Лекции по математическому анализу (1 курс, 25-26)

github.com/int28t/hse-se-lecture-notes

Содержание

1	Ино	формация	3
	1.1	Оценка	3
2	Фој	рмальная логика	3
	2.1	Кванторы	3
	2.2	Метод математической индукции	3
	2.3	Доказательство от противного	4
	2.4	Достаточность и необходимость	4
3	Kon	мбинаторика и Бином Ньютона	5
	3.1	Бином Ньютона	5
	3.2	Комбинаторика	5
4	Пос	следовательности	5
	4.1	Способы задания последовательности	5
	4.2	Предел последовательности	6
	4.3	Теорема об ограниченности сходящейся последовательности	8
	4.4	Арифметика предела	9
	4.5	Бесконечно большая и бесконечно малая последовательности	
	4.6	Предельный переход в неравенствах	
	4.7	Теорема о зажатой последовательности	
	4.8		14
5	Дей	иствительные числа	15
	5.1		15
	5.2	1 1	$\frac{16}{16}$
	5.3		17
	5.4	Предел рекуррентно заданных последовательностей	
	5.5		18
6	Под	цпоследовательности	18
	6.1		19
	6.2		19
	6.3	Свойства частичных пределов	
	6.4	Теорема Больцано-Вейерштрасса	
	6.5		21

Фун	якции	21
7.1	Функция. График функции	21
7.2	Инъекция, сюрьекция, биекция	21
7.3	Обратимость функции	21
7.4	Предел функции по Коши	21
	7.1 7.2 7.3 7.4	Функции 7.1 Функция. График функции 7.2 Инъекция, сюрьекция, биекция 7.3 Обратимость функции 7.4 Предел функции по Коши 7.5 Предел функции по Гейне

1 Информация

1.1 Оценка

Тут когда-нибудь появится оценка

2 Формальная логика

Определение

Высказывание - словестное утверждение, про которое можно сказать, истинное оно или ложное.

Обозначение: заглавные латинские буквы: $A, B, C \dots$

Определение

Предикат - высказывание, зависящее от переменной (при этом не являющееся высказыванием)

Пример

$$B(x): x + 5 = 10$$

2.1 Кванторы

- ∀ всеобщности
- ∃ существования

2.2 Метод математической индукции

$$\forall n \in \mathbb{N} \ P(n)$$
 — истинно, если:

- 1) P(1) истинно (база)
- 2) $\forall n \in \mathbb{N} \ (P(n) \to P(n+1))$ истинно (шаг)

Пример

Требуется доказать

$$\forall n \in \mathbb{N} \ \forall x \geqslant -1 : (1+x)^n \geqslant 1+xn$$
 — неравенство Бернулли

Докажем с помощью ММИ

$$\forall n \in \mathbb{N} \ \forall x \geqslant -1 \ \underbrace{(1+x)^n \geqslant 1 + xn}_{Q(n)}$$

1)
$$\forall x \geqslant -1 \ (1+x) \geqslant 1+x$$
 - истина

2) Предположим $(1+x)^{n_0} \geqslant 1+xn_0$ - истина. Докажем, что $(1+x)^{n_0+1} \geqslant 1+x(n_0+1)$:

$$(1+x)^{n_0+1} \ge 1 + x(n_0+1)$$

$$(1+x)^{n_0+1} = (1+x)^{n_0} \underbrace{(1+x)}_{\ge 0} \ge (1+x)(1+xn_0) =$$

$$= 1 + x + xn_0 + \underbrace{x^2 n_0}_{\ge 0} \ge 1 + x + xn_0 = 1 + x(n_0+1)$$

2.3 Доказательство от противного

Обозначения: \overline{A} - отрицание к A

Пример

Доказать, что количество простых чисел бесконечно

Пп (предположим противное). Тогда количество простых чисел конечное число:

$$n_1, \ldots, n_k$$

Рассмотрим следующее число:

$$m=n_1\cdot\ldots\cdot n_k+1,\,m\in\mathbb{N},\,m>n_i\;\forall i=\overline{1,k}\;$$
то есть $m\neq n_i\;\forall i=\overline{1,k}$

Следовательно, m - составное. Тогда:

$$m = n_1^{\alpha_1} \cdot \ldots \cdot n_k^{\alpha_k}$$

$$\exists n_j: m \ \vdots \ n_j$$

Но $m=n_1\cdot\ldots\cdot n_k+1$ и при делении на n_i $\forall i=\overline{1,k}$ дает остаток 1 (\perp) Утверждение доказано

2.4 Достаточность и необходимость

3 Комбинаторика и Бином Ньютона

3.1 Бином Ньютона

$$(a+b)^{n} = \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k}$$

$$C_n^0 a^0 b^{n-0} + C_n^1 a^1 b^{n-1} + \ldots + C_n^n a^n b^{n-n}$$

где C_n^0, C_n^1, \ldots - биномиальные коэффициенты

3.2 Комбинаторика

Определение

Перестановка - упорядоченное множество размера n # перестановок = n!

Определение

Размещения - упорядоченное подмножество размера k множества размера n # размещений = $\frac{n!}{(n-k)!} = A_n^k$

Определение

Сочетания - неупорядоченное подмножество размера k множества размера n Одному сочетанию соответствуют k! размещений

$$\frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!} = C_n^k$$

4 Последовательности

Определение

Последовательность - индексированный набор чисел $\{a_n\}_{n\in\mathbb{N}}$

4.1 Способы задания последовательности

- 1) Формульный $a_n = n^2 + n 7$
- 2) Рекуррентный $a_1=1, a_2=1, a_n=a_{n-1}+a_{n-2}$

Определение

Последовательность называется ограниченной, если

$$\exists c \ \forall n \ |a_n| \leqslant c \ = P(\{a_n\})$$

5

И неограниченной, если

$$\forall c \ \exists n(c) \ |a_{n(c)}| > c$$

Пример

$$a_n = \frac{3n^2 + 5n - 2}{2n^2 + n + 1}$$

$$\left| \frac{3n^2 + 5n - 2}{2n^2 + n + 1} \right| \leqslant \left| \frac{3n^2 + 5n^2}{2n^2} \right| \leqslant \left| \frac{8n^2}{2n^2} \right| \leqslant c$$

$$4 \leqslant c$$

$$\exists c = \pi^2 \ \forall n \ \left| \frac{3n^2 + 5n - 2}{2n^2 + n + 1} \right| \leqslant c$$

4.2 Предел последовательности

Определение

Окрестность точки A: $U_{\varepsilon}(A) = (A - \varepsilon; A + \varepsilon)$

Определение

$$\lim_{n\to\infty} a_n = A$$
, если

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N \; |a_n - A| < \varepsilon$$

$$\updownarrow$$

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N \; -\varepsilon < a_n - A < \varepsilon$$

$$\updownarrow$$

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N \; A - \varepsilon < a_n < A + \varepsilon$$

$$\updownarrow$$

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N \; A - \varepsilon < a_n < A + \varepsilon$$

Пример

Доказать, что
$$\lim_{n\to\infty}\frac{1}{n}=0$$

$$\forall \varepsilon>0\ \exists N\in\mathbb{N}\ \forall n>N\ \left|\frac{1}{n}-0\right|<\varepsilon$$

$$\frac{1}{n}<\varepsilon$$

$$n>\frac{1}{\varepsilon}$$

$$N(\varepsilon)=\left\lceil\frac{1}{\varepsilon}+1\right\rceil$$

Определение

Последовательность называется сходящейся, если у нее есть предел

$$\exists a: \lim_{n\to\infty} a_n = A$$

4.3 Теорема об ограниченности сходящейся последовательности

Теорема

Если последовательность сходящаяся, то она ограничена

Доказательство

Рассмотрим $\{a_n\}$

$$\exists A \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ |a_n - A| < \varepsilon$$

$$\exists A \ \exists N(1) \in \mathbb{N} \ \forall n > N(1) \ |a_n - A| < 1 \Leftrightarrow a_n \in U_1(A)$$

Очевидно, что элементов a_k , где k <= N(1) конечное число. А для всех элементов $a_n, n > N(1)$ выполняется $|a_n - A| < 1$. Тогда можем взять нижнюю границу $min\{a_1, \ldots, a_{N(1)}, A-1\}$ и верхнюю $max\{a_1, \ldots, a_{N(1)}, A+1\}$.

Рис. 1: К доказательству

Теорема

У последовательности может быть только 1 предел

Доказательство

Пп \exists хотя бы $2 \lim : A \bowtie B, A \neq B$

$$\forall \varepsilon > 0 \ \exists N_1(\varepsilon) \in \mathbb{N} \ \forall n > N_1(\varepsilon) \ a_n \in U_{\varepsilon}(A)$$

$$\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \in \mathbb{N} \ \forall n > N_2(\varepsilon) \ a_n \in U_{\varepsilon}(B)$$

Возьмем
$$\varepsilon_0 = \frac{|A-B|}{3}$$
 и $n_0 = N_1(\varepsilon_0) + N_2(\varepsilon_0)$

Получаем

$$a_{n_0} \in U_{\varepsilon_0}(A), a_{n_0} \in U_{\varepsilon_0}(B)$$

Но

$$U_{\varepsilon_0}(A) \cap U_{\varepsilon_0}(B) = \emptyset$$

Противоречие

4.4 Арифметика предела

$$\lim_{n\to\infty}a_n=A,\ \lim_{n\to\infty}b_n=B,\ \text{to}$$

$$1) \lim_{n \to \infty} (a_n + b_n) = A + B$$

$$2) \lim_{n \to \infty} (a_n \cdot b_n) = A \cdot B$$

3)
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B} \ (b_n \neq 0; B \neq 0)$$

4)
$$\lim_{n \to \infty} \sqrt{a_n} = \sqrt{A} \ (a_n \geqslant 0; A \geqslant 0)$$

Доказательство свойства 1

$$\forall \varepsilon > 0 \ \exists N_1(\varepsilon) \in \mathbb{N} \ \forall n > N_1(\varepsilon) \ |a_n - A| < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \in \mathbb{N} \ \forall n > N_2(\varepsilon) \ |b_n - B| < \varepsilon$$

Хотим

$$\forall \varepsilon > 0 \; \exists N_3(\varepsilon) \in \mathbb{N} \; \forall n > N_3(\varepsilon) \; | (a_n + b_n) - (A + B) | < \varepsilon$$

$$\updownarrow$$

$$\forall \varepsilon > 0 \; \exists N_3(\varepsilon) \in \mathbb{N} \; \forall n > N_3(\varepsilon) \; | (a_n - A) + (b_n - B) | < \varepsilon$$

$$\uparrow$$

$$\forall \varepsilon > 0 \; \exists N_3(\varepsilon) \in \mathbb{N} \; \forall n > N_3(\varepsilon) \; \underbrace{|a_n - A|}_{<\frac{\varepsilon}{3}} + \underbrace{|b_n - B|}_{<\frac{2\varepsilon}{3}} < \varepsilon$$

$$\forall n > N_1\left(\frac{\varepsilon}{3}\right) \; \forall n > N_2\left(\frac{2\varepsilon}{3}\right)$$

$$N_3(\varepsilon) = \max\left\{N_1\left(\frac{\varepsilon}{3}\right), N_2\left(\frac{2\varepsilon}{3}\right)\right\}$$

Примечание: Доказательства свойств 2 и 3, рассмотренные далее, были выведены после доказательства теоремы о произведении б.м. и огр. последовательностей

Доказательство свойства 2

Хотим

$$\lim_{n \to \infty} (a_n \cdot b_n) = A \cdot B$$

По теореме о связи предела с бесконечно малой последовательностью

$$\alpha_n = (a_n - A) - \text{б.м.}, \ \beta_n = (b_n - B) - \text{б.м.}.$$

Хотим

$$(a_nb_n - AB)$$
 — б.м.

$$(a_n b_n - AB) = (\alpha_n + A)(\beta_n + B) - AB = \alpha_n \beta_n + \alpha_n B + A\beta_n + AB - AB =$$

$$=\underbrace{\alpha_{n}\beta_{n}}_{6.\text{M.}} + \underbrace{\alpha_{n}B}_{6.\text{M.}} + \underbrace{A}_{\text{Orp}} \underbrace{\beta_{n}}_{6.\text{M.}} = 6.\text{M.} + 6.\text{M.} + 6.\text{M.} = 6.\text{M.}$$

Доказательство свойства 3

Хотим

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B} \ (b_n \neq 0; B \neq 0)$$

По теореме о связи предела с бесконечно малой последовательностью

$$\alpha_n = (a_n - A) - 6.\text{M.}, \ \beta_n = (b_n - B) - 6.\text{M.}$$

Хотим

$$\frac{a_n}{b_n} - \frac{A}{B} - 6.\text{M}.$$

$$\frac{a_n}{b_n} - \frac{A}{B} = \frac{\alpha_n + A}{\beta_n + B} - \frac{A}{B} = \frac{(\alpha_n + A)B - A(\beta_n + B)}{(\beta_n + B)B} =$$

$$= \frac{(\alpha_n + A)B - A(\beta_n + B)}{(\beta_n + B)B} = \frac{\alpha_n B + AB - A\beta_n - AB}{b_n B} = \frac{\alpha_n B - A\beta_n}{b_n B} =$$

$$= \underbrace{\frac{1}{b_n} \cdot \frac{1}{B}}_{\text{orp } \cdot \text{ orp}} \cdot \underbrace{(\alpha_n B - A\beta_n)}_{6.\text{M}} = 6.\text{M}.$$

4.5 Бесконечно большая и бесконечно малая последовательности

Определение

Бесконечно малой (б.м.) последовательностью называют последовательность $\{a_n\}_{n\in\mathbb{N}}$ такую что, $\lim_{n\to\infty}a_n=0$

Определение

Бесконечно большой (б.б.) последовательностью называют последовательность $\{b_n\}_{n\in\mathbb{N}}$ такую что, $\lim_{n\to\infty}b_n=\infty$

$$\forall M > 0 \; \exists N(M) \in \mathbb{N} \; \forall n > N(M) \; |b_n| > M$$
$$b_n > M \; (+\infty)$$
$$b_n < M \; (-\infty)$$

Теорема

$$\frac{1}{6.6} = 6.M.$$

Доказательство

Пусть b_n - б.б. Тогда

$$\forall M > 0 \ \exists N_1(M) \in \mathbb{N} \ \forall n > N_1(M) \ |b_n| > M$$

Хотим
$$a_n = \frac{1}{b_n}$$
 - б.м.:

$$\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n > N_2(\varepsilon) \ |a_n| < \varepsilon$$

$$\left|\frac{1}{b_n}\right| < \varepsilon$$

$$|b_n| > \frac{1}{\varepsilon}$$

Возьмем
$$N_2(\varepsilon) = N_1\left(\frac{1}{\varepsilon}\right) + 1$$

Теорема

$$б.м. \cdot огр. = б.м.$$

Доказательство

Хотим $a_n \cdot b_n = c_n$, где a_n, c_n - б.м., b_n - огр.

$$\forall \varepsilon > 0 \ \exists N_1(\varepsilon) \in \mathbb{N} \ \forall n > N_1(\varepsilon) \ |a_n| < \varepsilon$$

$$\exists c \ \forall n \in \mathbb{N} \ |b_n| \leqslant c$$

Хотим:

$$\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \in \mathbb{N} \ \forall n > N_2(\varepsilon) \ |a_n \cdot b_n| < \varepsilon$$

 \uparrow

$$|a_n| \cdot |b_n| < \varepsilon$$

$$|a_n| \cdot c < \varepsilon$$

$$|a_n| < \frac{\varepsilon}{c}$$

Возьмем $N_2(\varepsilon) = N_1\left(\frac{\varepsilon}{c}\right)$

Пример

6.6. + 6.6.

Мы точно не можем сказать, чем будет являться эта сумма. Например n+(-n)=0 и n+n=2n

Пример

б.б. + огр. = б.б.

Покажем, что это так

Хотим: $b_n + c_n = u_n$ соответственно. Тогда:

$$\forall M > 0 \ \exists N(M) \in \mathbb{N} \ \forall n > N(M) \ |b_n| > M$$

$$\exists C > 0 \ \forall n \in \mathbb{N} \ |c_n| \leqslant C$$

Хотим:

$$\forall K > 0 \ \exists N_2(K) \in \mathbb{N} \ \forall n > N_2(K) \ |b_n + c_n| > K$$

Так, как $|x + y| \ge |x| - |y|$:

$$|b_n| - |c_n| > K$$

$$|b_n| - C > K$$

$$|b_n| > K + C$$

Возьмем $N_2(K) = N(K+C)$

Теорема

$$\lim_{n \to \infty} a_n = A \Leftrightarrow (a_n - A) = \alpha_n$$
 - бесконечно малая

Доказательство

$$\forall \varepsilon > 0 \ \exists N_1(\varepsilon) \in \mathbb{N} \ \forall n > N_1(\varepsilon) \ |a_n - A| < \varepsilon$$

Хотим

$$\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \in \mathbb{N} \ \forall n > N_2(\varepsilon) \ |(a_n - A) - 0| < \varepsilon$$

$$N_2(\varepsilon) = N_1(\varepsilon)$$

Примечание

Теперь можно спокойно доказать свойство 2) из арифметики пределов

Примечание

Произведение бесконечно малых - бесконечно малая последовательность. Так как можно представить одну из них как ограниченную и использовать теорему выше

Определение

Назовем последовательность d_n **отделимой от нуля**, если:

$$\exists \delta > 0 \ \forall n \in \mathbb{N} \ |d_n| \geqslant \delta$$

Пример

 $(-1)^n$

Теорема

$$\frac{1}{\text{огр}} = \text{отделима от нуля}, \frac{1}{\text{отделима от нуля}} = \text{огр}$$

Доказательство

$$\exists \delta > 0 \ \forall n \in \mathbb{N} \ |d_n| \geqslant \delta$$

$$u_n = \frac{1}{d_n}, \ \exists c > 0 \ \forall n \in \mathbb{N} \ |u_n| \leqslant c$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Возьмем $c=\frac{1}{\delta}.$ Тогда $|d_n|\geqslant \delta$ верно $\forall n\in\mathbb{N}$

Теорема

Если $\lim_{n\to\infty}u_n=U;\ u_n,U\neq 0,$ то u_n отделима от нуля

Доказательство

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} \ \forall n > N(\varepsilon) \ |u_n - U| < \varepsilon$$

Хотим

$$\exists \delta > 0 \ \forall n \in \mathbb{N} \ |u_n| \geqslant \delta$$

Возьмем $\varepsilon_0 = \frac{|U|}{2}$

$$\exists N_0 = N\left(\frac{|U|}{2}\right) = N(\varepsilon_0)$$

$$\forall n > N_0 \ u_n \in U_{\frac{|U|}{2}}(U)$$

Очевидно, что существует конечное число $u_k,\,k\leqslant N(\varepsilon_0),$ причем $u_k\neq 0$

Возьмем
$$\delta = min\{|u_1|, |u_2|, \dots, \frac{|U|}{2}\}$$

4.6 Предельный переход в неравенствах

Теорема

Если
$$\exists N_0 \ \forall n > N_0 \ a_n > b_n$$
 и $a_n \underset{n \to \infty}{\longrightarrow} A$ и $b_n \underset{n \to \infty}{\longrightarrow} B$, то $A \geqslant B$

Доказательство

Пп
$$A < B$$
. Возьмем $\varepsilon_0 = \frac{B - A}{2}$

$$\exists N_1(\varepsilon_0) \ \forall n > N_1(\varepsilon_0) \ a_n \in U_{\varepsilon_0}(A)$$

$$\exists N_2(\varepsilon_0) \ \forall n > N_2(\varepsilon_0) \ b_n \in U_{\varepsilon_0}(B)$$

Возьмем $n_0 = N_1(\varepsilon_0) + N_2(\varepsilon_0) + N_0$ Тогда по условию $a_{n_0} > b_{n_0}$, но также $a_{n_0} < b_{n_0}$ (так как окрестность a по предположению левее окрестности b). Получили противоречие

4.7 Теорема о зажатой последовательности

Теорема о зажатой последовательности

Если $\exists N_0 \ \forall n > N_0 \ a_n \leqslant c_n \leqslant d_n$, а также $a_n \underset{n \to \infty}{\to} A$ и $d_n \underset{n \to \infty}{\to} A$, то $c_n \underset{n \to \infty}{\to} A$

Доказательство

$$a_n \underset{n \to \infty}{\to} A; \ \forall \varepsilon > 0 \ \exists N_1(\varepsilon) \ \forall n > N_1(\varepsilon) \ A - \varepsilon < a_n < A + \varepsilon$$

$$d_n \underset{n \to \infty}{\to} A; \ \forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n > N_2(\varepsilon) \ A - \varepsilon < d_n < A + \varepsilon$$

Хотим

$$c_n \underset{n \to \infty}{\to} A; \ \forall \varepsilon > 0 \ \exists N_3(\varepsilon) \ \forall n > N_3(\varepsilon) \ A - \varepsilon < c_n < A + \varepsilon$$

Получаем

$$\underbrace{A - \varepsilon}_{\forall n > N_1(\varepsilon)} a_n \underbrace{\leqslant c_n \leqslant}_{\forall n > N_0} d_n \underbrace{\leqslant A + \varepsilon}_{\forall n > N_2(\varepsilon)}$$

Возьмем $N_3(\varepsilon) = max\{N_1(\varepsilon), N_2(\varepsilon), N_0\}$

4.8 Список хороших пределов

1.
$$\lim_{\substack{n \to \infty \\ n \to \infty}} q^n = 0, |q| < 1$$
$$\lim_{\substack{n \to \infty \\ n \to \infty}} q^n = +\infty, |q| > 1$$

2.
$$\lim_{n \to \infty} \sqrt[n]{a} = 1, a > 0$$

$$3. \lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$4. \lim_{n \to \infty} \frac{n^a}{b^n} = 0$$

5.
$$\lim_{n\to\infty}\frac{b^n}{n!}=0$$

6.
$$\lim_{n \to \infty} \frac{\ln n}{n^a} = 0, \ a > 0$$

5 Действительные числа

Определение

Множество действительных чисел - это четверка ($\mathbb{R};+;\times;\leqslant$) (множество, 2 операции, 1 отношение)

Примечание

Отличие операции от отношения. Для того чтобы задать операцию, нужно поставить в соответствие для каждой пары чисел число ($\mathbb{R} \times \mathbb{R} \to \mathbb{R}$). В отношении для каждой пары чисел нужно поставить в соответствие 0 или 1 ($\mathbb{R} \times \mathbb{R} \to \{0,1\}$).

5.1 Аксиома непрерывности

 $A, B \subset \mathbb{R}$

- 1) $A, B \neq \emptyset$
- $2) \ \forall x \in A \ \forall y \in B \ x \leqslant y$

Тогда $\exists \xi \in \mathbb{R} : \forall x \in A \ \forall y \in B \ x \leqslant \xi \leqslant y$

Определение

Верхней гранью множества $A \subset \mathbb{R}$ называется число $C \in \mathbb{R}$, такое что $\forall x \in A \ x \leqslant C$

Определение

Точной верхней гранью $(sup\ A)$ ограниченного сверху множества A называют наименьшую верхнюю грань множества A

Определение

Нижней гранью множества $A\subset\mathbb{R}$ называется число $D\in\mathbb{R}$, такое что $\forall x\in A\ x\geqslant D$

Определение

Точной нижней гранью $(inf\ A)$ ограниченного снизу множества A называют наибольшую нижнюю грань множества A

Пример

A=(-1;0). Множество верхних граней: $[0;+\infty),$ $\sup A=0$

Теорема

У ограниченного сверху множества есть точная верхняя грань

Доказательство

$$\begin{array}{l} A-\text{ огр. сверху, } A\neq\varnothing\\ B=\{\text{верхние грани A}\},\, B\neq\varnothing\\ \forall x\in A\; \forall y\in B\; x\leqslant y \end{array} \right]\; \exists \xi\in\mathbb{R}: \forall x\in A\; \forall y\in B\; x\leqslant\xi\leqslant y$$

- 1) Из $x \leqslant \xi$ получаем, что ξ верхняя грань $A \Rightarrow \xi \in B$
- 2) Так, как $\xi \leqslant y$, то ξ минимальный элемент из B. $\boxed{\xi = \sup A}$

Определение

Точной верхней гранью неограниченного сверху множества назовем $+\infty$

5.2 Теорема Вейерштрасса

Определение

 $\{a_n\}$ - **неубывает**, если $a_{n+1} \geqslant a_n$

Определение

 $\{a_n\}$ - возрастает, если $a_{n+1} > a_n$

Пример (3-й способ доказательства монотонности)

Доказать, что последовательность $a_n = \left(1 + \frac{1}{n}\right)^n$ строго возрастает Необходимо доказать: $\forall n \ a_{n+1} > a_n$

$$1 < \frac{a_{n+1}}{a_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n} = \left(\frac{n+2}{n+1}\right)^{n+1} \cdot \left(\frac{n}{n+1}\right)^n =$$
$$= \left(\frac{n(n+2)}{(n+1)^2}\right)^n \cdot \left(\frac{n+2}{n+1}\right)$$

По неравенству Бернулли $\forall n \in \mathbb{N} \ \forall x \geqslant -1 \ (1+x)^n \geqslant 1+xn$

$$\left(\frac{n(n+2)}{(n+1)^2}\right)^n \cdot \left(\frac{n+2}{n+1}\right) = \left(\frac{n^2+2n}{n^2+2n+1}\right)^n \cdot \left(\frac{n+2}{n+1}\right) =$$

$$= \left(1 + \underbrace{\left(-\frac{1}{(n+1)^2}\right)}_{\geqslant -1}\right)^n \cdot \left(\frac{n+2}{n+1}\right) \geqslant \left(1 - \frac{n}{(n+1)^2}\right) \cdot \left(\frac{n+2}{n+1}\right) =$$

$$= \frac{(n^2+n+1)(n+2)}{(n+1)^3} = \frac{n^3+3n^2+3n+2}{n^3+3n^2+3n+1} > 1$$

Теорема Вейерштрасса

Если $\{a_n\}$ неубывает и ограничена сверху, то она сходится

Доказательство

$$\{a_n\} = A \neq \emptyset$$
, огр. сверху

$$\exists sup \ A = a \in \mathbb{R}$$

Хотим доказать: $a_n \xrightarrow[n \to \infty]{} A$

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \ \forall n > N(\varepsilon) \ \underbrace{|a_n - A|}_{\leqslant 0} < \varepsilon$$

$$A - a_n < \varepsilon$$

$$a_n > A - \varepsilon \Leftrightarrow a_{N(\varepsilon)+1} > A - \varepsilon$$

Тогда докажем:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} \ a_{N(\varepsilon)+1} > A - \varepsilon$$

Пп

$$\exists \varepsilon_0 > 0 \ \forall N \in \mathbb{N} \ a_{N+1} \leqslant A - \varepsilon_0$$

$$\uparrow \uparrow$$

$$\exists \varepsilon_0 > 0 \ \forall n \in \mathbb{N} \ a_n \leqslant A - \varepsilon_0$$

Получаем, что самая маленькая верхняя граница = $A - \varepsilon_0$, но $\sup a_n = A$. \bot

Контрпример (Если $\{a_n\}$ сходится, то необязательно она неубывает)

$$a_n = \frac{\sin n}{2^n} \underset{n \to \infty}{\to} 0$$

5.3 Второй замечательный предел

Теорема о втором замечательном пределе

$$\exists \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Доказательство

Ранее мы доказали, что данная последовательность неубывает.

$$\left(1 + \frac{1}{n}\right)^n = \left(\frac{1}{n} + 1\right)^n = \sum_{k=0}^n C_n^k \left(\frac{1}{n}\right)^k 1^{n-k} =$$

$$= 1 + \frac{n!}{(n-1)! \ 1!} \cdot \frac{1}{n} + \dots + \frac{n!}{(n-k)! \ k!} \cdot \frac{1}{n^k} + \dots =$$

$$= 1 + 1 + \dots + \underbrace{\frac{n}{n}}_{\leqslant 1} \cdot \underbrace{\frac{n-1}{n}}_{\leqslant 1} \cdot \dots \cdot \underbrace{\frac{n-k+1}{n}}_{\leqslant 1} \cdot \frac{1}{k!} + \dots < 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$$

Напоминение о телескопических суммах:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{n+1}$$

Хотим получить нечто похожее, тогда выкинем из каждого знаменателя все множители, кроме последних двух:

$$1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{n!} \underbrace{<}_{n \ge 4} 2 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{(n-1) \cdot n} = 2 + \left(1 - \frac{1}{n}\right) < 3$$

Следствие

$$\lim_{n \to \infty} \left(1 + \frac{1}{kn} \right)^n = e^{\frac{1}{k}}$$

Доказательство

$$\lim_{n\to\infty}\left(1+\frac{1}{kn}\right)^n=\lim_{n\to\infty}\left(\left(1+\frac{1}{kn}\right)^{nk}\right)^{\overline{k}}$$

$$\left(1+\frac{1}{kn}\right)^{nk}-\text{подпоследовательность}\,\left(1+\frac{1}{n}\right)^n.$$
 Значит, она тоже сходится к e Получаем:

$$\left(\left(1 + \frac{1}{kn}\right)^{nk}\right)^{\frac{1}{k}} = e^{\frac{1}{k}}$$

5.4 Предел рекуррентно заданных последовательностей

Для того чтобы найти пример рекуррентно заданных последовательностей

Шаг 1: Проверить, что последовательность сходится (можно пытаться делать через теорему Вейерштрасса или критерий Коши)

Шаг 2: Найти предел используя арифметику пределов

5.5 Постоянная Эйлера

6 Подпоследовательности

Определение

Подпоследовательностью последовательности $\{a_n\}$ называется последовательность $\{b_k\}$, такая что $b_k=a_{n_k}$, где n_k - строго возрастающая последовательность номеров (\mathbb{N})

Замечание

$$n_k \geqslant k$$

Пример

$$a_n = \sin \frac{\pi n}{2}$$

$$b_k = a_{4k} = \sin 2\pi k \equiv 0$$

$$c_k = a_{4k-1} = \sin \frac{\pi (4k-1)}{2} \equiv -1$$

$$d_k = a_{2k+1} = \sin \frac{\pi (2k+1)}{2} = (-1)^k$$

6.1 Частичные пределы

Определение

Частичный предел последовательности - предел подпоследовательности

Примечание

У какой (ограниченной) последовательности бесконечное число частичных пределов?

6.2 Предельные точки

6.3 Свойства частичных пределов

6.4 Теорема Больцано-Вейерштрасса

Теорема

Если
$$a_n \underset{n \to \infty}{\to} A$$
, то $\forall n_k \ b_k = a_{n_k} \underset{n \to \infty}{\to} A$

Доказательство

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \ \forall n > N(\varepsilon) \ |a_n - A| < \varepsilon$$

Хотим

$$\forall \varepsilon > 0 \ \exists K(\varepsilon) \ \forall k > k(\varepsilon) \ |a_{n_k} - A| < \varepsilon$$

Возьмем $K(\varepsilon) = N(\varepsilon)$

$$\forall k > N(\varepsilon)$$
 т.к $n_k \geqslant k$ $\Rightarrow n_k > N(\varepsilon)$. Тогда $|a_{n_k} - A| < \varepsilon$ истина

Рис. 2: К теореме

Теорема Больцано-Вейерштрасса

Если последовательность ограничена, то у нее есть сходящаяся подпоследовательность

Доказательство

 c_n – огр. Докажем что у нее есть сходящаяся подпоследовательность

$$A = \inf\{c_n\}$$

$$B = \sup\{c_n\}$$

$$A, B \in \mathbb{R}$$

Рассмотрим отрезок $[a_1,b_1] = [A,B]$

Шаг 1: разделим отрезок $[a_1,b_1]$ пополам. В какой-то половине (одной или обеих) лежит бесконечное число членов c_n . Выберем в качестве $[a_2,b_2]$ эту половинку (если в обеих бесконечное число, то любую)

Шаг 2: ...

Получаем некоторую последовательность подотрезков $\{[a_k,b_k]\}_{k\in\mathbb{N}}$

На первом шаге выберем какой-то член $c_n \in [a_1,b_1]$. Его номер возьмем в качестве n_1

 \exists член последовательности $\in [a_2,b_2]$ такой, что его номер $> n_1$ (Это следует из того, что на каждом шаге мы выбираем отрезок, содержащий бесконечное число членов). Его возьмем в качестве n_2

. . .

Таким образом, параллельно строя последовательность отрезков, мы построили подпоследовательность $\{C_{n_k}\}_{k\in\mathbb{N}}$

Рассмотрим $\{a_k\}_{k\in\mathbb{N}}$. Она неубывает, ограничена сверху B.

По т. Вейерштрасса: $\exists \lim_{k \to \infty} a_k = A'$

 $\{b_k\}_{k\in\mathbb{N}}$. Она невозрастает, ограничена снизу A.

По т. Вейерштрасса: $\exists \lim_{k \to \infty} b_k = B'$

На каждом шаге мы вдвое уменьшаем длину отрезка. Выпишем общую формулу: // TODO

$$b_k - a_k$$

Пример

$$c_n = (-1)^n$$

Рис. 3: К примеру

6.5 Критерий Коши

7 Функции

- 7.1 Функция. График функции
- 7.2 Инъекция, сюрьекция, биекция
- 7.3 Обратимость функции
- 7.4 Предел функции по Коши
- 7.5 Предел функции по Гейне