انجينئري حساب

خالد خان بوسفرنگی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹینالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

V																													4	ويباج	بكا	لی کتار	ی پی _ن	مير
1																													- /			رجهاوا	,	1
2																													شي	بونه ک	ż	1.1		
13										-	لر	بيو	كيب	Ţ.	ناور	سمت	کی ر	ر ۔ان	ميد	ب.	طله	ئىم	نرياؤ	ئيوم	٤٢.	y′	=	f((x,	<i>y</i>)		1.2	2	
22																										- /				نابل		1.3	3	
40																						_						- /		طعی په		1.4	ļ	
52																											-	- /		نظی سه		1.5	5	
70																														نودكِ		1.6	6	
74		•			•		•				•				•		ت	نائيد	ر یک	ت او	ورير	وجو	ى كى	،:حار	دات	مساو	ر فی	ت تف	ا قیمه	بتداكي	1	1.7	7	
81																											ات	مساو	نر قی	اده ته	م سر	رجهدو	,	2
81																									.;					تحانس		2.1		
																									- /			-		•				
98																				- /			هی سه									2.2		
113																														ُفر ق		2.3		
117																																2.4	-	
132																																2.5)	
141																																2.6	6	
150																								ت	ساوا	ِقْ م	۽ تفر	اساده	بانس	بير متح	Ė	2.7	7	
162																											گمک	ش۔	رتعا	برىا	7.	2.8	3	
168																				لمك	ملی ا	٤_	نيطه	ں کا	ں حا	رحال	رقرا	<i>.</i>	2.	8.1	1			
172																										<u>ئى</u> .	ئ اینه	کی نمو	وار آ	ر قی اد	,	2.9)	
183											L	کاحل	ت	اوار	امس	نرقی	ره تغ	اساد	نطى	س:	متحا	فير	یے غ	يقے۔	طر۔	کے	لنے	۔ م بد	معلو	قدار	•	2.10)	
101																												.		ı	, ;	7	,	•
191																																نددر.		3
191																										- /		-	_	تجانس			l	
203																		ات	ساو	ق.	ہ تفر	ماده	طی سا	ن خو	متجانه		ر وا۔	ئىر	عدو	ستفر	•	3.2	2	

غير متجانس خطی ساده تفر قی مساوات	3.3	
مقدار معلوم پر لنے کے طُریقے سے غیر متجانس خطی سادہ تفرقی مساوات کاحل	3.4	
تى سادات	نظامِ تفر	4
قالب اور سمتىي كے بنیادی ها كق	4.1	
سادہ تفر قی مساوات کے نظام بطورانحییئری مسائل کے نمونے		
نظرىيە نظام سادە تفر قى مساوات اور وروئىسى	4.3	
4.3.1 تطي نظام		
ت 173	اضا فی ثبو	ı

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

جمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں کی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال ستعال کئے جائیں۔ جہاں ایسے الفاظ موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی ڈلی ہیں البتہ اسے درست بنانے میں بہت لوگوں کا ہاتھ ہے۔ میں ان سب کا شکر یہ ادا کرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور مکمل ہونے یر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر کی

28 اكتوبر 2011

باب4

نظامِ تفرقی مساوات

گزشتہ باب میں آپ نے بلند درجی سادہ تفرقی مساوات کو حل کرنا سیما۔ اس باب میں سادہ تفرقی مساوات حل کرنے کا نیا طریقہ دکھایا جائے گا جس میں n درجی سادہ تفرقی مساوات سے n عدد درجہ اول سادہ تفرقی مساوات کا نظام حاصل کیا جائے گا۔ اس نظام کو حل کرنا بھی سیمایا جائے گا۔ تفرقی مساوات کے نظام کو قالب اور سمتیے کی صورت میں لکھنا زیادہ مفید ثابت ہوتا ہے للذا حصہ 4.1 میں قالب اور سمتیے کے بنیادی حقائق پر خور کیا جائے گا۔

اس باب میں تفرقی مساوات کے نظام کو حل کرنے کی بجائے تمام مساوات کی مجموعی طرز عمل پر غور کیا جائے گا جس سے نظام کے حل کی توازن نظام اہمیت رکھتے جس سے نظام میں کسی لیحے پر معمولی تبدیلی، بعد کے لمحات پر معمولی تبدیلی ہی پیدا کرتی ہے۔اس ترکیب سے مساوات کا اصل حل دریافت نہیں ہوتا لہذا اس کو کیفی ترکیب 2 کہتے ہیں۔ جس ترکیب سے نظام کا اصل حل حاصل ہوتا ہو اس کو مقداری ترکیب گے ہیں۔

 $\begin{array}{c} {\rm stability}^1 \\ {\rm qualitative} \ {\rm method}^2 \\ {\rm quantitative} \ {\rm method}^3 \end{array}$

4.1 قالب اور سمتیے کے بنیادی حقائق

تفرقی مساوات کے نظام پر غور کے دوران قالب اور سمتیات استعال کئے جائیں گے۔

دو عدد خطی سادہ تفرقی مساوات کے نظام

(4.1)
$$y'_1 = a_{11}y_1 + a_{12}y_2 y'_2 = a_{21}y_1 + a_{22}y_2$$

$$y'_1 = 2y_1 - 7y_2 y'_2 = 5y_1 + y_2$$

میں دو عدد نا معلوم تفاعل $y_1(t)$ اور $y_2(t)$ یائے جاتے ہیں۔ان مساوات میں دائیں جانب اضافی تفاعل $y_1(t)$ اور $y_2(t)$ بھی موجود ہو سکتے ہیں۔اسی طرح $y_2(t)$ عدد درجہ اول سادہ تفرقی مساوات پر بمنی نظام $y_2(t)$

$$y'_{1} = a_{11}y_{1} + a_{12}y_{2} + \dots + a_{1n}y_{n}$$

$$y'_{2} = a_{21}y_{1} + a_{22}y_{2} + \dots + a_{2n}y_{n}$$

$$\vdots$$

$$y'_{n} = a_{n1}y_{1} + a_{n2}y_{2} + \dots + a_{nn}y_{n}$$

میں $y_n(t)$ تا $y_n(t)$ نا معلوم تفاعل پائے جائیں گے۔درج بالا ہر مساوات میں دائیں جانب اضافی تفاعل بھی پائے جا سکتے ہیں۔

تكنيكي اصطلاحات

قالب

نظام 4.1 کے عددی سر (جو مستقل یا متغیرات ممکن ہیں) کو 2×2 قالب 4 کی صورت میں کھا جا سکتا ہے۔

(4.3)
$$\mathbf{A} = \begin{bmatrix} a_{jk} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \mathbf{L} \quad \mathbf{A} = \begin{bmatrix} a_{jk} \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ -1 & \frac{2}{3} \end{bmatrix}$$

 matrix^4

اسی طرح نظام $4.2 \ { extstyle 2}$ عددی سر کو n imes n قالب کی صورت میں کھا جا سکتا ہے۔

(4.4)
$$\mathbf{A} = [a_{jk}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & \vdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

قالب میں درج a_{11} ، a_{12} ، a_{12} ، a_{13} ، وغیرہ کو ارکان ⁵ کہتے ہیں۔ افقی کئیروں کو صف ⁶ جبکہ عمودی کئیروں کو قطار ⁷ کہتے ہیں۔ قالب 4.3 میں پہلا صف $[a_{11} \ a_{12}]$ یا $[a_{11} \ a_{12}]$ یا $[a_{21} \ a_{22}]$ یا $[a_{21} \ a$

$$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \quad \mathbf{!} \quad \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

ارکان کی علامتی اظہار میں دو گنا زیر نوشت کا پہلا عدد صف کو ظاہر کرتا ہے جبکہ دوسرا عدد قطار کو ظاہر کرتا ہے۔ یوں a_{11} اور a_{22} بیلی قطار کا رکن ہے۔ قالب 4.3 کا موکزی و تو a_{11} اور a_{22} پر بنی ہے جبکہ قالب 4.4 کا مرکزی و تر a_{11} اور a_{22} ، a_{21} بر بنی ہے۔ ہمیں یہاں صرف مربع قالب e_{11} و تالب 4.4 کا مرکزی قالب ہے جس میں صفول کی تعداد قطاروں کی تعداد کے برابر ہو۔ قالب 4.4 اور قالب 4.4 مربع قالب ہیں۔

سمتیہ۔ ایک قطار اور n ارکان کا سمتیہ قطار 10 ورج ذیل ہے۔

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

اسی طرح ایک صف اور n ارکان کا سمتیہ صف 11 درج ذیل ہے۔

$$\boldsymbol{v} = \begin{bmatrix} v_1 & v_2 & v_3 & \cdots & v_n \end{bmatrix}$$

entry⁵

row⁶

column⁷

main diagonal⁸

square matrix⁹

column vector¹⁰

row vector¹¹

قالب اور سمتيات كاحساب

برابر ی مساوات

دو عدد $n \times n$ قالب صرف اور صرف اس صورت برابر ہوں گے جب ان کے تمام نظیری 12 ارکان بوابو ہوں۔ ظاہر ہے کہ دو قالب کی برابری کے لئے لازم ہے کہ ان میں صفوں کی تعداد کیساں ہو اور ان میں قطاروں کی تعداد کیساں ہو۔یوں n=2 کی صورت میں

$$m{A} = egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$$
 by $m{B} = egin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix}$

صرف اور صرف اس صورت برابر (A=B) ہول گے جب

$$a_{11} = b_{11}, \quad a_{12} = b_{12}$$

 $a_{21} = b_{21}, \quad a_{22} = b_{22}$

ہوں۔ دو عدد سمتیہ صف (یا دو عدد سمتیہ قطار) صرف اور صرف اس صورت بوابو ہوں گے جب دونوں میں ارکان کی تعداد n برابر ہو اور ان کے تمام نظیری ارکان بوابو ہوں ۔ یوں

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 of $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

کی صورت میں $oldsymbol{v}=oldsymbol{x}$ صرف اور صرف تب ہو گا جب $oldsymbol{v}$

$$v_1 = x_1$$
 let $v_2 = x_2$

ہوں۔

مجمويه

مجموعہ حاصل کرنے کی خاطر دونوں قالب کے نظیری ارکان کا مجموعہ لیا جاتا ہے۔دونوں قالب یکساں $m \times n$ ہونا $m \times n$ لازم ہے۔اسی طرح دونوں سمتیہ صف (یا دونوں سمتیہ قطار) میں برابر ارکان ہونا لازم ہے۔یوں 2×2 قالب کا مجموعہ درج ذیل ہو گا۔

(4.5)
$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{bb} \end{bmatrix}, \quad v + x = \begin{bmatrix} v_1 + x_1 \\ v_2 + x_2 \end{bmatrix}$$
corresponding¹²

غيرسمتي ضرب

c فیر سمتی ضرب یعنی مستقل c سے قالب کا ضرب حاصل کرنے کی خاطر قالب کے تمام ارکان کو c سے ضرب دیا جاتا ہے۔ مثلاً

$$A = \begin{bmatrix} 2 & -3 \\ 5 & 1 \end{bmatrix}$$
, $-4A = \begin{bmatrix} -8 & 12 \\ -20 & -4 \end{bmatrix}$

اور

$$v = \begin{bmatrix} 9 \\ -4 \end{bmatrix}$$
, $3v = \begin{bmatrix} 27 \\ -12 \end{bmatrix}$

قالب ضرب قالب

(اتی ترتیب میں)، C=AB قالب $B=[b_{jk}]$ اور $B=[b_{jk}]$ اور $A=[a_{jk}]$ و عدد n imes n تالب $C=[c_{jk}]$ بولان $C=[c_{jk}]$ و ارکان $C=[c_{jk}]$ و ارکان

(4.6)
$$c_{jk} = \sum_{m=1}^{n} a_{jm} b_{mk} \qquad j = 1, \dots, n, \qquad k = 1, \dots, n$$

ہوں گے یعنی A قالب کے j صف کے ہر رکن کو B قالب کے j قطار کے نظیری رکن کے ساتھ ضرب دریتے ہوئے n حاصل ضرب کا مجموعہ لیں۔ ہم کہتے ہیں کہ قالب کے ضرب سے مراد صف ضرب قطار ہے۔ مثلاً

$$\begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} 7 & 1 \\ 2 & -4 \end{bmatrix} = \begin{bmatrix} 2 \cdot 7 + 1 \cdot 2 & 2 \cdot 1 + 1 \cdot (-4) \\ (-3) \cdot 7 + 0 \cdot 2 & (-3) \cdot 1 + 0 \cdot (-4) \end{bmatrix} = \begin{bmatrix} 16 & -2 \\ -21 & -3 \end{bmatrix}$$

یہاں دھیان رہے کہ ضرب قالب غیر مستبدل 14 ہے للذا عموماً $AB \neq BA$ ہو گا۔ یوں دو قالب کو آپس میں ضرب دیتے ہوئے قالبوں کی ترتیب تبدیل نہیں کی جا عتی۔اس حقیقت کی وضاحت کی خاطر درج بالا مثال میں قالبوں کی ترتیب بدلتے ہوئے ان کو آپس میں ضرب دیتے ہیں۔

$$\begin{bmatrix} 7 & 1 \\ 2 & -4 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix} = \begin{bmatrix} 7 \cdot 2 + 1 \cdot (-3) & 7 \cdot 1 + 1 \cdot 0 \\ 2 \cdot 2 + (-4) \cdot (-3) & 2 \cdot 1 + (-4) \cdot 0 \end{bmatrix} = \begin{bmatrix} 11 & 7 \\ 16 & 2 \end{bmatrix}$$

 $[\]begin{array}{c} {\rm scalar\ product^{13}} \\ {\rm non\ commutative^{14}} \end{array}$

n imes n قالب A کو n ارکان کی سمتیہ قطار x سے ضرب بھی اسی قاعدے کے تحت حاصل کی جاتی n imes n ہے۔ یوں a imes v = A عدد ارکان درج ذیل ہوں گے۔

(4.7)
$$v_{j} = \sum_{m=1}^{n} a_{jm} x_{m} \qquad j = 1, \dots, n$$

بول

$$\begin{bmatrix} 7 & -3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 7x_1 - 3x_2 \\ x_1 + 4x_2 \end{bmatrix}$$

ہو گا۔

سادہ تفرقی مساوات کے نظام کااظہار بذریعہ سمتیات

تفرق

قالب یا سمتیه کا تفرق، تمام ارکان کا تفرق حاصل کرنے سے حاصل ہوتا ہے۔

$$\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 5t^3 \\ 6\cos 2t \end{bmatrix}, \quad \mathbf{y}'(t) = \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} 15t^2 \\ -12\sin 2t \end{bmatrix}$$

قالب کی تفرق اور ضرب کو استعال کرتے ہوئے مساوات 4.1 کو درج ذیل لکھا جا سکتا ہے۔

اسی طرح مساوات 4.2 کو درج ذیل y = Ax کو درج دیا کہا ہے۔

(4.9)
$$\begin{bmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

مزيداعمال اوراصطلاحات

تبديل محل

تبدیلی محل 15 کے عمل سے قالب کے قطاروں کو صفوں کی جگہ لکھا جاتا ہے۔یوں 2×2 قالب A سے تبدیلی محل 16 کے ذریعہ تبدیلی محل 17 ماصل ہو گا۔

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 2 & -11 \\ 4 & 3 \end{bmatrix}, \qquad A^T = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -11 & 3 \end{bmatrix}$$

 v^T سمتیہ صف x کا تبدیلی محل سمتیہ x^T سمتیہ قطار ہو گا۔ای طرح سمتیہ قطار v کا تبدیلی محل سمتیہ v^T سمتیہ صف ہو گا۔

$$m{x} = egin{bmatrix} x_1 & x_2 \end{bmatrix} & m{x}^T = egin{bmatrix} x_1 \ x_2 \end{bmatrix}, & m{v} = egin{bmatrix} v_1 \ v_2 \end{bmatrix} & m{v}^T = egin{bmatrix} v_1 & v_2 \end{bmatrix}$$

قالب كامعكوس

 I^{-18} ایسا $n \times n$ قالب جس کے مرکزی وتر کے تمام ارکان اکائی $n \times n$ اور بقایا ارکان صفر ہوں کو اکائی قالب $n \times n$ ایسا $n \times n$ تیں۔

(4.10)
$$I = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

transposition¹⁵

transposition¹⁶

transpose matrix¹⁷

unit matrix¹⁸

A قالب، جس کا A قالب کے ساتھ حاصل ضرب اکائی قالب ہو B قالب B قالب B قالب B قالب B کا معکوس قالب کہلاتا ہے جسے A کھا جاتا ہے جبکہ ایسی صورت میں A غیر نادر قالب A کہلاتا ہے۔ یہاں A اور B دونوں B قالب ہیں۔

(4.11)
$$A^{-1}A = AA^{-1} = I$$

قالب A کا معکوس تب پایا جاتا ہے جب A کا مقطع غیر صفر $0\neq |A|$ ہو۔اگر A کا معکوس نہ پایا جاتا ہوتب A نادر 20 قالب کہلاتا ہے۔ مربع 2×2 قالب کا معکوس

(4.12)
$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{22} \end{bmatrix}$$

-ے جہاں A کا مقطع |A| درج ذیل ہے۔

(4.13)
$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

خطى طور تابعيت

 $v^{(1)}$ عدد سمتیات $v^{(1)}$ تا $v^{(r)}$ جہال ہر سمتیہ $v^{(r)}$ ارکان پر مشتمل ہو، اس صورت خطی طور غیر تابع سلسلہ $v^{(1)}$ یا خطی طور غیر تابع کہلاتے ہیں جب

(4.14)
$$c_1 v^{(1)} + \dots + c_r v^{(r)} = 0$$

non singular matrix¹⁹

singular²⁰

linearly independent set²¹

zero ${
m vector}^{22}$

linearly dependent $vector^{23}$

بقایا سمتیات کی مدد سے لکھا جا سکتا ہے، مثلاً $c_1 \neq 0$ کی صورت میں مساوات 4.14 کو c_1 سے تقسیم کرتے ہوئے

$$v^{(1)} = -\frac{1}{c_1} \left[c_2 v^{(2)} + \dots + c_r v^{(r)} \right]$$

لکھا جا سکتا ہے۔

آ مُكَّني قدراور آمُّكني سمتيات

آنگنی قدر 24 اور آئگنی سمتیات 25 انتهائی اہم ہیں جو کوانٹم میکانیات 26 میں کلیدی کردار اوا کرتے ہیں۔ماوات $Ax = \lambda x$

میں $A=[a_{jk}]$ معلوم n imes n قالب ہے جبکہ λ نا معلوم مستقل (جو حقیقی یا مخلوط مقدار ہو سکتا ہے) اور x=0 نا معلوم سمتیہ ہے جنہیں حاصل کرنا در کار ہے۔ کسی بھی λ کے لئے مساوات 4.15 کا ایک حل x=0 ممکن ہے۔ ایکی غیر سمتی x=0 ہم جو x=0 ہم کی صورت میں مساوات 4.15 پر پورا اترتی ہو، x=0 کی آنگنی قدر x=0 کہتے ہیں۔ x=0 کی نظیری، x=0 کی آنگنی سمتیہ x=0 کہتے ہیں۔

ہم مساوات 4.15 کو $Ax - \lambda x = 0$ یا

$$(4.16) (A - \lambda I)x = 0$$

لکھ سکتے ہیں جو n عدد خطی الجبرائی مساوات کو ظاہر کرتی ہے جس کے نا معلوم متغیرات x_n تا x_n تا x_n سمتیہ کے ارکان ہیں۔اس مساوات کے غیر صفر حل x کے فیر صفر حل x کے عددی سر قالب کا مقطع صفر ہو۔(یہ خطی الجبراکی بنیادی حقیقت ہے)۔ اس باب میں ہمیں x_n سے ولچیں ہے للذا مساوات 4.16 کو

$$\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Eigenvalues²⁴

Eigenvectors²⁵

quantum mechanics²⁶

 $scalar^{27}$

Eigenvalue²⁸

Eigenvector²⁹

لکھتے ہیں جو درج ذیل مساوات کو ظاہر کرتی ہے۔

(4.18)
$$(a_{11} - \lambda)x_1 + a_{12}x_2 = 0$$
$$a_{21}x_1 + (a_{22} - \lambda)x_2 = 0$$

اب نادر قالب کا مقطع صفر ہوتا ہے للذا $A-\lambda I$ اس صورت نادر قالب ہو گا جب اس قالب کا مقطع (جے A کی امتیازی مقطع 30 کہتے ہیں) صفر ہو۔

(4.19)
$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix}$$
$$= (a_{12} - \lambda)(a_{22} - \lambda) - a_{12}a_{21}$$
$$= \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21} = 0$$

مثال 4.1: ورج ذیل قالب کی آنگنی قیمتیں اور آنگنی سمتیات دریافت کریں۔

$$\mathbf{A} = \begin{bmatrix} -3 & 3\\ -0.8 & 0.4 \end{bmatrix}$$

عل:امتیازی مساوات

$$\begin{vmatrix} -3 - \lambda & 3 \\ -0.8 & 0.4 - \lambda \end{vmatrix} = \lambda^2 + 2.6\lambda + 1.2 = 0$$

characteristic determinant³⁰ characteristic equation³¹ $\lambda = \lambda_1 = -0.6$ اور $\lambda_2 = -2$ ملتے ہیں۔آنگنی قیمت $\lambda_1 = -0.6$ اور $\lambda_1 = -0.6$ میں پر کرتے ہیں۔

$$(-3+0.6)x_1 + 3x_2 = 0$$
$$-0.8x_1 + (0.4+0.6)x_2 = 0$$

 $x_2=0.8$ کھا جا سکتا ہے۔دوسری مساوات کو بھی $x_2=0.8$ کھا جا سکتا ہے۔یوں $x_2=0.8$ کھا جا سکتا ہے۔یوں اگر $x_1=0.8$ چننا جائے تو $x_2=0.8$ ہو گا لہذا، $x_1=0.6$ کی نظیری، $x_2=0.8$ کا آتگنی سمتیہ $x_1=0.8$

$$m{x}^{(1)} = egin{bmatrix} 1 \\ 0.8 \end{bmatrix}$$

ہو گا۔ اس طرح $\lambda=\lambda_2=-2$ کو مساوات 4.18 میں پر کرتے ہیں۔

$$(-3+2)x_1 + 3x_2 = 0$$
$$-0.8x_1 + (0.4+2)x_2 = 0$$

ان دونوں مساوات کو $x_1=3$ کھا جا سکتا ہے۔ یوں اگر $x_2=1$ چینا جائے تو $x_1=3$ حاصل ہو گا لہذا، $x_2=-2$ کی نظیری، $x_1=3$ کا آنگنی سمتیہ

$$x^{(2)} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

ہو گا۔جیسا پہلے ذکر کیا گیا، آئلنی سمتیات کو کسی بھی غیر صفر عدد سے ضرب دیا جا سکتا ہے۔

4.2 سادہ تفرقی مساوات کے نظام بطور انجینئری مسائل کے نمونے

اس جھے میں ہم تفرقی مساوات کے نظام کی عملًا اہمیت دیکھیں گے۔ ہم پہلے دیکھتے ہیں کہ ایسے نظام مختلف عملی مسائل میں کیسے کردار ادا کرتے ہیں۔ اس کے بعد ہم دیکھیں گے کہ بلند درجی تفرقی مساوات کو کیسے تفرقی مساوات کے نظام میں تبدیل کیا جا سکتا ہے۔

شكل 4.1: ٹينكيوں كا نظام۔

مثال 4.2: دو ٹینکیوں کا نظام

ایک ٹینکی کو استعال کرتے ہوئے مرکب بنانے کے عمل پر صفحہ 26 مثال 1.10 میں غور کیا گیا جہاں مسئلے کو ایک عدد تفرقی مساوات سے ظاہر کیا گیا۔اس مثال کو ایک مرتبہ دیکھ لیس چونکہ وہی معلومات یہاں بھی استعال کی جائیں گی۔ گی۔

شکل 4.1 میں دو ٹینکیاں دکھائی گئی ہیں جن میں یک برابر دو سو (200) کٹر پانی موجود ہے۔ ٹینکی الف میں خالص پانی ہے جبکہ ٹینکی ب کی پانی میں تمیں (30) کلو گرام کا نمک ملایا گیا ہے۔ ٹینکیوں میں پانی کو مسلسل ہلایا جاتا ہے تاکہ ان میں ہر جگہ محلول کیساں رہے۔ ٹینکیوں میں پانی کو چار (4) کٹر فی منٹ سے گردش دینے سے ٹینکی الف میں نمک کی مقدار $y_1(t)$ وقت کے ساتھ تبدیل ہوتی ہے۔ کتنی دیر کے بعد ٹینکی الف میں نمک کی مقدار ، ٹینکی ب میں نمک کی مقدار کا نصف ہو گا؟

 $y_1(t)$ میں نمک کی مقدار $y_1(t)$ میں $y_1(t)$ میں نمک کی مقدار $y_1(t)$ میں نمک کی مقدار $y_1(t)$ میں تبدیلی کی شرح $y_1(t)$ نمک کی در آمدی اور بر آمدی شرح میں فرق کے برابر ہو گا۔ یہی کچھ $y_2'(t)$ کے لئے

بھی کہا جا سکتا ہے للذا

$$y_1' = 4\frac{y_2}{200} - 4\frac{y_1}{200}$$
$$y_2' = 4\frac{y_1}{200} - 4\frac{y_2}{200}$$

لعيني

$$y_1' = -0.02y_1 + 0.02y_2$$

$$y_2' = 0.02y_1 - 0.02y_2$$

ہو گا۔اس نظام کو

$$(4.20) y' = Ay$$

لکھا جا سکتا ہے جہاں

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \quad \text{if} \quad \mathbf{A} = \begin{bmatrix} -0.02 & 0.02 \\ 0.02 & -0.02 \end{bmatrix}$$

ہیں۔

دوسرا قدم: عمومی حل حاصل کرتے ہیں۔ ایک عدد تفرقی مساوات کی طرح یہاں بھی حل کو قوت نمائی تفاعل $oldsymbol{y} = xe^{\lambda t}$

فرض کرتے ہیں۔مساوات 4.20 میں اس فرضی تفاعل اور اس کے تفرق کو پر کرتے ہیں۔

$$y' = \lambda x e^{\lambda t} = A x e^{\lambda t}$$

$$Ax = \lambda x$$

ہمیں اس مساوات کے غیر صفر اہم حل درکار ہیں للذا ہمیں A کے آگئی قدر اور آگئی سمتیات حاصل کرنے ہوں گے۔آگئی قدر امتیازی مساوات

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} -0.02 - \lambda & 0.02 \\ 0.02 & -0.02 - \lambda \end{vmatrix} = (-0.02 - \lambda) - 0.02^2 = \lambda(\lambda + 0.04) = 0$$

کے حل $\lambda_1=0$ اور $\lambda_2=-0.04$ ہوں گے۔(یہاں دھیان رہے کہ ہمیں غیر صفر آنگنی سمتیات درکار ہیں۔آنگنی قدر صفر ہو سکتے ہیں۔)آنگنی سمتیات مساوات $\lambda_1=0$ اور $\lambda_1=0$ اور $\lambda_2=-0.04$ کے کیا۔ مساوات $\lambda_1=0$ کی پہلے مساوات کو استعال کرتے ہوئے $\lambda_1=0$ اور $\lambda_1=0$ کے لئے

$$-0.02x_1 + 0.02x_2 = 0$$
, $(-0.02 + 0.04)x_1 + 0.02x_2 = 0$

 $x_1=-x_2=1$ اور $x_1=x_2=1$ اور $x_1=-x_2=1$ اور $x_1=x_2=1$ اور $x_1=x_1=1$ اور $x_1=x_2=1$ اور $x_1=x_1=1$ اور $x_1=x_1=1$

$$m{x}^{(1)} = egin{bmatrix} 1 \ 1 \end{bmatrix}$$
 of $m{x}^{(2)} = egin{bmatrix} 1 \ -1 \end{bmatrix}$

حاصل کرتے ہیں۔مساوات 4.21 اور مسئلہ خطی میل (جو خطی متجانس تفرقی مساوات کے نظام پر بھی لا گو ہوتا ہے) کی مدد سے حل لکھتے ہیں۔

(4.22)
$$\mathbf{y} = c_1 \mathbf{x}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{x}^{(2)} e^{\lambda_2 t} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-0.04t}$$

تیسرا قدم: ابتدائی معلومات $y_1(0)=0$ (یعنی ٹینکی الف میں ابتدائی طور پر کوئی نمک نہیں پایا جاتا) اور t=0 (یعنی ٹینکی ب میں ابتدائی طور پر تمیں کلو گرام نمک پایا جاتا ہے) ہیں۔مساوات 4.22 میں $y_2(0)=30$ اور ابتدائی معلومات ہر کرتے ہیں۔

$$\mathbf{y}(0) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 30 \end{bmatrix}$$

ورج بالا مساوات کی جزوی صورت $c_1+c_2=0$ اور $c_1+c_2=0$ ہے جس کا حل $c_1=15$ اور $c_1=15$ ہوا حل $c_2=-15$ ہوا حل معلومات پر پورا اترتا ہوا حل

$$y = 15 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 15 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-0.04t}$$

لعيني

$$y_1(t) = 15 - 15e^{-0.04t}$$

 $y_2(t) = 15 + 15e^{-0.04t}$

ہو گا۔اس حل کو شکل 4.1 میں دکھایا گیا ہے۔

چوتھا قدم: ٹینکی الف میں اس وقت ٹینکی ب کا آدھا نمک ہو گا جب اس میں 10 = $\frac{30}{3}$ کلو گرام نمک ہو۔یوں درج ذیل حاصل ہوتا ہے۔

$$y_1(t) = 15 - 15e^{-0.04t} = 10, \quad t = -\frac{1}{0.04} \ln \frac{1}{3} = 27.5 \,\text{min}$$

مثال 4.3: برقی جال شمال 4.3 برقی جال شمال 4.3 میر برقی رو $I_2(t)$ اور $I_2(t)$ دریافت کریں۔ابتدائی رو اور المبتدائی برقی برقی برقی گیر میں ذخیرہ بار صفر ہیں۔

 $v_L = L rac{\mathrm{d} I_1}{\mathrm{d} t}$ على: پہلا قدم نظام کی نمونہ کثی ہے۔ امالہ میں رو I_1 ہے لہذا اس پر برتی دباو $v_L = I_2 R_2$ ہو گا۔ برق گیر میں رو $I_2 = I_2 R_2$ ہو گا۔ میں رو $I_2 = I_2 R_2$ ہو گا۔ میں رو $I_2 = I_2 R_2$ ہو گا۔ کرخوف قانون جبہ مزاحمت $I_3 = I_3 R_4$ میں کل رو $I_3 = I_3 R_4$ ہے لہذا اس پر دباو $I_3 = I_3 R_4$ ہو گا۔ کرخوف قانون دباو کے تحت کسی بحق بند دائرے میں کل دباو کا اضافہ اس دائرے میں کل دباو کے گھٹاو کے برابر ہو گا۔ یوں بائیں دائرے کے لئے

$$E = L\frac{\mathrm{d}I_1}{\mathrm{d}t} + (I_1 - I_2)R_1$$

$$L=1$$
 اور $R_1=6$ پر کرتے ہوئے $L=1$ ، $E=12$ کھا جا سکتا ہے جس میں $I_1'=-6I_1+6I_2+12$

ملتا ہے۔اسی طرح دائیں دائرے کے لئے

$$0 = \frac{1}{C} \int I_2 dt + I_2 R_2 + (I_2 - I_1) R_1$$

 $R_2=5$ اور $R_2=5$ پر کرتے ہوئے تفرق لینے ہوC=0.4 کھا جا سکتا ہے جس میں $R_2+4.4I_2'-2.4I_1'=0$

ماتا ہے۔اس میں مساوات 4.23 سے I'_1 کی قیمت پر کرتے ہوئے

$$I_2 + 4.4I_2' - 2.4(-6I_1 + 6I_2 + 12) = 0$$

لعني

$$I_2' = -\frac{36}{11}I_1 + \frac{67}{22}I_2 + \frac{72}{11}$$

حاصل ہوتا ہے۔ مساوات 4.23 اور مساوات 4.24 کو

$$\mathbf{J}' = \mathbf{A}\mathbf{J} + \mathbf{g}$$

لکھا جا سکتا ہے جہاں

$$m{J} = egin{bmatrix} I_1 \ I_2 \end{bmatrix}$$
, $m{A} = egin{bmatrix} -6 & 6 \ -rac{36}{11} & rac{67}{22} \end{bmatrix}$, $m{g} = egin{bmatrix} 12 \ rac{72}{11} \end{bmatrix}$

ہیں۔ I_1' اور I_2' کے سمتیہ قطار کو J اس لئے کھا گیا ہے کہ اس باب میں I اکائی قالب کے لئے استعال کیا گیا ہے۔

دوسوا قدم نظام کا حل تلاش کرنا ہے۔ g کی موجودگی غیر متجانس سادہ تفوقی نظام کو ظاہر کرتی ہے البذا ہم ایک عدد تفرقی مطابقتی نظام $J=xe^{\lambda t}$ کا حل حاصل کرتے ہیں۔ہم $J=xe^{\lambda t}$ کو حل تصور کرتے ہوئے متجانس نظام میں پر کرتے ہوئے درج ذیل حاصل کرتے ہیں۔

$$J' = \lambda x e^{\lambda t} = A x e^{\lambda t} \implies A x = \lambda x$$

غیر صفر اہم حل کے حصول کے لئے 🗚 کا آنگنی قدر اور آنگنی سمتیات درکار ہوں گے۔آنگنی قدر امتیازی مساوات

$$|A - \lambda I| = \begin{vmatrix} -6 - \lambda & 6 \\ -\frac{36}{11} & \frac{67}{22} - \lambda \end{vmatrix} = \lambda^2 + \frac{65}{22}\lambda - \frac{15}{11} = 0$$

$$(-6+2.38209)x_1+6x_2=0$$
, $\implies x_1=1.658416x_2$

 $m{x}^{(1)} = egin{bmatrix} 1.658416 & x_1 = 1.658416 & x_2 = 1 \end{bmatrix}$ ماتا ہے۔ یوں $x_1 = 1.658416$ میں $x_2 = 1$ ماصل ماتا ہے۔ ای طرح میاوات $x_2 = 1$ میں میں $x_2 = 1$ کی میاوات میں میں میاوات میں میں میاوات میاوات میں میں میاوات میں میں میں میاوات میں میاوات میں میاوات میں میں میاوات میں میں میں میں میں میں میں

$$(-6+0.57245)x_1+6x_2=0, \implies x_1=1.105471x_2$$

 $m{x}^{(2)} = egin{bmatrix} 1.105471 & x_1 = 1.105471 & x_2 = 1 \end{bmatrix}$ ما ما ہے۔ یوں متجانس نظام کا عمومی حل درج ذیل ہو گا۔

(4.26)
$$J = c_1 \mathbf{x}^{(1)} e^{\lambda_1 t} + c_2 \mathbf{x}^{(2)} e^{\lambda_2 t}$$

مساوات 4.25 کے غیر متجانس نظام کا جبر کی تفاعل g مستقل مقدار ہے للذا اس نظام کا مخصوص حل مستقل سمتیہ قطار $J_p=a$ فرض کرتے ہیں جس کے ارکان a_1 اور a_2 ہیں۔ یوں $J_p=a$ ہوگا۔ مساوات کو ظاہر کرتی ہے۔ میں فرض کردہ مخصوص حل پر کرتے ہوئے a_1 کا ملتا ہے جو درج ذیل مساوات کو ظاہر کرتی ہے۔

$$-6a_1 + 6a_2 + 12 = 0$$
$$-\frac{36}{11}a_1 + \frac{67}{22}a_2 + \frac{72}{11} = 0$$

ان جمزاد مساوات کو حل کرنے سے $a_1=2$ اور $a_2=0$ ماتا ہے للذا $a_2=0$ ہو گا۔یوں عمومی حل ان جمزاد مساوات کو حل کرنے سے

$$J = J_h + J_v = c_1 x^{(1)} e^{\lambda_1 t} + c_2 x^{(2)} e^{\lambda_2 t} + a$$

ہو گا جو درج ذیل مساوات کو ظاہر کرتی ہے۔

$$I_1 = 1.658416c_1e^{-2.38209t} + 1.105471c_2e^{-0.57245t} + 2$$

$$I_2 = c_1e^{-2.38209t} + c_2e^{-0.57245t}$$

شكل 4.3: مثال 4.3 كے منحنی۔

 $I_2(t)$

ابتدائی معلومات کے تحت
$$I_1(0)=0$$
 اور $I_2(0)=0$ اور $I_1(0)=0$ تحت $I_1(0)=0$ ابتدائی معلومات کے تحت $I_2(0)=0$ اور $I_1(0)=0$ اور $I_1(0)=0$ اور $I_1(0)=0$ اور $I_1(0)=0$ ابتدائی معلومات کے تحت $I_1(0)=0$ اور $I_$

ملتا ہے جنہیں حل کرتے ہوئے وہوے $c_1 = -3.61699$ اور $c_2 = 3.61699$ حاصل ہوتا ہے۔یوں مخصوص حل $J = -3.617x^{(1)}e^{-2.38t} + 3.617x^{(2)}e^{-0.57t} + a$

ليعني

$$I_1 = -5.998e^{-2.38t} + 3.998e^{-0.57t} + 2$$

$$I_2 = -3.617e^{-2.38t} + 3.617e^{-0.57t}$$

ہو گا جسے شکل 4.3-الف میں دکھایا گیا ہے۔

معلوم کے بڑھنے کی ست کو منحیٰ پر تیر کے نثان سے دکھایا گیا ہے۔ سطح I_1I_2 کو نظام کی سطح مرحلہ 32 کہتے ہیں جبکہ شکل 4.3-ب کی منحیٰ کو خط حرکت 33 کہتے ہیں۔ ہم ویکصیں گے کہ سطح مرحلہ اشکال، سادہ شکل

phase plane³² ${
m trajectory}^{33}$

4.3-الف طرز کے اشکال سے زیادہ اہم ثابت ہوتے ہیں۔ یہ خطوط کی نسل کے بارے میں بہتر کیفی معلومات فراہم کرتے ہیں۔

صفحہ 26 مثال 1.10 میں ایک عدد ٹینکی کی مثال پر غور کیا گیا جس کی نمونہ کشی ایک عدد سادہ تفرقی مساوات سے کی گئے۔ مثال 4.3 میں وہ ٹینکیوں پر مبنی نظام کی نمونہ کشی دو عدد تفرقی مساوات سے کی گئے۔ اسی طرح مثال 4.3 میں دو عدد نا معلوم روکی بنا دو عدد سادہ تفرقی مساوات حاصل ہوئے۔آپ دیکھ سکتے ہیں کہ زیادہ بڑے نظام کی نمونہ کشی زیادہ تعداد کی تفرقی مساوات سے کی جائے گی۔

n درجی سادہ تفرقی مساوات سے تفرقی مساوات کے نظام کا حصول n

درج ذیل مسئلہ میں ثابت کیا جاتا ہے کہ ہ درجی سادہ تفرقی مساوات 4.27 سے تفرقی مساوات کا نظام حاصل کیا جا سکتا ہے۔

> مسئله 4.1: تفرقی مساوات کا مبادله ساده ۱۸ درجی تفرقی مساوات

(4.27)
$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

میں

$$(4.28) y_1 = y, y_2 = y', y_3 = y'', \cdots, y_n = y^{(n-1)}$$

لے کر اس کو n عدد سادہ ایک درجی تفرقی مساوات کے نظام

(4.29)
$$y'_{1} = y_{2}$$

$$y'_{2} = y_{3}$$

$$\vdots$$

$$y'_{n-1} = y_{n}$$

$$y'_{n} = F(t, y_{1}, y_{2}, \dots, y_{n})$$

میں تبدیل کیا جا سکتا ہے۔

ثبوت: مساوات 4.28 کے تفرق سے نظام کے پہلے n-1 عدد تفرقی مساوات حاصل ہوتے ہیں۔مساوات $y'_n=y^{(n)}$ عدد $y'_n=y^{(n)}$ عدد عصل ہوتا ہے لہذا مساوات 4.28 سے مساوات $y'_n=y^{(n)}$ عاصل ہوتی ہے۔

مثال 4.4: ہم اسپر نگ اور کمیت کی آزادانہ ارتعاش کے مسکلے پر غور کر چکے ہیں جس کی تفرقی مساوات صفحہ 120 پر مساوات 2.41

$$(4.30) my'' + cy' + ky = 0 \Longrightarrow y'' = -\frac{k}{m}y - \frac{c}{m}y'$$

دیتی ہے جس کے لئے مساوات 4.29 کا نظام

$$y_1' = y_2$$

$$y_2' = -\frac{k}{m}y_1 - \frac{c}{m}y_2$$

متجانس اور خطی ہے۔ قالب کا استعال کرتے ہوئے $y=egin{bmatrix} y_1 \ y_2 \end{bmatrix}$ کھتے ہوئے اس نظام کو درج ذیل کھا جا سکتا ہے

(4.31)
$$\mathbf{y}' = \mathbf{A}\mathbf{y} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

جس سے امتیازی مساوات لکھتے ہیں۔

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} -\lambda & 1 \\ -\frac{k}{m} & -\frac{c}{m} - \lambda \end{vmatrix} = \lambda^2 + \frac{c}{m}\lambda + \frac{k}{m} = 0$$

با مثلاً k=0.24 اور k=0.4 ہوں تب

$$\lambda^2 + 1.4\lambda + 0.24 = (\lambda + 0.2)(\lambda + 1.2) = 0$$

 $A - \lambda I =$ اور $\lambda_2 = -1.2$ ماصل ہوتے ہیں۔ آگلنی سمتیات $\lambda_1 = -0.2$ ہوگا جس سے آگلنی شمتیات $\lambda_1 = -0.2$ اور $\lambda_2 = -1.2$ ماصل کرتے ہیں۔ آگلنی قدر $\lambda_1 = -0.2$ پر کرتے ہوئے $\lambda_1 = -0.2$ ہوگا۔ ای $\lambda_2 = -0.2$ سے ماصل کرتے ہیں۔ آگلنی قدر $\lambda_1 = 0.2$ ہوگا۔ ای $\lambda_2 = -0.2$ سے ماسل ہوتے ہوئے $\lambda_2 = -0.2$ ہوگا۔ ای $\lambda_3 = -0.2$ ماتا ہے للذا $\lambda_4 = 0.2$ ماتا ہے للذا $\lambda_5 = 0.2$ ماتا ہے للذا $\lambda_5 = 0.2$ ماتا ہے للذا $\lambda_5 = 0.2$ ہوگا۔ این مرتبیات ماصل ہوتی ہیں جوئے ورح ذیل آگلنی سمتیات ماصل ہوتی ہیں

$$m{x}^{(1)} = egin{bmatrix} 1 \\ -0.2 \end{bmatrix}$$
, $m{x}^{(2)} = egin{bmatrix} 1 \\ -1.2 \end{bmatrix}$

جنہیں استعال کرتے ہوئے

$$y = c_1 \begin{bmatrix} 1 \\ -0.2 \end{bmatrix} e^{-0.2t} + c_2 \begin{bmatrix} 1 \\ -1.2 \end{bmatrix} e^{-1.2t}$$

سمتیہ حل کھا جائے گا۔اس نظام کی پہلی مساوات

$$y = y_1 = c_1 e^{-0.2t} + c_2 e^{-1.2t}$$

در کار حل ہے جبکہ نظام کی دوسری مساوات حل کی تفرق ہے۔

$$y_2 = y_1' = y' = -0.2c_1e^{-0.2t} - 1.2c_2e^{-1.2t}$$

سوالات

سوال 4.1 تا سوال 4.5 میں دیے گئے قالب کے آئگنی قدر اور آئگنی سمتیات حاصل کریں۔

 $\hbar = \frac{h}{2\pi}$ الکیٹران کی ایک خاصیت چکو 34 کہلاتی ہے جس کی مقدار $\frac{\hbar}{2}$ یا $\frac{\hbar}{2}$ ہو سمتی ہے جہاں ہو الکتی ہو کہ کہلاتی ہے اور $h = 6.626 \times 10^{-34} \, \mathrm{m^2 kg/s}$ مستقل پلانک 35 ہے۔ چکو سمتیہ مقدار ہے۔ مقاطیسی میدان

spin³⁴

Plank's constant³⁵

میں الیکٹران کا چکو یا ہمہ میدان (مقاطیسی میدان کی سمت میں) رہتا ہے اور یا مخالف میدان (میدان کی الٹ سمت میں) رہتا ہے۔ہمہ میدان صورت میں الیکٹران کو اوپو چکو 36 الیکٹران کہتے ہیں جبکہ میدان مخالف چکر کی صورت میں الیکٹران کو نیچے چکو 37 الیکٹران کو خاصیت میں الیکٹران کو نیچے چکو 37 الیکٹران کی خاصیت میں الیکٹران کو آئگنی سمتیے 37 اور نیچے 38 قالب چکو 38 سمت معلوم کی جا سمتی ہے۔ 38 میدان میں اوپو چکو الیکٹران کو آئگنی سمتیے 37 اور نیچے چکو الیکٹران کو آئگنی سمتیے 37 سے ظاہر کیا جاتا ہے۔ درج ذیل 37 قالب کے آئگنی قدر (لیعنی الیکٹران کا چکر) عاصل کرتے ہوئے آئگنی سمتیات دریافت کریں۔

$$m{S}_z=egin{bmatrix} rac{\hbar}{2} & 0 \ 0 & -rac{\hbar}{2} \end{bmatrix}$$
 $m{\chi}_+^z=egin{bmatrix} 1 \ 0 \end{bmatrix}$ ، $m{\chi}_-^z=egin{bmatrix} 0 \ 1 \end{bmatrix}$ ، $m{\lambda}_+=rac{\hbar}{2}$ ، $m{\lambda}_-=-rac{\hbar}{2}$.

سوال 4.2: مقناطیسی میدان میں الیکٹران کی زاویائی حرکت کے معیار اثر کا مربع ہے گئی قدر اور آنگنی سمتیات دریافت ہے۔اس قالب کی آنگنی قدر زاویائی حرکت کے معیار اثر کا مربع ہو گا۔ قالب کی آنگنی قدر اور آنگنی سمتیات دریافت کرس۔

$$S^2=egin{bmatrix} rac{3\hbar}{4} & 0 \ 0 & rac{3\hbar}{4} \end{bmatrix}$$

$$egin{bmatrix} 1 \ 0 \end{bmatrix} \cdot egin{bmatrix} 0 \ 1 \end{bmatrix} \cdot \lambda_1 = \lambda_2 = rac{3\hbar^2}{4} : rac$$

spin up³⁶ spin down³⁷ spin matrix³⁸

$$m{A}=egin{bmatrix} 0.2 & 0.6 \ -0.4 & 1.2 \end{bmatrix}$$
:4.5 عوال $m{x}^{(2)}=egin{bmatrix} 1 \ 1 \end{bmatrix}$ ، $m{x}^{(1)}=egin{bmatrix} 1 \ rac{2}{3} \end{bmatrix}$ ، $m{\lambda}_2=rac{4}{5}$ ، $m{\lambda}_1=rac{3}{5}$.

سوال 4.6 اور سوال 4.7 ٹینکیوں کے سوالات ہیں۔

سوال 4.6: اگر مثال 4.2 میں ٹینکی الف میں ابتدائی طور پر چار سو (400) کٹر پانی موجود ہو تب جوابات کیا ہوں گے؟

$$m{x}^{(1)} = egin{bmatrix} 1 \ -1 \end{bmatrix}$$
 ، $\lambda_2 = 0$ ، $\lambda_1 = -0.03$ ، $m{A} = egin{bmatrix} -0.01 & 0.02 \ 0.01 & -0.02 \end{bmatrix}$: $\mathbf{x}^{(1)} = egin{bmatrix} 1 \ 0.5 \end{bmatrix}$

سوال 4.7: مثال 4.2 میں ٹینکی الف کے ساتھ دو سو (200) کٹر کی ٹینکی پ دو نالیوں کے ذریعہ جوڑی جاتی ہے۔ ان کے مابین بھی چار کٹر فی منٹ کی شرح سے پانی کا تبادلہ ہوتا ہے۔ ٹینکی پ میں ابتدائی طور پر دو سو کٹر کا خالص پانی پایا جاتا ہے۔ اس نظام کے تفر قی مساوات ککھ کر ماسکریں۔ نظام کی آگئن قدر اور آگئن سمتیات دریافت کرتے ہوئے مخصوص حل دریافت کریں۔

$$egin{align*} \lambda_3 = 0 & \lambda_2 = -0.02 & \lambda_1 = -0.06 & A = egin{bmatrix} -0.04 & 0.02 & 0.02 \\ 0.02 & -0.02 & 0 \\ 0.02 & 0 & -0.02 \end{bmatrix} :$$

$$egin{align*} oldsymbol{x} & oldsymbol{x}^{(3)} = egin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} & oldsymbol{x}^{(2)} = egin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} & oldsymbol{x}^{(1)} = egin{bmatrix} 1 \\ -0.5 \\ -0.5 \end{bmatrix} \\ oldsymbol{y} = -10 oldsymbol{x}^{(1)} e^{-0.06t} + 15 oldsymbol{x}^{(-0.02t)} + 10 oldsymbol{x}^{(3)} \end{aligned}$$

سوال 4.8 تا سوال 4.10 برقی جال پر مبنی ہیں۔

 $I_1(0)=0$ اور $I_2=2$ ہوں تب حل کیا ہو گا؟ اور $I_1(0)=0$ ہوں تب حل کیا ہو گا

 $I_2 = 9.62e^{-0.57t} - 7.62e^{-2.38t}$ ، $I_1 = 10.63e^{-0.57t} - 12.63e^{-2.38t} + 2$.

سوال 4.9: اگر مثال 4.3 میں $L=0.5\,\mathrm{H}$ کر دیا جائے تب مخصوص حل کیا ہو گا؟

 $I_2 = 2.83e^{-0.529t} - 2.83e^{-5.153t}$ ، $I_1 = 2.96e^{-0.529t} - 4.96e^{-5.153t} + 2$ يواب:

سوال 4.10: اگر مثال 4.3 میں $L=2\,\mathrm{H}$ کر دیا جائے تب مخصوص حل کیا ہو گا؟

 $I_2=14.77e^{-rac{35}{44}t}\sin(0.22t)$ ، $I_1=2+e^{-rac{35}{44}t}[19.9\cos(0.22t)-2\sin(0.22t)]$ جواب:

سوال 4.11 تا سوال 4.11 میں تفرقی مساوات کو نظام میں تبدیل کرتے ہوئے A قالب حاصل کریں۔اس قالب کی آنگنی قدر اور آنگنی سمتیات وریافت کریں۔مساوات کا عمومی حل حاصل کریں۔ تفرقی مساوات کو جوں کا توں بھی حل کریں۔

$$x^{(2)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 ، $x^{(1)} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ ، $\lambda_2 = -2$ ، $\lambda_1 = -3$ ، $A = \begin{bmatrix} 0 & 1 \\ -5 & -6 \end{bmatrix}$: يوابت $y = c_1 \begin{bmatrix} 1 \\ -3 \end{bmatrix} e^{-3t} + c_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-2t}$ ،

$$x^{(2)} = \begin{bmatrix} 1 \\ \frac{3}{4} \end{bmatrix}$$
 ، $x^{(1)} = \begin{bmatrix} 1 \\ -\frac{2}{3} \end{bmatrix}$ ، $\lambda_2 = \frac{3}{4}$ ، $\lambda_1 = -\frac{2}{3}$ ، $A = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{12} \end{bmatrix}$: $y = c_1 \begin{bmatrix} 1 \\ -\frac{2}{3} \end{bmatrix} e^{-\frac{2}{3}t} + c_2 \begin{bmatrix} 1 \\ \frac{3}{4} \end{bmatrix} e^{\frac{3}{4}t}$

$$y''' - y' = 0$$
 :4.13 عوال $x^{(1)} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ ، $\lambda_3 = 0$ ، $\lambda_2 = 1$ ، $\lambda_1 = -1$ ، $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$: عوابات: $y = c_1 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} e^t + c_3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ ، $x^{(3)} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ ، $x^{(2)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

شكل 4.4: دواسير نگ اور دو كميت كانظام ـ

$$y''+9y'+14y=0$$
 :4.14 عوال $x^{(1)}=egin{bmatrix}1\\-2\end{bmatrix}$ ، $\lambda_2=-7$ ، $\lambda_1=-2$ ، $A=egin{bmatrix}0&1\\-14&-9\end{bmatrix}$: عوابات: $y=c_1\begin{bmatrix}1\\-2\end{bmatrix}e^{-2t}+c_2\begin{bmatrix}1\\-7\end{bmatrix}e^{-7t}$ ، $x^{(2)}=\begin{bmatrix}1\\-7\end{bmatrix}$

 $k_1=3$ ، $m_1=m_2=1$ رو اسپر نگ اور دو کمیت کا نظام شکل 4.4 میں دکھایا گیا ہے جس میں $y=xe^{\omega t}$ نظام کے تفرقی مساوات کھیں۔ $y=xe^{\omega t}$ تصور کرتے ہوئے، جہاں $k_2=4$ اور کرتے ہوئے، جہاں کا حل دریافت کریں۔

 $y_2 = (y_1 = A\cos(1.109t) + B\sin(1.109t) + C\cos(3.126t) + D\sin(3.126t)$. $A*\cos(1.109t) + B*\sin(1.109t) + C*\cos(3.126t) + D*\sin(3.126t)$

4.3 نظريه نظام ساده تفرقی مساوات اور ورونسکی

گزشتہ جھے کے ایک درجی تفرقی مساوات کے نظام، درج ذیل عمومی نظام کی مخصوص صورت ہے۔

$$(4.32) y_1 = f_1(t, y_1, \dots, y_n) \\ y_2 = f_2(t, y_1, \dots, y_n) \\ \vdots \\ y_n = f_n(t, y_1, \dots, y_n)$$
 \Longrightarrow $y' = f(t, y)$

 $f = [f_1, f_2, \cdots, f_n]^T$ اور سمتیہ قطار $y = [y_1, y_2, \cdots, y_n]^T$ قطام کو سمتیہ کی صورت میں سمتیہ قطار کو افتی لکھ کر جگہ بچائی گئی ہے) کی استعال کرتے ہوئے سمتیہ قطار کو افتی لکھ کر جگہ بچائی گئی ہے) کی استعال سے کھا گیا ہے۔درج بالا نظام عملی استعال کے تقریباً تمام صورتوں کو ظاہر کرتی ہے۔یوں n = 1 کی صورت میں یہ y' = f(t, y) یعنی y' = f(t, y) کو ظاہر کرے گی جے ہم باب y' = f(t, y) بین میں یہ y' = f(t, y) بین میں یہ خورت میں میں بید رہے ہوئے ہیں۔

a < t < b ير مساوات 4.32 كا حل، وقفه a < t < b ير قابل تفرق، a < t < b عدد نفاعل كا سلسله $y_1 = h_1(t), \quad y_2 = h_2(t), \quad \cdots, \quad y_n = h_n(t)$

 $oldsymbol{h} = [h_1(t), \cdots, h_n(t)]^T$ وگا جو پورے وقفے پر مساوات 4.32 پر پورا اترتا ہو۔ حل سمتیہ 39 وقطار سمتیہ کی صورت میں لکھا جا سکتا ہے۔

$$y = h(t)$$

اس نظام پر مبنی ابتدائی قیمت مسئله مساوات 4.32 اور n عدد ابتدائی شرائط

$$(4.33) y_1(t_0) = K_1, y_2(t_0) = K_2, \cdots, y_n(t_0) = K_n$$

پر مبنی ہو گا۔ان ابتدائی شرائط کو سمتیہ کی صورت میں $\mathbf{y}(t_0) = \mathbf{K}$ کھا جا سکتا ہے جہاں ہو دیے گئے وقفے پر پایا جاتا ہے اور سمتیہ قطار ہیں۔ مساوات $\mathbf{K} = [K_1, \cdots, K_n]^T$ کے ارکان دیے گئے مستقل مقدار ہیں۔ مساوات 1.33 کے ابتدائی قیمت مسئلے کے حل کی وجو دیت اور یکتائی کے لئے معقول شرائط درج ذیل مسئلہ بیان کرتی ہے جو حصہ 1.7 میں دیے گئے مسئلے کو وسعت دیتی ہے۔اس مسئلے کا ثبوت اس کتاب میں پیش نہیں کیا حائے گا۔

solution $vector^{39}$

مسکلہ 4.2: مسکلہ وجودیت اور یکتائی الکے تعلق مسکلہ وجودیت اور یکتائی الکے تعلق مسکلہ وجودیت اور یکتائی تعلق میدان عمل $\frac{\partial f_n}{\partial y_n}$ تا $\frac{\partial f_1}{\partial y_n$

4.3.1 خطى نظام

سادہ تفرقی مساوات کے خطبی ہونے کی تصور کو وسعت دیتے ہوئے ہم مساوات 4.32 کو اس صورت خطبی نظام ⁴¹ کہیں گے جب اس کو

$$y'_{1} = a_{11}(t)y_{1} + \dots + a_{1n}(t)y_{n} + g_{1}(t)$$

$$y'_{2} = a_{21}(t)y_{1} + \dots + a_{2n}(t)y_{n} + g_{2}(t)$$

$$\vdots$$

$$y'_{n} = a_{n1}(t)y_{1} + \dots + a_{nn}(t)y_{n} + g_{n}(t)$$

$$y' = \mathbf{A}\mathbf{y} + \mathbf{g}\mathbf{y}$$

لکھنا ممکن ہو جہاں

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{g} = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{bmatrix}$$

g=0 ہیں۔آپ دیکھ سکتے ہیں کہ نظام 4.34 میں y_1' تا y_1' کا y_1' تا y_1 کے ساتھ خطی تعلق ہے۔ اگر y_1' ہو تب نظام 4.34

$$(4.35) y' = Ay$$

صورت اختیار کرتا ہے جو متجانس نظام ہے جبکہ $g \neq 0$ کی صورت میں نظام 4.34 کو غیر متجانس کہلاتا ہے۔ یوں مثال 4.2 اور مثال 4.4 متجانس نظام ہیں جبکہ مثال 4.3 غیر متجانس نظام ہے۔

domain⁴⁰

linear system⁴¹

خطی نظام میں $\frac{\partial f_n}{\partial y_n}=a_{nn}(t)$ تا $\frac{\partial f_n}{\partial y_n}=a_{nn}(t)$ تا $\frac{\partial f_1}{\partial y_1}=a_{11}(t)$ خطی نظام میں

مسله 4.3: خطى نظام كا مسله وجوديت اور يكتائي

 g_j اور a_{jk} اور a_{jk} اور a_{jk} ایرا جاتا ہو، پر نظام 4.34 کے تمام a_{jk} اور a_{jk} موجود ہے جو ابتدائی شرائط مساوات 4.34 پر پورا اترتا y موجود ہے جو ابتدائی شرائط مساوات 4.34 پر پورا اترتا ہے اور بیر حل یکتا ہے۔

ایک عدد متجانس سادہ تفرقی مساوات کی طرح مسئلہ خطی میل متجانس نظام کے لئے بھی قابل استعال ہے۔

مئلہ 4.4: مئلہ خطی میل اگر ہوں تب ان کا کوئی میل اگر $y^{(2)}$ اور $y^{(2)}$ کسی کھلے وقفے پر متجانس خطی نظام 4.35 کے حل ہوں تب ان کا کوئی مجھی خطی میل $y=c_1y^{(1)}+c_2y^{(2)}$

ثبوت: خطی میل کا تفرق لیتے ہوئے مساوات 4.35 کا استعال کرتے ہیں۔

$$y' = [c_1 y^{(1)} + c_2 y^{(2)}]'$$

$$= c_1 y^{(1)'} + c_2 y^{(2)'}$$

$$= c_1 A y^{(1)} + c_2 A y^{(2)}$$

$$= A(c_1 y^{(1)} + c_2 y^{(2)}) = A y$$

خطی سادہ تفرقی مساوات کے نظام کا نظریہ، ایک عدد خطی سادہ تفرقی مساوات کے نظریے سے بہت مشابہت رکھتا ہے جس پر حصہ 2.6 اور حصہ 2.7 میں غور کیا گیا ہے۔یہ دیکھنے کی خاطر ہم بالکل بنیادی تصورات اور حقائق پر غور کرتے ہیں۔

اساس، عمو می حل اور ورونسکی