Extending Brainwave's BERT Implementation to Support Sparsity

Shruti Misra

Goals

- Analyze the feasibility of supporting sparse computations within Brainwave's BERT framework.
- Design, implement/modify and test <u>firmware</u> to implement support for sparse computations in BERT.
- Identify/suggest ways the architecture could be extended to better support sparsity

Note: Many results have been redacted to protect IP

Transformer

A pre-trained language model for general NLP task such as question answering, next sentence prediction, sequence classification, etc.

Sparse Self Attention

Limitations of the full Transformer

Memory and computational requirements of the full transformer grows quadratically with sequence length.

Sparse Transformer model

Sparse factorization of the attention matrix scales as $O(n\sqrt{n})$ with sequence length (n).

Child, Rewon, et al. "Generating long sequences with sparse transformers." arXiv:1904.10509 (2019).

Performance Results Summary

- Significant decrease in latency is observed with added support for sparse computations.
- % Latency decrease scales with sequence length and sparsity.

References

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://www.analyticsvidhya.com/blog/2019/06/understanding-transformers-nlp-state-of-the-art-models/

https://openai.com/blog/sparse-transformer/