2.4 Independence of random variables

2.4 Independence of random variables

Definition

Suppose that the joint distribution sequence of a discrete random vector (ξ, η) satisfies

$$P(\xi = x_i, \eta = y_j) = P(\xi = x_i)P(\eta = y_j),$$

 $i, j = 1, 2, \dots,$

then we call ξ and η mutually independent.

$$p_{ij} = p_i \cdot p_{\cdot j}, \qquad i, j = 1, 2, \cdots.$$

For any x and y,

$$P(\xi \le x, \eta \le y) = \sum_{x_i \le x} \sum_{y_j \le y} P(\xi = x_i, \eta = y_j)$$
$$= \sum_{x_i \le x} P(\xi = x_i) \sum_{y_j \le y} P(\eta = y_j)$$
$$= P(\xi \le x) P(\eta \le y).$$

That is,

$$F(x,y) = F_{\xi}(x)F_{\eta}(y).$$
 (2.62)

2.4 Independence of random variables

$$P(\xi \le x, \eta \le y) = \sum_{x_i \le x} \sum_{y_j \le y} P(\xi = x_i, \eta = y_j)$$
$$= \sum_{x_i \le x} P(\xi = x_i) \sum_{y_j \le y} P(\eta = y_j)$$
$$= P(\xi \le x) P(\eta \le y).$$

That is,

$$F(x,y) = F_{\varepsilon}(x)F_n(y). \tag{2.62}$$

On the contrary,

$$(2.62) \implies P(\xi = x_i, \eta = y_j) = P(\xi = x_i) P(\eta = y_j)$$

Definition

Suppose that F(x,y), $F_{\xi}(x)$ and $F_{\eta}(y)$ are the joint distribution function and marginal distribution functions of (ξ, η) respectively. If

$$F(x,y) = F_{\xi}(x)F_{\eta}(y), \quad \forall x, y,$$

(i.e.,
$$P(\xi \le x, \eta \le y) = P(\xi \le x)P(\eta \le y), \forall x, y$$
)

then we say ξ and η are independent.

Theorem

Suppose that p(x, y), $p_{\xi}(x)$ and $p_{\eta}(y)$ are the joint density function and marginal density functions of (ξ, η) respectively. Then ξ and η are independent if and only if

$$p(x,y) = p_{\xi}(x)p_{\eta}(y).$$

$$F(x,y) = F_{\xi}(x)F_{\eta}(y)$$

$$F(x,y) = F_{\xi}(x)F_{\eta}(y)$$

$$\Leftrightarrow \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} p_{\xi}(u)du \int_{-\infty}^{y} p_{\eta}(v)dv$$

$$F(x,y) = F_{\xi}(x)F_{\eta}(y)$$

$$\Leftrightarrow \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} p_{\xi}(u)du \int_{-\infty}^{y} p_{\eta}(v)dv$$

$$\Leftrightarrow \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} \int_{-\infty}^{y} p_{\xi}(u)p_{\eta}(v)dudv$$

$$F(x,y) = F_{\xi}(x)F_{\eta}(y)$$

$$\Leftrightarrow \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} p_{\xi}(u)du \int_{-\infty}^{y} p_{\eta}(v)dv$$

$$\Leftrightarrow \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} \int_{-\infty}^{y} p_{\xi}(u)p_{\eta}(v)dudv$$

$$\Leftrightarrow p(x,y) = p_{\xi}(x)p_{\eta}(y).$$

This is the desired conclusion.

Example

Suppose $(\xi, \eta) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, r)$. Find out the necessary and sufficient condition for ξ, η to be independent.

Solution. Note that $\xi \sim N(\mu_1, \sigma_1^2)$ and $\eta \sim N(\mu_2, \sigma_2^2)$. By definition,

$$\xi, \eta$$
 are independent $\Leftrightarrow p(x,y) = p_{\xi}(x)p_{\eta}(y)$

Solution. Note that $\xi \sim N(\mu_1, \sigma_1^2)$ and $\eta \sim N(\mu_2, \sigma_2^2)$. By definition,

$$\xi, \eta \text{ are independent } \Leftrightarrow p(x,y) = p_{\xi}(x)p_{\eta}(y)$$

$$\Leftrightarrow \frac{1}{\sqrt{2\pi}\sigma_1} \exp\{-\frac{(x-\mu_1)^2}{2\sigma_1^2}\}$$

$$\times \frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-r^2}} \exp\{-\frac{[y-\mu_2-\frac{r\sigma_2}{\sigma_1}(x-\mu_1)]^2}{2\sigma_2^2(1-r^2)}\}$$

$$= \frac{1}{2\pi\sigma_1\sigma_2} \exp\{-\frac{1}{2}[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2}]\}$$

$$\Leftrightarrow r = 0.$$

n random variables:

Definition

Suppose that $F(x_1, \dots, x_n)$, $F_1(x_1), \dots, F_n(x_n)$ are joint distribution function and marginal distribution functions of ξ_1, \dots, ξ_n , then we call them mutually independent if

$$F(x_1, \cdots, x_n) = F_1(x_1) \cdots F_n(x_n).$$

$$(i.e., P(\xi_1 \le x_1, \dots, \xi_n \le x_n))$$

$$= P(\xi_1 \le x_1) \dots P(\xi_n \le x_n), \forall x_1, \dots, x_n)$$

Corollary

If ξ_1, \dots, ξ_n are mutually independent, then so are any r random variables $(2 \le r < n)$.

Proof.

Corollary

If ξ_1, \dots, ξ_n are mutually independent, then so are any r random variables $(2 \le r < n)$.

Proof. By the definition of the independence of ξ_1, \dots, ξ_n , we have for all x_1, \dots, x_n ,

$$P(\xi_1 \le x_1, \cdots, \xi_n \le x_n) = P(\xi_1 \le x_1) \cdots P(\xi_n \le x_n).$$

Corollary

If ξ_1, \dots, ξ_n are mutually independent, then so are any r random variables $(2 \le r < n)$.

Proof. By the definition of the independence of ξ_1, \dots, ξ_n , we have for all x_1, \dots, x_n ,

$$P(\xi_1 \le x_1, \cdots, \xi_n \le x_n) = P(\xi_1 \le x_1) \cdots P(\xi_n \le x_n).$$

It follows that

$$P(\xi_{i_1} \le x_{i_1}, \dots, \xi_{i_r} \le x_{i_r})$$

= $P(\xi_{i_1} \le x_{i_1}) \dots P(\xi_{i_r} \le x_{i_r}), \quad \forall x_{i_1}, \dots, x_{i_r}.$

思考题: 1. Find n random variables (or vectors) ξ_1, \ldots, ξ_n , such that they are not independent, but every r ($2 \le r < n$) of them are independent.

2. Suppose F is a distribution function. Find n random variables (or vectors) ξ_1, \ldots, ξ_n , such that $\xi_i \sim F$, $i = 1, \ldots, n$, ξ_1, \ldots, ξ_n are not independent, but every r ($2 \le r < n$) of them are independent.

• ξ_1, \dots, ξ_n are indept. iff (if and only if)

$$P(\xi_1 \in B_1, \cdots, \xi_n \in B_n) = P(\xi_1 \in B_1) \cdots P(\xi_n \in B_n)$$

for any
$$B_1, \dots, B_n \in \mathscr{B}$$
.

• ξ_1, \dots, ξ_n are indept. iff (if and only if)

$$P(\xi_1 \in B_1, \cdots, \xi_n \in B_n) = P(\xi_1 \in B_1) \cdots P(\xi_n \in B_n)$$

for any $B_1, \dots, B_n \in \mathscr{B}$.

• An n-dimensional ξ and an m-dimensional η are indept. iff

$$P(\boldsymbol{\xi} \in A, \boldsymbol{\eta} \in B) = P(\boldsymbol{\xi} \in A)P(\boldsymbol{\eta} \in B),$$

for all $A \in \mathcal{B}^n, B \in \mathcal{B}^m$, equivalently,

$$P(\boldsymbol{\xi} \leq \boldsymbol{x}, \boldsymbol{\eta} \leq \boldsymbol{y}) = P(\boldsymbol{\xi} \leq \boldsymbol{x})P(\boldsymbol{\eta} \leq \boldsymbol{y}), \ \forall x \in \mathbb{R}^n, \in \mathbb{R}^m.$$

• ξ_1, \dots, ξ_n are indept. iff (if and only if)

$$P(\xi_1 \in B_1, \cdots, \xi_n \in B_n) = P(\xi_1 \in B_1) \cdots P(\xi_n \in B_n)$$

for any $B_1, \dots, B_n \in \mathscr{B}$.

ullet An n-dimensional $oldsymbol{\xi}$ and an m-dimensional $oldsymbol{\eta}$ are indept. iff

$$P(\boldsymbol{\xi} \in A, \boldsymbol{\eta} \in B) = P(\boldsymbol{\xi} \in A)P(\boldsymbol{\eta} \in B),$$

for all $A \in \mathscr{B}^n, B \in \mathscr{B}^m$, equivalently,

$$P(\boldsymbol{\xi} \leq \boldsymbol{x}, \boldsymbol{\eta} \leq \boldsymbol{y}) = P(\boldsymbol{\xi} \leq \boldsymbol{x})P(\boldsymbol{\eta} \leq \boldsymbol{y}), \ \forall x \in \mathbb{R}^n, \in \mathbb{R}^m.$$

 If two random vectors are independent, then so are their sub-vectors. Example

Suppose that ξ is a constant a, show ξ and η are independent for any random variable η .

Example

Suppose that ξ is a constant a, show ξ and η are independent for any random variable η .

Proof Let B_1 and B_2 be two Borel sets. We want to prove

$$P(\xi \in B_1, \eta \in B_2) = P(\xi \in B_1)P(\eta \in B_2).$$
 (*)

If $a \notin B_1$, then $P(\xi \in B_1) = 0$ and

$$P(\xi \in B_1, \eta \in B_2) \le P(\xi \in B_1) = 0.$$

(*) is true.

If $a \notin B_1$, then $P(\xi \in B_1) = 0$ and

$$P(\xi \in B_1, \eta \in B_2) \le P(\xi \in B_1) = 0.$$

(*) is true.

If $a \in B_1$, then $P(\xi \in B_1) = 1$ and

$$P(\xi \in B_1, \eta \in B_2) = P(\eta \in B_2) - P(\xi \notin B_1, \eta \in B_2)$$

= $P(\eta \in B_2)$.

(*) is also true.

思考题: Suppose that X and Y are independent, X+Y and X have the same distribution. Prove P(Y=0)=1.

Infinite many of random variables:

Definition

Suppose that $\{\xi_n; n \geq 1\}$ is a sequence of random variables.

Then we call them mutually independent if for each n, ξ_1, \ldots, ξ_n are independent.

思考题: Find a sequence $\{\xi_i; i \geq 1\}$ of random variables such that every two of them are independent, but every three of them are not independent.