Week 5: Collaborative Based RSs - Part I

CS3448: Recommender Systems / CSX4207/ITX4207: Decision Support and Recommender Systems

Asst. Prof. Dr. Rachsuda Setthawong

Objectives

- To understand the concept of collaborative based filtering approach
- To be familiar with User-based Nearest Neighbor and Item-based Nearest Neighbor algorithms
- To introduce additional proximity measure
- To understand the problems of collaborative based filtering approach

Outlines

- Collaborative Recommendation
- User-based Nearest Neighbor (NN) Recommendation
- Measures to Determine Proximity between Users
- Neighborhood Selection
- Item-based Nearest Neighbor (NN) Recommendation
- Pros and cons of CF based approach
- Problems with CF based approach

Main idea

- To exploit information about the past behavior/opinions of an existing user community.
- To predict which items the target user will most probably like.

How to Generate Recommendation Using Collaborative Based Filtering Approach

Outlines

- Collaborative Recommendation
- User-based Nearest Neighbor (NN) Recommendation
- Measures to Determine Proximity between Users
- Neighborhood Selection
- Item-based Nearest Neighbor (NN) Recommendation
- Pros and cons of CF based approach
- Problems with CF based approach

Pure Collaborative Approaches

• Input:

A matrix of given user-item ratings

	Item 1	Item 2	Item 3	Item 4		
User 1	3	1	2	3	•••	
User 2	4	4 3 4		3	•••	
User 3	3	3	1	5	•••	
	•••	•••	•••	•••		

Outputs:

- A (numerical) prediction of what degree the target user will like/dislike a certain (unseen) item
- A list of k recommended items

Asst. Prof. Dr. Rachsuda Setthawong

Memory-based VS Model-based Approaches

Memory-based approach

- Modeless (no model created)
- Directly applying rating matrix to find neighbors and to recommend items.
- Time consuming and not scalable
- Example, user-based NN

Model-based approach

- Offline process the raw data.
- At run time, require only the "learned" model to make prediction.
- Update/retrained the model periodically.
- Example, matrix factorization methods, association rule mining, etc.

User-based Nearest Neighbor (NN) Recommendation - Main Idea

- Given
 - A rating database containing:
 - The set of users: $U = \{u_1, \dots, u_n\}$
 - The set of products (items): $P = \{p_1,...,p_m\}$
 - R as $n \times m$ matrix of ratings $r_{i,j}$ with $i \in 1...n, j \in 1...m$
 - The rating values: 1 5 (1: strongly dislike and 5: strongly like)
 - The ID of the current (active) user
- Step 1: Find *k*-NN users that had similar preferences to those of the active user in the past.
- Step 2: Predict ratings of an unseen product *p* based on the ratings for *p* made by *k*-NNs.

Assumptions in Collaborative Approach

- 1. If users had similar tastes in the past, they will have similar tastes in the future.
- 2. User preferences remain stable and consistent over time.

Outlines

- Collaborative Recommendation
- User-based Nearest Neighbor (NN) Recommendation
- Measures to Determine Proximity between Users
- Neighborhood Selection
- Item-based Nearest Neighbor (NN) Recommendation
- Pros and cons of CF based approach
- Problems with CF based approach

Example 1

• Goal: to determine whether Alice will *like* or *dislike* "Item 5"

Target User —

		Item 1	Item 2	Item 3	Item 4	Item 5	
-	Alice	5	3	4	4	?	
	User 1	3	1	2	3	3	
	User 2	4	3	4	3	5	
	User 3	3	3	1	5	4	
	User 4	1	5	5	2	1	

User-based Nearest Neighbor (NN) Recommendation

- Step 1: Select the value of k for nearest neighbored users to the target user.
- Step 2: Calculate Similarity between the target user and other users (using Pearson's Correlation Coefficient (PCC))
- Step 3: Predicting Product Rating

Step 1: Select the value of *k* for nearest neighbored users to the target user.

- E.g.,
 - $k = 1 \leftarrow$ select the most similar user to the target user
 - $k = 10 \leftarrow$ select the top-10 most similar users to the target user
 - $k = 20 \leftarrow$ select the top-20 most similar users to the target user

Step 2: Calculate Similarity between the target user and other users (using Pearson's Correlation Coefficient (PCC))

To determine similarity between user preferences.

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \overline{r_a})(r_{b,p} - \overline{r_b})}{\sqrt{\sum_{p \in P} (r_{a,p} - \overline{r_a})^2} \sqrt{\sum_{p \in P} (r_{b,p} - \overline{r_b})^2}}$$

- where,
 - $r_{a,p}$, $r_{b,p}$ is a rating of user a (or b) on product p.
 - ** \bar{r}_a , \bar{r}_b is the average rating of the <u>common rated items</u> of user a (or b).
 - P represents the set of <u>common rated items</u> by user a and b.
- Interpretation (in the range of -1 to 1):
 - □ -1 = strongly negative correlation
 - 1 = strongly positive correlation

Note: The common rated items = The items that are both rated by users a and b.

An Example of Calculating PCC

To determine similarity between user preferences.

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	5	3	4	4	?
User 1	3	1	2	3	3

$$sim(Alice, User1) = \frac{\sum_{p \in P} (r_{Alice,p} - \overline{r_{Alice}}) (r_{User1,p} - \overline{r_{User1}})}{\sqrt{\sum_{p \in P} (r_{Alice,p} - \overline{r_{Alice}})^2} \sqrt{\sum_{p \in P} (r_{User1,p} - \overline{r_{User1}})^2}}$$

$$\overline{r_{Alice}} = \frac{5+3+4+4}{4} = 4$$

$$\overline{r_{Alice}} = \frac{5+3+4+4}{4} = 4$$

$$\overline{r_{User1}} = \frac{3+1+2+3}{4} = 2.25$$

$$\sum_{p \in P} (r_{Alice,p} - \overline{r_{Alice}})^2 = 1.4142$$

$$\sqrt{\sum_{p \in P} (r_{Alice,p} - \overline{r_{Alice}})^2} = 1.4142 \qquad \sqrt{\sum_{p \in P} (r_{User1,p} - \overline{r_{User1}})^2} = 1.6583$$

$$sim(Alice, User1) = \frac{(5-4)(3-2.25)+(3-4)(1-2.25)+...+(4-4)(3-2.25)}{(1.4142)(1.6583)} = 0.85$$

Asst. Prof. Dr. Rachsuda Setthawong

An Example of Calculating PCC:

(The similarity between Alice and other users using PCC)

	Pearson Correlation Coefficient
sim(Alice,User1)	0.85
sim(Alice,User2)	0.7
sim(Alice,User3)	О
sim(Alice,User4)	-0.79

Asst. Prof. Dr. Rachsuda Setthawong

Comparing Alice with Two Other Users Using PCC

The original ratings of <u>common rated items</u> of Alice and other two users:

	Item1	Item2	Item3	Item4
Alice	5	3	4	4
User1	3	1	2	3
User4	1	5	5	2

PCC of Alice and other two users:

	PCC
sim(Alice,User1)	0.85
sim(Alice,User4)	-0.79

Strongly positive correlation

Strongly negative correlation

Step 3: Predicting Product Rating

- The prediction is made by adjusting the average rating of the target user with the similarity and the opinion of *k*-NN.
- The formula pred(a,p) for computing a prediction for the rating of the target user a for item p considers
 - ** $\overline{r_a}$: the average rating of all rated items of a
 - $r_{b,p}: k$ -NNs' opinion (deviation from their (individual) means)
 - sim(a,b): relative proximity of the k nearest neighbors

$$pred(a,p) = \overline{r_a} + \frac{\sum_{b \in k} sim(a,b)(r_{b,p} - \overline{r_b})}{\sum_{b \in k} sim(a,b)}$$

^{**:} In the above eq., all known ratings of the target user are meant by $\overline{r_a}$ as we are interested in the user's global rating bias. Ref: http://www.recommenderbook.net/media/corrigenda.pdf

An Example of Calculating the Predicted rating of Item 5 for Alice based on Ratings of **2**-NNs (User1 and User2)

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	5	3	4	4	?
User 1	3	1	2	3	3
User 2	4	3	4	3	5

	Pearson Correlation Coefficient
Sim(Alice,User1)	0.85
Sim(Alice,User2)	0.7

$$\overline{r_{Alice}} = \frac{5+3+4+4}{4} = 4$$
the individual user's
$$\overline{r_{User1}} = \frac{3+1+2+3+3}{5} = 2.4$$
average rating of ALL rated items
$$\overline{r_{User2}} = \frac{4+3+4+3+5}{5} = 3.8$$

$$pred(Alice, Item5) = \overline{r_{Alice}} + \frac{\sum_{b \in \{User1, User2\}} sim(Alice, b)(r_{b, Item5} - \overline{r_b})}{\sum_{b \in \{User1, User2\}} sim(Alice, b)}$$

$$pred(Alice, Item5) = 4 + \frac{0.85(3-2.4) + 0.7(5-3.8)}{0.85+0.7} = 4.88$$

Other Measures to Determine Proximity between Users - 1/2

- Spearman's rank correlation coefficient
 - Case 1: no tied ranks

•
$$\rho = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)}$$

- *d* = the difference between the two ranks of each item
- n = number of cases
- Case 2: having tied ranks

$$\rho = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2} \sum_{i} (y_{i} - \bar{y})^{2}}}$$

• i = paired score

User A score	User B score	Rank(User A's score)	Rank(User B's score)	d	d^2
50	30	1	2	1	1
30	20	3	3	0	0
40	10	2	4	2	4
20	40	4	1	3	9

$$\sum d_i^2 = 1 + 0 + 4 + 9 = 14$$

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

$$\rho = 1 - \frac{6\times 14}{4(4^2 - 1)} = -0.4$$

Other Measures to Determine Proximity between Users - 2/2

- Mean squared difference (msd) (Shardanand and Maes 1995)
 - ¹ Measure the degree of dissimilarity between two user profiles U_a and U_b by the mean squared difference between the two profiles $(U_a U_b)^2$

$$msd(U_a, Ub) = \frac{\sum_{i=1}^{n} (r_{U_a,i} - r_{U_b,i})^2}{n}$$

- Adjusted cosine similarity
 - To be discussed in Item-based collaborative filtering

Factors Not Addressed by Pearson Correlation Coefficient

- Different weighting of controversial items and a generally liked item
 - An agreement by two users on a more controversial item has more "value" than an agreement on a generally liked item
- Too few number of co-rated items
- Too few number of agreed items

Outlines

- Collaborative Recommendation
- User-based Nearest Neighbor (NN) Recommendation
- Measures to Determine Proximity between Users
- Neighborhood Selection
- Item-based Nearest Neighbor (NN) Recommendation
- Pros and cons of CF based approach
- Problems with CF based approach

Guidelines on Neighborhood Selection

- Select neighbors who have
 - Positive correlation with the target user
 - Rating on the predicted items

- Reduce the size of the neighborhood by
 - Taking only the k NNs.
 - Defining a minimum threshold of user similarity.

Effects of Neighborhood Selection Using k NNs

- Too high *k*: **noise** is added to the prediction.
- Too small k: the **quality** of the prediction may be **negatively affected** (k < 10).

Effects of Neighborhood Selection Using a Min Threshold of User Similarity

- **Too high** threshold: (get too few neighbors)
 - May have a coverage problem (too few unseen items to suggest)

- **Too low** threshold: (get too many neighbors)
 - The neighbor sizes are NOT significantly reduced
 - → suggested items are bias to global opinion.

Problems with CF Approaches

 High Computation time for real-time predictions of millions of users and millions of catalog items in large e-commerce sites.

Outlines

- Collaborative Recommendation
- User-based Nearest Neighbor (NN) Recommendation
- Measures to Determine Proximity between Users
- Neighborhood Selection
- Item-based Nearest Neighbor (NN) Recommendation
- Pros and cons of CF based approach
- Problems with CF based approach

Asst. Prof. Dr. Rachsuda Setthawong

Alternative Approach -- Item-based Nearest Neighbor Recommendation

- Offline preprocessing
- Main idea:
 - Compute predictions using the similarity between items

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	5	3	4	4	?
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	5	4
User 4	1	5	5	2	1

Asst. Prof. Dr. Rachsuda Setthawong

The Cosine Similarity Measure

- Measures the similarity between two *n*-dimensional vectors based on the angle between them.
- $cosine_sim(v_1, v_2) = \frac{v_1 \cdot v_2}{\|v_1\| \|v_2\|}$
- Example 3,

Interpretation:

- Range of possible value is -1 and 1.
- The closer to $1 \rightarrow$ the more similar

$$cosine_sim(Item1, Item5) = \frac{3*3+5*4+4*3+1*1}{\sqrt{3^2+5^2+4^2+1^2}*\sqrt{3^2+4^2+3^2+1^2}} = 0.9941$$

- cosine_sim(Item1, Item5) = 0.9941
- $cosine_sim(Item2, Item5) = 0.7389$
- $cosine_sim(Item3, Item5) = 0.7226$
- cosine_sim(Item4, Item5) = 0.9396

Item 1	Item 5
3	3
4	5
3	4
1	1

Example 2

• Goal: Predict Alice's rating on Item 5 from 2-NN items

$$(e.g., 2-NN = Items 1 and 4)$$

	Item 1	Item 4	Item 5	
Alice	5	4	?	= a weighted average of
User 1	3	3	3	ratings 4 and 5
User 2	4	3	5	
User 3	3	5	4	
User 4	1	2	1	

The Problem with Basic Cosine Measure

- Problem: it does not take into account the differences in the average rating behavior of the users.
- Solution: using the *adjusted cosine measure* to calculate similarity between items a, b

$$sim(a,b) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u}) (r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

where,

U is the <u>subset of users</u> that rated BOTH items *a* and *b*.

Similarities between Items

Ref.: http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/itembased.html

Asst. Prof. Dr. Rachsuda Setthawong

Preprocessing Step: Adjusting Ratings

(Later Used by Adjusted Cosine Measure)

Original ratings database $(r_{u,a})$

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	5	3	4	4	?
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	5	4
User 4	1	5	5	2	1

the individual user's **average rating** of ALL rated items

 $(\overline{r_u})$

	Avg. Rating
Alice	4
User 1	2.4
User 2	3.8
User 3	3.2
User 4	2.8

Mean-adjusted ratings database

$$(r_{u,a}-\bar{r_u})$$

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	1.0	-1.0	0	0	?.
User 1	0.6	-1.4	-0.4	-0.6	0.6
User 2	0.2	-0.8	0.2	-0.8	1.2
User 3	-0.2	-0.2	-2.2	2.8	0.8
User 4	-1.8	2.2	2.2	-0.8	-1.8

Subtract the original ratings by the avg. rating

Asst. Prof. Dr. Rachsuda Setthawong

Revised Example 3

Mean-adjusted ratings

Mean-adjusted ratings					
	$(r_{u,item1} - \bar{r_u})$	$(r_{u,item5}-\overline{r_u})$:			
User1	0.6	0.6			
User2	0.2	1.2			
User3	-0.2	0.8			
User4	-1.8	-1.8			

• The adjusted cosine similarity of items a and b:

$$sim(a,b) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u})(r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

U is the subset of users that rated BOTH items *a* and *b*.

$$sim(Item1, Item5) = \frac{0.6*0.6 + 0.2*1.2 + (-0.2)*0.8 + (-1.8)*(-1.8)}{\sqrt{0.6^2 + 0.2^2 + (-0.2)^2 + (-1.8)^2}} = 0.8049$$

- *sim*(*Item*1, *Item*5) = **0.8049**
- sim(Item2, Item5) = -0.9082
- sim(Item3, Item5) = -0.7636
- sim(Item4, Item5) = 0.4331

Predicting Product Rating

- **Use** the **previous rated items** of the **target user** by **adjusting** it **with** the similarity between its co-rated items to the *unseen* (need to be predicted) item.
- A formula for computing a prediction for the rating of the target user *u* for item *p*Pre-calculated

$$pred(u, p) = \frac{\sum_{i \in ratedItems(u)} sim(i, p) \times r_{u, i}}{\sum_{i \in ratedItems(u)} sim(i, p)}$$

where i are the items rated by the target user u.

An Example of calculating the predicted rating of Item for Alice based on 2-NN (Item1 and Item4)

	Item 1	Item 4	Item 5
Alice	5	4	?

cosine_sim(Item1, Item5) =	0.8049
cosine_sim(Item4, Item5) =	0.4331

Pre-calculated

$$pred(Alice, Item5) = \frac{\sum_{i \in ratedItems(Alice)} sim(i, Item5) \times r_{Alice,i}}{\sum_{i \in ratedItems(Alice)} sim(i, Item5)}$$

$$= \frac{(0.8049 \times 5) + (0.4331 \times 4)}{0.8049 + 0.4331}$$
$$= 4.65$$

Asst. Prof. Dr. Rachsuda Setthawong

Preprocessing Data for Item-based Filtering

Offline precompute of the item similarity matrix

	Item1	Item2	Item3	Item4	Item5
Item1	1	•••			0.8049
Item2		1			-0.9082
Item3		•••	1	/	-0.7636
Item4		•••		1	0.4331
Item5				/	1/

Item 1

1.0

Item 4

Item 5

$$sim(a,b) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u})(r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

Alice

- *Online* predict ratings of a product *p* and user *u*,
 - 1. Determine the set of items X that are most similar to p.
 - 2. Build the **weighted sum** of *u*'s ratings for these items *X* in the neighborhood. $\sum_{i \in rat}$

$$pred(u,p) = \frac{\sum_{i \in ratedItems(u)} sim(i,p) \times r_{u,i}}{\sum_{i \in ratedItems(u)} sim(i,p)}$$

- Perform subsampling
 - Randomly choose a subset of the data.
 - Ignore customer records with few rating.

Outlines

- Collaborative Recommendation
- User-based Nearest Neighbor (NN) Recommendation
- Measures to Determine Proximity between Users
- Neighborhood Selection
- Item-based Nearest Neighbor (NN) Recommendation
- Pros and cons of CF based approach
- Problems with CF based approach

Pros and Cons of CF Based Approach

Pros

- Not require details of items and users in order to generate recommendations.
- Capable of recommending serendipitous items based on similar users' behaviors.

Cons

- Requires explicit ratings/opinions from users.
- Has a cold start problem (new user/ item).
- Has poor accuracy if too few ratings exist.
- Is slow (memory-based CF)

Outlines

- Collaborative Recommendation
- User-based Nearest Neighbor (NN) Recommendation
- Measures to Determine Proximity between Users
- Neighborhood Selection
- Item-based Nearest Neighbor (NN) Recommendation
- Pros and cons of CF based approach
- Problems with CF based approach

Problems with Rating Scales

• Explicit rating: user might not be willing to provide ratings.

• Implicit rating: user behavior is not easily interpreted as ratings.

Data Sparsity and the Cold-Start Problems

- Data sparsity problem: data the rating matrices tend to be very sparse.
 - Solution: Default voting

 Cold-start problem: hard to generate recommendations for new items.

Suggested Reading Articles

- "Deconstructing Recommender Systems. How Amazon and Netflix predict your preferences and prod you to purchase" By Joseph A.
 Konstan and John Riedl, IEEE Spectrum, Sep. 2012.
 http://spectrum.ieee.org/computing/software/deconstructing-recommender-systems
- The Big Promise of Recommender Systems
 https://www.researchgate.net/publication/220604928 The Big Promise of Recommender Systems
- Recommender Systems An Overview
 https://www.researchgate.net/publication/220604600 Recommender
 Systems An Overview