

SoftMotion Basic

SoftMotion Basic

How to use the SoftMotion single axis functionality

Introduction

After this module you will be ...

- able to use the PLCopen motion control FunctionBlocks in CoDeSys.
- able to create single axis movements.
- able to create synchronized movements.

Agenda

- General information
- PLCopen definitions
- Basic FunctionBlocks
- Administrative FunktionBlocks
- Homing/Probing
- Master/Slave FunctionBlocks

General information

- CoDeSys SoftMotion complies with the PLCopen motion control specifications
- CoDeSys SoftMotion can only be used with a CoDeSys Motion Control PLC
- The SoftMotion functionality is accessed via special FunktionBlocks.
 - FBs beginning with 'SMC_' are 3S-specific implementations;
 - those starting with 'MC_' are FBs according to the PLCopen MC specification

State diagram

MC_Home

MC_GearIn(Slave)

SM3_Basic.library

- This library contains function blocks...
 - for handling, monitoring, parameterization, supervision
 - for generating movements

Behaviour (1)

- FBs with Enable input
 - TRUE:
 - FB is active
 - FALSE:
 - FB is inactive

Behaviour (2)

- FB with Execute input
 - rising edge:
 - acceptance of inputs
 - taking control of the axis
 - start of movement
 - falling edge:
 - all outputs cleared (if this happens before action/ movement is ended, the outputs remain set for one cycle)
 - a falling edge does not stop the movement

behaviour (3)

- FB with Execute input has the following outputs...

 done (or similar)
 - - set, when movement (command) has been successfully completed
 - busy
 - true as long as the FB processes the ordered task
 - CommandAborted
 - during the process another FB has taken control (caused) by a rising edge on the execute input) of the axis
 - Error/ErrorID
 - internal error inside FB (not implicitly in drive)
 - **(e.g.** wrong parameters, drive not enabled…)

MC POWER

- enable the power stage (bRegulatorOn)
- disable quickstop mechanism (bDriveStart)

Discrete

Motion

Basic FunctionBlocks

MC MoveAbsolute

- absolute positioning
- only for rotary axes: modes of direction: positive, negative, current, shortest, fastest

MC ReadStatus

reads the state of an axis defined by the

PLCopen

Visualization templates

The SoftMotion libraries provide visualization templates for all FBs which are especially useful for initial operation.

Exercise

SM BASIC_EX1

Write a little application for one linear drive, containing an MC Power FB and two MC MoveAbsolute FBs! Use the MC_ReadStatus to evaluate the PLCopen states!

Test the start behaviour of the FBs (Execute, CommandAborted, Done..)!

Use the visualization templates!

MC MoveRelative

Moves the drive by a distance relative to the last set position.

Other discrete Motion FBs

- MC_MoveSuperImposed
- MC MoveAdditive
- MC PositionProfile

- Need detailed information?
- → refer to CoDeSys Help

MC_Halt

slow axis down to standstill

MC_Stop

- slow axis down to standstill
- stopping cannot be interrupted by other FBs
- remains in stopping state
 - until the axis has reached velocity zero
 - and Execute is False

Continuous

Motion

Basic FunctionBlocks

MC MoveVelocity

- endless movement of an axis with constant velocity
- output InVelocity shows when the set velocity has been reached
- velocity is always non-negative
- direction is set with input Direction positive/negative/current

```
XYZ
                                                              MC MoveVelocity
TYPE MC DIRECTION : (
                                                   ⇔ Axis
          fastest:=3,(*vendor specific*)
                                                                               InVelocity
                                                     Execute
                                                                                   Busy
          current:=2,
                                                     Velocity.
                                                                         CommandAborted
          positive:=1,
                                                    Acceleration
                                                                                   Error
          shortest:=0,
                                                     Deceleration
                                                                                 ErrorID
          negative:=-1);
                                                     Direction.
END TYPE
```


We software Automation.

Other continuous Motion FBs

- MC_MoveSuperImposed
- MC_VelocityProfile
- MC AccelerationProfile

- Need detailed information?
- → refer to CoDeSys Help

Exercise

SM_BASIC_EX2

Program a two-velocity hand control for a linear axis:

Four buttons (of the HMI) make the axis move at two different velocities either to the right or to the left.

Another button moves the axis back to position zero.

HOME

Use visualization templates for testing your program!

MC ReadActualPosition

- read actual position
- besides using the FB, reading the values of the AxisREF is also possible <DriveName>.fActPosition

DriveA.fActPosition

Other FBs for reading the actual values

- MC_ReadActualTorque
- MC_ReadActualVelocity

- Need detailed information?
- → refer to CoDeSys Help

MC_ReadAxisError

- read drive internal error
- returned AxisErrorID is vendor specific

MC_Reset

reset errors

Handling the error history

every axis contains an FB error history

Expression	Туре	Value
Device.Application.DriveA.fbeFBError	ARRAY [0g_SMC_N	
fbeFBError[0]	SMC_FBERROR	
	SMC_ERROR	SMC_AXIS_NOT_READY_FOR_MOTION
🗷 🧼 pbyErrorInstance	POINTER TO BYTE	16#0316F73E
tTimeStamp	TIME	T#3h13m42s911ms
🖽 🧤 fbeFBError[1]	SMC_FBERROR	
🖽 🧤 fbeFBError[2]	SMC_FBERROR	
🖃 🧤 fbeFBError[3]	SMC_FBERROR	
	SMC_ERROR	SMC_REGULATOR_OR_START_NOT_SET
🗷 🧼 pbyErrorInstance	POINTER TO BYTE	16#0316F778
tTimeStamp	TIME	T#3h27m51s452ms
⊞ 🧤 fbeFBError[4]	SMC_FBERROR	
	SMC_FBERROR	

Handling the error history

 Read the first error which has occurred at an FB using this axis.

Clear this error.

MC SetPosition

- Moves the origin of the coordinate system.
- Mode:
 - TRUE: moves the origin by Position
 - FALSE: current position becomes Position

MC_Read/Write (Bool)Parameter

read/write parameters according to PLCopen

also available bus dependent FBs for reading and writing parameters

Exercise

SM BASIC EX3

Use the SM BASIC EX2 project.

Add an MC_Rest FunctionBlock to reset the drive.

Use an MC_ReadActualPosition to get the current position values.

> 0.0 RESET

HOME

Use visualization templates for testing your program!

SMC_Homing

StandStill Homing

PLC controlled homing

```
SMC Homing
                                                                    bDone
 Axis AXIS REF SM3
                                                              800E
 lbExecute BOOL
                                                              8001 bBusy
                                                         bCommandAborted
 lfHomePosition IREAL
-fVelocitySlow TREAT
                                                              BOOL bError
-fVelocityFast LREAL
                                                      5MC ERROR nErrorID
-fAcceleration LREAL
                                                        bStartLatchingIndex
                                                  800L
HfDeceleration 1REAL
nDirection MC Direction
BReferenceSwitch BOOL
—fSignalDelay LREAL
--nHomingMode SMC HOMING MODE
—bReturnToZero 800£
-bIndexOccured BOOL
 fIndexPosition LREAL
 bIgnoreHWLimit BOOL
```


MC_Home

Homing StandStill

- Drive controlled homing (ordered homing)
 - If homing is not supported by the drive use SMC_Homing

TYPE TRIGGER REF :

bInput:BOOL;

END STRUCT END TYPE

bFastLatching:BOOL:=TRUE; iTriggerNumber:INT:=-1;

bActive:BOOL:=FALSE;

STRUCT

MC TouchProbe

- TriggerInput: reference to trigger signal
- WindowOnly
 - FALSE: all signals cause a probe
 - TRUE: only between FirstPosition and LastPosition
 - (not supported by all drives)

```
MC_TouchProbe
Axis AXIS REF 5M3
                                                          Done
TriggerInput TRIGGER REF
                                                          Busy
Execute 8001
                                                     8001 Error
WindowOnly BOOL
                                            5MC_ERROR_ErrorID
                                                RecordedPosition
FirstPosition
LastPosition
                                                CommandAborted
           - LREAL
```


MC_AbortTrigger

aborts active probe

```
TYPE TRIGGER_REF :
STRUCT

bFastLatching:BOOL:=TRUE;
   iTriggerNumber:INT:=-1;
   bInput:BOOL;
   bActive:BOOL:=FALSE;
END_STRUCT
END_TYPE
```

```
MC_AbortTrigger

— Axis AXI5_REF_5M3 BOOL Done —
TriggerInput TRIGGER_REF BOOL Busy —
Execute BOOL Error —
5MC_ERROR ErrorID —
```


Master/Slave FunctionBlocks

MC GearIn

electronic gear

MC GearIn

Slave AXIS REF SM3

Execute *8001*

 $\{\mathsf{RatioNumerator} \mid J \mathcal{WT}\}$

 $ext{-RatioDenominator} = UMVT$

Acceleration IREAL

Deceleration *LREAL*

BOOL InGear *8001* Busy CommandAborted

BOOL Error

5MC_ERROR ErrorID

Master/Slave FunctionBlocks

MC_GearOut

Synchronized Continuous Motion

- ungear the slave axis
- slave axis maintains last velocity

```
MC_GearOut
—Slave AXIS_REF_5M3 BOOL Done —
Execute BOOL Busy —
BOOL Error —
5MC_ERROR ErrorID
```


Master/Slave FunctionBlocks

MC_Phasing

phase shifting

Exercise

SM_BASIC_EX4

Create a program for two axes:

Axis1 is controlled by MC_Power and MC_MoveVelocity (with visualization templates).

Axis2 is always linked to Axis1 with a gearing ratio of 2/3.

Let's check

Summary

- SoftMotion means
 - FBs according to PLCopen motion control
 - additional FBs
- There are FBs for
 - creating movements
 - supervison
 - administrative tasks
- Further information needed?
 - → refer to CoDeSys Help

Thank you for your interest

We software Automation.