Severstal Steel Defect Detection

Team 12

B07502089 & B07902143

Introduction & Motivation

Story

 High frequency camera capturing images of steel surface, in order to detect 4 types of defects on steel

Goal and Data

- Goal: Multiclass Segmentation
- Training Data: 12568 images with dimension 1600x256x3
- Label: Each pixel marked class 1-4
- ullet Loss function: Dice coefficient $\dfrac{2|X\cap Y|}{|X|+|Y|}$
 - X is predicted pixel
 - *Y* is groundtruith
 - Maximize to 1

Data Analysis

- small data size
 - stratify to equally sample: 讓train set & val set 資料分布比 例相同。
- 含有一種defect的image佔多數,有2種defect的image極少,有3種的84種的:0個

Data Analysis

Motivation - How to Classify

- Do binary classification first
 - Near half images without defect
 - By dice loss, false positive is expensive
- Then do 4-class classification
 - Determine type of defect

Motivation - How to Segment

- Perform multiclass classification on each pixel
 - CNN is capable
- Sementation Framework:
 - Unet
 - EfficientNetB1

UNet

- No fully-connected layer
- Like CNN autoencoder: U-shaped

Unet

Deconvolution: Combine previous pool

Unet

- Patching: Split an image into pieces won't affect result
 - As long as exists some overlap

Data Preprocessing

Augmentation on Training Data

- Normalization
 - Currently /255 only
- Zoom: 0.05
- Width-shift: 0.2
- Height-shift: 0.2
- Horizontal/Vertical flip

Augmentation on Training Data

- Random crop: 256x480
- Resize: 256x512
- Random brightness contrast

Model

Binary/Multiclass Classification Model

14-layer Xception CNN

Validation results:

binary_crossentropy 0.035537 acc 0.939563 f1_score_m 0.937449 precision_m 0.968126 recall_m 0.915408

Binary Classification Model

Best val_f1_score: 0.92650

Multiclass Classification Model

Best val_f1_score: 0.90045

Segmentation Model

- One model for each type
- Pretrained EfficientNetB2

Postprocessing and Inference

- Component domination
- Prediction threshold
 - Binary: [0.9, 0.85, 0.85, 0.85]
 - Multiclass: [0.5, 0.5, 0.75, 0.5]
 - 一張圖片有可能2種defect試過[0.4, 0.4, 0.4, 0.4], 但沒有比較好
- Detected #pixel threshold
 - **[**500,700,1100,2800]
 - Kaggle上其他人差不多都用[600,600,1000,2000]
 - Attempt: Determined by output of binary classifier

Postprocessing and Inference

Model Accuracy

Binary: 0.92650

Multi: 0.90045

segment_model_defect1: 0.68155

segment_model_defect2: 0.65966

segment_model_defect3: 0.70743

segment_model_defect4: 0.77201

Performance

Kaggle best score (highest public)

Public: 0.88455

Private: 0.86779

Succeeded (2)

notebook98633d9639 2021_0111_2 (version 14/15) 13 hours ago by b07502089_

From Notebook [notebook98633d9639]

0.86779

0.88455

Further Improvement

但沒時間做为...

- Pseudo Labeling
 - Choose the most confident prediction as pseudo label, add to training data
- Ensemble
- Try a single model rather than multilevel
- Augmentation
- Normalization

Reference

- https://medium.com/@guildbilla/steel-defect-detection-imagesegmentation-using-keras-dae8b4f986f0
- https://github.com/khornlund/severstal-steel-defect-detection
- https://www.kaggle.com/c/severstal-steel-defectdetection/discussion/114254
- https://www.kaggle.com/khlevnov/imagedatagenerator-andalbumentations-without-pain
- https://github.com/rook0falcon/steel-defect-detection