In the claims:

Claims 1 to 10 canceled.

- 11. (currently amended) A method of making a stator of an electric machine, said method comprising:
 - a) making individual generally strip-shaped laminas (15) for the stator;
- b) stacking the individual laminas (15) to form a stator core (13) with a yoke having a yoke height, so that one side of the stator core is provided with grooves (18) extending through the core;
- c) producing a subassembly by inserting a stator winding (17) into the grooves (18) of the stator core (13) formed in step b);
- d) bending the subassembly in a circular fashion to form a cylindrical cavity, so that the grooves (18) end in the cavity; and
- e) in order to keep the subassembly in a configuration with the cylindrical cavity, connecting at least two ends (23) of the stator core (13) to each other by means of a welding seam (20); and

f) selecting a depth of the welding seam to give the welding seam a sufficient strength to absorb tensile forces occurring in the welding seam, but at the same time not to exert too excessive a negative influence on magnetic properties at a welding point due to structural changes occurring in the yoke, said selecting including selecting wherein a welding seam depth (T_S) of the welding seam (20) is as a function of the yoke height (H_{yoke}) and a tolerance value (ΔT_S)

and is given yin accordance with the following formula (I):

$$T_S = 0.5 \text{ mm} * (H_{yoke}/mm - 1) \pm \Delta T_S$$
 (I).

- 12. (currently amended) The method as defined in claim 11, wherein further comprising selecting the tolerance value (ΔT_s) equals 1.0 mm.
- 13. (currently amended) The method as defined in claim 11, whereinfurther comprising selecting the tolerance value (ΔT_S) equals to be equal 0.5 mm.
- 14. (currently amended) The method as claimed in claim 11, whereinfurther comprising selecting welding seam depth (T_S) of the welding seam (20) isto be not less than a minimum value (T_{Smin}) and said minimum value (T_{Smin}) depends to be dependent on the yoke height (H_{yoke}) and isto be described by the following formula (II): $T_{Smin} = \{3/40\} * H_{Yoke}$.
- 15. (currently amended) The method as claimed in claim 11, whereinfurther comprising providing the stator core (13) comprises with a yoke (26) and arranging the welding seam (20) is arranged on a radial outside (30) of the yoke (26).
 - 16. (currently amended) The method as claimed in claim 11,

whereinfurther comprising providing the stator core (13) comprises with a plurality of teeth (25), arranging the welding seam (20) is arranged on a radial outside (30) of the yoke (26) and arranging the welding seam (20) is arranged in one of said teeth, with said one of said teeth comprising two partial teeth (24).

- 17. (currently amended) The method as claimed in claim 11, whereinfurther comprising disposing the welding seam (20) is disposed on at least one axial end of the stator core (13).
- 18. (previously presented) The method as claimed in claim 11, further comprising making the welding seam by a laser welding process with a laser beam.
- 19. (currently amended) An electric machine comprising a stator(10) made by a method, which comprises:
 - a) making individual generally strip-shaped laminas (15) for the stator;
- b) stacking the individual laminas (15) to form a stator core (13) with a yoke having a yoke height, so that one side of the stator core is provided with grooves (18) extending through the core;
- c) producing a subassembly by inserting a stator winding (17) into the grooves (18) of the stator core (13) formed in step b);
- d) bending the subassembly in a circular fashion to produce a cylindrical cavity, so that the grooves (18) end in the cavity; and

e) in order to keep the subassembly in a configuration with the cylindrical cavity, connecting at least two ends (23) of the stator core (13) to each other by means of a welding seam (20);

wherein a welding seam depth (T_s) of the welding seam (20) is <u>such that it</u> gives the welding seam a sufficient strength to absorb tensile forces occurring in the welding seam, but at the same time the welding seam does not exert too excessive a negative influence on magnetic properties at a welding point due to structural changes occurring in the yoke, and therefore the welding seam depth (T_s) of the welding seam (20) is selected as a function of the yoke height (H_{yoke}) and a tolerance value (ΔT_s) and is given by in accordance with the following formula (I): $T_s = 0.5 \text{ mm} * (H_{yoke}/\text{mm} - 1) \pm \Delta T_s$ (I).

20. (previously presented) The electric machine as defined in claim19, consisting of a generator.

- 21. (previously presented) The electric machine as defined in claim 19, wherein the tolerance value (ΔT_S) equals 1.0 mm.
- 22. (previously presented) The electric machine as defined in claim 19, wherein the tolerance value (ΔT_S) equals 0.5 mm.
 - 23. (previously presented) The electric machine as claimed in claim

19, wherein the welding seam depth (T_S) of the welding seam (20) is not less than a minimum value (T_{Smin}) and said minimum value (T_{Smin}) depends on the yoke height (H_{yoke}) and is described by the following formula (II): $T_{Smin} = \{3/40\}$ * H_{Yoke} .