FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN ESTRUCTURA DE DATOS Y ALGORITMOS II

Práctica 0

1. Sea F_n la sucesión de Fibonacci:

$$\begin{array}{rcl} F_1 & = & 1 \\ F_2 & = & 1 \\ F_{n+2} & = & F_{n+1} + F_n \end{array}$$

a) Probar que:

$$\sum_{i=1}^{n} F_i = F_{n+2} - 1$$

b) Desarrollar fórmulas para las siguientes sumas:

$$\sum_{i=1}^{n} F_{2i-1} \qquad \sum_{i=1}^{n} F_{2i}$$

2. Encontrar una fórmula para la siguiente sumatoria:

$$\sum_{i=0}^{n} a + bi$$

3. ¿Cuáles de los siguientes enunciados son verdaderos? Probar las respuestas.

a)
$$n^2 \in O(n^3)$$

b)
$$n^2 \in \Omega(n^3)$$

c)
$$2^n \in \Theta(2^{n+1})$$

d)
$$n! \in \Theta((n+1)!)$$

4. Demostrar que $f \in \Theta(g)$ si y solo si existen constantes $c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{N}$ tales que

$$\forall n \geq n_0 \bullet 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$$

5. Sean $f, g: \mathbb{N} \to \mathbb{R}$ as intóticamente no negativas y h(n) = f(n) + g(n), demostrar que

$$h(n) \in \Theta(\max(f(n), g(n)))$$

6. Dadas $f, g : \mathbb{N} \to \mathbb{R}$, demostrar las siguientes propiedades de las notaciones asintóticas:

- a) O y Ω son transitivas
- b) fasintóticamente no negativa $\Rightarrow f(n) \in \Theta(f(n))$
- c) Θ es simétrica
- d) $f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$
- e) $f(n) \in O(g(n)) \Rightarrow \forall k \in \mathbb{R}^+ \cdot k f(n) \in O(g(n))$
- f) $f(n) \in \Omega(g(n)) \Rightarrow \forall k \in \mathbb{R}^+ \cdot k f(n) \in \Omega(g(n))$

Práctica 0 2017 Página 1

- 7. Sean a, $b \in \mathbb{R}$ constantes, b positivo, probar que
- a) $(n+a)^b \in \Theta(n^b)$
- b) $b^n \in \Theta(b^{n+a})$
- 8. Demostrar que dadas dos funciones $f, g : \mathbb{N} \to \mathbb{R}$ asintóticamente no negativas, y $\lim_{n \to \infty} \frac{f(n)}{g(n)} = k \text{ con } k \in \mathbb{R}^+,$ entonces $f(n) \in \Theta(g(n))$.
 - 9. Encontrar dos funciones $f,g:\mathbb{N}\to\mathbb{N}^+$ tal que $f(n)\notin O(g(n))$ y $g(n)\notin O(f(n))$. Probar la respuesta.
 - 10. Probar usando propiedades aritméticas que $\sum_{i=1}^n i^k \in \Theta(n^{k+1})$ para $k \in \mathbb{Z}^+$.