Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	17 October 2022
Team ID	PNT2022TMID38327
Project Name	IOT Based Smart Crop Protection System for
	Agriculture
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail
FR-2	User Confirmation	Confirmation via Email
FR-3	Interfacing with hardware	Interface the sensors with the software application so as to alert the farmers in case of any harm for crops
FR-4	Database Connection	Databases are retrieved from IBM Cloud ant
FR-5	Mobile Application	Alarm and motors can be accessed from the mobile app

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The smart crop protection alerts the farmers in cased
		any obstacles and helps in protecting the crops
NFR-2	Security	Smart Agriculture can improve the farming practices and
		maintain sustainable production of crops
		especially by preventing the animals into the
		agricultural lands through IoT enabled devices.
NFR-3	Reliability	With a proper power supply, SD card and
		programming the processor should be able to run
		24/7 for years. The SD card and power supply will
		likely wear out faster than the Pi. The possible
		reasons behind Raspberry Pi failure can be power
		breakdowns, SD card failures, and ineligible
		environments.
NFR-4	Performance	Usage of an SD card module that helps to store a
		specified sound to scare the animals.
		Crop damage due to animal attack can be sensed.
		Network and Design Evaluation
NFR-5	Availability	Agriculture for different variety of crops is based on
		the monsoon changes, indoor and outdoor climatic
		temperatures, availability of rainfall and irrigation
		methods.
NFR-6	Scalability	The product shall be made available to everyone
		especially in remote areas for better efficiency of
		crop yield with the better safety of crops as well as
		the farmers.