Fiche méthode: Polynômes

I. Polynôme du 2nd degré

Application 1: On donne l'expression algébrique de la fonction f définie sur \mathbb{R} par : $f(x) = -2x^2 - 2x + 4$.

On appelle cette forme : forme développée du polynôme du second degré.

La fonction f est représentée par la courbe C_f dans un repère orthonormé du plan.

1) Démontrer que pour tout réel x,

$$f(x) = -2(x-1)(x+2)$$

$$-2(x-1)(x+2) = -2(x^2 + 2x - x - 2)$$

$$= -2x^2 - 4x + 2x + 4$$

$$= -2x^2 - 2x + 4$$

$$= f(x)$$

On appelle cette forme : forme factorisée du polynôme du second dearé.

2) a) Donner l'allure de la courbe représentative, son sommet et son axe de symétrie.

a = -2 < 0 ainsi la courbe est « tournée vers la bas » par rapport à la courbe de la fonction carré. Les racines de f(x) sont $x_1 = -2$ et $x_2 = 1$ $S(\alpha; \beta)$ avec :

$$\alpha = \frac{x_1 + x_2}{x_2} = \frac{-2 + 1}{2} = -\frac{1}{2}$$

$$\beta = f\left(-\frac{1}{2}\right) = -2 \times \left(-\frac{1}{2}\right)^2 - 2 \times \left(-\frac{1}{2}\right) + 4 = -2 \times \frac{1}{4} + 1 + 4 = -\frac{1}{2} + \frac{10}{2} = \frac{9}{2}$$

Le sommet de C_f est le point $S\left(-\frac{1}{3}; \frac{9}{3}\right)$

b) Donner le sens de variations de f.

3) a) Déterminer les solutions de f(x) = 0.

$$-2 (x - 1)(x + 2) = 0$$

$$x - 1 = 0 \text{ ou } x + 2 = 0$$

$$x = 1 \quad \text{ou } x = -2$$

$$S = \{-2; 1\}$$

b) Dresser le tableau de signes de f(x).

1ère máthada :

inoue	•				
$-\infty$	-2		1	$+\infty$	
-	þ	+	Ŷ	-	$\int_{\text{car }a} < 0 \text{a}$
	-∞ -	-∞ -2	100 CH	100 Can Ann Ann	-∞ -2 1 +∞

l'extérieur des racines.

2ème méthode :

x	$-\infty$	-2		1		$+\infty$	
-2	-		-		-		
x-1	-		-	() +	·	car m=1>0
x+2	-	ø	+		4	+	car m=1>0
f(x)	-	0	+	() .		

c) En déduire l'ensemble des solutions de l'inéquation $f(x) \leq 0$.

$$S =]-\infty; -2] \cup [1; +\infty[$$

Fonction polynôme de degré n :

• On appelle fonction polynôme de degré n $(n \in \mathbb{N})$, toute fonction P définie sur \mathbb{R} par : $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ où a_0, a_2, \dots, a_n sont des nombres réels, avec $a_n \neq 0$.

Différentes formes d'un polynôme du 2nd degré :

- Forme développée : $f(x) = ax^2 + bx + c$ La parabole coupe l'axe des ordonnées au point M(0;c).
- Forme factorisée :
 - \circ Si f(x) = 0 admet deux solutions notées x_1 et x_2 alors $f(x) = a(x - x_1)(x - x_2)$.
 - o Si f(x) = 0 admet une unique solution notée α alors $f(x) = a(x - \alpha)^2$.
 - Si f(x) = 0 n'admet aucune solution réelle alors f(x) ne se factorise pas.

Courbe et variations :

Dans le plan muni d'un repère orthogonal, la courbe représentative d'une fonction polynôme f du second degré est une parabole.

Son sommet est le point S de coordonnée $S(\alpha; \beta)$ avec $\alpha = \frac{x_1 + x_2}{2}$ et $\beta = f(\alpha)$

• Si a > 0

La parabole est « tournée vers le haut » La fonction f admet un minimum β atteint en $x = \alpha$

Si a < 0

La parabole est « tournée vers le bas »

La fonction f admet un maximum β atteint en $x = \alpha$

Tableau de signes :

x		x_1	<i>c</i> ₂ +∞
f(x)	signe de a	$\begin{vmatrix} signe de \\ -a \end{vmatrix}$	signe de a

On peut aussi faire le tableau de signe d'un produit (voir 2ème méthode).

II. Polynôme de degré 3

Application 2 : On donne l'expression algébrique de la fonction f définie sur \mathbb{R} par :

$$f(x) = -4x^3 - 24x^2 - 12x + 40$$

On appelle cette forme : forme développée du polynôme de degré 3.

La fonction f est représentée par la courbe C_f dans un repère orthonormé du plan.

1) Montrer que f peut s'écrire :

$$f(x) = -4(x-1)(x+2)(x+5).$$

$$-4(x-1)(x+2)(x+5) = -4(x^2 + 2x - x - 2)(x+5)$$

$$= -4(x^2 + x - 2)(x+5)$$

$$= -4(x^3 + 5x^2 + x^2 + 5x - 2x - 10)$$

$$= -4(x^3 + 6x^2 + 3x - 10)$$

$$= -4x^3 - 24x^2 - 12x + 40$$

$$= f(x)$$

On appelle cette forme : forme factorisée du polynôme de degré 3.

2) a) Déterminer les solutions de
$$f(x) = 0$$
.

$$f(x) = 0$$

$$-4(x-1)(x+2)(x+5) = 0$$

$$x-1 = 0 \text{ ou } x+2 = 0 \text{ ou } x+5 = 0$$

$$x = 1 \qquad \text{ou } x = -2 \qquad \text{ou } x = -5$$

$$S = \{-5; -2; 1\}$$

h) Drossor la tableau de signes de f(x)

x	$-\infty$	-5		-2		1		$+\infty$	
-4					-		-		
x-1	-				-	0	+		car m=1>0
(+2			-	0	+		+		car m=1>0
r+5	-	0	+		+		+		car m=1>0
f(x)		0		0	+	0			

c) En déduire l'ensemble des solutions de l'inéquation $f(x) \le 0$.

$$S = [-5; -2] \cup [1; +\infty[$$

Différentes formes d'un polynôme de degré 3:

Forme développée :

$$f(x) = ax^3 + bx^2 + cx + d$$

La courbe coupe l'axe des
ordonnées au point $M(\mathbf{0}; d)$.

Forme factorisée :

Si
$$f(x) = 0$$
 admet trois solutions
notées x_1, x_2 et x_3) alors :
 $f(x) = a(x - x_1)(x - x_2)(x - x_3)$

Courbe:

Tableau de signes :

On fait le tableau de signe d'un produit

III. Cas particuliers

Application 3:

Relier chacune des courbes aux fonctions données cidessous.

2.
$$g(x) = 1,5x^2 + 2$$
 C_1

3.
$$h(x) = -4x^2$$
 C_5
4. $j(x) = 0, 1x^2 - 1, 5$ C_3

5.
$$k(x) = -2x^2 + 1$$
 C_4

Application 4:

On donne quatre courbes ci-contre et quatre fonctions définies sur $\mathbb R$:

a)
$$f(x) = -0.05 (x+3)(x-4)(x+1)$$
 C₃
b) $g(x) = x^3 + 1$ C₁
c) $h(x) = -0.3x^3 - 2$ C₄
d) $i(x) = 0.025(x-1)(x+2)(x-4)$ C₂

Cas particulier de fonctions du 2nd degré :

- Fonction carré définie sur \mathbb{R} par $f(x) = x^2$ a = 1. b = 0 et c = 0
- Fonction définie sur \mathbb{R} par $f(x) = ax^2$
- Fonction définie sur \mathbb{R} par $f(x) = ax^2 + c$

Courbe et variation :

Cela dépend du signe de a comme pour les fonctions polynôme du second degré.

Plus a est grand dans les positifs (ou a est petit dans les négatifs) plus la courbe se « rapproche » de l'axe des ordonnées.

Cas particulier de fonctions de degré 3 :

- Fonction cube définie sur \mathbb{R} par $f(x) = x^3$ a = 1. b = 0. c = 0 et d = 0
- Fonction définie sur \mathbb{R} par $f(x) = ax^3$
- Fonction définie sur \mathbb{R} par $f(x) = ax^3 + d$

Courbe et variation :

Cela dépend du signe de a :

- Si a > 0 alors $f \operatorname{est} \nearrow$
- Si a < 0 alors f est \searrow