- 1. Draw a large $\bigcirc O$. Choose a point A that is outside $\bigcirc O$. Construct the two tangents to $\bigcirc O$ from point A.
- 2. Draw a very large obtuse triangle. Construct the inscribed circle.
- 3. Draw a segment about half as long as the width of your paper. Then divide the segment by construction into two segments whose lengths have the ratio 2:1.
- **4.** Draw a large $\triangle ABC$. Then construct \overline{DE} such that $\frac{AB}{BC} = \frac{AC}{DF}$.
- 5. Use $\triangle ABC$ drawn in Exercise 4 to construct a segment, \overline{PQ} , whose length is the geometric mean of AB and AC.
- **6.** You are given $\odot S$ and diameter FG. To construct parallel tangents to $\odot S$, you could construct a line that is $\frac{?}{FG}$ at $\frac{?}{FG}$ and a line that is $\frac{?}{FG}$ to \overline{FG} at $\frac{?}{}$.
- 7. You are given $\triangle TRI$. Describe the steps you would use to circumscribe a circle about $\triangle TRI$.

Locus

Objectives

- 1. Describe the locus that satisfies a given condition.
- 2. Describe the locus that satisfies more than one given condition.
- 3. Apply the concept of locus in the solution of construction exercises.

10-6 The Meaning of Locus

A radar system is used to determine the position, or locus, of airplanes relative to an airport. In geometry locus means a figure that is the set of all points, and only those points. that satisfy one or more conditions.

