- 实验目的
 - 理解系统总线工作方式
 - 掌握控制总线的功能和应用
- ・实验原理
 - · 寄存器、存储器和I/O部件挂接到总线
 - 各部件由三态门信号控制
 - · 实验数据主要流程:输入→寄存器→存储器→寄存器→输出LED指示

总线基本概念

- 总线是计算机各部件之间进行数据传输的公共通路, 是一组导线和相关的控制、驱动电路的集合
 - 数据总线、地址总线、控制总线
- 计算机各部件挂接在外部总线上,通过三态门控制
- 外部总线和 CPU 内总线之间通过三态门连接,实现 了内外总线的分离和数据流向的控制。
- 同一时刻只能有一个部件占用总线发送信息,但可以有多个部件通过总线接收信息

总线连接方式

- 单总线连接方式
 - · CPU、主存和I/O设备同挂接在一条总线上
 - 结构简单,易于扩展
 - · 高速的存储器与低速的I/O接口竞争总线,影响存储器的读写速度,数据传输效率受限制

总线连接方式

- 双总线连接方式
 - 在单总线结构基础上,增加一条CPU和主存之间的 高速存储总线,减轻系统总线的负担
 - 内存和外设之间仍然通过系统总线实现DMA操作, 无须经过CPU

总线连接方式

- 三总线连接方式
 - · 在双总线结构基础上,增加I/O处理器
 - · 统一管理多个I/O接口,大大提高传输效率

现代计算机总线结构示例

- 北桥:处理高速信号,包括CPU,RAM(存储器),AGP端口或PCI-E,以及与南桥芯片之间的通信。
- 南桥: 主要处理I/O总线之间的通信,

• 总线传输实验原理图

• 读写控制逻辑: WR、RD、IOM控制信号

WR	RD	IOM	功能		
0	1	0	读存储器		
1	0	0	写存储器		
0	1	1	读I/O		
1	0	1	写I/O		

- IOM用来选择是对 I/O 设备还是对 MEM进行读写操作
- IOM=1 时对 I/O 设备进行读写操作, IOM=0 时对 MEM 进行读写操作。
- RD=1 时为读, WR=1 时为写。

• 读写控制逻辑接线图

总线基

• 实验接

- 关于RO-B、LDRO、LDAR控制信号
 - RO-B (接CON单元K7)
 - ·置1时,R0寄存器输出关闭
 - ·置O时,RO寄存器输出打开
 - LDR0 (接CON单元K6)
 - ·置1时,R0寄存器输入打开
 - ·置O时,RO寄存器输入关闭
 - LDAR
 - 置1时,允许访问地址寄存器
 - ·置O时,不允许访问地址寄存器

- 基本总线 实验内容
 - · 输入设备将一个数打入R0寄存器
 - · 输入设备将另一个数打入地址寄存器AR
 - · 将RO寄存器中的数写入存储器
 - · 将存储器中的数显示在LED数码管(可否直接显示?)

操作步骤	IN单元	R0-B (K7)	LDR0 (K6)	WR	RD	IOM	LDAR
$\begin{array}{c} INPUT \\ 11H \rightarrow R0 \end{array}$	0001 0001	1	1	0	1	1	0
$ \begin{array}{c} INPUT \\ 01H \rightarrow AR \end{array} $	0000 0001	1	0	0	1	1	1
R0寄存器 → 存储器		0	0	1	0	0	0
$ \begin{array}{c} $	0000 0001	1	0	0	1	1	1
存储器 → R0寄存器		1	1	0	1	0	0
R0寄存器 → LED		0	0	1	0	1	0

- 实验步骤
 - · 连接实验线路 (P39图)
 - 联机软件【实验】-【简单模型机】
 - 建议单拍运行,观察节拍信号的变化

实验报告要点

- 读写控制逻辑原理图
- 总线实验原理图及文字叙述
- RO-B、LDRO、LDAR控制信号的作用
- 思考题: 存储器中的数据能不能和IO部件直接 进行数据交换?
- 实验小结