姓名: 张三 学号: BA00000000

习题 1.1.1. 证明 $\mathbf{N}_{L/K}(\alpha\beta) = \mathbf{N}_{L/K}(\alpha)\mathbf{N}_{L/K}(\beta)$, $\mathrm{Tr}_{L/K}(\alpha+\beta) = \mathrm{Tr}_{L/K}(\alpha)+\mathrm{Tr}_{L/K}(\beta)$.
证明.
习题 1.1.2. 对于 $\alpha \in L, a \in K$, 证明 $\mathbf{N}_{L/K}(a\alpha) = a^n \mathbf{N}_{L/K}(\alpha), \operatorname{Tr}_{L/K}(a\alpha) = a\operatorname{Tr}_{L/K}(\alpha),$ 其中 $n = [L:K] = \dim_K L.$
证明.
习题 1.1.9. 举一个不可分扩张的例子, 使得双线性型 $(x,y)\mapsto \mathrm{Tr}_{L/K}(xy)$ 退化.
解答.
习题 1.2.2. 如果 $b \in B$ 在 A 上代数, 即被一个 A 系数非零多项式零化, 则 b 在 A 上整当且仅当其首一极小多项式 (\in Frac $A[x]$) 是 A 系数的. 因此整闭包是整闭的.
证明.
习题 1.2.5. 设 $A\subseteq B\subseteq C$ 是整环. 如果 B 是有限生成 A 模, C 是有限生成 B 模, 则 C 是有限生成 A 模.
证明.
习题 1.2.7. 利用此法计算 $\sqrt[3]{2} + \sqrt{5}$ 的任一零化多项式.
解答.
习题 1.2.8. 证明整闭包构成一个环. 如果 B 在 A 上代数,则 B 的分式域等于该整闭包的分式域.
证明.
习题 1.2.9. $\mathbb{Z},\mathbb{Z}[i],\mathbb{F}_p[t]$ 是整闭的.
证明.
习题 1.2.17. 设 $d\neq 0,1$ 是无平方因子整数. 当 $d\equiv 1 \bmod 4$ 时 $\Delta_{\mathbb{Q}(\sqrt{d})}=d;$ 当 $d\equiv 2,3 \bmod 4$ 时 $\Delta_{\mathbb{Q}(\sqrt{d})}=4d.$
证明.

习题 1.2.23. 证明 $1, \theta, \frac{1}{2}(\theta + \theta^2)$ 是数域 $\mathbb{Q}(\theta)$ 的一组整基, 其中 $\theta^3 - \theta - 4 = 0$.	
正明.	
习题 1.2.24. (选做) 证明 $\Delta_K \equiv 0,1 \mod 4$ (搜索 Stickelberger's discriminant relation).	
正明.	