8-Puzzle Solver Using A* Search

Project Description

Overview:

This project implements a solver for the 8-puzzle problem (and its generalizations to an $n \times n$ board) using the A^* search algorithm. In the 8-puzzle, eight numbered tiles and one blank are arranged on a 3×3 grid. The goal is to slide the tiles—by moving a neighboring tile into the blank space—until the board is arranged in row-major order (with the blank in the last position). Note that not every board configuration is solvable. This implementation uses a *twin board* strategy (swapping two non-blank tiles) to detect unsolvability.

Figure 1: 8-Puzzle transitions from initial to goal

Key Components

1. Board Data Type

• Representation:

The board is modeled as an immutable object containing an $n \times n$ grid. Tiles are stored where 0 represents the blank square.

Figure 2: Board representation and string representation

• Methods:

- Constructor: Initializes the board from an $n \times n$ array (or list of lists in Python).
- toString() / __str__: Returns a string representation that shows the board size and layout.

- Heuristics:

- * Hamming distance: Counts the number of tiles out of place.
- * Manhattan distance: Sums the vertical and horizontal distances from each tile to its goal position.

Figure 3: Hamming and Manhattan distances example

- isGoal(): Checks if the board matches the goal state.
- neighbors(): Generates all valid boards reachable by sliding a tile into the blank space.

Figure 4: Board and neighbors

 twin(): Creates a board by swapping any pair of non-blank tiles (used to detect unsolvable puzzles).

2. Solver Data Type

• Search Node:

Each search node stores:

- A board.
- $-\,$ The number of moves made so far.
- A link to the previous node.
- A priority computed as the sum of the moves and the board's Manhattan distance.

• A* Search:

Uses a priority queue to always expand the node with the lowest priority. When the goal board is reached, the solution path is reconstructed.

• Dual Search for Unsolvability:

Two searches are performed in lockstep—one on the initial board and one on its twin. If the twin reaches the goal, the original board is unsolvable.

• Optimizations:

- Caching of the Manhattan (or Hamming) distances.
- Pruning redundant search nodes by skipping neighbors that revert to the previous board.

Figure 5: Search node expansions example

Hints on How to Solve the Problem

1. Understanding the Board Representation:

- Model the board as an immutable data type so that once created, its state does not change. This helps in reliably comparing boards during the search.
- Use a 2D array (or tuple of tuples) for representing the board configuration.

2. Implementing Heuristics:

• Hamming Distance:

Count how many tiles (ignoring the blank) are not in their goal position.

• Manhattan Distance:

For each tile, compute the distance from its current position to its target position (sum of horizontal and vertical differences).

· Caching:

Since the Manhattan distance is computed repeatedly, calculate it once for each search node and store it.

3. Generating Neighbors:

- Identify the position of the blank tile.
- Create new board configurations by sliding a neighboring tile into the blank space (considering up, down, left, and right moves).
- **Optimization:** Do not enqueue a neighbor if it is the same as the previous board (to avoid cycling back).

4. A* Search Implementation:

- Use a priority queue (e.g., heapq in Python) to store search nodes.
- Define each search node's priority as moves + heuristic (with the Manhattan heuristic preferred for better performance).
- Expand the search by dequeuing the node with the smallest priority, then enqueue all its valid neighbors.

5. Detecting Unsolvable Boards:

- Generate a twin board by swapping two non-blank tiles.
- Run A* search simultaneously on both the initial board and its twin. If the twin board reaches the goal state, then the initial board is unsolvable.

6. Reconstructing the Solution:

• When the goal state is reached in the search, backtrack using the linked search nodes to build the sequence of moves leading from the initial board to the goal.