scikit-optimize Documentation

Release 0.7.3

The scikit-optimize Contributors.

CONTENTS

1	Getti	etting started					
	1.1	Finding a minimum	1				
2	User	er Guide					
	2.1	Acquisition	3				
	2.2	BayesSearchCV, a GridSearchCV compatible estimator	3				
	2.3	Callbacks					
	2.4	Optimizer, an ask-and-tell interface					
	2.5	skopt's top level minimization functions					
	2.6	Plotting tools	4				
	2.7	Space define the optimization space					
	2.8	Utility functions					
•	10		_				
3	Exan		7				
	3.1	Miscellaneous examples					
	3.2	Plotting functions	64				
4	API l	Reference	89				
	4.1	skopt: module	89				
	4.2	skopt.acquisition: Acquisition	112				
	4.3	skopt.benchmarks: A collection of benchmark problems	114				
	4.4	skopt.callbacks: Callbacks	116				
	4.5	skopt.learning: Machine learning extensions for model-based optimization	120				
	4.6	skopt.optimizer: Optimizer	136				
	4.7	skopt.plots: Plotting functions	151				
	4.8	skopt.utils: Utils functions	155				
	4.9	skopt.space.space: Space	161				
	4.10	skopt.space.transformers: transformers	169				
Bi	bliogra	aphy	173				
In	dex		175				
ш	uca		1/3				

GETTING STARTED

Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements several methods for sequential model-based optimization. skopt aims to be accessible and easy to use in many contexts.

The library is built on top of NumPy, SciPy and Scikit-Learn.

We do not perform gradient-based optimization. For gradient-based optimization algorithms look at scipy. optimize here.

Approximated objective function after 50 iterations of gp_minimize. Plot made using plots. plot_objective.

1.1 Finding a minimum

Find the minimum of the noisy function f(x) over the range -2 < x < 2 with skopt:

For more control over the optimization loop you can use the <code>skopt.Optimizer</code> class:

```
from skopt import Optimizer

opt = Optimizer([(-2.0, 2.0)])

for i in range(20):
    suggested = opt.ask()
    y = f(suggested)
    opt.tell(suggested, y)
    print('iteration:', i, suggested, y)
```

For more read our Bayesian optimization with skopt and the other examples.

CHAPTER

TWO

USER GUIDE

2.1 Acquisition

2.2 BayesSearchCV, a GridSearchCV compatible estimator

Use BayesSearchCV as a replacement for scikit-learn's GridSearchCV.

2.3 Callbacks

Monitor and influence the optimization procedure via callbacks.

Callbacks are callables which are invoked after each iteration of the optimizer and are passed the results "so far". Callbacks can monitor progress, or stop the optimization early by returning True.

2.3.1 Monitoring callbacks

- VerboseCallback
- TimerCallback

2.3.2 Early stopping callbacks

- DeltaXStopper
- DeadlineStopper
- DeltaXStopper
- DeltaYStopper
- EarlyStopper

2.3.3 Other callbacks

• CheckpointSaver

2.4 Optimizer, an ask-and-tell interface

Use the Optimizer class directly when you want to control the optimization loop. We refer to this as the ask-and-tell interface. This class is used internally to implement the *skopt's top level minimization functions*.

2.5 skopt's top level minimization functions

These are easy to get started with. They mirror the scipy.optimize API and provide a high level interface to various pre-configured optimizers.

- dummy_minimize
- forest_minimize
- gbrt_minimize
- gp_minimize

2.6 Plotting tools

Plotting functions can be used to visualize the optimization process.

2.6.1 plot_convergence

plot_convergence plots one or several convergence traces.

2.6.2 plot evaluations

plot_evaluations visualize the order in which points where sampled.

2.6.3 plot objective

plot_objective creates pairwise dependence plot of the objective function.

2.6.4 plot_regret

plot_regret plot one or several cumulative regret traces.

2.7 Space define the optimization space

2.8 Utility functions

This is a list of public utility functions. Other functions in this module are meant for internal use.

CHAPTER

THREE

EXAMPLES

3.1 Miscellaneous examples

Miscellaneous and introductory examples for scikit-optimize.

Note: Click here to download the full example code or to run this example in your browser via Binder

3.1.1 Parallel optimization

Iaroslav Shcherbatyi, May 2017. Reviewed by Manoj Kumar and Tim Head. Reformatted by Holger Nahrstaedt 2020

Introduction

For many practical black box optimization problems expensive objective can be evaluated in parallel at multiple points. This allows to get more objective evaluations per unit of time, which reduces the time necessary to reach good objective values when appropriate optimization algorithms are used, see for example results in and the references therein.

One such example task is a selection of number and activation function of a neural network which results in highest accuracy for some machine learning problem. For such task, multiple neural networks with different combinations of number of neurons and activation function type can be evaluated at the same time in parallel on different cpu cores / computational nodes.

The "ask and tell" API of scikit-optimize exposes functionality that allows to obtain multiple points for evaluation in parallel. Intended usage of this interface is as follows:

- 1. Initialize instance of the Optimizer class from skopt
- 2. Obtain n points for evaluation in parallel by calling the ask method of an optimizer instance with the n_points argument set to n > 0
- 3. Evaluate points
- 4. Provide points and corresponding objectives using the tell method of an optimizer instance
- 5. Continue from step 2 until eg maximum number of evaluations reached

```
print(__doc__)
import numpy as np
```

¹ https://hal.archives-ouvertes.fr/hal-00732512/document

Example

A minimalistic example that uses joblib to parallelize evaluation of the objective function is given below.

```
from skopt import Optimizer
from skopt.space import Real
from joblib import Parallel, delayed
# example objective taken from skopt
from skopt.benchmarks import branin
optimizer = Optimizer(
   dimensions=[Real(-5.0, 10.0), Real(0.0, 15.0)],
   random state=1,
   base_estimator='qp'
for i in range(10):
   x = optimizer.ask(n_points=4) # x is a list of n_points points
   y = Parallel(n_jobs=4) (delayed(branin)(v) for v in x) # evaluate points in.
→parallel
   optimizer.tell(x, y)
# takes ~ 20 sec to get here
print(min(optimizer.yi)) # print the best objective found
```

Out:

```
0.39803969617957335
```

Note that if n_{points} is set to some integer > 0 for the ask method, the result will be a list of points, even for $n_{points} = 1$. If the argument is set to None (default value) then a single point (but not a list of points) will be returned.

The default "minimum constant liar" parallelization strategy is used in the example, which allows to obtain multiple points for evaluation with a single call to the ask method with any surrogate or acquisition function. Parallelization strategy can be set using the "strategy" argument of ask. For supported parallelization strategies see the documentation of scikit-optimize.

Total running time of the script: (0 minutes 27.331 seconds)

Estimated memory usage: 30 MB

Note: Click *here* to download the full example code or to run this example in your browser via Binder

3.1.2 Tuning a scikit-learn estimator with skopt

Gilles Louppe, July 2016 Katie Malone, August 2016 Reformatted by Holger Nahrstaedt 2020

If you are looking for a $sklearn.model_selection.GridSearchCV$ replacement checkout Scikit-learn hyperparameter search wrapper instead.

Problem statement

Tuning the hyper-parameters of a machine learning model is often carried out using an exhaustive exploration of (a subset of) the space all hyper-parameter configurations (e.g., using sklearn.model selection.

GridSearchCV), which often results in a very time consuming operation.

In this notebook, we illustrate how to couple gp_minimize with sklearn's estimators to tune hyper-parameters using sequential model-based optimisation, hopefully resulting in equivalent or better solutions, but within less evaluations.

Note: scikit-optimize provides a dedicated interface for estimator tuning via <code>BayesSearchCV</code> class which has a similar interface to those of <code>sklearn.model_selection.GridSearchCV</code>. This class uses functions of skopt to perform hyperparameter search efficiently. For example usage of this class, see <code>Scikit-learn</code> hyperparameter search <code>wrapper</code> example notebook.

```
print(__doc__)
import numpy as np
```

Objective

To tune the hyper-parameters of our model we need to define a model, decide which parameters to optimize, and define the objective function we want to minimize.

```
from sklearn.datasets import load_boston
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import cross_val_score

boston = load_boston()
X, y = boston.data, boston.target
n_features = X.shape[1]

# gradient boosted trees tend to do well on problems like this
reg = GradientBoostingRegressor(n_estimators=50, random_state=0)
```

Next, we need to define the bounds of the dimensions of the search space we want to explore and pick the objective. In this case the cross-validation mean absolute error of a gradient boosting regressor over the Boston dataset, as a function of its hyper-parameters.

```
from skopt.space import Real, Integer
from skopt.utils import use_named_args
# The list of hyper-parameters we want to optimize. For each one we define the
# bounds, the corresponding scikit-learn parameter name, as well as how to
# sample values from that dimension (`'log-uniform'` for the learning rate)
space = [Integer(1, 5, name='max_depth'),
          Real(10**-5, 10**0, "log-uniform", name='learning_rate'),
          Integer(1, n_features, name='max_features'),
          Integer(2, 100, name='min_samples_split'),
          Integer(1, 100, name='min_samples_leaf')]
# this decorator allows your objective function to receive a the parameters as
# keyword arguments. This is particularly convenient when you want to set
# scikit-learn estimator parameters
@use_named_args(space)
def objective(**params):
   reg.set_params(**params)
    return -np.mean(cross_val_score(reg, X, y, cv=5, n_jobs=-1,
                                    scoring="neg_mean_absolute_error"))
```

Optimize all the things!

With these two pieces, we are now ready for sequential model-based optimisation. Here we use gaussian process-based optimisation.

```
from skopt import gp_minimize
res_gp = gp_minimize(objective, space, n_calls=50, random_state=0)

"Best score=%.4f" % res_gp.fun
```

Out:

```
'Best score=2.8451'
```

Out:

```
Best parameters:
- max_depth=5
- learning_rate=0.119428
- max_features=9
- min_samples_split=2
- min_samples_leaf=1
```

Convergence plot

```
from skopt.plots import plot_convergence
plot_convergence(res_gp)
```


Out:

<matplotlib.axes._subplots.AxesSubplot object at 0x7fda0d6ec400>

Total running time of the script: (0 minutes 29.814 seconds)

Estimated memory usage: 34 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

3.1.3 Store and load skopt optimization results

Mikhail Pak, October 2016. Reformatted by Holger Nahrstaedt 2020

Problem statement

We often want to store optimization results in a file. This can be useful, for example,

- if you want to share your results with colleagues;
- if you want to archive and/or document your work;
- or if you want to postprocess your results in a different Python instance or on an another computer.

The process of converting an object into a byte stream that can be stored in a file is called _serialization_. Conversely, _deserialization_ means loading an object from a byte stream.

Warning: Descrialization is not secure against malicious or erroneous code. Never load serialized data from untrusted or unauthenticated sources!

```
print(__doc__)
import numpy as np
import os
import sys

# The followings are hacks to allow sphinx-gallery to run the example.
sys.path.insert(0, os.getcwd())
main_dir = os.path.basename(sys.modules['__main__'].__file__)
IS_RUN_WITH_SPHINX_GALLERY = main_dir != os.getcwd()
```

Simple example

We will use the same optimization problem as in the Bayesian optimization with skopt notebook:

As long as your Python session is active, you can access all the optimization results via the res object.

So how can you store this data in a file? skopt conveniently provides functions <code>skopt.dump</code> and <code>skopt.load</code> that handle this for you. These functions are essentially thin wrappers around the joblib module's <code>joblib.dump</code> and <code>joblib.load</code>.

We will now show how to use skopt.dump and skopt.load for storing and loading results.

Using skopt.dump() and skopt.load()

For storing optimization results into a file, call the skopt.dump function:

```
from skopt import dump, load
dump(res, 'result.pkl')
```

And load from file using skopt.load:

```
res_loaded = load('result.pkl')
res_loaded.fun
```

Out:

```
-0.2403554287130307
```

You can fine-tune the serialization and descrialization process by calling <code>skopt.dump</code> and <code>skopt.load</code> with additional keyword arguments. See the joblib documentation <code>joblib.dump</code> and <code>joblib.load</code> for the additional parameters.

For instance, you can specify the compression algorithm and compression level (highest in this case):

```
dump(res, 'result.gz', compress=9)

from os.path import getsize
print('Without compression: {} bytes'.format(getsize('result.pkl')))
print('Compressed with gz: {} bytes'.format(getsize('result.gz')))
```

Out:

```
Without compression: 80120 bytes
Compressed with gz: 23705 bytes
```

Unserializable objective functions

Notice that if your objective function is non-trivial (e.g. it calls MATLAB engine from Python), it might be not serializable and skopt.dump will raise an exception when you try to store the optimization results. In this case you should disable storing the objective function by calling skopt.dump with the keyword argument $store_objective=False$:

```
dump(res, 'result_without_objective.pkl', store_objective=False)
```

Notice that the entry 'func' is absent in the loaded object but is still present in the local variable:

```
res_loaded_without_objective = load('result_without_objective.pkl')
print('Loaded object: ', res_loaded_without_objective.specs['args'].keys())
print('Local variable:', res.specs['args'].keys())
```

Out:

Possible problems

- Python versions incompatibility: In general, objects serialized in Python 2 cannot be deserialized in Python 3 and vice versa.
- Security issues: Once again, do not load any files from untrusted sources.
- Extremely large results objects: If your optimization results object

is extremely large, calling <code>skopt.dump</code> with <code>store_objective=False</code> might cause performance issues. This is due to creation of a deep copy without the objective function. If the objective function it is not critical to you, you can simply delete it before calling <code>skopt.dump</code>. In this case, no deep copy is created:

```
del res.specs['args']['func']
dump(res, 'result_without_objective_2.pkl')
```

Total running time of the script: (0 minutes 2.617 seconds)

Estimated memory usage: 11 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

3.1.4 Comparing surrogate models

Tim Head, July 2016. Reformatted by Holger Nahrstaedt 2020

Bayesian optimization or sequential model-based optimization uses a surrogate model to model the expensive to evaluate function func. There are several choices for what kind of surrogate model to use. This notebook compares the performance of:

- · gaussian processes,
- · extra trees, and
- random forests

as surrogate models. A purely random optimization strategy is also used as a baseline.

```
print(__doc__)
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt
```

Toy model

We will use the *benchmarks.branin* function as toy model for the expensive function. In a real world application this function would be unknown and expensive to evaluate.

```
from skopt.benchmarks import branin as _branin

def branin(x, noise_level=0.):
    return _branin(x) + noise_level * np.random.randn()
```

```
from matplotlib.colors import LogNorm
def plot_branin():
   fig, ax = plt.subplots()
   x1\_values = np.linspace(-5, 10, 100)
   x2\_values = np.linspace(0, 15, 100)
   x_ax, y_ax = np.meshgrid(x1_values, x2_values)
   vals = np.c_[x_ax.ravel(), y_ax.ravel()]
   fx = np.reshape([branin(val) for val in vals], (100, 100))
   cm = ax.pcolormesh(x_ax, y_ax, fx,
                       norm=LogNorm(vmin=fx.min(),
                                    vmax=fx.max()))
   minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])
   ax.plot(minima[:, 0], minima[:, 1], "r.", markersize=14,
           lw=0, label="Minima")
   cb = fig.colorbar(cm)
   cb.set_label("f(x)")
   ax.legend(loc="best", numpoints=1)
   ax.set_xlabel("X1")
   ax.set_xlim([-5, 10])
   ax.set_ylabel("X2")
   ax.set_ylim([0, 15])
plot_branin()
```


This shows the value of the two-dimensional branin function and the three minima.

Objective

The objective of this example is to find one of these minima in as few iterations as possible. One iteration is defined as one call to the benchmarks.branin function.

We will evaluate each model several times using a different seed for the random number generator. Then compare the average performance of these models. This makes the comparison more robust against models that get "lucky".

```
from functools import partial
from skopt import gp_minimize, forest_minimize, dummy_minimize

func = partial(branin, noise_level=2.0)
bounds = [(-5.0, 10.0), (0.0, 15.0)]
n_calls = 60
```

```
# Gaussian processes
gp_res = run(gp_minimize)

# Random forest
rf_res = run(partial(forest_minimize, base_estimator="RF"))

# Extra trees
et_res = run(partial(forest_minimize, base_estimator="ET"))
```

Note that this can take a few minutes.

Out:

```
<matplotlib.legend.Legend object at 0x7fda06c4e700>
```

This plot shows the value of the minimum found (y axis) as a function of the number of iterations performed so far (x axis). The dashed red line indicates the true value of the minimum of the benchmarks.branin function.

For the first ten iterations all methods perform equally well as they all start by creating ten random samples before fitting their respective model for the first time. After iteration ten the next point at which to evaluate <code>benchmarks.branin</code> is guided by the model, which is where differences start to appear.

Each minimizer only has access to noisy observations of the objective function, so as time passes (more iterations) it will start observing values that are below the true value simply because they are fluctuations.

Total running time of the script: (3 minutes 13.419 seconds)

Estimated memory usage: 65 MB

Note: Click *here* to download the full example code or to run this example in your browser via Binder

3.1.5 Interruptible optimization runs with checkpoints

Christian Schell, Mai 2018 Reformatted by Holger Nahrstaedt 2020

Problem statement

Optimization runs can take a very long time and even run for multiple days. If for some reason the process has to be interrupted results are irreversibly lost, and the routine has to start over from the beginning.

With the help of the callbacks. CheckpointSaver callback the optimizer's current state can be saved after each iteration, allowing to restart from that point at any time.

This is useful, for example,

- if you don't know how long the process will take and cannot hog computational resources forever
- if there might be system failures due to shaky infrastructure (or colleagues...)
- if you want to adjust some parameters and continue with the already obtained results

```
print(__doc__)
import sys
import numpy as np
np.random.seed(777)
import os

# The followings are hacks to allow sphinx-gallery to run the example.
sys.path.insert(0, os.getcwd())
main_dir = os.path.basename(sys.modules['__main__'].__file__)
IS_RUN_WITH_SPHINX_GALLERY = main_dir != os.getcwd()
```

Simple example

We will use pretty much the same optimization problem as in the *Bayesian optimization with skopt* notebook. Additionally we will instantiate the *callbacks.CheckpointSaver* and pass it to the minimizer:

```
from skopt import qp_minimize
from skopt import callbacks
from skopt.callbacks import CheckpointSaver
noise_level = 0.1
if IS_RUN_WITH_SPHINX_GALLERY:
    # When this example is run with sphinx gallery, it breaks the pickling
    # capacity for multiprocessing backend so we have to modify the way we
    # define our functions. This has nothing to do with the example.
   from utils import obj_fun
else:
    def obj_fun(x, noise_level=noise_level):
        return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) + np.random.randn() *...
→noise_level
checkpoint_saver = CheckpointSaver("./checkpoint.pkl", compress=9) # keyword_
→arguments will be passed to `skopt.dump`
gp_minimize(obj_fun,
                                           # the function to minimize
              [(-20.0, 20.0)],
                                          # the bounds on each dimension of x
              x0 = [-20.],
                                             # the starting point
              acq_func="LCB",
                                          # the acquisition function (optional)
                                           # the number of evaluations of f_
              n_calls=10,
\rightarrow including at x0
              n_random_starts=0,
                                          # the number of random initialization_
\rightarrowpoints
              callback=[checkpoint_saver], # a list of callbacks including the_
→ checkpoint saver
             random_state=777);
```

Out:

```
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective,
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated " \,\,
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
```

```
fun: -0.17524445239614728
   func_vals: array([-0.04682088, -0.08228249, -0.00653801, -0.07133619, 0.09063509,
       0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491])
      models: [GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfqs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfqs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
\hookrightarrow10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +...
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfqs_b',
```

```
random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735)]
random_state: RandomState(MT19937) at 0x7FDA0E9E6B40
       space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize
') ])
       specs: {'args': {'func': <function obj_fun at 0x7fda0d1c7d30>, 'dimensions':_
→Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_
→estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), 'n_calls': 10, 'n_random_starts': 0,
→ 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [-20.0], 'y0': None, 'random_
→state': RandomState(MT19937) at 0x7FDA0E9E6B40, 'verbose': False, 'callback': [
→ < skopt.callbacks.CheckpointSaver object at 0x7fda06b50f70>], 'n_points': 10000, 'n_
→restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size':
→None}, 'function': 'base_minimize'}
           x: [20.0]
     x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [
\rightarrow [20.0], [20.0]]
```

Now let's assume this did not finish at once but took some long time: you started this on Friday night, went out for the weekend and now, Monday morning, you're eager to see the results. However, instead of the notebook server you only see a blank page and your colleague Garry tells you that he had had an update scheduled for Sunday noon – who doesn't like updates?

ap minimize did not finish, and there is no res variable with the actual results!

Restoring the last checkpoint

Luckily we employed the callbacks. CheckpointSaver and can now restore the latest result with skopt. load (see Store and load skopt optimization results for more information on that)

```
from skopt import load

res = load('./checkpoint.pkl')

res.fun
```

Out:

```
-0.17524445239614728
```

Continue the search

The previous results can then be used to continue the optimization process:

```
x0 = res.x_iters
y0 = res.func_vals
```

```
gp_minimize(obj_fun,  # the function to minimize
        [(-20.0, 20.0)],  # the bounds on each dimension of x
        x0=x0,  # already examined values for x
        y0=y0,  # observed values for x0
        acq_func="LCB",  # the acquisition function (optional)
        n_calls=10,  # the number of evaluations of f including at x0
        n_random_starts=0,  # the number of random initialization points
        callback=[checkpoint_saver],
        random_state=777);
```

Out:

```
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective,
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective,
⇒has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
⇒has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective_
→has been evaluated at this point before.
 warnings.warn("The objective has been evaluated "
          fun: -0.17524445239614728
    func_vals: array([-0.04682088, -0.08228249, -0.00653801, -0.07133619, 0.09063509,
        0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491,
        0.05448095, 0.18951609, -0.07693575, -0.14030959, -0.06324675,
       -0.05588737, -0.12332314, -0.04395035, 0.09147873, 0.02650409])
      models: [GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +
                                                                         (continues on next page)
→WhiteKernel(noise_level=1),
```

```
n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfqs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +...
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +...
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +...
→WhiteKernel(noise level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), GaussianProcessRegressor(alpha=1e-
→10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5) +...
→WhiteKernel(noise_level=1),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735)]
```

```
random_state: RandomState(MT19937) at 0x7FDA0E9E6B40
       space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize
specs: {'args': {'func': <function obj_fun at 0x7fda0d1c7d30>, 'dimensions':_
→Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_
→estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
                         kernel=1**2 * Matern(length_scale=1, nu=2.5),
                         n_restarts_optimizer=2, noise='gaussian',
                         normalize_y=True, optimizer='fmin_l_bfgs_b',
                         random_state=655685735), 'n_calls': 10, 'n_random_starts': 0,
→ 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [[-20.0], [20.0], [20.0], [-20.
→0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0]], 'y0': array([-0.04682088, -0.
\rightarrow08228249, -0.00653801, -0.07133619, 0.09063509,
       0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491]), 'random_
→state': RandomState(MT19937) at 0x7FDA0E9E6B40, 'verbose': False, 'callback': [
→ < skopt.callbacks.CheckpointSaver object at 0x7fda06b50f70>], 'n_points': 10000, 'n_
→restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size':
→None}, 'function': 'base_minimize'}
           x: [20.0]
     x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [20.0], [20.0], [20.0],
\rightarrow [20.0], [20.0], [20.0], [20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0],
\rightarrow 01, [-20.0], [-20.0]]
```

Possible problems

- changes in search space: You can use this technique to interrupt the search, tune the search space and continue the optimization. Note that the optimizers will complain if x0 contains parameter values not covered by the dimension definitions, so in many cases shrinking the search space will not work without deleting the offending runs from x0 and y0.
- see Store and load skopt optimization results

for more information on how the results get saved and possible caveats

Total running time of the script: (0 minutes 3.143 seconds)

Estimated memory usage: 8 MB

Note: Click *here* to download the full example code or to run this example in your browser via Binder

3.1.6 Async optimization Loop

Bayesian optimization is used to tune parameters for walking robots or other experiments that are not a simple (expensive) function call.

Tim Head, February 2017. Reformatted by Holger Nahrstaedt 2020

They often follow a pattern a bit like this:

- 1. ask for a new set of parameters
- 2. walk to the experiment and program in the new parameters
- 3. observe the outcome of running the experiment
- 4. walk back to your laptop and tell the optimizer about the outcome

5. go to step 1

A setup like this is difficult to implement with the *_minimize() function interface. This is why scikit-optimize has a ask-and-tell interface that you can use when you want to control the execution of the optimization loop.

This notebook demonstrates how to use the ask and tell interface.

```
print(__doc__)
import numpy as np
np.random.seed(1234)
import matplotlib.pyplot as plt
```

The Setup

We will use a simple 1D problem to illustrate the API. This is a little bit artificial as you normally would not use the ask-and-tell interface if you had a function you can call to evaluate the objective.

```
from skopt.learning import ExtraTreesRegressor
from skopt import Optimizer
noise_level = 0.1
```

Our 1D toy problem, this is the function we are trying to minimize

Here a quick plot to visualize what the function looks like:

Now we setup the <code>Optimizer</code> class. The arguments follow the meaning and naming of the *_minimize() functions. An important difference is that you do not pass the objective function to the optimizer.

```
opt = Optimizer([(-2.0, 2.0)], "ET", acq_optimizer="sampling")
# To obtain a suggestion for the point at which to evaluate the objective
# you call the ask() method of opt:

next_x = opt.ask()
print(next_x)
```

Out:

```
[-1.7121321838148869]
```

In a real world use case you would probably go away and use this parameter in your experiment and come back a while later with the result. In this example we can simply evaluate the objective function and report the value back to the optimizer:

```
f_val = objective(next_x)
opt.tell(next_x, f_val)
```

Out:

```
fun: -0.032758350111535384
func_vals: array([-0.03275835])
   models: []
random_state: RandomState(MT19937) at 0x7FDA2B082D40
    space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='identity')])
    specs: None
        x: [-1.7121321838148869]
   x_iters: [[-1.7121321838148869]]
```

Like *_minimize() the first few points are random suggestions as there is no data yet with which to fit a surrogate model.

```
for i in range(9):
    next_x = opt.ask()
    f_val = objective(next_x)
    opt.tell(next_x, f_val)
```

We can now plot the random suggestions and the first model that has been fit:

```
from skopt.acquisition import gaussian_ei
def plot_optimizer(opt, x, fx):
   model = opt.models[-1]
   x_model = opt.space.transform(x.tolist())
    # Plot true function.
   plt.plot(x, fx, "r--", label="True (unknown)")
   plt.fill(np.concatenate([x, x[::-1]]),
             np.concatenate([fx - 1.9600 * noise_level,
                              fx[::-1] + 1.9600 * noise_level]),
             alpha=.2, fc="r", ec="None")
    # Plot Model(x) + contours
    y_pred, sigma = model.predict(x_model, return_std=True)
   plt.plot(x, y_pred, "g--", label=r"\mbox{\ensuremath{\text{mu}}}(x)$")
   plt.fill(np.concatenate([x, x[::-1]]),
             np.concatenate([y_pred - 1.9600 * sigma,
                              (y_pred + 1.9600 * sigma)[::-1]),
             alpha=.2, fc="q", ec="None")
    # Plot sampled points
   plt.plot(opt.Xi, opt.yi,
             "r.", markersize=8, label="Observations")
   acq = gaussian_ei(x_model, model, y_opt=np.min(opt.yi))
    # shift down to make a better plot
   acq = 4 * acq - 2
   plt.plot(x, acq, "b", label="EI(x)")
   plt.fill_between(x.ravel(), -2.0, acq.ravel(), alpha=0.3, color='blue')
    # Adjust plot layout
   plt.grid()
   plt.legend(loc='best')
plot_optimizer(opt, x, fx)
```


Let us sample a few more points and plot the optimizer again:

```
for i in range(10):
    next_x = opt.ask()
    f_val = objective(next_x)
    opt.tell(next_x, f_val)

plot_optimizer(opt, x, fx)
```


By using the Optimizer class directly you get control over the optimization loop.

You can also pickle your <code>Optimizer</code> instance if you want to end the process running it and resume it later. This is handy if your experiment takes a very long time and you want to shutdown your computer in the meantime:

```
import pickle
with open('my-optimizer.pkl', 'wb') as f:
   pickle.dump(opt, f)
with open('my-optimizer.pkl', 'rb') as f:
   opt_restored = pickle.load(f)
```

Total running time of the script: (0 minutes 4.373 seconds)

Estimated memory usage: 8 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

3.1.7 Scikit-learn hyperparameter search wrapper

Iaroslav Shcherbatyi, Tim Head and Gilles Louppe. June 2017. Reformatted by Holger Nahrstaedt 2020

Introduction

This example assumes basic familiarity with scikit-learn.

Search for parameters of machine learning models that result in best cross-validation performance is necessary in almost all practical cases to get a model with best generalization estimate. A standard approach in scikit-learn is using sklearn.model_selection.GridSearchCV class, which takes a set of values for every parameter to try, and simply enumerates all combinations of parameter values. The complexity of such search grows exponentially with the addition of new parameters. A more scalable approach is using sklearn.model_selection.RandomizedSearchCV, which however does not take advantage of the structure of a search space.

Scikit-optimize provides a drop-in replacement for sklearn.model_selection.GridSearchCV, which utilizes Bayesian Optimization where a predictive model referred to as "surrogate" is used to model the search space and utilized to arrive at good parameter values combination as soon as possible.

Note: for a manual hyperparameter optimization example, see "Hyperparameter Optimization" notebook.

```
print(__doc__)
import numpy as np
```

Minimal example

A minimal example of optimizing hyperparameters of SVC (Support Vector machine Classifier) is given below.

```
from skopt import BayesSearchCV
from sklearn.datasets import load_digits
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
X, y = load_digits(10, True)
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.75, test_size=.
\rightarrow25, random_state=0)
# log-uniform: understand as search over p = exp(x) by varying x
opt = BayesSearchCV(
   SVC(),
    {
        'C': (1e-6, 1e+6, 'log-uniform'),
        'gamma': (1e-6, 1e+1, 'log-uniform'),
        'degree': (1, 8), # integer valued parameter
        'kernel': ['linear', 'poly', 'rbf'], # categorical parameter
    },
   n_{iter=32}
    cv=3
opt.fit(X_train, y_train)
print("val. score: %s" % opt.best_score_)
print("test score: %s" % opt.score(X_test, y_test))
```

Out:

```
val. score: 0.991833704528582
test score: 0.993333333333333
```

Advanced example

In practice, one wants to enumerate over multiple predictive model classes, with different search spaces and number of evaluations per class. An example of such search over parameters of Linear SVM, Kernel SVM, and decision trees is given below.

```
from skopt import BayesSearchCV
from skopt.space import Real, Categorical, Integer
from sklearn.datasets import load_digits
from sklearn.svm import LinearSVC, SVC
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
X, y = load_digits(10, True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# pipeline class is used as estimator to enable
# search over different model types
pipe = Pipeline([
    ('model', SVC())
# single categorical value of 'model' parameter is
# sets the model class
# We will get ConvergenceWarnings because the problem is not well-conditioned.
# But that's fine, this is just an example.
linsvc_search = {
    'model': [LinearSVC(max_iter=1000)],
    'model__C': (1e-6, 1e+6, 'log-uniform'),
# explicit dimension classes can be specified like this
svc_search = {
    'model': Categorical([SVC()]),
    'model__C': Real(1e-6, 1e+6, prior='log-uniform'),
    'model__gamma': Real(1e-6, 1e+1, prior='log-uniform'),
    'model__degree': Integer(1,8),
    'model__kernel': Categorical(['linear', 'poly', 'rbf']),
opt = BayesSearchCV(
   pipe,
    [(svc_search, 20), (linsvc_search, 16)], # (parameter space, # of evaluations)
    cv=3
opt.fit(X_train, y_train)
print("val. score: %s" % opt.best_score_)
print("test score: %s" % opt.score(X_test, y_test))
```

Out:

```
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
→failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "
```

```
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear,
⇒failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
⇒failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
⇒failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear.
⇒failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
⇒failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
\rightarrow failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
→failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
\mathrel{\mathrel{\hookrightarrow}} \texttt{failed} to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
→failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear...
→failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
⇒failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear...
→failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
→failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear...
⇒failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
 →py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: L1697911118eaq.nextpage)
→failed to converge, increase the number of iterations.
```

```
warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
→failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear...
→failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
⇒failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear...
→failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
→failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
⇒failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear...
failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
\rightarrow failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear...
⇒failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear_
→failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear...
\rightarrow failed to converge, increase the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
val. score: 0.9851521900519673
test score: 0.982222222222222
```

Progress monitoring and control using callback argument of fit method

It is possible to monitor the progress of *BayesSearchCV* with an event handler that is called on every step of subspace exploration. For single job mode, this is called on every evaluation of model configuration, and for parallel mode, this is called when n_jobs model configurations are evaluated in parallel.

Additionally, exploration can be stopped if the callback returns True. This can be used to stop the exploration early, for instance when the accuracy that you get is sufficiently high.

An example usage is shown below.

```
from skopt import BayesSearchCV
from sklearn.datasets import load_iris
from sklearn.svm import SVC
X, y = load_iris(True)
searchcv = BayesSearchCV(
   SVC(gamma='scale'),
   search_spaces={'C': (0.01, 100.0, 'log-uniform')},
   n_iter=10,
   cv=3
# callback handler
def on_step(optim_result):
   score = searchcv.best_score_
   print("best score: %s" % score)
   if score >= 0.98:
       print('Interrupting!')
        return True
searchcv.fit(X, y, callback=on_step)
```

Out:

```
best score: 0.9466666666666667
best score: 0.97333333333333334
best score: 0.97333333333333334
best score: 0.97333333333333334
best score: 0.9733333333333334
best score: 0.97333333333333334
best score: 0.98
Interrupting!
BayesSearchCV(cv=3, error_score='raise',
              estimator=SVC(C=1.0, break_ties=False, cache_size=200,
                            class_weight=None, coef0=0.0,
                            decision_function_shape='ovr', degree=3,
                            gamma='scale', kernel='rbf', max_iter=-1,
                            probability=False, random_state=None,
                            shrinking=True, tol=0.001, verbose=False),
              fit_params=None, iid=True, n_iter=10, n_jobs=1, n_points=1,
              optimizer_kwargs=None, pre_dispatch='2*n_jobs', random_state=None,
              refit=True, return_train_score=False, scoring=None,
              search_spaces={'C': (0.01, 100.0, 'log-uniform')}, verbose=0)
```

Counting total iterations that will be used to explore all subspaces

Subspaces in previous examples can further increase in complexity if you add new model subspaces or dimensions for feature extraction pipelines. For monitoring of progress, you would like to know the total number of iterations it will take to explore all subspaces. This can be calculated with total_iterations property, as in the code below.

```
from skopt import BayesSearchCV

from sklearn.datasets import load_iris
from sklearn.svm import SVC

X, y = load_iris(True)

searchcv = BayesSearchCV(
    SVC(),
    search_spaces=[
        ({'C': (0.1, 1.0)}, 19), # 19 iterations for this subspace
        {'gamma': (0.1, 1.0)}
    l,
    n_iter=23
)

print(searchcv.total_iterations)
```

Out:

```
42
```

Total running time of the script: (0 minutes 51.893 seconds)

Estimated memory usage: 9 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

3.1.8 Exploration vs exploitation

Sigurd Carlen, September 2019. Reformatted by Holger Nahrstaedt 2020

We can control how much the acquisition function favors exploration and exploitation by tweaking the two parameters kappa and xi. Higher values means more exploration and less exploitation and vice versa with low values.

kappa is only used if acq_func is set to "LCB". xi is used when acq_func is "EI" or "PI". By default the acqusition function is set to "gp_hedge" which chooses the best of these three. Therefore I recommend not using gp_hedge when tweaking exploration/exploitation, but instead choosing "LCB", "EI" or "PI.

The way to pass kappa and xi to the optimizer is to use the named argument "acq_func_kwargs". This is a dict of extra arguments for the acquisittion function.

If you want opt.ask() to give a new acquisition value imdediatly after tweaking kappa or xi call opt.update_next(). This ensures that the next value is updated with the new acquisition parameters.

```
print(__doc__)
import numpy as np
np.random.seed(1234)
import matplotlib.pyplot as plt
```

Toy example

First we define our objective like in the ask-and-tell example notebook and define a plotting function. We do however only use on initial random point. All points afterthe first one is therefore choosen by the acquisition function.

```
x = np.linspace(-2, 2, 400).reshape(-1, 1)

fx = np.array([objective(x_i, noise_level=0.0) for x_i in x])
```

```
from skopt.acquisition import gaussian_ei
def plot_optimizer(opt, x, fx):
   model = opt.models[-1]
   x_model = opt.space.transform(x.tolist())
    # Plot true function.
   plt.plot(x, fx, "r--", label="True (unknown)")
   plt.fill(np.concatenate([x, x[::-1]]),
             np.concatenate([fx - 1.9600 * noise_level,
                              fx[::-1] + 1.9600 * noise_level]),
             alpha=.2, fc="r", ec="None")
    # Plot Model(x) + contours
    y_pred, sigma = model.predict(x_model, return_std=True)
   plt.plot(x, y_pred, "g--", label=r"\mbox{\ensuremath{\text{mu}}}(x)")
   plt.fill(np.concatenate([x, x[::-1]]),
             np.concatenate([y_pred - 1.9600 * sigma,
                              (y_pred + 1.9600 * sigma)[::-1]]),
             alpha=.2, fc="g", ec="None")
    # Plot sampled points
   plt.plot(opt.Xi, opt.yi,
             "r.", markersize=8, label="Observations")
    acq = gaussian_ei(x_model, model, y_opt=np.min(opt.yi))
    # shift down to make a better plot
   acq = 4 * acq - 2
   plt.plot(x, acq, "b", label="EI(x)")
   plt.fill_between(x.ravel(), -2.0, acq.ravel(), alpha=0.3, color='blue')
    # Adjust plot layout
   plt.grid()
    plt.legend(loc='best')
```

We run a an optimization loop with standard settings

```
for i in range(30):
    next_x = opt.ask()
    f_val = objective(next_x)
```

(continues on next page)

```
opt.tell(next_x, f_val)
# The same output could be created with opt.run(objective, n_iter=30)
plot_optimizer(opt, x, fx)
```


We see that some minima is found and "exploited"

Now lets try to set kappa and xi using'to other values and pass it to the optimizer:

```
acq_func_kwargs = {"xi": 10000, "kappa": 10000}
```

```
opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)
```


We see that the points are more random now.

This works both for kappa when using acq_func="LCB":

```
opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)
```


And for xi when using acq_func="EI": or acq_func="PI":

```
opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)
```


We can also favor exploitaton:

```
acq_func_kwargs = {"xi": 0.000001, "kappa": 0.001}
```

```
opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)
```



```
opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)
```



```
opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)
```


Note that negative values does not work with the "PI"-acquisition function but works with "EI":

```
acq_func_kwargs = {"xi": -1000000000000}
```

```
opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)
```



```
opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)
```


Changing kappa and xi on the go

If we want to change kappa or ki at any point during our optimization process we just replace opt.acq_func_kwargs. Remember to call opt.update_next() after the change, in order for next point to be recalculated.

```
acq_func_kwargs = {"kappa": 0}
```

```
opt.acq_func_kwargs
```

Out:

```
{'kappa': 0}
```

```
opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)
```



```
acq_func_kwargs = {"kappa": 100000}
```

```
opt.acq_func_kwargs = acq_func_kwargs
opt.update_next()
```

```
opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)
```


Total running time of the script: (0 minutes 34.338 seconds)

Estimated memory usage: 8 MB

Note: Click *here* to download the full example code or to run this example in your browser via Binder

3.1.9 Bayesian optimization with skopt

Gilles Louppe, Manoj Kumar July 2016. Reformatted by Holger Nahrstaedt 2020

Problem statement

We are interested in solving

$$x^* = \arg\min_x f(x)$$

under the constraints that

- f is a black box for which no closed form is known (nor its gradients);
- f is expensive to evaluate;
- and evaluations of y = f(x) may be noisy.

Disclaimer. If you do not have these constraints, then there is certainly a better optimization algorithm than Bayesian optimization.

Bayesian optimization loop

For t = 1 : T:

- 1. Given observations $(x_i, y_i = f(x_i))$ for i = 1 : t, build a probabilistic model for the objective f. Integrate out all possible true functions, using Gaussian process regression.
- 2. **optimize a cheap acquisition/utility function \$u\$ based on the posterior** distribution for sampling the next point.

$$x_{t+1} = \arg\min_{x} u(x)$$

Exploit uncertainty to balance exploration against exploitation.

3. Sample the next observation y_{t+1} at x_{t+1} .

Acquisition functions

Acquisition functions u(x) specify which sample x: should be tried next:

- Expected improvement (default): $-EI(x) = -\mathbb{E}[f(x) f(x_t^+)]$
- Lower confidence bound: $LCB(x) = \mu_{GP}(x) + \kappa \sigma_{GP}(x)$
- Probability of improvement: $-PI(x) = -P(f(x) \ge f(x_t^+) + \kappa)$

where x_t^+ is the best point observed so far.

In most cases, acquisition functions provide knobs (e.g., κ) for controlling the exploration-exploitation trade-off. Search in regions where $\mu_{GP}(x)$ is high (exploitation) - Probe regions where uncertainty $\sigma_{GP}(x)$ is high (exploration)

```
print(__doc__)
import numpy as np
np.random.seed(237)
import matplotlib.pyplot as plt
```

Toy example

Let assume the following noisy function f:

Note. In skopt, functions f are assumed to take as input a 1D vector x: represented as an array-like and to return a scalar f(x):.

Bayesian optimization based on gaussian process regression is implemented in *gp_minimize* and can be carried out as follows:

Accordingly, the approximated minimum is found to be:

```
"x^* = %.4f, f(x^*) = %.4f" % (res.x[0], res.fun)
```

Out:

```
'x^*=-0.3508, f(x^*)=-1.0147
```

For further inspection of the results, attributes of the res named tuple provide the following information:

- x [float]: location of the minimum.
- fun [float]: function value at the minimum.
- models: surrogate models used for each iteration.
- x_iters [array]: location of function evaluation for each iteration.
- func_vals [array]: function value for each iteration.
- space [Space]: the optimization space.
- specs [dict]: parameters passed to the function.

```
print (res)
```

Out:

```
fun: -1.0146594081392317
  func_vals: array([ 0.03716044,  0.00673852,  0.63515442, -0.16042062,  0.10695907,
     -0.23193728, -0.60259431, -0.04943778, -1.01465941, -0.98480886,
     -0.87449015, 0.18102445, -0.10782771, 0.01197229, -0.80618926])
     models: [GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
                        kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=0.01),
                        n_restarts_optimizer=2, noise=0.010000000000000000,
                        normalize_y=True, optimizer='fmin_l_bfgs_b',
                        random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→ copy_X_train=True,

                        kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=0.01),
                        n_restarts_optimizer=2, noise=0.010000000000000000,
                        normalize_y=True, optimizer='fmin_l_bfgs_b',
                        random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→ copy_X_train=True,

                        kernel=1**2 * Matern(length_scale=1, nu=2.5) +__
→WhiteKernel(noise_level=0.01),
                        n_restarts_optimizer=2, noise=0.010000000000000000,
                        normalize_y=True, optimizer='fmin_l_bfgs_b',
                        random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→ copy_X_train=True,

                        kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=0.01),
                        n_restarts_optimizer=2, noise=0.010000000000000000,
                        normalize_y=True, optimizer='fmin_l_bfgs_b',
                        random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→ copy_X_train=True,

                        kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=0.01),
                        n_restarts_optimizer=2, noise=0.010000000000000000,
                        normalize_y=True, optimizer='fmin_l_bfgs_b',
                       random_state=822569775), GaussianProcessRegressor(alpha=1e-10,
\rightarrow copy_X_train=True,
                                                                          (continues on next page)
```

```
kernel=1**2 * Matern(length_scale=1, nu=2.5) +...
\hookrightarrowWhiteKernel(noise_level=0.01),
                        n_restarts_optimizer=2, noise=0.010000000000000000,
                        normalize_y=True, optimizer='fmin_l_bfgs_b',
                        random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→ copy_X_train=True,

                        kernel=1**2 * Matern(length_scale=1, nu=2.5) +...
→WhiteKernel(noise_level=0.01),
                        n_restarts_optimizer=2, noise=0.010000000000000000,
                        normalize_y=True, optimizer='fmin_l_bfgs_b',
                        random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→ copy_X_train=True,

                        kernel=1**2 * Matern(length_scale=1, nu=2.5) +
→WhiteKernel(noise_level=0.01),
                        normalize_y=True, optimizer='fmin_l_bfgs_b',
                        random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→ copy_X_train=True,

                        kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel (noise_level=0.01),
                        n_restarts_optimizer=2, noise=0.010000000000000000,
                        normalize_y=True, optimizer='fmin_l_bfgs_b',
                        random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→ copy_X_train=True,

                        kernel=1**2 * Matern(length_scale=1, nu=2.5) +_
→WhiteKernel(noise_level=0.01),
                        n_restarts_optimizer=2, noise=0.010000000000000000,
                        normalize_y=True, optimizer='fmin_l_bfgs_b',
                        random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→ copy_X_train=True,

                        kernel=1**2 * Matern(length_scale=1, nu=2.5) +
→WhiteKernel(noise_level=0.01),
                        n_restarts_optimizer=2, noise=0.010000000000000000,
                        normalize_y=True, optimizer='fmin_l_bfqs_b',
                        random state=822569775)1
random_state: RandomState(MT19937) at 0x7FDA0E9E6B40
       space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize
') 1)
       specs: {'args': {'func': <function f at 0x7fda06ab8820>, 'dimensions':_
→Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')]), 'base_
→estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
                        kernel=1**2 * Matern(length_scale=1, nu=2.5),
                        n_restarts_optimizer=2, noise=0.0100000000000000002,
                        normalize_y=True, optimizer='fmin_l_bfgs_b',
                        random_state=822569775), 'n_calls': 15, 'n_random_starts': 5,
→ 'acq_func': 'EI', 'acq_optimizer': 'auto', 'x0': None, 'y0': None, 'random_state':...
→RandomState(MT19937) at 0x7FDA0E9E6B40, 'verbose': False, 'callback': None, 'n_
→points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1,
→'model_queue_size': None}, 'function': 'base_minimize'}
           x: [-0.35076964188527904]
     x_iters: [[-0.009345334109402526], [1.2713537644662787], [0.4484475787090836],,
\rightarrow [1.0854396754496047], [1.4426790855107496], [0.9698921802985794], [-0.
\rightarrow4464493263345517], [-0.6474638284799423], [-0.35076964188527904], [-0.
→28714767658880325], [-0.2968537755362253], [-2.0], [2.0], [-1.3149517825054502], [-
\rightarrow 0.3218160744873248511
```

Together these attributes can be used to visually inspect the results of the minimization, such as the convergence trace

or the acquisition function at the last iteration:

```
from skopt.plots import plot_convergence
plot_convergence(res);
```


Out:

```
<matplotlib.axes._subplots.AxesSubplot object at 0x7fda06b498b0>
```

Let us now visually examine

- 1. The approximation of the fit gp model to the original function.
- 2. The acquisition values that determine the next point to be queried.

```
from skopt.acquisition import gaussian_ei

plt.rcParams["figure.figsize"] = (8, 14)

x = np.linspace(-2, 2, 400).reshape(-1, 1)
x_gp = res.space.transform(x.tolist())
fx = np.array([f(x_i, noise_level=0.0) for x_i in x])
```

Plot the 5 iterations following the 5 random points

```
curr_x_iters = res.x_iters[:5+n_iter]
   curr_func_vals = res.func_vals[:5+n_iter]
    # Plot true function.
   plt.subplot(5, 2, 2*n_iter+1)
   plt.plot(x, fx, "r--", label="True (unknown)")
   plt.fill(np.concatenate([x, x[::-1]]),
             np.concatenate([fx - 1.9600 \star noise_level,
                            fx[::-1] + 1.9600 * noise_level]),
             alpha=.2, fc="r", ec="None")
    # Plot GP(x) + contours
   y_pred, sigma = gp.predict(x_gp, return_std=True)
   plt.plot(x, y_pred, "g--", label=r"\mbox{mu}_{GP}(x)")
   plt.fill(np.concatenate([x, x[::-1]]),
             np.concatenate([y_pred - 1.9600 * sigma,
                             (y_pred + 1.9600 * sigma)[::-1]]),
             alpha=.2, fc="g", ec="None")
    # Plot sampled points
   plt.plot(curr_x_iters, curr_func_vals,
             "r.", markersize=8, label="Observations")
    # Adjust plot layout
   plt.grid()
   if n_iter == 0:
       plt.legend(loc="best", prop={'size': 6}, numpoints=1)
   if n iter != 4:
       plt.tick_params(axis='x', which='both', bottom='off',
                        top='off', labelbottom='off')
    # Plot EI(x)
   plt.subplot(5, 2, 2*n_iter+2)
   acq = gaussian_ei(x_gp, gp, y_opt=np.min(curr_func_vals))
   plt.plot(x, acq, "b", label="EI(x)")
   plt.fill_between(x.ravel(), -2.0, acq.ravel(), alpha=0.3, color='blue')
   next_x = res.x_iters[5+n_iter]
   next_acq = gaussian_ei(res.space.transform([next_x]), gp,
                           y_opt=np.min(curr_func_vals))
   plt.plot(next_x, next_acq, "bo", markersize=6, label="Next query point")
   # Adjust plot layout
   plt.ylim(0, 0.1)
   plt.grid()
   if n iter == 0:
       plt.legend(loc="best", prop={'size': 6}, numpoints=1)
   if n_iter != 4:
       plt.tick_params(axis='x', which='both', bottom='off',
                        top='off', labelbottom='off')
plt.show()
```


The first column shows the following:

- 1. The true function.
- 2. The approximation to the original function by the gaussian process model
- 3. How sure the GP is about the function.

The second column shows the acquisition function values after every surrogate model is fit. It is possible that we do not choose the global minimum but a local minimum depending on the minimizer used to minimize the acquisition function.

At the points closer to the points previously evaluated at, the variance dips to zero.

Finally, as we increase the number of points, the GP model approaches the actual function. The final few points are clustered around the minimum because the GP does not gain anything more by further exploration:

```
plt.rcParams["figure.figsize"] = (6, 4)
# Plot f(x) + contours
x = np.linspace(-2, 2, 400).reshape(-1, 1)
x_gp = res.space.transform(x.tolist())
fx = [f(x_i, noise_level=0.0)  for x_i  in x]
plt.plot(x, fx, "r--", label="True (unknown)")
plt.fill(np.concatenate([x, x[::-1]]),
         np.concatenate(([fx_i - 1.9600 \star noise_level for fx_i in fx],
                         [fx_i + 1.9600 * noise_level for fx_i in fx[::-1]])),
         alpha=.2, fc="r", ec="None")
# Plot GP(x) + contours
qp = res.models[-1]
y_pred, sigma = gp.predict(x_gp, return_std=True)
plt.plot(x, y_pred, "g--", label=r"\mbox{\em GP}(x)")
plt.fill(np.concatenate([x, x[::-1]]),
         np.concatenate([y_pred - 1.9600 * sigma,
                         (y_pred + 1.9600 * sigma)[::-1]]),
         alpha=.2, fc="g", ec="None")
# Plot sampled points
plt.plot(res.x_iters,
         res.func_vals,
         "r.", markersize=15, label="Observations")
plt.title(r"$x^* = $.4f, f(x^*) = $.4f$" % (res.x[0], res.fun))
plt.legend(loc="best", prop={'size': 8}, numpoints=1)
plt.grid()
plt.show()
```


Total running time of the script: (0 minutes 3.771 seconds)

Estimated memory usage: 8 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

3.1.10 Use different base estimators for optimization

Sigurd Carlen, September 2019. Reformatted by Holger Nahrstaedt 2020

To use different base_estimator or create a regressor with different parameters, we can create a regressor object and set it as kernel.

```
print(__doc__)
import numpy as np
np.random.seed(1234)
import matplotlib.pyplot as plt
```

Toy example

Let assume the following noisy function f:

```
noise_level = 0.1
# Our 1D toy problem, this is the function we are trying to
# minimize
```

(continues on next page)

```
x = np.linspace(-2, 2, 400).reshape(-1, 1)

fx = np.array([objective(x_i, noise_level=0.0) for x_i in x])
```

```
from skopt.acquisition import gaussian_ei
def plot_optimizer(res, next_x, x, fx, n_iter, max_iters=5):
   x_gp = res.space.transform(x.tolist())
   qp = res.models[-1]
   curr_x_iters = res.x_iters
   curr_func_vals = res.func_vals
    # Plot true function.
   ax = plt.subplot(max_iters, 2, 2 * n_iter + 1)
    plt.plot(x, fx, "r--", label="True (unknown)")
    plt.fill(np.concatenate([x, x[::-1]]),
             np.concatenate([fx - 1.9600 * noise_level,
                             fx[::-1] + 1.9600 * noise_level]),
             alpha=.2, fc="r", ec="None")
    if n_iter < max_iters - 1:</pre>
       ax.get_xaxis().set_ticklabels([])
    # Plot GP(x) + contours
   y_pred, sigma = gp.predict(x_gp, return_std=True)
   plt.plot(x, y_pred, "g--", label=r"\mbox{Mu}_{GP}(x)")
   plt.fill(np.concatenate([x, x[::-1]]),
             np.concatenate([y_pred - 1.9600 * sigma,
                             (y_pred + 1.9600 * sigma)[::-1]]),
             alpha=.2, fc="g", ec="None")
    # Plot sampled points
    plt.plot(curr_x_iters, curr_func_vals,
             "r.", markersize=8, label="Observations")
   plt.title(r"x* = %.4f, f(x*) = %.4f" % (res.x[0], res.fun))
    # Adjust plot layout
   plt.grid()
    if n_iter == 0:
        plt.legend(loc="best", prop={'size': 6}, numpoints=1)
   if n_iter != 4:
        plt.tick_params(axis='x', which='both', bottom='off',
                        top='off', labelbottom='off')
    # Plot EI(x)
   ax = plt.subplot(max_iters, 2, 2 * n_iter + 2)
   acq = gaussian_ei(x_gp, gp, y_opt=np.min(curr_func_vals))
    plt.plot(x, acq, "b", label="EI(x)")
```

(continues on next page)

GP kernel

```
fig = plt.figure()
fig.suptitle("Standard GP kernel")
for i in range(10):
    next_x = opt_gp.ask()
    f_val = objective(next_x)
    res = opt_gp.tell(next_x, f_val)
    if i >= 5:
        plot_optimizer(res, opt_gp._next_x, x, fx, n_iter=i-5, max_iters=5)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.plot()
```

Standard GP kernel

Out:

[]

Test different kernels

```
for kernel in kernels:
   gpr = GaussianProcessRegressor(kernel=kernel, alpha=noise_level ** 2,
                                   normalize_y=True, noise="gaussian",
                                   n_restarts_optimizer=2
   opt = Optimizer([(-2.0, 2.0)], base_estimator=gpr, n_initial_points=5,
                    acq_optimizer="sampling", random_state=42)
   fig = plt.figure()
   fig.suptitle(repr(kernel))
   for i in range(10):
       next_x = opt.ask()
       f_val = objective(next_x)
       res = opt.tell(next_x, f_val)
       if i >= 5:
            plot_optimizer(res, opt._next_x, x, fx, n_iter=i - 5, max_iters=5)
   plt.tight_layout(rect=[0, 0.03, 1, 0.95])
   plt.show()
```

1**2 * RBF(length_scale=1)

•

3.1. Miscellaneous examples

62

Total running time of the script: (0 minutes 9.646 seconds)

Estimated memory usage: 14 MB

3.2 Plotting functions

Examples concerning the *skopt.plots* module.

Note: Click *here* to download the full example code or to run this example in your browser via Binder

3.2.1 Partial Dependence Plots

Sigurd Carlsen Feb 2019 Holger Nahrstaedt 2020

Plot objective now supports optional use of partial dependence as well as different methods of defining parameter values for dependency plots.

```
print(__doc__)
import sys
from skopt.plots import plot_objective
from skopt import forest_minimize
import numpy as np
```

(continues on next page)

```
np.random.seed(123)
import matplotlib.pyplot as plt
```

Objective function

Plot objective now supports optional use of partial dependence as well as different methods of defining parameter values for dependency plots

```
# Here we define a function that we evaluate.
def funny_func(x):
    s = 0
    for i in range(len(x)):
        s += (x[i] * i) ** 2
    return s
```

Optimisation using decision trees

We run forest_minimize on the function

Partial dependence plot

Here we see an example of using partial dependence. Even when setting n_points all the way down to 10 from the default of 40, this method is still very slow. This is because partial dependence calculates 250 extra predictions for each point on the plots.

```
_ = plot_objective(result, n_points=10)
```


It is possible to change the location of the red dot, which normally shows the position of the found minimum. We can set it 'expected_minimum', which is the minimum value of the surrogate function, obtained by a minimum search method.

_ = plot_objective(result, n_points=10, minimum='expected_minimum')

Plot without partial dependence

Here we plot without partial dependence. We see that it is a lot faster. Also the values for the other parameters are set to the default "result" which is the parameter set of the best observed value so far. In the case of funny_func this is close to 0 for all parameters.

```
_ = plot_objective(result, sample_source='result', n_points=10)
```


Modify the shown minimum

Here we try with setting the minimum parameters to something other than "result". First we try with "expected_minimum" which is the set of parameters that gives the minimum value of the surrogate function, using scipys minimum search method.

```
_ = plot_objective(result, n_points=10, sample_source='expected_minimum', minimum='expected_minimum')
```


"expected_minimum_random" is a naive way of finding the minimum of the surrogate by only using random sampling:

We can also specify how many initial samples are used for the two different "expected_minimum" methods. We set it to a low value in the next examples to showcase how it affects the minimum for the two methods.

Set a minimum location

Lastly we can also define these parameters ourself by parsing a list as the minimum argument:

```
_ = plot_objective(result, n_points=10, sample_source=[1, -0.5, 0.5], minimum=[1, -0.5, 0.5])
```


Total running time of the script: (4 minutes 0.705 seconds)

Estimated memory usage: 8 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

3.2.2 Partial Dependence Plots with categorical values

Sigurd Carlsen Feb 2019 Holger Nahrstaedt 2020

Plot objective now supports optional use of partial dependence as well as different methods of defining parameter values for dependency plots.

```
print (__doc__)
import sys

(continues on next page)
```

(continued from previous page)

```
from skopt.plots import plot_objective
from skopt import forest_minimize
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
from skopt.space import Integer, Categorical
from skopt import plots, gp_minimize
from skopt.plots import plot_objective
```

objective function

Here we define a function that we evaluate.

```
def objective(params):
    clf = DecisionTreeClassifier(
        **{dim.name: val for dim, val in
            zip(SPACE, params) if dim.name != 'dummy'})
    return -np.mean(cross_val_score(clf, *load_breast_cancer(True)))
```

Bayesian optimization

```
SPACE = [
    Integer(1, 20, name='max_depth'),
    Integer(2, 100, name='min_samples_split'),
    Integer(5, 30, name='min_samples_leaf'),
    Integer(1, 30, name='max_features'),
    Categorical(list('abc'), name='dummy'),
    Categorical(['gini', 'entropy'], name='criterion'),
    Categorical(list('def'), name='dummy'),
]
result = gp_minimize(objective, SPACE, n_calls=20)
```

Partial dependence plot

Here we see an example of using partial dependence. Even when setting n_points all the way down to 10 from the default of 40, this method is still very slow. This is because partial dependence calculates 250 extra predictions for each point on the plots.

```
_ = plot_objective(result, n_points=10)
```


Plot without partial dependence

Here we plot without partial dependence. We see that it is a lot faster. Also the values for the other parameters are set to the default "result" which is the parameter set of the best observed value so far. In the case of funny_func this is close to 0 for all parameters.

```
_ = plot_objective(result, sample_source='result', n_points=10)
```


Modify the shown minimum

Here we try with setting the other parameters to something other than "result". When dealing with categorical dimensions we can't use 'expected_minimum'. Therefore we try with "expected_minimum_random" which is a naive way of finding the minimum of the surrogate by only using random sampling. n_minimum_search sets the number of random samples, which is used to find the minimum

Set a minimum location

Lastly we can also define these parameters ourselfs by parsing a list as the pars argument:

```
_ = plot_objective(result, n_points=10, sample_source=[15, 4, 7, 15, 'b', 'entropy', →'e'],

minimum=[15, 4, 7, 15, 'b', 'entropy', 'e'])
```


Total running time of the script: (0 minutes 28.188 seconds)

Estimated memory usage: 34 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

3.2.3 Visualizing optimization results

Tim Head, August 2016. Reformatted by Holger Nahrstaedt 2020

Bayesian optimization or sequential model-based optimization uses a surrogate model to model the expensive to evaluate objective function func. It is this model that is used to determine at which points to evaluate the expensive objective next.

To help understand why the optimization process is proceeding the way it is, it is useful to plot the location and order of the points at which the objective is evaluated. If everything is working as expected, early samples will be spread over the whole parameter space and later samples should cluster around the minimum.

The plots.plot_evaluations function helps with visualizing the location and order in which samples are evaluated for objectives with an arbitrary number of dimensions.

The plots.plot_objective function plots the partial dependence of the objective, as represented by the surrogate model, for each dimension and as pairs of the input dimensions.

All of the minimizers implemented in skopt return an [OptimizeResult]() instance that can be inspected. Both plots.plot_evaluations and plots.plot_objective are helpers that do just that

```
print(__doc__)
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt
```

Toy models

We will use two different toy models to demonstrate how plots.plot_evaluations works.

The first model is the benchmarks.branin function which has two dimensions and three minima.

The second model is the hart 6 function which has six dimension which makes it hard to visualize. This will show off the utility of plots.plot_evaluations.

```
from skopt.benchmarks import branin as branin
from skopt.benchmarks import hart6 as hart6_

# redefined `hart6` to allow adding arbitrary "noise" dimensions
def hart6(x):
    return hart6_(x[:6])
```

Starting with branin

To start let's take advantage of the fact that <code>benchmarks.branin</code> is a simple function which can be visualised in two dimensions.

(continues on next page)

(continued from previous page)

Evaluating the objective function

Next we use an extra trees based minimizer to find one of the minima of the benchmarks.branin function. Then we visualize at which points the objective is being evaluated using plots.plot_evaluations.

plots.plot_evaluations creates a grid of size n_dims by n_dims. The diagonal shows histograms for each of the dimensions. In the lower triangle (just one plot in this case) a two dimensional scatter plot of all points is shown. The order in which points were evaluated is encoded in the color of each point. Darker/purple colors correspond to earlier samples and lighter/yellow colors correspond to later samples. A red point shows the location of the minimum found by the optimization process.

You should be able to see that points start clustering around the location of the true miminum. The histograms show that the objective is evaluated more often at locations near to one of the three minima.

Using plots.plot_objective we can visualise the one dimensional partial dependence of the surrogate model for each dimension. The contour plot in the bottom left corner shows the two dimensional partial dependence. In this case this is the same as simply plotting the objective as it only has two dimensions.

Partial dependence plots

Partial dependence plots were proposed by [Friedman (2001)] as a method for interpreting the importance of input features used in gradient boosting machines. Given a function of k: variables $y = f(x_1, x_2, ..., x_k)$: the partial

dependence of \$f\$ on the \$i\$-th variable \$x_i\$ is calculated as: $\phi(x_i) = \frac{1}{N} \sum_{j=0}^N f(x_{1,j}, x_{2,j}, ..., x_i, ..., x_{k,j})$: with the sum running over a set of \$N\$ points drawn at random from the search space.

The idea is to visualize how the value of x_j : influences the function f: after averaging out the influence of all other variables.

```
from skopt.plots import plot_objective
_ = plot_objective(forest_res)
```


The two dimensional partial dependence plot can look like the true objective but it does not have to. As points at which the objective function is being evaluated are concentrated around the suspected minimum the surrogate model sometimes is not a good representation of the objective far away from the minima.

Random sampling

Compare this to a minimizer which picks points at random. There is no structure visible in the order in which it evaluates the objective. Because there is no model involved in the process of picking sample points at random, we can not plot the partial dependence of the model.

```
dummy_res = dummy_minimize(branin, bounds, n_calls=n_calls, random_state=4)
_ = plot_evaluations(dummy_res, bins=10)
```


Working in six dimensions

Visualising what happens in two dimensions is easy, where $plots.plot_evaluations$ and $plots.plot_objective$ start to be useful is when the number of dimensions grows. They take care of many of the more mundane things needed to make good plots of all combinations of the dimensions.

The next example uses class:benchmarks.hart6 which has six dimensions and shows both plots. plot_evaluations and plots.plot_objective.

```
_ = plot_evaluations(forest_res)
_ = plot_objective(forest_res, n_samples=40)
```


Going from 6 to 6+2 dimensions

To make things more interesting let's add two dimension to the problem. As benchmarks.hart6 only depends on six dimensions we know that for this problem the new dimensions will be "flat" or uninformative. This is clearly visible in both the placement of samples and the partial dependence plots.

(continues on next page)

(continued from previous page)

.. [Friedman (2001)] `doi:10.1214/aos/1013203451 section 8.2 http://projecteuclid.com/org/euclid.aos/1013203451 `

Total running time of the script: (7 minutes 36.466 seconds)

Estimated memory usage: 87 MB

CHAPTER

FOUR

API REFERENCE

Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements several methods for sequential model-based optimization. skopt is reusable in many contexts and accessible.

4.1 skopt: module

4.1.1 Base classes

BayesSearchCV(estimator, search_spaces[,])	Bayesian optimization over hyper parameters.
<pre>Optimizer(dimensions[, base_estimator,])</pre>	Run bayesian optimisation loop.
Space(dimensions)	Initialize a search space from given specifications.

skopt.BayesSearchCV

Bayesian optimization over hyper parameters.

BayesSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings.

In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by notice.

Parameters are presented as a list of skopt.space.Dimension objects.

Parameters

estimator [estimator object.] A object of that type is instantiated for each search point. This object is assumed to implement the scikit-learn estimator api. Either estimator needs to provide a score function, or scoring must be passed.

search_spaces [dict, list of dict or list of tuple containing] (dict, int). One of these cases: 1. dictionary, where keys are parameter names (strings) and values are skopt.space.Dimension instances (Real, Integer or Categorical) or any other valid value that defines skopt dimension (see skopt.Optimizer docs). Represents search space over parameters of the provided

- estimator. 2. list of dictionaries: a list of dictionaries, where every dictionary fits the description given in case 1 above. If a list of dictionary objects is given, then the search is performed sequentially for every parameter space with maximum number of evaluations set to self.n_iter. 3. list of (dict, int > 0): an extension of case 2 above, where first element of every tuple is a dictionary representing some search subspace, similarly as in case 2, and second element is a number of iterations that will be spent optimizing over this subspace.
- **n_iter** [int, default=50] Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. Consider increasing n_points if you want to try more parameter settings in parallel.
- scoring [string, callable or None, default=None] A string (see model evaluation documentation) or a scorer callable object / function with signature scorer (estimator, X, y). If None, the score method of the estimator is used.
- fit_params [dict, optional] Parameters to pass to the fit method.
- **n_jobs** [int, default=1] Number of jobs to run in parallel. At maximum there are n_points times cv jobs available during each iteration.
- **n_points** [int, default=1] Number of parameter settings to sample in parallel. If this does not align with n_iter, the last iteration will sample less points. See also ask ()
- **pre_dispatch** [int, or string, optional] Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be:
 - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs
 - An int, giving the exact number of total jobs that are spawned
 - A string, giving an expression as a function of n_jobs, as in '2*n_jobs'
- **iid** [boolean, default=True] If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds.
- **cv** [int, cross-validation generator or an iterable, optional] Determines the cross-validation splitting strategy. Possible inputs for cv are:
 - None, to use the default 3-fold cross validation,
 - integer, to specify the number of folds in a (Stratified) KFold,
 - An object to be used as a cross-validation generator.
 - An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass, StratifiedKFold is used. In all other cases, KFold is used.

- **refit** [boolean, default=True] Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting.
- verbose [integer] Controls the verbosity: the higher, the more messages.
- **random_state** [int or RandomState] Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions.

error_score ['raise' (default) or numeric] Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailed-Warning is raised. This parameter does not affect the refit step, which will always raise the error.

return_train_score [boolean, default=False] If 'True', the cv_results_attribute will include training scores.

Attributes

cv_results_ [dict of numpy (masked) ndarrays] A dict with keys as column headers and values as columns, that can be imported into a pandas DataFrame.

For instance the below given table

param_kernel	param_gamma	split0_test_score	 rank_test_score
'rbf'	0.1	0.8	 2
'rbf'	0.2	0.9	 1
'rbf'	0.3	0.7	 1

will be represented by a cv_results_dict of:

```
'param_kernel' : masked_array(data = ['rbf', 'rbf', 'rbf'],
                                   mask = False),
'param_gamma' : masked_array(data = [0.1 0.2 0.3], mask = False),
'split0_test_score' : [0.8, 0.9, 0.7],
'split1_test_score' : [0.82, 0.5, 0.7],
'mean_test_score' : [0.81, 0.7, 0.7],
                       : [0.02, 0.2, 0.1,
'std test score'
'rank_test_score'
                        : [3, 1, 1],
'split0_train_score' : [0.8, 0.9, 0.7],
'split1_train_score' : [0.82, 0.5, 0.7],
| 'std_train_score' | [0.03, 0.03, 0.04], | 'mean_fit_time' | [0.73, 0.63, 0.43, 0.49], | 'std_fit_time' | [0.01, 0.02, 0.01, 0.01]
'mean_train_score'
                        : [0.81, 0.7, 0.7],
'mean_score_time' : [0.007, 0.06, 0.04, 0.04],
'std_score_time' : [0.001, 0.002, 0.003, 0.005],
'params' : [{'kernel' : 'rbf', 'gamma' : 0.1}, ...],
```

NOTE that the key 'params' is used to store a list of parameter settings dict for all the parameter candidates.

```
The mean_fit_time, std_fit_time, mean_score_time and std_score_time are all in seconds.
```

best_estimator_ [estimator] Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False.

best_score [float] Score of best_estimator on the left out data.

best_params_ [dict] Parameter setting that gave the best results on the hold out data.

best_index_ [int] The index (of the cv_results_arrays) which corresponds to the best candidate parameter setting.

The dict at search.cv_results_['params'][search.best_index_] gives

the parameter setting for the best model, that gives the highest mean score (search. best_score_).

scorer_ [function] Scorer function used on the held out data to choose the best parameters for the model.

n_splits_ [int] The number of cross-validation splits (folds/iterations).

See also:

GridSearchCV Does exhaustive search over a grid of parameters.

Notes

The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter.

If n_jobs was set to a value higher than one, the data is copied for each parameter setting(and not n_jobs times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set pre_dispatch. Then, the memory is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2 * n_jobs.

Examples

```
>>> from skopt import BayesSearchCV
>>> # parameter ranges are specified by one of below
>>> from skopt.space import Real, Categorical, Integer
>>>
>>> from sklearn.datasets import load_iris
>>> from sklearn.svm import SVC
>>> from sklearn.model_selection import train_test_split
>>>
>>> X, y = load_iris(True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                           train_size=0.75,
. . .
                                                           random_state=0)
. . .
>>>
>>> # log-uniform: understand as search over p = \exp(x) by varying x
>>> opt = BayesSearchCV(
        SVC(),
        {
. . .
            'C': Real(1e-6, 1e+6, prior='log-uniform'),
. . .
            'gamma': Real(1e-6, 1e+1, prior='log-uniform'),
. . .
            'degree': Integer(1,8),
            'kernel': Categorical(['linear', 'poly', 'rbf']),
. . .
. . .
        n_iter=32,
        random_state=0
. . .
...)
>>>
>>> # executes bayesian optimization
>>> _ = opt.fit(X_train, y_train)
>>>
>>> # model can be saved, used for predictions or scoring
```

(continues on next page)

(continued from previous page)

```
>>> print(opt.score(X_test, y_test))
0.973...
```

Methods

$decision_function(self, X)$	Call decision_function on the estimator with the best
	found parameters.
fit(self, X[, y, groups, callback])	Run fit on the estimator with randomly drawn param-
	eters.
<pre>get_params(self[, deep])</pre>	Get parameters for this estimator.
inverse_transform(self, Xt)	Call inverse_transform on the estimator with the best
	found params.
predict(self, X)	Call predict on the estimator with the best found pa-
	rameters.
predict_log_proba(self, X)	Call predict_log_proba on the estimator with the best
	found parameters.
predict_proba(self, X)	Call predict_proba on the estimator with the best
	found parameters.
score(self, X[, y])	Returns the score on the given data, if the estimator
	has been refit.
set_params(self, **params)	Set the parameters of this estimator.
transform(self, X)	Call transform on the estimator with the best found
	parameters.

__init__ (self, estimator, search_spaces, optimizer_kwargs=None, n_iter=50, scoring=None, fit_params=None, n_jobs=1, n_points=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise', return_train_score=False)
Initialize self. See help(type(self)) for accurate signature.

$decision_function(self, X)$

Call decision function on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports decision function.

Parameters

 \mathbf{X} [indexable, length n_samples] Must fulfill the input assumptions of the underlying estimator.

fit (*self*, *X*, *y*=*None*, *groups*=*None*, *callback*=*None*)

Run fit on the estimator with randomly drawn parameters.

Parameters

- X [array-like or sparse matrix, shape = [n_samples, n_features]] The training input samples.
- **y** [array-like, shape = [n_samples] or [n_samples, n_output]] Target relative to X for classification or regression (class labels should be integers or strings).
- **groups** [array-like, with shape (n_samples,), optional] Group labels for the samples used while splitting the dataset into train/test set.

callback: [callable, list of callables, optional] If callable then callback (res) is called after each parameter combination tested. If list of callables, then each callable in the list is called.

get_params (self, deep=True)

Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(self, Xt)

Call inverse_transform on the estimator with the best found params.

Only available if the underlying estimator implements inverse_transform and refit=True.

Parameters

Xt [indexable, length n_samples] Must fulfill the input assumptions of the underlying estimator.

predict (self, X)

Call predict on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying estimator.

predict_log_proba (self, X)

Call predict_log_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_log_proba.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying estimator.

predict_proba (self, X)

Call predict_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict proba.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying estimator.

score (self, X, y=None)

Returns the score on the given data, if the estimator has been refit.

This uses the score defined by scoring where provided, and the best_estimator_.score method otherwise.

Parameters

- **X** [array-like of shape (n_samples, n_features)] Input data, where n_samples is the number of samples and n_features is the number of features.
- **y** [array-like of shape (n_samples, n_output) or (n_samples,), optional] Target relative to X for classification or regression; None for unsupervised learning.

Returns

score [float]

```
set_params (self, **params)
```

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>___<parameter> so that it's possible to update each component of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

property total_iterations

Count total iterations that will be taken to explore all subspaces with fit method.

Returns

max iter: int, total number of iterations to explore

transform(self, X)

Call transform on the estimator with the best found parameters.

Only available if the underlying estimator supports transform and refit=True.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying estimator.

Examples using skopt.BayesSearchCV

• Scikit-learn hyperparameter search wrapper

skopt.Optimizer

```
class skopt.Optimizer (dimensions, base_estimator='gp', n_random_starts=None, n_initial_points=10, acq_func='gp_hedge', acq_optimizer='auto', random_state=None, model_queue_size=None, acq_func_kwargs=None, acq_optimizer_kwargs=None)

Run bayesian optimisation loop.
```

Run bayesian optimisation loop.

An Optimizer represents the steps of a bayesian optimisation loop. To use it you need to provide your own loop mechanism. The various optimisers provided by skopt use this class under the hood.

Use this class directly if you want to control the iterations of your bayesian optimisation loop.

Parameters

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can be defined either as

- a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
- a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),
- as a list of categories (for Categorical dimensions), or
- an instance of a Dimension object (Real, Integer or Categorical).

- base estimator ["GP", "RF", "ET", "GBRT" or sklearn regressor,]
- **default=""GP"** Should inherit from sklearn.base.RegressorMixin. In addition the predict method, should have an optional return_std argument, which returns std (Y $\mid x$) ` along with E[Y $\mid x$]. If base_estimator is one of ["GP", "RF", "ET", "GBRT"], a default surrogate model of the corresponding type is used corresponding to what is used in the minimize functions.
- n_random_starts [int, default=10] Deprecated since version use: n_initial_points instead.
- **n_initial_points** [int, default=10] Number of evaluations of func with initialization points before approximating it with base_estimator. Points provided as x0 count as initialization points. If $len(x0) < n_initial_points$ additional points are sampled at random.
- acq_func [string, default="gp_hedge" Function to minimize over the posterior distribution.
 Can be either
 - "LCB" for lower confidence bound.
 - "EI" for negative expected improvement.
 - "PI" for negative probability of improvement.
 - "gp_hedge" Probabilistically choose one of the above three acquisition functions at every iteration.
 - The gains g_i are initialized to zero.
 - At every iteration,
 - * Each acquisition function is optimised independently to propose an candidate point X_i.
 - * Out of all these candidate points, the next point X_best is chosen by $softmax(\eta g_i)$
 - * After fitting the surrogate model with (X_best, y_best), the gains are updated such that $g_i-=\mu(X_i)$
 - "Elps" for negated expected improvement per second to take into account the function compute time. Then, the objective function is assumed to return two values, the first being the objective value and the second being the time taken in seconds.
 - "PIps" for negated probability of improvement per second. The return type of the objective function is assumed to be similar to that of "Elps"
- acq_optimizer [string, "sampling" or "lbfgs", default="auto"] Method to minimize the
 acquistion function. The fit model is updated with the optimal value obtained by optimizing
 acq_func with acq_optimizer.
 - If set to "auto", then acq_optimizer is configured on the basis of the base_estimator and the space searched over. If the space is Categorical or if the estimator provided based on tree-models then this is set to be "sampling".
 - If set to "sampling", then acq_func is optimized by computing acq_func at n_points randomly sampled points.
 - If set to "lbfgs", then acq_func is optimized by
 - Sampling n_restarts_optimizer points randomly.
 - "lbfgs" is run for 20 iterations with these points as initial points to find local minima.

- The optimal of these local minima is used to update the prior.

random_state [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

acq_func_kwargs [dict] Additional arguments to be passed to the acquistion function.

acq_optimizer_kwargs [dict] Additional arguments to be passed to the acquistion optimizer.

model_queue_size [int or None, default=None] Keeps list of models only as long as the argument given. In the case of None, the list has no capped length.

Attributes

Xi [list] Points at which objective has been evaluated.

yi [scalar] Values of objective at corresponding points in Xi.

models [list] Regression models used to fit observations and compute acquisition function.

space [Space] An instance of skopt.space.Space. Stores parameter search space used to sample points, bounds, and type of parameters.

Methods

ask(self[, n_points, strategy])	Query point or multiple points at which objective should be evaluated.
copy(self[, random_state])	Create a shallow copy of an instance of the optimizer.
<pre>get_result(self)</pre>	Returns the same result that would be returned by
	opt.tell() but without calling tell
run(self, func[, n_iter])	Execute ask() + tell() n_iter times
tell(self, x, y[, fit])	Record an observation (or several) of the objective
	function.
update_next(self)	Updates the value returned by opt.ask().

__init__(self, dimensions, base_estimator='gp', n_random_starts=None, n_initial_points=10, acq_func='gp_hedge', acq_optimizer='auto', random_state=None, model_queue_size=None, acq_func_kwargs=None, acq_optimizer_kwargs=None)
Initialize self. See help(type(self)) for accurate signature.

ask (self, n_points=None, strategy='cl_min')

Query point or multiple points at which objective should be evaluated.

n_points [int or None, default=None] Number of points returned by the ask method. If the value is None, a single point to evaluate is returned. Otherwise a list of points to evaluate is returned of size n_points. This is useful if you can evaluate your objective in parallel, and thus obtain more objective function evaluations per unit of time.

• If set to "cl_min", then constant liar strategy is used with lie objective value being minimum of observed objective values. "cl_mean" and "cl_max" means mean and max of values respectively. For details on this strategy see:

https://hal.archives-ouvertes.fr/hal-00732512/document

With this strategy a copy of optimizer is created, which is then asked for a point, and the point is told to the copy of optimizer with some fake objective (lie), the next point is asked from

copy, it is also told to the copy with fake objective and so on. The type of lie defines different flavours of $cl\ x$ strategies.

```
copy (self, random_state=None)
```

Create a shallow copy of an instance of the optimizer.

Parameters

random_state [int, RandomState instance, or None (default)] Set the random state of the
copy.

```
get_result (self)
```

Returns the same result that would be returned by opt.tell() but without calling tell

Returns

res [OptimizeResult, scipy object] OptimizeResult instance with the required information.

```
run (self, func, n_iter=1)
```

Execute ask() + tell() n_iter times

```
tell (self, x, y, fit=True)
```

Record an observation (or several) of the objective function.

Provide values of the objective function at points suggested by ask() or other points. By default a new model will be fit to all observations. The new model is used to suggest the next point at which to evaluate the objective. This point can be retrieved by calling ask().

To add observations without fitting a new model set fit to False.

To add multiple observations in a batch pass a list-of-lists for x and a list of scalars for y.

Parameters

- **x** [list or list-of-lists] Point at which objective was evaluated.
- y [scalar or list] Value of objective at x.
- fit [bool, default=True] Fit a model to observed evaluations of the objective. A model will
 only be fitted after n_initial_points points have been told to the optimizer irrespective of the value of fit.

```
update_next (self)
```

Updates the value returned by opt.ask(). Useful if a parameter was updated after ask was called.

Examples using skopt.Optimizer

- Parallel optimization
- Async optimization Loop
- Exploration vs exploitation
- Use different base estimators for optimization

skopt.Space

```
class skopt.Space(dimensions)
```

Initialize a search space from given specifications.

Parameters

dimensions [list, shape=(n_dims,)] List of search space dimensions. Each search dimension can be defined either as

- a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
- a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),
- as a list of categories (for Categorical dimensions), or
- an instance of a Dimension object (Real, Integer or Categorical).

Note: The upper and lower bounds are inclusive for Integer dimensions.

Attributes

bounds The dimension bounds, in the original space.

is_categorical Space contains exclusively categorical dimensions

is_partly_categorical Space contains any categorical dimensions

is_real Returns true if all dimensions are Real

n_dims The dimensionality of the original space.

transformed_bounds The dimension bounds, in the warped space.

transformed_n_dims The dimensionality of the warped space.

Methods

<pre>distance(self, point_a, point_b)</pre>	Compute distance between two points in this space.
<pre>from_yaml(yml_path[, namespace])</pre>	Create Space from yaml configuration file
inverse_transform(self, Xt)	Inverse transform samples from the warped space
	back to the
rvs(self[, n_samples, random_state])	Draw random samples.
transform(self, X)	Transform samples from the original space into a
	warped space.

```
___init__ (self, dimensions)
```

Initialize self. See help(type(self)) for accurate signature.

property bounds

The dimension bounds, in the original space.

distance (self, point_a, point_b)

Compute distance between two points in this space.

Parameters

point_a [array] First point.

point_b [array] Second point.

classmethod from_yaml (yml_path, namespace=None)

Create Space from yaml configuration file

Parameters

yml_path [str] Full path to yaml configuration file, example YaML below: Space:

• Integer: low: -5 high: 5

• Categorical: categories: - a - b

• Real: low: 1.0 high: 5.0 prior: log-uniform

namespace [str, default=None]

Namespace within configuration file to use, will use first namespace if not provided

Returns

space [Space] Instantiated Space object

inverse_transform(self, Xt)

Inverse transform samples from the warped space back to the original space.

Parameters

Xt [array of floats, shape=(n_samples, transformed_n_dims)] The samples to inverse transform.

Returns

X [list of lists, shape=(n_samples, n_dims)] The original samples.

property is_categorical

Space contains exclusively categorical dimensions

property is_partly_categorical

Space contains any categorical dimensions

property is_real

Returns true if all dimensions are Real

property n_dims

The dimensionality of the original space.

```
rvs (self, n_samples=1, random_state=None)
```

Draw random samples.

The samples are in the original space. They need to be transformed before being passed to a model or minimizer by space.transform().

Parameters

n_samples [int, default=1] Number of samples to be drawn from the space.

random_state [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

Returns

points [list of lists, shape=(n_points, n_dims)] Points sampled from the space.

transform(self, X)

Transform samples from the original space into a warped space.

Note: this transformation is expected to be used to project samples into a suitable space for numerical optimization.

Parameters

X [list of lists, shape=(n_samples, n_dims)] The samples to transform.

Returns

Xt [array of floats, shape=(n_samples, transformed_n_dims)] The transformed samples.

property transformed_bounds

The dimension bounds, in the warped space.

property transformed n dims

The dimensionality of the warped space.

4.1.2 Functions

dummy_minimize(func, dimensions[, n_calls,])	Random search by uniform sampling within the given
	bounds.
dump(res, filename[, store_objective])	Store an skopt optimization result into a file.
<pre>expected_minimum(res[, n_random_starts,])</pre>	Compute the minimum over the predictions of the last
	surrogate model.
expected_minimum_random_sampling(res[,	Minimum search by doing naive random sampling, Re-
])	turns the parameters that gave the minimum function
	value.
<pre>forest_minimize(func, dimensions[,])</pre>	Sequential optimisation using decision trees.
<pre>gbrt_minimize(func, dimensions[,])</pre>	Sequential optimization using gradient boosted trees.
<pre>gp_minimize(func, dimensions[,])</pre>	Bayesian optimization using Gaussian Processes.
load(filename, **kwargs)	Reconstruct a skopt optimization result from a file per-
	sisted with skopt.dump.

skopt.dummy minimize

skopt.dummy_minimize (func, dimensions, n_calls=100, x0=None, y0=None, random_state=None, verbose=False, callback=None, model_queue_size=None)

Random search by uniform sampling within the given bounds.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the objective value.

If you have a search-space where all dimensions have names, then you can use <code>skopt.utils.use_named_args</code> as a decorator on your objective function, in order to call it directly with the named arguments. See <code>use_named_args</code> for an example.

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can be defined either as

- a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
- a (lower_bound, upper_bound, prior) tuple (for Real dimensions),
- as a list of categories (for Categorical dimensions), or
- an instance of a Dimension object (Real, Integer or Categorical).

n_calls [int, default=100] Number of calls to func to find the minimum.

x0 [list, list of lists or None] Initial input points.

- If it is a list of lists, use it as a list of input points.
- If it is a list, use it as a single initial input point.

- If it is None, no initial input points are used.
- y0 [list, scalar or None] Evaluation of initial input points.
 - If it is a list, then it corresponds to evaluations of the function at each element of x0: the i-th element of y0 corresponds to the function evaluated at the i-th element of x0.
 - If it is a scalar, then it corresponds to the evaluation of the function at x0.
 - If it is None and x0 is provided, then the function is evaluated at each element of x0.
- **random_state** [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.
- **verbose** [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True for long optimization runs.
- **callback** [callable, list of callables, optional] If callable then callback (res) is called after each call to func. If list of callables, then each callable in the list is called.
- model_queue_size [int or None, default=None] Keeps list of models only as long as the argument given. In the case of None, the list has no capped length.

Returns

- res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult object. Important attributes are:
 - x [list]: location of the minimum.
 - fun [float]: function value at the minimum.
 - x_iters [list of lists]: location of function evaluation for each iteration.
 - func_vals [array]: function value for each iteration.
 - space [Space]: the optimisation space.
 - specs [dict]: the call specifications.
 - rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

Examples using skopt.dummy_minimize

- Comparing surrogate models
- Visualizing optimization results

skopt.dump

skopt . **dump** (*res*, *filename*, *store_objective=True*, **kwargs)

Store an skopt optimization result into a file.

Parameters

res [OptimizeResult, scipy object] Optimization result object to be stored.

filename [string or pathlib.Path] The path of the file in which it is to be stored. The compression method corresponding to one of the supported filename extensions ('.z', '.gz', '.bz2', '.xz' or '.lzma') will be used automatically.

store_objective [boolean, default=True] Whether the objective function should be stored. Set store_objective to False if your objective function (. specs['args']['func']) is unserializable (i.e. if an exception is raised when trying to serialize the optimization result).

Notice that if store_objective is set to False, a deep copy of the optimization result is created, potentially leading to performance problems if res is very large. If the objective function is not critical, one can delete it before calling skopt.dump() and thus avoid deep copying of res.

**kwargs [other keyword arguments] All other keyword arguments will be passed to joblib. dump.

Examples using skopt.dump

• Store and load skopt optimization results

skopt.expected minimum

skopt.expected_minimum(res, n_random_starts=20, random_state=None)

Compute the minimum over the predictions of the last surrogate model. Uses expected_minimum_random_sampling with 'n_random_starts'=100000, when the space contains any categorical values.

Note: The returned minimum may not necessarily be an accurate prediction of the minimum of the true objective function.

Parameters

- res [OptimizeResult, scipy object] The optimization result returned by a skopt minimizer.
- **n_random_starts** [int, default=20] The number of random starts for the minimization of the surrogate model.
- **random_state** [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

Returns

x [list] location of the minimum.

fun [float] the surrogate function value at the minimum.

skopt.expected minimum random sampling

skopt.expected_minimum_random_sampling(res, n_random_starts=100000, random_state=None)

Minimum search by doing naive random sampling, Returns the parameters that gave the minimum function value. Can be used when the space contains any categorical values.

Note: The returned minimum may not necessarily be an accurate prediction of the minimum of the true objective function.

4.1. skopt: module

Parameters

res [OptimizeResult, scipy object] The optimization result returned by a skopt minimizer.

n_random_starts [int, default=100000] The number of random starts for the minimization of the surrogate model.

random_state [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

Returns

x [list] location of the minimum.

fun [float] the surrogate function value at the minimum.

skopt.forest minimize

```
skopt.forest_minimize (func, dimensions, base_estimator='ET', n_calls=100, n_random_starts=10, acq_func='EI', x0=None, y0=None, random_state=None, verbose=False, callback=None, n_points=10000, xi=0.01, kappa=1.96, n_jobs=1, model_queue_size=None)
```

Sequential optimisation using decision trees.

A tree based regression model is used to model the expensive to evaluate function func. The model is improved by sequentially evaluating the expensive function at the next best point. Thereby finding the minimum of func with as few evaluations as possible.

The total number of evaluations, n_calls, are performed like the following. If x0 is provided but not y0, then the elements of x0 are first evaluated, followed by n_random_starts evaluations. Finally, n_calls - len(x0) - n_random_starts evaluations are made guided by the surrogate model. If x0 and y0 are both provided then n_random_starts evaluations are first made then n_calls - n_random_starts subsequent evaluations are made guided by the surrogate model.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the objective value.

If you have a search-space where all dimensions have names, then you can use $skopt.utils.use_named_args()$ as a decorator on your objective function, in order to call it directly with the named arguments. See $skopt.utils.use_named_args()$

for an example.

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can be defined either as

- a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
- a (lower_bound, upper_bound, prior) tuple (for Real dimensions),
- as a list of categories (for Categorical dimensions), or
- an instance of a Dimension object (Real, Integer or Categorical).

NOTE: The upper and lower bounds are inclusive for Integer dimensions.

base_estimator [string or Regressor, default="ET"] The regressor to use as surrogate model. Can be either

- "RF" for random forest regressor
- "ET" for extra trees regressor
- instance of regressor with support for return_std in its predict method

The predefined models are initialized with good defaults. If you want to adjust the model parameters pass your own instance of a regressor which returns the mean and standard deviation when making predictions.

- **n calls** [int, default=100] Number of calls to func.
- **n_random_starts** [int, default=10] Number of evaluations of func with random points before approximating it with base_estimator.
- acq_func [string, default="LCB"] Function to minimize over the forest posterior. Can be either
 - "LCB" for lower confidence bound.
 - "EI" for negative expected improvement.
 - "PI" for negative probability of improvement.
 - "Elps" for negated expected improvement per second to take into account the function compute time. Then, the objective function is assumed to return two values, the first being the objective value and the second being the time taken in seconds.
 - "PIps" for negated probability of improvement per second. The return type of the objective function is assumed to be similar to that of "EIps"
- **x0** [list, list of lists or None] Initial input points.
 - If it is a list of lists, use it as a list of input points.
 - If it is a list, use it as a single initial input point.
 - If it is None, no initial input points are used.
- y0 [list, scalar or None] Evaluation of initial input points.
 - If it is a list, then it corresponds to evaluations of the function at each element of x0: the i-th element of y0 corresponds to the function evaluated at the i-th element of x0.
 - If it is a scalar, then it corresponds to the evaluation of the function at x0.
 - If it is None and x0 is provided, then the function is evaluated at each element of x0.
- **random_state** [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.
- **verbose** [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True for long optimization runs.
- callback [callable, optional] If provided, then callback (res) is called after call to func.
- **n_points** [int, default=10000] Number of points to sample when minimizing the acquisition function.
- xi [float, default=0.01] Controls how much improvement one wants over the previous best values. Used when the acquisition is either "EI" or "PI".
- **kappa** [float, default=1.96] Controls how much of the variance in the predicted values should be taken into account. If set to be very high, then we are favouring exploration over exploitation and vice versa. Used when the acquisition is "LCB".
- **n_jobs** [int, default=1] The number of jobs to run in parallel for fit and predict. If -1, then the number of jobs is set to the number of cores.

model_queue_size [int or None, default=None] Keeps list of models only as long as the argument given. In the case of None, the list has no capped length.

Returns

res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult object. Important attributes are:

- x [list]: location of the minimum.
- fun [float]: function value at the minimum.
- models: surrogate models used for each iteration.
- x_iters [list of lists]: location of function evaluation for each iteration.
- func_vals [array]: function value for each iteration.
- space [Space]: the optimization space.
- specs [dict]': the call specifications.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

See also:

functions skopt.gp_minimize, skopt.dummy_minimize

Examples using skopt.forest_minimize

- Comparing surrogate models
- Partial Dependence Plots
- Visualizing optimization results

skopt.gbrt_minimize

```
skopt.gbrt_minimize (func, dimensions, base_estimator=None, n_calls=100, n_random_starts=10, acq_func='EI', acq_optimizer='auto', x0=None, y0=None, random_state=None, verbose=False, callback=None, n_points=10000, xi=0.01, kappa=1.96, n_jobs=1, model_queue_size=None)
```

Sequential optimization using gradient boosted trees.

Gradient boosted regression trees are used to model the (very) expensive to evaluate function func. The model is improved by sequentially evaluating the expensive function at the next best point. Thereby finding the minimum of func with as few evaluations as possible.

The total number of evaluations, n_calls, are performed like the following. If x0 is provided but not y0, then the elements of x0 are first evaluated, followed by n_random_starts evaluations. Finally, n_calls - len(x0) - n_random_starts evaluations are made guided by the surrogate model. If x0 and y0 are both provided then n_random_starts evaluations are first made then n_calls - n_random_starts subsequent evaluations are made guided by the surrogate model.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the objective value.

If you have a search-space where all dimensions have names, then you can use skopt. utils.use_named_args as a decorator on your objective function, in order to call it directly with the named arguments. See use named args for an example.

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can be defined either as

- a (lower bound, upper bound) tuple (for Real or Integer dimensions),
- a (lower bound, upper bound, "prior") tuple (for Real dimensions),
- as a list of categories (for Categorical dimensions), or
- an instance of a Dimension object (Real, Integer or Categorical).

base_estimator [GradientBoostingQuantileRegressor] The regressor to use as surrogate model

- **n_calls** [int, default=100] Number of calls to func.
- **n_random_starts** [int, default=10] Number of evaluations of func with random points before approximating it with base_estimator.
- acq_func [string, default="LCB"] Function to minimize over the forest posterior. Can be either
 - "LCB" for lower confidence bound.
 - "EI" for negative expected improvement.
 - "PI" for negative probability of improvement.
 - "Elps" for negated expected improvement per second to take into account the function compute time. Then, the objective function is assumed to return two values, the first being the objective value and the second being the time taken.
 - "PIps" for negated probability of improvement per second.
- **x0** [list, list of lists or None] Initial input points.
 - If it is a list of lists, use it as a list of input points.
 - If it is a list, use it as a single initial input point.
 - If it is None, no initial input points are used.
- y0 [list, scalar or None] Evaluation of initial input points.
 - If it is a list, then it corresponds to evaluations of the function at each element of x0: the i-th element of y0 corresponds to the function evaluated at the i-th element of x0.
 - If it is a scalar, then it corresponds to the evaluation of the function at $x \circ 0$.
 - If it is None and x0 is provided, then the function is evaluated at each element of x0.

random_state [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

verbose [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True for long optimization runs.

callback [callable, optional] If provided, then callback (res) is called after call to func.

n_points [int, default=10000] Number of points to sample when minimizing the acquisition function.

- xi [float, default=0.01] Controls how much improvement one wants over the previous best values. Used when the acquisition is either "EI" or "PI".
- **kappa** [float, default=1.96] Controls how much of the variance in the predicted values should be taken into account. If set to be very high, then we are favouring exploration over exploitation and vice versa. Used when the acquisition is "LCB".
- **n_jobs** [int, default=1] The number of jobs to run in parallel for fit and predict. If -1, then the number of jobs is set to the number of cores.
- model_queue_size [int or None, default=None] Keeps list of models only as long as the argument given. In the case of None, the list has no capped length.

Returns

- **res** [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult object. Important attributes are:
 - x [list]: location of the minimum.
 - fun [float]: function value at the minimum.
 - models: surrogate models used for each iteration.
 - x_iters [list of lists]: location of function evaluation for each iteration.
 - func_vals [array]: function value for each iteration.
 - space [Space]: the optimization space.
 - specs [dict]': the call specifications.
 - rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

skopt.gp_minimize

```
skopt.gp_minimize (func, dimensions, base_estimator=None, n_calls=100, n_random_starts=10, acq_func='gp_hedge', acq_optimizer='auto', x0=None, y0=None, random_state=None, verbose=False, callback=None, n_points=10000, n_restarts_optimizer=5, xi=0.01, kappa=1.96, noise='gaussian', n_jobs=1, model_queue_size=None)
```

Bayesian optimization using Gaussian Processes.

If every function evaluation is expensive, for instance when the parameters are the hyperparameters of a neural network and the function evaluation is the mean cross-validation score across ten folds, optimizing the hyperparameters by standard optimization routines would take for ever!

The idea is to approximate the function using a Gaussian process. In other words the function values are assumed to follow a multivariate gaussian. The covariance of the function values are given by a GP kernel between the parameters. Then a smart choice to choose the next parameter to evaluate can be made by the acquisition function over the Gaussian prior which is much quicker to evaluate.

The total number of evaluations, n_calls, are performed like the following. If x0 is provided but not y0, then the elements of x0 are first evaluated, followed by n_random_starts evaluations. Finally, n_calls - len(x0) - n_random_starts evaluations are made guided by the surrogate model. If x0 and y0 are both provided then n_random_starts evaluations are first made then n_calls - n_random_starts subsequent evaluations are made guided by the surrogate model.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the objective value.

If you have a search-space where all dimensions have names, then you can use <code>skopt.utils.use_named_args()</code> as a decorator on your objective function, in order to call it directly with the named arguments. See <code>use_named_args</code> for an example.

dimensions [[list, shape (n_dims,)] List of search space dimensions. Each search dimension can be defined either as

- a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
- a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),
- as a list of categories (for Categorical dimensions), or
- an instance of a Dimension object (Real, Integer or Categorical).

Note: The upper and lower bounds are inclusive for Integer

dimensions.

base_estimator [a Gaussian process estimator] The Gaussian process estimator to use for optimization. By default, a Matern kernel is used with the following hyperparameters tuned.

- All the length scales of the Matern kernel.
- The covariance amplitude that each element is multiplied with.
- Noise that is added to the matern kernel. The noise is assumed to be iid gaussian.

n_calls [int, default=100] Number of calls to func.

- **n_random_starts** [int, default=10] Number of evaluations of func with random points before approximating it with base_estimator.
- acq_func [string, default="gp_hedge" Function to minimize over the gaussian prior. Can be either
 - "LCB" for lower confidence bound.
 - "EI" for negative expected improvement.
 - "PI" for negative probability of improvement.
 - "gp_hedge" Probabilistically choose one of the above three acquisition functions at every iteration. The weightage given to these gains can be set by η through acq_func_kwargs.
 - The gains g_i are initialized to zero.
 - At every iteration,
 - * Each acquisition function is optimised independently to propose an candidate point X_i.
 - * Out of all these candidate points, the next point X_best is chosen by $softmax(\eta q_i)$
 - * After fitting the surrogate model with (X_best, y_best), the gains are updated such that $g_i-=\mu(X_i)$

- "Elps" for negated expected improvement per second to take into account the function compute time. Then, the objective function is assumed to return two values, the first being the objective value and the second being the time taken in seconds.
- "PIps" for negated probability of improvement per second. The return type of the objective function is assumed to be similar to that of "Elps"
- acq_optimizer [string, "sampling" or "lbfgs", default="lbfgs"'] Method to minimize
 the acquistion function. The fit model is updated with the optimal value obtained by optimizing acq_func with acq_optimizer.

The acq_func is computed at n_points sampled randomly.

- If set to "auto", then acq_optimizer is configured on the basis of the space searched over. If the space is Categorical then this is set to be "sampling".
- If set to "sampling", then the point among these n_points where the acq_func is minimum is the next candidate minimum.
- If set to "lbfgs", then
 - The n_restarts_optimizer no. of points which the acquisition function is least are taken as start points.
 - "lbfgs" is run for 20 iterations with these points as initial points to find local minima.
 - The optimal of these local minima is used to update the prior.
- **x0** [list, list of lists or None] Initial input points.
 - If it is a list of lists, use it as a list of input points.
 - If it is a list, use it as a single initial input point.
 - If it is None, no initial input points are used.
- y0 [list, scalar or None] Evaluation of initial input points.
 - If it is a list, then it corresponds to evaluations of the function at each element of x0: the i-th element of y0 corresponds to the function evaluated at the i-th element of x0.
 - If it is a scalar, then it corresponds to the evaluation of the function at $x \circ 0$.
 - If it is None and x0 is provided, then the function is evaluated at each element of x0.
- **random_state** [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.
- **verbose** [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True for long optimization runs.
- callback [callable, list of callables, optional] If callable then callback (res) is called after each call to func. If list of callables, then each callable in the list is called.
- **n_points** [int, default=10000] Number of points to sample to determine the next "best" point. Useless if acq_optimizer is set to "lbfgs".
- $\begin{tabular}{ll} n_restarts_optimizer [int, default=5] The number of restarts of the optimizer when acq_optimizer is "lbfgs". \end{tabular}$
- **kappa** [float, default=1.96] Controls how much of the variance in the predicted values should be taken into account. If set to be very high, then we are favouring exploration over exploitation and vice versa. Used when the acquisition is "LCB".
- xi [float, default=0.01] Controls how much improvement one wants over the previous best values. Used when the acquisition is either "EI" or "PI".

noise [float, default="gaussian"]

- Use noise="gaussian" if the objective returns noisy observations. The noise of each observation is assumed to be iid with mean zero and a fixed variance.
- If the variance is known before-hand, this can be set directly to the variance of the noise.
- Set this to a value close to zero (1e-10) if the function is noise-free. Setting to zero might cause stability issues.
- **n_jobs** [int, default=1] Number of cores to run in parallel while running the lbfgs optimizations over the acquisition function. Valid only when acq_optimizer is set to "lbfgs." Defaults to 1 core. If n_jobs=-1, then number of jobs is set to number of cores.
- model_queue_size [int or None, default=None] Keeps list of models only as long as the argument given. In the case of None, the list has no capped length.

Returns

- **res** [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult object. Important attributes are:
 - x [list]: location of the minimum.
 - fun [float]: function value at the minimum.
 - models: surrogate models used for each iteration.
 - x_iters [list of lists]: location of function evaluation for each iteration.
 - func_vals [array]: function value for each iteration.
 - space [Space]: the optimization space.
 - specs [dict]': the call specifications.
 - rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

See also:

functions skopt.forest_minimize, skopt.dummy_minimize

Examples using skopt.gp_minimize

- Tuning a scikit-learn estimator with skopt
- Store and load skopt optimization results
- Comparing surrogate models
- Interruptible optimization runs with checkpoints
- Bayesian optimization with skopt
- Partial Dependence Plots with categorical values

skopt.load

skopt.load(filename, **kwargs)

Reconstruct a skopt optimization result from a file persisted with skopt.dump.

Note: Notice that the loaded optimization result can be missing the objective function (.specs['args']['func']) if skopt.dump was called with store_objective=False.

Parameters

filename [string or pathlib.Path] The path of the file from which to load the optimization result.

**kwargs [other keyword arguments] All other keyword arguments will be passed to joblib. load.

Returns

res [OptimizeResult, scipy object] Reconstructed OptimizeResult instance.

Examples using skopt.load

- Store and load skopt optimization results
- · Interruptible optimization runs with checkpoints

4.2 skopt.acquisition: Acquisition

User guide: See the *Acquisition* section for further details.

acquisition.gaussian_acquisition_1D(X ,	A wrapper around the acquisition function that is called
model)	by fmin_l_bfgs_b.
acquisition.gaussian_ei(X, model[, y_opt,	Use the expected improvement to calculate the acquisi-
])	tion values.
acquisition.gaussian_lcb(X, model[, kappa,	Use the lower confidence bound to estimate the acquisi-
])	tion values.
acquisition.gaussian_pi(X, model[, y_opt,	Use the probability of improvement to calculate the ac-
])	quisition values.

4.2.1 skopt.acquisition.gaussian_acquisition_1D

```
skopt.acquisition.gaussian_acquisition_1D (X, model, y_opt=None, acq_func='LCB', acq_func_kwargs=None, return_grad=True)

A wrapper around the acquisition function that is called by fmin_l_bfgs_b.
```

This is because lbfgs allows only 1-D input.

4.2.2 skopt.acquisition.gaussian_ei

```
skopt.acquisition.gaussian_ei (X, model, y_opt=0.0, xi=0.01, return_grad=False) Use the expected improvement to calculate the acquisition values.
```

The conditional probability $P(y=f(x) \mid x)$ form a gaussian with a certain mean and standard deviation approximated by the model.

The EI condition is derived by computing E[u(f(x))] where u(f(x)) = 0, if $f(x) > y_{opt}$ and $u(f(x)) = y_{opt} - f(x)$, if " $f(x) < y_{opt}$ ".

This solves one of the issues of the PI condition by giving a reward proportional to the amount of improvement got.

Note that the value returned by this function should be maximized to obtain the X with maximum improvement.

Parameters

- **X** [array-like, shape=(n_samples, n_features)] Values where the acquisition function should be computed.
- **model** [sklearn estimator that implements predict with return_std] The fit estimator that approximates the function through the method predict. It should have a return_std parameter that returns the standard deviation.
- **y_opt** [float, default 0] Previous minimum value which we would like to improve upon.
- xi [float, default=0.01] Controls how much improvement one wants over the previous best values. Useful only when method is set to "EI"
- **return_grad** [boolean, optional] Whether or not to return the grad. Implemented only for the case where X is a single sample.

Returns

values [array-like, shape=(X.shape[0],)] Acquisition function values computed at X.

Examples using skopt.acquisition.gaussian_ei

- Async optimization Loop
- Exploration vs exploitation
- · Bayesian optimization with skopt
- Use different base estimators for optimization

4.2.3 skopt.acquisition.gaussian lcb

skopt.acquisition.gaussian_lcb(X, model, kappa=1.96, return_grad=False)

Use the lower confidence bound to estimate the acquisition values.

The trade-off between exploitation and exploration is left to be controlled by the user through the parameter kappa.

Parameters

- **X** [array-like, shape (n_samples, n_features)] Values where the acquisition function should be computed.
- **model** [sklearn estimator that implements predict with return_std] The fit estimator that approximates the function through the method predict. It should have a return_std parameter that returns the standard deviation.
- **kappa** [float, default 1.96 or 'inf'] Controls how much of the variance in the predicted values should be taken into account. If set to be very high, then we are favouring exploration over exploitation and vice versa. If set to 'inf', the acquisition function will only use the variance which is useful in a pure exploration setting. Useless if method is set to "LCB".

return_grad [boolean, optional] Whether or not to return the grad. Implemented only for the case where X is a single sample.

Returns

values [array-like, shape (X.shape[0],)] Acquisition function values computed at X. **grad** [array-like, shape (n_samples, n_features)] Gradient at X.

4.2.4 skopt.acquisition.gaussian pi

skopt.acquisition.gaussian_pi(X, model, y_opt=0.0, xi=0.01, return_grad=False) Use the probability of improvement to calculate the acquisition values.

The conditional probability $P(y=f(x) \mid x)$ form a gaussian with a certain mean and standard deviation approximated by the model.

The PI condition is derived by computing E[u(f(x))] where u(f(x)) = 1, if $f(x) < y_{opt}$ and u(f(x)) = 0, if 'f(x) > y_opt'.

This means that the PI condition does not care about how "better" the predictions are than the previous values, since it gives an equal reward to all of them.

Note that the value returned by this function should be maximized to obtain the X with maximum improvement.

Parameters

- **X** [array-like, shape=(n_samples, n_features)] Values where the acquisition function should be computed.
- **model** [sklearn estimator that implements predict with return_std] The fit estimator that approximates the function through the method predict. It should have a return_std parameter that returns the standard deviation.
- **y_opt** [float, default 0] Previous minimum value which we would like to improve upon.
- xi [float, default=0.01] Controls how much improvement one wants over the previous best values. Useful only when method is set to "EI"
- **return_grad** [boolean, optional] Whether or not to return the grad. Implemented only for the case where X is a single sample.

Returns

values [[array-like, shape=(X.shape[0],)] Acquisition function values computed at X.

4.3 skopt.benchmarks: A collection of benchmark problems.

A collection of benchmark problems.

User guide: See the benchmarks section for further details.

4.3.1 Functions

benchmarks.bench1(x)	A benchmark function for test purposes.
benchmarks.bench1_with_time(x)	Same as bench1 but returns the computation time (con-
	stant).
	Continued on next page

Table 7 – continued from previous page

benchmarks.bench2(x)	A benchmark function for test purposes.	
benchmarks.bench3(x)	A benchmark function for test purposes.	
benchmarks.bench4(x)	A benchmark function for test purposes.	
benchmarks.bench5(x)	A benchmark function for test purposes.	
benchmarks.branin($x[, a, b, c, r, s, t]$)	Branin-Hoo function is defined on the square $x1 \in$	
	$[-5, 10], x2 \in [0, 15].$	
benchmarks.hart6([P, A])	The six dimensional Hartmann function is defined on	
	the unit hypercube.	

skopt.benchmarks.bench1

skopt.benchmarks.bench1(x)

A benchmark function for test purposes.

$$f(x) = x ** 2$$

It has a single minima with $f(x^*) = 0$ at $x^* = 0$.

skopt.benchmarks.bench1_with_time

skopt.benchmarks.bench1_with_time(x)

Same as bench1 but returns the computation time (constant).

skopt.benchmarks.bench2

skopt.benchmarks.bench2(x)

A benchmark function for test purposes.

$$f(x) = x ** 2 if x < 0 (x-5) ** 2 - 5 otherwise.$$

It has a global minima with $f(x^*) = -5$ at $x^* = 5$.

skopt.benchmarks.bench3

skopt.benchmarks.bench3(x)

A benchmark function for test purposes.

$$f(x) = \sin(5*x) * (1 - \tanh(x ** 2))$$

It has a global minima with $f(x^*) \sim -0.9$ at $x^* \sim -0.3$.

skopt.benchmarks.bench4

skopt.benchmarks.bench4(x)

A benchmark function for test purposes.

$$f(x) = float(x) ** 2$$

where x is a string. It has a single minima with $f(x^*) = 0$ at $x^* = "0"$. This benchmark is used for checking support of categorical variables.

skopt.benchmarks.bench5

```
skopt.benchmarks.bench5(x)
```

A benchmark function for test purposes.

```
f(x) = float(x[0]) ** 2 + x[1] ** 2
```

where x is a string. It has a single minima with f(x) = 0 at x[0] = "0" and x[1] = "0" This benchmark is used for checking support of mixed spaces.

skopt.benchmarks.branin

```
skopt.benchmarks.branin (x, a=1, b=0.12918450914398066, c=1.5915494309189535, r=6, s=10, t=0.039788735772973836)
Branin-Hoo function is defined on the square x1 \in [-5, 10], x2 \in [0, 15].
```

It has three minima with $f(x^*) = 0.397887$ at $x^* = (-pi, 12.275), (+pi, 2.275),$ and (9.42478, 2.475).

More details: http://www.sfu.ca/~ssurjano/branin.html

Examples using skopt.benchmarks.branin

- Parallel optimization
- Comparing surrogate models
- Visualizing optimization results

skopt.benchmarks.hart6

```
hart6(x, alpha=array([1. , 1.2, 3. , 3.2]), P=array([[0.1312, 0.1696, 0.5569, 0.0124, 0.826], 0.2329, 0.4135, 0.8307, 0.3736, 0.1004, 0.9991], [0.2348, 0.1451, 0.3522, 0.2883, 0.3047, 0.665], [0.4047, 0.8828, 0.8732, 0.5743, 0.1091, 0.0381]]), A=array([[10. , 3. , 17. , 3.5 , [ 0.05, 10. , 17. , 0.1 , 8. , 14. ], [ 3. , 3.5 , 1.7 , 10. , 17. , 8. ], [17. , 8. , 0.05, 10. , 0.1 , 14. ]]))
```

The six dimensional Hartmann function is defined on the unit hypercube.

It has six local minima and one global minimum $f(x^*) = -3.32237$ at $x^* = (0.20169, 0.15001, 0.476874, 0.275332, 0.311652, 0.6573).$

More details: http://www.sfu.ca/~ssurjano/hart6.html

Examples using skopt.benchmarks.hart6

• Visualizing optimization results

4.4 skopt.callbacks: Callbacks

Monitor and influence the optimization procedure via callbacks.

Callbacks are callables which are invoked after each iteration of the optimizer and are passed the results "so far". Callbacks can monitor progress, or stop the optimization early by returning True.

User guide: See the *Callbacks* section for further details.

callbacks.CheckpointSaver(checkpoint_path,	Save current state after each iteration with skopt.
)	dump.
callbacks.DeadlineStopper(total_time)	Stop the optimization before running out of a fixed bud-
	get of time.
callbacks.DeltaXStopper(delta)	Stop the optimization when $ x1 - x2 < delta$
callbacks.DeltaYStopper(delta[, n_best])	Stop the optimization if the n_best minima are within
	delta
callbacks.EarlyStopper	Decide to continue or not given the results so far.
callbacks.TimerCallback()	Log the elapsed time between each iteration of the min-
	imization loop.
callbacks.VerboseCallback(n_total[, n_init,	Callback to control the verbosity.
])	

4.4.1 skopt.callbacks.CheckpointSaver

class skopt.callbacks.**CheckpointSaver** (*checkpoint_path*, **dump_options)

Save current state after each iteration with skopt.dump.

Parameters

checkpoint_path [string] location where checkpoint will be saved to;
dump_options [string] options to pass on to skopt.dump, like compress=9

Examples

Methods

```
__call__(self, res)
Parameters
```

__init__(self, checkpoint_path, **dump_options)
Initialize self. See help(type(self)) for accurate signature.

Examples using skopt.callbacks.CheckpointSaver

• Interruptible optimization runs with checkpoints

4.4.2 skopt.callbacks.DeadlineStopper

class skopt.callbacks.DeadlineStopper(total_time)

Stop the optimization before running out of a fixed budget of time.

Parameters

total_time [float] fixed budget of time (seconds) that the optimization must finish within.

Attributes

iter_time [list, shape $(n_iter,)$] iter_time[i-1] gives the time taken to complete iteration i

Methods

```
__call__(self, result)
Parameters
```

```
___init___ (self, total_time)
```

Initialize self. See help(type(self)) for accurate signature.

4.4.3 skopt.callbacks.DeltaXStopper

```
class skopt.callbacks.DeltaXStopper (delta)
Stop the optimization when |x1 - x2| < delta
```

If the last two positions at which the objective has been evaluated are less than delta apart stop the optimization procedure.

Methods

```
__call__(self, result)
Parameters
__init__(self, delta)
```

Initialize self. See help(type(self)) for accurate signature.

4.4.4 skopt.callbacks.DeltaYStopper

```
class skopt.callbacks.DeltaYStopper(delta, n_best=5)
```

Stop the optimization if the n_best minima are within delta

Stop the optimizer if the absolute difference between the n_best objective values is less than delta.

Methods

call(self, result)	Parameters
init(self, delta, n_best=5 Initialize self. See help(type	

4.4.5 skopt.callbacks.EarlyStopper

class skopt.callbacks.EarlyStopper

Decide to continue or not given the results so far.

The optimization procedure will be stopped if the callback returns True.

Methods

```
___call___(self, result)
Parameters
___init___(self, /, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.
```

4.4.6 skopt.callbacks.TimerCallback

class skopt.callbacks.TimerCallback

Log the elapsed time between each iteration of the minimization loop.

The time for each iteration is stored in the iter_time attribute which you can inspect after the minimization has completed.

Attributes

iter_time [list, shape (n_iter,)] iter_time[i-1] gives the time taken to complete iteration

Methods

4.4.7 skopt.callbacks.VerboseCallback

class skopt.callbacks.**VerboseCallback** $(n_total, n_init=0, n_random=0)$ Callback to control the verbosity.

Parameters

- **n_init** [int, optional] Number of points provided by the user which are yet to be evaluated. This is equal to len(x0) when y0 is None
- **n_random** [int, optional] Number of points randomly chosen.
- **n total** [int] Total number of func calls.

Attributes

iter_no [int] Number of iterations of the optimization routine.

Methods

```
____call___(self, res)
Parameters

___init___(self, n_total, n_init=0, n_random=0)
Initialize self. See help(type(self)) for accurate signature.
```

4.5 skopt.learning: Machine learning extensions for model-based optimization.

Machine learning extensions for model-based optimization.

User guide: See the learning section for further details.

```
learning.ExtraTreesRegressor([n_estimators, ExtraTreesRegressor that supports conditional standard deviation.

learning.GaussianProcessRegressor([kernel, GaussianProcessRegressor that allows noise tunability. ...])

learning.GradientBoostingQuantileRegresPred([t.se])eral quantiles with one estimator.

learning.RandomForestRegressor([...])

RandomForestRegressor that supports conditional std computation.
```

4.5.1 skopt.learning.ExtraTreesRegressor

```
 \textbf{class} \  \, \textbf{skopt.learning.ExtraTreesRegressor} \, (\textit{n\_estimators}=10, \\ \textit{rion='mse'}, \\ \textit{max\_depth=None}, \\ \textit{min\_samples\_split}=2, \\ \textit{min\_samples\_leaf}=1, \\ \textit{min\_weight\_fraction\_leaf}=0.0, \\ \textit{max\_features='auto'}, \\ \textit{max\_leaf\_nodes=None}, \\ \textit{min\_impurity\_decrease}=0.0, \\ \textit{bootstrap=False}, \\ \textit{oob\_score=False}, \\ \textit{n\_jobs}=1, \\ \textit{random\_state=None}, \\ \textit{verbose}=0, \\ \textit{warm\_start=False}, \\ \textit{min\_variance}=0.0) \\ \text{ExtraTreesRegressor} \, \text{that supports conditional standard deviation}.
```

Parameters

n_estimators [integer, optional (default=10)] The number of trees in the forest.

- **criterion** [string, optional (default="mse")] The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error.
- max_features [int, float, string or None, optional (default="auto")] The number of features to
 consider when looking for the best split: If int, then consider max_features features at
 each split. If float, then max_features is a percentage and

```
int(max_features * n_features) features are considered at each split.
```

- If "auto", then max_features=n_features.
- If "sqrt", then max_features=sqrt (n_features).
- If "log2", then max_features=log2 (n_features).
- If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features.

- **max_depth** [integer or None, optional (default=None)] The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
- min_samples_split [int, float, optional (default=2)] The minimum number of samples required to split an internal node: If int, then consider min_samples_split as the minimum number. If float, then min_samples_split is a percentage and

```
ceil(min_samples_split * n_samples) are the minimum number of sam-
ples for each split.
```

- $\label{lem:min_samples_leaf} \begin{tabular}{ll} min_samples_leaf & [int, float, optional (default=1)] The minimum number of samples required to be at a leaf node: If int, then consider min_samples_leaf as the minimum number. \\ \begin{tabular}{ll} min_samples_leaf & [int, float, optional (default=1)] The minimum number of samples required to be at a leaf node: If int, then consider min_samples_leaf as the minimum number. \\ \begin{tabular}{ll} minimum number of samples required to be at a leaf node: If int, then consider min_samples_leaf as the minimum number. \\ \begin{tabular}{ll} minimum number of samples required to be at a leaf node: If int, then consider min_samples_leaf as the minimum number. \\ \begin{tabular}{ll} minimum number of samples required to be at a leaf node: If int, then consider min_samples required to be at a leaf node: If int, then consider min_samples required to be at a leaf node: If int, then consider min_samples required to be at a leaf node: If int, then consider min_samples required to be at a leaf node of the leaf no$
 - If float, then $\min_samples_leaf$ is a percentage and

```
ceil (min_samples_leaf \star n_samples) are the minimum number of samples for each node.
```

- min_weight_fraction_leaf [float, optional (default=0.)] The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided.
- max_leaf_nodes [int or None, optional (default=None)] Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes.
- min_impurity_decrease [float, optional (default=0.)] A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:

where N is the total number of samples, N_t is the number of samples at the current node, N_t is the number of samples in the left child, and N_t is the number of samples in the right child. N_t N_t , N_t , N_t and N_t all refer to the weighted sum, if sample_weight is passed.

bootstrap [boolean, optional (default=True)] Whether bootstrap samples are used when building trees.

- oob_score [bool, optional (default=False)] whether to use out-of-bag samples to estimate the R^2 on unseen data.
- **n_jobs** [integer, optional (default=1)] The number of jobs to run in parallel for both fit and predict. If -1, then the number of jobs is set to the number of cores.
- random_state [int, RandomState instance or None, optional (default=None)] If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
- **verbose** [int, optional (default=0)] Controls the verbosity of the tree building process.
- warm_start [bool, optional (default=False)] When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest.

Attributes

estimators_ [list of DecisionTreeRegressor] The collection of fitted sub-estimators.

- **feature_importances** [array of shape = [n_features]] Return the feature importances (the higher, the more important the feature).
- **n_features_** [int] The number of features when fit is performed.
- **n_outputs_** [int] The number of outputs when fit is performed.
- oob_score_ [float] Score of the training dataset obtained using an out-of-bag estimate.
- **oob_prediction**_ [array of shape = [n_samples]] Prediction computed with out-of-bag estimate on the training set.

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth, min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, max_features=n_features and bootstrap=False, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, random_state has to be fixed.

References

[R8d4c5fa7c0c3-1]

Methods

apply(self, X)	Apply trees in the forest to X, return leaf indices.
decision_path(self, X)	Return the decision path in the forest.
fit(self, X, y[, sample_weight])	Build a forest of trees from the training set (X, y).
<pre>get_params(self[, deep])</pre>	Get parameters for this estimator.
<pre>predict(self, X[, return_std])</pre>	Predict continuous output for X.

Continued on next page

T			•		
Ianie	1/	- continued	trom	nrevious	nage
IUDIO		COLLUITAGA		piovious	pago

score(self, X, y[, sample_weight])	Return the coefficient of determination R^2 of the
	prediction.
<pre>set_params(self, **params)</pre>	Set the parameters of this estimator.

__init__ (self, n_estimators=10, criterion='mse', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, min_variance=0.0)
Initialize self. See help(type(self)) for accurate signature.

apply(self, X)

Apply trees in the forest to X, return leaf indices.

Parameters

X [{array-like or sparse matrix} of shape (n_samples, n_features)] The input samples. Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns

X_leaves [array_like, shape = [n_samples, n_estimators]] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in.

decision_path(self, X)

Return the decision path in the forest.

New in version 0.18.

Parameters

X [{array-like or sparse matrix} of shape (n_samples, n_features)] The input samples. Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns

indicator [sparse csr array, shape = [n_samples, n_nodes]] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes.

n_nodes_ptr [array of size (n_estimators + 1,)] The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator.

property feature_importances_

Return the feature importances (the higher, the more important the feature).

Returns

feature_importances_ [array, shape = [n_features]] The values of this array sum to 1, unless all trees are single node trees consisting of only the root node, in which case it will be an array of zeros.

fit (*self*, *X*, *y*, *sample_weight=None*)

Build a forest of trees from the training set (X, y).

Parameters

X [array-like or sparse matrix of shape (n_samples, n_features)] The training input samples. Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided, it will be converted into a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class labels in classification, real numbers in regression).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node.

Returns

self [object]

get_params (self, deep=True)

Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict (self, X, return_std=False)

Predict continuous output for X.

Parameters

X [array-like of shape=(n_samples, n_features)] Input data.

return_std [boolean] Whether or not to return the standard deviation.

Returns

```
predictions [array-like of shape=(n_samples,)] Predicted values for X. If criterion is set to "mse", then predictions [i] \sim mean(y \mid X[i]).
```

std [array-like of shape= $(n_samples,)$] Standard deviation of y at X. If criterion is set to "mse", then std[i] $\sim=$ std(y | X[i]).

score (self, X, y, sample_weight=None)

Return the coefficient of determination R² of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

- **X** [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
- y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor will use multioutput='uniform_average' from version 0.23 to keep consistent with r2_score(). This will influence the score method of all the multioutput regressors (except for MultiOutputRegressor). To specify the default value manually and avoid the warning, please either call r2_score() directly or make a custom scorer with make_scorer() (the built-in scorer 'r2' uses multioutput='uniform_average').

```
set_params (self, **params)
```

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>___<parameter> so that it's possible to update each component of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

4.5.2 skopt.learning.GaussianProcessRegressor

```
class skopt.learning.GaussianProcessRegressor (kernel=None, alpha=1e-10, optimizer='fmin\_l\_bfgs\_b', n\_restarts\_optimizer=0, normalize\_y=False, copy\_X\_train=True, random\_state=None, noise=None)
```

GaussianProcessRegressor that allows noise tunability.

The implementation is based on Algorithm 2.1 of Gaussian Processes for Machine Learning (GPML) by Rasmussen and Williams.

In addition to standard scikit-learn estimator API, GaussianProcessRegressor:

- allows prediction without prior fitting (based on the GP prior);
- provides an additional method sample_y(X), which evaluates samples drawn from the GPR (prior or posterior) at given inputs;
- exposes a method log_marginal_likelihood(theta), which can be used externally for other ways of selecting hyperparameters, e.g., via Markov chain Monte Carlo.

Parameters

kernel [kernel object] The kernel specifying the covariance function of the GP. If None is passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that the kernel's hyperparameters are optimized during fitting.

alpha [float or array-like, optional (default: 1e-10)] Value added to the diagonal of the kernel matrix during fitting. Larger values correspond to increased noise level in the observations and reduce potential numerical issue during fitting. If an array is passed, it must have the same number of entries as the data used for fitting and is used as datapoint-dependent noise level. Note that this is equivalent to adding a WhiteKernel with c=alpha. Allowing to specify the noise level directly as a parameter is mainly for convenience and for consistency with Ridge.

optimizer [string or callable, optional (default: "fmin_l_bfgs_b")] Can either be one of the internally supported optimizers for optimizing the kernel's parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature:

```
def optimizer(obj_func, initial_theta, bounds):
    # * 'obj_func' is the objective function to be maximized, which
    # takes the hyperparameters theta as parameter and an
    # optional flag eval_gradient, which determines if the
    # gradient is returned additionally to the function value
    # * 'initial_theta': the initial value for theta, which can be
    # used by local optimizers
    # * 'bounds': the bounds on the values of theta
    ...
    # Returned are the best found hyperparameters theta and
    # the corresponding value of the target function.
    return theta_opt, func_min
```

Per default, the 'fmin_l_bfgs_b' algorithm from scipy.optimize is used. If None is passed, the kernel's parameters are kept fixed. Available internal optimizers are:

```
'fmin_l_bfgs_b'
```

- n_restarts_optimizer [int, optional (default: 0)] The number of restarts of the optimizer for finding the kernel's parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernel's initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer == 0 implies that one run is performed.
- normalize_y [boolean, optional (default: False)] Whether the target values y are normalized, i.e., the mean of the observed target values become zero. This parameter should be set to True if the target values' mean is expected to differ considerable from zero. When enabled, the normalization effectively modifies the GP's prior based on the data, which contradicts the likelihood principle; normalization is thus disabled per default.
- **copy_X_train** [bool, optional (default: True)] If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally.
- random_state [integer or numpy.RandomState, optional] The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator.
- **noise** [string, "gaussian", optional] If set to "gaussian", then it is assumed that y is a noisy estimate of f(x) where the noise is gaussian.

Attributes

- **X_train**_ [array-like, shape = (n_samples, n_features)] Feature values in training data (also required for prediction)
- y_train_ [array-like, shape = (n_samples, [n_output_dims])] Target values in training data (also required for prediction)
- **kernel_kernel object** The kernel used for prediction. The structure of the kernel is the same as the one passed as parameter but with optimized hyperparameters
- L_ [array-like, shape = (n_samples, n_samples)] Lower-triangular Cholesky decomposition of
 the kernel in X_train_

alpha_ [array-like, shape = (n_samples,)] Dual coefficients of training data points in kernel
 space

log_marginal_likelihood_value_ [float] The log-marginal-likelihood of self.kernel_.
theta

noise_ [float] Estimate of the gaussian noise. Useful only when noise is set to "gaussian".

Methods

fit(self, X, y)	Fit Gaussian process regression model.	
<pre>get_params(self[, deep])</pre>	Get parameters for this estimator.	
log_marginal_likelihood(self[, theta,])	Returns log-marginal likelihood of theta for training	
	data.	
<pre>predict(self, X[, return_std, return_cov,])</pre>	Predict output for X.	
sample_y(self, X[, n_samples, random_state])	Draw samples from Gaussian process and evaluate at	
	X.	
score(self, X, y[, sample_weight])	Return the coefficient of determination R^2 of the	
	prediction.	
set_params(self, **params)	Set the parameters of this estimator.	

__init__ (self, kernel=None, alpha=1e-10, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0, nor-malize_y=False, copy_X_train=True, random_state=None, noise=None)
Initialize self. See help(type(self)) for accurate signature.

fit (self, X, y)

Fit Gaussian process regression model.

Parameters

X [array-like, shape = (n_samples, n_features)] Training data

y [array-like, shape = (n_samples, [n_output_dims])] Target values

Returns

self Returns an instance of self.

get_params (self, deep=True)

Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

log_marginal_likelihood (self, theta=None, eval_gradient=False, clone_kernel=True)
Returns log-marginal likelihood of theta for training data.

Parameters

theta [array-like of shape (n_kernel_params,) or None] Kernel hyperparameters for which the log-marginal likelihood is evaluated. If None, the precomputed log_marginal_likelihood of self.kernel_.theta is returned.

eval_gradient [bool, default: False] If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. If True, theta must not be None.

clone_kernel [bool, default=True] If True, the kernel attribute is copied. If False, the kernel attribute is modified, but may result in a performance improvement.

Returns

log likelihood [float] Log-marginal likelihood of theta for training data.

log_likelihood_gradient [array, shape = (n_kernel_params,), optional] Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True.

predict (self, X, return_std=False, return_cov=False, return_mean_grad=False, return_std_grad=False)
Predict output for X.

In addition to the mean of the predictive distribution, also its standard deviation (return_std=True) or covariance (return_cov=True), the gradient of the mean and the standard-deviation with respect to X can be optionally provided.

Parameters

X [array-like, shape = (n_samples, n_features)] Query points where the GP is evaluated.

return_std [bool, default: False] If True, the standard-deviation of the predictive distribution at the query points is returned along with the mean.

return_cov [bool, default: False] If True, the covariance of the joint predictive distribution at the query points is returned along with the mean.

return_mean_grad [bool, default: False] Whether or not to return the gradient of the mean. Only valid when X is a single point.

return_std_grad [bool, default: False] Whether or not to return the gradient of the std. Only valid when X is a single point.

Returns

- **y_mean** [array, shape = (n_samples, [n_output_dims])] Mean of predictive distribution a query points
- **y_std** [array, shape = (n_samples,), optional] Standard deviation of predictive distribution at query points. Only returned when return_std is True.
- **y_cov** [array, shape = (n_samples, n_samples), optional] Covariance of joint predictive distribution a query points. Only returned when return_cov is True.
- y_mean_grad [shape = (n_samples, n_features)] The gradient of the predicted mean
- **y_std_grad** [shape = (n_samples, n_features)] The gradient of the predicted std.

sample_y (self, X, n_samples=1, random_state=0)

Draw samples from Gaussian process and evaluate at X.

Parameters

- **X** [sequence of length n_samples] Query points where the GP is evaluated. Could either be array-like with shape = (n_samples, n_features) or a list of objects.
- **n_samples** [int, default: 1] The number of samples drawn from the Gaussian process

random_state [int, RandomState instance or None, optional (default=0)] If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

Returns

y_samples [array, shape = (n_samples_X, [n_output_dims], n_samples)] Values of n_samples samples drawn from Gaussian process and evaluated at query points.

score (self, X, y, sample_weight=None)

Return the coefficient of determination R² of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

- X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
- **y** [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor will use multioutput='uniform_average' from version 0.23 to keep consistent with r2_score(). This will influence the score method of all the multioutput regressors (except for MultiOutputRegressor). To specify the default value manually and avoid the warning, please either call r2_score() directly or make a custom scorer with make_scorer() (the built-in scorer 'r2' uses multioutput='uniform_average').

set_params (self, **params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>___<parameter> so that it's possible to update each component of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using skopt.learning.GaussianProcessRegressor

• Use different base estimators for optimization

4.5.3 skopt.learning.GradientBoostingQuantileRegressor

class skopt.learning.GradientBoostingQuantileRegressor(quantiles=[0.16, 0.5, 0.84], $base_estimator=None$, $n_jobs=1$, $random_state=None$)

Predict several quantiles with one estimator.

This is a wrapper around GradientBoostingRegressor's quantile regression that allows you to predict several quantiles in one go.

Parameters

quantiles [array-like] Quantiles to predict. By default the 16, 50 and 84% quantiles are predicted.

base_estimator [GradientBoostingRegressor instance or None (default)] Quantile regressor used to make predictions. Only instances of GradientBoostingRegressor are supported. Use this to change the hyper-parameters of the estimator.

n_jobs [int, default=1] The number of jobs to run in parallel for fit. If -1, then the number of jobs is set to the number of cores.

random_state [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

Methods

fit(self, X, y)	Fit one regressor for each quantile.
<pre>get_params(self[, deep])</pre>	Get parameters for this estimator.
<pre>predict(self, X[, return_std, return_quantiles])</pre>	Predict.
score(self, X, y[, sample_weight])	Return the coefficient of determination R^2 of the
	prediction.
<pre>set_params(self, **params)</pre>	Set the parameters of this estimator.

__init__ (self, quantiles=[0.16, 0.5, 0.84], base_estimator=None, n_jobs=1, random_state=None) Initialize self. See help(type(self)) for accurate signature.

fit (self, X, y)

Fit one regressor for each quantile.

Parameters

- X [array-like, shape=(n_samples, n_features)] Training vectors, where n_samples is the number of samples and n_features is the number of features.
- y [array-like, shape=(n_samples,)] Target values (real numbers in regression)

get_params (self, deep=True)

Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict (self, X, return_std=False, return_quantiles=False)
Predict.

Predict X at every quantile if return_std is set to False. If return_std is set to True, then return the mean and the predicted standard deviation, which is approximated as the (0.84th quantile - 0.16th quantile) divided by 2.0

Parameters

X [array-like, shape=(n_samples, n_features)] where n_samples is the number of samples and n_features is the number of features.

score (self, X, y, sample_weight=None)

Return the coefficient of determination R² of the prediction.

The coefficient R² is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R² score of 0.0.

Parameters

- X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
- y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor will use multioutput='uniform_average' from version 0.23 to keep consistent with r2_score(). This will influence the score method of all the multioutput regressors (except for MultiOutputRegressor). To specify the default value manually and avoid the warning, please either call r2_score() directly or make a custom scorer with make_scorer() (the built-in scorer 'r2' uses multioutput='uniform_average').

set_params (self, **params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>___<parameter> so that it's possible to update each component of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

4.5.4 skopt.learning.RandomForestRegressor

```
 \textbf{class} \  \, \textbf{skopt.learning.RandomForestRegressor} \, (\textit{n\_estimators} = 10, & \textit{crite-rion} = '\textit{mse'}, & \textit{max\_depth} = None, \\ \textit{min\_samples\_split} = 2, & \textit{min\_samples\_leaf} = 1, \\ \textit{min\_weight\_fraction\_leaf} = 0.0, \\ \textit{max\_features} = '\textit{auto'}, & \textit{max\_leaf\_nodes} = None, \\ \textit{min\_impurity\_decrease} = 0.0, & \textit{boot-strap} = True, & \textit{oob\_score} = False, & \textit{n\_jobs} = 1, \\ \textit{random\_state} = None, & \textit{verbose} = 0, \\ \textit{warm\_start} = False, & \textit{min\_variance} = 0.0) \\ \end{aligned}
```

RandomForestRegressor that supports conditional std computation.

Parameters

- **n_estimators** [integer, optional (default=10)] The number of trees in the forest.
- **criterion** [string, optional (default="mse")] The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error.
- max_features [int, float, string or None, optional (default="auto")] The number of features to
 consider when looking for the best split: If int, then consider max_features features at
 each split. If float, then max_features is a percentage and

int (max features * n features) features are considered at each split.

- If "auto", then max_features=n_features.
- If "sqrt", then max_features=sqrt (n_features).
- If "log2", then max_features=log2 (n_features).
- If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features.

- max_depth [integer or None, optional (default=None)] The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
- min_samples_split [int, float, optional (default=2)] The minimum number of samples required
 to split an internal node: If int, then consider min_samples_split as the minimum
 number. If float, then min_samples_split is a percentage and

```
ceil(min_samples_split * n_samples) are the minimum number of sam-
ples for each split.
```

- min_samples_leaf [int, float, optional (default=1)] The minimum number of samples required
 to be at a leaf node: If int, then consider min_samples_leaf as the minimum number.
 If float, then min_samples_leaf is a percentage and
 - ceil (min_samples_leaf * n_samples) are the minimum number of samples for each node.
- min_weight_fraction_leaf [float, optional (default=0.)] The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided.

- max_leaf_nodes [int or None, optional (default=None)] Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes.
- min_impurity_decrease [float, optional (default=0.)] A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:

where N is the total number of samples, N_t is the number of samples at the current node, N_t is the number of samples in the left child, and N_t is the number of samples in the right child. N, N_t , N_t and N_t all refer to the weighted sum, if sample_weight is passed.

- **bootstrap** [boolean, optional (default=True)] Whether bootstrap samples are used when building trees.
- **oob_score** [bool, optional (default=False)] whether to use out-of-bag samples to estimate the R^2 on unseen data.
- **n_jobs** [integer, optional (default=1)] The number of jobs to run in parallel for both fit and predict. If -1, then the number of jobs is set to the number of cores.
- random_state [int, RandomState instance or None, optional (default=None)] If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
- **verbose** [int, optional (default=0)] Controls the verbosity of the tree building process.
- warm_start [bool, optional (default=False)] When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest.

Attributes

estimators [list of DecisionTreeRegressor] The collection of fitted sub-estimators.

feature_importances_ [array of shape = [n_features]] Return the feature importances (the higher, the more important the feature).

n_features_ [int] The number of features when fit is performed.

n_outputs_ [int] The number of outputs when fit is performed.

oob_score [float] Score of the training dataset obtained using an out-of-bag estimate.

oob_prediction_ [array of shape = [n_samples]] Prediction computed with out-of-bag estimate on the training set.

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth, min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, max_features=n_features and bootstrap=False, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, random_state has to be fixed.

References

[R91c6cd8711c5-1]

Methods

apply(self, X)	Apply trees in the forest to X, return leaf indices.
decision_path(self, X)	Return the decision path in the forest.
fit(self, X, y[, sample_weight])	Build a forest of trees from the training set (X, y).
<pre>get_params(self[, deep])</pre>	Get parameters for this estimator.
<pre>predict(self, X[, return_std])</pre>	Predict continuous output for X.
score(self, X, y[, sample_weight])	Return the coefficient of determination R^2 of the
	prediction.
set_params(self, **params)	Set the parameters of this estimator.

__init___(self, n_estimators=10, criterion='mse', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, min_variance=0.0)
Initialize self. See help(type(self)) for accurate signature.

apply(self, X)

Apply trees in the forest to X, return leaf indices.

Parameters

X [{array-like or sparse matrix} of shape (n_samples, n_features)] The input samples. Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns

X_leaves [array_like, shape = [n_samples, n_estimators]] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in.

decision_path(self, X)

Return the decision path in the forest.

New in version 0.18.

Parameters

X [{array-like or sparse matrix} of shape (n_samples, n_features)] The input samples. Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns

indicator [sparse csr array, shape = [n_samples, n_nodes]] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes.

n_nodes_ptr [array of size (n_estimators + 1,)] The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator.

property feature_importances_

Return the feature importances (the higher, the more important the feature).

Returns

feature_importances_ [array, shape = [n_features]] The values of this array sum to 1, unless all trees are single node trees consisting of only the root node, in which case it will be an array of zeros.

fit (*self*, *X*, *y*, *sample weight=None*)

Build a forest of trees from the training set (X, y).

Parameters

- X [array-like or sparse matrix of shape (n_samples, n_features)] The training input samples. Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided, it will be converted into a sparse csc_matrix.
- **y** [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class labels in classification, real numbers in regression).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node.

Returns

self [object]

get_params (self, deep=True)

Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict (self, X, return_std=False)

Predict continuous output for X.

Parameters

X [array of shape = (n samples, n features)] Input data.

return std [boolean] Whether or not to return the standard deviation.

Returns

```
predictions [array-like of shape = (n_samples,)] Predicted values for X. If criterion is set to "mse", then predictions [i] \sim mean(y \mid X[i]).
```

std [array-like of shape= $(n_samples,)$] Standard deviation of y at X. If criterion is set to "mse", then $std[i] \sim std(y \mid X[i])$.

score (self, X, y, sample_weight=None)

Return the coefficient of determination R² of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

- X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
- **y** [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample weight [array-like of shape (n samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor will use multioutput='uniform_average' from version 0.23 to keep consistent with r2_score(). This will influence the score method of all the multioutput regressors (except for MultiOutputRegressor). To specify the default value manually and avoid the warning, please either call r2_score() directly or make a custom scorer with make_scorer() (the built-in scorer 'r2' uses multioutput='uniform_average').

set_params (self, **params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>___<parameter> so that it's possible to update each component of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

4.6 skopt.optimizer: Optimizer

User guide: See the *Optimizer, an ask-and-tell interface* section for further details.

```
optimizer.Optimizer(dimensions[, ...])
```

Run bayesian optimisation loop.

4.6.1 skopt.optimizer.Optimizer

Run bayesian optimisation loop.

An Optimizer represents the steps of a bayesian optimisation loop. To use it you need to provide your own loop mechanism. The various optimisers provided by skopt use this class under the hood.

Use this class directly if you want to control the iterations of your bayesian optimisation loop.

Parameters

- **dimensions** [list, shape (n_dims,)] List of search space dimensions. Each search dimension can be defined either as
 - a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
 - a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),
 - as a list of categories (for Categorical dimensions), or
 - an instance of a Dimension object (Real, Integer or Categorical).
- base_estimator ["GP", "RF", "ET", "GBRT" or sklearn regressor,]
- **default=""GP"** Should inherit from sklearn.base.RegressorMixin. In addition the predict method, should have an optional return_std argument, which returns std (Y \mid x) ` along with E[Y \mid x]. If base_estimator is one of ["GP", "RF", "ET", "GBRT"], a default surrogate model of the corresponding type is used corresponding to what is used in the minimize functions.
- **n_random_starts** [int, default=10] Deprecated since version use: n_initial_points instead.
- **n_initial_points** [int, default=10] Number of evaluations of func with initialization points before approximating it with base_estimator. Points provided as x0 count as initialization points. If $len(x0) < n_initial_points$ additional points are sampled at random.
- **acq_func** [string, default="gp_hedge" Function to minimize over the posterior distribution. Can be either
 - "LCB" for lower confidence bound.
 - "EI" for negative expected improvement.
 - "PI" for negative probability of improvement.
 - "gp_hedge" Probabilistically choose one of the above three acquisition functions at every iteration.
 - The gains q_i are initialized to zero.
 - At every iteration,
 - * Each acquisition function is optimised independently to propose an candidate point X_i.
 - * Out of all these candidate points, the next point X_best is chosen by $softmax(\eta g_i)$
 - * After fitting the surrogate model with (X_best, y_best), the gains are updated such that $g_i = \mu(X_i)$
 - "Elps" for negated expected improvement per second to take into account the function compute time. Then, the objective function is assumed to return two values, the first being the objective value and the second being the time taken in seconds.
 - "PIps" for negated probability of improvement per second. The return type of the objective function is assumed to be similar to that of "Elps"
- acq_optimizer [string, "sampling" or "lbfgs", default="auto"] Method to minimize the
 acquistion function. The fit model is updated with the optimal value obtained by optimizing
 acq_func with acq_optimizer.
 - If set to "auto", then acq_optimizer is configured on the basis of the base_estimator and the space searched over. If the space is Categorical or if the estimator provided based on tree-models then this is set to be "sampling".

- If set to "sampling", then acq_func is optimized by computing acq_func at n_points randomly sampled points.
- If set to "lbfgs", then acq_func is optimized by
 - Sampling n_restarts_optimizer points randomly.
 - "lbfgs" is run for 20 iterations with these points as initial points to find local minima.
 - The optimal of these local minima is used to update the prior.

random_state [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

acq_func_kwargs [dict] Additional arguments to be passed to the acquistion function.

acq_optimizer_kwargs [dict] Additional arguments to be passed to the acquistion optimizer.

model_queue_size [int or None, default=None] Keeps list of models only as long as the argument given. In the case of None, the list has no capped length.

Attributes

Xi [list] Points at which objective has been evaluated.

yi [scalar] Values of objective at corresponding points in Xi.

models [list] Regression models used to fit observations and compute acquisition function.

space [Space] An instance of skopt.space. Stores parameter search space used to sample points, bounds, and type of parameters.

Methods

ask(self[, n_points, strategy])	Query point or multiple points at which objective should be evaluated.
assac(salff mandam statal)	
copy(self[, random_state])	Create a shallow copy of an instance of the optimizer.
get_result(self)	Returns the same result that would be returned by
	opt.tell() but without calling tell
run(self, func[, n_iter])	Execute ask() + tell() n_iter times
tell(self, x, y[, fit])	Record an observation (or several) of the objective
	function.
update_next(self)	Updates the value returned by opt.ask().

```
__init__ (self, dimensions, base_estimator='gp', n_random_starts=None, n_initial_points=10, acq_func='gp_hedge', acq_optimizer='auto', random_state=None, model_queue_size=None, acq_func_kwargs=None, acq_optimizer_kwargs=None)
Initialize self. See help(type(self)) for accurate signature.
```

ask (*self*, *n_points=None*, *strategy='cl_min'*)

Query point or multiple points at which objective should be evaluated.

n_points [int or None, default=None] Number of points returned by the ask method. If the value is None, a single point to evaluate is returned. Otherwise a list of points to evaluate is returned of size n_points. This is useful if you can evaluate your objective in parallel, and thus obtain more objective function evaluations per unit of time.

strategy [string, default="cl_min"] Method to use to sample multiple points (see also n_points description). This parameter is ignored if n_points = None. Supported options are "cl_min",

```
"cl mean" or "cl max".
```

• If set to "cl_min", then constant liar strategy is used with lie objective value being minimum of observed objective values. "cl_mean" and "cl_max" means mean and max of values respectively. For details on this strategy see:

https://hal.archives-ouvertes.fr/hal-00732512/document

With this strategy a copy of optimizer is created, which is then asked for a point, and the point is told to the copy of optimizer with some fake objective (lie), the next point is asked from copy, it is also told to the copy with fake objective and so on. The type of lie defines different flavours of cl_x strategies.

```
copy (self, random_state=None)
```

Create a shallow copy of an instance of the optimizer.

Parameters

random_state [int, RandomState instance, or None (default)] Set the random state of the
copy.

```
get_result (self)
```

Returns the same result that would be returned by opt.tell() but without calling tell

Returns

res [OptimizeResult, scipy object] OptimizeResult instance with the required information

```
run (self, func, n_iter=1)
```

Execute ask() + tell() n_iter times

```
tell(self, x, y, fit=True)
```

Record an observation (or several) of the objective function.

Provide values of the objective function at points suggested by ask() or other points. By default a new model will be fit to all observations. The new model is used to suggest the next point at which to evaluate the objective. This point can be retrieved by calling ask().

To add observations without fitting a new model set fit to False.

To add multiple observations in a batch pass a list-of-lists for x and a list of scalars for y.

Parameters

- **x** [list or list-of-lists] Point at which objective was evaluated.
- y [scalar or list] Value of objective at x.
- fit [bool, default=True] Fit a model to observed evaluations of the objective. A model will only be fitted after n_initial_points points have been told to the optimizer irrespective of the value of fit.

update_next (self)

Updates the value returned by opt.ask(). Useful if a parameter was updated after ask was called.

optimizer.base_minimize(func,	dimensions,	Base optimizer class :param func: Function to mini-
)		mize.
optimizer.dummy_minimize(func, dimensions[,		Random search by uniform sampling within the given
])		bounds.
optimizer.forest_minimize(func	, dimen-	Sequential optimisation using decision trees.
sions)		

Continued on next page

Table 23 – continued from previous page

		<u> </u>
optimizer.gbrt_minimize(func,	dimensions[,	Sequential optimization using gradient boosted trees.
])		
optimizer.gp_minimize(func,	dimensions[,	Bayesian optimization using Gaussian Processes.
])		

4.6.2 skopt.optimizer.base_minimize

```
skopt.optimizer.base_minimize (func, dimensions, base_estimator, n_calls=100, n_random_starts=10, acq_func='EI', acq_optimizer='lbfgs', x0=None, y0=None, random\_state=None, verbose=False, call-back=None, n_points=10000, n_restarts_optimizer=5, xi=0.01, kappa=1.96, n_jobs=1, model_queue_size=None)
```

Base optimizer class :param func: Function to minimize. Should take a single list of parameters

and return the objective value.

If you have a search-space where all dimensions have names, then you can use skopt.utils. use_named_args as a decorator on your objective function, in order to call it directly with the named arguments. See use_named_args for an example.

Parameters

- **dimensions** (list, shape (n_dims,)) List of search space dimensions. Each search dimension can be defined either as
 - a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
 - a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),
 - as a list of categories (for Categorical dimensions), or
 - an instance of a Dimension object (Real, Integer or Categorical).

NOTE: The upper and lower bounds are inclusive for Integer dimensions.

- base_estimator($sklearn\ regressor$) Should inherit from sklearn.base. RegressorMixin. In addition, should have an optional return_std argument, which returns std(Y | x)`along with E[Y | x].
- n_calls (int, default=100) Maximum number of calls to func. An objective function will always be evaluated this number of times; Various options to supply initialization points do not affect this value.
- n_random_starts (int, default=10) Number of evaluations of func with random points before approximating it with base_estimator.
- acq_func (string, default=`"EI"`) Function to minimize over the posterior distribution. Can be either
 - "LCB" for lower confidence bound,
 - "EI" for negative expected improvement,
 - "PI" for negative probability of improvement.
 - "Elps" for negated expected improvement per second to take into account the function compute time. Then, the objective function is assumed to return two values, the first being the objective value and the second being the time taken in seconds.

- "PIps" for negated probability of improvement per second. The return type of the objective function is assumed to be similar to that of "Elps"
- acq_optimizer (string, "sampling" or "lbfgs", default="lbfgs") Method to minimize the acquistion function. The fit model is updated with the optimal value obtained by optimizing acq_func with acq_optimizer.
 - If set to "sampling", then acq_func is optimized by computing acq_func at n_points randomly sampled points and the smallest value found is used.

- If set to "lbfgs", then

- * The n_restarts_optimizer no. of points which the acquisition function is least are taken as start points.
- * "lbfgs" is run for 20 iterations with these points as initial points to find local minima.
- * The optimal of these local minima is used to update the prior.
- **x0** (list, list of lists or None) Initial input points.
 - If it is a list of lists, use it as a list of input points. If no corresponding outputs y0 are supplied, then len(x0) of total calls to the objective function will be spent evaluating the points in x0. If the corresponding outputs are provided, then they will be used together with evaluated points during a run of the algorithm to construct a surrogate.
 - If it is a list, use it as a single initial input point. The algorithm will spend 1 call to evaluate the initial point, if the outputs are not provided.
 - If it is None, no initial input points are used.
- y0 (list, scalar or None) Objective values at initial input points.
 - If it is a list, then it corresponds to evaluations of the function at each element of x0: the i-th element of y0 corresponds to the function evaluated at the i-th element of x0.
 - If it is a scalar, then it corresponds to the evaluation of the function at $\times 0$.
 - If it is None and x0 is provided, then the function is evaluated at each element of x0.
- random_state (int, RandomState instance, or None (default)) Set random state to something other than None for reproducible results.
- **verbose** (boolean, default=False) Control the verbosity. It is advised to set the verbosity to True for long optimization runs.
- callback (callable, list of callables, optional) If callable then callback (res) is called after each call to func. If list of callables, then each callable in the list is called.
- n_points (int, default=10000) If acq_optimizer is set to "sampling", then acq_func is optimized by computing acq_func at n_points randomly sampled points.
- n_restarts_optimizer (int, default=5) The number of restarts of the optimizer when acq_optimizer is "lbfqs".
- **xi** (float, default=0.01) Controls how much improvement one wants over the previous best values. Used when the acquisition is either "EI" or "PI".
- **kappa** (float, default=1.96) Controls how much of the variance in the predicted values should be taken into account. If set to be very high, then we are favouring exploration over exploitation and vice versa. Used when the acquisition is "LCB".

- n_jobs (int, default=1) Number of cores to run in parallel while running the lbfgs optimizations over the acquisition function. Valid only when acq_optimizer is set to "lbfgs." Defaults to 1 core. If n_jobs=-1, then number of jobs is set to number of cores.
- model_queue_size (int or None, default=None) Keeps list of models only as long as the argument given. In the case of None, the list has no capped length.

Returns

- res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult object. Important attributes are:
 - x [list]: location of the minimum.
 - fun [float]: function value at the minimum.
 - models: surrogate models used for each iteration.
 - x_iters [list of lists]: location of function evaluation for each iteration.
 - func_vals [array]: function value for each iteration.
 - space [Space]: the optimization space.
 - specs [dict]': the call specifications.
 - rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

4.6.3 skopt.optimizer.dummy_minimize

```
skopt.optimizer.dummy_minimize(func, dimensions, n\_calls=100, x0=None, y0=None, random\_state=None, verbose=False, callback=None, model\_queue\_size=None)
```

Random search by uniform sampling within the given bounds.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the objective value.

If you have a search-space where all dimensions have names, then you can use skopt. utils.use_named_args as a decorator on your objective function, in order to call it directly with the named arguments. See use named args for an example.

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can be defined either as

- a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
- a (lower_bound, upper_bound, prior) tuple (for Real dimensions),
- as a list of categories (for Categorical dimensions), or
- an instance of a Dimension object (Real, Integer or Categorical).

n_calls [int, default=100] Number of calls to func to find the minimum.

x0 [list, list of lists or None] Initial input points.

- If it is a list of lists, use it as a list of input points.
- If it is a list, use it as a single initial input point.

- If it is None, no initial input points are used.
- y0 [list, scalar or None] Evaluation of initial input points.
 - If it is a list, then it corresponds to evaluations of the function at each element of x0: the i-th element of y0 corresponds to the function evaluated at the i-th element of x0.
 - If it is a scalar, then it corresponds to the evaluation of the function at $\times 0$.
 - If it is None and x0 is provided, then the function is evaluated at each element of x0.
- **random_state** [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.
- **verbose** [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True for long optimization runs.
- callback [callable, list of callables, optional] If callable then callback (res) is called after each call to func. If list of callables, then each callable in the list is called.
- model_queue_size [int or None, default=None] Keeps list of models only as long as the argument given. In the case of None, the list has no capped length.

Returns

- res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult object. Important attributes are:
 - x [list]: location of the minimum.
 - fun [float]: function value at the minimum.
 - x_iters [list of lists]: location of function evaluation for each iteration.
 - func_vals [array]: function value for each iteration.
 - space [Space]: the optimisation space.
 - specs [dict]: the call specifications.
 - rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

4.6.4 skopt.optimizer.forest minimize

```
skopt.optimizer.forest_minimize (func, dimensions, base_estimator='ET', n_calls=100, n_random_starts=10, acq_func='EI', x0=None, y0=None, random_state=None, verbose=False, callback=None, n_points=10000, xi=0.01, kappa=1.96, n_jobs=1, model queue size=None)
```

Sequential optimisation using decision trees.

A tree based regression model is used to model the expensive to evaluate function func. The model is improved by sequentially evaluating the expensive function at the next best point. Thereby finding the minimum of func with as few evaluations as possible.

The total number of evaluations, n_calls, are performed like the following. If x0 is provided but not y0, then the elements of x0 are first evaluated, followed by n_random_starts evaluations. Finally, n_calls - len(x0) - n_random_starts evaluations are made guided by the surrogate model. If x0 and y0 are both provided then n_random_starts evaluations are first made then n_calls - n_random_starts subsequent evaluations are made guided by the surrogate model.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the objective value.

If you have a search-space where all dimensions have names, then you can use <code>skopt.utils.use_named_args()</code> as a decorator on your objective function, in order to call it directly with the named arguments. See <code>skopt.utils.use_named_args()</code>

for an example.

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can be defined either as

- a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
- a (lower_bound, upper_bound, prior) tuple (for Real dimensions),
- as a list of categories (for Categorical dimensions), or
- an instance of a Dimension object (Real, Integer or Categorical).

NOTE: The upper and lower bounds are inclusive for Integer dimensions.

base_estimator [string or Regressor, default="ET"] The regressor to use as surrogate model. Can be either

- "RF" for random forest regressor
- "ET" for extra trees regressor
- instance of regressor with support for return_std in its predict method

The predefined models are initialized with good defaults. If you want to adjust the model parameters pass your own instance of a regressor which returns the mean and standard deviation when making predictions.

- **n_calls** [int, default=100] Number of calls to func.
- **n_random_starts** [int, default=10] Number of evaluations of func with random points before approximating it with base_estimator.

acq_func [string, default="LCB"] Function to minimize over the forest posterior. Can be either

- "LCB" for lower confidence bound.
- "EI" for negative expected improvement.
- "PI" for negative probability of improvement.
- "Elps" for negated expected improvement per second to take into account the function compute time. Then, the objective function is assumed to return two values, the first being the objective value and the second being the time taken in seconds.
- "PIps" for negated probability of improvement per second. The return type of the objective function is assumed to be similar to that of "EIps"

x0 [list, list of lists or None] Initial input points.

- If it is a list of lists, use it as a list of input points.
- If it is a list, use it as a single initial input point.
- If it is None, no initial input points are used.
- y0 [list, scalar or None] Evaluation of initial input points.

- If it is a list, then it corresponds to evaluations of the function at each element of x0: the i-th element of y0 corresponds to the function evaluated at the i-th element of x0.
- If it is a scalar, then it corresponds to the evaluation of the function at x0.
- If it is None and x0 is provided, then the function is evaluated at each element of x0.
- **random_state** [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.
- **verbose** [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True for long optimization runs.
- callback [callable, optional] If provided, then callback (res) is called after call to func.
- **n_points** [int, default=10000] Number of points to sample when minimizing the acquisition function.
- xi [float, default=0.01] Controls how much improvement one wants over the previous best values. Used when the acquisition is either "EI" or "PI".
- **kappa** [float, default=1.96] Controls how much of the variance in the predicted values should be taken into account. If set to be very high, then we are favouring exploration over exploitation and vice versa. Used when the acquisition is "LCB".
- **n_jobs** [int, default=1] The number of jobs to run in parallel for fit and predict. If -1, then the number of jobs is set to the number of cores.
- **model_queue_size** [int or None, default=None] Keeps list of models only as long as the argument given. In the case of None, the list has no capped length.

Returns

- res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult object. Important attributes are:
 - x [list]: location of the minimum.
 - fun [float]: function value at the minimum.
 - models: surrogate models used for each iteration.
 - x_iters [list of lists]: location of function evaluation for each iteration.
 - func_vals [array]: function value for each iteration.
 - space [Space]: the optimization space.
 - specs [dict]': the call specifications.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

See also:

functions skopt.gp_minimize, skopt.dummy_minimize

4.6.5 skopt.optimizer.qbrt minimize

```
skopt.optimizer.gbrt_minimize (func, dimensions, base_estimator=None, n_calls=100, n_random_starts=10, acq_func='EI', acq_optimizer='auto', x0=None, y0=None, random_state=None, verbose=False, callback=None, n_points=10000, xi=0.01, kappa=1.96, n_jobs=1, model queue size=None)
```

Sequential optimization using gradient boosted trees.

Gradient boosted regression trees are used to model the (very) expensive to evaluate function func. The model is improved by sequentially evaluating the expensive function at the next best point. Thereby finding the minimum of func with as few evaluations as possible.

The total number of evaluations, n_calls, are performed like the following. If x0 is provided but not y0, then the elements of x0 are first evaluated, followed by n_random_starts evaluations. Finally, n_calls - len(x0) - n_random_starts evaluations are made guided by the surrogate model. If x0 and y0 are both provided then n_random_starts evaluations are first made then n_calls - n_random_starts subsequent evaluations are made guided by the surrogate model.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the objective value.

If you have a search-space where all dimensions have names, then you can use skopt. utils.use_named_args as a decorator on your objective function, in order to call it directly with the named arguments. See use_named_args for an example.

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can be defined either as

- a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
- a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),
- as a list of categories (for Categorical dimensions), or
- an instance of a Dimension object (Real, Integer or Categorical).

base_estimator [GradientBoostingQuantileRegressor] The regressor to use as surrogate model

- n calls [int, default=100] Number of calls to func.
- **n_random_starts** [int, default=10] Number of evaluations of func with random points before approximating it with base_estimator.
- acq_func [string, default="LCB"] Function to minimize over the forest posterior. Can be either
 - "LCB" for lower confidence bound.
 - "EI" for negative expected improvement.
 - "PI" for negative probability of improvement.
 - "Elps" for negated expected improvement per second to take into account the function compute time. Then, the objective function is assumed to return two values, the first being the objective value and the second being the time taken.
 - "PIps" for negated probability of improvement per second.
- **x0** [list, list of lists or None] Initial input points.
 - If it is a list of lists, use it as a list of input points.

- If it is a list, use it as a single initial input point.
- If it is None, no initial input points are used.
- y0 [list, scalar or None] Evaluation of initial input points.
 - If it is a list, then it corresponds to evaluations of the function at each element of x0: the i-th element of y0 corresponds to the function evaluated at the i-th element of x0.
 - If it is a scalar, then it corresponds to the evaluation of the function at x0.
 - If it is None and x0 is provided, then the function is evaluated at each element of x0.
- **random_state** [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.
- **verbose** [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True for long optimization runs.
- callback [callable, optional] If provided, then callback (res) is called after call to func.
- **n_points** [int, default=10000] Number of points to sample when minimizing the acquisition function.
- xi [float, default=0.01] Controls how much improvement one wants over the previous best values. Used when the acquisition is either "EI" or "PI".
- **kappa** [float, default=1.96] Controls how much of the variance in the predicted values should be taken into account. If set to be very high, then we are favouring exploration over exploitation and vice versa. Used when the acquisition is "LCB".
- **n_jobs** [int, default=1] The number of jobs to run in parallel for fit and predict. If -1, then the number of jobs is set to the number of cores.
- model_queue_size [int or None, default=None] Keeps list of models only as long as the argument given. In the case of None, the list has no capped length.

Returns

- **res** [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult object. Important attributes are:
 - x [list]: location of the minimum.
 - fun [float]: function value at the minimum.
 - models: surrogate models used for each iteration.
 - x_iters [list of lists]: location of function evaluation for each iteration.
 - func vals [array]: function value for each iteration.
 - space [Space]: the optimization space.
 - specs [dict]': the call specifications.
 - rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

4.6.6 skopt.optimizer.gp_minimize

```
skopt.optimizer.gp_minimize(func,
                                              dimensions,
                                                             base estimator=None,
                                                                                      n \ calls=100,
                                     n_random_starts=10, acq_func='gp_hedge', acq_optimizer='auto',
                                     x0=None,
                                                 v0=None,
                                                              random_state=None,
                                                                                    verbose=False,
                                                        n_points=10000,
                                     callback=None,
                                                                            n restarts optimizer=5,
                                     xi=0.01.
                                                  kappa=1.96,
                                                                   noise='gaussian',
                                                                                         n iobs=1,
                                     model_queue_size=None)
```

Bayesian optimization using Gaussian Processes.

If every function evaluation is expensive, for instance when the parameters are the hyperparameters of a neural network and the function evaluation is the mean cross-validation score across ten folds, optimizing the hyperparameters by standard optimization routines would take for ever!

The idea is to approximate the function using a Gaussian process. In other words the function values are assumed to follow a multivariate gaussian. The covariance of the function values are given by a GP kernel between the parameters. Then a smart choice to choose the next parameter to evaluate can be made by the acquisition function over the Gaussian prior which is much quicker to evaluate.

The total number of evaluations, n_calls, are performed like the following. If x0 is provided but not y0, then the elements of x0 are first evaluated, followed by n_random_starts evaluations. Finally, n_calls - len(x0) - n_random_starts evaluations are made guided by the surrogate model. If x0 and y0 are both provided then n_random_starts evaluations are first made then n_calls - n_random_starts subsequent evaluations are made guided by the surrogate model.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the objective value.

If you have a search-space where all dimensions have names, then you can use <code>skopt.utils.use_named_args()</code> as a decorator on your objective function, in order to call it directly with the named arguments. See use_named_args for an example.

dimensions [[list, shape (n_dims,)] List of search space dimensions. Each search dimension can be defined either as

- a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
- a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),
- as a list of categories (for Categorical dimensions), or
- an instance of a Dimension object (Real, Integer or Categorical).

Notes. The upper and lower bounds are inclusive for Integer

Note: The upper and lower bounds are inclusive for Integer

dimensions.

base_estimator [a Gaussian process estimator] The Gaussian process estimator to use for optimization. By default, a Matern kernel is used with the following hyperparameters tuned.

- All the length scales of the Matern kernel.
- The covariance amplitude that each element is multiplied with.
- Noise that is added to the matern kernel. The noise is assumed to be iid gaussian.

n_calls [int, default=100] Number of calls to func.

- **n_random_starts** [int, default=10] Number of evaluations of func with random points before approximating it with base_estimator.
- acq_func [string, default='"gp_hedge"'] Function to minimize over the gaussian prior. Can be either
 - "LCB" for lower confidence bound.
 - "EI" for negative expected improvement.
 - "PI" for negative probability of improvement.
 - "gp_hedge" Probabilistically choose one of the above three acquisition functions at every iteration. The weightage given to these gains can be set by η through acq_func_kwargs.
 - The gains q_i are initialized to zero.
 - At every iteration,
 - * Each acquisition function is optimised independently to propose an candidate point X_i.
 - * Out of all these candidate points, the next point X_best is chosen by $softmax(\eta g_i)$
 - * After fitting the surrogate model with (X_best, y_best), the gains are updated such that $g_i-=\mu(X_i)$
 - "Elps" for negated expected improvement per second to take into account the function compute time. Then, the objective function is assumed to return two values, the first being the objective value and the second being the time taken in seconds.
 - "PIps" for negated probability of improvement per second. The return type of the objective function is assumed to be similar to that of "Elps"
- acq_optimizer [string, "sampling" or "lbfgs", default="ibfgs" | Method to minimize
 the acquistion function. The fit model is updated with the optimal value obtained by optimizing acq_func with acq_optimizer.

The acq_func is computed at n_points sampled randomly.

- If set to "auto", then acq_optimizer is configured on the basis of the space searched over. If the space is Categorical then this is set to be "sampling".
- If set to "sampling", then the point among these n_points where the acq_func is minimum is the next candidate minimum.
- If set to "lbfgs", then
 - The n_restarts_optimizer no. of points which the acquisition function is least are taken as start points.
 - "lbfgs" is run for 20 iterations with these points as initial points to find local minima.
 - The optimal of these local minima is used to update the prior.
- **x0** [list, list of lists or None] Initial input points.
 - If it is a list of lists, use it as a list of input points.
 - If it is a list, use it as a single initial input point.
 - If it is None, no initial input points are used.
- y0 [list, scalar or None] Evaluation of initial input points.

- If it is a list, then it corresponds to evaluations of the function at each element of x0: the i-th element of y0 corresponds to the function evaluated at the i-th element of x0.
- If it is a scalar, then it corresponds to the evaluation of the function at x0.
- If it is None and x0 is provided, then the function is evaluated at each element of x0.
- **random_state** [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.
- **verbose** [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True for long optimization runs.
- **callback** [callable, list of callables, optional] If callable then callback (res) is called after each call to func. If list of callables, then each callable in the list is called.
- **n_points** [int, default=10000] Number of points to sample to determine the next "best" point. Useless if acq_optimizer is set to "lbfgs".
- n_restarts_optimizer [int, default=5] The number of restarts of the optimizer when acq_optimizer is "lbfgs".
- **kappa** [float, default=1.96] Controls how much of the variance in the predicted values should be taken into account. If set to be very high, then we are favouring exploration over exploitation and vice versa. Used when the acquisition is "LCB".
- xi [float, default=0.01] Controls how much improvement one wants over the previous best values. Used when the acquisition is either "EI" or "PI".
- **noise** [float, default="gaussian"]
 - Use noise="gaussian" if the objective returns noisy observations. The noise of each observation is assumed to be iid with mean zero and a fixed variance.
 - If the variance is known before-hand, this can be set directly to the variance of the noise.
 - Set this to a value close to zero (1e-10) if the function is noise-free. Setting to zero might cause stability issues.
- **n_jobs** [int, default=1] Number of cores to run in parallel while running the lbfgs optimizations over the acquisition function. Valid only when acq_optimizer is set to "lbfgs." Defaults to 1 core. If n_jobs=-1, then number of jobs is set to number of cores.
- **model_queue_size** [int or None, default=None] Keeps list of models only as long as the argument given. In the case of None, the list has no capped length.

Returns

- **res** [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult object. Important attributes are:
 - x [list]: location of the minimum.
 - fun [float]: function value at the minimum.
 - models: surrogate models used for each iteration.
 - x_iters [list of lists]: location of function evaluation for each iteration.
 - func_vals [array]: function value for each iteration.
 - space [Space]: the optimization space.
 - specs [dict]': the call specifications.
 - rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

See also:

functions skopt.forest_minimize, skopt.dummy_minimize

4.7 skopt.plots: Plotting functions.

Plotting functions.

User guide: See the *Plotting tools* section for further details.

<pre>plots.partial_dependence(space, model, i[,])</pre>	Calculate the partial dependence for dimensions i and j with respect to the objective value, as approximated by model.	
<pre>plots.plot_convergence(*args, **kwargs)</pre>	Plot one or several convergence traces.	
<pre>plots.plot_evaluations(result[, bins,])</pre>	Visualize the order in which points where sampled.	
plots.plot_objective(result[, levels,])	Pairwise dependence plot of the objective function.	
<pre>plots.plot_regret(*args, **kwargs)</pre>	Plot one or several cumulative regret traces.	

4.7.1 skopt.plots.partial_dependence

skopt.plots.partial_dependence(space, model, i, j=None, sample_points=None, n_samples=250, n_points=40, x_eval=None)

Calculate the partial dependence for dimensions i and j with respect to the objective value, as approximated by model.

The partial dependence plot shows how the value of the dimensions i and j influence the model predictions after "averaging out" the influence of all other dimensions.

When x_{eval} is not None, the given values are used instead of random samples. In this case, n_{eval} will be ignored.

Parameters

space [Space] The parameter space over which the minimization was performed.

model Surrogate model for the objective function.

- i [int] The first dimension for which to calculate the partial dependence.
- j [int, default=None] The second dimension for which to calculate the partial dependence. To calculate the 1D partial dependence on i alone set j=None.
- sample_points [np.array, shape=(n_points, n_dims), default=None] Only used when x_eval=None, i.e in case partial dependence should be calculated. Randomly sampled and transformed points to use when averaging the model function at each of the n_points when using partial dependence.
- **n_samples** [int, default=100] Number of random samples to use for averaging the model function at each of the n_points when using partial dependence. Only used when sample_points=None and x_eval=None.
- **n_points** [int, default=40] Number of points at which to evaluate the partial dependence along each dimension i and j.

x_eval [list, default=None] x_{eval} is a list of parameter values or None. In case x_{eval} is not None, the parsed dependence will be calculated using these values. Otherwise, random selected samples will be used.

Returns

For 1D partial dependence:

- xi [np.array] The points at which the partial dependence was evaluated.
- yi [np.array] The value of the model at each point xi.

For 2D partial dependence:

- xi [np.array, shape=n_points] The points at which the partial dependence was evaluated.
- yi [np.array, shape=n_points] The points at which the partial dependence was evaluated.
- **zi** [np.array, shape=(n_points, n_points)] The value of the model at each point (xi, yi).

For Categorical variables, the xi (and yi for 2D) returned are

the indices of the variable in Dimension.categories.

4.7.2 skopt.plots.plot_convergence

```
skopt.plots.plot_convergence(*args, **kwargs)
```

Plot one or several convergence traces.

Parameters

- args[i] [OptimizeResult, list of OptimizeResult, or tuple] The result(s) for which to
 plot the convergence trace.
 - if OptimizeResult, then draw the corresponding single trace;
 - if list of OptimizeResult, then draw the corresponding convergence traces in transparency, along with the average convergence trace;
 - if tuple, then args[i][0] should be a string label and args[i][1] an OptimizeResult or a list of OptimizeResult.
- ax [Axes, optional] The matplotlib axes on which to draw the plot, or None to create a new one.

true_minimum [float, optional] The true minimum value of the function, if known.

yscale [None or string, optional] The scale for the y-axis.

Returns

 $\boldsymbol{ax} \;\; [\texttt{Axes}]$ The matplotlib axes.

Examples using skopt.plots.plot_convergence

- Tuning a scikit-learn estimator with skopt
- Comparing surrogate models
- · Bayesian optimization with skopt

4.7.3 skopt.plots.plot_evaluations

```
skopt.plots.plot_evaluations (result, bins=20, dimensions=None)
```

Visualize the order in which points where sampled.

The scatter plot matrix shows at which points in the search space and in which order samples were evaluated. Pairwise scatter plots are shown on the off-diagonal for each dimension of the search space. The order in which samples were evaluated is encoded in each point's color. The diagonal shows a histogram of sampled values for each dimension. A red point indicates the found minimum.

Parameters

```
result [OptimizeResult] The result for which to create the scatter plot matrix.
```

bins [int, bins=20] Number of bins to use for histograms on the diagonal.

dimensions [list of str, default=None] Labels of the dimension variables. None defaults to space.dimensions[i].name, or if also None to ['X_0', 'X_1', ...].

Returns

ax [Axes] The matplotlib axes.

Examples using skopt.plots.plot_evaluations

• Visualizing optimization results

4.7.4 skopt.plots.plot objective

```
skopt.plots.plot_objective(result, levels=10, n_points=40, n_samples=250, size=2, zs-cale='linear', dimensions=None, sample_source='random', min-imum='result', n_minimum_search=None)
```

Pairwise dependence plot of the objective function.

The diagonal shows the partial dependence for dimension i with respect to the objective function. The off-diagonal shows the partial dependence for dimensions i and j with respect to the objective function. The objective function is approximated by result.model.

Pairwise scatter plots of the points at which the objective function was directly evaluated are shown on the off-diagonal. A red point indicates per default the best observed minimum, but this can be changed by changing argument 'minimum'.

Parameters

result [OptimizeResult] The result for which to create the scatter plot matrix.

levels [int, default=10] Number of levels to draw on the contour plot, passed directly to plt.
contour().

- **n_points** [int, default=40] Number of points at which to evaluate the partial dependence along each dimension.
- **n_samples** [int, default=250] Number of samples to use for averaging the model function at each of the n_points when sample_method is set to 'random'.

size [float, default=2] Height (in inches) of each facet.

zscale [str, default='linear'] Scale to use for the z axis of the contour plots. Either 'linear' or 'log'.

- **dimensions** [list of str, default=None] Labels of the dimension variables. None defaults to space.dimensions[i].name, or if also None to ['X_0', 'X_1', ..].
- **sample_source** [str or list of floats, default='random'] Defines to samples generation to use for averaging the model function at each of the n_points.

A partial dependence plot is only generated, when sample_source is set to 'random' and n_samples is sufficient.

sample source can also be a list of floats, which is then used for averaging.

Valid strings:

- 'random' n_samples random samples will used
- 'result' Use only the best observed parameters
- 'expected_minimum' Parameters that gives the best minimum Calculated using scipy's minimize method. This method currently does not work with categorical values.
- 'expected_minimum_random' Parameters that gives the best minimum when using naive random sampling. Works with categorical values.

minimum [str or list of floats, default = 'result'] Defines the values for the red points in the plots. Valid strings:

- 'result' Use best observed parameters
- 'expected_minimum' Parameters that gives the best minimum Calculated using scipy's minimize method. This method currently does not work with categorical values.
- 'expected_minimum_random' Parameters that gives the best minimum when using naive random sampling. Works with categorical values
- n_minimum_search [int, default = None] Determines how many points should be evaluated
 to find the minimum when using 'expected_minimum' or 'expected_minimum_random'.
 Parameter is used when sample_source and/or minimum is set to 'expected_minimum'
 or 'expected_minimum_random'.

Returns

ax [Axes] The matplotlib axes.

Examples using skopt.plots.plot_objective

- Partial Dependence Plots
- Partial Dependence Plots with categorical values
- Visualizing optimization results

4.7.5 skopt.plots.plot_regret

skopt.plots.plot_regret (*args, **kwargs)

Plot one or several cumulative regret traces.

Parameters

args[i] [OptimizeResult, list of OptimizeResult, or tuple] The result(s) for which to
 plot the cumulative regret trace.

- if OptimizeResult, then draw the corresponding single trace;
- if list of OptimizeResult, then draw the corresponding cumulative regret traces in transparency, along with the average cumulative regret trace;
- if tuple, then args[i][0] should be a string label and args[i][1] an OptimizeResult or a list of OptimizeResult.

ax [Axes', optional] The matplotlib axes on which to draw the plot, or None to create a new one.

true_minimum [float, optional] The true minimum value of the function, if known.

yscale [None or string, optional] The scale for the y-axis.

Returns

ax [Axes] The matplotlib axes.

4.8 skopt.utils: Utils functions.

User guide: See the *Utility functions* section for further details.

<pre>utils.cook_estimator(base_estimator[, space])</pre>	Cook a default estimator.
utils.dimensions_aslist(search_space)	Convert a dict representation of a search space into a list
	of dimensions, ordered by sorted(search_space.keys()).
$utils.expected_minimum(res[,])$	Compute the minimum over the predictions of the last
	surrogate model.
utils.expected_minimum_random_sampling	(rlast)nimum search by doing naive random sampling, Re-
	turns the parameters that gave the minimum function
	value.
utils.dump(res, filename[, store_objective])	Store an skopt optimization result into a file.
utils.load(filename, **kwargs)	Reconstruct a skopt optimization result from a file per-
	sisted with skopt.dump.
utils.point_asdict(search_space,	Convert the list representation of a point from a search
point_as_list)	space to the dictionary representation, where keys are
	dimension names and values are corresponding to the
	values of dimensions in the list.
utils.point_aslist(search_space,	Convert a dictionary representation of a point from a
point_as_dict)	search space to the list representation.
utils.use_named_args(dimensions)	Wrapper / decorator for an objective function that uses
	named arguments to make it compatible with optimizers
	that use a single list of parameters.

4.8.1 skopt.utils.cook_estimator

skopt.utils.cook_estimator(base_estimator, space=None, **kwargs)
Cook a default estimator.

For the special base_estimator called "DUMMY" the return value is None. This corresponds to sampling points at random, hence there is no need for an estimator.

Parameters

base_estimator ["GP", "RF", "ET", "GBRT", "DUMMY"]

or sklearn regressor, default="GP"

Should inherit from sklearn.base.RegressorMixin. In addition the predict method should have an optional return_std argument, which returns std(Y \mid x) along with E[Y \mid x]. If base_estimator is one of ["GP", "RF", "ET", "GBRT", "DUMMY"], a surrogate model corresponding to the relevant X_minimize function is created.

space [Space instance] Has to be provided if the base_estimator is a gaussian process. Ignored otherwise.

kwargs [dict] Extra parameters provided to the base_estimator at init time.

4.8.2 skopt.utils.dimensions_aslist

```
skopt.utils.dimensions_aslist(search_space)
```

Convert a dict representation of a search space into a list of dimensions, ordered by sorted(search_space.keys()).

Parameters

search_space [dict] Represents search space. The keys are dimension names (strings) and values are instances of classes that inherit from the class skopt.space.Dimension (Real, Integer or Categorical)

Returns

params_space_list: list list of skopt.space.Dimension instances.

Examples

4.8.3 skopt.utils.expected_minimum

```
skopt.utils.expected_minimum(res, n_random_starts=20, random_state=None)
```

Compute the minimum over the predictions of the last surrogate model. Uses expected_minimum_random_sampling with 'n_random_starts'=100000, when the space contains any categorical values.

Note: The returned minimum may not necessarily be an accurate prediction of the minimum of the true objective function.

Parameters

- res [OptimizeResult, scipy object] The optimization result returned by a skopt minimizer.
- **n_random_starts** [int, default=20] The number of random starts for the minimization of the surrogate model.
- **random_state** [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

Returns

x [list] location of the minimum.

fun [float] the surrogate function value at the minimum.

4.8.4 skopt.utils.expected_minimum_random_sampling

skopt.utils.expected_minimum_random_sampling(res, n_random_starts=100000, random_state=None)

Minimum search by doing naive random sampling, Returns the parameters that gave the minimum function value. Can be used when the space contains any categorical values.

Note: The returned minimum may not necessarily be an accurate prediction of the minimum of the true objective function.

Parameters

- res [OptimizeResult, scipy object] The optimization result returned by a skopt minimizer.
- **n_random_starts** [int, default=100000] The number of random starts for the minimization of the surrogate model.
- **random_state** [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

Returns

x [list] location of the minimum.

fun [float] the surrogate function value at the minimum.

4.8.5 skopt.utils.dump

skopt.utils.dump (res, filename, store_objective=True, **kwargs)
Store an skopt optimization result into a file.

Parameters

res [OptimizeResult, scipy object] Optimization result object to be stored.

filename [string or pathlib.Path] The path of the file in which it is to be stored. The compression method corresponding to one of the supported filename extensions ('.z', '.gz', '.bz2', '.xz' or '.lzma') will be used automatically.

store_objective [boolean, default=True] Whether the objective function should be stored. Set store_objective to False if your objective function (. specs['args']['func']) is unserializable (i.e. if an exception is raised when trying to serialize the optimization result).

Notice that if store_objective is set to False, a deep copy of the optimization result is created, potentially leading to performance problems if res is very large. If the objective function is not critical, one can delete it before calling skopt.dump() and thus avoid deep copying of res.

**kwargs [other keyword arguments] All other keyword arguments will be passed to joblib. dump.

4.8.6 skopt.utils.load

skopt.utils.load(filename, **kwargs)

Reconstruct a skopt optimization result from a file persisted with skopt.dump.

Note: Notice that the loaded optimization result can be missing the objective function (.specs['args']['func']) if skopt.dump was called with store_objective=False.

Parameters

filename [string or pathlib.Path] The path of the file from which to load the optimization result.

**kwargs [other keyword arguments] All other keyword arguments will be passed to joblib. load.

Returns

res [OptimizeResult, scipy object] Reconstructed OptimizeResult instance.

4.8.7 skopt.utils.point asdict

```
skopt.utils.point_asdict(search_space, point_as_list)
```

Convert the list representation of a point from a search space to the dictionary representation, where keys are dimension names and values are corresponding to the values of dimensions in the list.

See also:

```
skopt.utils.point_aslist
```

Parameters

search_space [dict] Represents search space. The keys are dimension names (strings) and values are instances of classes that inherit from the class skopt.space.Dimension (Real, Integer or Categorical)

point_as_list [list] list with parameter values. The order of parameters in the list is given by sorted(params_space.keys()).

Returns

params_dict [OrderedDict] dictionary with parameter names as keys to which corresponding parameter values are assigned.

Examples

4.8.8 skopt.utils.point aslist

```
skopt.utils.point_aslist(search_space, point_as_dict)
```

Convert a dictionary representation of a point from a search space to the list representation. The list of values is created from the values of the dictionary, sorted by the names of dimensions used as keys.

See also:

```
skopt.utils.point asdict
```

Parameters

search_space [dict] Represents search space. The keys are dimension names (strings) and values are instances of classes that inherit from the class skopt.space.Dimension (Real, Integer or Categorical)

point_as_dict [dict] dict with parameter names as keys to which corresponding parameter values are assigned.

Returns

point_as_list [list] list with point values.The order of parameters in the list is given by sorted(params_space.keys()).

Examples

```
>>> from skopt.space.space import Real, Integer
>>> from skopt.utils import point_aslist
>>> search_space = {'name1': Real(0,1),
... 'name2': Integer(2,4), 'name3': Real(-1,1)}
>>> point_as_dict = {'name1': 0.66, 'name2': 3, 'name3': -0.15}
>>> point_aslist(search_space, point_as_dict)
[0.66, 3, -0.15]
```

4.8.9 skopt.utils.use_named_args

```
skopt.utils.use_named_args(dimensions)
```

Wrapper / decorator for an objective function that uses named arguments to make it compatible with optimizers that use a single list of parameters.

Your objective function can be defined as being callable using named arguments: func(foo=123, bar=3.0, baz='hello') for a search-space with dimensions named ['foo', 'bar', 'baz']. But the optimizer will only pass a single list x of unnamed arguments when calling the objective function: func(x=[123, 3.0, 'hello']). This wrapper converts your objective function with named arguments into one that accepts a list as argument, while doing the conversion automatically.

The advantage of this is that you don't have to unpack the list of arguments x yourself, which makes the code easier to read and also reduces the risk of bugs if you change the number of dimensions or their order in the search-space.

Parameters

dimensions [list(Dimension)] List of Dimension-objects for the search-space dimensions.

Returns

wrapped_func [callable] Wrapped objective function.

Examples

```
>>> # Define the search-space dimensions. They must all have names!
>>> from skopt.space import Real
>>> from skopt import forest_minimize
>>> from skopt.utils import use_named_args
>>> dim1 = Real(name='foo', low=0.0, high=1.0)
>>> dim2 = Real(name='bar', low=0.0, high=1.0)
>>> dim3 = Real(name='baz', low=0.0, high=1.0)
>>>
>>> # Gather the search-space dimensions in a list.
>>> dimensions = [dim1, dim2, dim3]
>>>
>>> # Define the objective function with named arguments
>>> # and use this function-decorator to specify the
>>> # search-space dimensions.
>>> @use named args (dimensions=dimensions)
... def my_objective_function(foo, bar, baz):
        return foo ** 2 + bar ** 4 + baz ** 8
. . .
>>>
>>> # Not the function is callable from the outside as
>>> # `my_objective_function(x)` where `x` is a list of unnamed arguments,
>>> # which then wraps your objective function that is callable as
>>> # `my_objective_function(foo, bar, baz)`.
>>> # The conversion from a list `x` to named parameters `foo`,
>>> # `bar`, `baz`
>>> # is done automatically.
>>> # Run the optimizer on the wrapped objective function which is called
>>> # as `my_objective_function(x)` as expected by `forest_minimize()`.
>>> result = forest_minimize(func=my_objective_function,
                             dimensions=dimensions,
. . .
                             n_calls=20, base_estimator="ET",
. . .
                             random_state=4)
. . .
>>> # Print the best-found results.
>>> print("Best fitness:", result.fun)
Best fitness: 0.1948080835239698
>>> print("Best parameters:", result.x)
Best parameters: [0.44134853091052617, 0.06570954323368307, 0.17586123323419825]
```

Examples using skopt.utils.use_named_args

Tuning a scikit-learn estimator with skopt

4.9 skopt.space.space: Space

User guide: See the *Space define the optimization space* section for further details.

space.space.Categorical(categories[, prior,	Search space dimension that can take on categorical val-	
])	ues.	
space.space.Dimension	Base class for search space dimensions.	
space.space.Integer(low, high[, prior,])	Search space dimension that can take on integer values.	
space.space.Real(low, high[, prior, base,])	Search space dimension that can take on any real value.	
space.space.Space(dimensions)	Initialize a search space from given specifications.	

4.9.1 skopt.space.space.Categorical

class skopt.space.space.Categorical (categories, prior=None, transform=None, name=None) Search space dimension that can take on categorical values.

Parameters

categories [list, shape=(n_categories,)] Sequence of possible categories.

prior [list, shape=(categories,), default=None] Prior probabilities for each category. By default all categories are equally likely.

transform ["onehot", "string", "identity", default="onehot"]

- "identity", the transformed space is the same as the original space.
- "string", the transformed space is a string encoded

representation of the original space.

• "onehot", the transformed space is a one-hot encoded representation of the original space.

name [str or None] Name associated with dimension, e.g., "colors".

Attributes

bounds

name

prior

size

transformed_bounds

transformed_size

Methods

distance(self, a, b)	Compute distance between category a and b.
inverse_transform(self, Xt)	Inverse transform samples from the warped space
	back into the original space.
rvs(self[, n_samples, random_state])	Draw random samples.
	6 11 1

Continued on next page

Table 27 – continued from previous page

transform(self, X)	Transform samples form the original space to a
	warped space.

__init__ (self, categories, prior=None, transform=None, name=None)

Initialize self. See help(type(self)) for accurate signature.

distance(self, a, b)

Compute distance between category a and b.

As categories have no order the distance between two points is one if a != b and zero otherwise.

Parameters

- a [category] First category.
- **b** [category] Second category.

inverse_transform(self, Xt)

Inverse transform samples from the warped space back into the original space.

rvs (self, n_samples=None, random_state=None)

Draw random samples.

Parameters

n_samples [int or None] The number of samples to be drawn.

random_state [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

transform(self, X)

Transform samples form the original space to a warped space.

4.9.2 skopt.space.space.Dimension

class skopt.space.space.Dimension

Base class for search space dimensions.

Attributes

bounds

name

prior

size

transformed_bounds

transformed_size

Methods

inverse_transform(self, Xt)	Inverse transform samples from the warped space
	back into the original space.
rvs(self[, n_samples, random_state])	Draw random samples.
transform(self, X)	Transform samples form the original space to a
	warped space.

```
___init___(self, /, *args, **kwargs)
```

Initialize self. See help(type(self)) for accurate signature.

inverse_transform(self, Xt)

Inverse transform samples from the warped space back into the original space.

```
rvs (self, n samples=1, random state=None)
```

Draw random samples.

Parameters

n_samples [int or None] The number of samples to be drawn.

random_state [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

transform(self, X)

Transform samples form the original space to a warped space.

4.9.3 skopt.space.space.Integer

Search space dimension that can take on integer values.

Parameters

low [int] Lower bound (inclusive).

high [int] Upper bound (inclusive).

prior ["uniform" or "log-uniform", default="uniform"] Distribution to use when sampling random integers for this dimension. - If "uniform", intgers are sampled uniformly between the lower

and upper bounds.

• If "log-uniform", intgers are sampled uniformly between log(lower, base) and log(upper, base) where log has base base.

base [int] The logarithmic base to use for a log-uniform prior. - Default 10, otherwise commonly 2.

transform ["identity", "normalize", optional] The following transformations are supported.

- "identity", (default) the transformed space is the same as the original space.
- "normalize", the transformed space is scaled to be between 0 and 1.

name [str or None] Name associated with dimension, e.g., "number of trees".

dtype [str or dtype, default=np.int64] integer type which will be used in inverse_transform, can be int, np.int16, np.uint32, np.int32, np.int64 (default). When set to int, inverse_transform returns a list instead of a numpy array

Attributes

bounds

name

prior

size

transformed_bounds transformed_size

Methods

distance(self, a, b)	Compute distance between point a and b.	
inverse_transform(self, Xt)	Inverse transform samples from the warped space	
	back into the original space.	
rvs(self[, n_samples, random_state])	Draw random samples.	
transform(self, X)	Transform samples form the original space to a	
	warped space.	

__init__(self, low, high, prior='uniform', base=10, transform=None, name=None, dtype=<class 'numpy.int64'>)
Initialize self. See help(type(self)) for accurate signature.

distance(self, a, b)

Compute distance between point a and b.

Parameters

- a [int] First point.
- **b** [int] Second point.

inverse_transform(self, Xt)

Inverse transform samples from the warped space back into the original space.

rvs (self, n_samples=1, random_state=None)

Draw random samples.

Parameters

n_samples [int or None] The number of samples to be drawn.

random_state [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

transform(self, X)

Transform samples form the original space to a warped space.

4.9.4 skopt.space.space.Real

Parameters

low [float] Lower bound (inclusive).

high [float] Upper bound (inclusive).

prior ["uniform" or "log-uniform", default="uniform"] Distribution to use when sampling random points for this dimension. - If "uniform", points are sampled uniformly between the lower

and upper bounds.

• If "log-uniform", points are sampled uniformly between log(lower, base) and log(upper, base) where log has base base.

base [int] The logarithmic base to use for a log-uniform prior. - Default 10, otherwise commonly 2.

transform ["identity", "normalize", optional] The following transformations are supported.

- "identity", (default) the transformed space is the same as the original space.
- "normalize", the transformed space is scaled to be between 0 and 1.

name [str or None] Name associated with the dimension, e.g., "learning rate".

dtype [str or dtype, default=np.float] float type which will be used in inverse_transform, can be float.

Attributes

bounds

name

prior

size

transformed_bounds

transformed size

Methods

distance(self, a, b)	Compute distance between point a and b.
inverse_transform(self, Xt)	Inverse transform samples from the warped space
	back into the original space.
rvs(self[, n_samples, random_state])	Draw random samples.
transform(self, X)	Transform samples form the original space to a
	warped space.

__init__(self, low, high, prior='uniform', base=10, transform=None, name=None, dtype=<class 'float'>)
Initialize self. See help(type(self)) for accurate signature.

distance(self, a, b)

Compute distance between point a and b.

Parameters

- a [float] First point.
- **b** [float] Second point.

inverse_transform(self, Xt)

Inverse transform samples from the warped space back into the original space.

rvs (self, n_samples=1, random_state=None)

Draw random samples.

Parameters

n_samples [int or None] The number of samples to be drawn.

random_state [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

transform(self, X)

Transform samples form the original space to a warped space.

4.9.5 skopt.space.space.Space

class skopt.space.space.**Space** (*dimensions*)
Initialize a search space from given specifications.

Parameters

dimensions [list, shape=(n_dims,)] List of search space dimensions. Each search dimension can be defined either as

- a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
- a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),
- as a list of categories (for Categorical dimensions), or
- an instance of a Dimension object (Real, Integer or Categorical).

Note: The upper and lower bounds are inclusive for Integer dimensions.

Attributes

bounds The dimension bounds, in the original space.

is_categorical Space contains exclusively categorical dimensions

is_partly_categorical Space contains any categorical dimensions

is_real Returns true if all dimensions are Real

n_dims The dimensionality of the original space.

transformed_bounds The dimension bounds, in the warped space.

transformed_n_dims The dimensionality of the warped space.

Methods

distance(self, point_a, point_b)	Compute distance between two points in this space.	
<pre>from_yam1(yml_path[, namespace])</pre>	Create Space from yaml configuration file	
inverse_transform(self, Xt)	Inverse transform samples from the warped space	
	back to the	
rvs(self[, n_samples, random_state])	Draw random samples.	
transform(self, X)	Transform samples from the original space into a	
	warped space.	

```
init (self, dimensions)
```

Initialize self. See help(type(self)) for accurate signature.

property bounds

The dimension bounds, in the original space.

distance (self, point_a, point_b)

Compute distance between two points in this space.

Parameters

```
point_a [array] First point.
```

point_b [array] Second point.

classmethod from_yaml (yml_path, namespace=None)

Create Space from yaml configuration file

Parameters

yml_path [str] Full path to yaml configuration file, example YaML below: Space:

• Integer: low: -5 high: 5

• Categorical: categories: - a - b

• Real: low: 1.0 high: 5.0 prior: log-uniform

namespace [str, default=None]

Namespace within configuration file to use, will use first namespace if not provided

Returns

space [Space] Instantiated Space object

inverse_transform(self, Xt)

Inverse transform samples from the warped space back to the original space.

Parameters

Xt [array of floats, shape=(n_samples, transformed_n_dims)] The samples to inverse transform.

Returns

X [list of lists, shape=(n_samples, n_dims)] The original samples.

property is_categorical

Space contains exclusively categorical dimensions

property is_partly_categorical

Space contains any categorical dimensions

property is_real

Returns true if all dimensions are Real

property n_dims

The dimensionality of the original space.

rvs (self, n_samples=1, random_state=None)

Draw random samples.

The samples are in the original space. They need to be transformed before being passed to a model or minimizer by space.transform().

Parameters

n_samples [int, default=1] Number of samples to be drawn from the space.

random_state [int, RandomState instance, or None (default)] Set random state to something other than None for reproducible results.

Returns

points [list of lists, shape=(n_points, n_dims)] Points sampled from the space.

transform(self, X)

Transform samples from the original space into a warped space.

Note: this transformation is expected to be used to project samples into a suitable space for numerical optimization.

Parameters

X [list of lists, shape=(n_samples, n_dims)] The samples to transform.

Returns

Xt [array of floats, shape=(n_samples, transformed_n_dims)] The transformed samples.

property transformed_bounds

The dimension bounds, in the warped space.

property transformed_n_dims

The dimensionality of the warped space.

space.space.check_dimension(dimension[,
...])

Turn a provided dimension description into a dimension object.

4.9.6 skopt.space.space.check_dimension

skopt.space.space.check_dimension(dimension, transform=None)

Turn a provided dimension description into a dimension object.

Checks that the provided dimension falls into one of the supported types. For a list of supported types, look at the documentation of dimension below.

If dimension is already a Dimension instance, return it.

Parameters

dimension [Dimension] Search space Dimension. Each search dimension can be defined either as

- a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),
- a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),
- as a list of categories (for Categorical dimensions), or
- an instance of a Dimension object (Real, Integer or Categorical).

transform ["identity", "normalize", "string", "onehot" optional]

- For Categorical dimensions, the following transformations are supported.
 - "onehot" (default) one-hot transformation of the original space.
 - "string" string transformation of the original space.
 - "identity" same as the original space.
- For Real and Integer dimensions, the following transformations are supported.
 - "identity", (default) the transformed space is the same as the original space.

- "normalize", the transformed space is scaled to be between 0 and 1.

Returns

dimension [Dimension] Dimension instance.

4.10 skopt.space.transformers: transformers

User guide: See the transformers section for further details.

space.transformers.	OneHotEncoder that can handle categorical variables.
CategoricalEncoder()	
space.transformers.Identity	Identity transform.
space.transformers.LogN(base)	Base N logarithm transform.
space.transformers.Normalize(low, high[,	Scales each dimension into the interval [0, 1].
is_int])	
space.transformers.Pipeline(transformers)	A lightweight pipeline to chain transformers.
space.transformers.Transformer	Base class for all 1-D transformers.

4.10.1 skopt.space.transformers.CategoricalEncoder

class skopt.space.transformers.CategoricalEncoder
OneHotEncoder that can handle categorical variables.

Methods

fit(self, X)	Fit a list or array of categories.
inverse_transform(self, Xt)	Inverse transform one-hot encoded categories back
	to their original
transform(self, X)	Transform an array of categories to a one-hot en-
	coded representation.

___init___(self)

Convert labeled categories into one-hot encoded features.

fit (self, X)

Fit a list or array of categories.

Parameters

X [array-like, shape=(n_categories,)] List of categories.

inverse_transform(self, Xt)

Inverse transform one-hot encoded categories back to their original representation.

Parameters

Xt [array-like, shape=(n_samples, n_categories)] One-hot encoded categories.

Returns

X [array-like, shape=(n_samples,)] The original categories.

transform(self, X)

Transform an array of categories to a one-hot encoded representation.

Parameters

X [array-like, shape=(n_samples,)] List of categories.

Returns

Xt [array-like, shape=(n_samples, n_categories)] The one-hot encoded categories.

4.10.2 skopt.space.transformers.ldentity

class skopt.space.transformers.Identity
 Identity transform.

Methods

fit	
inverse_transform	
transform	

__init__(self, /, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

4.10.3 skopt.space.transformers.LogN

Methods

__init__(self, base)
Initialize self. See help(type(self)) for accurate signature.

4.10.4 skopt.space.transformers.Normalize

class skopt.space.transformers.**Normalize** (*low*, *high*, *is_int=False*) Scales each dimension into the interval [0, 1].

Parameters

low [float] Lower bound.

high [float] Higher bound.

is_int [bool, default=True] Round and cast the return value of inverse_transform to integer. Set to True when applying this transform to integers.

Methods

fit	
inverse_transform	
transform	

__init__ (*self*, *low*, *high*, *is_int=False*)
Initialize self. See help(type(self)) for accurate signature.

4.10.5 skopt.space.transformers.Pipeline

class skopt.space.transformers.Pipeline(transformers)
 A lightweight pipeline to chain transformers.

Parameters

transformers [list] A list of Transformer instances.

Methods

fit	
inverse_transform	
transform	

__init__(self, transformers)
Initialize self. See help(type(self)) for accurate signature.

4.10.6 skopt.space.transformers.Transformer

class skopt.space.transformers.**Transformer**Base class for all 1-D transformers.

Methods

fit	
inverse_transform	
transform	

__init__(self, /, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

BIBLIOGRAPHY

[R8d4c5fa7c0c3-1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.

[R91c6cd8711c5-1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.

174 Bibliography

INDEX

Symbols	init() (skopt.space.transformers.Pipeline	
init() (skopt.BayesSearchCV method), 93	method), 171	
init() (skopt.Optimizer method), 97	init() (skopt.space.transformers.Transformer	
init() (skopt.Space method), 99	method), 171	
init() (skopt.callbacks.CheckpointSaver	٨	
method), 117	A	
init() (skopt.callbacks.DeadlineStopper	<pre>apply() (skopt.learning.ExtraTreesRegressor method),</pre>	
method), 118	123	
init() (skopt.callbacks.DeltaXStopper method),	apply() (skopt.learning.RandomForestRegressor	
118	method), 134	
init() (skopt.callbacks.DeltaYStopper method),	ask () (skopt.Optimizer method), 97	
119	ask () (skopt.optimizer.Optimizer method), 138	
init() (skopt.callbacks.EarlyStopper method),	В	
119		
init() (skopt.callbacks.TimerCallback method), 119	base_minimize() (in module skopt.optimizer), 140 BayesSearchCV (class in skopt), 89	
init() (skopt.callbacks.VerboseCallback	bench1() (in module skopt.benchmarks), 115	
method), 120	bench1_with_time() (in module	
init() (skopt.learning.ExtraTreesRegressor	skopt.benchmarks), 115	
method), 123	bench2() (in module skopt.benchmarks), 115	
init() (skopt.learning.GaussianProcessRegressor		
method), 127	bench4 () (in module skopt.benchmarks), 115	
init() (skopt.learning.GradientBoostingQuantileR	• • • • • • • • • • • • • • • • • • •	
method), 130	bounds () (skopt.Space property), 99	
init() (skopt.learning.RandomForestRegressor	bounds () (skopt.space.space.Space property), 166	
method), 134	branin() (in module skopt.benchmarks), 116	
init() (skopt.optimizer.Optimizer method), 138		
init() (skopt.space.space.Categorical method),	C	
162	Categorical (class in skopt.space.space), 161	
init() (skopt.space.Space.Dimension method),	CategoricalEncoder (class in	
163	skopt.space.transformers), 169	
init() (skopt.space.space.Integer method), 164	check_dimension() (in module skopt.space.space),	
init() (skopt.space.space.Real method), 165	168	
init() (skopt.space.space.Space method), 166	CheckpointSaver (class in skopt.callbacks), 117	
init() (skopt.space.transformers.CategoricalEnco	derook_estimator() (in module skopt.utils), 155	
method), 169	copy () (skopt.Optimizer method), 98	
init() (skopt.space.transformers.Identity	copy () (skopt.optimizer.Optimizer method), 139	
method), 170	5	
init() (skopt.space.transformers.LogN method),	D	
170	DeadlineStopper (class in skopt.callbacks), 118	
init() (skopt.space.transformers.Normalize	decision_function() (skopt.BayesSearchCV	
method), 171	method), 93	

decision_path() (skopt.learning.ExtraTreesRegresson	·G
method), 123	gaussian_acquisition_1D() (in module
decision_path()(<i>skopt.learning.RandomForestRegre</i>	ssor skopt.acquisition), 112
method), 134	gaussian_ei() (in module skopt.acquisition), 112
DeltaXStopper (class in skopt.callbacks), 118	gaussian_lcb() (in module skopt.acquisition), 113
DeltaYStopper (class in skopt.callbacks), 118	gaussian_pi() (in module skopt.acquisition), 114
Dimension (class in skopt.space.space), 162	GaussianProcessRegressor (class in
dimensions_aslist() (in module skopt.utils), 156	skopt.learning), 125
distance() (skopt.Space method), 99	gbrt_minimize() (in module skopt), 106
distance() (skopt.space.space.Categorical method),	gbrt_minimize() (in module skopt.optimizer), 146
162	<pre>get_params() (skopt.BayesSearchCV method), 93</pre>
distance() (skopt.space.space.Integer method), 164 distance() (skopt.space.space.Real method), 165	<pre>get_params() (skopt.learning.ExtraTreesRegressor method), 124</pre>
distance() (skopt.space.space.Space method), 166 dummy_minimize() (in module skopt), 101	<pre>get_params() (skopt.learning.GaussianProcessRegressor</pre>
dummy_minimize() (in module skopt.optimizer), 142	<pre>get_params() (skopt.learning.GradientBoostingQuantileRegressor</pre>
dump () (in module skopt), 102	method), 130
dump () (in module skopt.utils), 157	<pre>get_params() (skopt.learning.RandomForestRegressor</pre>
E	method), 135
	<pre>get_result() (skopt.Optimizer method), 98</pre>
EarlyStopper (class in skopt.callbacks), 119	<pre>get_result() (skopt.optimizer.Optimizer method),</pre>
expected_minimum() (in module skopt), 103	139
expected_minimum() (in module skopt.utils), 156	gp_minimize() (in module skopt), 108
expected_minimum_random_sampling() (in module skopt), 103	gp_minimize() (in module skopt.optimizer), 148
expected_minimum_random_sampling() (in	GradientBoostingQuantileRegressor (class in skopt.learning), 130
module skopt.utils), 157	in skopi.iearning), 130
ExtraTreesRegressor (class in skopt.learning),	
120	Identity (class in skopt.space.transformers), 170
F	Integer (class in skopt.space.space), 163
Γ	inverse_transform() (skopt.BayesSearchCV
feature_importances_()	method), 94
(skopt.learning.ExtraTreesRegressor prop-	<pre>inverse_transform() (skopt.Space method), 100</pre>
erty), 123	<pre>inverse_transform()</pre>
feature_importances_()	(skopt.space.space.Categorical method),
(skopt.learning.RandomForestRegressor	162
property), 134	<pre>inverse_transform()</pre>
fit () (skopt.BayesSearchCV method), 93	(skopt.space.space.Dimension method), 163
fit() (skopt.learning.ExtraTreesRegressor method), 123	<pre>inverse_transform() (skopt.space.space.Integer method), 164</pre>
fit() (skopt.learning.GaussianProcessRegressor	inverse_transform() (skopt.space.space.Real
method), 127	method), 165
fit () (skopt.learning.GradientBoostingQuantileRegressomethod), 130	vinverse_transform() (skopt.space.space.Space method), 167
fit() (skopt.learning.RandomForestRegressor	inverse_transform()
method), 135	(skopt.space.transformers.CategoricalEncoder
fit() (skopt.space.transformers.CategoricalEncoder	method), 169
method), 169	is_categorical() (skopt.Space property), 100
forest_minimize() (in module skopt), 104	is_categorical() (skopt.space.space prop-
<pre>forest_minimize() (in module skopt.optimizer),</pre>	erty), 167
143	<pre>is_partly_categorical() (skopt.Space prop-</pre>
from_yaml() (skopt.Space class method), 99	erty), 100
from_yaml() (skopt.space.space.Space class method),	<pre>is_partly_categorical()</pre>
167	(skopt.space.space.Space property), 167

176 Index

```
is real() (skopt.Space property), 100
                                                     rvs () (skopt.space.space.Integer method), 164
is_real() (skopt.space.space.Space property), 167
                                                     rvs() (skopt.space.space.Real method), 165
                                                     rvs() (skopt.space.space.Space method), 167
L
load() (in module skopt), 111
load() (in module skopt.utils), 158
                                                     sample_y() (skopt.learning.GaussianProcessRegressor
log marginal likelihood()
                                                              method), 128
         (skopt.learning.GaussianProcessRegressor
                                                     score() (skopt.BayesSearchCV method), 94
        method), 127
                                                     score() (skopt.learning.ExtraTreesRegressor method),
LogN (class in skopt.space.transformers), 170
                                                              124
                                                                  (skopt.learning.GaussianProcessRegressor
                                                     score()
Ν
                                                              method), 129
                                                     score() (skopt.learning.GradientBoostingQuantileRegressor
n_dims() (skopt.Space property), 100
                                                              method), 131
n_dims() (skopt.space.space.Space property), 167
                                                                    (skopt.learning.RandomForestRegressor
                                                     score()
Normalize (class in skopt.space.transformers), 170
                                                              method), 135
                                                     set_params() (skopt.BayesSearchCV method), 95
                                                     set_params() (skopt.learning.ExtraTreesRegressor
Optimizer (class in skopt), 95
                                                              method), 125
Optimizer (class in skopt.optimizer), 136
                                                     set_params() (skopt.learning.GaussianProcessRegressor
Р
                                                              method), 129
                                                     set params()(skopt.learning.GradientBoostingQuantileRegressor
partial_dependence() (in module skopt.plots),
                                                              method), 131
                                                     set_params() (skopt.learning.RandomForestRegressor
Pipeline (class in skopt.space.transformers), 171
                                                              method), 136
plot_convergence() (in module skopt.plots), 152
                                                     skopt.acquisition (module), 112
plot_evaluations() (in module skopt.plots), 153
                                                     skopt.benchmarks (module), 114
plot_objective() (in module skopt.plots), 153
                                                     skopt.callbacks(module), 116
plot_regret() (in module skopt.plots), 154
                                                     skopt.learning (module), 120
point_asdict() (in module skopt.utils), 158
                                                     skopt.optimizer (module), 136
point_aslist() (in module skopt.utils), 159
                                                     skopt.plots (module), 151
predict () (skopt.BayesSearchCV method), 94
                                                     skopt.space.space (module), 161
predict()
                  (skopt.learning.ExtraTreesRegressor
                                                     skopt.space.transformers (module), 169
         method), 124
                                                     skopt.utils(module), 155
predict() (skopt.learning.GaussianProcessRegressor
                                                     Space (class in skopt), 98
predict () (skopt.learning.GradientBoostingQuantileRegressor | Space (class in skopt.space.space), 166
        method), 128
        method), 130
               (skopt.learning.RandomForestRegressor
predict()
                                                     tell() (skopt.Optimizer method), 98
         method), 135
                                                     tell() (skopt.optimizer.Optimizer method), 139
                               (skopt.BayesSearchCV
predict_log_proba()
                                                     TimerCallback (class in skopt.callbacks), 119
        method), 94
                                                     total_iterations() (skopt.BayesSearchCV prop-
predict_proba() (skopt.BayesSearchCV method),
                                                              erty), 95
         94
                                                     transform() (skopt.BayesSearchCV method), 95
R
                                                     transform() (skopt.Space method), 100
                                                     transform() (skopt.space.Space.Categorical method),
RandomForestRegressor (class in skopt.learning),
                                                              162
         132
                                                     transform() (skopt.space.space.Dimension method),
Real (class in skopt.space.space), 164
                                                              163
run () (skopt.Optimizer method), 98
                                                     transform() (skopt.space.space.Integer method), 164
run () (skopt.optimizer.Optimizer method), 139
                                                     transform() (skopt.space.space.Real method), 166
rvs() (skopt.Space method), 100
                                                     transform() (skopt.space.space.Space method), 168
rvs () (skopt.space.space.Categorical method), 162
                                                     transform() (skopt.space.transformers.CategoricalEncoder
rvs() (skopt.space.space.Dimension method), 163
```

Index 177

method), 169

```
transformed_bounds()
                          (skopt.Space property),
        101
transformed_bounds() (skopt.space.Space
        property), 168
transformed_n_dims() (skopt.Space property),
        101
transformed_n_dims() (skopt.space.Space
        property), 168
Transformer (class in skopt.space.transformers), 171
U
update_next() (skopt.Optimizer method), 98
update_next() (skopt.optimizer.Optimizer method),
        139
use_named_args() (in module skopt.utils), 159
VerboseCallback (class in skopt.callbacks), 119
```

178 Index