# 汽電廠操作優化推動報告

公用部 彙編 2020年7月13日 【密】【會後收回】

# 報告內容

- 一、動機說明
- 二、執行規劃與架構
- 三、汽機排汽壓力與冷卻水泵節能應用案例
- 四、未來強化重點

#### 一、動機說明

#### (一)操作優化盤查:

- 1. 汽電廠設備節能改善早期以單元設備為主,經多年推動多數已改善完成,未來以提升操作效率作為節能優化的目標,經盤查後優先推動操作優化空間大設備,包括汽機排汽壓力與冷卻水泵操作優化、經濟規劃調度自動化等9項。
- 2. 因須利用大量運轉數據做分析演算,導入AI技術即時尋找最佳操作點。



#### 一、動機說明

#### (二)操作優化推動進度:(1/2)

針對推動中9個項目,將先驗證有預期成效後再平行展開至其它機組(詳細內容如第3頁、第4頁)。本次提出已有模擬驗證項次1汽機排汽壓力與冷卻水泵操作優化執行案例分享報告。

| 項 | 操作優化                       | 規劃改 | 投資金額          | 預估年效益         |               | 改善改善內容重點                                            |
|---|----------------------------|-----|---------------|---------------|---------------|-----------------------------------------------------|
| 次 | 推動項目                       | 善台數 | (千元/台)        | 節能            | (千元/台)        | 以苦內谷里和                                              |
|   | 公用部汽機排汽<br>壓力與冷卻水泵<br>操作優化 | 8   | 1, 380        | 節電<br>96度/時   | 1, 699        | 優化汽機末段排汽壓力操作範圍,<br>尋找發電機發電量與冷卻水泵用電<br>量差異,達到最大淨發電量。 |
| 2 | 公用部鍋爐吹灰<br>器吹灰優化           | 16  | 1, 991        | 節汽<br>0.22噸/時 | 1, 418        | 由既有定時吹灰,改為狀態基準吹灰,降低吹灰次數減少蒸汽使用量。                     |
| 3 | 公用部鍋爐給水<br>泵運轉控制優化         | 5   | 1,968<br>(5台) | 節電<br>66度/時   | 1,162<br>(5台) | 演算汽鼓水位、蒸汽流量、給水流<br>量運轉值減少鍋爐給水泵用電量。                  |
| 4 | 公用部鍋爐磨煤<br>機系統節能優化         | 16  | 1, 662        | 節電<br>89度/時   | 1, 566        | 控制磨煤機系統(一次風風量/風壓<br>等)縮小操作範圍,達到節能。                  |
| b | 公用部鍋爐降低<br>NOx、SOx優化       | 16  | 2, 484        | 減排            | 改善            | 由鍋爐流場分析,調整鍋爐燃燒狀態,減少SOx、NOx排放。                       |

# 一、動機說明

# (二)操作優化推動進度:(2/2)

| 項 | 操作優化            | 規劃改 | 投資金額    | 預估年效益                          |         | 74 美 n 穴 壬 剛                                                       |
|---|-----------------|-----|---------|--------------------------------|---------|--------------------------------------------------------------------|
| 次 | 推動項目            | 善數量 | (千元/ST) | 節能                             | (千元/ST) | 改善內容重點                                                             |
| 6 | 公用部經濟規劃調度自動化    | 1   | 4, 150  | 節煤<br>1,650<br>頓/年             | 4, 267  | 系統演算公用部16部機組最佳升降<br>載時間點,並配合製程廠用電/汽變<br>化建立各機組開停車排程及系統購<br>(售)電狀況。 |
| 7 | 公用部超純水再生優化      | 2   | 6, 130  | 節電<br>11.6度/時<br>節水<br>11.5噸/時 | 2, 919  | 藉由AI分析不同季節下,採水量與<br>導電度、氯鹽等關聯性,預測可採<br>水時間,減少再生次數及用電量。             |
| 8 | 公用部原水砂濾池採水逆洗優化  |     | 980     | 節電<br>0.5度/時<br>節水<br>3.3噸/時   | 315     | 藉由AI分析處理水量與濁度之關聯性,增加8系列採水時間,減少砂濾<br>池逆洗次數及用電量。                     |
| 9 | 公用部轉動設備<br>預警分析 | 16  | 6, 500  | 預警分析                           |         | 建置汽機、發電機、鍋爐給水泵設<br>備運轉趨勢預警系統。                                      |

# (一)AI建置規劃(流程示意圖):

- 1.學習業界方法,我們推動AI有5大步驟,主要分為定義問題與 目標,數據蒐集、清理及參數篩選,建置質能平衡平台,AI預 測模組建置與測試,建置AI模擬器。
- 2. 初期以購買可運用軟體及產學合作方式來執行,由各廠推行專人實際參與,學習質能平衡平台建置、建模技術與演算法應用。



執行重點

依製程優化、 經濟調度等 備預警等面向 有月定期檢討 推動。 盤點AI建置所需 資料,以運轉、 保養經驗及統計 分析方法進行數 據清理、分析。

依設備資料及 PFD(製程質能 圖)建置質能平 衡平台,作為 AI預測模組數 據補值。 選擇適用之AI 演算法建置模 組,並進行測 試、調整。

提供最佳化操作條件供製理轉調整,並推廣主共它機組

#### (二)定義問題與目標:

1. 公用部汽電廠主要供應麥寮廠區製程廠蒸汽、電力, 隨製程廠 用汽量調整, 汽機抽汽量、復水量及發電量會隨之變動。



圖1:汽電共生機組基本循環圖



圖2: 朗肯循環(Rankine Cycle)曲線

汽機末段排汽壓力是利用冷卻水 進行熱交換,排汽壓力愈低(真 空度愈高),汽機作功愈多,發 電量愈高。

當冷卻水量增加排汽壓力降到一 定程度,發電機發電量將無明顯 變化,反而增加冷卻水泵用電, 所以冷卻水量有優化調整空間。

#### (二)定義問題與目標:

2. 冷卻水流量是由操作人員依冷卻水出入口溫度差(TR)進行冷卻水泵運轉起停。

3. 以HG1汽發電機為例,冷卻水出入口溫度差控制在4~9℃,經 統計2019年<7. 0℃計有261天偏向管制值下限,所以冷卻水量 偏多,仍有減少空間,因人工無法即時計算最大淨發電量,所

以擬藉由AI協助。

| kV         | W<br>毛發電量  |
|------------|------------|
| 發發         | 最大淨        |
| 發電機        | <b>發電量</b> |
| 0          | • °C       |
| •          | → 冷卻水出入口   |
| 泵 用<br>法 索 | 溫差(TR)     |
| 泵浦電量       | 泵浦用電量      |
|            |            |
| kV         | V          |

淨發電量=毛發電量-泵浦用電量

| 冷卻  | 冷卻水出入 | 發電機毛   | 泵浦     | 淨發電量        |
|-----|-------|--------|--------|-------------|
| 水量  | 口溫度差  | 發電量(A) | 用電量(B) | (A-B)       |
| 愈多↑ | 愈小↓   | 愈高↑    | 愈高↑    | 非最大淨<br>發電量 |

| 執行項目                 | 汽機操作規範                                                                                               |         |      |  |  |
|----------------------|------------------------------------------------------------------------------------------------------|---------|------|--|--|
| 現況冷卻<br>水泵目前<br>運轉方式 | TR:冷卻水出入口溫度差<br>調整說明: $4$ °C ≤ TR ≤ $9$ °C<br>1.當TR大於 $9$ °C 時,即增加冷卻水流量<br>2.當TR小於 $4$ °C 時,即減少冷卻水流量 |         |      |  |  |
| 實際冷卻水                | $TR(^{\circ}\!C)$                                                                                    | 平均TR(℃) | 運轉天數 |  |  |
| 出入口溫度                | $7.0 < TR \le 9.0$                                                                                   | 7. 4    | 104  |  |  |
| 差統計                  | $4.0 \le TR \le 7.0$                                                                                 | 5. 5    | 261  |  |  |

HG1汽發電機冷卻水出入口溫度差2019年運轉統計表

#### (三)數據蒐集、清理及參數篩選:

- 1. 執行數據蒐集時,線上儀錶已足夠運轉操控,藉由AI尋找最佳 冷卻水量時,發現欠缺汽機排汽流量數據。
- 2. 由於汽電廠製程係依熱力學質能平衡定律設計,可利用此定律 計算補足欠缺的數據,如下圖所示。



#### (三)數據蒐集、清理及參數篩選:

- 3. 由運轉、保養人員經驗,蒐集2019/04/29~6/30期間與冷卻水流量相關聯34個參數,數據約20.5萬筆。
- 4. 將開停車、儀錶檢修及設備異常數據剔除,再利用統計分析手法,篩選出與冷凝器冷卻水流量相關聯6個關鍵參數約3.5萬筆數據。



以冷凝器「冷卻水流量」為目標函數篩選出6個關鍵參數

| 關鍵參數名稱         |
|----------------|
| 冷卻水出口水溫(℃)     |
| 冷卻水入口水溫(℃)     |
| 低壓加熱器排水流量(T/H) |
| 汽機排汽溫度(℃)      |
| 汽機排汽壓力(mbara)  |
| 汽機排汽流量(T/H)    |

## (四)AI預測模組測試(質能平衡定律計算數據):

- 1. 經清理、篩選後數據資料,導入AI預測模組,以冷凝器排汽壓力來驗證模組準確率,演算預測值與DCS實際值之算術平均準確率只有64.5%。
- 2. 經檢討計算數值未考慮設備實際運轉性能所造成偏差,為提高 AI預測模組準確率,計算數值需進行修正。



偏差值=DCS實際值—AI預測模組預測值 偏差值愈大→算術平均準確率愈低

利用質能平衡定律計算數據導入AI預測模組準確率測試

#### (五)質能平衡平台建置說明:

- 1. 冷凝器實際運轉的熱交換效率會受到銅管塞管率、銅管清潔度 等6項參數影響,需進行參數調整來提高AI預測模組準確率。
- 2. 經多方洽詢評估與核研所合作以冷凝器廠商設計資料建置質能 平衡平台,以冷凝器之汽機排汽、低壓加熱器冷凝水等5項DCS 數據來反覆調整冷凝器6項參數,當質能平衡平台運算值與DCS 數據誤差小於0.5%,此時冷凝器質能平衡平台即建置完成。



依據美國熱交換協會規範 HEI Standards for Steam Surface Condensers

#### (五)質能平衡平台應用:

3. 經參數調整完成的質能平衡平台除可將DCS缺少之數據計算補足,若線上儀錶數據與平台計算數據偏差小於0.5%直接匯入AI資料庫,偏差大於0.5%通知人員進行現場儀錶查修外,並以質能平衡平台計算數據取代,匯入至AI數據資料庫。質能平衡平台優點:經實際驗證數值誤差率小於0.5%符合ASME規範。



ASME PTC: American Society Of Mechanical Engineers Performance Test Codes 工程判斷: <0.5%

質能平衡平台應用流程示意圖

## (六)AI預測模組測試(質能平衡平台計算數據):

為印證質能平衡平台計算數據可提升AI模組準確率,以2019/4/29~10/14期間DCS數據加上質能平衡平台計算數據,導入AI預測模組,同樣以冷凝器排汽壓力作測試,演算預測值與DCS實際值算術平均準確率由原本64.5%提高至95.6%。



偏差值=DCS實際值-AI預測模組預測值

利用質能平衡平台計算數據導入AI預測模組測試

#### (七)AI模擬器:

- 1. 此模擬器內建符合熱力學電廠單元設備質能平衡平台,可結合 AI演算法,提供模擬演算建議操作畫面。
- 2. 已應用於冷凝器冷卻水出入口溫度差性能預警,超過動態警報上限或下限1°C(依ASME規範),通知人員進行冷卻水運轉調整。



AI模擬器應用架構示意圖

# 三、HG1汽機排汽壓力與冷卻水泵節能應用案例

#### (一)優化成果:

- 1.以2019/5/2運轉條件,冷卻水量8,400T/H、冷卻水出入口溫度 差4.9℃,發電量53,942kW。
- 2. 經AI模擬演算,冷卻水量為6,032T/H時,冷卻水出入口溫度差7.8℃,可達到最佳節電效益,因冷卻水量減少,泵浦可減少用電量200kW;汽機排汽壓力雖上升4.7mbara,發電機發電量減少31kW,但總體可節電169kW。

#### 節電效益=泵浦減少用電量200kW-發電機減少發電量31kW= 169kW

| 101双分110至71 |
|-------------|
| 冷卻水流出溫度     |
|             |
| ( ) 冷卻水流入溫度 |
| AA          |
| 低壓B台        |
| 加熱器<br>C台   |
| 冷凝水 D台      |
| 冷卻水泵7101A~C |

 $(4, 200T/H \cdot 400kW)$ 

 $(2, 200T/H \cdot 200kW)$ 

冷卻水泵7101D

**汽機排汽厭力** 

| 2019/5/2<br>原始<br>數據 | 冷卻<br>水量<br>(T/H)   | 冷卻水<br>出入口<br>溫度差<br>TR(°C) | 汽機<br>排汽<br>壓力<br>(mbara) | 發電機<br>發電量<br>(kW)<br>(A) | 泵浦<br>耗電量<br>(kW)<br>(B) | 淨發<br>電量<br>(kW)<br>(A-B) |
|----------------------|---------------------|-----------------------------|---------------------------|---------------------------|--------------------------|---------------------------|
| DCS<br>即時<br>數據      | 8, 400              | 4. 9                        | 59. 3                     | 53, 942                   | 800                      | 53, 142                   |
| AI預測<br>模組<br>演算     | 6, 032<br>(-2, 368) | 7. 8<br>(+2. 9)             | 64. 0<br>(+4. 7)          | 53, 911<br>(-31)          | 600<br>(-200)            | 53, 311<br>(+169)         |

# 三、HG1汽機排汽壓力與冷卻水泵節能應用案例

#### (一)優化成果:

3. 即時模擬演算於2020/5/18上線,受限既有設備配置雖然模擬演算最佳冷卻水流量為6,032T/H現只能選擇較相近的運轉組合6,400T/H運轉,尚有節電空間,擬再增設變頻調速裝置,增加節電效益。



TTD(Terminal Temperature Difference): 冷凝器終端溫度差

HG1汽發電機冷凝器冷卻水模擬演算建議操作畫面

# 三、HG1汽機排汽壓力與冷卻水泵節能應用案例

#### (二)效益分析:

1. 本案投資:1,380千元。

2. 改善效益:以2019/4/29~2020/4/29期間數據資料經模組模

擬演算最佳冷卻水量,受限既有設備配置,選擇

最相近運轉組合運轉,每年節電效益1,699千元,

回收年限0.81年。

|              | 節電(度/時) | 節電金額(千元) |
|--------------|---------|----------|
| 每年節電效益(單台機組) | 96      | 1, 699   |

#### 四、未來強化重點

(一)HG1汽機排汽壓力與冷卻水泵操作優化,經實際驗証已具有節電成效,持續擴展至冷卻水塔系統操作優化改善,目前因現有分析數據尚未連結氣候條件(大氣溫度、濕度、風速)及欠缺公用區(空壓機、空調系統)輔機冷卻水流量等數據,導致準確度偏低,已規劃連結當地氣象站數據與增設輔機冷卻水流量計,以提高模組準確度,達到淨發電量最大效益。



#### 四、未來強化重點

(二)進一步建置各單元設備之質能平衡平台,結合成完整虛擬電廠,藉由各機組完整質能平衡平台,在機組負載和製程廠用汽量動態平衡下,透過AI演算尋找機組最佳抽汽分配組合,除穩定供應各製程廠蒸汽,並降低發電成本。



RTPMS(Real-Time Power Management System):即時電力管理系統

(三)經驗證有預期成效優化項目,將推廣至本部其他機組,提供企業汽電廠參考應用。

# 報告完準