Structuri de date și algoritmi - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 2p; B 1.5p; C1 1p; C2 1p; D 3.5p.
- 2. Pentru cerința A, justificarea unei complexități presupune deducția acesteia.
- 3. Pentru cerințele B și C (C1, C2) se cer justificări, care vor fi punctate.
- 4. Problema de la D se va rezolva în Pseudocod. Se cer și se vor puncta: (1) descrierea ideii de rezolvare și comentarii despre soluția propusă; (2) scrierea reprezentării indicate în enunț; (3) (specificare și) implementare subalgoritm(i); (4) complexitate.

Nu se acceptă cod C++. Nu se acceptă pseudocod fără comentarii despre soluția propusă.

A. Deduceți timpii mediu si defavorabil pentru următorul subalgoritm. Justificați rezultatul.

```
\label{eq:Function} \begin{aligned} & Function & F(n,i) \text{ este } \{: \text{Intreg}\} \\ & & \{ \text{pre}: n, i: \text{Intreg} \} \\ & & \{ \text{dacă } n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & & \{ \text{feta} n=1 \text{ atunci} \} \\ & \{
```

B. Ilustrați, pe un exemplu concret, o ștergere din AVL care necesită a SRD.						

C. Se consideră un vector a) MergeSort	de numere reale. b) BucketSort	Alegeți algoritmii c) RadixSort	de sortare care pot fi folosiți pentru ordonarea vectorului. Justificati d) HeapSort

C. Dacă un ansamblu este implementat folosind un vector numit $data$, și acest vector conține n elemente $(n > 0)$, unde este valoare	ea
cea mai mare într-un ansamblu construit cu relația ≥? Justificati	

a) *data*[0]

b) *data*[n-1]

c) data[n]

d) *data*[2*n + 1]

e) data[2*n + 2]

secvențial, pe v	vector, folosind ca so	chemă de memorare	ansamblul. Indicați g	e într-un Arbore Bina grafic situația de rotațio rii pentru a ușura înțel	ar de Căutare. Arbore e, reprezentarea arborel egerea soluției	le se reprezintă ui și descrieți in