Лабораторна робота № 1 Тема: Наближене розв`язування нелінійних рівнянь

1.Постановка задачі

Задача розв'язання рівняння часто всього зустрічається при вивченні загально-технічних і спеціальних дисциплін, в інженерній практиці. Знайти точне значення кореня рівняння можливе лише в деяких окремих часткових випадках, причому навіть в цих випадках формули знаходження коренів бувають настільки громіздкими (наприклад, формули коренів алгебраїчних рівнянь третього і четвертого степенів), що ними важко користуватися. Крім того, часто константи, що входять у рівняння, відомі наближено, а також точне значення кореня, як, наприклад, $x=\sqrt{2}$, все рівно приходиться замінити його наближеним значенням. Тому при розв'язуванні рівнянь широко використовуються методи, які дозволяють одержати наближений розв'язок з будь-якою заданою точністю.

Нехай задано рівняння f(x)=0, де функція f(x) визначена і неперервна на деякому відрізку і має на ньому неперервні першу і другу похідні. Корені заданого рівняння являються нулями функції y=f(x) і геометрично представляють собою точки перетину її графіку з віссю Ох.

Розглянемо задачу відшукання наближених значень дійсних коренів заданого рівняння з будь-якою заданою точністю. Розв`язок задачі складається з двох етапів:

- 1. Виділення (ізоляція) кореня, тобто відшукання відрізка [a;b], який належить області визначення функції y=f(x), на якому знаходиться один і тільки один корінь рівняння f(x)=0.
- 2. Обчислення або уточнення значення кореня з наперед заданою точністю.

2.Виділення кореня рівняння

Умови виділення кореня

Виділення кореня засновується на двох очевидних фактах.

1) На кінцях відрізка [a;b] функція має різні знаки, тобто f(a)*f(b)<0. Очевидно, що при цьому всередині відрізка [a;b] є принаймні один корінь рівняння f(x)=0. Геометрично це означає, що графік функції y=f(x) в точках а і b знаходиться по різних сторонах від осі ох і, відповідно, всередині відрізка [a;b] обов`язково повинен перетинати вісь ох. Однак ця умова не гарантує існування єдиного кореня. Так, наприклад, на рис.1 f(a)<0, f(b)>0 і всередині відрізка [a;b] є два різних кореня.

Замітимо, що якщо на кінцях відрізка значення функції має один і той самий знак, то це зовсім не означає, що корінь відсутній. Наприклад, відрізок [a1;b1] (див. рис.1) містить корінь x_1 (точка x_1 , показана на рис.1, являється кратним коренем рівняння f(x)=0. Далі такі корені розглядати не будемо), але f(a1)>0 і f(b1)>0.

Для існування єдиного кореня на [a;b] повинен мати місце ще один факт.

2) На відрізку [a;b] функція f(x) монотонна, тобто її похідна не міняє знак на [a;b].

Умови 1) і 2) являються достатніми для існування єдиного кореня рівняння f(x)=0.

Задача визначення кореня рівняння f(x)=0 являється у відшуканні відрізка [a;b] області визначення функції y=f(x), на якому виконуються три умови:

- 1) f(a)*f(b)<0;
- 2) f'(x) не міняє знак для $x \in [a;b]$;
- 3) f''(x) не міняє знак для $x \in [a;b]$.

Третя умова означає, що графік функції або тільки випуклий, або тільки вгнутий на відрізку [a;b].

На рис.1 визначені всі можливі варіанти розміщення графіка функції на відрізку [a;b] при виконанні умов 1)-3).

Відрізок [a;b] при виконанні умов 1)-3) для функції f(x) називають відрізком, що виділяє корінь даної функції.

Виділення кореня можна проводити як аналітично, так і графічно.

а) Графічний метод

Графічні корені рівняння f(x)=0 можна виділити, побудувавши графік функції y=f(x) і наближено визначивши точки його перетину з віссю ох. Однак задача побудови графіку не завжди проста. Звично рівняння f(x)=0 заміняють еквівалентним рівнянням $\varphi_1(x)=\varphi_2(x)$ ($f(x)=\varphi_1(x)-\varphi_2(x)$), підбирають функції $y_1=\varphi_1(x)$ і $y_2=\varphi_2(x)$ так, щоб будувати їх графіки було простіше, чим графік функції y=f(x). Абсциси точок перетину графіків $y_1=\varphi_1(x)$ і $y_2=\varphi_2(x)$ будуть шуканими коренями.

ПРИКЛАД: Виділити графічним методом корені рівняння $e^{-x} + x^2 - 2 = 0$.

РОЗВ`ЯЗОК: Перепишемо дане рівняння у вигляді $e^{-x} = 2 - x^2$ і розглянемо дві функції $\varphi_1(x) = e^{-x} i \varphi_2(x) = 2 - x^2$. Точки перетину графіків цих функцій і є коренями заданого рівняння. Як видно із рисунка, задане рівняння має два дійсних кореня (графіки перетинаються в двох точках), причому один з коренів від`ємний, а другий – додатній. Обидва корені по абсолютній величині не перевищують $\sqrt{2}$ ($-\sqrt{2} < x_1 < 0$, $0 < x_2 < \sqrt{2}$).

б) Метод проб

Цей метод полягає в тому, що наугад вибирають точку x=a із області визначення функції (або із більш вужчої області), знаходять знак f(a), а потім підбирають точку b так, щоб значення функції f(b) мало знак, протилежний знаку f(a). Далі визначають знак f'(x) всередині відрізка [a;b]. Якщо f'(x) не міняє знак на [a;b], то корінь виділений, в інакшому випадку відрізок [a;b] звужують, взяв точку c, яка лежить посередині відрізка [a;b]. Визначають знак f(c) і в якості нового відрізка розглядають або [a;c] (якщо f(a)*f(c)<0), або [c;b] (якщо f(c)*f(a)<0). Позначивши новий відрізок через [a:;b:], повторяють ті самі дії, що на відрізку [a;b], до тих пір, поки не буде знайдено відрізок [a:a:b:a], який визначає корінь .

ПРИКЛАД: Методом проб виділити додатній корінь рівняння:

$$x^4 + x^3 - 36x - 20 = 0$$
.

РОЗВ`ЯЗОК: Функція $f(x) = x^4 + x^3$ -Збх-20 визначена на всій числовій прямій. Оскільки треба виділити додатній корінь рівняння, розглянемо пів інтервал [0; ∞].

1. Знаходимо f(0)=-20<0. Потім вибираємо будь-яку точку, наприклад x=1, і обчислюємо f(1)=-54<0. Так як f(0)*f(1)>0, то нічого визначеного про відрізок [0;1] сказати не можна. Треба підібрати так точку x=b, щоб було

f(b)>0, а для цього $x^4 + x^3$ повинно бути більше, чим 36x+20. Візьмемо, наприклад, x=4, тоді f(4)=156>0, а відповідно, на відрізку [1;4] є корінь (f(1)*f(4)<0).

2. Оскільки $f'(x)=4x^3+3x^2-36=4(x^3-9)+3x^2$, то безпосередньою перевіркою переконуємося, що на відрізку [1;4] похідна міняє знак (f'(1)=-29<0;f'(4)=268>0).

Звужаємо відрізок [1;4]. Візьмемо, наприклад, точку x=3. Тоді f(3)=-20<0 і f(3)*f(4)<0. Відповідно на відрізку [3;4] є корінь. Перевіряємо знак похідної. Маємо f(3)=99>0, а для x>3, очевидно, похідна зростає, тому залишається додатною. Таким чином, корінь виділений. На відрізку [3;4] знаходиться додатній дійсний корінь заданого рівняння. Відмітимо, що $f'(x)=12x^2+6x>0$ для $x\in[3;4]$. Графік y=f(x) для $x\in[3;4]$ має приблизно такий же вигляд, як на рис.1.

в) Метод виділення проміжків монотонності

Цей метод полягає в тому, що спочатку визначаємо інтервали монотонності функції f(x) (якщо це не складно), тобто інтервали області визначення функції, в яких похідна зберігає знак. Потім обчислюємо знаки функції на кінцях цих інтервалів і визначаємо інтервал (a;b), на якому похідна зберігає знак і f(a)*f(b)<0. Задача виділення кореня виконана. Таким способом можна виділити всі дійсні корені рівняння f(x)=0.

Якщо ж серед інтервалів монотонності функції не існує інтервала, на кінцях якого функція має різні знаки, то це означає, що або рівняння f(x)=0 не має дійсних коренів, або такими являються границі інтервалів монотонності, тобто для цих точок функція і похідна цієї функції рівні нулю(див. рис.1, точка x_1). Це так називаємі кратні корені.

ПРИКЛАД: Виділити дійсні корені рівняння

x-sinx-1=0.

PO3B`Я3OK: Розглянемо функцію f(x)=x-sinx-1, яка визначена на всій числовій прямій.

1. Знаходимо першу похідну і інтервали монотонності функції. Одержимо f'(x)=1-cosx, звідси 1-cosx=0,

 $\cos x=1$, $x=2\pi n(n=Z)$,

mак, що інтервалами монотонності функції являються всі інтервали виду $(2\pi n; 2\pi (n+1)).$

2. Визначаємо знаки функції в граничних точках інтервалів монотонності. Взявши відрізок $[0;2\pi]$, знаходимо f(0)=-1<0, $f(2\pi)=2\pi-1>0$ і переконуємося, що на цьому відрізку є один корінь рівняння. По вигляду функції заключаєм, що для $x>2\pi$ буде f(x)>0 (так як $\sin x<=1$ і $x>\sin x+1$), а для x<0 буде f(x)<0 (так як $\sin x>=1$ і $\sin x>x-1$). Відповідно, в інших інтервалах монотонності функція знаку не міняє. Рівняння має єдиний корінь, що знаходиться на відрізку $[0;2\pi]$.

Враховуючи ще умову 3), знаходимо $f'(x)=\sin x$, яка на відрізку $[0;2\pi]$ міняє знак. Відрізком, що виділяє корінь, буде $[0;\pi]$, оскільки

- 1) f(0)=-1, $f(\pi)=\pi-1$, $f(0)*f(\pi)<0$;
- 2) перша похідна не міняє знаку на $[0; \pi]$;
- 3) друга похідна не міняє знаку на $[0;\pi]$;

3.Оцінка наближеного значення кореня

Нехай на відрізку [a;b] виділений корінь рівняння f(x)=0, тоді в якості наближеного значення кореня х $^{\circ}$ може бути прийнята будь-яка точка х, що лежить всередині [a;b]. Ясно, що чим менший відрізок, тим точніше х буде представляти корінь х $^{\circ}$. Для того, щоб вважати х цілком сприйнятливим, оцінимо різницю $|x_0-x|$, тобто різницю між точним і наближеним значеннями кореня. Очевидно, що $|x_0-x|$ < b-а, так як х $^{\circ}$ і х знаходяться всередині [a;b]. Число b-а являється оцінкою наближеного значення х: $\Delta(x)=$ b-а. Найчастіше в якості х вибираємо точку, що

лежить посередині відрізка [a;b], тобто $x = \frac{x_1 + y_2}{2}$, тоді помилка при заміні $x \circ$ на x буде

не більше чим $\frac{b-a}{2}$, тобто $\Delta(x) = \frac{b-a}{2}$, причому, по знаках f(a), $f^{\left(\frac{a+b}{2}\right)}$, f(b) з`ясовуємо, в якому із відрізків $\left[a; \frac{a+b}{2}\right]$ чи $\left[\frac{a+b}{2}; b\right]$ знаходиться шуканий корінь.

ı + b

Однак стверджувати, що значення $x = \sqrt{2}$ точніше представляє корінь, чим, наприклад, значення x = a, не має ніяких підстав. Вказані оцінки являються достатньо грубими і не залежать від розглядуваної функції, а лише від довжини відрізка [a;b].

Для уточнення оцінки наближеного значення х кореня х∘використаємо формулу скінчених приростів Лагранжа:

$$f(x_0)-f(x)=f'(\xi)(x_0-x),$$

де ξ -деяка точка між х \circ і х. Так як х \circ - корінь рівняння, то f(х \circ)=0 і тоді $|x_0-x|=\left|\frac{f(x)}{f^{'}(\xi)}\right|$.

Згідно припущенню, $f'(x) \neq 0$ і неперервна на [a;b], а тоді існує таке m>0, що $\left|f'(x)\right| \geq \text{m}$ для $x \in [a;b]$, тобто $\left|f'(\xi)\right| \geq \text{m}$ і $\left|x_0 - x\right| \leq \frac{\left|f(x)\right|}{m}$, відповідно, $\Delta(x) = \frac{\left|f(x)\right|}{m}$.

Замітимо, що якщо b-а менше, чим величина $\Delta(x)$, то оцінкою буде менше число, тобто $\Delta(x) = \min \left\{ b - a; \left| \frac{f(x)}{m} \right| \right\}$.

ПРИКЛАД: Оцініть наближене значення кореня, виділеного в прикладі методі проб.

PO3B`Я3OK: В прикладі було виділено, що шуканий корінь знаходиться на відрізку [3;4], відповідно, b-a=1.

Приймемо за наближене значення кореня число x=b=4. Тоді f(x)=f(4)=156. Як вказано в прикладі, $f(x)\ge f(3)=99$, $\Delta(4)=\frac{156}{99}\approx 1,58$. Але, b-a=1<1,58, а відповідно, $\Delta(4)=\min\{1;1,58\}=1$, і $3\le x_0\le 4$. Якщо в якості x взяти, наприклад, a+b

 $\overline{2}$ =3,5, то $f(3,5)\approx 47>0$. Корінь ховиділений на відрізку[3;3,5]. Оцінка наближення x=3,5 буде $\Delta(3,5)=\min\left\{0,5;\frac{47}{99}\right\}=0,47$. Накінець, при x=3,2 одержимо: $f(3,2)\approx 2,42>0$;

[3;3,2]- відрізок, що відділяє корінь, і $\Delta(3,2)=\min\left\{0,2;\frac{2,42}{99}\right\}=0,03$. Відповідно, можна вважати, що $x_0=3,2$.

Якщо оцінка одержаного наближеного значення кореня задовольняє потрібні точності, то задачу можна вважати розв`язаною, в інакшому випадку треба перейти до обчислення або уточнення кореня з заданою точністю.

4. Суть методу послідовних наближень

Нехай виконана задача виділення кореня, тобто одержано відрізок [a;b] такий, що a<x \circ <b. Ясно, що чим менший відрізок [a;b], тим точніше вибране значення х (a<x<b) буде представляти корінь х \circ рівняння f(x)=0. Даль ніша задача полягає в послідовному звуженню відрізка [a;b] до тих пір, поки не одержимо значення кореня з заданою точністю. Ідея методу полягає в тому, що спочатку вибираємо деяку точку с \cdot iз [a;b] (перше наближення до х \cdot), шуканий корінь при цьому попадає або в [a;c \cdot], або в [c \cdot ;b]. Позначимо новий відрізок, виділяючий корінь, через [a_1 ; b_1] (очевидно, що [a_1 ; b_1] міститься в [a;b]), вибираємо в ньому точку с \cdot 2 (друге наближення до х \cdot 3) і знову звужуємо відрізок [a_1 ; b_1 3, замінивши його на [a_1 ; a_2 3] або на [a_2 ; a_3 6, і так далі ., до тих пір, поки не одержимо відрізок [a_n ; a_n 6, в якому для вибраної точки a_n 6, п-го наближення) маємо a_n 6, де Е- задана точність

наближення. Таким чином будуємо послідовність значень $c_1, c_2, c_3, ..., c_n, ...$, які повинні поступово наближатись до шуканого кореня. Тому цей метод називають методом послідовних наближень або ітераційним процесом. Потім треба показати, що $\lim c_{n\to X_0}$

 $n \to \infty$, а якщо це так, то ітераційний процес називають *збіжним*. В цьому випадку x_0 можна визначити з будь-якою заданою точністю.

Існують різні методи послідовних наближень при відшуканні дійсних коренів рівняння.

Найбільш простим із цих методів являється метод проб. Однак в цьому методі не враховуються особливості функції і тому можливі надто великі обчислення.

5. Метод хорд

Ідея методу полягає в тому, що на відрізку [a,b] будується хорда AB, що стягує кінці дуги графіка функції y=f(x), і в якості наближеного значення кореня $x \circ$ вибирається число $c=c \circ$, що являється абсцисою точки перетину цієї хорди з віссю ох (рис.1). Для визначення числа $c \circ$ складемо рівняння хорди як прямої, що проходить через дві точки A(a;f(a)) і B(b;f(b)):

$$\frac{x-a}{b-a} = \frac{y-f(a)}{f(b)-f(a)}.$$

Взявши у=0, х=с1, одержимо

$$c_1 = a - \frac{f(a)(b-a)}{f(b) - f(a)} a = b - \frac{f(b)(b-a)}{f(b) - f(a)}$$

Число с приймаємо за перше наближення до шуканого кореня.

Очевидно, що при зроблених наближеннях про знаки першої і другої похідних на [a,b] точка (c1;0) буде знаходитися зі сторони вгнутості кривої і розділить [a,b] на два відрізки [a;c1] і [c1;b], в одному з яких знаходиться корінь x_0 (рис.1). Новий відрізок, на якому знаходиться корінь, можна визначити, порівнюючи знаки f(a), f(c1) і f(b). Із аналізу рис.1 видно, що точка c1 ближче до точки а, ніж x_0 , якщо $y^* y^* > 0$ (див. рис.1а), і відрізком, на якому знаходиться корінь, буде [c1;b], в іншому випадку, якщо $y^* y^* < 0$ (див. рис.2б), відрізком, на якому знаходиться корінь, буде [a;c1].

Далі повторимо ту ж процедуру на новому відрізку, на якому знаходиться корінь, і визначаєм число с 2 (друге наближення) по формулах:

Потім по с 2 знаходимо с 3 і так далі (див. рис.2)

Процес призупиняється тоді, коли оцінка одержаного наближення задовольняє заданій точності.

Для спрощення обчислень часто задають деяке достатньо мале число E>0 (не більше заданої точності). Процес зупиняється тоді, коли абсолютна величина різниці між двома наступними наближеннями с n-1 і с n менше E. Число с n приймають за наближене значення кореня, тобто $\mathbf{x} = \mathbf{c} n$.

 $\Pi P U K \Pi A \Pi$: Використовуючи метод хорд, уточнити корінь рівняння $x^4 + x^3 - 36x - 20 = 0$, який виділений на відрізку [3;4] (див. приклад методу проб). Обмежитись трьома наближеннями.

РОЗВ`ЯЗАННЯ: Згідно умови, маємо $f(x)=x^4+x^3$ -36x-20, $f'(x)=4x^3+3x^2$ -36, $f''(x)=12x^2+6x$ і $x\in[3;4]$.

Уточнення кореня буде проходити по алгоритму:

1. Для $x \in [3;4]$ маємо f(x) > 0, f'(x) > 0, так що y' * y'' > 0, відповідно, вводимо позначення $c \circ = a = 3$, A = b = 4. Знаходимо f(A) = f(4) = 156.

2. Обчислюємо перше наближення
$$c_1 = c_0 - \frac{f(c_0)(A - c_0)}{f(A) - f(c_0)}$$
.

Для цього послідовно визначаємо $A-c\circ=1$, $f(c\circ)=f(3)=-20$, $f(A)-f(c\circ)=176$, $f(c_0)(A-c_0)$

$$\frac{f(A) - f(c_0)}{f(A) - f(c_0)} \approx -0.1136. \ Todi \ c_1 = 3 - (-0.1136) = 3.1136.$$

Обчислюємо c_2 - друге наближення. $c_2 = c_1 - \frac{f(c_1)(A-c_1)}{f(A)-f(c_1)}$, $c_2 = 3,1564$

Третє наближення $c_3 = 3,1719$.

Отже, шуканий корінь знаходиться на відрізку [3,1719;4].

Обґрунтування методу хорд. Впевнимося, що послідовне застосування методу дозволяє визначити х \circ з будь-якою заданою точністю. Відмітимо, що послідовність $c_1^c_2,...,c_n$,... монотонно змінюється і обмежена. Дійсно, при $y^**y^">0$ маємо $c_1< c_2<...< c_n<...< x <math>\circ$ (див. рис.1а)), а при $y^**y^"<0$ маємо $c_1> c_2>...> c_n>...> x <math>\circ$ (див. рис.1б)). Тут істотно, що друга похідна не міняє знаку на відрізку. Згідно теореми із теореми границь, така послідовність має границю α .

 $c_n = c_{n-1} - \frac{f(c_{n-1})(A - c_{n-1})}{f(A) - f(c_{n-1})}$ і використавши

Перейшовши до границі в формулі неперервність f(x), одержимо:

$$\alpha = \alpha - \frac{f(\alpha)(A - \alpha)}{f(A) - f(\alpha)}$$
 $\frac{f(\alpha)(A - \alpha)}{f(A) - f(\alpha)} = 0$.

Звідси $f(\alpha)=0$, так як $A\neq\alpha$, $f(A)\neq f(\alpha)$. Отже, $\alpha\in$ коренем рівняння f(x)=0, але на відрізку [a;b] існує один корінь рівняння, отже, $\alpha=x_0$. Так що послідовні наближення збігаються до кореня $x \in A$.

Оцінка одержаних наближень: $|x-c_n| \le \frac{\left|f(c_n)\right|}{m}$, де m- найменше значення модуля похідної на відрізку.

Покажемо, що при зроблених припущеннях про похідну на відрізку $\mathbf{m} = \left| f^{\cdot}(c_n) \right|$.

Нехай $y^*y^*>0$, тоді відрізки, в яких знаходиться корінь, мають вигляд $[c_n;b]$. Якщо y>0 і $y^*>0$, то перша похідна зростає і додатня, відповідно, найменше її значення в лівому кінці відрізка, тобто $m= |f'(c_n)| = f'(c_n);$ при y'<0, y''<0 перша похідна спадає (а по абсолютній величині зростає) і найменше значення її модуля знову досягається в лівому кінці відрізка, тобто $m= |f'(c_n)| = f'(c_n)$.

Аналогічно розглядаємо при $y^{'*}y^{"}$ <0, беручи відрізки [a;c_n]. Відповідно, $|x_0-c_n| \leq \frac{|f(c_n)|}{|f^{'}(c_n)|}$, $\Delta(c_n) = \frac{|f(c_n)|}{|f^{'}(c_n)|}$, (*)

Вернемось до розв`язування прикладу і використаємо формули(*).

 $\Delta(c_n) = 0,009;$ $c_3 = 3,1719$ відрізняється від x_0 не більше чим на 0,009. Оскільки c_n в даному прикладі наближається до кореня зліва (див. рис. 1a)), то $3,172 < x_0 < 3,181$.

Примітка: Для спрощення розрахунків в формулі * $|f^{'}(c_n)|$ можна замінити на $|f^{'}(a)|$, якщо $y^{'}*y^{''}>0$, і на $|f^{'}(b)|$, якщо $y^{'}*y^{''}<0$, тобто $\Delta(c_n) = \left|\frac{f(c_n)}{f^{'}(a)}\right|$, якщо $y^{'}*y^{''}>0$, і $\Delta(c_n) = \left|\frac{f(c_n)}{f^{'}(b)}\right|$, якщо $y^{'}*y^{''}<0$. При такій заміні оцінка буде грубшою, але обчислення простіші.

6. Метод дотичних

Ідея методу полягає в тому, що в одному із кінців дуги АВ графіка функції y=f(x) проводиться дотична до цієї дуги і в якості наближеного значення кореня $x \circ$ вибирається число d_1 (перше наближення) - абсциса точки перетину цієї дотичної з віссю ох (рис. 3). Як відомо рівняння дотичної до кривої y=f(x) в точці $(x_1;f(x_1))$ має вигляд $y-f(x_1)=f^{'}(x_1)(x-x_1)$. Відповідно, $y-f(a)=f^{'}(a)(x-a)$ — рівняння дотичної в точці A(a;f(a)), а $y-f(b)=f^{'}(b)(x-b)$ — в точці B(b;f(b)). Поклавши y=0, а $x=d_1$, визначаємо f(a)

абсцису точки перетину дотичної з віссю ох: $d_{\scriptscriptstyle 1} = a - \frac{f(a)}{f^{'}(a)} \text{ або } d_{\scriptscriptstyle 1} = b - \frac{f(b)}{f^{'}(b)}.$

Очевидно, що точка $(d_1;0)$ буде знаходиться зі сторони випуклості кривої. Точка d_1 розділить [a;b] на два відрізки $[a;d_1]$ і $[d_1;b]$, в одному із яких розміщена точка x_0 . Якщо y'y''>0, це буде відрізок $[a;d_1]$ (дотична проводиться в точці B, див. рис.3а), а при y'y''<0 - відрізок $[d_1;b]$ (дотична проводиться в точці A, див. рис.3б). Визначивши новий проміжок на якому знаходиться корінь, процедуру повторяємо.

При цьому дотичну проводимо в точці (d1;f(d1)) (див. рис.3) і визначаємо друге наближення - точку d2 по формулі: $d_2 = d_1 - \frac{f(d_1)}{f'(d_1)}.$

Потім по d_2 знаходимо третє наближення d_3 і т.д. Процес призупиняється тоді, коли абсолютна величина різниці двох наступних наближень d_{n-1} і d_n менше заданого E>0, тобто $d_n-d_{n-1}< E$, і покладемо, що $x=d_n$ (число E не перевищує заданої точності наближення і служить сигналом для зупинення обчислень).

Рисунок 3

 $\Pi P U K \Pi A \Pi$: Користуючись методом дотичних, уточнити корінь рівняння $x^4 + x^3 - 36x - 20 = 0$, який виділений на відрізку [3;4]. Обмежитись трьома наближеннями(див. приклад з методу хорд).

Розв`язок: Згідно умови, маємо $f(x)=x^4+x^3-36x-20$, $f'(x)=4x^3+3x^2-36$, $f''(x)=12x^2+6x$ і $x\circ C[3;4]$. Уточнення кореня будем проводити по алгоритму.

1.Для $x \in [3;4]$ буде y'y' > 0, так що покладаєм d = b = 4.

2a). Маємо нульове наближення $d \circ$. Визначаємо перше наближення $d \circ$ по $d_n = d_{n-1} - \frac{f(d_{n-1})}{f'(d_{n-1})} (*)$ при n=1:

Послідовно находимо, що $f(d_0)=f(4)=156$, $f^{'}(d_0)=f^{'}(4)=268$, $f^{'}(d_0)\stackrel{\approx}{=}0,5821$, i $d_1\approx 4\text{-}0,5821=3,4179$.

26). Обчислюємо d_2 - друге наближення. Кладучи в формулі(*) n=2, $d_2=d_1-\frac{f(d_1)}{f^{'}(d_1)}.$ Виконуючи відповідні обчислення, одержимо $d_2=3,2078.$

2в). Аналогічно по формулі(*) при n=3 знаходимо третє наближення $d_3=d_2-\frac{f(d_2)}{f^{'}(d_2)}\approx 3{,}1809$

Обгрунтування методу дотичних. Покажемо, що послідовність $d_1, d_2, ..., d_n, ...$ збігається і має своєю границею значення кореня x_0 . Відмітимо, що при у у >0 маємо $d_1 > ... > d_n > ... > x_0$ (див. рис. 1а), а при у у <0 маємо $d_1 < d_2 < ... < d_n < ... < x_0$ (див. рис 1б). При цьому послідовність d_n прямує до α при п прямує до нескінченості (послідовність d_n монотонно міняється і обмежена). Переходячи до границі в формулі (*) і використовуючи неперервність f(x) і f'(x), як в методі хорд, знаходимо

 $\alpha = x_0$. Одержані наближення оцінюються по формулі $\Delta(x) = \frac{|f(x)|}{m}$, причому m = |f'(a)| і $\Delta(d_n) = \left| \frac{f(d_n)}{f'(a)} \right|$ при у у >0, m = |f'(b)| і $\Delta(d_n) = \left| \frac{f(d_n)}{f'(b)} \right|$ при у у <0.

В розглянутому прикладі у у >0, тому оцінка кожного наближення $\Delta(d_n) = \left|\frac{f(d_n)}{f'(a)}\right|, \quad \text{де} \quad f'(a) = 99 \,. \quad \text{Маємо} \quad \Delta(d_1) = 0,337,$ $\Delta(d_2) = 0,034, \quad \Delta(d_3) = 0,0005 \,. \quad \text{Видимо}, \quad \text{що} \quad \text{для} \quad d_3 = 3,1809 \quad \text{оцінка} \quad \Delta(d_3) = 0,0005 \quad \text{і}$ наближення d_3 обчислене з трьома точними десятковими значеннями.

Оскільки числа d_n визначають в цьому випадку корінь х03 недостачею, то 3,1804< х0<3,1809.

7. Комбінований метод

Ідея методу полягає в об`єднанні метода хорд і метода дотичних. Із рисунка 1 і попередніх описань цих методів видно, що наближення c_n , обчислюване по методу хорд, прямує до кореня x_0 і сторони вгнутості кривої, а наближення d_n ,

обчислюване по методу дотичних,- зі сторони опуклості кривої. При цьому для будьякого наближення маємо: $c_n < x_0 < d_n$ при y'y'' > 0, $d_n < x_0 < c_n$ при y'y'' < 0. Відповідно, комбінуючи ці два методи і визначаючи c_n і d_n , послідовно на кожному кроці звужуємо з двох сторін відрізок, всередині якого знаходиться корінь x_0 . Процес призупиняється тоді, коли $|d_n - c_n| < E$, де Е- задана точність обчислення.

За наближене значення кореня частіше беремо точку, що належить середині відрізка, тобто $\mathbf{x} = \frac{c_n + d_n}{2}$, так що $|x_0 - x| \leq |d_n - c_n| <$ Е.

8. Метод половинного поділу

Метод половинного поділу також можна віднести до методу послідовних наближень. По своїй ідеї метод простий і фактично аналогічний методу проб, але його реалізація пов'язана з довгими обчисленнями (великим числом ітерацій) і тому при ручних обчисленнях метод половинного поділу не застосовується. При використанні програмування цей метод набагато простіший, так як не потребує обмежуючих умов для першої і другої похідних.

Алгоритм методу половинного поділу. Нехай відомо, що на відрізку [a;b] знаходиться один єдиний корінь рівняння f(x)=0, відповідно, f(a)*f(b)<0. Треба визначити цей корінь з заданою точністю E.

Суть методу полягає в тому, що відрізок [a;b] ділимо пополам точкою $c_1 = \frac{a+b}{2}$ (перше наближення) і розглядаємо той із відрізків [a;c_1] або [c_1;b], який містить шуканий корінь. Позначимо цей відрізок через $[a_1;b_1]$, причому $|b_1-a_1|=\frac{1}{2}|b-a|$, визначаємо точку $c^2=\frac{a_1+b_1}{2}$ (друге наближення) і розглядаємо відрізок [a_1;c_2] або [c_2;b_1], що містить шуканий корінь, тобто [a_2;b_2], де $|b_2-a_2|=\frac{1}{2^2}|b-a|$, і так далі, до тих пір, поки не одержимо відрізок [a_n;b_n], що містить шуканий корінь х $_0$, для якого $|b_n-a_n|=\frac{1}{2^n}|b-a|$ <E (*).

Точку с $^{n+1} = \frac{a_n + b_n}{2} = x$ приймаємо за наближене значення кореня х $^{\circ}$. Із (*) видно, що $|x_0 - x| < 0$.

Із (*) можна наперед визначити число п послідовних наближень,

$$\frac{\lg\frac{|b-a|}{E}}{\lg 2}, \text{ або n=} \boxed{\frac{\lg\frac{b-a}{E}}{\lg 2}+1}$$
 необхідних для визначення кореня при заданім E: n> $\frac{\lg \frac{|b-a|}{E}}{\lg 2}$, або n=

9. Метод простої ітерації

Розглянемо рівняння $x = \varphi(x)$ (0)

Нехай [a;b] – відрізок, що виділяє корінь хоцього рівняння, тобто хо = $\varphi(x_0)$. Вибираємо довільну точку соЄ [a;b] і першим наближенням називаємо число сого, де $c_1 = \varphi(c_0)$, по першому наближенню будуємо друге $c_2 = \varphi(c_1)$ і так далі $c_n = \varphi(c_{n-1})$ (1)

Таким чином будується послідовність наближень $c_0,...,c_n,...$. Якщо ця послідовність збігається, причому с прямує до х при п прямуючому до нескінченості, то за скінчене число ітерацій буде одержано наближення с c_n , яке представляє наближене значення кореня з заданою точністю c_n тобто c_n c_n

Вияснимо спочатку геометричний зміст процесу і його збіжності.

Корінь рівняння (0) — це абсциса хоточки перетину прямої у=х і графіка функції у= $\varphi(x)$; со- довільна точка на осі ох; со- абсциса точки перетину прямих у= $\varphi(c_0)$ і у=х .

По с1 визначаємо с2 як абсцису точки перетину прямих $y = \varphi(c_1)$ і у=х і так далі.

Встановимо умови збіжності. Оскільки x_0 - точне значення кореня рівняння (0), то $x_0 = \varphi(x_0)$ і, обчислюючи це співвідношення із (1), одержимо

$$c_n - x_0 = \varphi(c_{n-1}) - \varphi(x_0)$$

Застосуємо до правої частини рівності формулу скінчених приростів Лагранжа $\varphi(c_{n-1})-\varphi(x_0)=\varphi'(\xi)(c_{n-1}-x_0)$, де $c_{n-1}<\xi< x_0$ ($x_0<\xi< c_{n-1}$), тоді $c_n-x_0=\varphi'(\xi)(c_{n-1}-x_0)$, або $c_n-x_0=\varphi'(\xi)|c_{n-1}-x_0|$.

Нехай M – найбільше значення $|\varphi'(x)|$ на [a;b], тоді

$$|c_n - x_0| \le M |c_{n-1} - x_0|,$$
 (2)

і якщо
$$|\varphi'(x)| \le M < 1,$$
 (3)

то $|c_n - x_0| < |c_{n-1} - x_0|$, тобто c_n ближче до x_0 чим c_{n-1} . Покажемо, що при виконанні умови (3) послідовність c_0, c_1, c_2, \dots збігається до x_0 . Для цього будемо послідовно використовувати нерівність (2):

$$|c_n - x_0| \le M |c_{n-1} - x_0| \le M^2 |c_{n-2} - x_0| \le \dots \le M^n |c_0 - x_0|$$

Переходячи в останній нерівності до границі при $n \to \infty$ і враховуючи, що $M^n \to 0$, одержимо границя ($c_n \to x_0$) дорівнює нулю при п прямуючому до нескінченості, тобто границя c_n дорівнює x_0 при п прямуючому до нескінченості.

Знайдемо оцінку n-го наближення. Застосовуючи формулу (2), одержимо: $|c_n-x_0| \leq M |c_{n-1}-x_0| = M |(c_n-x_0)+(c_{n-1}-c_n)| \leq M |c_n-x_0| + M |c_{n-1}-c_n|$

Звідси
$$|c_n - x_0| \le \frac{M}{1 - M} |c_n - c_{n-1}|$$
 (M<1) (4)

Якщо $M^{\leq \frac{1}{2}}$, то $|c_n - x_0| \leq |c_n - c_{n-1}|$ і оцінка наближення с зводиться до оцінки модуля різниці двох послідовних наближень.

Застосуємо тепер метод ітерацій до розв`язання рівняння f(x)=0. Для цього запишемо його у вигляді $x=x+\lambda f(x)$, (5)

де λ - довільний параметр. Рівняння (5), очевидно, еквівалентне рівнянню f(x)=0. Прирівнявши рівняння (5) і (0), бачимо, що $\varphi(x)=x+\lambda f(x)$. Вибираємо тепер λ так, щоб була виконана умова збіжності (3):

$$|\varphi'(x)| < 1$$
 and $|1 + \lambda f'(x)| < 1$.

Розв'язуючи цю нерівність, одержимо, що при f'(x)>0 повинно бути $0>\lambda>-\frac{2}{f'(x)}$, а при f'(x)<0 повинно бути $-\frac{2}{f'(x)}>\lambda>0$. Якщо функція f(x) має на [a;b] обмежену похідну, тобто $|f'(x)|\leq M$, то при f'(x)>0 $0>\lambda>-\frac{2}{M}$, а при f'(x)<0 $\frac{2}{M}>\lambda>0$.

Вибравши λ , що задовольняє цим нерівностям, забезпечуємо умову (3) збіжності процесу ітерацій для рівняння (5), а відповідно, і для вихідного рівняння f(x)=0.

 $\Pi P U K \Pi A \Pi$: Рівняння $2 \ln x - \bar{x} = 0$ перетворити до вигляду, що допускає застосування методу ітеракцій. Корінь виділений на відрізку[1;2].

Розв`язок: Представимо рівняння у вигляді $x=x+\lambda \left(2\ln x - \frac{1}{x}\right)$.

Тоді $\varphi(x) = x + \lambda \left(2\ln x - \frac{1}{x} \right)$. Виберемо λ так, щоб $\left| \varphi'(x) \right| < 1$ для $x \in [1;2]$. Маємо $\varphi'(x) = 1 + \lambda \left(\frac{2}{x} + \frac{1}{x^2} \right)$. Звідси $\left| 1 + \lambda \left(\frac{2}{x} + \frac{1}{x^2} \right) \right| < 1$. Розв'язуючи цю нерівність, одержимо - $1 < 1 + \lambda \left(\frac{2}{x} + \frac{1}{x^2} \right) < 1$, $-2 < \lambda \left(\frac{2}{x} + \frac{1}{x^2} \right) < 0$.

Так як на [1;2] $3^{\geq \frac{2}{x} + \frac{1}{x^2}} > 0$, то -2<3 $\lambda < 0$, - $\frac{2}{3} < \lambda < 0$. Будь-яке значення параметра λ , що задовольняє одержану нерівність, можливе для застосування методу ітерацій.

Завдання:

- 1. Виділити відрізок на якому існує єдиний корінь.
- 2. Обчислити значення кореня рівняння з точністю \mathcal{E} =0,001 за допомогою наступних методів (тобто програмно реалізувати) згідно отриманих варіантів:
- Метод хорд;
- Метод дотичних;
- Комбінований метод;
- Метод половинного поділу
- Метод простої ітерації

	, .
№ варіанту	Рівняння
1	2
1	$x - \sin x = 0.25$
2	$3x - \cos x - 1 = 0$
3	$x + \ln x = 0.25$
4	$x^2 + 4\sin x = 0$
5	$3x + \cos x + 1 = 0$
6	$3x - e^x = 0$
7	$x^2 = \sin x$
8	$x^3 - 3x^2 - 24x - 3 = 0$
9	$2 - x = \ln x$

10	$x^3 + 4x - 6 = 0$
11	$x + \cos x = 1$
12	$x^3 = \sin x$
13	$2x^3 - 3x^2 - 12x + 8 = 0$
14	$tg(0.55x + 0.1) = x^2$
15	$e^x \sin x - 1 = 0$
16	$\arcsin x - 2x - 0.1 = 0$
17	$x^2 - 2\cos x = 0$

18	$x^2 - 20\sin x = 0$
19	$ctgx - \frac{x}{4} = 0$
20	$x^3 + 4x - 6 = 0$
21	$e^x(2-x) - 0.5 = 0$
22	$(x-2)^2 \cdot 2^x = 1$
23	$x^4 \cdot 3^x = 2$
24	$2e^x = 5x + 2$
25	$x^3 + 2x - 4 = 0$