

Sequence Listing

<110> Baker, Kevin
Botstein, David
Eaton, Dan
Ferrara, Napoleone
Filvaroff, Ellen
Gerritsen, Mary
Goddard, Audrey
Godowski, Paul
Grimaldi, Christopher
Gurney, Austin
Hillan, Kenneth
Kljavin, Ivar
Napier, Mary
Roy, Margaret
Tumas, Daniel
Wood, William

<120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

<130> P2548P1C1

<150> 60/067,411

<151> December 3, 1997

<150> 60/069,334

<151> December 11, 1997

<150> 60/069335

<151> December 11, 1997

<150> 60/069,278

<151> December 11, 1997

<150> 60/069,425

<151> December 12, 1997

<150> 60/069,696

<151> December 16, 1997

<150> 60/069,694

<151> December 16, 1997

<150> 60/069,702

<151> December 16, 1997

<150> 60/069,870

<151> December 17, 1997

<150> 60/069,873

<151> December 17, 1997

<150> 60/068,017

<151> December 18, 1997

<150> 60/070,440

2010 RELEASE UNDER E.O. 14176

09/09/98-09/09/99
<151> January 5, 1998
<150> 60/074,086
<151> February 9, 1998

<150> 60/074,092
<151> February 9, 1998

<150> 60/075,945
<151> February 25, 1998

<150> 60/112,850
<151> December 16, 1998

<150> 60/113,296
<151> December 22, 1998

<150> 60/146,222
<151> July 28, 1999

<150> PCT/US98/19330
<151> September 16, 1998

<150> PCT/US98/25108
<151> December 1, 1998

<150> 09/216,021
<151> December 16, 1998

<150> 09/218,517
<151> December 22, 1998

<150> 09/254,311
<151> March 3, 1999

<150> PCT/US99/12252
<151> June 22, 1999

<150> PCT/US99/21090
<151> September 15, 1999

<150> PCT/US99/28409
<151> November 30, 1999

<150> PCT/US99/28313
<151> November 30, 1999

<150> PCT/US99/28301
<151> December 1, 1999

<150> PCT/US99/30095
<151> December 16, 1999

<150> PCT/US00/03565
<151> February 11, 2000

<150> PCT/US00/04414
<151> February 22, 2000

<150> PCT/US00/05841
<151> March 2, 2000

<150> PCT/US00/08439
<151> March 30, 2000

<150> PCT/US00/14042
<151> May 22, 2000

<150> PCT/US00/20710
<151> July 28, 2000

<150> PCT/US00/32678
<151> December 1, 2000

<150> PCT/US01/06520
<151> February 28, 2001

<160> 120

<210> 1
<211> 2454
<212> DNA
<213> Homo Sapien

<400> 1
ggactaatct gtgggagcag tttattccag tatcacccag ggtgcagcca 50
caccaggact gtgttgaagg gtgtttttt tcttttaat gtaataacctc 100
ctcatctttt cttcttacac agtgtctgag aacatttaca ttatagataa 150
gtagtacatg gtggataact tctactttt ggaggactac tctcttctga 200
cagtcctaga ctggcttct acactaagac accatgaagg agtatgtct 250
cctattattt cttggctttgt gctctgccaa acccttcttt agcccttcac 300
acatcgcact gaagaatatg atgctgaagg atatggaaga cacagatgat 350
gatgatgatg atgatgatga tgatgatgat gatgaggaca actctctttt 400
tccaacaaga gagccaagaa gccattttt tccatttgat ctgtttccaa 450
tgtgtccatt tggatgtcag tgctattcac gagttgtaca ttgctcagat 500
ttaggtttga cctcagtccc aaccaacatt ccatttgata ctcgaatgct 550
tgatcttcaa aacaataaaa ttaaggaaat caaagaaaat gatTTaaag 600
gactcaacttc actttatggt ctgatcctga acaacaacaa gctaacgaag 650
attcacccaa aagccttct aaccacaaag aagttgcgaa ggctgtatct 700
gtccccacaat caactaagtg aaataccact taatctccc aaatcattag 750
cagaactcag aattcatgaa aataaagttt agaaaataca aaaggacaca 800

DNA SEQUENCING

ttcaaaggaa tgaatgctt acacgtttg gaaatgagtg caaacctct 850
tgataataat gggatagagc caggggcatt tgaaggggtg acggtgttcc 900
atatcagaat tgcagaagca aaactgacct cagtcctaa aggcttacca 950
ccaactttat tggagcttca cttagattat aataaaattt caacagtgga 1000
acttgaggat tttaaacgt acaaagaact acaaaggctg ggcctaggaa 1050
acaacaaaat cacagatatc gaaaatgggaa gtcttgctaa cataccacgt 1100
gtgagagaaa tacatttggaa aaacaataaa ctaaaaaaaaa tcccttcagg 1150
attaccagag ttgaaatacc tccagataat cttccttcatt tctaattcaa 1200
ttgcaagagt gggagtaaat gacttctgtc caacagtgcc aaagatgaag 1250
aaatctttat acagtgcatt aagtttattc aacaacccgg tgaaatactg 1300
ggaaatgcaa cctgcaacat ttcgttgtt tttgagcaga atgagtgttc 1350
agcttgggaa ctttggaaatg taataattag taattggtaa tgtccattta 1400
atataagatt caaaaatccc tacatttggaa atacttgaac tctattaata 1450
atggtagtat tatatacaca agcaaatac tattctcaag tggtaagtcc 1500
actgacttat tttatgacaa gaaatttcaa cggaattttg ccaaactatt 1550
gatacataag gggttgagag aaacaagcat ctattgcagt ttccctttt 1600
cgtacaaatg atcttacata aatctcatgc ttgaccattc ctttcttcatt 1650
aacaaaaaaaaaag taagatattc ggtatttaac actttgttat caagcacatt 1700
ttaaaaaagaa ctgtactgta aatggaatgc ttgacttagc aaaatttg 1750
ctctttcatt tgctgttaga aaaacagaat taacaaagac agtaatgtga 1800
agagtgcatt acactattct tattcttag taacttgggt agtactgtaa 1850
tatttttaat catcttaaag tatgattga tataatctta ttgaaattac 1900
cttatcatgt cttagagccc gtctttagt ttaaaaactaa tttcttaaaa 1950
taaaggccttc agtaaatgtt cattaccaac ttgataatg ctactcataa 2000
gagctggttt gggctatag catatgctt tttttttta attattac 2050
gatttaaaaaa tctctgtaaa aacgtgttagt gttcataaaa atctgtaact 2100
cgcattttaa tgatccgcta ttataagctt ttaatagcat gaaaattgtt 2150
aggctatata acattgccac ttcaactcta aggaatattt ttgagatatc 2200
cctttggaaag accttgcttg gaagagcctg gacactaaca attctacacc 2250

aaattgtctc ttcaaatacg tatggactgg ataactctga gaaacacatc 2300
tagtataact gaataagcag agcatcaaataa acagaca gaaaccgaaa 2350
gctctatata aatgctcaga gttcttatg tatttcttat tggcattcaa 2400
catatgtaaa atcagaaaaac agggaaattt tcattaaaaa tattggtttg 2450
aaat 2454

<210> 2
<211> 379
<212> PRT
<213> Homo Sapien

<400> 2
Met Lys Glu Tyr Val Leu Leu Leu Phe Leu Ala Leu Cys Ser Ala
1 5 10 15
Lys Pro Phe Phe Ser Pro Ser His Ile Ala Leu Lys Asn Met Met
20 25 30
Leu Lys Asp Met Glu Asp Thr Asp Asp Asp Asp Asp Asp Asp Asp
35 40 45
Asp Asp Asp Asp Asp Glu Asp Asn Ser Leu Phe Pro Thr Arg Glu
50 55 60
Pro Arg Ser His Phe Phe Pro Phe Asp Leu Phe Pro Met Cys Pro
65 70 75
Phe Gly Cys Gln Cys Tyr Ser Arg Val Val His Cys Ser Asp Leu
80 85 90
Gly Leu Thr Ser Val Pro Thr Asn Ile Pro Phe Asp Thr Arg Met
95 100 105
Leu Asp Leu Gln Asn Asn Lys Ile Lys Glu Ile Lys Glu Asn Asp
110 115 120
Phe Lys Gly Leu Thr Ser Leu Tyr Gly Leu Ile Leu Asn Asn Asn
125 130 135
Lys Leu Thr Lys Ile His Pro Lys Ala Phe Leu Thr Thr Lys Lys
140 145 150
Leu Arg Arg Leu Tyr Leu Ser His Asn Gln Leu Ser Glu Ile Pro
155 160 165
Leu Asn Leu Pro Lys Ser Leu Ala Glu Leu Arg Ile His Glu Asn
170 175 180
Lys Val Lys Lys Ile Gln Lys Asp Thr Phe Lys Gly Met Asn Ala
185 190 195
Leu His Val Leu Glu Met Ser Ala Asn Pro Leu Asp Asn Asn Gly
200 205 210

Ile Glu Pro Gly Ala Phe Glu Gly Val Thr Val Phe His Ile Arg
215 220 225

Ile Ala Glu Ala Lys Leu Thr Ser Val Pro Lys Gly Leu Pro Pro
230 235 240

Thr Leu Leu Glu Leu His Leu Asp Tyr Asn Lys Ile Ser Thr Val
245 250 255

Glu Leu Glu Asp Phe Lys Arg Tyr Lys Glu Leu Gln Arg Leu Gly
260 265 270

Leu Gly Asn Asn Lys Ile Thr Asp Ile Glu Asn Gly Ser Leu Ala
275 280 285

Asn Ile Pro Arg Val Arg Glu Ile His Leu Glu Asn Asn Lys Leu
290 295 300

Lys Lys Ile Pro Ser Gly Leu Pro Glu Leu Lys Tyr Leu Gln Ile
305 310 315

Ile Phe Leu His Ser Asn Ser Ile Ala Arg Val Gly Val Asn Asp
320 325 330

Phe Cys Pro Thr Val Pro Lys Met Lys Lys Ser Leu Tyr Ser Ala
335 340 345

Ile Ser Leu Phe Asn Asn Pro Val Lys Tyr Trp Glu Met Gln Pro
350 355 360

Ala Thr Phe Arg Cys Val Leu Ser Arg Met Ser Val Gln Leu Gly
365 370 375

Asn Phe Gly Met

<210> 3

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 3

gaaaaatgagt gcaaaccctc 20

<210> 4

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 4

tcccaagctg aacactcatt ctgc 24

<210> 5
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 5
gggtgacgggt gttccatatac agaattgcag aagcaaaaact gacctcagtt 50

<210> 6
<211> 3441
<212> DNA
<213> Homo Sapien

<400> 6
cggaacgcgtg ggccggacgcg tggggccgcgs gcaccgcggc cggcccgcc 50
ctccgccttc cgcaactcgcg cctccctccc tccgccccgtt cccgcgcct 100
cctccctccc tcctcccccag ctgtccccgtt cgcgcatgc cgaggctccc 150
ggcccccgcgcg gccccgcgtgc tgctcctcgg gctgctgctg ctcggctccc 200
ggccggcccg cgccgcgcggc ccagagccccc ccgtgctgccc catccgttct 250
gagaaggagc cgctgcccgt tcggggagcg gcaggctgca cttcggcgg 300
gaaggcttat gccttggacg agacgtggca cccggaccta gggcagccat 350
tcgggggtat gcgctgcgtg ctgtgcgcct gcgaggcgcc tcagtgggt 400
cgccgtacca gggccctgg cagggtcagc tgcaagaaca tcaaaccaga 450
tgccccaaacc ccggcctgtg ggcagccgcg ccagctgccc ggacactgct 500
gccagacctg cccccaggag cgcaagcgtt cggagcggca gccgagcggc 550
ctgtccttcg agtatccgcg ggaccggag catcgagtt atagcgaccg 600
cggggagcca ggccgtgagg agcggggcccg tggtaacggc cacacggact 650
tcgtggcgct gctgacaggg ccgaggtcgc aggccgtggc acgagccga 700
gtctcgctgc tgccgtctag cctccgccttc tctatctcct acaggcggct 750
ggaccgcctt accaggatcc gcttctcaga ctccaatggc agtgtccgt 800
ttgagcaccc tgcagccccc acccaagatg gcctggctg tgggggtgtgg 850
cgggcagtgc ctgcgttggtc tctgcggctc ctttagggcag aacagctgca 900
tgtggcactt gtgacactca ctcacccttc aggggaggtc tgggggcctc 950
tcatccggca ccggccctg gctgcagaga cttcagtgc catcctgact 1000
ctagaaggcc ccccacagca gggcgtaggg ggcacacccc tgctcactct 1050

DRAFT - NOT FOR DISTRIBUTION

cagtgacaca gaggactcct tgcattttt gctgctttc cgagggctgc 1100
tggAACCCAG gagtgaaaa ctaACCCAGG ttccCTTgAG gctccAGATT 1150
ctacaccagg ggcagctact gcgagaACTT caggCCAATG tctcAGCCCA 1200
ggaACCAGGC tttgCTGAGG tgCTGCCAA CCTGACAGTC caggAGATGG 1250
actggCTGgt gctggggAGG ctGcAGATGG ccCTGGAGTG ggcaggcagg 1300
ccaggGCTGC gcatcAGTGG acacATTGCT gccAGGAAGA gctgcGAcGT 1350
cctGCAAAGT gtcCTTGTG gggCTGATGC CCTGATCCCA gtccAGACGG 1400
gtgCTGCCGG ctcAGCCAGC CTCACGCTGC tagGAAATGG CTCCCTGATC 1450
tatcAGGTGC aagtGGTAGG gacaAGCAGT gaggtGGTGG ccatGACACT 1500
ggagACCAAG CCTCAGCGGA gggatcAGCG cactGTCCTG tgccACATGG 1550
ctggACTCCA GCCAGGAGGA cacacGGCCG tggGTATCTG ccCTGGGCTG 1600
ggTGCCCCGAG gggCTCATAT gctgCTGcAG aatGAGCTCT tcctGAACGT 1650
gggcACCAAG gactTCCCAG acggAGAGCT tcggGGGcac gtggCTGCC 1700
tgccCTACTG tggGcatAGC gcccGCCATG acacGCTGCC cgtGCCCTA 1750
gcaggAGCCC tggTGTACCC actGTCACCT GcactATGAA gtgCTGCTGG 1800
ctggCTTCC ttggATAACCC actGTCACCT GcactATGAA gtgCTGCTGG 1850
ctggGCTTGG tggCTCAGAA caaggCACTG tcactGCCA CCTCCTTGGG 1900
cctCCTGGAA cgccAGGGCC tcggCGGCTG ctGAAGGGAT tctatGGCTC 1950
agaggCCCAG ggtGTGGTGA aggACCTGGA gcccGAACTG ctGCGGcAcc 2000
tggcaAAAGG catggCCTCC ctGATGATCA ccACCAAGGG tagccccAGA 2050
ggggAGCTCC gagggCAGGT gcACATAGCC aACCAATGT aggttGGCGG 2100
actGCGCCTG gagGCGGCG gggCCGAGGG ggtGCGGGCG ctggGGGCTC 2150
cgGatacAGC ctctGCTGCG ccGcCTGTGG tgCCTGGTCT cccGGCCCTA 2200
gcGcccGCCA aacctGGTGG tcctGGGCGG cccCGAGACC ccaACACATG 2250
cttCTTcAGG gggcAGcAGC gccccCACGG ggctcGCTGG gcccCAACT 2300
acGACCCGCT ctGCTCACTC tgcACCTGCC agAGACGAAC ggtGATCTGT 2350
gacCCGGTGG tgtGCCACC gcccAGCTGC ccACACCCGG tgcAGGCTCC 2400
cgaccAGTGC tgcCTGTTT gccCTGAGAA acaAGATGTC agAGACTTGC 2450
caggGCTGCC aaggAGCCGG gacCCAGGAG agggCTGCTA ttttGATGGT 2500

DRAFT - 960716

gaccggagct ggcgggcagc gggtaacgcgg tggcaccccg ttgtgcccc 2550
cttggctta attaagtgtg ctgtctgcac ctgcaagggg ggcactggag 2600
aggtgcactg tgagaaggtg cagtgtcccc ggctggcctg tgcccagcct 2650
gtgcgtgtca accccaccga ctgctgcaaa cagtgtccag tggggtcggg 2700
ggcccacccc cagctgggg accccatgca ggctgatggg ccccggggct 2750
gccgtttgc tggcagtggtt ccctcagaga gtcagagctg gcacccctca 2800
gtgccccctt ttggagagat gagctgtatc acctgcagat gtggggcagg 2850
ggtgccctcac tgtgagcggg atgactgttc actgccactg tcctgtggct 2900
cggggaaagga gagtcgatgc tggtcccgct gcacggccca ccggcggccc 2950
ccagagacca gaactgatcc agagctggag aaagaagccg aaggcttta 3000
gggagcagcc agagggccaa gtgaccaaga ggtatgggccc tgagctgggg 3050
aagggtggc atcgaggacc ttcttgatt ctccctgtggg aagcccagt 3100
cctttgctcc tctgtcctgc ctctactccc acccccacta cctctggaa 3150
ccacagctcc acaaggggaa gaggcagctg ggccagaccg aggtcacagc 3200
caactccaagt cctgccctgc caccctcggc ctctgtcctg gaagccccac 3250
cccttcctc ctgtacataa tgtcaactggc ttgttggat ttttaattta 3300
tcttcactca gcaccaaggg ccccgacac tccactcctg ctgcccctga 3350
gctgagcaga gtcattattg gagagtttg tatttattaa aacatttctt 3400
tttcagtcaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 3441

<210> 7
<211> 954
<212> PRT
<213> Homo Sapien

<400> 7
Met Pro Ser Leu Pro Ala Pro Pro Ala Pro Leu Leu Leu Gly
1 5 10 15
Leu Leu Leu Leu Gly Ser Arg Pro Ala Arg Gly Ala Gly Pro Glu
20 25 30
Pro Pro Val Leu Pro Ile Arg Ser Glu Lys Glu Pro Leu Pro Val
35 40 45
Arg Gly Ala Ala Gly Cys Thr Phe Gly Gly Lys Val Tyr Ala Leu
50 55 60
Asp Glu Thr Trp His Pro Asp Leu Gly Gln Pro Phe Gly Val Met
65 70 75

EQUINE SEROTONIN

Arg Cys Val Leu Cys Ala Cys Glu Ala Pro Gln Trp Gly Arg Arg
80 85 90
Thr Arg Gly Pro Gly Arg Val Ser Cys Lys Asn Ile Lys Pro Glu
95 100 105
Cys Pro Thr Pro Ala Cys Gly Gln Pro Arg Gln Leu Pro Gly His
110 115 120
Cys Cys Gln Thr Cys Pro Gln Glu Arg Ser Ser Ser Glu Arg Gln
125 130 135
Pro Ser Gly Leu Ser Phe Glu Tyr Pro Arg Asp Pro Glu His Arg
140 145 150
Ser Tyr Ser Asp Arg Gly Glu Pro Gly Ala Glu Glu Arg Ala Arg
155 160 165
Gly Asp Gly His Thr Asp Phe Val Ala Leu Leu Thr Gly Pro Arg
170 175 180
Ser Gln Ala Val Ala Arg Ala Arg Val Ser Leu Leu Arg Ser Ser
185 190 195
Leu Arg Phe Ser Ile Ser Tyr Arg Arg Leu Asp Arg Pro Thr Arg
200 205 210
Ile Arg Phe Ser Asp Ser Asn Gly Ser Val Leu Phe Glu His Pro
215 220 225
Ala Ala Pro Thr Gln Asp Gly Leu Val Cys Gly Val Trp Arg Ala
230 235 240
Val Pro Arg Leu Ser Leu Arg Leu Leu Arg Ala Glu Gln Leu His
245 250 255
Val Ala Leu Val Thr Leu Thr His Pro Ser Gly Glu Val Trp Gly
260 265 270
Pro Leu Ile Arg His Arg Ala Leu Ala Ala Glu Thr Phe Ser Ala
275 280 285
Ile Leu Thr Leu Glu Gly Pro Pro Gln Gln Gly Val Gly Gly Ile
290 295 300
Thr Leu Leu Thr Leu Ser Asp Thr Glu Asp Ser Leu His Phe Leu
305 310 315
Leu Leu Phe Arg Gly Leu Leu Glu Pro Arg Ser Gly Gly Leu Thr
320 325 330
Gln Val Pro Leu Arg Leu Gln Ile Leu His Gln Gly Gln Leu Leu
335 340 345
Arg Glu Leu Gln Ala Asn Val Ser Ala Gln Glu Pro Gly Phe Ala
350 355 360
Glu Val Leu Pro Asn Leu Thr Val Gln Glu Met Asp Trp Leu Val

365 370 375

Leu Gly Glu Leu Gln Met Ala Leu Glu Trp Ala Gly Arg Pro Gly
380 385 390

Leu Arg Ile Ser Gly His Ile Ala Ala Arg Lys Ser Cys Asp Val
395 400 405

Leu Gln Ser Val Leu Cys Gly Ala Asp Ala Leu Ile Pro Val Gln
410 415 420

Thr Gly Ala Ala Gly Ser Ala Ser Leu Thr Leu Leu Gly Asn Gly
425 430 435

Ser Leu Ile Tyr Gln Val Gln Val Val Gly Thr Ser Ser Glu Val
440 445 450

Val Ala Met Thr Leu Glu Thr Lys Pro Gln Arg Arg Asp Gln Arg
455 460 465

Thr Val Leu Cys His Met Ala Gly Leu Gln Pro Gly Gly His Thr
470 475 480

Ala Val Gly Ile Cys Pro Gly Leu Gly Ala Arg Gly Ala His Met
485 490 495

Leu Leu Gln Asn Glu Leu Phe Leu Asn Val Gly Thr Lys Asp Phe
500 505 510

Pro Asp Gly Glu Leu Arg Gly His Val Ala Ala Leu Pro Tyr Cys
515 520 525

Gly His Ser Ala Arg His Asp Thr Leu Pro Val Pro Leu Ala Gly
530 535 540

Ala Leu Val Leu Pro Pro Val Lys Ser Gln Ala Ala Gly His Ala
545 550 555

Trp Leu Ser Leu Asp Thr His Cys His Leu His Tyr Glu Val Leu
560 565 570

Leu Ala Gly Leu Gly Gly Ser Glu Gln Gly Thr Val Thr Ala His
575 580 585

Leu Leu Gly Pro Pro Gly Thr Pro Gly Pro Arg Arg Leu Leu Lys
590 595 600

Gly Phe Tyr Gly Ser Glu Ala Gln Gly Val Val Lys Asp Leu Glu
605 610 615

Pro Glu Leu Leu Arg His Leu Ala Lys Gly Met Ala Ser Leu Met
620 625 630

Ile Thr Thr Lys Gly Ser Pro Arg Gly Glu Leu Arg Gly Gln Val
635 640 645

His Ile Ala Asn Gln Cys Glu Val Gly Gly Leu Arg Leu Glu Ala
650 655 660

DRAFT - 1980

Ala Gly Ala Glu Gly Val Arg Ala Leu Gly Ala Pro Asp Thr Ala
665 670 675

Ser Ala Ala Pro Pro Val Val Pro Gly Leu Pro Ala Leu Ala Pro
680 685 690

Ala Lys Pro Gly Gly Pro Gly Arg Pro Arg Asp Pro Asn Thr Cys
695 700 705

Phe Phe Glu Gly Gln Gln Arg Pro His Gly Ala Arg Trp Ala Pro
710 715 720

Asn Tyr Asp Pro Leu Cys Ser Leu Cys Thr Cys Gln Arg Arg Thr
725 730 735

Val Ile Cys Asp Pro Val Val Cys Pro Pro Pro Ser Cys Pro His
740 745 750

Pro Val Gln Ala Pro Asp Gln Cys Cys Pro Val Cys Pro Glu Lys
755 760 765

Gln Asp Val Arg Asp Leu Pro Gly Leu Pro Arg Ser Arg Asp Pro
770 775 780

Gly Glu Gly Cys Tyr Phe Asp Gly Asp Arg Ser Trp Arg Ala Ala
785 790 795

Gly Thr Arg Trp His Pro Val Val Pro Pro Phe Gly Leu Ile Lys
800 805 810

Cys Ala Val Cys Thr Cys Lys Gly Gly Thr Gly Glu Val His Cys
815 820 825

Glu Lys Val Gln Cys Pro Arg Leu Ala Cys Ala Gln Pro Val Arg
830 835 840

Val Asn Pro Thr Asp Cys Cys Lys Gln Cys Pro Val Gly Ser Gly
845 850 855

Ala His Pro Gln Leu Gly Asp Pro Met Gln Ala Asp Gly Pro Arg
860 865 870

Gly Cys Arg Phe Ala Gly Gln Trp Phe Pro Glu Ser Gln Ser Trp
875 880 885

His Pro Ser Val Pro Pro Phe Gly Glu Met Ser Cys Ile Thr Cys
890 895 900

Arg Cys Gly Ala Gly Val Pro His Cys Glu Arg Asp Asp Cys Ser
905 910 915

Leu Pro Leu Ser Cys Gly Ser Gly Lys Glu Ser Arg Cys Cys Ser
920 925 930

Arg Cys Thr Ala His Arg Arg Pro Pro Glu Thr Arg Thr Asp Pro
935 940 945

Glu Leu Glu Lys Glu Ala Glu Gly Ser

<210> 8
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide probe

<400> 8
gactagttct agatcgcgag cggccgcctt tttttttt tttt 44

<210> 9
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 9
cggacgcgtg gggcctgcgc acccagct 28

<210> 10
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 10
ggcgctcccc gaacgggcag cggctccttc tcagaa 36

<210> 11
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 11
ggcgcacagc acgcagcgca tcaccccgaa tggctc 36

<210> 12
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 12
gtgctgccca tccgttctga gaagga 26

<210> 13

TOP SECRET

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 13
gcagggtgct caaacaggac ac 22

<210> 14
<211> 3231
<212> DNA
<213> Homo Sapien

<400> 14
ggcggagcag ccctagccgc caccgtcgct ctgcagctc tcgtcgccac 50
tgccaccgccc gcccgtca ctgcgtcctg gtcgggtc cccgcgcctc 100
ccggccggcc atgcagcccc gcccggccca ggcgcccggt gcgcagctgc 150
tgcccgcgtt ggccctgctg ctgctgtgc tcggagcggg gccccgagggc 200
agctccctgg ccaaccgggt gcccggcccg cccttgtctg cgcccgcc 250
gtgcggcccg cagccctgcc ggaatggggg tgtgtgcacc tcgcgcctg 300
agccggaccc gcagcacccg gccccggccg gcgcgcctgg ctacagctgc 350
acctgccccg cccggatctc cggcgccaac tgccagcttg ttgcagatcc 400
ttgtgccagc aacccttgtc accatggcaa ctgcagcagc agcagcagca 450
gcagcagcga tggctacctc tgcatttgcata atgaaggcta tgaaggccc 500
aactgtgaac aggcaattcc cagtctccca gccactggct ggaccgaatc 550
catggcaccc cgacagcttc agcctgtcc tgctactcgag gagcctgaca 600
aaatcctgcc tgcgtctcgag gcaacgggtga cactgcctac ctggcagccg 650
aaaacagggc agaaagtgt agaaatgaaa tggatcaag tggaggtgat 700
cccagatatt gcctgtggga atgccagttc taacagctct gcgggtggcc 750
gcctggtatc ctttgaagtgc ccacagaaca cctcagtcaa gattcggcaa 800
gatgccactg cctcaactgat tttgctctgg aaggtcacgg ccacaggatt 850
ccaacagtgc tccctcatag atggacgaag tgtgacccccc cttcaggctt 900
cagggggact ggtcctcctg gaggagatgc tcgccttggg gaataatcac 950
tttattggtt ttgtgaatga ttctgtgact aagtctattg tggcttgcg 1000
cttaactctg gtggtaagg tcagcacctg tgtgccgggg gagagtcacg 1050

0
0
0
0
0
0
0
0
0
0
0
0

caaatgactt ggagtgttca ggaaaaggaa aatgcaccac gaagccgtca 1100
gaggcaactt tttcctgtac ctgtgaggag cagtacgtgg gtactttctg 1150
tgaagaatac gatgcttgcc agagggaaacc ttgccaaaac aacgcgagct 1200
gtattgatgc aaatgaaaag caagatggga gcaatttcac ctgtgttgc 1250
cttcctgggtt atactggaga gctttgccag tccaagattt attactgcat 1300
ccttagaccca tgcagaaatg gagcaacatg catttccagt ctcagtggat 1350
tcacctgcca gtgtccagaa ggatacttcg gatctgcttgc tgaagaaaag 1400
gtggacccctt ggcgcctcg tcctgtgccag aacaacggca cctgctatgt 1450
ggacggggta cactttaccc gcaactgcag cccgggcttc acagggccga 1500
cctgtgcccac gcttatttgc ttctgtgccc tcagccccctg tgctcatggc 1550
acgtgccgca gcgtgggcac cagctacaaa tgcctctgtg atccaggtt 1600
ccatggcctc tactgtgagg aggaatataa tgagtgcctc tccgctccat 1650
gcctgaatgc agccacactgc agggacctcg ttaatggcta tgagtgtgt 1700
tgcctggcag aatacaaagg aacacactgt gaattgtaca aggatccctg 1750
cgctaacgtc agctgtctga acggagccac ctgtgacagc gacggcctga 1800
atggcacgtg catctgtgca cccgggttta caggtgaaga gtgcgcacatt 1850
gacataaaatg aatgtgacag taacccctgc caccatggtg ggagctgcct 1900
ggaccagccc aatggttata actgccactg cccgcattgt tgggtggag 1950
caaactgtga gatccacactc caatggaaat ccgggcacat ggcggagagc 2000
ctcaccaaca tgccacggca ctccctctac atcatcattt gaggcccttg 2050
cgtggccttc atccttatgc tgatcatcct gatcgtgggg atttgcgc 2100
tcagccgcatt tgaataccag gtttcttcca ggccagccata tgaggagttc 2150
tacaactgcc gcagcatcga cagcgaggatc agcaatgcca ttgcattccat 2200
ccggcatgcc aggtttggaa agaaatcccg gcctgcaatg tatgtatgt 2250
gccccatcgc ctatgaagat tacagtccctg atgacaaacc cttggtcaca 2300
ctgattaaaa ctaaaagattt gtaatcttttttttggattat ttttcaaaaa 2350
gatgagatac tacactcatt taaatatttttaaagaaaata aaaagcttaa 2400
gaaatttaaa atgcttagctg ctcaagagtt ttcagtagaa tatttaagaa 2450
ctaattttcttgcagtttta gtttggaaaa aatattttaa aaacaaaattt 2500

DRAFT - 9684460

tgtgaaacct atagacgatg tttaatgta ccttcagctc tctaaactgt 2550
gtgcttctac tagtgtgtgc tctttcact gtagacacta tcacgagacc 2600
cagattaatt tctgtggttg ttacagaata agtctaata aggagaagtt 2650
tctgtttgac gtttgagtgc cggtttctg agtagagttt ggaaaaccac 2700
gtaacgtac atatgatgta taatagagta taccgttac taaaaagaa 2750
gtctgaaatg ttcgtttgtt ggaaaagaaa ctagttaat ttactattcc 2800
taacccgaat gaaatttagcc tttgccttat tctgtgcattt ggttaagtaac 2850
ttatctgc actgtttgtt tgaactttgtt ggaaacattc tttcgagttt 2900
gttttgcata tttcgtaac agtcgtcgaa ctaggcctca aaaacatacg 2950
taacgaaaag gcctagcgag gcaaattctg attgatttga atctatattt 3000
ttctttaaaa agtcaagggt tctatattgtt gagtaaattt aatttacattt 3050
tgagttgtttt gttgctaaga ggttagtaat gtaagagagt actggttcct 3100
tcagtagtga gtatttctca tagtgcagct ttatttatct ccaggatgtt 3150
tttggctg tatttggattt atatgtgctt cttctgattt ttgctaattt 3200
ccaaccatat tgaataaatg tgatcaagtc a 3231

<210> 15

<211> 737

<212> PRT

<213> Homo Sapien

<400> 15

Met	Gln	Pro	Arg	Arg	Ala	Gln	Ala	Pro	Gly	Ala	Gln	Leu	Leu	Pro
1					5			10						15

Ala	Leu	Ala	Leu	Leu	Leu	Leu	Leu	Gly	Ala	Gly	Pro	Arg	Gly
								20		25			30

Ser	Ser	Leu	Ala	Asn	Pro	Val	Pro	Ala	Ala	Pro	Leu	Ser	Ala	Pro
								35		40				45

Gly	Pro	Cys	Ala	Ala	Gln	Pro	Cys	Arg	Asn	Gly	Gly	Val	Cys	Thr
								50		55				60

Ser	Arg	Pro	Glu	Pro	Asp	Pro	Gln	His	Pro	Ala	Pro	Ala	Gly	Glu
								65		70				75

Pro	Gly	Tyr	Ser	Cys	Thr	Cys	Pro	Ala	Gly	Ile	Ser	Gly	Ala	Asn
								80		85				90

Cys	Gln	Leu	Val	Ala	Asp	Pro	Cys	Ala	Ser	Asn	Pro	Cys	His	His
								95		100				105

Gly Asn Cys Ser Ser Ser Ser Ser Ser Asp Gly Tyr Leu

DRAFT - 96-B4416-000

110	115	120
Cys Ile Cys Asn Glu Gly Tyr Glu Gly Pro Asn Cys Glu Gln Ala		
125	130	135
Leu Pro Ser Leu Pro Ala Thr Gly Trp Thr Glu Ser Met Ala Pro		
140	145	150
Arg Gln Leu Gln Pro Val Pro Ala Thr Gln Glu Pro Asp Lys Ile		
155	160	165
Leu Pro Arg Ser Gln Ala Thr Val Thr Leu Pro Thr Trp Gln Pro		
170	175	180
Lys Thr Gly Gln Lys Val Val Glu Met Lys Trp Asp Gln Val Glu		
185	190	195
Val Ile Pro Asp Ile Ala Cys Gly Asn Ala Ser Ser Asn Ser Ser		
200	205	210
Ala Gly Gly Arg Leu Val Ser Phe Glu Val Pro Gln Asn Thr Ser		
215	220	225
Val Lys Ile Arg Gln Asp Ala Thr Ala Ser Leu Ile Leu Leu Trp		
230	235	240
Lys Val Thr Ala Thr Gly Phe Gln Gln Cys Ser Leu Ile Asp Gly		
245	250	255
Arg Ser Val Thr Pro Leu Gln Ala Ser Gly Gly Leu Val Leu Leu		
260	265	270
Glu Glu Met Leu Ala Leu Gly Asn Asn His Phe Ile Gly Phe Val		
275	280	285
Asn Asp Ser Val Thr Lys Ser Ile Val Ala Leu Arg Leu Thr Leu		
290	295	300
Val Val Lys Val Ser Thr Cys Val Pro Gly Glu Ser His Ala Asn		
305	310	315
Asp Leu Glu Cys Ser Gly Lys Gly Lys Cys Thr Thr Lys Pro Ser		
320	325	330
Glu Ala Thr Phe Ser Cys Thr Cys Glu Glu Gln Tyr Val Gly Thr		
335	340	345
Phe Cys Glu Glu Tyr Asp Ala Cys Gln Arg Lys Pro Cys Gln Asn		
350	355	360
Asn Ala Ser Cys Ile Asp Ala Asn Glu Lys Gln Asp Gly Ser Asn		
365	370	375
Phe Thr Cys Val Cys Leu Pro Gly Tyr Thr Gly Glu Leu Cys Gln		
380	385	390
Ser Lys Ile Asp Tyr Cys Ile Leu Asp Pro Cys Arg Asn Gly Ala		
395	400	405

Thr Cys Ile Ser Ser Leu Ser Gly Phe Thr Cys Gln Cys Pro Glu
410 415 420

Gly Tyr Phe Gly Ser Ala Cys Glu Glu Lys Val Asp Pro Cys Ala
425 430 435

Ser Ser Pro Cys Gln Asn Asn Gly Thr Cys Tyr Val Asp Gly Val
440 445 450

His Phe Thr Cys Asn Cys Ser Pro Gly Phe Thr Gly Pro Thr Cys
455 460 465

Ala Gln Leu Ile Asp Phe Cys Ala Leu Ser Pro Cys Ala His Gly
470 475 480

Thr Cys Arg Ser Val Gly Thr Ser Tyr Lys Cys Leu Cys Asp Pro
485 490 495

Gly Tyr His Gly Leu Tyr Cys Glu Glu Tyr Asn Glu Cys Leu
500 505 510

Ser Ala Pro Cys Leu Asn Ala Ala Thr Cys Arg Asp Leu Val Asn
515 520 525

Gly Tyr Glu Cys Val Cys Leu Ala Glu Tyr Lys Gly Thr His Cys
530 535 540

Glu Leu Tyr Lys Asp Pro Cys Ala Asn Val Ser Cys Leu Asn Gly
545 550 555

Ala Thr Cys Asp Ser Asp Gly Leu Asn Gly Thr Cys Ile Cys Ala
560 565 570

Pro Gly Phe Thr Gly Glu Glu Cys Asp Ile Asp Ile Asn Glu Cys
575 580 585

Asp Ser Asn Pro Cys His His Gly Gly Ser Cys Leu Asp Gln Pro
590 595 600

Asn Gly Tyr Asn Cys His Cys Pro His Gly Trp Val Gly Ala Asn
605 610 615

Cys Glu Ile His Leu Gln Trp Lys Ser Gly His Met Ala Glu Ser
620 625 630

Leu Thr Asn Met Pro Arg His Ser Leu Tyr Ile Ile Ile Gly Ala
635 640 645

Leu Cys Val Ala Phe Ile Leu Met Leu Ile Ile Leu Ile Val Gly
650 655 660

Ile Cys Arg Ile Ser Arg Ile Glu Tyr Gln Gly Ser Ser Arg Pro
665 670 675

Ala Tyr Glu Glu Phe Tyr Asn Cys Arg Ser Ile Asp Ser Glu Phe
680 685 690

Ser Asn Ala Ile Ala Ser Ile Arg His Ala Arg Phe Gly Lys Lys

695

700

705

Ser Arg Pro Ala Met Tyr Asp Val Ser Pro Ile Ala Tyr Glu Asp
710 715 720

Tyr Ser Pro Asp Asp Lys Pro Leu Val Thr Leu Ile Lys Thr Lys
725 730 735

Asp Leu

<210> 16
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 16
tgtaaaacgca cggccagttt aatagacctg caattattaa tct 43

<210> 17
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 17
caggaaacag ctatgaccac ctgcacacacct gcaaattccat t 41

<210> 18
<211> 508
<212> DNA
<213> Homo Sapien

<400> 18
ctctggaaagg tcacggccac aggattccaa cagtgtcccc tcatacatgg 50
acgaaaatgtt gacccccc tt tcaggcttc agggggactg gtcctccctgg 100
aggagatgtt cgccttgggg aataatcaact ttattggttt tgtgaatgtat 150
tctgtgacta agtctattgt ggctttgcgc tttaactctgg tggtaaggt 200
cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250
gaaaaggaaaa atgcaccacg aagccgtcag agccaacttt ttccctgttacc 300
tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350
gaggaaacct tgccaaaaca acgcgagctg tattgtatgc aatgaaaagc 400
aagatgggag caatttcacc tgtgtttgcc ttccctggta tactggagag 450
ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500

TOTAL 200

taggggag 508

<210> 19
<211> 508
<212> DNA
<213> Homo Sapien

<400> 19
ctctggaagg tcacggccac aggattccaa cagtgtccc tcatagatgg 50
acgaaaagtgt gacccccctt tcaggcttc agggggactg gtccctcctgg 100
aggagatgct cgccctgggg aataatcact ttattggttt tgtgaatgat 150
tctgtgacta agtctattgt ggcttgcgc ttaactctgg tggtgaaggt 200
cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250
gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttcctgtacc 300
tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350
gaggaaacct tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400
aagatgggag caatttcacc tgtgtttgcc ttccctggta tactggagag 450
cttgccaaac cgaactgaga ttggagcga cgaacctacac cgaactgaga 500

taggggag 508

<210> 20
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 20
ctctggaagg tcacggccac agg 23

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 21
ctcagttcgg ttggcaaagc tctc 24

<210> 22
<211> 69
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 22

cagtgcctcc tcatacatgg acgaaagtgt gaccccccctt tcaggcgaga 50

gctttgccaa ccgaactga 69

<210> 23

<211> 1520

<212> DNA

<213> Homo Sapien

<400> 23

gctgagtcgt ctgctcctgc tgctgctgct ccagcctgtta acctgtgcct 50

acaccacgccc aggccccccc agagccctca ccacgctggg cgccccca 100

gcccacaccca tgccgggcac ctacgctccc tcgaccacac tcagtagtcc 150

cagcacccag ggcctgcaag agcaggcacg ggcctgatg cgggacttcc 200

cgctcgtgga cggccacaac gacctgcccc tggcctaag gcaggttac 250

cagaaagggc tacaggatgt taacctgcgc aatttcagct acggccagac 300

cagcctggac aggcttagag atggcctcgt gggcgccag ttctggtcag 350

cctatgtgcc atgccagacc caggaccggg atgcctgcg ctcaccctg 400

gagcagattg acctcatacg ccgcattgtgt gcctcctatt ctgagctgga 450

gcttgtaacc tcggctaaag ctctgaacga cactcagaaa ttggcctgcc 500

tcatcggtgt agaggggtggc cactcgctgg acaatagct ctccatctta 550

cgtaccttct acatgctggg agtgcgtac ctgacgctca cccacacctg 600

caacacaccc tggcagaga gctccgctaa gggcgccac tccttctaca 650

acaacatcag cgggctgact gactttggtg agaagggttgt ggcagaaatg 700

aaccgcctgg gcatgatggc agacttatcc catgtctcag atgctgtggc 750

acggcgccctt ctggaaagtgt cacaggcacc tgtgatcttc tcccactcgg 800

ctgcccgggg tgtgtgcaac agtgctcgg atgttcctga tgacatcctg 850

cagcttctga agaagaacgg tggcgctgt atgggtgttt tgtccatggg 900

agtaatacag tgcaacccat cagccaatgt gtccactgtg gcagatcact 950

tcgaccacat caaggctgtc attggatcca agttcatcgg gattgggtgga 1000

gattatgatg gggccggcaa attccctcag gggctggaaag acgtgtccac 1050

atacccggtc ctgatagagg agttgctgag tcgtggctgg agtgaggaag 1100

agcttcaggg tgtccttcgt ggaaacctgc tgccggctt cagacaagtg 1150

gaaaaggtac aggaagaaaa caaatggcaa agccccttgg aggacaagg 1200
cccgatgag cagctgagca gttcctgcc catcgaccc tcacgtctgc 1250
gtcagagaca gagtctgact tcaggccagg aactcaactga gattccata 1300
caactggacag ccaagttacc agccaagtgg tcagtcttag agtcctcccc 1350
ccacatggcc ccagtccttg cagttgtggc caccttccca gtccttattc 1400
tgtggctctg atgacccagt tagtcctgcc agatgtcaact gtagcaagcc 1450
acagacaccc cacaaagttc ccctgttgg caggcacaaa tatttcctga 1500
aataaatgtt ttggacatag 1520

<210> 24
<211> 433
<212> PRT
<213> Homo Sapien

<400> 24
Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser
1 5 10 15
Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe
20 25 30
Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln
35 40 45
Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser
50 55 60
Tyr Gly Gln Thr Ser Leu Asp Arg Leu Arg Asp Gly Leu Val Gly
65 70 75
Ala Gln Phe Trp Ser Ala Tyr Val Pro Cys Gln Thr Gln Asp Arg
80 85 90
Asp Ala Leu Arg Leu Thr Leu Glu Gln Ile Asp Leu Ile Arg Arg
95 100 105
Met Cys Ala Ser Tyr Ser Glu Leu Glu Leu Val Thr Ser Ala Lys
110 115 120
Ala Leu Asn Asp Thr Gln Lys Leu Ala Cys Leu Ile Gly Val Glu
125 130 135
Gly Gly His Ser Leu Asp Asn Ser Leu Ser Ile Leu Arg Thr Phe
140 145 150
Tyr Met Leu Gly Val Arg Tyr Leu Thr Leu Thr His Thr Cys Asn
155 160 165
Thr Pro Trp Ala Glu Ser Ser Ala Lys Gly Val His Ser Phe Tyr
170 175 180

DRAFT

Asn Asn Ile Ser Gly Leu Thr Asp Phe Gly Glu Lys Val Val Ala
185 190 195
Glu Met Asn Arg Leu Gly Met Met Val Asp Leu Ser His Val Ser
200 205 210
Asp Ala Val Ala Arg Arg Ala Leu Glu Val Ser Gln Ala Pro Val
215 220 225
Ile Phe Ser His Ser Ala Ala Arg Gly Val Cys Asn Ser Ala Arg
230 235 240
Asn Val Pro Asp Asp Ile Leu Gln Leu Leu Lys Lys Asn Gly Gly
245 250 255
Val Val Met Val Ser Leu Ser Met Gly Val Ile Gln Cys Asn Pro
260 265 270
Ser Ala Asn Val Ser Thr Val Ala Asp His Phe Asp His Ile Lys
275 280 285
Ala Val Ile Gly Ser Lys Phe Ile Gly Ile Gly Gly Asp Tyr Asp
290 295 300
Gly Ala Gly Lys Phe Pro Gln Gly Leu Glu Asp Val Ser Thr Tyr
305 310 315
Pro Val Leu Ile Glu Glu Leu Leu Ser Arg Gly Trp Ser Glu Glu
320 325 330
Glu Leu Gln Gly Val Leu Arg Gly Asn Leu Leu Arg Val Phe Arg
335 340 345
Gln Val Glu Lys Val Gln Glu Glu Asn Lys Trp Gln Ser Pro Leu
350 355 360
Glu Asp Lys Phe Pro Asp Glu Gln Leu Ser Ser Ser Cys His Ser
365 370 375
Asp Leu Ser Arg Leu Arg Gln Arg Gln Ser Leu Thr Ser Gly Gln
380 385 390
Glu Leu Thr Glu Ile Pro Ile His Trp Thr Ala Lys Leu Pro Ala
395 400 405
Lys Trp Ser Val Ser Glu Ser Ser Pro His Met Ala Pro Val Leu
410 415 420
Ala Val Val Ala Thr Phe Pro Val Leu Ile Leu Trp Leu
425 430

<210> 25
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 25
agttctggtc agcctatgtg cc 22

<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 26
cgtgatggtg tctttgtcca tggg 24

<210> 27
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 27
ctccaccaat cccgatgaac ttgg 24

<210> 28
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 28
gaggcatttgc acctcatacg ccgcattgtgt gcctcctatt ctgagctgga 50

<210> 29
<211> 1416
<212> DNA
<213> Homo Sapien

<400> 29
aaaacctata aatattccgg attattcata ccgtcccacc atcgggcgcg 50
gatccgcggc cgccaaattct aaaccaacat gcccggcacc tacgctccct 100
cgaccacact cagtagtccc agcacccagg gcctgcaaga gcaggcacgg 150
gccctgatgc gggacttccc gctcgtggac gccacacaacg acctgcccct 200
ggtcctaagg caggtttacc agaaaggct acaggatgtt aacctgcgca 250
atttcagcta cggccagacc agcctggaca ggcttagaga tggcctcgta 300
ggcgccccagt tctggtcagc ctatgtgcca tgccagaccc aggaccggga 350
tgcctgcgc ctcaccctgg agcagattga cctcatacgc cgcatgtgt 400

00000000000000000000000000000000

cctcctattc tgagctggag cttgtgaccc cggtctaaagc tctgaacgac 450
actcagaaat tggcctgcct catcggtgt aagggtggcc actcgctgga 500
caatagcctc tccatcttac gtaccttcta catgctggga gtgcgctacc 550
tgacgctcac ccacacctgc aacacaccct gggcagagag ctccgctaag 600
ggcgtccact ccttctacaa caacatcagc gggctgactg actttggta 650
gaaggtggtg gcagaaatga accgcctggg catgatggta gacttatccc 700
atgtctcaga tgctgtggca cggcgggccc tggaagtgtc acaggcacct 750
gtgatcttct cccactcggc tgcccggtt gtgtgcaaca gtgctcgaa 800
tgttcctgat gacatcctgc agcttctgaa gaagaacggt ggcgtcgtga 850
tggtgtcttt gtccatggga gtaatacagt gcaacccatc agccaatgtg 900
tccactgtgg cagatcactt cgaccacatc aaggctgtca ttggatccaa 950
gttcatcgaa attgggtggag attatgatgg ggccggcaaa ttccctcagg 1000
ggctggaaga cgtgtccaca tacccggtcc tgatagagga gttgctgagt 1050
cgtggctgga gtgaggaaga gcttcaggggt gtccttcgtg gaaacctgct 1100
gcgggtttc agacaagtgg aaaaggtaca ggaagaaaaac aaatggcaaa 1150
gcccttggaa ggacaagttc cggatgagc agctgagcag ttccctgccac 1200
tccgacctct cacgtctgcg tcagagacag agtctgactt caggccagga 1250
actcaactgag attcccatac actggacagc caagttacca gccaaagtgg 1300
cagtctcaga gtcctcccc caccctgaca aaactcacac atgcccaccc 1350
tgcccagcac ctgaactctt ggggggaccg tcagtcttcc tttcccccc 1400
aaaacccaag gacacc 1416

<210> 30
<211> 446
<212> PRT
<213> Homo Sapien

<400> 30
Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser
1 5 10 15
Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe
20 25 30
Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln
35 40 45
Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser

DRAFT - 969410

50

55

60

Tyr Gly Gln Thr Ser Leu Asp Arg Leu Arg Asp Gly Leu Val Gly
65 70 75

Ala Gln Phe Trp Ser Ala Tyr Val Pro Cys Gln Thr Gln Asp Arg
80 85 90

Asp Ala Leu Arg Leu Thr Leu Glu Gln Ile Asp Leu Ile Arg Arg
95 100 105

Met Cys Ala Ser Tyr Ser Glu Leu Glu Leu Val Thr Ser Ala Lys
110 115 120

Ala Leu Asn Asp Thr Gln Lys Leu Ala Cys Leu Ile Gly Val Glu
125 130 135

Gly Gly His Ser Leu Asp Asn Ser Leu Ser Ile Leu Arg Thr Phe
140 145 150

Tyr Met Leu Gly Val Arg Tyr Leu Thr Leu Thr His Thr Cys Asn
155 160 165

Thr Pro Trp Ala Glu Ser Ser Ala Lys Gly Val His Ser Phe Tyr
170 175 180

Asn Asn Ile Ser Gly Leu Thr Asp Phe Gly Glu Lys Val Val Ala
185 190 195

Glu Met Asn Arg Leu Gly Met Met Val Asp Leu Ser His Val Ser
200 205 210

Asp Ala Val Ala Arg Arg Ala Leu Glu Val Ser Gln Ala Pro Val
215 220 225

Ile Phe Ser His Ser Ala Ala Arg Gly Val Cys Asn Ser Ala Arg
230 235 240

Asn Val Pro Asp Asp Ile Leu Gln Leu Leu Lys Lys Asn Gly Gly
245 250 255

Val Val Met Val Ser Leu Ser Met Gly Val Ile Gln Cys Asn Pro
260 265 270

Ser Ala Asn Val Ser Thr Val Ala Asp His Phe Asp His Ile Lys
275 280 285

Ala Val Ile Gly Ser Lys Phe Ile Gly Ile Gly Gly Asp Tyr Asp
290 295 300

Gly Ala Gly Lys Phe Pro Gln Gly Leu Glu Asp Val Ser Thr Tyr
305 310 315

Pro Val Leu Ile Glu Glu Leu Leu Ser Arg Gly Trp Ser Glu Glu
320 325 330

Glu Leu Gln Gly Val Leu Arg Gly Asn Leu Leu Arg Val Phe Arg
335 340 345

Gln Val Glu Lys Val Gln Glu Glu Asn Lys Trp Gln Ser Pro Leu
350 355 360

Glu Asp Lys Phe Pro Asp Glu Gln Leu Ser Ser Ser Cys His Ser
365 370 375

Asp Leu Ser Arg Leu Arg Gln Ser Leu Thr Ser Gly Gln
380 385 390

Glu Leu Thr Glu Ile Pro Ile His Trp Thr Ala Lys Leu Pro Ala
395 400 405

Lys Trp Ser Val Ser Glu Ser Ser Pro His Pro Asp Lys Thr His
410 415 420

Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser
425 430 435

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr
440 445

<210> 31

<211> 1790

<212> DNA

<213> Homo Sapien

<400> 31

cgtccagcga cgtgcggcg gcctggccc cgccctccc cgcccgccct 50
gcgtcccccg ccctgcgcca ccggccgca gcccgcagcc gcccgcgc 100
ccggcagcg ccggcccat gcccgcggc cgccggggcc ccggccgcca 150
atccgcgcgg cggccgcgc cgttgctgcc cctgctgctg ctgctctg 200
tcctcggggc gcccgcagcc ggatcaggag cccacacagc tgtgatcagt 250
ccccaggatc ccacgcttct catcggtctcc tccctgctgg ccacctgtctc 300
agtgcacgga gaccaccag gagccaccgc cgagggctc tactggaccc 350
tcaacggcgcc cgcctgccc cctgagctct cccgtgtact caacgcctcc 400
accttggctc tggccctggc caacctaatt gggccaggc agcggtcg 450
ggacaaccc tcgtgccacg cccgtgacgg cagcatcctg gctggctct 500
gcctctatgt tggcctgccc ccagagaaac ccgtcaacat cagctgctgg 550
tccaagaaca tgaaggactt gacctgcgc tgacgcccag gggccacgg 600
ggagaccttc ctccacacca actactccct caagtacaag ctttagtggt 650
atggccagga caacacatgt gaggagtacc acacagtggg gccccactcc 700
tgccacatcc ccaaggaccc ggctctcttt acgcccatacg agatctgggt 750
ggaggccacc aaccgcctgg gctctggccc ctccgatgtc ctcacgctgg 800

DRAFT GENOME SEQUENCING

atatcctgga tgtggtgacc acggacccccc cgccccacgt gcacgtgagc 850
cgcgctgggg gcctggagga ccagctgagc gtgcgctggg tgtcgccacc 900
cgccctcaag gatttctct ttcaagccaa ataccagatc cgctaccgag 950
tggaggacag tgtggactgg aaggtggtgg acgatgtgag caaccagacc 1000
tcctgcccgc tggccggcct gaaaccggc accgtgtact tcgtgcaagt 1050
gctgcaac ccctttggca tctatggctc caagaaagcc gggatctgga 1100
gtgagtggag ccacccaca gccgcctcca ctcccccag tgagcgcccg 1150
ggcccgcccg gcggggcggt cgaaccgcgg ggcggagagc cgagctcggg 1200
gcccgtgcgg cgcgagctca agcagttcct gggctggctc aagaagcacg 1250
cgtactgctc caacccctcagc ttccgcctct acgaccagtg gcgagcctgg 1300
atgcagaagt cgccacaagac ccgcaaccag gacgagggga tcctgcccctc 1350
ggccagacgg ggcacggcga gaggtcctgc cagataagct gtaggggctc 1400
aggccaccct ccctgccacg tggagacgca gaggccgaac ccaaactggg 1450
gccacctctg taccctcaact tcagggcacc tgagccaccc tcagcaggag 1500
ctggggtgtgc ccctgagctc caacggccat aacagctctg actcccacgt 1550
gaggccacct ttgggtgcac cccagtgggt gtgtgtgtgt gtgtgagggt 1600
tggttgagtt gcctagaacc cctgccaggg ctgggggtga gaaggggagt 1650
cattactccc cattacctag ggccctcca aaagagtccct tttaaataaa 1700
tgagctatTTT aggtgctgtg attgtaaaaaaa aaaaaaaaaaaa 1750
aaaaaaaaaaa aaaaaaaaaaaa aaaaacaaaaa aaaaaaaaaaaa 1790

<210> 32
<211> 422
<212> PRT
<213> Homo Sapien

<400> 32
Met Pro Ala Gly Arg Arg Gly Pro Ala Ala Gln Ser Ala Arg Arg
1 5 10 15
Pro Pro Pro Leu Leu Pro Leu Leu Leu Leu Cys Val Leu Gly
20 25 30
Ala Pro Arg Ala Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro
35 40 45
Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Leu Ala Thr Cys
50 55 60

96844660

Ser Val His Gly Asp Pro Pro Gly Ala Thr Ala Glu Gly Leu Tyr
65 70 75
Trp Thr Leu Asn Gly Arg Arg Leu Pro Pro Glu Leu Ser Arg Val
80 85 90
Leu Asn Ala Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly
95 100 105
Ser Arg Gln Arg Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp
110 115 120
Gly Ser Ile Leu Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro
125 130 135
Glu Lys Pro Val Asn Ile Ser Cys Trp Ser Lys Asn Met Lys Asp
140 145 150
Leu Thr Cys Arg Trp Thr Pro Gly Ala His Gly Glu Thr Phe Leu
155 160 165
His Thr Asn Tyr Ser Leu Lys Tyr Lys Leu Arg Trp Tyr Gly Gln
170 175 180
Asp Asn Thr Cys Glu Glu Tyr His Thr Val Gly Pro His Ser Cys
185 190 195
His Ile Pro Lys Asp Leu Ala Leu Phe Thr Pro Tyr Glu Ile Trp
200 205 210
Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg Ser Asp Val Leu
215 220 225
Thr Leu Asp Ile Leu Asp Val Val Thr Thr Asp Pro Pro Pro Asp
230 235 240
Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu Ser Val
245 250 255
Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln Ala
260 265 270
Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys
275 280 285
Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly
290 295 300
Leu Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro
305 310 315
Phe Gly Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp
320 325 330
Ser His Pro Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly
335 340 345
Pro Gly Gly Ala Cys Glu Pro Arg Gly Gly Glu Pro Ser Ser

350 355 360

Gly Pro Val Arg Arg Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys
365 370 375

Lys His Ala Tyr Cys Ser Asn Leu Ser Phe Arg Leu Tyr Asp Gln
380 385 390

Trp Arg Ala Trp Met Gln Lys Ser His Lys Thr Arg Asn Gln Asp
395 400 405

Glu Gly Ile Leu Pro Ser Gly Arg Arg Gly Thr Ala Arg Gly Pro
410 415 420

Ala Arg

<210> 33
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 33
cccgccccgac gtgcacgtga gcc 23

<210> 34
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 34
tgagccagcc caggaactgc ttg 23

<210> 35
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 35
caagtgcgt gcaaccctt tggcatctat ggctccaaga aagccggat 50

<210> 36
<211> 1771
<212> DNA
<213> Homo Sapien

<400> 36
cccacgcgtc cgctggtgtt agatcgagca accctctaaa agcagtttag 50

TOP SECRET - SECURITY INFORMATION

agtggtaaaa aaaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg 100
atgaaatttc ttctggacat cctccgtctt ctcccgttac tgatcgcttg 150
ctccctagag tccttcgtga agcttttat tcctaagagg agaaaatcag 200
tcaccggcga aatcgctgctg attacaggag ctggcatgg aattgggaga 250
ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300
tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg 350
gtgccaaggt tcatacctt gtggtagact gcagcaaccg agaagatatt 400
tacagctctg caaagaaggt gaaggcagaa attggagatg ttagtatttt 450
agtaaataat gctgggttag tctatacatac agatttgttt gctacacaag 500
atcctcagat tgaaaagact tttgaagtta atgtacttgc acatttctgg 550
actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600
tgtcactgtg gttcggcag ctggacatgt ctggcccc ttcttactgg 650
cttactgttc aagcaagttt gctgctgtt gattcataa aactttgaca 700
gatgaactgg ctgccttaca aataactgga gtcaaaacaa catgtctgtg 750
tcctaatttc gtaaacactg gttcatcaa aaatccaagt acaagttgg 800
gaccactct ggaacctgag gaagtggtaa acaggctgat gcatggatt 850
ctgactgagc agaagatgat ttttattcca tcttctatag ctttttaac 900
aacattggaa aggatccttc ctgagcgtt cctggcagtt taaaaacgaa 950
aatcagtgt taagtttgat gcagttattg gatataaaat gaaagcgcaa 1000
taagcaccta gtttctgaa aactgattt ccaggtttag gttgatgtca 1050
tctaatacgcc ccagaatttt aatgtttgaa cttctgttt ttcttaattat 1100
ccccatttct tcaatatcat ttttgaggct ttggcagtct tcatttacta 1150
ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200
tacctttaga ggtgacttta agaaaaatga agaaaaagaa ccaaaatgac 1250
tttattaaaa taatttccaa gattattgt ggctcacctg aaggcttgc 1300
aaaatttgc ccataaccgt ttatttaaca tatatttttta ttttgattg 1350
cacttaaatt ttgtataatt tttgtttctt tttctgttct acataaaatc 1400
agaaaacttca agctctctaa ataaaaatgaa ggactatatac tagtggatt 1450
tcacaatgaa tatcatgaac tctcaatggg tagtttcat cctaccatt 1500

gccactctgt ttcctgagag atacctcaca ttccaatgcc aaacatttct 1550
gcacaggaa gctagaggtg gatacacgtg ttgcaagtat aaaagcatca 1600
ctgggattta aggagaattg agagaatgta cccacaaatg gcagcaataa 1650
taaatggatc acacttaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1700
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1750
aaaaaaaaaa aaaaaaaaaa a 1771

<210> 37
<211> 300
<212> PRT
<213> Homo Sapien

<400> 37
Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Pro Leu Leu Ile
1 5 10 15
Val Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg
20 25 30
Arg Lys Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly
35 40 45
His Gly Ile Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys
50 55 60
Ser Lys Leu Val Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu
65 70 75
Thr Ala Ala Lys Cys Lys Gly Leu Gly Ala Lys Val His Thr Phe
80 85 90
Val Val Asp Cys Ser Asn Arg Glu Asp Ile Tyr Ser Ser Ala Lys
95 100 105
Lys Val Lys Ala Glu Ile Gly Asp Val Ser Ile Leu Val Asn Asn
110 115 120
Ala Gly Val Val Tyr Thr Ser Asp Leu Phe Ala Thr Gln Asp Pro
125 130 135
Gln Ile Glu Lys Thr Phe Glu Val Asn Val Leu Ala His Phe Trp
140 145 150
Thr Thr Lys Ala Phe Leu Pro Ala Met Thr Lys Asn Asn His Gly
155 160 165
His Ile Val Thr Val Ala Ser Ala Ala Gly His Val Ser Val Pro
170 175 180
Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala Val Gly Phe
185 190 195
His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile Thr Gly

200 205 210

Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly Phe
215 220 225

Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu
230 235 240

Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys
245 250 255

Met Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu
260 265 270

Arg Ile Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile
275 280 285

Ser Val Lys Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln
290 295 300

<210> 38

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 38

ggtgaaggca gaaattggag atg 23

<210> 39

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 39

atcccatgca tcagcctgtt tacc 24

<210> 40

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 40

gctgggtgtag tctatacatac agattttttt gctacacaag atcctcag 48

<210> 41

<211> 1377

<212> DNA

<213> Homo Sapien

0
0
0
0
0
0
0
0
0
0

<400> 41
gactagttct cttggagtct gggaggagga aagcggagcc ggcagggagc 50
gaaccaggac tggggtgacg gcagggcagg gggcgctgg ccggggagaa 100
gogcgggggc tggagcacca ccaactggag ggtccggagt agcgagcgcc 150
ccgaaggagg ccatcgggga gccgggaggg gggactgcga gaggacccc 200
gcgtccgggc tcccggtgcc agcgctatga ggccactcct cgtcctgctg 250
ctcctgggcc tggcggccgg ctgcggccca ctggacgaca acaagatccc 300
cagcctctgc cggggcacc cggccttcc aggacacgccc ggccaccatg 350
gcagccaggg cttgccccggc cgcgatggcc gcgacggccc cgacggcgcg 400
cccgggctc cgggagagaa aggacgggac gggaggccgg gactgccggg 450
acctcgaggg gacccgggc cgcgaggaga ggccggaccc gcggggccca 500
ccgggcctgc cggggagtgc tcgggtgcctc cgcgatccgc cttagcgcc 550
aagcgctccg agagccgggt gcctccgccc tctgacgcac cttgcctt 600
cgaccgcgtg ctggtaacg agcagggaca ttacgacgccc gtcaccggca 650
attcacactg ccaggtgcct ggggtctact acttcgcccgt ccatgccacc 700
gtctaccggg ccagcctgca gtttgcgtt gtgaagaatg gcgaatccat 750
tgccttttc ttccagttt tcgggggggtg gccaagcca gcctcgctc 800
cggggggggc catggtgagg ctggagcctg aggaccaagt gtgggtgcag 850
gtgggtgtgg gtgactacat tggcatctat gccagcatca agacagacag 900
caccttctcc ggatttctgg tgtactccga ctggcacagc tccccagtct 950
ttgcttagtg cccactgcaa agtgagctca tgctctcaact cctagaagga 1000
gggtgtgagg ctgacaacca ggtcatccag gagggctggc cccctggaa 1050
tattgtaat gactagggag gtggggtaga gcactctccg tcctgctgct 1100
ggcaaggaat gggAACAGTG GCTGTCTGCG ATCAGGTCTG GCAGCATGGG 1150
gcagtggctg gatttctgcc caagaccaga ggagtgtgct gtgctggcaa 1200
gtgtaagtcc cccagttgct ctggccagg agcccacggt ggggtgtct 1250
cttcctggtc ctctgcttct ctggatccctc cccacccct cctgctcctg 1300
gggcggccc ttttctcaga gatcactcaa taaacctaag aaccctcata 1350
aaaaaaaaaaa aaaaaaaaaa aaaaaaaa 1377

<210> 42

<211> 243
<212> PRT
<213> Homo Sapien

<400> 42
Met Arg Pro Leu Leu Val Leu Leu Leu Gly Leu Ala Ala Gly
1 5 10 15
Ser Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly
20 25 30
His Pro Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly
35 40 45
Leu Pro Gly Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly
50 55 60
Ala Pro Gly Glu Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly
65 70 75
Pro Arg Gly Asp Pro Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly
80 85 90
Pro Thr Gly Pro Ala Gly Glu Cys Ser Val Pro Pro Arg Ser Ala
95 100 105
Phe Ser Ala Lys Arg Ser Glu Ser Arg Val Pro Pro Pro Ser Asp
110 115 120
Ala Pro Leu Pro Phe Asp Arg Val Leu Val Asn Glu Gln Gly His
125 130 135
Tyr Asp Ala Val Thr Gly Lys Phe Thr Cys Gln Val Pro Gly Val
140 145 150
Tyr Tyr Phe Ala Val His Ala Thr Val Tyr Arg Ala Ser Leu Gln
155 160 165
Phe Asp Leu Val Lys Asn Gly Glu Ser Ile Ala Ser Phe Phe Gln
170 175 180
Phe Phe Gly Trp Pro Lys Pro Ala Ser Leu Ser Gly Gly Ala
185 190 195
Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln Val Gly
200 205 210
Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp Ser
215 220 225
Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro
230 235 240
Val Phe Ala

<210> 43
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 43
tacaggccca gtcaggacca gggg 24

<210> 44
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 44
agccagcctc gctctcg 18

<210> 45
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 45
gtctgcgatc aggtctgg 18

<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 46
gaaagaggca atggattcgc 20

<210> 47
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 47
gacttacact tgccagcaca gcac 24

<210> 48
<211> 45
<212> DNA
<213> Artificial Sequence

TOTAL 80

<220>

<223> Synthetic oligonucleotide probe

<400> 48

ggagcaccac caactggagg gtccggagta gcgagcgccc cgaag 45

0

<210> 49

<211> 1876

<212> DNA

<213> Homo Sapien

<400> 49

ctctttgtc caccagccca gcctgactcc tggagattgt gaatagctcc 50

atccagcctg agaaaacaagc cgggtggctg agccaggctg tgcacggagc 100

acctgacggg cccaacagac ccatgctgca tccagagacc tcccctggcc 150

gggggcacatct cctggctgtg ctccctggccc tccttggcac cacctggca 200

gaggtgtggc caccggcagct gcaggagcag gtcggatgg ccggagccct 250

gaacaggaag gagagtttct tgctcctctc cctgcacaac cgccctgcgca 300

gctgggtcca gccccctgcg gctgacatgc ggaggctgga ctggagtgac 350

agcctggccc aactggctca agccagggca gccctctgtg gaatccaaac 400

cccgagcctg gcatccggcc tgtggcgcac cctgcaagtg ggctggaaca 450

tgcagctgtc gccccgggc ttggcgtcct ttgttgaagt ggtcagccta 500

tggtttgcag aggggcagcg gtacagccac gcggcaggag agtgtgctcg 550

caacgccacc tgcacccact acacgcagct cgtgtggcc acctaagcc 600

agctgggctg tggggggcac ctgtgctctg caggccagac agcgataagaa 650

gcctttgtct gtgcctactc ccccgaggc aactggagg tcaacggaa 700

gacaatcatc ccctataaga agggtgcctg gtgttcgctc tgcacagcca 750

gtgtctcagg ctgcttcaaa gcctgggacc atgcaggggg gctctgtgag 800

gtccccagga atccctgtcg catgagctgc cagaaccatg gacgtctcaa 850

catcagcacc tgccactgcc actgtccccc tggctacacg ggcagataact 900

gccaagtgag gtgcagcctg cagtgtgtgc acggccgggt ccgggaggag 950

gagtgctcgt gcgtctgtga catcggtac gggggagccc agtgtgcccac 1000

caaggtgcat tttcccttcc acacctgtga cctgaggatc gacggagact 1050

gtttcatggt gtcttcagag gcagacacct attacagagc caggatgaaa 1100

tgtcagagga aaggcggggt gctggcccaag atcaagagcc agaaagtgca 1150

ggacatcctc gccttctatc tggccgcct ggagaccacc aacgaggta 1200
ctgacagtga ctgcgagacc aggaacttct ggatcggtcacctacaag 1250
accgccaagg actccttcgg ctggccaca ggggagcacc aggccttcac 1300
cagtttgcc tttggcagc ctgacaacca cgggctggtg tggctgagtg 1350
ctgccatggg gtttggcaac tgcgtggagc tgcaggcttc agctgccttc 1400
aactggaacg accagcgctg caaaacccga aaccgttaca tctgccagtt 1450
tgcccaggag cacatctccc ggtggggccc agggtcctgaa ggcctgacca 1500
catggctccc tcgcctgccc tgggagcacc ggctctgctt acctgtctgc 1550
ccacctgtct ggaacaaggg ccaggttaag accacatgcc tcatgtccaa 1600
agaggtctca gacccgtcac aatgccagaa gttggcaga gagaggcagg 1650
gaggccagtg agggccaggg agtgagtgtt agaagaagct gggcccttc 1700
gcctgcttt gattggaaag atgggcttca attagatggc gaaggagagg 1750
acaccgcccag tggtccaaaa aggctgctct cttccacctg gcccagaccc 1800
tgtggggcag cggagcttcc ctgtggcatg aaccccacgg ggtattaaat 1850
tatgaatcag ctgaaaaaaaaaaaaa 1876

<210> 50
<211> 455
<212> PRT
<213> Homo Sapien

<400> 50
Met Leu His Pro Glu Thr Ser Pro Gly Arg Gly His Leu Leu Ala
1 5 10 15
Val Leu Leu Ala Leu Leu Gly Thr Thr Trp Ala Glu Val Trp Pro
20 25 30
Pro Gln Leu Gln Glu Gln Ala Pro Met Ala Gly Ala Leu Asn Arg
35 40 45
Lys Glu Ser Phe Leu Leu Leu Ser Leu His Asn Arg Leu Arg Ser
50 55 60
Trp Val Gln Pro Pro Ala Ala Asp Met Arg Arg Leu Asp Trp Ser
65 70 75
Asp Ser Leu Ala Gln Leu Ala Gln Ala Arg Ala Ala Leu Cys Gly
80 85 90
Ile Pro Thr Pro Ser Leu Ala Ser Gly Leu Trp Arg Thr Leu Gln
95 100 105
Val Gly Trp Asn Met Gln Leu Leu Pro Ala Gly Leu Ala Ser Phe

DRAFT - DO NOT CITE

110	115	120
Val Glu Val Val Ser Leu Trp Phe Ala	Glu Gly Gln Arg Tyr Ser	
125	130	135
His Ala Ala Gly Glu Cys Ala Arg Asn Ala	Thr Cys Thr His Tyr	
140	145	150
Thr Gln Leu Val Trp Ala Thr Ser Ser Gln	Leu Gly Cys Gly Arg	
155	160	165
His Leu Cys Ser Ala Gly Gln Thr Ala Ile	Glu Ala Phe Val Cys	
170	175	180
Ala Tyr Ser Pro Gly Gly Asn Trp Glu Val	Asn Gly Lys Thr Ile	
185	190	195
Ile Pro Tyr Lys Lys Gly Ala Trp Cys Ser	Leu Cys Thr Ala Ser	
200	205	210
Val Ser Gly Cys Phe Lys Ala Trp Asp His	Ala Gly Gly Leu Cys	
215	220	225
Glu Val Pro Arg Asn Pro Cys Arg Met	Ser Cys Gln Asn His Gly	
230	235	240
Arg Leu Asn Ile Ser Thr Cys His Cys His	Cys Pro Pro Gly Tyr	
245	250	255
Thr Gly Arg Tyr Cys Gln Val Arg Cys Ser	Leu Gln Cys Val His	
260	265	270
Gly Arg Phe Arg Glu Glu Cys Ser Cys Val	Cys Asp Ile Gly	
275	280	285
Tyr Gly Gly Ala Gln Cys Ala Thr Lys Val	His Phe Pro Phe His	
290	295	300
Thr Cys Asp Leu Arg Ile Asp Gly Asp Cys	Phe Met Val Ser Ser	
305	310	315
Glu Ala Asp Thr Tyr Tyr Arg Ala Arg Met	Lys Cys Gln Arg Lys	
320	325	330
Gly Gly Val Leu Ala Gln Ile Lys Ser Gln	Lys Val Gln Asp Ile	
335	340	345
Leu Ala Phe Tyr Leu Gly Arg Leu Glu Thr	Thr Asn Glu Val Thr	
350	355	360
Asp Ser Asp Phe Glu Thr Arg Asn Phe Trp	Ile Gly Leu Thr Tyr	
365	370	375
Lys Thr Ala Lys Asp Ser Phe Arg Trp Ala	Thr Gly Glu His Gln	
380	385	390
Ala Phe Thr Ser Phe Ala Phe Gly Gln Pro	Asp Asn His Gly Leu	
395	400	405

Val Trp Leu Ser Ala Ala Met Gly Phe Gly Asn Cys Val Glu Leu
410 415 420

Gln Ala Ser Ala Ala Phe Asn Trp Asn Asp Gln Arg Cys Lys Thr
425 430 435

Arg Asn Arg Tyr Ile Cys Gln Phe Ala Gln Glu His Ile Ser Arg
440 445 450

Trp Gly Pro Gly Ser
455

<210> 51
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 51
aggaaacttct ggatcgggct cacc 24

<210> 52
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 52
gggtctgggc caggtggaag agag 24

<210> 53
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 53
gcccaaggact cttcccgctg ggccacaggg gagcaccagg ctttc 45

<210> 54
<211> 2331
<212> DNA
<213> Homo Sapien

<400> 54
cggacgcgtg ggctgggcgc tgcaaagcgt gtcccgccgg gtccccgagc 50
gtcccgccgc ctgcggccgc catgctcctg ctgctggggc tgtgcctggg 100
gctgtccctg tgtgtgggt cgccaggaaga ggcgcagagc tggggccact 150
cttcggagca ggatggactc agggtccccga ggcaagtca gactgttgca 200

DRAFT - DO NOT CITE

aggctgaaaa ccaaacctt gatgacagaa ttctcagtga agtctaccat 250
catttccgt tatgccttca ctacggttc ctgcagaatg ctgaacagag 300
cttctgaaga ccaggacatt gagttccaga tgcagattcc agctgcagct 350
ttcatcacca acttcactat gcttattgga gacaagggtgt atcagggcga 400
aattacagag agagaaaaga agagtggtga taggtaaaa gagaaaagga 450
ataaaaccac agaagaaaat ggagagaagg ggactgaaat attcagagct 500
tctgcagtga ttcccagcaa ggacaaagcc gccttttcc tgagttatga 550
ggagcttctg cagaggcgcc tggcaagta cgagcacagc atcagcgtgc 600
ggccccagca gctgtccggg aggctgagcg tggacgtgaa tatectggag 650
agcgcgggca tcgcattccct ggaggtgctg ccgcttcaca acagcaggca 700
gaggggcagt gggcgcgggg aagatgattc tggcctccc ccatctactg 750
tcattaacca aaatgaaaca tttgccaaca taattttaa acctactgta 800
gtacaacaag ccaggattgc ccagaatgga attttggag actttatcat 850
tagatatgac gtcaatagag aacagagoat tggggacatc caggttctaa 900
atggctattt tgtcactac tttgctccta aagaccttcc tcctttaccc 950
aagaatgtgg tattcgtgct tgacagcagt gcttctatgg tgggaaccaa 1000
actccggcag accaaggatg ccctttcac aattctccat gacctccgac 1050
cccaggaccc ttctcgtatc attggattt ccaaccggat caaagtatgg 1100
aaggaccact tgatatcagt cactccagac agcatcaggg atggaaagt 1150
gtacattcac catatgtcac ccactggagg cacagacatc aacggggccc 1200
tgcagaggc catcaggctc ctcaacaagt acgtggccca cagtggcatt 1250
ggagaccgga gcgtgtccct catcgcttcc ctgacggatg ggaagccac 1300
ggtcggggag acgcacaccc tcaagatctt caacaacacc cgagaggccg 1350
cccgaggccca agtctgcattc ttcaccattt gcatcgccaa cgacgtggac 1400
ttcaggctgc tggagaaact gtcgctggag aactgtggcc tcacacggcg 1450
cgtgcacgag gaggaggacg caggctcgca gtcatcggg ttctacgatg 1500
aaatcaggac cccgctcctc tctgacatcc gcatcgattt tccccccagc 1550
tcagtggtgc aggccaccaa gaccctgttc cccaaactact tcaacggctc 1600
ggagatcatc attgcgggaa agctggtgga caggaagctg gatcacctgc 1650

TOTAL 80-96-97-98-99

acgtggaggt caccgccagc aacagtaaga aattcatcat cctgaagaca 1700
gatgtgcctg tgcggccta gaaggcaggg aaagatgtca caggaagccc 1750
caggcctgga ggcgatggag agggggacac caaccacatc gagcgtctct 1800
ggagctacct caccacaaag gagctgctga gtcctggct gcaaagtgac 1850
gatgaaccgg agaaggagcg gtcgcggcag cgggcccagg ccctggctgt 1900
gagctaccgc ttcctcaactc cttcacctc catgaagctg agggggccgg 1950
tccccacgcat ggtggcctg gaggaggccc acggcatgtc ggctgccatg 2000
ggacccgaac cggtggtgca gagcgtgca ggagctggca cgcagccagg 2050
acctttgctc aagaagccaa actccgtcaa aaaaaaacaa aacaaaacaa 2100
aaaaaaagaca tgggagagat ggtgttttc ctctccacca cctgggata 2150
cgatgagaag atggccacct gcaagccagg aagacggccc tcaccagaca 2200
ccatgtctgc tggcaccttgc atcttgacc tccagcctc cagaactgtg 2250
agaaataaat gtgtttgtt taagctaaaa aaaaaaaaaa aaaaaaaaaa 2300
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 2331

<210> 55
<211> 694
<212> PRT
<213> Homo Sapien

<400> 55
Met Leu Leu Leu Leu Gly Leu Cys Leu Gly Leu Ser Leu Cys Val
1 5 10 15
Gly Ser Gln Glu Glu Ala Gln Ser Trp Gly His Ser Ser Glu Gln
20 25 30
Asp Gly Leu Arg Val Pro Arg Gln Val Arg Leu Leu Gln Arg Leu
35 40 45
Lys Thr Lys Pro Leu Met Thr Glu Phe Ser Val Lys Ser Thr Ile
50 55 60
Ile Ser Arg Tyr Ala Phe Thr Thr Val Ser Cys Arg Met Leu Asn
65 70 75
Arg Ala Ser Glu Asp Gln Asp Ile Glu Phe Gln Met Gln Ile Pro
80 85 90
Ala Ala Ala Phe Ile Thr Asn Phe Thr Met Leu Ile Gly Asp Lys
95 100 105
Val Tyr Gln Gly Glu Ile Thr Glu Arg Glu Lys Lys Ser Gly Asp
110 115 120

BIOLOGICAL
PROBLEMS

Arg Val Lys Glu Lys Arg Asn Lys Thr Thr Glu Glu Asn Gly Glu
125 130 135
Lys Gly Thr Glu Ile Phe Arg Ala Ser Ala Val Ile Pro Ser Lys
140 145 150
Asp Lys Ala Ala Phe Phe Leu Ser Tyr Glu Glu Leu Leu Gln Arg
155 160 165
Arg Leu Gly Lys Tyr Glu His Ser Ile Ser Val Arg Pro Gln Gln
170 175 180
Leu Ser Gly Arg Leu Ser Val Asp Val Asn Ile Leu Glu Ser Ala
185 190 195
Gly Ile Ala Ser Leu Glu Val Leu Pro Leu His Asn Ser Arg Gln
200 205 210
Arg Gly Ser Gly Arg Gly Glu Asp Asp Ser Gly Pro Pro Pro Ser
215 220 225
Thr Val Ile Asn Gln Asn Glu Thr Phe Ala Asn Ile Ile Phe Lys
230 235 240
Pro Thr Val Val Gln Gln Ala Arg Ile Ala Gln Asn Gly Ile Leu
245 250 255
Gly Asp Phe Ile Ile Arg Tyr Asp Val Asn Arg Glu Gln Ser Ile
260 265 270
Gly Asp Ile Gln Val Leu Asn Gly Tyr Phe Val His Tyr Phe Ala
275 280 285
Pro Lys Asp Leu Pro Pro Leu Pro Lys Asn Val Val Phe Val Leu
290 295 300
Asp Ser Ser Ala Ser Met Val Gly Thr Lys Leu Arg Gln Thr Lys
305 310 315
Asp Ala Leu Phe Thr Ile Leu His Asp Leu Arg Pro Gln Asp Arg
320 325 330
Phe Ser Ile Ile Gly Phe Ser Asn Arg Ile Lys Val Trp Lys Asp
335 340 345
His Leu Ile Ser Val Thr Pro Asp Ser Ile Arg Asp Gly Lys Val
350 355 360
Tyr Ile His His Met Ser Pro Thr Gly Gly Thr Asp Ile Asn Gly
365 370 375
Ala Leu Gln Arg Ala Ile Arg Leu Leu Asn Lys Tyr Val Ala His
380 385 390
Ser Gly Ile Gly Asp Arg Ser Val Ser Leu Ile Val Phe Leu Thr
395 400 405
Asp Gly Lys Pro Thr Val Gly Glu Thr His Thr Leu Lys Ile Leu

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

410	415	420
Asn Asn Thr Arg Glu Ala Ala Arg Gly Gln Val Cys Ile Phe Thr		
425	430	435
Ile Gly Ile Gly Asn Asp Val Asp Phe Arg Leu Leu Glu Lys Leu		
440	445	450
Ser Leu Glu Asn Cys Gly Leu Thr Arg Arg Val His Glu Glu Glu		
455	460	465
Asp Ala Gly Ser Gln Leu Ile Gly Phe Tyr Asp Glu Ile Arg Thr		
470	475	480
Pro Leu Leu Ser Asp Ile Arg Ile Asp Tyr Pro Pro Ser Ser Val		
485	490	495
Val Gln Ala Thr Lys Thr Leu Phe Pro Asn Tyr Phe Asn Gly Ser		
500	505	510
Glu Ile Ile Ile Ala Gly Lys Leu Val Asp Arg Lys Leu Asp His		
515	520	525
Leu His Val Glu Val Thr Ala Ser Asn Ser Lys Lys Phe Ile Ile		
530	535	540
Leu Lys Thr Asp Val Pro Val Arg Pro Gln Lys Ala Gly Lys Asp		
545	550	555
Val Thr Gly Ser Pro Arg Pro Gly Gly Asp Gly Glu Gly Asp Thr		
560	565	570
Asn His Ile Glu Arg Leu Trp Ser Tyr Leu Thr Thr Lys Glu Leu		
575	580	585
Leu Ser Ser Trp Leu Gln Ser Asp Asp Glu Pro Glu Lys Glu Arg		
590	595	600
Leu Arg Gln Arg Ala Gln Ala Leu Ala Val Ser Tyr Arg Phe Leu		
605	610	615
Thr Pro Phe Thr Ser Met Lys Leu Arg Gly Pro Val Pro Arg Met		
620	625	630
Asp Gly Leu Glu Glu Ala His Gly Met Ser Ala Ala Met Gly Pro		
635	640	645
Glu Pro Val Val Gln Ser Val Arg Gly Ala Gly Thr Gln Pro Gly		
650	655	660
Pro Leu Leu Lys Lys Pro Asn Ser Val Lys Lys Lys Gln Asn Lys		
665	670	675
Thr Lys Lys Arg His Gly Arg Asp Gly Val Phe Pro Leu His His		
680	685	690
Leu Gly Ile Arg		

EOTIE 96844660

<210> 56
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 56
gtgggaacca aactccggca gacc 24

<210> 57
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 57
cacatcgagc gtctctgg 18

<210> 58
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 58
agccgctcct tctccggttc atcg 24

<210> 59
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 59
tggaaggacc acttgatatac agtcactcca gacagcatca gggatggg 48

<210> 60
<211> 1413
<212> DNA
<213> Homo Sapien

<400> 60
cgacgcgtg gggtgccgaa catggcgagt gtagtgctgc cgagcggatc 50
ccagtgtgcg gcggcagcgg cggcgccggc gcctccggg ctccggcttc 100
tgctgttgc tttctccgccc gcggcactga tccccacagg tgatggcag 150
aatctgttta cggaaagacgt gacagtgtac gagggagagg ttgcgaccat 200

四百三十一

cagttcccaa gtcaataaga gtgacgactc tgtgatttag ctactgaatc 250
ccaacaggca gaccatttat ttcaggact tcaggcctt gaaggacagc 300
aggtttcagt tgctgaattt ttcttagcagt gaactcaaag tatcattgac 350
aacgtctca atttctgatg aaggaagata ctttgccag ctctataccg 400
atccccaca ggaaagttac accaccatca cagtcctggc cccaccacgt 450
aatctgatga tcgatatcca gaaagacact gcggtgaaag gtgaggagat 500
tgaagtcaac tgcaactgcta tggccagcaa gccagccacg actatcaggt 550
ggttcaaagg gaacacagag ctaaaaggca aatcgaggt ggaagagtgg 600
tcagacatgt acactgtgac cagtcagctg atgctgaagg tgcacaagga 650
ggacgatggg gtcccagtga tctgccaggt ggagcacccct gcggtcactg 700
gaaacctgca gacccagcgg tatctagaag tacagtataa gcctcaagtg 750
cacattcaga tgacttatcc tctacaaggc ttaacccggg aaggggacgc 800
gcttgagtta acatgtgaag ccacccggaa gccccagcct gtgatggtaa 850
cttgggtgag agtcgatgat gaaatgcctc aacacgcccgt actgtctggg 900
cccaacctgt tcatcaataa cctaaacaaa acagataatg gtacataccg 950
ctgtgaagct tcaaacatag tggggaaagc tcactcgat tatatgctgt 1000
atgtatacga tccccccaca actatccctc ctcccacaac aaccaccacc 1050
accaccacca ccaccaccac caccatcctt accatcatca cagattcccg 1100
agcaggtgaa gaaggctcga tcagggcagt ggatcatgcc gtgatcggtg 1150
gcgtcgtggc ggtgggtggtg ttgcgcattgc tgtgcttgc catcattctg 1200
gggcgttatt ttgccagaca taaaggtaca tacttcactc atgaagccaa 1250
aggagccat gacgcagcag acgcagacac agctataatc aatgcagaag 1300
gaggacagaa caactccgaa gaaaagaaaag agtacttcat cttagatcgc 1350
cttttgttt caatgaggtg tccaaactggc cctatttaga tgataaagag 1400
acagtgtat tgg 1413

```
<210> 61  
<211> 440  
<212> PRT  
<213> Homo Sapien
```

<400> 61
Met Ala Ser Val Val Leu Pro Ser Gly Ser Gln Cys Ala Ala Ala
1 5 10 15

TOP SECRET

Ala Ala Ala Ala Ala Pro Pro Gly Leu Arg Leu Leu Leu Leu
20 25 30

Phe Ser Ala Ala Ala Leu Ile Pro Thr Gly Asp Gly Gln Asn Leu
35 40 45

Phe Thr Lys Asp Val Thr Val Ile Glu Gly Glu Val Ala Thr Ile
50 55 60

Ser Cys Gln Val Asn Lys Ser Asp Asp Ser Val Ile Gln Leu Leu
65 70 75

Asn Pro Asn Arg Gln Thr Ile Tyr Phe Arg Asp Phe Arg Pro Leu
80 85 90

Lys Asp Ser Arg Phe Gln Leu Leu Asn Phe Ser Ser Ser Glu Leu
95 100 105

Lys Val Ser Leu Thr Asn Val Ser Ile Ser Asp Glu Gly Arg Tyr
110 115 120

Phe Cys Gln Leu Tyr Thr Asp Pro Pro Gln Glu Ser Tyr Thr Thr
125 130 135

Ile Thr Val Leu Val Pro Pro Arg Asn Leu Met Ile Asp Ile Gln
140 145 150

Lys Asp Thr Ala Val Glu Gly Glu Glu Ile Glu Val Asn Cys Thr
155 160 165

Ala Met Ala Ser Lys Pro Ala Thr Thr Ile Arg Trp Phe Lys Gly
170 175 180

Asn Thr Glu Leu Lys Gly Lys Ser Glu Val Glu Glu Trp Ser Asp
185 190 195

Met Tyr Thr Val Thr Ser Gln Leu Met Leu Lys Val His Lys Glu
200 205 210

Asp Asp Gly Val Pro Val Ile Cys Gln Val Glu His Pro Ala Val
215 220 225

Thr Gly Asn Leu Gln Thr Gln Arg Tyr Leu Glu Val Gln Tyr Lys
230 235 240

Pro Gln Val His Ile Gln Met Thr Tyr Pro Leu Gln Gly Leu Thr
245 250 255

Arg Glu Gly Asp Ala Leu Glu Leu Thr Cys Glu Ala Ile Gly Lys
260 265 270

Pro Gln Pro Val Met Val Thr Trp Val Arg Val Asp Asp Glu Met
275 280 285

Pro Gln His Ala Val Leu Ser Gly Pro Asn Leu Phe Ile Asn Asn
290 295 300

Leu Asn Lys Thr Asp Asn Gly Thr Tyr Arg Cys Glu Ala Ser Asn

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

305

310

315

Ile Val Gly Lys Ala His Ser Asp Tyr Met Leu Tyr Val Tyr Asp
320 325 330

Pro Pro Thr Thr Ile Pro Pro Pro Thr Thr Thr Thr Thr Thr
335 340 345

Thr Thr Thr Thr Thr Ile Leu Thr Ile Ile Thr Asp Ser Arg
350 355 360

Ala Gly Glu Glu Gly Ser Ile Arg Ala Val Asp His Ala Val Ile
365 370 375

Gly Gly Val Val Ala Val Val Val Phe Ala Met Leu Cys Leu Leu
380 385 390

Ile Ile Leu Gly Arg Tyr Phe Ala Arg His Lys Gly Thr Tyr Phe
395 400 405

Thr His Glu Ala Lys Gly Ala Asp Asp Ala Ala Asp Ala Asp Thr
410 415 420

Ala Ile Ile Asn Ala Glu Gly Gly Gln Asn Asn Ser Glu Glu Lys
425 430 435

Lys Glu Tyr Phe Ile
440

<210> 62

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 62

ggcttctgct gttgtcttc tccg 24

<210> 63

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 63

gtacactgtg accagtcagc 20

<210> 64

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 64
atcatcacag attcccgagc 20

<210> 65
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 65
ttcaatctcc tcacaccttcca ccgc 24

<210> 66
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 66
atagctgtgt ctgcgtctgc tgcg 24

<210> 67
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 67
cgcggcactg atccccacag gtgatggca gaatctgttt acgaaagacg 50

<210> 68
<211> 2555
<212> DNA
<213> Homo Sapien

<400> 68
ggggcgggtg gacgcccact cgaacgcagt tgcttcggga cccaggaccc 50
cctcggggcc gaccggccag gaaagactga ggccggggcc tgccccggcc 100
ggctccctgc gccggcccg cctccggga cagaagatgt gctccagggt 150
ccctctgtgc ctggcgctgc tccctgtact ggccctgggg cctgggggtgc 200
agggctgccc atccggctgc cagtgcagcc agccacagac agtcttctgc 250
actgcccggcc aggggaccac ggtgccccga gacgtgccac ccgacacgggt 300
ggggctgtac gtcttgaga acggcatcac catgctcgac gcaaggcagct 350
ttggccggcct gccggggcctg cagctccctgg acctgtcaca gaaccagatc 400

TOP SECRET

gccagcctgc gcctgccccg cctgctgctg ctggacctca gccacaacag 450
cctcctggcc ctggagccccg gcatcctgga cactgccaac gtggaggcgc 500
tgcggtggc tggctctgggg ctgcagcagc tggacgaggg gctttcagc 550
cgcttgcga acctccacga cctggatgtg tccgacaacc agctggagcg 600
agtgccacct gtgatccgag gcctccgggg cctgacgcgc ctgcggctgg 650
ccggcaacac ccgcattgcc cagctgcggc ccgaggacct ggccggcctg 700
gctgccctgc aggagctgga tgtgagcaac ctaagcctgc aggccctgcc 750
tggcacccctc tcgggcctct tccccccct gcggctgctg gcagctgccc 800
gcaaccctt caactgcgtg tgccccctga gctggtttg cccctgggtg 850
cgcgagagcc acgtcacact ggccagccct gaggagacgc gctgccactt 900
cccggccaag aacgctggcc ggctgtccct ggagcttgac tacgcccact 950
ttggctgccc agccaccacc accacagcca cagtgcac cacgaggccc 1000
gtggtcggg agcccacagc cttgtcttct agcttggctc ctacctggct 1050
tagccccaca gcgcggcca ctgaggcccc cagccgcctc tccactgccc 1100
caccgactgt agggcctgtc ccccaaaaa aggactgccc accgtccacc 1150
tgcctcaatg gggcacatg ccacctgggg acacggcacc acctggcgtg 1200
cttgtccccc gaaggcttca cgggcctgtc ctgtgagagc cagatggggc 1250
aggggacacg gcccagccct acaccagtca cggcggcc accacggtcc 1300
ctgaccctgg gcatcgagcc ggtgagcccc acctccctgc gcgtgggct 1350
gcagcgctac ctccaggggc gctccgtgca gctcaggagc ctccgtctca 1400
cctatcgcaa cctatcgccc cctgataagc ggctgggtac gctgcgactg 1450
cctgcctcgc tcgctgagta cacggtcacc cagctgcggc ccaacgcccac 1500
ttactccgtc tgtgtcatgc ctttggggcc cgggcgggtg cggagggcg 1550
aggaggcctg cggggaggcc catacaccgg cagccgtcca ctccaaccac 1600
gccccagtc cccaggcccc cgagggcaac ctggcgctcc tcattgcgcc 1650
cgccctggcc gcgggtgtcc tggccgcgtc ggctgcgggtg gggcagccct 1700
actgtgtgcg gcggggggcg gccatggcag cagcggctca ggacaaagg 1750
caggtggggc caggggctgg gcccctggaa ctggagggag tgaaggtccc 1800
cttggagcca ggcccgaaagg caacagaggg cggcggagag gcccctggcc 1850

PROTEIN SEQUENCES

gcgggtctga gtgtgaggtg ccactcatgg gcttcccagg gcctggcctc 1900
cagtcacccc tccacgcaaa gccctacatc taagccagag agagacaggg 1950
cagctggggc cgggctctca gccagtgaga tggccagccc ctcctgctg 2000
ccacaccacg taagttctca gtcccaacct cggggatgtg tgcagacagg 2050
gctgtgtgac cacagctggg ccctgttccc tctggacctc ggtctcctca 2100
tctgtgagat gctgtggccc agctgacgag ccctaacgta cccagaaccg 2150
agtgcctatg aggacagtgt cgcgcctgcc ctccgcaacg tgcagtcct 2200
ggcacggcg ggccctgcca tgtgctggta acgcatgcct gggccctgct 2250
gggctctccc actccaggcg gaccctgggg gccagtgaag gaagctcccg 2300
gaaagagcag agggagagcg gtaggcggc tgtgtgactc tagtcttggc 2350
cccaggaagc gaaggaacaa aagaaactgg aaaggaagat gctttaggaa 2400
catgtttgc tttttaaaaa tatatatata tttataagag atcctttccc 2450
atttattctg ggaagatgtt tttcaaactc agagacaagg actttgggtt 2500
ttgtaagaca aacgatgata tgaaggcctt ttgtaagaaa aaataaaaaaa 2550
aaaaaa 2555

<210> 69
<211> 598
<212> PRT
<213> Homo Sapien

<400> 69
Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu
1 5 10 15
Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys
20 25 30
Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr
35 40 45
Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe
50 55 60
Glu Asn Gly Ile Thr Met Leu Asp Ala Ser Ser Phe Ala Gly Leu
65 70 75
Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser
80 85 90
Leu Arg Leu Pro Arg Leu Leu Leu Asp Leu Ser His Asn Ser
95 100 105
Leu Leu Ala Leu Glu Pro Gly Ile Leu Asp Thr Ala Asn Val Glu

Document Release Date

110	115	120
Ala Leu Arg Leu Ala Gly Leu Gly Leu Gln Gln Leu Asp Glu Gly		
125	130	135
Leu Phe Ser Arg Leu Arg Asn Leu His Asp Leu Asp Val Ser Asp		
140	145	150
Asn Gln Leu Glu Arg Val Pro Pro Val Ile Arg Gly Leu Arg Gly		
155	160	165
Leu Thr Arg Leu Arg Leu Ala Gly Asn Thr Arg Ile Ala Gln Leu		
170	175	180
Arg Pro Glu Asp Leu Ala Gly Leu Ala Ala Leu Gln Glu Leu Asp		
185	190	195
Val Ser Asn Leu Ser Leu Gln Ala Leu Pro Gly Asp Leu Ser Gly		
200	205	210
Leu Phe Pro Arg Leu Arg Leu Leu Ala Ala Ala Arg Asn Pro Phe		
215	220	225
Asn Cys Val Cys Pro Leu Ser Trp Phe Gly Pro Trp Val Arg Glu		
230	235	240
Ser His Val Thr Leu Ala Ser Pro Glu Glu Thr Arg Cys His Phe		
245	250	255
Pro Pro Lys Asn Ala Gly Arg Leu Leu Leu Glu Leu Asp Tyr Ala		
260	265	270
Asp Phe Gly Cys Pro Ala Thr Thr Thr Ala Thr Val Pro Thr		
275	280	285
Thr Arg Pro Val Val Arg Glu Pro Thr Ala Leu Ser Ser Ser Leu		
290	295	300
Ala Pro Thr Trp Leu Ser Pro Thr Ala Pro Ala Thr Glu Ala Pro		
305	310	315
Ser Pro Pro Ser Thr Ala Pro Pro Thr Val Gly Pro Val Pro Gln		
320	325	330
Pro Gln Asp Cys Pro Pro Ser Thr Cys Leu Asn Gly Gly Thr Cys		
335	340	345
His Leu Gly Thr Arg His His Leu Ala Cys Leu Cys Pro Glu Gly		
350	355	360
Phe Thr Gly Leu Tyr Cys Glu Ser Gln Met Gly Gln Gly Thr Arg		
365	370	375
Pro Ser Pro Thr Pro Val Thr Pro Arg Pro Pro Arg Ser Leu Thr		
380	385	390
Leu Gly Ile Glu Pro Val Ser Pro Thr Ser Leu Arg Val Gly Leu		
395	400	405

Gln Arg Tyr Leu Gln Gly Ser Ser Val Gln Leu Arg Ser Leu Arg
410 415 420

Leu Thr Tyr Arg Asn Leu Ser Gly Pro Asp Lys Arg Leu Val Thr
425 430 435

Leu Arg Leu Pro Ala Ser Leu Ala Glu Tyr Thr Val Thr Gln Leu
440 445 450

Arg Pro Asn Ala Thr Tyr Ser Val Cys Val Met Pro Leu Gly Pro
455 460 465

Gly Arg Val Pro Glu Gly Glu Ala Cys Gly Glu Ala His Thr
470 475 480

Pro Pro Ala Val His Ser Asn His Ala Pro Val Thr Gln Ala Arg
485 490 495

Glu Gly Asn Leu Pro Leu Leu Ile Ala Pro Ala Leu Ala Ala Val
500 505 510

Leu Leu Ala Ala Leu Ala Ala Val Gly Ala Ala Tyr Cys Val Arg
515 520 525

Arg Gly Arg Ala Met Ala Ala Ala Gln Asp Lys Gly Gln Val
530 535 540

Gly Pro Gly Ala Gly Pro Leu Glu Leu Glu Gly Val Lys Val Pro
545 550 555

Leu Glu Pro Gly Pro Lys Ala Thr Glu Gly Gly Glu Ala Leu
560 565 570

Pro Ser Gly Ser Glu Cys Glu Val Pro Leu Met Gly Phe Pro Gly
575 580 585

Pro Gly Leu Gln Ser Pro Leu His Ala Lys Pro Tyr Ile
590 595

<210> 70

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 70

ccctccactg cccccaccgac tg 22

<210> 71

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 71
cggttctggg gacgttaggg ctcg 24

<210> 72
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 72
ctgcccaccc tccacctgcc tcaat 25

<210> 73
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 73
aggactgcc accgtccacc tgccctcaatg ggggcacatg ccacc 45

<210> 74
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 74
acgcaaagcc ctacatctaa gccagagaga gacagggcag ctggg 45

<210> 75
<211> 1077
<212> DNA
<213> Homo Sapien

<400> 75
ggcactagga caaccttctt cccttctgca ccactgccccg tacccttacc 50
cgccccgcca cctccttgct accccactct taaaaaccaca gctgttggca 100
gggtccccag ctcatgccag cctcatctcc tttcttgcta gcccccaaag 150
ggcctccagg caacatgggg ggcccagtca gagagccggc actctcagtt 200
gccctctggt tgagttgggg ggcagctctg gggccgtgg cttgtgccat 250
ggctctgctg acccaacaaa cagagctgca gagcctcagg agagaggtga 300
gccggctgca ggggacagga ggcccctccc agaatgggaa agggtatccc 350
tggcagagtc tcccgagca gagttccgat gccctggaag cctggagaa 400

0
0
0
0
0
0
0
0
0
0

tggggagaga tccccgaaaa ggagagcagt gctcacccaa aaacagaaga 450
agcagcactc tgtcctgcac ctggttccca ttaacgccac ctccaaggat 500
gactccgatg tgacagaggt gatgtggcaa ccagctctt a ggcgtggag 550
aggcctacag gcccaaggat atggtgtccg aatccaggat gctggagttt 600
atctgctgta tagccaggc tcgtttcaag acgtgacttt caccatgggt 650
caggtggtgt ctcgagaagg ccaaggaagg caggagactc tattccgatg 700
tataagaagt atgccctccc acccggaccc ggcctacaac agctgctata 750
gcgcaggtgt cttccattt caccaagggg atattctgag tgtcataatt 800
ccccgggcaa gggcgaaact taacctctt ccacatggaa cttccctggg 850
gtttgtgaaa ctgtgattgt gttataaaaa gtggctccca gcttggaga 900
ccagggtggg tacataactgg agacagccaa gagctgagta tataaaggag 950
agggaatgtg caggaacaga ggcatttcc tgggttgcc tccccgttcc 1000
tcactttcc ctttcattt ccacccctt gactttgatt ttacggatat 1050
cttgcttctg ttccccatgg agctccg 1077

<210> 76
<211> 250
<212> PRT
<213> Homo Sapien

<400> 76

Met	Pro	Ala	Ser	Ser	Pro	Phe	Leu	Leu	Ala	Pro	Lys	Gly	Pro	Pro
1					5				10				15	
Gly	Asn	Met	Gly	Gly	Pro	Val	Arg	Glu	Pro	Ala	Leu	Ser	Val	Ala
		20				25							30	
Leu	Trp	Leu	Ser	Trp	Gly	Ala	Ala	Leu	Gly	Ala	Val	Ala	Cys	Ala
		35					40						45	
Met	Ala	Leu	Leu	Thr	Gln	Gln	Thr	Glu	Leu	Gln	Ser	Leu	Arg	Arg
				50				55					60	
Glu	Val	Ser	Arg	Leu	Gln	Gly	Thr	Gly	Gly	Pro	Ser	Gln	Asn	Gly
				65			70						75	
Glu	Gly	Tyr	Pro	Trp	Gln	Ser	Leu	Pro	Glu	Gln	Ser	Ser	Asp	Ala
				80				85					90	
Leu	Glu	Ala	Trp	Glu	Asn	Gly	Glu	Arg	Ser	Arg	Lys	Arg	Arg	Ala
				95					100				105	
Val	Leu	Thr	Gln	Lys	Gln	Lys	Lys	Gln	His	Ser	Val	Leu	His	Leu
				110				115					120	

0
0
0
0
0
0
0
0
0
0
0

Val Pro Ile Asn Ala Thr Ser Lys Asp Asp Ser Asp Val Thr Glu
125 130 135

Val Met Trp Gln Pro Ala Leu Arg Arg Gly Arg Gly Leu Gln Ala
140 145 150

Gln Gly Tyr Gly Val Arg Ile Gln Asp Ala Gly Val Tyr Leu Leu
155 160 165

Tyr Ser Gln Val Leu Phe Gln Asp Val Thr Phe Thr Met Gly Gln
170 175 180

Val Val Ser Arg Glu Gly Gln Gly Arg Gln Glu Thr Leu Phe Arg
185 190 195

Cys Ile Arg Ser Met Pro Ser His Pro Asp Arg Ala Tyr Asn Ser
200 205 210

Cys Tyr Ser Ala Gly Val Phe His Leu His Gln Gly Asp Ile Leu
215 220 225

Ser Val Ile Ile Pro Arg Ala Arg Ala Lys Leu Asn Leu Ser Pro
230 235 240

His Gly Thr Phe Leu Gly Phe Val Lys Leu
245 250

<210> 77
<211> 2849
<212> DNA
<213> Homo Sapien

<400> 77
cactttctcc ctcttcttc ttactttcga gaaaccgcgc ttccgcttct 50
ggtcgcagag acctcggaga ccgcgcgggg gagacggagg tgctgtgggt 100
gggggggacc tgtggctgct cgtaccgcgc cccaccctcc tcttctgcac 150
tgccgtccctc cggaagacct tttccccctgc tctgtttctt tcaccgagtc 200
tgtgcatcgc cccggacactg gccgggagga ggcttggccg gcgggagatg 250
ctcttaggggc ggcgcgggag gagcggccgg cggacggag ggcccgccag 300
gaagatgggc tcccgtggac agggacttt gctggcgtac tgcctgtcc 350
ttgccttgc ctctggcctg gtcctgagtc gtgtgccccca tgtccagggg 400
gaacagcagg agtgggaggg gactgaggag ctgccgtcgc ctccggacca 450
tgccgagagg gctgaagaac aacatgaaaa atacaggccc agtcaggacc 500
aggggctccc tgcttcccg tgcttgcgct gctgtgaccc cggtaacctcc 550
atgtacccgg cgaccggcgt gccccagatc aacatcacta tcttgaaagg 600
ggagaagggt gaccgcggag atcgaggcct ccaagggaaa tatggcaaaa 650

DRAFT - NOT FOR USE

caggctcagc aggggccagg ggccacactg gacccaaagg gcagaagggc 700
tccatggggg cccctggga gcggtgcaag agccactacg ccgcctttc 750
ggtgggcccgg aagaagccca tgcacagcaa ccactactac cagacggta 800
tcttcgacac ggagttcgtg aacctctacg accacttcaa catgttcacc 850
ggcaagttct actgctacgt gcccggcctc tacttcttca gcctcaacgt 900
gcacacctgg aaccagaagg agacctacct gcacatcatg aagaacgagg 950
aggaggttgt gatcttggtc ggcgcagggtgg gcgcacccgag catcatgcaa 1000
agccagagcc ttagtgcgttgc gctgcgcagag caggaccagg tgtgggtacg 1050
cctctacaag ggcgaacgtg agaacgcctt ctgcagcgag gagctggaca 1100
cctacatcac ctgcgtggc tacctggtca agcacgcac cgagccctag 1150
ctggccggcc acctccttcc ctgcgcac ccgcacccccc tgccgtgtgc 1200
tgacccccacc gcctttccc cgatccctgg actccgactc cctggctttg 1250
gcattcagt agacgcctg cacacacaga aagccaaagc gatcggtgct 1300
cccagatccc gcgcgcctg gagagagctg acggcagatg aaatcaccag 1350
ggcggggcac ccgcgagaac cctctggac ctgcgcgcgc cctctctgca 1400
cacatcctca agtgcaccccg cacggcgaga cgccgggtggc ggcaggcggt 1450
cccagggtgc ggcacccgcgg ctccagtcct tggaaataat taggcaaatt 1500
ctaaaggctc caaaaggagc aaagtaaacc gtggaggaca aaaaaagg 1550
ttgttatttt tgcgtttcca gccagcctgc tggctccaa gagagaggcc 1600
ttttcagttg agactctgct taagagaaga tccaaagtta aagctctggg 1650
gtcaggggag gggccggggg cagggaaacta cctctggctt aattcttta 1700
agccacgtag gaactttctt gagggatagg tggaccctga catccctgtg 1750
gccttgccca agggcctgc tggctttct gactcacagc tgcgagggtga 1800
tgggggctgg ggccccaggg gtcagcctcc cagagggaca gctgagcccc 1850
ctgccttgc tccaggttg tagaagcagc cgaaggccctc ctgcacagtgg 1900
ccagggaccc ctgggtcccc caggcctgca gatgtttcta tgagggcag 1950
agctccttgg tacatccatg tgtggctctg ctccacccct gtgccaccc 2000
agagccctgg ggggtggct ccatgcctgc caccctggca tcggcttct 2050
gtgccgcctc ccacacaaat cagccccaga aggccccggg gccttggctt 2100

0
0
0
0
0
0
0
0
0
0

ctgttttta taaaacacct caagcagcac tgcagtctcc catctcctcg 2150
tgggctaaggc atcaccgctt ccacgtgtgt tgtgttggtt ggcagcaagg 2200
ctgatccaga ccccttctgc ccccactgcc ctcatccagg cctctgacca 2250
gtagcctgag aggggctttt tctaggcttc agagcagggg agagctggaa 2300
ggggctagaa agctcccgt tgcgttgc tcaggcttc gtgagcctca 2350
gtcctgagac cagagtcaag aggaagtaca cgtcccaatc acccgtgtca 2400
ggattcactc tcaggagctg ggtggcagga gaggcaatag cccctgtggc 2450
aattgcagga ccagctggag cagggttgcg gtgtctccac ggtgctctcg 2500
ccctgccccat ggccacccca gactctgatc tccaggaacc ccatacccc 2550
tctccacctc accccatgtt gatgcccagg gtcactcttg ctacccgctg 2600
ggccccc当地 ccccgctgc ctctcttcct tccccccatc ccccacctgg 2650
ttttgactaa tcctgcttcc ctctctgggc ctggctgccc ggatctgggg 2700
tccctaagtc cctctcttta aagaacttct gcgggtcaga ctctgaagcc 2750
gagttgctgt gggcgtgccc ggaagcagag cgccacactc gctgcttaag 2800
ctccccccagc tcttccaga aaacattaaa ctcagaattt tgtttcaa 2849

<210> 78

<211> 281

<212> PRT

<213> Homo Sapien

<400> 78

Met	Gly	Ser	Arg	Gly	Gln	Gly	Leu	Leu	Leu	Ala	Tyr	Cys	Leu	Leu
1					5				10					15

Leu	Ala	Phe	Ala	Ser	Gly	Leu	Val	Leu	Ser	Arg	Val	Pro	His	Val
					20				25					30

Gln	Gly	Glu	Gln	Gln	Glu	Trp	Glu	Gly	Thr	Glu	Glu	Leu	Pro	Ser
					35				40					45

Pro	Pro	Asp	His	Ala	Glu	Arg	Ala	Glu	Glu	Gln	His	Glu	Lys	Tyr
				50				55						60

Arg	Pro	Ser	Gln	Asp	Gln	Gly	Leu	Pro	Ala	Ser	Arg	Cys	Leu	Arg
			65						70					75

Cys	Cys	Asp	Pro	Gly	Thr	Ser	Met	Tyr	Pro	Ala	Thr	Ala	Val	Pro
				80				85						90

Gln	Ile	Asn	Ile	Thr	Ile	Leu	Lys	Gly	Glu	Lys	Gly	Asp	Arg	Gly
					95				100					105

Asp Arg Gly Leu Gln Gly Lys Tyr Gly Lys Thr Gly Ser Ala Gly

0
0
0
0
0
0
0
0
0
0

110

115

120

Ala Arg Gly His Thr Gly Pro Lys Gly Gln Lys Gly Ser Met Gly
125 130 135

Ala Pro Gly Glu Arg Cys Lys Ser His Tyr Ala Ala Phe Ser Val
140 145 150

Gly Arg Lys Lys Pro Met His Ser Asn His Tyr Tyr Gln Thr Val
155 160 165

Ile Phe Asp Thr Glu Phe Val Asn Leu Tyr Asp His Phe Asn Met
170 175 180

Phe Thr Gly Lys Phe Tyr Cys Tyr Val Pro Gly Leu Tyr Phe Phe
185 190 195

Ser Leu Asn Val His Thr Trp Asn Gln Lys Glu Thr Tyr Leu His
200 205 210

Ile Met Lys Asn Glu Glu Glu Val Val Ile Leu Phe Ala Gln Val
215 220 225

Gly Asp Arg Ser Ile Met Gln Ser Gln Ser Leu Met Leu Glu Leu
230 235 240

Arg Glu Gln Asp Gln Val Trp Val Arg Leu Tyr Lys Gly Glu Arg
245 250 255

Glu Asn Ala Ile Phe Ser Glu Glu Leu Asp Thr Tyr Ile Thr Phe
260 265 270

Ser Gly Tyr Leu Val Lys His Ala Thr Glu Pro
275 280

<210> 79

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 79

tacaggccca gtcaggacca gggg 24

<210> 80

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 80

ctgaagaagt agaggccggg cacg 24

<210> 81

<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 81
cccggtgctt ggcgtgtgtt gacccggta cttccatgtt cccgg 45

<210> 82
<211> 2284
<212> DNA
<213> Homo Sapien

<400> 82
gcggagcattt cgctcggttc ctgcggaga ccccccgcgcg gattcgccgg 50
tccttcccgcc gggcgcgaca gagctgtcctt cgcaccttggaa tggcagcagg 100
ggcgccccgggg tcctctcgac gccagagaga aatctcatca tctgtgcagc 150
cttcttaaagg caaactaaga ccagagggag gattatcctt gacctttgaa 200
gaccaaaaactt aaactgaaat ttaaaatgtt cttcgccccggga gaagggagct 250
tgacttacac tttggtaata atttgcttcc tgacactaag gctgtctgtt 300
agtcagaattt gcctcaaaaaa gagtcttagaa gatgttgtca ttgacatcca 350
gtcatctctt tctaaggaa tcagaggaa tgagccgttataacttcaa 400
ctcaagaaga ctgcattaat tcttgctgtt caacaaaaaa catatcaggg 450
gacaaagcat gtaacttgat gatcttcgac actcgaaaaa cagctagaca 500
accctaactgc tacctatttt tctgtcccaa cgaggaagcc tgtccattgtt 550
aaccagcaaa aggacttatg agttacagga taattacaga ttttccatct 600
ttgaccagaa atttgccaag ccaagagttt ccccaggaag attctctctt 650
acatggccaa ttttccacaag cagtcactcc cctagcccat catcacacag 700
attattcaaa gcccaccgtt atctcatgtt gagacacact ttctcagaag 750
tttggatcctt cagatcacctt ggagaaaactt tttaagatgg atgaagcaag 800
tgcccgatcc cttgcttata aggaaaaagg ccattctcag agttcacaat 850
tttcctctgtt tcaagaaaata gtcacatgtt cttccatgtt cttccatgtt 900
ctcccgatca cgggtggcagt tgcttctcca cataccacctt cggctactcc 950
aaagccccggcc acccttctac ccaccaatgc ttcagtgaca cttccatgtt 1000
cttcccgatcc acagctggcc accacagctc cacctgttac cactgttactt 1050

FOTIEBO - S 1000000000000000

tctcagcctc ccacgaccct catttctaca gttttcacac gggctgcggc 1100
tacactccaa gcaatggcta caacagcagt tctgactacc accttcagg 1150
cacctacgga ctcgaaaggc agcttagaaa ccataccgtt tacagaaatc 1200
tccaacttaa ctttgaacac aggaaatgtg tataacccta ctgcactt 1250
tatgtcaaat gtggagtctt ccactatgaa taaaactgct tcctggaaag 1300
gtagggaggc cagtccaggc agttcctccc agggcagtgt tccagaaaaat 1350
cagtagggcc ttccatttga aaaatggctt cttatcggtt ccctgctctt 1400
tggtgtcctg ttccctggta taggcctcgt cctcctgggt agaattcctt 1450
cggaatcact ccgcaggaaa cgttactcaa gactggatta tttgatcaat 1500
gggatctatg tggacatcta aggatggaac tcgggtgtc ttaattcatt 1550
tagtaaccag aagccaaat gcaatgagtt tctgctgact tgctagtc 1600
agcaggaggt tgtatTTGA agacaggaaa atgccccctt ctgctttcct 1650
ttttttttt ggagacagag tcttgctctg ttgcccaggc tggagtgcag 1700
tagcacgatc tcgggtctca ccgcaacctc cgtctcctgg gttcaagcga 1750
ttctcctgcc tcagcctcct aagtatctgg gattacaggc atgtgccacc 1800
acacctgggt gatTTTGTa ttttagtag agacggggtt tcaccatgtt 1850
ggtcaggctg gtctcaaact cctgacctag tgatccaccc tcctcggt 1900
cccaaagtgc tgggattaca ggcattgagcc accacagctg gcccccttct 1950
gttttatgtt tggTTTGTa gaaggaatga agtgggaacc aaatttagta 2000
atTTTGGGta atctgtctct aaaatattag ctaaaaacaa agctctatgt 2050
aaagtaataa agtataattg ccatataaat ttcaaaattc aactggctt 2100
tatgcaaaga aacaggttag gacatctagg ttccaattca ttcacattct 2150
tggTTCCAGA taaaatcaac tgTTTATATC aatttctaatt ggatttgctt 2200
ttcttttat atggattcct taaaactta ttccagatgt agttccttcc 2250
aattaaatat ttgaataaaat ctTTTGTAC tcaa 2284

<210> 83
<211> 431
<212> PRT
<213> Homo Sapien

<400> 83
Met Phe Phe Gly Gly Glu Gly Ser Leu Thr Tyr Thr Leu Val Ile
1 5 10 15

DRAFT

Ile Cys Phe Leu Thr Leu Arg Leu Ser Ala Ser Gln Asn Cys Leu
20 25 30

Lys Lys Ser Leu Glu Asp Val Val Ile Asp Ile Gln Ser Ser Leu
35 40 45

Ser Lys Gly Ile Arg Gly Asn Glu Pro Val Tyr Thr Ser Thr Gln
50 55 60

Glu Asp Cys Ile Asn Ser Cys Cys Ser Thr Lys Asn Ile Ser Gly
65 70 75

Asp Lys Ala Cys Asn Leu Met Ile Phe Asp Thr Arg Lys Thr Ala
80 85 90

Arg Gln Pro Asn Cys Tyr Leu Phe Phe Cys Pro Asn Glu Glu Ala
95 100 105

Cys Pro Leu Lys Pro Ala Lys Gly Leu Met Ser Tyr Arg Ile Ile
110 115 120

Thr Asp Phe Pro Ser Leu Thr Arg Asn Leu Pro Ser Gln Glu Leu
125 130 135

Pro Gln Glu Asp Ser Leu Leu His Gly Gln Phe Ser Gln Ala Val
140 145 150

Thr Pro Leu Ala His His His Thr Asp Tyr Ser Lys Pro Thr Asp
155 160 165

Ile Ser Trp Arg Asp Thr Leu Ser Gln Lys Phe Gly Ser Ser Asp
170 175 180

His Leu Glu Lys Leu Phe Lys Met Asp Glu Ala Ser Ala Gln Leu
185 190 195

Leu Ala Tyr Lys Glu Lys Gly His Ser Gln Ser Ser Gln Phe Ser
200 205 210

Ser Asp Gln Glu Ile Ala His Leu Leu Pro Glu Asn Val Ser Ala
215 220 225

Leu Pro Ala Thr Val Ala Val Ala Ser Pro His Thr Thr Ser Ala
230 235 240

Thr Pro Lys Pro Ala Thr Leu Leu Pro Thr Asn Ala Ser Val Thr
245 250 255

Pro Ser Gly Thr Ser Gln Pro Gln Leu Ala Thr Thr Ala Pro Pro
260 265 270

Val Thr Thr Val Thr Ser Gln Pro Pro Thr Thr Leu Ile Ser Thr
275 280 285

Val Phe Thr Arg Ala Ala Ala Thr Leu Gln Ala Met Ala Thr Thr
290 295 300

Ala Val Leu Thr Thr Phe Gln Ala Pro Thr Asp Ser Lys Gly

F0TE80 "968411660

305

310

315

Ser Leu Glu Thr Ile Pro Phe Thr Glu Ile Ser Asn Leu Thr Leu
320 325 330

Asn Thr Gly Asn Val Tyr Asn Pro Thr Ala Leu Ser Met Ser Asn
335 340 345

Val Glu Ser Ser Thr Met Asn Lys Thr Ala Ser Trp Glu Gly Arg
350 355 360

Glu Ala Ser Pro Gly Ser Ser Ser Gln Gly Ser Val Pro Glu Asn
365 370 375

Gln Tyr Gly Leu Pro Phe Glu Lys Trp Leu Leu Ile Gly Ser Leu
380 385 390

Leu Phe Gly Val Leu Phe Leu Val Ile Gly Leu Val Leu Leu Gly
395 400 405

Arg Ile Leu Ser Glu Ser Leu Arg Arg Lys Arg Tyr Ser Arg Leu
410 415 420

Asp Tyr Leu Ile Asn Gly Ile Tyr Val Asp Ile
425 430

<210> 84

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 84

agggaggatt atccttgacc tttgaagacc 30

<210> 85

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 85

gaagcaagtgc cccagctc 18

<210> 86

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 86

cgggtccctg ctctttgg 18

<210> 87
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 87
caccgttagct gggagcgcac tcac 24

<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 88
agtgttaagtc aagctccc 18

<210> 89
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 89
gcttcctgac actaaggctg tctgcttagtc agaattgcct caaaaagag 49

<210> 90
<211> 957
<212> DNA
<213> Homo Sapien

<400> 90
ccttggaaat gcgcccatgg gctgggtggcc tgctcaaggt ggtgttcgtg 50
gtcttcgcct ccttgtgtgc ctggattcg gggtaacctgc tcgcagagct 100
cattccagat gcacccctgt ccagtgcgtc ctatagcatc cgcatcg 150
gggagaggcc tgtcctcaaa gctccagtcc cccaaaggca aaaatgtgac 200
cactggactc cctgccccatc tgacacccat gcctacaggt tactcagcgg 250
aggtggcaga agcaagtacg cccaaatctg ctttgaggat aacctactta 300
tgggagaaca gctggaaat gttgccagag gaataaacat tgccattgtc 350
aactatgtaa ctggaaatgt gacagcaaca cgatgttttg atatgtatga 400
aggcgataac tctggaccga tgacaaagtt tattcagagt gctgctccaa 450
aatccctgct cttcatggtg acctatgacg acgaaagcac aagactgaat 500

aacgatgcc aagaatccat agaagcactt ggaagtaaag aaatcaggaa 550
catgaaattc aggtcttagct gggtatttat tgcagcaaaa ggcttggAAC 600
tcccttcga aattcagaga gaaaagatca accactctga tgctaagaac 650
aacagatatt ctggctggcc tgcagagatc cagatagaag gctgcataacc 700
caaagaacga agctgacact gcagggtcct gagtaaatgt gttctgtata 750
aacaaatgca gctggaatcg ctcagaatc ttatTTTCT aaatccaaca 800
gccccatattt gatgagtatt ttgggTTTGT tgtaaaccAA tgaacatttg 850
ctagttgtat caaatcttgg tacgcagtat tttataccA gtatTTATG 900
tagtgaagat gtcaattAGC aggAAAactAA aatgaatGGa aattcttAAA 950
aaaaaaaa 957

<210> 91
<211> 235
<212> PRT
<213> Homo Sapien

<400> 91
Met Arg Pro Leu Ala Gly Gly Leu Leu Lys Val Val Phe Val Val
1 5 10 15
Phe Ala Ser Leu Cys Ala Trp Tyr Ser Gly Tyr Leu Leu Ala Glu
20 25 30
Leu Ile Pro Asp Ala Pro Leu Ser Ser Ala Ala Tyr Ser Ile Arg
35 40 45
Ser Ile Gly Glu Arg Pro Val Leu Lys Ala Pro Val Pro Lys Arg
50 55 60
Gln Lys Cys Asp His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala
65 70 75
Tyr Arg Leu Leu Ser Gly Gly Arg Ser Lys Tyr Ala Lys Ile
80 85 90
Cys Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val
95 100 105
Ala Arg Gly Ile Asn Ile Ala Ile Val Asn Tyr Val Thr Gly Asn
110 115 120
Val Thr Ala Thr Arg Cys Phe Asp Met Tyr Glu Gly Asp Asn Ser
125 130 135
Gly Pro Met Thr Lys Phe Ile Gln Ser Ala Ala Pro Lys Ser Leu
140 145 150
Leu Phe Met Val Thr Tyr Asp Asp Gly Ser Thr Arg Leu Asn Asn
155 160 165

TOP SECRET - SECURITY INFORMATION

Asp Ala Lys Asn Ala Ile Glu Ala Leu Gly Ser Lys Glu Ile Arg
170 175 180

Asn Met Lys Phe Arg Ser Ser Trp Val Phe Ile Ala Ala Lys Gly
185 190 195

Leu Glu Leu Pro Ser Glu Ile Gln Arg Glu Lys Ile Asn His Ser
200 205 210

Asp Ala Lys Asn Asn Arg Tyr Ser Gly Trp Pro Ala Glu Ile Gln
215 220 225

Ile Glu Gly Cys Ile Pro Lys Glu Arg Ser
230 235

<210> 92
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 92
aatgtgacca ctggactccc 20

<210> 93
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 93
aggcttggaa ctcccttc 18

<210> 94
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 94
aagattcttg agcgattcca gctg 24

<210> 95
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 95
aatccctgct cttcatggtg acctatgacg acggaagcac aagactg 47

TOTAL SEQUENCES

<210> 96
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 96
ctcaagaagc acgcgtactg c 21

<210> 97
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 97
ccaaacctcaag cttccgcctc tacga 25

<210> 98
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 98
catccaggct cgccactg 18

<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 99
tggcaaggaa tggaaacagt 20

<210> 100
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 100
atgctgccag acctgatcg agaca 25

<210> 101
<211> 19
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 101
ggcgcgaaat ccagccact 19

<210> 102
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 102
cccttcgcct gcttttga 18

<210> 103
<211> 27
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 103
gccatctaatt tgaaggccat cttccca 27

<210> 104
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 104
ctggcggtgt cctctccctt 19

<210> 105
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 105
cctcggtctc ctcatctgtg a 21

<210> 106
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 106
tggcccaact gacgagccct 20

<210> 107
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 107
ctcataggca ctcgttctg g 21

<210> 108
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 108
tggctccag cttggaaga 19

<210> 109
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 109
cagctcttgg ctgtctccag tatgtaccca 30

<210> 110
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 110
gatgcctctg ttcctgcaca t 21

<210> 111
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 111

ggattctaat acgactcaact atagggctgc ccgcaacccc ttcaactg 48
<210> 112
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 112
ctatgaaatt aaccctcaact aaagggaccc cagctgggtg accgtgt 48

<210> 113
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 113
ggattctaat acgactcaact atagggccgc cccgccacct cct 43

<210> 114
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 114
ctatgaaatt aaccctcaact aaagggactc gagacaccac ctgaccca 48

<210> 115
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 115
ggattctaat acgactcaact atagggccca aggaaggcag gagactct 48

<210> 116
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide probe

<400> 116
ctatgaaatt aaccctcaact aaagggacta ggggtggga atgaaaag 48

<210> 117

TOP SECRET//NOFORN

<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 117
ggattctaat acgactcaact atagggcccc cctgagctct cccgtgt 48

<210> 118
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 118
ctatgaaatt aaccctcaact aaagggaagg ctgcgccactg gtcgtaga 48

<210> 119
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 119
ggattctaat acgactcaact atagggcaag gagccgggac ccaggaga 48

<210> 120
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 120
ctatgaaatt aaccctcaact aaagggaggg ggcccttggt gctgagt 47