Linguaggio SQL

• DML: tipi di join

Database di esempio

S

<u>SNum</u>	SName	Status	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S 4	Clark	20	London
S5	Adams	30	Athens

P

PNum	PName	Color	Weight	City
P1	Nut	Red	12	London
P2	Bolt	Green	17	Paris
P3	Screw	Blue	17	Rome
P4	Screw	Red	14	London
P5	Cam	Blue	12	Paris
P6	Cog	Red	19	London

SP

<u>SNum</u>	<u>PNum</u>	QTY
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S 4	P2	200
S 4	P4	300
S 4	P5	400

Join

- Sintassi già vista dell'operazione di join tra due o più tabelle
 - Elencare i dati dei fornitori e delle forniture relativi ai fornitori di Londra che hanno procurato la parte *P4*

```
select *
from S, SP
where SP.SNum = S.SNum and
S.City = 'London' and SP.PNum = 'P4';
```

Join

- Passi di esecuzione del join (trascurando le ottimizzazioni):
 - 1. Esecuzione del prodotto cartesiano delle tabelle elencate nella clausola from. Il risultato è una tabella composta da tutte le possibili combinazioni di righe di tutte le tabelle specificate
 - 2. Da tale tabella vengono eliminate tutte le righe che non soddisfano la condizione espressa nella clausola where

Tipi di join

- Join interni (inner join)
- Join esterni (outer join)
 - right outer join
 - -left outer join
 - full outer join

Join interno

 Un modo alternativo per scrivere la query precedente prevede l'uso esplicito dell'operatore join nella clausola from

select *
from S [inner] join SP on S.SNum = SP.SNum
where S.City = 'London' AND SP.PNum = 'P4';

S.SNum	SName	Status	City	SP.SNum	PNum	Qty
S1	Smith	20	London	S1	P4	200
S 4	Clark	20	London	S 4	P4	300

La parola chiave *inner* è opzionale

Join tra più tabelle

- · È possibile mettere in join più di due tabelle
- Esempio: Elenchiamo la città dei fornitori e la città delle parti che hanno fornito

select distinct S.City CittàFornitore, P.City CittàParte from S join SP on S.SNum = SP.SNum join P on SP.PNum = P.PNum;

CittàFornitore	CittàParte
London	Rome
Paris	London
London	London
London	Paris
Paris	Paris

 Il risultato è quello ottenibile mettendo in join prima S e SP, e poi P select distinct S.City CittàFornitore, P.City CittàParte from (S join SP on S.SNum = SP.SNum) join P on SP.PNum = P.PNum;

Outer join

 Un inner join coinvolge di solito un sottoinsieme delle righe delle tabelle specificate nella clausola from: di ogni tabella vengono prese in considerazione solo le righe che hanno un valore corrispondente nell'altra tabella del join

select *
from S join P on S.City=P.City;

SNum	SName	Status	S.City	PNum	PName	Color	Weight	P.City
S1	Smith	20	London	P1	Nut	Red	12	London
S1	Smith	20	London	P4	Screw	Red	14	London
S1	Smith	20	London	P6	Cog	Red	19	London
S2	Jones	10	Paris	P2	Bolt	Green	17	Paris
S2	Jones	10	Paris	P5	Cam	Blue	12	Paris
S3	Blake	30	Paris	P2	Bolt	Green	17	Paris
S3	Blake	30	Paris	P5	Cam	Blue	12	Paris
S4	Clark	20	London	P1	Nut	Red	12	London
S4	Clark	20	London	P4	Screw	Red	14	London
S4	Clark	20	London	P6	Cog	Red	19	London

Outer join

- Nella realtà delle applicazioni, però, spesso è necessario includere comunque tutte le righe di una delle due tabelle (o di entrambe)
- Si può ottenere questo risultato ricorrendo ai join esterni (outer join)

Left join

- Con il left join si hanno nel risultato sicuramente tutte le righe della tabella che nella query compare a sinistra
- A ogni riga della tabella di sinistra vengono fatte corrispondere le eventuali righe della tabella di destra per cui la clausola on è vera
- Se per una riga della tabella di sinistra non ci sono righe della tabella di destra per cui la clausola è vera, nel risultato i valori corrispondenti agli attributi della tabella di destra avranno valore nullo

Left join

Esempio: Elenchiamo i dati relativi a tutti i fornitori
e le parti che sono nella stessa città del fornitore
select *
from S left join P on S.City=P.City;

SNum	SName	Status	S.City	PNum	PName	Color	Weight	P.City
S1	Smith	20	London	P1	Nut	Red	12	London
S1	Smith	20	London	P4	Screw	Red	14	London
S1	Smith	20	London	P6	Cog	Red	19	London
S2	Jones	10	Paris	P2	Bolt	Green	17	Paris
S2	Jones	10	Paris	P5	Cam	Blue	12	Paris
S3	Blake	30	Paris	P2	Bolt	Green	17	Paris
S3	Blake	30	Paris	P5	Cam	Blue	12	Paris
S 4	Clark	20	London	P1	Nut	Red	12	London
S 4	Clark	20	London	P4	Screw	Red	14	London
S 4	Clark	20	London	P6	Cog	Red	19	London
S 5	Adams	30	Athens	(null)	(null)	(null)	(null)	(null)

Right join

 Simmetrico rispetto al left join select * from S right join P on S.City=P.City;

SNum	SName	Status	S.City	PNum	PName	Color	Weight	P.City
S1	Smith	20	London	P1	Nut	Red	12	London
S1	Smith	20	London	P4	Screw	Red	14	London
S1	Smith	20	London	P6	Cog	Red	19	London
S2	Jones	10	Paris	P2	Bolt	Green	17	Paris
S2	Jones	10	Paris	P5	Cam	Blue	12	Paris
S3	Blake	30	Paris	P2	Bolt	Green	17	Paris
S3	Blake	30	Paris	P5	Cam	Blue	12	Paris
S4	Clark	20	London	P1	Nut	Red	12	London
S4	Clark	20	London	P4	Screw	Red	14	London
S4	Clark	20	London	P6	Cog	Red	19	London
(null)	(null)	(null)	(null)	Р3	Screw	Blue	17	Rome

Full join

 Il full join (non disponibile in MySQL) riporta nel risultato tutte le righe di entrambe le tabelle select *

from S full join P on S.City = P.City;

SNum	SName	Status	S.City	PNum	PName	Color	Weight	P.City
S1	Smith	20	London	P1	Nut	Red	12	London
S1	Smith	20	London	P4	Screw	Red	14	London
S1	Smith	20	London	P6	Cog	Red	19	London
S2	Jones	10	Paris	P2	Bolt	Green	17	Paris
S2	Jones	10	Paris	P5	Cam	Blue	12	Paris
S3	Blake	30	Paris	P2	Bolt	Green	17	Paris
S3	Blake	30	Paris	P5	Cam	Blue	12	Paris
S 4	Clark	20	London	P1	Nut	Red	12	London
S4	Clark	20	London	P4	Screw	Red	14	London
S 4	Clark	20	London	P6	Cog	Red	19	London
S5	Adams	30	Athens	(null)	(null)	(null)	(null)	(null)
(null)	(null)	(null)	(null)	Р3	Screw	Blue	17	Rome

Join tra più tabelle

• È possibile effettuare più join esterni: select S.SNum, SP.SNum, SP.PNum, P.PNum from (S left join SP on S.SNum = SP.SNum) left join P on SP.PNum = P.PNum;

S.SNum	SP.SNum	SP.PNum	P.PNum
S1	S1	P1	P1
S1	S1	P2	P2
•••			
S4	S4	P5	P5
S5	(null)	(null)	(null)

- Se si "mischiano" inner e outer join, è consigliabile usare le parentesi per controllare l'ordine in cui i join vengono effettuati
- Cosa succede se combino join esterni e interni? select S.SNum, SP.SNum, SP.PNum, P.PNum from (S left join SP on S.SNum = SP.SNum) join P on SP.PNum = P.PNum;
- S5 fa parte del risultato?

- È possibile effettuare il join (interno o esterno) di una tabella con se stessa
- In questo caso è necessario usare usare degli alias per assegnare nomi diversi alla tabella
- Sintassi (per un self inner join):
 select ...
 from Tabella T1 join Tabella T2 on
 T1.AttributoX = T2.AttributoY ...

• Esempio: elencare le coppie di fornitori appartenenti alla stessa città e la loro città

select distinct F1.SNum Fornitore1, F2.SNum Fornitore2, F1.City from S F1 join S F2 on F1.City = F2.City;

Fornitore1	Fornitore2	City
S1	S1	London
S1	S4	London
S 4	S1	London
S4	S4	London
S2	S2	Paris
S2	S3	Paris
S3	S2	Paris
S 3	S3	Paris
S5	S5	Athens

• Questa query non dà il risultato desiderato, infatti produce una tabella in cui un fornitore è accoppiato con se stesso

• Esempio: elencare le coppie di fornitori appartenenti alla stessa città e la loro città (seconda versione) select distinct F1. SNum Fornitore1, F2. SNum Fornitore2, F1. City from S F1 join S F2 on F1. City = F2. City where F1. SNum < > F2. SNum;

Fornitore1	Fornitore2	City
S1	S4	London
S4	S1	London
S2	S3	Paris
S3	S2	Paris

• Il risultato non è ancora ideale: vogliamo considerare, ad esempio, (S1, S4) e (S4, S1) la medesima coppia

 Esempio: elencare le coppie di fornitori appartenenti alla stessa città e la loro città (terza versione) select distinct F1. SNum Fornitore1, F2. SNum Fornitore2, F1. City from S F1 join S F2 on F1. City = F2. City where F1. SNum < F2. SNum;

Produttore1	Produttore2	City
S1	S4	London
S2	S3	Paris

Ora il risultato è corretto

• Elencare <u>tutti</u> i fornitori con Status superiore a 20 e la quantità delle parti <u>eventualmente</u> fornite

• Elencare i nomi di <u>tutte</u> le parti di colore verde e le città dei loro <u>eventuali</u> fornitori

• Elencare <u>tutti</u> i fornitori che hanno forniture minori di 200 parti (e quindi anche i fornitori che non hanno fornito nulla). Il risultato deve comprendere il nome del fornitore e la quantità delle parti eventualmente fornite.

• Elencare tutte le coppie di parti disponibili nella stessa città ma di colore diverso (mostrare codice delle parti e nome della città)

Part1	Part2	City
P2	P5	Paris

• Elencare tutte le coppie di parti fornite dallo stesso fornitore (mostrare nome del fornitore, codice e nome delle parti) (suggerimento: scrivere prima la query che mostra il codice del fornitore e i codici delle coppie di parti dello stesso fornitore)

 Ad es., il risultato del suggerimento ha questa forma:

SNum	PNum	PNum
S1	P1	P2
S1	P1	Р3
S1	P1	P4
•••	•••	
S1	P4	P6
S1	P5	P6
•••	•••	•••
S 4	P2	P4
S 4	P2	P5
S4	P4	P5 36