

(19) BUNDESREPUBLIK **DEUTSCHLAND**

Patentschrift ₁₀ DE 40 25 487 C 2

(51) Int. Cl.⁵: B 30 B 11/08

A 61 J 3/10

Aktenzeichen: P 40 25 487.9-14 8. 8. 90

Anmeldetag: 13. 2.92 Offenlegungstag:

Veröffentlichungstag der Patenterteilung:

3. 6.93

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Korsch Maschinenfabrik, 1000 Berlin, DE

(74) Vertreter:

Lüke, D., Dipl.-Ing., Pat.-Anw., 1000 Berlin

(72) Erfinder:

Schmett, Michael, Dipl.-Ing., 1000 Berlin, DE

56 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> DE-AS 20 63 083 DE-GM 75 35 875 26 39 090 DE

A Füll- und Dosiergerät für die Matrizen einer Rundlauf-Tablettiermaschine

Beschreibung

Die Erfindung bezieht sich auf ein Füll- und Dosiergerät für die Matrizen einer Rundlauf-Tablettiermaschine gemäß dem Oberbegriff des Anspruches 1.

Ein Füll- und Dosiergerät der gattungsgemäßen Art ist aus dem DE-GM 75 35 875 bekannt. Das Füll- und Dosiergerät umfaßt einen Endlosriemen, der sich zwischen einer unteren Platte und einem oberen Schutzdeckel bewegt. Die innenseitig am Riemen angeordneten nockenartigen Vorsprünge greifen in entsprechende Aussparungen von Riemenscheiben ein. Durch die an der Außenseite des Riemens ausgebildeten flügelartigen Schaufeln wird das durch eine Einlaßöffnung in die von dem Deckel und der Platte gebildete Kammer eingebrachte Pulver in Richtung auf eine erste Auslaßöffnung bewegt. Die erste Auslaßöffnung befindet sich oberhalb der zu beschickenden Matrizen. Der Pulverüberschuß an den Matrizen wird an den senkrecht stehenden Rändern zweier Fallöffnungen abgestreift und durch die an 20 dem Riemen ausgebildeten Schaufeln abtransportiert. Die Riemenschaufeln können die Abstreiffunktion nicht erfüllen, da zwischen ihnen und den Matrizen die untere Platte angeordnet ist.

chend der DE 26 39 090 B2 ist ein Getriebegehäuse auf einer Bodenplatte angeordnet, in welcher ein Füllrad mit radial ausgerichteten Flügeln im Uhrzeigersinn rotiert. Die Flügel überstreichen in der Arbeitsstellung des Füllgerätes die einzelnen Matrizen und füllen dabei Ta- 30 blettenpulver in die Matrizen. Hinter dem Füllrad ist ein Dosierrad angeordnet, das abgewinkelte Flügel aufweist, die gegen den Uhrzeigersinn rotieren. Mittels des Dosierrades wird überschüssiges Pulver über den einzelnen Matrizen des Matrizentisches abgestreift und in 35 den Arbeitsbereich des Füllrades zurückgeführt.

Die bekannten Füll- und Dosiergeräte weisen keinen Füllbereichs- bzw. Abstreichbereichsraum auf, in dem sich abgestreiftes überschüssiges Pulver sammeln und aus dem Pulver in den Füllvorgang zurückgeführt wer- 40 Fig. 1, den kann. Die in den bekannten Füll- und Dosiergeräten zum Pulvertransport ausgebildeten Flügel haben nicht die Aufgabe, das überschüssige Pulver von den Matrizen verlustfrei abzustreifen und in den Füllvorgang zurückzuführen. Es kann daher bei dem bekannten Füllge- 45 rät dazu kommen, daß Pulvermaterial, z. B. toxisches Pulvermaterial aus dem Füllgerät austritt und das Bedienungspersonal gefährdet.

Der Erfindung liegt von daher die Aufgabe zugrunde, ein Füll- und Dosiergerät der gattungsgemäßen Art der- 50 art weiterzubilden, daß zum gleichmäßigen Befüllen der Matrizen regelmäßig eine ausreichende Pulvermenge zur Verfügung steht, mit einem nahezu verlustlosen Abziehen und unmittelbaren Zurückführen des überschüste Füllung des Innenraumes des Füllgehäuses.

Die Lösung dieser Aufgabe ergibt sich aus den Merkmalen des Patentanspruches 1. Eine Vorrichtung zum geregelten Zuführen des Pulvers in das Füllgehäuse an sich ist dabei bekannt.

Durch die die Füllbereichskurve bildende Ausbauchung der Innenwand des in bekannter Weise mit den Stirnflächen dicht auf der Oberfläche des Matrizentisches gleitend aufliegenden, nach unten offenen Gehäuserahmens wird in Verbindung mit der rückwärtigen Ablenkschräge einer jeden Dosierschaufel erreicht, daß zum Befüllen der Matrizen des Matrizentisches regelmäßig eine ausreichende Menge an Pulvermaterial zur

Verfügung steht, das sich in der Füllbereichskurve anstaut, so daß ein guter Füllungsgrad der Matrizen erreicht wird. Der Pulverstau in der Füllbereichskurve entsteht infolge der Geschwindigkeitsdifferenz zwi-5 schen der Bewegung des Matrizentisches und der Bewegung des Zahnriemens mit den Nocken. Das angestaute Pulver wird durch Auflaufen über die rückwärtige Ablenkschräge in Richtung der Matrizen geschoben. Ebenso wird über die flächigen Vorsprünge (Schikanen) Pulvermaterial aus der Gegenrichtung zur Matrizenmitte hingeleitet. In der Füllbereichskurve erfolgt ein Füllen der im Teilkreis des Matrizentisches befindlichen Matrizen mit Pulvermaterial bei abgesenkten Unterstempeln. Die äußeren Bereiche, d. h. die Spitzen der Nocken, beschreiben eine Bahn, die den die Matrizen aufweisenden Kreis des Matrizentisches tangiert. Das überschüssige Pulvermaterial wird mittels der in Drehrichtung der Nocken vorn liegenden Dosierschaufeln weitergefördert und passiert die nachfolgenden flächigen Vorsprünge (Schikanen) und die dazwischen liegende Raumerweiterung und gelangt in die in Drehrichtung hinter der Füllbereichskurve gelegene Abstreichbereichskurve. Im Bereich der Abstreichbereichskurve sind die Unterstempel bereits um ein solches Maß wieder angehoben, Bei einem weiteren vorbekannten Füllgerät entspre- 25 daß überschüssiges Pulvermaterial aus den Matrizen anfällt. Dieses wird im Schnittbereich zwischen der Abstreichbereichskurve und dem Teilkreis abgestreift und mittels der Dosierschaufeln der Nocken in Drehrichtung der Nocken weitergefördert.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den weiteren Unteransprüchen.

Die Erfindung ist nachfolgend anhand eines in den Zeichnungen näher dargestellten Ausführungsbeispieles eines Füll- und Dosiergerätes für die Matrizen einer Rundlauf-Tablettiermaschine näher erläutert. Es zeigen:

Fig. 1 eine Draufsicht auf das den Matrizentisch einer Rundlauf-Tablettiermaschine teilweise überdeckende Füll- und Dosiergerät,

Fig. 2 einen Vertikalschnitt gemäß der Linie A-A in

Fig. 3 einen Längsschnitt gemäß der Linie B-B in Fig. 1,

Fig. 4 eine Draufsicht auf den Gehäuserahmen aus Kunststoff bei abgenommener Zwischenplatte und abgenommenem Gehäusedeckel,

Fig. 5 einen Detailquerschnitt gemäß der Linie D-D in Fig. 4 und

Fig. 6 einen weiteren Detailquerschnitt gemäß der Linie E-E in Fig. 1.

Das Füll- und Dosiergerät 1 für die auf dem Teilkreis 2 rotierenden Matrizen eines Matrizentisches 3 einer Rundlauf-Tablettiermaschine überdeckt den Matrizentisch 3 partiell über eine Umfangswinkel von etwa 100°. Das Füll- und Dosiergerät 1 dient dazu die Matrizen des sigen Pulvers im Füllgehäuse. Dazu gehört eine geregel- 55 Matrizentisches 3 mit Pulvermaterial zu füllen und das nach dem Anheben der Unterstempel überschüssige Pulvermaterial wieder abzuziehen, wobei eine verlustfreie Zuführung und Abführung des Pulvermaterials erreicht werden soll.

> Das Füll- und Dosiergerät 1 umfaßt zunächst einen Gehäuserahmen 4 aus Kunststoff, insbesondere Polyamid, der dicht auf dem Matrizentisch 3 aufliegt, so daß zwischen dem Gehäuserahmen 4 und dem Matrizentisch 3 kein Pulvermaterial austreten kann. Die Form des Gehäuserahmens 4 und dessen Innenraum 5 ergeben sich insbesondere aus Fig. 4. Der Gehäuserahmen 4 und dessen Innenraum 5 sind durch eine Zwischenplatte 6 aus Aluminium abgedeckt. Ein Gehäusedeckel 7 aus

Aluminium ist auf die Zwischenplatte 6 aufgesetzt und mittels Gewindeschrauben 8 mit dem Gehäuserahmen 4 derart verschraubt, daß die Zwischenplatte 6 aus Aluminium fest eingespannt ist. Innerhalb des Gehäusedeckels 7 sind zwei als Zahnriemenscheibe 9, 10 ausgebildete Umlaufräder gelagert, welche im Innenraum 5 des Gehäuserahmens 4 angeordnet sind. Die in Fig. 3 rechts dargestellte Zahnriemenscheibe 9 ist mit einer Antriebsachse 11 festverbunden, die über in dem Gehäusedeckel 7 gelagerte Wälzlager 12 drehgelagert und in nicht nä- 10 her dargestellter Weise drehangetrieben ist. Die in Fig. 3 links dargestellte Zahnriemenscheibe 10 ist auf einer im Gehäusedeckel 7 fest eingesetzten Achse 13 über Wälzlager 14 drehbar gelagert. Beide Zahnriemenscheiben 9, 10 sind in der Querschnittsebene der aus 15 Aluminium bestehenden Zwischenplatte 6 mit Abdeckscheiben 15 aus Kunststoff, insbesondere Polyamid, versehen, die über Gewindeschrauben 16 an den Zahnriemenscheiben 9, 10 festgelegt sind. Zwischen den beiden Zahnriemenscheiben 9, 10 ist im Innenraum 5 des Ge- 20 führtrichter 34 unmittelbar oberhalb der Zuführöffnung häuserahmens 4 eine Zwischenschiene 17 aus Kunststoff, insbesondere Polyamid, gelagert, welche gemäß Fig. 4 den zwischen den Zahnriemenscheiben 9, 10 befindlichen Zwischenraum dicht einschließt. Die Form der Zwischenschiene 17 ergibt sich insbesondere aus 25 eine in Fig. 1 in der Draufsicht dargestellte schlitzförmi-Fig. 4. Um beide Zahnriemenscheiben 9, 10 ist innerhalb des Innenraumes 5 des Gehäuserahmens 4 ein als Zahnriemen 18 ausgebildeter Endlosriemen herumgelegt, der auf seiner Außenseite mit einer Vielzahl von Nocken 19 angetrieben durch die Antriebsachse 11 der Zahnriemenscheibe 9 in Uhrzeigerrichtung umlaufen. Jeder Nocken 19 umfaßt in Drehrichtung des Zahnriemens 18 auf der Vorderseite einer Dosierschaufel 20 und auf der Rückseite eine Ablenkschräge 21. Die äußere Geradflächen 22 der Nocken 19 bilden die äußere Nockenbahn, an welche der Innenraum 5 des Gehäuserahmens 4 au-Berhalb des Bereiches, in dem der Gehäuserahmen 4 den Matrizentisch 3 überdeckt, eng angepaßt ist. Nur im Bereich oberhalb des Matrizentisches 3 ist der Innen- 40 raum 5 des Gehäuserahmens 4 mit seiner Innenwandung in einen größeren Abstand zur äußeren Nockenbahn angeordnet. Der Innenraum 5 des Gehäuserahmens 4 bildet neben der in Fig. 4 links dargestellten neben der in Fig. 4 dargestellten Zahnriemenscheibe 9 eine Abstreichbereichskurve 24, zwischen denen zwei dicht an die äußere Nockenbahn heranragende flächige Vorsprünge (Schikanen) 25 angeordnet sind, die im Bereich des Teilkreises 2 enden und zwischen denen eine Raumerweiterung 9 ausgeformt ist. Das im Innenraum 5 des Gehäuserahmens 4 befindliche Pulvermaterial wird mittels der in Uhrzeigerrichtung zusammen mit dem Zahnriemen 18 rotierenden Nocken 19 mitgenommen und in die Füllbereichskurve 23 hineingedrückt. Infolge der Geschwindigkeitsdifferenz zwischen der Bewegung des Matrizentisches 3 und der Bewegung des Zahnriemens 18 mit den Nocken 19 entsteht in der Füllbereichskurve 23 ein Pulverstau. Das angestaute Pulver wird nach oben in Richtung der Matrizen geschoben. Ebenso wird über die flächigen Vorsprünge (Schikanen) 25 Pulvermaterial zur Matrizenmitte hingeleitet. In der Füllbereichskurve 23 erfolgt ein Füllen der im Teilkreis 2 des Matrizentisches 3 befindlichen Matrizen mit Pulvermaterial bei abgesenkten Unterstempeln. Das überschüssige Pulvermaterial wird mittels der in Drehrichtung der Nocken 19 vorn liegenden Dosierschaufeln 20

weitergefördert und passiert die nachfolgenden flächigen Vorsprünge (Schikanen) 25 und die dazwischen liegende Raumerweiterung 26 und gelangt in den in Drehrichtung hinter der Füllbereichskurve 23 gelegene Abstreifbereichskurve 24. Im Bereich der Abstreifbereichskurve 24 sind die Unterstempel bereits um ein solches Maß wieder angehoben, daß überschüssiges Pulvermaterial aus den Matrizen anfällt. Dieses wird im Schnittbereich zwischen der Abstreifbereichskurve 24 und dem Teilkreis 2 abgezogen und mittels der Dosierschaufeln 20 der Nocken 19 in Drehrichtung der Nocken 19 weitergefördert.

Die Zufuhr des Pulvermateriales zum Innenraum 5 des Gehäuserahmens 4 erfolgt über eine im Gehäusedeckel 7 ausgebildete Zuführöffnung 30 und eine auf diese aufgesetzte Zuführeinrichtung 31 für das Pulvermaterial. Die Zuführeinrichtung 31 umfaßt ein auf den Gehäusedeckel 7 aufgeschraubtes Gehäuse 32 mit einer ersten Gehäuseöffnung 33, in der ein rohrförmiger Zu-30 des Gehäusedeckels 7 gelagert ist, der an seinem unteren Ende mit einer Außenverzahnung 35 und in seinem Innenraum mit einem fest eingesetzten Schrägblech 36 versehen ist. Durch das Schrägblech 36 wird ge Auslauföffnung 37 des Zuführtrichters 34 gebildet, die bei maximaler Zuführmenge an Pulvermaterial unmittelbar oberhalb des Bewegungsweges der Nocken 19 des Zahnriemens 18 liegt, wie es in Fig. 1 dargestellt versehen ist, die zusammen mit dem Zahnriemen 18 und 30 ist. Durch eine Drehung des Zuführtrichters 34 kann die Auslauföffnung 37 oberhalb des Bereiches der die Zahnriemenscheibe 10 abdeckende Abdeckscheibe 15 gebracht werden, so daß die Auslauföffnung 37 teilweise bis vollständig geschlossen werden kann. Die Drehung des Zuführtrichters 34 erfolgt über ein mit der Außenverzahnung 35 des Zuführtrichters 34 kämmendes Zahnrad 38, das mit der Achse 39 über Wälzlager 40, 41 sowohl im Gehäusedeckel 7 für den Gehäuserahmen 4 als auch im Gehäuse 32 der Zuführeinrichtung 31 gelagert ist und über welche die Auslauföffnung 37 des Zuführtrichters 34 eingestellt wird. Die Einstellung der Lage der Auslauföffnung 37 gegenüber der darunter befindlichen Abdeckscheibe 15 der Zahnriemenscheibe 10 erfolgt einerseits in Abhängigkeit vom Füllungsgrad des Zahnriemenscheibe 10 einen Füllbereichskurve 23 und 45 Innenraums 5 des Füll- und Dosiergerätes 1 bzw. des Gehäuserahmens 4. Hierzu ist in nicht näher dargestellter Weise eine Meß- und Regeleinrichtung am Füll- und Dosiergerät 1 angebracht. So kann ein Schwimmer auf dem Pulvermaterial im Innenraum 5 angebracht sein, der vom Pulvermaterial angehoben wird und damit den Füllungsgrad des Innenraumes 5 bestimmt. Auch kann ein kapazitiver Geber mit einem bestimmten Schaltabstand im Innenraum 5 angebracht sein, der bei einer bestimmten Pulvermaterialhöhe anspricht. Ferner kön-55 nen Dehnungsmeßstreifen oder Piezoelemente im Innenraum 5 zur Ermittlung des Staudruckes vorgesehen werden. Schließlich kann über den Motorstrom für die Antriebsachse 11 des Zahnriemens 19 die Leistung bzw. das Drehmoment gemessen werden, wobei gilt, daß eine durch Auflaufen über die rückwärtige Ablenkschräge 21 60 größere Menge an Pulvermaterial im Innenraum mehr Antriebsleistung und damit ein höheres Drehmoment erfordert. Das Füll- und Dosiergerät kann somit einerseits über die Drehzahl des Matrizentisches 3 und andererseits über den Füllungsgrad des Innenraumes 5 in seiner Drehzahl reguliert werden.

Patentansprüche

1. Füll- und Dosiergerät zum Füllen der Matrizen des Matrizentisches einer Rundlauf-Tablettiermaschine mit Pulvermaterial, mit einem Füllgehäuse, 5 das den die Matrizen aufweisenden Teilkreis des Matrizentisches über einen Winkel von ca. 100° überdeckt, mit einem um zwei in dem Füllgehäuse gelagerte Umlaufräder herumgelegten, auf seiner Außenseite mit Nocken versehenen Endlosriemen 10 und mit einem die äußere Bahn der Nocken umschließenden Gehäuserahmen, dadurch gekennzeichnet, daß die Innenwand des dicht auf der Oberfläche des Matrizentisches aufliegenden, nach unten offenen und mit seiner Stirnfläche auf der 15 Matrizenoberfläche gleitenden Gehäuserahmens (4) eine Füllbereichskurve (23) und eine Abstreichbereichskurve (24) aufweist, die aus den Teilkreis (2) der Matrizen überdeckenden Ausbauchungen des Gehäuserahmens (4) gebildet sind, daß zwi- 20 schen beiden Kurven (23, 24) mindestens ein bis an die äußere Bahn der Nocken (19) herangeführter flächiger Vorsprung (25) angeordnet ist und daß die Nocken (19) in Drehrichtung (Pfeil 42) des Endlosriemens (18) auf der Vorderseite Dosierschaufeln 25 (20) und auf der Rückseite Ablenkschrägen (21) für das Pulvermaterial aufweisen und daß eine Vorrichtung (31) zum geregelten Zuführen des Pulvers in das Füllgehäuse vorhanden ist.

2. Füll- und Dosiergerät nach Anspruch 1, dadurch 30 gekennzeichnet, daß zwischen den beiden Umlaufrädern (9, 10) eine deren Zwischenraum verschlie-Bende und an die Dicke der Umlaufräder (9, 10) angepaßte Zwischenschiene (17) aus Kunststoff angeordnet ist.

3. Füll- und Dosiergerät nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß das Füllgehäuse aus dem Gehäuserahmen (4) aus Kunststoff und aus einer diesen nach oben abdichtenden metallischen Zwischenplatte (6) und aus einem metalli- 40 schen Gehäusedeckel (7) gebildet ist.

4. Füll- und Dosiergerät nach den Ansprüchen 1 und 3, dadurch gekennzeichnet, daß der Gehäusedeckel 7 eine Zuführöffnung (30) und die dieser zugeordneten regelbaren Zuführeinrichtung (31) 45 für das Pulvermaterial aufweist.

5. Füll- und Dosiergerät nach Anspruch 4, dadurch gekennzeichnet, daß die regelbare Zuführeinrichtung (31) aus einem in einem Gehäuse (32) drehbar gelagerten rohrförmigen Zuführtrichter (34), einem 50 darin fest angeordneten Schrägblech (36) und einer Antriebs- und Regeleinrichtung ausgebildet ist.

6. Füll- und Dosiergerät nach Anspruch 5, dadurch gekennzeichnet, daß die Antriebs- und Regeleinrichtung für den Zuführtrichter (34) aus einer an 55 diesem ausgebildeten Außenverzahnung (35), einem in diese eingreifenden Zahnrad (38) und einem dieses antreibenden regelbaren Antriebsmotor gebildet ist.

7. Füll- und Dosiergerät nach Anspruch 6, dadurch 60 gekennzeichnet, daß die Steuerung des regelbaren Antriebsmotors in Abhängigkeit von der Drehzahl des Matrizentisches (3) und in Abhängigkeit von der Pulvermaterialmenge im Innenraum (5) des Gehäuserahmens (4) erfolgt.

6

Nummer: Int. Cl.5:

DE 40 25 487 C2 B 30 B 11/08

Nummer: Int. Cl.5;

DE 40 25 487 C2 B 30 B 11/08

Nummer: Int. Cl.⁵: DE 40 25 487 C2

Veröffentlichungstag: 3. Juni 1993

B 30 B 11/08

Nummer: Int. Cl.⁵: DE 40 25 487 C2 B 30 B 11/08

F1G. 4

Nummer: Int. Cl.5:

DE 40 25 487 C2 B 30 B 11/08

Nummer: Int. Cl.⁵; DE 40 25 487 C2 B 30 B 11/08

