§2 向量组的线性相关性

- 一. 线性相关与线性无关的概念
- 二. 线性相关与线性无关的充要条件
- 三. 线性相关与线性无关的一些有用结论

一. 线性相关与线性无关的概念

定义4. 给定向量组 $A: \vec{a}_1, \dots, \vec{a}_m$, 若存在不全为 0 的数

$$k_1,\dots,k_m$$
, 使

$$k_1\vec{a}_1+\cdots+k_m\vec{a}_m=\vec{0}$$

则称 向量组 A 线性相关, 否则称它线性无关.

说明:

- ① $\vec{a}_1, \dots, \vec{a}_m$ 线性相关
 - \rightarrow 齐次线性方程组 $x_1\vec{a}_1 + \cdots + x_m\vec{a}_m = \vec{0}$ 有非零解
- ② $\vec{a}_1, \dots, \vec{a}_m$ 线性无关 \Longrightarrow 只有 $k_1 = \dots = k_m = 0$ 才有 $k_1 \vec{a}_1 + \dots + k_m \vec{a}_m = \vec{0}$

$$\longrightarrow x_1\vec{a}_1 + \cdots + x_m\vec{a}_m = \vec{0}$$
 只有零解

③ 向量组只含一个向量 $\bar{\alpha}$ 时,

 $\vec{\alpha} \neq \vec{0}$, 向量组 $\vec{\alpha}$ 线性无关 $\vec{\alpha} = \vec{0}$, 向量组 $\vec{\alpha}$ 线性相关

- ④ \vec{a}_1 , \vec{a}_2 线性相关 \longrightarrow \vec{a}_1 , \vec{a}_2 对应分量成比例 几何意义: 两向量平行
- ⑤ $\vec{a}_1, \vec{a}_2, \vec{a}_3$ 线性相关的几何意义 三向量共面

推论. $\vec{a}_1, \dots, \vec{a}_m \ (m \ge 2)$ 线性相关 $\iff \vec{a}_1, \dots, \vec{a}_m$ 中至少有一个向量可由其余向量线性表示.

证: " \Rightarrow " 设 $\vec{a}_1, \dots, \vec{a}_m$ 线性相关,则存在不全为 0 的

$$k_1, \dots, k_m$$
, 使

P87

$$k_1\vec{a}_1+\cdots+k_m\vec{a}_m=\vec{0}$$

无妨设 $k_m \neq 0$, 则

$$\vec{a}_{m} = -\frac{k_{1}}{k_{m}}\vec{a}_{1} - \dots - \frac{k_{m-1}}{k_{m}}\vec{a}_{m-1}$$

" \Leftrightarrow " 设 $\vec{a}_m = k_1 \vec{a}_1 + \cdots + k_{m-1} \vec{a}_{m-1}$,则

填空: 若 $A: \vec{a}_1, \dots, \vec{a}_m$ 中任意一向量都不能由其余向量

线性表示,则组A线性 π 关.

二. 线性相关与线性无关的充要条件

分析: 给定向量组 $A: \vec{a}_1, \dots, \vec{a}_m, \Leftrightarrow A = (\vec{a}_1, \dots, \vec{a}_m),$

组A 线性相关 \iff 线性方程组 $A\vec{x} = \vec{0}$ 有非零解

P77 定理4 $\iff R(A) < m$ (向量个数)

 $A: \vec{a}_1, \dots, \vec{a}_m$ 线性相关 $\iff R(A) < m$ (向量个数)

 $A: \vec{a}_1, \dots, \vec{a}_m$ 线性无关 $\iff R(A) = m$ (向量个数)

例1. 讨论 n 维单位坐标向量组 $\vec{e}_1, \dots, \vec{e}_n$ 的线性相关性.

解: $E = (\vec{e}_1, \dots, \vec{e}_n)$ 为单位阵, $|E| = 1 \neq 0$, $\therefore R(E) = n$, 故 $\vec{e}_1, \dots, \vec{e}_n$ 线性无关.

例2. 已知
$$\vec{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\vec{a}_2 = \begin{pmatrix} 0 \\ 2 \\ 5 \end{pmatrix}$, $\vec{a}_3 = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix}$, 讨论向量组

 $\vec{a}_1, \vec{a}_2, \vec{a}_3$ 及向量组 \vec{a}_1, \vec{a}_2 的线性相关性.

 $R(\vec{a}_1, \vec{a}_2, \vec{a}_3) = 2 < 3$, $\therefore \vec{a}_1, \vec{a}_2, \vec{a}_3$ 线性相关 $R(\vec{a}_1, \vec{a}_2) = 2$, $\therefore \vec{a}_1, \vec{a}_2$ 线性无关 同理 \vec{a}_1, \vec{a}_3 也线性无关

注意: $A_{n\times m} \stackrel{\mathcal{L}}{\smile} B_{n\times m} \Rightarrow A, B$ 的列向量组 (或对应部

分组) 具有相同的线性关系. 可见本例中 $\vec{a}_3 = 2\vec{a}_1 + \vec{a}_2$

例3. 已知向量组 \vec{a}_1 , \vec{a}_2 , \vec{a}_3 线性无关, $\vec{b}_1 = \vec{a}_1 + \vec{a}_2$, $\vec{b}_2 = \vec{a}_2 + \vec{a}_3$, $\vec{b}_3 = \vec{a}_3 + \vec{a}_1$, 试证 \vec{b}_1 , \vec{b}_2 , \vec{b}_3 线性无关.

证法1. 用定义. 设
$$x_1, x_2, x_3$$
 使 $x_1\vec{b}_1 + x_2\vec{b}_2 + x_3\vec{b}_3 = \vec{0}$

 $\vec{a}_1, \vec{a}_2, \vec{a}_3$ 线性无关,故

$$\begin{cases} x_1 + x_3 = 0 \\ x_1 + x_2 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

系数行列式

$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0$$

方程组只有零解 $x_1 = x_2 = x_3 = 0$,因此 $\vec{b}_1, \vec{b}_2, \vec{b}_3$ 线性无关.

例3. 已知向量组
$$\vec{a}_1$$
, \vec{a}_2 , \vec{a}_3 线性无关, $\vec{b}_1 = \vec{a}_1 + \vec{a}_2$, $\vec{b}_2 = \vec{a}_2 + \vec{a}_3$, $\vec{b}_3 = \vec{a}_3 + \vec{a}_1$, 试证 \vec{b}_1 , \vec{b}_2 , \vec{b}_3 线性无关.

证法2. 用矩阵表示.
$$(\vec{b}_1, \vec{b}_2, \vec{b}_3) = (\vec{a}_1, \vec{a}_2, \vec{a}_3) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 记作 $B = A K$ 设 $B\vec{x} = \vec{0}$, 则有 $A(K\vec{x}) = \vec{0}$,
$$|A|$$
 的列向量线性无关
$$K\vec{x} = \vec{0}$$

$$|K| = 2 \neq 0$$

$$\vec{x} = \vec{0}$$

所以 B 的列向量 $\vec{b}_1, \vec{b}_2, \vec{b}_3$ 线性无关.

例3. 已知向量组
$$\vec{a}_1$$
, \vec{a}_2 , \vec{a}_3 线性无关, $\vec{b}_1 = \vec{a}_1 + \vec{a}_2$, $\vec{b}_2 = \vec{a}_2 + \vec{a}_3$, $\vec{b}_3 = \vec{a}_3 + \vec{a}_1$, 试证 \vec{b}_1 , \vec{b}_2 , \vec{b}_3 线性无关.

证法3. 利用矩阵秩的性质.

$$(\vec{b}_1, \vec{b}_2, \vec{b}_3) = (\vec{a}_1, \vec{a}_2, \vec{a}_3) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 $R = AK$

记作 B = AK

$$|K| = 2 \neq 0$$
, $K = 0$ 可逆,根据矩阵秩的性质 $R(B) = R(A) = 3$

所以 B 的列向量 $\vec{b}_1, \vec{b}_2, \vec{b}_3$ 线性无关.

$$P, Q$$
可逆 $\Rightarrow R(PAQ) = R(A)$
 $R(PA) = R(A) = R(AQ)$

三. 线性相关与线性无关的一些有用结论

(1) 组 $A: \vec{a}_1, \dots, \vec{a}_m$ 线性相关

 \Longrightarrow 向量组 $B: \vec{a}_1, \dots, \vec{a}_m, \vec{a}_{m+1}$ 也线性相关.

证: 组 $A: \vec{a}_1, \dots, \vec{a}_m$ 线性相关 $\Rightarrow R(\vec{a}_1, \dots, \vec{a}_m) < m$

- $\Rightarrow R(\vec{a}_1,\dots,\vec{a}_m,\vec{a}_{m+1}) < m+1$
- \Rightarrow 组 B 线性相关
- 推论. ① 向量组中有线性相关的部分组,则该向量组线性相关.
 - ② 向量组中含零向量 0,则必线性相关.

填空题. $B: \vec{a}_1, \dots, \vec{a}_m, \vec{a}_{m+1}$ 线性无关, $A: \vec{a}_1, \dots, \vec{a}_m$

线性 _ 无 关.

(2) 设

$$\boldsymbol{\alpha}_{j} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{rj} \end{pmatrix}, \quad \boldsymbol{b}_{j} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{rj} \\ a_{r+1,j} \end{pmatrix}, \quad (j = 1, 2, \dots, m),$$

即 α_j 添上一个分量后得向量 b_j .若向量组 $A:\alpha_1,\alpha_2$, …, α_m 线性无关,则向量组 $B:b_1,b_2$, …, b_m 也线性无关.反言之,若向量组B线性相关,则向量组A也线性相关.

故R(B) = m,因此向量组B线性无关.

说明

结论(2)是对增加一个分量(即维数增加1维)而言的,若增加多个分量,结论也成立.

- (3) m 个 n (< m) 维向量组成的向量组 $A: \vec{a}_1, \dots, \vec{a}_m$ 必线性相关. (即: 个数>维数必线性相关)
- (4) $A: \vec{a}_1, \dots, \vec{a}_m$ 线性无关 $B: \vec{a}_1, \dots, \vec{a}_m, \vec{b}$ 线性相关 $B: \vec{a}_1, \dots, \vec{a}_m, \vec{b}$ 线性相关 表示, 且表示式唯一.
- 证: 记 $A = (\vec{a}_1, \dots, \vec{a}_m), B = (\vec{a}_1, \dots, \vec{a}_m, \vec{b}),$ 组 A 线性无关 $\Rightarrow R(A) = m$ 组 B 线性相关 $\Rightarrow R(B) < m+1$
 - 又由 B 的结构可知, $m \le R(B) < m + 1$, 因此 R(B) = m = R(A)

故 $A\vec{x} = \vec{b}$ 有唯一解 ,:: \vec{b} 必能由组 A 线性表示, 且表

示式唯一.

以上(1)~(4)组成了P89定理5:

定理5.

- (1) 组 $A: \vec{a}_1, \dots, \vec{a}_m$ 线性相关
 - \implies 向量组 $B: \vec{a}_1, \dots, \vec{a}_m, \vec{a}_{m+1}$ 也线性相关.
- (3) m 个 n (< m) 维向量组成的向量组必线性相关.
- (4) $A: \vec{a}_1, \dots, \vec{a}_m$ 线性无关, $B: \vec{a}_1, \dots, \vec{a}_m, \vec{b}$ 线性相关 $\implies \vec{b}$ 必能由组 A 线性表示,且表示式唯一.

例4. 设向量组 $\vec{a}_1, \vec{a}_2, \vec{a}_3$ 线性相关, $\vec{a}_2, \vec{a}_3, \vec{a}_4$ 线性无关,证明

- (1) \vec{a}_1 能用 \vec{a}_2 , \vec{a}_3 线性表示;
- (2) \vec{a}_4 不能用 $\vec{a}_1, \vec{a}_2, \vec{a}_3$ 线性表示.
- 证: (1). $:: \vec{a}_2, \vec{a}_3, \vec{a}_4$ 线性无关, $:: \vec{a}_2, \vec{a}_3$ 线性无关,

由定理5 (3) 知 \vec{a}_1 能用 \vec{a}_2 , \vec{a}_3 线性表示

(2) 反证法.

假设 \vec{a}_4 能用 \vec{a}_1 , \vec{a}_2 , \vec{a}_3 线性表示,

 \vec{a}_1 能用 \vec{a}_2 , \vec{a}_3 线性表示

 \vec{a}_4 能用 \vec{a}_2 , \vec{a}_3 线性表示

与 \vec{a}_2 , \vec{a}_3 , \vec{a}_4 线性无关矛盾, 所以假设不真!

小结

1. 线性表示,线性相关,线性无关

概念,联系

2.判别线性相 (无) 关的常用方法

n 维向量组 $A: \vec{a}_1, \dots, \vec{a}_m, \ ill\ A = (\vec{a}_1, \dots, \vec{a}_m),$

(1) 齐次线性方程组

$$A\vec{x} = \vec{0}$$

有非零解,组 A **无关**

(3)
$$m = n$$
 时, $|A| < 0$, 组A无关 $= 0$, 组A相关

3. 向量个数的增减

组 A 相关 ⇒ 增加向量, 新组 也相关

组 A 无关 → 减少向量,新组 也无关

作业

P107 5, 6, 7, 9, 10