Las Funciones y el Golf Matemático

DATOS PERSONALES

- 1. Ingeniero Industrial doble diploma (2014).
- 2. Máster en Sistemas Inteligentes robótica de servicios. (2016)
- 3. Profesor de secundaria. (2020)
- 4. Inicio de Doctorado (2022).
- 5. 600h de Unity 3D

PROYECTOS RV Y RA

Aplicaciones de educación e ingeniería.

CONTACTO

michael.soler.beatty@gmail.com fgonzal@mat.uji.es

ÍNDICE DE LA PRESENTACIÓN

INTRODUCCIÓN

- 1. ANTECEDENTES
- 2. ESTADO DEL ARTE
- 3. EJEMPLO 1: CÁLCULO ANALÍTICO
- 4. EJEMPLO 2: CON CALCULADORA
- 5. "PROS & CONS" DEL USO DE LA CALCULADORA
- 6. EJEMPLO 3: CON "CALC / EXCEL"
- 7. MODELIZACIÓN CON EL MÓVIL
- 8. LA INTERFAZ GRÁFICA
 - 8.1. INSTRUCCIONES
 - 8.2. JUEGO POR HOYOS
 - 8.3. RESULTADO
- 9. EJEMPLO PRÁCTICO EN TIEMPO REAL
- 10. COMPARATIVA CON GEOGEBRA

INTRODUCCIÓN

OBJETIVO PRINCIPAL

Buscar una actividad en el aula evaluable en las unidades didácticas de funciones.

OBJETIVOS SECUNDARIOS

- 1. Fomentar el cálculo mental.
- 2. Impulsar la competencia digital mediante el uso extendido de dispositivos móviles.
- 3. Potenciar el trabajo autónomo.
- 4. Usar el "juego" como recurso didáctico.

1. ANTECEDENTES

PROCEDIMIENTO GENERAL

- Se le da al alumno:
 - Una función f(x)
 - Un intervalo [a , b] para el valor de f(x).
- El alumno selecciona el valor $c \in \mathbb{R}$
- Mentalmente estima el valor de f(c) para que dicho resultado esté en el intervalo [a, b].

2.ESTADO DEL ARTE

H0Y0 10

Hallar "x" tal que:

 $150 < 2^x < 152$

Par 4

H0Y013

Hallar "x" tal que:

150 < tg x < 152

Par 4

HOYO 16

Hallar "x" tal que:

$$2'84 < \sqrt{x^2 - 3} < 2'85$$

Par 3

https://blogsaverroes. juntadeandalucia.es/i esarroyodelamiel/elgolf-matematico/

H0Y011

Hallar "x" tal que:

Par 3

HOYO 14

Hallar "x" tal que:

$$4527 \le 131x \le 4537'36$$

Par 3

HOY0 17

Hallar "x" tal que:

$$252 \le 1 + 2 + \dots + x \le 254$$

Par 2

HOYO 12

Hallar "x" tal que:

$$2'45 < \pi x^2 < 49'5$$

Par 5

H0Y015

Hallar "x" tal que:

$$20 < \frac{1}{x} < 20'5$$

Par 5

HOYO 18

Hallar "x" tal que:

$$20 < \frac{10}{1+x^2} < 20'5$$

6

Par 5

3. EJEMPLO 1: CÁLCULO ANALÍTICO

X	$f(x) = -x^2 + 3x - 3$	$x \in ?$ [-7.5, -6.5]
0	$f(0) = -0^2 + 3 \cdot 0 - 3 = -3$	NO
1	$f(1) = -1^2 + 3 \cdot 1 - 3 = -1$	NO
-1	$f(-1) = -(-1)^2 + 3 \cdot (-1) - 3 = -7$	SI

* FÁCILMENTE calculable mentalmente

4. EJEMPLO 2: CON CALCULADORA

	X	$\mathbf{g}(x) = 2x^2 - 3$	$x \in ?$ [3.5,4.5]
	0	-3	NO
$\left\{ \right.$	1	-1	NO
	-1	-1	NO
	2	5	NO
	1.5	1.5	NO
1	1.8	3.48	NO
	1.9	4.22	SI

5. "PROS & CONS" DE LA CALCULADORA

PROBLEMAS

- 1) Equivocarse al introducir la función y realizar los cálculos erróneos (paréntesis).
- 2) No llevar un registro de los valores introducidos.
- 3) Copiar de los compañeros.
- 4) Se tarda en realizar los cálculos para hallar el valor de la función

VENTAJAS

1) Casi todos los alumnos tienen calculadoras y si no, pueden prestarla los departamentos de Matemáticas.

6. EJEMPLO 3: CON "CALC / EXCEL"

Para resolver los problemas detectados con las calculadoras, podríamos pensar en utilizar los ordenadores.

Pero necesitamos utilizar un programa, ya existente o uno a medida.

Como ejemplo: utilizar una hoja de Cálculo automatizada.

6. EJEMPLO 3: CON "CALC / EXCEL"

DESVENTAJAS:

- Se pierde la aleatoriedad (hoja fija).
- Necesidad de Recursos físicos (aula de informática).
- Resultados falsables.

7. MODELIZACIÓN CON EL MÓVIL

Se diseña una aplicación para el móvil:

- 1. Interfaz atractiva e intuitiva.
- 2. Historial de entrada y salida.
- 3. Que sea jugable y motive al estudiante.
- 4. Aleatoriedad de las funciones e intervalos.
- 5. Dificultad para copiarse (cada ejecución es diferente).

MATEGOLF

7. MODELIZACIÓN CON EL MÓVIL

UNA APLICACIÓN CON UN VALOR AÑADIDO

- 1) Aleatoriedad de las funciones y los hoyos.
- 2) Estrategias de resolución:
 - Conocimiento de la grafica, crecimientos, decrecimiento, máximos, mínimos, asíntotas
 - Resolución de ecuaciones

POR QUÉ USAMOS EL MÓVIL?

Casi todos los estudiantes tienen móvil y lo usan frecuentemente.

8. LA INTERFAZ GRÁFICA

INSTRUCCIONES

EL JUEGO POR HOYOS

RESULTADO

8.1. INSTRUCCIONES

8.3 RESULTADO

Aquí puede verse que los extremos del intervalo son válidos.

Se compara los intentos con el par del hoyo.

En el golf, esto se llama par:

- Uno menos seria birdie,
- Dos menos Eagle
- Albatros si es menos 3.
- Es uno mas seria bogey.
- Dos más doble bogey.
- 3 más triple bogey.

10. COMPARATIVA CON GEOGEBRA

Si utilizamos el GeoGebra para obtener la gráfica de la función:

GeoGebro Calculadora gráfica

	f: y = -5x - 1	:
	g: y = -7.5	:
•	h: y = -6.5	:
•	$A = Interseca(f, h)$ $\rightarrow (1.1, -6.5)$	i
•	$B = Interseca(g, f)$ $\rightarrow (1.3, -7.5)$:
+	Entrada	

EJEMPLO PRÁCTICO EN TIEMPO REAL

PC

https://michaelsolerbeatty

.github.io/MateGolf/

https://drive.google.com/file/d/1bg jWwvezJ0zkBZ8ODtJUwaJKhYkNOY1 e/view?usp=sharing

ANDROID

