PAIRED TESTS & POWER

10.12.2020

PROBLEM SET 3

* how's it going?

AN EXPERIMENT

- * Suppose: we hypothesize that the superior temporal sulcus (STS) responds more to moving than to still faces
- * We perform an ECoG experiment in 20 subjects where we record high gamma responses to:
 - * 50 still images of faces
 - * 50 moving (video) clips of faces
- * How do we test our hypothesis?

A SIMULATION

- * Let's begin by simulating
 what might happen if our
 hypothesis is right
 (simplest case):
 - * Still face responses are random with mean=0
 - * Moving face responses are random with mean=1

A 2ND SIMULATION

- * What if some subjects' brains just respond more in general?
 - * Add a random offset to each subject's responses
- * This makes simple tests fail to find an effect!

PAIRED T-TEST

- * scipy.stats includes a flavor of t-test
 which is useful for this!
 - * scipy.stats.ttest_rel : aka the paired t-test, tests whether two related sets of samples have different means
 - * This is equivalent to doing a t-test on the differences within each subject!

- * power is the probability of rejecting the null hypothesis when the null hypothesis is actually false
 - * i.e. how often you say "this is significant!" for a real effect

* 80% power means that 20% of the time you get a false negative: the test says "not significant" when the effect is real

- * the power is related to the p-value threshold that you choose for a test
 - * smaller
 threshold =
 lower power

* it's also related to the effect size

* finally, power is also related to whether the assumptions of the test are valid and whether the test is mis-specified

* e.g. if you have paired samples but use an un-paired t-test, then that could reduce your power to find a real effect

END