Eletrônica Digital

AREA1 DeVry V

<u>victoryfernandes@yahoo.com.br</u> <u>www.tkssoftware.com/victory</u>

Capítulo 03

○ IDOETA; CAPUANO. *Elementos de Eletrônica Digital*. Livros Érica Ltda., 1998.

Postulados

- Complementação
- Adição
- Multiplicação

Complementação

• Se
$$A = 0 \rightarrow A' = 1$$

• Se
$$A = 1 \rightarrow A' = 0$$

Complementação

Complementação

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$01 + 0 = 1$$

$$1 + 1 = 1$$

$$A + 0 = A$$

$$\bullet A = 0 \rightarrow 0 + 0 = 0$$

$$\bullet$$
 A = 1 \rightarrow 1 + 0 = 1

$$\bullet$$
 A + 1 = 1

$$A = 0 \rightarrow 0 + 1 = 1$$

$$\bullet$$
 A = 1 \rightarrow 1 + 1 = 1

$$\bullet$$
 A + A = A

$$A = 0 \rightarrow 0 + 0 = 0$$

$$\bullet$$
 A = 1 \rightarrow 1 + 1 = 1

$$A + A' = 1$$

$$\bullet$$
 A = 0 \rightarrow A' = 1 \rightarrow 0 + 1 = 1

$$\bullet A = 1 \rightarrow A' = 0 \rightarrow 1 + 0 = 1$$

- 0.0 = 0
- 0.1 = 0
- 0 1.0 = 0
- 1 . 1 = 1

 \bullet A . 0 = 0

$$\bullet A = 0 \to 0 \cdot 0 = 0$$

$$\bullet$$
 A = 1 \rightarrow 1 . 0 = 0

 \bullet A . 1 = A

$$A = 0 \rightarrow 0 \cdot 1 = 0$$

$$\bullet$$
 A = 1 \rightarrow 1 . 1 = 1

 \bullet A . A = A

$$\bullet A = 0 \to 0 \cdot 0 = 0$$

$$\bullet$$
 A = 1 \rightarrow 1 . 1 = 1

 \bullet A . A' = 0

$$A = 0 \rightarrow A' = 1 \rightarrow 0 \cdot 1 = 0$$

$$\bullet A = 1 \rightarrow A' = 0 \rightarrow 1 \cdot 0 = 0$$

Postulados

$$\bullet$$
 A + 0 = A

$$\bullet$$
 A + A = A

$$A + A' = 1$$

$$\bullet$$
 A . 0 = 0

$$\bullet$$
 A . 1 = A

$$\bullet$$
 A . A = A

$$\bullet$$
 A . A' = 0

- Propriedades
 - Comutativa
 - Associativa
 - Distributiva

Comutativa

AdiçãoA + B = B + A

MultiplicaçãoA . B = B . A

Associativa

Adição

$$A + (B + C) = (A + B) + C = A + B + C$$

Multiplicação

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$$

Distributiva

$$\bullet$$
 A . (B + C) = A . B + A . C

Álgebra de Boole

- Teoremas de De Morgan
 - O 1º Teorema de De Morgan
 - O2º Teorema de De Morgan

1º Teorema de De Morgan

- (A . B)' = A' + B'
 - O complemento do produto é igual à soma dos complementos

2º Teorema de De Morgan

- $(A + B)' = A' \cdot B'$
 - O complemento da soma é igual ao produto dos complementos

Álgebra de Boole

- Identidades Auxiliares
- Simplificação de Expressões Booleanas

Demonstre a seguinte identidade auxiliar

 \bullet A + A . B = ?

 \bullet A + A . B =

Colocando A em evidência no 1º termo

$$A(1 + B) =$$

$$como 1 + B = 1$$

$$A \cdot 1 = A$$

Demonstre a seguinte identidade auxiliar

$$(A + B) \cdot (A + C) = ?$$

 $(A + B) \cdot (A + C) = ?$

Aplicando distributiva no 1º termo

$$A.A + A.C + A.B + B.C$$

 $como\ A \cdot A = A$

$$A + A \cdot C + A \cdot B + B \cdot C$$

Aplicando propriedade distributiva

$$A.(1 + B + C) + B.C$$

$$\bullet$$
 (A + B) \cdot (A + C) = A + B \cdot C

A.
$$(1 + B + C) + B. C$$

Como $1 + X = 1$
A. $1 + B. C$

$$Como\ A$$
 . $1 = A$ $A + B \cdot C$

• $A + A' \cdot B = ?$

Aplicando X'' = X então (A+A'.B)''

Aplicando 2º teorema de De Morgan (X+Y)' = X'. Y' [A'.(A'.B)']'

```
A + A' . B = ?
[A'.(A'.B)']'

Aplicando 1º teorema de De Morgan (X.Y)' = X'+Y'
[A'.(A"+B')]'

Aplicando X" = X então
[A'.(A+B')]'

Distributiva
(A'.A+A'.B')'
```

 \bullet A + A' . B = A + B

Distributiva (A'.A+A'.B')'

Aplicando A'. A = 0 e 0 + A = A então (A'.B')'

Aplicando 1º teorema de De Morgan (X.Y)' = X'+Y' e A''=A **A+B**

Quadro Resumo

POSTULADOS		
Complementação	Adição	Multiplicação
$A = 0 \rightarrow \overline{A} = 1$	0 + 0 = 0	0.0=0
$A = 1 \rightarrow \overline{A} = 0$	0 + 1 = 1	0.1=0
	1 + 0 = 1	1.0=0
	1 + 1 = 1	1.1=1
IDENTIDADES		
Complementação	Adição	Multiplicação
= A = A	A + 0 = A	$A \cdot 0 = 0$
	A + 1 = 1	A . 1 = A
	A + A = A	A . A = A
	$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$
PROPRIEDADES		
Comutativa:	A + B = B + A	
	$A \cdot B = B \cdot A$	
Associativa: $A + (B + C) = (A + B) + C = A + B + C$		
$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$		
Distributiva: $A \cdot (B + C) = A \cdot B + A \cdot C$		
TEOREMAS DE MORGAN		
$(\overline{A} \cdot \overline{B}) = \overline{A} + \overline{B}$		
$(\overline{A} + \overline{B}) = \overline{A} \cdot \overline{B}$		
IDENTIDADES AUXILIARES		
$A + A \cdot B = A$		
$A + \overline{A} \cdot B = A + B$		
$(A + B) \cdot (A + C) = A + B \cdot C$		

Simplificação

- Simplifique a equação através de álgebra booleana
 - OS = A'.B' + A'.B + A.B'

- S=A'.B' + A'.B + A.B'
- A' em evidência
- S=A'.(B'+B)+A.B'
- Como X'+X=1
- S=A'.1+A.B'
- Como X.1=X
- S=A'+A.B'
- Aplicando dupla negação
- S=(A'+A.B')''
- 2º Teorema de De Morgan (X+Y)'=X'.Y'
 - $\bigcirc X = A'$
 - \bigcirc Y=A.B'
- S=(A''.(A.B')')'
- Como X"=X

- \circ S=(A.(A.B')')'
- 1º Teorema de De Morgan (X.Y)'=X'+Y'
 - $\bigcirc X = A$
 - ○Y=B'
- S=(A.(A'+B''))'
- Como X"=X
- \circ S=(A.(A'+B))'
- Aplicando a distributiva
- \circ S=(A.A'+A.B)'
- Como X.X'=0
- $= S = (0 + A.B)^{\prime}$
- Como X+0=X
- S=(A.B)'

Quadro Resumo

Diagramas de Karnaugh

- Diagrama de Veitch-Karnaugh para
 - 2 variáveis
 - 3 variáveis
 - 4 variáveis
 - 5 variáveis

- Região onde A=1
- Região onde A=0 (A'=1)
- Região onde B=1
- Região onde B=0 (B'=1)

	B'	В
Α'_		
4		

A	В	S
0	0	0
0	1	0
1	0	0
1	1	1

Caso 1

Caso 2

Caso 3

Caso 4

	B'	В
Α'_		
Α		

A	В	S
0	0	0
0	1	0
1	0	0
1	1	1

- Caso 1
- Caso 2
- Caso 3
- Caso 4

	B			В
Ā	Car Ā 0	50 0 B 0	Cas Ā 0	50 1 B 1
A	Cas A 1	50 2 B 0	Cas A 1	B 1

- Quadras
- Pares
- Termos

	B'	В
Α'_		
A		

- Quadras
 - ○S=1

- Pares
 - ○S=A

	B'	В	_
A '_	0	0	
Α	1	1	

- Pares
 - ○S=B'

	В'		В
Α'_	1		0
Α	1		0

Pares

- Termos
 - S=AB'+A'B

	B'	В
A '_	0	1
Α	1	0

Diagramas de Karnaugh Resumo

- Efetua-se a simplificação agrupando os termos do diagrama onde temos blocos de células com valor 1
- Seleção de grupos não dever ser feito na diagonal
- Cada célula de valor 1 deve estar ligada a pelo menos 1 agrupamento
- Pelo menos 1 célula do agrupamento deverá ser exclusiva deste agrupamento
- Quanto maior os blocos selecionados melhor a simplificação obtida
 - O Prefira quadras a duplas e duplas a termos
- Quantidade de células deve ser sempre potência de 2
- O mapa de karnaugh é tridimensional

O mesmo vale para qualquer número de variáveis

- Obtenha a equação e simplifique o resultado
 - Obter a equação

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

- Simplifique a equação através de diagramas de Karnaugh
 - \bigcirc S = A'B' + A'B + AB'
 - OPreencher tabela com valores conforme expressão

- Simplifique a equação através de diagramas de Karnaugh
 - \bigcirc S = A'B' + A'B + AB'
 - Identificação dos agrupamentos

- Simplifique a equação através de diagramas de Karnaugh
 - \bigcirc S = A'B' + A'B + AB'
 - Contrução da equação para os grupos escolhidos

- Simplifique a equação através de diagramas de Karnaugh
 - \bigcirc S = A'B' + A'B + AB'
 - **S=A'+B'**
 - ○Aplicando 1º teorema de De Morgan

$$(X.Y)' = X'+Y'$$

OS=(A.B)

- Região onde A=1
- Região onde A=0 (A'=1)
- Região onde B=1
- Região onde B=0 (B'=1)
- Região onde C=1
- Região onde C=0 (C'=1)

Caso	Α	В	С
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

Caso	Α	В	С
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

	B		В	
Ā	000	001	Caso 3 <u>0</u> 1 1 A B C	Caso 2 <u>0</u> 1 <u>0</u> A B C
Α	Caso 4 1 <u>0 0</u> A B C	101	Caso 7 1 1 1 A B C	110
	C	(C

- Oitavas
- Quadras
- Pares
- Termos

- Oitavas
 - **○**S=1

- Quadras
 - Quadra A'
 - OQuadra B'
 - OQuadra C'

- Quadras
 - ○S=A'

- Quadras
 - ○S=B'

- Quadras
 - OS=C'

- Pares
 - \bigcirc S=A.C + A'.C'

Termos

Exercício Mapa de Karnaugh 3 variáveis

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- Simplifique usando Karnaugh
- Preenchimento da tabela

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Seleção dos agrupamentos

A	В	C	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- Construção da equação
- S=A'.C + A.B' + A.C'

A	В	C	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- Outra opção de seleção dos agrupamentos
- S=A'.C + A.C' + B'.C

Exercício 2 Mapa de Karnaugh 3 variáveis

- Minimize a expressão
 - S=A'B'C'+A'BC'+A'BC+ABC

Exercício 2 Mapa de Karnaugh 3 variáveis

- Minimize a expressão
 - OS=A'B'C'+A'BC'+A'BC+ABC

Exercício 2 Mapa de Karnaugh 3 variáveis

- Minimize a expressão
 - S=A'B'C'+A'BC'+A'BC+ABC
 - ○S=A'C'+BC

- Região onde A=1
- Região onde A=0 (A'=1)
- Região onde B=1
- Região onde B=0 (B'=1)
- Região onde C=1
- Região onde C=0 (C'=1)
- Região onde D=1
- Região onde D=0 (D'=1)

Caso	Α	В	С	D
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Caso	Α	В	С	D
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

	C		С		
Ā	$\begin{array}{c} \text{Caso 0} \\ \underline{0} \ \underline{0} \ \underline{0} \ \underline{0} \\ \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} \end{array}$	Caso 1 0 0 0 1 A B C D	Caso 3 0 0 1 1 A B C D	Caso 2 0 0 1 0 A B C D	B
Λ	Caso 4 0 1 0 0 A B C D		Caso 7 0 1 1 1 A B C D	Caso 6 0 1 1 0 A B C D	В
Α	Caso 12 1 1 0 0 A B \overline{C} \overline{D}	Caso 13 1 1 0 1 A B \overline{C} D		Caso 14 1 1 1 0 A B C D	Б
	Caso 8 1 0 0 0 A B C D	Caso 9 1 0 0 1 A B C D			B
	\overline{D} D)	D	

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Preenchimento da tabela

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Identificação dos grupos

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Contrução da equação

$$\bigcirc$$
 S=AC'+D+A'B'C

- Simplifique a expressão
 - OS=A'B'C'D'+A'B'C'D+A'B'CD'+A'BC'D+ AB'C'D'+AB'C'D+AB'CD'+ ABC'D+ ABCD

- Simplifique a expressão
 - OS=A'B'C'D'+A'B'C'D+A'B'CD'+A'BC'D+ AB'C'D'+AB'C'D+AB'CD'+ ABC'D+ ABCD

Simplifique a expressão

OS=A'B'C'D'+A'B'C'D+A'B'CD'+A'BC'D+ AB'C'D'+AB'C'D+AB'CD'+ ABC'D+ ABCD

OS=ABD+C'D+B'D'

Diagramas de Karnaugh

- Diagrama de Veitch-Karnaugh para
 - Condições irrelevantes
 - Casos que não admitem simplificação
 - Agrupamentos de zeros
 - Forma de apresentação alternativa

Condições irrelevantes

- Situação da entrada é impossível de acontecer ou possibilita saída 0 ou 1 de forma indiferente da entrada
 - Nesta caso a saída é dada como X
 - No momento da simplificação o X deve assumir o valor que possibilitar a melhor simplificação

Condições irrelevantes

Α	В	С	S
0	0	0	X
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Casos que não admitem simplificação

	B	В
Ā	0	1
A	1	0

	B	В
Ā	1	0
A	0	(1)

Casos que não admitem simplificação

XOR

$$\circ$$
 S=A $_{\odot}$ B

XNOR

	B	В
Ā	1	0
Α	0	(1)

Casos que não admitem simplificação

 \bullet S=A \oplus B \oplus C

	B		В	
Ā	0	1	0	1
Α	(1)	0	1	0
	C			C

Agrupamentos de Zeros

- Ao invés de se agrupar células que valem
 1 podemos agrupar células que valem 0
- Mas neste caso obtemos a equação S' não a equação S

Agrupamentos de Zeros

- S'=A'.C'
- S=(A'.C')'
- Aplicando teorema de DeMorgan (X.Y)' = X'.Y'
- S=A''+C''
- Como X"=X
- S=A+C

Forma de apresentação alternativa

 Ao invés de representar o diagrama em regiões podemos representa-lo de forma análoga

Dúvidas?

- Victory Fernandes
 - E-mail: <u>victoryfernandes@yahoo.com.br</u>
 - Site: <u>www.tkssoftware.com/victory</u>

- Referências Básicas
 - Sistemas digitais: fundamentos e aplicações 9. ed. / 2007 Livros -FLOYD, Thomas L. Porto Alegre: Bookman, 2007. 888 p. ISBN 9788560031931 (enc.)
 - Sistemas digitais: princípios e aplicações 10 ed. / 2007 Livros TOCCI, Ronald J.; WIDMER, Neal S.; MOSS, Gregory L. São Paulo: Pearson Prentice Hall, 2007. 804 p. ISBN 978-85-7605-095-7 (broch.)
 - Elementos de eletrônica digital 40. ed / 2008 Livros CAPUANO,
 Francisco Gabriel; IDOETA, Ivan V. (Ivan Valeije). São Paulo: Érica, 2008. 524
 p. ISBN 9788571940192 (broch.)

REFERÊNCIAS COMPLEMENTARES:

- Eletronica digital: curso prático e exercícios / 2004 Livros MENDONÇA,
 Alexandre; ZELENOVSKY, Ricardo. Rio de Janeiro: MZ, c2004. (569 p.)
- Introdução aos sistemas digitais / 2000 Livros ERCEGOVAC, Milos D.; LANG, Tomas; MORENO, Jaime H. Porto Alegre, RS: Bookman, 2000. 453 p. ISBN 85-7307-698-4
- Verilog HDL: Digital design and modeling / 2007 Livros CAVANAGH,
 Joseph. Flórida: CRC Press, 2007. 900 p. ISBN 9781420051544 (enc.)
- Advanced digital design with the verlog HDL / 2002 Livros CILETTI,
 Michael D. New Jersey: Prentice Hall, 2002. 982 p. ISBN 0130891614 (enc.)
- Eletronica digital / 1988 Livros Acervo 16196 SZAJNBERG, Mordka. Rio de Janeiro: Livros Técnicos e Científicos, 1988. 397p.
- Eletronica digital: principios e aplicações / 1988 Livros MALVINO, Albert Paul. São Paulo: McGraw-Hill, c1988. v.1 (355 p.)
- Eletrônica digital / 1982 Livros Acervo 53607 TAUB, Herbert; SCHILLING, Donald. São Paulo: McGraw-Hill, 1982. 582 p.