Prediction of Car Accident Severity

Capstone Project

by

Iziegbe Harriet Igbinedion

Introduction: Business Problem

> The aim of this project is to design a model to predict the probability of a severe car accident occurring on a road given the right data.

> The stakeholders interested in this project are the drivers and pedestrians who pass through the affected roads at a given time.

We would use some data science tools and methodologies coupled with some machine learning algorithms to design, train, and evaluate our model.

Data Understanding

The dataset has 194673 rows and 38 columns including Location, Severity Code, Weather, Road Condition etc. and this is made available in a CSV format.

Our predictor or target variable is 'SEVERITYCODE' because this is a measure of the severity of an accident from 0 to 5 within the dataset.

We will use 'WEATHER', 'ROADCOND' and 'LIGHTCOND' to determine the severity of an accident.

First 5 rows of the dataset (df.head())

:	SEVERITYCODE	Х	Υ	OBJECTID	INCKEY	COLDETKEY	REPORTNO	STATUS	ADDRTYPE	INTKEY		ROADCOND	LIGHTCON
i	2	-122.323148	47.703140	1	1307	1307	3502005	Matched	Intersection	37475.0		Wet	Dayligł
	1	-122.347294	47.647172	2	52200	52200	2607959	Matched	Block	NaN		Wet	Dark - Stree Lights O
	1	-122.334540	47.607871	3	26700	26700	1482393	Matched	Block	NaN	m	Dry	Dayligł
	1	-122.334803	47.604803	4	1144	1144	3503937	Matched	Block	NaN		Dry	Dayligl
5	2	-122.306426	47.545739	5	17700	17700	1807429	Matched	Intersection	34387.0		Wet	Dayligł

Oversampling & Undersampling

Model Development

MACHINE LEARNING ALGORITHMS:

K Nearest Neighbor

Decision Tree

Logical regression

K Nearest Neighbor

KNN Evaluation

```
from sklearn.metrics import f1_score
f1_score(y_test, yhat, average='weighted')
```

0.7062731513289651

from sklearn.metrics import jaccard_similarity_score
jaccard_similarity_score(y_test, yhat)

C:\Users\izzie\anaconda3\lib\site-packages\sklearn\metri has been deprecated and replaced with jaccard_score. It behavior for binary and multiclass classification tasks. FutureWarning)

0.7030949017593425

Decision Tree

```
print("DecisionTrees's Accuracy: ", metrics.accuracy score(y test, yhat))
DecisionTrees's Accuracy: 0.7429562090663927
print('f1 score:', f1_score(y_test, yhat, average='weighted'))
f1 score: 0.7002101557946572
print ('jaccard similarity:', jaccard similarity score(y test, yhat))
jaccard similarity: 0.7429562090663927
```

Logistic Regression

```
print("Logistic Regresion's Accuracy: ", metrics.accuracy_score(y_test, yhat))
Logistic Regresion's Accuracy: 0.7030949017593425

print('f1 score:', f1_score(y_test, yhat, average='weighted'))
print ('jaccard similarity:', jaccard_similarity_score(y_test, yhat))

f1 score: 0.6130193709022662
jaccard similarity: 0.7030949017593425
```

Summary

From the results below, decision tree has proven to the best algorithm for predicting severity of car accidents with an accuracy score of 74%.

:	Algorithm	Jaccard	F1-Score	Accuracy	Logloss
0	KNN	0.7267753948889174	0.7062731513289651	0.7255939386156415	NA
1	DecisionTree	0.7429562090663927	0.7002101557946572	0.7429562090663927	NA
2	LogisticRegression	0.7030949017593425	0.6130193709022662	0.7030949017593425	24.328955222549084

Conclusion

From the data set provided to us, we can see that change in weather is being directly linked to some classes.

From this statement, we arrived at the conclusion that a change in weather can, to an extent can affect one's mode of travel and like-hood of code 1 or code 2 damages occurring (property loss and injuries respectively).