Statistics
367-1-4361
Probabilities
Opher Donchin

Course goals

- Understand what data is
- Create models that may explain data
- Draw conclusions about the models from the data
- Test hypotheses by comparing models

Bayesian Analysis with Python

- 3rd edition!!
- GitHub
- Publisher's website
- Full text available
 - the library
- Easy to read!

Grading

Pre-lecture questions

Questions are worth 5% of the grade

Exercises

- Exercises are worth15% of the grade
- 5 exercises. Each worth 3.6%

Midterm quiz

- 10% of the grade. Can only improve grade!
- On computers during recitation section on 17-18/6
- Practice for exam

Exam

- 70% of the grade
- On computers on campus
- Open book (material on Moodle only!)
- 2 hours
- Students who do not pass the exam will not pass the course

1A What is data

What is statistics

- Collecting
- Organizing
- Analyzing
- Interpreting

Data Data Data Data

Its two main goals

- Exploratory data analysis
- Inference

From Truth to Data

- Francis Bacon
 - Novum Organum 1620
 - Facts and observations give us evidence
- Pierre-Simon Laplace
 - Theorie analytique des probabilities 1812
 - Observations are givens, but they are uncertain
- Carl Friedrich Gauss
 - Theoria motor corporum coelestium 1809
 - Process givens to improve estimates
 - In Latin: givens is data

Data gives birth to statistics

- Adolphe Quetelet
 - *Sur l'homme* 1835
 - Data on heights implies an "average man"
- Francis Galton
 - Hereditary Genius 1869
 - Multi-variate data
 - Variability and co-variance
- Karl Pearson
 - The Grammar of Science 1892
 - Using data to establish scientific truth
- Ronald Fisher
 - The Design of Experiments 1935
 - Data is not given; it is generated by design

Reality, Data, and Models

- Experiments produce data from reality
- Data updates models of reality
- Models lead to further experiments

Sources of data in biomedical engineering

- Genomic data
- Biological data
- Physiological data
- Clinical data
- Models and simulations
- New sources:
 - Large datasets
 - Wearable technology
 - Image and video processing

Uses of data in biomedical engineering

- Basic science
- Clinical testing
- Clinical trials
- Calibrating models
- Product development

An example

Cerebellar volume

http://de.wikibooks.org/wiki/Neuroanatomie:_Kleinhirn

What is data

- An ordered set of 'observations' or 'measurements'
 - Each observation could be vector valued
 - Data is finite!

$$(x_1, x_2, x_3, \dots, x_N)$$
 $x_1 = \begin{pmatrix} x_{11} \\ x_{12} \\ x_{13} \end{pmatrix}$

What is data

- An ordered set of 'observations' or 'measurements'
 - Each observation could be vector valued
 - Data is finite!
- Analyze the brain scans of 5 individuals and extract the size of each cerebellum
- We have to choose the right thing to measure

Cerebellar volume in liters: 0.16 0.15 0.18 0.21 0.16

Cerebellar volume in fraction of total intracranial volume (TICV): 0.13 0.13 0.13 0.13

What is data

- An ordered set of 'observations' or 'measurements'
 - Each observation could be vector valued
 - Data is finite!
- Analyze brain scans of 60 subjects and extract cerebellar volumes
- We can get more data, but it will still be data

1B What is good data

- Data is never perfect
 - Sampling bias
 - Pulse oximeters tested on white skin
 - Poorly calibrated for darker skin
 - During Covid-19, black patients had:
 - Lower detection
 - Delays in treatment

N Engl J Med 2020;383:2477-2478 DOI: 10.1056/NEJMc2029240

- Data is never perfect
 - Sampling bias
 - Measurement error
 - Inaccurate glucose monitors (2018)
 - Over and underdosing insulin

- Data is never perfect
 - Sampling bias
 - Measurement error
 - Missing data
 - Increases variance
 - May introduce bias

- Data is never perfect
 - Sampling bias
 - Measurement error
 - Missing data
 - Proxy measures
 - Intracellular calcium
 - Used for neural activity
 - Proxies are:
 - Nonlinear
 - Incomplete
 - Context-dependent

Key issues in measurement

- What are you measuring?
- What is its precision?
- Is it valid?
- Is it reliable?

Precision

- What is a reasonable precision?
- How much precision do you need to draw conclusions?
- Some things are imprecise by nature
 - Quality of life
 - Preference
 - Fitness

Validity

- Does the measure measure what you want?
 - A written test cannot measure musical ability
- Do we have a gold standard?
- Can we poll experts?

Reliability

- A measure that is precise and stable
- The value will stay the same if:
 - We measure again
 - Someone else measures
 - We measure at a different time

Data Ethics

- As data becomes increasingly important
 - We become increasingly responsible
- Privacy
- Security
- Ethical use
 - Wearable devices share health information with companies
 - Can those companies share that information?

Strategies for ethical data use

- Informed consent
 - Explain how and why it is being collected
 - Allow participants to opt out
- Transparency
 - Who has access and how will it be used
- Protect vulnerable populations
 - Data should not lead to discrimination
 - Data collection should not lead to secondary harm

1C Types of data

Continuous data

- The data are real numbers
 - Between any two data values there could be another data point
- Examples:
 - Rate, size, amplitude, time

Categorical data

- Values can't really be compared or put on a scale
- Examples:
 - Gender (male / female)
 - Race
 - Personality type
 - Color

Ordinal data

- Something between continuous and categorical
- Data can be ordered but are not real numbers
- Data maps onto the integers
- Examples:
 - Child, teen, adult
 - Strongly approve, approve, don't care, disapprove, strongly disapprove
 - Undergraduate student, graduate student, lecturer, professor

Combining different data types

- A datum could have multiple parts:
 - From a database of brain scans:
 - Gender
 - Categorical
 - Handedness
 - Categorical
 - Age
 - Ordinal / continuous
 - Education
 - Ordinal
 - Total intracranial volume
 - Continuous (ordinal)
 - Normalized brain volume
 - Continuous
 - Taken together, all of these would be one data point

Male Right handed 39 years College 1636 0.739

1D What is probability

A basic approach

- Start with data
- Make model of data
- Combine data with model
 - To reach conclusions
- Evaluate model
 - Update
- Repeat

To get this basic approach to work

- Data is imperfect
- Our model will treat it as stochastic
- So:
 - We need to review probability

Definition of Probability (from Measure theory)

- Experiment: toss a coin twice
- Sample space: possible outcomes of an experiment
 - S = {HH, HT, TH, TT}
- **Event**: a subset of possible outcomes
 - A={HH}, B={HT, TH}
- Probability of an event: an number assigned to an event Pr(A)
 - Axiom 1: $Pr(A) \ge 0$
 - Axiom 2: Pr(S) = 1
 - Axiom 3: For every sequence of disjoint events

$$\Pr(\bigcup_{i} A_{i}) = \sum_{i} \Pr(A_{i})$$

What does P(A) mean?

Frequentist interpretation (Out of the head)

• If we repeat the experiment N times, the number of times A occurs (#A)

converges to:

 $P(A) = \frac{\# A}{N}$

Example: political futures

https://polymarket.com/event/trump-wins-ends-ukraine-war-in-90-days?tid=1742336531501

What does P(A) mean?

- Frequentist interpretation (Out of the head)
- Plausibility (In the head)
 - How likely is it that the coin is fair?
 - Calibrate by choosing a bet
 - Political futures markets

What does P(A) mean?

- Frequentist interpretation (Out of the head)
- Plausibility (In the head)
 - How likely is it that the coin is fair?
 - Calibrate by choosing a bet
 - Political futures markets
 - Or by assigning a distribution

de Finetti's Dutch Book (1975)

- A Dutch book is a book of bets that lets you beat the house at gambling
- de Finetti derives axioms of probability from assumption that we assign probability such that a Dutch book is impossible
- This is the idea followed by Kruschke

1E Random variables

Random variables

A mapping from subsets of all possibilities to values

Exploring a distribution

• Preliz software package has interactive plots so you can see what parameters do

pz.BetaBinomial(alpha=10, beta=10, n=5).plot_interactive(pointinterval=False)

Parameterized probability distributions

• The Beta Binomial distribution has 3 parameters

$$p(x \mid \alpha, \beta, n) = \frac{B(x + \alpha, n - x + \beta)}{B(\alpha, \beta)}$$

- **BetaBinomial**(alpha=0.5,beta=0.5,n=10)
- BetaBinomial(alpha=1.0,beta=1.0,n=10)
- **BetaBinomial**(alpha=2.3,beta=2.0,n=10)

Generating samples from a distribution

Continuous random variables

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$$

$$P(x < X < b) = \int_{a}^{b} p(x \mid \mu, \sigma) dx$$

How to integrate a continuous variable

$$P(x < X < b) = \int_{a}^{b} p(x \mid \mu, \sigma) dx$$

```
dist = pz.Normal(0, 1)
ax = dist.plot_pdf()
x_s = np.linspace(-2, 0)
ax.fill_between(x_s, dist.pdf(x_s), color="C2")
dist.cdf(0) - dist.cdf(-2)
```


Cumulative distribution functions

- Always go from 0 on the left to 1 on the right
- Y axis is probability

1F Characterizing distributions

Describing the distribution with one number

- We want to use a single number to describe the distribution
- We can choose it
- Where is the 'middle' of the data?

Describing the distribution with one number

- Where is the 'middle' of the distribution?
- Three common measures
 - Median
 - Mode
 - Mean
- There are others
 - We use a different one to calculate your homework score

More than one mode

- It is possible to have more than one mode
- This often means that the distribution combines two different sources

2022-2, Lecture 1

Unimodal and multimodal distributions

- The mode is the point with the largest probability
- We usually take multi-modal data to be selected from different unimodal distributions
- So we will usually only deal with unimodal data

Measures of central tendency

 Notice the difference between the mean, the median, and the mode

Which is better?

Representing a distribution with two numbers

- The first number: where is the center?
- The second number: how close to the center are we?

Representing the distribution with two numbers

- Center and spread
- Again, we have different measures
 - The standard deviation is the most commonly used

The variance:
$$\sigma^2 = \int_{-\infty}^{\infty} p(x)(x-\mu)^2 dx = E((x-\mu)^2)$$

The standard deviation: $\sigma = \sqrt{\sigma^2}$

The absolute deviation: $MAD = \int_{-\infty}^{\infty} p(x)|x-\mu|dx$

The inter-quartile interval: The difference between 0.75 and 0.25 of the distribution Data analysis, 2022-2, Lecture 1

Representing more details about the distribution

- What should we use?
- Skewness
 - How symmetric is the data?
- Kurtosis
 - How sharp is the peak?

Measure of assymetry: Skewness

- For the normal distribution, we only need mean and variance
- For any other distribution, it will vary in either skewness or kurtosis
- Skewness measures the symmetry of the distribution

Skewness =
$$\frac{1}{\sigma^3} E((x-\mu)^3)$$

Sharpness of peak: Kurtosis

- Kurtosis measures the size of the tails
- This also captures the pointiness of the peak

Kurtosis =
$$\frac{1}{\sigma^4} E((x-\mu)^4) - 3$$

Mean, standard deviation, skewness and kurtosis of 4 distributions

1F Conditional probability

The joint distribution

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

Baye's rule

$$p(c|r) = \frac{p(c,r)}{p(r)}$$

$$p(r|c) = \frac{p(c,r)}{p(c)}$$

p(c|r)p(r) = p(c,r) p(r|c)p(c) = p(c,r)

$$p(c|r)p(r) = p(r|c)p(c)$$

$$p(c|r) = \frac{p(r|c)p(c)}{p(r)} = \frac{p(r|c)p(c)}{\sum_{c^*} p(r|c^*)p(c^*)}$$

Applied to data and models

$$p(c|r) = \frac{p(r|c)p(c)}{\sum_{c^*} p(r|c^*)p(c^*)}$$

$$p(\text{model}|\text{data}) = \frac{p(\text{data}|\text{model})p(\text{model})}{\sum_{\text{models}} p(\text{data}|\text{model})p(\text{model})}$$

We will use Baye's rule to update our models

$$p(\text{model}|\text{data}) = \frac{p(\text{data}|\text{model}) p(\text{model})}{\sum_{\text{models}} p(\text{data}|\text{model}) p(\text{model})}$$