Results and Ablation Study of our proposed BotDetection model

Author: <u>Tsingelis Konstantinos</u>

Supervisor: Prof. Askoynis Dimitrios(NTUA)

Results

• Evaluation metrics of our model.

Evaluation Metrics	Values(%)	
Accuracy	<u>85.55</u>	
Precision	<u>81.31</u>	
Recall	<u>95.16</u>	
F1-score	<u>87.69</u>	

Results

- Our proposed model demonstrates competitive performance, surpassing most state-of-the-art architectures.
- Significant improvement compared to the BotRGCN, upon which our methodology is based (+2.3% accuracy).

Method	Accuracy	F1-Score	Precision	Recall
Miller et al.	64.50	74.81	60.71	97.44
Cresci et al.	47.76	13.69	7.66	64.47
BotOrNot	53.09	55.13	55.67	50.82
Kudugunta et al.	59.59	47.26	80.40	33.47
Alhossini et al.	59.92	72.09	57.83	95.72
BiLSTM	70.23	53.61	62.74	46.83
BotRGCN	83.27	85.26	81.39	89.53
SATAR	84.02	86.07	81.50	91.22
RGT	86.57	88.01	85.15	91.06
BIC	87.36	88.88	84.76	93.44
My_Model	85.55	87.69	81.31	95.16

- We experiment with different numbers of RGCN layers and assess their impact on the overall model performance.
- The optimal performance is achieved with 2 layers.

- We experiment with different combinations of features and assess their impact on the overall model performance.
- It is confirmed that each piece of user information is essential for developing high-performance models.

- Only use of semantic features (tweets)
- Only use of property features(numerical,categorical,usr decription)

- We compare the performance of our model with the corresponding performance we would have if we had removed the clustering.
- It is confirmed that the combination of clustering and GNN significantly improves the model's performance.

Visualization of clustering in tweets where + symbolizes bots and v symbolizes genuine acounts

- We visualize the functionality of clustering.
- Intuitively, through clustering, we divide the set of tweets into 5 thematic classes, and for each user, we find their average sentiment for each thematic group. The inconsistency that characterizes bots, as they usually confine themselves to a specific thematic range in order to achieve their malicious objectives, makes the above method efficient