

HR Analytics - CASE STUDY

SUBMISSION

By -

Bharat Saxena

Mohit Singh

Sunil Hegde

Shravani Shahapure

HR analytics case study - Outline

A large company XYZ, employs, around 4000 employees. Every year 15% employees leave the company and management needs to replace the talent pool available in the job market. Management of the company is worried about 15% attrition as it can harm company reputation among stakeholders due to some of the following reasons:

- The project of ex-employee gets delayed, which makes it difficult to meet timelines.
- Need to train new employees for the job in short time.
- A sizable department has to be maintain for recruiting new talent

Based on above observations, problem statement is:

- Analyse employee data and identify the factors which will help to curb the employee attrition
- Highlight the important factors which needs to be addressed immediately
- This information will be generated by modelling the probability of attrition using logistic regression.

Problem Statement

• Analyze employee data and identify the factors which will help to curb the employee attrition.

• Highlight the important factors which need to be addressed right away.

• This information will be generated by modelling the **probability of** attrition using a logistic regression.

Business Objective

- Identify reasons which lead to employee attrition.
- Identify any patterns among multiple reasons leading to attrition.

Goal of Analysis

- Model the probability of attrition using a logistic regression.
- Find out which of the variables in the given data is most important and needs to be addressed right away.

Problem Solving Methodology

1. Data Sourcing and understanding

- There are 5 datasets provided for the analysis.
- Employee ID is unique among all the files.

2. Data Cleaning

- Missing value treatment
- NA value treatment
- Outlier treatment
- Scaling of continuous variables
- Dummy variable creation for categorical variables.

Problem Solving Methodology

contd..

3. Derived Data creation

• Generate new data columns using the existing data. E.g work hours using in and out time.

4. Model Creation & optimization

- Create initial model.
- Using P values and VIF optimize the model

5. Evaluate the model

- Even though employee's who TRAVEL_RARELY have the highest attrition count.
- But % wise into individual category who TRAVEL_FREQUENTLY are most likely to leave the company.

- Employees who are in RESEARCH & DEVELOPMENT have the highest attrition count.
- But employees who are in HUMAN RESOURCES have the **highest attrition rate** 57 out of 189 left.

contd...

- Employees having Education Field of life sciences have the highest attrition count.
- But employees from HUMAN RESOURCES have highest attrition rate 40% (33 out of 81 left).

• But the RESEARCH Director job role has highest attrition rate (~24%) where 57 out of 240 left.

contd...

 Employees with 0 have highest attrition count (318) and highest attrition rate ~17%.

- Employees with NumCompaniesWorked=1 have the highest attrition count.
- But employees with NumCompaniesWorked=5 have highest rate at ~26% with 46 leaving out of 187.

contd...

 Employees with less than 7 years of Total Working Years are more likely to leave.

or 1 have the highest attrition rate ~23%.

contd...

 Employees working more than average 8 hours are more likely to leave company.

 Employees working more extra hours are more likely to leave company.

The final version of the model is based on the below 12 factors:

•	TotalWorkingYears	< 2e-16	***
•	Total_hrs	< 2e-16	***
•	MaritalStatusSingle	< 2e-16	***
•	YearsSinceLastPromotion	1.80e-15	***
•	EnvironmentSatisfaction	1.08e-14	***
•	JobSatisfaction	1.97e-12	***
•	BusinessTravelTravel_Frequently	1.21e-10	***
•	NumCompaniesWorked	2.37e-09	***
•	YearsWithCurrManager	5.39e-09	***
•	JobRoleManufacturing.Director	2.28e-05	***
•	WorkLifeBalance	0.000210	***
•	TrainingTimesLastYear	0.000329	***

• (arranged from most to least significance based on their P values)

Model Evaluation statistics 1:

Confusion Matrix and Statistics

Reference Prediction No Yes No 1093 151 Yes 23 56

Sensitivity: 0.27053
Specificity: 0.97939
Pos Pred Value: 0.70886
Neg Pred Value: 0.87862
Prevalence: 0.15646
Detection Rate: 0.04233
Detection Prevalence: 0.05971
Balanced Accuracy: 0.62496
'Positive' Class: Yes

Accuracy : 0.8685

95% CI : (0.8491, 0.8862)

No Information Rate: 0.8435 P-Value [Acc > NIR]: 0.006089

Kappa : 0.334

Mcnemar's Test P-Value : < 2.2e-16

<u>Logistic Model – Final Model</u>

Model Evaluation statistics 2:

McFadden 0.2039475

Variable Importance [t-statistics]

> rai zinp (i i i a i _ inodo i)	
	Overall
NumCompaniesWorked	5.945444
TotalWorkingYears	8.363161
TrainingTimesLastYear	3.648413
YearsSinceLastPromotion	6.855929
YearsWithCurrManager	5.567291
EnvironmentSatisfaction	7.681116
JobSatisfaction	7.171940
WorkLifeBalance	3.816703
Total_hrs	12.101837
<pre>BusinessTravelTravel_Frequently</pre>	6.437628
JobRoleManufacturing.Director	4.256072
MaritalStatusSingle	8.596049
.	

ROCR Curve

False positive rate

CONCLUSION

GOAL #1

• Based on the data provided below 12 factors have been identified to have a significant impact on employee attrition.

TotalWorkingYears

MaritalStatusSingle

EnvironmentSatisfaction

BusinessTravelTravel Frequently

YearsWithCurrManager

WorkLifeBalance

Total hrs

YearsSinceLastPromotion

JobSatisfaction

NumCompaniesWorked

JobRoleManufacturing.Director

TrainingTimesLastYear

CONCLUSION

GOAL #2

- Below factors need to be addressed right away as they have the highest impact on employee attrition:
 - TotalWorkingYears
 Employees with less than 7 years of Total Working Years are more likely to leave. Special attention should be given to understand issues these set of employees are facing.
 - Total_hrs
 Employees work regularly above average total hours are more likely to leave. Policy around limiting
 Working hours might help alleviate this factor.
 - MaritalStatusSingle Employees who are single are more likely to leave the company. These set of employees should be engaged more in the project activities.