

UNIVERSIDAD DE GRANADA

Algorítmica

Curso 2023

Practica 1:

Análisis de Eficiencia en Algoritmos

Amador Carmona Méndez Miguel Ángel López Sánchez

Analisis de la eficiencia de los algoritmos iterativos:

1. Algoritmo "eliminarRepetidos": se introduce un vector y un tamaño total del vector.

Este algoritmo tiene una eficiencia teorica o(n²) debido a que se hace una busqueda con dos bucles for de tamaño n, por lo que en el peor de los casos se hacen n² iteraciones y en el mejor de los casos, n iteraciones.

Si se hicieran n², significa que todos los elementos del vector son iguales, por lo que se completan las n² iteraciones, por lo que significa que es el peor caso. Si se hicieran n iteraciones, significa que todos los elementos tienen valor distinto por lo que solo haria falta recorrerlo n veces, por lo que es el mejor caso.

Esto significa que el mejor caso es $\Omega(n)$ y el pero es $O(n^2)$.

2. Algoritmo "eliminarRepetidosOrdenado": funciona igual que el algoritmo anterior pero al estar ordenados podemos hacer una analisis del vector mas sencillo ya que solo tenemos que saber si el valor es distinto al que tenemos a los lados. Si la posicion en la que estamos y la siguiente son iguales entra en otro bucle y coloca ese valor al final del array y su tamaño maximo decrementa en uno.

La eficiencia de este algoritmo es la misma que la eficiencia del algoritmo anterior, el mejor caso seria un vector el cual no tenga elementos repetidos, y el peor caso seria un vector el cual tenga todos los elementos repetidos.

Esto significa que el mejor caso es $\Omega(n)$ y el pero es $O(n^2)$.

Eficiencia Hibrida de los algoritmos iterativos:

eliminarRepetidos				eliminarRepetidosOrdenado						
n	T(n)		T.E(n)=n^2	K	K*f(n)	n	T(n)	T.E(n)=n	K	f(n)*k
	1000	901	1000000	0,000901	0,7827953109	10000	126	10000	0,0126	73,5977522
	2000	3117	4000000	0,00077925	2,708072124	20000	156	20000	0,0078	147,195504
	3000	7811	9000000	0,0008678888	7819,265037	30000	215	30000	0,0071666666	220,793256
	4000	16023	16000000	0,0010014375	13900,91562	40000	287	40000	0,007175	294,39100
	5000	20042	25000000	0,00080168	21720,18066	50000	355	50000	0,0071	367,988761
	6000	28979	36000000	0,0008049722	31277,06015	60000	415	60000	0,0069166666	441,586513
	7000	42271	49000000	0,0008626734	42571,55409	70000	456	70000	0,0065142857	515,184265
	8000	57348	64000000	0,0008960625	55603,66248	80000	516	80000	0,00645	588,78201
	9000	68371	81000000	0,0008440864	70373,38533	90000	834	90000	0,0092666666	662,379770
	10000	89559	100000000	0,00089559	86880,72263	100000	639	100000	0,00639	735,977522
	11000	99756	121000000	0,0008244297	105125,6744	110000	734	110000	0,0066727272	809,575274
	12000	140037	144000000	0,0009724791	125108,2406	120000	894	120000	0,00745	883,17302
	13000	148217	169000000	0,0008770236	146828,4212	130000	817	130000	0,0062846153	956,770779
	14000	165433	196000000	0,0008440459	170286,2164	140000	889	140000	0,00635	1030,36853
	15000	193385	225000000	0,0008594888	195481,6259	150000	939	150000	0,00626	1103,96628
			K=	0,0008688072				K=	0,0073597752	

CURSO 2ºD

Analisis de la eficiencia teorica y practica de los algoritmos recursivos

El Algoritmo de Hanoi:

```
V**
Se trata del problema clásico de las torres de Hanoi.
Se tienen 3 barras, y hay que mover M anillos de la primera barra
a la segunda. Solo se puede mover un anillo en cada movimiento,
y ningún anillo de tamaño mayor puede ponerse sobre otro de tamaño
                                                                                        (aso Box
                                                                                        T(1)=O(1) EI
                                                                                      (aso General:
  void hanoi (int M, int i, int j)
         (M > 0)

hanoi(M-1, i, 6-i-j);

cout ≪ i ≪ " -> " ≪ j ≪ endl; ← ○CA)

hanoi (M-1, 6-i-j, j);
                                                                                      T(n)=27(n-1)+1
 · TCN)= 2T(N-1)+1 ⇒ Tcn)-2T(n-1)=1
        - 1. Resolvemos ELH: ×2-2×
                           Seconos fector comin x';
                          P4(x)= X-2 Roices: 0,2
      -> 2 Pesolvemos ELNH'
                 Satomo, que 1= 61. 9,(11); por lo que
b1= 1, 9,(11)=1 con grado 21=0
       -> 3. Celanlamo polinomo conataistro de ELNH
       P^{(x)} = (x - 2) \cdot (x - b_1)^{d_{1}+1} = (x - 2) \cdot (x - 1)^{1} > 0
· Par ultimo colulemo, tu
              r=0,2,1 W=1,1,1
   t_N = 2^n + 1

* Aplicado le regle de la suma subsenso que:
2^n + 1 = 2^n
           tn=2" -> O(2") -> Oclev experiencie
```

CURSO 2ºD

Amador Carmona Méndez Miguel Ángel López Sánchez

Algoritmo InsertaPos:

$$T(n) = T\left(\frac{n-2}{2}+1\right) + O(1) \cdot \log_2 n$$

$$T(n) = T\left(\frac{n-2}{2}+1\right) + O(1) \cdot \log_2 n$$

$$T(n) = T\left(\frac{n-2}{2}+1\right) + O(1) \cdot \log_2 n$$

$$\int_{-\infty}^{\infty} T(n) dn = \int_{-\infty}^{\infty} \frac{1}{n} \int_{-\infty}^{\infty} \frac{1}{n}$$

· Resolvemos le eurocron remonte

$$T(N) = T(N/2) + \log_2 N$$

- Podemos resolverle por combre de vonche => n=2k; k=logen

$$T(2^{k}) = T(2^{k-1}) + k$$

1. Ecneción carecterística

$$(x-1)\cdot(x-1)=0 \Longrightarrow (x-1)^2=0$$

2.
$$t_k = C_1 \cdot 1^k + C_2 \cdot k \cdot 1^k = c_1 + k \cdot c_2$$

3. Deshacemes el Combro;

El Algoritmo ReestructuraRaiz:

Este algorithmo es de eficrencia og n ja que se teste de una busquede binara de un cabol, entonces todos las decisiones se toman o itamerde o dececho (o que quiere decir que hace T(N/2) iteraciones, esto significa que su caso general es T(N) = T(N/2) y on caso base es T(N) = O(1).

T(N) = T(N/2) T(N) - T(N/2) = 04 Cambro de variable: $2^{k} = N$; $k = \log_{2} N$ $T(2^{k}) - T(2^{k-1}) = 0$ $E_{k} - E_{k-1} \ge 0 \Rightarrow (x-1) \cdot (x-1) = (x-1)^{2}$ $E_{k} = (x-1)^{k} + (x-1)^{2}$ $E_{k} = (x-1)^{k} + (x-1)^{2}$ $E_{k} = (x-1)^{2} + (x-1)^{2}$ $E_{k} = (x-1)^{2} + (x-1)^{2$

> CURSO 2ºD Amador Carmona Méndez

Miguel Ángel López Sánchez

El Algoritmo de HeapSort:

Heapfort es la sume de los dos algorithos autorora, esto significa que su eficiareix se calculare de la significa forma:

· Dando por secundaras las anstruectores O(1), ye que son 'cte', nos quedans que:

=> Aplicando le regle de le sure, sobrenos que le eficiencia del digeritmo ltecpSo(t es T(u) = O(u.logn)

Tombien podrianos deduers que n.logn + nlogn = 2(nlogn) y apricando la regla de la sura se eliminam las che (e12) y aprede O(n.logn)

<u>Algoritmos</u>	PeorCaso:
Hanoi	O(2^n)
InsertaEnPos	O(logn)
ReestructuraRaiz	O(logn)
HeapSort	O(nlogn)

Eficiencia Practica e Hibrida:

Comparacion Entre HeapSort y MergeSort:

MergeSort				
n	T(n)	T.E(n)=nlogn	K	Tiempo teorico estimado Kpromedio*f(n)
1000	114	3000	0,038	119,447542855769
2000	328	6602,059991	0,049681463	262,866614583502
3000	447	10431,36376	0,04285154	415,333590087833
4000	596	14408,23997	0,041365219	573,676286910929
5000	684	18494,85002	0,036983268	736,388130191885
6000	834	22668,9075	0,036790481	902,581766791557
7000	1057	26915,68628	0,03927078	1071,67086347822
8000	1139	31224,7199	0,036477509	1243,23868930971
9000	1314	35588,18258	0,036922369	1416,97365482507
	K=	0,039815848		

HeapSort					
n	T(n)	T.E(n)=n*log(n)	K	Tiempo teorico estimado Kpromedio*f(n)
	1000	226702	3000	75,56733333	159676,501738311
	2000	325466	6602,059991328	49,29764353	351397,947893903
	3000	516127	10431,36376416	49,47838189	555214,558073561
	4000	742363	14408,23996531	51,52350334	766885,784622371
	5000	914325	18494,85002168	49,43673503	984397,650545532
	6000	1145265	22668,9075023	50,52140249	1206563,94939897
	7000	1508741	26915,6862801	56,05433888	1432600,87569739
	8000	1512452	31224,71989594	48,43764828	1661951,34691387
	9000	1733590	35588,18258495	48,71251843	1894198,83279657
	K=		53,22550057944		

CONCLUSION

Como hemos visto antes, ambos algoritmos tienen la misma eficiencia teorica, O(nlogn). Sin embargo, realizando las pruebas para calcular sus respectivas eficiencias practicas, resulta que el algoritmo MergeSort es mucho mas eficiente que el algoritmo HeapSort.

Ademas, como habiamos calculado antes, HeapSort tenia una eficiencia 2O(nlogn) lo que nos hacia pensar ya de antemano que seria mas lento que MergeSort que es O(nlogn), por lo que esto afecta mucho a la constante oculta k, la cual es bastante mas grande en Heap, que en Merge.

GRAFICAS DE LAS EFICIENCIAS COMPARADAS:

Eficiencia Teórica vs empírica eliminarRepetidos

Eficiencia teórica vs empírica eliminarRepetidosOrdenado

MergeSort Eficiencia teórica vs empírica

HeapSort eficiencia teórica vd empírica

•