

PVsyst - Simulation report

Grid-Connected System

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis

Trackers single array, with backtracking

System power: 114 kWp

Thessaloniki/Livadákion - Greece

PVsyst TRIAL

PVsyst TRIAL

Author

PVsyst V7.2.15

VC0, Simulation date: 14/06/22 03:46 with v7.2.15

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis

Project summary

Geographical Site

Thessaloniki/Livadákion

Greece

Situation

Latitude 40.52 °N Longitude 22.97 °E

Altitude Time zone U

4 m UTC+2 **Project settings**

Near Shadings

Linear shadings

Albedo

0.20

Meteo data

Thessaloniki/Livadákion

Meteonorm 8.0 (1994-2006), Sat=14% - Synthetic

System summary

Grid-Connected System

Trackers single array, with backtracking

PV Field Orientation

Orientation

Tracking plane, horizontal E-W axis Normal azimuth to axis 0 $^{\circ}$

Tracking algorithm

Astronomic calculation Backtracking activated

216 units

114 kWp

System information

PV Array

Nb. of modules Pnom total Inverters

Nb. of units Pnom total 1 unit 111 kWac

Pnom ratio 1.031

User's needs

Unlimited load (grid)

Results summary

Produced Energy

178.1 MWh/year

Specific production

1556 kWh/kWp/year Perf. Ratio PR

86.69 %

Table of contents

Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Horizon definition	5
Near shading definition - Iso-shadings diagram	6
Main results	7
Loss diagram	8
Special graphs	9

PVsyst V7.2.15

VC0, Simulation date: 14/06/22 03:46 with v7.2.15

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis

General parameters

Trackers single array, with backtracking

PV Field Orientation

Grid-Connected System

Orientation Tracking plane, horizontal E-W axis

Normal azimuth to axis

Tracking algorithm Astronomic calculation

Backtracking activated

Backtracking array

Nb. of trackers 4 units

Single array Sizes

Tracker Spacing 8.00 m 4.57 m Collector width Ground Cov. Ratio (GCR) 57.1 % 20.0 / 50.0 ° Tilt min / max.

Backtracking strategy

Phi limits +/- 55.1 ° 8.00 m Backtracking pitch Backtracking width 4.57 m

Generic

SG111-HV

Models used

Average Height

Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

Horizon

Near Shadings 7.4 ° Linear shadings

User's needs

Unlimited load (grid)

PV Array Characteristics

PV module Inverter Manufacturer Generic Manufacturer JKM530M-72HL4-BDVP Model

(Custom parameters definition)

Unit Nom. Power 530 Wp Number of PV modules 216 units Nominal (STC) 114 kWp Modules 8 Strings x 27 In series

At operating cond. (50°C)

Pmpp 105 kWp U mpp 995 V 105 A I mpp

Total PV power

14/06/22

Nominal (STC) 114 kWp Total 216 modules Module area 557 m² Cell area 514 m²

Model (Original PVsyst database)

Unit Nom. Power 111 kWac Number of inverters 1 unit Total power 111 kWac 780-1450 V Operating voltage Pnom ratio (DC:AC) 1.03

Total inverter power

Total power 111 kWac Number of inverters 1 unit Pnom ratio 1.03

Array losses

Array Soiling Losses Thermal Loss factor

Loss Fraction 1.5 % Module temperature according to irradiance Uc (const) 29.0 W/m2K

Uv (wind) 0.0 W/m2K/m/s

Module mismatch losses

Module Quality Loss Loss Fraction 0.0 % Loss Fraction 0.6 % at MPP DC wiring losses

Global array res. 104 mΩ 1.0 % at STC Loss Fraction

PVsyst V7.2.15

VC0, Simulation date: 14/06/22 03:46 with v7.2.15

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis

Array losses

IAM loss factor

Incidence effect (IAM): User defined profile

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	1.000	1.000	1.000	0.989	0.967	0.924	0.729	0.000

System losses

Auxiliaries loss

Proportionnal to Power 4.0 W/kW

0.0 kW from Power thresh.

AC wiring losses

Inv. output line up to MV transfo

Inverter voltage 540 Vac tri
Loss Fraction 0.21 % at STC

Inverter: SG111-HV

Wire section (1 Inv.) Copper 1 x 3 x 240 mm 2 Wires length 70 m

AC losses in transformers

MV transfo

Grid voltage 20 kV

Operating losses at STC

Nominal power at STC 113 kVA Iron loss (24/24 Connexion) 0.11 kW

PVsyst TRIAL

Variant: 114 kW 1 axis

PVsyst V7.2.15

VC0, Simulation date: 14/06/22 03:46 with v7.2.15

Horizon definition

Horizon from PVGIS website API, Lat=39°37"58', Long=22°13"41', Alt=153m

Average Height	7.4 °	Albedo Factor	0.72
Diffuse Factor	0.93	Albedo Fraction	100 %

Horizon profile

Azimuth [°]	-180	-173	-165	-158	-143	-135	-128	-120	-113	-105	-98	-90
Height [°]	1.9	3.4	4.6	5.7	7.3	6.5	4.6	4.2	5.3	6.1	5.7	5.3
Azimuth [°]	-83	-75	-68	-60	-53	-45	-38	-30	-23	-15	0	8
Height [°]	4.6	4.2	3.4	3.1	2.3	1.9	0.4	1.1	1.5	1.1	1.1	3.4
Azimuth [°]	15	23	38	45	135	143	150	158	165	173	180	
Height [°]	6.5	11.5	11.5	14.9	14.9	8.0	8.0	5.3	1.9	1.5	1.9	

Sun Paths (Height / Azimuth diagram)

Variant: 114 kW 1 axis

Near shadings parameter

Variant: 114 kW 1 axis

PVsyst V7.2.15

VC0, Simulation date: 14/06/22 03:46 with v7.2.15

Main results

System Production

Produced Energy

178.1 MWh/year

Specific production Performance Ratio PR 1556 kWh/kWp/year 86.69 %

Normalized productions (per installed kWp)

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
January	52.6	29.21	4.95	76.7	68.8	7.97	7.70	0.877
February	76.4	39.36	6.71	109.0	99.8	11.38	11.03	0.884
March	118.0	57.36	9.91	146.9	136.3	15.32	14.87	0.884
April	150.3	77.02	13.73	164.8	156.4	17.35	16.86	0.894
Мау	195.0	84.41	19.52	199.3	191.3	20.66	20.09	0.880
June	218.4	75.24	24.54	218.0	209.8	22.09	21.48	0.861
July	214.7	82.15	27.83	216.8	208.2	21.68	21.08	0.850
August	194.0	76.29	27.71	208.4	199.8	20.84	20.27	0.850
September	144.2	53.93	21.67	174.7	164.4	17.56	17.06	0.853
October	94.1	43.87	16.53	132.6	121.5	13.35	12.94	0.852
November	57.9	29.79	11.46	85.2	77.9	8.78	8.49	0.871
December	43.4	24.96	6.66	62.3	56.0	6.47	6.23	0.873
Year	1559.1	673.58	15.99	1794.7	1690.3	183.45	178.10	0.867

Legends

GlobHor Global horizontal irradiation

DiffHor Horizontal diffuse irradiation

T_Amb Ambient TemperatureGloblnc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray E_Grid PR Effective energy at the output of the array

Energy injected into grid

Performance Ratio

Variant: 114 kW 1 axis

PVsyst V7.2.15 VC0, Simulation date: 14/06/22 03:46

Variant: 114 kW 1 axis

