Búsqueda e inferencia lógica

Programación Lógica y Prolog

Contenidos

- Introducción a la Programación Lógica.
- 2. Programas Definidos: Sintaxis de Edimburgo.
- 3. Resolución SLD.
- Intérprete abstracto de un Programa Lógico.
- 5. Concepto de respuesta.
- 6. Programación Lógica y Negación.
- 7. Una implementación práctica: Prolog Estándar.

Anexo: árbol SLD

1. Introducción a la Programación Lógica.

- "parte de la informática que se ocupa de la lógica como lenguaje de programación"
 - Programa: conjunto finito de FBF's.
 - Computación: obtención de pruebas formales.

Evolución histórica

- Origen: demostración automática de teoremas + IA
 - Herbrand(30), Davies-Putman(~60), Robinson(65)
- Aparición PL (~70)
 - Kowalsky, Colmerauer, Green, Hayes
- Primer interprete Prolog
 - Colmerauer, Rusell, Marsella 1972
- Primera implementación eficiente
 - Warren, AWM (Máquina Abstracta de Warren) Edimburgo, 1977

Cláusulas definidas

A lo sumo, un literal positivo:

$$\neg b_1 \lor \neg b_2 \lor \dots \lor \neg b_n \lor a, n>=0$$

En programación lógica se representa:

$$a \leftarrow b_1, b_2, \dots, b_n$$

- donde:
 - a, b_1, b_2, \dots , b_n son literales positivos (átomos)
 - todas las variables se consideran cuantificadas universalmente
- a cabeza de la cláusula
- b_1, b_2, \dots, b_n cuerpo de la cláusula

- Programas Definidos
 - Cláusulas Horn o definidas.
- Programas Normales
 - Cláusulas normales: extensión cláusula de Horn, admitiendo literales negativos en cuerpo cláusulas.
- Programas: cualquier FBF.

2. Programas Definidos: Sintaxis de Edimburgo.

Programas Definidos: Sintaxis de Edimburgo

- Términos
 - Constantes
 - Numéricas: 12, -34, 34.87, ...
 - Atómicas: a, b, ana, estudiante, ...
 - Variables: x, y, z, x1, x2, ...
 - Funciones: f(a, x), g(y), madre(ana),...
- Átomos
 - p(x), q(a,y), hermano(x,y), madre(ana),...
- Cláusulas: se construyen con átomos $padre(x,y) \leftarrow hombre(x), hijo_de(y,x)$

Programas Definidos: Sintaxis de Edimburgo

- Hecho (cláusula unitaria de programa): $a \leftarrow$
- Regla (cláusula de programa): $a \leftarrow b_1, b_2, \dots, b_n$
- Pregunta o meta: $\leftarrow b_1, b_2, \dots, b_n$
- Programa: conjunto finito de cláusulas de programa

- Hechos
- Reglas

 $\{hombre(juan) \leftarrow, \\ hombre(luis) \leftarrow, \\ hijo_de(juan, luis) \leftarrow, \\ padre(x,y) \leftarrow hombre(x), hijo_de(y,x)\}$

Pregunta o meta

← padre(luis, juan)

3. Resolución SLD

Resolución SLD

Resolución Lineal con función de **S**elección para Cláusulas **D**efinidas.

C:
$$a \leftarrow b_1, b_2, b_n$$
 $n>=0$, cláusula de programa. (sin variables comunes con G: renombrar var C)

G: $\leftarrow a_1, a_2, \dots a_k$ k>0, pregunta.

 f_s : función de selección (regla de cómputo).

 $a_s = f_s(G)$, literal seleccionado.

Si a_s y a unifican con umg. θ , se denomina resolvente SLD de G y C a la meta:

$$\leftarrow (a_1, a_2, \dots, a_{s-1}, b_1, b_2, \dots, b_n, a_{s+1}, \dots, a_k) \theta$$

Ejemplo resolución SLD

```
G: \leftarrow mujer(ana), padre(x, y), hombre(y)
f_s(G): padre(x, y)
C: padre(u,v) \leftarrow hombre(u), hijo\_de(v,u)
Umg de padre(x,y) y padre(u,v): \theta=\{u/x, v/y\}
Resolvente SLD de G y C:
\leftarrow (mujer(ana), hombre(u), hijo_de(v,u), hombre(y)) {u/x, v/y}
Y aplicando la substitución:
\leftarrow mujer(ana), hombre(u), hijo_de(v,u), hombre(v)
```

En formato estándar

G: \neg mujer(ana) $\lor \neg$ padre(x, y) $\lor \neg$ hombre(y) C: $padre(u,v) \lor \neg hombre(u) \lor \neg hijo_de(v,u)$ $\theta = \{u/x, v/y\}$ \neg mujer(ana) $\lor \neg$ padre(x, y) $\lor \neg$ hombre(y) $padre(u,v) \lor \neg hombre(u) \lor \neg hijo_de(v,u)$ $\theta = \{u/x, v/y\}$ $\neg mujer(ana) \lor \neg hombre(v) \lor \neg hombre(u) \lor \neg hijo_de(v,u)$

 \leftarrow mujer(ana), hombre(u), hijo_de(v,u), hombre(v)

Reordenando y transformando:

Derivación SLD (cómputo de G por P)

Sean P un programa y G una meta. Una derivación SLD de P U {G} consiste en tres secuencias, posiblemente infinitas, de:

 $G_0=G, G_1, G_2, \dots$ Metas

C₁, C₂, C₃, ... Cláusulas de P renombradas

 $\theta_1, \, \theta_2, \, \theta_3, \, \dots$ Umg's de $C_i, \, G_{i-1}, \, respectivamente$

tal que G_{i+1} es el resolvente SLD de G_i y C_{i+1} usando θ_{i+1}

ESTRATEGIA DE RESOLUCIÓN LINEAL Y POR ENTRADAS

Ejemplo Derivación SLD

$$G_{0}: \leftarrow \text{entero}(5) \qquad \qquad C_{1}: \text{entero}(x_{1}) \leftarrow \text{entero}(x_{2}), \ =(x_{1},+(\ x_{2},1)) \\ \theta_{1}=\{5/x_{1}\} \qquad \qquad C_{2}: \text{entero}(x_{2}), \ =(5,+(\ x_{2},1)) \\ \theta_{2}=\{x_{2}/x_{3}\} \qquad \qquad C_{2}: \text{entero}(x_{3}) \leftarrow \text{entero}(x_{4}), \ =(x_{3},+(\ x_{4},1)) \\ \theta_{2}=\{x_{2}/x_{3}\} \qquad \qquad C_{3}: \text{entero}(x_{5}) \leftarrow \text{entero}(x_{6}), \ =(x_{5},+(\ x_{6},1)) \\ \theta_{3}=\{x_{4}/x_{5}\} \qquad \qquad G_{3}: \leftarrow \text{entero}(x_{6}), \ =(x_{4},+(\ x_{6},1)), \ =(x_{2},+(\ x_{4},1)), \ =(5,+(\ x_{2},1)) \\ \vdots$$

■ Def. Derivación SLD de □

Ejemplo Refutación SLD

```
padre(luis, carlos) \leftarrow,
        padre(carlos, jorge) \leftarrow,
        abuelo(x,y) \leftarrow padre(x,z), padre(z, y)
G_0: \leftarrow abuelo(luis, jorge)
                                                       C_1: abuelo(u,v) \leftarrow
                                                       padre(u,w),padre(w, v)
             \theta_1={\text{\text{tuis/u}, jorge/v}}
G_1: \leftarrow padre(luis, w), padre(w, jorge)
                                                       C<sub>2</sub>: padre(luis, carlos)
              <del>θ₂=</del>{carlos/w}
                                                       C<sub>3</sub>: padre(carlos, jorge)
G_2: \leftarrow padre(carlos, jorge)
G_3:
```

4. Intérprete abstracto de un Programa Lógico

Intérprete abstracto (no determinista) de un Programa Lógico

```
InterpreteAbstracto(P, G)
   resolvente \leftarrow G;
   mientras (resolvente \neq \emptyset) hacer
        Q=f_s(resolvente)
        Si (existe cláusula C de P cuya cabeza unifique con Q)
        Entonces
                 resolvente ← resolvente_SLD de resolvente y C
                                   con umq \theta
                 G \leftarrow G \theta
        Sino SalirMientras
        finsi
   finMientras
   Si (resolvente = \emptyset) Entonces (Devolver G)
   Sino (Devolver fallo)
```


- Regla de cómputo: literal sobre el que se resuelve, dado por la función de selección.
- Regla de búsqueda: criterio de selección de la cláusula que resuelve (reduce) la meta.

- Regla cómputo: arbitrario.
 - No afecta a la terminación.
 - Quizás orden respuestas.
- Regla de búsqueda: no determinista.
 - Afecta a la terminación.

Regla de búsqueda: afecta a la terminación

 C_1 : p(a, b) \leftarrow

 C_2 : p(c, b) \leftarrow

 C_3 : $p(x, z) \leftarrow p(x, y), p(y, z)$

 C_4 : $p(x, y) \leftarrow p(y, x)$

Regla de búsqueda: primera cláusula no utilizada

Regla de cómputo: primer literal a la izquierda

$$G_0$$
: \leftarrow p(a, c)

 C^3

$$G_1$$
: \leftarrow p(a, y), p(y, c)

 C_1

$$G_2$$
: $\leftarrow p(b, c)$

 C_{Δ}

$$G_3$$
: $\leftarrow p(c, b)$

 C_{2}

$$G_4$$
:

Regla de búsqueda: búsqueda primero en profundidad

Regla de cómputo: primer literal a la izquierda

$$G_0$$
: \leftarrow p(a, c)

 C_3

$$G_1$$
: \leftarrow p(a, y), p(y, c)

 C_1

$$G_2$$
: $\leftarrow p(b, c)$

 C^{a}

$$G_3$$
: $\leftarrow p(b, w), p(w, c)$

 C_3

$$G_4$$
: \leftarrow p(b, t), p(t, w), p(w, c)

-

.

Concepto de respuesta

Def. P programa definido, G meta definida.

Una respuesta para $P \cup \{G\}$ es:

- Una substitución para las variables de G
- "no"

Respuesta correcta

- Def. Sean P programa definido, G meta definida, G: $\leftarrow a_1, a_2, a_k$ θ una respuesta de P U $\{G\}$
- θ es una respuesta correcta para $P \cup \{G\}$ sii $P \models \forall (a_1, a_2, ..., a_k)\theta$ $(P \models \neg G \theta \text{ sii } P \cup \{G \theta\} \text{ inconsistente})$

"no" es una respuesta correcta para $P \cup \{G\}$ sii $P \cup \{G\}$ es satisfacible

Respuesta correcta

$$\begin{split} \mathsf{P} = & \{ \mathsf{p}(\mathsf{x}) \leftarrow \} \\ \mathsf{G} = \leftarrow \mathsf{p}(\mathsf{x}) & \mathsf{P} \cup \{ \mathsf{G} \} \text{ respuesta correcta:} \theta = \varnothing \ (\textit{true}) \\ \mathsf{G} = \leftarrow \mathsf{p}(\mathsf{y}) & \mathsf{P} \cup \{ \mathsf{G} \} \text{ respuesta correcta:} \theta = \varnothing \ (\textit{true}) \\ & \theta = \{ \mathsf{x}/\mathsf{y} \} \text{ es solo una variante alfabética y es equivalente a } \theta = \varnothing \\ \mathsf{G} = \leftarrow \mathsf{p}(\mathsf{y}) & \mathsf{P} \cup \{ \mathsf{G} \} \text{ respuesta correcta:} \theta = \{ \mathsf{a}/\mathsf{y} \} \ (\textit{true}) \\ \mathsf{G} = \leftarrow \mathsf{p}(\mathsf{a}) & \mathsf{P} \cup \{ \mathsf{G} \} \text{ única respuesta correcta:} \theta = \varnothing \ (\textit{true}) \\ \mathsf{G} = \leftarrow \mathsf{p}(\mathsf{b}) & \mathsf{P} \cup \{ \mathsf{G} \} \text{ única respuesta correcta:} \theta = \varnothing \ (\textit{true}) \\ \mathsf{G} = \leftarrow \mathsf{p}(\mathsf{f}(\mathsf{y})) & \mathsf{P} \cup \{ \mathsf{G} \} \text{ respuesta correcta:} \theta = \varnothing \ (\textit{true}) \end{split}$$

Respuesta correcta

$$P = \{p(x) \leftarrow\}$$

$$G = \leftarrow p(f(x))$$

$$P \cup \{G\} \text{ respuesta correcta: } \theta = \emptyset \text{ (true)}$$

PERO

$$P=\{p(x, x) \leftarrow\}$$

$$G=\leftarrow p(x, f(x))$$

$$P\cup\{G\} \text{ única respuesta correcta: } no$$

Respuesta computada

■ Def. Sean P programa definido, G meta definida $P \cup \{G\}$ tiene una refutación SLD, $\theta_1, \theta_2, \theta_3, \dots \dots \theta_n$ la secuencia de umg's utilizada en la refutación SLD

 θ es una respuesta computada para $P \cup \{G\}$ sii θ es la substitución obtenida seleccionando de $\theta_1 \theta_2 \theta_3 \dots \dots \theta_n$ las ligaduras de las variables que ocurren en G.

Respuesta computada

```
padre(luis, carlos) \leftarrow,
        padre(carlos, jorge) \leftarrow,
        abuelo(x,y) \leftarrow padre(x,z), padre(z, y)
                                                        C_1: abuelo(u,v) \leftarrow
G_0: \leftarrow abuelo(x,y)
                                                        padre(u,w),padre(w, v)
             \theta_1 = \{x/u, y/v\}
G_1: \leftarrow padre(x, w), padre(w, y)
                                                        C<sub>2</sub>: padre(luis, carlos)
               θ<sub>2</sub>={luis/x, carlos/w}
G_2: \leftarrow padre(carlos, y)
                                                        C<sub>3</sub>: padre(carlos, jorge)
               θ<sub>3</sub>={jorge/y}
G_3:
```

Respuesta computada

$$\theta_1$$
 θ_2 θ_3 = {x/u, y/v} {luis/x, carlos/w} {jorge/y}
 θ_1 θ_2 θ_3 = {x/u, y/v} {luis/x, carlos/w, jorge/y}
 θ_1 θ_2 θ_3 = {luis/u, jorge/v, luis/x, carlos/w, jorge/y}

G= ← abuelo(x,y)
Variables que ocurren en la meta original: x, y

Respuesta computada de $P \cup \{G\}$: $\theta = \{luis/x, jorge/y\}$

Sea P un programa definido y G una meta definida.

Toda respuesta computada de $PU\{G\}$ es una respuesta correcta de $PU\{G\}$

Sean P un programa definido, G una meta definida y θ una respuesta correcta de P U $\{G\}$

 \exists Respuesta computada σ y substitución γ tales que θ y $\sigma\gamma$ tienen el mismo efecto sobre las variables de G

(La respuesta computada puede ser más general que la correcta)

Diferencias respuesta correcta/computada (I)

$$P = \{q(x) \leftarrow\}$$
$$G = \leftarrow q(y)$$

Única respuesta computada: $\theta = \emptyset$

Respuestas correctas: $\theta_1 = \{a/y\}$, $\theta_2 = \{b/y\}$,... ya que $\leftarrow q(a)$, $\leftarrow q(b)$ etc., son consecuencias lógicas de P

La respuesta computada es más general.

Diferencias respuesta correcta/computada (II)

$$P = \{q(x) \leftarrow\}$$
$$G = \leftarrow q(y)$$

Única respuesta computada: $\sigma = \emptyset$

Una respuesta correcta: $\theta = \{a/y\}$

$$\exists \sigma = \emptyset \ y \ \exists \gamma = \{a/y\} \ / \ \sigma \gamma = \theta$$

Particularizando la respuesta computada, más general, se obtiene cualquier respuesta correcta.

Sean P programa definido, G meta definida / P U {G}
tiene una refutación SLD con respuesta computada θ.

Para cualquier otra regla de cómputo, R, existe una refutación SLD de $PU\{G\}$ vía R con respuesta computada $\theta'/G\theta'$ es una variante alfabética de $G\theta$.

6. Programación Lógica y Negación.

- Programa definido: conjunto de hechos y reglas que describen explícitamente qué es cierto, sin información explicita sobre qué es falso
- Dado Programa P, meta G, definidos, sólo podemos obtener respuestas computadas, σ , que también son correctas: sólo podemos derivar consecuencias lógicas

Programación Lógica: solo podemos derivar consecuencias lógicas

```
P=\{estudiante(juan) \leftarrow, profesor(luis) \leftarrow\}

G=\leftarrow estudiante(luis)
```

- Única respuesta (correcta y computada): "no"
 Porque P⊭ estudiante(luis)
- Incluso para la meta normal G= ← ¬estudiante(luis), la respuesta, en el ámbito de programas definidos y resolución SLD debería ser "no"

Porque P $\not\models \neg$ estudiante(luis)

Suposición de mundo cerrado (SMC)

Regla de inferencia:

Sean P programa definido y a átomo básico. Si $P \not\models a$, inferir $\neg a$

- Observaciones:
 - SMC natural y efectiva en contexto de bases de datos.
 - Regla de inferencia no-monotónica.
 - Problemática en el contexto de Programación Lógica, pues no se puede garantizar el cómputo de P⊨a.

Suposición de mundo cerrado (SMC)

Regla de inferencia:

```
Sean P programa definido y a átomo básico.
Si P \not\models a, inferir \neg a
```

```
P=\{estudiante(juan) \leftarrow, profesor(luis) \leftarrow\}

G=\leftarrow \neg estudiante(luis)
```

Respuesta (computada): $\theta = \emptyset$

- Teóricamente, innecesaria: "Toda función computable en el sentido de Turing se puede computar con un programa definido" (1977, Tärlund)
- En la práctica, su ausencia limita capacidad expresiva
 - ¿Cómo definir que dos conjuntos son distintos sin la negación?

- Regla de inferencia "Negación por fallo": Sean P programa definido y a átomo básico. Si P⊭a tiene una prueba finita, inferir ¬a
- Prueba finita de P⊭a (informal):
 - Número finito de derivaciones SLD.
 - Todas finitas.
 - Ninguna permite derivar a.

Prueba finita de P#a

```
P={estudiante_grado(juan) ←, estudiante_doctorado(luis) ←, estudiante(x) ← estudiante_grado(x), estudiante(x) ← estudiante_doctorado(x), profesor(x) ← estudiante_doctorado(x)}
G= ← profesor(juan)

← profesor(juan)

profesor(y) ← estudiante_doctorado(y)

← estudiante_doctorado(juan)
```

Todas las ramas, finitas, son ramas fallo: no permiten derivar

No hay ramas infinitas

```
\begin{split} P = & \{ estudiante\_grado(juan) \leftarrow, \ estudiante\_doctorado \ (luis) \leftarrow, \\ & \ estudiante(x) \leftarrow estudiante\_grado(x), \\ & \ estudiante(x) \leftarrow estudiante\_doctorado(x), \\ & \ profesor(x) \leftarrow estudiante\_doctorado(x) \} \\ G = & \ \leftarrow \neg profesor(juan) \end{split}
```

Respuesta: $\theta = \emptyset$

Porque existe una prueba finita de P ≠ profesor(juan)

```
 P = \{ estudiante\_grado(juan) \leftarrow, estudiante\_doctorado (luis) \leftarrow, \\ estudiante(x) \leftarrow estudiante\_grado(x), \\ estudiante(x) \leftarrow estudiante\_doctorado(x), \\ profesor(x) \leftarrow estudiante\_doctorado(x) \} \\ G = \leftarrow \neg profesor(luis) \\ \grave{c} Respuesta?
```

P= {
$$p(x, z) \leftarrow q(x, y), p(y, z),$$

 $p(x, x) \leftarrow ,$
 $q(a, b) \leftarrow }$
G= $\leftarrow \neg p(a, b)$

¿Respuesta?

No es una prueba finita de P⊭a

Finito, pero existe una rama éxito que termina con \Box , luego $P \models p(a, b)$

P= {p(x, z)
$$\leftarrow$$
 q(x, y), p(y, z),
p(x, x) \leftarrow ,
q(a, b) \leftarrow }
G= $\leftarrow \neg p(a, b)$

Respuesta: "no"

Porque no existe una prueba finita de P $\not\models$ p(a, b)

Prueba finita de P⊭a

P:
$$C_1$$
: $p(x, z) \leftarrow q(x, y)$, $p(y, z)$ Regla de cómputo: 1er literal a la C_2 : $p(x, x) \leftarrow$ izquierda. C_3 : $q(a, b) \leftarrow$ $G = \leftarrow p(c, b)$

$$\leftarrow p(c, b)$$

$$\{c/x, b/z\} \qquad C_1$$

$$\leftarrow q(c, y), p(y, b)$$

- No hay ramas infinitas
- Todas las ramas, finitas, son ramas fallo: no permiten derivar

P= {p(x, z)
$$\leftarrow$$
 q(x, y), p(y, z),
p(x, x) \leftarrow ,
q(a, b) \leftarrow }
G= $\leftarrow \neg p(c, b)$

¿Respuesta?

SMC, Negación por Fallo: regla de inferencia no monotónica

```
P={estudiante(juan) \leftarrow, profesor(luis) \leftarrow}
G= \leftarrow ¬estudiante(luis)
Respuesta (computada): \theta=\emptyset
```

Si añadimos a P la cláusula estudiante(luis) ←
 P'={estudiante(juan) ←, profesor(luis) ←, estudiante(luis) ←}
 G= ← ¬estudiante(luis)

Respuesta (computada): "no"

Negación por fallo y programas definidos: Resolvente SLDNF

• Sean P programa definido, G_i meta normal, $I_s = f_s(G_i)$ literal seleccionado

El resolvente SLDNF de P y G_i sobre I_s , G_{i+1} , es:

- a) I_s literal positivo:
 - resolvente SLD de G_i y C_{i+1} , con C_{i+1} cláusula de programa cuya cabeza unifique con I_s
- b) I_s literal negativo básico y existe prueba finita $P \not\models \neg I_s$
 - meta resultante de eliminar I_s de G_i

Negación por fallo y programas definidos: Resolvente SLDNF

```
P = \{estudiante\_grado(juan) \leftarrow, estudiante\_grado(luis) \leftarrow, estudiante(x)\}
   \leftarrow estudiante grado(x), estudiante(x) \leftarrow estudiante doctorado(x),
   profesor(x) \leftarrow estudiante doctorado(x)
G = \leftarrow estudiante(juan), \neg profesor(juan)
← estudiante(juan), ¬profesor(juan)
                                        estudiante(y) \leftarrow estudiante grado(y)
          {juan/y}
← estudiante_grado(juan), ¬profesor(juan)
                                         estudiante grado(juan) ←
← ¬profesor(juan)
                    ¬profesor(juan) átomo negativo, básico
                   existe prueba finita P⊭profesor(juan)
```

Programas normales

- Cláusulas Normales: admiten átomos negativos en el cuerpo de las cláusulas.
- Negación: negación por fallo.
- Regla de inferencia SLDNF:
 - Similar a SLDNF con programas definidos y metas normales.
 - Técnicamente, más compleja.
 - Admite literales negativos con variables.

Principales resultados en programas normales

- No se mantiene el teorema de independencia de la regla de cómputo.
- SLDNF no es sólida.

Ejemplo de programa normal

```
P = \{animal(snoopy) \leftarrow, \\ animal(lamia) \leftarrow, \\ serpiente(lamia) \leftarrow, \\ gusta(elena, x) \leftarrow animal(x), \neg serpiente(x) \}
```

Programas normales: no se mantiene el teorema de independencia de la regla de cómputo

A) Regla de cómputo: 1er literal a la izquierda.

```
G = \leftarrow gusta(elena, x)
                  gusta(elena, y) \leftarrow animal(y), \negserpiente(y)
\leftarrow animal(y), \negserpiente(y)
                                     animal(snoopy) \leftarrow
         {snoopy/y}
← ¬serpiente(snoopy)
```

Programas normales: no se mantiene el teorema de independencia de la regla de cómputo

B) Regla de cómputo: 1er literal a la derecha.

$$G = \leftarrow \text{gusta}(\text{elena}, x)$$
 $\{y/x\}$ $f(y)$ $f(y)$

No existe una prueba finita de P⊭ serpiente(y) θ Respuesta computada: "no"

SLDNF no es sólida en programas normales

- Ver ejemplo anterior.
- SLDNF puede derivar una respuesta computada ("no") que no es respuesta correcta.

Prolog éstandar

- Implementación secuencial modelo de programación lógica.
- Programas normales.
- Regla de cómputo: primer literal a la izquierda.
- Regla de búsqueda: primero en profundidad.
 - (implementación: backtracking)

- Prolog no es completo (por la regla de búsqueda)
 - Incluso en programas definidos puede no encontrar una refutación cuando esta existe.

Prolog no es completo

- Por la regla de búsqueda
 - Incluso en programas definidos puede no encontrar una refutación cuando esta existe.

```
P=\{entero(X):-entero(Y), X \text{ is } Y+1.
 entero(0).\}
```

?- entero(Z)

Dificultades: solidez

- No es sólido, pues SLDNF no lo es.
- Sugerencia: evitar variables libres en literales negativos seleccionados.
 - No incluyéndolos.
 - Intentando forzar ligadura operacionalmente.

Dificultades: solidez

No es sólido, pues SLDNF no lo es

```
P={animal(snoopy).
   animal(lamia).
   serpiente(lamia).
   gusta(elena, x) :- ¬serpiente(x), animal(x).}
```

Mejor

```
P={animal(snoopy).
   animal(lamia).
   serpiente(lamia).
   gusta(elena, x) :- animal(x), ¬serpiente(x).
```

Desviaciones modelo lógico

- Ausencia chequeo de ocurrencias
- Respuestas computadas no correctas
 - $P = \{p(X, f(X)), q(a): -p(X,X), G = ?-q(a).$
- Bucles infinitos
 - $P=\{q(a):-p(X,X), p(X, f(X)):-p(X,X).\}, G=?-q(a).$

Desviaciones modelo lógico

- Corte: ! (cut)
- Árbol SLD (programa P definido, meta G definida): árbol de derivaciones SLD para la meta G con el programa P
- Efecto Corte: impide explorar algún subárbol
- Afecta complitud programa definidos y normales
- Afecta solidez programas normales(Prolog)

Anexo: árbol SLD

Árbol SLD

- Sean P un programa definido y G una meta definida.
- Un árbol SLD para P U {G} es un árbol que cumple:
 - a) El nodo raíz es G
 - Cada nodo del árbol es una meta definida (posiblemente vacía)
 - Dado un nodo cualquiera con meta G_i y $a_s = f_s(G_i)$ el literal seleccionado por la función de selección, el nodo tiene un hijo por cada cláusula de programa cuya cabeza unifique con a_s
 - d) Los nodos con cláusulas vacías no tienen hijos.

Ejemplo Árbol SLD (I)

P:
$$C_1$$
: $p(x, z) \leftarrow q(x, y)$, $p(y, z)$ Regla de cómputo: 1er literal a la C_2 : $p(x, x) \leftarrow$ izquierda. C_3 : $q(a, b) \leftarrow$ $G = \leftarrow p(x, b)$

Ejemplo Árbol SLD (I) y respuestas computadas

P:
$$C_1$$
: $p(x, z) \leftarrow q(x, y)$, $p(y, z)$
 C_2 : $p(x, x) \leftarrow$
 C_3 : $q(a, b) \leftarrow$
 $G = \leftarrow p(x, b)$

Regla de cómputo: 1er literal a la izquierda.

Rama fallo: termina con una meta no vacía Respuesta computada: {a/x}

Ejemplo Árbol SLD (II)

P:
$$C_1$$
: $p(x, z) \leftarrow q(x, y)$, $p(y, z)$ Regla de cómputo: 1er literal a la C_2 : $p(x, x) \leftarrow$ derecha. C_3 : $q(a, b) \leftarrow$ $G = \leftarrow p(x, b)$

Ejemplo Árbol SLD (II) y respuestas computadas

P: C_1 : $p(x, z) \leftarrow q(x, y)$, p(y, z) C_2 : $p(x, x) \leftarrow$ C_3 : $q(a, b) \leftarrow$ $G = \leftarrow p(x, b)$

Regla de cómputo: 1er literal a la derecha.

Rama fallo: termina

con una meta no vacía