Designing an ID2-like inhibitor of DNA binding in silico

By Joshua Sodicoff

ID2 Protein

- Found on chromosome 2
- 134 residues long
- A helix-loop-helix protein
- One of 4 proteins in the Inhibitor of DNA Binding family
- All are involved in the regulation of
 - Growth
 - Differentiation
 - Apoptosis
 - Angiogenesis
 - Tumorigenesis
- ID2 also plays a role in the circadian rhythm

A Divalent Ion is Crucial in the Structure and Dominant-Negative Function of Id Proteins, a Class of Helix-Loop-Helix Transcription Regulators. (2012)

Interactions

- Interacts with basic-helix-loop-helix factors
 - Two types
 - Class I Ubiquitous
 - Class II Tissue specific
 - Class I can homodimerize or heterodimerize with Class II
 - Each contain a basic region of residues which interact with DNA
 - Unique E box sequences, the series of nucleotides onto which the factor binds
 - Different combinations of bHLH factors allow for binding to a variety of regions

Interactions cont.d

- Also able to dimerize with Class I factors and Class II myogenic regulatory factors
- However, because it lacks the basic region and thus does not allow the dimer to bind to DNA
- Thus, is an antagonist of transcription factor function
- The end result is a decrease in the expression of proteins involved in differentiation

bHLH-mediated DNA transcription

Id-inhibited DNA transcription

Why design?

Medical relevance

- Research being done into ID gene methylation as a possible cause of prostate cancer, breast cancer, leukemia among other cancers
- Therapeutics (either in the form of the protein or gene therapy) with the optimized structure could be critical in fighting these ailments

- Size

 At 134 residues, EvoDesign and other programs should be able to develop possible new designs for similar proteins

Known structural features

- The exact residues that engage in dimerization are known and thus can be held constant to ensure that a redesign binds in the same way
- The structure has also been experimentally solved, allowing for use of backbone

Function

 ID2 has the greatest binding affinity with transcription factors of ID proteins with solved structures

Design rationale

- In order to act in cases in which naturally produced ID proteins are either less expressed or lose function, an ID-like protein could be an effective therapeutic
- ID2 is already relatively simple and small
- Using ID2 as a backbone in EvoDesign while keeping the residues that are involved in dimerization constant seems to be a good first step
- Important to remember that goal is not complete competitive inhibition of transcription factors, but rather a similar level of activity to human ID2

EvoDesign results

Design Number	Sequence Identity (%)[?]	Normalized Relative Error [?] Secondary Structure Solvent Accessibility Torsion Angle φ Torsion Angle ψ			
		Secondary Structure	Solvent Accessibility	Torsion Angle φ	Torsion Angle ψ
Design 1	37.3	0.50	-0.25	-0.01	-0.09
Design 2	39.0	-0.50	-0.28	-0.00	0.10
Design 3	32.2	4.50	-0.08	0.05	0.47
Design 4	42.4	-0.25	-0.02	-0.01	-0.02
Design 5	35.6	-0.50	-0.10	0.01	-0.00
Design 6	33.9	3.50	-0.08	0.10	0.76
Design 7	39.0	-0.25	-0.19	0.04	-0.11
Design 8	25.4	3.75	0.17	0.09	0.68
Design 9	30.5	2.00	0.36	0.15	0.87
Design 10	30.5	4.50	0.16	0.26	1.22

EvoDesign results: design 1

Sequence

EAEKRLMNNMNICYQKLSKYLPMVNHKKKMSKMMILRMMIAYIHKLQHMLHHEMEEQYS

Values range from 0 (buried residue) to 9 (highly exposed residue)

Prediction 84644336424202430352142143454233110231113203413422445357638

EvoDesign results: design 2

EvoDesign results: design 3

Predicted Secondary Structure

Predicted Solvent Accessibility

20 40 | Sequence NSPRRKDNMNYCYNKLKKMIPMVMENEKMDKMMVLMLAIKHIMEIQDMLRRSASMMYM Prediction 86564466424302530341033025474143110011114313403411444243347 Values range from 0 (buried residue) to 9 (highly exposed residue)

Future plans

- Experimentally verify the efficacy of the generated sequences
- Develop alternative inhibition methods
 - Binding to only one site on the transcription factor instead of two
 - Inducing a conformational change in the transcription factor
 - Competitively bind to same region of DNA
 - Design of a peptide based off of a binding region using QUARK
 - Similar to work being done by Cabrele group