Supplementary material

Positive selection

Positive selection

Integrated Haplotype Score

Integrated Haplotype Score

Integrated Haplotype Score

Cross-population **Extended Haplotype Homozygosity**

Integrated haplotype homozygosity (*iHH*) for **populations** A and B

Integrated haplotype score: XP- $EHH = In(iHH_A/iHH_B)$

Genome-wide normalization in frequency bins (to mean=0 and sd=1)

Outline

- Brief introduction to natural selection
- Inferring selection at the intra-species level using summary statistics
- PRACTICAL: detecting selection from low-depth NGS data
- The effect of demography on selection scans
- PRACTICAL: quantifying selection using ABC
- (Experimental design)

Inter-species variation

events in the deep past, macro-evolutionary trends, selection between species

Polar bears vs. Brown bears

Question: what are the genetic signatures of polar bears' adaptation to the Arctic environment?

Expected genetic differentiation

Expected genetic differentiation

Expected genetic differentiation

Inferring inter-species selection

As both depend on mutation rates, proportional.

Polymorphisms and divergence

As both depend on mutation rates, proportional.

s are expected to be

Polymorphisms and divergence

As both depend on mutation rates, proportional.

s are expected to be

Polymorphisms and divergence

As both depend on mutation rates, proportional.

s are expected to be

HKA test

Hudson-Kreitman-Aguadè (HKA, Hudson et al. 1987) test

Contingency table 2x2: chi-square test

HKA test

Hudson-Kreitman-Aguadè (HKA, Hudson et al. 1987) test

Contingency table 2x2: chi-square test

HKA test

Hudson-Kreitman-Aguadè (HKA, Hudson et al. 1987) test

Contingency table 2x2: chi-square test

Coding polymorphisms

Substitutions in the coding regions may alter (non-synonymous) or not (synonymous) the protein sequence:

dN/ds

Comparison between rate of **nonsynonymous** substitutions and rate of **synonymous** substitutions (also called K_a/K_s or ω)

Non-synonymous

Synonymous

Positive selection (novel proteins) K_a/K > 1

Negative selection (against deleterious mutations $K_a/K < 1$

Coding polymorphisms and divergence

Compare the amount of variation within a species to the divergence between species at non-synonymous and synonymous variants.

Summary

 Methods to detect signatures of selection are grouped based on:

time of selection summary statistics used

- Assessing statistical significance through empirical or expected distributions
- Investigating complex models of selection and adaptation