

Bank Loan Default Risk

Purpose

Background Research and Hypothesis

\$76 B
Fraudulent Loans
15% of Paycheck Protection
Program Loans Est. Fraud

 Behavior features will affect target more than characteristic features

Data cleaning & Pre-processing

Attribute Correlation

Unbalanced Dataset

- Class 0: over 250,000
- Class 1: about 27,000
- Split train and test 50/50

Model Benchmarks

Models	PPV (training/testing)	NPV (training/testing)	Overall accuracy (training/testing)
Logistic Regression	0.64/0.15	0.65/0.95	0.65/0.67
Classification Tree	0.65/0.14	0.65/0.95	0.65/0.66
Naive Bayes	0.61/0.12	0.63/0.95	0.59/0.59
KNN	NA/0.09	NA/0.93	NA/0.53
Random Forest	0.82/0.10	0.81/0.93	0.81/0.57

Predicted Actual 0 1 0 88984 44218 1 4380 7503

Predicted Actual 0 1 0 88316 44886 1 4709 7174

Predicted Actual 0 1 0 78344 54858 1 4158 7725

Predicted Actual 0 1 0 70785 62417 1 5403 6480

Predicted Actual 0 1 0 76496 56706 1 5425 6458

Logistic Regression

Significant Variables	Coefficient	
NAME_CONTRACT_TYPE	0.6425	
FLAG_OWN_CAR	0.7733	
DAYS_REGISTRATION	0.9999	
AMT GOODS PRICE	0.9999	
NAME_EDUCATION_TYPE	0.8036	
EXT_SOURCE_2	0.1138	
DAYS_BIRTH	0.9999	
DAYS_EMPLOYED	0.9999	
REGION_RATING_CLIENT	1.1714	
Pre_approved_num	0.9170	
Pre_canceled_num	1.0428	
Pre_refused_num	1.1243	

Accuracy

Overall: 0.665 Class 0: 0.9531 Class 1: 0.1451 Predicted Actual 0 1 0 88984 44218 1 4380 7503

Previous application information may have significant influence.

Region_rating_client may reflect how clients' geographic related to money flow.

Ext_source_2 is extremely relevant (credit score)

Name_contract_type: revolving loans decreases the odds of defaulting

Owning a car decreases the odds of late payments too

Classification Tree

Accuracy

Overall: 0.6582 Class 0: 0.9494 Class 1: 0.1378

Predicted Actual 0 1 0 88316 44886 1 4709 7174

Key Findings

Actionable Insights

Business Recommendations

Actionable Insights

Data collection and governance to benefit data understanding

Different use cases dependent on preferred performance of target class

Expand applicant profiles utilizing external sources Credit Score

Conclusion

Purpose

 Helping banks select qualified applicants that won't default the loan and avoid losing money

Takeaways

 Different group of people may have different prediction models, more classification based on clients features may improve model performance

Lesson Learned

- Unbalanced dataset needs to be resampled.
- Using sampling methods on an imbalance dataset could generate bad results on a class accuracy, since the imbalance might be reflected in the real world but not on our trained model (depending on the proportion you choose)