

IRFML8244TRPbF

HEXFET® Power MOSFET

V _{DS}	25	٧
V _{GS Max}	± 20	٧
R _{DS(on) max} (@V _{GS} = 10V)	24	$\mathbf{m}\Omega$
R _{DS(on) max} (@V _{GS} = 4.5V)	41	$\mathbf{m}\Omega$

Application(s)

• Load/ System Switch

Features and Benefits

Features

Low $R_{DS(on)}$ ($\leq 24m\Omega$)
Industry-standard pinout
Compatible with existing Surface Mount Techniques
RoHS compliant containing no lead, no bromide and no halogen
MSL1, Consumer qualification

Benefits

results in

	Lower switching losses				
I	Multi-vendor compatibility				
	Easier manufacturing				
	Environmentally friendly				
	Increased reliability				
	<u>-</u>				

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
V _{DS}	Drain-Source Voltage	25	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	5.8		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	4.6	А	
I _{DM}	Pulsed Drain Current	24	7	
P _D @T _A = 25°C Maximum Power Dissipation		1.25	14/	
P _D @T _A = 70°C	Maximum Power Dissipation	0.80	W	
	Linear Derating Factor	0.01	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s)		99	C/VV

IRFML8244TRPbF

Electric Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	25			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, I _D = 1mA
В	Static Drain-to-Source On-Resistance		20	24	0	$V_{GS} = 10V, I_D = 5.8A$ ②
R _{DS(on)}	Static Dialif-to-Source Off-nesistance		32	41	mΩ	$V_{GS} = 4.5V, I_D = 4.6A$ ②
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.7	2.35	V	$V_{DS} = V_{GS}, I_D = 10\mu A$
I _{DSS}	Drain-to-Source Leakage Current	_		1.0		$V_{DS} = 20V, V_{GS} = 0V$
	Dialific-Source Leakage Current		_	150	μA	$V_{DS} = 20V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage	_		100	~ A	V _{GS} = 20V
	Gate-to-Source Reverse Leakage	_		-100	nA	V _{GS} = -20V
R_{G}	Internal Gate Resistance		1.6		Ω	
gfs	Forward Transconductance	10			S	$V_{DS} = 10V, I_D = 5.8A$
Q_g	Total Gate Charge		5.4			I _D = 5.8A
Q_{gs}	Gate-to-Source Charge		1.0		nC	V _{DS} =13V
Q_{gd}	Gate-to-Drain ("Miller") Charge	_	0.81			V _{GS} = 10V ②
t _{d(on)}	Turn-On Delay Time	_	2.7			V _{DD} =13V ^②
t _r	Rise Time		2.1			I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time		9.0		ns	$R_G = 6.8\Omega$
t _f	Fall Time		2.9			V _{GS} = 10V
C _{iss}	Input Capacitance		430			V _{GS} = 0V
C _{oss}	Output Capacitance		110		pF	V _{DS} = 10V
C _{rss}	Reverse Transfer Capacitance	_	49			f = 1.0MHz

Source - Drain Ratings and Characteristics

- Court of Drawn Hawnings and Characteriotics						
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			1.25		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			24		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C, I_S = 5.8A, V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		11	17	ns	$T_J = 25^{\circ}C$, $V_R = 20V$, $I_F = 5.8A$
Q _{rr}	Reverse Recovery Charge		4.2	6.3	nC	di/dt = 100A/µs ②