Aufgabe 1. (Eigenwerte und Diagonalisierbarkeit)

- 1. Es sei $A \in GL_2(\mathbb{C})$ mit Spur A = 0. Zeigen Sie, dass A diagonalisierbar ist.
- 2. Zeigen Sie, dass jede Matrix $A \in M_3(\mathbb{R})$ einen reellen Eigenwert hat.
- 3. Folgern Sie, dass jede nicht-triagonalisierbare Matrix $A \in M_3(\mathbb{R})$ über \mathbb{C} diagonalisierbar ist.

(*Tipp*: Zeigen Sie, dass für jeden Eigenwert λ von A auch $\overline{\lambda}$ ein Eigenwert ist.)

- 4. Es sei $A \in M_n(\mathbb{C})$ und $k \geq 0$ mit $A^k = 1$. Zeigen Sie, dass A diagonalisierbar ist, und bestimmen Sie alle möglichen Eigenwerte für A.
- 5. Es sei $A \in M_2(\mathbb{C})$ mit Spur A = 0 und Spur $A^2 = -2$. Bestimmen Sie det A. Entscheiden Sie auch, ob A diagonalisierbar ist.
- 6. Es sei $A \in M_2(\mathbb{C})$ mit Spur A = 2 und Spur $A^2 = 4$. Zeigen Sie, dass A diagonalisierbar ist, und bestimmen Sie die Eigenwerte von A.
- 7. Es sei $A \in M_n(\mathbb{C})$ mit $A^2 + A = 61$ und det A = 144. Bestimmen Sie n.
- 8. Es sei $A \in M_n(\mathbb{C})$ mit $A^3 = 3A 2\mathbb{I}$ und $A^3 + A^2 = A + \mathbb{I}$. Zeigen Sie, dass $A = \mathbb{I}$.

Aufgabe 2. (Determinante und Potenzen der Spur)

Zeigen Sie für alle $A \in M_3(\mathbb{C})$ die Gleichheit

$$\det A = \frac{1}{6} (\operatorname{Spur} A)^3 - \frac{1}{2} (\operatorname{Spur} A^2) (\operatorname{Spur} A) + \frac{1}{3} (\operatorname{Spur} A^3).$$

Aufgabe 3. (Diagonalisieren)

1. Es sei

$$A := \begin{pmatrix} 2 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 2 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

Bestimmen Sie die Eigenwerte von A und zeigen Sie, dass A diagonalisierbar ist.

2. Es sei

$$A := \begin{pmatrix} 0 & \mathbb{1}_n \\ \mathbb{1}_n & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R}).$$

Geben Sie eine Basis von K^{2n} aus Eigenvektoren von A an. Bestimmen Sie anschließend $p_A(t)$ sowie det A.

(*Tipp*: A vertauscht die Basisvektoren e_i und e_{n+i} .)

Aufgabe 4. (Wurzeln und Potenzen)

Es seien

$$A \coloneqq \begin{pmatrix} 7 & -12 \\ 4 & -7 \end{pmatrix} \in \mathrm{M}_2(\mathbb{C}) \quad \mathrm{und} \quad B \coloneqq \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \in \mathrm{M}_2(\mathbb{C}).$$

- 1. Geben Sie eine Matrix $C \in M_2(\mathbb{C})$ mit $A = \mathbb{C}^2$ an.
- 2. Berechnen Sie B^{2017} . (Tipp: Ignorieren Sie ggf. zunächst den Vorfaktor $1/\sqrt{2}$.)

Aufgabe 5. (Cayley-Hamilton)

Es sei K ein Körper.

- 1. Zeigen Sie für $A \in M_n(K)$, dass die Potenzen $\mathbb{1}, A, A^2, \ldots, A^n$ linear abhängig sind.
- 2. Es sei $A \in GL_n(K)$. Zeigen Sie, dass es ein Polynom $p \in K[t]$ mit $p(A) = A^{-1}$ gibt. Bestimmen Sie ein solches Polynom für die Matrix

$$A := \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \in GL_3(\mathbb{R}).$$

Aufgabe 6. (Simultane Diagonalisierbarkeit)

- 1. Es sei V ein endlichdimensionaler K-Vektorraum, und es seien $f,g\colon V\to V$ zwei diagonalisierbare Endomorphismen mit $f\circ g=g\circ f$. Zeigen Sie, dass auch $f\circ g$ diagonalisierbar ist.
- 2. Bestimmen Sie alle $a, b \in \mathbb{R}$, so dass die beiden Matrizen

$$\begin{pmatrix} a & 1 \\ 0 & 3 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} -1 & 2 \\ 0 & b \end{pmatrix}$$

simultan diagonalisierbar sind.

Aufgabe 7. (Symmetrische und schiefsymmetrische Matrizen)

Es sei K ein Körper mit char $K \neq 2$. Es sei

$$\operatorname{Sym}_n(K) = \{ A \in \operatorname{M}_n(K) \mid A^T = A \}$$

der Raum der symmetrischen Matrizen und

$$Alt_n(K) = \{ A \in M_n(K) \,|\, A^T = -A \}$$

der Raum der schiefsymmetrischen Matrizen.

1. Zeigen Sie, dass $\operatorname{Sym}_n(K)$ und $\operatorname{Alt}_n(K)$ Untervektorräume von $\operatorname{M}_n(K)$ sind, und dass $\operatorname{M}_n(K) = \operatorname{Sym}_n(K) \oplus \operatorname{Alt}_n(K)$ gilt. (*Hinweis*: Für die Abbildung $f \colon \operatorname{M}_n(K) \to \operatorname{M}_n(K)$, $A \mapsto A^T$ gilt $f^2 = \operatorname{id}$.)

2. Geben Sie Basen von $\operatorname{Sym}_n(K)$ und $\operatorname{Alt}_n(K)$ an.

Aufgabe 8.

Es sei $f \colon V \to V$ ein Endomorphismus.

- 1. Es sei $v \in V$ ein Eigenvektor von f zum Eigenwert $\lambda \in K$. Zeigen Sie, dass v für jedes Polynom $p \in K[t]$ ein Eigenvektor von p(f) zum Eigenwert $p(\lambda)$ ist.
- 2. Es sei K algebraisch abgeschlossen und $p \in K[t]$. Zeigen Sie, dass es für jeden Eigenwert μ von p(f) einen Eigenwert λ von f mit $\mu = p(\lambda)$ gibt. (*Tipp*: Zeigen Sie zunächst, dass der Endomorphismus $(p \lambda)(f)$ nicht injektiv ist. Zerlegen Sie anschließend $p \lambda$ in Linearfaktoren.

Aufgabe 9. (Diagonalisieren über \mathbb{F}_5)

Es sei

$$A := \begin{pmatrix} 3 & 4 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{F}_5).$$

Bestimmen Sie eine Matrix $S \in GL_3(\mathbb{F}_5)$, so dass $S^{-1}AS$ in Diagonalform ist.