NAME: Final version 024

MAT-181 FINAL TAKE-HOME EXAM

This exam is to be taken without discussion or correspondance with any human. Please show work!

question	available points	earned points
1	10	
2	15	
3	10	
4	10	
5	10	
6	10	
7	15	
8	20	
EC	5	
EC	5	
Total	100	

1. (10 Points)

For each description below, choose which histogram best fits (I, II, III, or IV). Each histogram should be used once.

- (a) The distribution of hours spent per week reading by adults. In this distribution, many people do not read much, and a similar number of people read a lot.
- (b) The distribution of ages at a skilled nursing facility, where most of the patients are elderly but a few are quite young.
- (c) The distribution of heights of adult women
- (d) The distribution of test scores on a very difficult exam, in which most students have poor to average scores, but a few did quite well.

2. (15 Points)

In a deck of strange cards, there are 418 cards. Each card has an image and a color. The amounts are shown in the table below.

	gray	green	indigo	orange	yellow	Total
bike	22	45	33	15	40	155
jigsaw	36	41	13	18	12	120
mop	19	31	25	39	29	143
Total	77	117	71	72	81	418

(a) What is the probability a random card is orange given it is a mop?

(b) What is the probability a random card is a jigsaw given it is indigo?

(c) What is the probability a random card is either a jigsaw or yellow (or both)?

(d) Is a bike or a jigsaw more likely to be orange?

(e) What is the probability a random card is indigo?

(f) What is the probability a random card is both a mop and orange?

(g) What is the probability a random card is a mop?

3. (10 points)

A farm produces 4 types of fruit: A, B, C, and D. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

Type of fruit	Mean mass (g)	Standard deviation of mass (g)
Α	86	11
В	138	5
C	84	15
D	126	13

One specimen of each type is weighed. The results are shown below.

Type of fruit	Mass of specimen (g)
Α	71.92
В	143.1
C	59.4
D	113.8

Which specimen is the most unusually far (in either direction) from average (relative to others of its type)?

4. (10 points)

A tree's leaves were found to be normally distributed with a mean of 60.2 millimeters and a standard deviation of 7.9 millimeters. If you pick a random leaf from that tree, what is the probability the length is between 64.8 and 72.7 millimeters?

5. (10 points)

A species of duck is known to have a mean weight of 195.7 grams and a standard deviation of 28 grams. A researcher plans to measure the weights of 49 of these ducks sampled randomly. What is the probability the **sample mean** will be between 191.7 and 199.7 grams?

6. (10 points)

An ornithologist wishes to characterize the average body mass of *Dendroica dominica*. She randomly samples 25 adults of *Dendroica dominica*, resulting in a sample mean of 9.22 grams and a sample standard deviation of 1.62 grams. Determine a 95% confidence interval of the true population mean.

_		
7.	(15	points)

A student is taking a multiple choice test with 300 questions. Each question has 2 choices. You want to detect whether the student does significantly better than random guessing, so you decide to run a hypothesis test with a significance level of 0.05.

Then, the student takes the test and gets 166 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the test statistic (z or t), draw a sketch, and determine the p-value.

- (d) Decide whether we reject or retain the null hypothesis.
- (e) Did the student do significantly better than random guessing?

8. (20 points) [Note: this question uses 2 pages.] You have collected the following data:

X	У	xy
930	64	
950	61	
500	75	
570	72	
460	78	
630	66	
230	83	
870	67	
$\sum X =$	$\sum y =$	$\sum xy =$
$\bar{X} =$	$\bar{y} =$	
$S_X =$	S _y =	

- (a) Complete the table.
- (b) Calculate the correlation coefficient (r) using the formula below.

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

(c) The least-squares regression line will be represented as y = a + bx. Determine the parameters (b and a) using the formulas below.

$$b=r\frac{s_y}{s_x}$$

$$a = \bar{y} - b\bar{x}$$

(d) Write the equation of the regression line (using the calculated values of a and b.)

(e) Please plot the data and a corresponding regression line.

9. (Extra credit: 5 points)

Let each trial have a chance of success p = 0.19. If 211 trials occur, what is the probability of getting more than 30 but at most 40 successes?

In other words, let $X \sim \text{Bin}(n = 211, p = 0.19)$ and find $P(30 < X \le 40)$.

Use a normal approximation along with the continuity correction.

10. (Extra credit: 5 points)

A null hypothesis claims a population has a mean μ = 220. You decide to run two-tail test on a sample of size n = 11 using a significance level α = 0.1.

You then collect the sample:

264.7	283.1	262.6	138.7	265.2
214.9	230.8	292.7	221.8	226.4
293.2				

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?