CONJUNTOS Y NÚMEROS

Conjuntos

Principio de inclusión-exclusión: Sean A,B dos conjuntos finitos tales que $A\cap B\neq\emptyset\Rightarrow |A\cup B|=|A|+|B|-|A\cap B|$.

Funciones

Definición: Sea f:X o Y una función, decimos que f es **inyectiva** $\Leftrightarrow orall x_1, x_2\in X: x_1
eq x_2 \Rightarrow f(x_1)
eq f(x_2)$ ($f(x_1)=f(x_2)\Rightarrow x_1=x_2$).

Definición: Sea f:X o Y una función, decimos que f es sobreyectiva $\Leftrightarrow \forall y\in Y, \exists x\in X: f(x)=y$.

Definición: Sea $f:X \to Y$ una función, decimos que f es **biyectiva** $\Leftrightarrow f$ es inyectiva y sobreyectiva.

Teorema: Sea f:X o Y un función, $\exists f^{-1}\Leftrightarrow f$ es biyectiva.

Definición: Sea $f:X\to Y$ una función y $V\subset Y$, decimos que $f^{-1}(V)=\{x\in X:f(x)\in V\}$ es la **preimagen** de V por f .

Principio del Palomar: Se kn+1 palomas comparten n nidos, hay al menos un nido con k+1 palomas.

Relación de orden

Definición: Sea R una relación en un conjunto X, decimos que R es una **relación de orden** si cumple las propiedades:

- Reflexiva: $\forall x \in X$ se tiene que xRx.
- Antisimétrica: $\forall x,y \in X$ si $xRy \wedge yRx \Rightarrow x=y$.
- Transitiva: $\forall x,y,z\in X$ si $xRy\wedge yRz\Rightarrow xRz$.

Definición: Sea R una relación de orden en un conjunto X y $M \in X$, decimos que M es un máximo (resp. mínimo) de $X \Leftrightarrow xRM, \forall x \in X$ (resp. mRx).

Definición: Sea R una relación de orden en un conjunto X y $M \in X$, decimos que M es un elemento maximal (resp. minimal) de $X \Leftrightarrow \forall x \in X: MRx \Rightarrow M = x$ (resp. $xRm \Rightarrow m = x$).

Relación de equivalencia

Definición: Sea \sim una relación en un conjunto X, decimos que \sim es una **relación de equivalencia** si cumple las propiedades:

- Reflexiva: $\forall x \in X$ se tiene que $x \sim x$.
- Simétrica: $\forall x,y \in X$ si $x \sim y \Rightarrow y \sim x$.
- ullet Transitiva: $orall x,y,z\in X$ si $x\sim y\wedge y\sim z\Rightarrow x\sim z.$

Definición: Sea \sim una relación de equivalencia en un conjunto X, decimos que $[x]=\{y\in X:x\sim y\}$ es la **clase de equivalencia** de $x\in X$.

Definición: Sea \sim una relación de equivalencia en un conjunto X, decimos que $X/\sim=\{[x]:x\in X\}$, el conjunto de todas las clases de equivalencia de la relación es el **conjunto** cociente.

Cardinalidad

Definición: Sea X un conjunto, decimos que $\left|X\right|$ es el cardinal de X.

Teorema: $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}| = \chi_0$.

Teorema de Cantor-Schroeder-Bernstein: Sean X,Y dos conjuntos infinitos tales que \exists un par de funciones $f:X \to Y$ y $g:Y \to X$ inyectivas $\Rightarrow \exists h:X \to Y$ biyectiva. Es decir, $|X| \leq |Y| \land |Y| \leq |X| \Rightarrow |X| = |Y|$.

Teorema: \mathbb{R} no es numerable $\Leftrightarrow |\mathbb{R}| = \chi_1 \geq \chi_0$.

Teorema de Cantor: Sea A un conjunto tal que $A\subset U$ (conjunto universal) $\Rightarrow |A|<|P(A)|.$

Teoría de números

Algoritmo de Euclides: Sean $a,b,c,r\in\mathbb{Z}ackslash\{0\}: a=cb+r\Rightarrow mcd(a,b)=mcd(b,r).$

Definición: Sean $a,b\in\mathbb{Z}\backslash\{0\}:mcd(a,b)=1$, definimos que a y b son **coprimos**.

Identidad de Bézout: Sean $a,b\in\mathbb{Z}ackslash\{0\}$ y $m=mcd(a,b)>0\Rightarrow\exists u,v\in\mathbb{Z}:m=ua+vb.$

Lema de Euclides: Sean $a,b,c\in\mathbb{Z}:a|bc\wedge mcd(a,b)=1\Rightarrow a|c.$

Definición: Sean $a,b,c\in\mathbb{Z}$ fijos, decimos que ax+by=c es una ecuación diofántica, de la que solo nos interesan sus soluciones $(x,y)\in\mathbb{Z}\times\mathbb{Z}$.

Proposición: Sean $a,b,c\in\mathbb{Z}$ con mcd(a,b)=d, la ecuación diofántica ax+by=c tiene soluciones enteras $mcd(x,y)\Leftrightarrow d|c$.

Teorema: Sean $a,b,c,n\in\mathbb{Z}$, d=mcd(a,b) y (x_0,y_0) una solución particular de la ecuación diofántica $ax+by=c\Rightarrow$ cualquier solución de la misma es de la forma:

•
$$x=x_0+\frac{b}{d}n$$
.

•
$$y=y_0-\frac{a}{d}n$$
.

Teorema Fundamental de la Aritmética: $\forall n\in\mathbb{N},\exists$ primos $p_1,p_2,...,p_s$ y $\alpha_1,\alpha_2,...,\alpha_s\in\mathbb{N}: n=p_1^{\alpha_1}\cdot n=p_2^{\alpha_2}\cdot...\cdot n=p_s^{\alpha_s}$.

Definición: Sean $a,b\in\mathbb{Z}$, $n\in\mathbb{N}$, n>1, decimos que $a\equiv b(n)\Leftrightarrow n|(b-a)$ es una congruencia módulo n.

Teorema pequeño de Fermat: Sea p un primo y $a\in\mathbb{N}:p
mid a\Rightarrow a^{p-1}\equiv 1(p).$

Corolario: $a^p \equiv a(p) \Leftrightarrow p | (a^p - a)$.

Teorema: Sean $a,b\in\mathbb{Z}$, $n\in\mathbb{N}ackslash\{1\}$ y mcd(a,-n)=mcd(a,n)=d. Entonces:

- Si d
 mid b, la ecuación $ax \equiv b(n)$ no tiene soluciones en \mathbb{Z}_n .
- Si d|b, la ecuación $ax\equiv b(n)$ tiene exactamente d soluciones en \mathbb{Z}_n .

Teorema Chino del Resto: Sean $a_1,a_2,...,a_k\in\mathbb{Z}$ y $m_1,m_2,...,m_k\in\mathbb{N}$, coprimos dos a dos. Entonces el sistema

de congruencias $x\equiv a_1(m_1), x\equiv a_2(m_2),...,x\equiv a_k(m_k)$ tiene solución única módulo $M=m_1\cdot m_2\cdot ...\cdot m_k$.

Lema: Sean $x,y\in\mathbb{Z}$, $n\in\mathbb{N}ackslash\{1\}$ y la congruencia $x\equiv y(n)\Rightarrow mcd(x,n)=mcd(y,n)$.

Definición: Sea $z=a+bi\in\mathbb{C}$, decimos que su parte real es a=Re(z) y su parte imaginaria es b=Im(z).

Definición: Sea $z=a+bi\in\mathbb{C}$, decimos que su módulo es $|z|=\sqrt{x^2+y^2}$.

Teorema: $e^{it} = \cos t + i \sin t$.

Polinomios

Lema de Bézout: Sea K un cuerpo, $a\in K$ y $p(x)\in K[x]$, $(x-a)|p(x)\Leftrightarrow p(a)=0.$

Teorema Fundamental del Álgebra: Sea $p(x)\in\mathbb{C}$ un polinomio no constante de grado $n\geq 1$, p(x) tiene exactamente n raíces en \mathbb{C} .

Definición: Sea $p(x)\in\mathbb{Z}[x]$, decimos que $C(p(x))=mcd(a_0,a_1,...,a_n)$ es el contenido de p(x). Si C(p(x))=1 , decimos que p(x) es primitivo.

Teorema de Gauss: Sea $p(x)\in \mathbb{Z}[x]$ un polinomio primitivo, p(x) es irreducible en $\mathbb{Q}\Leftrightarrow p(x)$ es irreducible en $\mathbb{Z}[x]$.