A bucket contains the following marbles: 4 red, 3 blue, 4 green, and 3 yellow making 14 total marbles. Each marble is labeled with a number so they can be distinguished.

Here are our questions:

- How many sets / groups of 4 marbles are possible?
 How many sets / groups of 4 are there such that each one is a different color?
- 3. How many sets of 4 are there in which at least 2 are red?4. How many sets of 4 are there in which none are red, but at

4. How many sets of 4 are there in which none are red, but at least one is green?

The "Dogs of the Dow"	Symbol	Company	Price	Yield			
is a list of stocks on the stock market. These	Т	AT&T	30.24	5.82%			
stocks pay the highest	VZ	Verizon	40.12	4.99%			
dividend yield (dividend	MRK	Merck	37.70	4.46%			
as a percentage of	GE	General Electric	17.91	3.80%			
stock price).	PFE	Pfizer	21.64	3.70%			
	DD	DuPont	45.78	3.58%			
A dividend is a cash	JNJ	Johnson & Johnson	65.58	3.48%			
payment to	INTC	Intel	24.25	3.46%			
shareholders.	PG	Procter & Gamble	66.71	3.15%			
	KFT	Kraft	37.36	3.10%			
Here are our questions:1. How many different 5-stock portfolios are possible?							
2. How many different stock portfolios contain GE and PG, but do not have INTC (Intel) nor KFT (Kraft)?							
3. How many different portfolios contain at least four stocks with yields above 3.5%?							

stocks with dividends yields ≥ 3,5%

If we randomly select 5 stocks in our portfolio,

what is the chance our portfolio has at least 4

Introdução a Probabilidade

Probabilidade

Procura quantificar as incertezas existentes em determinada situação.

Não é possível fazer *inferências estatísticas* sem utilizar alguns resultados da teoria das probabilidades.

Probabilidade

- Experimento Aleatório
- Variável aleatória
- Espaço Amostral
- Eventos

Experimento Aleatório

Experimentos ou fenômenos aleatórios são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis.

Variável Aleatória

Se a variável aleatória pode assumir somente um particular conjunto de valores (finito ou infinito enumerável), diz-se que é uma variável aleatória discreta.

Uma variável aleatória é dita **contínua** se pode assumir qualquer valor em um certo intervalo.

Espaço Amostral

A cada experimento correspondem, em geral, vários resultados possíveis. Assim, ao lançarmos uma moeda, há dois resultados possíveis: ocorrer **cara** ou ocorrer **coroa**. Já ao lançarmos um dado há seis resultados possíveis: 1, 2, 3, 4, 5 ou 6.

Espaço Amostral

Ao conjunto desses resultados possíveis damos o nome de **espaço amostral** ou **conjunto universo**, representados por **S** ou Ω .

Espaço Amostral discreto

Espaço Amostral contínuo

• (x,y) such that $0 \le x,y \le 1$

Eventos

Chamamos de eventos qualquer subconjunto do espaço amostral Ω de um experimento aleatório.

Propriedades Gerais

Seja ε um experimento aleatório e Ω espaço amostral associado a ε . A cada evento A associa-se um número real representado por P(A) que é denominado *probabilidade* de A que satisfaça às seguintes propriedades:

- $0 \le P(A) \le 1$
- $P(\Omega) = 1$
- Se A e B são eventos mutuamente exclusivos então:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

Probabilidade com Eventos

Várias consequências relacionadas a P(A) decorrem das condições citadas anteriormente.

• Se A for o evento vazio (\varnothing), então: P(A) - P(\varnothing) - o

$$P(A) = P(\emptyset) = o$$

Se A e B são dois eventos quaisquer, então: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

•Se \overline{A} for o evento complementar de A então:

$$P(\overline{A}) = 1 - P(A)$$

Exemplo discreto

•
$$P(X = 1) = 4 \cdot \frac{1}{16} = \frac{1}{4}$$

Let $Z = \min(X, Y)$

•
$$P(Z=4) = \frac{1}{16}$$

•
$$P(Z=2) = 5 \cdot \frac{1}{16}$$
 .

Steps do calculo de probabilidade

- Especificar o espaço amostral
- Especificar a lei de probabilidade
- Identificar o evento de interesse
- Calcular

Probabilidade condicional

Assume 12 equally likely outcomes

$$P(A) = \frac{5}{12}$$
 $P(B) = \frac{6}{12}$

If told *B* occurred:

$$P(A | B) = \frac{2}{6} - \frac{1}{3} P(B | B) = 1$$

Probabilidade condicional

Sejam A e B dois eventos associados ao experimento \mathcal{E} . Denotaremos por P(A|B) a probabilidade condicionada do evento A, quando B tiver ocorrido.

Probabilidade condicional

• Let B be the event: min(X, Y) = 2

Let
$$M = \max(X, Y)$$

$$P(M=1\mid B)=\bigcirc$$

$$P(M=3|B) = \frac{P(M=3 \text{ and } B)}{P(B)}$$

$$=\frac{2/16}{5/16}=\frac{2}{5}$$

Independência de Eventos

Dado dois eventos A e B de um espaço amostral Ω , diremos que A *independe de* B se:

$$P(A \mid B) = P(A)$$

Isto é, *independe de* B se a ocorrência de B não afeta a probabilidade de A.

Dois eventos A e B são chamados independentes se $P(A \cap B) = P(A) \times P(B)$.

Independência de Eventos

Eventos independentes é diferente de eventos separados. Eventos independentes são aqueles que quando ocorrem não alteram nossas conclusões sobre a ocorrência do outro.

- Two rolls of a tetrahedral die
- Let every possible outcome have probability 1/16

Função de Probabilidade de uma Variável Aleatória Discreta

É a função de probabilidade no ponto, ou seja, é o conjunto de pares

$$(x_i; P(x_i)), para i = 1, 2, ..., n, ...$$

Para cada possível resultado de x teremos:

(i)
$$0 \le P(x) \le 1$$

(ii)
$$\sum_{i=1}^{\infty} P(x_i) = 1$$

Função de Probabilidade de uma Variável Aleatória Contínua

É uma função de probabilidade quando X é definida sobre um espaço amostral contínuo.

Se quisermos calcular a probabilidade de X assumir um valor x entre "a" e "b" devemos calcular:

$$P(a \le x \le b) = \int_a^b f(x) dx$$

Qual que é a função que associa os diferentes valores da variável aleatória aos resultados possíveis?

Ex: Imagine uma central de relacionamento com clientes que tem 6 atendentes. A probabilidade de estar atendendo é .6

Qual a função que descreve a probabilidade de estarem atendendo?

X = nro de atendentes ocupados

$$P(X = 0) = 0.4^{6}$$

 $P(X = 1) = 6 \times 0.6 \times 0.4^{5}$
 $P(X = 2) = 15 \times 0.6^{2} \times 0.4^{4}$
 $P(X = 3) = 20 \times 0.6^{3} \times 0.4^{3}$
 $P(X = 4) = 15 \times 0.6^{4} \times 0.4^{2}$
 $P(X = 5) = 6 \times 0.6^{5} \times 0.4$
 $P(X = 6) = 0.6^{6}$

$$P(X = 0) = 0,0041$$

 $P(X = 1) = 0,0369$
 $P(X = 2) = 0,1382$
 $P(X = 3) = 0,2765$
 $P(X = 4) = 0,3110$
 $P(X = 5) = 0,1866$
 $P(X = 6) = 0,0467$

$$P(X = k) = \binom{6}{k} \cdot 0.06^{k} \cdot 0.4^{6-k}$$

Distribuição de Probabilidade de uma Variável Aleatória

Onde a curva limitada pela área em relação aos valores de x é igual a 1