AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

1	1. (Currently amended) A computer-implemented method of text equivalence
2	ing from a query string of characters comprising:
3	modifying the query string of characters using a predetermined set of heuris-
4	tics;
5	performing a character-by-character comparison of the modified query string
6	with a <u>t least one</u> known string of characters <u>in a corpus</u> in order to locate a
7	match; and
8	responsive to not finding an exact match, performing the steps of:
9	forming a plurality of sub-strings of characters from the query string of
10 .	characters, the sub-strings having varying lengths; and
11	using an information retrieval technique on the sub-strings formed from
12	the query string of characters to identify determine a known string of
13	characters equivalent to the <u>query</u> string of characters .
	2 (Commently amonded). The method of claim 1 subswein the information re-
1	2. (Currently amended) The method of claim 1, wherein the information re-
2	trieval technique further comprises:
3	weighting the sub-strings;
4	scoring the known strings of characters; and
5	retrieving information associated with the a known string of characters with
6	having the highest score.

- 3. (Currently amended) The method of claim 2, further comprising, respon-
- sive to the highest score being greater than a first threshold, automatically accepting
- the known string of characters having the highest score as an exact match.
- 4. (Currently amended) The method of claim 2, further comprising, respon-
- sive to the highest score being less than a second threshold and greater than a first
- threshold, presenting the known string of characters having the highest score to a
- user for manual confirmation.
- 5. (Currently amended) The method of claim 2, further comprising, respon-
- sive to the highest score being less than a second threshold and greater than a third
- threshold, presenting the known string of characters having the highest score to a
- user to select the equivalent string of characters.
- 6. (Currently amended) The method of claim 1, wherein the sub-strings of
- 2 characters are 3-grams forming a plurality of sub-strings of characters comprises suc-
- 3 cessively extending sub-strings based on frequency of occurrence in the modified
- 4 query string.
- 7. (Currently amended) The method of claim 1, wherein the <u>query</u> string of
- 2 characters is selected from the group consisting of a song title, a song artist, an album
- name, a book title, an author's name, a book publisher, a genetic sequence, and a
- 4 computer program.

- 8. (Currently amended) The method of claim 1, wherein the predetermined set of heuristics comprises removing whitespace from the <u>query</u> string of characters.
- 9. (Currently amended) The method of claim 1, wherein the predetermined set of heuristics comprises removing a portion of the <u>query</u> string of characters.
- 10. (Currently amended) The method of claim 1, wherein the predetermined set of heuristics comprises replacing a symbol in the <u>query</u> string of characters with an alternate representation for the symbol.
- 1 11. (Currently amended) The method of claim 1 further comprising storing a database entry indicating an indication that the query string of characters is the an equivalent of the identified known string of characters.
- 1 12. (Currently amended) A computer implemented system for text equivalencing from a <u>query</u> string of characters comprising:
- a heuristics module for modifying the <u>query</u> string of characters using a predetermined set of heuristics;
- a comparator module, coupled to the heuristics module, for performing a

 character-by-character comparison of the modified <u>query</u> string with at

 <u>least one</u> known string of characters <u>in a corpus</u> in order to find a match;

 a sub-string formation module, coupled to the comparator module, <u>for</u>, re-

sponsive to not finding an exact match, for forming a plurality of sub-

9

10	strings of characters from the <u>query</u> string of characters, the sub-strings
11	having varying lengths; and
12	an information retrieval module, coupled to the sub-string formation module,
13	for performing an information retrieval technique on the sub-strings
14	formed from the query string of characters to identify determine a known
15	string of characters equivalent to the query string of characters.

- 1 13. (Currently amended) The system of claim 12, wherein the information retrieval module further comprises:
- 3 a weight module for weighting the sub-strings;
- a score module for scoring the known strings of characters; and
- a retrieval module, coupled to the weight and score modules, for retrieving information associated with the known string of characters with having the
- 7 highest score.
- 1 14. (Original) The system of claim 13, further comprising an accept module, 2 coupled to the retrieval module, for accepting the information retrieved as an exact 3 match for the highest score greater than a first threshold.
- 15. (Original) The system of claim 13, further comprising an accept module,
 2 coupled to the retrieval module, for presenting the information retrieved to a user for
 3 manual confirmation for the highest score less than a first threshold and greater than
 4 a second threshold.

- 16. (Original) The system of claim 13, further comprising an accept module,
- 2 coupled to the retrieval module, for presenting the information retrieved to the user
- as a set of options for a user to select for the highest score less than a second thresh-
- 4 old and greater than a third threshold.
- 17. (Currently amended) The system of claim 12, wherein the sub-strings of
- 2 characters are 3-grams the sub-string formation module forms a plurality of sub-
- 3 strings of characters by successively extending sub-strings based on frequency of oc-
- 4 currence in the modified query string.
- 18. (Currently amended) The system of claim 12, wherein the <u>query</u> string of
- 2 characters is selected from the group consisting of a song title, a song artist, an album
- name, a book title, and author's name, a book publisher, a genetic sequence, and a
- 4 computer program.
- 19. (Currently amended) The system of claim 12, wherein the predetermined
- 2 set of heuristics comprises removing whitespace from the <u>query</u> string of characters.
- 20. (Currently amended) The system of claim 12, wherein the heuristics
- 2 module comprises a removal module for removing a portion of the query string of
- 3 characters.

1	21. (Currently amended) The system of claim 12, wherein the heuristics
2	module comprises a replacement module for replacing a symbol in the query string
3	of characters with an alternate representation for the symbol.
1	22. (Currently amended) The system of claim 12 further comprising a data-
2	base update module for storing a database entry indicating an indication that the
3	query string of characters is the an equivalent of the identified known string of char-
4	acters.
1	23. (Currently amended) A computer-readable medium comprising com-
2	puter-readable code for performing text equivalencing from a query string of charac
3	ters comprising:
4	computer-readable code adapted to modify the query string of characters us-
5	ing a predetermined set of heuristics;
6	computer-readable code adapted to perform a character-by-character com-
7	parison of the modified query string with at least one known string of
8	characters in a corpus in order to locate a match; and
9	computer-readable code adapted to, responsive to not finding an exact match
10	adapted to:
11	form a plurality sub-strings of characters from the query string of charac-
12	ters, the sub-strings having varying lengths; and to
13	computer-readable code adapted to use an information retrieval technique

on the sub-strings formed from the query string of characters to iden-

14

15	tify determine a known string of characters equivalent to the qu	uery
16	string of characters .	

- 24. (Currently amended) The computer-readable medium of claim 23, wherein the information retrieval technique further comprises:
- 3 computer-readable code adapted to weight the sub-strings;
- computer-readable code adapted to score the known strings of characters; and computer-readable code adapted to retrieve information associated with the a known string of characters with having the highest score.
- 25. (Currently amended) The computer-readable medium of claim 24, further comprising computer-readable code, responsive to the highest score being greater than a first threshold, adapted to automatically accept the known string of characters having the highest score as an exact match.
- 26. (Currently amended) The computer-readable medium of claim 24, further comprising computer-readable core, responsive the highest score being less than a second threshold and greater than a first threshold, adapted to present the known string of characters having the highest score to a user for manual confirmation.
- 27. (Currently amended) The computer-readable medium of claim 24, further comprising computer-readable code, responsive to the highest score being less than a second threshold and greater than a third threshold, adapted to present the known

- string of characters having the highest score to a user to select the equivalent string of
- 5 characters.
- 28. (Currently amended) The computer-readable medium of claim 23,
- wherein the sub-strings of characters are 3-grams computer-readable code adapted to
- 3 form a plurality of sub-strings of characters comprises computer-readable code
- 4 adapted to successively extend sub-strings based on frequency of occurrence in the
- 5 modified query string.
- 29. (Currently amended) The computer-readable medium of claim 23,
- wherein the query string of characters selected from a group consisting of a song ti-
- tle, a song artist, an album name, a book title, an author's name, a book publisher, a
- genetic sequence, and a computer program.
- 30. (Currently amended) The computer-readable medium of claim 23,
- wherein the predetermined set of heuristics comprises removing whitespace from the
- 3 query string of characters.
- 31. (Currently amended) The computer-readable medium of claim 23,
- wherein the predetermined set of heuristics comprises removing a portion of the
- 3 <u>query</u> string of characters.
- 32. (Currently amended) The method of claim 23, wherein the predetermined
- set of heuristics comprises replacing a symbol in the <u>query</u> string of characters with
- 3 an alternate representation for the symbol.

- 33. (Currently amended) The computer-readable medium of claim 23 further
- 2 comprising computer-readable code adapted to store a database entry indicating that
- 3 the query string updating the known string of characters to indicate the string of
- 4 characters is the an equivalent of the identified known string of characters.
- 34. (Currently amended) A computer-implemented system for performing
- 2 text equivalencing from a <u>query</u> string of characters comprising:
- a modifying means for modifying the query string of characters using a prede-
- 4 termined set of heuristics;
- a comparator means for performing a character-by-character comparison of
- the modified <u>query</u> string with a<u>t least one</u> known string of characters <u>in a</u>
- 7 corpus in order to locate a match;
- a formation means for, responsive to not finding an exact match, a formation
- 9 means for forming a plurality of sub-strings of characters from the query
- string of characters, the sub-strings having varying lengths; and
- an information retrieval means for determining identifying a known string of
- characters equivalent to the <u>query</u> string of characters.
- 35. (Currently amended) The system of claim 34, wherein the information re-
- 2 trieval means further comprises:
- a weight means for weighting the sub-strings;
- a score means for scoring the known strings of characters; and

- a retrieval means for retrieving information associated with the known string
- 6 of characters with having the highest score.