

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2000-44633

(P2000-44633A)

(43)公開日 平成12年2月15日(2000.2.15)

(51)Int.Cl.⁷

C 08 F 136/06

C 08 L 9/00

識別記号

F I

C 08 F 136/06

C 08 L 9/00

テマコード(参考)

4 J 0 0 2

4 J 1 0 0

審査請求 未請求 請求項の数3 O.L (全9頁)

(21)出願番号

特願平10-218013

(22)出願日

平成10年7月31日(1998.7.31)

(71)出願人 000000206

宇部興産株式会社

山口県宇部市西本町1丁目12番32号

(72)発明者 中村 裕之

千葉県市原市五井南海岸8番の1 宇部興
産株式会社千葉石油化学工場内

(72)発明者 仲島 肇

千葉県市原市五井南海岸8番の1 宇部興
産株式会社千葉石油化学工場内

(72)発明者 前田 孝二

千葉県市原市五井南海岸8番の1 宇部興
産株式会社千葉石油化学工場内

最終頁に続く

(54)【発明の名称】 新規なビニル・シースプタジエンゴムの製造方法及びビ
タジエンゴム組成物

ニル・シースプ

(57)【要約】 (修正有)

【課題】成形加工性や引張応力、引張強さ、耐屈曲亀裂成長性などを改良したビニル・シースプタジエンゴム及びビニル・シースプタジエンゴム組成物。

【解決手段】(A) 1, 3-ブタジエンとC₄留分を主成分とする不活性溶媒を混合し、(B)得られた混合物の水分の濃度を調節し、(C)シス-1, 4重合触媒の一成分であるA₁R_n3-1 X (RはC₁~6アルキル基又はシクロアルキル基、Xはハロゲン元素、nは1, 5~2)とシス-1, 4重合触媒の他の一成分である可溶性コバルト化合物とを前記混合物に添加してシス-1, 4重合する、(D)得られた重合反応混合物に可溶性コバルト化合物と一般式A₁R₃ (RはC₁~6アルキル基又はシクロアルキル基)と二硫化炭素とから得られるシンジオタクチック-1, 2重合触媒を存在させて1, 3-ブタジエンをシンジオタクチック-1, 2重合する。

【特許請求の範囲】

【請求項1】 1, 3-ブタジエンをシス-1, 4重合し、次いでシンジオタクチック-1, 2重合する方法において、(A) 1, 3-ブタジエンとC₄留分を主成分とする不活性有機溶媒を混合し、(B) 得られた1, 3-ブタジエンとC₄留分を主成分とする不活性有機溶媒からなる混合物の水分の濃度を調節し、次いで、(C) シス-1, 4重合触媒の一成分である一般式A₁R_nX_{3-n}（但しRは炭素数1～6のアルキル基、フェニル基又はシクロアルキル基であり、Xはハロゲン元素であり、nは1. 5～2の数字）で表されるハロゲン含有の有機アルミニウム化合物とシス-1, 4重合触媒の他の一成分である可溶性コバルト化合物とを前記混合物に添加して1, 3-ブタジエンをシス-1, 4重合する、そして、(D) 得られた重合反応混合物中に可溶性コバルト化合物と一般式A₁R₃（但しRは炭素数1～6のアルキル基、フェニル基又はシクロアルキル基である）で表される有機アルミニウム化合物と二硫化炭素とから得られるシンジオタクチック-1, 2重合触媒を存在させて、1, 3-ブタジエンをシンジオタクチック-1, 2重合することを特徴とする新規なビニル・シス-ブタジエンゴムの製造方法。

【請求項2】 C₄留分を主成分とする不活性有機溶媒がn-ブタン、シス-2-ブテン、トランス-2-ブテン、及びブテン-1から選択される請求項1記載のビニル・シス-ブタジエンゴムの製造方法。

【請求項3】 ビニル・シス-ブタジエンゴム組成物が以下(a)～(b)からなる：

- (a) 沸騰n-ヘキサン不溶分3～30重量%；
- (1) 沸騰n-ヘキサン不溶分がシンジオタクチック-1, 2-ポリブタジエンであり、(2) シンジオタクチック-1, 2-ポリブタジエンが短纖維結晶であり、
- (3) 短纖維結晶の長軸長さの分布が纖維長さの98%以上が0. 6 μm未満であり、70%以上が0. 2 μm未満である、(b) 沸騰n-ヘキサン可溶分97～70重量%；
- (1) 沸騰n-ヘキサン可溶分のミクロ構造が90%以上のシス-1, 4-ポリブタジエンであることを特徴とする。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明はC₄留分を主成分とする不活性有機溶媒中におけるシス-1, 4重合とシンジオタクチック-1, 2重合からなるビニル・シス-ブタジエンゴム（以下、VCRと略す）の製造方法及びVCR組成物に関するものである。詳しくはシス-1, 4-ポリブタジエンであるブタジエンゴム（以下、BRと略す）の成形性や引張応力、引張強さ、耐屈曲亀裂成長性などを改良したVCRの更なる改良に関するものである。

【0002】

【従来の技術】従来VCRの製造方法はベンゼン、トルエン、キシレンなどの芳香族炭化水素、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素、シクロヘキサン、シクロペタンなどの脂環族炭化水素、及びこれらのハロゲン化族炭化水素、例えばクロルベンゼン、塩化メチレンなどの不活性有機溶媒で行われてきた。これらの溶媒を用いると重合溶液の粘度が高く攪拌、伝熱、移送などに問題があり、溶媒の回収には過大なエネルギーが必要であった。又、前記溶媒は毒性の為、発癌作用の為に環境にとって非常に危険性のあるものであった。

【0003】VCRの製造方法としては前記の不活性有機溶媒中で水、可溶性コバルト化合物と一般式A₁R_nX_{3-n}（但しRは炭素数1～6のアルキル基、フェニル基又はシクロアルキル基であり、Xはハロゲン元素であり、nは1. 5～2の数字）で表せる有機アルミニウムクロライドから得られた触媒を用いて1, 3-ブタジエンをシス-1, 4重合してBRを製造して、次いでこの重合系に1, 3-ブタジエン及び／または前記溶媒を添加するか或いは添加しないで可溶性コバルト化合物と一般式A₁R₃（但しRは炭素数1～6のアルキル基、フェニル基又はシクロアルキル基である）で表せる有機アルミニウム化合物と二硫化炭素とから得られるシンジオタクチック-1, 2重合触媒を存在させて1, 3-ブタジエンをシンジオタクチック-1, 2重合（以下、1, 2重合と略す）する方法（特公昭49-17666号、特公昭49-17667号）は公知である。

【0004】また特公昭62-171号公報、特公昭63-36324号公報、特公平2-37927号公報、特公平2-38081号公報、特公平3-63566号公報にはVCRの製造法として二硫化炭素の存在下又は不在下に1, 3-ブタジエンをシス-1, 4重合してVCRを製造したり、VCRを製造した後に1, 3-ブタジエンと二硫化炭素を分離・回収して二硫化炭素を実質的に含有しない1, 3-ブタジエンや前記の不活性有機溶媒を循環させる方法などが記載されている。更に特公平4-48815号公報には配合物のダイスウェル比が小さく、その加硫物がタイヤのサイドウォールとして好適な引張応力と耐屈曲亀裂成長性に優れたVCRが記載されている。

【0005】

【発明が解決しようとする課題】しかしながら、これらのVCRの製造方法はベンゼン、トルエン、キシレンなどの芳香族炭化水素、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素、シクロヘキサン、シクロペタンなどの脂環族炭化水素、及びこれらのハロゲン化族炭化水素、例えばクロルベンゼン、塩化メチレンなどの不活性有機溶媒で行われているので重合溶液の粘度が高く攪拌、伝熱、移送などに問題があり、溶媒の回収には過大なエネルギーを必要とするし、人体に対する環境衛生な

どの欠点を有している。また配合物や加硫物物性などは更に改良する必要がある。本発明はこのような問題点を解決すべくなされたものであり、主に常温で沸点を有する不活性媒体中で水ー有機アルミニウムクロライドー可溶性コバルト化合物を触媒成分として1, 3-ブタジエンを連続的にシスー1, 4重合した後に1, 3-ブタジエンを連続的に1, 2重合して沸騰n-ヘキサン不溶分(以下、H. Iと略す)3~30重量%と沸騰n-ヘキサン可溶分97~70重量%とするV C Rの新規製造方法及びV C R組成物を提供することを目的とする。

【0006】

【課題を解決するための手段】本発明によれば、(A) 1, 3-ブタジエンとC₄留分を主成分とする不活性有機溶媒を混合して、(B) 得られた1, 3-ブタジエンと不活性有機溶媒からなる混合物の水分の濃度を調節し、次いで、(C) シスー1, 4重合触媒の一成分である一般式A₁R_nX_{3-n}(但しRは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基であり、Xはハロゲン元素であり、nは1. 5~2の数字)で表されるハロゲン含有の有機アルミニウム化合物とシスー1, 4重合触媒の他の一成分である可溶性コバルト化合物とを前記混合物に添加して1, 3-ブタジエンをシスー1, 4重合して、(D) 得られた重合反応混合物中に可溶性コバルト化合物と一般式A₁R₃(但しRは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基である)で表される有機アルミニウム化合物と二硫化炭素とから得られるシンジオタクチックー1, 2重合触媒を存在させて、1, 3-ブタジエンをシンジオタクチックー1, 2重合(以下、1, 2重合と略す)して新規なビニル・シス-ブタジエンゴム(以下、V C Rと略す)が提供される。そして、C₄留分を主成分とする不活性有機溶媒がn-ブタン、シスー2-ブテン、トランスー2-ブテン、ブテンー1から選択される。そして、以下の(a)及び(b)からなる:即ち、(a) 沸騰n-ヘキサン不溶分が3~30重量%; (1) 沸騰n-ヘキサン不溶分(以下、H. Iと略す)がシンジオタクチックー1, 2-ポリブタジエン(以下、S P B Dと略す)であり、(2) S P B Dの分散形態が短纖維結晶であり、(3) 短纖維結晶の長軸長さの分布が纖維長さの98%が0. 6 μm未満であり、70%以上が0. 2 μm未満である、また(b) 沸騰n-ヘキサン可溶分97~70重量%; (1) 沸騰n-ヘキサン可溶分のミクロ構造が90%以上のシスー1, 4-ポリブタジエンからなるV C R組成物が提供される。

【0007】

【発明の実施の形態】まず本発明のV C Rの製造方法及びV C R組成物の一態様を説明する。1, 3-ブタジエンと炭素数が4のC₄留分を主成分とする不活性媒体は好ましくは1, 3-ブタジエンとC₄留分を主成分とする不活性媒体との合計量に対する1, 3-ブタジエンの

割合が10重量%以上、特に10~60重量%となるように混合する。60重量%以上の場合にはV C Rの製造方法の制御が困難となり、10重量%以下ではV C Rの製造方法の効率が低下するので好ましくない。

【0008】炭素数が4のC₄留分(以下、C₄留分と略す)を主成分とする不活性有機溶媒としては、製造されるB Rを溶解し、又は溶解しなくても攪拌や移送、伝熱、重合反応槽への付着がなく、触媒の活性に悪影響を及ぼさない不活性媒体であれば特に制限されないが、本発明ではC₄留分を主成分とする不活性有機溶媒が使用される。好ましくはシスー2-ブテン、トランスー2-ブテンを50重量%以上含有し、シスー2-ブテンとトランスー2-ブテン以外に、ブテンー1、n-ブタンなどのC₄留分を主成分とする炭化水素が用いられる。炭素数がC₁~C₃留分を用いると低温・高圧下でのV C Rの製造が必要となり生産性も低下コスト高になりますので経済的でない。また、ベンゼン、トルエン、キシレン、クロルベンゼンなどの不活性溶媒を使用するとB R中へのS P B Dの短纖維結晶の分散状態が本発明の如く形成されないので、優れたダイスウェル特性や高引張応力、引張強さ、高屈曲亀裂成長性能を発現しないので好ましくない。但し、ベンゼン、トルエン、キシレン、クロルベンゼンなどを、例えば触媒調製用溶媒として使用することはできる。

【0009】次に1, 3-ブタジエンと前記のC₄留分を主成分とする不活性有機溶媒とを混合して得られた混合媒体中の水分の濃度を調節する。水分は前記媒体中の有機アルミニウムクロライド1モル当たり、好ましくは0. 1~1. 0モル、特に好ましくは0. 2~1. 0モルの範囲である。この範囲以外では触媒活性が低下したり、シスー1, 4構造含有率が低下したり、分子量が異常に低下又は高くなったり、重合時のゲルの発生を抑制することができず、このため重合槽などへのゲルの付着が起り、更に連続重合時間を延ばすことができないので好ましくない。水分の濃度を調節する方法は公知の方法が適用できる。多孔質濾過材を通して添加・分散させる方法(特開平4-85304号公報)も有効である。

【0010】1, 3-ブタジエンとC₄留分を主成分とする不活性媒体溶液中の水分の濃度を調節して得られた溶液には有機アルミニウムクロライドを添加する。一般式A₁R_nX_{3-n}で表される有機アルミニウムクロライドの具体例としては、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノプロマイド、ジイソブチルアルミニウムモノクロライド、ジシクロヘキシリアルミニウムモノクロライド、ジフェニルアルミニウムモノクロライド、ジエチルアルミニウムセスキクロライドなどを好適に挙げることができる。有機アルミニウムクロライドの使用量の具体例としては、1, 3-ブタジエンの全量1モル当たり0. 1ミリモル以上、特に0. 5~50ミリモルが好ましい。

【0011】次いで、有機アルミニウムクロライドを添加した混合媒体に可溶性コバルト化合物を添加してシスー1, 4重合する。可溶性コバルト化合物としては、C4留分を主成分とする不活性媒体又は液体1, 3-ブタジエンに可溶なものであるか又は、均一に分散できる、例えばコバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナートなどコバルトのβ-ジケトン錯体、コバルトアセト酢酸エチルエステル錯体のようなコバルトのβ-ケト酸エステル錯体、コバルトオクトエート、コバルトナフテネート、コバルトベンゾエートなどの炭素数6以上の有機カルボン酸のコバルト塩、塩化コバルトピリジン錯体、塩化コバルトエチルアルコール錯体などのハロゲン化コバルト錯体などを挙げることができる。可溶性コバルト化合物の使用量は1, 3-ブタジエンの1モル当たり0. 001ミリモル以上、特に0. 005ミリモル以上であることが好ましい。また可溶性コバルト化合物に対する有機アルミニウムクロライドのモル比(A1/C0)は10以上であり、特に50以上であることが好ましい。また、可溶性コバルト化合物以外にもニッケルの有機カルボン酸塩、ニッケルの有機錯塩、有機リチウム化合物を使用することも可能である。

【0012】シスー1, 4重合する温度は0℃を超える温度~100℃、好ましくは10~100℃、更に好ましくは20~100℃までの温度範囲で1, 3-ブタジエンをシスー1, 4重合する。重合時間(平均滞留時間)は10分~2時間の範囲が好ましい。シスー1, 4重合後のポリマー濃度は5~26重量%となるようにシスー1, 4重合を行うことが好ましい。重合槽は1槽、又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて溶液を攪拌混合して行う。重合に用いる重合槽としては高粘度液攪拌装置付きの重合槽、例えば特公昭40-2645号に記載された装置を用いることができる。

【0013】本発明のシスー1, 4重合時に公知の分子量調節剤、例えばシクロオクタジエン、アレン、メチルアレン(1, 2-ブタジエン)などの非共役ジエン類、又はエチレン、プロピレン、ブテンー1などのα-オレフィン類を使用することができる。又重合時のゲルの生成を更に抑制するために公知のゲル化防止剤を使用することができる。シスー1, 4-構造含有率が一般に90%以上、特に95%以上で、ムーニー粘度(ML₁₊₄, 100℃, 以下、MLと略す)10~130、好ましくは15~80であり、実質的にゲル分を含有しない。

【0014】前記の如くして得られたシスー1, 4重合反応混合物に1, 3-ブタジエンを添加しても添加しなくてもよい。そして、一般式A1R₃で表せる有機アルミニウム化合物と二硫化炭素、必要なら前記の可溶性コバルト化合物を添加して1, 3-ブタジエンを1, 2重合して沸点n-ヘキサン可溶分97~70重量%とH.

Iが3~30重量%とからなるVCRを製造する。一般式A1R₃で表せる有機アルミニウム化合物としてはトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-ヘキシリアルミニウム、トリフェニルアルミニウムなどを好適に挙げることができる。有機アルミニウム化合物は1, 3-ブタジエン1モル当たり0. 1ミリモル以上、特に0. 5~50ミリモル以上である。二硫化炭素は特に限定されないが水分を含まないものであることが好ましい。二硫化炭素の濃度は20ミリモル/L以下、特に好ましくは0. 01~10ミリモル/Lである。二硫化炭素の代替として公知のイソチオシアノ酸フェニルやキサントグン酸化合物を使用してもよい。

【0015】1, 2重合する温度は0℃を超える温度~100℃、好ましくは10~100℃、更に好ましくは20~100℃までの温度範囲で1, 3-ブタジエンを1, 2重合する。1, 2重合する際の重合系には前記のシス重合液100重量部当たり1~50重量部、好ましくは1~20重量部の1, 3-ブタジエンを添加することで1, 2重合時の1, 2-ポリブタジエンの収量を増大させることができる。重合時間(平均滞留時間)は10分~2時間の範囲が好ましい。1, 2重合後のポリマー濃度は9~29重量%となるように1, 2重合を行うことが好ましい。重合槽は1槽、又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて重合溶液を攪拌混合して行う。1, 2重合に用いる重合槽としては1, 2重合中に更に高粘度となり、ポリマーが付着しやすいので高粘度液攪拌装置付きの重合槽、例えば特公昭40-2645号公報に記載された装置を用いることができる。

【0016】重合反応が所定の重合率に達した後、常法に従って公知の老化防止剤を添加することができる。老化防止剤の代表としてはフェノール系の2, 6-ジ-tert-ブチル-p-クレゾール(BHT)、リン系のトリノニルフェニルfosファイト(TNP)、硫黄系のジラウリル-3, 3'-チオジプロピオネット(TPL)などが挙げられる。単独でも2種以上組み合わせて用いてもよく、老化防止剤の添加はVCR 100重量部に対して0. 001~5重量部である。次に重合停止剤を重合系に加えて停止する。例えば重合反応終了後、重合停止槽に供給し、この重合溶液にメタノール、エタノールなどのアルコール、水などの極性溶媒を大量に投入する方法、塩酸、硫酸などの無機酸、酢酸、安息香酸などの有機酸、塩化水素ガスを重合溶液に導入する方法などの、それ自体公知の方法である。次いで通常の方法に従い生成したVCRを分離、洗浄、乾燥する。

【0017】このようにして得られたVCRは沸騰n-ヘキサン可溶分97~70重量%とH. Iが3~30重量%とからなり、沸騰n-ヘキサン可溶分はミクロ構造が90%以上のシスー1, 4-ポリブタジエンであり、

H. I の融点が180～215℃のSPBDである。MLは20～150、好ましくは25～100である。VCR中に分散したSPBDはBRマトリックス中に微細な結晶として均一に分散し、SPBDの極微細短纖維結晶により結晶間距離が短縮されてその間にBRを拘束した構造となっており、その短纖維結晶の長軸長さの分布は纖維長さの98%以上が0.6μm未満であり、且つ纖維長さの70%以上が0.2μm未満である。他方、従来のVCRは、その短纖維結晶の長軸長さの分布は纖維長さの98%以上が1.0μm未満であり、且つ纖維長さの70%以上が0.4μm未満であった。明らかに分布が異なっていた。

【0018】このようにして得られたVCRを分離取得した残部の未反応の1,3-ブタジエン、不活性媒体及び二硫化炭素を含有する混合物から蒸留により1,3-ブタジエン、不活性媒体として分離して、一方、二硫化炭素を吸着分離処理、あるいは二硫化炭素付加物の分離処理によって二硫化炭素を分離除去し、二硫化炭素を実質的に含有しない1,3-ブタジエンと不活性媒体とを回収する。また、前記の混合物から蒸留によって3成分を回収して、この蒸留から前記の吸着分離あるいは二硫化炭素付着物分離処理によって二硫化炭素を分離除去することによっても、二硫化炭素を実質的に含有しない1,3-ブタジエンと不活性媒体とを回収することもできる。前記のようにして回収された二硫化炭素と不活性媒体とは新たに補充した1,3-ブタジエンを混合して使用される。

【0019】本発明による方法で連続運転すると、触媒成分の操作性に優れ、高い触媒効率で工業的に有利にVCRを連続的に長時間製造することができる。特に、重合槽内の内壁や攪拌翼、その他攪拌が緩慢な部分に付着することもなく、高い転化率で工業的に有利に連続製造できる。

【0020】本発明により得られるVCRは単独でまたは他の合成ゴム若しくは天然ゴムとブレンドして配合し、必要ならばプロセス油で油展し、次いでカーボンブラックなどの充填剤、加硫剤、加硫促進剤その他通常の配合剤を加えて加硫し、タイヤ用として有用であり、トレッド、サイウォール、ステイフナー、ビードフィラー、インナーライナー、カーカスなどに、その他、ホース、ベルトその他の各種工業用品等の機械的特性及び耐摩耗性が要求されるゴム用途に使用される。また、プラスチックスの改質剤として使用することもできる。

【0021】本発明により得られるVCRに前記の配合剤を加えて混練した組成物は、従来のベンゼン、トルエン、ヘキサン、シクロヘキサン、クロルベンゼンなどの溶媒を使用した方法で得られたVCRに比較してダイスウェル比（押し出し時の配合物の径とダイオリフィス径の比）が小さく押出加工性に優れている。本発明によるダイスウェル比（Ds n）及び前記従来の方法によるダイ

スウェル比（Ds o）の関係をDs n/Ds oの比とVCR組成物（配合物）中のH. I = w（重量%）の関係が以下の式で表されることを特徴とする。即ち、
 $Ds n / Ds o \leq -0.02w + 1$
 但し、VCR組成物=T（重量部）、VCR配合量=v（重量部）及びVCR組成物中のH. I = w（重量%）の関係はw = (v H. I) / Tである。VCR組成物中のH. Iが増加するとダイスウェル比が小さくなり押出加工性が改善される。即ち、本発明のVCR組成物と従来のVCR組成物間のダイスウェル比の差は、配合物中のH. Iが増加する程大きくなり、押出加工性が良好になることを示す。

【0022】また、本発明により得られるVCR組成物（配合物）を加硫すると硬度や引張応力が向上する。特に100%引張応力の向上が著しく、前記従来の方法で得られたVCRに比較して補強効果が大幅に改善されおり、本発明による100%引張応力(Mn 100)及び前記従来の方法による100%引張応力(Mo 100)の比と配合物中のH. I = w（重量%）の関係が以下の式で表されることを特徴とする。即ち、
 $Mn 100 / Mo 100 \geq 0.03w + 1$

但し、w = (v H. I) / Tであるのは前記の通りである。配合物のH. Iが増加すると加硫物の100%引張応力が大きくなる。即ち、本発明のVCRと従来のVCR間の100%引張応力の差は、配合物中のH. Iが増加する程大きくなり、補強効果が増大することを示す。

【0023】

【実施例】以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明の目的を限定するものではない。また、VCRの素ゴムの物性、配合物の物性及び加硫物の物性は以下のようにして測定した。

沸騰n-ヘキサン不溶分、H. I：；2gのVCRを200mlのn-ヘキサンにて4時間ソックスレー抽出器によって沸騰抽出した抽出残部を重量%で示した。

沸騰n-ヘキサン不溶分の融点：；沸騰n-ヘキサン抽出残部を示差走査熱量計(DSC)による吸熱曲線のピーク温度により決定した。

沸騰n-ヘキサン可溶分のミクロ構造：；赤外吸収分光法により測定した。ムニーニ粘度、ML 1+4, 100℃,

ML：；沸騰n-ヘキサン可溶分、VCR及び配合物のムニーニ粘度をJIS K 6300に準じて100℃にて測定した値である。

T-cp：；沸騰n-ヘキサン可溶分やBRの25℃における5重量%トルエン溶液の粘度を測定してセンチボイス(c p)で示した値である。

分子量分布：；沸騰n-ヘキサン可溶分のテトラヒドロフラン溶液にてゲル浸透クロマトグラフィー(GPC、トーソー社、HLC-802A)により40℃、標準ポリスチレンを使用した検量線より、重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)

η_{sp}/c) を求めた。

η_{sp}/c : ; 沸騰 n-ヘキサン不溶分の分子量の大きさの目安として 0.20 g/dl のテトラリン溶液から 135°C で還元粘度を測定した。

ダイスウェル比 : ; 加工性測定装置（モンサント社, MPT）を用いて配合物の押出し加工性の目安として 100°C, 100 sec⁻¹ の剪断速度で押出し時の配合物の径とダイオリフィス径（但し, L/D = 1.5 mm / 1.5 mm）の比を測定し、ダイスウェル比を求めた。また、比較例 1 を 100 としてダイスウェル指数を算出した。これらの数値が小さい程加工性が良好なことを示す。

加硫条件 : ; キュラストメーター（日本合成ゴム社, JSR キュラストメーター 2F）を使用して配合物の加硫曲線を測定し、その結果から、150°C で 40 分、プレス加硫した。

硬さ・引張・引裂試験 : ; 加硫物は JIS K 6250, K 6251, 及び K 6252 に準じて室温で測定してそれぞれ硬さ, 100% 引張応力 (kg/cm²), 引張強さ (kg/cm²), 伸び (%), 引裂強さ (kg/cm) で示した。

屈曲亀裂成長性 : ; JIS K 6260 に準じてストローク 5.6 mm, 初期亀裂 2 mm で亀裂が 15 mm まで成長した時点の屈曲回数で示した。

電子顕微鏡写真 : ; VCR を 2 mm 角のサンプルに切りだし、一塩化硫黄/二硫化炭素 = 1 : 1 溶液中に 72 時間浸漬して、VCR のシス部分の二重結合を選択的に加硫し、アセトンで十分洗浄した後に 3 日間風乾した加硫物をミクロトームで超薄切片を切りだして四塩化オスミウム蒸気で VCR のビニル部分の二重結合を染色し、透過型電子顕微鏡（日立製, H-7100）で観察して得られた 5,000 倍写真から VCR の SPBD 結晶の形態として短纖維の長軸の長さを目視で測定して 0.2 μm 刻みで分布図を作成した。又、平均纖維長軸長さを求めた。

【0024】 【実施例 1】所定の水分を溶解した 1, 3-ブタジエンを 32 重量% 濃度でシス-2-ブテンを主成分として含有する C₄ 留分 (68 重量%) 混合媒体 (水分; 2.09 ミリモル/L) を毎時 12.5 リットル (二硫化炭素 20 mg/L を含有する) を 20°C に保持された容量 2 リットルの攪拌機付きステンレス製熟成槽に供給すると共にジエチルアルミニウムクロライド (10 重量% の n-ヘキサン溶液, 3.13 mmol/L) を供給し、この反応槽溶液におけるジエチルアルミニウムクロライド/水モル比を 1.5 に調製する。得られた熟成液を 40°C に保持された容量 5 リットルの攪拌機付きステンレス製シス重合槽に供給する。このシス重合槽にはコバルトオクトエート (コバルトオクトエート 0.0117 mmol/L, n-ヘキサン溶液) と分子量調節剤 1, 2-ブタジエン (1, 2-ブタジエン 8.

2 mmol/L; 1.535 mmol/L の n-ヘキサン溶液) が供給される。得られたシス重合液を内容 5 リットルのリボン型攪拌機付きステンレス製 1, 2 重合槽に供給し、35°C で 10 時間連続重合した。この 1, 2 重合槽にはトリエチルアルミニウム (10 重量% の n-ヘキサン溶液, 4.09 mmol/L) を連続的に供給した。得られた重合液を攪拌機付混合槽に供給し、これに 2, 6-ジ-tert-ブチル-p-クレゾールをゴムに対して 1 PHR 加え、更にメタノールを少量加え重合を停止した後、未反応 1, 3-ブタジエン及び C₄ 留分を蒸発除去し、常温で真空乾燥して VCR 8.3 kg を得た。この VCR の ML = 5.7, H.I = 11.1%, H.I の融点 = 204.1°C, H.I の η_{sp}/c = 1.84, 沸騰 n-ヘキサン可溶分の ML = 3.0, 沸騰 n-ヘキサン可溶分の T-cp = 6.2, 沸騰 n-ヘキサン可溶分のシス-1, 4 構造 = 98.5%, M_w = 465,000, Mn = 188,000, M_w/Mn = 2.47 であった。透過型電子顕微鏡観察写真から得られた短纖維結晶の長軸長さの分布は纖維長さの 98% 以上が 0.6 μm 未満であり、且つ纖維長さの 70% 以上が 0.2 μm 未満であった。

【0025】 【実施例 2】実施例 1 と同様にしてシス重合して 1, 2 重合した。1, 2 重合槽にはコバルトオクトエート 0.1252 mmol/L とした以外は実施例 1 と同様に運転して 3 時間連続重合して、処理して VCR 2.3 kg を得た。この VCR の H.I は 17.1%, H.I の融点は 203.0°C, H.I の η_{sp}/c = 1.59 であった。この VCR に BR (ML = 2.9, T-cp = 5.8, M_w = 459,000, Mn = 185,000, M_w/Mn = 2.47) をドライブレンドして VCR を H.I = 12% に調整した。この VCR の ML = 5.6, H.I = 12.0%, H.I の融点 = 203.0°C, H.I の η_{sp}/c = 1.59, 沸騰 n-ヘキサン可溶分の T-cp = 5.5 であった。

【0026】 【比較例 1】不活性媒体にベンゼン-C₄ 留分混合溶媒 (ベンゼン 30 重量% とシス-2-ブテンを主成分とする C₄ 留分 3.9 重量%) とした場合の VCR (宇部興産社製, UBE POL-VCR 412, ML = 4.3, H.I = 11.1%) であり、H.I の融点 = 201.4°C, H.I の η_{sp}/c = 1.87 であった。沸騰 n-ヘキサン可溶分の ML = 3.2, 沸騰 n-ヘキサン可溶分のシス-1, 4 構造は 97.5%, M_w は 483,000, Mn は 198,000, M_w/Mn = 2.43 であった。透過型電子顕微鏡観察写真から得られた短纖維結晶の長軸長さの分布は纖維長さの 98% 以上が 1.0 μm 未満であり、且つ纖維長さの 70% 以上が 0.4 μm 未満であった。

【0027】 【比較例 2】比較例 1 と同様の混合溶媒を用いて得られた BR (宇部興産社製, UBE POL-BR 150) であり、ML = 4.3, シス-1, 4 構造 = 9

7.7%, T-cp = 75, M_w = 563,000, M_n = 206,000, M_w/M_n = 2.73 であった。

【0028】前記の実施例1及び2と比較例1及び2を表1の配合表に従って、一次配合した配合物に硫黄及び加硫促進剤以外の配合剤を混合して配合物の物性をそれぞれ測定して表2及び表3に示した。

【0029】前記の実施例1及び2と比較例1及び2を表1の配合表に従ってパンバリーミキサーにて一次配合した配合物に硫黄、加硫促進剤をオープンロールで二次配合して150°Cでプレス加硫した。目的物性に応じて ¹⁰ 物性測定用試料を作成して、加硫物性をそれぞれ測定して表4に示した。電子顕微鏡観察写真からVCR中に分散したSPBDの短纖維結晶長軸の長さの分布を図1に示した。また、実施例1及び比較例1の平均纖維長軸長さは0.13μm及び0.30μmであり、明らかに極微細分散であり、分布も異なっていた。

【0030】

【表1】

配合	配合量(重量部)
VCR (or BR)	100
カーボンブラック (HAF)	50
プロセスオイル	10
亜鉛華 1号	5
ステアリン酸	2
<u>老化防止剤*</u>	1
<u>加硫促進剤**</u>	1
硫黄	1.5

*アンテージAS: アミンとケトンの反応生成物

(大内新興化学工業社製)

**ノクセラ-CZ: N-シクロヘキシル-2-ベンゾ

チアゾリルスルフェンアミド (大内新興化学
工業社製)

素ゴム物性	実施例		比較例	
	1	2	1	2
ML ₁₊₄ (100)	57	58	45	43
H I (%)	11	12	11	0

比較例1: 宇部興産社製, UBE POL-VCR 412

比較例2: 宇部興産社製, UBE POL-BR 150

【0031】
【表2】

【0032】

* * 【表3】

配合物物性	実施例		比較例	
	1	2	1	2
ML ₁₊₄ , 100°C	84	83	79	72
ダイスウェル比	1.43	1.41	1.84	2.59
ダイスウェル指数	78	77	100	141

【0033】

* * 【表4】

加硫物物性	実施例		比較例	
	1	2	1	2
硬さ	74	74	70	61
100%引張応力 (kg/cm ²)	61	59	44	20
引張強さ (kg/cm ²)	208	203	199	200
伸び (%)	340	340	340	460
引裂強さ (kg/cm)	74	78	76	72
屈曲亀裂成長性 (回×10 ⁴)	45	48	35	0.3

【0034】

【発明の効果】本発明のビニル・シスポリブタジエン(VCR)はシンジオタクチック-1, 2-ポリブタジエン(S P B D)結晶が極微細な構造でシス-1, 4-ポリブタジエン(B R)マトリックス中に均一に分散して、更に極微細に分散した短纖維結晶がB R成分を結晶間で拘束することで、高硬度、高引張応力の補強効果を発現する。配合物のダイスウェル比が小さく押出加工性

能が優れると共に加硫物は高硬度、高引張応力、優れた耐屈曲亀裂成長性であるので自動車タイヤの各部材の薄肉化やカーボンブラックなどの充填剤の低減などに寄与でき、低燃費タイヤ用途に適している。

30 【図面の簡単な説明】

【図1】図1は本発明の実施例1及び比較例1のV C RのS P B Dの纖維の形状を示す電子顕微鏡写真を観察して得られた短纖維結晶の長軸長さの分布図である。

【図1】

フロントページの続き

F ターム (参考) 4J002 AC031 BL012 FD010 GM01
GN01
4J100 AS02P CA01 CA12 CA15
FA09 FA19 FA30 FA41 JA28
JA29