

# 2024 年中国大学生程序设计竞赛全国邀请赛(郑州) 暨第六届 CCPC 河南省大学生程序设计竞赛

# 正式赛

2024年5月12日

# 题目概况

| 题号 | 题目名             | 时间限制  | 空间限制 |
|----|-----------------|-------|------|
| A  | Once In My Life | 1 s   | 1 GB |
| В  | 扫雷 1            | 1 s   | 1 GB |
| С  | 中二病也要打比赛        | 2 s   | 1 GB |
| D  | 距离之比            | 1 s   | 1 GB |
| Е  | 保卫城邦            | 4.5 s | 1 GB |
| F  | 优秀字符串           | 1 s   | 1 GB |
| G  | 扫雷 2            | 1 s   | 1 GB |
| Н  | 随机栈             | 1 s   | 1 GB |
| I  | 378QAQ 和字符串     | 4 s   | 1 GB |
| J  | 排列与合数           | 1 s   | 1 GB |
| K  | 树上问题            | 1 s   | 1 GB |
| L  | Toxel 与 PCPC II | 1 s   | 1 GB |
| М  | 有效算法            | 2 s   | 1 GB |



# Problem A. Once In My Life

对于小 A 而言,数位包含  $1 \sim 9$ ,并且至少两个数位是  $d(1 \le d \le 9)$ 的十进制正整数都是幸运数。

当 d=3 时,显然 1234567890123 是小 A 的幸运数,但 987654321 因为数位 3 仅出现了一次而不是幸运数,998244353 因为缺少数位 1,6,7 而不是幸运数。

现在小 A 有一个正整数 n,并给出正整数 d。他想找到正整数 k 使得二者的乘积  $n \cdot k$  是幸运数。你能用计算机辅助他的计算吗?

## 输入格式

本题测试点包含多组数据。

第一行,一个正整数 T ( $1 \le T \le 3 \times 10^5$ ),表示数据组数。

对于每组数据:

一行,两个正整数 n,d  $(1 \le n \le 10^8, 1 \le d \le 9)$ 。

## 输出格式

对于每组数据:

输出一行,一个正整数 k,满足  $n \cdot k$  是幸运数。你需要保证  $k \le 2 \times 10^{10}$ 。

#### 样例

| standard input | standard output |
|----------------|-----------------|
| 3              | 1234567896      |
| 1 6            | 404             |
| 12345678 9     | 9217006         |
| 233 2          |                 |

## 提示

对于 n=1, d=6, 可以取 k=1234567896, 有  $n \cdot k=1234567896$  为幸运数。

对于 n = 12345678, d = 9, 可以取 k = 404, 有  $n \cdot k = 4987653912$  为幸运数。

对于 n=233, d=2, 可以取 k=9217006, 有  $n \cdot k=2147562398$  为幸运数。

# Problem B. 扫雷 1

T0xel 喜欢玩扫雷, 但是他玩的扫雷游戏有名为"地雷探测器"的特殊道具。

具体来说,T0xel 会进行 n 轮扫雷。每轮扫雷开始之前,T0xel 会获得 1 枚扫雷币。扫雷币在每轮扫雷结束后不会回收,可以保留至下一轮扫雷。T0xel 知道,在第 i 轮( $1 \le i \le n$ )扫雷中,花费  $c_i$  枚扫雷币可以购买一个地雷探测器,清除地图中的一个雷。地雷探测器在一轮扫雷中可以购买任意次。

现在 T0xel 想知道,在这 n 轮扫雷中最多能购买多少个地雷探测器呢?

#### 输入格式

第一行,一个正整数 n  $(1 \le n \le 2 \times 10^5)$ ,表示扫雷轮数。

第二行,n 个正整数  $c_1, c_2, \ldots, c_n$   $(1 \le c_i \le 10^9)$ 。

#### 输出格式

一行,一个非负整数,表示答案。

#### 样例

| standard input | standard output |
|----------------|-----------------|
| 6              | 2               |
| 3 2 5 3 4 3    |                 |
| 5              | 2               |
| 6 3 3 4 2      |                 |
| 5              | 0               |
| 7 6 5 9 8      |                 |

## 提示

对于第一个样例, T0xel 可以选择在第 2 轮与第 6 轮扫雷中各购买一个地雷探测器。具体过程如下:

- 获得1枚扫雷币,目前有1枚扫雷币。第1轮扫雷开始,不购买地雷探测器。
- 获得1枚扫雷币,目前有2枚扫雷币。第2轮扫雷开始,购买一个地雷探测器,目前有0枚扫雷币。
- 获得 1 枚扫雷币,目前有 1 枚扫雷币。第 3 轮扫雷开始,不购买地雷探测器。
- 获得1枚扫雷币,目前有2枚扫雷币。第4轮扫雷开始,不购买地雷探测器。
- 获得 1 枚扫雷币,目前有 3 枚扫雷币。第 5 轮扫雷开始,不购买地雷探测器。
- 获得1枚扫雷币,目前有4枚扫雷币。第6轮扫雷开始,购买一个地雷探测器,目前有1枚扫雷币。

对于第二个样例, T0xel 可以选择在第 5 轮扫雷中购买两个地雷探测器。

对于第三个样例,T0xel 无法在这 5 轮扫雷中购买地雷探测器。

# Problem C. 中二病也要打比赛

在被中二病彻底占领的世界中,存在着一个被称为"现实"的神秘领域。在这个领域中,小鸟游六花,一位坚信自己拥有着非凡力量的中二病少女,发现了一串神秘的数字序列 A。这个序列包含了 n 个元素,每个元素  $A_i$  是 1 到 n 之间的整数。据说,只有当这个序列满足单调不降的性质时,隐藏在其中的超自然力量才会觉醒。

六花相信,通过解开这个序列的秘密,她可以进一步证明自己的"邪王真眼"的力量。然而,她很快就意识到,要驯服这个序列,需要一种特殊的魔法——一个能将 A 转化为另一个序列的函数 f,其定义域与值域均为  $[1,n]\cap\mathbb{Z}$ 。使用这个魔法后,A 会变成 B,其中  $B_i=f(A_i)$ 。但是,这个魔法的使用是有代价的,其成本由  $[1,n]\cap\mathbb{Z}$  中  $f(x)\neq x$  的 x 数量决定。在这个充斥着中二病的世界中,六花必须以最小的代价激发序列中隐藏的力量。

现在,作为六花的冒险伙伴,你的任务是帮助她找到那个神奇的函数 f,将 A 转化为单调不降序列,并以最小的代价揭示序列中隐藏的超自然力量。

#### 输入格式

第一行包含一个整数 n ( $1 \le n \le 2 \times 10^5$ ),代表序列长度。

第二行包含 n 个整数  $A_i$   $(1 \le A_i \le n)$ , 代表序列。

#### 输出格式

一行,一个整数,表示最小代价。

#### 样例

| standard input        | standard output |
|-----------------------|-----------------|
| 10                    | 4               |
| 1 10 2 6 10 8 9 4 4 5 |                 |

#### 提示

在样例中,可以选择函数 f 为 [1,2,3,4,5,2,7,2,2,2],其中第 i 个数字  $c_i$  表示  $f(i)=c_i$ ,由该函数得到的序列 B 为 1,2,2,2,2,2,4,4,5,符合题目条件。由于  $f(6)=2\neq 6$ , $f(8)=2\neq 8$ , $f(9)=2\neq 9$ , $f(10)=2\neq 10$ ,所以该函数的代价是 4。可以证明没有比 4 更小的代价。

# Problem D. 距离之比

对于  $\mathbb{R}^2$  平面上的两个点  $P(x_P, y_P)$  与  $Q(x_Q, y_Q)$ , PQ 之间的曼哈顿距离定义为

$$||PQ||_1 = |x_P - x_Q| + |y_P - y_Q|$$

而 PQ 之间的欧几里得距离定义为

$$||PQ||_2 = \sqrt{(x_P - x_Q)^2 + (y_P - y_Q)^2}$$

现在给出平面上互不重合的 n 个点  $P_1, P_2, \ldots, P_n$ , 请求出

$$\max_{1 \le i < j \le n} \frac{\|P_i P_j\|_1}{\|P_i P_j\|_2}$$

#### 输入格式

本题测试点包含多组数据。

第一行,一个正整数 T  $(1 \le T \le 10^5)$ ,表示数据组数。

对于每组数据:

第一行,一个正整数 n ( $2 < n < 2 \times 10^5$ ),表示平面上的点数。

接下来 n 行, 每行两个整数  $x_i, y_i$   $(-10^9 \le x_i \le 10^9, -10^9 \le y_i \le 10^9)$ , 表示点  $P_i(x_i, y_i)$ 。

保证对于单个测试点有  $\sum n \leq 2 \times 10^5$ 。

## 输出格式

对于每组数据:输出一行,一个实数,表示点对之间曼哈顿距离与欧几里得距离之比的最大值。当你的答案与标准答案的相对误差或绝对误差不超过 10<sup>-9</sup> 时将视为正确答案。

## 样例

| standard input | standard output |
|----------------|-----------------|
| 2              | 1.00000000000   |
| 2              | 1.371988681140  |
| 0 0            |                 |
| 0 1            |                 |
| 3              |                 |
| 1 1            |                 |
| 2 3            |                 |
| 5 8            |                 |

## 提示

对于第一个样例, 给定的点为  $P_1(0,0), P_2(0,1)$ , 有  $\frac{\|P_1P_2\|_1}{\|P_1P_2\|_2} = 1$ 。

对于第二个样例,给定的点为  $P_1(1,1), P_2(2,3), P_3(5,8)$ ,有

# 2024 年中国大学生程序设计竞赛全国邀请赛(郑州) 暨第六届 CCPC 河南省大学生程序设计竞赛 郑州轻工业大学, 2024 年 5 月 12 日

- $\frac{\|P_1 P_2\|_1}{\|P_1 P_2\|_2} = \frac{3}{\sqrt{5}} \approx 1.34164079$
- $\frac{\|P_1P_3\|_1}{\|P_1P_3\|_2} = \frac{11}{\sqrt{65}} \approx 1.36438208$
- $\frac{\|P_2P_3\|_1}{\|P_2P_3\|_2} = \frac{8}{\sqrt{34}} \approx 1.37198868$

因此答案为  $\frac{8}{\sqrt{34}}$ 。

# Problem E. 保卫城邦

小团子是一个精明的君主,他掌管着一个拥有 n 个城邦的国家,城邦间有 n-1 条高速路进行连接,使得从任意一个城邦出发可以经由高速路到达任意其他城市,高速路使得其相连的两座城市之间可以快速进行支援。

天有不测风云,现在小团子的国家遭受了攻击,小团子需要在城邦内驻扎军队进行守卫,一个城邦内可以驻扎**多支军队**,也可以不驻扎军队。其中对于不驻扎军队的城邦,需要与其通过高速路直接相连的所有城邦共驻扎至少2支军队来确保其安全。

然而,在炮火的袭扰中,会出现一些高速路被损毁的情况。每当出现一条高速路损毁,小团子会立刻 指挥强大的后勤修一条新的高速路,保证每时每刻所有城邦都可以通过 n-1 条高速路相互到达。

在战火中,共有m次高速路损毁发生,在快速变化的战局之下,纵使是小团子也难以计算如何对守军进行调整,于是他求助身为军师的你,希望你在每次道路出现损毁时,计算出再次修建好高速路后,至少需要多少支军队才能保证王国的安全。

#### 输入格式

第一行两个整数 n ( $2 \le n \le 2 \times 10^5$ ) 和 m ( $1 \le m \le 2 \times 10^5$ ),表示城邦数和高速路损毁数量。

接下来 n-1 行,每行两个整数 u 和 v  $(1 \le u, v \le n, u \ne v)$ ,表示最初王国在城邦 u 与 v 之间存在一条高速路。

接下来 m 行,每行四个整数 u,v,a,b  $(1 \le u,v,a,b \le n, u \ne v, a \ne b)$ ,表示城邦 u 与 v 之间的高速路损毁,小团子立刻指挥后勤在城邦 a 与 b 之间修建了一条新的高速路。保证修建新的高速路后,城邦间可通过高速路相互到达。

## 输出格式

输出共 m 行,每行一个整数,表示每次修建新的高速路后,王国内至少需要驻扎的军队数量。

## 2024 年中国大学生程序设计竞赛全国邀请赛(郑州)暨第六届 CCPC 河南省大学生程序设计竞赛 郑州轻工业大学, 2024 年 5 月 12 日

#### 样例

| standard input | standard output |
|----------------|-----------------|
| 5 4            | 3               |
| 2 4            | 2               |
| 2 5            | 3               |
| 2 3            | 3               |
| 1 4            |                 |
| 2 5 2 5        |                 |
| 1 4 1 2        |                 |
| 2 3 1 3        |                 |
| 1 3 4 3        |                 |
| 8 5            | 5               |
| 3 2            | 5               |
| 2 6            | 5               |
| 6 8            | 5               |
| 4 3            | 5               |
| 7 6            |                 |
| 7 5            |                 |
| 4 1            |                 |
| 4 1 7 1        |                 |
| 7 1 4 1        |                 |
| 6 8 2 8        |                 |
| 2 8 4 8        |                 |
| 4 8 4 8        |                 |

## 提示

在第一个样例中, 高速路有 4 次损毁:

- 城邦 2 与城邦 5 之间的高速路损毁后,小团子在这两座城邦间重新修建了一条高速路,此时可以在城邦 2 驻扎 2 支军队,在城邦 1 驻扎 1 支军队来确保安全;
- 城邦 1 与城邦 4 之间的高速路损毁后,小团子在城邦 1 与城邦 2 之间修建了一条高速路,此时仅需在城邦 2 驻扎 2 支军队即可确保安全;
- 城邦 2 与城邦 3 之间的高速路损毁后,小团子在城邦 1 与城邦 3 之间修建了一条高速路,此时可以在城邦 2 驻扎 2 支军队,城邦 3 驻扎 1 支军队来确保安全;
- 城邦 1 与城邦 3 之间的高速路损毁后,小团子在城邦 4 与城邦 3 之间修建了一条高速路,此时仍然可以通过在城邦 2 驻扎 2 支军队,在城邦 3 驻扎 1 支军队来确保安全。

# Problem F. 优秀字符串

小 A 认为,一个字符串 S 是优秀字符串,当且仅当:

- *S* 的长度 |*S*| 恰好为 5;
- S 的第三个字符与第五个字符相同;
- S 的前四个字符互不相同。

例如 henan 是优秀字符串,但 query、problem、queue 不是,因为:

- query 的第三个字符为 e, 而第五个字符为 y;
- problem 的长度不为 5;
- queue 的前四个字符中 u 出现了两次。

现在,小 A 有 n 个仅包含英文字母与数字的字符串  $S_1, S_2, \ldots, S_n$ ,请你帮小 A 求出这些字符串中优秀字符串的数量。

## 输入格式

第一行,一个正整数 n  $(1 \le n \le 10^5)$ ,表示字符串的数量。

接下来 n 行,每行一个仅包含英文字母与数字的字符串  $S_i$ 。保证  $\sum |S_i| \le 2 \times 10^5$ 。

## 输出格式

一行,一个整数,表示给定字符串中优秀字符串的数量。

#### 样例

| standard input | standard output |
|----------------|-----------------|
| 4              | 1               |
| henan          |                 |
| query          |                 |
| problem        |                 |
| queue          |                 |

# Problem G. 扫雷 2

T0xel 喜欢玩扫雷, 但是他不喜欢数字 2。

他想构造一个  $n \times n$  的扫雷的地图, 其中有 m 个雷, 并且没有一个空地周围恰有 2 个雷。

也就是说,他想构造一个 01 方阵,使得不存在一个 0 周围 8 格中恰有 2 个 1。特别地,边上的 0 周围 5 个格不能恰有 2 个 1,角落上的 0 周围 3 个格不能恰有 2 个 1。

#### 输入格式

#### 本题测试点包含多组数据。

第一行,一个正整数 T  $(1 \le T \le 100)$ ,表示数据组数。

每组数据包含一行,两个整数  $n,\ m\ (5\leq n\leq 1000,\ 1\leq m\leq n\times n)$ ,表示地图大小和雷数。 保证单个测试点所有数据的  $\sum n^2\leq 10^6$ 。

#### 输出格式

对于每组数据:

如果有解,先输出一行 Yes,然后输出一个  $n \times n$  的 01 矩阵,其中 0 表示空地,1 表示雷。 如果无解,输出一行 No。

#### 样例

| standard input | standard output |
|----------------|-----------------|
| 2              | Yes             |
| 5 2            | 10000           |
| 5 17           | 00000           |
|                | 00000           |
|                | 10000           |
|                | 00000           |
|                | Yes             |
|                | 11111           |
|                | 10001           |
|                | 10101           |
|                | 10001           |
|                | 11111           |

## Problem H. 随机栈

Toxel 获得了一个随机的"栈"。这个栈可被视为一个**多重集** S,从一个非空的随机栈 S 中取出一个元素时,有可能从中取出任何一个元素,其中每个元素被取出的概率是相等的。取出该元素后,该元素会从集合中删除。以  $\{1,2,2\}$  为例,有  $\frac{1}{3}$  的概率取出 1,使得集合变为  $\{2,2\}$ ,有  $\frac{2}{3}$  的概率取出 2,使得集合变为  $\{1,2\}$ 。每次取出元素的事件相互独立。

Toxel 正在对这个集合做一些操作。集合初始时为空,它总共进行了 2n 次操作,其中 n 次操作为插入,n 次操作为取出。现在,Toxel 告诉了你它操作的顺序以及每次插入的数,且保证每次取出时,集合非空。Toxel 想知道,如果把每次取出的数排成一个序列,那么这个序列递增的概率是多少? 这里,递增的严格定义是:取出数列的每一项(除最后一项)**小于等于**它的后一项。

由于答案可能不是整数,为了方便计算,你只需要求出这个值对998244353取模的结果。

#### 输入格式

第一行包含一个整数 n  $(1 \le n \le 2 \times 10^5)$ 。

第二行包含 2n 个整数  $a_1, a_2, \ldots, a_{2n}$   $(-1 \le a_i \le n)$ ,表示 Toxel 操作的序列。其中,若  $0 \le a_i \le n$ ,表示 Toxel 向集合中插入了  $a_i$ ; 否则  $a_i = -1$ ,表示 Toxel 从集合中取出了一个元素。数据保证取出元素时,集合非空;保证插入和取出操作的次数分别为 n。

## 输出格式

输出一行一个整数,表示答案对998244353取模的结果。

#### 样例

| standard input      | standard output |
|---------------------|-----------------|
| 2                   | 499122177       |
| 1 2 -1 -1           |                 |
| 3                   | 0               |
| 1 2 -1 -1 1 -1      |                 |
| 4                   | 1               |
| 1 -1 2 -1 3 -1 4 -1 |                 |

## 提示

正式地说,答案对 998 244 353 取模表达了如下含义。令 M=998 244 353,可以证明答案可表示为既约分数  $\frac{p}{q}$ ,其中 p 和 q 均为整数,且  $q\not\equiv 0\pmod M$ 。你需要输出  $p\cdot q^{-1}\mod M$ 。换句话说,你需要输出满足  $0\leq x< M$  且  $x\cdot q\equiv p\pmod M$  的整数 x。

对于样例一,可能有以下两种情况:

- 加入 1 后,集合变成  $\{1\}$ ,加入 2 后,集合变成  $\{1,2\}$ 。接下来先取出 1,这里有  $\frac{1}{2}$  的概率,接下来再取出 2。这种情况下,取出的序列为 1,2,是递增的,概率为  $\frac{1}{9}$ 。
- 加入 1 后,集合变成  $\{1\}$ ,加入 2 后,集合变成  $\{1,2\}$ 。接下来先取出 2,这里有  $\frac{1}{2}$  的概率,接下来再取出 1。这种情况下,取出的序列为 2,1,不是递增的,概率为  $\frac{1}{9}$ 。

# 2024 年中国大学生程序设计竞赛全国邀请赛(郑州) 暨第六届 CCPC 河南省大学生程序设计竞赛 郑州轻工业大学, 2024 年 5 月 12 日

| 有序的概率为 🖟, | 而 2 · 499 | $122\ 177 \equiv 1$ | (mod 998 244 353), | 故答案为 | 499 122 177 |
|-----------|-----------|---------------------|--------------------|------|-------------|
|-----------|-----------|---------------------|--------------------|------|-------------|

对于样例二,2 无论如何都会在第二个1前被取出,递增的概率为0。

对于样例三,取出的序列只有1,2,3,4一种情况,递增的概率为1。

# Problem I. 378QAQ 和字符串

378QAQ 有一个长度为 n 的仅包含小写字母的字符串 s。他认为一个字符串是美丽的,当且仅当存在 p  $(1 \le p \le \frac{n}{2})$ ,使得对于所有的 i  $(0 \le i \le n - p - 1)$  有  $s_i = s_{i+p}$ 。其中, $s_i$  表示字符串 s 的第 i 个字符,下标从 0 开始编号。

378QAQ 想知道能否修改字符串 s 中的至多 k 个字符, 使得修改后的字符串 s' 是美丽的。

#### 输入格式

#### 本题测试点包含多组数据。

第一行包含一个正整数 t ( $1 \le t \le 1000$ ),表示数据组数。

对于每组数据:

第一行包含两个正整数 n,k  $(2 \le n \le 3 \times 10^5, 1 \le k \le 100)$ ,表示字符串 s 的长度,以及至多修改的字符个数。

第二行包含一个由n个小写字母组成的字符串s。

保证单个测试点中各组数据 n 的总和不超过  $3 \times 10^5$ 。

#### 输出格式

对于每组数据,如果能够修改字符串 s 中的至多 k 个字符使得修改后的字符串 s' 是美丽的,输出 "Yes" (不含引号),否则输出 "No" (不含引号)。

#### 样例

| standard input | standard output |
|----------------|-----------------|
| 5              | Yes             |
| 6 1            | No              |
| yesyrs         | Yes             |
| 6 2            | Yes             |
| bazoka         | No              |
| 9 2            |                 |
| zzaazazzc      |                 |
| 11 5           |                 |
| bazokamocha    |                 |
| 11 4           |                 |
| bazokamocha    |                 |

## 提示

对于第一组样例,可以将  $s_4$  从 "r" 修改为 "e",此时 s' =yesyes,存在 p=3 使得对于所有的 i  $(0 \le i \le n-p-1)$ ,  $s_i' = s_{i+p}'$ 。

# Problem J. 排列与合数

小 A 在 2023 年河南省 CCPC 大学生程序设计竞赛的赛场上遇到了一道名为"排列与质数"的题目。 与大多数选手一样,小 A 并没能在赛场上解决这个棘手的题目。比赛结束后,小 A 想到了一个与之相关 的题目:排列与合数,可是小 A 仍然没有能力解决。这个名为"排列与合数"的题目是这样的:

给定一个有且仅有 5 位,且各个数位互不相同的十进制正整数 n。你可以重新排列 n 的各个数位,但需要保证重新排列得到的整数 n' 没有前导零。请问重新排列数位得到的 n' 能否为合数?若能为合数,请求出一个满足条件的 n'。

例如,当 n=12345 时,任意排列得到的 n' 均是合数,因此可以任意取 n'。当 n=13579 时,可以重新排列数位得到合数  $n'=97531=7\times13933$ 。

一个正整数是合数,当且仅当它可以分解为两个不小于2的整数的乘积。

现在,小A带着他的题目来到赛场上求助。你能帮助小A解决这个题目吗?

## 输入格式

本题测试点包含多组数据。

第一行,一个正整数 T  $(1 \le T \le 10^5)$ ,表示数据组数。

对于每组数据:

一行,一个正整数 n ( $10^4 \le n < 10^5$ ),保证 n 的各个数位互不相同。

#### 输出格式

对于每组数据:

输出一行,一个整数。若能重新排列 n 的数位得到合数 n' 则输出 n',否则输出 -1。

#### 样例

| standard input | standard output |
|----------------|-----------------|
| 5              | 12345           |
| 12345          | 54321           |
| 12345          | 13524           |
| 12345          | 45123           |
| 12345          | 97531           |
| 13579          |                 |

## 提示

样例即是题目描述中给出的例子。

# Problem K. 树上问题

378QAQ 有一棵由 n 个节点组成的无根树, 节点编号从 1 到 n, 每个节点有一个正整数点权。

378QAQ 认为一个节点是美丽节点,当且仅当该节点作为根时,对于除根节点以外的所有节点,其点权都不小于其父亲节点的点权的  $\frac{1}{9}$ 。

请你计算出有多少个节点是美丽节点。

#### 输入格式

#### 本题测试点包含多组数据。

第一行包含一个正整数 t  $(1 \le t \le 10^4)$ ,表示数据组数。

对于每组数据:

第一行包含一个正整数 n  $(1 \le n \le 10^5)$ ,表示节点数量。

第二行包含 n 个正整数  $a_1, a_2, \ldots, a_n$   $(1 \le a_i \le 10^6)$ ,表示编号为 i 的节点点权。

之后 n-1 行,每行包含两个正整数 u,v  $(1 \le u, v \le n, u \ne v)$ ,表示无根树中存在一条连接节点 u 和节点 v 的边。

保证单个测试点中所有数据的  $\sum n \leq 10^5$ 。

## 输出格式

对于每组数据,输出一个非负整数,代表美丽节点的数量。

## 样例

| standard input                  | standard output |
|---------------------------------|-----------------|
| 3                               | 3               |
| 3                               | 1               |
| 1 2 3                           | 7               |
| 1 2                             |                 |
| 2 3                             |                 |
| 5                               |                 |
| 3 2 2 2 1                       |                 |
| 1 2                             |                 |
| 3 1                             |                 |
| 4 1                             |                 |
| 1 5                             |                 |
| 8                               |                 |
| 699 673 592 276 600 343 369 374 |                 |
| 7 6                             |                 |
| 8 5                             |                 |
| 4 6                             |                 |
| 7 1                             |                 |
| 7 2                             |                 |
| 1 8                             |                 |
| 4 3                             |                 |

## 提示

对于第二组数据,树的形态如下:



只有节点 5 是美丽节点。当节点 5 作为根时,除根节点以外的各个节点与其父亲节点的点权关系如下:

- 节点 1 的父亲节点为节点 5, 二者点权有  $3 \geq \frac{1}{2}$ , 满足要求。
- 节点 2,3,4 的父亲节点为节点 1,节点 2,3,4 的点权均有  $2 \ge \frac{3}{2}$ ,满足要求。

因此节点 5 是美丽节点。当其他任意节点作为根时,从上图可以看出节点 5 的父亲节点始终为节点 1,由于  $1<\frac{3}{2}$ ,不满足要求,所以其余节点均不是美丽节点。

# Problem L. Toxel 与 PCPC II

Toxel 正在参加 PCPC(Pokémon Center Programming Contest)比赛。它写的一段代码中有不少bug,正在调试。这份代码总共有n行,而且经验丰富的 Toxel 已经知道了其中m行代码有 bug,并锁定了这m行的具体位置。但是 Toxel 还需要进行一些调试以了解错误的具体细节并修复它们。

Toxel 会进行多次调试。每次调试时,Toxel 可以任选一个 i,使得程序从第 1 行开始,顺序运行完第 i 行后退出。Toxel 可以通过这 i 行代码运行的一些输出结果来进行 debug。运行这 i 行代码总共需要 i 秒。接下来,Toxel 会一次性地 debug 这 i 行代码,并修复所有这 i 行中的所有 bug。bug 数量越多,修复所需的时间也越多。设这 i 行代码中现存的 bug 数量为 x,那么 Toxel 需要  $x^4$  秒来 debug 并完成修复。修复后,这 i 行代码中将不再存在任何 bug。

PCPC 的赛场争分夺秒。请你帮 Toxel 计算一下,它最短需要多少秒才能完成 debug,修复整个代码中的所有漏洞?

#### 输入格式

第一行包含两个整数 n, m  $(1 \le m \le n \le 2 \times 10^5)$ 。

第二行包含 m 个整数  $a_1, a_2, \ldots, a_m$   $(1 \le a_1 < a_2 < \cdots < a_m \le n)$ ,表示代码中所有有 bug 的行编号。

#### 输出格式

输出一行一个整数,表示答案。

#### 样例

| standard input                                     | standard output |
|----------------------------------------------------|-----------------|
| 3 2                                                | 6               |
| 1 3                                                |                 |
| 1 1                                                | 2               |
| 1                                                  |                 |
| 20 20                                              | 221             |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |                 |

## 提示

对于第一个样例,Toxel 应该选择先运行前 1 行代码,运行消耗 1 秒,debug 消耗  $1^4=1$  秒。接下来 Toxel 应该选择运行前 3 行代码,运行消耗 3 秒,debug 消耗  $1^4=1$  秒。总计消耗 1+1+3+1=6 秒。

对于第三个样例,Toxel 可以分别运行前  $1,2,3,\ldots,13,14,16,18,20$  行来得到最优解。

## Problem M. 有效算法

给出长度为 n 的正整数序列  $\{a_n\}$  和  $\{b_n\}$ 。对于每个  $a_i$   $(1 \le i \le n)$ ,进行恰好一次以下操作:

• 将  $a_i$  变成满足  $|a_i - x| \le k \times b_i$  的任意整数 x。

请你求出最小的非负整数 k,使得存在至少一种方法使得操作后序列  $\{a_n\}$  所有数都相等。

## 输入格式

#### 本题测试点包含多组数据。

第一行包含一个正整数 T ( $1 \le T \le 1.5 \times 10^5$ ),表示数据组数。

对于每组数据:

第一行包含一个正整数 n  $(2 \le n \le 3 \times 10^5)$ 。

第二行包含 n 个正整数  $a_1, a_2, \ldots, a_n$   $(1 \le a_i \le 10^9)$ 。

第三行包含 n 个正整数  $b_1, b_2, \ldots, b_n$   $(1 \le b_i \le 10^9)$ 。

保证单个测试点中所有数据的  $\sum n \leq 3 \times 10^5$ 。

#### 输出格式

对于每组数据:

输出一行一个整数,表示答案。

#### 样例

| standard input | standard output |
|----------------|-----------------|
| 2              | 2               |
| 4              | 2               |
| 8 3 3 5        |                 |
| 1 2 3 2        |                 |
| 5              |                 |
| 4 3 4 5 6      |                 |
| 3 1 3 1 1      |                 |

## 提示

对于样例一,可以令  $a_i$  全变为 6。

对于样例二,可以令  $a_i$  全变为 5。