CEDS (2024): Probabilidade e Estatística QUIZ 3

Rennan Dalla Guimarães

2024-10-22

Índice

1	Intr	Introdução			
2	Exe	xercício 1: Distribuição Normal			
	2.1	a) Realização dos testes de normalidade	3		
	2.2	b) Probabilidade de que uma chamada demore entre 125 e 150 segundos	5		
	2.3	c) Probabilidade de que uma chamada demore menos de 125 segundos $\ \ldots \ \ldots$	6		
	2.4	d) Probabilidade de que uma chamada demore entre 145 e 155 segundos	7		
	2.5	e) Probabilidade de que uma chamada demore entre 160 e 165 segundos	8		
3	Exe	rcício 2: Identificação de Distribuição	9		
	3.1	a) Identificação da distribuição	9		
	3.2	b) Comparação dos resultados do teste de Kolmogorov-Smirnov	11		
	3.3	c) Plotar a função e o histograma para a distribuição escolhida	12		
	3.4	d) Verificar se a área sob a curva estimada é igual a 1	13		
	3.5	e) Calcular a área no intervalo [1; 1,5] e plotar	13		
4	Exe	rcício 3: Normalidade e Intervalo de Confiança	14		
	4.1	a) Testes de Shapiro-Wilk e Lilliefors	15		
	4.2	b) Intervalo de confiança de 99% para a média da inflação	15		
	4.3	c) Nível de confiança para intervalo com comprimento total igual a 3	16		
	4.4	d) Intervalo de confiança de 90% para o desvio padrão	16		
	4.5	e) Teste de normalidade para a série histórica de 1999 a 2022	16		
5	Exe	rcício 4: Identificação de Distribuição	17		
	5.1	Preparação do Ambiente	17		
	5.2	a) Conjunto de dados (a)	17		
		5.2.1 Dados	17		
		5.2.2 Análise Descritiva	18		

	5.2.3	Ajuste das Distribuições	18
	5.2.4	Comparação dos Critérios de Informação (AIC)	19
	5.2.5	Teste de Kolmogorov-Smirnov	19
	5.2.6	Plotagem do Histograma com a Curva Ajustada	20
5.3	b) Co	njunto de dados (b) \dots	20
	5.3.1	Dados	20
	5.3.2	Análise Descritiva	20
	5.3.3	Ajuste das Distribuições	21
	5.3.4	Comparação dos Critérios de Informação (AIC)	21
	5.3.5	Teste de Kolmogorov-Smirnov	22
	5.3.6	Plotagem do Histograma com a Curva Ajustada	22
5.4	c) Co	njunto de dados (c)	23
	5.4.1	Dados	23
	5.4.2	Análise Descritiva	24
	5.4.3	Ajuste das Distribuições	24
	5.4.4	Comparação dos Critérios de Informação (AIC)	25
	5.4.5	Teste de Kolmogorov-Smirnov	25
	5.4.6	Plotagem do Histograma com a Curva Ajustada	26
5.5	d) Co	njunto de dados (d) \ldots	26
	5.5.1	Dados	26
	5.5.2	Análise Descritiva	26
	5.5.3	Ajuste das Distribuições	27
	5.5.4	1 3	27
	5.5.5		28
	5.5.6	Plotagem do Histograma com a Curva Ajustada	28
5.6	e) Co	•	29
	5.6.1		29
	5.6.2	Análise Descritiva	29
	5.6.3	Ajuste das Distribuições	30
	5.6.4	* 3	30
	5.6.5	3 9	31
	5.6.6	Plotagem do Histograma com a Curva Aiustada	31

1 Introdução

O objetivo desse projeto é realizar o quiz 3, que busca colocar em prática aprendizados sobre: Distribuição normal, identificação de distribuições, normalidade e intervalo de confiança.

No repositótio do projeto temos a versão em html e qmd, caso esteja com dificuldade de ler alguma parte do arquivo.

2 Exercício 1: Distribuição Normal

```
dados <- c(149.3355, 140.3779, 145.7254, 149.8931, 139.6168, 149.1934, 129.6147, 134.7523, 140.515.422, 160.2664, 155.4553, 142.5989, 134.9844, 148.5172, 163.1447, 131.0138, 131.49.4015, 145.6802, 160.3472, 121.1775, 136.7295, 162.2381, 150.7192, 117.8144, 131.68.0833, 133.9263, 150.9102, 149.4811, 167.4367, 178.0970, 138.4903, 148.6764, 149.4811, 167.4367, 178.0970, 138.4903, 148.6764, 149.4811, 149.4811, 149.4811, 149.4812, 134.6648, 149.1814.6812, 134.6648, 149.1814, 149.4812, 134.6648, 149.1814, 149.1814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 149.4814, 1
```

2.1 a) Realização dos testes de normalidade

i) Teste de Kolmogorov-Smirnov

```
ks.test(dados, "pnorm", mean=mean(dados), sd=sd(dados))
```

Exact one-sample Kolmogorov-Smirnov test

data: dados

D = 0.1167, p-value = 0.4688 alternative hypothesis: two-sided

Interpretação:

O teste de Kolmogorov-Smirnov compara a distribuição acumulada empírica dos dados com a distribuição normal teórica. O p-valor obtido é usado para testar a hipótese nula de que os dados seguem uma distribuição normal. Se o p-valor for menor que 0,05, rejeitamos a hipótese de normalidade.

ii) Teste de Shapiro-Wilk

```
shapiro.test(dados)
```

```
Shapiro-Wilk normality test
```

```
data: dados
W = 0.98185, p-value = 0.6324
```

Interpretação:

O teste de Shapiro-Wilk é utilizado para verificar a normalidade dos dados. Um p-valor maior que 0,05 indica que não podemos rejeitar a hipótese de normalidade.

iii) Teste de Anderson-Darling

```
library(nortest)
ad.test(dados)
```

Anderson-Darling normality test

```
data: dados
A = 0.37902, p-value = 0.3928
```

Interpretação:

O teste de Anderson-Darling é sensível a discrepâncias na cauda da distribuição. Um p-valor maior que 0,05 indica que os dados podem ser considerados normais.

iv) Teste de Lilliefors

```
lillie.test(dados)
```

```
Lilliefors (Kolmogorov-Smirnov) normality test
```

```
data: dados
D = 0.1167, p-value = 0.08619
```

Interpretação:

O teste de Lilliefors é uma adaptação do teste de Kolmogorov-Smirnov quando os parâmetros da distribuição normal não são conhecidos e precisam ser estimados. Um p-valor maior que 0,05 indica normalidade.

Conclusão Geral:

Se em todos os testes o p-valor for maior que 0,05, não rejeitamos a hipótese de que os dados seguem uma distribuição normal. Portanto, podemos considerar os dados como normalmente distribuídos.

2.2 b) Probabilidade de que uma chamada demore entre 125 e 150 segundos

Calculando a média e o desvio padrão:

```
media <- mean(dados)
desvio <- sd(dados)
media</pre>
```

[1] 150.0301

```
desvio
```

[1] 15.059

Calculando a probabilidade:

```
prob_b <- pnorm(150, mean=media, sd=desvio) - pnorm(125, mean=media, sd=desvio)
prob_b</pre>
```

[1] 0.4509603

Interpretação:

A probabilidade de uma chamada demorar entre 125 e 150 segundos é aproximadamente 45.1%.

```
x <- seq(min(dados), max(dados), length=1000)
y <- dnorm(x, mean=media, sd=desvio)
plot(x, y, type="l", lwd=2, ylab="Densidade", xlab="Tempo (segundos)", main="Probabilidade expolygon(c(125, seq(125, 150, length=100), 150), c(0, dnorm(seq(125, 150, length=100), mean=media)</pre>
```

Probabilidade entre 125 e 150 segundos

2.3 c) Probabilidade de que uma chamada demore menos de 125 segundos

```
prob_c <- pnorm(125, mean=media, sd=desvio)
prob_c</pre>
```

[1] 0.04824295

Interpretação:

A probabilidade de uma chamada demorar menos de 125 segundos é aproximadamente 4.82%.

Probabilidade de menos de 125 segundos

2.4 d) Probabilidade de que uma chamada demore entre 145 e 155 segundos

```
prob_d <- pnorm(155, mean=media, sd=desvio) - pnorm(145, mean=media, sd=desvio)
prob_d</pre>
```

[1] 0.2601309

Interpretação:

A probabilidade de uma chamada demorar entre 145 e 155 segundos é aproximadamente 26.01%.

```
plot(x, y, type="l", lwd=2, ylab="Densidade", xlab="Tempo (segundos)", main="Probabilidade expolygon(c(145, seq(145, 155, length=100), 155), c(0, dnorm(seq(145, 155, length=100), mean=maximum (seq(145, 155, length=100), mean=maximum (seq(145,
```

Probabilidade entre 145 e 155 segundos

2.5 e) Probabilidade de que uma chamada demore entre 160 e 165 segundos

```
prob_e <- pnorm(165, mean=media, sd=desvio) - pnorm(160, mean=media, sd=desvio)
prob_e</pre>
```

[1] 0.09387641

Interpretação:

A probabilidade de uma chamada demorar entre 160 e 165 segundos é aproximadamente 9.39%.

```
plot(x, y, type="l", lwd=2, ylab="Densidade", xlab="Tempo (segundos)", main="Probabilidade expolygon(c(160, seq(160, 165, length=100), 165), c(0, dnorm(seq(160, 165, length=100), mean=maximum (seq(160, 160, length=100), mean=maximum (seq(160, 160, length=100), mean=maximum (seq(160,
```

Probabilidade entre 160 e 165 segundos

3 Exercício 2: Identificação de Distribuição

Dados da variável aleatória X:

3.1 a) Identificação da distribuição

Utilizando o pacote fitdistrplus:

```
library(fitdistrplus)
```

Análise descritiva:

Cullen and Frey graph

summary statistics

min: 0.6914335 max: 2.430045

median: 1.861869 mean: 1.787556

estimated sd: 0.3498879

estimated skewness: -1.133072 estimated kurtosis: 5.391445

Ajuste das distribuições:

• Weibull

```
ajuste_weibull <- fitdist(dados, "weibull")</pre>
```

• Gamma

```
ajuste_gamma <- fitdist(dados, "gamma")</pre>
```

• Lognormal

```
ajuste_lognormal <- fitdist(dados, "lnorm")

Comparação dos AIC:

aic_values <- data.frame(
    Distribuição = c("Weibull", "Gamma", "Lognormal"),
    AIC = c(ajuste_weibull$aic, ajuste_gamma$aic, ajuste_lognormal$aic)
)
aic_values

Distribuição AIC
1 Weibull 21.97718
2 Gamma 31.70738</pre>
```

3.2 b) Comparação dos resultados do teste de Kolmogorov-Smirnov

Weibull

3

Lognormal 36.10330

Lognormal

```
ks.test(dados, "plnorm", meanlog=ajuste_lognormal$estimate["meanlog"], sdlog=ajuste_lognormal
```

Exact one-sample Kolmogorov-Smirnov test

data: dados

D = 0.15513, p-value = 0.423 alternative hypothesis: two-sided

Justificativa:

Analisando os resultados apresentados, a distribuição Weibull apresenta o melhor ajuste aos dados por duas razões principais:

Menor valor de AIC (Critério de Informação de Akaike):

Weibull: 21.97718 Gamma: 31.70738 Lognormal: 36.10330

O AIC mais baixo da Weibull indica que esta distribuição oferece o melhor compromisso entre a qualidade do ajuste e a complexidade do modelo.

Maior p-valor no teste de Kolmogorov-Smirnov: Weibull: p-valor = 0.9424 Gamma: p-valor = 0.5332 Lognormal: p-valor = 0.423

O p-valor mais alto da Weibull (0.9424) indica que não há evidências para rejeitar a hipótese de que os dados seguem esta distribuição. Quanto maior o p-valor, mais forte é a evidência de que o modelo se ajusta bem aos dados. Em comparação com as outras distribuições, a Weibull apresenta tanto o menor AIC quanto o maior p-valor, o que a torna claramente a melhor escolha para modelar estes dados.

3.3 c) Plotar a função e o histograma para a distribuição escolhida

Histograma com ajuste da Weibull:

```
hist(dados, freq=FALSE, main="Histograma com Ajuste Weibull", xlab="Valores", ylim=c(0, 2))
curve(dweibull(x, shape=ajuste_weibull$estimate["shape"], scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale=ajuste_weibull$estimate["scale
```

Histograma com Ajuste Weibull

3.4 d) Verificar se a área sob a curva estimada é igual a 1

Calculando a integral da função densidade de probabilidade:

```
integrate(function(x) dweibull(x, shape=ajuste_weibull$estimate["shape"], scale=ajuste_weibull$estimate["shape"], scale=a
```

1 with absolute error < 3e-08

Interpretação:

O resultado deve ser próximo de 1, confirmando que a área sob a curva da distribuição de probabilidade é igual a 1.

3.5 e) Calcular a área no intervalo [1; 1,5] e plotar

Calculando a probabilidade no intervalo:

[1] 0.1681584

Plotando a área:

```
hist(dados, freq=FALSE, main="Área entre 1 e 1,5", xlab="Valores", ylim=c(0, 2))
curve(dweibull(x, shape=ajuste_weibull$estimate["shape"], scale=ajuste_weibull$estimate["scale col="red", lwd=2, add=TRUE)
x_seq <- seq(1, 1.5, length=100)
y_seq <- dweibull(x_seq, shape=ajuste_weibull$estimate["shape"], scale=ajuste_weibull$estimate[polygon(c(1, x_seq, 1.5), c(0, y_seq, 0), col="lightblue", border=NA)</pre>
```

Área entre 1 e 1,5

4 Exercício 3: Normalidade e Intervalo de Confiança

Dados de inflação anual (2013 a 2022):

```
inflacao \leftarrow c(5.91, 6.41, 10.67, 6.29, 2.95, 3.75, 4.31, 4.52, 10.06, 5.79)
```

4.1 a) Testes de Shapiro-Wilk e Lilliefors

Shapiro-Wilk

```
shapiro.test(inflacao)
```

```
{\tt Shapiro-Wilk\ normality\ test}
```

```
data: inflacao
W = 0.88867, p-value = 0.1638
```

Lilliefors

```
lillie.test(inflacao)
```

```
Lilliefors (Kolmogorov-Smirnov) normality test
```

```
data: inflacao
D = 0.24609, p-value = 0.08736
```

Conclusão:

Se os p-valores forem maiores que 0,05, não rejeitamos a hipótese de normalidade.

4.2 b) Intervalo de confiança de 99% para a média da inflação

Calculando a média e o desvio padrão:

```
media_inf <- mean(inflacao)
desvio_inf <- sd(inflacao)
n <- length(inflacao)
erro_padrao <- desvio_inf / sqrt(n)</pre>
```

Calculando o intervalo:

```
t_critico <- qt(0.995, df=n-1)
limite_inferior <- media_inf - t_critico * erro_padrao
limite_superior <- media_inf + t_critico * erro_padrao
c(limite_inferior, limite_superior)</pre>
```

[1] 3.457911 8.674089

4.3 c) Nível de confiança para intervalo com comprimento total igual a 3

Queremos que o comprimento total seja 3, logo o erro máximo é 1,5.

Calculando o t crítico necessário:

```
erro_max <- 1.5
t_necessario <- erro_max / erro_padrao
```

Calculando o nível de confiança correspondente:

```
nivel_conf <- 2*(1 - pt(t_necessario, df=n-1))
nivel_conf</pre>
```

[1] 0.09443553

4.4 d) Intervalo de confiança de 90% para o desvio padrão

Usando a distribuição qui-quadrado:

```
alfa <- 0.10
chi2_inferior <- qchisq(alfa/2, df=n-1)
chi2_superior <- qchisq(1 - alfa/2, df=n-1)
limite_inferior <- sqrt((n-1)*desvio_inf^2 / chi2_superior)
limite_superior <- sqrt((n-1)*desvio_inf^2 / chi2_inferior)
c(limite_inferior, limite_superior)</pre>
```

[1] 1.850952 4.175218

4.5 e) Teste de normalidade para a série histórica de 1999 a 2022

Dados da inflação de 1999 a 2022:

```
inflacao_historica <- c(8.94, 6, 12.53, 7.67, 12.53, 7.6, 7.6, 5.69, 3.14, 4.46, 5.9, 4.31, 5.91, 6.41, 10.67, 6.29, 2.95, 3.75, 4.31, 4.52, 10.06, 5.79, 5.79,
```

Testes de normalidade:

Shapiro-Wilk

shapiro.test(inflacao_historica)

```
Shapiro-Wilk normality test
```

```
data: inflacao_historica
W = 0.9045, p-value = 0.02685
```

Lilliefors

```
lillie.test(inflacao_historica)
```

```
Lilliefors (Kolmogorov-Smirnov) normality test
```

```
data: inflacao_historica
D = 0.19628, p-value = 0.0175
```

Conclusão:

Baseado nos p-valores, determinar se a série histórica pode ser considerada normalmente distribuída.

5 Exercício 4: Identificação de Distribuição

Neste exercício, iremos identificar a distribuição adequada para cada conjunto de dados fornecido, utilizando técnicas estatísticas e ferramentas do R.

5.1 Preparação do Ambiente

5.2 a) Conjunto de dados (a)

5.2.1 Dados

5.2.2 Análise Descritiva

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5978 3.7343 5.8715 6.3042 7.6617 20.8626
```

hist(dados_a, breaks=10, col="lightblue", main="Histograma dos Dados (a)", xlab="Valores")

Histograma dos Dados (a)

5.2.3 Ajuste das Distribuições

Realizamos o ajuste para as distribuições Weibull, Gamma, Lognormal e Normal.

```
ajuste_weibull_a <- fitdist(dados_a, "weibull")
ajuste_gamma_a <- fitdist(dados_a, "gamma")
ajuste_lognormal_a <- fitdist(dados_a, "lnorm")
ajuste_normal_a <- fitdist(dados_a, "norm")</pre>
```

5.2.4 Comparação dos Critérios de Informação (AIC)

```
aic_values_a <- data.frame(
   Distribuição = c("Weibull", "Gamma", "Lognormal", "Normal"),
   AIC = c(ajuste_weibull_a$aic, ajuste_gamma_a$aic, ajuste_lognormal_a$aic, ajuste_normal_a$.)
aic_values_a</pre>
```

```
Distribuição AIC

Weibull 161.6723

Gamma 160.3733

Lognormal 163.2588

Normal 169.7731
```

Interpretação:

A distribuição com o menor AIC é a que melhor se ajusta aos dados. Observamos que a distribuição Gamma apresenta o menor AIC.

5.2.5 Teste de Kolmogorov-Smirnov

Testamos a aderência dos dados à distribuição Gamma.

```
ks.test(dados_a, "pgamma", shape=ajuste_gamma_a$estimate["shape"], rate=ajuste_gamma_a$estimate
```

Exact one-sample Kolmogorov-Smirnov test

```
data: dados_a
D = 0.079856, p-value = 0.9828
alternative hypothesis: two-sided
```

Interpretação:

O p-valor do teste de Kolmogorov-Smirnov é maior que 0,05, não rejeitando a hipótese nula de que os dados seguem uma distribuição Gamma.

5.2.6 Plotagem do Histograma com a Curva Ajustada

```
hist(dados_a, breaks=10, freq=FALSE, col="lightblue", main="Ajuste da Distribuição Gamma", x curve(dgamma(x, shape=ajuste_gamma_a$estimate["shape"], rate=ajuste_gamma_a$estimate["rate"] col="red", lwd=2, add=TRUE) legend("topright", legend="Distribuição Gamma", col="red", lwd=2)
```

Ajuste da Distribuição Gamma

5.3 b) Conjunto de dados (b)

5.3.1 Dados

5.3.2 Análise Descritiva

summary(dados_b)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.6059 1.4172 1.7840 1.9184 2.2990 4.7440
```

```
hist(dados_b, breaks=10, col="lightgreen", main="Histograma dos Dados (b)", xlab="Valores")
```

Histograma dos Dados (b)

5.3.3 Ajuste das Distribuições

```
ajuste_weibull_b <- fitdist(dados_b, "weibull")
ajuste_gamma_b <- fitdist(dados_b, "gamma")
ajuste_lognormal_b <- fitdist(dados_b, "lnorm")
ajuste_normal_b <- fitdist(dados_b, "norm")</pre>
```

5.3.4 Comparação dos Critérios de Informação (AIC)

```
aic_values_b <- data.frame(
   Distribuição = c("Weibull", "Gamma", "Lognormal", "Normal"),
   AIC = c(ajuste_weibull_b$aic, ajuste_gamma_b$aic, ajuste_lognormal_b$aic, ajuste_normal_b$.)
aic_values_b</pre>
```

```
Distribuição AIC
Weibull 79.57745
Gamma 77.32663
Lognormal 77.84694
Normal 83.27721
```

Interpretação:

A distribuição Gamma apresenta o menor AIC (77.32663), indicando o melhor ajuste aos dados.

5.3.5 Teste de Kolmogorov-Smirnov

```
ks.test(dados_b, "pgamma", shape=ajuste_gamma_b$estimate["shape"], rate=ajuste_gamma_b$estimate
```

Exact one-sample Kolmogorov-Smirnov test

```
data: dados_b
D = 0.094142, p-value = 0.9304
alternative hypothesis: two-sided
```

Interpretação:

- O p-valor é maior que 0,05, não rejeitando a hipótese de que os dados seguem uma distribuição Gamma.
- Portanto, para o conjunto de dados (b), a distribuição Gamma é a que melhor se ajusta.

5.3.6 Plotagem do Histograma com a Curva Ajustada

```
hist(dados_b, breaks=10, freq=FALSE, col="lightgreen", main="Ajuste da Distribuição Gamma", curve(dgamma(x, shape=ajuste_gamma_b$estimate["shape"], rate=ajuste_gamma_b$estimate["rate"] col="red", lwd=2, add=TRUE)

legend("topright", legend="Distribuição Gamma", col="red", lwd=2)
```

Ajuste da Distribuição Gamma

5.4 c) Conjunto de dados (c)

5.4.1 Dados

5.4.2 Análise Descritiva

Histograma dos Dados (c)

5.4.3 Ajuste das Distribuições

```
ajuste_weibull_c <- fitdist(dados_c, "weibull")
ajuste_gamma_c <- fitdist(dados_c, "gamma")
ajuste_lognormal_c <- fitdist(dados_c, "lnorm")
ajuste_normal_c <- fitdist(dados_c, "norm")</pre>
```

5.4.4 Comparação dos Critérios de Informação (AIC)

```
aic_values_c <- data.frame(
   Distribuição = c("Weibull", "Gamma", "Lognormal", "Normal"),
   AIC = c(ajuste_weibull_c$aic, ajuste_gamma_c$aic, ajuste_lognormal_c$aic, ajuste_normal_c$
)
aic_values_c</pre>
```

```
Distribuição AIC
Weibull 269.7264
Gamma 269.8562
Lognormal 265.9106
Normal 308.5494
```

Interpretação:

A distribuição Lognormal apresenta o menor AIC, indicando o melhor ajuste.

5.4.5 Teste de Kolmogorov-Smirnov

```
ks.test(dados_c, "plnorm", meanlog=ajuste_lognormal_c$estimate["meanlog"], sdlog=ajuste_lognormal_c$estimate["meanlog"], sdlog=ajuste_lognormal_c$estimate["mean
```

Exact one-sample Kolmogorov-Smirnov test

```
data: dados_c
D = 0.10729, p-value = 0.8441
alternative hypothesis: two-sided
```

Interpretação:

O p-valor é maior que 0,05, não rejeitando a hipótese de aderência à distribuição Lognormal.

5.4.6 Plotagem do Histograma com a Curva Ajustada

```
hist(dados_c, breaks=10, freq=FALSE, col="lightcoral", main="Ajuste da Distribuição Lognormal curve(dlnorm(x, meanlog=ajuste_lognormal_c$estimate["meanlog"], sdlog=ajuste_lognormal_c$estimate["purple", sdlog=ajuste_lognormal_c$estimate["meanlog"], sdlog=ajuste_lognormal_c$estimate["purple", lwd=2, add=TRUE) legend("topright", legend="Distribuição Lognormal", col="purple", lwd=2)
```

Ajuste da Distribuição Lognormal

5.5 d) Conjunto de dados (d)

5.5.1 Dados

```
dados_d <- c(4.391658, 5.364267, 10.707930, 5.431008, 6.904122, 6.960462, 12.741468, 8.434530, 9.747057, 6.440681, 7.623020, 9.276933, 8.711818, 5.250229, 6.9614711, 9.654606, 6.222452, 5.207637)
```

5.5.2 Análise Descritiva

summary(dados_d)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 3.478 6.451 7.859 7.994 9.652 12.741
```

hist(dados_d, breaks=10, col="lightyellow", main="Histograma dos Dados (d)", xlab="Valores")

Histograma dos Dados (d)

5.5.3 Ajuste das Distribuições

```
ajuste_weibull_d <- fitdist(dados_d, "weibull")
ajuste_gamma_d <- fitdist(dados_d, "gamma")
ajuste_lognormal_d <- fitdist(dados_d, "lnorm")
ajuste_normal_d <- fitdist(dados_d, "norm")</pre>
```

5.5.4 Comparação dos Critérios de Informação (AIC)

```
aic_values_d <- data.frame(
   Distribuição = c("Weibull", "Gamma", "Lognormal", "Normal"),
   AIC = c(ajuste_weibull_d$aic, ajuste_gamma_d$aic, ajuste_lognormal_d$aic, ajuste_normal_d$.)
aic_values_d</pre>
```

```
Distribuição AIC
Weibull 136.3711
Gamma 137.5245
Lognormal 139.0259
Normal 136.6819
```

Interpretação:

A distribuição Weibull apresenta o menor AIC (136.37110), indicando o melhor ajuste aos dados.

5.5.5 Teste de Kolmogorov-Smirnov para a Distribuição Weibull

```
ks.test(dados_d, "pweibull", shape=ajuste_weibull_d$estimate["shape"], scale=ajuste_weibull_d
```

Exact one-sample Kolmogorov-Smirnov test

```
data: dados_d
D = 0.074926, p-value = 0.9913
alternative hypothesis: two-sided
```

Interpretação:

- O p-valor é maior que 0,05, não rejeitando a hipótese de que os dados seguem uma distribuição Weibull.
- Portanto, para o conjunto de dados (d), a distribuição Weibull é a que melhor se ajusta.

5.5.6 Plotagem do Histograma com a Curva Ajustada

```
hist(dados_d, breaks=10, freq=FALSE, col="lightyellow", main="Ajuste da Distribuição Weibull curve(dweibull(x, shape=ajuste_weibull_d$estimate["shape"], scale=ajuste_weibull_d$estimate[ col="blue", lwd=2, add=TRUE) legend("topright", legend="Distribuição Weibull", col="blue", lwd=2)
```

Ajuste da Distribuição Weibull

5.6 e) Conjunto de dados (e)

5.6.1 Dados

```
dados_e <- c(3.816942, 4.123619, 4.575150, 3.214129, 4.854917, 3.647232, 4.003734, 3.261923)
```

5.6.2 Análise Descritiva

```
summary(dados_e)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 3.214 3.551 3.910 3.937 4.237 4.855
```

```
hist(dados_e, breaks=10, col="lightgray", main="Histograma dos Dados (e)", xlab="Valores")
```

Histograma dos Dados (e)

5.6.3 Ajuste das Distribuições

```
ajuste_weibull_e <- fitdist(dados_e, "weibull")
ajuste_gamma_e <- fitdist(dados_e, "gamma")
ajuste_lognormal_e <- fitdist(dados_e, "lnorm")
ajuste_normal_e <- fitdist(dados_e, "norm")</pre>
```

5.6.4 Comparação dos Critérios de Informação (AIC)

```
aic_values_e <- data.frame(
   Distribuição = c("Weibull", "Gamma", "Lognormal", "Normal"),
   AIC = c(ajuste_weibull_e$aic, ajuste_gamma_e$aic, ajuste_lognormal_e$aic, ajuste_normal_e$.)
aic_values_e</pre>
```

```
Distribuição AIC
Weibull 17.48481
Gamma 16.78578
Lognormal 16.74810
Normal 16.95620
```

Interpretação:

A distribuição Lognormal apresenta o menor AIC (16.74810), indicando o melhor ajuste aos dados.

5.6.5 Teste de Kolmogorov-Smirnov para a Distribuição Lognormal

```
ks.test(dados_e, "plnorm", meanlog=ajuste_lognormal_e$estimate["meanlog"], sdlog=ajuste_lognormal_e$estimate["meanlog"], sdlog=ajuste_lognormal_e$estimate["mean
```

```
data: dados_e
D = 0.15288, p-value = 0.9774
alternative hypothesis: two-sided
```

Interpretação:

- \bullet O p-valor é maior que 0,05, não rejeitando a hipótese de que os dados seguem uma distribuição Lognormal.
- Portanto, para o conjunto de dados (e), a distribuição Lognormal é a que melhor se ajusta.

5.6.6 Plotagem do Histograma com a Curva Ajustada

```
hist(dados_e, breaks=10, freq=FALSE, col="lightgray", main="Ajuste da Distribuição Lognormal curve(dlnorm(x, meanlog=ajuste_lognormal_e$estimate["meanlog"], sdlog=ajuste_lognormal_e$est col="purple", lwd=2, add=TRUE)

legend("topright", legend="Distribuição Lognormal", col="purple", lwd=2)
```

Ajuste da Distribuição Lognormal

