EE488 Computer Architecture Lecture 1

2024 Summer

Today's Lecture

Computer Design

- Levels of abstraction
- Instruction sets and computer architecture

Architecture design process

Interfaces

Course Structure

Technology as an architectural driver

- Evolution of semiconductor and magnetic disk technology
- New technologies replace old
- Industry disruption

Break

Cost and Price

• Semiconductor economics

Computers, Levels of Abstraction and Architecture

Computer Architecture's Changing Definition

1950s Computer Architecture

Computer Arithmetic

1960s

Operating system support, especially memory management

1970s to mid 1980s Computer Architecture

- Instruction Set Design, especially ISA appropriate for compilers
- Vector processing and shared memory multiprocessors

1990s Computer Architecture

- Design of CPU, memory system, I/O system, Multi-processors, Networks
- Design for VLSI

2000s Computer Architecture:

 Special purpose architectures, Functionally reconfigurable, Special considerations for low power/mobile processing, highly parallel structures

Levels of Representation

```
\begin{cases}
    temp = v[k]; \\
    v[k] = v[k+1]; \\
    v[k+1] = temp;
\end{cases}

High Level Language
Program
               Compiler
                                    lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
Assembly Language
        Program
                Assembler
                                           0000 1001 1100 0110 1010 1111 0101 1000
  Machine Language
                                          1010 1111 0101 1000 0000 1001 1100 0110 1100 0110 1100 0110 1011 0101 1000 0000 1001
         Program
                                           0101 1000 0000 1001 1100 0110 1010 1111
                Machine Interpretation
 Control Signal Spec
                                        ALUOP[0:3] <= InstReg[9:11] & MASK
```

Levels of Abstraction

The Instruction Set: A Critical Interface

Computer Architecture =
Instruction Set Architecture +
Machine Organization

Instruction Set Design

- Machine Language
- Compiler View
- "Computer Architecture"
- "Instruction Set Architecture"

"Building Architect"

software

instruction set

hardware

This course

- Machine Implementation
- Logic Designer's View
- "Processor Architecture"
- "Computer Organization"

"Construction Engineer"

Instruction Set Architecture

Data Types

Encoding and representation

Memory Model

Program Visible Processor State

General registers Program counter

Processor status

Instruction Set

Instructions and formats Addressing modes

Data structures

System Model

States

Privilege

Interrupts

10

External Interfaces

10

Management

Architecture Reference Manual

Principles of Operation

Programming Guide

. . .

... the attributes of a [computing] system as seen by the programmer, i.e. the conceptual structure and functional behavior, as distinct from the organization of the data flows and controls the logic design, and the physical implementation.

Amdahl, Blaaw, and Brooks, 1964

Computer Organization

Capabilities & Performance Characteristics of Principal Functional Units

(e.g., Registers, ALU, Shifters, Memory Management, etc.

Ways in which these components are interconnected

- Datapath nature of information flows and connection of functional units
- Control logic and means by which such information flow is controlled

Choreography of functional units to realize the ISA

Register Transfer Level Description / Microcode

"Hardware" designer's view includes logic and firmware

This Course Focuses on General Purpose Processors

A general-purpose computer system

- Uses a programmable processor
- Can run "any" application
- Potentially optimized for some class of applications
- Common names: CPU, DSP, NPU, microcontroller, microprocessor

Unified main memory

- For both programs & data
- Von Neumann computer

Busses & controllers to connect processor, memory, IO devices

MIT Whirlwind, 1951

Computers are pervasive - servers, standalone PCs, network processors, embedded processors, ...

Today, "Computers" are Connected Processors

All have interfaces & organizations

What does a computer architect do?

Translates business and technology drives into efficient systems for computing tasks.

Metrics of Efficiency - Examples

Desktop computing

- Examples: PCs, workstations
- Metrics: performance (latency), cost, time to market

Server computing

- Examples: web servers, transaction servers, file servers
- Metrics: performance (throughput), reliability, scalability

Embedded computing

- Examples: microwave, printer, cell phone, video console
- Metrics: performance (real-time), cost, power consumption, complexity

Applications Drive Design Points

Numerical simulations

- Floating-point performance
- Main memory bandwidth

Transaction processing

- I/Os per second and memory bandwidth
- Integer CPU performance

Media processing

- Repeated low-precision 'pixel' arithmetic
- Multiply-accumulate rates
- Bit manipulation

Embedded control

- I/O timing
- Real-time behavior

Architecture decisions will often exploit application behavior

Characteristics of a Good Interface Design

Well defined for users and implementers

Interoperability (Hardware) / Compatibility (Software)

- Lasts through multiple implementations across multiple technologies (portability, compatibility)
- Efficiently supports multiple implementations
 - Competitive market
 - Compatible at multiple cost / performance design points

IP Investment Preservation

- Extensible function grows from a stable base
- Generality of application permits reuse of training, tools and implementations

Applies to many types of interfaces

- Instruction set architectures
- Busses
- Network protocols
- Library definitions
- OS service calls
- Programming languages

Interface usage can far exceed the most optimistic projections of it's designer:

- Instruction sets
 - S/360 1964 ~ present
 - X86 1972 ~ present
 - SPARC 1981 ~ present
- Network protocols
 - Ethernet 1973 ~ present
 - TCP/IP 1974 ~ present
- Programming languages
 - C 1973 ~ present

Course Structure

What You Need to Know from prerequisites

Basic machine structure

Processor, memory, I/O

Assembly language programming

Simple operating system concepts

Logic design

• Logical equations, schematic diagrams, FSMs, Digital design

Course Structure

Lectures:

- 1 week on Overview and Introduction (Chap 1 and 2)
- 2 weeks on ISA Design
- 4 weeks on Proc. Design
- 2 weeks on Memory and I/O

Reading assignments posted on the web for each week. Please read the appropriate material before the class.

Note that the above is approximate

Technology Drivers

Technology Drives Advances in Computer Design

Evolution Each level of abstraction is

continually trying to improve

Disruption Fundamental economics or capability

cross a major threshold

Significant technology disruptions

Logic Relays → Vacuum tubes →

single transistors →

SSI/MSI (TTL/ECL) → VLSI (MOS)

Registers Delay lines → drum → semiconductor

Memory Delay lines → magnetic drum → core

 \rightarrow SRAM \rightarrow DRAM

External Storage Paper tape > Paper cards >

magnetic drum →

magnetic disk

Today, technology is driven by semiconductor and magnetic disk technology. What are the the next technology shifts?

Semiconductor and Magnetic Disk Technologies Have Sustained Dramatic Yearly Improvement since 1975

64x more devices since 1992 4x faster devices

Moore's "Law" - The observation made in 1965 by Gordon Moore, co-founder of Intel, that the number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented. Moore predicted that this trend would continue for the foreseeable future. In subsequent years, the pace slowed down a bit, but data density has doubled approximately every 18 months, and this is the current definition of Moore's Law, which Moore himself has blessed. Most experts, including Moore himself, expect Moore's Law to hold for at least another two decades.

	Capacity	Speed	Cost
Logic	60%	40%	25%
Clock Rate		20%	
DRAM	60%	7 %	25 %
Disk	60%	3%	25 %
Network		40%	25 %

Device Density Increases Faster Than Die Size

1971

Intel 4004 was a 3 chip set with a 2kbit ROM chip, a 320bit RAM chip and the 4bit processor each housed in a 16 pin DIP package. The 4004 processor required roughly 2,300 transistors to implement, used a silicon gate PMOS process with 10µm linewidths, had a 108KHz clock speed and a die size of 13.5mm2. Designer - Ted Hoff.

1996

HP PA8000 - 17.68mmx19.1mm, 3.8M transistors.

	<u>i4004</u>	PA9000 Factor	Yearly Improvement
Area (mm)	13.5	338 1:25	14%
Transistors	2300	3 800 000 1:1652	34%

Source: http://micro.magnet.fsu.edu/chipshots/

Example: Intel Semiconductor Roadmap

Process	<u>P856</u>	<u>P858</u>	<u>Px60</u>	<u>P1262</u>	<u>P1264</u>	<u>P1266</u>
1st Production	1997	1999	2001	2003	2005	2007
Lithography	0.25um	0.18um	0.13um	90nm	65nm	45nm
Gate Length	0.20um	0.13um	<70nm	<50nm	<35nm	<25nm
Wafer Diameter (mm)	200	200	200/300	300	300	300

Source: Mark Bohr, Intel, 2002

DRAM Drives the Semiconductor Industry

Memory Wall: Speed Gap between Processor and DRAM

Source: Junji Ogawa, Stanford

The divergence between performance and cost drives the need for memory hierarchies, to be discussed in future lectures.

Semiconductor evolution drives improved designs

1970s

- Multi-chip CPUs
- Semiconductor memory very expensive
- Complex instruction sets (good code density)
- Microcoded control

1980s

- 5K 500 K transistors
- Single-chip CPUs
- RAM is cost-effective
- Simple, hard-wired control
- Simple instruction sets
- Small on-chip caches

1990s

- 1 M 64M transistors
- Complex control to exploit instruction-level parallelism
- Super deep pipelines

2000s

- 100 M 5 B transistors
- Slow wires
- Power consumption
- Design complexity

Note: Gate speeds and power/cooling also improved

Why Such Change in 10 years?

Performance

- Technology Advances
 - CMOS VLSI dominates older technologies (TTL, ECL) in cost and performance
- Computer architecture advances improves low-end
 - RISC, superscalar, RAID, ...

Price: Lower costs due to ...

- Simpler development
 - CMOS VLSI: smaller systems, fewer components
- Higher volumes
 - CMOS VLSI: same dev. cost 1,000 vs. 100,000,000 units
- Lower margins by class of computer, due to fewer services

Function

Rise of networking / local interconnection technology

Cost and Price

Integrated Circuit Manufacturing Costs

$$Die Cost = \frac{Wafer Cost}{Dies per Wafer \times Die Yield}$$

IC yield is a largely a function of defect density. Yield curves improve over time with manufacturing experience.

Relationship of complexity, cost and yield

Source: The History of the Microcomputer - Invention and Evolution, Stan Mazor

Example: FPGA Cost per 1M Gates

Source: Xilinx

System Cost Example: Web Server

System	Subsystem	% of total cost
Cabinet	Sheet metal, plastic Power supply, fans Cables, nuts, bolts (Subtotal)	1% 2% 1% (4%)
Motherboard	Processor DRAM I/O system Network interface Printed Circuit board (Subtotal)	20% 20% 10% 4% 1% (60%)
I/O Devices	Disks (Subtotal)	36% (36%)

Picture: http://developer.intel.com/design/servers/sr1300/

Example: Cost vs Price

Summary

Computer Design

- Levels of abstraction
- Instruction sets and computer architecture

Architecture design process

Interfaces

Course Structure

Technology as an architectural driver

- Evolution of semiconductor and magnetic disk technology
- New technologies replace old
- Industry disruption

Cost and Price

• Semiconductor economics