Monday, September 18, 2023

Tony Sumour APPH 4COCS

1. Consider the equation $2x - 1 = \sin x$.

(a) Find a closed interval [a, b] on which the equation has a root r, and use the Intermediate Value Theorem to prove that r exists.

Let
$$y = 2x - 1 - \sin(x)$$
 for $x = (-\frac{\pi}{2})$: $y = 2(-\frac{\pi}{2}) - 1 - \sin(-\frac{\pi}{2}) = -\pi < 0$

For
$$x = (\frac{\pi}{2})$$
 :- $y = 2(\frac{\pi}{2}) - 1 - \sin(\frac{\pi}{2}) = \pi - 2 > 0$

in let
$$\alpha = -\frac{\pi}{2}$$
, $\beta = \frac{\pi}{2}$. Since $y = 2x - 1 - \sin(x)$ < 0 for $x = -\frac{\pi}{2}$ and $y = 2x - 1 - \sin(x)$ >0 for $x = \frac{\pi}{2}$, by the Intermediate Value Theorem, there must exist some reat r on $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

(b) Prove that r from (a) is the only root of the equation (on all of \mathbb{R}).

$$2x-1-\epsilon_{in}(x)=0$$

$$\frac{\partial}{\partial x}\left(2x-1-\sin(x)\right)=2-\cos(x)=0$$

Since cos(X) is bonded by 111, there are no values of X & PR where another rost exists.

(c) Use the bisestion code from class (or your own) to approximate r to eight correct decimal places. Include the calling script, the resulting final approximation, and the total number of iterations used.

(Lode:

```
import numpy as np
def driver():
    f = lambda x: 2*x - 1 - np.sin(x)
    b = np.pi/2
    tol = 1e-8
    [astar,ier] = bisection(f,a,b,tol)
    print('the approximate root is',astar)
    print('the error message reads:',ier)
    print('f(astar) =', f(astar))
# define routines
def bisection(f,a,b,tol):
```

```
fa = f(a)
          if (fa*fb>0):
             ier = 1
             astar = a
            return [astar, ier]
         verify end points are not a root
           ier =0
           return [astar, ier]
           astar = b
           ier = 0
           return [astar, ier]
         count = 0
         d = 0.5*(a+b)
          while (abs(d-a)> tol):
           if (fd ==0):
             return [astar, ier]
            if (fa*fd<0):
             a = d
            d = 0.5*(a+b)
         print('abs(d-a) = ', abs(d-a))
print('Number of iterations: ', count)
          return [astar, ier]
75 driver()
```

Output:

```
tonys@Tonys-Surface MINGW64 /c/users/tonys/Documents/APPM4600/testrep/Homework/Homework3 (main)
$ python3 Problem1c.py
abs(d-a) = 5.851672257861651e-09
Number of iterations: 28
the approximate root is 0.8878622154822129
the error message reads: 0
f(astar) = 5.354353072029028e-09
```

2.) 2. The function $f(x) = (x-5)^9$ has a root (with multiplicity 9) at x=5 and is monotonically increasing (decreasing) for x>5 (x<5) and should thus be a suitable candidate for your function above. Use a=4.82 and b=5.2 and tol = 1e-4 and use bisection with:

* Using code included in part (a) *

```
(a) f(x) = (x-5)^9.
```

```
$ python3 Problem2a.py
abs(d-a) = 9.277343750024869e-05
Number of iterations: 11
the approximate root is 5.000073242187501
the error message reads: 0
f(astar) = 6.065292655789404e-38
```

(b) The expanded expanded version of $(x-5)^9$, that is, $f(x) = x^9 - 45x^8 + \ldots - 1953125$.

```
$ python3 Problem2b.py
the approximate root is 5.12875
the error message reads: 0
f(astar) = 0.0
```

(c)	Expla	in wh	at is	hap	pening.

As we found in homework I, the expanded version takes in more voices of x, increasing the error with each sterestion.

4. **Definition 1** Suppose
$$\{p_n\}_{n=0}^{\infty}$$
 is a sequence that converges to p with $p_n \neq p$ for all n . If there exists positive constants λ and α such that

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda$$

then $\{p_n\}_{n=1}^{\infty}$ converges to p with an order α and asymptotic error constant λ . If $\alpha=1$ and $\lambda < 1$ then the sequence converges linearly. If $\alpha = 2$, the sequence is quadratically convergent.

Which of the following iterations will converge to the indicated fixed point x_* (provided x_0 is sufficiently close to x_*)? If it does converge, give the order of convergence; for linear convergence, give the rate of linear convergence.

(a) (10 points)
$$x_{n+1} = -16 + 6x_n + \frac{12}{x_n}, x_* = 2$$

:- given
$$f(x) = -16 + 6x + \frac{12}{x}$$
, $f(x^{m}=2) = -16 + 6(2) + \frac{12}{(2)} = -16 + 12 + 6 = 2$

$$F(x^n) = x^n = 2 \Rightarrow x^n = 2$$
 is a fixed point /

$$f(x) = f(p) + f'(p) \cdot (x-p) + \frac{f''(n_k) \cdot (x-p)^2}{2}$$
For some η_k between $x \nmid p$

$$f(\chi_{\kappa}) = f(\rho) + f'(\rho) \cdot (\chi_{\kappa} - \rho) + f''(\eta_{\kappa}) (\chi_{\kappa} - \rho)^{2}$$

$$X_{k+1} = p + f'(p)(x_k - p) + f''(n_k)(x_k - p)^2$$

$$\frac{\chi_{k+1} - p}{num \, \text{over}} = \frac{f'(p)(\chi_k - p) + f''(\Omega_k) \cdot (\chi - p)^2}{2}$$

are going to loss quadretiz term

$$\frac{X_{k+1}-P}{X_k-P}=F'(\beta_k)$$
 for some β_k between X_k and β_k

$$\frac{\text{Zim}}{|x|} \left| \frac{x_{k+1} - p}{x_k - p} \right| = \frac{\text{Zim}}{|x|} \left| \frac{f'(p_k)}{|x|} \right| = \left| \frac{f'(p)}{|x|} \right|$$

	٠٠٠	1st on	ter	as	long	as		F'(p)	<	ane	d the		
		converge	nce	rate	B	F'((ρ)						
Using this, we	Find												
5 11457 25	1 / 2		1_1								th,s	sequence i first order argent	5
	f'(x)	= (, -	χ²	K* = 7	<u>-</u>	6 -	- 4	= 4	5 दे	> I -·	not F	irst order	
											Conve	rgent	
(b) (10 points) $x_{n+1} =$	$\frac{2}{3}x_n + \frac{1}{x_n^2},$	$x_* = 3^{1/3}$											
$\Gamma(x) = \frac{2}{3} \times 1$			=	<u>2</u> (3 ^{1/3})	1	(3	- 2					
	X -	x = 3 3			1/3			2/3\					
$f(x) = \frac{2}{3} \times 1$			Ξ	$\frac{2}{3}$	3")	+ ((3)					
			= -										
				3 (,	ì							