Analysis

Huang LiChuang of Wie-Biotech

Contents

1	摘要		2											
2	研究	设计流程图	3											
3	材料	和方法	3 3 3 3 3 4 4 4 4 4 5 5 6 7 8 10 10 11 11 11 12 12 12 18											
2 的 3 林 4 久 4 4 4 5 名 Refe Lis	分析结果													
	4.1	下载参考基因组注释文件	3											
	4.2	fastq 预处理	4											
		4.2.1 数据质控	4											
	4.3	使用 kallisto 比对 fastq 到参考基因座	4											
		4.3.1 鉴定 mRNA	4											
		4.3.2 鉴定 ncRNA	4											
	4.4	差异分析	5											
		4.4.1 读取并合并不同样本 RNA 定量数据	5											
		4.4.2 合并 mRNA 和 ncRNA 数据	6											
		4.4.3 使用 biomaRt 获取基因注释	7											
		4.4.4 使用 limma 差异分析	8											
	4.5	基因共表达分析	10											
		4.5.1 建立基因共表达模块	10											
		4.5.2 共表达模块和基因的关联性	13											
		4.5.3 TCF4 所在的基因表达模块	14											
		4.5.4 使用 'catRAPID omics v2.1' 预测 RBPs	15											
5	结论		19											
$\mathbf{R}_{\mathbf{c}}$	eferei	nce	20											
\mathbf{L}	ist o	of Figures	3 3 3 4 4 4 4 4 4 5 5 7 8 7 10 10 11 11 15 19 20											
	1	Filter low expression genes	8											
	2	Nomalize genes expression	8											
	3	Volcano plot of differential expression genes	10											

4	Cluster sample	11
5	Pick soft thereshold	12
6	Gene modules	13
7	Intersects of sets of filtering conditions	17
8	Unique candidate of RBP binding with TCF4 and TCF AS1 $\ \ldots \ \ldots \ \ldots \ \ldots$	19
List	of Tables	
1	Merged mrna	5
2	Merged ncrna	6
3	Merged data of mRNA and ncRNA	6
4	Annotation mRNA	7
5	Linear regression and contrast fit results	9
6	Module membership	14
7	TCF4 in modules memberships	15
8	All results include positive or negtive	16
9	Top candidates	17

1 摘要

根据客户需求和提供的数据,筛出(瘢痕增生)能够与 TCF-AS1 结合又能与 TCF4 结合的 RNA 结合蛋白。结果请参考 5

2 研究设计流程图

3 材料和方法

- 1. 获取参考注释基因。
- 2. 初步处理客户提供的数据(fastp 质控、kallisto¹ 对比到参考基因座等)。
- 3. 使用 limma 差异分析²。
- 4. 使用 WGCNA 方法³, 从差异基因中筛选与 TCF4-AS1 lncRNA 和 TCF4mRNA 具有共表达关系的基因。
- 5. 视情况选择合适的预测工具⁴⁻⁷, 预测蛋白和 RNA 的结合程度, 并可视化为图表。

4 分析结果

4.1 下载参考基因组注释文件

下载 cDNA 和 ncRNA 参考基因注释。https://ftp.ensembl.org/pub/release-110/fasta/homo_sapiens/

4.2 fastq 预处理

4.2.1 数据质控

使用 fastp 去接头和去低质量的碱基

此为 fastp 处理时生成的报告文件。'Reports fastq files processed with fastp' 数据已全部提供。

(对应文件为 ./fastp_report)

注:文件夹./fastp_report 共包含 6 个文件。

- 1. CT1-CT1_combined_R.html
- $2. \ \mathrm{CT2\text{-}CT2}_\mathrm{combined}_\mathrm{R.html}$
- 3. CT3-CT3 combined R.html
- 4. CUR1_R.html
- 5. CUR2_R.html
- 6. ...

4.3 使用 kallisto 比对 fastq 到参考基因座

kallisto 提供了快速且准确的 fastq 比对到参考基因座的方法¹ (http://pachterlab.github.io/kallisto/manual .html)。

4.3.1 鉴定 mRNA

使用 kallisto 将 fastq 与 hg38 的 cDNA 数据比对。

主要为子目录下的 abundance.tsv 文件。'Refer to mRNA'数据已全部提供。

(对应文件为 ./quant_hg38_mrna)

注:文件夹./quant_hg38_mrna 共包含 6 个文件。

- $1. \ \ CT1\text{-}CT1_combined_R$
- 2. CT2-CT2_combined_R
- $3. CT3-CT3_combined_R$
- 4. CUR1_R
- 5. CUR2 R
- 6. ...

4.3.2 鉴定 ncRNA

使用 kallisto 将 fastq 与 hg38 的 ncRNA 数据比对。

主要为子目录下的 abundance.tsv 文件。'Refer to ncRNA'数据已全部提供。

(对应文件为 ./quant_hg38_ncrna)

注:文件夹./quant_hg38_ncrna 共包含 6 个文件。

- 1. CT1-CT1_combined_R
- 2. CT2-CT2_combined_R
- 3. $CT3-CT3_combined_R$
- 4. CUR1_R
- 5. CUR2_R
- 6. ...

4.4 差异分析

4.4.1 读取并合并不同样本 RNA 定量数据

Table 1为表格 merged mrna 概览。

(对应文件为 Figure+Table/merged-mrna.csv)

注:表格共有 207249 行 7 列,以下预览的表格可能省略部分数据;表格含有 207249 个唯一 'target_id'。

Table 1: Merged mrna

targe	CT1-C	СТ2-С	СТ3-С	CUR1_R	CUR2_R	CUR3_R
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0

Table 2为表格 merged ncrna 概览。

(对应文件为 Figure+Table/merged-ncrna.csv)

注: 表格共有 68492 行 7 列,以下预览的表格可能省略部分数据;表格含有 68492 个唯一'target_id'。

Table 2: Merged ncrna

targe	CT1-C	CT2-C	СТ3-С	CUR1_R	CUR2_R	CUR3_R
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	2496.34	3798.65	11014.8	2845.62	3811.47	10121.3
ENST0	0	0	0	0	0	0
ENST0	0	0	0.166667	0	0.333333	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0.5	0	0	0	0
ENST0	3	7	5	4	6	9
ENST0	0	0	0	0	0	0

4.4.2 合并 mRNA 和 ncRNA 数据

在这里,将 mRNA 数据和 ncRNA 数据按照列(样品)合并。

Table 3为表格 merged data of mRNA and ncRNA 概览。

(对应文件为 Figure+Table/merged-data-of-mRNA-and-ncRNA.csv)

注: 表格共有 275741 行 7 列,以下预览的表格可能省略部分数据; 表格含有 275741 个唯一 'target_id'。

Table 3: Merged data of mRNA and ncRNA

targe	CT1-C	СТ2-С	СТ3-С	CUR1_R	CUR2_R	CUR3_R
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0

targe	CT1-C	CT2-C	СТ3-С	CUR1_R	CUR2_R	CUR3_R
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0
ENST0	0	0	0	0	0	0

4.4.3 使用 biomaRt 获取基因注释

使用 R 包 biomaRt 获取 mRNA 和 ncRNA 的注释。

Table 4为表格 annotation mRNA 概览。

(对应文件为 Figure+Table/annotation-mRNA.tsv)

注:表格共有 275741 行 8 列,以下预览的表格可能省略部分数据;表格含有 275741 个唯一 'ensembl_transcript_id'。

Table 4: Annotation mRNA

ensem1	ensem2	entre	hgnc	chrom	start	end_p	descr
ENST0	ENSG0	4535	MT-ND1	MT	3307	4262	mitoc
ENST0	ENSG0	4536	MT-ND2	MT	4470	5511	mitoc
ENST0	ENSG0	4512	MT-CO1	MT	5904	7445	mitoc
ENST0	ENSG0	4513	MT-CO2	MT	7586	8269	mitoc
ENST0	ENSG0	4509	MT-ATP8	MT	8366	8572	mitoc
ENST0	ENSG0	4508	MT- $ATP6$	MT	8527	9207	mitoc
ENST0	ENSG0	4514	MT-CO3	MT	9207	9990	mitoc
ENST0	ENSG0	4537	MT-ND3	MT	10059	10404	mitoc
ENST0	ENSG0	4539	MT-ND4L	MT	10470	10766	mitoc
ENST0	ENSG0	4538	MT-ND4	MT	10760	12137	mitoc
ENST0	ENSG0	4540	MT-ND5	MT	12337	14148	mitoc
ENST0	ENSG0	4541	MT-ND6	MT	14149	14673	mitoc
ENST0	ENSG0	4519	MT-CYB	MT	14747	15887	mitoc
ENST0	ENSG0	10272		KI270	4612	29626	
ENST0	ENSG0	10272		KI270	4612	29626	

ensem1	ensem2	entre	hgnc	chrom	start	end_p	descr

4.4.4 使用 limma 差异分析

Figure 1为图 filter low expression genes 概览。

(对应文件为 Figure+Table/filter-low-expression-genes.pdf)

Figure 1: Filter low expression genes

Figure 2为图 nomalize genes expression 概览。

(对应文件为 Figure+Table/nomalize-genes-expression.pdf)

Figure 2: Nomalize genes expression

线形回归拟合 $model.matrix(~0 + group)^{2,8},$ 并统计检验。

Table 5为表格 linear regression and contrast fit results 概览。根据 P.Value (0.05) 和 $|\log 2FC|$ (0.3) 过滤得到结果。

(对应文件为 Figure+Table/linear-regression-and-contrast-fit-results.xlsx)

注:表格共有 7204 行 14 列,以下预览的表格可能省略部分数据;表格含有 7204 个唯一'ensembl_transcript_id'。

Table 5: Linear regression and contrast fit results

ensem1	ensem2	entre	hgnc	chrom	start	end_p	descr	\log FC	AveExpr	
ENST0	ENSG0	23657	SLC7A11	4	13816	13824	solut	1.096	6.693	
ENST0	ENSG0	2316	FLNA	X	15434	15437	filam	-0.60	10.38	
ENST0	ENSG0	1728	NQO1	16	69706996	69726668	NAD(P	1.540	7.379	
ENST0	ENSG0	3486	IGFBP3	7	45912245	45921874	insul	-1.77	5.925	
ENST0	$\mathrm{ENSG}0$	3880	KRT19	17	41523617	41528308	kerat	-1.40	5.649	
ENST0	ENSG0	NA		16	69709874	69710583	novel	1.519	4.998	
ENST0	$\mathrm{ENSG}0$	682	BSG	19	571277	583494	basig	-1.89	6.649	
ENST0	ENSG0	3488	IGFBP5	2	21667	21669	insul	-1.63	6.279	
ENST0	$\mathrm{ENSG}0$	128239	IQGAP3	$\mathrm{HG}251$	83962	131161	IQ mo	-1.08	5.548	
ENST0	ENSG0	128239	IQGAP3	1	15652	15657	IQ mo	-1.08	5.548	
ENST0	ENSG0	1728	NQO1	16	69706996	69726668	NAD(P	1.374	5.529	
ENST0	$\mathrm{ENSG}0$	4176	MCM7	7	10009	10010	minic	-1.04	6.143	
ENST0	ENSG0	9537	TP53I11	11	44885903	44951306	tumor	-1.01	5.866	
ENST0	ENSG0	1728	NQO1	16	69706996	69726668	NAD(P	1.757	3.238	
ENST0	ENSG0	994	CDC25B	20	3786772	3806121	cell	-0.80	6.245	

Figure 3为图 volcano plot of differential expression genes 概览。

(对应文件为 Figure+Table/volcano-plot-of-differential-expression-genes.pdf)

Figure 3: Volcano plot of differential expression genes

4.5 基因共表达分析

4.5.1 建立基因共表达模块

将上述(4.4.4, Fig. 2)标准化过的**差异表达**基因数据 (Tab. 5) 用于 WGCNA 分析 3 。 Figure 4为图 cluster sample 概览。

(对应文件为 Figure+Table/cluster-sample.pdf)

Sample clustering

Figure 4: Cluster sample

由于样本数量较少,没有明显合适的 'soft threshold'。这里,选择 'soft threshold' 为 3。 Figure 5为图 pick soft thereshold 概览。

(对应文件为 Figure+Table/pick-soft-thereshold.pdf)

Figure 5: Pick soft thereshold

Figure 6为图 gene modules 概览。

(对应文件为 Figure+Table/gene-modules.pdf)

Cluster Dendrogram

Figure 6: Gene modules

4.5.2 共表达模块和基因的关联性

计算 'gene module' 和 genes 之间的关联性 (module membership)。

Table 6为表格 module membership 概览。

(对应文件为 Figure+Table/module-membership.xlsx)

注: 表格共有 11853 行 15 列,以下预览的表格可能省略部分数据; 表格含有 6009 个唯一'gene'。

Table 6: Module membership

gene	modu	lecor	pvalue l	log2	signi	sign	p.adjust	ensem entre	hgncchrom	start
ENST	0.ME1	_	0.0346	4.853	<	*	0.078	ENSG0.2101	ESRRA11	64305497.
		0.84			0.05					
ENST	0.ME1	0.89	0.0166	5.912	<	*	0.061	ENSG0.64847	SPATA207	50543058.
					0.05					
ENST	0.ME2	-	0.0319	4.970	<	*	0.076	ENSG0.64847	SPATA207	50543058.
		0.85			0.05					
ENST	0.ME1	-	0.0471	4.408	<	*	0.088	ENSG0.57414	RHBDD72	75842602.
		0.82			0.05					
ENST	0.ME2	0.89	0.0171	5.869		*	0.062	ENSG0.57414	RHBDD72	75842602.
					0.05					
ENST	0.ME3	0.85	0.0305	5.035		*	0.075	ENSG0.3675	ITGA3 17	50055968.
DMOD	10 3 FF24	0.00	0.000		0.05	N.	0.000		ED CC4 40	12 10 2 00 1
ENST	0.ME1	0.96	0.002	8.965		*	0.039	ENSG0.2067	ERCC1 19	45407334.
DMCD	o MEO		0.0495	4 500	0.05	*	0.000	ENICCO 2007	EDCC1 10	45 407994
ENSI	0.ME2	0.82	0.0435	4.522	0.05	-1-	0.086	ENSG0.2067	ERCC1 19	45407334.
ENCT	0.ME3	-	0.0287	5 199		*	0.072	ENSG0.2067	ERCC119	45407334.
ENSI	O.ME9	0.86	0.0267	0.122	0.05		0.073	ENSG0.2007	ERCCI 19	40407004.
ENST	0.ME2		0.0294	5 088		*	0.074	ENSG0.8635	RNASE T 2	16692
LINDI	0.4VIL/2	0.00	0.0234	o.000	0.05		0.074	LIV5C105055	T(TVII) DU Z	10032
ENST	0.ME1	0.99	3e-	11.70		**	0.022	ENSG0.5010	CLDN1B	17041
21101	0.11.11.11	0.00	04	11.10	0.001		0.022	2118 010.0010	CLDIVID	1,011
ENST	0.ME2	-0.9	0.015	6.058		*	0.059	ENSG0.5010	CLDN1B	17041
					0.05					
ENST	0.ME3	_	0.0038	8.039	<	*	0.046	ENSG0.5010	CLDN1B	17041
		0.95			0.05					
ENST	0.ME1	-0.9	0.014	6.158	<	*	0.058	ENSG0.84957	RELT 11	73376399.
					0.05					
ENST	0.ME2	0.85	0.0311	5.006	<	*	0.075	ENSG0.84957	RELT 11	73376399.
					0.05					

4.5.3 TCF4 所在的基因表达模块

确认 TCF4 或 TCF-AS1 所在基因模块。

Table 7为表格 TCF4 in modules memberships 概览。TCF4 所在基因模块为 'ME1' 和 'ME2' (TCF4 和 TCF-AS1 不存在共表达关系)。

(对应文件为 Figure+Table/TCF4-in-modules-memberships.csv)

注:表格共有 4 行 15 列,以下预览的表格可能省略部分数据;表格含有 3 个唯一'gene'。

Table 7: TCF4 in modules memberships

gene modu	lecor	pvalue	- log2	signi	sign	p.adjus	tensem entre	hgnc	chrom	start
ENST0.ME1	0.85	0.033	4.921	•	*	0.077	ENSG0.6925	TCF4	18	55222185.
ENST0.ME1	0.89	0.0171	5.869	•	*	0.062	ENSG0.6925	TCF4	18	55222185.
ENST0.ME2		0.0292	5.097	•	*	0.074	ENSG0.6925	TCF4	18	5522218 5 .
ENST0.ME2	0.86	0.0412	4.601	0.05	*	0.084	ENSG0.6925	TCF4	18	55222185.
	0.83			0.05						

过滤 Tab. 6 数据,根据 p.adjust < 0.05,以及 module 为 'ME1' 和 'ME2'。随后,使用 biomaRt 获取基因 对应的蛋白质的序列,同时,获取 TCF4 和 TCF-AS1 的序列;将这些序列转化为 'fasta' 格式(数量大于 500 个的 'fasta' 文件被切分)。

4.5.4 使用 'catRAPID omics v2.1' 预测 RBPs

4.5.4.1 上传 catRAPID 服务器 catRAPID omics v2.1⁴ 可同时计算多对 RNA 和蛋白质的结合(一次最多接受 500 个序列)。

结果可见于服务器:

- http://crg-webservice.s3.amazonaws.com/submissions/2023-08/729560/output/index.html?unlock=c 9f3fccec3
- http://crg-webservice.s3.amazonaws.com/submissions/2023-08/729563/output/index.html?unlock=7 7c11a2b6a
- http://crg-webservice.s3.amazonaws.com/submissions/2023-08/729565/output/index.html?unlock=6 449ff7496
- 4.5.4.2 结果整理 Table 8为表格 all results include positive or negtive 概览。

(对应文件为 Figure+Table/all-results-include-positive-or-negtive.tsv)

注:表格共有 162666 行 13 列,以下预览的表格可能省略部分数据;表格含有 1291 个唯一'Protein_ID'。

Table 8: All results include positive or negtive

Prote	RNA_ID	rnaFr3	rnaFr4	Annot	Inter	Z_score	RBP_P	RNA_B	numof10	
ERCC5	TCF4	6973	7306	-	119.58	1.47	0.43	PF007	2	
DLG3	TCF4	6973	7306	-	115.51	1.34	0.5	PF006	7	
NRDC	TCF4	6973	7306	-	114.44	1.3	0.51	PF161	3	
INCENP	TCF4	6973	7306	-	112.79	1.25	0.63	PF121	2	
ERC1	TCF4	6973	7306	-	107.5	1.08	0.29	PF101	2	
DLG3	TCF4.AS1	251	302	-	105.42	5.79	0.5	PF006	7	
KIF2C	TCF4	2201	2534	-	105.19	1.01	0.41	PF002	2	
ERCC5	TCF4.AS1	251	302	-	103.23	5.65	0.43	PF007	2	
GTSE1	TCF4	6973	7306	-	103.09	0.94	0.41	PF15259	1	
LIG1	TCF4	6973	7306	-	102.39	0.92	0.43	PF010	3	
DLG3	TCF4.AS1	276	327	-	102.28	5.59	0.5	PF006	7	
FILIP1L	TCF4	6973	7306	-	101.81	0.9	0.29	PF09727	1	
TPX2	TCF4	6973	7306	-	101.34	0.89	1	PF122	3	
KIF15	TCF4	6973	7306	-	101.24	0.88	0.37	PF002	3	
NUP107	TCF4	6973	7306	-	100.24	0.85	0.23	PF04121	1	
	•••	•••	•••		•••		•••	•••		

关于结果表格和各类评分的解释可以参考: http://service.tartaglialab.com/static_files/shared/documentation_omics2.html。

接下来,按照不同条件筛选结果:

- RBP_Propensity == 1,
- Interaction_Propensity > 0,
- numof.RNA.Binding_Domains_Instances > 0,
- numof.RNA_Binding_Motifs_Instances > 0

Figure 7为图 intersects of sets of filtering conditions 概览。

(对应文件为 Figure+Table/intersects-of-sets-of-filtering-conditions.pdf)

Figure 7: Intersects of sets of filtering conditions

可以发现,将四个数据集取交集,能得到包含少量数据的结果。

Table 9为表格 top candidates 概览。

(对应文件为 Figure+Table/top-candidates.xlsx)

注: 表格共有 47 行 13 列,以下预览的表格可能省略部分数据; 表格含有 10 个唯一'Protein_ID'。

Table 9: Top candidates

Prote	RNA_ID	rnaFr3	rnaFr4	Annot	Inter	Z_score	RBP_P	RNA_B	numof10	<u></u>
PPIG	TCF4	6973	7306	-	70.11	-0.1	1	PF00160	1	
LARP4	TCF4	2367	2700	-	46.53	-0.85	1	PF05383	1	

Prote	RNA_ID	rnaFr3	rnaFr4	Annot	Inter	Z_score	RBP_P	RNA_B	numof10	
PPIG	TCF4	5313	5646	-	33.58	-1.26	1	PF00160	1	
LARP4	TCF4	2325	2658	-	26.88	-1.47	1	PF05383	1	
LARP4	TCF4	6973	7306	-	26.8	-1.47	1	PF05383	1	
CPEB2	TCF4	3363	3696	-	25.41	-1.52	1	PF163	3	
CPEB2	TCF4	167	500	-	23.38	-1.58	1	PF163	3	
CPEB2	TCF4	3031	3364	-	19.65	-1.7	1	PF163	3	
CPEB2	TCF4	209	542	-	16.25	-1.81	1	PF163	3	
PPIG	TCF4	5355	5688	-	8.39	-2.06	1	PF00160	1	
CPEB2	TCF4	3321	3654	-	7.93	-2.07	1	PF163	3	
PPIG	TCF4	5479	5812	-	5.62	-2.15	1	PF00160	1	
IGF2BP1	TCF4	2325	2658	-	42.85	-0.96	1	PF000	2	
IGF2BP1	TCF4	2159	2492	-	37.92	-1.12	1	PF000	2	
PCBP2	TCF4	2159	2492	-	34.91	-1.22	1	PF00013	1	

Tab. 9 包含 RBPs 与 TCF4 结合或 TCF-AS1 结合的可能性,以下取它们的交集。

Figure 8为图 unique candidate of RBP binding with TCF4 and TCF AS1 概览。

(对应文件为 Figure+Table/unique-candidate-of-RBP-binding-with-TCF4-and-TCF-AS1.pdf)

Figure 8: Unique candidate of RBP binding with TCF4 and TCF AS1

Fig. 8 中包含的蛋白的 'symbol' 为:

```
## $TCF4
```

[1] "PPIG" "LARP4" "CPEB2" "IGF2BP1" "PCBP2" "YTHDF3" "HNRNPH1" "KHDRBS3" "MBNL1"

"DAZA

##

\$TCF4.AS1

[1] "HNRNPH1"

5 结论

将 RNA-seq 数据结合差异分析、基因共表达分析,并利用 catRAPID 工具预测 RBPs,成功筛选出一批 RBPs。随后,根据 RBP 倾向 (RBP_Propensity)、结合倾向 (Interaction_Propensity) 等条件筛选,获 得唯一 RBP: HNRNPH1

Reference

- 1. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic rna-seq quantification. *Nature Biotechnology* **34**, (2016).
- 2. Ritchie, M. E. et al. Limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic Acids Research 43, e47 (2015).
- 3. Langfelder, P. & Horvath, S. WGCNA: An r package for weighted correlation network analysis. *BMC Bioinformatics* **9**, (2008).
- 4. Armaos, A., Colantoni, A., Proietti, G., Rupert, J. & Tartaglia, G. G. <i>cat</i>RAPID<i>omics v2.0</i>: Going deeper and wider in the prediction of proteinRNA interactions. *Nucleic Acids Research* 49, (2021).
- 5. Peng, X. et al. RBP-tstl is a two-stage transfer learning framework for genome-scale prediction of rna-binding proteins. Briefings in Bioinformatics 23, (2022).
- 6. Su, Y., Luo, Y., Zhao, X., Liu, Y. & Peng, J. Integrating thermodynamic and sequence contexts improves protein-rna binding prediction. *PLOS Computational Biology* **15**, (2019).
- 7. Orenstein, Y., Wang, Y. & Berger, B. RCK: Accurate and efficient inference of sequence- and structure-based proteinRNA binding models from rnacompete data. *Bioinformatics* **32**, (2016).
- 8. Law, C. W. et al. A guide to creating design matrices for gene expression experiments. F1000Research 9, 1444 (2020).