Oblig 1

Opg 1:

Det skal kjøpes en olje/vann separator lik den i bildet under. Der det blå er vann (i bunn) og det beige er olje. Fra nær bunn går det ett rør oppover til å se nivået i tanken.

- a) Dersom oljen har en tetthet på 800 kg/m3 og har en høyde på 20 cm. Vannet har en høyde på 80 cm. Hva er da trykket i bunn av tanken om trykket i gassen i toppen er atmosfærisk?
- b) Dersom oljelaget kan forandre tykkelse, vil da røret for å se nivået fungere? Vis med formler og fysikk. Hint: det er ikke olje i røret.

Fig 1: Separator

Opg 2

Det skal kjøpes et nytt ventilasjonsanlegg til klasserommene i Figur 2, og dette må beregnes. Alternativene for rørtykkelser er i tabellen i Figur 3.

Forutsetninger:

- Estimater gir det billigste alternativet og en kan tenke at jo mindre rør (både lengde og diameter) gir det beste alternativet. (det er nok lurt å se på et stort rør som deler seg til flere.)
- Arealene står på den andre figuren og det kan være 0,7 personer per m2.
- Det estimeres for maks antall i hvert rom.
- Hver person trenger 26 m3 med luft hver time
- Hastigheten kan ikke overstige 10 m/s i noen av rørene da dette kan skape støy.
- Alle rør kan reguleres ned til ønskelig strømning.

Dere skal foreslå et design av ventilasjonen som oppfyller kravene.

Fig 2: plantegning av rom

Beskrivning

Cirkulär kanal.

Kanalerna kan tillverkas både med och utan Click-funktion (nockar). Var god specificera vid beställning.

Dimensioner

Ød std nom	Ο πd m	Α πd²/4 m²	t std [mm]	std [mm]	ml std kg/m
63	0,198	0,003	0,45	3000	0,85
80	0,251	0,005	0,45	3000	0,91
100	0,314	0,008	0,45	3000	1,14
125	0,393	0,012	0,45	3000	1,41
160	0,503	0,020	0,5	3000	2,02
200	0,628	0,031	0,5	3000	2,56
250 *	0,785	0,049	0,5	3000	3,18
315 *	0,990	0,078	0,55	3000	4,41
400 *	1,257	0,126	0,55	3000	6,01
500 *	1,571	0,196	0,7	3000	9,54
630 *	1,979	0,312	0,7	3000	12,0
* 008	2,513	0,503	0,8	3000	17,4
1000 *	3,142	0,785	0,9	3000	24,1
1250 *	3,927	1,227	0,9	3000	30,2
1600 *	5,027	2,011	1,25	2400	54,8

^{*} Med utåtgående förstyvningssickar.

Fig 3: luft kanaler