Лабораторная работа **№1**

Изучение статистики распределения параметров номинально одинаковых монет и определение средней плотности

Оглавление

Цель работы	
теоретическая частьТеоретическая часть	
Экспериментальная часть	2
Оборудование	
Результаты измерений и обработка данных	
, Масса	
Толщина	
Диаметр	
Анализ	
Как менялась плотность монет со временем	5
Нормальное распределение монет нового образца	
Macca	
Плотность	6
2	_

Цель работы

Цель данной работы заключается в измерении различных параметров монет номиналом 10 копеек, проверке полученных данных на соответствие Гауссовому распределению и анализе полученных данных.

Теоретическая часть

Если некоторая измеряемая величина x подчиняется распределению Гаусса со средним значением x_0 и дисперсией σ , то при достаточно большом количестве N измерений этой величины $\{x_n\}$ можно сделать следующие утверждения:

$$1. \quad x_0 \approx \frac{\sum x_n}{N}$$

2.
$$\sigma^2 \approx \frac{\sum (x_n - x_0)^2}{N} = \frac{\sum x_n^2}{N} - x_0^2$$

$$3. \quad \frac{\sum (x_n - x_0)^4}{N} \approx 3 \, \sigma^4$$

Кривая нормального распределения:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-x_0)^2}{2\sigma^2}\right)$$

Экспериментальная часть

Оборудование

- 1. 100 монет номиналом 10 копеек
- 2. Лабораторные весы
- 3. Микрометр

Измерения массы проводились с инструментальной погрешностью $\Delta m = 0.1$ мг, а измерения диаметра и толщины — с погрешностью $\Delta l = 0.01$ мм.

Результаты измерений и обработка данных

Все экспериментальные данные представлены в виде количественного распределения с помощью программы, написанной на языке python. Количество подсчетов равно количеству образцов (N=100).

Macca

Гистограмма распределения масс монет представлена ниже. На рисунке так же представлено два графика. Красная линия — кривая, достаточно точно описывающая распределение масс. Чёрная линия — попытка аппроксимации Гауссовой кривой под наше распределение. При аппроксимации параметры x_0 и σ приняли вид:

$$x_0 = 1.86$$
 и $\sigma = 0.04$

Рис. 1: Гистограмма распределения масс монет

Как можно заметить, распределение не совсем нормальное. Рассмотрим это позже.

Толщина

Здесь аналогичная ситуация, распределение близко к Гауссовому, но не полностью соответствует нему. При аппроксимации параметры x_0 и σ приняли вид:

$$x_0 = 1.04$$
 и $\sigma = 0.02$

Рис. 2: Гистограмма распределения толщин монет

Диаметр

Рис. 3: Гистограмма распределения диаметров монет 3десь же распределение и вовсе далеко от нормального. График представлен ниже. При аппроксимации под Гауссову функцию параметры x_0 и σ приняли значения: x_0 =17.48, σ =0.05

Анализ

Как менялась плотность монет со временем

Исходя из полученных данных, а так же имея сведения о годах чеканки монет, можем узнать, как менялась плотность в зависимости от года чеканки:

Рис. 4: График зависимости плотности от года чеканки

Нетрудно заметить, что после 2006 года монеты стали выпускаться из менее плотного металла. Это может объяснить описанные выше аномалии.

И действительно, в 2006 году стандарт 10-копеечных монет поменялся с латунных массой 1.95 грамма на стальные массой 1.85 грамм. Рассмотрим тогда отдельно монеты, выпущенные после 2006 года.

Нормальное распределение монет нового образца

Macca

После аппроксимации под Гауссову функцию получаем следующие значения σ и x_0 : $x_0 = 1.84 \,, \sigma = 0.02$

Рис. 5: Распределение масс монет, выпущенных после 2006 года

Как нетрудно заметить, теперь распределение практически идентично нормальному. Для наглядности также рассмотрим распределение плотностей монет.

Плотность

После аппроксимации под Гауссову функцию получаем следующие значения σ и x_{0} : x_{0} =7.40 , σ =0.08

Рис. 6: Распределение плотностей металла монет, выпущенных после 2006 года

Опять же, распределение крайне близко к нормальному.

Заключение

В ходе работы были измерены и проанализированы различные параметры номинально одинаковых 10-копеечных монет. Стало известно, что в 2006 году изменилась технология их выпуска, поэтому монеты, выпущенные до и после 2006 года имеют разные характеристики. Наглядно было показано, что характеристики монет, выпущенных после 2006 года, соответствуют Гауссовому распределению. Монеты, выпущенные до 2006 года, отдельно не рассматривались в силу малого количества измерений — в нашей выборке их значительно меньше.