Lösungen Übung 3

Aufgabe 1 (4 Punkte). Sei $\mathbb{R}_+ = \{x \in \mathbb{R} : x > 0\}$. Für $x, y \in \mathbb{R}_+$ und $\lambda \in \mathbb{R}$ setzen wir:

$$x \diamond y = xy$$
 und $\lambda \odot x = x^{\lambda}$

Zeigen Sie, dass $(\mathbb{R}_+, \diamond, \odot)$ einen Vektorraum über \mathbb{R} bildet.

Lösung: Offenbar gilt $x \diamond y \in \mathbb{R}_+$ und $\lambda \odot x \in \mathbb{R}_+$ für alle $x, y \in \mathbb{R}_+$ und alle $\lambda \in \mathbb{R}$. Ferner ist \diamond offensichtlich assoziativ und kommutativ und $1 \in \mathbb{R}_+$ ist neutrales Element von \diamond . Das Inverse bezüglich \diamond für $x \in \mathbb{R}_+$ ist $1/x \in \mathbb{R}^+$. Also ist (\mathbb{R}_+, \diamond) eine abelsche Gruppe.

Ferner gilt für alle $x, y \in \mathbb{R}_+$ und alle $\lambda, \mu \in \mathbb{R}$:

$$\lambda \odot (\mu \odot x) = \lambda \odot (x^{\mu}) = (x^{\mu})^{\lambda} = x^{\lambda \mu} = (\lambda \mu) \odot x$$

$$(\lambda + \mu) \odot x = x^{\lambda + \mu} = x^{\lambda} x^{\mu} = x^{\lambda} \diamond x^{\mu} = (\lambda \odot x) \diamond (\mu \odot x)$$

$$\lambda \odot (x \diamond y) = \lambda \odot (xy) = (xy)^{\lambda} = x^{\lambda} y^{\lambda} = x^{\lambda} \diamond y^{\lambda} = (\lambda \odot x) \diamond (\mu \odot y)$$

$$1 \odot x = x^{1} = x$$

Also ist $(\mathbb{R}_+, \diamond, \odot)$ ein Vektorraum über \mathbb{R} .

Aufgabe 2 (1 Punkt pro Teilaufgabe). Entscheiden Sie jeweils, ob es sich bei den folgenden Mengen um Unterräume des \mathbb{R}^2 bzw. des \mathbb{R}^3 handelt (und begründen Sie Ihre Antworten).

(i)
$$U_1 = \left\{ \left(\begin{array}{c} 2x \\ x^2 \end{array} \right) : x \in \mathbb{R} \right\}$$

(ii)
$$U_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : 6x - y = z \right\}$$

(iii)
$$U_3 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : xy = 3z \right\}$$

Lösung:

(i) U_1 ist kein Unterraum, denn z. B. ist $u = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \in U_1$ (für x = 1), jedoch $-u = \begin{pmatrix} -2 \\ -1 \end{pmatrix} \notin U_1$ (denn $x^2 \ge 0$ für alle $x \in \mathbb{R}$).

(ii) U_2 ist ein Unterraum, denn es gilt $0 \in U_2$ und für alle $\lambda \in \mathbb{R}$ und alle

$$u_1 = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \in U_2 \text{ und } u_2 = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \in U_2$$

gilt

$$6(x_1 + x_2) - (y_1 + y_2) = 6x_1 - y_1 + 6x_2 - y_2 = z_1 + z_2,$$

$$6\lambda x_1 - \lambda y_1 = \lambda(6x_1 - y_1) = \lambda z_1.$$

Also gilt $u_1 + u_2 \in U_2$ und $\lambda u_1 \in U_2$.

(iii) U_3 ist kein Unterraum, denn z.B. gilt

$$u = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} \in U_3$$
, aber $2u = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} \not\in U_3$.

Aufgabe 3 (3 Punkte). Es sei V ein Vektorraum über einem Körper K und es seien $U_1, U_2 \subseteq V$ Unterräume von V.

Zeigen Sie: $U_1 \cup U_2$ ist ein Unterraum von V genau dann, wenn $U_1 \subseteq U_2$ oder $U_2 \subseteq U_1$ gilt.

Lösung: Ist $U_1 \subseteq U_2$ oder $U_2 \subseteq U_1$, so ist $U_1 \cup U_2 = U_2$ oder $U_1 \cup U_2 = U_1$, also ist $U_1 \cup U_2$ ein Unterraum.

Sei nun umgekehrt $U_1 \cup U_2$ ein Unterraum und sei $U_1 \not\subseteq U_2$. Dann existiert also ein $v \in U_1$ mit $v \notin U_2$.

Es sei $u \in U_2$ beliebig. Dann gilt $u, v \in U_1 \cup U_2$ und da $U_1 \cup U_2$ ein Unterraum ist, muss auch $u + v \in U_1 \cup U_2$ gelten.

Wäre $u + v \in U_2$, so wäre wegen $u \in U_2$ und der Unterraumeigenschaft von U_2 auch $v = u + v - u \in U_2$, was aber nicht der Fall ist.

Also muss $u + v \in U_1$ gelten. Wegen $v \in U_1$ und der Unterraumeigenschaft von U_1 folgt daher $u = u + v - v \in U_1$. Also gilt $U_2 \subseteq U_1$.