אלגברה ב – בניית אופרטור צמוד

נושאים:

- 1. הגדרות ותיאוריה
- 2. מציאת אופרטור צמוד דוגמא מעשית

<u>הגדרות ותיאוריה</u>

העתקה לינארית המרוכבים). העתקה לינארית הגדרה: יהי V מ"ו מעל F (כאשר המרוכבים). העתקה לינארית הגדרה: יהי V נקראת פונקציונאל לינארי. $\varphi\colon V\to F$

דוגמאות:

- . $\varphi: R^n \to R \quad \varphi((a_1, ..., a_n)) = a_1$, R מ"ו מעל $V = R^n 1$.1
- פונקציונאל $\varphi(A) = trace(A)$, מ"ו מעל $V = M_{nxn}(R)$ 2.
- . ל V ממ"פ מעל V, V וקטור כלשהו, $v \in V$ פונקציונאל. $v \in V$ ממ"פ מעל 3.

ל – V, ואז הוקטור המבוקש הוא $E=\{e_1,...,e_n\}$ ל – עריים בסיס אורתונורמלי $E=\{e_1,...,e_n\}$ ל – עריים בסיס אורתונורמלי $\psi(v)=\langle v,u\rangle_V$ שווה לפונקציונאל – $\psi(v)=\langle v,u\rangle_V$ בעת מראים ש – $\psi(v)=\langle v,u\rangle_V$ שווה לפונקציונאל – $\psi(v)=\langle v,u\rangle_V$

– צמוד ל S – ממ"פ מעל ק. ויהיו אופרטורים לינאריים. נאמר ש ק. אופרטור אופרטורים לינאריים. נאמר ש אופרטור אופרטור אופרטור אופר אופרט ממ"פ מעל ק. אופרטורים לינאריים. נאמר ש אופרטור אופר אופר אופרטורים אופרטורים וויהיים אופרטור אופר אופרטורים אופרט

אופרטור $T:V \to V$ יהי ממ"פ סוף ממדי מעל F, אז לכל ממדי מעל עמ"פ סוף ממ"פ סוף ממדי מעל צמוד יחיד. אופרטור זה מסומן אופרטור T^*

קיים $\phi(u)=\langle T(u),v\rangle$ אז $\psi(v)=\langle T(u),v\rangle$ מגדיר פונקציונאל. לפי משפט 1, קיים רעיון ההוכחה: נקבע $\psi(u)=\langle U,v\rangle$ נגדיר $\psi(u)=\langle U,v\rangle$ בצורה זו מגדירים את התמונה של כל $v\in V$ המקיים $v\in V$ אופרטור לינארי בדיוק מהתכונות של המכפלה הפנימית, וכן $v\in V$ מהבנייה מקיים את התנאי של אופרטור צמוד.

A בסיס א"נ. המטריצה $E=\{e_1,\dots,e_n\}$ יהי אופרטור על ממ"פ ויהי $T:V\to V$ בסיס א"נ. המטריצה במייצגת את T לפי הבסיס E נתונה ע"י במייצגת את T לפי הבסיס בעידי של המטריצה המייצגת ושאלה בערגיל בעיוו ההוכחה: חישוב מיידי של המטריצה המייצגת ושאלה בערגיל בערונ

עבור בסיס א"נ עבור ליניארי. נניח כי עבור בסיס א"נ ע ממ"פ מעל אופרטור ליניארי. אופרטור ליניארי. עבור בסיס א"נ ע ממ"פ מעל א אופרטור די אופרטור אופרטור עבור בסיס א"נ את א המטריצה המייצגת את את ד המטריצה המייצגת את בסיס אופריצה האייצגת את בסיס אופריצה ביס אופ

 $a_{ij} = \langle T(e_i), e_j \rangle, b_{ij} = \langle T^*(e_i), e_j \rangle$ האברים במטריצות המייצגות, מתקיים: $b_{ij} = \langle T^*(e_i), e_j \rangle = \overline{\langle T^*(e_i), e_j \rangle} = \overline{\langle T(e_j), e_i \rangle} = \overline{a_{ji}}$

מציאת אופרטור צמוד – דוגמה מעשית

- ? T^* אופרטור לינארי. כיצד מוצאים את $\Gamma\colon V\to V$ יהי עה ממ"פ מעל פולד: $T:V\to V$ ויהי אופרטור הצמוד:
- .1 מציאת בסיס אורתונורמלי V לE ל בסיס אורתונורמלי U .1
- לכל \bar{v} המתאים לפונקציונאל , e_i בעזרת בעזרת הוכחת משפט 1 מוצאים את , e_i לכל .2 .2 . $\phi(v)$

את נותן אל מבטיח כי זה אכן נותן את $T^*(e_i)=\bar{v}$ מגדירים מגדירים לינארית לכל $T^*(e_i)=\bar{v}$ מאופרטור הצמוד.

:פתרון

- $E=\{e_1,e_2\}$, $e_1=(1,0)$, $e_2=(0,1)$ נחפש בסיס א"נ. נתחיל מהבסיס הסטנדרטי .1 נחפש בסיס א"נ. נתחיל מהבסיס הסטנדרטי . $u_1=e_1$, $u_2=\frac{1}{\sqrt{k-1}}(1,1)$ נשים לב שעבור $T(u_1)=\sqrt{k-1}\,u_2-u_1$, $T(u_2)=u_2$ מתקיים:
- (R אנחנו מעל אים ($\bar{v}=\phi(u_1)u_1+\phi(u_2)u_2$ אנחנו מעל פונקעיונאל פונקציונאל אים ל-י פרי ($\bar{v}=\phi(u_1)u_1+\phi(u_2)u_2$), אנחנו מעל פונקציונאל אים ($\bar{v}=\phi(v)=\langle T(v),u_1\rangle$ אים ($\bar{v}=\phi(u_1)=\langle T(u_1),u_1\rangle=(T(u_1),u_1\rangle=(T(u_2),u_1\rangle=0$ און אים פרי פרי ($\bar{v}=\phi(u_1)=\langle T(u_2),u_1\rangle=(T(u_2),u_1\rangle=0$ אין אין פרי ($\bar{v}=\phi(u_1)=\langle T(u_2),u_1\rangle=(T(u_2),u_1\rangle=1$ אין אין פרי ($\bar{v}=\phi(u_1)=\langle T(u_2),u_1\rangle=1$ און אין פרי ($\bar{v}=\phi(u_1)=\langle T(u_2),u_1\rangle=1$
- $T^*(u_1)=-u_1$, $T^*(u_2)=\sqrt{k-1}\,u_1+u_2$ אבר כללי בV-1 מיוצג . $T^*(u_1)=-u_1$, $T^*(u_2)=\sqrt{k-1}\,u_1+u_2$ אבר כללי בV-1 מיוצג . $T^*(a,b)=au_1+b(\sqrt{k-1}\,u_2-u_1)=(a-b)\,u_1+b\sqrt{k-1}\,u_2$ כ $T^*(a,b)=(a-b)\,T^*(u_1)+b\sqrt{k-1}\,T^*(u_2)=(a-b)(-u_1)+b\sqrt{k-1}\,(\sqrt{k-1}\,u_1+u_2)$. $T^*(a,b)=(bk-a)\,u_1+b\sqrt{k-1}\,u_2=(b(k+1)-a,b)$ נקבל
 - 4. בדיקה ישירה מראה באמת שקיבלנו את האופרטור הצמוד.

הערה: נשים לב שאם היינו לוקחים את אותו האופרטור ל $R^2 - V = R^2$ עם המכפלה הסטנדרטית, היינו מקבלים $T^* = T$, לכן האופרטור הצמוד תלוי לא רק באופרטור ההתחלתי אלא גם במבנה המכפלה הפנימית על T^* .