참고 위험 가능성과 중대성을 조합한 빈도강도법

- 핵심내용
- 위험성의 크기(수준)를 빈도(가능성)와 강도(중대성)를 이용하여 산출

□ 위험 가능성과 중대성을 조합한 빈도·강도법이란?

- **빈도·강도법**은 우리 사업장에서 파악된 유해·위험요인이 얼마나 위험하지를 판단하기 위해
- 위험성의 **빈도**(가능성)와 **강도**(중대성)을 **곱셈, 덧셈, 행렬** 등의 방법으로 조합하여 위험성의 크기(수준)을 산출해 보고, 이 위험성의 크기가 허용 가능한 수준인지 여부를 살펴보는 방법입니다.
- 위험성평가 지원시스템(https://kras.kosha.or.kr)에서 빈도·강도법이라는 이름으로 위험성평가 과정을 도와주고 기록하는 서비스를 제공하고 있으므로, 이를 토대로 방법을 안내합니다.

□ 실시방법 요약

①유해·위험요인 파악 →

2위험성 결정

3위험성 감소대책 수립 및 실행

공정·작업별 유해·위험요인을 파악

"5x4" 또는 "3x3" 등의 평가척도를 이용해 위험성의 크기를 구하고 허용 가능 여부를 결정

안전조치 실시

□ 단계별 세부 추진 절차

① 유해·위험요인 파악

[위험성평가 지원시스템 유해·위험요인 파악 사용 예시]

🄽 어떻게 유해·위험요인을 <u>파악하는가?</u>

- o 우리 사업장의 **위험성평가 대상 유해·위험요인**을 **선정**하고, '어떤 위험한 상황에서 누구에게 어떤 피해가 있을 수 있나'를 파악합니다.
- **위험성평가**는 원칙적으로 **사업장 내 모든 유해·위험요인**에 대해 실시 합니다.
- o 구체적으로는 "업무 중 근로자에게 노출된 것이 확인되었거나 노출될 것이 합리적으로 예견 가능한 모든 유해·위험요인"이 위험성평가의 대상 입니다.
- "업무 중"이라 매일 같은 장소에서 반복하는 작업 외에도 임시·수시로 하는 작업을 포함합니다. 오히려, 임시·수시작업의 경우 근로자들이 익숙하지 못한 상황에서 사고를 당하기 쉽기 때문입니다.
- 또한, '근로자'는 해당 작업을 수행하는 근로자 뿐만 아니라 유해·위험요인 주변에서 작업하여 영향을 받을 수 있는 모든 근로자를 의미합니다.

- 우리 사업장의 **공정, 작업, 장소, 기계·기구**를 꼼꼼히 살펴보고, 그간 있었던 **산업재해**나 **아차사고*** 등을 고려하여 위험성평가의 대상을 선정합니다.
 - * 사업장 내에서 부상 또는 질병으로 이어질 가능성이 있었던 상황
- 위험성평가 지원시스템에서는 유해·위험요인을 6가지로 분류해서 상세한 유해·위험요인을 파악할 수 있도록 도와주고 있어 일반적으로 생각할 수 있는 위험 상황과 결과를 파악하는 데 참고할 수 있습니다.

[6가지 요인에 따른 유해.위험요인 예시]

번호	구분 해당 유해위험요인						
1	기계적 요인	끼임(감김), 위험한 표면, 충돌, 넘어짐, 추락 등					
2	전기적 요인	감전, 아크, 정전기, 전기화재/폭발 등					
3	화학적 요인	가스, 증기, 흄, 액체·미스트, 방사선, 화재·폭발 등					
4	생물학적 요인	병원성 미생물, 바이러스, 유전자 변형물질 등					
5	작업특성 요인	소음, 진동, 근로자, 근로자 실수, 질식위험, 중량물 취급 등					
6	작업환경 요인	고온·한랭, 조명, 이동통로, 주변 근로자, 안전문화 등					

2 위험성 결정

▮ 3x3 위험성 추정기준 위험성 추정 (1) 입력/수정 버튼을 클릭하여 현재의 안전보건조치 내용을 입략해주세요. 정 생략 □ 중대성(강도) 유해 위험묘인 파악 현재의 안전보건조치 대(3) 중(2) 소(1) 위협발생 상황 및 결과 가능성 (빈도) 중대성 (강도) 위험분류 위험성 상(3) 높음(9) 높음(6) 보통(3) 그라인더 작업 중 날에 신 체의 일부 접촉 위험 1.덮개 설치 사용 보통(4) 낮음(2) 중(2) 높음(6) 입력/수정 기계적 묘인 🗸 2(중) 🗸 하(1) 보통(3) 낮음(2) 낮음(1) 가스용기 이송중 용기의 넘어짐으로 인한 신체 일 부 끼일 위현 1.전용 이송대차 사용 입력/수정 [1(하) **보** [2(중) **보** 2(낮음) **보** 위험성 수준 관리기준 기계적 요인 🕶 낮음 현재상태유지 분전반 등 내부 충전부 접 촉에 의한 감전 위험 부토 전기적 요인 🗸 입력/수정 2(중) 🗸 3(대) 🗸 즉시개선 6~9 높음

[위험성평가 지원시스템 위험성 결정 사용 예시]

烃 얼마나 위<u>험한가?</u>

- 유해·위험요인을 꼼꼼하게 파악했다면, 그 유해·위험요인이 얼마나 위험한지에 대해 위험성의 빈도(가능성)와 강도(중대성)을 각각 가늠하여 그 둘을 곱한 수로 나타냅니다.
 - * [빈도] 유해·위험요인에 얼마나 자주 노출되는지, 얼마나 오래 노출되는지, 며칠에 한 번 아차사고가 발생하는지 등을 고려하여 숫자로 나타낸 크기 (예시) 빈번하게 발생하는 경우 3, 가끔 발생하는 경우 2, 거의 발생 않는 경우 1 등
 - * [강도] 위험한 사고로 인해 누구에게 얼마나 큰 피해가 있었는지를 나타내는 척도 (예시) 사망이나 장애 발생 3, 휴업이 필요한 경우 2, 치료 불필요한 경우 1 등
- 예시와 같은 산출 기준은 위험성평가 사전준비 단계에서 근로자들과 상의하여 미리 정해 놓아야 합니다.
- 반드시 두 가지 숫자를 곱하여야 하는 것은 아니고, 더하거나 행렬로 조합하는 방법도 활용할 수 있습니다.
- 위험성평가 지원시스템에서는 "5×4" 또는 "3×3"의 평가척도를 제공 하고 있고, 현재의 위험성의 크기를 가늠할 때는 반드시 현재 시행하고 있는 안전보건조치의 수준도 고려하여야 합니다.

강도와 빈도의 크기 산출 예시

- **빈도의 크기: 2** (※ 사유: 이동식 사다리 작업을 1주일에 1회 실시)
- **강도의 크기: 3** (※ 사유: 추락 시 근로자 사망)
- 위험성의 크기: 6 = 2(빈도의 크기) × 3(강도의 크기)

<빈도이 크기 산축 기준>

		<u> </u>
구분	빈도의 크기	기준
빈번	3	1일에 1회 정도
가끔	2	1주일에 1회 정도
거의 없음	1	3개월에 1회 정도

구분	강도의 크기	기준
대	3	사망(장애 발생)
중	2	휴업 필요
소	1	비치료

🎏 어떻게 허용 가능 여부를 결정하는가?

- o 빈도와 강도를 곱하거나 더해서 나온 **위험성의 크기는 다양한** 숫자로 나타나게 됩니다.
- o 이 숫자가 바로 유해·위험요인의 위험성의 크기이며, 이를 사전에 근로자들과 상의하여 준비한 "허용 가능한 위험성의 크기"와 비교해 봅니다
- 예를 들어 "3×3" 평가방법을 사용하면 유해·위험요인의 위험성 크기는 1에서부터 9까지의 숫자로 나타나게 됩니다.
 - * 1×1=1, 1×2=2, 1×3=3 2×1=2, 2×2=4, 2×3=6 3×1=3, 3×2=6, 3×3=9
 - 우리 사업장에서는 3까지의 위험성 크기만을 허용 가능하다고 정해 놓았다면, 유해·위험요인의 위험성이 4, 6, 9에 해당하는 경우에는 위험성 감소대책의 수립 · 이행이 필요하다는 것을 자연스럽게 알게 됩니다.

Ø 허용 가능한 위험성 수준인지 여부의 결정 예시

위험성의 크기	허용 가능 여부	개선 여부			
4~9	허용 불가능	개선책 마련·이행			
1~3	허용 가능	(필요시) 개선			

허용 불가능한 위험이므로, 개선대책 마련·이행

③ 위험성 감소대책 수립·실행

[위험성평가 지원시스템 위험성 감소대책 수립·실행 사용 예시]

세부작업	유해 위험요인 파악							
	위험분류	위험발생 상황 및 결과	위험성 감소대책	개선후 위험성	개선 예정일	완료일	담당자	비고
원료입고	전기적	인화성액체(유기용제) Loading 중 정전기 점화 에 의한 화재/폭발 위험	정전기의 발생 억제/제거 조 치(접지/배관 Bonding)	4 (낮음)	2023-02-16 🏢	2023-02-15	김반응	
배합/반응	기계적	반응기주변(2F) 작업 시 미끄러지거나 넘어짐에 의한 떨어짐 위험	고소작업대를 도입하여 반응 기 상부 시 고 소작업대 사용	4 (낮음)	2023-03-24 🏢	2023-03-17	이공무	

烃 무엇을 어떻게 조치하여야 하는가?

- 유해·위험요인에 대한 **개선대책이 없거나 현재의 조치**가 근로자들에게 **적절한 보호를 제공하지 않는 경우**에는 위험성의 수준을 낮추기 위한 추가적인 개선대책이 필요합니다.
- o 개선대책을 수립할 때에는 꼭 지켜야 할 순서가 있습니다.
- 위험성 수준이 높은 유해·위험요인을 위험성 감소대책 마련의 우선 순위에 두어야 하며, 조치사항을 마련할 때에는 법령에 규정된 방법이 있는지 먼저 알아보고, 법령에 규정된 대로 조치하여야 합니다.
 - ① 위험작업을 아예 폐지하거나, 기계·기구, 물질의 변경 또는 대체를 통해 위험을 본질적으로 제거하는 방법을 우선 고려합니다.
 - ② 위 방법이 어렵다면, 인터록, 안전장치, 방호문, 국소배기장치 설치 등 유해·위험요인의 위험성이나 접근가능성을 줄입니다.
 - ③ 남는 위험에 대해서는 작업매뉴얼 정비, 출입금지·작업허가 제도 등 관리적 방법을 고려합니다.

- ④ 개인보호구의 사용은 최종적으로 고려되어야 하며, 실시 담당자를 지정하고 언제까지 실시가 완료되었는지를 점검합니다.
 - ※ 상세한 내용은 Ⅲ. 참고자료「5. 위험성 감소대책 수립 순서」에서 안내하고 있습니다.
- 위험성평가 지원시스템에서는 우리 사업장에서 실시한 위험성평가 결과를 엑셀로 다운로드 받거나, 인쇄할 수 있는 기능을 제공하고 있습니다.

[위험성평가 지원시스템 평가결과 보기 화면]

예시

위험성평가 지원시스템(KRAS)의 빈도 강도법을 적용한 결과서(기록) 예시

작업 공정명: 접착제 제조						험성평가				평가일시: 2023-02-10		
세부 작업명		유해위험요인 파악	현재의 안전보건조치	현재위험성			위험성 감소대책	개선후 위험성	개선 예정일	개선 완료일	담당자	
작업명	위험분류	위험발생 상황및결과	안전보건조치	가능성 (빈도)	중대성 (강도)	중내성 (강도) 위험성	기업을 심포네적	위험성	예정일	완료일	급당사	
원자재 보관	기계적 요인	원자재 창고 출입구에 적재물이 쌓여있어 지게차 운행 중 보행중인 근로자와 충돌할 위험	1. 창고 출입구에 지게차 통행 시 경보음 발생	4	4	16	1. 창고 출입구 주변 적재물 이동하여 시야확보 2. 출입구에 반사경설치 3. 지게차와 근로자 이동동선 구분	8	'23년도 1분기	′23.04.02	김원료	
원료 투입	화학 (물질)적 요인	원료투입 시 반응기 원료투입구로 화학물질 증기(톨루엔 등)가 작업장으로 확산되어 작업자가 노출되어 직업병 발생 위험	1. 작업자 보호구(방독마스크) 지급 및 착용 2. 반응기 원료 투입구에 국소배기 장치 설치 및 사용	3	1	3	-	-	-	-	-	
배합	기계적 요인	리본믹서 투입구(1.2m*0.6m)로 포대형태(20kg)의 원료를 투입 할 때 균형을 잃고 리본믹서 내부로 근로자가 추락할 위험	-	4	2	8	1. 원료투입구의 크기를 조정 (0.4m·0.4m) 1. 2. 투입구에 메쉬 형태 망 설치	2	`23.03.24	23.03.20	김원료	
반응	전기적 요인	반응기에 상부 원료투입구에서 인화성액체(유기용제) 투입 중 낙차로 인한 정전기 발생으로 화재/폭발 위험	1. 대전방지용 복장 및 도구 사용 - 대전방지용 작업복 및 작업화, 작업장비닥 도전성 조치 2. 반응기 및 배관 본딩 접지	3	4	12	1. 딥파이프 설치 등 원료투입 방법 개선	8	'23.02.16	23.02.15	이공무	
유지/ 보수	기계적 요인	압력용기 상부에 이동식 사다리를 걸쳐놓고 안전밸브 테스트 시 균형 상실로 인한 추락 위험	1. 2인 1조 작업 실시 2. 이동식사다리 아웃트리거 사용	2	2	4	1. 난간이 설치된 이동식비계 또는 말비계 구매·사용	2	′23.02.28	′23.03.02	이공무	

^① 관련근거 (선택사항
규칙 제11조 (작업장의 출입구) 제22조 (통로의 설치)
규칙 제442조 (관리대상 유해물질과 관계되는 설비) 제450조 (호흡용보호구 의 지급 등)
규칙 제43조 (개구부 등의 방호 조치)
규칙 제325조 (정전기로 인한 화재 폭발 등 방지)
규칙 제42조 (추락의 방지)

①관련근거: 파악된 유해·위험요인과 관련된 법령 및 기준을 기록하여 개선대책 수립 시 활용(선택적 사항)