Topological K-Theory Talk Outline

James Harbour

October 16, 2023

1 References

- Karoubi, K-theory: an introduction
- UChicago Reu Papers

2 Outline

- Define category $Vect_{\mathbb{F}}(X)$ for compact Hausdorff space X and $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.
- Define Whitney sum on $\operatorname{Vect}_{\mathbb{F}}(X)/\sim$
- Define Grothendieck completion $Gr : \mathbf{AbMon} \to \mathbf{Ab}$

$$\operatorname{Hom}_{Ab}(Gr(M), A) \cong \operatorname{Hom}_{AbMon}(M, UA)$$

- Define $K^0(X)$ (and maybe $KO^0(X)$)
- Define $\widetilde{K}^0(X)$ for pointed X.

$$-\widetilde{K}^{0}(X/A) \to \widetilde{K}^{0}(X) \to \widetilde{K}^{0}(A)$$
$$-K^{-n}(X) := \widetilde{K}^{0}(\Sigma^{n}X) \text{ for } n \in \mathbb{N}$$

- $\bullet \ \text{Compute} \ K^0(\{\text{pt}\}) \\$
- Talk about Bott Periodicity
- Talk about

$$K^{0}(-) \simeq [-, BU \times \mathbb{Z}], \quad KO^{0}(-) \simeq [-, BO \times \mathbb{Z}]$$

 \bullet Talk about Serre-Swan Theorem to motivate $K^0(R)$

$$\operatorname{Vect}_{\mathbb{C}}(X) \simeq \{ \text{f.g. projective } \mathbb{C}(X) \text{-modules} \}$$

• Mention that we don't have suspensions to define $K^n(R)$ so its much harder.