

Classification Methods (1)

- Manual classification
 - Used by the original Yahoo! Directory
 - Looksmart, about.com, ODP, PubMed
 - Accurate when job is done by experts
 - Consistent when the problem size and team is small
 - Difficult and expensive to scale
 - Means we need automatic classification methods for big problems

Introduction to Information Retrieva

Ch. 13

Classification Methods (2)

- Hand-coded rule-based classifiers
 - One technique used by news agencies, intelligence agencies, etc.
 - Widely deployed in government and enterprise
 - Vendors provide "IDE" for writing such rules

ntroduction to Information Retrieval

Ch 13

Classification Methods (2)

- Hand-coded rule-based classifiers
 - Commercial systems have complex query languages
 - Accuracy is can be high if a rule has been carefully refined over time by a subject expert
 - Building and maintaining these rules is expensive

A Verity topic
A complex classification rule: art

Deplicating of art topic definition
art ACOME

ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOME
ACOM

Note:

- maintenance issues (author, etc.)
- Hand-weighting of terms

[Verity was bought by Autonomy, which was bought by HP ...]

troduction to Information Retrieval

Sec. 13.1

Classification Methods (3): Supervised learning

- Given:
 - A document d
 - A fixed set of classes:
 - $C = \{c_1, c_2, ..., c_l\}$
 - A <u>training set</u> D of documents each with a label in C
- Determine:
 - A learning method or algorithm which will enable us to learn a classifier y
 - For a test document d, we assign it the class $\gamma(d) \in C$

Introduction to Information Retrieval

Ch. 1

Classification Methods (3)

- Supervised learning
 - Naive Bayes (simple, common) see video
 - k-Nearest Neighbors (simple, powerful)
 - Support-vector machines (newer, generally more powerful)
 - ... plus many other methods
 - No free lunch: requires hand-classified training
 - But data can be built up (and refined) by amateurs
- Many commercial systems use a mixture of methods

oduction to Information Retrieva

Features

- Supervised learning classifiers can use any sort of feature
 - URL, email address, punctuation, capitalization, dictionaries, network features
- In the simplest bag of words view of documents
 - We use only word features
 - we use all of the words in the text (not a subset)

Introduction to Information Retrieva

Sec.13.

Feature Selection: Why?

- Text collections have a large number of features
 - 10,000 1,000,000 unique words ... and more
- · Selection may make a particular classifier feasible
 - Some classifiers can't deal with 1,000,000 features
- Reduces training time
 - Training time for some methods is quadratic or worse in the number of features
- Makes runtime models smaller and faster
- Can improve generalization (performance)
 - Eliminates noise features
 - Avoids overfitting

ntroduction to Information Retrieva

Feature Selection: Frequency

- The simplest feature selection method:
 - Just use the commonest terms
 - No particular foundation
 - But it make sense why this works
 - They're the words that can be well-estimated and are most often available as evidence
 - In practice, this is often 90% as good as better methods
 - Smarter feature selection

Introduction to Information Retrieva

Naïve Bayes: See *IIR* 13 or cs124 lecture on Coursera

 Classify based on prior weight of class and conditional parameter for what each word says:

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} \left[\log P(c_{j}) + \sum_{i \in positions} \log P(x_{i} \mid c_{j}) \right]$$

Training is done by counting and dividing:

$$P(c_j) \leftarrow \frac{N_{c_j}}{N} \qquad P(x_k \mid c_j) \leftarrow \frac{T_{c_j x_k} + \alpha}{\sum_{x_i \in V} [T_{c_j x_i} + \alpha]}$$

Don't forget to smooth

troduction to Information Retrieval

SpamAssassin

- Naïve Bayes has found a home in spam filtering
 - Paul Graham's A Plan for Spam
 - Widely used in spam filters
 - But many features beyond words:
 - black hole lists, etc.
 - particular hand-crafted text patterns

troduction to Information Retrieval

SpamAssassin Features:

- Basic (Naïve) Bayes spam probability
- Mentions: Generic Viagra
- Regex: millions of (dollar) ((dollar) NN,NNN,NNN.NN)
- Phrase: impress ... girl
- · Phrase: 'Prestigious Non-Accredited Universities'
- From: starts with many numbers
- · Subject is all capitals
- HTML has a low ratio of text to image area
- Relay in RBL, http://www.mail-abuse.com/ enduserinfo_rbl.html
- RCVD line looks faked
- http://spamassassin.apache.org/tests_3_3_x.html

troduction to Information Retrieval

Naive Bayes is Not So Naive

- Very fast learning and testing (basically just count words)
- Low storage requirements
- Very good in domains with many equally important features
- More robust to irrelevant features than many learning methods

Irrelevant features cancel out without affecting results

Introduction to Information Retrieva

Naive Bayes is Not So Naive

- More robust to concept drift (changing class definition over time)
- Naive Bayes won 1st and 2nd place in KDD-CUP 97 competition out of 16 systems

Goal: Financial services industry direct mail response prediction: Predict if the recipient of mail will actually respond to the advertisement – 750,000 records.

A good dependable baseline for text classification (but not the best)!

ntroduction to Information Retrieval

Sec 13 6

Introduction to Information Retrieval

Sec.13.

Evaluating Categorization

- Evaluation must be done on test data that are independent of the training data
 - Sometimes use cross-validation (averaging results over multiple training and test splits of the overall data)
- Easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set)

Evaluating Categorization

- Measures: precision, recall, F1, classification accuracy
- Classification accuracy: r/n where n is the total number of test docs and r is the number of test docs correctly classified

Faculty			Students		Cour	Courses	
associate	0.004	17	resume	0.00516	homework	0.004	
chair	0.003	03	advisor	0.00456	syllabus	0.003	
member	0.002	88	student	0.00387	assignments	0.003	
ph	0.002	87	working	0.00361	exam	0.003	
director	0.00282		stuff	0.00359	grading	0.003	
fax	0.002	79	links	0.00355	midterm	0.003	
journal	0.002	71	homepage	0.00345	pm	0.003	
recent	0.002	60	interests	0.00332	instructor	0.003	
received	0.002	58	personal	0.00332	due	0.003	
award	0.002	50	favorite	0.00310	final	0.003	
Departments			Research Projects		Others		
departme		.01246	investigato		1 4 4	0.00164	
colloquia	۱,۰	.01076	group	0.00250	. 2	0.00148	
epartment		.01045	members	0.00242		0.00145	
seminars		.00997	researchers	0.002		0.00142	
schedules		.00879	laboratory	0.00238		0.00136	
webmaster		.00879	develop	0.00201		0.00128	
мершаме	1.0	.00826	related	0.00200		0.00128	
events	1 7				' format C	0.00124	
events facilities	0	.00807	arpa	0.00187	1 1 1 -		
events	0	0.00807 0.00772 0.00764	affiliated project	0.00184 0.00183	access 0	0.00117	

Recall: Vector Space Representation

- Each document is a vector, one component for each term (= word).

- Normally normalize vectors to unit length.
- High-dimensional vector space:
- Terms are axes
- 10,000+ dimensions, or even 100,000+
- Docs are vectors in this space

How can we do classification in this space?

Introduction to Information Retrieva

Classification Using Vector Spaces

- In vector space classification, training set corresponds to a labeled set of points (equivalently, vectors)
- Premise 1: Documents in the same class form a contiguous region of space
- Premise 2: Documents from different classes don't overlap (much)
- Learning a classifier: build surfaces to delineate classes in the space

Documents in a Vector Space

Government
Science
Arts

Definition of centroid

$$\vec{\mu}(c) = \frac{1}{|D_c|} \sum_{d \in D_c} \vec{v}(d)$$

- Where D_c is the set of all documents that belong to class c and ν(d) is the vector space representation of d.
- Note that centroid will in general not be a unit vector even when the inputs are unit vectors.

Rocchio classification

- Rocchio forms a simple representative for each class: the centroid/prototype
- Classification: nearest prototype/centroid
- It does not guarantee that classifications are consistent with the given training data

Why not?

11.15.116.5.00

C-- 14

Two-class Rocchio as a linear classifier

Line or hyperplane defined by:

$$\sum_{i=1}^{M} w_i d_i = \theta$$

For Rocchio, set:

$$\vec{w} = \vec{\mu}(c_1) - \vec{\mu}(c_2)$$

$$\theta = 0.5 \times (|\vec{\mu}(c_1)|^2 - |\vec{\mu}(c_2)|^2)$$

34

Sec 14

Linear classifier: Example

- Class: "interest" (as in interest rate)
- Example features of a linear classifier

w_i t_i
 0.70 prime
 0.67 rate
 0.63 interest
 0.60 rates
 0.43 bundesbank
 w_i t_i
 -0.71 dlrs
 -0.35 world
 -0.35 world
 -0.25 year
 -0.24 group
 -0.24 dlr

To classify, find dot product of feature vector and weights

25

Rocchio classification

- A simple form of Fisher's linear discriminant
- Little used outside text classification
 - It has been used quite effectively for text classification
 - But in general worse than Naïve Bayes
- Again, cheap to train and test documents

k Nearest Neighbor Classification

- kNN = k Nearest Neighbor
- To classify a document d:
- Define k-neighborhood as the k nearest neighbors of d
- Pick the majority class label in the kneighborhood
- For larger k can roughly estimate P(c|d) as #(c)/k

Nearest-Neighbor Learning

- Learning: just store the labeled training examples D
- Testing instance x (under 1NN):
 - Compute similarity between x and all examples in D.
 - Assign x the category of the most similar example in D.
- Does not compute anything beyond storing the examples
- Also called:
 - Case-based learning
 - Memory-based learning
 - Lazy learning
- Rationale of kNN: contiguity hypothesis

k Nearest Neighbor

- Using only the closest example (1NN) subject to errors due to:
 - A single atypical example.
 - Noise (i.e., an error) in the category label of a single training example.
- More robust: find the k examples and return the majority category of these k
- k is typically odd to avoid ties; 3 and 5 are most common

Sec 14 3

Nearest Neighbor with Inverted Index

- Naively finding nearest neighbors requires a linear search through |D| documents in collection
- But determining k nearest neighbors is the same as determining the k best retrievals using the test document as a query to a database of training documents.
- Use standard vector space inverted index methods to find the k nearest neighbors.
- Testing Time: O(B/V_tI) where B is the average number of training documents in which a test-document word appears.
 - Typically B << |D|

kNN: Discussion

- No feature selection necessary
- No training necessary
- Scales well with large number of classes
 - Don't need to train n classifiers for n classes
- Classes can influence each other
 - Small changes to one class can have ripple effect
- Done naively, very expensive at test time
- In most cases it's more accurate than NB or Rocchio

Let's test our intuition

- Can a bag of words always be viewed as a vector space?
- What about a bag of features?
- Can we always view a standing query as a contiguous region in a vector space?
- Do far away points influence classification in a kNN classifier? In a Rocchio classifier?
- Can a Rocchio classifier handle disjunctive classes?
- Why do linear classifiers actually work well for text?

itroduction to injormation ketrieval

3 Nearest Neighbor vs. Rocchio

 Nearest Neighbor tends to handle polymorphic Gategories better than Rocchio/NB.

Bias vs. capacity – notions and terminology

- Consider asking a botanist: Is an object a tree?
 - Too much capacity, low bias
 - Botanist who memorizes
 - Will always say "no" to new object (e.g., different # of leaves)
 - Not enough capacity, high bias
 - Lazy botanist
 - Says "yes" if the object is green
 - You want the middle ground

(Example due to C. Burges)

kNN vs. Naive Bayes

- Bias/Variance tradeoff
 - Variance ≈ Capacity
- kNN has high variance and low bias.
 - Infinite memory
- Rocchio/NB has low variance and high bias.
 - Linear decision surface between classes

7

Bias vs. variance: Choosing the correct model capacity

Summary: Representation of **Text Categorization Attributes**

- Representations of text are usually very high dimensional
 - "The curse of dimensionality"
- High-bias algorithms should generally work best in high-dimensional space
 - They prevent overfitting
 - They generalize more
- For most text categorization tasks, there are many relevant features and many irrelevant ones

Which classifier do I use for a given text classification problem?

- Is there a learning method that is optimal for all text classification problems?
- No, because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
 - How noisy is the data?
 - How stable is the problem over time?
 - For an unstable problem, it's better to use a simple and robust