Advanced topics on Algorithms

Luciano Gualà www.mat.uniroma2.it/~guala/

Parameterized algorithms Episode II

Toolbox (to show a problem is FPT)

bounded-search trees

treewidth

k-Path

Input:

- a graph G=(V,E)
- a nonnegative integer k

question:

is there a simple path of k vertices

parameter: k

obs: NP-hard since it contains the Hamiltonian path as special case

Theorem [Alon, Yuster, Zwick 1994] k-Path can be solved in time $2^{O(k)} n^{O(1)}$.

previous best algorithms had running time $k^{O(k)}$ $n^{O(1)}$.

- assign colors from $\{1,...,k\}$ to vertices V(G) uniformly and independently at random.

- assign colors from $\{1,...,k\}$ to vertices V(G) uniformly and independently at random.

- check if there is a path colored 1-2-...-k and output YES or NO

- assign colors from $\{1,...,k\}$ to vertices V(G) uniformly and independently at random.

- check if there is a path colored 1-2-...-k and output YES or NO

obs1: if there is no k-path: no path colored 1-2-...-k exists

obs2: if there is a k-path: there is some probability that this path is colored 1-2-...-k

probability of success: k-k.

boosting the probability of success: independent repetitions

Useful fact

If the probability of success is at least p, then the probability that the algorithm does not say "YES" after 1/p repetitions is at most

$$(1-p)^{1/p} \le (e^{-p})^{1/p} = 1/e \approx 0.38$$

- Thus, if $p \ge k^{-k}$ then error probability is at most 1/e after k^k repetitions
- repeating the whole algorithm a constant number of times can make the error probability an arbitrary small constant

example: trying 100 k^k random colorings, the probability of a wrong answer is at most $(1/e)^{100}$.

- edges connecting nonadjacent color classes are removed
- the remaining edges are directed towards the larger class
- all we need to check if there is a directed path from class 1 to class k

- edges connecting nonadjacent color classes are removed
- the remaining edges are directed towards the larger class
- all we need to check if there is a directed path from class 1 to class k

- edges connecting nonadjacent color classes are removed
- the remaining edges are directed towards the larger class
- all we need to check if there is a directed path from class 1 to class k

- edges connecting nonadjacent color classes are removed
- the remaining edges are directed towards the larger class
- all we need to check if there is a directed path from class 1 to class k

- edges connecting nonadjacent color classes are removed
- the remaining edges are directed towards the larger class
- all we need to check if there is a directed path from class 1 to class k

k-Path

color coding success probability k^{-k}

finding a 1-...-k colored path

polynomial time solvable

improved color coding

- assign colors from $\{1,...,k\}$ to vertices V(G) uniformly and independently at random.

- check if there is a colorful path (each color appears exactly once) and output YES or NO

obs1: if there is no k-path: no colorful path exists

obs2: if there is a k-path: there is some probability that it is colorful probability of success:

$$\frac{k! k^{n-k}}{k^n} = \frac{k!}{k^k} \ge \frac{(k/e)^k}{k^k} = e^{-k}$$

 \longrightarrow YES with probability e^{-k} .

improved color coding

- assign colors from $\{1,...,k\}$ to vertices V(G) uniformly and independently at random.

- repeating the algorithm 100 e^k times, the probability of a wrong answer is at most $(1/e)^{100}$.

how to find a colorful path?

- try all permutations: $k! n^{O(1)}$ time

- dynamic programming: $2^k n^{O(1)}$ time

finding a colorful path

```
subproblems:
```

```
v \in V, non-empty subset S \subseteq \{1,...,k\}
```

Path(v,S): is there a path P ending at v such that each color of S appears in P exactly once and no other color appears in P?

obs1: There is a colorful path iff Path($v,\{1,...,k\}$)=TRUE for some v

obs2: # of subproblems 2kn

finding a colorful path

subproblems:

```
v \in V, non-empty subset S \subseteq \{1,...,k\}
```

Path(v,S): is there a path P ending at v such that each color of S appears in P exactly once and no other color appears in P?

$$|S|=1$$
 (base case)

Path(
$$v,S$$
)=TRUE iff $S=\{col(v)\}$

$$Path(v,S) = \begin{cases} OR & Path(u,S-\{col(v)\}) & \text{if } col(v) \in S \\ (u,v) \in E & \text{otherwise} \end{cases}$$

$$FALSE & \text{otherwise}$$

k-Path

color coding success probability e-k

finding a colorful path

solvable in $2^k n^{O(1)}$ time

Theorem

There is a randomized algorithm for k-Path that runs in time $(e2)^k$ $n^{O(1)}$ that either reports a failure or find a path of k vertices. Moreover, the algorithm finds a solution of a YES-instance with constant probability.

Kernelization

a 2k-vertex kernel for VC based on linear programming

an Integer Linear Programming (ILP) formulation of VC

 $\mathsf{OPT}_\mathsf{f} \leq \mathsf{OPT}$

Let x be an optimal fractional solution.

$$V_0 = \{ v \in V : x_v < \frac{1}{2} \}$$

$$V_{0.5} = \{ v \in V : x_v = \frac{1}{2} \}$$

$$V_1 = \{ v \in V : x_v > \frac{1}{2} \}$$

Theorem (Nemhauser-Trotter)

There is a minimum vertex cover S of G such that

$$V_1\!\subseteq S\subseteq V_1\!\!\cup\! V_{0.5}$$

proof

Let S* be a minimum VC Let $S=(S^* \setminus V_0) \cup V_1$

S is a VC since every adjacent vertex of V_0 must be in V_1

claim: S is minimum assume by contradiction that $|S| > |S^*|$

$$|S^* \cap V_0| < |V_1 \setminus S^*|$$

$$B \qquad A$$

$$Y_v = \begin{cases} X_v - \varepsilon & \text{if } v \in A \\ X_v + \varepsilon & \text{if } v \in B \\ X_v & \text{otherwise} \end{cases}$$

$$\varepsilon = \min\{|x_v - \frac{1}{2}| : v \in V_0 \cup V_1\}$$

claim:

- y is strictly better that x] contradicts optimality of x
- y is feasible

since S^* is a VC then $u \in B$ or u∈S*\B

interesting case: $u \text{ or } v \in A$

kernelization

compute an optimal fractional solution x of the LP-relaxation for the VC instance (G,k). Define $V_0,V_{0.5},\,V_1$ as before.

if $\sum_{v \in V} x_v > k$ conclude that (G,k) is a No-instance.

Otherwise, greedily pick V_1 in the VC, delete vertices in V_1 and V_0 (and all their incident edges).

The new instance is $(G'=G-(V_1\cup V_0),k'=k-|V_1|)$.

Theorem

k-Vertex Cover admits a kernel of at most 2k vertices.

proof

(G,k) is a YES-instance iff (G',k') is a YES-instance

$$|V(G')| = |V_{0.5}| = \sum_{v \in V_{0.5}} 2x_v \le 2\sum_{v \in V} x_v \le 2k$$

...in the next episode...

The party problem

problem: invite people to a party

maximize: total fun factor of the invited people

constraint: everyone should be having fun

do not invite a colleague and his direct boss at the same time!

input: a tree with weights

on the nodes

goal: an independent set of

maximum total weight

The party problem

problem: invite people to a party

maximize: total fun factor of the invited people

constraint: everyone should be having fun

do not invite a colleague and his direct boss at the same time!

input: a tree with weights

on the nodes

goal: an independent set of

maximum total weight

Exercise: give a polynomial time algorithm for it