1.2 Dünne Linsen

Die paraxiale Näherung beschreibt achsnahe Strahlen, d.h. Strahlen unter kleinem Winkel:

$$\sin \epsilon = \epsilon - \frac{\epsilon^2}{3!} + \frac{\epsilon^5}{5!} - \dots$$

und

$$\cos \epsilon = 1 - \frac{\epsilon^2}{2!} + \frac{\epsilon^4}{4!} - \dots \quad .$$

Bricht man die Reihenentwicklung nach dem ersten Glied ab, erhalten wir

$$\sin \epsilon \approx \epsilon$$
, $\cos \epsilon \approx 1$ und $\tan \epsilon = \frac{\sin \epsilon}{\cos \epsilon} \approx \epsilon$.

Damit vereinfacht sich das Brechnungsgesetz zum paraxialen Brechnungsgesetz

$$n \, \epsilon = n' \, \epsilon' \tag{1.2.1}$$

Diese benutzen wir nun um in paraxialer N\u00e4herung die Brechung an einer Kugeloberfl\u00e4che zu beschreiben.

Brechung an einer Kugelfläche

Aus den beiden Dreiecken CO'P und CPO erhalten wir folgende beziehungen für den Einfallswinkel und Ausfallswinkel and der sphärischen Fläche:

$$\epsilon = \varphi - \sigma$$

und

$$\epsilon' = \varphi - \sigma'$$

Benutzen wir das paraxiale Brechnungsgesetz, also kleine Winkel σ umd σ' ergibt Gl. (1.2.1):

$$n(\varphi - \sigma) = n'(\varphi - \sigma') \tag{1.2.2}$$

In paraxialer Näherung ist die Strecke SQ sehr klein und QR = r, ähnlich gilt QO = s und QO' = s'.

Schreiben wir nun die Winkel $\varphi \approx \tan \varphi$, $\epsilon \approx \tan \epsilon$ und $\epsilon' \approx \tan \epsilon'$ dann wird aus Gl. (1.2.2)

$$n\left(\frac{h}{r} - \frac{h}{s}\right) = n'\left(\frac{h}{r} - \frac{h}{s'}\right)$$

und vereinfacht sich zur Schnittweitengleichung

$$\frac{n'}{s'} - \frac{n}{s} = \frac{n' - n}{r} \tag{1.2.3}$$

Eine ebene brechende Fläche erhalten wir fuür $r \to \infty$, dann folgt aus Gl. (1.2.3)

$$s' = s \frac{n'}{n}$$

s und s' haben das gleiche Vorzeichen, d.h. liegen auf der gleichen Seite von der brechenden Fläche:

Bestimmung des Abbildungsmaßstabes einer Kugelfläche

Nach dem paraxialen Brechnungsgesetz ist $n \sin \epsilon = n' \sin \epsilon'$ und $\epsilon \approx \tan \epsilon$. Dann können wir aus obiger Abbildung ableiten

$$n\frac{y}{s} = n'\frac{y'}{s'} .$$

Bitte beachten Sie die Vorzeichen, hier ist s' negative, daher ist v' auch negativ.

Der Abbildungsmaßstab ist

$$\beta' = \frac{y}{y'} = \frac{n}{n'} \frac{s'}{s} \tag{1.2.4}$$

Wie groß ist der Abbildungsmaßstab einer brechenden Fläche mit $r \to \infty$?

Bisher haben wir eine einzelne brechende Fläche betrachtet. Eine Linse besteht aber aus 2 Flächen. Werden bei einer Abbildung mehrere Flächen durchlaufen erhalten wir jeweils einen Abbildungsmaßstab β_1' und β_2'

$$\beta_1' = \frac{n_1}{n_1'} \cdot \frac{s_1'}{s_1}, \quad \beta_2' = \frac{n_2}{n_2'} \cdot \frac{s_2'}{s_2}$$
.

Bei einer Flächenfolge ist der Abbildungsmaßstag

$$\beta' = \frac{y'}{y} = \beta_1' \beta_2' \dots \beta_n' \tag{1.2.5}$$

Beispiel dicke Linse:

1.3 Dünne Linse

Die Scheiteldicke der Linse wird vernachlässigt. Allein eine Abbildung durch 2 brechende sphärische Oberflächen. Auf beiden Seiten der Linse hat das Medium Brechzahl n_1 und die Linse Brechzahl n_L . Dann ergeben sich folgende Schnittwellengleichungen:

$$\frac{n_L}{s_1'} - \frac{n_1}{s_L} = \frac{n_L - n_1}{r_1} \tag{1.2.6a}$$

und

$$\frac{n_1}{s_2'} - \frac{n_L}{s_2} = \frac{n_1 - n_L}{r_2} \quad . \tag{1.2.6b}$$

Vernachlässigen wir die Scheiteldicke d, dann ist $s_2 = s'_1$ und Gl. (1.2.6b) wird

$$\frac{n_1}{s_2'} - \frac{n_L}{s_1'} = \frac{n_1 - n_L}{r_2}$$

Addieren wir diese Gleichung mit Gl.(1.2.6a) ergibt sich

$$-\frac{n_1}{s_1} + \frac{n_1}{s_2'} = (n_L - n_1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

Hier ist s_1 die Gegenstandsschnittweite und s_2' die Bildschnittweite. Schreiben wir diese nun als s und s'ergibt sich

$$\frac{1}{s'} - \frac{1}{s} = \frac{n_L - n_1}{n_1} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \quad . \tag{1.2.7}$$

Die Brennweite f' einer dünnen Linse ist die Bildschnittweite eines Objektes im Unendlichen 1/s = 0. Setzen wir beides in Gl. (1.2.7) ein ergibt die Bildbrennweite einer dünnen Linse

$$\frac{1}{f'} = \frac{n_L - n_1}{n_1} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \tag{1.2.8}$$

Vergleichen wir Gl. (1.2.8) mit Gl. (1.2.7) und vernachlässigen wir die Dicke der Linse ergibt sich für die Gegenstandsweite $a \approx s$ und Bildweite $a' \approx s'$ die Abbildungsgleichung der dünnen Linse

$$\frac{1}{a} - \frac{1}{a'} = \frac{1}{f'}$$

1.4 Strahlendiagramme für dünne Linsen

Konstruktionsanleitung für optische Abbildung mit dünnen Linsen:

- 1. Parallelstrahl wird Brennpunktstrahl
- 2. Brennpunktstrahl wird Parallelstrahl
- 3. Mittelpunktstrahl wird nicht gebrochen

Sammellinse

Hier ensteht ein reelles Bild y'.

Zertreuungslinse

Hier ensteht ein virtuelles Bild y', d.h. ein Bild vor der ersten brechenden Fläche.

Die Winkel w und w' sind identisch. Damit erhält man änliche Dreiecke und a'/a = y'/y.

Der Abbilundgmaßstab ist deshalb

$$\beta = \frac{y'}{y} = \frac{a'}{a} \tag{1.2.9}$$

1.5 Krümmung von Wellenfronten

Sammellinse

Die Wellenfront der Kugelwelle, die von Punkt O ausgeht hat eine Krümmung V=1/a wenn sie auf die dünne Linse im Abstand a auftrifft. Ähnliches gilt für die Wellenfront die von der Linse auf den Punkt O' fokusiert wird, V' = 1/a'.

Wir bezeichnen die Eigenschaft einer Linse, die Wellenfront zu ändern mit Brechkraft D. Die Gleichung

$$\frac{1}{a'} - \frac{1}{a} = \frac{1}{f'}$$

kann man auch mit den Krümmungen und der Brechkraft schreiben

$$V' - V = D$$

Die Brechkraft D wird in Dioptrien gemessen, 1 dpt hat die Brennweite von 1 m.

Beim Hintereinanderschalten von dünnen Linsen im geringen Abstand addieren sich die Dioptrien und die Kehrwerte der Brennweiten.

Beweis:

$$\frac{1}{a_1'} - \frac{1}{a_1} = \frac{1}{f_1'} \tag{1.2.9a}$$

$$\frac{1}{a'_1} - \frac{1}{a_1} = \frac{1}{f'_1}
\frac{1}{a'_2} - \frac{1}{a_2} = \frac{1}{f'_2}$$
(1.2.9a)

Wenn die beiden Linsen mit f_1' und f_2' direkt aneinander liegen ist $a_2=a_1'$. Wir addieren nun die Gln. (1.2.9a) und (1.2.9b) und erhalten:

$$\frac{1}{a_2'} - \frac{1}{a_1} = \frac{1}{f_1'} + \frac{1}{f_2'}$$

Die Gesamtbrennweite so einer Anordnung ist

$$\frac{1}{f'} = \frac{1}{f'_1} + \frac{1}{f'_2} + \dots$$

oder in Brechzahlen ausgedrückt

$$D' = D_1' + D_2' + \dots .$$

In []: