[4]

www.rgpvonline.in

Determine the Fourier series expression of the waveform shown in figure 10.

www.rgpvonline.in

Figure 10

 a) Determine the Z-parameters for the network shown in figure 11.

Figure 11

 Determine the Y-parameters of the network shown in figure 12.

Figure 12

- 8. Write short notes on any two of the following:
 - a) Series and parallel resonance
 - b) Tie set schedule
 - c) Hybrid parameters

Total No. of Questions :8]

[Total No. of Printed Pages: 4 Roll No....

EC-305

B.E. III Semester

Examination, December 2016

Network Analysis

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

- ii) All questions carry equal marks.
- a) Draw the dual network of following circuit figure 1.

Figure 1

 b) Write the loop equations of magnetically coupled circuit shown in figure 2.

Figure 2

a) By superposition theorem calculate current I in the circuit shown in figure 3.

PTO

 Find the Norton equivalent circuit across the terminal AB of the circuit shown in figure 4.

3. a) Calculate the current in the 6Ω resistor of the circui shown in figure 5 using Thevenine theorem.

www.rgpvonline.in

- b) State and prove maximum power transfer theorem.
- 4. a) In the circuit shown in figure 6 the switch S is closed at t = 0 connecting a source e^{-t} to the RC circuit. At t = 0, it is observed that the capacitor voltage has the value $v_c(0) = 0.5$ V. Determine $v_2(t)$.

Figure 6

www.rgpvonline.in

b) In the circuit of figure 7, after the switch has been in the open position for a long time, it is closed at t = 0. Find the voltage across the capacitor.

a) In the circuit of figure 8 at time t_0 after the switch S was closed, it is found that $v_2 = +5$ V. It is required to determine the value of $i_2(t_0)$ and $\frac{di_2(t_0)}{dt}$.

b) In the circuit of figure 9 the switch S is in position 'a' for a long time. At t = 0 the switch is moved from 'a' to 'b'. Find v₂(t) using numerical values given in the circuit. Assume that the initial current in 2H inductor is zero.

