Advanced Computer Architectures - Notes

260236

March 2024

Preface

Every theory section in these notes has been taken from two sources:

- Computer Architecture: A Quantitative Approach. [1]
- Course slides. [2]

About:

○ GitHub repository

Contents

1 1	Basic Concepts							
]	1.1	Pipelining						
		1.1.1	MIPS Architecture	4				
		1.1.2	Implementation of MIPS processor - Data Path	10				
		1.1.3	MIPS Pipelining	12				
Ind	ex			20				

1 Basic Concepts

This section is designed to review old concepts that are fundamental to this course.

1.1 Pipelining

1.1.1 MIPS Architecture

MIPS (Microprocessor without Interlocked Pipelined Stages) is a family of Reduced Instruction Set Computer (RISC). It is based on the concept of executing only simple instruction in a reduced basic cycle to optimize the performance of CISC¹ CPUs.

MIPS is a **load-store architecture** (or a register–register architecture), which means it is an Instruction Set Architecture (ISA²) that divides **instructions** into two categories:

• Memory access (load and store between memory and registers; load data from memory to registers; store data from registers to memory):

$$\begin{array}{ccc}
\text{Memory} & \xrightarrow{\textbf{load}} & \text{Registers} \\
\text{Memory} & \xrightarrow{\textbf{store}} & \text{Registers}
\end{array}$$

• ALU operations (which only occur between registers).

Finally, MIPS is also a Pipeline Architecture. It means that it can execute a performance optimization technique based on overlapping the execution of multiple instructions derived from a sequential execution flow.

¹CISC processors use simple and complex instructions to complete any given task. Instead, the RISC processor uses the approach of increasing internal parallelism by executing a simple set of instructions in a single clock cycle (see more here).

²Instruction Set Architecture (ISA) is a part of the abstract model of a computer, which generally defines how software controls the CPU.

Reduced Instruction Set of MIPS Processor

The instruction set of the MIPS processor is the following:

- ALU instructions:
 - Sum between two registers:

```
add $s1, $s2, $s3 # $s1 <- $s2 + $s3
```

Take the values from s2 and s3, make the sum and save the result on s1.

- Sum between register and constant:

```
addi $s1, $s1, 4 # $s1 <- $s1 + 4
```

Take the value from s1, make the sum between s1 and 4, and save the result on s1.

- Load/Store instructions:
 - Load

```
1 lw $s1, offset ($s2) # $s1 <- Memory[$s2 + offset]
```

From the s2 register, calculate the index on the memory with the offset, take the value and store it in the s1 register.

- Store

```
sw $s1, offset ($s2) # Memory[$s2 + offset] <- $s1
```

Take the value from the s1 register, take the value from the s2 register, calculate the index on the memory with the offset, and store the value taken from s1 in the memory.

- Branch instructions to control the instruction flow:
 - Conditional branches

Only if the condition is true (branch on equal):

```
1 beq $s1, $s2, L1  # if $s1 == $s1 then goto L1
```

Only if the condition is false (branch on not equal):

```
bne $s1, $s2, L1 # if $s1 != $s2 then goto L1
```

Unconditional jumps. The branch is always taken.

Jump:

```
1 j L1 # jump to L1
```

Jump register:

```
jr $s1 # jump to address contained in $s1
```

Formats of MIPS 32-bit Instructions

The previous instructions are divided into **three types**:

- Type R (Register): ALU instructions.
- Type I (Immediate): Load/Store instructions and Conditional branches.
- Type J (Jump): Unconditional jumps instructions.

Every instruction **starts with a 6-bit opcode**. In addition to the opcode:

- R-type instructions specify:
 - Three registers: rs, rt, rd
 - A shift amount field: shamt
 - A function field: funct
- I-type instructions specify:
 - Two registers: rs, rt
 - 16-bit immediate value: offset/immediate
- J-type instructions specify:
 - 26-bit jump target: address

	6-bit	5-bit	5-bit	5-bit	5-bit	6-bit
3	1 26 -	- 25 21 -	- 20 16 -	- 15 11 -	- 10 6 -	- 5 0
R	op	rs	rt	rd	shamt	funct
I	op	rs	rt	offset/immediate		
J	op	address				

Figure 1: MIPS 32-bit architecture.

Scan (or click) the QR code below to view the table in high quality:

Phases of execution of MIPS Instructions

Every instruction in the MIPS subset can be implemented in <u>at most</u> 5 clock cycles (phases) as follows:

1. Instruction Fetch (IF)

- (a) **Send** the **content** of Program Counter (PC) register to the Instruction Memory (IM);
- (b) **Fetch** the current **instruction** from Instruction Memory;
- (c) **Update** the Program Counter to the **next sequential address** by adding the value 4 to the Program Counter (4 because each instruction is 4 bytes!).

2. Instruction Decode and Register Read (ID)

- (a) Make the fixed-filed recording (decode the current instruction):
- (b) **Read** from the Register File (RF) of one or two registers corresponding to the registers specified in the instruction fields;
- (c) Sign-extension of the offset field of the instruction in case it is needed.
- 3. Execution (EX). The ALU operates on the operands prepared in the previous cycle depending on the instruction type (see more details after this list):
 - Register-Register ALU instructions: ALU executes the specified operation on the operands read from the Register File.
 - Register-Immediate (Register-Constant) ALU instructions: ALU executes the specified operation on the first operand read from Register File and the sign-extended immediate operand.
 - Memory Reference: ALU adds the base register and the offset to calculate the effective address.
 - Conditional Branches: ALU compares the two registers read from Register File and computes the possible branch target address by adding the sign-extended offset to the incremented Program Counter.
- 4. Memory Access (ME). It depends on the operation performed:
 - <u>Load</u>. Instructions require a read access to the Data Memory using the effective address.
 - Store. Instruction require a write access to the Data Memory using the effective address to write the data from the source register read from the Register File.
 - <u>Conditional branches</u> can update the content of the Program Counter with the branch target address, if the conditional test vielded true.

- 5. Write-Back (WB). It depends on the operation performed:
 - (a) <u>Load</u> instructions write the data read from memory in the destination register of the Register File.
 - (b) <u>ALU</u> instructions write the ALU results into the destination register of the Register File.

Execution (EX) details

• Register-Register ALU instructions. Given the following pattern (where op can be the operators add/addi (+) or sub/subi (-), but not mult (×) or div (÷) because they required some special registers and therefore more phases):

```
1 op x, y, z # e.g. op=add => x < -y + z
```

Cost: 4 clock cycles

- 1. Instruction Fetch (IF) and update the Program Counter (next sequential address);
- 2. Fixed-Field Decoding and read from Register File the registers: y and z;
- 3. Execution (EX), ALU performs the operation op (\$ y op \$ z);
- 4. Write-Back (WB), ALU writes the result into the destination register x.

• Memory Reference

- <u>Load</u>. Given the following pattern:

```
1 lw $x, offset ($y) # $x <- M[$y + offset]
```

Cost: 5 clock cycles

- 1. Instruction Fetch (IF) and update the Program Counter (next sequential address);
- 2. Fixed-Field Decoding and read of Base and register y from Register File (RF);
- 3. Execution (EX), ALU adds the base register and the offset to calculate the effective address: y + offset;
- 4. Memory Access (ME), read access to the Data Memory (DM) using the effective (y + offset) address;
- 5. Write-Back (WB), write the data read from memory in the destination register of the Register File (RF) x.

- Store. Given the following pattern:

```
1 sw $x, offset ($y) # M[$y + offset] <- $x
```

Cost: 4 clock cycles

- 1. Instruction Fetch (IF) and update the Program Counter (next sequential address);
- 2. Fixed-Field Decoding and read of Base register y and source register x from Register File (RF);
- 3. Execution (EX), ALU adds the base register and the offset to calculate the effective address: y + offset;
- 4. Memory Access (WB), write the data read from memory in the destination register of the Register File (RF) M(y + offset).
- Conditional Branch. Given the following pattern:

```
1 beq $x, $y, offset
```

Cost: 4 clock cycles

- 1. Instruction Fetch (IF) and update the Program Counter (next sequential address);
- 2. Fixed-Field Decoding and read of source registers x and y from Register File (RF);
- 3. Execution (EX), ALU compares two registers x and y and compute the possible branch target address by adding the sign-extended offset to the incremented Program Counter: PC + 4 + offset;
- 4. Memory Access (ME), update the content of the Program Counter with the branch target address (we assume that the conditional test is true).

1.1.2 Implementation of MIPS processor - Data Path

Implementing a MIPS processor isn't difficult. On the following page we show three different diagrams: the first is a very high level data path to allow the reader to understand how it works; the second is more detailed, but without the CU (Control Unit); the third is the complete data path and it also includes the CU (in red).

Figure 2: A basic implementation of MIPS data path. [2]

Scan (or click) the QR code below to view the figure 2 in high quality:

Two notes:

- The Instruction Memory (read-only memory) is separated from Data Memory.
- The 32 general-purpose register are organized in a **Register File** (RF) with 2 read ports and 1 write port.

Figure 3: An implementation of MIPS data path (no Control Unit). [2]

Scan (or click) the QR code below to view the figure 3 in high quality:

Figure 4: A complete implementation of MIPS data path. [2]

Scan (or click) the QR code below to view the figure 4 in high quality: $\frac{1}{2}$

1.1.3 MIPS Pipelining

In simple words, the Instruction Pipelining (or Pipelining) is a technique for implementing instruction-level parallelism within a single processor. Pipelining attempts to keep every part of the processor busy with some instruction by dividing incoming instructions into a series of sequential steps (the eponymous "pipeline") performed by different processor units with different parts of instructions processed in parallel.

Definition 1

Pipelining is a performance optimization technique based on the **over-lap** of the execution of multiple instructions deriving from a sequential execution flow.

Pipelining exploits the parallelism among instructions in a sequential instruction stream.

☆ Basic idea

The execution of an instruction is divided into different phases (called pipelines stages), requiring a fraction of the time necessary to complete the instruction. These stages are connected one to the next to form the pipeline:

- 1. Instructions enter the pipeline at one end;
- 2. Progress through the stages;
- 3. And exit from the other end.

As in the assembly line.

✓ Advantage

The **Pipelining is transparent for the programmer**. To understand what it means, let's make an example.

Example 1

Image a car assembly line (e.g. Ferrari). A new car exits from the Ferrari assembly line in the time necessary to complete one of the phases. The pipelining technique doesn't reduce the time required to complete a car (the **latency**), BUT increases the number of vehicles produced per time unit (the **throughput**) and the frequency to complete cars.

As introduced in the previous example, sequential execution is slower than pipelining. The following figure shows the difference (in terms of clock cycles) between sequential and pipelining.

Figure 5: Sequential vs Pipelining. [2]

The time to advance the instruction of one stage in the pipeline corresponds to a clock cycle. So the total cost is: 9 clock cycles.

It's obvious that the **pipeline stages must be synchronized**: the duration of a clock cycle is defined by the time required by the slower stage in the pipeline (i.e. 2 ns). The **main goal** is to **balance the length of each pipeline stage**. If the stages are perfectly balanced, the **ideal speedup** due to pipelining is equal to the number of pipeline stages.

Look again at Figure 5. The sequential and pipelining cases consist of 5 instructions, each of which is divided into 5 low-level instructions of 2 ns each.

- The **latency** (total execution time) of each instruction is not varied, it's always 10 ns.
- The **throughput** (number of low-level instructions completed in the time unit) is improved:
 - Sequential: 5 instructions in 50 ns (1 instruction per 10 ns, $50 \div 5 = 10$)
 - Pipelining: 5 instruction in 18 ns (1 instruction per 3.6 ns, $18 \div 5 = 3.6$)

Pipeline Execution of MIPS Instructions

On page 8 we discussed some MIPS instructions to understand how the MIPS architecture works. The aim of the following pages is to understand **how MIPS** works in a pipelined execution.

We want to perform the following assembly lines:

, oq							
IF Instruction Fetch	ID Instruction Decode	EX Execution	ME Memory Access	WB Write Back			
ALU Instruction	ıs: op \$x,\$y,\$z	: # \$x ← \$y	+ \$z				
Instr. Fetch & PC Increm.	Read of Source Regs. \$y and \$z	ALU Op. (\$y op \$z)		Write Back Destinat. Reg. \$x			
Load Instructions: 1w \$x,offset(\$y) # \$x ← M[\$y + offset]							
Instr. Fetch & PC Increm.	Read of Base Reg. \$y	ALU Op. (\$y+offset)	Read Mem. M(\$y+offset)	Write Back Destinat. Reg. \$x			
Store Instructions: sw \$x,offset(\$y) # M[\$y + offset]← \$x							
Instr. Fetch & PC Increm.	Read of Base Reg. \$\sqrt{y} & Source \$\sqrt{x}\$	ALU Op. (\$y+offset)	Write Mem. M(\$y+offset)				
Conditional Branches: beq \$x,\$y,offset							
Instr. Fetch & PC Increm.	Read of Source Regs. \$x and \$y	ALU Op. (\$x-\$y) & (PC+4+offset)	Write PC				

Figure 6: Pipeline Execution of MIPS Instructions. [2]

Resources used during the pipeline execution

Figure 7: Resources used during the pipeline execution (IM is Instruction Memory, REG is Register File and DM is Data Memory). [2]

Implementation of MIPS pipeline

The division of the execution of each instruction in n stages implies that in each clock cycle, there are n instructions for execution. That means the CPU must have n modules corresponding to n execution stages. Therefore, to do pipelining, we need **pipeline registers to separate the different stages**.

In the following figure, we can see how the pipeline registers are implemented. Between each phase of execution of MIPS instructions (details on page 7), there is a pipeline register holding the result of the instruction.

Figure 8: MIPS pipeline implementation. [2]

 $\underline{\text{Note}}$: the data stored in the interstage registers correspond (obviously) to different instructions.

Finally, in the following figure we can see the timeline implementation of the pipeline registers. But there are two basic assumptions to make:

- 1. There are no data dependencies between instructions. If there were, an instruction could read a register with an unknown value.
- 2. There are no branch/jump instructions.

Figure 9: Timeline of MIPS pipeline implementation. [2]

References

- [1] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach. ISSN. Elsevier Science, 2017.
- [2] Cristina Silvano. Lesson 1, pipelining. Slides from the HPC-E master's degree course on Politecnico di Milano, 2024.

Index

D		MIPS	4
Data Memory (DM)	7		
${f E}$		P	
_	_	pipeline registers	17
Execution (EX)	7	pipelines stages	12
T		Pipelining	12
Instruction Decode and Register		Program Counter (PC)	7
Read (ID)	7	D	
Instruction Fetch (IF)	7	\mathbf{R}	
Instruction Memory (IM)	7	Register File (RF)	7
M		\mathbf{W}	
Memory Access (ME)	7	Write-Back (WB)	8