CS1231: Discrete Structures

Tutorial 7

Li Wei

Department of Mathematics National University of Singapore

18 March, 2019

Quick Review

- prime number, composite number
- If n is composite, then it has a divisor d with $1 < d \leq \sqrt{n}$.
- Euclidean Algorithm.
- Base b Expansion.
- Modular Exponentiation. bⁿ Mod m

Menu

Question 1	Question 4
	Question 5
Question 2	Question 6
Question 3	Question 7

Recall

- \triangle If n is composite, then it has a prime divisor $\leq \sqrt{n}$.

Idea.

$$\sqrt{107} \approx 10.344080432788600469738599442627;$$

 $\sqrt{113} \approx 10.630145812734649407999121914929.$

$$\Rightarrow |\sqrt{107}| = , |\sqrt{113}| = .$$

$$\Rightarrow [\sqrt{107}] = , [\sqrt{113}] = .$$

the primes no more than are , , , .

Recall

- \triangle If n is composite, then it has a prime divisor $\leq \sqrt{n}$.

Idea.

$$\sqrt{107} \approx 10.344080432788600469738599442627;$$

$$\sqrt{113}\approx 10.630145812734649407999121914929.$$

$$\Rightarrow \lfloor \sqrt{107} \rfloor = 10, \lfloor \sqrt{113} \rfloor = 1$$

the primes no more than \quad are \quad , \quad , \quad .

Recall

- \triangle If n is composite, then it has a prime divisor $\leq \sqrt{n}$.
- n is prime if and only if it has no prime divisor $\leq \sqrt{n}$

Idea.

$$\sqrt{107} \approx 10.344080432788600469738599442627;$$

$$\sqrt{113} \approx 10.630145812734649407999121914929.$$

$$\Rightarrow \left[\sqrt{107}\right] = 10, \left[\sqrt{113}\right] = 10.$$

the primes no more than $10\ \mathrm{are}\ \ ,\ \ ,\ \ .$

Recall

- \triangle If n is composite, then it has a prime divisor $\leq \sqrt{n}$.

Idea.

$$\sqrt{107} \approx 10.344080432788600469738599442627;$$

 $\sqrt{113} \approx 10.630145812734649407999121914929.$

$$\Rightarrow |\sqrt{107}| = 10, |\sqrt{113}| = 10.$$

$$\Rightarrow [\sqrt{107}] = 10, [\sqrt{113}] = 10.$$
 the primes no more than 10 are 2, , , .

Recall

- \triangle If n is composite, then it has a prime divisor $\leq \sqrt{n}$.

Idea.

$$\sqrt{107} \approx 10.344080432788600469738599442627;$$

 $\sqrt{113} \approx 10.630145812734649407999121914929.$

$$\sqrt{113} \sim 10.03014301273404340$$

 $\rightarrow 1./1071 - 10 1./1131 - 10$

$$\Rightarrow [\sqrt{107}] = 10, [\sqrt{113}] = 10.$$

the primes no more than $10\ \mathrm{are}\ 2$, 3, .

Recall

- \triangle If n is composite, then it has a prime divisor $\leq \sqrt{n}$.

Idea.

$$\sqrt{107} \approx 10.344080432788600469738599442627;$$

 $\sqrt{113} \approx 10.630145812734649407999121914929.$

$$\Rightarrow |\sqrt{107}| = 10 |\sqrt{113}| = 10$$

$$\Rightarrow [\sqrt{107}] = 10, [\sqrt{113}] = 10.$$

the primes no more than 10 are 2, 3, 5, ...

Recall

- \triangle If n is composite, then it has a prime divisor $\leq \sqrt{n}$.

Idea.

$$\sqrt{107} \approx 10.344080432788600469738599442627;$$

 $\sqrt{113} \approx 10.630145812734649407999121914929.$

$$\Rightarrow |\sqrt{107}| = 10, |\sqrt{113}| = 10.$$

$$\Rightarrow [\sqrt{107}] = 10, [\sqrt{113}] = 10.$$
 the primes no more than 10 are 2, 3, 5, 7.

Recall

- \triangle If n is composite, then it has a prime divisor $\leq \sqrt{n}$.

Idea.

$$\sqrt{107} \approx 10.344080432788600469738599442627$$
;

$$\sqrt{113} \approx 10.630145812734649407999121914929.$$

$$\Rightarrow |\sqrt{107}| = 10, |\sqrt{113}| = 10.$$

the primes no more than 10 are 2, 3, 5, 7.

None of these is a divisor of 107 or 113. Thus they are both primes.

2. An integer n is a perfect square if $n=k^2$ for some $k\in\mathbb{Z}$. Prove that a positive integer is a perfect square if and only if it has an odd number of positive divisors. Idea.

Therefore,

$$\begin{aligned} &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n\}|\\ &= &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d < \sqrt{n}\}| + \\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d > \sqrt{n}\}| + \\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d = \sqrt{n}\}| \end{aligned}$$

$$\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d = \sqrt{n}\}$$

$$=egin{cases} \{\sqrt{n}\} & ext{if } n ext{ is a perfect square} \ arnothing & ext{if } n ext{ is not a perfect square} \end{cases}$$

 $|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d = \sqrt{n}\}|$

 $= \begin{cases} & \text{if } n \text{ is a perfect square} \\ & \text{if } n \text{ is not a perfect square} \end{cases}$

$$\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d = \sqrt{n}\}$$

 $= \begin{cases} \{\sqrt{n}\} & \text{if } n \text{ is a perfect square} \\ \varnothing & \text{if } n \text{ is not a perfect square} \end{cases}$

 $= \begin{cases} 1 & \text{if } n \text{ is a perfect square} \\ & \text{if } n \text{ is not a perfect square} \end{cases}$

$$\emptyset$$
 If n is not a perfect square $|\{d\in\mathbb{Z}^+\mid d \text{ is a divisor of } n\wedge d=\sqrt{n}\}|$

$$\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d = \sqrt{n}\}$$

 $= \begin{cases} \{\sqrt{n}\} & \text{if } n \text{ is a perfect square} \\ \varnothing & \text{if } n \text{ is not a perfect square} \end{cases}$

 $= \begin{cases} 1 & \text{if } n \text{ is a perfect square} \\ 0 & \text{if } n \text{ is not a perfect square} \end{cases}$

```
\begin{aligned} &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d < \sqrt{n}\}| \\ &= |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| \end{aligned}
```

 \triangle |A| = |B| if and only if there is a bijection between A and B.

Let $f: \{d \in \mathbb{Z}^+ \mid d \mid n \land d < \sqrt{n}\} \to \{d \in \mathbb{Z}^+ \mid d \mid n \land d > \sqrt{n}\}$, be f(d) = n/d. This f is a bijection.

$$\begin{array}{lll} 1-1: & & \text{Onto:} \\ f(a)=f(b) & & \text{For any} \\ \Rightarrow & & y \in & , \\ \Rightarrow & & \text{we will show there is a x such} \\ & & \text{that } f(x)=y, \text{ i.e. } n/x=y \\ & & \text{Let $x=$} \\ & \Rightarrow & \text{and} & \text{(as)} \end{array}$$

```
\begin{aligned} &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d < \sqrt{n}\}| \\ &= |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| \end{aligned}
```

|A| = |B| if and only if there is a bijection between A and B.

Let $f: \{d \in \mathbb{Z}^+ \mid d \mid n \land d < \sqrt{n}\} \to \{d \in \mathbb{Z}^+ \mid d \mid n \land d > \sqrt{n}\}$, be f(d) = n/d. This f is a bijection.

```
\begin{array}{lll} 1-1: & & \text{Onto:} \\ f(a)=f(b) & & \text{For any} \\ \Rightarrow n/a=n/b & & y \in & , \\ \Rightarrow & & \text{we will show there is a } x \text{ such} \\ & & \text{that } f(x)=y, \text{ i.e. } n/x=y \\ & & \text{Let } x= \\ & \Rightarrow & \text{and} & \text{(as)} \end{array}
```

```
\begin{aligned} &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d < \sqrt{n}\}| \\ &= |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| \end{aligned}
```

|A| = |B| if and only if there is a bijection between A and B.

Onto:

 \Rightarrow and

Let $f: \{d \in \mathbb{Z}^+ \mid d \mid n \land d < \sqrt{n}\} \to \{d \in \mathbb{Z}^+ \mid d \mid n \land d > \sqrt{n}\}$, be f(d) = n/d. This f is a bijection.

$$1-1:$$

$$f(a) = f(b)$$

$$\Rightarrow n/a = n/b$$

$$\Rightarrow a = b$$

For any $y\in$, we will show there is a x such that f(x)=y, i.e. n/x=y Let x=

(as

$$\begin{aligned} &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d < \sqrt{n}\}| \\ &= |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d > \sqrt{n}\}| \end{aligned}$$

|A| = |B| if and only if there is a bijection between A and B.

Let $f: \{d \in \mathbb{Z}^+ \mid d \mid n \land d < \sqrt{n}\} \to \{d \in \mathbb{Z}^+ \mid d \mid n \land d > \sqrt{n}\}$, be f(d) = n/d. This f is a bijection.

$$1 - 1:$$

$$f(a) = f(b)$$

$$\Rightarrow n/a = n/b$$

$$\Rightarrow a = b$$

Onto:

For any $y \in \{d \in \mathbb{Z}^+ \mid d \mid n \land d > \sqrt{n}\}$, we will show there is a x such that f(x) = y, i.e. n/x = y Let x = y and $y > \sqrt{n}$ (as $y \mid n$ and $y > \sqrt{n}$)

$$\begin{aligned} &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d < \sqrt{n}\}| \\ &= |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| \end{aligned}$$

|A| = |B| if and only if there is a bijection between A and B.

Let $f: \{d \in \mathbb{Z}^+ \mid d \mid n \land d < \sqrt{n}\} \to \{d \in \mathbb{Z}^+ \mid d \mid n \land d > \sqrt{n}\}$, be f(d) = n/d. This f is a bijection.

$$1-1:$$

$$f(a) = f(b)$$

$$\Rightarrow n/a = n/b$$

$$\Rightarrow a = b$$

Onto:

For any $y \in \{d \in \mathbb{Z}^+ \mid d \mid n \wedge d > \sqrt{n}\}$, we will show there is a x such that f(x) = y, i.e. n/x = y Let x = n/y \Rightarrow and $(as y \mid n)$ and $(as y \mid n)$

```
\begin{aligned} &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d < \sqrt{n}\}| \\ &= |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d > \sqrt{n}\}| \end{aligned}
```

|A| = |B| if and only if there is a bijection between A and B.

Let $f: \{d \in \mathbb{Z}^+ \mid d \mid n \land d < \sqrt{n}\} \to \{d \in \mathbb{Z}^+ \mid d \mid n \land d > \sqrt{n}\}$, be f(d) = n/d. This f is a bijection.

1-1: f(a) = f(b) $\Rightarrow n/a = n/b$ $\Rightarrow a = b$

Onto:

For any $y \in \{d \in \mathbb{Z}^+ \mid d \mid n \land d > \sqrt{n}\}$, we will show there is a x such that f(x) = y, i.e. n/x = y Let x = n/y $\Rightarrow x \mid n$ and $y > \sqrt{n}$ (as $y \mid n$ and $y > \sqrt{n}$)

$$\begin{aligned} &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d < \sqrt{n}\}| \\ &= |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d > \sqrt{n}\}| \end{aligned}$$

|A| = |B| if and only if there is a bijection between A and B.

Let $f: \{d \in \mathbb{Z}^+ \mid d \mid n \land d < \sqrt{n}\} \to \{d \in \mathbb{Z}^+ \mid d \mid n \land d > \sqrt{n}\}$, be f(d) = n/d. This f is a bijection.

1-1: f(a) = f(b) $\Rightarrow n/a = n/b$ $\Rightarrow a = b$

Onto:

For any $y \in \{d \in \mathbb{Z}^+ \mid d \mid n \wedge d > \sqrt{n}\}$, we will show there is a x such that f(x) = y, i.e. n/x = y Let x = n/y $\Rightarrow x \mid n$ and $x < \sqrt{n}$ (as $y \mid n$ and $y > \sqrt{n}$)

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n\}|$$

$$= |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d < \sqrt{n}\}| +$$

 $|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d = \sqrt{n}\}|$

$$\begin{aligned} &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n\}|\\ &= &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d < \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d \mid d \mid d \mid d \mid d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+ \mid d > \sqrt{n}\}| +\\ &|\{d \in \mathbb{Z}^+$$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d > \sqrt{n}\}| +$$

$$|\{a \in \mathbb{Z}^+ \mid a \text{ is a divisor of } n\}|$$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \}|$$

$$|\{d\in\mathbb{Z}^+\mid d\text{ is a divisor of }n\wedge d=\sqrt{n}\}|$$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n$$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n|$$

+

+

$$|\{d\in\mathbb{Z}^+\mid d \text{ is a divisor of } n\wedge d=\sqrt{n}\}|$$

if n is a perfect square;

if n is not a perfect square

or

$$\begin{aligned} & |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n\}| \\ &= & |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d < \sqrt{n}\}| + \end{aligned}$$

or

if n is a perfect square:

if n is not a perfect square

 $=2|\{d\in\mathbb{Z}^+\mid d \text{ is a divisor of } n\wedge d<\sqrt{n}\}|+$

 $|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +$

$$<\sqrt{n}\}|$$
 -

$$\begin{aligned} & |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n\}| \\ &= & |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d < \sqrt{n}\}| + \end{aligned}$$

if n is a perfect square:

if n is not a perfect square

 $|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| +$

 $|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d = \sqrt{n}\}|$

 $=2|\{d\in\mathbb{Z}^+\mid d \text{ is a divisor of } n\wedge d<\sqrt{n}\}|+1$

 $=2|\{d\in\mathbb{Z}^+\mid d \text{ is a divisor of } n\wedge d<\sqrt{n}\}|+$

or

 $|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d = \sqrt{n}\}|$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n\}|$$

= $|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n\}|$

$$= |\{d \in \mathbb{Z} \mid d \text{ is a divisor of } n \land d < \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d > \sqrt{n}\}| + |\{d \in \mathbb{Z$$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land | \{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \mid d \mid d \mid d \mid d \mid d$$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d = \sqrt{n}\}|$$

$$= 2|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d < \sqrt{n}\}| +$$

if n is a perfect square:

if n is not a perfect square

or

$$\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land \{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of$$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land d \}|$$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \}|$$

$$= |\{d \in \mathbb{Z} \mid d \text{ is a divisor of } n \}|$$
$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \}|$$

$$= |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land | \{d \in \mathbb{Z}^+ \mid d \text{ i$$

$$= |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d < \sqrt{n}\}| +$$

 $|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \wedge d = \sqrt{n}\}|$

 $=2|\{d\in\mathbb{Z}^+\mid d \text{ is a divisor of } n\wedge d<\sqrt{n}\}|+1$

 $=2|\{d\in\mathbb{Z}^+\mid d \text{ is a divisor of } n\wedge d<\sqrt{n}\}|+0$

$$= |\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n \land a \text{ divisor of } n \land a \text{ divisor of } a \text{ divisor of$$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n\}|$$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n\}|$$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n\}|$$

$$|\{d \in \mathbb{Z}^+ \mid d \text{ is a divisor of } n\}|$$

$$|d \in \mathbb{Z}^+| d$$
 is a divisor of n

Answer.

If $d\mid n$ and $\sqrt{n} < d \leqslant n$, then $d'\mid n$ where d'=n/d and $1\leqslant d'<\sqrt{n}$. Thus each positive divisor of n which is less than \sqrt{n} can be paired up with a positive divisor $>\sqrt{n}$. Hence the number of divisors of n that are different from \sqrt{n} is even. \sqrt{n} itself is a divisor iff n is a perfect square. Thus n is a perfect square iff it has an odd number of positive divisors.

$$321 \div 2 = \cdots$$
 (the digit)
$$\div 2 = \cdots$$

$$(the digit)$$

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot \cdot \text{ (the digit)}$$
 $160 \div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the digit)
 $160 \div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot$
 $80 \div 2 = \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot$

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot$

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot$
 $40 \div 2 = \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot$

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$
 $40 \div 2 = \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot$

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$
 $40 \div 2 = 20 \cdot \cdot \cdot \cdot \cdot$
 $20 \div 2 = \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$
 $40 \div 2 = 20 \cdot \cdot \cdot \cdot \cdot 0$
 $20 \div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$
 $40 \div 2 = 20 \cdot \cdot \cdot \cdot \cdot 0$
 $20 \div 2 = 10 \cdot \cdot \cdot \cdot \cdot$
 $10 \div 2 = \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot$ (the digit)

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$
 $40 \div 2 = 20 \cdot \cdot \cdot \cdot \cdot 0$
 $20 \div 2 = 10 \cdot \cdot \cdot \cdot \cdot 0$
 $10 \div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ (the digit)

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$
 $40 \div 2 = 20 \cdot \cdot \cdot \cdot \cdot 0$
 $20 \div 2 = 10 \cdot \cdot \cdot \cdot \cdot 0$
 $10 \div 2 = 5 \cdot \cdot \cdot \cdot \cdot$
 $5 \div 2 = \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot$
 $\div 2 = \cdot \cdot \cdot \cdot \cdot \cdot$ (the digit)

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$
 $40 \div 2 = 20 \cdot \cdot \cdot \cdot \cdot 0$
 $20 \div 2 = 10 \cdot \cdot \cdot \cdot \cdot 0$
 $10 \div 2 = 5 \cdot \cdot \cdot \cdot \cdot 0$
 $5 \div 2 = 2 \cdot \cdot \cdot \cdot \cdot 0$
 $2 \div 2 = \cdot \cdot \cdot \cdot \cdot \cdot 0$
 $2 \div 2 = \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 0$

$$321 \div 2 = 160 \cdots 1$$
 (the digit)
 $160 \div 2 = 80 \cdots 0$
 $80 \div 2 = 40 \cdots 0$
 $40 \div 2 = 20 \cdots 0$
 $20 \div 2 = 10 \cdots 0$
 $10 \div 2 = 5 \cdots 0$
 $5 \div 2 = 2 \cdots 1$
 $2 \div 2 = 1 \cdots 0$
 $1 \div 2 = \cdots 0$ (the digit)

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$
 $40 \div 2 = 20 \cdot \cdot \cdot \cdot \cdot 0$
 $20 \div 2 = 10 \cdot \cdot \cdot \cdot \cdot 0$
 $10 \div 2 = 5 \cdot \cdot \cdot \cdot \cdot 0$
 $5 \div 2 = 2 \cdot \cdot \cdot \cdot \cdot 1$
 $2 \div 2 = 1 \cdot \cdot \cdot \cdot \cdot 0$
 $1 \div 2 = 0 \cdot \cdot \cdot \cdot \cdot 1$ (the digit)

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the right most digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$
 $40 \div 2 = 20 \cdot \cdot \cdot \cdot \cdot 0$
 $20 \div 2 = 10 \cdot \cdot \cdot \cdot \cdot 0$
 $10 \div 2 = 5 \cdot \cdot \cdot \cdot \cdot 0$
 $5 \div 2 = 2 \cdot \cdot \cdot \cdot \cdot 1$
 $2 \div 2 = 1 \cdot \cdot \cdot \cdot \cdot 0$
 $1 \div 2 = 0 \cdot \cdot \cdot \cdot \cdot 1$ (the digit)

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the right most digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$
 $40 \div 2 = 20 \cdot \cdot \cdot \cdot \cdot 0$
 $20 \div 2 = 10 \cdot \cdot \cdot \cdot \cdot 0$
 $10 \div 2 = 5 \cdot \cdot \cdot \cdot \cdot 0$
 $5 \div 2 = 2 \cdot \cdot \cdot \cdot \cdot 1$
 $2 \div 2 = 1 \cdot \cdot \cdot \cdot \cdot 0$
 $1 \div 2 = 0 \cdot \cdot \cdot \cdot \cdot 1$ (the left most digit)

$$321 \div 2 = 160 \cdot \cdot \cdot \cdot \cdot 1$$
 (the right most digit)
 $160 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 0$
 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$
 $40 \div 2 = 20 \cdot \cdot \cdot \cdot \cdot 0$
 $20 \div 2 = 10 \cdot \cdot \cdot \cdot \cdot 0$
 $10 \div 2 = 5 \cdot \cdot \cdot \cdot \cdot 0$
 $5 \div 2 = 2 \cdot \cdot \cdot \cdot \cdot 1$
 $2 \div 2 = 1 \cdot \cdot \cdot \cdot \cdot 0$
 $1 \div 2 = 0 \cdot \cdot \cdot \cdot \cdot 1$ (the left most digit)

Answer. $(101000001)_2$.

$$= 2^{0} \times \underline{1} \text{ (the right most digit)}$$

$$= 2^{1} \times 1$$

$$= 2^{2} \times 1$$

$$= 2^{3} \times 1$$

$$= 24 \times 1$$
$$= 25 \times 0$$

$$= 2^6 \times 1$$

$$= 2^7 \times 0$$

$$= 2^8 \times \underline{1}$$
 (the left most digit)

$$1 = 2^{0} \times 1 \text{ (the right most digit)}$$

$$= 2^{1} \times 1$$

$$= 2^{2} \times 1$$

$$= 2^{3} \times 1$$

$$= 2^{4} \times 1$$

$$= 2^{5} \times 0$$

$$= 2^{6} \times 1$$

$$= 2^{7} \times 0$$

$$= 2^{8} \times 1 \text{ (the left most digit)}$$

Sum

$$1 = 2^{0} \times 1$$
 (the right most digit)
 $2 = 2^{1} \times 1$
 $= 2^{2} \times 1$
 $= 2^{3} \times 1$
 $= 2^{4} \times 1$
 $= 2^{5} \times 0$
 $= 2^{6} \times 1$
 $= 2^{7} \times 0$
 $= 2^{8} \times 1$ (the left most digit)

$$1 = 2^{0} \times 1$$
 (the right most digit)
 $2 = 2^{1} \times 1$
 $4 = 2^{2} \times 1$
 $= 2^{3} \times 1$
 $= 2^{4} \times 1$
 $= 2^{5} \times 0$
 $= 2^{6} \times 1$
 $= 2^{7} \times 0$
 $= 2^{8} \times 1$ (the left most digit)

$$1 = 2^{0} \times 1$$
 (the right most digit)
 $2 = 2^{1} \times 1$
 $4 = 2^{2} \times 1$
 $8 = 2^{3} \times 1$
 $= 2^{4} \times 1$
 $= 2^{5} \times 0$
 $= 2^{6} \times 1$
 $= 2^{7} \times 0$
 $= 2^{8} \times 1$ (the left most digit)

$$1 = 2^{0} \times \underline{1}$$
 (the right most digit)
 $2 = 2^{1} \times 1$
 $4 = 2^{2} \times 1$
 $8 = 2^{3} \times 1$
 $16 = 2^{4} \times 1$
 $= 2^{5} \times 0$
 $= 2^{6} \times 1$
 $= 2^{7} \times 0$
 $= 2^{8} \times 1$ (the left most digit)

$$1 = 2^{0} \times 1$$
 (the right most digit)
 $2 = 2^{1} \times 1$
 $4 = 2^{2} \times 1$
 $8 = 2^{3} \times 1$
 $16 = 2^{4} \times 1$
 $0 = 2^{5} \times 0$
 $= 2^{6} \times 1$
 $= 2^{7} \times 0$
 $= 2^{8} \times 1$ (the left most digit)

$$1 = 2^{0} \times \underline{1}$$
 (the right most digit)
 $2 = 2^{1} \times 1$
 $4 = 2^{2} \times 1$
 $8 = 2^{3} \times 1$
 $16 = 2^{4} \times 1$
 $0 = 2^{5} \times 0$
 $64 = 2^{6} \times 1$
 $= 2^{7} \times 0$
 $= 2^{8} \times 1$ (the left most digit)

$$1 = 2^{0} \times \underline{1}$$
 (the right most digit)
 $2 = 2^{1} \times 1$
 $4 = 2^{2} \times 1$
 $8 = 2^{3} \times 1$
 $16 = 2^{4} \times 1$
 $0 = 2^{5} \times 0$
 $64 = 2^{6} \times 1$
 $0 = 2^{7} \times 0$
 $= 2^{8} \times 1$ (the left most digit)

$$1 = 2^{0} \times \underline{1} \text{ (the right most digit)}$$

$$2 = 2^{1} \times 1$$

$$4 = 2^{2} \times 1$$

$$8 = 2^{3} \times 1$$

$$16 = 2^{4} \times 1$$

$$0 = 2^{5} \times 0$$

$$0 = 2^7 \times 0$$

$$256 = 2^8 \times 1 \text{ (the left most digit)}$$

$$256 = 2^8 \times \underline{1} \text{ (the left most digit)}$$
Sum =

 $64 = 2^6 \times 1$

 $1 = 2^0 \times 1$ (the right most digit)

 $2 = 2^1 \times 1$ $4 = 2^2 \times 1$

$$8 = 2^{3} \times 1$$

$$16 = 2^{4} \times 1$$

$$0 = 2^{5} \times 0$$

$$64 = 2^{6} \times 1$$

$$0 = 2^{7} \times 0$$

$$256 = 2^{8} \times 1 \text{ (the left most digit)}$$

$$Sum = 1 + 2 + 4 + 8 + 16 + 0 + 64 + 0 + 256 = 1$$

$$1 = 2^{0} \times \underline{1} \text{ (the right most digit)}$$

$$2 = 2^{1} \times 1$$

$$4 = 2^{2} \times 1$$

$$8 = 2^{3} \times 1$$

$$16 = 2^{4} \times 1$$

$$0 = 2^{5} \times 0$$

$$64 = 2^{6} \times 1$$

$$0 = 2^{7} \times 0$$

$$256 = 2^{8} \times \underline{1} \text{ (the left most digit)}$$
Sum = 1 + 2 + 4 + 8 + 16 + 0 + 64 + 0 + 256 = 351

$$1 = 2^{0} \times \underline{1} \text{ (the right most digit)}$$

$$2 = 2^{1} \times 1$$

$$4 = 2^{2} \times 1$$

$$8 = 2^{3} \times 1$$

$$16 = 2^{4} \times 1$$

$$0 = 2^{5} \times 0$$

$$64 = 2^{6} \times 1$$

$$0 = 2^{7} \times 0$$

$$256 = 2^{8} \times \underline{1} \text{ (the left most digit)}$$
Sum = $1 + 2 + 4 + 8 + 16 + 0 + 64 + 0 + 256 = 351$

Answer. 351.

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$175627 \div 16 = \cdots$$
 (the digit)
 $\div 16 = \cdots$
 $\div 16 = \cdots$
 $\div 16 = \cdots$
 $\div 16 = \cdots$
(the digit)

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$175627 \div 16 = 10976 \cdots \qquad \text{(the digit)}$$

$$10976 \div 16 = \cdots \cdots$$

$$\div 16 = \cdots \cdots$$

$$\div 16 = \cdots \cdots$$

$$\div 16 = \cdots \cdots \qquad \text{(the digit)}$$

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$175627 \div 16 = 10976 \cdot \dots \cdot 11 \text{ (the digit)}$$

$$10976 \div 16 = \dots \cdot \dots \cdot \\
 \div 16 = \dots \cdot \dots \cdot \\
 \div 16 = \dots \cdot \dots \cdot \\
 \div 16 = \dots \cdot \dots \cdot \text{ (the digit)}$$

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$175627 \div 16 = 10976 \cdots 11$$
 (the digit) $10976 \div 16 = 686 \cdots$ $686 \div 16 = \cdots$ $\div 16 = \cdots$ $\div 16 = \cdots$ (the digit)

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$175627 \div 16 = 10976 \cdots 11$$
 (the digit) $10976 \div 16 = 686 \cdots 0$ $686 \div 16 = \cdots$ $\div 16 = \cdots$ $\div 16 = \cdots$ (the digit)

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$\begin{array}{rclrcl} 175627 \div 16 & = & 10976 \cdot \cdot \cdot \cdot \cdot 11 \text{ (the } & \text{digit)} \\ 10976 \div 16 & = & 686 \cdot \cdot \cdot \cdot \cdot \cdot 0 \\ 686 \div 16 & = & 42 \cdot \cdot \cdot \cdot \cdot \\ 42 \div 16 & = & \cdot \cdot \cdot \cdot \cdot \\ & \div 16 & = & \cdot \cdot \cdot \cdot \cdot \text{ (the } & \text{digit)} \end{array}$$

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$175627 \div 16 = 10976 \cdots 11$$
 (the digit)
 $10976 \div 16 = 686 \cdots 0$
 $686 \div 16 = 42 \cdots 14$
 $42 \div 16 = \cdots$
 $\div 16 = \cdots$ (the digit)

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$175627 \div 16 = 10976 \cdots 11$$
 (the digit) $10976 \div 16 = 686 \cdots 0$ $686 \div 16 = 42 \cdots 14$ $42 \div 16 = 2 \cdots 2 \div 16 = \cdots$ (the digit)

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$\begin{array}{rclrcl} 175627 \div 16 & = & 10976 \cdot \cdot \cdot \cdot \cdot 11 \text{ (the } & \text{digit)} \\ 10976 \div 16 & = & 686 \cdot \cdot \cdot \cdot \cdot \cdot 0 \\ 686 \div 16 & = & 42 \cdot \cdot \cdot \cdot \cdot 14 \\ 42 \div 16 & = & 2 \cdot \cdot \cdot \cdot \cdot \cdot 10 \\ 2 \div 16 & = & \cdot \cdot \cdot \cdot \cdot \text{ (the } & \text{digit)} \end{array}$$

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$\begin{array}{rclrcl} 175627 \div 16 & = & 10976 \cdot \cdot \cdot \cdot \cdot 11 \text{ (the } & \text{digit)} \\ 10976 \div 16 & = & 686 \cdot \cdot \cdot \cdot \cdot \cdot 0 \\ 686 \div 16 & = & 42 \cdot \cdot \cdot \cdot \cdot 14 \\ 42 \div 16 & = & 2 \cdot \cdot \cdot \cdot \cdot \cdot 10 \\ 2 \div 16 & = & 0 \cdot \cdot \cdot \cdot \cdot \cdot \text{ (the } & \text{digit)} \end{array}$$

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$\begin{array}{rclrcl} 175627 \div 16 & = & 10976 \cdot \cdot \cdot \cdot \cdot 11 \text{ (the } & \text{digit)} \\ 10976 \div 16 & = & 686 \cdot \cdot \cdot \cdot \cdot \cdot 0 \\ 686 \div 16 & = & 42 \cdot \cdot \cdot \cdot \cdot 14 \\ 42 \div 16 & = & 2 \cdot \cdot \cdot \cdot \cdot \cdot 10 \\ 2 \div 16 & = & 0 \cdot \cdot \cdot \cdot \cdot \cdot 2 \text{ (the } & \text{digit)} \end{array}$$

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$\begin{array}{rcl} 175627 \div 16 & = & 10976 \cdot \dots \cdot 11 \text{ (the right most digit)} \\ 10976 \div 16 & = & 686 \cdot \dots \cdot \cdot 0 \\ 686 \div 16 & = & 42 \cdot \dots \cdot 14 \\ 42 \div 16 & = & 2 \cdot \dots \cdot 10 \\ 2 \div 16 & = & 0 \cdot \dots \cdot 2 \text{ (the digit)} \end{array}$$

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$175627 \div 16 = 10976 \cdots 11$$
 (the right most digit)
 $10976 \div 16 = 686 \cdots 0$
 $686 \div 16 = 42 \cdots 14$
 $42 \div 16 = 2 \cdots 10$
 $2 \div 16 = 0 \cdots 2$ (the left most digit)

Recall

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

```
\begin{array}{rcl} 175627 \div 16 & = & 10976 \cdot \dots \cdot 11 \text{ (the right most digit)} \\ 10976 \div 16 & = & 686 \cdot \dots \cdot 0 \\ 686 \div 16 & = & 42 \cdot \dots \cdot 14 \\ 42 \div 16 & = & 2 \cdot \dots \cdot 10 \\ 2 \div 16 & = & 0 \cdot \dots \cdot 2 \text{ (the left most digit)} \end{array}
```

Base 16 representation. $(2(10)(14)0(11))_{16}$.

Recall

- Hexadecimal expansion: Base 16.
- \triangle Use A for 10. Use B for 11. Use C for 12. Use D for 13. Use E for 14. Use F for 15.

$$\begin{array}{rcl} 175627 \div 16 & = & 10976 \cdot \cdot \cdot \cdot \cdot \cdot 11 \text{ (the right most digit)} \\ 10976 \div 16 & = & 686 \cdot \cdot \cdot \cdot \cdot \cdot 0 \\ 686 \div 16 & = & 42 \cdot \cdot \cdot \cdot \cdot 14 \\ 42 \div 16 & = & 2 \cdot \cdot \cdot \cdot \cdot \cdot 10 \\ 2 \div 16 & = & 0 \cdot \cdot \cdot \cdot \cdot \cdot 2 \text{ (the left most digit)} \end{array}$$

Base 16 representation. $(2(10)(14)0(11))_{16}$. Answer. Hexadecimal representation $(2AE0B)_{16}$.

- 6. Find 11^{644} **Mod** 645.
- (0) Find b^n **Mod** m
- b = , n = , m = .
- - $644 \div 2 = \cdots$ (the $\div 2 = \cdots$
 - $\div 2 = \cdots$
 - $\div 2 = \cdots$
 - $\div 2 = \cdots$
 - $\begin{array}{rcl} \div 2 & = & \cdots \\ \div 2 & = & \cdots \end{array}$
 - $\begin{array}{ccc}
 \vdots & 2 & = & \cdots \\
 \vdots & 2 & = & \end{array}$
 - $\div 2 = \cdots$
 - $\div 2 = \cdots$ (the digit)

- 6. Find 11^{644} **Mod** 645.
- (0) Find b^n **Mod** m
- $\dot{b}=11$, n= , m= .
- (1) Compute the binary expansion of n = 1.
 - $644 \div 2 = \cdots$ (the
 - $\begin{array}{rcl}
 \div 2 & = & \cdots \\
 \div 2 & = & \cdots
 \end{array}$

- $\div 2 = \cdots$
- $\begin{array}{ccc}
 \vdots & 2 & & \\
 \vdots & 2 & & \\
 \end{array}$
- $\div 2 = \cdots$
- $\begin{array}{rcl}
 \div 2 & = & \cdots \\
 \div 2 & = & \cdots
 \end{array}$
- $\div 2 = \cdots$
- $\div 2 = \cdots$ (the

- 6. Find 11^{644} **Mod** 645.
- (0) Find b^n **Mod** m
- b = 11, n = 644, m = ...(1) Compute the binary expansion of n = 644.
 - $644 \div 2 = \cdots$ (the $\div 2 = \cdots$
 - $\div 2 = \cdots$
 - $\div 2 = \cdots$ $\div 2 = \cdots$
 - $\div 2 = \cdots$
 - $\div 2 = \cdots$ $\div 2 = \cdots$
 - $\div 2 = \cdots$

 - $\div 2 = \cdots$ (the digit)

- 6. Find 11^{644} **Mod** 645.
- (0) Find b^n **Mod** m
- b = 11, n = 644, m = 645.
- (1) Compute the binary expansion of n = 644.
 - $644 \div 2 = \cdots$ (the $\div 2 = \cdots$
 - $\div 2 = \cdots$
 - $\begin{array}{rcl} \div 2 & = & & \cdots \\ \div 2 & = & & \cdots \end{array}$
 - $\div 2 = \cdots \cdots$
 - $\div 2 = \cdots$
 - $\begin{array}{rcl}
 \div 2 & = & \cdots \\
 \div 2 & = & \cdots \\
 \end{array}$
 - =
 - $\div 2 = \cdots$ (the digit)

- 6. Find 11^{644} **Mod** 645.
- (0) Find $b^n \operatorname{Mod} m$
- b = 11, n = 644, m = 645.
- (1) Compute the binary expansion of n = 644.
 - $644 \div 2 = 322 \cdot \cdots$ (the $322 \div 2 = \cdots$
 - $\div 2 = \cdots$

- $\div 2 = \cdots$
- $\div 2 = \cdots$
- $\begin{array}{rcl}
 \div 2 & = & \cdots \\
 \div 2 & = & \cdots
 \end{array}$
- $\begin{array}{rcl}
 \div 2 & = & \cdots \\
 \div 2 & = & \cdots
 \end{array}$
 - 2 = ·····
 - $\div 2 = \cdots$ (the

- 6. Find 11^{644} **Mod** 645.
- (0) Find b^n **Mod** m
- b = 11, n = 644, m = 645.
- (1) Compute the binary expansion of n = 644.
 - $644 \div 2 = 322 \cdot \cdot \cdot \cdot \cdot 0$ (the $322 \div 2 = \cdots$
 - $\div 2 = \cdots$

- $\div 2 = \cdots$
- $\div 2 = \cdots$
- $\div 2 = \cdots$ $\div 2 = \cdots$
- $\div 2 = \cdots$
- $\div 2 = \cdots$
- $\div 2 = \cdots$ (the

- 6. Find 11⁶⁴⁴ **Mod** 645.
- (0) Find b^n **Mod** m
- b = 11, n = 644, m = 645.
- (1) Compute the binary expansion of n = 644.
 - $644 \div 2 = 322 \cdot \cdot \cdot \cdot \cdot 0$ (the
 - $322 \div 2 = 161 \cdot \cdots$ $161 \div 2 = \cdots$
 - $\div 2 = \cdots$

 - $\begin{array}{rcl} \div 2 & = & \cdots \\ \div 2 & = & \cdots \end{array}$
 - - $\div 2 = \cdots$
 - $\div 2 = \cdots$ (the

- 6. Find 11⁶⁴⁴ **Mod** 645.
- (0) Find b^n **Mod** m b = 11, n = 644, m = 645.
- (1) Compute the binary expansion of n = 644.
 - $644 \div 2 = 322 \cdots 0$ (the $322 \div 2 = 161 \cdots 0$
 - $161 \div 2 \quad = \quad \cdots \cdots$
 - $\div 2 = \cdots$
 - $\div 2 = \cdots$
 - $\begin{array}{rcl}
 \div 2 & = & \cdots \\
 \div 2 & = & \cdots
 \end{array}$
 - $\begin{array}{rcl}
 \div 2 & = & \cdots \\
 \div 2 & = & \cdots
 \end{array}$
 - $\div 2 = \cdots$
 - $\div 2 = \cdots$ (the digit)

- 6. Find 11^{644} **Mod** 645.
- (0) Find b^n **Mod** m
- b = 11, n = 644, m = 645. (1) Compute the binary expansion of n = 644.
 - $644 \div 2 = 322 \cdots 0$ (the $322 \div 2 = 161 \cdots 0$
 - $161 \div 2 = 80 \cdot \cdots$
 - $80 \div 2 = \cdots$
 - $\div 2 = \cdots \cdots$
 - $\begin{array}{rcl} \div 2 & = & \cdots \\ \div 2 & = & \cdots \end{array}$
 - $\begin{array}{cccc}
 \vdots & 2 & & & \\
 \vdots & 2 & & & \\
 \vdots & 2 & & & \\
 \end{array}$
 - $\div 2 = \cdots$
 - $\div 2 = \cdots \cdots$ (the digit)

- 6. Find 11⁶⁴⁴ **Mod** 645.
- (0) Find b^n **Mod** m
- b = 11, n = 644, m = 645. (1) Compute the binary expansion of n = 644.
 - $644 \div 2 = 322 \cdot \cdot \cdot \cdot \cdot 0$ (the
 - $322 \div 2 = 161 \cdot \dots \cdot 0$ $161 \div 2 = 80 \cdot \dots \cdot 1$

- $80 \div 2 = \cdots$
 - $\div 2 = \cdots$ $\div 2 = \cdots$
 - $\div 2 = \cdots$
 - $\begin{array}{rcl}
 \dot{\div} 2 & = & \cdots \\
 \dot{\div} 2 & \equiv & \cdots \\
 \end{array}$
 - $\begin{array}{rcl}
 \div 2 & = & \cdots \\
 \div 2 & = & \cdots
 \end{array}$
 - $\div 2 = \cdots$ (the

- 6. Find 11^{644} **Mod** 645.
- (0) Find b^n **Mod** m b = 11, n = 644, m = 645.
- 0 = 11, n = 044, m = 045. (1) Compute the binary expansion of n = 644.
 - $644 \div 2 = 322 \cdots 0$ (the $322 \div 2 = 161 \cdots 0$
 - $161 \div 2 = 80 \cdot \dots \cdot 1$
 - $80 \div 2 = 40 \cdots$
 - $40 \div 2 = 40 \cdots$
 - $\begin{array}{rcl}
 \div 2 & = & \cdots \\
 \div 2 & = & \cdots
 \end{array}$

 - $\div 2 = \cdots$
 - $\div 2 = \cdots$ (the digit)

- 6. Find 11^{644} **Mod** 645.
- (0) Find b^n **Mod** m b = 11, n = 644, m = 645.
- 0 11, n = 044, m = 045. (1) Compute the binary expansion of n = 644.
 - $644 \div 2 = 322 \cdots 0$ (the $322 \div 2 = 161 \cdots 0$
 - $161 \div 2 = 80 \cdot \dots \cdot 1$
 - $80 \div 2 = 40 \cdots 0$
 - $40 \div 2 = \cdots$
 - $\begin{array}{rcl}
 \vdots & 2 & = & \cdots \\
 \vdots & 2 & = & \cdots \\
 \end{array}$
 - $\begin{array}{rcl}
 \div 2 & = & \cdots \\
 \div 2 & = & \cdots
 \end{array}$
 - $\div 2 = \cdots$
 - $\div 2 = \cdots$ (the digit)

- 6. Find 11^{644} **Mod** 645. (0) Find b^n **Mod** m
- (0) Find b^{*} **NIOG** m b = 11, n = 644, m = 645.
- b = 11, n = 644, m = 645. (1) Compute the binary expansion of n = 644.
 - $644 \div 2 = 322 \cdots 0$ (the $322 \div 2 = 161 \cdots 0$
 - $161 \div 2 = 80 \cdot \dots \cdot 1$
 - $80 \div 2 = 40 \cdots 0$
 - $40 \div 2 = 20 \cdots$
 - $20 \div 2 = \cdots$ $\div 2 = \cdots$
 - $\begin{array}{cccc}
 \vdots & 2 & & \\
 \vdots & 2 & & \\
 \vdots & 2 & & \\
 \end{array}$
 - $\div 2 = \cdots$
 - $\div 2 = \cdots$ (the digit)

- 6. Find 11^{644} **Mod** 645. (0) Find b^n **Mod** m
- (0) Find b^n **Mod** m b = 11, n = 644, m = 645.
- 0 = 11, n = 044, m = 045. (1) Compute the binary expansion of n = 644.
 - $644 \div 2 = 322 \cdots 0$ (the $322 \div 2 = 161 \cdots 0$
 - $161 \div 2 = 80 \cdots 1$
 - $80 \div 2 = 40 \cdots 0$
 - $40 \div 2 = 20 \cdots 0$
 - $20 \div 2 = \cdots$ $\div 2 = \cdots$
 - $\begin{array}{cccc}
 \vdots & 2 & = & \cdots \\
 \vdots & 2 & = & \cdots \\
 \end{array}$
 - $\div 2 = \cdots$
 - $\div 2 = \cdots$ (the digit)

```
6. Find 11^{644} Mod 645. (0) Find b^n Mod m
```

b = 11, n = 644, m = 645. (1) Compute the binary expansion of n = 644.

$$644 \div 2 = 322 \cdots 0$$
 (the $322 \div 2 = 161 \cdots 0$
 $161 \div 2 = 80 \cdots 1$

 $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$ $40 \div 2 = 20 \cdot \cdot \cdot \cdot \cdot \cdot 0$

$$20 \div 2 = 10 \cdot \dots \cdot 10 \div 2 = \dots \cdot \dots$$

 $\begin{array}{cccc}
\vdots & 2 & - & \\
\vdots & 2 & = & \cdots \\
\vdots & 2 & = & \cdots
\end{array}$

$$\div 2 = \cdots$$
 (the

digit)

```
6. Find 11<sup>644</sup> Mod 645.
(0) Find b^n Mod m
```

(1) Compute the binary expansion of n = 644.

 $644 \div 2 = 322 \cdot \cdot \cdot \cdot \cdot 0$ (the

 $322 \div 2 = 161 \cdot \cdots \cdot 0$

 $161 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 1$

 $80 \div 2 = 40 \cdots 0$

 $40 \div 2 = 20 \cdots 0$

 $20 \div 2 = 10 \cdot \cdot \cdot \cdot \cdot 0$

 $10 \div 2 = \cdots$

 $\div 2 = \cdots$

 $\div 2 = \cdots$

 $\div 2 = \cdots$ (the

digit)

```
6. Find 11<sup>644</sup> Mod 645.
(0) Find b^n Mod m
```

 $40 \div 2 = 20 \cdots 0$ $20 \div 2 = 10 \cdots 0$ $10 \div 2 = 5 \cdots$ $5 \div 2 = \cdots$ $\div 2 = \cdots$

 $\div 2 = \cdots$ (the

 $322 \div 2 = 161 \cdot \cdots \cdot 0$

 $161 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 1$

digit)

digit)

 $80 \div 2 = 40 \cdots 0$

 $644 \div 2 = 322 \cdot \cdot \cdot \cdot \cdot 0$ (the

(1) Compute the binary expansion of n = 644.

b = 11, n = 644, m = 645.

```
6. Find 11<sup>644</sup> Mod 645.
(0) Find b^n Mod m
```

(1) Compute the binary expansion of n = 644.

$$644 \div 2 = 322 \cdots 0$$
 (the $322 \div 2 = 161 \cdots 0$
 $161 \div 2 = 80 \cdots 1$

$$80 \div 2 = 40 \cdots 0$$

$$40 \div 2 = 20 \cdot \dots \cdot 0$$

$$20 \div 2 = 10 \cdot \cdots \cdot 0$$

$$10 \div 2 = 5 \cdot \cdots \cdot 0$$

$$5 \div 2 = \cdots$$

$$\begin{array}{rcl} \div 2 & = & \cdots \\ \div 2 & = & \cdots \\ \end{array}$$

 $\div 2 = \cdots$ (the digit)

```
6. Find 11<sup>644</sup> Mod 645.
(0) Find b^n Mod m
```

(1) Compute the binary expansion of n = 644.

$$644 \div 2 = 322 \cdots 0$$
 (the $322 \div 2 = 161 \cdots 0$
 $161 \div 2 = 80 \cdots 1$

$$80 \div 2 = 40 \cdot \dots \cdot 0$$

$$40 \div 2 = 20 \cdot \dots \cdot 0$$
$$20 \div 2 = 10 \cdot \dots \cdot 0$$

$$10 \div 2 = 5 \cdots 0$$

$$5 \div 2 = 2 \cdots$$

$$2 \div 2 = \cdots$$

$$\div 2 = \cdots$$
 (the digit)

```
6. Find 11<sup>644</sup> Mod 645.
(0) Find b^n Mod m
```

(1) Compute the binary expansion of n = 644.

$$644 \div 2 = 322 \cdots 0$$
 (the $322 \div 2 = 161 \cdots 0$
 $161 \div 2 = 80 \cdots 1$

$$80 \div 2 = 40 \cdots 0$$

$$40 \div 2 = 20 \cdots 0$$

$$20 \div 2 = 10 \cdot \dots \cdot 0$$

$$10 \div 2 = 5 \cdot \dots \cdot 0$$

$$5 \div 2 = 2 \cdot \dots \cdot 1$$
$$2 \div 2 = \dots \cdot \dots$$

$$\div 2 = \cdots$$
 (the digit)

```
6. Find 11^{644} Mod 645. (0) Find b^n Mod m b = 11, n = 644, m = 645.
```

b = 11, n = 644, m = 645. (1) Compute the binary expansion of n = 644.

$$644 \div 2 = 322 \cdot \dots \cdot 0$$
 (the $322 \div 2 = 161 \cdot \dots \cdot 0$)
 $161 \div 2 = 80 \cdot \dots \cdot 1$
 $80 \div 2 = 40 \cdot \dots \cdot 0$
 $40 \div 2 = 20 \cdot \dots \cdot 0$
 $20 \div 2 = 10 \cdot \dots \cdot 0$
 $10 \div 2 = 5 \cdot \dots \cdot 0$
 $5 \div 2 = 2 \cdot \dots \cdot 1$

 $2 \div 2 = 1 \cdots$

 $1 \div 2 = \cdots$ (the

digit)

```
6. Find 11^{644} Mod 645. (0) Find b^n Mod m b = 11, n = 644, m = 645.
```

b = 11, n = 644, m = 645. (1) Compute the binary expansion of n = 644.

digit)

digit)

$$644 \div 2 = 322 \cdots 0$$
 (the $322 \div 2 = 161 \cdots 0$
 $161 \div 2 = 80 \cdots 1$
 $80 \div 2 = 40 \cdots 0$
 $40 \div 2 = 20 \cdots 0$
 $20 \div 2 = 10 \cdots 0$
 $10 \div 2 = 5 \cdots 0$
 $5 \div 2 = 2 \cdots 1$

 $2 \div 2 = 1 \cdots 0$

 $1 \div 2 = \cdots$ (the

```
6. Find 11^{644} Mod 645. (0) Find b^n Mod m b = 11, n = 644, m = 645.
```

644, m = 645.

digit)

digit)

(1) Compute the binary expansion of
$$n = 644$$
.
$$644 \div 2 = 322 \cdot \dots \cdot 0 \text{ (the } \\ 322 \div 2 = 161 \cdot \dots \cdot 0 \\ 161 \div 2 = 80 \cdot \dots \cdot 1 \\ 80 \div 2 = 40 \cdot \dots \cdot 0 \\ 40 \div 2 = 20 \cdot \dots \cdot 0 \\ 20 \div 2 = 10 \cdot \dots \cdot 0$$

 $10 \div 2 = 5 \cdot \dots \cdot 0$ $5 \div 2 = 2 \cdot \dots \cdot 1$ $2 \div 2 = 1 \cdot \dots \cdot 0$

 $1 \div 2 = 0 \cdots$ (the

```
6. Find 11^{644} Mod 645. (0) Find b^n Mod m b = 11, n = 644, m = 645.
```

(1) Compute the binary expansion of n = 644.

digit)

digit)

$$644 \div 2 = 322 \cdots 0$$
 (the $322 \div 2 = 161 \cdots 0$
 $161 \div 2 = 80 \cdots 1$
 $80 \div 2 = 40 \cdots 0$
 $40 \div 2 = 20 \cdots 0$
 $20 \div 2 = 10 \cdots 0$
 $10 \div 2 = 5 \cdots 0$

 $5 \div 2 = 2 \cdot \dots \cdot 1$ $2 \div 2 = 1 \cdot \dots \cdot 0$

 $1 \div 2 = 0 \cdots 1$ (the

```
6. Find 11^{644} Mod 645. (0) Find b^n Mod m
```

b = 11, n = 644, m = 645. (1) Compute the binary expansion of n = 644.

$$644 \div 2 = 322 \cdot \cdot \cdot \cdot \cdot 0$$
 (the right most digit)
 $322 \div 2 = 161 \cdot \cdot \cdot \cdot \cdot 0$
 $161 \div 2 = 80 \cdot \cdot \cdot \cdot \cdot 1$

$$80 \div 2 = 40 \cdots 0$$

$$40 \div 2 = 20 \cdots 0$$

$$20 \div 2 = 10 \cdot \cdot \cdot \cdot \cdot 0$$

$$10 \div 2 = 5 \cdot \cdot \cdot \cdot \cdot 0$$

$$5 \div 2 = 2 \cdot \cdot \cdot \cdot \cdot 1$$

$$2 \div 2 = 1 \cdots 0$$

 $1 \div 2 = 0 \cdots 1$ (the

- 6. Find 11⁶⁴⁴ **Mod** 645. (0) Find b^n **Mod** m
- b = 11, n = 644, m = 645.(1) Compute the binary expansion of n = 644.
 - $644 \div 2 = 322 \cdots 0$ (the right most digit)
 - $322 \div 2 = 161 \cdot \cdots \cdot 0$ $161 \div 2 = 80 \cdots 1$
 - $80 \div 2 = 40 \cdots 0$
 - $40 \div 2 = 20 \cdots 0$
 - $20 \div 2 = 10 \cdot \cdot \cdot \cdot \cdot 0$
 - $10 \div 2 = 5 \cdots 0$
 - $5 \div 2 = 2 \cdot \cdot \cdot \cdot \cdot 1$ $2 \div 2 = 1 \cdots 0$
 - $1 \div 2 = 0 \cdots 1$ (the left most digit)

- 6. Find 11^{644} **Mod** 645.
- (0) Find b^n **Mod** m
- b = 11, n = 644, m = 645. (1) Compute the binary expansion of n = 644.
 - $644 \div 2 = 322 \cdots 0$ (the right most digit)
 - $322 \div 2 = 161 \cdot \dots \cdot 0$ $161 \div 2 = 80 \cdot \dots \cdot 1$
 - $80 \div 2 = 40 \cdot \cdot \cdot \cdot \cdot 0$
 - $40 \div 2 = 20 \cdots 0$
 - $20 \div 2 = 10 \cdots 0$
 - $10 \div 2 = 5 \cdots 0$ $5 \div 2 = 2 \cdots 1$
 - $2 \div 2 = 1 \cdots \cdots 0$
 - $1 \div 2 = 0 \cdot \cdots \cdot 1$ (the left most digit)

Binary Expansion $(1010000100)_2$.

Find b^n **Mod** m: b = 11, n = 644, m = 645.

 $644 = (1010000100)_2.$

1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0

(2)

$$r_0 = b \text{ Mod } m = 11 \text{ Mod } 645 = 11$$
 $r_1 = r_0^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$
 $r_2 = r_1^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$
 $r_3 = r_2^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$
 $r_4 = r_3^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$
 $r_5 = r_4^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$
 $r_6 = r_5^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$
 $r_7 = r_6^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$
 $r_8 = r_7^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$
 $r_9 = r_8^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$
 $r_9 = r_8^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$
 $r_9 = r_8^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$
 $r_9 = r_8^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$
 $r_9 = r_8^2 \text{ Mod } m = 12 \text{ Mod } 645 = 12$

Find b^n **Mod** m: b = 11, n = 644, m = 645.

$044 - (1010000100)_2$.									
1	0	1	0	0	0	0	1	0	
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	C

(2)

$$r_1 = r_0^2 \mod m = 11^2 \mod 645 = 11^2 \mod 645$$

 $r_0 = b \text{ Mod } m = 11 \text{ Mod } 645 = 11$

Find b^n **Mod** m: b = 11, n = 644, m = 645.

 $644 = (1010000100)_2.$

1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0

(2)

$$r_0 = b \text{ Mod } m = 11 \text{ Mod } 645 = 11$$

 $r_1 = r_0^2 \text{ Mod } m = 11^2 \text{ Mod } 645 = 121$
 $r_2 = r_1^2 \text{ Mod } m = 121^2 \text{ Mod } 645 =$

$$r_3 = r_2^2 \text{ Mod } m = {}^2 \text{ Mod } 645 =$$

 $r_4 = r_3^2 \text{ Mod } m = {}^2 \text{ Mod } 645 =$

$$r_4 = r_3^2 \, \mathsf{Mod} \, m = \begin{tabular}{lll} & 2 \, \mathsf{Mod} \, 645 = \begin{tabular}{lll} & r_5 & = & r_4^2 \, \mathsf{Mod} \, m = \begin{tabular}{lll} & 2 \, \mathsf{Mod} \, 645 = \begin{tabular}{lll} & 2 \, \mathsf{Mo$$

 $r_9 = r_8^2 \operatorname{\mathsf{Mod}} m = {}^2 \operatorname{\mathsf{Mod}} 645 =$

Find b^n **Mod** m: b = 11, n = 644, m = 645.

1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0

$$r_0 = b \text{ Mod } m = 11 \text{ Mod } 645 = 11$$
 $r_1 = r_0^2 \text{ Mod } m = 11^2 \text{ Mod } 645 = 121$
 $r_2 = r_1^2 \text{ Mod } m = 121^2 \text{ Mod } 645 = 451$
 $r_3 = r_2^2 \text{ Mod } m = 451^2 \text{ Mod } 645 =$
 $r_4 = r_3^2 \text{ Mod } m = 2 \text{ Mod } 645 =$
 $r_5 = r_4^2 \text{ Mod } m = 2 \text{ Mod } 645 =$
 $r_6 = r_5^2 \text{ Mod } m = 2 \text{ Mod } 645 =$
 $r_7 = r_6^2 \text{ Mod } m = 2 \text{ Mod } 645 =$
 $r_8 = r_7^2 \text{ Mod } m = 2 \text{ Mod } 645 =$
 $r_9 = r_8^2 \text{ Mod } m = 2 \text{ Mod } 645 =$
 $r_9 = r_8^2 \text{ Mod } m = 2 \text{ Mod } 645 =$
 $r_9 = r_8^2 \text{ Mod } m = 2 \text{ Mod } 645 =$

Find b^n **Mod** m: b = 11, n = 644, m = 645.

1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0

$$r_0 = b \text{ Mod } m = 11 \text{ Mod } 645 = 11$$
 $r_1 = r_0^2 \text{ Mod } m = 11^2 \text{ Mod } 645 = 121$
 $r_2 = r_1^2 \text{ Mod } m = 121^2 \text{ Mod } 645 = 451$
 $r_3 = r_2^2 \text{ Mod } m = 451^2 \text{ Mod } 645 = 226$
 $r_4 = r_3^2 \text{ Mod } m = 226^2 \text{ Mod } 645 =$
 $r_5 = r_4^2 \text{ Mod } m = 2000 \text{ Mod } 645 =$
 $r_6 = r_5^2 \text{ Mod } m = 2000 \text{ Mod } 645 =$
 $r_7 = r_6^2 \text{ Mod } m = 2000 \text{ Mod } 645 =$
 $r_8 = r_7^2 \text{ Mod } m = 2000 \text{ Mod } 645 =$
 $r_9 = r_8^2 \text{ Mod } m = 2000 \text{ Mod } 645 =$
 $r_9 = r_8^2 \text{ Mod } m = 2000 \text{ Mod } 645 =$
 $r_9 = r_8^2 \text{ Mod } m = 2000 \text{ Mod } 645 =$

Find b^n **Mod** m: b = 11, n = 644, m = 645.

1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
(0)									

(2)

 $r_0 = b \text{ Mod } m = 11 \text{ Mod } 645 = 11$

Find b^n **Mod** m: b = 11, n = 644, m = 645.

1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0

$$r_0 = b \text{ Mod } m = 11 \text{ Mod } 645 = 11$$
 $r_1 = r_0^2 \text{ Mod } m = 11^2 \text{ Mod } 645 = 121$
 $r_2 = r_1^2 \text{ Mod } m = 121^2 \text{ Mod } 645 = 451$
 $r_3 = r_2^2 \text{ Mod } m = 451^2 \text{ Mod } 645 = 226$
 $r_4 = r_3^2 \text{ Mod } m = 226^2 \text{ Mod } 645 = 121$
 $r_5 = r_4^2 \text{ Mod } m = 121^2 \text{ Mod } 645 = 451$
 $r_6 = r_5^2 \text{ Mod } m = 451^2 \text{ Mod } 645 =$
 $r_7 = r_6^2 \text{ Mod } m = 2 \text{ Mod } 645 =$
 $r_8 = r_7^2 \text{ Mod } m = 2 \text{ Mod } 645 =$
 $r_9 = r_8^2 \text{ Mod } m = 2 \text{ Mod } 645 =$

Find b^n **Mod** m: b = 11, n = 644, m = 645. (1010000100)

044 =	= (10	11000	0100	12
1	0	1	0	(

	1	0	1	0	0	0	0	1	0	0
	a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
Į	<u>/^\</u>		<u> </u>							L

Find b^n Mod m: b = 11, n = 644, m = 645. $644 = (1010000100)_{0}$

044 -	- (10	11000	0100	12
1	0	1	0	(

_	•	1	٥	0	U	U	1	U	U
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
_	19								$a_9 \ a_8 \ a_7 \ a_6 \ a_5 \ a_4 \ a_3 \ a_2 \ a_1$

$$r_0 = b \text{ Mod } m = 11 \text{ Mod } 645 = 11$$
 $r_1 = r_0^2 \text{ Mod } m = 11^2 \text{ Mod } 645 = 121$
 $r_2 = r_1^2 \text{ Mod } m = 121^2 \text{ Mod } 645 = 451$
 $r_3 = r_2^2 \text{ Mod } m = 451^2 \text{ Mod } 645 = 226$
 $r_4 = r_3^2 \text{ Mod } m = 226^2 \text{ Mod } 645 = 121$
 $r_5 = r_4^2 \text{ Mod } m = 121^2 \text{ Mod } 645 = 451$
 $r_6 = r_5^2 \text{ Mod } m = 451^2 \text{ Mod } 645 = 226$
 $r_7 = r_6^2 \text{ Mod } m = 226^2 \text{ Mod } 645 = 121$
 $r_8 = r_7^2 \text{ Mod } m = 121^2 \text{ Mod } 645 =$
 $r_9 = r_8^2 \text{ Mod } m = 220^2 \text{ Mod } 645 =$

Find b^n **Mod** m: b = 11, n = 644, m = 645.

1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
<u> </u>									

(2)

$$r_1 = r_0^2 \, \operatorname{Mod} \, m = 11^2 \, \operatorname{Mod} \, 645 = 121$$
 $r_2 = r_1^2 \, \operatorname{Mod} \, m = 121^2 \, \operatorname{Mod} \, 645 = 451$
 $r_3 = r_2^2 \, \operatorname{Mod} \, m = 451^2 \, \operatorname{Mod} \, 645 = 226$
 $r_4 = r_3^2 \, \operatorname{Mod} \, m = 226^2 \, \operatorname{Mod} \, 645 = 121$
 $r_5 = r_4^2 \, \operatorname{Mod} \, m = 121^2 \, \operatorname{Mod} \, 645 = 451$
 $r_6 = r_5^2 \, \operatorname{Mod} \, m = 451^2 \, \operatorname{Mod} \, 645 = 226$
 $r_7 = r_6^2 \, \operatorname{Mod} \, m = 226^2 \, \operatorname{Mod} \, 645 = 121$
 $r_8 = r_7^2 \, \operatorname{Mod} \, m = 121^2 \, \operatorname{Mod} \, 645 = 451$
 $r_9 = r_8^2 \, \operatorname{Mod} \, m = 451^2 \, \operatorname{Mod} \, 645 =$

 $r_0 = b \text{ Mod } m = 11 \text{ Mod } 645 = 11$

Find b^n Mod m: b = 11, n = 644, m = 645.

1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
<u>/^\</u>									

$$r_0 = b \text{ Mod } m = 11 \text{ Mod } 645 = 11$$

 $r_1 = r_0^2 \text{ Mod } m = 11^2 \text{ Mod } 645 = 121$

$$r_2 = r_1^2 \text{ Mod } m = 121^2 \text{ Mod } 645 = 451$$

$$r_3 = r_2^2 \text{ Mod } m = 451^2 \text{ Mod } 645 = 226$$

 $r_4 = r_3^2 \text{ Mod } m = 226^2 \text{ Mod } 645 = 121$

$$r_5 \ = \ r_4^2 \; \mathbf{Mod} \; m = 121^2 \; \mathbf{Mod} \; 645 = 451$$

$$r_6 = r_5^2 \text{ Mod } m = 451^2 \text{ Mod } 645 = 226$$

 $r_7 = r_6^2 \text{ Mod } m = 226^2 \text{ Mod } 645 = 121$

$$r_8 = r_7^2 \text{ Mod } m = 121^2 \text{ Mod } 645 = 451$$

 $r_9 = r_8^2 \text{ Mod } m = 451^2 \text{ Mod } 645 = 226$

 $644 = (1010000100)_2.$

1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
r_9	r_8	r_7	r_6	r_5	r_4	r_3	r_2	r_1	r_0
226	451	121	226	451	121	226	451	121	11

(3)

 $11^{644} \ \mathbf{Mod} \ 645 \ = \ r_0^{a_0} r_1^{a_1} r_2^{a_2} r_3^{a_3} r_4^{a_4} r_5^{a_5} r_6^{a_6} r_7^{a_7} r_8^{a_8} r_9^{a_9} \ \mathbf{Mod} \ 645$

 $644 = (1010000100)_2.$

	(/-						
1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
r_9	r_8	r_7	r_6	r_5	r_4	r_3	r_2	r_1	r_0
226	451	121	226	451	121	226	451	121	11

$$\begin{array}{lll} 11^{644} \ \mbox{Mod} \ 645 & = & r_0^{a_0} r_1^{a_1} r_2^{a_2} r_3^{a_3} r_4^{a_4} r_5^{a_5} r_6^{a_6} r_7^{a_7} r_8^{a_8} r_9^{a_9} \ \mbox{Mod} \ 645 \\ & = & r_0^0 r_1^0 r_2^1 r_3^0 r_4^0 r_5^0 r_6^0 r_7^1 r_8^0 r_9^1 \ \mbox{Mod} \ 645 \end{array}$$

 $644 = (1010000100)_2.$

1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
r_9	r_8	r_7	r_6	r_5	r_4	r_3	r_2	r_1	r_0

$$\begin{array}{lll} 11^{644} \ \mathsf{Mod} \ 645 & = & r_0^{a_0} r_1^{a_1} r_2^{a_2} r_3^{a_3} r_4^{a_4} r_5^{a_5} r_6^{a_6} r_7^{a_7} r_8^{a_8} r_9^{a_9} \ \mathsf{Mod} \ 645 \\ & = & r_0^0 r_1^0 r_2^1 r_3^0 r_4^0 r_5^0 r_6^1 r_7^1 r_8^0 r_9^1 \ \mathsf{Mod} \ 645 \\ & = & r_2^1 r_7^1 r_9^1 \ \mathsf{Mod} \ 645 = r_2 r_7 r_9 \ \mathsf{Mod} \ 645 \end{array}$$

 $644 = (1010000100)_2.$

	(/ 4						
1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
r_9	r_8	r_7	r_6	r_5	r_4	r_3	r_2	r_1	r_0
226	451	121	226	451	121	226	451	121	11

$$\begin{array}{lll} 11^{644} \ \mbox{Mod} \ 645 & = & r_0^{a_0} r_1^{a_1} r_2^{a_2} r_3^{a_3} r_4^{a_4} r_5^{a_5} r_6^{a_6} r_7^{a_7} r_8^{a_8} r_9^{a_9} \ \mbox{Mod} \ 645 \\ & = & r_0^0 r_1^0 r_2^1 r_3^0 r_0^4 r_5^0 r_0^6 r_7^1 r_8^0 r_9^1 \ \mbox{Mod} \ 645 \\ & = & r_2^1 r_7^1 r_9^1 \ \mbox{Mod} \ 645 = r_2 r_7 r_9 \ \mbox{Mod} \ 645 \\ & = & 451 \times 121 \times 226 \ \mbox{Mod} \ 645 \end{array}$$

 $644 = (1010000100)_2.$

	(/-						
1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
r_9	r_8	r_7	r_6	r_5	r_4	r_3	r_2	r_1	r_0
226	451	121	226	451	121	226	451	121	11

$$\begin{array}{lll} 11^{644} \ \mathsf{Mod} \ 645 &=& r_0^{a_0} r_1^{a_1} r_2^{a_2} r_3^{a_3} r_4^{a_4} r_5^{a_5} r_6^{a_6} r_7^{a_7} r_8^{a_8} r_9^{a_9} \ \mathsf{Mod} \ 645 \\ &=& r_0^0 r_1^0 r_2^1 r_3^0 r_4^0 r_5^0 r_6^1 r_7^1 r_8^0 r_9^1 \ \mathsf{Mod} \ 645 \\ &=& r_2^1 r_7^1 r_9^1 \ \mathsf{Mod} \ 645 = r_2 r_7 r_9 \ \mathsf{Mod} \ 645 \\ &=& 451 \times 121 \times 226 \ \mathsf{Mod} \ 645 \\ &=& 12333046 \ \mathsf{Mod} \ 645 \end{array}$$

 $644 = (1010000100)_2.$

	`		/ =						
1	0	1	0	0	0	0	1	0	0
a_9	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
r_9	r_8	r_7	r_6	r_5	r_4	r_3	r_2	r_1	r_0
226	451	121	226	451	121	226	451	121	11

$$\begin{array}{lll} 11^{644} \ \mathsf{Mod} \ 645 &=& r_0^{a_0} r_1^{a_1} r_2^{a_2} r_3^{a_3} r_4^{a_4} r_5^{a_5} r_6^{a_6} r_7^{a_7} r_8^{a_8} r_9^{a_9} \ \mathsf{Mod} \ 645 \\ &=& r_0^0 r_1^0 r_2^1 r_0^3 r_0^4 r_0^5 r_6^0 r_7^1 r_8^0 r_9^1 \ \mathsf{Mod} \ 645 \\ &=& r_2^1 r_7^1 r_9^1 \ \mathsf{Mod} \ 645 = r_2 r_7 r_9 \ \mathsf{Mod} \ 645 \\ &=& 451 \times 121 \times 226 \ \mathsf{Mod} \ 645 \\ &=& 12333046 \ \mathsf{Mod} \ 645 \\ &=& 1 \end{array}$$

7. Find $\gcd(14039, 1529) = d$. Find s, t so that d = 14039s + 1529t.

Idea. Euclidean Algorithm.

$$14039 = \underline{1529} \times +$$

$$\underline{1529} = \times +$$

$$= \times +$$

$$=$$
 $=$
 $= 14039 \times + 1529 \times$

7. Find $\gcd(14039, 1529) = d$. Find s, t so that d = 14039s + 1529t.

Idea. Euclidean Algorithm.

$$14039 = \underline{1529} \times 9 + \underline{1529} = \times + \underline{ \times + }$$

$$=$$
 $=$
 $= 14039 \times + 1529 \times$

$$14039 = \underline{1529} \times 9 + \underline{278}$$

$$\underline{1529} = \underline{278} \times +$$

$$278 = \times +$$

$$=$$
 $=$
 $= 14039 \times + 1529 \times$

$$14039 = \underline{1529} \times 9 + \underline{278}$$

$$\underline{1529} = \underline{278} \times 5 + \\
278 = \times +$$

$$=$$
 $=$
 $= 14039 \times + 1529 \times$

$$14039 = \underline{1529} \times 9 + \underline{278}$$

$$\underline{1529} = \underline{278} \times 5 + 139$$

$$278 = 139 \times +$$

$$139 =$$
=
= $14039 \times + 1529 \times$

$$14039 = \underline{1529} \times 9 + \underline{278}$$

$$\underline{1529} = \underline{278} \times 5 + 139$$

$$278 = 139 \times 2 +$$

$$139 =$$
=
= $14039 \times + 1529 \times$

7. Find gcd(14039, 1529) = d. Find s, t so that d = 14039s + 1529t.

Idea. Euclidean Algorithm.

$$14039 = \underline{1529} \times 9 + \underline{278}$$

$$\underline{1529} = \underline{278} \times 5 + 139$$

$$278 = 139 \times 2 + 0$$

$$139 =$$
=
= $14039 \times + 1529 \times$

$$14039 = \underline{1529} \times 9 + \underline{278}$$

$$\underline{1529} = \underline{278} \times 5 + 139$$

$$278 = 139 \times 2 + 0$$

$$139 = 1529 - 278 \times 5
=
= 14039 \times + 1529 \times$$

7. Find $\gcd(14039, 1529) = d$. Find s, t so that d = 14039s + 1529t.

$$14039 = \underline{1529} \times 9 + \underline{278}$$

$$\underline{1529} = \underline{278} \times 5 + 139$$

$$278 = 139 \times 2 + 0$$

$$139 = 1529 - 278 \times 5$$

= $1529 - \times 5$
= $14039 \times + 1529 \times$

7. Find $\gcd(14039,1529)=d.$ Find s,t so that d=14039s+1529t.

Idea. Euclidean Algorithm.

$$14039 = \underline{1529} \times 9 + \underline{278}$$

$$\underline{1529} = \underline{278} \times 5 + 139$$

$$278 = 139 \times 2 + 0$$

$$139 = 1529 - 278 \times 5$$

$$= 1529 - (14039 - 1529 \times 9) \times 5$$

$$= 14039 \times + 1529 \times$$

7. Find $\gcd(14039,1529)=d$. Find s,t so that d=14039s+1529t.

Idea. Euclidean Algorithm.

$$14039 = \underline{1529} \times 9 + \underline{278}$$

$$\underline{1529} = \underline{278} \times 5 + 139$$

$$278 = 139 \times 2 + 0$$

$$139 = 1529 - 278 \times 5$$

$$= 1529 - (14039 - 1529 \times 9) \times 5$$

$$= 14039 \times (-5) + 1529 \times$$

7. Find $\gcd(14039,1529)=d$. Find s,t so that d=14039s+1529t.

Idea. Euclidean Algorithm.

$$14039 = \underline{1529} \times 9 + \underline{278}
\underline{1529} = \underline{278} \times 5 + 139
\underline{278} = 139 \times 2 + 0$$

$$139 = 1529 - 278 \times 5$$

$$= 1529 - (14039 - 1529 \times 9) \times 5$$

$$= 14039 \times (-5) + 1529 \times 46$$

Answer.

$$14039$$
 Mod $1529 = 278$
 1529 Mod $278 = 139$
 278 Mod $139 = 0$

Thus $\gcd(14039,1529)=139$. 1529 **Div** 278=5 and 14039 **Div** 1529=9. Thus $1529=5\cdot 278+139$ and $14039=9\cdot 1529+278$. Hence $139=1529-5\cdot 278=1529-5\cdot (14039-9\cdot 1529)=46\cdot 1529-5\cdot 14039$