

RTK-GT-U16

Dual-frequency RTK-centimeter positioning

module supports GPS/BDS/GA/Module at the same time

GNSS Positioning Module Data Sheet

AUG, 2022

Revision History

Version number re	Version number revision record						
Ver1.00 Initial esta	Ver1.00 Initial establishment						
Ver1.01 Added sch	ematic description and application guidance	2023					

Disclaimer

This document provides information about the products of Shenzhen Guoyun Technology Co., Ltd. This document does not transfer any patent, trademark, copyright or ownership of the Company or any third party or any rights or licenses thereunder by implication, estoppel or otherwise. The Company shall not assume any other responsibilities except those stated by Huatong Intelligent in the terms and conditions of sale of its products, and Huatong Intelligent makes no express or implied warranties for the sale and/or use of its products, including the suitability of the products for a particular purpose, merchantability or infringement of any patent, copyright or other intellectual property rights. The Company shall not be liable for any problems caused by connection or operation not in accordance with the manual requirements. Huatong Intelligent may make changes to product specifications and product descriptions at any time without prior notice. The Company's products may contain certain design defects or errors, which will be included in the errata once discovered, and may cause the product to differ from the published specifications. The latest errata is available upon request.

Module	3 1.Product Description	3 2.Product
Application	4 3.Product Advantages	4 4.Technical
Characteristics	5 5.Module Working Principle	6 6.Module Signal Test Diagra
and Module RF Radio Frequency	uency Diagram7 6.1Conduction Test:	7 6.2Module RF Radio
Frequency Properties:		8 8.Recommended Application
Circuit		11 10.Module Pad
Size	13 11.Common Parameter Setting Instructions	14 11.1Set Serial Communication
Baud Rate	14 11.2Set Positioning Update Rate	14 12.Module label
description	15 13.Packing instructions	15 14.SMT temperature curve
diagram	16 15.Anti -static requirements	16

2

GT-U16

Module

Data Sheet

v1.01

1. Product Description

Product Name: GT-U16 GT-U16

is a self-developed new generation BDS/GPS/GLONASS/Galileo/QZSS full system dual-frequency high-precision RTK positioning module, which can Tracking BDS B1l/B1C*/B2a/B2b* GLONASSL1 RF basebandrand representation algorithm integrated GNSS SOC chip, simultaneously detect GalileoE1/E5a, QZSSL1/L5 and other signal frequencies. built-in high-performance CPU, integrated double-precision floating-point processor and RTK dedicated coprocessor, using 22nm low-power process, can achieve 10HZ RTK positioning result output, providing more powerful satellite navigation signal processing capabilities. The module supports UART communication interface, can meet the user's use needs in different scenarios, has a full range of functions, and can meet the strict requirements of professional positioning. It is small in size and can be installed anywhere inside the car. It has low power consumption and can meet the needs of individual users.

Module appearance:

2. Product Application

ÿThe module is compact in size of 16.0X12.2X2.4mm and uses SMT pads

ÿTrajectory tracking products such as personal positioning and vehicle positioning

ÿSurveying and mapping products such as area measurement and distance measurement

ÿApplicable to smart logistics

ÿSmart security

ÿAutomatic driving of agricultural machinery

ÿIntelligent robots

ÿFlight control flight formation

ÿLandslide /deformation monitoring

	System Interface										Data
工业级	GPS	BDS	GLONASS	Galileo	ózss	SBAS	UARTO	UART1	12C	SPI	update rate
•	•	•	•	•	•	•	•	•	•	•	1Hz~10Hz

3. Product advantages

- ◎ 支持全系统双频点片上 RTK定位解算,定位精度可达lcm+1ppm (CEP)~
- ☑ RTK更新速率最高可达 10HZ←
- ② 支持 BDS B1I/B1C*/B2a/B2b*、 GPS LI/L5、 GLONASS L1、 Galileo← EI/E5a、 QZSSL1/L5 等频点←
- 型 超低功耗,双频 RTK跟踪功耗低至 100mw←
- ② 卫星各频点独立跟踪及 60dB 窄带抗干扰技术
- 16.0x12.2x2.4mm 表面贴装

4. Technical characteristics

GNSS 性能					
4		BDS :	BII ,B1C*,	B2a, B2b*	9
₩ ₩		GPS:L	1C/A ,L5		
卫星系统及频点		GLONA	ASS: L1⊬		
		Galile	o :El,E5a	H	
		QZSS:	L1, L5↩		
4				GNSS←	
4	·	冷启动]	-148dBm	
灵敏度↩		热启动)	-155dBm	
		重捕茲	₹	-155dBm	
		跟踪		-164dBm	
4				1.0mcEP←	
定位精度		水平定位精度↩		(双频四系统, 开阔↔	
				天空)↩	
B1I/B1C*/L1C/A/E1/G1伪距		30cm	30cm	50cm	30cm€
B1I/B1C*/L1C/A/E1/G1载波	相位	2mm	2mm	2mm	2mm←
B2a/L5/E5a伪距		10cm	10cm		10cm€
B2a/L5/E5a 载波相位		2mm	2mm		2mm←
则速精度		1m/s	S←I		
		冷启动	: 245		
首次定位时间↩		热启动	: 1s		
		重捕获	: 1s ^ረ		
初始化时间		<5s	(典型值)↩		
初始化可靠性		> 99.9	9%←		
数据更新率		1HZ~	10HZ←	1	

· 电源	
输入电压	+2.7V~3.6VDC
T-L+T	100mw (四系统双频-捕获)
功耗	100mw (四系统双频-跟踪)
射频输入	
输入增益	15dB~30dB
输入阻抗	50Ω
输入功率 (最大值)	10dBm [←]
物理特性↩	
	16.0mm×12.2mm×2.4mm←
环境指标□	
工作温度	-40 °C~+85°C↩
存储温度	-40°C∼+85°C←
湿度	5%~95% 非凝露₽
振动	GB2423.10↩
冲击	GB2423.5₽

5. Module working principle

6.Module signal test diagram and module RF radio frequency diagram

6.1 Conduction test:

6.2Module RF properties:

7. Module pin assignment

13 GND	GND 12
14 Reserved	RF_IN 11
15 Reserved	GND 10
16 CFG_GPS0	VCC_RF 9
17 Reserved	RESET 8
GT	-U16
18 SDA2	VDDUSB 7
19 SCL2	USB_DP 6
20 TxD1	USB_DM 5
21 RxD1	EXTINTO 4
22 V_BCKP	TIMEPULSE 3
23 VCC	Reserved 2
24 GND	Reserved 1

Top view

Pin No.	Pin name	1/0	Description	Remark
1	Reserved		Dangling	
2	Reserved		Dangling	
3	TIMEPULSE	THE		Second pulse output
4	Reserved		Dangling	
5	Reserved		Dangling	
6	Reserved		Dangling	
7	NC			
8	RESET_N	1	Leave it unused when not in use	Module reset input, low level is effective
9	VCC_RF	THE		Active antenna power output
10	GND	1		land
11	RFIN	1		Antenna signal input
12	GND	1		land
13	GND	1		land
14	NC			
15	NC			
16	NC			
17	NC			
18	SDA	1/0	Dangling	I2C Data Interface
19	SCL	THE	Dangling	I2C Clock Interface
20	TXD1	THE	NMEA0183 Protocol	Navigation data output
21	RXD1		Configuration command input	Interactive command input
22	VBAT		Provide +1.8~+3.3V power supply to ensure GPS hot start	RTC and SRAM backup power
23	vcc	1	DC 3.3V±10%, 200mA module power input	
24	GND			land

8. Recommended application circuit

9. Module design considerations

In order for the GT-U16 module to work properly, the following signals need to be connected correctly:

ÿ Provide reliable power supply to VCC pin.

ÿConnect all GND pins of the module to ground.

ÿConnect the RF_IN signal to the antenna, and keep the line impedance matching at 50 ohms. ÿEnsure that serial port 1 is connected to the PC or external processor. Users can use this serial port to receive positioning information data. (Software upgrades also need to be performed through this serial port)

In order to obtain good performance, special attention should be paid to the following items in the design:

ÿPower supply: Good performance requires a stable and low ripple power supply. The peak-to-peak voltage ripple should not exceed 50mV.

- Use LDO to ensure pure power supply
- Place the LDO as close to the module as possible in layout
- Widen the power supply line or use split copper surface to transmit current
- Avoid routing power lines through high-power and high-inductance devices such as magnetic coils

ÿ UART interface: ensure that the pin signal and baud rate of the host device and GT-U16 module correspond to each other

ÿAntenna interface: Pay attention to impedance matching of the antenna line, keep it as short and smooth as possible, and avoid sharp

corners. ÿAntenna position: In order to ensure a good signal-to-noise ratio, ensure that the antenna is well isolated from the electromagnetic radiation source.

Especially electromagnetic radiation in the frequency band of 1559 \ddot{y} 1620MHz

 \ddot{y} Try to avoid routing the wires directly under the GT-U16 module \ddot{y} This module

is a temperature-sensitive device. Rapid temperature changes will cause its performance to degrade. Try to keep it away from high-temperature airflow and high-power heaters during use.

10.Module pad size

Symbol	Min. (mm)	Typ. (mm)	Max. (mm)
A	15.9	16.0	16.6
В	12.1	12.2	12.3
С	2.2	2.4	2.6
D	0.9	1.0	1.3
E	1.0	1.1	1.2
F	2.9	3.0	3.1
G	0.9	1.0	1.3
Н		0.82	
K	0.7	0.8	0.9
M	0.8	0.9	1.0
N	0.4	0.5	0.6
Weight		1.6g	

11. Common parameter setting instructions

11.1 Set the serial port communication

baud rat	е Туре		
Input for	mat \$PCAS01,br*C	S <cr><lf> Example</lf></cr>	
\$PCASO)1, <mark>1*1</mark> D		
			Parameter Description
Field nam	ne format		Parameter
1 \$PC	AS01 string		Description Message
			ID, sentence
		number	header Baud
2 br			rate
			configuration:
			0=4800bps
			1=9600bps
			2=19200bps 3=38400bps 4=57600bps 5=115200bps
3 CS		Hexadecimal checksum,	XOR result of all characters between \$ and * (excluding \$ and *)
4 <cr></cr>	> <lf></lf>	character	Carriage return and line feed

11.2 Set the	positioning
---------------------	-------------

update r	update rate type					
Input for	mat \$PCAS02,fixInt	*CS <cr><lf> Example</lf></cr>				
\$PCASO	02,1000*2E					
			Parameter			
Field nan	ne format		Description			
1 \$PC	AS02 string		Parameter Description Message ID, statement header			
2	fixedInt	Numeric	Positioning update interval, in ms. 1000 = Update rate is 1Hz, outputting 1 positioning point per second 500 = Update rate is 2 Hz, 2 positioning points are output per second 250 = Update rate is 4 Hz, 4 positioning points are output per second 200 = Update rate is 5 Hz, 5 positioning points are output per second 100 = Update rate is 10 Hz, outputting 10 positioning points per second			
3 CS		Hexadecimal checksum,	XOR result of all characters between \$ and * (excluding \$ and *)			
4 <cr:< td=""><td><lf> characters</lf></td><td></td><td>Carriage return and line feed</td></cr:<>	<lf> characters</lf>		Carriage return and line feed			

12.Module label description

Barcode: 19G0901545 (Note: The label is optional.) 19 is 2019, G09 is the month, and 01545 is the rolling barcode

The QR code is: GT-U16-19G0901545

13. Packaging instructions

Pallet packaging: 100pcs per pallet,

14. SMT temperature curve

72	700	9	
Warm-up phase	Temperature rise rate	Less than 3ÿ/s	
	Preheating end temperature	150 - 160ÿ	
Constant temperature stage	Temperature rise rate	(150ÿ-183ÿ range) less than 0.3ÿ/s;	
	Temperature rise rate	(183ÿ-217ÿ range) less than 3.5ÿ/s	
	Constant temperature time	60 – 120 seconds	
	Constant temperature end temperature	217°C	
Tin melting stage	Tin melting time	40-60 seconds	
	Peak temperature	245°C	
Cooling phase	Temperature drop rate	No higher than 4°C/s	

15. Anti-static requirements

The module is an electrostatically sensitive product. The RF circuit on the module contains electrostatically sensitive components. Please pay attention to it during welding, installation and transportation

For electrostatic protection, please do not touch the RF_IN pin directly with your bare hands, otherwise it may cause damage to the module

