Formelsammlung magnetisches Feld:

Zusammenhang der magnetischen Größen:
$$\underbrace{I \Leftrightarrow \Theta \Leftrightarrow H \Leftrightarrow B \Leftrightarrow \Phi}_{V} \Leftrightarrow U_{i}$$

Formeln:
$$\Theta = \sum I * N = \sum H * l$$
, $B = \mu * H$, $\Phi = B * A_{Fe}$, $\Phi_{\nu} = \Phi * N$, $L = \frac{\Phi_{\nu}}{I}$, $U_{i} = -\frac{\Delta \Phi_{\nu}}{\Delta t} = -L\frac{\Delta I}{\Delta t}$, $\mu = \mu_{0} * \mu_{r}$, $\mu_{0} = 4 * \pi * 10^{-7} Vs/Am \sim 1.25661 * 10^{-6} Vs/Am$

Magnetische und elektrische Feldgrößen und Einheiten

magnetisches Feld	f	1		
Durchflutung	Θ	Theta	A, Awdg	
Windungszahl	N		1, Wdg	
Strom	I		A	
magnetische Feldstärke	Н	1,25-1,5	A/m	
Permeabiliät	μ	Му	Vs/Am	
absolute Permeabiliät	μ_0	My Null	Vs/Am	
relative Permeabiliät	μ_r	My R	1	
magnetische Flussdichte	В	v"	T, Vs/m ²	Tesla
magnetischer Fluss	Φ	Phi	Wb, Vs	Weber
verkettete Fluss	Ф	Phi V	Wb, Vs	
Induktivität	L		H, Vs/A	Henry
magnetischer Widerstand	Rm		1/H, A/Vs	
magnetischer Leitwert	Λ, A_1	Lambda	H, Vs/A	

	elektrisches Feld	
U		V
E		V/m
3	Epsilon	As/Vm
ε0	Epsilon Null	As/Vm
$\epsilon_{\rm r}$	Epsilon R	1
D		As/m ²
Ψ	Psi	C, As
Q		C, As
С		
		1

Spezielle Formeln (Sonderformen):

für einen unendlich langen, geraden Leiter

außerhalb
$$r_a$$
: $H = \frac{I}{l_m} = \frac{I}{2*\pi*r}$, $\Theta = I$
innerhalb r_a : $H = \frac{\Theta_L}{l_m} = \frac{I*r}{2*\pi*r_a^2}$, $\Theta = \frac{I*r^2}{r_a^2}$

für einen unendlich langen, geraden Hohlleiter

außerhalb von r_a : $H = \frac{I}{l_m} = \frac{I}{2 * \pi * r}$, $\Theta = I$ (gleich wie bei Leiter)

innerhalb von r_i : H=0, $\Theta_L=0$

Koaxialkabel: Überlagerungsprinzip: $\Theta_G = \Theta_1 \pm \Theta_2$, $H = \frac{\Theta_G}{l} = H_1 \pm H_2$