



# 软件工程综述简介

南京大学 软件学院 iSE实验室







- 01. What is survey?
- 02. Why survey?
- 03. How to survey?
- 04. Example & Reference





01

What is survey?



# 综述的定位



• 综述:针对阅读、写作和表达能力的复合挑战

• RWPH: SE研究的四个维度



Reading



Writing



Presenting



Hacking





- 综述 (Survey ) vs. 文献回顾 (Literature Review )
  - Survey 
     ⇒ Systematic Review
  - "综述是一种以新颖的方式总结和组织最近的研究成果、整合并添加对该领域工作的理解和认识的研究工作。一篇综述一般对现有文献进行分类,同时评估领域的发展趋势、提出独到的看法"—— ACM Computing Survey





- 综述 (Survey ) vs. 文献回顾 (Literature Review )
  - Survey 
     ⇒ Systematic Review
  - "综述的对象是文献;综述文章应当全面回顾选定领域的发展。"—— IEEE Communications Surveys & Tutorials journal
  - "综述应当对相关文献进行批判性审查" —— Elsevier journal of Computer Science Review





- 综述 (Survey ) vs. 文献回顾 (Literature Review )
  - Survey 
     ⇒ Systematic Review
  - 系统文献回顾(Systematic Literature Review),简称文献回顾(Literature Review)是一种识别、评估和解释与特定研究问题(Research Question)、领域主题(Topic Area)或有趣现象(Phenomenon of Interest)相关的所有研究的方法。





- 初级研究与二级研究
  - 初级研究(Primary Study):为系统综述提供帮助和资料来源的研究工作。如技术类工作(Technical Paper)和经验研究(Empirical Study)
  - **二级研究(Secondary Study)**:在现有的一系列工作的基础上进行整理、分类、分析的研究工作。系统文献回顾/综述就是二级研究





02 Why survey?



# 综述研究的动机



- 开展一次汇报
- 开启全新的研究方向
- 回顾特定领域的发展
- 完成毕业论文

・完成作业并获得学分



#### 综述研究的目标



- 总结有关技术的现有进展。例如,总结一下特定模糊测试技术优点和局限性,(甚至)给出相关的经验证据(Empirical Evidence) → 技术发展(Technology development)
- 找出当前某个研究领域的不足。例如,分析一下现有变异测试技术存在的问题 → 提升空间 (Room for Improvement)



# 综述研究的目标



- 提供研究框架/背景,放置新的研究方向 → 研究方向
   (New Direction)
- ·检查经验证据在多大程度上支持/反对理论假设,甚至在前

人的基础上衍生得到全新的假设。→ 假设验证

( Hypotheses Examination )





03
How to survey?



# 综述研究流程



- •三个环节, 五个步骤
  - 三个环节: 规划 ( Plan ) 、实施 ( Conduct ) 、报告 ( Report )
  - 五个步骤
    - 框架搭建:制定研究框架、设计研究问题
    - 文献检索:检索目标领域近5~10年的工作
    - 文献阅读:阅读文献,了解文章内容
    - 文献分类:按照一定的规则,将收集到的文献划分成3~6个正交 (Orthogonal)类别
    - 文献分析:提取文献共性、甄别文献特点、得出研究方向





- 确定综述需求
- 委托综述需求
- 确定研究问题
- 搭建综述框架/协议(Review Protocol)
- 评估综述结果





#### • 确定综述需求

• 需求方:研究人员,研究团队

• 来源:总结现有信息、归纳已有现象、评价近期工作

要求:彻底(Thorough)、系统(Systematic)、公正 (Unbiased)





- 委托综述需求
  - 某些时候,一些机构或者组织拥有一些面向特定领域的综述需求,但却没有时间或者相关领域的专家实施综述,这时就会产生综述需求的委托。





#### • 确定研究问题

• 研究问题(Research Question, RQ):一个或一组研究聚焦的核心问题,是研究工作的出发点和驱动力,表达了研究者的研究兴趣和研究热情

• 作用:为综述研究一整套系统方法论提供引导

• 地位:综述研究中最为重要的部分





- 确定研究问题
  - 良好的研究问题应当具备的特点
    - 清晰 (Clear): 让读者能清楚的知道问题的含义
    - 集中(Focused):关注研究工作中极小的方面
    - 简洁(Concise):用尽可能少的词汇来表达
    - 复杂(Complex):需要通过分析才能得出结论
    - 有争议(Arguable):问题是开放的,有可能会得出相反结论





Table 1. Research Questions

| Ref#                         | Question                                                                                          |  |  |  |  |  |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                              | General questions                                                                                 |  |  |  |  |  |  |  |  |  |
| $\overline{\mathbf{RQ}_1}$   | Which methods, algorithms and data sources have been used for automated query                     |  |  |  |  |  |  |  |  |  |
|                              | reformulations targeting code search in the literature?                                           |  |  |  |  |  |  |  |  |  |
| $\overline{\mathbf{RQ}_2}$   | $\mathbf{RQ}_2$ Which methods, metrics or subject systems have been used to evaluate and validate |  |  |  |  |  |  |  |  |  |
|                              | the researches on automated query reformulations?                                                 |  |  |  |  |  |  |  |  |  |
| $\overline{\mathbf{RQ}_3}$   | $Q_3$ What are the major challenges of automated query reformulations intended for code           |  |  |  |  |  |  |  |  |  |
|                              | search? How many of them have been solved to date by the literature?                              |  |  |  |  |  |  |  |  |  |
| Statistical questions        |                                                                                                   |  |  |  |  |  |  |  |  |  |
| $\overline{\mathbf{RQ}_4}$   | How much activities of research on automated query reformulations have been per-                  |  |  |  |  |  |  |  |  |  |
|                              | formed to date? What are the venues that these researches got published at?                       |  |  |  |  |  |  |  |  |  |
|                              | Focused questions                                                                                 |  |  |  |  |  |  |  |  |  |
| $\overline{\mathbf{RQ}_{5}}$ | What are the differences and similarities between query reformulations for local code             |  |  |  |  |  |  |  |  |  |
|                              | search and query reformulations for Internet-scale code search?                                   |  |  |  |  |  |  |  |  |  |
| $\overline{\mathbf{RQ}_6}$   | What are the scopes for future work in the area of automated query reformulation                  |  |  |  |  |  |  |  |  |  |
|                              | targeting the code search?                                                                        |  |  |  |  |  |  |  |  |  |

A Systematic Literature Review of Automated Query Reformulations in Source Code Search1





- 搭建综述框架/协议
  - **综述协议**(Review Protocol) 规定了进行特定领域综述研究 所采用的方法;一个预先定义好的综述协议是必要的,它能 够减少研究人员在综述过程中产生偏误的可能性





#### • 评估综述结果

- 研究者必须为综述协议制定评估标准。综述协议是综述研究中最关键的部分,因此所有的研究者必须要在综述协议的评估上达成一致
- 内容:确定评估的方法、流程、指标





- 划定文献范围
- 选取初级研究
- 评估研究质量
- 数据提取 ( Data Extraction )
- 数据合成 ( Data Synthesis )





- 划定文献范围:基本流程
  - 确定主题和出版物、检索文献
  - 确定要探索的研究领域;调查目标领域的主要出版物,搜集 大量的初级研究(Primary Study)
  - ・ 检索:使用**无偏见搜索策略 (Unbiased Search Strategy)**
  - 出版物参考:中国计算机学会推荐国际学术会议和期刊目录 (第五版)<sup>1,2</sup>





# • 划定文献范围:基本流程



Fig. 4. Selection of primary studies

#### Sources to be Searched

| on | Source                                                                                       | Responsible                        |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------|------------------------------------|--|--|--|--|--|--|
|    | Information and Software Technology (IST)                                                    | Kitchenham                         |  |  |  |  |  |  |
|    | Journal of Systems and Software                                                              | Kitchenham                         |  |  |  |  |  |  |
|    | IEEE Transactions on Software<br>Engineering                                                 | Kitchenham                         |  |  |  |  |  |  |
|    | IEEE Software                                                                                | Kitchenham                         |  |  |  |  |  |  |
|    | Communications of the ACM (CACM)                                                             | Brereton                           |  |  |  |  |  |  |
|    | ACM Surveys                                                                                  | Brereton                           |  |  |  |  |  |  |
| 6  | Transactions on Software Engineering<br>Methods (TOSEM)                                      | Brereton                           |  |  |  |  |  |  |
|    | Software Practice and Experience                                                             | Budgen & Kitchenham                |  |  |  |  |  |  |
|    | Empirical Software Engineering Journal (ESEM)                                                | Budgen                             |  |  |  |  |  |  |
|    | IEE Proceedings Software (now IET Software)                                                  | Kitchenham                         |  |  |  |  |  |  |
|    | Proceedings International Conference on<br>Software Engineering (ICSE 04, 05, 06,<br>07)     | Linkman & Kitchenham &<br>Brereton |  |  |  |  |  |  |
| 5  | Proceedings International Seminar of<br>Software Metrics (Metrics04, Metrics05)              | Kitchenham & Brereton              |  |  |  |  |  |  |
|    | Proceedings International Seminar on<br>Empirical Software Engineering (ISESE<br>04, 05, 06) | Kitchenham & Brereton              |  |  |  |  |  |  |





- 划定文献范围:搜索文献
  - 常用学术搜索引擎: Google Scholar<sup>1</sup>, DBLP<sup>2</sup>
  - ・检索方式
    - 搜索关键词(Keywords): Fuzzing, Fuzz testing, Fuzzing
       IoT, Greybox Fuzzing
    - 搜索相关(Relevant)领域: Fuzzing & Test Generation,
       Fuzzing & Differential Testing
    - 搜索引用(Reference):从某篇文章的引用出发查找文献





- 选取初级研究 & 评估研究质量
  - 初级研究的质量直接影响到最终综述的质量,应当把眼光放在经典、优质、有影响力的论文上
  - 出版物:选取被优秀会议和期刊收录的论文 → 论文的出身
  - 相关性:选取真正相关的论文 → 论文的内容
  - 引用次数:选择高引用的初级研究





- 数据提取 & 数据合成
  - 提取:设计并按照一定的格式来准确有序地记录从初级研究中获得的数据
  - 合成:对从初级研究中提取得到的数据进行分析、归纳和总结,并围绕处理后的数据进行讨论和衍生,以产生观察(Observation)、提出建议(Recommendation)、给出结论(Conclusion)、进行展望(Future Work)





04

Example & Reference



# 发展历程





TSE'19-The Art, Science, and Engineering of Fuzzing: A Survey



# 发展历程







Elsevier, AIC'19-Mutation Testing Advances: An Analysis and Survey



# 文献分类



| 19               | 002                       | RS                          |                        |                                   |               |               |                              |              |            |               |             |                 |               |                  |                  |               |                 |                               |                |                      |                |                 |                                       |            |              |                           |                |            |                    |               |             |                     |                                   |           |          |                   |               |             |                     |          |                                   |            |
|------------------|---------------------------|-----------------------------|------------------------|-----------------------------------|---------------|---------------|------------------------------|--------------|------------|---------------|-------------|-----------------|---------------|------------------|------------------|---------------|-----------------|-------------------------------|----------------|----------------------|----------------|-----------------|---------------------------------------|------------|--------------|---------------------------|----------------|------------|--------------------|---------------|-------------|---------------------|-----------------------------------|-----------|----------|-------------------|---------------|-------------|---------------------|----------|-----------------------------------|------------|
| Taint5cope [229] | Narada [188]<br>SAGE [93] | MoWF [179]<br>MutaCan [127] | GRI [150]<br>KLEE [49] | Dewey et al. [73]<br>Dowser [101] | Chopper [219] | BuzzFuzz [87] | VUzzer [183]<br>BitFuzz [47] | T-Fuzz [177] | OSYM [240] | DigFuzz [249] | Angora [59] | Syzkaller [226] | RedQueen [26] | RaceFuzzer [197] | MagicFuzzer [50] | LibFuzzer [9] | honggfuzz [213] | go-fuzz [225]<br>Hawkeye [56] | FairFuzz [141] | DeadlockFuzzer [120] | classfuzz [62] | CalFuzzer [196] | AssetFuzzer [135]<br>AtomFuzzer [175] | AFLGo [39] | AFLFast [40] | SymFuzz [55]<br>AFI [241] | IoTFuzzer [57] | zuff [107] | TLS-Attacker [203] | Radamsa [106] | PULSAR [88] | Miller et al. [157] | Jstuntuzz [194]<br>LangFuzz [109] | IMF [103] | HOE [33] | Doupé et al. [76] | Dietool [174] | DELTA [139] | CodeAlchemist [104] | RHF (52) | Fuzzer                            |            |
| 0                | 000                       | 000                         | 00                     | 00                                | 00            | >0            | 0 +                          | 0+0          | 9 4 6      | 9+0           | 9+0         | •               |               | •                |                  | • •           | ۰               | • •                           | ۰              | • •                  | ٠              | •               |                                       | •          | •            | +0                        | • • •          | •          | • •                | •             | •           | •                   | ••                                | •         |          | •                 | ••            | •           | •••                 |          | 1. Feedback Gathering Granularity |            |
|                  | <                         |                             |                        | <                                 | ٠,            |               |                              | 4            |            |               | ( <         | 4               | <             | ٠, ،             |                  | ۷ د           | . <             | <                             | ١,             | <                    |                | ۷.              | <                                     | <          | ٠, ،         | ( <                       |                | 4          | ٠,                 |               | < ‹         |                     | <                                 |           | < <      |                   | 4             |             |                     |          | 2. Open-Sourced                   | Misc.      |
|                  | <                         |                             | ٠,                     | <                                 | ٠,            | •             |                              |              |            |               | •           | 4               |               | ٠.               |                  | ٠,            |                 | ٠, ٩                          |                | ٠, ٠                 |                | ۷.              | ٠, ٠                                  | ٠,         |              |                           |                |            |                    |               |             |                     |                                   |           |          |                   | 4             |             |                     |          | 3. Source Code Required           |            |
|                  |                           |                             |                        |                                   |               | Т             | Ī                            | <            | _          | ٦.            | _           | ~               |               | _                | Т                | ٠,            | Т               | <                             | <              | <                    |                | Т               | Г                                     | <          | ζ.           | _                         |                |            | _                  | Г             | -           |                     | _                                 | Т         | ľ        | Т                 | _             | _           |                     | -        | 4. Support In-memory Fuzzing      | 10         |
|                  | ١.                        | •                           |                        |                                   |               |               |                              |              |            |               |             |                 |               |                  |                  |               |                 |                               |                |                      |                |                 |                                       |            |              |                           | •              |            |                    |               | •           |                     |                                   | •         | •        |                   | 0             |             | •                   |          | 5. Model Construction             | PREPROCESS |
| <                | . <                       |                             | 4                      | ٠.                                | < <           | ١,٠           | ٠, ٠                         | ٠,           |            |               |             |                 |               | ٠,               | <                |               |                 | ٠,                            |                | <                    |                | ۲.              | ٠,                                    | ۸,         |              | 4                         | ٠,             |            |                    |               |             |                     |                                   |           |          |                   |               |             |                     |          | 6. Program Analysis               | 90<br>90   |
| <                |                           |                             | <                      |                                   | <             |               | <                            | 3            | < <        | ζ.            | _           | ٠.              | <u>,</u> <    |                  |                  | •             |                 | < <                           | <u>.</u>       | *                    | <u>,</u> <     |                 |                                       | <b>\</b>   | <u>`</u>     | _                         |                |            |                    |               |             |                     |                                   |           | ٠, ٠     |                   |               |             |                     | ,        | 7. Seed Scheduling                | SCHEDULE   |
| Ç                |                           | •                           |                        |                                   |               | •             |                              | •            | • •        | •             | •           | • •             | •             | 6                | •                | ••            | •               | •                             | ٠              | •                    | •              |                 |                                       | •          | •            | •                         | •              | •          | •                  | •             |             |                     | •                                 | •         | •        |                   | •             | •           | •                   | •        | 8. Mutation                       |            |
|                  |                           | 4                           | 4                      | 4                                 |               |               |                              |              |            |               |             | ۷,              |               | 4                |                  |               |                 | <                             |                |                      |                |                 |                                       |            |              |                           | ۷,             |            | 4                  |               | ٠, ،        |                     | ٠,                                | ۷,        | <        | ۷,                | 4             | ٠,          | 44                  |          | 9. Model-based                    | INPUTGEN   |
|                  | ۹.                        | ٠,                          |                        | < <                               | < <           | ١,٠           | <                            | <            | < <        | ۷.            |             |                 |               |                  |                  |               |                 |                               |                |                      |                |                 |                                       |            |              |                           |                |            |                    |               |             |                     |                                   |           |          |                   |               |             |                     |          | 10. Constraint-based              | TGEN       |
| <                |                           |                             | <                      | <                                 |               | <             | <                            |              |            |               | <           |                 |               |                  |                  |               |                 |                               |                |                      |                |                 |                                       |            |              |                           | <              |            |                    |               |             |                     |                                   |           |          |                   |               |             |                     |          | 11. Taint Analysis                |            |
|                  |                           |                             |                        |                                   |               | П             |                              |              |            |               |             |                 |               |                  |                  |               | <               |                               | П              |                      |                |                 |                                       |            |              | <                         |                |            |                    |               | 4           | \                   | 4                                 |           | 4        |                   |               |             | 4                   |          | 12. Crash Triage: Stack Hash      | INP        |
| <                |                           |                             |                        |                                   |               |               |                              | <            | < <        | ٠,            |             | ٠, ٠            | \             |                  |                  | <             |                 | < <                           | ۸,             | <                    |                |                 |                                       | <          | ٠,           |                           |                |            |                    |               |             |                     |                                   |           |          |                   |               |             |                     |          | 13. Crash Triage: Coverage        | IMPUTEVAL  |
|                  |                           |                             |                        |                                   |               | П             | <                            |              | < <        | ζ.            |             | ٠.              | `             | 4                |                  | ٠, ‹          |                 | < <                           | . <            | <                    |                |                 |                                       | <          | ٠,           | _                         |                |            |                    |               |             |                     |                                   | П         |          |                   |               |             | П                   |          | 14. Evolutionary Seed Pool Update | Сом        |
|                  |                           |                             | 0                      |                                   |               |               | •                            | ,            |            |               |             |                 |               |                  |                  |               |                 | •                             |                |                      |                |                 |                                       |            |              |                           |                |            | •                  | •             | •           |                     |                                   | ,         | •        | •                 |               |             |                     |          | 15. Model Update                  | CONFUPDATE |
|                  |                           |                             |                        |                                   |               |               |                              | <            | ۲ م        | ۲.            |             | ۲.              |               |                  |                  |               |                 | <                             | ۲,             | <                    |                |                 |                                       | <          | ٠,           |                           |                |            |                    |               |             |                     |                                   |           |          |                   |               |             |                     |          | 16. Seed Pool Culling             | H          |

TSE'19-The Art, Science, and Engineering of Fuzzing: A Survey



#### 文献分类



|      |                   |                                    |                                     |                 | _               |                 |                       |
|------|-------------------|------------------------------------|-------------------------------------|-----------------|-----------------|-----------------|-----------------------|
| Year | Fuzzer            | Solution(Process)                  | r. p                                | Target          |                 | out             | Runtime               |
| rear | Fuzzer            | Solution(Process)                  | Fitness By                          | App/Bug         | Muta.<br>-based | Gene.<br>-based | Info.                 |
| 2006 | Sidewinder [62]   | MC(seed.) + GA(rete.)              | block transition                    | general         | <b>✓</b>        |                 | •                     |
| 2007 | RANDOOP [141]     | GA(rete.)                          | legality                            | object-oriented | <b>√</b>        |                 | •                     |
| 2013 | FuzzSim [192]     | WCCP(seed.)                        | #bugs                               | general         | <b>√</b>        |                 | •                     |
| 2014 | COVERSET [158]    | MSCP(set.)                         | code coverage                       | 1               |                 | <b>√</b>        | 0                     |
| 2014 | COVERSEI [130]    | ILP(seed.)                         | #bugs                               | general         | <b>✓</b>        |                 | <b>●+●</b> + <b>○</b> |
| 2015 | Joeri et al. [55] | GA(rete.)                          | state machine                       | protocol        | <b>✓</b>        |                 | •                     |
| 2016 | AFLFast [23]      | MC(seed.) + GA(rete.)              | path transition                     | general         | <b>✓</b>        |                 | •                     |
| 2016 | classfuzz [42]    | MH(mutation.) + GA(rete.)          | code coverage                       | JVM             | <b>√</b>        |                 | •                     |
| 2017 | VUzzer [157]      | MC(seed.) + GA(rete.)              | block transition                    | general         | <b>√</b>        |                 | •                     |
| 2017 | AFLGo [22]        | SA(seed.) + GA(rete.)              | path transition                     | general         | <b>√</b>        |                 | •                     |
| 2017 | NEZHA [151]       | GA(rete.)                          | asymmetry                           | semantic bugs   | <b>√</b>        |                 | <b>0+0</b>            |
| 2017 | DeepXplore [148]  | GA(rete.)                          | neuron coverage                     | deep learning   | <b>√</b>        |                 | •                     |
| 2018 | STADS [17]        | Species(seed.)*                    | state discovery                     | general         | <b>√</b>        |                 | •                     |
| 2018 | CollAFL [66]      | GA(rete.)                          | ∆code coverage                      | general         | <b>√</b>        |                 | •                     |
| 2018 | Angora [37]       | GD(byte.) + GA(rete.)              | ∆code coverage                      | general         | <b>√</b>        |                 | •                     |
| 2019 | DigFuzz [210]     | MC(seed.) + GA(rete.)              | block transition                    | general         | <b>√</b>        |                 | 0                     |
| 2019 | MOPT [116]        | PSO(mutation.) + GA(rete.)         | code coverage                       | general         | <b>√</b>        |                 | •                     |
| 2019 | NEUZZ [172]       | NN(byte.) + GA(rete.)              | branch behavior                     | general         | <b>√</b>        |                 | •                     |
| 2019 | Cerebro [105]     | MOO(seed.) + GA(rete.)             | ∆code coverage                      | general         | <b>√</b>        |                 | •                     |
| 2019 | DifFuzz [138]     | GA(rete.)                          | asymmetry                           | side-channel    | <b>√</b>        |                 | •                     |
| 2020 | AFLNET [154]      | GA(rete.)                          | state machine                       | protocol        | <b>√</b>        |                 | •                     |
| 2020 | EcoFuzz [203]     | VAMAB(seed.) + GA(rete.)           | path transition                     | general         | <b>√</b>        |                 | •                     |
| 2020 | Entropic [21]     | Shannon(seed.) + GA(rete.)         | state discovery                     | general         | <b>√</b>        |                 | •                     |
| 2020 | MTFuzz [171]      | MTNN(byte.) + GA(rete.)            | ∆branch behavior                    | general         | <b>√</b>        |                 | •                     |
| 2020 | Ankou [118]       | GA(rete.)                          | ∆code coverage                      | general         | <b>√</b>        |                 | •                     |
| 2020 | FIFUZZ [87]       | GA(rete.)                          | ∆code coverage                      | error-handling  | <b>√</b>        |                 | •                     |
| 2020 | IJON [6]          | GA(rete.)                          | ∆code coverage                      | general         | <b>√</b>        |                 | •                     |
| 2020 | Krace [194]       | GA(rete.)                          | alias coverage                      | data race       | <b>√</b>        |                 | •                     |
| 2021 | AFL-HIER [88]     | UCB1(seed.) + GA(rete.)            | ∆path transition                    | general         | <b>√</b>        |                 | •                     |
| 2021 | PGFUZZ [82]       | GA(rete.)                          | safety policy                       | robotic vehicle | <b>√</b>        |                 | •                     |
| 2021 | Yousra et al. [1] | GA(rete.)                          | validation log                      | SmartTV         | <b>✓</b>        |                 | •                     |
| 2021 | AFLChurn [214]    | SA(seed.) + ACO(byte.) + GA(rete.) | path transition +<br>commit history | general         | ✓               |                 | •                     |

CUSR'22-Fuzzing: A Survey for Roadmap

MC: Markov Chain; MSCP: Minimal Set Cover Problem; ILP: Integer Linear Programming Problem; WCCP: Weighted Coupon Collector's Problem; VAMAB: Variant of Adversarial Multi-Armed Bandit; UCB1: Upper Confidence Bound, version one; MH: Metropolis-Hastings; PSO: Particle Swarm Optimization; Shannon's entropy; Species\*: Models of Species Discovery; ACO: Ant Colony Optimization; SA: Simulated Annealing; NN: Neural Network; MTNN: Multi-task Neural Networks; GA: Genetic Algorithm; GD: Gradient Descent; MOO: Multi-objective Optimization; R: Random.

set.: Seed Set Selection; seed.: Seed Schedule; byte.: Byte Schedule; mutation.: Mutation Schedule; rete.: Seed Retention;

O: Whitebox Fuzzing; **①**: Greybox Fuzzing; **②**: Blackbox Fuzzing.

∆: More sensitive code coverage.



# 文献分类



Table 2: Summary of the main studies concerned with the relationship of test criteria and faults.

| Author(s) [Reference]        | Year | Test Crite-<br>rion                                   | Summary of Primary Scientific<br>Findings                                                                                                                                                                                                                           |
|------------------------------|------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inozemtseva &<br>Holmes [61] | '14  | statement,<br>branch,<br>modified<br>condition        | There is a correlation between coverage<br>and test effectiveness when ignoring the<br>influence of test suite size. This is low<br>when test size is controlled.                                                                                                   |
| Just et al. [43]             | '14  | statement,<br>mutation                                | Both mutation and statement coverage<br>correlate with fault detection, with mu-<br>tants having higher correlation.                                                                                                                                                |
| Gopinath et al. [62]         | '14  | statement,<br>branch,<br>block, path                  | There is a correlation between coverage<br>and test effectiveness. Statement cov-<br>erage predicts best the quality of test<br>suites.                                                                                                                             |
| Ahmed et al. [63]            | '16  | statement,<br>mutation                                | There is a weak correlation between coverage and number of bug-fixes                                                                                                                                                                                                |
| Ramler et al. [64]           | '17  | strong mu-<br>tation                                  | Mutation testing provides valuable guid-<br>ance towards improving the test suites of<br>a safety-critical industrial software sys-<br>tem                                                                                                                          |
| Chekam et al. [6]            | '17  | statement,<br>branch,<br>weak &<br>strong<br>mutation | There is a strong connection between coverage attainment and fault revelation for strong mutation but weak for statement, branch and weak mutation. Fault revelation improves significantly at higher coverage levels.                                              |
| Papadakis et al.  [41]       | '18  | mutation                                              | Mutation score and test suite size corre-<br>late with fault detection rates, but often<br>the individual (and joint) correlations are<br>weak. Test suites of very high mutation<br>score levels enjoy significant benefits over<br>those with lower score levels. |

Table 2: Summary of the main studies concerned with the relationship of test criteria and faults.

| Author(s) [Reference]        | Year | Test Crite-<br>rion                                         | Summary of Primary Scientific<br>Findings                                                                                                                                                         |  |  |  |  |  |  |  |  |
|------------------------------|------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Chen <i>et al.</i> [50]      | 01   | Block                                                       | coverage can be used for predicting the software failures in operation.                                                                                                                           |  |  |  |  |  |  |  |  |
| Andrews et al. [42]          | '06  | block, c-<br>uses, p-uses,<br>branch                        | Block, c-uses, p-uses and branch coverage criteria correlate with test effectiveness.                                                                                                             |  |  |  |  |  |  |  |  |
| Namin & Andrews 51           | '09  | block, c-<br>uses, p-uses,<br>branch                        | Both test suite size and coverage influ-<br>ence (independently) the test effective-<br>ness                                                                                                      |  |  |  |  |  |  |  |  |
| Li et al. [ <u>52]</u>       | '09  | prime path,<br>branch, all-<br>uses, muta-<br>tion          | Mutation testing finds more faults than<br>prime path, branch and all-uses.                                                                                                                       |  |  |  |  |  |  |  |  |
| Papadakis &<br>Malevris [53] | '10  | Mutant sampling, 1st & 2nd order mutation                   | $1^{\mathrm{st}}$ order mutation is more effective than $2^{\mathrm{nd}}$ order and mutant sampling. There are significantly less equivalent 2nd order mutants than $1^{\mathrm{st}}$ order ones. |  |  |  |  |  |  |  |  |
| Ciupa et al. [54]            | '11  | Random<br>testing                                           | Random testing is effective and has pre-<br>dictable performance.                                                                                                                                 |  |  |  |  |  |  |  |  |
| Kakarla et al. [55]          | '11  | mutation                                                    | Mutation-based experiments are vulner-<br>able to threats caused by the choice of<br>mutant operators, test suite size and pro-<br>gramming language.                                             |  |  |  |  |  |  |  |  |
| Wei et al. [56]              | '12  | Branch                                                      | Branch coverage has a weak correlates with test effectiveness.                                                                                                                                    |  |  |  |  |  |  |  |  |
| Baker & Habli [57]           | '13  | statement,<br>branch,<br>MC/DC,<br>mutation,<br>code review | Mutation testing helps improving the test<br>suites of two safety-critical systems by<br>identifying shortfalls where traditional<br>structural criteria and manual review<br>failed.             |  |  |  |  |  |  |  |  |



#### 研究框架





Figure 3: Modern Mutation Testing Process. The process forms an adaptation of the Offutt's and Untch's proposition [26] based on the latest advances in the area. Bold boxes represent steps where human intervention is mandatory.

Elsevier, AIC'19-Mutation Testing Advances: An Analysis and Survey



#### 研究框架





Fig. 2. General workflow of fuzzing. Essentially, fuzzing consists of three components: input generator, executor, and defect monitor.

CUSR'22-Fuzzing: A Survey for Roadmap



#### 研究框架





Fig. 1: Overview of our study. DL-based fuzzing can be regarded as a "plugin" into the coverage-guided fuzzing (gree region), which takes runtime coverage information as the dataset to train a deep learning model, and use the model gradients to guide mutation (blue region). In this study, we ask research questions (RQ1-4) revolving around different aspects of DL-based fuzzing (purple region), i.e., overall effectiveness on coverage (RQ1), the model prediction accuracy (RQ2), the effectiveness of gradient to provide feedback (RQ3), and the summarized challenges (RQ4).

TDSC'22-Deep Learning for Coverage-Guided Fuzzing: How Far Are We?





zychen@nju.edu.cn fangchunrong@nju.edu.cn

Thank you!