Game-theoretic strengthenings of Menger's property

29th Summer Conference on Topology and its Applications

Steven Clontz http://stevenclontz.com

Department of Mathematics and Statistics
Auburn University

July 23, 2014

The Menger property

Definition

A space X is Menger if for every sequence $\langle \mathcal{U}_0, \mathcal{U}_1, \ldots \rangle$ of open covers of X there exists a sequence $\langle \mathcal{F}_0, \mathcal{F}_1, \ldots \rangle$ such that $\mathcal{F}_n \subseteq \mathcal{U}_n, \, |\mathcal{F}_n| < \omega$, and $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover of X.

Proposition

X is σ -compact \Rightarrow *X* is Menger \Rightarrow *X* is Lindelöf.

The Menger property

Definition

A space X is Menger if for every sequence $\langle \mathcal{U}_0, \mathcal{U}_1, \ldots \rangle$ of open covers of X there exists a sequence $\langle \mathcal{F}_0, \mathcal{F}_1, \ldots \rangle$ such that $\mathcal{F}_n \subseteq \mathcal{U}_n, \, |\mathcal{F}_n| < \omega$, and $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover of X.

Proposition

X is σ -compact \Rightarrow *X* is Menger \Rightarrow *X* is Lindelöf.

The Menger game

Game

Let $Cov_{\mathcal{C},\mathcal{F}}(X)$ denote the *Menger game* with players \mathscr{C} , \mathscr{F} . In round n, \mathscr{C} chooses an open cover \mathcal{C}_n , followed by \mathscr{F} choosing a finite subcollection $\mathcal{F}_n \subseteq \mathcal{C}_n$.

 \mathscr{F} wins the game, that is, $\mathscr{F} \uparrow Cov_{C,F}(X)$ if $\bigcup_{n<\omega} \mathcal{F}_n$ is a cover for the space X, and \mathscr{C} wins otherwise.

Theorem

X is Menger if and only if $\mathscr{C} \not \cap Cov_{C,F}(X)$. (Hurewicz 1926, effectively)

The Menger game

Game

Let $Cov_{C,F}(X)$ denote the *Menger game* with players \mathscr{C} , \mathscr{F} . In round n, \mathscr{C} chooses an open cover \mathcal{C}_n , followed by \mathscr{F} choosing a finite subcollection $\mathcal{F}_n \subseteq \mathcal{C}_n$.

 \mathscr{F} wins the game, that is, $\mathscr{F} \uparrow Cov_{C,F}(X)$ if $\bigcup_{n<\omega} \mathcal{F}_n$ is a cover for the space X, and \mathscr{C} wins otherwise.

Theorem

X is Menger if and only if $\mathscr{C} \uparrow Cov_{C,F}(X)$. (Hurewicz 1926, effectively)

Menger suspected that the subsets of the real line with his property were exactly the σ -compact spaces; however:

Theorem

There are ZFC examples of non- σ -compact subsets of the real line which are Menger. (Fremlin, Miller 1988)

But metrizable non- σ -compact Menger spaces will be *undetermined* for the Menger game.

Theorem

Let X be metrizable. $\mathscr{F} \uparrow Cov_{C,F}(X)$ if and only if X is σ -compact. (Telgarsky 1984, Scheepers 1995)

Menger suspected that the subsets of the real line with his property were exactly the σ -compact spaces; however:

Theorem

There are ZFC examples of non-σ-compact subsets of the real line which are Menger. (Fremlin, Miller 1988)

But metrizable non- σ -compact Menger spaces will be *undetermined* for the Menger game.

Theorem

Let *X* be metrizable. $\mathscr{F} \uparrow Cov_{C,F}(X)$ if and only if *X* is σ -compact. (Telgarsky 1984, Scheepers 1995)

Menger suspected that the subsets of the real line with his property were exactly the σ -compact spaces; however:

Theorem

There are ZFC examples of non-σ-compact subsets of the real line which are Menger. (Fremlin, Miller 1988)

But metrizable non- σ -compact Menger spaces will be *undetermined* for the Menger game.

Theorem

Let X be metrizable. $\mathscr{F} \uparrow Cov_{C,F}(X)$ if and only if X is σ -compact. (Telgarsky 1984, Scheepers 1995)

Note that for Lindelöf spaces, metrizability is characterized by regularity and secound countability.

Sketch of Scheeper's proof:

- Using second-countability and the winning strategy for \mathscr{F} , construct certain subsets K_s for $s \in \omega^{<\omega}$ such that $X = \bigcup_{s \in \omega < \omega} K_s$.
- Using regularity, show that each K_s is compact.
- The result follows since $|\omega^{<\omega}| = \omega$.

By considering winning *limited-information strategies*, we'll be able to factor out this proof a bit.

Note that for Lindelöf spaces, metrizability is characterized by regularity and secound countability.

Sketch of Scheeper's proof:

- Using second-countability and the winning strategy for \mathscr{F} , construct certain subsets K_s for $s \in \omega^{<\omega}$ such that $X = \bigcup_{s \in \omega, <\omega} K_s$.
- Using regularity, show that each K_s is compact.
- The result follows since $|\omega^{<\omega}| = \omega$.

By considering winning *limited-information strategies*, we'll be able to factor out this proof a bit.

Note that for Lindelöf spaces, metrizability is characterized by regularity and secound countability.

Sketch of Scheeper's proof:

- Using second-countability and the winning strategy for \mathscr{F} , construct certain subsets K_s for $s \in \omega^{<\omega}$ such that $X = \bigcup_{s \in \omega < \omega} K_s$.
- Using regularity, show that each K_s is compact.
- The result follows since $|\omega^{<\omega}| = \omega$.

By considering winning *limited-information strategies*, we'll be able to factor out this proof a bit.

Limited information strategies

Definition

A *(perfect information) strategy* has knowledge of all the past moves of the opponent.

Definition

A *k-tactical strategy* has knowledge of only the past *k* moves of the opponent.

Definition

A *k-Marköv strategy* has knowledge of only the past *k* moves of the opponent and the round number.

Limited information strategies

Definition

A *(perfect information) strategy* has knowledge of all the past moves of the opponent.

Definition

A *k-tactical strategy* has knowledge of only the past *k* moves of the opponent.

Definition

A *k-Marköv strategy* has knowledge of only the past *k* moves of the opponent and the round number.

Limited information strategies

Definition

A (perfect information) strategy has knowledge of all the past moves of the opponent.

Definition

A *k-tactical strategy* has knowledge of only the past *k* moves of the opponent.

Definition

A *k-Marköv strategy* has knowledge of only the past *k* moves of the opponent and the round number.

Obviously,

$$\mathscr{A} \underset{k\text{-tact}}{\uparrow} G \Rightarrow \mathscr{A} \underset{k\text{-mark}}{\uparrow} G \Rightarrow \mathscr{A} \underset{\text{(perfect)}}{\uparrow} G$$

But tactical strategies aren't interesting for the Menger game.

Proposition

For any
$$k < \omega$$
, $\mathscr{F} \uparrow Cov_{C,F}(X)$ if and only if X is compact.

Effectively, \mathscr{F} needs some sort of seed to prevent from being stuck in a loop: there's nothing stopping \mathscr{C} from playing the same open cover during every round of the game.

Obviously,

$$\mathscr{A} \underset{k\text{-tact}}{\uparrow} G \Rightarrow \mathscr{A} \underset{k\text{-mark}}{\uparrow} G \Rightarrow \mathscr{A} \underset{\text{(perfect)}}{\uparrow} G$$

But tactical strategies aren't interesting for the Menger game.

Proposition

For any
$$k < \omega$$
, $\mathscr{F} \underset{k\text{-tact}}{\uparrow} Cov_{C,F}(X)$ if and only if X is compact.

Effectively, \mathscr{F} needs some sort of seed to prevent from being stuck in a loop: there's nothing stopping \mathscr{C} from playing the same open cover during every round of the game.

Comparitively, Marköv strategies are very powerful.

Proposition

If X is
$$\sigma$$
-compact, then $\mathscr{F} \underset{1-mark}{\uparrow} Cov_{C,F}(X)$.

Proof.

Let $X = \bigcup_{n < \omega} K_n$. During round n, \mathscr{F} picks a finite subcollection of the last open cover played by \mathscr{C} (the only one \mathscr{F} remembers) which covers K_n .

Without assuming regularity, we can't quite reverse the implication, but we can get close.

Definition

A subset *Y* of *X* is *relatively compact* if for every open cover for *X*, there exists a finite subcollection which covers *Y*.

Proposition

If X is σ -relatively-compact, then $\mathscr{F} \underset{1-mark}{\uparrow} Cov_{C,F}(X)$.

Proposition

For regular spaces, $Y \subseteq X$ is relatively compact if and only if \overline{Y} is compact. So σ -relatively-compact regular spaces are exactly the σ -compact regular spaces.

Without assuming regularity, we can't quite reverse the implication, but we can get close.

Definition

A subset Y of X is *relatively compact* if for every open cover for X, there exists a finite subcollection which covers Y.

Proposition

If X is
$$\sigma$$
-relatively-compact, then $\mathscr{F} \underset{1-mark}{\uparrow} Cov_{C,F}(X)$.

Proposition

For regular spaces, $Y \subseteq X$ is relatively compact if and only if \overline{Y} is compact. So σ -relatively-compact regular spaces are exactly the σ -compact regular spaces.

Without assuming regularity, we can't quite reverse the implication, but we can get close.

Definition

A subset Y of X is *relatively compact* if for every open cover for X, there exists a finite subcollection which covers Y.

Proposition

If X is σ -relatively-compact, then $\mathscr{F} \underset{1-mark}{\uparrow} Cov_{C,F}(X)$.

Proposition

For regular spaces, $Y \subseteq X$ is relatively compact if and only if \overline{Y} is compact. So σ -relatively-compact regular spaces are exactly the σ -compact regular spaces.

Theorem

F

 \uparrow $Cov_{C,F}(X)$ if and only if X is σ -relatively-compact.

Proof.

Let $\sigma(\mathcal{U}, n)$ represent a 1-Marköv strategy. For every open cover $\mathcal{U} \in \mathfrak{C}$, $\sigma(\mathcal{U}, n)$ witnesses relative compactness for the set

$$R_n = \bigcap_{\mathcal{U} \in \mathfrak{C}} \bigcup \sigma(\mathcal{U}, n)$$

If X is not σ -relatively compact, fix $x \notin R_n$ for any $n < \omega$. Then $\mathscr C$ can beat σ by choosing $\mathcal U_n \in \mathfrak C$ during each round such that $x \notin \bigcup \sigma(\mathcal U_n, n)$.

Theorem

F

 \uparrow $Cov_{C,F}(X)$ if and only if X is σ -relatively-compact.

Proof.

Let $\sigma(\mathcal{U}, n)$ represent a 1-Marköv strategy. For every open cover $\mathcal{U} \in \mathfrak{C}$, $\sigma(\mathcal{U}, n)$ witnesses relative compactness for the set

$$R_n = \bigcap_{\mathcal{U} \in \mathfrak{C}} \bigcup \sigma(\mathcal{U}, n)$$

If X is not σ -relatively compact, fix $x \notin R_n$ for any $n < \omega$. Then $\mathscr C$ can beat σ by choosing $\mathcal U_n \in \mathfrak C$ during each round such that $x \notin \bigcup \sigma(\mathcal U_n, n)$.

Theorem

Proof.

Let $\sigma(\mathcal{U}, n)$ represent a 1-Marköv strategy. For every open cover $\mathcal{U} \in \mathfrak{C}$, $\sigma(\mathcal{U}, n)$ witnesses relative compactness for the set

$$R_n = \bigcap_{\mathcal{U} \in \mathfrak{C}} \bigcup \sigma(\mathcal{U}, n)$$

If X is not σ -relatively compact, fix $x \notin R_n$ for any $n < \omega$. Then $\mathscr C$ can beat σ by choosing $\mathcal U_n \in \mathfrak C$ during each round such that $x \notin \bigcup \sigma(\mathcal U_n, n)$.

So for regular spaces, a winning strategy for \mathscr{F} in the Menger game isn't sufficient to characterize σ -compactness, but a winning 1-Marköv strategy does the trick.

We can complete Telgarsky's/Scheeper's result by showing the following:

Theorem

For second countable spaces X, $\mathscr{F} \uparrow Cov_{C,F}(X)$ if and only if $\mathscr{F} \uparrow Cov_{C,F}(X)$.

So for regular spaces, a winning strategy for \mathscr{F} in the Menger game isn't sufficient to characterize σ -compactness, but a winning 1-Marköv strategy does the trick.

We can complete Telgarsky's/Scheeper's result by showing the following:

Theorem

For second countable spaces X, $\mathscr{F} \uparrow Cov_{C,F}(X)$ if and only if $\mathscr{F} \uparrow Cov_{C,F}(X)$.

Proof

Let σ be a perfect information strategy. Since X is a second-countable space, we may pretend that there are only countably many finite collections of open sets. Thus for $s \in \omega^{<\omega}$, we may define open covers $\mathcal{U}_{s \frown \langle n \rangle}$ such that for each open cover \mathcal{U} , there is some $n < \omega$ where

$$\sigma(\mathcal{U}_{\mathfrak{s}\restriction 1},\dots,\mathcal{U}_{\mathfrak{s}},\mathcal{U})=\sigma(\mathcal{U}_{\mathfrak{s}\restriction 1},\dots,\mathcal{U}_{\mathfrak{s}},\mathcal{U}_{\mathfrak{s}^\frown \langle n\rangle})$$

Let $t: \omega \to \omega^{<\omega}$ be a bijection. During round n and seeing only the latest open cover \mathcal{U} , \mathscr{F} may play the finite subcollection

$$au(\mathcal{U}, \mathbf{n}) = \sigma(\mathcal{U}_{t(\mathbf{n}) \mid 1}, \dots, \mathcal{U}_{t(\mathbf{n})}, \mathcal{U})$$

Proof

Let σ be a perfect information strategy. Since X is a second-countable space, we may pretend that there are only countably many finite collections of open sets. Thus for $s \in \omega^{<\omega}$, we may define open covers $\mathcal{U}_{s \frown \langle n \rangle}$ such that for each open cover \mathcal{U} , there is some $n < \omega$ where

$$\sigma(\mathcal{U}_{s \upharpoonright 1}, \dots, \mathcal{U}_{s}, \mathcal{U}) = \sigma(\mathcal{U}_{s \upharpoonright 1}, \dots, \mathcal{U}_{s}, \mathcal{U}_{s \frown \langle n \rangle})$$

Let $t: \omega \to \omega^{<\omega}$ be a bijection. During round n and seeing only the latest open cover \mathcal{U} , \mathscr{F} may play the finite subcollection

$$\tau(\mathcal{U}, n) = \sigma(\mathcal{U}_{t(n) \upharpoonright 1}, \dots, \mathcal{U}_{t(n)}, \mathcal{U})$$

Proof (cont.)

Suppose there exists a counter-attack $\langle \mathcal{V}_0, \mathcal{V}_1, \ldots \rangle$ which defeats the 1-Marköv strategy τ . Then there exists $f: \omega \to \omega$ such that, if $\mathcal{V}^n = \mathcal{V}_{t^{-1}(f \upharpoonright n)}$

$$\begin{array}{ll}
x & \notin & \bigcup \tau(\mathcal{V}^n, t^{-1}(f \upharpoonright n)) \\
& = & \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{V}^n) \\
& = & \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{U}_{f \upharpoonright (n+1)})
\end{array}$$

Thus $\langle \mathcal{U}_{f|1}, \mathcal{U}_{f|2}, \ldots \rangle$ is a successful counter-attack by \mathscr{C} against the perfect information strategy σ .

Proof (cont.)

Suppose there exists a counter-attack $\langle \mathcal{V}_0, \mathcal{V}_1, \ldots \rangle$ which defeats the 1-Marköv strategy τ . Then there exists $f: \omega \to \omega$ such that, if $\mathcal{V}^n = \mathcal{V}_{t^{-1}(f \upharpoonright n)}$

$$\begin{array}{ll}
x & \notin & \bigcup \tau(\mathcal{V}^n, t^{-1}(f \upharpoonright n)) \\
& = & \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{V}^n) \\
& = & \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{U}_{f \upharpoonright (n+1)})
\end{array}$$

Thus $\langle \mathcal{U}_{f|1}, \mathcal{U}_{f|2}, \ldots \rangle$ is a successful counter-attack by \mathscr{C} against the perfect information strategy σ .

Unlike the Banach-Mazur game, we can immediately see that knowledge of more than two previous moves of \mathscr{F} 's opponent must be infinite to be of any use.

Theorem

If
$$\mathscr{F} \underset{k\text{-mark}}{\uparrow} Cov_{C,F}(X)$$
, then $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Cov_{C,F}(X)$.

Proof.

$$\tau(\langle \mathcal{U}, \mathcal{V} \rangle, n+1) = \bigcup_{m < k+2} \sigma(\langle \underbrace{\mathcal{U}, \dots, \mathcal{U}}_{k+1-m}, \underbrace{\mathcal{V}, \dots, \mathcal{V}}_{m+1} \rangle, (n+1)(k+2) + m)$$

Knowledge of two previous moves versus one is an important distinction: in the former case, the player is able to react to change by the opponent.

Definition

Let $\kappa^{\dagger} = \kappa \cup \{\infty\}$ be the *one point Lindelöf-ication* of discrete κ : neighborhoods of ∞ are exactly the co-countable sets containing it.

 κ^\dagger is a simple space which is a regular and Lindelöf, but not second-countable space or σ -compact. Thus

 $\mathscr{F} \underset{1-\text{mark}}{\uparrow} Cov_{C,F}(\kappa^{\dagger})$, but it's easy to see that $\mathscr{F} \uparrow Cov_{C,F}(\kappa^{\dagger})$

What about 2-Marköv strategies?

Knowledge of two previous moves versus one is an important distinction: in the former case, the player is able to react to change by the opponent.

Definition

Let $\kappa^\dagger = \kappa \cup \{\infty\}$ be the *one point Lindelöf-ication* of discrete κ : neighborhoods of ∞ are exactly the co-countable sets containing it.

 κ^\dagger is a simple space which is a regular and Lindelöf, but not second-countable space or σ -compact. Thus

 $\mathscr{F}
\uparrow Cov_{C,F}(\kappa^{\dagger})$, but it's easy to see that $\mathscr{F} \uparrow Cov_{C,F}(\kappa^{\dagger})$

What about 2-Markov strategies?

Knowledge of two previous moves versus one is an important distinction: in the former case, the player is able to react to change by the opponent.

Definition

Let $\kappa^\dagger = \kappa \cup \{\infty\}$ be the *one point Lindelöf-ication* of discrete κ : neighborhoods of ∞ are exactly the co-countable sets containing it.

 κ^\dagger is a simple space which is a regular and Lindelöf, but not second-countable space or σ -compact. Thus

 $\mathscr{F} \underset{\text{1-mark}}{\not\uparrow} Cov_{C,F}(\kappa^{\dagger})$, but it's easy to see that $\mathscr{F} \uparrow Cov_{C,F}(\kappa^{\dagger})$.

What about 2-Marköv strategies?

In 1991, Scheepers introduced the statement $S(\kappa, \omega, \omega)$ to study an infinite game involving the countable and finite subsets of κ .

Game

Let $Fill_{C,F}^{\cup,\subset}(\kappa)$ denote the *strict union filling game* with two players \mathscr{C}, \mathscr{F} . In round 0, \mathscr{C} chooses $C_0 \in [\kappa]^{\leq \omega}$, followed by \mathscr{F} choosing $F_0 \in [\kappa]^{<\omega}$. In round n+1, \mathscr{C} chooses $C_{n+1} \in [\kappa]^{\leq \omega}$ such that $C_{n+1} \supset C_n$, followed by \mathscr{F} choosing $F_{n+1} \in [\kappa]^{<\omega}$. \mathscr{F} wins the game if $\bigcup_{n<\omega} F_n \supseteq \bigcup_{n<\omega} C_n$; otherwise, \mathscr{C} wins.

In 1991, Scheepers introduced the statement $S(\kappa, \omega, \omega)$ to study an infinite game involving the countable and finite subsets of κ .

Game

Let $Fill_{C,F}^{\cup,\subset}(\kappa)$ denote the *strict union filling game* with two players \mathscr{C},\mathscr{F} . In round 0, \mathscr{C} chooses $C_0\in [\kappa]^{\leq\omega}$, followed by \mathscr{F} choosing $F_0\in [\kappa]^{<\omega}$. In round n+1, \mathscr{C} chooses $C_{n+1}\in [\kappa]^{\leq\omega}$ such that $C_{n+1}\supset C_n$, followed by \mathscr{F} choosing $F_{n+1}\in [\kappa]^{<\omega}$. \mathscr{F} wins the game if $\bigcup_{n<\omega}F_n\supseteq\bigcup_{n<\omega}C_n$; otherwise, \mathscr{C} wins.

Definition

For two functions f, g we say f is almost compatible with g $(f \wr g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa,\omega,\omega)$ states that there exist functions $f_A:A\to\omega$ for each $A\in [\kappa]^{\leq \omega}$ such that $|f_A^{-1}(n)|<\omega$ for all $n<\omega$ and $f_A\wr f_B$ for all $A,B\in [\kappa]^\omega$.

Theorem

$$S(\omega_1,\omega,\omega)$$
; $Con(S(2^\omega,\omega,\omega)+\neg CH)$; $\neg S(\kappa,\omega,\omega)$ for $\kappa>2^\omega$.

Definition

For two functions f, g we say f is almost compatible with g $(f \wr g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa, \omega, \omega)$ states that there exist functions $f_A : A \to \omega$ for each $A \in [\kappa]^{\leq \omega}$ such that $|f_A^{-1}(n)| < \omega$ for all $n < \omega$ and $f_A \wr f_B$ for all $A, B \in [\kappa]^{\omega}$.

Theorem

$$S(\omega_1,\omega,\omega)$$
; $Con(S(2^\omega,\omega,\omega)+\neg CH)$; $\neg S(\kappa,\omega,\omega)$ for $\kappa>2^\omega$.

Definition

For two functions f, g we say f is almost compatible with g $(f \wr g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa, \omega, \omega)$ states that there exist functions $f_A : A \to \omega$ for each $A \in [\kappa]^{\leq \omega}$ such that $|f_A^{-1}(n)| < \omega$ for all $n < \omega$ and $f_A \wr f_B$ for all $A, B \in [\kappa]^{\omega}$.

Theorem

$$S(\omega_1,\omega,\omega)$$
; $Con(S(2^{\omega},\omega,\omega)+\neg CH)$; $\neg S(\kappa,\omega,\omega)$ for $\kappa>2^{\omega}$.

The round number is unnecessary in Scheeper's game, since $\mathscr C$ must choose strictly increasing sets.

Theorem

If
$$S(\kappa, \omega, \omega)$$
, then $\mathscr{F} \underset{\text{2-tact}}{\uparrow} \text{Fill}_{C, F}^{\cup, \subset}(\kappa)$.

As it turns out, a related game characterizes $Cov_{C,F}(\kappa^{\dagger})$.

Definition

Let $Fill_{C,F}^{\cup,\subset}(\kappa)$ denote the *intersection filling game* analogous to $Fill_{C,F}^{\cup,\subset}(\kappa)$, except that $\mathscr C$ has no restriction on the countable sets she chooses, but $\mathscr F$ need only ensure that $\bigcup_{n<\omega}F_n\supseteq\bigcap_{n<\omega}C_n$ to win the game.

The round number is unnecessary in Scheeper's game, since $\mathscr C$ must choose strictly increasing sets.

Theorem

If
$$S(\kappa, \omega, \omega)$$
, then $\mathscr{F} \underset{\text{2-tact}}{\uparrow} \text{Fill}_{C,F}^{\cup, \subset}(\kappa)$.

As it turns out, a related game characterizes $Cov_{C,F}(\kappa^{\dagger})$.

Definition

Let $Fill_{C,F}^{\cup,\subset}(\kappa)$ denote the *intersection filling game* analogous to $Fill_{C,F}^{\cup,\subset}(\kappa)$, except that $\mathscr C$ has no restriction on the countable sets she chooses, but $\mathscr F$ need only ensure that $\bigcup_{n<\omega}F_n\supseteq\bigcap_{n<\omega}C_n$ to win the game.

Theorem

Theorem

If
$$S(\kappa, \omega, \omega)$$
, then $\mathscr{F} \uparrow_{2-mark} \mathsf{Fill}_{C,F}^{\cap}(\kappa)$.

Proof

Let $f_A: A \to \omega$ witness $S(\kappa, \omega, \omega)$. Then we define the winning 2-Marköv strategy σ as follows:

$$\sigma(\langle A \rangle, 0) = \{ \alpha \in A : f_A(\alpha) = 0 \}$$

$$\sigma(\langle A, B \rangle, n+1) = \{\alpha \in A \cap B : f_B(\alpha) \le n+1 \text{ or } f_A(\alpha) \ne f_B(\alpha)\}$$

Theorem

Theorem

If
$$S(\kappa, \omega, \omega)$$
, then $\mathscr{F} \underset{\text{2-mark}}{\uparrow} Fill_{C,F}^{\cap}(\kappa)$.

Proof

Let $f_A: A \to \omega$ witness $S(\kappa, \omega, \omega)$. Then we define the winning 2-Marköv strategy σ as follows:

$$\sigma(\langle A \rangle, 0) = \{ \alpha \in A : f_A(\alpha) = 0 \}$$

$$\sigma(\langle A, B \rangle, n+1) = \{\alpha \in A \cap B : f_B(\alpha) \le n+1 \text{ or } f_A(\alpha) \ne f_B(\alpha)\}$$

Theorem

$$\mathscr{F} \underset{k\text{-mark}}{\uparrow} \mathsf{Cov}_{C,F}(\kappa^{\dagger}) \text{ if and only if } \mathscr{F} \underset{k\text{-mark}}{\uparrow} \mathsf{Fill}_{C,F}^{\cap}(\kappa).$$

Theorem

If
$$S(\kappa, \omega, \omega)$$
, then $\mathscr{F} \uparrow_{2\text{-mark}} Fill_{C,F}^{\cap}(\kappa)$.

Proof.

Let $f_A: A \to \omega$ witness $S(\kappa, \omega, \omega)$. Then we define the winning 2-Marköv strategy σ as follows:

$$\sigma(\langle A \rangle, 0) = \{ \alpha \in A : f_A(\alpha) = 0 \}$$

$$\sigma(\langle A, B \rangle, n+1) = \{ \alpha \in A \cap B : f_B(\alpha) \le n+1 \text{ or } f_A(\alpha) \ne f_B(\alpha) \}$$

Corollary

$$\mathscr{F} \underset{2-mark}{\uparrow} Cov_{C,F}(\omega_1^{\dagger}), \ but \ \mathscr{F} \underset{1-mark}{\not\uparrow} Cov_{C,F}(\omega_1^{\dagger}).$$

Quesitons

Does
$$\mathscr{F} \uparrow_{2\text{-mark}} Cov_{C,F}(\kappa^{\dagger}) \text{ imply } S(\kappa,\omega,\omega)$$
?

Question

Are
$$\mathscr{F} \uparrow Cov_{C,F}(X)$$
 and $\mathscr{F} \uparrow Cov_{C,F}(X)$ distinct?

An affirmative answer to the first question answers this since $\neg S(\kappa, \omega, \omega)$ for $\kappa > 2^{\omega}$.

Does
$$\mathscr{F} \uparrow_{2\text{-mark}} Cov_{C,F}(\kappa^{\dagger}) \text{ imply } S(\kappa,\omega,\omega)$$
?

Question

Are
$$\mathscr{F} \uparrow Cov_{C,F}(X)$$
 and $\mathscr{F} \uparrow Cov_{C,F}(X)$ distinct?

An affirmative answer to the first question answers this since $\neg S(\kappa, \omega, \omega)$ for $\kappa > 2^{\omega}$.

Where does $\mathscr{F} \uparrow Cov_{C,F}(X)$ fit in with other properties between σ -(relatively-)compact and Menger?

 $\mathscr{F} \uparrow Cov_{C,F}(X)$ seems to characterize an "almost- σ -(relative-)compactness".

Any sufficient property would imply $\mathscr{F} \uparrow Cov_{C,F}(X)$, and any (interesting) necessary property shouldn't be implied by $\mathscr{F} \uparrow Cov_{C,F}(X)$. Assuming T_3 , properties which come to mind from the literature fit the latter: e.g. Alster (Aurichi, Tall 2013), and thus productively Lindelöf (Alster 1988) and Hurewicz (Tall 2009).

Where does $\mathscr{F} \uparrow Cov_{C,F}(X)$ fit in with other properties between σ -(relatively-)compact and Menger?

 $\mathscr{F} \uparrow Cov_{C,F}(X)$ seems to characterize an "almost- σ -(relative-)compactness".

Any sufficient property would imply $\mathscr{F} \uparrow Cov_{C,F}(X)$, and any (interesting) necessary property shouldn't be implied by $\mathscr{F} \uparrow Cov_{C,F}(X)$. Assuming T_3 , properties which come to mind from the literature fit the latter: e.g. Alster (Aurichi, Tall 2013), and thus productively Lindelöf (Alster 1988) and Hurewicz (Tall 2009).

Menger Spaces and the Menger Game 1-Marköv Strategies k-Marköv strategies for $k \geq 2$

Questions? Thanks for listening!