

XAL Implementation of DTL Acceptance Scan and Analysis

July 8, 2005

Outline

- □ DTL Acceptance Scan
- ☐ Analysis. The Case of One Amplitude Value
- ☐ Analysis. Multiple Scans (for Several Amplitudes)
- ☐ Possible Problems
- □ Conclusions

1

DTL Acceptance Scan

Multiple Scan Plan

1 Set DTL Amplitude

- 1.1 Scan over Phase measuring Faraday Cup current
- 1.2 Repeat Point #1 with different amplitude

All others DTL modules between this DTL module and the Faraday Cup should be switched off

- 1

Analysis. The Case of one Amplitude Value.

The analysis is always based on comparing theoretical results and scan.

The PARMILA code has been used for theoretical predictions (Sasha Alexandrov).

We have one scan for particular amplitude a_{res} in arbitrary units

We have w_{res}(the graph width) after scan graph analysis

If we know the amplitude offset we can find the design amplitude

Analysis. Multiple Scans (for Several Amplitudes).

After scans we have

Width vs. Amplitude

The PARMILA Runs

For different Energy deviations

Comparison gives us

- ☐ The design amplitude
- ☐ The energy deviation from design energy

Possible Problems

The design phase is near to 0 or 180 degrees

How to find the Width?

Answer:

Use "SHIFT x-PHASE" Button
In the Scan1D and Scan2D
XAL Applications during the
analysis

Conclusion

Both XAL-applications

- •Scan1D
- •Scan2D

can be used for the DTL Acceptance Scans through the predefined configuration mechanism.

-1