Comm & Hom

September 13, 2023

Contents

_	Intro			
	1.1	Modules	1	
	1.2	Localization	3	
	1.3	Hom	F	

1 Intro

Theorem 1.0.1. radical ideal is generated by a polynomial f with no multiple roots.

Suppose $J \subset \mathbb{C}[x_1, \dots, x_n]$ is an ideal. Then $I(Z(J)) = rad(J) = \{f \mid f^n \subset J\}$

Definition 1.0.2. radical ideal is generated by a polynomial f with no multiple roots. cokernel: take the image of f and mod out by image of f.

1.1 Modules

Let R be a commutative ring. An R-module M is an abelian group (+) with a map $R \times M \to M$ written $(r,m) \mapsto rm$. Satisfying

- 1. associativity: r(sm) = (rs)m for all $r, s \in R, m \in M$.
- 2. distributivity: r(m+m') = rm + rm' and (r+r')m = rm + r'm for all $r, r' \in R, m, m' \in M$.
- 3. unitality: 1m = m for all $m \in M$.

Several things you could derive from the definition: 0m = 0, (-1)m = -m, etc.

Example 1.1.1. Let R = k[x]. A k[x]-module is

- a k-vector space M
- with a map $xM \to M$, where $m \mapsto xm$, a k linear transformation.

Example 1.1.2. What is an R-submodule of R? It's

- 1. $J \subseteq R$;
- $2. \ closed \ under \ addition, \ 0, \ negatives;$

3. for any $r \in R, j \in J, r, j \in J$.

an ideal.

Definition 1.1.3. If M is an R-module, we shall write ann M for the annihilator of M; that is,

$$\operatorname{ann} M = \{ r \in R \mid rM = 0 \},\$$

which is an ideal.

Definition 1.1.4. Let $I \subseteq R$ an ideal, M an R-module. We denote

$$IM = \left\{ \sum a_i m_i \mid a_i \in I, m_i \in M \right\} \subseteq M$$

the smallest R-submodule of M containing all elements of the form am, where $a \in I, m \in M$.

Example 1.1.5. Suppose M is an R-module. FOr $N, N' \subseteq M$ submodules,

$$[N:N'] \subseteq R \quad x \in [N:N'] \iff xN' \subseteq N.$$

For N a submodule, I an ideal

$$[N:I] \subseteq M. \quad y \in [N:I] \iff Iy \subseteq N.$$

The point of having the above is to generalize the annihilator.

Example 1.1.6. ann M = [O:M].

Some operations we could do. Given a sequence of modules M_1, M_2, \ldots

Definition 1.1.7. We denote

$$\prod_{i \in I} M_i = \{ (m_1, m_2, \ldots) \mid m_i \in M_i \} .$$

 $\prod M_i$ is an R-module with componentwise addition and scalar multiplication.

Note that $\oplus M_i \subseteq \prod M_i$, a sub-R-module.

Also, $\oplus M_i = \{(m_i)_{i \in I} \mid \text{ only finitely many } m_i \text{ are zero } \}$

Suppose we have an R-module homomorphism

$$f: M \to N$$
.

We could construct 3 modules: $ker(f) \subseteq M, Im(f) \subseteq N, coker(f) = N/Im(f)$

Definition 1.1.8. Suppose we have *R*-module homomorphism

$$f: m \to N \quad g: N \to P.$$

This is exact if $\operatorname{Im} f = \ker g$.

Definition 1.1.9. If we have a sequence of maps

$$\cdots \to M_1 \to M_2 \to M_3 \to \cdots$$
.

then we say it's exact iff each 2-term sequence is exact.

Saying $0 \to M \to N$ is exact is saying f is injective. And $M \to N \to 0$ is exact is saying f is surjective.

Definition 1.1.10. A short exact sequence is an exact sequence

$$0 \to M \to N \to P \to 0$$
 $f: M \to N, g: N \to P$.

This tells us that

- 1. M iso to Im(f)
- 2. P iso to N/ker(q)
- 3. ker(g) = Im(f), P iso coker(f)

Definition 1.1.11. A free R-module is an R-module isomorphic to $\bigoplus_{i \in I} R$. In particular, R^n are the finitely generated free modules.

Definition 1.1.12. A module M is finitely generated if there exists $m_1, \ldots, m_n \in M$ such that every element of M is of the form $\sum_{i=1}^n a_i m_i$ for some $a_i \in R$.

Definition 1.1.13. A module M if finitely presented if there exists an exact sequence

$$R^n \to R^m \to M \to 0.$$

1.2 Localization

Suppose R is a ring, $U \subseteq R$ is a subset that is closed under multiplication, and contains the unit $1 \in R$.

Definition 1.2.1. We can form the localization $R[U^{-1}]$, whose elements are

$$\{(r,s) \mid r \in R, s \in U\}$$
.

We also put an equivalence relation on the elements.

$$(r,s) \equiv (r',s') \iff \exists u,v \in U, (ur,us) = (vr',vs').$$

Note that the equivalence relation is different from cross-multication as what we do in fractions.

Example 1.2.2. Let $R = \mathbb{Z}, U = \{1, 2, 4, 6, 16, \ldots\}$. Then

$$R[U^{-1}] = \mathbb{Z}[\frac{1}{2}] = \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, q = 2^k \right\}.$$

Definition 1.2.3. In $R[U^{-1}]$, we have a ring.

$$(r,s) + (r',s') = (rs' + r's, ss')$$

 $(r,s) \cdot (r',s') = (rr',ss')$
 $0 = (0,1)$
 $1 = (1,1)$

Example 1.2.4. Let $R = \mathbb{Z}/6$, $U = \{1, 3\}$. Then localization is smaller:

$$R[U^{-1}] = \mathbb{Z}/2.$$

Example 1.2.5. Let $R = \mathbb{C}[x], U = \{1, x, x^2, x^3, ...\}$. Then

$$R[U^{-1}] = \mathbb{C}[x, x^{-1}] = \{f(x)/x^n | f(x) \text{ poly }, n \in \mathbb{N}\} = \left\{ \sum_{n \in \mathbb{Z}} a_n x^n \mid a_n \in \mathbb{C} \right\}.$$

Note that in the summation there should only be finitely many n. The ring is also called Laurent polynomials.

This ring is isomorphic to

$$\mathbb{C}[x,y]/(yx-1)$$
.

Note that there is always a ring homomorphism

$$\phi: R \to R[U^{-1}] \quad \phi(r) = \frac{r}{1}.$$

Example 1.2.6. $R = \mathbb{C}[x_1, \dots, x_n], U = R - \{0\}$. Note U is closed under multiplication because R is an integral domain.

$$R[U^{-1}] = \{ f(\vec{x})/g(\vec{x}) \mid f, g \in \mathbb{C}[x_1, \dots, x_n], g \neq 0 \}.$$

Proposition 1.2.7. The theory of ideals in $R[U^{-1}]$ is closely related to the theory of ideals in R. Given an ideal J in R, we could have $J \cdot R[U^{-1}]$, which is an ideal in $R[U^{-1}]$.

The map from ideals of $R[U^{-1}]$ to ideals of R is an injection. They are sort of "ideals that don't meet the set U".

An ieal J is of the form $\phi^{-1}(L)$ iff for any a, b s.t. $a \in R, b \in U, ab \in J \implies a \in J$.

There is a correspondence between prime ideals of $R[U^{-1}]$ and prime ideals of R that don't contain any elements of U.

Example 1.2.8. prime ideals of \mathbb{Q} ; prime ideals of \mathbb{Z} that don't contain any elements of the set $\{1, 2, 3, 4, 5, \ldots\}$; $\{(0)\}$.

Definition 1.2.9. Supose R is a ring. $P \subseteq R$ is a prime ideal. We define R_P to be the localization of the set U = R - P.

Note that U is closed under multiplication because P is prime.

Also, R_P has one maximal ideal: PR_P .

There is a correspondence between prime ideals of R_P ; prime ideals of R that don't contain any elements of U; prime ideals of R contained in P.

Example 1.2.10.

$$\mathbb{Z}_{(2)} = \left\{ \frac{n}{m} \mid m \text{ odd } \right\}.$$

This has 2 ideals: (0), (2).

Definition 1.2.11. A ring R is *local* if it has a unique maximal ideal.

 R_P is always local if P is prime.

If R is a ring, M is an R-module, $U \subseteq R$ is a subset closed under multiplication and 1. We can construct

$$M[U^{-1}] = \left\{ \frac{m}{s} \mid m \in M, s \in U \right\}.$$

 $M[U^{-1}]$ is an abelian group and a module on $R[U^{-1}]$.

Example 1.2.12. $R = \mathbb{Z}, U = \{1, 3, 9, 27, ...\}, M = \mathbb{Z}/10.$ Check that $M[U^{-1}] \cong \{0\}.$

1.3 Hom

For R-modules M, N. There is a new R-module $\operatorname{Hom}_R(M, N)$

$$\operatorname{Hom}_R(M,N) \subset \{f: M \to N\}.$$

Functions that are

- 1. group homomorphisms
- 2. R-linear: f(rx) = rf(x)

Definition 1.3.1. $\operatorname{Hom}_R(M,N)$ is an R-module in the following way.

- f + g : (f + g)(m) = f(m) + g(m)
- rf:(rf)(m) = rf(m)

There are some properties of Hom.

1. $\operatorname{Hom}_R(R,N) \cong N$, where $f \mapsto f(1), n \in N \mapsto f(r) = rn$. Basically the same as picking an element from N.

2.

$$\operatorname{Hom}_R(\bigoplus_{i\in I} M_i, N) \cong \prod_{i\in I} \operatorname{Hom}_R(M_i, N).$$

The RHS is choosing for each $i \in I$, a homomorphism $M_i \to N$. There's also

$$\operatorname{Hom}_R(M, \prod N_i) \cong \prod_{i \in I} \operatorname{Hom}_R(M, N_i).$$

3. If I have R-module homomorphisms

$$\alpha: M \to M' \quad \beta: N \to N'.$$

I get a map

$$\operatorname{Hom}_R(\alpha,\beta): \operatorname{Hom}_R(M',N) \to \operatorname{Hom}_R(M,N')$$
 where $f \mapsto \beta f \alpha$.

Thi respects identity functions and function composition. Functorial.

- 4. Exactness. Hom_R is *left-exact*:
 - (a) If $M' \to M \to M'' \to 0$ is an exact sequence, then for any N,

$$0 \to \operatorname{Hom}_R(M'', N) \to \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(M', N)$$

is also exact.

(b) If $0 \to N' \to N \to N''$ is exact then

$$0 \to \operatorname{Hom}_R(M, N') \to \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(M, N'')$$

is exact.

For R-module M, N there is a tensor product $M \otimes_R N$, which we get by taking all formal sums of symbols $m \otimes n, m \in M, n \in N$, mod out by subgroup generated by elements of the form

- $(m+m')\otimes n-m\otimes n-m'\otimes n$;
- $m \otimes (n + n') m \otimes n m \otimes n'$:
- $(rm) \otimes n m \otimes (rn)$.

Example 1.3.2.

$$R[x_1,\ldots,x_n]\otimes_R R[y_1,\ldots,y_n]\cong R[x_1,\ldots,x_n,y_1,\ldots,y_n].$$

Properties of \otimes_R .

1.
$$R \otimes_R M \cong M \quad \sum r_i \otimes m_i \mapsto \sum r_i m \quad 1 \otimes m < -m.$$

2. $(\oplus M_i) \otimes_R N \cong \oplus (M_i \otimes_R N).$

3. Functornality. For R-module homomorphisms $\alpha: M \to M', \beta: N \to N',$ we get an R-module homomorphism

$$\alpha \otimes \beta : M \otimes_R N \to M' \otimes_R N' \quad \sum m_i \otimes n_i \mapsto \sum \alpha(m_i) \otimes \beta(n_i).$$

4. Right exactness. If $M' \to M \to M''$ is exact, then

$$M' \otimes_R N \to M \otimes_R N \to M'' \otimes_R N \to 0.$$

is exact.

5. Symmetry.

$$M \otimes_R N \cong N \otimes_R M \quad \sum m_i \otimes n_i \mapsto n_i \otimes m_i.$$

Proposition 1.3.3.

$$M[U^{-1}] \cong R[U^{-1}] \otimes_R M.$$

Proof sketch. The procedure we could do is

$$\frac{m}{u} \mapsto \frac{1}{u} \otimes m \quad \frac{rm}{u} \leftarrow \frac{r}{u} \otimes m.$$

Definition 1.3.4. An R-module F is flat whenever

$$f: M \to N$$
 is injective,

and the map

$$F \otimes_R M \to F \otimes_R N$$
 is injective.

Alternatively,

$$0 \to M \to N \text{ exact } \implies 0 \to F \otimes_R M \to F \otimes_R N \text{ exact }.$$

Theorem 1.3.5. $R[U^{-1}]$ is always a flat module over R.

Proof. Suppose $f:M\to N$ is injective. We need to check $M[U^{-1}]\to N[U^{-1}]$ is also injective.

Suppose $\frac{m}{u} \in M[U^{-1}]$ which goes to 0 in $N[U^{-1}]$, then $\frac{f(m)}{u} = \frac{0}{1}$ in $N[U^{-1}]$. This means there exists $v \in U$ s.t. vf(m) = 0, which leads to vf(m) = f(vm) = 0. Since f is injective, vm = 0 in M. Then $\frac{m}{u} = \frac{vm}{vu} = \frac{0}{m} = \frac{0}{1}$.

Example 1.3.6. \mathbb{Q} is a flat module over \mathbb{Z} . $\mathbb{Z}/2$ is a falt module over $\mathbb{Z}/6$. Both $\mathbb{C}(x)$ and $\mathbb{C}[x,x^{-1}]$ are flat over $\mathbb{C}[x]$.

Theorem 1.3.7. A module M over R is zero iff for every maximal ideal m, the localization M_m is zero.