

STATISTIC COURCE SUMMERIZATION

Made by

Rawan Hatem

WHAT ARE STATISTICS & WHAT ARE THEY DIVIDED INTO?

- Statistics is the science of collecting, analyzing, interpreting, and presenting data.
- Statistics Divided into two categories:
 descriptive statistics and inferential statistics.

Descriptive Statistics

Inferential Statistics

DISCRIPTIVE STATISTICS

Descriptive Statistics

- Descriptive statistics involves organizing and summarizing data using numbers and graphs.
- Data can also be organized using tables, such as frequency tables and frequency distribution tables.
- Descriptive statistics can be used to describe the shape of the data, such as whether it is symmetrical or skewed.
- Descriptive statistics can also be used to describe data using numbers, such as measures of central tendency (mean, median, mode) and measures of dispersion (range, variance, standard deviation).

In Descriptive Statistics, Data can be Summarized Using

INFERENTIAL STATISTICS

- Inferential statistics involves using sample data to make inferences or draw conclusions about a population.
- Probability can be used to determine how confident we can be that the conclusions we make are correct.
- An example of inferential statistics is determining the percentage of people in a city who prefer blue cars, by taking a sample of the population and making an inference about the entire population.
- Confidence intervals can be used in inferential statistics to express the certainty of our conclusions.
- By increasing the sample size, we can make a better prediction of the population's preferences.

Statistics

MEAN, MEDIAN, MODE & RANGE

- To calculate the mean, add up all the numbers and divide by the count of numbers.
- To find the median, arrange the numbers in ascending order and find the middle value.
- The mode is the number with the highest frequency.
- The range is the difference between the highest and lowest numbers.
- For a data set with an even number of elements, the median is the average of the two middle values.

Measures Of Tendency: Mean, Median, Mode In Three Different Graphs

VARIANCE

- Variance is represented as s ^ 2, where s is the sample standard deviation.
- To calculate variance, find the sum of the squared differences between each data point and the sample mean, then divide by n-1 (n is the size of the sample).
- $\sigma^2 = (\Sigma (x-\mu)^2) / N$
- Variance is a measure of data spread:
- A high variance indicates a larger spread in the data.
- A low variance indicates that the data points are close to the mean.

Population and Sample Variance Formula

Population Variance

Sample Variance

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

$$s^2 = \frac{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}{n-1}$$

$$\sigma^2$$
 = population variance
 x_i = value of i^{th} element
 μ = population mean
 N = population size

$$s^2$$
 = sample variance
 x_i = value of i^{th} element
 \overline{x} = sample mean
 n = sample size

STANDARD DEVIATION

- To calculate standard deviation, first find the mean (sum of numbers divided by the size of the sample).
- After finding the mean, use the formula for standard deviation: square the difference of each number and the mean, then divide the sum of those squares by n - 1.
- $\sigma = \sqrt{(\sum (x \bar{x}) (x \bar{x}) 2/n)}$

SUMMARIZATION on VARIANCE & STANDARD DEVIATION

Calculation	Formula	Notes
Population Standard Deviation	$\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{N}}$	μ = population average X = individual values in population N = count of values in population
Sample Variance	$s^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{(n - 1)}$	X = sample average x = individual values in sample n = count of individual values in sample
Sample Standard Deviation	$s = \frac{\sum (x_i - \bar{x})^2}{(n-1)}$	\overline{X} = sample average x = individual values in sample

n = count of individual values in sample

- The minimum value is at the 0th percentile, the median (second quartile) is at the 50th percentile, and the maximum value is at the 100th percentile.
- Q1 is the median of the lower half of the data (25th percentile), and Q3 is the median of the upper half of the data (75th percentile).
- The interquartile range (IQR) represents the middle 50% of the data and is calculated as Q3 Q1.
- To identify outliers, calculate the range: Q1 1.5 * IQR and Q3 + 1.5 * IQR. Any number outside this range is considered an outlier.

IQR REPRESENTATION IN BOX PLOT

