ASSIGNMENT 3

Working with Polish Company Bankruptcy datasets: Pre-processing and Exploratory data analysis, Repo2Docker, Flask,

COURSE: INFO7390

Advance Data Science & Architecture

PROFESSOR:

Srikanth Krishnamurthy

SUBMITTED BY: TEAM 9

Amit Pingale - 001898697 Himani Solanki - 001899580 Shubham Patel - 001899476

Objective:

The Report summarizes the design and implementation of machine learning performed on the Appliance Energy Consumption dataset. The report is divided into:

Part 1: Model design and building

Part 2: Model development

Part 1: Model design and building

Step 1: Convert the artff file to csv

```
In [491]: from arff2pandas import a2p
          with open('1year.arff') as f:
              df = a2p.load(f)
              print(df)
                Attr1@NUMERIC Attr2@NUMERIC Attr3@NUMERIC Attr4@NUMERIC
          0
                    0.200550
                                   0.379510
                                                  0.396410
                                                                 2.04720
          1
                    0.209120
                                   0.499880
                                                  0.472250
                                                                 1.94470
          2
                    0.248660
                                   0.695920
                                                  0.267130
                                                                 1.55480
          3
                                                  0.458790
                                                                 2.49280
                    0.081483
                                   0.307340
          4
                    0.187320
                                   0.613230
                                                  0.229600
                                                                 1.40630
          5
                    0.228220
                                   0.497940
                                                  0.359690
                                                                 1.75020
          6
                    0.111090
                                   0.647440
                                                  0.289710
                                                                 1.47050
          7
                                   0.027059
                                                                53.95400
                    0.532320
                                                  0.705540
          8
                                   0.632020
                                                  0.053735
                    0.009020
                                                                 1.12630
          9
                    0.124080
                                   0.838370
                                                  0.142040
                                                                 1.16940
          10
                    0.240010
                                   0.443550
                                                  0.188350
                                                                 1.44000
          11
                                                  0.119890
                                                                 2.07540
                   -0.027117
                                   0.111480
          12
                    0.266690
                                   0.349940
                                                  0.611470
                                                                 3.02430
          13
                    0.067731
                                   0.198850
                                                  0.081562
                                                                 2.95760
```

Step 2:Setting up the column names

```
In [492]: df.columns = ['1 net profit / total assets',
    '2 total liabilities / total assets',
    '3 working capital / total assets',
    '4 current assets / short-term liabilities',
    '5 [(cash + short-term securities + receivables - short-term liabilities) / (operating expenses - depreciation)] * 365',
    '6 retained earnings / total assets',
    '8 book value of equity / total liabilities',
    '9 sales / total assets',
    '10 equity / total assets',
    '11 (gross profit + extraordinary items + financial expenses) / total assets',
    '12 gross profit + short-term liabilities',
    '13 (gross profit + depreciation) / sales',
    '14 (gross profit + interest) / total assets',
    '15 (total liabilities * 365) / (gross profit + depreciation)',
    '16 (gross profit + depreciation) / total liabilities',
    '18 gross profit / total assets',
    '19 gross profit / total assets',
    '20 (inventory * 365) / sales',
    '21 sales (n) / sales (n-1)',
    '22 profit on operating activities / total assets',
    '24 gross profit / sales',
    '25 (equity - share capital) / total assets',
    '26 (net profit + depreciation) / total liabilities',
    '27 profit on operating activities / financial expenses'.
    '28 (net profit + depreciation) / total liabilities',
    '29 (net profit + depreciation) / total liabilities',
    '20 (net profit + depreciation) / total liabilities',
    '21 profit on depreciation / total assets',
    '22 (net profit + depreciation) / total assets',
    '22 (net profi
```

Step 3: Reading the file

]:	1 net profit / total assets	2 total liabilities / total assets	3 working capital / total assets	4 current assets / short- term liabilities	5 [(cash + short-term securities + receivables - short-term liabilities) / (operating expenses - depreciation)] * 365	6 retained earnings / total assets	7 EBIT / total assets	8 book value of equity / total liabilities	9 sales / total assets	10 equity / total assets	***	56 (sales - cost of products sold) / sales	57 (current assets - inventory - short-term liabilities) / (sales - gross profit - depreciation)	58 total costs /total sales	59 long- term liabilities / equity	60 sa inver
0	0.200550	0.37951	0.39641	2.0472	32.3510	0.38825	0.249760	1.33050	1.1389	0.50494	***	0.121960	0.39718	0.87804	0.001924	8.4
1	0.209120	0.49988	0.47225	1.9447	14.7860	0.00000	0.258340	0.99601	1.6996	0.49788		0.121300	0.42002	0.85300	0.000000	4.1
2	0.248660	0.69592	0.26713	1.5548	-1.1523	0.00000	0.309060	0.43695	1.3090	0.30408		0.241140	0.81774	0.76599	0.694840	4.9
3	0.081483	0.30734	0.45879	2.4928	51.9520	0.14988	0.092704	1.86610	1.0571	0.57353		0.054015	0.14207	0.94598	0.000000	4.5
4	0.187320	0.61323	0.22960	1,4063	-7.3128	0.18732	0.187320	0.63070	1.1559	0.38677		0.134850	0.48431	0.86515	0.124440	6.3

Step 4: Missing value analysis

Step 5: Finding the sum of null values in each column

```
In [6]: null_counts = df.isnull().sum()
            null_counts[null_counts > 0].sort_values(ascending=False)
Out[6]: 37 (current assets - inventories) / long-term liabilities
                                                                                                                                                                                          2740
            21 sales (n) / sales (n-1)
                                                                                                                                                                                          1622
            27 profit on operating activities / financial expenses
                                                                                                                                                                                           311
            60 sales / inventory
                                                                                                                                                                                           135
            45 net profit / inventory
24 gross profit (in 3 years) / total assets
41 total liabilities / ((profit on operating activities + depreciation) * (12/365))
                                                                                                                                                                                           134
                                                                                                                                                                                           124
            11 (gross profit + extraordinary items + financial expenses) / total assets
            32 (current liabilities * 365) / cost of products sold
            28 working capital / fixed assets
64 sales / fixed assets
                                                                                                                                                                                            34
34
34
34
            53 equity / fixed assets
54 constant capital / fixed assets
46 (current assets - inventory) / short-term liabilities
4 current assets / short-term liabilities
                                                                                                                                                                                             31
            40 (current assets - inventory - receivables) / short-term liabilities
                                                                                                                                                                                            30
30
30
29
            12 gross profit / short-term liabilities
63 sales / short-term liabilities
            33 operating expenses / short-term liabilities
47 (inventory * 365) / cost of products sold
52 (short-term liabilities * 365) / cost of products sold)
26 (net profit + depreciation) / total liabilities
                                                                                                                                                                                             29
            17 total assets / total liabilities
            16 (gross profit + depreciation) / total liabilities
            34 operating expenses / total liabilities
```

Step 6: Analysis for replacing the missing values

```
In [9]: df['37 (current assets - inventories) / long-term liabilities'].describe()
Out[9]: count
                     4287.000000
                      173.453694
          mean
          std
                     6339.491580
                     -525.520000
                         1.296500
          25%
          50%
                         3.438300
          75%
                       11.393500
                   398920.000000
         Name: 37 (current assets - inventories) / long-term liabilities, dtype: float64
In [12]:
           df['59 long-term liabilities / equity'].describe()
Out[12]: count
                      7026.000000
                          0.277829
           mean
           std
                          6.339149
           min
                      -327.970000
           25%
                          0.000000
           50%
                          0.028438
           75%
                          0.273867
           max
                       119.580000
           Name: 59 long-term liabilities / equity, dtype: float64
In [15]: df['57 (current assets - inventory - short-term liabilities) / (sales - gross profit - depreciation)'].describe()
Out[15]: count
              7026.000000
       mean
                0.193243
       std
                4.344046
              -315.370000
       min
       25%
                0.056772
                0.175745
       75%
                0.351922
              126.670000
       Name: 57 (current assets - inventory - short-term liabilities) / (sales - gross profit - depreciation), dtype: float64
            df['21 sales (n) / sales (n-1)'].describe()
In [16]:
Out[16]: count
                        5405.000000
            mean
                          10.367516
                         417.358298
            std
            min
                       -1325.000000
            25%
                            1.024400
            50%
                            1.137400
            75%
                            1.287600
            max
                       27900.000000
            Name: 21 sales (n) / sales (n-1), dtype: float64
```

Step 7: Replacing the missing values

```
In [27]: df['21 sales (n) / sales (n-1)'].replace(0, 1.156960)
Out[27]: 0
                  1.24790
          1
                  1.42930
          2
                  1.42830
          3
                  1.50690
          4
                  1.15696
          5
                  1.72780
          6
                  0.56811
          7
                  1.15696
          8
                  1.07520
          9
                  1.58660
          10
                  1.68560
          11
                  1.16250
          12
                  1.05810
          13
                  1.18480
          14
                  0.99083
          15
                  1.10490
          16
                  1.12810
          17
                  0.78628
          18
                  1.74740
                  1 20010
          10
          df['21 sales (n) / sales (n-1)'].fillna(0, inplace=True)
In [25]:
In [26]: df['21 sales (n) / sales (n-1)']
Out[26]: 0
                  1.24790
          1
                  1.42930
                  1.42830
          2
          3
                  1.50690
          4
                  0.00000
          5
                  1.72780
          6
                  0.56811
          7
                  0.00000
          8
                  1.07520
          9
                  1.58660
          10
                  1.68560
          11
                  1.16250
          12
                  1.05810
          13
                  1.18480
          14
                  0.99083
          15
                  1.10490
          16
                  1.12810
          17
                  0.78628
          18
                  1.74740
```

Step 8: Missing value analysis

```
In [57]: sns.heatmap(df.isnull(), yticklabels=False, cbar=False, cmap='viridis')
Out[57]: <matplotlib.axes._subplots.AxesSubplot at 0x1cc0c6b9b00>
```

```
3 working capital / total assets - advancing capital / total assets - depreciation)]* 365 - 7 EBBT / total assets - 7 EBBT / total assets - 8 sales / total assets - 13 (gross profit + depreciation) - 17 total assets / sales - 29 logarithm of total assets / sprofit / sales / sprofit / sales / sales / sales / sales / sales / short-term liabilities - 35 profit on sales / total assets / sales / short-term liabilities / sales / short-term liabilities / sales / short-term liabilities / sales / sal
```

Step 9: Feature selection using Recursive Feature Elimination and Ranking

```
In [79]: X = df.drop(['65 Bankrupt'], axis =1)
                           y = df['65 Bankrupt'].astype('int')
                           from sklearn.model_selection import train_test_split
                          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
In [80]: from sklearn.feature_selection import RFE
                           from sklearn.linear_model import LogisticRegression
                           model = LogisticRegression()
                           rfe = RFE(model, 7)
                           rfe = rfe.fit(X_train, y_train)
                           print(rfe.support_)
                           print(rfe.ranking_)
                           print(rfe.n_features_)
                           rfe.score(X_train, y_train)
                          [False False True False False False False False False False False
                               True False F
                             False True False False False False False False False False False
                             False False False False False False False False True False True
                             False False
                            False False False]
                           [24 39 1 7 55 30 35 14 26 40 13 22 1 36 57 32 3 34 12 46 1 54 2 25 31
                               1 56 17 20 19 23 51 10 8 21 15 52 42 4 5 27 38 48 50 33 1 45 1 11 28
                            18 1 37 16 58 29 43 6 44 53 41 49 9 47]
Out[80]: 0.98106646058732616
```

```
In [81]: ranking = pd.DataFrame({'Index':data_1.columns, 'Ranking': rfe.ranking_})
ranking
```

Out[81]:

	Index	Ranking
0	1 net profit / total assets	24
1	2 total liabilities / total assets	39
2	3 working capital / total assets	1
3	4 current assets / short-term liabilities	7
4	5 [(cash + short-term securities + receivables	55
5	6 retained earnings / total assets	30
6	7 EBIT / total assets	35
7	8 book value of equity / total liabilities	14
8	9 sales / total assets	26
9	10 equity / total assets	40
10	11 (gross profit + extraordinary items + finan	13
11	12 gross profit / short-term liabilities	22
12	13 (gross profit + depreciation) / sales	1
13	14 (gross profit + interest) / total assets	36
14	15 (total liabilities * 365) / (gross profit +	57
15	16 (gross profit + depreciation) / total liabi	32
16	17 total assets / total liabilities	3

Step 10: Feature selection using BorutaPy and Ranking

```
In [76]: from boruta import BorutaPy
         feat_selector = BorutaPy(rf1, n_estimators='auto', verbose=5, random_state=1)
         feat_selector.fit(X_boruta,y_boruta)
         rencacive:
         Rejected:
         Rejected: 0
Iteration: 4 / 100
Confirmed: 0
Tentative: 64
         Rejected:
                      0
         Iteration: 5 / 100
Confirmed: 0
Tentative: 64
                       0
         Rejected:
         Iteration: 6 / 100
         Confirmed:
         Tentative:
                       64
         Rejected:
                        0
         Iteration: 7 / 100
Confirmed: 0
         Tentative: 64
         Rejected:
         Iteration: 8 / 100
         Confirmed:
In [77]: feat_selector.support_
         print(feat_selector.ranking_)
         [1 1 3 6 1 1 6 1 1 116 1 1 6 14 1 1 6 129 123 1 1 1
           1 1 6 1 22 11 33 29 1 18 20 9 1 13 31 22 24 35 37 2 1 26 25 35 12
           1 39 17 11 1 15 19 3 38 37 33 29 27 1]
```

In [78]: ranking = pd.DataFrame({'Index':data_1.columns, 'Ranking': feat_selector.ranking_})
 ranking

Out[78]:

Ranking	Index	
1	1 net profit / total assets	0
1	2 total liabilities / total assets	1
3	3 working capital / total assets	2
6	4 current assets / short-term liabilities	3
1	5 [(cash + short-term securities + receivables	4
1	6 retained earnings / total assets	5
6	7 EBIT / total assets	6
1	8 book value of equity / total liabilities	7
1	9 sales / total assets	8
1	10 equity / total assets	9
16	11 (gross profit + extraordinary items + finan	10
1	12 gross profit / short-term liabilities	11
1	13 (gross profit + depreciation) / sales	12
6	14 (gross profit + interest) / total assets	13
14	15 (total liabilities * 365) / (gross profit +	14
1	16 (gross profit + depreciation) / total liabi	15
1	17 total assets / total liabilities	16

Step 11: Finding correlation matrix on Boruta selected features

	3 working capital / total assets	13 (gross profit + depreciation) / sales	21 sales (n) / sales (n- 1)	26 (net profit + depreciation) / total liabilities	46 (current assets - inventory) / short- term liabilities	48 EBITDA (profit on operating activities - depreciation) / total assets	52 (short-term liabilities * 365) / cost of products sold)	65 Bankrupt
3 working capital / total assets	1.000000	0.218361	0.044245	0.350022	0.515240	0.270987	-0.114361	-0.055780
13 (gross profit + depreciation) / sales	0.218361	1.000000	0.080892	0.500384	0.271155	0.214673	0.031264	-0.083554
21 sales (n) / sales (n-1)	0.044245	0.080892	1.000000	0.009921	-0.015235	0.025392	-0.006535	-0.139571
26 (net profit + depreciation) / total liabilities	0.350022	0.500384	0.009921	1.000000	0.540767	0.260474	0.015682	-0.057043
46 (current assets - inventory) / short-term liabilities	0.515240	0.271155	-0.015235	0.540767	1.000000	0.200337	-0.060869	-0.054590
48 EBITDA (profit on operating activities - depreciation) / total assets	0.270987	0.214673	0.025392	0.260474	0.200337	1.000000	-0.267372	-0.024126
52 (short-term liabilities * 365) / cost of products sold)	-0.114361	0.031264	-0.006535	0.015682	-0.060869	-0.267372	1.000000	-0.000013
65 Bankrupt	-0.055780	-0.083554	-0.139571	-0.057043	-0.054590	-0.024126	-0.000013	1.000000

Step 12: Heatmap of correlation

Step 13: Plots to see the frequency of the features selected by BorutaPy

Out[112]: <matplotlib.axes._subplots.AxesSubplot at 0x1cc0ff9b470>

In [106]: sns.distplot(df['29 logarithm of total assets'].astype('int'), kde=False)

Out[106]: <matplotlib.axes._subplots.AxesSubplot at 0x1cc0f414a20>

Step 14: Machine learning algorithms and pickling them

Random Forest Regression

```
In [91]: from sklearn.ensemble import RandomForestClassifier
In [92]: # splitting data into training and test set
         X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=2)
         scaler = preprocessing.MinMaxScaler()
         X = scaler.fit_transform(X)
In [93]: # build RabdomForestClassifier model with SMOTE imblearn
         rfc_pipeline = make_pipeline_imb(SMOTE(random_state=4), RandomForestClassifier(n_estimators=50))
         smote_model = rfc_pipeline.fit(X_train, y_train)
         smote_prediction = smote_model.predict(X_test)
         filename = 'rfc_model.pckl'
         pickle.dump(rfc_pipeline,open(filename,'wb'))
         print_results("RandomForest classification", y_test, smote_prediction)
         print()
         Model Name: RandomForest classification
         accuracy: 0.9648033126293996
         precision: 0.23076923076923078
         recall: 0.3
         f1: 0.2608695652173913
```

Logistic Regression

Neural Nets

Model Name: Neural Nets accuracy: 0.6749482401656315

precision: 0.040625

recall: 0.65

f1: 0.07647058823529412

BernoulliNB

```
In [103]: from sklearn.naive_bayes import BernoulliNB
In [104]: # build SVC model with SMOTE imblearn
    svc_pipeline = make_pipeline_imb(SMOTE(random_state=4), BernoulliNB())
    smote_model = svc_pipeline.fit(X_train, y_train)
    smote_prediction = smote_model.predict(X_test)
    filename = 'BernoulliNB_model.pckl'
    pickle.dump(svc_pipeline,open(filename,'wb'))

print()
print_results("BernoulliNB", y_test, smote_prediction)
print()
```

Model Name: BernoulliNB accuracy: 0.855072463768116

precision: 0.03125

recall: 0.2

f1: 0.05405405405405406

Step 15: Getting accuracy-error metrics

```
In [100]: info = model_name,accuracy,precision,recall,f1score

In [105]: describe1 = pd.DataFrame(info[0],columns = {"Model_Name"})
    describe2 = pd.DataFrame(info[1], columns = {"Accuracy_score"})
    describe3 = pd.DataFrame(info[2],columns = {"Precision_score"})
    describe4 = pd.DataFrame(info[3],columns = {"Recall_score"})
    describe5 = pd.DataFrame(info[4],columns = {"F1_score"})

des = describe1.merge(describe2, left_index=True, right_index=True, how='inner')
    des = des.merge(describe3,left_index=True, right_index=True, how='inner')
    des = des.merge(describe4,left_index=True, right_index=True, how='inner')
    des = des.merge(describe5,left_index=True, right_index=True, how='inner')
    #des = des.merge(describe9,left_index=True, right_index=True, how='inner')
    final_csv = des.sort_values(ascending=False,by="Accuracy_score").reset_index(drop = True)

In [106]: final_csv.to_csv(str(os.getcwd()) + "/accuracy_error_metrics.csv")
```

Part2: Model Deployment

Step 1:Web application

