# suma y producto por escalar en vectores geométricos

Prof. Jhon Fredy Tavera Bucurú

2025

suma de vectores

Producto por escalar

# Propiedades de la suma de vectores

- 1.  $\vec{u} + \vec{v}$  es un vector geométrico.
- $2. \ \vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 3.  $(\vec{u} + \vec{v}) + \vec{z} = \vec{u} + (\vec{v} + \vec{z})$
- 4.  $\vec{u} + \vec{0} = \vec{u}$
- 5.  $\vec{u} + (-\vec{u}) = \vec{0}$

## Ejercicio (Ecuación)

Sean  $\vec{u}$  y  $\vec{v}$  vectores dados. Expresar en términos de  $\vec{u}$  y  $\vec{v}$  el vector  $\vec{x}$  tal que

$$\vec{x} + \vec{v} = \vec{u}$$

Usando las propiedades de la suma, se prueba que  $\vec{x} = \vec{u} + (-\vec{v})$ 



#### Definición (Diferencia entre vectores)

Dados dos vectores  $\vec{u}$  y  $\vec{v}$ , la diferencia  $\vec{u} - \vec{v}$  se define como el vector que sumado a  $\vec{v}$  nos da  $\vec{u}$ . (Ver la figura 1.19). Ahora, según se acaba de ver en el ejemplo anterior, tal vector es  $\vec{u} + (-\vec{v})$ ; así que

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

#### Ejemplo

Sean  $\vec{u}$ ,  $\vec{v}$  y  $\vec{w}$  como se muestran en la figura, con  $\|\vec{u}\|=2$ ,

$$\|\vec{v}\| = 4 \text{ y } \|\vec{w}\| = 1.$$

Dibuje  $\vec{u} + \vec{v} - \vec{w}$  y halle tanto su magnitud como su dirección.



## Desigualdad Triangular

Si  $\vec{u}$  y  $\vec{v}$  son vectores no paralelos, considere el triángulo construido a partir de ellos, podemos concluir que

$$\|\vec{u} + \vec{v}\| < \|\vec{u}\| + \|\vec{v}\|$$

Puesto que "la longitud de un lado en cualquier triángulo es menor que la suma de las longitudes de los otros dos lados".

Además, si  $\vec{u}$  y  $\vec{v}$  son paralelos se da la igualdad

$$\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$$
, por tanto

$$\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$$

(1.1)

la cual es denominada desigualdad triangular.

### Definición producto por escalar

Sea  $a \in \mathbb{R}$ , que llamaremos escalar y  $\vec{u}$  un vector geometrico definimos el **producto por escalar**  $a\vec{u}$  como:

- Si a > 0 y  $\vec{u} \neq \vec{0}$  entonces  $a\vec{u}$  es el vector con la misma dirección de  $\vec{u}$  y con magnitud  $a||\vec{u}||$ .
- Si a < 0 y  $\vec{u} \neq \vec{0}$  entonces  $a\vec{u}$  es el vector con dirección opuesta a la de  $\vec{u}$  y con magnitud  $|a| ||\vec{u}||$ , donde |a| es el valor absoluto de a.
- ► Si a = 0 o  $\vec{u} = \vec{0}$  entonces  $a\vec{u} = \vec{0}$ .

#### De la definición, podemos decir que

- $||a\vec{u}|| = |a|||\vec{u}||$
- $ightharpoonup a\vec{u} = \vec{0}$  si y sólo si a = 0 o  $\vec{u} = \vec{0}$
- ightharpoonup a $\vec{u}$  es un vector geometrico paralelo a  $\vec{u}$
- $ightharpoonup 1\vec{u} = \vec{u}$

Además, se pueden probar las siguientes propiedades

1. 
$$a(b\vec{u}) = (ab)\vec{u}$$

$$2. \ a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$$

$$3. (a+b)\vec{u} = a\vec{u} + b\vec{u}$$

## Demostración, $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$

Es claro que esta propiedad es válida si a=0 o  $\vec{u}=\vec{0}$  o  $\vec{v}=\vec{0}$ . Supongamos a>0,  $\vec{u}\neq\vec{0}$  y  $\vec{v}\neq\vec{0}$  y probemos que las normas y las direcciones de los vectores  $a(\vec{u}+\vec{v})$  y  $a\vec{u}+a\vec{v}$  son iguales. Considere los triángulos ABC y DEF



 $\alpha = \beta$  (ya que  $\vec{u}$  es paralelo a  $a\vec{u}$  y  $\vec{v}$  lo es a  $a\vec{v}$ ), además

$$\frac{|EF|}{|DE|} = \frac{\|\vec{a}\vec{v}\|}{\|\vec{a}\vec{u}\|} = \frac{\|\vec{v}\|}{\|\vec{u}\|} = \frac{\|\vec{v}\|}{\|\vec{u}\|} = \frac{|BC|}{|AB|}$$

por lo que los lados son proporcionales. Entonces por LAL,  $\triangle ABC$  es semejante a  $\triangle DEF$ .

Como consecuencia de esa semejanza tenemos que

$$\frac{|DF|}{|AC|} = \frac{|DE|}{|AB|}$$

y así

$$\frac{\|a\vec{u} + a\vec{v}\|}{\|\vec{u} + \vec{v}\|} = \frac{\|a\vec{u}\|}{\|\vec{u}\|} = a.$$

Luego,

$$||a\vec{u} + a\vec{v}|| = a||\vec{u} + \vec{v}|| = ||a(\vec{u} + \vec{v})||$$

es decir, los vectores  $a\vec{u} + a\vec{v}$  y  $a(\vec{u} + \vec{v})$  tienen la misma norma.

Veamos ahora que también tienen la misma dirección: Por una parte,

$$dir(a(\vec{u} + \vec{v})) = dir(\vec{u} + \vec{v})$$
 (pues  $a > 0$ )  
=  $\theta + \phi$ 

y por otra parte,

$$dir(a\vec{u} + a\vec{v}) = \gamma + \phi.$$

Ahora, por la semejanza de los triángulos ABC y DEF se tiene que  $\theta=\gamma$ , así

$$dir(a(\vec{u}+\vec{v}))=dir(a\vec{u}+a\vec{v}).$$

Por tanto,

$$a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}.$$

De manera análoga se puede verificar la validez si a < 0,  $\vec{u} \neq \vec{0}$  y  $\vec{v} \neq \vec{0}$ .

## Definición (Vector unitario, normalización)

Un vector geométrico se dice **unitario** si su magnitud es 1. Dado un vector  $\vec{v}$ ,  $\vec{v} \neq \vec{0}$ , el vector

$$\vec{u} = \frac{1}{\|\vec{v}\|} \vec{v}$$

tiene la misma dirección de  $\vec{v}$  pues  $\frac{1}{\|\vec{v}\|} > 0$ , y es unitario ya que

$$\|\vec{u}\| = \left\|\frac{1}{\|\vec{v}\|}\vec{v}\right\| = \left(\frac{1}{\|\vec{v}\|}\right)\|\vec{v}\| = 1.$$

Nos referiremos al proceso de hallar el vector unitario  $\frac{1}{\|\vec{v}\|}\vec{v}$  a partir de un vector no nulo  $\vec{v}$ , como **normalización** de  $\vec{v}$ .

Obsérvese que para todo vector no nulo  $\vec{v}$ , se tiene que

$$\vec{v} = \|\vec{v}\|\vec{u}$$

donde  $\vec{u}$  es el vector unitario con la misma dirección de  $\vec{v}$ .



#### Proposición

Sean  $\vec{u}$  y  $\vec{v}$  no nulos.

 $\vec{u}$  y  $\vec{v}$  son paralelos si y sólo si  $\vec{v}$  es múltiplo escalar de  $\vec{u}$  o  $\vec{u}$  es múltiplo escalar de  $\vec{v}$ .

#### Demostración

Por definición de producto por escalar, si  $\vec{v}$  es múltiplo escalar de  $\vec{u}$  o  $\vec{u}$  es múltiplo escalar de  $\vec{v}$  entonces  $\vec{u}$  y  $\vec{v}$  son paralelos.

Por otro lado, si son paralelos, entonces  $\vec{u}$  y  $\vec{v}$  tienen la misma dirección o direcciones opuestas, portanto sus vectores unitarios difieren, a lo sumo, por un signo. Caso sean iguales

$$ec{\mathbf{v}} = \|ec{\mathbf{v}}\| \left( \frac{1}{\|ec{\mathbf{u}}\|} ec{\mathbf{u}} \right) = \left( \frac{\|ec{\mathbf{v}}\|}{\|ec{\mathbf{u}}\|} \right) ec{\mathbf{u}}$$

Luego,  $\vec{v}$  es múltiplo escalar de  $\vec{u}$ . De manera analoga se prueba con los vectores unitarios opuestos.

#### Ejercicio

Sea el triángulo con vértices A,B,C y los puntos medios M,N de los lados  $\overline{AC}$  y  $\overline{BC}$ .



Entonces

$$\overrightarrow{MN} = \frac{1}{2}\overrightarrow{AB}$$

#### Demostración

En primer lugar, tenemos que

$$\overrightarrow{MN} = \overrightarrow{MC} + \overrightarrow{CN}.$$

Ahora, como M y N son los puntos medios de  $\overline{AC}$  y  $\overline{BC}$ , respectivamente, entonces

$$\overrightarrow{MC} = \frac{1}{2}\overrightarrow{AC}, \quad \overrightarrow{CN} = \frac{1}{2}\overrightarrow{CB}.$$

Luego,

$$\overrightarrow{MN} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CB} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{CB}) = \frac{1}{2}\overrightarrow{AB}.$$

#### Teorema de la proporción

Sean m y n numeros positivos y sea P el punto de un segmento  $\overline{AB}$  que lo divide (A-P-B) de tal modo que

$$\frac{\|\overrightarrow{AP}\|}{\|\overrightarrow{PB}\|} = \frac{m}{n}$$

Si O es cualquier punto del plano, entonces

$$\overrightarrow{OP} = \frac{n}{m+n}\overrightarrow{OA} + \frac{m}{m+n}\overrightarrow{OB}$$



#### Demostración

Note que

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}.$$

y como

$$\overrightarrow{AP} = \frac{m}{n}\overrightarrow{PB},$$

se tiene que

$$\overrightarrow{OP} = \overrightarrow{OA} + \frac{m}{n}\overrightarrow{PB}.$$

Como, además,

$$\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP},$$

entonces

$$\overrightarrow{OP} = \overrightarrow{OA} + \frac{m}{n} (\overrightarrow{OB} - \overrightarrow{OP})$$

$$(1 + \frac{m}{n})\overrightarrow{OP} = \overrightarrow{OA} + \frac{m}{n}\overrightarrow{OB}$$

$$\overrightarrow{OP} = \frac{n}{m+n}\overrightarrow{OA} + \frac{m}{m+n}\overrightarrow{OB}. \quad \Box$$

### Proposición

En todo triángulo, las tres medianas se cortan en un punto (llamado **baricentro**) cuya distancia a cada vértice es igual a 2/3 de la longitud de la mediana trazada desde dicho vértice. En el siguiente ejemplo se muestra una manera de probar este resultado empleando vectores geométricos.

#### Demostración

Sea P el punto de la mediana relativa al lado  $\overline{BC}$  tal que su distancia al vértice A es  $\frac{2}{3}$  de la longitud de dicha mediana. Probar que

$$\overrightarrow{OP} = \frac{1}{3} \left( \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} \right).$$