Particle spectrograph

Wave operator and propagator

	$\sigma_{1}^{\#1}\alpha\beta$	$\sigma_{1}^{\#2}$	$\tau_1^{\#1}{}_+\alpha\beta$	$\sigma_{1^-}^{\#1}{}_{\alpha}$	$\sigma_{1^{-}\alpha}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\tau_{1}^{\#2}{}_{\alpha}$
$\sigma_{1}^{\#1} + \alpha \beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_1^{\#2} + \alpha \beta$	$\frac{3\sqrt{2}}{(3+k^2)^2 t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\tau_1^{\#1} + \alpha \beta$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1} +^{\alpha}$	0	0	0	$-\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	0	$-\frac{4i}{3kr_3+6k^3r_3}$
$\sigma_{1}^{\#2} +^{lpha}$	0	0	0	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	$\frac{9k^2r_3-4t_3}{3(k+2k^3)^2r_3t_3}$	0	$\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$
$\tau_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} + ^{\alpha}$	0	0	0	4 <i>i</i> 3 <i>kr</i> 3+6 <i>k</i> ³ <i>r</i> 3	$-\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$	0	$\frac{2(9k^2r_3-4t_3)}{3(1+2k^2)^2r_3t_3}$

Quadratic (free) action	$S = = \iiint (\frac{1}{6} (-4t_3 \omega^{\alpha}_{\alpha} \omega^{\kappa}_{, \kappa} + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 8t_3 \omega^{\kappa}_{\alpha \kappa} \partial_{,f} f^{\alpha\prime} - 8t_3 \omega^{\kappa}_{, \kappa}$	$\partial' f^{\alpha}_{\ \alpha} + 4t_3 \partial_i f^{\kappa}_{\ \kappa} \partial' f^{\alpha}_{\ \alpha} - 15 r_3 \partial_{\beta} \omega_i^{\ \theta}_{\ \beta} \partial' \omega^{\alpha \beta}_{\ \alpha} + 9 r_3 \partial_i \omega_\beta^{\ \theta}_{\ \beta} \partial' \omega^{\alpha \beta}_{\ \alpha} + 9 r_3 \partial_i \omega_\beta^{\ \theta}_{\ \beta} + 9 r_3 \partial_i \omega_\beta^{\ \theta}_{\ \alpha} + 9 r_3 \partial_i \omega_\beta^{\ \theta}_{\ \beta} + 9 r_3 \partial_i \omega_\beta^{\ \theta}_$	$30 r_3 \partial' \omega^{\alpha \beta}_{\ \alpha} \partial_{\theta} \omega^{\theta}_{l \ \beta} + 4 t_2 \omega_{l \theta \alpha} \partial^{\theta} f^{\alpha l} + 2 t_2 \partial_{\alpha} f_{l \theta} \partial^{\theta} f^{\alpha l} - t_2 \partial_{\alpha} f_{\theta l} \partial^{\theta} f^{\alpha l} - t_2 \partial_{\alpha} f_{\alpha l} \partial^{\theta} f^{\alpha l} - t_2 \partial_{\theta} f^{\alpha l} \partial^{\theta} f^{\alpha l} \partial^{\theta} f^{\alpha l} - t_2 \partial_{\theta} f^{\alpha l} \partial^{\theta} f^{\alpha l} \partial^$	$2t_2 \ \omega_{\alpha_l\theta} \ (\omega^{\alpha_l\theta} + 2 \partial^\theta f^{\alpha_l}) + 8 r_2 \partial_\beta \omega_{\alpha_l\theta} \partial^\theta \omega^{\alpha\beta_l} - 4 r_2 \partial_\beta \omega_{\alpha_{\theta_l}} \partial^\theta \omega^{\alpha\beta_l} + 4 r_2$ $\partial_\beta \omega_{l\theta\alpha} \partial^\theta \omega^{\alpha\beta_l} - 24 r_3 \partial_\beta \omega_{l\theta\alpha} \partial^\theta \omega^{\alpha\beta_l} - 2 r_2 \partial_l \omega_{\alpha\beta_\theta} \partial^\theta \omega^{\alpha\beta_l} + 2 r_2 \partial_\theta \omega_{\alpha\beta_l} \partial^\theta \omega^{\alpha\beta_l} -$	$4r_2\partial_\theta\omega_{\omega,R}\partial^\theta\omega^{\alpha\beta\prime}+4t_3\partial_{\jmath}f^{\alpha\prime}\partial_{\kappa}f_{-\kappa}^{-8}+8t_3\partial_{\jmath}f^{\alpha}\partial_{\kappa}f_{-\kappa}^{-8})][t,\kappa,y,z]dzdyd\kappadt$
-------------------------	---	---	--	---	--

$f_{1}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0	, #2	, 0 ₊	0	C	O	0	0	X				1
α				<u>t3</u>			$\sqrt{2} kt_3$			$i \sqrt{2} k$ $(1+2k^2)^2 t_3$	2 k ²	$(1+2k^2)^2t_3$	0	0	$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	0	
$\omega_{1}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	13 3	0	$-\frac{1}{3}$ \bar{l}	, F	,	<u> </u>					$\tau_{2}^{\#1}{}_{\alpha\beta}$	0	0	0	
į				+ 4 t ₃)	ml			J#1	ر 0 4	$\frac{1}{(1+2k^2)^2t_3}$	i √2 k	$(1+2k^2)^2t_3$	0	0	$\sigma_{2}^{\#1}{}_{lphaeta}$	$-\frac{2}{3k^2r_3}$		0	
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$(-9 k^2 r_3)$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3		Ţ	$\sigma_{0}^{\#1} + \frac{1}{(1-1)^{1/2}}$	-	_	τ ₀ ^{#2} †	$\sigma_{0}^{\#1}$ †		$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_2^{\#1} + \alpha \beta$	$\sigma_{2}^{#1} + ^{\alpha \beta \chi}$	
				$\frac{1}{6}$ (-)						# ₀	*1) •	1	<i>P</i>		Ь	1	<i>α</i> [#]	
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0		enerators	Multiplicities									
$\omega_1^{\#_+^2}{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	3 (2 2	$-\frac{1}{3}$ \bar{l} kt_2	0	0	0	0		gande d	Multip	П	1	8	м	3	м	2	2	24
$\omega_1^{\#1}{}_+\alpha_\beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0		Source constraints/dauge generators	reps		$i k \sigma_{0+}^{\#1} == 0$	$2ik \sigma_{1}^{\#2}\alpha == 0$	0	$+ik \ \sigma_{1}^{\#1}\alpha\beta == 0$	$= \sigma_1^{\#2} \alpha \beta$	0 ==	0 =	Total constraints:
	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} +^{\alpha}$		Source	SO(3) irreps	$\tau_{0}^{\#2} == 0$		_+	l ii	$\tau_1^{\#1}\alpha\beta$ +	$\sigma_1^{\#1}{}^{\alpha\beta} =$	$\sigma_{2}^{\#1}^{\alpha\beta\chi}$	$\tau_2^{\#1}\alpha\beta ==$	Total cc

 $\frac{1}{3}$ \vec{l} $\sqrt{2}$ kt_3

 $2k^2t_3$

 $\sigma_{0^{\bar{-}}}^{\#1}$

0

0

 $\omega_{2}^{#1}$ $\alpha_{2}^{#1}$ $\alpha_{2}^{#1}$ $\alpha_{2}^{#1}$

 $\omega_{0^{-}}^{\#1}$

0

0

0

0

0

 $2 k^2 t_3$

 $\sqrt{2} kt_3$

 $\omega_{0}^{\#1} + f_{0}^{\#1} + f_{0}^{\#2} + f_{0}^{\#2} + g_{0}^{\#2} + g_{$

0

0

0

0

0

0

 $-\frac{2}{3}ikt_3$

0

Massive and massless spectra

(No massless particles)

Unitarity conditions