ESTUDIOS
GENERALES
CIENCIAS

PONTIFICIA
UNIVERSIDAD
CATÓLICA
DEL PERÚ

QUÍMICA 1

EXAMEN 2

SEMESTRE ACADÉMICO 2022-1 Duración: 3 horas

Todos los horarios

Elaborado por todos los profesores

Usted tiene la responsabilidad de organizar su tiempo para resolver el examen, preparar sus archivos y subirlos a la carpeta de entrega en PAIDEIA dentro del tiempo establecido. El tiempo del examen ya tiene en cuenta la preparación y entrega de sus archivos en PAIDEIA y no se le dará más tiempo para esto.

INDICACIONES:

- La prueba consta de 2 preguntas que dan un puntaje de 20 puntos.
- El profesor del horario iniciará la sesión a las 11:30 am vía Zoom para dar las indicaciones generales antes de empezar la prueba.
- La prueba será colocada en la plataforma PAIDEIA y se podrá visibilizar a las 11:30 am.
- El profesor del horario permanecerá conectado a través del Zoom y de la opción Foro en PAIDEIA en caso se requiera hacer alguna aclaración general acerca del texto. NO HAY ASESORÍAS DURANTE EL EXAMEN.
- En PAIDEIA se habilitará una carpeta de ENTREGA DEL SEGUNDO EXAMEN con un plazo que vence transcurridas las 3 horas programadas para la sesión. NO SE ACEPTARÁ NINGÚN ARCHIVO FUERA DEL PLAZO ESTABLECIDO.
- El nombre del archivo debe configurarse así: Q1-EX2
- En caso suba varios archivos, tenga cuidado de numerarlos en el nombre del archivo. Por ej., Q1-EX2-1, Q1-EX2-2
- El desarrollo de la prueba debe hacerse manualmente. NO OLVIDE COLOCAR SU NOMBRE Y CÓDIGO EN CADA HOJA DEL DOCUMENTO.
- El documento con su resolución puede escanearse o fotografíarse para subirlo a PAIDEIA.
- Asegúrese de subir los archivos correctos y de que estos tengan la extensión jpg, doc, docx o pdf.
- Todos los datos necesarios se dan al final de este documento. NO DEBE UTILIZAR NINGÚN MATERIAL ADICIONAL AL PROPORCIONADO EN EL EXAMEN.
- Si ingresa al PAIDEIA a visualizar el examen y no entrega su resolución se le considerará CERO como nota y en consecuencia, no podrá rendir el examen especial.
- La evaluación es personal. Aun cuando esté en su casa, es importante que sea consciente de que es usted el que será evaluado, por lo que debe desarrollar la evaluación de manera individual e independiente. Confiamos en su honestidad, como valor fundamental del ser humano.
- En caso de copia o plagio, su prueba será ANULADA, sin opción a rendir el examen especial y se reportará ante las autoridades correspondientes.

AL ENTREGAR MI EVALUACION EN LA CARPETA HABILITADA EN PAIDEIA ESTOY ACEPTANDO LO SIGUIENTE:

- Tengo conocimiento de que tanto **COPIAR** como **PLAGIAR** en el contexto del desarrollo de actividades y evaluaciones del curso constituye una infracción que es sancionado de acuerdo con el Reglamento Unificado de Procesos Disciplinarios de la PUCP.
- Lo que presentaré como resultado de las evaluaciones del curso será fruto de mi propio trabajo.
- No permitiré que nadie copie mi trabajo con la intención de hacerlo pasar como su trabajo.
- Durante las evaluaciones, no cometeré acción alguna que contravenga la ética y que pueda ser motivo de sanción.

USE LAPICERO Y NO LÁPIZ. NO ESTÁ PERMITIDO EL USO DE CORRECTOR. CUALQUIER ERROR SIMPLEMENTE SE TACHA. EL NO CUMPLIR CON ESTAS INDICACIONES SERÁ MOTIVO DE ANULACIÓN DEL EXAMEN.

Pregunta 1 (10 puntos)

A. El término criogénico fue utilizado por primera vez en 1875, y está relacionado con el uso de temperaturas extremadamente bajas (- 100 °C). En 1955 nacían las industrias criogénicas que requieren materiales apropiados para esas temperaturas. La criogenia es ampliamente utilizada en tecnologías que dependen de la superconductividad, pues todos los superconductores conocidos, lo son solo a bajas temperaturas. En 1962, se aisló el elemento "Q" que forma algunos compuestos con oxígeno y flúor.

Información del elemento "Q	,,
Punto de condensación a 281,2 mm Hg	152 K
Punto de solidificación a 281,2 mm Hg	152 K
Punto de sublimación a 281,2 mm Hg	152 K
Punto de ebullición normal	165 K
Punto de fusión a 0,78 atm	− 115 °C
Presión crítica	57,6 atm
Temperatura crítica	16,5 °C
Entalpía de fusión	2,3 kJ/mol
Entalpía de vaporización	12,6 kJ/mol
Calor específico de "Q"(l)	0,158 J/g K

- **a.** (1,5 p) Dibuje el diagrama de fases de "Q", identifique las curvas de cambio de fases y todos los puntos indicados en la tabla de datos. Señale en la gráfica el punto de fusión normal.
- **b.** (1,5 p) Una muestra sólida de 0,38 kg de "Q" (128 g/mol) fue sometida a un proceso isobárico (0,78 atm) desde 115 °C hasta 113 °C. Dibuje la curva de enfriamiento o calentamiento, según corresponda y calcule, en Joules, el calor transferido en el proceso.
- **c.** (2,0 p) A continuación tiene 3 compuestos:

Si usted va a llevar a cabo un proceso criogénico en el que se necesita que el compuesto se encuentre en estado líquido a temperaturas extremadamente bajas y debe utilizar uno de estos 3 compuestos, justifique cuál de los 3 recomendaría.

B. Los antiácidos son fármacos de venta libre (sin receta médica) que son comercializados como pastillas que pueden ser ingeridas para brindar un alivio inmediato a los síntomas del ardor estomacal. Estas medicinas son bases suaves que en el interior del estómago reaccionarán con el ácido estomacal (HCl), neutralizando este último. Una de estas bases es el bicarbonato de sodio que reacciona con el HCl de la siguiente forma:

$$NaHCO_3(s) + HCl(ac) \rightarrow NaCl(ac) + CO_2(g) + H_2O(l)$$

Una prueba que determina si un antiácido basado en NaHCO₃ será efectivo, consiste en hacer reaccionar diez pastillas de este antiácido con 100 mL de una solución de HCl 18,6 % masa (d = 1,08 g/mL). El CO₂ producido es recibido en un balón de 3 dm³, donde debe registrarse una presión de CO₂ de al menos 1,45 atm a 25 °C (considere que esta reacción tiene un rendimiento del 85 %). Por otro lado, si la presión registrada en esta prueba excede de 2,0 atm es un indicativo de que estas pastillas le pueden causar incomodidad al paciente al generar muchos gases.

- **a.** (1,75 p) Calcule la masa de HCl que queda en exceso luego de realizar el ensayo con la máxima cantidad de NaHCO₃ (en gramos).
- **b.** (1,50 p) ¿Cuál es la mínima cantidad de NaHCO₃ (en gramos) que debe tener una pastilla para estar en el rango aceptado?
- c. (1,75 p) Dos nuevos fármacos antiácidos pretenden salir al mercado. El primero tiene una presentación de pastillas de 2 g que tienen una composición del 90 % en masa de NaHCO₃. En el caso del segundo fármaco, se sabe que, cuando se introducen 0,3 moles de aire al reactor donde se han analizado 10 pastillas, la presión del sistema es de 3,5 atm a 25 °C ¿Serán adecuados estos fármacos para tratar la acidez estomacal?

Pregunta 2 (10 puntos)

El peróxido de hidrógeno o agua oxigenada (H₂O₂) es una sustancia con una fórmula parecida a la del agua, pero con propiedades muy diferentes. Una de sus principales características es que actúa como un agente oxidante muy potente. Es relativamente estable a temperatura ambiente, sin embargo, se descompone con facilidad por acción del calor y de la luz, por esa razón debe conservarse en envases opacos.

Sus aplicaciones son diversas, una de las más conocidas es su uso en soluciones diluidas como antiséptico, sin embargo, tiene también varios usos industriales, artísticos y aeroespaciales, entre otros.

a. (3,25 p) Un uso interesante se encuentra en trabajos de restauración. En las pinturas antiguas es común que pigmentos originales a base de carbonato de plomo, de color blanco, con el paso del tiempo hayan formado sulfuro de plomo (PbS(s)), de color negro. El tratamiento con H₂O₂ logra convertir el sulfuro de plomo en sulfato de plomo (PbSO₄(s)) de color blanco. La reacción no balanceada es la siguiente:

$$PbS(s) + H_2O_2(ac) \rightarrow PbSO_4(s) + H_2O(l)$$

- **a.1.** (1,5 p) Realice el balance de la reacción aplicando el método del ion-electrón en medio ácido. Escriba las semirreacciones de oxidación y reducción y la reacción global balanceada. Identifique los agentes oxidante y reductor, así como las especies oxidada y reducida.
- **a.2.** (1,75 p) Para realizar un ensayo se recubrió una muestra de lienzo de 10 x 10 cm con 1,31 g de PbS(s). Esta muestra se sometió a tratamiento con la cantidad estequiométrica de H₂O₂(ac) presente en una solución al 3 % en masa (d = 1,017 g/mL) y se logró obtener 1,213 g de PbSO₄(s) al término del tratamiento. Determine el rendimiento de la reacción y el volumen de la solución de H₂O₂(ac) que se utilizó en el tratamiento.
- b. (4,75 p) Los contenedores empleados para el almacenamiento del peróxido de hidrógeno deben estar hechos de materiales compatibles. Uno de estos materiales es el aluminio y algunas de sus aleaciones.
 La empresa Aluminal SAC obtiene aluminio (Al(s)) a partir de alúmina (Al₂O₃(s)) mediante el proceso Hall- Heroult. La reacción para la obtención de aluminio se muestra a continuación:

$$2 \text{ Al}_2\text{O}_3(s) \rightarrow 4 \text{ Al}(s) + 3 \text{ O}_2(g)$$

b.1. (1,5 p) Aplique la Ley de Hess para determinar la variación de entalpía de la reacción mostrada para la obtención de aluminio y el calor involucrado en la obtención de 1,25 kg de Al(s). Utilice la siguiente información:

(1)
$$2 \text{ Al(s)} + \text{Fe}_2\text{O}_3(\text{s}) \rightarrow \text{Al}_2\text{O}_3(\text{s}) + 2 \text{ Fe}(\text{l})$$
 $\Delta H^{\circ} = -824 \text{ kJ}$

(2)
$$8 \text{ Fe(I)} \rightarrow 8 \text{ Fe(s)}$$
 $\Delta H^{\circ} = -120 \text{ kJ}$

(3)
$$Fe_2O_3(s) \rightarrow 2 Fe(s) + 3/2 O_2(g)$$
 $\Delta H^{\circ} = 822 \text{ kJ}$

b.2. (3,25 p) La empresa Aluminal SAC produce también una aleación denominada "Duraluminio" que se emplea para el revestimiento de calorímetros. En el laboratorio de calidad de la empresa se desea determinar la capacidad calorífica de un calorímetro revestido con "Duraluminio" realizando una reacción de neutralización entre el ácido sulfúrico (H₂SO₄(ac)) y el hidróxido de litio (LiOH(ac)). La reacción realizada es la siguiente:

$$H_2SO_4(ac) + 2 LiOH(ac) \rightarrow Li_2SO_4(ac) + 2 H_2O(1)$$

Para lograr el objetivo, se mezclaron dentro del calorímetro 125 mL de una solución acuosa 0,39 M de H₂SO₄(ac) y 150 mL de una solución 0,60 M de LiOH(ac). Al finalizar la reacción se observó que la temperatura de la mezcla se incrementó en 3,73 °C. Además de la información obtenida en el ensayo, los analistas tomaron en cuenta los siguientes datos:

Sustancia	H ₂ SO ₄ (ac)	LiOH(ac)	Li ₂ SO ₄ (ac)	H ₂ O(l)
ΔH° _f (kJ/mol)	- 909,27	- 508,44	- 1464,5	- 285,83

Determine la capacidad calorífica del calorímetro en J/°C. Considere que la mezcla final tiene una densidad de 1 g/mL y un calor específico de 4,184 J/g °C.

c. (2,0 p) Desde hace algunos años se está investigando diferentes alternativas de propulsores líquidos para cohetes. Una de estas investigaciones está orientada a desarrollar combustibles y propulsores líquidos para el lanzamiento de satélites al espacio. La propuesta usa como combustible una mezcla de etanol, etanolamina y sales de cobre. Además, usa como agente oxidante al peróxido de hidrógeno. Cuando el H₂O₂ entra en contacto con la mezcla combustible se descompone rápidamente en O₂(g) y H₂O(g) ya que el cobre acelera esta reacción. El calor desprendido provoca que la temperatura se eleve hasta alrededor de 900 °C lo que provoca la ignición del etanol y la etanolamina que desencadena la reacción de combustión de ambas sustancias. Como resultado se origina un gran volumen de productos gaseosos que originan la propulsión deseada. La figura que se muestra a continuación ilustra el proceso descrito.

c.1. (1,0 p) Si se observa el interior de la cámara como un sistema termodinámico, indique qué tipo de sistema es (abierto, cerrado, aislado). Explique detalladamente su respuesta.

c.2. (1,0 p) Si la reacción de descomposición del peróxido de hidrógeno es la siguiente:

$$2 \text{ H}_2\text{O}_2(1) \rightarrow 2 \text{ H}_2\text{O}(1) + \text{O}_2(g)$$

$$\Delta H^{\circ} = -196,1 \text{ kJ}$$

Determine la masa en kg de $H_2O_2(l)$ que se requiere descomponer para elevar la temperatura de 5 L de etanol ($C_2H_5OH(l)$, d=0.81 g/mL, calor específico = 2,46 J/g °C) desde 25 °C hasta su temperatura de ebullición, 78,4 °C.

DATOS

Elemento	Н	C	Na	0	Pb	S	Al
Masa atómica (uma)	1	12	23	16	207	32	27

$$K = {}^{\circ}C + 273$$

$$1 \text{ dm}^3 = 1 \text{ L}$$

$$1atm = 101 \ 325 \ Pa = 760 \ mm \ Hg = 14,7 \ lb/pulg^2$$

$$PV = nRT$$

$$R = 0.082 L atm/mol K$$

$$q = m c \Delta T$$

$$q = C \Delta T$$

Lima, 8 de julio 2022

Nombre: Gabriel Alejandro Salinas de Lama	
Códias: 20220433	
DN'1: 70691753	
Frame: Cutrido	
Firma: Guerico	
a. Di se usa la máxima masa de Na HC O3, la presión de CO2 registrada	1
a. In se was na rivosuma il was de lia il 3 ; ma possoni	
es 2 atm.	
1.75 p/8 //	
1,75 Phallamos los moles de CO2 producidos:	
2 atm. 3 L = 0,082 atm. L. 298 K. n	
mol.K	
n=0,246 moles de CO2 1	
and the first place of the tent of the ten	
Moles teóricos de CO2: "usando el rendimiento	
0,246 mal de CO2. 100% = 0,289 mal de CO2 téóricas	3
85%	
032,	- 1
Man la vien a since de la vien acce de la vien	
Masa de HCl que reaccioné: * M de HCl = 36,5g/mol	
0,289 mol de CO2. 1 mol de HCl. 36,59 = 10,559 de HCl	
1 mol de CO2 1 mol	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Mara de H Cl usada:	
2 0 13 8 makes 0 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
100mL, 1.089, 0.186 = 20,099 de HCP	
100mL. 1,08 g. 0,186 = 20,09 g de HCl	
20 00 0 10 55 - 0 511 - 1 1/6 1	M.
20,099-10,559=9,549 de HCl guedanon en exceso.	
C. Primer farmaco: se ejecuta la prueba	
.75/Medes formados de COz:	1539
10. 29.0,9. 1 mol de NaHCO3. 1 mol de CO2 .985 = 0,182 moles de CO2	
849 Imelak NaHCO3	
Presión: P=0,082 atm. L. 298K. 0,182 mol = 1,48 atm	
mol K	1
34	
1,45 atm < 1,48 atm = 2 atm V Es aptop	1

Nombre: Gabriel Alejandro Jolinas de Lama Colligo: 20220433
DN1 70091753 Firma Gatalet
Degundo fármaco: De hace la prueba
Presión parcial delaire: Pa = 0,082 atm. L. 298 K. O, 3 mol = 2,44 atm mol. K 3 L
3,5atm-2,44atm=1,06atm registrado por el CO2
1,06 atm < 1,45 atm / No es aprio,
2.
a. Pb Scs, +th2 O2(00) -> Pb SO4(5) +th2 O(1)
a.1. Pb S(5) → Pb S O 4(5) Pb S(5) + 4H2 O(1) → Pb S O 4(5) + 8H+(ac) Pb S(5) + 4H2 O(1) → Pb S O 4(5) + 8H+(ac) + 8e- H2 O 2(ac) + 2H+(ac) + 2e- → 2H2 O (1) Pb S(5) + 4H2 O(1) → Pb S O 4(5) + 8H+(ac) + 8e- H2 O 2(ac) + 2H+(ac) + 2e- → 2H2 O (1)
1.5 p Demirreacción de oxidución: P65 (5) + 4 Hr O (1) -> P6504(5) + 8 H+(ac) +8e- A. reductor E. oxidada
Deminalacción de reducción: Hz Oz(ac) + 2H+ (ac) + 2e- > 2Hz O (e) A. oxidente 8. reducida
Ecuación global falanceada:
1[P65G) +4H2O(1) -> P6504(S) +8H+(Oc) +8e-) 4[H2O2(Oc) +2H+(Oc) +2e>2H2O(1)]
P65(5) +4H2 O2(ac) -> P65 O4(5) +4H2 O(2)
a. 2. Moles de P65: 1,31g. 1 mol = 0,00548 mol de P65 * Mde P65: 239g mol
Moles of H2O2 usados: 0,00548 mol de P65. 4 mol de H2O2 = 0,02192 mol de H2O2

Nombre Gabriel Alejandro Solinas de Lama
Coolingo: 20220433 DNI: 70691753 Firma: Gatrielo
Moles Teóricos producidos de P6504:
0,00548 molde P65. 1 molde P6504 = 0,00548 molde P6504 V Imolde P65
Moles experimentales de P6504: * M de P6504: 303 g/mol
1,213g de P6504. 1md = 0,004 mal de P6504
Rendimiento: 0,004 mol de PLSO4. 1007. = 72,99%, 0,00548 mol de PLSO4
Volumen de solución de Hr Oz usado: " M de Hz Oz: 349/mol
V. 1,0179.0,03 = 0,02192 md de H2 02.349
V= 24,43 mL de solución
b. 2Al2 03(5) -> 4Al(5) +302(9)
b.1. (1) 2Al(s) + Fez O3(s) → Al2 O3(s) + 2Fe(ω) ΔH° = -824 KJ 1.5 p 2Al2 O3(s) + 4Fe(ω) → 4 Al(s) + 2Fex O3(s) ΔH° = 1648 KJ 1.5 p
(2) 8 Fe (ω) → 8 Fe (S) ΔH' = -12 OKJ => 4 Fe (S) → 4 Fe (ω) ΔH' = 60 KJ
(3) Fe7 O3 (5) → 2 Fe(5) + 3/2 O2(9) △H' = 827 KJ
2Fe203(5) > 4Fe(5) + 302(9) AH° = 1644 KJ V
Aplicando Ley de Hers y juntando las nuevas ecuaciones:
2Al2O3(5) > 4Al(5) +302(9) AHrx = 3352KJ,
1,25 kg. 1000 g de Al. 1 mol = 46, 3 mol de Al => 46,3 mol. 3357 KJ = 38799,4 KJ The line of the state of the

	in	9.1	200	20	143	3		- 00	13	-		d								1	134	10		1		1
DA	11	70	691	75	3																		10			1
#	200	a: 9	unte	1	1																18		1		163	
1		0																								I
c. 2		2	Ha	0,	(u)	->	2	H-7	0	ur.	+0	200	1)		1	H	=-	-19	61	1 %	J	M	AN	BN		
		-																					/	-	13	I
9	nea	ueri	do:	9	=	50	00	mL	. 0,	81	9	. 2	,46	J		(7)	3,4-	25)	00	-	5	32	024	1,2:	J	10
1p	4			1						n	L			9°C								1				
					1	40			6	N.Y	P	a.		1	Bus	13	0	31	150	0	5	32	,0	247	K.	T
Ma	sa	de t	1,0-	, ^	egi	eri	da			*	1 ab	iont	مان	+9	Like	M	1 =	0								
100	2/1	1 4	Ten	7.5	0,	1 =	- 14	99	H	9	-		00-0	1	-	1	To a	9	0	0	1 33	J.T.	112	103	1	1
	m		196	1,1	KJ	-	-	53	2,0	24	121	KJ														
			nol																							
		N	Du	In	101	M					1	er i	N	,O	13	H		1/0	hai	100	0.3		100		153	
		m=	= 1	8 4	14	99	=	0,	18	14	9 1	19	de	Hz	0	2 1	rece	sa	nio	1 .	13	1	1		134	1
						0						J								1						
	1	× H	Ro	-	go ,	1+	Di	FS.	ROP	-13	Ho.	8	(0	(2)	121	3-	Po	0 4	- 1	S.K		4	34	0,0		1
																1									-	1
										Heli	9.0		D	, All	3 6		0	28	1-	=	T	5	B		3	h
										4/3	60		P	LÀN			. 0	88	-						- 3	1
											8.0		D		2 4		. 0	99			0			1	138	
																		26				•		23	1000	
										6.83	6.0		1 10	V.	LP3	1		20	14.5		3	2,4	. 10	63	163	
													1 10	V,	LP3	1		2 3	W 2			2.5	100		93	
													1 42		1 193	1		7 3	43			2.4	18.		93	
													1 40	V ,	1 P3	*		E P 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	74.2			3.4			200	
													. 4		I P3			t	14.5			518			000	
									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	200	40		1 40	V.	I P3	14	.0	1 3	143		T)	511		8.	03	
								3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7	40		1 4 A	Y.	I P3	14		t 3	7.5			200		8.	07	
								2			40		1	V.	I Ps	191		t 3	45			200		8.	07	
								7			40		1	V.	I PS	100		t 3	148			25.6		8.4	100	
								78			40		1 19		I PS	19		20	148			200		8.4	93	
								2			40		1 12		I PS	PA (PA (PA (PA (PA (PA (PA (PA (PA (PA (20				200			- 18	
								78			40		1 12		I PS	PA (4)		20				200				
								7					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		I P3							200				