

LEAD ACID BATTERY CHARGER

PROJECT PROPOSAL - ELECTRONICS III

Group - 06

Project Description

Lead Acid Battery Charger

- A battery charger is a device used to put energy into a cell or (rechargeable) battery by forcing an electric current through it.
- The charging process can be applied in several implementations. Mainly,
- 1. constant current (CC) charger
- 2. constant voltage (CV) charger
- 3. Multistage charger (Use both constant current and constant voltage)

Lead Acid Battery Charger

- Operating voltage 24V
- Operating current 8A
- Input Voltage 230V A/C
- Technology Lead Acid
- Power usage and efficiency will depend on the final optimized circuit design*

Market Analysis

Lead Acid Battery Charger

In 2023 it is expected to have a \$70.7 billion market share to lead acid battery

The lead acid battery market is sub segmented, by industrial, into data centres, telecom, oil & gas, and others.

Others in the industrial segment include construction, metals & mining, chemical & pharmaceutical, and food & beverage industries.

Compound Annual Growth Rate (CAGR) is 3.7%

GROUP 06

The charger market's compound annual growth rate is about 8.5% and it create US\$ 2.25 Bn in 2022.

Also, industrial chargers are expected to be more than 3.67 US billion dollars in 2027.

The growth rate of those batteries forecast shows that there is a 1.6X increment in the current period.

24V 8A Lead-acid battery chargers are used by several end users. Such as;

- Mobility Scooters
- Charge Wheelchairs
- Charge Electric Motorcycle
- Charge mobile medical applications

Constant Voltage Charger

Constant Current Charger

CC-CV Charger

Pulse Method Charger

SPF Charger Method

Constant Voltage Charger

- Always keeps Voltage in constant at terminals.
- Initial current is high.

Advantages

Provide Large bulk current fastly to the battery.

Disdvantages

- Overcharging problems.
- Grid corrosion.
- Battery lifetime issues.

Constant Current Charger

- A current source is used to drive uniform current through the battery in opposite direction of discharging.
- Ex. Water flow

Disdvantages

- Overcharging problems.
- Battery lifetime issues.
- Over heating problems.

Pulse Method

• Provide pulsed current periodically to the battery.

Includes;

- 1. Deep charge stage
- 2. Pulse charge stage
- 3. waiting stage

CC-CV Charger Method

- Combination of Both Constant current (CC) & Constant voltage (CV) method.
- Most prefered method.

Advantages

- Better Approach when considering other methods.
- Fast charging
- No heat up problems.

Stage 1: Voltage rises at constant current to V-peak.

Stage 2: Current drops; full charge is reached when current levels off

Stage 3: Voltage is lowered to float charge level

CC-CV Charger Method

Stages

- Constant current stage
- Constant voltage stage
- Float stage

CC-CV Charger Method

• Effects of Nominal temperature, Charge current & efficiency variations.

Disadvantages

- Speed balance problems.
- Temperature variations.

Block Diagram

Circuit Diagram

Lead Acid Battery Charger

Power Regulator Circuit

Resistor Selection

Vout =
$$30V$$
; Vout = 1.25 (Rs)

Rs = 24000 2

R₁ = 1000 2

= $1.25 \times (2.4 \times 100)$

Circuit Diagram

Control Unit Circuit

Circuit Diagram

Control Unit Simulation

Component Selection

Lead Acid Battery Charger

$$V_{2n} = 30V$$
 ; $V_{Ref} = 2V$ $CTRLI = \frac{30V}{32+4\cdot3} \times 4\cdot3$
 $V_{out} = 24V$ $= 1.494V$
 $V_{ad} = 8A$
: V_{13} : V_{12} = V_{12} V_{13} V_{13} V_{13} V_{14} V_{15} V_{15}

Current and Voltage Adjustment

RII selection

$$Jo = VCTRLI : 3 \approx 1.4 V$$
 $30.Rs : 30 \times Rs$

Rs $\approx 5 \text{ m.D}$

Inductor selection

$$L = \left(\frac{VIN \cdot Vo - Vo^2}{0.3.fs \cdot Jo \cdot VIN}\right)$$

$$L = 1.41 \times 10^6 \text{ F}$$

Component Selection

Lead Acid Battery Charger

Mosfet selection

Imax < Ip;

$$I_{max} = I_{out} + \left(\frac{V_{in} \cdot V_{o} - V_{o}^{2}}{2 \cdot f_{s} \cdot L \cdot V_{in}}\right)$$

$$= 8 + 3.3$$

= 11.3 A ... $I_p > 11.3 A - 2$

MOSFET Selection

ABSOLUTE MAXIMUM RATINGS T _A = 25 °C, unless otherwise noted							
Parameter		Symbol	10 s	Steady State	Unit		
Drain-Source Voltage		V _{DS}	40		V		
Gate-Source Voltage		V _{GS}	± 20				
Continuous Drain Current (T _J = 150 °C) ^a	T _A = 25 °C	I _D	20	12			
	T _A = 70 °C		16	10			
Pulsed Drain Current		I _{DM}	50		Α		
Avalanche Current	L = 0.1 mH	I _{AS}	30				
Continuous Source Current (Diode Conduction) ^a		I _S	4.7	1.7			
Maximum Power Dissipation ^a	T _A = 25 °C	P _D	5.2	1.9	w		
	T _A = 70 °C		3.3	1.2			
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		°C		
Soldering Recommendations (Peak Temperature) ^{b, c}			260				

Considerations Before the Design

Lead Acid Battery Charger

- Temparature Handling
- Batter Charging Effciency
- Circuit connections

Temperature Cyclic Use (V) Float Use (V)

-40°C (-40°F)	2.85 -	2.95	2.38 - 2.43
-20°C (-4°F)	2.67 -	2.77	2.34 - 2.39
-10°C (14°F)	2.61 -	2.71	2.32 - 2.37
0°C (32°F)	2.55 -	2.65	2.30 - 2.35
10°C (50°F)	2.49 -	2.59	2.28 - 2.33
20°C (68°F)	2.43 -	2.53	2.26 - 2.31
25°C (77°F)	2.40 -	2.50	2.25 - 2.30
30°C (86°F)	2.37 -	2.47	2.24 - 2.29
40°C (104°F)	2.31 -	2.41	2.22 - 2.27
50°C (122°F)	2.25 -	2.35	2.20 - 2.25

GROUP 06

Time Line of the Project Lead Acid Battery Charger Test and build the Final product 3 prototypes 2 4 Print the PCB and design the circuit and simulations enclosure

- https://www.power-sonic.com/blog/how-tocharge-a-lead-acid-battery/
- https://www.baseapp.com/embedded/typessealed-lead-acid-chargers/
- https://www.baseapp.com/embedded/typessealed-lead-acid-chargers/

