Operations Research III: Theory

Quiz for Week 2 (Linear Programming Duality)

Instructor: Ling-Chieh Kung Department of Information Management National Taiwan University

1. Consider the following linear program

$$\max \quad 4x_1 - 2x_2 + x_3$$
s.t.
$$2x_1 + x_2 \le 10$$

$$x_2 + x_3 \ge -3$$

$$x_1 + 3x_2 - 3x_3 = 14$$

$$x_1 \ge 0, x_2 \le 0, x_3 \text{ urs.}$$

Let y_1 , y_2 , and y_3 be the dual variables of the dual linear program, where y_i corresponds to the *i*th primal constraint. What is the dual constraint corresponding to the primal variable x_2 ?

- (a) $y_1 + y_2 + 3y_3 \le -2$.
- (b) $y_1 + y_2 + 3y_3 \ge 2$.
- (c) $y_1 + y_2 + 3y_3 \le 2$.
- (d) $y_1 + y_2 + 3y_3 \ge -2$.
- (e) None of the above.
- 2. Continue from the previous question. Let \bar{x} and \bar{y} be primal and dual feasible solutions, respectively, where \bar{y}_i corresponds to the *i*th primal constraint. Which of the following always hold for \bar{x} and \bar{y} ?

(a)
$$4\bar{x}_1 - 2\bar{x}_2 + \bar{x}_3 \ge 10\bar{y}_1 - 3\bar{y}_2 + 14\bar{y}_3$$
.

(b)
$$4\bar{x}_1 - 2\bar{x}_2 + \bar{x}_3 = 10\bar{y}_1 - 3\bar{y}_2 + 14\bar{y}_3$$
.

(c)
$$4\bar{x}_1 - 2\bar{x}_2 + \bar{x}_3 \le 10\bar{y}_1 - 3\bar{y}_2 + 14\bar{y}_3$$
.

- (d) All of the above.
- (e) None of the above.

Note for the instructing team only: Weak duality.

- 3. Continue from the previous question. Which of the following always hold for \bar{x} and \bar{y} ?
 - (a) $(10 2\bar{x}_1 \bar{x}_2)\bar{y}_1 = 0.$
 - (b) $(-3 \bar{x}_2 \bar{x}_3)\bar{y}_2 = 0.$
 - (c) $(14 \bar{x}_1 3\bar{x}_2 + 3\bar{x}_3)\bar{y}_3 = 0.$
 - (d) All of the above.
 - (e) None of the above.

Note for the instructing team only: Complementary slackness holds only for optimal solutions. It holds for the third constraint because $14 - \bar{x}_1 - 3\bar{x}_2 + 3\bar{x}_3 = 0$ for any primal feasible solution \bar{x} .

- 4. Continue from the previous question. Let x^* and y^* be primal and dual optimal solutions, respectively, where y_i^* corresponds to the *i*th primal constraint. Which of the following always hold for x^* and y^* ?
 - (a) $y_1^* \ge 0$.
 - (b) $y_2^* \ge 0$.

- (c) $y_3^* \ge 0$.
- (d) All of the above.
- (e) None of the above.
- 5. Continue from the previous question. Which of the following statements are correct?
 - (a) $4x_1^* 2x_2^* + x_3^* = 10y_1^* 3y_2^* + 14y_3^*$.
 - (b) The shadow price of the first primal constraint is y_1^* .
 - (c) $(14 x_1^* 3x_2^* + 3x_3^*)y_3^* = 0.$
 - (d) All of the above.
 - (e) None of the above.