Programme de khôlles ECG1-B

Semaines 17 et 18 -

Equivalence & négligabilité, Applications linéaires

• Énoncés / notions à connaitre :

Équivalence et négligeabilité

- Notion de suites équivalentes, suites négligeables : notations $u_n \underset{n \to +\infty}{\sim} v_n$ et $u_n \underset{n \to +\infty}{=} o(v_n)$.
- Notion de fonctions équivalentes, fonctions négligeables au voisinage de $a \in \mathbb{R} \cup \{+\infty, -\infty\}$: notations $f(x) \underset{x \to a}{\sim} g(x)$ et $f(x) \underset{x \to a}{=} o(g(x))$.
- Négligeabilité usuelles (croissances comparées) pour des suites et des fonctions.
- Equivalents usuels en 0 pour suites et fonctions.
- Règles de calcul pour les équivalents et les o().
- "Changement de variable" dans un équivalent (exemple : $\sin(2x) \sim 2x$.)

(N.B: On ne dispose pas encore des développements limités)

Applications linéaires

- Notion d'application linéaire, caractérisation pratique.
 - Vocabulaire: endomorphisme, isomorphisme, automorphisme. Notations $\mathcal{L}(E,F)$, $\mathcal{L}(E)$.
- $\mathcal{L}(E,F)$ est un espace vectoriel : applications $f+g, \lambda f, f \circ g$. Puissances d'un endomorphisme.
- Détermination du noyau et de l'image d'une application linéaire.
- Notion d'isomorphisme, isomorphisme réciproque. Notation GL(E).
- Lien entre noyau/image et injectivité/surjectivité.
- Caractérisation d'une application linéaire par l'image d'une base (e_1, \ldots, e_n) de l'ensemble de départ. f est injective/surjective/bijective ssi la famille $(f(e_1), \ldots, f(e_n))$ est libre/génératrice/une base de l'ensemble d'arrivée.

(N.B: On ne dispose pas encore de la notion de rang, ni de dimension d'un espace vectoriel)

• Démonstrations à connaitre :

- Autre caractérisation de l'équivalence : $u_n \underset{n \to +\infty}{\sim} v_n \iff u_n = v_n + o(v_n)$ (Proposition 2)
- Si $f \in \mathcal{L}(E, F)$, Im(f) est un SEV de F. (Proposition 7)
- Si $f \in \mathcal{L}(E, F)$, Ker(f) est un SEV de E. (Proposition 9)
- $f \in \mathcal{L}(E, F)$ est surjective / injective si et seulement si $Im(f) = F / Ker(f) = \{0_E\}$. (Théorème 2)