21102 A00 12 BE CMPNA Assignment 2 Oil Explain the bias-variance trade-off in the context. of model complexity. How does this trade-off.
Influence the choice of model in real-world ML application? → Bias: -> When the model is simple, the modle might not fit the train set data point -> Here the difference between Actual and predicted. volue for train get is high this is bigs. Variance 1 -> When the model istocomplex, the mode over fits. the training set.

As a result the diff between the actual and predicted is low for the touch nt. -> but the diff is high for other data set. this is ranique

Deep Salunkho.

02)	Imagine. your are tasked with building an ML model.
	to predict automer churn for a subscription - band
	service. Describe how you would hardle the following.
	aspects:
7	Believed the busymount freels off
	Choosing the right type of ML also:
	amoni Albankero has liknon danile other teste -
	We can consider the following
	- logistic regression: simple, interpretable, good for
	lineary sepesated data.
	- Random forcest . Handles non-linear relationship, good
	for mixed data.
	- Neural network : If we have large detant with
	Camplex porten
	Chare depends on factors like date size, frature type,
	interpretability sequisement.
	is try at adultiles most blad a morning -
	Addressy potential ethical issus
	as Whom with Abbillian top director photograph -
	- Frank. date privary and compilance - check for bras in the training data that
	- check for bias in the training data that
	could lead, to unfair proediction
	- Figure tourspearacy.
	Managing over tithing and undertithing
	- use cross validation on unsundata.
	- Appy regularitation technique to avoid ora fitty

- Use ensemble methods to ordure both variance 4 bias - monitor today and validation errors to detect

Bolancry the bia-variance trade off.

- start with simple model and gradualy increase complexity while monitorary performance.

 Use techniques like pruning for decision.
- trees to reduce variance
- Use techniques like bagging and boasting

Ensure the model generalizes well to unsun data

- Use seperate test set that's not used. dustry model development.
- perform k-fold-cross validation to get a.

 robust estimation of model performance.
- Regularly retrain and validate the model on new date to account for concept doubt.