A set S of sets is said to be intersecting if for any two members A and B of S, we have $A \cap B \neq \emptyset$. Prove that for any nonempty set U and for any intersecting collection S of subsets of U and for any $X \subseteq U$ at least one of the two collections $S \cup \{X\}$ and $S \cup \{U \setminus X\}$ is intersecting.

Proof: We must show that $S \cup \{X\}$ or $S \cup \{U \setminus X\}$ is intersecting. Assume X is an arbitrary subset of U. Assume $S \cup \{X\}$ is not intersecting. We must show $S \cup \{U \setminus X\}$ is intersecting. By definition of being not intersecting, there exist $A, B \in S \cup \{X\}$ such that $A \cap B = \emptyset$. Since S was defined to be previously intersecting, then without loss of generality A = X. Since $B \subseteq U$, and A, B were disjoint, then $B \subseteq U \setminus X$, and therefore $B \cap (U \setminus X) \neq \emptyset$. Since $B \subseteq (U \setminus X)$ and S is intersecting, then all the other sets of S also have non-empty intersections. Therefore $S \cup \{U \setminus X\}$ is intersecting.