Calcul numeric Valori si vectori proprii

Paul Irofti Andrei Pătrașcu Cristian Rusu

Departmentul de Informatică
Facultatea de Matematică și Informatică
Universitatea din București
Email: prenume.nume@fmi.unibuc.ro

Cuprins

- Motivatie
- Definitii
- Descompunerea valorilor proprii (general și simetric)
- Calculul valorilor proprii
- Exemple
- Comparație cazul general vs. cazul simetric
- Algoritmul Hessenberg + iterații
- Algoritmul QR

Motivația

- ► Ecuatii diferentiale
- ► Modele biologice/medicale
- Grafuri
- Machine learning (reducere dimensională)
- Modele Markov
- Mecanica quantică (matrix mechanics)
- Transformări geometrice
- multe altele ...

Motivația

- ► Ecuatii diferentiale
- Modele biologice/medicale
- Grafuri
- Machine learning (reducere dimensională)
- Modele Markov
- Mecanica quantică (matrix mechanics)
- Transformări geometrice
- multe altele ...

Definiții: valori și vectori proprii

- ightharpoonup avem o matrice pătrată $\mathbf{A} \in \mathbb{R}^{n \times n}$
- lacktriangle atunci $\lambda \in \mathbb{C}$ este o valoare proprie a lui f A dacă

$$p(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = 0$$

- $ightharpoonup p(\lambda)$ se numește polinomul caracteristic a lui ${f A}$
- lacktriangle avem și $oldsymbol{v} \in \mathbb{C}^n$ care se numește vector propriu și pentru care

$$\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$$

Definiții valori și vectori proprii

- ightharpoonup avem o matrice pătrată $\mathbf{A} \in \mathbb{R}^{n \times n}$
- ightharpoonup atunci $\lambda \in \mathbb{C}$ este o valoare proprie a lui ${f A}$ dacă

$$p(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = 0$$

- $ightharpoonup p(\lambda)$ se numește polinomul caracteristic a lui ${f A}$
- $lackbox{ avem și } oldsymbol{v} \in \mathbb{C}^n$ care se numește vector propriu și pentru care

$$\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$$

de ce trebuie **A** să fie pătrată?

Definiții: valori și vectori proprii

- ightharpoonup avem o matrice pătrată $\mathbf{A} \in \mathbb{R}^{n \times n}$
- ▶ atunci $\lambda \in \mathbb{C}$ este o valoare proprie a lui **A** dacă

$$p(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = 0$$

- $ightharpoonup p(\lambda)$ se numește polinomul caracteristic a lui ${\bf A}$
- ightharpoonup avem și $\mathbf{v} \in \mathbb{C}^n$ care se numește vector propriu și pentru care

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

chiar dacă $\mathbf{A} \in \mathbb{R}^{n \times n}$ totuși avem $\lambda \in \mathbb{C}$ și $\mathbf{v} \in \mathbb{C}^n$ (poate chiar $\mathbf{A} \in \mathbb{C}^{n \times n}$ dar noi nu ne ocupăm de acest caz)

Interpretare valori și vectori proprii

relația următoare ne spune că matricea A se comportă ca un număr în anumite situații

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

putem interpreta rezultatul în următorul fel:

Descompunerea valorilor proprii (cazul general)

Pentru $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Dacă avem $\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$ pentru $i = 1, \dots, n$ atunci avem defapt

$$\mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix}$$

adică

$$AV = VD$$
 sau $A = VDV^{-1}$.

Descompunerea valorilor proprii (cazul simetric)

Pentru $\mathbf{A} \in \mathbb{R}^{n \times n}$ și $\mathbf{A} = \mathbf{A}^T$. Dacă avem $\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$ pentru $i = 1, \dots, n$ atunci avem defapt

$$\mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

adică

$$AV = VD$$
 sau $A = VDV^T$.

(adică,
$$\mathbf{V}^{-1} = \mathbf{V}^T$$
)

Descompunerea valorilor proprii (cazul simetric)

Pentru $\mathbf{A} \in \mathbb{R}^{n \times n}$ și $\mathbf{A} = \mathbf{A}^T$. Dacă avem $\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$ pentru $i = 1, \dots, n$ atunci avem defapt

$$\mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix}$$

adică

$$AV = VD$$
 sau $A = VDV^T$.

(adică,
$$\mathbf{V}^{-1} = \mathbf{V}^T \Rightarrow \mathbf{V}$$
 este orthonormală: $\mathbf{V}\mathbf{V}^T = \mathbf{V}^T\mathbf{V} = \mathbf{I}_n$)

Algoritmul (uman) pentru calcul:

- ▶ Pasul 1: calculăm polinomul caracteristic $p(\lambda)$
- Pasul 2: rezolvăm ecuația $p(\lambda) = 0$
- **P** Pasul 3: pentru fiecare λ calculăm vectorul propriu $\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$

Examplu calcul valori și vectori proprii

se dă matricea

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Pasul 1: calculăm polinomul caracteristic

$$p(\lambda) = \det(\lambda \mathbf{I}_2 - \mathbf{A}) = \det\left(\begin{bmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{bmatrix}\right) = \lambda^2 - 4\lambda + 3$$

Pasul 2: rezolvăm ecuația

$$p(\lambda) = 0 \longrightarrow \lambda^2 - 4\lambda + 3 = 0 \longrightarrow (\lambda - 1)(\lambda - 3) = 0$$

Pasul 3: pentru fiecare λ calculăm vectorul propriu

- Pasul 3: pentru fiecare λ calculăm vectorul propriu
- ightharpoonup pentru $\lambda_1 = 1$:

$$\mathbf{A}\mathbf{v}_1 = \mathbf{v}_1 \longrightarrow (\mathbf{I}_2 - \mathbf{A})\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

ightharpoonup pentru $\lambda_2=3$

$$\mathbf{A}\mathbf{v}_2 = 3\mathbf{v}_2 \longrightarrow (3\mathbf{I}_2 - \mathbf{A})\mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

ightharpoonup concluzia, matricea $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ are valori/vectori proprii:

$$\lambda_1=1, \mathbf{v}_1=egin{bmatrix}1\-1\end{bmatrix}$$
 și $\lambda_2=3, \mathbf{v}_2=egin{bmatrix}1\1\end{bmatrix}$

• concluzia, matricea $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ are valori/vectori proprii:

$$\lambda_1=1, \mathbf{v}_1=egin{bmatrix}1\\-1\end{bmatrix}$$
 și $\lambda_2=3, \mathbf{v}_2=egin{bmatrix}1\\1\end{bmatrix}$

ightharpoonup și putem verifica că $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^T$ (pentru că \mathbf{A} este simetrică).

$$\mathbf{VAV}^T = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \mathbf{A} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}$$

de ce nu e bine?

ricea $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ are valori/vectori proprii:

$$\lambda_1=1, \mathbf{v}_1=egin{bmatrix}1\\-1\end{bmatrix}$$
 și $\lambda_2=3, \mathbf{v}_2=egin{bmatrix}1\\1\end{bmatrix}$

ightharpoonup și putem verifica că $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^T$ (pentru că \mathbf{A} este simetrică).

$$\mathbf{VAV}^T = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \mathbf{A} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}$$

de ce nu e bine? pentru că $\mathbf{VV}^T = 2\mathbf{I}_2$ și noi avem nevoie de $\mathbf{VV}^T = \mathbf{I}_2$

▶ concluzia, matricea $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ are valori/vectori proprii:

$$\lambda_1=1, \mathbf{v}_1=egin{bmatrix}1\\-1\end{bmatrix}$$
 și $\lambda_2=3, \mathbf{v}_2=egin{bmatrix}1\\1\end{bmatrix}$

 \triangleright și putem verifica că $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^T$ (pentru că \mathbf{A} este simetrică).

$$\left(\frac{1}{\sqrt{2}}\mathbf{V}\right)\mathbf{A}\left(\frac{1}{\sqrt{2}}\mathbf{V}^{T}\right) = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}\mathbf{A}\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

acum e bine

Algoritmul (uman) pentru calcul:

- ▶ Pasul 1: calculăm polinomul caracteristic $p(\lambda)$
- Pasul 2: rezolvăm ecuația $p(\lambda) = 0$
- lacktriangle Pasul 3: pentru fiecare λ calculăm vectorul propriu ${f A}{f v}=\lambda{f v}$

Acest algoritm se poate implementa eficient pe un calculator?

Algoritmul (uman) pentru calcul:

- Pasul 1: calculăm polinomul caracteristic $p(\lambda)$
- Pasul 2: rezolvăm ecuația $p(\lambda) = 0$
- lacktriangle Pasul 3: pentru fiecare λ calculăm vectorul propriu ${f A}{f v}=\lambda{f v}$

Pasul 1: trebuie să calculăm determinant de o matrice $n \times n$ Câte elemente sunt în suma determinantului? Pentru n = 2, n = 3?

Algoritmul (uman) pentru calcul:

- ▶ Pasul 1: calculăm polinomul caracteristic $p(\lambda)$
- ▶ Pasul 2: rezolvăm ecuația $p(\lambda) = 0$
- **P** Pasul 3: pentru fiecare λ calculăm vectorul propriu $\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$

Pasul 1: trebuie să calculăm determinant de o matrice $n \times n$ Câte elemente sunt în suma determinantului? În general n! (n factorial)

Algoritmul (uman) pentru calcul:

- ▶ Pasul 1: calculăm polinomul caracteristic $p(\lambda)$
- Pasul 2: rezolvăm ecuația $p(\lambda) = 0$
- Pasul 3: pentru fiecare λ calculăm vectorul propriu $\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$

Pasul 2: cum rezolvăm o ecuație de grad n?

Algoritmul (uman) pentru calcul:

- Pasul 1: calculăm polinomul caracteristic $p(\lambda)$
- Pasul 2: rezolvăm ecuația $p(\lambda) = 0$
- Pasul 3: pentru fiecare λ calculăm vectorul propriu $\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$

Pasul 2: cum rezolvăm o ecuație de grad n? Avem formule doar pentru n < 5, pentru $n \ge 5$ doar algoritmi aproximativi.

Algoritmul (uman) pentru calcul:

- Pasul 1: calculăm polinomul caracteristic $p(\lambda)$
- Pasul 2: rezolvăm ecuația $p(\lambda) = 0$
- lacktriangle Pasul 3: pentru fiecare λ calculăm vectorul propriu ${f A}{f v}=\lambda{f v}$

Algoritmul pentru calcul:

- rapid, preferabil: $O(n^3)$ adică la fel de complicat ca CMMP, nu vrem nimic combinatorial
- răspuns aproximativ: vom avea ceva eroare cu siguranță (teorie Galois-Abel din matematică abstractă)
- ▶ nu vrem să rezolvăm n sisteme de ecuații $O(n^4)$

- ▶ algoritmul uman este foarte bun pentru matrice 2×2 sau 3×3 dar îngrozitor pentru cazul general
- algoritmul numeric este complet diferit față de algoritmul uman
- defapt, algoritmul numeric este atăt de eficient încât logica va fi inversată: când vrem rădăcinile unui polinom vom rezolva o problemă de valori/vectori proprii. exemplu: dacă vrem să rezolvăm $\lambda^4 + 2\lambda^3 + 3\lambda^2 + 4\lambda + 5 = 0$ atunci vrem valorile proprii ale matricei:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & -5 \\ 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

Calcul valori și vectori proprii (când lucrurile nu merg bine)

Exemplul anterior a fost simplu, dar ce se întâmplă când

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$$

- **Proof** polinomul caracteristic este $p(\lambda) = (\lambda 3)^2$ deci $\lambda_{1,2} = 3$
- $\text{ vectori proprii? } (3\mathbf{I}_2 \mathbf{A})\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- ▶ deci cum arată v?

Calcul valori și vectori proprii (când lucrurile nu merg bine)

Exemplul anterior a fost simplu, dar ce se întâmplă când

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$$

- lacktriangle polinomul caracteristic este $p(\lambda)=(\lambda-3)^2$ deci $\lambda_{1,2}=3$
- ightharpoonup vectori proprii? $(3\mathbf{I}_2 \mathbf{A})\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
 ightharpoonup \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- ightharpoonup deci cum arată \mathbf{v} ? $\mathbf{v} = \begin{bmatrix} a \\ 0 \end{bmatrix}$, $a \in \mathbf{R}$
- problema: matricea A este defectă, adică are un singur vector propriu (nu doi)

Calcul valori și vectori proprii (comparație)

	cazul general	cazul simetric
A defect?	da, se poate	nu, nu se poate matrice simetrice nu sunt defecte
valori proprii	$\lambda \in \mathbb{C}$	$\lambda \in \mathbb{R}$
vectori proprii	se poate să nu existe toți	există toți și sunt ortogonali
descompunerea	$A = VDV^{-1}$	$\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^T$
algoritmul	algoritmul QR	Hessenberg + iterații
complexitate	$\frac{50}{3}n^3$	6 <i>n</i> ³

Algoritmul Hessenberg + iterații (cazul simetric)

Un algoritm conceptual simplu, dar eficient:

- ▶ folosind transformări Hessenberg, aducem matricea simetrică la formă tri-diagonală
- ▶ începem un proces iterativ (teoretic infinit) care reduce forma tri-diagonală la formă diagonală (folosind rotații Givens)

<u> Algoritmul H</u>essenberg + iterații (cazul simetric)

Fie
$$\mathbf{A} = \begin{bmatrix} 4 & 1 & -2 & 2 \\ 1 & 2 & 0 & 1 \\ -2 & 0 & 3 & -2 \\ 2 & 1 & -2 & -1 \end{bmatrix}$$

Fie
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ -2 & 0 & 3 & -2 \\ 2 & 1 & -2 & -1 \end{bmatrix}$$

Primul pas: folosim matricea $\mathbf{Q}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1/3 & 2/3 & -2/3 \\ 0 & 2/3 & 2/3 & 1/3 \\ 0 & -2/3 & 1/3 & 2/3 \end{bmatrix}$

▶ avem:
$$\mathbf{A}_2 = \mathbf{Q}_1 \mathbf{A} \mathbf{Q}_1^T = \begin{bmatrix} 4 & -3 & 0 & 0 \\ -3 & 10/3 & 1 & 4/3 \\ 0 & 1 & 5/3 & -4/3 \\ 0 & 4/3 & -4/3 & -1 \end{bmatrix}$$

Algoritmul Hessenberg + iterații (cazul simetric)

Al doile pas: folosim matricea
$$\mathbf{Q}_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -3/5 & -4/5 \\ 0 & 0 & -4/5 & 3/5 \end{bmatrix}$$

- această matrice are doar 3 diagonale diferite de zero
- pornind de la A₃ începe un proces iterativ pentru a reduce matricea la diagonală
- ightharpoonup avem că $\mathbf{A}_3 = \mathbf{Q}_2 \mathbf{Q}_1 \mathbf{A} \mathbf{Q}_1^T \mathbf{Q}_2^T$ iar \mathbf{A}_{∞} va fi diagonal

Algoritmul QR (cazul general)

- considerat unul dintre cei mai importanți algoritmi ai ultimului secol
- este complet iterativ
- folosește descompunerea QR (au același nume, dar sunt două proceduri diferite: algoritmul QR și descompunerea QR)
- calculează A = UTU^H unde T este o matrice superior triunghiulară complexă iar H înseamnă simetric și complex conjugat
- ► T conține de diagonală blocuri Jordan (care conțin valori proprii în perechi complex conjugate)

Algoritmul QR (cazul general)

Algorithm 1: Algoritmul QR

Data: $A \in \mathbb{R}^{n \times n}$ astfel încât $A = \mathbf{UTU}^H$ **Result:** $\mathbf{T} \in \mathbb{C}^{n \times n}$ superior triunghiular, $\mathbf{U} \in \mathbb{C}^{n \times n}$ unitar (adică orthogonal și complex $\mathbf{UU}^H = \mathbf{U}^H \mathbf{U} = \mathbf{I}_n$)

- ▶ Inițializează $\mathbf{A}_0 \leftarrow \mathbf{A}, \ \mathbf{U}_0 \leftarrow \mathbf{I}_n$
- Pentru $i = 1, \ldots, \infty$:
 - descompunerea QR: \mathbf{Q}_i , $\mathbf{R}_i = \mathsf{QR}(\mathbf{A}_{i-1})$
 - ightharpoonup $\mathbf{A}_i \leftarrow \mathbf{R}_i \mathbf{Q}_i$
 - $ightharpoonup U_i \leftarrow U_{i-1}Q_i$
- lacktriangle Returnează $f T=f A_{\infty}$ și $f U=f U_{\infty}$

Observati că:

$$\begin{aligned} \mathbf{A}_i = & \mathbf{Q}_i^H \mathbf{A}_{i-1} \mathbf{Q}_i = \mathbf{Q}_i^H \mathbf{Q}_{i-1}^H \mathbf{A}_{i-2} \mathbf{Q}_{i-1} \mathbf{Q}_i \\ = & \mathbf{Q}_i^H \mathbf{Q}_{i-1}^H \dots \mathbf{Q}_1^H \mathbf{A}_0 \mathbf{Q}_1 \dots \mathbf{Q}_{i-1} \mathbf{Q}_i \\ = & \mathbf{U}_i^H \mathbf{A} \mathbf{U}_i \end{aligned}$$

Concluzii

- e greu să calculăm eficient și corect valori/vectori proprii
- multe complicații (numere complexe, vectori nu există, etc.)
- dificultățile sunt fundamentale și vin din matematică abstractă
- bibliotecile actuale au implementări eficiente: codul sursă are sute de mii de linii de cod
- Algorimul QR şi algoritmul Hessenberg + iteraţii
- multe aplicații, vedem câteva la seminar

