Sistemas Operacionais Básico

Gerenciamento de Entrada/Saída

Prof. José Roberto Bezerra

Sumário

- Hardware de E/S
- Software de E/S
- Discos
- RAID
- Formatação

Hardware de Entrada/Saída

Dispositivos de E/S

- Dispositivos de bloco
 - Armazena informações em blocos de tamanho fixo (512 a 32768 bytes)
 - Blocos são escritos e lidos de maneira independente
 - Cada bloco possui seu próprio endereço
 - Exemplo: Discos, fita magnética
- Dispositivos de caractere
 - Envia e recebe fluxos de caracteres individuais e independentes
 - Não são endereçáveis
 - Exemplos: Impressoras, interfaces de rede, mouses

Dispositivos de E/S

- Outros tipos de dispositivos
 - Relógios (clock)
 - Vídeo
- Devido a grande diversidade na velocidade dos dispositivos (devido as suas próprias características) o SO possui a responsabilidade de disponibilizar o acesso a todos de maneira eficiente, apesar das diferenças

Taxas de Dados e Dispositivos

Device	Data rate	
Keyboard	10 bytes/sec	
Mouse	100 bytes/sec	
56K modem	7 KB/sec	
Telephone channel	8 KB/sec	
Dual ISDN lines	16 KB/sec	
Laser printer	100 KB/sec	
Scanner	400 KB/sec	
Classic Ethernet	1.25 MB/sec	
USB (Universal Serial Bus)	1.5 MB/sec	
Digital camcorder	4 MB/sec	
IDE disk	5 MB/sec	
40x CD-ROM	6 MB/sec	
Fast Ethernet	12.5 MB/sec	
ISA bus	16.7 MB/sec	
EIDE (ATA-2) disk	16.7 MB/sec	
FireWire (IEEE 1394)	50 MB/sec	
XGA Monitor	60 MB/sec	
SONET OC-12 network	78 MB/sec	
SCSI Ultra 2 disk	80 MB/sec	
Gigabit Ethernet	125 MB/sec	
Ultrium tape	320 MB/sec	
PCI bus	528 MB/sec	
Sun Gigaplane XB backplane	20 GB/sec	

Controladores de Dispositivo

- Componentes dos Dispositivos de E/S
 - Mecânicos
 - Dispositivo propriamente dito
 - Eletrônicos
 - Também chamados de controlador de dispositivo (driver) ou adaptador
 - Pode manipular mais de um dispositivo
 - Nos computadores pessoais são as chamadas placas de expansão

Funções dos Controladores de Dispositivo (CD)

- Converter dados binários seriais para dados de bloco
 - O controlador de disco entrega um preâmbulo, seguido de 4096 bits (bloco de dados)
 - Os blocos são armazenados bit a bit em buffers
- Correção de erros
 - ECC (error-correcting code)
 - Chekcsum, CRC ou similar
- Disponibilização para Memória Principal
 - E/S mapeada em memória
 - DMA (Direct Memory Access)

E/S Mapeada em Memória

- Comunicação entre CPU e CD é feita através de registradores
- Ações como
 - Enviar dados
 - Receber dados
 - Ligar/Desligar dispositivo
 - Determinação de estado do dispositivo (impressora)
- São controladas pelo SO através da leitura dos valores contidos nos registradores
- Buffers de dados de leitura e escrita armazenam os dados disponíveis aos programas e o SO através de portas específicas

Portas de E/S

- Cada registrador é associado a um número de porta
- Instrução para leitura
 - IN REG, PORT
- Instrução para escrita
 - OUT PORT, REG
- Nesse caso espaços de endereçamento de E/S e memória são distintos

Mapeamento em Memória

- A proposta do PDP-11 é mapear na MP s registradores dos dispositivos, criando um mapeamento único
- Cada registrador é associado a uma posição de memória única (mapeamento)
- No IBM PC temos um sistema híbrido
 - Portas de E/S em endereços de 0 a 64K
 - Buffers em endereços de 640K a 1M

Funcionamento

- Quando a CPU necessita ler uma palavra (seja da memória ou de uma porta de E/S), o endereço é colocado no barramento
- CPU emite um sinal READ e um outro para sinalizar se a leitura se refere a memória ou a uma porta de E/S
- No caso de E/S o respectivo dispositivo responde a requisição
 - No caso de E/S mapeada em memória a leitura é direta e se dá através da seleção dos endereços
 - Se um endereço está dentro da faixa de um determinado dispositivo, este responderá a requisição

Vantagens E/S Mapeada

- Evita o uso de instruções especiais de E/S em baixo nível (ASSEMBLY)
 - IN e OUT não podem ser executadas em C, C++ ou Java, por exemplo
- Para permitir acesso a um dispositivo pelo usuário, basta que o SO faça o mapeamento do dispositivo no espaço de endereçamento do usuário
- Todas as instruções capazes de referenciar (ler ou escrever) a memória podem referenciar os registradores de controle dos dispositivos

DMA (Direct Memory Access)

- CPU requisita os dados de um controlador de E/S, um byte por vez, desperdiçando tempo
- O uso de DMA pelo SO requer um hardware especial, Controlador DMA

- Controlador lê um bloco do dispositivo bit a bit, colocando-o no buffer interno do controlador
- A Soma de Verificação é executada para a correção de eventuais erros de leitura
- Controlador causa interrupção que será atendida pelo SO
- Na rotina de tratamento da interrupção, a leitura do buffer é feita byte a byte em um laço
- A cada iteração a leitura é feita do buffer e copiada para a memória

 CPU passa valores aos registradores do controlador DMA (CDMA) para configurá-lo e iniciar o processo

2.A transferência é requisitada através de um comando do CDMA para que o controlador do disco escreva os dados na memória principal (MP)

3.É feita a transferência do *buffer* do controlador de disco para a MP

4.Ao final da transferência, o controlador do disco informa ao CDMA a conclusão através de um sinal de confirmação (*Ack*). Os passos 2 a 4 se repetem até que todo o *buffer* seja copiado para a MP

- Ao final do processo o CDMA interrompe a CPU para informar que a transferência foi concluída
- Quando o SO iniciar o tratamento da interrupção não há mais necessidade de copiar o bloco, pois o mesmo já está na MP

Algumas Características dos Controladores DMA

- Podem tratar uma ou várias transferências simultâneas (canais DMA)
- Cada canal possui conjuntos de registradores próprios
- Normalmente operam em dois modos:
 - Palavra (word-at-a-time mode)
 - CDMA ocupa o barramento e o libera a cada byte que é copiado para memória
 - Bloco (modo surto burst)
 - CDMA ocupa o barramento e o libera apenas após a transferência de vários *bytes* (bloco)

Por que Controladores de Disco (CD) utilizam *buffers* internos?

Os CD não poderiam simplesmente copiar o contéudo dos buffers internos diretamente para a MP a medida que são lidos do disco?

Por que Controladores de Disco (CD) utilizam *buffers* internos?

- 1.Ao armazenar os dados em buffer é possível para o CD realizar a soma de verificação (checksum) e detectar possíveis erros antes da transferência para a MP
- 2.O CD ocuparia o barramento do sistema a cada palavra, tornando o processo lento. A cópia do disco para o *buffer* interno do CD tem um ritmo próprio, não poderia esperar pela disponibilidade do barramento. Com o *buffer* preenchido a tarefa de transferência é feita pelo CDMA, que é mais eficiente

Software de Entrada/Saída

Propriedades

- Independência de Dispositivos
 - Programas devem ter acesso a qualquer dispositivo de E/S de maneira similar (CD-ROM, disco, etc), independente da sua natureza
- Nomeação Uniforme
 - Utilização de strings ou inteiros
- Tratamento de Erros
- Sincronismo
 - Síncrona (bloqueante)
 - Assíncrona (orientada a interrupção)
- Buffering
- Dispositivos Compartilhados versus
 Dedicados

Formas de realizar E/S

- E/S Programada
 - Espera ociosa (busy waiting)
 - Fácil de ser implementada
 - Aumenta a ociosidade da CPU
- E/S Orientada a Interrupção
 - Alternativa a E/S Programada utilizando interrupções
- E/S com DMA
 - DMA reduz o número de interrupções necessárias para transferências entre dispositivos e MP
 - Ao invés de uma interrupção para cada byte, uma para cada buffer completo

Discos

Tipos de Discos

- Magnéticos
- Estado Sólido
- Híbridos
- Ópticos

Tipos de Discos

Magnéticos

- Principal uso: armazenamento confiável
- Flexíveis (disquetes)
- Rígidos (Hard Disks Drives HDD)
- Estado Sólido
 - Tem a mesma aplicação dos discos magnéticos convencionais (HDD)
 - Solid State Drives (SSD)
 - Não há partes móveis (disco, cabeças, braços)
 - Utiliza
 - Baixo consu

•

Tipos de Discos

Híbridos

- Utiliza ambas tecnologias: HDD e SSD
- Uma pequena parte da capacidade do disco (4Gb) utiliza memórias e o restante é complementado com um disco rígido (496Gb)

Ópticos

- Principal uso: distribuição de informação (som, vídeo, programas)
- CD-ROMs
- CD-Rs
- DVDs

Discos Magnéticos

- São organizados internamente em cilindros, trilhas e setores
- Cada cilindro contém diversas trilhas, que por sua vez são divididas em setores
- A Geometria do disco é definida durante a fabricação dos mesmos (formatação física)

Parâmetros de disco

Parâmetro	Disco flexível IBM 360 KB	Disco rígido WD 18300
Número de cilindros	40	10 601
Trilhas por cilindro	2	12
Setores por trilha	9	281 (avg)
Setores por disco	720	35 742 000
Bytes por setor	512	512
Capacidade do disco	360 KB	18,3 GB
Tempo de posicionamento (cilindros adjacentes)	6 ms	0,8 ms
Tempo de posicionamento (caso médio)	77 ms	6,9 ms
Tempo de rotação	200 ms	8,33 ms
Tempo de pára/inicia do motor	250 ms	20 s
Tempo de transferência para um setor	22 ms	17 µs

Interfaces de Acesso

- IDE (Integrated Drive Electronics)
- ATA (Advanced Technology Attachment)
- SCSI

IDE (Integrated Drive Electronics)

- Desenvolvido pela Western Digital e Compaq em 1986
- Eletrônica reduzida
- Conectores de 40 pinos
- Velocidades de 5400 a 7200rpm
- Cada controlador IDE pode gerenciar até dois discos: Master e Slave
- Taxas de transferência da ordem de 133MB/s

UltraDMA/66

- Protocolo de transferência de dados entre os discos e a Memória RAM
- Desenvolvido pela Intel e Seagate
- Taxa de transferência de 66MB/s
- Compatibilidade com discos IDE convencional

SATA (Serial Advanced Technology Attachment)

- Criado para substituir o padrão IDE
- Dados são transmitidos serialmente em altas taxas de clock
- Taxas de transferência da ordem de 150 (SATA-150) a 300MB/s (SATA II)

SCSI (Small Computer System Interface)

- Suporta diversos tipos de dispositivos, além dos discos
- Comunicação peer-to-peer
- Qualquer dispositivo pode ser o iniciador(exchange initiator) ou alvo (target)
- O barramento é utilizado apenas durante a transferência de dados
- Cabos de 50 ou 68 vias
- Taxas de transferência da ordem de 80MB/s

RAID (redundant array of inexpensive disks)

- Constitui-se basicamente de um agrupamento de vários discos para obter benefícios como maior velocidade de acesso e/ou tornar o sistema mais confiável operando como se fosse um único disco
- Requer o uso de controladores RAID especiais

Níveis de RAID

- Nível 0
- Nível 1
- Nível 2
- Nível 3
- Nível 4
- Nível 5

Benefícios

- Melhoria no desempenho (tempos de acesso menores)
- Aumento da confiabilidade através de redundância
- Facilitar a restauração de informações em caso de desastres

- Dados são divididos em segmentos sequencialmente (stripping)
- Vantagens
 - Tempo de leitura menor (50%)
- Desvantagem
 - Em caso de perda de um segmento o arquivo fica comprometido

- Implementa o chamado espelhamento de disco
- Vantagens
 - Possibilidade de recuperação de um setor a partir do outro disco
 - Redundância
- Desvantagem
 - Tempo de escrita maior

- Um dos discos guarda os dados em si e o outro guarda as informações de paridade
- Em caso de perda, as informações podem ser reconstituídas a partir da paridade
- Vantagens
 - Leitura rápida
- Desvantagem
 - Escrita lenta
 - Recuperação complexa em caso de falha

- Implementa o controle de erros ECC (Error Correction Code)
- Similar ao RAID 4
- Está obsoleto
- Desvantagem
 - Discos atuais já utilizam correção de erro

- Versão simplificada do RAID 2
- Cada palavra de dados recebe um bit de paridade que armazenado em um segundo disco
- Similar ao RAID 4
- Vantagens
 - Leitura e escrita rápidas
- Desvantagem
 - Montagem do RAID complexa e feita via software

- Similar ao RAID 4
- As informações de paridade são distribuídas através de todos os discos
- Vantagens
 - Leitura rápida
 - Maior confiabilidade em relação ao RAID 4
- Desvantagem
 - Escrita lenta
 - Recuperação complexa em caso de falha

Formatação de Discos

Setores do disco

Preâmbulo	Dados	ECC
-----------	-------	-----

- Preâmbulo contém um padrão binário, indicando o início do setor
- Dados contém as informações propriamente ditas, normalmente 512 bytes
- ECC contém informações para recuperação de erros de leitura
- O espaço do disco não é totalmente utilizado com dados
 - Parte do espaço é ocupado pelo preâmbulo e ECC
 - Para os fabricantes 1GB=1000x1000x1000 bytes
 - Para o SO 1GB=1024x1024x1024 bytes

Formatação Lógica

- Feita via software tornando o disco reconhecível pelo SO
- O disco é preparado para receber dados, é feita a inclusão de um sistema de arquivos
- Praticamente cada SO possui um tipo de sistema de arquivos próprio
- Exemplos de sistemas de arquivos
 - FAT16 ou FAT32 (File Alocation Table)
 - NTFS
 - FFS (Fast File System BSD)
 - Ext2 ou Ext3

FAT

- Utiliza alocação por lista encadeada
- FAT32 utiliza clusters de 4KB, FAT16 de 32KB

FAT

Vantagens

- Facilita o acesso aleatório ao disco
- Deixa todo espaço do bloco para dados
- Desvantagem
 - A tabela de alocação deve estar em memória
 - Para um disco de 2GB e blocos de 1KB são necessárias 20 milhões de entradas. Se cada entrada possui 3 a 4 bytes, a tabela ocuparia 60 a 80 MB da memória principal

Second Extended File System (ext2)

- Arquivos são guardados em blocos do mesmo tamanho
- Cada arquivo é descrito por um único i-node que contém as informações de quais blocos compõe o arquivo

Ext2

Vantagem

- Cada i-node é carregado apenas quando o arquivo correspondente está aberto
- A quantidade de memória ocupada é proporcional a quantidade de arquivos abertos simultaneamente

Desvantagem

 A estrutura para manipular arquivos com endereços de blocos que os indicados no i-node pode se tornar complexa para arquivos grandes

Bibliografia

SISTEMAS OPERACIONAIS MODERNOS.
 Andrew Tanenbaum

OBSERVAÇÃO

A disponibilização das notas de aula através de slides serve apenas como apoio aos estudos. Para um bom aproveitamento e aprendizado é necessário a leitura das referências (livro texto) e estar atento às aulas

FIM