DSC 551 Final Project

"Ditching Coal: How the United States Is Moving Away from One Fossil Fuel"

Student Name: Mukila Rajasekar

```
library('fpp2')
## Registered S3 method overwritten by 'quantmod':
##
    method
                      from
    as.zoo.data.frame zoo
##
## -- Attaching packages -----
## v ggplot2 3.3.2
                        v fma
                                   2.4
## v forecast 8.13
                        v expsmooth 2.3
##
library('readxl')
library('seasonal')
library('tseries')
```

Loading and Cleaning the dataset

The dataset is taken from the following source, https://www.eia.gov/totalenergy/data/monthly/ (https://www.eia.gov/totalenergy/data/monthly/) The dataset shows the U.S. National Monthly Net Electricity Generation from Coal in Million kWh (Jan 1995 - Jun 2020)

```
df <- read_excel("C:\\Users\\mr4060\\Desktop\\DSC551-Spatial Temporal Analysis\\Finals\\Electric
ity_Net_Generation__Total_(All_Sectors).xlsx")
head(df)</pre>
```

Month <s3: posixct=""></s3:>	Netelectricitygeneration_fromcoal <dbl></dbl>
1995-01-01	147220.5
1995-02-01	132900.2
1995-03-01	131429.8

Month <s3: posixct=""></s3:>	Netelectricitygeneration_fromcoal <dbl></dbl>
1995-04-01	123075.9
1995-05-01	130418.1
1995-06-01	142845.6
6 rows	

Let's convert the 'Netelectricitygeneration_fromcoal' column into time series for our analysis.

```
coal <- ts(data = df$Netelectricitygeneration_fromcoal, start=c(1995,1),frequency=12)
tail(coal) #Time series dataset</pre>
```

```
## Jan Feb Mar Apr May Jun
## 2020 65170.39 56071.59 50585.69 40575.70 46488.02 65475.19
```

Exploring the time series

```
#Structure of the time series str(coal)
```

```
## Time-Series [1:306] from 1995 to 2020: 147220 132900 131430 123076 130418 ...
```

```
paste('Frequency:', frequency(coal))
```

```
## [1] "Frequency: 12"
```

```
paste('Is it timeseries?',is.ts(coal))
```

```
## [1] "Is it timeseries? TRUE"
```

summary(coal)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 40576 125610 148494 140902 162399 190135
```

```
#Basic Plotting
autoplot(coal)+
  xlab("DateTime") + ylab("Net Electricity Generated (Million kWh)") +
  ggtitle("U.S. National Monthly Net Electricity Generation from Coal (1995 - 2020)")
```

U.S. National Monthly Net Electricity Generation from Coal (1995 - 2020)


```
#Basic Plotting with smooth line
autoplot(coal)+geom_smooth() +
  xlab("DateTime") + ylab("Net Electricity Generated (Million kWh)") +
  ggtitle("U.S. National Monthly Net Electricity Generation from Coal (1995 - 2020)")
```

```
## geom_smooth() using method = 'loess' and formula 'y ~ x'
```

U.S. National Monthly Net Electricity Generation from Coal (1995 - 2020)

From these plots, it is clear that the electricity generation using coal has a clear trend. The overall electricity generation is decreasing rapidly in the last decade.

```
#Season Plot to explore monthly behavior
ggseasonplot(coal,continuous = TRUE)+
  xlab("Month") + ylab("Net Electricity Generated (Million kWh)") +
  ggtitle("Season Plot")
```


The season plot shows visible seasonality within each year. The electricity generation seems to increase during the summer and the winter months. Electricity generation is lowest during the spring months.

```
#This will aggregate the cycles and display a year on year trend
autoplot(aggregate(coal,FUN=mean))+
  xlab("DateTime") + ylab("Net Electricity Generated (Million kWh)") +
  ggtitle("Aggregate of Monthly Cycle")
```


this aggregate plot, we can see that electricity generation using coal was popular in the late 20th century and first few years in 21st century. Over the past decade, coal usage for electricity generation has decreased rapidly and continues to decrease even more in 2020.

boxplot(coal~cycle(coal))

box plot shows that the mean and variance change between months. July and August have the highest means and March and April have the biggest variance. This shows that our time series has a strong seasonal effect.

#ACF and PACF plots
tsdisplay(coal)

coal

ggAcf(coal)

[1] "Standard Deviation: 31226.1194228819"

From the Acf plot, we can confirm that the series is not white noise since all the lag spikes lie outside $\pm 1.96/\sqrt{T}$ which is + or - 0.1120457. ACF plot shows the time series has trend and seasonality.

paste('Standard Deviation:',sd(coal))

gglagplot(coal,lags = 12)

gglagplot shows positive relationships at lag 12 reflecting strong seasonality in the data.

Basic Forecasting

For testing the forecasting methods, let us split the data into training set and testing set based on 80/20 method. i.e. 80% of the data is used for training and 20% is retained as testing set. We have about 25yrs in our dataset, so I am going to keep the last 5 years as a testing set and use the remaining data for training the forecast models.

```
coal_train <- subset(coal, end = length(coal)-60)
coal_test <- subset(coal, start = length(coal)-59)
str(coal_train)</pre>
```

```
## Time-Series [1:246] from 1995 to 2015: 147220 132900 131430 123076 130418 ...
```

```
str(coal_test)
```

```
## Time-Series [1:60] from 2016 to 2020: 139100 134670 117986 96759 87227 ...
```

Four Benchmark Forecasting Methods

Let's perform all 4 benchmark forecasting methods on the training set and test their accuracy on the testing set. -Naive Method -Seasonal Naive Method -Average Method -Drift Method

```
h=60

coal_train1 <- naive(coal_train, h)

coal_train2 <- snaive(coal_train, h)

coal_train3 <- meanf(coal_train, h)

coal_train4 <- rwf(coal_train, h, drift = TRUE)

autoplot(coal_train) +

autolayer(coal_train1, PI = FALSE, series="Naive")+

autolayer(coal_train2, PI = FALSE, series="Seasonal Naive")+

autolayer(coal_train3, PI = FALSE, series="Average")+

autolayer(coal_train4, PI = FALSE, series="Drift")+

xlab("DateTime") + ylab("Net Electricity Generated (Million kWh)")+

ggtitle("Basic Forecasting")+

guides(colour=guide_legend(title="Forecast Method"))
```

Basic Forecasting


```
#Comparing accuracy of forecasting methods
ar.naive <- accuracy(coal_train1, coal_test)
ar.snaive <- accuracy(coal_train2, coal_test)
ar.mean <- accuracy(coal_train3, coal_test)
ar.drift <- accuracy(coal_train4, coal_test)
RMSE=c(ar.mean["Test set","RMSE"],ar.naive["Test set","RMSE"],ar.snaive["Test set","RMSE"],ar.drift["Test set","RMSE"])
MAE = c(ar.mean["Test set","MAE"],ar.naive["Test set","MAE"],ar.snaive["Test set","MAE"],ar.drift["Test set","MAE"])
MAPE = c(ar.mean["Test set","MAPE"],ar.naive["Test set","MAPE"],ar.snaive["Test set","MAPE"],ar.drift["Test set","MAPE"])
MASE = c(ar.mean["Test set","MASE"],ar.naive["Test set","MASE"],ar.snaive["Test set","MASE"],ar.drift["Test set","MASE"])
results <-data.frame(RMSE,MAE,MAPE,MASE, row.names = c("Mean","Naive","Seasonal Naive","Drift"))
results</pre>
```

	RMSE <dbl></dbl>	MAE <dbl></dbl>	MAPE <dbl></dbl>	MASE <dbl></dbl>
Mean	64256.42	60203.30	76.73612	7.869346
Naive	40058.20	34671.19	46.55070	4.531971
Seasonal Naive	33647.10	29695.81	37.90567	3.881625
Drift	37338.28	32150.00	43.25276	4.202419
4 rows				

From the above table, we can see that the **Seasonal Naive Method** performs better than the other methods.

Let's compare the seasonal prediction with the actual test values.

```
autoplot(coal_train) + autolayer(coal_test, series = "Test set") + autolayer(coal_train2, PI=FALS
E, series = "Snaive") +
   xlab("DateTime") + ylab("Net Electricity Generated (Million kWh)")
```


checkresiduals(coal_train2)

Residuals from Seasonal naive method


```
##
## Ljung-Box test
##
## data: Residuals from Seasonal naive method
## Q* = 516.88, df = 24, p-value < 2.2e-16
##
## Model df: 0. Total lags used: 24</pre>
```

Again not white noise.

Let's repeat the above 4 forecasting methods using cross-validation and see seasonal method is still the best.

```
h=60
fd <- tsCV(coal, rwf, drift=TRUE, h)
paste("Drift RSME:", sqrt(mean(fd^2, na.rm=TRUE)))</pre>
```

```
## [1] "Drift RSME: 52372.7742751471"
```

```
fna <- tsCV(coal, naive, h)
paste("Naive RSME:",sqrt(mean(fna^2, na.rm=TRUE)))</pre>
```

```
## [1] "Naive RSME: 26082.6538591161"
```

```
fsna <- tsCV(coal, snaive, h)
paste("Snaive RSME:",sqrt(mean(fsna^2, na.rm=TRUE)))</pre>
```

```
## [1] "Snaive RSME: 20076.8544210978"
```

```
fm <- tsCV(coal, meanf, h)
paste("Average RSME:",sqrt(mean(fm^2, na.rm=TRUE)))</pre>
```

```
## [1] "Average RSME: 35292.8015733204"
```

Cross-validation method also confirms that snaive method is the best out of the 4 basic methods.

```
coal_train %>% snaive(h=60) %>% autoplot()
```

Forecasts from Seasonal naive method

Decomposition

A seasonal time series consists of a trend component, a seasonal component and an irregular component. Decomposing the time series means separating the time series into these three components and estimating their values.

Electricity Generation using Coal has changed drastically over time in our time series and Classical Decomposition methods are unable to capture seasonal changes over time. X11, SEATS and STL methods might be best suited for our time series.

X11

```
at.x11 <- seas(coal, x11="")
autoplot(at.x11) + xlab("DataTime") + ylab("Original Series and 3 Components") +
   ggtitle("X11")</pre>
```


SEATS

```
at.s <- seas(coal)
autoplot(at.s) + xlab("DataTime") + ylab("Original Series and 3 Components") +
   ggtitle("SEATS")</pre>
```


STL

```
at.stl <- stl(coal, s.window=10, t.window= 10, robust = TRUE)
autoplot(at.stl) + xlab("DataTime") + ylab("Original Series and 3 Components") +
   ggtitle("STL")</pre>
```


ggsubseriesplot(seasonal(at.stl))

STL Decomposition method with s.window = 10 and t.window = 10 seems to capture the trend of the time series better than other methods. Let's use this stl method to do some forecasting. Holt' Linear Method extends simple exponential smoothing to allow the forecasting of data with a trend. I'm using Holt's Linear trend method and snaive method to forecast the seasonally adjusted series.

```
cstl <- at.stl <- stl(coal_train, s.window=10, t.window= 10, robust = TRUE)
cstl.noseas <- seasadj(cstl) #Seasonality removed
cstl.seas <- seasonal(cstl)

#Holt's method with damped trend on noseas data
cstl.noseas.fit <- holt(cstl.noseas, h=60, damped = TRUE)

#snaive on seas data
cstl.seas.fit <- snaive(cstl.seas, h=60)

#Plot
autoplot(coal) +
   autolayer(cstl.noseas.fit$mean+cstl.seas.fit$mean, series="Holt's + snaive Methods") +
   ggtitle("Forecasts after STL Decomposition") + xlab("DateTime") +
   ylab("Net Electricity Generated (Million kWh)")</pre>
```

Forecasts after STL Decomposition

#Accuracy

cstl.acc <- accuracy(cstl.noseas.fit\$mean+cstl.seas.fit\$mean,coal_test)</pre>

RMSE=c(ar.mean["Test set","RMSE"],ar.naive["Test set","RMSE"],ar.snaive["Test set","RMSE"],ar.dr
ift["Test set","RMSE"],cstl.acc["Test set","RMSE"])

MAE = c(ar.mean["Test set","MAE"],ar.naive["Test set","MAE"],ar.snaive["Test set","MAE"],ar.drif
t["Test set","MAE"],cstl.acc["Test set","MAE"])

results1 <-data.frame(RMSE,MAE, row.names = c("Mean","Naive","Seasonal Naive","Drift","STL on Ho
lt's + snaive"))</pre>

results1

	RMSE	MAE
	<dbl></dbl>	<dbl></dbl>
Mean	64256.42	60203.30
Naive	40058.20	34671.19
Seasonal Naive	33647.10	29695.81
Drift	37338.28	32150.00
STL on Holt's + snaive	29480.68	24886.05
5 rows		

From this we can conclude that applying stl decomposition on Holt's Linear + snaive methods provides much lower errors than the forecasting methods before decomposition.

Holt-Winters Method extends Holt's method to capture seasonality. The Holt-Winters seasonal method comprises the forecast equation and three smoothing equations — level, trend and seasonal component with corresponding smoothing parameters α , β and γ . The additive method is preferred when the seasonal variations are roughly constant through the series, while the multiplicative method is preferred when the seasonal variations are changing proportional to the level of the series.

```
cfitm <- hw(coal_train,seasonal="multiplicative",h=60,damped=TRUE)
autoplot(cfitm) +
   ggtitle("Forecasts from Holt-Winter's Method") + xlab("DateTime") +
   ylab("Net Electricity Generated (Million kWh)")</pre>
```

Forecasts from Holt-Winter's Method


```
#Accuracy
cfitm.acc <- accuracy(cfitm,coal_test)

RMSE=c(ar.mean["Test set","RMSE"],ar.naive["Test set","RMSE"],ar.snaive["Test set","RMSE"],ar.dr
ift["Test set","RMSE"],cstl.acc["Test set","RMSE"],cfitm.acc["Test set","RMSE"])

MAE = c(ar.mean["Test set","MAE"],ar.naive["Test set","MAE"],ar.snaive["Test set","MAE"],ar.drif
t["Test set","MAE"],cstl.acc["Test set","MAE"],cfitm.acc["Test set","MAE"])

results2 <-data.frame(RMSE,MAE, row.names = c("Mean","Naive","Seasonal Naive","Drift","STL on Ho
lt's + snaive","Holt-Winters"))
results2</pre>
```

	RMSE <dbl></dbl>	MAE <dbl></dbl>
Mean	64256.42	60203.30
Naive	40058.20	34671.19
Seasonal Naive	33647.10	29695.81
Drift	37338.28	32150.00
STL on Holt's + snaive	29480.68	24886.05
Holt-Winters	31325.66	26627.93
6 rows		

Forecasting using ETS

Error={A,M}, Trend={N,A,Ad}, and Seasonal={N,A,M}

ets1 <- ets(coal_train, ic = 'aic', damped = TRUE, restrict = FALSE) #Based on best aic value
ets1</pre>

```
## ETS(A,Ad,A)
##
## Call:
   ets(y = coal_train, damped = TRUE, ic = "aic", restrict = FALSE)
##
##
##
     Smoothing parameters:
##
       alpha = 0.7256
       beta = 1e-04
##
##
       gamma = 1e-04
##
       phi
             = 0.9749
##
##
     Initial states:
       1 = 140159.9642
##
       b = 607.7708
##
##
       s = 7066.521 - 8686.596 - 7264.047 - 1127.986 20405.34 20562.92
##
              4622.358 -10544.96 -21585.94 -7705.628 -7596.084 11854.1
##
##
     sigma: 5547.904
##
##
        AIC
                AICc
                          BIC
## 5614.314 5617.327 5677.410
```

```
ets1.fcst <- forecast(ets1,h=60)
ets1.acc <- accuracy(ets1.fcst,coal_test)
autoplot(ets1.fcst)+xlab("DateTime") +
  ylab("Net Electricity Generated (Million kWh)")</pre>
```

Forecasts from ETS(A,Ad,A)

#Accuracy

RMSE=c(ar.mean["Test set","RMSE"],ar.naive["Test set","RMSE"],ar.snaive["Test set","RMSE"],ar.dr ift["Test set","RMSE"],cstl.acc["Test set","RMSE"],cfitm.acc["Test set","RMSE"],ets1.acc["Test set","RMSE"])

MAE = c(ar.mean["Test set","MAE"],ar.naive["Test set","MAE"],ar.snaive["Test set","MAE"],ar.drif
t["Test set","MAE"],cstl.acc["Test set","MAE"],cfitm.acc["Test set","MAE"],ets1.acc["Test set",
"MAE"])

results3 <-data.frame(RMSE,MAE, row.names = c("Mean","Naive","Seasonal Naive","Drift","STL on Ho lt's + snaive","Holt-Winters","ETS(A,Ad,A)")) results3

RMSE	MAE
<dbl></dbl>	<dbl></dbl>
64256.42	60203.30
40058.20	34671.19
33647.10	29695.81
37338.28	32150.00
29480.68	24886.05
31325.66	26627.93
	<dbl><dbl><dbl><dbl> 64256.42 40058.20 33647.10 37338.28 29480.68</dbl></dbl></dbl></dbl>

	RMSE <dbl></dbl>	MAE <dbl></dbl>
ETS(A,Ad,A)	31134.06	26749.64
7 rows		

Ets method with 'AAA' model and damped trend seems to perform better than Holt-Winters Multiplicative method. But they are both almost similar.

checkresiduals(ets1.fcst)


```
##
## Ljung-Box test
##
## data: Residuals from ETS(A,Ad,A)
## Q* = 64.744, df = 7, p-value = 1.693e-11
##
## Model df: 17. Total lags used: 24
```

ARIMA

While exponential smoothing models are based on a description of the trend and seasonality in the data, ARIMA models aim to describe the autocorrelations in the data.

Let's first check if the time series needs differencing or not.

```
adf.test(coal_train)
```

```
##
## Augmented Dickey-Fuller Test
##
## data: coal_train
## Dickey-Fuller = -2.5905, Lag order = 6, p-value = 0.3273
## alternative hypothesis: stationary
```

The p-value in ADF Test is not small enough so the data is not stationary. We need differencing.

Let's try seasonal differencing and repeat the above steps

```
autoplot(diff(coal_train,lag=12)) + ggtitle('Seasonal Differencing')
```

Seasonal Differencing


```
adf.test(diff(coal_train,lag=12))
```

```
## Warning in adf.test(diff(coal_train, lag = 12)): p-value smaller than printed p-
## value
```

```
##
## Augmented Dickey-Fuller Test
##
## data: diff(coal_train, lag = 12)
## Dickey-Fuller = -4.7211, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
```

This proves that the time series is not stationary by default and needs differencing to become stationary.

```
ggtsdisplay(diff(diff(coal_train,lag=12)),lag.max=24)
```


ACF shows significant spike at lag 12 and PACF shows significant spikes at lag 12 and 24.

```
fit1 <- arima(coal_train,order = c(2,1,1),seasonal = c(1,1,2))
summary(fit1)</pre>
```

```
##
## Call:
## arima(x = coal_train, order = c(2, 1, 1), seasonal = c(1, 1, 2))
##
## Coefficients:
##
            ar1
                    ar2
                              ma1
                                      sar1
                                               sma1
                                                         sma2
##
         0.6358 0.0279
                         -0.8933
                                   -0.4209
                                            -0.2940
                                                     -0.4234
        0.1040
                                                      0.2259
## s.e.
                0.0815
                          0.0839
                                    0.3071
                                             0.2906
##
## sigma^2 estimated as 29790807: log likelihood = -2341.86, aic = 4697.71
##
## Training set error measures:
##
                               RMSE
                                         MAE
                                                    MPE
                                                            MAPE
                                                                      MASE
                       ME
## Training set -627.9415 5312.008 4035.419 -0.5243691 2.73357 0.3435129
##
                       ACF1
## Training set -0.01720863
```

Let's try a few more arima models.

```
fit2 <- arima(coal_train,order = c(3,1,3),seasonal = c(1,1,2))
summary(fit2)</pre>
```

```
##
## Call:
## arima(x = coal_train, order = c(3, 1, 3), seasonal = c(1, 1, 2))
##
## Coefficients:
##
             ar1
                      ar2
                               ar3
                                       ma1
                                                ma2
                                                         ma3
                                                                  sar1
                                                                           sma1
                  -0.0627 0.5986 0.3699
##
         -0.5877
                                            -0.2717
                                                     -0.7566
                                                               -0.3602
                                                                       -0.3556
## s.e.
          0.2276
                   0.1686 0.1363
                                   0.2210
                                             0.1287
                                                      0.1774
                                                               0.3330
                                                                         0.3179
##
            sma2
##
         -0.3734
          0.2471
## s.e.
##
## sigma^2 estimated as 29077532: log likelihood = -2339.17, aic = 4698.34
##
## Training set error measures:
##
                                                   MPE
                                                           MAPE
                      ME
                             RMSE
                                        MAE
                                                                      MASE
## Training set -613.523 5248.033 3947.745 -0.5113172 2.665094 0.3360498
##
## Training set -0.03579695
```

```
fit3 <- arima(coal_train,order = c(1,1,0),seasonal = c(0,1,2))
summary(fit3)</pre>
```

```
##
## Call:
   arima(x = coal\_train, order = c(1, 1, 0), seasonal = c(0, 1, 2))
##
##
   Coefficients:
##
                      sma1
                               sma2
             ar1
##
         -0.1763
                   -0.7012
                            -0.1099
##
          0.0650
                   0.0740
                             0.0720
   s.e.
##
   sigma^2 estimated as 31783438: log likelihood = -2349.06, aic = 4706.12
##
##
##
   Training set error measures:
##
                              RMSE
                                        MAE
                                                    MPE
                                                            MAPE
                                                                      MASE
##
   Training set -279.1736 5486.78 4207.494 -0.2659637 2.856703 0.3581607
##
                        ACF1
## Training set -0.04032498
```

fit2 %>% checkresiduals(lag.max=24)

Lag

residuals

```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,1,3)(1,1,2)[12]
## Q* = 18.939, df = 15, p-value = 0.2165
##
## Model df: 9. Total lags used: 24
```

ARIMA(3,1,3)(1,1,2)[12] is the best ARIMA model out of the 3.

```
autoplot(forecast(fit2,h=60))+xlab("DateTime") +
  ylab("Net Electricity Generated (Million kWh)")
```

Forecasts from ARIMA(3,1,3)(1,1,2)[12]


```
#Accuracy
fit2.acc <- accuracy(forecast(fit2,h=60),coal_test)

RMSE=c(ar.mean["Test set","RMSE"],ar.naive["Test set","RMSE"],ar.snaive["Test set","RMSE"],ar.dr
ift["Test set","RMSE"],cstl.acc["Test set","RMSE"],cfitm.acc["Test set","RMSE"],etsl.acc["Test s
et","RMSE"],fit2.acc["Test set","RMSE"])

MAE = c(ar.mean["Test set","MAE"],ar.naive["Test set","MAE"],ar.snaive["Test set","MAE"],ar.drif
t["Test set","MAE"],cstl.acc["Test set","MAE"],cfitm.acc["Test set","MAE"],etsl.acc["Test set",
"MAE"],fit2.acc["Test set","MAE"])

results4 <-data.frame(RMSE,MAE, row.names = c("Mean","Naive","Seasonal Naive","Drift","STL on Ho
lt's + snaive","Holt-Winters","ETS(A,Ad,A)","ARIMA(3,1,3)(1,1,2)[12]"))
results4</pre>
```

	RMSE <dbl></dbl>	MAE <dbl></dbl>
Mean	64256.42	60203.30
Naive	40058.20	34671.19
Seasonal Naive	33647.10	29695.81
Drift	37338.28	32150.00
STL on Holt's + snaive	29480.68	24886.05
Holt-Winters	31325.66	26627.93
ETS(A,Ad,A)	31134.06	26749.64
ARIMA(3,1,3)(1,1,2)[12]	20919.52	17343.32
8 rows		

From the accuracy measures, we can see that the ARIMA model performs much better than the rest.

Let's do a cross validation on the ETS and ARIMA models and compare them again.

```
fets <- function(x, h) {
  forecast(ets(x), h=h)
}
farima <- function(x, h) {
  forecast(auto.arima(x), h=h)
}</pre>
```

Computing Errors for all the methods

```
e1<-tsCV(coal,fets,h=1)
e2<-tsCV(coal,farima,h=1)
```

Root Mean Squared Error

```
rmse<-c(sqrt(mean(e1^2,na.rm=TRUE)),
sqrt(mean(e2^2,na.rm=TRUE)))
names(rmse)=c("ETS","ARIMA")
rmse</pre>
```

```
## ETS ARIMA
## 7582.407 7295.512
```

From the cross validations results we can confirm that the ARIMA model has the lowest RSME out of all the forecasting models we have tried so far.

autoplot(coal_train) +autolayer(coal_test, series = "Actual")+ autolayer(forecast(fit2,h=60), se
ries = "ARIMA")+xlab("DateTime") + ylab("Net Electricity Generated (Million kWh)") + ggtitle("A
RIMA Model vs Actual Values")

ARIMA Model vs Actual Values

we can see from the above graph, the arima model has a good enough prediction interval that covers most of the actual values. This shows that the selected arima model is a good one.

Let's use this selected arima model on the entire dataset and forecast the Net Electricity Generation using Coal for the next 5yrs in the future.

```
best <- arima(coal,order = c(3,1,3),seasonal = c(1,1,2))
f.best <- forecast(best,h=60)

autoplot(coal) + autolayer(f.best, series = "ARIMA Forecast") +
    xlab("DateTime") +
    ylab("Net Electricity Generated (Million kWh)") +
    ggtitle("Forecast for Next 5 years(Jul 2020 - Jul 2025)")</pre>
```

Forecast for Next 5 years(Jul 2020 - Jul 2025)

f.best

##			Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
##	Jul	2020	84499.130	76820.9189	92177.34	72756.3195	96241.94
##	Aug	2020	80831.298	71378.5282	90284.07	66374.5343	95288.06
##	Sep	2020	61645.591	51264.7353	72026.45	45769.4424	77521.74
##	0ct	2020	50546.618	39432.2849	61660.95	33548.7124	67544.52
##	Nov	2020	51073.995	39292.1881	62855.80	33055.2763	69092.71
##	Dec	2020	61116.093	48795.0756	73437.11	42272.7228	79959.46
##	Jan	2021	65441.423	52551.4775	78331.37	45727.9524	85154.89
##	Feb	2021	45639.858	32223.9665	59055.75	25122.0224	66157.69
##	Mar	2021	41729.535	27843.6997	55615.37	20492.9825	62966.09
##	Apr	2021	30270.454	15870.1800	44670.73	8247.1355	52293.77
##	May	2021	38938.469	24088.6180	53788.32	16227.5817	61649.36
##	Jun	2021	58345.348	43053.6998	73637.00	34958.7903	81731.91
##	Jul	2021	75211.438	58821.6194	91601.26	50145.3735	100277.50
##	Aug	2021	71808.877	54650.5743	88967.18	45567.5177	98050.24
##	Sep	2021	53136.500	35290.9976	70982.00	25844.1592	80428.84
##	0ct	2021	40979.818	22493.5052	59466.13	12707.4424	69252.19
##	Nov	2021	41315.993	22256.4225	60375.56	12166.8956	70465.09
##	Dec	2021	54805.010	35155.7817	74454.24	24754.1086	84855.91
##	Jan	2022	58400.418	38198.2945	78602.54	27503.9363	89296.90
##	Feb	2022	39170.351	18442.6661	59898.04	7470.0923	70870.61
##	Mar	2022	34931.193	13659.1034	56203.28	2398.3394	67464.05
##	Apr	2022	21381.074	-390.3702	43152.52	-11915.4767	54677.63
##	May	2022	33304.239	11033.4219	55575.06	-756.0366	67364.51
##	Jun	2022	49919.540	27145.8533	72693.23	15090.1916	84748.89
##	Jul	2022	67139.582	43699.4568	90579.71	31291.0039	102988.16
##	Aug	2022	65114.107	41056.3337	89171.88	28320.9180	101907.30
##	Sep	2022	44557.406	19936.7871	69178.03	6903.4186	82211.39
##	0ct	2022	33675.813	8530.3698	58821.26	-4780.8241	72132.45
##	Nov	2022	34323.382	8635.7313	60011.03	-4962.4895	73609.25
##	Dec	2022	45840.538	19652.0088	72029.07	5788.6389	85892.44
##	Jan	2023	51269.330	24582.6695	77955.99	10455.6050	92083.05
##	Feb	2023	31072.069	3879.6703	58264.47	-10515.1159	72659.25
		2023				-15921.0272	
##	Apr	2023				-28361.4189	
##	May	2023	24529.373	-4083.0298	53141.78	-19229.5208	68288.27
		2023				-2243.8527	
			60060.631				
	_		56255.052				
						-9759.9331	
						-22070.6494	
		2023				-23099.7244	
		2023				-10482.1067	
		2024				-7384.0238	
		2024				-27967.5012	
		2024					
	-		5927.121				
	_		17198.565				
			34728.170				
			51378.339				
	_		49334.521				
	-		29322.765				
##	UCT	2024	17711.632	-19012./955	JJZ30.06	-390//.02/8	/5100.29

```
18788.817 -19252.9259 56830.56 -39391.0082
## Nov 2024
                                                             76968.64
## Dec 2024
                 30477.692 -8067.3100 69022.69 -28471.8016
                                                             89427.19
## Jan 2025
                 35316.478 -3714.8311 74347.79 -24376.7582
                                                             95009.72
## Feb 2025
                 15801.336 -23728.3820 55331.05 -44654.1506
                                                             76256.82
## Mar 2025
                 10760.455 -29245.9372 50766.85 -50424.0420
                                                             71944.95
## Apr 2025
                 -1175.532 -41655.6971 39304.63 -63084.6019
                                                             60733.54
## May 2025
                  9337.205 -31622.3432 50296.75 -53305.0182
                                                             71979.43
                                                             89670.92
## Jun 2025
                 26330.779 -15085.1139 67746.67 -37009.3632
```

The final selected arima model has projected electricity generation using coal to decrease even more rapidly in the next 5 years.