

Byungsoo Kim¹ Xingchang Huang^{1,2} Laura Wuelfroth¹ Jingwei Tang¹

Guillaume Cordonnier^{1,3} Markus Gross¹ Barbara Solenthaler¹

Reims 2022

Storyboard to Film

Raiders of the Lost Ark (1981) by Steven Spielberg

Storyboard to Film

Raiders of the Lost Ark (1981) by Steven Spielberg

Storyboards by Ed Verreaux, <u>Video</u> comparison by Vashi Nedomansky

Modeling Density Volumes

Detail Synthesis on Coarse Shapes

Hierarchical Blobs [Bouthors and Neyret 2004]

Prior Works: Learning-based Sketch Modeling

[Li et al. 2018]

[Lun et al. 2017]

[Zhong et al. 2020]

[Shen et al. 2020]

Prior Works: Fluid Reconstruction / Sketch Editing

[Franz et al. 2021]

[Pan et al. 2013]

[Hu et al. 2019]

How to Sketch Fluids?

© Generality © Simplicity © Strokes © Volume

Pipeline: Progressive Refinement

2D Sketch-based Modeling

Depth Ambiguity & Occlusions

Pipeline: Progressive Refinement

Pipeline

Pipeline

Loss Functions

Full Objective: (Density + Sketch + Depth Variation) Losses on All Viewpoints

Loss Functions: Ablation Study

Loss Functions: Ablation Study

Differentiable Sketcher

Suggestive Contours [De Carlo et al. 2003]

Tracer Particles [Selle et al. 2004]

Differentiable Sketcher

Differentiable Sketcher: Augmentation

Post-Processing for Detail Synthesis

- Multi-Pass GAN [Werhan et al. 2019]
 - No temporal discriminator

- Model requires Velocity Field Input
 - Use curl-noise [Bridson et al. 2007] at test
 - Controllable by parameters

Output

Post-processed

Training Dataset

Training Result

cal

Validation Result

Synthetic Sketch Test: Fluid Simulation

Synthetic Sketch Test: Animation Sequences

Artist Sketch Test

Artist Sketch Test

Interactive Authoring

Interactive Authoring

Fluid Control Optimization

Evaluation: Comparison to [Stiver et al. 2010]

Evaluation: User Study

User study (Ours [%], A [%], B [%])			
	Smoke data	Cloud	Character
Similarity	(86.8 , 13.2, 0)	(75.4 , 20.8, 3.8)	(84.9 , 11.3, 3.8)
Outer	(98.1 , 1.9, 0)	(85 , 7.5, 7.5)	(86.8 , 3.8, 9.4)
Inner	(100 , 0, 0)	(94.3 , 5.7, 0)	(90.6 , 7.5, 1.9)
Shading	(90.6 , 7.5, 1.9)	(86.8 , 7.5, 5.7)	(69.8 , 9.4, 20.8)
Reality	(34.6, 40.4 , 25)	(54.8 , 35.8, 9.4)	(52.8 , 32.1, 15.1)

Summary

- Real-Time, Iterative Refinement Method for Smoke Volumes from Sketches
- Differentiable Sketch Generator with Fluid Sketch Principles
- Carefully Designed Loss, Dataset, Augmentation for Robust Model
- Applications: Artist Sketch Test, Interactive Authoring, Animation Control

- Limited to Unscalable, Simplified Representation
- Arbitrary Drawing Styles are not Supported

Byungsoo Kim¹ Xingchang Huang^{1,2} Laura Wuelfroth¹ Jingwei Tang¹

Guillaume Cordonnier^{1,3} Markus Gross¹ Barbara Solenthaler¹

Reims 2022