· mission: mission

Parameters:

• thrust gain: 1.0

• mission=TrajectoryTracking:

Track a desired trajectory. This mission depends on:

o controller: a trajectory tracking controller

o reference: a reference position trajectory to be tracked

o yaw controller: a yaw controller

o yaw reference: a yaw reference

Track a desired trajectory. This mission depends on:

o controller: a trajectory tracking controller

o reference: a reference position trajectory to be tracked

o yaw_controller: a yaw controller

o yaw_reference: a yaw reference

o controller=SimplePIDController:

PID Controller, with saturation on integral part

PID Controller, with saturation on integral part

force(
$$\Delta t$$
, p,pd) = 1.442*(pd⁽²⁾ + u(p⁽⁰⁾ - pd⁽⁰⁾,p⁽¹⁾ - pd⁽¹⁾) + g e₃ - d^{est}), where

$$u_{xy}(p,v) = -6.0*p-7.83836717691*v$$

$$u_z(p,v) = -1.0*p-1.41421356237*v$$

$$\mathbf{d}_{xy}^{\text{est}(1)} = 0.0*(\text{kp/2*ep} + \text{ev})$$

■
$$|d_{xy}^{est(0)}| \le 0.0$$

$$d_z^{\text{est}(1)} = 0.0*(\text{kp/2*ep} + \text{ev})$$

$$|d_z^{est(0)}| \le 0.0$$

• reference=FixedPointTrajectory:

Stay at rest at speficied point

Trajectory with:

- offset = [0.0.1.] in (m),
- rotation = [0.0.0] in (degrees).
- o yaw controller=SimpleTrackingYawController:

Simple yaw tracking controller, based on feedback linearization of yaw rate equation

Controller for yaw motion.

$$\phi = \psi^{(1)} = \psi^{*(1)} - gain*sin(\psi - \psi^{*})$$

• yaw rate = $\cos(\varphi)(\cos(\theta)^*\psi^{(1)} - \sin(\varphi)^*\theta^{(1)})$

Parameters:

- **gain:** 4.0
- yaw_reference=FixedYawTrajectory:

Yaw angle to be constant

$$\circ \ \psi^* = 0.0$$

· mission: mission

Parameters:

- thrust gain: 1.0
- · mission=LoadLifting:

Load attached to uav to track a desired trajectory. This mission depends on:

- o controller: a trajectory tracking controller for system "load+uav"
- o reference: a reference position trajectory to be tracked by load
- o yaw controller: a yaw controller
- o yaw reference: a yaw reference

No parameters

o controller=LinearController:

Linear controller for a single aerial vehicle transporating load attached by cable. Decompose control problems in two parts:

- Control z component ...
- Control x and y

Parameters:

- load mass: 0.1
- **quad** mass: 1.56779
- cable length: 0.6
- z_double_integrator_ctr=OneDimensionalBoundedDIC:

One dimenisonal Double-integrator (bounded actuation)

Parameters:

- natural_frequency: 1.5
- **damping:** 0.707106781187
- position_saturation: 0.5
- velocity saturation: 0.5
- o reference=FixedPointTrajectory:

Stay at rest at speficied point

Trajectory with:

- offset = [0.0.1.] in (m),
- rotation = [0.0.0] in (degrees).
- yaw_controller=SimpleTrackingYawController:

Simple yaw tracking controller, based on feedback linearization of yaw rate equation

Controller for yaw motion.

- $\circ \ \psi^{(1)} = \psi^{*(1)} gain*sin(\psi \psi^{*})$
- yaw rate = $\cos(\varphi)(\cos(\theta)^*\psi^{(1)} \sin(\varphi)^*\theta^{(1)})$

Parameters:

- **gain:** 4.0
- yaw reference=FixedYawTrajectory:

Yaw angle to be constant

$$\circ \ \psi^* = 0.0$$

· mission: mission

Parameters:

- thrust gain: 1.0
- · mission=LoadLifting:

Load attached to uav to track a desired trajectory. This mission depends on:

- o controller: a trajectory tracking controller for system "load+uav"
- o reference: a reference position trajectory to be tracked by load
- o yaw controller: a yaw controller
- o yaw reference: a yaw reference

No parameters

o controller=LinearController:

Linear controller for a single aerial vehicle transporating load attached by cable. Decompose control problems in two parts:

- Control z component ...
- Control x and y

Parameters:

- load mass: 0.1
- **quad** mass: 1.56779
- cable length: 0.6
- z_double_integrator_ctr=OneDimensionalBoundedDIC:

One dimenisonal Double-integrator (bounded actuation)

Parameters:

- natural_frequency: 1.5
- **damping:** 0.707106781187
- position_saturation: 0.5
- velocity saturation: 0.5
- o reference=FixedPointTrajectory:

Stay at rest at speficied point

Trajectory with:

- offset = [0.0.1.] in (m),
- rotation = [0.0.0] in (degrees).
- yaw_controller=SimpleTrackingYawController:

Simple yaw tracking controller, based on feedback linearization of yaw rate equation

Controller for yaw motion.

- $\circ \ \psi^{(1)} = \psi^{*(1)} gain*sin(\psi \psi^{*})$
- yaw rate = $\cos(\varphi)(\cos(\theta)^*\psi^{(1)} \sin(\varphi)^*\theta^{(1)})$

Parameters:

- **gain:** 4.0
- yaw reference=FixedYawTrajectory:

Yaw angle to be constant

$$\circ \ \psi^* = 0.0$$

· mission: mission

Parameters:

- thrust gain: 1.0
- mission=LoadLifting:

Load attached to uav to track a desired trajectory. This mission depends on:

- o controller: a trajectory tracking controller for system "load+uav"
- o reference: a reference position trajectory to be tracked by load
- o yaw controller: a yaw controller
- o yaw reference: a yaw reference

No parameters

o controller=LinearController:

Linear controller for a single aerial vehicle transporating load attached by cable. Decompose control problems in two parts:

- Control z component ...
- Control x and y

Parameters:

- load mass: 0.1
- **quad** mass: 1.56779
- cable_length: 0.6
- z_double_integrator_ctr=OneDimensionalBoundedDIC:

One dimenisonal Double-integrator (bounded actuation)

Parameters:

- natural_frequency: 1.5
- **damping:** 0.707106781187
- position_saturation: 0.5
- velocity saturation: 0.5
- o reference=FixedPointTrajectory:

Stay at rest at speficied point

Trajectory with:

- offset = [1. 1. 1.] in (m),
- rotation = [0.0.0] in (degrees).
- yaw_controller=SimpleTrackingYawController:

Simple yaw tracking controller, based on feedback linearization of yaw rate equation

Controller for yaw motion.

- $\circ \ \psi^{(1)} = \psi^{*(1)} gain*sin(\psi \psi^{*})$
- yaw rate = $\cos(\varphi)(\cos(\theta)^*\psi^{(1)} \sin(\varphi)^*\theta^{(1)})$

Parameters:

- **gain:** 4.0
- yaw reference=FixedYawTrajectory:

Yaw angle to be constant

$$\circ \ \psi^* = 0.0$$

