IEL - Virtuálne Laboratórium 6

xkrato
61 Pavel Kratochvíl 26. Po, 17:00-18:50, sudé (kalend.) týdny, vede: Malaník

Január 2021

1 Experiment

OZ ako komparátor vstupných napätí Postup:

- 1. Zapojte komparátor na zdroj striedavého napätia.
- 2. Odmerajte vstupné a výstupné priebehy napätia, uveďte vzťah medzi napätím na výstupe a na vstupoch OZ. Zdôvodnite, či sa jedná o invertujúcia alebo neinvertujúci priebeh

Obr. 1: Zapojenie obvodu v Tinkercad

Obr. 2: Priebehy napätí na vstupoch a výstupe OZ

Vysvetlenie:

Pre kladnú polvlnu sinusového priebehu napätia na vstupe (Dovnitř+ > Dovnitř-(OV)) je na výstupe kladná okamžite zosilnená na maximálnu možnú hodnotu. V zápornej polvlne (Dovnitř-(0V) > Dovnitř+) je na výstupe záporná hodnota tiež okamžite zosilná. Výsledkom je square wave s ostrými hranami, ktorých strmosť závisí od slew rate-u vybranej súčiastky. Keďže bol vstup zo zdroja striedavého napätia zapojený fázou na Dovnitř+, dostali sme neinvertujúci priebeh. V opačnom prípade by sme dostali invertujúci.

2 Experiment

Overenie zosilňovacej schopnosti OZ Postup:

- 1. Zapojte obvod podľa schémy.
- 2. Zvoľte hodnoty rezistorov ${\cal R}_1$ a ${\cal R}_2$ aby sa dosiahlo zosilnenia hodnoty 5.
- 3. Odmerajte pomocou osciloskopov priebehy vstupného a výstupného napätia.
- 4. Zdôvodnite či sa jedná o invertujúci alebo neinvertujúci priebeh.

Obr. 3: Schéma zapojenia $2\,$

Zosilnenie A_U vieme výpočítať jednoducho z rovnice:

$$A_u = \frac{R_1 + R_2}{R_2}$$
$$R_1 = 4 \times R_2$$

Preto ak chceme 5-nasobné zosilnenie, musíme zvoliť rezistor R_1 , ktorý bude 4x väčší ako R_2 . Nech R_2 je 1 k Ω a R_1 je 4 k Ω . V Tinkercad vidíme zosilnenie iba na automatickej mierke osciloskopu.

Obr. 4: Zosilnenie v Tinkercad

Na osciloskope vidíme zosilnenie vstupu z amplitúdy $0.5\,\mathrm{V}$ na $2.5\,\mathrm{V}$. Znova sa jedná o neinvertujúci priebeh keďže fáza generátora je pripojená na kladný vstup zosilňovača.

3 Experiment

3-bitový D/A prevodník Postup:

- 1. Zapojte obvod podľa schémy.
- 2. Vyberte správne hodnoty rezistorov aby vstupná 3-bitová informácia u_2, u_1, u_0 , kde u_2 je MSB a u_0 je LSB, určovala veľkosť vstupného napätia podľa vzťahu: $u_{out} = 5 * (\frac{hodnota}{2^3})$
- 3. Odmerajte napätie u_{out} a namerané hodnoty zapíšte do tabuľky (aj s veličinami)

Obr. 5: Schéma zapojenia obdovu

Z ponúknutých rezistorov v Tinker-cad sa mi nepodarilo zložiť obvod aby výsledné hodnoty vyhovovali rovnici v zadaní. Preto som si zvolil rezistory 1k(MSB), 2k, 4k(LSB) a R_f 1k. Keďže ide iba o ich pomery, dajú sa prispôsobiť na akúkoľvek zadanú hodnotu jedného rezistoru.

Príklad vstupu:

Očakávaný výsledok podľa rovnice bol:

$$u_{out} = 5 * (\frac{3}{2^3})$$

 $u_{out} = 1.875 \,\text{V}$

Obr. 6: Príklad pre vstup 011 (hodnota=3)

Po správnosti by mali byť namerané hodnoty v tabuľke záporné. Pre jednoduchosť a pre ľahšie porovnávanie nameraných hodnôt som mal voltemeter opačne a výsledky sú kladné.

R0 = 1			R1 = 2			R2 = 4		
$u_2u_1u_0$	000	001	010	011	100	101	110	111
u_{out}	0 V	$0.625\mathrm{V}$	1.25 V	1.87 V	2.5 V	$3.12\mathrm{V}$	$3.75\mathrm{V}$	4.37 V

Jedná sa o invertujúci priebeh keďže meníme napätie na Dovnitř-.