The group G is isomorphic to the alternating group A7. Ordinary character table of $G \cong A7$:

	1a	2a	3a	3b	4a	5a	6a	7a	7b			
χ_1	1	1	1	1	1	1	1	1	1			
χ_2	6	2	3	0	0	1	-1	-1	-1			
χ_3	10	-2	1	1	0	0	1	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$			
χ_4	10	-2	1	1	0	0	1	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$			
χ_5	14	2	2	-1	0	-1	2	0	0			
χ_6	14	2	-1	2	0	-1	-1	0	0			
χ_7	15	-1	3	0	-1	0	-1	1	1			
χ_8	21	1	-3	0	-1	1	1	0	0			
χ_9	35	-1	-1	-1	1	0	-1	0	0			

Trivial source character table of $G \cong A7$ at p = 5:

Normalisers N_i			N_1							N_2				
p-subgroups of G up to conjugacy in G			$\overline{P_1}$								P_2			
Representatives $n_j \in N_i$			3a	6a	3b	4a	7a	7b	1a	4a	2a	4b		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	35	-1	-1	-1	-1	1	0	0	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		3	0	0	3	1	1	1	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	10	-2	1	1	1	0	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		-2	1	1	1	0	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	0	0	0	0		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	20	4	5	1	-1	0	-1	-1	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	15	-1	3	-1	0	-1	1	1	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	35	3	-1	3	-1	-1	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	35	3	-4	0	2	-1	0	0	0	0	0	0		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	2	3	-1	0	0	-1	-1	1	-1	1	-1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	21	1	-3	1	0	-1	0	0	1	-E(4)	-1	E(4)		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$		1	-3	1	0	-1	0	0	1	E(4)	-1	-E(4)		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1		

$$P_1 = Group([()]) \cong 1$$

 $P_2 = Group([(2,7,3,4,6)]) \cong C5$

 $N_1 = AlternatingGroup([1..7]) \cong A7$ $N_2 = Group([(2,7,3,4,6),(3,4)(6,7),(1,5)(3,6,4,7)]) \cong C5: C4$