Laboratorio 02

Spettroscopia a fluorescenza tramite probe in fibra ottica

L.M. in Ingegneria Biomedica – A.A. 22/23

Laboratorio di fotonica per la medicina

Prof. Marco Consales

Benedetta Masone

<u>b.masone@studenti.unimol.it</u> – mat.177470

Martina Rainone

m.rainone@studenti.unimol.it - mat.177471

Fabrizio Ravelli

<u>f.ravelli@studenti.unimol.it</u> – mat.177085

INDICE

- 1. Obiettivo
- 2. Introduzione teorica
- 3. Strumentazione utilizzata
- 4. Procedura operativa
- 5. Analisi dati
- 6. Analisi dei risultati e conclusioni

OBIETTIVO

Determinazione e confronto della concentrazione incognita tramite acquisizione degli spettri di assorbimento e fluorescenza con un probe in fibra ottica

INTRODUZIONE TEORICA

Tecnica di misura che si basa sul fenomeno della fluorescenza:

«Emissione di energia sotto forma di fotoni in seguito ad uno stimolo energetico opportuno»

Analogamente alla spettroscopia ad assorbimento, è possibile definire una correlazione tra potenza radiante emessa e concentrazione:

$$P_F = kP_0c$$

Differenze rispetto l'architettura di uno spettrofotometro ad assorbimento:

- Utilizzo di due monocromatori
- Posizionamento del secondo detector a 90° rispetto il raggio di eccitazione.

Sorgente Avantes AvaLight-DH-S Deuterium Halogen		
	Sorgente al Deuterio	Lampada Alogena
Range λ	190-656 nm	400-2500 nm
Tempo di Warm up	30 min	20 min
Potenza emessa	78 W/ 0.75 A	5 W/0.5 A
Consumo potenza	90 W(190 W all'accensione della sorgente al Deuterio 4-5 s)	
Alimentazione	100-240 VAC 50/60 Hz	
Dimensioni	315 mm x 165 mm x 140 mm	
Peso	ca- 5 kg	

Avantes AvaLight-DH-S Deuterium Halogen

Spettrofotometro Av	vantes AvaSpec-USL2048XL
Range λ	200-1160 nm
Sensibilità	0.09-20 nm
Sensiolita	depending on configuration
Efficienza quantica UV	460,000 counts
Detector	60% (200-300 nm)
Rapporto segnale/rumore	450:1
Convertitore A/D	16 bit, 1 MHz
Tempo di integrazione	$2~\mu ext{s}$ - $2~ ext{s}$
Interfaccia	USB 2.0 high speed, 480 Mdps RS-232,
	115.200 bps
Velocità trasferimento dati	2.09 ms/ scan (USB2)
velocità trasferimento dati	432 ms/ scan (RS-232)
Alimentazone	USB, 450 mA oppure
	SPU2 esterna 12VDC, 200 mA
Dimensioni	175 x 110 x 44 nm
Peso	855 g

Avantes AvaSpec-USL2048XL

- Presenza di due fibre specializzate: eccitazione ed emissione
- Sonda ad immersione per l'analisi di campioni liquidi
- Specchio dicroico per la separazione dei raggi luminosi

Connessione a Y

Probe in fibra ottica

Ramo di detection

Ramo d'illuminazione (dalla sorgente) (6 fibre ø 200 µm)

PROCEDURA OPERATIVA

- 1. Preparazione dei campioni
- 2. Verifica delle specifiche della sorgente
- 3. Misure di assorbanza
 - 1. Acquisizione dei segnali di reference e dark
 - 2. Acquisizione degli spettri di assorbimento
- 4. Misure di fluorescenza
 - 1. Acquisizione del segnare di reference (dark)
 - 2. Acquisizione degli spettri di emissione
- 5. Calcolo delle curve di calibrazione
- 6. Stime della concentrazione incognita

ANALISI DATI - ASSORBANZA

L'analisi dei dati è stata eseguita sul software MATLAB R2022b.

Ambiente di analisi:

- CPU AMD Ryzen 5 3500U
- Memoria RAM 8 GB

Il codice MATLAB utilizzato per l'analisi dei dati è disponibile al link:

https://github.com/reFraw/Fotonica

ANALISI DATI - ASSORBANZA

ANALISI DATI - EMISSIONE

ANALISI DATI - EMISSIONE

ANALISI DEI RISULTATI E CONCLUSIONI

>> C_abs

 $C_{abs} = 15.39 [\mu M]$

>> C_fluo

$$C_{fluo} = 14.98 [\mu M]$$