Β' PROJECT ΛΕΙΤΟΥΡΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Δεληγιάννη Μυρτώ ΑΜ : 1067389

Νικολούδης Παναγιώτης ΑΜ: 1067076

Πανάικας Σωτήριος ΑΜ : 1067412

ΜΕΡΟΣ Β

<u>ΑΣΚΗΣΗ 1:</u>

Χρονική Στιγμή	Άφιξη	Εικόνα Μνήμης	Ουρά Μνήμης	KME	E/E	Ουρά ΚΜΕ	Ουρά Ε/Ε	Τέλος
0	P1	<oπή 2mb="2*1024K"></oπή>	P1					
1	Q1	<p1-300k> <oπή 1748k=""></oπή></p1-300k>	Q1	P1				
2	P2	<p1-300k> <q1-1200k></q1-1200k></p1-300k>	P2	P1		Q1		
		<Οπή 548K>						
3	Q2	<p1-300k> <q1-1200k></q1-1200k></p1-300k>	Q2	P1		Q1, P2		
		<p2-300k> <oπή 248=""></oπή></p2-300k>						
4	Р3	<p1-300k> <q1-1200k></q1-1200k></p1-300k>	Q2, P3	P1		Q1, P2		
		<p2-300k> <oπή 248=""></oπή></p2-300k>						
5		<p1-300k> <q1-1200k></q1-1200k></p1-300k>	Q2, P3	Q1		P1, Q1, P2		
		<p2-300k> <oπή 248=""></oπή></p2-300k>						
6		<p1-300k> <q1-1200k></q1-1200k></p1-300k>	Q2, P3	P2	Q1	P1		
		<p2-300k> <oπή 248=""></oπή></p2-300k>						
7		<p1-300k> <q1-1200k></q1-1200k></p1-300k>	Q2, P3	P2	Q1	P1		
		<p2-300k> <oπή 248=""></oπή></p2-300k>						
8		<p1-300k> <q1-1200k></q1-1200k></p1-300k>	Q2, P3	P2	Q1	P1		
		<p2-300k> <oπή 248=""></oπή></p2-300k>						
9		<p1-300k> <q1-1200k></q1-1200k></p1-300k>	Q2, P3	P1		Q1, P2		
		<p2-300k> <oπή 248=""></oπή></p2-300k>						
10		<p1-300k> <q1-1200k></q1-1200k></p1-300k>	Q2, P3	P1		Q1, P2		
		<p2-300k> <oπή 248=""></oπή></p2-300k>						
11		<p1-300k> <q1-1200k></q1-1200k></p1-300k>	Q2, P3	P1		Q1, P2		
		<p2-300k> <oπή 248=""></oπή></p2-300k>						
12		<p1-300k> <q1-1200k></q1-1200k></p1-300k>	Q2, P3	P1		Q1, P2		P1
		<p2-300k> <oπή 248=""></oπή></p2-300k>						
13		<0πή-300K> <q1-1200k></q1-1200k>	Q2, P3	Q1		P2		
		<p2-300k> <oπή 248=""></oπή></p2-300k>						
14		<0πή-300K> <q1-1200k></q1-1200k>	Q2, P3	P2	Q1			
		<p2-300k> <oπή 248=""></oπή></p2-300k>						

15	<0πή-300K> <q1-1200k> <p2-300k> <oπή 248=""></oπή></p2-300k></q1-1200k>	Q2, P3	P2	Q1		
16	<0πή-300K> <q1-1200k> <p2-300k> <oπή 248=""></oπή></p2-300k></q1-1200k>	Q2, P3	P2	Q1		Q1
17	<0πή-1500K> <p2-300k> <0πή 248></p2-300k>	Q2, P3	P2			
18	<p3-700k> <oπή 800k=""> <p2-300k> <oπή 248=""></oπή></p2-300k></oπή></p3-700k>	Q2	P2		P3	
19	<p3-700k> <q2-500k> <oπή 300k=""> <p2-300k> <oπή 248=""></oπή></p2-300k></oπή></q2-500k></p3-700k>		P2		P3, Q2	P2
20	<p3-700k> <q2-500k> <oπή 300k=""> <p2-300k> <oπή 248=""></oπή></p2-300k></oπή></q2-500k></p3-700k>		Q2		P3	
21	<p3-700k> <q2-500k> <oπή 848k=""></oπή></q2-500k></p3-700k>		Р3	Q2		
22	<p3-700k> <q2-500k> <oπή 848k=""></oπή></q2-500k></p3-700k>		Р3	Q2		
23	<p3-700k> <q2-500k> <oπή 848k=""></oπή></q2-500k></p3-700k>		Р3	Q2		
24	<p3-700k> <q2-500k> <oπή 848k=""></oπή></q2-500k></p3-700k>		Р3		Q2	
25	<p3-700k> <q2-500k> <oπή 848k=""></oπή></q2-500k></p3-700k>		Q2		P3	
26	<p3-700k> <q2-500k> <oπή 848k=""></oπή></q2-500k></p3-700k>		Р3	Q2		
27	<p3-700k> <q2-500k> <oπή 848k=""></oπή></q2-500k></p3-700k>		Р3	Q2		
28	<p3-700k> <q2-500k> <oπή 848k=""></oπή></q2-500k></p3-700k>		Р3	Q2		Q2
29	<Ρ3-700Κ> <Οπή 1348Κ>		Р3			P3

ΑΣΚΗΣΗ 2:

Από εκφώνηση:

- Μέγεθος Σελίδων = 2¹⁰ bytes
- Πίνακας Σελίδων = 256 = 28 εγγραφές(δηλαδή σειρές)
- Φυσική Μνήμη = 1024 = 2¹⁰ πλαίσια

Επίσης από την θεωρία γνωρίζουμε:

(Με την υπόθεση πως n=bits λογικής/ιδεατής διεύθυνσης,m=bits φυσικής διεύθυνσης και k=bits μετατόπισης)

- Μέγεθος φυσικής μνήμης = 2^m
- Μέγεθος λογικής/ιδεατής μνήμης = 2ⁿ
- Αριθμός πλαισίων (φυσικής) = 2^{m-k}
- Αριθμός σελίδων (ιδεατής) = 2^{n-k}
- Μέγεθος σελίδας = 2^k

Οπότε συμπεραίνουμε στις εξής συνεπαγωγές:

- 2^k = 2¹⁰ => k=10 bits μετατόπισης
- $2^{n-k} = 2^8 \implies n-k=8 \implies n-10=8 \implies n=18$ bits
- $2^{m-k} = 2^{10} = m-k=10 = m-10=10 = m=20$ bits
- α) Από τους παραπάνω υπολογισμούς μπορούμε λοιπόν να απαντήσουμε πως :

Εύρος Λογικής Διεύθυνσης(Λ.Δ.)=18bits και

Εύρος Φυσικής Διεύθυνσης(Φ.Δ.)=20bits

- 02 -> 20C (Από τον πίνακα σελίδων)
- $20C_{16} = 0010\ 0000\ 1100_2$

Οπότε ουσιαστικά προσθέτουμε τα bits πλαισίου μπροστά από τα bit μετατόπισης. Εκεί δηλαδή που πριν βρίσκονταν τα bits της αντίστοιχης σελίδας ,και έτσι παίρνουμε τελικά την φυσική διεύθυνση.

Άρα:

$$\Phi.\Delta. = 00\underline{10}\,\underline{00}\,\underline{00}\,\underline{11}\,\underline{00}\,\underline{10}\,\underline{0000}\,\underline{1010}_2 = 8320A_{16}$$

$$8 \quad 3 \quad 2 \quad 0 \quad A$$

<u>ΑΣΚΗΣΗ 3:</u>

