PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International F	Patent Classification 6:
C12N 15/31,	C07K 14/35, C12N 15/62,
G01N 33/569	9, C12Q 1/68

(11) International Publication Number:

WO 97/09429

(43) International Publication Date:

13 March 1997 (13.03.97)

(21) International Application Number:

PCT/US96/14675

A2

(22) International Filing Date:

30 August 1996 (30.08.96)

(74) Agents: MAKI, David, J. et al.; Seed and Berry L.L.P., 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).

(30) Priority Data:

08/523,435 1 September 1995 (01.09.95) US 08/532,136 22 September 1995 (22.09.95) US 22 March 1996 (22.03.96) 08/620,280 US 08/658,800 5 June 1996 (05.06.96) US 08/680,573 12 July 1996 (12.07.96) US

(81) Designated States: AL, AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG. MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM,

AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,

GN, ML, MR, NE, SN, TD, TG).

(71) Applicant: CORIXA CORPORATION [US/US]; Suite 464, 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: REED, Steven, G.; 2843 - 122nd Place N.E. Bellevue, WA 98005 (US). SKEIKY, Yasir, A., W.; 8327 - 25th Avenue N.W., Seattle, WA 98117 (US). DILLON, Davin, C., 21607 N.E. 24th Street, Redmond, WA 98053 (US). CAMPOS-NETO, Antonio; 9308 N.E. Midship Court, Bainbridge Island, WA 98110 (US). HOUGHTON, Raymond; 2636 - 242nd Place S.E., Bothell, WA 98021 (US). VEDVICK, Thomas, H.: 1301 Spring Street, Seattle, WA 98104 (US). TWARDZIK, Daniel, R.; 10195 South Beach Drive, Bainbridge Island, WA 98110 (US).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: COMPOUNDS AND METHODS FOR DIAGNOSIS OF TUBERCULOSIS

agental portion of one of more Mathematical concentration of managements produced and DNA sequences encoding such polypeptides Diagnostic kits containing such polypeptides or DNA sequence, and a suitable detection reagent may be used for the detection of Mtuberculosis infection in patients and biological samples. Antibodies directed against such polypeptides are also provided

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Amenia	GB	United Kingdom	MW	Malawi
ΑT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Gr ee ce	NI.	Netherlands
BE	Belgium	HU	Hungary	NO	Nonway
BI	Burkina Faso	1E	heland	NZ.	New Zealand
\mathbf{BG}	Bulgaria	ľT	Italy	PL	Poland
ВJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ.	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	t.i	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland

7.1	electrical and the second of t	NII	Mt.	l >	Control Nation (No. 8) (1)
FR	France	315	M mp in a	1.7	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Vier Nam

Description

COMPOUNDS AND METHODS FOR DIAGNOSIS OF TUBERCULOSIS

5

10

Technical Field

The present invention relates generally to the detection of Mycobacterium tuberculosis infection. The invention is more particularly related to polypeptides comprising a Mycobacterium tuberculosis antigen, or a portion or other variant thereof, and the use of such polypeptides for the serodiagnosis of Mycobacterium tuberculosis infection.

Background of the Invention

Tuberculosis is a chronic, infectious disease, that is generally caused by infection with *Mycobacterium tuberculosis*. It is a major disease in developing countries, as well as an increasing problem in developed areas of the world, with about 8 million new cases and 3 million deaths each year. Although the infection may be asymptomatic for a considerable period of time, the disease is most commonly manifested as an acute inflammation of the lungs, resulting in fever and a nonproductive cough. If left untreated, serious complications and death typically result.

Although tuberculosis can generally be controlled using extended antibiotic therapy, such treatment is not sufficient to prevent the spread of the disease.

15

25

although compliance with the treatment regimen is critical, patient behavior is difficult to monitor. Some patients do not complete the course of treatment, which can lead to ineffective treatment and the development of drug resistance.

Inhibiting the spread of tuberculosis will require effective vaccination and accurate, early diagnosis of the disease. Currently, vaccination with live bacteria is the most efficient method for inducing protective immunity. The most common Mycobacterium for this purpose is Bacillus Calmette-Guerin (BCG), an avirulent strain of Mycobacterium bovis. However, the safety and efficacy of BCG is a source of controversy and some countries, such as the United States, do not vaccinate the general public. Diagnosis is commonly achieved using a skin test, which involves intradermal exposure to tuberculin PPD (protein-purified derivative). Antigen-specific T cell responses result in measurable incubation at the injection site by 48-72 hours after injection, which indicates exposure to Mycobacterial antigens. Sensitivity and specificity have, however, been a problem with this test, and individuals vaccinated with BCG cannot be distinguished from infected individuals.

While macrophages have been shown to act as the principal effectors of M. tuberculosis immunity, T cells are the predominant inducers of such immunity. The essential role of T cells in protection against M. tuberculosis infection is illustrated by the frequent occurrence of M tuberculosis in AIDS patients, due to the depletion of 20 CD4 T cells associated with human immunodeficiency virus (HIV) infection. Mycobacterium-reactive CD4 T cells have been shown to be potent producers of gamma-interferon (IFN-y), which, in turn, has been shown to trigger the antimycobacterial effects of macrophages in mice. While the role of IFN-y in humans is less clear, studies have shown that 1,25-dihydroxy-vitamin D3, either alone or in combination with IFN-y or tumor necrosis factor-alpha, activates human macrophages to inhibit M. tuberculosis infection. Furthermore, it is known that IFN-y stimulates human macrophages to make 1,25-dihydroxy-vitamin D3. Similarly, IL-12 has been shown to play a role in stimulating resistance to M tuberculosis infection. For a review

Tuberculosis: Pathogenesis, Protection and Control, Bloom (ed.), ASM Press, Washington, DC, 1994.

Accordingly, there is a need in the art for improved diagnostic methods for detecting tuberculosis. The present invention fulfills this need and further provides other related advantages.

Summary of the Invention

15

20

25

Briefly stated, the present invention provides compositions and methods for diagnosing tuberculosis. In one aspect, polypeptides are provided comprising an antigenic portion of a soluble *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. In one embodiment of this aspect, the soluble antigen has one of the following N-terminal sequences:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID No. 115);
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID No. 116);
 - (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID No. 117);
 - (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID No. 118);
 - (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID No. 119);
 - (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID No. 120);
 - (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID No. 121);
 - (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEO ID No. 122)

- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID No. 123);
- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 129)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 130) or
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 131)

5

wherein Xaa may be any amino acid.

In a related aspect, polypeptides are provided comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications, the antigen having one of the following N-terminal sequences:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 132) or
- (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 124)

4.011111

20 wherein Xaa may be any amino acid.

In another embodiment, the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos. 1, 2, 4-10, 13-25, 52, 94 and 96, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 1, 2, 4-10, 13-25, 52, 94 and 96 or a complement thereof under moderately stringent conditions.

In a related aspect, the polypeptides comprise an antigenic portion of a M. tuberculosis antigen, or a variant of such an antigen that differs only in conservative

sequences recited in SEQ ID Nos. 26-51, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 26-51 or a complement thereof under moderately stringent conditions.

In related aspects, DNA sequences encoding the above polypeptides, recombinant expression vectors comprising these DNA sequences and host cells transformed or transfected with such expression vectors are also provided.

In another aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, an inventive polypeptide and a known *M. tuberculosis* antigen.

In further aspects of the subject invention, methods and diagnostic kits are provided for detecting tuberculosis in a patient. The methods comprise:

(a) contacting a biological sample with at least one of the above polypeptides; and (b) detecting in the sample the presence of antibodies that bind to the polypeptide or polypeptides, thereby detecting M. tuberculosis infection in the biological sample.

Suitable biological samples include whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine. The diagnostic kits comprise one or more of the above polypeptides in combination with a detection reagent.

The present invention also provides methods for detecting M. tuberculosis infection comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with a first and a second oligonucleotide primer in a polymerase chain reaction, the first and the second oligonucleotide primers comprising at least about 10 contiguous nucleotides of a DNA sequence encoding the above polypeptides; and (c) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers.

In a further aspect, the present invention provides a method for detecting *M. tuberculosis* infection in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe comprising at least about 15 contiguous nucleotides of a DNA sources and transfer to the problem.

15

In yet another aspect, the present invention provides antibodies, both polyclonal and monoclonal, that bind to the polypeptides described above, as well as methods for their use in the detection of *M. tuberculosis* infection.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

Brief Description of the Drawings and Sequence Identifiers

Figure 1A and B illustrate the stimulation of proliferation and interferony production in T cells derived from a first and a second *M. tuberculosis*-immune donor, respectively, by the 14 Kd, 20 Kd and 26 Kd antigens described in Example 1.

Figure 2 illustrates the reactivity of two representative polypeptides with sera from *M. tuberculosis*-infected and uninfected individuals, as compared to the reactivity of bacterial lysate.

Figure 3 shows the reactivity of four representative polypeptides with sera from *M. tuberculosis*-infected and uninfected individuals, as compared to the reactivity of the 38 kD antigen.

Figure 4 shows the reactivity of recombinant 38 kD and TbRall antigens with sera from *M. tuberculosis* patients, PPD positive donors and normal donors.

Figure 5 shows the reactivity of the antigen TbRa2A with 38 kD negative sera.

Figure 6 shows the reactivity of the antigen of SEQ ID No. 60 with sera from *M. tuberculosis* patients and normal donors.

SEQ. ID NO. 1 is the DNA sequence of TbRa1.

SEQ. ID NO. 2 is the DNA sequence of TbRa10.

SEQ. ID NO. 3 is the DNA sequence of TbRa11.

Lower Section to the Confedence of Links

	SEQ. ID NO. 7 is the DNA sequence of TbRa17.
	SEQ. ID NO. 8 is the DNA sequence of TbRa18.
	SEQ. ID NO. 9 is the DNA sequence of TbRa19.
	SEQ. ID NO. 10 is the DNA sequence of TbRa24.
5	SEQ. ID NO. 11 is the DNA sequence of TbRa26.
	SEQ. ID NO. 12 is the DNA sequence of TbRa28.
	SEQ. ID NO. 13 is the DNA sequence of TbRa29.
	SEQ. ID NO. 14 is the DNA sequence of TbRa2A.
	SEQ. ID NO. 15 is the DNA sequence of TbRa3.
10	SEQ. ID NO. 16 is the DNA sequence of TbRa32.
	SEQ. ID NO. 17 is the DNA sequence of TbRa35.
	SEQ. ID NO. 18 is the DNA sequence of TbRa36.
	SEQ. ID NO. 19 is the DNA sequence of TbRa4.
	SEQ. ID NO. 20 is the DNA sequence of TbRa9.
15	SEQ. ID NO. 21 is the DNA sequence of TbRaB.
	SEQ. ID NO. 22 is the DNA sequence of TbRaC.
	SEQ. ID NO. 23 is the DNA sequence of TbRaD.
	SEQ. ID NO. 24 is the DNA sequence of YYWCPG.
	SEQ. ID NO. 25 is the DNA sequence of AAMK.
20	SEQ. ID NO. 26 is the DNA sequence of TbL-23.
	SEQ. ID NO. 27 is the DNA sequence of TbL-24.
	SEQ. ID NO. 28 is the DNA sequence of TbL-25.
	SEQ. ID NO. 29 is the DNA sequence of TbL-28.
	SEQ. ID NO. 30 is the DNA sequence of TbL-29.
25	SEQ. ID NO. 31 is the DNA sequence of TbH-5.
	SEQ. ID NO. 32 is the DNA sequence of TbH-8.
	SEQ. ID NO. 33 is the DNA sequence of TbH-9.
	SEQ. ID NO. 34 is the DNA sequence of TbM-1.
30	SEQ. ID NO. 35 is the DNA sequence of TbM-3.
30	SEQ. ID NO. 36 is the DNA sequence of TbM-6.
	SEQ. ID NO. 37 is the DNA sequence of TbM-7.
	SEQ. ID NO. 38 is the DNA sequence of TbM-9.
	SEO ID NO 39 is the DNA sequence of ThM 12

and the second of the first seatteness of a pNC and

```
SEQ. ID NO. 43 is the DNA sequence of TbH-4.
               SEQ. ID NO. 44 is the DNA sequence of TbH-4-FWD.
               SEQ. ID NO. 45 is the DNA sequence of TbH-12.
              SEQ. ID NO. 46 is the DNA sequence of Tb38-1.
   5
              SEQ. ID NO. 47 is the DNA sequence of Tb38-4.
              SEQ. ID NO. 48 is the DNA sequence of TbL-17.
              SEQ. ID NO. 49 is the DNA sequence of TbL-20.
              SEQ. ID NO. 50 is the DNA sequence of TbL-21.
              SEQ. ID NO. 51 is the DNA sequence of TbH-16.
 10
              SEQ. ID NO. 52 is the DNA sequence of DPEP.
             SEQ. ID NO. 53 is the deduced amino acid sequence of DPEP.
             SEQ. ID NO. 54 is the protein sequence of DPV N-terminal Antigen.
             SEQ. ID NO. 55 is the protein sequence of AVGS N-terminal Antigen.
             SEQ. ID NO. 56 is the protein sequence of AAMK N-terminal Antigen.
             SEQ. ID NO. 57 is the protein sequence of YYWC N-terminal Antigen.
 15
             SEQ. ID NO. 58 is the protein sequence of DIGS N-terminal Antigen.
             SEQ. ID NO. 59 is the protein sequence of AEES N-terminal Antigen.
             SEQ. ID NO. 60 is the protein sequence of DPEP N-terminal Antigen.
            SEQ. ID NO. 61 is the protein sequence of APKT N-terminal Antigen.
20
            SEQ. ID NO. 62 is the protein sequence of DPAS N-terminal Antigen.
            SEQ. ID NO. 63 is the deduced amino acid sequence of TbM-1 Peptide.
            SEQ. ID NO. 64 is the deduced amino acid sequence of TbRa1.
            SEQ. ID NO. 65 is the deduced amino acid sequence of TbRa10.
            SEQ. ID NO. 66 is the deduced amino acid sequence of TbRall.
25
            SEQ. ID NO. 67 is the deduced amino acid sequence of TbRa12.
            SEQ. ID NO. 68 is the deduced amino acid sequence of TbRa13.
            SEQ. ID NO. 69 is the deduced amino acid sequence of TbRa16.
            SEQ. ID NO. 70 is the deduced amino acid sequence of TbRa17.
            SEQ. ID NO. 71 is the deduced amino acid sequence of TbRa18.
           SEQ. ID NO. 72 is the deduced amino acid sequence of TbRa19.
30
           SEQ. ID NO. 73 is the deduced amino acid sequence of TbRa24.
           SEQ. ID NO. 74 is the deduced amino acid sequence of TbRa26.
           SEQ. ID NO. 75 is the deduced amino acid sequence of TbRa28.
           cry min -
```

al lacel in the and sequence

27 Trans.

	SEQ. ID NO. 79 is the deduced amino acid sequence of TbRa32.
	SEQ. ID NO. 80 is the deduced amino acid sequence of TbRa35
	SEQ. ID NO. 81 is the deduced amino acid sequence of TbRa36.
	SEQ. ID NO. 82 is the deduced amino acid sequence of TbRa4.
5	SEQ. ID NO. 83 is the deduced amino acid sequence of ThRa9
	SEQ. ID NO. 84 is the deduced amino acid sequence of ThRaB
	SEQ. ID NO. 85 is the deduced amino acid sequence of ThRaC
	SEQ. ID NO. 86 is the deduced amino acid sequence of TbRaD.
	SEQ. ID NO. 87 is the deduced amino acid sequence of YYWCPG
10	SEQ. ID NO. 88 is the deduced amino acid sequence of Thank
	SEQ. ID NO. 89 is the deduced amino acid sequence of Tb38-1
	SEQ. ID NO. 90 is the deduced amino acid sequence of ThH-4
	SEQ. ID NO. 91 is the deduced amino acid sequence of TbH-8
	SEQ. ID NO. 92 is the deduced amino acid sequence of TbH-9
15	SEQ. ID NO. 93 is the deduced amino acid sequence of TbH-12
	SEQ. ID NO. 94 is the DNA sequence of DPAS.
	SEQ. ID NO. 95 is the deduced amino acid sequence of DPAS.
	SEQ. ID NO. 96 is the DNA sequence of DPV.
20	SEQ. ID NO. 97 is the deduced amino acid sequence of DPV.
20	SEQ. ID NO. 98 is the DNA sequence of ESAT-6.
	SEQ. ID NO. 99 is the deduced amino acid sequence of ESAT-6.
	SEQ. ID NO. 100 is the DNA sequence of TbH-8-2.
	SEQ. ID NO. 101 is the DNA sequence of TbH-9FL.
25	SEQ. ID NO. 102 is the deduced amino acid sequence of TbH-9FL.
23	SEQ. ID NO. 103 is the DNA sequence of TbH-9-1.
	SEQ. ID NO. 104 is the deduced amino acid sequence of TbH-9-1.
	SEQ. ID NO. 105 is the DNA sequence of TbH-9-4.
	SEQ. ID NO. 106 is the deduced amino acid sequence of TbH-9-4.
30	SEQ. ID NO. 107 is the DNA sequence of Tb38-1F2 IN.
50	SEQ. ID NO. 108 is the DNA sequence of Tb38-1F2 RP.
	SEQ. ID NO. 109 is the deduced amino acid sequence of Tb37-FL.
	SEQ. ID NO. 110 is the deduced amino acid sequence of Tb38-IN.
	SEQ. ID NO. 111 is the DNA sequence of Tb38-1F3.

and the second of the second second (1984) (1985)

SEQ. ID NO. 115 is the deduced N-terminal amino acid sequence of DPV. SEQ. ID NO. 116 is the deduced N-terminal amino acid sequence of AVGS. SEQ. ID NO. 117 is the deduced N-terminal amino acid sequence of AAMK. SEQ. ID NO. 118 is the deduced N-terminal amino acid sequence of YYWC. 5 SEQ. ID NO. 119 is the deduced N-terminal amino acid sequence of DIGS. SEQ. ID NO. 120 is the deduced N-terminal amino acid sequence of AAES. SEQ. ID NO. 121 is the deduced N-terminal amino acid sequence of DPEP. SEQ. ID NO. 122 is the deduced N-terminal amino acid sequence of APKT. SEQ. ID NO. 123 is the deduced N-terminal amino acid sequence of DPAS. 10 SEQ. ID NO. 124 is the protein sequence of DPPD N-terminal Antigen. SEQ ID NO. 125-128 are the protein sequences of four DPPD cyanogen bromide fragments. SEQ ID NO. 129 is the N-terminal protein sequence of XDS antigen. SEQ ID NO. 130 is the N-terminal protein sequence of AGD antigen. 15 SEQ ID NO. 131 is the N-terminal protein sequence of APE antigen. SEQ ID NO. 132 is the N-terminal protein sequence of XYI antigen.

Detailed Description of the Invention

As noted above, the present invention is generally directed to compositions and methods for diagnosing tuberculosis. The compositions of the subject invention include polypeptides that comprise at least one antigenic portion of a M. tuberculosis antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. Polypeptides within the scope of the present invention include, but are not limited to, soluble M. tuberculosis antigens. A "soluble M. tuberculosis antigen" is a protein of M. tuberculosis origin that is present in M. tuberculosis culture filtrate. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising an antigenic portion of one of the above antigens may consist entirely of the antigenic portion, or may contain additional sequences. The additional

15

20

25

An "antigenic portion" of an antigen (which may or may not be soluble) is a portion that is capable of reacting with sera obtained from an *M. tuberculosis*-infected individual (i.e., generates an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals, in a representative ELISA assay described herein). An "M. tuberculosis-infected individual" is a human who has been infected with M. tuberculosis (e.g., has an intradermal skin test response to PPD that is at least 0.5 cm in diameter). Infected individuals may display symptoms of tuberculosis or may be free of disease symptoms. Polypeptides comprising at least an antigenic portion of one or more M. tuberculosis antigens as described herein may generally be used, alone or in combination, to detect tuberculosis in a patient.

The compositions and methods of this invention also encompass variants of the above polypeptides. A "variant," as used herein, is a polypeptide that differs from the native antigen only in conservative substitutions and/or modifications, such that the antigenic properties of the polypeptide are retained. Such variants may generally be identified by modifying one of the above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein.

A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypoptide.

desamena. Hous mander eg

20

protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

In a related aspect, combination polypeptides are disclosed. A "combination polypeptide" is a polypeptide comprising at least one of the above antigenic portions and one or more additional antigenic *M. tuberculosis* sequences, which are joined via a peptide linkage into a single amino acid chain. The sequences may be joined directly (i.e., with no intervening amino acids) or may be joined by way of a linker sequence (e.g., Gly-Cys-Gly) that does not significantly diminish the antigenic properties of the component polypeptides.

In general, *M. tuberculosis* antigens, and DNA sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, soluble antigens may be isolated from *M. tuberculosis* culture filtrate by procedures known to those of ordinary skill in the art, including anion-exchange and reverse phase chromatography. Purified antigens may then be evaluated for a desired property, such as the ability to react with sera obtained from an *M. tuberculosis*-infected individual. Such screens may be performed using the representative methods described herein. Antigens may then be partially sequenced using, for example, traditional Edman chemistry. *See* Edman and Berg, *Eur. J. Biochem.* 80:116-132, 1967.

Antigens may also be produced recombinantly using a DNA sequence that encodes the antigen, which has been inserted into an expression vector and expressed in an appropriate host. DNA molecules encoding soluble antigens may be isolated by screening an appropriate M. tuberculosis expression library with anti-sera (e.g., rabbit) raised specifically against soluble M. tuberculosis antigens. DNA sequences encoding antigens that may or may not be soluble may be identified by screening an appropriate M. tuberculosis genomic or cDNA expression library with sera obtained from patients infected with M. tuberculosis. Such screens may generally be

et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989.

DNA sequences encoding soluble antigens may also be obtained by screening an appropriate *M. nuberculosis* cDNA or genomic DNA library for DNA sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated soluble antigens. Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Coid Spring Harbor Laboratories, Cold Spring Harbor, NY (and references cited therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.

Regardless of the method of preparation, the antigens described herein are "antigenic." More specifically, the antigens have the ability to react with sera obtained from an *M. tuberculosis*-infected individual. Reactivity may be evaluated using, for example, the representative ELISA assays described herein, where an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals is considered positive.

Antigenic portions of *M. tuberculosis* antigens may be prepared and identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for antigenic properties. The representative ELISAs described herein may generally be employed in these screens. An antigenic portion of a polypeptide is a portion that, within such representative assays, generates a signal in such assays that is substantially similar to that generated by the full length antigen. In other wards a particular in the signal in such assays that is substantially

and a control of westited never

20

25

Portions and other variants of *M. tuberculosis* antigens may be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. *See* Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Applied BioSystems, Inc., Foster City, CA, and may be operated according to the manufacturer's instructions. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the DNA sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.

Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a DNA sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.

Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides as described herein. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian

20

25

encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in substantially pure form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure and most preferably at least about 99% pure. For use in the methods described herein, however, such substantially pure polypeptides may be combined.

In certain specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a soluble *M. tuberculosis*:

antigen (or a variant of such an antigen), where the antigen has one of the following N-terminal sequences:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID No. 115);
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID No. 116);
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID No. 117);
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID No. 118);
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID No. 119);
 - (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID No. 120);
 - (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID No. 121);
 - (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID No. 122);
 - (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Glo-Glo-Glo

15

- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 129)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 130) or
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 131)

wherein Xaa may be any amino acid, preferably a cysteine residue. A DNA sequence encoding the antigen identified as (g) above is provided in SEQ ID No. 52, the deduced amino acid sequence of which is provided in SEQ ID No. 53. A DNA sequence encoding the antigen identified as (a) above is provided in SEQ ID No. 96; its deduced amino acid sequence is provided in SEQ ID No. 97. A DNA sequence corresponding to antigen (d) above is provided in SEQ ID No. 24, a DNA sequence corresponding to antigen (c) is provided in SEQ ID No. 25 and a DNA sequence corresponding to antigen (I) is disclosed in SEQ ID No. 94 and its deduced amino acid sequence is provided in SEQ ID No. 95.

In a further specific embodiment, the subject invention discloses polypeptides comprising at least an immunogenic portion of an *M. tuberculosis* antigen having one of the following N-terminal sequences, or a variant thereof that differs only in conservative substitutions and/or modifications:

- 20 (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 132) or
 - (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 124)
- wherein Xaa may be any amino acid, preferably a cysteine residue.

In other specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a soluble *M. tuberculosis* antigen (or a variant of such an antigen) that comprises one or more of the amino acid

20

and 96, (b) the complements of such DNA sequences, or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In further specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a *M. tuberculosis* antigen (or a variant of such an antigen), which may or may not be soluble, that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID Nos. 26-51, (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In the specific embodiments discussed above, the *M tuberculosis* antigens include variants that are encoded DNA sequences which are substantially homologous to one or more of DNA sequences specifically recited herein. "Substantial homology," as used herein, refers to DNA sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the event of cross-species homology, at 45°C with 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS). Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.

In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known *M. tuberculosis* antigen, such as the 38 kD antigen described above or ESAT-6 (SEQ ID Nos. 98 and 99), together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the first and second polypeptides.

A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to appeal to a second.

were a second to the first popular and property

15

20

without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8562, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric hindrance.

In another aspect, the present invention provides methods for using the polypeptides described above to diagnose tuberculosis. In this aspect, methods are provided for detecting *M. tuberculosis* infection in a biological sample, using one or more of the above polypeptides, alone or in combination. In embodiments in which multiple polypeptides are employed, polypeptides other than those specifically described herein, such as the 38 kD antigen described in Andersen and Hansen, *Infect. Immun.* 57:2481-2488, 1989, may be included. As used herein, a "biological sample" is

20

25

preferably, the sample is a blood, serum or plasma sample obtained from a patient or a blood supply. The polypeptide(s) are used in an assay, as described below, to determine the presence or absence of antibodies to the polypeptide(s) in the sample, relative to a predetermined cut-off value. The presence of such antibodies indicates previous sensitization to mycobacteria antigens which may be indicative of tuberculosis.

In embodiments in which more than one polypeptide is employed, the polypeptides used are preferably complementary (i.e., one component polypeptide will tend to detect infection in samples where the infection would not be detected by another component polypeptide). Complementary polypeptides may generally be identified by using each polypeptide individually to evaluate serum samples obtained from a series of patients known to be infected with *M. tuberculosis*. After determining which samples test positive (as described below) with each polypeptide, combinations of two or more polypeptides may be formulated that are capable of detecting infection in most or all, of the samples tested. Such polypeptides are complementary. For example, approximately 25-30% of sera from tuberculosis-infected individuals are negative for antibodies to any single protein, such as the 38 kD antigen mentioned above. Complementary polypeptides may, therefore, be used in combination with the 38 kD antigen to improve sensitivity of a diagnostic test.

There are a variety of assay formats known to those of ordinary skill in the art for using one or more polypeptides to detect antibodies in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988, which is incorporated herein by reference. In a preferred embodiment, the assay involves the use of polypeptide immobilized on a solid support to bind to and remove the antibody from the sample. The bound antibody may then be detected using a detection reagent that contains a reporter group. Suitable detection reagents include antibodies that bind to the antibody/polypeptide complex and free polypeptide labeled with a reporter group (e.g., in a semi-competitive assay). Alternatively, a competitive assay may be utilized, in which an antibody that binds to the polypeptide is labeled to assay may be utilized, in which an antibody that binds to the polypeptide is labeled to assay may be utilized.

W. Gampie inning per

20

binding of the labeled antibody to the polypeptide is indicative of the reactivity of the sample with the immobilized polypeptide.

The solid support may be any solid material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681.

The polypeptides may be bound to the solid support using a variety of techniques known to those of ordinary skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "bound" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Binding by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the polypeptide, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of polypeptide ranging from about 10 ng to about 1 µg, and preferably about 100 ng, is sufficient to bind an adequate amount of antigen.

Covalent attachment of polypeptide to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the polypeptide. For example, the polypeptide may be bound to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the polyperiod.

15

25

In certain embodiments, the assay is an enzyme linked immunosorbent assay (ELISA). This assay may be performed by first contacting a polypeptide antigen that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that antibodies to the polypeptide within the sample are allowed to bind to the immobilized polypeptide. Unbound sample is then removed from the immobilized polypeptide and a detection reagent capable of binding to the immobilized antibody-polypeptide complex is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific detection reagent.

More specifically, once the polypeptide is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20TM (Sigma Chemical Co., St. Louis, MO) may be employed. The immobilized polypeptide is then incubated with the sample, and antibody is allowed to bind to the antigen. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is that period of time that is sufficient to detect the presence of antibody within a *M tuberculosis*-infected sample. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound antibody. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. Detection reagent may then be added to the solid support. An appropriate detection reagent is any compound that binds to the immobilized antibody-polypeptide complex and that can be detected by any of a variety of means known to the same through the same through

1 1 4 141

commission arous a freience

15

20

reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of binding agent to reporter group may be achieved using standard methods known to those of ordinary skill in the art. Common binding agents may also be purchased conjugated to a variety of reporter groups from many commercial sources (e.g., Zymed Laboratories, San Francisco, CA, and Pierce, Rockford, IL).

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound antibody. An appropriate amount of time may generally be determined from the manufacturer's instructions or by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of anti-M. tuberculosis antibodies in the sample, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antigen is incubated with samples from an uninfected patient. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for tuberculosis. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al. Clinical Epidemiology. A British Salar Curve,

10

15

20

25

rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for tuberculosis.

In a related embodiment, the assay is performed in a rapid flow-through or strip test format, wherein the antigen is immobilized on a membrane, such as nitrocellulose. In the flow-through test, antibodies within the sample bind to the immobilized polypeptide as the sample passes through the membrane. A detection reagent (e.g., protein A-colloidal gold) then binds to the antibody-polypeptide complex as the solution containing the detection reagent flows through the membrane. The detection of bound detection reagent may then be performed as described above. In the strip test format, one end of the membrane to which polypeptide is bound is immersed in a solution containing the sample. The sample migrates along the membrane through 😼 a region containing detection reagent and to the area of immobilized polypeptide. Concentration of detection reagent at the polypeptide indicates the presence of anti-M. tuberculosis antibodies in the sample. Typically, the concentration of detection reagent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of polypeptide immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of antibodies that would be sufficient to generate a positive signal in an ELISA, as discussed above. Preferably, the amount of polypeptide immobilized on the membrane ranges from about 25 ng to about 1 μg, and more preferably from about 50 ng to about 500 ns. S. i.e.

25

Of course, numerous other assay protocols exist that are suitable for use with the polypeptides of the present invention. The above descriptions are intended to be exemplary only.

In yet another aspect, the present invention provides antibodies to the inventive polypeptides. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the antigenic polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep and goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. 20 Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the aroust

A RESIDENCE TO SERVICE STREET

"veek...

colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Antibodies may be used in diagnostic tests to detect the presence of *M. tuberculosis* antigens using assays similar to those detailed above and other techniques well known to those of skill in the art, thereby providing a method for detecting *M. tuberculosis* infection in a patient.

Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, primers comprising at least 10 contiguous oligonucleotides of the subject DNA sequences may be used in polymerase chain reaction (PCR) based tests. Similarly, probes comprising at least 15 contiguous oligonucleotides of the subject DNA sequences may be used for hybridizing to specific sequences. Techniques for both PCR based tests and hybridization tests are well known in the art. Primers or probes may thus be used to detect *M. tuberculosis* infection in biological samples, preferably sputum, blood, serum, saliva, cerebrospinal fluid or urine. DNA probes or primers comprising oligonucleotide sequences described above may be used alone, in combination with each other, or with previously identified sequences, such as the 38 kD antigen discussed above.

15

25

EXAMPLES

EXAMPLE 1

Purification and Characterization of Polypeptides FROM M. TUBERCULOSIS CULTURE FILTRATE

This example illustrates the preparation of *M. tuberculosis* soluble polypeptides from culture filtrate. Unless otherwise noted, all percentages in the following example are weight per volume.

M. tuberculosis (either H37Ra, ATCC No. 25177, or H37Rv, ATCC No. 25618) was cultured in sterile GAS media at 37°C for fourteen days. The media was then vacuum filtered (leaving the bulk of the cells) through a 0.45 μ filter into a sterile 2.5 L bottle. The media was then filtered through a 0.2 μ filter into a sterile 4 L bottle. NaN₃ was then added to the culture filtrate to a concentration of 0.04%. The bottles were then placed in a 4°C cold room.

The culture filtrate was concentrated by placing the filtrate in a 12 L reservoir that had been autoclaved and feeding the filtrate into a 400 ml Amicon stir cell? which had been rinsed with ethanol and contained a 10,000 kDa MWCO membrane.

The pressure was maintained at 60 psi using nitrogen gas. This procedure reduced the 12 L volume to approximately 50 ml.

The culture filtrate was then dialyzed into 0.1% ammonium bicarbonate using a 8,000 kDa MWCO cellulose ester membrane, with two changes of ammonium bicarbonate solution. Protein concentration was then determined by a commercially available BCA assay (Pierce, Rockford, IL).

The dialyzed culture filtrate was then lyophilized, and the polypeptides resuspended in distilled water. The polypeptides were then dialyzed against 0.01 mM 1,3 bis[tris(hydroxymethyl)-methylamino]propane. pH 7.5 (Bis Tris propagation)

or in the halfiest containing

15

20

25

4.6 mm x 100 mm (Perseptive BioSystems, Framingham, MA) equilibrated in 0.01 mM Bis-Tris propane buffer pH 7.5. Polypeptides were eluted with a linear 0-0.5 M NaCl gradient in the above buffer system. The column eluent was monitored at a wavelength of 220 nm.

The pools of polypeptides eluting from the ion exchange column were dialyzed against distilled water and lyophilized. The resulting material was dissolved in 0.1% trifluoroacetic acid (TFA) pH 1.9 in water, and the polypeptides were purified on a Delta-Pak C18 column (Waters, Milford, MA) 300 Angstrom pore size, 5 micron particle size (3.9 x 150 mm). The polypeptides were eluted from the column with a linear gradient from 0-60% dilution buffer (0.1% TFA in acetonitrile). The flow rate was 0.75 ml/minute and the HPLC eluent was monitored at 214 nm. Fractions containing the eluted polypeptides were collected to maximize the purity of the individual samples. Approximately 200 purified polypeptides were obtained.

The purified polypeptides were then screened for the ability to induce T-cell proliferation in PBMC preparations. The PBMCs from donors known to be PPD skin test positive and whose T cells were shown to proliferate in response to PPD and crude soluble proteins from MTB were cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 μg/ml gentamicin. Purified polypeptides were added in duplicate at concentrations of 0.5 to 10 μg/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 μl, 50 μl of medium was removed from each well for determination of IFN-γ levels. as described below. The plates were then pulsed with 1 μCi/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that resulted in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone were considered positive.

IFN-y was measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates were coated with a mouse monoclonal antibody directed to

samples diluted 1:2 in culture medium in the ELISA plates were incubated overnight at room temperature. The plates were again washed and a polyclonal rabbit anti-human IFN-γ serum diluted 1:3000 in PBS/10% normal goat serum was added to each well. The plates were then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Jackson Labs.) was added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates were washed and TMB substrate added. The reaction was stopped after 20 min with 1 N sulfuric acid. Optical density was determined at 450 nm using 570 nm as a reference wavelength. Fractions that resulted in both replicates. giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, were considered positive.

For sequencing, the polypeptides were individually dried onto BiobreneTM (Perkin Elmer/Applied BioSystems Division, Foster City, CA) treated glass fiber filters. The filters with polypeptide were loaded onto a Perkin Elmer/Applied BioSystems Division Procise 492 protein sequencer. The polypeptides were sequenced from the amino terminal and using traditional Edman chemistry. The amino acid sequence was determined for each polypeptide by comparing the retention time of the PTH amino acid derivative to the appropriate PTH derivative standards.

Using the procedure described above, antigens having the following N-terminal sequences were isolated:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Xaa-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ II) No. 54);
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID No. 55);
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID No. 56);
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SFO ID No. 57)

10

- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID No. 59);
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala-Ala-Ala-Pro-Pro-Ala (SEQ ID No. 60); and
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID No. 61);

wherein Xaa may be any amino acid.

An additional antigen was isolated employing a microbore HPLC purification step in addition to the procedure described above. Specifically, 20 µl of a fraction comprising a mixture of antigens from the chromatographic purification step previously described, was purified on an Aquapore C18 column (Perkin Elmer/Applied Biosystems Division, Foster City, CA) with a 7 micron pore size, column size 1 mm x 100 mm, in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted from the column with a linear gradient of 1%/minute of acetonitrile (containing 0.05% TFA) in water (0.05% TFA) at a flow rate of 80 µl/minute. The eluent was monitored at 250 nm. The original fraction was separated into 4 major peaks plus other smaller components and a polypeptide was obtained which was shown to have a molecular weight of 12.054 Kd (by mass spectrometry) and the following N-terminal sequence:

20 (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Gln-Thr-Ser-Leu-Leu-Asn-Asn-Leu-Ala-Asp-Pro-Asp-Val-Ser-Phe-Ala-Asp (SEQ ID No. 62).

This polypeptide was shown to induce proliferation and IFN-γ production in PBMC preparations using the assays described above.

Additional soluble antigens were isolated from *M. tuberculosis* culture filtrate as follows. *M. tuberculosis* culture filtrate was prepared as described above. Following dialysis against Bis-Tris propane buffer, at pH 5.5, fractionation was performed using anion exchange chromatography on a Poros OF column 4.6 x 100 mg.

20

j.

were eluted with a linear 0-1.5 M NaCl gradient in the above buffer system at a flow rate of 10 ml/min. The column eluent was monitored at a wavelength of 214 nm.

The fractions eluting from the ion exchange column were pooled and subjected to reverse phase chromatography using a Poros R2 column 4.6 x 100 mm 5 (Perseptive Biosystems). Polypeptides were eluted from the column with a linear gradient from 0-100% acetonitrile (0.1% TFA) at a flow rate of 5 ml/min. The eluent was monitored at 214 nm.

Fractions containing the eluted polypeptides were lyophilized and resuspended in 80 µl of aqueous 0.1% TFA and further subjected to reverse phase chromatography on a Vydac C4 column 4.6 x 150 mm (Western Analytical, Temecula, CA) with a linear gradient of 0-100% acetonitrile (0.1% TFA) at a flow rate of 2 ml/min. Eluent was monitored at 214 nm.

The fraction with biological activity was separated into one major peak plus other smaller components. Western blot of this peak onto PVDF membrane revealed three major bands of molecular weights 14 Kd, 20 Kd and 26 Kd. These polypeptides were determined to have the following N-terminal sequences, respectively:

- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser: (SEQ ID No. 129)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp: (SEQ ID No. 130) and
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 131), wherein Xaa may be any amino acid.

Using the assays described above, these polypeptides were shown to induce proliferation and IFN-y production in PBMC preparations. Figs. 1A and B show the results of such assays using PBMC preparations from a first and a second donor, respectively.

DNA sequences that encode the antigens designated as (a), (c), (d) and (g) above were obtained by screening a M tuberculosis genomic library using ³²P end

15

corresponding to antigen (a) above identified a clone having the sequence provided in SEQ ID No. 96. The polypeptide encoded by SEQ ID No. 96 is provided in SEQ ID No. 97. The screen performed using a probe corresponding to antigen (g) above identified a clone having the sequence provided in SEQ ID No. 52. The polypeptide encoded by SEQ ID No. 52 is provided in SEQ ID No. 53. The screen performed using a probe corresponding to antigen (d) above identified a clone having the sequence provided in SEQ ID No. 24, and the screen performed with a probe corresponding to antigen (c) identified a clone having the sequence provided in SEQ ID No. 25.

The above amino acid sequences were compared to known amino acid sequences in the gene bank using the DNA STAR system. The database searched contains some 173,000 proteins and is a combination of the Swiss, PIR databases along with translated protein sequences (Version 87). No significant homologies to the amino acid sequences for antigens (a)-(h) and (l) were detected.

The amino acid sequence for antigen (i) was found to be homologous to a sequence from *M. leprae*. The full length *M. leprae* sequence was amplified from genomic DNA using the sequence obtained from GENBANK. This sequence was then used to screen an *M. tuberculosis* library and a full length copy of the *M. tuberculosis* homologue was obtained (SEQ ID No. 94).

The amino acid sequence for antigen (j) was found to be homologous to a known *M. tuberculosis* protein translated from a DNA sequence. To the best of the inventors' knowledge, this protein has not been previously shown to possess T-cell stimulatory activity. The amino acid sequence for antigen (k) was found to be related to a sequence from *M. leprae*.

In the proliferation and IFN-y assays described above, using three PPD positive donors, the results for representative antigens provided above are presented in Table 1:

TABLE 1

RESULTS OF PBMC PROLIFERATION AND IFN-y ASSAYS

IFN-γ	Proliferation	Sequence
•	+	(a)
+++	+++	(c)
++	++	(d)
+++	+++	(g)
1,111	+++	(h)

In Table 1, responses that gave a stimulation index (SI) of between 2 and 4 (compared to cells cultured in medium alone) were scored as +, as SI of 4-8 or 2-4 at a concentration of 1 μg or less was scored as ++ and an SI of greater than 8 was scored as +++. The antigen of sequence (i) was found to have a high SI (+++) for one donor and lower SI (++ and +) for the two other donors in both proliferation and IFN-γ assays.

These results indicate that these antigens are capable of inducing proliferation and/or interferon-γ production.

EXAMPLE 2 USE OF PATIENT SERA TO ISOLATE M. TUBERCULOSIS ANTIGENS

This example illustrates the isolation of antigens from *M. tuberculosis* lysate by screening with serum from *M. tuberculosis*-infected individuals.

Dessicated M. tuberculosis H37Ra (Difco Laboratories) was added to a 2% NP40 solution, and alternately homogenized and sonicated three times. The resulting suspension was centrifuged at 13,000 rpm in microfuge tubes and the supernatant put through a 0.2 micron syringe filter. The filtrate was bound to Macro

and the state of t

of Tomas

DNase and RNase at 0.05 mg/ml for 30 min. at room temperature and then with α -D-mannosidase, 0.5 U/mg at pH 4.5 for 3-4 hours at room temperature. After returning to pH 7.5, the material was fractionated via FPLC over a Bio Scale-Q-20 column (BioRad). Fractions were combined into nine pools, concentrated in a Centriprep 10 (Amicon, Beverley, MA) and screened by Western blot for serological activity using a serum pool from *M. tuberculosis*-infected patients which was not immunoreactive with other antigens of the present invention.

The most reactive fraction was run in SDS-PAGE and transferred to PVDF. A band at approximately 85 Kd was cut out yielding the sequence:

10

(m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 132), wherein Xaa may be any amino acid.

Comparison of this sequence with those in the gene bank as described above, revealed no significant homologies to known sequences.

15

EXAMPLE 3

PREPARATION OF DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

This example illustrates the preparation of DNA sequences encoding M. tuberculosis antigens by screening a M. tuberculosis expression library with sera obtained from patients infected with M. tuberculosis, or with anti-sera raised against M. tuberculosis antigens.

A. <u>Preparation of M turerculosis Soluble Antigens using Rabbit Anti-</u>
25 <u>Sera</u>

Genomic DNA was isolated from the *M tuberculosis* strain H37Ra. The DNA was randomly sheared and used to construct an expression library using the Lambda ZAP expression system (Stratagene, La Jolla CA). Rabbit anti-service

cultures. Specifically, the rabbit was first immunized subcutaneously with 200 µg of protein antigen in a total volume of 2 ml containing 100 µg muramyl dipeptide (Calbiochem, La Jolla, CA) and 1 ml of incomplete Freund's adjuvant. Four weeks later the rabbit was boosted subcutaneously with 100 µg antigen in incomplete Freund's adjuvant. Finally, the rabbit was immunized intravenously four weeks later with 50 µg protein antigen. The anti-sera were used to screen the expression library as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M tuberculosis* clones deduced.

Thirty two clones were purified. Of these, 25 represent sequences that have not been previously identified in *M. tuberculosis*. Proteins were induced by IPTG and purified by gel elution, as described in Skeiky et al., *J. Exp. Med.* 181;1527-1537, 1995. Representative partial sequences of DNA molecules identified in this screen are provided in SEQ ID Nos. 1-25. The corresponding predicted amino acid sequences are shown in SEQ ID Nos. 64-88.

On comparison of these sequences with known sequences in the gene bank using the databases described above, it was found that the clones referred to hereinafter as TbRA2A, TbRA16, TbRA18, and TbRA29 (SEQ ID Nos. 77, 69, 71, 76) show some homology to sequences previously identified in *Mycobacterium leprae* but not in *M. tuberculosis*. TbRA11, TbRA26, TbRA28 and TbDPEP (SEQ ID Nos. 66, 74, 75, 53) have been previously identified in *M. tuberculosis*. No significant homologies were found to TbRA1, TbRA3, TbRA4, TbRA9, TbRA10, TbRA13, TbRA17, TbRA19, TbRA29, TbRA32, TbRA36 and the overlapping clones TbRA35 and TbRA12 (SEQ ID Nos. 64, 78, 82, 83, 65, 68, 76, 72, 76, 79, 81, 80, 67, respectively). The clone TbRa24 is overlapping with clone TbRa29.

20

25

B. <u>Use of Patient Sera to Identify DNA Sequences Encoding</u> <u>M. TUBERCULOSIS ANTIGENS</u>

The genomic DNA library described above, and an additional H37Rv library, were screened using pools of sera obtained from patients with active tuberculosis. To prepare the H37Rv library, *M. tuberculosis* strain H37Rv genomic DNA was isolated, subjected to partial Sau3A digestion and used to construct an expression library using the Lambda Zap expression system (Stratagene, La Jolla, Ca). Three different pools of sera, each containing sera obtained from three individuals with active pulmonary or pleural disease, were used in the expression screening. The pools were designated TbL, TbM and TbH, referring to relative reactivity with H37Ra lysate (*i.e.*, TbL = low reactivity, TbM = medium reactivity and TbH = high reactivity) in both ELISA and immunoblot format. A fourth pool of sera from seven patients with active pulmonary tuberculosis was also employed. All of the sera lacked increased reactivity with the recombinant 38 kD *M. tuberculosis* H37Ra phosphate-binding protein.

All pools were pre-adsorbed with *E. coli* lysate and used to screen the H37Ra and H37Rv expression libraries, as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

Thirty two clones were purified. Of these, 31 represented sequences that had not been previously identified in human *M tuberculosis*. Representative sequences of the DNA molecules identified are provided in SEQ ID NOS.: 26-51 and 100. Of these, TbH-8 and TbH-8-2 (SEQ. ID NO. 100) are non-contiguous DNA sequences from the same clone, and TbH-4 (SEQ. ID NO. 43) and TbH-4-FWD (SEQ. ID NO. 44) are non-contiguous sequences from the same clone. Amino acid sequences for the antigens hereinafter identified as Tb38-1, TbH-4, TbH-8, TbH-9, and TbH-12 are shown in SEQ ID NOS.: 89-93. Comparison of these sequences with known as were

autor virgi

found to TbH-9. TbH-12 was found to be homologous to a 34 kD antigenic protein previously identified in *M. paratuberculosis* (Acc. No. S28515). Tb38-1 was found to be located 34 base pairs upstream of the open reading frame for the antigen ESAT-6 previously identified in *M. bovis* (Acc. No. U34848) and in *M. tuberculosis* (Sorensen et al., *Infec. Immun.* 63:1710-1717, 1995).

Probes derived from Tb38-1 and TbH-9, both isolated from an H37Ra library, were used to identify clones in an H37Rv library. Tb38-1 hybridized to Tb38-1F2, Tb38-1F3, Tb38-1F5 and Tb38-1F6 (SEQ. ID NOS. 107, 108, 111, 113, and 114). (SEQ ID NOS. 107 and 108 are non-contiguous sequences from clone Tb38-1F2.) Two open reading frames were deduced in Tb38-IF2; one corresponds to Tb37FL (SEQ. ID. NO. 109), the second, a partial sequence, may be the homologue of Tb38-1 and is called Tb38-IN (SEQ. ID NO. 110). The deduced amino acid sequence of Tb38-1F3 is presented in SEQ. ID. NO. 112. A TbH-9 probe identified three clones in the H37Rv library: TbH-9-FL (SEQ. ID NO. 101), which may be the homologue of TbH-9 (R37Ra), TbH-9-I (SEQ. ID NO. 103), and TbH-9-4 (SEQ. ID NO. 105), all of which are highly related sequences to TbH-9. The deduced amino acid sequences for these three clones are presented in SEQ ID NOS. 102, 104 and 106.

20

EXAMPLE 4

PURIFICATION AND CHARACTERIZATION OF A POLYPEPTIDE FROM TUBERCULIN PURIFIED PROTEIN DERIVATIVE

An M. tuberculosis polypeptide was isolated from tuberculin purified protein derivative (PPD) as follows.

PPD was prepared as published with some modification (Seibert, F. et al., Tuberculin purified protein derivative. Preparation and analyses of a large quantity for standard. The American Review of Tuberculosis 44:9-25, 1941)

for 3 hours. Cultures were sterile filtered using a 0.22 μ filter and the liquid phase was concentrated 20 times using a 3 kD cut-off membrane. Proteins were precipitated once with 50% ammonium sulfate solution and eight times with 25% ammonium sulfate solution. The resulting proteins (PPD) were fractionated by reverse phase liquid chromatography (RP-HPLC) using a C18 column (7.8 x 300 mM; Waters, Milford, MA) in a Biocad HPLC system (Perseptive Biosystems, Framingham, MA). Fractions were eluted from the column with a linear gradient from 0-100% buffer (0.1% TFA in acetonitrile). The flow rate was 10 ml/minute and eluent was monitored at 214 nm and 280 nm.

Six fractions were collected, dried, suspended in PBS and tested individually in *M. tuberculosis*-infected guinea pigs for induction of delayed type hypersensitivity (DTH) reaction. One fraction was found to induce a strong DTH reaction and was subsequently fractionated furtherby RP-HPLC on a microbore Vydac C18 column (Cat. No. 218TP5115) in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted with a linear gradient from 5-100% buffer (0.05% TFA in acetonitrile) with a flow rate of 80 μl/minute. Eluent was monitored at 215 nm. Eight fractions were collected and tested for induction of DTH in *M. tuberculosis*-infected guinea pigs. One fraction was found to induce strong DTH of about 16 mm induration. The other fractions did not induce detectable DTH. The positive fraction was submitted to SDS-PAGE gel electrophoresis and found to contain a single protein band of approximately 12 kD molecular weight.

This polypeptide, herein after referred to as DPPD, was sequenced from the amino terminal using a Perkin Elmer/Applied Biosystems Division Procise 492 protein sequencer as described above and found to have the N-terminal sequence shown in SEQ ID No.: 124. Comparison of this sequence with known sequences in the gene bank as described above revealed no known homologies. Four cyanogen bromide fragments of DPPD were isolated and found to have the sequences shown in SEQ ID Nos.: 125-128.

EXAMPLE 5

SYNTHESIS OF SYNTHETIC POLYPEPTIDES

Polypeptides may be synthesized on a Millipore 9050 peptide 5 synthesizer using FMOC chemistry with HPTU (O-Benzotriazoie-N.N.N. tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the 15 peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.

This procedure was used to synthesize a TbM-1 peptide that contains one and a half repeats of a TbM-1 sequence. The TbM-1 peptide has the sequence. GCGDRSGGNLDQIRLRRDRSGGNL (SEQ ID No. 63).

20

EXAMPLE 6

USE OF REPRESENTATIVE ANTIGENS FOR SERODIAGNOSIS OF TUBERCULOSIS

This Example illustrates the diagnostic properties of several representative antigens. Figures 1 and 2 present the reactivity of representative antigens with sera from *M. tuberculosis*-infected and uninfected individuals, as compared to the reactivity of bacterial lysate and the 38 kD antigen.

15

overnight at 4°C (or 2 hours at 37°C). The plate contents were then removed and the wells were blocked for 2 hours with 200 μL of PBS/1% BSA. After the blocking step, the wells were washed five times with PBS/0.1% Tween 20TM. 50 μL sera, diluted 1:100 in PBS/0.1% Tween 20TM/0.1% BSA, was then added to each well and incubated for 30 minutes at room temperature. The plates were then washed again five times with PBS/0.1% Tween 20TM.

The enzyme conjugate (horseradish peroxidase - Protein A, Zymed, San Francisco, CA) was then diluted 1:10,000 in PBS/0.1% Tween 20TM/0.1% BSA, and 50 μL of the diluted conjugate was added to each well and incubated for 30 minutes at room temperature. Following incubation, the wells were washed five times with PBS/0.1% Tween 20TM. 100 μL of tetramethylbenzidine peroxidase (TMB) substrate (Kirkegaard and Perry Laboratories, Gaithersburg, MD) was added, undiluted, and incubated for about 15 minutes. The reaction was stopped with the addition of 100 μL of 1 N H₂SO₄ to each well, and the plates were read at 450 nm.

Figure 2 shows the ELISA reactivity of two recombinant antigens isolated using method A in Example 3 (TbRa3 and TbRa9) with sera from *M. tuberculosis* positive and negative patients. The reactivity of these antigens is compared to that of bacterial lysate isolated from *M. tuberculosis* strain H37Ra (Difco, Detroit, MI). In both cases, the recombinant antigens differentiated positive from negative sera. Based on cut-off values obtained from receiver-operator curves, TbRa3 detected 56 out of 87 positive sera, and TbRa9 detected 111 out of 165 positive sera.

Figure 3 illustrates the ELISA reactivity of representative antigens isolated using method B of Example 3. The reactivity of the recombinant antigens TbH4, TbH12, Tb38-1 and the peptide TbM-1 (as described in Example 4) is compared to that of the 38 kD antigen described by Andersen and Hansen, *Infect. Immun.* 57:2481-2488, 1989. Again, all of the polypeptides tested differentiated positive from negative sera. Based on cut-off values obtained from receiver-operator curves, TbH4 detected 67 out of 126 positive sera. TbH12 detected 50 art. 6.135 m.

The reactivity of four antigens (TbRa3, TbRa9, TbH4 and TbH12) with sera from a group of *M. tuberculosis* infected patients with differing reactivity in the acid fast stain of sputum (Smithwick and David, *Tubercle 52*:226, 1971) was also examined, and compared to the reactivity of *M. tuberculosis* lysate and the 38 kD antigen. The results are presented in Table 2, below:

TABLE 2

REACTIVITY OF ANTIGENS WITH SERA FROM M. TUBERCULOSIS PATIENTS

	Acid Fast			ELIS	A Values		
Patient	Sputum	Lysate	38kD	TbRa9	Тън12	ТъН4	TbRa3
Tb01B93I-2	++++	1.853	0.634	0.998	1.022	1.030	1.314
Tb01B93I-19	++++	2.657	2.322	0.608	0.837	1.857	2.335
Тъ01В93І-8	+++	2.703	0.527	0.492	0.281	0.501	2.002
Ть01В93І-10	+++	1.665	1.301	0.685	0.216	0.448	0.458
Ть01В93І-11	+++	2.817	0.697	0.509	0.301	0.173	2.608
Tb01B93I-15	+++	1.28	0.283	0.808	0.218	1.537	0.811
Ть01В93І-16	+++	2.908	>3	0.899	0.441	0.593	1.080
Ть01В93І-25	+++	0.395	0.131	0.335	0.211	0.107	0.948
Ть01В93І-87	+++	2.653	2.432	2.282	0.977	1.221	0.857
Ть01В93І-89	+++	1.912	2.370	2.436	0.876	0.520	0.952
Tb01B94I-108	+++	1.639	0.341	0.797	0.368	0.654	0.798
Гь01В94І-201	+++	1.721	0.419	0.661	0.137	0.064	0.692
Гъ01В93І-88	++	1.939	1.269	2.519	1.381	0.214	0.530
	1	!		'			,

	Acid Fas		ELISA Values					
Patient	Sputu	m Lysat	e 38kI) TbR	а9 Тън	12 Тън	4 TbRa	
Tb01B94I-210) ++	2.777	>3	0.39	0.36	7 1.00	4 1.31	
Ть01В94І-224	++	2.913	0.476	0.25	1 1.29	7 1.990	0.256	
Ть01В93І-9	+	2.649	0.278	0.21	0 0.140	0.181	1.586	
Tb01B93I-14	+	>3	1.538	0.28	2 0.291	0.549	2.880	
Tb01B93I-21	÷	2.645	0.739	2.49	0.783	0.536	1.770	
Tb01B93I-22	+	0.714	0.451	2.082	0.285	0.269	1.159	
Tb01B93I-31	+	0.956	0.490	1.019	0.812	0.176	1.293	
Ть01В93І-32	-	2.261	0.786	0.668	0.273	0.535	0.405	
Ть01В93І-52	-	0.658	0.114	0.434	0.330	0.273	1.140	
Ть01В93І-99	-	2.118	0.584	1.62	0.119	0.977	0.729	
Tb01B94I-130	-	1.349	0.224	0.86	0.282	0.383	2.146	
Tb01B94I-131	-	0.685	0.324	1.173	0.059	0.118	1.431	
AT4-0070	Normal	0.072	0.043	0.092	0.071	0.040	0.039	
AT4-0105	Normal	0.397	0.121	0.118	0.103	0.078	0.390	
3/15/94-1	Normal	0.227	0.064	0.098	0.026	0.001	0.228	
4/15/93-2	Normal	0.114	0.240	0.071	0.034	0.041	0.264	
5/26/94-4	Normal	0.089	0.259	0.096	0.046	0.008	0.053	
5/26/94-3	Normal	0.139	0.093	0.085	0.019	0.067	0.01	

Based on cut-off values obtained from receiver-operator curves, TbRa3 detected 23 out of 27 positive sera. TbRa9 detected 22 out of 27 Third in a case of 25 third in a case of 27 third in a case of 25 third in a case of

 \sim 1.2 complement each other in the serological detection of M tuberculosis infection.

In addition, several of the recombinant antigens detected positive sera that were not detected using the 38 kD antigen, indicating that these antigens may be complementary to the 38 kD antigen.

The reactivity of the recombinant antigen TbRall with sera from M. tuberculosis patients shown to be negative for the 38 kD antigen, as well as with sera from PPD positive and normal donors, was determined by ELISA as described above. The results are shown in Figure 4 which indicates that TbRall, while being negative with sera from PPD positive and normal donors, detected sera that were negative with the 38 kD antigen. Of the thirteen 38 kD negative sera tested, nine were positive with TbRall, indicating that this antigen may be reacting with a sub-group of 38 kD antigen negative sera. In contrast, in a group of 38 kD positive sera where TbRall was reactive, the mean OD 450 for TbRall was lower than that for the 38 kD antigen. The data indicate an inverse relationship between the presence of TbRall activity and 38 kD positivity.

The antigen TbRa2A was tested in an indirect ELISA using initially 50 µl of serum at 1:100 dilution for 30 minutes at room temperature followed by washing in PBS Tween and incubating for 30 minutes with biotinylated Protein A (Zymed, San Francisco, CA) at a 1:10,000 dilution. Following washing, 50 µl of streptavidin-horseradish peroxidase (Zymed) at 1:10,000 dilution was added and the mixture incubated for 30 minutes. After washing, the assay was developed with TMB substrate as described above. The reactivity of TbRa2A with sera from *M. tuberculosis* patients and normal donors in shown in Table 3. The mean value for reactivity of TbRa2A with sera from *M. tuberculosis* patients was 0.444 with a standard deviation of 0.309. The mean for reactivity with sera from normal donors was 0.109 with a standard deviation of 0.029. Testing of 38 kD negative sera (Figure 5) also indicated that the TbRa2A antigen was capable of detecting sera in this category.

TABLE 3 $\label{table 3} \textbf{Reactivity of TbRa2A with Sera from M. $\it tuberculosis Patients and from Normal Donors }$

	[C		
	Serum ID		OD 450
	Tb85	TB	0.680
	Тъ86	TB	0.450
	Tb87	TB	0.263
	Tb88	TB	0.275
	ТЪ89	TB	0.403
	Тъ91	TB	0.393
	Ть92	TB	0.401
ı	Tb93	TB	0.232
	Ть94	TB	0.333
	Ть95	TB	0.435
1	Ть96	TB	0.284
Į	Tb97	TB	0.320
1	Tb99	TB	0.328
L	ТЬ100	TB	0.817
L	ТЬ101	TB	0.607
	Tb102	TB	0.191
L	Ть103	TB	0.228
L	ТЬ107	TB	0.324
L	Tb109	TB	1.572
L	Tb112	TB	0.338
L	DL4-0176	Normal	0.036
L	AT4-0043	Normal	0.126
L	AT4-0044	Normal	0.130
L	AT4-0052	Normal	0.135
L	AT4-0053	Normal	0.133
	AT4-0062	Normal	0.128
	AT4-0070	Normal	0.088
_	AT4-0091	Normal	0.108
	AT4-0100	Normal	0.106
_	AT4-0105	Normal	0.108
	AT4-0109	Normal	0.105

5

cribe, above the result of the titration of antigen (g) with four

M. tuberculosis positive sera that were all reactive with the 38 kD antigen and with four donor sera. All four positive sera were reactive with antigen (g).

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Corixa Corporation
- (ii) TITLE OF INVENTION: COMPOUNDS AND METHODS FOR DIAGNOSIS OF TUBERCULOSIS
- (iii) NUMBER OF SEQUENCES: 132
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SEED and BERRY LLP
 - (B) STREET: 6300 Columbia Center, 701 Fifth Avenue
 - (C) CITY: Seattle
 - (D) STATE: Washington
 - (E) COUNTRY: USA
 - (F) ZIP: 98104-7092
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0. Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 27-AUG-1996
 - (C) CLASSIFICATION:

€

(viii	ATTORNEY/AGENT	INFORMATION.
(V I I I ,	/ ALIONNELL/AUCINI	INFURMATION:

- (A) NAME: Maki, David J.
- (B) REGISTRATION NUMBER: 31,392
- (C) REFERENCE/DOCKET NUMBER: 210121.417PC

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (206) 622-4900

(B) TELEFAX: (206) 682-6031

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 766 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGAGGCACCG	GTAGTTTGAA	CCAAACGCAC	AATCGACGGG	CAAACGAACG	GAAGAACACA	60
ACCATGAAGA	TGGTGAAATC	GATCGCCGCA	GGTCTGACCG	CCGCGGCTGC	AATCGGCGCC	- 120
GCTGCGGCCG	GTGTGACTTC	GATCATGGCT	GGCGGCCCGG	TCGTATACCA	GATGCAGCCG	180
GTCGTCTTCG	GCGCGCCACT	GCCGTTGGAC	CCGGCATCCG	CCCCTGACGT	CCCGACCGCC	240
GCCCAGTTGA	CCAGCCTGCT	CAACAGCCTC	GCCGATCCCA	ACGTGTCGTT	TGCGAACAAG	300
GGCAGTCTGG	TCGAGGGCGG	CATCGGGGGC	ACC GAGG CGC	GCATCGCCGA	CCACAAGCTG	360
AAGAAGGCCG	CCGAGCACGG	GGATCTGCCG	CTGTCGTTCA	GCGTGACGAA	CATCCAGCCG	420

GCGGCCGCCG GTTCGGCCAC CGCCGACGTT TCCGTCTCGG GTCCGAAGCT CTCGTCGCCG	480
GTCACGCAGA ACGTCACGTT CGTGAATCAA GGCGGCTGGA TGCTGTCACG CGCATCGGCG	540
ATGGAGTTGC TGCAGGCCGC AGGGNAACTG ATTGGCGGGC CGGNTTCAGC CCGCTGTTCA	600
GCTACGCCGC CCGCCTGGTG ACGCGTCCAT GTCGAACACT CGCGCGTGTA GCACGGTGCG	660
GTNTGCGCAG GGNCGCACGC ACCGCCCGGT GCAAGCCGTC CTCGAGATAG GTGGTGNCTC	720
GNCACCAGNG ANCACCCCCN NNTCGNCNNT TCTCGNTGNT GNATGA	766
(0)	

(2) INFORMATION FOR SEQ ID NO:2:

TECAMETER TOWNERS . .

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 752 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ATGCATCACC ATCACCATCA CGATGAAGTC ACGGTAGAGA CGACCTCCGT CTTCCGCGCA 60

GACTTCCTCA GCGAGCTGGA CGCTCCTGCG CAAGCGGGTA CGGAGAGCGC GGTCTCCGGG 120

GTGGAAGGGC TCCCGCCGGG CTCGGCGTTG CTGGTAGTCA AACGAGGCCC CAACGCCGGG 180

TCCCGGTTCC TACTCGACCA AGCCATCACG TCGGCTGGTC GGCATCCCGA CAGCGACATA 240

TTTCTCGACG ACGTGACCGT GAGCCGTCGC CATGCTGAAT TCCGGTTGGA AAACAACGAA 300

ACCGGACCCA	A AGCAAGGCGA	GGATGACGGG	AGTACCGGGG	GCCCGTGAGC	GCACCCGATA	480
GCCCCGCGCT	GGCCGGGATG	TCGATCGGGG	CGGTCCTCCG	ACCTGCTACG	ACCGGATTTT	540
CCCTGATGTC	CACCATCTCC	AAGATTCGAT	TCTTGGGAGG	CTTGAGGGTC	NGGGTGACCC	600
CCCCGCGGGC	CTCATTCNGG	GGTNTCGGCN	GGTTTCACCC	CNTACCNACT	GCCNCCCGGN	660
TTGCNAATTC	NTTCTTCNCT	GCCCNNAAAG	GGACCNTTAN	CTTGCCGCTN	GAAANGGTNA	720
TCCNGGGCCC	NTCCTNGAAN	CCCCNTCCCC	CT			752

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 813 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

60	GCGTCGAGCA	CGCGTCGGGG	AACCGCCCAG	TCACACTTCT	ACCATCACCA	CATATGCATC
120	TCGTCGTCAG	TGGTCAGGCA	AGCTTGAGTC	TCGATCTGCT	CCGGGCCCGA	CCACGCGACA
180	TCTCCCGCCT	GGCAATCCAA	CAGATATCGC	GTCGTCGACT	CCCTATGTTT	CAGCGCGATG
240	CAAGATCTTC	ACGTGCGCAT	AGGAATTTCG	CTACTCCCGG	GTGCTGCAAA	GCGGCCGGCG
202	COCCCCANO	TGGCCACGGC	TGTTCGGGTG	TTTGCTCTGT	CGGCTGTCGT	ATGCTGGTCA

GACCCGGCCT ACAACATCAA CATCAGCCTG CCCAGTTACT ACCCCGACCA GAAGTCGCTG	420
GAAAATTACA TCGCCCAGAC GCGCGACAAG TTCCTCAGCG CGGCCACATC GTCCACTCCA	480
CGCGAAGCCC CCTACGAATT GAATATCACC TCGGCCACAT ACCAGTCCGC GATACCGCCG	540
CGTGGTACGC AGGCCGTGGT GCTCAMGGTC TACCACAACG CCGGCGGCAC GCACCCAACG	600
ACCACGTACA AGGCCTTCGA TTGGGACCAG GCCTATCGCA AGCCAATCAC CTATGACACG	660
CTGTGGCAGG CTGACACCGA TCCGCTGCCA GTCGTCTTCC CCATTGTTGC AAGGTGAACT	720
GAGCAACGCA GACCGGGACA ACWGGTATCG ATAGCCGCCN AATGCCGGCT TGGAACCCNG	780
TGAAATTATC ACAACTTCGC AGTCACNAAA NAA	813

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 447 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CATTCCGATC GGGCCGCGT CCGATAACTT CCAGCTGTCC CAGGGTGGGC AGGGATTCGC 60

CATTCCGATC GGGCAGGCGA TGGCGATCGC GGGCCAGATC CGATCGGGTG GGGGGTCACC 120

CACCGTTCAT ATCGGGCCTA CCGCCTTCCT CGGCTTGGGT GTTGTCGACA ACAACGGCAA 180

Arabi in the second second

CGCGCTTAAC GGGCATCATC CCGGTGACGT CATCTCGGTG AACTGGCAAA CCAAGTCGGG	360
CGGCACGCGT ACAGGGAACG TGACATTGGC CGAGGGACCC CCGGCCTGAT TTCGTCGYGG	420
ATACCACCCG CCGGCCGGCC AATTGGA	447
(2) INFORMATION FOR SEQ ID NO:5:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 604 base pairs	
(B) TYPE: nucleic acid	•

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

GTCCCACTGC GGTCGCCGAG	TATGTCGCCC	AGCAAATGTC	TGGCAGCCGC	CCAACGGAAT	60
CCGGTGATCC GACGTCGCAG	GTTGTCGAAC	CCGCCGCCGC	GGAAGTATCG	GTCCATGCCT	120
AGCCCGGCGA CGGCGAGCGC	CGGAATGGCG	CGAGTGAGGA	GGCGGGCAAT	TTGGCGGGGC	180
CCGGCGACGG NGAGCGCCGG	AATGGCGCGA	GTGAGGAGGT	GGNCAGTCAT	GCCCAGNGTG	240
ATCCAATCAA CCTGNATTCG	GNCTGNGGGN	CCATTTGACA	ATCGAGGTAG	TGAGCGCAAA	300
TGAATGATGG AAAACGGGNG	GNGACGTCCG	NTGTTCTGGT	GGTGNTAGGT	GNCTGNCTGG	360
NGTNGNGGNT ATCAGGATGT	TCTTCGNCGA	AANCTGATGN	CGAGGAACAG	GGTGTNCCCG	420
NNANNCCNAN GGNGTCCNAN	CCCNNNNTCC	TOGNOGANAT	CANANAGNOS	hand admo.	

NNNTNTTNNC	ANNNNNNTG	NNGNNGNNCN	NNNCAANCNN	NTNNNNGNAA	NNGGNTTNTT	600
NAAT						604
(2) THEODIA	TION COD CE	0.75				

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 633 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear · • .

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TTGCANGTCG AACCACCT	TCA CTAAAGGGA	A CAAAAGCTN(AGCTCCACC	G CGGTGGCGGC	60
CGCTCTAGAA CTAGTGKA	ATM YYYCKGGCT(G CAGSAATYCG	GYACGAGCA	T TAGGACAGTC	120
TAACGGTCCT GTTACGGT	GA TCGAATGACO	GACGACATCO	TGCTGATCGA	CACCGACGAA	180
CGGGTGCGAA CCCTCACC	CT CAACCGGCCG	G CAGTCCCGYA	ACGCGCTCTC	GGCGGCGCTA	240
CGGGATCGGT TTTTCGCG	GY GTTGGYCGAC	GCCGAGGYCG	ACGACGACAT	CGACGTCGTC	300
ATCCTCACCG GYGCCGAT	CC GGTGTTCTGC	GCCGGACTGG	ACCTCAAGGT	AGCTGGCCGG	360
GCAGACCGCG CTGCCGGA	CA TCTCACCGCG	GTGGGCGGCC	ATGACCAAGC	CGGTGATCGG	420
CGCGATCAAC GGCGCCGCC	GG TCACCGGCGG	GCTCGAACTG	GCGCTGTACT	GCGACATCCT	480
GATCGCCTCC GAGCACGCC	CC GCTTCGNCGA	CACCCACGCC	CGGGTGGGGC	TGCTGCCCAC	540

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1362 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CGACGACGAC GGCGCCGGAG AGCGGGCGCG AACGGCGATC GACGCGGCCC TGGCCAGAGT 60 CGGCACCACC CAGGAGGGAG TCGAATCATG AAATTTGTCA ACCATATTGA GCCCGTCGCG 120 CCCCGCCGAG CCGGCGGCGC GGTCGCCGAG GTCTATGCCG AGGCCCGCCG CGAGTTCGGC 180 CGGCTGCCCG AGCCGCTCGC CATGCTGTCC CCGGACGAGG GACTGCTCAC CGCCGGCTGG 240 GCGACGTTGC GCGAGACACT GCTGGTGGGC CAGGTGCCGC GTGGCCGCAA GGAAGCCGTC 300 GCCGCCGCCG TCGCGGCCAG CCTGCGCTGC CCCTGGTGCG TCGACGCACA CACCACCATG 360 CTGTACGCGG CAGGCCAAAC CGACACCGCC GCGGCGATCT TGGCCGGCAC AGCACCTGCC 420 GCCGGTGACC CGAACGCGCC GTATGTGGCG TGGGCGGCAG GAACCGGGAC ACCGGCGGGA 480 CCGCCGGCAC CGTTCGGCCC GGATGTCGCC GCCGAATACC TGGGCACCGC GGTGCAATTC 540 CACTTCATCG CACGCCTGGT CCTGGTGCTG CTGGACGAAA CCTTCCTGCC GGGGGGCCCG 600 CGCGCCCAAC AGCTCATGCG CCGCGCCGGT GGACTGGTGT TOGOCOCCAA COTOCOCCAC

GCATGGGCAA CACCGTCCGA GCCCATAGCA ACCGCGTTCG CCGCGCTCAG CCACCACCTG	780
GACACCGCGC CGCACCTGCC GCCACCGACT CGTCAGGTGG TCAGGCGGGT CGTGGGGTCG	840
TGGCACGGCG AGCCAATGCC GATGAGCAGT CGCTGGACGA ACGAGCACAC CGCCGAGCTG	900
CCCGCCGACC TGCACGCGCC CACCCGTCTT GCCCTGCTGA CCGGCCTGGC CCCGCATCAG	960
GTGACCGACG ACGACGTCGC CGCGGCCCGA TCCCTGCTCG ACACCGATGC GGCGCTGGTT	1020
GGCGCCCTGG CCTGGGCCGC CTTCACCGCC GCGCGCGCA TCGGCACCTG GATCGGCGCC	1080
GCCGCCGAGG GCCAGGTGTC GCGGCAAAAC CCGACTGGGT GAGTGTGCGC GCCCTGTCGG	1140
TAGGGTGTCA TCGCTGGCCC GAGGGATCTC GCGGCGGCGA ACGGAGGTGG CGACACAGGT	1200
GGAAGCTGCG CCCACTGGCT TGCGCCCCAA CGCCGTCGTG GGCGTTCGGT TGGCCGCACT	1260
GGCCGATCAG GTCGGCGCCG GCCCTTGGCC GAAGGTCCAG CTCAACGTGC CGTCACCGAA	1320
GGACCGGACG GTCACCGGGG GTCACCCTGC GCGCCCAAGG AA	1362

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1458 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO.8:

TGGATGACGT GGCCCGTGTT TACATCATCT ACCGGCAGCG GCGCGCCGAG CTGCGGACGG	180
CTAAGGCCTT GCTCGGCGTG CGGGACGAGT TAAAGCTGAG CTTGGCGGCC GTGACGGTAC	240
TGCGCGAGCG CTATCTGCTG CACGACGAGC AGGGCCGGCC GGCCGAGTCG ACCGGCGAGC	300
TGATGGACCG ATCGGCGCC TGTGTCGCGG CGGCCGAGGA CCAGTATGAG CCGGGCTCGT	360
CGAGGCGGTG GGCCGAGCGR TTCGCCACGC TATTACGCAA CCTGGAATTC CTGCCGAATT	420
CGCCCACGTT GATGAACTCT GGCACCGACC TGGGACTGCT CGCCGGCTGT TTTGTTCTGC	480
CGATTGAGGA TTCGCTGCAA TCGATCTTTG CGACGCTGGG ACAGGCCGCC GAGCTGCAGC	540
GGGCTGGAGG CGGCACCGGA TATGCGTTCA GCCACCTGCG ACCCGCCGGG GATCGGGTGG	600
CCTCCACGGG CGGCACGGCC AGCGGACCGG TGTCGTTTCT ACGGCTGTAT GACAGTGCCG	660
CGGGTGTGGT CTCCATGGGC GGTCGCCGGC GTGGCGCCTG TATGGCTGTG CTTGATGTGT	720
CGCACCCGGA TATCTGTGAT TTCGTCACCG CCAAGGCCGA ATCCCCCAGC GAGCTCCCGC	780
ATTTCAACCT ATCGGTTGGT GTGACCGACG CGTTCCTGCG GGCCGTCGAA CGCAACGGCC	840
TACACCGGCT GGTCAATCCG CGAACCGGCA AGATCGTCGC GCGGATGCCC GCCGCCGAGC	900
TGTTCGACGC CATCTGCAAA GCCGCGCACG CCGGTGGCGA TCCCGGGCTG GTGTTTCTCG	960
ACACGATCAA TAGGGCAAAC CCGGTGCCGG GGAGAGGCCG CATCGAGGCG ACCAACCCGT	1020
GCGGGGAGGT CCCACTGCTG CCTTACGAGT CATGTAATCT CGGCTCGATC AACCTCGCCC	1080

CGGCCCGCGC	CACCCGCAAG	ATCGGGCTGG	GAGTCATGGG	TTTGGCGGAA	CTGCTTGCCG	1260
CACTGGGTAT	TCCGTACGAC	AGTGAAGAAG	CCGTGCGGTT	AGCCACCCGG	CTCATGCGTC	1320
GCATACAGCA	GGCGGCGCAC	ACGGCATCGC	GGAGGCTGGC	CGAAGAGCGG	GGCGCATTCC	1380
CGGCGTTCAC	CGATAGCCGG	TTCGCGCGGT	CGGGCCCGAG	GCGCAACGCA	CAGGTCACCT	1440
CCGTCGCTCC	CACGGGCA					1458

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 862 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ACGGTGTAAT CGTGCT	GGAT CTGGAACCGC	GTGGCCCGCT	ACCTACCGAG	ATCTACTGGC	60
GGCGCAGGGG GCTGGC	CCTG GGCATCGCGG	TCGTCGTAGT	CGGGATCGCG	GTGGCCATCG	120
TCATCGCCTT CGTCGA	CAGC AGCGCCGGTG	CCAAACCGGT	CAGCGCCGAC	AAGCCGGCCT	180
CCGCCCAGAG CCATCC	GGGC TCGCCGGCAC	CCCAAGCACC	CCAGCCGGCC	GGGCAAACCG	240
AAGGTAACGC CGCCGC	GGCC CCGCCGCAGG	GCCAAAACCC	CGAGACACCC	ACGCCCACCG	300
CCGCGGTGCA GCCGCC	GCCG GTGCTCAAGS	AAGGGGACCA	*********	TOOLOGOTOS	

TGGTGGTCAC CAACATCGGC CTGGTGTCCT GTAAACGCGA CGTTGGGGCC GCGGTGTTGG	48
CCGCCTACGT TTACTCGCTG GACAACAAGC GGTTGTGGTC CAACCTGGAC TGCGCGCCCT	540
CGAATGAGAC GCTGGTCAAG ACGTTTTCCC CCGGTGAGCA GGTAACGACC GCGGTGACCT	600
GGACCGGGAT GGGATCGGCG CCGCGCTGCC CATTGCCGCG GCCGGCGATC GGGCCGGGCA	660
CCTACAATCT CGTGGTACAA CTGGGCAATC TGCGCTCGCT GCCGGTTCCG TTCATCCTGA	720
ATCAGCCGCC GCCGCCCC GGGCCGGTAC CCGCTCCGGG TCCAGCGCAG GCGCCTCCGC	780
CGGAGTCTCC CGCGCAAGGC GGATAATTAT TGATCGCTGA TGGTCGATTC CGCCAGCTGT	840
GACAACCCCT CGCCTCGTGC CG	862
(2) INFORMATION FOR SEQ ID NO:10:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 622 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
TTGATCAGCA CCGGCAAGGC GTCACATGCC TCCCTGGGTG TGCAGGTGAC CAATGACAAA	6 0
GACACCCCGG GCGCCAAGAT CGTCGAAGTA GTGGCCGGTG GTGCTGCCGC GAACGCTGGA	120

GTGCCGAAGG GCGTCGTTGT CACCAAGGTC GACGACCGCC CGATCAACAG CGCGGACGCG

TCGCCGCGCA	GTGTTCAAAG	CTCGGATATA	CGGTGGCAC(CATGGAACAC	CGTGCGGAGT	360
TGGTGGTTGG	CCGGGCACTT	GTCGTCGTCG	TTGACGATCG	CACGGCGCAC	GGCGATGAAG	420
ACCACAGCGG	GCCGCTTGTC	ACCGAGCTGC	TCACCGAGGC	CGGGTTTGTT	GTCGACGGCG	480
TGGTGGCGGT	GTCGGCCGAC	GAGGTCGAGA	TCCGAAATGC	GCTGAACACA	GCGGTGATCG	540
GCGGGGTGGA	CCTGGTGGTG	TCGGTCGGCG	CGACCGGNGT	_	GATGTCACCC	600
CGGAAGCCAC	CCGNGACATT	СТ		•••		622 [.]

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1200 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GGCGCAGCGG	TAAGCCTGTT	GGCCGCCGGC	ACACTGGTGT	TGACAGCATG	CGGCGGTGGC	60
ACCAACAGCT	CGTCGTCAGG	CGCAGGCGGA	ACGTCTGGGT	CGGTGCACTG	CGGCGGCAAG	120
AAGGAGCTCC	ACTCCAGCGG	CTCGACCGCA	CAAGAAAATG	CCATGGAGCA	GTTCGTCTAT	180
GCCTACGTGC	GATCGTGCCC	GGGCTACACG	TTGGACTACA	ACGCCAACGG	GTCCGGTGCC	240
GGGGTGACCC	AGTTTCTCAA	CAACGAAACC	GATTTCGCCG	GCTCGGATGT	CCCCTTCAAT	ناتات

CCGACGGTGT TCGGCCCGAT CGCGATCACC TACAATATCA AGGGCGTGAG CACGCTGAAT	420
CTTGACGGAC CCACTACCGC CAAGATTTTC AACGGCACCA TCACCGTGTG GAATGATCCA	480
CAGATCCAAG CCCTCAACTC CGGCACCGAC CTGCCGCCAA CACCGATTAG CGTTATCTTC	540
CGCAGCGACA AGTCCGGTAC GTCGGACAAC TTCCAGAAAT ACCTCGACGG TGTATCCAAC	600
GGGGCGTGGG GCAAAGGCGC CAGCGAAACG TTCAGCGGGG GCGTCGGCGT CGGCGCCAGC	660
GGGAACAACG GAACGTCGGC CCTACTGCAG ACGACCGACG GGTCGATCAC CTACAACGAG	720
TGGTCGTTTG CGGTGGGTAA GCAGTTGAAC ATGGCCCAGA TCATCACGTC GGCGGGTCCG	780
GATCCAGTGG CGATCACCAC CGAGTCGGTC GGTAAGACAA TCGCCGGGGC CAAGATCATG	840
GGACAAGGCA ACGACCTGGT ATTGGACACG TCGTCGTTCT ACAGACCCAC CCAGCCTGGC	900
TCTTACCCGA TCGTGCTGGC GACCTATGAG ATCGTCTGCT CGAAATACCC GGATGCGACG	960
ACCGGTACTG CGGTAAGGGC GTTTATGCAA GCCGCGATTG GTCCAGGCCA AGAAGGCCTG	1020
GACCAATACG GCTCCATTCC GTTGCCCAAA TCGTTCCAAG CAAAATTGGC GGCCGCGGTG	1080
AATGCTATTT CTTGACCTAG TGAAGGGAAT TCGACGGTGA GCGATGCCGT TCCGCAGGTA	1140
GGGTCGCAAT TTGGGCCGTA TCAGCTATTG CGGCTGCTGG GCCGAGGCGG GATGGGCGAG	1200

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1155 base pairs

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCAAGCAGCT G	CAGGTCGTG	CTGTTCGAC	G AACTGGGCA	T GCCGAAGAC	C AAACGCACCA	60
AGACCGGCTA C	ACCACGGAT	GCCGACGCGC	TGCAGTCGT	F GTTCGACAA	G ACC GGCATC	120
CGTTTCTGCA A	CATCTGCTC	GCCCACCGCG	ACGTCACCC	GCTCAAGGTO	CACCGTCGACG	180
GGTTGCTCCA A	GCGGTGGCC	GCCGACGGCC	GCATCCÃCAC	CACGTTCAAC	CAGACGATCG	240
CCGCGACCGG CO	CGGCTCTCC	TCGACCGAAC	CCAACCTGCA	GAACATCCCG	ATCCGCACCG	300
ACGCGGGCCG GC	CGGATCCGG	GACGCGTTCG	TGGTCGGGGA	CGGTTACGCC	GAGTTGATGA	360
CGGCCGACTA CA	AGCCAGATC	GAGATGCGGA	TCATGGGGCA	CCTGTCCGGG	GACGAGGGCC	420
TCATCGAGGC GT	TTCAACACC	GGGGAGGACC	TGTATTCGTT	CGTCGCGTCC	CGGGTGTTCG	480
GTGTGCCCAT CG	SACGAGGTC	ACCGGCGAGT	TGCGGCGCCG	GGTCAAGGCG	ATGTCCTACG	540
GGCTGGTTTA CG	GGTTGAGC	GCCTACGGCC	TGTCGCAGCA	GTTGAAAATC	TCCACCGAGG	600
AAGCCAACGA GC	:AGATGGAC	GCGTATTTCG	CCCGATTCGG	CGGGGTGCGC	GACTACCTGC	660
GCGCCGTAGT CG	AGCGGGCC	CGCAAGGACG	GCTACACCTC	GACGGTGCTG	GGCCGTCGCC	720
GCTACCTGCC CG	AGCTGGAC /	AGCAGCAACC	GTCAAGTGCG	GGAGGCCGCC	GAGCGGGCGG	780
CGCTGAACGC GC	CGATCCAG (GGCAGCGCGG	CCGACATCAT	CAAGGTGGCC	ATGATCCAGG	840
TCGACAAGGC GC	TCAACGAG (GCACAGCTGG	COTCGCGCAT	GUTGITGIAG	QTTCACQACC	000

AGATGGGCGG	CGCTTACCCG	CTCGACGTCC	CGCTGGAGGT	GTCGGTGGGC	TACGGCCGCA	1020
GCTGGGACGC	GGCGGCGCAC	TGAGTGCCGA	GCGTGCATCT	GGGGCGGAA	TTCGGCGATT	1080
TTTCCGCCCT	GAGTTCACGC	TCGGCGCAAT	CGGGACCGAG	TTTGTCCAGC	GTGTACCCGT	1140
CGAGTAGCCT	CGTCA					1155

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1771 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GAGCGCCGTC	TGGTGTTTGA	ACGGTTTTAC	CGGTCGGCAT	CGGCACGGGC	GTTGCCGGGT	60
TCGGGCCTCG	GGTTGGCGAT	CGTCAAACAG	GTGGTGCTCA	ACCACGGCGG	ATTGCTGCGC	120
ATCGAAGACA	CCGACCCAGG	CGGCCAGCCC	CCTGGAACGT	CGATTTACGT	GCTGCTCCCC	180
GGCCGTCGGA	TGCCGATTCC	GCAGCTTCCC	GGTGCGACGG	CTGGCGCTCG	GAGCACGGAC	240
ATCGAGAACT	CTCGGGGTTC	GGCGAACGTT	ATCTCAGTGG	AATCTCAGTC	CACGCGCGCA	300
ACCTAGTTGT	GCAGTTACTG	TTGAAAGCCA	CACCCATGCC	AGTCCACGCA	TGGCCAAGTT	360
GGCCCGAGTA	GTGGGCCTAG	TACAGGAAGA	GCAACCTAGC	GACATGACGA	ATCACCCACG	420

CCGTCAACCC TACGAGGCGT TGGGTGGTAC CCGGCCGGGT CTGATACCTG GCGTGATTCC	600
GACCATGACG CCCCCTCCTG GGATGGTTCG CCAACGCCCT CGTGCAGGCA TGTTGGCCAT	660
CGGCGCGGTG ACGATAGCGG TGGTGTCCGC CGGCATCGGC GGCGCGGCCG CATCCCTGGT	720
CGGGTTCAAC CGGGCACCCG CCGGCCCCAG CGGCGGCCCA GTGGCTGCCA GCGCGGCGCC	780
AAGCATCCCC GCAGCAAACA TGCCGCCGGG GTCGGTCGAA CAGGTGGCGG CCAAGGTGGT	840
GCCCAGTGTC GTCATGTTGG AAACCGATCT GGGCCGCCAG TCGGAGGAGG GCTCCGGCAT	900
CATTCTGTCT GCCGAGGGGC TGATCTTGAC CAACAACCAC GTGATCGCGG CGGCCGCCAA	960
GCCTCCCCTG GGCAGTCCGC CGCCGAAAAC GACGGTAACC TTCTCTGACG GGCGGACCGC	1020
ACCCTTCACG GTGGTGGGGG CTGACCCCAC CAGTGATATC GCCGTCGTCC GTGTTCAGGG	1080
CGTCTCCGGG CTCACCCCGA TCTCCCTGGG TTCCTCCTCG GACCTGAGGG TCGGTCAGCC	1140
GGTGCTGGCG ATCGGGTCGC CGCTCGGTTT GGAGGGCACC GTGACCACGG GGATCGTCAG	1200
CGCTCTCAAC CGTCCAGTGT CGACGACCGG CGAGGCCGGC AACCAGAACA CCGTGCTGGA	1260
CGCCATTCAG ACCGACGCCG CGATCAACCC CGGTAACTCC GGGGGCGCGC TGGTGAACAT	1320
GAACGCTCAA CTCGTCGGAG TCAACTCGGC CATTGCCACG CTGGGCGCGG ACTCAGCCGA	1380
TGCGCAGAGC GGCTCGATCG GTCTCGGTTT TGCGATTCCA GTCGACCAGG CCAAGCGCAT	1440
CGCCGACGAG TTGATCAGCA CCGGCAAGGC GTCACATGCC TCCCTGGGTG TGCAGGTGAC	1500

AA A LOO

CGCGGACGCG TTGGTTGCCG CCGTGCGGTC CAAAGCGCCG GGCGCCACGG TGGCGCTAAC	1680
CTTTCAGGAT CCCTCGGGCG GTAGCCGCAC AGTGCAAGTC ACCCTCGGCA AGGCGGAGCA	1740
GTGATGAAGG TCGCCGCGCA GTGTTCAAAG C	1771
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEOUFNCE CHARACTERISTICS: (A) LENGTH: 1058 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

(D) TOPOLOGY: linear

CTCCACCGCG GTGGCGGCCG CTCTAGAACT AGTGGATCCC CCGGGCTGCA GGAAT	TCGGC 60
ACGAGGATCC GACGTCGCAG GTTGTCGAAC CCGCCGCCGC GGAAGTATCG GTCCA	TGCCT 120
AGCCCGGCGA CGGCGAGCGC CGGAATGGCG CGAGTGAGGA GGCGGGCAAT TTGGC	GGGGC 180
CCGGCGACGG CGAGCGCCGG AATGGCGCGA GTGAGGAGGC GGGCAGTCAT GCCCAG	GCGTG 240
ATCCAATCAA CCTGCATTCG GCCTGCGGGC CCATTTGACA ATCGAGGTAG TGAGCC	GCAAA 300
TGAATGATGG AAAACGGGCG GTGACGTCCG CTGTTCTGGT GGTGCTAGGT GCCTGC	CCTGG 360
CGTTGTGGCT ATCAGGATGT TCTTCGCCGA AACCTGATGC CGAGGAACAG GGTGTT	TCCCG 420
TGAGCCCGAC GGCGTCCGAC CCCGCGCTCC TCGCCGAGAT CAGGCAGTCG CTTGAT	GCGA Aph

TGGGTATTAC CAGTGCCGAT GTCGACGTCC GGGCCAATCC GCTCGCGGCA AAGGGCGTAT	600
GCACCTACAA CGACGAGCAG GGTGTCCCGT TTCGGGTACA AGGCGACAAC ATCTCGGTGA	660
AACTGTTCGA CGACTGGAGC AATCTCGGCT CGATTTCTGA ACTGTCAACT TCACGCGTGC	720
TCGATCCTGC CGCTGGGGTG ACGCAGCTGC TGTCCGGTGT CACGAACCTC CAAGCGCAAG	780
GTACCGAAGT GATAGACGGA ATTTCGACCA CCAAAATCAC CGGGACCATC CCCGCGAGCT	840
CTGTCAAGAT GCTTGATCCT GGCGCCAAGA GTGCAAGGCC GGCGACCGTG TGGATTGCCC	900
AGGACGGCTC GCACCACCTC GTCCGAGCGA GCATCGACCT CGGATCCGGG TCGATTCAGC	960
TCACGCAGTC GAAATGGAAC GAACCCGTCA ACGTCGACTA GGCCGAAGTT GCGTCGACGC	1020
GTTGNTCGAA ACGCCCTTGT GAACGGTGTC AACGGNAC	1058

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 542 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTCGGCA CGAGAGGTGA TCGACATCAT CGGGACCAGC CCCACATCCT GGGAACAGGC 60

GGCGGCGGAG GCGGTCCAGC GGGCGCGGA TAGCGTCGAT GACATCCGCG TCGCTCGGGT 120

, **.**

AAATCGCACG GTTTGCGGTT GATTCGTGCG ATTTTGTGTC TGCTCGCCGA GGCCTACCAG	300	
GCGCGGCCCA GGTCCGCGTG CTGCCGTATC CAGGCGTGCA TCGCGATTCC GGCGGCCACG	360	•
CCGGAGTTAA TGCTTCGCGT CGACCCGAAC TGGGCGATCC GCCGGNGAGC TGATCGATGA	420	
CCGTGGCCAG CCCGTCGATG CCCGAGTTGC CCGAGGAAAC GTGCTGCCAG GCCGGTAGGA	480	
AGCGTCCGTA GGCGGCGGTG CTGACCGGCT CTGCCTGCGC CCTCAGTGCG GCCAGCGAGC	540	
GG	542	

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 913 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CGGTGCCGCC CGCGCCTCCG	TTGCCCCCAT	TGCCGCCGTC	GCCGATCAGO	TGCGCATCGC	60
CACCATCACC GCCTTTGCCG (CCGGCACCGC	CGGTGGCGCC	GGGCCGCCG	ATGCCACCGC	120
TTGACCCTGG CCGCCGGCGC C	CGCCATTGCC	ATACAGCACC	CCGCCGGGGG	CACCGTTACC	180
GCCGTCGCCA CCGTCGCCGC C	CGCTGCCGTT	TCAGGCCGGG	GAGGCCGAAT	GAACCGCCGC	240
CAAGCCCGCC GCCGGCACCG T	TGCCGCCTT :	TTCCGCCCGC	00000000000	CCGCCAATTC	200

GCCGCCGGAC CCGCCATTAC CGCCGTTCCC GTTCGGTGCC CCGCCGTTAC CGGCGCCGCC	420
GTTTGCCGCC AATATTCGGC GGGCACCGCC AGACCCGCCG GGGCCACCAT TGCCGCCGGG	480
CACCGAAACA ACAGCCCAAC GGTGCCGCCG GCCCCGCCGT TTGCCGCCAT CACCGGCCAT	540
TCACCGCCAG CACCGCCGTT AATGTTTATG AACCCGGTAC CGCCAGCGCG GCCCCTATTG	600
CCGGGCGCCG GAGNGCGTGC CCGCCGGCGC CGCCAACGCC CAAAAGCCCG GGGTTGCCAC	660
CGGCCCCGCC GGACCCACCG GTCCCGCCGA TCCCCCCGTT GCCGCCGGTG CCGCCGCCAT	720
TGGTGCTGCT GAAGCCGTTA GCGCCGGTTC CGCSGGTTCC GGCGGTGGCG CCNTGGCCGC	780
CGGCCCCGCC GTTGCCGTAC AGCCACCCCC CGGTGGCGCC GTTGCCGCCA TTGCCGCCAT	840
TGCCGCCGTT GCCGCCATTG CCGCCGTTCC CGCCGCCACC GCCGGNTTGG CCGCCGGCGC	900
CGCCGGCGGC CGC	913

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1872 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GACTACGTTG GTGTAGAAAA ATCCTGCCGC CCGGACCCTT AAGGCTGGGA CAATTTCTGA 60

GGCGGCCCCG CCGGCCTTGT CGCAGGACCG GTTCGCCGAC TTCCCCGCGC TGCCCCTCGA	240
CCCGTCCGCG ATGGTCGCCC AAGTGGCGCC ACAGGTGGTC AACATCAACA CCAAACTGGG	300
CTACAACAAC GCCGTGGGCG CCGGGACCGG CATCGTCATC GATCCCAACG GTGTCGTGCT	360
GACCAACAAC CACGTGATCG CGGGCGCCAC CGACATCAAT GCGTTCAGCG TCGGCTCCGG	420
CCAAACCTAC GGCGTCGATG TGGTCGGGTA TGACCGCACC CAGGATGTCG CGGTGCTGCA	480 ·
GCTGCGCGGT GCCGGTGGCC TGCCGTCGGC GGCGATCGGT GGCGGCGTCG CGGTTGGTGA	540
GCCCGTCGTC GCGATGGGCA ACAGCGGTGG GCAGGGCGGA ACGCCCCGTG CGGTGCCTGG	600
CAGGGTGGTC GCGCTCGGCC AAACCGTGCA GGCGTCGGAT TCGCTGACCG GTGCCGAAGA	660
GACATTGAAC GGGTTGATCC AGTTCGATGC CGCAATCCAG CCCGGTGATT CGGGCGGGCC	720
CGTCGTCAAC GGCCTAGGAC AGGTGGTCGG TATGAACACG GCCGCGTCCG ATAACTTCCA	780 .
GCTGTCCCAG GGTGGGCAGG GATTCGCCAT TCCGATCGGG CAGGCGATGG CGATCGCGGG	840
CCAAATCCGA TCGGGTGGGG GGTCACCCAC CGTTCATATC GGGCCTACCG CCTTCCTCGG	900
CITGGGTGTT GTCGACAACA ACGGCAACGG CGCACGAGTC CAACGCGTGG TCGGAAGCGC	960
TCCGGCGGCA AGTCTCGGCA TCTCCACCGG CGACGTGATC ACCGCGGTCG ACGGCGCTCC	1020
GATCAACTCG GCCACCGCGA TGGCGGACGC GCTTAACGGG CATCATCCCG GTGACGTCAT	1080
CTCGGTGAAC TGGCAAACCA AGTCGGGCGG CACGCGTACA GGGAACGTGA CATTGGCCGA	1140

ے, دد

GCAATGAACG AGGCAGAACA CAGCGTTGAG CACCCTCCCG TGCAGGGCAG TTACGTCGAA	1320
GGCGGTGTGG TCGAGCATCC GGATGCCAAG GACTTCGGCA GCGCCGCCGC CCTGCCCGCC	1380
GATCCGACCT GGTTTAAGCA CGCCGTCTTC TACGAGGTGC TGGTCCGGGC GTTCTTCGAC	1440
GCCAGCGCG ACGGTTCCGN CGATCTGCGT GGACTCATCG ATCGCCTCGA CTACCTGCAG	1500
TGGCTTGGCA TCGACTGCAT CTGTTGCCGC CGTTCCTACG ACTCACCGCT GCGCGACGGC	1560
GGTTACGACA TTCGCGACTT CTACAAGGTG CTGCCCGAAT TCGGCACCGT CGACGATTTC	1620
GTCGCCCTGG TCGACACCGC TCACCGGCGA GGTATCCGCA TCATCACCGA CCTGGTGATG	1680
AATCACACCT CGGAGTCGCA CCCCTGGTTT CAGGAGTCCC GCCGCGACCC AGACGGACCG	1740
TACGGTGACT ATTACGTGTG GAGCGACACC AGCGAGCGCT ACACCGACGC CCGGATCATC	1800
TTCGTCGACA CCGAAGAGTC GAACTGGTCA TTCGATCCTG TCCGCCGACA GTTNCTACTG	1860
GCACCGATTC TT	1872

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1482 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(X1) SEQUENCE DESCRIPTION SEC TO NO. 18

CCGCGCTCCT CGCCGAGATC AGGCAGTCGC TTGATGCGAC AAAAGGGTTG ACCAGCGTGC	120
ACGTAGCGGT CCGAACAACC GGGAAAGTCG ACAGCTTGCT GGGTATTACC AGTGCCGATG	180
TCGACGTCCG GGCCAATCCG CTCGCGGCAA AGGGCGTATG CACCTACAAC GACGAGCAGG	240
GTGTCCCGTT TCGGGTACAA GGCGACAACA TCTCGGTGAA ACTGTTCGAC GACTGGAGCA	300
ATCTCGGCTC GATTTCTGAA CTGTCAACTT CACGCGTGCT CGATCCTGCC GCTGGGGTGA	360
CGCAGCTGCT GTCCGGTGTC ACGAACCTCC AAGCGCAAGG TACCGAAGTG ATAGACGGAA	420
TTTCGACCAC CAAAATCACC GGGACCATCC CCGCGAGCTC TGTCAAGATG CTTGATCCTG	480
GCGCCAAGAG TGCAAGGCCG GCGACCGTGT GGATTGCCCA GGACGGCTCG CACCACCTCG	540
TCCGAGCGAG CATCGACCTC GGATCCGGGT CGATTCAGCT CACGCAGTCG AAATGGAACG	600
AACCCGTCAA CGTCGACTAG GCCGAAGTTG CGTCGACGCG TTGCTCGAAA CGCCCTTGTG	660
AACGGTGTCA ACGGCACCCG AAAACTGACC CCCTGACGGC ATCTGAAAAT TGACCCCCTA	720
GACCGGGCGG TTGGTGGTTA TTCTTCGGTG GTTCCGGCTG GTGGGACGCG GCCGAGGTCG	780
CGGTCTTTGA GCCGGTAGCT GTCGCCTTTG AGGGCGACGA CTTCAGCATG GTGGACGAGG	840
CGGTCGATCA TGGCGGCAGC AACGACGTCG TCGCCGCCGA AAACCTCGCC CCACCGGCCG	900
AAGGCCTTAT TGGACGTGAC GATCAAGCTG GCCCGCTCAT ACCGGGAGGA CACCAGCTGG	960
AAGAAGAGGT TGGCGGCCTC GGGCTCAAAC GGAATGTAAC CGACTTCGTC AACCACCAGG	1020
AGCGGATAGC GGCCAAACCG GGTGAGTTCG GCGTAGATGC GCCCGGCGTG GTGAGCCTCC	1000

GGACACTGAC	TCACGCAGGG	TGGGAGCTTT	CAATGCTCTT	GT		1482
GCAGGCGGCC	AGGTATTCTT	CGTGGCTCCA	GTTCTCGGCG	CGGGCGCGAT	CGGCCAGCCG	1440
GGCGGCGCGG	ATGCGGCCCT	CACCACCATG	GGACTCCCGG	GCTGACACTT	CCCGCTGCAG	1380
TTTGAGGCCA	CGAGCATGCT	CAAAGTCGAA	CTCTTCCAAC	GACTTECGAA	CCGGGAAGCG	1320
CACGACGTTA	TCGCGGGCGG	TGATGAAATO	CAGGGTGCCC	AGATGTGCGA	TGGTGTCGCG	1260
GCGCGTATCG	CCAGGCCGA(CGCAAGATGA	A GTCTTCCCG0	G TGCCAGGCG(G GGCCCAAAAA	1200

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 876 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GAATTCGGCA C	GAGCCGGCG	ATAGCTTCTG	GGCCGCGGCC	GACCAGATGG	CTCGAGGGTT	60
CGTGCTCGGG G	CCACCGCCG	GGCGCACCAC	CCTGACCGGT	GAGGGCCTGC	AACACGCCGA	120
CGGTCACTCG T	TGCTGCTGG	ACGCCACCAA	CCCGGCGGTG	GTTGCCTACG	ACCCGGCCTT	180
CGCCTACGAA A	TCGGCTACA	TCGNGGAAAG	CGGACTGGCC	AGGATGTGCG	GGGAGAACCC	240
GGAGAACATC T	TCTTCTACA	TCACCGTCTA	CAACGAGCCG	TACGTGCAGC	CGCCGGAGCC	300

GGCAGCACAG ATG	CTGGCCG CC	CGAGTGGGA	TGTCGCCGCC	GACGTGTGG	T CGGTGACCAG	480	
TTGGGGCGAG CTA	ACCGCG AC	GGGGTGGT	CATCGAGACC	GAGAAGCTCC	GCCACCCGA	540	*
TCGGCCGGCG GGCG	TGCCCT AC	GTGACGAG	AGCGCTGGAG	AATGCTCGGG	GCCCGGTGAT	600	
CGCGGTGTCG GACT	GGATGC GCC	GCGGTCCC (CGAGCAGATC	CGACCGTGGG	TGCCGGGCAC	660	
ATACCTCACG TTGG	GCACCG ACG	GGTTCGG 1	TTTTCCGAC	ACTCGGCCCG	CCGGTCGTCG	720 •	***** * .
TTACTTCAAC ACCG/	ACGCCG AAT	CCCAGGT T	GGTCGCGGT	TTTGGGAGGG	GTTGGCCGGG	780	•
TCGACGGGTG AATAT	CGACC CAT	TCGGTGC C	GGTCGTGGG (CCGCCCGCCC	AGTTACCCGG	840	
ATTCGACGAA GGTGG	GGGGT TGC(GCCCGAN TA	AAGTT			876	•
					•		

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1021 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

ATCCCCCCGG GCTGCAGGAA	TTCGGCACGA	GAGACAAAAT	TCCACGCGTT	AATGCAGGAA	60
CAGATTCATA ACGAATTCAC	AGCGGCACAA	CAATATGTCG	CGATCGCGGT	TTATTTCGAC	120
AGCGAAGACC TGCCGCAGTT	GGCGAAGCAT	TTTACAGAG	*********	221. 211.	

GTAGACACGG TGCGAAACCA GTTCGACAGA CCCCGCGAGG CACTGGCGCT GGCGCTCGAT	300
CAGGAACGCA CAGTCACCGA CCAGGTCGGT CGGCTGACAG CGGTGGCCCG CGACGAGGGC	360
GATTTCCTCG GCGAGCAGTT CATGCAGTGG TTCTTGCAGG AACAGATCGA AGAGGTGGCC	420
TTGATGGCAA CCCTGGTGCG GGTTGCCGAT CGGGCCGGGG CCAACCTGTT CGAGCTAGAG	480
AACTTCGTCG CACGTGAAGT GGATGTGGCG CCGGCCGCAT CAGGCGCCCC GCACGCTGCC	540
GGGGGCCGCC TCTAGATCCC TGGGGGGGAT CAGCGAGTGG TCCCGTTCGC CCGCCCGTCT	600
TCCAGCCAGG CCTTGGTGCG GCCGGGGTGG TGAGTACCAA TCCAGGCCAC CCCGACCTCC	660
CGGNAAAAGT CGATGTCCTC GTACTCATCG ACGTTCCAGG AGTACACCGC CCGGCCCTGA	720
GCTGCCGAGC GGTCAACGAG TTGCGGATAT TCCTTTAACG CAGGCAGTGA GGGTCCCACG	780
GCGGTTGGCC CGACCGCCGT GGCCGCACTG CTGGTCAGGT ATCGGGGGGT CTTGGCGAGC	840
AACAACGTCG GCAGGAGGGG TGGAGCCCGC CGGATCCGCA GACCGGGGGG GCGAAAACGA	900
CATCAACACC GCACGGGATC GATCTGCGGA GGGGGGTGCG GGAATACCGA ACCGGTGTAG	960
GAGCGCCAGC AGTTGTTTTT CCACCAGCGA AGCGTTTTCG GGTCATCGGN GGCNNTTAAG	1020
T	1021

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 321 base pairs

(B) TYPE: nucleic acid

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
CGTGCCGACG AACGGAAGAA CACAACCATG AAGATGGTGA AATCGATCGC CGCAGGTCTG	60
ACCGCCGCGG CTGCAATCGG CGCCGCTGCG GCCGGTGTGA CTTCGATCAT GGCTGGCGGN	120
CCGGTCGTAT ACCAGATGCA GCCGGTCGTC TTCGGCGCGC CACTGCCGTT GGACCCGGNA	180
TCCGCCCCTG ANGTCCCGAC CGCCCCCCAG TGGACCAGNC TGCTCAACAG NCTCGNCGAT	240
CCCAACGTGT CGTTTGNGAA CAAGGGNAGT CTGGTCGAGG GNGGNATCGG NGGNANCGAG	300
GGNGNGNATC GNCGANCACA A	321
(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 373 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
TCTTATCGGT TCCGGTTGGC GACGGGTTTT GGGNGCGGGT GGTTAACCCG CTCGGCCAGC	60
CGATCGACGG GCGCGGAGAC GTCGACTCCG ATACTCGGCG CGCGCTGGAG CTCCAGGCGC	120
CCTCGGTGGT GNACCGGCAA GGCGTGAAGG AGCCGTTGNA GACCGGGATC AAGGCGATTG	180
ACGCGATGAC CCCGATCGGC CGCGGGCAGC GCCAGCTGAT CATCGGGGAT TGTAAGATTS	5. i n

GGTGGATCCC AAGAAGCAGG TGCGCTTGTG TATACGTTGG CCATCGGGCA AGAAGGGGAA	3 60
CTTACCATCG CCG	373
(2) INFORMATION FOR SEQ ID NO:23:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 352 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
GTGACGCCGT GATGGGATTC CTGGGCGGGG CCGGTCCGCT GGCGGTGGTG GATCAGCAAC .	60
TGGTTACCCG GGTGCCGCAA GGCTGGTCGT TTGCTCAGGC AGCCGCTGTG CCGGTGGTGT	120
TCTTGACGGC CTGGTACGGG TTGGCCGATT TAGCCGAGAT CAAGGCGGGC GAATCGGTGC	180
TGATCCATGC CGGTACCGGC GGTGTGGGCA TGGCGGCTGT GCAGCTGGCT CGCCAGTGGG	240
GCGTGGAGGT TTTCGTCACC GCCAGCCGTG GNAAGTGGGA CACGCTGCGC GCCATNGNGT	300
TTGACGACGA NCCATATCGG NGATTCCCNC ACATNCGAAG TTCCGANGGA GA	352
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 726 base pairs	

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GAAATCCGCG TTCATTCCGT TCGACCAGCG GCTGGCGATA ATCGACGAAG TGATCAAGCC	60
GCGGTTCGCG GCGCTCATGG GTCACAGCGA GTAATCAGCA AGTTCTCTGG TATATCGCAC	120
CTAGCGTCCA GTTGCTTGCC AGATCGCTTT CGTACCGTCA TCGCATGTAC CGGTTCGCGT	180
GCCGCACGCT CATGCTGGCG GCGTGCATCC TGGCCACGGG TGTGGCGGGT CTCGGGGTCG	240
GCGCGCAGTC CGCAGCCCAA ACCGCGCCGG TGCCCGACTA CTACTGGTGC CCGGGGCAGC	300
CTTTCGACCC CGCATGGGGG CCCAACTGGG ATCCCTACAC CTGCCATGAC GACTTCCACC	360
GCGACAGCGA CGGCCCCGAC CACAGCCGCG ACTACCCCGG ACCCATCCTC GAAGGTCCCG	420
TGCTTGACGA TCCCGGTGCT GCGCCGCCGC CCCCGGCTGC CGGTGGCGG GCATAGCGCT	480
CGTTGACCGG GCCGCATCAG CGAATACGCG TATAAACCCG GGCGTGCCCC CGGCAAGCTA	540
CGACCCCGG CGGGGCAGAT TTACGCTCCC GTGCCGATGG ATCGCGCCGT CCGATGACAG	600
AAAATAGGCG ACGGTTTTGG CAACCGCTTG GAGGACGCTT GAAGGGAACC TGTCATGAAC	660
GGCGACAGCG CCTCCACCAT CGACATCGAC AAGGTTGTTA CCCGCACACC CGTTCGCCGG	720
ATCGTG	726

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 580 base pairs

(B) TYPE: nucleic acid

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

CGCGACGACG ACGAACGTCG GGCCCACCAC CGCCTATGCG TTGATGCAGG CGACCGGGAT	60
GGTCGCCGAC CATATCCAAG CATGCTGGGT GCCCACTGAG CGACCTTTTG ACCAGCCGGG	120
CTGCCCGATG GCGGCCCGGT GAAGTCATTG CGCCGGGGCT TGTGCACCTG ATGAACCCGA	180
ATAGGGAACA ATAGGGGGT GATTTGGCAG TTCAATGTCG GGTATGGCTG GAAATCCAAT	240
GGCGGGGCAT GCTCGGCGCC GACCAGGCTC GCGCAGGCGG GCCAGCCCGA ATCTGGAGGG	300
AGCACTCAAT GGCGGCGATG AAGCCCCGGA CCGGCGACGG TCCTTTGGAA GCAACTAAGG	360
AGGGGCGCGG CATTGTGATG CGAGTACCAC TTGAGGGTGG CGGTCGCCTG GTCGTCGAGC	4 20
TGACACCCGA CGAAGCCGCC GCACTGGGTG ACGAACTCAA AGGCGTTACT AGCTAAGACC	480
AGCCCAACGG CGAATGGTCG GCGTTACGCG CACACCTTCC GGTAGATGTC CAGTGTCTGC	540
TCGGCGATGT ATGCCCAGGA GAACTCTTGG ATACAGCGCT	580

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 160 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26

GGTACCGCCG GGTTGTTCGG TGTCGGCGGG GCCGGTGGGG CCGGAGGCAA CGGCATCGCC	120
GGTGTCACGG GTACGTCGGC CAGCACACCG GGTGGATCCG	160
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 272 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
GACACCGATA CGATGGTGAT GTACGCCAAC GTTGTCGACA CGCTCGAGGC GTTCACGATC	60
CAGCGCACAC CCGACGGCGT GACCATCGGC GATGCGGCCC CGTTCGCGGA GGCGGCTGCC	120
AAGGCGATGG GAATCGACAA GCTGCGGGTA ATTCATACCG GAATGGACCC CGTCGTCGCT	180
GAACGCGAAC AGTGGGACGA CGGCAACAAC ACGTTGGCGT TGGCGCCCGG TGTCGTTGTC	240
GCCTACGAGC GCAACGTACA GACCAACGCC CG	272
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 317 base pairs (B) TYPE: nucleic acid	

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

GCAGCCGGT	G GTTCTCGGAC	TATCTGCGCA	CGGTGACGCA	GCGCGACGT	G CGCGAGCTGA	60
AGCGGATCGA	GCAGACGGAT	CGCCTGCCGC	GGTTCATGCG	CTACCTGGCC	GCTATCACCG	120
CGCAGGAGET	GAACGTGGCC	GAAGCGGCGC	GGGTCATCGG	GGTCGACGCG	GGGACGATCC	180
GTTCGGATCT	GGCGTGGTTC	GAGACGGTCT	ATCTGGTACA	TCGCCTGCCC	GCCTGGTCGC	240
GGAATCTGAC	CGCGAAGATC	AAGAAGCGGT	CAAAGATCCA	CGTCGTCGAC	AGTGGCTTCG	300
CGGCCTGGTT	GCGCGGG	•				317
						_

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 182 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GATCGTGGAG CTGTCGATGA ACAGCGTTGC CGGACGCGCG GCGGCCAGCA CGTCGGTGTA	60
GCAGCGCCGG ACCACCTCGC CGGTGGGCAG CATGGTGATG ACCACGTCGG CCTCGGCCAC	120
CGCTTCGGGC GCGCTACGAA ACACCGCGAC ACCGTGCGCG GCGGCGCCGG ACGCCGCCGT	180
GG	182

(2) INFORMATION FOR SEQ ID NO:30:

(C)	STRANDEDNESS:	single
(D)	TOPOLOGY: line	ear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

GATCGCGAAG TTTGGTGAGC AGGTGGTCGA CGCGAAAGTC TGGGCGCCTG CGAAGCGGGT	60
CGGCGTTCAC GAGGCGAAGA CACGCCTGTC CGAGCTGCTG CGGCTCGTCT ACGGCGGGCA	120
GAGGTTGAGA TTGCCCGCCG CGGCGAGCCG GTAGCAAAGC TTGTGCCGCT GCATCCTCAT	180
GAGACTCGGC GGTTAGGCAT TGACCATGGC GTGTACCGCG TGCCCGACGA TTTGGACGCT	240
CCGTTGTCAG ACGACGTGCT CGAACGCTTT CACCGGTGAA GCGCTACCTC ATCGACACCC	300
ACGTTTGG	308

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 267 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: Tinear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

CCGACGACGA	GCAACTCACG	TGGATGATGG	TCGGCAGCGG	CATTGAGGAC	GGAGAGAATC	60
CGGCCGAAGC	TGCCGCGCGG	CAAGTGCTCA	TAGTGACCGG	CCGTAGAGGG	CTCCCCCGAT	120
GGCACCGGAC	TATTOTGGTG	TOCOCOTOCO	0007440400	0007****		

TCGACGCGGC AATCCAGGGC GGTCTGG	267
(2) INFORMATION FOR SEQ ID NO:32:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 189 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
CTCGTGCCGA AAGAATGTGA GGGGACACGA TGAGCAATCA CACCTACCGA GTGATCGAGA	60
TCGTCGGGAC CTCGCCCGAC GGCGTCGACG CGGCAATCCA GGGCGGTCTG GCCCGAGCTG	120
CGCAGACCAT GCGCGCGCTG GACTGGTTCG AAGTACAGTC AATTCGAGGC CACCTGGTCG	180
ACGGAGCGG	189
(2) INFORMATION FOR SEQ ID NO:33:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 851 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CGCCGAGAAC CGTGCTGAAC TGATGATTCT GATAGCGACC AACCTCTTGG GGCAAAACAC	180
CCCGGCGATC GCGGTCAACG AGGCCGAATA CGGCGAGATG TGGGCCCAAG ACGCCGCCGC	240
GATGTTTGGC TACGCCGCGG CGACGGCGAC GGCGACGGCG ACGTTGCTGC CGTTCGAGGA	300
GGCGCCGGAG ATGACCAGCG CGGGTGGGCT CCTCGAGCAG GCCGCCGCGG TCGAGGAGGC	360
CTCCGACACC GCCGCGGCGA ACCAGTTGAT GAACAATGTG CCCCAGGCGC TGAAACAGTT	420
GGCCCAGCCC ACGCAGGGCA CCACGCCTTC TTCCAAGCTG GGTGGCCTGT GGAAGACGGT	480
CTCGCCGCAT CGGTCGCCGA TCAGCAACAT GGTGTCGATG GCCAACAACC ACATGTCGAT	540
GACCAACTCG GGTGTGTCGA TGACCAACAC CTTGAGCTCG ATGTTGAAGG GCTTTGCTCC	600
GGCGGCGGCC GCCCAGGCCG TGCAAACCGC GGCGCAAAAC GGGGTCCGGG CGATGAGCTC	660
GCTGGGCAGC TCGCTGGGTT CTTCGGGTCT GGGCGGTGGG GTGGCCGCCA ACTTGGGTCG	720
GGCGGCCTCG GTACGGTATG GTCACCGGGA TGGCGGAAAA TATGCANAGT CTGGTCGGCG	780
GAACGGTGGT CCGGCGTAAG GTTTACCCCC GTTTTCTGGA TGCGGTGAAC TTCGTCAACG	840
GAAACAGTTA C	851

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 254 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

GATCGATCGG GCGGAAATTT GGACCAGATT CGCCTCCGGC GATAACCCAA TCAATCGAA	C 60
CTAGATTTAT TCCGTCCAGG GGCCCGAGTA ATGGCTCGCA GGAGAGGAAC CTTACTGCTC	3 120
CGGGCACCTG TCGTAGGTCC TCGATACGGC GGAAGGCGTC GACATTITCC ACCGACACCC	180
CCATCCAAAC GTTCGAGGGC CACTCCAGCT TGTGAGCGAG GCGACGCAGT CGCAGGCTGC	240
GCTTGGTCAA GATC	254

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 408 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

CGGCACGAGG ATCCTG	ACCG AAGCGGCCG	CGCCAAGGCG	AAGTCGCTGT	TGGACCAGGA	60
GGGACGGGAC GATCTG	GCGC TGCGGATCGC	GGTTCAGCCG	GGGGGGTGCG	CTGGATTGCG	120
CTATAACCTT TTCTTC	GACG ACCGGACGCT	GGATGGTGAC	CAAACCGCGG	AGTTCGGTGG	180
TGTCAGGTTG ATCGTG	GACC GGATGAGCGC	GCCGTATGTG	GAAGGCGCGT	CGATCGATTT	240
CGTCGACACT ATTGAG	AAGC AAGGNTTCAC	CATCGACAAT	CCCAACGCCA	CCGGCTCCTG	300
CGCGTGCGGG GATTCGT	TTCA ACTGATAAAA	CGCTAGTACG	ACCCCGCGGT	BUBUAAUAUG	260

(2)	INFORMATION	FOR	SEO	īn	NO - 36 -
,	2111 010 211 1011	1 01	JLU	10	HU. DU

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 181 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GCGGTGTCGG CGGATCCGGC GGGTGGTTGA ACGGCAACGG CGGGGCCGGC GGGGCCGGCG 60

GGACCGGCGC TAACGGTGGT GCCGGCGGCA ACGCCTGGTT GTTCGGGGCC GGCGGGTCCG 120

GCGGNGCCGG CACCAATGGT GGNGTCGGCG GGTCCGGCGG ATTTGTCTAC GGCAACGGCG 180

G 181

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 290 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GCGGTGTCGG CGGATCCGGC GGGTGGTTGA ACGGCAACGG CGGTGTCGGC GGCCGGGGCG 60

GCGACGGCGT CTTTGCCGGT GCCGGCGGCC AGGGCGGCCT CGGTGGGCAG GGCCGAATC 700

CCCCGGACGG CGGCTTCGGT GGCAACGGCG GTAAGGGTGG CCAGGGCGGN ATTGGCGG	CG 240
GCACTCAGAG CGCGACCGGC CTCGGNGGTG ACGGCGGTGA CGGCGGTGAC	290
(2) INFORMATION FOR SEQ ID NO:38:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	Ş
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
GATCCAGTGG CATGGNGGGT GTCAGTGGAA GCAT	34
(2) INFORMATION FOR SEQ ID NO:39:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 155 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
GATCGCTGCT CGTCCCCCCC TTGCCGCCGA CGCCACCGGT CCCACCGTTA CCGAACAAGC	60
TGGCGTGGTC GCCAGCACCC CCGGCACCGC CGACGCCGGA GTCGAACAAT GGCACCGTCG	120
TATCCCCACC ATTGCCGCCG GNCCCCACCGG CACCG	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 53 base pairs (B) TYPE: nucleic acid (Ĉ) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
ATGGCGTTCA CGGGGCGCCG GGGACCGGGC AGCCCGGNGG GGCCGGGGGG TGG	53
(2) INFORMATION FOR SEQ ID NO:41:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
GATCCACCGC GGGTGCAGAC GGTGCCCGCG GCGCCACCCC GACCAGCGGC GGCAACGGCG	60
GCACCGGCGG CAACGCCGCG AACGCCACCG TCGTCGGNGG GGCCGGCGGG GCCGGCGGCA	120
AGGGCGGCAA CG	132
(2) INFORMATION FOR SEQ ID NO:42:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 base pairs	

(B) TYPE: nucleic acid

(Xi) SEQUENCE	DESCRIPTION:	SEQ	ID	NO:42
-----	------------	--------------	-----	----	-------

GATCGGCGGC CGGNACGGNC	GGGGACGGCG	GCAAGGGCGG	NAACGGGGGC	GCCGNAGCCA	60
CCNGCCAAGA ATCCTCCGNG	TCCNCCAATG	GCGCGAATGG	CGGACAGGGC	GGCAACGGCG	120
GCANCGGCGG CA					132

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 702 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

CGGCACGAGG ATCGGTACCC CGCGGCATCG GCAGCTGCCG ATTCGCCGGG TTTCCCCACC	6 0
CGAGGAAAGC CGCTACCAGA TGGCGCTGCC GAAGTAGGGC GATCCGTTCG CGATGCCGGC	120
ATGAACGGGC GGCATCAAAT TAGTGCAGGA ACCTTTCAGT TTAGCGACGA TAATGGCTAT	180
AGCACTAAGG AGGATGATCC GATATGACGC AGTCGCAGAC CGTGACGGTG GATCAGCAAG	240
AGATTTTGAA CAGGGCCAAC GAGGTGGAGG CCCCGATGGC GGACCCACCG ACTGATGTCC	300
CCATCACACC GTGCGAACTC ACGGNGGNTA AAAACGCCGC CCAACAGNTG GTNTTGTCCG	360
CCGACAACAT GCGGGAATAC CTGGCGGCCG GTGCCAAAGA GCGGCAGCGT CTGGCGACCT	100

ACAACGACGG	CGAAGGAACT	GTGCAGGCAG	AATCGGCCGG	GGCCGTCGGA	GGGGACAGTT	540
CGGCCGAACT	AACCGATACG	CCGAGGGTGG	CCACGGCCGG	TGAACCCAAC	TTCATGGATC	600
TCAAAGAAGC	GGCAAGGAAG	CTCGAAACGG	GCGACCAAGG	CGCATCGCTC	GCGCACTGNG	660
GGGATGGGTG	GAACACTTNC	ACCCTGACGC	TGCAAGGCGA	CG		702

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 298 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GAAGCCGCAG	CGCTGTCGGG	CGACGTGGCG	GTCAAAGCGG	CATCGCTCGG	TGGCGGTGGA	60
GGCGGCGGGG	TGCCGTCGGC	GCCGTTGGGA	TCCGCGATCG	GGGGCGCCGA	ATCGGTGCGG	120
CCCGCTGGCG	CTGGTGACAT	TGCCGGCTTA	GGCCAGGGAA	GGGCCGGCGG	CGGCGCCGCG	180
CTGGGCGGCG	GTGGCATGGG	AATGCCGATG	GGTGCCGCGC	ATCAGGGACA	AGGGGGCGCC	240
AAGTCCAAGG	GTTCTCAGCA	GGAAGACGAG	GCGCTCTACA	CCGAGGATCC	TCGTGCCG	298

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH 1050 hace naire

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

CGGCACGAGG ATCGAATCGC GTCGCCGGGA GCACAGCGTC GCACTGCACC AGTGGAGGAG	60
CCATGACCTA CTCGCCGGGT AACCCCGGAT ACCCGCAAGC GCAGCCCGCA GGCTCCTACG	120
GAGGCGTCAC ACCCTCGTTC GCCCACGCCG ATGAGGGTGC GAGCAAGCTA CCGATGTACC	180
TGAACATCGC GGTGGCAGTG CTCGGTCTGG CTGCGTACTT CGCCAGCTTC GGCCCAATGT	240
TCACCCTCAG TACCGAACTC GGGGGGGGTG ATGGCGCAGT GTCCGGTGAC ACTGGGCTGC	300
CGGTCGGGGT GGCTCTGCTG GCTGCGCTGC TTGCCGGGGT GGTTCTGGTG CCTAAGGCCA	360
AGAGCCATGT GACGGTAGTT GCGGTGCTCG GGGTACTCGG CGTATTTCTG ATGGTCTCGG	420
CGACGTTTAA CAAGCCCAGC GCCTATTCGA CCGGTTGGGC ATTGTGGGTT GTGTTGGCTT	480
TCATCGTGTT CCAGGCGGTT GCGGCAGTCC TGGCGCTCTT GGTGGAGACC GGCGCTATCA	540
CCGCGCCGGC GCCGCGGCCC AAGTTCGACC CGTATGGACA GTACGGGCGG TACGGGCAGT	600
ACGGGCAGTA CGGGGTGCAG CCGGGTGGGT ACTACGGTCA GCAGGGTGCT CAGCAGGCCG	660
CGGGACTGCA GTCGCCCGGC CCGCAGCAGT CTCCGCAGCC TCCCGGATAT GGGTCGCAGT	720
ACGGCGGCTA TTCGTCCAGT CCGAGCCAAT CGGGCAGTGG ATACACTGCT CAGCCCCCGG	780
CCCAGCCGCC GGCGCAGTCC GGGTCGCAAC AATCGCACCA GGGCCCATCC ACGCCACCTA	840
CCGGCTTTCC GAGCTTCAGC CCACCACCAC CONTINUE CONTINUE CONTINUES TO THE CONTINUES CONTINUE	

GGGCGCCGGT CTAACCGGGC GTTCCCGCGT CCGGTCGCGC GTGTGCGCGA AGAGTGAACA	1020
GGGTGTCAGC AAGCGCGGAC GATCCTCGTG CCGAATTC	1058
(2) INFORMATION FOR SEQ ID NO:46:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 327 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

CGGCACGAGA GACCGATGCC GCTACCCTCG CGCAGGAGGC AGGTAATTTC GAGCGGATCT	60
CCGGCGACCT GAAAACCCAG ATCGACCAGG TGGAGTCGAC GGCAGGTTCG TTGCAGGGCC	120
AGTGGCGCGG CGCGGCGGG ACGGCCGCCC AGGCCGCGGT GGTGCGCTTC CAAGAAGCAG	180
CCAATAAGCA GAAGCAGGAA CTCGACGAGA TCTCGACGAA TATTCGTCAG GCCGGCGTCC	. 240
AATACTCGAG GGCCGACGAG GAGCAGCAGC AGGCGCTGTC CTCGCAAATG GGCTTCTGAC	300
CCGCTAATAC GAAAAGAAAC GGAGCAA	327

(2) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 170 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
CGGTCGCGAT GATGGCGTTG TCGAACGTGA CCGATTCTGT ACCGCCGTCG TTGAGATCAA	60
CCAACAACGT GTTGGCGTCG GCAAATGTGC CGNACCCGTG GATCTCGGTG ATCTTGTTCT	120
TCTTCATCAG GAAGTGCACA CCGGCCACCC TGCCCTCGGN TACCTTTCGG	170
(2) INFORMATION FOR SEQ ID NO:48:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 127 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
GATCCGGCGG CACGGGGGGT GCCGGCGGCA GCACCGCTGG CGCTGGCGGC AACGGCGGGG	60
CCGGGGGTGG CGGCGGAACC GGTGGGTTGC TCTTCGGCAA CGGCGGTGCC GGCGGGCACG	120
GGGCCGT	127
(2) INFORMATION FOR SEQ ID NO:49:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 81 base pairs(B) TYPE: nucleic acid	

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

CGGCGGCAAG GGCGGCACCG CCGGCAACGG GAGCGGCGCG GCCGGCGGCA ACGGCGGCAA	60
CGGCGGCTCC GGCCTCAACG G	81
(2) INFORMATION FOR SEQ ID NO:50:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 149 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
GATCAGGGCT GGCCGGCTCC GGCCAGAAGG GCGGTAACGG AGGAGCTGCC GGATTGTTTG	60
GCAACGGCGG GGCCGGNGGT GCCGGCGCGT CCAACCAAGC CGGTAACGGC GGNGCCGGCG	120
SAAACGGTGG TGCCGGTGGG CTGATCTGG	149
(2) INFORMATION FOR SEQ ID NO:51:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 355 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

CGGCACGAGA TCACACCTAS CGAGTGATCG AGATCGTCGG GACCTGGCCC GACGGTGTCC

TCGAAGTACA GTCAATTCGA GGCCACCTGG TCGACGGAGC GGTCGCGCAC TTCCAGGTGA	180
CTATGAAAGT CGGCTTCCGC CTGGAGGATT CCTGAACCTT CAAGCGCGGC CGATAACTGA	240
GGTGCATCAT TAAGCGACTT TTCCAGAACA TCCTGACGCG CTCGAAACGC GGTTCAGCCG	300
ACGGTGGCTC CGCCGAGGCG CTGCCTCCAA AATCCCTGCG ACAATTCGTC GGCGG	355
(2) INFORMATION FOR SEC ID NO.52.	

.

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 999 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

ATGCATCACC ATCACCATCA CATGCATCAG GTGGACCCCA ACTTGACACG TCGCAAGGGA 60

CGATTGGCGG CACTGGCTAT CGCGGCGATG GCCAGCGCCA GCCTGGTGAC CGTTGCGGTG 120

CCCGCGACCG CCAACGCCGA TCCGGAGCCA GCGCCCCCGG TACCCCACAAC GGCCGCCTCG 180

CCGCCGTCGA CCGCTGCAGC GCCACCCGCA CCGGCGACAC CTGTTGCCCC CCCACCACCG 240

GCCGCCGCCA ACACGCCGAA TGCCCAGCCG GGCGATCCCA ACGCAGCACC TCCGCCGGCC 300

GACCCGAACG CACCGCCGC ACCTGTCATT GCCCCAAACG CACCCCAACC TGTCCGGATC 360

GACAACCCGG TTGGAGGATT CAGCTTCGCG CTGCCTGCTG GCTGGGTGGA GTCTGACGCC 420

X

CTTTACGCC	A GCGCCGAAGO	CACCGACTC	C AAGGCCGCGG	CCCGGTTGG	G CTCGGACATG	60
GGTGAGTTCT	TATGCCCTA	CCCGGGCACC	CGGATCAACC	AGGAAACCGT	CTCGCTCGAC	66
GCCAACGGGG	TGTCTGGAAG	CGCGTCGTAT	TACGAAGTCA	AGTTCAGCGA	TCCGAGTAAG	720
CCGAACGGCC	AGATCTGGAC	GGGCGTAATC	GGCTCGCCCG	CGGCGAACGC	ACCGGACGCC	780
GGGCCCCCTC	AGCGCTGGTT	TGTGGTATGG	CTCGGGACCG	CCAACAACCC	GGTGGACAAG	840
GGCGCGGCCA	AGGCGCTGGC	CGAATCGATC	CGGCCTTTGG	TCGCCCCGCC	GCCGGCGCCG	900
GCACCGGCTC	CTGCAGAGCC	CGCTCCGGCG	CCGGCGCCGG	CCGGGGAAGT	CGCTCCTACC	960
CCGACGACAC	CGACACCGCA	GCGGACCTTA	CCGGCCTGA			999

(2) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 332 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Met His His His His His His Met His Gln Val Asp Pro Asn Leu Thr 1 5 10 15

Arg Arg Lys Gly Arg Leu Ala Ala Leu Ala Ile Ala Ala Met Ala Ser 20 25 30

Glu Pro Al 50 ~	a Pro Pro V	al Pro Th 55	nr Thr Ala A	la Ser Pro F 60	ro Ser Thr
Ala Ala Ala 65	a Pro Pro A ^r 70		a Thr Pro Va 75	al Ala Pro P	ro Pro Pro 80
Ala Ala Ala	a Asn Thr Pr 85	o Asn Ali	a Gln Pro Gl 90	y Asp Pro As	sn Ala Ala 95
Pro Pro Pro	Ala Asp Pr 100	o Asn Ala	ı Pro Pro Pr 105	o Pro Val Il 11	
Asn Ala Pro 115		l Arg Ile 120		o Val Gly Gl 125	y Phe Ser
Phe Ala Leu 130	Pro Ala Gly	/Trp Val	Glu Ser Asp	o Ala Ala His 140	s Phe Asp
Tyr Gly Ser 145	Ala Leu Leu 150		Thr Thr Gly		Phe Pro 160
Gly Gln Pro	Pro Pro Val	Ala Asn	Asp Thr Arg	Ile Val Leu	Gly Arg
Leu Asp Gln	Lys Leu Tyr 180	Ala Ser	Ala Glu Ala 185	Thr Asp Ser	
Ala Ala Arg 195	Leu Gly Ser	Asp Met 200	Gly Glu Phe	Tyr Met Pro 205	Tyr Pro
Gly Thr Arg 210	Ile Asn Gln	Glu Thr	Val Ser Leu	Asp Ala Asn	Gly Val

Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn 245 250 255 Ala Pro Asp'Ala Gly Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly 260 265 Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys Ala Leu Ala Glu 275 280 285 Ser Ile Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro Ala Pro 290 295 300 Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala Gly Glu Val Ala Pro Thr 305 310 315 320 Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu Pro Ala 325 330

(2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Asp Pro Val Asp Ala Val Ile Asn Thr Thr Xaa Asn Tyr Gly Gln Val 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:55:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser

1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:56:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 19 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys

1

5

10

15

Glu Gly Arg

(2) INFORMATION FOR SEQ ID NO:57:

96

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:58:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO:59:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SED TO NO.ED

(2)	INFORMATION	FOR	SEO	ΤD	NO-60-
\ /	AITI CINENTI LON	1 011	JLU	111	THEFT CALL

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Ala Ala Ala Ala Pro Pro

1

5

10

15

Ala

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly

1

5

10

15

(2) INFORMATION FOR SEQ ID NO:62

The second second

(B)	TYPE:	amino	acid
-----	-------	-------	------

- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gin Gin Thr Ser 1 5 10 15

Leu Leu Asn Asn Leu Ala Asp Pro Asp Val Ser Phe Ala Asp : . . 20 25 30

(2) INFORMATION FOR SEQ ID NO:63:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

Gly Cys Gly Asp Arg Ser Gly Gly Asn Leu Asp Gln Ile Arg Leu Arg
I 5 10 15

Arg Asp Arg Ser Gly Gly Asn Leu 20

(2) INFORMATION FOR SEQ ID NO:64:

(1) SEQUENCE CHARACTERISTICS

 $\mathbb{E}\left(\frac{\mathbf{r}_{\mathbf{k}}}{\mathbf{r}_{\mathbf{k}}}\right) = \frac{\mathbf{r}_{\mathbf{k}}}{\mathbf{r}_{\mathbf{k}}} = \mathbf{r}_{\mathbf{k}} = \mathbf{r}_{\mathbf{k}}$

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

Thr Gly Ser Leu Asn Gln Thr His Asn Arg Arg Ala Asn Glu Arg Lys

1 10 15

Asn Thr Thr Met Lys Met Val Lys Ser Ile Ala Ala Gly Leu Thr Ala 20 25 30

Ala Ala Ala Ile Gly Ala Ala Ala Ala Gly Val Thr Ser Ile Met Ala 35 40 45

Gly Gly Pro Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro 50 55 60

Leu Pro Leu Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln 65 70 75 80

Leu Thr Ser Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala 85 90 95

Asn Lys Gly Ser Leu Val Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg 100 105 110

Ile Ala Asp His Lys Leu Lys Lys Ala Ala Glu His Gly Asp Leu Pro 115 120 125

Leu Ser Phe Ser Val Thr Asn Ile Gln Pro Ala Ala Gly Ser Ala 130 135 140

Thr Ala Asp Val Ser Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr

Gln Asn Val Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala 165 170 175

Ser Ala Met Glu Leu Leu Gln Ala Ala Gly Xaa 180 185

(2) INFORMATION FOR SEQ ID NO:65:

(i) SEQUENCE CHARACTERISTICS:

(A). LENGTH: 148 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

Asp Glu Val Thr Val Glu Thr Thr Ser Val Phe Arg Ala Asp Phe Leu 1 5 10 15

Ser Glu Leu Asp Ala Pro Ala Gln Ala Gly Thr Glu Ser Ala Val Ser 20 25 30

Gly Val Glu Gly Leu Pro Pro Gly Ser Ala Leu Leu Val Val Lys Arg 35 40 45

Gly Pro Asn Ala Gly Ser Arg Phe Leu Leu Asp Gln Ala Ile Thr Ser 50 55 60

Ala Gly Arg His Pro Asp Ser Asp Ile Phe Leu Asp Asp Val Thr Val 65 70 75 80

Ser Arg Arg His Ala Glu Phe Arg Leu Glu Ash Ash Glu Phe Ach Mal

101

Val Asp Val Gly Ser Leu Asn Gly Thr Tyr Val Asn Arg Glu Pro Val 100 105 110

Asp Ser Ala Val Leu Ala Asn Gly Asp Glu Val Gln Ile Gly Lys Leu 115 120 125

Arg Leu Val Phe Leu Thr Gly Pro Lys Gln Gly Glu Asp Asp Gly Ser 130 135 140

Thr Gly Gly Pro 145

(2) INFORMATION FOR SEQ ID NO:66:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 230 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Thr Ser Asn Arg Pro Ala Arg Arg Gly Arg Arg Ala Pro Arg Asp Thr 1 5 10 15

Gly Pro Asp Arg Ser Ala Ser Leu Ser Leu Val Arg His Arg Arg Gln 20 25 30

Gln Arg Asp Ala Leu Cys Leu Ser Ser Thr Gln Ile Ser Arg Gln Ser 35 40 45

Asn Leu Pro Pro Ala Ala Gly Gly Ala Ala Asn Tyr Ser Arg Arg Asn

Ph 65		p Va	1 Ar	g Il	e Ly 70		e Ph	e Me	t Le	u Va 75		nr A'	la Va	al Va	80 80
Lei	u Cys	S Cy:	s Se	r G1; 85	y Va	1 Al	a Th	r Al	a A1 90	a Pr	o Ly	s Th	ır Ty	r Cy 95	s Glu
Glu	ı Lei	ı Lys	Gly 100		· Asp) Thr	- Gly	y Glr 105		a Cys	s G11	n II	e G1		t Ser
Asp) Pro	Ala 115		ÀSM	ΙÌє	e Asr	11e		. Ler	ı Pro) Ser	· Туг 125		r Pro	Asp ·
Gln	Lys 13 0	Ser	Leu	Glu	Asn	Tyr 135		Ala	Gln	Thr	Arg 140		Lys	Phe	Leu
Ser 145	Ala	Ala	Thr	Ser	Ser 150	Thr	Pro	Arg	Glu	Ala 155	Pro	Tyr	Glu	Leu	Asn 160
Пe	Thr	Ser	Ala	Thr 165	Tyr	Gln	Ser	Ala	Ile 170	Pro	Pro	Arg	Gly	Thr 175	Gln
Ala	Val	Val	Leu 180	Xaa	Val	Tyr	His	Asn 185	Ala	Gly	Gly	Thr	His 190	Pro	Thr
Thr	Thr	Tyr 195	Lys	Ala	Phe	Asp	Trp 200	Asp	Gln	Ala	Tyr	Arg 205	Lys	Pro	Ile
Thr	Tyr 210	Asp	Thr	Leu	Trp	Gln 215	Ala	Asp	Thr		Pro 220	Leu	Pro	Val	Val
Phe 225	Pro	Пe	Va 1		Arg 230										

(A) LENGTH: 132 amino acids

(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly Phe
1 5 10 15

Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser 20 25 30

Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly 35 40 45

Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val 50 55 60

Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val 65 70 75 80

Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala 85 90 95

Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp 100 105 110

Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu 115 120 125

Gly Pro Pro Ala

(2) INFORMATION FOR SEQ ID NO:68:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 100 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

Val Pro Leu Arg Ser Pro Ser Met Ser Pro Ser Lys Cys Leu Ala Ala 1 5 10 15

Ala Gln Arg Asn Pro Val Ile Arg Arg Arg Leu Ser Asn Pro Pro 20 25 30

Pro Arg Lys Tyr Arg Ser Met Pro Ser Pro Ala Thr Ala Ser Ala Gly 35 40 45

Met Ala Arg Val Arg Arg Ala Ile Trp Arg Gly Pro Ala Thr Xaa 50 55 60

Ser Ala Gly Met Ala Arg Val Arg Arg Trp Xaa Val Met Pro Xaa Val 65 70 75 80

Ile Gln Ser Thr Xaa Ile Arg Xaa Xaa Gly Pro Phe Asp Asn Arg Gly 85 90 95

Ser Glu Arg Lys

(2) INFORMATION FOR SEC ID NO.69.

. 5

(B)	TYPE:	amino	a	cid
(C)	STRANE	DEDNESS	5:	singl
				-

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

Met Thr Asp Asp Ile Leu Leu Ile Asp Thr Asp Glu Arg Val Arg Thr 1 5 10 15

Leu Thr Leu Asn Arg Pro Gln Ser Arg Asn Ala Leu Ser Ala Ala Leu 20 25 30

Arg Asp Arg Phe Phe Ala Xaa Leu Xaa Asp Ala Glu Xaa Asp Asp Asp Asp 35 40 40

Ile Asp Val Val Ile Leu Thr Gly Ala Asp Pro Val Phe Cys Ala Gly 50 55 60

Leu Asp Leu Lys Val Ala Gly Arg Ala Asp Arg Ala Ala Gly His Leu 65 70 75 80

Thr Ala Val Gly Gly His Asp Gln Ala Gly Asp Arg Asp Gln Arg 85 90 95

Arg Arg Gly His Arg Arg Ala Arg Thr Gly Ala Val Leu Arg His Pro 100 105 110

Asp Arg Leu Arg Ala Arg Pro Leu Arg Arg His Pro Arg Pro Gly Gly 115 120 125

Ala Ala Ala His Leu Gly Thr Gln Cys Val Leu Ala Ala Lys Gly Arg 130 135 140 Asp Arg Arg

(2) INFORMATION FOR SEQ ID NO:70:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 344 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

Met Lys Phe Val Asn His Ile Glu Pro Val Ala Pro Arg Arg Ala Gly
1 5 10 15

Gly Ala Val Ala Glu Val Tyr Ala Glu Ala Arg Arg Glu Phe Gly Arg
20 25 30

Leu Pro Glu Pro Leu Ala Met Leu Ser Pro Asp Glu Gly Leu Leu Thr 35 40 45

Ala Gly Trp Ala Thr Leu Arg Glu Thr Leu Leu Val Gly Gln Val Pro 50 55 60

Arg Gly Arg Lys Glu Ala Val Ala Ala Ala Val Ala Ala Ser Leu Arg 65 70 75 80

Cys Pro Trp Cys Val Asp Ala His Thr Thr Met Leu Tyr Ala Ala Gly 85 90 95

Gly Asp Pro Asn Ala Pro Tyr Val Ala Trp Ala Ala Gly Thr Gly Thr 115 120 125
Pro Alā Gly Pro Pro Ala Pro Phe Gly Pro Asp Val Ala Ala Glu Tyr 130 135 140
Leu Gly Thr Ala Val Gln Phe His Phe Ile Ala Arg Leu Val Leu Val 145 150 155 160
Leu Leu Asp Glu Thr Phe Leu Pro Gly Gly Pro Arg Ala Gln Gln Leu 165 170 175
Met Arg Arg Ala Gly Gly Leu Val Phe Ala Arg Lys Val Arg Ala Glu 180 185 190
His Arg Pro Gly Arg Ser Thr Arg Arg Leu Glu Pro Arg Thr Leu Pro 195 200 205
Asp Asp Leu Ala Trp Ala Thr Pro Ser Glu Pro Ile Ala Thr Ala Phe 210 215 220
Ala Ala Leu Ser His His Leu Asp Thr Ala Pro His Leu Pro Pro Pro 235 240
Thr Arg Gln Val Val Arg Arg Val Val Gly Ser Trp His Gly Glu Pro 245 250 255
et Pro Met Ser Ser Arg Trp Thr Asn Glu His Thr Ala Glu Leu Pro 260 265 270

Ala Asp Leu His Ala Pro Thr Arg Leu Ala Leu Leu Thr Gly Leu Ala

280

275

108

Asp Thr Asp Ala Ala Leu Val Gly Ala Leu Ala Trp Ala Ala Phe Thr 305 310 315 320

Ala Ala Arg Arg Ile Gly Thr Trp Ile Gly Ala Ala Ala Glu Gly Gln 325 330 335

Val Ser Arg Gln Asn Pro Thr Gly 340

- (2) INFORMATION FOR SEQ ID NO.71
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 485 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

Asp Asp Pro Asp Met Pro Gly Thr Val Ala Lys Ala Val Ala Asp Ala 1 5 10 15

Leu Gly Arg Gly Ile Ala Pro Val Glu Asp Ile Gln Asp Cys Val Glu 20 25 30

Ala Arg Leu Gly Glu Ala Gly Leu Asp Asp Val Ala Arg Val Tyr Ile 35 40 45

Ile Tyr Arg Gln Arg Arg Ala Glu Leu Arg Thr Ala Lys Ala Leu Leu 50 55 60

Gly Val Arg Asp Glu Leu Lys Leu Ser Leu Ala Ala Val Thr Val Lou

• :

- Arg Glu Arg Tyr Leu Leu His Asp Glu Gln Gly Arg Pro Ala Glu Ser 85 90 95
- Thr Glỹ Glu Leu Met Asp Arg Ser Ala Arg Cys Val Ala Ala Ala Glu 100 105 110
- Asp Gln Tyr Glu Pro Gly Ser Ser Arg Arg Trp Ala Glu Arg Phe Ala 115 120 125
- Thr Leu Leu Arg Asn Leu Glu Phe Leu Pro Asn Ser Pro Thr Leu Met 130 135 140
- Asn Ser Gly Thr Asp Leu Gly Leu Leu Ala Gly Cys Phe Val Leu Pro 145 150 155 160
- Ile Glu Asp Ser Leu Gln Ser Ile Phe Ala Thr Leu Gly Gln Ala Ala 165 170 175
- Glu Leu E Arg Ala Gly Gly Gly Thr Gly Tyr Ala Phe Ser His Leu 180 185 190
- Arg Pro Ala Gly Asp Arg Val Ala Ser Thr Gly Gly Thr Ala Ser Gly 195 200 205
- Pro Val Ser Phe Leu Arg Leu Tyr Asp Ser Ala Ala Gly Val Val Ser 210 220
- Met Gly Gly Arg Arg Gly Ala Cys Met Ala Val Leu Asp Val Ser 225 230 235 240
- His Pro Asp Ile Cys Asp Phe Val Thr Ala Lys Ala Glu Ser Pro Ser 245 250 255

Arg A		a1 G 75	lu A	rg A	sn G		eu H 80	is A	rg L	.eu V		lsn P 185	ro A	rg Thi
Gly Ly 29		ie Va	al Al	a Ar	ng Me 29		o A	la A'	la G		eu P 00	he A	sp A	la Ile
Cys Ly 305	's Al	a Al	a Hi	s A1 31		y G1	y As	p Pr	o Gi 31		eu Va	al Pr	e Le	u Asp 320
Thr II	e As	n Ar	g Ala 325		n Pr	o Va] Pr	o G1 33		g G1	y Ar	g II	e G1 33	
Thr Asi	n Pro	34(/ Glu	ı Va	l Pro	245 345		ı Pr	о Ту	r Gl	u Sei 350		s Asn
Leu Gly	/ Ser 355		e Asn	Leu	ı Ala	Arg 360		: Leu	ı Ala	a Asp	G1) 365		Val	Asp
Trp Asp	Arg	, Leu	Glu	Glu	Va1 375		Gly	Val	Ala	Val 380		Phe	Leu	Asp
Asp Val 385	Ile	Asp	Val	Ser 390	Arg	Tyr	Pro	Phe	Pro 395		Leu	Gly	Glu	Ala 400
Ala Arg	Ala	Thr	Arg 405	Lys	Ile	Gly	Leu	Gly 410	Val	Met	Gly	Leu	Ala 415	Glu
Leu Leu	Ala	Ala 420	Leu	Gly	Ile	Pro	Tyr 425	Asp	Ser	Glu	Glu	Ala 430	Val	Arg
Leu Ala	Thr 435	Arg	Leu	Met	Arg	Arg 440	Пе	Gln	Gln	Ala	Ala 445	His	Thr	Ala

, i- •.

Ser Arg Phe Ala Arg Ser Gly Pro Arg Arg Asn Ala Gln Val Thr Ser 465 470 475 480

Val Ala Pro Thr Gly 485

(2) INFORMATION FOR SEQ ID NO:72:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 267 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: Tinear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

Gly Val Ile Val Leu Asp Leu Glu Pro Arg Gly Pro Leu Pro Thr Glu

1 5 10 15

Ile Tyr Trp Arg Arg Gly Leu Ala Leu Gly Ile Ala Val Val 20 25 30

Val Gly Ile Ala Val Ala Ile Val Ile Ala Phe Val Asp Ser Ser Ala 35 40 45

Gly Ala Lys Pro Val Ser Ala Asp Lys Pro Ala Ser Ala Gln Ser His 50 55 60

Pro Gly Ser Pro Ala Pro Gln Ala Pro Gln Pro Ala Gly Gln Thr Glu 65 70 75 80

Gly Ash Ala Ala Ala Pro Pro Gln Gly Gln Ash Pro Glu The Pro

Thr Pro Thr A	Ala Ala Val Gin	Pro Pro Pro Val	Leu Lys Glu Gly Asp
	.00	105	110
Asp Cys Pro A	sp Ser Thr Leu	Ala Val Lys Gly 120	Leu Thr Asn Ala Pro 125
Gln Tyr Tyr Va	al Gly Asp Gln		1et Val Val Thr Asn
130	135		140
Ile Gly Leu Va	il Ser Cys Lys /	arg Asp Val Gly A	la Ala Val Leu Ala
145	150	155	160
Ala Tyr Val Ty	r Ser Leu Asp A	sn Lys Arg Leu T	rp Ser Asn Leu Asp
	165	170	175
Cys Ala Pro Sei	r Asn Glu Thr L	eu Val Lys Thr Ph	ne Ser Pro Gly Glu
180)	185	190
Gln Val Thr Thr	Ala Val Thr Ti		y Ser Ala Pro Arg
195	20		205
Cys Pro Leu Pro	Arg Pro Ala Il	e Gly Pro Gly Th	r Tyr Asn Leu Val
210	215	22	O
/al Gln Leu Gly	Asn Leu Arg Se	r Leu Pro Val Pro	Phe Ile Leu Asn
225	230	235	240
iln Pro Pro Pro	Pro Pro Gly Pro 245	o Val Pro Ala Pro 250	Gly Pro Ala Gin 255
la Pro Pro Pro 260	Glu Ser Pro Ala	Gln Gly Gly 265	

(A) LENGTH: 97 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

Leu Ile Ser Thr Gly Lys Ala Ser His Ala Ser Leu Gly Val Gln Val 1 5 15

Thr Asn Asp Lys Asp Thr Pro Gly Ala Lys Ile Val Glu Val Val Ala 20 25 30

Gly Gly Ala Ala Ala Asn Ala Gly Val Pro Lys Gly Val Val Thr 35 40 45

Lys Val Asp Asp Arg Pro Ile Asn Ser Ala Asp Ala Leu Val Ala Ala 50 55 60

Val Arg Ser Lys Ala Pro Gly Ala Thr Val Ala Leu Thr Phe Gln Asp 65 70 75 80

Pro Ser Gly Gly Ser Arg Thr Val Gln Val Thr Leu Gly Lys Ala Glu 85 90 95

Gln

(2) INFORMATION FOR SEQ ID NO:74:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 364 amino acids

(xi) SEQU	JENCE	DESCRIPTION:	SEQ	ID	NO:74:
-----------	-------	--------------	-----	----	--------

G1y 1	Αla	Ala	Val	Ser 5	Leu	Leu	Ala	Ala	Gly 10	Thr	Leu	Va 1	Leu	Thr 15	Ala
Cys	Gly	Gly	Gly	Thr	Asn	Ser	Ser	Ser	Ser	Gly	Ala	Gly	Gly	Thr	Ser

- Gly Ser Val His Cys Gly Gly Lys Lys Glu Leu His Ser Ser Gly Ser
- 35 40 45
- Thr Ala Gln Glu Asn Ala Met Glu Gln Phe Val Tyr Ala Tyr Val Arg 50 55 60
- Ser Cys Pro Gly Tyr Thr Leu Asp Tyr Asn Ala Asn Gly Ser Gly Ala 65 70 75 80
- Gly Val Thr Gln Phe Leu Asn Asn Glu Thr Asp Phe Ala Gly Ser Asp 85 90 95
- Val Pro Leu Asn Pro Ser Thr Gly Gln Pro Asp Arg Ser Ala Glu Arg
 100 105 110
- Cys Gly Ser Pro Ala Trp Asp Leu Pro Thr Val Phe Gly Pro Ile Ala 115 120 125
- Ile Thr Tyr Asn Ile Lys Gly Val Ser Thr Leu Asn Leu Asp Gly Pro 130 135 140
- Thr Thr Ala Lys Ile Phe Asn Gly Thr Ile Thr Val Trp Asn Asp Pro 145 150 155 160

Sei	r Va	- -	e Pho 180		g Sei	n As	p Ly	s Se 18		y Th	ır Se	r As	p As		ne Gln
Lys	. Tyr	Lei 195		Gl)	√ Val	Ser	- Ası 200		y Al	a Tr	p G1	y Ly 20		y A1	a Ser
Glu	Thr 210		. Ser	Gly	Gly	Val 215		∕ Va]	l Gly	y Ala	3 Ser 220		y Ası	n Asi	n Gly
Thr 225		Ala	Leu	Leu	G1n 230	Thr	Thr	· Asp	Gly	Ser 235		Thr	· Tyr	· Asr	1 Glu 240
Trp	Ser	Phe	Ala	Va1 245	Gly	Lys	Gln	Leu	Asn 250		Ala	Gln	Ile	Ile 255	Thr
Ser	Ala	Gly	Pro 260	Asp	Pro	Va1	Ala	Ile 265	Thr	Thr	Glu	Ser	Va1 270	Gly	Lys
Thr	Ile	A1a 275	Gly	Ala	Lys	Пe	Met 280	Gly	Gln	Gly	Asn	Asp 285	Leu	Va1	Leu
Asp	Thr 290	Ser	Ser	Phe		Arg 2 9 5	Pro	Thr	Gln	Pro	Gly 300	Ser	Tyr	Pro	Ile
Va1 305	Leu	Ala	Thr	Tyr	Glu 310	Ile	Val	Cys	Ser	Lys 31 5	Tyr	Pro	Asp	Ala	Thr 320
Thr	Gly	Thr	Ala	Va 1 3 25	Arg	Ala	Phe	Met	Gln 330	Ala	Ala	Ile	Gly	Pro 335	Gly
Gln	Glu	Gly	Leu 340	Asp	G1n	Tyr		Ser 345	Ile	Pro	Leu		Lys 350	Ser	Phe

(2) INFORMATION FOR SEQ ID NO:75:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 309 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

Gln Ala Ala Ala Gly Arg Ala Val Arg Arg Thr Gly His Ala Glu Asp 1 5 10 15

Gln Thr His Gln Asp Arg Leu His His Gly Cys Arg Arg Ala Ala Val 20 25 30

Val Val Arg Gln Asp Arg Ala Ser Val Ser Ala Thr Ser Ala Arg Pro 35 40 45

Pro Arg Arg His Pro Ala Gln Gly His Arg Arg Val Ala Pro Ser 50 55 60

Gly Gly Arg Arg Arg Pro His Pro His His Val Gln Pro Asp Asp Arg 65 70 75 80

Arg Asp Arg Pro Ala Leu Leu Asp Arg Thr Gln Pro Ala Glu His Pro 85 90 95

Asp Pro His Arg Arg Gly Pro Ala Asp Pro Gly Arg Val Arg Gly Arg
100 105 110

Ala Asp His Gly Ala Pro Val Arg Gly Arg Gly Pro His Arg Gly Val 130 135 140
Gln His Arg Gly Gly Pro Val Phe Val Arg Arg Val Pro Gly Val Arg 145 150 155 160
Cys Ala His Arg Arg Gly His Arg Arg Val Ala Ala Pro Gly Gln Gly 165 170 175
Asp Val Leu Arg Ala Gly Leu Arg Val Glu Arg Leu Arg Pro Val Ala 180 185 190
Ala Val Glu Asn Leu His Arg Gly Ser Gln Arg Ala Asp Gly Arg Val 195 200 205
Phe Arg Pro Ile Arg Arg Gly Ala Arg Leu Pro Ala Arg Arg Ser Arg 210 215 220
Ala Gly Pro Gln Gly Arg Leu His Leu Asp Gly Ala Gly Pro Ser Pro 225 230 235 240
Leu Pro Ala Arg Ala Gly Gln Gln Gln Pro Ser Ser Ala Gly Gly Arg 245 250 255
Arg Ala Gly Gly Ala Glu Arg Ala Asp Pro Gly Gln Arg Gly Arg His 260 265 270
His GIn Gly Gly His Asp Pro Gly Arg Gln Gly Ala Gln Arg Gly Thr 275 280 285
la Gly Val Ala His Ala Ala Ala Gly Pro Arg Arg Ala Ala Val Arg

(2)	INFORMATION	FOR	SEO	IN	NO-76
`-/	1111 014 1/11 1014		J-U	10	110.70.

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 580 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO.76:

Ser Ala Val Trp Cys Leu Asn Gly Phe Thr Gly Arg His Arg His Gly
1 5 10 15

Arg Cys Arg Val Arg Ala Ser Gly Trp Arg Ser Ser Asn Arg Trp Cys 20 25 30

Ser Thr Thr Ala Asp Cys Cys Ala Ser Lys Thr Pro Thr Gln Ala Ala 35 40 45

Ser Pro Leu Glu Arg Arg Phe Thr Cys Cys Ser Pro Ala Val Gly Cys 50 55 60

Arg Phe Arg Ser Phe Pro Val Arg Arg Leu Ala Leu Gly Ala Arg Thr 65 70 75 80

Ser Arg Thr Leu Gly Val Arg Arg Thr Leu Ser Gln Trp Asn Leu Ser 85 90 95

Ala Ser Pro Arg Met Ala Lys Leu Ala Arg Val Val Giv Leu Val Gin

GT	u G1 13	u G1 0	in Pr	o Se	er As	ip Me 13		nr As	sn H	is P		rg T _. 40	yr S	er P	ro Pr	0
Pro 145		n GI	n Pr	o G1	y Th 15		o G1	у Ту	r Al	a G1		y Gi	in G	In Gi	n Thr 160	
Tyr	Sei	r G1≀	n Gli	n Pho 165		o Tr	p Ar	g Ty	r Pr 17		o Se	r Pr	o Pr	o Pr 17	o Gln 5	١
Pro	Thr	· G1r	180		g G1r	Pro	э Туг	- Gla 185		a Le	u Glj	y ĜĨ	y Ih 19		g Pro	-
Gly	Leu	Ile 195		Gly	Val	Πe	Pro 200		· Met	: Thr	r Pro	205		GI)	/ Met	
Va1	Arg 210	Gln	Arg	Pro	Arg	Ala 215		Met	Leu	ı Ala	11e 220		' Ala	Va1	Thr	
I 1e 225	Ala	Val	Val	Ser	Ala 230	Gly	Пe	Gly	Gly	A1a 235		Ala	Ser	Leu	Va 1 240	
Gly	Phe	Asn	Arg	Ala 245	Pro	Ala	Gly	Pro	Ser 250	Gly	Gly	Pro	Va1	A1a 255	Ala	
Ser	Ala	Ala	Pro 260	Ser ,	Ile	Pro	Ala	A1a 265	Asn	Met	Pro	Pro	Gly 270	Ser	Val	
Glu	Gln	Va1 275	Ala	Ala	Lys	Val	Val 280	Pro	Ser	Val	Val	Met 285	Leu	Glu	Thr	
	Leu 290	Gly	Arg	G1n		G1u 295	Glu	Gly	Ser	Gly	Ile 300	Ile	Leu	Ser	Ala	

495

Pro Pro Leu Gly Ser Pro Pro Pro Lys Thr Thr Val Thr Phe Ser Asp 325 330 335
Gly Arg Thr Ala Pro Phe Thr Val Val Gly Ala Asp Pro Thr Ser Asp 340 345 350
Ile Ala Val Val Arg Val Gln Gly Val Ser Gly Leu Thr Pro Ile Ser 355 360 365
Leu Gly Ser Ser Ser Asp Leu Arg Val Gly Gln Pro Val Leu Ala Ile 370 375 380
Gly Ser Pro Leu Gly Leu Glu Gly Thr Val Thr Thr Gly Ile Val Ser 385 390 395 400
Ala Leu Asn Arg Pro Val Ser Thr Thr Gly Glu Ala Gly Asn Gln Asn 405 410 415
Thr Val Leu Asp Ala Ile Gln Thr Asp Ala Ala Ile Asn Pro Gly Asn 420 425 430
Ser Gly Gly Ala Leu Val Asn Met Asn Ala Gln Leu Val Gly Val Asn 435 440 445
Ser Ala Ile Ala Thr Leu Gly Ala Asp Ser Ala Asp Ala Gln Ser Gly 450 455 460
Ser Ile Gly Leu Gly Phe Ala Ile Pro Val Asp Gln Ala Lys Arg Ile 465 470 475 480
Ala Asp Glu Leu Ile Ser Thr Gly Lys Ala Ser His Ala Ser Leu Gly 485 490 495

490

Val Val Ala Gly Gly Ala Ala Ala Asn Ala Gly Val Pro Lys Gly Val 515 520 525

Val Val Thr Lys Val Asp Asp Arg Pro Ile Asn Ser Ala Asp Ala Leu 530 535 540

Val Ala Ala Val Arg Ser Lys Ala Pro Gly Ala Thr Val Ala Leu Thr 545 550 555 560

Phe Gln Asp Pro Ser Gly Gly Ser Arg Thr Val Gln Val Thr Leu Gly 565 570 575

Lys Ala Glu Gln 580

(2) INFORMATION FOR SEQ ID NO:77:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 233 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

Met Asn Asp Gly Lys Arg Ala Val Thr Ser Ala Val Leu Val Val Leu 1 5 10 15

Gly Ala Cys Leu Ala Leu Trp Leu Ser Gly Cys Ser Ser Pro Lys Pro 20 25 30

Asp Ala Glu Glu Gln Gly Val Pro Val Ser Pro Thr Ala Ser Asp Pro

Al	a Le 50		eu Al	a G1	u Il	e Ar 55		ln Se	er Le	eu A	sp A 6		hr L	ys G1	ly Le
Thi 65	· Se	r Va	l Hi	s Va	1 A1 70	a Va	1 Ar	g Th	ır Th	ir Gi 75		ys Vá	al As	sp Se	r Leu 80
Leu	(G1	/ Ile	e Thi	r Ser 85	- Ala	a Ası	o Va	1 As	p Va 90	l Ar	g Al	a As	n Pr	o Lei 95	Ala
Ala	l ys	: Gly	/ Val		Thr	` Tyr	. Ųsi	n Asp 105		ú G1	n G1,	y Va	ī Pro 110		e Arg
Val	Gln	Gly 115) Asn	Ile	Ser	Va]		. Leu	ı Pho	e Ası	25 Ası) Ser	Asn
Leu	Gly 130		Ile	Ser	Glu	Leu 135		`Thr	Ser	· Arg	y Val 140		ı Asp	Pro	Ala
A1a 145	Gly	Val	Thr	Gln	Leu 150	Leu	Ser	Gly	Val	Thr 155		Leu	ı Gln	Ala	Gln 160
Gly	Thr	Glu	Val	Ile 165	Asp	Gly	Ile	Ser	Thr 170	Thr	Lys	Пe	Thr	Gly 175	Thr
Ne	Pro	Ala	Ser 180	Ser	Val	Lys	Met	Leu 185	Asp	Pro	Gly	Ala	Lys 190	Ser	Ala
∖rg	Pro	Ala 195	Thr	Val	Trp	He	Ala 200	Gln	Asp	Gly	Ser	His 205	His	Leu	Val
	Ala 210	Ser	Ile	Asp		Gly 215	Ser	Gly	Ser	He	Gln 220	Leu	Thr	Gln :	Ser

- (2) INFORMATION FOR SEQ ID NO:78:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 66 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO.78:

Val Ile Asp Ile Ile Gly Thr Ser Pro Thr Ser Trp Glu Gln Ala Ala 1 5 10 15

Ala Glu Ala Val Gln Arg Ala Arg Asp Ser Val Asp Asp Ile Arg Vale
20 25 30

Ala Arg Val Ile Glu Gln Asp Met Ala Val Asp Ser Ala Gly Lys Ile 35 40 45

Thr Tyr Arg Ile Lys Leu Glu Val Ser Phe Lys Met Arg Pro Ala Gln 50 55 60

Pro Arg

- (2) INFORMATION FOR SEQ ID NO:79:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 69 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

Val Pro Pro Ala Pro Pro Leu Pro Pro Leu Pro Pro Ser Pro Ile Ser 1 5 10 15

Cys Ala Ser Pro Pro Ser Pro Pro Leu Pro Pro Ala Pro Pro Val Ala 20 25 30

Pro Gly Pro Pro Met Pro Pro Leu Asp Pro Trp Pro Pro Ala Pro Pro
35
40
45

Leu Pro Tyr Ser Thr Pro Pro Gly Ala Pro Leu Pro Pro Ser Pro Pro 50 55 60

Ser Pro Pro Leu Pro 65

(2) INFORMATION FOR SEQ ID NO:80:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 355 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

Met Ser Asn Ser Arg Arg Arg Ser Leu Arg Trp Ser Trp Leu Leu Ser 1 5 10 15

Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr Ala Pro Ala Gln Ala 20 25 30

Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Ala Pro Gln Val 50 55 60	Val
Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly 165 76 75 8	Thr 30
Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn His V 85 90 95	al
Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser Gly G 100 105 110	ln
Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Al 115 120 125	a
Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gl 130 135 140	У.
Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly 145 150 155 160	
Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu 165 170 175	i
Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr 180 185 190	
Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp Ser 195 200 205	
Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr 210 215 220	

116	: Pro	-	e GIY	245	Ala	Met	. Ala	ı Ile	250 250		/ Glr	ı Ile	e Arg	Ser 255	•
Gly	Gly	Ser	Pro 260	Thr	Val	His	Пe	G1 <i>y</i> 265	Pro	Thr	Ala	Phe	Leu 270	G?y	Leu
Gly	Va1	Val	Asp	Asn	Asn	Gly	Asn	Gly	Ala	Arg	Val	Gln	Arg	Val	Val

275 280 285

Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile 290 295 300

Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp 305 310 315 320

Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp Gln 325 330 335

Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly 340 345 350

Pro Pro Ala 355

(2) INFORMATION FOR SEQ ID NO:81:

(†) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 205 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

Ser 1	· Pr	o Lj	ys P	ro As 5	sp A	la G	lu G	lu G	ln G		al P	ro V	al S		ro Th 5	r
Ala	Se	r As	5p Pr 20		a Le	eu Le	eu Al	a GT 25		le Ai	rg Gi	ln S	er L 3		sp Ala	a
Thr	Ly	s G1 35		u Th	r Se	r Va	1 Hi 40		1 AI	a Va	ıl Ar	g Th 45		nr G	ly Lys	5
Val	Asp 50) Se	r Le	u Lei	ı Gī	y I16 55	e Thi	r Se	r Al	a As	p Va 60	l As	p Va	l Ar	ĝ Ala	
Asn 65	Pro	Lei	a Ala	ı Ala	1 Lys 70	s G1)	∕ Val	l Cys	s Thi	^ Tyı 75	n Asr	n Ası	o G1	u G1	n Gly 80	
Val	Pro	Phe	e Arg	Va1 85	Glr	ı Gly	' Asp	Asr	11e 90	e Ser	· Val	Lys	Lei	ı Ph∈ 95	e Asp	
Asp	Trp	Ser	Asn 100		Gly	Ser	Ile	Ser 105		Leu	Ser	Thr	Ser 110		Val	
Leu i	Asp	Pro 115		Ala	Gly	Val	Thr 120	Gln	Leu	Leu	Ser	Gly 125	Va 1	Thr	Asn	
_eu (31n 130	Ala	Gln	Gly	Thr	Glu 135	Val	Ile	Asp	Gly	Ile 140	Ser	Thr	Thr	Lys	
lle 1 .45	Thr	Gly	Thr	He	Pro 150	Ala	Ser	Ser	Val	Lys 155	Met	Leu	Asp	Pro	Gly 160	
la L	.ys	Ser	Ala	Arg 165	Pro	Ala	Thr	Va 1	Trp 170	He	Ala	Gln	Asp	Gly 175	Ser	

Leu Thr Gln Ser Lys Trp Asn Glu Pro Val Asn Val Asp 195 200 205

(2) INFORMATION FOR SEQ ID NO:82:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 286 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

Gly Asp Ser Phe Trp Ala Ala Ala Asp Gln Met Ala Arg Gly Phe Val 1 5 10

Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln 20 25 30

His Ala Asp Gly His Ser Leu Leu Leu Asp Ala Thr Asn Pro Ala Val 35 40 45

Val Ala Tyr Asp Pro Ala Phe Ala Tyr Glu Ile Gly Tyr Ile Xaa Glu 50 55 60

Ser Gly Leu Ala Arg Met Cys Gly Glu Asn Pro Glu Asn Ile Phe Phe 65 70 75 80

Tyr Ile Thr Val Tyr Asn Glu Pro Tyr Val Gln Pro Pro Glu Pro Glu 85 90 95

Asn Phe Asp Pro Glu Gly Val Leu Gly Glv Ile Tvr Arg Tvr Har Ala

Ala	i Th	r G1		in Ar	g Th	ır As	in Ly 12		aa G	ln I	le L		1a S 25	er G	ly Va
Ala	Me ⁻		o A1	a Al	a Le	u Ar 13		a A]	a G1	In M∈	et Le 14		la Al	la G1	lu Trp
Asp 145	Va	l Al	íA s	a Ası	5 Va 150		p Se	r Va	1 Th	r Se 15		p Gl	y G1	u Le	u Asn 160
Arg	Asp	Gly	y Va	l Val 165		G1ı	i Thi	- G1:	ı Ly: 170		u Ar	g Hi	s Pr	0 As _i 17	p Ar g 5
Pro	Ala	G1y	/ Val) Tyr	· Val	Thr	Arg 185		a Leu	G](ı Ası	n Ala 190		g Gly
Pro	Val	Ile 195		. Val	Ser	Asp	Trp 200	Met	Arg	, Ala	val	Pro 205		G]n	lle
	Pro 210	Trp	Val	Pro	Gly	Thr 215	Tyr	Leu	Thr	Leu	Gly 220		Asp	Gly	Phe
G1 <i>y</i> 225	Phe	Ser	Asp	Thr	Arg 230	Pro	Ala	Gly	Arg	Arg 235	Tyr	Phe	Asn	Thr	Asp 240
Ala (Glu	Ser	Gln	Va 1 245	Gly	Arg	Gly	Phe	Gly 250	Arg	Gly	Trp	Pro	G1y 255	Arg
Arg '	Va1	Asn	Ile 260	Asp	Pro	Phe	Gly	A1a 265	Gly	Arg	Gly	Pro	Pro 270	Ala	Gln
₋eu f		G1y 275	Phe	Asp	Glu	Gly	G1 <i>y</i> 280	Gly	Leu	Arg	Pro	Xaa 285	Lys		

(A) LENGTH: 173 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

Thr Lys Phe His Ala Leu Met Gln Glu Gln Ile His Asn Glu Phe Thr 1 5 15

Ala Ala Gin Gin Tyr Val Ala Ile Ala Val Tyr Phe Asp Ser Glu Asp 20 25 30

Leu Pro Gln Leu Ala Lys His Phe Tyr Ser Gln Ala Val Glu Glu Arg 35 40 45

Asn His Ala Met Met Leu Val Gln His Leu Leu Asp Arg Asp Leu Arg 50 55 60

Val Glu Ile Pro Gly Val Asp Thr Val Arg Asn Gln Phe Asp Arg Pro 65 70 75 80

Arg Glu Ala Leu Ala Leu Ala Leu Asp Gln Glu Arg Thr Val Thr Asp 85 90 95

Gln Val Gly Arg Leu Thr Ala Val Ala Arg Asp Glu Gly Asp Phe Leu 100 105 110

Gly Glu Gln Phe Met Gln Trp Phe Leu Gln Glu Gln Ile Glu Glu Val 115 120 125

Ala Leu Met Ala Thr Leu Val Arq Val Ala Asp Arg Ala Gly Ala Acr

Leu Phe Glu Leu Glu Asn Phe Val Ala Arg Glu Val Asp Val Ala Pro 145 150 155 160

Ala Ala Ser Gly Ala Pro His Ala Ala Gly Gly Arg Leu 165 170

- (2) INFORMATION FOR SEQ ID NO:84:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 107 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

Arg Ala Asp Glu Arg Lys Asn Thr Thr Met Lys Met Val Lys Ser Ile

5
10
15

Ala Ala Gly Leu Thr Ala Ala Ala Ala Ile Gly Ala Ala Ala Gly 20 25 30

Val Thr Ser Ile Met Ala Gly Gly Pro Val Val Tyr Gln Met Gln Pro 35 40 45

Val Phe Gly Ala Pro Leu Pro Leu Asp Pro Xaa Ser Ala Pro Xaa 50 55 60

Val Pro Thr Ala Ala Gln Trp Thr Xaa Leu Leu Asn Xaa Leu Xaa Asp 65 70 75 80

Pro Asn Val Ser Phe Xaa Asn Lys Glv Ser Leu Val Glo Glo Glo Glo Ti-

Gly Gly Xaa Glu Gly Xaa Xaa Arg Arg Xaa Gln 100 105

(2) INFORMATION FOR SEQ ID NO:85:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 125 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

Val Leu Ser Val Pro Val Gly Asp Gly Phe Trp Xaa Arg Val Val Asn 1 5 10 15

Pro Leu Gly Gln Pro Ile Asp Gly Arg Gly Asp Val Asp Ser Asp Thr 20 25 30

Arg Arg Ala Leu Glu Leu Gln Ala Pro Ser Val Val Xaa Arg Gln Gly 35 40 45

Val Lys Glu Pro Leu Xaa Thr Gly Ile Lys Ala Ile Asp Ala Met Thr 50 55 60

Pro Ile Gly Arg Gly Gln Arg Gln Leu Ile Ile Gly Asp Arg Lys Thr 65 70 75 80

Gly Lys Asn Arg Arg Leu Cys Arg Thr Pro Ser Ser Asn Gln Arg Glu 85 90 95

Glu Leu Gly Val Arg Trp Ile Pro Arg Ser Arg Cys Ala Cys Val Tyr 100 105 110

(2) INFORMATION FOR SEQ ID NO:86:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 117 amino acids

(B) TYPE: amino acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

Cys Asp Ala Val Met Gly Phe Leu Gly Gly Ala Gly Pro Leu Ala Val 1 5 10 15

Val Asp Gln Gln Leu Val Thr Arg Val Pro Gln Gly Trp Ser Phe Ala 20 25 30

Gln Ala Ala Ala Val Pro Val Val Phe Leu Thr Ala Trp Tyr Gly Leu 35 40 45

Ala Asp Leu Ala Glu Ile Lys Ala Gly Glu Ser Val Leu Ile His Ala 50 55 60

Gly Thr Gly Gly Val Gly Met Ala Ala Val Gln Leu Ala Arg Gln Trp 65 70 75 80

Gly Val Glu Val Phe Val Thr Ala Ser Arg Gly Lys Trp Asp Thr Leu 85 90 95

Arg Ala Xaa Phe Asp Asp Xaa Pro Tyr Arg Xaa Phe Pro His Xaa 100 105 110

(2) INFORMATION FOR SEQ ID NO:87:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 103 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEO ID NO:87:

Met Tyr Arg Phe Ala Cys Arg Thr Leu Met Leu Ala Ala Cys Ile Leu 1 5 10 15

Ala Thr Gly Val Ala Gly Leu Gly Val Gly Ala Gln Ser Ala Ala Gln 20 25 30

Thr Ala Pro Val Pro Asp Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp 35 40 45

Pro Ala Trp Gly Pro Asn Trp Asp Pro Tyr Thr Cys His Asp Asp Phe 50 55 60

His Arg Asp Ser Asp Gly Pro Asp His Ser Arg Asp Tyr Pro Gly Pro 65 70 75 80

Ile Leu Glu Gly Pro Val Leu Asp Asp Pro Gly Ala Ala Pro Pro Pro 85 90 95

Pro Ala Ala Gly Gly Gly Ala 100

(2) INFORMATION FOR SEQ ID NO:88:

(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

Val Gln Cys Arg Val Trp Leu Glu Ile Gln Trp Arg Gly Met Leu Gly
1 5 10 15

Ala Asp Gln Ala Arg Ala Gly Gly Pro Ala Arg Ile Trp Arg Glu His 20 25 30

Ser Met Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala 35 40 45

Thr Lys Glu Gly Arg Gly Ile Val Met Arg Val Pro Leu Glu Gly Gly 50 55 60

Gly Arg Leu Val Val Glu Leu Thr Pro Asp Glu Ala Ala Ala Leu Gly 65 70 75 80

Asp Glu Leu Lys Gly Val Thr Ser 85

(2) INFORMATION FOR SEQ ID NO:89:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 95 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn Phe Glu Arg Ile 1 5 10 15 Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly 20 25 Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala 40 45 Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu Leu 50 55 60 Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg 65 70 75 80 Ala Asp Glu Glu Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 85 90 95

(2) INFORMATION FOR SEQ ID NO:90:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 166 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

Met Thr Gln Ser Gln Thr Val Thr Val Asp Gln Glu Ile Leu Asn 1 5 10 15

Arg Ala Ash Glu Val Glu Ala Pro Met Ala Asp Pro Pro Thr Asp Val

Pro	He	Thr	Pro	Cys	Glu	Leu	Thr	Xaa	Xaa	Lys	Asn	Ala	Ala	Gln	GIn
		3 5					40			•		45			U 111

Xaa Valleu Ser Ala Asp Asn Met Arg Glu Tyr Leu Ala Ala Gly Ala 50 55 60

Lys Glu Arg Gln Arg Leu Ala Thr Ser Leu Arg Asn Ala Ala Lys Xaa 65 70 75 80

Tyr Gly Glu Val Asp Glu Glu Ala Ala Ihr Ala Leu Asp Asn Asp Gly
85 90 95

Glu Gly Thr Val Gln Ala Glu Ser Ala Gly Ala Val Gly Gly Asp Ser 100 105 110

Ser Ala Glu Leu Thr Asp Thr Pro Arg Val Ala Thr Ala Gly Glu Pro 115 120 125

Asn Phe Met Asp Leu Lys Glu Ala Ala Arg Lys Leu Glu Thr Gly Asp 130 135 140

Gln Gly Ala Ser Leu Ala His Xaa Gly Asp Gly Trp Asn Thr Xaa Thr 145 150 155 160

Leu Thr Leu Gln Gly Asp 165

(2) INFORMATION FOR SEQ ID NO:91:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

Arg Ala Glu Arg Met
1 5

- (2) INFORMATION FOR SEQ ID NO:92:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 263 amino acids

(B) TYPE: amino acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu Thr Ala Ala 1 5 10 15

Gln Val Arg Val Ala Ala Ala Ala Tyr Glu Thr Ala Tyr Gly Leu Thr 20 25 30

Val Pro Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu Met Ile Leu 35 40 45

Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile Ala Val Asn 50 55 60

Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala Met Phe 65 70 75 80

Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu Leu Pro Phe
85 9n oc

Ala Ala Va - 11	l Glu Glu Ala Ser 5	Asp Thr Ala , 120	Ala Ala Asn G 125	ln Leu Met
Asn Asn Val	l Pro Gln Ala Leu 135	Lys Gln Leu A	la Gln Pro Th 140	nr Gln Gly
Thr Thr Pro 145	Ser Ser Lys Leu 150		rp Lys Thr Va 55	I Ser Pro 160
His Arg.Şer	Pro Ile Ser Asn 165	Met Val Ser Me 170	et Ala Asn Asr	His Met 175
Ser Met Thr	Asn Ser Gly Val S 180	Ser Met Thr As 185	n Thr Leu Ser 190	Ser Met
Leu Lys Gly 195	Phe Ala Pro Ala A 2	la Ala Ala Gli 00	n Ala Val Gin 205	Thr Ala
Ala Gln Asn (210	Gly Val Arg Ala M 215	et Ser Ser Leu	Gly Ser Ser 220	Leu Gly
Ser Ser Gly L 225	eu Gly Gly Gly Va. 230	al Ala Ala Asn 235	Leu Gly Arg	Ala Ala 240
Ser Val Arg T	yr Gly His Arg As 245	p Gly Gly Lys 250		Ser Gly 255
	ly Gly Pro Ala 60			

(2) INFORMATION FOR SEQ ID NO:93:

ואין מבטוובאטב טיייטיים בביייי

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

Met Thr Tyr Ser Pro Gly Asn Pro Gly Tyr Pro Gln Ala Gln Pro Ala 1 5 10 15

Gly Ser Tyr Gly Gly Val Thr Pro Ser Phe Ala His Ala Asp Glu Gly 20 25 30

Ala Ser Lys Leu Pro Met Tyr Leu Asn Ile Ala Val Ala Val Leu Gly 35 40 45

Leu Ala Ala Tyr Phe Ala Ser Phe Gly Pro Met Phe Thr Leu Ser Thr 50 55 60

Glu Leu Gly Gly Gly Asp Gly Ala Val Ser Gly Asp Thr Gly Leu Pro 65 70 75 80

Val Gly Val Ala Leu Leu Ala Ala Leu Leu Ala Gly Val Val Leu Val 85 90 95

Pro Lys Ala Lys Ser His Val Thr Val Val Ala Val Leu Gly Val Leu 100 105 110

Gly Val Phe Leu Met Val Ser Ala Thr Phe Asn Lys Pro Ser Ala Tyr 115 120 125

Ser Thr Gly Trp Ala Leu Trp Val Val Leu Ala Phe Ile Val Phe Gln 130 135 140

- Ala Pro Ala Pro Arg Pro Lys Phe Asp Pro Tyr Gly Gln Tyr Gly Arg
 165 170 175
- Tyr Gly Gln Tyr Gly Gln Tyr Gly Val Gln Pro Gly Gly Tyr Tyr Gly
 180 185 190
- Gln Gln Gly Ala Gln Gln Ala Ala Gly Leu Gln Ser Pro Gly Pro Gln 195 200 205
- Gln Ser Pro Gln Pro Pro Gly Tyr Gly Ser Gln Tyr Gly Gly Tyr Ser 210 220
- Ser Ser Pro Ser Gln Ser Gly Ser Gly Tyr Thr Ala Gln Pro Pro Ala 225 230 235 240
- Gln Pro Pro Ala Gln Ser Gly Ser Gln Gln Ser His Gln Gly Pro Ser 245 250 255
- Thr Pro Pro Thr Gly Phe Pro Ser Phe Ser Pro Pro Pro Pro Val Ser 260 265 270
- Ala Gly Thr Gly Ser Gln Ala Gly Ser Ala Pro Val Asn Tyr Ser Asn 275 280 285
- Pro Ser Gly Gly Glu Gln Ser Ser Ser Pro Gly Gly Ala Pro Val 290 295 300
- (2) INFORMATION FOR SEQ ID NO:94:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 168 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

(xi)	SEQUENCE	DESCRIPTION:	SEO	TD	NO - 94
		CCCCITAL LACIT.	JLU	111	NU. 74

Met Lys Met Val Lys Ser Ile Ala Ala Gly Leu Thr Ala Ala Ala Ala 1 5 15

Ile Gly Ala Ala Ala Ala Gly Val Thr Ser Ile Met Ala Gly Gly Pro 20 25 30

Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro Leu Pro Leu 35 40 45

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser . 50 55 60

Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala Asn Lys Gly 65 70 75 80

Ser Leu Val Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg Ile Ala Asp 85 90 95

His Lys Leu Lys Lys Ala Ala Glu His Gly Asp Leu Pro Leu Ser Phe 100 105 110

Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser Ala Thr Ala Asp 115 120 125

Val Ser Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr Gln Asn Val 130 135 140

Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala Ser Ala Met 145 150 155 160

Glu Leu Leu Gln Ala Ala Gly Asn

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 332 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

Met His His His His His Met His Gln Val Asp Pro Asn Leu Thr

10 15

Arg Arg Lys Gly Arg Leu Ala Ala Leu Ala Ile Ala Ala Met Ala Ser 20 25 30

Ala Ser Leu Val Thr Val Ala Val Pro Ala Thr Ala Asn Ala Asp Pro 35 40 45

Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro Ser Thr 50 55

Ala Ala Ala Pro Pro Ala Pro Ala Thr Pro Val Ala Pro Pro Pro Pro 65 70 75

Ala Ala Asn Thr Pro Asn Ala Gln Pro Gly Asp Pro Asn Ala Ala 85 90

Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro Pro Pro Val Ile Ala Pro 100 105 110

Asn Ala Pro Gln Pro Val Arg Ile Asp Asn Pro Val Gly Gly Phe Ser 115 120

197 Gly Ser Ala Leu Leu Ser Lys Thr Thr Gly Asp Pro Pro Phe Pro 145 150 155 160
Gly Gln Pro Pro Pro Val Ala Asn Asp Thr Arg Ile Vai Leu Gly Arg 165 170 175
Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu Ala Thr Asp Ser Lys Ala 180 185 190
Ala Ala Arg Leu Gly Ser Asp Met Gly Glu Phe Tyr Met Pro Tyr Pro 195 200 205
Gly Thr Arg Ile Asn Gln Glu Thr Val Ser Leu Asp Ala Asn Gly Val 210 215 220 .
Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser Asp Pro Ser Lys 225 230 235 240
Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn 245 250 255
Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly 260 265 270
Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys Ala Leu Ala Glu 275 280 285
Ser Ile Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro Ala Pro 290 295 300
Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala Gly Glu Val Ala Pro Thr 305 310 316

(2) INFORMATION FOR SEQ ID NO:96:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 500 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

CGTGGCAATG TCGTTGACCG TCGGGGCCGG GGTCGCCTCC GCAGATCCCG TGGACGCGGT	60
CATTAACACC ACCTGCAATT ACGGGCAGGT AGTAGCTGCG CTCAACGCGA CGGATCCGGG	120
GGCTGCCGCA CAGTTCAACG CCTCACCGGT GGCGCAGTCC TATTTGCGCA ATTTCCTCGC	180
CGCACCGCCA CCTCAGCGCG CTGCCATGGC CGCGCAATTG CAAGCTGTGC CGGGGGCGGC	240
ACAGTACATC GGCCTTGTCG AGTCGGTTGC CGGCTCCTGC AACAACTATT AAGCCCATGC	300
GGGCCCCATC CCGCGACCCG GCATCGTCGC CGGGGCTAGG CCAGATTGCC CCGCTCCTCA	360
ACGGGCCGCA TCCCGCGACC CGGCATCGTC GCCGGGGCTA GGCCAGATTG CCCCGCTCCT	420
CAACGGGCCG CATCTCGTGC CGAATTCCTG CAGCCCGGGG GATCCACTAG TTCTAGAGCG	480
GCCGCCACCG CGGTGGAGCT	500

(2) INFORMATION FOR SEQ ID NO:97:

(i) SEQUENCE CHARACTERISTICS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

Val Ala Met Ser Leu Thr Val Gly Ala Gly Val Ala Ser Ala Asp Pro 1 5 10 15

Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val Val Ala 20 25 30

Ala Leu Asn Ala Thr Asp Pro Gly Ala Ala Ala Gln Phe Asn Ala Ser 35 40 45

Pro Val Ala Gln Ser Tyr Leu Arg Asn Phe Leu Ala Ala Pro Pro Pro 50 55 60

Gln Arg Ala Ala Met Ala Ala Gln Leu Gln Ala Val Pro Gly Ala Ala 65 70 75 80

Gln Tyr Ile Gly Leu Val Glu Ser Val Ala Gly Ser Cys Asn Asn Tyr 85 90 95

- (2) INFORMATION FOR SEQ ID NO:98:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 154 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO-98-

120

154

AATGTCACGT CCATTCATTC CCTCCTTGAC GAGGGGAAGC AGTCCCTGAC CAAGCTCGCA GCGGCCTGGG GCGGTAGCGG TTCGGAAGCG TACC (2) INFORMATION FOR SEQ ID NO:99: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99: Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu Ala Ala Ala Ser 1 5 10 15 Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu Leu Asp Glu Gly 20 25 Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly Gly Ser Gly Ser 35 40 45 Glu Ala Tyr 50 (2) INFORMATION FOR SEQ ID NO:100: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 282 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(tx)	SEQUENCE	DESCRIPTION:	SEO	ID	NO - 100 -
------	----------	--------------	-----	----	------------

CGGTCGCGCA	CTTCCAGGTG	ACTATGAAAG	TCGGCTTCCG	NCTGGAGGAT	TCCTGAACCT	60
TCAAGCGCGG	CCGATAACTG	AGGTGCATCA	TTAAGCGACT	TITCCAGAAC	ATCCTGACGC	120
GCTCGAAACG	CGGCACAGCC	GACGGTGGCT	CCGNCGAGGC	GCTGNCTCCA	AAATCCCTGA	180
GACAATTCGN (CGGGGGCGCC	TACAAGGAAG	TCGGTGCTGA	ATTCGNCGNG	TATCTGGTCG	240
ACCTGTGTGG 1	TCTGNAGCCG (GACGAAGCGG	TGCTCGACGT	CG		282

(2) INFORMATION FOR SEQ ID NO:101:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1565 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

GTATGCGGCC ACTGAAGTCG CCAATGCGGC GGCGGCCAGC TAAGCCAGGA ACAGTCGGCA	60
CGAGAAACCA CGAGAAATAG GGACACGTAA TGGTGGATTT CGGGGCGTTA CCACCGGAGA	120
TCAACTCCGC GAGGATGTAC GCCGGCCCGG GTTCGGCCTC GCTGGTGGCC GCGGCTCAGA	180
TGTGGGACAG CGTGGCGAGT GACCTGTTTT CGGCCGCGTC GGCGTTTCAG TCGGTGGTCT	240
GGGGTCTGAC GGTGGGGTCG TGGATAGGTT CGTCGGCGGG TCTGATGGTG GCGGCGGCCT	300

TCGCCGAGAA CCGTGCTGAA CTGATGATTC TGATAGCGAC CAACCTCTTG GGGCAAAACA	480
CCCCGGCGAT CGCGGTCAAC GAGGCCGAAT ACGGCGAGAT GTGGGCCCAA GACGCCGCCG	540
CGATGTTTGG CTACGCCGCG GCGACGGCGA CGGCGACGGC GACGTTGCTG CCGTTCGAGG	600
AGGCGCCGGA GATGACCAGC GCGGGTGGGC TCCTCGAGCA GGCCGCCGCG GTCGAGGAGG	660
CCTCCGACAC CGCCGCGGCG AACCAGTTGA TGAACAATGT GCCCCAGGCG CTGCAACAGC	720
TGGCCCAGCC CACGCAGGGC ACCACGCCTT CTTCCAAGCT GGGTGGCCTG TGGAAGACGG	780
TCTCGCCGCA TCGGTCGCCG ATCAGCAACA TGGTGTCAAT GGCCAACAAC CACATGTCAA	840
TGACCAACTC GGGTGTGTCA ATGACCAACA CCTTGAGCTC GATGTTGAAG GGCTTTGCTC	900
CGGCGGCGGC CGCCCAGGCC GTGCAAACCG CGGCGCAAAA CGGGGTCCGG GCGATGAGCT	960
CGCTGGGCAG CTCGCTGGGT TCTTCGGGTC TGGGCGGTGG GGTGGCCGCC AACTTGGGTC	1020
GGGCGGCCTC GGTCGGTTCG TTGTCGGTGC CGCAGGCCTG GGCCGCGGCC AACCAGGCAG	1080
TCACCCCGGC GGCGCGGGCG CTGCCGCTGA CCAGCCTGAC CAGCGCCGCG GAAAGAGGGC	1140
CCGGGCAGAT GCTGGGCGGG CTGCCGGTGG GGCAGATGGG CGCCAGGGCC GGTGGTGGC	1200
TCAGTGGTGT GCTGCGTGTT CCGCCGCGAC CCTATGTGAT GCCGCATTCT CCGGCGGCCG	1260
GCTAGGAGAG GGGGCGCAGA CTGTCGTTAT TTGACCAGTG ATCGGCGGTC TCGGTGTTTC	1320
CGCGGCCGGC TATGACAACA GTCAATGTGC ATGACAAGTT ACAGGTATTA GGTCCAGGTT	1380

Fig. 1. The control of the control o

1560

1565

GGCGTCCGCG CAAAACATTT CCGGTGCGGG CTGGAGTGGC ATGGCCGAGG CGACCTCGCT AGACA (2) INFORMATION FOR SEQ ID NO:102: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 391 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102: 1 Met Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met 5 10 15 Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Gln Met Trp 20 25 30 Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45 Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 55 60 Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 65 70 75 80 Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala 85

90

95

Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly 115 120 125
Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met 130 135 140
Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala 145 150 155 160
Thr Ala Thr Ala Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr 165 170 175
Ser Ala Gly Gly Leu Leu Glu Gln Ala Ala Ala Val Glu Glu Ala Ser 180 185 190
Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu 195 200 205
Gln Gln Leu Ala Gln Pro Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu 210 215 220
Gly Gly Leu Trp Lys Thr Val Ser Pro His Arg Ser Pro Ile Ser Asn 225 230 235 240
Met Val Ser Met Ala Asn Asn His Met Ser Met Thr Asn Ser Gly Val 245 250 255
Ser Met Thr Asn Thr Leu Ser Ser Met Leu Lys Gly Phe Ala Pro Ala 260 265 270
ala Ala Ala Gln Ala Val Gln Thr Ala Ala Gln Asn Gly Val Arg Ala 275 280 285

Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser Leu Ser Val 305 310 315 320 Pro Gln Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro Ala Ala Arg 325 330 335 Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Glu Arg Gly Pro Gly 340 345 350 Gln Met Leu Gly Gly Leu Pro Val Gly Gln Met Gly Ala Arg Ala Gly 355 360 365 Gly Gly Leu Ser Gly Val Leu Arg Val Pro Pro Arg Pro Tyr Val Met 370 375 380 Pro His Ser Pro Ala Ala Gly 385 390

(2) INFORMATION FOR SEQ ID NO:103:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 259 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

ACCAACACCT TGCACTCNAT GTTGAAGGGC TTAGCTCCGG CGGCGGCTCA GGCCGTGGAA 60

ACCGCGGCGG AAAACGGGGT CTGGGCAATG AGCTCGCTGG GCAGCCAGCT GGGTTCGTCG 120

240

259

80

GGTTCGTTGT CGGTGCCGCC AGCATGGGCC GCGGCCAACC AGGCGGTCAC CCCGGCGGCG CGGGCGCTGC CGCTGACCA (2) INFORMATION FOR SEO ID NO:194: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 86 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: Thr Asn Thr Leu His Ser Met Leu Lys Gly Leu Ala Pro Ala Ala Ala 1 5 Gln Ala Val Glu Thr Ala Ala Glu Asn Gly Val Trp Ala Met Ser Ser 20 25 Leu Gly Ser Gln Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu Gly Ala 35 40 45 Gly Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser Leu Ser 50 55 60

Val Pro Pro Ala Trp Ala Ala Ala Asn Gin Ala Val Thr Pro Ala Ala

Arg Ala Leu Pro Leu Thr

85

70

(2) THEODINATION FOR SEC. .

65

(A) LENGTH: 1109 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

TACTTGAGAG AATTTGACCT GTTGCCGACG TTGTTTGCTG TCCATCATTG GTGCTAGTTA	60
TGGCCGAGCG GAAGGATTAT CGAAGTGGTG GACTTCGGGG CGTTACCACC GGAGATCAAC	120
TCCGCGAGGA TGTACGCCGG CCCGGGTTCG GCCTCGCTGG TGGCCGCCGC GAAGATGTGG	180
GACAGCGTGG CGAGTGACCT GTTTTCGGCC GCGTCGGCGT TTCAGTCGGT GGTCTGGGGT	240
CTGACGACGG GATCGTGGAT AGGTTCGTCG GCGGGTCTGA TGGTGGCGGC GGCCTCGCCG	300
TATGTGGCGT GGATGAGCGT CACCGCGGGG CAGGCCGAGC TGACCGCCGC CCAGGTCCGG	360
GTTGCTGCGG CGGCCTACGA GACGGCGTAT GGGCTGACGG TGCCCCCGCC GGTGATCGCC	420
GAGAACCGTG CTGAACTGAT GATTCTGATA GCGACCAACC TCTTGGGGCA AAACACCCCG	480
GCGATCGCGG TCAACGAGGC CGAATACGGG GAGATGTGGG CCCAAGACGC CGCCGCGATG	540
TTTGGCTACG CCGCCACGGC GGCGACGGCG ACCGAGGCGT TGCTGCCGTT CGAGGACGCC	600
CCACTGATCA CCAACCCCGG CGGGCTCCTT GAGCAGGCCG TCGCGGTCGA GGAGGCCATC	660
GACACCGCCG CGGCGAACCA GTTGATGAAC AATGTGCCCC AAGCGCTGCA ACAACTGGCC	720
CAGCCCACGA ANAGCATCTG GCCGTTCGAC CAACTGAGTG AACTCTGGAA AGCCATCTCG	780

AACTCGGGTG	TGTCAATGGC	CAGCACCTTO	CACTCAATGT	TGAAGGCTT	TGCTCCGGCG	900
GCGGCTCAGG	CCGTGGAAAC	CGCGGCGCAA	AACGGGGTCC	AGGCGATGAG	CTCGCTGGGC	960
AGCCAGCTGG	GTTCGTCGCT	GGGTTCTTCG	GGTCTGGGCG	CTGGGGTGGC	CGCCAACTTG	1020
GGTCGGGCGG	CCTCGGTCGG	TTCGTTGTCG	GTGCCGCAGG	CCTGGGCCGC	GGCCAACCAG	1080
GCGGTCACCC	CGGCGGCGCG	GGCGCTGCC				1109

(2) INFORMATION FOR SEQ ID NO:106:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 341 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met
1 5 10 15

Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp 20 25 30

Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45

Val Val Trp Gly Leu Thr Thr Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 55 60

Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala 85 90 95
Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala 100 105 110
Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly 115 120 125
Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met 130 135 140
Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Thr Ala Ala 145 150 155 160
Thr Ala Thr Glu Ala Leu Leu Pro Phe Glu Asp Ala Pro Leu Ile Thr 165 170 175
Asn Pro Gly Gly Leu Leu Glu Gln Ala Val Ala Val Glu Glu Ala Ile 180 185 190
Asp Thr Ala Ala Ala Ash Gln Leu Met Ash Ash Val Pro Gln Ala Leu 195 200 205
Gln Gln Leu Ala Gln Pro Thr Lys Ser Ile Trp Pro Phe Asp Gln Leu 210 215 220
Ser Glu Leu Trp Lys Ala Ile Ser Pro His Leu Ser Pro Leu Ser Asn 225 230 235 240
Ile Val Ser Met Leu Asn Asn His Val Ser Met Thr Asn Ser Gly Val 245 250 255

Ä

Claims

- 1. A polypeptide comprising an antigenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
 - (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gin-Val-Val-Ala-Ala-Leu (SEQ ID No. 115);
 - (b) Ala-Val-Glu-Ser-Gly-Mer-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser. (SEQ ID No. 116);
 - (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID No. 17);
 - (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID No. 118);
 - (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID No. 119);
 - (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID No. 120);
 - (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID No. 121);
 - (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID No. 122);
 - (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID No. 123); and
 - (j) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 131)

wherein Xaa may be any amino acid.

- 2. A polypeptide comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
 - (a) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 124) and
 - (b) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 132), wherein Xaa may be any amino acid.
- 3. A polypeptide comprising an antigenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos. 1, 2, 4-10, 13-25, 52, 94 and 96, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 1, 2, 4-10, 13-25, 52, 94 and 96 or a complement thereof under moderately stringent conditions.
- 4. A polypeptide comprising an antigenic portion of a *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos. 26-51, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 26-51 or a complement thereof under moderately stringent conditions.
- 5. A DNA molecule comprising a nucleotide sequence encoding a polypeptide according to any one of claims 1-4.

- 7. A host cell transformed with an expression vector according to claim 6.
- 8. The host cell of claim 7 wherein the host cell is selected from the group consisting of *E. coli*, yeast and mammalian cells.
- 9. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting a biological sample with one or more polypeptides according to any of claims 1-4; and
- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting *M. tuberculosis* infection in the biological sample.
- 10. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting a biological sample with a polypeptide having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID No: 129 and 130; and
- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting *M. tuberculosis* infection in the biological sample.
- 11. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting a biological sample with one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 3, 11 and 12; and
 - (b) detecting in the sample the presence of antibodies that bind to at least

- 12. The method of any one of claims 9-11 wherein step (a) additionally comprises contacting the biological sample with a 38 kD *M. tuberculosis* antigen and step (b) additionally comprises detecting in the sample the presence of antibodies that bind to the 38 kD *M. tuberculosis* antigen.
- 13. The method of any one of claims 9-11 wherein the polypeptide(s) are bound to a solid support.
- 14. The method of claim 13 wherein the solid support comprises nitrocellulose, latex or a plastic material.
- 15. The method of any one of claims 9-11 wherein the biological sample is selected from the group consisting of whole blood, serum, plasma, saliva, cerebrospinal fluid and urine.
- 16. The method of claim 15 wherein the biological sample is whole blood or serum.
- 17. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with a first and a second oligonucleotide primer in a polymerase chain reaction, the first and the second oligonucleotide primers comprising at least about 10 contiguous nucleotides of a DNA molecule according to claim 5; and
- (b) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers, thereby detecting *M. tuberculosis* infection.
- 18. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:

least about 10 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12; and

- (b) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers, thereby detecting *M. tuberculosis* infection.
- 19. The method of claims 17 or 18 wherein the biological sample is selected from the group consisting of whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine.
- 20. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with one or more oligonucleotide probes comprising at least about 15 contiguous nucleotides of a DNA molecule according to claim 5; and
- (b) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting M. tuberculosis infection.
- 21. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with one or more oligonucleotide probes comprising at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12; and
- (b) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting M tuberculosis infection.
- 22. The method of claims 20 or 21 wherein the biological sample is selected from the group consisting of whole blood, sputum, scrum, plasma, saliva, cerebrospinal fluid and urine.

- 23. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide according to any one of claims 1-4; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M. tuberculosis infection in the biological sample.
- 24. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID No: 129 and 130; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M. tuberculosis infection in the biological sample.
- 25. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide encoded by a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 3, 11 and 12; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M. tuberculosis infection in the biological sample.
- 26. The method of any one of claims 23-25 wherein the binding agent is a monoclonal antibody.
 - 27. The method of any one of claims 23-25 wherein the hinding a sum in

- 28. A diagnostic kit comprising:
- (a) one or more polypeptides according to any of claims 1-4; and
- (b) a detection reagent.
- 29. A diagnostic kit comprising:
- (a) one or more polypeptides having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID No: 129 and 130; and
 - (b) a detection reagent.
 - 30. A diagnostic kit comprising:
- (a) one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 3, 11 and 12; and
 - (b) a detection reagent.
- 31. The kit of any one of claims 28-30 wherein the polypeptide(s) are immobilized on a solid support.
- 32. The kit of claim 31 wherein the solid support comprises nitrocellulose, latex or a plastic material.
- 33. The kit of any one of claims 28-30 wherein the detection reagent comprises a reporter group conjugated to a binding agent.
- 34. The kit of claim 33 wherein the binding agent is selected from the group consisting of anti-immunoglobulins, Protein G, Protein A and lectins.
 - 35. The kit of claim 33 wherein the reporter group is selected from the

. .

- 36. A diagnostic kit comprising a first polymerase chain reaction primer and a second polymerase chain reaction primer, the first and second primers each comprising at least about 10 contiguous nucleotides of a DNA molecule according to claim 5.
- 37. A diagnostic kit comprising a first polymerase chain reaction primer and a second polymerase chain reaction primer, the first and second primers each comprising at least about 10 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12.
- 38. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe comprising at least about 15 contiguous nucleotides of a DNA molecule according to claim 5.
- 39. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe comprising at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12.
- 40. A monoclonal antibody that binds to a polypeptide according to any of claims 1-4.
- 41. A polyclonal antibody that binds to a polypeptide according to any of claims 1-4.
- 42. A fusion protein comprising two or more polypeptides according to any one of claims 1-4.
 - 43. A fusion protein comprising one or more polypeptides according to

44. A fusion protein comprising a polypeptide having an N-terminal sequence selected from the group of sequences provided in SEQ ID Nos. 129 and 130.

Fig. 1A

Ig. 1B

SUBSTITUTE SHEET (RULE 26)

2/7

Fig. 1C

11g. 11)

SUBSTITUTE SHEET (RULE 26)

09**7** 00