R documentation

of './man/add_data.Rd' etc.

July 13, 2020

add_data

Set data on either probe-node matrix at a new or existing node

Description

At a given node n_new, this function adds data d to the either the methyl probe-node matrix or p-value probe-node matrix (depending on the matrix parameter). Make sure that the sizes of d and the probe-node matrix are compatible before calling this function.

Usage

```
add_data(icceTree, n_new, d, matrix = 0)
```

Arguments

icceTree data structure

n_new node number

d column matrix of methylation status for a node across many probes

matrix numerical value indicating which probe-node matrix to add data to (0 == methyl

states, 1 == p-values)

Value

probe-node matrix with data d stored at node n_new

```
tree <- add_data(icceTree, 12, probe_node_matrix['6'], matrix=0)</pre>
```

2 build_icceTree

```
betas_to_consensus_vector
```

Convert betas matrix to consensus vectors of probes for each cell group

Description

This function creates a consensus vector for each group using the betas matrix. Sex cells and unwanted cell groups given the function are removed first. Then the cells are fit to a bimodal distribution and finally compiled into consensus vectors for each cell group.

Usage

```
betas_to_consensus_vector(
  reference_file,
  series_matrix_file,
  betas,
  group_names,
  remove_names
)
```

Arguments

series_matrix_file

directory location of where given series matrix file is located

betas matrix (rows are cell names, columns are probe names)

group_names list of cell names in betas remove_names list of cell names in betas

reference reference file

Value

consensus vector for each cell in group names

Examples

```
consensus_vector <- betas_to_consensus_vector(reference, 'GSE110554/samples_GEOLoadSeriesMatrix.rds',
betas, c('NK', "Monocytes", ...), c('A.mix', 'B.mix', ...))</pre>
```

build_icceTree

Fully generate probe-node matrix with available data

Description

This function fully generates the probe-node matrix with a given tree. It performs ancestral tree reconstruction using Fitch's algorithm.

create_consensus_vector 3

Usage

```
build_icceTree(consensus_vector, tree)
```

Arguments

consensus_vector

consensus vector data frame for each cell in group names

tree ape::phylo tree

Value

prone-node matrix storing the methylation status across all probes and nodes on a tree

Examples

```
icceTree <- build_icceTree(consensus_vector, tree)
tree <- icceTree$tree
probe_node_matrix <- icceTree$probe_node_matrix</pre>
```

create_consensus_vector

Create consensus vector of probes for each group

Description

This function creates consensus vector for each group using majority ruling: across all probes, whichever category (methylated/unmethylated) is represented in more than 2/3's of the sample will saved. Otherwise, -1 for ambiguous is saved. A probabilistic model will supplement this in the future.

Usage

```
create_consensus_vector(betas, group_names)
```

Arguments

betas matrix (rows are cell names, columns are probe names)

group_names list of cell group names in betas matrix

Value

consensus vector for each cell in group names

```
consensus_vector <- create_consensus_vector(betas, c('NK', "Monocytes", \dots))
```

4 cut_tree

create_node_matrix

Create node matrix used for tree walking functions

Description

Returns a matrix which tracks where recursive functions are in a tree structure. This is passed to most recursive functions in this package.

Usage

```
create_node_matrix(tree)
```

Arguments

tree

ape::phylo tree

Value

node matrix with one column for ancestors and another column for descendants

Examples

```
node_matrix <- create_node_matrix(tree)</pre>
```

cut_tree

Recursively walk through a tree and structure remove descendants of given node.

Description

This function will recursively walk through a given tree and remove all of the descendants of a given node, making the given node a new leaf.

Usage

```
cut_tree(node, root, node_matrix, i)
```

Arguments

node node number

root of non-proper subtree

i row in node matrix, starting at 1

Value

None

```
cut_tree(node, get_root(tree), node_matrix, 1)
```

fit_betas_to_distribution 5

```
fit_betas_to_distribution
```

Categorize betas based on bimodal distribution

Description

This function uses a given bimodal distribution generated within cell types in order to categorize betas as either methylated (1), unmethylated (0), or ambiguous (-1).

Usage

```
fit_betas_to_distribution(betas, bi)
```

Arguments

betas matrix (rows are cell names, columns are probe names)

bi matrix specifying mu0, mu1, sigma0, sigma1 across all cell types

Value

betas matrix categorized based on bimodal distribution

Examples

```
betas <- fit_betas_to_distribution(betas, bi)</pre>
```

```
fit_betas_to_distribution_p
```

Categorize betas based on bimodal distribution and return the p-value of each categorization.

Description

This function uses a given bimodal distribution generated within cell types in order to categorize betas as either methylated (1) or unmethylated (0) in the betas structure. It also returns the p-value of each categorization in the betas_p structure.

Usage

```
fit_betas_to_distribution_p(betas, bi)
```

Arguments

betas matrix (rows are cell names, columns are probe names)

bi matrix specifying mu0, mu1, sigma0, sigma1 across all cell types

Value

betas matrix categorized based on bimodal distribution

Examples

```
betas <- fit_betas_to_distribution(betas, bi)</pre>
```

generate_bimodal_distribution

Generate bimodal distribution on cell types

Description

This function generates a bimodal distribution on the betas matrix data within each cell type

Usage

```
generate_bimodal_distribution(betas)
```

Arguments

betas

matrix (rows are cell names, columns are probe names)

Value

matrix specifying mu0, mu1, sigma0, sigma1 across all cell types

Examples

```
bi <- generate_bimodal_distribution(betas)</pre>
```

```
generate_branch_changes
```

Generate list of relevant probes for gain, loss, and change in methylation status

Description

This function returns relevant probe lists for each node that exhibits either a gain or a loss in methylation status. It also returns three sets of branch labels: number of methylation changes, number of methylation gains, and number of methylation losses. These labels can be given to the show_tree function as an edge labels parameter to visualize this data.

Usage

```
generate_branch_changes(icceTree)
```

Arguments

```
icceTree icceTree data structure probe_node_matrix
```

probe-node matrix storing the methylation status across all probes and nodes on a tree

generate_p_values 7

Value

a structure containing a list of probes with differentially methylated probes for each node (gain and loss stored separately), a list of branch labels for the number of total changes in methylation, a list of branch labels for the number of gains in methylation, and a list of branch labels for the number of losses in methylation

Examples

```
probe_information <- generate_branch_changes(icceTree)
relevant_probes <- probe_information$relevant_probes
total_changes_label <- probe_information$total_changes_label
meth_gains_label <- probe_information$meth_gains_label
meth_losses_label <- probe_information$meth_losses_label</pre>
```

generate_p_values

Work on this...

Description

Given...

Usage

```
generate_p_values(x, mu0, mu1, nsamples = 10)
```

Arguments

x data structure

mu0 name of variable/file

mu1 directory to which the data should be saved

nsamples number of cell types

Value

None

```
save_data(betas, 'betas', getwd())
```

8 get_probes_of_gene

get_leaves

Get the leaves of a tree

Description

Given a tree, this function returns its leaves.

Usage

```
get_leaves(icceTree)
```

Arguments

icceTree

icceTree data structure

Value

a list of nodes representing the leaves of the tree

Examples

```
leaves <- get_leaves(icceTree)</pre>
```

get_probes_of_gene

Get probes along a given gene

Description

This function returns a list of probes along a particular gene using the given reference file.

Usage

```
get_probes_of_gene(reference, gene)
```

Arguments

reference reference file gene gene name

Value

list of probes along a particular gene

```
gene_probes <- get_probes_of_gene(reference, gene)</pre>
```

get_reference 9

get_reference

Return reference data frame

Description

This function returns the contents of a given reference file as a data frame. The rows of the data frame are the probe names, allowing for quick indexing.

Usage

```
get_reference(reference_file)
```

Arguments

reference_file file location of reference file

Value

reference file

Examples

```
reference <- get_reference('~/references/hg38/annotation/R/
EPIC.hg38.manifest.rds')</pre>
```

get_relevant_genes

Find relevant genes for gain and loss of methylation

Description

This function returns a list of relevant gene for each node that exhibit a gain or loss in methylation status.

Usage

```
get_relevant_genes(icceTree, relevant_probes, reference)
```

Arguments

icceTree data structure

 $relevant_probes$

list of differentially methylated probes for each node

reference reference file

Value

list of differentially methylated genes for each node

```
relevant_genes <- get_relevant_genes(icceTree, relevant_probes, reference)</pre>
```

10 grow_off_leaf

get_root

Get root of a tree

Description

Returns the root of a given tree structure.

Usage

```
get_root(icceTree)
```

Arguments

icceTree

icceTree data structure

Value

node corresponding the the root of the tree

Examples

```
root <- get_root(icceTree)</pre>
```

grow_off_leaf

Grow a tree at a given leaf node

Description

Add a pair of leaves branching off of a given leaf node on a tree. Assigns the two newly added leaves labels from node_names. The old leaf where the two new branches were add is also assigned as an internal node.

Usage

```
grow_off_leaf(icceTree, leaf, node_names)
```

Arguments

icceTree data structure

leaf node number

node_names list of two node names

Value

new tree topology-two branches added to given leaf and labeled accordingly

```
icceTree <- grow_off_leaf(icceTree, 1, c('Fibroblasts', 'Fibrocytes'))</pre>
```

icce_tree 11

icce_tree Create icce tree object

Description

Returns icce tree object given a probe-node matrix, a probe-node p-values and a ape::phylo tree

Usage

```
icce_tree(probe_node_matrix, probe_node_matrix_p, tree)
```

Arguments

```
probe_node_matrix
```

probe-node matrix storing the methylation status across all probes and nodes on

probe_node_matrix_p

probe-node matrix storing the p-value of each node across all probes on a tree

ape::phylo tree tree

Value

icce tree object

Examples

```
reconstruct_internal_nodes(get_root(tree), node_matrix, 1)
```

```
inherit_parental_state
```

Inherit parental states to ambiguous nodes

Description

This function will recursively walk through a given tree and assigns parental states to ambiguous children nodes

Usage

```
inherit_parental_state(root, node_matrix, i)
```

Arguments

root of non-proper subtree root

node_matrix matrix obtained from create_node_matrix function

i row in node matrix, start at 1

Value

None

ninternal_nodes

Examples

```
inherit_parental_state(get_root(tree), node_matrix, 1)
```

```
initialize_probe_node_matrix
```

Initialize the probe-node matrix

Description

This function simply initializes a probe-node matrix across given nodes and probes with zeros.

Usage

```
initialize_probe_node_matrix(consensus_vector, tree)
```

Arguments

```
consensus_vector
```

consensus vector data frame for each cell in group names

tree

ape::phylo tree

Value

```
initialized probe_node_matrix
```

Examples

```
probe_node_matrix <- initialize_probe_node_matrix(consensus_vector,
    upgma_tree(consensus_vector))
```

ninternal_nodes

Get number of internal nodes on a tree

Description

Returns the number of internal nodes on the given tree.

Usage

```
ninternal_nodes(icceTree)
```

Arguments

icceTree

icceTree data structure

Value

number of internal nodes on a given tree

```
number_of_internal_nodes = ninternal_nodes(icceTree)
```

nleaves 13

nleaves

Get number of leaves of a tree

Description

Returns the number of leaves on a given tree.

Usage

```
nleaves(icceTree)
```

Arguments

icceTree

icceTree data structure

Value

number of leafs of a given tree

Examples

```
number_of_leaves = nleaves(icceTree)
```

nnodes

Get total number of nodes on a tree

Description

Returns the number of nodes on a given tree.

Usage

```
nnodes(icceTree)
```

Arguments

icceTree

icceTree data structure

Value

number of nodes on a tree

```
number_of_nodes = nnodes(icceTree)
```

14 read_IDAT

nprobes

Get number of probes in consensus vector

Description

Returns the number of probes in a list of consensus vectors

Usage

```
nprobes(consensus_vector)
```

Arguments

consensus_vector

consensus vector data frame for each cell in group names

Value

number of probes

Examples

```
number_of_probes <- nprobes(consensus_vector)
... some visualization</pre>
```

read_IDAT

Load betas data

Description

Using sesame, this function loads betas data using IDAT files stored in a given directory

Usage

```
read_IDAT(IDAT_dir)
```

Arguments

IDAT_dir

directory location of where given IDAT file is located

Value

betas matrix

```
betas <- read_IDAT('~/20191212_GEO_datasets/GSE110554')</pre>
```

reconstruct_internal_nodes

Reconstruct internal nodes

Description

This function will recursively walk through a given tree and reconstruct all of its internal states using Fitch's algorithm

Usage

```
reconstruct_internal_nodes(root, node_matrix, i)
```

Arguments

root of non-proper subtree

node_matrix matrix obtained from create_node_matrix function

i row in node matrix, start at 1

Value

None

Examples

```
reconstruct_internal_nodes(get_root(tree), node_matrix, 1)
```

relabel_node_matrix Relabel node in probe-node matrix

Description

Relabel node label n_old with node label n_new in either probe-node matrix (depending on the matrix parameter).

Usage

```
relabel_node_matrix(icceTree, n_old, n_new, matrix = 2)
```

Arguments

icceTree data structure

n_old node number n_new node number

matrix numerical value indicating which probe-node matrix to add data to (0 == methyl)

states, 1 == p-values)

remove_NA_probes

Value

relabeled probe_node_matrix with node label n_old with node label n_new

Examples

```
probe_node_matrix <- relabel_node_matrix(icceTree, 7, 15, matrix=2)</pre>
```

relabel_tree

Relabel node on tree

Description

Relabel node label n_old with node label n_new on tree.

Usage

```
relabel_tree(icceTree, n_old, n_new)
```

Arguments

icceTree data structure

n_old node numbern_new node number

Value

relabeled tree with node label n_old with node label n_new

Examples

```
icceTree <- relabel_tree(icceTree, 7, 15)</pre>
```

remove_NA_probes

Removes NA probes

Description

Returns consensus vector with NA probes removed

Usage

```
remove_NA_probes(consensus_vector)
```

Arguments

```
consensus_vector
```

consensus vector data frame for each cell in group names

Value

consensus vector without NA probes

Examples

```
consensus_vector <- remove_NA_probes(consensus_vector)</pre>
```

```
remove_branches_from_node
```

Cut tree at specified node

Description

Given a tree and a selected node, this function removes the branches stemming off of that node, thus making that node a leaf. It returns this altered tree.

Usage

```
remove_branches_from_node(icceTree, node)
```

Arguments

icceTree data structure

node node number

Value

new tree topology-node is now a leaf and all of node's descendants are removed.

Examples

```
icceTree <- remove_branches_from_node(icceTree, node=8)</pre>
```

remove_cell_types

Removes specific cell types from betas matrix

Description

This function removes specified group names. Common names include MIX or are typically heterogeneous mixtures of cells.

Usage

```
remove_cell_types(betas, remove_names)
```

Arguments

betas matrix (rows are cell names, columns are probe names)

remove_names list of cell names in betas

18 remove_sex_chr

Value

betas matrix without specified cell names

Examples

```
betas <- remove_cell_types(betas, c('A.mix', 'B.mix', ...))</pre>
```

remove_intermediate_probes

Removes intermediate probes

Description

Returns consensus vector with intermediate probes removed.

Usage

```
remove_intermediate_probes(consensus_vector)
```

Arguments

consensus_vector

consensus vector data frame for each cell in group names

Value

consensus vector without intermediate probes

Examples

```
consensus_vector <- remove_intermediate_probes(consensus_vector)
... some visualization</pre>
```

remove_sex_chr

Removes probes on sex chromosomes

Description

This function removes probes located on sex chromosomes because these probes have a disproportionate global methylation status

Usage

```
remove_sex_chr(reference, betas)
```

Arguments

reference reference file

betas matrix (rows are probe names, columns are cell names)

Value

betas matrix without probes located on sex chromosomes.

Examples

```
betas <- remove_sex_chr(reference, betas)</pre>
```

remove_unapplicable_probes

Removes all inapplicable probes

Description

Returns consensus vector with NA, intermediate, and zero parsimony probes removed

Usage

```
remove_unapplicable_probes(consensus_vector)
```

Arguments

consensus_vector

consensus vector data frame for each cell in group names

Value

consensus vector without inapplicable probes

Examples

```
consensus_vector <- remove_unapplicable_probes(consensus_vector)</pre>
```

```
remove_zero_parsimony_probes
```

Removes zero parsimony probes

Description

Returns consensus vector with zero parsimony probes removed

Usage

```
remove_zero_parsimony_probes(consensus_vector)
```

Arguments

```
consensus_vector
```

consensus vector data frame for each cell in group names

20 show_gene_track

Value

consensus vector without zero parsimony probes

Examples

```
consensus_vector <- remove_zero_parsimony_probes(consensus_vector)
... some visualization</pre>
```

save_data

Saves specified data with variable name to working directory

Description

Given data, a variable name, and a location for that data to be stored, this function simply saves data.

Usage

```
save_data(data, variable_name, dir)
```

Arguments

data data structure variable_name name of variable/file

dir directory to which the data should be saved

Value

None

Examples

```
save_data(betas, 'betas', getwd())
```

show_gene_track

Track the single probe resolution change of a gene

Description

Displays constructed tree with node labels for the proportion of each probe state for a selected gene. This is saved at the given filename.

Usage

```
show_gene_track(
  filename,
  tree,
  gene,
  thermo_prop_internal_nodes,
  thermo_prop_leaves
)
```

show_heatmap 21

Arguments

filename to which the plot will be saved

tree ape::phylo tree

gene gene name

thermo_prop_leaves

thermo proportion plot for leaves of all of the probe states

thermo_prop_node

thermo proportion plot for internal nodes of all of the probe states

Value

None

Examples

```
show_gene_track('tree_CD81', tree=icceTree$tree, gene='CD81',
thermo_prop_internal_nodes=thermo_prop_internal_nodes, thermo_prop_leaves=
thermo_prop_leaves)
... some visualization
```

show_heatmap

Display heatmap of probes In progress

Description

This is in progress

Usage

```
show_heatmap(betas, reference)
```

Arguments

betas betas reference reference

```
head_map <- show_heatmap()</pre>
```

22 track_gene

show_tree	Display tree

Description

Displays constructed tree and saves it at the given filename.

Usage

```
show_tree(filename, tree, title, edge_labels)
```

Arguments

filename to which the plot will be saved

tree ape::phylo tree title title name

edge_labels optional labels for each branch

Value

None

Examples

```
show_tree(filename='tree.pdf', tree=icceTree$tree, title='Hematopoietic Tree',
edge_labels=meth_gains_label)
```

track_gene

Get proportion of probes methylated, unmethylated, ambiguous at each node across a tree

Description

This function returns the proportion of each probes that are methylated, unmethylated, ambiguous at each node across a tree.

Usage

```
track_gene(icceTree, reference, gene)
```

Arguments

icceTree data structure

reference reference file gene gene name probe_node_matrix

matrix storing the methylation status across all probes and nodes on a tree

upgma_tree 23

Value

a structure composed of two lists that contain methylation state proportions for internal nodes and methylation state proportions for leaves

Examples

```
gene_information <- track_gene(icceTree, reference, 'CD81')
thermo_prop_internal_nodes = gene_information$thermo_prop_internal_nodes
thermo_prop_leaves = gene_information$thermo_prop_leaves</pre>
```

upgma_tree

Get UPGMA tree construction

Description

This function uses the UPGMA algorithm to construct a phylogenetic tree using methylation data.

Usage

```
upgma_tree(consensus_vector)
```

Arguments

consensus_vector

consensus vector data frame for each cell in group names

Value

ape::phylo tree constructed using UPGMA algorithm

```
tree <- upgma_tree(consensus_vector)</pre>
```

Index

 $show_gene_track, 20$

```
add_data, 1
                                                 show_heatmap, 21
                                                 show_tree, 22
betas_to_consensus_vector, 2
build_icceTree, 2
                                                 track_gene, 22
                                                 upgma_tree, 23
create_consensus_vector, 3
create_node_matrix, 4
cut_tree, 4
fit_betas_to_distribution, 5
fit_betas_to_distribution_p, 5
generate_bimodal_distribution, 6
generate_branch_changes, 6
generate_p_values, 7
get_leaves, 8
get_probes_of_gene, 8
get_reference, 9
get_relevant_genes, 9
get_root, 10
{\tt grow\_off\_leaf}, {\tt 10}
icce_tree, 11
inherit_parental_state, 11
initialize_probe_node_matrix, 12
ninternal_nodes, 12
nleaves, 13
nnodes, 13
nprobes, 14
read_IDAT, 14
{\tt reconstruct\_internal\_nodes}, 15
relabel_node_matrix, 15
relabel_tree, 16
remove_branches_from_node, 17
remove_cell_types, 17
remove_intermediate_probes, 18
remove_NA_probes, 16
remove_sex_chr, 18
remove_unapplicable_probes, 19
remove_zero_parsimony_probes, 19
save_data, 20
```