Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be **cooperative**
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**

Learning Objectives

- 1. Critically evaluate literature in the field of machine learning applications in protein engineering
- 2. Develop strategies for keeping up with the fast pace of Al

Learning Objectives

- 1. Critically evaluate literature in the field of machine learning applications in protein engineering
- 2. Develop strategies for keeping up with the fast pace of Al

1. Learn python!

- Learn python!
- 2. Take a class
 - a. Linear algebra
 - b. Data science
 - c. Stats
 - d. Deep learning/machine learning

- 1. Learn python!
- 2. Take a class
- 3. Take online courses
 - a. Andrew Ng's machine learning course
 - b. Andrew Ng's <u>deep learning specialization</u> course
 - c. <u>Convolutional neural net</u> lecture collections
 - d. Stanford graph neural net lecture

- Learn python!
- 2. Take a class
- Take online courses
- 4. Read books
 - a. <u>Deep learning with python</u> (available in University's library.
 Currently in my lab)
 - b. <u>Hands-on machine learning</u> with scikit-learn, keras and tensorflow (I have a copy)
 - c. <u>Deep learning by Goodfellow</u> (freely available, more advanced)

- Learn python!
- 2. Take a class
- Take online courses
- 4. Read books
- 5. Take advantage of videos and weblogs
 - a. <u>3Blue1Brown</u>
 - b. <u>Towards Data Science</u>, Machine learning
 - c. Medium, Machine learning

- 1. Add relevant search terms to your feed
 - a. Google Scholars
 - b. NCBI
 - c. Feedly

- Add relevant search topics to your paper search
- 2. Write down name of authors whose work you find interesting
 - Follow them on twitter
 - Follow them on google scholar
 - c. Add them to your NCBI search
 - d. Add them to your feedly

- 1. Add relevant search topics to your paper search
- 2. Write down name of authors whose work you find interesting
- Find names of active people in the field and add them to your twitter
 - a. Sergey Ovchinnikov (@sokrypton)
 - b. Kevin Yang (@KevinKaichuang)
 - c. Mohammed AlQuraishi (@MoAlQuraishi)

- 1. Add relevant search topics to your paper search
- 2. Write down name of authors whose work you find interesting
- Find names of active people in the field and add them to your twitter
- 4. Find places where you can find resources from
 - a. Kevin Yang's compilation of ML papers for proteins

- 1. Add relevant search topics to your paper search
- 2. Write down name of authors whose work you find interesting
- Find names of active people in the field and add them to your twitter
- 4. Find places where you can find resources from
 - a. Kevin Yang's compilation of ML papers for proteins
- 5. Attend conferences (NeurlPs, ...)

What's good?

What's good?

- Check what's been discussed
- 2. Have an expert you trust
- 3. Talk to people
- 4. Get a sense of the papers quickly from abstract/figures
- Be critical: check for controls, comparisons, and metrics they used
- 6. Check their github pages and ask questions

For the next lecture:

- 1. Start writing your final specific aims (methods will be later)
- 2. Write questions for our entrepreneur guest, Dr. Silva

Next lecture: Antibodies – a case study

