QUESTIONS

The equation, in polar coordinates, of a curve is

$$r = a \sin \theta \cos^2 \theta$$

where a is a positive constant and $0 \le \theta \le \pi$.

- (i) Show that the greatest value of r is $\frac{2a\sqrt{3}}{9}$. [7]
- (ii) Sketch the curve. [4]
- Sketch the curve with polar equation r = sin θ (1-cos θ) for 0 ≤ θ ≤ π. [2]
 - (i) the area enclosed by the curve. [6]
 - (ii) the polar coordinates of the point of the curve furthest from the origin. [4]
- 3. i) Sketch the curve $r = \sin \theta + \sqrt{3} \cos \theta$ for $0 \le \theta \le \frac{\pi}{2}$. [4]
 - Find the maximum value of r and the angle at which it occurs.
 - iii) Find the area bounded by the curve from $\theta = 0$ to $\theta = \frac{\pi}{2}$. [5]
- 4. The curve C has polar equation

$$r = 4\sin 2\theta \sin \theta$$
,

where $0 \le \theta < 2\pi$.

- (a) Draw a sketch of C. [3]
- (b) Using the results from parts (i) and (ii)(a) above, find the area of the region enclosed by one loop of the curve C.
 [4]