Reccep: happens before -> A happens devou B in same process -> A is send & B is pecceive messay -> Transitivity: A>C & C>B => A>B A D (Concurrent)

D D A J All D (concurrent) Partial Onder A set 5 together with a binary relation often written 5, that less you compare elements of S, & has the following properties. - Reflexivity: for all a ES, a & a

- Antisymmetry: For all a, b & S if a \(\) b \(\) b \(\) a
then $a = b$
- Trunsitivity: For all a,b, c ES
$a \leq b \otimes b \leq C$
then $a \leq C$
For happens-before relation:
roi impris deroit relation.
s - set of events in execution
> => Transitive: V
Antisymmetry: A>B&B>A
Not possible.
This is vaccousty
19100
Reflexivity: A -> A
Not true X
: Huppins before (->) is an inneflexive
purtial order

A (real) example of partial order
set containment La, b, c 3
$S = \{(a), (a), (b), (c), (a), (b), (c), (a), (c), (a), (c), (a), (c), (a), (c), (c), (c), (c), (c), (c), (c), (c$
S can be ordered by set inclusion
La,b,cJ
2a, b) 6b, c) 6a, c?
Layidby Ccy
Partial Order: Reflexivity: $\langle ay \leq \langle ay \rangle \rangle$ Antisymmetry: $\langle a,b \rangle \leq \langle a,b \rangle$ Thansitivity: $\langle a,b \rangle \leq \langle a,b \rangle$ $\langle a,b \rangle \leq \langle a,b,c \rangle$ $\Rightarrow \langle ay \leq \langle a,b,c \rangle$
The tuple (5, 5) is a postial order

Clocks time of day clocks Physical clocses monotonic clocks Logital clocks ordering of events only! lamport clock LC(A) - the lambout clock of lunt A LL(A) = 3clock condition → if A→B then LC(A) < LC(B) Lamport clocks are consistent with cuusality (i.e happen before relation)

On a lamport diagram, it you can reach
B Forom A, then A -> B
For the above example, we can't reach B from A A +> B even though LC(A) < LCLB)
iogical lock is consistent with carsality!
logicul Clock is consistent with causality: A>B => logicul clock of A < Denicul clock of B
regicul clock of B
camport clocks have this property!
Logicul clock charactorizes causality.
logical clock of A > B
Logical clock of A < -> A -> B
as y late crock of
Lamport clocks DONT this property!
What an you do with P > 0 7
Take contrapositive
$r \circ p$

no t

A>B> LC(A) < LC(B)

$\neg(LC(A) < LC(B)) \rightarrow \neg(A \rightarrow B)$

Rule out things NOT HAVING caused

other things!

Above eq shows either B>A, or AllB

wot sur which

one is true,

but definitely

A-B is not true)

Leslie Lamport implemented Lamport Clocks!

Vector clocks

A > B \Rightarrow VC(A) \rightarrow VC(B)

if and only if

p every process keeps a vector of integers
initialized to zeros
vector of length N for N processes
10,0,0,0]

- 2) On every event, a perocess increments its own position in its vector clock. This is for ALL events
 - 3). When sending a message, process includes it's current vector clock. occurs after step 2, since 'send' in an event
 - 4). When secciving a message,

a process will update its vector doct to max (loca), receivetl)

This occurs AFTER incrementing its position, since neceives are events

Max of vectors

Point wise max!

[1,2,h] & [7,0,2] [7,0,4] [7,0,4]

