

آموزش شماره 8 – ویرایش اول

تنظیم: علی ابریشمی

1891/1/8

www.armcenter.org

مبدل آنالوگ به دیجیتال

این مبدل بر اساس یک SAR(Successive Approximation Register) است. این نوع از مبدل بر اساس یک بر اساس یک است. اساس جستوجوی عدد باینری در میان تمام سطوح چندی $^{\prime}$ شده است.

عملیات مبدل در چهار زنجیره صورت می گیرد

- ۱. واحد Sample And Hold یک نمونه از ولتاژ ورودی می گیرد و مدت کوتاهی نگه می دارد
- ۲. در این مدت واحد SAR اعداد دیجیتال را به ترتیب از ۰ تا ۱۰۲۴ برای ADC ده بیتی تولید می کند
- رای برای $V_{\rm ref}$ به یک سیگنال آنالوگ DAC دریافت و مطابق با $V_{\rm ref}$ به یک سیگنال آنالوگ برای $V_{\rm ref}$ مقایسه با ولتاژ ورودی $V_{\rm in}$ تبدیل می کند
- ۴. سیگنال آنالوگ تولید شده با ولتاژ ورودی توسط مقایسه کننده، مقایسه میشود و بعد از تطابق به SAR اطلاع داده میشود تا شمارش اعداد متوقف شود و عدد نهایی به عنوان مقدار دیجیتال شده ولتاژ ورودی اعلام میشود.

.

¹ quantization

در این واحد یک مالتیپلکسر ۸ به ۱ وجود دارد که باعث می شود هشت کانال مبدل از یک واحد ADC به صورت مشترک استفاده کنند. این مبدل با دقتهای ۱۰ و ۸ بیت کار می کند و ولتاژ ورودی را با صفر ولت تا ADVREF مقایسه می کند. راهاندازی این واحد با تریگر خارجی، نرمافزاری و یا تریگر داخلی با تایمرها می-تواند صورت پذیرد.

بلوک دیاگرام این واحد را در شکل زیر مشاهده می کنید.

ADTRG: تريگر خارجي

ADVREF: ولتاژ مرجع

AD0-AD7: ورودىهاى آنالوگ

VDDIN : ولتاژ تغذیه واحد (3.3 ولت)

کلاک این واحد برخلاف دیگر ابزار جانبی همیشه برقرار است. خطوط وقفه این واحد مانند دیگر ابزار جانبی به کنترلر وقفه AIC متصل است. بعضی از ورودیهای آنالوگ ممکن است با دیگر ابزار جانبی مالتی پلکس شده باشند اما بر خلاف دیگر ابزار جانبی با فعال شدن ورودیهای ADC با نوشتن در رجیستر ADC_CHER بین ایسی به مبدل اختصاص داده میشود. یادآوری می کنیم که بعد از ریست پینها به صورت ورودی هستند و ورودی های مبدل ADC به زمین متصل میشوند. ولی بعضی از کانالهای ADC مستقیماً به پینهای میکرو متصل اند و با دیگر ابزار جانبی به صورت مشترک از یک پین استفاده نمی کنند. پین ADTRG با دیگر ابزار جانبی به صورت مشترک از یک پین استفاده نمی کنند. پین ADTRG برنامه ریزی ابزار جانبی به صورت مشترک از یک پین استفاده می کند و برای دسترسی به آن باید کنترلر ADC برنامه ریزی شود.

اکنون بدون ارائه توضیحات اضافه مستقیماً به بررسی رجیسترهای این واحد برای ارتباط با آن میپردازیم.

ADC Control Register

Register Name	e: ADC_C	R					
Access Type:	Write-or	nly					
31	30	29	28	27	26	25	24
23	22	21	20	19	18	17	16
_	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
_	-	-	-	-	-	-	-
/	6	5	4	3	2	1	0
_	-	-	-	-	-	START	SWRST

تنها دو بیت اول مورد استفاده قرار می گیرد. با نوشتن یک در بیت اول مبدل ریست می شود و نوشتن صفر تأثیری تأثیری ندارد. با نوشتن یک در بیت دوم عمل تبدیل آنالوگ به دیجیتال شروع می شود و نوشتن صفر تأثیری ندارد.

مثال:

*AT91C_ADC_CR=AT91C_ADC_START;

کد بالا مقدار AT91C_ADC_START را که در هدر فایل به صورت زیر تعریف شده ، در رجیستر ADC_CR میریزد و باعث آغاز به کار مبدل میشود. (برای فهمیدن خط زیر آموزش یک را مطالعه کنید)

 $\#define AT91C_ADC_START$ (0x1 << 1) // (ADC) Start Conversion

ADC Mode Register

Register Name	: ADC_M	R							
Access Type:	Read/W	rite							
31	30	29	28	27	26	25	24		
-	-	SHTIM							
23	22	21	20	19	18	17	16		
-		STARTUP							
15	14	13	12	11	10	9	8		
	PRESCAL								
7	6	5	4	3	2	1	0		
-	-	SLEEP	LOWRES		TRGSEL		TRGEN		

TRGEN: اگر صفر باشد راهاندازی خارجی غیر فعال است و اگر یک باشد راهانداز خارجی یکی از موارد جدول زیر است که در TRGSEL نوشته می شود.

TRGSEL			Selected TRGSEL			
0	0	0	TIOA Ouput of the Timer Counter Channel 0			
0	0	1	TIOA Ouput of the Timer Counter Channel 1			
0	1	0	TIOA Ouput of the Timer Counter Channel 2			
0	1	1	Neserved			
1	0	0	Reserved			
1	0	1	Reserved			
1	1	0	External trigger			
1	1	1	Reserved			

LOWRES: اگر صفر باشد دقت مبدل ۱۰ بیتی است اگر یک باشد دقت ۸ بیتی.

SLEEP: اگر صفر باشد مبدل در وضعیت عادی است اگر یک در وضعیت Sleep:

PRESCAL: کلاک ورودی را بر عدد نوشته شده تقسیم می کند تا کلاک واحد تأمین شود.

ADCClock = MCK / ((PRESCAL+1) * 2)

STARTUP: واحد ADC یک زمان شروع اولیه دارد که مقدار آن باید در این فیلد از رجیستر نوشته شود.

Startup Time = (STARTUP+1) * 8 / ADCClock

SHTIM: این زمان فاصله زمانی بین نمونه برداری از دو کانال ADC است و زمان کافی برای نگهداری نمونه و تبدیل آن به عدد دیجیتال را فراهم می کند.

Sample & Hold Time = SHTIM/ADCClock

برای مثال از مقدار دهی به این رجیستر و رجیسترهای دیگر میتوانید به بخش پروژههای سایت مراجعه کنید.

Register Name

ADC Channel Enable Register

Register Name	: ADC_C	HER					
Access Type:	Write-or	nly					
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	_	_	-	_	_
15	14	13	12	11	10	9	8
_	-	-	_	-	_	-	-
1	6	5	4	3	2	1	0
CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	CH0

با نوشتن یک در خانههای صفر تا ۷ هر یک از هشت کانال فعال می شوند. نوشتن صفر تأثیری ندارد. مشابه این رجیستر، رجیسترهای ADC_CHSR و ADC_CHSR و جود دارند که به ترتیب کانالها را مستقلاً غیرفعال می کنند و وضعیت فعال یا غیر فعال بودن را نمایش می دهند.

ADC Status Register

negister Mairie	. ADC 3	П									
Access Type:	Read-or	Read-only									
31	30	29	28	2/	26	25	24				
-	-	-	-	-	-	-	-				
23	22	21	20	19 RXBUFF	18 ENDRX	17 GOVRE	16 DRDY				
15	14	13	12	11	10	9	8				
OVRF7	OVRF6	OVRF5	OVRF4	OVRF3	OVRF2	OVRF1	OVRF0				
7	6	5	4	3	2	1	0				
E007	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0				

از این رجیستر می توان وضعیت مبدل را خواند.

EOCX: صفر بودن یعنی یا کانال متناظر غیر فعال است یا هنوز عمل تبدیل تمام نشده است. یک بودن یعنی کانال مربوطه فعال و عمل تبدیل تمام شده است.

OVERX: صفر بودن یعنی از آخرین باری که از رجیستر ADC_SR خوانده شده تا کنون دوباره نویسی که از رجیستر ADC_SR دوباره نویسی که مقدار خروجی مبدل را در بر دارد اتفاق نیفتاده است. یک بودن یعنی خطای دوباره نویسی رخداده است.

DRDY: صفر بودن یعنی از آخرین باری که از رجیستر ADC_LCDR مقدار آخرین تبدیل خوانده شده، تاکنون مقدار جدیدی تبدیل نشده و یک بودن یعنی یک مقدار جدید از یکی از کانالها در رجیستر ADC_LCDR نوشته شده

GOVRE: صفر بودن یعنی دوباره نویسی کلی در رجیسترها از آخرین باری که از رجیستر خوانده شده تاکنون اتفاق نیفتاده است. و یک بودن برعکس آن.

ADC Last Converted Data Register

Register Name	: AUC_L	CDR							
Access Type:	Hoad-o	nly							
31	30	29	28	27	26	25	24		
_	_	_	_	_	-	-			
23	22	21	20	19	18	17	16		
_	-	-	_	-	-	-	-		
15	14	13	12	11	10	g	8		
-	-	LDATA				ATA			
7	6	5	4	3	2	1	0		
	LDATA								

آخرین مقدار تبدیل شده را تا آماده شدن مقدار تبدیل بعدی در خود نگه میدارد. این مقدار میتواند خروجی هر یک از کانالهای فعال باشد و با داشتن آن نمیتوان فهمید که این مقدار مربوط به کدام کانال است.

² Over write

ADC Interrupt Enable Register

Register Name	: ADC_IE	R					
Access Type:	Write-or	nly					
31	30	29	28	27	26	25	24
-	-	-	-	-	-	ı	-
23	22	21	20	19	18	17	16
_	-	-	-	RXBUFF	ENDRX	GOVRE	DRDY
15	14	13	12	11	10	9	8
OVRE7	OVRE6	OVRE5	OVRE4	OVRE3	OVRE2	OVRE1	OVRE0
/	6	5	4	3	2	1	0
EOC7	EOC8	EOC5	ECC4	EOC3	EOC2	EOC1	EOC0

فعال کردن وقفهها از وظایف این رجیستر است که با یک کردن بیتها انجام می شود و صفر کردن آن اثری ADC Interrupt Disable Register و ADC Interrupt Disable Register و Mask Register وجود دارند که کاربردشان را در آموزش مربوط به وقفهها می توانید پیدا کنید.

ADC Channel Data Register

Register Name	e: ADC_C	DRx							
Access Type:	Read-o	nly							
31	30	29	28	27	26	25	24		
-	_	_	-	_	_	-	-		
23	22	21	20	19	18	17	16		
-	-	_	-	_	-	-	-		
15	14	13	12	11	10	9	8		
-	-	-	_	_	_	DATA			
7	6	5	4	3	2	1	0		
	DATA								

تعداد این رجیسترها ۸ عدد است که برابر با تعداد کانالها است. محتوی آن مقدار دیجیتال شده کانال متناظر با آن است.

تا اینجا تمامی رجیسترها بررسی شدند برای فراگیری بهتر مطالب به بخش پروژهها مراجعه کنید و مثال مربوط به ADC را مطالعه نمایید.

www.armcenter.org