Algorithm Analysis & Intro to Data Structures

John Rodriguez

Algorithm Analysis

Model

- assume infinite memory; i.e., runtime isn't affected by limited memory
- ignore disk latency, file & reads, etc.
- Simple instructions = 1 time unit
- for loops = running time of statements * # of iterations
- unitless time tough to be accurate since different hardware will result in different measurements

A Simple Example

```
// computes 0^2 + 1^2 + 2^2 + ... + n^2
public static int sum(int n) {
  int sum = 0; \leftarrow 1
 1 N+1 N
for(int i = 0; i <= n; i++) {
                                 = 2N + 2
   sum += i * i * i;
  return sum; ← 1
     Total running time = 2 + 4N + 2N + 2
                        = 6N + 4
```

Running Time

- Measuring running time itself is great, but...
- ...the rate or order of growth is more important
- We consider an algorithm to be more efficient than another if its worst-case running time has a lower rate of growth

Functions

constant - f(1)

linear - f(N)

logarithmic - f(log N)

exponential - f(aN)

quadratic - $f(N^2)$

cubic - f(N³)

factorial - f(N!)

loglinear - f(N log N)

whose license plate is...

counting all the students in a class

20 questions game

cells splitting biologically, doubling each time

finding all pairs of students

finding all triples OR matrix multiplication

all permutations of N elements

most sorting algorithms

Problem

Using the previous descriptions, take a guess and rank the functions above from smallest to largest order of growth

Visualizing

Now using https://www.desmos.com/calculator, rank the functions from smallest to largest order of growth

```
f(1) , f(log\ N) , f(N) , f(N) , f(N) , f(N^2) , f(N^3) , f(a^N) , f(N!)
```

Time Comparisons

Running time for algorithm

<u>f(n)</u>	n=256	n=1024	n=1,048,576
1	1µsec	1µsec	1µsec
log_2n	8µsec	10µsec	20μsec
n	256µsec	1.02ms	1.05sec
$n \log_2 n$	2.05ms	10.2ms	21sec
n^2	65.5ms	1.05sec	1.8wks
n^3	16.8sec	17.9min	36,559yrs
2^{n}	$3.7x10^{63}yrs$	$5.7x10^{294}yrs$	2.1x10 ³¹⁵⁶³⁹ yrs

Input Comparisons

Largest problem that can be solved if Time \leq T at 1µsec per step

<u>f(n)</u>	T=1min	T=1hr	T=1wk	T=1yr
n	6×10^7	3.6×10^9	6x10 ¹¹	3.2×10^{13}
nlogn	2.8×10^6	1.3×10^{8}	1.8×10^{10}	$8x10^{11}$
n^2	7.8×10^3	6×10 ⁴	7.8×10^{5}	5.6×10^6
n^3	3.9×10^{2}	1.5×10^{3}	8.5×10^{3}	3.2×10^4
2^n	25	31	39	44

Refining Our Model

- The extra precision is not worth the effort
- Multiplicative constants can be ignored

Lower-order terms are dominated by higher-order terms; ignore

$$N^2 + N \longrightarrow N^2$$

Take 2

```
// computes 0^2 + 1^2 + 2^2 + ... + n^2
public static int sum(int n) {
 int sum = 0; \leftarrow 1
  for(int i = 0; i <= n; i++) {
   sum += i * i * i;
  return sum; ← 1
     Total running time = 2N + 2
                        = O(N)
```

Asymptotic Efficiency

- Big-O notation describes an "upper bound"
- "By how much does the running time of this algorithm increase as the size of the input increases without bound?"
- Big- Ω notation describes an "lower bound"
- Big-Θ notation describes a "tight bound"

Take 3

```
// computes 0^2 + 1^2 + 2^2 + ... + n^2
public static int sum(int n) {
  int sum = 0;
  for(int i = 0; i <= n; i++) {
    sum += i * i * i;
  return sum;
     Total running time = O(N) = O(N^2) = O(N^3)
                         =\Theta(N)
```

Another Example

```
for(int i = 0; i < n; i++) {
 for(int j = 0; j < n; j++) {
   k++;
         Total running time = O(N^2+1)
                         = O(N^2)
```

Recursive Example

```
public static long factorial(int n) {
 else
   return n * factorial(n - 1);
                    T(N) = T(N-1) + 2
        Total running time = O(N)
```

Fibonacci

```
public static long fib(int n) {
  if(n <= 1)
    return 1;

else
  return fib(n - 1) + fib(n - 2);
}</pre>
```

$$T(N) = T(N-1) + T(N-2) + 2$$

Total running time = $O(1.5^{N})$

Search

```
// return index of key in a if present; -1 otherwise
public static int search(int[] a, int key) {
   for (int i = 0; i < a.length; i++) {
     if (a[i] == key) {
       return i;
     }
   }
   return -1;
}</pre>
```

Total running time = O(N)

Binary Search

```
// return index of key in a if present; -1 otherwise
// a must be sorted
public static int binarySearch(int[] a, int key) {
  int lo = 0;
  int hi = a.length - 1;

while (lo <= hi) {
   int mid = lo + (hi - lo) / 2;

  if (key < a[mid])
    hi = mid - 1;
  else if (key > a[mid])
    lo = mid + 1;
  else
    return mid;
}
return -1;
}
```

Total running time = $O(\log N)$

Evaluating ab

```
public static long pow(long a, long b) {
  long pow = 1;

  for(int i = 1; i <= b; i++) {
    pow *= a;
  }

  return pow;
}</pre>
```

Total running time = O(N)

Evaluating ab

```
public static long pow2(long a, long b) {
   if(b == 0) return 1;

   if(b == 1) return a;

   if(b % 2 == 0) {
      return pow(a * a, b / 2);
   }
   else {
      return pow(a * a, b / 2) * a;
   }
}
```

Total running time = $O(\log N)$

Homework

Show that X⁶² can be computed with only 8 multiplications

 A majority element in an array, A, of size N is an element that appears more than N / 2 times. For example,

has a majority element (4), whereas

does not. Write a program to solve and determine its runtime.

Data Structures

Arrays

- fixed length
- elements stored contiguously in memory (fragmentation)
- easy to iterate sequential or random access

Lists

- variable length
- elements are not stored contiguously in memory
- can be slower to access, depending on implementation

Sets

- Like a List, but contains no duplicate elements
- Based on the mathematic definition of a set
- Review Set Theory from the Discrete Math slides

Problem

- Construct a class ListSet that extends the ArrayList class and implements the Set interface.
- Override ONLY
 - add(E e)
 - removeAll(Collection)
 - retainAll(Collection)
- Test using Strings
- What's the runtime of the 3 methods?

Stacks

- visualize as a stack of papers or pancakes
- what you put on top (push) is the first item you take off (pop)
- LIFO = last in, first out
- Examples:
 - "undo" feature, back button

Stack Operations

push(o) inserts o at top of stack - O(1)

pop() remove top of stack - O(1)

size()

isEmpty()

top() return top, without removing - O(1)

Problem

 Construct a class ListStack that extends the ArrayList class. Add methods push(), pop() and top().

Applications of Stacks

- Method Calls
- Postfix Expressions

Queues

- visualize as a waiting line
- you add to the back of the line (enqueue), the front of the line is the first item you take off (dequeue)
- FIFO = first in, first out
- Examples:
 - messaging queues, routers, online ticketing

Queue Operations

• enqueue(o) inserts o at rear of queue - O(1)

dequeue() remove from front of queue - O(1)

- size()
- isEmpty()
- front() return front, without removing O(1)

Problem

 Construct a class ListQueue that extends the ArrayList class. Add methods enqueue(), dequeue() and front().

Applications of Queues

- Server HTTP Request Handling
- CPU Scheduling
- Printing Queues

References

- http://bigocheatsheet.com/
- https://www.desmos.com/calculator
- https://www.cs.cmu.edu/~adamchik/15-121/lectures/Stacks%20and%20Queues/ Stacks%20and%20Queues.html

Homework

• Given a string made from the characters {}()[], write a program that returns true when balanced and returns false when unbalanced, e.g.,

Exit Ticket

See Slack channel