Realistic Macro Impacts

David Cyncynates dcc57@case.edu

July 19, 2016

1 The Green's Function

This should be correct. We have the differential equation

$$v(r)^2 \nabla^2 \phi - \partial_t^2 \phi = -\frac{f}{\rho} \tag{1}$$

We want to write ϕ as eigenfunctions of the linear differential operator on the LHS. Fourier transforming in time $\phi \to \tilde{\phi}$, we may write an eigenvalue problem

$$v(r)^2 \nabla^2 \tilde{\phi} + \lambda \tilde{\phi} = 0. \tag{2}$$

Multiplying by $\frac{r^2}{v(r)^2\tilde{\phi}}$ and supposing $\tilde{\phi} = R(r)Y(\Omega)$, we have

$$\frac{\partial_r(r^2\partial_r R)}{R} + \lambda \frac{r^2}{v(r)^2} + \frac{r^2 \nabla_{\Omega} Y}{Y} = 0$$
 (3)

It is clear that $\frac{r^2\nabla_{\Omega}Y}{Y}$ depends only on Ω and that the remaining terms only depend on r, hence the equation is separable, and our ansatz is justified. The solutions Y are just the spherical harmonics with eigenvalues $r^2\nabla_{\Omega}Y = -l(l+1)Y$, $l \in \mathbb{N} \cup \{0\}$. R obeys a more complicated equation

$$\partial_r(r^2\partial_r R) + \lambda \frac{r^2}{v(r)^2} R - l(l+1)R = 0 \tag{4}$$

which is just a Sturm–Liouville problem for the appropriate boundary conditions at r=0 and $r=\frac{a}{b}$. The weight function is $\rho=\frac{r^2}{v(r)^2}$. Since this equation is in terms of a Sturm–Liouville operator, its eigenfunctions form an orthogonal set with respect to ρ , i.e.

$$\delta(\lambda - \lambda') = \int dr \rho(r) \bar{R}_{\lambda}(r) R_{\lambda'}(r). \tag{5}$$

Assuming completeness of the eigenfunctions, we may write

$$\delta(r - r') = \int d\lambda \rho(r) \bar{R}_{\lambda}(r) R_{\lambda}(r'). \tag{6}$$

We may decompose any function in terms of R, Y, and $e^{i\omega t}$ as

$$f(r,\Omega,t) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \int d\lambda \, d\omega F_{lm}(\lambda,\omega) R_{\lambda l}(r) Y_{lm}(\Omega) e^{i\omega t} \,. \tag{7}$$

Notice

$$\left[v(r)^{2}\nabla^{2} - \partial_{t}^{2}\right]\left[R_{\lambda}(r)Y_{lm}(\Omega)e^{\mathrm{i}\omega t}\right] = R_{\lambda}(r)Y_{lm}(\Omega)e^{\mathrm{i}\omega t}\left[\frac{v(r)^{2}\nabla_{r}^{2}R}{R} + \frac{v(r)^{2}\nabla_{\Omega}^{2}Y}{Y} + \omega^{2}\right],\tag{8}$$

$$= R_{\lambda}(r)Y_{lm}(\Omega)e^{i\omega t} \left[-\lambda + \frac{v(r)^2}{r^2}l(l+1) - \frac{v(r)^2}{r^2}l(l+1) + \omega^2 \right], \quad (9)$$

$$= R_{\lambda}(r)Y_{lm}(\Omega)e^{i\omega t}\left[-\lambda + \omega^{2}\right]. \tag{10}$$

Thus, we see that

$$G(\vec{r},t;\vec{r}',t') = \rho(r) \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \int_{a^2b^2}^{\infty} d\lambda \int_{-\infty}^{\infty} d\omega \frac{\bar{R}_{\lambda l}(r)R_{\lambda l}(r')\bar{Y}_{lm}(\Omega)Y_{lm}(\Omega')e^{i\omega(t-t')}}{\omega^2 - \lambda - i\epsilon}.$$
 (11)

This may be incorrect because of the dependence of R on l... However, we can probably formulate (4) as a S-L problem with eigenvalue -l(l+1) instead, and we'll obtain a second orthogonality relation for R. This should mean that (11) is correct up to a weight function.

2 The Source

We must find an appropriate body force potential f. As a practice problem, let's consider $f = \nabla g = -4\pi G [M\delta(\vec{r} - \vec{v}t) + \delta\rho]$ as in the detection of a small black hole problem, where $\delta\rho = -\rho\nabla u$, where u is the displacement field. Then the source term of the wave equation is

$$-\frac{f}{\rho} = \frac{4\pi MG}{\rho} \delta(\vec{r} - \vec{v}t) - 4\pi G\phi \tag{12}$$

Since f has a dependent variable in it, we need to slightly modify our Green's function. The eigenvectors \tilde{u} of \tilde{D} will now satisfy