

IAP20 Rec'd PCT/PTO 01 AUG 2006

明細書

露光装置及び方法、位置制御方法並びにデバイス製造方法

技術分野

本発明は、液体を介して基板上に露光光を照射して基板を露光する露光装置及び方法、位置制御方法並びにデバイス製造方法に関するものである。

背景技術

•

半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の基板上に転写する、所謂フォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置は、マスクを支持するマスクステージと基板を支持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイスパターンのより一層の高集積化に対応するために投影光学系の更なる高解像度化が望まれている。投影光学系の解像度は、使用する露光波長が短いほど、また投影光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波長は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の露光波長はドドエキシマレーザの248mmであるが、更に短波長のAFFエキシマレーザの193mmも実用化されつつある。また、露光を行う際には、解像度と同様に焦点深度(DOF)も重要となる。解像度R、及び焦点深度 δ はそれぞれ以下の式で表される。

$$R = k_1 \cdot \lambda / NA \qquad \cdots \qquad (a)$$

$$\delta = \pm k_2 \cdot \lambda / NA^2 \qquad \cdots \qquad (b)$$

ここで、 λ は露光波長、N A は投影光学系の開口数、 k_1 、 k_2 はプロセス係数である。(a)式、(b)式より、解像度 R を高めるために、露光波長 λ を短くして、開口数 N A を大きくすると、焦点深度 δ が狭くなることが分かる。

焦点深度 δ が狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させることが困難となり、露光動作時のフォーカスマージンが不足するおそれがある。そこで、実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば国際公開第99/49504号公報に開示されている液浸法が提案されている。この液浸法は、投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たして液浸領域を形成し、液体中での露光光の波長が空気中の1/n (n は液体の屈折率で通常1.2~1.6程度)になることを利用して解像度を向上するとともに、焦点深度を約n倍に拡大するというものである。

発明の開示

ところで、本発明者は、液浸露光装置においては、基板や基板ステージ上に形成された液浸領域の液体の圧力や重みによって、基板や基板ステージが僅かながら変形する可能性があることに気が付いた。その変形により露光精度や計測精度が劣化する可能性がある。例えば、基板ステージの位置計測を行うときに、基板ステージ上に設けられた移動鏡の反射面に測定光を照射することによって位置計測する干渉計システムを用いる場合、基板ステージの変形に伴って移動鏡の反射面が変形すると、計測精度や露光精度が劣化することになる。また、液体が基板や基板ステージ上に供給されることで、基板ステージや関連部品の雰囲気(圧力、湿度、温度など)が変化し、それにより露光精度に影響を及ぼすことも考えられる。

本発明はこのような事情に鑑みてなされたものであって、被露光基板を保持可能な移動体の位置を高精度に制御することができる露光装置及び露光方法、位置制御方法並びにデバイス製造方法を提供することを目的とする。

上記の課題を解決するため、本発明は実施の形態に示す図1~図14に対応付けした以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定するものではない。

本発明の第1の態様に従えば、液体(LQ)を介して基板(P)に露光光(EL)を照射して基板(P)を露光する露光装置であって、基板(P)を保持可能な移動体(PST)と;移動体(PST)に形成された反射面(MX、MY)に測定光(BX、BY、BX θ 1,BX θ 2、BY θ 1,BY θ 2)を照射するとともに、その反射光を受光して、移動体(PST)の位置情報を計測する干渉計システム(43)と;移動体(PST)上に液体(LQ)が供給された状態での反射面(MX、MY)の誤差情報を第1情報として記憶するメモリ(MRY)と;を備える露光装置(EX)が提供される。

)

本発明によれば、移動体上に液体が供給された状態での反射面の誤差情報を記憶しておくことにより、干渉計システムを使って液体を供給された移動体の位置情報を計測するとき、誤差情報に基づいて、計測された移動体の位置情報を補正するなど適切な処置を施すことができる。したがって、移動体に液体が供給されることにより反射面が変位/変形を起こしたとしても、干渉計システムの計測結果に基づいて移動体を精度良く位置制御し、計測処理、露光処理を良好に行うことができる。

ここで、反射面の誤差情報とは、反射面の曲がり及び反射面の傾きだけでなく、局部的な曲がり、傾き、凹凸を含む。更には、移動体が第1反射面とその第1反射面にほぼ垂直な第2反射面とを有している構成の場合、上記誤差情報は、第1反射面と第2反射面との直交度誤差情報を含む。ここで、直交度誤差とは、第1反射面と第2反射面とのなす角度 θ が90°に対してどの程度ずれているかを示す誤差量である。

また、本発明の第2の態様に従えば、液体(LQ)を介して基板(P)に露光光(EL)を照射して、基板(P)を露光する露光装置であって、基板(P)を保持する移動体(PST)と;移動体(PST)を移動するための駆動装置(PSTD)と;移動体(PST)上に液体(LQ)が供給されている状態で移動体

(PST)を移動させるための第1制御情報と、移動体(PST)上に液体(LQ)が供給されていない状態で移動体(PST)を移動させるための第2制御情報とを有し、駆動装置(PSTD)を制御する制御装置(CONT)とを備える露光装置(EX)が提供される。

本発明によれば、移動体上に液体が供給されている状態と液体が供給されていない状態のいずれの状態でも、移動体の位置を高精度に制御することができる。

本発明の第3の態様に従えば、液体(LQ)を介して基板(P)上に露光光(EL)を照射して基板(P)を露光する露光装置(EX)において基板(P)を保持する移動体(PST)に形成された反射面(MX、MY)を使って該移動体(PST)の位置を制御する位置制御方法であって、移動体(PST)上に液体(LQ)が供給された状態で、反射面(MX、MY)の誤差情報を計測し、誤差情報に基づいて、移動体(PST)の位置を制御することを特徴とする位置制御方法が提供される。

本発明によれば、移動体上に液体が供給された状態での反射面の誤差情報を計測しておくことにより、干渉計システムを使って液体を供給された移動体の位置情報を計測するとき、前記誤差情報に基づいて、計測された移動体の位置情報を補正するなど適切な処置を施すことができる。 したがって、干渉計システムの計測結果に基づいて移動体を精度良く位置制御し、計測処理、露光処理を良好に行うことができる。

本発明の第4の態様に従えば、液体(LQ)を介して基板(P)に露光光(EL)を照射して前記基板を露光する露光装置(EX2)であって:前記基板に液体を介して露光光(EL)が照射される露光ステーション(ST2)と;計測系を備え、基板の計測及び交換が行われる計測ステーション(ST1)と;前記基板を保持して露光ステーションと計測ステーションとの間で移動する移動体(PST1, PST2)と;前記移動体を移動するための駆動装置(PSTD)と;

前記移動体上に液体が供給されている状態で前記移動体を移動させるための第1制御情報と、前記移動体上に液体が供給されていない状態で前記移動体を移動させるための第2制御情報とを有し、前記駆動装置を制御する制御装置(CONT)とを備え;前記移動体(PST1,PST2)が露光ステーション(ST2)に存在するときに第1制御情報に基づいて移動体の移動が制御されながら液体を介して基板の露光が行われ、前記移動体が計測ステーション(ST1)に存在するときに第2制御情報に基づいて移動体の移動が制御されながら計測が行われる露光装置(EX2)が提供される。本発明では、液浸露光が行われる露光ステーションと計測が行われる計測ステーションで、それぞれ、第1及び第2制御情報に基づいて移動体の移動が制御されるため、液体の有無に応じた一層正確な移動体の位置制御を行うことができ、計測及び露光精度を向上することができる。

本発明の第5の態様に従えば、液体(LQ)を介して基板に露光光を照射して、前記基板を露光する露光装置であって:前記露光光が通過する光学部材(2)と;光学部材(2)の光射出側で移動可能な移動体(PST)と;移動体(PST)に形成された反射面(MX、MY)に測定光を照射するとともに、その反射光を受光して、移動体(PST)の位置情報を計測する干渉計システム(43)と;移動体(PST)上に液浸領域(AR2)が形成された状態での反射面(MX、MY)の誤差情報を第1情報として記憶するメモリ(MRY)と;を備える露光装置(EX)が提供される。

本発明によれば、移動体上に液浸領域が形成された状態での反射面の誤差情報を記憶しておくことにより、干渉計システムを使って液体を供給された移動体の位置情報を計測するとき、誤差情報に基づいて、計測された移動体の位置情報を補正するなど適切な処置を施すことができる。

)

本発明の第6の態様に従えば、液体(LQ)を介して基板(P)にパターン像を投影して前記基板を露光する露光方法であって:位置測定のための測定光(BX、BY、BX θ 1,BX θ 2、BY θ 1,BY θ 2)が照射される反射面(M

X、MY)を備える移動体(PST)上に、前記基板(P)またはダミー基板を保持することと;前記移動体(PST)上に液体(LQ)が供給された状態で、前記反射面の誤差情報を求めることと;前記誤差情報に基づいて基板上の所定位置に前記パターン像を液体を介して投影することと;を含む露光方法が提供される。本発明の露光方法によれば、移動体上に液浸領域が形成された状態で液浸露光が行われていても、パターン像と基板との相対的な位置合わせを正確に行うことができるため、液浸露光による高い露光精度を維持することができる。

本発明に従えば、上記態様の露光装置を用いることを特徴とするデバイス製造 方法が提供される。本発明によれば、液浸法に基づいて露光するときの基板を保 持可能な移動体の位置制御を良好に行って、露光精度及び計測精度の劣化を防止 できるので、所望の性能を有するデバイスを製造することができる。

図面の簡単な説明

- 図1は、本発明の露光装置の一実施形態を示す概略構成図である。
- 図2は、基板ステージを上方から見た平面図である。
- 図3は、干渉計システムの構成を示す図である。
- 図4は、干渉計システムの構成を示す図である。
- 図5は、反射面の表面形状を計測する手順を説明するための図である。
- 図6は、反射面の表面形状を計測する手順を説明するための図である。
- 図7は、反射面の表面形状を計測する手順を説明するための図である。
- 図8は、反射面の表面形状を計測する方法を説明するための図である。
- 図9は、本発明に係る露光方法の一実施形態を示すフローチャート図である。
- 図10は、アライメント処理の一例を説明するための図である。
- 図11は、アライメント処理の一例を説明するための図である。
- 図12(a)及び(b)は、基板ステージ上の液浸領域の位置と反射面の誤差 との関係を説明するための模式図である。
 - 図13は、露光装置の他の実施形態を示す概略構成図である。

図14は、半導体デバイスの製造工程の一例を示すフローチャート図である。

発明を実施するための最良の形態

以下、本発明の露光装置について図面を参照しながら説明するが、本発明はこれに限定されない。

図1は本発明の露光装置の一実施形態を示す概略構成図である。図1において、露光装置EXは、マスクMを支持して移動可能なマスクステージMSTと、基板Pを保持する基板ホルダPHを有し、基板ホルダPHに基板Pを保持して移動可能な基板ステージPSTと、マスクステージMSTに支持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターンの像を基板ステージPSTに支持されている基板Pに投影露光する投影光学系PLと、露光装置EX全体の動作を統括制御する制御装置CONTと、制御装置CONTに接続され、露光動作に関する各種情報を記憶するメモリMRYとを備えている。

本実施形態の露光装置EXは、露光波長を実質的に短くして解像度を向上するとともに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、基板P上に液体LQを供給する液体供給機構10と、基板P上の液体LQを回収する液体回収機構20とを備えている。本実施形態において、液体LQには純水が用いられる。露光装置EXは、少なくともマスクMのパターン像を基板P上に転写している間、液体供給機構10から供給した液体LQにより投影光学系PLの投影領域AR1を含む基板P上の少なくとも一部に、投影領域AR1よりも大きく且つ基板Pよりも小さい液浸領域AR2を局所的に形成する。具体的には、露光装置EXは、投影光学系PLの像面側先端部の光学素子2と基板Pの表面(露光面)との間に液体LQを満たし、この投影光学系PLと基板Pとの間の液体LQ及び投影光学系PLを介してマスクMのパターン像を基板P上に投影することによって、基板Pを露光する。

照明光学系ILは、マスクステージMSTに支持されているマスクMを露光光 ELで照明するものであり、露光用光源、露光用光源から射出された光束の照度 を均一化するオプティカルインテグレータ、オプティカルインテグレータからの 露光光ELを集光するコンデンサレンズ、リレーレンズ系、露光光ELによるマスクM上の照明領域をスリット状に設定する可変視野絞り等を有している。マスクM上の所定の照明領域は照明光学系ILにより均一な照度分布の露光光ELで 照明される。照明光学系ILから射出される露光光ELとしては、例えば水銀ランプから射出される輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びF $_2$ レーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態では、ArFエキシマレーザ光が用いられる。上述したように、本実施形態における液体LQは純水であって、露光光ELがArFエキシマレーザ光であっても透過可能である。また、純水は輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)も透過可能である。

マスクステージMSTは、マスクMを保持して移動可能であって、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能及びOZ方向に微小回転可能である。マスクステージMSTはリニアモータ等のマスクステージ駆動装置MSTDは制御装置CONTにより制御される。

マスクステージMST上には、マスクステージと共に移動する移動鏡40が設けられている。また、移動鏡40に対向する位置にはレーザ干渉計41が設けられている。マスクステージMST上のマスクMの2次元方向の位置、及び回転角はレーザ干渉計41によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計41の計測結果に基づいてマスクステージ駆動装置MSTDを駆動することでマスクステージMSTに支持されているマスクMの位置決めを行う。

`)

投影光学系PLは、マスクMのパターンを所定の投影倍率βで基板Pに投影露光する。投影光学系PLは、基板P側の先端部に設けられた光学素子(レンズ)2を含む複数の光学素子で構成されており、これら光学素子は鏡筒PKで支持されている。本実施形態において、投影光学系PLは、投影倍率βが例えば1/4、1/5、あるいは1/8の縮小系である。なお、投影光学系PLは等倍系及び拡大系のいずれでもよい。また、投影光学系PLは、屈折素子と反射素子とを含む反射屈折系、反射素子を含まない屈折系、屈折素子を含まない反射系のいずれであってもよい。また、本実施形態の投影光学系PLの先端部の光学素子2は鏡筒PKに対して着脱(交換)可能に設けられている。また、先端部の光学素子2は鏡筒PKより露出しており、液浸領域AR2の液体LQは光学素子2に接触する。これにより、金属からなる鏡筒PKの腐蝕等が防止されている。

光学素子2は蛍石で形成されている。蛍石は純水との親和性が高いので、光学素子2の液体接触面2Aのほぼ全面に液体LQを密着させることができる。すなわち、本実施形態においては光学素子2の液体接触面2Aとの親和性が高い液体

(水) L Q を供給するようにしているので、光学素子2の液体接触面2Aと液体 L Q との密着性が高い。光学素子2は水との親和性が高い石英であってもよい。また光学素子2の液体接触面2Aに親水化(親液化)処理を施して、液体LQ との親和性をより高めるようにしてもよい。

基板ステージPST(スステージ52)上には凹部55が設けられており、基板ホルダPHは凹部55に配置されている。そして、基板ステージPSTのうち凹部55以外の上面51は、基板ホルダPHに保持された基板Pの表面とほぼ同じ高さ(面一)になるような平坦面(平坦部)となっている。本実施形態では、上面51を有するプレート部材50が基板ステージPST上に対して交換可能に配置されている。基板Pの周囲に基板P表面とほぼ面一の上面51を設けたので、基板Pのエッジ領域Eを液浸露光するときにおいても、投影光学系PLの像面側に液体LQを保持して液浸領域AR2を良好に形成することができる。ただし、液浸領域AR2を良好に維持することができるれば、基板Pの表面と基板Pの周囲のプレート部材50の上面51とに段差があってもよい。例えば、プレート部材50の上面51が基板ホルダPHに保持された基板Pの表面よりも低くしてもよい。また、基板Pのエッジ部とその基板Pの周囲に設けられた平坦面(上面)51を有するプレート部材50との間には0.1~2mm程度の隙間があるが、

基板Pの周縁近傍を露光する場合にも、液体LQの表面張力によりその隙間に液体LQが流れ込むことはほとんどない。

基板ステージPST(Zステージ52)上には、基板ステージPSTとともに投影光学系PLに対して移動する移動鏡42が設けられている。また、移動鏡42に対向する位置にはレーザ干渉計システム43を構成する干渉計が設けられている。基板ステージPST上の基板Pの2次元方向の位置、及び回転角はレーザ干渉計システム43によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計システム43の計測結果に基づいて、レーザ干渉計システム43で規定される2次元座標系内で基板ステージ駆動装置PSTDを介してXYステージ53を駆動することで基板ステージPSTに支持されている基板PのX軸方向及びY軸方向における位置決めを行う。

また、露光装置EXは、基板P表面の面位置情報を検出するフォーカス検出系 30を有している。フォーカス検出系30は、投射部30Aと受光部30Bとを 有し、投射部30Aから液体LQを介して基板P表面(露光面)に斜め方向(斜 め上方)から検出光Laを投射するとともに、その基板Pからの反射光を液体L Qを介して受光部30Bで受光することによって、基板P表面の面位置情報を検 出する。制御装置CONTは、フォーカス検出系30の動作を制御するとともに、 受光部30Bの受光結果に基づいて、所定基準面(例えば像面)に対する基板P 表面のZ軸方向における位置(フォーカス位置)を検出する。また、基板P表面 における複数の各点での各フォーカス位置を求めることにより、フォーカス検出 系30は基板Pの傾斜方向の姿勢を求めることもできる。なお、フォーカス検出 系30の構成としては、例えば特開平8-37149号公報に開示されているも のを用いることができる。またフォーカス検出系は、液体LQを介さずに基板P 表面の面情報を検出するものであってもよい。その場合、投影光学系PLから離 れた位置で基板P表面の面情報を検出するものであってもよい。投影光学系PL から離れた位置で基板P表面の面情報を検出する露光装置は、例えば米国特許第 6,674,510号に開示されており、本国際出願で指定または選択された国

の法令で許容される限りにおいて、この文献の記載内容を援用して本文の記載の 一部とする。

制御装置CONTは基板ステージ駆動装置PSTDを介して基板ステージPSTのZステージ52を駆動することにより、Zステージ52に保持されている基板PのZ軸方向における位置(フォーカス位置)、及びθX、θY方向における位置を制御する。すなわち、Zステージ52は、フォーカス検出系3Oの検出結果に基づく制御装置CONTからの指令に基づいて動作し、基板Pのフォーカス位置(Z位置)及び傾斜角を制御して基板Pの表面(露光面)を投影光学系PL及び液体LQを介して形成される像面に合わせ込む。

投影光学系PLの先端近傍には、基板P上のアライメントマーク1あるいはZステージ52上に設けられた基準部材300上の基板側基準マークPFMを検出する基板アライメント系350が設けられている。なお本実施形態の基板アライメント系350では、例えば特開平4-65603号公報に開示されているような、基板ステージPSTを静止させてマーク上にハロゲンランプからの白色光等の照明光を照射して、得られたマークの画像を撮像素子により所定の撮像視野内で撮像し、画像処理によってマークの位置を計測するFIA(フィールド・イメージ・アライメント)方式が採用されている。

また、マスクステージMSTの近傍には、マスクMと投影光学系PLとを介してZステージ52上に設けられた基準部材300上のマスク側基準マークMFMを検出するマスクアライメント系360が設けられている。なお本実施形態のマスクアライメント系360では、例えば特開平7-176468号公報に開示されているような、マークに対して光を照射し、CCDカメラ等で撮像したマークの画像データを画像処理してマーク位置を検出するVRA(ビジュアル・レチクル・アライメント)方式が採用されている。

液体供給機構10は、所定の液体LQを投影光学系PLの像面側に供給するためのものであって、液体LQを送出可能な液体供給部11と、液体供給部11にその一端部を接続する供給管13(13A、13B)とを備えている。液体供給部11は、液体LQを収容するタンク、及び加圧ポンプ等を備えている。液体供給部11の液体供給動作は制御装置CONTにより制御される。基板P上に液浸領域AR2を形成する際、液体供給機構10は液体LQを基板P上に供給する。なお、液体供給部11のタンク、加圧ポンプは、必ずしも露光装置EXが備えている必要はなく、露光装置EXが設置される工場などの設備を代用することもできる。

供給管13A、13Bの途中には、供給管13A、13Bの流路を開閉するバルブ15がそれぞれ設けられている。バルブ15の開閉動作は制御装置CONTにより制御されるようになっている。なお、本実施形態におけるバルブ15は、例えば停電等により露光装置EX(制御装置CONT)の駆動源(電源)が停止した場合に供給管13A、13Bの流路を機械的に閉塞する所謂ノーマルクローズ方式となっている。

液体回収機構20は、投影光学系PLの像面側の液体LQを回収するためのものであって、液体LQを回収可能な液体回収部21と、液体回収部21にその一端部を接続する回収管23(23A、23B)とを備えている。液体回収部21は例えば真空ポンプ等の真空系(吸引装置)、回収された液体LQと気体とを分離する気液分離器、及び回収した液体LQを収容するタンク等を備えている。なお真空系として、露光装置EXに真空ポンプを設けずに、露光装置EXが配置される工場の真空系を用いるようにしてもよい。液体回収部21の液体回収動作は制御装置CONTにより制御される。基板P上に液浸領域AR2を形成するために、液体回収機構20は液体供給機構10より供給された基板P上の液体LQを所定量回収する。

投影光学系PLを構成する複数の光学素子のうち、液体LQに接する光学素子2の近傍には流路形成部材70が配置されている。流路形成部材70は、中央に開口部70B(光透過部)が形成された環状部材であり、開口部70Bには光学素子2が収容される。すなわち、流路形成部材70は、基板P(基板ステージPST)の上方において、光学素子2の側面を囲むように設けられている。流路形成部材70と光学素子2との間には隙間が設けられており、流路形成部材70は光学素子2に対して振動的に分離されるように所定の支持機構で支持されている。

なお、露光装置 E X が設置される環境によっては、大気圧の変化により、液体 回収機構 2 0 により液体の吸引力が増大して、投影光学系 P L と基板 P (基板ステージ P S T) との間の露光光 E L の光路中に気体 (空気)が混入してしまったり、あるいは吸引力が低下して液体 L Q が漏出・漏洩してしまうおそれがある。そこで、露光装置 E X に大気圧をモニタするセンサを設置しておき、このセンサのモニタ結果に基づいて、例えば液体回収機構 2 0 の真空系の圧力 (負圧)を調整して、液体回収機構 2 0 による液体の吸引力 (回収力)を調整するようにしてもよい。特に、液体回収機構 2 0 の真空系の負圧を調整するために絶対圧調整型のレギュレータを用いる場合には、大気圧をモニタするセンサを用いることが有効である。

流路形成部材70は、基板P(基板ステージPST)の上方に設けられ、その基板P表面に対向するように配置された液体供給口12(12A、12B)を備えている。本実施形態において、流路形成部材70は2つの液体供給口12A、12Bを有している。液体供給口12A、12Bは流路形成部材70の下面70Aに設けられている。流路形成部材70の液体接触面である下面70Aは、光学素子2の下面2A同様、親液処理されて親液性を有している。

また、流路形成部材70は、その内部に液体供給口12A、12Bに対応した供給流路を有している。また、液体供給口12A、12B及び供給流路に対応するように複数(2つ)の供給管13A、13Bが設けられている。そして、流路

形成部材70の供給流路の一端部は供給管13A、13Bを介して液体供給部11にそれぞれ接続され、他端部は液体供給口12A、12Bにそれぞれ接続されている。

また、2つの供給管13A、13Bのそれぞれの途中には、液体供給部11から送出され、液体供給口12A、12Bのそれぞれに対する単位時間あたりの液体供給量を制御するマスフローコントローラと呼ばれる流量制御器16(16A、16B)が設けられている。流量制御器16A、16Bによる液体供給量の制御は制御装置CONTの指令信号の下で行われる。

更に、流路形成部材70は、基板P(基板ステージPST)の上方に設けられ、 その基板P表面に対向するように配置された液体回収口22(22A、22B) を備えている。本実施形態において、流路形成部材70は2つの液体回収口22 A、22Bを有している。液体回収口22A、22Bは流路形成部材70の下面 70Aに設けられている。

また、流路形成部材70は、その内部に液体回収口22A、22Bに対応した回収流路を有している。また、液体回収口22A、22B及び回収流路に対応するように複数(2つ)の回収管23A、23Bが設けられている。そして、流路形成部材70の回収流路の一端部は回収管23A、23Bを介して液体回収部21にそれぞれ接続され、他端部は液体回収口22A、22Bにそれぞれ接続されている。

液体供給機構10を構成する液体供給口12A、12Bは、投影光学系PLの 投影領域AR1を挟んだX軸方向両側のそれぞれの位置に設けられており、液体 回収機構20を構成する液体回収口22A、22Bは、投影光学系PLの投影領 域AR1に対して液体供給機構10の液体供給口12A、12Bの外側に設けら れている。なお、本実施形態における投影光学系PLの投影領域AR1は、Y軸 方向を長手方向とし、X軸方向を短手方向とした平面視矩形状に設定されている。

液体供給部 1 1 及び流量制御器 1 6 の動作は制御装置 C O N T により制御される。基板 P 上に液体 L Q を供給する際、制御装置 C O N T は、液体供給部 1 1 より液体 L Q を送出し、供給管 1 3 A、 1 3 B、及び供給流路を介して、基板 P の上方に設けられている液体供給口 1 2 A、 1 2 B より基板 P 上に液体 L Q を供給する。このとき、液体供給口 1 2 A、 1 2 B は投影光学系 P L の投影領域 A R 1を挟んだ両側のそれぞれに配置されており、その液体供給口 1 2 A、 1 2 B を介して、投影領域 A R 1 の両側から液体 L Q を供給可能である。また、液体供給口 1 2 A、 1 2 B のそれぞれから基板 P 上に供給される液体 L Q の単位時間あたりの量は、供給管 1 3 A、 1 3 B のそれぞれに設けられた流量制御器 1 6 A、 1 6 B により個別に制御可能である。

液体回収部21の液体回収動作は制御装置CONTにより制御される。制御装置CONTは液体回収部21による単位時間あたりの液体回収量を制御可能である。基板Pの上方に設けられた液体回収口22A、22Bから回収された基板P上の液体LQは、流路形成部材70の回収流路、及び回収管23A、23Bを介して液体回収部21に回収される。

なお、本実施形態において、供給管13A、13Bは1つの液体供給部11に接続されているが、供給管の数に対応した液体供給部11を複数(例えば、2つ)設け、供給管13A、13Bのそれぞれを前記複数の液体供給部11のそれぞれに接続するようにしてもよい。また、回収管23A、23Bは、1つの液体回収部21に接続されているが、回収管の数に対応した液体回収部21を複数(例えば、2つ)設け、回収管23A、23Bのそれぞれを前記複数の液体回収部21のそれぞれに接続するようにしてもよい。また液体回収口は、投影光学系PLの投影領域AR1と液体供給口12A、12Bとを取り囲むように設けてもよい。

流路形成部材70の下面(基板 P 側を向く面)70 A はほぼ平坦面であり、光学素子2の下面(液体接触面)2 A も平坦面となっており、流路形成部材70の下面70 A と光学素子2の下面2 A とはほぼ面一となっている。これにより、広い範囲で液浸領域AR2を良好に形成することができる。

なお、投影光学系PLと対向する物体(例えば、基板P)上に液浸領域AR2 を形成する機構は、上述のものに限られず、例えば米国特許公開第2004/0 207824号公報に開示されている機構を用いることができ、本国際出願で指 定または選択された国の法令で許容される限りにおいて、この文献の記載内容を 援用して本文の記載の一部とする。

図2は基板Pを保持して移動可能な移動体である基板ステージPSTを上方から見た平面図である。図2において、平面視矩形状の基板ステージPSTの互いに垂直な2つの縁部に移動鏡42(42X、42Y)が配置されている。

基板ステージPSTの上面51は撥液化処理されて撥液性を有している。上面51の撥液化処理としては、例えばフッ素系樹脂材料あるいはアクリル系樹脂材料等の撥液性材料を塗布、あるいは前記撥液性材料からなる薄膜を貼付する。撥液性にするための撥液性材料としては液体LQに対して非溶解性の材料が用いられる。なお、基板ステージPST全体又は一部を例えばポリ四フッ化エチレン(テフロン(登録商標))等のフッ素系樹脂をはじめとする撥液性を有する材料で形成してもよい。また、プレート部材50を上記ポリ四フッ化エチレンなどからなる撥液性を有する材料によって形成してもよい。

また、基板ステージPST上において、基板Pの外側の所定位置には、基準部材300が配置されている。基準部材300には、基板アライメント系350(図1)により検出される基準マークPFMと、マスクアライメント系360(図1)により検出される基準マークMFMとが所定の位置関係で設けられている。基準部材300の上面301Aはほぼ平坦面となっており、基板ステージP

STに保持された基板 P 表面、及び基板ステージ P S T の上面 5 1 とほぼ同じ高さ(面一)に設けられている。基準部材 3 0 0 の上面 3 0 1 A は、フォーカス検出系 3 0 の基準面としての役割も果たすことができる。

また、基板アライメント系350(図1)は、基板P上に形成されたアライメントマーク1も検出する。図2に示すように、基板P上には複数のショット領域S1~S24が形成されており、アライメントマーク1は複数のショット領域S1~S24に対応して基板P上に複数設けられている。なお図2では、各ショット領域は互いに隣接するように図示されているが、実際には互いに離間しており、アライメントマーク1はその離間領域であるスクライブライン上に設けられている。

また、基板ステージPST上において、基板Pの外側の所定位置には、計測用センサとして例えば特開昭57-117238号公報に開示されているような照度ムラセンサ400が配置されている。照度ムラセンサ400は平面視矩形状の上板401を備えている。上板401の上面401Aはほぼ平坦面となっており、基板ステージPSTに保持された基板P表面、及び基板ステージPSTの上面51とほぼ同じ高さ(面一)に設けられている。上板401の上面401Aには、光を通過可能なピンホール部470が設けられている。上面401Aのうち、ピンホール部470以外はクロムなどの遮光性材料で覆われている。

また、基板ステージPST上において、基板Pの外側の所定位置には、計測用センサとして例えば特開2002-14005号公報に開示されているような空間像計測センサ500が設けられている。空間像計測センサ500は平面視矩形状の上板501を備えている。上板501の上面501Aはほぼ平坦面となっており、基板ステージPSTに保持された基板P表面、及び基板ステージPSTの上面51とほぼ同じ高さ(面一)に設けられている。上板501の上面501Aには、光を通過可能なスリット部570が設けられている。上面501Aのうち、スリット部570以外はクロムなどの遮光性材料で覆われている。

また、不図示ではあるが、基板ステージPST上には、例えば特開平11-16816号公報に開示されているような照射量センサ(照度センサ)も設けられており、その照射量センサの上板の上面は基板ステージPSTに保持された基板P表面や基板ステージPSTの上面51とほぼ同じ高さ(面一)に設けられている。

このように、基板ステージPSTの上面51は、基準部材300、照射ムラセンサ400、空間像計測センサ500なども含めてほぼ同じ高さ(面一)になっており、投影光学系PLの光学素子2と基板ステージPST上面51との間に液体LQを保持した状態で、基板ステージPSTを広範囲に移動できるようになっている。

·)

なお、基準部材300、及び上板401、501などは基板ステージPSTに対して脱着可能(交換可能)となっている。

また基準部材300、及び上板401、501の表面も撥液性になっており、 その上に液浸領域を形成しても、その液体を容易に回収することができる。

なお、基板ステージPST上に搭載する計測部材は、上述したものに限られず、 投影光学系PLの波面収差を計測するセンサなどを必要に応じて搭載することが できる。もちろん、基板ステージPST上に計測部材を何も搭載しなくてもよい。

平面視矩形状の基板ステージPSTの-X側端部及び+Y側端部のそれぞれには、Y軸方向に沿って形成され、X軸方向にほぼ垂直な反射面MXを有するX移動鏡42Xと、X軸方向に沿って形成され、Y軸方向にほぼ垂直な反射面MYを有するY移動鏡42Yとがそれぞれ設けられている。移動鏡42Xの反射面MXに対向する位置には、レーザ干渉計システム43を構成する干渉計43Xが設けられている。また、移動鏡42Yの反射面MYに対向する位置には、レーザ干渉

計システム43を構成する干渉計43Yが設けられている。移動鏡42Xの反射面MXには、X軸方向の位置(距離変化)を検出する干渉計43Xからの測長ビームBXが垂直に投射され、移動鏡42Yの反射面MYには、Y軸方向の位置(距離変化)を検出する干渉計43Yからの測長ビームBYが垂直に投射される。測長ビームBXの光軸はX軸方向と平行であり、測長ビームBYの光軸はY軸方向と平行であり、これら両者は、投影光学系PLの光軸AX(図1)で直交する(垂直に交差する)ようになっている。

更に、移動鏡 42 Xの反射面M X に対向する位置には、レーザ干渉計システム 43 を構成する X 軸 θ 干渉計 43 X θ が設けられている。移動鏡 42 X の反射面 M X には、X 軸 θ 干渉計 43 X θ から Y 軸方向に所定間隔隔でた X 軸方向に平行な 2 本のビーム B X θ 1 、B X θ 2 がそれぞれ垂直に投射され、X 軸 θ 干渉計 43 X θ はそれらの反射光を受光したビーム B X θ 1 、B X θ 2 の相互の光路差を計測する。更に、X 軸 θ 干渉計 43 X θ は、2 本のビーム B X θ 1 、B X θ 2 の Y 軸方向の間隔で規定された範囲で移動鏡 42 X の回転量(傾き)を計測する。

また、移動鏡 42 Yの反射面 M Y に対向する位置には、レーザ干渉計システム 43 を構成する Y 軸 θ 干渉計 43 Y θ が設けられている。移動鏡 42 Yの反射面 M Y には、 Y 軸 θ 干渉計 43 Y θ から X 軸方向に所定間隔隔 てた Y 軸方向に平行な 2 本のビーム B Y θ 1、 B Y θ 2 がそれぞれ垂直に投射され、 Y 軸 θ 干渉計 43 Y θ はそれらの反射光を受光したビーム B Y θ 1、 B Y θ 2 の相互の光路差を計測する。更に、 Y 軸 θ 干渉計 43 Y θ は、 2 本のビーム B Y θ 1、 B Y θ 2 の X 軸方向の間隔で規定された範囲で移動鏡 42 Y の回転量(傾き)を計測する。

スプリッタ $6\ 2\ X$ の $+\ X$ 側に配置された λ /4板 $6\ 3\ A$ 、ビームスプリッタ $6\ 2\ X$ の $-\ Z$ 側に配置されたコーナーキューブ $6\ 5\ X$ 、及びビームスプリッタ $6\ 2\ X$ の $-\ X$ 側に配置されたレシーバ $8\ 0\ X$ などを備えている。

この干渉計43Xによると、不図示の光源から射出された、周波数差を有する とともに、互いに直交した成分(P偏光成分とS偏光成分)を含むHe-Neレ ーザビーム61Xは、偏光ビームスプリッタ62Xに入射し、ここで偏光方向に よって反射面MXへ向かうビーム(すなわち、前述の測長ビーム)BXと、ミラ -66Xを介して投影光学系PLの鏡筒PKに固定された参照鏡(固定鏡)67 Xへ向かうビーム(以下、「参照ビーム」と称する)BXrとに分けられる。ビ ームスプリッタ62Xで反射した参照ビームBXr(S偏光)は、ミラー66X で反射し、入/4板63Bを通過して円偏光となって参照鏡67Xの下半分に投 射される。この参照ビームBXr(円偏光)は、参照鏡67Xで反射し、元の光 路を逆向きに戻る。このとき、参照鏡67Xで反射した反射ビームは入/4板6 3 Bを再度通過することによって入射光(送り光)と直交した偏光方向の P 偏光 に変換され、ミラー66Xで反射した後、偏光ビームスプリッタ62Xを透過し てコーナーキューブ65Xに至る。この参照ビームBXr(P偏光)は、コーナ ーキューブ65Xの反射面で反射して逆向きに折り返され、再びビームスプリッ タ62Xを通過し、更にミラー66X、及び

入/4板63Bを順次通過し、この 際に円偏光に変換されて参照鏡67Xの上半分に達する。この参照鏡67Xで反 射した参照ビームBXr(円偏光)は、入/4板63Bを再度通過する際にS偏 光に変換され、ミラー66X、及び偏光ビームスプリッタ62Xで順次反射し、 レシーバ80Xに入射する。

一方、ビームスプリッタ62Xを通過した測長ビームBX(P偏光)は、 λ / 4板63Aを通過して円偏光に変換された後、移動鏡42Xの反射面MXの下半分に投射される。この反射面MXで反射した測長ビームBX(円偏光)は、 λ / 4板63Aを通過してS偏光に変換され、ビームスプリッタ62Xで下方に反射し、コーナーキューブ65Xの反射面で反射して逆向きに折り返され、再びビー

ムスプリッタ62×で反射して、入/4板63Aを通過して円偏光に変換され、反射面MXの上半分に投射される。この反射面MXで反射した測長ビームBX(円偏光)は、入/4板63Aを通過してP偏光に変換され、ビームスプリッタ62×を通過して前述した参照ビームBXr(S偏光)と同軸に合成されてレシーバ80×に入射する。レシーバ80×は、移動鏡42×の反射面MXからの反射ビーム(測長ビームBX(P偏光))と、参照鏡67×からの反射ビーム(参照ビームBXr(S偏光))とを、偏光方向を合わせて互いに干渉させ、それらの反射ビーム(光源から射出されたレーザビーム61×に含まれる周波数差を有する互いに直交した偏光成分と実質的に同一のビーム)の周波数差を利用して、ヘロダイン方式で2つの光路(測長ビームBXの光路及び参照ビームBXrの光路)の光路長の差(光路差)を検出する。このような光路差の検出が、移動鏡42×(反射面MX)のX軸方向の位置の変化に応じて行われることにより、結果的に測長ビームBXと参照ビームBXrとの光路差の変化が検出されることになる。

なお、干渉計43Yも、上述した干渉計43Xと同様、ビームスプリッタ、ミラー、レシーバ、λ/4板などを含んで構成されており、図3を参照して説明した干渉計43Xと同等の構成を有しているので、その説明を省略するものとする。

移動鏡 42 Xの反射面M X で反射したビームB X θ 1 (円偏光) は、 λ / 4 板 8 4 A を再度透過して P 偏光のビームとなった後、ミラー83 X で反射し、更に ビームスプリッタ82 X を透過してレシーバ87 X に入射する。一方、反射面M X で反射したビームB X θ 2 (円偏光) は、 λ / 4 板 8 4 B を再度通過して S 偏光のビームとなった後、ミラー86 X、85 X で順次反射し、ビームスプリッタ82 X に至る。そして、このビーム(S 偏光)は、ビームスプリッタ82 X で反射して、前述の P 偏光のビームと同軸に合成されてレシーバ87 X に入射する。

レシーバ87Xは、入射したビームBX θ 1の反射ビーム(P偏光)と、ビームBX θ 2の反射ビーム(S偏光)とを、偏光方向を合わせて互いに干渉させ、それらの反射ビーム(光源から射出されたレーザビーム81Xに含まれる周波数差を有する互いに直交した偏光成分と実質的に同一のビーム)の周波数差を利用して、ヘロダイン方式で2つの光路(ビームBX θ 1の光路及びビームBX θ 2の光路)の光路長の差(光路差)を検出する。このような光路差の検出が、移動鏡42X(反射面MX)の θ 2方向の姿勢の変化に応じて行われることにより、結果的にビームBX θ 1とビームBX θ 2との光路差の変化が検出されることになる。

なお上記説明では省略したが、 θ 干渉計 $43X\theta$ に関しても、実際には干渉計43X及び干渉計43Yと同様に参照鏡(固定鏡)を基準として移動鏡42Xの反射面MXの2点での光路差を計測するようになっている。

なお、他方の θ 干渉計 $43Y\theta$ についても、上述した θ 干渉計 $43X\theta$ と同様、ビームスプリッタ、ミラー、レシーバ、 λ /4板などを含んで構成されており、図4を参照して説明した θ 干渉計 $43X\theta$ と同等の構成を有しているので、具体的な構成についてはその説明を省略するものとする。

なお、上記各干渉計の構成は一例であり、その他の構成を採用することも可能である。要は、2本のビームBX、BXrの光路差の変化量、及び2本のビームBX θ 1、BX θ 2の光路差の変化量が求められればよい。例えば、 θ 干渉計43X θ 、43Y θ の代わりに、干渉計43X又は43Yと同一構成の一対の干渉計を、その測長軸が上記間隔だけ離れるように、移動鏡42X、42Yの反射面MX、MYにそれぞれ対応して配置し、それらの計測軸と上記間隔とから移動鏡42X、42Y(反射面MX、MY)の反射面の局所的な回転量と基板ステージPSTの回転量(ヨーイング)とを求めるようにしてもよい。この場合、X軸とY軸とのそれぞれで、その一対の干渉計のみを用いることとし、干渉計43X、43Yを設けなくてもよい。なお、上述の参照鏡67Xなどは必ずしも投影光学系PLに設けなくてもよい。また、基板ステージPSTの θ Y方向の回転量(ピッチング量)や、 θ X方向の回転量(ローリング量)の計測に用いられる干渉計を追加してもよい。

そして、上述した干渉計43X、43Y、 $43X\theta$ 、 $43Y\theta$ それぞれのレシーバからの計測信号(検出信号)は、制御装置CONTに出力される。

ここで、本実施形態の露光装置EXにおいては、基板ステージPST上の基板 Pの露光が終了した段階で、不図示の基板交換機構により基板ステージPST上 で露光済みの基板Pと次の露光対象である基板Pとの交換が行われる。

そして、本実施形態の露光装置EXにおいては、所定枚数、例えば1ロット(1ロットは例えば25枚又は50枚など)おきの基板Pの交換の度に、すなわち1ロットの最終の基板Pに対する露光が終了し、その基板Pと次のロットの先頭の基板Pとの交換を行う際に、制御装置CONTによって基板ステージPST上の移動鏡42X、42Yの反射面MX、MYの表面形状の計測が行われるようになっている。

以下、反射面MX、MYの表面形状(凹凸、傾き)の計測方法の一例について 説明する。

図5には、例えば基板ステージPST上の基板Pに対する露光動作が終了したときの位置(露光終了位置)にある基板ステージPSTが符号PST_Eで図示され、基板交換が行われる位置(基板交換位置)にある基板ステージPSTが符号PST_Lで示されている。以下の説明において、説明の便宜上、露光終了位置を露光終了位置PST_Eと表記し、基板交換位置を基板交換位置PST_Lと表記するものとする。

本実施形態の露光装置EXでは、前ロットの最終基板Pの露光完了後に、基板 P上、あるいは基板ステージPST上の液体LQはすべて回収されており、ドライ状態になっている。

また、本実施形態の露光装置EXでは、前ロットの最終の基板Pを次ロットの 先頭の基板Pに交換する場合(以下、適宜「ロット先頭の基板交換時」と称す る)以外の基板交換時には、通常と同様に、基板ステージPSTの露光終了位置 PST_Fから基板交換位置PST_L まで移動、及び基板交換位置PST_L から露光

開始位置までの移動は、基板ステージPSTの移動距離がほぼ最短となるような 経路に沿って行われる。

一方、ロット先頭の基板交換時には、基板ステージPSTは、まず、制御装置 CONTにより、図6に示されるように、露光終了位置PST_Eから符号PST_M で示される、露光終了位置PST_Eと基板交換位置PST_Lとの中間位置(以下、 適宜「中間位置PST_M」と称する)に向けてX軸方向に沿って移動される。なお、 基板ステージPST上の液体LQは露光終了位置PST_Eで全て回収されている。

そして、この移動の間に、制御装置CONTにより移動鏡42Yのドライ状態での反射面MYの表面形状を算出するためのデータが取得される。

すなわち、制御装置CONTは、干渉計43X、43Yの計測値をモニタしつつ、基板ステージPSTを、上述の如く、露光終了位置PST $_{E}$ から中間位置PST $_{M}$ まで-X方向に移動する。この移動は、移動開始後の加速、等速移動、移動終了直線の減速の順で行われる。この場合の加速域、及び減速域は僅かであり、殆どが等速域である。

上述の基板ステージPSTの移動中、制御装置CONTは、干渉計43Xの計測値の所定回数おきのサンプリングのタイミングに同期して、干渉計43Y θ 及び43X θ の計測値をサンプリングし、次のようにして、移動鏡42Yの反射面MYの表面形状算出のための凹凸量(傾斜データ)の算出を行う。

以下、図8を参照しながら反射面MYの凹凸量の算出方法について説明する。

なお上述したように、 θ 干渉計は実際には固定鏡(前述の参照鏡)を基準にして移動鏡 42X、42Yの反射面MX、MYの回転量を計測しているが、ここでは説明を簡単にするために、図8に示すように、 θ 干渉計 $43Y\theta$ は仮想的に固

定された基準線RYを基準に移動鏡42Y(反射面MY)の局部的な傾き(回転量や曲がり量)を誤差情報として検出するものとして説明する。

図8において、基準線RYと移動鏡42Yの反射面MYとの距離をYa(干渉計43Yで計測する値)とし、その位置での反射面MY(移動鏡42Y)の局部的な回転量(傾き角、曲がり角)を θ Y(x)とする。 θ 干渉計43Y θ は、基準線RY上でX軸方向にSYだけ離れた2点で、反射面MYまでの距離Y θ 1と Y θ 2とを計測し、両距離の差分Y θ (x)を計測する。すなわち、次式(1)で示される差分Y θ (x)を計測する。

$$Y\theta(x) = Y\theta 2 - Y\theta 1 \quad \cdots (1)$$

ここで、制御装置CONTは、移動鏡 42 Yの反射面M Y が X 軸方向の基準点 O x にあるとき、すなわち反射面M Y 上の固定された点 O に、干渉計 43 Y の測長ビーム B Y が入射している時点から計測を開始しているものとする。なお、この時点は、基板ステージ P S T が加速を終了した時点である。このとき、制御装置 C O N T は、干渉計 43 X 及び θ 干渉計 43 X θ の計測値をともに零リセットしているものとする。図 8 の下半部には、このリセットの様子が視覚的に示されている。

この場合において、移動鏡の局部的な回転量(傾き角) θ Y (x) は多くとも $1\sim2$ 秒程度の微小角であり、間隔 S Y は 1 O m m から数十m m であるので、 t a n θ Y (x) = Y θ (x) / S Y により傾き角 θ Y (x) は次式(2)にて近似することができる。

$$\theta Y (x) = Y \theta (x) / S Y \qquad \cdots (2)$$

一方、反射面MYの位置Oxにおける反射面のY座標値を基準(Δ Y(x)=0)とする凹凸量 Δ Y(x)は、基準点Oxをx=0として、次式(3)にて求めることができる。

$$\Delta Y(x) = \int_0^x \theta Y(x) dx \qquad \cdots (3)$$

但し実際には、移動中には基板ステージPSTにヨーイングなどが発生し得るため、 Δ Y(x)は、移動鏡42Yの反射面MYの傾きによる凹凸の他に、ヨーイング量による誤差分を含んでいる。したがって、そのヨーイング量による誤差分を上式(3)で求められる値から差し引く必要がある。

この場合、基板ステージPSTはX軸方向に一次元移動するだけなので、 θ 干渉計 $43X\theta$ の2本のビームB $X\theta$ 1、B $X\theta$ 2は、移動鏡42Xの反射面MX上の実質的に同一の点にそれぞれ投射され続ける。この場合、 θ 干渉計 $43X\theta$ の計測値は前述の如く基準点Oxでリセットされているので、位置xでの θ 干渉計 $43X\theta$ の値は、基準点Oxを基準とした基板ステージPSTのヨーイング量 $X\theta$ (x)となる。

そこで、反射面の凹凸量 ΔY (x) を算出するために用いた θ 干渉計 $43Y\theta$ の計測値 θY (x) に対応する θ 干渉計 $43X\theta$ による計測値 $X\theta$ (x) を用いて、次式 (4) のような補正演算を行うことにより、移動鏡42Yの反射面MYの真の凹凸量DY1 (x) を求める。

$$DY1(x) = \int_0^x \theta Y(x) dx - \int_0^x X \theta(x) dx \qquad \cdots (4)$$

そこで、制御装置CONTでは、上式(4)の演算を、データ θ Y(x)及び $X\theta$ (x)をサンプリングする毎に行い、各サンプリング点に対応する移動鏡 4

2 Yの反射面MYのドライ状態での凹凸量DY1(x)をメモリMRY内に格納する。

このとき、上式(4)の演算の対象となる、最終のサンプリングデータは、x = L に対応するデータであるものとする。x = L となる時点は、基板ステージP S T が減速を開始した点に一致しているものとする。

以上のように、ほぼX軸方向に沿って設けられた反射面MYの誤差情報を計測するとき、基板ステージPST上に液浸領域AR2が形成されていない状態(ドライ状態)で、Y軸方向の複数の位置に基板ステージPSTを移動させ、その複数の位置に対応する複数の情報を計測することにより、反射面MYのドライ状態での誤差情報を計測することができる。そして、上述したように、基板ステージPSTのX軸方向への移動中に、基板ステージPSTの位置情報を計測するための干渉計43Y、43Y θ より、Y軸方向とほぼ平行な複数のビームBY、BY θ 1、BY θ 2を反射面MYに照射するとともに、反射面MYからの反射光を受光することで、制御装置CONTは、レシーバの受光結果に基づいて、反射面MYの誤差情報を効率良く計測することができる。

次に、制御装置CONTは、図7に示すように、干渉計43X、43Y(図 2)の計測値をモニタしつつ、基板ステージPSTを、中間位置 PST_M から基板交換位置 PST_L に向けて-Y方向に移動する。この場合も、移動開始後の加速、等速移動、移動終了直前の減速の順で行われる。この場合の加速域、及び減速域は僅かであり、殆どが等速域である。

上記の基板ステージPSTの移動中、制御装置CONTは、干渉計43Yの計測値の所定回数おきのサンプリングのタイミングに同期して、干渉計43Y θ 及び43X θ の計測値を同時にサンプリングし、そのサンプリングの度に、前述と同様にして、移動鏡42Xの反射面MXの凹凸量データ(傾斜データ)の算出を行う。

すなわち、制御装置CONTは、 θ 干渉計 $43X\theta$ の計測値を $X\theta$ (y)、 θ 干渉計 $43X\theta$ の2本のビームの間の間隔をSX(図4参照)として、反射面の局部的は回転量、すなわち傾き角(曲がり角) θX (y)を次式(5)にしたがって算出するとともに、 θ 干渉計 $43Y\theta$ の計測値を $Y\theta$ (y)として、次式(6)に基づいて、移動鏡42Xの反射面MXの凹凸量DX1(y)を求める。

$$\theta X (y) = X \theta (y) / S X \cdots (5)$$

$$DX1(y) = \int_0^y \theta X(y) dy - \int_0^y Y \theta(y) dy \qquad \cdots (6)$$

以上のようにして、制御装置CONTは、各サンプリング点に対応する移動鏡42Xの反射面MXのドライ状態での凹凸量DX1(y)を求め、メモリMRY内に格納する。

このとき、上式(6)の演算の対象となる、最終のサンプリングのデータは、 y=L'に対応するデータであるものとする。y=L'となる時点は、基板ステージPSTが減速を開始した点に一致しているものとする。

以上のように、ほぼY軸方向に沿って設けられた反射面MXの誤差情報を計測するとき、基板ステージPST上に液浸領域AR2が形成されていない状態(ドライ状態)で、X軸方向の複数の位置に基板ステージPSTを移動させ、その複数の位置に対応する複数の情報を計測することにより、反射面MXのドライ状態での誤差情報を計測することができる。そして、上述したように、基板ステージPSTのY軸方向への移動中に、基板ステージPSTの位置情報を計測するための干渉計43X、43X θ より、X軸方向とほぼ平行な複数のビームBX、BX θ 1、BX θ 2を反射面MXに照射するとともに、反射面MXからの反射光を受

光することで、制御装置CONTは、レシーバの受光結果に基づいて、反射面M Xの誤差情報を効率良く計測することができる。

その後、基板交換位置PST」において、不図示の基板交換機構により、基板ステージPST上の前ロットの最終基板と次ロットの先頭の基板との交換が行われる。

基板交換の終了後、制御装置CONTは、液体供給機構10及び液体回収機構20を制御して、基板ステージPST上に液体LQを供給し、基板ステージPST上に液浸領域AR2を形成する。すなわち、基板ステージPSTをウェット状態にする。

基板ステージPST上に液浸領域が形成されると、制御装置CONTは、基板ステージPST上に液浸領域AR2を形成した状態(ウェット状態)で、基板ステージPSTを、図7とは反対の経路で、基板交換位置PST」から中間位置PSTMまで+Y方向に移動し、この移動中における等速移動の間に計測されたデータのみを用いて、前述と同様の手順で、移動鏡42Xの反射面MXのウェット状態での傾斜データとしての凹凸量DX2(y)を算出し、メモリMRYに記憶する。この場合、移動鏡42Xのウェット状態での反射面MXの凹凸量DX2(y)は、次式(7)に基づいて算出される。

$$DX2(y) = -\int_0^{L'-y} \theta X(L'-y) dy + \int_0^{L'-y} Y \theta(L'-y) dy \qquad ... (7)$$

次いで、制御装置CONTは、図6とは反対の経路で、基板ステージPST上に液浸領域AR2を形成した状態(ウェット状態)で、基板ステージPSTを中間位置 PST_M から露光終了位置 PST_E まで+X方向に移動し、この移動中における等速移動の間に計測されたデータのみを用いて、前述と同様の手順で、移動鏡 42 Yの反射面M Yのウェット状態での傾斜データとしての凹凸量 D Y 2

(x)を算出し、メモリMRYに記憶する。この場合、移動鏡42Yの反射面M Yのウェット状態での凹凸量DY2(x)は、次式(8)に基づいて算出される。

$$DY2(x) = -\int_0^{L-x} \theta Y(L-x) dx + \int_0^{L-x} X \theta(L-x) dx \qquad \cdots (8)$$

以上のように、基板Pを交換するために、XY2次元面内で移動鏡42X、42Yの反射面MX、MYにほぼ平行な所定軸Y軸、X軸方向に基板ステージPSTを移動している間に、反射面MX、MYのドライ状態での誤差情報とウェット状態での誤差情報とを効率良く測定することができる。また、XY2次元面内で移動鏡42X、42Yの反射面MX、MYにほぼ平行な所定軸Y軸、X軸方向に基板ステージPSTを移動している間に、反射面の誤差としての局部的な回転量(傾き)と基板ステージPSTの回転量(ヨーイング)とが同時に測定される。そして、基板ステージPSTがほぼ等速で移動しているときに測定された移動鏡の反射面の局部的な回転量及びこれに対応する基板ステージPSTの回転量のみを用いて、反射面の形状が算出される。更には、反射面MXとその反射面MXにほぼ垂直な反射面MYを有している基板ステージPSTがX軸方向(又はY軸方向)に移動するとき、移動鏡MX、MYの少なくとも一方の取り付け誤差などに起因して、基板ステージPSTがX軸(あるいはY軸)に対してずれて移動する直交度誤差が生じる可能性があるが、本実施形態によれば、その直交度誤差情報も計測することができる。

なお、上述の実施形態においては、上述した反射面MX、MYのドライ状態での誤差情報を計測するときの基板ステージPSTの移動方向と、ウェット状態での誤差情報を計測するときの基板ステージPSTの移動方向とが逆方向になっているが、それぞれの状態で、基板ステージPSTを同方向に移動しながらそれぞれの反射面の誤差情報を計測する方が望ましい。

また、上述のように、反射面の部分的な曲がり量(傾き角)を積算(積分)することにより凹凸量を求めるという手法を採用した場合、一方向の移動のみのデータを用いる場合には、前述の式(2)、式(5)の近似の際の誤差が積算され、反射面の端部近傍に近づくほど算出結果に大きな誤差が含まれる可能性がある場合には、ドライ状態とウェット状態のそれぞれで、基板ステージPSTのX方向へ往復移動とY方向への往復移動を行って、移動鏡42X、42Yの反射面MX、MYの往路の凹凸量(傾斜データ)と、復路の凹凸量(傾斜データ)とを平均化して、移動鏡のいずれの部分においても、その誤差を同程度の値にすることで、移動鏡42X、42Yの反射面MX、MYの表面形状(凹凸量)の計測精度を向上させるようにしてもよい。

また、上述した反射面MX、MYの誤差情報の計測は、1ロットおきの基板Pの交換の度に行うように説明したが、もちろん任意のタイミングで行うことが可能である。また、反射面MX、MYの誤差情報の計測方法として、例えば特開平3-10105号公報に開示されている方法を用いることもできる。

`)

以上のように、基板ステージPST上に液体LQが供給されたウェット状態での反射面MX、MYの誤差情報が第1情報としてメモリMRYに記憶される。また、基板ステージPST上に液体LQが供給されていないドライ状態での反射面MX、MYの誤差情報が第2情報としてメモリMRYに記憶される。

ところで、移動鏡42の反射面MX、MYに誤差(曲がり、傾き、凹凸など)が生じる要因として、移動鏡42の製造誤差や基板ステージPSTに対する移動鏡42の取り付け誤差、あるいは基板ステージPSTの加減速移動に伴う変形などが考えられるが、特に液浸露光装置においては、基板Pや基板ステージPST上に形成された液浸領域AR2の液体LQの圧力や重みによって、反射面MX、MYに誤差が生じることが考えられる。つまり、液体LQの圧力や重みによって基板ステージPSTの変形に伴って、移動鏡42X、42Yの反射面MX、MYに誤差(変形)が生じる可能性が

ある。したがって、ドライ状態とウェット状態とで、移動鏡42X、42Yの反射面MX、MYに生じる誤差量(曲がり量、傾き量、凹凸量など)が互いに異なる状況が生じる可能性がある。

また液浸露光装置においては、基板ステージPST上に設けられた各種計測部材、例えば上述した基準部材300や、照度ムラセンサ400、空間像計測センサ500などの光学センサを使って計測処理を行う際、基板ステージPST上(基板P上も含む)に液体LQの液浸領域AR2を形成したウェット状態で計測処理を行う構成と、基板ステージPST上(基板P上も含む)に液浸領域AR2を形成しないドライ状態で計測処理を行う構成とが考えられる。このとき、ドライ状態での計測時とウェット状態での計測時とで、計測位置基準となる移動鏡42×、42Yの反射面MX、MYの誤差量が互いに異なると、ドライ状態での計測結果とウェット状態での計測結果との関連付けが困難になり、計測精度の劣化を招く不都合が生じる可能性がある。また、ドライ状態での計測結果を参照して基板Pを液浸露光(ウェット状態で露光)する場合においても、ドライ状態とウェット状態との反射面MX、MYの誤差量の違いによって、ドライ状態での計測結果を使ったウェット露光を精度良く行うことができない不都合が生じる可能性がある。

そこで、本実施形態においては、ウェット状態での反射面MX、MYの誤差情報と、ドライ状態での反射面MX、MYの誤差情報とを予め求め、その求めた誤差情報を第1情報及び第2情報としてメモリMRYに予め記憶しておく。そして、計測処理や露光処理においては、メモリMRYに記憶しておいた誤差情報に基づいて、干渉計43の計測結果や基板ステージPSTの位置を補正などすることで、良好な計測精度及び露光精度を維持することができる。

ここで、上記第1情報及び第2情報を取得するために反射面MX、MYの誤差情報を計測するときは、基板ステージPST上に基板Pが保持された状態で行う。 基板Pの重みなどに起因して、基板ステージPST上に基板Pを保持した状態と

保持しない状態とでの反射面MX、MYの誤差量が互いに異なる可能性がある。 一方で、基板P上のアライメントマーク1を検出する工程を有するアライメント 処理や、基板Pを液浸露光する露光処理は、当然のことながら基板ステージPS T上に基板Pを保持した状態で行われる。したがって、反射面MX、MYの誤差 情報を計測するときも、基板Pを基板ステージPST上に保持しておくことで、 アライメント処理時や露光処理時に応じた反射面MX、MYの誤差情報を計測す ることができる。

また、本実施形態によれば、基板ステージPST上には反射面MXを有する移動鏡42Xと、その反射面MXにほぼ垂直な反射面MYを有する移動鏡42Yとのそれぞれの誤差情報を計測可能であるので、ウェット状態とドライ状態とのそれぞれにおける反射面MXと反射面MYとの直交度誤差情報も計測することができる。

なお、反射面MX、MYの誤差情報を計測するとき、基板ステージPST上に 液体LQを供給しないドライ状態で反射面MX、MYの誤差情報を計測した後に、 基板ステージPST上に液体LQを供給して、基板ステージPST上に液体LQ を供給したウェット状態での反射面MX、MYの誤差情報を計測してもよいし、 ウェット状態で誤差情報を計測した後にドライ状態で誤差情報を計測してもよい。

また反射面MX, MYの誤差情報の計測は、前のロットの最後の基板と次のロットの最初の基板との交換動作中に限らず、あるロットの最初の基板を基板ステージPSTに載せた状態で、反射面MX, MYのドライ状態とウェット状態の誤差情報を図るようにしてもよいし、反射面MX, MYの誤差情報を計測する時間を別途設けるようにしてもよい。

次に、上述した構成を有する露光装置EXを用いてマスクMのパターン像を基板Pに露光する方法について、図9に示すフローチャート図を参照しながら説明する。なお、ここでは、上述のように、あるロットの1枚目の基板Pを基板ステ

ージPST上に搬入した後に、移動鏡42X、42Yの反射面MX、MYのウェット状態で誤差情報を計測する工程(以下、適宜、ステップSA1という)を完了した後の工程を説明する。

上述したように、ステップSA1の結果に基づいて、基板ステージPST上に 液体LQが供給されたウェット状態での移動鏡42X、42Yの反射面MX、M Yの誤差情報が第1情報としてメモリMRYに記憶されるとともに、基板ステー ジPST上に液体LQが供給されていないドライ状態での移動鏡42X、42Y の反射面MX、MYの誤差情報が第2情報としてメモリMRYに記憶されている。

次に基板 P を精度良く露光するための各種の計測処理が行われる(ステップ S A 2) 。

まず、制御装置CONTは、例えば投影光学系PLと照度ムラセンサ400の 上板401とを対向させた状態で、液体供給機構10及び液体回収機構20を使って、液体LQの供給及び回収を行い、投影光学系PLの先端部の光学素子2と 上板401の上面401A上との間に液体LQの液浸領域を形成する。

そして、投影光学系PLの光学素子2と上板401の上面401Aとに液体LQを接触させたウェット状態で、制御装置CONTは、照明光学系ILより露光光ELを射出し、投影光学系PLと液体LQとを介して、照度ムラセンサ400により投影領域AR1内における露光光ELの照度分布を検出する。具体的には、基板ステージPSTを移動させることで、照度ムラセンサ400の上面401A上に液体LQの液浸領域を形成した状態で、露光光ELが照射される照射領域(投影領域)内の複数の位置で順次照度ムラセンサ400のピンホール部470を移動させる。制御装置CONTは、照度ムラセンサ400の検出結果に基づいて、投影光学系PLの投影領域AR1内における露光光ELの照度分布が所望状態となるように、その露光光ELの照度分布を適宜補正する。

液体LQを介したウェット状態での照度ムラセンサ400の計測処理時において、基板ステージPSTの位置を干渉計43で計測しながら移動するとき、制御装置CONTは、干渉計43で計測された位置情報とメモリMRYに記憶してある第1情報とに基づいて、基板ステージPSTの位置を制御する。具体的には、制御装置CONTは、第1情報に基づいて反射面MX、MYの誤差量を補正するための補正量を求め、その補正量に基づいて、干渉計43の計測結果を補正し、その補正した結果に基づいて基板ステージPSTの位置を基板ステージ駆動装置PSTDを介して制御する。あるいは、干渉計43の計測結果に基づいて、基板ステージPSTを移動するときの駆動量を補正するようにしてもよい。このように、反射面MX、MYの誤差量を補償して基板ステージPSTの位置(移動)を制御するため、反射面MX、MYの誤差がないのと同じ状態で基板ステージPSTを制御するため、露光光ELの照度分布を精度良く計測することができる。

露光光ELの照度分布の検出が終了した後、制御装置CONTは、液体回収機構20を使って、照度ムラセンサ400の上板401の上面401A上に形成された液浸領域AR2の液体LQを回収する。

以上、照度ムラセンサ400による計測動作について説明したが、空間像計測センサ500や照度センサを使った液体LQを介したウェット状態での計測処理時においても、メモリMRYに予め記憶してある第1情報に基づいて基板ステージPSTの位置を制御することができ、各計測を精度良く実行することができる。

次に計測処理の一つとして、ベースライン量の計測を行う。ベースライン量とは、レーザ干渉計で規定される座標系内でのパターン像の投影位置と基板アライメント系350の検出基準位置との位置関係を示すものである。まず、制御装置 CONTは、マスクアライメント系360により基準部材300上の基準マーク MFMを検出する。基準マークMFMを検出するとき、制御装置 CONTは、XYステージ53を移動して投影光学系PLの先端部と基準部材300とを対向ざせる。そして、制御装置 CONTは、液体供給機構10及び液体回収機構20に

よる液体LQの供給及び回収を行い、投影光学系PLの先端部の光学素子2と基準部材300の上面301Aとの間を液体LQで満たして液浸領域を形成する。

そしてマスクアライメント系360を使って基準部材300上の基準マークMFMを検出するとき、図10に示すように、制御装置CONTは、マスクアライメント系360によりマスクM、投影光学系PL、及び液体LQを介して(ウェット状態で)基準部材300上の基準マークMFMの検出、すなわちマスクMのマークと基準部材300上の基準マークMFMとの位置関係の検出を行う。これによりレーザ干渉計43で規定される座標系内でのマスクMのパターン像の投影位置情報が基準マークMFMを使って検出される。

ウェット状態でマスクアライメント系360が基準マークMFMの検出を行っているときに、制御装置CONTはレーザ干渉計43を使って基板ステージPSTの位置を計測する。このとき、基板P上に液体LQが供給されたウェット状態においては、制御装置CONTは、干渉計43で計測された基板ステージPSTの位置情報とメモリMRYに記憶されている第1情報とに基づいて、基板ステージPSTの位置を制御する。具体的には、制御装置CONTは、第1情報に基づいて反射面MX、MYの誤差量を補正するための補正量を求め、その補正量に基づいて、干渉計43の計測結果を補正し、その補正した結果に基づいて基板ステージPSTの位置を基板ステージ駆動装置PSTDを介して制御する。あるいは、干渉計43の計測結果に基づいて、基板ステージPSTを移動するときの駆動量を補正するようにしてもよい。この場合も、反射面MX、MYの誤差量を補償して基板ステージPSTの位置(移動)を制御するため、反射面MX,MYの誤差がないのと同じ状態で基板ステージPSTを制御しながら、マスクMのパターン像の投影位置情報を求めることができる。

基準マークMFMの検出が終了した後、制御装置CONTは、液体回収機構20あるいは液体回収機構20とは別に設けられた所定の液体回収機構を使って、基準部材300の上面301A上に形成された液浸領域AR2の液体LQを回収

する。なお、反射面MX,MYのウェット状態での誤差情報の計測開始から基準マークMFMの検出が完了するまでは、基板ステージPST上に液浸領域AR2を形成したままでもよいし、反射面MX,MYの誤差情報や照度ムラセンサ400による照度分布などの各計測が完了する毎に液体回収機構20を使って基板ステージPST上の液体を回収するようにしてもよい。

液体LQの回収が完了すると、制御装置CONTは、基板アライメント系350の検出領域が基準部材300上に位置決めされるように、XYステージ53を移動する。

基板アライメント系350によって基準部材300上の基準マークPFMを検出するとき、図11に示すように、制御装置CONTは、基板アライメント系350によって基準部材300上の基準マークPFMを液体LQを介さずに(ドライ状態で)検出し、レーザ干渉計43によって規定される座標系内での基準マークPFMの位置情報を検出する。これにより、レーザ干渉計43によって規定される座標系内での基板アライメント系350の検出基準位置が基準マークPFMを使って検出されたことになる。

ドライ状態で基板アライメント系350が基準マークPFMの検出を行っているときに、制御装置CONTはレーザ干渉計43を使って基板ステージPSTの位置を計測する。このとき、基板P上に液体LQが供給されていないドライ状態においては、制御装置CONTは、干渉計43で計測された基板ステージPSTの位置情報とメモリMRYに記憶されている第2情報とに基づいて、基板ステージPSTの位置を制御する。具体的には、制御装置CONTは、第2情報に基づいて反射面MX、MYの誤差量を補正するための補正量を求め、その補正量に基づいて、干渉計43の計測結果を補正し、その補正した結果に基づいて基板ステージPSTの位置を基板ステージ駆動装置PSTDを介して制御する。あるいは、干渉計43の計測結果に基づいて、基板ステージPSTを移動するときの駆動量を補正するようにしてもよい。このように、反射面MX、MYの誤差量を補償し

て基板ステージPSTの位置(移動)を制御するため、反射面MX,MYの誤差がないのと同じ状態で基板ステージPSTを制御しながら、基板アライメント系350の検出基準位置を求めることができる。

そして、制御装置CONTは、基板アライメント系350の検出基準位置とパターンの像の投影位置との間隔(位置関係)であるベースライン量を求める。具体的には、基板アライメント系350の検出基準位置、パターン像の投影位置、及び予め定められている基準マークPFMと基準マークMFMとの位置関係から、レーザ干渉計43で規定される座標系内でのパターン像の投影位置と基板アライメント系350の検出基準位置との位置関係(ベースライン量)が決定される。

このように、ベースライン量の計測を行う場合には、ウェット状態とドライ状態とが混在することになるが、ウェット状態での基板ステージPSTの位置情報と、ドライ状態での基板ステージPSTの位置情報とを計測するときに、予め求めておいた第1情報及び第2情報に基づいて移動鏡42X、42Yの反射面MX、MYの誤差量を補正して、基板ステージPSTの位置制御を行っているので、移動鏡42X、42Yの反射面MX、MYに誤差がないのとほぼ同じ状態でマスクMのパターン像の投影位置と基板アライメント系350の検出基準位置とが求められ、上記ベースライン量を精度良く求めることができる。

次に、制御装置CONTは、アライメント計測処理を実行する(ステップSA3)。

制御装置CONTは、基板Pに対して重ね合わせ露光をするときに、基板P上の露光対象領域であるショット領域S1~S24に形成されているアライメントマーク1(図2)を基板アライメント系350で液体LQを介さずに(ドライ状態で)検出する。

基板アライメント系350がアライメントマーク1の検出を行っているときの 基板ステージPSTの位置はレーザ干渉計43で計測されており、その計測結果 は制御装置CONTに出力される。基板アライメント系350がドライ状態で基 板P上の複数のアライメントマーク1を検出するときも、制御装置CONTは、 干渉計43で計測された位置情報とメモリMRYに記憶されている第2情報とに 基づいて、基板ステージPSTの位置を制御する。そして、制御装置CONTは、 基板アライメント系350の検出基準位置に対するショット領域S1~S24の 位置情報(ずれ)を求め、そのときの基板ステージPSTの位置からレーザ干渉 計43で規定される座標系内でのショット領域S1~S24のアライメント情報 (配列情報)を求める。このように、メモリMRYに記憶されている第2情報を 使って基板ステージPSTの位置を制御しているので、反射面MX、MYの誤差 がないのとほぼ同じ状態で、ショット領域S1~S24のアライメント情報(配 列情報)を求めることができる。なお、ショット領域S1~S24に付随して形 成されているすべてのアライメントマークを検出する必要はなく、一部のアライ メントマークを検出して、例えば特開昭61-44429号公報(米国特許4,7 80、617)に開示されているようにショット領域S1~S24のアライメン ト情報を求めるようにしてもよい。

また、基板アライメント系350による基板P上のアライメントマーク1の検出と並行して、フォーカス検出系30(図1)が液体LQを介さずに(ドライ状態で)基板P表面の面位置情報を検出することができる。フォーカス検出系30の検出結果は、基板Pの位置に対応させて制御装置CONTに記憶される。

基板P上のアライメントマーク1を基板アライメントマーク350で検出した後、制御装置CONTは、基板Pの液浸露光を行うために、液体供給機構10を駆動して基板P上に液体LQを供給するとともに液体回収機構20を駆動して基板P上の液体LQを所定量回収する。これにより、投影光学系PLの先端部の光学素子2と基板Pとの間に液体LQの液浸領域AR2が形成される。

そして、制御装置CONTは、液体供給機構10による基板P上に対する液体LQの供給と並行して、液体回収機構20による基板P上の液体LQの回収を行いつつ、基板Pを支持する基板ステージPSTをX軸方向(走査方向)に移動しながら、マスクMのパターン像を投影光学系PLと基板Pとの間の液体LQ及び投影光学系PLを介して基板P上に投影露光(液浸露光)する(ステップSA4)。

液浸領域AR2を形成するために液体供給機構10の液体供給部11から供給された液体LQは、供給管13A、13Bを流通した後、流路形成部材70内部に形成された供給流路を介して液体供給口12A、12Bより基板P上に供給される。液体供給口12A、12Bから基板P上に供給された液体LQは、投影光学系PLの先端部(光学素子2)の下端面と基板Pとの間に濡れ拡がるように供給され、投影領域AR1を含む基板P上の一部に、基板Pよりも小さく且つ投影領域AR1よりも大きい液浸領域AR2を局所的に形成する。このとき、制御装置CONTは、液体供給機構10のうち投影領域AR1のX軸方向(走査方向)両側に配置された液体供給口12A、12Bのそれぞれより、走査方向に関して投影領域AR1の両側から基板P上への液体LQの供給を同時に行う。これにより、液浸領域AR2は均一且つ良好に形成されている。

本実施形態における露光装置 $E \times L$ 、マスクMと基板 $P \times L$ を X 軸方向(走査方向)に移動しながらマスクMのパターン像を基板 Pに投影露光するものであって、走査露光時には、液浸領域 $A \times L$ の液体 $L \times L$ Q 及び投影光学系 $P \times L$ を介してマスク $L \times L$ M の一部のパターン像が投影領域 $A \times L$ 内に投影され、マスク $L \times L$ がの一次 に速度 $L \times L$ で移動するのに同期して、基板 $L \times L$ が投影領域 $L \times L$ で移動するのに同期して、基板 $L \times L$ が投影領域 $L \times L$ で移動する。基板 $L \times L$ 上には複数のショット領域 $L \times L$ のここのを含む、 $L \times L$ で移動によって次のショット領域 $L \times L$ の露光終了後に、基板 $L \times L$ のの表示のピング移動によって次のショット領域が走査 開始位置に移動し、以下、ステップ・アンド・スキャン方式で基板 $L \times L$ を移動しな がら各ショット領域 $L \times L$ に対する走査露光処理が順次行われる。

基板P上の複数のショット領域S1~S24のそれぞれを順次露光する際、制御装置CONTは、ステップSA2で求めたベースライン量と、ステップSA3で求めた各ショット領域S1~S24の位置情報(配列情報)とに基づいて、XYステージ53を移動し、基板P上の各ショット領域S1~S24の液浸露光処理を行う。

ウェット状態で基板P上の各ショット領域を液浸走査露光しているときにも、 制御装置CONTはレーザ干渉計43を使って基板ステージPSTの位置を計測 する。このとき、基板P上に液体LQが供給されたウェット状態においては、制 御装置CONTは、干渉計43で計測された基板ステージPSTの位置情報とメ モリMRYに記憶されている第1情報とに基づいて、基板ステージPSTの位置 を制御する。具体的には、上述同様、制御装置CONTは、第1情報に基づいて 反射面MX、MYの誤差量を補正するための補正量を求め、その補正量に基づい て、干渉計43の計測結果を補正し、その補正した結果に基づいて基板ステージ PSTの位置を基板ステージ駆動装置 PSTDを介して制御する。あるいは、上 述同様、干渉計43の計測結果に基づいて、基板ステージPSTを移動するとき の駆動量を補正するようにしてもよい。このように、メモリMRYに記憶されて いる第1情報を使って、反射面MX、MYの誤差量を補償して基板ステージPS・ Tの位置(移動)を制御するため、反射面MX、MYに誤差がないのとほぼ同じ 状態で基板ステージPSTの位置(移動)を精度よく制御することができ、基板 ステージPST上に液体がない状態で計測された各ショット領域S1~S24の 位置情報(配列情報)に基づいて、マスクのMのパターンの像と各ショット領域 との位置合わせを正確に行うことができる。

なお、上述の実施形態においては、反射面MX, MYに誤差情報に基づいて、 ドライ状態においても、ウェット状態においても、反射面MX, MYに誤差がな いのとほぼ同じ状態で基板ステージPSTの位置制御を行うようにしているが、 これに限らず、ドライ状態においても、ウェット状態においても、反射面MX,

MYが共通の所定状態で基板ステージPSTの位置制御が行われるようにしてもよい。

また、制御装置CONTは、フォーカス検出系30を使って基板P表面の面位置情報を検出し、投影光学系PL及び液体LQを介した像面と基板P表面とを合致させるように、基板ステージPSTを介して基板PをZ軸方向あるいは傾斜方向に移動したり、あるいは投影光学系PLの像特性を変化させつつ、各ショット領域S1~S24の液浸露光処理を行う。フォーカス検出系30は、投射部30Aより液体LQを介して基板P上に検出光Laを投射するとともに基板Pからの反射光を液体LQを介して受光部30Bで受光することによって基板P表面の面位置情報を検出する。

なお、各ショット領域S1~S24に対する走査露光中は、液体LQの供給前に求めた基板Pの表面情報に基づいて、フォーカス検出系30を使うことなしに、基板P表面と液体LQを介して形成される像面との位置関係を調整するようにしてもよい。あるいは、液体LQの供給前に求めた基板Pの表面位置情報と、走査露光中に液体LQを介して検出した基板Pの表面位置情報との双方を考慮して、基板P表面の位置制御を行うようにしてもよい。

基板Pの各ショット領域S1~S24の液浸露光が終了した後、制御装置CONTは、液体回収機構20を使って、基板P上に形成された液浸領域AR2の液体LQを回収する(ステップSA5)。

ここで、液体回収機構20は、基板Pの液体LQの回収に加えて、基板ステージPST上面に残留した液体LQも回収する。

基板 P 上及び基板ステージ P S T 上の液体 L Q を回収した後、制御装置 C O N T は、露光済みの基板 P を基板ステージ P S T より搬出 (アンロード) する (ステップ S A 6)。

なお、1枚目の基板 Pの露光完了後に、2枚目以降の基板 P'を基板ステージ P S T 上に保持して露光する際には、ステップ S A 1での反射面M X、M Y の誤 差情報の計測及びステップ S A 2での基板ステージ P S T 上の基準マーク P F M、M F M の位置情報の検出や照度ムラセンサ400による照度分布の計測などを行うことなく、基板 P'のショット領域 S 1~S 2 4 とマスク M のパターン像の投影位置とを位置合わせすることができる。その場合には、別の基板 P'を基板ステージ P S T 上に保持させた後、ステップ S A 1、S A 2を省略して、ステップ S A 3に進み、ショット領域 S 1~S 2 4 に付随して設けられたアライメントマーク 1 の位置情報を基板アライメント系 3 5 0 を使って検出する。これにより、先に露光された 1 枚目の基板 P と同様に、基板アライメント系 3 5 0 の検出基準位置に対する各ショット領域 S 1~S 2 4 の位置情報が求められる。これにより、基板 P'上の各ショット領域 S 1~S 2 4 とパターン像とが位置合わせされ、パターン像を基板 P'の各ショット領域に露光することができる。

なお、ベースライン量を求めるための基準マークPFM、MFMの検出動作は、 予め設定された基板処理枚数毎やマスクを交換したとき毎など、所定期間毎に行 えばよい。

以上説明したように、基板ステージPST上に液体LQが供給された状態での反射面MX、MYの誤差情報を予め計測してメモリMRYに記憶しておくことにより、液体LQを供給された基板ステージPSTの位置情報を干渉計43を使って計測するとき、メモリMRYに記憶してある誤差情報に基づいて、計測された基板ステージPSTの位置情報を補正したり、基板ステージPSTの位置制御を行うことができる。したがって、基板ステージPSTの位置制御を良好に行ってその基板ステージPSTに保持されている基板Pを精度良く露光処理することができる。

ところで、液体接触面である基板表面(基板ステージPST上面を含む)の材 料特性に応じて、液体 L Q が基板 P (基板ステージ)に及ぼす力が変化する。具 体的には基板P表面と液体LQとの親和性、更に具体的には基板Pの液体LQに 対する接触角に応じて、液体LQが基板Pに及ぼす力が変化する。基板P表面の 材料特性は、その基板P表面に塗布される感光材や、その感光材上に塗布される 例えば感光材を保護する保護膜などの所定の膜に応じて変化する。例えば基板P 表面が親液性の場合には、その液体LQは基板P上において濡れ拡がろうとする ため、基板P上での液体LQの圧力は低下する(負圧化する)。一方、基板P表 面が撥液性の場合には、基板P上での液体LQの圧力は上昇する(陽圧化する)。 このように、基板P表面の液体LQに対する接触角(親和性)に応じて、液体L Qが基板Pに及ぼす力が変化する。したがって、反射面MX、MYの誤差情報を 計測するときに基板ステージPST上に保持される基板表面の液体LQに対する 接触角と、実際に露光処理される被露光対象である基板P表面の液体LQに対す る接触角とが異なっていると、ウェット状態での誤差計測時に反射面MX、MY に生じる誤差量と、ウェット状態での露光処理時に反射面MX、MYに生じる誤 差量とが互いに異なる。その場合、予め計測した誤差情報を使って基板ステージ PSTの位置制御(位置補正)を良好に行うことができなくなる。

したがって、反射面MX、MYの誤差情報を計測するときに基板ステージPS T上に保持される基板表面の液体LQに対する接触角が、露光光ELが照射され る被露光対象の基板P表面の液体LQに対する接触角とほぼ同一であるようにす ることが望ましい。そうすることで、予め計測した反射面MX、MYの誤差情報 を使って基板ステージPSTの位置制御(位置補正)を良好に行うことができる。

)

なお上述の実施形態においては、次に露光される基板Pを基板ステージPST上に保持した後に、反射面MX, MYの誤差情報を計測しているが、液体LQに対する接触角が実際に露光される基板Pの表面とほぼ同じダミーの基板を基板ステージPSTに載せて、反射面MX, MYの誤差情報を計測するようにしてもよい。

なお、反射面MX、MYの誤差情報を計測するときに基板ステージPST上に保持される基板表面(ダミー基板表面)の液体LQに対する接触角と、露光光ELが照射される被露光対象の基板P表面の液体LQに対する接触角とが異なる場合には、基板表面の液体LQに対する接触角情報とそれに対応した液体圧力情報(ひいては反射面MX、MYの誤差情報)との関係を予め計測してメモリMRYに記憶しておくことにより、前記関係に基づいて、ウェット状態での露光処理時やアライメント処理時における基板ステージPSTの位置制御(位置補正)を良好に行うことができる。

なお、基板ステージPST上の液体LQの圧力変化の要因としては、上述した 基板表面(基板ステージ上面を含む)の液体LQに対する接触角の他に、基板ス テージPSTの移動速度や液体LQの重み、液体LQの単位時間当たりの供給量、 回収量なども挙げられる。そこで、反射面MX、MYの誤差情報を計測するとき は、上記要因を考慮して、計測条件を設定することが好ましい。

また、投影光学系PLの像面側に形成される基板ステージPST上における液浸領域AR2の位置は、基板ステージPSTの移動に伴って変化するが、基板ステージPST上における液体LQの液浸領域AR2の位置に応じて、反射面MX、MYの誤差量が変動する可能性がある。例えば図12(a)に示すように、液体LQの液浸領域の位置が符号AR2a、AR2b、AR2cで示すようにX軸方向に関して変化するとき、図12(b)に示すように、例えば反射面MXの誤差(曲がり、傾き、凹凸など)が、液浸領域AR2の位置に対応して変化する可能性がある。同様に、基板ステージPST上における液浸領域AR2の位置に応じて、反射面MYの誤差(曲がり、傾き、凹凸など)も変化する可能性がある。

そこで、反射面MX、MYのウェット状態での誤差情報を計測するとき、基板ステージPSTの位置を異ならせて、基板ステージPST上における液体LQの液浸領域AR2の位置に対応する複数の情報を複数回計測する。そして、液浸領

域AR2の位置に対応する複数の情報を第1情報としてメモリMRYに記憶することで、アライメント処理(計測処理)時や露光処理時においては、基板ステージPST上における液浸領域AR2の位置に対応して、干渉計43の計測結果を補正したり、基板ステージPSTの駆動量を補正することにより、基板ステージPSTの位置制御をより高精度に行うことができる。

また、例えば基板ステージPST上に液浸領域AR2を形成した状態で、基板ステージPSTをX軸方向(あるいはY軸方向)に移動させ、基板ステージPSTのX軸方向(Y軸方向)に関する複数の位置のそれぞれに対応する反射面MX、MYの複数の誤差情報を計測する。そして、2次元的に計測された複数の誤差情報のそれぞれに対して例えば補間処理など所定の演算処理を施すことで、移動鏡42X、42Yを使った基板ステージPSTの全移動範囲にわたって基板ステージPSTの位置制御を極めて高精度に行うことができる。

また、上述の実施形態においては、移動鏡の反射面MX、MYの誤差情報に基づいて基板ステージPSTの位置を制御するようにしているが、例えばマスクMと基板Pとの位置合わせを行うような場合には、その誤差情報に基づいてマスクステージMSTの位置制御を行うようにしてもよい。

また、本発明はツインステージ型の露光装置にも適用できる。ツインステージ型の露光装置の構造及び露光動作は、例えば特開平10-163099号及び特開平10-214783号(対応米国特許6,341,007、6,400,441、6,549,269及び6,590,634)、特表2000-505958号(対応米国特許5,969,441)あるいは米国特許6,208,407に開示されており、本国際出願で指定または選択された国の法令で許容される限りにおいて、それらの開示を援用して本文の記載の一部とする。

図13はツインステージ型露光装置の一例を示す概略構成図である。図13に 示すツイン型露光装置EX2は、基板Pを保持する基板ホルダPH1を有し、基

板ホルダPH1に基板Pを保持して移動可能な第1基板ステージPST1と、基板Pを保持する基板ホルダPH2を有し、基板ホルダPH2に基板Pを保持して移動可能な第2基板ステージPST2とを有している。第1、第2基板ステージPST1、PST2は、共通のベース54上をそれぞれ独立に移動可能である。第1、第2基板ステージPST1、PST2はそれぞれ上述した実施形態と同様、基準部材300や照度ムラセンサ400、空間像計測センサ500などのセンサを備えている。

また、ツインステージ型露光装置 E X 2 は、一方の基板ステージ P S T 1 (P S T 2) に保持された基板 P の計測を行う計測ステーション S T 1 と、投影光学系 P L を備え、他方の基板ステージ P S T 2 (P S T 1) に保持された基板 P の露光を行う露光ステーション S T 2 とを備えている。露光ステーション S T 2 には基板アライメント系 3 5 0 を除いて、図 1 のシステム(フォーカス検出系 3 0 を含む)が全て搭載されている。また、計測ステーション S T 1 には、基板アライメント系 3 5 0、投射部 3 0 A 及び受光部 3 0 B を有するフォーカス検出系 3 0 が搭載されている。

•

)

このようなツインステージ型露光装置の基本的な動作としては、例えば露光ステーションST2において第2基板ステージPST2上の基板Pの露光処理中に、計測ステーションST1において、第1基板ステージPST1上の基板Pの交換及び計測処理が行われる。そして、それぞれの作業が終了すると、第2基板ステージPST2が計測ステーションST1に移動し、それと並行して第1基板ステージPST1が露光ステーションST2に移動し、今度は第2基板ステージPST1が露光ステージョンST2に移動し、今度は第2基板ステージPST2において計測及び交換処理が行われ、第1基板ステージPST1上の基板Pに対して露光処理が行われる。

本実施形態において、計測ステーションST1における基板Pの計測は、フォーカス検出系30による基板P表面の面位置情報の計測、及び基板アライメント系350による基板P上のアライメントマーク1及び基準部材300上の基準マ

ークPFMの検出を含む。例えば第2基板ステージPST2上の基板Pに対して 露光ステーションST2において液浸露光処理が行われている最中、第1基板ス テージ PST1上の基板 P に対して計測ステーションST1 において基板アライ メント系350、フォーカス検出系30、及び基準部材300を用いて計測処理 が行われる。そして、計測処理が完了すると、第1基板ステージPST1と第2 基板ステージPST2との交換作業が行われ、図13に示すように、第1基板ス テージ PST1の基準部材300と投影光学系PLとが対向するように、第1基 板ステージPST1の位置決めがされる。この状態で、制御装置CONTは液体 LQの供給を開始し、投影光学系PLと基準部材300との間を液体LQで満た し、液体LQを介したマスクアライメント系360によるマスクMと基板ステー ジPST1上の基準マークとの位置関係の検出及び露光処理を行う。なお、計測 ステーションST1で既に求められた各ショット領域S1~S24のアライメン ト情報は基準部材300の基準マークPFMを基準として定められており(記憶 されており)、露光ステーションST2において液浸露光が実行される際には、 基準部材300の基準マークPFMに対して所定の位置関係で形成されている基 準マーク M F M とマスク M との位置関係に基づいて各ショット領域 S 1 ~ S 2 4 の位置決めがされるように第1基板ステージPST1の移動が制御される。すな わち、計測ステーションST1で求められた各ショット領域S1~S24のアラ イメント情報は、基準マークPFM、MFMを用いて露光ステーションST2に 有効に受け渡される。

このように、ツインステージ型露光装置の場合には、一方のステージで液浸露 光処理中に、他方のステージで液体を介さない計測処理を行うことができるので、 露光処理のスループットを向上することができる。

ツインステージ型露光装置 EX2においても、ウェット状態とドライ状態とでの移動鏡 42X、42Yの反射面MX、MYそれぞれの誤差情報を各ステージ毎に予め求めてメモリMRYに記憶しておくことで、それぞれのステーションにおいて基板ステージPST1(PST2)の位置制御を高精度に行うことができる。

すなわち、露光ステーションST2において、基板ステージPST1(PST 2)上に液体LQが供給されているウェット状態においては、干渉計43で計測された位置情報とメモリMRYに記憶してある第1情報とに基づいて基板ステージPST1(PST2)の位置を制御し、基板ステージPST1(PST2)上に液体LQが供給されていないドライ状態においては、干渉計43で計測された位置情報とメモリMRYに記憶してある第2情報とに基づいて基板ステージPST1(PST2)の位置を制御することができ、例えばいずれのステーションにおいても反射面の誤差がないのとほぼ同じ状態で基板ステージPST1(PST2)の位置制御を行うことができる。したがって、計測ステーションST1においてドライ状態で基板ステージPST1(PST2)を移動しながら計測された各種の情報(アライメント情報やフォーカス情報など)を使って、露光ステーションST2においてウェット状態で位置制御が行われる基板ステージPST1(PST2)上の基板Pを精度よく露光することができる。

なお、基板Pを保持する二つのステージを備えたツインステージ型の露光装置でなく、特開2000-164504号に開示されているように、基板Pを保持するステージと、測定用の部材やセンサを搭載した測定ステージとを備えた露光装置にも本発明を適用することはできる。この場合、測定ステージに干渉計用の反射面が形成されている場合には、基板ステージと同様に測定ステージの反射面の誤差情報も計測しておくのが望ましい。

また、上述の実施形態においては、基板ステージPSTのX方向、Y方向の位置情報を計測するための反射面MX, MYの誤差情報について述べているが、特表2001-513267号公報、並びに特開2000-323404号に開示されているように、基板ステージPSTの Z方向の位置を計測するための反射面に本発明を適用することもできる。

また、上述の実施形態においては、移動鏡の反射面MX, MYのドライ状態での誤差情報とウェット状態での誤差情報とを保持しておき、その情報に基づいて

基板ステージPSTの位置制御を行うようにしているが、移動鏡の反射面の誤差情報に限ることなく、基板ステージPSTの各種制御情報を、ドライ状態とウェット状態とのそれぞれに対応してメモリMRYに保持しておくことが望ましい。例えば、特開平10-70065号に開示されているように、ベース54の変形などによって生じる基板ステージPSTのZ方向の変位情報を、ドライ状態とウェット状態との各々に対応して保持しておくことで、ドライ状態、ウェット状態のそれぞれで基板ステージPSTの位置制御を精度よく行うことができるばかりでなく、ドライ状態とウェット状態とが混在するような場合にも、計測処理、露光処理を高精度に行うことができる。

また、特開平2-153519号公報に開示されているように、Zステージ52をチルトさせたときにXY平面内での位置ずれが生じる場合には、その位置ずれ情報を、ドライ状態とウェット状態との各々に対応してメモリMRYに保持しておくことにより、ドライ状態でもウェット状態においても、基板PやZステージ上の各種計測部材などを精度良く位置制御することができる。その他、基板または基板ステージに液体が供給されることにより、圧力、湿度、温度などの環境変化によりウェット状態の基板ステージや基板ステージ上の各種計測部材がドライ状態と比べて異なる変位を受ける場合には、そのような変位をドライ状態とウェット状態とでそれぞれ計測し、メモリMRYに記憶させておくことができる。

上述したように、本実施形態における液体LQは純水を用いた。純水は、半導体製造工場等で容易に大量に入手できるとともに、基板P上のフォトレジストや光学素子(レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がないとともに、不純物の含有量が極めて低いため、基板Pの表面、及び投影光学系PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。なお工場等から供給される純水の純度が低い場合には、露光装置が超純水製造器を持つようにしてもよい。

そして、波長が193nm程度の露光光ELに対する純水(水)の屈折率 nはほぼ1.44程度と言われており、露光光ELの光源としてArFエキシマレーザ光(波長193nm)を用いた場合、基板P上では1/n、すなわち約134 nm程度に短波長化されて高い解像度が得られる。更に、焦点深度は空気中に比べて約n倍、すなわち約1.44倍程度に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光学系PLの開口数をより増加させることができ、この点でも解像度が向上する。

なお、上述したように液浸法を用いた場合には、投影光学系の開口数 N A が O. 9~1.3になることもある。このように投影光学系の開口数NAが大きくなる 場合には、従来から露光光として用いられているランダム偏光光では偏光効果に よって結像性能が悪化することもあるので、偏光照明を用いるのが望ましい。そ の場合、マスク(レチクル)のライン・アンド・スペースパターンのラインパタ 一ンの長手方向に合わせた直線偏光照明を行い、マスク(レチクル)のパターン からは、S偏光成分(TE偏光成分)、すなわちラインパターンの長手方向に沿 った偏光方向成分の回折光が多く射出されるようにするとよい。投影光学系PL と基板P表面に塗布されたレジストとの間が液体で満たされている場合、投影光 学系PLと基板P表面に塗布されたレジストとの間が空気(気体)で満たされて いる場合に比べて、コントラストの向上に寄与するS偏光成分(TE偏光成分) の回折光のレジスト表面での透過率が高くなるため、投影光学系の開口数NAが 1. 0を越えるような場合でも高い結像性能を得ることができる。また、位相シ フトマスクや特開平6-188169号公報に開示されているようなラインパタ 一ンの長手方向に合わせた斜入射照明法(特にダイボール照明法)等を適宜組み 合わせると更に効果的である。

また、例えばArFエキシマレーザを露光光とし、1/4程度の縮小倍率の投影光学系PLを使って、微細なライン・アンド・スペースパターン(例えば25~50nm程度のライン・アンド・スペース)を基板P上に露光するような場合、マスクMの構造(例えばパターンの微細度やクロムの厚み)によっては、Wav

e guide効果によりマスクMが偏光板として作用し、コントラストを低下させるP偏光成分(TM偏光成分)の回折光よりS偏光成分(TE偏光成分)の回折光が多くマスクMから射出されるようになるので、上述の直線偏光照明を用いることが望ましいが、ランダム偏光光でマスクMを照明しても、投影光学系PLの開口数NAが0.9~1.3のように大きい場合でも高い解像性能を得ることができる。また、マスクM上の極微細なライン・アンド・スペースパターンを基板P上に露光するような場合、Wire Grid効果によりP偏光成分(TM偏光成分)がS偏光成分(TE偏光成分)よりも大きくなる可能性もあるが、例えばArFエキシマレーザを露光光とし、1/4程度の縮小倍率の投影光学系PLを使って、25nmより大きいライン・アンド・スペースパターンを基板P上に露光するような場合には、S偏光成分(TE偏光成分)の回折光がP偏光成分(TM偏光成分)の回折光よりも多くマスクMから射出されるので、投影光学系PLの開口数NAが0.9~1.3のように大きい場合でも高い解像性能を得ることができる。

更に、マスク(レチクル)のラインパターンの長手方向に合わせた直線偏光照明(S偏光照明)だけでなく、特開平6-53120号公報に開示されているように、光軸を中心とした円の接線(周)方向に直線偏光する偏光照明法と斜入射照明法との組み合わせも効果的である。特に、マスク(レチクル)のパターンが所定の一方向に延びるラインパターンだけでなく、複数の異なる方向に延びるラインパターンが混在する場合には、同じく特開平6-53120号公報に開示されているように、光軸を中心とした円の接線方向に直線偏光する偏光照明法と輪帯照明法とを併用することによって、投影光学系の開口数NAが大きい場合でも高い結像性能を得ることができる。

本実施形態では、投影光学系PLの先端に光学素子2が取り付けられており、このレンズにより投影光学系PLの光学特性、例えば収差(球面収差、コマ収差等)の調整を行うことができる。なお、投影光学系PLの先端に取り付ける光学素子としては、投影光学系PLの光学特性の調整に用いる光学プレートであって

もよい。あるいは露光光ELを透過可能な平行平面板であってもよい。液体LQと接触する光学素子を、レンズより安価な平行平面板とすることにより、露光装置EXの運搬、組立、調整時等において投影光学系PLの透過率、基板P上での露光光ELの照度、及び照度分布の均一性を低下させる物質(例えばシリコン系有機物等)がその平行平面板に付着しても、液体LQを供給する直前にその平行平面板を交換するだけでよく、液体LQと接触する光学素子をレンズとする場合に比べてその交換コストが低くなるという利点がある。即ち、露光光ELの照射によりレジストから発生する飛散粒子、または液体LQ中の不純物の付着などに起因して液体LQに接触する光学素子の表面が汚れるため、その光学素子を定期的に交換する必要があるが、この光学素子を安価な平行平面板とすることにより、レンズに比べて交換部品のコストが低く、且つ交換に要する時間を短くすることができ、メンテナンスコスト(ランニングコスト)の上昇やスループットの低下を抑えることができる。

なお、液体 L Qの流れによって生じる投影光学系 P L の先端の光学素子と基板 P との間の圧力が大きい場合には、その光学素子を交換可能とするのではなく、 その圧力によって光学素子が動かないように堅固に固定してもよい。

なお、本実施形態では、投影光学系PLと基板P表面との間は液体LQで満たされている構成であるが、例えば基板Pの表面に平行平面板からなるカバーガラスを取り付けた状態で液体LQを満たす構成であってもよい。

また、上述の液浸法を適用した露光装置は、投影光学系PLの終端光学素子2の射出側の光路空間を液体(純水)で満たして基板Pを露光する構成になっているが、国際公開第2004/019128号に開示されているように、投影光学系PLの終端光学素子2の入射側の光路空間も液体(純水)で満たすようにしてもよい。この場合、投影光学系PLの終端光学素子2の入射側の光路空間の液体の圧力を調整するようにしてもよい。また、投影光学系PLの終端光学素子2の入

射側の光路空間の気体を排気しながら液体の供給を開始することによって、その 光路空間を速やかに、且つ良好に液体で満たすことができる。

なお、本実施形態の液体LQは水であるが、水以外の液体であってもよい。例えば、露光光ELの光源がF₂レーザである場合、このF₂レーザ光は水を透過しないので、液体LQとしてはF₂レーザ光を透過可能な例えば、過フッ化ポリエーテル(PFPE)やフッ素系オイル等のフッ素系流体であってもよい。この場合、液体LQと接触する部分には、例えばフッ素を含む極性の小さい分子構造の物質で薄膜を形成することで親液化処理する。また、液体LQとしては、その他にも、露光光ELに対する透過性があってできるだけ屈折率が高く、投影光学系PLや基板P表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である。この場合も表面処理は用いる液体LQの極性に応じて行われる。また、液体LQの純水の代わりに、所望の屈折率を有する種々の流体、例えば、超臨界流体や高屈折率の気体を用いることも可能である。

なお、上記各実施形態の基板 P としては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコンウエハ)等が適用される。

露光装置 E X としては、マスクMと基板 P とを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板 P とを静止した状態でマスクMのパターンを一括露光し、基板 P を順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。また、本発明は基板 P 上で少なくとも 2 つのパターンを部分的に重ねて転写するステップ・アンド・スティッチ方式の露光装置にも適用できる。また第1パターンと基板 P とをほぼ静止した状態で第1パターンの縮小像を投影光学系(例えば1/8縮小倍率で反射素子を含まない屈折型投影光学系)を用いて基板 P トに一括露光し、その

後に、第2パターンと基板Pとをほぼ静止した状態で第2パターンの縮小像をその投影光学系を用いて、第1パターンと部分的に重ねて基板P上に一括露光するスティッチ方式の一括露光装置にも適用できる。

また、上述の実施形態においては、投影光学系PLと基板Pとの間を局所的に液体で満たす露光装置を採用しているが、露光対象の基板の表面全体が液体で覆われる液浸露光装置にも本発明を適用可能である。露光対象の基板の表面全体が液体で覆われる液浸露光装置の構造及び露光動作は、例えば特開平6-124873号公報、特開平10-303114号公報、米国特許第5,825,043号などに詳細に記載されており、本国際出願で指定または選択された国の法令で許容される限りにおいて、この文献の記載内容を援用して本文の記載の一部とする。

露光装置に搭載した投影光学系として、種々のタイプの投影光学系を用いることもできる。例えば、反射素子と屈折素子とを含む反射屈折型の投影光学系であってもよいし、反射素子のみを含む反射型の投影光学系であってもよい。また、投影光学系を持たないタイプの露光装置、例えば、プロキシミティ型露光装置に本発明を適用することもできる。また、本発明は、基板上に干渉縞を形成するための干渉光学部材を有し、干渉縞を基板上に形成することによって基板を露光する露光装置にも適用することができる。この場合、干渉光学部材と基板との間に液浸領域が形成される。

また、上述の実施形態においては、液体LQを介して基板P表面の面位置情報を検出するフォーカス・レベリング検出系を採用しているが、液体を介さずに、露光前、あるいは露光中に基板P表面の面位置情報を検出するフォーカス・レベリング検出系を採用してもよい。

上記具体例では、流路形成部材70の開口部70B(光透過部)に、所定の間隔を隔てて投影光学系PLの先端の光学素子2を配置させたが、流路形成部材7

0の開口部70Bに任意の光学素子を装着してもよい。すなわち、光学素子2や前述の光学プレートを流路形成部材70に保持させてもよい。この場合にも投影光学系PLと流路形成部材70とは振動伝達防止の観点から別の支持構造であることが望ましい。

露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。

基板ステージPSTやマスクステージMSTにリニアモータを用いる場合は、エアベアリングを用いたエア浮上型およびローレンツカまたはリアクタンスカを用いた磁気浮上型のどちらを用いてもよい。また、各ステージPST、MSTは、ガイドに沿って移動するタイプでもよく、ガイドを設けないガイドレスタイプであってもよい。ステージにリニアモータを用いた例は、米国特許5,623,853及び5,528,118に開示されており、それぞれ本国際出願で指定または選択された国の法令で許容される限りにおいて、これらの文献の記載内容を援用して本文の記載の一部とする。

各ステージPST、MSTの駆動機構としては、二次元に磁石を配置した磁石ユニットと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージPST、MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子ユニットとのいずれか一方をステージPST、MSTに接続し、磁石ユニットと電機子ユニットとの他方をステージPST、MSTの移動面側に設ければよい。

基板ステージPSTの移動により発生する反力は、投影光学系PLに伝わらないように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。この反力の処理方法は、例えば、米国特許5,528,118(特開平8-16647

5号公報)に詳細に開示されており、本国際出願で指定または選択された国の法令で許容される限りにおいて、この文献の記載内容を援用して本文の記載の一部とする。

マスクステージMSTの移動により発生する反力は、投影光学系PLに伝わらないように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。この反力の処理方法は、例えば、米国特許第5,874,820(特開平8-330224号公報)に詳細に開示されており、本国際出願で指定または選択された国の法令で許容される限りにおいて、この文献の開示を援用して本文の記載の一部とする。

以上のように、本願実施形態の露光装置EXは、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種で気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。

半導体デバイス等のマイクロデバイスは、図14に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを

基板に露光する露光処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。

産業上の利用可能性

本発明によれば、本発明者が見出した液浸露光に特有の問題を解決し、液浸露光装置において基板を保持可能な移動体の位置制御及び露光処理を精度良く行うことができる。

請求の範囲

1. 液体を介して基板に露光光を照射して、前記基板を露光する露光装置であって:

前記基板を保持可能な移動体と;

前記移動体に形成された反射面に測定光を照射するとともに、その反射光を受 光して、前記移動体の位置情報を計測する干渉計システムと;

前記移動体上に液体が供給された状態での前記反射面の誤差情報を第1情報として記憶するメモリと:を備える露光装置。

- 2. 前記メモリは、前記移動体上に液体が供給されていない状態での前記反射 面の誤差情報を第2情報として記憶する請求項1に記載の露光装置。
- 3. 前記移動体上に液体が供給されている状態においては、前記干渉計システムで計測された位置情報と前記第1情報とに基づいて前記移動体の位置を制御し、前記移動体上に液体が供給されていない状態においては、前記干渉計システムで計測された位置情報と前記第2情報とに基づいて前記移動体の位置を制御する制御装置を備える請求項2に記載の露光装置。
- 4. 前記第1情報と前記第2情報とは、前記反射面の誤差を補償して前記移動体の移動を制御するための補正情報を含む請求項3に記載の露光装置。
- 5. 前記制御装置は、前記基板を露光するときに、前記干渉計システムで計測された位置情報と前記第1情報とに基づいて前記移動体の位置を制御し、前記基板上の複数のマークを検出するときに、前記干渉計システムで計測された位置情報と前記第2情報とに基づいて前記移動体の位置を制御する請求項3に記載の露光装置。

6. 前記反射面の誤差は、前記反射面の曲がりを含む請求項1に記載の露光装置。

- 7. 前記反射面の誤差は、前記反射面の傾きを含む請求項1に記載の露光装置。
- 8. 前記反射面はほぼ第1方向に沿って形成されており、前記第1情報は、前記第1方向とほぼ直交する第2方向の複数の位置に対応する複数の情報を含む請求項1に記載の露光装置。
- 9. 前記移動体は、前記第2方向に延びる第2反射面を有し、前記第1情報は、 前記第2反射面の誤差情報を含む請求項8に記載の露光装置。
- 10. 前記第1情報は、前記第2反射面の誤差情報として、前記第1方向の複数の位置に対応する複数の情報を含む請求項9に記載の露光装置。
- 11. 前記移動体は、第1反射面と、該第1反射面とほぼ垂直な第2反射面と を有し、前記第1情報は、前記第1反射面の誤差情報及び前記第2反射面の誤差 情報として、前記移動体上における液体の位置に対応する複数の情報を有する請 求項1に記載の露光装置。
- 12. 前記移動体は、第1反射面と、該第1反射面とほぼ垂直な第2反射面と を有し、前記第1情報は、前記第1反射面と前記第2反射面との直交度誤差情報 を含む請求項1に記載の露光装置。
- 13. 液体を介して基板に露光光を照射して前記基板を露光する露光装置であって:

前記基板を保持する移動体と;

前記移動体を移動するための駆動装置と;

前記移動体上に液体が供給されている状態で前記移動体を移動させるための第 1制御情報と、前記移動体上に液体が供給されていない状態で前記移動体を移動 させるための第2制御情報とを有し、前記駆動装置を制御する制御装置と;を備 える露光装置。

- 14. 前記第1制御情報は、前記移動体上に形成される液浸領域の前記移動体上での位置に対応する請求項13に記載の露光装置。
- 15. 前記移動体に形成された反射面に測定光を照射するとともに、その反射 光を受光して、前記移動体の位置情報を計測する干渉計システムをさらに備え、 前記第1及び第2制御情報は、前記反射面の誤差に関する情報をそれぞれ含む 請求項13に記載の露光装置。
- 16. さらに、移動体上で計測を行うための計測系を備え、計測系での計測が行われるときに移動体の位置が第2制御情報により制御される請求項13に記載の露光装置。
- 17. さらに投影光学系を備え、前記基板は前記液体と投影光学系とを介して前記露光光が照射される請求項1~16のいずれか一項に記載の露光装置。
- 18. 液体を介して基板上に露光光を照射して前記基板を露光する露光装置において前記基板を保持する移動体に形成された反射面を使って該移動体の位置を制御する位置制御方法であって、

前記移動体上に液体が供給された状態で、前記反射面の誤差情報を計測し; 前記誤差情報に基づいて、前記移動体の位置を制御することを含む位置制御方法。

19. 前記反射面の誤差は、前記反射面の曲がりを含むことを特徴とする請求項18に記載の位置制御方法。

20. 前記反射面の誤差は、前記反射面の傾きを含むことを特徴とする請求項18に記載の位置制御方法。

- 21. 前記反射面の誤差情報は、前記移動体上に基板が保持された状態で計測 される請求項18に記載の位置制御方法。
- 22. 前記反射面の誤差情報を計測するときに前記移動体上に保持される基板 表面の前記液体に対する接触角は、前記露光光が照射される被露光対象の基板表 面の前記液体に対する接触角とほぼ同一である請求項21に記載の位置制御方法。
- 23. 前記移動体上における液浸領域の位置は、前記移動体の移動に伴って変化し、前記反射面の誤差情報の計測は、前記移動体の位置を異ならせて複数回行われる請求項18に記載の位置制御方法。
- 24. 前記反射面はほぼ第1方向に沿って前記移動体に形成されており、前記 反射面の誤差情報の計測は、前記第1方向とほぼ直交する第2方向の複数位置に 前記移動体を移動させて行われる請求項18に記載の位置制御方法。
- 25. 前記移動体の前記第2方向への移動中に、前記移動体の位置情報を計測するための干渉計システムより、前記第1方向とほぼ平行な複数の計測ビームを前記反射面に照射するとともに、該反射面からの反射光を受光し、該受光結果に基づいて前記反射面の誤差情報を計測する請求項24に記載の位置制御方法。
- 26. 前記移動体上に液体を供給しない状態で、前記反射面の誤差情報を計測 する請求項18に記載の位置制御方法。

27. 前記移動体上に液体を供給しない状態で前記反射面の誤差情報を計測した後に、前記移動体上に液体を供給して、前記移動体上に液体を供給した状態での前記反射面の誤差情報を計測する請求項26に記載の位置制御方法。

- 28 前記露光装置において、前記基板は、前記液体と投影光学系とを介して 前記露光光が照射される請求項18~27のいずれか一項に記載の位置制御方法。
- 29. 請求項18に記載の位置制御方法を用いるデバイス製造方法。
- 30. 液体を介して基板に露光光を照射して前記基板を露光する露光装置であって:

前記基板に液体を介して前記露光光が照射される露光ステーションと; 計測系を備え、基板の計測及び交換が行われる計測ステーションと:

前記基板を保持して露光ステーションと計測ステーションとの間で移動する移動体と;

前記移動体を移動するための駆動装置と:

前記移動体上に液体が供給されている状態で前記移動体を移動させるための第 1制御情報と、前記移動体上に液体が供給されていない状態で前記移動体を移動 させるための第2制御情報とを有し、前記駆動装置を制御する制御装置とを備 え;

前記移動体が露光ステーションに存在するときに第1制御情報に基づいて移動体の移動が制御されながら液体を介して基板の露光が行われ、前記移動体が計測ステーションに存在するときに第2制御情報に基づいて移動体の移動が制御されながら計測が行われる露光装置。

- 31. 前記計測ステーションにて、液体が供給されない状態で計測が行われる 請求項30に記載の露光装置。
- 32. 前記移動体が複数のステージを有する請求項30に記載の露光装置。

33. 前記複数のステージがそれぞれ反射鏡を備え、第1制御情報及び第2制御情報が各反射鏡の誤差情報を含む請求項32に記載の露光装置。

34. 液体を介して基板に露光光を照射して、前記基板を露光する露光装置であって:

前記露光光が通過する光学部材と;

前記光学部材の光射出側で移動可能な移動体と;

前記移動体に形成された反射面に測定光を照射するとともに、その反射光を受 光して、前記移動体の位置情報を計測する干渉計システムと;

前記移動体上に液浸領域が形成された状態での前記反射面の誤差情報を第1情報として記憶するメモリと;を備える露光装置。

- 35. 前記メモリは、前記移動体上に液浸領域が形成されていない状態での前記反射面の誤差情報を第2情報として記憶する請求項34に記載の露光装置。
- 36. 前記移動体は、前記基板を保持して移動可能である請求項34に記載の露 光装置。
- 37 前記反射面はほぼ第1方向に沿って形成されており、

前記移動体を前記第1方向と直交する第2方向の複数の位置に移動するとともに、前記第2方向の複数の位置のそれぞれで前記反射面の誤差情報を取得する請求項34に記載の露光装置。

38. 前記反射面はほぼ第1方向に沿って形成されており、

前記反射面の誤差情報は、前記移動体を前記第1方向に移動しながら計測される請求項34に記載の露光装置。

39. 請求項1、13、30及び34のいずれか一項に記載の露光装置を用いることを特徴とするデバイス製造方法。

40 液体を介して基板にパターン像を投影して前記基板を露光する露光方法であって:

位置測定のための測定光が照射される反射面を備える移動体上に、前記基板またはダミー基板を保持することと;

前記移動体上に液体が供給された状態で、前記反射面の誤差情報を求めること と;

前記誤差情報に基づいて基板上の所定位置に前記パターン像を液体を介して投 影することと;を含む露光方法。

- 41. さらに、液体を基板上に供給せずに基板に形成されているマークを検出して基板のアライメント情報を得ることを含む請求項40に記載の露光方法。
- 42. さらに、液体を基板上に供給せずに前記反射面の誤差情報を求め、求められた誤差情報に基いて移動体の位置制御を行いながら前記アライメント情報を得る請求項41に記載の露光方法。
- 43. さらに、前記反射面の誤差情報に基いて移動体の位置制御を行いながら、 移動体上に液体を供給している状態で計測処理を行うことを含む請求項40に記載の露光方法。

)

- 44. さらに、前記基板の露光終了後に基板を交換することを含み、基板を交換するときに、前記反射面に測定光が照射されて反射面の誤差情報が求められる 請求項43に記載の露光方法。
- 45. 基板のロットが変わる場合にのみ、基板を交換するときに反射面の誤差情報が求められる請求項44に記載の露光方法。

_)

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

)

Fig. 12

Fig. 14

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/001993

A. CLASSIFICATION OF SUBJECT MATTER						
Int.Cl ⁷ H01L21/027, G03F7/20						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum docum	nentation searched (classification system followed by classification system)	assification symbols)				
Int.Cl	H01L21/027, G03F7/20					
	earched other than minimum documentation to the exte		e fields searched			
	Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005 Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005					
Kokai Ji	1994-2005					
Electronic data b	ase consulted during the international search (name of o	lata base and, where practicable, search to	erms used)			
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
P,X	JP 2004-241666 A (Nikon Corp	.),	1,6,7,12,			
	26 August, 2004 (26.08.04), Claims; Par. Nos. [0006], [00	0071 [0064] +0	18-21,28,29, 34,36,38-40,			
ŀ	[0066], [0113], [0143] to [01	45], [0064] CO 45], [0152]	43-45			
	(Family: none)	, [0				
P,X	JP 2004-207710 A (Nikon Corp	.),	13,14,17			
1	22 July, 2004 (22.07.04), Claims; Par. Nos. [0036] to [00431				
		2003289237 A1				
A	JP 11-176727 A (Nikon Corp.)	,	1-45			
	02 July, 1999 (02.07.99),					
	Full text; all drawings (Family: none)		·			
	(1422)					
			<u> </u>			
	cuments are listed in the continuation of Box C.	See patent family annex.				
	gories of cited documents: efining the general state of the art which is not considered	"T" later document published after the into date and not in conflict with the applic				
to be of particular relevance . the principle or theory underlying the invention						
		"X" document of particular relevance; the considered novel or cannot be considered.				
"L" document which may throw doubts on priority claim(s) or which is step when		step when the document is taken alone				
		"Y" document of particular relevance; the considered to involve an inventive				
	ferring to an oral disclosure, use, exhibition or other means	combined with one or more other such being obvious to a person skilled in the	documents, such combination			
"P" document pu priority date	iblished prior to the international filing date but later than the claimed	"&" document member of the same patent:				
2 Comment of the same party.						
Date of the actual completion of the international search Date of mailing of the international search						
13 May, 2005 (13.05.05) 07 June, 2005 (07.06.05)						
		1				
	g address of the ISA/	Authorized officer				
Japanes	Japanese Patent Office					
Facsimile No. Telephone No.						
	Form PCT/ISA/210 (second sheet) (January 2004)					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/001993

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	JP 10-303114 A (Nikon Corp.), 13 November, 1998 (13.11.98), Par. Nos. [0020] to [0028]; Figs. 1, 2 (Family: none)	1-45
A	JP 6-124873 A (Canon Inc.), 06 May, 1994 (06.05.94), Full text; all drawings (Family: none)	1-45
	. ,	
	_	

発明の属する分野の分類(国際特許分類(IPC)) Int,Cl.7 H01L21/027, G03F7/20

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.7 H01L21/027, G03F7/20

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

· ///	SC / SC ID- S S A S S A S A S A S A S A S A S A S			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
77 7 7	シバルスが日 次の おい色がる 放送することは、この放送する回がであれ	明水の興団の番方		
P, X	JP 2004-241666 A (株式会社ニコン) 2004.08.2 6,特許請求の範囲,段落0006,0007,0064-006	1, 6, 7, 12, 18-		
	6,0113,0143-0145,0152 (ファミリーなし)	21, 28,		
		, ,		
		29, 34,		
		36, 38-		
	,	40, 43-		
		4 5		
	,	1		
P, X	JP 2004-207710 A (株式会社ニコン) 2004.07.2	13, 14,		

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

13.05.2005

国際調査報告の発送日

07. 6. 2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

8605 2M

新井 重雄

電話番号 03-3581-1101 内線 3274

C (続き) .	関連すると認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
	2, 特許請求の範囲, 段落 0 0 3 6 - 0 0 4 3 & WO 2 0 0 4	17
•	/053954 A1 & AU 2003289237 A1	
Α	JP 11-176727 A (株式会社ニコン) 1999.07.02,	1 - 45
	全文、全図(ファミリーなし)	
A	JP 10-303114 A (株式会社ニコン) 1998.11.13,	1 - 45
•	段落0020-0028, 図1, 2 (ファミリーなし)	1-45
	段格0020-0026, 図1, 2 (ノアミリーなし)	
٨	TD 6 104079 4 (ナトン・井十久社) 1004 05 00	
A	JP 6-124873 A (キヤノン株式会社) 1994.05.06,	1 - 45
	全文,全図 (ファミリーなし)	
)
	•	
•		
	•	
	·	
	·	
	•	