

School of Computer Science and Applied Mathematics

Numerical Methods Lab 3

9th March 2018

Some notes:

The bisection method is popular because it is robust. It always works, as long as there is a root in the interval. It is however, a very slow method, compared to the rest of the methods. In addition to being slow, it cannot find roots of multiplicity 2. The multiplicity of a root c is the power to which the factor x - c is raised. Therefore, for functions like $f(x) = (x - c)^2$, the method fails since there are no such interval $[a \ b]$ for which f(a) f(b) < 0.

Also, the **continuity of the function** over the entire interval is an important hypothesis for the bisection method to work. This is already stated in Theorem 1 in your note. For example, the function $f(x) = \frac{1}{x}$ satisfies f(-1) = -1 and f(x) = 1. But, there is no root to the equation $\frac{1}{x} = 0$. Also, Theorem 1 in your note does not say that there is a unique root in the interval $[a\ b]$. There may be many roots, or even, possible infinitely many roots. The Theorem only guarantees that there will be at least a root in the interval.

Instructions

• Your code should be able to communicate the appropriate message, in the case of a computational problem. Remember, you can always estimate the number of iterations needed, given a tolerance.

Questions 1

- (a) Use the methods for finding roots of equations, namely the bisection method, regular falsi method and the Newton's fixed point method, which you have coded in questions 1, 2 and 3 of Lab 3 to find the root, accurate to within 10^{-5} , of the nonlinear equations
 - (I) $f(x) = e^x + 2^{-x} + 2\cos x 6$, $1 \le x \le 2$
 - (II) $f(x) = 1 \frac{2}{x^2 2x + 2}$, $-1 \le x \le 1$
 - (III) For only Question (I), do plot the error at each iteration against the number of iterations, for each method, as given in Question 4 of Lab 3.
- (b) Using any root finding method, find all the point of intersection of the function $f(x) = \tan x$ and g(x) = x on the interval $0 \le x \le 10$

Questions 2

(a) Use Newton's method for finding roots of nonlinear system of equations, which you have coded in Question 5 to find the root, to within 10^{-7} of the nonlinear system

$$\vec{f}(\vec{x}) = \begin{pmatrix} u^2 - 4uv - 2 \\ uv - u^2 + v^2 \\ u^2 + w \end{pmatrix}, \text{ where } \vec{x} = (u, v, w)$$

(b) Use Newton's method to find all points of intersection of the following pair of plane curves:

$$x^3 + y^3 = 3, \qquad x^2 - y^2 = 2$$