EIOT

CPU (examples of 8 and 16-bit CPUs)

Aleksander Pruszkowski Instytut Telekomunikacji Politechniki Warszawskiej

This lecture

- Basic info on CPUs and MCUs
- Structure of microprocessor-based system
- Examples of MCUs

- Microprocessor (CPU) vs. microcontroller (MCU)
 - a microprocessor (CPU) does not contain memory or peripherals; it cannot work on its own
 - you need to interface to it non-volatile memory, data memory, a clock, etc.
 - a microcontroller contains different memories (both non-volatile and data memory) and a whole bunch of peripherals
 - but adding memory is an issue extending the capacity of data memory (e.g., by using external memory to emulate data memory) needs special handling in software
 - the emulation approach is limited in that you can't use the memory for some purposes,
 e.g., to hold the stack; also, access to such memory is slower
 - currently, the distinction between CPU and MCU is blurred
 - many microprocessors features some minimal collection of peripherals, say, UART/USB interfaces

- CPU, the heart of a system
 - can be described by
 - word size: how many bits can be processed in parallel
 - how much memory can it "see" (actually, address)
 - A typical CPU also contains
 - control unit: responsible for interpreting (executing) instructions from the CPU's instruction set
 - program counter, PC (also called instruction pointer, IP): a register addressing the next instruction to be executed
 - arithmetic-logic unit, ALU: responsible for processing data bits (e.g., addition)
 - CPU (internal) registers
 - general purpose registers
 - control registers
 - status register
 - memory and peripherals control circuitry

- CPU, the heart of the system, cont.
 - code and data storage architectures
 - Harvard data and code stored in different, separate memories
 - von Neumann same memory can store both data and code
 - instruction set and its complexity
 - CISC complex instruction set computer, advanced addressing modes
 - RISC reduced instruction set computer, simple addressing modes

CISC	RISC	
mov ax, cs:[bp+bx*4+al]	mov	R0, 4
	mul	R1, R0
	add	R2, R1
	add	R2, R3
	ld	R3, [R2

- CPU, the heart of the system, cont.
 - registers
 - temporary, fast storage for intermediate results
 - number of registers
 - few registers: only special-purpose registers (e.g., accumulator) and a fast access memory region
 - many general-purpose registers
 AX,BX,CX,DX, ... x86 architecture

 R0...R15 ARM architecture
 - stack
 - stack implementation
 - the stack shares RAM memory with other data
 - "hardware" stack in a separate, special-purpose stack buffer (usually very small)
 - what is stack used for
 - return address (where to return when a function execution is completed)
 - arguments passed when a function is invoked
 - local variables

- CPU, the heart of the system, cont.
 - embedded peripherals
 - memory management and caching
 - MMU, memory management unit: paging, mapping virtual memory addresses to physical memory addresses
 - protected mode: assigning "privilege levels" to processes and granting access (or not) to portions of memory based on them
 - caching: speeding up access by holding frequently accessed data in fast, small cache memory
 - interrupt system
 - makes it possible to immediately react (handle) to a change in the state of peripheral devices
 - interrupts have priorities
 - aligned with event-driven programming (events can be triggered by hardware interrupts)
 - (MCU) embedded communication interfaces
 - RS232/UART, SPI, I2C, SATA, USB (host/device), ETH, WIFI, Radio/ISM, ...
 - (MCU) ADC and DAC converters
 - ... and other peripherals

Structure of microprocessor-based system

CPU

- AVR family
 - CPU: 8-bit, Harvard architecture,
 RISC
 - Internal memory
 - ROM (<256KB)
 - RAM (<8KB)
 - Plenty of internal peripherals
 - USART/UART, I2C/TWI, SPI, USB, A/D, PWM, ...
 - High processing power
 - 1 MIPS/MHz
 - Many varieties in the family
 - 99(mega), 33(tiny), 30(Xmega)

<u>AIMEL</u>

- AVR family
 - Most popular family member: ATMega328P
 - ROM/EEPROM/RAM: 32KB/1KB/2KB
 - Fosc (clock frequency): 16MHz
 - Vcc: 2.7...5V
 - Most powerful: ATMega2561
 - ROM/EEPROM/RAM: 256KB/4KB/8KB
 - Fosc: 16MHz
 - Vcc: 2.7...5V
- OS for AVR

TinyOS, Contiki, FreeRTOS, SOS, pico OS, ChibiOS, ...

Źródło: Logo i materiały informacyjne firmy Atmel

• AVR: registers

General Purpose Working Registers

7	0	Addr.	
R0		\$00	
R1		\$01	
R2		\$02	
R13		\$0D	
R14		\$0E	
R15		\$0F	
R16		\$10	
R17		\$11	
R26		\$1A	X-register Low Byte
R27		\$1B	X-register High Byte
R28		\$1C	Y-register Low Byte
R29		\$1D	Y-register High Byte
R30		\$1E	Z-register Low Byte
R31		\$1F	Z-register High Byte

Źródło: materiały informacyjne firmy Atmel

AVR: memory maps

Źródło: materiały informacyjne firmy Atmel

- MSP430 family
 - CPU: 16-bit, Harvard architecture, RISC
 - Internal memory: ROM (<60KB), RAM (<8KB)
 - Highly energy efficient
 - Five operating modes, lowest power mode: 0.1uA, fast waking-up: 6us
 - Active

mode: 260uA/1MHz

Źródło: Logo i materiały informacyjne firmy TI

MSP430: registers

• MSP430: memory maps for different devices

		MSP430F133	MSP430F135	MSP430F147 MSP430F1471	MSP430F148 MSP430F1481	MSP430F149 MSP430F1491
Memory	Size	8KB	16KB	32KB	48KB	60KB
Main: interrupt vector	Flash	0FFFFh - 0FFE0h				
Main: code memory	Flash	0FFFFh - 0E000h	0FFFFh - 0C000h	0FFFFh - 08000h	0FFFFh - 04000h	0FFFFh - 01100h
Information memory	Size	256 Byte				
	Flash	010FFh - 01000h				
Boot memory	Size	1KB	1KB	1KB	1KB	1KB
	ROM	0FFFh - 0C00h				
RAM	Size	256 Byte 02FFh - 0200h	512 Byte 03FFh - 0200h	1KB 05FFh - 0200h	2KB 09FFh - 0200h	2KB 09FFh - 0200h
Peripherals	16-bit	01FFh - 0100h				
	8-bit	0FFh - 010h				
	8-bit SFR	0Fh - 00h				

Źródło: Materiały informacyjne firmy Texas Instruments

Thank you!

