CENTRO UNIVERSITÁRIO DE ANÁPOLIS - UNIEVANGÉLICA CURSO DE ENGENHARIA DE COMPUTAÇÃO

BRUNO TAVARES ALMEIDA

ADRIEL DOS SANTOS

SIMÕES

RELATÓRIO DE IMPLEMENTAÇÃO EM ARDUINO

Orientador: Profo Me. Alexandre Tannus

SUMÁRIO

1 INTRODUÇÃO	2
2 OBJETIVOS	2
3 MATERIAL UTILIZADO	2
4 METODOLOGIA	2
5 RESULTADOS E DISCUSSÃO	3
6 CONCLUSÃO	10
7 BIBLIOGRAFIA	10

1 INTRODUÇÃO

O presente trabalho, visa documentar e relatar a continuação da implementação dos conceitos teóricos desenvolvidos nas aulas de Circuitos Digitais. Nessa etapa a proposta foi construir o decodificador do sistema BCD 8421 para o display de 7 segmentos.

2 OBJETIVOS

Aplicar a implementação de funções e portas lógicas, utilizando Mapas de Karnaugh para obter equações referentes a cada segmento do display.

3 MATERIAL UTILIZADO

- 1 Protoboard;
- 1 Placa de Arduino UNO R3;
- 1 Display de 7 segmentos;
- 1 Switch de 4 botões;
- 5 Resistores;

Fios de ligação.

4 METODOLOGIA

Foi iniciado o projeto que constitui-se em implementar o funcionamento das portas lógicas com um display LED de 7 segmentos.

Foi necessário realizar a simplificação das expressões booleanas obtidas a partir da combinação do Código BCD 8421 com a tabela-verdade dos LEDs do display para concluir o processo de implementação. Essa simplificação foi realizada por meio da utilização do Mapa de Karnaugh.

5 RESULTADOS E DISCUSSÃO

O experimento foi concluído e obteve-se a representação gráfica da implementação física no Arduino (figura 3). Para a elaboração do circuito em Arduino foi preciso realizar a combinação da tabela-verdade do Código BCD e dos LEDs do display. A (figura 4) representa essa combinação.

O processo de simplificação é obtido em seguida, através do Mapa de Karnaugh, para cada segmento de LED.

Após concluiu-se a simplificação por meio do Mapa de Karnaugh, realizou-se a implementação em linguagem C. Como pode ser verificado no código a seguir.

Figura 3. Mapa de Karnaugh com quatro variáveis.

Fonte: O Autor

Figura 4. Mapa de Karnaugh com quatro variáveis.

1	2	3	4	а	b	С	d	e	f	g	S
0	0	0	0	1	1	1	1	1	1	0	"0"
0	0	0	1	0	1	1	0	0	0	0	"1"
0	0	1	0	1	1	0	1	1	0	1	"2"
0	0	1	1	1	1	1	1	0	0	1	"3"
0	1	0	0	0	1	1	0	0	1	1	"4"
0	1	0	1	1	0	1	1	0	1	1	"5"
0	1	1	0	1	0	1	1	1	1	1	"6"
0	1	1	1	1	1	1	0	0	0	0	"7"
1	0	0	0	1	1	1	1	1	1	1	"8"
1	0	0	1	1	1	1	1	0	1	1	"9"

Fonte: O Autor

Segmento a

Expressão: $C + A + BD + \neg B \neg D$

Segmento b

Expressão:
$$\neg B + \neg C \neg D + CD$$

Segmento c

Expressão: $B + \neg C + D$

Segmento d

Expressão:
$$A + C \neg D + \neg BC + \neg B \neg D + B \neg CD$$

CD AB	00	01	11	10	
00	1	0	0		!
01	0	0	0	1	
11	X	X	X	X	
10	1 ;	0	X	<u> </u>	

Segmento e

EXDIESSAU: 'B 'D TC 'D	Expressão:	$\neg B \neg D$	+C-	1 D
------------------------	------------	-----------------	-----	----------

AB	00	01	11	10	
00		0	0	0	
01	<u> </u>	1	0	/ <u>1</u>	;
11	X	X	X	X	;
10		1	X	X	

Segmento f

Expressão: A + \neg C \neg D + B \neg C + B \neg D

CD	00	01	1.1	10
AB		01		<u> </u>
00	0	0	1	
01	1	1	0	1
11	X	X	X	X
10	1	1	X	
			'	

Segmento g

Expressão: A + B \neg C + \neg BC + C \neg D

```
int pinOutA = 2;
int pinOutB = 3;
int pinOutC = 4;
int pinOutD = 5;
int pinOutE = 6;
int pinOutF = 7;
int pinOutG = 8;
int pinOutDP = 9;
int pinA = 13;
int pinB = 12;
int pinC = 11;
int pinD = 10;
void setup()
       pinMode(pinOutA, OUTPUT);
       pinMode(pinOutB, OUTPUT);
       pinMode(pinOutC, OUTPUT);
       pinMode(pinOutD, OUTPUT);
       pinMode(pinOutE, OUTPUT);
       pinMode(pinOutF, OUTPUT);
       pinMode(pinOutG, OUTPUT);
       pinMode(pinOutDP, OUTPUT);
       pinMode (pinA, INPUT);
       pinMode (pinB, INPUT);
       pinMode(pinC, INPUT);
       pinMode (pinD, INPUT);
bool or_function(int a, int b){
  return allb;
bool and_function(int a,int b){
  return a&&b;
}
bool nand_function (bool a, bool b){
       return !(a&&b);
```

```
boolnor function(boola,boolb){
                         return !(a||b);
}
bool xor_function (bool a, bool b) {
                         return (!a && b) || (a && !b);
}
bool xnor_function (bool a, bool b) {
                         return (!a && !b) || (a && b);
void loop()
                         bool var_a = 0;
                         bool var_b = 0;
                         bool var c = 0;
                         bool var_d = 0;
                         bool varWrtA, varWrtB, varWrtC, varWrtD, varWrtE, varWrtF, varWrtG;
                         var_a = digitalRead(pinA);
                         var_b = digitalRead(pinB);
                         var_c = digitalRead(pinC);
                         var_d = digitalRead(pinD);
                          varWrtA = or function(or function(and function(!var c, !var a), var b),
or_function(and_function(var_c,var_a),var_d));
                         varWrtB = or_function(or_function(!var_c, and_function(!var_b, !var_a)),
and_function(var_b, var_a));
                         varWrtC = or_function(or_function(!var_b, var_a), var_c);
                          varWrtD =
or\_function(or\_function(and\_function(!var\_c,!var\_a), and\_function(!var\_c, to all or all or
```

```
var_b)),and_function(!var_a, var_b)), or_function( and_function(and_function(var_c,!var_b),
var_a), var_d));

varWrtE = or_function(and_function(!var_c,!var_a), and_function(var_b,!var_a));

varWrtF =
or_function(or_function(and_function(!var_b,!var_a),and_function(var_c,!var_b)),or_function(and_function(var_c,!var_a), var_d));

varWrtG =
or_function(or_function(and_function(!var_c,var_b),and_function(var_c,!var_b)),or_function(and_function(var_c,!var_a),var_d));

digitalWrite(pinOutA, !varWrtA);
digitalWrite(pinOutB, !varWrtB);
digitalWrite(pinOutC, !varWrtC);
digitalWrite(pinOutE, !varWrtD);
digitalWrite(pinOutE, !varWrtE);
digitalWrite(pinOutF, !varWrtF);
digitalWrite(pinOutG, !varWrtF);
digitalWrite(pinOutG, !varWrtG);
}
```

6 CONCLUSÃO

O experimento foi concluído e foi possível observar o funcionamento de portas lógicas em um circuito digital com a implementação de um display de 7 segmentos. Possibilitou o aprendizado e agregação de conhecimentos em arduino.

7 BIBLIOGRAFIA

IDOETA, Ivan Valeije et al. Elementos de Eletrônica Digital. 41. ed. São Paulo: Érica, 2012.