

Joint RL meeting

Gridworld implementation of Olivia's task

Andrea Pierré January 30th, 2023

Brown University

Outline

- 1. Implementation
- 2. Issues along the road
- 3. Results
- 4. Summary

Outline

1. Implementation

2. Issues along the road

3. Results

4. Summary

· RL concepts abstracted in high level functions :

- reset(): reset the environment at the end of the episode
- reward(): define in what conditions the agent get a reward and how much reward it gets
- is_terminated(): define when the end of the episode has been reached
- step(): execute the defined action in the current state

```
new_state, reward, done = env.step(action, state)
```

- RL concepts abstracted in high level functions :
 - reset(): reset the environment at the end of the episode
 - reward(): define in what conditions the agent get a reward and how much reward it gets
 - is_terminated(): define when the end of the episode has been reached
 - step(): execute the defined action in the current state

```
new_state, reward, done = env.step(action, state)
```

- RL concepts abstracted in high level functions :
 - reset(): reset the environment at the end of the episode
 - reward(): define in what conditions the agent get a reward and how much reward it gets
 - is_terminated(): define when the end of the episode has been reached
 - step(): execute the defined action in the current state

```
new_state, reward, done = env.step(action, state)
```

- RL concepts abstracted in high level functions :
 - reset(): reset the environment at the end of the episode
 - reward(): define in what conditions the agent get a reward and how much reward it gets
 - is_terminated(): define when the end of the episode has been reached
 - step(): execute the defined action in the current state

```
new_state, reward, done = env.step(action, state)
```

- RL concepts abstracted in high level functions :
 - reset(): reset the environment at the end of the episode
 - reward(): define in what conditions the agent get a reward and how much reward it gets
 - is_terminated(): define when the end of the episode has been reached
 - step(): execute the defined action in the current state

```
new_state, reward, done = env.step(action, state)
```

• At each step, the agent gets a composite observation:

location	cue		
{0,,24}	North light		
	South light		
	Odor A		
	Odor B		

 Convenience functions to translate the movements between the grid positions and the states

• At each step, the agent gets a composite observation:

location	cue		
{0,,24}	North light		
	South light		
	Odor A		
	Odor B		

 Convenience functions to translate the movements between the grid positions and the states

 Wrapper environment to translate the human readable environment (composite states) into a suitable environment for the Q-learning algorithm (flat states)

```
state = {"location": 13, "cue": LightCues.South}
env.convert_composite_to_flat_state(state)
# => 38

state = 63
env.convert_flat_state_to_composite(state)
# => {"location": 13, "cue": <OdorID.A: 1>}
```

Human readable objects

```
action = 0
Actions(action).name
# => "UP"
```

 Wrapper environment to translate the human readable environment (composite states) into a suitable environment for the Q-learning algorithm (flat states)

```
state = {"location": 13, "cue": LightCues.South}
env.convert_composite_to_flat_state(state)
# => 38

state = 63
env.convert_flat_state_to_composite(state)
# => {"location": 13, "cue": <OdorID.A: 1>}
```

Human readable objects

```
action = 0
Actions(action).name
# => "UP"
```

Outline

1. Implementation

2. Issues along the road

3. Results

4. Summary

Not enough states to solve the task

Pre odor - North light				
0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Post odor - Odor A				
50	51	52	53	54
55	56	57	58	59
60	61	62	63	64
65	66	67	68	69
70	71	72	73	74

Pre odor - South light				
25	26	27	28	29
30	31	32	33	34
35	36	37	38	39
40	41	42	43	44
45	46	47	48	49

Post odor - Odor B				
75	76	77	78	79
80	81	82	83	84
85	86	87	88	89
90	91	92	93	94
95	96	97	98	99

ϵ -greedy when Q-values are identical

Vanilla ϵ -greedy

Randomly choosing actions with the same Q-values

Outline

1. Implementation

2. Issues along the road

3. Results

4. Summary

Standard Q-learning – allocentric environment

Standard Q-learning – allocentric environment

7/16

Q-learning with function approximation – allocentric environment – without joint representation

Q-learning with function approximation – allocentric environment – without joint representation

Q-learning with function approximation – allocentric environment – with joint representation

Q-learning with function approximation – allocentric environment – with joint representation

Standard Q-learning – egocentric environment

Q-learning with function approximation – egocentric environment

Outline

1. Implementation

2. Issues along the road

3. Results

4. Summary

- Standard Q-learning can learn the task in the allocentric environment in ~50 episodes
- Standard Q-learning can learn the task in the egocentric environment in ~100 episodes
- Niloufar's results with function approximation on the allocentric environment are reproducible:
 - The agent is not able to learn the task without having
 Alara and a light representation
 - a place-odor joint representation
 - With a place-odor joint representation, the agent is
 - able to learn the task in ~60 episodess

- Standard Q-learning can learn the task in the allocentric environment in ~50 episodes
- Standard Q-learning can learn the task in the egocentric environment in ~100 episodes
- Niloufar's results with function approximation on the allocentric environment are reproducible:
 - The agent is not able to learn the task without having a place-odor joint representation.
 - · With a place-odor joint representation, the agent is
 - able to learn the task in ~60 episodess

- Standard Q-learning can learn the task in the allocentric environment in ~50 episodes
- Standard Q-learning can learn the task in the egocentric environment in ~100 episodes
- Niloufar's results with function approximation on the allocentric environment are reproducible:
 - The agent is not able to learn the task without having a place-odor joint representation
 - With a place-odor joint representation, the agent is able to learn the task in ~60 episodes

- Standard Q-learning can learn the task in the allocentric environment in ~50 episodes
- Standard Q-learning can learn the task in the egocentric environment in ~100 episodes
- Niloufar's results with function approximation on the allocentric environment are reproducible:
 - The agent is not able to learn the task without having a place-odor joint representation
 - With a place-odor joint representation, the agent is able to learn the task in ~60 episodes

- Standard Q-learning can learn the task in the allocentric environment in ~50 episodes
- Standard Q-learning can learn the task in the egocentric environment in ~100 episodes
- Niloufar's results with function approximation on the allocentric environment are reproducible:
 - The agent is not able to learn the task without having a place-odor joint representation
 - With a place-odor joint representation, the agent is able to learn the task in ~60 episodes

Main differences with Niloufar's model

- The environment is closer to the real experiment → ports are in the corners of the arena, not in the middle of the walls
- Code is clean, readable, and abstracted in high level functions/concepts

Next steps

- · Finish the egocentric environment
- Replace the manually crafted features matrix by an artificial neural network, which should learn the necessary representations to solve the task from scratch

Next steps

- Finish the egocentric environment
- Replace the manually crafted features matrix by an artificial neural network, which should learn the necessary representations to solve the task from scratch

Questions ?