

Todas y Todos podemos programar

Academias de invierno UOH

Contenidos

Segunda clase programación

¿Qué frases entienden los computadores?

- a. Sumar, restar, multiplicar y dividir con Python.
- b. ¿Cómo representa la información mi computador?
- c. Explicación del concepto variable.

Mi computador es el mejor para el juego de la verdad.

- d. Comparaciones numéricas (mayor, menor, igual) en Python.
- e. Comparaciones y manejo de palabras en Python.

¿Qué frases entienden los computadores? Operaciones matemáticas

• En matemáticas, un **operador** es un símbolo que se usa cuando resolvemos

un problema matemático.

- + (sumar)
- - (restar)
- x (multiplicar)
- ÷ (division)
- // (division entera)
- % (modulo)
- Exp (exponencial)

2.66666666666665

```
[ ] 1 # division entera
2 12//3

4

1 # modulo
2 10 % 5

0

[4] 1 # exponencial 2 * 2 * 2
2 5 ** 3
125
```

¿Qué frases entienden los computadores? ¿Cómo representa la información mi computador?

- Los datos se refieren a los símbolos que representan a las personas, hechos, cosas e ideas. Los datos pueden ser un nombre, un número, los colores en una fotografía, o las notas en una composición musical.
- La representación de datos se refiere a la forma en que los datos se almacenan, procesan y transmiten.
- Celulares y las computadoras almacenan datos en formatos digitales que pueden ser manejados por circuitos electrónicos.
- La digitalización es el proceso de convertir información, como texto, números, fotos o música, en datos digitales que pueden ser manipulados por dispositivos electrónicos.

¿Qué frases entienden los computadores? ¿Cómo representa la información mi computador?

- Los 0 y 1 utilizados para representar datos digitales son denominados dígitos binarios — de este término obtenemos la palabra bit que significa dígito binario.
- Un bit es un 0 o un 1 usado en la representación digital de datos.
- Un archivo digital (archivo), es una colección de datos con nombre que existe en un medio de almacenamiento, como un disco duro, CD, DVD o unidad flash.

¿Qué frases entienden los computadores?

Representando números

- Los computadores representan datos numéricos usando el sistema numérico binario, también llamado base 2
- El sistema numérico binario solo tiene dos dígitos: 0 y 1.
- En python: usamos las funciones bin y int para convertir números a binario y de binarios a números.

```
1 -> 0b1 -> 1
     2 -> 0b10 -> 2
     3 -> 0b11 -> 3
    4 -> 0b100 -> 4
    5 -> 0b101 -> 5
    6 -> 0b110 -> 6
    7 -> 0b111 -> 7
    8 -> 0b1000 -> 8
    9 -> 0b1001 -> 9
   10 -> 0b1010 -> 10
   11 -> 0b1011 -> 11
   12 -> 0b1100 -> 12
   13 -> 0b1101 -> 13
   14 -> 0b1110 -> 14
  15 -> 0b1111 -> 15
  16 -> 0b10000 -> 16
  17 -> 0b10001 -> 17
  18 -> 0b10010 -> 18
  19 -> 0b10011 -> 19
219 -> 0b11011011 -> 219
```

 $0 \rightarrow 0b0 \rightarrow 0$

a = bin(5)
print(a)
print(int(a))

ASCII extendido utiliza ocho bits para cada carácter (2^8 caracteres).

A es 01000001

¿Qué frases entienden los computadores?

Representando texto

ASCII extendido utiliza ocho bits para cada carácter (2^8 caracteres).

A es 01000001

Tabla ASCII

00100000	Space	00110011	3	01000110	F	01011001	Υ	01101100	1
00100001	!	00110100	4	01000111	G	01011010	Z	01101101	m
00100010	"	00110101	5	01001000	Н	01011011	[01101110	n
00100011	#	00110110	6	01001001	ı	01011100	١	01101111	0
00100100	\$	00110111	7	01001010	J	01011101]	01110000	р
00100101	%	00111000	8	01001011	К	01011110	٨	01110001	q
00100110	&	00111001	9	01001100	L	01011111	_	01110010	r
00100111	•	00111010	:	01001101	М	01100000	`	01110011	s
00101000	(00111011	;	01001110	N	01100001	а	01110100	t
00101001)	00111100	<	01001111	0	01100010	b	01110101	u
00101010	*	00111101	=	01010000	Р	01100011	С	01110110	٧
00101011	+	00111110	>	01010001	Q	01100100	d	01110111	w
00101100	,	00111111	?	01010010	R	01100101	е	01111000	х
00101101	1	01000000	@	01010011	s	01100110	f	01111001	у
00101110		01000001	Α	01010100	Т	01100111	g	01111010	z
00101111	/	01000010	В	01010101	U	01101000	h	01111011	{
00110000	0	01000011	С	01010110	٧	01101001	i	01111100	
00110001	1	01000100	D	01010111	W	01101010	j	01111101	}
00110010	2	01000101	Е	01011000	Х	01101011	k	01111110	~

Python:

```
#texto a binario
print("A")
print(ord("A"))
print(bin(ord("A")))
print(chr(ord("A")))
A
65
0b1000001
A
```

¿Qué frases entienden los computadores? Bits y bites

Todos los datos almacenados y transmitidos por computadores se codifican como **bits**.

8 bits = 1 byte

UNIDAD	SÍMBOLO	EQUIVALENCIA						
Kilobyte	kB	2 ¹⁰ bytes	1024 bytes					
Megabyte	MB	2 ¹⁰ kilobytes	1024 kilobytes					
Gigabyte	GB	2 ¹⁰ megabytes	1024 megabytes	1000.000.000 bytes				
Terabyte	ТВ	2 ¹⁰ gigabytes	1024 gigabytes	1 billón de bytes				
Petabyte	РВ	2 ¹⁰ terabytes	1024 terabytes	1000 billones de bytes				
Exabyte	EB	2 ¹⁰ petabytes	1024 petabytes	1 trillón de bytes				
Zettabyte	ZB	2 ¹⁰ exabytes	1024 exabytes	1000 trillones de bytes				
Yottabyte	YB	2 ¹⁰ zettabytes	1024 zettabyte	1 cuatrillón de bytes				

¿Qué frases entienden los computadores?

Explicación del concepto variable.

Las variables tiene dos partes:

- 1. **El nombre.** También llamado identificador: algo que se usa para identificar (decir qué es algo). El nombre de la variable se utiliza para identificar un dato exacto.
- 2. **El valor**. Valor significa cantidad o tipo. La parte de valor de una variable muestra los datos que necesitamos para realizar un seguimiento.

 Usamos un signo igual (=) para asignar (dar) un valor al nombre de una variable.

```
a = 5
print(a)
a = 7
print(a)
b = a
print(b)
c = "texto"
b = c
print(b)
```

¿Qué frases entienden los computadores? Explicación del concepto variable.

Tipos de variables en python:

Mi computador es el mejor para el juego de la verdad

Comparaciones numéricas (mayor, menor, igual) en Python.

Mi computador es el mejor para el juego de la verdad Manejo y comparaciones de palabras en Python.

- Las palabras (strings) se utilizan para almacenar texto.
- En python se implementan como secuencias. Una secuencia es una colección/arreglo ordenado por posición de objetos idénticos (orden de izquierda-derecha).
- Strings son secuencias de un carácter (listas, tuplas).

Strings contienen índices por posición.

```
[1] 1 S = 'palabra'
2 len(S)

7

[7] 1 print(S[0]) #primer caracter de la secuencia
2 print(S[3]) # cuarto caracter

p
a

1 # indices de secuencias comienzan en 0 .. n-1
2 print(S[-1]) # ultimo caracter
3 print(S[-2]) # ante-penultimo caracter

a
r
```

Mi computador es el mejor para el juego de la verdad Manejo y comparaciones de palabras en Python.

• Podemos extraer porciones de un string [pos1:pos2).

Concatenar strings

Repetir strings

Los string son inmutables.

```
print(S[2:5]) lab
print(S[1:]) alabra
print(S[:4]) pala
print(S[:-1]) palabr
print(S[:]) palabra
```

Mi computador es el mejor para el juego de la verdad Manejo y comparaciones de palabras en Python.

Los string poseen funciones especificas.

capitalize casefold center count encode endswith expandtabs find
format format_map index isalnum isalpha isascii isdecimal
isdigit

isidentifier islower isnumeric isprintable isspace istitle isupper **join**

ljust lower lstrip maketrans partition replace rfind rindex rjust rpartition rsplit rstrip **split** splitlines **startswith** strip swapcase title translate **upper** zfill

Una serpiente que programa? Google Colab

Una serpiente que programa?

GitHub

https://github.com/adigenova/tpp

Información

- Laboratorio Práctico
 - 11:30 a 13:00
 - Sala A 505
 - 2 ayudantes para el taller.
 - Google Colab y mi primer programa en python

Preguntas? Muchas gracias.