DEVOIR SURVEILLE DU MODULE DE STATISTIQUES

Durée: 2h

Exercice 1 (1+1,5+2=4,5 points)

On considère que le poids X d'un abricot suit une loi normale d'espérance 50g et d'écart type 15g. 1) Calculer la probabilité qu'un abricot pèse plus de 60g.

X suit une loi $\mathcal{N}(50,(15)^2)$.

$$P(X > 60) = P(\frac{X - 50}{15} > \frac{60 - 50}{15}) = 1 - P(Z < 2/3) = 1 - 0.747 = 0.252$$

2) Quelle est le poids auquel est supérieur les 10% d'abricot les plus lourds.

Alors P(X > a) = 0.1 => P(X < a) = 0.9

$$P(X > a) => P(Z < \frac{a - 50}{15}) = 0.9 => \frac{a - 50}{15} = 1.282 => a = 50 + 15x1.282 = 69.23g$$

3) On vend les abricots par paquet de 10 abricots. Calculer la probabilité qu'un paquet de 10 abricots pèsent moins de 450g.

$$Y = (X1 + X2 + ... + X10)$$

Y suit une loi $\mathcal{N}(50x10,10(15)^2) = \mathcal{N}(500,10(15)^2) = \mathcal{N}(500,2250)...$

$$P(Y < 450) = P(Z < \frac{450 - 500}{15\sqrt{10}}) = P(Z < -1,054) = 0,146$$

Exercice 2 (14 fois 0.5 = 7 points)

Les clients arrivent dans une boulangerie selon un processus de Poisson, à raison de 30 clients à l'heure, intensité $\lambda_1 = 30 \ (h^{-1})$. $\lambda_1 = 30/60 \ (min^{-1}) = 1/2 \ (min^{-1})$.

1) Calculer la probabilité que l'arrivée de deux clients soit espacée de moins de 30s.

$$E(S < 30) = 1 - e^{-30x \frac{1}{120}} = 1 - e^{-1/4} = 0,221$$

Partie A:

Avec une personne à la vente, la durée du service d'un client est variable suivant une loi exponentielle de durée moyenne $t_{m1} = 1$ $min = \frac{1}{\mu_1}$. Les clients sont dans une file d'attente supposée infinie.

2) Calculer la charge A₁ de cette boulangerie.

$$A = \frac{\lambda}{\mu} = \lambda t_m = \frac{1}{2} 1 = 0.5$$

3) Sur une heure, de combien de temps en moyenne, dispose le serveur pour mettre en place les produits dans la boulangerie

A=0,5 => il reste la moitié du temps (30min) pour mettre en place les produits

4) Calculer le temps moyen entre l'arrivé d'un client et sa sortie de la boulangerie.

$$W = E(T) = \frac{1}{\mu - \lambda} = \frac{1}{1 - 1/2} = 2 \min$$

5) Calculer le temps moyen d'attente d'un client avant qu'il ne commence à être servi.

$$W_q = E(T_Q) = W - \frac{1}{\mu} = 2 - 1 = 1 min$$

6) Calculer le nombre moyen de clients en attente ou en train d'être servi.

L=E(C) =
$$\frac{A}{1-A} = \frac{\frac{1}{2}}{1-\frac{1}{2}} = 1$$
; L= $\lambda W = \frac{1}{2}2 = 1$

7) Calculer le nombre moyen de clients en attente.

$$L_q = L - A = 1 - 1/2 = 1/2$$

8) Quelle est la probabilité que 3 clients arrivent pendant un intervalle de 3 minutes.

Y="nb de client en T= 3 min" -> loi de Poisson
$$\mathcal{P}(\lambda T) = \mathcal{P}(1,5)$$
: $P(Y = k) = \frac{e^{-\lambda} \lambda^k}{k!}$;

Pour 3 clients, c'est 2 clients de plus après un premier client : $P(Y = 2) = \frac{e^{-1.5} 1.5^2}{2!} = 0.251$

Remarque:
$$P(Y = 3) = \frac{e^{-1.5} 1.5^3}{3!} = 0.125$$

9) Calculer la probabilité qu'il y ait 1 personne dans la file d'attente

1 dans la file => 2 dans le système => $P_2 = A^2(1 - A) = 0.125$

Partie B:

10) Entre 11h30 et 13h30, les clients viennent acheter leur repas à la boulangerie. Ils arrivent alors à raison de 50 clients à l'heure, intensité $\lambda_2 = 50 \ (h^{-1})$, et la durée de service suit une loi exponentielle de durée moyenne $t_{m2} = 2 \ min = \frac{1}{\mu_2}$. Pourquoi doit-on embaucher une personne

supplémentaire pour cette période. $\lambda_2 = 50/60 \ (min^{-1}) = 5/6 \ (min^{-1}) \cdot \mu_2 = \frac{1}{2} min^{-1} = 30h^{-1}$

$$A = \frac{\lambda}{\mu} = \lambda t_m = \frac{5}{6} 2 = \frac{10}{6} > 1 = > blocage$$

11) L'embauche d'une seconde personne divise par deux la durée du service $t_{m3} = \frac{t_{m2}}{2} = 1$ $min = \frac{1}{\mu_3}$. Calculer alors W_{q2} le temps moyen d'attente d'un client avant qu'il ne commence à être servi.

$$W_{q} = \frac{1}{\mu} \frac{A}{1 - A} = 5 \min$$

12) Calculer le nombre moyen de client en attente dans la queue.

$$L_q = \frac{A^2}{1-A} = 4,167$$

13) Quel serait le flux de client λ_3 , correspondant au même temps d'attente $W_{q3}=W_{q2}$ dans le cas où on aurait gardé **une seule personne au service** pendant le temps de midi. Pour cela, calculer W_3 , à partir de la relation $W_q=W-\frac{1}{\mu}$, puis avec $W=\frac{1}{\mu-\lambda}$ trouver λ_3 .

$$W_3 = W_{q3} + \frac{1}{\mu_2} = 5 + 2 = 7 \; ; \; W_3 = \frac{1}{\mu_2 - \lambda_3} \; ; \; \mu_2 - \lambda_3 = \frac{1}{7} \; ; \; \lambda_3 = \frac{1}{2} - \frac{1}{7} = \frac{5}{14} = 0,357 \; (min^{-1})$$
en h => $W_3 = \frac{1}{12} + \frac{1}{30} = \frac{7}{60}$; $W_3 = \frac{1}{\mu_2 - \lambda_3} \; ; \; \mu_2 - \lambda_3 = \frac{60}{7} \; ; \; \lambda_3 = 30 - \frac{60}{7} = \frac{150}{7} = 21,43 \; (h^{-1}),$

14) Sachant que le cout horaire d'un serveur supplémentaire est de 40€, qu'un client à midi rapporte en moyenne 5 € à la boulangerie, compte tenu de la différence de flux entre les deux cas, calculer le bilan financier de l'emploi de cette personne supplémentaire sur le créneau 11h30-13h30.

Différence de clients sur $2h = (50 - 21,43) \cdot 2 = 57,16 \Rightarrow gain = 57,16 \text{ x} 5 = 285,7€$ Cout = 2x 40 = 80€ \Rightarrow bilan + 205,7€

Exercice 3 (3 points)

On a étudié la présence de migraine dans une population de 50 hommes et 50 femmes

	Homme	Femme	
Pas migraine	33	22	55
Migraine	17	28	45
	50	50	100

Au vu des observations, la présence de migraine est-elle indépendante du sexe de la personne ?

<u>Indep</u>	Homme	Femme	Somme
Pas migraine	27,5	<mark>27,5</mark>	<mark>55</mark>
Migraine	22,5	22,5	<mark>45</mark>
<mark>somme</mark>	<mark>50</mark>	<mark>50</mark>	<mark>100</mark>

X ²	Homme	Femme	S Homme	
Pas migraine	<mark>1,10</mark>	<mark>1,10</mark>	<mark>2,20</mark>	
Migraine	<mark>1,34</mark>	<mark>1,34</mark>	<mark>2,69</mark>	
S Femme	<mark>2,44</mark>	<mark>2,44</mark>	4,89	

 X^{2} theo (ddl=1) = 3,8414 < X^{2} obs => pas indépendance entre sexe et migraine

<mark>Observé</mark>	Ho	<mark>omme</mark>	Fe	<mark>emme</mark>	
Pas	<mark>33</mark>		22		
<mark>migraine</mark>					
<mark>Migraine</mark>	e	<mark>17</mark>		<mark>28</mark>	
<mark>somme</mark>		<mark>50</mark>		<mark>50</mark>	
<mark>prop</mark>	·	0,66	•	0,44	

$$t_{obs} = \frac{0,66 - 0,44}{\sqrt{\frac{0,66(1 - 0,66)}{50} + \frac{0,44(1 - 0,44)}{50}}} = 2,267$$
 > Ttheo = 1,960 Proportions différentes

Exercice 4 (4 points)

Le tableau suivant donne le nombre de km de vélo parcourus annuellement par deux groupes d'étudiants, scientifique S et littéraire L. On suppose que le nombre de km de vélo parcourus annuellement suit une loi normale.

	effectif	Moyenne (km)	écart type de l'échantillon (km)
S	13	523	77
L	16	463	105

Peut-on dire qu'il existe une différence significative entre le nombre de km de vélo parcourus annuellement par les deux groupes d'étudiants au risque d'erreur de 5 % ?

$$\begin{split} &\sigma_S = 80,14 \; ; \; \sigma_L = 108,44 \quad \text{Fobs} = \left(\frac{108,44}{80,14}\right)^2 = 1,831 \; ; \\ &\hat{\sigma}_c^2 = \frac{\left(n_1 - 1\right)\hat{\sigma}_1^2 + \left(n_2 - 1\right)\hat{\sigma}_2^2}{n_1 + n_2 - 2} = 9388 \quad ; \quad t_{\text{obs}} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\hat{\sigma}_c^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = 1,658 \; ; \quad \text{Ttheo} = 2,052 \end{split}$$

Pas de différence significative

Exercice 5 (0,5+2=2,5 points)

On considère une chaine de fabrication de batteries de type AA, de charge nominale 2450mAh. On suppose que la charge suit une loi normale $\mathcal{N}(\mu, \sigma^2)$. On prélève un échantillon de 10 batteries en fin de chaine dont on mesure la charge. Sur les 10 batteries, on a obtenu les résultats suivant: $\bar{x} = 2370 \ mAh$, écart type de l'échantillon $s = 75 \ mAh$

1) Donner une estimation ponctuelle de la moyenne μ et de la variance σ^2 de la charge de l'ensemble de la population des batteries.

$$\mu = 2370 \text{ mAh}; \sigma^2 = 6250 = (79,057)^2$$

2) Peut-on considérer que la moyenne de la charge des batteries produites est significativement différente de la valeur nominale pour un risque $\alpha = 5\%$?

$$t_{obs} = \frac{\overline{x} - a}{\frac{\hat{\sigma}}{\sqrt{n}}} = -3.2 \; ; \; \; \text{ttheo (ddl=9)} = 2.262 \quad \text{différence significative}$$

 $IC = 2370 \mp 56.55 = [2313.4; 2426.6]$ ne contient pas 2450mAh

Exercice 6 (1+2=3 points)

On a mesuré le poids en gramme de 5 souris avant et après la prise d'une protéine pendant 15 jours.

souris	1	2	3	4	5
Avant traitement	235	222	200	189	186
Post traitement	314	207	267	254	266
D	<mark>79</mark>	<mark>-15</mark>	<mark>67</mark>	<mark>65</mark>	<mark>80</mark>

- 1°) Calculer la moyenne et l'écart-type de la différence (notée D) sur l'échantillon:
- D: "Poids Post traitement Poids Avant traitement".

Moy =
$$55.2$$
; $s^2=1269$; $s=35.62 \Rightarrow sig^2 = 1586.2$; $sig=39.82$

2°) Pensez-vous que la prise de la protéine ait une influence significative sur le poids des souris?

$$t_{obs} = \frac{\overline{d}}{\frac{\hat{\sigma}_d}{\sqrt{n}}} = 3.1$$
; Ttheo (ddl= 4) = 2,776; différence significative

Exercice 7 (1+2=3 points)

1) Sur un échantillon de 890 personnes, 443 préfèrent la couleur bleu, 476 aiment la musique des années 80.

Calculer l'intervalle de confiance à 95% de la proportion de personnes préférant la couleur bleue.

$$I = \left[p_e - t \sqrt{\frac{p_e(1 - p_e)}{n}}; p + t \sqrt{\frac{p_e(1 - p_e)}{n}} \right]; pe = \frac{443}{890} = 0,498$$

Delta = 0.033; IC = [0.465; 0.5306]

2) Existe-il une différence significative entre la proportion de personnes préférant la couleur bleue et la proportion de personnes aimant la musique des années 80.

$$t_{\text{obs}} = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = 1,566 \text{ ; ttheo} = 1,960$$

Bonus (1 points) : calculer la p_value. $= 2 \cdot 0.059 = 0.118$