

ASSIGNMENT - 3

Market Segmentation (Segmenting Consumers of Bath Soap)

Ashok Bhatraju - 670248723 Shourya Narayan - 651193827 Vivek Kumar - 670460685

1. What is the business goal of clustering in this case study?

In the context of customer segmentation, cluster analysis is the use of a mathematical model to discover groups of similar customers based on finding the smallest variations among customers within each group. These homogeneous groups are known as Clusters. The goal of cluster analysis in marketing is to accurately segment customers in order to achieve more effective customer marketing via personalization.

In our case, we are going to find clusters based on purchase behaviour and basis of purchase. Later we compare how demographic attributes are associated with these two parameters. In doing so, it will give us in depth understanding of our target market behaviours. This will enable advertising agencies and consumer goods manufacturers to plan their market strategies accordingly. This way they will be able to create marketing campaigns, promotions, discounts and other techniques based on their target cluster wants, needs and preferences.

2. Use k-means clustering to identify clusters of households based on

a. The variables that describe purchase behaviour (including brand loyalty). How will you evaluate brand loyalty – describe the variables you create/use to capture different perspectives on brand loyalty.

Answer:

Variables used:

- Number of brands
- Brand runs
- Total volume
- Number of transactions
- Value
- Average price
- Share to other brands
- Brand loyalty

K=3

 silhouette plot suggests that the optimal K value for this data is K=2

Clusters 1 and 2 are well separated from each other but there are few similarities that intersect between these 3 clusters. From the graph below we can see that the parameters SEC, HS, SEX, Number of Brands, Number of Transactions are the attributes that provide us the better distinction between clusters. The other parameters like Child, maxBr and few other doesn't provide us with the information required for our business decisions.

Legend for all Excel plots:

Series 1 – Nil, Series 2 – Cluster 1, Series 3 – Cluster 2, Series 4 – Cluster 3, Series 5 – Cluster 4, Series 6 – Cluster 5

Cluster 1: This group has the maximum Affluence index and number of brands, suggest that these are least brand loyal.

Cluster 2: This group has the least affluence index and least average price when compared with other 2 clusters.

Cluster 3: This group has highest average price among all the clusters.

K=2

Cluster 1: This group has the highest affluence index as well as highest average price.

Cluster 2: This group has the least affluence and average price among these 2.

Both the clusters above are well separated and there are just few similarities between these clusters.

From the graph above we can see that the parameters SEC, HS, SEX, Number of Brands, Number of Transactions are the attributes that provide us the better distinction between clusters. The other parameters like Child, maxBr and few other doesn't provide us with the information required for our business decisions.

K=4

Cluster analysis: all the clusters above have a lot in common, most of them have the highest affluence index and highest average price.

Clusters 2 and 3 are well separated from each other and clusters 1 and 4 are well separated from each other. Overall there are few attributes that are similar among these 4 clusters.

These similarities can be explained from the graph above, we can see that attributes like maxBr and Child doesn't really show any difference among the 4 clusters. These are the attributes that created the overlapping of clusters and they are no useful for us to make any cluster-oriented business plans.

K=5

Cluster analysis:

Affluence index, number of brand runs and average price are distinct between all the above clusters. These attributes can be used to make our business decisions in order to have better outcomes.

Clusters 1 and 5 are very well separated from rest of the clusters. Clusters 2,3 and 4 have few similarities that caused the overlapping of these clusters. From the graph above we can see that the parameters SEC, HS, SEX, Number of Brands, Average price are the attributes that provide us the better distinction between clusters. The other parameters like Child, maxBr and few other doesn't provide us with the information required for our business decisions.

Summary:

	Within Cluster	Between Cluster	Cluster Size
K=3	3970	2020	166,175,259
K=2	4754	1236	283,317
K=4	3428	2562	46,175,188,191
K=5	3037	2953	29,166,182,179,44

The cluster plots for various K values have overlapping among clusters, so its not easy to decide which K value is best for our model.

The above table provides us information about distance within clusters and between clusters. From table we can see that K=5 has the lowest within distance and highest between distance.

So, K=5 is the best model among the K values we tried with.

b. The variables that describe basis-for-purchase.

Answer:

Variables used

- Purchase by promotions
- Price categories
- Selling propositions

K=3

 Silhouette graph suggests that K=8 is the best number for this data set

Clusters 2 and 3 are well separated from cluster 1. There is a bit of overlapping among clusters 2 and 3. This infers that there are few attributes that has no effect on these clusters.

From the graph above we can see that the parameters SEC, HS, SEX, Number of Brands, purchase volume are the attributes that provide us the better distinction between clusters. The other parameters like maxBr, Child and few other doesn't provide us with the information required for our business decisions.

Cluster analysis: For the above clusters, number of brands is highest in all of them. It suggests that these group of clusters have a very least brand loyalty.

Apart from 6,7 and 8 clusters, rest all other clusters seem to have a lot of attribute values in common.

From the above graph we can see that variables SEC, HS, SEX, Number of Brands and Purchase volume are the variables that provide us with the required distinction. We can use these attributes for our business decisions to create cluster-oriented promotions and discounts.

K=4

We can see that clusters 2 and 4 are well separated from each other and other 2 clusters. There is overlapping between clusters 1 and 3. This overlapping can be well explained by the graph above.

From the above graph we can see that variables like propert_7, 8 and Child doesn't really provide us with the required distinction among our clusters. This is the main reason behind overlapping of our clusters.

K=5

Clusters 5 and 2 are well separated from each other, whereas the other 3 does have overlapping because of few variables that doesn't have much of difference in these clusters.

Summary:

	Within Cluster	Between Cluster	Cluster Size
K=3	5029	2159	76,326,198
K=8	2782	4406	91,40,50,58,234,10,71,46
K=4	4364	2824	320,75,127,78
K=5	3813	3375	128,75,50,297,50

The cluster plots for various K values have overlapping among clusters, so it's not easy to decide which K value is best for our model.

The above table provides us information about distance within clusters and between clusters. From table we can see that K=8 has the lowest within distance and highest between distance. But K value of 8 is too big and not feasible for business to have such a high number of cluster-oriented business plans.

So, the next best K value 5 is our best value for this model.

C. The variables that describe both purchase behaviour and basis of purchase.

Answer:

Variables used:

- Number of brands
- Brand runs
- Total volume
- Number of transactions
- Value
- Average price

- Share to other brands
- Brand loyalty
- Purchase by promotions
- Price categories
- Selling propositions

K=3

• Silhouette graph suggests that K=2 is the best value for these attributes

All the 3 clusters have few variables that overlap and that can be explained from the graph below

From the graph below we can see that the parameters SEC, HS, SEX, Number of Brands, purchase volume are the attributes that provide us the better distinction between clusters. The other parameters like maxBr, propcat_7, 8, Child and few other doesn't provide us with the information required for our business decisions.

Cluster analysis: Purchase volume with no

promotion is highest for both the clusters, suggests that promotions doesn't have much of impact of buying behaviour of customers in these clusters.

K=2

Both the clusters are well separated except for few overlapping caused by variables maxBr, propcat_7, 8 and Child that remained same across the clusters.

The graph below helps us in recognizing the attributes that are best suitable for each cluster and plan accordingly.

Cluster analysis: Purchase volume with no promotion is highest for both the clusters, suggests that promotions doesn't have much of impact of buying behaviour of customers in these clusters.

Clusters 1,2 and 3 are well separated from each other. Cluster 4 is the one that has overlapping with all other clusters.

The graph below helps us in recognizing the attributes that caused this overlapping.

Cluster analysis: Purchase volume with no promotion is highest for both the clusters, suggests that promotions doesn't have much of impact of buying behaviour of customers in these clusters.

K=5

Clusters 1,3 and 5 are well separated from each other. Overall there is a bit of overlapping among clusters above.

The graph below gives us the significant variables that can help us in understanding the demographics of our clusters and plan accordingly.

Summary:

	Within Cluster	Between Cluster	Cluster Size
K=3	10015	3163	298,73,229
K=2	11197	1981	72,528
K=4	9176	4002	163,171,69,197
K=5	8408	4770	176,62,69,182,113

The cluster plots for various K values have overlapping among clusters, so it's not easy to decide which K value is best for our model.

The above table provides us information about distance within clusters and between clusters. From table we can see that K=5 has the lowest within distance and highest between distance.

So, K=5 is the best model among the K values we tried with.

3. Try two other clustering methods (for a single person team, try one other method) for the questions above - from agglomerative clustering, k-medoids, kernel-k-means, and DBSCAN clustering

We have applied the following two clustering techniques on the three segments in the given data set

- 1) Hierarchical Clustering
- 2) K-Medoids (PAM partition around medoids)

Hierarchical Clustering:

Hierarchical clustering can be performed using either a distance matrix or raw matrix. Here we are using the distance matrix to plot the hierarchical cluster for the given dataset. Basically, in hierarchical clustering the process is performed in two steps:

- Identify the two clusters that are closest to each together
- Merge the two most similar clusters

This process is done till all the clusters are merged together.

The distance metric here is calculated using the euclidean method between centres of the clusters (mean or average linkage). We are performing the agglomerative hierarchical clustering which typically works by sequentially merging similar clusters and obtaining the main end output dendrogram. The agglomerative hierarchical clustering module builds a cluster hierarchy which is commonly displayed as a tree diagram known as dendrogram.

Dendrogram: In the given representation of the dendrogram the horizontal axis represents the distance between the clusters and the horizontal axis represents the objects and clusters. Each joining of two clusters is represented by splitting of a vertical line into two vertical lines. The vertical position of the split gives you the distance between two clusters.

Circular dendrogram: In circular dendrogram representation, nodes of the dendrograms are radially distributed. In this the dimension of the representation is done by diameter than use of width. The radius will correspond to the extension of the drawing area. The 360-degree representation expresses a lap angle in which all the terminal nodes of the dendrogram will be distributed along the circumference.

Purchase behaviour

hclust-average

Dim1 (33.9%)

xdist hclust (*, "average")

Cluster Dendrogram

Basis for purchase

0.0 2.5 Dim1 (23.4%) 5.0

xdist hclust (*, "average")

Cluster Dendrogram

Purchase Behaviour and Basis for purchase

Summary:

	Accuracy	Initial Cluster Split	Final Cluster Split
Purchase Behaviour	0.93	533,53,14	215,260,125
Basis for Purchase	0.94	567,32,1	195,340,65
Both	0.89	540,59,1	170,342,88

K-Medoids (PAM – Partition around medoids)

Purchase Behaviour

K=2

Euclidean

Silhouette plot of pam(x = xpb, k = 2, metric = "euclide")

Average silhouette width: 0.22

The Davies Bouldin Index for this cluster is 1.734

	ID	Noof_Brands	Brand_Runs	Total_Volume	NoofTrans	Value	AvgPrice	maxBr	Others_999
[1,]	273	-0.4030277	-0.7456049	-0.6421531	-0.8121377	-0.6718935	-0.29146557	0.419804	-0.1528894
[2,]	477	0.863028	0.6971911	0.1525319	0.4502525	0.2231924	-0.03228384	-0.3914631	0.2148692

Manhattan

Silhouette plot of pam(x = xpb, k = 2, metric = "manhattan")

Average silhouette width: 0.25

The Davies Bouldin Index for this cluster is 1.867

		Noof_Brand	Brand_Run	Total_Volum	NoofTran		AvgPric		Others_99
	ID	S	S	е	S	Value	е	maxBr	9
[1,	22					-	-	-	
]	5	0.2300001	0.1200727	-0.4040693	-0.238324	0.3786269	0.1080408	0.8618399	0.9273672
[2,	26					-	-		-
]	8	-0.4030277	-0.7456049	-0.0147702	-0.3530867	0.1640554	0.4618607	0.9267515	0.8720451

K=3 Euclidean

The Davies Bouldin Index for this cluster is 1.492

	ID	Noof_Brands	Brand_Runs	Total_Volume	NoofTrans	Value	AvgPrice	maxBr	Others_999
[1,]	512	-0.4030277	-0.2646729	-0.696848	-0.8121377	-0.6905765	-0.1716011	-0.8159	0.7409946
[2,]	477	0.863028	0.6971911	0.1525319	0.4502525	0.2231924	-0.03228384	-0.3914631	0.2148692
[3,]	200	-0.4030277	-0.8417913	-0.1016386	-0.5252308	-0.1595262	-0.28842668	1.503065	-1.2190108

Manhattan

Silhouette plot of pam(x = xpb, k = 3, metric = "manhattan")

Average silhouette width: 0.24

The Davies Bouldin Index for this cluster is 1.568

	ID	Noof_Brands	Brand_Runs	Total_Volume	NoofTrans	Value	AvgPrice	maxBr	Others_999
[1,]	512	-0.4030277	-0.2646729	-0.696848	-0.8121377	-0.6905765	-0.1716011	-0.8159	0.7409946
[2,]	477	0.863028	0.6971911	0.1525319	0.4502525	0.2231924	-0.03228384	-0.3914631	0.2148692
[3,]	200	-0.4030277	-0.8417913	-0.1016386	-0.5252308	-0.1595262	-0.28842668	1.503065	-1.2190108

K=4 Euclidean

Silhouette plot of pam(x = xpb, k = 4, metric = "euclide")

Average silhouette width: 0.19

The Davies Bouldin Index for this cluster is 1.727

	ID	Noof_Brands	Brand_Runs	Total_Volume	NoofTrans	Value	AvgPrice	maxBr	Others_999
[1,]	512	-0.4030277	-0.2646729	-0.69684801	-0.8121377	-0.69057653	-0.1716011	-0.8159	0.7409946
[2,]	2	0.863028	0.8895639	0.26513909	0.5076339	0.38964099	0.05280279	-0.7933249	0.5968948
[3,]	436	-1.0360556	-1.2265369	0.04957676	-0.6399936	-0.14027704	-0.52600526	1.8051574	-1.372814
[4,]	328	0.2300001	-0.3608593	-0.03407429	-0.1809426	0.01541469	-0.06359057	0.4589637	-0.9905826

Manhattan

Silhouette plot of pam(x = xpb, k = 4, metric = "manhattan")

Average silhouette width: 0.16

The Davies Bouldin Index for this cluster is 2.034

	ID	Noof_Brands	Brand_Runs	Total_Volume	NoofTrans	Value	AvgPrice	maxBr	Others_999
[1,]	503	-0.4030277	-0.07230011	-0.2689407	-0.238324	-0.3406948	-0.3433159	-0.3022669	0.4951468
[2,]	477	0.863028	0.69719106	0.1525319	0.4502525	0.2231924	-0.03228384	-0.3914631	0.2148692
[3,]	200	-0.4030277	-0.84179128	-0.1016386	-0.5252308	-0.1595262	-0.28842668	1.503065	-1.2190108
[4,]	445	-1.0360556	-1.13035047	-0.7193694	-0.8121377	-0.6600043	0.02519048	-1.2181324	1.5279364

We have used the average silhouette method to evaluate the clusters. From the plots above, clusters with K=2 and distance measure = manhattan, provide the best average silhouette width of 0.16.

Basis of Purchase

K=2

Euclidean

Silhouette plot of pam(x = xbfp, k = 2, metric = "euclide

Average silhouette width: 0.3

The Davies Bouldin Index for this cluster is 1.204

_													
		Prop			Prop	Prop	Pur_Vol_No		Pur_Vol_Ot				
	- 1	Cat_	PropC	PropC	Cat_	Cat_1	_Promo	Pur_Vol_P	her_Promo_	Pr_C	Pr_C	Pr_C	Pr_C
	D	5	at_6	at_7	8	4	_	romo_6	_	at_1	at_2	at_3	at_4
	5		-			-		-		-		-	
1	7	0.233	0.1402	0.097	0.123	0.355		0.010754		0.211	0.469	0.362	0.054
	5	4012	24525	52144	5658	1302	0.2886584	52	-0.46525557	9594	7202	6554	1638
		-	-	-	-			-		-	-		-
2	6	1.227	0.0050	0.456	0.484	2.482		0.575346		0.663	1.244	2.454	0.436
	2	2596	79551	63258	2747	7055	0.4973048	9	-0.08227662	273	8511	1188	1558

Manhattan

Silhouette plot of pam(x = xbfp, k = 2, metric = "manhattan")

Average silhouette width: 0.33

The Davies Bouldin Index for this cluster is 1.260

		PropCa	PropCa	PropCa	PropCa	PropCa	Pur_Vol_No_Pr	Pur_Vol_Pro	Pur_Vol_Other_	Pr_Cat	Pr_Cat	Pr_Cat	Pr_Cat
	ID	t_5	t_6	t_7	t_8	t_14	omo	mo_6	Promo	_1	_2	_3	_4
			-	-	-	-						-	-
[1	15	0.6622	0.5550	0.4950	0.5253	0.5129				0.1933	0.5569	0.5193	0.4623
,]	1	533	619	408	439	981	0.7280271	-0.5753469	-0.4652556	042	085	517	055
		-	-	-	-					-	-		-
[2	23	0.9905	0.5145	0.4606	0.5253	2.6291				0.9454	1.0994	2.5994	0.4623
,]	8	019	306	029	439	565	0.7280271	-0.5753469	-0.4652556	101	704	829	055

K=3
Euclidean

Silhouette plot of pam(x = xbfp, k = 3, metric = "euclide

Average silhouette width: 0.13

The Davies Bouldin Index for this cluster is 1.910

				Prop		1	Pur Vol No	Pur Vol	Pur Vol Ot				1
		D C	D C		DC	DC				D . C	D . C	D . C-1	D. C
	ı	PropC	PropC	Cat_	PropC	PropC	_Promo	Promo_6	her_Promo	Pr_C	Pr_C	Pr_Cat	Pr_C
	D	at_5	at_6	7	at_8	at_14	_			at_1	at_2	_3	at_4
		-								-		-	-
1	4	0.071	0.023	0.34	0.004	0.007				0.28	0.34	0.002	0.14
+	4	2774	02808	9792	06962	44558		0.003722	-	1382	2949	77055	1267
	3	7	2	6	4	3	0.08426341	206	0.14467809	3	5	9	9
		-	-	-							-		-
2		1.227	0.005	0.45	-			-		-	1.24		0.43
-	6	2595	07955	6632	0.484	2.482		0.575346	-	0.66	4851	2.454	6155
	2	8	1	6	27468	70548	0.49730477	904	0.08227662	3273	1	11879	8
			-	-	-	-				-			-
3			0.555	0.43	0.525	0.512		-		0.44	1.00	-	0.25
'	2	1.226	06188	3371	34387	99813		0.510432	-	1839	0324	0.519	2371
	8	2004	7	3	3	7	0.67751043	575	0.46525557	7	4	35172	4

Manhattan

Silhouette plot of pam(x = xbfp, k = 3, metric = "manhattan")

Average silhouette width: 0.24

The Davies Bouldin Index for this cluster is 2.180

			1	1							1		
						Prop	Pur_Vol_No						
	- 1	Prop	Prop	Prop	Prop	Cat_1	_Promo	Pur_Vol_P	Pur_Vol_Oth	Pr_C	Pr_C	Pr_C	Pr_C
	D	Cat_5	Cat_6	Cat_7	Cat_8	4	ı	romo_6	er_Promo	at_1	at_2	at_3	at_4
[1		-	-	-	-		-				-	-
1	5	0.662	0.555	0.495	0.525	0.512		0.575346		0.193	0.556	0.519	0.462
,]	1	2533	0619	0408	3439	9981	0.7280271	9	-0.4652556	3042	9085	3517	3055
[4	-	-	-	-	-						-	-
2	0	0.446	0.143	0.495	0.076	0.512		1.066074		0.318	0.444	0.519	0.462
,]	9	8947	7052	0408	8683	9981	-0.5493356	6	-0.4652556	2217	2985	3517	3055
[2	-	-	-	-			-		-	-		-
3	3	0.990	0.514	0.460	0.525	2.629		0.575346		0.945	1.099	2.599	0.462
,]	8	5019	5306	6029	3439	1565	0.7280271	9	-0.4652556	4101	4704	4829	3055

K=4

Silhouette plot of pam(x = xbfp, k = 4, metric = "euclide

Average silhouette width: 0.15

The Davies Bouldin Index for this cluster is 2.272

				Prop			Pur Vol N	Pur Vol	Pur Vol Ot				
	١.	_		•									
		Prop	PropC	Cat_	PropC	PropC	o_Promo	Promo_6	her_Promo	Pr_C	Pr_C	Pr_Ca	Pr_Ca
	D	Cat_5	at_6	7	at_8	at_14				at_1	at_2	t_3	t_4
		-								-		-	-
1	4	0.071	0.023	0.34	0.004	0.007				0.28	0.34	0.002	0.141
-	4	2774	02808	9792	06962	44558	0.0842634	0.003722	-	1382	2949	77055	2678
	3	7	2	6	4	3	1	206	0.14467809	3	5	9	7
		-	-	-							-		-
2		1.227	0.005	0.45	-			-		-	1.24		0.436
-	6	2595	07955	6632	0.484	2.482	0.4973047	0.575346	-	0.66	4851	2.454	1558
	2	8	1	6	27468	70548	7	904	0.08227662	3273	1	11879	3
			-	-	-	-				-			-
3			0.555	0.43	0.525	0.512		-		0.44	1.00	-	0.252
)	2	1.226	06188	3371	34387	99813	0.6775104	0.510432	-	1839	0324	0.519	3714
	8	2004	7	3	3	7	3	575	0.46525557	7	4	35172	4
Γ		-	-	-		-					-		-
4	5	0.082	0.464	0.39	1.199	0.512	-			1.06	0.48	-	0.043
2	6	4603	65383	2618	56225	99813	0.2787612	0.718384	-	7726	8755	0.519	9105
	3	7	2	9	7	7	2	298	0.46525557	8	6	35172	8

Manhattan

Average silhouette width: 0.22

The Davies Bouldin Index for this cluster is 2.237

						Prop	Pur Vol No						
	1	Prop	Prop	Prop	Prop	Cat_1	_Promo	Pur_Vol_P	Pur_Vol_Oth	Pr_C	Pr_C	Pr_C	Pr_C
	D	Cat_5	Cat_6	Cat_7	Cat_8	4	-	romo_6	er_Promo	at_1	at_2	at_3	at_4
[-	-	-	-		-		-		-	-
1	5	0.984	0.555	0.495	0.525	0.512		0.575346		0.791	1.444	0.519	0.462
,]	2	1682	0619	0408	3439	9981	0.72802709	9	-0.4652556	5769	7539	3517	3055
[2	-	-	-		-						-	-
2	6	0.414	0.135	0.468	0.119	0.512		0.301122		0.213	0.489	0.461	0.462
,]	5	6103	0679	6072	0971	9981	-0.09479117	5	-0.2316308	2619	0949	434	3055
[2	-	-	-	-			-		-	-		-
3	3	0.990	0.514	0.460	0.525	2.629		0.575346		0.945	1.099	2.599	0.462
,]	8	5019	5306	6029	3439	1565	0.72802709	9	-0.4652556	4101	4704	4829	3055
[4	-	-	-	-	-		-			-	-	-
4	4	1.045	0.555	0.495	0.288	0.512		0.575346		1.987	1.060	0.519	0.462
,]	4	2333	0619	0408	4291	9981	0.72802709	9	-0.4652556	6765	6727	3517	3055

We have used the average silhouette method to evaluate the clusters. From the plots above, clusters with K=3 and distance measure = euclidean, provide the best average silhouette width of 0.13.

Purchase Behaviour and Basis of Purchase

K=2 (Euclidean)

Silhouette plot of pam(x = xpbbp, k = 2, metric = "eucli

Average silhouette width: 0.26

The Davies Bouldin Index for this cluster is 1.413

		Noof_Br	Brand_R	Total_Vol	NoofT		AvgPr		Others_	PropCat	PropCat
	ID	ands	uns	ume	rans	Value	ice	maxBr	999	_5	_6
				-		-			-		
1	35		0.21625	0.243201		0.079132	0.21610	0.2372	0.16203	0.66750	0.83927
	0	0.2300001	91	9	-0.4104681	65	18	703	38	86	38
			-			-	-		-	-	-
2			0.74560			0.869480	1.52585	1.4691	1.19507	1.24118	0.55506
	8	-0.4030277	49	-0.336505	-0.3530867	48	18	417	7	78	19

	PropCa	PropCa	PropCa	Pur_Vol_No_Pr	Pur_Vol_Pro	Pur_Vol_Other_	Pr_Cat_	Pr_Cat	Pr_Cat	Pr_Cat
	t_7	t_8	t_14	omo	mo_6	Promo	1	_2	_3	_4
	-	-	-						-	
1	0.4440	0.1820	0.5129				0.05421	0.3621	0.5193	0.0580
	852	833	981	0.2271436	0.06829243	-0.4652556	278	578	517	797
	-	-					-	-		-
2	0.4950	0.5253	2.8516				0.84985	1.4446	2.8203	0.3501
	408	439	985	0.1880963	-0.5753469	0.4309826	772	43	733	149

Manhattan

Silhouette plot of pam(x = xpbbp, k = 2, metric = "manhattan")

Average silhouette width: 0.14

The Davies Bouldin Index for this cluster is 1.413

		Noof_Bra	Brand_Ru	Total_Volu	NoofTr		AvgPri		Others_9	PropCat_
	ID	nds	ns	me	ans	Value	ce	maxBr	99	5
						-	-		-	
[1,			0.120072	-		0.588103	0.438558		0.100160	0.140331
]	1	-0.4030277	7	0.50058977	-0.4104681	1	6	0.02009	7	8
								-		-
[2,	45		0.793377			0.273013	0.323525	0.91016	0.780764	0.387083
]	9	0.863028	5	0.02383798	1.0814476	7	7	5	4	2

	PropC	PropC	PropC	PropCa	Pur_Vol_No_P	Pur_Vol_Pr	Pur_Vol_Othe	Pr_Cat	Pr_Cat	Pr_Cat	Pr_Cat
	at_6	at_7	at_8	t_14	romo	omo_6	r_Promo	_1	_2	_3	_4
	-	-	-	-				-		-	-
[1	0.555	0.495	0.525	0.0211				0.161	0.216	0.031	0.0722
,]	0619	0408	3439	9774	0.7280271	-0.5753469	-0.46525557	6016	9737	2013	5977
		-	-	-					-	-	-
[2	0.115	0.305	0.525	0.4508				0.845	0.137	0.457	0.3760
,]	7136	0629	3439	6987	-0.9837991	1.2244163	0.05137756	5078	1319	6845	764

K=3 (Euclidean)

The Davies Bouldin Index for this cluster is 2.737

		Noof_Br	Brand_R	Total_Vol	NoofT		AvgPr		Others_	PropCat_	PropCat
	ID	ands	uns	ume	rans	Value	ice	maxBr	999	5	_6
			-				-		-		-
	41		0.072300	0.155749	0.0485828	0.11845	0.22654	0.24779	0.44233	1.131898	0.55506
1	4	-0.4030277	11	2	9	43	46	36	14	27	19
				-	-			-			
	30		0.120072	0.323635	0.5252308	0.19941	1.13992	0.23845	0.10493	0.068151	1.07588
2	5	0.2300001	68	6	2	4	84	36	41	15	98
			-		-	-	-		-	-	-
			0.745604		0.3530867	0.86948	1.52585	1.46914	1.19507	1.241187	0.55506
3	8	-0.4030277	88	-0.336505	1	05	18	17	7	82	19

	PropCat	PropCa	PropCa	Pur_Vol_No_Pr	Pur_Vol_Pro	Pur_Vol_Other_	Pr_Cat	Pr_Cat	Pr_Cat	Pr_Cat_
	_7	t_8	t_14	omo	mo_6	Promo	_1	_2	_3	4
		-	-				-		-	-
	0.08876	0.4004	0.5129				0.4034	0.8503	0.5193	0.06483
1	4361	935	981	0.1063353	0.22353211	-0.4652556	446	379	517	033
	-		-					-	-	-
	0.00594	0.4160	0.5129				1.3358	0.4730	0.5193	0.46230
2	8712	145	981	0.3273869	-0.06052102	-0.4652556	343	535	517	552
	-	-					-	-		-
	0.49504	0.5253	2.8516				0.8498	1.4446	2.8203	0.35011
3	0812	439	985	0.1880963	-0.5753469	0.4309826	577	43	733	494

Manhattan

Silhouette plot of pam(x = xpbbp, k = 3, metric = "manhattan")

Average silhouette width: 0.17

The Davies Bouldin Index for this cluster is 2.393

		Noof_Bra	Brand_Ru	Total_Volu	NoofTr		AvgPri		Others_9	PropCat_
	ID	nds	ns	me	ans	Value	ce	maxBr	99	5
						-	-		-	
[1,	33		0.120072			0.311254	0.294500	0.504553	0.660001	
]	2	0.2300001	7	-0.2592887	-0.06617985	9	5	6	5	0.989536
								-		-
[2,	43		0.216259					0.778868	0.817309	0.756625
]	7	0.2300001	1	0.1506015	-0.69737494	0.579868	0.6145	6	9	5
			-			-	-		-	
[3,	23		1.130350			0.278418	1.378318	1.818230	1.477925	-
]	3	-0.4030277	5	0.5707872	-0.52523082	1	1	5	9	1.271124

	PropCa	PropC	PropCa	PropC	Pur_Vol_No_P	Pur_Vol_Pr	Pur_Vol_Othe	Pr_Cat	Pr_Cat	Pr_Cat	Pr_Cat
	t_6	at_7	t_8	at_14	romo	omo_6	r_Promo	_1	_2	_3	_4
[-	-	-	-				-		-	-
1,	0.5550	0.340	0.5253	0.2282				0.525	0.913	0.236	0.383
]	6189	244	4387	436	0.7280271	-0.5753469	-0.4652556	9178	5068	7105	2622
[-		-					-	-	-
2,	0.0996	0.319	0.0382	0.5129				0.900	0.227	0.519	0.223
]	7968	3639	0016	981	-0.6150947	1.1505755	-0.4652556	2552	5532	3517	0914
[-	-	-					-	-		-
3,	0.2241	0.495	0.5253	2.8319				0.797	1.406	2.800	0.462
]	1864	0408	4387	536	0.7280271	-0.5753469	-0.4652556	4406	0177	7749	3055

K=4 (Euclidean)

Silhouette plot of pam(x = xpbbp, k = 4, metric = "euclidean")

Average silhouette width: 0.15

The Davies Bouldin Index for this cluster is 2.266

		No of Br	Brand R	Total Vol	No of T		Avg_Pri		Others	PropCat	PropCat
	ID	ands	uns	ume	rans	Value	ce	maxBr	999	_5	_6
			-			-	-		-		-
1	21		0.45704	0.152531	-	0.03440	0.49628	0.46482	0.54894	1.12475	0.32559
	7	-0.4030277	57	9	0.2957053	666	249	08	08	11	11
				-		-		-			-
2	33		0.69719	0.333287		0.24331	0.05422	0.28629	0.22810	0.77524	0.45835
	8	0.863028	11	7	0.5650152	666	771	29	21	962	19
			-			-	-		-	-	-
3			0.74560		-	0.86948	1.52585	1.46914	1.19507	1.24118	0.55506
	8	-0.4030277	49	-0.336505	0.3530867	048	178	17	7	782	19
				-				-			
4	30		0.12007	0.323635	-	0.19941	1.13992	0.23845	0.10493	0.06815	1.07588
	5	0.2300001	27	6	0.5252308	4	839	36	41	115	98

	PropCat	PropCa	PropCat	Pur Vol No Pr	Pur Vol Pro	Pur Vol Other	Pr Cat	Pr Cat	Pr Cat	Pr Cat
	Propeat	Propca		Pur_voi_No_Pr			PI_Cat	PI_Cat_	PI_Cat_	Pr_Cat
	_7	t_8	_14	omo	mo_6	Promo	_1	2	3	_4
	-	-					-		-	-
1	0.49504	0.5253	0.0034				0.9526	1.1489	0.00671	0.4623
	0812	439	7273	0.7280271	-0.5753469	-0.4652556	47	7049	3926	055
	-	-	-						-	-
2	0.41286	0.1035	0.5129				0.5146	0.0607	0.51935	0.1266
	9842	974	9814	-0.6630548	0.750901	0.1306347	403	3023	172	361
	-	-					-	-		-
3	0.49504	0.5253	2.8516				0.8498	1.4446	2.82037	0.3501
	0812	439	9849	0.1880963	-0.5753469	0.4309826	577	43	326	149
	-		-					-	-	-
4	0.00594	0.4160	0.5129				1.3358	0.4730	0.51935	0.4623
	8712	145	9814	0.3273869	-0.06052102	-0.4652556	343	5348	172	055

Manhattan

Average silhouette width: 0.14

The Davies Bouldin Index for this cluster is 2.846

		Noof_Bra	Brand_Ru	Total_Volu	NoofTr		AvgPric		Others_9	PropCat_
	ID	nds	ns	me	ans	Value	e	maxBr	99	5
						-	-		-	
[1,			0.120072			0.588103	0.4385586		0.100160	0.140331
]	1	-0.4030277	7	-0.5005898	-0.4104681	1	5	0.02009	7	8
								-		-
[2,	45		0.793377			0.273013		0.91016	0.780764	0.387083
]	9	0.863028	5	0.023838	1.0814476	7	0.3235257	5	4	2
			-			-	-		-	
[3,	23		1.130350			0.278418	1.3783180		1.477925	-
]	3	-0.4030277	5	0.5707872	-0.5252308	1	7	1.81823	9	1.271124
			-				-		-	
[4,	21		0.457045			0.126380	0.0208346	1.03804	0.718661	1.562058
1	1	-0.4030277	7	0.0527941	-0.238324	4	2	7	9	1

	PropC	PropC	PropC	PropC	Pur_Vol_No_P	Pur_Vol_Pr	Pur_Vol_Other	Pr_Cat	Pr_Cat	Pr_Cat	Pr_Cat
	at_6	at_7	at_8	at_14	romo	omo_6	_Promo	_1	_2	_3	_4
	-	-	-	-				-		-	-
[1	0.555	0.495	0.525	0.0211				0.161	0.216	0.031	0.072
,]	0619	0408	3439	977	0.7280271	-0.5753469	-0.46525557	6016	9737	2013	2598
		-	-	-					-	-	-
[2	0.115	0.305	0.525	0.4508				0.845	0.137	0.457	0.376
,]	7136	0629	3439	699	-0.9837991	1.2244163	0.05137756	5078	1319	6845	0764
	-	-	-					-	-		-
[3	0.224	0.495	0.525	2.8319				0.797	1.406	2.800	0.462
,]	1186	0408	3439	536	0.7280271	-0.5753469	-0.46525557	4406	0177	7749	3055
	-	-	-	-				-		-	-
[4	0.408	0.495	0.525	0.5129				0.495	1.177	0.519	0.462
,]	7219	0408	3439	981	0.660125	-0.5753469	-0.35254408	1357	5197	3517	3055

We have used the average silhouette method to evaluate the clusters. From the plots above, clusters with K=2 and k=4 and distance measure = manhattan, provide the best average silhouette width of 0.14, as per the standard practice we shall go ahead with K=2.

4. (a) Are the clusters obtained from the different procedures similar/different? Describe how they are similar/different.

Purchase Behaviour	Cluster Size
K=3	166,175,259
K=2	283,317
K=4	46,175,188,191
K=5	29,166,182,179,44

Basis for purchase	Cluster Size
K=3	76,326,198
K=8	91,40,50,58,234,10,71,46
K=4	320,75,127,78
K=5	128,75,50,297,50

Both	Cluster Size
K=3	298,73,229
K=2	72,528
K=4	163,171,69,197
K=5	176,62,69,182,113

Hierarchical	Initial Cluster Split	Final Cluster Split
Purchase Behaviour	533,53,14	215,260,125
Basis for Purchase	567,32,1	195,340,65
Both	540,59,1	170,342,88

the cluster sizes for all the models performed above are different from each other. This difference is maintained even with different K values as well as using hierarchical clustering.

From these values we can say that the clusters obtained from different procedures are different from each other.

(b) Select what you think is the 'best' segmentation - explain why you think this is the 'best'. You can also decide on multiple segmentations, based on different criteria -- for example, based on purchase behaviour, or basis for purchase,....(think about how different clusters may be useful.

Purchase Behaviour	Within Cluster	Between Cluster
K=3	3970	2020
K=2	4754	1236
K=4	3428	2562
K=5	3037	2953

Basis for Purchase	Within Cluster	Between Cluster
K=3	5029	2159
K=8	2782	4406
K=4	4364	2824
K=5	3813	3375
Both	Within Cluster	Between Cluster
K=3	10015	3163
K=2	11197	1981
K=4	9176	4002
K=5	8408	4770

With the information obtained from Q2 and Q3, we can observe that within cluster distance is lowest for K=5 and between cluster distance is highest for K=5.

From this information we can conclude that **K=5** is the best model

(c) For one 'best' segmentation, obtain a description of the clusters by building a decision tree to help describe the clusters. How effective is the tree in helping to explain/interpret the cluster(s)? (explain why/why not). (You may use a decision tree to help choose the 'best' clustering).

The best segmentation that we are taking is for the clustering obtained on purchase behaviour using kernel k-mean method for **K value 5**. Decision tree is helpful in making clustering interpretable as its interpretation is a critical and non-trivial task for the end- user. Decision trees use a form that is intuitive and easy to understand. A decision tree with a cluster as its target variable is used in order to explain why an element is assigned to the cluster.

Firstly, we have categorized the dataset based on purchase behaviour, then we have separated dataset into training and test dataset in 70:30 ratio. Then the decision tree is built for two datasets/

Decision tree on Training Data:

Accuracy calculated for the tree is 84%.

Decision tree on Test data:

The accuracy calculated for the model is about 84%