

G12 Topic Breakdown

SOL - Geometry Written by Nicole D'Onofrio

Identify the center, radius, and diameter of a circle given the standard **equation of a circle**.

Given the equation of a circle in standard form, identify the coordinates of the center and find the radius of the circle.

Practice One:

A circle has a radius of 12 and a center located at (-2,5)...

Equation of the circle: $(x+2)^2 + (y-5)^2 = 144$ *Note that -2 changes the - to a + in the first part of the equation

Practice Two:

A circle has a radius of 5 and a center located at (3,-6)...

Equation of the circle:
$$(x-3)^2 + (y+6)^2 = 25$$

*Note that -6 changes the - to a + in the second part of the equation

Practice Three:

A circle has a radius of 1 and a center located at (1,0)...

Equation of the circle:
$$(x-1)^2 + (y-0)^2 = 1$$
 or $(x-1)^2 + y^2 = 1$
*Note that the radius squared is still 1 and the 0 can be dropped from the equation

Given the coordinates of the center and radius of the circle, **identify a point on the circle**.

1. Find the equation

$$(x-2)^2 + (y-4)^2 = 16$$

Plug in the answer choices (x for x-value/y for y-value)
 A) (2.2)

B) (6.0)

C) (3,9)

Ex. $(2-2)^2 + (2-4)^2 = 0 + 4 = 4$

4 does not equal 16

Ex. $(3-2)^2 + (0-4)^2 = 1 + 16 = 17$

17 does not equal 16

Ex. $(2-2)^2 + (0-4)^2 = 0 + 16 = 16$

16 equals the radius squared!

If the center of a circle is located at (-7,13) and has a radius of 9, what could be a possible point on the circle?

1. Find the equation

$$(x+7)^2 + (y-13)^2 = 81$$

2. Find an x value and y value that make the equation equal to 81

3.
$$x = 2/y = 13$$

$$(2+7)^2 + (13-13)^2 = 81$$

$$(9)^2 + (0)^2 = 81$$

$$81 + 0 = 81$$

$$81 = 81$$

How to choose an x and y value?

- 1. Find the square root of the radius $\sqrt{81} = 9$
- 2. One of the parenthesis will equal the square root of the radius and the other parenthesis will equal 0.

$$(x + 7) = 9$$
 $81 + 0 = 81$

$$(2+7)=9 9^2+0=81$$

Use the distance formula to find the radius of a circle, given the center and one other point.

Circle Center = (6,7)Point on a Circle = (8, 12)

[The difference between the 2 points = the radius]

Distance Formula:

distance =
$$\sqrt{((8-6)^2 + (7-12)^2)}$$

d = $\sqrt{(2^2 + -5^2)}$
d = $\sqrt{(4+25)}$
d = $\sqrt{29}$
r = $\sqrt{29}$

Distance Formula:

$$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$$

Given the coordinates of the endpoints of a diameter, find the equation

of the circle.

Distance Formula:

$$d = \sqrt{((x_2-x_1)^2 + (y_2 - y_1)^2)}$$

$$d = \sqrt{((x_2-x_1)^2 + (y_2 - y_1)^2)}$$

$$d = \sqrt{((7-7)^2 + (-2 - 4)^2)}$$

$$d = \sqrt{(0^2 + (-6)^2)}$$

$$d = \sqrt{36}$$

$$d=6$$

$$r = (1/2)d = 3$$

Find the equation of the circle by plugging in the radius and center:

$$(x-h)^2 + (y-k)^2 = r^2$$

 $(x-7)^2 + (y-1)^2 = 9$

The center of the circle is located at (7,1). This is calculated by finding the middle coordinate between the two given points.

x-value
$$(x1 + x2)/2 = (7 + 7)/2 = 7$$
 y-value

(y1 + y2)/2 = (4 + -2)/2 = 1

Recognize that the equation of a circle of given center and radius is derived using the Pythagorean Theorem.

Pythagorean Theorem
$$a^2 + b^2 = c^2$$
 Pythagorean Theorem $3^2 + 4^2 = 5^2$ Equation of a Circle $(x-h)^2 + (y-k)^2 = r^2$ $(x-3)^2 + (y-4)^2 = 25$

Complete the following practice problems:

Plot the center of the circle defined by the equation $(x+4)^2+(y-5)^2=3^2$.

Which point lies on the circle represented by the equation $(x-1)^2 + (y-3)^2 = 7^2$?

- A (-1,4)
- B (0,7)
- OC (1, 3)
- OD (8, 3)

A circle has a center at (4, -7) and a radius of 4 units. Create the equation of this circle.

The Equation of the Circle

(x - 4)	(x + 4)
$(x-4)^2$	$(x + 4)^2$
(y - 7)	(y + 7)
$(y-7)^2$	$(y + 7)^2$
+	-
2 2	42

Practice Problems

G.12 Review

- 1. If a circle has the equation (x+12)2+ $(y-4)^2 = 64$, what is the radius and center of the circle?
- A) Radius = 8; Center = (-12,4)
- B) Radius = 64; Center = (12, 4)
- C) Radius = 8; Center = (-12, 2)
- D) Radius = 64; Center = (12,-4)
- 2. A circle with a center at (2, -2) also contains the point (12, 2). Find the radius of the circle.
- A) 16
- B) √116 C) 4
- D) √104

- 3. The diameter of a circle falls on the points (4, 7) and (13, 7). Which of the following is the equation of this circle?
- A) $(x-17)^2 + (y-14)^2 = 7$
- B) $(x-7)^2 + (8.5)^2 = 81$
- C) $(x-17)^2 + (y-8)^2 = 9$
- D) $(x-8.5)^2 + (y-7)^2 = 9$

- 4. The circle above shows the center coordinates and a given point on the circle. Which of the following is the radius of the circle?
- 5. The equation of a given circle is $(x+5)^2 + (y-6)^2 = 65$ Which of the following is a possible point on the circle?
- 6. The circle has a center located at (0,0) and a radius of $\sqrt{18}$. Which of the following could be a point on the circle?

A) 35 B) 12 C) 11

D) 121

A) (-1.13) B) (5.6) C) (-5,6) D) (-1, 5)

A) (3.18) B) (2,2) C) (3,3) D) (0,0)

- 7. If a circle has the equation $(x-17)^2$ + $(y-6)^2 = 169$, what is the radius and center of the circle?
- A) Radius = 13; Center = (-17,-6) B) Radius = -6; Center = (13, 6)
- C) Radius = 17; Center = (17, 13)
- D) Radius = 13; Center = (17,6)
- 8. Which of the following represents 9. A line is drawn between two a circle that has a radius of 11 and a center at (4,8)?

A)
$$(x-4)^2 + (y-8)^2 = 11$$

B)
$$(x-4)^2 + (y-8)^2 = 121$$

C)
$$(x-8)^2 + (y-4)^2 = 11$$

D)
$$(x-11)^2 + (y-4)^2 = 8$$

- points (-4, 2) and (4,2) to form the diameter of a circle. Find the center of this circle.
- A) (8,4)
- B) (2,4)
- C) (-4,4)
- D) (0,2)

Answer Key: Practice Problems

G.12 Geometry

1.	A
2.	В
3.	D
4.	С
5.	A
6.	С
7.	D
8.	В
9.	D