

Modeling of Different Fiber Type and Content SiC_f/SiC Minicomposites Creep Behavior

Amjad S. Almansour^{1,2} Gregory N. Morscher¹

¹The University of Akron, Akron, Ohio

²NASA Glenn Research Center, Cleveland, Ohio

41st International Conference and Expo on Advanced Ceramics and Composites January 22-27, 2017 in Daytona Beach, Florida, USA

www.nasa.gov

Funded by:

Outline

- Motivation
- > Approach
- > Materials and Properties
- Experimental Methodology and Set Up
- Creep Testing Results
- Constituents' Creep Characterization
- Creep Model
- > Conclusions

Motivation

- > Ceramic Matrix Composites (CMCs) are candidates for high-temperature applications such as the new generations of aircraft engines and hypersonic vehicles.
- Case A: CMCs are loaded below the matrix cracking stress. (Static or Dynamic Loading)
- Fibers carry a fraction of the applied load.
- Fibers are not exposed to oxidation damage and the most dominant damage mechanism is creep of fibers.
- Case B: CMCs are loaded above the matrix cracking stress.
- Fibers carry all of the applied load in the vicinity of through-thickness matrix crack.
- Fibers are exposed to oxidation and creep damage mechanisms.
- Load transfer from oxide layer to the core of the fibers.
- Long lengths of fibers at high stress due to multiple matrix cracks and the reduction of fibers' cross-sectional area due to oxidation.

Approach

1) <u>Case A:</u>

Obtain Fibers true creep parameters at 1200-1482 °C which are needed for modeling fiber/matrix load transfer and creep resistance of the fibers.

- A) Test single fibers and fiber tows in vacuum.
- B) Test single fibers and fiber tows in air (need to model the evolution of stress increase on fibers during creep due to oxidation).

Case B:

Obtain Fibers creep parameters at 1200-1482 °C tows in air, inert and steam.

- 2) Correlate fibers data with minicomposites and macrocomposites data.
- 3) Provide recommendation for durability improvements & Support CMCs & fibers developments.

Materials and Properties

Single Fiber Tow Minicomposite Cross-sections

HV Spot Mag Det Sig WD Pressure —100 μm—
30.0 kV 4.5 379x Lfd SE 9.47 mm 80.0 Pa

Hi-Nicalon Minicomposite

Hi-Nicalon S Minicomposite

97%CVI-SiC Minicomposite

Fiber Type	Number of Fibers per Tow	Fiber Diameter (μm)	Fiber Volume Fractions (%)	Fiber Elastic Modulus (GPa)	Fiber Density (g/cc)	Fiber Coefficient of Thermal Expansion (CTE)(°C ⁻¹)
Hi-Nicalon-S	500	12	16/23/43	400	3.1	4.5×10^{-6}
Hi-Nicalon	500	14	16/23/42	270	2.74	3.5×10^{-6}
Tyranno-ZMI	400	11	23/28	170	2.35	4.0×10^{-6}

- The volume and mass of the fiber tow were estimated based on the average fiber diameter, number of fibers per tow, specimen length and density.
- The volume and mass of the interphase were estimated considering a constant thickness of 1 µm on each fiber using SEM.
- Then backed out the volume and mass of the matrix from ROM.

Precracking Minis Methodology at Room Temperature

High Temperature Creep Test Setup in Air

Minicomposites Creep Test Rig

Single Fiber Creep Test Rig

Uncracked Vs. Cracked Minicomposites' Creep Behavior

- Larger total strain and strain rates in Precracked HN and HNS due to longer lengths of fibers at higher stress and oxidation
- Smaller total strain in As-Produced HN and HNS due to load sharing (matrix carries some load – fiber stress isn't as high as for the precracked).
- Precracked samples failed earlier than the pristine samples under the same loading conditions.

As-recieved and PreCracked Hi-Nicalon minicomposites Creep Curves

As-received and PreCracked Hi-Nicalon Type S Minicomposites Creep Curves

8

Post Creep Fracture Surface Morphology

- Obvious fiber pull-out in pristine HNSC1-3 sample tested in creep.
- Also, cracked oxide layer on the surface of the pristine sample due to the long time it lasted in creep, thermal cycle and the surrounding air.
- Little to no fiber pull-out (brittle surface) due to fiber creep and oxidation degradation in precracked sample HNSPC2-1.

High Temperature Oxidation Behavior

Hi-Nicalon S Single Fiber Creep in Air

Hi-Nicalon S Single Fiber Creep in Air

A.Almansour&G.Morscher ICACC'17

Fibers and Matrix Creep Properties at 1200 °C

Creep Stress Transfer Model

$$\varepsilon_f = \frac{\sigma_f}{E_f} + \sigma_f A_f [1 - e^{-P_f \, t}] + B_f \sigma_f^{n_f} t$$

$$\varepsilon_m = \frac{\sigma_m}{E_m} + \sigma_m A_m [1 - e^{-P_m \, t}] + B_m \sigma_m^{n_m} t$$

$$\varepsilon_f = \frac{\sigma_f}{E_f} + \sigma_f^* A_f - \sigma_f^* A_f e^{(-P_f \, t)} + \sigma_f A_f P_f [e^{(-P_f \, t)}] + B_f \sigma_f^{n_f}$$

$$\varepsilon_m^* = \frac{\sigma_m}{E_m} + \sigma_m^* A_m - \sigma_m^* A_m e^{(-P_m \, t)} + \sigma_m A_m P_m [e^{(-P_m \, t)}] + B_m \sigma_m^{n_m}$$

$$\varepsilon_f^* = \frac{\sigma_m}{E_m} + \sigma_m^* A_m - \sigma_m^* A_m e^{(-P_m \, t)} + \sigma_m A_m P_m [e^{(-P_m \, t)}] + B_m \sigma_m^{n_m}$$

$$\varepsilon_f^* = \varepsilon_m$$

$$\varepsilon_f^* = \varepsilon_m$$

$$\varepsilon_f^* = \varepsilon_m$$

$$\varepsilon_f^* = \varepsilon_m$$

$$\sigma_m A_m P_m [e^{(-P_m \, t)}] - \sigma_f A_f P_f [e^{(-P_f \, t)}] + B_m \sigma_m^{n_m} - B_f \sigma_f^{r_f}$$

$$\frac{1}{E_f} + A_f - A_f e^{(-P_f \, t)} + \frac{V_f}{V_m E_m} + \frac{A_m V_f}{V_m} e^{(-P_m \, t)} - B_f n_f \sigma_f^{r_f} - t_c - \frac{B_m n_m V_f \sigma_m^{n_m - 1} t}{V_m}$$

$$\sigma_{f(i)} = \sigma_{f(i-1)} + \Delta t \, \sigma_{f(i-1)}^{\bullet}; \Delta t = t_i - t_{i-1}$$

$$\sigma_{m(i)} = \sigma_{m(i-1)} + \Delta t \, \sigma_{m(i-1)}^{\bullet}; \Delta t = t_i - t_{i-1}$$

 Δt is 10 seconds in the model Stress on the fibers and the matrix increased with the increase in V_f.

Creep Model Illustration

$$\begin{split} & \varepsilon_f(t_i) - \frac{\sigma_f}{E_f} - \sigma_f \, A_f \big[1 - e^{-P_f \, t_i} \big] - B_f \sigma_f^{n_f} t_i = 0 \\ & t_{i+1}^* = \, t_i - \frac{\varepsilon_f(t_i)}{\varepsilon_f'(t_i)} \\ & \varepsilon_f'(t_i) = \frac{\varepsilon_f(t_i) - \varepsilon_f(t_{i-1}^*)}{t_i - t_{i-1}^*} \\ & t_{i+1}^* = \, t_i - \frac{\Delta * \varepsilon_f(t_i)}{\varepsilon_f(t_i) - \varepsilon_f(t_{i-1}^*)} \\ & \text{with } \Delta = \, t_i - t_{i-1}^* = 10^{-8} \, \text{sec and Error} < 10^{-6} \\ & \varepsilon_{fi}(10 + t_{i+1}^*) = \frac{\sigma_{fi}}{E_f} + \, \sigma_{fi} \, A_f \big[1 - e^{-P_f \, (10 + t_{i+1}^*)} \big] + B_f \sigma_{fi}^{n_f}(10 + t_{i+1}^*) \end{split}$$

Real Time, t', Seconds	Stress on Fibers, $\sigma_{\it fi}$	Fibers Strain, ε_{i-1} (σ_{fi} , t_i)	Relative time, $t_i^*(\sigma_{\mathit{fi}}, \epsilon_{\mathit{i-1}})$	Cumulative Time, $t_i = \sum t_i^*$	Fibers Creep Strain $arepsilon_{fi}(\sigma fi, t^*_{i+1}$ +10)
10	σ_1	ε ₁	t ₁ *	t ₁	ε _{f1}
20	σ_{2}	$\mathbf{\epsilon_2}$	t ₂ *	t ₂	ϵ_{f2}
30	σ_3	$\mathbf{\epsilon}_3$	t ₃ *	t ₃	$\mathbf{\epsilon}_{f3}$
40	$\sigma_{_4}$	$\mathbf{\epsilon_4}$	t ₄ *	t ₄	ϵ_{f4}
50	σ_{5}	$\mathbf{\epsilon}_{5}$	t ₅ *	t ₅	$oldsymbol{arepsilon}_{f5}$
60	σ_{6}	ε ₆	t ₆ *	t ₆	ε _{f6}

Where: t' >t_n> t_n*
Time increment 10 Seconds

Creep Model Results for Constant Composite Stress & Different Fiber Content

Creep Model Results for Different Composite Stress & Different Fiber Content

Creep Model Results for Precracked Hi-Nicalon S Minicomposite

- > Assumed extreme average fiber loading for precracked Hi-Nicalon S/BN/CVI-SiC (HNSPC1-5) σ_c =310 MPa V_f= 38% t_r=470 hours.
- ➤ Hi-Nicalon S fibers creep parameters in air were input to the creep model to study upper extreme creep condition.
- Overall model results overestimates creep strain but model evolution agrees with experimental data.
- This is due to lower stresses on the fibers in the debond region and regions where CVI-SiC is still intact.

Conclusions

- ➤ CVI-SiC creep properties at 1200°C determined.
- Derivation of creep equation generated a stress redistribution model between fibers and matrix in creep and helped to understand the effect of fiber content change on creep load sharing behavior.
- Load sharing model helped in constructing minicomposites' creep model.
- ➤ Similar model methodology can be used to predict/model true creep evolution within the same constituent (Oxidizing fibers).
- ➤ Single Hi-Nicalon S fibers creep data were compared to precracked minicomposites data with the same fiber type.

