

Deep Learning

A Practical Approach in MATLAB

David Willingham david.willingham@mathworks.com

Senior Data Analytics Engineer

WITH SOFTWARE (and smart people)

ANYTHING IS POSSIBLE

Artificial Intelligence is Everywhere

- Image Recognition
- Speech Recognition
- Stock Prediction
- Medical Diagnosis
- Data Analytics
- Robotics
- and more...

50 km/h - sudden brake

What's in the trunk (aka boot) of an autonomous vehicle?

 SELF-DRIVING CARS USE CRAZY AMOUNTS OF POWER, AND IT'S BECOMING A PROBLEM – WIRED 6/2/2018

Deep Learning - end to end product development

ACCESS AND EXPLORE DATA

LABEL AND PREPROCESS
DATA

DEVELOP PREDICTIVE MODELS

INTEGRATE MODELS WITH SYSTEMS

Databases

Sensors

Clean Data

Feature Engineering

Select Model

Train

Tune

Visualise

Desktop Apps

Web Based Systems

On Device

Data Access

Business and Transactional Data

Repositories

- Databases (SQL)
- NoSQL
- Hadoop

File I/O

- Text
- Spreadsheet
- XML

Web Sources

- RESTful
- JSON
- HTML
- Mapping
- Financial datafeeds

MATLAB Analytics work with business and engineering data

Cloud

- Amazon S3
- Azure Blob

Streaming

- Amazon Kinesis
- Azure Event Hub
- Kafka
- MQTT

Sensors Signals Images

Engineering, Scientific, and Field Data

File I/O

- Text
- Spreadsheet
- XML
- CDF/HDF
- Image
- Audio
- Video
- · Geospatial

Communication Protocols

- CAN (Controller Area Network)
- DDS (Data Distribution Service)
- OPC (OLE for Process Control)
- XCP (eXplicit Control Protocol)

Real-Time Sources

- Sensors
- GPS
- Instrumentation
- Cameras
- Communication systems
- Machines (embedded systems)

Pre Processing – MATLAB Automated Ground truth Labeling

New App for Ground Truth Labeling

- Automatically Create your own library of images from Video
- Label pixels and regions for semantic segmentation

Detection and localization using deep learning

Regions with Convolutional Neural Network Features (R-CNN)

Semantic Segmentation using SegNet

Deep Learning Model Support

SeriesNetwork

MNIST

Networks:

Alexnet

VGG

Lane detection

Pedestrian detection

DAGNetwork

Recurrent Network

Networks:

R-CNN (fast, faster) GoogLeNet ResNet SegNet FCN

DeconvNet

Networks:

LSTM (timeseries)

Semantic

Object

detection

segmentation

Import the Latest Models for Transfer Learning

Pretrained Models*

- AlexNet
- VGG-16
- VGG-19
- GoogLeNet
- InceptionV3
- Resnet50

Import Models from Frameworks

- Caffe Model Importer
- TensorFlow/Keras Model Importer

AlexNet
PRETRAINED MODEL

PRETRAINED MODEL

VGG-16

ResNet
PRETRAINED MODEL

Caffe

MODELS

GoogLeNet
PRETRAINED MODEL

TensorFlow/Keras

^{*} single line of code to access model

Deep Learning – In 5 lines of MATLAB code

```
load chardata
layers = createLayers;
options = trainingOptions( 'sgdm', 'MiniBatchSize', 8192, 'Plots',
'training-progress', 'ExecutionEnvironment', 'multi-gpu');
net = trainNetwork(imgDataTrain, labelsTrain, layers, options);
                                                   Predicted: 7, Actual: 7
predLabelsTest = net.classify(imgDataTest);
```


Live Training Progress

Training in MATLAB is fast

Single CPU

Single CPU Single GPU

HOW TO TARGET?

```
opts = trainingOptions('sgdm', ...
    'MaxEpochs', 100, ...
'MiniBatchSize', 250, ...
'InitialLearnRate', 0.00005, ...

'ExecutionEnvironment', 'auto');
```


Single CPU Multiple GPUs

HOW TO TARGET?

```
opts = trainingOptions('sgdm', ...
    'MaxEpochs', 100, ...
    'MiniBatchSize', 250, ...
    'InitialLearnRate', 0.00005, ...

'ExecutionEnvironment', 'multi-gpu')
```


On-prem server with GPUs

Cloud GPUs (AWS, Azure, etc.)

How to target?

```
opts = trainingOptions('sgdm', ...
    'MaxEpochs', 100, ...
    'MiniBatchSize', 250, ...
    'InitialLearnRate', 0.00005, ...

'ExecutionEnvironment', 'parallel' );
```


Deep Learning Deployment Options

Running a Trained Model

^{*} Internal benchmarks were performed for inference performance of AlexNet using a TitanXP GPU and Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz. Software versions used were MATLAB(R2017b), TensorFlow(1.2.0), and Caffe2(0.8.1). The GPU accelerated versions of each software were used for benchmarks. All tests were run on Windows 10.

Running a Trained Model

GPU Coder-Convert to NVIDIA CUDA code

AlexNet Inference on NVIDIA Titan XP GPU

MATLAB GPU Coder

More Deployment options coming

Deep Learning - end to end product development

ACCESS AND EXPLORE DATA

LABEL AND PREPROCESS
DATA

DEVELOP PREDICTIVE MODELS

INTEGRATE MODELS WITH SYSTEMS

Databases

Sensors

Clean Data

Feature Engineering

Select Model

Train

Tune

Visualise

Desktop Apps

Web Based Systems

On Device

More Resources - Learn Deep Learning for free

MathWorks can help you do Deep Learning

Free resources

- Guided evaluations with a MathWorks deep learning engineer
- Proof-of-concept projects
- **FREE online Deep learning** ramp up
- Seminars and technical deep dives
- Documentation and user community

Other options

- Consulting services
- Training courses
- Technical support
- Advanced customer support
- Installation, enterprise, and cloud deployment
- Deep Learning: Top 7 Ways to Get Started with MATLAB