Homotopy classification of 4-manifolds with

- ·) finite abelian 2-generator fundamental group
- ·) dihedral fundamental group

Based on joint work with Daniel Kasprowski, Johnny Nicholson, Mark Powell

This talk will be in the topological category

- ·) Warmup: Homeomorphism classification of simply-connected 4-manifolds
- ·) Our ignorance for non-trivial fundamental groups

my Homotopy classification

Poincaré 4-complexes

Whitehead's [ - construction

[Hambleton-Kreck]

 $\pi_1 = finite$ 

13 quadratic 2-type

What we ([Kasprowski-Powell-R, 2020], [Kasprowski-Nicholson-R, 2020]) found for  $T_1 = T_n \times T_n$ 

and July = Dihzm

#### Simply-connected oriented 4-manifolds and intersection forms

Intersection form 
$$H_2(M^4) \otimes_{\mathbb{Z}} H_2(M^4) \xrightarrow{\lambda_M} \mathbb{Z}$$



[Milnor (1958)] Homotopy classification of simply-connected closed oriented 4-mflds.

[Freedman (1984)] Homeomorphism

(Intersection form + Kirby-Siebenmann invariant)

#### Simply-connected oriented 4-manifolds and intersection forms

$$A = \frac{immersed}{2 - sphere}$$



Any finitely presented group appears as II1 (closed, smooth, oriented)

Given presentation 
$$JL = \langle g_1, ..., g_n | r_1, ..., r_m \rangle$$

build 2-complex 
$$K(\pi) = \left( \bigvee \mathbb{S}^1 \right)$$
 relations  $\bigcup^{m} \mathbb{D}^2$ 



$$K(\pi) \hookrightarrow \mathbb{R}^5$$

take a closed tubular neighborhood vK(TC) e 5-mfld.

#### Some results for non-trivial fundamental groups:

[Freedman-Quinn, 1990]

For In = 22:

- ·) orientation character
- ·) equivariant intersection form on IC2 } 1 more on this soon
- ·) Kirby-Siebenmann invariant

[Hambleton-Kreck, 1988]

Applied Freedman's results for manifolds with JC, finite

(finite groups are "good" in the 'sense of Freedman

completed homeomorphism classification for finite cyclic groups  $\frac{72}{n}$ 

my Homotopy classification

Def: oriented Poincaré 4-complex:

- ·) finite CW-complex X
- ·) oriented with a fundamental class  $[X] \in H_4(X; \mathbb{Z})$  s.th. X "satisfies Poincaré duality", i.e.

$$- \cap [X]: C^{4-*}(X; \mathbb{Z}[\pi_{1}X]) \longrightarrow C_{*}(X; \mathbb{Z}[\pi_{1}X])$$

is a simple chain homotopy equivalence.

Ex.: every closed, oriented topological 4-manifold is homotopy equivalent to a Poincaré 4-complex

(but there are Poincaré 4-complexes which are not homotopy equivalent to any closed, topological 4-manifold [Hambleton-Milgram, 1978])



### Equivariant intersection form:

$$\lambda_{X} : \mathcal{I}_{Z}(X) \otimes \mathcal{I}_{Z}(X) \longrightarrow \mathbb{Z}[\mathcal{I}_{A}(X)]$$
 sign of intersection point p

[A]

[B]

 $\downarrow \sum_{p \in A \uparrow h B} \pm 9p$ 

double point loop

A = with whisker to \*

clouble point loop

 $g_{p} \in \mathcal{I}_{A}(X)$ 

basepoint \*

"History" of homotopy classification of 4 - dim. Poincaré complexes:

Poincaré 4-complex >>> quadratic 2-type

 $\left[ \pi_{1}(X,*), \pi_{2}(X,*), \chi_{X}, \chi_{X} \right]$ 

[Hambleton-Kreck, 1988] 4-olim. oriented Poincaré complex with includes complexes with finite cyclic or with finite cyclic or with finite cyclic or is classified up to homotopy by their quadratic 2-type

[Bauer, 1988] true if the 2-Sylow subgroup of In has
4-periodic cohomology

#### Thm. Let JC be a finite group s.th. its 2-Sylow subgroup is

- ·) abelian with at most 2 generators or
- ·) dihedral [Kasprowski-Nicholson-R, 2020]

[Kasprowski-Powell-R, 2020]

Then oriented 4-dimensional Poincaré complexes X, X with fundamental group IT are homotopy equivalent if and only if

their quadratic 2-types are isomorphic.

 $\left[ \, \pi_{1}(X) \, , \, \pi_{2}(X) \, , \, k_{X} \, , \, \lambda_{X} \colon \pi_{2}(X) \otimes \pi_{2}(X) \rightarrow \mathbb{Z}[\pi_{1}(X)] \, \right] \sim \left[ \, \pi_{1}(X') \, , \, \pi_{2}(X') \, , \, k_{X'} \, , \, \lambda_{X'} \colon \pi_{2}(X') \otimes \pi_{2}(X') \rightarrow \mathbb{Z}[\pi_{1}(X')] \, \right]$ 

[Hambleton-Kreck, Teichner]: If  $\mathbb{Z} \otimes_{\mathbb{Z}[\mathcal{I}_{\mathbb{Z}}(X)]} \Gamma(\mathcal{I}_{\mathbb{Z}}(X))$  is  $\mathbb{Z}$ -torsion free,

4-dim. Poincaré complexes with finite fundamental group  $TC = TC_1(X)$ 

are homotopy equivalent if and only if their quadratic 2-types are isomorphic.

Whitehead's [ - groups: Let A be a Z[II] - module.

For A with free abelian underlying Z-module

$$\Gamma(A) = \langle b \otimes b, b \otimes b' + b' \otimes b \rangle_{b \neq b' \in \mathbb{Z}-basis \mathcal{B}} \subset A \otimes A$$

 $\mathbb{Z}[\pi]$ -module via the action  $\pi \cap \Gamma(A) \longrightarrow \Gamma(A)$ 

$$g$$
,  $\sum a_i \otimes b_i \longmapsto \sum (g \cdot a_i) \otimes (g \cdot b_i)$ 

Whitehead observed that for a CW-complex L,  $\Gamma(\pi_2(L))$  fits into an exact sequence

$$H_4(\widetilde{L}; Z) \longrightarrow \Gamma(\mathfrak{I}_2(L)) \xrightarrow{\text{precomposing}} \mathfrak{I}_3(L) \xrightarrow{\text{Hurewicz}} H_3(\widetilde{L}; Z) \longrightarrow \sigma$$

Useful fact: For A, A' free 2-modules

$$\Gamma(A \oplus A') \cong \Gamma(A) \oplus (A \otimes_{\mathbb{Z}} A') \oplus \Gamma(A')$$

Have short exact sequence of stable isomorphism classes of Zot - modules

$$O \longrightarrow \ker d_2 \longrightarrow \pi_2(X) \oplus \mathbb{Z}_{\pi_1}^{\oplus r} \longrightarrow \operatorname{coker} d^2 \longrightarrow O$$

dz from a free ZJJ, -module resolution

(C\*, d\*) of the trivial Z[JJ] - module Z

Example of such a differential  $d_2$  for the presentation  $\langle \times, y \mid \times^n, y^{-2}, \times y \times y^{-1}, y^2 \rangle$  of the dihedral group  $D_{2:n}$   $C_*(\mathcal{P}) \colon \quad 0 \to \ker(d_2) \to \mathbb{Z}\pi^3 \xrightarrow{\begin{pmatrix} N_x & -(1+y) \\ 1+xy & x-1 \\ 0 & y+1 \end{pmatrix}} \mathbb{Z}\pi^2 \xrightarrow{\begin{pmatrix} x-1 \\ y-1 \end{pmatrix}} \mathbb{Z}\pi \xrightarrow{\varepsilon} \mathbb{Z} \to 0$ 

## Strategy for showing that $\mathbb{Z} \otimes_{\mathbb{Z}[\bar{x}_1(X)]} \Gamma(\bar{x}_2(X)) = 0$ :

•) Show that  $\operatorname{Tors}\left(\mathbb{Z}\otimes_{\mathbb{Z}[x_{q}(x)]}\Gamma(\ker d_{2})\right)=0$  •) Show that  $\operatorname{Tors}\left(\mathbb{Z}\otimes_{\mathbb{Z}[x_{q}(x)]}\Gamma(\operatorname{coker} d^{2})\right)=0$ 

# $O \longrightarrow \ker d_2 \longrightarrow \pi_2(X) \oplus \mathbb{Z}_{\pi_1^{\oplus r}} \longrightarrow \operatorname{coher} d^2 \longrightarrow O$

The choice of resolution  $(C_*, d_*)$  does not matter for computing Tors  $(\mathbb{Z} \otimes_{\mathbb{Z}[\pi_1(X)]} \Gamma(\pi_2(X))$ :

•) for any two choices of resolution  $d_*$ ,  $d_*$  the  $22\pi$ -modules Ver  $d_2 \cong_{\text{staty}} \text{Ver } d_2$  are Stably isomorphic

7

Coker  $d^2 \cong_{stably} Coker \widehat{d}_2$ 

•) Tors  $(\mathbb{Z} \otimes_{\mathbb{Z}[\pi_1(X)]} \Gamma(D))$  does not change if we stabilize  $D \to D \oplus \mathbb{Z}[\pi_1(X)]^{\oplus r}$ 

<u>Summary</u>: Classifying 4-manifolds is hard

Fix a fundamental group - we looked at finite groups  $\frac{7}{n} \times \frac{7}{m}$  and Dih<sub>2·m</sub>

Try to find invariants that pin down the homotopy type of an oriented 4-dimensional Poincaré complex X with finite fundamental group  $\pi$  quadratic 2-type  $[\pi_1(X), \pi_2(X), k_X, k_X]$ 

Our result: If the 2-Sylow subgroup of JC is  $\frac{27}{2}k \times \frac{27}{2}l$  or Dih<sub>2·k</sub>, [Kasprowski-Powell-R, 2020]

[Kosprowski-Nicholson-R, 2020] the isometry class of the 2-type is enough!

How? Using results of Hambleton-Kreck, Teichner: Enough to show that  $\mathbb{Z} \otimes_{\mathbb{Z}[\pi_1(x)]} \Gamma(\pi_2(x))$  is torsion free.

## Excerpt from the proof for $\frac{1}{2}$ <sub>n</sub> × $\frac{1}{2}$ <sub>m</sub>:

Proof. For the group  $\pi = \langle a, b \mid a^n, b^m, [a, b] \rangle$  let  $N_a := \sum_{i=0}^{n-1} a^i$  and  $N_b := \sum_{i=0}^{m-1} b^i$ . Let  $C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0$  be the chain complex corresponding to the presentation  $\langle a, b \mid a^n, b^m, [a, b] \rangle$ . Extend this to the standard free resolution of  $\mathbb{Z}$  as a  $\mathbb{Z}\pi$ -module:



By exactness,  $\ker d_2 \cong \operatorname{im} d_3 \cong C_3 / \ker d_3 \cong \operatorname{coker} d_4$ . From this it follows that  $\ker d_2 \cong (\mathbb{Z}\pi)^4 / \langle (N_a, 0, 0, 0), (b - 1, 1 - a, 0, 0), (0, N_b, N_a, 0), (0, 0, b - 1, 1 - a), (0, 0, 0, N_b) \rangle$ .

Tors 
$$\left( \frac{7}{2} \otimes_{2[\pi_{A}(X)]} \Gamma(\ker d_{2}) \right)$$

Example 5.1. The following is a complete list of all groups of order at most 16 such that  $\widehat{H}_0(\pi; \Gamma(\ker d_2))$  is non-trivial. The group  $Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk \rangle$  is the quaternion group.

| $\pi$                                                                      | $\widehat{H}_0(\pi;\Gamma(\ker d_2))$                                                                           | zeroth Tate-homology |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|
| $\mathbb{Z}/4 \times \mathbb{Z}/2 \times \mathbb{Z}/2$                     | $(\mathbb{Z}/2)^2$                                                                                              | 3/                   |
| $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$ | I a constant |                      |
| $Q_8 	imes \mathbb{Z}/2$                                                   | $\mid (\mathbb{Z}/2)^4$                                                                                         |                      |

Manks!