Komputerowa analiza szeregów czasowych 2023/2024

Lista 3

1. Rozpatrzmy model regresji liniowej

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \ i = 1, 2, ..., n \tag{1}$$

gdzie ϵ_i , i=1,2,...,n są niezależnymi zmiennymi losowymi $N(0,\sigma)$. Skonstruuj przedziały ufności dla parametrów β_0 i β_1 na danym poziomie ufności α . Wyniki wykonaj dla różnych długości prób n, $\alpha \in \{0.01,0.05\}$ oraz $\sigma \in \{0.01,0.5,1\}$. Przy konstrukcji przedziałów ufności zakładamy, że σ jest wielkością znaną. Za pomocą metody Monte Carlo, sprawdź jakie jest prawdopodobieństwo, że teoretyczne wartości parametrów należą do wyznaczonych przedziałów ufności dla wybranych parametrów β_0 i β_1 . W symulacjach przyjmij, że $x_i = i$ dla każdego $i=1,2,\cdots,n$.

- 2. Wykonaj zad. 1 przy założeniu, że σ nie jest znane. Jakie są różnice pomiędzy skonstruowanymi przedziałami ufności uzyskanymi w zad.1 i zad. 2? Wyniki porównaj w zależności od długości próby, wielkości α oraz σ . Jakie możesz wyciągnąć wnioski na podstawie uzyskanych wyników.
- 3. Wysymuluj dwuwymiarowy wektor (x,y) opisany ogólnym modelem regresji liniowej dany równaniem (1) przy założeniu, że ϵ_i , i=1,2,...,n są niezależnymi zmiennymi losowymi $N(0,\sigma)$. Wybierz dowolne wartości β_0,β_1 oraz σ . Niech x_1,x_2,\cdots,x_n będą zdefiniowane tak jak w zad. 1. Wyznacz przedziały ufności dla wartości średniej zmiennej $Y(x_0)$ dla $x_0=\overline{x}+\gamma$ dla pewnej wielkości γ dla różnych wielkości n przy założeniu, że σ jest wielkością znaną i nieznaną. Wyniki przedstaw w zależności od n, σ oraz γ . Przyjmij $\alpha=0.05$.
- 4. Wysymuluj dwuwymiarowy wektor (x, y) o długości n = 1000 opisany ogólnym modelem regresji liniowej (1) dla wybranych wielkości parametrów β_0, β_1, σ oraz x_1, x_2, \cdots, x_n zdefiniowanych jak zad.1. Skonstruuj prostą regresji na podstawie 990 najmniejszych obserwacji wielkości x. Skonstruuj przedział ufności dla prognozy w modelu dla ostatnich 10 najwięk-

szych obserwacji i porównaj z danymi. Zadanie wykonaj przy założeniu, że σ jest znana i nieznana.