Notes for High-Dimensional Probability Second Edition by Roman Vershynin

Gallant Tsao

 $July\ 8,\ 2025$

Contents

0		petizer: Using Probability to Cover a Set	3
	0.1	Covering Geometric Sets	4
1	\mathbf{A}	Quick Refresher on Analysis and Probability	6
	1.1	Convex Sets and Functions	6
	1.2	Norms and Inner Products	6
	1.3	Random Variables and Random Vectors	6
	1.4	Union Bound	8
	1.5	Conditioning	8
	1.6	Probabilistic Inequalities	8
	1.7	Limit Theorems	9
2	Con	ncentration of Sums of Independent Random Variables	11
	2.1	Why Concentration Inequalities?	11
	2.2	Hoeffding Inequality	12
	2.3		14
	2.4	Application: Median-of-means Estimator	16
	2.5		17
	2.6		17
		9	19
	2.7		19
			20
		0 1 1	20
		- '	21
			22
	2.8		22
		•	22
		2.8.2 The Subexponential Norm	
	2.9	Bernstein Inequality	
	_	1	
3	Ran	g · · · · · · · · · · · · · · · · · · ·	28
	3.1		28
	3.2	Covariance Matrices and PCA	29
		3.2.1 Learning from the Covariance Matrix	29
		3.2.2 Principle Component Analysis	30
			31
	3.3		31
		3.3.1 Standard Normal	31
			32
		3.3.3 Uniform on the Sphere	33
		•	34
			34
	3.4		36
			36
			36
			37
	3.5	•	$\frac{38}{38}$
	3.6	1 0	38
	3.7	••	38
	0.1	Terrier Trick and Tightening of Grothendicek inequatives	90
4	Ran		3 9
	4.1	•	39
		•	39
			40
			41
			41
			42

	4.1.6 Perturbation Theory	4:
	4.1.7 Isometries	4
4.2	Nets, Covering, and Packing	4
	4.2.1 Covering Numbers and Volume	46
4.3	Application: Error Correcting Codes	4
4.4	Upper Bounds on Subgaussian Random Matrices	4

4 Random Matrices

This chapter mostly focuses on the theory regarding random matrices - nets, covering and packing numbers. Applications include community detection, covariance estimation, and spectral clustering.

4.1 A Quick Refresher on Linear Algebra

4.1.1 Singular Value Decomposition

Theorem 4.1.1 (SVD). Any $m \times n$ matrix A with real entries can be written as

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T \text{ where } r = \min(m, n).$$

Here $\sigma_i > 0$ are the <u>singular values</u> of A, $u_I \in \mathbb{R}^m$ are orthonormal vectors called the <u>left singular vectors</u> of A, and $v_i \in \mathbb{R}^n$ are orthonormal vectors called the <u>right singular vectors</u> of A.

Proof. WLOG, we can assume that $m \geq n$ or else we can just take the transpose. Since $A^T A \in \mathbb{R}^{n \times n}$ is a symmetric positive semidefinite matrix, the spectral theorem tells us that its eigenvalues are $\sigma_1^2, \ldots, \sigma_n^2$ and corresponding orthonormal eigenvectors $v_1, \ldots, v_n \in \mathbb{R}^n$, so that $A^T A v_i = \sigma_i^2 v_i$. The vectors $A v_i$ are orthogonal:

$$\langle Av_i, Av_j \rangle = \langle A^T Av_i, v_j \rangle = \sigma_i^2 \langle v_i, v_j \rangle = \sigma_i^2 \delta ij.$$

Therefore, there exist orthonormal vectors $u_1, \ldots, u_n \in \mathbb{R}^n$ such that

$$Av_i = \sigma_i u_i, \quad i = 1, \dots, n.$$

For the above, for all i with $\sigma_i \neq 0$, the vectors u_i are uniquely defined and ensures that they are orthonormal. If $\sigma_i = 0$, then $Av_i = 0$ holds triviall. In this case, we can pick any u_i while keeping orthonormality.

Since v_1, \ldots, v_n form an orthonormal basis of \mathbb{R}^n , we can write $I_n = \sum_{i=1}^n v_i v_i^T$. Multiplying by A on the left and plugging the equation above gives

$$A = \sum_{i=1}^{n} (Av_i)v_i^T = \sum_{i=1}^{n} \sigma_i u_i v_i^T.$$

Remark 4.1.2 (Geometric interpretation). SVD gives a geometric view of matrices: it stretches the orthogonal direction of v_i by σ_i , then rotates the space, mapping the orthonormal basis v_i to u_i .

Remark 4.1.3 (SVD matrix form). We can set $\sigma_i = 0$ for i > r and arrange them in weakly decreasing order. Then by extending $\{u_i\}$ and $\{v_i\}$ to orthonormal bases in \mathbb{R}^m and \mathbb{R}^n , we get

$$A = U\Sigma V^T$$

where U is the $m \times m$ matrix with left singular vectors u_i as columns, V is the $n \times n$ orthogonal matrix with right singular vectors v_i as columns, and Σ is the $m \times n$ diagonal matrix with the singular values σ_i on the diagonal. If A is symmetric, we get the spectral decomposition instead:

$$A = U\Lambda U^T$$
.

Remark 4.1.4 (Spectral decomposition v.s. SVD). The spectral and singular value decompositions

are tightly connected. Since

$$AA^{T} = \sum_{i=1}^{r} \sigma_{i}^{2} u_{i} u_{i}^{T} \text{ and } A^{T}A = \sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}$$

the left singular vectors u_i of A are the eigenvectors of AA^T , while the right singular vectors v_i of A are the eigenvectors of A^TA , and the singular values σ_i of A are

$$\sigma_i(A) = \sqrt{\lambda_i(AA^T)} = \sqrt{\lambda_i(A^TA)}.$$

Remark 4.1.5 (Orthogonal projection). Consider the orthogonal projection P in \mathbb{R}^n onto a k-dimensional subspace E. The projection of a vector x onto E is given by $Px = \sum_{i=1}^k \langle u_i, x \rangle u_i$ where u_1, \ldots, u_k is an orthonormal basis of E. We can rewrite this as

$$P = \sum_{i=1}^{k} u_i u_i^T = UU^T$$

where U is the $n \times k$ matrix with orthonormal columns u_i . In particular, P is a symmetric matrix with eigenvalues $\underbrace{1,\ldots,1}_{k},\underbrace{0,\ldots,0}_{n-k}$.

4.1.2 Min-max Theorem

There is another optimization-based description of eigenvalues:

Theorem 4.1.6 (Min-max theorem for eigenvalues). The k-th largest eigenvalue of an $n \times n$ symmetric matrix A can be written as

$$\lambda_k(A) = \max_{\dim E = k} \min_{x \in S(E)} x^T A x = \min_{\dim E = n - k + 1} \max_{x \in S(E)} x^T A x,$$

where the first max/min is taking with respect to all subspaces of a fixed dimension, and S(E) denotes the Euclidean unit sphere of E, i.e. the set of all unit vectors in E.

Proof. Let us focus on the first equation. To prove the upper bound on λ_k , we need to find a k-dimensional subspace E such that

$$x^T A x \ge \lambda_k$$
 for all $x \in S(E)$.

To find the set E, take the spectral decomposition $A = \sum_{i=1}^{n} \lambda_i u_i u_i^T$ and pick the subspace $E = \operatorname{span}(u_1, \dots, u_k)$. The eigenvectors form an orthonormal basis of E, so any vector $x \in S(E)$ can be written as $x = \sum_{i=1}^{k} a_i u_i$. Then by orthonormality of u_i and monotonicity of λ_i , we get

$$x^T A x = \sum_{i=1}^k \lambda_i a_i^2 \le \lambda_k \sum_{i=1}^k a_i^2 = \lambda_k$$

and we have the upper bound. For the lower bound on λ_k , we need to find $x \in S(E)$ such that $x^T A x \leq \lambda_k$. Here we let the subspace be $F = \text{span}(u_k, \dots, u_n)$.

Since dim E + dim F = n + 1, the intersection of E and F is nontrivial hence there is a unit vector $x \in E \cap F$. Writing $x = \sum_{i=k}^{n} a_i u_i$, we get

$$x^{T}Ax = \sum_{i=k}^{n} \lambda_{i} a_{i}^{2} \ge \lambda_{k} \sum_{i=k}^{n} a_{i}^{2} = \lambda_{k}.$$

Then we get the lower bound, and hence the first equality is done.

The second equality is by applying the same technique to -A and reversing the eigenvalues.

Applying section 4.1.2 to $A^{T}A$ and using remark 4.1.4, we get

Corollary 4.1.7 (Min-max theorem for singular values). Let $A \in \mathbb{R}^{m \times n}$ with singular values $\sigma_1 \ge \cdots \ge \sigma_n \ge 0$. Then

$$\sigma_k(A) = \max_{\dim E = k} \min_{x \in S(E)} \lVert Ax \rVert_2 = \min_{\dim E = n-k+1} \max_{x \in S(E)} \lVert Ax \rVert_2$$

with the same notation as section 4.1.2.

4.1.3 Frobenius and Operator Norms

Definition 4.1.8. For a matrix $A \in \mathbb{R}^{m \times n}$, the <u>Frobenius norm</u> is

$$||A||_F := \left(\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2\right)^{1/2}.$$

The operator norm of A is the smallest number K such that

$$||Ax||_2 \le K||x||_2$$
 for all $x \in \mathbb{R}^n$.

Equivalently,

$$\|A\| = \max_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2} = \max_{\|x\|_2 \leq 1} \|Ax\|_2 = \max_{\|x\|_2 = 1} \|Ax\|_2 = \max_{\|x\|_2 = \|y\|_2 = 1} |y^T Ax|.$$

From the Frobenius norm, we can get that

$$\langle A, B \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ij} = \operatorname{tr}(A^{T}B).$$

Also, from above we can get

$$||A||_F^2 = \langle A, A \rangle = \operatorname{tr}(A^T A).$$

For the operator norm, the first three equations follows by rescaling, and the last one comes from the duality formula:

$$||Ax|| = \max_{\|y\|_2=1} \langle Ax, y \rangle.$$

Here the absolute sign does not matter.

Remark 4.1.9 (Other operator norms). We can replace the ℓ^2 norm in definition 4.1.8 with other norms to get a more general concept of operator norms (Exercise 4.18-4.22).

4.1.4 The Matrix Norms and the Spectrum

Lemma 4.1.10 (Orthogonal invariance). The Frobenius and spectral norms are orthogonal invariant, meaning that for any A and orthogonal matrices Q, R with proper dimensions, we have

$$||QAR||_F = ||A||_F$$
 and $||QAR|| = ||A||$.

Proof. For the Frobenius norm, by one of the formulas above,

$$||QAR||_F = \operatorname{tr}(R^T A T Q^T Q A R)$$

$$= \operatorname{tr}(R^T A^T A R)$$

$$= \operatorname{tr}(R R^T A^T A)$$

$$= \operatorname{tr}(A^T A)$$

$$= ||A||_F^2.$$

For the spectral norm, by an equivalent characterization, ||QAR|| is obtained by maximizing the bilinear form $y^TQARx = (Qy)^TA(Rx)$ over all unit vectors x, y. Since Q, R are orthogonal, Qy and Rx also range over all unit vectors, so we just get ||A|| as a result.

Lemma 4.1.11 (Matrix norms via singular values). For any $A \in \mathbb{R}^{m \times n}$ with singular values $\sigma_1 \ge \cdots \ge \sigma_n$,

$$||A||_F = \left(\sum_{i=1}^n \sigma_i^2\right)^{1/2}$$
 and $||A|| = \sigma_1$.

Proof. For the Frobenius norm, by orthogonal invariance (lemma 4.1.10),

$$||A||_F = ||U\Sigma V^T||_F = ||\Sigma||_F$$

which directly gives us the result.

The result for the operator norm directly follows from corollary 4.1.7 with k=1.

Remark 4.1.12 (Symmetric matrices). For a symmetric matrix A with eigenvalues λ_k ,

$$||A|| = \max_{k} |\lambda_k| = \max_{||x||=1} |x^T A x|.$$

The first equality becomes lemma 4.1.11 since the singular values of A are $|\lambda_k|$. The min-max theorem (section 4.1.2) gives $|\lambda_k| \leq \max_{\|x\|=1} |x^T A x|$, proving the upper bound in the equation above. The lower bound can be proven by taking x-y in the definition of the operator norm (definition 4.1.8).

4.1.5 Low-rank Approximation

For a given matrix A, what is the closest approximation to it for a given matrix of rank k? The answer is just truncating the SVD of A:

Theorem 4.1.13 (Eckart-Young-Mirski theorem). Let $A = \sum_{i=1}^n \sigma_i u_i v_i^T$. Then for any $1 \le k \le n$,

$$\min_{\operatorname{rank}(B)=k} ||A - B|| = \sigma_{k+1}.$$

The minimum is attained at $B = \sum_{i=1}^{k} \sigma_i u_i v_i^T$.

Proof. If $B \in \mathbb{R}^{m \times n}$ has rank k, dim ker (B) = n - k. Then the min-max theorem (corollary 4.1.7) for k + 1 instead of k gives

$$||A - b|| \ge \max_{x \in S(E)} ||(A - B)x||_2 = \max_{x \in S(E)} ||Ax||_2 \ge \sigma_{k+1}.$$

In the opposite direction, setting $B = \sum_{i=1}^k \sigma_i u_i v_i^T$ gives $A - b = \sum_{i=k+1}^n \sigma_i u_I v_i^T$. The maximal singular value of this matrix σ_{k+1} , which is the same as its operator norm by lemma 4.1.11.

4.1.6 Perturbation Theory

We can also study how eigenvalues/eigenvectors change under matrix perturbations:

Lemma 4.1.14 (Weyl inequality). The k-th largest eigenvalue of symmetric matrices A, B satisfy

$$|\lambda_k(A) - \lambda_k(B)| \le ||A - B||.$$

Similarly, the k-th largest singular values of general rectangular matrices satisfy

$$|\sigma_k(A) - \sigma_k(B)| < ||A - B||.$$

A similar result holds for eigenvectors, however we have to track the same eigenvector before and after the perturbation. If the eigenvalues are too close, a small perturbation can swap them, leading to huge error since their eigenvectors are orthogonal and far apart.

Theorem 4.1.15 (Davis-Kahan inequality). Consider two symmetric matrices A, B with spectral decompositions

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^T, \ B = \sum_{i=1}^{n} \mu_i v_i v_i^T,$$

where the eigenvalues are weakly decreasing. Assume the the k-th largest eigenvalue of A is δ seperated from the rest:

$$\min_{i \neq k} |\lambda_k - \lambda_i| = \delta > 0.$$

Then the angle between the eigenvectors u_k and v_k satisfies

$$\sin \angle u_k, v_k \le \frac{2\|A - B\|}{\delta}.$$

The theorem above can be derived via a stronger result of Davis-Kahan focusing on spectral projections - the orthogonal projections onto the span of some subset of eigenvectors:

Lemma 4.1.16 (Davis-Kahan inequality for spectral projections). Consider A, B as in theorem 4.1.15. Let I, J be two δ -separated subsets of \mathbb{R} , with I being an interval. Then the spectral projections

$$P = \sum_{i: \lambda_i \in I} u_i u_i^T \text{ and } Q = \sum_{j: \lambda_j \in J} v_j v_j^T \text{ satisfy } \|QP\| \le \frac{\|A - B\|}{\delta}.$$

Proof. WLOG, assume I is finite and closed. Adding the same multiple of Identity to A and B, we can center I as [-r,r], so that $|\lambda_i| \leq r$ for $i \in I$ and $|\mu_j| \geq r + \delta$ for $\mu_j \in J$. The idea is to see how P and Q interact through H := B - A:

$$||H|| \ge ||QHP|| = ||QBP - QAP|| \ge ||QBP|| - ||QAP||.$$

The spectral projection A commutes with B, hence

$$||QBP|| \ge ||BQP|| \ge (r+\delta)||QP||.$$

To see the last inequality, the image of Q is spanned by orthogonal vectors v_j with $|\mu_j| \geq r + \delta$. The matrix B maps each such vector v_j to $\mu_j v_j$, hence scaling it by at least $r + \delta$. Thus B expands the norm of any vector in the image of Q by at least $r + \delta$ so

$$||BQPx||_2 \ge (r+\delta)||QPx||_2$$
 for any x .

Taking the supremum over all unit vectors gives the result with the operator norm.

Also,
$$AP = PAP = \sum_{i:\lambda_i \in I} \lambda_i u_i u_i^T$$
 so

$$||QAP|| = ||QPAP|| \le ||QP|| \cdot ||AP|| \le r||AP||,$$

because $||AP|| = \max_{i:\lambda_i \in I} |\lambda_i| \le r$. Putting the two bounds together we get

$$||H|| = ||B - A|| \ge \delta ||QP||,$$

which completes the proof.

Proof for theorem 4.1.15. Since the LHS is a trig angle, we can assume that $\varepsilon := ||A - B|| \le \delta/2$ or else the inequality holds trivially. By Weyl inequality (lemma 4.1.14), $|\lambda_j - \mu_j| \le \varepsilon$ for each j hence

$$\min_{j:j\neq k} |\lambda_k - \mu_k| \ge \min_{j:j\neq k} |\lambda_k - \lambda_j| - \varepsilon = \delta - \varepsilon \ge \delta/2.$$

Apply lemma 4.1.16 for the $\delta/2$ -separated subsets $I = \{\lambda_k\}$ and $J = \{\mu_j : j \neq k\}$ to get $\|QP\| \leq 2\varepsilon/\delta$. Since P and $I_n - Q$ are the orthogonal projections on the directions of u_k and v_k respectively,

$$||QP|| = \max_{||x||=1} ||QPx||_2 = ||Qu_k||_2 = \sin \angle (u_k, v_k).$$

Combining this with the inequality on ||QP|| above completes the proof.

4.1.7 Isometries

The singular values of a matrix A satisfy (by the min-max theorem)

$$||\sigma_n||x - y||_2 \le ||Ax - Ay||_2 \le \sigma_1 ||x - y||_2.$$

The extreme singular values set the limits on how the linear map A distorts space.

A matrix is an isometry if

$$||Ax||_2 = ||x||_2$$
 for all $x \in \mathbb{R}^n$.

Notice that A need not be a square matrix. T

For $A \in \mathbb{R}^{m \times n}$ with $m \geq n$, the following are equivalent:

- (a) The columns of A are orthonormal, i.e. $A^T A = I_n$,
- (b) A is an isometry,
- (c) All singular values of A are 1.

There is a stronger result where the properties hold approximately instead of exactly (useful when dealing with random matrices):

Lemma 4.1.17 (Approximate isometries). Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$ and let $\varepsilon \ge 0$. The following are equivalent:

- (a) $||A^T A I_n|| \le \varepsilon$.
- (b) $(1 \varepsilon) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \varepsilon) \|x\|_2^2$ for any $x \in \mathbb{R}^n$.
- (c) $1 \varepsilon \le \sigma_n^2 \le \sigma_1^2 \le 1 + \varepsilon$.

Proof. (a) \Leftrightarrow (b) By rescaling, we can assume that $||x||_2 = 1$ in (b). Then we have

$$||A^T A - I_n|| = \max_{||x||_2 = 1} |x^T (A^T A - I_n)x| = \max_{||x||_2 = 1} |||Ax||_2^2 - 1|,$$

The above being bounded by ε is equivalent to (b) for all unit vectors x.

(b) \Leftrightarrow (c) follows from the relationship for singular values distorting space from above.

Remark 4.1.18. Here is a more handy version of (a) \Rightarrow (c) in lemma 4.1.17. For $z \in \mathbb{R}$ and $\delta \geq 0$,

$$|z^2 - 1| < \max(\delta, \delta^2) \implies |z - 1| < \delta.$$

Then substituting $\varepsilon = \max(\delta, \delta^2)$, we get

$$||A^T A - I_n|| \le \max(\delta, \delta^2) \implies 1 - \delta \le \sigma_n \le \sigma_1 \le 1 + \delta.$$

4.2 Nets, Covering, and Packing

The ε -net argument is useful for analysis of random matrices. It is also connected to ideas like covering, packing, entropy, volume, and coding.

Definition 4.2.1. Let (T, d) be a metric space. Consider $K \subset T$ and $\varepsilon > 0$. A subset $\mathcal{N} \subset T$ is called an $\underline{\varepsilon}$ -net of K is every point in K is within distance ε of some point in \mathcal{N} , i.e.

$$\forall x \in K \exists x_0 \in \mathcal{N} : \ d(x, x_0) \le \varepsilon.$$

Equivalently, \mathcal{N} is an ε -net of K if the balls of radius ε centered at points in \mathcal{N} cover K, like in the figure below:

(a) This covering of a polygon K by six ε -balls shows that $\mathcal{N}(K, \varepsilon) \leq 6$.

(b) $\mathcal{P}(K,\varepsilon) \geq 6$ means that there exist six ε -separated points in K; the $\varepsilon/2$ -balls centered at these points are disjoint.

Figure 4.1 Covering and packing

Definition 4.2.2. The smallest cardinality of an ε -net of K is called the <u>covering number</u> of K, and is denoted $\mathcal{N}(K, d, \varepsilon)$.

Remark 4.2.3 (Compactness). An important result in real analysis says that a subset K of a complete metric space (T,d) is precompact (i.e. the closure of K is compact) if and only if

$$N(K, d, \varepsilon) < \infty$$
 for every $\varepsilon > 0$.

We can think about the covering numbers as a quantitative measure of how compact K is.

Definition 4.2.4. A subset \mathcal{N} of a metric space (T,d) is ε -separated if

 $d(x,y) > \varepsilon$ for any distinct points $x, y \in \mathcal{N}$.

The largest possible cardinality of an ε -separated subset of a given $K \subset T$ is called the packing number of K and is denoted $\mathcal{P}(K, d, \varepsilon)$.

Remark 4.2.5 (Packing balls into K). If \mathcal{N} is ε -seperated, the closed $\varepsilon/2$ -balls centered at points in \mathcal{N} are disjoint by the triangle inequality, hence we can always pack into K at least $\mathcal{P}(K,d,\varepsilon)$ disjoint $\varepsilon/2$ -balls.

Lemma 4.2.6 (Nets from seperated sets). Let \mathcal{N} be a maximal ε -seperated subset of K, i.e. adding any new point to \mathcal{N} destroys the seperation property. Then \mathcal{N} is an ε -net of K.

Proof. Let $x \in K$. We want to show that there exists $x_0 \in \mathcal{N}$ such that $d(x, x_0) \leq \varepsilon$. If $x \in \mathcal{N}$, the conclusion is trivial by choosing $x_0 = x$. Suppose $x \notin \mathcal{N}$. The maximality assumption implies that $\mathcal{N} \cup \{x\}$ is not ε -separated, meaning $d(x, x_0) \leq \varepsilon$ for some $\varepsilon \in \mathcal{N}$.

Remark 4.2.7 (Constructing a net). The lemma above (lemma 4.2.6) gives an iterative algorithm to construct an ε -net for a given set K. Pick $x_1 \in K$ arbitrarily, then pick $x_2 \in K$ that is farther than ε from x_1 , then pick x_3 that it is farther than ε from both x_1 and x_2 , and so on. If K is compact, then the process will stop in a finite number of iterations!

Lemma 4.2.8 (Equivalence of covering and packing numbers). For any set $K \subset T$ and $\varepsilon > 0$,

$$\mathcal{P}(K, d, 2\varepsilon) < \mathcal{N}(K, d, \varepsilon) < \mathcal{P}(K, d, \varepsilon).$$

Proof. The upper bound follows from lemma 4.2.6 because the packing number is exactly the number that makes \mathcal{N} a maximal ε -seperated set.

For the lower bound, take any 2ε -seperated subset $\mathcal{P} = \{x_i\}$ in K and any ε -net $\mathcal{N} = \{y_j\}$ of K. By definition, each point x_i is in the ε -ball centered at some point y_j . Since any closed ε ball cannot contain two 2ε -seperated points, each ε -ball centered at y_j can contain at most one x_i . The pigeonhole principle gives $|\mathcal{P}| \leq |\mathcal{N}|$. Since \mathcal{P} and \mathcal{N} are arbitrary, the bound follows.

4.2.1 Covering Numbers and Volume

This sections is about covers with $T = \mathbb{R}^n$ with the Eudlidean metric

$$d(x,y) = ||x - y||_2.$$

Therefore, we can omit the metric when denoting the covering and packing numbers:

$$\mathcal{N}(K,\varepsilon) = \mathcal{N}(K,d,\varepsilon).$$

How do the covering numbers relate to the most classical measure, the volume of K in \mathbb{R}^n ?

Definition 4.2.9 (Minkowski sum). Let $A, B \subseteq \mathbb{R}^n$. The <u>Minkowski sum</u> is defined as

$$A + B := \{A + B : a \in A, b \in B\}.$$

Below is an example of the Minkowski sum of two sets on the plane:

Figure 4.2 Minkowski sum of a square and a circle is a square with rounded corners.

Proposition 4.2.10 (Covering numbers and Volume). Let $K \subset \mathbb{R}^n$ and $\varepsilon > 0$. Then

$$\frac{\operatorname{Vol}(K)}{\operatorname{Vol}(\varepsilon B_2^n)} \leq \mathcal{N}(K,\varepsilon) \leq \mathcal{P}(K,\varepsilon) \leq \frac{\operatorname{Vol}(K+(\varepsilon/2)B_2^n)}{\operatorname{Vol}((\varepsilon/2)B_2^n)},$$

where B_2^n denotes the unit ball in \mathbb{R}^n .

Proof. The middle inequality was already proven in lemma 4.2.8, hence we focus on the left and right bounds.

(**Lower bound**) Let $N := \mathcal{N}(K, \varepsilon)$. Then K can be covered by N balls with radii ε . Comparing the volumes,

$$Vol(K) \leq N \cdot Vol(\varepsilon B_2^n),$$

which gives the lower bound.

(**Upper bound**) Let $N := \mathcal{P}(K, \varepsilon)$. Then we can find N disjoint closed $\varepsilon/2$ -balls with centers $x_i \in K$. While these balls may not fit entirely in K (Figure 4-1), they do fit in a slightly inflated set, namely $K + (\varepsilon/2)B_2^n$ (Basically putting balls at the boundary of K). Comparing the volume gives

$$N \cdot \text{Vol}((\varepsilon/2)B_2^n) < \text{Vol}(K + (\varepsilon/2)B_2^n),$$

which completes the upper bound.

An important consequence of the volumetric bound is that the covering (hence packing) numbers are typically exponential in the dimension n:

Corollary 4.2.11 (Covering numbers of the Euclidean ball). The covering numbers of the unit Euclidean ball B_2^n satisfy the following for any $\varepsilon > 0$:

$$\left(\frac{1}{\varepsilon}\right)^n \le \mathcal{N}(B_2^n, \varepsilon) \le \left(\frac{2}{\varepsilon} + 1\right)^n.$$

Proof. The lower bound immediately follows from proposition 4.2.10, since the volumd in \mathbb{R}^n scale as $\operatorname{Vol}(\varepsilon B_2^n) = \varepsilon^n \operatorname{Vol}(B_2^n)$.

The upper bound follows from proposition 4.2.10 as well:

$$\mathcal{N}(B_2^n,\varepsilon) \leq \frac{\operatorname{Vol}((1+\varepsilon/2)B_2^n)}{\operatorname{Vol}((\varepsilon/2)B_2^n)} = \frac{(1+\varepsilon/2)^n}{(\varepsilon/2)^n} = \left(\frac{2}{\varepsilon} + 1\right)^n.$$

To simplify corollary 4.2.11, we can divide this into two cases for ε : For $\varepsilon \in (0,1]$, we have

$$\left(\frac{1}{\varepsilon}\right)^n \leq \mathcal{N}(B_2^n, \varepsilon) \leq \left(\frac{3}{\varepsilon}\right)^n.$$

In the other case where $\varepsilon > 1$, one ε -ball covers the unit ball hence $\mathcal{N}(B_2^n, \varepsilon) = 1$.

Remark 4.2.12 (Volume of the ball). The proof of corollary 4.2.11 works with the volume of the Euclidean ball but never actually calculates it! We can compute the volume geometrically, probabilistically, and analytically (Exercises 4.27-4.29), and also extend this notion of volume to ℓ^p balls (Exercise 4.30).

Remark 4.2.13 (How to construct a net?). We have an algorithm to construct nets already (remark 4.2.7), but for the Euclidean ball, we can also use a scaled integer lattice (Exercise 4.31), or just use random points (Exercise 4.39).

We can also use covering/packing notions for other objects via volumetric arguments, here is another example:

Definition 4.2.14. The Hamming cube $\{0,1\}^n$ consists of all binary strings of length n. To turn it into a metric space, we define the <u>hamming distance</u> as the number of bits where the strings x and y differ:

$$d_H(x,y) := |\{i: x(i) \neq y(i)\}|, x,y \in \{0,1\}^n.$$

Proposition 4.2.15 (Covering and packing numbers of the Hamming cube). The covering and packing numbers of the Hamming cube $K = \{0,1\}^n$ satisfy the following for any integer $m \in \{0,\ldots,n\}$:

$$\frac{2^n}{\sum_{k=0}^m \binom{n}{k}} \le \mathcal{N}(K, d_H, m) \le \mathcal{P}(K, d_H, m) \le \frac{2^n}{\sum_{k=0}^{\lfloor m/2 \rfloor} \binom{n}{k}}.$$

Proof. Use the volumetric argument from above using cardinality instead of the volume (Exercise 4.32).

4.3 Application: Error Correcting Codes

4.4 Upper Bounds on Subgaussian Random Matrices