Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

Introdução aos Modelos Preditivos

Prof. Tiago A. Almeida

Tiago A. Almeida

Modelos preditivos

- Definição formal: dado conjunto de observações
- **D** = $\{(\mathbf{x}^{(i)}, f(\mathbf{x}^{(i)})), i = 1, ..., m\}$
 - f representa uma função desconhecida: função objetivo
 - Mapeia entradas em saídas correspondentes
 - Algoritmo preditivo aprende aproximação f
 - Que permite estimar valor de f para novos objetos x

Classificação

Regressão

$$y^{(i)} = f(\mathbf{x}^{(i)}) \in \{c_1, ..., c_k\}$$

$$y^{(i)} = f(\mathbf{x}^{(i)}) \in \Re$$

Modelos preditivos

 Algoritmo de AM preditivo: função que, dado um conjunto de exemplos rotulados, constrói um estimador

Classificação

- Rótulos nominais (conjunto discreto e não ordenado de valores)
 Ex. {doente, saudável}, {bom pagador, mau pagador}
- Estimador é chamado classificador

Regressão

- Rótulos contínuos (conjunto infinito ordenado de valores) Ex. peso, temperatura, vazão de água
- Estimador é chamado regressor

Estimadores podem ser vistos como funções

Modelos preditivos

Exemplos de conjuntos de dados:

Conjunto de dados iris

TamP	LargP	TamS	LargS	Espécie
5,1	3,5	1,4	0,2	Setosa
4,9	3	1,4	0,2	Setosa
7	3,2	4,7	1,4	Versicolor
6,4	3,2	4,5	1,5	Versicolor
6,3	3,3	6	2,5	Virgínica
5,8	2,7	5,1	1,9	Virgínica

Classificação

Conjunto de dados swiss

ertilidade	Agricultura	Educação	Renda	Mortalidade
80,2	17	12	9,9	22,2
83,1	45,1	9	84,8	22,2
92,5	39,7	5	93,4	20,2
85,8	36,5	7	33,7	20,3
76,9	43,5	15	5,2	20,6

Regressão

Modelos preditivos: classificação

- Classificação:
 - Meta: encontrar fronteira de decisão que separe classes
 - Diferentes algoritmos de AM podem encontrar diferentes fronteiras
 - Mesmo algoritmo pode também encontrar fronteiras diferentes
 - Diferenças nos dados de treinamento
 - Variações na ordem de apresentação dos exemplos
 - Processos estocásticos internos

Modelos preditivos

- Outros conceitos:
- Atributo alvo é também designado como variável dependente ou objetivo
 - Em classificação: classe
- Atributos restantes são designados como de entrada, preditivos ou variáveis independentes
 - Utilizados como entrada para fazer a predição

Classificação

- Exemplos:
- Diagnóstico de doenças
 - Paciente é doente ou não?

- Distribuição geográfica de espécies
 - Espécie está presente na região?

Métodos baseados em distâncias

 Técnicas de AM que consideram proximidade entre os dados para realizar predições

Hipótese: dados similares tendem a estar concentrados em uma mesma região do espaço de entradas

E dados que não são similares estarão distantes entre si

Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

Métodos Baseados em Distâncias

Proximidade

Medida de proximidade entre pares de objetos pode ser de:

Similaridade

- Mede o quanto dois objetos são parecidos
- Quanto mais parecidos ⇒ maior o valor

Dissimilaridade

- Mede o quanto dois objetos são diferentes
- Quanto mais diferentes ⇒ maior o valor

Escolha da medida deve considerar tipos e escalas dos atributos, além de propriedades dos dados que se deseja focar

Similaridade/dissimilaridade

- Normalmente as medidas satisfazem algumas propriedades, tais como:
- Os objetos não são diferentes de si próprios
 - $d(\mathbf{x}_i,\,\mathbf{x}_i)=0$
 - Em similaridade, objetos são similares a si próprios
 - $s(\mathbf{x}_i, \mathbf{x}_i) = 1$
- Simetria
 - $d(\mathbf{x}_i, \mathbf{x}_i) = d(\mathbf{x}_i, \mathbf{x}_i)$
- Positividade
 - $d(\mathbf{x}_i, \mathbf{x}_i) \geq 0$

Todas medidas de distância (medem dissimilaridade) satisfazem essas

propriedades

Distância Euclidiana

- Distância Euclidiana:
 - Medida de distância mais popular
 - Norma-2 ou distância L₂: || p-q ||²

$$d(p,q) = \sqrt{\sum_{i=1}^{m} (p_i - q_i)^2}$$

Distância Mahattan

- Distância de Manhattan:
- Também chamada distância bloco-cidade
 - Equivalente a Hamming para atributos binários
- Norma-1 ou distância L₁: || p-q ||

$$d(p,q) = \sum_{i=1}^{m} |p_i - q_i|$$

Distância de Chebyshev

- Distância de Chebyshev:
 - Também chamada de distância Supremum
 - Diferença absoluta máxima
 - Norma-∞ ou distância L∞: || p-q ||[∞]

$$d(p,q) = max_i(|p_i - q_i|)$$

Medidas de distância

Interpretação das medidas de distância

Exercício

Considere dois vetores:

$$x^{(1)} = [3 \ 0 \ 1 \ 3 \ 8]$$

$$x^{(2)} = [4 \ 1 \ 6 \ 3 \ 3]$$

Calcule as seguintes distâncias entre x⁽¹⁾ e x⁽²⁾:

- Manhattan
- Euclides
- Chebyshev
- Hamming

Medidas para atributos qualitativos

- Medidas obtidas pela soma das contribuições individuais
 - Ex. Distância de Hamming
 - Conta número de atributos categóricos com valores diferentes nos dois objetos
 - Varia em [0, d]
 - Valor 0 significa maior similaridade

Exercício

- Considere dois vetores:
 - $x^{(1)} = [3\ 0\ 1\ 3\ 8]$
 - $x^{(2)} = [4 \ 1 \ 6 \ 3 \ 3]$
- Calcule as seguintes distâncias entre x⁽¹⁾ e x⁽²⁾:
 - Manhattan = (|3-4|+|0-1|+|1-6|+|3-3|+|8-3|) = 12
 - Euclides
 - Chebyshev
 - Hamming

Tiano A Almeir

Exercício

- Considere dois vetores:
 - $x^{(1)} = [3 \ 0 \ 1 \ 3 \ 8]$
 - $x^{(2)} = [4 \ 1 \ 6 \ 3 \ 3]$
- Calcule as seguintes distâncias entre x⁽¹⁾ e x⁽²⁾:
 - Manhattan = (|3-4|+|0-1|+|1-6|+|3-3|+|8-3|) = 12
 - Euclides = $\sqrt{((3-4)^2+(0-1)^2+(1-6)^2+(3-3)^2+(8-3)^2)}$ = 7,2
 - Chebyshev
 - Hamming

chiamlA A anei

Exercício

- Considere dois vetores:
 - $x^{(1)} = [3 \ 0 \ 1 \ 3 \ 8]$
 - $x^{(2)} = [4 \ 1 \ 6 \ 3 \ 3]$
- Calcule as seguintes distâncias entre x⁽¹⁾ e x⁽²⁾:
 - Manhattan = (|3-4|+|0-1|+|1-6|+|3-3|+|8-3|) = 12
 - Euclides = $\sqrt{((3-4)^2+(0-1)^2+(1-6)^2+(3-3)^2+(8-3)^2)}$ = 7,2
 - Chebyshev = max(|3-4|,|0-1|,|1-6|,|3-3|,|8-3|) = 5
 - Hamming = 4

Tiago A. Almeida

Exercício

- Considere dois vetores:
 - $x^{(1)} = [3 \ 0 \ 1 \ 3 \ 8]$
 - $x^{(2)} = [4 \ 1 \ 6 \ 3 \ 3]$
- Calcule as seguintes distâncias entre x⁽¹⁾ e x⁽²⁾:
 - Manhattan = (|3-4|+|0-1|+|1-6|+|3-3|+|8-3|) = 12
 - Euclides = $\sqrt{((3-4)^2+(0-1)^2+(1-6)^2+(3-3)^2+(8-3)^2)}$ = 7,2
 - Chebyshev = max(|3-4|,|0-1|,|1-6|,|3-3|,|8-3|) = 5
 - Hamming

Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

Método dos Vizinhos mais Próximos

- Rotula novos objetos com base nos exemplos do conjunto de treinamento mais próximos a ele
 - É um algoritmo preguiçoso (lazy)
 - Não aprende modelo compacto, memoriza objetos de treinamento
 - Adia computação para a fase de classificação
- Há variações de acordo com o número de vizinhos mais próximos adotado

Algoritmo dos vizinhos mais próximos

- Algoritmo de AM mais simples
 - Intuição: Objetos relacionados ao mesmo conceito são semelhantes entre si

Algoritmo 1-vizinho mais próximo

- Variação mais simples: 1-NN
 - 1-Nearest Neighbor
 - Cada objeto representa um ponto no espaço de entradas
 - Definindo métrica, é possível calcular distâncias
 - Métrica mais usual: distância euclidiana
 - Treinamento: memoriza exemplos rotulados do conjunto de treinamento
 - Classificação de novo exemplo: classe do exemplo de treinamento mais próximo

Algoritmo 1-vizinho mais próximo

Ex. 1-NN

Classe saudável
Classe doente

Exame 1

```
Algoritmo 1-vizinho mais próximo

Algoritmo 1-NN

Entrada: conjunto de treinamento \mathbf{D} = \{(\mathbf{X}_{(m \times n)}, \mathbf{Y}_{(m \times 1)})\}, objeto de teste a ser classificado \mathbf{x}_{(1 \times n)} Saída: y

d_{min} \leftarrow \infty

para cada i \in 1, ..., m faça

se d(\mathbf{x}, \mathbf{X}^{(i)}) < d_{min} então

d_{min} \leftarrow d(\mathbf{x}, \mathbf{X}^{(i)})

idx \leftarrow i

fim-se

fim-para

y = \mathbf{Y}^{(idx)}

Retorna y
```

Algoritmo k-vizinhos mais próximos Ex. Classe saudável Classe doente Exame 1

Algoritmo k-vizinhos mais próximos

- Extensão imediata do 1-NN considerando mais vizinhos
 - k vizinhos mais próximos
 - k é parâmetro do algoritmo
 - Cada vizinho vota em uma classe
 - Previsões são então agregadas

Classificação

 $\widehat{f}(\mathbf{x}_t) \leftarrow \text{moda}(\widehat{f}(\mathbf{x}_1), ..., \widehat{f}(\mathbf{x}_k))$

Regressão

$$\begin{split} \widehat{f}(\mathbf{x}_t) &\leftarrow \mathsf{m\'edia}(\widehat{f}(\mathbf{x}_1), \, ..., \, \widehat{f}(\mathbf{x}_k)) \\ \mathsf{ou} \ \widehat{f}(\mathbf{x}_t) &\leftarrow \mathsf{m\'ediana}(\widehat{f}(\mathbf{x}_1), \, ..., \, \widehat{f}(\mathbf{x}_k)) \end{split}$$

Algoritmo k-vizinhos mais próximos

Ex.

ann A Almein

Quantos vizinhos?

- k muito grande
 - Vizinhos podem ser muito diferentes
 - Predição tendenciosa para classe majoritária
- k muito pequeno
 - Não usar informação suficiente
 - Previsão pode ser instável

Frequentemente usa k pequeno e ímpar (3, 5, ...). Valores pares não são usuais em classificação por poderem levar a empates

lago A. Almeida

Análise do algoritmo

- Vantagens:
 - O algoritmo de treinamento é simples
 - Armazenar os objetos
 - É aplicável mesmo em problemas complexos
 - É um algoritmo naturalmente incremental
 - Novos exemplos ⇒ basta armazená-los na memória

Quantos vizinhos?

- Algumas estratégias para definir k:
 - Fazer busca em grid
 - Associar peso à contribuição de cada vizinho
 - De forma inversamente proporcional à distância

Tiago A Alme

Análise do algoritmo

- Desvantagens:
 - Não obtém uma representação compacta dos dados
 - Não se tem modelo explícito a partir dos dados
 - Predição pode ser custosa
 - Requer calcular distâncias a todos os objetos de treinamento
 - É afetado pela presença de atributos redundantes e irrelevantes
 - Problemas com dimensionalidade elevada
 - Objetos ficam equidistantes

Exercício

Seja o seguinte cadastro de pacientes:

Nome	Febre	Enjôo	Manchas	Dores	Diagnóstico
João Pedro Maria José Ana Leila	sim não sim sim sim não	sim não sim não não não	pequenas	não não sim sim	doente saudável saudável doente saudável saudável

Exercício

- Exemplos de teste:
 - (Luis, não, não, pequenas, sim)

•
$$d(\mathbf{x}, \mathbf{x}^{(1)}) = 1 + 1 + 0 + 0 = 2$$

•
$$d(\mathbf{x}, \mathbf{x}^{(2)}) = 0 + 0 + 1 + 1 = 2$$

-
$$d(\mathbf{x}, \mathbf{x}^{(3)}) = 1 + 1 + 0 + 1 = 3$$

$$d(\mathbf{x}, \mathbf{x}^{(4)}) = 1 + 0 + 1 + 0 = 2$$

•
$$d(\mathbf{x}, \mathbf{x}^{(5)}) = 1 + 0 + 0 + 0 = 1$$

$$d(\mathbf{x}, \mathbf{x}^{(6)}) = 0 + 0 + 1 + 0 = 1$$

Distância de Hamming

k = 1: saudável

k = 3: saudável

k = 5: saudável

Exercício

- Usar k-NN e os exemplos anteriores para definir as classes dos exemplos de teste
 - Usar k = 1, 3 e 5
- Exemplos de teste:
 - (Luis, não, não, pequenas, sim)
 - (Laura, sim, sim, grandes, sim)

Atributo contendo nome não é usado

Exercício

- Exemplos de teste:
 - (Laura, sim, sim, grandes, sim)

-
$$d(\mathbf{x}, \mathbf{x}^{(1)}) = 0 + 0 + 1 + 0 = 1$$

•
$$d(\mathbf{x}, \mathbf{x}^{(2)}) = 1 + 1 + 0 + 1 = 3$$

-
$$d(\mathbf{x}, \mathbf{x}^{(3)}) = 0 + 0 + 1 + 1 = 2$$

-
$$d(\mathbf{x}, \mathbf{x}^{(4)}) = 0 + 1 + 0 + 0 = 1$$

- $d(\mathbf{x}, \mathbf{x}^{(5)}) = 0 + 1 + 1 + 0 = 2$

$$d(x, x(6)) = 1 + 1 + 0 + 0 = 0$$

•
$$d(\mathbf{x}, \mathbf{x}^{(6)}) = 1 + 1 + 0 + 0 = 2$$

Distância de Hamming

k = 1: doente k = 3: doente

k = 5: saudável