Entry and Multiple Equilibria

Daniel Waldinger, NYU

January 31, 2022

Outline

- 1 Tamer, ReStud 2003
- 2 Ciliberto & Tamer, ECMA 2009

Incomplete Econometric Models

- Multiple equilibria raise significant challenges for empirical analysis
 - Non-unique mapping from exogenous to endogenous variables
 - May imply non- or partial identification of model parameters
 - Even if model is identified, counterfactual predictions non-unique
- Approaches we've seen so far:
 - Restrict model structure / parameters until multiplicity disappears
 - Transform the problem: look at outcomes that are unique across multiple equilibria (Bresnahan & Reiss '91, Berry '92)
 - Specify an Equilibrium Selection Mechanism (ESM) (Berry '92)
- Today, we'll consider two other possibilities
 - Identify parameters using equilibria that never appear in regions of multiplicity
 - 2 Directly engage with multiplicity; use as basis for estimation
 - Moment inequality models

Outline

- Tamer, ReStud 2003
 - Framework
 - Identification
- 2 Ciliberto & Tamer, ECMA 2009

Model Incompleteness

- Tamer's paper offers two key insights into incomplete models
 - 1 Incompleteness and identification are logically distinct
 - Incompleteness: for certain values of exogenous variables, econometric model predicts multiple outcomes
 - Parameters of incomplete models may be identified
 - "More" multiplicity need not imply a larger identified set
 - Information from regions of multiplicity can yield a more efficient estimator
 - Proposes efficient semiparametric maximum likelihood (SML) estimator
 - Appropriate estimation method depends on nature of multiplicity and computational challenges
 - e.g. Moment inequality estimators needed in other cases
- Points developed through a 2x2 discrete game

Outline

- 1 Tamer, ReStud 2003
 - Framework
 - Identification
- Ciliberto & Tamer. ECMA 2009

Bivariate Discrete Game

• Econometric model of a 2x2 discrete response game

$$y_1^* = x_1 \beta_1 + y_2 \Delta_1 + u_1$$

$$y_2^* = x_2 \beta_2 + y_1 \Delta_2 + u_2$$

where $y_j = 1\{y_i^* \ge 0\}$ for j = 1, 2

- $(x_1, x_2) \in \mathbb{R}^d$ observed exogenous variables
- $(u_1, u_2) \in \mathbb{R}^2$ unobserved exogenous variables distributed F_u
- $(y_1, y_2) \in \{0, 1\}^2$ entry decisions
- $(\beta_1, \beta_2, \Delta_1, \Delta_2)$ model parameters
- Note $\Delta_1 \neq \Delta_2$ departs from Berry '92, B&R '91
- Suppose $\Delta_1, \Delta_2 < 0$. (0,1) and (1,0) are both equilibria in region

$$-x_1\beta_1 < u_1 \le -x_1\beta_1 - \Delta_1$$

 $-x_2\beta_2 < u_2 \le -x_2\beta_2 - \Delta_2$

Restrictions with Multiplicity

FIGURE 1 Incomplete model with multiple equilibria

$$P_{3}(x,\beta) = Pr(u_{1} < -x_{1}\beta_{1} - \Delta_{1}; u_{2} > -x_{2}\beta_{2} - \Delta_{2})$$

$$+ Pr(u_{1} < -x_{1}\beta_{1}; -x_{2}\beta_{2} < u_{2} < -x_{2}\beta_{2} - \Delta_{2})$$

$$P_{4}(x,\beta) = Pr(u_{1} < -x_{1}\beta_{1} - \Delta_{1}; u_{2} > -x_{2}\beta_{2})$$

Then we have the following restriction: $P_3(x,\beta) \leq Pr[(0,1) \mid x] \leq P_4(x,\beta)$

Example: Coordination Game (Jovanovic '89)

• Two players make binary decisions y_1, y_2 . Payoffs:

$$\Pi_1(y_1, y_2, u_1) = y_1 \times (\theta_1 y_2 - u_1)$$

$$\Pi_2(y_1, y_2, u_2) = y_2 \times (\theta_2 y_1 - u_2)$$

Player types $u_i \sim U(0,1)$

- Assumes unprofitable to be only entrant
 - Technology adoption and complementary products (e.g. electric vehicles and charging stations)
- Only Nash equilibria are
 - (1,1) if $u_1 < \theta_1, u_2 < \theta_2$
 - (0,0) for all (u_1, u_2)

We can only learn from markets with entrants. Identification depends on a priori restrictions on parameter values (θ_1, θ_2) :

- $(\theta_1, \theta_2) \ge 1$: no unique outcome, no ID $0 \le Pr[(1, 1)] \le 1$
- $\theta_1 = \theta_2 = \theta < 1$: partial ID $0 \le Pr[(1,1)] \le \theta^2$

Outline

- Tamer, ReStud 2003
 - Framework
 - Identification
- Ciliberto & Tamer, ECMA 2009

Identification when $\Delta_1 \times \Delta_2 > 0$

Back to general 2x2 game:

$$y_1^* = x_1 \beta_1 + y_2 \Delta_1 + u_1$$

$$y_2^* = x_2 \beta_2 + y_1 \Delta_2 + u_2$$

with
$$y_i = 1\{y_i^* > 0\}$$

- For identification of (β, Δ) , assume:
 - F_u known and independent of x (can be relaxed)
 - Random sample of markets
 - Key exclusion restriction: ∃ continuous regressor x_{1k} excluded from 2's payoff
- Argument ignores regions of multiplicity: β identified by $Pr[(0,0) \mid x]$, Δ by $Pr[(1,1) \mid x]$
 - "Identification at infinity" argument
 - β_2 identified by $\lim_{x_{1k}\to\infty} Pr[(0,0)\mid x]$
 - β_1 identified by rank condition
 - Apply similar argument to $Pr[(1,1) \mid x]$ for Δ

Outcome Regions for $\Delta_1 \times \Delta_2 < 0$

FIGURE 2 Incomplete bivariate model for the case where $\Delta_1 > 0, \, \Delta_2 < 0$

- No PSNE in region of multiplicity ⇒ all four outcomes possible
 - All equilibra intersect region of multiplicity

Identification when $\Delta_1 \times \Delta_2 < 0$

- Build an identification argument based on upper and lower bounds on probability of each outcome
 - For the (0,0) outcome, define

$$P_{2}(x,\beta) = Pr[u_{1} \le -x_{1}\beta_{1}, u_{2} \le -x_{2}\beta_{2}]$$

$$P_{\text{square}}(x,\beta) = Pr[-x_{1}\beta_{1} - \Delta_{1} \le u_{1} \le -x_{1}\beta_{1}; -x_{2}\beta_{2} \le u_{2} \le -x_{2}\beta_{2} - \Delta_{2}]$$

- Then $P_2(x, \beta) \le Pr[(0, 0) | x] \le P_2(x, \beta) + P_{\text{square}}(x, \beta)$
- Similarly for other outcomes
- Identification requires a full-support $x_{1k} \neq x_{2k}$
 - Idea: for $b \neq \beta$, can find region X' where $\forall x' \in X'$, $P_2(x', \beta) > P_2(x', b) + P_{\text{square}}(x', b)$
 - For any $b \neq \beta$, at some x's the observed outcome probabilities will violate the predicted bounds
- Suggests a moment inequality estimator
 - No outcome has an exact probability given the model
 - Develops semiparametric maximum likelihood (SML) estimator for other cases

Outline

- Tamer, ReStud 2003
- 2 Ciliberto & Tamer, ECMA 2009
 - Model and Empirical Implications
 - Inference for Moment Inequality Models
 - Empirical Application
 - Results

Overview

- Revisits entry in U.S. airline industry
- Goal: allow for richer competitive effects δ_i^i . May depend on:
 - Characteristics of potential entrants vs incumbents
 - Large carriers (American) vs low-cost carriers (Southwest)
 - Effects of entry may be heterogeneous and asymmetric
 - Pre-existing market structure
 - Airport presence may deter entry of competitors
- Heterogeneous competitive effects breaks uniqueness properties
 - Unique equilibrium in # firms not guaranteed
 - Possibly no (empirically relevant) regions without multiplicity
- Approach: Inequality restrictions based on revealed preference
 - Entrants make positive profits; non-entrants would not
 - Partial identification of model parameters
 - Estimation and inference using moment inequalities

Outline

- Tamer, ReStud 2003
- 2 Ciliberto & Tamer, ECMA 2009
 - Model and Empirical Implications
 - Inference for Moment Inequality Models
 - Empirical Application
 - Results

Heterogeneous Competitive Effects

A firm chooses to serve a market iff

$$\pi_{im} = S'_m \alpha_i + Z'_{im} \beta_i + W'_{im} \gamma_i + \sum_{j \neq i} (\delta^i_j + Z'_{jm} \phi^i_j) y_{jm} + \epsilon_{im} \ge 0$$

- $oldsymbol{ heta}$ finite parameter of interest
- y_{jm} entry decision of firm j in market m
- $X_m = (S_m, Z_m, W_m)$ observable market characteristics
- ullet S_m market characteristics common to all firms in market m
- $Z_m = (Z_{1m},...,Z_{km})$ firm characteristics affecting all π_{im}
- $W_m = (W_{1m}, ..., W_{km})$ firm characteristics excluded from competitors' payoffs $\pi_{i,-m}$
- \bullet ϵ_{im} iid profit shock
- Equilibrium not even unique in number of firms
 - True even if $\delta_i^i = \delta_j$, $\phi_i^i = 0 \ \forall i, j$
 - Previous studies set $\delta_i^i = \delta$, and often $(\alpha_i, \beta_i) = (\alpha, \beta)$

Model Implications

- $(\delta^i_j + Z'_{jm}\phi^i_j)y_{jm}$ allows for rich heterogeneity in competitive effects
 - ullet Firm-pair-specific competitive effects δ^i_j
 - \bullet Depends on market and competitor characteristics (e.g. airport presence) through ϕ^i_j
 - Interpretations: product differentiation, cost externalities, competitive conduct
 - What restrictions does the CT payoff structure maintain?
- Model maintains a reduced-form structure for profits
 - Expected payoffs in a "long-run equilibrium"
 - Data do exist on prices and quantities
 - To incorporate, would need instruments, an explicit model of supply and demand

General Approach to Estimation

- y observed endogenous variables; X observed exogenous variables
- ullet unobserved exogenous variables, F_ϵ known up to finite dimension
- Random sample of observations $(\mathbf{y}_m, \mathbf{X}_m)$ for markets m = 1, ..., n
- For each y', X, and θ , define two regions:
 - $R_1(\theta, X)$ y' is the unique outcome
 - $R_2(\theta, X)$ y' is one of multiple possible outcomes
- Model restricts probability of observing y' given X:

$$Pr(y' \mid X) = \int_{R_1(\theta, X)} Pr(y' \mid \epsilon, X) dF + \int_{R_2(\theta, X)} Pr(y' \mid \epsilon, X) dF$$
$$= \int_{R_1(\theta, X)} dF + \int_{R_2(\theta, X)} Pr(y' \mid \epsilon, X) dF$$

- Exact probability depends on equilibrium selection rule
 - Could estimate using semiparametric likelihood (Tamer '03)
 - Difficult to implement in practice

Objective Function

Regardless of equilibrium selection rule,

$$\int_{R_1(\theta,X)} dF \le Pr(y' \mid X) \le \int_{R_1(\theta,X)} dF + \int_{R_2(\theta,X)} dF$$

The upper and lower bounds are summarized

$$\mathbf{H}_{1}(\boldsymbol{\theta}, \mathbf{X}) \equiv \begin{bmatrix} H_{1}^{1}(\boldsymbol{\theta}, X) \\ \vdots \\ H_{1}^{2^{K}}(\boldsymbol{\theta}, X) \end{bmatrix} \leq \begin{bmatrix} Pr(\mathbf{y}_{1} \mid X) \\ \vdots \\ Pr(\mathbf{y}_{2^{K}} \mid X) \end{bmatrix} \leq \begin{bmatrix} H_{2}^{1}(\boldsymbol{\theta}, X) \\ \vdots \\ H_{2}^{2^{K}}(\boldsymbol{\theta}, X) \end{bmatrix} \equiv \mathbf{H}_{2}(\boldsymbol{\theta}, \mathbf{X})$$

Moment inequality estimator penalizes violations of these bounds

$$Q(\theta) = \int [\|(P(\mathbf{X}) - H_1(\theta, \mathbf{X}))_-\| + \|(P(\mathbf{X}) - H_2(\theta, \mathbf{X}))_+\|] dF_x$$

Implementation

Estimation and inference based on empirical analogue

$$Q_n(\theta) = \frac{1}{n} \sum_{i=1}^n \left(\| (P_n(x_i) - \hat{H}_1(\theta, x_i))_- \| + \| (P_n(x_i) - \hat{H}_2(\theta, x_i))_+ \| \right)$$

- Non-parametric frequency estimator for $P_n(x)$
 - Inference method requires discretizing X into $S_x = \{x_1, ..., x_s\}$
- \hat{H}_1, \hat{H}_2 estimated via simulation (no analytic characterization)
 - **1** Fixed set of r = 1, ..., R simulation draws of ϵ_m^r in each market
 - 2 Calculate profit vectors for each possible outcome $y^1, ..., y^{2^K}$:

$$\boldsymbol{\pi}(\mathbf{y}^{j},\mathbf{X},\theta,\boldsymbol{\epsilon}^{r}) = [\boldsymbol{\pi}_{1}(\mathbf{y}_{-1}^{j},\mathbf{X},\theta,\boldsymbol{\epsilon}_{1}^{r}),...,\boldsymbol{\pi}_{K}(\mathbf{y}_{-K}^{j},\mathbf{X},\theta,\boldsymbol{\epsilon}_{K}^{r})]$$

- **3** Find all equilibria of the game. For r = 1, ..., R
 - If \mathbf{y}^j is an equilibrium, $\hat{H}_2^j = \hat{H}_2^j + \frac{1}{R}$
 - If \mathbf{y}^j is the unique equilibrium, $\hat{H}_1^j = \hat{H}_1^j + \frac{1}{R}$
- Inference conducted using recently developed methods in Chernozhukov, Hong, Tamer (ECMA 2007)
 - Interlude to cover key concepts and methods

Outline

- 1 Tamer, ReStud 2003
- 2 Ciliberto & Tamer, ECMA 2009
 - Model and Empirical Implications
 - Inference for Moment Inequality Models
 - Empirical Application
 - Results

Problem Formulation

- ullet Consider a population criterion function $Q(heta) \geq 0$
 - e.g. based on moment inequalities $E[m_i(\theta)] \leq 0$:

$$Q(\theta) = ||E[m_i(\theta)]_+ W^{1/2}(\theta)||^2$$

• $\hat{ heta} \in \Theta \subset \mathbb{R}^d$ satisfies the model's restrictions only if $Q(\hat{ heta}) = 0$

$$\Theta_{I} = \{\theta \in \Theta : \mathit{Q}(\theta) = 0\} = \arg\min_{\theta \in \Theta} \mathit{Q}(\theta)$$

Θ_I is the identified set. Moment inequality case:

$$\Theta_I = \{\theta : E[m_i(\theta)] \leq 0\}$$

- We want to provide an estimator $\hat{\Theta}_I$ of Θ_I which is
 - Consistent
 - Yields valid confidence sets for Θ_I (or $\theta \in \Theta_I$)
 - Is computationally tractable

Estimator

- Chernozhukov, Hong, and Tamer (ECMA 2007) show how to consistently estimate Θ_l and construct valid confidence regions
- Estimator chooses parameter values that make objective function small

$$\hat{\Theta}_I = C_n(\hat{c}) \equiv \{ \theta \in \Theta \mid a_n Q_n(\theta) \le \hat{c} \}$$

The level, \hat{c} , may be data dependent. The normalizing sequence a_n is n or $\frac{n}{\log n}$

- Challenge is choosing appropriate \hat{c}
 - Use data to determine tolerance
 - CHT propose a generic subsampling method

Desired Properties

- Consistency: what does this mean for set estimation?
 - Need a notion of closeness for sets $\hat{\Theta}_I = C_n(\hat{c})$ and Θ_I
 - Hausdorf distance measures maximum discrepancy between two sets. If $d(a, B) \equiv \inf_{b \in B} ||b a||$, define

$$d_H(A, B) \equiv \max \left\{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(A, b) \right\}$$

Consistency means

$$d_H(C_n(\hat{c}),\Theta_I)\stackrel{p}{\to} 0$$

• Confidence Region: the estimate $C_n(\hat{c})$ should contain the identified set Θ_I with probability at least $\alpha \in (0,1)$:

$$\lim_{n\to\infty} P(\Theta_I \subseteq C_n(\hat{c})) \geq \alpha$$

Inferential Statistic

For results on consistency and coverage, a key statistic is

$$C_n \equiv \sup_{\theta \in \Theta_I} a_n Q_n(\theta)$$

This is called the *inferential statistic*

- Maximum value of objective function on identified set
- We don't observe Θ_I , so C_n is never observed directly
- However, constructing valid confidence regions depends crucially on estimating the distribution of C_n , because

$$\Theta_I \subseteq C_n(c) \Longleftrightarrow \sup_{\theta \in \Theta_I} a_n Q_n(\theta) \le c \Longleftrightarrow C_n \le c$$

- Consistency: select $\hat{c} \geq C_n$ with probability approaching one
- Coverage: estimate α -quantile of the C_n distribution

General Consistency Result

- CHT (2007), Theorem 3.1: Suppose mild regularity conditions on Θ and Q, as well as the following properties:
 - Q_n is uniformly no smaller than Q on Θ : $\sup_{\theta \in \Theta} (Q(\theta) Q_n(\theta))_+ = O_p(1/b_n)$ for a sequence of constants $b_n \to \infty$
 - $Q_n \to 0$ uniformly on Θ_l : $\sup_{\theta \in \Theta_l} Q_n(\theta) = O_p(1/a_n)$ for a sequence of constants $a_n \to \infty$
 - Requirement of convergence to 0 unrestrictive
 - $\begin{array}{c} \bullet \ \ P(\hat{c} \geq \mathcal{C}_n) \rightarrow 1, \ \mathsf{but} \ \hat{c}/\mathsf{a}_n \stackrel{\rho}{\rightarrow} 0 \\ \mathsf{Then} \ \ P(\Theta_I \subseteq \hat{\Theta}_I) \rightarrow 1 \ \mathsf{and} \ \ d_H(\hat{\Theta}_I, \Theta_I) = o_p(1) \end{array}$
- CHT verify these conditions for moment inequality models, with $b_n = \sqrt{n}, \ a_n = n$
 - Recommend $\hat{c} \propto \log n$ to satisfy $\hat{c} \geq \mathcal{C}_n \text{ wp} \rightarrow 1$

Confidence Regions for Θ_I

• Choose appropriate level of inequality violation tolerance, \hat{c} , so that

$$P(\Theta_l \subseteq \hat{\Theta}_l) = P\left(C_n = \sup_{\theta \in \Theta_l} nQ_n(\theta) < \hat{c}\right) \ge \alpha$$

The confidence region is

$$C_n(\hat{c}) = \{\theta \in \Theta : nQ_n(\theta) < \hat{c}\}$$

- But how to find the right ĉ?
 - Idea: if model correctly specified, sampling error creates inequality violations
 - Use data to determine how large the violations are likely to be
- Additional regularity conditions needed for valid coverage
 - Related to distribution of inferential statistic C_n
 - Usually satisfied in applications

Subsampling Approach

- **1** Initial estimate $C_n(c_0)$ of Θ_I , e.g. $C_n(q_n)$ where $q_n \equiv \inf_{\theta \in \Theta} a_n Q_n(\theta)$
- **2 Subsample** the statistic $n(Q_n(\theta_0) \min_t Q_n(t)) \forall \theta_0 \in C_n(c_0)$, obtain α -quantiles $c_1(\theta_0)$:
 - Draw iid subsamples $j = 1, ..., B_n$ of size b_n
 - For each $\theta_0 \in C_n(c_0)$, calculate subsample analog $T_j(\theta_0) = b_n[Q_{b_n,j}(\theta_0) \min_t Q_{b_n,j}(t)]$ for $j=1,...,B_n$
 - Take α quantile of $\{T_j(\theta_0)\}$, $c_1(\theta_0)$
- **3** Construct confidence region using $c_1 = \sup_{\theta_0 \in C_n(c_0)} c_1(\theta_0)$:

$$\hat{\Theta}_I = C_n(c_1) = \{ \theta \in \Theta \mid n(Q_n(\theta) - \min_t Q_n(t)) \le c_1 \}$$

4 Repeat (optional) using $C_n(c_1)$ to obtain c_2 , etc

Comments

- Size and number of subsamples must be chosen appropriately
 - $\lim_{n\to\infty} b_n = \infty$, $\lim_{n\to\infty} B_n = \infty$, $\lim_{n\to\infty} \frac{b_n}{b_n} = 0$
 - Ciliberto and Tamer choose $b_n = n/4$
- Could continue iterating procedure to get $c_2, c_3, ...$
 - Further iteration does not affect validity, but can yield higher-order refinements (Romano and Shaikh, 2009)
- Simulation error is an important issue in practice
 - Simulation draws $S \to \infty$ quickly to preserve consistency
 - Re-simulate in each subsample to account for additional error
- Can also perform inference for a specific $\theta \in \Theta_I$.
 - Ciliberto & Tamer take this approach. Estimate distribution of $nQ_n(\theta)$ under null of $\theta_0 = \theta$, obtain α -quantile $c_n(\theta)$. Then

$$\hat{\Theta}_I = \left\{\theta \in \Theta \mid \textit{n}(\textit{Q}_\textit{n}(\theta) - \min_t \textit{Q}_\textit{n}(t)) \leq \min\{c_2, c_\textit{n}(\theta)\}\right\}$$

Outline

- Tamer, ReStud 2003
- 2 Ciliberto & Tamer, ECMA 2009
 - Model and Empirical Implications
 - Inference for Moment Inequality Models
 - Empirical Application
 - Results

The Wright Amendment

- Counterfactuals focus on 2006 repeal of the Wright Amendment
- Passed by Congress in 1979 to stimulate growth of Dallas/Fort Worth
 - Restricted airline service out of Dallas Love, its competitor
 - Non-stop flights to states neighboring Texas
 - Prohibited through service or ticketing outside of those states
 - Commuter planes with fewer than 56 seats
- Southwest claimed this was anti-competitive
 - SW relied exclusively on Boeing 737 plane to simplify operations
 - All Boeing 737s have capacity over 100
 - Counter-argument: Southwest could fly out of Dallas/Fort Worth
- Repeal took full effect in 2014
 - Goal: predict full repeal's effects before they are observed

Data

- Augments Origin and Destination Survey (from Berry '92) with flightand ticket-level data
 - Crucially, can distinguish airports within a city
 - Model assumes independence across airports even within a city
 - May not be innocuous for counterfactual of interest
 - Sample restrictions similar (but not identical) to Berry's
 - Keep markets into/out of Dallas Love of distance > 500 miles
- Important modeling decision: aggregate smaller airlines
 - Focus on American, Delta, United, and Southwest
 - Medium airlines (MA) and low-cost carriers (LCC) combined
 - Aids computation # equilibria exponential in # firms
 - Valid if combined firms behave in strategically similar ways
- Quarterly panel from Q1 '96 through Q4 '07
 - Estimation sample based on Q2 '01

Market Size and Entry

 $\label{thm:table II} \textbf{DISTRIBUTION OF THE NUMBER OF CARRIERS BY MARKET SIZE}^a$

Number of						
Firms	Large	Medium	Small	Total		
0	7.07	7.31	7.73	7.29		
1	41.51	22.86	20.91	30.63		
2	29.03	24.30	22.14	25.93		
3	12.23	19.67	16.34	15.72		
4	8.07	15.14	14.59	11.93		
5	1.66	9.58	16.17	7.48		
6	0.42	1.13	2.11	1.02		
Number	1202	971	569	2742		

- Many markets, including large ones, highly concentrated
- Larger markets do not have more firms (driven by MA, LCC?)

Exclusion Restrictions, Parametric Assumptions

- Identification relies on market-specific variables affecting one firms' profits but not others. Two types of variables considered:
 - 4 Airport presence: fraction of markets served out of an airport
 - Costs: proxied by distance from an airline's nearest hub
 - Exclusion restriction valid if hub distance affects fixed costs, but not variable costs (why? is this reasonable?)
- Exclusion restrictions depend on richness of model specification
 - Fixed Competitive Effects (φⁱ_j = 0 ∀i, j): Both airport presence and costs excluded from competitors' profits
 - Variable Competitive Effects: only costs excluded; airport presence may affect competitors' profits
 - Incumbent with large airport presence may deter entry
- Distribution of unobservables parameterized as jointly normal:

$$\epsilon_{im} = u_{im} + u_m + u_m^o + u_m^d$$

Allows correlation across firms by origin, destination, and market

Outline

- Tamer, ReStud 2003
- 2 Ciliberto & Tamer, ECMA 2009
 - Model and Empirical Implications
 - Inference for Moment Inequality Models
 - Empirical Application
 - Results

Fixed Competitive Effects $\phi_i^i = 0$

TABLE III EMPIRICAL RESULTS^a

		Heterogeneous	Heterogeneous	Firm-to-Firm
	Berry (1992)	Interaction	Control	Interaction
Competitive fixed effect	[-14.151, -10.581]			
AÂ		[-10.914, -8.822]	[-9.510, -8.460]	
DL		[-10.037, -8.631]	[-9.138, -8.279]	
UA		[-10.101, -4.938]	[-9.951, -5.285]	
MA		[-11.489, -9.414]	[-9.539, -8.713]	
LCC		[-19.623, -14.578]	[-19.385, -13.833]	
WN		[-12.912, -10.969]	[-10.751, -9.29]	
LAR on LAR				
LAR: AA, DL, UA, MA				[-9.086, -8.389]
LAR on LCC				[-20.929, -14.321]
LAR on WN				[-10.294, -9.025]
LCC on LAR				[-22.842, -9.547]
WN on LAR				[-9.093, -7.887]
LCC on WN				[-13.738, -7.848]
WN on LCC				[-15.950, -11.608]
Airport presence	[3.052, 5.087]	[11.262, 14.296]	[10.925, 12.541]	[9.215, 10.436]
Cost	[-0.714, 0.024]	[-1.197, -0.333]	[-1.036, -0.373]	[-1.060, -0.508]
Wright	[-20.526, -8.612]	[-14.738, -12.556]	[-12.211, -10.503]	[-12.092, -10.602]
Dallas	[-6.890, -1.087]	[-1.186, 0.421]	[-1.014, 0.324]	[-0.975, 0.224]
Market size	[0.972, 2.247]	[0.532, 1.245]	[0.372, 0.960]	[0.044, 0.310]
WN			[0.358, 0.958]	
LCC			[0.215, 1.509]	

(Continues)

Fixed Competitive Effects $\phi_i^i = 0$

TABLE III-Continued

	Berry (1992)	Heterogeneous Interaction	Heterogeneous Control	Firm-to-Firm Interaction
Market distance WN LCC	[4.356, 7.046]	[0.106, 1.002]	[0.062, 0.627] [-2.441, -1.121] [-0.714, 1.858]	[-0.057, 0.486]
Close airport WN LCC	[4.022, 9.831]	[-0.769, 2.070]	[-0.289, 1.363] [1.751, 3.897] [0.392, 5.351]	[-1.399,-0.196]
U.S. center distance WN LCC	[1.452, 3.330]	[-0.932, -0.062]	[-0.275, 0.356] [-0.357, 0.860] [-1.022, 0.673]	[-0.606, 0.242]
Per capita income Income growth rate	[0.568, 2.623] [0.370, 1.003]	[-0.080, 1.010] [0.078, 0.360]	[0.286, 0.829] [0.086, 0.331]	[0.272, 1.073] [0.094, 0.342]
Constant MA LCC WN	[-13.840, -7.796]	[-1.362, 2.431]	[-1.067, -0.191] [-0.016, 0.852] [-2.967, -0.352] [-0.448, 1.073]	[0.381, 2.712]
Function value Multiple in identity Multiple in number Correctly predicted	1756.2 0.837 0 0.328	1644.1 0.951 0.523 0.326	1627 0.943 0.532 0.325	1658.3 0.969 0.536 0.308

a These set estimates contain the set of parameters that cannot be rejected at the 95% confidencet level. See Chernozhukov, Hong, and Tamer (2007) and the Supplemental Material for more details on constructing these confidence regions.

Variable Competitive Effects

VARIABLE COMPETITIVE EFFECTS

	Independent Unobs	Variance-Covariance	Only Costs
Fixed effect			
AA	[-9.433, -8.485]	[-8.817, -8.212]	[-11.351, -9.686]
DL	[-10.216, -9.255]	[-9.056, -8.643]	[-12.472, -11.085]
UA	[-6.349, -3.723]	[-4.580, -3.813]	
MA	[-9.998, -8.770]	[-7.476, -6.922]	[-11.906, -10.423]
LCC		[-14.952, -14.232]	
WN	[-9.351, -7.876]	[-6.570, -5.970]	[-12.484, -10.614]
Variable effect			
AA	[-5.792, -4.545]	[-4.675, -3.854]	
DL	[-3.812, -2.757]	[-3.628, -3.030]	
UA	[-10.726, -5.645]	[-8.219, -7.932]	
MA	[-6.861, -4.898]	[-7.639, -6.557]	
LCC	[-9.214, 13.344]		
WN	[-10.319, -8.256]	[-11.345, -10.566]	
Airport presence	[14.578, 16.145]	[10.665, 11.260]	
Cost	[-1.249, -0.501]	[-0.387, -0.119]	
AA			[-0.791, 0.024]
DL			[-1.236, 0.069]
UA			[-1.396, -0.117]
MA			[-1.712, 0.072]
LCC			[-17.786, 1.045]
WN			[-0.802, 0.169]
Wright	[-17.800, -16.346]	[-16.781, -15.357]	[-14.284, -10.479]
Dallas	[0.368, 1.323]	[0.839, 1.132]	[-5.517, -2.095]

Reporting Counterfactuals

- With partially identified / incomplete models, counterfactual statements require careful treatment
 - Model only provides lower and upper bounds on probability of each outcome
- E.g. suppose we want to predict effects of exogenous variables on the probability that American enters a market
 - Many market structures in which American enters: monopoly, duopoly with each competitor, etc.
 - Summing over upper bounds across market structures cannot be correct because they are mutually exclusive events
 - CT approach:
 - In each market, calculate upper bound for each of the 64 market structures at actual and perturbed observables
 - 2 For each structure, average upper bounds across markets
 - Report largest positive and negative changes in average upper bounds across structures

Effects on Entry Probability

MARGINAL EFFECTS^a

	AA	DL	UA	MA	LCC	WN	No Firms
Market size							
Positive	0.1188	0.1136	0.0571	0.1188	0.0849	0.1118	-0.0033
Negative	-0.0494	-0.0720	-0.0001	-0.0442	-0.1483	-0.0300	-0.0033
Market distance							
Positive	0.0177	0.0165	0.0106	0.0177	0.0099	0.0000	0.0006
Negative	-0.0354	-0.0377	-0.0110	-0.0360	-0.0128	-0.0377	0.0006
Close airport							
Positive	0.1178	0.1122	0.0312	0.1048	0.0662	0.1178	-0.0033
Negative	-0.0375	-0.0518	-0.0004	-0.0318	-0.0911	-0.0175	-0.0033
Change income							
Positive	0.0283	0.0265	0.0149	0.0283	0.0171	0.0277	-0.0007
Negative	-0.0140	-0.0193	-0.0001	-0.0120	-0.0339	-0.0086	-0.0007
Per capita income							
Positive	0.0576	0.0546	0.0291	0.0576	0.0364	0.0573	-0.0015
Negative	-0.0270	-0.0377	-0.0002	-0.0237	-0.0699	-0.0160	-0.0015

- E.g. if market size rises by 1 million,
 - One market structure with American entering is 11.88% more likely to be an equilibrium
 - Another such structure is 4.94% less likely to be an equilibrium

Competitive Effects

```
Airport presence
                    0.0673
                             0.0498
                                      0.1888
                                               0.0734
                                                        0.0599
                                                                 0.1040
                           -0.0068 \quad -0.0117
                                             -0.0120
                                                       -0.0054
Cost
                   -0.0102
                                                                -0.0125
AA
                            -0.3606
                                    -0.2556
                                             -0.4108
                                                       -0.0704
                                                                -0.2143
                                     -0.2658
DL.
                   -0.3336
                                             -0.3908
                                                       -0.0335
                                                                -0.2126
                   -0.2486 -0.2630
UA
                                              -0.2696 -0.0675 -0.2015
                   -0.3877 -0.3941 -0.2717
MA
                                                       -0.0989 -0.2766
LCC
                  -0.0998 \quad -0.1579 \quad -0.0721
                                             -0.1415
                                                                -0.0411
                   -0.2256 -0.2356 -0.2030
WN
                                             -0.2868
                                                       -0.0242
```

- Maximum possible competitive effects: Delta's entry decreases the probability of American entering by as much as 33.36%
- Effects heterogeneous across carriers

Policy Analysis: Repeal of the Wright Amendment

- The Wright Amendment affected 93 markets
 - How many markets would be served afterwards?
 - Which firms would enter?
 - Simulation sets Wright dummy variable to 0
- CT report:
 - Change in average probability of each carrier serving a market
 - Max change in avg. upper bounds (as for marginal effects)
 - Change in probability no firms serve a market
- Question of which parameters to report results for
 - Minimum and maximum values across parameters in $\hat{\Theta}_I$
 - Parameter value that minimized the objective function
 - Happened to be unique

Counterfactual Predictions

PREDICTED PROBABILITIES FOR POLICY ANALYSIS: MARKETS OUT OF DALLAS LOVE

Airline	Variance-Covariance	Independent Obs	Only Costs
No firms	[-0.6514, -0.6384, -0.6215]	[-0.7362, -0.6862, -0.6741]	[-0.6281, -0.6162, -0.5713]
AA	[0.4448, 0.4634, 0.4711]	[0.2067, 0.3013, 0.3280]	[0.3129, 0.3782, 0.4095]
DL	[[0.4768, 0.4988, 0.5056]	0.2733, 0.3774, 0.4033]	[0.3843, 0.4315, 0.4499]
UA	[0.1377, 0.1467, 0.1519]	[0.1061, 0.1218, 0.2095]	[0.2537, 0.3315, 0.3753]
MA	[0.4768, 0.4988, 0.5056]	[0.2733, 0.3774, 0.4033]	[0.3656, 0.4143, 0.4342]
LCC	[0.3590, 0.3848, 0.4156]	[0.8369, 0.8453, 0.8700]	[0.2839, 0.3771, 0.3933]
WN	[0.4480, 0.4744, 0.4847]	[0.2482, 0.2697, 0.3367]	[0.3726, 0.4228, 0.4431]

- Huge predicted effects on number of entrants
- As of Oct. 2006, Southwest was planning to serve 43 markets outside of the Wright Amendment area. Success?

Parting Thoughts: Moment Inequality Models

- Moment inequality models are a powerful tool...
 - Allow empirical progress under weaker assumptions
 - Natural "revealed preference" interpretation of model restrictions
 - Today: model incompleteness due to multiple equilibria
 - Next week: weaker assumptions on agents' information sets
- ...but not a panacea
 - Highly computationally demanding
 - Model structure may need to be simplified (e.g. # firms)
 - Model must still be correctly specified
 - Exclusion restrictions, functional form, and parametric assumptions (next week: attempts to relax the latter)
 - Limited ability to perform counterfactuals
- There's also lots more work on computational and econometric issues
 - e.g. Andrews & Soares '09; Galichon & Henry '11
 - Many other applications: auctions, dynamic games

Extensions and Other Work

- We've just scratched the surface of entry models
- In two weeks, we'll discuss extensions before starting dynamic games
 - Post-entry competition and social efficiency (Berry & Waldfogel '99)
 - Endogenous product choice (Mazzeo '02, Seim '06, Jia '08, Fan '13, Wollman '18)
- Next week, other applications of moment inequality models

Next Time

- Pakes, ECMA 2010 (*)
- Pakes, Porter, Ho, Ishii, ECMA 2015 (*)
- Illanes, 2017 (***)