Series hybrid electric vehicle e.g. electric bus or railway train, has motor supplied with current simultaneously by alternator and convertor connected to battery

Publication number: FR2830801 (A1)

Publication date:

2003-04-18

Inventor(s):

SAGLIO ROBERT

Applicant(s):

TECHNICATOME SOC TECH POUR L E [FR]

Classification:

- international:

B60L11/12; **B60L11/02**; (IPC1-7): B60L11/12

- European:

B60L11/12D

Application number: FR20010013377 20011017 **Priority number(s):** FR20010013377 20011017

Also published as:

FR2830801 (B1)

Cited documents:

P0576945 (A1)

E DE3231882 (A1)

FR2783768 (A1)

E DE3439700 (A1)

FR2448809 (A1)

Abstract of FR 2830801 (A1)

The electric drive vehicle has a motor (14) supplied with power from a feed circuit (11) itself supplied by an alternator (12). The drive motor has a power converter (18). The motor is simultaneously supplied with power by the alternator and the converter. The drive motor can be an asynchronously wound motor.

Data supplied from the esp@cenet database — Worldwide

19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11 Nº de publication :

2 830 801

(à n'utiliser que pour les commandes de reproduction)

21) Nº d'enregistrement national :

01 13377

51) Int Cl7 : B 60 L 11/12

(12)

DEMANDE DE BREVET D'INVENTION

A1

- 22 Date de dépôt : 17.10.01.
- (30) Priorité :

- 7) Demandeur(s): TECHNICATOME SOCIETE TECHNI-QUE POUR L'ENERGIE ATOMIQUE Société anonyme — FR.
- Date de mise à la disposition du public de la demande : 18.04.03 Bulletin 03/16.
- 6 Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- Références à d'autres documents nationaux apparentés :
- (72) Inventeur(s): SAGLIO ROBERT.
- 73 Titulaire(s) :
- 74 Mandataire(s): BREVATOME.

64 VEHICULE A TRACTION ELECTRIQUE.

L'invention concerne un véhicule à traction électrique comprenant:

- au moins un essieu moteur,

- un moteur de traction électrique,

 au moins un système d'alimentation alimentant via un alternateur, le moteur de traction électrique ainsi qu'un système de convertisseur, le moteur de traction électrique étant simultanément alimenté par l'alternateur directement, ainsi que par ledit système de convertisseur.

1

VEHICULE A TRACTION ELECTRIQUE

5

DESCRIPTION

DOMAINE TECHNIQUE

Le domaine technique de la présente 10 invention est celui des véhicules hybrides à traction électrique qui disposent d'une source d'alimentation produisant de l'énergie électrique apte à alimenter la traction et les servitudes du véhicule. En particulier, l'invention concerne notamment les véhicules 15 transport en commun tels que les trains, métro, tramways et autobus.

ETAT DE LA TECHNIQUE ANTERIEURE

Dans ce domaine, plusieurs réalisations ont déjà été proposées.

En référence à la figure 1 représentant la chaîne électrique d'un véhicule selon l'art antérieur, on connaît un véhicule utilisant un moteur thermique 1 relié à un alternateur 2. Cet alternateur 2 alimente à la fois un convertisseur de servitude 3 et un moteur électrique 4 via un convertisseur 5. Le moteur électrique 4 est ensuite relié à un essieu moteur 6, un réducteur de vitesse 7 pouvant être intercalé entre les deux éléments précédemment cités.

Si l'on s'attache au rendement énergétique 30 d'un tel véhicule caractéristique de l'art antérieur,

on s'aperçoit que celui-ci est assez faible. En effet, à titre d'exemple, prenons pour hypothèse que puissance mécanique maximale nécessaire à une roue de l'essieu moteur 6 est de 170 kW, cette puissance correspondant à la puissance nécessaire pour véhicule de 20 tonnes capable d'assurer une accélération égale à 1 g, et que la puissance nécessaire à fournir au convertisseur de servitude est 30 kW. Dans un tel cas, en supposant que rendement de chacun des éléments de la électrique est de 95%, la puissance consommée par le convertisseur 5 qui alimente le moteur électrique 4 est de 198 kW. Par conséquent, en sortie de l'alternateur 2, il faut disposer de 198 kW auxquels il faut ajouter kW qu'il est nécessaire de convertisseur de servitude 3. L'alternateur 2 doit donc fournir une puissance de 230 kW, ce qui nécessite de la part du moteur thermique 1, sur un arbre d'entraînement de l'alternateur 2, de fournir une puissance de 242 kW.

Le rendement énergétique d'un véhicule dont les éléments sont situés comme décrit ci-dessus est donc faible, notamment en raison du fonctionnement du thermique 1, assimilable à groupe fonctionnement étant à électrogène, le continûment variable. De plus, le rendement énergétique est davantage affaibli du fait de l'utilisation d'un convertisseur pour la totalité de la puissance délivrée. En effet, la puissance en sortie du moteur thermique 1 transite soit par le convertisseur 5, soit par le convertisseur de servitude 3, ces deux éléments

10

15

20

25

ayant un rendement tel qu'ils entravent le rendement global du véhicule.

Cet inconvénient relatif au rendement énergétique du véhicule est d'autant plus important que la prise en compte des critères d'environnement conduit à réduire fortement la consommation d'énergie sur de tels véhicules, ainsi que la production de CO₂.

EXPOSÉ DE L'INVENTION

Le but de la présente invention est donc de 10 remédier aux inconvénients cités ci-dessus, en proposant un véhicule à traction électrique ayant un rendement énergétique supérieur à celui des véhicules l'art antérieur, la conception de ce véhicule entraînant également une baisse de la pollution 15 atmosphérique.

Pour ce faire, l'invention a pour objet un véhicule à traction électrique comprenant :

- au moins un essieu moteur,
- un moteur de traction électrique,
- au moins un système d'alimentation alimentant via un alternateur, le moteur de traction électrique ainsi qu'un système de convertisseur, le moteur de traction électrique étant simultanément alimenté par l'alternateur directement, ainsi que par ledit système de convertisseur.

Avantageusement, le véhicule selon l'invention permet d'améliorer le rendement énergétique global du système. En effet, le moteur à traction électrique est au moins partiellement alimenté directement depuis l'alternateur, sans que la présence d'un convertisseur soit nécessaire entre ces deux

éléments. Ceci équivaut à dire qu'une partie de l'énergie sortant du système d'alimentation ne passe pas au travers d'un convertisseur, ce qui se ressent directement sur le rendement global du véhicule. Ces modifications apportées par l'invention aux véhicules de l'art antérieur permet par conséquent de réduire la puissance à administrer, ce qui est également synonyme de réduction des coûts engendrés par la délivrance d'une telle puissance.

De plus, l'absence d'un convertisseur entre 10 l'alternateur et le moteur de traction électrique permet de déduire de façon considérable les besoins en électronique de puissance, ces éléments étant souvent coûteux, fragiles et difficiles à refroidir. Un autre avantage lié à celui de la diminution des besoins en 15 électronique de puissance est la réduction du volume formé par les différents composants constituant véhicule, son refroidissement étant ainsi simplifié et sa fiabilité améliorée. Enfin, la suppression d'un convertisseur au travers duquel passait une puissance 20 élevée s'inscrit favorablement dans une politique de sur la compatibilité législation la respect de électromagnétique.

De manière préférentielle, le moteur de être utilisé par pouvant traction électrique 25 l'invention est un moteur asynchrone à rotor bobiné. Ce type de moteurs est particulièrement avantageux dans le facilement capables sont ceux-ci sens οù à fréquence quasiment partiellement alimentés constante. Dans notre cas, ils peuvent donc 30 directement alimentés par l'alternateur.

L'alternateur est apte à alimenter un stator du moteur à traction électrique et le système de convertisseur est apte à alimenter un rotor de ce moteur à traction électrique.

De plus, l'alimentation fournie au stator est d'environ 80 à 95 % de l'alimentation totale fournie au moteur à traction électrique, et l'alimentation fournie audit rotor est d'environ 5 à 20% de l'alimentation totale fournie au moteur à traction électrique

Cette caractéristique particulière présente l'avantage de disposer d'une solution où un maximum de la puissance se dirigeant vers le moteur de traction provient directement de l'alternateur, sans passer par un convertisseur. Ceci a pour conséquence une augmentation additionnelle du rendement global du véhicule.

mode de réalisation premier Selon un particulier de l'invention, le système de convertisseur est un convertisseur primaire de servitude. Cette réaliser un véhicule de disposition permet l'alimentation du moteur de traction électrique par le système de convertisseur s'effectue à l'aide d'un simple convertisseur de servitude, déjà existant dans l'art antérieur, auguel de les réalisations administre une puissance supérieure à celle nécessitée par les servitudes, afin d'alimenter le rotor du moteur de traction électrique.

Selon un second mode de réalisation
30 particulier de l'invention, le système de convertisseur
comprend un convertisseur quatre quadrants relié à un

15

20

dispositif de stockage et de destockage d'énergie apte à alimenter au moins un convertisseur secondaire de servitude.

Avantageusement, ce mode particulier de réalisation permet d'augmenter favorablement le rendement global du système, une partie de la puissance fournie au moteur de traction électrique provenant du dispositif de stockage et de destockage d'énergie via un convertisseur secondaire de servitude, cette partie de la puissance n'étant alors plus à fournir par le système d'alimentation.

De plus, le système de stockage et de destockage d'énergie permet d'assurer le démarrage du système d'alimentation par l'intermédiaire de l'alternateur.

Selon une alternative du second mode de réalisation de l'invention, au moins une partie de l'alimentation à fournir au stator du moteur de traction électrique provient du dispositif de stockage et de destockage d'énergie.

Un fois de plus, cet agencement particulier permet d'augmenter le rendement énergétique global du système. Dans ce cas là, le but est de produire une partie de la puissance à fournir au stator du moteur de traction électrique, par l'intermédiaire du dispositif de stockage et de destockage.

façon préférentielle, au moins une partie du stockage d'énergie du dispositif de stockage d'énergie destockage est réalisée d'opérations de freinage du véhicule. Cette utilisation permet dispositif d'avoir au un fonctionnement

15

20

25

relativement simple, le stockage d'énergie s'effectuant en récupérant de l'énergie provenant des phases de freinage du véhicule, relativement fréquentes dans les véhicules de transport en commun urbains.

- De plus, au moins une partie de l'énergie récupérée lors des opérations de freinage du véhicule est directement restituée par le dispositif de stockage et de destockage d'énergie, au profit des servitudes et sans être stockée.
- 10 Avantageusement, ce dispositif de stockage et de destockage d'énergie peut être piloté de manière à ne pas stocker l'énergie, mais la redistribuer directement. Le stockage ou la redistribution directe dépend alors des besoins spécifiques du véhicule, à un temps donné.
 - le véhicule peut notamment être un véhicule électrique alimenté par au moins l'une des sources d'alimentation prise parmi le groupe constituée des éléments suivants : {caténaires, perches, frotteurs}.
 - D'autres caractéristiques et avantages apparaîtront dans la description détaillée, non limitative, ci-dessous.

BRÈVE DESCRIPTION DES DESSINS

- 25 Cette description sera faite au regard des dessins annexés, parmi lesquels :
 - la figure 1 déjà décrite, illustre un véhicule selon l'art antérieur,
- la figure 2 représente la chaîne 30 électrique d'un premier mode de réalisation particulier d'un véhicule selon l'invention,

- la figure 3 représente la chaîne électrique d'un second mode de réalisation particulier d'un véhicule selon l'invention,
- la figure 4 représente la chaîne 5 électrique d'un troisième mode de réalisation particulier d'un véhicule selon l'invention.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS

En référence à la figure 2, on voit un véhicule à traction électrique selon l'invention, système d'alimentation 11 et un 10 comprenant étant relié mécaniquement, alternateur 12 lui ensemble formé par ces deux éléments étant assimilable à un groupe électrogène. L'alternateur 12 est connecté à un système de convertisseur 18 d'une part, et à un moteur de traction électrique 14 d'autre part. 15 connexion entre l'alternateur 12 et le moteur de traction électrique 14 a la particularité d'être directe; en d'autres termes, il n'y a aucun élément et surtout eux, s'interposant entre convertisseur. Le moteur de traction électrique 14 est 20 alimenté en partie et directement l'alternateur 12, mais également par le système de convertisseur 18. Cette alimentation s'effectue façon simultanée. Le moteur de traction électrique 14 est ensuite relié à au moins un essieu moteur 16, de 25 préférence via un réducteur de vitesse 17.

Pour profiter d'un tel branchement, on peut avoir un moteur asynchrone à rotor bobiné faisant office de moteur de traction électrique 14. Un stator de ce moteur est alors directement alimenté à fréquence quasiment constante par l'alternateur 12. Cette

disposition permet ainsi de s'exonérer de la présence d'un convertisseur entre ces deux éléments. De plus, c'est la différence de fréquence entre le courant d'alimentation électrique du rotor et le courant d'alimentation électrique du stator qui définit la vitesse de rotation en sortie du moteur asynchrone à rotor bobiné, le glissement et le courant dans le rotor et le stator déterminant le couple. En conséquence, c'est le système de convertisseur qui alimente le rotor de ce moteur, d'où la présence de la liaison électrique entre ces éléments.

Dans un tel moteur asynchrone à rotor bobiné, la puissance se répartit de sorte que 80 à 95 % de cette puissance est fournie au stator, alors que 5 à 20 % de cette puissance est destinée à transiter par le système de convertisseur 18 pour être administrée au rotor.

Selon un premier mode de réalisation particulier de l'invention, le système de convertisseur 18 est un convertisseur primaire de servitude 13.

Cette disposition permet une hausse sensible du rendement énergétique global, notamment en raison de l'absence du convertisseur entre l'alternateur 12 et le stator du moteur de traction électrique 14.

A titre d'exemple, prenons pour hypothèse que la puissance mécanique maximale nécessaire à une roue de l'essieu moteur 16 est de 170 kW, cette puissance correspondant à la puissance nécessaire pour un véhicule de 20 tonnes capable d'assurer une accélération égale à 1g, et que la puissance nécessaire

10

15

20

25

à fournir au convertisseur de servitude est de 30 kW. Dans un tel cas, en supposant que le rendement de chacun des éléments de la chaîne électrique est de 95%, la puissance consommée par le moteur de traction électrique 14 est de 188 kW. Ces 188 kW peuvent se directement apportés kW 171 répartir en l'alternateur 12 et 17 kW apportés par le convertisseur primaire de servitude 13. La puissance consommée par le convertisseur primaire de servitude, qui alimente entre autre le rotor du moteur de traction électrique 14, est donc de 17 kW auxquels il faut ajouter les 30 kW qu'il est nécessaire de fournir pour les diverses servitudes. Toujours en prenant en compte un rendement de 95 %, la puissance réellement consommée par le convertisseur primaire de servitude 13 est de 50 kW. L'alternateur 2 15 doit donc fournir une puissance simultanée de 171 et de 50 kW, soit 220 kW. Ceci nécessite de la part du système d'alimentation 11, sur un arbre d'entraînement de l'alternateur 12, de fournir une puissance de 232 20 kW.

En ayant pris les mêmes hypothèses départ que celles adoptées pour les calculs concernant le véhicule selon l'art antérieur, on s'aperçoit que la puissance à fournir par le système d'alimentation passe de 242 à 232 kW, ce qui correspond à une augmentation du rendement énergétique global de 4,5 % ou à un surplus de puissance de 5 %.

De plus, cet agencement a conduit à une réduction de la puissance des convertisseurs utilisés, ce qui se traduit directement par une réduction de la masse et du coût du véhicule.

10

25

En référence à la figure 3, on peut apercevoir un second mode de réalisation particulier de l'invention. Le véhicule comporte les mêmes caractéristiques décrites précédemment dans le premier mode de réalisation particulier de l'invention, à la différence du système de convertisseur 28.

En effet, le véhicule comprend un système d'alimentation 21 relié mécaniquement à un alternateur 22, cet ensemble de deux éléments étant assimilable à un groupe électrogène. L'alternateur 22 est connecté à un système de convertisseur 28 d'une part, et à un moteur de traction électrique 24 d'autre part. connexion entre l'alternateur 22 et le moteur traction électrique 24 a la particularité d'être directe; en d'autres termes, il n'y a aucun élément et surtout entre eux, s'interposant convertisseur. Le moteur de traction électrique 24 est partie et directement alimenté en donc l'alternateur 22, mais également par le système de convertisseur 28. Cette alimentation s'effectue façon simultanée. Le moteur de traction électrique 24 est ensuite relié à au moins un essieu moteur 26, de préférence via un réducteur de vitesse 27.

Le système de convertisseur 28 comprend un convertisseur quatre quadrants 25 relié à un dispositif de stockage et de destockage d'énergie 29, ce dispositif 29 étant de préférence assimilable à une batterie, une supercapacité, un volant d'inertie ou encore à un compresseur d'air. Ce dispositif de stockage et de destockage d'énergie 29 est apte à alimenter au moins un convertisseur secondaire de

5

10

15

20

25

servitude 23a,23b. Dans ce mode de réalisation, le dispositif de stockage et de destockage d'énergie 29 alimente un convertisseur secondaire 23b, qui lui-même est relié au rotor du moteur de traction électrique 24.

A titre d'exemple et toujours en prenant les mêmes hypothèses départ, supposons que la puissance mécanique maximale nécessaire à une roue de l'essieu moteur 26 est de 170 kW et que la puissance nécessaire à fournir au convertisseur de servitude est de 30 kW. Dans un tel cas, en supposant que le rendement de chacun des éléments de la chaîne électrique est de 95%, la puissance consommée par le moteur de traction électrique 24 est de 188 kW. Ces 188 kW peuvent se répartir en 171 kW directement apportés l'alternateur 22 et 17 kW apportés par le convertisseur secondaire de servitude 23b.

De plus, la puissance consommée par ce convertisseur secondaire de servitude 23b, qui alimente le rotor du moteur de traction électrique 24, est fournie par le dispositif de stockage et de destockage d'énergie 29, à savoir la batterie.

En tenant compte d'un rendement de 95 % pour chaque convertisseur et d'un rendement de restitution de 80 % pour la batterie, le convertisseur quatre quadrants 25 doit pouvoir fournir 41 kW.

A la sortie de l'alternateur, il faut donc pouvoir disposer d'une puissance simultanée de 171 et de 41 kW, soit 212 kW. Ceci nécessite de la part du système d'alimentation 21, sur un arbre d'entraînement de l'alternateur 22, de fournir une puissance de 223 kW.

5

10

15

20

25

La puissance à fournir par le système d'alimentation passe donc de 242 à 223 kW, ce qui correspond à une augmentation du rendement énergétique global de 8 %, ou à un surplus de puissance de 8,5 %.

De plus, cet agencement a conduit à une réduction de la puissance des convertisseurs utilisés, ce qui se traduit directement par une nouvelle réduction de la masse et du coût du véhicule, par rapport au premier mode de réalisation particulier de l'invention.

Selon une autre version du second mode de réalisation particulier de l'invention, toujours en référence à la figure 3, au moins une partie de l'énergie à fournir au stator du moteur de traction électrique 24 provient du dispositif de stockage et de destockage d'énergie 29. Le changement apporté par rapport au second mode de réalisation particulier de l'invention réside donc dans l'apport d'alimentation au stator. Cette alimentation ne vient plus exclusivement mais directement, l'alternateur de partiellement de la batterie. Ceci a donc pour effet, une fois de plus, de réduire les pertes de puissance et énergétique global rendement le d'augmenter véhicule.

Toujours en reprenant les mêmes hypothèses de départ, la puissance consommée par le moteur de traction électrique 24 est de 171 kW pour le stator et 17 kW pour le rotor.

Dans un tel cas, on va alors supposer que 30 sur les 171 kW à apporter au stator, 107 kW sont directement apportés par l'alternateur 22 et 64 kW

5

10

15

proviennent de la batterie à travers le convertisseur quatre quadrants 25.

La puissance consommée par la batterie est donc de 17 kW à fournir au convertisseur secondaire de servitude 23b alimentant le rotor, 30 kW à fournir au convertisseur secondaire de servitude 23a pour alimenter le reste des servitudes, et 64 kW à fournir au stator du moteur de traction électrique 24.

Compte tenu d'un rendement de conversion de 10 95 %, la puissance à fournir par la batterie est donc de 116 kW.

A la sortie de l'alternateur 22, il faut donc pouvoir disposer d'une puissance de 107 kW. Ceci nécessite de la part du système d'alimentation 21, sur un arbre d'entraînement de l'alternateur 22, de fournir une puissance de 122 kW.

La puissance à fournir par le système d'alimentation passe donc de 242 à 122 kW, ce qui correspond à une augmentation du rendement énergétique considérable.

De plus, cet agencement a encore conduit à réduction de la puissance des convertisseurs utilisés, ce qui se traduit directement par nouvelle réduction de la masse et du coût du véhicule, par rapport au premier mode de réalisation particulier de l'invention. Le groupe électrogène fonctionne alors à puissance et vitesse quasi constante. Dans ce cas, servitudes peuvent ainsi être directement alimentées par l'alternateur 22 et ne plus utiliser le convertisseur pour alimenter les auxiliaires, ce qui

5

20

25

améliore encore davantage le rendement global du système.

Lors du second mode de réalisation particulier de l'invention, on utilise un dispositif de stockage et de destockage d'énergie 29 assimilable à une batterie.

De préférence, au moins une partie du stockage d'énergie est réalisée lors d'opérations de freinage du véhicule à l'aide du convertisseur quatre quadrants 25. Cette batterie peut donc être rechargée à chaque freinage, ce qui est tout particulièrement adapté pour un véhicule en accélérations et décélérations permanentes.

De plus, l'énergie récupérée par la batterie peut ne pas être stockée et n'être utilisée que pendant les opérations de freinage. De même, cette batterie peut être commandée pour alternativement fonctionner en restitution totale de l'énergie, en stockage total de l'énergie, ou en régime mixte de 20 stockage et de restitution partielle de cette énergie.

L'énergie stockée dans la batterie peut alors permettre l'utilisation de l'alternateur 22 pour démarrer le groupe électrogène.

Notons encore que le véhicule peut être groupe électrique à fréquence 25 alimenté par un constante. Dans ce cas, au moins une partie des utiliser directement une sortie peut servitudes groupe électrique. Le groupe de ce électrique électrique peut alors utiliser toute sorte de source turbine à gaz, moteur un primaire telle qu'une 30 thermique ou encore un groupe électrique convertisseur.

En référence à la figure 4, on aperçoit un troisième mode de réalisation particulier de l'invention. Le véhicule est un véhicule électrique alimenté par une source d'alimentation du type caténaires, perches ou flotteurs.

Une application de ce mode particulier de réalisation de l'invention peut ainsi concerner des engins tels que les trains, les métros ou les tramways ayant deux essieux moteurs 36a,36b destinés à entraîner le véhicule dans des directions opposées.

Chacun de ces essieux moteur 36a,36b sont reliés à un moteur de traction électrique 34a,34b, luimême relié à un système de convertisseur 38a,38b. Ces systèmes de convertisseur 38a,38b sont équivalents à ceux décrits précédemment, une perche 39 connectée avec les moteurs de traction thermique 38a,38b d'une part, et les systèmes de convertisseur 38a,38b d'autre part.

Avec de tels agencements, on est alors 20 capable de réduire la puissance nécessaire pour alimenter les véhicules du type véhicules de transport en commun, la puissance requise pouvant être divisée par un facteur 2.

Bien entendu, diverses modifications 25 peuvent être apportées par l'homme de l'art au véhicule qui vient d'être décrit, uniquement à titre d'exemple non limitatif.

5

10

REVENDICATIONS

- 1. Véhicule à traction électrique comprenant:
 - au moins un essieu moteur (16,26),
- 5 un moteur de traction électrique (14,24),
 - au moins un système d'alimentation (11,21) alimentant via un alternateur (12,22), le moteur de traction électrique (14,24) ainsi qu'un système de convertisseur (18,28),
- 10 caractérisé en ce que ledit moteur de traction électrique (14,24) est simultanément alimenté par ledit alternateur (12,22) directement et par ledit système de convertisseur (18,28).
- 2. Véhicule selon la revendication 1, 15 caractérisé en ce que le moteur de traction électrique (14,24) est un moteur asynchrone à rotor bobiné.
- 3. Véhicule selon la revendication 1 ou la revendication 2, caractérisé en ce que ledit alternateur (12,22) est apte à alimenter un stator du 20 moteur à traction électrique (14,24), et en ce que ledit système de convertisseur (18,28) est apte à alimenter un rotor de ce moteur à traction électrique (14,24).
- 4. Véhicule selon la revendication 3,
 25 caractérisé en ce que l'alimentation fournie audit
 stator est d'environ 80 à 95 % de l'alimentation totale
 fournie au moteur à traction électrique (14,24), et en
 ce que l'alimentation fournie audit rotor est d'environ
 5 à 20% de l'alimentation totale fournie au moteur à
 30 traction électrique (14,24).

- 5. Véhicule selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit système de convertisseur (18) est un convertisseur primaire de servitude (13).
- 6. Véhicule selon la revendication 3 ou la revendication 4, caractérisé en ce que ledit système de convertisseur (28) comprend un convertisseur quatre quadrants (25) relié à un dispositif de stockage et de destockage d'énergie (29) apte à alimenter au moins un convertisseur secondaire de servitude (23a,23b).
 - la revendication 6, Véhicule selon 7. de qu'au moins une caractérisé en ce l'alimentation à fournir au du moteur de stator traction électrique (24) provient du dispositif de stockage et de destockage d'énergie (29).
 - 8. Véhicule selon la revendication 6 ou la revendication 7, caractérisé en ce que ledit dispositif de stockage et de destockage d'énergie (29) comprend au moins un élément pris parmi une batterie, une supercapacité, un volant d'inertie et un compresseur d'air.
 - 9. Véhicule selon l'une quelconque des revendications 6 à 8, caractérisé en ce qu'au moins une partie du stockage d'énergie dudit dispositif de stockage et de destockage d'énergie (29) est réalisée lors d'opérations de freinage du véhicule.
- 10. Véhicule selon l'une quelconque des revendications 6 à 9, caractérisé en ce qu'au moins une partie de l'énergie récupérée lors des opérations de freinage du véhicule est directement restituée par le

5

10

15

20

25

dispositif de stockage et de destockage d'énergie (29), sans être stockée.

- 11. Véhicule selon l'une quelconque des revendications précédentes, caractérisé en ce que le système d'alimentation (11,21) et l'alternateur (12,22) forment un groupe électrogène.
- 12. Véhicule selon l'une quelconque des revendications précédentes, caractérisé en ce que le véhicule est un véhicule électrique alimenté par au moins l'une des sources d'alimentation prise parmi le groupe constituée des éléments suivants : {caténaires, perches, frotteurs}.
- 13. Véhicule selon l'une quelconque des revendications précédentes, caractérisé en ce que le véhicule est alimenté par un groupe électrique à fréquence constante, au moins une partie des servitudes utilisant directement une sortie électrique dudit groupe électrique.
- 14. Véhicule selon la revendication 13,
 20 caractérisé en ce que le groupe électrique comprend au moins un élément pris parmi une turbine à gaz, un moteur thermique et un groupe électrique convertisseur.

25

10

FIG. 1

FIG. 2

FIG. 3

FIG. 4

2830801

RAPPORT DE RECHERCHE PRÉLIMINAIRE

N° d'enregistrement national

FA 609074 FR 0113377

établi sur la base des dernières revendications déposées avant le commencement de la recherche

	LA PROPRIETE déposées INDUSTRIELLE	avant le commencement	de la recherche	FR 0113377	
DOCL	IMENTS CONSIDÉRÉS COMI	ME PERTINENTS	Revendication(s) concernée(s)	Classement attribué à l'invention par l'INPI	
Catégorie	Citation du document avec indication, en des parties pertinentes	cas de besoin,	•	a , involuon par i intri	
Α	EP 0 576 945 A (SMH MANA AG) 5 janvier 1994 (1994 * le document en entier	-01-05)	1-3,6-8	B60L11/12	
A	DE 32 31 882 A (VOLKSWAG 1 mars 1984 (1984-03-01) * le document en entier	•	1,12-14		
Α	FR 2 783 768 A (RENAULT 31 mars 2000 (2000-03-31 * le document en entier)	1,12-14		
A	DE 34 39 700 A (KOSCHE) 30 avril 1986 (1986-04-3 * le document en entier		1		
A	FR 2 448 809 A (SOCIÉTÉ 5 septembre 1980 (1980-0 * le document en entier	9-05)	1		
				DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)	
				B60L	
		oto d'o abbungo est de la contract			
	b	ate d'achèvement de la recherche 26 juin 2002	Bol	Examinateur der, G	
X : part Y : part autr A : arrid O : divu	ATÉGORIE DES DOCUMENTS CITÉS iculièrement pertinent à lui seul iculièrement pertinent en combinaison avec un e document de la même catégorie ère-plan technologique igation non-écrite ument intercalaire	T : théorie ou prin E : document de l à la date de dé de dépôt ou qu D : cité dans la de L : cité pour d'aut	cipe à la base de l'i prevet bénéficiant d' pôt et qui n'a été pi l'à une date postéri mande res raisons	rvention une date antérieure ublié qu'à cette date	

1

EPO FORM 1503 12.99 (P04C14)

2830801

ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 0113377 FA 609074

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus. Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date d26-06-2002 Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)		Date de publication	
EP 05769	45	A	05-01-1994	СН	687307	A5	15-11-1996
				FR	2694524	A1	11-02-1994
				ΑT	142151	T	15-09-1996
				AU	4163493	•	06-01-1994
				BR	9302716		01-02-1994
				CA	2098361		02-01-1994
				CN	1080603		12-01-1994
				CZ	•••	A3	16-02-1994
				DE	0300	D1	10-10-1996
				DE	0200	T2	03-04-1997
				EP	00,00.0	A1	05-01-1994
				ES		T3	16-02-1997 28-02-1994
				HU	64723 106190		08-12-1995
				IL JP	3217902		15-10-2001
				JP	6090504		29-03-1994
				PL	299498		10-01-1994
				RÜ	2106266		10-03-1998
				SG	85067		19-12-2001
				ÜS	5402046		28-03-1995
				ZA	9304202		10-01-1994
DE 3231	 882	Α	01-03-1984	DE	3231882	A1	01-03-1984
FR 2783	768	Α	31-03-2000	FR	2783768	A1	31-03-2000
DE 3439	700	A	30-04-1986	DE	3439700	A1	30-04-1986
FR 2448	809	A	05-09-1980	FR	2448809	A1	05-09-1980