Section 10.4 Matrix Inverses

Learning Objective: compute the inverse of a matrix, be able to solve a system of linear equations using the inverse of a matrix

The Identity Property for Matrix Multiplication

For any matrix A,

$$AI = A$$
 and $IA = A$

where, in each case, I is the identity matrix of appropriate dimensions.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Then
$$AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a \cdot 1 + b \cdot 0 & a \cdot 0 + b \cdot 1 \\ c \cdot 1 + d \cdot 0 & c \cdot 0 + d \cdot 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = A$$
 and

$$BA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 \cdot a + 0 \cdot c & 1 \cdot b + 0 \cdot d \\ 0 \cdot a + 1 \cdot c & 0 \cdot b + 1 \cdot d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = A.$$

Thus, $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the identity matrix of any 2×2 matrix A. We denote it by $I_{2 \times 2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Similarly, the $n \times n$ identity matrix for any positive integer n is

$$I_{n\times n} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Non-Singular Matrices and Matrix Inversion

Definition: (invertible matrix)

Let A be a square matrix. A is **invertible** (or **non-singular**) if there is a matrix B such that

$$AB = I$$
 and $BA = I$

where I is the identity matrix. B is called the inverse (matrix) of A. (Notation: $B = A^{-1}$) If no inverse exists, A is non-invertible (or singular).

Note: A^{-1} doesn't mean $\frac{1}{A}$.

Example 1: Find the inverse of the matrix $A = \begin{bmatrix} 4 & 2 \\ 3 & 2 \end{bmatrix}$.

Solution:

Finding a Multiplicative Inverse Matrix

To obtain A^{-1} for any $n \times n$ matrix A for which A^{-1} exists, follow these steps.

- 1. Form the augmented matrix [A|I], where I is the $n \times n$ identity matrix.
- 2. Perform row operations on [A|I] to get a matrix of the form [I|B], if this is possible.
- 3. Matrix B is A^{-1} .

Example 2: Determine whether the given matrix is invertible, and if it is, find its inverse.

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & -2 & -1 \\ 3 & 3 & 2 \end{bmatrix}$$

Solution:

A quick way to find the inverse of a 2×2 matrix:

When
$$A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $ad-bc\neq 0$, $A^{-1}=\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Example: The following matrix does not have an inverse.

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

Why do we need a matrix inverse?

Solving a System AX = B Using Matrix Inverses

To solve a system of equations AX = B, where A is the square matrix of coefficients and A^{-1} exists, X is the matrix of variables, and B is the matrix of constants, first find A^{-1} . Then $X = A^{-1}B$.

Example 3: Use the inverse of the coefficient matrix to solve the linear system.

$$5x + 4y = 23$$

$$4x - 3y = 6$$

Solution:

Remark: If a matrix has no inverse, then a corresponding system of equations will have either no solution or an infinite number of solutions.

For example, we found that this matrix $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ is not invertible.

Case 1:

$$x + 2y = 4$$
$$2x + 4y = 8$$

This is a dependent system and has infinitely many solutions.

Case 2:

$$x + 2y = 5$$
$$2x + 4y = 8$$

This is an inconsistent system and has no solution.