Examen Final Libre

Apellido y Nombre:	
Mail:	LU:

- 1. Sea \mathcal{C} la elipse con foco $F_1(1,4)$ y centro C(1,2), que pasa por P(4,0).
 - a) Dar la ecuación cartesiana de C y determinar en qué puntos corta al eje x.
 - b) Dar la ecuación de la parábola \mathcal{P} que corta al eje x en los mismos puntos que \mathcal{C} y su vértice coincide con el centro de \mathcal{C} . Determinar el foco de \mathcal{P} .
 - c) Dar la expresión segmentaria de la tangente de \mathcal{C} en el punto P.
 - d) Graficar \mathcal{C} , \mathcal{P} , los focos, la directriz de \mathcal{P} y la tangente.
- 2. π_1 y π_2 son dos planos perpendiculares, que comparten la traza trxy: 2x + 3y 1 = 0 y además π_1 pasa por P(2,0,1).
 - a) Dar la ecuación segmentaria de π_1 y π_2 .
 - b) Determinar las trazas de π_2 . Graficar los planos, marcando la traza común, y los vectores normales \mathbf{n}_1 y \mathbf{n}_2 .
- 3. Dar una ecuación del plano π_3 perpendicular a π_1 y π_2 del ejercicio anterior, y que pase por P(2,0,1).
- 4. a) Dar la ecuación de la cuádrica S con centro $C(1, y_0, 1)$, que pasa por P(1, 1, 1), y su traza con el plano $\pi : z = 3$ es la cónica $C : 4x^2 + 3y^2 8x 6y 1 = 0$.
 - b) Determinar el tipo de cuádrica, su centro, e indicar si tiene simetría respecto de algún plano coordenado. Justificar.
 - c) Graficar la superficie S y sus trazas con los planos coordenados, indicando qué tipo de cónicas son.
- 5. Determinar el área de la región pintada en gris. Justificar.

- 6. Considere la siguiente la superficie de revolución $S: x^2 + y^2(y^2 1) + z^2 = 0$.
 - a) Determinar el eje de rotación y una curva generatriz \mathcal{C} .
 - b) Determinar el volumen del sólido limitado por S.
 - c) Graficar la superficie y la curva \mathcal{C} .
- 7. Considerar la siguiente superficie en coordenadas esféricas(θ es el ángulo polar, y φ el azimut).

$$S: r\left(1+\cos^2(\theta)-3\sin^2(\theta)\sin^2(\varphi)\right) = \frac{14}{r} + 2\left(\sin(\theta)\cos(\varphi)+8\sin(\theta)\sin(\varphi)+6\cos(\theta)\right).$$

- a) Determinar el tipo de cuádrica y una expresión cartesiana.
- b) Indicar si S tiene centro, y en tal caso, expresarlo en coordenadas cilíndricas.
- c) Graficar la superficie y su traza con el plano xz.

Justificar todas las respuestas.

Hojas entregadas:

Firma: