# PATENT ABSTRACTS OF JAPAN

(11)Publication number: 2002-141807 (43)Date of publication of application: 17.05.2002

(51)Int.CI. H03M 7/42 H04N 7/30

(21)Application number: 2000-335647 (71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing: 02.11.2000 (72)Inventor: MIYAKOSHI EIJI WATABE AKIHIRO

# (54) VARIABLE LENGTH DECODER

## (57)Abstract:

PROBLEM TO BE SOLVED: To reduce the circuit scale of a bidirectional format conversion system by realizing variable length decoding on the bit stream of DV and MPEG formats in a common circuit.

SOLUTION: This device is provided with a barrel shifter 110, a barrel shifter control circuit 160 for segmenting a variable length code from an input bit stream, a variable length decoding table 120 for decoding the alternating current(AC) coefficient of the DV format and MPEG format, a run length decoder 150 capable of processing the run length of level 0, escape(ESC) processing circuit 170 dedicated to MPEG format, a direct current(DC) processing circuit 180 for each of formats and an end-of-block (EOB) processing circuit 190 respectively holding the EOB codes of both the formats.



## LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTO)

#### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-141807 (P2002-141807A)

(43)公開日 平成14年5月17日(2002.5.17)

| (51) Int.Cl.7 |      | 識別記号 | FΙ   |       | テーマコード( <b>参考)</b> |
|---------------|------|------|------|-------|--------------------|
| H03M          | 7/42 |      | H03M | 7/42  | 5 C 0 5 9          |
| H04N          | 7/30 |      | H04N | 7/133 | 5 J O 6 4          |

# 審査請求 未請求 請求項の数4 OL (全 6 頁)

|          |                             | <del></del>    | **                    |  |
|----------|-----------------------------|----------------|-----------------------|--|
| (21)出願番号 | 特膜2000-335647(P2000-335647) | (71)出顧人        | 000005821             |  |
|          |                             |                | 松下電器産業株式会社            |  |
| (22)出顧日  | 平成12年11月2日(2000.11.2)       |                | 大阪府門真市大字門真1006番地      |  |
|          |                             | (72)発明者        | 宮越 英司                 |  |
|          |                             |                | 大阪府門真市大字門真1006番地 松下電器 |  |
|          |                             |                | 産業株式会社内               |  |
|          |                             | (72)発明者        | 渡部 彰啓                 |  |
|          |                             |                | 大阪府門真市大字門真1006番地 松下電器 |  |
|          |                             |                | <b>産業株式会社内</b>        |  |
|          |                             | (74)代理人        |                       |  |
|          |                             | (, 2, 10, 2, 1 | 弁理士 前田 弘 (外7名)        |  |
|          |                             |                | Merry Bold 24 Ortigi  |  |
|          |                             |                |                       |  |
|          |                             |                | 最終頁に続く                |  |
|          |                             | I              | ACK A CEL             |  |

# (54) 【発明の名称】 可変長復号化器

# (57)【要約】

【課題】 DV及びMPEGフォーマットのビットストリームの可変長復号化を共通の回路により実現し、以て双方向フォーマット変換システムの回路規模を低減する。

【解決手段】 入力ビットストリームから可変長符号を切り出すためのバレルシフタ110及びバレルシフタ制 御器160と、DVフォーマットとMPEGフォーマットのAC(交流)係数の復号化のための可変長復号化テーブル120と、レベル0のランレングスを処理できるランレングスデコーダ150と、MPEGフォーマット専用のESC(エスケープ)処理回路170と、各フォーマット用のDC(直流)処理回路180と、両フォーマットのEOB(エンド・オブ・ブロック)コードをそれぞれ保持したEOB処理回路190とを設ける。



1

#### 【特許請求の範囲】

【請求項1】 互いに異なるフォーマットで圧縮符号化された複数のビットストリームのデコードに共通に用いられる可変長復号化器であって、

各フォーマットで圧縮符号化された可変長符号から、その符号長、ランレングス及びレベルを求めるための可変 長復号化テーブルと、

レベル 0 のランレングスを許容して、与えられたランレングスの数だけ 0 を出力し、かつ与えられたレベルを出力することにより、前記可変長符号に対応した可変長復号化データを出力するためのランレングスデコーダとを備えたことを特徴とする可変長復号化器。

【請求項2】 請求項1記載の可変長復号化器において、

各フォーマット用のEOBコードのうちいずれかを選択し、かつ与えられた可変長符号が前記選択したEOBコードと一致したときには前記ランレングスデコーダに対応ブロックの最後まで0を出力させるように、EOBコード検出信号を前記ランレングスデコーダへ供給するためのEOB処理回路を更に備えたことを特徴とする可変長復号化器。

【請求項3】 請求項2記載の可変長復号化器において、

前記可変長復号化テーブル、ランレングスデコーダ及び EOB処理回路は、DVフォーマットとMPEGフォーマットとの双方に適合するように構成されたことを特徴 とする可変長復号化器。

【請求項4】 請求項3記載の可変長復号化器において、

MPEGフォーマット専用のESC処理回路と、

DVフォーマット及びMPEGフォーマットの各々に対応したDC処理回路と、

前記可変長復号化テーブル、ESC処理回路、EOB処理回路及びDC処理回路の各々へ可変長符号を供給するためのバレルシフタと、

与えられた符号長に応じて前記バレルシフタの動作を制 御するためのバレルシフタ制御器とを更に備えたことを 特徴とする可変長復号化器。

## 【発明の詳細な説明】

### [0001]

【発明の属する技術分野】本発明は、互いに異なるフォーマットで圧縮符号化された複数のビットストリームのデコードに共通に用いられる可変長復号化器に関するものである。

#### [0002]

【従来の技術】近年、デジタルビデオ圧縮技術の普及により、様々な記録メディアがデジタル化されている。

【0003】磁気テープにビデオ情報を記録するビデオムービー系の機器、例えばビデオカセットレコーダ(VCR)、デジタルビデオカメラ(DVC)では、DCT

(離散コサイン変換)によるフレーム内の空間的な冗長度の削減と、可変長符号化による符号量の削減とを組み合わせた圧縮技術が採用されている。このような圧縮技術を盛り込んだ規格の1つとして、1996年にHDデジタルVCR協議会により制定されたDV規格"Specifications of Consumer-Use Digital VCRs Using6.3mm Magnetic Tape"が知られている。そのほか、DVC、DVCPRO、DVcam等の規格がある。本願では、これらビデオムービー系の規格に基づく圧縮符号化フォーマットを総じて「DVフォーマット」という。

【0004】光ディスクにビデオ情報を記録する蓄積メディア系の機器、例えばデジタルビデオディスク(DVD)では、動き補償によるフレーム間の時間的な冗長度の削減と、DCTによるフレーム内の空間的な冗長度の削減と、可変長符号化による符号量の削減とを組み合わせた圧縮技術が採用されている。このような圧縮技術を盛り込んだ規格の1つとして、1994年に制定されたMPEG2規格ISO/IEC 13818-2 "Information Technology - Generic Coding of Moving Pictures and Associated Audio"が知られている。そのほか、MPEG1等の規格がある。本願では、これら蓄積メディア系の規格に基づく圧縮符号化フォーマットを総じて「MPEGフォーマット」という。特開平11-31973号公報には、MPEGエンコーダ及びMPEGデコーダの例が示されている。

【0005】DVフォーマットとMPEGフォーマットとの間には、カラーコンポーネント形式、ESC (エスケープ) 処理の要否、DCT係数中のDC (直流) 係数の取り扱い等の種々の点において差異がある。したがって、両者間のフォーマット変換が要望されている。

【0006】特開平10-304401号公報や特開平11-112973号公報には、DVフォーマットからMPEGフォーマットへのデータ変換の例が示されている。これらの例によれば、DVフォーマットで圧縮符号化されたビットストリームを一旦DVデコーダでデコードし、このデコードの結果をMPEGエンコーダで処理することにより、MPEGフォーマットで圧縮符号化されたビットストリームを得る。

【0007】MPEGフォーマットからDVフォーマットへのデータ変換の場合には、MPEGフォーマットで圧縮符号化されたビットストリームを一旦MPEGデコーダでデコードし、このデコードの結果をDVエンコーダで処理することにより、DVフォーマットで圧縮符号化されたビットストリームが得られる。

#### [0008]

【発明が解決しようとする課題】上記従来技術によれば、DVフォーマットとMPEGフォーマットとの間の相互変換を達成できるシステムを構築しようとすると、DVデューダ及びMPEGデコーダを用意しなければならない。つまり、DVフォーマットで圧縮符号化された

ビットストリームのデコードに用いられる可変長復号化器と、MPEGフォーマットで圧縮符号化されたビットストリームのデコードに用いられる可変長復号化器とを別々に用意していたので、フォーマット変換システムの回路規模が大きくなってしまうという課題があった。

【0009】本発明の目的は、互いに異なるフォーマットで圧縮符号化された複数のビットストリームのデコードに共通に用いられる可変長復号化器を提供し、以て双方向フォーマット変換システムの回路規模を低減することにある。

#### [0010]

【課題を解決するための手段】上記目的を達成するため、本発明は、各フォーマットで圧縮符号化された可変長符号から、その符号長、ランレングス及びレベルを求めるための可変長復号化テーブルと、レベル0のランレングスを許容して、与えられたランレングスの数だけ0を出力し、かつ与えられたレベルを出力することにより、前記可変長符号に対応した可変長復号化データを出力するためのランレングスデコーダとを備えた可変長復号化器の構成を採用したものである。

【0011】また、各フォーマット用のEOB(エンド・オブ・ブロック)コードのうちいずれかを選択し、かつ与えられた可変長符号が前記選択したEOBコードと一致したときには前記ランレングスデコーダに対応ブロックの最後まで0を出力させるように、EOBコード検出信号を前記ランレングスデコーダへ供給するためのEOB処理回路を更に備えることとする。

# [0012]

【発明の実施の形態】図1は、本発明に係るワンチップ 可変長復号化器の構成例を示している。 図1の可変長復 号化器50は、DVフォーマットで圧縮符号化されたビ ットストリームのデコードと、MPEGフォーマットで 圧縮符号化されたビットストリームのデコードとに共通 に用いられる可変長復号化器であって、可変長符号読み 出し器100と、バレルシフタ110と、可変長復号化 テーブル120と、ランレングスセレクタ130と、レ ベルセレクタ140と、ランレングスデコーダ150 と、バレルシフタ制御器160とを備えている。可変長 符号読み出し器100は、メモリからビットストリーム を読み出すものであり、DVフォーマットで圧縮符号化 されたビットストリームと、MPEGフォーマットで圧 縮符号化されたビットストリームとを当該可変長復号化 器50へ入力することができる。バレルシフタ110 は、入力ビットストリームをシフトさせて得た可変長符 号を可変長復号化テーブル120へ供給する。シフト量 は、バレルシフタ制御器160からバレルシフタ110 に与えられる。可変長復号化テーブル120は、各フォ ーマットで圧縮符号化された可変長符号から、その符号 長、ランレングス及びレベルを求めるためのテーブルで あって、DV用テーブル121と、MPEG用テーブル 122とを有している。ランレングスはセレクタ130を介して、レベルはセレクタ140を介してそれぞれランレングスデコーダ150に与えられる。ランレングスデコーダ150は、基本的には、与えられたランレングスの数だけ0を出力した後、与えられたレベルを出力することにより、可変長符号に対応した可変長復号化データを出力する。この可変長復号化データは、量子化されたDCT係数であって、後段LSIにおいて逆量子化されたDCT係数であって、後段LSIにおいて逆量子化や処理及び逆DCT処理の対象となるものである。バレルシフタ制御器160は、与えられた符号長に応じてバレルシフタ110の動作を制御するものであって、符号長フレクタ161と、加算器162と、FF(フリップ)163とを備えている。加算器162とFF163とは、セレクタ161から出力される符号長を累算し、その結果をバレルシフタ110へシフト量として与える。

【0013】図1の可変長復号化器50は、ESC処理 回路170と、DC処理回路180と、EOB処理回路 190とを更に備えている。ESC処理回路170は、 MPEGフォーマット専用であって、バレルシフタ11 0から供給された可変長符号に基づいて符号長、ランレ ングス及びレベルを出力する。DC処理回路180は、 各フォーマットに対応するようにDV用DC処理回路1 81と、MPEG用DC処理回路182とを有し、バレ ルシフタ110から供給された可変長符号に基づいて符 号長及びレベルを出力するとともに、DVフォーマット の場合にはクラスナンバー (c1, c0) とDCTモー ド (m0) とを更に出力する。EOB処理回路190 は、各フォーマット用のEOBコードのうちいずれかを 選択し、かつバレルシフタ110から供給された可変長 符号が前記選択したEOBコードと一致したときにはラ ンレングスデコーダ150に対応ブロックの最後まで0 を出力させるように、EOBコード検出信号をランレン グスデコーダ150へ供給するための回路であって、D V用EOBコード191と、MPEG用EOBコード1 92とを有している。また、EOB処理回路190は、 バレルシフタ制御器160に符号長を与える。

【0014】さて、フレーム内の情報のみを用いるイントラ・マクロブロックの場合、DCTの最初の係数をDC係数と呼び、その他の係数をAC(交流)係数と呼んで区別する。そして、DC係数とAC係数とで異なる取り扱いをする。フレーム間の情報を用いるインター・マクロブロックにはこの区別が存在せず、全てのDCT係数をAC係数として取り扱う。DVフォーマットでは、動き補償を行わないのでイントラ・マクロブロックしか存在しない。動き補償を行うMPEGフォーマットでは、イントラ・マクロブロックとインター・マクロブロックとの両方が存在する。図1中の可変長復号化テーブル120はAC係数の可変長復号化を行うためのテーブルであり、DC処理回路180はDC係数の処理を行う

ための回路である。

【0015】図2は、DVフォーマットにおける可変長符号の定義範囲をハッチングで示した図である。図示のとおり、DVフォーマットの可変長符号には「レベル0のランレングス」が存在する。しかも、DVフォーマットによれば、可変長符号の定義範囲外(非ハッチング部分)では2つの可変長符号を組み合わせる。例えば、ランレングス(run)が10で、レベル(amp)が10の場合。

(run-1, 0) + (0, amp) = (9, 0) + (0, 10)

とするのである。ここに、(9,0)はまさに「レベル 0のランレングス」に該当する。

【0016】一方、MPEGフォーマットによれば、前掲の特開平11-31973号公報にも示されているとおり、可変長符号の定義範囲外ではESCコードを用いる。このESCコードには、先頭に開始コード「00001」が、その後に6ビットの固定長符号(ランレングス)と、12ビットの固定長符号(レベル)とがそれぞれ割り当てられる。例えば、ランレングスが10で、レベルが2047の場合の符号は、

000001 (開始コード)

001010 (ランレングス)

01111111111 (レベル)

となる。図1中のESC処理回路170は、MPEGフォーマットで先頭に開始コード「000001」が与えられた場合にのみ動作し、その後の6ビットをランレングスとして、その後の12ビットをレベルとしてそれぞれ出力する。なお、MPEGフォーマットには「レベル0のランレングス」が存在しない。

【0017】図3は、図1中の可変長復号化テーブル120のVerilogーHDLによる記述例を示す図である。図3によれば、可変長符号をアドレス(address)としてcase文の入力に入れ、結果を符号長とランレングスとレベルとの組(data)で表現する。data(16:12)が符号長に、data(11:6)がランレングスに、data(5:0)がレベルにそれぞれ相当する。また、このcase文の単位が、DVフォーマット、MPEGフォーマット毎に存在することになる。

【0018】可変長復号化テーブル120の他のインプリメント方法としては、ROMテーブルを持ってもよいし、RAMとして実装してもよい。RAMの場合には、外部から書き込める機構を持つことにより、DVフォーマットとMPEGフォーマットとを共通テーブルにすることも可能である。

【0019】図4は、図1中のランレングスデコーダ150の概略構成例を示している。図4のランレングスデコーダ150は、DVフォーマットとMPEGフォーマットとに共用できるように「レベル0のランレングス」

を許容したものであって、0ラン発生器151と、セレクタ152とを備えている。0ラン発生器151は、ランレングスが入力されたとき、そのランレングスの数だけ0を生成する。セレクタ152は、0ラン発生器151により生成された0を全て選択出力した後に、与えられたレベルを選択出力することにより、可変長符号に対応した可変長復号化データを出力する。また、図4のランレングスデコーダ150は、EOBコード検出信号の入力を受けた場合には当該ブロックの最終係数まで0を出力するように動作する。

【0020】次に、図1中のDC処理回路180について説明する。DVフォーマットにおけるDC係数は、9ビットからなるレベル(b8~b0)と、クラスナンバー(c1,c0)と呼ばれる量子化係数のセットと、DCTのモード(m0)を決定する値とで構成される。よって、DV用DC処理回路181は、DC係数のレベル(b8~b0)を出力するとともに、後段の逆量子化処理及び逆DCT処理のために、クラスナンバー(c1,c0)とDCTモード(m0)とを出力する。一方、MPEGフォーマットにおけるDC係数は、輝度成分の差分に係る可変長符号と固定長符号との対で構成される。よって、MPEG用DC処理回路182は、これらの符号をもとに符号長及びレベルを出力する。

【0021】図5は、図1中のEOB処理回路190の 概略構成例を示している。図5のEOB処理回路190は、DVフォーマットとMPEGフォーマットとに共用できるように、DV用EOBコード191と、MPEG用EOBコード192とを有しており、DV/MPEGの選択信号に応じて両EOBコード191,192のいずれかを第1のセレクタ193で選択する。そして、比較器194により可変長符号と比較し、一致したところでEOBコード検出信号を出力する。また、このとき第2のセレクタ195から符号長を出力する。

### [0022]

【発明の効果】以上のとおり、本発明によれば、複数の 圧縮フォーマットのために可変長復号化テーブルと、ラ ンレングスデコーダと、EOB処理回路とを共通化した ので、双方向フォーマット変換システムの回路規模を低 減することができる。

### 【図面の簡単な説明】

【図1】本発明に係る可変長復号化器の構成例を示すブロック図である。

【図2】DVフォーマットにおける可変長符号の定義範囲を説明するための図である。

【図3】図1中の可変長復号化テーブルの記述例を示す 図である。

【図4】図1中のランレングスデコーダの概略構成例を 示すブロック図である。

【図5】図1中のEOB処理回路の概略構成例を示すブロック図である。







# フロントページの続き

F ターム(参考) 5C059 KK07 MA00 MA05 MA23 MC14 MC24 MC38 ME01 ME06 PP04 SS11 UA05 UA38 SJ064 AA02 AA04 BA09 BA16 BC01 BC02 BC25 BD03