Deep Generative Models

Lecture 2

Roman Isachenko

Moscow Institute of Physics and Technology

2022

We are given i.i.d. samples $\{\mathbf{x}_i\}_{i=1}^n \in \mathcal{X}$ (e.g. $\mathcal{X} = \mathbb{R}^m$) from unknown distribution $\pi(\mathbf{x})$.

Goal

We would like to learn a distribution $\pi(\mathbf{x})$ for

- evaluating $\pi(\mathbf{x})$ for new samples (how likely to get object \mathbf{x} ?);
- ▶ sampling from $\pi(\mathbf{x})$ (to get new objects $\mathbf{x} \sim \pi(\mathbf{x})$).

Instead of searching true $\pi(\mathbf{x})$ over all probability distributions, learn function approximation $p(\mathbf{x}|\theta) \approx \pi(\mathbf{x})$.

Divergence

- ▶ $D(\pi||p) \ge 0$ for all $\pi, p \in \mathcal{S}$;
- ▶ $D(\pi||p) = 0$ if and only if $\pi \equiv p$.

Divergence minimization task

$$\min_{\boldsymbol{\theta}} D(\pi||p).$$

Forward KL

$$\mathit{KL}(\pi||p) = \int \pi(\mathbf{x}) \log rac{\pi(\mathbf{x})}{p(\mathbf{x}|m{ heta})} d\mathbf{x}
ightarrow \min_{m{ heta}}$$

Reverse KL

$$\mathit{KL}(p||\pi) = \int p(\mathbf{x}|\boldsymbol{\theta}) \log \frac{p(\mathbf{x}|\boldsymbol{\theta})}{\pi(\mathbf{x})} d\mathbf{x} \to \min_{\boldsymbol{\theta}}$$

Maximum likelihood estimation (MLE)

$$\theta^* = \arg\max_{\theta} p(\mathbf{X}|\theta) = \arg\max_{\theta} \prod_{i=1}^n p(\mathbf{x}_i|\theta) = \arg\max_{\theta} \sum_{i=1}^n \log p(\mathbf{x}_i|\theta).$$

Maximum likelihood estimation is equivalent to minimization of the Monte-Carlo estimate of forward KL.

Likelihood as product of conditionals

Let
$$\mathbf{x} = (x_1, \dots, x_m), \ \mathbf{x}_{1:j} = (x_1, \dots, x_j).$$
 Then

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1}, \boldsymbol{\theta}); \quad \log p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{j=1}^{m} \log p(x_j|\mathbf{x}_{1:j-1}, \boldsymbol{\theta}).$$

MLE problem for autoregressive model

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}}
ho(\mathbf{X}|oldsymbol{ heta}) = rg \max_{oldsymbol{ heta}} \sum_{i=1}^n \sum_{j=1}^m \log
ho(x_{ij}|\mathbf{x}_{i,1:j-1}oldsymbol{ heta}).$$

Sampling

$$\hat{x}_1 \sim p(x_1|\theta), \quad \hat{x}_2 \sim p(x_2|\hat{x}_1,\theta), \ldots, \quad \hat{x}_m \sim p(x_m|\hat{\mathbf{x}}_{1:m-1},\theta)$$

New generated object is $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_m)$.

Autoregressive MLP

Autoregressive RNN

Outline

- 1. Autoregressive models (WaveNet, PixelCNN)
- 2. Bayesian framework
- 3. Latent variable models (LVM)
- 4. Variational lower bound (ELBO)

Outline

- 1. Autoregressive models (WaveNet, PixelCNN)
- 2. Bayesian framework
- Latent variable models (LVM)
- 4. Variational lower bound (ELBO)

Autoregressive models

- Convolutions could be used for autoregressive models, but they have to be causal.
- Try to find and understand the difference between Conv A/B.

- Could learn long-range dependecies.
- ▶ Do not suffer from gradient issues.
- ► Easy to estimate probability for given input, but hard generation of new samples (the sequential process).

WaveNet

Goal

Efficient generation of raw audio waveforms with natural sounds.

Solution

Autoregressive model

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{t=1}^{T} p(x_t|\mathbf{x}_{1:t-1},\boldsymbol{\theta}).$$

- ▶ Each conditional $p(x_t|\mathbf{x}_{1:t-1}, \boldsymbol{\theta})$ models the distribution for the timestamp t.
- ▶ The model uses **causal** dilated convolutions.

WaveNet

Oord A. et al. Wavenet: A generative model for raw audio, 2016

PixelCNN

Goal

Model a distribution $\pi(\mathbf{x})$ of natural images.

Solution

Autoregressive model on 2D pixels

$$p(\mathbf{x}|oldsymbol{ heta}) = \prod_{j=1}^{\mathsf{width} imes \mathsf{height}} p(x_j|\mathbf{x}_{1:j-1},oldsymbol{ heta}).$$

- ▶ We need to introduce the ordering of image pixels.
- ▶ The convolution should be **masked** to make them causal.
- ► The image has RGB channels, these dependencies could be addressed.

PixelCNN

Raster ordering

Masked convolution kernel

Dependencies between pixels

PixelCNN

Generative models zoo

Outline

- 1. Autoregressive models (WaveNet, PixelCNN)
- 2. Bayesian framework
- Latent variable models (LVM)
- 4. Variational lower bound (ELBO)

Bayes theorem

$$p(\mathbf{t}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{\int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}}$$

- x observed variables, t unobserved variables (latent variables/parameters);
- $p(\mathbf{x}|\mathbf{t})$ likelihood;
- $p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}$ evidence;
- $ightharpoonup p(\mathbf{t})$ prior distribution, $p(\mathbf{t}|\mathbf{x})$ posterior distribution.

Meaning

We have unobserved variables \mathbf{t} and some prior knowledge about them $p(\mathbf{t})$. Then, the data \mathbf{x} has been observed. Posterior distribution $p(\mathbf{t}|\mathbf{x})$ summarizes the knowledge after the observations.

Let consider the case, where the unobserved variables ${\bf t}$ is our model parameters ${\boldsymbol \theta}$.

- $\mathbf{X} = {\mathbf{x}_i}_{i=1}^n$ observed samples;
- $p(\theta)$ prior parameters distribution (we treat model parameters θ as random variables).

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta$$

Note the difference from

$$p(\mathbf{x}) = \int p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}.$$

Posterior distribution

$$p(\boldsymbol{\theta}|\mathbf{X}) = \frac{p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta$$

If evidence $p(\mathbf{X})$ is intractable (due to multidimensional integration), we can't get posterior distribution and perform the precise inference.

Maximum a posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}) = \argmax_{\boldsymbol{\theta}} \left(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\right)$$

MAP estimation

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}) = \arg\max_{\boldsymbol{\theta}} \bigl(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\bigr)$$

Estimated θ^* is a deterministic variable, but we could treat it as a random variable with density $p(\theta|\mathbf{X}) = \delta(\theta - \theta^*)$.

Dirac delta function

$$\delta(x) = \begin{cases} +\infty, & x = 0; \\ 0, & x \neq 0; \end{cases} \int \delta(x) dx = 1; \int f(x) \delta(x-y) dx = f(y).$$

MAP inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta \approx p(\mathbf{x}|\theta^*).$$

Outline

- 1. Autoregressive models (WaveNet, PixelCNN)
- 2. Bayesian framework
- 3. Latent variable models (LVM)
- 4. Variational lower bound (ELBO)

Latent variable models (LVM)

MLE problem

$$m{ heta}^* = rg \max_{m{ heta}} p(\mathbf{X}|m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i|m{ heta}) = rg \max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i|m{ heta}).$$

The distribution $p(\mathbf{x}|\theta)$ could be very complex and intractable (as well as real distribution $\pi(\mathbf{x})$).

Extended probabilistic model

Introduce latent variable z for each sample x

$$p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})p(\mathbf{z}); \quad \log p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) + \log p(\mathbf{z}).$$

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})p(\mathbf{z})d\mathbf{z}.$$

Motivation

The distributions $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ and $p(\mathbf{z})$ could be quite simple.

Latent variable models (LVM)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \log \int p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z}
ightarrow \max_{oldsymbol{ heta}}$$

Examples

Mixture of gaussians

PCA model

- $ightharpoonup p(z) = \mathsf{Categorical}(\pi)$
- $p(z) = \mathcal{N}(z|0, I)$

Latent variable models (LVM)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \log \int p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z}
ightarrow \max_{oldsymbol{ heta}}$$

PCA projects original data **X** onto a low dimensional latent space while maximizing the variance of the projected data.

- $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$
- $p(z) = \mathcal{N}(z|0, I)$
- $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$
- $p(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^T(\mathbf{x} \boldsymbol{\mu}), \sigma^2\mathbf{M}), \text{ where } \mathbf{M} = \mathbf{W}\mathbf{W}^T + \sigma^2\mathbf{I}$

Maximum likelihood estimation for LVM

MLE for extended problem

$$egin{aligned} m{ heta}^* &= rg\max_{m{ heta}} p(\mathbf{X}, \mathbf{Z} | m{ heta}) = rg\max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i, \mathbf{z}_i | m{ heta}) = \\ &= rg\max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i, \mathbf{z}_i | m{ heta}). \end{aligned}$$

However, **Z** is unknown.

MLE for original problem

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i, \mathbf{z}_i|\boldsymbol{\theta}) d\mathbf{z}_i = \\ &= \arg\max_{\boldsymbol{\theta}} \log \sum_{i=1}^n \int p(\mathbf{x}_i|\mathbf{z}_i, \boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{aligned}$$

Naive approach

Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}),$$

where $\mathbf{z}_k \sim p(\mathbf{z})$.

Challenge: to cover the space properly, the number of samples grows exponentially with respect to dimensionality of **z**.

Outline

- 1. Autoregressive models (WaveNet, PixelCNN)
- 2. Bayesian framework
- Latent variable models (LVM)
- 4. Variational lower bound (ELBO)

Variational lower bound (ELBO)

Derivation 1 (inequality)

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \log \int \frac{q(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} =$$

$$= \log \mathbb{E}_q \left[\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} \right] \ge \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} = \mathcal{L}(q, \boldsymbol{\theta})$$

Derivation 2 (equality)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)p(\mathbf{x}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log p(\mathbf{x}|\theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \log p(\mathbf{x}|\theta) - KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta))$$

Variational decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})) \geq \mathcal{L}(q, \boldsymbol{\theta}).$$

Variational lower bound (ELBO)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z}$$

$$= \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

▶ Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{oldsymbol{ heta}} p(\mathbf{x}|oldsymbol{ heta}) \quad o \quad \max_{oldsymbol{q},oldsymbol{ heta}} \mathcal{L}(oldsymbol{q},oldsymbol{ heta})$$

 Maximization of ELBO by variational distribution q is equivalent to minimization of KL

$$\max_{q} \mathcal{L}(q, \theta) \equiv \min_{q} KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta)).$$

Summary

- WaveNet and PixelCNN models use masked causal convolutions (1D or 2D) to get autoregressive model.
- Bayesian inference is a generalization of most common machine learning tasks. It allows to construct MLE, MAP and bayesian inference, to compare models complexity and many-many more cool stuff.
- ► LVM introduces latent representation of observed samples to make model more interpretable.
- ► LVM maximizes variational evidence lower bound (ELBO) to find MLE for the parameters.