Cryptography

the language of cryptography

m plaintext message $K_A(m)$ ciphertext, encrypted with key $K_A(m) = K_B(K_A(m))$

simple encryption scheme

substitution cipher: substituting one thing for another

monoalphabetic cipher: substitute one letter for another

e.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

encryption key: mapping from set of 26 letters to set of 26 letters

a more sophisticated encryption approach

- ❖ n substitution ciphers, M₁,M₂,...,M_n
- cycling pattern:
 - e.g., $n=4: M_1, M_3, M_4, M_3, M_2; M_1, M_3, M_4, M_3, M_2; ...$
- for each new plaintext symbol, use subsequent substitution pattern in cyclic pattern
 - dog: d from M_1 , o from M_3 , g from M_4

Encryption key: n substitution ciphers, and cyclic pattern

key need not be just n-bit pattern

symmetric key crypto: des

des: data encryption standard

- US encryption standard [NIST 1993]
- 56-bit symmetric key, 64-bit plaintext input
- block cipher with cipher block chaining
- how secure is des?
 - des challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day
 - no known good analytic attack
- * making **des** more secure:
 - 3des: encrypt 3 times with 3 different keys

aes: advanced encryption standard

- symmetric-key NIST standard, replaced des (nov 2001)
- processes data in 128 bit blocks
- 128, 192, or 256 bit keys
- brute force decryption (try each key) taking I sec on des, takes 149 trillion years for aes

public key crypto

public key encryption algorithms

requirements:

- 1 need $K_B^+(\cdot)$ and $K_B^-(\cdot)$ such that $K_B^-(K_B^+(m)) = m$
- given public key K ⁺_B it should be impossible to compute private key K ⁻_B

RSA: Rivest, Shamir, Adelson algorithm

prerequisite: modular arithmetic

- x mod n = remainder of x when divide by n
- facts:

```
(a+b) mod n = [(a mod n) + (b mod n)] mod n
(a-b) mod n = [(a mod n) - (b mod n)] mod n
(a*b) mod n = [(a mod n) * (b mod n)] mod n
```

- thus
 - $a^d \mod n = (a \mod n)^d \mod n$
- * example: x=14, n=10, d=2: (x mod n)^d mod n = 4^2 mod 10 = 6 $x^d = 14^2 = 196$ x^d mod 10 = 6

RSA: important property

follows directly from modular arithmetic:

 $(m^e \mod n)^d \mod n = m^{ed} \mod n$

= m^{de} mod n

 $= (m^d \mod n)^e \mod n$

which leads to:

$$K_B(K_B^+(m)) = m = K_B^+(K_B^-(m))$$

use public key first, followed by private key

use private key first, followed by public key

digital signatures

simple digital signature for message m:

Bob signs m by encrypting with his private key K_B, creating "signed" message, K_B(m)

public-key certification

- certification authority (CA): binds public key to particular entity, E.
- E (person, router) registers its public key with CA.
 - E provides "proof of identity" to CA.
 - CA creates certificate binding E to its public key.
 - certificate containing E's public key digitally signed by CA CA says "this is E's public key"

pk crypto in practice:

- you get a ssl certificate for your server
 - this includes, a pair of public and private keys
- once the certificate is installed on your server
- clients' browsers can verify it, via the trusted CA's they know
- before sending you a secret key and exchanging messages with your server

Figure 1. Overview of the SSL or TLS handshake

http://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660.htm cryptograph/13

Forum Participation Vote

Current weight: 5%

Vote

- ❖ ~ 10% students == 5

* Keep participation AS IS

* Transfer 5% to Quiz #10* (Won unanimously)