TD nº 2

Calcul propositionnel 1

1 Syntaxe et Sémantique

Exercice 2.1. Considérez la formules du calcul propositionnel suivante :

$$\varphi := ((q \vee \neg p) \Rightarrow (\neg \neg q \vee \neg p)) \wedge ((\neg \neg q \vee \neg p) \Rightarrow (\neg p \vee q))$$

1. Dessinez son arbre syntaxique;

2. Énumérez ses sous-formules;

3. Énumérez les symboles propositionnels ayant une occurrence dans φ .

Exercice 2.2. 1. Quelles sont les valuations qui donnent même valeur à $p \land q$ et $p \Rightarrow q$?

2. Énumérez les modèles de la formule $(p \land q) \Leftrightarrow (p \Rightarrow q)$.

3. Est-ce que cette formule est (in)satisfaisable, valide?

Exercice 2.3. Déterminer l'ensemble des modèles des formules suivantes :

1. $\varphi_1 := (p \land q) \Rightarrow (p \Leftrightarrow r)$

2. $\varphi_2 := (p \Rightarrow q) \Rightarrow r$

3. $\varphi_3 := \neg(p \land q) \lor (p \land q)$

Exercice 2.4. Proposez une formule φ ayant la table de vérité suivante :

p	q	r	φ
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Exercice 2.5. On considère les formules $\varphi = p \land (\neg q \Rightarrow (q \Rightarrow p))$ et $\psi = (p \lor q) \Leftrightarrow (\neg p \lor \neg q)$.

- 1. Soit v une valuation. Déterminer, si possible, $v(\varphi)$ et $v(\psi)$ dans chacun des quatre cas suivants :
 - (a) on sait que v(p) = 0 et v(q) = 1;
 - (b) on sait que v(p) = 0;
 - (c) on sait que v(q) = 1;
 - (d) on ne sait rien sur v(p) et v(q).
- 2. Ces deux formules sont-elles satisfaisables? Des tautologies?
- 3. L'ensemble $\{\varphi, \psi\}$ est-il consistant? C'est-à-dire, existe t'il une valuation telle que $v(\varphi) = v(\psi) = 1$?

Exercice 2.6. Soit φ une formule du calcul propositionnel. On dit que φ est contingente, lorsqu'elle est satisfaisable, mais qu'elle n'est pas une tautologie.

- 1. Que peut-on dire de $mod(\varphi)$ lorsque φ est contingente?
- 2. Soient φ et ψ deux formules propositionnelles. Que pensez-vous des affirmations suivantes :
 - (a) si φ est contingente, alors $\neg \varphi$ l'est également;
 - (b) si φ et ψ sont contingentes, alors $\varphi \lor \psi$ et $\varphi \land \psi$ sont contingentes;
 - (c) si $\varphi \lor \psi$ est insatisfiable alors φ et ψ sont insatisfiables;
 - (d) si $\phi \land \psi$ est une tautologie alors ϕ est une tautologie, et ψ est une tautologie.

2 Conséquence logique

Soit Σ un ensemble de formules. On note $mod(\Sigma)$ l'ensemble des valuations v telles que $v(\varphi)=1$ pour toute formule $\varphi \in \Sigma$.

On étend la notion de conséquence logique d'une formule aux ensembles de formules : soit Σ un ensemble de formules et φ une formule, on note $\Sigma \models \varphi$ si $\mathsf{mod}(\Sigma) \subseteq \mathsf{mod}(\varphi)$. On note $\mathsf{Cons}(\Sigma)$ l'ensemble des conséquences logiques de Σ .

Exercice 2.7. On considère l'ensemble de formules propositionnelles

$$\Gamma = \{ p \lor q \lor r, \ p \Rightarrow q, \ q \Rightarrow r \}$$

- 1. Trouver un modèle de Γ . Combien y a-t-il de modèles ?
- 2. Les formules $q \Rightarrow p, p, r$ sont elles des conséquences logiques de Γ ?

Exercice 2.8. On se donne Γ un ensemble fini satisfaisable de formules, une formule φ conséquence de Γ , une formule ψ qui n'est pas une conséquence de Γ .

- 1. On ajoute une tautologie τ à Γ . Est-ce que φ et ψ sont des conséquences logiques de $\Gamma \cup \{\tau\}$? Donnez une preuve formelle.
- 2. Même question si τ est une formule insatisfaisable.

Exercice 2.9. Démontrer :

- 1. $\Sigma \models \varphi \operatorname{ssi} \Sigma \cup \{\neg \varphi\} \models \bot$.
- 2. $\Sigma \cup \{\varphi\} \models \psi \operatorname{ssi} \Sigma \models \varphi \Rightarrow \psi$.

Exercice 2.10. Soient φ et ψ deux formules, démontrer que :

- 1. $mod(\neg \varphi) = Val mod(\varphi)$ (Val est l'ensemble de toutes les valuations);
- 2. $mod(\varphi \lor \psi) = mod(\varphi) \cup mod(\psi)$;
- 3. $mod(\varphi \land \psi) = mod(\varphi) \cap mod(\psi)$;
- 4. $\models \varphi \Rightarrow \psi \operatorname{ssi} \operatorname{mod}(\varphi) \subseteq \operatorname{mod}(\psi)$.

3 Modélisation

Exercice 2.11. On considère les énoncés suivants, où p,q,r,s,t sont eux mêmes des énoncés. Les écrires comme des formules du calcul propositionnel.

A : Si p alors q D : p est une condition nécessaire et suffisante pour que q

B: Pour que p il suffit que q E: Soit p, soit q, mais pas les deux

C: Pour que p il faut que q F: Si p alors q sinon r

Exercice 2.12. Traduire les assertions ci-dessous en associant les variables propositionnelles p, q, r aux énoncés suivants : p : il pleut; q : Pierre prend son parapluie; r : Pierre est mouillé.

- 1. S'il pleut Pierre prend son parapluie.
- 2. Si Pierre prend son parapluie, Pierre n'est pas mouillé.
- 3. S'il ne pleut pas, Pierre ne prend pas son parapluie et Pierre n'est pas mouillé.

Montrer que « Pierre n'est pas mouillé » est une consequence logique des trois énoncés précédents.

Exercice 2.13. La finale d'un tournoi de tennis oppose deux joueurs A et B. Après le match, les joueurs s'adressent à la presse :

- A dit : « je ne suis pas le gagnant ».
- B dit : « A ne ment pas ».

Le but de l'exercice est de représenter les informations précédentes par un ensemble de formules du calcul propositionnel. Pour cela on utilisera les symboles propositionnels :

- Ag qui signifie A est le gagnant du match,
- Am qui signifie A ment
- Bg qui signifie B est le gagnant du match
- Bm qui signifie B ment

Représenter toutes les informations, à savoir :

- un des joueurs a gagné et l'autre a perdu,
- A dit qu'il n'a pas gagné (si A ne ment pas alors A n'a pas gagné, sinon c'est le contraire),
- B dit que A ne ment pas.

Exercice 2.14. On dispose de trois cases alignées, notées 1,2,3 de gauche à droite, et de pions de formes différentes : triangle, rond ou carré. Les pions peuvent-être placés dans les cases. Pour chaque $i \in \{1,2,3\}$ on note c_i l'assertion : « la case i contient un pion carré », et on fait de même pour les autres formes.

- 1. Modélisez, avec des formules du calcul propositionnel, les deux assertions suivantes : « il y a un pion rond immédiatement à droite d'un pion carré » et « chaque case contient un (et un seul) pion ».
- 2. Donnez les modèles de l'ensemble composé par ces deux formules. Que peut-on en déduire quant au pion situé dans la case 2?

4 Systèmes équivalents

Exercice 2.15. On considère la fonction simpl définie inductivement par :

$$\frac{\varphi : p}{p : p} p \in Prop \qquad \frac{\varphi : \psi}{(\neg \varphi) : (\neg \psi)}$$

$$\frac{\varphi_1 : \psi_1 \quad \varphi_2 : \psi_2}{(\varphi_1 \land \varphi_2) : \neg (\neg \psi_1 \lor \neg \psi_2)} \qquad \frac{\varphi_1 : \psi_1 \quad \varphi_2 : \psi_2}{(\varphi_1 \lor \varphi_2) : (\psi_1 \lor \psi_2)} \qquad \frac{\varphi_1 : \psi_1 \quad \varphi_2 : \psi_2}{(\varphi_1 \Rightarrow \varphi_2) : (\neg \psi_1 \lor \psi_2)}$$

- 1. Que fait la fonction simpl?
- 2. Prouver le résultat précédent par induction structurelle.

Exercice 2.16. On dira qu'une formule est en forme minimale si elle n'utilise que le connecteur \Rightarrow , et comme formule atomique \perp et les variables propositionnelles. Le but de l'exercice est de montrer que toute formule propositionnelle admet une forme minimale équivalente.

- 1. Montrer que les formules $p \Rightarrow \perp$ et $\neg p$ sont logiquement équivalentes.
- 2. Sachant que les formules $p \Rightarrow q$ et $\neg p \lor q$ sont logiquement équivalentes, donner une formule équivalente à $p \lor q$ en forme minimale.
- 3. Sachant que $p \land q \equiv \neg(p \Rightarrow \neg q)$, donner une formule équivalente à $p \land q$ en forme minimale.
- 4. Déduire des questions précédentes une fonction min qui transforme toute formule propositionnelle en une formule équivalente en forme minimale.

Exercice 2.17. On considère des formules construites à partir de variables propositionnelles, des constantes \bot et d'un seul connecteur logique ternaire IF. On appelle PropIF l'ensemble des formules ainsi construites. La valeur de $IF(\varphi_c, \varphi_t, \varphi_e)$ est égale à la valeur de φ_t lorsque φ_c est vraie et à la valeur de φ_e sinon.

- 1. Donnez une définition inductive de *PropIF*.
- 2. Donnez des formules propositionnelles équivalentes à $IF(\varphi_c, \varphi_t, \varphi_e)$, à $IF(\varphi_c, \bot, \varphi_e)$, $IF(\varphi_c, \varphi_t, \top)$
- 3. Donnez des formules équivalentes à $\neg \varphi$, $\varphi_1 \land \varphi_2$, $\varphi_1 \lor \varphi_2$ et $\varphi_1 \Rightarrow \varphi_2$ qui n'utilisent que le connecteur IF et déduisez en une définition inductive de la fonction associant une formule à une formule équivalente de PropIF
- 4. Donnez une définition récursive de la fonction I_{ν} qui étant donnée une interprétation des variables propositionnelles ν et une formule φ de PropIF calcule la valeur de vérité de cette formule.