Homework 1 Tony Samour Wednesday, September 6, 2023 11:13 AM APPM 4600 1. Consider the polynomial $p(x) = (x-2)^9 = x^9 - 18x^8 + 144x^7 - 672x^6 + 2016x^5 - 4032x^4 + 5376x^3 - 4608x^2 + 2304x - 512.$ i. Plot p(x) for $x = 1.920, 1.921, 1.922, \dots, 2.080$ (i.e. x = [1.920: 0.001: 2.080];) # All code attached separately evaluating p via its coefficients. 0.5 0.0 g -1.0 ii. Produce the same plot again, now evaluating p via the expression $(x-2)^9$. 1.0 0.5 0.0 1.96 1.98 2.00 2.02 2.04 2.06 iii. What is the difference? What is causing the discrepancy? Which plot is correct? # there is only 1 root at x = 2, whereas the expanded plot has multiple roots.

In this instance, multiplying by the conjugate results in the following: $ Sin^{2}(x) - Sin^{2}(y), which still results in concellation when x \approx y Sin(x) + Sin(y), which is no bright problematic since the sin(y) - Sin(y) = 2 cos(x+y)/2 \cdot Sin(x-y), which is no bright problematic since the sin(y) is contained within the Finetion.$	$r x \simeq 0.$
square root. $(\sqrt{X+1}-1)\cdot (\sqrt{X+1}+1) = \frac{X+1-1}{\sqrt{X+1}+1} = \frac{X}{\sqrt{X+1}+1} \text{, which no larger has}$ $(\sqrt{X+1}+1) = \frac{X}{$	
i. Evaluate $\sin(x) - \sin(y)$ for $x \simeq y$. In this instance, multiplying by the conjugate results in the following: $\sin^{2}(x) - \sin^{2}(y)$ $\sin(x) - \sin(y)$ $\sin(x) + \sin(y)$ Instead, will try using trig identities. $\sin(x) - \sin(y) = 2\cos\left(\frac{x+y}{2}\right) \cdot \sin\left(\frac{x-y}{2}\right), which is no bright problematic since the finite of the example of the finite of the finite$	m, I would multiply by the conjugate to eliminate the
i. Evaluate $\sin(x) - \sin(y)$ for $x \simeq y$. In this instance, multiplying by the conjugate results in the following: $\sin(x) - \sin(y), \text{which still results in concellation when } x \approx y$ $\sin(x) + \sin(y), \text{will try using trig identities.}$ $\sin(y) - \sin(y) = 2\cos\left(\frac{x + y}{2}\right) \cdot \sin\left(\frac{x - y}{2}\right), \text{which is no brace problematic since the function.}$ $\sin(y) - \sin(y) = 2\cos\left(\frac{x + y}{2}\right) \cdot \sin\left(\frac{x - y}{2}\right), \text{which is no brace problematic since the function.}$ $x - y = $	+1) = $X+1-1=$ X , which no larger has 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Instead, will try using trig identities. Sin(x) - $\sin(y) = 2\cos\left(\frac{x+y}{2}\right) \cdot \sin\left(\frac{x-y}{2}\right)$, which is no brace problematic since if $x-y$ is contained within the function. Evaluate $\frac{1-\cos(x)}{\sin(x)}$ for $x \simeq 0$. - $\cos(x)$	wiltiplying by the conjugate results in the following:
$Sin(x) - Sin(y) = 2 \cos\left(\frac{x+y}{2}\right) \cdot Sin\left(\frac{x-y}{2}\right), \text{ which is no brace problematic since } 1$ $Evaluate \frac{1-\cos(x)}{\sin(x)} \text{ for } x \simeq 0.$ $ -\cos(x) \cdot \frac{(1+\cos(x))}{(1+\cos(x))} $ $ Lultiply by conjugate of unimerator 1-\cos(x) 1-\cos(x) $	
Evaluate $\frac{1-\cos(x)}{\sin(x)}$ for $x \simeq 0$. $ \begin{vmatrix} 1 - \cos(x) & (1 + \cos(x)) \\ \sin(x) & (1 + \cos(x)) \end{vmatrix} $ $ \begin{vmatrix} 1 - \cos(x) & (1 + \cos(x)) \\ \sin(x) & (1 + \cos(x)) \end{vmatrix} $ $ \begin{vmatrix} 1 - \cos^2(x) & \cos^2(x) \\ \cos^2(x) & \cos^2(x) \end{vmatrix} $	1 using trig identities.
Evaluate $\frac{1-\cos(x)}{\sin(x)}$ for $x \simeq 0$. $ \begin{vmatrix} 1 - \cos(x) \\ -\cos(x) \end{vmatrix} = \frac{(1+\cos(x))}{(1+\cos(x))} $ $ 1 - \cos^2(x) $	= $2\cos\left(\frac{x+y}{2}\right)\cdot\sin\left(\frac{x-y}{2}\right)$, which is no larger problematic since the
$\frac{5in(x)}{1-\cos^2(x)}$	X-y is contained within the truetion.
$5.n(x)$ (1+cos(x)) unmerator $1-\cos^2(x)$: 0.
$\frac{\sin(x)}{1-\cos^2(x)}$	(1+cos(x)) Multiply by conjugate of
	(1+coo(x)) numerator
	x)

3.) 3. Find the second degree Taylor polynomial
$$P_2(x)$$
 for $f(x) = (1+x+x^3)\cos(x)$ about $x_0 = 0$.

[aylor Polynemial Formula:

 $P_n(y) = \sum_{n=0}^{7} \frac{F^{(n)}(c)}{n!} (x-c)^n$

$$F'(x) = (1 + 3x^2)\cos(x) - \sin(x)(1 + x + x^3)|_{x_0 = 0}$$

$$f''(x) = \left[(6x) \cdot \cos(x) - (1 + 3x^2) \sin(x) \right] - \left[\cos(x) (1 + x + x^3) + \sin(x) (1 + 3x^2) \right] = -1$$

:
$$P_{2}(x) = | + x - \frac{7}{2}x^{2}$$

(a) Use $P_2(0.5)$ to approximate f(0.5). Find an upper bound for the error $|f(0.5) - P_2(0.5)|$ using the error formula and compare it to the actual error.

$$P_2(0.5) = |+0.5 - \frac{1}{2}(0.5)^2 = 1.375$$

$$R_2(x) = \left| \frac{f^{n+1}(c)}{(n+1)!} \cdot (x-c)^{n+1} \right| - \text{Lagrange error bound}$$

$$F'''(x) = \left[\left(b \cdot \cos(x) - (6x) \cdot \sin(x) \right) - \left(6x \sin(x) + (1+3x^2)\cos(x) \right) \right]$$

$$-\left[-\sin(x)\cdot(1+x+x^{3})+(1+3x^{2})(\cos(x))+(\cos(x))(1+3x^{2})+(6x\sin(x))\right]_{x=6}$$

$$F'''(0.5) = 2.878$$
 .. $M = 3$

$$R_2(0.5) \leq \frac{3}{3!}(0.5-0)^3 = 0.0625$$
 (Layrange Error Bound)

$$|f(0.5) - P_2(0.5)| = |1.62494 - 1.375| = 0.249938$$
 (abs. error)

$$|F(0.5) - P_2(0.5)| = ||.62494 - 1.375|| = 0.181773$$
 (rew: error)

(b) Find a bound for the error $|f(x) - P_2(x)|$ when $P_2(x)$ is used to approximate f(x).

This will be a function of x.

$$\frac{\left|F(y)-P_2(x)\right|}{\left|P_2(x)\right|} = \frac{\left(\left|+x+x^3\right|\cdot\cos(x)-\left(\left|+x-\frac{x^2}{2}\right|\right)}{\left(\left|+x-\frac{x^2}{2}\right|\right)}$$

(c) Approximate $\int_0^1 f(x)dx$ using $\int_0^1 P_2(x)dx$.

$$\int_{0}^{1} f(x) dx \simeq \int_{0}^{1} P_{2}(x) dx$$

$$\int_{0}^{1} P_{2}(x) dx = \int_{0}^{1} (1 + x - \frac{x^{2}}{2}) dx$$

$$= (x + \frac{x^{2}}{2} - \frac{x^{3}}{6}) \Big|_{0}^{1} = (1 + \frac{1}{2} - \frac{1}{6}) - 0$$

$$\int_{3}^{1} P_{2}(x) dx = 1.3$$

(d) Estimate the error in the integral.

- 4. Consider the quadratic equation $ax^2 + bx + c = 0$ with a = 1, b = -56, c = 1.
 - (a) Assume you can calculate the square root with 3 correct decimals (e.g. $\sqrt(2) \approx 1.414 \pm \frac{1}{2} 10^{-3}$) and compute the relative errors for the two roots to the quadratic when computed using the standard formula

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$r_{112} = -\frac{(-56)}{2} \pm \frac{(-56)^2 - 4 \cdot (1)(1)}{2(1)}$$

$$= 56 \pm \sqrt{3136-4}$$

(b) A better approximation for the "bad" root can be found by manipulating $(x-r_1)(x-r_2)=0$ so that r_1 and r_2 can be related to a,b,c. Find such relations (there are two) and see if either can be used to compute the "bad" root more accurately.

$$\chi^2 - 56x + 1 = 0$$

X2	- 56x	+ = O			r ₂ = (5.018	(Good	root)			
(x2-	56x +	784)-	- 783 = C	S							
			783=6		[2 = -	6 + Jb	² -4ac	(-b-	Jb2-4ac	.)	
						Zo		(-b-v	102-4ac		
	(X · Z i	3) = 7	83								
					=	76		= 4	55.987		
	C.c. =	± 5783	3 + 78		- b-	162-4ac	- a=1, b=-5	56, C=1			
	1110										
r,	= 55.	9821									
۲۲	= 0.0	17863									
٥	ince	tere	is no	difference	w'ithin	the 1	root, co	mpleting	the	squere	ìs
W	none co	ortetuq m	naly ac	curate			Coot, co	J			
			, -								
万 5.	Cancella	tion of to	erms. Cons	sider compu	ting $y = x$	$x_1 - x_2$ w	ith $\tilde{x}_1 = x_1$ he operation	$+\Delta x_1$ and	l .		
	Cancena					1 TC	he enquetion	$1 x_1 - x_2 i$	s carried		
					e exact v	alues. If t	ne operation	1 10 1 10 2 11			
				tations to the $\Delta x_1 - \Delta x_2$.	e exact v	alues. If t	ne operation	1 11 11 112 11	-		
	out exactl	y we have	$\hat{y} = y + \underline{\mathcal{L}}$	$\underbrace{\Delta x_1 - \Delta x_2}_{\Delta y}.$			and one larg		10		
	out exactl	y we have	$\hat{y} = y + \underline{\mathcal{L}}$	$\underbrace{\Delta x_1 - \Delta x_2}_{\Delta y}.$					10		
	out exactl Play with	y we have	values of x.	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{One \ really}.$	small val	ue (< 1)		ge value >	10		
(a)	out exactl Play with	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{One \ really}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{One \ really}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{One \ really}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{One \ really}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		
(a)	Play with Find uppe	y we have different r bounds o	$e \ \tilde{y} = y + \underbrace{(\mathcal{L})}_{values \ of \ x}.$ on the absolu	$\underbrace{\frac{\Delta x_1 - \Delta x_2}{\Delta y}}_{\text{One really}}.$	small val	ue (< 1)	and one larg	ge value >	10		