Discrete Lecture #23

• Connectivity:

- Connected Graph
 - If there exist a path from every vertex to every other vertex then the graph is connected

- Difference of a connected and a graph that is not connected
- o Connected Component
 - If there exist a graph such that its component are connected

- This is one graph with three connected components
- Out Vertex:
 - A vertex that if it is removed from the graph and all its edges as well then the graph is not connected is called a cut vertex

o Cut Edge:

New Section 1 Page 1

- If we remove the edge f g , this graph will become not connected
- There exist a cut edge in this graph that divides the graph into two components
- Directed Graph:
 - o Strongly Connected :

Divieted	Gra	phs -							
	1-	Strongly	Conneta	d:					
		00	Holb EV	45	\exists	apah	Han a	h b	
				٨	حا	to a.	•		

A graph is strong connected if there exist a path from a to b AND b to a

Weakly Connected:

A graph is weakly connected if there exist a path from a to b OR b to a

 Another way to check a weakly connected graph is to draw a undirected graph of the directed graph and if it is connected then it is a weakly connected graph

• Isomorphism

