Estrategias de prevención de interbloqueos

Adaptación (ver referencias al final)

Condiciones para un interbloqueo

1. Exclusión mutua

- Existe un recurso compartido que se está usando por un hilo/proceso a la vez.
- Los que necesiten el recurso deben esperar hasta que se libere.

2. Retención y espera

• Un hilo mantiene/bloquea un recurso compartido y a la vez espera a que se liberen otros recursos bloqueados por otros hilos.

3. No expropiación

Los recursos son liberados a voluntad por quien los usa.

4. Espera circular

• T_1 espera por recurso asignado a T_2 y T_2 espera por un recurso asignado a T_1

Estrategias de prevención

- Asegurarse que al menos una de las condiciones anteriores no se de para prevenir la ocurrencia de un interbloqueo.
- Eliminar alguna de las condiciones anteriores.

Exclusión mutua

- La condición de exclusión mutua no se puede eliminar ya que algunos recursos son intrínsecamente no compartibles.
- Por ejemplo el bloqueo de un mutex no puede ser compartido por varios hilos/procesos.
- No todos los recursos compartidos tiene acceso en exclusión mutua.
 - P. Ej.: acceso a archivos de solo lectura.
- En este ejemplo tenemos cuatro recursos que son compartidos (a, b, c y d). Sin embargo, solo un vehículo a la vez puede usar uno de ellos.

Retención y espera

- Habría que asegurarse de que cuando un hilo/proceso solicite un recurso, éste no retenga ningún otro recurso.
- Solicitud de nuevo recursos: liberar recursos retenidos para intentar obtenerlos luego.
- Cada hilo/proceso solicita y se le asigna
 (a priori) todos los recursos que
 necesita para la ejecución. No se ejecuta
 hasta que no tenga todos los recursos.
- Vehículo No. 3 solicita con anterioridad intersecciones c y d libres.
- La intersección c queda sin poder usar por el vehículo No. 2.

No expropiación

- Si un hilo/proceso solicita un recurso mientras mantiene otro, todos sus recursos se expropian.
- Recursos expropiados se añaden a recursos por los que espera el hilo/proceso.
- El hilo o proceso se reinicia cuando de nuevo tenga acceso los recursos que tenía más los nuevos que solicita.

No expropiación

- Se expropian los recursos del vehículo 3.
- Vehículo 3 queda a la espera de que las intersecciones c y d queden disponibles.
- Implica devolver el sistema a un estado anterior.
 - Guardar el estado anterior
 - Restaurar el estado anterior
 - Pueden existir muchos vehículos atrás.
- Registros de CPU, registros de BD, transacciones de BD

Espera circular

- Definir un ordenamiento lineal de los recursos
 - Solicitar a antes de b
 - Solicitar b antes de c
 - Solicitar c antes de d
- Una vez obtenido el recurso, solo los que siguen en orden pueden obtenerse.
- Usar solo un recurso en cualquier momento, si necesita un segundo recurso, liberar el primero.

Estrategias de prevención

- Consiste en diseñar protocolos para la solicitud y la asignación de recursos
- Efectos secundarios
 - Baja utilización de los recursos.
 - Recursos que se quedan sin asignar durante largos períodos de tiempo.
 - Reducción de Throughput del sistema.

Referencias

- Silberschatz, A., Baer Galvin, P., & Gagne, G. (2018). Deadlock prevention. In *Operating Systems Concepts* (10th ed., pp. 327–330). John Wiley & Sons, Inc.
- Tanenbaum, A. S. (2009). Cómo prevenir interbloqueos. In *Sistemas Operativos Modernos* (3rd ed., pp. 454–457). Pearson Educación.