By Van Dinh Tran

November 5, 2023







**Definition:** A function f is called a clustering function if it takes a set of data points (D) and a distance metric (d) as input and returns a partition (P) on D.

$$P = f(d, D)$$

- $\bullet \ P = \{C_1, C_2, \ldots, C_k\} \ s.t \ C_1 \cup C_2 \cup \ldots \cup C_k = D; \ C_i \cap C_j = \Phi$
- C<sub>i</sub> are called clusters

**Definition:** A function f is called a clustering function if it takes a set of data points (D) and a distance metric (d) as input and returns a partition (P) on D.

$$P = f(d, D)$$

- $\bullet \ P = \{C_1, C_2, \ldots, C_k\} \ s.t \ C_1 \cup C_2 \cup \ldots \cup C_k = D; \ C_i \cap C_j = \Phi$
- C<sub>i</sub> are called clusters

#### Three desirable properties of a clustering algorithm.

- Scale invariance:  $f(d, D) = f(\alpha d, D)$ ,  $\alpha$  is a scalar
- $\bullet$  Richness: any possible P on D should be a possible outcome of f
- Consistency: If we apply f on D using d' and it reduces within distances and increases between distances, f(d, D) = f(d', D) = P.

**Definition:** A function f is called a clustering function if it takes a set of data points (D) and a distance metric (d) as input and returns a partition (P) on D.

$$P = f(d, D)$$

- $\bullet \ P = \{C_1, C_2, \ldots, C_k\} \ s.t \ C_1 \cup C_2 \cup \ldots \cup C_k = D; \ C_i \cap C_j = \Phi$
- C<sub>i</sub> are called clusters

Three desirable properties of a clustering algorithm.

- Scale invariance:  $f(d, D) = f(\alpha d, D)$ ,  $\alpha$  is a scalar
- Richness: any possible P on D should be a possible outcome of f
- Consistency: If we apply f on D using d' and it reduces within distances and increases between distances, f(d, D) = f(d', D) = P.

[5ex] No function that satisfies those three properties

⇒ Constraint relaxation

#### • Common distance metrics

- Euclidean distance:  $d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Manhattan distance:  $d(x,y) = \sum_{i=1}^{n} |x_i y_i|$
- $\blacktriangleright \ \ \text{Peason correlation distance:} \ \ d\big(x,y\big) = 1 \frac{\sum_{i=1}^n (x_i \hat{x})(y_i \hat{y})}{\sqrt{\sum_{i=1}^n (x_i \hat{x})^2 \sum_{i=1}^n (y_i \hat{y})^2}}$
- ▶ Kernel-based distance

#### Common distance metrics

- Euclidean distance:  $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- $\blacktriangleright$  Manhattan distance:  $d(x,y) = \sum_{i=1}^n |x_i y_i|$
- $\blacktriangleright \ \ \text{Peason correlation distance:} \ \ d\big(x,y\big) = 1 \frac{\sum_{i=1}^n (x_i \hat{x})(y_i \hat{y})}{\sqrt{\sum_{i=1}^n (x_i \hat{x})^2 \sum_{i=1}^n (y_i \hat{y})^2}}$
- Kernel-based distance

#### • Metrics to measure clustering performance

- ▶ Internal metrics
  - Measures of cohesion and separation: Within-cluster sum of squares (WSS) and Between-cluster sum of squares (BSS)
  - Measures of validity: Silhouette score, Davies-Bouldin index, etc
- External metrics: Rand index, adjusted rand index

#### • Some types of clustering methods

- Centroid models (e.g k-means): represents each cluster by a single mean vector, each point is assigned to the cluster whose nearest centroid.
- Distribution models: clusters are modeled using statistical distributions, such as multivariate normal distributions used by the expectation-maximization algorithm.
- Connectivity models (e.g hierarchical clustering): build models based on distance connectivity
- Density models (e.g DBSCAN) defines clusters as connected dense regions in the data space.

Dataset  $D = \{x_i | x_i \in R^n\}$ , a distance metric d

- 1. Specify number of clusters K
- 2. Initialize K data points as cluster centroids
- 3. Keep iterating until there is no change to the centroids
  - 3.1 Assign each data point to the closest cluster centroid.
  - 3.2 Compute the centroids for the clusters by taking the average of the all data points that belong to each cluster.

Dataset  $D = \{x_i | x_i \in R^n\}$ , a distance metric d

- 1. Specify number of clusters K
- 2. Initialize K data points as cluster centroids
- 3. Keep iterating until there is no change to the centroids
  - 3.1 Assign each data point to the closest cluster centroid.
  - 3.2 Compute the centroids for the clusters by taking the average of the all data points that belong to each cluster.



Dataset  $D = \{x_i | x_i \in R^n\}$ , a distance metric d

- 1. Specify number of clusters K
- 2. Initialize K data points as cluster centroids
- 3. Keep iterating until there is no change to the centroids
  - 3.1 Assign each data point to the closest cluster centroid.
  - 3.2 Compute the centroids for the clusters by taking the average of the all data points that belong to each cluster.



Dataset  $D = \{x_i | x_i \in R^d\}$ , a distance metric d

- 1. Specify number of clusters K
- 2. Initialize K data points as cluster centroids
- 3. Keep iterating until there is no change to the centroids
  - 3.1 Assign each data point to the closest cluster centroid.
  - 3.2 Compute the centroids for the clusters by taking the average of the all data points that belong to each cluster.



#### - Total distances:

$$\begin{split} T &= \sum_{k=1}^K \sum_{i \in C_k} (\sum_{j \in C_k} d_{ij} + \sum_{j \neq C_k} d_{ij}) \\ &= \sum_{k=1}^K \sum_{i \in C_k} \sum_{j \in C_k} d_{ij} + \sum_{k=1}^K \sum_{i \in C_k} \sum_{j \neq C_k} d_{ij} \\ &= T_w + T_b \end{split}$$

#### - Total distances:

$$\begin{split} T &= \sum_{k=1}^K \sum_{i \in C_k} (\sum_{j \in C_k} d_{ij} + \sum_{j \neq C_k} d_{ij}) \\ &= \sum_{k=1}^K \sum_{i \in C_k} \sum_{j \in C_k} d_{ij} + \sum_{k=1}^K \sum_{i \in C_k} \sum_{j \neq C_k} d_{ij} \\ &= T_w + T_b \end{split}$$

$$\mathrm{Normalized} \ T_w = \sum_{k=1}^K \frac{1}{n_k} \sum_{i,j \in C_k} d_{ij} = \sum_{k=1}^K \frac{1}{n_k} \sum_{i,j \in C_k} \|x_i - x_j\|^2 = \sum_{k=1}^K \sum_{i \in C_k} \|x_i - \mu_k\|^2$$

#### - Total distances:

$$\begin{split} T &= \sum_{k=1}^{K} \sum_{i \in C_k} (\sum_{j \in C_k} d_{ij} + \sum_{j \neq C_k} d_{ij}) \\ &= \sum_{k=1}^{K} \sum_{i \in C_k} \sum_{j \in C_k} d_{ij} + \sum_{k=1}^{K} \sum_{i \in C_k} \sum_{j \neq C_k} d_{ij} \\ &= T_w + T_b \end{split}$$

$$\text{Normalized } T_w = \sum_{k=1}^K \frac{1}{n_k} \sum_{i,j \in C_k} d_{ij} = \sum_{k=1}^K \frac{1}{n_k} \sum_{i,j \in C_k} \|x_i - x_j\|^2 = \sum_{k=1}^K \sum_{i \in C_k} \|x_i - \mu_k\|^2$$

- Idea:

$$(T_w \to min; T_b \to max) \Longleftrightarrow T_w \to min$$

- Total distances:

$$\begin{split} T &= \sum_{k=1}^K \sum_{i \in C_k} (\sum_{j \in C_k} d_{ij} + \sum_{j \neq C_k} d_{ij}) \\ &= \sum_{k=1}^K \sum_{i \in C_k} \sum_{j \in C_k} d_{ij} + \sum_{k=1}^K \sum_{i \in C_k} \sum_{j \neq C_k} d_{ij} \\ &= T_w + T_b \end{split}$$

$$\text{Normalized } T_w = \sum_{k=1}^K \frac{1}{n_k} \sum_{i,j \in C_k} d_{ij} = \sum_{k=1}^K \frac{1}{n_k} \sum_{i,j \in C_k} \|x_i - x_j\|^2 = \sum_{k=1}^K \sum_{i \in C_k} \|x_i - \mu_k\|^2$$

- Idea:

$$(T_w \to min; T_b \to max) \Longleftrightarrow T_w \to min$$

- Objective function:

$$\underset{\mu,C}{\operatorname{argmin}} \sum_{k=1}^K \sum_{i \in C_k} \|x_i - \mu_k\|^2$$

- Total distances:

$$\begin{split} T &= \sum_{k=1}^K \sum_{i \in C_k} (\sum_{j \in C_k} d_{ij} + \sum_{j \neq C_k} d_{ij}) \\ &= \sum_{k=1}^K \sum_{i \in C_k} \sum_{j \in C_k} d_{ij} + \sum_{k=1}^K \sum_{i \in C_k} \sum_{j \neq C_k} d_{ij} \\ &= T_w + T_b \end{split}$$

$$\text{Normalized } T_w = \sum_{k=1}^K \frac{1}{n_k} \sum_{i,j \in C_k} d_{ij} = \sum_{k=1}^K \frac{1}{n_k} \sum_{i,j \in C_k} \|x_i - x_j\|^2 = \sum_{k=1}^K \sum_{i \in C_k} \|x_i - \mu_k\|^2$$

- Idea:

$$(T_w \to min; T_b \to max) \Longleftrightarrow T_w \to min$$

- Objective function:

$$\underset{\mu,C}{\operatorname{argmin}} \sum_{k=1}^K \sum_{i \in C_k} \|x_i - \mu_k\|^2$$

**Note:** K-means is guaranteed to converge, but not same result and speed due to different initialization.

## Gaussain mixture models (GMMs)

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

### Initialization

- Classical clustering methods:
  - Work well with low-dimensional data
  - Poorly perform with high-dimensional data due to the sparsity (curse of dimensionality)
- Solution with high dimensional data:
  - ▶ Dimension reduction + clustering
  - ► Autoencoder + clustering (sequential or simultaneous manner)
  - ▶ Autoencoder is key for most deep clustering methods

# Gaussain mixture models (GMMs)



## Gaussain mixture models (GMMs)

