

Master II: IS

Séries Temporelles.

Anne Philippe Université de Nantes Laboratoire de Mathématiques Jean Leray

Fiche 4

Exercice 1.

Soit (w_t) un bruit blanc de variance σ_w^2 et $|\phi| < 1$ Considérons le processus défini par

$$X_0 = w_0$$

et pour tout $t \in \mathbb{N}$

$$X_t = \phi X_{t-1} + w_t.$$

1) Montrer que pour tout $t \in \mathbb{N}$

$$X_t = \sum_{j=0}^t \phi^j w_{t-j}$$

- 2) Calculer $\mathbb{E}(X_t)$.
- 3) Montrer que, pour $t = 0, 1, \dots$

$$Var(X_t) = \frac{\sigma_w^2}{1 - \phi^2} (1 - \phi^{2t+2})$$

4) Montrer que, pour $h \ge 0$,

$$Cov(X_t, X_{t+h}) = \phi^h Var(X_t)$$

- 5) Le processus est-il stationnaire?
- 6) Justifier que le processus devient stationnaire quand $t \to \infty$. On dit que le processus est asymptotiquement stationnaire.
- 7) Comment pourriez-vous utiliser ces résultats pour simuler n observations d'un modèle AR(1) stationnaire. Faire le lien avec la méthode utilisée à la fiche 2.

8) Supposons maintenant que $X_0 = w_0 \frac{1}{\sqrt{1-\phi^2}}$. Montrer que la variance de X_t ne dépend pas de t.

Ce processus est-il stationnaire?

Exercice 2.

Pour les deux modèles ARMA ci dessous. Déterminer les ordres du modèle et déterminer s'ils sont causaux et/ou inversibles.

$$X_{t} = .80X_{t-1} - .15X_{t-2} + w_{t} - .30w_{t-1}.$$
$$X_{t} = X_{t-1} - .50X_{t-2} + w_{t} - w_{t-1}.$$

Exercice 3.

1) Pour les trois modèles AR(2) décrits ci-dessous, déterminer l'équations de récurrence satisfaite par ACF ρ et donner la solution (en précisant toutes les constantes)

$$X_{t} + 1.6X_{t-1} + .64X_{t-2} = w_{t}$$

$$X_{t} - .40X_{t-1} - .45X_{t-2} = w_{t}$$

$$X_{t} - 1.2X_{t-1} + .85X_{t-2} = w_{t}$$

2) Tracer les valeurs des l'ACF $\rho(h)$ pour h=1...2. Vérifier vos résultats en utilisant la fonction ARMAacf.

Exercice 4.

On considère le processus ARMA solution de l'équation

$$X_t = .4X_{t-1} + .45X_{t-2} + w_t + w_{t-1} + .25w_{t-2}$$

où $(w_t)_t$ est un bruit blanc $WN(0, \sigma^2)$.

- 1) Réecrire l'équation de récurrence en utilisant l'operateur retard B.
- 2) Donner la représentation minimale du modèle.
- 3) Le modèle est-il causal? Si oui donner l'expression de la solution causal du modèle (représentation $MA(\infty)$).
- 4) Le modèle est-il inversible? Si oui donner la représentation $AR(\infty)$ du processus.
- 5) Calculer la fonction d'auto covariance.
- 6) Calculer la prévision à l'horizon 1.

EXERCICE 5.

On considère le processus AR(2)

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + w_t$$

où $(w_t)_t$ est un bruit blanc

- 1) Calculer le prédicteur de X_{n+h} ayant observé $(X_1,...X_n)$
- 2) Evaluer l'erreur de prévision quadratique .
- 3) Pour les modèles AR(2) définis à l'exercice 3, Simuler une trajectoire (avec n=100) pour les 3 modèles , puis calculer et représenter le prédicteur pour h=1,...,10 (avec un intervalle de confiance).