Tempos de execução

	Sequencial	1	2
500	0,546479	0,666399	0,350223
1000	5,798665	6,672048	3,655554
2000	81,187754	83,627639	42,629591

Ganhos de desempenho

	1	2
500	0,820047	1,560374
1000	0,869098	1,586261
2000	0,970824	1,904492

Avaliando as tabelas, dá para notar que, o tempo de execução é maior quando usamos a implementação concorrente com 1 thread do que usando a implementação sequencial. Isso foi esperado pois, além do tempo de execução da thread existem os tempos de alocação e criação da thread. Além disso, o ganho de desempenho na utilização de 2 threads foi aumentando até chegar bem próximo de 2, o que diz que a implementação está perto de ótima.

Configuração do Processador

```
Architecture:
                                     32-bit, 64-bit
Little Endian
CPU op-mode(s):
Byte Order:
                                     48 bits physical, 48 bits virtual
Address sizes:
CPU(s):
On-line CPU(s) list:
                                     0-11
Thread(s) per core:
Core(s) per socket:
Socket(s):
Vendor ID:
                                     AuthenticAMD
CPU family:
                                     23
Model:
Model name:
                                     AMD Ryzen 5 1600 Six-Core Processor
Stepping:
                                     3194.085
CPU MHz:
BogoMIPS:
                                     6388.17
Hypervisor vendor:
                                     Microsoft
Virtualization type:
                                     full
L1d cache:
                                     192 KiB
                                     384 KiB
L1i cache:
L2 cache:
                                     3 MiB
L3 cache:
                                     8 MiB
```