Numerical Optimization

Unconstrained Optimization

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Newton Method

Consider the problem,

$$\min_{\mathbf{x}} f(\mathbf{x})$$

- Let $f \in \mathcal{C}^2$ and f be bounded below.
- Newton method uses quadratic approximation of f at a given point, \mathbf{x}^k

$$f(\mathbf{x}) \approx f_q^k(\mathbf{x}) = f(\mathbf{x}^k) + \mathbf{g}^{kT}(\mathbf{x} - \mathbf{x}^k) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^k)^T \mathbf{H}^k(\mathbf{x} - \mathbf{x}^k)$$

- x^{k+1} is the minimizer of $f_q^k(x)$
- What is the *region of trust* in which this approximation is reliable?

Trust-Region Method

• Given $\Delta^k > 0$, let the *region of trust* be Ω^k where

$$\Omega^k = \{ \boldsymbol{x} : \|\boldsymbol{x} - \boldsymbol{x}^k\| \le \Delta^k \}$$

• Solve the following constrained problem to get x^{k+1} :

$$\min \quad f_q^k(\mathbf{x}) \\
\text{s.t.} \quad \mathbf{x} \in \Omega^k$$

• How to determine Ω^{k+1} (or Δ^{k+1})? Can use the *actual* and *predicted* reduction in f

Trust-Region Method

Algorithm to determine Δ^{k+1} and R^k

- (1) Given $\Delta^k, \mathbf{x}^k, \mathbf{x}^{k+1}$
- (2) $R^k = \frac{f(\mathbf{X}^k) f(\mathbf{X}^{k+1})}{f_q^k(\mathbf{X}^k) f_q^k(\mathbf{X}^{k+1})}$
- (3) **if** $R^k < 0.25$

$$\Delta^{k+1} = \| \mathbf{x}^{k+1} - \mathbf{x}^k \| / 4$$

else if
$$R^k > 0.75$$
 and $||x^{k+1} - x^k|| = \Delta^k$

$$\Delta^{k+1} = 2\Delta^k$$

else

$$\Delta^{k+1} = \Delta^k$$

endif

Output: Δ^{k+1} , R^k

Modified Newton Algorithm (based on Trust Region)

- (1) Initialize x^0 , ϵ and Δ^0 , set k := 0.
- (2) while $\|\boldsymbol{g}^k\| > \epsilon$
 - (a) $\mathbf{x}^{k+1} = \arg\min_{\mathbf{x} \in \Omega^k} f_q^k(\mathbf{x})$
 - (b) Determine Δ^{k+1} , R^k
 - (c) If $R^k < 0$, $x^{k+1} = x^k$
 - (d) k := k + 1

endwhile

Output: $x^* = x^k$, a stationary point of f(x).

Quasi-Newton Methods

Consider the problem,

$$\min_{\mathbf{x}} f(\mathbf{x}),$$

where $f: \mathbb{R}^n \to \mathbb{R}, f \in \mathcal{C}^1$.

- Let $f \in \mathcal{C}^2$.
 - Newton method:

$$f(\mathbf{x}) \approx f_q^k(\mathbf{x}) = f(\mathbf{x}^k) + \mathbf{g}^{kT}(\mathbf{x} - \mathbf{x}^k) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^k)^T \mathbf{H}^k(\mathbf{x} - \mathbf{x}^k)$$

- Newton direction: $\mathbf{d}_N^k = -(\mathbf{H}^k)^{-1}\mathbf{g}^k$
- Given $f \in C^1$, form a quadratic model of f at \mathbf{x}^k :

$$y_k(x) = f(x^k) + g^{kT}(x - x^k) + \frac{1}{2}(x - x^k)^T B^{k-1}(x - x^k)$$

where \mathbf{B}^k is a symmetric positive definite matrix.

• Quasi-Newton direction: $d_{ON}^k = -B^k g^k$

Quasi-Newton Methods

$$y_k(x) = f(x^k) + g^{kT}(x - x^k) + \frac{1}{2}(x - x^k)^T B^{k-1}(x - x^k)$$

- $(\mathbf{B}^k)^{-1}$ is either \mathbf{H}^k or its approximation
- $\bullet \ \mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}_{ON}^k = \mathbf{x}^k \alpha^k \mathbf{B}^k \mathbf{g}^k$
- Given $x^k, x^{k+1}, g^k, g^{k+1}$ and B^k , how to update B^k to get a symmetric positive definite matrix B^{k+1} ?
- Is $B^k \approx (H^k)^{-1}$?
- Are there any conditions that \mathbf{B}^{k+1} should satisfy?

Given x^{k+1} , we construct a quadratic approximation of f at x^{k+1} :

$$y_{k+1}(\mathbf{x}) = f(\mathbf{x}^{k+1}) + \mathbf{g}^{k+1}(\mathbf{x} - \mathbf{x}^{k+1}) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^{k+1})^{T}(\mathbf{B}^{k+1})^{-1}(\mathbf{x} - \mathbf{x}^{k+1})$$

Require

$$\nabla y_{k+1}(\mathbf{x}^k) = \nabla f(\mathbf{x}^k)$$

$$\nabla y_{k+1}(\mathbf{x}^{k+1}) = \nabla f(\mathbf{x}^{k+1}) = \mathbf{g}^{k+1}$$

Therefore, we require,

$$\nabla y_{k+1}(x^k) = \nabla f(x^k) = g^k = g^{k+1} + (B^{k+1})^{-1}(x^k - x^{k+1})$$

Letting $\mathbf{g}^{k+1} - \mathbf{g}^k = \gamma^k$ and $\mathbf{x}^{k+1} - \mathbf{x}^k = \boldsymbol{\delta}^k$, we get

$$\mathbf{B}^{k+1} \gamma^k = \delta^k$$
 (Quasi-Newton condition)

- Quasi-Newton condition
- \mathbf{B}^{k+1} should be positive definite δ^k

$$\boldsymbol{\gamma}^{k^T} \boldsymbol{B}^{k+1} \boldsymbol{\gamma}^k = \boldsymbol{\gamma}^{k^T} \boldsymbol{\delta}^k > 0 \ \ \forall \ \boldsymbol{\gamma}^k \neq 0$$

• From Wolfe conditions for line search,

$$\mathbf{g}^{k+1} d^k \ge c_2 \mathbf{g}^{k} d^k, \ c_2 \in (0,1) \ \Rightarrow \ \boldsymbol{\gamma}^k \delta^k > 0$$

- \therefore When Wolfe condition is satisfied in a line search, $\exists \mathbf{B}^{k+1}$ which satisfies Quasi-Newton condition
- $\frac{n(n+1)}{2}$ variables to be found using n equations and n inequalities

Consider a simple way to update \mathbf{B}^k : Let $\alpha \neq 0$, $\mathbf{u} \in \mathbb{R}^n$, $\mathbf{u} \neq \mathbf{0}$

$$\mathbf{B}^{k+1} = \mathbf{B}^k + \alpha \mathbf{u} \mathbf{u}^T$$
 (Rank-one correction)

Choose α and \boldsymbol{u} such that \boldsymbol{B}^{k+1} satisfies *Quasi-Newton* condition

$$\therefore (\mathbf{B}^k + \alpha \mathbf{u} \mathbf{u}^T) \boldsymbol{\gamma}^k = \boldsymbol{\delta}^k$$
$$\therefore \alpha \mathbf{u}^T \boldsymbol{\gamma}^k \mathbf{u} = \boldsymbol{\delta}^k - \boldsymbol{B}^k \boldsymbol{\gamma}^k$$

Let $\boldsymbol{u} = \boldsymbol{\delta}^k - \boldsymbol{B}^k \boldsymbol{\gamma}^k$.

Therefore, $\alpha u^T \gamma^k = 1$ gives $\alpha^{-1} = (\delta^k - B^k \gamma^k)^T \gamma^k$.

$$\therefore \boldsymbol{B}_{SR1}^{k+1} = \boldsymbol{B}^k + \frac{\left(\boldsymbol{\delta}^k - \boldsymbol{B}^k \boldsymbol{\gamma}^k\right) \left(\boldsymbol{\delta}^k - \boldsymbol{B}^k \boldsymbol{\gamma}^k\right)^T}{\left(\boldsymbol{\delta}^k - \boldsymbol{B}^k \boldsymbol{\gamma}^k\right)^T \boldsymbol{\gamma}^k}$$

 \boldsymbol{B}^{k+1} obtained using $\boldsymbol{x}^k, \boldsymbol{x}^{k+1}, \boldsymbol{g}^k$ and \boldsymbol{g}^{k+1}

Quasi-Newton Algorithm (rank-one correction)

- (1) Initialize x^0 , ϵ and symmetric positive definite B^0 , set k := 0.
- (2) while $\|\boldsymbol{g}^k\| > \epsilon$
 - (a) $d^k = -B^k g^k$
 - (b) Find $\alpha^k (> 0)$ along d^k such that
 - (i) $f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) < f(\mathbf{x}^k)$
 - (ii) α^k satisfies Armijo-Wolfe (or Armijo-Goldstein) conditions
 - (c) $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$
 - (d) Find \mathbf{B}^{k+1} using rank-one correction
 - (e) k := k + 1

endwhile

Output: $x^* = x^k$, a stationary point of f(x).

Quasi-Newton algorithm (rank-one correction) with inexact line search applied to f(x)

$$\min \ f(\mathbf{x}) \stackrel{\Delta}{=} 4x_1^2 + x_2^2 - 2x_1x_2$$

•
$$\mathbf{x}^* = (0,0)^T$$
, $\mathbf{H} = \begin{pmatrix} 8 & -2 \\ -2 & 2 \end{pmatrix}$, $\mathbf{H}^{-1} = \begin{pmatrix} 0.1667 & 0.1667 \\ 0.1667 & 0.6667 \end{pmatrix}$

k	x_1^k	x_2^k	B^k		$\ \boldsymbol{g}^k\ $
0	-2	-2	1	0	12.0
			0	1	
1	0	-2	0.1833	0.2333	5.65
			0.2333	0.9333	
2	.1538	.1536	0.1667	0.1667	0.92
			0.1667	0.6667	
3	0	0			0

Quasi-Newton algorithm (rank-one correction) with inexact line search applied to f(x)

min
$$f(\mathbf{x}) \stackrel{\Delta}{=} 4x_1^2 + x_2^2 - 2x_1x_2$$

•
$$\mathbf{x}^* = (0,0)^T, \mathbf{H} = \begin{pmatrix} 8 & -2 \\ -2 & 2 \end{pmatrix},$$

 $\mathbf{H}^{-1} = \begin{pmatrix} 0.1667 & 0.1667 \\ 0.1667 & 0.6667 \end{pmatrix}$

k	x_1^k	x_2^k	B^k		$\ oldsymbol{g}^k\ $
0	1	0	1	0	8.25
			0	1	
1	0.0588	.2353	0.1892	0.2432	0.35
			0.2432	0.9270	
2	-0.0029	0	0.1667	0.1667	0.024
			0.1667	0.6667	
3	0	0			0

Quasi-Newton algorithm (rank-one correction) with inexact line search applied to f(x)

$$\min \ f(\mathbf{x}) \stackrel{\Delta}{=} 4x_1^2 + x_2^2 - 2x_1x_2$$

•
$$\mathbf{x}^* = (0,0)^T$$
, $\mathbf{H} = \begin{pmatrix} 8 & -2 \\ -2 & 2 \end{pmatrix}$,
 $\mathbf{H}^{-1} = \begin{pmatrix} 0.1667 & 0.1667 \\ 0.1667 & 0.6667 \end{pmatrix}$

k	x_1^k	x_2^k	B^k		$\ \boldsymbol{g}^k\ $
0	-1	-2	1	0	4.47
			0	1	
1	-0.2308	-1.6154	0.1724	0.2069	3.09
			0.2069	0.9483	
2	0	0			0

Consider the problem,

$$\min_{\mathbf{x}} \ \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{c}^T \mathbf{x}$$

where H is a symmetric positive definite matrix. Newton Method: Choose any $\mathbf{x}^0, \mathbf{d}_N^0 = -\mathbf{H}^{-1}\mathbf{g}^0, \mathbf{x}_1 = \mathbf{x}^*$.

- Suppose we apply *Quasi-Newton* method (rank-one correction) to solve this problem
- At every iteration k,
 - \mathbf{B}^{k+1} is symmetric positive definite
 - \mathbf{B}^{k+1} is obtained from $\mathbf{B}^k, \mathbf{x}^k, \mathbf{x}^{k+1}, \mathbf{g}^k$ and \mathbf{g}^{k+1}
 - ${\pmb B}^{k+1}$ satisfies Quasi-Newton condition, ${\pmb B}^{k+1}{\pmb \gamma}^k={\pmb \delta}^k$

Note that,

$$g^{k} = Hx^{k} + c$$

$$g^{k+1} = Hx^{k+1} + c$$

$$\therefore g^{k+1} - g^{k} = H(x^{k+1} - x^{k}) \Rightarrow \gamma^{k} = H\delta^{k}$$

Using Quasi-Newton condition at every iteration, we have

$$k = 0, \quad \mathbf{B}^{1} \boldsymbol{\gamma}^{0} = \boldsymbol{\delta}^{0}$$

$$k = 1, \quad \mathbf{B}^{2} \boldsymbol{\gamma}^{1} = \boldsymbol{\delta}^{1}$$

$$k = 2, \quad \mathbf{B}^{3} \boldsymbol{\gamma}^{2} = \boldsymbol{\delta}^{2}$$

$$\vdots \quad \vdots$$

$$k = n - 1, \quad \mathbf{B}^{n} \boldsymbol{\gamma}^{n-1} = \boldsymbol{\delta}^{n-1}$$

In addition to Quasi-Newton condition at every iteration, if we ensure

$$k = 0, \mathbf{B}^{1} \boldsymbol{\gamma}^{0} = \boldsymbol{\delta}^{0}$$

$$k = 1, \mathbf{B}^{2} \boldsymbol{\gamma}^{1} = \boldsymbol{\delta}^{1}, \mathbf{B}^{2} \boldsymbol{\gamma}^{0} = \boldsymbol{\delta}^{0}$$

$$k = 2, \quad \mathbf{B}^{3} \boldsymbol{\gamma}^{2} = \boldsymbol{\delta}^{2}, \mathbf{B}^{3} \boldsymbol{\gamma}^{1} = \boldsymbol{\delta}^{1}, \mathbf{B}^{3} \boldsymbol{\gamma}^{0} = \boldsymbol{\delta}^{0}$$

$$\vdots \quad \vdots$$

$$k = n - 1, \quad \mathbf{B}^{n} \boldsymbol{\gamma}^{n-1} = \boldsymbol{\delta}^{n-1}, \mathbf{B}^{n} \boldsymbol{\gamma}^{n-2} = \boldsymbol{\delta}^{n-2}, \dots \mathbf{B}^{n} \boldsymbol{\gamma}^{0} = \boldsymbol{\delta}^{0}$$
Hereditary Property

$$k=n-1$$
, $\mathbf{B}^n \boldsymbol{\gamma}^{n-1} = \boldsymbol{\delta}^{n-1}$, $\mathbf{B}^n \boldsymbol{\gamma}^{n-2} = \boldsymbol{\delta}^{n-2}$, ... $\mathbf{B}^n \boldsymbol{\gamma}^0 = \boldsymbol{\delta}^0$

Suppose $(\delta^k - \mathbf{B}^k \gamma^k)^T \gamma^k \neq 0$ in the rank-one correction.

$$\therefore \pmb{B}^n \left(\pmb{\gamma}^{n-1} | \dots | \pmb{\gamma}^1 | \pmb{\gamma}^0
ight) = \left(\pmb{\delta}^{n-1} | \dots | \pmb{\delta}^1 | \pmb{\delta}^0
ight)$$

Using $\gamma^k = H\delta^k$ for every k, we have

$$\mathbf{\textit{B}}^{n}\mathbf{\textit{H}}\left(\mathbf{\emph{\delta}}^{n-1}|\dots|\mathbf{\emph{\delta}}^{1}|\mathbf{\emph{\delta}}^{0}\right)=\left(\mathbf{\emph{\delta}}^{n-1}|\dots|\mathbf{\emph{\delta}}^{1}|\mathbf{\emph{\delta}}^{0}\right)$$

If $\delta^0, \delta^1, \dots, \delta^{n-1}$ are linearly independent, then

$$\mathbf{B}^n\mathbf{H} = \mathbf{I} \Rightarrow \mathbf{B}^n = \mathbf{H}^{-1}$$

Therefore, after *n* iterations, $\mathbf{d}_{ON}^n = -\mathbf{B}^n \mathbf{g}^n = -\mathbf{H}^{-1} \mathbf{g}^n = \mathbf{d}_{N}^n$ and

$$\mathbf{x}^{n+1} = \mathbf{x}^*.$$

For a convex quadratic function, the solution is attained in at most n+1 iterations using rank-one correction for \mathbf{B}^k .

Hereditary Property

For the symmetric rank-one correction applied to a quadratic function with positive definite Hessian \mathbf{H} ,

$$\mathbf{B}^k \mathbf{\gamma}^j = \mathbf{\delta}^j, \ j = 0, \dots, k-1$$

Proof.

Note that $H\delta^k = \gamma^k \ \forall \ k$.

For k = 1, $\mathbf{B}^1 \gamma^0 = \delta^0$. (Quasi-Newton condition)

Suppose $\mathbf{B}^k \mathbf{\gamma}^j = \mathbf{\delta}^j, j = 0, \dots, k-1$.

Using rank-one correction and using j = 0, ..., k - 1,

$$egin{array}{lll} m{B}^{k+1} &=& m{B}^k + rac{\left(m{\delta}^k - m{B}^k m{\gamma}^k
ight) \left(m{\delta}^k - m{B}^k m{\gamma}^k
ight)^T}{\left(m{\delta}^k - m{B}^k m{\gamma}^k
ight)^T m{\gamma}^k} \ &\therefore m{B}^{k+1} m{\gamma}^j &=& \left(m{B}^k + rac{\left(m{\delta}^k - m{B}^k m{\gamma}^k
ight) \left(\left(m{\delta}^k - m{B}^k m{\gamma}^k
ight)^T
ight)}{\left(m{\delta}^k - m{B}^k m{\gamma}^k
ight)^T m{\gamma}^k}
ight) m{\gamma}^j \end{array}$$

Proof. (continued)

$$\therefore \mathbf{B}^{k+1} \boldsymbol{\gamma}^{j} = \mathbf{B}^{k} \boldsymbol{\gamma}^{j} + \frac{\left(\boldsymbol{\delta}^{k} - \mathbf{B}^{k} \boldsymbol{\gamma}^{k}\right)}{\left(\boldsymbol{\delta}^{k} - \mathbf{B}^{k} \boldsymbol{\gamma}^{k}\right)^{T} \boldsymbol{\gamma}^{k}} \left(\boldsymbol{\delta}^{k} - \mathbf{B}^{k} \boldsymbol{\gamma}^{k}\right)^{T} \boldsymbol{\gamma}^{j} \\
= \mathbf{B}^{k} \boldsymbol{\gamma}^{j} + \frac{\left(\boldsymbol{\delta}^{k} - \mathbf{B}^{k} \boldsymbol{\gamma}^{k}\right)}{\left(\boldsymbol{\delta}^{k} - \mathbf{B}^{k} \boldsymbol{\gamma}^{k}\right)^{T} \boldsymbol{\gamma}^{k}} \left(\boldsymbol{\delta}^{kT} \boldsymbol{\gamma}^{j} - \boldsymbol{\gamma}^{kT} \mathbf{B}^{k} \boldsymbol{\gamma}^{j}\right) \\
= \mathbf{B}^{k} \boldsymbol{\gamma}^{j} + \frac{\left(\boldsymbol{\delta}^{k} - \mathbf{B}^{k} \boldsymbol{\gamma}^{k}\right)^{T} \boldsymbol{\gamma}^{k}}{\left(\boldsymbol{\delta}^{k} - \mathbf{B}^{k} \boldsymbol{\gamma}^{k}\right)^{T} \boldsymbol{\gamma}^{k}} \left(\boldsymbol{\delta}^{kT} \mathbf{H} \boldsymbol{\delta}^{j} - \boldsymbol{\delta}^{kT} \mathbf{H} \boldsymbol{\delta}^{j}\right) \\
= \mathbf{B}^{k} \boldsymbol{\gamma}^{j} \\
= \boldsymbol{\delta}^{j} \ \forall \ j = 0, \dots, k - 1$$

Also, $\boldsymbol{B}^{k+1} \boldsymbol{\gamma}^k = \boldsymbol{\delta}^k$

(Quasi-Newton condition)

Therefore,

$$\mathbf{B}^{k+1} \mathbf{\gamma}^j = \mathbf{\delta}^j \ \forall \ j = 0, \dots, k$$

Theorem

Consider the problem,

$$\min_{\mathbf{x}} f(\mathbf{x}) \triangleq \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{c}^T \mathbf{x}$$

where \mathbf{H} is a symmetric positive definite matrix. If the rank-one correction is well defined and $\delta^0, \delta^1, \dots, \delta^{n-1}$ are linearly independent, then the rank-one correction method applied to minimize $f(\mathbf{x})$ terminates in at most n+1 iterations, with $\mathbf{R}^n = \mathbf{H}^{-1}$.

Quasi-Newton Methods - Rank One correction

$$oldsymbol{B}^{k+1} = oldsymbol{B}^k + rac{\left(oldsymbol{\delta}^k - oldsymbol{B}^k oldsymbol{\gamma}^k
ight) \left(oldsymbol{\delta}^k - oldsymbol{B}^k oldsymbol{\gamma}^k
ight)^T}{\left(oldsymbol{\delta}^k - oldsymbol{B}^k oldsymbol{\gamma}^k
ight)^T oldsymbol{\gamma}^k}$$

Some Remarks:

- A simple and elegant way to use the information gathered during two consecutive iterations to update B^k
- \mathbf{B}^{k+1} is positive definite if $(\delta^k \mathbf{B}^k \gamma^k)^T \gamma^k > 0$ which cannot be guaranteed at every k
- Numerical difficulties if $(\boldsymbol{\delta}^k \boldsymbol{B}^k \boldsymbol{\gamma}^k)^T \boldsymbol{\gamma}^k \approx 0$

The following update methods have received wide acceptance:

- Davidon-Fletcher-Powell (DFP) method
- Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Rank Two Correction

Given that \mathbf{B}^k is symmetric and positive definite matrix, let

$$\mathbf{B}^{k+1} = \mathbf{B}^k + \alpha \mathbf{u} \mathbf{u}^T + \beta \mathbf{v} \mathbf{v}^T$$

Quasi-Newton condition, $\boldsymbol{B}^{k+1} \boldsymbol{\gamma}^k = \boldsymbol{\delta}^k$ gives

$$\alpha \mathbf{u}^T \boldsymbol{\gamma}^k \mathbf{u} + \beta \mathbf{v}^T \boldsymbol{\gamma}^k \mathbf{v} = \boldsymbol{\delta}^k - \boldsymbol{B}^k \boldsymbol{\gamma}^k$$

Letting $\alpha \mathbf{u}^T \mathbf{\gamma}^k = 1$ and $\beta \mathbf{v}^T \mathbf{\gamma}^k = 1$ gives

$$\alpha^{-1} = \boldsymbol{\delta}^{kT} \boldsymbol{\gamma}^k$$
$$\beta^{-1} = -\boldsymbol{\gamma}^{kT} \boldsymbol{B}^k \boldsymbol{\gamma}^k$$

Therefore,

$$\boldsymbol{B}^{k+1} = \boldsymbol{B}^k + \frac{\boldsymbol{\delta}^k \boldsymbol{\delta}^{kT}}{\boldsymbol{\delta}^{kT} \boldsymbol{\gamma}^k} - \frac{\boldsymbol{B}^k \boldsymbol{\gamma}^k \boldsymbol{\gamma}^{kT} \boldsymbol{B}^k}{\boldsymbol{\gamma}^{kT} \boldsymbol{B}^k \boldsymbol{\gamma}^k} \quad \text{(DFP Method)}$$

$$\boldsymbol{B}_{DFP}^{k+1} = \boldsymbol{B}^{k} + \frac{\boldsymbol{\delta}^{k} \boldsymbol{\delta}^{k^{T}}}{\boldsymbol{\delta}^{k^{T}} \boldsymbol{\gamma}^{k}} - \frac{\boldsymbol{B}^{k} \boldsymbol{\gamma}^{k} \boldsymbol{\gamma}^{k^{T}} \boldsymbol{B}^{k}}{\boldsymbol{\gamma}^{k^{T}} \boldsymbol{B}^{k} \boldsymbol{\gamma}^{k}} \quad \text{(DFP Method)}$$

• Is B_{DFP}^{k+1} a symmetric positive definite matrix, given that B^k is symmetric positive definite matrix?

 $\boldsymbol{B}_{DFP}^{k+1}$ is a symmetric matrix.

Let $x \neq 0, \gamma^k \neq 0, \delta^k \neq 0$.

$$x^{T}\boldsymbol{B}_{DFP}^{k+1}x = x^{T}\boldsymbol{B}^{k}x - \frac{(x^{T}\boldsymbol{B}^{k}\boldsymbol{\gamma}^{k})^{2}}{\boldsymbol{\gamma}^{k^{T}}\boldsymbol{B}^{k}\boldsymbol{\gamma}^{k}} + \frac{(\boldsymbol{\delta}^{k^{T}}x)^{2}}{\boldsymbol{\delta}^{k^{T}}\boldsymbol{\gamma}^{k}}$$

Since \mathbf{B}^k is symmetric, $\mathbf{B}^k = \mathbf{B}^{k\frac{1}{2}}\mathbf{B}^{k\frac{1}{2}}$ where $\mathbf{B}^{k\frac{1}{2}}$ is symmetric and positive definite.

Letting $\boldsymbol{a} = \boldsymbol{B}^{k\frac{1}{2}}\boldsymbol{x}$ and $\boldsymbol{b} = \boldsymbol{B}^{k\frac{1}{2}}\boldsymbol{\gamma}^{k}$,

$$\boldsymbol{x}^T \boldsymbol{B}_{DFP}^{k+1} \boldsymbol{x} = \frac{(\boldsymbol{a}^T \boldsymbol{a})(\boldsymbol{b}^T \boldsymbol{b}) - (\boldsymbol{a}^T \boldsymbol{b})^2}{\boldsymbol{b}^T \boldsymbol{b}} + \frac{(\boldsymbol{\delta}^{k^T} \boldsymbol{x})^2}{\boldsymbol{\delta}^{k^T} \boldsymbol{\gamma}^k}$$

$$oldsymbol{x}^T oldsymbol{B}_{DFP}^{k+1} oldsymbol{x} = rac{(oldsymbol{a}^T oldsymbol{a})(oldsymbol{b}^T oldsymbol{b}) - (oldsymbol{a}^T oldsymbol{b})^2}{oldsymbol{b}^T oldsymbol{b}} + rac{(oldsymbol{\delta}^{kT} oldsymbol{x})^2}{oldsymbol{\delta}^{kT} oldsymbol{\gamma}^k}$$

- $(a^Ta)(b^Tb) > (a^Tb)^2$ (Cauchy-Schwartz inequality)
- $\boldsymbol{b}^T \boldsymbol{b} = \boldsymbol{\gamma}^{k^T} \boldsymbol{B}^k \boldsymbol{\gamma}^k > 0$ (\boldsymbol{B}^k is a positive definite matrix) Note that $\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha^k \mathbf{B}^k \mathbf{g}^k \implies \mathbf{\delta}^k = -\alpha^k \mathbf{B}^k \mathbf{g}^k$ Suppose that x^{k+1} is obtained using exact line search. $\boldsymbol{\rho}^{k+1} \boldsymbol{\delta}^k = 0$

$$\therefore \boldsymbol{g}^{k+1} \delta^k = 0$$

$$\boldsymbol{\delta}^{k^T} \boldsymbol{\gamma}^k = \boldsymbol{\delta}^{k^T} (\boldsymbol{g}^{k+1} - \boldsymbol{g}^k) = -\boldsymbol{g}^k \boldsymbol{\delta}^k = \alpha^k \boldsymbol{g}^{k^T} \boldsymbol{B}^k \boldsymbol{g}^k > 0$$

Therefore, $\mathbf{x}^T \mathbf{B}_{DEP}^{k+1} \mathbf{x} \geq 0$, or \mathbf{B}_{DEP}^{k+1} is positive semi-definite.

$$oldsymbol{x}^T oldsymbol{B}_{DFP}^{k+1} oldsymbol{x} = rac{(oldsymbol{a}^T oldsymbol{a})(oldsymbol{b}^T oldsymbol{b}) - (oldsymbol{a}^T oldsymbol{b})^2}{oldsymbol{b}^T oldsymbol{b}} + rac{(oldsymbol{\delta}^{kT} oldsymbol{x})^2}{oldsymbol{\delta}^{kT} oldsymbol{\gamma}^k}$$

We now show that B_{DFP}^{k+1} is positive definite, that is,

$$\mathbf{x}^T \mathbf{B}_{DFP}^{k+1} \mathbf{x} > 0, \mathbf{x} \neq \mathbf{0}$$

We have already shown that $\delta^{kT} \gamma^k > 0$.

Suppose $\mathbf{x}^T \mathbf{B}_{DFP}^{k+1} \mathbf{x} = 0, \mathbf{x} \neq \mathbf{0}$.

Therefore, $(\boldsymbol{a}^T\boldsymbol{a})(\boldsymbol{b}^T\boldsymbol{b}) = (\boldsymbol{a}^T\boldsymbol{b})^2$ and $(\boldsymbol{\delta}^{k^T}\boldsymbol{x})^2 = 0$.

$$(\boldsymbol{a}^T\boldsymbol{a})(\boldsymbol{b}^T\boldsymbol{b}) = (\boldsymbol{a}^T\boldsymbol{b})^2 \Rightarrow \boldsymbol{a} = \mu \boldsymbol{b} \Rightarrow \boldsymbol{x} = \mu \boldsymbol{\gamma}^k \Rightarrow \mu \neq 0$$

$$(\boldsymbol{\delta}^{k^T}\boldsymbol{x})^2 = 0 \Rightarrow \mu \boldsymbol{\delta}^{k^T} \boldsymbol{\gamma}^k = 0 \Rightarrow \boldsymbol{\delta}^{k^T} \boldsymbol{\gamma}^k = 0$$
 (contradiction)

Therefore, $\mathbf{x}^T \mathbf{B}_{DFP}^{k+1} \mathbf{x} > 0, \mathbf{x} \neq \mathbf{0} \implies \mathbf{B}_{DFP}^{k+1}$ is positive definite.

Quasi-Newton Algorithm (DFP Method)

- (1) Initialize x^0 , ϵ and symmetric positive definite B^0 , set k := 0.
- (2) while $\|\boldsymbol{g}^k\| > \epsilon$
 - (a) $d^k = -B^k g^k$
 - (b) Find $\alpha^k (> 0)$ along d^k such that
 - (i) $f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) < f(\mathbf{x}^k)$
 - (ii) α^k satisfies Armijo-Wolfe (or Armijo-Goldstein) conditions
 - (c) $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$
 - (d) Find \mathbf{B}^{k+1} using DFP method
 - (e) k := k + 1

endwhile

Output: $x^* = x^k$, a stationary point of f(x).

min
$$f(x) \stackrel{\Delta}{=} 4x_1^2 + x_2^2 - 2x_1x_2$$

Quasi-Newton algorithm with exact line search applied to f(x)

min
$$f(x) \stackrel{\Delta}{=} 4x_1^2 + x_2^2 - 2x_1x_2$$

Quasi-Newton algorithm with exact line search applied to f(x)

Behaviour of Quasi-Newton algorithm (DFP Method) applied to f(x) using $x^0 = (-1.2, 1)^T$

min
$$f(\mathbf{x}) \stackrel{\triangle}{=} 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

k	x_1^k	x_2^k	$f(\mathbf{x}^k)$	$\ oldsymbol{g}^k\ $	$\ \boldsymbol{x}^k - \boldsymbol{x}^*\ $
0	-1.2	1	24.2	232.86	2.2
1	-1.01	1.08	4.43	24.97	2.01
2	-0.84	0.68	3.47	14.53	1.87
3	-0.70	0.42	3.33	25.61	1.79
4	-0.76	0.54	3.18	14.19	1.81
5	-0.47	0.17	2.37	14.80	1.69
10	0.20	-0.01	0.84	9.00	1.29
15	0.75	0.56	0.06	0.34	0.50
20	0.99	0.99	0.0002	0.69	0.02
24	0.99	0.99	5.72×10^{-12}	2.25×10^{-6}	5.35×10^{-6}

Table: Quasi-Newton algorithm (DFP Method) applied to Rosenbrock function, using $x^0 = (-1.2, 1.0)^T$.

Behaviour of Quasi-Newton algorithm (DFP Method) applied to f(x) using $x^0 = (0.6, 0.6)^T$

min	$f(x) \stackrel{\Delta}{=}$	$100(x_2 -$	$-x_1^2$) ²	+(1	$-x_1)^2$

k	x_1^k	x_2^k	$f(\mathbf{x}^k)$	$\ oldsymbol{g}^k\ $	$\ \boldsymbol{x}^k - \boldsymbol{x}^*\ $
0	0.6	0.6	5.92	75.60	0.57
1	0.72	0.50	0.12	6.32	0.572095
2	0.68	0.46	0.11	1.56	0.629112
3	0.80	0.63	0.06	4.65	0.421985
4	0.80	0.64	0.04	0.39	0.410591
5	0.88	0.78	0.02	2.67	0.252278
6	0.99	0.98	0.0005	0.94	0.0238278
7	0.98	0.97	0.0003	0.33	0.0348487
8	0.99	0.99	7.8×10^{-5}	0.23	0.02
9	0.99	0.99	5.3×10^{-7}	0.0048	0.0016
10	0.99	0.99	1.1×10^{-8}	0.0044	3.2×10^{-5}
11	0.99	0.99	3.1×10^{-13}	3.2×10^{-6}	1.2×10^{-6}

Table: Quasi-Newton algorithm (DFP Method) applied to Rosenbrock function, using $x^0 = (0.6, 0.6)^T$.

Shirish Shevade

- Newton direction, $\boldsymbol{d}_{N}^{k} = -(\boldsymbol{H}^{k})^{-1}\boldsymbol{g}^{k}$
- Quasi-Newton direction, $d_{QN}^{k} = -\mathbf{B}^{k}\mathbf{g}^{k}$
 - Quasi-Newton condition: $\mathbf{B}^{k+1} \gamma^k = \delta^k$ $\Rightarrow \gamma^k = (\mathbf{B}^{k+1})^{-1} \delta^k$
- Let $G^{k+1} = (B^{k+1})^{-1}$ approximate H^{k+1} . Therefore, we get *dual* formulae:

0

$$oldsymbol{B}^{k+1}oldsymbol{\gamma}^k = oldsymbol{\delta}^k \ oldsymbol{G}^{k+1}oldsymbol{\delta}^k = oldsymbol{\gamma}^k$$

$$\boldsymbol{B}_{DFP}^{k+1} = \boldsymbol{B}^{k} + \frac{\boldsymbol{\delta}^{k} \boldsymbol{\delta}^{k^{T}}}{\boldsymbol{\delta}^{k^{T}} \boldsymbol{\gamma}^{k}} - \frac{\boldsymbol{B}^{k} \boldsymbol{\gamma}^{k} \boldsymbol{\gamma}^{k^{T}} \boldsymbol{B}^{k}}{\boldsymbol{\gamma}^{k^{T}} \boldsymbol{B}^{k} \boldsymbol{\gamma}^{k}} \quad \text{(DFP Method)}$$

$$G_{BFGS}^{k+1} = G^k + rac{\gamma^k \gamma^{k^T}}{\gamma^{k^T} \delta^k} - rac{G^k \delta^k \delta^{k^T} G^k}{\delta^{k^T} G^k \delta^k}$$
 (BFGS Method)

$$G_{BFGS}^{k+1} = G^k + \frac{\gamma^k \gamma^{k^T}}{\gamma^{k^T} \delta^k} - \frac{G^k \delta^k \delta^{k^T} G^k}{\delta^{k^T} G^k \delta^k}$$
 (BFGS Method)

- How to get B_{BFGS}^{k+1} from G_{BFGS}^{k+1} ?
- Use the condition,

$$\boldsymbol{B}_{BFGS}^{k+1}\boldsymbol{G}_{BFGS}^{k+1} = \boldsymbol{I}$$

to get

$$\boldsymbol{B}_{BFGS}^{k+1} = \boldsymbol{B} + \left(1 + \frac{\boldsymbol{\gamma}^T \boldsymbol{B} \boldsymbol{\gamma}}{\boldsymbol{\delta}^T \boldsymbol{\gamma}}\right) \frac{\boldsymbol{\delta} \boldsymbol{\delta}^T}{\boldsymbol{\delta}^T \boldsymbol{\gamma}} - \left(\frac{\boldsymbol{\delta} \boldsymbol{\gamma}^T \boldsymbol{B} + \boldsymbol{B} \boldsymbol{\gamma} \boldsymbol{\delta}^T}{\boldsymbol{\delta}^T \boldsymbol{\gamma}}\right)$$

Behaviour of Quasi-Newton algorithm (BFGS Method) applied to f(x) using $x^0 = (-1.2, 1.0)^T$

Behaviour of Quasi-Newton algorithm (BFGS Method) applied to f(x) using $x^0 = (0.6, 0.6)^T$

Broyden Family

DFP method

$$m{B}_{DFP}^{k+1} = m{B}^k + rac{m{\delta}^km{\delta}^{kT}}{m{\delta}^{kT}m{\gamma}^k} - rac{m{B}^km{\gamma}^km{\gamma}^{kT}m{B}^k}{m{\gamma}^{kT}m{B}^km{\gamma}^k}$$

BGFS method

$$\boldsymbol{B}_{BFGS}^{k+1} = \boldsymbol{B} + \left(1 + \frac{\boldsymbol{\gamma}^T \boldsymbol{B} \boldsymbol{\gamma}}{\boldsymbol{\delta}^T \boldsymbol{\gamma}}\right) \frac{\boldsymbol{\delta} \boldsymbol{\delta}^T}{\boldsymbol{\delta}^T \boldsymbol{\gamma}} - \left(\frac{\boldsymbol{\delta} \boldsymbol{\gamma}^T \boldsymbol{B} + \boldsymbol{B} \boldsymbol{\gamma} \boldsymbol{\delta}^T}{\boldsymbol{\delta}^T \boldsymbol{\gamma}}\right)$$

Broyden Family

$$\mathbf{\textit{B}}^{k+1}(\varphi) = \varphi \mathbf{\textit{B}}_{BFGS}^{k+1} + (1-\varphi)\mathbf{\textit{B}}_{DFP}^{k+1}$$

where $\varphi \in [0, 1]$.

Quasi-Newton Algorithm (Broyden Family)

- (1) Initialize \mathbf{x}^0 , ϵ and symmetric positive definite \mathbf{B}^0 , $\varphi \in [0, 1]$, set k := 0.
- (2) while $\|\boldsymbol{g}^k\| > \epsilon$
 - (a) $\mathbf{d}^k = -\mathbf{B}^k(\varphi)\mathbf{g}^k$
 - (b) Find $\alpha^k (> 0)$ along d^k such that
 - (i) $f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) < f(\mathbf{x}^k)$
 - (ii) α^k satisfies Armijo-Wolfe (or Armijo-Goldstein) conditions
 - (c) $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$
 - (d) $\mathbf{B}^{k+1}(\varphi) = \varphi \mathbf{B}_{RFGS}^{k+1} + (1-\varphi)\mathbf{B}_{DFP}^{k+1}$
 - (e) k := k + 1

endwhile

Output: $x^* = x^k$, a stationary point of f(x).