Bioinformatic Evaluation of Next-Generation Sequencing Performance at Nancy Hospital

Alexis Praga

Laboratoire de génétique - CHRU de Nancy - Dr Céline Bonnet

July 8, 2021

Part 1: Manuscript

Introduction: Next-Generation Sequencing

Increased role in clinical practice:

- faster and cheaper (massively parallel)
- Uses:
 - ► Gene panel: set of targeted genes in week/months [intellectual disabilities]
 - ▶ Whole Exome Sequencing: genes not known, 1% genome
 - ▶ Whole Genome Sequencing: all genome

Introduction: Next-Generation Sequencing

Increased role in clinical practice:

- faster and cheaper (massively parallel)
- Uses:
 - ► Gene panel: set of targeted genes in week/months [intellectual disabilities]
 - ▶ Whole Exome Sequencing: genes not known, 1% genome
 - ▶ Whole Genome Sequencing: all genome

Goal of the internship: validate sequencing results

- assess performances
- evaluate errors
- quantify improvements

Introduction: issues with validation

- 1. Which reference?
 - sequencing error
 - patient mutation
- 2. Ambiguous file format for variants!

Example: Variant TCCG ightarrow CC

Version 1

▶ $TCCG \rightarrow CCG$ then $CCG \rightarrow CC$

Version 2

- ▶ TCCCG \rightarrow CCG then CCG \rightarrow CC
- 3 No consensus for metrics
- ► Reference/Variant1 and Reference/Variant1 = TP
 - Reference / Variant 1 and Reference / Variant 2 = EP ? EN .

Introduction: issues with validation

- 1. Which reference?
 - sequencing error
 - patient mutation
- 2. Ambiguous file format for variants!

Example: Variant TCCG ightarrow CC

Version 1

► TCCG → CCG then CCG → CC

Version 2:

- ► TCCCG → CCG then CCG → CC
- 3. No consensus for metrics
 - ► Reference/Variant1 and Reference/Variant1 = TP
 - Reference/Variant1 and Reference/Variant2 = FP ? FN ?
 - ► Reference/Variant1 and Variant2/Variant3 = 5R ? FN 2 = 50 C

Introduction: issues with validation

- 1. Which reference?
 - sequencing error
 - patient mutation
- 2. Ambiguous file format for variants!

Example: Variant TCCG \rightarrow CC

Version 1

► TCCG → CCG then CCG → CC

Version 2:

- ► TCCCG → CCG then CCG → CC
- 3. No consensus for metrics
 - ► Reference/Variant1 and Reference/Variant1 = TP
 - ► Reference/Variant1 and Reference/Variant2 = FP ? FN ?

Methods: An answer with Krusche et al. 2019

1. Reference dataset

- reference DNA on multiple technologies
- apply filters manually (Illumina) or with a trained model (GIAB)
- \Rightarrow "high-confidence" regions

2. Hap.py

- ▶ Python/C++ script by Illumina
- ► 2 variant comparison algorithms : custom, vcfeval (from RTG tools)

3. Defined metrics

- ► Reference/Variant1 and Reference/Variant1 = TP
- ► Reference/Variant1 and Reference/Variant2 = FP with allele mismatch
- Pafarance Wariant 1 and Wariant 2 Wariant 1 ED with

Methods: summary

- 1. Sequence DNA of patient NA12878 in Nancy
- 2. Download 2 reference datasets (Illumina and GIAB)
- 3. Use hap.py to compare variants (2 algorithms) (VCF format)

Results: definition

$$\begin{array}{ccc} \text{Positive Predictive Value} &= \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}} & & (= \mathsf{precision}) \\ & & & & \\ \mathsf{Sensitivity} &= \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}} & & (= \mathsf{recall}) \end{array}$$

Results: Impact of datasets, algorithm and filters

Results: False Negative

 Precision and recall are equivalent to whats expected for SNP but too low for indels

High ratio of false negative

- not due to dataset, nor algorithm
- not due to a specific chromosome
- ▶ in "difficult" regions, mostly homopolymers

Results: Clinical implications

- ► Vascular diseases, epilepsy, intellectual deficency
- ► Finding a gene transcript is difficult ⇒ APPRIS database

Conclusion

- Standardized benchmarking method to the sequencing pipeline of Genetics Laboratory (Nancy)
- Reproductible (user manual in manuscript)
- Excellent performance for Single Nucleotide Polymorphism, sub-par for indels
- ▶ No major cause for rather high False Negative count
- Promising performances for a group of pathologies
- Need for further testing (other DNA, other pipelines)

Part 2: Tasks

Tasks

- ▶ Bibliography (Krusche et al. 2019 . . .)
- Installing and understanding hap.py (Ubuntu, Archlinux)
- Lab visit
- Running benchmark
- Group of pathologies: which gene transcript ?
- Manuscript
- User manual for reproductibility

Appendix: further reading

P. Krusche and the Global Alliance for Genomics and Health Benchmarking Team Best Practices for Benchmarking Germline Small-Variant Calls in Human Genomes Nature Biotechnology

Appendix: contingency table

Table 1 | Contingency table describing the GA4GH definitions of TP, FP, FN, FP.AL, FP.GT, and unknown (UNK)

	Genotype	Truth				
		Ref/ ref	Ref/var1	Var1/ var2	Var1/ var1	Outside bed
Query	Ref/ref	-	FN	FN	FN	-
	Ref/var1	FP	TP	FP.GT	FP.GT	UNK
	Ref/var2	-	FP.AL	FP.GT	FP.AL	-
	Ref/var3	-	-	FP.AL	-	-
	Var1/var2	FP	FP.GT	TP	FP.GT	UNK
	Var1/var3	-	-	FP.GT	-	-
	Var2/var3	-	FP.AL	FP.GT	FP.AL	-
	Var3/var4	-	-	FP.AL	-	-
	Var1/var1	FP	FP.GT	FP.GT	TP	UNK
	Var2/var2	-	FP.AL	FP.GT	FP.AL	-
	Var3/var3	_	-	FP.AL	_	_

Table 2 | Examples of several combinations of truth and query SNV genotypes and how they are counted as TP, FP, FN, FP.GT,

and FP	and FP.AL						
REF	Truth	Query	Counted as				
Α	C/C	C/C	1 TP				
Α	A/A	C/C	1 FP				
Α	C/C	A/A	1 FN				
Α	C/C	A/C	1 FP, 1 FN, 1 FP.GT				
Α	C/C	G/G	1 FP, 1 FN, 1 FP.AL				
Α	C/G	C/C	1 FP, 1 FN, 1 FP.GT				