Complexité et Algorithmes Partie III : Problèmes NP-complets – Stratégies de Résolution

G. Fertin guillaume.fertin@univ-nantes.fr

Université de Nantes, LS2N Bât 34 – Bureau 301

M1 Informatique – 2019-2020

Sommaire

Introduction

Petits Cas et Classes d'Instance

Approximations

Approximation et Classes de Complexité

Un module à problèmes

Le contexte

- Dans tout ce qui va suivre:
 - problèmes de décision (PbD) ou
 - problèmes d'optimisation (PbO)
- PbD: NOM/Instance/Question
- PbO: NOM/Instance/Solution/Mesure

PbO et PbD: nomenclature

Example (PbD)

SAT

Instance: Une formule booléenne ϕ sous FNC **Question**: La formule ϕ est-elle satisfiable ?

Example (PbO)

MAXIMUM INDEPENDENT SET (MAX-IS) (= Ensemble Stable)

Instance: Un graphe G = (V, E)

Solution: Un ensemble stable $V' \subseteq V$ de G

Mesure: |V'|

A propos des PbO et PbD

Des problèmes qui posent problème

- La très grande majorité des PbO/PbD "intéressants" sont NP-complets
- Un problème Pb NP-complet signifie que:
 - 1. Il existe au moins une instance de Pb qui est difficile à résoudre
 - 2. Il n'existe pas d'algorithme polynomial (en temps) pour résoudre Pb (sauf si P = NP)
 - 3. Pb est au moins aussi difficile que les problèmes SAT,
 MAXIMUM INDEPENDENT SET, CYCLE HAMILTONIEN, ...
 - 4. Si nous proposons un algorithme en temps polynomial pour ce problème, alors $\mathsf{P} = \mathsf{NP}$

A propos des PbO et PbD

Des problèmes qui posent problème

- La très grande majorité des PbO/PbD "intéressants" sont NP-complets
- En l'état actuel des connaissances:
 - résultat optimal ⇒ temps d'exécution déraisonnable
 - temps d'exécution raisonnable ⇒ résultat pas optimal

Problème NP-complet: que faire ?

Le résoudre quand même !

3 points de vue

Utopiste → "je résous tous les problèmes d'un coup"

- \Rightarrow il "suffit" de montrer que P = NP (!)
 - 1. prendre un problème NP-complet
 - 2. trouver un algorithme polynomial qui le résout
 - 3. au passage, empocher 1 million de dollars (Clay Mathematics Institute Millenium Prize)

Problème NP-complet: que faire ?

Le résoudre quand même !

3 points de vue

Optimiste → "j'y arriverai quand même"

- NP-complet signifie qu'au moins une instance est "difficile"...
- ...mais pas forcément toutes!

Le point de vue optimiste

- Pour certaines instances, le problème (pourtant NP-complet) pourrait être résolu en temps polynomial
- Exemples:
 - Petits cas: un/plusieurs paramètres de l'instance est/sont petit/s
 - Classes d'instances: restriction à des instances vérifiant une/plusieurs propriété/s
- Ces instances sont-elles nombreuses? "intéressantes"?

Définitions

G = (V, E) est un graphe ; u est un sommet de G

- Degré de u: d(u) = nombre d'arêtes incidentes à u
- Degré de G: $\Delta(G) = \max_{u \in V} d(u)$
- Clique dans G: sous-ensemble de sommets tous connectés deux à deux

Example (Problèmes de Graphes)
Exemples de paramètres "Petits Cas":

- Degré maximum $\Delta(G) = O(1)$
- Degré moyen $\overline{\Delta(G)} = O(1)$
- Taille de la plus grande clique $\omega(G) = O(1)$

Example (Problèmes de Graphes)

Classes d'Instances:

• Arbres (propriétés = connexe et pas de cycle)

• Graphes bipartis (propriété = pas de cycle impair)

Example (Problèmes de Graphes)

Classes d'Instances:

 Graphes d'intervalles (propriété = graphe d'intersections d'intervalles)

Problème NP-complet: que faire ?

Le résoudre quand même !

3 points de vue

Raisonnable → "trouvons un compromis"

- Compromis qualité de la solution vs temps d'exécution
- Deux possibilités:
 - 1. Priorité sur le temps d'exécution (temps OK, optimal pas OK)
 - Priorité sur la qualité de la solution (optimal OK, temps pas OK)

Priorité sur le temps d'exécution

On exige une solution rapide, donc pas optimale

- ⇒ temps d'exécution polynomial
 - Heuristiques: bon fonctionnement empirique, mais aucune garantie sur le résultat → benchmarks
 - Algorithmes probabilistes: résultat optimal avec une certaine probabilité (ex: 50% de chances d'avoir le résultat optimal)
 - Approximations: résultat dont l'écart à l'optimal est contrôlé et garanti

Priorité sur la qualité de la solution

On exige une solution optimale, donc pas rapide

- ⇒ temps d'exécution exponentiel
 - Idée: "contrôler" l'exponentielle
 - Question: existe-t-il un paramètre k de l'instance du problème tel que
 - 1. on trouve un algo qui résout optimalement le problème
 - 2. dont l'exponentielle ne dépend que du paramètre k
 - 3. k est "petit" dans la pratique ?
 - C'est ce qu'on appelle la Complexité Paramétrée

Dans la suite de ce cours

Ce que nous verrons

- Optimiste: Petits Cas et Classes d'Instance
- Raisonnable (temps > optimalité): Approximations (et si on a le temps)
- Raisonnable (optimalité > temps): Complexité Paramétrée

Bibliographie (non exhaustive)

- Approximations: "Complexity and Approximation" Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela and Protasi – Springer 2003
- Complexité Paramétrée: "Fundamentals of Parameterized Complexity" - Downey and Fellows - Springer, 2013

Sommaire

Introduction

Petits Cas et Classes d'Instance

Approximations

Approximation et Classes de Complexité

Rappel: petits cas... mais suffisamment nombreux et intéressants ! Example (Quelques Résultats)

- PbD:
 - 2-SAT
 - HORN-SAT
- PbO:
 - MIN-COL $\Delta(G) = 2$
 - MIN-COL Graphes Bipartis
 - MIN-COL Graphes d'Intervalle

Résolution de Petits Cas: 2-SAT

Rappels

k-SAT

Instance: Une formule booléenne ϕ sous FNC, où chaque clause

contient k littéraux

Question: La formule ϕ est-elle satisfiable ?

Theorem

k-SAT est NP-complet pour tout $k \ge 3$

Theorem

2-SAT est dans P

Rappels

• Instance de 2-SAT: formule booléenne de la forme

$$\phi = (a_1 \vee b_1) \wedge (a_2 \vee b_2) \wedge \ldots \wedge (a_q \vee b_q)$$

• les a_i et les b_i , $1 \le i \le q$, appartiennent à un ensemble de littéraux

$$\mathcal{X} = \{x_1, x_2, \dots x_n, \overline{x_1}, \overline{x_2} \dots \overline{x_n}\}$$

Propriété

Logique booléenne: quelques rappels

- $(a_i \lor b_i) \Leftrightarrow (\overline{a_i} \lor b_i)$
- rem: $(\overline{s} \lor t) \Leftrightarrow (s \Rightarrow t) \Leftrightarrow (\overline{t} \Rightarrow \overline{s}),$
- on en déduit que

$$(a_i \lor b_i) \Leftrightarrow (\overline{a_i} \Rightarrow b_i) \Leftrightarrow (\overline{b_i} \Rightarrow a_i)$$

Idée: représenter ϕ par un graphe G_{ϕ} : le graphe des implications

Graphe des implications

- sommets de $G_{\phi}=$ éléments de ${\mathcal X}$
- pour toute clause $(a_i \lor b_i)$ dans ϕ , G_{ϕ} contient deux arcs:
 - $\overline{a_i} \rightarrow b_i$ et $\overline{b_i} \rightarrow a_i$

 - un arc dans G_{ϕ} = une implication

Example (Deux Formules)

$$\phi_1 = (A \vee \overline{B}) \wedge (B \vee C) \wedge (\overline{A} \vee C)$$

$$\phi_2 = (\overline{A} \vee B) \wedge (\overline{A} \vee \overline{B}) \wedge (A \vee \overline{C}) \wedge (A \vee C)$$

Graphe G1

Graphe G2

Théorème

 ϕ est satisfiable si et seulement si il n'existe aucun circuit dans G_{ϕ} passant par x_i et $\overline{x_i}$, quel que soit $1 \le i \le n$

Arguments de preuve:

- 1. chemin de x_i vers $\overline{x_i}$: incohérent donc $x_i \neq Vrai$
- 2. chemin de $\overline{x_i}$ vers x_i : incohérent donc $x_i \neq \text{Faux}$

¹circuit = cycle orienté (qui suit les flèches)

Propriété

Déterminer l'existence (ou non) d'un circuit entre deux sommets u et v dans un graphe orienté G est un problème polynomial

Argument:

- 1. calculer les composantes fortement connexes (CFC) de G
- 2. circuit entre u et $v \Leftrightarrow$ une CFC contient à la fois u et v

Algo 2-SAT

- 1. construire le graphe de comparaison G_{ϕ}
- 2. pour toute paire $x_i, \overline{x_i}$, tester l'existence d'un circuit entre x_i et $\overline{x_i}$
 - un circuit existe $\Rightarrow \phi$ non satisfiable
 - aucun circuit n'existe $\Rightarrow \phi$ satisfiable

Remarque: si ϕ est satisfiable, fournir une affectation Vrai/Faux à chaque x_i : en temps polynomial

Résolution de Petits Cas: HORN-SAT

Définition

SAT

Instance: Une formule booléenne ϕ sous FNC **Question**: La formule ϕ est-elle satisfiable ?

Rappel: SAT est comme k-SAT, mais on ne spécifie pas le k

Résolution de Petits Cas: HORN-SAT

Définition

Formule de Horn = FNC où chaque clause contient au plus une variable positive

Example

$$\phi = (\overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee \overline{x_4}) \wedge (x_2)$$

Résolution de Petits Cas: HORN-SAT

Theorem Le problème HORN-SAT est dans P

Définitions

- Littéral ℓ : une variable x ou \overline{x}
- Clause unitaire CU: clause ne contenant qu'un seul littéral

Algo de résolution de HORN-SAT

Algo formules de Horn

- 1. Tant qu'il existe une CU: (ℓ)
 - si $\ell = x_i, x_i \leftarrow \text{Vrai}, \text{ sinon } x_i \leftarrow \text{Faux}$
 - retirer de ϕ toutes les clauses contenant ℓ
 - retirer $\bar{\ell}$ des clauses qui le contiennent
- 2. Dans l'expression ϕ' qui reste, tout mettre à Faux
- 3. Si ϕ' satisfaite, OK; sinon, ϕ' insatisfiable

Algo de résolution de HORN-SAT

Argument

- CU "forcent" les valeurs des variables.
- ullet \rightarrow propagation dans la formule
- Si problème → STOP: instatisfiable
- Sinon, toutes les clauses de taille $\geq 2 \rightarrow$ au moins un littéral "négatif"
- ⇒ tout mettre à Faux satisfait ce qui reste

Example

$$\phi = (\overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee \overline{x_4}) \wedge (x_2)$$

Résolution de Petits Cas: MIN-COL Bipartis

Définitions

Min-Col

Instance: Un graphe G

Solution: Une coloration propre des sommets de *G*

Mesure: k, le nombre de couleurs utilisées

Graphe Biparti G = (V, E): G est biparti si:

- il existe une partition de V en V_1 et V_2
- telle que chaque arête de E ait une extrémité dans V_1 et l'autre dans V_2

Résolution de Petits Cas: MIN-COL Bipartis

Theorem

Tout graphe biparti peut être proprement colorié en au plus 2 couleurs

Algorithme (graphe $G = (V_1, V_2, E)$):

- si $E = \emptyset \rightarrow 1$ couleur suffit
- si $E \neq \emptyset \rightarrow 2$ couleurs sont nécessaires et suffisantes
 - Pour tout $v \in V_1 \rightarrow \mathsf{bleu}$
 - Pour tout $v \in V_2 \rightarrow \text{rouge}$

Résolution de Petits Cas: MIN-COL Intervalles

Définitions

Min-Col

Instance: Un graphe G

Solution: Une coloration propre des sommets de *G*

Mesure: k, le nombre de couleurs utilisées

Graphe d'Intervalles G = (V, E): G est d'intervalles si à chaque sommet v on peut associer un intervalle I_v tel que

pour tous sommets $u, v \in V$, $uv \in E$ ssi $I_u \cap I_v \neq \emptyset$

Exemples: C₄ et bull-graph

Résolution de Petits Cas: MIN-COL Intervalles

Definition

Soit G = (V, E) un graphe:

- une clique dans $G = \text{ensemble } V' \subseteq V \text{ tel que pour tous } u, v \in V', uv \in E$
- $\omega(G)$ = la taille de la plus grande clique de G

Theorem

Tout graphe d'intervalles peut être proprement colorié en $\omega(G)$ couleurs

Résolution de Petits Cas: MIN-COL Intervalles

Theorem

Tout graphe d'intervalles peut être proprement colorié en $\omega(G)$ couleurs

Remarque: $\omega(G)$ couleurs sont nécessaires !... donc c'est l'optimal

Theorem

Pour tout graphe d'intervalles G, déterminer $\omega(G)$ peut se faire en temps polynomial

Sommaire

Introduction

Petits Cas et Classes d'Instance

Approximations

Approximation et Classes de Complexité

Rappels

- Problèmes NP-complets
- Ici, uniquement PbO
- Priorité: temps > optimalité
- on veut un algorithme en temps polynomial qui retourne une solution approchée garantie

Remarques

- Comment garantir l'écart à l'optimal ? écart ou ratio d'approximation
- Est-ce toujours possible ? nouvelles classes de complexité

Garantir l'approximation

Additif vs Multiplicatif

• Additif: la solution trouvée : optimal \pm écart

$$Sol \in [opt - ecart; opt + ecart]$$

• Multiplicatif: la solution trouvée : optimal×ratio

$$Sol \in [opt; opt \times ratio](minimisation)$$

Plus formellement

- Problème d'optimisation Pb
- Algorithme polynomial A: pour toute instance I ∈ inst(Pb), retourne une solution sol_A(I)
- Solution optimale opt(/)

Garantir l'approximation

Écart à l'optimal (additif)

- écart à l'optimal de A: e(A) (e(A)=le plus souvent un nombre)
- inst(Pb) = ensemble des instances autorisées pour Pb
- Algorithme d'approximation A d'écart e(A) si

$$e(A) = \max_{I \in inst(Pb)} |opt(I) - sol_A(I)|$$

Garantir l'approximation

Ratio d'approximation (multiplicatif)

- ratio d'approximation de A: r(A) (r(A)=le plus souvent un nombre)
- inst(Pb) = ensemble des instances autorisées pour Pb
- Algorithme d'approximation de ratio r(A) si

$$r(A) = \max_{I \in \mathsf{inst}(Pb)} \left\{ \frac{\mathsf{opt}(I)}{sol_A(I)}, \frac{sol_A(I)}{\mathsf{opt}(I)} \right\}$$

(Gauche pour maximisation, Droite pour minimisation)

A propos du ratio

- Définition unifiée
- Problèmes de maximisation $\Rightarrow \frac{\operatorname{opt}(I)}{\operatorname{sol}_A(I)}$
- Problèmes de minimisation ⇒
- ⇒ pour tous les problèmes,

$$r(A) \ge 1$$

• Remarque: r(A) = 1 si et seulement si A est un algorithme exact

Exemple Approximation Additive

MIN EDGE COLORING (MIN-ECOL)

Instance: un graphe *G*

Solution: une coloration propre des arêtes de *G*

Mesure: *k*, le nombre de couleurs utilisées

Théorème (Vizing - 1964)

Tout graphe G de degré maximum Δ peut être proprement arête colorié en $\Delta + 1$ couleurs.

Remarque: algorithme de coloration *A* (polynomial) associé au théorème ci-dessus

Approximation Additive

- Vizing \rightarrow pour tout graphe G, $sol_A(G) \leq \Delta + 1$
- Définition Edge Coloring \rightarrow pour tout graphe G, opt $(G) \ge \Delta$
- $e(A) = \max_{G \in inst(Min-ECol)} |opt(G) sol_A(G)|$
- \Rightarrow e(A) = 1

Additif vs Multiplicatif

- Très peu de problèmes NP-complets pour lesquels on trouve un écart (additif)
- A l'inverse, beaucoup de problèmes NP-complets pour lesquels on trouve un ratio (multiplicatif)
- ⇒ à partir de maintenant, ratio (multiplicatif) uniquement

Attention!

Tous les problèmes NP-complets ne sont pas égaux devant l'approximation

$$\varepsilon = {\sf constante} > 0$$
 arbitrairement petite $c, c' = {\sf constantes}$ $n = {\sf taille}$ des données

Différents types d'approximations

- Schéma d'approximation en temps (pleinement) polynomial $\rightarrow r(A) = 1 + \varepsilon$
- Ratio d'approximation constant $\rightarrow r(A) = O(1)$
- Ratio d'approximation logarithmique $\rightarrow r(A) = O(\log n)$
- Ratio d'approximation poly-logarithmique \rightarrow $r(A) = O((\log n)^c \cdot n^{c'})$
- Ratio d'approximation polynomial $\rightarrow r(A) = O(n^c)$

MIN-COL - Ratio polynomial

Min-Col

Instance: Un graphe *G*

Solution: Une coloration propre des sommets de *G*

Mesure: *k*, le nombre de couleurs utilisées

Théorème MIN-COL est NP-complet

MIN-COL - Ratio polynomial

Théorème

Soit G un graphe à n sommets. Il existe un algorithme d'approximation de ratio n pour le problème MIN-COL.

Preuve:

- Algo A de coloration: une couleur unique à chaque sommet
- \Rightarrow $sol_A(G) = n$
- Rem: $opt(G) \ge 1$ (ex: graphe *vide*, càd sans arête)
- $\Rightarrow r(A) \leq \frac{n}{1}$ pour toutes les instances

Définitions

- Soit G = (V, E) un graphe
- Couverture par les Sommets = Vertex Cover = VC = ensemble de sommets V' ⊆ V
- Vertex Cover: $\forall uv \in E$, au moins un des sommets u, v est dans V'
- $\rightarrow V'$ couvre toutes les arêtes de G

MIN VERTEX COVER (MIN-VC) (=Couverture par les Sommets)

Instance: Un graphe G = (V, E)

Solution: Un Vertex Cover $V' \subseteq V$ de G

Mesure: k = |V'| le nombre de sommets de V'

Théorème MIN-VC est NP-complet

Théorème

Il existe un algorithme d'approximation de ratio 2 pour $\operatorname{M{\scriptstyle IN-VC}}$

Algorithme approx-2-VC

Entrée: graphe G = (V, E)

- 1. $V' \leftarrow \emptyset$
- 2. Tant que $E \neq \emptyset$ faire
 - choisir une arête uv dans E
 - $V' \leftarrow V' \cup \{u\} \cup \{v\}$
 - E' ← arêtes incidentes à u et v
 - F ← F − F'

Remarque: algo glouton (greedy en anglais)

Algo approx-2-VC

Example

Théorème

approx-2-VC est un algorithme de 2-approximation pour $\operatorname{Min-VC}$

Analyse de approx-2-VC

- les arêtes choisies pendant l'exécution sont indépendantes (pas de sommets en commun)
- pour couvrir chacune de ces arêtes, au moins un sommet

•
$$\Rightarrow OPT \ge \frac{|V'|}{2}$$
, d'où $\frac{|V'|}{OPT} \le 2$

Remarques:

- algo très simple (glouton)
- analyse simple
- ...et pourtant ce ratio 2 est le meilleur qu'on connaisse!

MAX-3-SAT - Ratio 2

Max-3-SAT

Instance: Une formule booléenne ϕ sous FNC, où chaque clause

contient au plus 3 littéraux

Solution: Une affectation Vrai/Faux à chaque variable

Mesure: *k*, le nombre de clauses satisfaites

Remarque: Attention, ici on veut maximiser le nombre de clauses

satisfaites $\Rightarrow PbO$

Théorème

Il existe un algorithme d'approximation de ratio 2 pour ${
m MAX-3-SAT}$

MAX-3-SAT - Ratio 2

Algorithme approx-2-Max-3-SAT

Entrée: formule 3-SAT sous FNC ϕ

- 1. $nb_V \leftarrow$ nombre de clauses de ϕ satisfaites quand toutes les variables sont à Vrai
- 2. $nb_F \leftarrow$ nombre de clauses de ϕ satisfaites quand toutes les variables sont à Faux
- 3. Si $nb_V > nb_F$ alors mettre toutes les variables à Vrai
- 4. Sinon mettre toutes les variables à Faux

MAX-3-SAT - Ratio 2

Théorème

approx-2-Max-3-SAT est un algorithme de 2-approximation pour le problème MAX-3-SAT

Analyse de approx-2-Max-3-SAT

C= nb de clauses dans ϕ

- nb clauses satisfaites $C_s = \max\{n_F, n_T\}$
- Remarque: $n_F + n_T \ge C$
- $\Rightarrow C_s \geq \frac{C}{2}$
- Or OPT < C

$$\frac{OPT}{C_S} \le 2$$

Comment obtenir une *r*-approximation ?

Pas de recette miracle

- Pas de méthode standard :-(
- (...comme pour les réductions de type "NP-complet")
- avoir l'intuition qu'un algorithme A peut fonctionner
- souvent (pas toujours): l'algorithme A est simple
- essai/erreur + expérience

Comment obtenir une *r*-approximation ?

Cela dit...

Une fois l'algorithme A déterminé (ici, pb de minimisation)

- 1. Montrer que pour toute instance I, $sol_A(I) \leq X$
- 2. Montrer que pour toute instance I, opt(I) $\geq Y$
- 3. Croiser les doigts pour que $\frac{X}{Y}$ = constante
- 4. Si c'est le cas, $r = \frac{X}{Y}$

⇒ Deux conseils:

- trouver une bonne borne inf. pour opt(I) → bonne analyse du problème
- trouver une bonne borne sup. pour $sol_A(I) o$ bonne analyse de l'algo A

Ce que [ne] veut [pas] dire *r*-approximation

Ce que ça veut dire

- quelle que soit l'instance, on a toujours une solution $\leq r \cdot opt$
- cette solution est obtenue en temps polynomial

Ce que [ne] veut [pas] dire r-approximation

Ici, pb de minimisation

Ce que ça ne veut pas dire

- que c'est toujours $r \cdot opt$!
- Par exemple:
 - très souvent, sol proche de opt
 - très rarement, sol proche de $r \cdot opt$
- mais l'analyse de l'algo ne permet pas de dire mieux que r...
- ...dans les faits, peut être un ratio $r' \ll r$
- \Rightarrow même si r est "grand", un algo de r-approximation reste intéressant

Sommaire

Introduction

Petits Cas et Classes d'Instance

Approximations

Approximation et Classes de Complexité

Approximation et Classes de Complexité

Que vient faire la complexité là-dedans ?

- PbO initial NP-complet
- on cherche un algo d'approximation polynomial et de ratio r
- ⇒ Idée: il peut être difficile (au sens de la complexité)
 d'approximer en-dessous d'un certain ratio
- ⇒ complexité pour l'approximation
- Création de nouvelles classes de complexité

La classe FPTAS

FPTAS: Fully Polynomial-Time Approximation Scheme

Rappel: n = taille des données

Definition

FPTAS = classe des PbO approximables:

- 1. avec ratio $r = 1 + \varepsilon$ pour tout $\varepsilon > 0$, et
- 2. en temps polynomial en n et $\frac{1}{\varepsilon}$

La classe **FPTAS**

A propos de FPTAS

- C'est le mieux que l'on puisse espérer:
 - compromis temps/optimalité
 - dépendant d'un seul paramètre ε
 - complexité polynomiale pour toute valeur fixée de ε
- mais... peu de problèmes sont dans cette classe :-(

La classe PTAS

PTAS: Polynomial-Time Approximation Scheme

Rappel: n = taille des données

Definition

PTAS: classe des PbO approximables:

- 1. avec ratio $r = 1 + \varepsilon$ pour tout $\varepsilon > 0$, et
- 2. en temps polynomial en n

La classe PTAS

Remarques

- FPTAS ⊂ PTAS
- compromis temps/optimalité
- dépendant d'un seul paramètre ε
- exponentiel en $\frac{1}{\varepsilon} \to$ peu pratique pour de très petites valeurs de ε

La classe **APX**

APX: Approximable

Rappel: n = taille des données

Definition

APX: classe des PbO approximables avec ratio r constant

Ex: MIN-VC et MAX-3-SAT sont dans APX

Remarques

- implicite: algorithme d'approximation polynomial en n
- $FPTAS \subset PTAS \subset APX$

Un exemple de problème dans FPTAS

Problème du Sac à Dos (KNAPSACK) - Définition informelle

- on a N objets, et 1 sac à dos
- chaque objet possède:
 - un poids $w_i > 0$
 - une valeur $v_i > 0$
- le sac à dos peut porter un poids maximum W
- but: remplir le sac à dos de façon à maximiser la valeur des objets qu'il contient

Un exemple de problème dans FPTAS

KNAPSACK

Instance: Un ensemble $X = \{x_1, x_2 \dots x_N\}$ où chaque x_i est un

couple (v_i, w_i) d'entiers ; un entier W

Solution: Un sous-ensemble $S \subseteq X$ tel que $\sum_{x_i \in S} w_i \leq W$

Mesure: $V = \sum_{x_i \in S} v_i$

- KNAPSACK est un PbO
- Valeur totale V à maximiser

Example (KNAPSACK)

	valeur <i>v_i</i>	poids w _i
<i>x</i> ₁	13	1
<i>x</i> ₂	65	2
<i>x</i> ₃	181	5
X4	221	6
<i>X</i> 5	284	7

et
$$W = 11$$

 \Rightarrow OPT=402 en choisissant x_3 et x_4

Theorem

Le problème KNAPSACK est NP-complet

Theorem

Pour tout $\varepsilon > 0$, il existe un algorithme de $(1 - \varepsilon)$ -approximation pour KNAPSACK, et dont la complexité en temps est en $O(N^3 \cdot \frac{1}{\varepsilon})$

Remarque: ici, ratio $< 1 \ (r = 1 - \varepsilon < 1)...$ mais c'est pour faciliter la présentation!

Équivalent à ratio $1+\varepsilon'$ avec $\varepsilon'=\frac{\varepsilon}{1-\varepsilon}.$

Theorem

KNAPSACK est dans FPTAS

Programmation Dynamique

- Principe de la Prog. Dyn. = calculs réalisés sur la base de calculs antérieurs
- Souvent: une table de Prog. Dyn. doit être remplie
- Solution: un élément particulier de la table
- ullet Taille de la table de Prog. Dyn. \sim complexité de l'algorithme

Algorithme de Programmation Dynamique

PM[p, v] = poids minimum du sac à dos

- quand sa valeur totale est égale à v et
- quand les éléments sont choisis parmi x₁, x₂...x_n
- Cas 1: on utilise x_n
 - s'appuie sur $x_1, x_2 \dots x_{p-1}$
 - à partir de la valeur v v_p
 - $\rightarrow PM[p-1, v-v_p]$
- Cas 2: on n'utilise pas x_p
 - s'appuie sur $x_1, x_2 \dots x_{p-1}$
 - à partir de la valeur v
 - $\rightarrow PM[p-1, v]$

$$PM[p,v] = \begin{cases} 0 & \text{si } p = 0 \\ PM[p-1,v] & \text{si } v_p > v \\ \min\{w_p + PM[p-1,v-v_p]; PM[p-1,v]\} & \text{sinon} \end{cases}$$

Valeur max = maximum des V parmi les $PM[N, V] \leq W$

Remarques

- N= nombre d'objets, V*= valeur optimale pour KNAPSACK
- Taille de la table de Prog. Dyn.: NV*
- \Rightarrow algorithme en $O(NV^*)$
- Taille des données: $N \max\{\log w_i\} + N \max\{\log v_i\} + \log W$
- ⇒ exponentiel en la taille des données!!!

FPTAS: intuition

Partant d'une instance I

- diviser les valeurs par un même facteur X pour diminuer l'échelle sur ces valeurs
- arrondir \rightarrow instance I' où $v'_i = \lfloor \frac{v_i}{X} \rfloor$ pour tout $1 \leq i \leq N$
- utiliser l'algo de Prog. Dyn. en $O(NV^*)$ sur I'
- remonter la solution (exacte) pour l' vers une solution (approchée) pour l

Example (Instance 1)

	valeur <i>v</i> ;	poids w _i
<i>x</i> ₁	134 221	1
<i>x</i> ₂	656 342	2
<i>x</i> ₃	1810013	5
<i>X</i> 4	2 217 800	6
<i>X</i> 5	2843199	7

$$\Rightarrow$$
 avec $X = 10^4$ et $v_i' = \lfloor \frac{v_i}{X} \rfloor$
Example (Instance I')

	valeur v_i'	poids w_i'
x_1'	13	1
x_2'	65	2
x' ₃	181	5
x' ₄	221	6
x' ₅	284	7

Notations

- V = la plus grande valeur de l'instance I
- $1 \varepsilon = \text{ratio d'approximation souhaité}$
- ullet \Rightarrow on pose

$$X = \frac{\varepsilon \cdot V}{N}$$

Example (Notre choix: $X = 10^4$. Quel ε ?)

- Dans l'exemple, on a choisi $X=10^4$
- $\Rightarrow \varepsilon = \frac{N \cdot X}{V} = \frac{5 \cdot 10^4}{2843199} = 0.0176$
- $\Rightarrow 1 \varepsilon \sim 0.983$
- on est $a \ge 98.3\%$ de l'optimal

Preuve de l'appartenance à FPTAS

- Supposons que $w_i \leq W$ pour tout i
- ...sinon on réduit le problème en éliminant de tels éléments
- On en déduit que

$$V < V^* < N \cdot V$$

- l'élément de valeur V (seul) est une solution
- ullet on ne peut pas dépasser N fois l'élément de valeur V

Notations

- S^* = ensemble des x_i choisis pour résoudre optimalement I
- Valeur optimale: V*
- S'^* = ensemble des x'_i choisis pour résoudre optimalement I'
- Valeur optimale: V'*
- V: plus grande valeur de I
- V': plus grande valeur de I'

Constatations
$$v_i' = \lfloor \frac{v_i}{X} \rfloor \Rightarrow \frac{v_i - X}{X} < v_i' \leq \frac{v_i}{X}$$

$$\Rightarrow v_i \geq X \cdot v_i'$$

(1)
$$\sum_{x_i' \in S'^*} v_i \ge \sum_{x_i' \in S'^*} X \cdot v_i'$$

Constatations

$$\sum_{x_i' \in S'^*} v_i' \ge \sum_{x_i \in S^*} v_j'$$
 car S'^* optimal

$$\Rightarrow (2) \sum_{x_i' \in S'^*} X \cdot v_i' \ge \sum_{x_j \in S^*} X \cdot v_j'$$

Constatations

$$v_i' = \lfloor \frac{v_i}{X} \rfloor \Rightarrow \frac{v_i - X}{X} < v_i' \leq \frac{v_i}{X}$$

$$\Rightarrow X \cdot v_i' > v_i - X$$

$$(3)\sum_{x_i\in S^*}X\cdot v_j'\geq \sum_{x_i\in S^*}(v_j-X)$$

En résumé

(1)
$$\sum_{x_i' \in S'^*} v_i \ge \sum_{x_i' \in S'^*} X \cdot v_i'$$

$$\Rightarrow (2) \sum_{x_i' \in S'^*} X \cdot v_i' \ge \sum_{x_j \in S^*} X \cdot v_j'$$

$$(3)\sum_{x_i\in S^*}X\cdot v_j'\geq \sum_{x_i\in S^*}(v_j-X)$$

(1) puis (2) puis (3) donnent:

$$\sum_{x_i' \in S'^*} v_i \ge \sum_{x_i \in S^*} (v_j - X)$$

Nous y sommes presque... on sait:

$$\sum_{x_i' \in S'^*} v_i \ge \sum_{x_j \in S^*} (v_j - X)$$

Or,
$$\sum_{x_i \in S^*} X \leq X \cdot N$$

$$\sum_{x'_i \in S'^*} v_i \ge \left(\sum_{x_i \in S^*} v_j\right) - X \cdot N$$

Rappel (slide précédent) $\sum_{x' \in S'^*} v_i \ge (\sum_{x_i \in S^*} v_i) - X \cdot N$ On a une solution V_{sol} qui vérifie

$$V_{sol} > V^* - X \cdot N$$

Preuve de l'appartenance à **FPTAS**

- Comme $X = \frac{\varepsilon \cdot V}{N}$, on a $V_{sol} \geq V^* \varepsilon \cdot V$
- Or V < V*
- Donc $V_{sol} > (1 \varepsilon) \cdot V^*$
- \Rightarrow Algo d'approximation de ratio 1ε

Montre que KNAPSACK est (au moins) dans **PTAS**

Reste à étudier la complexité de l'algorithme pour montrer que KNAPSACK est dans FPTAS

Complexité en temps de KNAPSACK

- Prog. Dyn. $\Rightarrow O(NV'^*)$
- Or, $V'^* < NV'$
- $\Rightarrow O(NV'^*) = O(N^2V')$
- Mais $V' = |\frac{V}{Y}|$
- Donc $V' \leq \frac{V}{Y} = \frac{N}{6}$
- ⇒ Complexité en temps de

$$O(N^3 \cdot \frac{1}{\varepsilon})$$

Et si ça se passe mal?

La classe **APX**-dur

- classes FPTAS, PTAS ↔ résultat positif, ratio aussi petit qu'on veut
- ...mais pas toujours possible!

On se place sous des hypothèses raisonnables de complexité (HRC), càd

$$HRC \leftrightarrow P \neq NP$$

Definition

Problème APX-dur: sous HRC, le problème n'est pas dans PTAS

Inapproximabilité

APX-dur: ce qui arrive souvent

- pas d'espoir de ratio $r = 1 + \varepsilon$
- parfois même pas approximable sous un ratio r' constant
- ...on parle de ratio d'inapproximation r'
- dit autrement, sous HRC, il n'existe pas d'algo d'approximation polynomial de ratio ≤ r' (r'=constante)
- ...mais le problème peut être dans APX quand même (ratio r OK), càd:
 - ratio $\leq r'$: difficile (sous HRC)
 - ratio $\geq r$: polynomial
- on parle de problème APX-complet
- Problèmes APX-complets: les plus difficiles de la classe APX

Inapproximabilité

Definition

APX-complet = dans **APX** et **APX**-dur

Retour sur NP

- NP-complet = dans NP et NP-dur
- NP-dur → par réduction

Une façon de voir les choses

- APX ↔ NP
- APX-dur ↔ NP-dur (APX-dur → par réduction)
- APX-complet ↔ NP-complet

Inapproximabilité (exemple 1)

Theorem

Le problème MIN-VC n'est pas approximable sous un ratio 1.1666

Remarques

- MIN-VC n'est pas dans PTAS \Rightarrow MIN-VC est APX-dur
- Comme MIN-VC est 2-approximable:
 - MIN-VC est $APX \Rightarrow MIN-VC$ est APX-complet
 - Meilleur ratio possible pour MIN-VC: entre 1.1666 et 2

Inapproximabilité (exemple 2)

Rappel:

MAXIMUM INDEPENDENT SET (MAX-IS) (= Ensemble Stable)

Instance: Un graphe G = (V, E)

Solution: Un ensemble stable $V' \subseteq V$ de G

Mesure: |V'|

Theorem

Le problème MAX-IS n'est pas approximable sous un ratio $\mathcal{O}(n^{1-\varepsilon})$ pour tout $\varepsilon > 0$.

 $\Rightarrow Max\text{-}IS$ n'est pas dans APX

Et si ça se passe mal?

Ce qu'on peut faire pour

- Montrer qu'un problème est APX-dur (càd, pas dans PTAS):
 - raisonnement ou
 - réduction qui préserve l'approximation
- Montrer qu'un problème n'est pas dans APX:
 - raisonnement ou
 - réduction qui préserve l'approximation

Preuve par raisonnement

Raisonnement

- Notre problème: Pb; un autre: Pb'
- (souvent) Preuve par contradiction. par ex:
 - Pb' étant NP-complet...
 - ...supposons que Pb soit r-approximable...
 - ...alors (après argumentaire) Pb' serait polynomial
 - ⇒ Pas possible sous HRC
 - donc Pb est **APX**-dur (si $r = 1 + \varepsilon$), voire n'appartient pas à **APX** (si r =constante)

Cycle hamiltonien dans un graphe G = cycle passant une et une seule fois par chaque sommet de G

CYCLE HAMILTONIEN

Instance: Un graphe G = (V, E)

Question: Existe-t-il un cycle hamiltonien dans *G* ?

TRAVELING SALESMAN PROBLEM (TSP)

Instance: Un graphe complet à n sommets K_n , un poids w_e sur

chaque arête e du graphe

Solution: Un cycle hamiltonien *CH* dans *G* **Mesure**: Longueur de $CH = \sum_{e \in CH} w_e$

Rem: TSP est un PbO, CYCLE HAMILTONIEN est un PbD

Theorem

CYCLE HAMILTONIEN est NP-complet

On va prouver ceci:

Theorem

Sous HRC, TSP n'est pas dans APX

Par contradiction

- on suppose qu'il existe un algo de r-approx. pour $TSP \ r \ge 1$
- on va en déduire que dans ce cas CYCLE HAMILTONIEN est dans P
- or Cycle Hamiltonien est NP-complet
- sauf si P = NP, il y a contradiction
- ⇒ supposition initiale fausse
- \Rightarrow TSP n'admet pas de ratio d'approx. $r \ge 1$
- $\Rightarrow TSP$ n'est pas dans **APX**

- une instance G = (V, E) à n sommets de CYCLE HAMILTONIEN
- on construit pour TSP
 - graphe K_n
 - poids: $w_e = 1$ si $e \in E$, $w_e = rn + 1$ sinon
- si G a un cycle hamiltonien $\mathcal{C} \to \mathcal{C}$ de poids n pour TSP
- sinon \rightarrow tout cycle hamiltonien a un poids > rn pour TSP

En conclusion:

- ullet algo d'approx. de TSP o observation de la solution sol
- si sol > rn alors TSP optimal > n ⇒ pas de cycle hamiltonien dans G
- si $sol \le rn$ alors TSP optimal $= n \Rightarrow$ un cycle hamiltonien dans G
- ⇒ algo d'approx. pour TSP rend CYCLE HAMILTONIEN polynomial
- → contradiction

Preuve par réduction

Réduction préservant l'approximation

- Similaire à la réduction classique (pour démontrer qu'un problème est NP-complet)
- Contraintes supplémentaires:
 - réduction d'un PbO vers un PbO
 - le paramètre doit être "linéairement conservé"

MAXIMUM INDEPENDENT SET (MAX-IS) (= Ensemble Stable)

Instance: Un graphe G = (V, E)

Solution: Un ensemble stable $V' \subseteq V$ de G

Mesure: |V'|

Theorem

Le problème MAX-IS n'est pas approximable sous un ratio $\mathcal{O}(n^{1-\varepsilon})$ pour tout $\varepsilon > 0$.

MAXIMUM CLIQUE (MAX-CLIQUE)

Instance: Un graphe G = (V, E)

Solution: Une clique (V', E') dans G

Mesure: |V'|

Example

Réduction préservant l'approximation de ${\rm MAX\text{-}IS}$ vers ${\rm MAX\text{-}CLIQUE}$

Conclusion

- problèmes NP-complets
- comment les résoudre polynomialement ?
- petits cas = instances à un ou plusieurs paramètre/s constant/s
- classes d'instances = instances restreintes vérifiant une ou plusieurs propriété/s
- algos d'approximation (PbO seulement)
 - nouvelles classes de complexité
 - "positives": FPTAS, PTAS, APX
 - "négatives": APX-dur, pas dans APX
- bien d'autres techniques (heuristiques, ILP, prog. par contraintes, probabiliste, complexité paramétrée, etc.)