WUOLAH

14ENE14.pdfExamenes Resueltos 2012-2015

- 2° Estructuras Algebraicas
- Facultad de Ciencias
 Universidad Autónoma de Madrid

Como aún estás en la portada, es momento de redes sociales. Cotilléanos y luego a estudiar.

1	2	3	4	5	6	7	8

Universidad Autónoma de Madrid

Apellidos:

Nombre: _____

Estructuras Algebraicas. Curso 2013–14

DNI/NIE: _____

Examen final 14 de enero de 2014

Grupo _

Problema 1. (1 punto) Indica cuántos homomorfismos de grupos se pueden definir:
(a) de C_{20} en C_{20} .
Respuesta: Un homomorfismo $f:C_{20}\to C_{20}$ queda determinado por $f(\overline{1})$, cuyo orden debe ser un divisor de 20. Por tanto $f(\overline{1})$ puede ser cualquier elemento de C_{20} , así que hay 20 homomorfismos.
(b) de C_8 en C_{15} .
Respuesta: Un homomorfismo $f:C_8\to C_{15}$ queda determinado por $f(\overline{1})$, y su orden debe dividir a 8. El único elemento de C_{15} con esta propiedad es $f(\overline{1})=\overline{0}$, por tanto el único morfismo es el trivial.
Problema 2. (1 punto) Indica cuántos monomorfismos de grupos se pueden definir:

(a) de C_{20} en C_{20} . **Respuesta:** Un homomorfismo $f:C_{20}\to C_{20}$. queda determinado por $f(\overline{1})$, y para que f sea inyectivo, $f(\overline{1})$

tendrá que ser un elemento de orden 20 en C_{20} . Hay 8 elementos con esta propiedad (hay 8 unidades), por tanto hay 8 monomomorfismos.

(b) de C_{15} en C_{20} .

Respuesta: No hay ningún monomorfismo porque C_{20} no contiene un subgrupo de orden 15.

Problema 3. (1 punto)

(a) Indica cuántos 7-ciclos hay en S_7 .

Respuesta: Todo ciclo puede escribirse comenzado con el entero 1. Se observa que hay 6,5,4,3,2,1=6! ciclos distintos de longitud 7.

(b) Indica cuántos subgrupos de orden 7 hay en S_7 .

Respuesta: Todo subgrupo de orden 7 es cíclico. La intersección de dos subgrupos distintos de orden 7 es el subgrupo trivial, y cada subgrupo contiene 6 ciclos de longitud 7. Por tanto hay $\frac{6!}{6} = 5!$ subgrupos de orden 7.

Problema 4. (1 punto) Sea $\sigma = (1234567) \in S_7$, y sea $H_{\sigma} = \{ \tau \in S_7 / \tau \sigma = \sigma \tau \}$.

(a) Demuestra que H_{σ} es un subgrupo.

Respuesta:

- i) H_{σ} no es vacío porque contiene a la identidad (1).
- ii) Como el grupo es finito basta con comprobar que es cerrado por la operación. Si α y β están en H_{σ} (equivalentemente: si α y β conmutan con σ), se comprueba facilmente que $\alpha\beta$ conmuta con σ .
- (b) Indica cuál es el orden de H_{σ} .

Respuesta: Como $\frac{|S_7|}{|H_\sigma|}$ es el número total de 7 ciclos, se deduce del problema anterior que $|H_\sigma|=7$.

Problema 5. (1,5 puntos)

(a) Expresa el grupo U(9) abelianos como producto de cíclicos de la forma C_{p^r} con p primo.

Respuesta: Como U(9) es abeliano de orden 6, y salvo isomorfismos, sólo hay un grupo abeliano con ese orden, necesariamente $U(9) = C_2 \times C_3$.

(b) Exhibe dos grupos abelianos de orden 40 que no sean isomorfos, y que ninguno de ellos sea cíclico. Justifica tu respuesta.

Respuesta: $C_2 \times C_4 \times C_5$, y $C_2 \times C_2 \times C_2 \times C_5$.

Ninguno es cíclico, porque no contienen elementos de orden 40.

El primero tiene elementos de orden 4 y segundo no, por tanto no son isomorfos.

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad

Problema 6. (2 puntos)

(a) Demuestra que todo grupo G de orden 5×13 es cíclico.

Respuesta: Usando los teoremas de Sylow resulta que hay un único subgrupo de orden 5, digamos H, un único subgrupo de orden 13, digamos K, y que estos son normales. Como 5 y 13 son primos, se tiene que $H \cap K = \{e\}$, y además G = HK. Por tanto se puede concluir que

$$G \simeq H \times K \simeq C_5 \times C_{13}$$
.

- (b) Sea G un grupo de orden 26 que **NO** es abeliano.
 - (b1) Indica cuántos subgrupos de orden 13 hay en G.

Respuesta: Los teoremas de Sylow dicen que los subgrupos de orden 13 existen y son conjugados. Como un subgrupo de orden 13 tiene índice dos, se deduce que es único.

(b2) Indica cuántos subgrupos de orden 2 hay en G.

Respuesta: Hay 13 subgrupos de orden 2.

Si n_2 denota el número total de subgrupos de orden 2, entonces n_2 divide a 13 y es congruente a 1 módulo 2. De aquí resulta que $n_2 \in \{1, 13\}$.

Los teoremas de Sylow indican que, en un grupo G de orden 26, los subgrupos de orden 2 son conjugados. Si $n_2=1$, resultaría $G=C_{13}\times C_2$. Como suponemos que G no es abeliano, $n_2=13$.

Problema 7. (2 puntos)

(a1) Indica cuántos ideales tiene el anillo Z_{30} . Respuesta: 8

Justificación: Hay un ideal por cada divisor positivo de $30 = 2 \cdot 3 \cdot 5$. Se observe que tiene 8 divisores positivos en los números enteros, y por tanto el anillo tiene 8 ideales.

(a2) Indica cuántos ideales maximales tiene el anillo Z_{30} . Respuesta: 3

Justificación: Hay un ideal maximal por cada primo que divide a 30. Por tanto hay tres maximales.

(b) Sea K el cuerpo Z_3 . Halla un polinomio mónico f(X) en K[X], de modo que el anillo cociente $K[X]/\langle f(X)\rangle$ sea un cuerpo que tenga nueve elementos. Justifica tu respuesta.

Respuesta: Para que el anillo cociente sea un cuerpo f(X) tendrá que ser un polinomio irreducible. Para que el cociente tenga $9=3^2$ elementos, tendrá que ser un polinomio de grado 2. El polinomio $f(X)=X^2+\overline{1}$ cumple ambas condiciones porque tiene grado 2 y no tiene ceros en K.

- 1. Sea G un grupo finito de orden n. Si p es primo y p divide a n, existe un subgrupo de orden p. \bigvee
- 2. Sea G un grupo finito de orden n. Si d divide a n existe un subgrupo de orden d.
- 3. Todo subgrupo de un cíclico es cíclico.
- 4. Si todo subgrupo propio de un grupo G es cíclico, entonces G es abeliano.

