SEQUENCE-SERIES

EXERCISE - 01

CHECK YOUR GRASP

3. Sum of interior angles of a n sided polygon =(n-2) 180

$$=\frac{n}{2}[240+(n-1)5]$$
 \Rightarrow $n = 9, 16$

n = 16 is to be rejected.

$$(T_{16} = 120 + 15 \quad 5 = 195 > 180)$$

5. Horizontal $1 + \frac{1}{4} + \frac{1}{16} + \dots = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}$

Vertical $\frac{1}{2} + \frac{-1}{8} + \frac{1}{32} \dots = \frac{\frac{1}{2}}{1 + \frac{1}{4}} = \frac{2}{5}$

10. $\Rightarrow \frac{a+rd}{a+nd} = \frac{a+nd}{a+md}$

$$\Rightarrow \frac{1+r(d/a)}{1+n(d/a)} = \frac{1+n(d/a)}{1+m(d/a)} \text{ Let } \frac{d}{a} = x$$

$$\Rightarrow$$
 $(1 + nx)^2 = (1 + rx) (1 + mx)$

$$\Rightarrow$$
 $(n^2 - mr)x^2 + (2n - r - m)x = 0 $\Rightarrow x = 0$$

or
$$x = -\left(\frac{2n-r-m}{n^2-mr}\right) = \left(\frac{2n-r-m}{\frac{n(m+r)}{2}-n^2}\right) = \frac{-2}{n}$$

(m, n, r are in H.P. \Rightarrow mr = $\frac{n(m+r)}{2}$)

14. a, A_1, \dots, A_n , b. $d = \frac{b-a}{n+1}$

$$p = A_1 = a + \frac{b-a}{n+1} = \frac{an+a+b-a}{n+1} = \frac{an+b}{n+1}$$

15. Given $\frac{1}{a} + \frac{1}{a-2b} + \frac{1}{c} + \frac{1}{c-2b} = 0$ $\Rightarrow \left(\frac{1}{a} + \frac{1}{c-2b}\right) + \left(\frac{1}{c} + \frac{1}{a-2b}\right) = 0$

$$\Rightarrow (a+c-2b)\left(\frac{1}{a(c-2b)}+\frac{1}{c(a-2b)}\right)=0$$

As $a + c - 2b \neq 0$

$$\Rightarrow \qquad \frac{1}{b} = \frac{1}{a} + \frac{1}{c}$$

i.e. a, 2b, c are in H.P

18. $\sum_{s=1}^{n} \left\{ \sum_{s=1}^{s} r \right\} = \sum_{s=1}^{n} \frac{s(s+1)}{2}$

$$= \frac{1}{2} \left[\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right]$$

$$=\frac{n(n+1)}{4}\left\lceil \frac{2n+1+3}{3}\right\rceil = \frac{1}{12}n(n+1)(2n+4)$$

$$\Rightarrow$$
 $a = \frac{1}{6}, b = \frac{1}{2}, c = \frac{1}{3}$

19. We have $b^2 = ac$ (i)

and $2\log\left(\frac{3b}{5c}\right) = \log\left(\frac{5c}{a}\right) + \log\left(\frac{a}{3b}\right)$

$$= \log\left(\frac{5c}{a} \cdot \frac{a}{3b}\right) = \log\left(\frac{5c}{3b}\right) = -\log\left(\frac{3b}{5c}\right)$$

$$\Rightarrow 3\log\left(\frac{3b}{5c}\right) = 0 \Rightarrow b = \frac{5}{3}c \qquad \dots \dots (ii)$$

From (i) & (ii), we have $a = \frac{b^2}{c} = \frac{25c}{9}$

Now, we have $b+c = \frac{5c}{3} + c = \frac{8c}{3} < \frac{25c}{9} = a$

Hence a, b, c cannot form the sides of a triangle.

23. $x = \frac{1}{1-\cos^2\theta} = \frac{1}{\sin^2\theta}$

$$y = \frac{1}{1 - \sin^2 \theta} = \frac{1}{\cos^2 \theta}$$

$$z = \frac{1}{1 - \sin^2 \theta \cos^2 \theta}$$

above equation satisfy option (B) & (C).

EXERCISE - 02

BRAIN TEASERS

1. $\frac{S_{kx}}{S_{x}} = \frac{\frac{kx}{2}[2a + (kx - 1)d]}{\frac{x}{2}[2a + (x - 1)d]} = \frac{k[2a + (kx - 1)d]}{[2a + (x - 1)d]}$

$$=\frac{k[(2a-d)+kxd]}{[(2a-d)+xd]}$$

Now $\frac{S_{kx}}{S_x}$ is independent of x if 2a - d = 0

$$\Rightarrow$$
 a = $\frac{d}{2}$

2.
$$\alpha + \beta + \gamma = -3a$$
, $\alpha \beta \gamma = -c$ $\alpha\beta + \beta\gamma + \gamma\alpha = 3b \implies \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{3b}{\alpha\beta\gamma}$

$$\Rightarrow \frac{2}{\beta} + \frac{1}{\beta} = \frac{3b}{-c} \qquad (\because \alpha, \beta, \gamma \text{ in H.P})$$

$$\Rightarrow \frac{1}{\beta} = -\frac{b}{c} \qquad \Rightarrow \beta = \frac{-c}{b}$$

5.
$$a_1 + a_{10} = a_2 + a_9 = \dots = (a + b)$$

$$g_1g_{10} = g_2 g_9 = \dots = ab$$

$$\Rightarrow \frac{5(a+b) + 4(a+b) + 3(a+b) + 2(a+b) + (a+b)}{ab}$$

$$= 15 \frac{(a+b)}{ab} = \frac{30}{h} \qquad \left(\because h = \frac{2ab}{a+b} \right)$$

7.
$$\sum_{r=1}^{n} (2r-1) = n^{2}$$

$$\Rightarrow a = 2n - 1$$

$$\Rightarrow n = \frac{a+1}{2}$$

$$\Rightarrow (a + 1)^{2} + (b + 1)^{2} = (c + 1)^{2}$$

$$= 8 = 6 = 10 \quad (\because a+b+c = 21)$$

$$\Rightarrow a = 7 \quad b=5 \quad c=9$$

Hence
$$G = 9$$
 $L = 5$ $G - L = 4$ & $a - b = 2$

$$(a.b.b.c.c.c)^{\frac{1}{6}} \ge \frac{6}{\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1}}$$

$$\Rightarrow (64)^{\frac{1}{6}} \ge \frac{6}{\frac{1}{a} + \frac{2}{b} + \frac{3}{c}} \quad \Rightarrow \quad \frac{1}{a} + \frac{2}{b} + \frac{3}{c} \ge 3$$

12. Using $AM \ge GM$,

$$\begin{split} &\frac{1+a_1+a_1^2}{3} \geq \left(1.a_1.a_1^2\right)^{1/3} \ \Rightarrow \ 1+a_1+a_1^2 \geq 3\,a_1 \\ &\Rightarrow 1+a_2+a_2^2 \geq 3\,a_2 \Rightarrow \Rightarrow \ 1+a_n+a_n^2 \geq 3\,a_n \end{split}$$
 Multiplying these,

$$(1+a+a_1^2)....(1+a_n+a_n^2) \ge 3^n(a_1a_2a_3....a_n) = 3^n.1$$

3. Let
$$a_1$$
, $a_1 + d_1$, $a_1 + 2d_1$,........ and b_1 , $b_1 + d_2$, $b_1 + 2d_2$,....... be two A.P.'s

$$\therefore a_{100} = a_1 + 99d_1, b_{100} = b_1 + 99d_2$$
Adding $a_{100} + b_{100} = a_1 + b_1 + 99(d_1 + d_2)$
or $100 = 100 + 99(d_1 + d_2)$

$$\Rightarrow d_1 + d_2 = 0 \text{ or } d_1 = -d_2$$

$$\therefore \text{ option (B) gives } a_n + b_n$$

$$= a_1 + (n - 1)d_1 + b_1 + (n - 1)d_2$$

$$= a_1 + b_1 = 100$$
option (C) is obviously true.

Now
$$\sum_{r=1}^{100} (a_r + b_r) = 100(a_1 + b_1) = 10^4$$

18.
$$a + b + c = xb$$

Divide by b,
$$\frac{a}{b} + 1 + \frac{c}{b} = x$$

or
$$\frac{1}{r} + 1 + r = x$$
 where r is common ratio of G.P.
 $\Rightarrow r^2 + r(1 - x) + 1 = 0$
since r is real & distinct $\Rightarrow D > 0$
 $\therefore (1 - x)^2 - 4 > 0 \Rightarrow x^2 - 2x - 3 > 0$
or $(x + 1)(x - 3) > 0 \Rightarrow x > 3$ or $x < -1$

EXERCISE - 03

MISCELLANEOUS TYPE QUESTIONS

Fill in the blanks:

11. G.M. > H.M.

4.
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} \dots \infty = \frac{\pi^2}{6}$$
Now
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} \dots \infty$$

$$= \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} \dots - \left(\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} \dots \infty\right)$$

$$= \frac{\pi^2}{6} - \frac{1}{2^2} \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} \dots \infty\right)$$

$$= \frac{\pi^2}{6} - \frac{1}{4} \cdot \frac{\pi^2}{6} = \frac{\pi^2}{8}$$

6.
$$T_{n} = \frac{1}{\frac{n(n+1)}{2}} = \frac{2}{n(n+1)} = \frac{2}{n} - \frac{2}{n+1}$$

$$S_{n} = \Sigma T_{n} = \frac{2}{1} - \frac{2}{2} + \frac{2}{2} - \frac{2}{3} + \dots + \frac{2}{n} - \frac{2}{n+1}$$

$$S_{n} = 2 - \frac{2}{n+1} \implies S_{\infty} = 2$$

Match the Column:

2. (A)
$$S_n = 4 + 11 + 22 + 37 \dots T_n$$

 $S_n = 4 + 11 + 22 + 37 \dots T_n$
 $T_n = 4 + 7 + 11 + 15 + \dots n \text{ terms}$

$$T_n = 4 + \frac{(n-1)}{2}(14 + (n-2)4) = 1 + 2n^2 + n$$

$$= \left(\frac{n}{2}(6 + (n-1)4)\right) = \frac{n}{2}(4n+2) = (2n^2 + n)$$

(C)
$$3 + 7 + 11 + 15 \dots = 2n^2 + n$$

(D) Coefficient of xⁿ is

$$-2(1+2+3+...term)=-\frac{2n(n+1)}{2}=-(n^2+n)$$

Assertion & Reason :

1. St.-I:
$$\frac{\frac{1}{b} + \frac{1}{a}}{\frac{2}{b} - \frac{1}{a}} + \frac{\frac{1}{b} + \frac{1}{c}}{\frac{2}{c} - \frac{1}{c}} = \frac{\frac{1}{b} + \frac{1}{a}}{\frac{1}{c}} + \frac{\frac{1}{b} + \frac{1}{c}}{\frac{1}{a}} \quad \left(\because \frac{2}{b} = \frac{1}{a} + \frac{1}{c}\right)$$

$$= \frac{c}{b} + \frac{c}{a} + \frac{a}{b} + \frac{a}{c} = \frac{a+c}{b} + \left(\frac{c}{a} + \frac{a}{c}\right)$$

$$= \frac{(a+c)^2}{2ac} + \left(\frac{c}{a} + \frac{a}{c}\right) = \frac{1}{2}\left(\frac{a}{c} + \frac{c}{a} + 2\right) + \left(\frac{c}{a} + \frac{a}{c}\right) > 4$$

$$[\because x + \frac{1}{c} > 2 \text{ when } x > 0, x \neq \frac{1}{c}]$$

St.-II is False : Numbers should be positive

4. St.-I : $(AM)(HM) = (GM)^2$ True for any 3 numbers in G.P.

St.-II: False if number are not in G.P.

now successice difference in A.P.

$$\Rightarrow$$
 $T_n = an^2 + bn + c$

St.-II is correct.

Comprehension # 2:

$$a + b + c = 5$$
 (a, b, c > 0) $x^2y^3 = 243 = 3^5$

1.
$$\frac{a + \frac{b}{3} + \frac{b}{3} + \frac{b}{3} + c}{5} \ge \left(\frac{ab^3c}{27}\right)^{\frac{1}{5}} \quad (\because AM \ge GM)$$

$$\Rightarrow \quad 1^5 \geq \frac{ab^3c}{27} \quad \Rightarrow \quad ab^3c \leq 27$$

2. Using $AM \ge HM$

$$\frac{a + \frac{b}{3} + \frac{b}{3} + \frac{b}{3} + c}{5} \ge \frac{5}{\frac{1}{a} + \frac{3}{b} + \frac{3}{b} + \frac{3}{b} + \frac{1}{c}}$$

$$\Rightarrow \frac{1}{5} \ge \frac{1}{\frac{1}{a} + \frac{9}{b} + \frac{1}{c}}$$

3. Using $AM \ge GM$

$$\frac{x^2 + y + y + y + 1}{5} \ge (x^2 \cdot y \cdot y \cdot y \cdot 1)^{\frac{1}{5}}$$

$$\Rightarrow \quad x^2 + 3y + 1 \ge 5 \cdot (243)^{\frac{1}{5}} \ge 15$$

But x^2 , $y \ne 1$, hence $x^2 + 3y + 1 > 15$

$$\frac{x + x + y + y + y}{5} \ge (x^{2}y^{3})^{\frac{1}{5}} \ge \frac{5}{\frac{2}{x} + \frac{3}{y}}$$

$$\Rightarrow \frac{2x + 3y}{5} \ge 3 \ge \frac{5xy}{3x + 2y}$$

EXERCISE - 04 [A]

CONCEPTUAL SUBJECTIVE EXERCISE

1.
$$a^x = b^y = c^z = d^u$$
 Taking log,
 $x \log a = y \log ar = z \log ar^2 = u \log ar^3 = \lambda$
 $(a, b, c, d \text{ in G.P.})$
 $\Rightarrow \frac{\lambda}{x} = \log a, \frac{\lambda}{y} = \log ar, \frac{\lambda}{z} = \log ar^2, \frac{\lambda}{y} = \log ar^3$

$$= \frac{2}{a_1 + a_n} \left[\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} \right]$$
3. $2s = a + b + c \implies a + b - c = 2s - 1$

13.
$$2s = a + b + c \implies a + b - c = 2s - 2c$$

$$\frac{2s - 2c + 2s - 2a + 2s - 2b}{3}$$

$$> \left[(a + b - c)(b + c - a)(c + a - b) \right]^{\frac{1}{3}}$$
(Using AM > GM, $a \ne b \ne c$)
$$\Rightarrow \frac{2s}{3} > \left[(a + b - c)(b + c - a)(c + a - b) \right]^{\frac{1}{3}}$$

$$\Rightarrow (a + b + c) > 2\left[(a + b - c)(b + c - a)(c + a - b) \right]^{\frac{1}{3}}$$

$$\Rightarrow (a+b+c) > 3[(a+b-c)(b+c-a)(c+a-b)]^{\frac{1}{3}}$$

$$\Rightarrow (a+b+c)^{3} > 27(a+b-c)(b+c-a)(c+a-b)$$

Total number of terms upto nth row

$$1 + 2 + 3 + 4 + \dots + n = \frac{n(n+1)}{2}$$

Total number of terms upto (n - 1)th row

1 + 2 + 3 + 4 + (n -1) =
$$\frac{n(n-1)}{2}$$

Sum of
$$n^{th}$$
 row = $S_n - S_{n-1}$

$$= \left(\frac{n(n+1)}{2}\right)^2 - \left(\frac{n(n-1)}{2}\right)^2$$

$$= \ \frac{n^2}{4} \Big[(n+1)^2 - (n-1)^2 \, \Big] = \frac{n^2}{4} 4n = n^3$$

EXERCISE - 04 [B]

BRAIN STORMING SUBJECTIVE EXERCISE

2. (a)
$$\frac{1}{1.4.7} + \frac{1}{4.7.10} + \frac{1}{7.10.13} + \dots$$

$$T_n = \frac{1}{(3n-2)(3n+1)(3n+4)}$$

$$= \frac{1}{3n+1} \left(\frac{1}{3n-2} - \frac{1}{(3n+4)} \right) \frac{1}{6}$$

$$= \left(\frac{1}{(3n-2)(3n+1)} - \frac{1}{(3n+1)(3n+4)} \right) \frac{1}{6}$$

$$S_{n} = \frac{1}{6} \left[\frac{1}{1.4} - \frac{1}{4.7} + \frac{1}{4.7} - \frac{1}{7.10} \right]$$

$$\frac{S}{2} = \frac{1.3}{2} + \frac{3.4}{2^{2}} + \frac{4.5}{2^{3}} + \frac{4.7}{2^{4}} \dots$$

$$+ \frac{1}{(3n-2)(3n+1)} - \frac{1}{(3n+1)(3n+4)} \right]$$

$$\frac{S}{4} = \frac{1.3}{2^{2}} + \frac{3.4}{2^{3}} + \frac{4.5}{2^{4}} \dots \infty$$

$$=\frac{1}{6}\left[\frac{1}{4}-\frac{1}{(3n+1)(3n+4)}\right]$$

$$now S_{\infty} = \frac{1}{24}$$

(b)
$$T_n = n(n + 1) (n + 2) (n + 3)$$

$$= \frac{1}{5} [n(n + 1) (n + 2) (n + 3) ((n + 4) - (n - 1))]$$

$$= \frac{1}{5} [n(n + 1) (n + 2) (n + 3) (n + 4)$$

$$- (n - 1) (n) (n + 2) (n + 3)]$$

$$\Sigma T_n = \left(\frac{1}{5}\right) n(n + 1)(n + 2)(n + 3)(n + 4)$$

(c)
$$T_{n} = \frac{1}{4n^{2} - 1} = \frac{1}{2} \left[\frac{1}{2n - 1} - \frac{1}{2n + 1} \right]$$
$$S_{n} = \frac{1}{2} \left[1 - \frac{1}{2n + 1} \right]$$
$$S_{\infty} = \frac{1}{2}$$

3.
$$\delta_{rs} = 0$$
 $r \neq s$ $\delta_{rs} = 1$ if $r = s$
$$\sum_{r=1}^{n} 2^{r} 3^{r} = \sum_{r=1}^{n} 6^{r} = 6 + 6^{2} + 6^{3} + ... 6^{n} = \frac{6(6^{n} - 1)}{5}$$

9.
$$S = \frac{1.3}{2} + \frac{3.5}{2^2} + \frac{5.7}{2^3} + \frac{7.9}{2^4} \dots \infty$$
 (i.e.,

$$S\left(\frac{1}{2}\right) = \frac{1.3}{2^2} + \frac{3.5}{2^3} + \frac{5.7}{2^4} + \dots \infty$$
 (ii)

$$\frac{S}{2} = \frac{1.3}{2} + \frac{3.4}{2^2} + \frac{4.5}{2^3} + \frac{4.7}{2^4} \dots \infty$$
 (iii)

$$\frac{S}{4} = \frac{1.3}{2^2} + \frac{3.4}{2^3} + \frac{4.5}{2^4} \dots \infty$$
 (iv)

$$\frac{S}{4} = \frac{1.3}{2} + \frac{3.3}{2^2} + \frac{4.2}{2^3} + \frac{4.2}{2^4} \dots \infty$$

$$\frac{S}{4} = \frac{3}{2} + \frac{9}{2^2} + \frac{4.2}{2^3} \left(\frac{1}{1 - \frac{1}{2}} \right)$$

$$\frac{S}{4} = \frac{3}{2} + \frac{9}{4} + 2 = \frac{23}{4}$$
 \Rightarrow $S = 23$

$$\textbf{11.} \quad \text{(a)} \quad 1 - \frac{x}{x+1} + \frac{2x}{(x+1)(x+2)} + \frac{3x^2}{(x+1)(x+2)(x+3)} + \dots$$

$$\Rightarrow \quad 1 - \frac{x}{x+1} \left(1 - \frac{2}{x+2} \right) + \frac{3x^2}{(x+1)(x+2)(x+3)} + \dots$$

$$\Rightarrow 1 - \frac{x^2}{(x+1)(x+2)} + \frac{3x^2}{(x+1)(x+2)(x+3)} + \dots$$

$$\Rightarrow 1 - \frac{x^2}{(x+1)(x+2)} \left(1 - \frac{3}{x+3}\right)$$

$$\Rightarrow 1 - \frac{x^3}{(x+1)(x+2)(x+3)}$$

.....

$$\Rightarrow \quad 1 - \frac{x^n}{(x+1)(x+2)(x+3).....(x+n)}$$

13. LHS = 9 + 8 10 + 8 10² + 8 10ⁿ⁻¹
+4 10ⁿ + 4 10ⁿ⁺¹ + 4 10ⁿ⁺ⁿ⁻¹
= 9 + 8 × 10¹
$$\left(\frac{10^{n-1} - 1}{9}\right)$$
 + 4 × 10ⁿ $\left[\frac{10^{n} - 1}{9}\right]$

$$= \frac{81 + 8 \times 10^{n} - 80 + 4 \times 10^{2n} - 4 \times 10^{n}}{9}$$
$$= \frac{1 + 4 \times 10^{n} + 4 \times 10^{2n}}{9}$$

$$= \frac{3+6\times10^{n}}{9} = \left(\frac{1+2\times10^{n}}{3}\right)^{2}$$

RHS =
$$7 + 6 \times 10^1 \frac{(10^{n-1} - 1)}{9} = \frac{63 + 6 \times 10^n - 60}{9}$$

$$=\frac{3+6\times10^{\rm n}}{9}=\frac{1}{3}(1+2\times10^{\rm n})$$

14.
$$S = 1 + 5 + 13 + 29 + 61 + \dots T_n$$

 $S = 1 + 5 + 13 + 29 + \dots T_n$
 $0 = 1 + 4 + 8 + 16 + 32 + \dots T_n$

$$T_n = 1 + 4(2^{n-1} - 1) = 2^{n+1} - 3$$

$$S_{n} = \Sigma(2^{n+1} - 3) = (2^{2} + 2^{3} + \dots + 2^{n+1}) - 3n$$
$$= 2^{2} \left(\frac{2^{n} - 1}{2 - 1}\right) - 3n = 2^{n+2} - 4 - 3n$$

(b)
$$S = 6 + 13 + 22 + 33 + \dots T_n$$

 $S = 6 + 13 + 22 + \dots T_n$
 $T_n = 6 + 7 + 9 + 11 \dots T_n$
 $= 1 + 5 + 7 + 9 + 11 \dots T_n$
 $= 1 + \frac{n}{2}(10 + (n-1)2) = n^2 + 4n + 1$
 $S_n = \Sigma T_n = \frac{1}{6}n(n+1)(2n+13) + n$

15.
$$\frac{\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b}}{3} \ge \frac{3}{\frac{b+c}{a} + \frac{a+c}{b} + \frac{a+b}{c}}$$

$$\frac{\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b}}{3} \ge \frac{3}{\frac{b}{a} + \frac{a}{b} + \frac{c}{a} + \frac{a}{c} + \frac{c}{b} + \frac{b}{c}}$$

$$\frac{\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b}}{3} \ge \frac{3}{6} \qquad \left(\because \frac{a}{b} + \frac{b}{a} \ge 2\right)$$

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \ge \frac{3}{2}$$

EXERCISE - 05 [A]

JEE-[MAIN] : PREVIOUS YEAR QUESTIONS

2.
$$\frac{a}{1-r} = 20$$
 ... (i)

$$\frac{a^2}{1-r^2} = 100$$
 ... (ii)

from (i) and (ii)

$$\frac{a}{1+r} = 5$$
 (: $a = 20(1 - r)$ by (i))

$$\Rightarrow \frac{20(1-r)}{1+r} = 5$$

$$\Rightarrow$$
 5r = 3 \Rightarrow r = 3/5

6. Given that A.M. =
$$9$$
 and G.M. = 4

If $\alpha,\ \beta$ are roots of quadratic equations then quadratic equation is

$$x^2 - x(\alpha + \beta) + \alpha\beta = 0 \qquad \dots (1)$$

$$A.M. = \frac{\alpha + \beta}{2} = 9$$

$$\Rightarrow \alpha + \beta = 18$$
 ... (2)

G.M. =
$$\sqrt{\alpha\beta}$$
 = 4

$$\Rightarrow \alpha \beta = 16$$
 ... (

so the required equation will be

$$x^2 - 18x + 16 = 0$$

9.
$$\therefore \frac{(S_m)_{IAP}}{(S_n)_{IAP}} = \frac{m^2}{n^2}$$
 then $\frac{T_m}{T_n} = \frac{2m-1}{2n-1}$

so
$$\frac{a_6}{a_{21}} = \frac{2 \times 6 - 1}{2 \times 21 - 1} = \frac{11}{41}$$

12.
$$a + ar = 12$$
 ... (1)

$$ar^2 + ar^3 = 48$$
 ... (2)

$$ar^2(a + ar) = 48$$
 ... (3)

because +ve G.P.
$$a = 4$$

13.
$$S = 1 + \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \frac{14}{3^4} + \dots \infty$$

$$\frac{1}{3}S = \frac{1}{3} + \frac{2}{3^2} + \frac{6}{3^3} + \frac{10}{3^4} + \dots \infty$$

$$\frac{2}{3}S = 1 + \frac{1}{3} + \frac{4}{3^2} + \frac{4}{3^3} + \frac{4}{3^4} + \frac{4}{3^5} + \dots \infty$$

$$= \frac{4}{3} + \frac{4/9}{1 - \frac{1}{3}} = \frac{4}{3} + \frac{2}{3} = \frac{6}{3} = 2 \implies S = 3$$

14.
$$4500 = 150 \quad 10 + \{148 + 146 + \dots \text{ upto n terms}\}$$

=
$$1500 + \frac{n}{2} \{296 + (n - 1) (-2)\}$$

$$\Rightarrow n^2 - 149 n + 3000 = 0$$

$$\Rightarrow (n - 24)(n - 125) = 0$$

$$\Rightarrow$$
 n = 24 \therefore n \neq 125

So total time taken = 10 + 24 = 34 min.

$$600 + \left\{ \frac{240 + 280 + \dots}{\text{let n month}} \right\} = 11040$$

$$|240 + 280 + \dots$$
 n terms $| = 10440$

$$n/2 [480 + (n - 1)40] = 10440$$

$$n \{440 + 40n\} = 20880$$

$$n^2 + 11n - 522 = 0$$

$$n = 18, -29 \quad (-29 \text{ rejected})$$

Total months = n + 3

$$18 + 3 = 21 \text{ Months}$$

16.
$$\sum_{r=1}^{100} a_{2r} = a_2 + a_4 + a_6 + \dots + a_{200} = \alpha$$
$$= (a + d) + (a + 3d) + \dots + (a + 199d) = \alpha$$

$$\sum_{r=1}^{100} a_{2r-1} = \beta = a_1 + a_3 + \dots + a_{199} = \beta$$

$$= a + (a + 2d) + \dots + (a + 198d) = \beta$$

$$\frac{100}{2} [a + d + a + 199d] = \alpha$$

$$\Rightarrow$$
 50(2a + 200d) = α (1)

$$\frac{100}{2}$$
[a + a + 198d] = β

$$\Rightarrow$$
 50(2a + 198d) = β (2)

$$(1) - (2)$$

$$\alpha - \beta = 50(2d)$$

$$= d = \frac{\alpha - \beta}{100}$$

17. Statement-1:

$$(1^3-0^3) + (2^3-1^3) + (3^3-2^3) + \dots + (20^3-19^3)$$

= $20^3 = 8000$

Statement-1 is true.

Statement-2:

$$\sum_{k=1}^{n} k^{3} - (k-1)^{3} = (1^{3} - 0^{3}) + (2^{3}-1^{3}) + (3^{3}-2^{3})$$

+
$$n^3$$
 + $(n - 1)^3$ = n^3 .

Statement-2 is true and Statement-2 is a correct explanation of Statement-1.

18.
$$100T_{100} = 50T_{50}$$

$$100 (a + 99d) = 50(a + 4d)$$

$$a + 149d = 0$$

$$T_{150} = a + 149d = 0$$

19.
$$S = \frac{7}{10} + \frac{77}{100} + \frac{777}{1000} + \dots$$

$$S = \frac{7}{9} \left\{ \frac{10 - 1}{10} + \frac{100 - 1}{100} + \frac{1000 - 1}{1000} + \dots \right\}$$

$$= \frac{7}{9} \left\{ 20 - \frac{1}{10} \left(\frac{1 - 10^{-20}}{9 / 10} \right) \right\}$$

$$=\frac{7}{9}\left\{20-\frac{1}{9}\left(1-10^{-20}\right)\right\}=\frac{7}{81}(179+10^{-20})$$

EXERCISE - 05 [B]

JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS

6.
$$\frac{x}{1-r} = 5 \Rightarrow 5 - 5r = x \Rightarrow r = 1 - \frac{x}{5}$$

As $|r| < 1$ i.e. $\left| 1 - \frac{x}{5} \right| < 1$; $-1 < 1 - \frac{x}{5} < 1$
 $-5 < 5 - x < 5 = -10 < -x < 0 = 10 > x > 0$

i.e.
$$0 \le x \le 10$$

13.
$$A_{1} = \frac{a+b}{2}; \qquad G_{1} = \sqrt{ab}; \quad H_{1} = \frac{2ab}{a+b}$$

$$A_{n} = \frac{A_{n-1} + H_{n-1}}{2}; \qquad G_{n} = \sqrt{A_{n-1}H_{n-1}}$$

$$H_{n} = \frac{2A_{n-1}H_{n-1}}{A_{n-1} + H_{n-1}}$$
 We know that
$$G^{2} = AH$$

So clearly
$$G_1 = G_2 = G_3 = \dots G_n = \sqrt{ab}$$

14.
$$A_2$$
 is AM of A_1 , H_1 and $A_1 > H_1$

$$\Rightarrow A_1 > A_2 > H_1$$

$$A_3$$
 is A.M. of A_2 , H_2

$$\Rightarrow A_2 > A_3 > H_2$$

$$\therefore A_1 > A_2 > A_3 \dots$$

$$A_1 > H_2 > H_1$$
 $A_2 > H_3 > H_2$

.....

so
$$H_3 > H_2 > H_1$$

 \Rightarrow $H_1 < H_2 < H_3$

16. Let
$$a_1 = a$$
, $a_2 = ar$, $a_3 = ar^2$, $a_4 = ar^3$
Now $b_1 = a$, $b_2 = a + ar$, $b_3 = a + ar + ar^2$
 $b_4 = a + ar + ar^2 + ar^3$

so b, b_2 , b_3 , b_4 are neither in A.P. nor in G.P. & nor in H.P.

so S(I) is true & S(II) is False.

17.
$$S_n = cn^2$$

 $S_{n-1} = c(n-1)^2$
 $T_n = S_n - S_{n-1} = c (2n - 1)$
 $T'_n = T_n^2 = c^2 (4n^2 - 4n + 1)$
 $\sum T'_n = nc^2 \left(\frac{4n^2 - 1}{3}\right)$

18.
$$S_{k} = \frac{\frac{k-1}{k!}}{1 - \frac{1}{k}} = \frac{1}{(k-1)!} \text{ for } k \ge 2, \ S_{1} = 0$$

$$Now \frac{100^{2}}{100!} + \sum_{k=2}^{100} \left| (k^{2} - 3k + 1) \cdot \frac{1}{(k-1)!} \right| + S_{1}$$

$$\frac{100^{2}}{100!} + \frac{1}{1!} + \sum_{k=3}^{100} \left| \frac{1}{(k-3)!} - \frac{1}{(k-1)!} \right| + 0$$

$$\left(\because S_{2} = \frac{1}{1!} \right)$$

$$= \frac{100^{2}}{100!} + 1 + \left| \frac{1}{0!} - \frac{1}{2!} \right| + \left| \frac{1}{1!} - \frac{1}{3!} \right| + \left| \frac{1}{2!} - \frac{1}{4!} \right| + \dots$$

$$+ \left| \frac{1}{97!} - \frac{1}{99!} \right|$$

$$= \frac{100^{2}}{100!} + 3 - \frac{1}{98!} - \frac{1}{99!}$$

$$= \frac{100^{2}}{100!} + 3 - \frac{100}{99!} = 3$$
19. $a_{1} = 15$

$$\begin{array}{l} a_1 = 13 \\ 27 - 2a_2 > 0 \\ a_k = 2a_{k-1} - a_{k-2} \ \forall \ k = 3, \ 4, \ 5 \ \ 11 \\ \frac{a_1^2 + a_2^2 +a_{11}^2}{11} = 90 \\ \\ a_{k-1} = \frac{a_k + a_{k-2}}{2} \\ \text{all } a_i (i = 1, \ 2, \ \ 11) \ \text{are in A.P.} \\ \text{Let the numbers are} \\ (a_6 + 5d), \ (a_6 + 4d),, \ a_6,, \ (a_6 - 4d), \ (a - 5d) \\ \\ 11a_6^2 + 110d^2 = 990 \\ a_6 = 15 - 5d \\ a_6^2 + 10d^2 = 90 \\ (15 - 5d)^2 + 10d^2 = 90 \\ \Rightarrow d = 3, \frac{9}{7} \\ \text{for } d = 3 \Rightarrow a_2 = 12 \quad \text{(possible)} \\ \text{for } d = 9/7 \Rightarrow a_2 = 13.7 \quad \text{(not possible)} \\ \end{array}$$

since
$$a_2 < 13.5$$
)
$$a_6 = 0 \implies \frac{a_1 + a_2 + ... + a_{11}}{11} = a_6 = 0$$

20. As a > 0 and all the given terms are positive hence considering A.M.
$$\geq$$
 G.M. for given numbers:
$$\frac{a^{-5}+a^{-4}+a^{-3}+a^{-3}+a^{-3}+a^{8}+a^{10}}{7}$$

$$\geq \left(a^{-5}.a^{-4}.a^{-3}.a^{-3}.a^{-3}.a^{8}.a^{10}\right)^{\frac{1}{7}}$$

$$\Rightarrow \frac{a^{-5} + a^{-4} + a^{-3} + a^{-3} + a^{-3} + a^{8} + a^{10}}{7} \ge 1$$

$$\Rightarrow \left(a^{-5} + a^{-4} + 3a^{-3} + a^{8} + a^{10}\right)_{min} = 7$$
where $a^{-5} = a^{-4} = a^{-3} = a^{8} = a^{10}$ i.e. $a = 1$

$$\Rightarrow (a^{-5} + a^{-4} + 3a^{-3} + a^{8} + a^{10} + 1)_{min} = 8$$
 when $a = 1$

21. Consider $d \neq 0$ the solution is

$$\mathbf{a_{_1}},\ \mathbf{a_{_2}},\ \mathbf{a_{_3}},\ \dots\dots\dots,\ \mathbf{a_{_{100}}} \rightarrow \mathsf{AP}$$

$$a_1 = 3$$
 ; $S_p = \sum_{i=1}^{p} a_i$ $1 \le n \le 20$

$$m = 5n$$

$$\frac{S_{m}}{S_{n}} = \frac{\frac{m}{2}[2a_{1} + (m-1)d]}{\frac{n}{2}[2a_{1} + (n-1)d]}$$

$$\frac{S_m}{S_n} = \frac{5[(2a_1 - d) + 5nd]}{[(2a_1 - d) + nd]}$$

for $\frac{S_m}{S}$ to be independent of n

$$\therefore 2a_1 - d = 0 \implies d = 2a_1 \implies d = 6$$

$$\implies a_2 = 9$$
If $d = 0 \implies a_2 = a_1 = 3$
22. a_1, a_2, a_3, \dots be in H.P

If
$$d = 0 \Rightarrow a_2 = a_1 = 0$$

$$\Rightarrow \frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_2}... \text{ be in A.P.}$$

in A.P.
$$T_1 = \frac{1}{a_1} = \frac{1}{5}$$
 and $T_{20} = \frac{1}{a_{20}} = \frac{1}{25}$

$$\therefore T_{20} = T_1 + 19d$$

$$\frac{1}{25} = \frac{1}{5} + 19d \implies d = -\frac{4}{19 \times 25}$$

$$T_n = T_1 + (n - 1)d < 0$$

$$\Rightarrow \frac{1}{5} - \frac{(n-1).4}{19 \times 25} < 0 \Rightarrow \frac{1}{5} < \frac{4(n-1)}{25 \times 19}$$

$$\Rightarrow \frac{5 \times 19}{4} + 1 < n \Rightarrow \frac{99}{4} < n$$

 \Rightarrow least positive integer n is 25.

23.
$$S_n = -1^2 - 2^2 + 3^2 + 4^2 - 5^2 - 6^2 + 7^2 + 8^2 \dots$$

$$S_n = (3^2 - 1^2) + (4^2 - 2^2) + \dots$$

$$S_n = 2(1 + 2 + 3 + \dots + 4n)$$

$$=\frac{2(4n)(4n+1)}{2}$$

$$S_n = 4n(4n+1)$$

 $S_n = 4n(4n + 1) = 1056$ is possible when n = 8

$$4n (4n + 1) = 1088 \text{ not possible}$$

$$4n(4n + 1) = 1120$$
 not possible

$$4n(4n + 1) = 1332$$
 possible when $n = 9$.

When 1 and 2 are removed from numbers 1 to n then we get maximum possible sum of remaining numbers and when n-1,n are removed then we get minimum possible sum of remaining numbers.

$$\Rightarrow \quad \frac{n(n+1)}{2} - \left(2n-1\right) \le 1224 \le \frac{n\left(n+1\right)}{2} - 3$$

$$\Rightarrow \begin{cases} n^2 + n - 2454 \ge 0 \\ n^2 - 3n - 2446 \le 0 \end{cases}$$

$$\Rightarrow \begin{cases} n \ge 50 \\ n \le 50 \end{cases} \Rightarrow n = 50$$

Now let x and x + 1 be two consecutive numbers

$$\Rightarrow \frac{50(50+1)}{2} - x - x - 1 = 1224$$

$$\Rightarrow$$
 x = 25

25th and 26th cards are removed from pack

$$\Rightarrow$$
 k = 25 \Rightarrow k - 20 = 5