Question #9

- a) d) and e) are both correct.
- b) 24 meters/sec
- c) .0040 meters/min
- d) 14.1 meters/ min
- e) 0.24 meters/sec

Question #9

A wheel is spinning with a period of 2 sec. What is the speed of point on the wheel, 7.5 cm away?

- a) d) and e) are both correct.
- b) 24 meters/sec
- c) .0040 meters/min
- d) 14.1 meters/ min
- e) 0.24 meters/sec

Question #10

- a) 50 meters/min
- b) 270 meters/sec
- c) d) and e) are both correct.
- d) 4.5 meters/ min
- e) 450 meters/min

Question #10

A wheel is spinning at a rate of 12 rpm. What is the speed of a point on the wheel, 6 cm away?

- a) 50 meters/min
- b) 270 meters/sec
- c) d) and e) are both correct.
- d) 4.5 meters/ min
- e) 450 meters/min

After setting this wheel in motion you measure that it takes 25 s to make 15 revolutions. Find the tangential velocity v_t of a point on the rim, the angular velocity ω and the period T.

Question #12 Question #13 **Question #11** ω 2.6 rads/min 1.89 meters/sec a) 1.667 min d) and e) are both correct. a) b) 0.45 meters/sec 9.42 rads/sec

230 rads/ min

- d) 0.13 meters/ sec 3.8 rads/sec
- b) and c) are both correct. e)

27 meters/min

- 1.667 s
- 0.6 s
- 0.6 min
- a) and b) are both corre

Angular

Tangential

A rads revs degrees

S m cm km

 $\omega = \frac{\text{rads}}{\text{s}} = \frac{\text{revs}}{\text{s}} = \frac{\text{degrees}}{\text{s}}$

 v_t m/s cm/s km/s

 $\alpha \frac{\text{rads}}{\text{s}^2} \frac{\text{revs}}{\text{s}^2} \frac{\text{degrees}}{\text{s}^2}$

 a_t m/s² km/s² cm/s²

Angular

A rads revs degrees

 ω $\frac{\text{rads}}{\text{s}}$ $\frac{\text{revs}}{\text{s}}$ $\frac{\text{degrees}}{\text{s}}$

 $\alpha \frac{\text{rads}}{\text{s}^2} \frac{\text{revs}}{\text{s}^2} \frac{\text{degrees}}{\text{s}^2}$

Tangential

 S^{4} 5 6 m cm km

 v_t m/s cm/s km/s

 a_t m/s² km/s² cm/s²

$$\alpha \frac{\text{rads}}{\text{s}^2} \frac{\text{revs}}{\text{s}^2} \frac{\text{degrees}}{\text{s}^2}$$

Tangential

S m cm km

 v_t^{5} 6 m/s cm/s km/s

 a_{t} m/s² km/s² cm/s²

$$lpha rac{1}{\mathrm{rads}} rac{3}{\mathrm{revs}} rac{2}{\mathrm{degrees}}$$

Tangential

S m cm km

 v_t^{5} 6 m/s cm/s km/s

 a_t^{4} $_{\text{m/s}^2}^{6}$ $_{\text{cm/s}^2}^{5}$

$$egin{array}{cccccc} Herminist & Hermini$$

$$\alpha = \frac{1}{\frac{1}{s^2}} = \frac{3}{\frac{1}{s^2}} = \frac{2}{\frac{1}{s^2}}$$

Tangential

S m cm km

 v_t^{5} 4 6 m/s cm/s km/s

 a_t^{4} $_{\text{m/s}^2}^{6}$ $_{\text{cm/s}^2}^{5}$

$$s = \theta r$$
$$v_t = \omega r$$
$$a_t = \alpha r$$

Centripetal Acceleration

Human centrifuge

Centripetal Acceleration

Human centrifuge

$$\vec{a} = \frac{v^2}{r}$$
 toward center of circle

Rasheed and Sofia are riding a merry-goround that is spinning steadily. Sofia is twice as far from the axis as is Rasheed.

Sofia's **angular velocity** is ___ that of Rasheed.

- a) twice
- b) four times
- c) the same as
- d) half
- e) We can't say

$$\omega = \frac{\Delta \theta}{\Delta t}$$

Rasheed and Sofia are riding a merry-goround that is spinning steadily. Sofia is twice as far from the axis as is Rasheed.

Sofia's <u>tangential speed</u> is ___ that of Rasheed.

- a) twice
- b) the same as
- c) half
- d) four times
- e) We can't say

$$v = \frac{\Delta s}{\Delta t}$$

Rasheed and Sofia are riding a merry-go-round that is spinning steadily.

Sofia is twice as far from the axis as is Rasheed. Sofia's <u>acceleration</u> is that of Rasheed.

- a) half
- b) the same as
- c) We can't say
- d) four times
- e) twice

Angular Acceleration

Nonuniform circular motion

$$\alpha \equiv \frac{d\omega}{dt}$$
 (angular acceleration)

units of
$$\frac{\text{rad}}{\text{s}^2}$$

$$a_t = \alpha r$$

The fan blade is slowing down. What are the signs of ω and α ?

- A. ω is positive and α is positive.
- B. ω is negative and α is positive.
- C. ω is positive and α is negative.
- D. ω is negative and α is negative.
- E. ω is positive and α is zero.

Angular Kinematics

Rotational kinematics	Linear kinematics
$\omega_{\rm f} = \omega_{\rm i} + \alpha \Delta t$	$v_{\rm fs} = v_{\rm is} + a_{\rm s} \Delta t$
$\theta_{\rm f} = \theta_{\rm i} + \omega_{\rm i} \Delta t + \frac{1}{2} \alpha (\Delta t)^2$	$s_{\rm f} = s_{\rm i} + v_{\rm is} \Delta t + \frac{1}{2} a_{\rm s} (\Delta t)^2$
$\omega_{\rm f}^2 = \omega_{\rm i}^2 + 2\alpha \Delta\theta$	$v_{\rm fs}^2 = v_{\rm is}^2 + 2a_s \Delta s$

Conceptualizing Circular Motion

A merry-go-round is spinning at a rate of 0.5 revs/s and is slowing at a rate of 0.034 rad/s². Through how many radians will the merry-go-round turn through as it comes to rest.

Conceptualizing Circular Motion

A merry-go-round is initially at rest. You begin pushing on it and cause it to speed up. After pushing for 2 minutes you measure the speed of the merry-go-round to be 1.5 revs/second. What was the acceleration of the wheel?

Turbine Problem

A turbine is spinning at 3800 rpm. Friction in the bearings is so low that it takes 10 min to coast to a stop. How many revolutions does the turbine make while stopping?

New Equations

$$\vec{v}_t = \omega r$$

$$v_t = \frac{ds}{dt}$$

$$\vec{a}_c = \frac{v_t^2}{r}$$

$$s = r\theta$$

$$\omega = \frac{d\theta}{dt}$$

$$a_t = \alpha r$$

$$\alpha = \frac{d\omega}{dt}$$

$$\omega_f = \omega_i + \alpha \Delta t$$

$$\theta_f = \theta_i + \omega_i \Delta t + \frac{1}{2} \alpha \Delta t^2$$

$$\omega_f^2 = \omega_i^2 + 2\alpha\Delta\theta$$

New Equations

$$\vec{v}_t = \omega r \left[5 \right]$$

$$\vec{a}_c = \frac{v_t^2}{r} \left[8 \right]$$

$$v_t = \frac{ds}{dt} \left[7 \right] \qquad s = r\theta \left[3 \right]$$

$$s = r\theta$$
 3

$$\omega = \frac{d\theta}{dt} \left[2 \right]$$

$$a_t = \alpha r \left[9 \right]$$

$$\omega_f = \omega_i + \alpha \Delta t \quad \boxed{1}$$

$$\alpha = \frac{d\omega}{dt} \left[4 \right]$$

$$\theta_f = \theta_i + \omega_i \Delta t + \frac{1}{2} \alpha \Delta t^2 \ \boxed{6}$$

$$\omega_f^2 = \omega_i^2 + 2\alpha\Delta\theta \ \ \boxed{10}$$

A car is **speeding up** as it goes around a curve. What is the acceleration vector at this moment in time?

Acceleration in Nonuniform Circular Motion

Centripetal acceleration

$$a_r = \frac{v^2}{r}$$

Tangential acceleration

$$a_t = \frac{ds}{dt}$$

$$a = \sqrt{a_r^2 + a_t^2}$$

Car on a curve

A car starts from rest on a curve of radius 50 m and accelerates at a rate of 4.0 m/s². After 2.0 s what is the **total** acceleration of the car?

