Assignment 2 - EE1030

ee24btech11018 - D. Swaraj Sharma

1 E - Subjective Problems

- 1. A curve 'C' passes through (2,0) and the slope at (x,y) as $\frac{(x+1)^2+(y-3)}{x+1}$. Find the equation of the curve. Find the area bounded by curve and x-axis in fourth quadrant. (2004 4Marks)
- 2. If length of tangent at any point on the curve y = f(x) intercepted between the point and the x-axis in fourth quadrant. (2005 4Marks)

2 F - MATCH THE FOLLOWING

1) Match the statements/expressions in **Column I** with the open intervals in **Column II**. (2009)

Column I Column II

- (A) Interval contained on the domain of (a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ definition of non-zero solutions of the differential equation $(x-3)^2 + y' + y = 0$ (b) $\left(0, \frac{\pi}{2}\right)$
- (B) Interval containing the value of the integral (c) $\left(\frac{\pi}{8}, \frac{5\pi}{4}\right)$
- $\int_{1}^{5} (x-1)(x-2)(x-3)(x-4)(x-5) dx$ (C) Interval in which at least one of the (d) $\left(0, \frac{\pi}{8}\right)$ points of local maximum of $\cos^{2} x + \sin x$ lies (e) $(-\pi, \pi)$
- (D) Interval in which $\tan^{-1} (\sin x + \cos x)$ is increasing

3 H - Assertion & Reason Type Questions

1) Let solution y = y(x) of the differential equation $x \sqrt{x^2 - 1} dy - y \sqrt{y^2 - 1} dx = 0$ satisfy $y(2) = \frac{2}{\sqrt{3}}$.

STATEMENT-1: $y(x) = \sec\left(\sec^{-1} x - \frac{\pi}{6}\right)$ and **STATEMENT-2**: y(x) is given by $\frac{1}{y} = \frac{2\sqrt{3}}{x} - \sqrt{1 - \frac{1}{x^2}}$ (2008)

- a) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
- b) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is **NOT** a correct explanation for STATEMENT-1
- c) STATEMENT-1 is True, STATEMENT-2 is False
- d) STATEMENT-2 is False, STATEMENT-2 is True

1

4 I - Integer Value Correct Type

- 1) Let y'(x)+y(x)g'(x)=g(x), g'(x), y(0)=0, $x \in \mathbb{R}$, where f'(x) denotes $\frac{df(x)}{dx}$ and g(x) is a given non-constant differentiable function on \mathbb{R} with g(0)=g(2)=0. Then the value of y(2) is
- 2) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with f(0) = 0. If y = f(x) satisfies the differential equation $\frac{dy}{dx} = (2 + 5y) + (5y 2)$, then the value of $\lim_{x \to -\infty} f(x)$ is.

(JEEAdv.2018)

3) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with f(0)=1 and satisfying the differential equation f(x+y)=f(x)f'(y)+f'(y)f(x) for all $x, y \in \mathbb{R}$ then, the value of $\log_e(f(4))$ is. (*JEEAdv*.2018)

5 Section-B // JEE Main / AIEEE

1) The order and degree of the differential equation $(1 + 3\frac{dy}{dx})^{\frac{2}{3}} = 4\frac{d^3y}{dx^3}$ are [2002]

a) $(1, \frac{2}{3})$ b) (3, 1) c) (3, 3) d) (1, 2)

2) The solution of the equation $\frac{d^2y}{dx^2} = e^{-2x}$ [2002]

a) $\frac{e^{-2x}}{4}$ b) $\frac{e^{-2x}}{4} + cx + d$ c) $\frac{1}{4}e^{-2x} + cx^2 + d$ d) $\frac{1}{4}e^{-4x} + cx + d$

- 3) The degree and order of the differential equation of the family of all parabolas whose axis *x*-axis, are respectively. [2003]
 - a) 2,3 c) 1,2
 - b) 2, 1 d) 3, 2
- 4) The solution of the differential equation $(1 + y^2) + (x e^{\tan^{-1} y}) \frac{dy}{dx} = 0$, is [2003]
 - a) $xe^{2\tan^{-1}y} = e^{\tan^{-1}} + k$ c) $2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$
 - b) $(x-2) = ke^{2\tan^{-2}y}$ d) $xe^{\tan^{-1}y} = \tan^{-2}y + k$
- 5) The differential equation for the family of circle $x^2 + y^2 2ay = 0$, where a is an arbitrary contant is [2004]
 - a) $(x^2 + y^2)y' = 2xy$ b) $2(x^2 + y^2)y' = xy$ c) $(x^2 - y^2)y' = 2xy$ d) $2(x^2 - y^2)y' = xy$
- 6) Solution of the differential equation $ydx + (x + x^2y)dy = 0$ is [2004]

a)
$$\log y = Cx$$

a)
$$\log y = Cx$$

b) $-\frac{1}{xy} + \log y = C$

c)
$$\frac{1}{xy} + \log y = C$$

d)
$$-\frac{1}{xy} = C$$

d)
$$-\frac{1}{rv} = C$$

- 7) The differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where c > 0, is a parameter, is of order and degree as follows: [2005]
 - a) order 1, degree 2

c) order 1, degree 3

b) order 1, degree 1

- d) order 2, degree 2
- 8) If $x \frac{dy}{dx} = y(\log y \log x + 1)$, then the solution of the equation is [2005]

a)
$$y \log \left(\frac{x}{y}\right) = cx$$

b) $y \log \left(\frac{y}{x}\right) = cy$

c)
$$\log\left(\frac{y}{x}\right) = cx$$

b)
$$y \log \left(\frac{y}{x}\right) = cy$$

c)
$$\log\left(\frac{y}{x}\right) = cx$$

d) $\log\left(\frac{x}{y}\right) = cy$