Materials selection

for the standing rigging of a sailboat

Sven Bossuyt

standing rigging of a sailboat

rigging | 'rigin| noun [mass noun]

1 the system of ropes or chains employed to support a ship's masts (standing rigging) and to control or set the yards and sails (running rigging). I'm listening to the wind in the rigging.

Function of the standing rigging

keep the mast upright

- resistance to the forces (wind and pretension)
- rigidity

constraints

- minimum weight
- minimum surface to the wind
- marine environment
- price

Performance index for a slender and strong tie rod

area A necessary to support a force F:

$$\sigma_f A = F$$

to minimise the area

$$A = F \cdot (1/\sigma_f)$$

we must choose the material with the highest strength

 σ_f

Performance index for a light and strong tie rod

mass m of a rod with length l:

$$m = \rho A l$$

area A necessary to support a force F:

$$\sigma_f A = F$$

elimination of the area gives:

$$m = \rho (F/\sigma_f) l = F \cdot l \cdot (\rho/\sigma_f)$$

to minimise the mass, we maximise the specific strength of the material

$$\sigma_f/\rho$$

Selection chart strength - density

Performance index for a slender and stiff tie rod

elasticity modulus of the material

$$F/A = E \Delta l/l$$

spring stiffness k:

$$\mathbf{k} = F/\Delta \mathbf{l}$$

elimination of the elongation Δl gives:

$$A = F l/E \Delta l = k \cdot l \cdot (1/E)$$

thus to minimise the area, we maximise the material's elasticity modulus

E

Performance index for a light and stiff tie rod

mass m of a rod with length l:

$$m = \rho A l$$

spring stiffness k:

$$k = F/\Delta l$$
 where $F/A = E \Delta l/l$

elimination of the area A and the elongation Δl gives:

$$m = \rho (F l/E \Delta l) l = \rho (kl/E) l = k l^2 (\rho/E)$$

minimise the mass by maximising the material's specific modulus

Selection chart stiffness - density

Selection chart stiffness - cost

Selection chart stiffness - cost

Selection chart strength - cost

Conclusion: materials selection for standing rigging

performance indices

strength: σ_f

- specific strength: σ_f/ρ

- stiffness: E

specific stiffness: Ε /ρ

constraints

- marine environment
- price

results

- historical: hemp cord
- conventional: stainless steel cable
- high performance: stainless steel rods, carbon fibre composites

Performance index for a light column in compression

mass m of a column with length l:

$$m = \rho A l$$

buckling load:

$$F_{\text{eul}} = n\pi^2 E I / \ell^2$$

for a circular section $I = \pi r^4/4 = A^2/4\pi$ which gives:

$$m^2 = \rho^2 4\pi I l^2 = \rho^2 4\pi (F l^2/n\pi^2 E) l^2$$

$$= 4/n\pi F \cdot \ell^4 \cdot (\rho^2 / E)$$

performance index:
$$\sqrt{E/\rho}$$

Selection chart stiffness - density

materials selection including the shape of the mast of the sailboat

for other than circular sections, let's define

$$\Phi_{el} = 4\pi \cdot I / A^2$$

in the performance index for buckling

$$m^2 = \rho^2 4\pi I / \Phi_{el} \ell^2$$

=
$$\rho^2 4\pi (F \ell^2/n\pi^2 \Phi_{el} E) \ell^2$$

$$= 4/n\pi F \cdot \ell^4 \cdot (\rho^2 / \Phi_{el} E)$$

for each performance index, we can find a form factor this way

for hollow sections $\Phi_{el} \approx r/t$

the wall thickness t is limited by the manufacturing process, for each material

Selection chart stiffness - density

