Développements limités

1. Généralités

1.1. Définitions

a) Développement en 0 : soit f une fonction définie au voisinage de 0.

On dit que f admet un **développement limité à l'ordre** n **en** 0 (DL $_n$ (0)) lorsque f peut s'écrire au voisinage de 0:

$$f(x) = P_n(x) + x^n \varepsilon(x)$$

où $P_n \in \mathbb{R}_n[X]$ et $\lim_{x \to 0} \varepsilon(x) = 0$.

Autrement dit

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n)$$

 $a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$ est la **partie régulière** du développement, $x^n \varepsilon(x)$ le **reste**.

Cas particuliers:

- $DL_0(0)$: $f(x) = a_0 + o(1)$ équivaut à la continuité de f en 0, avec $f(0) = a_0$.
- $DL_1(0): f(x) = a_0 + a_1x + o(x)$ équivaut à la dérivabilité de f en 0, avec $f(0) = a_0$, et $f'(0) = a_1$

Attention : cela ne se généralise pas.(si f admet un $DL_2(0)$, elle n'est pas nécessairement deux fois dérivable en 0).

Remarque: un polynôme non nul est équivalent en 0 à son terme DE PLUS BAS DEGRE.

On range les puissances dans l'ordre décroissant d'importance.

b) Développement en a : soit f une fonction définie au voisinage de a.

On dit que f admet un **développement limité à l'ordre** n **en** a (DL $_n$ (a)) lorsque f (a + x) admet un DL $_n$ (0). Autrement dit si l'on peut écrire au voisinage de 0:

$$f(a+h) = a_0 + a_1h + a_2h^2 + \dots + a_nh^n + o(h^n)$$

En posant x = a + h, un $DL_n(a)$ peut s'écrire

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n + o_a((x - a)^n)$$

1

On se gardera de développer une telle écriture, qui compare f aux puissances de x-a.

c) Unicité : si f admet un développement limité à l'ordre n en 0, celui-ci est unique.

1.2. Quelques règles pratiques :

$$x^n \ll x^{n-1} \ll \ldots \ll x^2 \ll x \ll 1$$

- a) Sur les "petits o": soient n < p: alors au voisinage de 0
 - Un o (1) est une fonction qui tend vers 0
 - $x^p = o(x^n)$
 - Un o (x^p) est aussi o (x^n) .
 - La somme de deux $o(x^n)$ est un $o(x^n)$.
 - La somme d'un $o(x^n)$ et d'un $o(x^p)$ est un $o(x^n)$
 - Si $\alpha \in \mathbb{R}^*$, un o $((\alpha x)^n)$ et le produit de α et d'un o (x^n) sont des o (x^n)
 - Le produit d'un $o(x^n)$ et d'un $o(x^p)$ est un $o(x^{n+p})$
 - Le produit de x^n par un $o(x^p)$ est un $o(x^{n+p})$

Dans le doute, on reviendra à l'écriture $x^n \varepsilon(x)$

- **b)** Sur les DL: si f admet en 0 le DL $_n$: $f(x) = a_0 + a_1x + \cdots + a_nx^n + o(x^n)$ alors
 - $\forall k \leq n, f \text{ admet en } 0 \text{ le } \mathrm{DL}_k : f(x) = a_0 + a_1 x + \dots + a_k x^k + \mathrm{o}\left(x^k\right)$ (en effet les termes $a_{k+1} x^{k+1}, \dots, a_n x^n, \mathrm{o}\left(x^n\right)$ sont tous négligeables devant x^k). On dit qu'on a **tronqué** la partie régulière à l'ordre k.
 - $\forall \alpha \in \mathbb{R}^*$, on a $f(\alpha x) = a_0 + a_1 \alpha x + \dots + a_n \alpha^n x^n + o(x^n)$.
 - En particulier : $f(-x) = a_0 a_1 x + \dots + (-1)^n a_n x^n + o(x^n)$ Ainsi, par unicité du DL_n :
 - Si f est paire, les coefficients $a_1, a_3, a_5 \dots$ sont nuls
 - Si f est impaire, les coefficients $a_0, a_2, a_4 \dots$ sont nuls
- c) Utilisation des "O": lorsqu'une fonction f admet un $DL_{n+1}(0)$, on peut écrire

$$f\left(x\right) = a_0 + a_1 x + \dots + a_n x^n + a_{n+1} x^{n+1} + o\left(x^{n+1}\right) = a_0 + a_1 x + \dots + a_n x^n + O\left(x^{n+1}\right)$$
 puisque $a_{n+1} x^{n+1} + o\left(x^{n+1}\right) = x^{n+1} \left(a_{n+1} + \varepsilon\left(x\right)\right) = O\left(x^{n+1}\right)$

2. La formule de Taylor-Young

2.1. Intégration d'un D.L

a) **Proposition**(admise) : soit f continue au voisinage de 0 :

$$\operatorname{si} f\left(x\right) = \operatorname{o}\left(x^{n}\right), \operatorname{alors} F\left(x\right) = \int_{0}^{x} f\left(t\right) dt = \operatorname{o}\left(x^{n+1}\right).$$

Attention: le résultat est faux pour les dérivées comme avec $x^2 \sin\left(\frac{1}{x}\right) = o(x)$

b) Conséquence : soit f continue au voisinage de 0 admettant le $\mathrm{DL}_n\left(0\right)$:

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n)$$

Alors $F\left(x\right)=\int_{0}^{x}f\left(t\right)dt$ admet le développement limité **à l'ordre** n+1 :

$$F(x) = \int_0^x f(t) dt = a_0 x + a_1 \frac{x^2}{2} + \dots + a_n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

Attention: on ne dérive pas les D.L.

2.2. Formule de Taylor-Young

a) Formule en 0: on suppose f de classe C^n sur un intervalle contenant 0: alors f admet le $D.L_n(0)$:

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

ou

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n})$$

b) Formule au voisinage d'un réel a : par translation, on en déduit la formule générale :

Si f est de classe C^n dans un voisinage de a alors f admet le $\mathrm{DL}_n\left(a\right)$:

$$f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2!}h^2 + \dots + \frac{f^{(n)}(a)}{n!}h^n + o(h^n) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}h^k + o(h^n)$$

En posant x = a + h:

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + o((x-a)^n)$$

c) <u>Cas des fonctions complexes</u>: La formule de Taylor-Young reste valable pour les fonctions à valeurs complexes. De plus,

$$si f(x) = P(x) + o(x^n), alors \begin{cases} \operatorname{Re} f(x) = \operatorname{Re} P(x) + o(x^n) \\ \operatorname{Im} f(x) = \operatorname{Im} P(x) + o(x^n) \end{cases}$$

Remarque: un $o(x^n)$ est une fonction du type $x^n \varepsilon(x)$, ε complexe de limite nulle en 0.

2.3. Application : développements limités usuels

Voir planche

Exemple 1: $DL_n(0)$ de 2^x :

Exemple 2: $DL_3(0)$ de $e^x \cos x = Re(e^x e^{ix})$ et $e^x \sin x = Im(e^x e^{ix})$:

Exemple 3: développer $(1+x)^5$ à l'ordre 5, puis 8, puis 3.

3. Opérations sur les D.L

Dans la pratique, on n'utilise pas la formule de Taylor, mais les propriétés d'addition, de produit et de composées appliquées aux développements usuels.

On suppose que f et g admettent les développements limités à l'ordre n en 0 :

$$f\left(x\right) = \underbrace{a_0 + a_1 x + \dots + a_n x^n}_{P(x)} + o\left(x^n\right) \quad \text{et} \quad g\left(x\right) = \underbrace{b_0 + b_1 x + \dots + b_n x^n}_{Q(x)} + o\left(x^n\right)$$

3.1. Somme et produit

a) Combinaisons linéaires:

$$\forall (\lambda, \mu) \in \mathbb{R}^2, \ \lambda f + \mu g \text{ admet le DL}_n(0) : \lambda f(x) + \mu g(x) = \lambda P(x) + \mu Q(x) + o(x^n)$$

Attention: les ordres doivent être les mêmes pour f et g (sinon on prend le plus petit).

b) Produit:

$$f\left(x\right)g(x)=R\left(x\right)+o\left(x^{n}
ight)$$
 , où R est le polynôme PQ tronqué à l'ordre n

Attention : le développement de fg obtenu $\boxed{\text{N'EST QU'A L'ORDRE } n}$

Exemple:
$$f(x) = \frac{\sin x}{1+x}$$
 à l'ordre 5 en 0

c) Cas particuliers:

La multiplication par x augmente l'ordre du DL de 1La division par x diminue l'ordre du DL de 1

Exemple:
$$x \ln (1+x)$$
 à l'ordre 4 et $\frac{\ln (1+x)}{x}$ à l'ordre 2

Plus généralement, l'ordre du DL produit peut augmenter sur des cas particuliers :

Exemple: DL₅ (0) de
$$\sin x \ln (1+x)$$

3.2. Composée

a) Principe: On suppose que
$$\lim_{x\to 0}u\left(x\right)=0$$
 et que $u\left(x\right)$ admet un $\mathrm{DL}_{n}\left(0\right)$:

$$u(x) = c_1 x + c_2 x^2 + \dots + c_n x^n + o(x^n)$$

Alors

$$f \circ u(x) = a_0 + a_1 (c_1 x + \dots + c_n x^n + o(x^n)) + \dots + a_n (c_1 x + \dots + c_n x^n + o(x^n))^n + o((c_1 x + \dots + c_n x^n + o(x^n))^n)$$

Le pire terme est un $o\left(x^{n}\right)$, donc on obtient un $\mathrm{DL}_{n}\left(0\right)$ de $f\left(u\left(x\right)\right)$ en ne conservant que les termes de degré $\leq n$. $\left(o\left(\left(c_{1}x+\cdots+c_{n}x^{n}+o\left(x^{n}\right)\right)^{n}\right)$ est un $o\left(x^{n}\right)$)

Là encore, on peut sur des cas particuliers augmenter l'ordre du DL.

Exemple 1: DL₃ (0) de
$$\sqrt{1+\sin x}$$

Exemple 2:
$$DL_3(0)$$
 de $(1+x)^{1/x} = e^{\frac{\ln(1+x)}{x}}$

b) Application aux quotients : on se ramène à la forme

$$\frac{v\left(x\right)}{1+u\left(x\right)}=v\left(x\right)\times\frac{1}{1+u\left(x\right)},\quad\text{avec}\quad\left[\lim_{x\to0}u\left(x\right)=0\right]$$

Exemple 1: $DL_{2}\left(0\right)$ de $\frac{xe^{x}}{\ln\left(1+x\right)}$

Exemple 2 : $DL_6(0)$ de tan

3.3. Applications

a) Calculs de limites : (où les équivalents ne suffisent plus)

Principe: développer à l'ordre $0: f(x) = \ell + o(1)$

Exemple: $\lim_{x\to 0} \frac{1}{x^2} \ln\left(\frac{\sin x}{x}\right)$.

b) Recherche d'équivalents :

Principe : le premier terme non nul d'un DL en a de f donne un équivalent de f au voisinage de a, appelé **partie principale de** f **au voisinage de** a.

Exemple: soit $f: x \to \sqrt{4+4x} - \ln(1+x)$. On a $\lim_{x \to 0} f = 2$. Equivalent en 0 de f(x) - 2?

3.4. Peut-on dériver à un DL $f(x) = a_0 + a_1x + a_2x^2 + a_nx^n + o(x^n)$ (*)

a) Oui: si f est de classe C^n sur I contenant 0 alors la formule de Taylor-Young est valable.

Par unicité du DL, on a donc $f(0) = a_0, f'(0) = a_1, ..., f^{(n)}(0)n! = a_n.$

De plus f' est de classe C^{n-1} sur I, on peut appliquer Taylor-Young à l'ordre n-1:

$$f'(x) = f'(0) + f''(0)x + \frac{f'''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{(n-1)!}x^{n-1} + o(x^{n-1}) = a_1 + 2a_2x + na_nx^{n-1} + o(x^{n-1})$$

Dans ce cas, on peut dériver (*).

b) Non: si en revanche, on cherche la classe de f, il est hors de question de dériver un DL.

Exemple: soit
$$f: x = \frac{1}{\sin x} - \frac{1}{x}$$
, sur $D =]-\pi, 0[\cup]0, \pi[$.

Montrer que f se prolonge en une fonction de classe C^1 sur $]-\pi,\pi[$.

4. Généralisations-Développements asymptotiques

4.1. Développements en $+\infty$

On dit que f admet un développement limité à l'ordre n en $+\infty$ lorsque $f\left(\frac{1}{x}\right)$ admet un développement limité à l'ordre n en 0. On obtient un DL de la forme

$$f(x) = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \dots + \frac{a_n}{x^n} + o\left(\frac{1}{x^n}\right)$$

Dans la pratique, on fait le changement de variable $X = \frac{1}{x}$, mais on préfère souvent développer directement suivant les puissances de $\frac{1}{x}$. Ceci est très utilisé pour les suites.

5

Exemple 1: $f(x) = x(\ln(x+1) - \ln x)$ à l'ordre 2 en $+\infty$.

Exemple 2: $u_n = \left(1 + \frac{a}{n}\right)^n$. Développement limité à l'ordre 2.

4.2. Développements asymptotiques

a) On appelle développement asymptotique de f en $a \in \mathbb{R}$ une écriture de la forme

$$f\left(x\right) = a_0 \varphi_0\left(x\right) + \cdots$$

Remarque: en général, les $\varphi_k(x)$ sont des puissances de x: en $+\infty$, on a souvent

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 + \frac{b_1}{x} + \dots + \frac{b_p}{x^p} + o\left(\frac{1}{x^p}\right)$$

et en 0

$$f(x) = \frac{a_n}{x^n} + \frac{a_{n-1}}{x^{n-1}} + \dots + \frac{a_1}{x}x + a_0 + b_1x + \dots + b_px^p + o(x^p)$$

Exemple 1: DA de $\ln(1+x)$ en $+\infty$ à la précision $\frac{1}{x^3}$

Exemple 2 : DA de $\frac{1}{\sin x}$ en 0 à la précision x^4

Exemple 3: DA à quatre termes de $\sqrt{x^3 + x + 1}$ en $+\infty$

4.3. Applications aux asymptotes

Rappel: D: y = ax + b est asymptote à C_f lorsque f s'écrit au voisinage de $\pm \infty$:

$$f(x) = ax + b + \varepsilon(x) = ax + b + o(1) \text{ avec } \lim_{x \to \pm \infty} \varepsilon(x) = 0$$

On fait donc un DA de f en ∞ . De plus, la position de \mathcal{C}_f par rapport à D dépend du signe de f(x) - ax - b. Un DA de f à la précision $\frac{1}{x}$, i.e.

$$f(x) = ax + b + \frac{c}{x} + o\left(\frac{1}{x}\right)$$

 $f\left(x\right)=ax+b+\frac{c}{x}+\mathrm{o}\left(\frac{1}{x}\right)$ donne (**localement**) la position de la courbe par rapport à l'asymptote (signe de c).

Exemple 1: $f(x) = \sqrt{4x^2 + 2x + 3}$: asymptotes à C_f en $-\infty$.

Exemple 2: $f(x) = \frac{1}{e^{1/x} - 1}$: asymptotes à C_f en $-\infty$.

b) Généralisation: C_q est dite courbe asymptote à C_f lorsque $\lim (f - g) = 0$

Par exemple un DA asymptotique de f de la forme

$$f(x) = ax^{2} + bx + c + \frac{d}{x} + o\left(\frac{1}{x}\right)$$

assure que la parabole d'équation $y = ax^2 + bx + c$ est asymptote à C_f (dessin)

Exemple: $f(x) = \sqrt{x^4 + 4x^3 + 27}$. Etude complète de f