Momento de Retroalimentación: Módulo 1 Construcción de un modelo estadístico base (Portafolio Implementación)

Descripción:

La contaminación por mercurio de peces en el agua dulce comestibles es una amenaza directa contra nuestra salud. Se llevó a cabo un estudio reciente en 53 lagos de Florida con el fin de examinar los factores que influían en el nivel de contaminación por mercurio. Las variables que se midieron se encuentran en mercurio.csv Descargar mercurio.csv y su descripción es la siguiente:

Alrededor de la principal pregunta de investigación que surge en este estudio: ¿Cuáles son los principales factores que influyen en el nivel de contaminación por mercurio en los peces de los lagos de Florida? pueden surgir preguntas paralelas que desglosan esta pregunta general:

- 1. ¿Hay evidencia para suponer que la concentración promedio de mercurio en los lagos es dañino para la salud humana? Considera que las normativas de referencia para evaluar los niveles máximos de Hg (Reglamento 34687-MAG y los reglamentos internacionales CE 1881/2006 y Codex Standard 193-1995) establecen que la concentración promedio de mercurio en productos de la pesca no debe superar los 0.5 mg de Hg/kg.
- 2. ¿Habrá diferencia significativa entre la concentración de mercurio por la edad de los peces?
- 3. Si el muestreo se realizó lanzando una red y analizando los peces que la red encontraba ¿Habrá influencia del número de peces encontrados en la concentración de mercurio en los peces?
- 4. ¿Las concentraciones de alcalinidad, clorofila, calcio en el agua del lago influyen en la concentración de mercurio de los peces?

Preparación de los datos

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   # from scipy.stats import norm
   import statsmodels.api as sm
   #from scipy import stats
   # plt.style.use('ggplot')
   from statsmodels.graphics.factorplots import interaction_plot
   import pingouin as pg
   import scipy.stats as stats
   import statsmodels.formula.api as sfm
```

C:\Users\Miguel Salas\anaconda3\lib\site-packages\outdated\utils.py:14: Outdate dPackageWarning: The package outdated is out of date. Your version is 0.2.1, the latest is 0.2.2.

Set the environment variable OUTDATED_IGNORE=1 to disable these warnings.

return warn(

```
In [2]: df = pd.read_csv("mercurio.csv")
```

In [3]: df

Out[3]:

	X1	X2	Х3	X4	X5	Х6	Х7	X8	Х9	X10	X11	X12
0	1	Alligator	5.9	6.1	3.0	0.7	1.23	5	0.85	1.43	1.53	1
1	2	Annie	3.5	5.1	1.9	3.2	1.33	7	0.92	1.90	1.33	0
2	3	Apopka	116.0	9.1	44.1	128.3	0.04	6	0.04	0.06	0.04	0
3	4	Blue Cypress	39.4	6.9	16.4	3.5	0.44	12	0.13	0.84	0.44	0
4	5	Brick	2.5	4.6	2.9	1.8	1.20	12	0.69	1.50	1.33	1
5	6	Bryant	19.6	7.3	4.5	44.1	0.27	14	0.04	0.48	0.25	1
6	7	Cherry	5.2	5.4	2.8	3.4	0.48	10	0.30	0.72	0.45	1
7	8	Crescent	71.4	8.1	55.2	33.7	0.19	12	0.08	0.38	0.16	1
8	9	Deer Point	26.4	5.8	9.2	1.6	0.83	24	0.26	1.40	0.72	1
9	10	Dias	4.8	6.4	4.6	22.5	0.81	12	0.41	1.47	0.81	1
10	11	Dorr	6.6	5.4	2.7	14.9	0.71	12	0.52	0.86	0.71	1
11	12	Down	16.5	7.2	13.8	4.0	0.50	12	0.10	0.73	0.51	1
12	13	Eaton	25.4	7.2	25.2	11.6	0.49	7	0.26	1.01	0.54	1
13	14	East Tohopekaliga	7.1	5.8	5.2	5.8	1.16	43	0.50	2.03	1.00	1
14	15	Farm-13	128.0	7.6	86.5	71.1	0.05	11	0.04	0.11	0.05	0
15	16	George	83.7	8.2	66.5	78.6	0.15	10	0.12	0.18	0.15	1
16	17	Griffin	108.5	8.7	35.6	80.1	0.19	40	0.07	0.43	0.19	1
17	18	Harney	61.3	7.8	57.4	13.9	0.77	6	0.32	1.50	0.49	1
18	19	Hart	6.4	5.8	4.0	4.6	1.08	10	0.64	1.33	1.02	1
19	20	Hatchineha	31.0	6.7	15.0	17.0	0.98	6	0.67	1.44	0.70	1
20	21	Iamonia	7.5	4.4	2.0	9.6	0.63	12	0.33	0.93	0.45	1
21	22	Istokpoga	17.3	6.7	10.7	9.5	0.56	12	0.37	0.94	0.59	1
22	23	Jackson	12.6	6.1	3.7	21.0	0.41	12	0.25	0.61	0.41	0
23	24	Josephine	7.0	6.9	6.3	32.1	0.73	12	0.33	2.04	0.81	1
24	25	Kingsley	10.5	5.5	6.3	1.6	0.34	10	0.25	0.62	0.42	1
25	26	Kissimmee	30.0	6.9	13.9	21.5	0.59	36	0.23	1.12	0.53	1
26	27	Lochloosa	55.4	7.3	15.9	24.7	0.34	10	0.17	0.52	0.31	1
27	28	Louisa	3.9	4.5	3.3	7.0	0.84	8	0.59	1.38	0.87	1
28	29	Miccasukee	5.5	4.8	1.7	14.8	0.50	11	0.31	0.84	0.50	0
29	30	Minneola	6.3	5.8	3.3	0.7	0.34	10	0.19	0.69	0.47	1
30	31	Monroe	67.0	7.8	58.6	43.8	0.28	10	0.16	0.59	0.25	1
31	32	Newmans	28.8	7.4	10.2	32.7	0.34	10	0.16	0.65	0.41	1
32	33	Ocean Pond	5.8	3.6	1.6	3.2	0.87	12	0.31	1.90	0.87	0
33	34	Ocheese Pond	4.5	4.4	1.1	3.2	0.56	13	0.25	1.02	0.56	0

	X1	Х2	Х3	X4	X5	X6	X7	X8	Х9	X10	X11	X12
34	35	Okeechobee	119.1	7.9	38.4	16.1	0.17	12	0.07	0.30	0.16	1
35	36	Orange	25.4	7.1	8.8	45.2	0.18	13	0.09	0.29	0.16	1
36	37	Panasoffkee	106.5	6.8	90.7	16.5	0.19	13	0.05	0.37	0.23	1
37	38	Parker	53.0	8.4	45.6	152.4	0.04	4	0.04	0.06	0.04	0
38	39	Placid	8.5	7.0	2.5	12.8	0.49	12	0.31	0.63	0.56	1
39	40	Puzzle	87.6	7.5	85.5	20.1	1.10	10	0.79	1.41	0.89	1
40	41	Rodman	114.0	7.0	72.6	6.4	0.16	14	0.04	0.26	0.18	1
41	42	Rousseau	97.5	6.8	45.5	6.2	0.10	12	0.05	0.26	0.19	1
42	43	Sampson	11.8	5.9	24.2	1.6	0.48	10	0.27	1.05	0.44	1
43	44	Shipp	66.5	8.3	26.0	68.2	0.21	12	0.05	0.48	0.16	1
44	45	Talquin	16.0	6.7	41.2	24.1	0.86	12	0.36	1.40	0.67	1
45	46	Tarpon	5.0	6.2	23.6	9.6	0.52	12	0.31	0.95	0.55	1
46	51	Tohopekaliga	25.6	6.2	12.6	27.7	0.65	44	0.30	1.10	0.58	1
47	47	Trafford	81.5	8.9	20.5	9.6	0.27	6	0.04	0.40	0.27	0
48	48	Trout	1.2	4.3	2.1	6.4	0.94	10	0.59	1.24	0.98	1
49	49	Tsala Apopka	34.0	7.0	13.1	4.6	0.40	12	80.0	0.90	0.31	1
50	50	Weir	15.5	6.9	5.2	16.5	0.43	11	0.23	0.69	0.43	1
51	52	Wildcat	17.3	5.2	3.0	2.6	0.25	12	0.15	0.40	0.28	1
52	53	Yale	71.8	7.9	20.5	8.8	0.27	12	0.15	0.51	0.25	1
col	umns	= np.array([":	id", "	nomb	re",	"alca	linio	lad"	, "PH	", "נ	calci	0",

In [7]: df

\cap u+	I 7 I	•
out	/	•

	nombre	alcalinidad	РН	calcio	clorofila	mercurio	npeces	minmercurio	maxmercurio e
id									
1	Alligator	5.9	6.1	3.0	0.7	1.23	5	0.85	1.43
2	Annie	3.5	5.1	1.9	3.2	1.33	7	0.92	1.90
3	Apopka	116.0	9.1	44.1	128.3	0.04	6	0.04	0.06
4	Blue Cypress	39.4	6.9	16.4	3.5	0.44	12	0.13	0.84
5	Brick	2.5	4.6	2.9	1.8	1.20	12	0.69	1.50
6	Bryant	19.6	7.3	4.5	44.1	0.27	14	0.04	0.48
7	Cherry	5.2	5.4	2.8	3.4	0.48	10	0.30	0.72
8	Crescent	71.4	8.1	55.2	33.7	0.19	12	0.08	0.38
9	Deer Point	26.4	5.8	9.2	1.6	0.83	24	0.26	1.40
10	Dias	4.8	6.4	4.6	22.5	0.81	12	0.41	1.47
11	Dorr	6.6	5.4	2.7	14.9	0.71	12	0.52	0.86
12	Down	16.5	7.2	13.8	4.0	0.50	12	0.10	0.73
13	Eaton	25.4	7.2	25.2	11.6	0.49	7	0.26	1.01
14	East Tohopekaliga	7.1	5.8	5.2	5.8	1.16	43	0.50	2.03
15	Farm-13	128.0	7.6	86.5	71.1	0.05	11	0.04	0.11
16	George	83.7	8.2	66.5	78.6	0.15	10	0.12	0.18
17	Griffin	108.5	8.7	35.6	80.1	0.19	40	0.07	0.43
18	Harney	61.3	7.8	57.4	13.9	0.77	6	0.32	1.50
19	Hart	6.4	5.8	4.0	4.6	1.08	10	0.64	1.33
20	Hatchineha	31.0	6.7	15.0	17.0	0.98	6	0.67	1.44
21	Iamonia	7.5	4.4	2.0	9.6	0.63	12	0.33	0.93
22	Istokpoga	17.3	6.7	10.7	9.5	0.56	12	0.37	0.94
23	Jackson	12.6	6.1	3.7	21.0	0.41	12	0.25	0.61
24	Josephine	7.0	6.9	6.3	32.1	0.73	12	0.33	2.04
25	Kingsley	10.5	5.5	6.3	1.6	0.34	10	0.25	0.62
26	Kissimmee	30.0	6.9	13.9	21.5	0.59	36	0.23	1.12
27	Lochloosa	55.4	7.3	15.9	24.7	0.34	10	0.17	0.52
28	Louisa	3.9	4.5	3.3	7.0	0.84	8	0.59	1.38
29	Miccasukee	5.5	4.8	1.7	14.8	0.50	11	0.31	0.84
30	Minneola	6.3	5.8	3.3	0.7	0.34	10	0.19	0.69
31	Monroe	67.0	7.8	58.6	43.8	0.28	10	0.16	0.59
32	Newmans	28.8	7.4	10.2	32.7	0.34	10	0.16	0.65

	nombre	alcalinidad	PH	calcio	clorofila	mercurio	npeces	minmercurio	maxmercurio є
id									
33	Ocean Pond	5.8	3.6	1.6	3.2	0.87	12	0.31	1.90
34	Ocheese Pond	4.5	4.4	1.1	3.2	0.56	13	0.25	1.02
35	Okeechobee	119.1	7.9	38.4	16.1	0.17	12	0.07	0.30
36	Orange	25.4	7.1	8.8	45.2	0.18	13	0.09	0.29
37	Panasoffkee	106.5	6.8	90.7	16.5	0.19	13	0.05	0.37
38	Parker	53.0	8.4	45.6	152.4	0.04	4	0.04	0.06
39	Placid	8.5	7.0	2.5	12.8	0.49	12	0.31	0.63
40	Puzzle	87.6	7.5	85.5	20.1	1.10	10	0.79	1.41
41	Rodman	114.0	7.0	72.6	6.4	0.16	14	0.04	0.26
42	Rousseau	97.5	6.8	45.5	6.2	0.10	12	0.05	0.26
43	Sampson	11.8	5.9	24.2	1.6	0.48	10	0.27	1.05
44	Shipp	66.5	8.3	26.0	68.2	0.21	12	0.05	0.48
45	Talquin	16.0	6.7	41.2	24.1	0.86	12	0.36	1.40
46	Tarpon	5.0	6.2	23.6	9.6	0.52	12	0.31	0.95
51	Tohopekaliga	25.6	6.2	12.6	27.7	0.65	44	0.30	1.10
47	Trafford	81.5	8.9	20.5	9.6	0.27	6	0.04	0.40
48	Trout	1.2	4.3	2.1	6.4	0.94	10	0.59	1.24
49	Tsala Apopka	34.0	7.0	13.1	4.6	0.40	12	0.08	0.90
50	Weir	15.5	6.9	5.2	16.5	0.43	11	0.23	0.69
52	Wildcat	17.3	5.2	3.0	2.6	0.25	12	0.15	0.40
53	Yale	71.8	7.9	20.5	8.8	0.27	12	0.15	0.51


```
In [8]: df.describe()
```

Out[8]:

	alcalinidad	PH	calcio	clorofila	mercurio	npeces	minmercurio	maxmerci
count	53.000000	53.000000	53.000000	53.000000	53.000000	53.000000	53.000000	53.000
mean	37.530189	6.590566	22.201887	23.116981	0.527170	13.056604	0.279811	0.874
std	38.203527	1.288449	24.932574	30.816321	0.341036	8.560677	0.226406	0.522
min	1.200000	3.600000	1.100000	0.700000	0.040000	4.000000	0.040000	0.060
25%	6.600000	5.800000	3.300000	4.600000	0.270000	10.000000	0.090000	0.480
50%	19.600000	6.800000	12.600000	12.800000	0.480000	12.000000	0.250000	0.840
75%	66.500000	7.400000	35.600000	24.700000	0.770000	12.000000	0.330000	1.330
max	128.000000	9.100000	90.700000	152.400000	1.330000	44.000000	0.920000	2.040

```
In [9]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 53 entries, 1 to 53
Data columns (total 11 columns):
```

```
#
   Column
                 Non-Null Count
                                 Dtype
                 -----
0
   nombre
                 53 non-null
                                 object
1
   alcalinidad 53 non-null
                                 float64
2
   PH
                 53 non-null
                                 float64
3
                 53 non-null
                                 float64
   calcio
4
   clorofila
                 53 non-null
                                 float64
5
                 53 non-null
                                 float64
   mercurio
6
   npeces
                 53 non-null
                                 int64
7
   minmercurio 53 non-null
                                 float64
8
   maxmercurio 53 non-null
                                 float64
9
                 53 non-null
   estimacion
                                 float64
10
   edad
                 53 non-null
                                 int64
```

dtypes: float64(8), int64(2), object(1)

memory usage: 5.0+ KB

```
In [10]:
         """sigma = df.alcalinidad.std()
         mu = df.alcalinidad.mean()
         domain = np.linspace(df.alcalinidad.min(), df.alcalinidad.max())"""
```

Out[10]: 'sigma = df.alcalinidad.std()\nmu = df.alcalinidad.mean()\ndomain = np.linspace (df.alcalinidad.min(), df.alcalinidad.max())'

```
In [11]: # plt.plot(domain, norm.pdf(domain, mu, sigma))
    plt.hist(df.alcalinidad, edgecolor = "black", alpha = 0.5, density = True)
    plt.show()
```



```
In [12]: plt.title('alcalinidad')
   plt.boxplot(df.alcalinidad)
   plt.show()
```



```
In [13]: df.hist(figsize = (15,15))
Out[13]: array([[<AxesSubplot:title={'center':'alcalinidad'}>,
                     <AxesSubplot:title={'center':'PH'}>,
                     <AxesSubplot:title={'center':'calcio'}>],
                    [<AxesSubplot:title={'center':'clorofila'}>,
                     <AxesSubplot:title={'center':'mercurio'}>,
                     <AxesSubplot:title={'center':'npeces'}>],
                    [<AxesSubplot:title={'center':'minmercurio'}>,
                     <AxesSubplot:title={'center':'maxmercurio'}>,
                     <AxesSubplot:title={'center':'estimacion'}>],
                    [<AxesSubplot:title={'center':'edad'}>, <AxesSubplot:>,
                     <AxesSubplot:>]], dtype=object)
                         alcalinidad
                                                                                               calcio
                                                                                 25
             20
                                               12
                                                                                 20
                                               10
             15
                                                                                 15
                                                8
             10
                                                                                 10
                                                0
                                                                                  0
                   20
                                  100
                       40
                           60
                               80
                                                                                         20
                                                                                              40
                                                                                                    60
                          clorofila
                                                           mercurio
                                                                                              npeces
                                                                                 25
              25
                                                                                 20
             20
                                                                                 15
                                                6
             15
                                                                                 10
             10
              0
                                                                                  0
                            75
                        50
                               100
                                   125
                                                0.00
                                                     0.25
                                                          0.50
                                                              0.75
                                                                  1.00
                        minmercurio
                                                                                             estimacion
                                                          maxmercurio
                                                                                 10
            15.0
                                                                                  8
            12.5
            10.0
             7.5
             5.0
             2.5
             0.0
                                                0
                         0.4
                                                       0.5
               0.0
                    0.2
                               0.6
                                    0.8
                                                 0.0
                                                             1.0
                                                                   1.5
                                                                         2.0
                                                                                       0.25 0.50
                                                                                              0.75 1.00 1.25
                           edad
             40
             30
             20
             10
```

0.0

0.2

0.4

0.6

0.8

In [14]: plt.hist(df.estimacion, edgecolor = "black", alpha = 0.5, density = True)
 plt.show()

In [15]: plt.hist(df.calcio, edgecolor = "black", alpha = 0.5, density = True)
 plt.show()

In [16]: df.corr()

Out[16]:

maxn	minmercurio	npeces	mercurio	clorofila	calcio	PH	alcalinidad	
-0	-0.525357	0.010291	-0.593897	0.477531	0.832604	0.719166	1.000000	alcalinidad
-0	-0.541965	-0.018606	-0.575400	0.608483	0.577133	1.000000	0.719166	PH
-0	-0.332476	-0.089379	-0.400680	0.409914	1.000000	0.577133	0.832604	calcio
-0	-0.400459	-0.011820	-0.491375	1.000000	0.409914	0.608483	0.477531	clorofila
О	0.927205	0.079034	1.000000	-0.491375	-0.400680	-0.575400	-0.593897	mercurio
О	-0.081653	1.000000	0.079034	-0.011820	-0.089379	-0.018606	0.010291	npeces
О	1.000000	-0.081653	0.927205	-0.400459	-0.332476	-0.541965	-0.525357	minmercurio
1	0.765353	0.161092	0.915864	-0.484972	-0.407917	-0.551815	-0.604796	maxmercurio
С	0.919089	0.025800	0.959215	-0.506442	-0.464409	-0.612849	-0.627958	estimacion
С	0.100662	0.207956	0.108739	-0.283002	-0.002111	0.038000	-0.094939	edad

```
In [17]: # clf = clf.select_dtypes(include=['float64','int'])
    corr = df.corr(method = 'pearson')
    f, ax = plt.subplots(figsize=(12, 10))
    mask = np.triu(np.ones_like(corr, dtype=bool))
    cmap = sns.diverging_palette(230, 20, as_cmap=True)
    sns.heatmap(corr, annot=True, mask = mask, cmap=cmap)
    plt.show()
```



```
In [18]: plt.hist(df.clorofila, edgecolor = "black", alpha = 0.5, density = True)
plt.show()
```



```
In [19]: x = df['mercurio']
y = df['alcalinidad']
fig,ax = plt.subplots()
ax.scatter(x,y)
```

Out[19]: <matplotlib.collections.PathCollection at 0x2311557a340>


```
In [20]: x = df['PH']
y = df['alcalinidad']
fig,ax = plt.subplots()
ax.scatter(x,y)
```

Out[20]: <matplotlib.collections.PathCollection at 0x231172bc790>


```
In [21]: x = df['calcio']
y = df['alcalinidad']
fig,ax = plt.subplots()
ax.scatter(x,y)
```

Out[21]: <matplotlib.collections.PathCollection at 0x2311742a370>


```
In [22]: x = df['estimacion']
    y = df['mercurio']
    fig,ax = plt.subplots()
    ax.scatter(x,y)
```

Out[22]: <matplotlib.collections.PathCollection at 0x2311748b6a0>

In [23]: plt.hist(df.mercurio, edgecolor = "black", alpha = 0.5, density = True)
 plt.show()

Moda

Distribuciones

```
In [25]: #datos = datos[(datos.age > 15) & (datos.male ==0)]
    mercurio = df['mercurio']
    alcalinidad = df['alcalinidad']
    PH = df['PH']
    calcio = df['calcio']
    npeces = df['npeces']
```


ANOVA

QQplots

```
In [31]: # Gráfico Q-Q
       fig, ax = plt.subplots(figsize=(7,4))
       sm.qqplot(
          mercurio,
          fit
              = True,
          line = 'q',
          alpha = 0.4,
          lw
              = 2
              = ax
          ax
       ax.set_title('Gráfico Q-Q del mercurio', fontsize = 10,
                 fontweight = "bold")
       ax.tick_params(labelsize = 7)
```



```
In [32]: # Gráfico Q-Q
       fig, ax = plt.subplots(figsize=(7,4))
       sm.qqplot(
          alcalinidad,
          fit
              = True,
          line = 'q',
          alpha = 0.4,
          lw
              = 2
              = ax
          ax
       ax.set_title('Gráfico Q-Q del alcalinidad', fontsize = 10,
                 fontweight = "bold")
       ax.tick_params(labelsize = 7)
```



```
In [33]: # Gráfico Q-Q
       fig, ax = plt.subplots(figsize=(7,4))
       sm.qqplot(
          PH,
          fit
              = True,
          line = 'q',
          alpha = 0.4,
          lw
              = 2
              = ax
          ax
       ax.set_title('Gráfico Q-Q del PH', fontsize = 10,
                 fontweight = "bold")
       ax.tick_params(labelsize = 7)
```



```
In [34]: # Gráfico Q-Q
       fig, ax = plt.subplots(figsize=(7,4))
       sm.qqplot(
          calcio,
          fit
              = True,
          line = 'q',
          alpha = 0.4,
          lw
              = 2
              = ax
          ax
       ax.set_title('Gráfico Q-Q del calcio', fontsize = 10,
                 fontweight = "bold")
       ax.tick_params(labelsize = 7)
```



```
In [35]: # Gráfico Q-Q
       fig, ax = plt.subplots(figsize=(7,4))
       sm.qqplot(
          npeces,
          fit
              = True,
          line = 'q',
          alpha = 0.4,
          lw
              = 2
              = ax
          ax
       ax.set_title('Gráfico Q-Q del npeces', fontsize = 10,
                 fontweight = "bold")
       ax.tick_params(labelsize = 7)
```


Análisis de Hipótesis

```
In [36]: print('Kursotis:', stats.kurtosis(mercurio))
print('Skewness:', stats.skew(mercurio))
```

Kursotis: -0.5392793261283986 Skewness: 0.615985316604268

```
In [37]: print('Kursotis:', stats.kurtosis(alcalinidad))
        print('Skewness:', stats.skew(alcalinidad))
        Kursotis: -0.3723123427917301
        Skewness: 0.995971540190347
In [38]: |print('Kursotis:', stats.kurtosis(PH))
        print('Skewness:', stats.skew(PH))
        Kursotis: -0.5316990819046379
        Skewness: -0.25300371445201947
In [39]: print('Kursotis:', stats.kurtosis(calcio))
        print('Skewness:', stats.skew(calcio))
        Kursotis: 0.7533350422627985
        Skewness: 1.3423994221171138
In [40]: print('Kursotis:', stats.kurtosis(npeces))
        print('Skewness:', stats.skew(npeces))
        Kursotis: 6.358775112078357
        Skewness: 2.655682430492345
       ##
In [41]: # Shapiro-Wilk test
        shapiro test = stats.shapiro(mercurio)
        shapiro test
Out[41]: ShapiroResult(statistic=0.9421269297599792, pvalue=0.012508947402238846)
In [42]: # Shapiro-Wilk test
        shapiro test = stats.shapiro(alcalinidad)
        shapiro_test
Out[42]: ShapiroResult(statistic=0.8203012943267822, pvalue=1.5374524764411035e-06)
In [43]: # Shapiro-Wilk test
        # ------
        shapiro test = stats.shapiro(PH)
        shapiro_test
Out[43]: ShapiroResult(statistic=0.9809678196907043, pvalue=0.5551783442497253)
```

```
In [44]: # Shapiro-Wilk test
       shapiro test = stats.shapiro(calcio)
       shapiro test
Out[44]: ShapiroResult(statistic=0.7913432121276855, pvalue=3.090418942974793e-07)
In [45]: # Shapiro-Wilk test
       shapiro test = stats.shapiro(npeces)
       shapiro_test
Out[45]: ShapiroResult(statistic=0.5829699039459229, pvalue=4.9876252433689316e-11)
In [46]: # D'Agostino's K-squared test
       k2, p_value = stats.normaltest(mercurio)
       print(f"Estadístico = {k2}, p-value = {p value}")
       Estadístico = 4.220529123327874, p-value = 0.1212058957577724
In [47]: # D'Agostino's K-squared test
       k2, p value = stats.normaltest(alcalinidad)
       print(f"Estadístico = {k2}, p-value = {p value}")
       Estadístico = 8.45127698441738, p-value = 0.014615999527870203
In [48]: # D'Agostino's K-squared test
       k2, p value = stats.normaltest(calcio)
       print(f"Estadístico = {k2}, p-value = {p value}")
       Estadístico = 15.16551242729508, p-value = 0.0005091559447168802
In [49]: # D'Agostino's K-squared test
       k2, p value = stats.normaltest(npeces)
       print(f"Estadístico = {k2}, p-value = {p value}")
       Estadístico = 47.47518669393924, p-value = 4.9078829412583656e-11
In [50]: # D'Agostino's K-squared test
       k2, p value = stats.normaltest(PH)
       print(f"Estadístico = {k2}, p-value = {p value}")
       Estadístico = 1.1920185572316295, p-value = 0.5510061663930924
       De acuerdo a los análisis realizados, en las variables de alcalinidad y calcio se rechaza la
```

De acuerdo a los análisis realizados, en las variables de alcalinidad y calcio se rechaza la normalidad.

```
In [51]: df.boxplot(column=['alcalinidad', 'PH', 'calcio', 'mercurio', 'npeces'])
```

Out[51]: <AxesSubplot:>


```
In [52]: df.boxplot(column='PH')
```

Out[52]: <AxesSubplot:>


```
In [53]: df.boxplot(column='calcio')
```

Out[53]: <AxesSubplot:>


```
In [54]: df.boxplot(column='mercurio')
```

Out[54]: <AxesSubplot:>

In [55]: df.boxplot(column='npeces')

Out[55]: <AxesSubplot:>

La variable con valores atípicos notables es npeces.

```
In [56]: df.groupby('mercurio').size()
Out[56]: mercurio
           0.04
                    2
           0.05
                    1
           0.10
                    1
           0.15
                    1
           0.16
                    1
           0.17
                    1
          0.18
                    1
          0.19
                    3
          0.21
                    1
          0.25
                    1
           0.27
                    3
          0.28
                    1
                    4
          0.34
          0.40
                    1
          0.41
                    1
           0.43
                    1
           0.44
                    1
                    2
           0.48
          0.49
                    2
                    2
          0.50
          0.52
                    1
                    2
           0.56
           0.59
                    1
          0.63
                    1
          0.65
                    1
          0.71
                    1
          0.73
                    1
           0.77
                    1
           0.81
                    1
          0.83
                    1
          0.84
                    1
          0.86
                    1
          0.87
                    1
           0.94
                    1
           0.98
                    1
           1.08
                    1
          1.10
                    1
           1.16
                    1
          1.20
                    1
          1.23
                    1
           1.33
                    1
           dtype: int64
           fig, ax = plt.subplots(1, 1, figsize=(8, 4)) sns.boxplot(x="alcalinidad", y="mercurio", data=df, ax=ax)
```

sns.swarmplot(x="alcalinidad", y="mercurio", data=df, color='black', alpha = 0.5, ax=ax);

```
In [57]: fvalue, pvalue = stats.f_oneway(df['alcalinidad'], df['PH'], df['calcio'], df['ng
```

```
In [58]: print(fvalue, pvalue)
          17.701446360772287 2.847726889143591e-10
In [59]: fvalue, pvalue = stats.f oneway(df['npeces'], df['mercurio'])
In [60]: print(fvalue, pvalue)
          113.35321181638591 2.416358468853054e-18
In [61]: fvalue, pvalue = stats.f_oneway(df['alcalinidad'], df['mercurio'])
In [62]: print(fvalue, pvalue)
          49.717429234590995 2.0203527876566043e-10
          El p-value es menor a 0.05 por lo que se rechaza la hipótesis nula.
          Regression
In [63]: df.drop(['estimacion', 'nombre'], axis=1, inplace=True)
In [64]: X = df.iloc[:,df.columns != 'mercurio']
          y = df.mercurio
In [65]: from sklearn.model selection import train test split
          from sklearn.linear_model import LogisticRegression
          from sklearn import preprocessing
          from sklearn.metrics import accuracy score, classification report, confusion matr
In [66]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random]
In [67]: | df.head()
Out[67]:
              alcalinidad PH calcio clorofila mercurio npeces minmercurio maxmercurio edad
           id
           1
                    5.9 6.1
                               3.0
                                       0.7
                                               1.23
                                                         5
                                                                  0.85
                                                                               1.43
                                                                                       1
                                                                               1.90
           2
                    3.5 5.1
                               1.9
                                               1.33
                                                         7
                                                                  0.92
                                                                                       0
                                       3.2
           3
                  116.0 9.1
                              44.1
                                     128.3
                                               0.04
                                                         6
                                                                  0.04
                                                                               0.06
                                                                                       0
           4
                   39.4 6.9
                              16.4
                                       3.5
                                               0.44
                                                        12
                                                                  0.13
                                                                               0.84
                                                                                       0
           5
                                               1.20
                                                                  0.69
                                                                               1.50
                    2.5 4.6
                               2.9
                                       1.8
                                                        12
                                                                                       1
```

In [68]: | lm = sfm.ols(formula="mercurio~alcalinidad+PH+calcio+clorofila+npeces+edad", data In [69]: lm.pvalues Out[69]: Intercept 0.001232 alcalinidad 0.007774 РΗ 0.428976 calcio 0.090786 clorofila 0.124741 npeces 0.297340 edad 0.750024 dtype: float64

```
In [70]: lm.summary()
```

Out[70]:

OLS Regression Results

Dep. Va	r	mercurio		ed:	0.464		
ľ	Model:		OLS	Adj. R-squared:			0.395
M	ethod:	Least	Squares		tic:	6.650	
	Date: V	Ved, 30 N	ov 2022	Prob (F-statist	ic):	4.12e-05
	Time:	•	16:12:12	Log	-Likeliho	od:	-1.1337
No. Observa	itions:		53		A	NC:	16.27
Df Resi		46		E	BIC:	30.06	
Df I	Model:		6				
Covariance	no	onrobust					
coef		std err	t	P> t	[0.025	0.97	751
	COCI	Sta CII	•	1 - [4	[0.020	0.57	o]
Intercept	0.9289	0.270	3.444	0.001	0.386	1.4	72
alcalinidad	-0.0060	0.002	-2.784	0.008	-0.010	-0.0	02
PH	-0.0391	0.049	-0.798	0.429 -0.138		0.0	59
calcio	0.0048	0.003	1.728	0.091	0.091 -0.001		10
clorofila	-0.0026	0.002	-1.564	0.125	-0.006	0.0	01
npeces	0.0048	0.005	1.054	0.297	-0.004	0.0	14
edad	-0.0348	0.108	-0.321	0.750	-0.253	0.1	84

Omnibus: 6.335 Durbin-Watson: 1.468

Prob(Omnibus): 0.042 **Jarque-Bera (JB):** 5.988

 Skew:
 0.823
 Prob(JB):
 0.0501

 Kurtosis:
 3.042
 Cond. No.
 518.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

El valor R-squared de 0.46 por lo que se explica el 46% del modelo. Además, algunas variables obtuvieron un p-value menor a 0.05 y otras mayores a este valor. En adición, los coeficientes negativos en algunos casos que afectan negativamente la concentración del mercurio.

Normalidad multivariada

Henze-Zirkler

In [71]: pip install pingouin

```
Requirement already satisfied: pingouin in c:\users\miguel salas\anaconda3\lib
\site-packages (0.5.2)
Requirement already satisfied: tabulate in c:\users\miguel salas\anaconda3\lib
\site-packages (from pingouin) (0.8.9)
Requirement already satisfied: numpy>=1.19 in c:\users\miguel salas\anaconda3\l
ib\site-packages (from pingouin) (1.21.5)
Requirement already satisfied: scipy>=1.7 in c:\users\miguel salas\anaconda3\li
b\site-packages (from pingouin) (1.7.3)
Requirement already satisfied: pandas>=1.0 in c:\users\miguel salas\anaconda3\l
ib\site-packages (from pingouin) (1.4.2)
Requirement already satisfied: statsmodels>=0.13 in c:\users\miguel salas\anaco
nda3\lib\site-packages (from pingouin) (0.13.2)
Requirement already satisfied: seaborn>=0.11 in c:\users\miguel salas\anaconda3
\lib\site-packages (from pingouin) (0.11.2)
Requirement already satisfied: pandas-flavor>=0.2.0 in c:\users\miguel salas\an
aconda3\lib\site-packages (from pingouin) (0.3.0)
Requirement already satisfied: outdated in c:\users\miguel salas\anaconda3\lib
\site-packages (from pingouin) (0.2.1)
Requirement already satisfied: matplotlib>=3.0.2 in c:\users\miguel salas\anaco
nda3\lib\site-packages (from pingouin) (3.5.1)
Requirement already satisfied: scikit-learn<1.1.0 in c:\users\miguel salas\anac
onda3\lib\site-packages (from pingouin) (1.0.2)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\miguel salas\anaco
nda3\lib\site-packages (from matplotlib>=3.0.2->pingouin) (1.3.2)
Requirement already satisfied: fonttools>=4.22.0 in c:\users\miguel salas\anaco
nda3\lib\site-packages (from matplotlib>=3.0.2->pingouin) (4.25.0)
Requirement already satisfied: pillow>=6.2.0 in c:\users\miguel salas\anaconda3
\lib\site-packages (from matplotlib>=3.0.2->pingouin) (9.0.1)
Requirement already satisfied: pyparsing>=2.2.1 in c:\users\miguel salas\anacon
da3\lib\site-packages (from matplotlib>=3.0.2->pingouin) (3.0.4)
Note: you may need to restart the kernel to use updated packages. Requirement al
ready satisfied: packaging>=20.0 in c:\users\miguel salas\anaconda3\lib\site-pa
ckages (from matplotlib>=3.0.2->pingouin) (21.3)
Requirement already satisfied: cycler>=0.10 in c:\users\miguel salas\anaconda3
\lib\site-packages (from matplotlib>=3.0.2->pingouin) (0.11.0)
Requirement already satisfied: python-dateutil>=2.7 in c:\users\miguel salas\an
aconda3\lib\site-packages (from matplotlib>=3.0.2->pingouin) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in c:\users\miguel salas\anaconda3
\lib\site-packages (from pandas>=1.0->pingouin) (2021.3)
Requirement already satisfied: xarray in c:\users\miguel salas\anaconda3\lib\si
te-packages (from pandas-flavor>=0.2.0->pingouin) (0.20.1)
Requirement already satisfied: lazy-loader==0.1rc2 in c:\users\miguel salas\ana
conda3\lib\site-packages (from pandas-flavor>=0.2.0->pingouin) (0.1rc2)
Requirement already satisfied: six>=1.5 in c:\users\miguel salas\anaconda3\lib
\site-packages (from python-dateutil>=2.7->matplotlib>=3.0.2->pingouin) (1.16.
0)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\miguel salas\an
aconda3\lib\site-packages (from scikit-learn<1.1.0->pingouin) (2.2.0)
Requirement already satisfied: joblib>=0.11 in c:\users\miguel salas\anaconda3
\lib\site-packages (from scikit-learn<1.1.0->pingouin) (1.1.0)
Requirement already satisfied: patsy>=0.5.2 in c:\users\miguel salas\anaconda3
\lib\site-packages (from statsmodels>=0.13->pingouin) (0.5.2)
Requirement already satisfied: requests in c:\users\miguel salas\anaconda3\lib
\site-packages (from outdated->pingouin) (2.27.1)
```

Requirement already satisfied: littleutils in c:\users\miguel salas\anaconda3\l ib\site-packages (from outdated->pingouin) (0.2.2)
Requirement already satisfied: idna<4,>=2.5 in c:\users\miguel salas\anaconda3\lib\site-packages (from requests->outdated->pingouin) (3.3)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\miguel salas\anaconda3\lib\site-packages (from requests->outdated->pingouin) (1.26.9)
Requirement already satisfied: charset-normalizer~=2.0.0 in c:\users\miguel salas\anaconda3\lib\site-packages (from requests->outdated->pingouin) (2.0.4)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\miguel salas\anaconda3\lib\site-packages (from requests->outdated->pingouin) (2021.10.8)

```
In [72]: from pingouin import multivariate_normality
```

Para comenzar haremos un análisis de normalidad multivariada para verificar resultados y contrastarlos con diversos métodos. El primer método es el de Henze-Zirkler. No es de los sugeridos en la actividad pero se hará el análisis para verificar que todo funcione a la perfección.

```
In [73]: multivariate_normality(df, alpha = 0.5)
```

Out[73]: HZResults(hz=1.3980621685965327, pval=1.6937017371783456e-68, normal=False)

Como podemos observar, el p-value es mucho menor a 0.5 por lo que se rechaza la hipótesis nula y se asume que los datos no siguen una distribución normal multivariada.

Anderson Darling

Nuestro siguiente método es el de Anderson Darling, siendo uno de los dos métodos sugeridos.

```
In [77]: | anderson(df['calcio'])
Out[77]: AndersonResult(statistic=4.050986220831881, critical values=array([0.54, 0.61
         5, 0.738, 0.861, 1.024]), significance level=array([15. , 10. , 5. , 2.5, 1.
         1))
In [78]: | anderson(df['clorofila'])
Out[78]: AndersonResult(statistic=5.428595821308534, critical_values=array([0.54, 0.61
         5, 0.738, 0.861, 1.024]), significance level=array([15. , 10. , 5. , 2.5, 1.
         1))
In [79]: | anderson(df['mercurio'])
Out[79]: AndersonResult(statistic=0.9252845332936985, critical values=array([0.54, 0.61
         5, 0.738, 0.861, 1.024]), significance_level=array([15. , 10. , 5. , 2.5, 1.
         1))
In [80]: | anderson(df['minmercurio'])
Out[80]: AndersonResult(statistic=1.9770479127920595, critical values=array([0.54, 0.61
         5, 0.738, 0.861, 1.024]), significance_level=array([15. , 10. , 5. , 2.5, 1.
         1))
In [81]: | anderson(df['maxmercurio'])
Out[81]: AndersonResult(statistic=0.6584698564842597, critical values=array([0.54, 0.61
         5, 0.738, 0.861, 1.024]), significance_level=array([15. , 10. , 5. , 2.5, 1.
         1))
In [82]: | anderson(df['edad'])
Out[82]: AndersonResult(statistic=14.334971350627782, critical values=array([0.54, 0.61
         5, 0.738, 0.861, 1.024]), significance_level=array([15. , 10. , 5. , 2.5, 1.
         ]))
         Como se puede observar, el PH, el mercurio y el maxmercurio cuentan con valores estadísticos
         bajos y no son significativos a ningún nivel, por lo que, no se rechaza la hipótesis nula y no hay
```

Como se puede observar, el PH, el mercurio y el maxmercurio cuentan con valores estadísticos bajos y no son significativos a ningún nivel, por lo que, no se rechaza la hipótesis nula y no hay suficiente evidencia para establecer que no es una distribución normal. Al contrario, las otras variables muestran valores estadísticos altos por lo que sí se rechaza la hipótesis nula y no representan una distribución normal.

PCA

```
In [83]: from sklearn.preprocessing import StandardScaler
In [84]: X = StandardScaler().fit_transform(X)
```

```
In [85]: from sklearn.decomposition import PCA
from sklearn import preprocessing
import matplotlib.pyplot as plt
```

```
In [86]: pca = PCA(n_components=1)
    pca.fit(X)
    X_pca = pca.transform(X)
    print("original shape: ", X.shape)
    print("transformed shape:", X_pca.shape)
```

original shape: (53, 8) transformed shape: (53, 1)

```
In [87]: X_new = pca.inverse_transform(X_pca)
plt.scatter(X[:, 0], X[:, 1], alpha=0.2)
plt.scatter(X_new[:, 0], X_new[:, 1], alpha=0.8)
plt.axis('equal');
```



```
In [91]: pca = PCA().fit(X)
    plt.plot(np.cumsum(pca.explained_variance_ratio_))
    plt.xlabel('number of components')
    plt.ylabel('cumulative explained variance');
```



```
In [ ]:

In [ ]:
```