《系统工程基础实验手册》

实验手册

目 录

买验一	条统建模与分析实验	. 1
-,	实验目的	. 1
Ξ,	实验原理	. 1
三、	实验内容	. 1
四、	实验步骤	3
五、	实验报告	3
实验二	系统工程理论应用实验	.4
一、	实验目的	.4
Ξ,	实验原理	.4
三、	实验内容	.4
四、	实验步骤	. 5
五、	实验报告	5

实验一 系统建模与分析实验

一、 实验目的

熟悉以下内容:

- 1) 移动平均法
- 2) 解析结构模型分析方法
- 3) AHP 方法

二、 实验原理

1、移动平均法

略。

2、解析结构模型分析方法

略。

3、AHP 方法

略。

三、 实验内容

1、移动平均法

已知某公司近年的销售额如下表所示

年度	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
销售额	4	6	5	8	9	5	4	3	7	8
(百万)										

完成下列操作:

- (1)编写 m 文件程序,应用简单一次移动平均法,取 n=5,计算移动平均值。
- (2)编写 m 文件程序,将原始数据和移动平均后的数据以折线图的形式绘制在一张图上,横轴是年度,线型采用红色实线和绿色虚线。
 - (3)编写 m 文件程序,应用一次指数平滑法,取不同的 α 值,计算平滑值。
- (4)编写 m 文件程序,将原始数据、移动平均后的数据和指数平滑后的数据,以折线图的形式绘制在一张图上,横轴是年度,线型采用红色实线、绿色虚线和蓝色点划线。

2、解析结构模型分析法

已知图如下所示,编写 m 文件程序,求取 v1 到各点的最短路。

3、AHP 方法

某厂拟生产一种设备,经调查用户了解,希望设备功能强,价格低,维修容易,有三种型号可供选择,通过分析建立层次结构模型。

图 2 题目 3 图 1

已知:甲型号性能好、价格一般、维护需要一般技术水平;乙型号性能最好、价格较贵、维护需要一般技术水平;丙型号性能差、价格低、容易维护。据此,得到相应的判断矩阵,如下图所示。

C1	P1	P2	Р3
P1	1	1/4	2
P2	4	1	8
Р3	1/2	1/8	1

C2	P1	P2	Р3
P1	1	4	1/3
P2	1/4	1	1/8
Р3	3	8	1

C3	P1	P2	Р3
P1	1	1	1/3
P2	1	1	1/5
Р3	3	5	1

图 3 题目 3 图 2

假定用户在设备选择上要求:首先功能强;其次易维护;再次价格低。据此,得到准则层相对总目标的判断矩阵如下图所示。

G	C1	C2	С3
C1	1	5	3
C2	1/5	1	1/3
С3	1/3	3	1

图 4 题目 3 图 3

编写 m 文件程序,使用 AHP 方法,分析那种方案更有优势。

四、 实验步骤

- 1. 熟悉实验原理中给出的 MATLAB 函数命令;
- 2. 编制实验内容对应的 MATLAB 的 M 文件;
- 3. 运行编制的 M 文件;
- 4. 查看程序运行结果并进行分析;
- 5. 填写实验报告。

五、 实验报告

格式参见附录一。

实验二 系统工程理论应用实验

一、 实验目的

熟悉以下内容:

- 1) 线性规划
- 2) 非线性规划

二、实验原理

1、线性规划

略。

2、非线性规划

略。

三、 实验内容

1、线性规划1

编写 m 文件程序, 调用 linprog 函数, 求解如下的线性规划问题

$$\max \quad z = 2x_1 + 3x_2$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 2x_1 \le 8 \end{cases}$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0$$

2、线性规划2

编写 m 文件程序,调用 linprog 函数,求解如下的线性规划问题 $min f(x) = -5x_1 - 4x_2 - 6x_3$

s.t.

$$x_1 - x_2 + x_3 \le 20$$

$$3x_1 + 2x_2 + 4x_3 \le 42$$

$$3x_1 + 2x_2 \le 30$$

$$0 \le x_1, 0 \le x_2, 0 \le x_3$$

3、分配问题

有 4 名工程师,他们均能完成 4 项不同类型的工作,但因为熟悉程度不同,每人所需要的时间不同,希望对这 4 名工程师进行合理工作分配(每人负责一项工作),使所有工作完成时间总和最少。编写 m 文件对此问题求解。

工程师工作	工作 1	工作 2	工作3	工作 4
张	2	10	9	7
王	15	4	14	8

李	13	14	16	11
赵	4	15	13	9

4、非线性规划

编写 m 文件程序, 调用 fmincon 函数, 求解如下的线性规划问题

$$\min \quad z = x_1^2 + x_2^2 + 8$$

$$\begin{cases} x_1^2 - x_2 \le 8 \\ -x_1 - x_2^2 + 2 = 0 \\ x_1, x_2 \ge 0 \end{cases}$$

四、 实验步骤

- 1. 熟悉 MATLAB 的函数操作;
- 2. 编制或者调用实验内容对应的 MATLAB 的 m 文件;
- 3. 运行编制的 m 文件;
- 4. 查看程序运行结果并进行分析;
- 5. 填写实验报告。

五、 实验报告

格式参见附录一。