- (2.5) Calculations are to be performed to a precision of 0.001%. How many bits does this require?
 - This precision requires 10 bits. 0.001 can be represented as $\frac{1}{1000}$. 2^{-9} is equal to $\frac{1}{512}$ and 2^{-10} is equal to $\frac{1}{1024}$. Since $\frac{1}{1000}$ is less than $\frac{1}{512}$, 9 bits is too few. However, since $\frac{1}{1000}$ is greater than $\frac{1}{1024}$, 10 bits is sufficient.
- (2.13) Perform the following calculations in the stated bases:

+ 010110112 + 01001001 + 01001000	4 4 3 F 2
1001000	136
=136	
, , ,	
O 00120121 0 00ABCD1F	
+ 0A015031 4 0F00800F.	
0 A 135 152 OFAC 4 D 2 E	

- (2.14) What is arithmetic overflow? When does it occur and how can it be detected?
 - Arithmetic overflow is when the number of bits necessary to represent a binary number exceed the number of bits available to represent the number. It can be detected by the overflow flag of the status register being set.
- (2.16) Convert 1234.125 into 32-bit IEEE floating-point format.
 - The following
 - Whole number = 1234, decimal = .125
 - $1234_{10} = 10011010010_2$
 - $-1.125_{10} = .001_2$
 - Mantissa = 00100...0
 - Exponent = $10_{10} + 127_{10}$ (bias) = $137_{10} = 10001001_2$
 - Sign = 0 (positive)
 - Floating point format = $0 \ 10001001 \ 00110100100010...0$
- (2.17) What is the decimal equivalent of the 32-bit IEEE floating point value CC4C0000?
 - The following are the components of this floating point value:
 - Sign = 1 (negative)
 - Exponent = 10011000 = 152 127 = 25
 - Significand = $1001100...0 = \frac{1}{2} + \frac{1}{16} + \frac{1}{32} = \frac{19}{32} = 0.59375$
 - Decimal number = $-1.59375 \times 2^{25} = -53477376$
- (2.22) What is the difference between a truncation error and a rounding error?
 - A truncation error is when bits are cut off of the end (which always results in a round-down). A rounding error is when a number is either rounded up or down based on whether the unwanted bits are greater than/equal to .5 or less than .5, respectively. Both errors happen due to significant figure requirements.
 - 2.40 Draw a truth table for the circuit below and explain what it does:

• This circuit is logically equivalent to an XOR.

A	В	С
0	0	0
0	1	1
1	0	1
1	1	0

- 2.45 It is possible to have n-input AND, OR, NAND, and NOR gates, where n $\stackrel{.}{\iota}$ 2. Can you have an n-input XOR gate for n $\stackrel{.}{\iota}$ 2? Explain your answer with a truth table.
 - \bullet No, XOR gates can only have 2 inputs. An XOR gate with more than 2 inputs can be representented with multiple 2 input XOR gates.