2.5.1

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ *Erop Берсенев*

1 Цель:

- 1. Измерение коэффициента поверхностного натяжения исследуемой жидкости при разной температуре с использованием известного коэффициента поверхностного натяжения другой жидкости.
- 2. Определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости.

2 Оборудование:

Прибор Ребиндера с термостатом, спирт, вода, стаканы.

3 Теоретическая часть

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной поверхности раздела двух сред. Для сферического пузырька внутри жидкости избыточное давление определяется формулой Лапласа.

$$\Delta P = P_1 - P_2 = \frac{2\sigma}{r} \tag{1}$$

4 Экспериментальная установка

- 1. А аспиратор, из которого по каплям вытекает вода, создавая разрежение.
- 2. $B \cos y$ д с исследуемой жидкостью.

- 3. С металлическая игла.
- 4. D рубашка, поддерживающая температуру термостата в сосуде В.
- 5. Е сосуд с дистиллированной водой.
- 6. М наклонный манометр.

5 Ход работы

Измерим максимальное давление при пробулькивании пузырька в спирте.

Оценим диаметр иглы по формуле (1).

$$d = \frac{4\sigma}{\Delta P} = \frac{4\cdot 0.0223}{45\cdot 0.2\cdot 9.8} = 1.01\cdot 10^{-3}\,\mathrm{m} = 1.01\,\mathrm{mm}$$

Диаметр иглы полученный прямым измерением равен d=1.05 мм Измерим давление на высоте $h_1=1.85$ см при температуре T=25°C

$$\mid \Delta P$$
, дел \mid 118 \mid 118 \mid 118 \mid 118 \mid 118 \mid

Измерим давление на высоте $h_2 = 0.65\,\mathrm{cm}$ при температуре $T = 25^{\circ}\mathrm{C}$

$$\mid \Delta P$$
, дел $\mid 178 \mid 178 \mid 178 \mid 178 \mid 178 \mid$

Оценим глубину погружения по разности давлений: $\Delta(\Delta P) = (178-118) \cdot 0.2 \cdot 9.8 = 117.6\,\Pi a$. Теперь оценим давление столба жидкости по прямому измерению высоты: $\Delta h = 1.2\,\mathrm{cm} \implies \Delta(\Delta P) = \rho g h = 117.6\,\Pi a$. Разности давлений совпали, значит можно проводить измерения.

Теперь проведем измерения $\sigma(T)$.

T, K	301.1	305.1	309.1	313.2	317.2	321.2	325.2
ΔP , дел	215	214	213	212	210	209	208
	216	214	213	212	211	210	208
	216	214	213	212	210	209	208
	216	214	213	212	210	209	208
	216	214	213	212	211	209	208
$\sigma \cdot 10^{-3}$ Н м	80.3	79.3	78.8	78.3	77.5	76.7	76.2

T, K	$Q \cdot 10^{-3}$ Дж	$U_{ m n}/\Pi \cdot 10^{-3}$ Дж
301.1	50.27	130.6
305.1	50.93	130.2
309.1	51.60	130.4
313.2	52.29	130.6
317.2	52.95	130.5
321.2	53.62	130.3
325.2	54.29	130.5

6 Вывод

Поверхностные эффекты влияют на свойства поверхности, т.к. силы, действующие на поверхностный слой нескомпенсированы. Энергия образования единицы поверхности остается постоянной.