SEMINAR ALGEBRA AN 2 SEM 1

- 1. Determinați:
 - (i) câtul şi restul împărțirii lui $X^{23} 1$ la $X^5 1$ în $\mathbb{Q}[X]$,
 - (ii) câtul și restul împărțirii lui $2^{23} 1$ la 31 în \mathbb{Z} .
- 2. Fie $A = \{a/12^n; \ a, n \in \mathbb{Z}, n \ge 0\}.$
 - (i) Arătați că A este un subinel al lui \mathbb{Q} .
 - (ii) Determinați unitățile lui A (i.e. elementele inversabile ale lui A).
- 3. Arătați că $\mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3}; \ a, b \in \mathbb{Z}\}$ este subinel al lui \mathbb{C} .
- 4. Fie $\theta = (1 + \sqrt{5})/2$. Arătați că $\mathbb{Z}[\theta] = \{a + b\theta; \ a, b \in \mathbb{Z}\}$ este subinel al lui \mathbb{C} .
- 5. Fie $\theta = (1+\sqrt{7})/2$. Arătați că $\mathbb{Z}[\theta] = \{a+b\theta; \ a,b \in \mathbb{Z}\}$ nu este subinel al lui \mathbb{C} .
- 6. (i) Factorizați $f=X^5+X^3-X^2-1$ peste $\mathbb Q$ și peste $\mathbb C.$ Arătați că:
 - (ii) f divide $X^n 1 \Leftrightarrow 12$ divide n.
 - (iii) f(2) divide $2^n 1 \Leftrightarrow 12$ divide n.
 - (iv) f(3) divide $3^n 1 \Leftrightarrow 12$ divide n.
- 7. Fie funcția $f: \mathbb{Z}[i] \to \mathbb{Z}_5$ dată prin $f(a+bi) = \widehat{a-2b}$. Arătați că:
 - (i) f este morfism de inele,
 - (ii) g este surjecție,
 - (iii) $ker(f) = (2+i)\mathbb{Z}[i]$ (i.e. idealul generat de 2+i),
 - (iv) inelul factor $\mathbb{Z}[i]/(2+i)\mathbb{Z}[i]$ este izomorf cu \mathbb{Z}_5 ,
 - (v) 2 + i divide $a + bi \Leftrightarrow 5$ divide a 2b.
- 8. Fie funcția $g: \mathbb{Z} \to \mathbb{Z}[i]/(4+i)\mathbb{Z}[i]$ dată prin $g(n) = \widehat{n}$. Arătați că:
 - (i) g este morfism de inele,
 - (ii) g este surjecție,
 - (iii) $17\mathbb{Z} = ker(g)$,
 - (iv) \mathbb{Z}_{17} este izomorf cu inelul factor $\mathbb{Z}[i]/(4+i)\mathbb{Z}[i]$.
- 9. Fie funcția $f:\mathbb{Z}[i]\to\mathbb{Z}_2[X]/X^2\mathbb{Z}_2[X]$ dată prin $f(a+bi)=\bar{a}+\widehat{\bar{b}}+\bar{b}X$. Arătați că:
 - (i) f este morfism de inele,
 - (ii) f este surjecție,
 - (iii) $ker(f) = 2\mathbb{Z}[i],$
 - (iv) inelele factor $\mathbb{Z}[i]/2\mathbb{Z}[i]$ și $\mathbb{Z}_2[X]/X^2\mathbb{Z}_2[X]$ sunt izomorfe.
- 10. Fie funcția $g: \mathbb{Z}_2[X] \to \mathbb{Z}[i]/2\mathbb{Z}[i]$ dată prin $g(P(X)) = \widehat{P(1+i)}$. Arătați că:
 - (i) g este bine-definită,
 - (ii) g este morfism de inele,
 - (iii) g este surjecţie,

- (iv) $ker(g) = X^2 \mathbb{Z}_2[X],$
- (v) in elele factor $\mathbb{Z}[i]/2\mathbb{Z}[i]$ și $\mathbb{Z}_2[X]/X^2\mathbb{Z}_2[X]$ sunt izomorfe.
- 11. Fie $\theta = (1+\sqrt{5})/2$. Arătați că inelul factor $\mathbb{Z}[\theta]/11\mathbb{Z}[\theta]$ este izomorf cu $\mathbb{Z}_{11} \times \mathbb{Z}_{11}$.
- 12. Fie $\theta = (1 + \sqrt{5})/2$. Arătați că inelele factor $\mathbb{Z}[\theta]/5\mathbb{Z}[\theta]$ și $\mathbb{Z}_5[X]/X^2\mathbb{Z}_5[X]$ sunt izomorfe.
- 13. Fie $\theta = (1 + \sqrt{21})/2$. Arătați că inelul factor $\mathbb{Z}[\theta]\sqrt{21}\mathbb{Z}[\theta]$ este izomorf cu \mathbb{Z}_{21} .
- 14. Fie $\theta = (1 + \sqrt{-15})/2$. Arătați că inelul factor $\mathbb{Z}[\theta]/\theta\mathbb{Z}[\theta]$ este izomorf cu \mathbb{Z}_4 .
- 15. Fie A un inel comutativ şi $x, y \in A$. Arătați că inelele factor A/(xA + yA) şi $(A/xA)/\hat{y}(A/xA)$ sunt izomorfe.
- 16. Arătați că $\mathbb{Z}[\sqrt[3]{2}] = \{a + b\sqrt[3]{2} + c\sqrt[3]{4}; \ a, b, c \in \mathbb{Z}\}$ este subinel al lui \mathbb{C} .
- 17. Arătați că $A = \{a + b\sqrt[3]{12} + c\sqrt[3]{18}; \ a, b, c \in \mathbb{Z}\}$ este subinel al lui \mathbb{R} .
- 18. Fie $\theta = (1 + \sqrt[3]{10} + \sqrt[3]{100})/3$.
 - (i) Găsiți $m, n, p \in \mathbb{Z}$ așa ca $\theta^3 = m\theta^2 + n\theta + p$.
 - (ii) Arătați că $\mathbb{Z}[\theta] = \{a + b\theta + c\theta^2; a, b, c \in \mathbb{Z}\}$ este subinel al lui \mathbb{R} .
- 19. Arătați că $\mathbb{Z}[\sqrt[4]{2}] = \{a + b\sqrt[4]{2} + c\sqrt[4]{4} + d\sqrt[4]{8}; \ a, b, c, d \in \mathbb{Z}\}$ este subinel al lui \mathbb{R} .
- 20. Arătați că $\{a+b\sqrt[4]{5}+c(1+\sqrt{5})/2+d\sqrt[4]{5}(1+\sqrt{5})/2;\ a,b,c,d\in\mathbb{Z}\}$ este subinel al lui \mathbb{C} .
- 21. Fie numerele 2-i, 14+3i, 13+4i, 1+i, 6+i din $\mathbb{Z}[i]$.
 - (i) Calculați norma acestor numere.
 - (ii) Ce relații de divizibilitate există între aceste numere?
- 22. Fie numerele $(3 + \sqrt{5})/2$, $(13 + 5\sqrt{5})/2$, $(11 + 3\sqrt{5})/2$, $24 + 10\sqrt{5}$ din inelul $\mathbb{Z}[(1 + \sqrt{5})/2]$.
 - (i) Calculați norma acestor numere.
 - (ii) Ce relații de divizibilitate există între aceste numere?
- 23. Verificați dacă $5 + \sqrt{-7}$ divide $11 \sqrt{-7}$
 - (i) în inelul $\mathbb{Z}[\sqrt{-7}]$,
 - (ii) în inelul $\mathbb{Z}[(1+\sqrt{-7})/2]$.
- 24. Fie $a + bi \in \mathbb{Z}[i]$. Arătați că 2 i divide a + bi în $\mathbb{Z}[i] \Leftrightarrow 5$ divide a + 2b în \mathbb{Z} .
- 25. Stabiliți criterii de divizibilitate cu $1+i,\, 2+i$ sau 4-i similare cu cel din ex. precedent.
- 26. Fie $a,b\in\mathbb{Z}$ coprime. Arătați că există $c\in\mathbb{Z}$ cu proprietatea: $a+b\sqrt{d}$ divide $x+y\sqrt{d}$ în $\mathbb{Z}[\sqrt{d}]\Leftrightarrow a^2-b^2d$ divide x+cy.
- 27. Determinați divizorii lui $13 + 4i \in \mathbb{Z}[i]$.
- 28. Verificați dacă numerele următoare sunt asociate în divizibilitate:
 - (i) $2 \sin 1 + \sqrt{-3} \text{ în } \mathbb{Z}[(1+\sqrt{-3})/2],$
 - (ii) $7 + 6\sqrt{2}$ și $5 + \sqrt{2}$ în $\mathbb{Z}[\sqrt{2}]$,
 - (iii) 9 + 7i și 7 + 9i în $\mathbb{Z}[i]$,
 - (iv) $2 + \sqrt{13}$ și $(19 + 5\sqrt{13})/2$ în $\mathbb{Z}[(1 + \sqrt{13})/2]$.
- 29. Arătați că numărul $170 + 39\sqrt{19}$ este inversabil în inelul $\mathbb{Z}[\sqrt{19}]$

- 30. Arătați că numărul $1520 + 273\sqrt{31}$ este inversabil în inelul $\mathbb{Z}[\sqrt{31}]$.
- 31. Determinați unitățile inelului $\mathbb{Z}[(1+\sqrt{-7})/2]$.
- 32. Arătați că unitățile inelului $\mathbb{Z}[\sqrt{3}]$ sunt numerele de forma $\pm (2+\sqrt{3})^n$, $n \in \mathbb{Z}$.
- 33. Fie $A = \{a/(1+2b); a, b \in \mathbb{Z}\}.$
 - (i) Arătați că A este un subinel al lui \mathbb{Q} .
 - (ii) Determinați unitățile lui A.
 - (iii) Arătați că pentru orice $x, y \in A$ rezultă x divide y sau y divide x.
- 34. Fie $n \geq 2$ un număr întreg și $A = \{a/(1+bn); a, b \in \mathbb{Z}\}.$
 - (i) Arătați că A este un subinel al lui \mathbb{Q} .
 - (ii) Determinați unitățile lui A.
- (iii) Arătați că n este putere de număr prim \Leftrightarrow pentru orice $x, y \in A$ rezultă x divide y sau y divide x.
- 35. Verificați dacă $1+2\sqrt[3]{2}-\sqrt[3]{4}$ divide $9+3\sqrt[3]{2}-4\sqrt[3]{4}$ în inelul $\mathbb{Z}[\sqrt[3]{2}]$. [Ind. $x^3 - 2 = (x^2 - 2x - 1)(x + 2) + 5x$.]
- 36. Verificați dacă numărul $4 + 2\sqrt[3]{7} + \sqrt[3]{49}$ este inversabil în inelul $\mathbb{Z}[\sqrt[3]{7}]$.
- 37. Arătați că în inelul $\mathbb{Z}[\sqrt{-5}]$:
 - (i) 11 si $3 + 2\sqrt{-5}$ sunt atomi primi,
 - (ii) $3 + \sqrt{-5}$ este atom neprim,
 - (iii) $7 \sqrt{-5}$ este element reductibil.
- 38. Arătați că în inelul $\mathbb{Z}[\sqrt{6}]$:
 - (i) 7 şi $1 \sqrt{6}$ sunt atomi primi,
 - (ii) 2, 3, 5 și $\sqrt{6}$ sunt reductibile.
- 39. Arătați că în inelul $\mathbb{Z}[\sqrt{-7}]$:
 - (i) $8 = 2^3$ şi $8 = (1 + \sqrt{-7})(1 \sqrt{-7})$ sunt factorizări atomice ale lui 8, (ii) $16 = 2^4$ şi $16 = (3 + \sqrt{-7})(3 \sqrt{-7})$ sunt factorizări atomice ale lui 16.
- 40. Arătați că în inelul $\mathbb{Z}[\sqrt{10}]$:
 - (i) 2 și 5 sunt atomi neprimi,
 - (ii) 7 şi $3 2\sqrt{10}$ sunt atomi primi.
- 41. Arătati că în inelul $\mathbb{Z}[\sqrt{-3}]$:
 - (i) $2 \sin 1 + \sqrt{-3}$ sunt atomi neprimi,
 - (ii) 5 şi $2 + \sqrt{-3}$ sunt atomi primi,
 - (iii) 7 este element reductibil.
- 42. Factorizați $5 + \sqrt{-3} \in \mathbb{Z}[\sqrt{-3}]$ în produs de atomi.
- 43. Fie $a + b\sqrt{-3} \in \mathbb{Z}[\sqrt{-3}]$ cu $a, b \in \mathbb{Z}$. Arătați că a, b au aceeași paritate \Leftrightarrow $a+b\sqrt{-3}$ se divide cu 2, $1+\sqrt{-3}$ sau $1-\sqrt{-3}$.
- 44. Fie $A = \{(a + b\sqrt{-3})/(2c + 1); a, b, c \in \mathbb{Z}\}$. Arătați că:
 - (i) A este subinel al lui \mathbb{C} ,
 - (ii) $a + b\sqrt{-3}$ / (2c + 1) inversabil $\Leftrightarrow a, b$ au parități diferite,
 - (iii) atomii lui A sunt 2, $1+\sqrt{-3}$ şi $1-\sqrt{-3}$ (pâna la o asociere),
 - (iv) A nu are atomi primi.

- 45. Arătați că în inelul $\mathbb{Z}[(1+\sqrt{-15})/2]$:
 - (i) 2 și 3 sunt atomi neprimi,
 - (ii) $2 + \sqrt{-15}$ şi $2 \sqrt{-15}$ sunt atomi primi.
- 46. Fie $A = \{ f \in \mathbb{Q}[X] \mid f(0) \in \mathbb{Z} \}$. Arătați că:
 - (i) A este un subinel al lui $\mathbb{Q}[X]$,
 - (ii) X nu are factorizare atomică în A,
 - (iii) 2 şi $X^2 + X + 1$ sunt atomi primi în A.
- 47. Fie A inelul de "polinoame" cu coeficienți în \mathbb{Z}_2 și exponenți raționali ≥ 0 (e.g. $\hat{1} + X^{2/5} + X^{11/3}$). Arătați că A nu are atomi.
- 48. Fie $A = \{ f \in \mathbb{Q}[X] \mid f(a) \in \mathbb{Z} \ \forall a \in \mathbb{Z} \}$. Arătați că:
 - (i) A este un subinel al lui $\mathbb{Q}[X]$,
 - (ii) X(X-1)(X-2)/6 este atom neprim al lui A.
- 49. Găsiți factorizările atomice ale lui 81 în inelul $\mathbb{Z}[\sqrt{-14}]$.
- 50. Folosind egalitatea $\sqrt{-6}^2 = -2 \cdot 3$, arătați că inelul $\mathbb{Z}[\sqrt{-6}]$ nu este factorial.
- 51. Rezultă din egalitatea $\sqrt{6}^2 = 2 \cdot 3$ că inelul $\mathbb{Z}[\sqrt{6}]$ nu este factorial?
- 52. Arătați că inelul $\mathbb{Z}[\sqrt{10}]$ nu este factorial.
- 53. Arătați că inelul $\mathbb{Z}[\sqrt{-17}]$ nu este factorial.
- 54. Scrieți numărul $33 + 13i \in \mathbb{Z}[i]$ ca produs de atomi primi.
- 55. Găsiți factorizările atomice ale lui $-29 + 5\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$.
- 56. Găsiți factorizările atomice ale lui $11 + 17\sqrt{-6} \in \mathbb{Z}[\sqrt{-6}]$.
- 57. Arătați că orice subinel al lui $\mathbb{Z}[X]$ este ACCP deci atomic.
- 58. Fie $A = \mathbb{Z} + 2\mathbb{Z}[X]$.
 - (i) Arătați că A este subinel al lui $\mathbb{Z}[X]$.
 - (ii) Determinați factorizările atomice ale lui $16X^4$ în A.
 - (iii) Deduceți că A nu este factorial.
- 59. Arătați că orice $f \in (\mathbb{Z} + X\mathbb{Q}[X]) X\mathbb{Q}[X], f \neq \pm 1$, este produs de atomi primi.
- 60. Arătați că inelul $\mathbb{R} + X\mathbb{C}[X]$ este atomic nefactorial.
- 61. Fie K un corp comutativ astfel încât toate subinelele lui K[X] sunt atomice. Ce putem afirma despre K?
- 62. Arătați că $1 + \sqrt[3]{3} + \sqrt[3]{9}$ este atom prim al inelului $\mathbb{Z}[\sqrt[3]{3}]$.
- 63. Arătați că $3-\sqrt[3]{4}$ este un divizor prim al lui 23 în inelul $\mathbb{Z}[\sqrt[3]{2}]$. Găsiți o factorizare atomică a lui 23 în $\mathbb{Z}[\sqrt[3]{2}]$.
- 64. Fie $A = \{ f \in \mathbb{Q}[X] \mid f'(0) = 0 \}$, unde f' este derivata lui f.
 - (i) Arătați că A este subinel al lui $\mathbb{Q}[X]$.
 - (ii) Determinați factorizările atomice ale lui X^8-X^5 în ${\cal A}.$
- 65. Calculați cmmdc al numerelor 2-9i, 6-7i în $\mathbb{Z}[i]$.
- 66. Arătați că numerele $2-9i,\, 6-7i\in\mathbb{Z}[i]$ au c
mmmc egal cu 17(2+i).

- 67. Arătați că în domeniul $\mathbb{Z}[\sqrt{-17}]$:
 - (i) $2 + \sqrt{-17}$ și 7 au cmmdc,
 - (ii) $2 + \sqrt{-17}$ şi 7 nu au cmmmc,
 - (iii) $6 + 3\sqrt{-17}$ și 21 nu au cmmdc.
- 68. Fie A un domeniu și $a,b,c\in A-\{0\}$ cu aA+bA=cA. Arătați că (a,b)=c și [a,b]=ab/c.
- 69. Fie $x, y \in \mathbb{Z}[\sqrt{-5}]$ cu N(x), N(y) coprime în \mathbb{Z} . Arătaţi că idealul generat de x şi y în $\mathbb{Z}[\sqrt{-5}]$ este $\mathbb{Z}[\sqrt{-5}]$.
- 70. Arătați că în domeniul $\mathbb{Z}[\sqrt{-5}]$:
 - (i) idealul generat de 29 și $13 + \sqrt{-5}$ este principal,
 - (*ii*) 29 şi $13 + \sqrt{-5}$ au cmmdc,
 - (iii) 29 şi $13 + \sqrt{-5}$ au cmmmc.
- 71. Arătați că în domeniul $\mathbb{Z}[\sqrt{13}]$:
 - (i) $2 \sin 1 + \sqrt{13} \text{ sunt coprime}$,
 - (ii) idealul generat de 2 și $1 + \sqrt{13}$ nu este principal.
- 72. Arătați că în domeniul $\mathbb{Z}[\sqrt{-3}]$:
 - (a) 2 şi $1 + \sqrt{-3}$ sunt coprime
 - (b) 2^3 şi $(1+\sqrt{-3})^3$ nu sunt coprime.
- 73. Arătați că în domeniul $\mathbb{Z}[(1+\sqrt{-15})/2]$ idealul generat de 19 și $9-(1+\sqrt{-15})/2$ este principal.
- 74. Fi
ea,bnumere întregi coprime. Arătați că numerel
e $a+bi,\,a-bi$ din $\mathbb{Z}[i]$ au c
mmdc egal cu
 - 1+i, dacă a, b sunt impare,
 - 1, în caz contrar.
- 75. Arătați că $\cup_{n\geq 1}\mathbb{R}[X^{1/2^n}]$ este inel Bezout neprincipal (adică orice ideal finit generat este principal).
- 76. Fie A un domeniu. Arătați că dacă A[X] este inel Bezout, atunci A este corp.

In exercițiile 77-84, calculați cmmdc d al elementelor a, b

- (i) folosind algoritmul lui Euclid,
- (ii) descompunând a si b în produs de elemente prime.

In cazul (i) scrieți pe d ca o combinație liniară de a și b.

77.
$$a = 11 + 17i$$
, $b = 1 + 13i$ în inelul $\mathbb{Z}[i]$.

78.
$$a = 31 - 19\sqrt{-2}$$
, $b = 21 + 7\sqrt{-2}$ în inclul $\mathbb{Z}[\sqrt{-2}]$.

79.
$$a = 41 - 16\theta$$
, $21 + 2\theta$ în inelul $\mathbb{Z}[\theta]$, unde $\theta = (1 + \sqrt{-11})/2$.

80.
$$a = 31 - 16\theta$$
, $b = 17 + 2\theta$ în inelul $\mathbb{Z}[\theta]$, unde $\theta = (1 + \sqrt{-7})/2$.

81.
$$a = 18 - 17\omega$$
, $b = 23 + 2\omega$ în inelul $\mathbb{Z}[\omega]$ unde $\omega = (1 + \sqrt{-3})/2$.

82.
$$a = x^{19} + x + 1$$
, $b = x^8 + x^7 + x + 1$ în inelul $\mathbb{Z}_2[x]$.

83.
$$a = 11 + 15\sqrt{2}$$
, $b = 3 + 13\sqrt{2}$ în inelul $\mathbb{Z}[\sqrt{2}]$.

84.
$$a = 67 - 3\sqrt{3}$$
, $b = 73 - 17\sqrt{3}$ în inelul $\mathbb{Z}[\sqrt{3}]$.

- 85. Calculați un generator al idealului $(65 + 55i)\mathbb{Z}[i] \cap (29 + 3i)\mathbb{Z}[i]$.
- 86. Găsiți un singur generator pentru idealul generat de 3+i, 5-i, 7+i în $\mathbb{Z}[i]$.
- 87. Rezolvații ecuația (2+2i)x + (5-i)y = 7+i în $\mathbb{Z}[i]$.
- 88. Rezolvații ecuația $(11 + 15\sqrt{2})x + (3 + 13\sqrt{2})y = 8 + 5\sqrt{2}$ în $\mathbb{Z}[\sqrt{2}]$.
- 89. Determinați imaginea și nucleul aplicației liniare $\phi: A \times A \to A, \ \phi(x,y) =$
- $(11 15\sqrt{2})x + (3 13\sqrt{2})y$, unde $A = \mathbb{Z}[\sqrt{2}]$.
- 90. In inelul $\mathbb{Z}[\sqrt{12}]$, găsiți o două elemente fără cmmdc.
- 91. In inelul $\mathbb{Z}[\sqrt{-19}]$, găsiți un exemplu de factorizare atomică neunică.
- 92. Găsiți factorizarea atomică a lui 20 în inelul $\mathbb{Z}[(1+\sqrt{-19})/2]$.
- 93. Arătați că inelul $\mathbb{C}[x,y]/(x^2+y^2-1)$ este euclidian.
- 94. Arătați că subinelul $\{(a+b\sqrt{-5})/(2c+1); a,b,c\in\mathbb{Z}\}$ al lui \mathbb{C} este euclidian.
- 95. Factorizați polinomul $X^4 + X^2 + 1$ în inelul $\mathbb{Z}[i][X]$.
- 96. Calculați c
mmdc al polinoamelor $(3+i)x^4-3-i$ și $(5-i)x^6-5+i$ în inelu
l $\mathbb{Z}[i][x].$
- 97. Factorizați polinomul $X^4 10X^2 + 1$ în inelul
 - $(i) \mathbb{Z}[X]$
 - $(ii) \mathbb{Z}[\sqrt{2}][X]$
 - (iii) $\mathbb{Z}[\sqrt{3}][X]$
 - (iv) $\mathbb{Z}[\sqrt{6}][X]$
 - $(v) \mathbb{Z}_2[X]$
 - $(vi) \mathbb{Z}_3[X].$
- 98. Factorizați polinomul $X^3 + i$ în inelul $\mathbb{Z}[i][X]$.
- 99. Descompuneți numărul 20538 110334i în produs de factori primi în $\mathbb{Z}[i]$.
- 100. Câți divizori are numărul din ex. precedent?
- 101. In $\mathbb{Z}[i]$, descompuneți toate numerele de normă 24375 în produs de factori primi.
- 102. Descompuneți numărul $140770 91910\sqrt{2}$ în produs de factori primi în $\mathbb{Z}[\sqrt{2}]$.
- 103. Descompuneți numărul 1170570 150780 $\sqrt{3}$ în produs de factori primi în $\mathbb{Z}[\sqrt{3}]$.
- 104. Descompuneți numărul $406305 + 78315\sqrt{5}$ în produs de factori primi în $\mathbb{Z}[(1+\sqrt{5})/2]$.
- 105. Determinați elementele prime din inelul $\mathbb{Z}[(1+\sqrt{-3})/2]$.
- 106. Determinați elementele prime din inelul $\mathbb{Z}[\sqrt{-3}]$.
- 107. In $\mathbb{Z}[\sqrt{-17}]$, găsiți atomi $a_1, ..., a_n, b_1, ..., b_{2n}$ astfel încât $a_1 \cdots a_n = b_1 \cdots b_{2n}$.
- 108. Calculați conținutul polinomului $420X^5 + 1170X^3 + 1650X^2 + 900 \in \mathbb{Z}[X]$.
- 109. Calculați conținutul polinomului $(3+i)X^5+20X^4+(13+i)X^3+(19+3i)X^2+70\in\mathbb{Z}[i][X].$

- 110. Este polinomul $f = 111X^6 + 147X^5 91X^3 + 161X^2 + 203$ irreductibil in $\mathbb{Q}[X]$?
- 111. Arătați că polinomul $f = X^5 + X^3 + 1$ este ireductibil în $\mathbb{Q}[X]$.
- 112. Arătați că polinomul $f=2X^5-4X^4-7X^3+25X^2-14X-17$ este ireductibil în $\mathbb{Q}[X]$. [Ind. $X\mapsto X+1$.]
- 113. Arătați că polinomul $f = X^4 + (3+4i)X^3 + (3-i)X^2 5X + 6 7i$ este ireductibil în $\mathbb{Q}(i)[X]$.
- 114. Arătați că polinomul $f=X^5Y+X^4Y^3-X^4+X^2Y-X^2+Y^2+Y-2$ este ireductibil în $\mathbb{Q}[X,Y].$
- 115. Fie $f = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in \mathbb{Z}[X]$ cu $a_n \neq 0$, $a_0 \neq 0$ si $n \geq 2$. Arătaţi că f este ireductibil dacă şi numai dacă $g = a_0 X^n + a_1 X^{n-1} + \dots + a_{n-1} X + a_n$ este ireductibil.
- 116. Arătați că polinomul $f = (1+4\omega)X^4 + 3\omega X^3 + (1+\omega)X^2 6X + 2 + \omega$ este ireductibil în $\mathbb{Q}(\omega)[X]$, unde $\omega = (1+\sqrt{-3})/2$.
- 117. Arătați că polinomul $f = (6-7i)X^4 + (15+8i)X^3 + (11-10i)X^2 17X + 2i$ este ireductibil în $\mathbb{Q}(i)[X]$.
- 118. Factorizați $X^5 + i$ în $\mathbb{Q}(i)[X]$. [Ind. $\mathbb{Z}[i]/(1+i) \simeq \mathbb{Z}_2$.]
- 119. Fie $f, g \in \mathbb{Q}[X]$ două polinoame unitare cu $fg \in \mathbb{Z}[X]$. Arătați că $f, g \in \mathbb{Z}[X]$.
- 120. Arătați că nu există un subinel propriu D al lui $\mathbb R$ astfel încât D este factorial și are corpul de fracții $\mathbb R$.
- 121. Arătați că $f=X^2-X+3$ este ireductibil în $\mathbb{Z}[\sqrt{-11}][X]$ dar este reductibil în $\mathbb{Q}[\sqrt{-11}][X]$.
- 122. Arătați că în $\mathbb{Z}[\sqrt{-3}][X]$ polinoamele $2X + 1 + \sqrt{-3}$ si $2X + 1 \sqrt{-3}$ sunt primitive dar produsul lor nu este primitiv.
- 123. Fie $f \in \mathbb{Z}[X]$ un polinom primitiv de grad ≥ 1 . Arătați că f este primitiv în $\mathbb{Z}[i][X]$.
- 124. Dați exemplu de extindere de inele factoriale $A \subseteq B$ astfel încât nu orice polinom primitiv din A[x] este primitiv in B[x].
- 125. Fie $f \in \mathbb{Z}[X]$ un polinom de grad $n \geq 1$. Arătați că f se poate scrie ca suma a două polinoame ireductibile de grad n din $\mathbb{Z}[X]$.
- 126. Arătați că $x^{2^n} + 1$ este ireductibil în $\mathbb{Z}[X]$.
- 127. Fie p un numar prim. Arătați că $x^{p-1} + \cdots + x + 1$ este ireductibil în $\mathbb{Z}[X]$.
- 128. Factorizați 541 in \mathbb{Z} și apoi $x^9 + x^4 + x^3 + x^2 + 1$ în $\mathbb{Z}[X]$ și $\mathbb{Z}_2[X]$.
- 129. Factorizați $x^5 + 5x^4 + 10x^3 + 10x^2 x 2$ în $\mathbb{Z}[X]$.
- 130. Factorizați $x^4 + 6x^3 + 11x^2 8x + 1$ în $\mathbb{Z}_2[X]$, $\mathbb{Z}_3[X]$ și $\mathbb{Z}[X]$.
- 131. Factorizați 2, 3, 5, 7 și 31 în $\mathbb{Z}[\sqrt[3]{2}]$.
- 132. Arătați că $(2, 1 + \sqrt{-5})$ este ideal maximal în inelul $\mathbb{Z}[\sqrt{-5}]$.
- 133. Arătați că $(3, 1 \sqrt{-5})$ este ideal prim în inclul $\mathbb{Z}[\sqrt{-5}]$.

- 134. Determinaţi spectrul inelului $\mathbb{Z} + x\mathbb{Q}[x]$.
- 135. Este idealul generat de $x^3 2$ și $x^2 2x 1$ în $\mathbb{Z}[x]$ prim ?
- 136. Este idealul generat de 2 și $7x^5 3x 1$ în $\mathbb{Z}[x]$ prim?
- 137. Arătați că operația externă (a+bi)x := (a+5b)x, $a, b \in \mathbb{Z}$, $x \in \mathbb{Z}_{13}$, definește pe grupul abelian \mathbb{Z}_{13} o structură de $\mathbb{Z}[i]$ -modul.
- 138. Câte $\mathbb{Z}[i]$ -module de ordin 13 există?
- 139. Arătați că nu există $\mathbb{Z}[i]$ -modul de ordin 19.
- 140. Fie $n \geq 2$ un întreg ≥ 2 . Arătați că următoarele afirmații sunt echivalente:
 - (a) \mathbb{Z}_n posedă o structură de $\mathbb{Z}[i]$ -modul.
 - (b) Există $x \in \mathbb{Z}_n$ cu $x^2 = -\hat{1}$.
 - (c) 4 nu divide n si factorii primi impari ai lui n sunt de forma 4k + 1.
- 141. Arătați că operația externă $(a+bi)(x,y) := (ax-by,ay+bx), a,b \in \mathbb{Z}, x,y \in \mathbb{Z}_3$, definește pe grupul abelian $\mathbb{Z}_3 \times \mathbb{Z}_3$ o structură de $\mathbb{Z}[i]$ -modul. Determinați submodulele acestui modul.
- 142. Este conjugarea complexă un endomorfism al $\mathbb{Z}[i]$ -modulului \mathbb{C} ? Este conjugarea complexă un endomorfism al $\mathbb{Z}[\sqrt{2}]$ -modulului \mathbb{C} ?
- 143. Fie M modulul definit de morfismul de inele $f(X) \mapsto f(X^2) : \mathbb{Z}[X] \to \mathbb{Z}[X]$. Este modulul M finit generat?
- 144. Este $\mathbb{Z}[\sqrt{2}]$ -modulul $\mathbb{Q}[\sqrt{2}]$ finit generat?
- 145. Arătați că \mathbb{Z} -modulul $\mathbb{Z}[i]$ este suma directă submodulelor generate 1+2i și respectiv 2+3i.
- 146. Descrieți submodulul M generat de 1 și $\sqrt{2}$ în $\mathbb{Z}[i]$ -modulul \mathbb{C} . Este M un subinel al lui \mathbb{C} ?
- 147. Fie M modulul definit de morfismul de inele $f(X) \mapsto f(1) : \mathbb{Z}[X] \to \mathbb{Z}[X]$. Este M izomorf cu modulul standard $\mathbb{Z}[X] \mathbb{Z}[X]$?
- 148. Arătați că \mathbb{Z} -modulul $\mathbb{Z}^2/<(4,1),(1,-4)>$ este izomorf cu \mathbb{Z}_{17} .
- 149. Este $\mathbb{Z}[\sqrt{2}]$ -modulul $\mathbb{Z}[\sqrt{2}]^2/\langle (4,1), (1,-4) \rangle$ izomorf cu $\mathbb{Z}[\sqrt{2}]/17\mathbb{Z}[\sqrt{2}]$?
- 150. Arătați că \mathbb{Z} -modulul $\mathbb{Z}^2/<(4,-2),(2,4)>$ este izomorf cu $\mathbb{Z}_2\times\mathbb{Z}_{10}$ folosind aplicația liniară $f:\mathbb{Z}^2\to\mathbb{Z}_2\times\mathbb{Z}_{10}$ dată prin $f(x,y)=(\bar{x},\widehat{2x-y}).$
- 151. Este $\mathbb{Z}[i]$ -modulul $\mathbb{Z}[i]^2/<(3+i,3-i)>$ izomorf cu $\mathbb{Z}[i]$?
- 152. Este $\mathbb{Z}[i]$ -modulul $\mathbb{Z}[i]^2/<(2+i,2-i)>$ izomorf cu $\mathbb{Z}[i]$?
- 153. Fie M modulul definit de morfismul de inele $f(X) \mapsto f(X^2) : \mathbb{Z}[X] \to \mathbb{Z}[X]$. Este M izomorf cu modulul standard $\mathbb{Z}[X] \mathbb{Z}[X]$?
- 154. In Z-modulul Z[$\sqrt{7}$] considerăm submodulul M generat de 9, $9\sqrt{7}$, $5+2\sqrt{7}$ și $14+5\sqrt{7}$. Arătați că $\{5+2\sqrt{7},9+3\sqrt{7}\}$ este o bază a lui M, deci M este liber. Aparține $11-\sqrt{7}$ lui M?
- 155. Dați un exemplu de sistem de generatori G al unui modul liber astfel încât din G nu se poate extrage o bază.

156. Fie $A=\mathbb{Z}[X,Y]$. Privim pe A ca modul peste el însuși. Arătați că $M=\{f\in A\mid f(0,0)=0\}$ este un submodul al lui A și că M nu este liber. Generalizare.

157. Fie H un \mathbb{Z} -submodul al lui \mathbb{Z}^3 . Presupunem că există $(a,b,c), (0,d,e), (0,0,f) \in H$ astfel încât

 $a = min\{x \mid (x, y, z) \in H, x > 0\},\$

 $d = \min\{y \mid (0, y, z) \in H, y > 0\},\$

 $f = \min\{z > 0 \mid (0, 0, z) \in H\}.$

Arătați că (a,b,c),(0,d,e),(0,0,f) este o bază a lui H.

158. Arătați că în \mathbb{Z} -modulul factor $\mathbb{Z}^3/<(2,3,4)>$ clasele vectorilor (1,1,1), (0,0,1) formeaza o bază.

159. Fie M un \mathbb{Z} -modul liber. Arătați că M nu are elemente nenule de ordin finit. Deduceți că \mathbb{Z} -modulul factor $\mathbb{Z}^3/<(2,4,-6)>$ nu este liber.

160. Fie M idealul inelului $\mathbb{Z}[\sqrt[3]{11}]$ generat de 2 și $3 + \sqrt[3]{11}$. Arătați că M privit ca \mathbb{Z} -modul are baza, $\{2, 1 + \sqrt[3]{11}, 1 + \sqrt[3]{121}\}$ deci M este liber.

161. Fie matricea $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$. Arătați că operația externă

$$(f(X), \begin{pmatrix} x \\ y \\ z \end{pmatrix}) \mapsto f(A) \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

definește pe \mathbb{Q}^3 o structură de $\mathbb{Q}[X]\text{-modul}.$ Arătați că M este suma directă internă

$$\mathbb{Q}[X]g_1 \oplus \mathbb{Q}[X]g_2 \oplus \mathbb{Q}[X]g_3, \text{ unde } g_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, g_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, g_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

162. Fie E inelul endomorfismelor \mathbb{Q} -spațiului vectorial $\mathbb{Q}[X]$. Considerăm elementele $a,b,c,d\in E$ definite prin relațiile $a(X^n)=X^{2n},\ b(X^n)=X^{2n+1},\ c(X^{2n})=X^n,\ c(X^{2n+1})=0,\ d(X^{2n+1})=X^n,\ d(X^{2n})=0,\ n\geq 0.$ Arătați că $\{c,d\}$ este o bază a lui E privit ca E-module stâng. [Ind. $ac+bd=1,\ ca=1,\ cb=0.$]

163. Fie R un inel comutativ, M un R-modul, $x,y\in M$ și $\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in M_2(R)$ o matrice inversabilă. Arătați că $\{ax+by,cx+dy\}$ este bază a lui M dacă și numai dacă $\{x,y\}$ este bază.

164. Posedă grupurile \mathbb{Z}_8 , $\mathbb{Z}_2 \times \mathbb{Z}_4$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ structuri de $\mathbb{Z}[\sqrt[3]{3}]$ -modul?

165. Este $\mathbb{Z}[X^2, X^3]$ un $\mathbb{Z}[X^2]$ -modul liber ?

166. Găsiți o bază de $\mathbb{Z}\text{-modul liber pentru inelul }\mathbb{Z}[\sqrt[3]{2}].$

167. Găsiți o bază de \mathbb{Z} -modul liber pentru inelul $\mathbb{Z}[\sqrt[3]{12},\sqrt[3]{18}]$.