	doc_1		doc_2		decision	id
cases	authors	• Christlieb, A. • Feng, X. authors		Andrew J. Christlieb Xiao Feng Yan Jiang Qi Tang		
	authors	Jiang, Y.Tang, Q.	title	A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes		
			publication_date	2017-11-20 17:08:49+00:00		
	title	A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes	source	SupportedSources.ARXIV		
			journal	None		
	publication_date 2018-06-24 00:00:00		volume			
	source	SupportedSources.CROSSREF	doi]	
	journal volume		urls	 http://arxiv.org/pdf/1711.07415v2 http://arxiv.org/abs/1711.07415v2 	DUPLICATES	ΓES 1027
	doi	10.1109/icops35962.2018.9575335		• http://arxiv.org/pdf/1711.07415v2		
	urls	 http://xplorestaging.ieee.org/ielx7/9575128/9575132/09575335.pdf? arnumber=9575335 http://dx.doi.org/10.1109/icops35962.2018.9575335 	id	id-5523034848141366321		
			abstract	A high-order finite difference numerical scheme is developed for the ideal magnetohydrodynamic equations based on an alternative flux formulation of the weighted essentially non-oscillatory (WENO) scheme. It computes a high-order numerical flux by a Taylor expansion in space, with the lowest-order term solved from a Riemann solver and the higher-order terms constructed from physical		
	id	id5319566843128333265		fluxes by limited central differences. The scheme coupled with several Riemann solvers, including a Lax-Friedrichs solver and HLL-		
	abstract			type solvers, is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems. In		
	versions			particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes with proper modifications. A numerical boundary condition for the perfect electrical conductor (PEC) boundary is derived for general geometry and verified through a bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann solvers in the current framework.		
			versions]	