Progetto - Fondamenti d'Informatica

Enrico Piccin - IN0501089

Anno Accademico 2021/2022

Indice

1	Ind	Individuazione della funzione Booleana												
	1.1	Codifi	ca dei termini minimi $(minterm)$											
	1.2	Codifi	ca dei termini massimi (maxterm)											
2	Sen	nplifica	zione dell'espressione Booleana											
	2.1	Sempl	ificazione per via algebrica											
		2.1.1	Semplificazione dei minterm											
		2.1.2	Semplificazione dei maxterm											
		2.1.3	Equivalenza delle forme canoniche											
		2.1.4	Mappa di Karnaugh											
		2.1.5	Metodo tabellare di Quine-Mc Cluskey											

1 Individuazione della funzione Booleana

A partire dalla matricola IN0501089, si procede elidenndo il prefisso IN ed individuando il numero di matricola associato: **0501089**.

Dividendo tale numero per $2^{2^4} = 65536$ si perviene al risultato seguente:

$$\frac{501089}{65536} = 7 + \mathbf{42337}$$

Avendo ricavato il resto 42337, si procede a codificarlo in binario, impiegando 16 bit, tramite successive divisioni del numero ottenuto per 2, come illustrato di seguito:

$$42337 = 21168 \cdot 2 + \boxed{1}$$

$$21164 = 10584 \cdot 2 + \boxed{0}$$

$$10584 = 5298 \cdot 2 + \boxed{0}$$

$$5298 = 2646 \cdot 2 + \boxed{0}$$

$$2646 = 1323 \cdot 2 + \boxed{0}$$

$$1323 = 661 \cdot 2 + \boxed{1}$$

$$661 = 330 \cdot 2 + \boxed{1}$$

$$330 = 165 \cdot 2 + \boxed{0}$$

$$165 = 82 \cdot 2 + \boxed{1}$$

$$82 = 41 \cdot 2 + \boxed{0}$$

$$41 = 20 \cdot 2 + \boxed{1}$$

$$20 = 10 \cdot 2 + \boxed{0}$$

$$10 = 5 \cdot 2 + \boxed{0}$$

$$5 = 2 \cdot 2 + \boxed{1}$$

$$2 = 1 \cdot 2 + \boxed{0}$$

$$1 = 0 \cdot 2 + \boxed{1}$$

 $42337_{10} = \mathbf{1010010101100001_2}$

Tabella 1: Rappresentazione del resto 42337 in binario

Pertanto, la funzione Booleana a 4 associata corrisponde alla stringa binaria di cui sopra, da cui si evincono i seguenti termini minimi (minterm) e massimi (maxterm):

		x	y	z	$w \mid$	f				x	y	z	$w \mid$	f	
$\overline{m_0}$	\overline{xyzw}	0	0	0	0	1	μ_0	M_0	x+y+z+w	0	0	0	0	1	μ_0
m_1	$\overline{xyz}w$	0	0	0	1	0	μ_1	M_1	$x+y+z+\overline{w}$	0	0	0	1	0	μ_1
m_2	$\overline{xy}z\overline{w}$	0	0	1	0	1	μ_2	M_2	$x+y+\overline{z}+w$	0	0	1	0	1	μ_2
m_3	$\overline{xy}zw$	0	0	1	1	0	μ_3	M_3	$x + y + \overline{z} + \overline{w}$	0	0	1	1	0	μ_3
m_4	$\overline{x}y\overline{z}\overline{w}$	0	1	0	0	0	μ_4	M_4	$x + \overline{y} + z + w$	0	1	0	0	0	μ_4
m_5	$\overline{x}y\overline{z}w$	0	1	0	1	1	μ_5	M_5	$x + \overline{y} + z + \overline{w}$	0	1	0	1	1	μ_5
m_6	$\overline{x}yz\overline{w}$	0	1	1	0	0	μ_6	M_6	$x + \overline{y} + \overline{z} + w$	0	1	1	0	0	μ_6
m_7	$ \overline{x}yzw $	0	1	1	1	1	μ_7	M_7	$x + \overline{y} + \overline{z} + \overline{w}$	0	1	1	1	1	μ_7
m_8	$x\overline{y}\overline{z}\overline{w}$	1	0	0	0	0	μ_8	M_8	$ \overline{x} + y + z + w $	1	0	0	0	0	μ_8
m_9	$x\overline{y}\overline{z}w$	1	0	0	1	1	μ_9	M_9	$ \overline{x} + y + z + \overline{w} $	1	0	0	1	1	μ_9
m_{10}	$x\overline{y}z\overline{w}$	1	0	1	0	1	μ_{10}	M_{10}	$ \overline{x} + y + \overline{z} + w $	1	0	1	0	1	μ_{10}
m_{11}	$x\overline{y}zw$	1	0	1	1	0	μ_{11}	M_{11}	$ \overline{x} + y + \overline{z} + \overline{w} $	1	0	1	1	0	μ_{11}
m_{12}	$xy\overline{zw}$	1	1	0	0	0	μ_{12}	M_{12}	$ \overline{x} + \overline{y} + z + w $	1	1	0	0	0	μ_{12}
m_{13}	$xy\overline{z}w$	1	1	0	1	0	μ_{13}	M_{13}	$ \overline{x} + \overline{y} + z + \overline{w} $	1	1	0	1	0	μ_{13}
m_{14}	$xyz\overline{w}$	1	1	1	0	0	μ_{14}	M_{14}	$ \overline{x} + \overline{y} + \overline{z} + w $	1	1	1	0	0	μ_{14}
m_{15}	xyzw	1	1	1	1	1	μ_{15}	M_{15}	$ \overline{x} + \overline{y} + \overline{z} + \overline{w} $	1	1	1	1	1	μ_{15}

Tabella 2: Funzione Booleana a 4 variabili associata alla stringa 1010010110100001₂

1.1 Codifica dei termini minimi (minterm)

Se nella tavola di verità della funzione f considerata si pone in evidenza la codifica dei termini minimi si ottiene:

		x	y	z	w	$\mid f \mid$	
m_0	\overline{xyzw}	0	0	0	0	1	μ_0
m_1	$\overline{xyz}w$	0	0	0	1	0	μ_1
m_2	$\overline{xy}z\overline{w}$	0	0	1	0	1	μ_2
m_3	$\overline{xy}zw$	0	0	1	1	0	μ_3
m_4	$\overline{x}y\overline{z}\overline{w}$	0	1	0	0	0	μ_4
m_5	$\overline{x}y\overline{z}w$	0	1	0	1	1	μ_5
m_6	$\overline{x}yz\overline{w}$	0	1	1	0	0	μ_6
m_7	$\overline{x}yzw$	0	1	1	1	1	μ_7
m_8	$x\overline{y}\overline{z}\overline{w}$	1	0	0	0	0	μ_8
m_9	$x\overline{y}\overline{z}w$	1	0	0	1	1	μ_9
m_{10}	$x\overline{y}z\overline{w}$	1	0	1	0	1	μ_{10}
m_{11}	$x\overline{y}zw$	1	0	1	1	0	μ_{11}
m_{12}	$xy\overline{z}\overline{w}$	1	1	0	0	0	μ_{12}
m_{13}	$xy\overline{z}w$	1	1	0	1	0	μ_{13}
m_{14}	$xyz\overline{w}$	1	1	1	0	0	μ_{14}
m_{15}	xyzw	1	1	1	1	1	μ_{15}

Tabella 3: Codifica dei termini minimi

Pertanto, se si codificano le quaterne d'ingresso associate a ciascun termine minimo con il corrispondente intero rappresentato in notazione posizionale in base 2, è possibile indicare i termini minimi che compongono la sommatoria di prodotti usando gli interi compresi tra 0 e 2^4-1 , come illustrato di seguito:

$$f(x, y, z, w) = \sum_{i=0}^{2^4 - 1} \mu_i \cdot m_i = \sum_{i: \mu_i = 1} m_i$$

dove μ_i è il valore assunto dalla funzione in corrispondenza del termine minimo m_i e $0 \le i \le 2^n - 1$. Nel caso analizzato, si ha $m_0 = \overline{xyzw}, m_2 = \overline{xy}\overline{zw}, m_5 = \overline{x}y\overline{z}w, m_7 = \overline{x}yzw, m_9 = x\overline{y}\overline{z}w, m_{10} = x\overline{y}\overline{z}\overline{w}, m_{15} = xyzw, \mu_0 = \mu_2 = \mu_5 = \mu_7 = \mu_9 = \mu_{10} = \mu_{15} = 1, \mu_1 = \mu_3 = \mu_4 = \mu_6 = \mu_8 = \mu_{11} = 1$ $\mu_{12} = \mu_{13} = \mu_{14} = 0.$

Per cui si perviene al risultato seguente

$$f(x, y, z, w) = \sum_{i \in \{0, 2, 5, 7, 9, 10, 15\}} m_i = m_0 + m_2 + m_5 + m_7 + m_9 + m_{10} + m_{15}$$

Quindi l'espressione dei *minterm* è:

$$f(x, y, z, w) = \overline{xyzw} + \overline{xy}z\overline{w} + \overline{x}y\overline{z}w + \overline{x}yzw + x\overline{y}z\overline{w} + xyzw$$

poiché 0, 2, 5, 7, 9, 10 e 15 sono le codifiche in base 2 di 0000, 0010, 0101, 0111, 1001, 1010 e 1111.

1.2 Codifica dei termini massimi (maxterm)

Analogamente, procedendo per dualità, se nella tavola di verità della funzione f considerata si pone in evidenza la codifica dei termini massimi si ottiene:

		x	y	z	w	$\mid f \mid$	
$\overline{M_0}$	x+y+z+w	0	0	0	0	1	μ_0
M_1	$x+y+z+\overline{w}$	0	0	0	1	0	μ_1
M_2	$x+y+\overline{z}+w$	0	0	1	0	1	μ_2
M_3	$x + y + \overline{z} + \overline{w}$	0	0	1	1	0	μ_3
M_4	$x + \overline{y} + z + w$	0	1	0	0	0	μ_4
M_5	$x + \overline{y} + z + \overline{w}$	0	1	0	1	1	μ_5
M_6	$x + \overline{y} + \overline{z} + w$	0	1	1	0	0	μ_6
M_7	$x + \overline{y} + \overline{z} + \overline{w}$	0	1	1	1	1	μ_7
M_8	$ \overline{x} + y + z + w $	1	0	0	0	0	μ_8
M_9	$ \overline{x} + y + z + \overline{w} $	1	0	0	1	1	μ_9
M_{10}	$ \overline{x} + y + \overline{z} + w $	1	0	1	0	1	μ_{10}
M_{11}	$ \overline{x} + y + \overline{z} + \overline{w} $	1	0	1	1	0	μ_{11}
M_{12}	$ \overline{x} + \overline{y} + z + w $	1	1	0	0	0	μ_{12}
M_{13}	$ \overline{x} + \overline{y} + z + \overline{w} $	1	1	0	1	0	μ_{13}
M_{14}	$ \overline{x} + \overline{y} + \overline{z} + w $	1	1	1	0	0	μ_{14}
M_{15}	$ \overline{x} + \overline{y} + \overline{z} + \overline{w} $	1	1	1	1	1	μ_{15}

Tabella 4: Codifica dei termini massimi

Analogamente a quanto già esposto, se ora si codificano le quaterne d'ingresso associate a ciascun termine massimo con il corrispondente intero rappresentato in notazione posizionale in base 2, è possibile indicare i termini massimi che compongono il prodotto di somme usando gli interi compresi tra 0 e $2^4 - 1$, come illustrato di seguito:

$$f(x, y, z, w) = \prod_{i=0}^{2^4 - 1} \mu_i \cdot M_i = \prod_{i: \mu_i = 1} M_i$$

dove μ_i è il valore assunto dalla funzione in corrispondenza del termine massimo M_i e $0 \le i \le 2^n - 1$. Nel caso analizzato, si ha $M_1 = x + y + z + \overline{w}, M_3 = x + y + \overline{z} + \overline{w}, M_4 = x + \overline{y} + z + w, M_6 = x + \overline{y} + \overline{z} + w, M_8 = \overline{x} + y + z + w, M_{11} = \overline{x} + y + \overline{z} + \overline{w}, M_{12} = \overline{x} + \overline{y} + z + w, M_{13}\overline{x} + \overline{y} + z + \overline{w}, M_{14} = \overline{x} + \overline{y} + \overline{z} + w, \mu_0 = \mu_2 = \mu_5 = \mu_7 = \mu_9 = \mu_{10} = \mu_{15} = 1, \mu_1 = \mu_3 = \mu_4 = \mu_6 = \mu_8 = \mu_{11} = \mu_{12} = \mu_{13} = \mu_{14} = 0.$

Per cui si perviene al risultato seguente

$$f(x, y, z, w) = \prod_{i \in \{1, 3, 4, 6, 8, 11, 12, 13, 14\}} M_i = M_1 \cdot M_3 \cdot M_4 \cdot M_8 \cdot M_{11} \cdot M_{12} \cdot M_{13} \cdot M_{14}$$

Quindi l'espressione dei maxterm è:

$$f(x,y,z,w) = (x+y+z+\overline{w}) \cdot (x+y+\overline{z}+\overline{w}) \cdot (x+\overline{y}+z+w) \cdot (x+\overline{y}+\overline{z}+w) \cdot (\overline{x}+y+z+w) \cdot (\overline{x}+y+z+w) \cdot (\overline{x}+\overline{y}+z+\overline{w}) \cdot (\overline{x}+\overline{y}+z+w) \cdot (\overline{x}+\overline{y}+z+\overline{w}) \cdot (\overline{x}+\overline{y}+z+w)$$

poiché 1, 3, 4, 6, 8, 11, 12, 13 e 14 sono le codifiche in base 2 di 0001, 0011, 0100, 0110, 1000, 1011, 1100, 1101 e 1110.

2 Semplificazione dell'espressione Booleana

Di seguito si espongono i 3 diversi procedimenti di semplificazione dell'espressione Booleana precedentemente ottenuta, ricondotta alla forma minima tramite l'applicazione delle relazioni fondamentali dell'Algebra Booleana (assiomi e teoremi), tramite le mappe di Karnaugh e attraverso il metodo tabellare di Quine - Mc Cluskey.

2.1 Semplificazione per via algebrica

Si procede, ora, alla semplificazione delle espressioni ottenute per via diretta, facendo uso degli assiomi A1-A7 e dei teoremi T1-T10 dell'Algebra Booleana.

${\bf 2.1.1} \quad {\bf Semplificazione} \ {\bf dei} \ minterm$

$$f(x,y,z,w) = \overline{xyzw} + \overline{xy}z\overline{w} + \overline{x}yzw + x\overline{y}zw + x\overline{y}z\overline{w} + xyzw$$

$$\stackrel{(A4 \text{ e } A5)}{=} (\overline{xyzw} + \overline{xy}z\overline{w}) + (\overline{x}y\overline{z}w + \overline{x}yzw) + x\overline{y}z\overline{w} + xyzw$$

$$\stackrel{(T9)}{=} \overline{xyw} + \overline{x}yw + x\overline{y}z\overline{w} + xyzw$$

$$\stackrel{(A4)}{=} \overline{xyw} + x\overline{y}z\overline{w} + \overline{x}yw + xyzw + x\overline{y}zw$$

$$\stackrel{(A4 \text{ e } A6)}{=} \overline{yw} \cdot (\overline{x} + xz) + yw \cdot (\overline{x} + xz) + x\overline{y}zw$$

$$\stackrel{(T5)}{=} \overline{yw} \cdot (\overline{x} + z) + yw \cdot (\overline{x} + z) + x\overline{y}zw$$

$$\stackrel{(A4 \text{ e } A6)}{=} \overline{yw} \cdot (\overline{x} + z) + yw \cdot (\overline{x} + z) + x\overline{y}zw$$

$$\stackrel{(A4 \text{ e } A6)}{=} \overline{xyw} + \overline{y}z\overline{w} + \overline{x}yw + yzw + x\overline{y}zw$$

2.1.2 Semplificazione dei maxterm

$$f(x,y,z,w) = (x+y+z+\overline{w})\cdot(x+y+\overline{z}+\overline{w})\cdot(x+\overline{y}+z+w)\cdot(x+\overline{y}+\overline{z}+w)\cdot(\overline{x}+y+z+w) \\ \cdot (\overline{x}+y+\overline{z}+\overline{w})\cdot(\overline{x}+\overline{y}+z+w)\cdot(\overline{x}+\overline{y}+z+w)\cdot(\overline{x}+\overline{y}+\overline{z}+w) \\ \cdot (\overline{x}+y+z+\overline{w})\cdot(x+y+\overline{z}+\overline{w})\cdot(\overline{x}+\overline{y}+z+w)\cdot(x+\overline{y}+\overline{z}+w) \\ \cdot (\overline{x}+\overline{y}+z+w)]\cdot(\overline{x}+y+\overline{z}+\overline{w})\cdot(\overline{x}+\overline{y}+z+\overline{w})\cdot(\overline{x}+\overline{y}+z+w) \\ \cdot (\overline{x}+\overline{y}+z+w)]\cdot(\overline{x}+y+\overline{z}+\overline{w})\cdot(\overline{x}+\overline{y}+z+\overline{w})\cdot(\overline{x}+\overline{y}+z+w) \\ \stackrel{(A4)}{=} (x+y+\overline{w})\cdot(x+\overline{y}+\overline{y}+\overline{z}+w)\cdot(\overline{x}+y+z+\overline{w})\cdot(\overline{x}+y+z+\overline{w})\cdot(\overline{x}+y+z+\overline{w}) \\ \stackrel{(A4)}{=} (x+\overline{y}+w)\cdot(\overline{x}+\overline{y}+z+w)\cdot(\overline{x}+z+w)\cdot(\overline{x}+\overline{y}+z+\overline{w})\cdot(x+y+\overline{w})\cdot(\overline{x}+y+z+\overline{w}) \\ \stackrel{(A4)}{=} (x+\overline{y}+w)\cdot(\overline{x}+\overline{y}+z+w)\cdot(\overline{x}+z+w)\cdot(\overline{x}+\overline{y}+z+\overline{w})\cdot(x+y+\overline{w})\cdot(\overline{x}+y+z+\overline{w}) \\ \stackrel{(A4)}{=} (x+\overline{y}+w)\cdot(\overline{x}+\overline{y}+z+w)\cdot(\overline{y}+\overline{w}+x\overline{z}) \\ \stackrel{(A4)}{=} (y+w+x)\cdot(\overline{x}+\overline{y}+z+w)\cdot(y+\overline{w}+x\overline{z}) \\ \stackrel{(A4)}{=} (y+w+x)\cdot(\overline{x}+\overline{y}+z+w)\cdot(y+\overline{w}+x\overline{z}) \\ \stackrel{(A4)}{=} (y+w+x)\cdot(\overline{x}+y+x)\cdot(\overline{y}+x\overline{z}) \\ \stackrel{(A4)}{=} (y+w+x)\cdot(\overline{x}+y+x)\cdot(\overline{y}+x\overline{z}) \\ \stackrel{(A4)}{=} (x+y+x)\cdot(\overline{x}+x)\cdot(\overline{y}+x\overline{z}) \\ \stackrel{(A4)}{=} (x+y+x)\cdot(\overline{x}+x)\cdot(\overline{y}+x+x\overline{z}) \\ \stackrel{(A4)}{=} (x+y+x)\cdot(\overline{x}+x)\cdot(\overline{x}+x)\cdot(\overline{x}+x) \\ \stackrel{(A4)}{=} (x+y+x)\cdot(\overline{x}+x)\cdot(\overline{x}+x) \\ \stackrel{(A4)}{=} (x+y+x)\cdot(\overline{x}+x) \\ \stackrel{(A4)}{=} (x+y+x)\cdot(\overline{x}+x)$$

2.1.3 Equivalenza delle forme canoniche

Naturalmente è noto che la somma di prodotti e il prodotto di somme ottenuti rappresentano la medesima funzione; inoltre, tramite una serie di procedimenti algebrici precedentemente esposti, è stato dimostrato che le due forme canoniche si equivalgnono non solo dal punto di vista logico, ma anche dal punto di vista formale: infatti, le due espressioni semplificate, ottenute a partire da minterm e maxterm conducono alla stessa formula minima:

$$f(x, y, z, w) = \overline{xyw} + \overline{y}z\overline{w} + \overline{x}yw + yzw + x\overline{y}\overline{z}w$$

2.1.4 Mappa di Karnaugh

A partire dai *minterm*, si espone di seguito la semplificazione della funzione considerata tramite la mappa di Karnaugh:

Figura 1: Mappa di Karnaugh per la funzione

Ricordando che, all'interno della mappa di Karnaugh, due caselle adiacenti differiscono per il valore di una sola variabile, è facile capire come il prodotto delle variabili comuni implica entrambi i termini minimi associati alle caselle considerate. Da ciò segue il risultato:

$$f(x, y, z, w) = \overline{xyw} + \overline{y}z\overline{w} + \overline{x}yw + yzw + x\overline{y}\overline{z}w$$

Ancora una volta, la funzione ottenuta dalla semplificazione tramite mappa di Karnaugh corrisponde alla funzione ottenuta nei passi precedenti.

2.1.5 Metodo tabellare di Quine-Mc Cluskey

A partire dai *minterm*, si espone di seguito la semplificazione della funzione considerata tramite il metodo tabellare di Quine-Mc Cluskey:

റ	

		x	y	z	w	f		${f Livello}$		x	y	z	w	f	
0	\overline{xyzw}	0	0	0	0	1	*	0	\overline{xyzw}	0	0	0	0	1	*
1	$\overline{xyz}w$	0	0	0	1	0		1	$\overline{xyz}w$	0	0	0	1	0	
2	$\overline{xy}z\overline{w}$	0	0	1	0	1	*	2	$\overline{xy}z\overline{w}$	0	0	1	0	1	*
3	$\overline{xy}zw$	0	0	1	1	0		3	$\overline{xy}zw$	0	0	1	1	0	
4	$\overline{x}y\overline{z}\overline{w}$	0	1	0	0	0		4	$\overline{x}y\overline{z}\overline{w}$	0	1	0	0	0	
5	$\overline{x}y\overline{z}w$	0	1	0	1	1	*	5	$\overline{x}y\overline{z}w$	0	1	0	1	1	*
6	$\overline{x}yz\overline{w}$	0	1	1	0	0		6	$\overline{x}yz\overline{w}$	0	1	1	0	0	
7	$\overline{x}yzw$	0	1	1	1	1	*	7	$\overline{x}yzw$	0	1	1	1	1	*
8	$x\overline{y}\overline{z}\overline{w}$	1	0	0	0	0		8	$x\overline{yzw}$	1	0	0	0	0	
9	$x\overline{y}\overline{z}w$	1	0	0	1	1	*	9	$x\overline{y}\overline{z}w$	1	0	0	1	1	*
10	$x\overline{y}z\overline{w}$	1	0	1	0	1	*	10	$x\overline{y}z\overline{w}$	1	0	1	0	1	*
11	$x\overline{y}zw$	1	0	1	1	0		11	$x\overline{y}zw$	1	0	1	1	0	
12	$xy\overline{zw}$	1	1	0	0	0		12	$xy\overline{z}\overline{w}$	1	1	0	0	0	
13	$xy\overline{z}w$	1	1	0	1	0		13	$xy\overline{z}w$	1	1	0	1	0	
14	$xyz\overline{w}$	1	1	1	0	0		14	$xyz\overline{w}$	1	1	1	0	0	
15	xyzw	1	1	1	1	1	*	15	xyzw	1	1	1	1	1	*

Livello			x	y	z	f	
1	2	$\overline{x}y\overline{z}$	0	1	0	1	*
2	3	$\overline{x}yz$	0	1	1	1	*
-	5	$x\overline{y}z$	1	0	1	1	*
3	7	xyz	1	1	1	1	*

Tabella 5: Trasformazione della tavola di verità della funzione logica f per ottenere la tabella di Quine-Mc Cuskey