

=====

Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: Wed Nov 07 10:38:58 EST 2007

=====

Reviewer Comments:

Seq Id 1 and 2

misaligned amino acid numbering. The numbering under each 5th amino acid is misaligned. Do not use tab codes between numbers use space characters, instead.

Application No: 10573478 Version No: 1.0

Input Set:**Output Set:**

Started: 2007-10-22 16:29:49.364
Finished: 2007-10-22 16:29:53.300
Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 936 ms
Total Warnings: 6
Total Errors: 129
No. of SeqIDs Defined: 22
Actual SeqID Count: 22

Error code	Error Description
E 201	Mandatory field data missing in <223> in SEQ ID (1)
E 322	CDS location out of range SEQID (1) At Protien count (1)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (10)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (13)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (22)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (28)
E 300	Invalid codon found tta SEQID (1) POS: 46
E 323	Invalid/missing amino acid numbering SEQID (1) POS (61)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (64)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (73)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (79)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (88)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (94)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (121)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (124)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (133)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (139)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (166)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (169)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (178)

Input Set:

Output Set:

Started: 2007-10-22 16:29:49.364
Finished: 2007-10-22 16:29:53.300
Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 936 ms
Total Warnings: 6
Total Errors: 129
No. of SeqIDs Defined: 22
Actual SeqID Count: 22

Error code	Error Description
E 323	Invalid/missing amino acid numbering SEQID (1) POS (184)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (211)
E 323	Invalid/missing amino acid numbering SEQID (1) POS (214) This error has occurred more than 20 times, will not be displayed
E 201	Mandatory field data missing in <223> in SEQ ID (3)
E 322	CDS location out of range SEQID (3) At Protein count (1)
E 300	Invalid codon found ttg SEQID (3) POS: 46
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)
W 213	Artificial or Unknown found in <213> in SEQ ID (21)
W 213	Artificial or Unknown found in <213> in SEQ ID (22)
E 355	Empty lines found between the amino acid numbering and the
E 321	No. of Bases conflict, this line has no nucleotides SEQID (22)

SEQUENCE LISTING

<110> Kiselev, Vsevolod I
Petr, Sveshnikov G

<120> METHODS, KITS, AND COMPOSITIONS FOR THE DEVELOPMENT AND USE
OF MONOCLONAL ANTIBODIES SPECIFIC TO ANTIGENS TRADITIONALLY
OF LOW IMMUNOGENICITY

<130> Immunize

<140> 10573478
<141> 2007-10-22

<150> RU 2003128660
<151> 2003-09-25

<160> 22

<170> PatentIn version 3.1

<210> 1
<211> 309
<212> DNA
<213> Human papillomavirus type 16

<220>
<221> CDS
<222> (7) .. (303)
<223>

<400> 1

gaattc atc atg cat gga gat aca cct aca ttg cat gaa tat atg tta 48
Ile Met His Gly Asp Thr Pro Thr Leu His Glu Tyr Met Leu
1 5 10

gat ttg caa cca gag aca act gat ctc tac tgt tat gag caa tta aat 96
Asp Leu Gln Pro Glu Thr Thr Asp Leu Tyr Cys Tyr Glu Gln Leu Asn
15 20 25 30

gac agc tca gag gag gat gaa ata gat ggt cca gct gga caa gca 144
Asp Ser Ser Glu Glu Asp Glu Ile Asp Gly Pro Ala Gly Gln Ala
35 40 45

gaa ccg gac aga gcc cat tac aat att gta acc ttt tgt tgc aag tgt 192
Glu Pro Asp Arg Ala His Tyr Asn Ile Val Thr Phe Cys Cys Lys Cys
50 55 60

gac tct acg ctt cgg ttg tgc gta caa agc aca cac gta gac att cgt 240
Asp Ser Thr Leu Arg Leu Cys Val Gln Ser Thr His Val Asp Ile Arg
65 70 75

act ttg gaa gac ctg tta atg ggc aca cta gga att gtg tgc ccc atc 288
Thr Leu Glu Asp Leu Leu Met Gly Thr Leu Gly Ile Val Cys Pro Ile
80 85 90

tgt tct cag aaa cca ggatcc 309

Cys Ser Gln Lys Pro

95

<210> 2

<211> 99

<212> PRT

<213> Human papillomavirus type 16

<400> 2

Ile Met His Gly Asp Thr Pro Thr Leu His Glu Tyr Met Leu Asp Leu
1 5 10 15

Gln Pro Glu Thr Thr Asp Leu Tyr Cys Tyr Glu Gln Leu Asn Asp Ser
20 25 30

Ser Glu Glu Glu Asp Glu Ile Asp Gly Pro Ala Gly Gln Ala Glu Pro
35 40 45

Asp Arg Ala His Tyr Asn Ile Val Thr Phe Cys Cys Lys Cys Asp Ser
50 55 60

Thr Leu Arg Leu Cys Val Gln Ser Thr His Val Asp Ile Arg Thr Leu
65 70 75 80

Glu Asp Leu Leu Met Gly Thr Leu Gly Ile Val Cys Pro Ile Cys Ser
85 90 95

Gln Lys Pro

<210> 3

<211> 330

<212> DNA

<213> Human papillomavirus type 18

<220>

<221> CDS

<222> (7)..(324)

<223>

<400> 3

gaattc agt atg cat gga cct aag gca aca ttg caa gac att gta ttg 48

Ser Met His Gly Pro Lys Ala Thr Leu Gln Asp Ile Val Leu

1 5 10

cat tta gag ccc caa aat gaa att ccg gtt gac ctt cta tgt cac gag 96

His Leu Glu Pro Gln Asn Glu Ile Pro Val Asp Leu Leu Cys His Glu

15 20 25 30

caa tta agc gac tca gag gaa gaa aac gat gaa ata gat gga gtt aat 144

Gln Leu Ser Asp Ser Glu Glu Glu Asn Asp Glu Ile Asp Gly Val Asn

35 40 45

cat caa cat tta cca gcc cga cga gct gaa cca caa cgt cac aca atg 192
His Gln His Leu Pro Ala Arg Arg Ala Glu Pro Gln Arg His Thr Met
50 55 60

ttg tgt atg tgt tgt aag tgt gaa gcc aga att gag cta gta gta gaa 240
Leu Cys Met Cys Cys Lys Cys Glu Ala Arg Ile Glu Leu Val Val Glu
65 70 75

agc tca gca gac gac ctt cga gca ttc cag cag ctg ttt ctg aac acc 288
Ser Ser Ala Asp Asp Leu Arg Ala Phe Gln Gln Leu Phe Leu Asn Thr
80 85 90

ctg tcc ttt gtg tgt ccg tgg tgt gca tcc cag cag ggatcc 330
Leu Ser Phe Val Cys Pro Trp Cys Ala Ser Gln Gln
95 100 105

<210> 4
<211> 106
<212> PRT
<213> Human papillomavirus type 18

<400> 4

Ser Met His Gly Pro Lys Ala Thr Leu Gln Asp Ile Val Leu His Leu
1 5 10 15

Glu Pro Gln Asn Glu Ile Pro Val Asp Leu Leu Cys His Glu Gln Leu
20 25 30

Ser Asp Ser Glu Glu Glu Asn Asp Glu Ile Asp Gly Val Asn His Gln
35 40 45

His Leu Pro Ala Arg Arg Ala Glu Pro Gln Arg His Thr Met Leu Cys
50 55 60

Met Cys Cys Lys Cys Glu Ala Arg Ile Glu Leu Val Val Glu Ser Ser
65 70 75 80

Ala Asp Asp Leu Arg Ala Phe Gln Gln Leu Phe Leu Asn Thr Leu Ser
85 90 95

Phe Val Cys Pro Trp Cys Ala Ser Gln Gln
100 105

<210> 5
<211> 5321
<212> DNA
<213> Artificial Sequence

<220>
<223> Nucleotide sequence of recombinant vector pQE30-dnaK

<400> 5

ctcgagaaat cataaaaaat ttatggctt tgtgagcga taacaattat aatagattca 60
attgtgagcg gataacaatt tcacacagaa ttcattaaag aggagaaaatt aactatgaga 120
ggatcgcatc accatcacca tcacggatcc gctcggtcg 180
accactccg tcgtctcggt tctggaagggt ggacccggg tgcgtcgca aactccgag 240
ggctccagga ccacccgtc aattgtcg 300
cagccgcga agaaccaggc agtgaccaac gtgcgtcgca cctgcgtcg 360
cacatggcga gcgactggc catagagatt gacggcaaga aatacaccgc gcccggatgc 420
agcgcggcga ttctgatgaa gctgaagcgc gacgccgagg cctacctcg 480
accgacgccc ttatcacgac gcccgcctac ttcaatgacg cccagcgtca ggccaccaag 540
gacgcccggcc agatcgccgg cctcaacgtg ctgcggatcg tcaacgagcc gaccgcggcc 600
gcgcgtggcct acggcctcg 660
gggtggca cttcgacgt ttccctgtg gagatcg 720
gccacttcgg gtgacaacca cctcgccggc gacgactggg accagcgggt cgtcgattgg 780
ctgggtggaca agttcaaggg caccagcggc atcgatctga ccaaggacaa gatggcgatg 840
cagcggctgc gggaaagccgc cgagaaggca aagatcgagc tgagttcgag tcagtccacc 900
tcgatcaacc tgccctacat caccgtcgac gccgacaaga acccggttgtt cttagacgag 960
cagctgaccc gcggggagtt ccaacggatc actcaggacc tgctggaccg cactcgcaag 1020
ccgttccagt cggtgatcg 1080
ctcggtggtg gttcgacccg gatgcccggc gtgaccgatc tggtaagga actcaccggc 1140
ggcaaggaac ccaacaaggg cgtcaacccc gatgaggttg tgcgggtggg agccgctctg 1200
caggccggcg tcctaaggg cgaggtaaa gacgttctgc tgcttgatgt taccggctcg 1260
agcctgggta tcgagaccaa gggcggggtg atgaccaggc tcatcgagcg caacaccacg 1320
atccccacca agcggtcgga gactttcacc accggccgacg acaaccaacc gtcgggtgcag 1380
atccagggtct atcaggggga gctgagatc gcccgcaca acaagttgtc cgggtccctc 1440
gagctgaccg gcatcccgcc ggccggcg 1500
atcgacgcca acggcattgt gcacgtcacc gccaaggaca agggcaccgg caaggagaac 1560
acgatccgaa tccaggaagg ctggggctg tccaaaggaa acattgaccg catgtcaag 1620
gacgcccgaag cgacgcccga ggaggatcg 1680
caagccgaga cattggtcta ccagacggag aagttcg 1740

ggtggttgcg aggtacctga agacacgctg aacaagggtt atgccgcgt ggcggaaagcg 1800
aaggcggcac ttggccgatc ggatatttcg gccatcaagt cggcgatgga gaagctggc 1860
caggagtgcg aggctctggg gcaagcgatc tacgaagcag ctcaggctgc gtcacaggcc 1920
actggcgctg cccaccccg cggcgagccg ggcgggtgccc accccggctc ggctgatgac 1980
gttgtggacg cggaggtggt cgacgacggc cgggaggcca agtgcacggac gggtcgac 2040
gcagccaagc ttaatttagct gagcttggac tcctgttgat agatccagta atgacctcag 2100
aactccatct ggatttgttc agaacgctcg gttgcccgg ggcgtttttt attggtgaga 2160
atccaagcta gcttggcgag atttcagga gctaaggaag ctaaaatgga gaaaaaaaatc 2220
actggatata ccaccgttga tatatccaa tggcatcgta aagaacattt tgaggcattt 2280
cagtcagttg ctcaatgtac ctataaccag accgttcagc tggatattac ggcctttta 2340
aagaccgtaa agaaaaataa gcacaagttt tatccggct ttattcacat tcttgcggc 2400
ctgatgaatg ctcatccgga attcgtatg gcaatgaaag acggtgagct ggtgatatgg 2460
gatagtgttc acccttgtta caccgtttt catgagcaa ctgaaacgtt ttcatcgctc 2520
tggagtgaat accacgacga tttccggcag tttctacaca tatattcgca agatgtggcg 2580
tgttacggtg aaaacctggc ctattccct aaagggttta ttgagaatat gttttcgctc 2640
tcagccaatc cctgggtgag tttcaccagt tttgatttaa acgtggccaa tatggacaac 2700
ttcttcgccc ccgtttcac catggcaaa tattatacgc aaggcgacaa ggtgctgatg 2760
ccgctggcga ttcaagttca tcatgcccgt tggatggct tccatgtcg cagaatgctt 2820
aatgaattac aacagtactg cgatgagtgg cagggcgcccc cgtaattttt ttaaggcagt 2880
tattggtgcc cttaaacgcc tggggtaatg actctctagc ttgaggcattc aaataaaaacg 2940
aaaggctcag tcgaaagact gggccttcg ttttatctgt tggttgcgg tgaacgctct 3000
cctgagtagg acaaattccgc cctctagac tgcctcgccg gttcgggtga tgacggtgaa 3060
aacctctgac acatgcagct cccggagacg gtcacagctt gtctgtaaac ggtgcgggg 3120
agcagacaag cccgtcaggc cgctcagcg ggtgttggcg ggtgtcgcccc cgcaaggccatg 3180
accctgac gtagcgatag cggagtgtat actggcttaa ctatgcggca tcagagcaga 3240
ttgtactgag agtgcaccat atgcgggtgtg aaataccgca cagatgcgtt aaggagaaaat 3300
accgcattcag gcgctttcc gttccctcg tcaactgactc gctgcgtcg gtcgttgcgg 3360
tgcggcgagc ggtatcagct cactcaaagg cggttaatacg gttatccaca gaatcagggg 3420

ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg 3480
ccgcgttgc ggcgttttc cataggctcc gccccctga cgagcatcac aaaaatcgac 3540
gctcaagtca gaggtggcga aacccgacag gactataaag ataccaggcg tttccccctg 3600
gaagctccc cgtgcgtct cctgttccga ccctgccgt taccggatac ctgtccgcct 3660
ttctcccttc gggaaagcgtg gcgcgttctc atagctcacf ctgttaggtat ctcaagttcg 3720
tgttagtctgt tcgctccaag ctgggtgtg tgcacgaacc ccccgtttag cccgaccgct 3780
gcgccttatac cggttaactat cgtcttgagt ccaaccgggt aagacacgac ttatcgccac 3840
tggcagcagc cactggtaac aggattagca gagcgaggta tgtaggcggt gctacagagt 3900
tcttgaagtg gtggcctaac tacggctaca ctagaaggac agtatttggt atctgcgtc 3960
tgctgaagcc agttaccttc gaaaaaagag ttggtagctc ttgatccggc aaacaaccca 4020
ccgctggtag cggtgggttt ttgtttgca agcagcagat tacgcgcaga aaaaaaggat 4080
ctcaagaaga tccttgatc tttctacgg ggtctgacgc tcagtggAAC gaaaactcac 4140
gttaagggat ttggcatg agattatcaa aaaggatctt cacctagatc cttttaaatt 4200
aaaaatgaag tttaaatca atctaaagta tatatgagta aacttggctc gacagttacc 4260
aatgcttaat cagtggca cctatctcag cgatctgtct atttcgttca tccatagttg 4320
cctgactccc cgtcggttag ataactacga tacgggaggc cttaccatct ggccccagtg 4380
ctgcaatgat acccgagac ccacgctcac cggctccaga tttatcagca ataaaccagc 4440
cagccggaag ggccgagcgc agaagtggtc ctgcaacttt atccgcctcc atccagtc 4500
ttaattgttgc cgggaagct agagtaagta gttcgccagt taatagtttgc gcaacgttgc 4560
ttgccatttgc tacaggcatc gtgggtgtcac gctcgctgtt tggtatggct tcattcagct 4620
ccggttccca acgatcaagg cgagttacat gatccccat gttgtcAAA aaagcggtt 4680
gctccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcgtgtta tcactcatgg 4740
ttatggcagc actgcataat tctcttactg tcatgcccattc cgtaagatgc ttttctgtga 4800
ctggtagta ctcaaccaag tcattctgag aatagtgtat gggcgaccg agttgcttt 4860
gccccggcgtc aatacggat aataccgcgc cacatagcag aactttaaaa gtgctcatca 4920
ttggaaaacg ttcttcgggg cgaaaactct caaggatctt accgctgttgc agatccagtt 4980
cgatgttaacc cactcggtc cccaaactgtat cttcagcatc ttttactttc accagegtt 5040
ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa gggataagg ggcacacgga 5100
aatgttgaat actcataactc ttcccttttc aatattatttgc aagcattttt cagggttatt 5160

gtctcatgag cggatacata tttgaatgta ttttagaaaaaa taaacaaata ggggttccgc 5220

gcacatttcc ccgaaaagtgc acacctgacg tctaagaaac cattattatc atgacattaa 5280

cctataaaaaa taggcgtatc acgaggccct ttcgtttca c 5321

<210> 6

<211> 12

<212> PRT

<213> Bos taurus

<400> 6

Lys Lys Arg Pro Lys Pro Gly Gly Gly Trp Asn Thr
1 5 10

<210> 7

<211> 8

<212> PRT

<213> bos taurus

<400> 7

Gln Pro His Gly Gly Gly Trp Gly
1 5

<210> 8

<211> 13

<212> PRT

<213> bos taurus

<400> 8

Gln Trp Asn Lys Pro Ser Lys Pro Lys Thr Asn Ile Lys
1 5 10

<210> 9

<211> 17

<212> PRT

<213> bos taurus

<400> 9

Ile Thr Gln Tyr Gln Arg Glu Ser Gln Ala Tyr Tyr Gln Arg Gly Ala
1 5 10 15

Ser

<210> 10

<211> 19

<212> DNA

<213> Human papillomavirus type 16

<400> 10

tgacagctca gaggaggag 19

<210> 11

<211> 19

<212> DNA

<213> Human papillomavirus type 16

<400> 11

gcacaaccga agcgttagag 19

<210> 12

<211> 20

<212> DNA

<213> Human papillomavirus type 18

<400> 12

gcgactcaga ggaagaaaac 20

<210> 13

<211> 20

<212> DNA

<213> Human papillomavirus type 18

<400> 13

caaaggacag ggtgttcaga 20

<210> 14

<211> 31

<212> DNA

<213> Human papillomavirus type 18

<400> 14

tctaacgaat tcagtatgca tggacctaa g 31

<210> 15

<211> 30

<212> DNA

<213> Human papillomavirus type 18

<400> 15

attacaggat ccctgctggg atgcacacca 30

<210> 16
<211> 31
<212> DNA
<213> Human papillomavirus type 16

<400> 16

attctcgaaat tcatcatgca tggagataca c 31

<210> 17
<211> 31
<212> DNA
<213> Human papillomavirus type 16

<400> 17

cttatcgat cctggtttct gagaacagat g 31

<210> 18
<211> 130
<212> DNA
<213> Artificial sequence

<220>
<223> pHE716 and pHE718 terminal sequences

<220>
<221> misc_feature
<222> (107)..(108)
<223> HSP 16/HSP18 E7 gene insertion site

<400> 18

taatacgact cactataggg agaccacaac ggtttccctc tagaaataat tttgttaac 60

ttaagaagg agatatacat atgcatcacc atcaccatca cgaattcggta ccttaattag 120

ctgaaagctt 130

<210> 19
<211> 28
<212> DNA
<213> Artificial sequence

<220>
<223> Forward primer for pHE716

<400> 19

gaagatctat gcatggagat acacctac 28

<210> 20
<211> 28

<212> DNA
<213> Artificial Sequence

<220>
<223> reverse primer for pHE716

<400> 20

cgggatcctg gtttctgaga acagatgg 28

<210> 21
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer for pHE718

<400> 21

gaagatctat gcatggacct aaggcaac 28

<210> 22
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer for pHE718

<400> 22

cgggatccct gctgggatgc acaccacg 28