 2\}.$$

Notamos que A é não-vazio e que 2 é uma cota superior de A, pois $x\geqslant 2$ implica que $x\notin A$. No entanto, vamos mostrar que A não tem supremo em \mathbb{Q} . Se $\beta\in\mathbb{Q}$ fosse o supremo de A, em virtude do que mostramos no início do exemplo, só teríamos duas possibilidades: $\beta^2<2$ ou $\beta^2>2$. Se $\beta^2<2$, podemos encontrar um $h\in\mathbb{Q}$ tal que 0< h<1 e $h<\frac{2-\beta^2}{2\beta+1}$. Logo,

$$(\beta + h)^2 = \beta^2 + 2\beta h + h^2 < \beta^2 + (2\beta + 1)h < 2$$

e, por conseguinte, $\beta+h\in A$, contradizendo a hipótese de que $\beta=\sup A$. Por outro lado, se $\beta^2>2$, podemos encontrar $h\in\mathbb{Q}$ tal que $0< h<\frac{\beta^2-2}{2\beta}$. Logo, se $x\geqslant \beta-h$, então

$$x^{2} \ge (\beta - h)^{2} = \beta^{2} - 2\beta h + h^{2} \ge \beta^{2} - 2\beta h > 2$$

e, por conseguinte, $\beta - h$ é uma cota superior de A, contradizendo a hipótese de que $\beta = \sup A$. Portanto, como não podemos ter $\beta^2 < 2$ ou $\beta^2 > 2$, o conjunto A não tem supremo em \mathbb{Q} .

Define-se o corpo dos **números reais**, denotado por \mathbb{R} , como um corpo ordenado completo que contém o corpo dos números racionais. O conjunto $\mathbb{R} - \mathbb{Q}$ é chamado de conjunto dos **números irracionais**.

Teorema (\mathbb{R} é arquimediano). Se $x, y \in \mathbb{R}$ e x > 0, existe um inteiro n > 0 tal que nx > y.

Demonstração. Se x > y, o teorema é trivial. Se x < y, consideremos o conjunto $A = \{nx \in \mathbb{R} : n \in \mathbb{Z}, n > 0\}$. Temos que A é não-vazio. Se A fosse limitado superiormente, existiria $\beta = \sup A$. Logo, como $\beta - x$ não seria uma cota superior de A, existiria um inteiro n > 0 tal que $\beta - x \le nx$. Porém, isso implicaria que $\beta \le (n+1)x$, contradizendo a hipótese de que $\beta = \sup A$. Logo, A não pode ser limitado superiormente e, por conseguinte, y não pode ser uma cota superior de A, ou seja, existe um inteiro n > 0 tal que nx > y.

Corolário. inf $\left\{\frac{1}{n}: n \in \mathbb{Z}, n > 0\right\} = 0.$

Teorema (\mathbb{Q} é denso em \mathbb{R}). Dados $x, y \in \mathbb{R}$ quaisquer tais que x < y, existe $r \in \mathbb{Q}$ tal que x < r < y.

Demonstração. Consideremos inicialmente que $0 \le x < y$. Pelo corolário anterior existe um inteiro n > 0 tal que 1/n < y - x. Consideremos agora o conjunto

$$A = \left\{ m \in \mathbb{Z} : m > 0, \frac{m}{n} \geqslant y \right\}.$$

Como \mathbb{R} é arquimediano, temos que A é não-vazio. Seja m_0 o menor elemento de A. Logo, temos que $\frac{m_0-1}{n} < y$. Se tivéssemos $\frac{m_0-1}{n} \leqslant x$, teríamos que

$$\frac{m_0}{n} = \frac{m_0 - 1}{n} + \frac{1}{n} \leqslant x + \frac{1}{n} < y,$$

o que implicaria que $m_0 \notin A$. Assim, devemos ter $x < \frac{m_0-1}{n} < y$. Se $x < y \leq 0$, então $0 \leq -y < -x$ e, pelo que acabamos de provar, existe $r \in \mathbb{Q}$ tal que -y < r < -x. Portanto, x < -r < y. Finalmente, o teorema é trivial no caso x < 0 < y, pois $0 \in \mathbb{Q}$.

Sejam $a, b \in \mathbb{R}$ com $a \leq b$. Definem-se os seguintes **intervalos finitos**:

- 1. Intervalo aberto: $(a, b) = \{x \in \mathbb{R} : a < x < b\}$
- 2. Intervalo fechado: $[a,b] = \{x \in \mathbb{R} : a \leq x \leq b\}$
- 3. Intervalos semiabertos: $(a, b] = \{x \in \mathbb{R} : a < x \le b\}$ e $[a, b) = \{x \in \mathbb{R} : a \le x < b\}$

O intervalo fechado $[a, a] = \{a\}$ é chamado de **intervalo degenerado**. Definem-se também os seguintes **intervalos infinitos**:

- 1. $(a, \infty) = \{x \in \mathbb{R} : x > a\}$
- $[a,\infty) = \{x \in \mathbb{R} : x \geqslant a\}$
- 3. $(-\infty, a) = \{x \in \mathbb{R} : x < a\}$
- 4. $(-\infty, a] = \{x \in \mathbb{R} : x \le a\}$
- 5. $(-\infty, \infty) = \mathbb{R}$

Teorema dos intervalos encaixados. Para cada inteiro n > 0 seja I_n um intervalo fechado. Se $I_{n+1} \subset I_n$ para todo n, então existe $c \in \mathbb{R}$ tal que $c \in I_n$ para todo n.

Demonstração. Para cada inteiro n > 0, seja $I_n = [a_n, b_n]$. Temos que

$$a_1 \leqslant a_2 \leqslant \ldots \leqslant a_n \leqslant \ldots \leqslant b_n \leqslant \ldots \leqslant b_2 \leqslant b_1$$
.

O conjunto $A = \{a_1, a_2, \ldots\}$ é um conjunto não-vazio tal que qualquer b_n , com n > 0 inteiro, é uma cota superior de A. Logo, existe $c = \sup A$, o qual satisfaz a desigualdade $a_n \leq c \leq b_n$ para todo inteiro n > 0.

4 Conjuntos enumeráveis e não-enumeráveis³

Seja \mathbb{Z}^+ o conjunto dos inteiros positivos. Diz-se que um conjunto A é **enumerável** se existe uma função injetiva $f: A \to \mathbb{Z}^+$.

Exemplo. O conjunto $A = \{a, b, c\}$ é enumerável, pois a função $f : A \to \mathbb{Z}^+$ definida por f(a) = 1, f(b) = 2 e f(c) = 3 é injetiva. De fato, qualquer conjunto que tem um número finito de elementos é enumerável.

Exemplo. O conjunto \mathbb{Z} dos números inteiros é um conjunto enumerável, pois a função $f: \mathbb{Z} \to \mathbb{Z}^+$ definida por

$$f(n) = \begin{cases} 2n+1 & \text{se } n \ge 0\\ -2n & \text{se } n < 0 \end{cases}$$

é injetiva (de fato é uma bijeção).

Exemplo. O conjunto $\mathbb{Z}^+ \times \mathbb{Z}^+$ é enumerável, pois a função $f: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$ definida por

$$f(m,n) = 2^m 3^n$$

é injetiva em virtude da unicidade da decomposição de inteiros positivos em fatores primos.

Teorema. Um conjunto A é enumerável se, e somente se, existe uma função sobrejetiva $f: \mathbb{Z}^+ \to A$.

Demonstração. Suponhamos que $g: A \to \mathbb{Z}^+$ seja uma função injetiva. Essa afirmação é equivalente a dizer que g tem uma inversa à esquerda $f: \mathbb{Z}^+ \to A$. A função f é sobrejetiva, pois g é uma inversa à direita dela.

Teorema. Se A e B são conjuntos enumeráveis, então $A \times B$ também é um conjunto enumerável.

Demonstração. Existem funções injetivas $f:A\to\mathbb{Z}^+$ e $g:B\to\mathbb{Z}^+$. Podemos verificar imediatamente que a função $\phi:A\times B\to\mathbb{Z}^+\times\mathbb{Z}^+$ definida por $\phi(x,y)=(f(x),g(y))$ é injetiva. Como $\mathbb{Z}^+\times\mathbb{Z}^+$ é enumerável, existe uma função injetiva $h:\mathbb{Z}^+\times\mathbb{Z}^+\to\mathbb{Z}$. Logo, a função composta $h\circ\phi:A\times B\to\mathbb{Z}^+$ é injetiva e, por conseguinte, $A\times B$ é enumerável.

Exemplo (\mathbb{Q} é enumerável). O conjunto \mathbb{Q} dos números racionais é enumerável, pois a função $f: \mathbb{Z} \times \mathbb{Z}^+ \to \mathbb{Q}$ definida por f(m,n) = m/n é sobrejetiva e o conjunto $\mathbb{Z} \times \mathbb{Z}^+$ é enumerável.

Seja L um conjunto tal que, para cada $\alpha \in L$, A_{α} seja um conjunto. Isso define uma **família de conjuntos** $(A_{\alpha})_{\alpha \in L}$. Define-se a união dessa família

 $^{^3{\}rm Esta}$ seção pode ser omitida em uma primeira leitura.

por

$$\bigcup_{\alpha \in L} A_{\alpha} = \{x : x \in A_{\alpha} \text{ para algum } \alpha \in L\}.$$

Define-se a interseção da família por

$$\bigcap_{\alpha \in L} A_{\alpha} = \{x : x \in A_{\alpha} \text{ para todo } \alpha \in L\}.$$

Teorema. Seja $(A_{\alpha})_{\alpha \in L}$ uma família de conjuntos. Se L é enumerável e, para cada $\alpha \in L$, A_{α} é enumerável, então a união $\bigcup_{\alpha \in L} A_{\alpha}$ é um conjunto enumerável.

Demonstração. Para cada $\alpha \in L$ existe uma função sobrejetiva $f_{\alpha} : \mathbb{Z}^+ \to A_{\alpha}$. Podemos verificar facilmente que a função $\phi : L \times L \to \bigcup_{\alpha \in L} A_{\alpha}$ definida por

$$\phi(\alpha, x) = f_{\alpha}(x)$$

é sobrejetiva. Como $L \times L$ é enumerável, segue que $\bigcup_{\alpha \in L} A_{\alpha}$ também é enumerável.

Teorema (\mathbb{R} é não-enumerável). O conjunto \mathbb{R} dos números reais é não-enumerável.

Demonstração. Seja $E = \{x_1, x_2, \ldots\} \subset \mathbb{R}$ um conjunto enumerável arbitrário. Vamos mostrar que $\mathbb{R} \neq E$. Para isso consideremos inicialmente um intervalo fechado não-degenerado I_1 tal que $x_1 \notin I_1$. Supondo definido o intervalo fechado não-degenerado $I_n \subset I_1$ tal que $x_n \notin I_n$, temos as seguintes opções

- 1. $x_{n+1} \notin I_n$
- 2. $x_{n+1} \in I_n$

No primeiro caso, definimos $I_{n+1} = I_n$ e assim $I_{n+1} \subset I_n$. No segundo caso, x_{n+1} deve ser diferente de pelo menos um dos extremos do intervalo $I_n = [a_n, b_n]$. Logo, se, por exemplo, $x_{n+1} \neq a_n$, definimos $I_{n+1} = [a_n, (a_n + x_n)/2]$ e assim $I_{n+1} \subset I_n$. Esse procedimento nos permite definir, para cada $n \in \mathbb{Z}^+$, um intervalo fechado não-degenerado I_n tal que $x_n \notin I_n$ e $I_{n+1} \subset I_n$ para todo $n \in \mathbb{Z}^+$. Pelo teorema dos intervalos encaixados, existe $c \in \mathbb{R}$ tal que $c \in I_n$ para todo $n \in \mathbb{Z}^+$. Logo, $c \neq x_n$ para todo $n \in \mathbb{Z}^+$ e, por conseguinte, $c \notin E$.

Corolário. O conjunto $\mathbb{R} - \mathbb{Q}$ dos números irracionais é não-enumerável.