

Digital Guitar Effects Pedal

Jonathan Fong John Shefchik Advisor: Dr. Brian Nutter

Texas Tech University jonathan.fong@ttu.edu

Presentation Outline

- Block Diagram
- Input Signal
- DSP Configuration (Audio Processing)
 - Audio Daughter Card
 - Codec
- MSP Configuration (User Peripheral Control)
 - Pin Connections
 - User Interfaces
 - DSP Connection
- MSP and DSP Connections
- Simulink Modeling
- MSP and DSP Software Flowcharts

Objective \ Statements

- To create a digital guitar effects pedal
- All audio processing will be done with a DSP 6711 DSK board
 - With an audio daughter card
- All user peripherals will be controlled using a MSP430 evaluation board
 - Using the F149 model chip
- User Peripherals include...
 - Floor board switches
 - LCD on main unit
- Most guitar effect hardware that is available on the market is analog.
- Having a digital system would allow the user to update the system with new features without having to buy new hardware.

Block Diagram

Guitar Input Signal

Voltage Range of Input Signal

- Nominal ~ 300 mV peak-to-peak
- Maximum ~ 3 V

Frequency Range

- Standard Tuning
- 500 Hz 1500 Hz

Hardware: DSP and MSP

PCM3002 Analog Audio Codec

- 2 in 1 ADC and DAC
- Sampling
 - 16/20 bit
 - 8 kHz 48 kHz
 - Meets 44.1 kHz for CD quality
- Performance
 - 20 Hz 20 kHz range
 - Meets 500 1500 Hz guitar range
 - 85 dB ADC
 - 93 dB DAC
 - Built-in Filtering and Anti-Aliasing
- Serial Output
- Applications
 - Voice/Audio Processing

Conference MSP Controlled Peripherals

Liquid Crystal Display (LCD)

- Lumex LCM S02002
- 2x20 Character Display
- Built in Microcontroller (LCD Driver)
- 16 (8x2) Pin Connection
 - 11 pins to MSP

Floor Board

- 4 output pins to MSP input pins
 - Effect Selection
- 4 MSP output pins for LED control

MSP and DSP Connection

Simulink Models for the DSP

Simulink System Diagram

Conference Distortion Model

- •Distortion is a music effect that gives a distinct, "heavy" sound.
- •The signal is amplified to give it a certain gain.
- •The amplitude of the signal is then limited symmetrically.

http://users.chariot.net.au/~gmarts/fx-desc.htm#Cho

12

Chorus Model

- The chorus effect allows a single instrument to be modeled into a sound that replicates a group of instruments playing the same part.
- This is achieved by adding a single delayed signal (echo) to the original input.
- However, the delay of this echo is varied continuously between a minimum delay and maximum delay at a certain rate.

Conference Reverb Model

- Reverb simulates the acoustical effect of rooms and enclosed buildings.
- The sound heard = source + reflected sound.
- Reverberation time = the time taken for an impulse to decrease by 60dB of it's original magnitude.

http://www.geocities.com/gitaarwerk/fxexp/reverb/Reverb.htm

14

Conference MSP Software Flowchart

15

To DAC

DSP Software Flowchart

Matlab's Simulink Board interfaced using Code Composer Studio Initialize GPIO 4-6 v2.1 Initialize Audio Codec Else Else If If GPIO_4 If GPIO_5 If GPIO_6 From ADC Audio Receive Distortion Reverb Chorus MSP GPIO If GPIO Interrupt **Else**

Audio Transmit

Converted C Code from

Digital Guitar Effects Pedal

Jonathan Fong John Shefchik

Advisor: Dr. Brian Nutter

Texas Tech University jonathan.fong@ttu.edu

SEE THE FUTURE

CREATE YOUR OWN