Multithreaded Programming in Cilk LECTURE 1

Charles E. Leiserson

Supercomputing Technologies Research Group

Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Cilk

A C language for programming dynamic multithreaded applications on shared-memory multiprocessors.

Example applications:

- virus shell assembly
- graphics rendering
- *n*-body simulation
- heuristic search

- dense and sparse matrix computations
- friction-stir welding simulation
- artificial evolution

Shared-Memory Multiprocessor

In particular, over the next decade, chip multiprocessors (CMP's) will be an increasingly important platform!

Cilk Is Simple

- Cilk extends the C language with just a *handful* of keywords.
- Every Cilk program has a serial semantics.
- Not only is Cilk fast, it provides *performance guarantees* based on performance abstractions.
- Cilk is *processor-oblivious*.
- Cilk's *provably good* runtime system automatically manages low-level aspects of parallel execution, including protocols, load balancing, and scheduling.
- Cilk supports *speculative* parallelism.

Minicourse Outline

- LECTURE 1

 Basic Cilk programming: Cilk keywords, performance measures, scheduling.
- Lecture 2

 Analysis of Cilk algorithms: matrix
 multiplication, sorting, tableau construction.
- LABORATORY
 Programming matrix multiplication in Cilk
 Dr. Bradley C. Kuszmaul
- Lecture 3

 Advanced Cilk programming: inlets, abort, speculation, data synchronization, & more.

LECTURE 1

- Basic Cilk Programming
- Performance Measures
- Parallelizing Vector Addition
- Scheduling Theory
- A Chess Lesson
- Cilk's Scheduler
- Conclusion

Fibonacci

```
int fib (int n) {
if (n<2) return (n);
  else {
    int x,y;
    x = fib(n-1);
    y = fib(n-2);
    return (x+y);
  }
}</pre>
```

C elision

Cilk code

```
cilk int fib (int n) {
  if (n<2) return (n);
  else {
    int x,y;
    x = spawn fib(n-1);
    y = spawn fib(n-2);
    sync;
    return (x+y);
  }
}</pre>
```

Cilk is a *faithful* extension of C. A Cilk program's *serial elision* is always a legal implementation of Cilk semantics. Cilk provides *no* new data types.

Basic Cilk Keywords

```
cilk int fib (int n) {
  if (n<2) return (n);
  else {
    int x,y;
    x = spawn fib(n-1);
    y = spawn fib(n-2);
    sync;
    return (x+y);
  }
}</pre>
```

Control cannot pass this point until all spawned children have returned.

Identifies a function as a *Cilk procedure*, capable of being spawned in parallel.

The named *child*Cilk procedure
can execute in
parallel with the
parent caller.

Dynamic Multithreading

```
cilk int fib (int n) {
     if (n<2) return (n);
                             Example: fib(4)
    else {
       int x,y;
       x = spawn fib(n-1);
       y = spawn fib(n-2);
       sync;
       return (x+y);
"Processor
 oblivious"
                            The computation dag
                             unfolds dynamically.
```

Multithreaded Computation

- The dag G = (V, E) represents a parallel instruction stream.
- Each vertex $v \in V$ represents a (*Cilk*) thread: a maximal sequence of instructions not containing parallel control (spawn, sync, return).
- Every edge $e \in E$ is either a *spawn* edge, a *return* edge, or a *continue* edge.

Cactus Stack

Cilk supports C's rule for pointers: A pointer to stack space can be passed from parent to child, but not from child to parent. (Cilk also supports malloc.)

Cilk's *cactus stack* supports several views in parallel.

LECTURE 1

- Basic Cilk Programming
- Performance Measures
- Parallelizing Vector Addition
- Scheduling Theory
- A Chess Lesson
- Cilk's Scheduler
- Conclusion

 T_P = execution time on P processors

 T_P = execution time on P processors

$$T_1 = work$$

 T_P = execution time on P processors

$$T_1 = work$$

$$T_{\infty} = span^*$$

* Also called *critical-path length* or *computational depth*.

 T_P = execution time on P processors

$$T_1 = work$$

$$T_{\infty} = span^*$$

LOWER BOUNDS

- $T_P \geq T_1/P$
- $T_P \geq T_{\infty}$

*Also called *critical-path length* or *computational depth*.

Speedup

Definition: $T_1/T_P = speedup$ on P processors.

```
If T_1/T_P = \Theta(P) \le P, we have linear speedup;
= P, we have perfect linear speedup;
> P, we have superlinear speedup,
which is not possible in our model, because
of the lower bound T_P \ge T_1/P.
```

Parallelism

Because we have the lower bound $T_P \ge T_{\infty}$, the maximum possible speedup given T_1 and T_{∞} is

$$T_1/T_{\infty} = parallelism$$

= the average amount of work per step along the span.

Example: fib(4)

Assume for simplicity that each Cilk thread in **fib()** takes unit time to execute.

Work:
$$T_1 = 17$$

Span:
$$T_{\infty} = 8$$

Example: fib(4)

Assume for simplicity that each Cilk thread in **fib()** takes unit time to execute.

Work:
$$T_1 = 17$$

Span:
$$T_{\infty} = 8$$

Parallelism:
$$T_1/T_{\infty} = 2.125$$

Using many more than 2 processors makes little sense.

LECTURE 1

- Basic Cilk Programming
- Performance Measures
- Parallelizing Vector Addition
- Scheduling Theory
- A Chess Lesson
- Cilk's Scheduler
- Conclusion

Parallelizing Vector Addition

C

```
void vadd (real *A, real *B, int n){
  int i; for (i=0; i<n; i++) A[i]+=B[i];
}</pre>
```

Parallelizing Vector Addition

C

```
void vadd (real *A, real *B, int n){
  int i; for (i=0; i<n; i++) A[i]+=B[i];
}</pre>
```

```
void vadd (real *A, real *B, int n){
  if (n<=BASE) {
    int i; for (i=0; i<n; i++) A[i]+=B[i];
  } else {
    vadd (A, B, n/2);
    vadd (A+n/2, B+n/2, n-n/2);
  }
}</pre>
```

Parallelization strategy:

1. Convert loops to recursion.

Parallelizing Vector Addition

C

```
void vadd (real *A, real *B, int n){
  int i; for (i=0; i<n; i++) A[i]+=B[i];
}</pre>
```

Cilk

```
void vadd (real *A, real *B, int n){
  if (n<=BASE) {
    int i; for (i=0; i<n; i++) A[i]+=B[i];
  } else {
    vaddn(A, B, n/2;
    vaddn(A+n/2, B+n/2, n-n/2;
  } sync;
}</pre>
```

Parallelization strategy:

- 1. Convert loops to recursion.
- 2. Insert Cilk keywords.

Side benefit:

D&C is generally good for caches!

Vector Addition

```
cilk void vadd (real *A, real *B, int n){
  if (n<=BASE) {
    int i; for (i=0; i<n; i++) A[i]+=B[i];
  } else {
    spawn vadd (A, B, n/2);
    spawn vadd (A+n/2, B+n/2, n-n/2);
    sync;
  }
}</pre>
```


Vector Addition Analysis

To add two vectors of length n, where BASE = $\Theta(1)$:

Work: $T_1 = \Theta(n)$

Span: $T_{\infty} = \Theta(\lg n)$

Parallelism: $T_1/T_{\infty} = \Theta(n/\lg n)$

Another Parallelization

C

```
void vadd1 (real *A, real *B, int n){
  int i; for (i=0; i<n; i++) A[i]+=B[i];
}
void vadd (real *A, real *B, int n){
  int j; for (j=0; j<n; j+=BASE) {
    vadd1(A+j, B+j, min(BASE, n-j));
  }
}</pre>
```

```
Cilk
```

```
cilk void vadd1 (real *A, real *B, int n){
  int i; for (i=0; i<n; i++) A[i]+=B[i];
}
cilk void vadd (real *A, real *B, int n){
  int j; for (j=0; j<n; j+=BASE) {
    spawn vadd1(A+j, B+j, min(BASE, n-j));
  }
sync;
}</pre>
```

Analysis

To add two vectors of length n, where BASE = $\Theta(1)$:

Work:
$$T_1 = \Theta(n)$$

Span:
$$T_{\infty} = \Theta(n)$$

Parallelism:
$$T_1/T_{\infty} = \Theta(1)$$

Optimal Choice of BASE

To add two vectors of length n using an optimal choice of BASE to maximize parallelism:

Work:
$$T_1 = \Theta(n)$$

Span: $T_{\infty} = \Theta(\text{BASE} + n/\text{BASE})$
Choosing BASE = $\sqrt{n} \Rightarrow T_{\infty} = \Theta(\sqrt{n})$
Parallelism: $T_1/T_{\infty} = \Theta(\sqrt{n})$

LECTURE 1

- Basic Cilk Programming
- Performance Measures
- Parallelizing Vector Addition
- Scheduling Theory
- A Chess Lesson
- Cilk's Scheduler
- Conclusion

Scheduling

- Cilk allows the programmer to express *potential* parallelism in an application.
- The Cilk *scheduler* maps Cilk threads onto processors dynamically at runtime.
- Since *on-line* schedulers are complicated, we'll illustrate the ideas with an *off-line* scheduler.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A thread is **ready**

if all its predecessors have

executed.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A thread is **ready** if all its predecessors have **executed**.

Complete step

- $\geq P$ threads ready.
- Run any *P*.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A thread is **ready** if all its predecessors have **executed**.

Complete step

- $\geq P$ threads ready.
- Run any *P*.

Incomplete step

- < *P* threads ready.
- Run all of them.

Greedy-Scheduling Theorem

Theorem [Graham '68 & Brent '75].

Any greedy scheduler achieves

 $T_P \leq T_1/P + T_{\infty}$.

Proof.

- # complete steps $\leq T_1/P$, since each complete step performs P work.
- # incomplete steps $\leq T_{\infty}$, since each incomplete step reduces the span of the unexecuted dag by 1.

Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let T_P^* be the execution time produced by the optimal scheduler.

Since $T_P^* \ge \max\{T_1/P, T_\infty\}$ (lower bounds), we have

$$\begin{split} T_P &\leq T_1/P + T_\infty \\ &\leq 2 \cdot \max\{T_1/P, T_\infty\} \\ &\leq 2T_P^* . \quad \blacksquare \end{split}$$

Linear Speedup

Corollary. Any greedy scheduler achieves near-perfect linear speedup whenever $P \ll T_1/T_{\infty}$.

Proof. Since $P \ll T_1/T_{\infty}$ is equivalent to $T_{\infty} \ll T_1/P$, the Greedy Scheduling Theorem gives us

$$T_P \leq T_1/P + T_{\infty}$$

 $\approx T_1/P$.

Thus, the speedup is $T_1/T_P \approx P$.

Definition. The quantity $(T_1/T_{\infty})/P$ is called the *parallel slackness*.

Cilk Performance

- Cilk's "work-stealing" scheduler achieves
 - $T_P = T_1/P + O(T_{\infty}) \text{ expected time}$ (provably);
 - $T_P \approx T_1/P + T_\infty$ time (empirically).
- Near-perfect linear speedup if $P \ll T_1/T_{\infty}$.
- Instrumentation in Cilk allows the user to determine accurate measures of T_1 and T_{∞} .
- The average cost of a spawn in Cilk-5 is only 2–6 times the cost of an ordinary C function call, depending on the platform.

LECTURE 1

- Basic Cilk Programming
- Performance Measures
- Parallelizing Vector Addition
- Scheduling Theory
- A Chess Lesson
- Cilk's Scheduler
- Conclusion

Cilk Chess Programs

- *Socrates placed 3rd in the 1994 International Computer Chess Championship running on NCSA's 512-node Connection Machine CM5.
- *Socrates 2.0 took 2nd place in the 1995 World Computer Chess Championship running on Sandia National Labs' 1824-node Intel Paragon.
- *Cilkchess* placed 1st in the 1996 Dutch Open running on a 12-processor Sun Enterprise 5000. It placed 2nd in 1997 and 1998 running on Boston University's 64-processor SGI Origin 2000.
- *Cilkchess* tied for 3rd in the 1999 WCCC running on NASA's 256-node SGI Origin 2000.

*Socrates Normalized Speedup

Developing *Socrates

- For the competition, ★Socrates was to run on a 512-processor Connection Machine Model CM5 supercomputer at the University of Illinois.
- The developers had easy access to a similar 32-processor CM5 at MIT.
- One of the developers proposed a change to the program that produced a speedup of over 20% on the MIT machine.
- After a back-of-the-envelope calculation, the proposed "improvement" was rejected!

***Socrates Speedup Paradox**

Original program

$$T_{32} = 65$$
 seconds

Proposed program

$$T'_{32} = 40$$
 seconds

$$T_P \approx T_1/P + T_{\infty}$$

$$T_1 = 2048$$
 seconds $T_{\infty} = 1$ second

$$T_{32} = 2048/32 + 1$$

= 65 seconds

$$T_{512} = 2048/512 + 1$$

= 5 seconds

$$T'_{\infty} = 1024 \text{ seconds}$$

 $T'_{\infty} = 8 \text{ seconds}$

$$T'_{32} = 1024/32 + 8$$

= 40 seconds

$$T'_{512} = 1024/512 + 8$$

= 10 seconds

Lesson

Work and span can predict performance on large machines better than running times on small machines can.

LECTURE 1

- Basic Cilk Programming
- Performance Measures
- Parallelizing Vector Addition
- Scheduling Theory
- A Chess Lesson
- Cilk's Scheduler
- Conclusion

Each processor maintains a *work deque* of ready threads, and it manipulates the bottom of the deque like a stack.

Each processor maintains a *work deque* of ready threads, and it manipulates the bottom of the deque like a stack.

Each processor maintains a *work deque* of ready threads, and it manipulates the bottom of the deque like a stack.

Each processor maintains a *work deque* of ready threads, and it manipulates the bottom of the deque like a stack.

Performance of Work-Stealing

Theorem: Cilk's work-stealing scheduler achieves an expected running time of

$$T_P \le T_1/P + O(T_\infty)$$

on *P* processors.

Pseudoproof. A processor is either working or stealing. The total time all processors spend working is T_1 . Each steal has a 1/P chance of reducing the span by 1. Thus, the expected cost of all steals is $O(PT_{\infty})$. Since there are P processors, the expected time is

$$(T_1 + O(PT_{\infty}))/P = T_1/P + O(T_{\infty})$$
.

Space Bounds

Theorem. Let S_1 be the stack space required by a serial execution of a Cilk program. Then, the space required by a P-processor execution is at most $S_P \leq PS_1$.

Proof (by induction). The work-stealing algorithm maintains the busy-leaves property: every extant procedure frame with no extant descendents has a processor working on it.

Linguistic Implications

Code like the following executes properly without any risk of blowing out memory:

```
for (i=1; i<1000000000; i++) {
    spawn foo(i);
}
sync;</pre>
```

MORAL

Better to steal parents than children!

LECTURE 1

- Basic Cilk Programming
- Performance Measures
- Parallelizing Vector Addition
- Scheduling Theory
- A Chess Lesson
- Cilk's Scheduler
- Conclusion

Key Ideas

- Cilk is simple: cilk, spawn, sync
- Recursion, recursion, recursion, ...

Work & span Work & span Work & span

Minicourse Outline

- LECTURE 1

 Basic Cilk programming: Cilk keywords, performance measures, scheduling.
- LECTURE 2

 Analysis of Cilk algorithms: matrix
 multiplication, sorting, tableau construction.
- LABORATORY
 Programming matrix multiplication in Cilk
 Dr. Bradley C. Kuszmaul
- Lecture 3

 Advanced Cilk programming: inlets, abort, speculation, data synchronization, & more.