

Visualization & Machine Learning

Kelompok DS5-6 FGA x Binar Academy - Data Science

Meet our team!

DS5 - Team 6

An Naffila Putri Prasari

Table of contents

Challenge Chapter 1 - Visualization

Melakukan Query di Big Query Merancang Dashboard

Challenge Chapter 2 - Machine Learning

Business Understanding Exploratory Data Analysis Data Preprocessing Modeling Model Evaluation

Conclusion

Challenge Chapter 1

Covid-19 Analysis

01

Melakukan Query di Big Query

Jumlah total kasus Covid-19 aktif yang baru di setiap provinsi lalu diurutkan berdasarkan jumlah kasus yang paling besar.

SQL Query

```
SELECT
```

Province,

SUM(New_Active_Cases) AS Total_New_Active_Cases

FROM `ds5-6-challange-1.dataset_covid19.covid`

GROUP BY

Province

ORDER BY

Total_New_Active_Cases DESC

Row /	Province ▼	Total_New_Active_Cases ▼
1	null	28460
2	Jawa Barat	13496
3	DKI Jakarta	10922
4	Banten	2558
5	Jawa Tengah	1423
6	Jawa Timur	1136
7	Daerah Istimewa Yogyakarta	669
8	Sumatera Utara	664
9	Sulawesi Utara	565
10	Bali	474
Results pe	er page: 50 ▼ 1 – 35 of 3	5 < < > >

Insight

Top 3 provinsi dengan jumlah kasus aktif paling tinggi, yaitu:

- 1. null (Indonesia)
- 2. Jawa Barat
- 3. DKI Jakarta

Mengambil 2 (dua) location iso code yang memiliki jumlah total kematian karena Covid-19 paling sedikit.

SQL Query

```
SELECT
Location_ISO_Code,
SUM(Total_Deaths) AS Total_Deaths
FROM
   `ds5-6-challange-1.dataset_covid19.covid`
GROUP BY
Location_ISO_Code
ORDER BY
Total_Deaths ASC
LIMIT 2
```

Row	Location_ISO_Code ▼	Total_Deaths ▼
1	ID-MA	147196
2	ID-MU	1675 <mark>1</mark> 1

Insight

Maluku (ID-MA) dan Maluku Utara (ID-MU) menjadi provinsi dengan total kematian karena Covid-19 paling sedikit.

Data tentang tanggal-tanggal ketika rate kasus recovered di Indonesia paling tinggi beserta jumlah ratenya.

Row	Date ▼	Case_Recovered_Rate ▼	Avg_Case_Recovered_Rate 🔻
1	2020-03-06	111.0	4.4693526829268295
2	2020-04-01	5.8571	0.37828499515972897
3	2021-03-04	1.0487	0.86797382488479258
4	2021-02-28	1.025699999999998	0.82073826530612248
5	2022-05-08	0.98930000000000007	0.97287290322580644
6	2022-06-01	0.9892	0.97318980952380951
7	2020-07-22	0.9889	0.61586691244239633
8	2022-04-30	0.9886	0.96156314285714284
9	2022-07-11	0.9872	0.97200138248847923
10	2022-08-01	0.98620000000000008	0.97019944700460825
	Results per pag	ge: 50 ▼ 1 – 31 of	31 (

Insight

Pada tanggal 6 Maret 2020, rate kasus recovered paling tinggi mencapai 111% dengan rata-rata rate sebesar 4,47%.

SQL Query

```
WITH RankedDates AS (
   SELECT
    Date.
    Case_Recovered_Rate,
    EXTRACT(YEAR FROM Date) AS Year,
    EXTRACT(MONTH FROM Date) AS Month,
    ROW_NUMBER() OVER(PARTITION BY EXTRACT(YEAR FROM Date),
EXTRACT(MONTH FROM Date) ORDER BY Case_Recovered_Rate DESC)
AS Rank.
    AVG(Case_Recovered_Rate) OVER(PARTITION BY EXTRACT(YEAR
FROM Date), EXTRACT(MONTH FROM Date)) AS
Avg_Case_Recovered_Rate
   FROM `ds5-6-challange-1.dataset_covid19.covid`
SELECT
  Date.
  Case_Recovered_Rate,
  Avg_Case_Recovered_Rate
 FROM RankedDates
 WHERE Rank = 1
ORDER BY Case_Recovered_Rate DESC
```


Total case fatality rate dan case recovered rate dari masing-masing location iso code yang diurutkan dari data yang paling rendah.

SQL Query

```
SELECT
Location_ISO_Code,
AVG(Case_Fatality_Rate) AS Avg_Case_Fatality_Rate,
AVG(Case_Recovered_Rate) AS Avg_Case_Recovered_Rate
FROM `ds5-6-challange-1.dataset_covid19.covid`
GROUP BY
Location_ISO_Code
ORDER BY
```

Avg_Case_Fatality_Rate, Avg_Case_Recovered_Rate ASC

Row /	Location_ISO_Code ▼	Avg_Case_Fatality_Rate ▼	Avg_Case_Recovered_Rate
1	ID-KU	0.015837028824833708	0.81344412416851442
2	ID-NT	0.017903932584269679	0.78743910112359483
3	ID-PA	0.018607158590308367	0.66985969162995584
4	ID-JA	0.019040439560439569	0.83574637362637394
5	ID-SG	0.021379021739130418	0.80615695652173891
6	ID-KB	0.022820199778024405	0.85635271920088751
7	ID-SR	0.024146059933407321	0.81339877913429559
8	ID-SN	0.024651372118551035	0.85103995609220662
9	ID-SB	0.026560066371681439	0.834350774336284
10	ID-PB	0.026948062015503902	0.83853676633443952

Insight

Top 3 provinsi dengan rata-rata tingkat keparahan kasus Covid-19 paling rendah, yaitu:

- 1. Kalimantan Utara (ID-KU)
- 2. Nusa Tenggara Timur (ID-NT)
- 3. Papua (ID-PA)

Data tentang tanggal-tanggal saat total kasus Covid-19 mulai menyentuh angka 30.000-an.

SQL Query

```
SELECT
  Date,
  Total_Cases
FROM
  `ds5-6-challange-1.dataset_covid19.covid`
WHERE
  Total_Cases >= 30000
```

Total_Cases ▼	Date ▼	Row /
30514	2020-06-06	1
31186	2020-06-07	2
32033	2020-06-08	3
33075	2020-06-09	4
34316	2020-06-10	5
35295	2020-06-11	6
36406	2020-06-12	7
37420	2020-06-13	8
38277	2020-06-14	9
39294	2020-06-15	10

Insight

Total kasus Covid-19 mulai menyentuh angka 30.000 pada tanggal 6 Juni 2020.

Jumlah data yang tercatat ketika kasus Covid-19 lebih dari atau sama dengan 30.000.

SQL Query

```
SELECT
   COUNT(*) AS Total_Data
FROM
   `ds5-6-challange-1.dataset_covid19.covid`
WHERE
   Total_Cases >= 30000
```


Insight

Terdapat 14.399 data yang tercatat untuk total kasus Covid-19 lebih dari atau sama dengan 30.000.

Merancang dashboard

02

Link: Dashboard Covid-19 Indonesia

Scorecards

Scorecards ini memberikan informasi cepat tentang COVID-19. Total_Cases menunjukkan seberapa banyak orang yang terkena, Total_Active_Cases menunjukkan yang masih sakit, Total_Deaths menunjukkan yang meninggal, dan Total_Recovered menunjukkan yang sembuh. Dengan ini, scorecards memberikan gambaran singkat tentang situasi COVID-19.

Total_Cases 5,074,017,827	Total_Active_Cases 178,960,004	Total_Deaths 145,259,577	Total_Recovered 4,749,798,246	
------------------------------	--------------------------------	-----------------------------	----------------------------------	--

Filter Dropdown List

Date (Year Month)

Memungkinkan *user* untuk merinci analisis berdasarkan rentang waktu tertentu, membantu mengidentifikasi tren seiring waktu.

Island

Memfasilitasi pemfilteran data berdasarkan lokasi pulau, berguna untuk menganalisis perbedaan antar pulau dalam hal penyebaran dan dampak COVID-19.

Province

Memberikan fleksibilitas kepada user untuk mempersempit analisis ke tingkat provinsi, membantu memahami situasi setempat dengan lebih detail.

Geo Chart

Membantu *user* mengidentifikasi provinsi dengan tingkat kematian tertinggi, memberikan informasi penting tentang sebaran tingkat keparahan di berbagai wilayah. Dengan visualisasi ini, *Geo Chart* menyediakan gambaran cepat untuk mendukung pengambilan keputusan terkait COVID-19.

Bar Charts

Bar Charts menggunakan data provinsi dan menampilkan perbandingan visual antara total kasus aktif, kematian, dan pulih. Ini membantu dengan mudah melihat sebaran efek pandemi COVID-19 di berbagai provinsi. Dengan Bar Charts, user dapat mengidentifikasi pola dan fokus pada wilayah-wilayah yang membutuhkan perhatian khusus.

	Province	Total_Cases ▼	Population
1.	DKI Jakarta	545,806,047	10,076,068,705
2.	Jawa Barat	439,196,053	41,864,548,275
3.	Jawa Tengah	273,046,506	33,527,674,384
4.	Jawa Timur	239,912,685	36,916,868,976
5.	Banten	100,598,017	9,907,473,576
6.	Kalimantan Timur	89,582,475	3,253,806,956
7.	Daerah Istimewa Yogvakarta	86.090.207	3.318.747.710 1 - 34 / 34 〈 〉

Table with Heatmap

Membantu *user* membandingkan total kasus Covid-19 dengan populasi di setiap wilayah untuk memberikan informasi terkait konteks demografis.

Time Series Charts

Time series chart digunakan untuk melihat tren harian kasus baru, kematian baru, dan pulih baru. Ini memudahkan user untuk mengetahui perkembangan kasus Covid-19 dari waktu ke waktu.

Total_Active_Cases

Bubble Chart

Bubble chart menggunakan data total kasus aktif dan total kematian setiap provinsi untuk membandingkan hubungan antara total kematian dengan total kasus aktif dengan lebih cepat dan mudah.

Column Charts

Column charts menggunakan data provinsi dan menampilkan informasi tingkat kematian dan tingkat kesembuhan. Hal ini dapat menjadi indikator keberhasilan penanganan Covid-19 di setiap provinsi.

Challenge Chapter 2

Telco Customer Churn Prediction

Roadmap

Business Understanding

Problem Statement

Perkembangan industri telekomunikasi telah **memperketat persaingan** antar provider. Di samping itu, pelanggan memiliki **hak** untuk memilih provider yang sesuai dengan kebutuhan mereka dan dapat **beralih** (*churn*) dari provider sebelumnya. Hal ini dapat menyebabkan berkurangnya pendapatan bagi perusahaan telekomunikasi sehingga penting untuk ditangani.

Objective

Membangun **model klasifikasi** yang dapat mengenali pelanggan yang **berpotensi beralih** (*churn*) dari layanan telekomunikasi. Dengan demikian, perusahaan dapat mengambil tindakan untuk mempertahankan pelanggan.

02

Exploratory Data Analysis

Terdapat sebanyak **14.1%** pengguna layanan telekomunikasi yang melakukan *churn*.

Top **5 negara bagian** dengan jumlah pengguna layanan telekomunikasi **terbanyak**, yaitu:

- 1. West Virginia (WV)
- 2. Minnesota (MN)
- 3. Idaho (ID)
- 4. Alabama (AL)
- 5. Virginia (VA)

Masa aktif akun pelanggan **paling** banyak berada pada selang 87-100 hari dengan jumlah mencapai lebih dari 500 pelanggan.

Pengguna layanan telekomunikasi yang berlangganan Layanan Internasional lebih mungkin untuk melakukan *churn* yaitu sebesar **42.17%**.

	international_plan	Churn_NO	Churn_YES	Total	Churn Rate
0	no	3423	431	3854	11.18
1	yes	229	167	396	42.17
2	All	3652	598	4250	14.07

Pengguna layanan telekomunikasi yang **berlangganan** *Voice Mail* lebih cenderung untuk **tidak** *churn* yaitu hanya sebesar **7.37**%.

	voice_mail_plan	Churn_NO	Churn_YES	Total	Churn Rate
0	no	2622	516	3138	16.44
1	yes	1030	82	1112	7.37
2	All	3652	598	4250	14.07

Tingkat churn meningkat ketika jumlah panggilan ke Customer Service terjadi **lebih dari 3 kali**.

	number_customer_service_calls	Churn_NO	Churn_YES	Total	Churn Rate
0	0	789	97	886	10.95
1	1	1358	166	1524	10.89
2	2	845	102	947	10.77
3	3	495	63	558	11.29
4	4	117	92	209	44.02
5	5	32	49	81	60.49
6	6	9	19	28	67.86
7	7	6	7	13	53.85
8	8	1	1	2	50.00
9	9	0	2	2	100.00
10	All	3652	598	4250	14.07

Semakin **lama durasi telepon** maka semakin **besar** *charge* atau biaya yang dikenakan.

03

Data Preprocessing

Dataset

Terdiri dari **4.250 baris** dan **20 kolom** yang mengandung data pengguna layanan telekomunikasi yang melakukan *churn* atau tidak.

Step by step

1. Data Cleaning

Tidak ada *missing value* dan data duplikat.

2. Detect Outliers

Tanpa menghapus *outliers*, model sudah bekerja dengan baik.

3. Features Encoding

Label encoding
One-hot encoding

4. Standardization

04 Modeling

Algoritma yang digunakan

Logistic Regression

K-Nearest Neighbors

Decision Tree

Random Forest

Link: Notebook Challenge Chapter 2

Top 5 fitur penting model Logistic Regression

	Feature	Coefficient
19	state_CA	1.360335
70	international_plan_yes	1.343449
71	voice_mail_plan_no	1.169624
46	state_NJ	1.156521
41	state_MT	1.058861

Top 5 fitur penting model Decision Tree

	Feature	Importance
2	total_day_minutes	0.290404
14	number_customer_service_calls	0.124937
13	total_intl_charge	0.106231
5	total_eve_minutes	0.087500
69	international_plan_no	0.082645

Top 5 fitur penting model Random Forest

	Feature	Importance	Std
2	total_day_minutes	0.123977	0.071983
14	number_customer_service_calls	0.123639	0.042084
4	total_day_charge	0.123092	0.065567
5	total_eve_minutes	0.054934	0.020595
69	international_plan_no	0.049977	0.040241

05 Model Evaluation

Confusion Matrix (Logistic Regression)

Confusion Matrix (K-Nearest Neighbors)

Confusion Matrix (Decision Tree)

Confusion Matrix (Random Forest)

Berikut disajikan tabel metrik evaluasi yang berfokus pada hasil model yang memprediksi *customers* yang *churn*.

Metric	Logistic Regression		K-Nearest Neighbors		Decision Tree		Random Forest	
	Without SMOTE	With SMOTE	Without SMOTE	With SMOTE	Without SMOTE	With SMOTE	Without SMOTE	With SMOTE
Akurasi	75%	76%	89%	79%	94%	90%	94%	95%
Presisi	33%	34%	86%	38%	89%	64%	99%	90%
Recall	71%	74%	27%	78%	63%	73%	59%	74%
F1-Score	45%	46%	41%	51%	74%	68%	74%	81%

Metrik **F1-Score** dipilih sebagai metrik evaluasi karena menggabungkan presisi dan *recall* yang memungkinkan keduanya dipertimbangkan secara bersamaan. **Presisi** berguna untuk **meminimalkan** *false positive* (mengidentifikasi pelanggan yang sebenarnya tidak akan *churn* sebagai pelanggan *churn*), sementara *recall* berguna untuk **meminimalkan** *false negative* (mengidentifikasi pelanggan yang sebenarnya akan *churn* sebagai pelanggan yang tidak akan *churn*). Oleh karena itu, **model terbaik** untuk kasus *customer churn* ini adalah **Random Forest with SMOTE**.

Conclusion

Conclusion

- 1. Data dari Big Query digunakan untuk mendapatkan insight tentang situasi Covid-19 di Indonesia.
- 2. Jawa Barat dan DKI Jakarta memiliki jumlah kasus aktif tertinggi, sementara Maluku dan Maluku Utara memiliki jumlah kematian terendah.
- 3. Dashboard dirancang untuk memberikan informasi cepat tentang Covid-19, memungkinkan pengguna untuk memahami situasi, menganalisis tren, dan mengambil keputusan dalam penanganan pandemi.
- 4. Model Random Forest dengan teknik SMOTE menghasilkan tingkat akurasi sebesar 95%, dengan kemampuan mendeteksi pelanggan *churn* (*recall*) sebesar 74% serta mencapai F1-score sebesar 81%.

Recommendation Challenge 2

- 1. Perusahaan perlu cepat tanggap dan memberikan solusi yang memuaskan ketika pelanggan menyampaikan keluhan melalui *Customer Service*, agar *churn rate* semakin berkurang.
- 2. Perusahaan perlu memastikan layanan internasional yang diberikan berkualitas tinggi dan responsif terhadap kebutuhan pelanggan karena pengguna cenderung untuk *churn*.
- 3. Perusahaan dapat memberikan diskon atau bonus kepada pengguna yang telah berlangganan *Voice Mail* selama periode tertentu untuk menjaga retensi pelanggan.

Report Pembagian Tugas

Report Pembagian Tugas

Nama	Tasklist/Deliverable				
An Naffila Putri Prasari	 Melakukan query di Big Query Membuat chart pada dashboard (geo chart, bubble chart, line chart, scorecards, dan table with heatmap) Membuat penjelasan dashboard Melakukan Exploratory Data Analysis (5 pertanyaan) Membuat model klasifikasi (K-Nearest Neighbors dan Decision Tree) Menentukan model terbaik dengan metrik evaluasi Membuat kesimpulan dan saran Menyusun deck presentation 				
Rifqi Mufiddin	 Melakukan query di Big Query Membuat chart dan filter pada dashboard (month year filter, province filter, island filter, column bar chart) Membuat penjelasan dashboard Melakukan styling dan finishing pada dashboard Melakukan Exploratory Data Analysis (variabel numerik dan kategorik, analisis hubungan) Melakukan data preprocessing Membuat model klasifikasi (Logistic Regression dan Random Forest) Menentukan model terbaik dengan metrik evaluasi Membuat model interpretation 				

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**