Shared Memory

Spectrum of Distributed (Computer) Systems

E.g., graphical processing units (GPUs) and specialized devices, in which large arrays of *simple processors* work in lock-step ("Gleichschritt"), PRAM, ...

Multi-threaded + multi-core servers/desktops with *shared memory for communication*.

Loosely-coupled *peer-to-peer* systems with message passing communication

small/synchronous/...

wide-area/decoupled/...

The Shared Memory Model

Shared memory consists of registers.

Formal Definition

Shared Memory

A shared memory system is a system that consists of asynchronous processes that access a *common (shared) memory*. A process can atomically access a register in the shared memory through a set of *predefined operations*. An atomic modification appears to the rest of the system instantaneously. Apart from this shared memory, processes can also have some *local (private) memory*.

Often a useful, simpler alternative model to reason about distributed systems!

Examples: (a.k.a. Data Types, Mealy Machines)

- **(1) Test-and-Set(R):** t := R; R := 1; return t
- (2) Fetch-and-Add(R; x): t := R; R := R + x; return t
- (3) Compare-and-Swap(R; x; y):

if R = x then R := y; return true; else return false; endif

Why Shared Memory?

- Programming a shared memory system is *easier*: programmers access global variables directly!
- Because of this, even message passing systems often programmed through a *shared memory middleware*!
- From a message passing perspective, shared memory model is like a bipartite graph:

The Power of RMW

The power of a shared memory system is determined by the *Consensus Number* ("universality of consensus".)

Consensus Number _

The power of the RMW variant is measured by the consensus number. Consensus number k defines whether one can solve *consensus for k processes* (but not k+1).

Examples:

- Test-and-Set has consensus number 2
 (one can solve consensus with 2 processes, but not 3)
- Compare-and-Swap has an infinite Consensus Numbers!

Desirable Properties of Distributed Systems

Safety, Liveness

Safety:

"Something bad will never happen", Examples: some invariant holds (function never returns -1 values), serializability for DB transactions, linearizability

Liveness: "Eventually something good happens", "system makes progress"

Precedes / Follows

Precedes / Follows

An operation op1 *precedes* an operation op2 iff op1 terminates before op2 starts.

An operation op2 follows operation op1 iff op1 precedes.

op1 op2 → time

A Classic Shared Memory Problem

Fundamental synchronization problem: access to a resource

1

Mutual Exclusion

Each process executes the following code sections:

<Entry> → <Critical Section> → <Exit> → <Remaining Code>
A mutual exclusion algorithm consists of code for entry and exit sections, such that the following holds:

- (1) Mutual Exclusion (Property?): At most one process is in the critical section.
- (2) No deadlock (Property?): If some process manages to get to the entry section, later some (possibly different) process will get to the critical section.

Sometimes we in addition ask for

- (3) No lockout (Property?): If some process manages to get to the entry section, later *the same process* will get to the critical section. ("Fairness")
- (4) Unobstructed exit (Property?): No process can get stuck in the exit section.

A Classic Shared Memory Problem

Fundamental synchronization problem: access to a resource

Mutual Exclusion

Each process executes the following code sections:

<Entry> → <Critical Section> → <Exit> → <Remaining Code>
A mutual exclusion algorithm consists of code for entry and exit sections, such that the following holds:

- (1) Mutual Exclusion (Safety): At most one process is in the critical section.
- (2) No deadlock (Liveness): If some process manages to get to the entry section, later some (possibly different) process will get to the critical section.

Sometimes we in addition ask for

- (3) No lockout (Liveness): If some process manages to get to the entry section, later *the same process* will get to the critical section. ("Fairness")
- (4) Unobstructed exit (Liveness): No process can get stuck in the exit section.

Test-and-Set(R): t := R; R := 1; return t

How to achieve Mutex with single Test-and-Set register?

How to achieve Mutex with single Test-and-Set register?

Mutex

```
Input: Shared register R:=0
<Entry>
Repeat:
       r := test-and-set(R)
Until r=0
<Critical Section>
<Exit>
R:=0
<Remaining Code>
```

Set register to 1, then check whether it was so already.

How to achieve Mutex with single Test-and-Set register?

Mutex

```
Input: Shared register R:=0
<Entry>
Repeat:
       r := test-and-set(R)
Until r=0
<Critical Section>
<Exit>
R:=0
<Remaining Code>
```

Set register to 1, then check whether it was so already.

Correct Mutex?
No deadlock?
No lockout?
Unobstructed exit?

Mutex -

(1) Mutex: ?

(2) Deadlock free: ?

(3) Lockout: ?

(4) Unobstructed exit: ?

Mutex _

Input: Shared register R:=0
<Entry>
Repeat:
 r := test-and-set(R)
Until r=0
<Critical Section>
...
<Exit>
R:=0
<Remaining Code>

- (1) Mutex: **ok!**
- (2) Deadlock free: ?
- (3) Lockout: ?
- (4) Unobstructed exit: ?

Input: Shared register R:=0 <Entry> Repeat: r := test-and-set(R) Until r=0 <Critical Section> ... <Exit> R:=0 <Remaining Code>

Proof:

(1) Mutex: R initially 0. Let p_i be the i-th process to successfully execute the test-and-set (i.e., result 0) at time t_i, and say at time t'_{i,} p_i resets R:=0. Between these times, nobody else can execute CS.

(1) Mutex: **ok!**

(2) Deadlock free: ok!

(3) Lockout: ?

(4) Unobstructed exit: ?

Mutex

Input: Shared register R:=0
<Entry>
Repeat:
 r := test-and-set(R)
Until r=0
<Critical Section>
...
<Exit>
R:=0
<Remaining Code>
...

Proof:

- (1) Mutex: R initially 0. Let p_i be the i-th process to successfully execute the test-and-set (i.e., result 0) at time t_i, and say at time t'_i, p_i resets R:=0. Between these times, nobody else can execute CS.
- (2) **Deadlock:** One of the processes waiting in the entry section will successfully test-and-set as soon as the process in the critical section exited.

(1) Mutex: **ok!**

(2) Deadlock free: **ok!**

(3) Lockout: ?

(4) Unobstructed exit: ok!

Input: Shared register R:=0 <Entry> Repeat: r := test-and-set(R) Until r=0 <Critical Section> ... <Exit> R:=0 <Remaining Code>

Proof:

- (1) Mutex: R initially 0. Let p_i be the i-th process to successfully execute the test-and-set (i.e., result 0) at time t_i, and say at time t'_i, p_i resets R:=0. Between these times, nobody else can execute CS.
- (2) **Deadlock:** One of the processes waiting in the entry section will successfully test-and-set as soon as the process in the critical section exited.
- (4) Exit: Since the exit section only consists of a single instruction (no potential infinite loops) we have unobstructed exit.

Test-and-Set(R): t := R; R := 1; return t

May be *unfair*!

Mutex

```
Input: Shared register R:=0
<Entry>
Repeat:
       r := test-and-set(R)
Until r=0
<Critical Section>
<Exit>
R:=0
<Remaining Code>
```

Always same process may win! Solution?

Test-and-Set(R): t := R; R := 1; return t

May be *unfair*!

Mutex

```
Input: Shared register R:=0
<Entry>
Repeat:
       r := test-and-set(R)
Until r=0
<Critical Section>
<Exit>
R:=0
<Remaining Code>
```

Always same process may win! Solution: make FIFO queue...

Test-and-Set(R): t := R; R := 1; return t

May be *unfair*!

Mutex

```
Input: Shared register R:=0
<Entry>
Repeat:
       r := test-and-set(R)
Until r=0
<Critical Section>
<Exit>
R:=0
<Remaining Code>
```

Always same process may win! Solution: make FIFO queue...

What about weaker objects?

Can I do without atomic RMW?

Test-and-Set(R): t := R; R := 1; return t

May be unfair!

Mutex

```
Input: Shared register R:=0
<Entry>
Repeat:
       r := test-and-set(R)
Until r=0
<Critical Section>
<Exit>
R:=0
<Remaining Code>
```

Always same process may win! Solution: make FIFO queue...

What about weaker objects?

Can I do without atomic RMW?

Yes: Peterson's algorithm!

Assume: two processes only!

Need *three* registers (init: 0).

"P0 wants CS"
Written only by P0.
Read by both.

"P1 wants CS"
Written only by P1.
Read by both.

Assume: two processes only!

Need *three* registers (init: 0).

"Who has priority at the moment?" Written by both.

Assume: two processes only!

Need *three* registers (init: 0).

Peterson's Mutex

Code for process Pi

<Entry>

$$W_i := 1$$

 $\prod := 1-i$

Loop until $\prod = i$ or $W_{1-i} = 0$

<Critical Section>

. .

<Exit>

 $W_i := 0$

<Remaining Code>

. . .

Process indicates that it wants to enter CS in "Want-Register".
Can only do if other process does not want, or I have priority (shared variable!).

Assume: *two processes* only! Need *three* registers (init: 0).

Peterson's Mutex

Code for process Pi

<Entry>

$$W_i := 1$$

$$\Pi := 1-i$$

Loop until $\prod = i$ or $W_{1-i} = 0$

<Critical Section>

<Exit>

$$W_i := 0$$

<Remaining Code>

. . .

Process indicates that it wants to enter CS in "Want-Register".
Can only do if other process does not want, or I have priority (shared variable!).

Spin-Lock! (Busy-wait)

Priority register used to avoid deadlock!

Peterson

Peterson gives (1) mutex, (2) no deadlock, (3) no lockout, (4) unobstructed.

Proof:

- (1) Mutex: If both compete ("want"), only one can get priority and access CS.
- (2) No Deadlock: If both in loop and want, one process must have priority and it gets direct access to the critical section.
- (3) Fairness: Non-priority process waiting in loop gets priority when other process starts again! Shared variable.
- (4) Unobstructed Exit: Exit only a single instruction.

QED

<Remaining Code>

Another fundamental task: Store&Collect

Goal: Collect up-to-date infos about other processes! With *atomic RW* only.

Two operations:

- sop(val): Process p_i stores val to be the latest value of its own register Ri. ("1:1 write", so single-writer model)
- cop(): Collects a "view", a function V where
 V(pi) is the latest value stored by p_i, for each process p_i.

Store&Collect

Assume: registers initialized to «?».

Note: Collect has no sequential specification and cannot be linearized.

Our goal here: A collect operation **cop** should never read from the future or miss a preceding store operation **sop**.

Store&Collect

For a collect operation cop, the following validity properties must hold for every process p_i:

- 1. If $V(p_i) = "?"$, then no store operation by pi *precedes* cop.
- 2. If $V(p_i) = v$, then v is the value of a sop operation of p_i that does not *follow* cop, and there is no store operation by p_i that *follows* sop and *precedes* cop.

Complexity Meaure

We measure the following complexity.

Step Complexity

Step complexity of an operation is the number of accesses to the registers in the shared memory.

How to implement a valid Collect() operation?

Simple Algorithm

Step sop() & cop()

```
Operation STORE(val), by proc. p<sub>i</sub> Ri := val;
```

Operation COLLECT:

```
for i:= 1 to n do V(p_i)\text{:=Ri} \quad \text{(* read register Ri *)} end
```

Works (atomic read/write). Complexity?

Simple Algorithm

Step sop() & cop()

```
Operation STORE(val), by proc. p<sub>i</sub> Ri := val;
```

Operation COLLECT:

```
for i:= 1 to n do V(p_i) := Ri \quad (* \ read \ register \ Ri \ *) end
```

Works (atomic read/write).
Complexity?
STORE is 1 step
COLLECT is n steps

Adaptive Algorithm

If only two processes wrote some value, COLLECT is too costly! How to make an operation adaptive to the number of processes that were active in the execution?

Adaptive Operation

If up to time t, $k \le n$ processes have started or finished at least one operation, an operation is called *adaptive* if step complexity depends on k but not on n.

How to make our algorithms adaptive?

Adaptive Algorithm

If only two processes wrote some value, COLLECT is too costly! How to make an operation adaptive to the number of processes that were active in the execution?

Adaptive Operation

If up to time t, $k \le n$ processes have started or finished at least one operation, an operation is called *adaptive* if step complexity depends on k but not on n.

How to make our algorithms adaptive? We need *Splitters*...

Splitter

Splitter

 $\begin{array}{c|c} & k \ processors \\ \hline at \ most \ l \\ \hline stop \\ \hline at \ most \ k-1 \\ \hline left \\ \hline \end{array}$

Synchronization primitive:

- Process entering it exits with stop, left or right
- If k processes enter, at most one exists with stop, and at most k-1 processes exit with left and at most k-1 processes exit with right.
- If single process enters it, stop for sure.

Not perfect balance, but there are two processes that obtain different values (stop, left, right).

How to implement splitter?

Splitter Algo

Splitter

Two shared registers X: {?, 1, ..., n}, Y: bool Initialization: X=?, Y=false

Splitter access by pi:

X:=i

If Y then return right

Else

Y:=true

if X=i then return stop

else return left

Splitter Algo

Splitter

Two shared registers X: {?, 1, ..., n}, Y: bool Initialization: X=?, Y=false

Splitter access by pi:

X:=i

If Y then return right

Else

Y:=true

if X=i then return stop

else return left

Why correct?

A single process always stops:

Clear: check solo-run

Splitter

Two shared registers X: {?, 1, ..., n}, Y: bool Initialization: X=?, Y=false

Splitter access by pi:

X:=i

If Y then return right

Else

Y:=true

if X=i then return stop

else return left

A single process *always stops*:

Clear: check solo-run

At most k-1 return right:

 First process checking Y will not return right

Splitter

Two shared registers X: {?, 1, ..., n}, Y: bool Initialization: X=?, Y=false

Splitter access by pi:

X:=i
If Y then return right
Else
Y:=true
if X=i then return stop

else return left

A single process *always stops*:

Clear: check solo-run

At most k-1 return right:

 First process checking Y will not return right

At most k-1 return left:

- Assume process p is last to set X:=i
- If p does not return right, it will find its own value later and stop: it does not return left!

Splitter

```
Two shared registers X: {?, 1, ..., n}, Y: bool Initialization: X=?, Y=false
```

Splitter access by pi:

```
X:=i

If Y then return right

Else

Y:=true

if X=i then return stop

else return left
```

A single process *always stops*:

Clear: check solo-run

At most k-1 return right:

 First process checking Y will not return right

At most k-1 return left:

- Assume process p is last to set X:=i
- If p does not return right, it will find its own value later and stop: it does not return left!

Splitter

Two shared registers X: {?, 1, ..., n}, Y: bool Initialization: X=?, Y=false

Splitter access by pi:

X:=i
If Y then return right
Else
Y:=true

if X=i then return stop else return left

At most one process stops:

- Assume contrary: both processes pi and pj return stop, and w.l.o.g. assume pi sets X:=i before pj sets X:=j.
- Both can only reach "else" if Y was false for both! But then, X value of pi has been overwritten in the meanwhile, and pi does not return stop!

Splitter

Two shared registers X: {?, 1, ..., n}, Y: bool Initialization: X=?, Y=false

A single process always stops:

A[·]

How to realize adaptive collect now? Splitter trees!

else return left

At most k-1 return left:

- Assume process p is **last** to set X:=i
- If p does not return right, it will find its own value later and stop: it does not return left!

At most one process stops:

- Assume contrary: both processes pi and pj return stop, and w.l.o.g. assume pi sets X:=i before pj sets X:=j.
- Both can only reach "else" if Y was false for both! But then, X value of pi has been overwritten in the meanwhile, and pi does not return stop!

Splitter Tree

Assume we have 2ⁿ-1 splitters, arranged in complete binary tree:

Let S(v) be splitter of node v in tree.

Additionally: for every splitter, shared variables Z_S : {?,1,...,n} and boolean M_S . A splitter is marked if M_S =true.

Splitter Tree

Assume we have 2ⁿ-1 splitters, arranged in complete binary tree:

Let S(v) be splitter of node v in tree.

Additionally: for every splitter, shared variables Z_S : {?,1,...,n} and boolean M_S . A splitter is *marked* if M_S =true.

k processes traversing splitter tree:

- At most one process can stop at some given splitter
- Every process stops at some splitter at depth at most k-1. Why?

k processes traversing splitter tree:

- At most one process can stop at some given splitter
- Every process stops at some splitter at depth at most k-1. Why?

Proof by Induction:

- By definition, k processes enter the root splitter at depth 0
- If k-i processes enter splitter at root of subtree at depth i (induction hypothesis), at most k-i-1 obtain left and at most k-i-1 right.

k processes traversing splitter tree:

- At most one process can stop at some given splitter
- Every process stops at some splitter at depth at most k-1. Why?

Proof by Induction:

- By definition, k processes enter the root splitter at depth 0
- If k-i processes enter splitter at root of subtree at depth i (induction hypothesis), at most k-i-1 obtain left and at most k-i-1 right.

Upon *first store operation* of a process, *traverse* splitter tree: data structure to mark which nodes were already active! A connected component: *collect only needs to check this part*!

Tree Ops

```
Operation STORE(val) (by process p_i):
 1: R_i := val
 2: if first STORE operation by p_i then
       v := \text{root node of binary tree}
     \alpha := \text{result of entering splitter } S(v);
     M_{S(v)} := \text{true}
       while \alpha \neq \text{stop do}
          if \alpha = \text{left then}
            v := \text{left child of } v
      _{
m else}
        v := \text{right child of } v
10:
          end if
11:
        \alpha := \text{result of entering splitter } S(v);
12:
          M_{S(v)} := true
13:
       end while
14:
15:
       Z_{S(v)} := i
16: end if
```

Traverse splitter tree from top, mark traversed nodes (M) and store splitter where pi stopped.

Operation COLLECT:

Traverse marked part of binary tree:

```
17: for all marked splitters S do

18: if Z_S \neq \bot then

19: i := Z_S; V(p_i) := R_i

20: end if

21: end for
```

Only collect marked parts!

Tree Ops

21: end for

```
Operation STORE(val) (by process p_i):
 1: R_i := val
 2: if first STORE operation by p_i then
      v := \text{root node of binary tree}
     \alpha := \text{result of entering splitter } S(v);
     M_{S(v)} := \text{true}
      while \alpha \neq \text{stop do}
                                                              Traverse splitter tree from
         if \alpha = \text{left then}
                                                              top, mark traversed nodes
            v := \text{left child of } v
                                                              (M) and store splitter
                        Complexity of solution?
         епа п
11:
         \alpha := \text{result of entering splitter } S(v);
12:
         M_{S(v)} := \text{true}
13:
      end while
14:
15:
      Z_{S(v)} := i
16: end if
Operation COLLECT:
Traverse marked part of binary tree:
17: for all marked splitters S do
      if Z_S \neq \bot then
18:
                                                        Only collect marked parts!
      i := Z_S; V(p_i) := R_i
19:
      end if
20:
```

Adaptive Collect

Step complexity of first STORE is O(k), subsequent ones are O(1). COLLECT has step complexity O(k).

Proof.

- First STORE: splitter tree traversal to find "my" location, at most at depth k
- From then on, will always STORE there: O(1)
- COLLECT:
 - Only need to check marked part and their neighbors
 - Marked part of the tree is connected
 - At most 2k-1 nodes are marked:
 - By induction: a single process entering a splitter will always stop
 - The right and left child of the root are subtrees too, first node will stop at first splitter.

Adaptive Collect

Step complexity of first STORE is O(k), subsequent ones are O(1). COLLECT has step complexity O(k).

Proof.

- First STORE: splitter tree traversal to find "my" location, at most at depth k
- From then on, will always STORE there: O(1)
- COLLECT:
 - Only need to check marked part and their neighbors
 - Marked part of the tree is connected
 - At most 2k-1 nodes are marked:
 - By induction: a single process entering a splitter will always stop
 - The right and left child of the root are subtrees too, first node will stop at first splitter.

Disadvantage?

Adaptive Collect

Step complexity of first STORE is O(k), subsequent ones are O(1). COLLECT has step complexity O(k).

Proof.

- First STORE: splitter tree traversal to find "my" location, at most at depth k
- From then on, will always STORE there: O(1)
- COLLECT:
 - Only need to check marked part and their neighbors
 - Marked part of the tree is connected
 - At most 2k-1 nodes are marked:
 - By induction: a single process entering a splitter will always stop
 - The right and left child of the root are subtrees too, first node will stop at first splitter.

Disadvantage? Space complexity! Store O(2ⁿ) tree in memory...

Splitter Matrix

Idea: Instead of arranging splitters in 2^n binary tree, arrange them in $n \times n$ matrix:

5x5 splitter matrix

Splitter Matrix

Idea: Instead of arranging splitters in 2^n binary tree, arrange them in $n \times n$ matrix:

5x5 splitter matrix

Space complexity n². Step complexity?

Matrix Collect

Step complexity of first STORE is O(k), subsequent ones are O(1). COLLECT has step complexity $O(k^2)$.

Proof.

- Let xi be number of procs entering row i. By induction on i, xi ≤ k-i.
- Of course: x0 ≤ k
- Let j be largest column s.t. at least one process visits the splitter at (i-1,j).
- Not all processes go left, so xi ≤ k-i.
- Same for column.
- So every process stops the latest in row k-1 and column k-1.
- The number of marked splitters is at most k^2 : complexity of COLLECT.
- The longest path in matrix is 2k, so STORE complexity at most O(k).

Remarks

- Randomized algorithms can achieve binary trees of depth O(log n) only.
- O(k) step complexity and O(n²) space complexity is possible for COLLECT, even deterministically

End of Lecture