CHEMISTRY

2. 3. 4. 5.	How many lattices points are there in one unit cell of face centred cubic lattice? [1] State Henery's law. [1] Draw the structure of the compound: N- Ethyl – N- Methyl Benzamide. [1] Mention the factors that affect the rate of a chemical reaction. [1] Explain why the bond order of N2 is greater than N2+, but the bond order of O2 is less that that of O2+. [2]						
6.	Calculate Δ	$\Lambda_r G^o$ for conv	version of oxyger	to ozone	$\frac{3}{2}O_2(g) \rightarrow O$	$Q_3(g)$ at 29	8k, if kp
	for [2]	this	conversion	is	2.47	X	10-29.
	Are all the five bonds in Pd5 molecule equivalent? Justify your answer with structure. Give the reagents to bring about the following transformations: (a) Butane- 10 <i>l</i> to Butanal (b) Cyclohexanol to cyclohexanone. [2]						
9.	N,-N-Diethyl-m-toluamide is an active ingredient in many insect-repellent preparation. How will you prepare this compound from m-bromotoluene? [2] How is bakelite formed? Explain the reactions with equations. [2] Draw simple Fischer projections of D. and L-glucose. Are these enantiomers? [2] Calculate the de-Broglie wave length of an electron traveling at 1% of the speed of light. [3]						
11.							
13.		ne efficiency	of packing in cas	e of a metal	crystal for 'f	ace centred	
	Gibbs ener constant. 18g of glu	rgy of react [3] acose, C ₆ H ₁₂	action: $C(S)+I$ ion (at 1000k) :	is -8.1KJ i in 1kg of	mol ⁻¹ . Calcul water in a	ate its equ	uilibrium At what
	temperature	e will the wa	ter boil (1.013 bar	pressure).	K _b for water i	s 0.52 K kg	g mol ⁻¹ . [3]
	affected if t	the concentra	rder with respect ation of the reactar erms: (i) Peptisation	nt is (i) doul	bled (ii) reduc	ced to ½?	reaction [3]
	-	, and the second	· · / · · ·	` '	1	,	[3]
	(ii) Wri (iii) Dra	te the structu aw structures	of [Pt cl (NH ₃) ₅] c are of Pentoaquacl of geometrical is	nloromium(omers of [C	COCL ₂ (NH3)		[3]
19.	Calculate 'S	Y_2 for $^{241}A_m$	in years given th	nat it emits	$1.2 \times 10^{11} \alpha$	particles p	
20.		ene -1,2 diol	prepared form (i)	ethylene o	oxide (ii) etha	ne (iii) 1,2	[3] dibromo [3]
22.	Name the d (a) What pr	leficiency dis opellants hav	Kolbe reaction (ii) seases caused due ve been used in Ps itable examples (i	t pack vitar SLV-C4 roc	nin C, E, B, E ket?	B_{12} , B_6 and B_{12}	[3] K. [3] [3]
24.	Describe t	he preparati	on of potassium reacts with (a) iron	n permanga	anate. How	does the	acidified

ionic equations for the reactions. [5]

- 25. Three electrolytic cells A,B,C containing solutions of ZnSO₄, AgNO₃ and CuSO₄ respectively are connected in series. A steady current of 1.5 Amp. was passed through them until 1.45 g of silver deposited at the cathode of cell B. How long did the current flow? What mass of copper and of zinc were deposited? [5]
- **26.** (a) On what ground can you say that scandium is a transition element but zinc is not.
 - (b) Evaluate the magnetic moment of a divalent ion in aqueous solution if it atomic number is 25.
 - (c) Using VSEPR theory, predict the probable structures of SO 2 ₃, IF $^-$ ₆ and ClO $^-$ ₄. [5]