S13 - Clasificacion no supervizada

Juan Carlos Martinez-Ovando

En la sesion de hoy revisaremos comparativamente dos metodos de clasificacion no supervisada (clustering) de datos escalares d-dimensionales. Revisaremos en detalle dos algoritmos para su implementacion.

Keywords: Probabilistic graphical models, latent variables, extended likelihood, distace-based clustering.

Simulacion de datos

Generamos una muestra de n variables escalaras de una mezcla de K distribuciones gausianas d dimensionales. En el siguiente script, k es el numero de grupos o clases, μ es una matriz de dimension $k \times d$ con vectores de medias para cada grupo, y Σ es un arreglo de dimension $K \times d \times d$ de matrices de covarianza.

```
rmixgaussian <- function(n, k, mu, sig) {
   if(!require('MASS')){install.packages("MASS")}

   library("MASS")

d <- length(mu[1,])
   result <- matrix(rep(NA,n*d), ncol=d)
   colnames(result) <- pasteO("X",1:d)

for(i in 1:n) {
    result[i,] <- mvrnorm(1, mu = mu[k[i],], Sigma=sig[,,k[i]])
   }
   return(result)
}</pre>
```

Los datos simulados son:

```
set.seed(123)
n <- 360
mu <- matrix(c(14.0,4.0,
               15.0,5.0,
               16.5,5.0), ncol=2, byrow=T)
sigs <- array(rep(NA, 2*2*3), c(2,2,3))
sigs[,,1] <- matrix(c(.25, .21, .21,.25), nrow=2, byrow=TRUE)
sigs[,,2] <- matrix(c(.25,-.21,-.21,.25), nrow=2, byrow=TRUE)
sigs[,,3] <- matrix(c(.25, .21, .21,.25), nrow=2, byrow=TRUE)
pi <- c(.2,.5,.3)
classes <- sample(1:3, n, replace=TRUE, prob=pi)</pre>
data <- rmixgaussian(n, classes, mu, sigs)</pre>
```

Loading required package: MASS

Datos

Pretendiendo no conocer con anticipacion como los datos son generado o, inclusive, si estos estan segmentados, su representacion grafica seria de la siguiente forma.

```
plot(data, col="black", xlab="X1", ylab="X2", pch=19)
```


Aunque sabiendo el mecanismo que genero los datos, la representacion grafica de los mismos deberia de ser de la siguiente forma.

```
plot(data, col=c("red", "green", "blue")[classes], xlab="X1", ylab="X2", pch=19)
```


Los metodos que revisaremos hoy tiene como proposito revelar estructuras de agrupamiento en datos que no conocemos con antelacion. La primera es basada en la nocion geometrica de distancia (**K-means**) y la segunda basada en argumentos de mezclas de modelos (**mixture of gaussian**).

Notaran que la segunda, en el contexto controlado de esta nota la opcion **mixture of gaussian** puede parecer mas adecuada. Sin embargo, ambos modelos sirven al mismo proposito. En clase comentaremos que aspectos son relevantes para uno u otro.

K-means

El algoritmo de clasificación **K-mean** funciona como un algoritmo iterativo de asignación de clases basado en un conjunto de datos y una distancia (tipicamente la distancia euclidiana). El algoritmo funciona sobre un conjunto de datos $x = x(x_i)_{i=1}^n d$ -dimensionales, y un numero fijo de clases o grupos K.

Cada grupo k es caracterizado por un centroide, m_k definido itertivamente como la media ar-

itmetica de los datos que componen el grupo k, siendo el grupo k definido como el conjunto de datos que minimiza la suma de cuadrados de las distancias de los datos a los centroides correspondientes.

El algoritmo se puede expresar como un problema de decision empleando la funcion objetivo

$$J(x, K, \mu) = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} d(x_i, \mu_k),$$

donde

- $r_i = (r_{i1,...,r_{iK}})$ es la variable indicadora K-dimensional para la que solo una entrada es igual a 1 (la entrada correspondiente al grupo en el que la observacion i es asignada a la clase k)
- $\mu = (\mu_i)_{i=1}^K$ es la colección de centroides de las K clases
- $d(x_i, \mu_k)$ es la distancia (euclidiana) del punto x_i al centroide μ_k .

Asignacion

La asignación en este modelo consiste en minimizar la función J(x,K) para $r=(r_i)_{i=1}^n$, dado los centroides $(\mu_k)_{k=1}^K$. Y con base en las asignaciónes r minimizar $J(x,K,\mu)$ con respecto a μ .

Algoritmo

El algoritmo de este procedimiento se muestra a continuacion:

```
k.means <- function(dataset, K, max_iter=100) {

get_classes <- function(rnk){
   apply(rnk,1,function(row) which.max(row))
  }

d <- ncol(dataset)

N <- nrow(dataset)

ranges <- sapply(1:d, function (i) range(dataset[,i]))</pre>
```

```
# K centroided iniciales
  mu <- t(replicate(K,sapply(1:d,</pre>
                                function(i) runif(1,ranges[1,i], ranges[2,i]))))
  rnk <- matrix(rep(0,K*n), ncol=K)</pre>
  old_classes <- get_classes(rnk)</pre>
  for(it in 1:max_iter) {
    for(n in 1:N) {
      distances <- sapply(1:K, function(k)</pre>
        norm(as.matrix(dataset[n,]-mu[k,]),"F"))
      rnk[n,] \leftarrow rep(0,K)
      rnk[n,which.min(distances)] <- 1</pre>
    }
    classes <- get_classes(rnk)</pre>
    if (all(old_classes == classes))
      break
    else
      old_classes <- classes
    for(k in 1:K) {
      mu[k,] <- rnk[,k] %*% dataset / sum(rnk[,k])</pre>
    }
  }
  output <- list(mu=mu, pred=classes)</pre>
  return(output)
}
```


Mixture of Gaussian

El modelo que describiremos a contiuacion realiza clasificacion no supervisada de datos empleando argumentos no probabilisticos (no distancias). Lo vimos descrito brevemente en la sesion anterior. Ahora lo revisaremos en detalle.

Modelo

Consideramos que los datos $(x_i)_{i=1}^n$ toman valores en \Re^p (i.e. este es el soporte del modelo). El desconocimiento (aleatoriedad implicita) sobre los datos se describe mediante la siguiente densidad

$$p(x) = \sum_{k=1}^{K} p(Gpo_k)p(x|Gpo_k)$$

$$= \sum_{k=1}^{K} w_k N(x|\mu_k, \Sigma_k),$$
(1)

$$= \sum_{k} w_k N(x|\mu_k, \Sigma_k), \tag{2}$$

donde

- *K* es el numero implicito de grupos,
- w_k es la probabilidad de que el dato x sea descrito (pertenezca) por el grupo k, para $k=1,\ldots,K$
- $N(x|\mu_k, \Sigma_k)$ es la distribucion que describe a la dispersion subyacente dentro del grupo k, a traves de los parametros implicitos (μ_k, Σ_k) , para k = 1, ..., K.

En la descripcion anterior, μ_k se interepreta similarmente a los *centroides* del modelo **K-means**, mientras que Σ_k describe que tan dispersos pueden ser los datos al rededor de Σ_k .

Nota: En esta especificacion se considera que *K* (numero total de grupos) es conocido o fijo. Sin embargo, el modelo puede extenderse para incluir incertidumbre sobre *K* tambien.

Los parametros del modelo, entonoces, son $(w, \mu \Sigma) = (w_k, \mu_k, \Sigma_k)_{k=1}^K$, con la restriccion $w_k > 0$, para $k = 1, \dots, K$, y $\sum_{k=1}^K w_k = 1$.

Asignacion

Como mencionamos antes, podemos *modificar* w_k con base en la evidencia de cada dato particular (o en grupo), a traves de la probabilidad condicional $w_k(x) = p(Gpo_k|x)$, que se conoce como probabilidad de asignacion, la cual incorpora la *verosimilitud* de que x sea descrito por $N(x|\mu_k, \Sigma_k)$, i.e.

$$w_k(x) = \frac{w_k N(x|\mu_k, \Sigma_k)}{\sum_{l=1}^K w_l N(x|\mu_l \Sigma_l)},$$

para k = 1, ..., K.

Asi, el dato x es asignado a la clase k^* que cumpla

$$k^* = argmax_k \{ w_k(x) : k = 1, ..., K \}.$$

Aprendizaje estadistico

Podemos estimar (inferir) los valores de los parametros (w, μ, Σ) empleando la verosimilitud

$$p(w,\mu,\Sigma|x) = \prod_{i=1}^{n} \sum_{k=1}^{K} w_k N(x_i|\mu_k|\Sigma_k),$$

para $x = (x_i)_{i=1}^n$. Esta verosimilitud, como comentamos, es intratable analiticamente.

Los enfoques bayesianos y frecuentistas de inferencia sufren por este aspecto del modelo. Sin embargo, esta complejidad se resuelve empleando metodos numericos.

A continuación revisaremos un enfoque frecuentista badado en el algoritmo EM (Dempster, et al, 1989).

Algoritmo EM

El algoritmo EM para mezclas (en general) consiste en incluir variables de asignacion latentes para cada dato, $(z_i)_{i=1}^n$, donde cada z_i es un vector binario K dimensional, $z_i = (z_{i1}, \ldots, z_{iK})$, con

$$z_{ik} = \{1, x_i \in Gpo_k0, e.o.c.\}$$

Los parametros w representan la distribucion marginal de las z_i s, de forma que la pseudo-verosimilitud para $z=(z_i)_i^n$ s esta dada por

$$p(z|w) = \prod_{k=1}^K w_k^{n_k},$$

donde

$$n_k = \#\{z_i : z_{ik} = 1\}.$$

La distribucion implicita de las z_i s es obviamente multinomial.

Ahora, incorporando la evidencia contenida en los datos, x_i s, la verosimilitud de z en x (un solo dato) se describe por

$$p(x_i|z_i) = \prod_{k=1}^{K} N(x_i|\mu_k, \Sigma_k)^{z_{ik}} = N(x_i|\mu_k, \Sigma_k),$$

para k tal que $z_{ik} = 1$.

La verosimilitud extendida para $(w, \mu, Sigma, z)$ ddo x es definida ahora como

$$p(x,z|w,\mu,\Sigma) \propto \prod_{i=1}^n \prod_{k=1}^K w_k^{z_{ik}} N(x_i|\mu_k,\Sigma_k)^{z_i k},$$

la cual esta definida para todos los z_{ik} s iguales a 1.

El algoritmo EM descansa en dos pasos iterativos, de esperanza (E) y de optimizacion (M).

Paso E

En casa iteración se calcula el valor esperado de las variables latentes z_i s, con base en

$$E(z|x, w, \mu, \Sigma) [\log p(x, z|w, \mu, \Sigma)] = \sum_{i=1}^{n} \sum_{k=1}^{K} w_k(x_i) (w_k + \log N(x_i|\mu_k, \Sigma_k)),$$

con $w_k(x_i)$ definida como antes.

Paso M

El paso M consiste en mazimizar $E(z|x, w, \mu, \Sigma)$ [log $p(x, z|w, \mu, \Sigma)$] con respecto a (w, μ, Σ) , dados x y z.

Para este modelo, los valores de (w, v, Σ) que maximizan la expresion referida tienen una expresion analistica cerrada, dada por

$$\mu_k = \frac{1}{n_k} \sum_{i=1}^n w_k(x_i) x_i \tag{3}$$

$$\Sigma_k = \frac{1}{n_k} \sum_{i=1}^n w_k(x_i) (x_i - \mu_k)'(x_i - \mu_k)$$
 (4)

$$w_k = \frac{n_k}{n}, (5)$$

para k = 1, ..., K, con n_k definida como antes.

La implementacion de esta algoritmo se ilustra a continuacion:

```
mixgaussian.em <- function(dataset, K, max_iter=100, epsilon=1e-3) {
   if(!require('mvtnorm')){install.pckages("mvtnorm")}
   library("mvtnorm")

get_classes <- function(gammak){
   apply(gammak,1,function(row) which.max(row))
}</pre>
```

```
d <- ncol(dataset)</pre>
N <- nrow(dataset)</pre>
ranges <- sapply(1:d, function (i) range(dataset[,i]))</pre>
# Inicialization
pik \leftarrow rep(1/K,K)
muk <- t(replicate(K,sapply(1:d,</pre>
                        function(i) runif(1,ranges[1,i], ranges[2,i]))))
Sigmas <- array(rep(NA, 2*2*3), c(2,2,3))
for (k in 1:K){
  Sigmas[,,k] <- diag(d)</pre>
 }
gammak <- matrix(rep(0,K*N),ncol=K)</pre>
old_gammak <- gammak
# Pasos EM
for(it in 1:max_iter){
  # Paso M
  for (k in 1:K){
    gammak[,k] <- apply(dataset, 1,</pre>
                             function(xi) {
                                pik[k] * dmvnorm(xi,muk[k,], Sigmas[,,k])
                             })
  }
  gammak <- t(apply(gammak, 1, function(row) row/sum(row)))</pre>
  if (sum(abs(gammak - old_gammak)) < epsilon)</pre>
    break
  else
```

```
old_gammak <- gammak
    # Paso M
    Nk <- sapply(1:K, function (k) sum(gammak[,k]))
    pik <- Nk/N
    for(k in 1:K){
      muk[k,] <- apply(gammak[,k] * dataset,2,sum) / Nk[k]</pre>
      Sigmas[,,k] \leftarrow diag(d) * 0
      for(n in 1:N){
        Sigmas[,,k] <- Sigmas[,,k] +</pre>
                         gammak[n,k]*
           (dataset[n,]-muk[k,])%*%t(dataset[n,]-muk[k,])
      }
      Sigmas[,,k] <- Sigmas[,,k] / Nk[k]</pre>
    }
  }
  output <- list(mu=mu, Sigmas=Sigmas, gammak=gammak, pred=get_classes(gammak))</pre>
  return(output)
set.seed(101)
result <- mixgaussian.em(data,2)</pre>
## Loading required package: mvtnorm
plot(data, col=c("red", "green")[result$pred],
     xlab="X1", ylab="X2", pch=19)
```


Referencias adicionales

• **Bishop**, Pattern Recognition and Machine Learning (Book)