1

$\begin{array}{ccc} \text{EECS 16A} & \text{Designing Information Devices and Systems I} \\ \text{Fall 2022} & \text{Discussion 5B} \end{array}$

1. Mechanical Determinants

(a) Compute the determinant of $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.

Answer:

We can use the form of a 2×2 determinant from lecture:

$$\det\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$$

Therefore,

$$\det \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \end{pmatrix} = 2 \cdot 3 - 0 \cdot 0 = 6$$

(b) Compute the determinant of $\begin{bmatrix} 2 & -3 & 1 \\ 2 & 0 & -1 \\ 1 & 4 & 5 \end{bmatrix}.$

Answer:

$$\det \left(\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \right) = a \cdot \det \left(\begin{bmatrix} e & f \\ h & i \end{bmatrix} \right) - b \cdot \det \left(\begin{bmatrix} d & f \\ g & i \end{bmatrix} \right) + c \cdot \det \left(\begin{bmatrix} d & e \\ g & h \end{bmatrix} \right)$$

Therefore,

$$\det \left(\begin{bmatrix} 2 & -3 & 1 \\ 2 & 0 & -1 \\ 1 & 4 & 5 \end{bmatrix} \right) = 2 \cdot \det \left(\begin{bmatrix} 0 & -1 \\ 4 & 5 \end{bmatrix} \right) + 3 \cdot \det \left(\begin{bmatrix} 2 & -1 \\ 1 & 5 \end{bmatrix} \right) + 1 \cdot \det \left(\begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix} \right)$$

$$= 2 \cdot (0 - (-4)) + 3 \cdot (10 - (-1)) + 1 \cdot (8 - 0))$$

$$= 8 + 33 + 8$$

$$= 49$$

2. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix M and their associated eigenvectors.

(a)
$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$$

Do you observe anything about the eigenvalues and eigenvectors?

Answer:

Let's begin by finding the eigenvalues:

$$\det \left(\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right) = \det \left(\begin{bmatrix} 1 - \lambda & 0 \\ 0 & 9 - \lambda \end{bmatrix} \right) = 0$$

The determinant of a diagonal matrix is the product of the entries.

$$(1 - \lambda)(9 - \lambda) = 0$$

From the above equation, we know that the eigenvalues are $\lambda = 1$ and $\lambda = 9$. For the eigenvalue $\lambda = 1$:

$$(\mathbf{M} - 1\mathbf{I})\vec{x} = \vec{0}$$

$$\left(\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \vec{x} = \vec{0}$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 8 \end{bmatrix} \vec{x} = \vec{0}$$

From the second equation in the system, $x_2 = 0$, with any solution having the form $\begin{bmatrix} 1 \\ 0 \end{bmatrix} t$ for $t \in \mathbb{R}$. The eigenspace is thus span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$.

For the eigenvalue $\lambda = 9$:

$$(\mathbf{M} - 9\mathbf{I})\vec{x} = \vec{0}$$

$$\left(\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} - 9 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \vec{x} = \vec{0}$$

$$\left(\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} - \begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix} \right) \vec{x} = \vec{0}$$

$$\begin{bmatrix} -8 & 0 \\ 0 & 0 \end{bmatrix} \vec{x} = \vec{0}$$

From the first equation in the system, $x_1 = 0$, so any solution must take the form $\begin{bmatrix} 0 \\ 1 \end{bmatrix} t$ for $t \in \mathbb{R}$. The eigenspace is span $\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$.

We observe that the eigenvalues are just the diagonal entries. Since the matrix is diagonal, multiplying the diagonal matrix **D** with any standard basis vector \vec{e}_i produces $d_i\vec{e}_i$, that is, $\mathbf{D}\vec{e}_i = d_i\vec{e}_i$. Therefore, the eigenvalues are the diagonal entries d_i of **D**, and the corresponding eigenvector associated with $\lambda = d_i$ is the standard basis vector \vec{e}_i .

(b)
$$\mathbf{M} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

Answer

Let's begin by finding the eigenvalues:

$$\det(A - \lambda I) = \det\left(\begin{bmatrix} 0 - \lambda & 1 \\ -2 & -3 - \lambda \end{bmatrix}\right) = 0$$

$$-\lambda(-3-\lambda) + 2 = 0$$
$$\lambda^2 + 3\lambda + 2 = 0$$
$$(\lambda+2)(\lambda+1) = 0$$
$$\lambda = -1, -2$$

$$\lambda = -1:$$

$$\begin{bmatrix} 0 - (-1) & 1 & 0 \\ -2 & -3 - (-1) & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ -2 & -2 & 0 \end{bmatrix} \xrightarrow{G.E.} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x_1 + x_2 = 0$$

$$x_2 = t \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -t \\ t \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} t$$

The eigenspace for $\lambda = -1$ is span $\left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$.

$$\lambda = -2:$$

$$\begin{bmatrix} 0 - (-2) & 1 & 0 \\ -2 & -3 - (-2) & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ -2 & -1 & 0 \end{bmatrix} \xrightarrow{G.E.} \begin{bmatrix} 1 & 1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x_1 + x_2/2 = 0$$

$$x_2 = t \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -t/2 \\ t \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} t$$

The eigenspace for $\lambda = -2$ is span $\left\{ \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} \right\}$.

3. Eigenvalues and Special Matrices - Visualization

An eigenvector \vec{v} belonging to a square matrix **A** is a nonzero vector that satisfies

$$A\vec{v} = \lambda\vec{v}$$

where λ is a scalar known as the **eigenvalue** corresponding to eigenvector \vec{v} . Rather than mechanically compute the eigenvalues and eigenvectors, answer each part here by reasoning about the matrix at hand.

- (a) Does the identity matrix in \mathbb{R}^n have any eigenvalues $\lambda \in \mathbb{R}$? What are the corresponding eigenvectors? Multiplying the identity matrix with any vector in \mathbb{R}^n produces the same vector, that is, $\mathbf{I}\vec{x} = \vec{x} = 1 \cdot \vec{x}$. Therefore, $\lambda = 1$. Since \vec{x} can be any vector in \mathbb{R}^n , the corresponding eigenvectors are all vectors in \mathbb{R}^n .
- (b) Does a diagonal matrix $\begin{bmatrix} a_1 & 0 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{bmatrix} \text{ in } \mathbb{R}^n \text{ have any eigenvalues } \lambda \in \mathbb{R}? \text{ What are the }$

corresponding eigenvectors'

Answer: Since the matrix is diagonal, multiplying the diagonal matrix with any standard basis vector \vec{e}_i produces $d_i \vec{e}_i$, that is, $\mathbf{D} \vec{e}_i = d_i \vec{e}_i$. Therefore, the eigenvalues are the diagonal entries d_i of \mathbf{D} , and the corresponding eigenvector associated with $\lambda = d_i$ is the standard basis vector \vec{e}_i .

(c) Conceptually, does a rotation matrix in \mathbb{R}^2 by angle θ have any eigenvalues $\lambda \in \mathbb{R}$? For which angles is this the case?

Answer: In a conceptual sense, there are three cases:

Rotation by 0° : (more accurately, any integer multiple of 360°), which yields a rotation matrix $\mathbf{R} = \mathbf{I}$: This will have one eigenvalue of +1 because it doesn't affect any vector ($\mathbf{R}\vec{x} = \vec{x}$). The eigenspace associated with it is \mathbb{R}^2 .

Rotation by 180°: (more accurately, any angle of $180^{\circ} + n \cdot 360^{\circ}$ for integer n), which yields a rotation matrix $\mathbf{R} = -\mathbf{I}$: This will have one eigenvalue of -1 because it "flips" any vector ($\mathbf{R}\vec{x} = -\vec{x}$). The eigenspace associated with it is \mathbb{R}^2 .

Any other rotation: there aren't any real eigenvalues. The reason is, if there were any real eigenvalue $\lambda \in \mathbb{R}$ for a non-trivial rotation matrix, it means that we can get $\mathbf{R}\vec{x} = \lambda\vec{x}$ for some $\vec{x} \neq \vec{0}$, which means that by rotating a vector, we scaled it. This is a contradiction (again, unless $\mathbf{R} = \mathbf{I}$). Refer to Figure 1 for a visualization.

Figure 1: Rotation will never scale any non-zero vector (by a real number) unless it is rotation by an integer multiple of 360° (identity matrix) or the rotation angle is $\theta = 180^{\circ} + n \cdot 360^{\circ}$ for any integer n ($-\mathbf{I}$).

(d) (**PRACTICE**) Now let us mechanically compute the eigenvalues of the rotation matrix in \mathbb{R}^2 . Does it agree with our findings above? As a refresher, the rotation matrix **R** has the following form:

$$\mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Answer: Using our known determinant formula for $2x^2$ matrices det(A) = ad - bc we can compute the characteristic polynomial

$$\det(\mathbf{R} - \lambda \mathbf{I}) = \det \begin{bmatrix} \cos(\theta) - \lambda & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) - \lambda \end{bmatrix} = \cos(\theta)^2 + \sin(\theta)^2 - 2\cos(\theta)\lambda + \lambda^2 \equiv 0$$

From here we can first simplify $1 = \cos(\theta)^2 + \sin(\theta)^2$ and then use the quadratic formula to attain the two possible λ values.

$$\lambda = \cos(\theta) \pm \sqrt{\cos(\theta)^2 - 1} = \cos(\theta) \pm i\sqrt{1 - \cos(\theta)^2} = \cos(\theta) \pm i\sqrt{\sin(\theta)^2}$$

In exponential phase notation we can write the two eigenvalues more concisely: $\lambda = e^{\pm i\theta}$

(e) Does the reflection matrix **T** across the x-axis in $\mathbb{R}^{2\times 2}$ have any eigenvalues $\lambda \in \mathbb{R}$?

$$\mathbf{T} = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$$

Answer: Yes, both +1 and -1. Mechanically, we could go through the methods we have learned for attaining a characteristic polynomial from $\det(T - \lambda I) = (1 - \lambda)(-1 - \lambda) - (0)(0)$ and recalling our eigenvalues are the roots of this polynomial (the values where this polynomial is zero). This works because matrix $T - \lambda I$ only has a nonempty null space when its determinant is zero!

$$\det(T - \lambda I) = \lambda^2 - 1 \equiv 0 \quad \to \quad \lambda = \pm 1$$

Conceptually, we can reason that a vector along the x-axis will be unaffected by **T** (in this case $\lambda = +1$), where as a vector along the y-axis gets perfectly flipped by **T** (in this case $\lambda = -1$)

NOTE: A 2×2 reflection matrix always has $\lambda = \pm 1$, REGARDLESS of the axis of reflection. Why? Reflecting any vector that is on the reflection axis will not affect it (eigenvalue +1). Reflecting any vector orthogonal (perpendicular) to the reflection axis will just "flip it/negate it" (eigenvalue -1). In other words, the set of vectors that lie along the axis of reflection is the eigenspace associated with the eigenvalue +1 and the set of vectors orthogonal to the axis of reflection is the eigenspace associated with the eigenvalue -1.

(f) If a matrix **M** has an eigenvalue $\lambda = 0$, what does this say about its null space? What does this say about the solutions of the system of linear equations $\mathbf{M}\vec{x} = \vec{b}$?

Answer: N(A) is not just $\vec{0}$ as we have some $\vec{v} \neq \vec{0}$ satisfying $A\vec{v} = \lambda \vec{v}$. Another way we can state this is that $\dim(N(A)) > 0$.

Thus we can imagine if $\mathbf{M}\vec{x} = \vec{b}$ has a solution then $\mathbf{M}(\vec{x} + \vec{v}) = \vec{b}$ also solves the system, hence there are infinite solutions. Yet we also know that a nonzero null space means \mathbf{M} has linearly dependent columns, so the vector \vec{b} could lie outside of this span in which case there is no solution.

In summary, there are either infinite or no solutions to the system of equations $\mathbf{M}\vec{x} = \vec{b}$

(g) (**Practice**) Does the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ have any eigenvalues $\lambda \in \mathbb{R}$? What are the corresponding eigenvectors?

Answer:

Note that the matrix has linearly dependent columns. Therefore, according to part (f), one eigenvalue is $\lambda=0$. The corresponding eigenvector, which is equivalent to the basis vector for the null space, is $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$. The other eigenvalue is, by inspection, $\lambda=1$ with the corresponding eigenvector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ because $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.