Introduction to \mathcal{R}

Session 6: GLMs

Dag Tanneberg¹

Potsdam Center for Quantitative Research University of Potsdam, Germany October 11/12, 2018

¹Chair of Comparative Politics, UP, dag.tanneberg@uni-potsdam.de

Introduction

Introduction

•0000

Before we start...

- Quit & reopen RStudio.
- Load "./06/dta/asoiaf.csv" from the course material.
 - Remember: Uncheck the option "Strings as factors"
- Open a new script file.
- Execute the code below. What does it do?

```
asoiaf[, "died"] <- !is.na(asoiaf[, "book_of_death"])</pre>
```

What do we intent to do?

- Question: What's the chance that Jon Snow is going to die?
- **Means**: Regression on a linear combination of predictors

$$p(Death = 1|x, \beta) = \sum_{K} \beta_k x_k$$

- **Problem**: Chance of death is not a well-behaved response.
 - a. We don't obseverve probabilities but discrete events.
 - b. Probabilities are restricted to [0,1], but $\mathbf{X}\beta$ can take any value.

Some Intuition on GLMs

- **Challenge**: Map the linear combination $X\beta$ into a domain which fits our response.
- Applies to many quantities of interest, e.g.,
 - Household income
 - Satisfaction with democracy
 - Number of bills per session of parliament
 - **.** . . .
- GLMs: link function $g(\cdot)$ relates response to linear predictor $\mathbf{X}\beta$
 - logit transformation $[ln(\frac{p}{1-n})]$ for binary DVs
 - natural log $(ln(\mu))$ for count data

Outline

- 1 Introduction
- 2 The Basics of Running GLMs in ${\cal R}$
- 3 Working With Regression Results
- 4 Checking Assumptions
- 5 Summary

The Basics of Running GLMs in ${\cal R}$

Generic Format of Fitting GLMs

\mathcal{R} 's Formula Interface²

Generic Example

$$y \sim x_1 + x_2 + \dots + x_k$$

Formula Creation

Symbol	Meaning	Example
:	Specify an interaction	$y \sim x : z \Rightarrow y = xz$
*	Specify all possible interactions	$y \sim x * z \Rightarrow y = x + z + xz$
^	Specify interactions up to some degree	$y \sim (x+z)^2 \Rightarrow y = x+z+xz$
	Wildcard for all other variables	$y \sim . \Rightarrow y = x + z + w + \dots$
-	Remove variable(s)	$y \sim (x+z)^2 \tilde{x}: z \Rightarrow y = x+z$
-1 OR $0+$	Remove the intercept	$y \sim x - 1 \text{ OR } y \sim 0 + x$
I()	Arithmetical transformation	$y \sim I(x^2) \Rightarrow y = x^2$
function	Other mathematical transformations	$\log 10(y) \sim x \Rightarrow log_{10}(y) = x$

 $^{^2}$ Adapted from Kabacoff, R. 2011. R in Action. Shelter Island: Manning Publications, p. 178.

\mathcal{R} 's Formula Interface, contd.

Exercise How would you write the following formulas?³

- y = a + x + z + xz
- $|y| = a + x + x^2 + x^3$
- $log_e(y) = x + z + w + xz + xw + wz$
- $oldsymbol{4}$ y as a function of variables in the data but k

 $^{^{3}}$ Assume a is the constant.

Family Generators and Link Functions in $glm()^4$

A Practical Example

	link = " <arg>"</arg>							
family	μ identity	μ^{-1} inverse	$ln(\mu)\\\log$	$ln(\frac{\mu}{1-\mu})$ logit	$\Phi(\mu)$ probit	$ln[-ln(1-\mu)]$ cloglog	$\begin{array}{c} \sqrt{\mu} \\ \text{sqrt} \end{array}$	$1/\frac{1}{\mu^2}$ $1/\text{mu}^2$
gaussian()	•	0	0					
binomial()			0	•	0	0		
poisson()	0		•				0	
Gamma()	0	•	0					
inverse.gaussian()	0	0	0					•
quasi()	•	0	0	0	0	0	0	0
quasibinomial()				•	0	0		
quasi()	0		•				0	

Legend: • default, ∘ possible

⁴Adapted from Fox, J. and S. Weisberg. 2011. An R Companion to Applied Regression. 2nd ed. London: SAGE, pp. 231, 233.

Get Your Hands Dirty

Now it's your turn. Use the asoiaf data to

- regress died on
- allegiances,
- the full interaction of **gender** and **nobility**, and
- a cubic polynomial on age_in_chapters.
- This should be a **logistic** regression model.
- Save the results to an object called myfit.

Solution to the Exercise

```
myfit <- glm(
  formula = died ~ 0 + allegiances +
    gender * nobility +
    age_in_chapters + I(age_in_chapters^2) +
    I(age_in_chapters^3),
  family = binomial(link = "logit"),
  data = asoiaf
)</pre>
```

Working With Regression Results

Function	Output				
summary()	Display detailed model results				
coef()	Display fitted model parameters				
confint()	Provide confidence intervals				
fitted()	Return fitted values				
residuals()	Return residual values				
anova()	Return an ANOVA table for a fitted				
	model or compare fitted models				
vcov()	Return the variance-covariance matrix				
AIC()	Return Akaike's Information Criterion				
plot()	Display diagnostics plots				
predict()	Predict response values for new data				

 $^{^5\}mbox{Adapted}$ from Kabacoff, R. 2011. R in Action. Shelter Island: Manning Publications, p. 179.

How to Predict New Data

Generic Sequence

- Define scenarios to predict
- 2 Create a date frame which contains those scenarios
- 3 Use predict() to return quantities of interest
- 4 Summarize the results

Summary

Let's Do One Example Together

```
# Steps 1 & 2
pred_dta <- data.frame(</pre>
  allegiances = "Baratheon",
  gender = mean(asoiaf$gender),
  nobility = mean(asoiaf$nobility),
  age_in_chapters = 0:343, stringsAsFactors = FALSE
# Step 3
pred dta[, "fitted"] <- predict(</pre>
 myfit, newdata = pred_dta, type = "response"
# Step 4
ggplot(data = pred dta,
  aes(x = age_in_chapters, y = fitted)) + geom_line()
```

Get Your Hands Dirty

Now it's your turn. Is John Snow going to die? Setup possible scenarios and evaluate the results.

One Possible Solution

```
jon_snow <- which(asoiaf$name == "Jon Snow")
pred_dta <- asoiaf[rep(jon_snow, 3), ]; rm(jon_snow)
pred_dta[2, "allegiances"] <- "Stark"
pred_dta[3, "allegiances"] <- "Targaryen"
pred_dta[, "fitted"] <- predict(
    myfit, newdata = pred_dta, type = "response"
)
pred_dta[, "fitted"]</pre>
```

Checking Assumptions

Checking Assumptions

■ Always check your diagnostic plots

```
plot(myfit)
```

■ For detailed instructions see: Fox, J. and S. Weisberg. 2011. An R Companion to Applied Regression. 2nd ed. London: SAGE.

Summary

- \blacksquare base \mathcal{R} offers many probability models
- Numerous extensions are available (see the CRAN Taskviews)
- Discussion of marginal effects requires some acrobatics