El fosgeno (COCl₂) posee al C como átomo central.:

- Escribí la estructura de Lewis.
- Utilizá TREPEV para predecir su geometría.
- En el marco de TEV, identificá cada enlace como σ o π , y detallá cuáles orbitales atómicos le dieron origen.

$$4e^{-} + 6e^{-} + 2.7e^{-} = 24e^{-} = 12 \text{ pares } e^{-}$$

La siguiente tabla contiene los parámetros a y b de van der Waals para dos compuestos. Sabiendo que uno de estos compuestos es metanol y el otro es metano... ¿Cuál es cuál? Justificá tu respuesta, teniendo en cuenta los valores de los 2 coeficientes de van der Waals, en aproximadamente 10

renglones.			ш	ш
	a (L ² bar/mol ²)	b (L/mol)		н—с—ё—н
Compuesto 1	2,283	0,04278]	Н Н
Compuesto 2	9,649	0,06702	metano	metanol
	DA	\		
interacciones atractivas	$p=rac{RT}{ar{V}-b}$	$-\frac{a}{\bar{v}}$ verify	olumen excluido	
	$v-\epsilon$	V V		
				compuesto 1 = metano

- metanol

La figura muestra la tendencia en los puntos de ebullición de los haluros de hidrógeno. Describí la tendencia y explicá el origen físico de la misma.

T_{eb}
$$\Longrightarrow$$
 interacciones más intensas

<u>tendencia:</u> al bajar en el grupo hay interacciones más intensas (caso particular HF)

❖ caso particular HF:↓interacciones dispersivas,↑interacciones dipolo-dipolo, presencia de puente H.

Explicá en pocos renglones (aprox. 5) a qué se debe que la energía reticular de CaS (aprox. -3000 kJ/mol) sea mucho más grande, en módulo, que la de NaCl (aprox. -790 kJ/mol). Ambas sustancias tienen la misma estructura, con $r_0 = 2,84$ Å para CaS y $r_0 = 2,81$ Å para NaCl.

$$U_{ret} = - A N_A rac{[\![z^+||z^-]\!]e^2}{4\pi\epsilon_0[R_0]} ig(1-rac{1}{n}ig)$$

- A: constante de Madelung. Depende del sistema cristalino. \rightarrow iguales
- R_0 : distancia entre iones en la red. \rightarrow similares
- $z^{+\!/\!-}$: carga de los iones. $ightarrow |z^+|\,|z^-|_{NaCl}=1\;;\;|z^+|\,|z^-|_{CaS}=4$ [; factor 4!
 - n: relacionado con la compresibilidad del sólido. (no hay info)