LA FONCTION INVERSE E03

EXERCICE N°1 (Le corrigé)

Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = -10x + 62 - \frac{3240}{x}$

1) Montrer que pour tout réel non nul, $f'(x) = \frac{-10(x-18)(x+18)}{x^2}$

D'une part,

$$f(x) = -10x + 62 - \frac{3240}{x}$$

$$f(x) = -10 \times x + 62 - 3240 \times \frac{1}{x}$$

$$f'(x) = -10 \times 1 + 0 - 3240 \times \frac{-1}{x^2}$$

$$f'(x) = -10 + \frac{3240}{x^2}$$

D'autre part,

$$\frac{-10(x-18)(x+18)}{x^2} = \frac{-10[x^2-324]}{x^2} = \frac{-10x^2+3240}{x^2} = \frac{-10x^2}{x^2} + \frac{3240}{x^2} = -10 + \frac{3240}{x^2}$$

On en déduit que $f'(x) = \frac{-10(x-18)(x+18)}{x^2}$

2) Dresser le tableau de variation de la fonction f sur \mathbb{R}^* .

Nous aurons du tableau de signes de la dérivée que nous allons inclure dans le tableau de variation.

- -10 est toujours négatif; x^2 est positif sur \mathbb{R}^*
- $x-18 > 0 \Leftrightarrow x > 18$ et
- $x+18 > 0 \Leftrightarrow x > -18$

$x+18 > 0 \Leftrightarrow x > -18$									
x	$-\infty$	-18		0	18		+∞		
-10	_		_	_		_			
x - 18	_		_	_	0	+			
x+18	_	0	+	+		+			
x^2	+		+	+		+			
f'(x)	_	0	+	+	0	_			
f(x)	+∞	422 /	≠ +α	$-\infty$	-298		^ −∞		

• f(-18)=422 et f(18)=-298

Limite en $-\infty$

 $\lim_{x \to -\infty} x = -\infty$

d'où

$$\lim_{x \to -\infty} -10 x = +\infty$$

- $\lim_{x \to -\infty} 62 = 62$
- $-\lim_{x\to-\infty}\frac{1}{x}=0$

d'où

$$\lim_{x \to -\infty} \frac{-3240}{x} = 0$$

On en déduit que : $\lim_{x \to \infty} f(x) = +\infty$

Limite en 0

$$\lim_{x \to 0^{-}} x = 0$$

d'où

$$\lim_{x \to 0} -10x = 0$$

- $\lim_{x \to 0} 62 = 62$
- $\lim_{x \to 0^-} \frac{1}{x} = -\infty$

d'où

$$\lim_{x \to 0^{-}} \frac{-3240}{x} = +\infty$$

On en déduit que : $\lim_{x \to \infty} f(x) = +\infty$

Limite en 0⁺

$$\lim_{x \to 0} x = 0$$

a'où

$$\lim_{x\to 0^+} -10 x = 0$$

- $\lim_{x \to 0} 62 = 62$
- $\lim_{x \to 0^+} \frac{1}{x} = +\infty$

d'où

$$\lim_{x \to 0^{+}} \frac{-3240}{x} = -\infty$$

On en déduit que : $\lim_{x \to 0^+} f(x) = -\infty$

Limite en +∞

 $\lim_{x \to +\infty} x = +\infty$

d'où $\lim_{x \to \infty} -10 = -\infty$

- lim 62=62
- $\lim_{x \to +\infty} \frac{1}{x} = 0$

d'où

$$\lim_{x \to +\infty} \frac{-3240}{x} = 0$$

On en déduit que : $\lim_{x \to -\infty} f(x) = -\infty$

LA FONCTION INVERSE E03

EXERCICE N°2 Attention à l'ensemble de définition (Le corrigé)

Soit f la fonction définie sur l'intervalle [0,1;1] par : $f(x) = 2 - 0.1x - \frac{0.025}{x}$

1) Montrer que pour tout réel x appartenant à l'intervalle [0,1;1]:

$$f'(x) = \frac{-0.1(x-0.5)(x+0.5)}{x^2}$$

D'une part,

$$f(x) = 2 - 0.1x - \frac{0.025}{x}$$

$$f(x) = 2 - 0.1 \times x - 0.025 \times \frac{1}{x}$$

$$f'(x) = 0 - 0.1 - 0.025 \times \frac{-1}{x^2}$$

$$f'(x) = -0.1 + \frac{0.025}{x^2}$$

D'autre part,

$$\frac{-0.1(x-0.5)(x+0.5)}{x^2} = \frac{-0.1[x^2-0.25]}{x^2} = \frac{-0.1^2+0.025}{x^2} = \frac{-0.1x^2}{x^2} + \frac{0.025}{x^2} = -0.1 + \frac{0.025}{x^2}$$

On en déduit que $f'(x) = \frac{-0.1(x-0.5)(x+0.5)}{x^2}$

2) Dresser le tableau de variation de la fonction f sur l'intervalle [0,1;1].

Nous aurons du tableau de signes de la dérivée que nous allons inclure dans le tableau de variation.

- -0.1 est toujours négatif,
- $x-0.5 > 0 \Leftrightarrow x > 0.5$ et
- $x+0.5 > 0 \Leftrightarrow x > -0.5$
- x^2 est positif sur [0,1;1]

Et là, on fait bien attention à l'ensemble de définition... [0,1;1]

x	0,1		0,5		1
-0,1		_		_	
x - 0.5		_	0	+	
x + 0.5		+	1	+	
x^2		+		+	
f'(x)		+	0	_	
f(x)	1,74		√ 1,9		1,875

$$f(0,1)=1,74$$
; $f(0,5)=1,9$ et $f(1)=1,875$

Cela nous évite de faire des calculs qui ne sont pas demandés...

La fonction inverse E03

EXERCICE N°3 (Le corrigé)

Soit f la fonction définie sur l'intervalle \mathbb{R}^* par : $f(x) = 0.5x + 2 + \frac{8}{x}$ Justifier toutes les informations données par le tableau de variation de f ci-dessous.

x	$-\infty$	-4	()		4		+∞
f'(x)	+	0 -			_	0	+	
f(x)	1	-2		+∞			1	+∞
	$-\infty$		$-\infty$		*	6		0

Calculons
$$f'(x)$$
 pour $x \in [1;10]$

$$f(x) = 0.5 \times x + 2 + 8 \times \frac{1}{x}$$

$$f(x) = 0.5x + 2 + \frac{8}{x}$$

$$f(x) = 0.5 \times x + 2 + 8 \times \frac{1}{x}$$

$$f'(x) = 0.5 \times 1 + 0 + 8 \times \frac{-1}{x^2}$$

$$f'(x) = 0.5 - \frac{8}{x^2} = \frac{0.5x^2 - 8}{x^2} = \frac{0.5[x^2 + 16]}{x^2} = \frac{0.5(x - 4)(x + 4)}{x^2}$$

On a factorisé la dérivée afin de pouvoir justifier le tableau de signe (qui est basé sur la règle des signes) et bien sûr en déduire le sens de variation de f

- 0,5 est toujours positif; x^2 est positif pour $x \in [1;10]$
- $x-8 > 0 \Leftrightarrow x > 8$ et

$\mathbf{x} + \mathbf{a}$	<u>8 ></u>	$0 \Leftrightarrow x > -8$						
x		$-\infty$	-4	()	4		+∞
0,5	i	+	-	+	+		+	
x-3	8	_		-	_	0	+	
x + 8	8	_	0	+	+		+	
x^2		+		+	+		+	
f '(<i>x</i>)	+	0	-	_	0	+	
f(x)	c)	-∞	-2	-∞	+∞	* 6 /	*	. +∞
C	<u> </u>	2 $C(0)$	_					

•
$$f(-8) = -3$$
 et $f(8) = 7$

Limite en

 $\lim x = -\infty$

d'où

 $\lim_{x \to \infty} 0.5 x = -\infty$

- $\lim 2=2$
- $\lim_{x \to -\infty} \frac{1}{x} = 0$

d'où $\lim \frac{8}{}=0$

On en déduit que : $\lim f(x) = -\infty$

- Limite en 0
- $\lim x = 0$

d'où

 $\lim_{x \to 0} 0.5 x = 0$ $x \rightarrow 0^-$

- $\lim 2=2$ $x \rightarrow 0^-$
- $\lim \frac{1}{-} = -\infty$ $x \rightarrow 0^- X$

d'où lim ⁸= $x \rightarrow 0^- X$

On en déduit que : $\lim_{x \to \infty} f(x) = -\infty$

- Limite en 0⁺
- $\lim x = 0$

d'où

 $\lim_{x \to 0} 0.5 x = 0$ $x \rightarrow 0^+$

- $\lim 2=2$ $x \rightarrow 0^+$
- $\lim \frac{1}{-} = +\infty$ $x \to 0^+ X$

 $d'où \quad \lim_{x \to 0^+} \frac{8}{x} = +\infty$

On en déduit que : $\lim f(x) = +\infty$

- Limite en $+\infty$
- $\lim x = +\infty$

d'où

 $\lim_{x \to \infty} 0.5 x = +\infty$

- $\lim_{n \to \infty} 2 = 2$ $x \to +\infty$
- $\lim_{x \to +\infty} \frac{1}{x} = 0$

<mark>d'où lim </mark>8

On en déduit que : $\lim_{x \to \infty} f(x) = +\infty$

La fonction inverse E03

EXERCICE N°4 (Le corrigé)

Lorsqu'un véhicule roule entre 10 km.h^{-1} et 130 km.h^{-1} , sa consommation d'essence (en litres) s'exprime en fonction de sa vitesse v (en km.h^{-1}) par l'expression :

$$c(v) = 0.06v + \frac{150}{v}$$

Vérifier que pour tout *v* appartenant à l'intervalle [10; 130],

$$c'(v) = \frac{0.06(v - 50)(v + 50)}{v^2}$$

Calculons c'(v) pour [10; 130]

D'une part,

$$c(v) = 0.06v + \frac{150}{v}$$

$$c(v) = 0.06 \times v + 150 \times \frac{1}{v}$$

$$c'(v) = 0.06 \times 1 + 150 \times \frac{-1}{v^2}$$
$$c'(v) = 0.06 - \frac{150}{v^2}$$

$$c'(v) = 0.06 - \frac{150}{v^2}$$

D'autre part.

$$\frac{0.06(v-50)(v+50)}{v^2} = \frac{0.06[v^2-2500]}{v^2} = \frac{0.06v^2-150}{v^2} = \frac{0.06v^2}{v^2} - \frac{150}{v^2} = 0.06 - \frac{150}{v^2}$$

On en déduit que : $c'(v) = \frac{0.06(v-50)(v+50)}{v^2}$

- 2) Étudier le signe de c'(v) sur l'intervalle [10; 130] puis dresser le tableau de variation de la fonction c.
- 0,06 est toujours positif,
- $v-50 > 0 \Leftrightarrow v > 50 ;$
- $v + 50 > 0 \Leftrightarrow v > -50$ et
- v^2 est positif

Et là, on fait bien attention à l'ensemble de définition... [10; 130]

v	10		50		130
0,06		+		+	
v - 50		_	0	+	
v+50		+		+	
v^2		+		+	
c'(v)		_	0	+	
c(v)	15,6		6		√ 9

$$c(10)=15.6$$
; $c(50)=6$ et $c(130)=\frac{582}{65}\approx 9$

3) En déduire la vitesse à laquelle doit rouler ce véhicule pour que sa consommation d'essence soit minimale. Déterminer la consommation minimale en litres.

D'après le tableau de variation, la consommation minimale est de 6 Litres/100km pour une vitesse de | 50 km/h