Lifted Tsang Suspension Assembly

MOTIVATION

- To create technologies that benefit from thermal and electrical isolation from the substrate to operate with greater efficiency and higher sensitivity
 - Gyroscopes
 - Antenas
 - Accelerometers
- Tsang Suspensions can isolate these technologies from the substrate by becoming a free-standing structure after being mechanically assembled or being rotated out of frame.

Arevalo Carreno, Armando Arpys & Conchouso Gonzalez, David & Rawashdeh, Ehab & Castro, Desiret & Foulds, Ian. (2014). Platform Isolation Using Out-of-plane Complaint Mechanisms.

Goal

Analyze lifting mechanism using opposing Tsang suspension.

DESIGN PROCESS

DESIGN - FEASIBILITY, VARIABLES, AND SIMULATIONS

DESIGN VARIABLES

SPRING A

SPRING B

 $_f \left\{ egin{array}{l} {
m Spring width, Spring Length (}\uparrow\uparrow {
m Direction), and Number of turns} \end{array}
ight.$

f Experimenting with SU-8 Layers

SIMULATION LOADING CONDITIONS

2 Horizontal Forces + Couple Moment

MODEL ASSUMPTIONS

- Friction between the Tsang Assembly and the Substrate will provide enough force to counteract the horizontal force from SPRING B and keep the assembly in equilibrium at 90 degrees ***
 - a. To reduce the magnitude of friction required, we are testing 3 designs with varying Spring Constants.

^{***(}in some test cases we have anchors in case the friction isn't sufficient)

DESIGN - STRESS DISTRIBUTION / COMPARISON

Expect this to perform best

	Description	Maximum Stress	
Design A	Low Spring A + Strong K Spring B	30.9	Мра
Design B	Spring A + Medium K Spring B	36	MPa
Design C	Spring A + Low K Spring B	38	MPa

DESIGN - TESTING PLAN

Test Plan									
Design	Spring A	Spring B	Spring A-Layer	Spring B-Layer	Actuator Layer	# of Tests	Breaks?	Stationary at 90 Degrees	
Α	Low K	High K	SU8-1	SU8-1	SU8-2	2			
			SU8-1	SU8-2	SU8-1	2			
			SU8-1	SU8-1	ANCHOR	2			
			SU8-1	SU8-2	SU8-2	2			
В	Medium K	Medium K	SU8-1	SU8-1	SU8-2	2			
			SU8-1	SU8-2	SU8-1	2			
			SU8-1	SU8-1	ANCHOR	2			
			SU8-1	SU8-2	SU8-2	2			
С	Medium K	Low K	SU8-1	SU8-1	SU8-2	2			
			SU8-1	SU8-2	SU8-1	2			
			SU8-1	SU8-1	ANCHOR	2			
			SU8-1	SU8-2	SU8-2	2			

DESIGN A - ANALYSIS

DESIGN B - ANALYSIS

DESIGN C - ANALYSIS

DESIGN - LAYOUTS

Anchors

Dimples

SU8_1

SU8_2

BACKUP DESIGNS

BACKUP DESIGNS

FORWARD PLAN

- Fabrication
- Testing designed mechanism
 - Material and spring performance analysis
 - Use backup designs if needed.
- Redesign to further improve design based on initial learnings and further reduce spring constant of Spring A to reduce maximum stresses.
- Apply Learnings to Fabrication Round 2 +

THANKS!

DO YOU HAVE ANY QUESTIONS?

References

Castro, David & Arevalo Carreno, Armando Arpys & Rawashdeh, Ehab & Dechev, Nikolai & Foulds, Ian. (2014). Simulation of a Micro-Scale Out-of-plane Compliant Mechanism.