Jakub Nadolny 228079 16 marca 2018

Algorytm genetyczny

Implementacja i analiza rozszerzonego problemu komiwojażera

1

Algorytm genetyczny

Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu osobników najlepiej dostosowanych w danym środowisku, podczas gdy osobniki gorzej przystosowane są eliminowane. Z kolei te osobniki, które przetrwają - przekazują informację genetyczną swoim potomkom. Krzyżowanie informacji genetycznej otrzymanej od "rodziców" prowadzi do sytuacji, w której kolejne pokolenia są przeciętnie coraz lepiej dostosowane do warunków środowiska; mamy więc tu do czynienia ze swoistym procesem optymalizacji. W pewnym uproszczeniu możemy przyjąć, że algorytmy genetyczne służą do optymalizacji pewnych funkcji (zwanych funkcjami przystosowania). Zauważmy jednak, że klasa ich zastosowań jest dużo szersza: algorytmy genetyczne możemy stosować przy dowolnych problemach, dla których uda się skonstruować funkcję oceniającą rozwiązania (funkcja celu). W tym ujęciu wiele problemów można przeformułować w ten sposób, aby stały się zadaniami optymalizacyjnymi.

Źródło: http://kolos.math.uni.lodz.pl/~archive/Sztuczna inteligencja Klasyczny algorytm genetyczny cz1.pdf

Problem komiwojażera

Nazwa pochodzi od typowej ilustracji problemu, przedstawiającej go z punktu widzenia wędrownego sprzedawcy (komiwojażera): dane jest n miast, które komiwojażer ma odwiedzić, oraz odległość / cena podróży / czas podróży pomiędzy każdą parą miast. Celem jest znalezienie najkrótszej / najtańszej / najszybszej drogi łączącej wszystkie miasta, zaczynającej się i kończącej się w określonym punkcie. Symetryczny problem komiwojażera polega na tym, że dla dowolnych miast A i B odległość z A do B jest taka sama jak z B do A.

Zademonstrowania działania algorytmu

Poniższe wykresy pokazują przebieg algorytmów dla pięciu macierzy dystansów, oraz przepływów. W celu selekcji używam modelu turowego z następującymi parametrami :

Parametry

Populacja	Pokolenia	P. mutacji	Wielkość turnieju	Ilość przebiegów
100	100	20%	10	10

Wnioski

Zwiększenie wymiarów matrycy dystansów, oraz przepływu zwiększa czas wykonania algorytmu. Przebiegi algorytmów są podobne do siebie. Na początku najlepszy wynik jest bardzo oddalony od optymalnego, a w następnych pokoleniach zbliża się do niego. Są to wyniki uśrednione z 10 przebiegów każdy. Pojedyncze przebiegi dotarły do wyniku optymalnego, jednak średni wynik - jak widać wyżej - nie znajduje optimum.

Prawdopodobieństwo mutacji

W tym ćwiczeniu badam wpływ prawdopodobieństwa mutacji na uzyskane wyniki.

Parametry

Populacja	Pokolenia	P. mutacji	Wielkość turnieju	Ilość przebiegów
200	100	0, 10, 30, 50, 80, 100%	10	10

Wykresy

Wnioski

Analiza wyników ukazuje, że skrajne wartości prawdopodobieństwa mutacji są nieoptymalne. Zbyt małe prawdopodobieństwo sprawia, że algorytm skupia się na ekstremum lokalnym i nie znajduje nowych lepszych rozwiązań. Zbyt duże prawdopodobieństwo sprawia, że najlepsze rozwiązania są mutowane i znikają z populacji. Najlepszy wynik osiągnęła populacja z 10% szansą na mutację genu.

Prawdopodobieństwo krzyżowania

W tym ćwiczeniu badam wpływ prawdopodobieństwa krzyżowania na uzyskane wyniki.

Parametry

Populac ja	Pokolenia	P. mutacji	Wielkość turnieju	Ilość przebiegów	P. Krzyżowania
200	100	30%	10	10	20,40,60,80,100%

Wykresy

Wnioski

Najlepsze wyniki uzyskały przebiegi z 20% i 80% na krzyżowanie. Widać zależność ilości "przełomowych" osobników przy większych prawdopodobieństwach krzyżowania. Zastanawiającym faktem jest duża odległość średniej populacji z 20 i 100% prawdopodobieństwem, od innych średnich. Moim zdaniem wynika to z tego, że w obu populacjach na początku zostały wylosowane bardzo dobre osobniki na początku algorytmu.

Wielkość populacji

W tym ćwiczeniu badam wpływ ilości osobników w populacji na uzyskane wyniki.

Parametry

Populacja	Pokolenia	P. mutacji	Wielkość turnieju	Ilość przebiegów
200	100	30%	10	10

Wyniki

Wnioski

Wielkość populacji wpłynęła znacząco na czas wykonywania się algorytmu. Im większa populacja tym większa też szansa na dobrego osobnika w puli początkowej, która wpływa znacznie na wyniki końcowe. Mniejsza populacja wymaga dużej mutacji, aby znajdować coraz lepsze rozwiązania (nie zatrzymać się na jednym).

Liczba pokoleń

W tym ćwiczeniu badam wpływ ilości osobników w populacji na uzyskane wyniki.

Parametry

Populacja	Pokolenia	P. mutacji	Wielkość turnieju	Ilość przebiegów
200	100	30%	10	10

Wnioski

Im większa liczba populacji, tym większy czas trzeba poświęcić na wykonywanie się algorytmu. Jak widać na powyższym wykresie, dłuższa generacja oznacza także większe szanse na znalezienie kolejnego lepszego rozwiązania.

Różne sposoby selekcji

W tym ćwiczeniu badam wpływ sposobu selekcji osobników w populacji na uzyskane wyniki.

Parametry

Populacja	Pokolenia	P. mutacji	Wielkość turnieju	Ilość przebiegów
200	100	30%	10	10

Wyniki

Wnioski

Wybrałem do tego porównania dwa sposoby selekcji - turniejowy, oraz ruletkowy. Sposób turniejowy dawał lepsze wyniki. Jest to prawdopodobnie spowodowane faktem, iż wynik fitness function każdego osobnika jest bardzo zbliżony. W skrócie - różnice między kosztami najlepszego i najgorszego osobnika jest bardzo niewielka.

Porównanie z algorytmem nieewolucyjnym

W tym ćwiczeniu porównuję algorytm genetyczny z selekcją turową, oraz algorytm losowy przenoszący najlepszy wynik do następnego losowania

Parametry

Populacja	Pokolenia	P. mutacji	Wielkość turnieju	Ilość przebiegów
100	100	20%	10	10

Wyniki

Wnioski

Algorytm losowy, który wykonałem losuje populacje i z nich zapamiętuje najlepsze wyniki. Porównuję go z algorytmem turowym. Algorytm turowy ma więcej skoków - spowodowanych mutacją, oraz krzyżowaniem w którym mogą powstać nowe mocne chromosomy. Największą różnicę widać na wykresie średnich wartości. Pomimo zbliżonych wartości najgorszych osobników, wartość średnia znacznie odbiega w stronę mniejszego kosztu na wykresie algorytmu turniejowego.