MATH 417

Iwan Duursma

January 19, 2022

Week 1 - Wednesday

Course outline

Math 417 Introduction to Abstract Algebra [43 hrs]

- (a) Integers [4 hrs]
- (b) Permutations [3hrs]
- (c) Groups [10 hrs]
- (d) Group actions [10 hrs]
- (e) Rings [12 hrs]
- (*) Exams and leeway [4hrs]

Text

Main text:

Fraleigh, A First Course in Abstract Algebra (7th edition)

With a few sections from:

Rotman, A First Course in Abstract Algebra (3rd edition)

Optional, not expected to be used:

Goodman, Algebra: Abstract and Concrete (free online)

Other:

Artin, Algebra (2nd edition)

Dummit and Foote, Abstract Algebra (3rd edition) (covers Math 500)

Rotman, Advanced Modern Algebra (2002 ed.) (covers Math 500)

Looking ahead at (c) Groups

a * b	b=1	2	3	4	5	6	7	8	9	10	11	12
a = 1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	1	4	3	7	8	5	6	12	11	10	9
3	3	4	1	2	8	7	6	5	10	9	12	11
4	4	3	2	1	6	5	8	7	11	12	9	10
5	5	6	7	8	9	10	11	12	1	2	3	4
6	6	5	8	7	11	12	9	10	4	3	2	1
7	7	8	5	6	12	11	10	9	2	1	4	3
8	8	7	6	5	10	9	12	11	3	4	1	2
9	9	10	11	12	1	2	3	4	5	6	7	8
10	10	9	12	11	3	4	1	2	8	7	6	5
11	11	12	9	10	4	3	2	1	6	5	8	7
12	12	11	10	9	2	1	4	3	7	8	5	6

Questions (Homework, due Monday 1/31)

- 1. Collect all pairs (a, b) with a * b = 7.
- 2.. Compute each of the following. What do you observe?

$$(2*3)*7$$
 $(7*2)*3$ $(3*7)*2$
 $7*(2*3)$ $3*(7*2)$ $2*(3*7)$

- 3. Find a subset $H \subset G$ of size four such that $a * b \in H$ for all $a, b \in H$.
- 4. Find all subsets $H \subset G$ of size three such that $a * b \in H$ for all $a, b \in H$.
- 5. For $a \in G$ define $\ell_a : G \to G$ as the function $\ell_a(x) = a * x$. Determine the composition $\ell_4 \circ \ell_5 : G \to G$.
- 6. For $b \in G$ define $r_b : G \to G$ as the function $r_b(x) = x * b$.

Determine the composition $r_4 \circ r_5 : G \to G$.

First topic: (a) Integers [4hrs]

```
[Rotman-1.3-1.5]
The Integer division algorithm (p.35)
  optional: Euclidean algorithm (pp.43-45)
Greatest common divisor (pp.37-38)
Fundamental theorem of arithmetic (pp.53-55)
Congruence arithmetic (pp.57-59)
  optional: Application to RSA-cryptosystem (handout or homework)
```

Integer division algorithm

Theorem

Given integers a and b with $a \neq 0$,

there exist unique integers q and r with

$$b = qa + r$$
 and $0 \le r < |a|$.

Example

$$a = 7$$
 and $b = 60 : 60 = 8 \cdot 7 + 4$ with $q = 8$ and $r = 4$.

$$a = 7$$
 and $b = -60$: $-60 = (-9) \cdot 7 + 3$ with $q = -9$ and $r = 3$.

Greatest common divisor

Definition

The integer a divides the integer b, notation $a \mid b$,

if there exists an integer d with $b = d \cdot a$.

We also say a is a divisor of b or b is a multiple of a.

The integer c is a common divisor of a and b if $c \mid a$ and $c \mid b$.

For a and b not both zero, the greatest common divisor of a and b, notation gcd(a, b), is the largest common divisor of a and b.

Example: gcd(120, 300) = 60, gcd(119, 301) = ?.

Euclidean algorithm

Lemma

Let
$$b = q \cdot a + r$$
. Then $gcd(b, a) = gcd(a, r)$.

Proof

The pair b, a has the same set of common divisors as the pair a, r.

To compute gcd(119, 301) we use the lemma repeatedly.

$$301 = 2 \cdot 119 + 63 : \gcd(301, 119) = \gcd(119, 63).$$

$$119 \ = \ 1 \cdot 63 + 56 \ : \ \gcd(119,63) = \gcd(63,56).$$

$$63 = 1 \cdot 56 + 7 : \gcd(63, 56) = \gcd(56, 7).$$

$$56 = 8 \cdot 7 + 0 : \gcd(56,7) = \gcd(7,0) = 7.$$