

REPORT NO. NADC-79215-60

OFF-CENTER IMPACT

Richard E./Llorens
PENNSYLVANIA STATE UNIVERSITY
Radnor Center for Graduate Studies

Edward J. McQuillen
Aircraft and Crew Systems Technology Directorate
NAVAL AIR DEVELOPMENT CENTER
Warminster, Pennsylvania 18974

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Prepared for NAVAL AIR SYSTEMS COMMAND Department of the Navy Washington, DC 20361

393532

1/B

DOC FILE COP

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the report. For example: Report No. NADC-78015-20 indicates the fifteeth Center report for the year 1978, and prepared by the Systems Directorate. The numerical codes are as follows:

CODE	OFFICE OR DIRECTORATE
00	Commander, Naval Air Development Center
01	Technical Director, Naval Air Development Center
02	Comptroller
10	Directorate Command Projects
20	Systems Directorate
30	Sensors & Avionics Technology Directorate
40	Communication & Navigation Technology Directorate
50	Software Computer Directorate
60	Aircraft & Crew Systems Technology Directorate
70	Planning Assessment Resources
80	Engineering Support Group

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

APPROVED BY:

E. J. STURM

CDR US

DATE: 9/11/79

SECURITY CLASSIFICATION OF THIS PAGE (When Data Ente

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM					
NADC-79215-60	. 3. RECIPIENT'S CATALOG NUMBER					
Ofr-Center, Low Velocity, Transverse Normal Impact of a Simply Supported Plate	Final					
	6. PERFORMING ORG. REPORT NUMBER					
Richard E. Llorens Edward J. McQuillen	S. CONTRACT OR GRANT NUMBER(*)					
Aircraft & Crew Systems Technology Directorate	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS					
Naval Air Development Center Warminster, PA 18974						
Warminster, PA 18974	12. REPORT DATE 11 Sept 1979					
Warminster, PA 18974 1. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command Department of the Navy	11 Sept 1979 / 13. NUMBER OF PAGES 53					
Warminster, PA 18974 11. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command	11 Sept 1979 13. NUMBER OF PAGES 53					

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Simply Supported Plate

Off Center

Low Velocity

Transverse

Normal Impact

ARSTRACT (Continue on reverse side if necessary and identify by block number)

A theoretical solution for the response of a simply supported plate to offcenter low speed transverse impact is presented. This solution is empirically corrected, on the basis of viscoelastic beam analysis, to admit damping. Comparison of the numerical predictions of the corrected theory with central impact test results on graphite-epoxy composite laminates shows good agreement.

(Continued on other side

s. Pentonumi ono. Reputt weeke

CURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

The structural dynamic response model consists of a special orthotropic plate impacted by a rigid mass. Initial displacement and velocity distributions were assumed and the solution method utilized the finite Fourier sine transform and Laplace transforms with respect to both space and time.

earter of preed translated taken to present . This solution is confident control of the confident control of the bests of the bests of the control of the confidence of the confidence of the control of

NTIS GF DDC TAB Unannous	nced H	
Justifi	cation	
Distrib	oution/	
Availa	ability Codes	value on reasonable on return as the descent the land of the land
	Avail and/or	r Senter
Dist	special	
A		
EST STREET, VA. ST.		TORREST LETT

5, N 0102- LF- 014- 6601

UNCLASSIFIED

Richard & Llovens

Sake Stand Create Indian Water Mar Governs
Alterate & Grew Systems Permadings Offerances Naval Air Sevelapount Danest
Water and the 18924

TABLE OF CONTENTS

Page

34

35

37

INTRODU	CTION	3
	IS	
The state of the s	NCES	
APPEND 1	IX A - Functions Needed for the Evaluation of the Solution	A-1
	Velociay for R Place Series	
	LIST OF FIGURES	
Figure	Title	Page
1	Mapping from the P Plane to the BR Plane	12
2	Mapping from the P Plane to the BI Plane	13
3	Comparison Between Theoretical and Experimental Results	
	for Plate Series Bl	23
4	Comparison Between Theoretical and Experimental Results	
	for Plate Series B2	24
5	Comparison Between Theoretical and Experimental Results	
	for Plate Series B3	25
6	Comparison Between Theoretical and Experimental Results	
	for Plate Series B4	26
7	Comparison Between Theoretical and Experimental Results	
	for Plate Series B5	27
8	Comparison Between Theoretical and Experimental Results	
	for Plate Series B6	28
9	Comparison Between Theoretical and Experimental Results	
	for Plate Series B7	29
10	Comparison Between Theoretical and Experimental Results	
	for Plate Series Fl	30
11	Comparison Between Theoretical and Experimental Results	
	for Plate Series F2	31
12	Comparison Between Theoretical and Experimental Results	
	for Dieta Carios F2	22

Comparison Between Theoretical and Experimental Results

for Plate Series F4

for Plate Series Hl

for Plate Series H2

for Plate Series H3

for Plate Series H4

13

14

15

16

17

LIST OF TABLES

Table	Title	Page
1.2	Experimental and Theoretical Values of the Strain/Unit Velocity for B Plate Series	17
II L-A	Experimental and Theoretical Values of the Strain/Unit Velocity for F Plate Series	19
ш	Experimental and Theoretical Values of the Strain/Unit Velocity for H Plate Series	21
	61327	
	Magaing from the P Thems to the SR Plane	
- 23	for Flate Series 31	
	To linte Series 37	
	Comparison Borward Lhaurettorl and aspertmental Mendica	
	for First Series 34 Lourest and Experimental Results	
	Ton Flate Series 85	
	construction for the secretarian and Investmental Action and Construction of the secretarian and s	
	Comparison Served Theoretical and Sapararascal Kasulta	
	Tor Plate Series Il	
	Contarion Server Incoration and Strentest Results	
2.5	Course com Server Theoretical and Experimental Results	
	Compacing decided Thousastical and Expactness Wenter Worlds	
+4	Greenway volument in the contract and Experimental Results of the Companies of the Companie	
	The Plant Service of the Service of	

INTRODUCTION

In the present study, we are interested in investigating the ability of fiber reinforced composite material structures to resist handling and impact loading. Indeed, these problems represent an important element in assessing the suitability of such structures for long term service utilization. Accordingly, the present investigation is directed toward the development of a technique to predict the strains in plates which are induced by relatively low speed (0 to 30 m/s), hard object, transverse normal impact.

We have considered the problem of the low velocity impact of a beam in several of our previous papers, references (1) and (2). Specifically reference (1) showed that the adoption of a finite impact width considerably reduced the number of terms of the series needed in the numerical evaluation. Unfortunately the work of Chou and Flis, reference (3), indicated that the theoretical solution tended to overpredict the strain response by approximately 20 to 30 percent. Thus, in reference (2) the authors considered the introduction of a damping mechanism, i.e., a viscoelastic effect, to improve the correlation between theory and experiment. In view of the above comments, it is seen that all of our previous efforts have been confined to one dimensional problems. To remove this deficiency from our investigations we shall consider the analysis of a special orthotropic plate, i.e., we shall investigate a region of two dimensional extent.

Recalling the complexity of the damped beam problem, reference (3), i.e., the computations required approximately one hundred pages, we questioned the advisability of proceeding directly to the solution of a damped plate problem. In addition, it was our considered opinion that we, as yet, do not have a complete physical understanding of the damping mechanisms which occur in graphite-epoxy systems. Thus, since a sufficient experimental basis does not exist for the damping mechanism investigated in reference (2), it does not appear reasonable to expend the additional effort required to produce such a complex analysis. To correct for this inadequacy in the theoretical development, the time variation of the mode shapes would be corrected in accord with the results determined in the damped beam investigation, reference (2). Since the undamped theoretical solution tends to form an upper bound for the experimental data, the adoption of any damping mechanism will improve the correlation between theory and experiment. Therefore, in view of the previous discussion, it was decided that we would limit the extent of our theoretical investigation by omitting any consideration of damping from this portion of the task.

It was discovered that the theoretical solution, as initially formulated, exhibited poor numerical characteristics. Indeed, one of the subcases of the analysis was particularly subject to numerical instability. The reformulation of the equations expanded the computational work to approximately three hundred pages so that none of this latter work will be included in the present work. Thus, one should proceed with caution when attempting to work in this area. Indeed, it is the authors' opinion that duplication of the equations listed in this report should not proceed under any circumstances. Additional results which avoid the numerical instabilities are obtainable by regrouping terms and employing asymptotic expansions.

This report extends the analysis of composite structural impact damage by considering a body of two dimensional extent. We envision that the theoretical solution coincides with the following physical problem. A mass of small dimensions, possessing a given velocity, is approaching a plate which is initially at rest. During impact the mass transfers its momentum to the region of the plate with which it is in contact. This information is utilized to ascertain initial conditions for the vibrating system. The plate and impactor remain in contact, over a fixed rectangular area, during the remainder of the first quarter of the first cycle of the motion. However, the theoretical solution, since it considers no damping mechanism, must be empirically corrected, on the basis of damped beam theory, to account for the effects of damping. Thus, the solution presented in this report accounts for off-central impact, provides the exact eigenvalues and eigenfunctions for a simply supported plate carrying a distributed impactor mass, and it is empirically altered to account for material damping.

ANALYSIS

From Timoshenko and Woinowsky-Krieger, reference (4), we recall that the differential equation for the transverse deflection of a special orthotropic plate and the normal moment-curvature relations are given by,

$$D_x w_{xxxx} + 2 H w_{xxyy} + D_y w_{yyyy} = q$$

$$M_x = -(D_x w_{xx} + D_i w_{yy})$$

$$M_y = -(D_y w_{yy} + D_i w_{xx})$$
(1)

where D_X , D_V = flexural rigidities in the x and y directions

D1 = flexural rigidity associated with Poisson's effect

H = flexural rigidity associated with Poisson's effect and shear

Mx, My = bending moment per unit length in x and y directions

q = transverse load per unit area

w = transverse deflection of the plate

x,y = distances measured along the x and y coordinate axes.

Note that in the previous equation, subscripts are utilized to denote differentiation with respect to the variable so indicated. In accord with our previous work, references (1) and (2), it is assumed that the impacting mass remains in contact with the plate during the initial phase of its motion; thus, in view of equation (1) the equation of motion for a plate carrying a distributed mass may be written.

$$D_{x}W_{xxx} + 2HW_{xxyy} + D_{y}W_{yyyy}$$

$$+ \left\{ \rho h + \frac{M}{4\epsilon_{i}\epsilon_{2}} \left[U(x-c+\epsilon_{i}) - U(x-c-\epsilon_{i}) \right] \left[U(y-d+\epsilon_{2}) - U(y-d-\epsilon_{2}) \right] \right\} W_{\bar{t}}$$

$$= 0$$

where c,d = distance to impact point in x and y directions

h = thickness of plate

M = mass of impactor

t = time

$$U(x), \text{ unit step function} = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

 $\varepsilon_1, \varepsilon_2$ = half width of impact zone in x and y directions

ρ = mass density of plate material.

It is convenient to introduce the Laplace time transform, i.e.,

$$\overline{W}(x,y,p) = \int_0^\infty e^{-pt} W(x,y,t) dt$$
 (3)

where p = time transform parameter

w = time transform of deflection.

Recalling from our original discussion that the plate is initially confined to the x-y plane, i.e., w(x,y,o) = 0, and noting our previous work, references (1) and (2), we assume,

$$w_{\xi}(x,y,o) = V[U(x-c+\epsilon_1)-U(x-c-\epsilon_1)][U(y-d+\epsilon_2)-U(y-d-\epsilon_2)]$$
 (4)

where V = impact corrected velocity of impactor and plate.

Applying the Laplace transform, i.e., equation (3), to equation (2), utilizing our previous observation and equation (4), we obtain,

$$D_{x}\overline{w}_{xxxx} + 2H\overline{w}_{xxyy} + D_{y}\overline{w}_{yyyy}$$

$$+ P^{2} \left\{ \rho h + \frac{M}{4\epsilon_{i}\epsilon_{2}} \left\{ U(x-c+\epsilon_{i}) - U(x-c-\epsilon_{i}) \right\} \left[U(y-d+\epsilon_{2}) - U(y-d-\epsilon_{2}) \right] \right\} \overline{w}$$

$$= C_{1} \left[U(x-c+\epsilon_{i}) - U(x-c-\epsilon_{i}) \right] \left[U(y-d+\epsilon_{2}) - U(y-d-\epsilon_{2}) \right]$$
where $C_{1} = \left(\rho h + \frac{M}{4\epsilon_{3}\epsilon_{3}} \right) \vee$

Noting that the functions $[U(x-c+\epsilon_1) - U(x-c-\epsilon_1)]$ and $[U(y-d+\epsilon_2) - U(y-d-\epsilon_2)]$ effectively limit the contribution of \overline{w} to the neighborhood of the impact point (c,d) in accord with our previous work, references (1) and (2), we shall assume that,

$$[U(x-c+\varepsilon_1)-U(x-c-\varepsilon_1)][U(y-d+\varepsilon_2)-U(y-d-\varepsilon_2)]\overline{W}$$

$$\cong \overline{W}(c,d,p)[U(x-c+\varepsilon_1)-U(x-c-\varepsilon_1)][U(y-d+\varepsilon_2)-U(y-d-\varepsilon_2)]$$

Introducing the previous approximation into equation (5), we find,

$$D_x \overline{w}_{xxxx} + 2 H \overline{w}_{xxyy} + D_y \overline{w}_{yyyy} + \rho k p^2 \overline{w}$$

$$= [C_1 - C_2 p^2 \overline{w} (c,d,p)][U(x-c+\epsilon_1) - U(x-c-\epsilon_1)][U(y-d+\epsilon_2) - U(y-d-\epsilon_2)]$$
where $C_2 = \frac{M}{4\epsilon . \epsilon_2}$

Next we define the finite-sine transform by,

$$\widetilde{f}(x,m,t) = \int_{a}^{b} f(x,y,t) \sin(\frac{m\pi y}{b}) dy$$
 (7)

where f(x,m,t) = finite-sine transform of the arbitrary function f.

m = finite-sine transform parameter

Further, we recall that for the problem of a simply supported plate the boundary conditions along the edges y = 0 and y = b, i.e., equation (1), may be written,

$$W(x,0,t) = W(x,b,t) = 0$$

 $M_{ij}(x,0,t) = M_{ij}(x,b,t) = 0$

However, since we have adopted a sine solution, i.e., equation (7), it may be shown that the deflection function satisfies the following conditions,

$$W_{XX}(x,0,t) = W_{YY}(x,0,t) = 0$$

 $W_{XX}(x,0,t) = W_{YY}(x,0,t) = 0$

These latter results imply, in view of equation (1), that $M_y(x,o,t) = M_y(x,b,t) = 0$ and therefore, a sine expansion of our function satisfies the boundary conditions imposed along the lines y = 0 and y = b. Thus, it is admissible to employ the finite-sine transform, i.e., equation (7), on the equation of motion, i.e., equation (6), to obtain,

$$\frac{2}{W_{XXXX}} - 2 \frac{H}{D_X} \left(\frac{\pi_M}{D} \right)^2 \frac{2}{W_{XX}} + \left[\frac{\rho_N}{D_X} P^2 + \frac{D_A}{D_X} \left(\frac{\pi_M}{D} \right)^4 \right] \frac{2}{W}$$

$$= C_M \left[C_3 - C_4 p^2 \overline{W} \left(c, d, p \right) \right] \left[U(x - c + \varepsilon_1) - U(x - c - \varepsilon_1) \right] \qquad (8)$$
where $C_3 = \left(\frac{\rho_N}{D_X} + \frac{M}{4 \varepsilon_1 \varepsilon_2 D_X} \right) \vee$

$$C_4 = \frac{M}{4 \varepsilon_1 \varepsilon_2 D_X}$$

$$C_M = \frac{2b}{\pi_M} \sin \frac{\pi_M \varepsilon_2}{b} \sin \frac{\pi_M d}{b}$$

Finally, we introduce the Laplace space transform by,

$$\widehat{\mathbf{w}}(\mathbf{s},\mathbf{y},\mathbf{t}) = \int_{\mathbf{s}}^{\infty} \mathbf{C}^{-\mathbf{s}\mathbf{x}} \mathbf{w}(\mathbf{x},\mathbf{y},\mathbf{t}) d\mathbf{x}$$
 (9)

where s = space transform parameter

 $\hat{w}(s,y,t)$ = space transform of transverse deflection.

Utilizing the Laplace space transform, i.e., equation (9), on the basic system equation, i.e., equation (8), we discover that,

$$\begin{array}{ll}
s^{4}\widehat{\mathbb{W}} - s^{3}\widehat{\mathbb{W}}(0, M, P) - s^{2}\widehat{\mathbb{W}}_{K}(0, M, P) - s\widehat{\mathbb{W}}_{XK}(0, M, P) - \widehat{\mathbb{W}}_{XKK}(0, M, P) \\
- 2 \frac{H}{D_{K}} \left(\frac{m_{K}}{U}\right)^{2} \left[s^{2}\widehat{\mathbb{W}} - s\widehat{\mathbb{W}}(0, M, P) - \widehat{\mathbb{W}}_{K}(0, M, P)\right] \\
+ \left[\frac{P_{K}}{D_{K}}P^{2} + \frac{P_{K}}{D_{K}} \left(\frac{m_{K}}{U}\right)^{4}\right]\widehat{\mathbb{W}} \\
= C_{M}\left[C_{3} - C_{4}P^{2}\widehat{\mathbb{W}}(c, d, P)\right] \cdot \frac{1}{S} e^{-c_{3}} \left(e^{\epsilon_{1}s} - e^{-\epsilon_{1}s}\right) \tag{10}
\end{array}$$

However, it may be shown that the boundary conditions along the edges x = 0 and x = a, i.e., $w(o,y,t) = M_X(o,y,t) = w(a,y,t) = M_X(a,y,t) = 0$, are equivalent to the conditions,

$$\widetilde{\widetilde{w}}(c,m,p) = \widetilde{\widetilde{w}}(a,m,p) = 0$$

$$\widetilde{\widetilde{w}}_{xx}(c,m,p) = \widetilde{\widetilde{w}}_{xx}(a,m,p) = 0$$
(11)

Applying this set of boundary conditions to the equation of motion, i.e., equation (10), and performing some algebraic reduction, we have,

$$\widehat{W} = \frac{1}{a - \overline{a}} \left\{ \left[\frac{a}{s^2 - \overline{a}} - \frac{\overline{a}}{s^2 - a} \right] \widehat{W}_{x}(o, m, p) \right. \\
+ \left[\frac{1}{3^2 - a} - \frac{1}{3^2 - \overline{a}} \right] \widehat{W}_{xxx}(o, m, p) \\
+ C_{m} \left[C_3 - C_4 p^2 \widehat{W}(c, d, p) \right] \cdot \\
\cdot \frac{1}{3} \left[\frac{1}{3^2 - a} - \frac{1}{3^2 - \overline{a}} \right] e^{-c_3} \left(e^{c_1 s} - e^{-c_1 s} \right)$$
where $a = \frac{H}{D_x} \left(\frac{T_{xx}}{b} \right)^2 + i \sqrt{\frac{\rho t_1}{D_x}} p^2 + \frac{D_x D_{t_1} - H^2}{D_{x_1}^2} \left(\frac{T_{xx}}{b} \right)^4$

$$\overline{a} = \frac{H}{D_x} \left(\frac{T_{xx}}{b} \right)^2 - i \sqrt{\frac{\rho t_1}{D_x}} p^2 + \frac{D_x D_{t_1} - H^2}{D_{x_1}^2} \left(\frac{T_{xx}}{b} \right)^4$$

Inverting the equation of motion, i.e., equation (12), with respect to x, we obtain,

$$\begin{split} \widetilde{W} &= \frac{1}{2b_1b_1(b_1^2+b_1^2)} \cdot \\ &\cdot \left\{ \left[b_1 \left(-b_1^2+3b_1^2 \right) \cos b_1 b_1 x \sin b_1 x + b_1(3b_1^2-b_1^2) \sin b_1 b_1 x \cos b_1 x \right] \widetilde{W}_X \left(O_1 m_1 p \right) \right. \\ &+ \left[b_1 \cosh b_1 x \sin b_1 x - b_1 \sin b_1 x \cos b_1 x \right] \widetilde{W}_{XXX} \left(O_1 m_1 p \right) \\ &+ \frac{C_{M}}{b_1^2+b_1^2} \left[C_3 - C_4 p^2 \widetilde{W} \left(C_1 d_1 p \right) \right] \cdot \\ &\cdot \left\{ \left[\left(b_1^2 - b_1^2 \right) \sin b_1 b_1 \left(x - c + \epsilon_1 \right) \sin b_1 \left(x - c + \epsilon_1 \right) \right. \right. \\ &+ \left. \left. \left. \left. \left(b_1^2 - b_1^2 \right) \sin b_1 \left(x - c + \epsilon_1 \right) \sin b_1 \left(x - c + \epsilon_1 \right) \right. \right\} \right] U \left(x - c + \epsilon_1 \right) \\ &- \left. \left. \left(\left(b_1^2 - b_1^2 \right) \sin b_1 \left(x - c - \epsilon_1 \right) \sin b_1 \left(x - c - \epsilon_1 \right) \right. \right] \right. \\ &+ \left. \left. \left. \left. \left(b_1^2 - b_1^2 \right) \sin b_1 \left(x - c - \epsilon_1 \right) \cos b_1 \left(x - c - \epsilon_1 \right) \right. \right\} \right] U \left(x - c - \epsilon_1 \right) \right\} \right] U \left(x - c - \epsilon_1 \right) \right\} \\ &+ \left. \left. \left. \left. \left(b_1^2 - b_1^2 \right) \right. \left. \left(\frac{T_{M}}{D} \right)^4 \right. \right]^{N_2} + \frac{1}{2} \left. \frac{H}{D_X} \left(\frac{T_{M}}{D} \right)^2 \right. \right\}^{N_2} \right. \\ \\ &+ \left. \left. \left. \left. \left(\frac{T_{M}}{D_X} \right) \right. \left. \left(\frac{T_{M}}{D_X} \right) \right. \right]^{N_2} - \frac{1}{2} \left. \frac{H}{D_X} \left(\frac{T_{M}}{D_X} \right)^2 \right. \right\}^{N_2} \right. \\ \\ &+ \left. \left. \left. \left(\frac{T_{M}}{D_X} \right) \right. \left. \left(\frac{T_{M}}{D_X} \right) \right. \right]^{N_2} - \frac{1}{2} \left. \frac{H}{D_X} \left(\frac{T_{M}}{D_X} \right)^2 \right\}^{N_2} \right. \end{aligned}$$

In accord with our previous discussion, the solution represented by equation (13) must satisfy the boundary conditions along the edge x = a expressed in equation (11). Differentiating equation (13) twice with respect to x and utilizing the results in the boundary conditions along edge x = a, it is possible to determine expressions for $\tilde{w}_{x}(o,m,p)$ and $\tilde{w}_{xx}(o,m,p)$. Substituting the results of these calculations into equation (13), we conclude that,

$$\widetilde{W} = \frac{i}{4br^2bi^2(br^2+bi^2)^2} \left[C_3 - C_4 p^2 \widetilde{W}(c,d,p) \right] \cdot \left\{ -\frac{1}{3uk^2br^2 + 3ic^2} b_i a \right. \cdot \left\{ br[il_0(-br^2+3bc^2) + il_1(br^2+bc^2)] \cos kbr x \sin b i x \right. \cdot \left\{ br[il_0(3br^2-bc^2) - il_1(br^2+bc^2)] \sin kbr x \cos b i x \right. \right\} + bi \left[il_0(3br^2-bc^2) - il_1(br^2+bc^2) \right] \sin kbr x \cos b i x \right\} + 2brbi \left\{ \left[(br^2-bc^2) \sin kbr (x-c+c_1) \cos b i (x-c+c_1) \right] \right\} U(x-c+c_1) - \left[(br^2-bc^2) \sin k r (x-c+c_1) \sin b i (x-c-c_1) \right] U(x-c+c_1) \right\} + 2brbi \left\{ 1 - \cosh k r (x-c-c_1) \sin b i (x-c-c_1) \right\} U(x-c-c_1) \right\} (14)$$

where $d_s = \operatorname{such} \operatorname{br}(a-c+\epsilon_1) \cdot \operatorname{such} \operatorname{id}(a-c+\epsilon_1) - \operatorname{such} \operatorname{br}(a-c-\epsilon_1) \cdot \operatorname{such} \operatorname{id}(a-c-\epsilon_1)$ $d_c = \operatorname{cosk} \operatorname{br}(a-c+\epsilon_1) \cdot \operatorname{cosh} \operatorname{id}(a-c+\epsilon_1) - \operatorname{cosh} \operatorname{br}(a-c-\epsilon_1) \cdot \operatorname{cosh} \operatorname{id}(a-c-\epsilon_1)$ $d_s = (\operatorname{br} \mathcal{X}_s - \operatorname{bi} \mathcal{X}_c) \cdot \operatorname{such} \operatorname{br} a \cdot \operatorname{cosh} a - (\operatorname{bi} \mathcal{X}_s + \operatorname{br} \mathcal{X}_c) \cdot \operatorname{cosh} \operatorname{br} a \cdot \operatorname{such} a$ $d_1 = (\operatorname{br} \mathcal{X}_s + \operatorname{br} \mathcal{X}_c) \cdot \operatorname{such} \operatorname{br} a \cdot \operatorname{cos} \operatorname{br} a + (\operatorname{br} \mathcal{X}_s - \operatorname{br} \mathcal{X}_c) \cdot \operatorname{cosh} \operatorname{br} a \cdot \operatorname{such} a$

Inverting equation (14) with respect to y, we note that,

$$\overline{W} = \frac{1}{\pi} \left[C_3 - C_4 p^2 \overline{W}(C,d,p) \right],$$

$$\sum_{m=1}^{\infty} \frac{1}{m \sin^2 h^2 (\ln^2 + h^2)^2} \sin \frac{\pi m \varepsilon_2}{b} \sin \frac{\pi m d}{b} \sin \frac{\pi m d}{b}.$$

$$\cdot \left\{ -\frac{1}{\sin h^2 h^2 (\ln^2 + h^2)^2} \sin \frac{\pi m \varepsilon_2}{b} \sin \frac{\pi m d}{b} \sin \frac{\pi m d}{b} \right\}.$$

· (by [(- bx2+3bi2) No+ (bx2+bi2) N,] cosh by x six bix

To continue our solution, we evaluate equation (15) at the impact point, i.e., x = c and y = d, and solve the resulting expression for $\overline{w}(c,d,p)$. Introducing the result of this computation into equation (15) we finally obtain the time transform of the transverse displacement, or.

$$\overline{W}(x,y,p) = \frac{1}{\pi} \cdot \frac{C_3}{1 + \frac{C_4}{\pi}} \cdot \frac{\overline{\Sigma}}{1 + \frac{C_4}{\pi}$$

where
$$\xi_{M} = \frac{1}{N(br^{2}bc^{2}(br^{2}+bc^{2})^{2}}$$
 $\xi_{M} = \frac{1}{b}$ $\xi_{M} =$

$$\lambda_{M} = \frac{1}{m_{1}m_{2}b_{1}^{2}(b_{1}^{2}+b_{1}^{2})^{2}} \sin \frac{\pi_{1}m_{2}}{b} \sin \frac{\pi_{1}m_{2}}{b}$$

$$\mu_{M} = -\frac{1}{\sin^{2}b_{1}(b_{1}^{2}+b_{1}^{2})^{2}} \int_{0}^{\infty} + (b_{1}^{2}+b_{1}^{2}) \int_{0}^{\infty} + (b_{1}^{2}+b$$

To complete this investigation we must invert equation (16), i.e., the Laplace transform of the transverse deflection, and obtain the time response of the system. In reality we are concerned with the curvatures of the plate and not the displacement; however, since the technique to ascertain either is identical, we shall consolidate our considerations and only discuss the simplest of these quantities. To accomplish the above stated purpose we must utilize the complex inversion theorem for Laplace transforms. However, an inspection of equation (16) indicates that it is necessary to extend our discussion beyond the time transform parameter p and include the variables br and bi, where the relations connecting br and bi with p are recorded at the end of equation (13). To assist in this process the correspondence between the usual indented path of integration in the p-plane and the corresponding paths in the br and bi planes are indicated in figures 1 and 2. It is of particular importance to observe that figure 1 declares that the path of integration in the br-plane is dependent upon the flexural rigidities of the plate. Therefore, in view of the different paths indicated in these two figures it is necessary to subdivide the general solution into the following three cases:

- 1) both br and bi are imaginary.
- 2) br is real and bi is imaginary.
- 3) $b_r = \alpha + i\beta$ and $b_i = \beta + i\alpha$

where
$$2\alpha = \left\{ \left\langle \frac{\partial h}{\partial x} P_{ij}^2 + \frac{h^2 - D_z D_d}{D_x^2} \left(\frac{\pi m}{b} \right)^4 \right\rangle^{1/2} + \frac{H}{D_x} \left(\frac{\pi m}{b} \right)^2 \right\}^{1/2}$$

Figure 1 - Mapping from the P Plane to the BR Plane Note:
$$\alpha_0 = \sqrt{\frac{Dy}{\rho h}} \left(\frac{\pi m}{b}\right)^2$$
; $\alpha_1 = \sqrt{\frac{H^2 - D_x D_y}{\rho h} D_x} \left(\frac{\pi m}{b}\right)^2$; $\alpha_3 = \sqrt{\frac{D_x D_y - H^2}{\rho h} D_x} \left(\frac{\pi m}{b}\right)^2$

Figure 2 - Mapping from the P Plane to the BI Plane

and sustably correcting for the transformation between the p and by, by vertabled

$$2p = \left\{ \left\langle \frac{\rho_{M}}{D_{X}} p_{y}^{2} + \frac{H^{2} - D_{X} D_{y}}{D_{X}^{2}} \left(\frac{\pi_{M}}{b} \right)^{4} \right\}^{2} - \frac{H}{D_{X}} \left(\frac{\pi_{M}}{b} \right)^{2} \right\}^{1/2}$$
(17)

Next, we require the location of all of the singularities which lie within and on the contours depicted in figures 1 and 2. Since the present analysis neglects damping, the singularities should lie along the y axis of the p-plane, thus, we need only consider points on the contours depicted on the various diagrams. The frequency equation is obtained from the denominator of equation (16), i.e.,

$$\chi = 1 + \frac{c_{\rm s}}{c_{\rm s}} P^2 \sum_{i} \phi_{\rm m} \tag{18}$$

where χ = frequency equation.

Zeros of the frequency equation, i.e., equation (18), were determined by writing a computer program which reflected the correspondence between the p-plane and the b_r and b_i -planes as expressed in the three previously defined cases. A summary of all of the equations needed to perform such computations is included in appendix A.

In order to terminate our investigation, it is necessary to determine the residue of the function \overline{w} , i.e., equation (16), at each of the zeros of the frequency equation, equation (18). To determine the residue of \overline{w} requires the derivative of χ , hence, recalling the results of equations (16) and (18), we find,

$$\Lambda_{i} = \frac{dh}{dh} = \frac{dh}{dh} \left\{ 5b \sum_{i=1}^{n} \frac{dh}{dh} \left(hm + \eta m \right) + \mu m \left(\frac{dh}{dh} + \frac{dh}{d\eta} \right) \right\}$$
(13)

For the convenience of the reader all of the expressions recorded in the above equation are summarized in appendix A. Specifically, this appendix includes the general expressions for all of the derivatives in addition to the transformation of all the functions and their derivatives to the forms required by the three previously defined cases.

Finally, utilizing the complex inversion integral for Laplace transforms and suitably correcting for the transformation between the p and b_r , b_i variables, we obtain,

$$W'(x,y,t) = 2 \frac{c_2}{c_4} \sum_{P_1} \frac{\sum_{i=1}^{n} S_{ini}}{\Psi} \operatorname{sinc pyt}$$
 (20)

where pv = imaginary part of p

Note that although all of the equations between equation (16) and equation (19) are complex expressions, equation (20) is presented in real form, i.e., in the form in which it is employed in the numerical processes. Values for the real functions

$$\left(\frac{\mathrm{d}\lambda\mathrm{m}}{\mathrm{d}\mathrm{p}}\right)^*, \left(\frac{\mathrm{d}\mu\mathrm{m}}{\mathrm{d}\mathrm{p}}\right)^*, \text{ etc.}$$

may be found in appendix A corresponding to the three different cases.

Although equation (20) represents our solution of the plate impact problem, in view of our previous work (reference (2)), we recognize its insufficiencies because of the neglect of damping. Since the present work required approximately three hundred pages of computation it is unlikely that the extension to include damping will be attempted. However, since equation (20) appears to act as an upper bound solution, we shall modify it by the inclusion of an exponential factor which decreases with time in an attempt to include the effect of damping. Thus, we shall modify equation (20), in accord with the results recorded in reference (2), to obtain,

$$W(x,y,t) = 2 \frac{C_3}{C_4} \sum_{P_1} \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=$$

where k = constant reflecting the equivalent damping of the vibrating system.

The solution represented by equation (21) and all of its similarly corrected second partial derivatives was programmed for numerical evaluation on a digital computer. However, it is important to record that the equations presented in this report are not numerically stable and considerable additional effect is required to construct numerically stable equivalences. In particular, case 2 is subject to considerable difficulty so that one should contact either of the authors before attempting to employ any of the equations listed in this report. Computational data were obtained from the experimental results presented by P.C. Chou and W. J. Flis (reference (3)). The results of the experimental tests and the theoretical calculations are presented in tables I through III and figures 3 through 17.

It is of general interest to observe that the correlation between the exponentially corrected solutions and the experimental results are reasonably

good. Indeed, most of the empirical information lies between or near the solutions corresponding to the two selected values of damping indicated in the figures. Only in the case of plate series B7 is there an obvious disagreement between the two sets of results. Fortunately, Chou (reference (3)) has published the photographic record of the strain response for this particular investigation and it may be seen from these results that the experimental data exhibits a behavior that is incompatible with the theoretical characteristics of our model. Thus, it would appear that an agency of unknown, but dissipative, origin was operative during this particular set of tests.

Lasy sais not souted "Leaseaned REFERENCES to at handland of it colleges at the

- McQuillen, E.J., Llorens, R.E., and Gause, L.W., "Low Velocity Transverse Normal Impact of Graphite-Epoxy Composite Laminates," Report No. NADC-75119-30, Naval Air Development Center, Warminster, PA, June 1975.
- Llorens, R.E., and McQuillen, E.J., "Off-Center, Low Velocity, Transverse Normal Impact of a Viscoelastic Beam," Report No. NADC-78237-60, Naval Air Development Center, Warminster, PA, September 1978.
- Chou, P.C., Flis, W.J., and Miller, H., "Certification of Composite Aircraft Structures Under Impact, Fatigue and Environment Conditions - Part I," Report No. NADC-78259-60, Naval Air Development Center, Warminster, PA, January 1978.
- 4. Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells, 2nd Ed., McGraw-Hill, N.Y., 1959.

TABLE I - Experimental and Theoretical Values of the Strain/Unit Velocity for B Plate Series

	/	/	/	/	Exx/V	x 10 ⁻³	Sec/M	/	Eyy/V	x 10 ⁻³ ,s
	Magacios.	1 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3	şi / K	, Dampi	ng Const	tant	gi / 1	(, Dampi	ng Const
	Ta Za	/ 2		0	/25×10	%100×10		0	/25x10	6/100×10
B1	0.228	1.73	1.01	1.53	1.01	0.88	1.50	2.49	1.54	1.34
		2.45	1.10				1.62			
		2.99	1.24				1.79			
	0.453	1.73	1.58	2.01	1.49	1.37	2.33	3.22	2.28	2.10
		2.45	1.54				2.18			
		2.99	1.74				2.34			
	0.907	1.73	2.57	2.72	2.19	2.06	3.71	4.32	3.37	3.16
B2	0.228	1.73	0.90	1.23	1.02	0.87	1.11	1.69	1.37	1.12
		2.45	0.90				1.31		100	
		2.99	1.01				1.34			
	0.453	1.73	1.57	1.85	1.51	1.36	2.04	2.52	2.04	1.78
		2.45	1.52				1.96			
		2.99	1.54				2.21			
	0.907	1.73	2.23	2.66	2.26	2.11	3.19	3.66	3.01	2.78
в3	0.228	1.73	0.72	1.08	0.79	0.60	1.33	2.01	1.47	1.19
		2.45	0.76				1.45			
		2.99	0.85				1.52	00.2	10 0	
	0.453	1.73	1.07	1.38	1.07	0.96	2.08	2.58	2.05	1.87
		2.45	1.19				2.15			
	6 1	2.99	1.24	er o Ti	2 (0)	14.0	2.24	82.6		N. O. F.
	0.907	1.73	1.65	1.81	1.58	1.46	3.07	3.43	3.04	2.84
		2.45	1.72	V2 5			3.27	7. 6		
B4	0.228	1.73	0.59	1.11	0.75	0.52	0.96	1.81	1.19	0.79
		2.45	0.62				0.89			
		2.99	0.67	VEVET			0.96			

TABLE I - Experimental and Theoretical Values of the Strain/Unit Velocity for B Plate Series (Continued)

	/		/ /	/ >= 3	E _{xx} /v	x 10 ⁻³ ,	Sec/M		ε _{yy} /v ×	10 ⁻³ ,Sec
	Masc tor	Perocity of the state of the st	3	şi / K	, Dampin	ng Const	ant	a. K	, Dampin	g Constan
	THE ST	/ 2 4		0	/25×10	100×10	7	0	25x10	100×10
B4	0.453	1.73	1.03	1.39	1.06	0.82	1.42	2.23	1.68	1.25
		2.45	1.02				1.44			
1 -19		2.99	1.00				1.48			
	0.907	1.73	1.49	1.94	1.47	1.25	2.23	3.09	2.29	1.90
B5	0.228	1.73	0.99	1.30	0.94	0.85	1.34	1.66	1.10	0.99
		2.45	1.08	13.E 3	e s	01.5 [1.33	7- 9		10.0
		2.99	1.08				1.32			
	0.453	1.73	1.76	1.79	1.54	1.39	2.10	2.37	1.93	1.70
		2.45	1.79				2.15			
		2.99	1.76				1.98			
	0.907	1.73	2.50	2.48	2.23	2.09	3.12	3.22	2.80	2.58
В6	0.228	1.73	0.68	0.80	0.65	0.52	1.23	1.50	1.31	1.12
		2.45	0.65	87.8		65,2	1.22		4.1	
		2.99	0.70				1.31			
	0.453	1.73	1.16	1.20	1.06	0.88	2.08	2.29	2.11	1.85
		2.45	1.21	Ç4,2			2.06	2710		
		2.99	1.20	68.1			1.94	2		
	0.907	1.73	1.89	1.57	1.42	1.31	2.92	3.04	2.87	2.76
В7	0.228	1.73	0.43	0.68	0.51	0.45	0.78	1.35	1.17	1.05
	88.5	2.45	0.41	10.7		50 14 15	0.72			de la l
		2.99	0.42	75.E			0.70	11.11	10.4	
	0.453	1.73	0.58	1.23	1.02	0.86	1.10	2.39	2.10	1.86
	2.0-1	2.45	0.65	Asid Mil	0.93	(1,0.1)	1.13	85.0		22.0.1
		2.99	0.67	Na.O.			1.15			
	0.907	1.73	0.98	1.70	1.51	1.36	1.71	3.37	3.11	2.87
		2.45	0.98				1.74			

TABLE II - Experimental and Theoretical Values of the Strain/Unit Velocity for F Plate Series

	/	/	/	ε _{yy} /V x 10 ⁻³ , Sec/									
	K, Damping Constant K, Damping Constant O /25x10-6/100x10-6 O /25x10-6/100x10-6												
	THE ST	/ 2 -	/	0	/25x10	6/100×10		0	/25x10	6/100×10 ⁻⁶			
F1	0.228	1.73	0.47	1.10	0.58	0.42	0.67	1.77	0.85	0.62			
19.00	20013	2.45	0.48				0.79						
		2.99	0.54	30.5	18.00 L		0.87	12.0		10.00			
	0.453	1.73	0.74	1.52	0.93	0.72	1.18	2.42	1.38	1.08			
		2.45	0.82	9 2			1.20						
		2.99	0.87				1.23						
	0.907	1.73	1.16	1.98	1.41	1.17	1.74	3.13	2.11	1.76			
		2.45	1.21				1.75						
F2	0.228	1.73	0.49	0.82	0.49	0.40	0.67	1.08	0.59	0.48			
		2.45	0.49				0.69						
		2.99	0.48				0.69						
	0.453	1.73	0.64	1.20	0.91	0.72	1.01	1.63	1.17	0.91			
		2.45	0.69				1.22						
		2.99	0.70				1.01						
	0.907	1.73	1.18	1.88	1.39	1.17	1.69	2.52	1.82	1.50			
		2.45	1.21				1.62						
F3	0.228	1.73	0.46	0.83	0.39	0.27	0.70	1.47	0.75	0.55			
		2.45	0.48				0.70						
		2.99	0.47				0.73						
	0.453	1.73	0.58	1.05	0.66	0.50	1.04	1.91	1.25	0.99			
		2.45	0.65				1.23						
		2.99	0.69				1.24						
	0.907	1.73	1.04	1.31	0.95	0.84	1.82	2.43	1.84	1.62			
		2.45	1.06				1.79						

TABLE II - Experimental and Theoretical Values of the Strain/Unit Velocity for F Plate Series (Continued)

	/		1	/	ε _{xx} /v	x 10 ⁻³ ,	Sec/M	/	Eyy/V 2	10 ⁻³ ,Sec
	10	7 65 K		ai / K	, Dampi	ng Const	ant	g: / 1	K, Dampir	ng Constan
	Impactor	72.5		0	/25×10	6/100×10-6	-/	6	/25x10	7 _{100×10} -6
F4	0.228	1.73	0.51	0.77	0.38	0.23	0.66	1.26	0.61	0.37
		2.45	0.50	82,1		68.0	0.67			
		2.99	0.51	08.5			0.66			
	0.453	1.73	0.59	1.10	0.60	0.42	0.81	1.76	0.91	0.60
	171	2.45	0.61	25.1 L		19-14	0.77	82.1	65.24	area e
		2.99	0.57	27.5			0.79			
	0.907	1.73	0.93	1.38	0.90	0.71	1.24	2.18	1.38	1.05
	10 mg (1)	2.45	0.98	18.0	03.6	-t4.0 !	1.35		6	ALCOVE !

TABLE III - Experimental and Theoretical Values of the Strain/Unit Velocity for H Plate Series

	/		/ /	/	€ xx/V	× 10 ⁻³	Sec/M	/	syy/V >	10 ⁻³ ,Sec
	Impactor	PEGOLF STORY		şi / K	, Dampi	ng Const	ant	g. / I	C, Dampir	ng Constan
	Tel Sa	/ 5		0	/25×10	%100×10	-	0	/25x10	9100×10-6
H1	0.228	1.73	0.57	1.41	0.74	0.56	0.47	1.36	0.72	0.54
		2.45	0.60			18.6	0.49	Dae S		
		2.99	0.68	2.21			0.55		2.0	
	0.453	1.73	1.05	1.92	1.18	0.95	0.91	1.86	1.15	0.92
	C2 0	2.45	1.10				0.96			7 t a 1
		2.99	1.11				0.92			
	0.907	1.73	1.62	2.48	1.78	1.52	1.39	2,41	1.74	1.48
	68	2.45	1.62	3 1	1000		1.42			50- 5-1
		1								
Н2	0.228	1.73	0.59	1.23	0.70	0.53	0.55	1.03	0.54	0.39
		2.45	0.63				0.57			
		2.99	0.64				0.59			
	0.453	1.73	0.75	1.63	1.16	0.93	0.67	1.35	0.91	0.71
		2.45	0.94				0.78			
		2.99	1.04			2 - 2 - 3	0.87			
	0.907	1.73	1.40	2.18	1.68	1.51	1.10	1.85	1.29	1.16
нз	0.228	1.73	0.58	1.01	0.54	0.41	0.56	1.08	0.64	0.51
		2.45	0.59				0.56			
		2.99	0.60				0.55			
	0.453	1.73	0.70	1.36	0.95	0.74	0.75	1.47	1.11	0.89
		2.45	0.78				0.86	*		
		2.99	0.79				0.87			
	0.907	1.73	1.26	1.91	1.40	1.22	1.39	2.10	1.63	1.44
		2.45	1.34				1.47			

TABLE III - Experimental and Theoretical Values of the Strain/Unit Velocity for H Plate Series (Continued)

	/		/		E _{xx} /v	× 10 ⁻³	Sec/M	/	Eyy/V:	x 10 Sec/
	Impacor Mass Cor	2 2 2 X		\$ª. K	, Dampi	ng Const	tant	ai /	K, Dampi	ng Constan
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/		/ 0	25x10	%100×10	5/	/ 0	/25x10	100x10 ⁻⁶
H4	0.228	1.73	0.65	1.09	0.51	0.33	0.54	1.01	0.46	0.31
		2.45	0.65	73.0			0.54	87.0	4 6 4 5	
		2.99	0.66	1.10.0	19.0		0.53			
	0.453	1.73	0.80	1.48	0.81	0.55	0.71	1.38	0.77	0.52
		2.45	0.84	in armen			0.73		1000	
		2.99	0.87	1.81.1	157.5		0.76		31	
	0.907	1.73	1.37	1.77	1.17	0.92	1.19	1.67	1.11	0.88
		2.45	1.31				1.04			

Physical configuration and parametric values for each of the plate series may be found in reference (3). Figure 3 - Comparison Between Theoretical and Experimental Results for Plate Series Bl

 \star ϵ_{xx}/v represents the strain in the x-direction per unit velocity Note:

** eyy/v represents the strain in the y-direction per unit velocity

Figure 4 - Comparison Between Theoretical and Experimental Results for Plate Series B2

Figure 5 - Comparison Between Theoretical and Experimental Results for Plate Series B3

Figure 6 - Comparison Between Theoretical and Experimental Results for Plate Series B4

Figure 7 - Comparison Between Theoretical and Experimental Results for Plate Series B5

Pigure 8 - Comparison Between Theoretical and Experimental Results for Plate Series B6

Figure 9 - Comparison Between Theoretical and Experimental Results for Plate Series B7

Figure 10 - Comparison Between Theoretical and Experimental Results for Plate Series Fl

Figure 11 - Comparison Between Theoretical and Experimental Results for Plate Series F2

Figure 12 - Comparison Between Theoretical and Experimental Results for Plate Series F3

Figure 13 - Comparison Between Theoretical and Experimental Results for Plate Series F4

Figure 14 - Comparison Between Theoretical and Experimental Results for Plate Series Hl

Figure 15 - Comparison Between Theoretical and Experimental Results for Plate Series H2

Figure 16 - Comparison Between Theoretical and Experimental Results for Plate Series H3

Figure 17 - Comparison Between Theoretical and Experimental Results for Plate Series H4

NADC-79215-60

AND PRINCIPAL OF THE PARTICULAR PRINCIPAL PROPERTY.

APPENDIX A

FUNCTIONS NEEDED FOR THE EVALUATION OF THE SOLUTION

NADC-79215-60

GENERAL REPRESENTATION OF TIME TRANSFORMED FUNCTIONS

Note that functions defined in the text are not repeated in this appendix.

$$\frac{dQ_{P}}{dP} = \frac{1}{4b_{1}} \cdot \frac{\rho h}{D_{x}} \left[\frac{\rho k}{D_{x}} p^{2} + \frac{Du}{Dx} \left(\frac{\pi m}{b} \right)^{4} \right]^{-1/2} p$$

$$\frac{db_{1}}{dP} = \frac{1}{4b_{1}} \cdot \frac{\rho h}{Dx} \left[\frac{\rho h}{Dx} p^{2} + \frac{Du}{Dx} \left(\frac{\pi m}{b} \right)^{4} \right]^{-1/2} p$$

$$\frac{du_{2}}{dP} = (a - c + \epsilon_{1}) \left[\cosh h \cdot (a - c + \epsilon_{1}) \sin h \cdot (a - c + \epsilon_{1}) \frac{dh}{dP} \right]$$

$$+ \sinh h \cdot (a - c - \epsilon_{1}) \cos h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$-(a - c - \epsilon_{1}) \left[\cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$+ \sinh h \cdot (a - c - \epsilon_{1}) \cos h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c + \epsilon_{1}) \sin h \cdot (a - c + \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- (a - c - \epsilon_{1}) \left[\sinh h \cdot (a - c - \epsilon_{1}) \cos h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP} \right]$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP}$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{dh}{dP}$$

$$- \cosh h \cdot (a - c - \epsilon_{1}) \sin h \cdot (a - c - \epsilon_{1}) \frac{$$

$$\frac{dU_1}{dp} = \left[\frac{db_1}{dp} \mathcal{N}_5 + \frac{db_2}{dp} \mathcal{N}_5 + b_1 \frac{d\mathcal{N}_5}{dp} + b_1 \frac{d\mathcal{N}_5}{dp}\right] \text{ such by a costerial}$$

$$+ a \left(\text{by } \mathcal{N}_5 + b_1 \mathcal{N}_5 \right) \left(\text{coste by a costerial} \frac{db_2}{dp} - \text{such by a such is a } \frac{db_3}{dp} \right)$$

$$+ \left[\frac{db_1}{dp} \mathcal{N}_5 - \frac{db_2}{dp} \mathcal{N}_5 + b_1 \frac{d\mathcal{N}_5}{dp} - b_1 \frac{d\mathcal{N}_5}{dp} \right] \text{ coste by a such is a } \frac{db_3}{dp} \right)$$

$$+ a \left(\text{bi } \mathcal{N}_5 - b_1 \mathcal{N}_5 \right) \left(\text{such by a such is a } \frac{db_3}{dp} + \text{coste by a costerial} \frac{db_3}{dp} \right)$$

$$+ a \left(\text{bi } \mathcal{N}_5 - b_1 \mathcal{N}_5 \right) \left(\text{such by a such is a } \frac{db_3}{dp} + \text{coste by a costerial} \frac{db_3}{dp} \right)$$

$$+ a \left(\text{bi } \frac{dh_2}{dp} + b_1 \frac{dh_3}{dp} + b_2 \frac{dh_3}{dp} + \text{coste by a costerial} \frac{db_3}{dp} \right)$$

$$+ a \left(\text{bi } \frac{db_2}{dp} + b_1 \frac{db_3}{dp} + b_2 \frac{db_3}{dp} + \text{coste by a costerial} \frac{db_3}{dp} \right)$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_1 \frac{db_3}{dp} + b_2 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_1 \frac{db_3}{dp} + b_2 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_2 \frac{db_3}{dp} + b_3 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_2 \frac{db_3}{dp} + b_3 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_3 \frac{db_3}{dp} + b_4 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_3 \frac{db_3}{dp} + b_4 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_4 \frac{db_3}{dp} + b_4 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_4 \frac{db_3}{dp} + b_4 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_4 \frac{db_3}{dp} + b_4 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_4 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_4 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_4 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_4 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_4 \frac{db_3}{dp} \right) \text{such by a costerial}$$

$$+ a \left(\text{bi } \frac{db_3}{dp} + b_4 \frac{db_3}{dp} \right) \text{$$

$$\frac{d \mu_{0}}{d p} = \frac{a}{(anh^{2}b_{1}a_{1}+sin^{2}b_{1}a_{1})^{2}} \cdot \left(anh 2b_{1}a_{1} \frac{db_{1}}{d p} + an 2b_{1}a_{1} \frac{db_{2}}{d p} \right) \cdot \left\{ br \left[(-br^{2}+3b_{1}^{2}) \mathcal{R}_{0} + (br^{2}+b_{1}^{2}) \mathcal{R}_{1} \right] cosh b_{1}c cos b_{1}c \right\}$$

$$+ b_{1} \left[(3b_{1}^{2}-b_{1}^{2}) \mathcal{R}_{0} + (br^{2}+b_{1}^{2}) \mathcal{R}_{1} \right] cosh b_{1}c cos b_{1}c \right\}$$

$$+ \left(3b_{1}^{2} \frac{db_{1}}{d p} + 3b_{1}^{2} \frac{db_{1}}{d p} + 6b_{1}b_{1} \frac{db_{2}}{d p} \right) \mathcal{R}_{1} \right] cosh b_{1}c cos b_{2}c$$

$$+ b_{2} \left[(-br^{2}+3b_{1}^{2}) \frac{dab_{2}}{d p} + (br^{2}+b_{1}^{2}) \frac{db_{2}}{d p} \right] cosh b_{1}c cos b_{2}c$$

$$+ b_{2} \left[(6b_{1}b_{1}^{2} + 3b_{1}^{2}) \frac{db_{2}}{d p} + (br^{2}+b_{1}^{2}) \frac{db_{2}}{d p} \right] cosh b_{1}c cos b_{2}c$$

$$+ \left[(6b_{1}b_{1}^{2} \frac{db_{2}}{d p} + 3b_{1}^{2} \frac{db_{2}}{d p} - 3b_{1}^{2} \frac{db_{2}}{d p} \right) \mathcal{R}_{1} \right] cosh b_{1}c cos b_{2}c$$

$$+ \left[(6b_{1}b_{1}^{2} \frac{db_{2}}{d p} - br^{2} \frac{db_{2}}{d p} - 3b_{1}^{2} \frac{db_{2}}{d p} \right) \mathcal{R}_{1} \right] cosh b_{1}c cos b_{2}c$$

$$+ b_{1} \left[(3br^{2}-br^{2}) \mathcal{R}_{0} + (br^{2}+br^{2}) \mathcal{R}_{1} \right] cosh b_{2}c cos b_{2}c$$

$$+ c_{2}b_{1} \left[(3br^{2}-br^{2}) \mathcal{R}_{0} + (br^{2}+br^{2}) \mathcal{R}_{1} \right] cosh b_{2}c cos b_{2}c$$

$$+ c_{3}b_{1} \left[(3br^{2}-br^{2}) \mathcal{R}_{0} + (br^{2}+br^{2}) \mathcal{R}_{1} \right] cosh b_{2}c cos b_{2}c$$

$$+ c_{3}b_{1} \left[(3br^{2}-br^{2}) \mathcal{R}_{0} + (br^{2}+br^{2}) \mathcal{R}_{1} \right] cosh b_{2}c cos b_{2}c$$

$$+ c_{3}b_{1} \left[(3br^{2}-br^{2}) \mathcal{R}_{0} + (br^{2}+br^{2}) \mathcal{R}_{1} \right] cosh b_{2}c cos b_{2}c$$

$$+ c_{3}b_{1} \left[(3br^{2}-br^{2}) \mathcal{R}_{0} + (br^{2}+br^{2}) \mathcal{R}_{1} \right] cosh b_{2}c cos b_{2}c$$

$$+ c_{3}b_{1} \left[(3br^{2}-br^{2}) \mathcal{R}_{0} + (br^{2}+br^{2}) \mathcal{R}_{1} \right] cosh b_{2}c cos b_{2}c$$

$$+ c_{3}b_{1} \left[(3br^{2}-br^{2}) \mathcal{R}_{0} + (br^{2}+br^{2}) \mathcal{R}_{1} \right] cosh b_{2}c cos b_{2}c cos b_{2}c$$

$$+ c_{3}b_{1} \left[(3br^{2}-br^{2}) \mathcal{R}_{0} + (br^{2}+br^{2}) \mathcal{R}_{1} \right] cosh b_{2}c cos b_{2}c$$

REPRESENTATION OF TIME TRANSFORMED FUNCTIONS CORRESPONDING TO SPECIFIC SUBCASES:

$$\begin{split} \frac{\text{Case 1}}{b_r} &= i \, b_r^{\frac{1}{2}} \\ b_r &= - \left[\sin b_r^{\frac{1}{2}} (a - c + \epsilon_1) \right] \sin b_r^{\frac{1}{2}} (a - c + \epsilon_1) - \cos b_r^{\frac{1}{2}} (a - c - \epsilon_1) \cos b_r^{\frac{1}{2}} (a - c - \epsilon_1) \right] \\ \mathcal{L}_c &= \cos b_r^{\frac{1}{2}} (a - c + \epsilon_1) \cos b_r^{\frac{1}{2}} (a - c + \epsilon_1) - \cos b_r^{\frac{1}{2}} (a - c - \epsilon_1) \cos b_r^{\frac{1}{2}} (a - c - \epsilon_1) \right] \\ \mathcal{L}_c &= - \left[(b_r^{\frac{1}{2}} \mathcal{U}_c - b_r^{\frac{1}{2}} \mathcal{U}_c) \right] \sin b_r^{\frac{1}{2}} a \cos b_r^{\frac{1}{2}} a \cos b_r^{\frac{1}{2}} a \sin b_r^{\frac{1}{2}} a \cos b_r^{\frac{1}{2}} a \cos b_r^{\frac{1}{2}} a \sin b_r^{\frac{1}{2}} a \cos b_r^{\frac{1}{2}} a \sin b_r^{\frac{1}{2}} a \cos b_r^{\frac{1}{2}} a \cos$$

$$\int_{A}^{A} dx = \frac{1}{\sin(^{2} \log^{4} \alpha + 5 \sin(^{2} \log^{4} \alpha)} \int_{A}^{A} + (\log^{4} \alpha + \log^{4} \alpha) \int_{A}^{A} \int_{A}^{A} \cos(^{4} \alpha + \log^{4} \alpha) \int_{A}^{A} \cos(^{4} \alpha) \int_{A}$$

$$\frac{dV_{0}}{dP} = i \left(\frac{dV_{0}}{dP} \right)^{b}$$

$$= \left[\frac{dh_{0}}{dP} J_{0} - \frac{dh_{0}}{dP} J_{0} - h_{0}^{b} \left(\frac{dJ_{0}}{dP} \right)^{b} + h_{0}^{b} \left(\frac{dJ_{0}}{dP} \right)^{b} \right] \text{ sinc } h_{0}^{b} a \text{ cosh } h_{0}^{b} a \frac{dh_{0}}{dP}$$

$$+ a \left(h_{0}^{b} J_{0} - h_{0}^{b} J_{0} \right) \left(\cos h_{0}^{b} a \cos h_{0}^{b} h_{0} \frac{dh_{0}^{b}}{dP} + \sin h_{0}^{b} a \sin h_{0}^{b} h_{0}^{b} \right)$$

$$- \left(\frac{dh_{0}^{b}}{dP} J_{0} - h_{0}^{b} \left(\frac{dJ_{0}^{b}}{dP} \right)^{b} - h_{0}^{b} \left(\frac{dJ_{0}^{b}}{dP} \right)^{b} \right) \cos h_{0}^{b} a \sin h_{0}^{b} a$$

$$- a \left(h_{0}^{b} J_{0} + h_{0}^{b} J_{0} \right) \left(- \sin h_{0}^{b} a \sin h_{0}^{b} h_{0}^{b} + h_{0}^{b} \left(\frac{dJ_{0}^{b}}{dP} \right)^{b} \right) \cos h_{0}^{b} a \cos h_{0}^{b} a \cos h_{0}^{b} a \frac{dh_{0}^{b}}{dP} \right)$$

$$- \left(\frac{dJ_{0}^{b}}{dP} J_{0} + \frac{dJ_{0}^{b}}{dP} J_{0} - h_{0}^{b} \left(\frac{dJ_{0}^{b}}{dP} \right)^{b} - h_{0}^{b} \left(\frac{dJ_{0}^{b}}{dP} \right)^{b} \right) \sin h_{0}^{b} a \cos h_{0}^{b} a \cos h_{0}^{b} a \frac{dh_{0}^{b}}{dP} \right)$$

$$+ a \left(h_{0}^{b} J_{0} + \frac{dJ_{0}^{b}}{dP} J_{0} - h_{0}^{b} \left(\frac{dJ_{0}^{b}}{dP} \right)^{b} - h_{0}^{b} \left(\frac{dJ_{0}^{b}}{dP} \right)^{b} \right) \cos h_{0}^{b} a \sin h_{0}^{b} a \cos h_{0}^{b} a \frac{dh_{0}^{b}}{dP} \right)$$

$$+ a \left(h_{0}^{b} J_{0} + h_{0}^{b} J_{0} \right) \left(- h_{0}^{b} \left(\frac{dJ_{0}^{b}}{dP} \right)^{b} + h_{0}^{b} \left(\frac{dJ_{0}^{b}}{dP} \right)^{b} + \sin h_{0}^{b} a \cos h_{0}^{b} a \cos h_{0}^{b} a \cos h_{0}^{b} a \frac{dh_{0}^{b}}{dP} \right)$$

$$+ a \left(h_{0}^{b} J_{0} - h_{0}^{b} J_{0} \right) \left(- \sin h_{0}^{b} a \sin h_{0}^{b} h_{0}^{b} \right) \left(\frac{dJ_{0}^{b}}{dP} \right) \cos h_{0}^{b} a \cos h_{0$$

$$\frac{d\mu_{m}}{dP} = i \left(\frac{d\mu_{m}}{dP} \right)^{\frac{1}{4}}$$

$$\left(\frac{d\mu_{m}}{dP} \right)^{\frac{1}{4}} = \frac{\alpha}{\left[\sin^{2}\omega_{p}^{2} + 3\sin^{2}\omega_{p}^{2} + 3\sin^{2}\omega_{p}^{2} \right]^{\frac{1}{4}}} \cdot \left(\sin^{2}\omega_{p}^{2} + \sin^{2}\omega_{p}^{2} \right) \mathcal{R}_{1} \right] \cos^{2}\omega_{p}^{2} \alpha + \sin^{2}\omega_{p}^{2} \alpha + \sin^{2}\omega_{p}^{$$

$$\begin{aligned} \cos & = i \, \mathcal{D}_{i}^{\frac{1}{2}} \\ \mathcal{D}_{i} & = i \, \mathcal{D}_{i}^{\frac{1}{2}} \\ \mathcal{D}_{s}^{\frac{1}{2}} & = 5 \text{ with } b_{i} (a - c + \epsilon_{i}) \text{ such } b_{i}^{\frac{1}{2}} (a - c - \epsilon_{i}) \text{ such } b_{i}^{\frac{1}{2}} (a - c - \epsilon_{i}) \\ \mathcal{D}_{c}^{\frac{1}{2}} & = 5 \text{ with } b_{i} (a - c + \epsilon_{i}) \text{ such } b_{i}^{\frac{1}{2}} (a - c + \epsilon_{i}) - \cos h \, b_{i} (a - c - \epsilon_{i}) \text{ such } b_{i}^{\frac{1}{2}} (a - c - \epsilon_{i}) \\ \mathcal{D}_{c}^{\frac{1}{2}} & = 6 \text{ with } b_{i}^{\frac{1}{2}} (a - c + \epsilon_{i}) \cos h \, b_{i}^{\frac{1}{2}} (a - c - \epsilon_{i}) \\ \mathcal{D}_{c}^{\frac{1}{2}} & = 6 \text{ with } b_{i}^{\frac{1}{2}} (a - c + \epsilon_{i}) \cos h \, b_{i}^{\frac{1}{2}} (a - c - \epsilon_{i}) \\ \mathcal{D}_{c}^{\frac{1}{2}} & = 6 \text{ with } b_{i}^{\frac{1}{2}} (a - c + \epsilon_{i}) \cos h \, b_{i}^{\frac{1}{2}} (a - c - \epsilon_{i}) \\ \mathcal{D}_{c}^{\frac{1}{2}} & = 6 \text{ with } b_{i}^{\frac{1}{2}} (a - c - c + \epsilon_{i}) \cos h \, b_{i}^{\frac{1}{2}} (a - c - \epsilon_{i}) \\ \mathcal{D}_{c}^{\frac{1}{2}} & = 6 \text{ with } a \cos h \, b_{i}^{\frac{1}{2}} (a - c - \epsilon_{i}) \cos h \, b_{i}^{\frac{1}{2}} (a - c - \epsilon_{i}) \\ \mathcal{D}_{c}^{\frac{1}{2}} & = 6 \text{ with } a \cos h \, b_{i}^{\frac{1}{2}} (a - c - \epsilon_{i}) \cos h \, b_{$$

$$\lambda_{M} = -\frac{1}{m!b^{2}k^{b}c^{2}(b^{2}-bc^{b}c^{2})^{2}} \quad \text{Sink } \frac{\pi mec_{2}}{b} \quad \text{Sink } k^{b}c \quad \text{Sink } k^{b}c$$

$$\frac{dU_{0}}{dP} = \left[-\left(\frac{din}{dP} \right)^{4} U_{3}^{2} - \frac{diq}{dP} U_{c} + \ln \frac{dV_{3}}{dP} + \ln ^{4} \left(\frac{dV_{3}}{dP} \right)^{4} \right] \text{ such the a cosh to the appearance of the th$$

$$\frac{d \mu_{mq}}{d \rho} = i \left(\frac{d \mu_{mq}}{d \rho} \right)^{\frac{1}{4}} = \frac{\alpha}{\left[\operatorname{Such}^{2} (a_{1}^{2} a_{2}^{2} + a_{1}^{2} a_{2}^{2}) \mathcal{L}_{0}^{\frac{1}{4}} - a_{1}^{2} a_{1}^{2} a_{2}^{2} \right] \mathcal{L}_{0}^{\frac{1}{4}} + a_{1}^{2} a_{1}^{2} a_{1}^{2} a_{2}^{2} + a_{1}^{2} a_{2}^{2} a_{2}^{2} a_{2}^{2} + a_{1}^{2} a_{2}^{2} a_{2}^{2} a_{2}^{2} + a_{1}^{2} a_{2}^{2} a_{2}^{2} a_{2}^{2} a_{2}^{2} + a_{1}^{2} a_{2}^{2} a$$

$$\begin{aligned} &\frac{case \ 3}{b_{1}} = \alpha + i \ \beta \\ &b_{1} = \beta + i \ \alpha \\ &\mathcal{U}_{3} = i \ \mathcal{U}_{5}^{4} \\ &\mathcal{U}_{5}^{4} = sunh^{2}\alpha(A-c+\epsilon_{1}) + sun^{2}\beta(A-c+\epsilon_{1}) - \left[sunh^{2}\alpha(A-c-\epsilon_{1}) + sun^{2}\beta(A-c-\epsilon_{1})\right] \\ &\mathcal{U}_{c} = sunh^{2}\alpha(A-c+\epsilon_{1}) - sun^{2}\beta(A-c+\epsilon_{1}) - \left[sunh^{2}\alpha(A-c-\epsilon_{1}) + sun^{2}\beta(A-c-\epsilon_{1})\right] \\ &\mathcal{U}_{0} = sunh^{2}\alpha(A-c+\epsilon_{1}) - sun^{2}\beta(A-c+\epsilon_{1}) - \left[sunh^{2}\alpha(A-c-\epsilon_{1}) - sun^{2}\beta(A-c-\epsilon_{1})\right] \\ &\mathcal{U}_{0} = i \ \mathcal{U}_{0}^{4} \\ &\mathcal{U}_{0} = i \ \mathcal{U}_{0}^{4} \\ &\mathcal{U}_{0} = sunh^{2}\alpha(A-c+\epsilon_{1}) - sunh^{2}\alpha(A-c-\epsilon_{1}) - sun^{2}\beta(A-c-\epsilon_{1}) \\ &\mathcal{U}_{0} = i \ \mathcal{U}_{0}^{4} \\ &\mathcal{U}_{0} = sunh^{2}\alpha(A-c-\epsilon_{1}) - \beta^{2}sunh^{2}\alpha(A-c-\epsilon_{1}) - \beta^{2}sunh^{2}\alpha(A-c-\epsilon_{1}) \\ &\mathcal{U}_{0} = sunh^{2}\alpha(A-c-\epsilon_{1}) - \beta^{2}sunh^{2}\alpha(A-c-\epsilon_{1}) - \beta^{2}sunh^{2}\alpha(A-c-\epsilon_{1}) \\ &-\left[\alpha^{2}sun^{4}\beta(A-c-\epsilon_{1}) - \beta^{2}sunh^{2}\alpha(A-c-\epsilon_{1})\right] \mathcal{U}_{0} + c-c-\epsilon_{1} \\ &-\left[\alpha^{2}sun^{4}\beta(A-c-\epsilon_{1}) - \beta^{2}sunh^{2}\alpha(A-c$$

$$\frac{dU_{1}}{dP} = i \left(\frac{dU_{1}}{dP}\right)^{\frac{1}{2}}$$

$$\frac{dU_{2}}{dP} = C_{1}^{\frac{1}{2}} \left\{ (U_{2}^{\frac{1}{2}} - U_{2}) \times \sinh 2\pi \alpha + (U_{2}^{\frac{1}{2}} + U_{2}) \beta \sin 2\beta \alpha \right\}$$

$$+ \left[\frac{dU_{2}}{dP} - (\frac{dU_{2}}{dP})^{\frac{1}{2}} \right] \alpha \sin 2\beta \alpha + \left[\frac{dU_{2}}{dP} + (\frac{dU_{2}}{dP})^{\frac{1}{2}} \right] \beta \sinh 2\pi \alpha$$

$$+ 2\alpha C_{1}^{\frac{1}{2}} \left\{ \left[(\alpha^{2} - \beta^{2}) U_{2} + (\alpha^{2} + \beta^{2}) U_{3}^{\frac{1}{2}} \right] \left(1 + \sinh^{2} \alpha \alpha - \sin^{2} \beta \alpha \right) \right\}$$

$$- \left[(\alpha^{2} + \beta^{2}) U_{2} + (\alpha^{2} - \beta^{2}) U_{3}^{\frac{1}{2}} \right] \left(5 \cosh^{2} \alpha \alpha + \sin^{2} \beta \alpha \right) \right\}$$

$$\frac{d\lambda_{1}}{dP} = i \left(\frac{d\lambda_{1}}{dP} \right)^{\frac{1}{2}}$$

$$\left(\frac{d\lambda_{2}}{dP}\right)^{\frac{1}{2}} = 8 C_{1}^{\frac{1}{2}} \left\{ 2\alpha \beta \left[(\alpha^{2} - \beta^{2}) (\sinh^{2} \alpha \alpha + \sin^{2} \beta \alpha + \sin^{2} \beta \alpha \right) \right]$$

$$- 2(\alpha^{2} + \beta^{2}) (\sinh^{2} \alpha \alpha + \sin^{2} \beta \alpha + \sin^{2} \beta \alpha \right) \right\}$$

$$+ c_{1} (\alpha^{2} + \beta^{2}) (\alpha^{3} \sin 2\beta \alpha - \beta^{3} \sinh 2\alpha \alpha \alpha + \beta) \right\}$$

$$+ c_{1} (\alpha^{2} + \beta^{2}) (\alpha^{3} \sin 2\beta \alpha - \beta^{3} \sinh 2\alpha \alpha \alpha + \beta) \right\}$$

$$\frac{dp}{dp} = i \left(\frac{dp}{dp} \right)^{4}$$

$$\frac{dp}{dp} = -\frac{\sin k^{2} 2 \alpha a \sin^{2} 2 p a}{\sin k^{2} 2 \alpha a \cos^{2} 2 p a + p \cos k 2 \alpha a \sin 2 p a} \cdot \left\{ -(\alpha^{3} \sin 2 p c + p^{3} \sinh 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c - p \sin k 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c - p \sin k 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c + p \sin k 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c - p \sin k 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c - p \sin k 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c - p \sin k 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c - p \sin k 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c - p \sin k 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c - p \sin k 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c - p \sin k 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c - p \sin k 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c - p \sin k 2 \alpha c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \sin 2 p c) \lambda_{0}^{4} + \alpha p (\alpha \cos 2 p c) \lambda_{$$

DISTRIBUTION LIST (Continued)

Non-Government Agencies (Continued)

	No. of C
	strange to a constant, deshpage, V.I., AZ ZZIJA
	eronautical Company, San Diego, CA 92112
korsk ivers	th: Mr. R. Long)
	n: Dr. H.F. Volk) 1
	the control of t
	an Alacraia Companying Misomicial, CE 05002
1	
	The Manuscript Beach of the 1801 is a second of the Color
	Constant A.S. And and D.
	insect Coordin Company, distincting (A. 1905) (extat Section algorithms)
	or sale Schemes Corn. Show Bell. W. 1902 Schemen and allow or sales of the corner of the corn
	some I Daceles Corporation, Come Associate the 900ML conserved as some
	(1. for 6. 1. length)
	penote dining and May the To, West, My Files Carrier Mr. W. Dardel.
	throp Aircraft Corp., Norskr Ddw., Mauthorno, CA 20230
	(1 for Mr. Raiph Varrince, Zone Ve)
	seerlinternationes, columbus, 60 ,1815
	(1 for Mr. M. Generaty) Evell temperational, too ingeled, CA 90057
	chell descriptions. Tules, of Talki and a service and a service and the servic
	The policy of the contract of
	ess Creates Filterglose, Street Nic. (As \$1073 (Actes MacLes),
	or Comparation, Strangers CA VESCO

DISTRIBUTION LIST (Continued)

Non-Government Agencies (Continued)

	No. of Copies
Grumman Aerospace Corporation, Bethpage, L.I., NY 11714	
Hamania Bandan Company Too Combaniand MD 21501	
(Attn: Mr. D. Hug)	illkorske illi
H.I. Thompson Fiber Glass Company, Gardena, CA 92049	
(ALLE: M. M. Myels)	
ITT Research Institute, Chicago, IL 60616 (Attn: Mr. K. Hofar) J. P. Stevens & Co., Inc., NY, NY 10036 (Attn: Mr. H.I. Shulock)	
Kaman Aircraft Corporation, Bloomfield, CT 06002	
(Attn: Tech. Library)	1
Lehigh University, Bethlehem, PA 18015 (Attn: Dr. G.C. Sih)	1
Lockheed-California Company, Burbank, CA 91520	2
(1 for Mr. E.K. Walker)	
(1 for Mr. R.L. Vaughn)	
Lockheed-Georgia Company, Marietta, GA 30063 (Attn: Technical	
Information Dept., Dept., 72-34, Zone 26)	
LTV Aerospace Corporation, Dallas, TX 75222	2
(1 for Mr. O. E. Dhonau/2-53442)	
(1 for Mr. C.R. Foreman)	
Martin Company, Baltimore, MD 21203 (Attn: Mr. J.E. Pawken)	
Materials Sciences Corp., Blue Bell, PA 19422	
McDonnell Douglas Corporation, St. Louis, MO 63166	3
(1 for Mr. O.B. McBee)	
(1 for Mr.C. Stenberg)	
(1 for Mr. R. Garret)	
McDonnell Douglas Corporation, Long Beach, CA 90801	2
(1 for H.C. Schjulderup)	
(1 for G. Lehman)	
Minnesota Mining and Mfg. Co., St. Paul, MN 55104 (Attn: Mr.W.Davis	
Northrop Aircraft Corp., Norair Div., Hawthorne, CA 90250	
(2 for Mr. Brian Butler, Dept. 3855, Zone 82)	
Rockwell International, Columbus, OH 43216	2
(1 for Mr. O.G. Acker)	•••
(1 for Mr. R. Gehring)	
Rockwell International, Los Angeles, CA 90053	1
Rockwell International, Tulsa, OK 74151	2
(1 for Mr. E. Sanders)	
(1 for Mr. J.H. Powell)	
Owens Corning Fiberglass, Granville, OH 43023 (Attn: Mr.D.Mettes) .	1
Rohr Corporation, Riverside, CA 92503	
(1 for Dr. F. Riel)	
(1 for Mr P Files)	

DISTRIBUTION LIST (Continued)

Government Activities (Continued)

	No. of Copies
ONR, Washington, DC 20362 (Attn: Dr. N. Perrone)	
(1 for Mr. H. Pebly)	
Scientific and Technical Information Facility, College	
Park, MD (Attn: NASA Representative)	
USAMATRESAG, Watertown, MA (Attn: Dr. E. Lenoe)	
USARESOFC, Durham, NC 27701	
Constitution of Delian, No 2//01	
Non-Government Agencies	
Avco Aero Structures Division, Nashville, TN 37202	
(Attn: Mr. W. Ottenville)	. 1
Battelle Columbus Laboratories, Metals and Ceramics	
Information Center, 505 King Avenue, OH 43201 Bell Aerospace Company, Buffalo, NY 14240	. 1
(Attn: Zone I-85, Mr. F.M. Anthony)	. 1
(Attn: Mr. Charles Harvey)	. 1
(Attn: Mr. R.V. Cervelli)	. 1
(Attn: Code 206, Mr. R.E. Horton)	. 1
Boeing Company, Renton, Washington 98055 (Attn: Dr. R. June)	
Boeing Company, Vertol Division, Phila., PA 19142	
(1 for Mr. R.L. Pinckney) (1 for Mr. D. Hoffstedt)	
Boeing Company, Wichita, MS 67210	. 1
Cabot Corporation, Billerica Research Center,	
Billerica, MA 01821	
Drexel University, Phila., PA 19104 (Attn: Dr. P.C. Chou) E.I. DuPont Company, Wilmington, DE 19898	
(Attn: Dr. J. Pigoiacampi) Bldg. 701, Chestnut Run Site	1
Fairchild Industries, Hagerstown, MD 21740 (Attn: Mr. D.Buck) Georgia Institute of Technology, Atlanta, GA	
(Attn: Prof. W.H. Horton)	1
General Dynamics/Convair, San Diego, CA 92138	2
General Dynamics, Fort Worth, TX 76101	
(Attn: Mr. P.D. Shockey, Dept. 23, Mail Zone P-46)	1
(Attn: Mr. L. McCreight)	1
(Attn: Mr. W.R. Benn, Mgr., Market Development)	1

DISTRIBUTION LIST

REPORT NO. NADC-79215-60

Government Activities	No. of Copies
NAVAIRSYSCOM, AIR-950D	0
(2 for retention)	
(2 for AIR-530)	
(1 for AIR-320B)	
(1 for AIR-52032D)	
(1 for AIR-5302)	
(1 for AIR-53021)	
(1 for AIR-530215)	
AFFDL, WPAFB, OH 45433	3
(1 for FBE/Mr. P.A. Parmley)	
(1 for FBS/Mr. L. Kelly)	
(1 for FBC/Mr. J. Wood)	
AFML, WPAFB, OH 45433	2
(1 for MBM/Dr. S. Tsai)	
(1 for LTN/Mr. R.L. Rapson)	
AFOSR, Washington, DC 20333 (Attn: Dr. W. Walker)	1
DDC	
FAA, Airframes Branch, ES-120, Washington, DC 20553	
(Attn: Mr. J. Dougherty)	1
NAEC, Lakehurst, NJ 08753	
(Attn: Mr. D.W. Nesterok/Code 92713)	1
NASA (ADM), Washington, DC 20546 (Attn: Secretary)	
NASA, George C. Marshall Space Flight Center, Huntsville,	
AL 35812	3
(1 for S&E-ASTN-ES/Mr. E.E. Engler)	
(1 for S&E-ASTN-M/Mr. R. Schwinghamer)	
(1 for S&E-ASTM-MOM/Dr. J.M.Stuckey)	
MASA, Langley Research Center, Hampton, VA 23365	3
(1 for Mr. J.P. Peterson)	
(1 for Mr. R. Pride)	
(1 for Dr. M. Card)	
NASA, Lewis Research Center, Cleveland, OH 44153	2
(1 for Technical Library)	
(1 for M. Hershberg)	
NAVSEASYSCOM, Washington, DC 20362	
(Attn: Code 035, Mr. C. Pohler)	1
NAVSEC, Hyattsville, MD 20782	
(Attn: Code 6101E03, Mr. W. Graner)	1
NAVSHIPRANDCEN, Bethesda, MD 20034	
(Attn: Code 173.2, Mr. W.P. Cauch)	1
NAVSHIPRANDCEN, Annapolis, MD 21402	
(Attn: Code 2870, Mr. H. Edelstein)	
NOL, White Oak, MD 20910 (Attn: Mr. F.R. Bernet)	ī
NRL, Washington, DC 20375 (Attn: Dr. I.Wolock)	