# Занятие 4 МРР-системы

Бояр Владислав

### Занятие состоит из:



#### Теория:

- МРР-системы
- GreenPlum



#### Практика:

- Оконные функции

# Massive parallel processing (MPP)

# Massive parallel processing (MPP)

#### **MPP** – **9TO**:

- массово-параллельная архитектура;
- класс архитектур параллельных вычислительных систем;
- особенность архитектуры заключается в том, что память физически разделена;
- несколько машин, скоординировано выполняющих одну и ту же задачу.

# Чем отличаются Hadoop и MPP-системы







# Предпосылки перехода к МРР-СУБД

Отранительных (также транительных предоставления предоставлени

2 Низкая производительность хранилища и отчётности;

З Долгая загрузка данных (ЕТL-процессы)

### **МРР-СУБД**

#### Преимущества:

- + Быстрая обработка больших объёмов данных
- + Простая горизонтальная масштабируемость (нет необходимости переходить на более мощную машину, достаточно докупить несколько аналогичных)
- + Отказоустойчивость (зеркалирование, резервирование)

#### Недостатки:

- Высокие требования к инфраструктуре (сеть, цп, память, диски)
- Медленно работает для большого количества простых запросов (для таких задач лучше использовать, к примеру, ClickHouse)

# Архитектура МРР-СУБД



# Примеры МРР-СУБД







**Teradata** 



### GreenPlum



несколько экземпляров (инстансов, instance) PostgreSQL, которые работают как единая СУБД



связь между отдельными инстансами PostgreSQL осуществляется на сетевом уровне с помощью быстрых сетей (interconnect)

### Особенности GreenPlum

- Горизонтальное масштабирование;
- Поддерживает и строковое и колоночное хранение данных;
- SQL-запросы выполняются параллельно;
- Автоматическое партиционирование данных;
- Конечные пользователи взаимодействуют с GreenPlum, как с обычной СУБД, несмотря на сложную архитектуру
- Концепция Shared Nothing (без разделения ресурсов):
  - Узлы кластера не разделяют ресурсы между собой
  - Каждый узел имеет собственные ресурсы: ОС, память, диски

## Архитектура GreenPlum



## Архитектура GreenPlum

- Master instance входная точка для пользователей (экземпляр БД, к которому подключаются клиенты). Координатор работы других экземпляров БД.
- Secondary master instance резервный инстанс, который используется при отказе мастера (переключение вручную);
- Primary segment instance хранит и обрабатывает данные.
- Mirror segment instance инстанс, который автоматически включается в работу при отказе primary segment instance.

# Распределение Primary и Mirror сегментов по узлам



### Хранение данных в GreenPlum



Каждая таблица разделена на N+1 таблиц, где N – число сегментов кластера (+1 это таблица на мастере, в ней нет данных)



На каждом сегменте хранится 1/N строк таблицы. Данные разбиваются по заданному ключу (например, по дате)

# Практика

