Planche d'exercices (avec corrigés)

Semaine X

1. ÉLÈVE 1

Question de cours 1. Démontrer le théorème de Cesàro.

Exercice. Soit une suite (u_n) à valeurs dans \mathbb{Z} convergente. Montrer qu'elle est stationnaire.

Solution: Par définition, il existe un rang n_0 tel que

$$\forall n \ge n_0, \ |u_n - \ell| \le \frac{1}{4}$$

où on aura noté ℓ la limite. Pour $n \geq n_0$, on a

$$|u_{n+1} - u_n| \le |u_{n+1} - \ell| + |u_n - \ell| \le \frac{1}{2}$$

Et comme $|u_{n+1} - u_n| \in \mathbb{N}$, on a $|u_{n+1} - u_n| = 0$ soit $u_{n+1} = u_n$.

Exercice. On pose $a_{n+1} = \sqrt{1+a_n}$ pour $n \ge 0$ et $a_0 = 0$. Déterminer $\lim a_n$.

Solution: On peut poser $f: x \in \mathbb{R}_+^* \mapsto \sqrt{1+x}$ de sorte que $a_{n+1} = f(a_n)$ pour tout $n \ge 1$. f est clairement croissante, mais $a_1 \ge a_0$, donc (a_n) est croissante.

À présent, pour $n \in \mathbb{N}$, on pose \mathcal{P}_n : « $a_n \leq 2$ ». On montre par récurrence que $\forall n \in \mathbb{N}, \ \mathcal{P}_n$.

Initialisation $a_0 = 0 \le 2$

Hérédité Soit $n \in \mathbb{N}$ tel que \mathcal{P}_n . On exploite la croissance de f. On a $a_n \leq 2$ par

hypothèse de récurrence, donc $a_{n+1} = f(a_n) \le f(2) \le 2$.

Conclusion D'après le principe de récurrence, pour tout $n \in \mathbb{N}$, \mathcal{P}_n .

On a montré alors que (a_n) est croissante et majorée, elle converge donc d'après le TLM. Notons ℓ sa limite, par ailleurs positive du fait de la positivité de la suite. En passant à la limite dans la relation de récurrence (maintenant qu'on sait qu'elle existe), on obtient

$$\ell = f(\ell) \Longrightarrow \ell = \sqrt{1+\ell} \Longrightarrow \ell^2 - \ell - 1 = 0$$

 ℓ est racine positive du polynôme $X^2 - X - 1$, dont la seule racine positive est $\frac{1+\sqrt{5}}{2}$.

Exercice. Soient a, b deux réels, (a_n) (b_n) deux suites réelles tendant respectivement vers a et b.

Montrer que

$$\lim_{n \to +\infty} \frac{1}{n+1} \sum_{k=0}^{n} a_k b_{n-k} = ab$$

Solution: Soit $\varepsilon > 0$. On peut choisir $n_0 \ge 0$ tel que $|a_n - a| \le \varepsilon$ et $|b_n - b| \le \varepsilon$ pour tout $n \ge n_0$. Alors, on a pour $n \ge n_0$

$$\sum_{k=0}^{n} |a_k b_{n-k} - ab| = \sum_{k=0}^{n_0 - 1} |a_k b_{n-k} - ab| + \sum_{k=n_0}^{n - n_0} |a_k b_{n-k} - ab| + \sum_{k=n-n_0 + 1}^{n} |a_k b_{n-k} - ab|$$

Si $k \in [\![n_0, n - n_0]\!]$ alors $k \geq n_0$ et $n - k \geq n_0$ d'où

$$|a_k b_{n-k} - ab| \le |a_k - a| |b_{n-k}| + |a| |b_{n-k} - b| \le (M+a)\varepsilon$$

où M est un majorant de $(|b_p|)$. On obtient alors

$$\sum_{k=n_0}^{n-n_0} |a_k b_{n-k} - ab| \le (M+a)\varepsilon(n-2n_0+1)$$

Ensuite, si on désigne par M' un majorant de $(|a_p|)$, on a pour $k \in [n-n_0+1,n]$, $|a_kb_{n-k}-ab| \le MM' + |ab|$, d'où

$$\sum_{k=n-n}^{n} |a_k b_{n-k} - ab| \le n_0 (MM' + |ab|)$$

On peut finalement écrire

$$\left| \frac{1}{n+1} \sum_{k=0}^{n} a_k b_{n-k} - ab \right| \le \frac{1}{n+1} \sum_{k=0}^{n} |a_k b_{n-k} - ab|$$

$$\le \frac{1}{n+1} \sum_{k=0}^{n_0 - 1} |a_k b_{n-k} - ab|$$

$$+ \frac{1}{n+1} (n_0 (MM' + |ab|) + (M+a)\varepsilon (n - 2n_0 + 1))$$

Le dernier terme dans cette suite d'inégalités tend vers $\varepsilon > 0$ à mesure que n tend vers $+\infty$, donc est majoré par 2ε à partir d'un certain rang, soit l'existence de $n_1 \ge 0$ tel que

$$\forall n \ge n_1, \ \left| \frac{1}{n+1} \sum_{k=0}^n a_k b_{n-k} - ab \right| \le 2\varepsilon$$

2. ÉLÈVE 2

[À compléter]

3. ÉLÈVE 3

[À compléter]