

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

Кафедра Информационные технологии и вычислительные системы

Куликова Галина Анатольевна

Системы цифровой обработки изображений

Курс лекций

по дисциплине «Системы цифровой обработки изображений» для студентов МГТУ «СТАНКИН», обучающихся по направлению: 09.03.01 "Информатика и вычислительная техника"

по профилю направления 09.03.01: «Программное обеспечение средств вычислительной техники автоматизированных систем»

Москва 2016г.

Оглавление.

<u>Лекция 1.</u> Тема 1. Основные понятия. Истоки и примеры областей применения ЦОИ. Основные стадии и компоненты системы ЦОИ.	
Тема 2. Считывание и регистрация изображений.	2
<u>Лекция 2.</u> Тема 2. Этапы обработки цифрового изображения во время съемки цифровым фотоаппаратом. Сканирование изображений. Тема 3. Основные понятия теории сигналов. Переход от непрерывных сигналов к дискретным. Представление цифрового изображения.	7
<u>Лекция 3.</u> Тема 4. Пространственные методы улучшения изображений, поэлементное преобразование. Частотные методы улучшения изображений.	
Тема 5. Методы восстановления изображений. Виды шумов. Методы фильтрации. Пространственная и частотная фильтрация для восстановления изображений.	14
<u>Лекция 4.</u> Тема 6. Основы теории цвета. Характеристики цвета. Цветовые модели. Глубина цвета и понятие цветовой палитры. Цветовые преобразования. Баланс белого.	25
<u>Лекция 5.</u> Тема 7. Преобразования Фурье и вейвлет-преобразования. Пирамиды изображений. Кратномасштабный анализ.	33
<u>Лекция 6.</u> Тема 8. Алгоритмы сжатие изображений без потерь. Алгоритмы сжатия с потерями. Тема 9. Понятие векторной графики. Понятие растровой	
графики. Сравнительный анализ. Стандарты сжатия цифровых изображений.	35
<u>Лекция 7.</u> Тема 10. Морфологическая обработка изображений. Основные понятия. Дилатация и эрозия. Замыкание и размыкание.	43
<u>Лекция 8.</u> Тема 11. Морфологическая обработка изображений. Преобразование «Успех/неудача». Основные морфологические алгоритмы.	46

<u>Лекция 9.</u>						
Тема 12. Общие понятия сегментации изображений.						
Поиск границ изображений на основе градиента и лапласиана.						
Выделение объектов на изображении.						
Тема 13. Представление и описание изображений.						
Тема 14. Способы печати цифровых изображений.	47					
<u>Лекция 10.</u> Тема 15. Принципы работы с видеоизображениями.	54					
Заключение.	55					
Список литературы	56					

Лекция 1.

Тема 1. Основные понятия. Истоки и примеры областей применения ЦОИ.Основные стадии и компоненты системы ЦОИ.Считывание и регистрация изображений.

План лекции.

Введение:

- 1) Основные понятия:
 - определения и типы изображений;
 - характеристики цифровых изображений;
 - цифровая обработка изображения и машинная графика;
- 2) Истоки ЦОИ;
- 3) Примеры областей применения ЦОИ;
- 4) Основные стадии ЦОИ
- 5) Компоненты системы ОИ;

Получение изображений:

6) Считывание и регистрация изображений (сенсоры, фотоаппараты и графические планшеты), ввод изображений;

Основная часть.

1. Введение.

1.1. Основные понятия

1). Определения и типы изображений

Понятие и определение Изображения: общее и как двумерной функции

----- «Слайд - 3» Типы изображений -----

- **1.** *Рисованное* или *печатное* (художник, полиграфия, принтер).
- **2.** <u>Оптическое</u> (распределение интенсивности электромагнитного поля, создаваемого оптическим прибором в некоторой области пространства (области локализации) например, на сетчатке глаза, на экране при проецировании, в плоскости приемника объектива фотоаппарата).
- **3.** <u>Фотографическое</u> (оптическое изображение, зарегистрированное на фотоматериале в результате химического процесса).
- **4.** <u>Электронное</u> *или <u>цифровое</u>* (оптическое изображение, зарегистрированное с помощью электронного приемника, например, ПЗС-матрицы, сканера, микроденситометра). Электронным также называют изображение, отображаемое на экране монитора.

------ «Слайд - 4» Характеристики цифровых изображений -----

- **1.** <u>Размер</u>: этот параметр может быть любым, но часто выбирается исходя из особенностей регистрации изображения (например, видеостандарты PAL (625, 4:3), SECAM (625, 4:3), NTSC (525, 4:3)), особенностей последующей обработки (алгоритмы быстрого преобразования Фурье предъявляют особые требования) и т.п.
- **2.** <u>Количество цветов (глубина цвета)</u>: точнее количество бит, отводимое для хранения цвета, определяется упрощением электронных схем и кратно степени 2. Изображение для хранения информации о цветах которого необходим 1 бит называется бинарным. Для хранения полутоновых (gray scale, gray level) изображений используется обычно 8 бит. Цветные изображения хранятся обычно с использованием 24 бит по 8 на каждый из трех цветовых каналов.
- 3. <u>Разрешение</u>: измеряется обычно в dpi (dot per inch количество точек на дюйм). Например, на экране монитора разрешение обычно 72 dpi, при выводе на бумагу 600 dpi, при регистрации на ПЗС-матрице с размером одного элемента 9 мкм разрешение составит почти 3000 dpi. В процессе обработки разрешение можно изменить: на само изображение это не повлияет, но изменится его отображение устройством визуализации.

3). Цифровая обработка изображения (ЦОИ) и машинная графика.

Понятие и определение <u>Цифровой обработкой изображений (ЦОИ)</u> Понятие <u>пикселя.</u>

--- «Слайд - 5» Три направления обработка информации -------

Обработка информации, представленной в виде изображений, на ЭВМ имеет множество разновидностей и массу практических приложений. Эту область обработки информации обычно принято разделять на три направления:

- машинную графику,
- обработку изображений,
- распознавание изображений.

1.2. Истоки цифровой обработки изображений.

Примеры передачи изображений по кабелю и телеграфу

------ «Слайд – 6, 7,8» Примеры передачи изображений -----

1.3. Примеры областей применения ЦОИ

------ «Слайд - 9» Область применения цифровой обработки изображений ------

<u>Космос</u> – передача цифровых изображений со спутника – фото Луны, Марса, Венеры, предсказание погоды, «виды» на будущий урожай, пожары, наводнения;

<u>Связь</u> – видеотелефонная связь – по каналам, передача графической информации;

<u>Геология</u> – исследование из космоса, авиации – авто-анализ характера местности и исследование природных ресурсов;

Биология – микроскопия – улучшение качества биологических изображений;

Медицина – рентгенография, томография (рентгеновская, ультразвуковая);

Военное дело – обнаружение целей распознание противника – танковый бой;

Роботизация – техническое зрение;

Криминалистика – идентификация личности;

<u>Археология</u> – обработка некачественных изображений утраченных объектов, восстановление первоначального вида раритетов;

<u>Физика</u> – улучшение качества изображений, получаемых в ходе экспериментов, например в электронной микроскопии или физике высокотемпературной плазмы.

----- «Слайд - 10» Примеры применения ЦОИ, связанных с машинным восприятием изображений -----

- автоматическое распознавание символов;
- системы машинного зрения для автоматизации сборки и контроля продукции;
- задачи опознавания "свой-чужой" для военных объектов;
- автоматическая обработка отпечатков пальцев;
- проверка анализов крови и результатов рентгеновских исследований;
- компьютерная обработка аэрофотоснимков и спутниковых изображений с целью прогнозирования погоды и экологического мониторинга.

1.4. Основные стадии ЦОИ

------ «Слайд - 11» Схема методов обработки -----

1.5. Компоненты системы обработки изображений.

----- «Слайд - 12» Основные компоненты -----

2. Получение изображений.

2.1 Считывание и регистрация изображений.

Понятие сенсора и элементов сцены.

1). Регистрация изображений с помощью одиночного сенсора.

------ «Слайд – 3,4,5,6» Схемы размещения сенсоров ------

Одиночный чувствительный элемент

Перемещение одиночного сенсора при регистрации двумерного изображения

Линейка чувствительных элементов

Считывание изображения с помощью линейки сенсоров

Считывание изображения с помощью кольцеобразного набора сенсоров.

2). Регистрация изображений с помощью матрицы сенсоров.

«Слайд - 7» Матрица чувствительных элементов -----

Понятие матрицы чувствительных элементов и приборов с зарядовой связью (ПЗС).

Матрица чувствительных элементов

«Слайд - 8» Пример процесса регистрации цифрового изображения -----

Контрольные вопросы.

- 1. Какие существуют типы изображений?
- 2. Основные характеристики цифровых изображений.

- 3. Различия между машинной графикой и обработкой изображений.
- 4. Какие существуют области применения обработкой изображений.
- 5. Как разделяются методы обработкой изображений?
- 6. Что включают в себя основные компоненты обработкой изображений?
- 7. Что такое наблюдаемая сцена?
- 8. Способы регистрации изображений.
- 9. Что является чувствительным элементом матрицы сенсоров?

Лекция 2.

Тема 2. Этапы обработки цифрового изображения во время съемки цифровым фотоаппаратом. Сканирование изображений.

Тема 3. Основные понятия теории сигналов. Переход от непрерывных сигналов к дискретным. Представление цифрового изображения.

План лекшии.

Получение изображений:

- 1) Сравнительный анализ пленочной и цифровой съемки;
- 2) Этапы обработки цифрового изображения во время съемки цифровым фотоаппаратом;
- 3) Сканирование изображения.

Основная часть.

2.2 Сравнительный анализ фотосъемки цифровым и пленочным фотоаппаратами

1). Общие замечания.

«Слайд - 9» Устройство цифрового зеркального фотоаппарата -----

Устройство плёночного фотоаппарата

«Слайд - 10» Классификация по виду светочувствительного материала ------Форматные (пластиночные) Плёночные (гибкая плёнка, рулонная плёнка) Аппараты мгновенного фотографического процесса ------ «Слайд - 11» По устройству видоискателя, оптической схеме и основному способу наводки на резкость - Ящичные аппараты, карданные камеры - Шкальные фотоаппараты - Фотоаппараты с фиксированным фокусом - Дальномерные фотоаппараты - Двухобъективные зеркальные фотоаппараты (TLR) 3). Цифровой фотоаппарат Понятие цифрового фотоаппарата и типов фотоаппаратов ------ «Слайд - 12» Важные характеристики ------- Максимальное разрешение - Объем памяти - Фокусное расстояние (эквивалент для 35-мм) - ZOOM (трансфокатор) - Выдержка - Диафрагма (широкий угол) - Диафрагма (tele) - Тип сменной памяти - Встроенная вспышка - Защита от "красных глаз"

4). Отличия цифрового и плёночного фотоаппаратов

Энергопитание камеры Запись фотографий:

Отображение кадра:

Фотоспуск

Сохранение изображений

Отображение изображений:

Печать фотографий

Понятие	3	кст	103	3U	u	u	u
---------	---	-----	-----	----	---	---	---

2.3 «Слайд - 13» Этапы обработки цифрового изображения во врем
съемки цифровым фотоаппаратом
Экспонирование.
Оцифровка.
Сохранение данных.
Коррекция (редактирование).
Вывод на печать.
«Слайд - 14» Установки, определяющие качество цифрового снимка Экспозиция. Чувствительность. Фокусировка (резкость).
«Слайд - 15» Ручной брекетинг ———————————————————————————————————
2.4 <u>Сканирование изображения</u>
Определение <u>Сканера</u>
«Слайд - 16» Характеристики, связанные с техническими возможностям
модели сканера
<u>Разрешение:</u> - <u>Аппаратное/оптическое разрешение</u> - <u>Интерполированное разрешение</u> - <u>Глубина цвета</u>
«Слайд - 17» Классификация сканеров
 по степени прозрачности вводимого оригинала изображения: по кинематическому механизму сканера (конструкции механизма движения), по типу вводимого изображения,

1). Оригиналы изображений.

«Слайд - 18» Группы оригиналов изображений -----

Негатив

Полиграфический оттиск

2). Механизм движения.

Рассмотрение определяющего фактора для данного параметра

------ «Слайд **- 20**» Настольные сканеры -----

Существуют следующие разновидности настольных сканеров:

- планшетные (flatbed),
- листовые, (sheet-fed)
- барабанные;
- проекционные (overhead).

3). Типы вводимого изображения

Принцип работы черно-белого сканера.

------ «Слайд **- 21»** Схема черно-белого сканера ------

«Слайд - 22» Схема цветного сканера с вращающимся RGB-фильтром -----

------ <u>«Слайд **- 23»** Схема сканера с дихроичными фильтрами</u> ------

5). Программные интерфейсы и TWAIN.

Понятие программного интерфейса и <u>TWAIN - индустриального стандарта интерфейса</u> программного обеспечения

2.5. Получение изображения с помощью графического планшета

----- «Слайд - 24» Дигитайзер

Преобразование сигналов:

- 1). Основные понятия теории сигналов;
- 2). Переход от непрерывных сигналов к дискретным;
 - дискретизация и квантование изображения;
- 3). Представление цифрового изображения:
 - представление в виде матрицы;
 - эффекты, возникающие при изменении числа отсчётов в цифровом изображении;
 - эффекты, которые получаются при изменении числа градаций яркости.

Основная часть.

3. Преобразование сигналов.

3.1. Основные понятия теории сигналов.

Формы представления сигналов.

Виды и типы сигналов.

Понятие Цифрового сигнала

- 3.2. Переход от непрерывных сигналов к дискретным.
- <u>1). Дискремизация изображений</u> это преобразование непрерывного сигнала в последовательность чисел (отсчетов).
- <u>2). *Квантование*</u> замена непрерывного множества значений яркости множеством квантованных значений.

------ «Слайд - 2» <u>Функция, описывающая квантование</u>------

------ «Слайд - 3» Замена исходного отсчета на уровень квантования

Если интенсивность x отсчета изображения принадлежит интервалу $\begin{bmatrix} d_j, d_{j+1} \end{bmatrix}_{\text{(т.е., когда}}$ $d_j < x \leq d_{j+1}$), то исходный отсчет заменяется на уровень квантования f_j , где $d_j, j = \overline{1, L+1}_{-}$ пороги квантования. При этом полагается, что динамический диапазон значений яркости ограничен и равен $[d_1, d_{L+1}]$.

----- «Слайд - 4» <u>Главный принцип, лежащий в основе дискретизации и</u> квантования изображения -----

Непрерывное изображение

Mary Markey Land

Профиль вдоль линии

сканирования

------ «Слайд - 5» <u>Дискретизация и квантование</u> ------

«Слайд - 6» Дискретизация изображения с помощью матрицы сенсоров

Цифровое представление строки изображения

Дискретизация изображения с помощью матрицы сенсоров

3.3. Представление цифрового изображения.

1). Представление в виде матрицы.

------ «Слайды – 7, 8,9» Запись цифрового изображения в форме матрицы ------

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,N-1) \\ f(1,0) & f(1,1) & \cdots & f(1,N-1) \\ \vdots & \vdots & & \vdots \\ f(M-1,0) & f(M-1,1) & \cdots & f(M-1,N-1) \end{bmatrix}.$$

<u>2).</u> ----- «Слайд – 10, 11» <u>Эффекты, возникающие при изменении числа</u> отсчётов в цифровом изображении.-----

3). Эффекты, которые получаются при изменении числа градаций яркости. Понятие *Ложных контуров*.

------ <u>«Слайд - 12»</u> Результаты квантования ------

------ «Слайд - 13» Результаты равномерного квантования с предварительным

добавлением шума

Контрольные вопросы.

- 1. Отличие цифровых и пленочных фотоаппаратов.
- 2. Что такое ручной брекетинг? В каких случаях он применяется?
- 3. Дайте сравнительную характеристику сканерам различных типов.
- 4. В виде какой функции чаще всего представляют сигналы?
- 5. Что такое шаг и частота дискретизации?
- 6. Какой принцип лежит в основе дискретизации и квантования?
- 7. Как определяется способ оцифровки на практике?
- 8. Что получается в результате операций дискретизации и квантования?
- 9. Что такое «ложные контуры»? Из-за чего возможно их появление и как их уменьшить?

Лекция 3.

Тема 4. Пространственные методы улучшения изображений, поэлементное преобразование. **Частотные методы улучшения** изображений.

Тема 5. Методы восстановления изображений. Виды шумов. Методы фильтрации. Пространственная и частотная фильтрация для восстановления изображений.

План лекции.

Улучшение изображений:

- 1) Пространственные методы улучшения изображений, поэлементное преобразование:
 - линейное контрастирование;
 - негатив;
 - соляризация;
 - бинаризация;
 - вырезание диапазона яркостей;
 - видоизменение гистограммы;
- 2) Частотные методы улучшения изображений (очень кратко)
 - преобразования Фурье;
 - фильтрация в частотной области;

Восстановление изображений:

- 1) Виды шумов;
- 2) Методы фильтрации;
- 3) Пространственная фильтрация;
- 4) Частотная фильтрация.

Основная часть.

4. Улучшение изображений.

Понятие поэлементных процедур и пространственной области

----- «Слайд - 3» категории подходов к улучшению изображений -----

Термин <u>пространственная область</u> относится к плоскости изображения как таковой, и данная категория объединяет подходы, основанные на прямом манипулировании пикселями изображения.

Методы обработки в <u>частотной области</u> основываются на модификации сигнала, формируемого путём применения к изображению преобразования Фурье

4.1. Улучшение визуального качества изображений путем поэлементного преобразования.

Пояснение терминов пространственная и частотная области

----- «Слайд - 4» Уравнение, описывающее процессы пространственной обработки

$$g(x,y) = T/f(x,y)/,$$

где f(x,y) – входное изображение,

g(x,y) – обработанное изображение,

T – оператор над f, определённый в некоторой окрестности точки (**x**,**y**).

Более того, T может оперировать над последовательностью входных изображений, например выполняя поэлементное суммирование K изображений для уменьшения шума.

Простейшая форма оператора T достигается в случае, когда обрабатываемая окрестность имеет размеры 1x1, то есть один пиксель. В этом случае g зависит только от значения f в точке

<u>2). Негатив</u>

«Слайд - 9» Перевод изображения в негатив -----

3). Соляризация изображения

«Слайд - 10» Функция, описывающая соляризацию

«Слайд - 11» Примеры соляризации -----

4). Препарирование изображения (бинаризация)

«Слайд - 12» Примеры преобразований, используемых при препарировании

«Слайд - 13» Пример бинаризации черно-белого изображения -----«Слайд - 14» Примеры препарирования изображения 5). Вырезание диапазона яркостей «Слайд - 15» Способы вырезания уровней яркости ------6). Видоизменение гистограммы Понятие гистограммы «Слайд - 17» Общий вид гистограммы -----«Слайд – 18 - 24» Примеры гистограмм различных изображений

4.2. Частотные методы улучшения изображений

1). Преобразования Фурье

Краткое повторение понятий *ряд Фурье* и *преобразование Фурье*.

2). Фильтрация в частотной области

------ «Слайд - 25» Этапы фильтрации в частотной области ------

------ «Слайд – 26 - 30» Три вида низкочастотных фильтров ------

Базовая «модель» фильтрации в частотной области задается следующим равенством:

$$G(u,v) = H(u,v) F(u,v)$$

Где $\mathbf{F}(\mathbf{u},\mathbf{v})$ — фурье-образ изображения, которое подлежит сглаживанию. Цель состоит в выборе передаточной функции $\mathbf{H}(\mathbf{u},\mathbf{v})$, которая ослабит высокочастотные компоненты $\mathbf{F}(\mathbf{u},\mathbf{v})$ и сформирует функцию $\mathbf{G}(\mathbf{u},\mathbf{v})$.

<u>Идеальный фильтр</u> низких частот (ИФНЧ) обрезает все высокочастотные составляющие фурье-образа, находящиеся на большем расстоянии от начала координат (центрированного) преобразования, чем некоторое заданное расстояние \mathbf{D}_0 . Такой фильтр имеет передаточную функцию следующего вида:

1 при
$$D(u,v) <= D_0$$
;

H(u,v) =

0 при $D(u,v) > D_0$;

Где D_0 – заданная неотрицательная величина, а D(u,v) обозначает расстояние от точки (u,v) до начала координат (центра частотного прямоугольника).

Частотные фильтры повышения резкости.

«Слайд - 31» Три вида высокочастотных фильтров -----

«Слайд - 32» Примеры применения -----

с использованием ИФВЧ

с использованием БФВЧ

с использованием ГФВЧ

5. Восстановление изображений.

Рассмотрение методов <u>восстановления изображений,</u> <u>пространственные</u> и частотные методы.

----- «Слайд - 3» Модель процесса искажения / восстановления изображения ------

<u>1). Виды шумов.</u>

Понятие *аберрации* и *электронного шума*.

------ <u>«Слайд - 4»</u> <u>Тестовое изображение</u> ------

------ «Слайд – 5, 6» Изображения и гистограммы, полученные в результате добавления соответственных шумов -----

Понятие фильтрации и фильтра

2) Методы фильтрации.

Понятие окрестности и апертуры фильтра

------ «Слайд - 7» Примеры окрестностей различных видов ------

3). Пространственная фильтрация.

«Слайд - 8» Схема пространственной фильтрации. ------

Понятие масочной фильтрации

Линейные сглаживающие фильтры.

------ «Слайд - 9» Операция дискретной свертки ------

$$B(x,y) = \sum_{i} \sum_{j} F(i,j) \cdot f(x+i,y+j).$$

Результатом служит изображение B. Обычно ядро фильтра отлично от нуля только в некоторой окрестности N точки (0, 0). За пределами этой окрестности F(i, j) или в точности равно нулю, или очень близко к нему, так что можно им пренебречь. Суммирование производится по $(i,j) \in N$, и значение каждого пикселя B(x,y)определяется пикселями исходного изображения f, которые лежат в окне N, центрированном в точке (x, y) (мы будем обозначать это множество N(x, y)). Ядро фильтра, заданное на прямоугольной окрестности N, может рассматриваться как матрица m на n, где длины сторон являются нечетными числами.

«Слайд - 10» Пример прямоугольного сглаживающего фильтра с различными значениями радиуса фильтра --

Исходное изображение

------ «Слайд - 11» Шумоподавление при помощи сглаживающих линейных фильтров

$$F_{gauss}(i,j) = rac{1}{2\pi\sigma^2} \exp\left(-rac{i^2+j^2}{2\sigma^2}
ight)$$
 .

Контрастоповышающие фильтры

«Слайд - 12» Примеры контрастоповышающей фильтрации

Зашумленное изображение ф

ре Прямоугольный фильтр с r = 3

Гауссов фильтр с $\sigma = 2$

Шумоподавление при помощи сглаживающих линейных фильтров. Верхний рисунок - фрагмент исходного изображения, второй сверху - сильно зашумленное изображение, третий – результат применения гауссовского фильтра с $\sigma = 2$, четвертый - результат применения прямоугольного фильтра с r = 3.

Исходное изображение

Эффект от применения фильтра с ядром **Mi** Контрастоповышающая фильтрация

Эффект от применения фильтра с ядром M_2^{contr}

Разностные фильтры

«Слайд - 13» Нахождение границ при помощи линейной фильтрации -----

Нахождение $\frac{\partial}{\partial x}$ при помощи

Нахождение $\frac{\partial}{\partial y}$ при помощи

фильтра Собеля с ядром $M_{\it sobel}$

фильтра Собеля с ядром $M_{\it sobel}^{\it T}$

Серый цвет соответствует значению 0

оператор Лапласа (<u>лапласиан</u>) $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ можно приблизить для дискретных изображений фильтром с матрицей (один из вариантов):

$$M_{\Delta} = \left(egin{array}{ccc} 0 & 1 & 0 \ 1 & -4 & 1 \ 0 & 1 & 0 \end{array}
ight)$$

Результат применения фильтра M_{Δ} .

Нахождение границ при помощи линейной фильтрации. Серый цвет соответствует значению 0

------ «Слайд - 14» Применение нелинейной фильтрации ------

Исходное изображение

Загрязненное Прямоугольный изображение фильтр

Нелинейная медианная фильтрация

с окрестностью 3х3 пикселя

с окрестностью 3х3 пикселя

«Слайд - 15» Примеры пространственной фильтрации

Исходное изображение

Линейная фильтрация

Нелинейная фильтрация

4). Частотная фильтрация.

Понятие *Режекторных* и *Полосовых фильтров*

----- «Слайд - 16» Трехмерные перспективные изображения режекторных фильтров

Идеальный фильтр Фильтр Баттерворта порядка 1

Гауссов фильтр

Передаточные функции фильтров мы рассматривать не будем.

«Слайд - 17» Примеры -

Изображение, искаженное синусоидальным шумом

Фурье-спектр

Режекторный фильтр Баттерворта фильтрации (белым показаны точки со значением 1

Результат

«Слайд - 18» Трехмерные изображения узкополосных режекторных фильтров --

Идеальный фильтр Фильтр Баттерворта порядка 2

Гауссов фильтр

«Слайд - 19» Примеры

Исходное изображение

Фурье-спектр

Узкополосной фильтр

Результат узкополосной

Результат узкополосной фильтрации режекторной

фильтрации

Контрольные вопросы.

- 1. В чем состоит особенность поэлементных процедур?
- 2. Перечислите категории подходов к улучшению изображения.
- 3. Основные функции градационных преобразований.
- 4. Что такое гистограмма изображения?
- 5. Виды высокочастотных и низкочастотных фильтров.
- 6. В чем отличие методов восстановления изображения от методов улучшения?
- 7. Перечислите пространственные и частотные методы восстановления изображения.
- 8. Что такое аберрации и электронный шум?
- 9. Какие бывают методы фильтрации?
- 10. Что такое апертура фильтра?
- 11. Типы окрестностей.
- 12. Что такое масочная фильтрация?

- 13. Что является ядром фильтра?
- 14. Какие бывают сглаживающие фильтры?
- 15. Применение каких фильтров линейных или нелинейных дает наилучший результат и почему?
- 16. Различия режекторных и полосовых фильтров.

Лекция 4.

Тема 6. Основы теории цвета. Характеристики цвета. Цветовые модели. Глубина цвета и понятие цветовой палитры. Цветовые преобразования. Баланс белого.

План лекции.

Обработка цветных изображений:

- 1) Основы теории цвета;
- 2) Характеристики цвета (координаты цвета, диаграмма цветности);
- 3) Цветовые модели;
- 4) Плашечные цвета;
- 5) Глубина цвета;
- 6) Цветовая палитра;
- 7) Квантование цвета;
- 8) Цветовые преобразования;
- 9) Баланс белого.

Основная часть.

6. Обработка цветных изображений.

6.1. Основы теории цвета.

----- «Слайд - 3» Разложение белого света на спектральные составляющие -----

Основные понятия теории цвета: характеристики света

6.2. Характеристики цвета.

Величины красного, зелёного и синего, необходимые для получения некоторого конкретного цвета, называются координатами цвета и обозначаются соответственно X,Y,Z. Часто при описании цвета светлота не представляет интереса, и в таком случае цветовой тон и насыщенность можно выразить в координатах цветности, которые определяются как

$$x = \frac{X}{X + Y + Z},$$

$$y = \frac{Y}{X + Y + Z},$$

$$z = \frac{Z}{X + Y + Z}.$$

Из приведённых выражений видно, что x + y + z = 1.

------ <u>«Слайд **- 4**»</u> <u>Диаграмма цветностей</u> ------

6.3. Цветовые модели.

Понятия <u>модели цвета</u>, <u>каналов</u> и <u>цветовое пространство модели</u>, <u>первичные и</u> <u>вторичные основные цвета</u>

1) Модель RGB

«Слайд - 5» Смешение источников света (аддитивные первичные цвета) ----

----- «Слайд - 6» Схематическое изображение цветового куба RGB ------

2). *Модели СМҮ и СМҮК*

----- «Слайд - 7» Смешение красителей (субтрактивные первичные цвета) ------

3) Модель НЅВ

------ <u>«Слайд - 8»</u> <u>Схематическое представление модели HSB</u> ------

4). *Модель Lab*.

«Слайд - 9» Схематическое представление модели Lab ------

6.4. Плашечные цвета.

------ «Слайд - 10» Достоинства плашечных цветов ------

- Если в иллюстрации не нужно применять много цветов, плашечный способ очень экономичен.
- Когда один и тот же цвет применяется в рисунке с разной насыщенностью и яркостью, можно печатать тонированные изображения.
- Плашечные цвета очень точные. Поскольку плашечный цвет выбирается дизайнером по каталогу, его используют для получения точного цвета (
- При печати плашечным цветом даже на не очень хорошем оборудовании удается достичь отличного качества графики
 - Плашечные краски могут далеко выходить за цветовой охват СМҮК.

6.5. Глубина цвета.

Типы изображений по глубине цвета.

- 1). Штриховой рисунок (bitmap).
- 2). Монохромное изображение

------ «Слайд - 11» Пример черно-белого монохромного изображения ------

- 3). Режим "Градации серого"
- 4). Дуплексный режим.

«Слайд - 12» Пример изображения в режиме "градации серого" и дуплексном

режиме-

- 5). "Индексированные цвета".
 - 6). Истинный цвет

------ «Слайд - 13» Пример изображения в режиме "индексированные цвета" и в

режиме «истинный цвет»

«Слайд - 14» Примеры изображений с различной глубиной цвета -----

6.6. Цветовая палитра.

Понятие Цветовой палитры

«Слайд - 15» Виды цветовых палитр ------

<u> Цветовая палитра</u> — это таблица данных, в которой хранится информация о том, каким кодом закодирован тот или иной цвет. Цветовая палитра создается и хранится вместе с графическим файлом

Индексная цветовая палитра

Фиксированная цветовая палитра

«Безопасная» цветовая палитра.

- 6. Обработка цветных изображений.
- 6.7. Квантование цвета.

Понятие квантования цвета и возникновения необходимости его использовать

6.8. Цветовые преобразования.

Понятия Цветовой и Тоновойя коррекции, градационных кривых

------ «Слайд - 16» Градационная кривая -----

График кривой отображает соответствие между величиной на входе (ось X) и ее преобразованным значением на выходе (ось Y).

В каждой модели на вход подаются разные величины:

- в RGB яркости;
- в СМҮК проценты плотности красок;
- в LAB яркость и цветность

«Слайд - 17» Примеры градационных кривых -----

S-образная кривая повышает контраст

изображения, а цвета становятся чище;

- б такая кривая позволяет разобрать тени;
- в добавить солнечного света можно усиливая жёлтый.

1). Цветокоррекция в RGB.

----- «Слайд - 18» Пример цветокоррекции в RGB ------

Пример цветокоррекции в RGB

- а исходное изображение с компакт-диска;
- б изображение после цветокоррекции.

----- «Слайд - 19» Изменения градационной кривой при цветовой коррекции ------

a

Изменения градационной кривой при цветовой коррекции

- а коррекция теней (точка 3);
- б нейтрализация (точка 4);

- 2). Цветокоррекция в СМҮК.
- 1). Метод вычитания
- 2). Метод дополнения

«Слайд - 20» Пример цветокоррекции в СМҮК -----

Пример метода вычитания.

- а исходное изображение;
- б изображение после коррекции.

«Слайд - 21» Пример дуплексного изображения -----

3). Цветокоррекция в Lab.

------ <u>«Слайд **- 22»** Пример цветокоррекции в Lab</u>------

кривая Lightness не влияет на насыщенность цветов, а только меняет степень освещенности. При смещении кривой вниз - цвета "зачерняются", а вверх - "выбеливаются".

Каналы цвета - а (красно-зеленый) и b (сине-желтый) устроены так, что в зоне нулевых значений (середине градационной кривой) расположены ахроматические цвета (близкие к серому).

На краях градационных кривых цветовых каналов находятся цвета имеющие наибольшую насыщенность

6.9. <u>Баланс белого.</u>

«Слайд - 23» Примеры неверного и корректного баланса белого ------

------ «Слайд - 24» Примеры специального изменения баланса белого ------

Понятие Цветовой температуры

----- «Слайд - 25» Шкала цветовых температур ------

------ «Слайд - 26» <u>Таблица соответствия источника освещения и</u> цветовых температур ------

Цветовая гемпература	Источник света
1000-2000 K	свечи
2500-3500 K	лампы накаливания
3000-4000 K	восход и закат (чистое небо)
4000-5000 K	флюоресцентные лампы
5000-5500 K	вспышка
5000-6500 K	дневной свет при чистом небе (солнце в зените)
6500-8000 K	умеренная облачность

тень или сильная облачность

----- «Слайд - 27» Набор основных источников освещения, рассматриваемых в типовых фотокамерах -----

AWB

9000-10000 K

Собственный

Kelvin

	Лампа накаливания
	Флуоресцентный
**	Дневной
4	Вспышка
4.	Облака
	Тень
«Слайд - 28» Примерь	ы работы с эталонами серого
«Слайд - 29» Автомат	ический баланс белого
Автоматический бал	анс Собственный баланс
<u>«Слайд - 30»</u> <u>Приме</u> <u>белого</u>	р зависимости цвета фотографии от выбранного баланса

Контрольные вопросы.

- 1. Характеристики источников света и цвета.
- 2. В чем разница между координатами цвета и цветности?
- 3. Сравните изученные цветовые модели. У какой из них наибольший цветовой охват?
- 4. Какая глубина цвета в каждой из рассмотренных цветовых палитр?
- 5. Когда возникает необходимость в квантовании цвета?
- 6. Что такое цветовая и тоновая коррекции?
- 7. Чем отличаются цветокоррекции при использовании различных цветовых моделей?
- 8. Баланс белого при фотографировании.

Лекция 5.

Тема 7. Преобразования Фурье и вейвлет-преобразования. Пирамиды изображений. Кратномасштабный анализ.

План лекции.

Вейвлеты и кратномасштабная обработка:

- 1) Основные понятия;
- 2) Пирамиды изображений;
- 3) Кратномасштабный анализ.

Основная часть.

7. Вейвлеты и кратномасштабная обработка.

7.1. Основные понятия.

Краткий обзор основных понятий преобразования Фурье и вейвлет-преобразования. Основные определения

------------- «Слайд - 3» Локальные гистограммы отдельных фрагментов изображения_--

------ «Слайд - 4» Свойства вейвлета ------

В общем случае к вейвлетам относятся локализованные функции, которые конструируются из одного материнского вейвлета \Box (t) (или по любой другой независимой переменной) путем операций сдвига по времени (b) и изменения временного масштаба (a):

$$\square_{ab}(t) = (1/\sqrt{\mid a\mid} \) \ \square((t\text{-}b)/a), \quad (a,\,b) \in R, \quad \square(t) \in L^2(R).$$

где множитель $(1/\sqrt{|\mathfrak{a}|})$ обеспечивает независимость нормы функций от масштабирующего числа 'a'.

<u>Свойства вейвлета</u>, которые принципиально важны для реализации вейвлетных преобразований:

Локализация.

• Нулевое среднее значение, т.е. выполнение условия для нулевого момента:

$$\int_{-\infty}^{\infty} \Box (t) dt = 0,$$

• Ограниченность. Необходимое и достаточное условие:

$$||\Box (t)||^2 = \int_{-\infty}^{\infty} |\Box t(t)| \infty$$

Автомодельность базиса или самоподобие

Достоинства и недостатки вейвлетных преобразований.

7.2. Пирамиды изображений.

------ «Слайд - 6» Структура пирамиды изображений ------

7.3. Кратно-масштабный анализ.

Основные понятия и назначение кратно-масштабного анализа.

Контрольные вопросы.

- 1. Что такое вейвлеты?
- 2. Отличие вейвлет-преобразования от преобразования Фурье?
- 3. Основные свойства вейвлета.
- 4. Где применяется пирамида изображений?
- 5. Суть кратно-масштабного анализа.

Лекция 6.

Тема 8. Алгоритмы сжатие изображений без потерь. Алгоритмы сжатия с потерями.

Тема 9. Понятие векторной графики. Понятие растровой графики. Сравнительный анализ. Стандарты сжатия цифровых изображений.

План лекции.

Сжатие изображений:

- 1) Сжатие без потерь:
 - метод RLE;
 - метод Хаффмана;
 - метод LZW;
- 2) Сжатие с потерями:
 - метод JPEG;
 - фрактальный метод;

Форматы графических файлов:

- 3) Векторная графика;
- 4) Растровая графика;
- 5) Стандарты сжатия JPEG, TIFF и прочие.

Основная часть.

8. Сжатие изображений.

Основные методы сжатия изображения и их характеристики.

------ «Слайд - 3» Классы изображений -----

Класс 1. Изображения с небольшим количеством цветов (4-16) и большими областями, заполненными одним цветом. Плавные переходы цветов отсутствуют.

- Класс 2. Изображения с плавными переходами цветов, построенные на компьютере.
- Класс 3. Фотореалистичные изображения
- Класс 4. Фотореалистичные изображения с наложением деловой графики

8.1. Сжатие без потерь.

1). Груповое сжатие, метод RLE

Принцип действия, достоинства и недостатки метода.

------ <u>«Слайд **- 4**»</u> <u>Пример</u> ------

Принцип: Последовательности повторяющихся значений цвета заменяются его значением и количеством повторений.

Форматы: BMP, TIFF, GIF, PSD Характеристики алгоритма RLE:

Коэффициент сжатия: 2

Класс изображений: ориентирован алгоритм на изображения с небольшим количеством цветов: деловую и научную графику.

Характерные особенности: к положительным сторонам алгоритма, пожалуй, можно отнести только то, что он не требует дополнительной памяти при архивации и разархивации, а также быстро работает. Интересная особенность группового кодирования состоит в том, что степень архивации для некоторых изображений может быть существенно повышена всего лишь за счет изменения порядка цветов в палитре изображения.

2). Метод Хафмана

Принцип действия, достоинства и недостатки метода.

----- «Слайд - 5» Пример -----

Метод сжатия Хафмана можно проиллюстрировать следующим образом:

Значение	Частота упоминания	Код Хафмана
A	.154	1
В	.110	01
C	.072	0010
D	.063	0011
E	.059	0001
F	.015	000010
G	.011	000011

Входной поток данных: **С Е G A D F B E A**

Поток данных после кодирования: 0010 0001 000011 1 0011 000010 01 0001 1) Группировка по байтам: (0010 0001) (000011 1 0) (011 00001) (0 01 00 1 0 1)

------ «Слайд - 6» Характеристики метода ------

Форматы: TIFF, GIF **Коэффициент сжатия**: 3

Класс изображений: двуцветные черно-белые изображения, в которых преобладают большие пространства, заполненные белым цветом

Характерные особенности: данный алгоритм чрезвычайно прост в реализации, быстр и может быть легко реализован аппаратно.

3). Memod LZW

Принцип действия, достоинства и недостатки метода.

----- «Слайд - 7» Пример -----

Индекс	Значение	
0000	0	

0001	1
0254	254
0255	255
0256	145 201 4
0257	243 245
4095	xxx xxx xxx

Входной поток данных: 123 145 201 4 119 89 243 245 59 11 206 145 201 4 243 245, группируем 123 (145 201 4) 119 89 (243 245) 59 11 206 (145 201 4) (243 245) и получаем поток данных после кодирования: 123 256 119 89 257 59 11 206 256 257

------ «Слайд - 8» Характеристики метода -----

Форматы: TIFF, GIF Коэффициент сжатия: 5

Класс изображений: ориентирован LZW на 8-битовые изображения, построенные на компьютере. Сжимает за счет одинаковых подцепочек в потоке.

Характерные особенности: ситуация, когда алгоритм увеличивает изображение, встречается крайне редко. Универсален

8.2. Сжатие с потерями.

Как правило, в алгоритмах, сжимающих с потерей информации, степень сжатия и, следовательно, степень потерь качества в них можно задавать.

1). Memod JPEG

Принцип действия, достоинства и недостатки метода.

------ «Слайд - 9» Пример ------

Если представить спектр в виде следующей последовательности:

то можно её закодировать с использование группового сжатия.

Принцип: Используется методика сжатия с потерями. Хранится не информация о цвете пикселей, а коэффициенты разложения по некоторому базису.

Форматы: JPEG

Коэффициент сжатия: в зависимости от качества от 10 до 1000.

Характеристики алгоритма JPEG:

Степень сжатия: 2-200 (задается пользователем)

Класс изображений: полноцветные 4 битовые изображения или изображения в градациях серого без резких переходов цветов (фотографии).

Характерные особенности: в некоторых случаях алгоритм создает "ореол" вокруг резких горизонтальных и вертикальных границ в изображении (эффект Гиббса). Кроме того, при высокой степени сжатия изображение распадается на блоки 8х8 пикселей. 2). Фрактальный метод Принцип действия, достоинства и недостатки метода. «Слайд - 10» Построение триадной кривой Коха ----------- «Слайд - 11» Закодированное изображение ------Справа – изображение закодировано, с помощью разбиения на квадраты 5×5, слева – на параллелограммы той же площади. ______ 9. Форматы графических файлов. Все существующие графические форматы условно можно разделить на векторные и растровые. 9.1. Векторная графика. Основные понятия и определения. ------ «Слайд - 3» Векторные объекты -----Кривая Безье.

Линейные сегменты с узлами, имеющие направляющие – изогнуты,

линейные сегменты с узлами без направляющих – прямые

Узел может содержать одну (если он соединяет прямую линию с кривой) или две направляющие Угловые узлы Гладкий узел Незамкнутый контур Замкнутый контур Заполнить цветом можно не только замкнутый путь «Слайд - 4» Примеры векторных изображений ------9.2. Растровая графика. Основные понятия и определения. -- «Слайд - 5» Примеры растровых изображений -Разрешение растрового изображения выражено в количестве пикселей на дюйм (ррі) гибридное изображение -----<u>«Слайд **-** 6»</u> Сравнительная таблица -

Каждый из видов графики имеет свои достоинства и недостатки (обратите внимание на "зеркальность" достоинств и недостатков).

------ «Слайд - 7» Достоинства и недостатки растровой и векторной график -------

Достоинства растровой графики

- Аппаратная реализуемость.
- Программная независимость
- Фотореалистичность

Недостатки растровой графики

- Объем файла.
- Проблемы с трансформациями.
- Аппаратная зависимость.

Достоинства векторной графики

- Минимальный объем векторного документа.
- Свобода трансформирования.
- Аппаратная независимость.

Недостатки векторной графики

- Отсутствие аппаратной реализуемости.
- Программная зависимость.
- Жесткость векторной графики.

9.3. Форматы графических файлов.

Форматы графических файлов подразделяются на:

- растровые (TIFF, GIF, BMP, JPEG);
- векторные (AI, CDR, FH7, DXF);
- смешанные/универсальные (EPS, PDF).

Рассмотрим наиболее популярные форматы растровой графики

BMP

Существует несколько разновидностей этого формата. Нам наиболее знаком вариант с расширением *.bmp.

GIF

Независящий от аппаратного обеспечения формат GIF (Graphics Interchange Format) был разработан в 1987 году (модификация GIF87a) фирмой CompuServe для передачи растровых изображений по сетям.

JPEG

Формат JPEG (Joint Photographic Experts Group) использует одноименный алгоритм сжатия для компрессии изображений, основанный не на поиске одинаковых элементов, а на разнице между пикселями.

TIFF

Аппаратно независимый формат TIFF (Tagged Image File Format) изначально был создан в качестве универсального формата для хранения сканированных изображений с цветовыми каналами.

PNG

Формат PNG (Portable Network Graphics - переносимая сетевая графика) специально создан для размещения графики на Web-страницах.

Информация о векторных форматах файлов

CDR - формат популярного векторного редактора CorelDraw.

<u>CCX</u> - формат векторной графики от компании Corel. Кроме CorelDraw ничем не поддерживается.

Векторный формат WMF (Windows Metafile) применяется для хранения векторных изображений.

Векторный формат АІ

Собственный формат программы Adobe Illustrator.

Информация об универсальных форматах файлов

<u>Универсальный формам EPS</u> (Encapsulated PostScript) является вариантом PostScriptфайла. Он разработан фирмой Adobe Systems как универсальный формат для нужд цифровых графики и полиграфии.

<u>PDF</u> (Portable Document Format) - предложен фирмой Adobe как независимый от платформы формат для создания электронной документации, презентаций, передачи верстки и графики по сетям.

Собственные форматы файлов

Собственный формат (native) - обычно частный формат, созданный специально для программного приложения. В большинстве программ такой формат является самым эффективным средством при сохранении файлов в процессе редактирования, но не переносимым (или частично переносимым) в другие приложения.

<u>Формат RAW</u> - Производители фотоаппаратуры применяют в своей продукции различные технические решения, поэтому в моделях фотоаппаратов используются различные форматы представления «сырых», необработанных данных, полученных от матрицы.

«Слайд - 9» Пример изображения в формате RAW, TIFF и JPEG

исходное изображение

изображение RAW после коррекции

изображение JPEG или TIFF после коррекции (потеряны детали в тенях)

Контрольные вопросы.

- 1. Методы сжатия изображений.
- 2. Отличие основных алгоритмов сжатия без потерь друг от друга.
- 3. Отличие основных алгоритмов сжатия с потерями друг от друга.
- 4. Сравните фрактальный метод сжатия и метод JPEG.
- 5. Отличие векторной и растровой графики.
- 6. Области применения векторной и растровой графики.
- 7. Какие существуют форматы растровой графики.
- 8. Какие существуют форматы векторной графики.
- 9. Для каких программных продуктов, обрабатывающих изображение предусмотрены внутренние форматы файлов?
- 10. Формат RAW что это такое?

Лекция 7.

Тема 10. Морфологическая обработка изображений. Основные понятия. Дилатация и эрозия. Замыкание и размыкание.

План лекции.

Морфологическая обработка изображений:

- 1) Основные понятия;
- 2) Логические операции над двоичными изображениями;
- 3) Дилатация и эрозия;
- 4) Замыкание и размыкание;

Основная часть.

- 10. Морфологическая обработка изображений.
 - 10.1. Общие понятия.

--- «Слайд - 3» Базовые понятия теории множеств ------

Пусть A – множество в пространстве

$$\mathbf{A} \setminus \mathbf{B} = \{ \mathbf{w} / \mathbf{w}$$

p	q	p AND q (также $p \cdot q$)	p OR q (также p + q)	NOT(p) (также \bar{p})
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

-- «Слайд - 8» Замыкание множества В по примитиву S ------

Контрольные вопросы.

- 1. Основные понятия теории множеств.
- 2. В чем отличие разности двух множеств и дополнения?
- 3. Что получится в результате выполнения последовательно операций дилатации и эрозии?
- 4. Что получится в результате выполнения последовательно операций эрозии и дилатации?

Лекция 8.

Тема 10. Морфологическая обработка изображений. Преобразование «Успех/неудача».

Тема 11. Основные морфологические алгоритмы.

План лекции.

Морфологическая обработка изображений:

- 5) Преобразование "Успех/Неудача";
- 6) Основные морфологические алгоритмы (выделение границ, заполнение областей, выделение связных компонент, выпуклая оболочка, утончение, утолщение, построение остова, усечение).

Основная часть.

- 10. Морфологическая обработка изображений.
 - 10.5. Преобразование "Успех / Неудача".

----- «Слайд - 9» Преобразование «Успех / Неудача» -----

Контрольные вопросы.

- 1. Для чего применяется преобразование «Успех/неудача»?
- 2. Какие основные морфологические операции применяются при выполнении выделения границ?
- 3. Какие основные морфологические операции применяются при выполнении заполнения областей?
- 4. Какие основные морфологические операции применяются при выполнении выделении связных компонент?
- 5. Какие основные морфологические операции применяются при выполнении утолщения и утончения?

Лекция 9.

Тема 12. Общие понятия сегментации изображений.

Поиск границ изображений на основе градиента и лапласиана.

Выделение объектов на изображении.

Тема 13. Представление и описание изображений.

Тема 14. Способы печати цифровых изображений.

План лекции.

Сегментация изображений:

- 1) Общие понятия;
- 2) Определение границ объектов на изображении
 - поиск границ на основе градиента;
 - поиск границ на основе лапласиана;
- 3) Выделение объектов на изображении

Представление и описание:

- 4) Общие понятия;
- 5) Описание.

Печать изображений:

- 6) Способы печати.
- 7) Виды принтеров.

Основная часть.

11. Сегментация изображений.

11.1. Общие понятия.

Методы сегментации можно разделить на два класса:

- автоматические не требующие взаимодействия с пользователем и
- **интерактивные** использующие пользовательский ввод непосредственно в процессе работы.

1). Автоматические методы

Сегментация как разбиение изображения на однородные области

Ясно, что задача разбиения изображения на однородные области поставлена некорректно. Ниже приведены четыре варианта сегментации одного и того же изображения из Berkeley Segmentation Dataset, выполненные разными людьми.

11.2. Определение границ объектов на изображении.

1). Поиск границ на основе градиента.

Одним из наиболее простых способов выделения границ является пространственное дифференцирование функции яркости. Для двумерной функции яркости A(x,y) перепады в направлениях x и y регистрируются частными производными

2). Поиск границ на основе лапласиана.

«Слайд - 7» Пример выделения границ с помощью лапласиана -----

В двумерном варианте аналогом второй производной является лапласиан - скалярный оператор $\nabla^\square_. f) = ($

	«Слайд - 3» Нумерация для 4-х и 8-ми связного цепного кода
2+	$\begin{array}{c} 3 \\ \hline \\ 3 \\ \hline \\ 3 \\ \hline \\ 3 \\ \end{array}$
	«Слайд - 4» Дискретная граница с наложенной укрупненной сеткой
дись	Результат новой дискретизации
===:	цепной код с 4-мя направлениями, цепной код с 8-ю направлениями
	2). Аппроксимация ломаной линией.
	Дискретная граница может быть сколь угодно точно приближена ломаной линией. В случае снутой границы аппроксимация является точной, когда число отрезков ломаной равно числу ск границы, так что каждую пару соседних точек соединяет свой отрезок. Методы: - ломаные минимальной длины;
	Слайд
	- методы слияния;
	Слайд
	- методы разбиения.
	Слайд

С помощью цепных кодов граница представляется в виде последовательности соединенных

Сигнатура есть описание границы объекта с помощью одномерной функции, которое может строиться различными способами. Один из простейших состоит в построении зависимости расстояния от центроида (то есть от некоторой средней точки объекта) до границы объекта в виде функции угла.

Слайд
Независимо от способа построения сигнатуры, основная идея состоит в том, чтобы свести
представление границы к одномерной функции, которую предположительно описать легче
чем исходную двумерную границу.
Сигнатуры, построенные таким образом, инвариантны по отношению к параллельному
переносу, однако зависят от поворота и изменения масштаба. Инвариантность к повороту
можно получить, найдя способ выбора одной и той же начальной точки для построения
сигнатуры, независимо от ориентации фигуры.
Способы выбора:
- выбрать в качестве начальной точку, максимально удаленную от центроида, если
такая точка оказывается единственной и независящей от искажений, возникающих при
поворотах интересующих фигур;
- выбор максимально удаленной от центроида точки на собственной оси фигуры,
метод требует большего объема вычислений, но является более устойчивым, так как
направление собственной оси фигуры определяется с учетом всех точек ее контура;
- получение цепного кода границы, полагая, что кодирование является достаточно
грубым, чтобы поворот не нарушал его цикличности.
Слайд
4). Сегменты границы.
Часто оказывается полезным разбиение границы на сегменты – уменьшается
сложность границы и упрощается процесс ее описания. В этом случае мощным
инструментом для устойчивой декомпозиции границы является использование выпуклой
оболочки области, находящейся внутри границы.
Слайд
5). Остовы областей.
Важным для практики является подход, в котором представление формы плоской
области строится путем сведения ее к графу. Такое сокращенное представление можно
получить, выделяя остов этой области с помощью алгоритма утончения (скелетонизации).
Слайд
12.3. Описание.
1). Дескрипторы границ.

Одним из простых дескрипторов границы является ее длина. Для кривой, представленной цепным кодом с единичными шагами дискретизации по обоим направлениям, сумма числа

вертикалы	ных, горизонтальных и умноженных на корень из 2 диагональных составляющих
дает точно	е значение длины границы. Кривизна определяется как скорость изменения угла
наклона.	
	Слайд
2). Дес	крипторы областей.
Пло	мизні области определатов как писло пикселей, которгіе в ней солевукатов

Площадь области определяется как число пикселей, которые в ней содержатся. Периметр области есть длина ее границы. Площадь и периметр применяются в качестве дескрипторов если размеры интересующих областей остаются неизменными. К числу других простых дескрипторов относятся среднее значение и медиана яркости элементов области, а также число пикселей со значениями яркости больше и меньше среднего значения.

------ Слайд ------

14. Печать изображений.

14.1. Способы печати.

1). Что за технологии?

В настоящее время выпускаются два принципиально отличных типа домашних фотопринтеров: струйные и сублимационные.

2). Струйная фотопечать

Технология печати таких принтеров скрыта в названии: изображение на бумаге формируется струями чернил, которые выбрасываются из печатающей головки.

3). Пьезоэлектрическая технология печати

Пьезоэлектрическая технология основана на свойстве пьезокристаллов деформироваться при подаче на них электрического тока. Пьезокристаллы выступают в качестве мини-насосов, которые и выбрасывают строго определенное количество чернил на бумагу.

4). Термоструйная технология печати

Термоструйная технология, которая, кстати, применялась и в первом в мире серийном струйном принтере HP ThinkJet, отличается тем, что для печати используется нагревание чернил: при этом часть чернил нагревается, а часть, за счет избыточного давления, выбрасывается через сопло.

5). Пузырьковая технология печати

Пузырьковая технология Canon представляет собой частный случай термоструйной печати, в котором выброс чернил осуществляется исключительно за счет формируемых газовых пузырьков, возникающих при нагреве чернил, при этом нагревательный элемент расположен сбоку от сопла, а не за ним, как в классических термоструйных принтерах.

6). Сублимационная печать

Принцип работы сублимационного принтера состоит в следующем: при поступлении задания на печать принтер нагревает пленку с нанесенным на нее красителем, в результате чего краситель испаряется с пленки и наносится на специальную бумагу. В результате все того же нагрева поры бумаги открываются и краситель четко фиксируется на отпечатке, после чего поверхность бумаги вновь становится гладкой и глянцевой.

14.2. Виды принтеров.

Компьютерный принтер — устройство печати цифровой информации на твёрдый носитель, обычно на бумагу. Относится к терминальным устройствам компьютера. Процесс печати называется вывод на печать, а получившийся документ — распечатка или твёрдая копия.

Принтеры бывают <u>струйные</u>, <u>лазерные</u>, <u>матричные</u> и <u>сублимационные</u>, а по цвету печати — **чёрно-белые** (монохромные) и **цветные**. Иногда из лазерных принтеров выделяют в отдельный вид <u>светодиодные принтеры</u>.

- 1). Матричные принтеры
- 2). Лазерные принтеры
- 3). Струйные принтеры

Печатающие головки струйных принтеров создаются с использованием следующих типов подачи красителя:

- **Непрерывная подача** (Continuous Ink Jet) подача красителя во время печати происходит непрерывно, факт попадания красителя на запечатываемую поверхность определяется модулятором потока красителя.
- Подача по требованию (<u>Drop-on-demand(англ.</u>)) подача красителя из сопла печатающей головки происходит только тогда, когда краситель действительно надо нанести на соответствующую соплу область запечатываемой поверхности. 4).

4).Сублимационные принтеры

Термосублимация (возгонка) — это быстрый нагрев красителя, когда минуется жидкая фаза. Из твёрдого красителя сразу образуется пар. Чем меньше порция, тем больше фотографическая широта (динамический диапазон) цветопередачи.

Контрольные вопросы.

- 1. Различия интерактивных и автоматических методов сегментации.
- 2. Методы поиска границ.
- 3. Что такое гистерезисная фильтрация.
- 4. Как работает метод сегментации с использованием лапласиана.
- 5. Методы представления границ и областей.
- 6. Какие существуют технологии печати?
- 7. Какие существуют виды принтеров?
- 8. Способы подачи красителя.
- 9. Особенности сублимированных принтеров.

Лекция 10.

Tema 15. Захват и оцифровка видеоизображений. Обработка видео и создание видеофильма с помощью программы Adobe Premier. Методы сжатия и вывод видеоизображения

План лекции.

Работа с видеоизображениями:

- 1) Захват видеоизображения.
- 2) Компьютерная обработка видеоизображения.
- 3) Методы сжатия видеоизображения.

Основная часть.

15. Работа с видеоизображением.

Компьютерная обработка видео — процесс редактирования видео файлов на компьютере, с помощью специальных программ - <u>видеоредакторов</u>. Весь процесс компьютерной обработки видео включает в себя три последовательных и взаимосвязанных действия: <u>захват видео</u>, монтаж и финальное сжатие.

15.1. Захват видео.

Захват видео - процесс преобразования видеосигнала из внешнего источника в <u>цифровой видеопоток</u> при помощи персонального компьютера и запись его в видеофайл с целью последующей его обработки, хранения или воспроизведения.

15.2. Компьютерная обработка видео.

Для того чтобы конечное изображение получилось максимально возможного качества, необходимо делать захват видео, при котором осуществляется <u>оцифровка</u> каждого фрагмента данного видео, что даст возможность покадрово редактировать весь видеоролик и придать готовой работе дополнительные элементы.

<u>Видеомонтаж</u> может осуществляться двумя способами, используя линейный и нелинейный видеомонтаж.

Линейный монтаж происходит чаще в реальном времени.

При нелинейном монтаже видео разделяется на фрагменты (предварительно видео может быть преобразовано в цифровую форму), после чего фрагменты записываются в нужной последовательности, в нужном формате на выбранный видеоноситель.

15.3. Методы сжатия видеоизображения.

Степень сжатия видеопотока и формат кодека определяется целями последующего применения этого видео.

Характеристики видеопотока

Формат пикселя.

Размер кадра.

Формат кадра.

Частота кадров.

Глобальные характеристики. Все вышерассмотренное относится к локальным свойствам, то есть тех, которые отражаются во время воспроизведения. Но длительность видеопотока по времени, объем данных, наличие дополнительной информации, зависимости и т.п. Например: видеопоток может содержать в себе один поток, отвечающий левому глазу, а

другой поток некоторым образом будет хранить информацию об отличии потока правого глаза от левого. Так можно передавать стерео видео или всенародно известное "3D".

Контрольные вопросы.

- 1. Что включает в себя компьютерная обработка видео?
- 2. Какие видеоэффекты можно использовать в редакторе Adobe Premier?
- 3. Характеристики видеопотока.
- 4. Способы сжатия видеоизображения.
- 5. На чем можно сэкономить память при сжатии видеоизображения?

Заключение

В курсе лекций раскрываются базовые понятия и методология компьютерной обработки изображений, даются основы для дальнейшего изучения этой многогранной и быстроразвивающейся области. Цифровая обработка и распознавание изображений - одно из интенсивно развиваемых направлений исследований. Главная цель курса раскрыть предмет, не усложняя его сложными математическими преобразованиями. Лекции снабжены большим числом слайдов, позволяющих продемонстрировать особенности реализации компьютерных методов обработки изображений и их анализа и синтеза. Это позволяет сделать изложение материала понятным и доступным для студентов. В лекциях отсутствует описание конкретных пакетов программ, в которых можно выполнить рассмотренные теоретически алгоритмы обработки изображений. Это сделано, чтобы не загромождать представление особенностями, связанными с реализацией алгоритмов.

В курсе рассмотрены все основные направления обработки и анализа изображений, включая основы теории восприятия и регистрации видеоинформации, методы фильтрации, кратко — вейвлет-преобразования, улучшения, восстановления и сжатия черно-белых и цветных изображений. Обсуждаются также вопросы сегментации, описания и представления деталей, морфологического анализа изображений.

Материал дисциплины представлен так, чтобы позволить слушателям ознакомиться с основными современными методами и алгоритмами компьютерной обработки изображений и помочь ориентироваться в большом мире книг по цифровым методам обработки информации.

Список литературы

а) основная литература:

1. Р. Гонсалес, Р. Вудс **Цифровая обработка изображений** Техносфера, Москва 2012 г. 2. Б. Яне.

Цифровая обработка изображений.

Техносфера, Москва 2007 г.

3. Сергиенко А. Б.

Цифровая обработка сигналов. — 2-е.

СПб.: Питер, 2007.

4. Оппенгейм А., Шафер Р.

Цифровая обработка сигналов. Изд. 2-е, испр. —

М.: Техносфера, 2007.

5. И.С. Грузман, В.С. Киричук, В.П. Косых, Г.И. Перетягин, А.А. Спектор. **Цифровая** обработка изображений в информационных системах.

Новосибирск 2000г.

6. Д. Ватолин, А. Ратушняк, М. Смирнов, В. Юкин.

Методы сжатия данных.

Москва. Диалог-МИФИ. 2003.

7. Ярославский Л.П.

Введение в цифровую обработку изображений.

Москва, Сов. Радио, 1979

8. Я. А. Фурман, А.Н. Юрьев, В.В. Яншин.

Цифровые методы обработки и распознавания бинарных изображений.

Издательство Красноярского университета, 1992

9. В.Т. Фисенко, Т.Ю. Фисенко

Компьютерная обработка и распознавание изображений.

ИТМО, Санкт-Петербург, 2008

б) дополнительная литература:

1. В.А.Сойфер.

Методы компьютерной обработки изображений.

Москва, Физматлит, 2003.

2. У. Прэтт.

Цифровая обработка изображений. Перевод с английского.

Москва, Мир, 1982

3. В.В. Яншин, Г.А. Калинин

Обработка изображений на языке СИ для ІВМ РС: Алгоритмы и программы.

Москва, Мир, 1994

- 4. материалы сайта http://www.intuit.ru/department/graphics/rastrgraph/4/4/html
- 5. материалы сайта

http://www.sati.archaeology.nsc.ru/gr/nstu/03.digital_image_prosessing.pdf

- 6. материалы сайта http://aprodeus.narod.ru/teaching.htm
- 7. материалы сайта http://www.sernam.ru/lect_d.php
- 8. материалы сайта

 $\underline{http://www.fotopapa.com/article/ustroystvo\ fotoapparata\ zerkalnogo\ cifrovogo.htm}\ l$

- 9. материалы сайта http://www.bookarchive.ru/computer/grafika_i_dizajjn/adobe_premier/
- 10. материалы сайта http://compteacher.ru/video/adobe-premiere-pro/