1

Assignment 2

AI1110: Probability and Random Variables

Ch.Kushwanth AI22BTECH11006

12.13.4.5 : Question. Find the probability distribution of number of successes in two tosses of die, where a success is defined as

- 1) number greater than 4
- 2) six appears on atleast one die

Ans:

1)	X	0	1	2
	$\Pr\left(X\right)$	<u>4</u> 9	<u>4</u> 9	<u>1</u> 9

2)
$$\begin{array}{|c|c|c|c|c|c|c|}\hline Y & 0 & 1 \\\hline Pr(Y) & \frac{25}{36} & \frac{11}{36} \\\hline \end{array}$$

Solution:

1) finding probability distribution for appearance of number greater than 4 let X :appearance of number greater than 4 on 2 turns, $X \in \{0, 1, 2\}$ Pr(X = x): probability of X becoming x, $x \in \{0, 1, 2\}$ p denotes probability that number greater that 4 appears, X : bin(n, p)

$$p = \frac{2}{6} \text{(as there are 2 numbers greater than 4 as outcome of die)}$$
 (1)

Using binomial distribution, X: $bin(2, \frac{1}{3})$

$$\Pr\left(X=i\right) = \binom{n}{i} \times (p)^{i} \times (1-p)^{n-i} \tag{2}$$

here
$$n = 2, p = \frac{1}{3} (\text{from } (1))$$
 (3)

$$\Pr\left(X=i\right) = \binom{2}{i} \times \left(\frac{1}{3}\right)^{i} \times \left(1 - \frac{1}{3}\right)^{2-i} \tag{4}$$

variable	value	discription
n	2	
p	$\frac{1}{3}$	from (1)
$\Pr\left(X=i\right)$	$\binom{2}{i} \times \left(\frac{1}{3}\right)^i \times \left(\frac{2}{3}\right)^{2-i}$	from (4)
$\Pr\left(X=0\right)$	$\frac{4}{9}$	$\frac{\frac{2!}{(0!)\times((2-0)!)}\times\left(\frac{1}{3}\right)^{0}\times\left(\frac{2}{3}\right)^{2-0}=\frac{2}{(1)\times(2)}\times(1)\times\left(\frac{2}{3}\right)^{2}$
Pr(X=1)	4 9	$\frac{2!}{1! \times (2-1)!} \times \left(\frac{1}{3}\right)^1 \times \left(\frac{2}{3}\right)^{2-1} = \frac{2}{(1) \times (2)} \times (1) \times \left(\frac{2}{3}\right)^2$
$\Pr\left(X=2\right)$	19	$\frac{2!}{2! \times (2-2)!} \times \left(\frac{1}{3}\right)^2 \times \left(\frac{2}{3}\right)^{2-2} = \frac{2}{(2) \times (1)} \times \left(\frac{1}{3}\right)^2 \times (1)$

2) finding probability distribution for six to appear alteast on one die

let Y : appearence of six on at least on die , $Y \in \{0, 1\}$

Pr(Y = y): probability of Y becoming y, $y \in \{0, 1\}$

now,U: appearance of six on die, $U \in \{0, 1, 2\}$

 $\Pr\left(U=u\right)$: probability of u number of 6s appear , ue $\{0,1,2\}$

p denotes the probability of 6 on one throw of die.U: bin(n, p)

$$p = \frac{1}{6} \tag{5}$$

using binomial distribution, $U: bin(2, \frac{1}{6})$

$$\Pr\left(U=i\right) = \binom{n}{i} \times (p)^{i} \times (1-p)^{n-i} \tag{6}$$

variable	value	discription
n	2	
p	$\frac{1}{6}$	from (2)
Pr(U=i)	$\binom{2}{i} \times \left(\frac{1}{6}\right)^i \times \left(\frac{5}{6}\right)^{2-i}$	from (6)
$\Pr\left(U=0\right)$	$\frac{25}{36}$	$\frac{\frac{2!}{(0!)\times((2-0)!)}\times\left(\frac{1}{6}\right)^0\times\left(\frac{5}{6}\right)^{2-0}=\frac{2}{1\times 2}(1)\times\left(\frac{5}{6}\right)^2$
$\Pr\left(U=1\right)$	$\frac{10}{36}$	$\frac{2!}{1!\times(2-1)!}\times\left(\frac{1}{6}\right)^1\times\left(\frac{5}{6}\right)^{2-1}=\frac{2}{(1)\times(2)}\times(1)\times\left(\frac{5}{6}\right)^2$
$\Pr\left(U=2\right)$	$\frac{1}{36}$	$\frac{2!}{2! \times (2-2)!} \times \left(\frac{1}{6}\right)^2 \times \left(\frac{5}{6}\right)^{2-2} = \frac{2}{(2) \times (1)} \times \left(\frac{1}{6}\right)^2 \times (1)$
$\Pr\left(Y=0\right)$	2 <u>5</u> 36	$\Pr\left(U=0\right)$
$\Pr(Y=1)$	11/36	$p_U(1) = \Pr(U = 1) + \Pr(U = 2) = \frac{10}{36} + \frac{1}{36}$