Decision Tree

Made Satria Wibawa, M.Eng. 2020

PENDAHULUAN

Tree Structure

Decision Tree

- Sekitar tahun 1970-1980 seorang peneliti bernama J. Ross Quinlan mengembangkan algoritma yang dikenal dengan nama ID3 (Iterative Dichotomiser)
- Kemudian Quinlan memperkenalkan algoritma C4.5 (pengembangan dari ID3)
- Algoritma inilah yang menjadi dasar dari decision tree saat ini.

KONSEP DECISION TREE

Parameter

- Dataset
- Daftar atribut
- Metode seleksi atribut

Metode seleksi atribut merupakan prosedur untuk menentukan splitting criterion yang dapat membagi data dengan cara 'terbaik' ke masing-masing kelas.

Splitting Criterion

Outlook	Temperature	Humidity	Windy	Play
overcast	hot	high	false	yes
overcast	cool	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
rainy	mild	normal	false	yes
rainy	mild	high	true	no
sunny	hot	high	false	no
sunny	hot	high	true	no
sunny	mild	high	false	no
sunny	cool	normal	false	yes
sunny	mild	normal	true	yes

bagaimana caranya menentukan atribut yang dijadikan node?

Information Theory

Claude Elwood Shannon Father of Information Theory

"Information is the resolution of uncertainty."

Information Gain

split dengan atribut GAJI

Less or equal 50K Over 50K

split dengan atribut BEKERJA

Atribut mana yang lebih Informatif?

Entropy

Entropy is measure of disorder

high entropy

medium entropy

Made Satria Wibawa Always The First stikom-bali.ac.id

ALGORITMA DECISION TREE

Pengukuran Entropy: ID3

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i),$$

$$Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j),$$

$$Gain(A) = Info(D) - Info_A(D)$$

- Info(D) = Information gain dari kelas D
- $Info_A(D)$ = Information gain dari atribut A kelas D
- p_i = probabilitas objek ke-i
- m = jumlah kelas label
- p_i = probabilitas objek ke-i
- D = jumlah instance
- D_i = jumlah instance pada atribut ke-j

Pengukuran Entropy: C4.5

Split
$$Info_A(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2\left(\frac{|D_j|}{|D|}\right),$$

$$Gain Ratio(A) = \frac{Gain(A)}{Split Info_A(D)}$$

STUDI KASUS

Dataset

Outlook	Temperature	Humidity	Windy	Play
overcast	hot	high	false	yes
overcast	cool	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
rainy	mild	normal	false	yes
rainy	mild	high	true	no
sunny	hot	high	false	no
sunny	hot	high	true	no
sunny	mild	high	false	no
sunny	cool	normal	false	yes
sunny	mild	normal	true	yes

Dataset

Outlook (o)			
	yes	no	
overcast	4	0	
rainy	3	2	
sunny	2	3	

Temperature (t)			
	yes	no	
hot	2	2	
mild	4	2	
cool	3	1	

Humidity (h)			
	yes	no	
high	3	4	
normal	6	1	

	Windy (w)		Play	
	yes	no	yes	no
false	6	2	9	5
true	3	3		

ID3

Information Gain Kelas:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i), = -\frac{9}{14} \log_2\left(\frac{9}{14}\right) - \frac{5}{14} \log_2\left(\frac{5}{14}\right) = 0.940$$

Information Gain Tiap Atribut:

$$Info_{o}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times Info(D_{j}), = \frac{4}{14} \times \left(-\frac{4}{4}\log_{2}\frac{4}{4}\right) + \frac{5}{14} \times \left(-\frac{3}{5}\log_{2}\frac{3}{5} - \frac{2}{5}\log_{2}\frac{2}{5}\right) + \frac{5}{14} \times \left(-\frac{2}{5}\log_{2}\frac{2}{5} - \frac{3}{5}\log_{2}\frac{3}{5}\right) = 0.694$$

$$Info_{t}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times Info(D_{j}), = \frac{4}{14} \times \left(-\frac{2}{4}\log_{2}\frac{2}{4} - \frac{2}{4}\log_{2}\frac{2}{4}\right) + \frac{4}{14} \times \left(-\frac{3}{4}\log_{2}\frac{3}{4} - \frac{1}{4}\log_{2}\frac{1}{4}\right) + \frac{6}{14} \times \left(-\frac{4}{6}\log_{2}\frac{4}{6} - \frac{2}{6}\log_{2}\frac{2}{6}\right) = 0.911$$

$$Info_h(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j), = \frac{7}{14} \times \left(-\frac{3}{7}\log_2\frac{3}{7} - \frac{4}{7}\log_2\frac{4}{7}\right) + \frac{7}{14} \times \left(-\frac{6}{7}\log_2\frac{6}{7} - \frac{1}{7}\log_2\frac{1}{7}\right) = 0.788$$

$$Info_{w}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times Info(D_{j}), = \frac{8}{14} \times \left(-\frac{6}{8}\log_{2}\frac{6}{8} - \frac{2}{8}\log_{2}\frac{2}{8}\right) + \frac{6}{14} \times \left(-\frac{3}{6}\log_{2}\frac{3}{6} - \frac{1}{7}\log_{2}\frac{1}{7}\right) = 0.892$$

Gain Tiap Atribut:

$$Gain(h) = Info(D) - Info_h(D) = 0.940 - 0.788 = 0.152$$

$$Gain(w) = Info(D) - Info_w(D) = 0.940 - 0.892 = 0.048$$

splitting attribute

Pembentukan Tree

Training-Node 2 Level 1

Information Gain Kelas:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i), = -\frac{3}{5} \log_2\left(\frac{3}{5}\right) - \frac{2}{5} \log_2\left(\frac{2}{5}\right) = 0.970$$

Training-Node 2 Level 1

Information Gain Tiap Atribut:

$$Info_t(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j), = \frac{3}{5} \times \left(-\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3}\right) + \frac{2}{5} \times \left(-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2}\right) = 0.951$$

$$Info_h(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j), = \frac{2}{5} \times \left(-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2}\right) + \frac{3}{5} \times \left(-\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3}\right) = 0.951$$

$$Info_w(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j), = \frac{3}{5} \times \left(-\frac{3}{3}\log_2\frac{3}{3}\right) + \frac{2}{5} \times \left(-\frac{2}{2}\log_2\frac{2}{2}\right) = 0$$

Training-Node 2 Level 1

Gain Tiap Atribut:

$$Gain(t) = Info(D) - Info_t(D) = 0.970 - 0.951 = 0.019$$

$$Gain(h) = Info(D) - Info_h(D) = 0.970 - 0.951 = 0.019$$

$$Gain(w) = Info(D) - Info_w(D) = 0.940 - 0 = 0.940$$

Pembentukan Tree

Training-Node 3 Level 1

Information Gain Kelas:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i), = -\frac{2}{5} \log_2\left(\frac{2}{5}\right) - \frac{3}{5} \log_2\left(\frac{3}{5}\right) = 0.970$$

Training-Node 3 Level 1

Information Gain Tiap Atribut:

$$Info_t(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j), = \frac{2}{5} \times \left(-\frac{2}{2}\log_2\frac{2}{2}\right) + \frac{2}{5} \times \left(-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2}\right) + \frac{1}{5} \times \left(-\frac{1}{2}\log_2\frac{1}{2}\right) = 0.4$$

$$Info_h(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j), = \frac{3}{5} \times \left(-\frac{3}{3}\log_2\frac{3}{3}\right) + \frac{2}{5} \times \left(-\frac{2}{2}\log_2\frac{2}{2}\right) = 0$$

$$Info_{w}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times Info(D_{j}), = \frac{3}{5} \times \left(-\frac{2}{3}\log_{2}\frac{2}{3} - \frac{1}{3}\log_{2}\frac{1}{3}\right) + \frac{2}{5} \times \left(-\frac{1}{2}\log_{2}\frac{1}{2} - \frac{1}{2}\log_{2}\frac{1}{2}\right) = 0.951$$

Training-Node 3 Level 1

Gain Tiap Atribut:

$$Gain(t) = Info(D) - Info_t(D) = 0.970 - 0.4 = 0.57$$

$$Gain(h) = Info(D) - Info_h(D) = 0.970 - 0 = 0.970$$

$$Gain(w) = Info(D) - Info_w(D) = 0.940 - 0.951 = 0.019$$

Pembentukan Tree

Kekurangan ID3

- Pengukuran menggunakan parameter information gain akan bias terhadap atribut yang memiliki banyak nilai. ID3 akan lebih memilih atribut yang memiliki banyak nilai.
- Misalkan terdapat atribut yang berperan sebagai unique identifier seperti ID_produk. Setiap pembagian (split) akan menghasilkan jumlah yang partisi yang sangat banyak sejumlah instance. Karena setiap partisi memiliki low entropy maka atribut ini akan digunakan sebagai split atribut. Partisi semacam ini jelas tidak berguna untuk klasifikasi.
- Untuk itulah digunakan perhitungan rasio dari Gain pada algoritma C4.5

C4.5

Information Gain Kelas:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i), = -\frac{9}{14} \log_2\left(\frac{9}{14}\right) - \frac{5}{14} \log_2\left(\frac{5}{14}\right) = 0.940$$

Information Gain Tiap Atribut:

$$Info_{o}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times Info(D_{j}), = \frac{4}{14} \times \left(-\frac{4}{4}\log_{2}\frac{4}{4}\right) + \frac{5}{14} \times \left(-\frac{3}{5}\log_{2}\frac{3}{5} - \frac{2}{5}\log_{2}\frac{2}{5}\right) + \frac{5}{14} \times \left(-\frac{2}{5}\log_{2}\frac{2}{5} - \frac{3}{5}\log_{2}\frac{3}{5}\right) = 0.694$$

$$Info_{t}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times Info(D_{j}), = \frac{4}{14} \times \left(-\frac{2}{4}\log_{2}\frac{2}{4} - \frac{2}{4}\log_{2}\frac{2}{4}\right) + \frac{4}{14} \times \left(-\frac{3}{4}\log_{2}\frac{3}{4} - \frac{1}{4}\log_{2}\frac{1}{4}\right) + \frac{6}{14} \times \left(-\frac{4}{6}\log_{2}\frac{4}{6} - \frac{2}{6}\log_{2}\frac{2}{6}\right) = 0.911$$

$$Info_h(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j), = \frac{7}{14} \times \left(-\frac{3}{7}\log_2\frac{3}{7} - \frac{4}{7}\log_2\frac{4}{7}\right) + \frac{7}{14} \times \left(-\frac{6}{7}\log_2\frac{6}{7} - \frac{1}{7}\log_2\frac{1}{7}\right) = 0.788$$

$$Info_{w}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times Info(D_{j}), = \frac{8}{14} \times \left(-\frac{6}{8}\log_{2}\frac{6}{8} - \frac{2}{8}\log_{2}\frac{2}{8}\right) + \frac{6}{14} \times \left(-\frac{3}{6}\log_{2}\frac{3}{6} - \frac{1}{7}\log_{2}\frac{1}{7}\right) = 0.892$$

Gain Tiap Atribut:

$$Gain(o) = Info(D) - Info_o(D) = 0.940 - 0.694 = 0.246$$

 $Gain(t) = Info(D) - Info_t(D) = 0.940 - 0.911 = 0.029$
 $Gain(h) = Info(D) - Info_h(D) = 0.940 - 0.788 = 0.152$

 $Gain(w) = Info(D) - Info_w(D) = 0.940 - 0.892 = 0.048$

Split Info Tiap Atribut:

$$SplitInfo_{o}(D) = -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times \log_{2}\left(\frac{|D_{j}|}{|D|}\right), = -\frac{4}{14} \times \log_{2}\left(\frac{4}{14}\right) - \frac{5}{14} \times \log_{2}\left(\frac{5}{14}\right) - \frac{5}{14} \times \log_{2}\left(\frac{5}{14}\right) = 1.578$$

$$SplitInfo_{t}(D) = -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times \log_{2}\left(\frac{|D_{j}|}{|D|}\right), = -\frac{4}{14} \times \log_{2}\left(\frac{4}{14}\right) - \frac{4}{14} \times \log_{2}\left(\frac{4}{14}\right) - \frac{6}{14} \times \log_{2}\left(\frac{6}{14}\right) = 1.556$$

$$SplitInfo_h(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2\left(\frac{|D_j|}{|D|}\right), = -\frac{7}{14} \times \log_2\left(\frac{7}{14}\right) - \frac{7}{14} \times \log_2\left(\frac{7}{14}\right) = 1$$

$$SplitInfo_t(D) = -\sum_{i=1}^{v} \frac{|D_i|}{|D|} \times \log_2\left(\frac{|D_j|}{|D|}\right), = -\frac{8}{14} \times \log_2\left(\frac{8}{14}\right) - \frac{6}{14} \times \log_2\left(\frac{6}{14}\right) = 0.985$$

Gain Ration Tiap Atribut:

$$GainRatio(o) = \frac{Gain(o)}{SplitInfo_o(D)} = \frac{0.246}{1.578} = 0.156$$

$$GainRatio(h) = \frac{Gain(h)}{SplitInfo_h(D)} = \frac{0.152}{1} = 0.152$$

$$GainRatio(w) = \frac{Gain(w)}{SplitInfo_{w}(D)} = \frac{0.048}{0.985} = 0.049$$

splitting attribute

Pembentukan Tree

Information Gain Kelas:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i), = -\frac{3}{5} \log_2\left(\frac{3}{5}\right) - \frac{2}{5} \log_2\left(\frac{2}{5}\right) = 0.970$$

Information Gain Tiap Atribut:

$$Info_t(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j), = \frac{3}{5} \times \left(-\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3}\right) + \frac{2}{5} \times \left(-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2}\right) = 0.951$$

$$Info_h(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j), = \frac{2}{5} \times \left(-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2}\right) + \frac{3}{5} \times \left(-\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3}\right) = 0.951$$

$$Info_w(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j), = \frac{3}{5} \times \left(-\frac{3}{3}\log_2\frac{3}{3}\right) + \frac{2}{5} \times \left(-\frac{2}{2}\log_2\frac{2}{2}\right) = 0$$

Gain Tiap Atribut:

$$Gain(t) = Info(D) - Info_t(D) = 0.970 - 0.951 = 0.019$$

 $Gain(h) = Info(D) - Info_h(D) = 0.970 - 0.951 = 0.019$

$$Gain(w) = Info(D) - Info_w(D) = 0.940 - 0 = 0.940$$

Split Info Tiap Atribut:

$$SplitInfo_t(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2\left(\frac{|D_j|}{|D|}\right), = -\frac{3}{5} \times \log_2\left(\frac{3}{5}\right) - \frac{2}{5} \times \log_2\left(\frac{2}{5}\right) = 0.971$$

$$SplitInfo_h(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2\left(\frac{|D_j|}{|D|}\right), = -\frac{2}{5} \times \log_2\left(\frac{2}{5}\right) - \frac{3}{5} \times \log_2\left(\frac{3}{5}\right) = 0.971$$

$$SplitInfo_w(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2\left(\frac{|D_j|}{|D|}\right), = -\frac{3}{5} \times \log_2\left(\frac{3}{5}\right) - \frac{2}{5} \times \log_2\left(\frac{2}{5}\right) = 0.971$$

Gain Ration Tiap Atribut:

$$GainRatio(t) = \frac{Gain(t)}{SplitInfo_t(D)} = \frac{0.019}{0.971} = 0.02$$

$$GainRatio(h) = \frac{Gain(h)}{SplitInfo_h(D)} = \frac{0.019}{0.971} = 0.02$$

$$GainRatio(w) = \frac{Gain(w)}{SplitInfo_w(D)} = \frac{0.940}{0.971} = 0.968$$

Pembentukan Tree

Information Gain Kelas:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i), = -\frac{2}{5} \log_2\left(\frac{2}{5}\right) - \frac{3}{5} \log_2\left(\frac{3}{5}\right) = 0.970$$

Information Gain Tiap Atribut:

$$Info_t(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j), = \frac{2}{5} \times \left(-\frac{2}{2}\log_2\frac{2}{2}\right) + \frac{2}{5} \times \left(-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2}\right) + \frac{1}{5} \times \left(-\frac{1}{2}\log_2\frac{1}{2}\right) = 0.4$$

$$Info_h(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j), = \frac{3}{5} \times \left(-\frac{3}{3}\log_2\frac{3}{3}\right) + \frac{2}{5} \times \left(-\frac{2}{2}\log_2\frac{2}{2}\right) = 0$$

$$Info_{w}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times Info(D_{j}), = \frac{3}{5} \times \left(-\frac{2}{3}\log_{2}\frac{2}{3} - \frac{1}{3}\log_{2}\frac{1}{3}\right) + \frac{2}{5} \times \left(-\frac{1}{2}\log_{2}\frac{1}{2} - \frac{1}{2}\log_{2}\frac{1}{2}\right) = 0.951$$

Gain Tiap Atribut:

$$Gain(t) = Info(D) - Info_t(D) = 0.970 - 0.4 = 0.57$$

$$Gain(h) = Info(D) - Info_h(D) = 0.970 - 0 = 0.970$$

$$Gain(w) = Info(D) - Info_w(D) = 0.940 - 0.951 = 0.019$$

Split Info Tiap Atribut:

$$SplitInfo_{t}(D) = -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times \log_{2} \left(\frac{|D_{j}|}{|D|}\right), = -\frac{2}{5} \times \log_{2} \left(\frac{2}{5}\right) - \frac{2}{5} \times \log_{2} \left(\frac{2}{5}\right) - \frac{1}{5} \times \log_{2} \left(\frac{1}{5}\right) = 1.522$$

$$SplitInfo_h(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2\left(\frac{|D_j|}{|D|}\right), = -\frac{3}{5} \times \log_2\left(\frac{3}{5}\right) - \frac{2}{5} \times \log_2\left(\frac{2}{5}\right) = 0.971$$

$$SplitInfo_w(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2\left(\frac{|D_j|}{|D|}\right), = -\frac{3}{5} \times \log_2\left(\frac{3}{5}\right) - \frac{2}{5} \times \log_2\left(\frac{2}{5}\right) = 0.971$$

Gain Ration Tiap Atribut:

$$GainRatio(t) = \frac{Gain(t)}{SplitInfo_t(D)} = \frac{0.57}{1.522} = 0.375$$

$$GainRatio(h) = \frac{Gain(h)}{SplitInfo_h(D)} = \frac{0.970}{0.971} = 0.999$$

$$GainRatio(w) = \frac{Gain(w)}{SplitInfo_w(D)} = \frac{0.019}{0.971} = 0.02$$

splitting attribute

Pembentukan Tree

IMPLEMENTASI PYTHON

Decision Tree Library

pip install chefboost

pertanyaan/troubleshooting silahkan buat di channel Diskusi Teams