16. Applications of derivatives

EE24BTECH11065 - spoorthi

Section-B JEE Main/AIEEE

, .	min. When the thickness o	•		
a) $\frac{1}{36\pi} \ cm/min$.	b) $\frac{1}{18\pi}$ cm/min.	c) $\frac{1}{54\pi}$ cm/min.	d) $\frac{5}{6\pi}$ cm/min.	
equation $na_n x^{n-1}$ + a) greater than α b) smaller than α c) greater than or α d) equal to α	_	=0 has a positive root, wh		[2005]
3) The function $f(x)$	$=\frac{x}{2}+\frac{2}{x}$ has a local minim	num at		[2006]
a) $x = 2$	b) $x = -2$	c) $x = 0$	d) $x = 1$	
	s enclosed on two sides by tence are of same length x .		-	oank. The [2006]
a) $\frac{3}{2}x^2$	b) $\sqrt{\frac{x^3}{8}}$	c) $\frac{1}{2}x^2$	d) πx^2	
5) A value of <i>c</i> for w the interval [1, 3] i	which conclusion of Mean s	Value Theorem holds for	the function $f(x) =$	$\log_e x$ on [2007]
a) $\log_3 e$	b) $\log_e 3$	c) 2log ₃ <i>e</i>	d) $\frac{1}{2}\log_3 e$	
6) The function $f(x)$	$= \tan^{-1}(\sin x + \cos x)$ is an	increasing function in		[2007]
a) $(0,\frac{\pi}{2})$	b) $\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$	c) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$	d) $\left(\frac{-\pi}{2}, \frac{\pi}{4}\right)$	
7) If <i>p</i> and <i>q</i> are pos [2007]	sitive real numbers such th	$nat p^2 + q^2 = 1, then the$	maximum value of	(p+q) is
a) $\frac{1}{2}$	b) $\frac{1}{\sqrt{2}}$	c) $\sqrt{2}$	d) 2	
8) Suppose the cubic of the following he	x^3 - px + q has three distinctions olds?	inct real roots where $p >$	0 and $q > 0$. Then w	which one [2008]
	ninima at $\sqrt{\frac{p}{3}}$ and maxima	·		
	ninima at - $\sqrt{\frac{p}{3}}$ and maxim			
	ninima at both $\sqrt{\frac{p}{3}}$ and -			
	axima at both $\sqrt{\frac{p}{3}}$ and - $\sqrt{\frac{p}{3}}$		760 01 0	F A 0003
9) How many real so	lutions does the equation :	$x' + 14x^3 + 16x^3 + 30x - 5$	560 = 0 have ?	[2008]

[2009]

d) 5

d) Statement-1	is true, Statement-2 is true	Statement-2 is a correct	explanation for Staten	nent-1.	
P(1), then in t	$a^{4} + ax^{3} + bx^{2} + cx + d$ such the interval [-1, 1]:		real root of $P^1(x) = 0$.	If $P(-1) < [2009]$	
	minimum but $P(1)$ is the				
	minimum but $P(1)$ is not 1) is the minimum nor $P(1)$				
	minimum and $P(1)$ is the				
12) The equation of	f the tangent to the curve	$y = x + \frac{4}{x^2}$, that is parall	el to the x-axis, is	[2010]	
a) $y = 1$	b) $y = 2$	c) $y = 3$	d) $y = 0$		
13) Let $f: R \to R$ $\begin{cases} k - 2x & \text{if } x \\ 2x + 3 & \text{if } x \end{cases}$	be defined by $f(x) =$ $x \le -1$ x > -1 minimum at $x = -1$, then				
If f has a local	minimum at $x = -1$, then	a possible value of k is		[2010]	
a) 0	b) $-\frac{1}{2}$	c) -1	d) 1		
14) Let $f: R \to R$ be a continuous function defined by $f(x) = \frac{1}{e^x + 2e^{-x}}$ Statement-1: $f(c) = \frac{1}{3}$, for some $c \in R$. Statement-2: $0 < f(x) \le \frac{1}{2\sqrt{2}}$, for all $x \in R$					
	is true, Statement-2 is true			atement-1.	
b) Statement-1	is true, Statement-2 is fals	e.	•		
	is false, Statement-2 is true				
	is true, Statement 2 is true; stance between line $y - x = \frac{1}{2}$			[2011]	
_			6	[2011]	
a) $\frac{3\sqrt{2}}{8}$	b) $\frac{8}{3\sqrt{2}}$	c) $\frac{4}{\sqrt{3}}$	d) $\frac{\sqrt{3}}{4}$		

c) 3

statement-1: gof is differentiable at x = 0 and its derivative is continuous at that point. **statement-2:**

a) Statement-1 is true, Statement-2 is true; statement-2 is not a correct explanation for statement-1.

b) 1

a) 7

10) Let f(x)=x|x| and $g(x)=\sin x$.

gof is twice differential at x = 0.

b) Statement-1 is true, Statement-2 is false.c) Statement-1 is false, Statement-2 is true.