Algorithmique et structures de données Recherche d'un élément dans un vecteur

Gaël Mahé

slides : Elise Bonzon et Gaël Mahé
Université Paris Descartes
Licence 2

- Définitions
- 2 Recherche séquentielle dans un vecteur non trié
- 3 Recherche séquentielle dans un vecteur trié
- Recherche dichotomique
- 3 Recherche par interpolation
- **6** Complexité des algorithmes de recherche

- Définitions
- Recherche séquentielle dans un vecteur non trié
- Recherche dichotomique
- Recherche par interpolation

Vecteur

Vecteur

Soit un ensemble E muni d'un ordre total.

Un vecteur de dimension n est une application :

$$V: [\![1,n]\!] \to E$$

Si n = 0, l'intervalle est vide.

Exemple : $V : [1, 10] \rightarrow \mathbb{R}$

								9	
5.2	-2.6	3.8	25.3	-9.3	85.1	45.2	5.1	56.1	-7.1

Vecteur trié

Vecteur trié

Le vecteur $V : [1, n] \rightarrow E$ est trié si

$$\forall i \in [1, n-1], \ V(i) \leq V(i+1)$$

Si n = 0 ou n = 1, le vecteur est trié

Exemple : $V : [1, 10] \rightarrow \mathbb{R}$

1	2	3	4	5	6	7	8	9	10
-9.3	-7.1	-2.6	3.8	5.1	5.2	25.3	45.2	56.1	85.1

- 2 Recherche séquentielle dans un vecteur non trié
- Recherche dichotomique
- Recherche par interpolation

Recherche séquentielle dans un vecteur non trié

- Soit $V : [1, n] \rightarrow E$ et $x \in E$. On cherche s'il existe un indice $i \in [1, n]$ tel que V(i) = x
- Parcourir le vecteur : pour tout $i \in [1, n]$
 - Si V(i) = x, renvoyer vrai
 - Sinon, si i = n, renvoyer faux
 - Sinon, $i \leftarrow i + 1$

Explication de l'algorithme

- Hypothèses de la situation générale
 - les i-1 premiers éléments sont traités $(1 \le i \le n)$
 - $\forall i \in [1, i-1], x \neq V(i)$
- Progression vers la solution. Deux cas sont possibles :

 - V(i) = x, c'est fini, $x \in V$ $V(i) \neq x$, deux cas possibles :
 - i = n, c'est fini, $\forall j \in [1, n], x \neq V(j), x \notin V$
 - i < n, En faisant $i \leftarrow i + 1$, on retrouve l'assertion de l'hypothèse : $\forall i \in [1, i-1], x \neq V(i)$. On revient au premier point.
- Condition initiale : i = 1 satisfait les hypothèses de la situation générale

Explication de l'algorithme

- Hypothèses de la situation générale
 - les i-1 premiers éléments sont traités $(1 \le i \le n)$
 - $\forall i \in [1, i-1], x \neq V(i)$
- Progression vers la solution. Deux cas sont possibles :

 - V(i) = x, c'est fini, x ∈ V
 V(i) ≠ x, deux cas possibles :
 - i = n, c'est fini, $\forall i \in [1, n], x \neq V(i), x \notin V$
 - i < n, En faisant $i \leftarrow i + 1$, on retrouve l'assertion de l'hypothèse : $\forall i \in [1, i-1], x \neq V(i)$. On revient au premier point.
- Condition initiale : i = 1 satisfait les hypothèses de la situation générale

Algorithme

Algorithme 1 : Recherche séquentielle dans un vecteur non trié

début

```
/* ENTRÉES: Un vecteur V de taille n, un élément x */
/* SORTIE: vrai si x \in V, faux sinon */
i \leftarrow 1
tant que i < n et V(i) \neq x faire i \leftarrow i + 1
/* sortie de boucle */
si V(i) = x alors retourner vrai
sinon retourner faux
```

fin

Schéma général...

- ... pour écrire un algorithme séquentiel efficient par construction :
 - Définir l'hypothèse H de la situation générale, pour i quelconque.
 - Progression vers la solution : montrer qu'à l'étape i, avec H vérifiée,
 - soit le problème est résolu si la condition C_1 ou C_2 ou... est vérifiée ; (note: une des conditions est du type "i = n")
 - soit on fait $i \leftarrow i + 1$ et H est vérifiée pour le nouveau i.
 - S'assurer que H est vérifiée pour le i initial.

Algorithme

Algorithme 2 : Algorithme issu du schéma général

début

```
Initialiser i
tant que non(C_1 \vee C_2 \vee ...) faire i \leftarrow i + 1
/* sortie de boucle */
Selon que C_1 ou C_2 ou ... est vérifiée,
retourner résultat correspondant
```

fin

- Recherche séquentielle dans un vecteur non trié
- 3 Recherche séquentielle dans un vecteur trié
- Recherche dichotomique
- Recherche par interpolation

Recherche séquentielle dans un vecteur trié

- Soit $V : [1, n] \to E$ et $x \in E$. On cherche s'il existe un indice $i \in [1, n]$ tel que V(i) = x
- Deux étapes
 - Chercher un indice i tel que : $\forall j \in [1, i-1], \ V(j) < x \text{ et } \forall j \in [i, n], \ V(j) \ge x$
 - Vérifier si x = V(i)

1	 i	 n
	x?	

$$V(j) \ge x$$

Construction de l'algorithme

- Hypothèses de la situation générale
 - les i-1 premiers éléments sont traités $(1 \le i \le n)$
 - $\forall i \in [1, i-1], \ V(i) < x$
- Progression vers la solution. Deux cas sont possibles :
 - V(i) > x, c'est fini, on a trouvé i tel que : $\forall j \in [1, i-1], \ V(j) < x \text{ et } \forall j \in [i, n], \ V(j) > x.$ Il reste à vérifier si V(i) = x
 - V(i) < x, deux cas possibles :
 - i = n, c'est fini, $\forall i \in [1, n]$, $V(i) < x, x \notin V$
 - i < n. En faisant $i \leftarrow i + 1$, on retrouve l'assertion de l'hypothèse : $\forall j \in [1, i-1], V(j) < x$. On revient au premier point.
- Condition initiale : i = 1 satisfait les hypothèses de la situation générale

Construction de l'algorithme

- Hypothèses de la situation générale
 - les i-1 premiers éléments sont traités $(1 \le i \le n)$
 - $\forall i \in [1, i-1], \ V(i) < x$
- Progression vers la solution. Deux cas sont possibles :
 - $V(i) \ge x$, c'est fini, on a trouvé i tel que : $\forall j \in [1, i-1], \ V(j) < x \text{ et } \forall j \in [i, n], \ V(j) > x.$ Il reste à vérifier si V(i) = x
 - V(i) < x, deux cas possibles :
 - i = n, c'est fini, $\forall i \in [1, n]$, $V(i) < x, x \notin V$
 - i < n. En faisant $i \leftarrow i + 1$, on retrouve l'assertion de l'hypothèse : $\forall j \in [1, i-1], V(j) < x$. On revient au premier point.
- Condition initiale : i = 1 satisfait les hypothèses de la situation générale

Algorithme

Algorithme 3 : Recherche séquentielle dans un vecteur trié

début

```
/* ENTRÉES: Un vecteur V de taille n, un élément x */
/* SORTIE: i si x apparait au rang i de V, 0 si x \notin V */
i \leftarrow 1
tant que V(i) < x et i < n faire i \leftarrow i + 1
/* sortie de boucle */
si V(i) = x alors retourner i
sinon retourner 0
```

fin

- Recherche séquentielle dans un vecteur non trié
- Recherche dichotomique
- Recherche par interpolation

Recherche dichotomique

- Il est possible d'être beaucoup plus efficace si le vecteur est trié
- Méthode dichotomique :
 - Comparer l'élément x à une valeur située au milieu du vecteur
 - Si cette valeur est différente de x, continuer la recherche sur le demi-vecteur susceptible de contenir x
- Version itérative (nous verrons la version récursive plus tard)

Explication de l'algorithme

Partages successifs sur un vecteur trié

Situation générale

- on pose $med = \lfloor \frac{(inf + sup)}{2} \rfloor$ 2 cas possibles:
 - V(med) = x: arrêt et retour med
 - $V(med) \neq x$:
 - V(med) > x, $sup \leftarrow med 1$
 - V(med) < x, $inf \leftarrow med + 1$

Si *sup* < *inf* , arrêt et retour 0, sinon on recommence

• Conditions initiales : inf = 1, sup = n. Respectent les hypothèses de la situation générale.

Recherche dichotomique: algorithme

Algorithme 4 : Recherche dichotomique dans un vecteur trié

```
début
```

```
/* ENTRÉES: Un vecteur V de taille n, un élément x */
/* SORTIE: i si x apparait au rang i de V, 0 si x \notin V */
inf \leftarrow 1, sup \leftarrow n, i \leftarrow 0, trouve' \leftarrow faux
tant que inf \le sup et non(trouve') faire
     med \leftarrow (inf + sup) \operatorname{div} 2
    si V(med) = x alors
         i \leftarrow med
      \lfloor trouve' \leftarrow vrai \rfloor
     sinon
          si\ V(med) > x\ alors\ sup \leftarrow med - 1
         \textbf{sinon} \ \textit{inf} \leftarrow \textit{med} + 1
retourner i
```


Recherche dichotomique de la première occurrence

Si l'on cherche la **première occurrence** d'un élément x, l'algorithme doit renvoyer une position i telle que :

•
$$V(i) = x$$
;

•
$$\forall j < i, \quad V(j) \neq x.$$

ou 0 si
$$x \notin V$$
.

Explication de l'algorithme

Partages successifs sur un vecteur trié

Situation générale

- 2 cas possibles :
 - inf = sup: retourne inf si V(inf) = x, 0 sinon.
 - $inf < sup : on pose med = |\frac{(inf + sup)}{2}|$
 - V(med) > x, $sup \leftarrow med$
 - V(med) < x, $inf \leftarrow med + 1$
- Conditions initiales : inf = 1, sup = n. Respectent les hypothèses de la situation générale.

Recherche dichotomique de la 1ère occurrence : algorithme

Algorithme 5 : Recherche dichotomique d'une 1ère occurrence dans un vecteur trié

```
début
```

```
/* ENTRÉES: Un vecteur V de taille n, un élément x */
/* SORTIE: i si x apparait au rang i de V, 0 si x \notin V */
inf \leftarrow 1, sup \leftarrow n, i \leftarrow 0

tant que inf < sup faire

med \leftarrow (inf + sup) div 2
si \ V(med) \ge x alors sup \leftarrow med
sinon \ inf \leftarrow med + 1

si V(inf) = x alors
retourner \ inf
sinon
retourner \ 0
```

fin

Démonstration - partie A (1)

Montrons que l'algorithme se termine :

- Montrons qu'à chaque itération, inf < sup ou on sort
 - Hypothèse de récurrence H_k : $inf_k < sup_k$ ou on sort
 - H₀ vraie
 - Supposons H_k

• Donc $H_k \Rightarrow H_{k+1}$

Démonstration. - partie A (2)

- Montrons que la suite des $(sup_k inf_k)$ est strictement décroissante
 - Si $V(med_k) > x$:

Si V(med_k) < x :

• Conclusion : la suite des $(sup_k - inf_k)$ est strictement décroissante et positive, de valeur initiale n, donc elle converge vers 0 en moins de nitérations

Démonstration - partie B

Montrons que si $x \in V$, l'algo renvoie bien :

i tel que
$$V(i) = x$$
 et $\forall j < i, V(j) \neq x$

- Hypothèse de récurrence H_k : $inf_k \le i \le sup_k$
- H_0 vraie (avec $inf_0 = 1$ et $sup_0 = n$)
- Supposons H_k vraie pour k numéro de la dernière itération
 - Si $V(med_k) \ge x$:

- Donc $H_k \Rightarrow H_{k+1}$
- Donc H_k vraie de 0 à p. Or pour k = p, on sort du while avec
 - inf = sup = i. On retourne inf donc i.

- Définitions
- 2 Recherche séquentielle dans un vecteur non trié
- 3 Recherche séquentielle dans un vecteur trié
- Recherche dichotomique
- 3 Recherche par interpolation
- **©** Complexité des algorithmes de recherche

Recherche par interpolation

- La recherche par dichotomie cherche x autour de l'indice médian
- Si les éléments sont des nombres, chercher x autour de l'indice k tel que :

$$k = inf + ((sup - inf)(x - V(inf))\mathbf{div}(V(sup) - V(inf)))$$

- \rightarrow Même algorithme en remplaçant med par cette expression de k
 - Comparaison interpolation / dichotomie :
 - Moins d'itérations nécessaires (voir suite)
 - Plus de calculs
 - Intéressante seulement si les éléments augmentent à peu près linéairement

- Recherche séquentielle dans un vecteur non trié
- Recherche dichotomique
- Recherche par interpolation
- 6 Complexité des algorithmes de recherche

Complexité recherche

des

algorithmes

de

Pour un vecteur trié, Nombre de comparaisons moyen C pour un vecteur de taille n

- Recherche séquentielle : $C \propto n$
- Recherche par dichotomie : $C \propto \log_2(n)$
- Recherche par interpolation : $C \propto \log_2(\log_2(n))$
 - (mais plus de calculs)