CHRIST UNIVERSITY, BENGALURU - 560029

End Semester Examination October - 2015 Bachelor of Computer Applications III SEMESTER

Code: BCA332 Max.Marks: 100
Subject: INTRODUCTORY ALGEBRA Duration: 3Hrs

SECTION A

Answer any 10 Questions.

10X3=30

- 1 For integers a, b and c, if alb and alc, then al(b+c). Prove or disprove!
- 2 Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a=b+km
- 3 The sum of any three consecutive integers is divisible by 3. Prove or disprove!
- 4 What is the decimal expansion of the integer $(1010111111)_2$?
- 5 Find the prime factorization of 7007
- 6 Solve the congruence $2x \equiv 7 \pmod{11}$
- 7 Find an inverse of 144 modulo 233
- 8 Decrypt HDW GLP VXP encrypted using Caesar cipher
- 9 Let N be the set of all natural numbers and for a and b in N such that a*b=a+b+3. Is * an associative operation? Justify your answer
- 10 Show that set of all integers with the binary operation multiplication (x) is not a group
- Let (A, *) be a semigroup such that, for all a, b in A, a*b=b*a implies that a=b. Show that for every x, y in A, x*y*x=x
- Let (B, \bullet) be group. Show that, for any two elements a and b in B, $(a \bullet b)^{-1} = b^{-1} \bullet a^{-1}$

SECTION B

Answer any 3 Questions.

3X7 = 21

- Find all solutions to the system of congruences $x \equiv 1 \pmod{2}$, $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$ and $x \equiv 4 \pmod{11}$
- 14 Solve $2^{340} \mod 11$
- What is the message produced from the message LOVE THY NEIGHBOUR using the function $f(p) = (7p+3) \mod 26$? Is the message decryptable? Justify your answer
- 16 Encrypt the message FIRE using RSA cryptosystem with the key (13, 2537). Briefly explain the method of decryption

SECTION C

Answer any 4 Questions.

4X7=28

- 17 Give an algorithm to find the number of Sundays in n consecutive days
- 18 Show that if a and b are congruent modulo 7, then 10a+13 and -4b+20 are also congruent modulo 7
- 19 Use the method of back substitution to find the least positive integer x such that when divided by 5, 6 and 7, it leaves the remainders 1, 2 and 3 respectively.
- 20 Prove that for positive integers a and b, lcm(a, b)gcd(a, b)=ab
- 21 If n is a composite integer, then show that n has a prime divisor $\leq \sqrt{n}$

SECTION D

Answer any 3 Questions

3X7 = 21

- Define (a) semigroup and (b) monoid. Give an example of a semigroup that is not a monoid. Give an example of a monoid that is not a group
- 23 Find all the symmetric transformation of a square
- 24 For a group, prove that any two left cosets are either identical or they are distinct
- Show that if a group (G, \mathbb{Z}) is of order n and a in G such that $a^m = e$ (identity) for some integer m less than or equal to n, then mln