Индивидуальные задания для выполнения.

Все задания, приведенные ниже, выполните в одной рабочей книге и сохраните под именем $Лаба\ Excel\ 5.xls$.

1. На первом листе выполнить задание: выбрать в соответствии с вариантом (таблица 1) и рассчитать значение функции y = f(x,a,b,c) при $x = x_o(h)x_n$ (x меняет свое значение от x_0 до x_n , с шагом x_n), x_n 0, x_n 1, x_n 2 при x_n 3 при x_n 4 при x_n 5 при x_n 6 при x_n 6 при x_n 7 при x_n 7 при x_n 8 при x_n 8 при x_n 9 при

	Α	В	С
1	Пост	оянные знач	ения
2	a	b	С
3			
4			
5	Табулі	ирование фу	нкции
6	X	Y=f(x,a,b,c)	
7			
8			
9			
10			
11			
12			

Таблица	1	Вид функции у	$= f(\mathbf{r}, \mathbf{r})$	h	ch	วนปุนมาก	N_0	1
таолина	1.	DIAG ODVEKNIAA V	— 11x.u	. //.	C IK	зиоинию	./ ٧0	•

№ варианта	Функция
1.	$y = \frac{a \cdot \sqrt[3]{\sin(x) + \cos(x)}}{\left b + e^{2c}\right } \cdot a!$
3.	$y = \frac{a \cdot \sin(b \cdot x)}{\sqrt[3]{\cos(x) + c}} + \log_3(x)$
5.	$y = \frac{\sqrt[4]{ \sin^3(x) } + a \cdot \cos(x)}{b! - c!} + e^a$
7.	$y = e^{a} - \frac{\sin(3x) - \log_{c}(b)}{\sqrt[3]{1 - \sqrt{ c - b }}}$
9.	$y = \frac{\sin(x^2) + \sqrt{ b + tg(x) }}{a! - \sqrt[3]{c}}$
11.	$y = 2 \cdot \ln(a + c^{2}) + \frac{1 + \cos^{4}(x)}{b + \sin(x)}$
13.	$y = \frac{\left a \cdot \cos(x) + \ln x \right }{c! - b!} + e^{c}$
15.	$y = \frac{\left a \cdot \cos(c \cdot x)\right + c!}{\sqrt[3]{\sin(x) + b}}$
17.	$y = \frac{a \cdot \sin(x) + b \cdot \cos(x)}{c!} \cdot \ln x $
19.	$y = \frac{a + \sqrt[3]{\cos(x)}}{\ln x^2 + c + b + \sin(x)}$

№ варианта	Функция
2.	$y = \frac{\sin(x^2) - a!}{\sqrt[3]{b + \ln(c)} - a} + tg(bx)$
4.	$y = \frac{ a \cdot \cos(x) + \sqrt{c \cdot x}}{b! - \ln x }$
6.	$y = \frac{\left e^{b} - a!\right }{c!} - \sqrt[3]{tg(x)}$
8.	$y = a! - \frac{ tg(x) }{\left \sqrt[3]{1 - \sqrt{ c - b }}\right }$
10.	$y = \frac{ a \cdot \sin(x) + b \cdot \cos(x)}{c!} \cdot e^{b}$
12.	$y = \frac{a \cdot \cos(c \cdot x)}{\sqrt[3]{\sin(x) + b}} + \log_2(x)$
14.	$y = \frac{\left a \cdot \cos(x) + \ln x \right }{b+c} + \sqrt[3]{c+a}$
16.	$y = \frac{4 \cdot \sin(3x)}{c - \sqrt[3]{b - \ln\left x^2 + a\right }}$
18.	$y = \frac{a + \cos^4(x)}{b + \sin(x)} - 2 \cdot \ln(a + c^2)$
20.	$y = \frac{a \cdot \sin(x) + \sqrt[3]{(\ln(x) + c)}}{b \cdot \cos(x) + c}$

- 2. Построить график функции y = f(x,a,b,c) (функция из п.1.). При построении графика оси координат должны пересекаться в точке (0;0).
- 3. Проверьте правильность своего решения (вычисления значения функции и построение графика) средствами программы *MathCad*.
- 4. На втором листе выполнить задание: рассчитать значение функции z = f(x,y,a,b) при $x = x_o(h_x)x_n$ (x

меняет свое значение от x_0 до x_n , с шагом h_x), при $y = y_o(h_y)y_n$ (y меняет свое значение от y_0 до y_n , с шагом h_y), a = const, b = const. Вид функции определяется в таблице 2. Значения аргументов выбрать самостоятельно, учитывая возможные ограничения, определяемые видом функции. При этом обязательным является задание аргументов x и y в градусах. Данные рекомендуется расположить, как показано на рис.2. При выполнении табулирования функции использовать абсолютные и смешанные ссылки.

	Α	В	С	D
1	Пост	оянные знач	ения	
2	а	b		
3				
4				
5	Значение	функции z	=f(x,y,a,b)	
	×			
6	у			
7				
8				
9				
10				
11				

Таблица 2. Вид функции z=f(x,y,a,b) к заданию № 2.

№ варианта	Функция
1.	$z = a \cdot x^2 \cdot \sin(x) - b \cdot e^y$
3.	$z = a \cdot \cos(x) - \sin(b \cdot y)$
5.	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$
7.	$z = a \cdot x^2 - b \cdot e^{\sin(y)}$
9.	$z = a \cdot e^{\cos(x)} + b \cdot e^{\sin(y)}$
11.	$z = a \cdot \cos(x) - b \cdot y^2 \cdot \sin(y)$
13.	$z = a \cdot y^2 \cdot \cos(x) - b \cdot e^{\sin(y)}$
15.	$z = b \cdot \sin(x) + \cos(a \cdot y)$
17.	$z = a \cdot e^{\cos(x)} - b \cdot e^{\sin(y)}$
19.	$z = a \cdot x^2 \cdot b \cdot \sin(y)$

Таолица 2. Вио функции $z=f(x,y,a,b)$ к заоанию №		
№ варианта	Функция	
2.	$z = a \cdot \cos(x) - b \cdot e^{y}$	
4.	$z = a \cdot x^2 - e^b \cdot y^2$	
6.	$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$	
8.	$z = a \cdot x - b \cdot \sin(y)$	
10.	$z = a \cdot \cos(x) - b \cdot e^{\sin(y)}$	
12.	$z = a \cdot \cos(x) - b \cdot y^2$	
14.	$z = a \cdot x^2 \cdot b \cdot y$	
16.	$z = a \cdot e^{\cos(y)} - b \cdot e^{\sin(x)}$	
18.	$z = a \cdot x - b \cdot x^2 \cdot \sin(y)$	
20.	$z = a \cdot x \cdot b \cdot \sin(y)$	

- 5. Построить поверхность y = f(x,y,b,c) (поверхность из п.4.). При построении поверхности на осях Ox и Oy должны отображаться значения, по которым строится поверхность.
- 6. Проверьте правильность своего решения (вычисления значения функции и построение поверхности) средствами программы *MathCad*.
- 7. Выполнив необходимые расчеты, сохраните изменения в файле, сохраните также расчеты, выполненные в *MathCad*.