

Learning to Rank Paths in Spatial Networks

Sean Bin Yang, Bin Yang

(seany, byang)@cs.aau.dk

Database, Programming and Web Technologies (DPW),
Computer Science
Alborg University
Denmark

Introduction

- Local Drivers often choose path that are neither shortest nor fastest.
- Commercial navigation systems, such are Google Maps ang TomTom, often follows a similar strategy by suggesting multiple candidate paths to drivers.

Solutions Overview

• We propose a data-driven ranking framework *PathRank*, which ranks candidate paths by taking into account the paths used by local driver in their historical trajectories.

Learning to Rank Paths

PathRank:

• Data Generation

Learning to Rank Paths

PathRank:

Path Embedding

Learning to Rank Paths

PathRank:

• Similarity Prediction

Experiments

- Datasets
 - ✓ Aalborg, Denmark
 - 180 million GPS records
- Ground Truth Data
 - ✓ For each trajectory P_T , we generate two sets of training paths: Top-k shortest paths (TkDI), and Diversified top-k shortest paths (D-TkDI).
 - ✓ For each training path, we employ weighted Jaccard similarity (Weighted Jaccard (P, P_T)) as P's ground truth ranking score.
- Evaluation Metrics
 - ✓ Mean Absolute Error (MAE) and Mean Absolute Relative Error(MARE)
 - ✓ Kendall Rank Correlation Coefficient (τ) and Spearman's Rank Correlation Coefficient (ρ)
- Settings
 - ✓ PR-A1: Keep the graph embedding static
 - ✓ PR-A2: Keep updating the graph embedding

Experiments

Training Data Generation Strategies

Table 1 PR-A1

Strategies	M	MAE	MARE	τ	ρ
TkDI	64	0.1433	0.2300	0.6638	0.7044
	128	0.1168	<u>0.1875</u>	0.6913	0.7330
D-TkDI	64	0.1140	0.1830	0.6959	0.7346
	128	0.0955	0.1533	<u>0.7077</u>	0.7492

Table 2 PR-A2

Strategies	M	MAE	MARE	τ	ρ
TkDI	64	0.1163	0.1868	0.6835	0.7256
	128	0.1130	0.1814	0.7082	0.7481
D-TkDI	64	0.0940	0.1509	0.7144	0.7532
	128	0.0855	0.1373	0.7339	<u>0.7731</u>

THANK YOU

