DroMOOC

Sensor fusion and state estimation Basic Level

Observers and Kalman filter (Part II)

M. Makarov

State estimation in presence of random disturbances (discrete time)

Problem

The linear system (possibly non invariant) is affected by noise:

$$\mathbf{x}_{k+1} = \mathbf{F} \ \mathbf{x}_k + \mathbf{G} \ \mathbf{u}_k + \mathbf{v}_k$$
 $\mathbf{z}_{\nu} = \mathbf{C} \ \mathbf{x}_{\nu} + \mathbf{w}_{\nu}$

with \mathbf{v}_k , \mathbf{w}_k white centered gaussian non correlated noise:

$$E\{\mathbf{v}_k\} = 0$$
 $E\{\mathbf{v}_k \mathbf{v}_j^T\} = \mathbf{Q}(t)\delta(k-j), \ \mathbf{Q} = \mathbf{Q}^T \ge 0$
 $E\{\mathbf{w}_k\} = 0$ $E\{\mathbf{w}_k \mathbf{w}_j^T\} = \mathbf{R}(t)\delta(k-j), \ \mathbf{R} = \mathbf{R}^T > 0$

Objective

The goal is to reconstruct x_k from u_k and z_k

- without bias on the estimation error
- with minimal variance of the estimation error

Solution - discrete-time Kalman filter

Discrete-time Kalman filter

$$\hat{\mathbf{x}}_{k+1|k+1} = \mathbf{F} \ \hat{\mathbf{x}}_{k|k} + \mathbf{G} \ \mathbf{u}_k + \mathbf{K}_{k+1} \left(\mathbf{z}_{k+1} - \hat{\mathbf{z}}_{k+1|k} \right)$$

 $\hat{\mathbf{x}}_{k_0|k_0} = E \left\{ \mathbf{x}_{k_0} \right\}$

 \Rightarrow this is an observer which performs an *estimation* of the state $\hat{\mathbf{x}}_{k|k}$, with gain \mathbf{K}_k varying in time (even in case of LTI systems).

Notations

- Predicted state $\hat{x}_{k+1|k}$
 - Prediction error $\boldsymbol{\varepsilon}_{k+1|k} = \boldsymbol{x}_{k+1} \boldsymbol{\hat{x}}_{k+1|k}$
 - * Variance of the prediction error $\sum_{k+1|k} = E\left\{\varepsilon_{k+1|k}\varepsilon_{\nu+1|\nu}^{T}\right\}$
- Estimated state $\hat{x}_{k+1|k+1}$
 - Estimation error $\varepsilon_{k+1|k+1} = x_{k+1} \hat{x}_{k+1|k+1} \Rightarrow$ without bias:

$$E\left\{\varepsilon_{k+1|k+1}\right\}=0$$

Variance of the estimation error $\sum_{k+1|k+1} = E\left\{\varepsilon_{k+1|k+1}\varepsilon_{k+1|k+1}^T\right\}$ \Rightarrow minimized

Discrete-time Kalman filter recursive equations

Initialization

- Initial state estimate $\hat{x}_{0|0}$
- ullet Initial prediction error variance $\Sigma_{0|0}$

Prediction (before measurement k + 1)

- $\mathbf{0} \quad \hat{\mathbf{x}}_{k+1|k} = \mathbf{F} \ \hat{\mathbf{x}}_{k|k} + \mathbf{G} \mathbf{u}_k$
 - $oldsymbol{\Sigma}_{k+1|k} = oldsymbol{F} oldsymbol{\Sigma}_{k|k} oldsymbol{F}^{ op} + oldsymbol{Q}$
- $\hat{\boldsymbol{z}}_{k+1|k} = \boldsymbol{C}\hat{\boldsymbol{x}}_{k+1|k}$

Estimation (update after measurement k + 1)

- $\boldsymbol{\mathcal{K}}_{k+1} = \boldsymbol{\Sigma}_{k+1|k} \boldsymbol{\mathcal{C}}^{\mathsf{T}} \left(\boldsymbol{\mathcal{C}} \boldsymbol{\Sigma}_{k+1|k} \boldsymbol{\mathcal{C}}^{\mathsf{T}} + \boldsymbol{\mathcal{R}} \right)^{-1}$
- $\mathbf{\hat{5}} \quad \hat{\mathbf{x}}_{k+1|k+1} = \hat{\mathbf{x}}_{k+1|k} + \mathbf{K}_{k+1} \left(z_{k+1} \hat{\mathbf{z}}_{k+1|k} \right)$
- $\boldsymbol{\Sigma}_{k+1|k+1} = (\boldsymbol{I}_n \boldsymbol{K}_{k+1}\boldsymbol{C})\,\boldsymbol{\Sigma}_{k+1|k}$

Tuning

- $\hat{x}_{0|0}$ initial guess
- ullet $\Sigma_{0|0} \propto 1/{
 m confidence}$ in $\hat{m{x}}_{0|0}$ value
- ullet ${oldsymbol{Q}}$ \propto $1/{
 m confidence}$ in state equations
- ullet $R \propto 1/$ confidence in measurements

Convergence and steady-state Kalman filter for LTI systems

Assumptions

A0 The system is LTI, i.e. F, G, C, Q, R are constant matrices

A1 If (C, F) is detectable, and (F, H) is stabilisable with H s.t. $Q = HH^T$, the filter is asymptotically stable.

Results

① $\Sigma_{k+1|k}$ tends to a constant matrix Σ_p , unique positive definite solution of the Riccati algebraic matrix equations:

$$\Sigma_{p} = F \Sigma_{p} F^{T} - F \Sigma_{p} C^{T} \left(C \Sigma_{p} C^{T} + R \right)^{-1} C \Sigma_{p} F^{T} + Q$$

 \bigcirc K_k tends to a constant matrix:

$$\mathcal{K} = \Sigma_{p} \mathcal{C}^{\mathsf{T}} \left(\mathcal{C} \Sigma_{p} \mathcal{C}^{\mathsf{T}} + \mathcal{R} \right)^{-1}$$

- 3 $\Sigma_{k|k}$ tends to $\Sigma_e = (I_n KC) \Sigma_p$
- In steady state, the estimation error becomes white noise if the model is perfect.

The Kalman filter then becomes an observer which gain K is constant and entirely determined by the choice of matrices Q and R.

Illustration of theoretical results

Example 3 - sine wave with noise

Consider a simple integrator system with v_k and w_k state and measurement noise of variances Q_{real} and R_{real} , and u_k an sinusoidal input:

$$x_{k+1} = x_k + u_k + v_k$$
$$z_k = x_k + w_k$$

$$\hat{\mathbf{x}}_{k+1|k} = \hat{\mathbf{x}}_{k|k} + \mathbf{u}_k$$

$$\Sigma_{k+1|k} = \Sigma_{k|k} + Q$$

3
$$\hat{z}_{k+1|k} = \hat{x}_{k+1|k}$$

4 $K_{k+1} = \sum_{k+1|k} (\sum_{k+1|k} + R)^{-1}$

$$\hat{\mathbf{x}}_{k+1|k+1} = \hat{\mathbf{x}}_{k+1|k} + K_{k+1} \left(z_{k+1} - \hat{z}_{k+1|k} \right)$$

$$\mathbf{\Sigma}_{k+1|k+1} = (1 - K_{k+1}) \mathbf{\Sigma}_{k+1|k}$$

Steady state
$$(\hat{x}_k = \hat{x}_{k|k})$$

$$\hat{x}_{k+1} = \hat{x}_k + u_k + K(z_k - \hat{x}_k - u_k)$$

$$K = rac{1}{2} \left(-rac{Q}{R} + \sqrt{\left(rac{Q}{R}
ight)^2 + 4rac{Q}{R}}
ight)$$

Illustration of theoretical results (example 3)

0.2

Q/R

Problem formulation

- Available measurements to reconstruct pitch angle
 - **①** Gyro measurements of pitch rate $\dot{\theta}_{Gyr}^m(t) = GYR_y^m(t)$
 - 2 Accelerometer measurements of pitch angle

$$heta_{Acc}^m(t) = \arctan\left(rac{-ACC_x^m}{\sqrt{(ACC_y^m)^2+(ACC_z^m)^2}}
ight)$$

- Towards a state-space formulation
 - ① Gyro measurements $\dot{\theta}_{Gyr}^m$ represent real pitch rate $\dot{\theta}$ affected by a white noise $v_{Gyr} \sim \mathcal{N}(0, \sigma_{Gyr}^2)$ and an almost constant bias b_{Gyr} with $v_b \sim \mathcal{N}(0, \sigma_b^2)$:

$$\dot{ heta}^m_{Gyr}(t) = \dot{ heta}(t) + b_{Gyr}(t) + v_{Gyr}(t)$$

$$\dot{b}_{Gyr}(t) = \mathbf{v}_b(t)$$

② Accelerometer measurements $\theta^m_{Acc}(t)$ represent real pitch angle θ affected by a measurement noise $w_{\theta} \sim \mathcal{N}(0, \sigma^2_{\theta_{acc}})$: $\theta^m_{Acc}(t) = \theta(t) + w_{\theta}(t)$

State space

- State: $\mathbf{x}(t) = [\theta, b_{Gyr}]^T$
- Input: $u(t) = \dot{\theta}_{Gyr}^m$
- Output: $z(t) = \theta_{Acc}^m$
- State noise: $\mathbf{v} = [v_{Gyr}, v_b]^T$
- Measurement noise: w_{θ}

Continuous-time state-space model

$$\begin{cases} \dot{\theta}(t) = \dot{\theta}_{Gyr}^{m}(t) - b_{Gyr}(t) - \mathbf{v}_{Gyr}(t) \\ \dot{b}_{Gyr}(t) = \mathbf{v}_{b}(t) \\ \theta_{Acc}^{m}(t) = \theta(t) + \mathbf{w}_{\theta}(t) \end{cases}$$

$$\Leftrightarrow \begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t) + \mathbf{v}(t) \\ \mathbf{z}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t) + \mathbf{w}_{\theta}(t) \end{cases}$$

Discrete-time state-space model

$$m{F} = egin{bmatrix} 1 & -T_s \ 0 & 1 \end{bmatrix}, & m{G} = egin{bmatrix} T_s \ 0 \end{bmatrix}$$

State space

- state space
 - Input: $u = \dot{\theta}_{Gyr}^m$ • Output: $z = \theta_{Acc}^m$

• State: $\mathbf{x} = [\theta, b_{Gyr}]^T$

- State noise:
- $\mathbf{v} = [v_{Gyr}, v_b]^T$ Measurement noise: w_{θ}
- Numerical values
 - $T_s = 0.01s$
 - $\hat{x}_{0|0} = ?$
 - $\Sigma_{0|0} = ?$
 - **Q** = ?
 - *R* = ?

Noise variance

$$Q = E\left\{v(t)v(t)^{T}\right\}$$

$$= \begin{bmatrix} \sigma_{Gyr}^2 & 0 \\ 0 & \sigma_b^2 \end{bmatrix}$$

$$R = E \left\{ w_{\theta}(t) w_{\theta}(t)^T \right\}$$

$$a = \sum_{\theta \in C} w_{\theta}(t) w_{\theta}(t)$$

(a)
$$z_k = \theta_{Acc}^m$$
 (rad)

(b) $u_k = \dot{\theta}_{Gvr}^m \text{ (rad/s)}$ Figure: Analysis of sensor readings w/o mvt

Tuning

First tuning using sensor readings without movement ($\theta = 0$):

- Noise variances
 - \triangleright Using $u_k = \dot{\theta}_{Gyr}^m$

$$\star \ \sigma_{Gyr}^2 = E\left\{ (\dot{\theta}_{Gyr}^m)^2 \right\} = 4.3 \cdot 10^{-5}$$

- $\sigma_b^2 = 10^{-9}$ (we suppose that the model is quite accurate)
- \triangleright Using $z_k = \theta_{Acc}^m$

$$\star \sigma_{\theta_{acc}}^2 = E\left\{ (\theta_{Acc}^m)^2 \right\} = 7 \cdot 10^{-7}$$

Initialization

$$\hat{\mathbf{x}}_{0|0} = \begin{bmatrix} E \{\theta\} \\ E \{b_{\theta}\} \end{bmatrix}^{T} = \begin{bmatrix} 0 & 6 \cdot 10^{-3} \end{bmatrix}^{T}$$

$$\mathbf{\Sigma}_{0|0} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$

⇒ This initial tuning can be adjusted to provide satisfactory results.

Figure: Pitch angle estimation - estimated state

Figure: Pitch angle estimation - Kalman filter gains