2021 Spring

Artificial Intelligence & Deep Learning

Prof. Minsuk Koo

Department of Computer Science & Engineering
Incheon National University

4.4 컨볼루션 신경망 사례연구

- 4.4.1 AlexNet
- 4.4.2 VGGNet
- 4.4.3 GoogLeNet
- 4.4.4 ResNet

컨볼루션 신경망 사례연구

- 자연영상 분류라는 도전적 문제
 - ImageNet 데이터베이스
 - 2만 부류에 대해 부류별로 500~1000장의 영상을 인터넷에서 수집하여 구축하고 공개
 - ILSVRC 대회 (CVPR 학술대회에서 개최)
 - 1000부류에 대해 분류, 검출, 위치 지정 문제: 1순위와 5순위 오류율로 대결
 - 120만 장의 훈련집합, 5만 장의 검증집합, 15만 장의 테스트집합
 - 우승: AlexNet(2012) → Clarifi팀(2013) → GoogLeNet&VGGNet(2014) → ResNet(2015)
 - 우승한 CNN은 프로그램과 가중치를 공개함으로써 널리 사용되는 표준 신경망이 됨

(a) 'swing' 부류

(b) 'Great white shark' 부류

AlexNet -1

■ 구조

- 컨볼루션층 5개와 완전연결(FC)층 3개
 - 8개 층에 290400-186624-64896-43264-4096-4096-1000개의 노드 배치
- 컨볼루션층은 200만개, FC층은 6500만개 가량의 매개변수
- FC층에 30배 많은 매개변수 → 향후 CNN은 FC층의 매개변수를 줄이는 방향으로 발전

그림 4-21 AlexNet 구조[Krizhevsky2012]

AlexNet -2

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

Input: ፟፟፟፟፟፟፟ዸ፟ዿ፝፼፟፞፠፟ዿ፟ዀ፞፝፞ኯ፟፠ቑ፝fi**jed) ያቀ**፠Net architecture:

[227x227x3] INPUT

First lawayobxoon volving 611 12011 title sugarial stude land o

__ [27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

Q: What3x18x25611MAXbepotpar3x36titessratistide 2?

13x13x256] NORM2: Normalization layer

Input: **223x/23x/384in0ages/4**: 384 3x3 filters at stride 1, pad 1

After (13x1/3x25655x36V5: 256 3x3 filters at stride 1, pad 1

Secono Opport (1504096) next of liters at stride 2

=> [4096] FC7: 4096 neurons

Q: what 991 = 600 = 10000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 100000 = 10000 = 10000 = 10000 = 10000 = 100000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10

Q: What is the total number of parameters in this layer?

AlexNet -3

- AlexNet이 학습에 성공한 요인
 - 외부 요인
 - ImageNet이라는 대용량 데이터베이스
 - GPU를 사용한 병렬처리
 - 내부 요인
 - 활성함수로 ReLU 최초로 사용
 - 지역 반응 정규화 기법 적용 (더 이상 사용하지 않음)
 - Batch size 128, SGD Momentum 사용
 - 학습률 1e-2 -> 1e-3
 - 과잉적합 방지하는 여러 규제 기법 적용
 - 데이터 확대(잘라내기와 반전으로 2048배로 확대)
 - 드롭아웃 등
- 테스트 단계에서 앙상블 적용
 - [그림 5-26]과 [그림 12-5]
 - 2~3%만큼 오류율 감소 효과

Note:

Trained on GTX 580 GPU with only 3 GB of memory. Network spread across 2 GPUs, half the neurons (feature maps) on each GPU.

ILSVRC Winners

- VGGNet의 핵심 아이디어
 - 3*3의 작은 커널을 사용하여 신경망을 더욱 깊게 만듦
 - 컨볼루션층 8~16개를 두어 AlexNet의 5개에 비해 2~3배 깊어짐
- 16층짜리 VGG-16(컨볼루션 13층+FC 3층) [그림 4-22]

그림 4-22 VGGNet 구조[Simonyan2015]

- 1*1 커널 ~ Bottle neck Network
 - 차원 축소 효과
 - [그림 4-23]의 예)
 - *m***n*의 특징 맵 8개에 1*1 커널을 4개 적용 → *m***n*의 특징 맵 4개가 됨
 - 다시 말하면, 8*m*n 텐서에 8*1*1 커널을 4개 적용하여 4*m*n 텐서를 출력하는 셈
 - ReLU와 같은 비선형 활성함수를 적용하면 특징 맵의 분별력 증가
 - ■『네트워크 속의 네트워크(NIN)』에서 유래 [Lin2014]
 - VGGNet은 적용 실험을 하였지만 최종 선택하지는 않음 (GoogLeNet이 많이 사용함)

그림 4-23 1*1 컨볼루션 예제

= 3 x (3x3) US | X (7x7)

Small filters, Deeper networks

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers

has same effective receptive field as

one 7x7 conv layer = 7x17 5142 2x3 3x125

동영한 토과

Q: What is the effective receptive field of softmax

three 3x3 conv (stride 1) layers?

But deeper, more non-linearities

And fewer parameters; 3 * (3²C²) vs. 72C2 for C channels per layer

if C=3 : (1) 21 x9 = 213

3x3 Conu, stride =1

Stride =2

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512 3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

Softmax		
FC 1000		
FC 4096		
FC 4096		
Pool		
3x3 conv, 512		
Pool		
3x3 conv, 512		
Pool		
3x3 conv, 256		
3x3 conv, 256		
Pool		
3x3 conv, 128		
3x3 conv, 128		
Pool		
3x3 conv, 64		
3x3 conv, 64		
Input		

AlexNet

FC 1000

FC 4096

FC 4096 Pool

3x3 conv, 384

Pool 3x3 conv, 384 Pool

5x5 conv, 256 11x11 conv, 96

Input

VGG16

VGG19

```
आप्रय क्र्ड
                                                   학순 파라머터
                                                              (not counting biases)
INPUT: [224x224x3]
                      memory: 224*224*3=150K params:0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
                                                                                        Note:
                                                                                               FC 1000
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
                                                                                               FC 4096
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                     params: (3*3*64)*128 = 73.728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M
                                                                                        early CONV
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294.912 C
                                                                                                Pool
ONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CO
NV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 C
                                                                                                Pool
ONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CO
NV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2.359.296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                       Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2.359,296 C
                                                                                       in late FO
                                                                                                 onv, 128
ONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CO
                                                                                                Pool
NV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 F
                                                                                                Input
C: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
                                                                                              VGG16
```

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd) TOTAL params: 138M parameters

EC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

Details:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

Softmax		
FC 1000		
FC 4096		
FC 4096		
Pool		
3x3 conv, 256		
3x3 conv, 384		
Pool		
3x3 conv, 384		
Pool		
5x5 conv, 256		
11x11 conv, 96		
Input		

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

- 1			
Softmax			
FC 1000			
FC 4096			
FC 4096			
Pool			
3x3 conv, 512			
Pool			
3x3 conv, 512			
Pool			
3x3 conv, 256			
3x3 conv, 256			
Pool			
3x3 conv, 128			
3x3 conv, 128			
Pool			
3x3 conv, 64			
3x3 conv, 64			
Input			

AlexNet

VGG16

VGG19

- GoogLeNet의 핵심 아이디어인 인셉션 모듈
 - NIN의 구조를 수정한 것
- NIN 구조
 - MLPconv층이 컨볼루션 연산을 대신함
 - MLPconv는 커널을 옮겨가면서 MLP의 전방 계산을 수행함

(a) 기존 컨볼루션층

그림 4-24 기존 컨볼루션 신경망과 NIN의 비교

MLPconv층 (마이크로 네트워크)

- NIN이 사용하는 전역 평균 풀링
 - [그림 4-25(a)]의 VGGNet의 완전연결층
 - 1억2천2백만 개의 매개변수를 가짐 (VGGNet의 전체 매개변수의 85%) → 과잉적합 원인
 - [그림 4-25(b)]의 전역 평균 풀링
 - MLPconv가 부류 수만큼 특징 맵을 생성하면, 특징 맵 각각을 평균하여 출력 노드에 입력
 → 이 방식으로 매개변수를 없앰

그림 4-25 완전연결과 NIN의 전역 평균 풀링의 비교

(b) NIN의 전역 평균 풀링

■ GoogLeNet은 NIN 아이디어를 확장한 신경망

😝 인셉션 모듈

- 마이크로 네트워크로 MLPconv 대신 네 종류의 컨볼루션 연산 사용
- 1*1 컨볼루션을 사용하여 차원 축소

그림 4-26 GoogLeNet의 인셉션 모듈

Q1: What is the output size of the 1x1 conv, with 128 filters?

Q2: What are the output sizes of all different filter operations?

Q3:What is output size after filter concatenation?

Pooling layer also preserves feature dept h, which means total depth after concate nation can only grow at every layer!

```
Conv Ops: [1x1 conv, 128] 28x28x128x1x1x256 Input [3x3 conv, 192] 28x28x192x3x3x256 Channel [5x5 conv, 96] 28x28x96x5x5x256

Total: 854M ops
```


Projects depth to lower dimension (combination of feature maps)

1x1 conv "bottleneck" layers

Inception module with dimension reduction

input Channel

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256

[3x3 conv, 192] 28x28x192x3x3x256

[5x5 conv, 96] 28x28x96x5x5x256

Total: 854M ops

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256

[1x1 conv, 64] 28x28x64x1x1x256

[3x3 conv, 192] 28x28x192x3x3x64

1x1 conv, 64] 28x28x64x1x1x256

[5x5 conv, 96] 28x28x96x5x5x64

[1x1 conv, 64] 28x28x64x1x1x256

Total: 358M ops

- 인셉션 모듈을 9개 결합한 GoogLeNet ([그림 4-27])
 - 매개변수가 있는 층 22개, 없는 층 5개로 총 27개 층
 - 완전열결층은 1개에 불과

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

56-layer model performs worse on both training and test error -> The deeper model performs worse, but it's not caused by overfitting!

Hypothesis: the problem is an *optimization* problem, deeper models are harder to optimize

The deeper model should be able to perform at least as well as the shallower model.

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.

ResNet

- 잔류 학습이라는 아이디어를 이용하여 성능 저하를 피하면서 층 수를 대폭 늘림(최대 1202층까지)
- 원래 컨볼루션 신경망

$$F(x) = \tau(x \circledast w_1) \circledast w_2$$
$$y = \tau(F(x))$$

■ 잔류 학습은 지름길 연결된 x를 더한 F(x) + x에 τ를 적용. F(x)는 잔류

그림 4-28 잔류 학습의 구조와 동작

- 지름길 연결을 두는 이유는?
 - 그레이디언트 소멸 문제 해결 ➡ gradient=0 이 되는 문제
 - ullet 식 (4.14)의 그레이디언트 식에서 $\dfrac{\partial}{\partial \mathbf{x}_l}\sum_{i=l}^{L-1}\mathbf{F}(\mathbf{x}_i)$ 이 -1이 될 가능성이 거의 없음

$$\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \frac{\partial \mathbf{x}_{L}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \left(1 + \frac{\partial}{\partial \mathbf{x}_{l}} \sum_{i=1}^{L-1} \mathbf{F}(\mathbf{x}_{i}) \right) \tag{4.14}$$

■ Residual 블록 구조

Every residual block has two 3x3 conv layers

Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)

- VGGNet과 같은 점
 - 3*3 커널 사용
- VGGNet과 다른 점
 - 잔류 학습 사용
 - 전역 평균 풀링 사용(FC 층 제거)
 - 배치 정규화 적용(드롭아웃 적용 불필요)
 - → 배치 정규화는 5.2.6절

Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lo wing training error as expected
- Swept 1st place in all ILSVRC an d COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6% top 5 error) -- b etter than "human performance"! (Russakovsky 2014)

- ILSVRC 대회
 - 분류 문제는 성능 포화 (사람 성능에 필적함)
 - 물체 검출 문제에 집중함

그림 4-31 ILSVRC 물체 검출 문제

- ILSVRC 대회 성적
 - 2012년 AlexNet의 15.3% 오류율은 당시로서 경이로운 성능
 - 2015년에 ResNet은 3.5% 오류율 달성

CNN 비교

ResNet:

An Analysis of Deep Neural Network Models for Practical Applications, 2017.