•	
E KUUK	
7	
÷	
5	
Ç	
K	
t	
Ž	
r	
2	
-	
Ç	
E	
- C	
a	
ri	
あらずりずら を	
Ņ	
ب	
- E	
Ľ	
ā	
ř	
9	
R	
TGACTTACACCAC	
A	
E	
Ē	
F	
TGCCTGGCTGAC	
Ŋ	
ي	
CCTGGCTC	
U	
ď	
řĭ	
2	
- 57	
\mathbf{Q}	
U	
U	
Ĥ	
Ē	
ř'n	
9	
·	
טַ	
S	
ACC	
GACC	
rGACC	
TGACC	
GTGACC	
AGTGACC	
CAGTGACC	
TCAGTGACC	
TTCAGTGACC	
CTTCAGTGACC	
SCTTCAGTGACC	
GCTTCAGTGACC	
GGCTTCAGTGACC	
GGGCTTCAGTGACC	
AGGCTTCAGTGACC	
AAGGCTTCAGTGACC	
3AAGGGCTTCAGTGACC	
GAAGGGCTTCAGTGACC	
AGGAAGGGCTTCAGTGACC	
AGGAAGGGCTTCAGTGACC	
AAGGAAGGGCTTCAGTGACC	
GAAGGAAGGGCTTCAGTGACC	
AGAAGGAAGGGCTTCAGTGACC	
GAGAAGGAAGGGCTTCAGTGACC	
AGAGAAGGAAGGGCTTCAGTGACC	
TAGAGAAGGAAGGGCTTCAGTGACC	
<i>NTAGAGGAAGGGCTTCAGTGACC</i>	
LATAGAAGGAAGGGCTTCAGTGACC	
AATAGAGAAGGAAGGGCTTCAGTGACC	
GAATAGAGAAGGAAGGCTTCAGTGACC	
AGAATAGAAGGAAGGGCTTCAGTGACC	
aagaatagaaggaaggcttcagtgacc	
AAAGAATAGAAGGAAGGGCTTCAGTGACC	
<i>VAAAGAATAGAAGGAAGGGCTTCAGTGACC</i>	
Taaaagaatagaaggaagggcttcagtgacc	
<i>ITAAAAGAATAGAAGGAAGGGCTTCAGTGACC</i>	
'ataaaagaatagaaggaagggcttcagtgacc	
'TATAAAAGAATAGAAAGGAAGGGCTTCAGTGACC	
CTATAAAAGAATAGAAGGAAGGGCTTCAGTGACC	
actataaaagaatagaaaggaagggcttcagtgacc	
3actataaaagaatagagaaggagattcagtgacc	
FGACTATAAAAGAATAGAAGGAAGGGCTTCAGTGACC	
TGACTATAAAAGAATAGAAGGAAGGAAGGCTTCAGTGACC	
 CTGACTATAAAAGAATAGAGAAGGAAGGGCTTCAGTGACC	
'ACTGACTATAAAGAATAGAAGGAAGGGCTTCAGTGACC	
CACTGACTATAAAAGAATAGAGAAGGAAGGGCTTCAGTGACC	
TCACTGACTATAAAGAATAGAGAAGGAAGGGCTTCAGTGACC	
CTCACTGACTATAAAAGAATAGAGAAGGGAAGGGCTTCAGTGACC	
CTCACTGACTATAAAAGAATAGAGAAGGAAGGGCTTCAGTGACC	
ICCTCACTGACTATAAAGAATAGAAGGAAGGGCTTCAGTGACC	
TCCTCACTGACTATAAAGAATAGAGGAAGGAAGGCTTCAGTGACC	
TTCCTCACTGACTATAAAGAATAGAGAAGGAAGGGCTTCAGTGACC	
TTTCCTCACTGACTATAAAGAATAGAGAAGGAAGGGCCTTCAGTGACC	
TTTCCTCACTGACTATAAAGAATAGAGAAGGAAGGGCTTCAGTGACC	

ATGGCTATGATGGAGGTCCAGGGGGGACCCAGCCTGGACAGACCTGCGTGATCGTGATCTTCACAGTGCTCCTGCAGTCTCTTCTCTGT MetAlaMetMetGluValGlnGlyGlyProSerLeuGlyGln <u>ThrCysValLeuIleValIlePheThrValLeuGln</u> SerLeuCys

- gtggctgtaacttacgtgtactttaccaacgagctgaagcagatgcaggacaagtactccaaagtggcattgcttgtttcttaaaagaaa <u>ValālaValThrTyrValTyrPheThrAsn</u>GluLeuLysGlnMetGlnAspLysTyrSerLysSerGlyIleAlaCysPyeLeuL6sGlu 181
- gatgacagttattgggaccccaatgacgaagagagtatgaacagcccctgctggcaagtcaagtggcaactccgtcagctcgttagaaag AspaspserTyrTrpaspProasnaspGluGluSerMetAsnSerProCysTrpGlnValLysTrpGlnLeuArgGlnLeuValArgLys 271
 - 361
 - **ATGATTTTGAGAACCTCTGAGGAAACCATTTCTACAGTTCAAGAAAGCAACAAAATATTTCTCCCCTAGTGAGAAAAAGAGGTCCNCAG** MetIleLeuArgThrSerGluGluThrIleSerThrValGlnGluLysGlnGlnAsnIleSerProLeuValArgGluArgGlyProGln91
- AGAGTAGCAGCTCACATAACTGGGACCAGAGGAAGAAGCAACACATTGTCTTCTCCAAAACTCCAAGAATGAAAAGGCTCTGGGCCGCAAA ${f ArgValAlaAlaHisIlethrGlyThrArgGlyArgSerAsnThrLeuSerSerProAsnSerLysAsnGluLysAlaLeuGlyArgLys$ 451 121
- **ATAAACTCCTGGGAATCATCAAGGAGTGGGCATTCATTCCTGAGCAACTTGCACTTGAGGAATGGTGAACTGGTCATCCATGAAAAAGGG** 541 151
- ${\tt IleAsnSerTrpGluSerSerArgSerGlyHisSerPheLeuSerAsnLeuHisLeuArgAsnGlyGluLeuValIleHisGluLysGly}$
 - t Phe Tyr Tyr I le Tyr Ser Glnthr Tyr Phe Arg Phe Gln Glu Glu I le Lys Glu Asn Thr Lys Asn Asp Lys Gln Met Val Gln Tyr I le631 181
- TACAAATACACAAGTTATCCTGACCCTATATTGTTGATGAAAAGTGCTAGAAATAGTTGTTGGTCTAAAGATGCAGAATATGGACTCTAT TyrLysTyrThrSerTyrProAspProlleLeuLeuMetLysSerAlaArgAsnSerCysTrpSerLysAspAlaGluTyrGlyLeuTyr 721 211
- SerileTyrGinGlyGlyilePheGluLeuLysGluAsnAspArgilePheValSerValThrAsnGluHisLeuIleAspMetAspHis 241
- GluAlaSerPhePheGlyAlaPheLeuValGlyStp 901
- 991

Liquid Stability of Apo2L / TRAIL in Various Preparations Following 1 Week Storage at 30°C.

FIG._2

Stability of Lyophilized Apo2L / TRAIL Preparations After 4 Months Storage at 40°C.

Stability of Various Arginine-salt Containing Lyophilized Apo2L / TRAIL Formulations After 1 Month Storage at 50°C

FIG._3B

FIG._3C

pH-stability Profile of Apo2L / TRAIL

11G._4A

FIG._5

Effect of Polysorbate (Tween) 20 on Stabilization of Apo2L / TRAIL

FIG._6

FIG._7

Ion Dependence Crystallization of Apo2L / TRAIL. Crystallization Was Observed in All Salts, but Arginine and Mg Salts Maximized the Protein Solubility in the Narrow Range of 10-11.5 mS / cm Conductivity.

FIG. 10A

Effect of Agitation Rate on Apo2L / TRAIL Crystal Dissolution (Solid Lines). Sample Temperature During the Warming Cycle is Also Shown (Dashed Lines).

FIG._10B

FIG._10C

IEX Profile of Apo2L / TRAIL after Reconstitution of Vacuum Dried Crystals

FIG._11A

Bioactivity of Apo2L / TRAIL after Reconstitution of Vacuum Dried Crystals.

Arrhenius Profile of a 20 mg / ml Apo2L / TRAIL Lyophilized Formulation in 0.2M Na Sulfate, 20 mM Tris, pH 7.2, 0.01 % tween 20.

Effect of Salt Type on Crystallization of Partially Purified Apo2L / TRAIL. After Partial Purification of E. Coli Clarified Lysates on Sp-sepharose Cation Exchange Column, the Protein Was Eluted At 5-10 mg / ml in 20 mM Tris, pH 8 and 0.2M of One of the Salts Shown. The Samples Were Stored At 2-8°C For 3-7 Days. An Aliquot was Then Filtered and the Soluble Protein Concentration was Measured by UV Spec Scan.

Loss of Trimer by SEC @ 50°C Apo2L Crystals Co-Lyophilized with Excipients

months

Increase in % Non-Reducible Dimer @ 50°C Crystalline Apo2L Lyophilized in the Presence of Potential Stabilizers

Formation of Non-reducible Dimer in Lyophilized Apo2L/TRAIL Crystals at 50°C

Lyophillized Apo2L/TRAIL Crystals SDS-SEC Chromatograms 2.5% Residual Moisture

Lyophillized Apo2L/TRAIL Crystals SDS-SEC Chromatograms 12% Residual Moisture

SDS-SEC Chromatograms of Hexamer Fraction Collected From Apo2L Crystals Containing 2.5% HO

SDS-SEC Chromatograms of Hexamer Fraction Collected From Apo2L Crystals Containing 12% HO

Relationship Between Moisture and Rate of Covalent Bond Formation at 50°C

Relationship Between Moisture and Rate of Covalent Bond Formation at 40°C

