

CLAIMS:

- 1 1. A printed circuit board, comprising:
 - 2 a plurality of conductive layers, wherein one of said plurality of conductive layers
 - 3 is a first layer, wherein one of said plurality of conductive layers is a second layer;
 - 4 two or more vias interconnecting two or more conductive layers of said plurality
 - 5 of conductive layers, wherein a first of said two or more vias is part of a signal path
 - 6 configured to carry a signal from said first layer to said second layer, wherein a second
 - 7 of said two or more vias is part of a reference path configured to carry said signal from
 - 8 a third layer to a fourth conductive layer, wherein said fourth conductive layer returning
 - 9 said signal to a source; and
 - 10 an electrical component embedded in said second of said two or more vias
 - 11 between two conductive layers of said plurality of conductive layers.
-
- 1 2. The printed circuit board as recited in claim 1, wherein said electrical
 - 2 component is a capacitor.
-
- 1 3. The printed circuit board as recited in claim 1, wherein said second of said
 - 2 two or more vias is a via adjacent to said first via of said two or more vias.
-
- 1 4. The printed circuit board as recited in claim 1, wherein said electrical
 - 2 component has a cylindrical configuration.
-
- 1 5. The printed circuit board as recited in claim 1, wherein a diameter from one
 - 2 end of said electrical component changes to an other end of said electrical component,
 - 3 wherein said second via of said two or more vias is configured so that one end of said
 - 4 second via of said two or more vias changes in diameter to an other end of said
 - 5 second via of said two or more vias.

1 6. The printed circuit board as recited in claim 5, wherein said electrical
2 component is embedded between the two conductive layers of said plurality of
3 conductive layers within said printed circuit board by adjusting the diameter of said
4 electrical component and the diameter of said second via of said two or more vias.

1 7. The printed circuit board as recited in claim 1, wherein said electrical
2 component has a greater diameter in a center than at ends of said electrical
3 component, wherein each end of said electrical component has a conductive cap
4 which is tinned.

1 8. The printed circuit as recited in claim 1, wherein said electrical component is
2 packaged as a pin, wherein each end of said electrical component is soldered to said
3 two conductive layers of said plurality of conductive layers within said printed circuit
4 board.

1 9. The printed circuit as recited in claim 1, wherein said second layer is
2 configured to carry said signal to a load, wherein said third layer is configured to
3 return said signal from said load.

- 1 10. A printed circuit board, comprising:
 - 2 a plurality of conductive layers;
 - 3 two or more vias interconnecting two or more conductive layers of said plurality
 - 4 of conductive layers; and
 - 5 an electrical component embedded in a particular via between two conductive
 - 6 layers of said plurality of conductive layers.

- 1 11. The printed circuit board as recited in claim 10, wherein said electrical
- 2 component is a two terminal electrical component.

- 1 12. The printed circuit board as recited in claim 10, wherein said electrical
- 2 component is a capacitor.

- 1 13. The printed circuit board as recited in claim 10, wherein said electrical
- 2 component is a resistor.

- 1 14. The printed circuit board as recited in claim 10, wherein said electrical
- 2 component is an inductor.

- 1 15. The printed circuit board as recited in claim 10, wherein said electrical
- 2 component is a diode.

- 1 16. The printed circuit board as recited in claim 10, wherein said electrical
- 2 component has a cylindrical configuration.

- 1 17. The printed circuit board as recited in claim 10, wherein a diameter from one
- 2 end of said electrical component changes to an other end of said electrical component,
- 3 wherein said particular via is configured so that one end of said particular via changes
- 4 in diameter to an other end of said particular via.

1 18. The printed circuit board as recited in claim 17, wherein said electrical
2 component is embedded between two conductive layers of said plurality of
3 conductive layers by adjusting the diameter of said electrical component and the
4 diameter of said particular via.

1 19. The printed circuit board as recited in claim 10, wherein said electrical
2 component has a greater diameter in a center than at ends of said electrical
3 component, wherein each end of said electrical component has a conductive cap
4 which is tinned.

1 20. The printed circuit as recited in claim 10, wherein said electrical component is
2 packaged as a pin, wherein each end of said electrical component is soldered to said
3 two conductive layers of said plurality of conductive layers.

4

1 21. A method for reducing impedance within a reference path in a printed circuit
2 board comprising the steps of:

3 forming said printed circuit board comprising a plurality of conductive layers,
4 wherein one of said plurality of conductive layers is a first layer, wherein one of said
5 plurality of conductive layers is a second layer, wherein said printed circuit board further
6 comprises two or more vias interconnecting two or more conductive layers of said
7 plurality of conductive layers, wherein a first of said two or more vias is part of a signal
8 path configured to carry said signal from said first layer to said second layer, wherein a
9 second of said two or more vias is part of a reference path configured to carry said signal
10 from a third layer to a fourth conductive layer; and

11 embedding an electrical component in said second of said two or more vias
12 between two conductive layers of said plurality of conductive.

1 22. The method as recited in claim 21, wherein said electrical component is a
2 capacitor.

1 23. The method as recited in claim 21, wherein said second via of said two or
2 more vias is a via adjacent to said first via of said two or more vias.

1 24. The method as recited in claim 21, wherein said electrical component has a
2 cylindrical configuration.

1 25. The method as recited in claim 21, wherein a diameter from one end of said
2 electrical component changes to an other end of said electrical component, wherein
3 said second via of said two or more vias is configured so that one end of said second
4 via of said two or more vias changes in diameter to an other end of said second via of
5 said two or more vias.

- 1 26. The method as recited in claim 25 further comprising the step of:
 - 2 embedding said electrical component between two conductive layers of said
 - 3 plurality of conductive layers within said printed circuit board by adjusting the diameter
 - 4 of said electrical component and the diameter of said second via of said two or more vias.
- 5
- 1 27. The method as recited in claim 21, wherein said electrical component has a greater diameter in a center than at ends of said electrical component, wherein each end of said electrical component has a conductive cap which is tinned.
- 1 28. The method as recited in claim 21, wherein said electrical component is packaged as a pin, wherein each end of said electrical component is soldered to said two conductive layers of said plurality of conductive layers within said printed circuit board.
- 1 29. The method as recited in claim 21, wherein said second layer is configured to carry said signal to a load, wherein said third layer is configured to return said signal from said load.

- 1 30. A method for saving space in a printed circuit board comprising the steps of:
 - 2 forming said printed circuit board comprising a plurality of conductive layers,
 - 3 wherein said printed circuit board further comprises two or more vias interconnecting
 - 4 two or more conductive layers of said plurality of conductive layers; and
 - 5 embedding an electrical component in a particular via between two conductive
 - 6 layers of said plurality of conductive layers.
- 1 31. The method as recited in claim 30, wherein said electrical component is a two
2 terminal electrical component.
- 1 32. The method as recited in claim 30, wherein said electrical component is a
2 capacitor.
- 1 33. The method as recited in claim 30, wherein said electrical component is a
2 resistor.
- 1 34. The method as recited in claim 30, wherein said electrical component is an
2 inductor.
- 1 35. The method as recited in claim 30, wherein said electrical component is a
2 diode.
- 1 36. The method as recited in claim 30, wherein said electrical component has a
2 cylindrical configuration.
- 1 37. The method as recited in claim 30, wherein a diameter from one end of said
2 electrical component changes to an other end of said electrical component, wherein
3 said particular via is configured so that one end of said particular via changes in
4 diameter to an other end of said particular via.

1 38. The method as recited in claim 37, wherein said electrical component is
2 embedded between two conductive layers of said plurality of conductive layers by
3 adjusting the diameter of said electrical component and the diameter of said particular
4 via.

1 39. The method as recited in claim 30, wherein said electrical component has a
2 greater diameter in a center than at ends of said electrical component, wherein each
3 end of said electrical component has a conductive cap which is tinned.

1 40. The method as recited in claim 30, wherein said electrical component is
2 packaged as a pin, wherein each end of said electrical component is soldered to said
3 two conductive layers of said plurality of conductive layers.