Sparse matrices, Poisson reconstruction, LUTs

Вычисления на видеокартах. Лекция 8

Sparse matrices,
Poisson surface reconstruction on GPU,
Look Up Tables

Полярный Николай

polarnick239@gmail.com

Представления разреженных матриц

Число ненулевых значений **NNZ=11**

COOrdinate-wise - **COO**

Row index - NNZ

Column index - NNZ

Values - NNZ

Compressed Sparse Row - CSR

Row offsets - N+1

Column index - NNZ

Values - NNZ

NB: Сложно обратиться к колонке. Можно запускать warp/wavefront на ряд.

Аналогично с Compressed Sparse Column - CSC.

ELLpack - ELL

col		val				
0	1	3		1	2	11
1	2	*		3	4	*
1	2	3		5	6	7
3	*	*		8	*	*
3	4	*		9	10	*

Column index - N*M

Values - N*M

Где М - максимальное число элементов в ряду.

DIAgonal - **DIA**

Diagonal offsets - D

Values - N*D

Где **D** - число диагоналей с хотя бы одним ненулевым значением.

Memory Footprint

Format	Structure	Values
Dense	-	$N \times N$
COO	$2 \times NNZ$	NNZ
CSR	N + 1 + NNZ	NNZ
ELL	$M \times N$	$M \times N$
DIA	D	$D \times N_D$

HYB

Наблюдение:

Большинство матриц почти подпадают под какой-то из паттернов, но содержат небольшое количество элементов лежащих вне этого паттерна.

$$A := B + C$$

Теперь **B** - идеально подходит под паттерн и представляется в соответствующем виде **ELL** или **DIA**.

С - почти пустая матрица, соответственно для нее подходит СОО.

Источник: Sparse Matrix Representations & Iterative Solvers

Structured Mesh

Источник: Sparse Matrix Representations & Iterative Solvers

Unstructured Mesh

Format	float	double
COO	12.00	16.00
CSR	8.62	12.62
DIA	164.11	328.22
ELL	11.06	16.60
HYB	9.00	13.44

Bytes per Nonzero Entry

Источник: Sparse Matrix Representations & Iterative Solvers

Random Matrix

Источник: Sparse Matrix Representations & Iterative Solvers

СЛАУ

Пусть есть разреженная СЛАУ

A*x=b

Есть много итеративных методов:

- Якоби
- Гаусса-Зейделя
- Сопряженных Градиентов

Пример - метод Ричардсона:

$$\mathbf{x}^{k+1} = x^k - \tau(Ax^k - b)$$

Достаточно научиться умножать разреженную матрицу на вектор.

COO

$$\mathbf{A} = \begin{bmatrix} 1 & 7 & 0 & 0 \\ 0 & 2 & 8 & 0 \\ 5 & 0 & 3 & 9 \\ 0 & 6 & 0 & 4 \end{bmatrix}$$

CSR (scalar)

$$\mathbf{A} = \begin{bmatrix} 1 & 7 & 0 & 0 \\ 0 & 2 & 8 & 0 \\ 5 & 0 & 3 & 9 \\ 0 & 6 & 0 & 4 \end{bmatrix}$$

CSR (vector)

$$\mathbf{A} = \begin{bmatrix} 1 & 7 & 0 & 0 \\ 0 & 2 & 8 & 0 \\ 5 & 0 & 3 & 9 \\ 0 & 6 & 0 & 4 \end{bmatrix}$$

ELL

$$\mathbf{A} = \begin{bmatrix} 1 & 7 & 0 & 0 \\ 0 & 2 & 8 & 0 \\ 5 & 0 & 3 & 9 \\ 0 & 6 & 0 & 4 \end{bmatrix}$$

$$\mathtt{data} = \begin{bmatrix} 1 & 7 & * \\ 2 & 8 & * \\ 5 & 3 & 9 \\ 6 & 4 & * \end{bmatrix} \qquad \mathtt{indices} = \begin{bmatrix} 0 & 1 & * \\ 1 & 2 & * \\ 0 & 2 & 3 \\ 1 & 3 & * \end{bmatrix}$$

DIA

 Iteration 0
 [
 2
 3

 Iteration 1
 [
 0
 1
 2
 3

 Iteration 2
 [
 0
 1
 2
 3

Structured matrices

Matrix	Grid	Diagonals	Rows	Columns	Nonzeros
Laplace 3pt	(1,000,000)	3	1,000,000	1,000,000	2,999,998
Laplace 5pt	$(1,000)^2$	5	1,000,000	1,000,000	4,996,000
Laplace 7pt	$(100)^3$	7	1,000,000	1,000,000	6,940,000
Laplace 9pt	$(1,000)^2$	9	1,000,000	1,000,000	8,988,004
Laplace 27pt	$(100)^3$	27	1,000,000	1,000,000	26,463,592

Table 3: Structured matrices used for performance testing.

Structured matrices - bandwidth

Structured matrices - gflops

Unstructured matrices

Matrix	Rows	Columns	Nonzeros	Nonzeros/Row
Dense	2,000	2,000	4,000,000	2000.0
Protein	$36,\!417$	36,417	4,344,765	119.3
FEM/Spheres	83,334	83,334	6,010,480	72.1
FEM/Cantilever	$62,\!451$	62,451	4,007,383	64.1
Wind Tunnel	217,918	217,918	11,634,424	53.3
FEM/Harbor	46,835	46,835	2,374,001	50.6
QCD	$49,\!152$	49,152	1,916,928	39.0
FEM/Ship	$140,\!874$	140,874	7,813,404	55.4
Economics	$206,\!500$	$206,\!500$	1,273,389	6.1
Epidemiology	$525,\!825$	$525,\!825$	$2,\!100,\!225$	3.9
FEM/Accelerator	121,192	121,192	2,624,331	21.6
Circuit	170,998	170,998	958,936	5.6
Webbase	1,000,005	1,000,005	$3,\!105,\!536$	3.1
LP	4,284	1,092,610	$11,\!279,\!748$	2632.9

Table 4: Unstructured matrices used for performance testing.

Unstructured matrices - bandwidth

Unstructured matrices - gflops

Ссылки

- Sparse Matrix-Vector Multiplication and Matrix Formats
- Sparse Matrix Representations & Iterative Solvers
- Efficient Sparse Matrix-Vector Multiplication on CUDA, Bell et al., 2008

Poisson surface reconstruction

На входе \vec{V} - точки с инвертированными нормалями.

Находим индикатор χ - скалярное поле, чей градиент приближает векторное поле норма $\min_{\chi} \| \nabla \chi - \vec{V} \|$

Результирующая поверхность∂М - изоповерхность в поле индикатора.

Figure 1: *Intuitive illustration of Poisson reconstruction in 2D.*

Сведение к уравнению Пуассона

Итого хочется найти такой индикатор χ чтобы:

$$abla ilde{\chi} = ec{V}$$

Явного решения нет, но можно приближенно решить минимизируя квадратичную ошибку оператором дивергенции сведя к уравнению Пуассона:

$$\Delta \chi \equiv \nabla \cdot \nabla \chi = \nabla \cdot \vec{V}$$

$$\Delta \tilde{\chi} = \nabla \cdot \vec{V}$$

Дискретизация

Регулярная решетка - кубическая память.

На самом деле интересно лишь пространство около поверхности. Поэтому можно использовать адаптивное октодерево.

В каждом узле октодерева с центром o.c и шириной o.w находится базовая функция $F:\mathbb{R}^3 \to \mathbb{R}$

$$F_o(q) \equiv F\left(\frac{q - o.c}{o.w}\right) \frac{1}{o.w^3}$$

Т.е. каждая точка делает вклад в базовую функцию своего узла.

Решение

Задача сводится к:

$$\min_{x \in \mathbb{R}^{|\mathcal{O}|}} \|Lx - v\|^2$$

Где L - разреженная, симметричная матрица размера $|\mathscr{O}| imes |\mathscr{O}|$ (квадрат размера октодерева).

Решается методом сопряженных градиентов.

Число столбцов - число соседних узлов чья базисная функция пересекается с узлом текущего ряда. Поэтому $|\mathscr{O}| \times 125$

Подробнее: Poisson Surface Reconstruction, Kazhdan et al., 2006

GPU Poisson reconstruction

- 1) Как построить октодерево?
- 2) Как эффективно найти соседние узлы?
- 3) Как решить уравнение Пуассона?

Как построить октодерево. Структура узла.

1) Shuffled xyz key:

$$x_1y_1z_1x_2y_2z_2\cdots x_Dy_Dz_D$$

Для октодерева глубины 10 - 30 бит.

- 2) Точки содержащиеся в узле: индекс первой точки и количество точек.
- 3) Указатели:
 - родительский узел
 - 8 детей
 - 27 соседей (включая сам узел)

Итого: >156 байт.

Построение октодерева. Самая глубокая ступень.

- 1) Нашли bounding box (через редукцию min/max по каждой оси).
- 2) Для каждой вершины посчитали **shuffled xyz key**.
- 3) И отсортировали вершины по этому ключу. Теперь вершины с одинаковым ключем (а значит лежащие в одном узле) лежат подряд.
- 4) Нашли уникальные ключи.
- 5) По каждому узлу проверили общий ли родитель с предыдущем по ключу узлом. Если да положили рядом **0**, если нет положили рядом **8**.
- 6) Посчитав префиксную сумму по лежащим рядом числам получили глобальный индекс восьми ячеек в октодереве для нас и наших братьев.

Построение октодерева. Остальные ступени.

Чтобы найти индекс родителя и создать его:

- 1) Занулить три бита ключа соответствующие самой детальной ступени.
- 2) Повторить аналогично шагам 5 и 6 из построения самой глубокой ступени.
- 3) При этом:
 - выставляется ссылка на родителя
 - у родителя выставляются ссылки на детей
 - у родителя выставляется индекс первой вершины и количество вершин узла (сумма количества вершин в каждом ребенке)

Построение октодерева. Соседи.

У каждого узла до 26 соседей.

Чтобы их найти потребуется сделать **26*27*8=5616** поисков (26 соседей, 27: родительский узел и его соседи - каждый с 8 детьми).

Построение октодерева. Look Up Tables.

2	5	8
1	4	7
0	3	6

LUTparent[4][9] = {
$\{0, 1, 1, 3, 4, 4, 3, 4, 4\},\$
{1, 1, 2, 4, 4, 5, 4, 4, 5},
${3, 4, 4, 3, 4, 4, 6, 7, 7},$
{4, 4, 5, 4, 4, 5, 7, 7, 8} };
LUTchild[4][9] = {
${3, 2, 3, 1, 0, 1, 3, 2, 3},$
{2, 3, 2, 0, 1, 0, 2, 3, 2},
{1, 0, 1, 3, 2, 3, 1, 0, 1},
{0, 1, 0, 2, 3, 2, 0, 1, 0} };

- 1) LUTparent: Пусть есть узел t чей родитель p. Пусть p.children[i] = t. Тогда parent(t.neighs[j]) = LUTparent[i][j]
- **2) LUTchild:** Пусть есть узел t чей родитель p. Пусть p.children[i] = <math>t.

Пусть parent(t.neighs[j]) = h

Тогда t.neigh[j] = h.children[LUTchild[i][j]]

Построение октодерева. Look Up Tables.

```
LUTparents = []
for iy in range(2):
    for ix in range(2):
        i = iy * 2 + ix
        parents = []
        for jy in range(3):
            for jx in range(3):
                i = iv * 3 + ix
                globalx, globaly = 2 + ix + (jx - 1), 2 + iy + (jy - 1)
                px, py = int(globalx // 2), int(globaly // 2)
                parents.append(py * 3 + px)
        LUTparents.append(parents)
def LUTparent(i, j):
    ix, iy, iz = i \% 2, (i // 2) \% 2, (i // 4)
    jx, jy, jz = i % 3, (i // 3) % 3, (i // 9)
    globalx, globaly, globalz = ...
    px, py, pz = ...
    return pz * 3 * 3 + py * 3 + px
```

Решение уравнения Пуассона.

- 1) Строим СЛАУ $\mathbf{L}\mathbf{x} = \mathbf{b}$
- 2) Решаем методом сопряженных градиентов

Где L - разреженная, симметричная матрица размера $|\mathscr{O}| \times |\mathscr{O}|$ (квадрат размера октодерева).

Число столбцов - число соседних узлов чья базисная функция пересекается с узлом текущего ряда. Поэтому $|\mathscr{O}| \times$ 125 или $|\mathscr{O}| \times$ 27 (грубее, но компактнее).

Подробнее: Data-Parallel Octrees for Surface Reconstruction, Zhou et al., 2011

Ссылки

- Poisson Surface Reconstruction, Kazhdan et al., 2006
- Data-Parallel Octrees for Surface Reconstruction, Zhou et al., 2011
- https://devtalk.nvidia.com/default/topic/609551/my-cuda-programming-lecture-and-teaching-of-poisson-parallel-surface-reconstruction-in-a-summer-scho/
- https://www.youtube.com/watch?v=ykUs4MYOwcY