Naive Bayes with the Breast Cancer data

Karen Mazidi

In this notebook we compare Naive Bayes and logistic regression on the breast cancer data in package mlbench.

Load the data

The breast cancer data is in the mlbench package. There are 669 observations with 11 columns. Column 1 is an ID that will be ignored later, columns 2-10 are factors specifying information gleaned from bioposies. The final column is the label: benign or malignant. The class distribution is 458 benign to 241 malignant, about 64% benign to 36% malignant.

```
library(mlbench)
data(BreastCancer)
str(BreastCancer)
                    699 obs. of 11 variables:
  'data.frame':
                     : chr "1000025" "1002945" "1015425" "1016277" ...
##
   $ Id
   $ Cl.thickness
                     : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 5 5 3 6 4 8 1 2 2 4 ...
##
  $ Cell.size
                     : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<...: 1 4 1 8 1 10 1 1 1 2 ...
                     : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 4 1 8 1 10 1 2 1 1 ...
##
  $ Cell.shape
##
   $ Marg.adhesion : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 5 1 1 3 8 1 1 1 1 ...
  $ Epith.c.size
                    : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<...: 2 7 2 3 2 7 2 2 2 2 ...
##
   $ Bare.nuclei
                     : Factor w/ 10 levels "1", "2", "3", "4", ...: 1 10 2 4 1 10 10 1 1 1 ....
                     : Factor w/ 10 levels "1", "2", "3", "4", ...: 3 3 3 3 3 9 3 3 1 2 ...
   $ Bl.cromatin
   $ Normal.nucleoli: Factor w/ 10 levels "1","2","3","4",..: 1 2 1 7 1 7 1 1 1 1 ...
##
##
   $ Mitoses
                     : Factor w/ 9 levels "1", "2", "3", "4", ...: 1 1 1 1 1 1 1 5 1 ....
   $ Class
                     : Factor w/ 2 levels "benign", "malignant": 1 1 1 1 1 2 1 1 1 1 ...
summary(BreastCancer$Class)
##
      benign malignant
##
         458
```

Divide data into train, test

First remove the Id column, then divide into 80% train, 20% test.

```
set.seed(1234)
df <- BreastCancer[,-1] # remove ID
i <- sample(1:nrow(df), 0.8*nrow(df), replace=FALSE)
train <- df[i,]
test <- df[-i,]</pre>
```

logistic regression

Build a logistic regression model.

```
glm1 <- glm(Class~., data=train, family=binomial)</pre>
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(glm1)
##
## Call:
## glm(formula = Class ~ ., family = binomial, data = train)
## Deviance Residuals:
##
          Min
                         1Q
                                 Median
                                                   30
                                                               Max
                            -2.100e-08
                                                        4.278e-05
## -4.099e-05 -2.100e-08
                                           2.100e-08
##
## Coefficients:
##
                        Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                            6.385 165538.648
                                                 0.000
                                                          1.000
                           54.219 151485.142
                                                 0.000
                                                          1.000
## Cl.thickness.L
## Cl.thickness.Q
                           19.629 199108.155
                                                0.000
                                                          1.000
## Cl.thickness.C
                           -4.280 107373.266
                                                0.000
                                                          1.000
## Cl.thickness<sup>4</sup>
                           -7.838 151342.702
                                                0.000
                                                          1.000
## Cl.thickness<sup>5</sup>
                            9.077 148364.155
                                                0.000
                                                          1.000
## Cl.thickness<sup>6</sup>
                            5.817 220832.958
                                                0.000
                                                          1.000
## Cl.thickness^7
                           -5.236 160772.983
                                                 0.000
                                                          1.000
## Cl.thickness<sup>8</sup>
                          -27.742 104519.771
                                                 0.000
                                                          1.000
## Cl.thickness<sup>9</sup>
                            1.945 82671.331
                                                 0.000
                                                          1.000
## Cell.size.L
                          -19.072 299266.140
                                                0.000
                                                          1.000
## Cell.size.Q
                          -18.416 203837.115
                                                 0.000
                                                          1.000
## Cell.size.C
                           4.598 240915.106
                                                0.000
                                                          1.000
## Cell.size^4
                           33.112 313352.825
                                                 0.000
                                                          1.000
## Cell.size^5
                           30.762 139842.679
                                                          1.000
                                                0.000
## Cell.size^6
                           17.643 185171.691
                                                          1.000
                                                0.000
## Cell.size^7
                           14.657 233742.894
                                                0.000
                                                          1.000
## Cell.size^8
                           35.910 196991.493
                                                0.000
                                                          1.000
## Cell.size^9
                           25.312 222420.621
                                                0.000
                                                          1.000
## Cell.shape.L
                           65.177 278651.322
                                                 0.000
                                                          1.000
## Cell.shape.Q
                           11.994 209955.628
                                                 0.000
                                                          1.000
## Cell.shape.C
                          -12.236 221931.624
                                                 0.000
                                                          1.000
## Cell.shape<sup>4</sup>
                                                          1.000
                          -50.374 394995.528
                                                 0.000
## Cell.shape<sup>5</sup>
                          -71.246 297663.230
                                                 0.000
                                                          1.000
## Cell.shape^6
                          -35.971 167293.078
                                                 0.000
                                                          1.000
## Cell.shape^7
                          -19.564 127980.759
                                                0.000
                                                          1.000
## Cell.shape^8
                            8.277 139567.678
                                                0.000
                                                          1.000
## Cell.shape^9
                          -11.813 229864.717
                                                0.000
                                                          1.000
## Marg.adhesion.L
                           22.082 310523.466
                                                 0.000
                                                          1.000
## Marg.adhesion.Q
                            6.683 221485.925
                                                 0.000
                                                          1.000
## Marg.adhesion.C
                            9.599 404255.572
                                                 0.000
                                                          1.000
## Marg.adhesion<sup>4</sup>
                          -25.000 302006.356
                                                0.000
                                                          1.000
## Marg.adhesion<sup>5</sup>
                          -25.933 217459.738
                                                0.000
                                                          1.000
## Marg.adhesion^6
                            2.511 240574.406
                                                0.000
                                                          1.000
## Marg.adhesion 7
                           15.349 257923.317
                                                 0.000
                                                          1.000
## Marg.adhesion^8
                                                 0.000
                           4.714 234309.207
                                                          1.000
## Marg.adhesion 9
                           42.449 135949.401
                                                0.000
                                                          1.000
```

```
## Epith.c.size.L
                          39.687 315288.607
                                               0.000
                                                         1.000
## Epith.c.size.Q
                           5.045 230840.676
                                               0.000
                                                         1.000
                         -32.798 197765.956
## Epith.c.size.C
                                               0.000
                                                         1.000
## Epith.c.size<sup>4</sup>
                          -9.349 302469.279
                                                         1.000
                                               0.000
## Epith.c.size<sup>5</sup>
                         -38.673 422276.808
                                               0.000
                                                         1.000
## Epith.c.size^6
                         -44.869 438676.621
                                               0.000
                                                         1.000
## Epith.c.size^7
                         -28.939 250143.258
                                               0.000
                                                         1.000
## Epith.c.size^8
                           7.701 219323.587
                                               0.000
                                                         1.000
## Epith.c.size^9
                          -2.188 194706.971
                                               0.000
                                                         1.000
## Bare.nuclei2
                          -2.531 220207.064
                                               0.000
                                                         1.000
## Bare.nuclei3
                          17.034 86709.030
                                               0.000
                                                         1.000
                          27.799 101840.725
## Bare.nuclei4
                                               0.000
                                                         1.000
## Bare.nuclei5
                          41.710 28255.501
                                               0.001
                                                         0.999
## Bare.nuclei6
                          55.160 261690.910
                                               0.000
                                                         1.000
## Bare.nuclei7
                          -6.101 384591.603
                                               0.000
                                                         1.000
## Bare.nuclei8
                          29.658 229499.910
                                               0.000
                                                         1.000
## Bare.nuclei9
                          23.882 272442.586
                                               0.000
                                                         1.000
## Bare.nuclei10
                          32.931 142336.804
                                               0.000
                                                         1.000
                                                         1.000
## Bl.cromatin2
                           4.500 185587.959
                                               0.000
## Bl.cromatin3
                          18.073 125580.283
                                               0.000
                                                         1.000
## Bl.cromatin4
                          57.662 120071.762
                                               0.000
                                                         1.000
                          13.001 119608.454
## Bl.cromatin5
                                               0.000
                                                         1.000
## Bl.cromatin6
                           6.836 212062.515
                                               0.000
                                                         1.000
## Bl.cromatin7
                          22.880 126201.274
                                               0.000
                                                         1.000
## Bl.cromatin8
                           4.750 301582.646
                                               0.000
                                                         1.000
## Bl.cromatin9
                          23.598 282337.549
                                               0.000
                                                         1.000
## Bl.cromatin10
                           5.519 346407.750
                                                         1.000
                                               0.000
## Normal.nucleoli2
                          -7.712 150911.764
                                               0.000
                                                         1.000
## Normal.nucleoli3
                          25.460 157715.498
                                               0.000
                                                         1.000
## Normal.nucleoli4
                          -2.431 145578.568
                                               0.000
                                                         1.000
## Normal.nucleoli5
                          -1.970 266915.549
                                               0.000
                                                         1.000
## Normal.nucleoli6
                          17.058 136763.610
                                               0.000
                                                         1.000
## Normal.nucleoli7
                         -59.555 149577.941
                                               0.000
                                                         1.000
## Normal.nucleoli8
                         -22.763 150761.724
                                               0.000
                                                         1.000
## Normal.nucleoli9
                          31.634 329999.584
                                               0.000
                                                         1.000
## Normal.nucleoli10
                          31.950 257595.942
                                               0.000
                                                         1.000
## Mitoses2
                           2.583 95687.028
                                               0.000
                                                         1.000
## Mitoses3
                          16.032 267200.002
                                               0.000
                                                         1.000
## Mitoses4
                          25.354 239744.839
                                               0.000
                                                         1.000
## Mitoses5
                                                         1.000
                          -1.884 366428.154
                                               0.000
## Mitoses6
                         -44.471 942832.613
                                               0.000
                                                         1.000
## Mitoses7
                         -30.182 244876.140
                                               0.000
                                                         1.000
## Mitoses8
                           6.504 391179.580
                                               0.000
                                                         1.000
## Mitoses10
                          13.149 445847.800
                                               0.000
                                                         1.000
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 7.0934e+02
                                   on 545
                                            degrees of freedom
  Residual deviance: 1.6846e-08
                                   on 465
                                            degrees of freedom
     (13 observations deleted due to missingness)
## AIC: 162
##
## Number of Fisher Scoring iterations: 25
```

Test

```
Evaluate on the test data. The logistic regression model gets 91% accuracy.
probs1 <- predict(glm1, newdata=test, type="response")</pre>
pred1 <- ifelse(probs1>0.5, 2, 1)
print(table(pred1, test$Class))
##
## pred1 benign malignant
##
             86
                        39
##
       2
              5
acc1 <- mean(pred1==as.integer(test$Class), na.rm=TRUE)</pre>
## [1] 0.9124088
Examine the results using the caret package.
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
confusionMatrix(factor(pred1), factor(as.integer(test$Class)))
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 1 2
##
            1 86
            2 5 39
##
##
                  Accuracy: 0.9124
##
                     95% CI: (0.852, 0.9539)
##
##
       No Information Rate: 0.6642
##
       P-Value [Acc > NIR] : 8.633e-12
##
##
                      Kappa: 0.8015
##
    Mcnemar's Test P-Value : 0.7728
##
##
##
               Sensitivity: 0.9451
##
               Specificity: 0.8478
            Pos Pred Value: 0.9247
##
##
            Neg Pred Value: 0.8864
##
                Prevalence: 0.6642
##
            Detection Rate: 0.6277
##
      Detection Prevalence: 0.6788
##
         Balanced Accuracy: 0.8964
##
##
          'Positive' Class: 1
```

Build a Naive Bayes classifier

##

Use the same test and train data for comparison.

```
library(e1071)
#nb1 <- naiveBayes(train[,-10], train[,10])</pre>
nb1 <- naiveBayes(Class~., data=train)</pre>
summary(nb1)
##
             Length Class Mode
## apriori
             2
                    table numeric
## tables
             9
                    -none- list
                    -none- character
## levels
             2
## isnumeric 9
                    -none- logical
## call
                    -none- call
nb1
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
##
      benign malignant
## 0.6529517 0.3470483
##
## Conditional probabilities:
##
              Cl.thickness
## Y
                                                   3
               0.334246575 0.098630137 0.200000000 0.131506849 0.194520548
##
     benign
##
     malignant 0.015463918 0.015463918 0.056701031 0.056701031 0.164948454
##
              Cl.thickness
## Y
##
               0.035616438\ 0.002739726\ 0.002739726\ 0.000000000\ 0.000000000
     benign
##
     malignant 0.061855670 0.092783505 0.170103093 0.061855670 0.304123711
##
##
              Cell.size
                                      2
                                                   3
## Y
               0.835616438\ 0.082191781\ 0.057534247\ 0.010958904\ 0.000000000
##
     benign
##
     malignant 0.010309278 0.036082474 0.113402062 0.139175258 0.118556701
##
              Cell.size
## Y
                                                   8
               0.005479452 0.002739726 0.002739726 0.002739726 0.000000000
##
     benign
     malignant 0.103092784 0.082474227 0.113402062 0.015463918 0.268041237
##
##
##
              Cell.shape
## Y
                                      2
                                                   3
##
               0.761643836\ 0.117808219\ 0.082191781\ 0.021917808\ 0.002739726
##
     malignant 0.010309278 0.025773196 0.097938144 0.154639175 0.118556701
##
              Cell.shape
## Y
                          6
                                      7
                                                   8
                                                                9
                                                                           10
##
               0.005479452 0.005479452 0.002739726 0.000000000 0.000000000
     malignant 0.103092784 0.108247423 0.108247423 0.036082474 0.237113402
##
##
##
              Marg.adhesion
## Y
                                      2
                                                   3
                                                                            5
```

```
0.827397260 0.076712329 0.063013699 0.010958904 0.005479452
##
##
     malignant 0.149484536 0.097938144 0.103092784 0.118556701 0.072164948
##
              Marg.adhesion
                                      7
## Y
                                                   8
                                                                           10
##
               0.010958904 0.000000000 0.000000000 0.002739726 0.002739726
     malignant 0.072164948 0.051546392 0.082474227 0.020618557 0.231958763
##
##
##
              Epith.c.size
## Y
                          1
                                      2
                                                   3
##
               0.112328767 0.786301370 0.063013699 0.016438356 0.010958904
     benign
##
     malignant 0.005154639 0.092783505 0.201030928 0.139175258 0.149484536
              Epith.c.size
##
## Y
                                                   8
                                                                           10
               0.002739726 0.005479452 0.002739726 0.000000000 0.000000000
##
     malignant 0.154639175 0.036082474 0.082474227 0.010309278 0.128865979
##
##
##
              Bare.nuclei
## Y
                                                                            5
##
               0.866855524 0.048158640 0.036827195 0.014164306 0.022662890
     benign
     malignant 0.046632124 0.025906736 0.072538860 0.056994819 0.072538860
##
##
              Bare.nuclei
## Y
               0.000000000\ 0.000000000\ 0.005665722\ 0.000000000\ 0.005665722
##
     malignant 0.020725389 0.031088083 0.088082902 0.036269430 0.549222798
##
##
##
              Bl.cromatin
## Y
                                      2
                                                   3
                                                                            5
                          1
               0.339726027 0.358904110 0.265753425 0.013698630 0.008219178
##
     malignant 0.005154639 0.030927835 0.154639175 0.118556701 0.134020619
##
##
              Bl.cromatin
                                      7
## Y
                                                   8
##
     benign
               0.002739726 0.010958904 0.000000000 0.000000000 0.000000000
     malignant 0.036082474 0.278350515 0.108247423 0.046391753 0.087628866
##
##
##
              Normal.nucleoli
## Y
                                      2
                                                   3
##
               0.893150685 0.057534247 0.021917808 0.002739726 0.002739726
##
     malignant 0.175257732 0.030927835 0.139175258 0.077319588 0.077319588
##
              Normal.nucleoli
## Y
                                                   8
                          6
               0.005479452 0.005479452 0.008219178 0.002739726 0.000000000
##
     benign
##
     malignant 0.072164948 0.046391753 0.077319588 0.041237113 0.262886598
##
##
              Mitoses
## Y
                                                   3
               0.978082192\ 0.013698630\ 0.002739726\ 0.000000000\ 0.000000000
##
     malignant 0.525773196 0.108247423 0.134020619 0.051546392 0.025773196
##
##
              Mitoses
## Y
                                      7
                0.000000000 \ 0.002739726 \ 0.002739726 \ 0.000000000 
##
     benign
     malignant 0.015463918 0.041237113 0.030927835 0.067010309
##
```

```
Evaluate on the test data
The Naive Bayes model gets 96% accuracy.
pred2 <- predict(nb1, newdata=test[,-10], type="class")</pre>
table(pred2, test$Class)
##
## pred2
               benign malignant
##
     benign
                    87
                     6
                              47
     malignant
acc2 <- mean(pred2==test$Class)</pre>
acc2
## [1] 0.9571429
Evaluate the results with the caret package.
confusionMatrix(pred2, test$Class, positive="malignant")
## Confusion Matrix and Statistics
##
##
              Reference
## Prediction benign malignant
##
     benign
                    87
##
     malignant
                     6
                              47
##
##
                   Accuracy : 0.9571
##
                     95% CI: (0.9091, 0.9841)
##
       No Information Rate : 0.6643
##
       P-Value [Acc > NIR] : < 2e-16
##
##
                      Kappa: 0.9069
##
##
    Mcnemar's Test P-Value: 0.04123
##
##
               Sensitivity: 1.0000
##
               Specificity: 0.9355
##
            Pos Pred Value: 0.8868
##
            Neg Pred Value: 1.0000
##
                 Prevalence: 0.3357
##
            Detection Rate: 0.3357
##
      Detection Prevalence: 0.3786
##
         Balanced Accuracy: 0.9677
##
##
          'Positive' Class : malignant
##
Set cut-off points for predictors
```

```
df2 <- df[, c(2:3, 10)]
df2$Cell.size <- as.factor(ifelse(df$Cell.size > 5, 1, 0))
df2$Cell.shape <- as.factor(ifelse(df$Cell.shape > 5, 1, 0))
str(df2)
```

```
## 'data.frame': 699 obs. of 3 variables:
```

```
## $ Cell.size : Factor w/ 2 levels "0","1": 1 1 1 2 1 2 1 1 1 1 1 ...
## $ Cell.shape: Factor w/ 2 levels "0","1": 1 1 1 2 1 2 1 1 1 1 1 ...
## $ Class : Factor w/ 2 levels "benign","malignant": 1 1 1 1 1 2 1 1 1 1 ...
train2 <- df2[i,]
test2 <- df2[-i,]</pre>
```

Re-run logistic regression

##

```
glm2 <- glm(Class~., data=train2, family=binomial)</pre>
summary(glm2)
##
## Call:
## glm(formula = Class ~ ., family = binomial, data = train2)
## Deviance Residuals:
            1Q Median
       Min
                                   3Q
                                           Max
## -3.0635 -0.5672 -0.5672 0.1357
                                        1.9527
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.7457
                          0.1368 -12.764 < 2e-16 ***
                            0.5123 6.166 7.02e-10 ***
## Cell.size1
                3.1586
## Cell.shape1
                3.2705
                            0.5084
                                    6.433 1.25e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 721.78 on 558 degrees of freedom
## Residual deviance: 403.81 on 556 degrees of freedom
## AIC: 409.81
##
## Number of Fisher Scoring iterations: 6
probs3 <- predict(glm2, newdata=test2, type="response")</pre>
pred3 <- ifelse(probs3>0.5, 2, 1)
print(table(pred3, test$Class))
## pred3 benign malignant
##
       1
             92
                       10
                       37
##
       2
              1
acc3 <- mean(pred3==as.integer(test2$Class), na.rm=TRUE)</pre>
acc3
## [1] 0.9214286
Re-run naive Bayes
nb2 <- naiveBayes(Class~., data=train2)</pre>
nb2
```

```
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## A-priori probabilities:
      benign malignant
##
## 0.6529517 0.3470483
##
## Conditional probabilities:
##
              Cell.size
## Y
##
               0.98630137 0.01369863
    benign
##
     malignant 0.41752577 0.58247423
##
##
              Cell.shape
## Y
                        0
##
               0.98630137 0.01369863
     benign
     malignant 0.40721649 0.59278351
pred4 <- predict(nb2, newdata=test2, type="class")</pre>
table(pred4, test$Class)
               benign malignant
## pred4
##
                   92
                             10
    benign
                             37
    malignant
acc4 <- mean(pred4==test$Class)</pre>
acc4
## [1] 0.9214286
```