

Imperfections (corrected)

Dipole Error (or Correction)

• Recall our generic transfer matrix

$$\begin{pmatrix} x_1 \\ x_1' \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta_1}{\beta_0}} (\cos \Delta \psi + \alpha_0 \sin \Delta \psi) & \sqrt{\beta_0 \beta_1} \sin \Delta \psi \\ \frac{1}{\sqrt{\beta_0 \beta_1}} ((\alpha_0 - \alpha_1) \cos \Delta \psi - (1 + \alpha_0 \alpha_1) \sin \Delta \psi) & \sqrt{\frac{\beta_0}{\beta_1}} (\cos \Delta \psi - \alpha_1 \sin \Delta \psi) \end{pmatrix} \begin{pmatrix} x_0 \\ x_0' \end{pmatrix}$$

 \odot If we use a dipole to introduce a small bend Θ at one point, it will in general propagate as

$$\begin{pmatrix} x(\Delta\psi) \\ x'(\Delta\psi) \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta(s)}{\beta_0}} \left(\cos \Delta\psi + \alpha_0 \sin \Delta\psi\right) & \sqrt{\beta_0\beta(s)} \sin \Delta\psi \\ \frac{1}{\sqrt{\beta_0\beta(s)}} \left(\left(\alpha_0 - \alpha(s)\right) \cos \Delta\psi - \left(1 + \alpha_0\alpha(s)\right) \sin \Delta\psi\right) & \sqrt{\frac{\beta_0}{\beta(s)}} \left(\cos \Delta\psi - \alpha(s) \sin \Delta\psi\right) \end{pmatrix} \begin{pmatrix} 0 \\ \theta \end{pmatrix}$$

$$x(\Delta \psi) = \theta \sqrt{\beta_0 \beta(s) \sin \Delta \psi}$$

$$x'(\Delta \psi) = \theta \sqrt{\frac{\beta_0}{\beta(s)}} \left(\cos \Delta \psi - \alpha(s) \sin \Delta \psi\right)$$
Remember this one forever

Lattice Imperfections

USPAS, Hampton, VA, Jan. 26-30, 2015

2

 The B:xxxx labels indicate individual trim magnet power supplies in the Fermilab Booster Defining a "MULT: N" will group the N following magnet power supplies Placing the mouse over them and turning a knob on the control panel will increment the individual currents according to the ratios shown in green 	MULT :: -B:VL51 :: -B:	51 × 2. 45 473 51 × 2. 47 473 51 × 2. 47 473 1. 4 VL5 473 1. 4 VL7 473 1. × 1. 6 473 1. × 1. 6 473 1. × 1. 45 474 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473 1. × 1. 47 473	f(t) f(t) f(t) f(t) f(t) f(t) f(t) f(t)	values	4.933 2.117 2.058 4.933 2.117 2.058 5.717 3.566 2.561 5.642 .427 .718 20.65 3.389 9.95 15.21 6.348 16.35	Amps Amps Amps Amps Amps Amps Amps Amps
--	--	---	---	--	--	---

Closed Orbit Distortion ("cusp")

- We place a dipole at one point in a ring which bends the beam by an amount Θ.
- The new equilibrium orbit will be defined by a trajectory which goes once around the ring, through the dipole, and then returns to its exact initial conditions. That is

$$\mathbf{M} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix} + \begin{pmatrix} 0 \\ \theta \end{pmatrix} = \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix} \Rightarrow (\mathbf{I} - \mathbf{M}) \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix} = \begin{pmatrix} 0 \\ \theta \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix} = (\mathbf{I} - \mathbf{M})^{-1} \begin{pmatrix} 0 \\ \theta \end{pmatrix}$$

Recall that we can express the transfer matrix for a complete revolution as

$$\mathbf{M}(s+C,s) = \begin{pmatrix} \cos 2\pi v + \alpha(s)\sin 2\pi v & \beta(s)\sin 2\pi v \\ -\gamma(s)\sin 2\pi v & \cos 2\pi v - \alpha(s)\sin 2\pi v \end{pmatrix} = \mathbf{I}\cos 2\pi v + \mathbf{J}\sin 2\pi v = e^{\mathbf{J}^{2}\pi v} \\ (\mathbf{I} - \mathbf{M}) = e^{\mathbf{J}^{3}\pi v} \left(e^{-\mathbf{J}^{3}\pi v} - e^{\mathbf{J}^{3}\pi v} \right) = -e^{\mathbf{J}^{3}\pi v} \left(2\sin \pi v \mathbf{J} \right) \\ (\mathbf{I} - \mathbf{M})^{-1} = \left(-2\sin \pi v \mathbf{J} \right)^{-1} \left(e^{\mathbf{J}^{3}\pi v} \right)^{-1} \\ = \frac{1}{2\sin \pi v} \mathbf{J} e^{-\mathbf{J}^{3}\pi v} = \frac{1}{2\sin \pi v} \mathbf{J} (\mathbf{I}\cos \pi v - \mathbf{J}\sin \pi v) \\ = \frac{1}{2\sin \pi v} (\mathbf{J}\cos \pi v + \mathbf{I}\sin \pi v) \\ = \frac{1}{2\sin \pi v} \begin{pmatrix} \mathbf{J}\cos \pi v + \mathbf{I}\sin \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\ -\gamma\cos \pi v \end{pmatrix} \begin{pmatrix} \mathbf{J}\cos \pi v \\$$

Lattice Imperfections

USPAS, Hampton, VA, Jan. 26-30, 2015

- Plug this back in $\begin{pmatrix} x_0 \\ x_0' \end{pmatrix} = \frac{1}{2\sin\pi\nu} \begin{pmatrix} \alpha\cos\pi\nu + \sin\pi\nu & \beta\cos\pi\nu \\ -\gamma\cos\pi\nu & -\alpha\cos\pi\nu + \sin\pi\nu \end{pmatrix} \begin{pmatrix} 0 \\ \theta \end{pmatrix}$ $= \frac{\theta}{2\sin\pi\nu} \begin{pmatrix} \beta_0\cos\pi\nu \\ \sin\pi\nu \alpha_0\cos\pi\nu \end{pmatrix}$
- $\, \bullet \,$ We now propagate this around the ring

$$\begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = \frac{\theta}{2\sin\pi\nu} \begin{pmatrix} \sqrt{\frac{\beta(s)}{\beta_0}} (\cos\Delta\psi + \alpha_0\sin\Delta\psi) & \sqrt{\beta_0\beta(s)}\sin\Delta\psi \\ \frac{1}{\sqrt{\beta_0\beta(s)}} ((\alpha_0 - \alpha(s))\cos\Delta\psi - (1 + \alpha_0\alpha(s))\sin\Delta\psi) & \sqrt{\frac{\beta_0}{\beta(s)}} (\cos\Delta\psi - \alpha(s)\sin\Delta\psi) \end{pmatrix} \begin{pmatrix} \beta_0\cos\pi\nu \\ \sin\pi\nu - \alpha_0\cos\pi\nu \end{pmatrix}$$

$$\Rightarrow x(s) = \frac{\theta}{2\sin\pi\nu} \begin{pmatrix} \sqrt{\frac{\beta(s)}{\beta_0}} (\cos\Delta\psi + \alpha_0\sin\Delta\psi)\beta_0\cos\pi\nu + \sqrt{\beta_0\beta(s)}\sin\Delta\psi (\sin\pi\nu - \alpha_0\cos\pi\nu) \end{pmatrix}$$

$$= \frac{\theta\sqrt{\beta_0\beta(s)}}{2\sin\pi\nu} (\cos\Delta\psi\cos\pi\nu + \sin\Delta\psi\cos\pi\nu)$$

$$= \frac{\theta\sqrt{\beta_0\beta(s)}}{2\sin\pi\nu} \cos(\Delta\psi - \pi\nu)$$

$$= \frac{\theta\sqrt{\beta_0\beta(s)}}{2\sin\pi\nu} \cos(\Delta\psi - \pi\nu)$$

Lattice Imperfections

USPAS, Hampton, VA, Jan. 26-30, 2015

Quadrupole Errors

We can express the matrix for a complete revolution at a point as

$$\mathbf{M}(s) = \begin{pmatrix} \cos 2\pi v + \alpha(s)\sin 2\pi v & \beta(s)\sin 2\pi v \\ -\gamma(s)\sin 2\pi v & \cos 2\pi v - \alpha(s)\sin 2\pi v \end{pmatrix}$$

• If we add focusing quad at this point, we have

$$\mathbf{M}'(s) = \begin{pmatrix} \cos 2\pi v_0 + \alpha(s)\sin 2\pi v_0 & \beta(s)\sin 2\pi v_0 \\ -\gamma(s)\sin 2\pi v_0 & \cos 2\pi v - \alpha(s)\sin 2\pi v_0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos 2\pi v_0 + \alpha(s)\sin 2\pi v_0 - \frac{\beta(s)}{f}\sin 2\pi v_0 & \beta(s)\sin 2\pi v_0 \\ -\gamma(s)\sin 2\pi v_0 - \frac{1}{f}(\cos 2\pi v_0 - \alpha(s)\sin 2\pi v_0) & \cos 2\pi v_0 - \alpha(s)\sin 2\pi v_0 \end{pmatrix}$$

We calculate the trace to find the new tune

• We calculate the trace to find the new tune
$$\cos 2\pi v = \frac{1}{2} \mathbf{M}'(s) = \cos 2\pi v_0 - \frac{1}{2f} \beta(s) \sin 2\pi v_0$$
• For small errors

$$\cos 2\pi (v_0 + \Delta v) \approx \cos 2\pi v_0 - 2\pi \sin 2\pi v_0 \Delta v = \cos 2\pi v_0 - \frac{1}{2f} \beta(s) \sin 2\pi v_0$$

$$\Rightarrow \Delta v = \frac{1}{4\pi} \frac{\beta(s)}{f}$$

Lattice Imperfections

USPAS, Hampton, VA, Jan. 26-30, 2015

Total Tune Shift

• The focal length associated with a local anomalous gradient is

$$d\left(\frac{1}{f}\right) = \frac{B'}{\left(B\rho\right)}ds$$

So the total tune shift is

$$\Delta v = \frac{1}{4\pi} \oint \beta(s) \frac{B'(s)}{(B\rho)} ds$$

Lattice Imperfections

USPAS, Hampton, VA, Jan. 26-30, 2015