# **Externalities and Fairness**

## Mohammad Ghodsi, Hamed Saleh, Masoud Seddighin







## Fair Division of Indivisible Goods

- There is a collection of m indivisible items, denoted by  $\mathcal{M}$ , to be fairly divided between n agents, denoted by  $\mathcal{N}$ .
- Each agent has a different additive utility function:

| 1/ |   | A 1           | •             | т» <del>+</del> |
|----|---|---------------|---------------|-----------------|
| Vi | • | $\mathcal{M}$ | $\rightarrow$ | $\mathbb{K}$ ,  |

|       | $b_1$ | $b_2$ | $b_3$ | $b_4$ | $b_5$ |
|-------|-------|-------|-------|-------|-------|
| $a_1$ | 5     | 5     | 2     | 8     | 4     |
| $a_2$ | 9     | 2     | 5     | 2     | 1     |
| $a_3$ | 2     | 5     | 3     | 5     | 6     |
| $a_4$ | 8     | 2     | 4     | 9     | 8     |
| $a_5$ | 8     | 0     | 2     | 7     | 4     |

• But, how do we enforce a notion of fairness to this division?

#### Definition

- Maximin Share of agent i (MMS<sub>i</sub>): The value of the minimum part in a partition P which maximizes  $\min_{i=1}^{n} V_i(P_i)$ .
- $P = \{P_1, P_2, \dots, P_n\}$  is a partition of items.
- There are instances with no MMS<sub>i</sub> guarantee.
- But there are algorithms to find a 3/4MMS<sub>i</sub> allocation.

## Externalities

- We can consider externalities in fair division as the effect of allocating an item to agent *i* on other agents.
- We can capture externalities by a directed weighted graph.
- $w_{j,i}$ : the influence of allocating an item to agent j on agent i.
- For some  $\alpha$ ,  $\sum_{1 < j < n} w_{j,i} \le \frac{1}{\alpha}$ .



#### Motivation

- How to fairly divide *m* employees with different skill sets into *n* teams in a company?
- Each employee has a different value for each team.
- The quality of each team affects other teams in different ways.
- For example, the Human Resources team has an almost equal effect on all teams. Or the different teams of a single product have huge impact on each other.
- We can find a provably fair division of the employees.



## **EMMS** Fairness Criteria

- When we include externalities, MMS is no longer useful.
- Consider the case where m < n. In this case  $MMS_i = 0$ , but if  $w_{i,j} = 1/n$ , we always have a non-zero guarantee.
- *I Cut, You Choose*, to divide fairly between two agents:
- Ask one to split the items into two parts.
- 2 Let the other choose.



- Each agent maximizes the utility in the worst allocation.
- We can extend the same idea to capture externalities.

### Definition

• The worst allocation of a partition **P**:

$$W_i(P) = \min_{A \in \Omega_P} U_i(A)$$

- $\mathcal{A}: P \to [n]$  is an allocation of P.
- $U_i(A) = \sum_{j=1}^n V_i(P_j) \cdot w_{A(j),i}$  is the utility of agent *i*.
- $\circ$   $\Omega_P$  is the set of all possible allocations.
- Using the worst allocation function we just defined, we can extend Maximin Share to capture externalities:

#### Definition

- Extended Maximin Share of agent i (EMMS<sub>i</sub>): The utility of the worst allocation of a partition P which maximizes  $W_i(P)$ .
- $w_1 \ge w_2 \ge \ldots \ge w_n$ , sorted weights of incoming edges to *i*.
- $p_1 \le p_2 \le \ldots \le p_n$ , sorted valuee of parts in a partition P.
- We want to maximize the utility of the worst allocation:

$$\mathsf{EMMS}_i = \max_P \mathcal{W}_i(P) = \max_P \sum_{j=1}^n w_j \cdot p_j$$

- Generalizes well-known partitions:
- Maximin partition:  $\mathbf{w} = [1, 0, \dots, 0]$
- Minimax partition:  $\mathbf{w} = \left[\frac{1}{n-1}, \frac{1}{n-1}, \dots, \frac{1}{n-1}, 0\right]$

## Related Work

- The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes (BQGT'10)
- Fairness and Externalities (TE'16)
- Externalities in Cake Cutting (IJCAl'13)
- Truthful Cake Cutting Mechanisms with Externalities: Do not make them care for others too much! (IJCAI'15)
- \* Spliddit: http://www.spliddit.org/

## Computing **EMMS**

- Maximin is **NP**-hard  $\Rightarrow$  Computing **EMMS**<sub>i</sub> is **NP**-hard.
- Maximin and minimax do not always give the optimal partition.





### Algorithm: LPT

- Start with an empty partition.
- Repeatedly, add the maximum remaining item to the current minimum part.
- **LPT**<sub>i</sub> is the partition returned.
- The main idea is to divide items into two groups:





• If there is no huge item,  $p_n \leq 2p_1$ .

#### Theorem

• Partition LPT<sub>i</sub> gives a 1/2-approximation of EMMS<sub>i</sub>.

## Allocation

Our main result is the following theorem:

#### Theorem

- Every instance of the fair allocation problem with externalities admits an  $\alpha/2$ -EMMS allocation.
- We use **Bundle Claiming** algorithm to prove this theorem.

#### Algorithm: BC

- For every agent  $a_i$ , set  $\ell_i = 1$ .
- $\Gamma$ : a subset of  $\mathcal{M}$  with the minimum size, such that for at least one agent  $a_j$ ,  $V_j(\Gamma) \geq 1/2 \cdot v_{j,\ell_i}$ .
- Allocate  $\Gamma$  to  $a_j$ .
- For every remaining agent  $a_i$ , update  $\ell_i$  according to the externalities of the satisfied agents.
- Repeat the process for the remaining agents.
- The challenging part of BC is the updating process.
- To update each  $\ell_i$ , we define a mapping  $M_i$  which roughly maps the bundles allocated to the satisfied agents to the optimal partition  $O_i$ .