# Отчёт по лабораторной работе №8

Дисциплина: Математическое моделирование

Выполнил: Танрибергенов Эльдар

# Содержание

| 1  | Цель работы                    | 5  |
|----|--------------------------------|----|
| 2  | Задание                        | 6  |
| 3  | Теоретическое введение         | 9  |
| 4  | Выполнение лабораторной работы | 14 |
| 5  | Выводы                         | 22 |
| Сп | писок литературы               | 23 |

# Список иллюстраций

| 4.1 | График изменения объемов продаж для первого случая (Julia) |           |         |        |     |         |        |    |
|-----|------------------------------------------------------------|-----------|---------|--------|-----|---------|--------|----|
| 4.2 | График                                                     | изменения | объемов | продаж | для | первого | случая |    |
|     | (OpenMo                                                    | delica)   |         |        |     |         |        | 18 |
| 4.3 | График изменения объемов продаж для второго случая (Julia) |           |         |        |     |         |        |    |
| 4.4 | График                                                     | изменения | объемов | продаж | для | второго | случая |    |
|     | (OpenMo                                                    | delica)   |         |        |     | 21      |        |    |

# Список таблиц

## 1 Цель работы

Рассмотреть модель конкуренции двух фирм. Выполнить задание согласно варианту: построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для двух случаев.

### 2 Задание

### Вариант № 45:

### Случай 1

Рассмотреть две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_{1}}{d\Theta} = M_{1} - \frac{b}{c_{1}}M_{1}M_{2} - \frac{a1}{c1}M_{1}^{2}$$

$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q},$$

$$a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q},$$

$$b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}$$
 
$$c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1},$$
 
$$c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}.$$

Также введена нормировка  $t=c_1\Theta.$ 

### Случай 2

Рассмотреть модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед  $M_1M_2$  будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\Theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a1}{c1} M_1^2 \\ \\ \frac{dM_2}{d\Theta} &= \frac{c_2}{c_1} M_2 - (\frac{b}{c_1} + 0,00026) M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

Для обоих случаев рассмотреть задачу со следующими начальными условиями и параметрами:

$$\begin{split} M_0^1 &= 2.6, \ M_0^2 = 6.2, \\ p_{cr} &= 40, \ N = 43, \ q = 1, \\ \tau_1 &= 20, \ \tau_2 = 14, \\ \tilde{p}_1 &= 10.7, \ \tilde{p}_2 = 19.1 \end{split}$$

Замечение:  $p_{cr}, \tilde{p}_2, N$  указаны в тысячах единиц, а значения  $M_{1,2}$  указаны в млн. единиц.

#### Обозначения:

N – число потребителей производимого продукта

au – длительность производственного цикла

p – рыночная цена товара

p – себестоимость продукта, то есть переменные издержки на производство единицы продукции

q – максимальная потребность одного человека в продукте в единицу времени  $\Theta = \frac{t}{c_1}$  - безразмерное время

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

### 3 Теоретическое введение

Математическому моделированию процессов конкуренции и сотрудничества двух фирм на различных рынках посвящено довольно много научных работ, в основном использующих аппарат теории игр и статистических решений [key-1?]. Среди методов конкурентной борьбы можно условно выделить следующие группы.

- 1. Чисто экономические (рыночные) методы, не влияющие прямо на конкурента, но влияющие на рыночную цену. К ним относятся: сокращение производственного цикла, снижение себестоимости продукта. В компетенцию фирмы входит также и качество товара. Однако, как отмечалось выше, понятие «качества» многогранно и условно. Важно, что рыночная цена товара устанавливается в результате баланса спроса и предложения. Влиять на неё предприниматель может, только изменяя объем производства. (то есть, предложение). В этом случае конкуренты непосредственно не взаимодействуют и получают информацию друг о друге через ситуацию на рынке. Эта модель в вербальной форме была рассмотрена Курно.
- 2. Финансовые методы конкуренции. Имеются в виду случаи, когда один из партнеров «назначает» низкую цену своего товара (ниже себестоимости), и в результате конкурент разоряется. Такой метод имеет специальное название демпинг. Речь идет о наводнении рынка товаром, в результате чего рыночная цена опускается ниже уровня себестоимости товара конкурента. При этом оба конкурента терпят убытки, и вопрос заключается в том, кто

из них раньше разорится. Ясно, что на демпинг может решиться конкурент, обладающий запасом средств, которые он использует для дотаций своего производства в течение большого (но не бесконечного) времени. В целом, эта акция может иметь смысл, если в результате ее конкурент полностью вытесняется с рынка.

3. Методы, выходящие за рамки чисто экономических. Легальным методом такого типа является реклама, о которой уже шла речь. Не меньшую роль играет антиреклама, то есть, создание негативного отношения к товару конкурента. Формально она запрещена, но реально всегда имеет место даже вне зависимости от действий предпринимателя [key-2?].

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

#### Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
  - M оборотные средства предприятия
  - au длительность производственного цикла
  - p рыночная цена товара
- $\tilde{p}$  себестоимость продукта, то есть переменные издержки на производство единицы продукции
  - $\delta$  доля оборотных средств, идущая на покрытие переменных издержек
- k постоянные издержки, которые не зависят от количества выпускаемой продукции

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при  $p=p_{cr}$  (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина  $p_{cr}=Sq/k$ . Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса является пороговой (то есть, Q(S/p)=0 при  $p\geq p_{cr}$ ) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - k = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - k$$

Уравнение для рыночной цены p представим в виде:

$$\frac{dp}{dt} = \gamma(-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}))$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу. Параметр  $\gamma$  зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла  $\tau$ . При заданном М уравнение описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}) = 0$$

равновесное значение цены p равно

$$p=p_{cr}(1-\frac{M\delta}{\tau\tilde{p}Nq})$$

Тогда уравнения динамики оборотных средств приобретает вид

$$\frac{dM}{dt} = -\frac{M\delta}{\tau}(\frac{p}{p_{cr}}-1) - M^2(\frac{\delta}{\tau\tilde{p}})^2\frac{p_{cr}}{Nq} - k$$

Это уравнение имеет два стационарных решения, соответствующих условию dM/dt=0

$$\widetilde{M_{1,2}} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}}\tilde{p}\frac{\tau}{\delta}), b = kNq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2}$$

Получается, что при больших постоянных издержках (в случае  $a^2 < 4b$ ) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть,  $b << a^2$ ) и играют роль, только в случае, когда оборотные средства малы.

При b << a стационарные значения M равны

$$\widetilde{M_{+}} = Nq\frac{\tau}{\delta}(1-\frac{\tilde{p}}{p_{cr}})\tilde{p}, \widetilde{M_{-}} = k\tilde{p}\frac{\tau}{\delta(p_{cr}-\tilde{p})}$$

Первое состояние  $\widetilde{M}_+$  устойчиво и соответствует стабильному функционированию предприятия. Второе состояние  $\widetilde{M}_-$  неустойчиво, так, что при  $M<\widetilde{M}_-$  оборотные средства падают (dM/dt<0), то есть, фирма идет к банкротству. По смыслу  $\widetilde{M}_-$  соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр  $\delta$  всюду входит в сочетании с  $\tau$ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим:  $\delta=1$ , а параметр  $\tau$  будем считать временем цикла, с учётом сказан-

ного [key-3?].

## 4 Выполнение лабораторной работы

- 1. Задание в лабораторной работе выполняется по вариантам. Вариант расчитывается как номер остаток от деления номера студенческого билета на число заданий + 1. Таким образом, мой вариант **45**: 1032208074 % 70 + 1.
- 2. Напишем код для первого случая на Julia:

```
#подключаем модули
using Plots
using DifferentialEquations

#задаем начальные условия

M1 = 2.6

M2 = 6.2

p_cr = 40

N = 43

q = 1

tau1 = 20

tau2 = 14

p1 = 10.7

p2 = 19.1

a1 = p_cr / ((tau1 ^ 2) * (p1 ^ 2) * N * q)

a2 = p_cr / ((tau2 ^ 2) * (p2 ^ 2) * N * q)
```

```
b = p_cr / ((tau1 ^ 2) * (p1 ^ 2) * (tau2 ^ 2) * (p2 ^ 2) * N * q)
c1 = (p_cr - p1) / (tau1 * p1)
c2 = (p_cr - p2) / (tau2 * p2)
#состояние системы
u0 = [M1, M2]
#отслеживаемый промежуток времени
time = [0.0, 30.0]
#сама система
function F!(du, u, p, t)
    du[1] = u[1] - (b / c1) * u[1] * u[2] - (a1 / c1) * (u[1] ^ 2)
    du[2] = (c2 / c1) * u[2] - (b / c1) * u[1] * u[2] - (a2 / c1) * (u[2] ^ 2)
end
prob = ODEProblem(F!, u0, time)
sol = solve(prob, saveat=0.0001)
const M_1 = Float64[]
const M_2 = Float64[]
for u in sol.u
    m1 = u[1]
    m2 = u[2]
    push!(M_1,m1)
    push!(M_2,m2)
end
```

#постреоние графиков

```
plt1 = plot( dpi = 300, size = (1100,800), title ="Модель конкуренции двух фирм (plt1, sol.t, M_1, color =:red, xlabel="Время", ylabel="Объемы продаж", label="Dttl, sol.t, M_2, color =:blue, xlabel="Время", ylabel="Объемы продаж", label="Объемы продаж
```

### 3. Видим результат, полученный для первого случая с помощью Julia (рис. 4.1)



Рис. 4.1: График изменения объемов продаж для первого случая (Julia)

### 4. Напишем код для первого случая на OpenModelica:

```
model lab81
  constant Real N = 43;
  constant Real p_cr = 40;
  constant Real q = 1;
  constant Real tau1 = 20;
```

```
constant Real tau2 = 14;
constant Real p1 = 10.7;
constant Real p2 = 19.1;

constant Real a1 = p_cr / ((tau1 * tau1) * (p1 * p1) * N * q);
constant Real a2 = p_cr / ((tau2 * tau2) * (p2 * p2) * N * q);
constant Real b = p_cr / ((tau1 * tau1) * (p1 * p1) * (tau2 * tau2) * (p2 * p2)
constant Real c1 = (p_cr - p1) / (tau1 * p1);
constant Real c2 = (p_cr - p2) / (tau2 * p2);

Real M1(start=2.6);
Real M2(start=6.2);

equation
   der(M1) = M1 - (b / c1) * M1 * M2 - (a2 / c1) * (M1 * M1);
   der(M2) = (c2 / c1) * M2 - (b / c1) * M1 * M2 - (a2 / c1) * (M2 * M2);
```

end lab81;

5. Видим результат, полученный для первого случая с помощью OpenModelica (рис. 4.2)



Рис. 4.2: График изменения объемов продаж для первого случая (OpenModelica)

### 6. Напишем код для второго случая на Julia:

```
#подключаем модули
using Plots
using DifferentialEquations
```

#задаем начальные условия

M1 = 2.6

M2 = 6.2

 $p_{cr} = 40$ 

N = 43

q = 1

tau1 = 20

tau2 = 14

p1 = 10.7

p2 = 19.1

```
c2 = (p_cr - p2) / (tau2 * p2)
#состояние системы
u0 = [M1, M2]
#отслеживаемый промежуток времени
time = [0.0, 30.0]
#сама система
function F!(du, u, p, t)
                 du[1] = u[1] - (b / c1) * u[1] * u[2] - (a1 / c1) * (u[1] ^ 2)
                 du[2] = (c2 / c1) * u[2] - ((b / c1)+0.00026) * u[1] * u[2] - (a2 / c1) * (u[2] - (a2 / c1) * (a2 / 
end
prob = ODEProblem(F!, u0, time)
sol = solve(prob, saveat=0.0001)
const M_1 = Float64[]
const M_2 = Float64[]
for u in sol.u
                 m1 = u[1]
                 m2 = u[2]
                 push!(M_1,m1)
                 push!(M_2,m2)
end
#постреоние графиков
plt1 = plot( dpi = 300, size = (1100,800), title ="Модель конкуренции двух фирм (
```

```
plot!( plt1, sol.t, M_1, color =:red, xlabel="Время", ylabel="Объемы продаж", label="lot!( plt1, sol.t, M_2, color =:blue, xlabel="Время", ylabel="Объемы продаж", label="Gobemы продаж", label="glt1, "Jl_case2.png")
```

### 7. Видим результат, полученный для второго случая с помощью Julia (рис. 4.3).



Рис. 4.3: График изменения объемов продаж для второго случая (Julia)

### 8. Напишем код для второго случая на OpenModelica:

```
model lab82
constant Real N = 43;
constant Real p_cr = 40;
constant Real q = 1;
constant Real tau1 = 20;
constant Real tau2 = 14;
constant Real p1 = 10.7;
```

```
constant Real a1 = p_cr / ((tau1 * tau1) * (p1 * p1) * N * q);
constant Real a2 = p_cr / ((tau2 * tau2) * (p2 * p2) * N * q);
constant Real b = p_cr / ((tau1 * tau1) * (p1 * p1) * (tau2 * tau2) * (p2 * p2)
constant Real c1 = (p_cr - p1) / (tau1 * p1);
constant Real c2 = (p_cr - p2) / (tau2 * p2);

Real M1(start=2.6);
Real M2(start=6.2);

equation
    der(M1) = M1 - (b / c1) * M1 * M2 - (a2 / c1) * (M1 * M1);
    der(M2) = (c2 / c1) * M2 - ((b / c1)+0.00026) * M1 * M2 - (a2 / c1) * (M2 * M2);
```

constant Real p2 = 19.1;

end lab82;

9. Видим результат, полученный для второго случая с помощью OpenModelica (рис. 4.4).



Рис. 4.4: График изменения объемов продаж для второго случая (OpenModelica)

## 5 Выводы

Я рассмотрел модель конкуренции двух фирм. Выполнил задание согласно варианту: построил графики изменения оборотных средств фирмы 1 и фирмы 2 без учёта постоянных издержек и с введённой нормировкой для двух случаев.

# Список литературы