GSI018 – SISTEMAS OPERACIONAIS

Operating Systems – William Stallings – 7th Edition Chapter 09 – Uniprocessor Scheduling

Pedro Henrique Silva Santana – 12011BSI218 – pedro.santana@ufu.br Victor Hugo Martins Alves – 12011BSI217 – victor.alves1@ufu.br

REVIEW QUESTIONS

9.2 What is usually the critical performance requirement in an interactive operating system?

Tempo de Resposta.

9.3 What is the difference between turnaround time and response time?

O tempo de resposta é o tempo decorrido entre a submissão da requisição até a resposta, enquanto turnaround é o tempo total que a requisição gasta no sistema (tempo de espera e serviço).

9.5 What is the difference between preemptive and nonpreemptive scheduling?

Preemptive: O processo em execução é interrompido e movido para o estado Ready pelo SO. Isso ocorre quando um novo processo aparece, quando uma interrupção ocorre e um processo passa de Blocked para Ready ou ocorra uma interrupção clock.

Nonpreemptive: O processo em execução continua até ser finalizado ou bloqueado para esperar pelo I/O ou requisitar um serviço do SO.

PROBLEMS

9.1 Consider the following set of processes:

A.. arrival time = 0; processing time = 3;

B .. arrival time = 1; processingtime = 5;

C .. arrival time = 3; processing time = 2;

D .. arrival time = 9; processing time = 5;

E .. arrival time = 12; processing time = 5;

Perform the same analysis as depicted in Table 9.5 and Figure 9.5 for this set.

Process	Α	В	С	D	Е				
Arrival Time	0	1	3	9	12				
Service Time(T₅)	3	5	2	5	5	Mean			
FCFS									
Finish Time	3	8	10	15	20				
Turnaround Time(Tr)	3	7	7	6	8	6,2			
Tr Ts	1	1,4	3,5	1,2	1,6	1,74			
RR q = 1									
Finish Time	6	11	8	18	20				
Turnaround Time(Tr)	6	10	5	9	8	7,6			
Tr Ts	#DIV/0!	2	2,5	1,8	1,6	#DIV/0!			
RR q = 4									
Finish Time	3	10	9	19	20				
Turnaround Time(Tr)	3	9	6	10	8	7,2			
Tr Ts	1	1,8	3	2	1,6	1,88			

SPN									
Finish Time	3	10	5	15	20				
Turnaround Time(Tr)	3	9	2	6	8	5,6			
Tr Ts	1	1,8	1	1,2	1,6	1,32			
SRT									
Finish Time	3	10	5	15	20				
Turnaround Time(Tr)	3	9	2	6	8	5,6			
Tr Ts	1	1,8	1	1,2	1,6	1,32			
HRRN									
Finish Time	3	8	10	15	20				
Turnaround Time(Tr)	3	7	7	6	8	6,2			
Tr Ts	1	1,4	3,5	1,2	1,6	1,74			
		FB	q=1						
Finish Time	7	11	6	18	20				
Turnaround Time(Tr)	7	10	3	9	8	7,4			
Tr Ts	2,33	2,00	1,50	1,80	1,60	1,85			
FB q = 2i									
Finish Time	4	10	8	18	20				
Turnaround Time(Tr)	4	9	5	9	8	7			
Tr Ts	1,33	1,80	2,50	1,80	1,60	1,81			

Table 9.5 - A Comparison of Scheduling Policies

Process	A	В	С	D	Е	
Arrival Time	0	2	4	6	8	
Service Time (T_s)	3	6	4	5	2	Mean

FCFS / RR q=1 / RR q=4 / SPN / SRT / HRRN / FB q=1 / FB $q=2^i$

Finish Time			
Turnaround Time (T_r)			
T_r/T_s			

9.3 Prove that, among nonpreemptive scheduling algorithms, SPN provides the minimum average waiting time for a batch of jobs that arrive at the same time. Assume that the scheduler must always execute a task if one is available.

Considerando que vários jobs chegam ao mesmo tempo, o algoritmo que tem o menor tempo de espera é aquele que gasta menos tempo para selecionar o processo a ser executado. Neste quesito o **Shortest Process Next** é o que possui melhor desempenho, pois ele faz o cálculo de uma somatória para estimar o menor processo e coloca esse processo na cabeça da lista imediatamente para assim que possível ser executado.

9.6 In the bottom example in Figure 9.5, process A runs for two time units before control is passed to process B. Another plausible scenario would be that A runs for three time units before control is passed to process B. What policy differences in the feedback-scheduling algorithm would account for the two different scenarios?

A política que permite isso ocorra é a de escalonamento de maneira preemptiva (com quantum de tempo) e um mecanismo de prioridade dinâmica. Que faz com que um processo que entre primeiro seja colocado em RQ0 e após sua primeira preempção ao retornar ao estado Ready é colocado em RQ1 e a cada vez subsequente que isso acontece ele é rebaixado na fila de prioridade, a qual permite que outros processos menores sejam concluídos rapidamente sem descer muito na fila de prioridade.

Figure 9.5 A Comparison of Scheduling Policies