Логическо програмиране

Лектор: Тинко Тинчев

Теореми

Заместване на съждителни променливи със съждителни формули

Теорема 1 (Еквивалентна замяна). Нека $\varphi_1, \varphi_2, \dots, \varphi_n; \psi_1, \psi_2, \dots, \psi_n$ са съждителни формули. Нека $\alpha_0 \varphi_1 \alpha_1 \dots \varphi_n \alpha_n$ също е съждителна формула. Нека I_0 е булева интерпретация. Тогава, ако

$$I(\varphi_1) = I(\psi_1), I(\varphi_2) = I(\psi_2), \dots, I(\varphi_n) = I(\psi_n),$$

mo

$$I(\alpha_0 \varphi_1 \alpha_1 \dots \varphi_n \alpha_n) = I(\alpha_0 \psi_1 \alpha_1 \dots \psi_n \alpha_n)$$

Следствие 1. Нека $\varphi_1 \models \psi_1, \varphi_2 \models \psi_2, \dots, \varphi_n \models \psi_n$. Нека $\alpha_0 \varphi_1 \alpha_1 \dots \alpha_{n-1} \varphi_n \alpha_n$ е съждителна формула.

Тогава

$$\alpha_0 \varphi_1 \alpha_1 \dots \varphi_n \alpha_n \models \alpha_0 \psi_1 \alpha_1 \dots \psi_n \alpha_n$$

Теорема 2 (Алгоритъм за конюнкция на елементарни дизюнкции). *Има алгоритъм, който* по дадена съждителна формула φ дава като резултат конюнкция на елементарни дизюнкции ψ , така че $\varphi \models \psi$. Процедура:

1. Елиминираме \Leftrightarrow , т.е. ако имаме формулата φ с индукция относно броя на \Leftrightarrow във φ , доказваме че има формула φ' , $\varphi \models \varphi'$ и във φ' няма \Leftrightarrow .

$$Hanpumep: \varphi = \alpha(\varphi_1' \Leftrightarrow \varphi_2)\beta, (\varphi_1 \Leftrightarrow \varphi_2) \models (\varphi_1 \& \varphi_2) \lor (\neg \varphi_1 \& \neg \varphi_2).$$

Тогава $\varphi \models \alpha((\varphi_1 \& \varphi_2) \lor (\neg \varphi_1 \& \neg \varphi_2))\beta$ е формула с n-1 срещания на знака \Leftrightarrow .

2. Елиминираме $\Rightarrow c$ индукция относно броя на буквите \Rightarrow във φ . Например: $(\varphi_1 \Rightarrow \varphi_2) \models (\neg \varphi_1 \lor \varphi_2)$.

3. Вкарваме \neg навътре, докато не останат \neg само пред съждителни променливи.

Предикатно смятане от първи ред

Теорема 3 (Леополд Льовенхайм, Скулем, Белан). *Нека* \mathcal{L} е език на предикатното смятане, в който има само предикатни символи и те са унарни(едноместни). Тогава има алгоритъм, който разпознава изпълнимите формули от езика \mathcal{L} .

Теорема 4. Нека \mathcal{A} е структура, φ е предикатна формула, x – индивидна променлива. Тогава $\mathcal{A} \models \varphi \longleftrightarrow \mathcal{A} \models \forall x \varphi$.

Следствие 2. Нека
$$Var^{free}[\varphi] \subseteq \{x_1, x_2, \dots, x_n\}$$
. Тогава $\mathcal{A} \models \varphi \longleftrightarrow \mathcal{A} \models \underbrace{\forall x_1 \forall x_2 \dots \forall x_n \varphi}_{\text{затворена формуло}}$

Забележка. Определимото множество трябва да е подмножество на съответна декартова степен на универсума.

Хомоморфизми и изоморфизми.

Теорема 5 (Теорема за хомоморфизмите). Нека h е хомоморфизъм на A в B. Нека φ е формула без формално равенство и $\varphi[x_1, x_2, \dots, x_n]$ (т.е. свободните променливи на φ са измежду x_1, x_2, \dots, x_n).

Тогава за произволни $a_1, a_2, \ldots, a_n \in A$ е изпълнено

$$\mathcal{A} \models \varphi[\![a_1, a_2, \dots, a_n]\!] \longleftrightarrow \mathcal{B} \models \varphi[\![h(a_1), h(a_2), \dots, h(a_n)]\!]$$

Теорема 6 (Теорема за изоморфизмите). Нека \mathcal{L} е предикатен език от първи ред (с или без формално равенство). Нека \mathcal{A} и \mathcal{B} са структури над \mathcal{L} и h е изоморфизъм на \mathcal{A} върху \mathcal{B} .

Тогава за всяка формула φ , $\varphi[x_1, x_2, \dots, x_n]$ и произволни $a_1, a_2, \dots, a_n \in A$ е в сила еквивалентността:

$$\mathcal{A} \models \varphi \llbracket a_1, a_2, \dots, a_n \rrbracket \longleftrightarrow \mathcal{B} \models \varphi \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket$$

Следствие 1. Ако $\mathcal{A} \cong \mathcal{B}$, то за всяка **затворена** формула φ е вярно $\mathcal{A} \models \varphi \longleftrightarrow \mathcal{B} \models \varphi$.

Следствие 2. Нека $B \subseteq A^n$ е определимо в структурата A, която е за език \mathcal{L} . Нека h е автоморфизъм в A. Тогава за произволни $a_1, a_2, \ldots, a_n \in A$ е изпълнено $(a_1, a_2, \ldots, a_n) \in B \longleftrightarrow (h(a_1), h(a_2), \ldots, h(a_n)) \in B$.

Следствие 3. Нека $B \subseteq A^n$ и h е автоморфизъм в A, такъв че за някоя n-торка $(a_1, a_2, \ldots, a_n) \in A^n$ и $(a_1, a_2, \ldots, a_n) \in B$, но $(h(a_1), h(a_2), \ldots h(a_n)) \not\in B$. Тогава B не е определимо c формула от \mathcal{L} в A.

Заместване на подформули с формули

Теорема 7 (Теорема за еквивалентната замяна). *Нека* $\alpha \varphi \beta$ *е предикатна формула. Ако* $\varphi \models \psi$, то $\alpha \varphi \beta \models \alpha \psi \beta$.

Hека $\varphi = \alpha_0 \varphi_1 \alpha_1 \varphi_2 \dots \alpha_{n-1} \varphi_n \alpha_n$ и $\psi_1, \psi_2, \dots, \psi_n$ са предикатни формули. Нека $\varphi_1 \models \psi_1, \varphi_2 \models \psi_2, \dots, \varphi_n \models \psi_n$.

Тогава
$$\alpha_0 \varphi_1 \alpha_1 \varphi_2 \dots \alpha_{n-1} \varphi_n \alpha_n \stackrel{\mathcal{A}}{\models} \alpha_0 \psi_1 \alpha_1 \psi_2 \dots \alpha_{n-1} \psi_n \alpha_n$$
.

Преименуване на свързани променливи

Теорема 8 (Теорема за варианта). *Нека* $x \neq y$ *и нека формулата* $Qy\varphi[x/y]$ *е вариант на* $Qx\varphi$.

Тогава $Qx\varphi \models Qy\varphi[x/y]$.

Пренексна нормална форма

Теорема 9. Има алгоритъм, който по произволна предикатна формула φ от $\mathcal L$ дава ψ , такава че:

- 1. $\varphi \models \psi$
- 2. ψ е в пренексна нормална форма
- 3. $Var^{free}[\varphi] = Var^{free}[\psi]$
- $4. \ \varphi \ u \ \psi \ ca \ в \ e \partial u H \ u \ c z u u \ e з u \kappa$

Логическо следване

Теорема 10 (Теорема за дедукцията). $\Gamma \models \varphi \longleftrightarrow \Gamma \cup \{\neg \varphi\}$ е неизпълнимо множество.

Скулемизация

Теорема 11.

1. Нека φ е затворена формула в пренексна нормална форма. Тогава φ е изпълнима тогава и само тогава, когато φ^S е изпълнима, т.е. φ е неизпълнима тогава и само тогава, когато φ^S е неизпълнима.

2. Нека Γ е множество от затворени формули в пренексна нормална форма. Да означим c $\Gamma^S = \{\varphi^S \mid \varphi \in \Gamma\}$. Тогава Γ^S е множество от затворени универсални формули и Γ^S е изпълнимо тогава и само тогава, когато Γ е изпълнимо, т.е. Γ^S е неизпълнимо тогава и само тогава, когато Γ е неизпълнимо.

Ербранови структури

Безкванторни формули. Свободни ербранови структури

Теорема 12. Нека Γ е множество от затворени универсални формули в език с поне една индивидна константа и без формално равенство. Тогава следните са еквивалентни:

- Г има модел;
- 2. Г има ербранов модел;
- 3. $CSI(\Gamma)$ има ербранов модел;
- 4. $CSI(\Gamma)$ има модел;
- 5. $CSI(\Gamma)$ е булево изпълнимо.

Теорема 13 (Тюринг-Чърч, 1936). Нека \mathcal{L} е език на предикатното смятане от първи ред с поне един двуместен предикатен символ. Тогава няма алгоритъм, който по произволно дадена затворена формула φ от \mathcal{L} да разпознава дали φ е предикатна тавтология.

Eквивалентно, няма алгорит σ м, който да разпознава дали φ е предикатна тавтология.

Забележка. $\models \varphi \longleftrightarrow \neg \varphi$ е неизпълнима.

Теорема 14. Нека $\varphi = \forall x_1 \forall x_2 \dots \forall x_n \exists y_1 \exists y_2 \dots \exists y_k \Theta, \Theta$ е безкванторна, φ е затворена. Нека във φ няма функционални символи (без формално равенство).

Тогава има алгоритъм, който разпознава дали φ е предикатна тавтология. Нещо повече, има алгоритъм, който в случай, че φ не е предикатна тавтология дава крайна структура $\mathcal{A}, \mathcal{A} \not\models \varphi$.

Съждителна резолюция

Правило на съждителната резолюция

Теорема 15 (Коректност на резолютивната изводимост). *Нека* S *е множество от дизюнктии.* Aко $S \vdash \blacksquare$, *то* S *е неизпълнимо.*

Следствие 1. Ако $S \stackrel{r}{\vdash} \mathbb{D}$, то има крайно подмножество $S_0 \subseteq S$, такова че $S_0 \stackrel{r}{\vdash} \mathbb{D}$.

Трансверзали за фамилии от множества

Теорема 16 (Теорема за минималната трансверзала). *Нека* A e фамилия от непразни крайни множества. Тогава A има минимална трансверзала.

Теорема 17 (Пълнота на резолютивната изпълнимост). *Нека* S *е множество от дозюнкти.* Aко S *е неизпълнимо, то* $S \stackrel{r}{\vdash} \blacksquare$.

Следствие 1 (Теорема за компактност за множества от дизюнкти). *Нека* S *е множество от дизюнкти. Тогава* S *е неизпълнимо* \longleftrightarrow *има крайно* $S_0 \subseteq S$, S_0 *е неизпълнимо*.

Теорема 18 (Жак Ербран). Нека Γ е множество от затворени универсални формули от език с поне една индивидна константа и без формално равенство. Тогава следните са еквивалентни:

- 1. Γ е неизпълнимо;
- 2. Съществува крайно подмножество на $CSI(\Gamma)$, което е булево неизпълнимо;
- 3. Съществува краен брой затворени частни случаи $\Theta_1, \Theta_2, \dots, \Theta_n$ на формули от Γ , такива че $\models \neg \Theta_1 \lor \neg \Theta_2 \lor \dots \lor \neg \Theta_n$.