

互重积分

/* Triple Integrals */

- 一、三重积分的概念
- 二、三重积分的计算
- 三、重积分的应用

一、三重积分的概念

引例. 设在空间有限闭区域 Ω 内分布着某种不均匀的物质,密度函数为 $\mu(x,y,z) \in C$,求分布在 Ω 内的物质的质量 M.

解决方法: 类似二重积分解决问题的思想,采用

"分割,近似,求和,取极限"

可得

$$M = \lim_{\lambda \to 0} \sum_{k=1}^{n} \mu(\xi_k, \eta_k, \zeta_k) \Delta v_k$$

定义. 设f(x,y,z)是有界闭区域 Ω 上的有界函数,

者对 Ω 作任意分割: Δv_k ($k=1,2,\dots,n$), 任意取点:

$$(\xi_k, \eta_k, \zeta_k) \in \Delta v_k$$
,下列"乘积和式"极限

$$\lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta v_k \stackrel{\text{ilft}}{=\!=\!=} \iiint_{\Omega} f(x, y, z) dv$$

存在,则称此极限为函数 f(x,y,z) 在 Ω 上的三重积分.

dv称为体积元素,在直角坐标系下常写作 dxdydz.

性质: 三重积分的性质与二重积分相似. 例如:

中值定理: 设 f(x,y,z) 在有界闭域 Ω 上连续, V 为 Ω 的

体积,则存在 $(\xi,\eta,\zeta)\in\Omega$,使得

$$\iiint_{\Omega} f(x, y, z) dv = f(\xi, \eta, \zeta)V$$

二、三重积分的计算

- 1. 利用直角坐标计算三重积分
- /* Triple Integrals in Rectangular Coordinates */

先假设连续函数 $f(x,y,z) \ge 0$,并将它看作某物体的密度函数,通过计算该物体的质量引出相关的计算

方法: 方法1. 投影法("先一后二")

方法2. 截面法("先二后一")

方法3. 对称性应用

说明: "先 A 后 B", 指的是从右到左的积分顺序, 而不是从左向右的书写顺序.

方法1. 投影法("先一后二")

 $I = \iiint_{\Omega} f(x, y, z) dx dy dz$

Ω为图示曲顶柱体

由两个空间曲面所夹

在xoy面的投影区域为D

$$I = \iint_D \mathrm{d}x \mathrm{d}y \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) \mathrm{d}z$$

方法1. 投影法("先一后二")

 $I = \iiint_{\Omega} f(x, y, z) dx dy dz$

Ω为图示曲顶柱体

由两个空间曲面所夹

在xoy面的投影区域为D

这就化为一个定积分和

一个二重积分的运算

方法1. 投影法("先一后二"

 $z = z_2(x, y)$

$z = \overline{z_1}(x, y)$

求细长柱体微元的质量为

$$\int_{z_{1}(x,y)}^{z_{2}(x,y)} \left[\left(f(x,y,z) dx dy \right) \right] dz$$

$$= \left(\int_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) dz \right) dx dy$$

物体 Ω 的质量为 $\iiint_{\Omega} f(x,y,z) dv$

先一 =
$$\iint_{D} \left(\int_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) dz \right) dx dy$$
 微元线密度 ≈
$$f(x,y,z) dz$$
 情况
$$f(x,y,z) dz$$

后二
$$\frac{记作}{\prod_D \mathbf{d} x \mathbf{d} y} \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) \mathbf{d} z$$

dxdy

第七章

方法1. 投影法("先一后二")"穿针法"

进一步
$$\Omega$$
:
$$\begin{cases} z_1(x,y) \leq z \leq z_2(x,y) \\ (x,y) \in D \end{cases}$$

如图,D为X-型区域, Ω 的

下底面和上顶面分别为:

$$z = z_1(x, y), z = z_2(x, y)$$

过点 $(x,y) \in D$ 作平行于z轴 的直线,从z₁穿入,从z₂穿出.

方法1. 投影法("先一后二")"穿针法"

 $z = z_2(x, y)$

$$\Omega: \begin{cases} z_1(x, y) \le z \le z_2(x, y) \\ (x, y) \in D: \begin{cases} y_1(x) \le y \le y_2(x) \\ a \le x \le b \end{cases}$$

故 $\iiint_{\Omega} f(x,y,z) dv$

$$= \iint_D \mathrm{d}x \mathrm{d}y \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) \mathrm{d}z$$

$$= \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} dy \int_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) dz$$

从左至右写

从右往左积

化为累次积分

例1. 计算三重积分 $I = \iiint x \, dx \, dy \, dz$

Ω: 平面 x = 0, y = 0, z = 0, x + 2y + z = 1 所围成的区域

Ω是曲顶柱体

上顶:
$$z=1-x-2y$$

下底: z=0

$$D_{xy}$$
: $x = 0$, $y = 0$, $x+2y = 1$ 围成

$$\begin{array}{c|c}
1 \\
2 \\
0 \\
\end{array}$$

$$D_{xy}$$
 $\frac{1}{2}$

$$I = \iint_{D_{xy}} \mathrm{d}x \mathrm{d}y \int_0^{1-x-2y} x \mathrm{d}z$$

$$= \int_0^1 x dx \int_0^{\frac{1-x}{2}} dy \int_0^{1-x-2y} dz = \frac{1}{48}$$

例2 计算 $I = \iiint f(x, y, z) dx dy dz$

 Ω : 抛物柱面 $y = \sqrt{x}$ 与平面 $y = 0, z = 0, x + z = \frac{\pi}{2}$ 所围成的区域。

例2 计算 $I = \iiint f(x, y, z) dx dy dz$

Ω: 抛物柱面 $y = \sqrt{x}$ 与平面 $y = 0, z = 0, x + z = \frac{\pi}{2}$ 所围成的区域。

例2 计算 $I = \iiint f(x, y, z) dx dy dz$

 Ω : 抛物柱面 $y = \sqrt{x}$ 与平面 $y = 0, z = 0, x + z = \frac{\pi}{2}$ 所围成的区域。

$$I = \iint_D \mathrm{d}x \mathrm{d}y \int_0^{\frac{\pi}{2} - x} f(x, y, z) \mathrm{d}z$$

$$= \int_0^{\frac{\pi}{2}} dx \int_0^{\sqrt{x}} dy \int_0^{\frac{\pi}{2} - x} f(x, y, z) dz$$

例3. 化三重积分 $I = \iiint_{\Omega} f(x,y,z) dx dy dz$ 为三次积分, 其中 $\Omega: z = xy$ 与 x + y = 1, z = 0 所围区域.

例3. 化三重积分 $I = \iiint_{\Omega} f(x,y,z) dx dy dz$ 为三次积分, 其中 $\Omega: z = xy$ 与 x + y = 1, z = 0 所围区域.

例3. 化三重积分 $I = \iiint_{\Omega} f(x,y,z) dx dy dz$ 为三次积分, 其中 $\Omega: z = xy$ 与 x + y = 1, z = 0 所围区域.

第七章

方法2. 截面法 ("先二后一")

0

先做二重积分 后做定积分

第七章

方法2. 截面法 ("先二后一")

0

先做二重积分 后做定积分

方法2. 截面法("先二后一")

$$I = \iiint_{\Omega} f(x, y, z) dx dy dz$$

其中 $\Omega = \{(x, y, z) | c_1 \le z \le c_2, (x, y) \in D_z\}$

先做二重积分 后做定积分

$$I = \int_{c_1}^{c_2} dz \iint_{D_z} f(x,y,z) dxdy$$

$$I = \iiint_{\Omega} f(x, y, z) dx dy dz$$

其中 $\Omega = \{(x, y, z) | c_1 \le z \le c_2, (x, y) \in D_z \}$

方法2特别适用于: 当被积函数为z的一元函数时,而截面的图形非常清楚且面积易知(记为S(z))的情况,否则一般不用方法2.

方法2. 截面法("先二后一")"切片法"

以Dz为底,dz为高的柱形薄片质量为

$$\iint_{D_z} [f(x, y, z) dz] dx dy$$

$$= \left(\iint_{D_z} f(x, y, z) dx dy \right) dz$$

该物体的质量为 $\iiint_{\Omega} f(x,y,z) dv$

先二 =
$$\int_a^b \left(\iint_{D_z} f(x, y, z) dx dy \right) dz$$

面密度≈ f(x, y, z) dz

当被积函数在积分域上变号时,因为

$$f(x, y, z)$$

$$= \frac{|f(x, y, z)| + f(x, y, z)}{2} - \frac{|f(x, y, z)| - f(x, y, z)}{2}$$

$$= f_1(x, y, z) - f_2(x, y, z)$$
拉为为能价 函数

均为为非负函数

$$\iiint_{\Omega} f(x, y, z) dv = \iiint_{\Omega} f_1(x, y, z) dv - \iiint_{\Omega} f_2(x, y, z) dv$$

根据重积分性质仍可用前面介绍的方法计算.

第七章

例4. 计算三重积分 $\iiint_{\Omega} z^2 dx dy dz$,

其中
$$\Omega: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1.$$

解: Ω:
$$\begin{cases} D_z : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 - \frac{z^2}{c^2} \\ -c \le z \le c \end{cases}$$

用"先二后一"

$$\therefore \iiint_{\Omega} z^2 \, \mathbf{d} \, x \, \mathbf{d} \, y \, \mathbf{d} z = \int_{-c}^{c} \mathbf{d} \, z \iint_{\mathbf{D}_z} \mathbf{z}^2 \, \mathbf{d} \, x \, \mathbf{d} \, y$$

$$=2\int_{-c}^{c} z^{2} \pi ab(1-\frac{z^{2}}{c^{2}})dz = \frac{4}{15}\pi abc^{3}$$

例5. 计算三重积分 $I = \iiint_{\Omega} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \right) dx dy dz$

其中
$$\Omega: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1.$$

解: 如例4, 先求 $\iiint_{\Omega} \frac{z^2}{c^2} dx dy dz$

$$= \frac{1}{c^2} \iiint_{\Omega} z^2 \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \frac{4}{15} \pi \, abc$$

例5. 计算三重积分 $I = \iiint_{\Omega} (\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}) dx dy dz$,

其中
$$\Omega: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1.$$

解: 如例4, 先求 $\iiint_{\Omega} \frac{z^2}{c^2} dx dy dz$

$$= \frac{1}{c^2} \iiint_{\Omega} z^2 \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \frac{4}{15} \pi \, abc$$

同理
$$\iint_{\Omega} \frac{x^2}{a^2} dx dy dz = \frac{4}{15} \pi abc$$

注: "后一"积分变量为 x

例5. 计算三重积分
$$I = \iiint_{\Omega} (\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}) dx dy dz$$
,

其中
$$\Omega: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1.$$

解: 如例4, 先求 $\iiint_{\Omega} \frac{z^2}{c^2} dx dy dz$

$$= \frac{1}{c^2} \iiint_{\Omega} z^2 \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \frac{4}{15} \pi \, abc$$

同理
$$\iint_{\Omega} \frac{x^2}{a^2} dx dy dz = \frac{4}{15} \pi abc$$
 所以 $I = \frac{1}{5} \pi abc$

$$\iiint_{\Omega} \frac{y^2}{b^2} dx dy dz = \frac{4}{15} \pi abc$$

方法3. 对称性的应用

若 Ω 关于yoz面(或xoz面,xoy面)对称,且f(x,y,z)为关

于
$$x($$
或 $y,z)$ 的连续奇函数,则 $\iiint_{\Omega} f(x,y,z) dv = 0$

P182 总习题十 1(1)

$$\Omega_1 = \{(x, y, z) \mid x^2 + y^2 + z^2 \le R^2, z \ge 0\}$$

$$\Omega_2 = \{(x, y, z) \mid x^2 + y^2 + z^2 \le R^2, x \ge 0, y \ge 0, z \ge 0\}$$

(A)
$$\iiint_{\Omega_1} x \, dv = 4 \iiint_{\Omega_2} x \, dv \quad (B) \quad \iiint_{\Omega_1} y \, dv = 4 \iiint_{\Omega_2} y \, dv$$

(C)
$$\iiint_{\Omega_1} z \, dv = 4 \iiint_{\Omega_2} z \, dv \quad (D) \iiint_{\Omega_1} xyz \, dv = 4 \iiint_{\Omega_2} xyz \, dv$$

$$=4\iiint_{\Omega_2} x \, \mathrm{d} v = 4\iiint_{\Omega_2} y \, \mathrm{d} v$$

例6. 设
$$\Omega: x^2 + y^2 + z^2 \le 1$$
, 计算

$$\iiint_{\Omega} \frac{z \ln(x^2 + y^2 + z^2 + 1)}{x^2 + y^2 + z^2 + 1} dv.$$

解: 利用"先一后二"(投影)法,有

原式=
$$\iint_{x^2+y^2 \le 1} dxdy \int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}} \frac{z \ln(x^2+y^2+z^2+1)}{x^2+y^2+z^2+1} dz$$

= 0 (注: 对称区间, 奇函数)

小结: 三重积分的计算方法

方法1. "先一后二"

$$\iiint_{\Omega} f(x,y,z) \, \mathrm{d} v = \iint_{D_{xy}} \mathrm{d} x \, \mathrm{d} y \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) \, \mathrm{d} z$$

$$\iiint_{\Omega} f(x,y,z) \, \mathrm{d} v = \iint_{D_{zx}} \mathrm{d} z \, \mathrm{d} x \int_{y_1(z,x)}^{y_2(z,x)} f(x,y,z) \, \mathrm{d} y$$

$$\iiint_{\Omega} f(x,y,z) \, \mathrm{d} v = \iint_{D_{yz}} \mathrm{d} y \, \mathrm{d} z \int_{x_1(y,z)}^{x_2(y,z)} f(x,y,z) \, \mathrm{d} x$$

小结: 三重积分的计算方法

方法2. "先二后一"

$$\iiint_{\Omega} f(x, y, z) dv = \int_{a}^{b} dz \iint_{D_{z}} f(x, y, z) dx dy$$

$$\iiint_{\Omega} f(x, y, z) dv = \int_{c}^{d} dx \iint_{D_{x}} f(x, y, z) dy dz$$

$$\iiint_{\Omega} f(x, y, z) dv = \int_{e}^{f} dy \iint_{D_{y}} f(x, y, z) dz dx$$

小结: 三重积分的计算方法

方法3. 对称性的应用

若 Ω 关于yoz面(或xoz面,xoy面)对称,且f(x,y,z)为关

于x(或 y, z)的连续奇函数,则

$$\iiint_{\Omega} f(x, y, z) \, \mathrm{d} \, v = \mathbf{0}$$

练习 计算 $I = \iiint_{\Omega} y \sqrt{1-x^2} \, dx \, dy \, dz$, 其中 Ω 由

$$y = -\sqrt{1-x^2-z^2}$$
, $x^2+z^2=1$, $y=1$ 所**围成**.

分析: 若用"先二后一",则有

$$I = \int_{-1}^{0} y \, dy \iiint_{D_{y}} \sqrt{1 - x^{2}} \, dx \, dz$$
$$+ \int_{0}^{1} y \, dy \iiint_{D_{y}} \sqrt{1 - x^{2}} \, dx \, dz$$

计算较繁,采用"三次积分"较好.

第七章

解: Ω由 $y = -\sqrt{1-x^2-z^2}$, $x^2+z^2=1$, y=1所围,

故可表为

$$\Omega: \begin{cases} -\sqrt{1-x^2} - z^2 \le y \le 1 \\ -\sqrt{1-x^2} \le z \le \sqrt{1-x^2} \\ -1 \le x \le 1 \end{cases}$$

$$I = \iiint_{\Omega} y \sqrt{1 - x^2} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

$$= \int_{-1}^{1} \sqrt{1 - x^2} \, dx \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} dz \int_{-\sqrt{1 - x^2 - z^2}}^{1} y \, dy = \frac{28}{45}$$

思考: 若被积函数为f(x)时,如何计算简便?

2. 利用柱面坐标计算三重积分

/* Triple Integrals in Cylindrical Coordinates */

设 $M(x,y,z) \in \mathbb{R}^3$,将x,y用极坐标 ρ , θ 代替,则 (ρ,θ,z)

就称为点M 的柱面坐标.

(1)柱面坐标

$$(x, y, z) \rightarrow (\rho, \theta, z)$$

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \begin{cases} 0 \le \rho < +\infty \\ 0 \le \theta \le 2\pi \\ -\infty < z < +\infty \end{cases}$$

第七章

2. 利用柱面坐标计算三重积分

(2)柱面坐标的坐标面

动点 $M(\rho, \theta, z)$

 ρ =常数: 柱面S

 $z = 常数: 平面\Pi$

2. 利用柱面坐标计算三重积分

(2)柱面坐标的坐标面

动点 $M(\rho, \theta, z)$

 ρ =常数: 柱面S

 $z = 常数: 平面 \Pi$

 θ =常数:半平面P

2. 利用柱面坐标计算三重积分

(3)柱面坐标下的体积元素

元素区域由六个坐标面围成:

半平面 θ 及 θ +d θ ;

半径为 ρ 及 ρ +d ρ 的园柱面;

平面 z及 z+dz;

2. 利用柱面坐标计算三重积分

(3)柱面坐标下的体积元素

元素区域由六个坐标面图

半平面 θ 及 θ +d θ ;

半径为 ρ 及 ρ +d ρ 四四征则,

平面 z及 z+dz;

平面z+dz

2. 利用柱面坐标计算三重积分

(3)柱面坐标下的体积元素

元素区域由六个坐标面围成:

半平面 θ 及 θ +d θ ;

半径为 ρ 及 ρ +d ρ 的园柱面;

平面 z及 z+dz;

dV = dxdydz

 $= \rho d\rho d\theta dz$

柱面坐标系中体积元素

 $dv = \rho d\rho d\theta dz$

因此 $\iiint_{\Omega} f(x,y,z) dx dy dz$

$$= \iiint_{\Omega'} f(\rho \cos \theta, \rho \sin \theta, z) \rho d\rho d\theta dz$$

适用范围: $d\theta = \rho d\rho d\theta$

- 1) 积分域表面用柱面坐标表示时方程简单;
- 2) 被积函数用柱面坐标表示时变量互相分离.

例7. 计算三重积分 $\iint_{\Omega} z \sqrt{x^2 + y^2} dx dy dz$ 其中 Ω 为

由柱面 $x^2 + y^2 = 2x$ 及平面 z = 0, z = a (a > 0), y = 0 所

围成半圆柱体.

$$0 \le z \le a$$

解: 在柱面坐标系下 Ω : $\begin{cases} 0 \le \rho \le 2\cos\theta \\ 0 \le \beta \le \frac{\pi}{2} \end{cases}$ 原式 = $\iint_{\Omega} z \rho^2 d\rho d\theta dz$

$$0 \le \theta \le \frac{\pi}{2}$$

$$= \int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} \rho^2 d\rho \int_0^a z dz$$

$$= \frac{4a^2}{3} \int_0^{\frac{\pi}{2}} \cos^3 \theta \, d\theta = \frac{8}{9} a^2$$

 $dv = \rho d\rho d\theta dz$

例8. 计算三重积分 $\iiint_{\Omega} \frac{dxdydz}{1+x^2+v^2}$, 其中 Ω 由抛物面

$$x^2 + y^2 = 4z$$
 与平面 $z = h(h > 0)$ 所围成.

解: 在柱面坐标系下
$$\Omega$$
:
$$\begin{cases} \frac{\rho^2}{4} \le z \le h \\ 0 \le \rho \le 2\sqrt{h} \\ 0 \le \theta \le 2\pi \end{cases}$$

原式 =
$$\int_0^{2\pi} d\theta \int_0^{2\sqrt{h}} d\rho \int_{\frac{\rho^2}{4}}^h \frac{\rho}{1+\rho^2} dz$$
 $\frac{y}{dv = \rho d\rho d\theta dz}$ $= 2\pi \int_0^{2\sqrt{h}} \frac{\rho}{1+\rho^2} (h - \frac{\rho^2}{4}) d\rho$ $= \frac{\pi}{4} [(1+4h)\ln(1+4h)-4h]$

练习(6分):计算三重积分 $\iiint_{\Omega} (x^2 + y^2) dv$,其中 Ω 是yoz平面上

曲线 $y^2 = 2z$ 绕z轴旋转而成的曲面与平面z = 5所围成的区域

解: 在柱面坐标系下 Ω : $\begin{cases} \frac{\rho^2}{2} \le z \le 5 \\ 0 \le \rho \le \sqrt{10} \\ 0 \le \theta \le 2\pi \end{cases}$

原式 =
$$\int_0^{2\pi} d\theta \int_0^{\sqrt{10}} d\rho \int_{\frac{\rho^2}{2}}^5 \rho^3 dz$$

= $2\pi \int_0^{2\sqrt{h}} \rho^3 (5 - \frac{\rho^2}{2}) d\rho = \frac{250}{3}\pi$

3. 利用球面坐标计算三重积分 (1)球面坐标

/* Triple Integrals in Spherical Coordinates */

设 $M(x,y,z) \in \mathbb{R}^3$, 其柱面坐标为 (ρ,θ,z) , 令|OM|=r, $\angle zOM = \varphi$, 则 (r,θ,φ) 就称为点M的球面坐标.

$$\begin{cases} x = r\sin\varphi\cos\theta \\ y = r\sin\varphi\sin\theta \\ z = r\cos\varphi \end{cases}$$

$$\begin{pmatrix}
0 \le r < +\infty \\
0 \le \theta \le 2\pi \\
0 \le \varphi \le \pi
\end{pmatrix}$$

3. 利用球面坐标计算三重和公

(2)球面坐标的坐标面

动点 $M(r, \theta, \varphi)$

r = 常数: 球面S

 φ =常数:

(2)球面坐标的坐标面

动点 $M(r,\theta,\varphi)$

r = 常数: 球面S

 φ =常数: 锥面C

 θ =常数: 半平面P

3. 利用球面坐标计算三重积分

(3)球面坐标下的体积元素

元素区域由六个坐标面围成:

半平面 θ 及 θ +d θ ;

半径为r及r+dr的球值 $r\sin\varphi d\theta$

圆锥面 φ 及 φ +d φ

(3)球面坐标下的体积元素

元素区域由六个坐标面围成:

半平面 θ 及 θ +d θ ;

半径为r及r+dr的球值 $r\sin\varphi d\theta$

圆锥面 φ 及 φ +d φ

 $dV = r\sin\varphi d\theta r d\varphi dr$

 $= r^2 \sin \varphi \, dr \, d\theta d\varphi$

如图所示,在球面坐标系中体积元素为

$$dv = r^2 \sin \varphi dr d\varphi d\theta$$

因此

$$\iiint_{\Omega} f(x,y,z) dx dy dz$$

 $= \iiint_{\Omega'} f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 \sin\varphi dr d\varphi d\theta$

适用范围:

- 1) 积分域表面用球面坐标表示时方程简单;
- 2) 被积函数用球面坐标表示时变量互相分离.

例9. 计算三重积分 $\iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz$, 其中 Ω

为锥面 $z = \sqrt{x^2 + y^2}$ 与球面 $x^2 + y^2 + z^2 = R^2$ 所围立体.

解: 在球面坐标系下

$$\Omega: \left\{ \begin{array}{l} 0 \le r \le R \\ 0 \le \varphi \le \frac{\pi}{4} \\ 0 \le \theta \le 2\pi \end{array} \right.$$

$$\therefore \iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz$$

$$= \iiint_{\Omega} r^2 r^2 \sin \varphi \, dr \, d\varphi \, d\theta$$

$$= \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} \sin\varphi d\varphi \int_0^R r^4 dr = \frac{1}{5}\pi R^5 (2 - \sqrt{2})$$

 $\mathbf{d}v = r^2 \sin \varphi \, \mathbf{d}r \, \mathbf{d} \, \varphi \, \mathbf{d} \, \theta$

例10 设Ω 由锥面 $z = \sqrt{x^2 + y^2}$ 和球面 $x^2 + y^2 + z^2 = 4$

所围成, 计算 $I = \iiint_{\Omega} (x+y+z)^2 dv$.

提示:

$$I = \iiint_{\Omega} (x^2 + y^2 + z^2 + 2xy + 2yz + 2xz) dv$$

利用对称性

$$= \iiint_{\Omega} (x^2 + y^2 + z^2) \, \mathrm{d}v$$

用球面坐标

$$= \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} \sin\varphi d\varphi \int_0^2 r^4 dr = \frac{64}{5} \left(1 - \frac{\sqrt{2}}{2} \right) \pi$$

内容小结

坐标系	体积元素	适用情况
直角坐标系	dxdydz	积分区域多由坐标面
柱面坐标系	hod $ ho$ d $ heta$ dz	围成; 被积函数形式简洁,或
球面坐标系	$r^2 \sin \varphi \mathrm{d}r \mathrm{d}\varphi \mathrm{d}\theta$	变量可分离.

* 说明:

三重积分也有类似二重积分的换元积分公式:

$$\iiint_{\Omega} f(x,y,z) dxdydz = \iiint_{\Omega^*} F(u,v,w) |J| dudvdw$$

对应雅可比行列式为
$$J = \frac{\partial(x,y,z)}{\partial(u,v,w)}$$

