

Towards Open-World Object-based Anomaly Detection via Self-Supervised Outlier Synthesis

Project Site

Brian K.S. Isaac-Medina, Yona F.A. Gaus, Neelanjan Bhowmik, Toby P. Breckon, *Durham University, UK*

Motivation

- Virtual outlier synthesis shows outstanding performance for **OOD** detection^{1,2}.
- Ground truth training class labels might not be available/complete in a real scenario.
- Standard object detectors are limited by the object categories in the training set.

Virtual Outlier Synthesis

Categorical Gaussian distributions are fit using ground truth object features \mathbf{v}_i^k from the k-th class

Outliers $\hat{\mathbf{v}}$ are sampled from low-likelihood regions, then using the Energy E for normal/abnormal classification

We leverage Open-World Object Detection with class-agnostic Self-Supervised Outlier Synthesis (SSOS) for object-based anomaly detection

Results

We evaluate our methods, **OLN-SSOS** and **OLN-FFS**, and report recall (0.5 IoU) in **5 datasets**: VOC⁴/COCO⁵, BDD⁶/COCO⁵, DBF6⁷, SIXRay10⁸ and LTDImaging⁹.

	Method	In-Distribution	OOD		Method	In-Distribution	OOD
		AR@10/AR@100	AR@10/AR@100			AR@10/AR@100	AR@10/AR@100
VOC/COCO	VOS ¹	56.3/59.5	20.0/20.6	DBF6	VOS ¹	54.3/54.4	32.8/32.8
					FFS ²	56.5/56.5	35.4/35.4
	FFS ²	58.1/60.9	19.2/19.6		OLN-SSOS	44.2/49.1	46.1/48.8
	OLN-SSOS	27.9/45.9	11.1/14.8		OLN-FFS	45.8/51.5	35.9/46.3
				7	VOS ¹	63.6/63.6	0.1/0.1
	OLN-FFS	49.6/61.3	11.2/17.8		FFS ²	65.4/65.4	0.8/0.8
	VOS ¹	32.3/51.7	8.6/9.9	SIXRay	OLN-SSOS	49.2/55.2	25.8/35.3
00				ing	OLN-FFS	50.4/55.1	27.3/35.6
0000/	FFS ²	31.9/51.4	9.0 /10.3		VOS ¹	34.3/52.5	0/0
)/Q(OLN-SSOS	27.9/45.9	1.6/3.5		FFS ²	34.2/ 52.5	0/0
BDD,				LTDIm	OLN-SSOS	15.5/17.8	12.2/ 18.2
	OLN-FFS	27.0/44.1	6.0/ 15.9		OLN-FFS	16.819.4	12.3 /12.8

SIXRay10

Summary

- We introduce **OLN-SSOS**, an **open-world anomaly detector** that uses **self**supervised feature clustering for VOS without class-supervision.
- **OLN-SSOS** is competitive with class-supervised methods.
- We establish SOTA for OOD detection in DBF6, SIXRay10 and LTDImaging.

References

1. X. Du, Z. Wang, et al. *ICLR*, 2022.

- 6. F. Yu, H. Chen, et al. *CVPR*, 2020.
- 2. N. Kumar, S. Šegvić, et al. *CVPR*, 2023. 7. S. Akçay, M. Kundegorski, et al. IEEE Transactions 3. D. Kim, T. Lin, et al. RA-L, 2022.
- on Information Forensics and Security, 13(9), 2018. 4. Z. Dong, K. Xu, et al. *ICCV*, 2021. 8. C. Miao, L. Xie, et al. CVPR, 2019. 5. T. Lin, M.Maire, et al. *ECCV*, 2014.
 - 9. I. Nikolov, M. Philipsen, et al. NeurIPS, 2021.