# GENERAL TOPOLOGY COLLECTION

Haoming Wang

11 July 2020

#### Abstract

This is the collection of lecture notes for the *General Topology* course in Spring 2020. (Containing some materials of *Introduction to Topology* course, This note is recommended, rather than the note of *Introduction to Topology*).

# **Contents**

| 1 | Axi  | Axiom of Choice 4                         |    |  |  |  |  |  |  |
|---|------|-------------------------------------------|----|--|--|--|--|--|--|
|   | 1.1  | Order and bound                           |    |  |  |  |  |  |  |
|   | 1.2  | Axiom of Choice                           |    |  |  |  |  |  |  |
|   | 1.3  | Applications of Zorn's Lemma              |    |  |  |  |  |  |  |
|   |      | 1.3.1 Cardinality                         | 10 |  |  |  |  |  |  |
|   |      | 1.3.2 Vector Space                        | 11 |  |  |  |  |  |  |
|   |      | 1.3.3 Hahn-Banach Theorem                 | 11 |  |  |  |  |  |  |
| 2 | Met  | letric Space 13                           |    |  |  |  |  |  |  |
|   | 2.1  | Metric space                              | 13 |  |  |  |  |  |  |
|   | 2.2  | Open and compact on metric space          | 15 |  |  |  |  |  |  |
|   | 2.3  | Functions on metric space                 | 21 |  |  |  |  |  |  |
|   | 2.4  | Uniformly continuous function             | 23 |  |  |  |  |  |  |
|   | 2.5  | Limit superior / inferior for function    | 24 |  |  |  |  |  |  |
| 3 | Тор  | Topology Space and Basis 26               |    |  |  |  |  |  |  |
|   | 3.1  | Topology Space                            | 26 |  |  |  |  |  |  |
|   | 3.2  | Interior & Closure                        |    |  |  |  |  |  |  |
|   | 3.3  | Locally Finite                            |    |  |  |  |  |  |  |
|   | 3.4  | Basis                                     | 34 |  |  |  |  |  |  |
|   | 3.5  | Countable, Separable and Lindelof Compact | 38 |  |  |  |  |  |  |
| 4 | Init | itial / Final Topology 41                 |    |  |  |  |  |  |  |
|   | 4.1  | Initial Topology                          | 41 |  |  |  |  |  |  |
|   |      | 4.1.1 Subspace Topology                   | 41 |  |  |  |  |  |  |
|   |      | 4.1.2 Product Space                       | 43 |  |  |  |  |  |  |
|   |      | 4.1.3 Cartesian Product                   | 43 |  |  |  |  |  |  |
|   |      | 4.1.4 Infinite Dimension Product Topology | 44 |  |  |  |  |  |  |
|   | 4.2  | Final Topology                            | 47 |  |  |  |  |  |  |
|   |      | 4.2.1 Equivalence Relation                | 17 |  |  |  |  |  |  |

|   |                             | 4.2.2 Quotient Space                  | 48 |  |  |  |  |
|---|-----------------------------|---------------------------------------|----|--|--|--|--|
| 5 | Compact Space and HLC Space |                                       |    |  |  |  |  |
|   | 5.1                         | Compactness                           | 51 |  |  |  |  |
|   | 5.2                         | HLC Space                             | 56 |  |  |  |  |
|   | 5.3                         | Continuous $\mathbb{R}$ - value maps  | 58 |  |  |  |  |
| 6 | Sequence & Net              |                                       |    |  |  |  |  |
|   | 6.1                         | Seq. description of metric space      | 62 |  |  |  |  |
|   | 6.2                         | Sequentially Compact, Totally Bounded | 63 |  |  |  |  |
|   | 6.3                         | Net                                   | 66 |  |  |  |  |
|   | 6.4                         | Subnet                                | 69 |  |  |  |  |
|   | 6.5                         | Net and Compactness                   | 72 |  |  |  |  |
| 7 | Revisit Compactness         |                                       |    |  |  |  |  |
|   | 7.1                         | Generalization of Ascoli's Theorem    | 74 |  |  |  |  |
|   | 7.2                         | Relatively Compact                    | 76 |  |  |  |  |

## Chapter 1

### **Axiom of Choice**

#### 1.1 Order and bound

**Definition 1** (Partial Order). Given a set X, a relation  $\leq$  on X is a partial order if

- 1.  $\forall x \in X \Rightarrow x \leq x$ ;
- 2.  $\forall x, x' \in X, x \leq x', x' \leq x \Rightarrow x = x'$ ;
- 3.  $\forall x, x', x'' \in X, x \leq x', x' \leq x'' \Rightarrow x \leq x''$ .

We say that  $(X, \leq)$  is a partially ordered set (poset).

*Remark* 1. A relation on X, is a subset of  $X \times X$ . If  $(X, \leq)$  is a poset and  $A \subseteq X$ , then A has a natural partial order induced by  $\leq$ .

**Example 1.** For example,  $\leq$  is a partial order on  $\mathbb{R}$ ; given a set X,  $\subseteq$  is a partial on  $\mathcal{P}(X)$ .

**Definition 2** (Total Order, Chain). A poset  $(X, \leq)$  is a chain (or totally order set) if  $\forall x, x' \in X$ , then  $x \leq x'$  or  $x' \leq x$ .

**Definition 3** (Bound). If  $(X, \leq)$  is a poset,  $A \subseteq X, b \in X$ , we say

- 1. b is an upper (lower) bound of A (in X w.r.t.  $\leq$ ) if  $\forall a \in A, a \leq b(b \leq a)$ , denoted the set of upper (lower) bound of A by  $U_A(L_A)$ .
- 2. b is a greatest (least) element of A (in X w.r.t.  $\leq$ ), if b is an upper (lower) bound of A and  $b \in A$ .
- 3. *b* is the least upper bound (greatest lower bound) of *A*, if *b* is the least (greatest) element of the set of upper bound (lower bound) of *A*, denoted by lub or sup *A* (glb or inf *A*).
- 4. b is a maximal (minimal) element in X if  $b \in X$ ,  $\forall x \in X$ ,  $b \le x \Rightarrow b = x(x \le b \Rightarrow x = b)$ .

*Remark* 2 (Maximal vs. Greatest). An element  $m \in X$  is **maximal** if there does not exist  $x \in X$  such that x > m. An element  $g \in X$  is **greatest** if for all  $x \in X$ ,  $g \ge x$ .

- 1. A set may have no greatest elements and no maximal elements: for example, any open interval of real numbers.
- 2. If a set has a greatest element, that element is also maximal.
- 3. A set with two maximal elements and no greatest element:  $X = \{a, b, c\}$ , where  $a \le b, a \le c$  and b and c are incomparable, then each of b and b are maximal, and none of the elements of this set are greatest.
- 4. A set can have exactly one maximal element but no greatest element:  $X = \{a + q | 0 \le q < 1\} \cup \{c\}$ , where  $a \le c$  and a + q and c are incomparable for any  $0 \le q < 1$ . Then only c is maximal, and the set overall has no greatest element.

**Example 2.** Let A = [0,1), the set of upper bound of A is  $[1,\infty)$ , the set of lower bound of A is  $(-\infty,0]$ . Thus sup A = 1, inf A = 0.

**Exercise 1.** Suppose  $S \subseteq_{close} \mathbb{R}$  and  $S \neq \emptyset$ , show that S has an upper bound  $\Rightarrow \sup S \in S$ .

*Proof.* Let  $s_0 := \sup S$ . If  $s_0 \notin S \Rightarrow s_0 \in \mathbb{R} \setminus S \subseteq_{open} \mathbb{R}$ . Thus  $\exists r > 0$ , s.t.  $B_r(s_0) \in \mathbb{R} \setminus S$ , that is  $s_0 - r \in \mathbb{R} \setminus S \Rightarrow s_0 - r \geq s(\forall s \in S)$ . But  $s_0$  is the smallest upper bound, then  $\forall s' < s_0, \exists s \in S$ , s.t. s > s', which leads to a contradiction.

**Definition 4** (Well Order). If  $(X, \leq)$  is a chain, we say that  $(X, \leq)$  is a well-ordered set if  $\forall A \subseteq X, A \neq \emptyset \Rightarrow A$  has a least element.

For example,  $\mathbb{Z}^+$  is a well-ordered set. If  $(X, \leq)$  is a well-ordered set, for any  $a \in X$ , the **successor** of a is  $succ_{(X,\leq)}(a) :=$  the least element of  $\{x \in X | a < x\}$ . So if  $\{x \in X | a < x\} \neq \emptyset$ , then  $succ_{(X,<)}(a)$  exists.

*Remark* 3. Given a poset X, a,  $b \in X$ , we say a < b if  $a \le b$  and  $a \ne b$ .

**Definition 5.** Given a poset X,  $a \in X$ , define initial segment as

$$IS_{(X,<)}(a) := \{x \in X | x < a\}$$

and weak initial segment as

$$WIS_{(X,<)}(a) := \{x \in X | x \le a\}.$$

#### 1.2 Axiom of Choice

**Theorem 1** (Bourbaki's fixed point theorem). Suppose  $(X, \leq)$  is a poset, in which every well-ordered subset has lub. Given a map  $X \xrightarrow{f} X$ , s.t.  $x \leq f(x)$  for  $\forall x \in X$ , then  $\exists a \in X$ , s.t. f(a) = a.

*Proof.* Pick an element  $x_0 \in X$ . Let S be the collection of subsets  $Y \subseteq X$  such that:

• *Y* is well ordered with the least element  $x_0$  and successor function  $f|_{Y \setminus lubY}$ ,

•  $x_0 \neq y \in Y \Rightarrow lub_X(IS_Y(y)) \in Y$ .

Then we claim:

- 1. If  $Y \in S$  and  $Y' \in S$ , then Y is an initial segment of Y' or vice versa.
  - Let  $V = \{x \in Y \cap Y' | WIS_Y(x) = WIS_{Y'}(x)\}$ . Suppose first that V has a last element v. If v is not the last element of Y, then  $succ_Y(v) = f(v)$ ; if v is not the last element of Y' then  $succ_{Y'}(v) = f(v)$ . Hence if neither of Y, Y' is an initial segment of the other, then  $succ_Y(v) = succ_{Y'}(v) = f(v) \in V$ , thus f(v) = v, and v is the fixed point.

If V has no last element, let  $z = lub_X(V)$ . If  $Y \neq V \neq Y'$ , then it follows that  $z \in Y \cap Y'$  (because if  $y = \inf(Y - V)$  then  $V = IS_Y(y)$  and therefore  $z = lub_X(IS_Y(y)) \in Y$ ). Therefore  $z \in V$ , which is a contradiction.

- 2. The set  $Y_0 = \bigcup \{Y | Y \in S\} \in S$ .
  - If  $y_0 \in Y \in S$ , then it follows from 1. that  $\{y \in Y_0 | y < y_0\} = IS_Y(y_0)$  and so this subset is well ordered with successor function f. This implies that  $Y_0$  is well ordered and satisfies first conditions of element in S. Also  $lub_X(IS(y_0)) \in Y \subseteq Y_0$  which gives the second condition for  $Y_0$ . Thus 2. is proved.

Let  $y_0 = lub_X(Y_0)$ , if  $y_0 \notin Y_0$  then  $Y_0 \cup \{y_0\} \in S$  and so  $y_0 \in Y_0$  after all. If  $f(y_0) > y_0$  then  $Y_0 \cup \{f(y_0)\} \in S$  contrary to the definition of  $Y_0$ , thus  $f(y_0) = y_0$  as desired.  $\square$ 

*Remark* 4. A map  $X \xrightarrow{f} Y$  is a subset  $\Gamma \subseteq X \times Y$ , s.t.  $\forall x \in X, \exists ! y \in Y, (x, y) \in \Gamma$ .

**Theorem 2.** The following statement are equivalent:

- 1. For  $\forall$  set X,  $\exists$  map  $\mathcal{P}_o(X) \xrightarrow{f} X$ , s.t.  $\forall S \in \mathcal{P}_o(X), f(S) \in S$ .  $(\mathcal{P}_o(X) := \{A|A| \subseteq X, A \neq \emptyset\})$
- 2. If  $(X, \leq)$  is a poset, in which every well-ordered subset has a lub in X, then X has a maximal element.
- 3. (Maximal Chain Theorem)  $\forall$  poset  $(X, \leq)$  has a maximal chain w.r.t  $\subseteq$ . i.e. a chain such that there is no other chain in  $(X, \leq)$  which has it as a proper subset.
- 4. (Zorn's Lemma) If  $(X, \leq)$  is a poset in which every chain has an upper bound in X then X has a maximal element.
- 5. (Zermelo's Well-Ordering Theorem) Every set has a well-order.
- 6.  $\forall$  surj.  $X \xrightarrow{f} Y$ ,  $\exists$  an injection  $Y \xrightarrow{g} X$ , s.t.  $f \circ g = id_Y$ .
- 7. (Axiom of Choice) Given non-empty sets  $S_{\alpha}(\alpha \in A)$ , there exists a map  $A \xrightarrow{f} \bigcup_{\alpha \in A} S_{\alpha}$ , s.t.  $f(\alpha) \in S_{\alpha}$ .

*Proof.*  $7 \Rightarrow 1$ : We can number each non-empty subset of X by itself, since any element in a set is unique. That is  $\mathcal{P}_o(X) = \{S_\alpha := \alpha | \alpha \in \mathcal{P}_o(X)\}$ , here  $\mathcal{P}_o(X)$  serves as A. Thus Axiom of Choice means  $\exists$  a map  $\mathcal{P}_o(X) \xrightarrow{f} X$ , s.t.  $f(\alpha) \in S_\alpha = \alpha(\alpha \in \mathcal{P}_o(X))$ . (we emphasize  $\mathcal{P}_o(X)$ , rather than  $\mathcal{P}(X)$ , because there is nothing in  $\emptyset$ )

Remark 5. Statement 1 claims that given a set X, any non-empty subset of X can be maps to a point inside this subset.

 $1 \Rightarrow 2$ : Assume that X has no maximal element, i.e.  $\forall a \in X, X_a := \{x \in X | a < x\} \neq \emptyset$ .  $\exists \text{ map } \mathcal{P}_o(X) \xrightarrow{f} X$ , s.t.  $f(S) \in S$  for all  $S \in \mathcal{P}_o(X)$ . Define a map  $X \xrightarrow{\pi} \mathcal{P}_o(X)(a \mapsto X_a)$  and  $X \xrightarrow{g=f \circ \pi} X$ . Thus for any  $a \in X$ ,  $g(a) = f(X_a) \in X_a$ , thus a < g(a), which leads to a contradiction with Bourbaki's fixed point theorem.



 $2 \Rightarrow 3$ : Given a poset  $(X, \leq)$  consider  $S = \{C | C \text{ is a chain in } P \text{ w.r.t. } \leq \}$ . Thus  $(S, \subseteq)$  is a poset. We claim that any totally ordered set in S has a lub in S. If  $T \subseteq S$  is a totally ordered set, (that is T is a chain w.r.t  $\subseteq$  of the chains w.r.t.  $\leq$ ), then  $\cup_{C \in T} C = lub_S T$ . To show this, we need prove 2 things:

- 1.  $\bigcup_{C \in T} C \in U_T$ ; For any  $C \in T$ ,  $C \subseteq \bigcup_{C \in T} C$ , thus  $\bigcup_{C \in T} C \in U_T$ .
- 2.  $\bigcup_{C \in T} C \in L_{U_T}$ . For any  $v \in \bigcup_{C \in T} C, O \in U_T$ ,  $\exists C \in T$ , s.t.  $v \in C \subseteq O$ . Thus  $\bigcup_{C \in T} C \subseteq O$ , thus  $\bigcup_{C \in T} C \in L_{U_T}$ .

Thus every totally ordered subset (including well order subset) of  $(S, \subseteq)$  has a lub, and  $(S, \subseteq)$  has a maximal element, which implies  $(X, \le)$  has a maximal chain.

*Remark* 6.  $(T, \subseteq)$  is a chain, thus any comparison with the element in T need to use relation  $\subseteq$ .

 $3 \Rightarrow 4$ : Given a poset  $(X, \leq)$ , it has a max. chain C, by assumption, C has an upper bound, say a, in X. Then a is a max. element in X, otherwise  $\exists x \in X, a < x$ , and hence  $C \subsetneq C \cup \{x\}$  and  $C \cup \{x\}$  is a chain, which leads to a contradiction to the maximality of C.

 $4 \Rightarrow 5$ : Let Y be a set, consider  $X := \{A | A = (S_A, \leq_A) \text{ where } S_A \subseteq Y \text{ and } \leq_A \text{ is a well-ordering on } S_A \}$ . We define a relation  $\leq$  on X:  $A \leq A' \Leftrightarrow A = A' \text{ or } A \text{ is an initial segment of } A' \text{ (i.e. } \exists a' \in S_{A'}, S_A = \{x \in S_{A'} | x <_{A'} a' \}) \text{ and } \forall x_1, x_2 \in S_A, x_1 \leq_A x_2 \Leftrightarrow x_1 \leq_{A'} x_2.$ 

It is direct to see that  $(X, \preceq)$  is a poset:

- 1. For any  $A \in X$ ,  $A \leq A$ ;
- 2. If A is initial segment of A' then  $A \neq A'$ , since if  $\exists a' \in S_{A'}, S_A = \{x \in S_{A'} | x <_{A'} a'\}$  then  $a' \in A'$  but  $a' \notin A$ . Thus  $A \preceq A', A' \preceq A \Rightarrow A = A'$
- 3. Suppose that  $A \leq A' \leq A''$ , and A, A' and A'' are not equal. Thus  $\exists a'' \in S_{A''}$ , s.t.  $S_{A'} = IS_{A''}(a'')$ , and  $\exists a' \in S_{A'}$ , s.t.  $S_A = IS_{A'}(a')$ . Since  $a' <_{A''} a''$ , any  $a \in S_{A''}$ ,  $a <_{A''}$

 $a' \Rightarrow a \in S_{A'}$ . Thus  $IS_{A''}(a) = \{x \in S_{A''} | x <_{A''} a'\} = \{x \in S_{A'} | x <_{A''} a'\} = \{x \in S_{A'} | x <_{A''} a'\} = IS_{A'}(a') = A$ , thus  $A \leq A''$ .

Then, we claim:

1.  $(X, \preceq)$  has a maximal element:

Apply Zorn's lemma, let  $(C, \preceq)$  be a chain on  $(X, \preceq)$ . Let  $A_0 = (S_{A_0}, \leq_{A_0})$  where  $S_{A_0} = \bigcup_{A \in C} S_A$ , and  $\leq_{A_0}$ : for any  $x_1, x_2 \in S_{A_0}$ , find  $A \in C$ , s.t.  $x_1, x_2 \in S_A$ , we say that  $x_1 \leq_{A_0} x_2$  if  $x_1 \leq_A x_2$ . Then we claim:

• Such *A* exists:

For any  $x_1, x_2 \in S_{A_0}$ ,  $\exists A_1, A_2 \in C$ , s.t.  $x_1 \in S_{A_1}$ ,  $x_2 \in S_{A_2}$  and  $S_{A_1}$  and  $S_{A_2}$  are comparable on X w.r.t.  $\preceq$ , since C is a chain. Assume that  $S_{A_1}$  is an initial segment of  $S_{A_2}$ , then  $x_1, x_2 \in S_{A_2}$ .

- $x_1 \leq_{A_0} x_2$  is independent of the choice of A, s.t.  $x_1, x_2 \in S_A$ : If  $\exists A, A' \in C$ , s.t.  $x_1, x_2 \in S_A, S_{A'}$ , then A, A' are comparable. Assume that  $A \preceq A'$ , that is A is an initial segment of A', then in  $S_A$ , we have  $x_1 \leq_A x_2 \Leftrightarrow x_1 \leq_{A'} x_2$ .
- $(S_{A_0}, \leq_{A_0})$  is a total order set : Any  $x_1, x_2 \in S_{A_0}$  will be covered by a  $S_A$  where A is an element of a chain C on X. Thus  $x_1$  and  $x_2$  are comparable by  $x_1 \leq_{A_0} x_2 \Leftrightarrow x_1 \leq_A x_2$ .
- $(S_{A_0}, \leq_{A_0})$  is a well order set :

Let  $T \subseteq S_{A_0}$  and  $T \neq \emptyset$ . Then  $T = T \cap S_{A_0} = T \cap \bigcup_{A \in C} S_A = \bigcup_{A \in C} (T \cap S_A) \neq \emptyset$ . Thus  $\exists A \in C$ , s.t.  $T \cap S_A \neq \emptyset$ . Since A is well ordering,  $T \cap S_A$  has least element, denoted by t.

Any  $A' \in C$ , it is either A' = A or  $A' \leq A$  or  $A \leq A'$ . If  $A' \leq A$ , then  $S_{A'}$  is an initial segment of  $S_A$ , that is  $\exists a \in S_A$ , s.t.  $S_{A'} = \{x \in S_A | x <_A a\}$ . Thus  $S'_A \subseteq S_A$ , and  $T \cap S_{A'} \subseteq T \cap S_A$ , thus t is the least element of  $T \cap S_A \Rightarrow t$  is the least element of  $T \cap S_{A'}$ ;

If  $A \leq A'$ , then  $S_A$  is an initial segment of  $S_{A'}$ , thus  $\exists a' \in S_{A'}$ , s.t.  $S_A = \{x \in S_{A'} | x <_{A'} a'\}$  and  $T \cap S_A = T \cap \{x \in S_{A'} | x <_{A'} a'\} = \{x \in T \cap S_{A'} | x <_{A'} a'\}$ . For any  $s \in T \cap S_{A'}$ , if  $a' \leq_{A'} s$ , then  $t <_{A'} a' \leq_{A'} s$ ; if  $s <_{A'} a'$ , then  $s \in T \cap S_A$ , and  $t \leq_A s \Rightarrow t \leq_{A'} s$ . Thus t is the least element of  $T \cap S_{A'}$ .

Thus t is the least element of  $T \cap S_{A_0} = T$ , thus  $\leq_{A_0}$  is a well order on  $S_{A_0}$ . Furthermore,  $(S_{A_0}, \leq_{A_0}) \in X$ .

•  $S_{A_0}$  is an upper bound of C on X, w.r.t.  $\leq$ :

Given  $A \in C$ , since C is a chain, any  $A' \in C$  admits 3 cases:  $A' = A, A' \leq A, A \leq A'$ . Define  $\Pi := \{A' \in C | A \leq A'\} \setminus \{A\}$  and  $\Gamma := \{A' \in C | A' \leq A\} \setminus \{A\}$ .

*Remark* 7. Recall the proof of  $2 \Rightarrow 3$ .

For any  $B \in \Pi$ ,  $\exists b \in S_B$ , s.t.  $S_A = IS_B(b)$ . Define  $\Phi := \{A' \in \Pi | A' \leq B\} \setminus \{B\}$ . If  $\Phi \neq \emptyset$ , then  $\exists C \in \Phi, \exists c \in S_C$ , s.t.  $S_A = IS_C(c)$ . Collect all these kind

of c and form a set  $\Delta$ , then  $\Delta$  is a non-empty subset of  $S_B$ . Since  $S_B$  is a well ordering set,  $\Delta$  has a least element  $\mu$ , and exists the corresponding  $D \in \Phi$ , s.t.  $S_A = IS_D(\mu)$ . Thus

$$S_A = IS_D(\mu) = \{x \in S_D | x <_D \mu\}$$
  
 $\xrightarrow{x,\mu \in S_{A_0}} \{x \in S_D | x <_{A_0} \mu\}$ 

Since any  $A' \in \Pi$ , the corresponding  $\mu \leq_{A'} a'$ , thus

$$\{x \in S_{A'} | x <_{A_0} \mu\} = \{x \in S_{A'} | x <_{A'} \mu\}$$

$$\subseteq \{x \in S_{A'} | x <_{A'} a'\}$$

$$= IS_{A'}(a')$$

$$= S_A = IS_D(\mu)$$

On the other hand, For any  $A'' \in \Gamma$ ,  $A'' \preceq A \Rightarrow S_{A''} \subseteq S_A$ , thus  $\{x \in S_{A''} | x <_{A_0} \mu\} \subseteq S_A$ . Thus

$$\begin{split} S_A &= IS_D(\mu) \\ &= \cup_{A' \in \Pi} \{ x \in S_{A'} | x <_{A_0} \mu \} \cup (\cup_{A'' \in \Gamma} \{ x \in S_{A''} | x <_{A_0} \mu \}) \\ &= \{ x \in \cup_{A' \in \Pi \cup \Gamma} S_{A'} | x <_{A_0} \mu \} \\ &= \{ x \in \cup_{A' \in C} S_{A'} | x <_{A_0} \mu \} \\ &= IS_{A_0}(\mu) \end{split}$$

Thus  $A \leq A_0$  for any  $A \in C$ , and  $A_0$  is an upper bound of C.  $(X, \leq)$ , as a poset, whose any chain C has an upper bound  $A_0$ , thus X has a maximal element by Zorn's lemma.

2. A maximal element in  $(X, \preceq)$  is  $(Y, \leq_Y)$ .

If  $(Y_0, \leq_{Y_0})$  is a max. element in X w.r.t.  $\leq$  and  $Y_0 \neq Y$ , then  $\exists y \in Y \setminus Y_0$ . Define  $Y_1 := Y_0 \cup \{y\}$  and a partial order:  $v \leq_{Y_1} y, v_1 \leq_{Y_1} v_2 \Leftrightarrow v_1 \leq_{Y_0} v_2$  for  $\forall v, v_1, v_2 \in Y_0$ . Then  $(Y_1, \leq_{Y_1})$  admits a well-ordering which makes  $(Y_0, \leq_{Y_0})$  an initial segment, because any non-empty subset  $\phi$  of  $Y_1$  is either  $\{y\}$  or  $(\phi \cap Y_0) \cup (\phi \cap \{y\})$ , clearly  $\phi$  has least element.

Thus  $(Y_1, \leq_{Y_1}) \in X$  and  $(Y_0, \leq_{Y_0}) \preceq (Y_1, \leq_{Y_1})$ , which leads to a contradiction to the maximality of  $(Y_0, \leq_{Y_0})$ .

Since *X* is the set of well ordering subset on *Y*,  $(Y, \leq_Y) \in X$ , thus  $(Y, \leq_Y)$  is well ordering.

 $5 \Rightarrow 6$ : Choose a well ordering  $\leq$  on X, For any  $y \in Y$ , define g(y) := the least element of  $f^{-1}(y)$ , then  $f \circ g(y) = y$ . For any  $y_1, y_2 \in Y, y_1 \neq y_2 \Rightarrow f(g(y_1)) \neq f(g(y_2)) \Rightarrow g(y_1) \neq g(y_2) \Rightarrow g$  is injective.

 $6 \Rightarrow 7$ : Let  $S := \bigcup_{\alpha \in A} S_{\alpha}$ , define  $X := \{(s, \alpha) \in S \times A | s \in S_{\alpha}\}$ . Consider two projection

 $X \xrightarrow{f} A((s,\alpha) \mapsto \alpha)$  and  $X \xrightarrow{p} S((s,\alpha) \mapsto s)$ , thus f is a surjection, then  $\exists A \xrightarrow{g} X$  such that  $f \circ g(\alpha) = \alpha$  for any  $\alpha \in A$ .

Define  $s_{\alpha}$  is the least element of  $S_{\alpha}$ , then  $g(\alpha) = (s_{\alpha}, \alpha)$  and  $p \circ g(\alpha) = p(s_{\alpha}, \alpha) = s_{\alpha} \in S_{\alpha}$ . Thus  $A \xrightarrow{p \circ g} S = \bigcup_{\alpha \in A} S_{\alpha}$  is desired.



1.3 Applications of Zorn's Lemma

#### 1.3.1 Cardinality

**Definition 6** (Cardinality). Let X and Y be two sets, we say |X| = |Y| if there exists a bijection  $X \to Y$ ;  $|X| \le |Y|$  if exist an injection  $X \to Y$ .

**Exercise 2.** Let X and Y be two sets, show that  $\exists$  an injection  $X \to Y \Leftrightarrow \exists$  a surjection  $Y \to X$ .

*Proof.*  $\Leftarrow$ : If  $Y \xrightarrow{f} X$  is a surjection, then  $\exists$  an injection  $X \xrightarrow{g} Y$  by equivalent statements 6 of AC.  $\Rightarrow$ : If  $X \xrightarrow{f} Y$  is an injection, then  $X \xrightarrow{f} f(X)$  is a bijection, and there exists an inverse  $f(X) \xrightarrow{f^{-1}} X$ . Select  $x \in X$ , define  $g(y) \equiv x, y \in Y \setminus f(X)$ , Then  $Y \xrightarrow{g} X$  where  $y \mapsto f^{-1}(y)$  if  $y \in f(X)$  and  $y \mapsto x$  if  $y \in Y \setminus f(X)$  is as desired.

**Exercise 3.** Let X and Y be two sets, show that there exist an injection from X to Y or from Y to X.

*Proof.* Consider  $\Pi := \{S_f \xrightarrow{f} Y | f \text{ is an injection on a subset } S_f \text{ of } X\}$  and  $f \leq f' \Leftrightarrow S_f \subseteq S_{f'}$  and  $f'|_{S_f} = f$ . Thus  $(\Pi, \preceq)$  is a poset.

If  $\Pi = \emptyset$ , which implies there is only one element in Y, thus there exists a surjection from X to  $Y \Rightarrow$  there exists an injection from Y to X. If  $\Pi \neq \emptyset$ :

suppose  $(C, \preceq)$  is a chain on  $(\Pi, \preceq)$ , define  $Z = \bigcup_{S \in C} S$ , and for any  $z \in Z$ ,  $f_o(z) = f(z)$  if  $z \in S_f$ . As always: (1)  $S_f$  exists by the def. of Z; (2) the def. of  $f_o$  is well-defined, that is the value of  $f_o(z)$  is independent with the choice of  $S_f$ , because any  $S_f$ ,  $S_f'$  that

cover z are in the chain C, thus they are comparable, and one is the extension of the other.

Thus  $Z \xrightarrow{f_o} Y$  is an upper bound of  $(C, \preceq)$ , because for any  $S_f \xrightarrow{f} Y \in C$ ,  $S_f \subseteq Z$  by def. and  $f_o|_{S_f} = f$  by the independence. Thus any chain on  $(\Pi, \preceq)$  has an upper bound, and  $(\Pi, \preceq)$  has a maximal element  $X_0 \xrightarrow{f_0} Y$ . Suppose  $X_0 \neq X$ :

If  $f_0$  is not surj: Then select  $y_0 \in Y \setminus f(X_0)$  and  $x \in X \setminus X_0$ . Define  $X_1 = X_0 \cup \{x\}$ , and define  $f_1|_{X_0} = f_0$ ,  $f_1(x_0) = y_0$ . Then  $f_0 \leq f_0$ , which against the maximality of  $X_0 \xrightarrow{f_0} Y$ . If  $f_0$  is surj: Then select any  $y_0 \in Y$  and define  $f_1(x) \equiv y_0$  for any  $x \in X \setminus X_0$ , thus  $X \xrightarrow{f_1} Y$  is a surj. Then there exists an injection  $Y \xrightarrow{g} X$ , and we are done.

Remark 8. A very useful routine:

- 1. transform the existence of the target to the existence of the maximal element on some poset
- 2. use Zorn's Lemma (show any chain on the poset has an upper bound, which is usually the union on all elements in the chain)
- 3. check that the maximal element = target (use contradiction).

**Proposition 1** (Bernstein-Schroeder).  $|X| \le |Y|$  and  $|Y| \le |X| \Rightarrow |X| = |Y|$ .

*Proof.* The proof of the proposition has been given in *Introduction to Topology, Lecture 2, Proposition 4.*  $\Box$ 

#### 1.3.2 **Vector Space**

#### 1.3.3 Hahn-Banach Theorem

**Lemma 1.** Let X be a vector space over  $K(=\mathbb{R})$ , and  $X \xrightarrow{p} \mathbb{R}$  is a func. s.t.  $\forall x, x' \in X, t > 0$ ,  $p(x+x') \leq p(x) + p(x')$  and p(tx) = tp(x).

For any linear func.  $Z \xrightarrow{\Xi_o} \mathbb{R}$  on a vector subspace Z of X s.t.  $\Xi_o(z) \leq p(z)$  for any  $z \in Z$ . If  $x_0 \in X \setminus Z$ , then there exists a linear func.  $Z + \mathbb{R} x_0 \xrightarrow{\Xi} \mathbb{R}$  s.t.  $\Xi|_Z = \Xi_o$  and  $\Xi(u) \leq p(u)$  for any  $u \in Z + \mathbb{R} x_0$ .

*Proof.* All linear func.s  $Z + \mathbb{R}x_0 \xrightarrow{\Xi} \mathbb{R}$  such that  $\Xi|_Z = \Xi_o$  is of the form  $\Xi(z + tx_0) = \Xi_o(z) + t\Xi(x_0)$ . It suffices to determine the value of  $\Xi(x_0)$  (denoted as a) s.t.  $\Xi(u) \le p(u)$  for any  $u \in Z + \mathbb{R}x_0$  holds.

Any  $u \in Z + \mathbb{R}x_0$  can be uniquely written as  $z + tx_0, z \in Z, t \in \mathbb{R}$ . We hope to find  $a \in \mathbb{R}$  such that

$$\Xi(u) = \Xi_o(z) + ta \le p(u) = p(z + tx_0)$$

for all  $z \in Z$ ,  $t \in \mathbb{R}$ , or equivalently (if t < 0, denote t = -t', t' > 0)

$$a \le rac{p(z+tx_0) - \Xi_o(z)}{t}, \quad z \in Z, t > 0$$
 $a \ge rac{p(z'-t'x_0) - \Xi_o(z')}{-t'}, \quad z' \in Z, t' > 0$ 

Since

$$\frac{p(z+tx_0) - \Xi_o(z)}{t} - \frac{p(z'-t'x_0) - \Xi_o(z')}{-t'} \\
= \frac{p(z+tx_0) - \Xi_o(z)}{t} + \frac{p(z'-t'x_0) - \Xi_o(z')}{t'} \\
= \frac{t'p(z+tx_0) - t'\Xi_o(z) + tp(z'-t'x_0) - t\Xi_o(z')}{tt'} \\
= \frac{p(t'z+tt'x_0) - \Xi_o(t'x) + p(tz'-tt'x_0) - \Xi_o(tz')}{tt'} \\
\ge \frac{p(t'z+tt'x_0 + tz' - tt'x_0) - \Xi_o(t'z+tz')}{tt'} \\
= \frac{p(t'z+tz') - \Xi_o(t'z+tz')}{tt'} \ge 0.$$

 $\Rightarrow$  such  $a\exists$ .

**Theorem 3** (Hahn-Banach Theorem). Let X be a vector space over  $K(=\mathbb{R})$ , and  $X \xrightarrow{p} \mathbb{R}$  is a func. s.t.  $\forall x, x' \in X$ , t > 0,  $p(x + x') \leq p(x) + p(x')$  and p(tx) = tp(x). For any linear func.  $Y \xrightarrow{\Lambda_o} \mathbb{R}$  on a vector subspace Y of X s.t.  $\Lambda_o(y) \leq p(y)$  for any  $y \in Y$ . Then there exists a linear func.  $X \xrightarrow{\Lambda} \mathbb{R}$  s.t.  $\Lambda|_Y = \Lambda_o$  and  $\Lambda(x) \leq p(x)$  for any  $x \in X$ .

*Proof.* Consider P is the collection of  $W_{\Theta} \xrightarrow{\Theta} \mathbb{R}$  such that  $\Theta$  is a linear func. on a vec. subspace  $W_{\Theta}$  of X containing Y s.t.  $\Theta|_{Y} = \Lambda_{o}$  and  $\Theta(w) \leq p(w)$  for all  $w \in W_{\Theta}$ . And define  $\preceq : \Theta \preceq \Theta' \Leftrightarrow W_{\Theta} \subseteq W_{\Theta'}$  and  $\Theta'|_{W_{\Theta}} = \Theta$ . It is direct to see  $(P, \preceq)$  is a poset. If  $(P, \preceq)$  has a maximal element  $Z \xrightarrow{\Theta} \mathbb{R}$ , then Z = X by Lemma 1. otherwise we can extent Z to  $Z + \mathbb{R}x_{0}$  where  $x_{0} \in X \setminus Z$  which against the maximality of  $Z \xrightarrow{\Theta} \mathbb{R}$ . *Remark* 9. Recall the proof of Well-Ordering Theorem by Zorn's Lemma.

Thus it suffices to show  $(P, \preceq)$  has a max. element. Let  $(C, \preceq)$  is a chain in  $(P, \preceq)$ . We take  $W = \bigcup_{\Theta \in C} W_{\Theta}$  which is a vector subspace of X containing Y. And define  $W \stackrel{\Pi}{\to} \mathbb{R}$  where then  $w \mapsto \Theta(w)$  if  $w \in W_{\theta}$ . This is well-defined,  $\Pi(w)$  is independence of the choice of  $\Theta$  s.t.  $w \in W_{\Theta}$ , since C is a chain, and one of any  $W_{\Theta}$ ,  $W_{\Theta'}$  that covers w is the extension of the other. Thus for any  $\Theta \in C$ ,  $W_{\Theta} \subseteq W$  and  $\Pi|_{W_{\Theta}} = \Theta$ , thus  $\Theta \preceq \Pi$ . Thus  $\Pi$  is the upper bound of C, and W = X and  $X \stackrel{\Pi}{\to} \mathbb{R}$  is as desired.

## Chapter 2

# **Metric Space**

#### 2.1 Metric space

**Definition 7** (Metric Space). Let  $X \times X \xrightarrow{d} \mathbb{R}$  be a function, we cay that d is a metric on X or (X, d) is a metric space if for  $\forall x, x', x'' \in X$  have

- 1. Positivity:  $d(x, x') \ge 0$  and d(x, x'') = 0 iff x = x';
- 2. Symmetry: d(x, x') = d(x', x);
- 3. Triangle inequality:  $d(x, x') \le d(x, x'') + d(x'', x')$ .

**Exercise 4.** Show that the triangle inequality is equivalent with for  $\forall x, x', x'' \in X$ 

$$d(x, x') \ge |d(x, x'') - d(x', x'')|.$$

*Proof.* ≥⇒≤: since  $d(x, x') \ge |d(x, x'') - d(x', x'')| \ge d(x, x'') - d(x', x'')$ , we have that  $d(x, x'') \le d(x, x') + d(x', x'')$ .

 $\leq \Rightarrow \geq$ : if  $\exists x, x', x''$  such that d(x, x') < |d(x, x'') - d(x', x'')|, then

$$d(x,x') < |d(x,x'') - d(x',x'')|$$

$$\leq |d(x,x') + d(x',x'') - d(x',x'')|$$

$$\leq d(x,x')$$

thus d(x, x') < d(x, x'), which leads to a contradiction.

**Example 3.** Here are some metric examples:

- 1. define  $d_2(x,y) := \left(\sum_i^m |x_i y_m|^2\right)^{1/2}$ ,  $x,y \in \mathbb{R}^m$ . Then  $d_2$  is a metric on  $\mathbb{R}^m$  by cauchy inequality.
- 2. define  $d_1(x,y) := \sum_{i=1}^m |x_i y_i|$ ,  $x,y \in \mathbb{R}^m$ . Then  $d_1$  is a metric on  $\mathbb{R}^m$ .
- 3. define  $d_{\infty}(x,y) := \max\{|x_i y_i|\}, i \in \{1,2,\cdots,m\}, x,y \in \mathbb{R}^m$ . Then  $d_{\infty}$  is a metric on  $\mathbb{R}^m$ .



 $d_2$  can be proved to be a metric by Cauchy inequality:

**Exercise 5** (Cauchy inequality). *For any*  $(x_1, \dots, x_n), (y_1, \dots, y_n) \in \mathbb{R}^n$ , *show that* 

$$(x_1y_1 + \cdots, x_ny_n)^2 \le (x_1^2 + \cdots + x_n^2)(y_1^2 + \cdots + y_n^2)$$

and =\$ holds iff  $\exists a, b \in \mathbb{R}$  which are not all 0.

*Proof.* Consider the polynomial 
$$p(t) = \sum_{i=1}^{n} (x_i t + y)^2 = t^2 \sum_{i=1}^{n} x_i^2 + 2 \sum_{i=1}^{n} x_i y_i + \sum_{i=1}^{n} y_i^2 \ge 0$$
, thus  $\Delta = 4 \left( \sum_{i=1}^{n} x_i y_i \right)^2 - 4 \sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2 \le 0 \Rightarrow \left( \sum_{i=1}^{n} x_i y_i \right)^2 \le \sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2$ .

**Example 4** (p-adic). If p is a prime number,  $x \in \mathbb{Q}$ , define

$$|x|_{p-adic} := \begin{cases} p^{-m}, & x = \frac{a}{b} \cdot p^m, x \neq 0, \\ 0, & x = 0, \end{cases}$$

where  $a, b, m \in \mathbb{Z}$ , (a, p) = (b, p) = 1. For  $\forall x, y \in \mathbb{Q}$ , define  $d_{p-adic}(x, y) = |x - y|_{p-adic}$ , then  $d_{p-adic}$  is a metric on  $\mathbb{Q}$ .

Assume  $x = (a/b)p^m$ ,  $y = (s/t)p^n \in \mathbb{Q}$  where  $a, b, s, t, m, n \in \mathbb{Z}$ , (a, p) = (b, p) = (s, p) = (t, p) = 1, m > n, then  $|x|_{p-adic} = p^{-m} < |y|_{p-adic} = p^{-n}$ , and

$$|x - y|_{p-adic} = |(a/b)p^m - (s/t)p^n|_{p-adic}$$
$$= \left| \frac{adp^{m-n} - bc}{bd} p^n \right|_{p-adic}.$$

it is easy to check  $adp^{m-n} - bc$ ,  $bd \in \mathbb{Z}$  and  $(adp^{m-n} - bc$ , p) = (bd, p) = 1, thus

$$|x - y|_{p-adic} = p^{-n} = |y|_{p-adic} = \max\{|x|_{p-adic}, |y|_{p-adic}\}.$$

Thus for any  $x, y, z \in \mathbb{Q}$ , we have that

$$\begin{split} d_{p-adic}(x,y) &= \max\{|x|_{p-adic}, |y|_{p-adic}\} \\ &\leq \max\{|x|_{p-adic}, |z|_{p-adic}\} + \max\{|z|_{p-adic}, |y|_{p-adic}\} \\ &= d_{p-adic}(x,z) + d_{p-adic}(y,z), \end{split}$$

which follows the triangle inequality, the other two conditions is trivial.

#### 2.2 Open and compact on metric space

**Definition 8** (Open Ball). Let (X, d) be a metric space, for  $\forall r > 0$  and  $x_0 \in X$ , we let

$$B_r(x_0) := \{ x \in X | d(x, x_0) < r \},$$

and call it the open ball with center  $x_0$  and radius r; let

$$\overline{B_r(x_0)} := \{x \in X | d(x, x_0) \le r\},\,$$

and call it the close ball with center  $x_0$  and radius r.

**Example 5** (discrete metric). For  $\forall x, x' \in \mathbb{R}^2$ , define metric d(x, x') = 0 if x = x', and d(x, x') = 1 if  $x \neq x'$ , then  $B_1(x) = \{x\}$ ,  $\overline{B_1(x)} = \mathbb{R}^2$ ,  $B_{1,1}(x) = \mathbb{R}^2$ .

**Definition 9** (Open Set).  $S(\subseteq X)$  is called an Open Set of X with respect to d, if  $\forall x_0 \in S$ ,  $\exists r > 0$  such that  $B_r(x_0) \subseteq S$ ;  $F(\subseteq X)$  is Close Set of X w.r.t. d if  $X \setminus F$  is open set of X w.r.t. d.

**Exercise 6.** Prove that  $B_r(x)$  is open set and  $\overline{B_r(x)}$  is close.

*Proof.* For  $\forall x' \in B_r(x)$ , we have d(x, x') < r, donate r - d(x, x') by s, then for  $\forall x'' \in B_{s/2}(x')$  satisfy

$$d(x,x'') \le d(x,x') + d(x',x'')$$

$$\le d(x,x') + \frac{s}{2}$$

$$< r,$$

thus  $x'' \in B_r(x)$  and  $B_{s/2}(x') \subseteq B_r(x)$  and  $B_r(x)$  is a open set. For  $\forall x' \in X \setminus \overline{B_r(x)}$  has d(x,x') > r. Denote d(x,x') - r by t, then for  $\forall x'' \in B_{t/2}(x')$  satisfy

$$d(x,x'') \ge |d(x,x') - d(x',x'')|$$

$$\ge d(x,x') - d(x',x'')$$

$$\ge d(x,x;) - \frac{t}{2}$$

$$> r.$$

Thus  $B_{t/2}(x') \subseteq X \setminus \overline{B_r}$  and  $X \setminus \overline{B_r}$  is an open set, thus  $\overline{B_r}$  is a close set.

**Exercise 7.** Let (X, d) be a metric space. show that

- 1.  $X, \emptyset \subseteq_{open} X$ ;
- 2.  $O_1, O_2 \subseteq_{open} X \Rightarrow O_1 \cap O_2 \subseteq_{open} X$ ;
- 3.  $O_{\alpha} \subseteq_{open} X$ ,  $(\alpha \in A) \Rightarrow \bigcup_{\alpha \in A} O_{\alpha} \subseteq_{open} X$  ( $\alpha$  not necessarily be integral or countable);
- 4. All above corresponding statements for close set are true.

- *Proof.* 1. Obviously X is an Open set thus  $\emptyset$  is a close set. If  $\emptyset$  is not an open set, then  $\exists x \in \emptyset$ ,  $\forall r > 0$  such that  $B_r(x) \not\subseteq \emptyset$ , which is impossible. Thus  $\emptyset$  is an open set (logically) and X is a close set;
- 2.  $\forall x \in O_1 \cap O_2$ ,  $\exists r_1, r_2 > 0$ , s.t.  $B_{r_1}(x) \subseteq O_1$  and  $B_{r_2}(x) \subseteq O_2$ . Thus  $\forall x' \in B_{\min\{r_1, r_2\}}(x) = B_{r_1}(x) \cap B_{r_2}(x) \Rightarrow x' \in O_1 \cap O_2 \Rightarrow B_{\min\{r_1, r_2\}}(x) \subseteq O_1 \cap O_2$ , thus  $O_1 \cap O_2$  is open. Collectively, the intersection of any finite open sets is an open set;
- 3. For  $\forall x \in \bigcup_{\alpha \in A} O_{\alpha}$ ,  $\exists$  at least one  $\alpha' \in A$ , s.t.  $x \in O_{\alpha'}$ , then  $\exists r > 0$ , s.t.  $B_r(x) \subseteq O_{\alpha'} \subseteq \bigcup_{\alpha \in A} O_{\alpha}$ , thus  $\bigcup_{\alpha \in A} O_{\alpha}$  is an open set;
- 4. Take complementary set: The union of finite close sets is close; the intersection of any close sets is close.

Remark 10. First 3 statements are the essential intuition for the definition of Topology.

**Exercise 8.** *Show that an open set is the union of open balls.* 

*Proof.* Given an open set O, for any  $o \in O$ ,  $\exists r_o > 0$ , s.t.  $B_{r_o}(o) \subseteq O$ , define  $O' = \bigcup_{o \in O} B_{r_o}(o)$ . Thus for  $\forall x \in O'$ ,  $\exists o'$ , s.t.  $x \in B_{r'_o}(o') \subseteq O \Rightarrow O' \subseteq O$ ; On the other hand, for any  $y \in O$ ,  $\exists r_y > 0$ , s.t.  $B_{r_y}(y) \subseteq O \Rightarrow y \in B_{r_y}(y) \subseteq O' \Rightarrow O \subseteq O'$ . Thus  $O = O' = \bigcup_{o \in O} B_{r_o}(o)$ .

**Definition 10** (Convergence). Let (X,d) be a metric space,  $a_n \in X$ ,  $(n \in \mathbb{N})$ ,  $L \in X$ , define  $\lim_{n\to\infty} a_n = L$  w.r.t. d, if  $\forall \epsilon > 0$ ,  $\exists N \in \mathbb{N}$ ,  $\forall n \geq N$  s.t.  $d(a_n, L) < \epsilon$ , that is  $a_n \in B_{\epsilon}(L)$ .

#### **Exercise 9.** *Show that*

- 1.  $\lim_{n\to\infty} a_n = L \Leftrightarrow \lim_{n\to\infty} d(a_n, L) = 0$ ;
- 2.  $\lim_{n\to\infty} a_n = L \Leftrightarrow \forall L \in U \subseteq_{open} X, \exists N \in \mathbb{N}, \forall n \geq N \text{ s.t. } a_n \in U.$

*Proof.* (1) Trivial; (2) ⇒: Suppose that  $\lim_{n\to\infty} a_n = L$ , for  $\forall U$  that  $L \in U$ ,  $\exists r > 0$ , s.t.  $B_r(L) \subseteq U$ , and  $\exists N \in \mathbb{N}$  such that  $\forall n \geq N$ , s.t.  $a_n \in B_r(L) \subseteq U$ ;  $\Leftarrow$ : Suppose  $L \in U \subseteq_{open} X$ , then  $\exists r > 0$  such that  $B_r(L) \subseteq U$ . Since  $B_r(L)$  is also an open set, then  $\exists N \in \mathbb{N}$ , for  $\forall n \geq N$ , s.t.  $a_n \in B_r(L) \subseteq U$ .

We say  $S \subseteq X$  is bounded w.r.t. d, if  $\exists r > 0$  and  $x_0 \in X$ , s.t.  $S \subseteq B_r(x_0)$ .

**Theorem 4** (Bolzano-Weierstrass theorem). *If*  $a_n \in \mathbb{R}^m (n \in \mathbb{N})$  *is bounded w.r.t.*  $d_2$ , then  $\exists$  a subsequence  $a_{n_m} (m \in \mathbb{N})$  which converges.

*Proof.* We only prove  $\mathbb{R}^2$  case. If we want to prove that the vector  $a=(a_1,\cdots,a_m)\in\mathbb{R}^m\to L=(l_1,\cdots,l_m)\in\mathbb{R}^m$ , all we need to prove is  $\lim_{n\to\infty}a_i=l_i,(i=1,\cdots,m)$ . Choose M>0, s.t.  $a_n\in Q=[-M,M]\times[-M,M]$  for all  $n\in\mathbb{N}$ . Divide Q into 4 squares with equal size and choose one, say  $Q_1$ , such that  $|\{n|a_n\in Q\}|=\infty$ . Select  $n_1\in\mathbb{N}$ , such that  $a_{n_1}\in Q_1$ . Repeat this and we have  $\bigcap_{k=1}^\infty Q_k=\{a\}$ . By theorem of nested interval we have that  $\lim_{k\to\infty}a_{n_k}=a$ .

*Remark* 11. The conclusion of Bolzano-Weierstrass theorem can be generalize to metric space (Remark 16).

**Exercise 10.** Let (X,d) be a metric space,  $F \subseteq X$  show that  $F \subseteq_{close} X \Leftrightarrow \forall a_n \in F(n \in \mathbb{N})$  and  $\lim_{n\to\infty} a_n = a \in X$  then  $a \in F$ .

*Proof.* ⇒: Assume that *F* is close and  $a_n \in F$ . If  $a_n \to a \in X \setminus F$ , then  $\exists r > 0$ , s.t.  $B_r(a) \in X \setminus F$ . Since  $\lim_{n \to \infty} a_n = a$ , for *r*, there exists  $N \in \mathbb{N}$ ,  $\forall n \ge N$ , s.t.  $d(a_n, a) < r$ , i.e.  $a_n \in B_r(a) \subseteq X \setminus F$ , which leads to a contradiction. ⇐: Suppose that  $\forall a_n \in F(n \in \mathbb{N})$  and  $\lim_{n \to \infty} a_n = a \in X$  then  $a \in F$ , and *F* is not close, which means  $X \setminus F$  is not open, and  $\exists x \in X \setminus F$ ,  $\forall r > 0$ ,  $B_r(x) \cap F \neq \emptyset$ . Select  $n \in \mathbb{N}$  such that  $a_n = B_{\frac{1}{n}}(x) \cap F$ . Thus  $\lim_{n \to \infty} a_n = x \notin F$ , which leads to a contradiction.

*Remark* 12. Set family of sets as  $\{B_{1/n}(x)\}_{n\in\mathbb{N}}$  is a very useful skill.

**Definition 11** (Open cover, Compact set). Let (X,d) be a metric space,  $S \subseteq X$ ,  $O_{\alpha} \in X(\alpha \in A)$ , we say that  $O_{\alpha}(\alpha \in A)$  form an open cover of S, if  $S \subseteq \bigcup_{\alpha \in A} O_{\alpha}$ . S is called a compact set if  $\forall$  open cover  $O_{\alpha}(\alpha \in A)$  of S,  $\exists \alpha_1, \dots, \alpha_m \in A$ , s.t.  $S \subseteq \bigcup_{i=1}^m O_{\alpha_i}$ , where  $\bigcup_{i=1}^m O_{\alpha_i}$  is called a finite subcover.

If there exists an open cover of F whose any finite subcover can not cover it, then F is not a compact set. for instance, let F = (0,1),  $O_n = (1/n,2)$ ,  $n \in \mathbb{N}$ , then  $O_n$  is an open cover of F, however any finite subcover of  $O_n$  can not cover F.

**Theorem 5** (Heine-Borel theorem). Let  $S \subseteq \mathbb{R}^n$ , then S is compact  $\Leftrightarrow S$  is bounded and closed.

*Proof.* ⇒: Suppose that S is compact, select a point  $s \in S$  arbitrarily, define  $O_i = B_i(s)$ , it is easy to check that  $S \subseteq \cup_{i \in \mathbb{N}} O_i$ , since for any  $s' \in S$ , we have that  $s' \in B_{2d(s,s')}(s) \subseteq O_{\lceil 2d(s,s') \rceil}$ . Since S is compact, there exists a finite subcover, thus S is bounded. Suppose S is compact, but S is not closed, which means  $X \setminus S$  is not open and  $\exists x \in X \setminus S$ , s.t.  $\forall r > 0$ ,  $B_r(x) \cap S \neq 0$ . Since S is bounded, define  $\iota = \sup_{s \in S} d(s, x)$ , define open cover

$$O_n = B_{\frac{t}{n}}(x) - B_{\frac{t}{n+1}}(x),$$

thus  $O_i \cap O_j = \emptyset(i \neq j)$  and  $O_i \cap S \neq \emptyset(\forall i)$ . Thus  $O_n$  has no finite subcover, which leads to a contradiction and S is closed.

 $\Leftarrow$ : Suppose that S is bounded and closed, and  $\exists$  an open cover  $O_{\alpha}(\alpha \in A)$  of S which admits no finite subcover. Choose a cube Q containing S (S is bounded), divide Q into 4 equal-sized cubes and select one of them denoted by  $Q_1$ , s.t.  $Q_1 \cap S$  can not be covered by finitely many  $Q_{\alpha}$ , select a point such that  $s_1 \in Q_1 \cap S$ . Repeat.

Obviously,  $\lim_{n\to\infty} s_n = a$ , notice that  $s_n \in Q_n \cap S \subseteq S$ , thus  $\lim_{n\to\infty} s_n = a \in S$  for S is closed. Thus there exist  $O_i$  such that  $a \in O_i$ . Since  $O_i$  is open,  $\exists r > 0$ , s.t.  $B_r(a) \subseteq O_i$ .

Then  $\exists N \in \mathbb{N}, \forall n \geq N$ , s.t.  $Q_n \subseteq B_r(a) \subseteq O_i$ . Since  $Q_n \cap S$  can not be covered by finitely many  $O_\alpha$ , but could be covered by  $O_i$ , which leads to a contradiction.



Figure 2.1: Heine-Borel theorem

**Theorem 6** (The Lebesgue number of an open cover). Let (X,d) be a metric space and  $K(\subseteq X)$  a compact set. For any given open cover  $O_{\alpha}(\alpha \in A)$  of K, there exists  $\delta > 0$ , s.t. for every  $x \in K$  we have  $B_{\delta}(x) \subseteq O'_{\alpha}$  for some  $\alpha' \in A$  ( $\alpha'$  depending on x).

*Proof.* Since K is compact, for any open cover of K, there exists an finite subcover of K, that is  $\exists O_{\alpha_i}, i = 1, \dots, N$  such that

$$K\subseteq \bigcup_{i=1}^N O_{\alpha_i}.$$

For any point  $x \in K$  there exist  $O_{\alpha_j} \in \{O_{\alpha_i}\}_{i=1}^N$ , s.t.  $x \in O_{\alpha_j}$  and exists  $\delta_x > 0$ , s.t.  $B_{\delta_x/2}(x) \subseteq B_{\delta_x}(x) \subseteq O_{\alpha_j}$  for  $O_{\alpha_j}$  is open. Obviously we have that  $B_{\delta_x/2}(x)$  is an open cover of K, i.e.

$$K\subseteq\bigcup_{x\in K}B_{\delta_x/2}(x),$$

and  $B_{\delta_x/2}(x)$  has an finite subcover of K, donate as  $\{B_{\delta_{x_i}/2}(x_i)\}_{i=1}^M$ . Let  $\delta = \min\{\delta_{x_i}\}_{i=1}^M$ . Then for any  $y \in K$ , there exists  $B_{\delta_{x_j}/2}(x_j) \in \{B_{\delta_{x_i}/2}(x_i)\}_{i=1}^M$  such that  $y \in B_{\delta_{x_j}/2}(x_j)$  and  $d(y,x_j) < \delta_{x_j}/2$ . and for any y' where  $d(y',y) < \delta/2 < \delta_{x_j}/2$ , we have  $d(x_j,y') \leq d(x_j,y) + d(y,y') < \delta_{x_j}$ , thus  $y,y' \in B_{\delta_{x_j}}(x_j) \subseteq O_{\alpha'}$ , or say  $y,y' \in B_{\delta/2}(y) \subseteq B_{\delta_{x_j}}(x_j) \subseteq O_{\alpha'}$ .

The theorem indicates for any open cover  $O_{\alpha}$  of K,  $\exists \delta > 0$ , s.t. for  $\forall x \in K, x' \in X$ , is  $d(x,x') < \delta$ , then  $\exists \alpha \in A$  we have  $x,x' \in O_{\alpha}$ . Such a  $\delta > 0$  is called a **Lebesgue** 

**number** of the given open cover  $O_{\alpha}(\alpha \in A)$ . Notice that the statement could be false if the compactness assumption is dropped.



Figure 2.2: The Lebesgue number of an open cover

**Exercise 11** (Open set). Let  $(X,d)=(\mathbb{R},d_2)$ , K=(0,1),  $O_{\alpha}=(1/2^{\alpha+1},1/2^{\alpha-1})(\alpha\in\mathbb{N})$ . Thus  $1/2^{\alpha}\in O_{\alpha}$  and  $\notin O_{\alpha'}$  if  $\alpha'\neq\alpha(\alpha,\alpha'\in\mathbb{N})$ . It is easy to check  $O_{\alpha}$  is an open cover of K, but  $|1/2^{\alpha}-1/2^{\alpha+1}|=1/2^{\alpha+1}$  can be arbitrarily small if  $\alpha\uparrow$ . Thus there exists  $x\in K$ ,  $x'\in X$  can not be covered one  $O_{\alpha}$ , no matter how close they are.



**Exercise 12** (Unbounded set). Let  $(X,d) = (\mathbb{R},d_2)$ ,  $K = [1/3,\infty)$ ,  $O_{\alpha} = (\alpha-1-1/2^{\alpha-1},\alpha)(\alpha \in \mathbb{N})$ . Thus  $x = \alpha-1/2^{\alpha} \in O_{\alpha}$  and  $x' = \alpha \in O_{\alpha+1}$  and d(x,x') could be arbitrarily small as  $\alpha \uparrow$ . Thus there exists  $x \in K$ ,  $x' \in X$  can not be covered one  $O_{\alpha}$ , no matter how close they are.



**Definition 12** (Isolated point, limit point and accumulation point). Let (X,d) be a metric space and  $S \subseteq X$ . A point  $x \in X$  is called:

- an **isolated point** of *S*, if  $\exists \epsilon > 0$ , s.t.  $B_{\epsilon}(x) \cap S = \{x\} \ (\Rightarrow x \in S)$ ;
- a limit point of S, if  $\forall \epsilon > 0$ , s.t.  $B_{\epsilon}(x) \cap S \setminus \{x\} \neq \emptyset$ ;
- an accumulation point of S, if  $\exists$  seq.  $a_n \in S(n \in \mathbb{N})$ , s.t.  $x = \lim_{n \to \infty} a_n$ .

**Example 6.**  $S \subseteq X$  is as the figure, point  $i \notin S$ :



Then

| point | iso. pts. of S | limit pts. of <i>S</i> | acc. pts. of S | $\in S$   |
|-------|----------------|------------------------|----------------|-----------|
| i     | ×              | ×                      | ×              | ×         |
| а     | ×              | $\sqrt{}$              | $\sqrt{}$      | ×         |
| b     | ×              | $\sqrt{}$              | $\sqrt{}$      | $\sqrt{}$ |
| С     | ×              | $\sqrt{}$              | $\sqrt{}$      |           |
| d     |                | ×                      | $\sqrt{}$      |           |
| e     | ×              | $\sqrt{}$              | $\sqrt{}$      |           |
| h     | ×              | $\checkmark$           | $\checkmark$   | ×         |

Notice that x is a isolated point of  $S \Rightarrow x \in S$ ; but x is a limit/accumulate point of  $S \not\Rightarrow x \in S$ .

**Exercise 13.** Let (X, d) be a metric space,  $S \subseteq X$ ,

- 1. Show that x is an isolated/limit point of  $S \Rightarrow x$  is a accumulate point of S;
- 2. Donate {iso. pts. ofS}, {limit pts. ofS} and {acc. pts. ofS} by  $I_S$ ,  $L_S$ ,  $A_S$  respectively. Show that  $I_S \cup L_S = A_S$ ;
- 3. Suppose  $E \subseteq K \subseteq X$ , where E is infinite and K is compact, show that  $L_E \neq \emptyset$ ; (Prove by contradiction)
- *Proof.* 1. If x is an isolated point of S, thus  $x \in S$ . Let  $a_n \equiv x$ , then  $\lim_{n \to \infty} a_n = x$ , thus x is an accumulate point of S; If x is a limit point of S, then for any  $\epsilon > 0$ ,  $B_{\epsilon}(x) \cap S \setminus \{x\} \neq \emptyset$ . Let  $a_n \in B_{1/n}(x) (n \in \mathbb{N})$ , then  $d(a_n, x) < 1/n$  for  $\forall n \in N$ , thus  $\lim_{n \to \infty} a_n = x$ , and x is an accumulate point of S.
- 2. We have obtained that  $I_S, L_S \subseteq A_S$ . Suppose  $x \in A_S \setminus (I_S \cup L_S) \neq \emptyset$ . Which means : (1) there exists seq.  $a_n \in S$  such that  $\lim_{n\to\infty} a_n = x$ ; (2)  $\forall \epsilon > 0$ , s.t.  $B_{\epsilon}(x) \cap S \neq \{x\}$   $(\neg I_S)$ ;(3)  $\exists \epsilon' > 0$ , s.t.  $B_{\epsilon'}(x) \cap S \setminus \{x\} = \emptyset$   $(\neg L_S)$ . Let  $B_{\epsilon}(x) \cap S = Q_{\epsilon} \neq \{x\}$ , if  $x \in Q_{\epsilon}$ , then it leads to a contradiction with (3); If  $x \notin Q_{\epsilon}$ , then  $Q_{\epsilon'} = \emptyset$ , that is  $Q_{\epsilon'}(x) \cap S = \emptyset$  and for  $\forall s \in S \Rightarrow d(s,x) \geq \epsilon'$ , which leads to a contradiction with (1). Thus  $Q_S \setminus (I_S \cup I_S) = \emptyset$ . Because  $Q_S \setminus I_S \subseteq A_S$ , we have  $Q_S \setminus I_S \subseteq A_S$ .

3. We claim there exists a limit point s of E in K, i.e.  $\exists s \in K$  s.t.  $\forall r > 0$ ,  $B_r(s) \cap E \setminus \{s\} \neq \emptyset$ .

Assume the contrary, that is  $\forall s \in K, \exists r_s > 0 \text{ s.t. } B_{r_s}(s) \cap E \setminus \{s\} = \emptyset$ , and  $B_{r_s}(s)(s \in K)$  form an open cover of K:  $K = \bigcup_{s \in K} B_{r_s}(s)$ . Since K is compact, there exists  $s_1, \dots, s_n \in K$  s.t.  $K = \bigcup_{i=1}^n B_{r_{s_i}}(s_i)$ .

Define  $S = \{s_1, \dots, s_n\}$ , then

$$K \cap E \backslash S = \left( \bigcup_{i=1}^{n} B_{r_{s_i}}(s_i) \right) \cap E \backslash S$$
$$= \bigcup_{i=1}^{n} B_{r_{s_i}}(s_i E \backslash S)$$
$$= \emptyset$$

but since *E* is infinite set, *S* is finite set and  $E \subseteq K \Rightarrow K \cap E \setminus S = E \setminus S \neq \emptyset$ , which is contrary.

Remark 13. Refer to the proof method of

**Exercise 14.** Let  $(X,d) = (\mathbb{R}, d_2)$ ,  $S \subseteq \mathbb{R}$ , show that if  $\sup S$  (inf S) exists, then it is an accumulate point.

*Proof.* If sup  $S\exists$ , then for  $\forall x \in S$ , s.t.  $x \le \sup S$  and for  $\forall \epsilon > 0$ ,  $\exists x' \in S$ , s.t.  $\sup S - \epsilon < x'$ . For any  $n \in \mathbb{N}$ , there exists  $x_n \in S$  s.t.  $\sup S - 1/n < x' \le \sup S$ , and  $d(x_n, \sup S) < 1/n$ , thus  $x_n \to \sup S$  as  $n \to \infty$ . □

**Exercise 15.** Show that, if (X, d) be a metric space, then

$$S \subseteq_{close} X \Leftrightarrow A_S = S \Leftrightarrow L_S \subseteq S$$
.

*Proof.* For any  $x \in S$ , let  $a_n = x$ , then  $\lim_{n \to \infty} a_n = x$ , thus  $S \subseteq A_S$ . Since example (??), we have  $S \subseteq_{close} X \Leftrightarrow A_S = S$ .  $\Rightarrow$  Since  $I_S \cup I_S = A_S$ , we have  $I_S \subseteq A_S = S$ ;  $\Leftrightarrow$ , for  $I_S \subseteq A_S \subseteq S$ , we have  $I_S \subseteq A_S = S$ .

#### 2.3 Functions on metric space

**Definition 13** (Continuous). Let  $(X, d_X)$ ,  $(Y, d_Y)$  be metric spaces.  $a \in S \subseteq X$ ,  $f : S \mapsto Y$ , we say

- 1. map f is continuous at a if for  $\forall \epsilon > 0$ ,  $\exists \delta > 0$ , for  $\forall x \in B_{\delta}(a) \cap S$ , s.t.  $f(x) \in B_{\epsilon}(f(a))$ , that is  $f(B_{\delta}(a)) \subseteq B_{\epsilon}(f(a))$ .
- 2. map f is a continuous map if f is continuous at every  $a \in S$ .

**Exercise 16.** Given a map  $X \xrightarrow{f} Y$ ,  $a \in X$ , Show that

- 1. f is continuous at  $a \Leftrightarrow for \ \forall V \subseteq_{open} Y$ , where  $f(a) \in V$ ,  $\exists U \subseteq_{open} X$ , where  $a \in U$ , such that  $f(U) \subseteq V$ .
- 2. f is a continuous map  $\Leftrightarrow$  for  $\forall V \subseteq_{open} Y, f^{-1}(V) \subseteq_{open} X$ .

*Proof.* 1.  $\Rightarrow$ : for  $\forall V \subseteq_{open} Y$ , where  $f(a) \in V$ ,  $\exists \epsilon > 0$ , s.t.  $B_{\epsilon}(f(a)) \subseteq V$ , thus  $\exists U = B_{\delta}(a)$ .  $\Leftarrow$ : trivial.

2.  $\Rightarrow$ : Given an open set  $V \subseteq_{open} Y$ , for  $\forall x \in f^{-1}(V)$ , have  $f(x) \in V$ . Since V is open,  $\exists r > 0$  s.t.  $B_r(f(x)) \subseteq V$ . Since f(x) is continuous map,  $\exists \epsilon > 0$ , s.t.  $f(B_{\epsilon}(x)) \subseteq B_r(f(x)) \subseteq V \Rightarrow B_{\epsilon}(x) \in f^{-1}(V)$ , thus  $f^{-1}(V)$  is open.

$$\Leftarrow$$
: Given  $x \in X$ ,  $f(x) \in Y$ , given  $r > 0$ , s.t.  $B_r(f(x)) \subseteq Y$ , then  $f^{-1}(B_r(f(x))) \subseteq_{open} X$ , and  $x \in f^{-1}(B_r(f(x)))$ . Thus  $\exists \epsilon > 0$ , s.t.  $B_{\epsilon}(x) \subseteq f^{-1}(B_r(f(x)))$  and  $f(B_{\epsilon}(x)) \subseteq B_r(f(x))$ .

*Remark* 14. It can also be proved that f is cont.  $\Leftrightarrow$  for  $\forall V \subseteq_{close} Y$ ,  $f^{-1}(V) \subseteq_{close} X$ . Suppose  $V \subseteq_{close} Y$ , then  $X \setminus f^{-1}(V) = f^{-1}(X \setminus V) \subseteq_{open} X$ , thus  $f^{-1}(V) \subseteq_{close} X$ .

**Exercise 17.** Given maps  $X \xrightarrow{f} Y$ ,  $Y \xrightarrow{g} Z$ , show that

- 1. If f is continuous at  $x_0$ , g is continuous at  $f(x_0)$ , then  $g \circ f$  is continuous at  $x_0$ .
- 2. If f, g are continuous maps, then  $g \circ f$  is a continuous map.

*Proof.* 1. For any V, s.t.  $g(f(x_0)) \in V \subseteq_{open} Z$ ,  $\exists U$ , s.t.  $f(x_0) \in U \subseteq_{open} Y$ ,  $\exists W$ , s.t.  $x_0 \in W \subseteq X$ , thus  $g \circ f$  is continuous at  $x_0$ .

2. For any 
$$V \subseteq_{open} Z$$
,  $\exists U \subseteq_{open} Y$ ,  $\exists W \subseteq_{open} X$ , thus  $g \circ f$  is continuous.

Remark 15. Note that we prove this exercise using general sets instead of metrics. We replaced open ball with open set in last Exercise, this is a meaningful operation, which means we could **substitute the metric with set** (here is open set), which drives the concept of topology. Generally, topology is a family of sets which have the basic properties, using these sets, we can define open set no longer rely on metric d.

**Theorem 7.** Let  $X \xrightarrow{f} \mathbb{R}$  be a continuous map between metric space, X is compact, then  $\max_{x \in X} f(x), \min_{x \in X} f(x)$  exists.

*Proof.* 1. f is bdd. and hence  $\sup_{x \in X} f(x)$  exists (l.u.b. property):

Assume the contrary. Then  $\forall n \in \mathbb{N}, \exists x_n \in X \text{ s.t. } f(x_n) > n \text{ and we can form a seq. } x_n(n \in \mathbb{N}) \text{ which is a infinite subset of a compact set, thus there exists } a \in X \text{ and a convergent subseq. } x_{n_k}(k \in \mathbb{N}) \to a \text{ as } k \to \infty \text{ (see Remark 16). And hence } \lim_{k\to\infty} f(x_{n_k}) = f(a) \text{ since } f \text{ is continuous, which leads to a contradiction with } f(x_{n_k}) \geq n_k. \text{ Thus } f \text{ is bdd. (Continuous map on compact set is bounded)}$ 

2. Let  $M = \sup_{x \in X} f(x)$ , then  $\exists x \in X$ , s.t. f(x) = M:

Assume the contrary, i.e.  $\forall x \in X, f(x) < M$ . Then the map  $X \xrightarrow{\phi} \mathbb{R}$  where  $x \mapsto$ 

1/(M-f(x)) is well-defined continuous map, and hence  $\phi$  is bounded by 1. Then for any  $R \in \mathbb{R}_+, 1/R > 0$  and  $\exists x \in X$  s.t.

$$M - \frac{1}{R} < f(x) \le M$$

thus  $\phi(x) = 1/(M - f(x)) > R$  which leads to a contradiction with  $\phi$  is bdd.

Remark 16. Two facts:

- 1. Any infinite set of a compact set *K* has a limit point in *K* (Exercise 13);
- 2. x is a limit point of  $A \subseteq X$ , where X is a metric space  $\Leftrightarrow \exists seq. \ a_n \in A \setminus \{x\} (n \in \mathbb{N})$ , s.t.  $a_n \to x$  as  $n \to \infty$  (Exercise 63).

These two facts generalize the Bolzano-Weierstrass theorem (Theorem 4) from  $\mathbb{R}^n$  space to general metric space.

#### 2.4 Uniformly continuous function

Recall that the concept of continuous map: let  $X \xrightarrow{f} Y$  be a map between metric space,

- *f* is continuous
- $\Leftrightarrow$  *f* is continuous at every  $x \in X$
- $\Leftrightarrow \forall \epsilon > 0, \forall x \in X, \exists \delta > 0$  s.t.  $\forall x' \in X, d(x, x') < \delta \Rightarrow d(f(x), f'(x)) < \epsilon$  (or say  $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$ ). Note that here the order of x and  $\epsilon$  does not matter, and  $\delta$  relies on the choice of x and  $\epsilon$ .

**Definition 14** (Uniformly continuous, 均匀连续). Let  $X \xrightarrow{f} Y$  be a map between metric space, we say f is uniformly continuous if

•  $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. for } \forall x, x' \in X, d(x, x') < \delta \Rightarrow d(f(x), f(x')) < \epsilon.$ 

*Remark* 17. Now,  $\delta$  only relies on the choice of  $\epsilon$ . If f is uniformly continuous  $\Rightarrow f$  is continuous.

For a given  $\epsilon > 0$  and  $x \in X$ , consider the set

$$\Delta_x := \{ \delta > 0 | f(B_{\delta}(x) \subseteq B_{\epsilon}(f(x)) \}$$

Then if f is continuous at  $x \Leftrightarrow \Delta_x \neq \emptyset$ . And if f is continuous at x, define  $\epsilon$  - **threshold** of f at x as

$$\delta_{f,\epsilon}(x) := \sup \Delta_x$$

Consider a map  $(0,1] \to \mathbb{R}$  where  $x \mapsto 1/x$ , if any  $\delta$  works for the given  $\epsilon$  and x, then

$$\frac{1}{x-\delta} - \frac{1}{x} = \frac{\delta}{(x-\delta)x} < \epsilon$$

thus  $\delta < \epsilon(x - \delta)x < x^2\epsilon \Rightarrow \delta_{f,\epsilon}(x) \le x^2\epsilon \to 0$  as  $x \to 0$ , thus there does not exist a  $\delta$  for given  $\epsilon$  such that works for all  $x \in X$ .

**Theorem 8.** If  $X \xrightarrow{f} Y$  is a continuous map between metric space and X is compact, then f is uniformly continuous.

*Proof* 1. Given  $\epsilon > 0$ , for every  $a \in X$ , choose a number  $\delta_a > 0$  s.t.  $\forall x \in X$ ,  $f(B_{\delta_a}(a)) \subseteq B_{\epsilon/2}(f(a))$ . Then  $B_{\delta_a}(a)(a \in X)$  is an open cover of X, then let  $\delta > 0$  be a Lebesgue number of this cover.

Thus for 
$$\forall x, x' \in X, d(x, x') < \delta \Rightarrow \exists a \in X, \text{ s.t. } x, x' \in B_{\delta_a}(a) \Rightarrow f(x), f(x') \in B_{\epsilon/2}(f(a)) \Rightarrow d(f(x), f(x')) \leq d(f(x), f(a)) + d(f(a), f(x')) < \epsilon/2 + \epsilon/2 = \epsilon.$$

Proof 2.

**Exercise 18.** Let a < 1, show that  $[0, \infty) \to \mathbb{R}$  where  $x \mapsto a^x$  is uniformly continuous.

#### 2.5 Limit superior / inferior for function

Let *X* be metric space,  $S \subseteq X$  and  $S \xrightarrow{f} \mathbb{R}$  be a map, for  $a \in X$ , we define

$$\overline{f}^*(\delta) := \sup_{x \in B_{\delta}(a) \setminus \{a\}} (a) = \sup\{f(x) | 0 < d(x, a) < \delta\}$$

$$\underline{f}^*(\delta) := \inf_{x \in B_{\delta}(a) \setminus \{a\}} \{a\} = \inf\{f(x) | 0 < d(x, a) < \delta\}$$

It is direct to see that  $\overline{f}^*_{\searrow}$  as  $\delta \to 0$ : Assume that if  $\exists \delta < \delta'$  and  $\overline{f}^*(\delta) > \overline{f}^*(\delta')$ , let

$$\epsilon = \overline{f}^*(\delta) - \overline{f}^*(\delta')$$

then  $\exists x \in B_{\delta}(a) \setminus \{a\} \subseteq B_{\delta'}(a) \setminus \{a\}$  such that

$$\overline{f}^*(\delta) \ge f(x) > \overline{f}^*(\delta) - \epsilon/2 > \overline{f}^*(\delta') = \sup_{x \in B_{\delta'}(a) \setminus \{a\}} f(x),$$

which is contrary. Thus similarly,  $\underline{f}^*_{\nearrow}$  as  $\delta \to 0$ . For any  $\delta, \delta' \in \mathbb{R}$ , we have that

$$f^*(\delta) \leq f^*(\min\{\delta, \delta'\}) \leq \overline{f}^*(\min\{\delta, \delta'\}) \leq \overline{f}^*(\delta')$$

thus  $\underline{f}^*(\delta)$  has upper bound and  $\overline{f}^*(\delta)$  has lower bound when  $\delta \to 0$ . And hence  $\overline{f}^*(\delta)$  converges to its infimum: assume the contrary, if  $\lim_{\delta \to 0} \overline{f}^*(\delta) > \inf_{\delta > 0} \overline{f}^*(\delta)$ , then  $\exists \epsilon > 0$  and  $\delta' > 0$  s.t.

$$\inf_{\delta>0}\overline{f}^*(\delta) \leq \overline{f}^*(\delta') < \inf_{\delta>0}\overline{f}^*(\delta) + \epsilon < \lim_{\delta\to0}\overline{f}^*(\delta)$$

and hence  $\forall \delta < \delta'$  has

$$\overline{f}^*(\delta) \leq \overline{f}^*(\delta') < \lim_{\delta \to 0} \overline{f}^*(\delta)$$

since  $\overline{f}^*(\delta)_{\searrow}$  as  $\delta \to 0$ . And it is contrary.

Thus  $\overline{f}^*(\delta)$  converges to its infimum,  $f^*(\delta)$  converges to its supremum, and we can define

$$\limsup_{x \to a} f(x) := \overline{\lim_{x \to a}^{*}} f(x) := \inf_{\delta > 0} \overline{f}^{*}(\delta) = \inf_{\delta > 0} \sup_{x \in B_{\delta}(a) \setminus \{a\}} f(x)$$

$$\liminf_{x \to a} f(x) := \underline{\lim}_{x \to a}^* f(x) := \inf_{\delta > 0} \underline{f}^*(\delta) = \sup_{\delta > 0} \inf_{x \in B_{\delta}(a) \setminus \{a\}} f(x)$$

Corresponding, we can define the 'non - \*' conception by containing the {a}:

$$\overline{f}(\delta) := \sup_{x \in B_{\delta}(a)} (a) = \sup\{f(x) | 0 \le d(x, a) < \delta\}$$

$$\underline{f}(\delta) := \inf_{x \in B_{\delta}(a)} (a) = \inf\{f(x) | 0 \le d(x, a) < \delta\}$$

and

$$\limsup_{x \to a} f(x) := \overline{\lim}_{x \to a} f(x) := \inf_{\delta \ge 0} \overline{f}(\delta) = \inf_{\delta \ge 0} \sup_{x \in B_{\delta}(a)} f(x)$$

$$\liminf_{x \to a} f(x) := \varliminf_{x \to a} f(x) := \inf_{\delta \geq 0} \underline{f}(\delta) = \sup_{\delta > 0} \inf_{x \in B_{\delta}(a)} f(x)$$

Then it is direct to see that

$$\underline{\lim}_{x \to a} f(x) \le \underline{\lim}_{x \to a}^* f(x) \le \overline{\lim}_{x \to a}^* f(x) \le \overline{\lim}_{x \to a}^* f(x)$$

**Example 7.** Consider a map  $\mathbb{R} \xrightarrow{f} \mathbb{R}$  where  $x \mapsto 1$  if  $x \neq 0$  and  $0 \mapsto 0$ , then

$$\frac{\lim_{x \to 0}^{*} f(x) = 1, \qquad \lim_{x \to 0}^{*} f(x) = 1}{\lim_{x \to 0}^{*} f(x) = 1, \qquad \lim_{x \to 0}^{*} f(x) = 0}$$

$$\overline{\lim_{x \to 0}} f(x) = 1, \quad \underline{\lim_{x \to 0}} f(x) = 0$$

**Exercise 19.** Let X be metric space,  $a \in S \subseteq X$  and  $S \xrightarrow{f} \mathbb{R}$  be a map, show that

- 1.  $\lim_{x\to a} f(x)$  exists  $\Leftrightarrow \overline{\lim}_{x\to a}^* f(x)$  and  $\underline{\lim}_{x\to a}^* f(x)$  exists and equal to each other.
- 2. f(x) is continuous at a exists  $\Leftrightarrow \overline{\lim}_{x\to a} f(x)$  and  $\underline{\lim}_{x\to a} f(x)$  exists and equal to each other.

## Chapter 3

# **Topology Space and Basis**

#### 3.1 Topology Space

**Definition 15** (Topology Space). A topology space  $X = (\underline{X}, \mathcal{T}_X)$  consists of a set  $\underline{X}$ , called the underlying space of X and a family  $\mathcal{T}_X$  of subset of  $\underline{X}$  (i.e.  $\mathcal{T}_X \subseteq \mathcal{P}(X)$ ) s.t.

- 1.  $\underline{X}$ ,  $\emptyset \in \mathscr{T}_X$ ;
- 2.  $U_{\alpha} \in \mathscr{T}_X(\alpha \in A) \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \mathscr{T}_X;$
- 3.  $U, U' \in \mathscr{T}_X \Rightarrow U \cap U' \in \mathscr{T}_X$ .

 $\mathscr{T}_X$  is called a topology on  $\underline{X}$ , the element in  $\mathscr{T}_X$  is called the open set on  $\underline{X}$  w.r.t.  $\mathscr{T}_X$ .

*Remark* 18. Conventionally, we usually use X to indicate the set  $\underline{X}$  and omit the subscript X in  $\mathscr{T}_X$  by saying 'a topology space  $(X, \mathscr{T})$ '.

**Exercise 20.** Let X be a topology space,  $U \subseteq X$ , show that U is open  $\Leftrightarrow$  for any  $u \in U$ ,  $\exists O_u \subseteq U$ , s.t.  $u \in O_u \subseteq_{open} X$ .

*Proof.* ⇒: define  $O_u := U$  for  $\forall u \in U$ ;  $\Leftarrow$ : since  $O_u \subseteq U$ ,  $\cup_{u \in U} O_u \subseteq U$ ; on the other hand, for any  $v \in U$ ,  $v \in O_v \subseteq \cup_{u \in U} O_u \Rightarrow U \subseteq \cup_{u \in U} O_u$ . Thus  $U = \cup_{u \in U} O_u \subseteq_{open} X$ .

**Definition 16** (Continuous). Let X and Y are top. spaces and  $\underline{X} \xrightarrow{f} \underline{Y}$  is a map. We say f is conti. at a point  $x_0 \in X$  (from X to Y), if for  $\forall f(x_0) \in V \in \mathscr{T}_Y$ ,  $\exists x \in U \in \mathscr{T}_X$ , s.t.  $f(U) \subseteq V$ .

We say f is continuous (from X to Y) if it is continuous at every point of  $\underline{X}$ .

*Remark* 19. We will denote  $U \in \mathscr{T}_X$  as  $U \subseteq_{open} X$ , and denote  $X \setminus A \subseteq_{open} X$  as  $A \subseteq_{close} X$ .

**Definition 17** (Compact). X is a top. sp.  $K \subseteq \underline{X}$ . We say K is compact in X if  $\forall U_{\alpha} \subseteq_{open} X(\alpha \in A), K \subseteq \cup_{\alpha \in A} U_{\alpha} \Rightarrow \exists$  finite set  $S \subseteq A$ , s.t.  $K \subseteq \cup_{\alpha \in S} U_{\alpha}$ , and denote by  $K \subseteq_{cpt} X$ . We say X is a compact space if  $\underline{X}$  is compact in X.

**Definition 18** (Neighborhood). Let X be a top. sp. and  $x \in X$ . A subset N of X is called a neighborhood of x if  $\exists U \subseteq N$ , s.t.  $x \in U \subseteq_{open} X$ . (That is  $x \in N^o$ .)

**Exercise 21.**  $X \xrightarrow{f} Y$  is a map between top. sp.,  $x_0 \in X$ , show that f is conti. at  $x_0 \Leftrightarrow \forall$  nbd. V of  $f(x_0), \exists$  nbd. U of  $x_0$ , s.t.  $f(U) \subseteq V \Leftrightarrow \forall$  nbd. V of  $f(x_0)$ ,  $f^{-1}(V)$  is a nbd. of  $x_0$ .

*Proof.* 1.  $\Rightarrow$ : Suppose  $V \subseteq Y$  is a nbd. of  $f(x_0)$ , then  $\exists V_0 \subseteq V$ , s.t.  $f(x_0) \in V_0 \subseteq_{open} Y \Rightarrow \exists U_0 \subseteq_{open} X$ , s.t.  $x \in U_0$  and  $f(U_0) \subseteq V_0$ , since f is conti. at  $x_0$ . Thus  $U_0$  is the nbd. that we desire.

 $\Leftarrow$ : For any open set  $V_0 \subseteq_{open} Y$  and  $f(x_0) \in V_0$ ,  $V_0$  is a nbd. of  $f(x_0)$ . Thus  $\exists$  a nbd. U of  $x_0$  such that  $\exists U_0 \subseteq U, x_0 \in U_0 \subseteq_{open} X$ . And  $f(U_0) \subseteq f(U) \subseteq V_0$ . Thus f is conti. 2.  $\Rightarrow$ : For any nbd. V of  $f(x_0)$ ,  $\exists$  nbd. U of  $x_0$  and  $\exists U_0 \subseteq U$ , s.t.  $x_0 \in U_0 \subseteq_{open} X$  and  $f(U) \subseteq V$ . Thus  $x_0 \in U_0 \subseteq U \subseteq f^{-1}(V)$ , that is  $U \in f^{-1}(V)$  and  $x_0 \in U_0 \subseteq_{open} X$ , thus  $f^{-1}(V)$  is a nbd. of  $x_0$ .

←: Trivial.

#### **Definition 19** (Separation Axioms). Let *X* be a top. space:

- ( $T_0$  or Kolmogorov Space) For any distinct  $x, y \in X$ ,  $\exists U \subseteq_{open} X$ , s.t.  $x \in U \not\ni y$  or  $y \in U \not\ni x$ .
- ( $T_1$  or Fréchet Space) For any distinct  $x, y \in X$ ,  $\exists U, V \subseteq_{open} X, x \in U \not\ni y$  and  $y \in V \not\ni x$ .
- ( $T_2$  or Hausdorff Space) For any distinct  $x,y \in X, \exists U,V \subseteq_{open} X$ , s.t.  $x \in U,y \in V$  and  $U \cap V = \emptyset$ .
- ( $T_3$  or Regular Space) If X is a  $T_1$  space, and  $\forall x \in X, C \subseteq_{close} X, x \notin C \Rightarrow \exists U, V \subseteq_{open} X$ , s.t.  $x \in U, C \in V$  and  $U \cap V = \emptyset$ .
- ( $T_4$  or Normal Space) If X is a  $T_1$  space, and  $\forall C_1, C_2 \subseteq_{close} X, C_1 \cap C_2 = \emptyset \Rightarrow \exists U, V \subseteq_{open} X$ , s.t.  $C_1 \subseteq U, C_2 \subseteq V$  and  $U \cap V = \emptyset$ .

**Exercise 22.** Show that X is a  $T_1$  space  $\Leftrightarrow \forall x \in X, \{x\} \subseteq_{close} X$ .

*Proof.*  $\Rightarrow$ : Given  $x \in X$ , for any  $y \in X \setminus \{x\}$ , there exists  $U_y \subseteq_{open} X$ , s.t.  $y \in U_y \not\ni x$ . Thus  $\bigcup_{y \in X \setminus \{x\}} U_y \subseteq_{open} X$ . If  $z \in \bigcup_{y \in X \setminus \{x\}} U_y$ ,  $\exists y' \in X$ , s.t.  $z \in U_{y'} \subseteq_{open} X$  and  $x \notin U_{y'} \Rightarrow z \neq x \Rightarrow z \in X \setminus \{x\}$ . For any  $z \in X \setminus \{x\} \Rightarrow \exists U_z \subseteq_{open} X$ , s.t.  $z \in U_z \not\ni x \Rightarrow z \in \bigcup_{y \in X \setminus \{x\}} U_y$ . Thus  $X \setminus \{x\} = \bigcup_{y \in X \setminus \{x\}} U_y \subseteq_{open} X \Rightarrow \{x\} \subseteq_{close} X$ .

 $\Leftarrow$ : For any distinct  $x, y \in X$ ,  $x \in X \setminus \{y\} \subseteq_{open} X$  and  $y \in X \setminus \{x\} \subseteq_{open} X$  where  $x \notin X \setminus \{x\}$  and  $y \notin X \setminus \{y\}$ .

There are some examples of topologies:

**Example 8.** *X* is a set,  $\mathcal{P}(X)$  is called discrete topology;  $(\emptyset, X)$  is called trivial topology. Note that discrete topology is defined by discrete metric:

$$d(x, x') = \begin{cases} 1, & x = x' \\ 0, & x \neq x' \end{cases}$$

Thus  $\{x\} \subseteq B_{1/2}(x)$  for any  $x \in X$ , and any  $S \in \mathcal{P}(X)$  is the union of these balls, i.e.  $S = \bigcup_{x \in S} B_{1/2}(x)$ , and holds an open set in discrete topology.

But trivial topology can not be defined by metric. If it can, then  $\forall x \in X, \exists r_x > 0$ , s.t.  $B_{r_x}(x) \subseteq X$ , which implies  $B_{r_x}(x) \in (\emptyset, X)$  and leads to a contradiction.

**Example 9.** X is an uncountable set.  $\mathscr{T}_c := \{U \subseteq X | U = \emptyset \lor X \backslash U \text{ is countable}\}\$  is called **co-countable** topology. Thus any countable set in X is the close set on topology space  $(X, \mathscr{T}_c)$ .

Similarly,  $\mathscr{T}_f := \{U \subseteq X | U = \emptyset \lor X \setminus U \text{ is finite}\}$  is called **co-finite** topology. Thus any finite set in X is the close set on topology space  $(X, \mathscr{T}_f)$ .

It is direct to see  $\mathcal{T}_c$  and  $\mathcal{T}_f$  are topology:

- 1.  $\emptyset \in \mathscr{T}_c, X \in \mathscr{T}_c$  for  $X \setminus X = \emptyset$  is countable;
- 2. Any  $U_{\alpha} \in \mathscr{T}_{c}(\alpha \in A) \Rightarrow X \setminus U_{\alpha}$  is countable  $\Rightarrow X \setminus \bigcup_{\alpha \in A} U_{\alpha} = \bigcap_{\alpha \in A} (X \setminus U_{\alpha})$  is the intersection of countable sets, thus be countable  $\Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \mathscr{T}_{c}$ .
- 3.  $U, V \in \mathscr{T}_c \Rightarrow X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V)$  is countable, thus  $U \cap V \in \mathscr{T}_c$ .

#### 3.2 Interior & Closure

**Definition 20.** *X* is a top. sp.,  $p \in X$ ,  $A \subseteq X$ :

- 1. p is an interior point of A in X, if  $\exists$  nbd. U of p, s.t.  $U \subseteq A$ ;
- 2. p is an exterior point of A in X, if  $\exists$  nbd. U of p, s.t.  $U \subseteq X \setminus A$ , i.e.  $U \cap A = \emptyset$ ;
- 3. p is a boundary point of A in X, if  $\forall$  nbd. U of p, s.t.  $U \cap A \neq \emptyset \neq U \cap (X \setminus A)$ ;

Correspondingly, define

- 1.  $int_X A = A^o := \{all \text{ interior point of } A \text{ in } X\},$
- 2.  $ext_X A = A^e := \{all \text{ exterior point of } A \text{ in } X\},$
- 3.  $bd_X A = \partial A := \{ \text{all boundary point of } A \text{ in } X \}$

**Example 10.** Given a top. space  $(\mathbb{R}, \mathcal{T}_d)$ , where  $d = |x - y|, \forall x, y \in \mathbb{R}$ . Let A = [0, 1). Then  $A^{\circ} = (0, 1), A^{e} = (-\infty, 0) \cup (1, \infty), \partial A = \{0, 1\}$ .

**Exercise 23.** Let  $(X, \mathcal{T})$  be a top. sp., show that  $A^{\circ}$ ,  $A^{e}$  are open sets (on X w.r.t  $\mathcal{T}$ );  $\partial A$  is close set.

*Proof.* 1.  $\forall x \in A^{\circ}, \exists U_x \in \mathscr{T}$ , s.t.  $x \in U_x$ , thus  $A^{\circ} = \bigcup_{x \in A^{\circ}} U_x \in \mathscr{T}$ , thus  $A^{\circ}$  is open on X w.r.t.  $\mathscr{T}$ .

2.  $A^e$  is the interior of  $X \setminus A$  by definition, thus  $A^e$  is open.

3. 
$$A^{\circ}, A^{e} \in \mathcal{T} \Rightarrow A^{\circ} \cup A^{e} \in \mathcal{T}$$
, thus  $\partial A = X \setminus (A^{\circ} \cup A^{e}) \in \mathcal{T}$ .

**Exercise 24.** Given a topology space  $(X, \mathcal{T})$ ,  $A \subseteq X$ , show that

$$A^{\circ} = \bigcup \{ U | U \subseteq_{open} A \}.$$

*Proof.*  $\subseteq$ : for  $\forall x \in A^{\circ}$ ,  $\exists U \in \mathcal{T}$ , s.t.  $x \in U \subseteq A \Rightarrow x \in \cup \{U | U \subseteq_{open} A\}$ ;  $\supseteq$ : for  $\forall x \in \cup \{U | U \subseteq_{open} A\}$ ,  $\exists U_x \subseteq_{open} A$ , s.t.  $x \in U_x$ , thus x is an interior point, and  $x \in A^{\circ}$ .  $\Box$ 

**Definition 21** (Closure). Given a topology space  $(X, \mathcal{T})$ ,  $A \subseteq X$ , the set

$$\overline{A} = cls_x A := \bigcap \{C | A \subseteq C \subseteq_{close} X\}$$

is called the closure of A in X w.r.t.  $\mathcal{T}$ .

*Remark* 20.  $A^{\circ}$  is the **largest open set** in X contained in A. Thus,

$$A = A^{\circ} \Leftrightarrow A \subseteq_{open} X \Leftrightarrow \partial A \cap A = \emptyset$$

for  $\partial A \cap A = \partial A \cap A^{\circ} = \emptyset$ . And furthermore  $(A^{\circ})^{\circ} = A^{\circ}$ .  $\overline{A}$  is the **smallest close set** in X containing in A. Thus,

$$A = \overline{A} \Leftrightarrow A \subseteq_{close} X \Leftrightarrow \partial A \subseteq A$$

for  $\partial A \subseteq A^{\circ} \cup \partial A = \overline{A} = A$ . And furthermore  $\overline{\overline{A}} = \overline{A}$ .

**Exercise 25.** Given a topology space  $(X, \mathcal{T})$ ,  $A \subseteq X$ , show that  $\overline{A} = A^{\circ} \cup \partial A$ .

Proof.

$$A^{\circ} \cup \partial A = X \backslash A^{e}$$

$$= X \backslash (X \backslash A)^{\circ}$$

$$= X \backslash \cup \{U | U \subseteq_{open} X \backslash A\}$$

$$= \cap \{X \backslash U | U \subseteq_{open} X \backslash A\}$$

$$= \cap \{C | A \subseteq C \subseteq_{close} X\}$$

$$= \overline{A}.$$

Remark 21.

$$U \subseteq X \setminus A$$

$$\Rightarrow \forall x \in U \Rightarrow x \in X \setminus A$$

$$\Rightarrow \forall x \notin X \setminus A \Rightarrow x \notin U$$

$$\Rightarrow \forall x \in A \Rightarrow x \in X \setminus U$$

$$\Rightarrow A \subseteq X \setminus U,$$

*U* is open  $\Rightarrow X \setminus U$  is close, hence  $C = X \setminus U \subseteq_{close} A$ .

**Exercise 26.** Show that  $X \setminus \overline{A} = (X \setminus A)^{\circ}$  and  $X \setminus A^{\circ} = \overline{(X \setminus A)}$ .

Proof. 1.

$$\overline{A} = A^{\circ} \cup \partial A$$

$$= X \backslash A^{e}$$

$$= X \backslash (X \backslash A)^{\circ}$$

$$X \backslash \overline{A} = (X \backslash A)^{\circ}.$$

2.

$$X \backslash A^{\circ} = A^{e} \cup \partial A$$
$$= (X \backslash A)^{c} \cup \partial (X \backslash A)$$
$$= \overline{(X \backslash A)}.$$

*Remark* 22. We denote  $X \setminus A$  as  $A^c$  if X is clearly given. Thus

$$(\overline{A})^c = (A^c)^\circ$$
$$(A^\circ)^c = \overline{A^c}$$

**Exercise 27.** If  $A \subseteq B$ , show that  $A^{\circ} \subseteq B^{\circ}$ ,  $\overline{A} \subseteq \overline{B}$ .

*Proof.* 1. Given  $x \in A^{\circ} = \bigcup \{U | U \subseteq_{open} A\}$ ,  $\exists U_x \subseteq_{open} A$ , s.t.  $x \in U_x \subseteq_{open} A \subseteq B$ , thus  $x \in \bigcup \{V | V \subseteq_{open} B\}$ , and  $x \in B^{\circ}$ . 2. the same way with 1.

**Exercise 28.** Given a set U, (denote  $\overline{U}$  as  $U^-$ ,) show that  $U \subseteq_{open} X \Rightarrow U^- = U^{-c-c-}$ .

Proof.

$$U^{-c-c-} = (U^{-})^{c-c-}$$
$$= (U^{-})^{\circ cc-}$$
$$= U^{-\circ -}$$

$$U \subseteq U^- \Rightarrow U = U^\circ \subseteq U^{-\circ} \Rightarrow U^- \subseteq U^{-\circ-}$$
. Let  $C = U^- \subseteq_{close} X$ , thus  $C^\circ \subseteq C \Rightarrow C^{\circ-} \subseteq C^- = C \Rightarrow U^{-\circ-} \subseteq U^-$ , thus  $U^- = U^{-\circ-} = U^{-c-c-}$ .

**Exercise 29** (Kuratowski's 14 sets). *Given a top. sp. X, A*  $\subseteq$  *X, Show that among* 

$$A, A^{-}, A^{-c}, A^{-c-}, A^{-c-c} \cdots$$
  
 $A^{c}, A^{c-}, A^{c-c}, A^{c-c-} \cdots$ 

there are at most 14 different subsets of A.

*Proof.* On the one hand,

$$A, A^{-}, \underbrace{A^{-c}}_{open}, A^{-c-}, A^{-c-c}, A^{-c-c-}, A^{-c-c-c}, \underbrace{A^{-c-c-c-}}_{=(A^{-c})^{-c-c-}}, \cdots$$

On the other hand,

$$A^{c}, A^{c-}, \underbrace{A^{c-c}}_{open}, A^{c-c-}, A^{c-c-c}, A^{c-c-c-}, \underbrace{A^{c-c-c-c-}}_{=(A^{c-c})^{-c-c-}}, \cdots$$

thus there are at most 14 different subsets of A.

**Definition 22.** *X* is a top. sp.,  $p \in X$ ,  $A \subseteq X$ :

- 1. p is an isolated point of A in X, if  $\exists$  nbd. U of p, s.t.  $U \cap A = \{p\}$ ;
- 2. p is a limit point of A in X, if  $\forall$  nbd. U of p,  $U \cap (A \setminus \{p\}) \neq \emptyset$ .

Correspondingly, define  $L_A := \{\text{all limit point of } A \text{ in } X\}.$ 

**Exercise 30.** *Show that*  $\partial A \setminus A \subseteq L_A$ .

*Proof.* 
$$x \in \partial A \setminus A \Rightarrow x \in \partial A$$
 and  $x \notin A \Rightarrow$  for any nbd.  $U$  of  $x$ ,  $U \cap A = U \cap (A \setminus \{x\}) = U \cap A \setminus \{x\} \neq \emptyset \Rightarrow x \in L_A$ .

*Remark* 23. In general,  $\partial A \not\subseteq L_A$ . For example, if x is an isolate point of A, then it is a boundary point of A, but not be the limit point of A.

**Exercise 31.** *Show that*  $\overline{A} = A \cup L_A$ .

*Proof* 1. 1.  $\overline{A} \subseteq A \cup L_A$ : If  $x \in A \Rightarrow x \in A \cup L_A$ ; If  $x \in \overline{A} \setminus A$ : since  $x \in \overline{A} = A^o \cup \partial A = X \setminus A^e$ , any nbd. U of x has  $U \not\subseteq X \setminus A \Rightarrow U \cap A \neq \emptyset$ . Since  $x \notin A$ ,  $U \cap A = U \cap (A \setminus \{x\}) \neq \emptyset \Rightarrow x \in L_A$ .

2. 
$$A \cup L_A \subseteq \overline{A}$$
: If  $x \in A \Rightarrow x \in \overline{A}$ ; If  $x \in L_A \Rightarrow$  any nbd.  $U$  of  $x$  has  $U \cap A \neq \emptyset \Rightarrow x \notin A^e \Rightarrow x \in X \setminus A^e = \overline{A}$ .

*Proof* 2. 1.  $\overline{A} = A^o \cup \partial A = A^o \cup (\partial A \cap A) \cup (\partial A \setminus A)$ . If  $x \in A^o \cup (\partial A \cap A) \Rightarrow x \in A$ ; if  $x \in \partial A \setminus A \Rightarrow x \in L_A$ . Thus  $\overline{A} \subseteq A \cup L_A$ .

2. If  $x \in X \setminus \overline{A} = (X \setminus A)^o$ , then  $\exists$  a nbd. U of x, s.t.  $U \subseteq X \setminus A \Rightarrow U \cap A = \emptyset \Rightarrow x$  is not a limit point of A in  $X \Rightarrow x \in X \setminus L_A \Rightarrow X \setminus \overline{A} \subseteq X \setminus L_A \Rightarrow L_A \subseteq \overline{A} \Rightarrow A \cup L_A \subseteq A \cup \overline{A} = \overline{A}$ .

Remark 24. Useful routines:

- 1.  $A \subseteq B \Leftrightarrow X \backslash A \supseteq X \backslash B$
- 2.  $x \notin \overline{A} \Leftrightarrow \exists \text{ nbd. } U \text{ of } x, \text{ s.t. } U \cap A = \emptyset.$

**Exercise 32.** *Show that*  $\overline{A} = \{x \in X | \forall \text{ open nbd. } U_x \text{ of } x, U_x \cap A \neq \emptyset\}.$ 

*Proof.*  $\subseteq$ : if  $x \in \overline{A} \Rightarrow X \in A \cup L_A$ . If  $x \in A, \forall$  open nbd.  $U_x$  of x has  $x \in U_x \cap A \neq \emptyset$ ; If  $x \in L_A \setminus A, \forall$  open nbd.  $U_x$  of x has  $U_x \cap A \setminus \{x\} \neq \emptyset \Rightarrow U_x \cap A \neq \emptyset$ .

$$\supseteq$$
: If  $x \notin \overline{A} \Rightarrow x \in X \setminus (A^o \cup \partial A) = A^e = (X \setminus A)^o$ , then  $\exists$  an open ubd.  $U_x$  of  $x$  s.t.  $U_x \subseteq X \setminus A \Rightarrow U_x \cap A = \emptyset$ . Thus  $\forall$  open ubd.  $U_x$  of  $x$  if  $U_x \cap A \neq \emptyset \Rightarrow x \in \overline{A}$ .

**Exercise 33.** Let  $X \xrightarrow{f} Y$ ,  $A \subseteq X$ ,  $B \subseteq Y$ , show that:

1. 
$$f^{-1}(\overline{B}) \supseteq \overline{f^{-1}(B)}; f(\overline{A}) \subseteq \overline{f(A)}$$

2. 
$$f^{-1}(B^o) \subseteq f^{-1}(B)^o$$
;  $f(A^o) \supseteq f(A)^o$ .

3.  $f^{-1}(B^e) \subseteq f^{-1}(B)^e$ ; if f is a surjection,  $f(A^e) \supseteq f(A)^e$ .

4. 
$$f^{-1}(\partial B) \supseteq \partial f^{-1}(B)$$
;  $f(\partial A) \subseteq \partial f(A)$ .

Proof. 1. 
$$B \subseteq \overline{B} \Rightarrow f^{-1}(B) \subseteq f^{-1}(\overline{B}) \subseteq_{close} X \Rightarrow \overline{f^{-1}(B)} \subseteq \overline{f^{-1}(\overline{B})} = f^{-1}(\overline{B});$$

$$f(A) \subseteq \overline{f(A)} \Rightarrow A \subseteq f^{-1}(\overline{f(A)}) \subseteq_{close} X \Rightarrow \overline{A} \subseteq \overline{f^{-1}(\overline{f(A)})} = f^{-1}(\overline{f(A)}) \Rightarrow f(\overline{A}) \subseteq \overline{f(A)}.$$

2. 
$$B^o \subseteq B \Rightarrow X_{open} \supseteq f^{-1}(B^o) \subseteq f^{-1}(B) \Rightarrow f^{-1}(B^o) = f^{-1}(B^o)^o \subseteq f^{-1}(B)^o;$$
  $f(A)^o \subseteq f(A) \Rightarrow f^{-1}(f(A)^o) \subseteq A \Rightarrow f^{-1}(f(A)^o) = f^{-1}(f(A)^o)^o \subseteq A^o \Rightarrow f(A)^o \subseteq f(A^o).$ 

3. Since  $B^e = (Y \backslash B)^e$ ,

$$f^{-1}(B^e) = f^{-1}((Y \backslash B)^o)$$

$$\subseteq f^{-1}(Y \backslash B)^o$$

$$= [f^{-1}(Y) \backslash f^{-1}(B)]^o$$

$$= [X \backslash f^{-1}(B)]^o$$

$$= f^{-1}(B)^e.$$

and

$$f(A^{e}) = f((X \backslash A)^{o})$$

$$\supseteq f(X \backslash A)^{o}$$

$$\supseteq [f(X) \backslash f(A)]^{o}$$

$$\xrightarrow{f \text{ is surj.}} [Y \backslash f(A)]^{o}$$

$$= f(A)^{e}.$$

4. Since  $\overline{B} = B^o \cup \partial B$ ,

$$\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B}) 
\Rightarrow f^{-1}(B)^o \cup \partial f^{-1}(B) \subseteq f^{-1}(B^o \cup \partial B) 
\Rightarrow f^{-1}(B)^o \cup \partial f^{-1}(B) \subseteq f^{-1}(B^o) \cup f^{-1}(\partial B).$$

since  $f^{-1}(B)^{o} \supseteq f^{-1}(B^{o})$ ,  $\partial f^{-1}(B) \subseteq f^{-1}(\partial B)$ .

and

$$f(\overline{A}) \subseteq \overline{f(A)}$$
  

$$\Rightarrow f(\partial A) \cup f(A^{o}) = f(\partial A \cup A^{o})$$
  

$$\subseteq \partial f(A) \cup f(A)^{o}$$

since  $f(A^o) \supseteq f(A)^o$ ,  $f(\partial A) \subseteq \partial f(A)$ .

Remark 25.1: Recall that:

- (a)  $X \xrightarrow{f} Y$  is conti.  $\Leftrightarrow$  for any  $B \subseteq_{open} Y (\subseteq_{close} Y)$ ,  $f^{-1}(B) \subseteq_{open} X (\subseteq_{close} X)$ .
- (b)  $A^o \subseteq A \subseteq \overline{A}$ .
- (c)  $A \subseteq_{close} X \Rightarrow \overline{A} = A$ ;  $A \subseteq_{open} X \Rightarrow A^o = A$ .

4:  $A \subseteq B, A \cup C \supseteq B \cup D \Rightarrow C \supseteq D$ .

*Proof.* 
$$A \cup C \supseteq B \cup D \supseteq A \cup D \Rightarrow A^c \cup A \cup C \supseteq A^c \cup A \cup D \Rightarrow X \cup C \supseteq X \cup D \Rightarrow C \supseteq D$$
.

**Exercise 34.** *X* is a top. sp.,  $A_i \subseteq X(i \in I)$ , show that

$$\cup_{i\in I}\overline{A_i}\subseteq\overline{\cup_{i\in I}A_i}$$

and

$$\overline{\cap_{i\in I}A_i}\subset \cap_{i\in I}\overline{A_i}.$$

*Proof.* 1. For any 
$$i \in I$$
,  $A_i \subseteq \bigcup_{i \in I} A_i \Rightarrow \overline{A_i} \subseteq \overline{\bigcup_{i \in I} A_i} \Rightarrow \bigcup_{i \in I} \overline{A_i} \subseteq \overline{\bigcup_{i \in I} A_i}$ .  
2. For any  $i \in I$ ,  $A_i \subseteq \overline{A_i} \subseteq_{close} X \Rightarrow \bigcap_{i \in I} A_i \subseteq \bigcap_{i \in I} \overline{A_i} \subseteq_{close} X \Rightarrow \overline{\bigcap_{i \in I} \overline{A_i}} \subseteq \overline{\bigcap_{i \in I} \overline{A_i}} = \bigcap_{i \in I} \overline{A_i}$ .

Note that the '=' doer not necessary hold. For example, let  $A_r = (1/r, 1-1/r), r > 2$ , then  $\bigcup_{r>2} A_r = \bigcup_{r>2} \overline{A_r} = (0,1) \subseteq \overline{\bigcup_{r>2} A_r} = [0,1]$ .

Let  $B_1 = (0, 1/2)$ ,  $B_2 = (1/2, 1)$ , then  $\overline{B_1 \cap B_2} = B_1 \cap B_2 = \emptyset$ , but  $\overline{B_1} \cap \overline{B_2} = [0, 1/2] \cap [1/2, 1] = 1/2$ .

Remark 26. If I is finite, then  $\bigcup_{i \in I} \overline{A_i} = \overline{\bigcup_{i \in I} A_i}$ . Since  $A_i \subseteq \overline{A_i} \Rightarrow \bigcup_{i \in I} A_i \subseteq \bigcup_{i \in I} \overline{A_i} \Rightarrow \overline{\bigcup_{i \in I} A_i} \subseteq \overline{\bigcup_{i \in I} \overline{A_i}}$ , and since I is finite,  $\bigcup_{i \in I} \overline{A_i}$  is closed, thus  $\overline{\bigcup_{i \in I} A_i} \subseteq \bigcup_{i \in I} \overline{A_i}$ .

#### 3.3 Locally Finite

**Definition 23** (Locally Finite). A family S of some subsets of a top. space X is locally finite if  $\forall p \in X, \exists$  nbd. U of p s.t.  $\{S \in S | U \cap S \neq \emptyset\}$  is a finite set.

**Exercise 35.** If S is locally finite family, show that

$$\overline{\cup_{S\in\mathcal{S}}S}=\cup_{S\in\mathcal{S}}\overline{S}.$$

*Proof 1.* We claim  $\overline{\bigcup_{S \in \mathcal{S}} S} \subseteq \bigcup_{S \in \mathcal{S}} \overline{S}$ , i.e.  $\bigcap_{S \in \mathcal{S}} (X \setminus \overline{S}) = X \setminus \bigcup_{S \in \mathcal{S}} \overline{S} \subseteq X \setminus \overline{\bigcup_{S \in \mathcal{S}} S}$ . Note that  $x \in X \setminus \overline{\bigcup_{S \in \mathcal{S}} S} \Leftrightarrow \exists$  a nbd. W of x, s.t.  $W \cap S = \emptyset$  for  $\forall S \in \mathcal{S}$ . That is, we want to find a nbd of x such that has no intersection with any S in S, the locally finiteness of S tells us there exists a nbd. U of x that intersects with only finite sets  $S_1, \dots, S_k \in \mathcal{S}$ . Thus all we need to do is eliminate these intersected part from U.

 $x \in \cap_{S \in \mathcal{S}}(X \setminus \overline{S}) \Rightarrow x \in X \setminus \overline{S}$  for any  $S \in \mathcal{S}$ . Thus for any  $S \in \mathcal{S}$ ,  $\exists$  a nbd V of x, s.t.  $V \cap S = \emptyset$ . And  $\exists$  a nbd U of x, s.t. U only intersects with finite set  $S_1, \dots, S_k \in \mathcal{S}$ . Note that  $W := U \cap V_1 \cap \dots \cap V_k$  is still a nbd. of x, since the finite union of open set is open. And  $W \cap S = \emptyset$  for any  $S \in \mathcal{S}$ , thus for  $\exists$  a nbd. W of x, s.t.  $W \cap \bigcup_{S \in \mathcal{S}} S = \emptyset \Rightarrow x \in X \setminus \overline{\bigcup_{S \in \mathcal{S}} S} \Rightarrow \overline{\bigcup_{S \in \mathcal{S}} S} \subseteq \bigcup_{S \in \mathcal{S}} \overline{S}$ .

*Proof* 2. Pick  $x \notin \bigcup_{S \in S} \overline{S}$ . Due to local finiteness, there is an (open) neighborhood U of x, such that U intersects only finitely many of S: let's say  $S_1, S_2, \ldots, S_n$ . Now create a new neighborhood  $U' = U \setminus (\overline{S_1} \cup \overline{S_2} \cup \cdots \cup \overline{S_n})$ , which is an open set containing x, and U' does not intersect any of  $S \in S$ . Thus for any  $S \in S$ ,  $S \subseteq X \setminus U' \Rightarrow \overline{S} \subseteq \overline{X \setminus U'} \xrightarrow{X \setminus U' \subseteq_{close} X} X \setminus U'$ . Thus U' also does not intersect any of  $\overline{S}$ .

Thus, for any  $x \in X \setminus \bigcup_{S \in \mathcal{S}} \overline{S}$ ,  $\exists$  an open nbd. U' of x, such that  $U' \cap \bigcup_{S \in \mathcal{S}} \overline{S} = \emptyset$ . Thus  $X \setminus \bigcup_{S \in \mathcal{S}} \overline{S}$  is open, i.e.  $\bigcup_{S \in \mathcal{S}} \overline{S}$  is closed. Thus  $\bigcup_{S \in \mathcal{S}} S \subseteq \bigcup_{S \in \mathcal{S}} \overline{S} \Rightarrow \overline{\bigcup_{S \in \mathcal{S}} S} \subseteq \overline{\bigcup_{S \in \mathcal{S}} \overline{S}} = \bigcup_{S \in \mathcal{S}} \overline{S}$ .

*Remark* 27. There is no similar feature for the intersection, for example,  $S_1 = (0,1)$  and  $S_2 = (1,2)$ .

If S is locally finite, given a  $x \in X$ , then  $\exists$  a nbd. U of x, s.t. U intersects only finite, such as k, Ss in S. Clearly k has a minimal number, such as a. Note that it does not imply a is covered by a as in as.



#### 3.4 Basis

**Definition 24** (Coarser Topology). Let X be a set, and  $\mathscr{T}$  and  $\mathscr{T}'$  be two topologies on X. We say that  $\mathscr{T}$  is coarser/weaker than  $\mathscr{T}'$  if  $\mathscr{T} \subseteq \mathscr{T}'$  (or say  $\mathscr{T}'$  is finer/stronger than  $\mathscr{T}$ ).

*Remark* 28. In other words,  $\mathscr{T}$  is weaker than  $\mathscr{T}'$  iff  $X \xrightarrow{id_X} X$ , where the former and later X are equipped with  $\mathscr{T}'$  and  $\mathscr{T}$  respectively, is continuous.

Let *X* be a set and  $S \subseteq \mathcal{P}(X)$  be a family of subsets of *X*. Are there a smallest topology

 $\mathscr{T}'$  on X s.t. all  $S \subseteq \mathscr{T}'$ ? It is direct to check that if  $\mathscr{T}_{\alpha}(\alpha \in A)$  is a family of topologies on X, then  $\bigcap_{\alpha \in A} \mathscr{T}_{\alpha}$  is also a topology on X. For any  $\alpha \in A$ :

- 1.  $\emptyset$ ,  $X \in \mathscr{T}_{\alpha} \Rightarrow \emptyset$ ,  $X \in \cap_{\alpha \in A} \mathscr{T}_{\alpha}$ ;
- 2.  $U_{\beta} \in \mathscr{T}_{\alpha}(\beta \in B) \Rightarrow \bigcup_{\beta \in B} U_{\beta} \in \mathscr{T}_{\alpha} \Rightarrow \bigcup_{\beta \in B} U_{\beta} \in \cap_{\alpha \in A} \mathscr{T}_{\alpha}$ .
- 3.  $U_1, U_2 \in \mathscr{T}_{\alpha} \Rightarrow U_1 \cap U_2 \in \mathscr{T}_{\alpha} \Rightarrow U_1 \cap U_2 \in \cap_{\alpha \in A} \mathscr{T}_{\alpha}$ .

Define  $\mathcal{T}$  be the family of all topologies on X containing the elements in  $\mathcal{S}$ , that is for  $\forall \mathcal{T} \in \mathcal{T}, \mathcal{S} \subseteq \mathcal{T}$ . We call

$$\mathscr{T}(\mathcal{S}) := \cap_{\mathscr{T} \in \mathcal{T}} \mathscr{T}$$

the topology induced by  $\mathcal{S}$ , which is clearly the coarsest topology containing  $\mathcal{S}$ . Let  $\Pi$  be the family of any finite intersection of the element in  $\mathcal{S}$ , then for  $\forall \mathcal{T} \in \mathcal{T}$ ,  $\Pi \subseteq \mathcal{T}$  by def. Furthermore, for  $\forall \mathcal{T} \in \mathcal{T}$ , the arbitrary union of the elements in  $\Pi$  must in  $\mathcal{T}$ , that is  $\{\bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi\} \subseteq \mathcal{T}$ . Thus  $\{\bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi\} \subseteq \mathcal{T}$ .

**Proposition 2.** Let X be a set and  $S \subseteq \mathcal{P}(X)$  be a family of subsets of X. Then

$$\mathscr{T}(\mathcal{S}) = \{ \cup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi \},$$

where  $\Pi$  is the family of any finite intersection of elements in S, that is

$$\Pi := \{S_1 \cup \cdots \cup S_k | S_1, \cdots, S_k \in \mathcal{S}, k \in \mathbb{N}\} \cup \{X\}.$$

*Proof.* We have proved that  $\{\cup_{V\in\mathcal{F}}V|\mathcal{F}\subseteq\Pi\}\subseteq\mathcal{F}(\mathcal{S})$ . Note that  $\mathcal{F}(\mathcal{S})$  is the coarsest topology containing  $\mathcal{S}$ , Thus if  $\{\cup_{V\in\mathcal{F}}V|\mathcal{F}\subseteq\Pi\}$  is a topology containing  $\mathcal{S}$ , we are done.

- 1.  $\{X\}, \emptyset \subseteq \Pi$ , thus  $X = \bigcup_{V \in \{X\}} V \in \{\bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi\}, \emptyset = \bigcup_{V \in \{\emptyset\}} V \in \{\bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi\}.$
- 2. For any  $U_{\alpha} = \{ \bigcup_{V \in \mathcal{F}_{\alpha}} V | \mathcal{F}_{\alpha} \subseteq \Pi \} \in \{ \bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi \} (\alpha \in A), \text{ we have } \mathcal{F}_{\alpha} \subseteq \Pi (\alpha \in A) \Rightarrow \bigcup_{\alpha \in A} \mathcal{F}_{\alpha} \subseteq \Pi \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} = \{ \bigcup_{V \in \bigcup_{\alpha \in A} \mathcal{F}_{\alpha}} V | \bigcup_{\alpha \in A} \mathcal{F}_{\alpha} \subseteq \Pi \} \in \{ \bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi \}$
- 3. If  $\bigcup_{V \in \mathcal{F}_1} V, \bigcup_{W \in \mathcal{F}_2} W \in \{\bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi\}$ , then  $(\bigcup_{V \in \mathcal{F}_1} V) \cap (\bigcup_{W \in \mathcal{F}_2} W) = \bigcup_{V \in \mathcal{F}_1, W \in \mathcal{F}_2} (V \cap W)$  where  $V, W \in \Pi$ . Since  $\Pi$  is the family of finite intersection,  $V \cap W$  is the finite intersection of elements of  $\mathcal{S}$  or X, i.e.  $V \cap W \in \Pi$ . Let  $\mathcal{F}_3 := \{V \cap W | V \in \mathcal{F}_1, W \in \mathcal{F}_2\}$ , thus  $\mathcal{F}_3 \subseteq \Pi$ . Then  $\bigcup_{V \in \mathcal{F}_1, W \in \mathcal{F}_2} (V \cap W) = \bigcup_{Z \in \mathcal{F}_3} Z \in \{\bigcup_{V \in \mathcal{F}_3} V | \mathcal{F}_3 \subseteq \Pi\}$ .

Thus  $\{ \cup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi \}$  is a topology containing  $\mathcal{S}$ , and  $\mathscr{T}(S) \subseteq \{ \cup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi \} \Rightarrow \mathscr{T}(S) = \{ \cup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi \}.$ 

*Remark* 29. Orally,  $\mathcal{T}(S)$  consists of arbitrary unions of finite intersection of elements of S.

Conventionally, when we talking about the subsets of X, we define  $\cap \emptyset := X$ .

**Definition 25** (Sub-basis). Given a set X,  $S \subseteq \mathcal{P}(X)$ , S is called a sub-basis of a topology  $\mathscr{T}$  on X if  $\mathscr{T} = \mathscr{T}(S)$ .

To obtain  $\mathcal{T}(S)$  from S, we need two steps: first, perform the finite intersection of elements in S; then perform arbitrary union of the these intersection. But can we construct a topology that contains S only by union?

**Definition 26** (Basis). Given a set X, let  $\mathcal{B} \subseteq \mathcal{P}(X)$  and  $\mathscr{T}$  is a topology on X. We say that  $\mathcal{B}$  is a basis of  $\mathscr{T}$  if  $\mathcal{B} \subseteq \mathscr{T}$  and for any  $U \in \mathscr{T}$ ,  $\exists \mathcal{F} \subseteq \mathcal{B}$ , s.t.  $U = \cup \mathcal{F} (:= \cup_{B \in \mathcal{F}} \mathcal{B})$ .

*Remark* 30. Thus given a sub-basis S, we can induce the basis  $\Pi$ , and then perform the union on basis to obtain the topology  $\mathcal{T}(S)$ .

Note that if  $\mathcal{B}$  is a basis of  $\mathcal{T}$ , then  $B \in \mathcal{T}$  for any  $B \in \mathcal{B}$ , thus any union of elements of  $\mathcal{B}$  is in  $\mathcal{T}$ . Thus we can define the  $\mathcal{B}$  is a basis of  $\mathcal{T}$  directly:

$$\mathscr{T} = \{ \cup \mathcal{F} | \mathcal{F} \subseteq \mathcal{B} \}.$$

In general, a topological space  $(X, \mathcal{T})$  can have many bases. The whole topology  $\mathcal{T}$  is always a base for itself (that is,  $\mathcal{T}$  is a base for  $\mathcal{T}$ ).

**Definition 27** (Local Basis). For a given  $x \in X$ , we say that  $\mathcal{B}_x$  is a local basis of  $\mathscr{T}$  at x, if

- 1. for  $\forall V \in \mathcal{B}_x, x \in V \in \mathscr{T}$  and
- 2. for  $\forall U \in \mathcal{T}$  where  $x \in U$ ,  $\exists V \in \mathcal{B}_x$ , s.t.  $x \in V \subseteq U$ .

**Example 11.** Let X be a metric space and  $\mathscr{T}$  is the topology defined by metric. Then  $\mathcal{B} = \{B_r(x)|r > 0\}$  is a local basis of  $\mathscr{T}$  at x.



Figure 3.1: Local Basis

**Exercise 36.** Let  $(X, \mathscr{T})$  be a topology space and  $\mathcal{B} \subseteq \mathcal{P}(X)$ . For  $x \in X$ , define  $\mathcal{B}_x := \{U \in \mathcal{B} | x \in U\}$ . Show that  $\mathcal{B}$  is a basis of  $\mathscr{T}$  on  $X \Leftrightarrow \forall x \in X$ ,  $\mathcal{B}_x$  is a local basis of  $\mathscr{T}$  on X at x.

*Proof.* ⇒: pick a  $x \in X$  and  $U \in \mathcal{T}$  where  $x \in U$ , then  $\exists \mathcal{F} \subseteq \mathcal{B}$ , s.t.  $x \in U = \cup \mathcal{F}$ , since  $\mathcal{B}$  is a basis of  $\mathcal{T}$ . Then  $\exists B \in \mathcal{F}$  such that  $x \in B \subseteq \cup \mathcal{F} = U$ , it is clear to see  $B \in \mathcal{B}_x$ . Since  $\mathcal{B}$  is a basis of  $\mathcal{T}$ ,  $B \in \mathcal{T}$  for  $\forall B \in \mathcal{B}$ , Thus  $\mathcal{B}_x$  is a local basis of  $\mathcal{T}$  at x for any  $x \in X$ .

 $\Leftarrow$ : On the one hand, given a  $x \in X$ ,  $\mathcal{B}_x \subseteq \mathcal{B} \Rightarrow \bigcup_{x \in X} \mathcal{B}_x \subseteq \mathcal{B}$ . For any  $B \in \mathcal{B}$ , if  $B \neq \emptyset$ , there exists  $x' \in B$ , thus  $B \in \mathcal{B}_{x'} \subseteq \bigcup_{x \in X} \mathcal{B}_c$ . Thus  $\mathcal{B} = \bigcup_{x \in X} \mathcal{B}_x$ .  $\mathcal{B}_x$  is a local basis of  $\mathscr{T}$  at any  $x \in X \Rightarrow \mathcal{B}_x \subseteq \mathscr{T}$  for any  $x \in X$ . Thus  $\mathcal{B} \subseteq \mathscr{T}$ .

On the other hand, given a non-empty  $U \in \mathcal{T}$ , for any  $x \in U$ ,  $\exists B_x \in \mathcal{B}_x$ , such that  $x \in B_x \subseteq U$ . Thus  $\bigcup_{x \in U} B_x \subseteq U$ . For any  $x' \in U$ ,  $\exists B_{x'} \in \mathcal{B}_{x'}$ , s.t.  $x' \in B_{x'} \subseteq U \Rightarrow x' \in \bigcup_{x \in U} B_x \Rightarrow \bigcup_{x \in U} B_x = U$ , where  $B_x \in \mathcal{B}$ . Thus  $\mathcal{B}$  is a basis of  $\mathcal{T}$ .

*Remark* 31. Very useful routine. We use it to prove the open set, in metric space, is the union of open balls as well.

**Exercise 37.** Let X be a set and  $\mathcal{B} \subseteq \mathcal{P}(X)$ . Show that there exists a topology  $\mathscr{T}$  such that  $\mathcal{B}$  is a basis of  $\mathscr{T} \Leftrightarrow$ 

- 1.  $\cup \mathcal{B} = X$  and
- 2.  $\forall U, V \in \mathcal{B}$  and  $x \in U \cap V, \exists W \in \mathcal{B}$ , s.t.  $x \in W \subseteq U \cap V$ . (Hint: if such  $\mathscr{T}$  exists, it must be  $\{ \cup \mathcal{F} | \mathcal{F} \subseteq \mathcal{B} \}$ .)

*Proof.*  $\Rightarrow$ : 1)  $X \in \mathcal{T} \Rightarrow \exists \mathcal{F} \subseteq \mathcal{B}$ , s.t.  $X = \cup \mathcal{F} \subseteq \cup \mathcal{B} \subseteq X \Rightarrow X = \cup \mathcal{B}$ ; 2)  $\mathcal{B}$  is a basis of  $\mathcal{T} \Rightarrow \forall U, V \in \mathcal{B}, U, V \in \mathcal{T}$ , thus  $U \cap V \in \mathcal{T}$ . Pick  $x \in U \cap V$ ,  $\mathcal{B}_x$  is a local basis of  $\mathcal{T}$  at x. Thus  $\exists B \in \mathcal{B}_x \subseteq \mathcal{B}$ , s.t.  $x \in B \subseteq U \cap V$ .

 $\Leftarrow$ : Define  $\mathscr{T} = \{ \cup \mathcal{F} | \mathcal{F} \subseteq \mathcal{B} \}$ , all we need to de is show  $\mathscr{T}$  is a topology:

- 1.  $\emptyset \subseteq \mathcal{B} \Rightarrow \emptyset = \bigcup \emptyset \in \mathcal{T}$ ;  $\mathcal{B} \subseteq \mathcal{B} \Rightarrow X = \bigcup \mathcal{B} \in \mathcal{T}$ .
- 2. for any  $\mathcal{F}_{\alpha} \subseteq \mathcal{B}(\alpha \in A)$ ,

$$\bigcup_{\alpha \in A} (\cup \mathcal{F}_{\alpha}) = \bigcup_{\alpha \in A} (\cup_{B \in \mathcal{F}_{\alpha}} B) 
= \bigcup_{B \in \cup_{\alpha \in A} \mathcal{F}_{\alpha}} B 
= \bigcup (\bigcup_{\alpha \in A} \mathcal{F}_{\alpha}) 
\in \mathscr{T},$$

since  $\bigcup_{\alpha \in A} \mathcal{F}_{\alpha} \subseteq \mathcal{B}$ . 3. for any  $U = \bigcup \mathcal{F}_1, V = \bigcup \mathcal{F}_2 \in \mathscr{T}$ ,

$$U \cap V = (\cup \mathcal{F}_1) \cap (\cup \mathcal{F}_2)$$
$$= \cup_{B \in \mathcal{F}_1, C \in \mathcal{F}_2} (B \cap C)$$

where  $B, C \in \mathcal{B}$ , thus for any  $x \in B \cap C$ ,  $\exists D_x \in \mathcal{B}$  such that  $x \in D_x \subseteq B \cap C$ . Thus it

is direct to see that  $B \cap C = \bigcup_{x \in B \cap C} D_x$ . Thus

$$D_{x} \in \mathcal{B} \Rightarrow D_{x} \in \mathcal{T}$$

$$\Rightarrow \bigcup_{x \in B \cap C} D_{x} \in \mathcal{T}$$

$$\Rightarrow U \cap V = \bigcup_{B \in \mathcal{F}_{1}, C \in \mathcal{F}_{2}} (B \cap C)$$

$$= \bigcup_{B \in \mathcal{F}_{1}, C \in \mathcal{F}_{2}} (\bigcup_{x \in B \cap C} D_{x}) \in \mathcal{T}.$$

Thus  $\mathcal{T}$  is such topology as desired.

Recall that when we check whether a map  $X \xrightarrow{f} Y$  is conti., we need show that for  $\forall V \subseteq_{open} Y$ ,  $f^{-1}(V) \subseteq_{open} X$ . But if Y is equipped with a topology induced by some sub-basis, we can only check some subset of Y, instead of any subset of Y.

**Exercise 38.** Let Z be a topology space and  $Z \xrightarrow{f} X$  is a map. Show that f is continuous when X is topologized by  $\mathscr{T}(S) \Leftrightarrow \forall S \in \mathcal{S}, f^{-1}(S) \subseteq_{open} Z$ .

*Proof.* ⇒:  $\forall S \in \mathcal{S} \Rightarrow S \in \mathcal{T}(\mathcal{S})$ , that is  $S \subseteq_{open} X \Rightarrow f^{-1}(S) \subseteq_{open} Z$ .  $\Leftarrow$ : for any  $U \in \mathcal{T}(\mathcal{S})$ , it can be represented by the union of some finite intersections of elements of  $\mathcal{S}$ , that is  $U = \cup_{F \in \mathcal{F}} F$ , where  $\mathcal{F} \subseteq \Pi$ , and  $F = \cap_{i=1}^{k_F} S_i, S_i \in \mathcal{S}$ . Thus

$$f^{-1}(U) = f^{-1}(\bigcup_{F \in \mathcal{F}} F)$$

$$= \bigcup_{F \in \mathcal{F}} f^{-1}(\bigcap_{i=1}^{k_F} S_i)$$

$$= \bigcup_{F \in \mathcal{F}} \left(\bigcap_{i=1}^{k_F} f^{-1}(S_i)\right)$$

$$\subseteq_{open} Z.$$

Thus  $Z \xrightarrow{f} X$  is continuous.

## 3.5 Countable, Separable and Lindelof Compact

**Definition 28.** A topology space  $(X, \mathcal{T})$  is

- 1. 1st-countable if  $\forall x \in X, \exists$  countable local basis of  $\mathscr{T}$  at x;
- 2. 2nd-countable if  $\exists$  countable basis of  $\mathscr{T}$ . (That is  $\exists$  countable open set in X such that any element in  $\mathscr{T}$  is the union of these open set.)

*Remark* 32.  $\mathcal{B}$  is a basis of  $\mathscr{T} \Rightarrow \mathcal{B}_x$  is a local basis of  $\mathscr{T}$  at x. Thus  $(X, \mathscr{T})$  is 2nd-countable  $\Rightarrow (X, \mathscr{T})$  is 1st-countable.

**Example 12.** 1. Let X be a metric space and  $\mathscr{T}$  is the topology defined by metric. Then  $\mathcal{B} = \{B_r(x)|r > 0, r \in \mathbb{Q}\}$  is a countable local basis of  $\mathscr{T}$  at x, Thus metric space is 1st-countable.

2. Note that the open set in  $\mathbb{R}$  is the union of disjoined open intervals in  $\mathbb{R}$ . Any open interval can be represented by the union of countable open intervals that start and end at rational number. Thus any open set in  $\mathbb{R}$  is the union of countable open intervals. Thus  $\mathbb{R}$  is 2nd-countable.

**Definition 29** (Dense). Given a topology space X, we say a subset  $A \subseteq X$  is dense if  $\overline{A} = X$ .

**Exercise 39.** X is a topology space,  $A \subseteq X$ , show that A is dense  $\Leftrightarrow \forall U \subseteq_{open} X, U \neq \emptyset$ , then  $U \cap A \neq \emptyset$ .

*Proof.*  $\Rightarrow$ :  $\overline{A} = A^o \cup \partial A = X$ , thus  $X \setminus A^o = \partial A$  as  $A^o$  and  $\partial A$  are disjoined. For any  $U \subseteq_{open} X$ , if  $U \neq \emptyset$ , pick  $x \in U$ , then either  $x \in A^o$  or  $x \in X \setminus A^o = \partial A$ . If  $x \in A^o \Rightarrow x \in U \cap A \neq \emptyset$ ; If  $x \in \partial A$ , U is a nbd. of  $x \Rightarrow U \cap A \neq \emptyset$ .  $\Leftarrow$ : If  $\overline{A} \neq X \Rightarrow W := X \setminus \overline{A} \neq \emptyset$ , and  $W \subseteq_{open} X, W \cap \overline{A} = (X \setminus \overline{A}) \cap \overline{A} = \emptyset$ , which leads to a contradiction.

**Definition 30** (Separable). A topology space  $(X, \mathcal{T})$  is separable if X has a countable dense subset.

**Exercise 40.** If  $\mathcal{B}$  is a basis of a topology space X and pick a point  $x_B$  in B for any non-empty set  $B \in \mathcal{B}$ . Show that  $\{x_B \in B | B \in \mathcal{B}, B \neq \emptyset\} \subseteq_{dense} X$ .

*Proof.* If 
$$U \subseteq_{open} X$$
 and  $U \neq \emptyset$ , then  $\exists \mathcal{F} \subseteq \mathcal{S}$ , s.t.  $U = \cup \mathcal{F}$ . Then  $x_F \in F \in \mathcal{F} \subseteq \cup \mathcal{F} = U \Rightarrow x_F \in U \cap \{x_B \in B | B \in \mathcal{B}\} \neq \emptyset \Rightarrow \{x_B \in B | B \in \mathcal{B}\} \subseteq_{dense} X$ .

*Remark* 33. Thus if  $\mathcal{B}$  is a countable basis of  $\mathscr{T}$  on X, then  $\{x_B \in B | B \in \mathcal{B}\}$  is a countable dense subset of X, and  $(X, \mathscr{T})$  is a separable topology space.

**Definition 31** (Lindelof Compact). A topology space  $(X, \mathcal{T})$  is Lindelof compact if  $\forall U_{\alpha} \subseteq_{open} X(\alpha \in A), \cup_{\alpha \in A} U_{\alpha} = X \Rightarrow \exists$  countable set  $A_0 \subseteq A$ , s.t.  $\cup_{\alpha \in A_0} U_{\alpha} = X$ .

It is direct to see that 2nd-countable  $\Rightarrow$  Lindelof Compact, since if  $\mathcal{B}$  is a basis of  $\mathscr{T}$  on X, then  $X = \cup \mathcal{B}$ . Collectively, we have



**Exercise 41.** If X is topologized by a metric (a.k.a. X is a metrizable topology space) then 2nd-Countable  $\Leftrightarrow$  Separable  $\Leftrightarrow$  Lindelof Compact.

*Proof.* 1. Separable  $\Rightarrow$  2nd-Countable: To prove this statement, we need to track back to the  $\Leftarrow$  case: If D is the countable dense subset of X, we claim that  $\mathcal{B} := \{B_{\frac{1}{n}}(s) | s \in D, n \in \mathbb{N}\}$  is the basis of metric topology on X.

Given a  $U \subseteq_{open} X$  and  $U \neq \emptyset$ , we have  $U \cap D \neq \emptyset$ . For any  $u \in U \cap D$ , exists  $n_u \in \mathbb{N}$ , s.t.  $B_{\frac{1}{n_u}}(u) \subseteq U$ . Obviously,

$$W := \bigcup_{u \in U \cap D} B_{\frac{1}{n_u}}(u) \subseteq U.$$

For any  $v \in U$ , if  $v \in U \cap D \Rightarrow v \in W$ ; if  $v \notin D \Rightarrow v \in L_D$ , since  $X = D \cup L_D$ . Thus  $\exists n_v \in \mathbb{N}$ , s.t.  $\exists u \in B_{\frac{1}{n_v}}(v) \cap D \setminus \{v\}$ , where  $B_{\frac{1}{n_v}}(v) \subseteq U$  and  $u \in U \cap D$  whose  $1/n_u > 1/n_v$ . Thus  $v \in B_{\frac{1}{n_u}}(u) \subseteq W \Rightarrow U = W = \bigcup_{u \in U \cap D} B_{\frac{1}{n_u}}(u)$ , where  $\{B_{\frac{1}{n_u}}(u) | u \in U \cap D, B_{\frac{1}{n_u}}(u) \subseteq U\} \subseteq \mathcal{B}$ . Thus  $\mathcal{B}$  is a basis of metric topology on X.

2. Lindelof Compact  $\Rightarrow$  Separable: For any  $x \in X$ ,  $\exists r_x > 0$ , s.t.  $B_{r_x}(x) \subseteq X$ , it is direct to see that  $X = \bigcup_{x \in X} B_{r_x}(x)$ . X is Lindelof Compact, thus exist countable subset D of X such that  $X = \bigcup_{x \in D} B_{r_x}(x)$ . For any non-empty  $U \subseteq_{open} X$ , any  $u \in U \subseteq X = \bigcup_{x \in D} B_{r_x}(x)$ , thus  $U \cap D \neq \emptyset \Rightarrow D$  is dense  $\Rightarrow X$  is separable.

# Chapter 4

# **Initial / Final Topology**

## 4.1 Initial Topology

Given maps  $X \xrightarrow{f_{\alpha}} Y_{\alpha}(\alpha \in A)$  from a set X to topology spaces  $Y_{\alpha}(\alpha \in A)$ . It is direct to see that if X is topoloized by discrete topology, the  $f_{\alpha}$  are all continuous. Now the question is how coarse the topology  $\mathscr T$  on X could be to ensure  $f_{\alpha}(\alpha \in A)$  to be continuous.

Let  $S := \{f_{\alpha}^{-1}(V) | V \subseteq_{open} Y_{\alpha}, \alpha \in A\}$ , then  $\mathscr{T}(S)$  is the expected coarsest topology, called the **initial topology** induced by the family of maps  $\{f_{\alpha} | \alpha \in A\}$ .

#### 4.1.1 Subspace Topology

Let  $(Y, \mathcal{T}_Y)$  be a topology space, for a subset  $X \subseteq Y$ . We want to define an natural topology  $\mathcal{T}_X$  on X from Y, such that keep **inclusion map**  $X \xrightarrow{id_X} Y(x \mapsto x)$  be continuous.

As we said,  $\mathcal{T}_X$  is the arbitrary union of finite intersection of the pre-image of the open set in Y. We call this initial topology induced by the inclusion map the **subspace topology** on X inherited from Y.

Note that the arbitrary union of finite intersection of the pre-image of the open set in Y is just the pre-image of arbitrary union of finite intersection of the open set in Y, which is just the pre-image of the open set in Y. Thus  $\mathscr{T}_X = \{id_X^{-1}(V)|V\subseteq_{open}Y\} = \{V\cap X|V\subseteq_{open}Y\}.$ 

**Exercise 42** (The universal property of subspace topologies). Suppose Y is a topology space, X is a subspace (i.e. a subset equipped with the subspace topology from Y). Given a topology space Z, for  $\forall$  map  $Z \xrightarrow{g} Y$ , if  $g(Z) \subseteq X$ , show that  $Z \xrightarrow{g} Y$  is conti.  $\Leftrightarrow Z \xrightarrow{g|^X} X$  is conti.

*Proof.* ⇒: any open set in X can be represented by  $U \cap X$  where  $U \subseteq_{open} Y$ , thus  $g^{-1}(U \cap X) = g^{-1}(U) \cap g^{-1}(X) = g^{-1}(U) \cap Z \subseteq_{open} Z \Rightarrow Z \xrightarrow{g|^X} X$  is conti.  $\Leftarrow$ : Trivial.

**Exercise 43.** Let X be a topology space,  $Z \subseteq Y \subseteq Z$ , where Z, Y are equipped with subspace topology, show that

- 1.  $Z \subseteq_{open} Y \subseteq_{open} X \Rightarrow Z \subseteq_{open} X$ ;
- 2.  $Z \subseteq_{close} Y \subseteq_{close} X \Rightarrow Z \subseteq_{close} X$ .

*Proof.* 1.  $Z \subseteq_{open} Y \subseteq_{open} X \Rightarrow \exists U \subseteq_{open} X$ , s.t.  $Z = U \cap Y$ , since  $Y \subseteq_{open} X \Rightarrow Z = U \cap Y \subseteq_{open} X$ .

2.  $Y \subseteq_{close} X \Rightarrow \exists U \subseteq_{open} X$ , s.t.  $Y = X \setminus U$ ;  $Z \subseteq_{close} Y \Rightarrow \exists V \subseteq_{open} Y$ , s.t.  $Z = Y \setminus V$  and  $W \subseteq_{open} X$ , s.t.  $V = Y \cap W$ , thus

$$Z = Y \setminus V$$

$$= (X \setminus U) \setminus (Y \cap W)$$

$$= (X \setminus U) \setminus ((X \setminus U) \cap W)$$

$$= (X \cap U^c) \cap (X \cap U^c \cap W)^c$$

$$= U^c \cap (U \cup W^c)$$

$$= U^c \cap W^c$$

$$= X \setminus (U \cup W)$$

$$\subseteq_{close} X$$

**Exercise 44.** Let X be a topology space,  $A \subseteq B \subseteq X$ , show that

- 1.  $A \subseteq_{open} X \Rightarrow A \subseteq_{open} B$ ;
- 2.  $A \subseteq_{close} X \Rightarrow A \subseteq_{close} B$ .

*Proof.* 1. Trivial; 2.  $A \subseteq_{close} X \Rightarrow X \setminus A \subseteq_{open} X$ , since

$$B \backslash A = B \cap A^{c}$$

$$= B \cap (X \cap A^{c})$$

$$= B \cap (X \backslash A)$$

$$\subseteq_{open} B$$

and hence  $A \subseteq_{close} B$ .

#### 4.1.2 **Product Space**

Let  $(Y_1, \mathcal{T}_1)$  and  $(Y_2, \mathcal{T}_2)$  be topology spaces, we want to create a natural topology  $\mathcal{T}_{Y_1 \times Y_2}$  on  $Y_1 \times Y_2$  which makes the projections  $Y_1 \times Y_2 \xrightarrow{p_i} Y_i (i = 1, 2)$  be continuous. Suppose  $U_i(i = 1, \dots, k_U) \subseteq_{open} Y_1$  and  $V_i(j = 1, \dots, k_V) \subseteq_{open} Y_2$ , then

$$\left( \cap_{i=1}^{k_U} f^{-1}(U_i) \right) \cap \left( \cap_{i=1}^{k_V} f^{-1}(V_i) \right) = f^{-1} \left( \cap_{i=1}^{k_U} U_i \right) \cap f^{-1} \left( \cap_{i=1}^{k_V} V_i \right)$$

where  $\bigcap_{i=1}^{k_U} U_i \subseteq_{open} Y_1$  and  $\bigcap_{i=1}^{k_V} V_i \subseteq_{open} Y_2$ . Thus the desired initial topology can be represented as the arbitrary union of the intersection of the pre-image of an open set in  $Y_1$  and the pre-image of an open set in  $Y_2$ . (instead of the finite intersection of pre-image of open sets in  $Y_1$  and  $Y_2$ , it is subtle) Thus the basis of the expected initial topology is

$$\Pi = \{ p_1^{-1}(W_1) \cap p_2^{-1}(W_2) | W_1 \subseteq_{open} Y_1, W_2 \subseteq_{open} Y_2 \}$$

$$= \{ (W_1 \times Y_2) \cap (Y_1 \times W_2) | W_1 \subseteq_{open} Y_1, W_2 \subseteq_{open} Y_2 \}$$

$$= \{ W_1 \times W_2 | W_1 \subseteq_{open} Y_1, W_2 \subseteq_{open} Y_2 \}$$

Thus the topology desired is all unions of rectangle:

$$\mathscr{T}_{Y_1 \times Y_2} = \{ \cup \mathcal{F} | \mathcal{F} \subseteq \Pi \}.$$

We call such initial topology **product topology** of  $Y_1$  and  $Y_2$ , denote as  $\mathcal{T}_1 \times \mathcal{T}_2$ . In particular, the open set O in  $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$  can be written by  $O = \cup U \times V$  where  $U, V \subseteq_{open} \mathbb{R}$ .

*Remark* 34. We call such a  $W_1 \times W_2$  a rectangle.

#### 4.1.3 Cartesian Product

Let's recall the definition of Cartesian product. Given two sets  $Y_1, Y_2$ , there exists a **bijection** between  $Y_1 \times Y_2$  and the family of maps  $\{\{1,2\} \xrightarrow{s} Y_1 \cup Y_2 | s(1) \in Y_1, s(2) \in Y_2\} =: \mathcal{M}_{Y_1 \times Y_2}$ . First, there is an injection from left to right: for any  $(s_1, s_2) \in Y_1 \times Y_2$ , define s as  $s(1) = s_1, s(2) = s_2$ . Thus different points in  $Y_1 \times Y_2$  reflect to different maps in  $\mathcal{M}_{Y_1 \times Y_2}$ .

On the other hand, there exists an injection from right to left as well: for any  $s', s \in \mathcal{M}_{Y_1 \times Y_2}$ , correspond to  $(s(1), s(2)), (s'(1), s'(2)) \in Y_1 \times Y_2$ , and  $(s(1), s(2)) \neq (s'(1), s'(2))$  if  $s \neq s'$ .

Furthermore, when we project a point  $(y_1, y_2) \in Y_1 \times Y_2$  to  $y_1 \in Y_1$  (using projection

 $Y_1 \times Y_1 \xrightarrow{p_1} Y_1$ ), it is equivalent with mapping the corresponding map s to s(1).

$$Y_{1} \times Y_{2} \quad \ni \quad (y_{1}, y_{2}) \longmapsto y_{1} \quad \in \quad Y_{1}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{M}_{Y_{1} \times Y_{2}} \quad \ni \quad s \longmapsto s(1) \quad \in \quad Y_{1}$$

Similarly, we can define infinite dimension Cartesian product as

$$\prod_{\alpha\in A}Y_{\alpha}:=\{A\xrightarrow{s}\cup_{\alpha\in A}Y_{\alpha}|\forall\alpha\in A,s(\alpha)\in Y_{\alpha}\}=:\mathcal{M}_{\prod_{\alpha\in A}Y_{\alpha}},$$

according to the axiom of choice, if  $Y_{\alpha} \neq \emptyset$  for any  $\alpha \in A$ , then such map s exists, then  $\prod_{\alpha \in A} Y_{\alpha} \neq \emptyset$ . For  $\alpha \in A$ , we often denote the value of s at  $\alpha$  by  $s_{\alpha}$  rather than  $s(\alpha)$ ; we call it the  $\alpha$ -th **coordinate** of s. And we often denote the function s itself by the symbol

$$(s_{\alpha})_{\alpha \in A}$$

which is as close as we can come to a tuple notation for an arbitrary index set A. Corresponding, we can define the projection on infinite dimension cartesian product: for any  $\beta \in A$ ,

$$\prod_{\alpha \in A} Y_{\alpha} \xrightarrow{p_{\beta}} Y_{\beta}$$

as a map

$$\mathcal{M}_{\prod_{\alpha\in A}Y_{\alpha}}\longrightarrow Y_{\beta}$$

with  $s \mapsto s_{\beta}$ .

### 4.1.4 Infinite Dimension Product Topology

Now we can define the product topology on infinite dimension. As we discussed, the topology is arbitrary union of finite intersection of pre-image of the open set in  $Y_{\alpha}(\alpha \in A)$ . Since the intersection is finite, we can still exchange the order of pre-image and intersection, and then represent the open sets from the same  $Y_{\alpha}(\alpha \in A)$  as one open set. Note that the pre-image of  $U_{\beta} \subseteq_{open} Y_{\beta}$  can be represented by

$${s \in \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}} | s_{\beta} \in U_{\beta}}.$$

Thus finite intersection of the pre-image of open sets, i.e. the basis of the infinite dimension product topology is

$$\Pi_{\prod_{\alpha\in A}Y_{\alpha}}=\{s\in\mathcal{M}_{\prod_{\alpha\in A}Y_{\alpha}}|s_{\beta_{1}}\in U_{\beta_{1}},\cdots,s_{\beta_{k}}\in U_{\beta_{k}},k\in\mathbb{N}\}.$$

That the basis of infinite product topology is set of maps that only map **finite** points in domain to the open sets of codomain. Alternatively, we can represent it as

$$\Pi_{\prod_{\alpha\in A}Y_{\alpha}}=\left\{\prod_{\alpha\in A}V_{\alpha}|\forall\alpha\in A,V_{\alpha}\subseteq_{open}Y_{\alpha}\wedge\{\alpha\in A|V_{\alpha}\neq Y_{\alpha}\}\text{ is finite}\right\}.$$

And the topology is

$$\mathscr{T}_{\prod_{\alpha \in A} Y_\alpha} = \{ \cup \mathcal{F} | \mathcal{F} \subseteq \prod_{\prod_{\alpha \in A} Y_\alpha} \}$$

**Exercise 45** (The universal property of product topology). *Let* Z,  $Y_{\alpha}(\alpha \in A)$  *are topology spaces,*  $\prod_{\alpha \in A} Y_{\alpha}$  *is equipped with product topology, show that for any group of maps* 

$$Z \xrightarrow{g_{\alpha}} Y_{\alpha}(\alpha \in A)$$

 $\exists ! Z \xrightarrow[conti.]{g} \prod_{\alpha \in A} Y_{\alpha}$ , s.t.  $p_{\alpha} \circ g = g_{\alpha}$  for  $\forall \alpha \in A$ . That is, such commutative diagram holds



*Proof.* Existence: Select a group of  $g_{\alpha}(\alpha \in A)$  such that for a given  $z \in Z$  has

$$g_{\alpha}(z) = y_{\alpha} \in Y_{\alpha}$$
.

Define a map  $Z \xrightarrow{g} \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}}$  with  $z \mapsto s$  where  $s_{\alpha} = y_{\alpha} (\alpha \in A)$ . Thus for any  $\beta \in A$ , we have

$$p_{\beta} \circ g(z) = p_{\beta}(s) = s_{\beta} = y_{\beta} = g_{\beta}(z)$$

Thus  $p_{\alpha} \circ g = g_{\alpha}$  for any  $\alpha \in A$ . We now show g is continuous.

Any open set U in  $\mathcal{M}_{\prod_{\alpha\in A}Y_{\alpha}}$  can be written as  $U=\cup\mathcal{F}=\cup_{V\in\mathcal{F}}V$ , where  $\mathcal{F}\subseteq\prod_{\prod_{\alpha\in A}Y_{\alpha}}$ . Thus

$$g^{-1}(U) = g^{-1}(\cup_{V \in \mathcal{F}} V) = \cup_{V \in \mathcal{F}} g^{-1}(V).$$

Here V is the element in the basis, and can be represented as

$$V = \{s \in \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}} | s_{\alpha_1} \in U_{\alpha_1}, \cdots, s_{\alpha_k} \in U_{\alpha_k} \},$$

where  $U_{\alpha_i} \subseteq_{open} Y_{\alpha_i} (i = 1, \cdot, k)$ , thus

$$g^{-1}(V) = \{z \in Z | g_{\alpha_1}(z) \in U_{\alpha_1}, \cdots, g_{\alpha_k}(z) \in U_{\alpha_k} \}$$
$$= \bigcap_{i=1}^k g_{\alpha_i}^{-1}(U_{\alpha_i})$$
$$\subseteq_{open} Z$$

Thus  $g^{-1}(U) = \bigcup_{V \in \mathcal{F}} g^{-1}(V) \subseteq_{open} Z \Rightarrow g$  is continuous.

*Remark* 35. There is a trap:

- $(U_1 \times Y_2) \cap (Y_1 \times U_2) = U_1 \times U_2$ ;
- $(U_1 \times Y_2) \cup (Y_1 \times U_2) \neq Y_1 \times Y_2$ ;



Uniqueness: for any h such that  $p_{\alpha} \circ h = g_{\alpha}$ , given a  $z \in Z$ , we have  $p_{\alpha}(h(z)) = g_{\alpha}(z)$  for  $\forall \alpha \in A$ . Thus

$$h(z) \in \bigcap_{\alpha \in A} p_{\alpha}^{-1}(g_{\alpha}(z))$$

$$= \bigcap_{\alpha \in A} \{ s \in \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}} | s_{\alpha} = g_{\alpha}(z) \}$$

$$= \{ s \in \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}} | s_{\alpha} = g_{\alpha}(z), \alpha \in A \}$$

Thus h(z) = s where  $s_{\alpha} = g_{\alpha}(z)$ ,  $\alpha \in A \Rightarrow h = g$ .

The conclusion of the universal property of product topology is : for any group of maps  $Z \xrightarrow{g_{\alpha}} Y_{\alpha}(\alpha \in A)$ , if they can be substitute by another group of map  $f_{\alpha} \circ g'$  where  $Z \xrightarrow{g'} Z'$  and  $Z' \xrightarrow{f_{\alpha}} Y_{\alpha}$ , we say Z' is **closer** to  $Y_{\alpha}(\alpha \in A)$  than Z.

Then  $\prod_{\alpha \in A} Y_{\alpha}$  is the **closest** set to  $Y_{\alpha}(\alpha \in A)$ .



**Exercise 46.** Let  $Z, Y_{\alpha}(\alpha \in A)$  are top. spaces. Show that  $Z \xrightarrow{g} \prod_{\alpha \in A} Y_{\alpha}$  is continuous  $\Leftrightarrow p_{\alpha} \circ g(\alpha \in A)$  are continuous.

*Proof.*  $\Rightarrow$ : Since  $p_{\alpha} \circ g = g_{\alpha}$ , we need to prove g is continuous  $\Rightarrow g_{\alpha}$  is continuous. For any open set  $U_{\alpha} \subseteq_{open} Y_{\alpha}$ .  $p_{\alpha}^{-1}(U_{\alpha}) = \{s \in \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}} | s_{\alpha} \in U_{\alpha}\} \subseteq_{open} \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}} = \prod_{\alpha \in A} Y_{\alpha}$ . And  $g^{-1}(\{s \in \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}}) = \{z \in Z | g_{\alpha} \in U_{\alpha}\} = g_{\alpha}^{-1}(U_{\alpha}) \subseteq_{open} Z$ , since g is continuous, thus  $g_{\alpha}$  is continuous.  $\Leftarrow$ : has been given in Ex2.

## 4.2 Final Topology

Given topology spaces  $X_{\alpha}(\alpha \in A)$  and maps  $X_{\alpha} \xrightarrow{f_{\alpha}} Y(\alpha \in A)$ , does there exist a finest topology on Y, such that  $f_{\alpha}$  is continuous for every  $\alpha \in A$ ? Define

$$\mathscr{T}_{Y} := \{ V \subseteq Y | f_{\alpha}^{-1}(V) \subseteq_{open} X_{\alpha}, \forall \alpha \in A \}.$$

It is direct to see  $\mathscr{T}_Y$  is a topology: Given an  $\alpha \in A$ , define  $\mathscr{T}_\alpha := \{V \subseteq Y | f_\alpha^{-1}(V) \subseteq_{open} X_\alpha\}$ , we have

- 1.  $f_{\alpha}^{-1}(\emptyset) = \emptyset \subseteq_{open} X_{\alpha}$ ;  $f_{\alpha}^{-1}(Y) = X_{\alpha} \subseteq_{open} X_{\alpha}$ , thus  $\emptyset, Y \in \mathscr{T}_{\alpha}$ .
- 2.  $\forall V_{\beta} \in \mathscr{T}_{\alpha}(\beta \in B)$ ,  $f_{\alpha}^{-1}(\cup_{\beta \in B}V_{\beta}) = \cup_{\beta \in B}f^{-1}(V_{\beta}) \subseteq_{open} X_{\alpha}$ , thus  $\cup_{\beta \in B}V_{\beta} \in \mathscr{T}_{\alpha}$ ;
- 3.  $\forall V_1, V_2 \in \mathscr{T}_{\alpha}, f_{\alpha}^{-1}(V_1 \cap V_2) = f_{\alpha}^{-1}(V_1) \cap f_{\alpha}^{-1}(V_2) \subseteq_{open} X_{\alpha}$ , thus  $V_1 \cap V_2 \in \mathscr{T}_{\alpha}$ .

Thus  $\mathscr{T}_{\alpha}$  is a topology. On the other hand,  $\mathscr{T}_{Y} = \bigcap_{\alpha \in A} \mathscr{T}_{\alpha}$ , thus  $\mathscr{T}_{Y}$  is a topology.

Suppose  $\mathscr{T}'$  is a topology makes maps  $X_{\alpha} \xrightarrow{f_{\alpha}} Y(\alpha \in A)$  be continuous. Then  $\forall U \in \mathscr{T}'$ ,  $f_{\alpha}^{-1}(U) \subseteq_{open} X_{\alpha}$  for all  $\alpha \in A$ , thus  $U \in \mathscr{T}_{Y} \Rightarrow \mathscr{T}' \subseteq \mathscr{T}_{Y}$ .

Thus  $\mathscr{T}_Y$  is the expected finest topology such that  $f_\alpha$  is continuous for any  $\alpha \in A$ .

#### 4.2.1 Equivalence Relation

**Definition 32** (Equivalence Relation). Let *X* be a set. A relation *R* on *X* (i.e.  $R \subseteq X \times X$ ) is equivalence relation, if

- 1.  $\forall x \in X \Rightarrow xRx$ ;
- 2.  $\forall x, x' \in X, xRx' \Rightarrow x'Rx$ ;
- 3.  $\forall x, x', x'' \in X, xRx', x'Rx'' \Rightarrow xRx''$ .

For an equivalence relation R on X, and every  $x \in X$ , we call

$$R(x) := \{ x' \in X | x'Rx \}$$

the **equivalence class** of x w.r.t. R on X. Obviously  $R(x) \neq \emptyset$  for  $\forall x \in X$ , since  $x \in R(x)$  for any  $x \in X$ .

**Exercise 47.** *For*  $\forall x_1, x_2 \in X$ , *either*  $R(x_1) = R(x_2)$  *or*  $R(x_1) \cap R(x_2) = \emptyset$ .

*Proof.* If  $\exists x \in R(x_1) \cap R(x_2) \neq \emptyset$ , then for any  $x_3 \in R(x_2)$ , we have  $x_3Rx_2$ ,  $x_2Rx$  and  $xRx_1 \Rightarrow x_3Rx_1 \Rightarrow x_3 \in R(x_1) \Rightarrow R(x_2) \subseteq R(x_1)$ . And  $R(x_1) \subseteq R(x_2)$  in the same way, thus  $R(x_1) = R(x_2)$ .

In summary, R provides a decomposition of X into disjoint union of nonempty subsets. On the contrary, if we have a decomposition of X into disjoint union of nonempty subsets, we can define an equivalence relation where the element in the same subsets are equivalent. Thus an equivalence relation and a decomposition are the same thing.

#### 4.2.2 Quotient Space

We call  $\{R(x)|x \in X\}$  the **quotient set** of X by the relation R, denoted as X/R. And we can define a **natural projection** on X:  $X \xrightarrow{\pi} X/R$  where  $x \mapsto R(x)$ . It is direct to see that  $\pi$  is a surjection.

**Exercise 48** (The universal property of  $X \xrightarrow{\pi} X/R$ ). Given a map  $X \xrightarrow{g} Z$  such that  $\forall x, x' \in X, xRx' \Rightarrow g(x) = g(x')$ , show that  $\exists ! map X/R \xrightarrow{\overline{g}} Z s.t. \overline{g} \circ \pi = g$ .



*Proof.* Given a  $R(x) \in X/R$ , define  $\overline{g}(R(x)) = g(x)$ . Since for any  $x' \in R(x)$ , g(x') = g(x), the map  $\overline{g}$ :  $X/R \ni R(x) = S \mapsto g(x) \in Z$  is well defined, i.e. independent of the choice of x s.t. S = R(x).

For  $\forall x \in X$ ,  $\overline{g} \circ \pi(x) = \overline{g}(R(x)) = g(x)$ , thus  $\overline{g} \circ \pi = g$ . If  $\exists h$ , s.t.  $h \circ \pi = g = \overline{g} \circ \pi$ , then  $h = \overline{g}$  since  $\pi$  is a surjection.

Remark 36. Recall that

- 1. g is an injection,  $g \circ f = g \circ f' \Rightarrow f = f'$ ;
- 2. f is a surjection,  $g \circ f = g' \circ f \Rightarrow g = g'$ .

Now we consider a topology space X on which an equivalence relation R is specified. We aim at defining a topology space obtained by gluing mutually R - equivalent points in X to a point.

**Definition 33** (Quotient Topology). Let  $X \xrightarrow{\pi} X/R$  where  $x \mapsto R(x)$  be the natural projection. The finial topology on X/R induced by  $\{\pi\}$  (i.e. the finest topology on X/R s.t.  $\pi$  is continuous) is called the quotient topology on X/R induced by R, denoted by  $\mathcal{T}_{(X,R)}$ .

More explicitly,

$$\mathscr{T}_{(X,R)} = \{ S \subseteq X/R | \pi^{-1}(S) \subseteq_{open} X \},$$

that is,  $S \subseteq_{open} X/R$  w.r.t  $\mathscr{T}_{(X,R)} \Leftrightarrow \pi^{-1}(S) \subseteq_{open} X$ .

**Definition 34** (Saturated). Let *X* is a set, *R* is an equivalence relation on *X*.  $A(\subseteq X)$  is a *R* - saturated if  $\forall x \in X, a \in A, xRa \Rightarrow x \in A$ .

**Exercise 49.** A is R - saturated  $\Leftrightarrow$  A is a union of some R - equivalence class  $\Leftrightarrow \exists S \subseteq X/R$ , s.t.  $A = \pi^{-1}(S)$ .

*Proof.* 1.  $\Rightarrow$ : If A is R- saturated, then for  $\forall a \in A$ ,  $R(a) \subseteq A$  by definition. Thus  $\bigcup_{a \in A} R(a) \subseteq_{open} A$ . On the other hand, for any  $a' \in A$ ,  $a' \in R(a') \subseteq \bigcup_{a \in A} R(a)$ , thus  $A = \bigcup_{a \in A} R(a)$ .

 $\Leftarrow$ : If  $R_{\beta}(\beta \in B)$  are some R - equivalence class in X/R, then for any  $r \in \cup_{\beta \in B} R_{\beta}$ ,  $\exists \gamma \in B$ , s.t.  $r \in R_{\gamma}$ , thus  $R(r) = R_{\gamma}$ , thus  $R(r) \subseteq \cup_{\beta \in B} R_{\beta}$ .

For any  $x \in X$ , if xRr, then  $x \in R(r) \subseteq \bigcup_{\beta \in B} R_{\beta} \Rightarrow x \in \bigcup_{\beta \in B} R_{\beta} \Rightarrow \bigcup_{\beta \in B} R_{\beta}$  is R -saturated.

2. ⇒: Note that for  $R(a) \in X/R$ ,  $\pi^{-1}(R(a)) = R(a) \subseteq X$ . Thus

$$A = \bigcup_{\alpha \in A} R(a)$$
  
=  $\bigcup_{a \in A} \pi^{-1}(R(a))$   
=  $\pi^{-1}(\bigcup_{a \in A} R(a))$ 

where  $\bigcup_{a \in A} R(a) \subseteq X/R$  is the expected *S*.

 $\Leftarrow$ : we will show that for  $\forall S \subseteq X/R, \pi^{-1}(S)$  is R-saturated on X. For any  $s \in \pi^{-1}(S)$ ,  $\pi(s) = R(s) \subseteq S$ . For any  $x \in X$ , if xRs, then  $R(x) = R(s) \subseteq S$ , thus  $x \in \pi^{-1}(S)$ , thus  $\pi^{-1}(S)$  is R-saturated.

**Definition 35** (Quotient Map). Let  $X \xrightarrow{p} Y$  be a map between topology spaces. We say p is a quotient map if:

- 1. *p* is a surjection;
- **2.** for any  $V \subseteq Y$ , we have  $V \subseteq_{open} Y \Leftrightarrow p^{-1}(V) \subseteq_{open} X$ .

Remark 37. The second statement is equivalent with

$$V \subseteq_{close} Y \Leftrightarrow p^{-1}(V) \subseteq_{close} X$$

since  $p^{-1}(V) \subseteq_{close} X \Leftrightarrow (p^{-1}(V))^c = p^{-1}(V^c) \subseteq_{open} X \Leftrightarrow V^c \subseteq_{open} X \Leftrightarrow V \subseteq_{close} X$ .

Thus the topology on Y is the final topology induced by  $\{p\}$ , since the second statement.

For a topology space X with an equivalence relation R, a topology  $\mathcal{T}_{X/R}$  on X/R makes the natural projection  $X \xrightarrow{\pi} X/R$  a quotient map iff  $\mathcal{T}_{X/R} = \mathcal{T}_{(X,R)}$ . And we call  $(X/R, \mathcal{T}_{X,R})$  the **quotient space** on X w.r.t. R.

**Exercise 50** (The universal property of quotient topology/map). Let  $X \xrightarrow{p} Y$  be a quotient map. Show that for  $\forall X \xrightarrow{g} Z$  s.t.  $\forall x, x' \in X, p(x) = p(x') \Rightarrow g(x) = g(x'),$ 

$$\exists ! Y \xrightarrow{h} Z \text{ s.t. } h \circ p = g.$$



*Proof.* Existence: for any  $y \in Y$ ,  $p^{-1}(y) \exists$  for p is a surjection. Define  $h(y) = g(p^{-1}(y))$ . Since  $g(p^{-1}(y))$  is a constant, h is well defined. And  $h \circ p(x) = h(p(x)) = g(p^{-1}(p(x)))$ . Since  $x \in p^{-1}(p(x))$  and  $g(p^{-1}(p(x)))$  is a constant, thus  $h \circ p(x) = g(x)$ .

Uniqueness: since p is surjection, h is unique.

Continuousness: for any  $U \subseteq_{open} Z$ ,  $h^{-1}(U) \subseteq_{open} Y \Leftrightarrow p^{-1}(h^{-1}(U)) \subseteq_{open} X$ . Since  $p^{-1}(h^{-1}(U)) = g^{-1}(U) \subseteq_{open} X$  since g is conti. and  $g = h \circ p$ . Thus h is continuous.

Remark 38.  $p(x) = p(x') \Rightarrow g(x) = g(x')$  means that given a  $y \in Y$ , g is a constant on  $p^{-1}(y)$ .

Any maps between sets  $X \xrightarrow{f} Y$  induces an equivalence relation  $R_f$  on X: for  $x, x' \in X$ ,  $xR_fx' \Leftrightarrow f(x) = f(x')$ . And the equivalence classes is the  $f^{-1}(\{y\})$ , for  $y \in f(X)$ .

**Exercise 51.** Given a continuous surjection  $X \xrightarrow{f} Y$ , show that f is a quotient map  $\Leftrightarrow$  the image of every f - saturated open/close subset of X is open/close in Y.

*Proof.*  $\Rightarrow$ : If A is a f - saturated , then  $A = f^{-1}(f(A))$ : if  $\exists b \in f^{-1}(f(A)) \setminus A$ , then  $f(b) \in f(A) \Rightarrow \exists a \in A$ , s.t.  $f(b) = f(a) \Rightarrow aR_fb \Rightarrow b \in A$ , which leads to a contradiction. Thus  $A = f^{-1}(f(A))$ .

Thus if A is an open f - saturated set on X then  $f^{-1}(f(A)) \subseteq_{open} X \Leftrightarrow f(A) \subseteq_{open} Y$  since f is a quotient map.

 $\Leftarrow$ : all we need to show is for any  $V \subseteq Y$ ,  $f^{-1}(V) \subseteq_{open} X \Rightarrow V \subseteq_{open} Y$ . For any  $V \subseteq Y$ ,  $f^{-1}(V)$  is f - saturate: for any  $r \in f^{-1}(V) \Rightarrow f(r) \in V$ . If  $\exists x \in X$  s.t.  $xR_f r \Rightarrow f(x) = f(r) \in V \Rightarrow x \in f^{-1}(V)$ .

If  $f^{-1}(V) \subseteq_{open} X$ , then  $f(f^{-1}(V)) \subseteq_{open} X$ . Since f is a surjection,  $V = f(f^{-1}(V)) \subseteq_{open} X \Rightarrow f$  is quotient map.

Remark 39. If A is a f - saturated , then  $A = f^{-1}(f(A))$ .

# Chapter 5

# **Compact Space and HLC Space**

## 5.1 Compactness

**Definition 36** (Compact Subset). Let  $(X, \mathcal{T})$  be a topology space and  $K \subseteq X$ , we call K is compact subset of X if  $\forall \mathcal{U} \subseteq \mathcal{T}, K \subseteq \cup \mathcal{U} \Rightarrow \exists$  finite  $\mathcal{S} \subseteq \mathcal{U}$ , s.t.  $K \subseteq \cup \mathcal{S}$ .

We say  $(X, \mathcal{T})$  is a compact space if X is a compact subset of itself.

**Exercise 52.** Let  $(X, \mathcal{T})$  be a topology space and  $K \subseteq X$ , show that K is a compact subset of  $X \Leftrightarrow (K, \mathcal{T}_K)$  is a compact space, where  $\mathcal{T}_K$  is subspace topology.

*Proof.*  $\Rightarrow$ : For any  $V_{\alpha} \subseteq_{open} K$ ,  $\exists U_{\alpha} \subseteq_{open} X$ , s.t.  $V_{\alpha} = U_{\alpha} \cap K$ . For any

$$K = \bigcup_{\alpha \in A} V_{\alpha}$$

$$= \bigcup_{\alpha \in A} (U_{\alpha} \cap K)$$

$$= K \cap \bigcup_{\alpha \in A} U_{\alpha}$$

$$= K \cap (U_{\alpha_{1}} \cup \cdots \cup U_{\alpha_{k}})$$

$$= V_{\alpha_{1}} \cup \cdots \vee V_{\alpha_{k}}$$

Thus *K* is compact.  $\Leftarrow$ : for any  $K \subseteq \bigcup_{\alpha \in A} U_{\alpha}$ , we have  $\bigcup_{\alpha \in A} (U_{\alpha} \cap K) \subseteq K$  and

$$K = K \cap K$$

$$\subseteq K \cap \bigcup_{\alpha \in A} U_{\alpha}$$

$$= \bigcup_{\alpha \in A} (K \cap U_{\alpha})$$

Thus  $K = \bigcup_{\alpha \in A} (K \cap U_{\alpha}) = \bigcup_{\alpha \in A} V_{\alpha}$ , where  $V_{\alpha} \subseteq_{open} K$ . And  $\exists V_{\alpha_1}, \cdots, V_{\alpha_k} \subseteq_{open} K$ , s.t.

$$K = V_{\alpha_1} \cup \cdots V_{\alpha_k}$$
  
=  $K \cap (U_{\alpha_1} \cup \cdots \cup U_{\alpha_k})$   
 $\subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_k}$ 

Thus *K* is a compact subset in *X*.

Suppose we admit that the Dedekind gapless property of real number: if  $\emptyset \neq S \subseteq \mathbb{R}$  has upper bound (lower bound), then  $\sup S(\inf S) \exists$ .

**Theorem 9.** [0,1] (as a subspace of  $\mathbb{R}$ ) is compact.

*Proof.* Suppose that  $V_{\alpha} \subseteq_{open} \mathbb{R}(\alpha \in A)$  cover [0,1]. Consider

$$S := \{s \in [0,1] | [0,s] \text{ can be covered by finitely many } V_{\alpha} \}$$

Thus  $0 \in S$ ,  $S \neq \emptyset$ .  $S \subseteq [0,1]$ , thus S has an upper bound  $\Rightarrow \sup S \exists$ . Let  $s_0 := \sup S$ . Since 1 is an upper bound of S,  $s_0 \leq 1$ . For  $\forall t \leq s_0$ , t is not an upper bound of S,  $\exists s' \in S$ , s.t. t < s', thus [0,t] could be covered by finitely many  $V_{\alpha}$ .

Since  $s_0 \le 1$ ,  $\exists \alpha_0$ , s.t.  $s_0 \subseteq V_{\alpha_0}$ ,  $\exists r > 0$ , s.t.  $B_r(s_0) \subseteq V_{\alpha_0}$ . Thus  $[0, s_0 - r]$  can be covered by finitely many of  $V_{\alpha}$ , and  $(s_0 - r, s_0 + r)$  can be covered by  $V_{\alpha_0}$ . Thus  $[0, s_0 + r)$  can be covered by finitely many  $V_{\alpha}$ . Thus  $s_0 = 1$  and  $s_0 \in S \Rightarrow S = [0, 1]$ .

Thus  $[0,1] \times [0,1]$ , as a subspace of  $\mathbb{R}^2$ , which coincides with the product space of [0,1] and [0,1], is compact.

More generally, we can reprove the **Heine–Borel theorem**: for  $K \subseteq \mathbb{R}^n$ , then  $K \subseteq_{cpt.} \mathbb{R}^n \Leftrightarrow K \subseteq_{close} \mathbb{R}^n$  and K is bdd.

*Proof.* ⇒:  $\mathbb{R}^n$  is metric space ⇒  $\mathbb{R}^n$  is Hausdorff ⇒  $K \subseteq_{close} \mathbb{R}^n$ . Since  $K \subseteq \cup_{n \in \mathbb{N}} B_n(0)$  ⇒  $\exists r_1, \dots, r_k$ , s.t.  $K \subseteq \cup_{i=1}^k B_{n_{r_i}}(0)$  ⇒ K is bdd.

$$\Leftarrow$$
:  $K$  is bdd.  $\Rightarrow$ ,  $\exists r > 0$ , s.t.  $K \subseteq B_r(0)$ ,  $\Rightarrow \exists [a_1, b_1], \cdots, [a_n, b_n] \in \mathbb{R}$ , s.t.  $K \subseteq B_r(0) \subseteq \times_{i=1}^n [a_i, b_i]$ . Since  $K \subseteq_{close} \mathbb{R}^n \Rightarrow K \subseteq_{close} \times_{i=1}^n [a_i, b_i] \subseteq_{cpt} \mathbb{R}^n \Rightarrow K \subseteq_{cpt} \times_{i=1}^n [a_i, b_i] \Rightarrow K$  is cpt.

*Remark* 40. Actually, In any metric space X,  $K \subseteq_{cpt.} X \Rightarrow K \subseteq_{close} X$  and be bdd.

**Definition 37** (Finite Intersection Property, FIP). Let S be a set and  $\mathcal{F} \subseteq \mathcal{P}(S)$  is a family of subsets of S. We say that  $\mathcal{F}$  has the finite intersection property (FIP) if  $\forall \mathcal{F}_0 \subseteq \mathcal{F}, \mathcal{F}_0$  is finite  $\Rightarrow \cap \mathcal{F}_0 \neq \emptyset$ .

**Exercise 53.** For a set X and a family of subsets  $U \subseteq \mathcal{P}(X)$ , let  $\mathcal{F} := \{X \setminus U | U \in \mathcal{U}\}$ , then  $X = \cup \mathcal{U} \Leftrightarrow \cap \mathcal{F} = \emptyset$ .

*Proof.* ⇒: if  $\cap \mathcal{F} \neq \emptyset$ , then  $\exists x \in \cap \mathcal{F}$ , that is for  $\forall U \in \mathcal{U}, x \in X \setminus U \Rightarrow x \notin U$  but  $x \in X$ . Thus  $\cup \mathcal{U} \neq X$  which leads to a contradiction.

$$\Leftarrow$$
:  $\cap \mathcal{F} = \emptyset$ , thus for any  $x \in X$ ,  $\exists F \in \mathcal{F}$ , s.t.  $x \notin F$ , that is  $\exists U \in \mathcal{U}$ , s.t.  $x \notin X \setminus U \Rightarrow x \in U$ . Thus  $X \subseteq \cup \mathcal{U} \subseteq X \Rightarrow X = \cup \mathcal{U}$ .

**Exercise 54.** Let  $(X, \mathcal{T})$  be a topology space, show that X is compact space  $\Leftrightarrow \forall$  family  $\mathcal{F}(\subseteq \mathcal{P}(X))$  of closed subsets of X,  $\mathcal{F}$  has  $FIP \Rightarrow \cap \mathcal{F} \neq \emptyset$ .

*Proof.* ⇒: For any family  $\mathcal{F}$  of closed subset of X, define  $\mathcal{U} := \{X \setminus F | F \in \mathcal{F}\}$ , thus  $\mathcal{U}$  is a family of open subsets of X. If  $\cup \mathcal{U} = X$ , since X is compact,  $\exists$  a finite  $\mathcal{U}_0 \subseteq \mathcal{U}$ , s.t.  $X = \cup \mathcal{U}_0$ .

Define  $\mathcal{F}_0 := \{X \setminus U | U \in \mathcal{U}_0\}$ , thus  $\mathcal{F}_0$  is finite and  $\cap \mathcal{F}_0 = \emptyset$ , which leads to the FIP of X. Thus  $\cup \mathcal{U} \neq X \Leftrightarrow \cap \mathcal{F} \neq \emptyset$ .

 $\Leftarrow$ : If X is not a compact set, we will show the statement in the right side is wrong. If X is not a compact set then  $\exists$  s family  $\mathcal{U}$  of open subsets of X such that any finite  $\mathcal{U}_0 \subseteq \mathcal{U}$  has  $X \neq \cup \mathcal{U}_0$ .

Define  $\mathcal{F} := \{X \setminus U | U \in \mathcal{U}\}; \mathcal{F}_0 := \{X \setminus U | U \in \mathcal{U}_0\}$  for any finite  $\mathcal{U}_0 \subseteq \mathcal{U}$ . Thus  $\mathcal{F}$  has FIP, but  $\cap \mathcal{F} = \emptyset$ .

**Proposition 3.** Suppose X is Hausdorff,  $K(\subseteq X)$  is compact,  $p \in X \setminus K \Rightarrow \exists U, V \subseteq_{open} X$ , s.t.  $K \subseteq V$ ,  $p \in U$ , and  $U \cap V = \emptyset$ .

*Proof.* X is Hausdorff  $\Rightarrow \forall q \in K$ ,  $\exists U_q, V_q \subseteq_{open} X$  s.t.  $q \in V_q, p \in U_q, U_q \cap V_q = \emptyset$ . Thus  $K \subseteq \bigcup_{q \in K} V_q = \bigcup_{i=1}^k V_{q_i}$ , Let  $V = \bigcup_{i=1}^k V_{q_i}$ ,  $U = \bigcup_{i=1}^k U_{q_i}$ , then

$$U \cap V = \left(\bigcap_{j=1}^{k} U_{q_{j}}\right) \cap \left(\bigcup_{i=1}^{k} V_{q_{i}}\right)$$
$$= \bigcup_{i=1}^{k} \left[\bigcap_{j=1}^{k} \left(U_{q_{j}} \cap V_{q_{i}}\right)\right]$$
$$= \bigcup_{i=1}^{k} \emptyset = \emptyset.$$



**Proposition 4.** Let  $(X, \mathcal{T})$  be a topology space,  $K \subseteq X$ , then

- 1. X is Hausdorff space, K is compact  $\Rightarrow K \subseteq_{close} X$ ;
- 2. *X* is compact space,  $K \subseteq_{close} X \Rightarrow K$  is compact.

*Proof.* 1 For  $\forall p \in X \backslash K$ ,  $\exists W_p \subseteq_{open} X$ , s.t.  $x \in W_p$  and  $W_p \cap K = \emptyset$ , by Proposition 4, that is  $W_p \subseteq X \backslash K$ . And because

$$X \backslash K = \cup_{p \in X \backslash K} \{p\} \subseteq \cup_{p \in X \backslash K} W_p \subseteq X \backslash K$$

we have that  $X \setminus K = \bigcup_{p \in X \setminus K} W_p \subseteq_{open} X$ , and then  $K \subseteq_{close} X$ .

2 Suppose  $\exists U_{\alpha} \subseteq_{open} X(\alpha \in A)$ , s.t.  $K \subseteq \bigcup_{\alpha \in A} U_{\alpha}$ , thus  $X = K \cup X \setminus K = (X \setminus K) \cup \bigcup_{\alpha \in A} U_{\alpha}$ . Since X is compact thus  $\exists$  finite  $A_0 \subseteq A$ , s.t.  $K \subseteq X = (X \setminus K) \cup \bigcup_{\alpha \in A_0} U_{\alpha} \Rightarrow K$  is compact.

**Proposition 5** (Continuous Maps Preserve Compactness). *Suppose X, Y are top. sp.*  $X \xrightarrow{f} Y$  *is continuous.*  $K \subseteq_{cpt.} X \Rightarrow f(K) \subseteq_{cpt.} Y$ .

*Proof.* Suppose  $\exists U_{\alpha} \subseteq_{open} Y(\alpha \in A)$ , s.t.  $f(K) \subseteq \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow K \subseteq f^{-1}(\bigcup_{\alpha \in A} U_{\alpha}) = \bigcup_{\alpha \in A} f^{-1}(U_{\alpha})$ . Since K is compact,  $\exists$  finite  $A_0 \subseteq A$ , s.t.  $K \subseteq \bigcup_{\alpha \in A_0} U_{\alpha} \Rightarrow f(K) \subseteq \bigcup_{\alpha \in A_0} U_{\alpha} \Rightarrow f(K)$  is compact.  $\Box$ 

**Proposition 6.** Let  $X \xrightarrow{f} Y$  be a continuous map with X is compact and Y is Hausdorff, then

- 1. f is a close map (i.e.  $\forall C \subseteq_{close} X, f(C) \subseteq_{close} Y$ );
- 2. f is a surjection  $\Rightarrow f$  is a quotient map;
- 3. f is a bijection  $\Rightarrow$  f is a homeomorphism (同胚) (i.e. a bijection which and whose inverse are both continuous).

*Proof.* 1. Any close set C in X is compact, thus f(C) is compact, since Y is Hausdorff, f(C) is close;

- 2. For any  $V \subseteq Y$ , if  $f^{-1}(V)$  is closed  $\Rightarrow f(f^{-1}(V))$  is closed, and  $V = f(f^{-1}(V))$  is closed since f is surjection. On the other hand, if V is closed, since f is continuous,  $f^{-1}(V)$  is closed. Thus f is quotient map.
- 3. All we need to prove is the inverse of f, denoted by  $Y \xrightarrow{\overline{f}} X$  is continuous. Note that for any  $y \in f(U)$ ,  $\exists x \in U$ , s.t. y = f(x) and  $x = \overline{f}(y)$ , thus  $y \in \overline{f}^{-1}(x) \subseteq \overline{f}^{-1}(U)$ , thus  $f(U) \subseteq \overline{f}^{-1}(U)$ . On the other hand, for any  $y \in \overline{f}^{-1}(U)$ ,  $\overline{f}(y) \in U \Rightarrow \exists x \in U$ , s.t.  $x = \overline{f}(y)$  and  $y = f(x) \in f(U)$ . Thus  $\overline{f}^{-1}(U) \subseteq f(U)$ . Thus we have for any  $U \in X$ ,

$$f(U) = \overline{f}^{-1}(U),$$

For any  $V \subseteq_{close} X$ ,  $\overline{f}^{-1}(V) = f(V) \subseteq_{close} Y$ , since f is a close map, thus  $\overline{f}$  is continuous and f is a homeomorphism.

*Remark* 41. Given a map  $X \xrightarrow{f} Y$ , for any  $A \subseteq X$ ,  $B \subseteq Y$ :

- 1. f is injection  $\Rightarrow f^{-1}(f(A)) = A$ ;
- 2. f is surjection  $\Rightarrow f(f^{-1}(B)) = B$ ;

**Exercise 55.** Given a conti. map  $K \xrightarrow{f} \mathbb{R}$ , K is  $cpt. \Rightarrow f$  has a max. and min.

*Proof.* K is cpt., f is conti.  $\Rightarrow f(K) \subseteq_{cpt.} \mathbb{R} \Rightarrow f(K) \subseteq_{close} \mathbb{R}$  and be bdd. Thus f(K) has an upper bound and lower bound, thus  $\max f(K) = \sup f(K) \in f(K)$  and  $\min f(K) = \inf f(K) \in f(K)$ .

Remark 42. Two facts:

- 1.  $K \subseteq_{cpt.} \mathbb{R} \Leftrightarrow K \subseteq_{close} \mathbb{R}$  and be bounded (Heine-Borel theorem, Theorem 5);
- 2.  $K \subseteq_{close} \mathbb{R}$  and be bounded  $\Rightarrow \sup K \in K$  and  $\inf K \in K$  (Exercise 1);

**Exercise 56.** Let R be an equiv. rel. on  $[0,1] \times [0,1]$  whose equiv. classes are exactly

$$\{(x,y)\}, \quad \text{if } (x,y) \in (0,1) \times [0,1]$$
  
 $\{(0,y), (1,1-y)\}, \quad \text{if } y \in [0,1]$ 

Define

$$Y := \{ (2 + t \cos(\theta/2)) \cos(\theta),$$

$$(2 + t \cos(\theta/2)) \sin(\theta),$$

$$t \sin(\theta/2)$$

$$|(\theta, t) \in [0, 2\pi] \times [-0.5, 0.5] \}$$

as a subspace of  $\mathbb{R}^3$ . Show that there exists a homeomorphism from  $X := [0,1] \times [0,1]/R$  to Y.



Figure 5.1: Y: a subspace of  $\mathbb{R}^3$ 

*Proof.* 1. Y, equipped with subspace topology, is a Hausdorff space:

For any  $y_1, y_2 \in Y$ ,  $\exists U_1, U_2 \subseteq_{open} \mathbb{R}^3$ , s.t.  $y_1 \in U_1, y_2 \in U_2$  and  $U_1 \cap U_2$ . Thus  $y_1 \in Y \cap U_1 \subseteq_{open} Y$  and  $y_2 \in Y \cap U_2 \subseteq_{open} Y$  and  $(Y \cap U_1) \cap (Y \cap U_2) = Y \cap (U_1 \cap U_2) = \emptyset \Rightarrow Y$  is Hausdorff space.

2. X, equipped with quotient topology, is a compact space: Since X is equipped with the quotient topology, thus the natural projection  $[0,1] \times [0,1] \xrightarrow{\pi} [0,1] \times [0,1]/R$  is continuous. Since  $[0,1] \times [0,1]$  is a compact subset of  $\mathbb{R}^2 \Leftrightarrow [0,1] \times [0,1]$  is a compact set, thus  $X = \pi([0,1] \times [0,1])$  is a compact set.

3.  $\exists$  a bijection  $X \xrightarrow{m} Y$ :

For any  $(x,y) \in (0,1) \times [0,1]$ , define a map  $h : \{(x,y)\} \mapsto (\theta,t)$  where  $\theta = 2\pi x, t = y - 0.5$ ;

For any x = 0 (or 1), define  $h : \{(0,y), (1,1-y)\} \mapsto (2\pi,t)$  (or (0,-t)) where t = y - 0.5; It is direct to see  $X \xrightarrow{h} \{(\theta,t) | \theta \in [0,2\pi], t \in [-0.5,0.5]\}$  is a bijection.

Finally, define  $\{(\theta,t)|\theta\in[0,2\pi],t\in[-0.5,0.5]\}\xrightarrow{g} Y$  which is a bijection as well, Thus  $m=g\circ h$  is a bijection.

Collectively,  $X \xrightarrow{m} Y$  is a bijection from compact space to Hausdorff space, thus m is a homeomorphism.

**Definition 38** (Proper Map). A map  $X \xrightarrow{f} Y$  between topology spaces is called a proper map if  $f^{-1}(K) \subseteq_{cpt.} X$  for  $\forall K \subseteq_{cpt.} Y$ .

**Proposition 7.** X, Y are compact spaces  $\Rightarrow X \times Y$  equipped with the product topology is compact.

Thus if *Y* is compact, *X* is topology space, then the projection  $X \times Y \xrightarrow{\pi_X} X$  is a proper map.

**Exercise 57.** Let  $X \xrightarrow{f} Y$  is a map between topology spaces,  $\mathcal{B}$  is a basis of the topology of X, show that f is an open map  $\Leftrightarrow \forall B \in \mathcal{B}, f(B) \subseteq_{open} Y$ .

*Proof.* 
$$\Rightarrow$$
:  $\forall B \in \mathcal{B}, B \subseteq_{open} X \Rightarrow f(B) \subseteq_{open} Y$ .  $\Leftarrow$ :  $\forall U \subseteq_{open} X$  can be represented as  $U = \bigcup_{F \in \mathcal{F}} F$  where  $\mathcal{F} \subseteq \mathcal{B}$ . Thus  $f(U) = f(\bigcup_{F \in \mathcal{F}} F) = \bigcup_{F \in \mathcal{F}} f(F) \subseteq_{open} Y$ .

Thus if X, Y are topology, then map  $X \times Y \xrightarrow{\pi} X$  is an open map.

## 5.2 HLC Space

**Definition 39** (Locally Compact). X is a locally compact space if  $\forall x \in X$  has a compact nbd. (i.e.  $\forall x \in X, \exists K \subseteq_{cpt.} X$ , s.t.  $x \in K^o$ , or equivalently,  $\forall x \in X, \exists U \subseteq_{open} X, x \in U \subseteq \overline{U} \subseteq_{cpt.} X$ )

**Exercise 58.** *X* is locally compact Hausdorff (LCH) space,  $C \subseteq_{close} X$ , show that  $\forall c \in C, \exists T_c \subseteq_{cpt.} C$ , s.t.  $c \in T_c$ .

*Proof.* For  $\forall c \in C, \exists S_c \subseteq_{cpt.} X$ , s.t.  $c \in S_c$  and  $c \in S_c \cap C$ . Since  $S_c \subseteq_{cpt.} X \Rightarrow S_c \subseteq_{close}$ 

 $X \Rightarrow S_c \cap C \subseteq_{close} X$ 

$$X \setminus (S_c \cap C) \subseteq_{open} X$$

$$\Rightarrow S_c \cap (X \setminus (S_c \cap C)) \subseteq_{open} S_c$$

$$\Rightarrow S_c \setminus [S_c \cap (X \setminus (S_c \cap C))] \subseteq_{close} S_c$$

$$\Rightarrow (S_c \setminus S_c) \cup [S_c \setminus X \setminus (S_c \cap C)] \subseteq_{close} S_c$$

$$\Rightarrow S_c \setminus X \setminus (S_c \cap C)$$

$$= S_c \cap C \subseteq_{close} S_c.$$

Since  $S_c \cap C \subseteq_{close} S_c$ ,  $S_c$  is cpt.  $\Rightarrow S_c \cap C \subseteq_{cpt.} S_c \Rightarrow S_c \cap C$  is cpt.  $\Rightarrow S_c \cap C \subseteq_{cpt.} C$ .  $\square$ 

*Remark* 43.  $A \subseteq_{close} X$ ,  $A \subseteq B \subseteq X$ , then  $A \subseteq_{close} B$  (Exercise 44).

**Exercise 59.** If X is a locally compact Hausdorff (LCH) space and  $x \in X$  has an open nbd. U, show that, there is a compact nbd. of x which is a subset of U. ( That is  $x \in U \subseteq_{open} X$ , then  $\exists W \subseteq_{open} X$ , s.t.  $x \in W \subseteq \overline{W} \subseteq U$  where  $\overline{W} \subseteq_{cpt} X$ ).

*Proof.* Given a  $x \in X$  and an open nbd. U of x. Since X is locally compact,  $\exists C \subseteq_{cpt.} X$ , s.t.  $x \in C$ . Since X is Hausdorff  $\Rightarrow C$  is closed  $\Rightarrow x \in U \cap C^o \subseteq_{open} X$ .

Denote  $\partial[U \cap C^o]$  as  $\partial$ , since  $\partial = X \setminus ((U \cap C^o)^o \cup (U \cap C^o)^e)$ ,  $\partial$  is closed. Since  $\partial \subseteq \partial[U \cap C^o] \cup (U \cap C^o)^o = \overline{U \cap C^o} \subseteq \overline{C} = C$ ,  $\partial$  is a closed subset of compact set C, thus  $\partial$  is compact.

Since  $x \in U \cap C^o$ , thus  $x \notin \partial$ . Since X is Hausdorff, for any  $s \in \partial$ ,  $\exists V_s, W_s \subseteq_{open} X$ , s.t.  $s \in V_s$  and  $x \in W_s$  and  $V_s \cap W_s = \emptyset$ . Thus  $\partial \subseteq \bigcup_{s \in \partial} V_s \Rightarrow \exists$  finite  $\partial_0 \subseteq \partial$ , s.t.  $\partial \subseteq \bigcup_{s \in \partial_0} V_s \subseteq_{open} X$  and  $x \in \bigcap_{s \in \partial_0} W_s \subseteq_{open} X$ .

Denote  $\bigcap_{s \in \partial_0} W_s =: W$  and  $\bigcup_{s \in \partial_0} V_s =: V$ , thus  $W \cap V = \emptyset \Rightarrow W \subseteq X \setminus V \Rightarrow \overline{W} \subseteq \overline{X \setminus V} = X \setminus V \Rightarrow \overline{W} \cap V = \emptyset \Rightarrow \overline{W} \cap \partial = \emptyset$ . Since  $\overline{W} \subseteq \overline{U \cap C^o} = (U \cap C^o) \cup \partial \Rightarrow \overline{W} \subseteq U \cap C^o \subseteq U$  and  $\overline{W} \subseteq C$ .

Finally, since C is compact,  $\overline{W}$  is closed  $\Rightarrow \overline{W}$  is compact. Thus  $x \in W \subseteq \overline{W} \subseteq U$  and  $\overline{W} \subseteq_{cpt.} X$ .



**Exercise 60.** More generally, we can replace the point x with a compact set, i.e. X is HLC space,  $\forall K \subseteq_{cpt.} X$  if  $\exists U \subseteq_{open} X$ , s.t.  $K \subseteq U$  show that  $\exists W \subseteq_{open} X$ , s.t.  $K \subseteq W \subseteq \overline{W} \subseteq U$  where  $\overline{W} \subseteq_{cpt.} X$ .

*Proof.* For any  $k \in K$ ,  $k \in U$ , thus  $\exists W^{(k)} \subseteq_{open} X$ , s.t.  $k \in W^{(k)} \subseteq \overline{W^{(k)}} \subseteq U$  where  $\overline{W^{(k)}} \subseteq_{cpt.} X$ . Thus  $K \subseteq \bigcup_{k \in K} W^{(k)}$  and since K is compact, there exists a finite  $K_0 \subseteq K$ , s.t.

$$K \subseteq \bigcup_{k \in K_0} W^{(k)} \subseteq \bigcup_{k \in K_0} \overline{W^{(k)}} \subseteq U.$$

Since  $\overline{W^{(k)}}$  is compact for  $\forall k \in K \Rightarrow \bigcup_{k \in K_0} \overline{W^{(k)}}$  is compact. And since  $K_0$  is finite,  $\bigcup_{k \in K_0} \overline{W^{(k)}} = \overline{\bigcup_{k \in K_0} W^{(k)}}$ . Thus  $W := \bigcup_{k \in K_0} W^{(k)}$  and

$$K \subseteq W \subseteq \overline{W} \subseteq U$$

where  $W \subseteq_{open} X$  and  $\overline{W} \subseteq_{cpt.} X$ .

Note that there is an iteration process, that is if  $K \subseteq_{cpt.} X$ , and  $K \subseteq U \subseteq_{open} X$ , and then  $\exists W \subseteq_{open} X$  and  $\overline{W} \subseteq_{cpt.} X$ , s.t.  $K \subseteq W \subseteq \overline{W} \subseteq U$ . Then  $\exists W', W'' \subseteq_{open} X$  and  $\overline{W'}, \overline{W''} \subseteq_{cpt.} X$ , s.t.

$$K \subseteq W' \subseteq \overline{W'} \subseteq W$$
,

and

$$\overline{W} \subset W'' \subset \overline{W''} \subset U$$

and so on.



## 5.3 Continuous $\mathbb{R}$ - value maps

Let X be a topology space, consider a  $\mathbb{R}$  - value map  $X \xrightarrow{f} \mathbb{R}$  on it. Now we want to explore the relationship between the continuity of f and the topology structure of X.

**Exercise 61.** Given a trivial topology space X, show that  $X \xrightarrow{f} \mathbb{R}$  is constant  $\Leftrightarrow X \xrightarrow{f} \mathbb{R}$  is continuous.

*Proof.* ⇒: Suppose for  $\forall x \in X, f(x) \equiv r \in \mathbb{R}$ . For any  $U \subseteq_{open} \mathbb{R}$  containing r,  $f^{-1}(U) = X \subseteq_{open} X$ ; and for any  $V \subseteq_{open} \mathbb{R}$  that do not contain r,  $f^{-1}(V) = \emptyset \subseteq_{open} X$ , thus f is continuous.

 $\Leftarrow$ : If f is not a constant map, then  $\exists x_1, x_2 \in X$ , s.t.  $f(x_1) = r_1, f(x_2) = r_2$  and  $r_1 \neq r_2$ . Since  $r_1, r_2 \in \mathbb{R}$ , and  $\mathbb{R}$  is Hausdorff space, then  $\exists U, V \subseteq_{open} \mathbb{R}$ , s.t.  $r_1 \in U, r_2 \in V$  and  $U \cap V = \emptyset$ . Thus  $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = \emptyset$ . And  $x_1 \in f^{-1}(U) \neq \emptyset$  and  $x_2 \in f^{-1}(V) \neq \emptyset$ .

If f is continuous, then  $f^{-1}(U) \subseteq_{open} X \Rightarrow f^{-1}(U) = X$  which leads to a contradiction with  $f^{-1}(V) = f^{-1}(U \cap V) = \emptyset$ , thus f is not continuous.

As we can see that if X is a trivial topology space, then the  $\mathbb R$  - value map f on it is continuous iff f is constant map. Now if we add some sets into the trivial topology, can we obtain more continuous  $\mathbb R$  - value maps that are not constant?

**Exercise 62.** Let X be an infinite set, define  $\mathscr{T} := \{U \subseteq X | U = \emptyset \lor X \backslash U \text{ is finite}\}$  which is called **Cofinite topology**. Show that The only  $\mathbb{R}$  - valued continuous maps on  $(X, \mathscr{T})$  are constant maps.

*Proof.* We have proved that any  $\mathbb{R}$  - valued constants map on X is continuous, we will show that any  $\mathbb{R}$  - valued un-constants maps on X is not continuous.

Just as we shown before, If f is not a constant map, then  $\exists x_1, x_2 \in X$ , s.t.  $f(x_1) = r_1, f(x_2) = r_2$  and  $r_1 \neq r_2$ . Since  $r_1, r_2 \in \mathbb{R}$ , and  $\mathbb{R}$  is Hausdorff space, then  $\exists U, V \subseteq_{open} \mathbb{R}$ , s.t.  $r_1 \in U, r_2 \in V$  and  $U \cap V = \emptyset$ . Thus  $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = \emptyset$ . And  $x_1 \in f^{-1}(U) \neq \emptyset$  and  $x_2 \in f^{-1}(V) \neq \emptyset$ .

Then if f is continuous, then  $f^{-1}(U) \in \mathcal{T}$ , since  $f^{-1}(U) \neq \emptyset \Rightarrow X \setminus f^{-1}(U)$  is finite. Since  $f^{-1}(U) \cap f^{-1}(V) = \emptyset \Rightarrow f^{-1}(V) \subseteq X \setminus f^{-1}(U)$  and thus  $f^{-1}(V)$  is finite. Since X is infinite,  $X \setminus f^{-1}(V)$  is infinite  $\Rightarrow f^{-1}(V) \notin \mathcal{T} \Rightarrow f$  is not continuous.  $\square$ 

As we can see that, even though we add some sets into the topology of X, we can not construct some 'nontrivial'  $\mathbb{R}$  - valued maps. Actually, if X is uncountable, even if we add sets into  $\mathscr{T}$  again, such as define  $\mathscr{T}' \coloneqq \{U \subseteq X | U = \varnothing \lor X \backslash U \text{ is countable}\}$  which is called **Cocountable topology**, the only  $\mathbb{R}$  - valued continuous maps on  $(X, \mathscr{T}')$  are still constant maps.

These examples tell us, there is a 'threshold' of the topology, if the topology is too coarse to achieve the threshold, then the only  $\mathbb{R}$  - valued continuous maps on X are constant maps.

Let *X* be a topology space and  $A, B \subseteq X$  be disjoint. We say a **Chain** C from *A* to *B* consists of a sequence of subsets  $C_k$  of  $X(k = 0, 1, \dots, r)$ , s.t.

$$A = C_0 \subset \overline{C_0} \subset C_1^0 \subset \overline{C_1} \subset \cdots \subset \overline{C_{r-1}} \subset C_r^0 \subset \overline{C_r} \subset X \backslash B.$$

For a chain  $C: C_k(k=0,\cdots,r)$ , we let  $C_0 := \emptyset$  and  $C_{r+1} := X$  and define

$$f_{\mathcal{C}}(x) := \begin{cases} 1 - \frac{k}{r}, & \text{if } x \in C_k \backslash C_{k-1}, k = 0, \dots, r \\ 0, & \text{if } x \notin C_r, \end{cases}$$

It is direct to see that  $|f_{\mathcal{C}}(x) - f_{\mathcal{C}}(x')| \leq \frac{1}{r}$  if  $x, x' \in C_{k+1}^o \setminus \overline{C_{k-1}} =: \Omega_k$  for any  $k = 0, \dots, r$ . And  $\Omega_k \subseteq_{open} X$  and  $\bigcup_{i=0}^r \Omega_k = X$ .

**Lemma 2.** Suppose X is a topology space,  $A, B \subseteq X$  are disjoint.  $D_q \subseteq X$  where

$$q \in \left\{ \frac{l}{2^m} \middle| l, m \in \mathbb{N}_0, l \leq 2^m \right\} =: Q,$$

s.t.  $q \leq q' \Rightarrow \overline{D_q} \subseteq D_{q'}^o$  and  $A = D_0, D_1 \subseteq X \setminus B$ . Then  $\exists$  a continuous map  $X \xrightarrow{f} [0,1]$  s.t.  $f(A) = \{1\}$  and  $f(B) = \{0\}$ .

*Proof.* Let  $C_m$  be the chain  $D_0, D_{\frac{1}{2^m}}, \cdots, D_{\frac{2^m-1}{2^m}}, D_1$  from A to B. Thus

$$C_0 = D_0(=A), D_1$$
 $C_1 = D_0, D_{\frac{1}{2}}, D_1$ 
 $C_2 = D_0, D_{\frac{1}{4}}, D_{\frac{1}{2}}, D_{\frac{3}{4}}, D_1$ 



Define  $f_m := f_{\mathcal{C}_m} : X \to \mathbb{R}(m \in \mathbb{N}_0)$ . Since for any  $x \in X, m, m' \in \mathbb{N}_0$ ,  $f_m(x) \leq 1$ , and if  $m \leq m' \Rightarrow f_m(x) \leq f_{m'}(x)$ . Thus  $f_m \to f$  as  $m \to \infty$ . And

$$f(x) - f_m(x) = \lim_{k \to \infty} \sum_{n=m}^{k} (f_{n+1}(x) - f_n(x))$$

where  $f_{n+1}(x) - f_n(x) \le \frac{1}{2^{n+1}}$  for  $\forall x \in X$ . Thus

$$f(x) - f_m(x) \le \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} = \frac{1}{2^m}$$

for any  $x \in X$  and  $m \in \mathbb{N}_0$ . Thus for a given  $x_0 \in X$  and any  $x \in X$ , we have

$$|f(x) - f(x_0)| \le |f(x) - f_m(x)| + |f_m(x) - f_m(x_0)| + |f_m(x_0) - f(x_0)|$$
  
$$\le \frac{1}{2^m} + \frac{1}{2^m} + |f_m(x) - f_m(x_0)|$$

For any  $\epsilon > 0$ , we can choose and fix a large enough m such that  $\frac{1}{2^m} < \frac{\epsilon}{3}$ . Assume that  $x_0 \in \Omega_s$  of  $C_m$  (that is  $x_0 \in C_{\frac{s+1}{2^m}}^o \setminus \overline{C_{\frac{s-1}{2^m}}}$ ), then for any  $x \in \Omega_s \subseteq_{open} X$ , we have that  $|f_m(x) - f_m(x_0)| \le \frac{1}{2^m}$  and

$$|f(x)-f(x_0)| \leq \frac{1}{2^m} + \frac{1}{2^m} + \frac{1}{2^m} \leq \epsilon,$$

thus f is continuous, and  $f(A) = \{1\}, f(B) = \{0\}.$ 

Thus if X is a HLC space,  $A, B \subseteq_{cpt.} X$  are disjoint, then there exists a continuous  $\mathbb{R}$  -valued map  $X \xrightarrow{f} \mathbb{R}$  such that  $f(A) = \{1\}$  and  $f(B) = \{0\}$ .

# Chapter 6

# Sequence & Net

## 6.1 Seq. description of metric space

**Definition 40** (Convergence). Let  $(X, \mathscr{T})$  be a topology space,  $x \in X$  and  $x_n \in X(n \in \mathbb{N})$ , we say  $x_n \to x$  as  $n \to \infty$  if for any open nbd.  $U_x$  of x,  $\exists N$ , s.t.  $\forall n \in \mathbb{N}, n \ge N \Rightarrow x_n \in U$ .

We define

$$\overline{A}' := \{ x \in X | \exists \text{ seq. } a_n \in A(n \in \mathbb{N}), \text{ s.t. } a_n \to x \text{ as } n \to \infty \}$$

and

$$L_A' := \{x \in X | \exists \text{ seq. } a_n \in A \setminus \{x\} (n \in \mathbb{N}), \text{ s.t. } a_n \to x \text{ as } n \to \infty\}.$$

**Exercise 63.** Let (X, d) be a metric space,  $A \subseteq X$ , show that

1. 
$$\overline{A} = \overline{A}'$$
;

2. 
$$L_A = L'_A$$

*Proof.* 1.  $\subseteq$ : if  $x \in \overline{A}$ , then  $B_{\frac{1}{n}}(x) \cap A \neq \emptyset$  for  $\forall n \in \mathbb{N}$ . Then we can form a seq.  $x_n(n \in \mathbb{N})$  such that  $x_n \in B_{\frac{1}{n}}(x) \cap A$  for  $\forall n \in \mathbb{N}$ . Thus for any open nbd.  $U_x$  of x, since X is metric space,  $\exists r > 0$ , s.t.  $B_r(x) \subseteq U_x$ . Let  $N = \lceil \frac{1}{r} \rceil$ , then for any  $n \in \mathbb{N}$ ,  $n \ge N \Rightarrow x_n \in B_{\frac{1}{n}}(x) \subseteq B_r(x) \subseteq U_x \Rightarrow x_n \to x$  as  $n \to \infty \Rightarrow x \in \overline{A}'$ .

 $\supseteq$ : If  $x \in \overline{A}' \Rightarrow \exists$  a seq.  $x_n (n \in \mathbb{R})$ , s.t.  $x_n \to x$  as  $n \to \infty$ . Thus  $\forall$  open nbd.  $U_x$  of x,  $\exists N$ , s.t.  $\forall n \in \mathbb{N}, n \ge N \Rightarrow x_n \in U_x \Rightarrow \text{such } x_n \in U_x \cap A \neq \emptyset \Rightarrow x \in \overline{A}$ .

2. The same as above. 
$$\Box$$

**Exercise 64.** Let  $X \xrightarrow{f} Y$  is a map between metric spaces and  $x_0 \in X$ , show that f is continuous at  $x_0 \Leftrightarrow \forall$  seq.  $x_n \in X(n \in \mathbb{N})$ ,  $x_n \to x$  as  $n \to \infty \Rightarrow f(x_n) \to f(x)$  as  $n \to \infty$ .

*Proof.*  $\Rightarrow$ : For any open nbd. V of  $f(x_0)$ ,  $f^{-1}(V) \subseteq_{open} X$  is an open nbd. of  $x_0$ , since

 $x_n \to x$  as  $n \to \infty$ ,  $\exists N$  s.t.  $\forall n \in \mathbb{N}, n \ge N \Rightarrow x_n \in f^{-1}(V) \Rightarrow f(x_n) \in V \Rightarrow f(x_n) \to f(x_0)$  as  $n \to \infty$ .

 $\Leftarrow$ : Form a seq.  $x_n(n \in \mathbb{N})$  such that  $x_n \in B_{\frac{1}{n}}(x_0)$  for any  $n \in \mathbb{N}$ , then  $x_n \to x_0$  and  $f(x_n) \to f(x_0)$  as  $n \to \infty$ . Thus for any open nbd. V of  $f(x_0)$ ,  $\exists N$ , s.t.  $\forall n \in \mathbb{N}, n \ge N \Rightarrow f(x_n) \in V$ , which means for any  $x \in B_{\frac{1}{n}}(x_0)$ ,  $f(x) \in V \Rightarrow B_{\frac{1}{n}}(x_0) \subseteq V \Rightarrow f$  is continuous at  $x_0$ .

As we shown, given metric spaces, then we can re-define the concept of *closure*, *limit* points and *continuity* of the map with sequential description. But if given topology spaces, instead of metric spaces, we only have

- 1.  $\overline{A}' \subseteq \overline{A}$ ;
- 2.  $L'_A \subseteq L_A$ ;
- 3. f is continuous at  $x_0 \Rightarrow \forall$  seq.  $x_n \in X(n \in \mathbb{N})$ ,  $x_n \to x$  as  $n \to \infty$  then  $f(x_n) \to f(x)$  as  $n \to \infty$

since the proofs of these properties are independent with the features of metric space. And in general, the converses do not hold.

**Exercise 65.** If X are 1-st countable topology space,  $A \subseteq X$ , show that  $\overline{A}' = \overline{A}$  and  $L'_A = L_A$ . *Proof.* All we need to prove is  $\overline{A} \subseteq \overline{A}'$  and  $L_A \subseteq L'_A$ :

1. For any  $x \in X$ ,  $\exists$  a countable local basis  $\mathcal{B}_x$  of x such as  $\mathcal{B}_x = \{V_1, V_2, \cdots\}$ , thus we can form a seq.  $x_n(n \in \mathbb{N})$  such that  $x_n \in A \cap (\bigcap_{i=1}^n V_i)$  for any  $n \in \mathbb{N}$ . Note that  $x \in \overline{A} \Rightarrow A \cap (\bigcap_{i=1}^n V_i) \neq \emptyset$ , thus  $x_n$  exists and  $x_n \in A$ .

Thus for any open nbd. U of x,  $\exists V_m \in \mathcal{B}_x$  such that  $x \in V_m \subseteq U$ , and for any  $n \geq m, x_n \subseteq V_m \subseteq U \Rightarrow x_n \to x$  as  $n \to \infty$ . Thus  $x \in \overline{A}'$ .

2. The same as 1.  $\Box$ 

## 6.2 Sequentially Compact, Totally Bounded

**Definition 41.** Let (X, d) be a metric space, we say

- 1. (X,d) is a sequentially compact if every sequence in X has a convergent subsequence.
- 2. (X,d) is a totally bounded if  $\forall \epsilon > 0, \exists$  finite set  $S \subseteq X$ , s.t.  $X = \bigcup_{s \in S} B_{\epsilon}(s)$ .

**Exercise 66.** Let (X,d) be a totally bounded metric space, that is for any  $n \in \mathbb{N}$ , there exist a finite set  $S_n \subseteq X$ , s.t.  $X = \bigcup_{s \in S} B_{\frac{1}{n}}(s)$ , show that  $S := \bigcup_{n \in \mathbb{N}} S_n$  is a countable dense subset in X w.r.t. d.

*Proof. S* is countable is trivial, we will show that *S* is dense. If *U* is an un-empty open set in *X*, then  $\exists x \in U$  and  $\exists r > 0$ , s.t.  $B_r(x) \subseteq U$ , define  $N = \lceil \frac{1}{r} \rceil$  then for any given  $n \ge N$ ,  $x \in U \subseteq \bigcup_{s \in S_n} B_{\frac{1}{n}}(s)$ . And  $\exists s' \in S_n$ , s.t.

$$x \in B_{\frac{1}{n}}(s') \Rightarrow s' \in B_{\frac{1}{n}}(x) \subseteq B_r(x) \subseteq U$$

since  $s' \in S_n \subseteq S$ ,  $s' \in U \cap S \Rightarrow U \cap S \neq \emptyset \Rightarrow S$  is dense.

Thus Total boundedness  $\Rightarrow$  separability (and hence 2-nd countability and Lindelof since *X* is a metric space).

**Proposition 8.** Let (X, d) be metric space, the following are equivalent:

- 1. X is compact (w.r.t  $\mathcal{T}_d$ );
- 2. *X* is sequentially compact (w.r.t. d);
- 3. *X* is complete and totally bounded (w.r.t. d).

*Proof.*  $1 \Rightarrow 2$ : Assume that  $\exists$  seq.  $x_n \in X(n \in \mathbb{N})$  such that any subseq. of it is not convergent, that is  $\forall x \in X, x$  is not the limit of any subseq. of  $x_n (n \in \mathbb{N})$ . Thus for any  $x \in X$ ,  $\exists$  open nbd.  $U_x$ , s.t.  $\{n \in \mathbb{N} | x_n \in U_x\}$  is finite.

Remark 44. We highlight that the index number  $\{n \in \mathbb{N} | x_n \in U_x\}$  is finite instead of the point. Since the same point can be encoded by multi index number, and we want to expile that case.

Since X is compact,  $X = \bigcup_{x \in X} U_x \Rightarrow \exists$  finite  $X_0 \subseteq X$ , s.t.  $X = \bigcup_{x \in X_0} U_x$ . Thus  $\mathbb{N} = \{n \in \mathbb{N} | x_n \in X\} = \bigcup_{x \in X_0} \{n \in \mathbb{N} | x_n \in U_x\}$  which leads to a contradiction since  $\bigcup_{x \in X_0} \{n \in \mathbb{N} | x_n \in U_x\}$  is finite.

 $2 \Rightarrow 3$ : Let  $x_n (n \in \mathbb{N})$  be a Cauchy seq. in X, it is suffices to show that  $x_n (n \in \mathbb{N})$  has a convergent subseq. and this is implied by 2.

Suppose (X, d) is not totally bounded, then  $\exists \epsilon > 0$ , such that pick any  $x_1 \in X$  we have that

$$B_{\epsilon}(x_1) \subsetneq X \Rightarrow X \backslash B_{\epsilon}(x_1) \neq \emptyset$$
,

and pick  $x_2 \in X \backslash B_{\epsilon}(x_1)$  have

$$B_{\epsilon}(x_1) \cup B_{\epsilon}(x_2) \subsetneq X \Rightarrow X \setminus (B_{\epsilon}(x_1) \cup B_{\epsilon}(x_2)) \neq \emptyset$$
,

and pick  $x_3 \in X \setminus (B_{\epsilon}(x_1) \cup B_{\epsilon}(x_2))$ , and so on.

Thus we can find a seq.  $x_1, x_2, \cdots$  such that  $d(x_i, x_j) \ge \epsilon$  for  $i \ne j$  (since  $x_i \in X \setminus B_{\epsilon}(x_j)$ ). Thus any subseq. of  $x_n (n \in \mathbb{N})$  is not Cauchy seq. and hence is not convergent, which leads to a contradiction with 2.

 $3 \Rightarrow 2$ : Let  $x_n (n \in \mathbb{N})$  be a seq. in X, since (X, d) is totally bounded  $\Rightarrow$  For any given  $n \in \mathbb{N}$ , X can be covered by finitely many  $\frac{1}{n}$  balls.

Thus X can be covered by finite many 1-balls,  $x_n \in X(n \in \mathbb{N}) \Rightarrow \exists$  a 1-ball  $B_1$ , s.t.

$$\{n \in \mathbb{N} | x_n \in B_1\}$$
 is infinite;

*X* can be covered by finite many 1/2-balls, and so do  $B_1$ , thus  $\exists$  a 1/2-ball  $B_2$ , s.t.

$${n \in \mathbb{N} | x_n \in B_1 \cap B_2}$$
 is infinite.

And if  $\exists$  1/m-ball  $B_m$ , s.t.  $\{n \in \mathbb{N} | x_n \in \cap_{i=1}^m B_i\}$  is infinite, then since  $\cap_{i=1}^m B_i$ , which covers infinite points of the seq., can be covered by finitely many 1/(m+1) balls, there  $\exists$  a 1/(m+1) ball  $B_{m+1}$  s.t.

$$\{n \in \mathbb{N} | x_n \in \bigcap_{i=1}^{m+1} B_i\}$$
 is infinite.

Thus  $\exists$  subseq.  $x_{n_k}(k \in \mathbb{N})$ , s.t.  $x_{n_k} \in B_1 \cap \cdots \cap B_k$  for every  $k \in \mathbb{N}$ . And for every  $l, l' \geq k, x_{n_l}, x_{n'_l} \in B_k$  and hence  $d(x_{n_l}, x_{n'_l}) \leq \frac{1}{k}$ . Thus  $x_{n_k}(k \in \mathbb{N})$  is a Cauchy seq., and since X is complete,  $x_{n_k}(k \in \mathbb{N})$  is convergent.

Remark 45. Refer to the proof of Bolzano-Weierstrass theorem in Introduction to Topology, Lecture 8,9.

 $2 \Rightarrow 1$ : Let  $\mathcal{F}$  be a family of closed subsets of X which satisfies the FIP, we need to show that  $\cap \mathcal{F} \neq \emptyset$ . Suppose that  $\cap \mathcal{F} = \emptyset$ . Then  $\{X \setminus C | C \in \mathcal{F}\}$  is an open cover of X, since X is sequentially compact, then X is totally bounded, and hence X is Lindelof countable.

Thus  $\exists$  a countable  $\mathcal{F}_0 = \{C_1, C_2, \dots\} \subseteq \mathcal{F}$  s.t.  $\{X \setminus C | C \in \mathcal{F}_0\}$  still cover X, and hence  $\cap_{C \in \mathcal{F}_0} C = \emptyset$ . Note that  $\mathcal{F}$  satisfies FIP, thus  $\mathcal{F}_0$  satisfies FIP as well. Thus any finite intersection of the elements in  $\mathcal{F}_0$  is not empty, thus exists

$$x_1 \in C_1,$$
  
 $x_2 \in C_1 \cap C_2,$   
 $\dots$   
 $x_n \in \bigcap_{i=1}^n C_i,$ 

which forms a seq.  $x_n(n \in \mathbb{N})$  in X, and since X is seq. cpt., there exists a convergent subseq.  $x_{n_k}(k \in \mathbb{N})$ . And  $x_{n_k} \to x \in X$  as  $k \to \infty$ .

Note that since  $C_n(n \in \mathbb{N})$  are closed, then for any given  $N \in \mathbb{N}$ ,  $\bigcap_{i=1}^N C_i$  is still closed. Since  $x_{n_k} \in \bigcap_{i=1}^{n_k} C_i$  and for any  $k \geq$  given  $K \in \mathbb{N}$  have that  $x_{n_k} \in \bigcap_{i=1}^{n_K} C_i$  and  $\bigcap_{i=1}^{n_K} C_i$  is closed  $\Rightarrow x \in \bigcap_{i=1}^{n_K} C_i$  for any  $K \in \mathbb{N}$ . Since  $n_k \to \infty$  as  $k \to \infty$ , thus  $x \in \bigcap_{i=1}^N C_i$  for any  $N \in \mathbb{N}$   $\Rightarrow x \in \lim_{n \to \infty} \bigcap_{i=1}^n C_i = \bigcap_{C \in \mathcal{F}_0} C \Rightarrow \bigcap_{C \in \mathcal{F}_0} C \neq \emptyset$  which leads to the contradiction with the assumption.

**Exercise 67.** Let (X, d) be a complete metric space,  $K \subseteq X$ , show that

- 1. (K,d) is complete  $\Leftrightarrow K \subseteq_{close} X$ ;
- 2. (K,d) is compact  $\Leftrightarrow K \subseteq_{close} X$  and (K,d) is totally bounded;
- 3. (K,d) is totally bounded  $\Leftrightarrow \forall \epsilon > 0, \exists$  finite set  $S \subseteq X$ , s.t.  $K \subseteq \bigcup_{s \in S} B_{\epsilon}(s)$ .

*Proof.* 1. This will be proved by demonstrating the contrapositive: *K* is not complete if and only if *K* is not closed.

 $\Rightarrow$ : Suppose that K is not complete. Then there exists a Cauchy sequence  $x_n$  in K such that the limit  $x = \lim_{n\to\infty} x_n$ , which exists in the complete metric space X, is not a member of K.

For all  $\epsilon > 0$ , there exists an  $N \in \mathbb{N}$  such that for all  $n \geq N$  has  $d(x, x_n) < \epsilon$ , and hence  $X \setminus K$  is not open (if  $X \setminus K$  is open then  $\exists r > 0$ , s.t.  $B_r(x) \subseteq X \setminus K \Rightarrow d(x, x_n) > r$  for all  $n \in \mathbb{N}$ ). Therefore, K is not closed.

 $\Leftarrow$ : Suppose that K is not closed. Then  $X \setminus K$  is not open. Therefore, there exists a  $x \in X \setminus K$  such that for all  $\epsilon > 0$ , there exists a  $y \in K$  such that  $d(x,y) < \epsilon$ . Thus we can form a seq.  $y_n(n \in \mathbb{N})$  in K such that  $y_n \in K \cap B_{\frac{1}{n}}(x)$  for all  $n \in \mathbb{N}$  and hence  $d(x,y_n) < \frac{1}{n}$ .

Now, we show that  $y_n$  is a Cauchy sequence. Given an  $\epsilon > 0$ , let  $N \in \mathbb{N}$  be such that for all  $n \geq N$  has  $d(x, y_n) < \frac{\epsilon}{2}$ . Let  $m, n \geq N$ , then by the triangle inequality:

$$d(y_n, y_m) \le d(x, y_m) + d(x, y_n) \le \epsilon$$
,

Hence  $y_n$  is a Cauchy sequence. Because (X,d) is a complete metric space by assumption, the limit  $\lim_{n\to\infty} y_n$  exists and is in X. Denote this limit by y. By the definition of  $y_n$  we have that  $\lim_{n\to\infty} d(x,y_n)=0$ . From Distance Function of Metric Space is Continuous and Composite of Continuous Mappings is Continuous we have  $d(x,y)=0 \Rightarrow x=y$ , since  $x\notin K \Rightarrow y\notin K \Rightarrow K$  is not complete.

2. trivial

3.  $\Rightarrow$  is trivial;  $\Leftarrow$ : Since given any  $\epsilon > 0$ ,  $\exists$  finite  $S \subseteq X$  s.t.  $K \subseteq \bigcup_{s \in S} B_{\epsilon}(s)$ . Define  $S_0 = \{s_1, \dots, s_n\} \subseteq S$  where  $B_{\epsilon}(s) \cap K \neq \emptyset$  for any  $s \in S_0$ . Then pick  $k_i \in K \cap B_{\epsilon}(s_i)$  for  $i = 1, \dots, 2$ , then we have that

$$k_i \in B_{\epsilon}(s_i) \Rightarrow d(s_i, k_i) < \epsilon$$

thus for any  $k \in K$ ,  $\exists s_i \in S_0$ , s.t.  $k \in B_{\epsilon}(s_i) \Rightarrow d(k, s_i) < \epsilon$ , thus

$$d(k, k_i) \le d(k, s_i) + d(s_i + k_i) \le 2\epsilon$$

thus  $k \in B_{2\epsilon}(k_i) \Rightarrow K \subseteq \bigcup_{i=1}^n B_{2\epsilon}(k_i) \Rightarrow K$  is totally bounded.

Remark 46. Let (X,d) be a metric space, define  $d'(x_1,x_2) := \min\{1,d(x_1,x_2)\}$ , then d' is still a metric. And

- {the Cauchy seq.s in (X, d)} = {the Cauchy seq.s in (X, d')}
- $\mathscr{T}_d = \mathscr{T}_{d'}$
- (X, d') is always a **bounded** metric space.

### 6.3 **Net**

Let *X* be set, then a sequence  $x_n (n \in \mathbb{N})$  in *X* is such a map  $\mathbb{N} \xrightarrow{x_n} X$  (denote x(n) by  $x_n$ ). Now we gonna generalize this concept.

**Definition 42** (Directed Set). A directed set  $(D, \ge)$  consists of a non-empty set D and a relation > on D s.t.

- 1.  $\forall d \in D, d \geq d$ ;
- 2.  $\forall d, d', d'' \in D, d \geq d', d' \geq d'' \Rightarrow d \geq d'',$

i.e.  $(D, \geq)$  is pre-order. And  $\forall d, d' \in D, \exists d'' \in D$ , s.t.  $d'' \geq d, d'' \geq d'$ .

*Remark* 47. Note that the pre-order is not total order, which means there could exist  $d_1, d_2 \in D$  which are not comparable. On the other hand, the pre-order is not partial order yet, which means it does not require  $d \geq d' \wedge d' \geq d \Rightarrow d = d'$ . Thus the following statement in a directed set may hold:  $\exists d_1, d_2, d_3, d_4 \in D$  such that

$$d_1 \ge d_2 \ge d_3 \ge d_4 \ge d_1$$
,

but  $d_1 \neq d_2 \neq d_3 \neq d_4$ .

**Example 13.** Let X be a topology space,  $x \in X$ ,  $D = \{\text{all open nbd.s of } x\}$  and for any  $U, V \in D$  define  $U \geq V \Leftrightarrow U \subseteq V$ , then  $(D, \geq)$  is a directed set. (Since for any  $U, V \in D$ ,  $\exists W := U \cap V \in D$ , s.t.  $W \geq U, W \geq V$ )

**Definition 43** (Net). Let X be a set, a net  $(D, \geq) \xrightarrow{x} X$ ,  $(x_{\alpha}(\alpha \in D)$  for short,) in X consists of a directed set  $(D, \geq)$  and a map  $D \xrightarrow{x} X$ .

Suppose that a net x. ( $x_{\alpha}(\alpha \in D)$ ) is a net in a set X, and  $S \subseteq X$ , we say that x. lies in S

- eventually if  $\exists \delta \in D, \forall \alpha \in D, \alpha \geq \delta \Rightarrow x_{\alpha} \in S$ ;
- frequently if  $\forall \delta \in D, \exists \alpha \in D, \text{ s.t. } \alpha \geq \delta \text{ and } x_{\alpha} \in S.$

*Remark* 48.  $\neg(x. \text{ lies in } S \text{ eventually}) \Leftrightarrow x. \text{ lies in } X \setminus S \text{ frequently.}$ 

**Definition 44** (Convergence). Let X be a topology space,  $x_{\alpha}(\alpha \in D)$  is a net in X,  $x \in X$ . We say that x. converges x (or say x is a limit of x.) if  $\forall$  open nbd. U of x in X, x. lies in U eventually.

**Exercise 68.** Show that X is a Hausdorff space  $\Leftrightarrow$  every net has at most one limit.

*Proof.*  $\Rightarrow$ : Suppose a net  $D \xrightarrow{x_{\cdot}} X$  converges to x and y in X and  $x \neq y$ , then  $\exists$  open nbd.s U of x and V of y, s.t.  $x \in U, y \in V$  and  $U \cap V = \emptyset$ . Since  $x_{\cdot} \to x$  then  $\exists \delta_x \in D$ , s.t.  $\forall \alpha \in D, \alpha \geq \delta_x \Rightarrow x_{\alpha} \in U$ . And since  $x_{\cdot} \to y, \exists \delta_y \in D$ , s.t.  $\forall \alpha \in D, \alpha \geq \delta_y \Rightarrow x_{\alpha} \in V$ . Then  $\exists \delta \in D$ , s.t.  $\delta \geq \delta_x \land \delta \geq \delta_y$ , thus for  $\forall \alpha \in D, \alpha \geq \delta$  has  $x_{\alpha} \in U \subseteq X \setminus V$  and  $x_{\alpha} \in V$  which leads to a contradiction.

 $\Leftarrow$ : Suppose X is not a Hausdorff space, then  $\exists x,y \in X$ , s.t.  $\forall$  open nbd.s U of x, V of y has  $U \cap V \neq \emptyset$ . Thus we can form a net in X.

Define  $D = \{U \cap V | x \in U \subseteq_{open} X, y \in V \subseteq_{open} X\}$  and  $\forall d_1, d_2 \in D, d_1 \geq d_2 \Leftrightarrow d1 \subseteq d_2$ , it is direct to see  $(D, \geq)$  is a directed set. And then  $D \xrightarrow{x} X$  where  $d \mapsto x_d \in d$  is a net (since  $\forall d \in D, d \neq \emptyset$ , and hence  $x_d \exists$ ).

Thus given any open nbd. W of x,  $W \cap V \in D$  where D is a open nbd. of y, then  $\forall \alpha \in D, \alpha \geq W \cap V$  we have

$$x_{\alpha} \in \alpha \subseteq W \cap V \subseteq W$$

thus x. lies in any open nbd. W of x eventually, and hence x. converges to x. Thus x. converges to y as well in the same way, which leads to a contradiction.

*Remark* 49 (A naturally convergent net). If X is a set,  $x \in X$ , if we define the directed set as  $D = \{U | x \in U \subseteq_{open} X\}$  and  $\geq \Leftrightarrow \subseteq$ , then  $(D, \geq)$  is a directed set. And define the net  $D \xrightarrow{x} X$ , where  $\alpha \mapsto x_{\alpha} \in S_{\alpha} \subseteq \alpha$ . Then for any open nbd. U of x,  $U \in D$  and  $\forall \alpha \in D, \alpha \geq U$  has

$$x_{\alpha} \in S_{\alpha} \subseteq \alpha \subseteq U$$
.

Thus such *x*. converges to *x* naturally.



**Exercise 69.** *Let* X *be a topology space,*  $A \subseteq X$ *, define* 

$$\overline{A}'' := \{x \in X | \exists \text{ net a. in A converging to } x\}$$

and

$$L_A'' := \{x \in X | \exists \text{ net a. in } A \setminus \{x\} \text{ converging to } x\}$$

show that  $\overline{A} = \overline{A}''$  and  $L_A = L_A''$ .

*Proof.* 1.  $\subseteq$ : if  $x \in \overline{A}$ , then any open nbd. U of x has  $U \cap A \neq \emptyset$ , thus we can form a net. Define  $D = \{U | x \in U \subseteq_{open} X\}$  and  $2 \Leftrightarrow \subseteq$  then  $(D, \ge)$  is a directed set and  $D \xrightarrow{x} A$  where  $d \mapsto x_d \in d \cap A$  is a net. And x. converges to  $x \Rightarrow x \in \overline{A}''$  by *Remark* 2.  $\supseteq$ : if  $x \in \overline{A}''$ , then  $\exists$  a net  $D \xrightarrow{x} A$  s.t. for  $\forall$  open nbd. U of x,  $\exists \delta \in D$  s.t.  $\forall \alpha \in D, \alpha \ge \delta \Rightarrow \alpha \in U$ , then  $U \cap A \neq \emptyset \Rightarrow x \in \overline{A}$ .

2. the same as above. 
$$\Box$$

**Exercise 70.** Let  $X \xrightarrow{f} Y$  be a map between topology spaces,  $x_0 \in X$ , show that f is continuous at  $x_0 \Leftrightarrow f$  or  $\forall$  net  $D \xrightarrow{x_0} X$  in X that converges to  $x_0$ ,  $f(x_0)$  is a net in Y converges to  $f(x_0)$ .

*Proof.*  $\Rightarrow$ : if V is an open nbd. of  $f(x_0)$ , since f is continuous,  $f^{-1}(V)$  is an open nbd. of  $x_0$ , then  $\exists \delta \in D$ , s.t.  $\forall \alpha \in D, \alpha \geq \delta \Rightarrow x_\alpha \in f^{-1}(V) \Rightarrow f(x_\alpha) \in V \Rightarrow f(x)$  converges to  $f(x_0)$ .

 $\Leftarrow$ : suppose f is not continuous at  $x_0$ , then  $\exists$  an open nbd. V of  $f(x_0)$ ,  $f^{-1}(V)$  is not an open nbd. of  $x_0$ , that is  $x_0 \notin (f^{-1}(V))^o$ , since  $x_0 \in f^{-1}(V)$ ,  $x_0 \in f^{-1}(V) \setminus (f^{-1}(V))^o = \partial f^{-1}(V)$ . Thus any open nbd. U of x has  $U \cap f^{-1}(V) \neq \emptyset$  and  $U \cap X \setminus f^{-1}(V) \neq \emptyset$ , and hence we can form a net.

Define  $D = \{U | x \in U \subseteq_{open} X\}$  and  $\geq \Leftrightarrow \subseteq$  then  $(D, \geq)$  is a directed set, and define a net  $D \xrightarrow{x} X \setminus f^{-1}(V)$  where  $\alpha \mapsto x_{\alpha} \in \alpha \cap X \setminus f^{-1}(V)$ , then x. converges to x by *Remark* 2, and hence f(x) converges to  $f(x_0)$  by assumptions, which means  $\exists \delta \in D$ , s.t.  $\forall \alpha \in D, \alpha \geq \delta \Rightarrow f(x_{\alpha}) \in V$  which leads to a contradiction with  $f(x_{\alpha}) \in X \setminus f^{-1}(V)$ .

*Remark* 50. f(x) is a net in Y:

$$D \xrightarrow{x.} X \xrightarrow{f} Y$$

### 6.4 Subnet

Recall that given a sequence  $x_n(n \in \mathbb{N})$  in a set X, a subsequence  $x_{n_k}(k \in \mathbb{N})$  is composite map

$$\mathbb{N} \xrightarrow{n.} \mathbb{N} \xrightarrow{x.} X$$

(denote x(n(k)) as  $x_{n_k}$ ), where  $\mathbb{N} \xrightarrow{n} \mathbb{N}$  is a monotone injection. We now want to generalize this conception.

**Definition 45** (Final Map). Let  $(D, \geq)$  and  $(D', \geq')$  be directed sets, a map  $D' \xrightarrow{h} D$  is a final map (w.r.t.  $\geq$  and  $\geq'$ ) if  $\forall \delta \in D$ ,  $\exists \delta' \in D'$ , s.t.  $\forall \alpha \in D'$ ,  $\alpha \geq \delta' \Rightarrow h(\alpha) \geq \delta$ .

*Remark* 51. Final map analogizes the monotones of  $\mathbb{N} \xrightarrow{n} \mathbb{N}$ . Final map require the tail of the map is monotones.

**Definition 46.** Let  $D' \xrightarrow{h} D$  is a final map between directed sets, net  $x_{h(\cdot)}$ :

$$D' \xrightarrow{h} D \xrightarrow{x_{h(\cdot)}} X$$

is called a subnet of x.

**Exercise 71.** If a net x. converges to  $x_0$  show that the subnet  $x_{h(\cdot)}$  converges to  $x_0$  as well.

*Proof.* For any open nbd. U of  $x_0$ ,  $\exists \delta \in D$ , s.t.  $\forall \alpha \in D, \alpha \geq \delta \Rightarrow x_\alpha \in U \Rightarrow \exists \delta' \in D', \forall \alpha' \geq \delta', h(\alpha') \geq \delta \Rightarrow x_{h(\alpha')} \in U \Rightarrow x_{h(\cdot)}$  converges to  $x_0$ .

**Exercise 72.** Let X be a set, x. is a net in X,  $S \subseteq X$ . Show that x. lies in S frequently  $\Leftrightarrow \exists$  subnet of x. lies in S eventually.

*Proof.*  $\Rightarrow$ :  $D \xrightarrow{x_{\cdot}} X$  lies in S frequently, then  $\forall \delta \in D$ ,  $\exists \alpha_{\delta} \in D$ , s.t.  $\alpha_{\delta} \geq \delta$  and  $x_{\alpha_{\delta}} \in S$ . Then we can for a final map  $D \xrightarrow{h} D$  where  $\delta \mapsto \alpha_{\delta}$ . Thus for any  $\alpha_{\delta} \in D$ ,  $\exists \alpha_{\delta} \in D$ , s.t.  $\forall \alpha \in D$ ,  $\alpha \geq \alpha_{\delta} \Rightarrow \alpha \geq \alpha_{\delta}$ , thus h is a final map, and  $x_{h(\cdot)}$  is a subnet of x. and for any  $\alpha \in D$ ,  $x_{h(\alpha)} = x_{\alpha_{\delta}} \in S \Rightarrow x_{h(\cdot)}$  lies in S eventually.

 $\Leftarrow:$  if  $D \xrightarrow{x} X$  has an subnet  $D' \xrightarrow{x_{h(\cdot)}} X$  which lies in S eventually. Then  $\exists \beta \in D'$ , s.t.  $\forall \alpha' \in D'$ ,  $\alpha' \geq \beta \Rightarrow x_{h(\alpha')} \in S$ . On the other hand,  $\forall \delta \in D$ ,  $\exists \delta' \in D'$ , s.t.  $\forall \alpha' \in D'$ ,  $\alpha' \geq \delta' \Rightarrow h(\alpha') \geq \delta$ . Since D' is directed set,  $\exists \gamma \in D'$ , s.t.  $\gamma \geq \beta$  and  $\gamma \geq \delta'$ , then  $h(\gamma) \geq \delta$  and  $x_{h(\gamma)} \in S$ .

Collectively,  $\forall \delta \in D$ ,  $\exists h(\gamma) \in D$ , s.t.  $h(\gamma) \geq \delta$  and  $x_{h(\gamma)} \in S \Rightarrow x$ . lies in S frequently.

**Definition 47** (Universal Net). A net x. in a set X is universal if  $\forall A \subseteq X$  either x. lies in A eventually or x. lies in  $X \setminus A$  eventually.

**Exercise 73.**  $X \xrightarrow{f} Y$  is a map, show that x is a universal net in  $X \Rightarrow f(x)$  is universal net in Y.

*Proof.* For any  $B \subseteq Y$ ,  $f^{-1}(B) \subseteq X$ , since  $D \xrightarrow{x} X$  is a universal net, x. lies in  $f^{-1}(B)$  eventually or  $X \setminus f^{-1}(B)$ .

If x. lies in  $f^{-1}(B)$  eventually,  $\exists \delta \in D$ , s.t.  $\forall \alpha \in D, \alpha \geq \delta, \Rightarrow x_{\alpha} \in f^{-1}(B) \Rightarrow f(x_{\alpha}) \in B$ ; If x. lies in  $X \setminus f^{-1}(B)$  eventually,  $\exists \delta \in D$ , s.t.  $\forall \alpha \in D, \alpha \geq \delta, \Rightarrow x_{\alpha} \in X \setminus f^{-1}(B) = f^{-1}(Y \setminus B) \Rightarrow f(x_{\alpha}) \in Y \setminus B$ . Thus f(x) is a universal net in Y.  $\Box$ 

**Exercise 74.** Show that every subnet of a universal net is universal.

*Proof.* Suppose  $D \xrightarrow{x} X$  is a universal net in X which has a subnet  $D' \xrightarrow{x_{h(\cdot)}} X$ . And for any  $A \subseteq X$ , x. lies in A or  $X \setminus A$  eventually. Suppose x. lies in A, then  $\exists \delta \in D$ , s.t.  $\forall \alpha \in D$ ,  $\alpha \geq \delta \Rightarrow x_{\alpha} \in A$ . On the other hand,  $\exists \delta' \in D'$ , s.t.  $\forall \alpha' \in D'$ ,  $\alpha' \geq \delta' \Rightarrow h(\alpha') \geq \delta \Rightarrow x_{h(\alpha')} \in A \Rightarrow x_{h(\cdot)}$  lies in A eventually as well  $\Rightarrow x_{h(\cdot)}$  is universal.

**Theorem 10.** Every net has a universal subnet.

*Proof.* Let  $(D, \geq_D) \xrightarrow{x} X$  be a net in a set X, where  $(D, \geq_D)$  is a directed set.

- 1. Define Y as the family of some families  $\mathcal{A}(\subseteq \mathcal{P}(X))$  of subsets of X such that
  - (a)  $\forall A \in \mathcal{A}$ , x. lies in A frequently;
  - (b)  $\forall A_1, A_2 \in \mathcal{A}, A_1 \cap A_2 \in \mathcal{A}.$

That is the element of Y is the family of subsets of X that satisfies the above conditions. Thus  $Y \neq \emptyset$  (since  $\{X\} \in Y$ ) and  $(Y, \subseteq)$  is a poset. We now apply Zorn's lemma to get a maximal element of Y.

Let *C* be a chain in *Y* w.r.t.  $\subseteq$ . Then we claim that  $\bigcup_{A \in C} A \in Y$  and is an upper bound of *C*.

- (a) For any  $A \in \bigcup_{A \in C} A$  there  $\exists A' \in C$ , s.t.  $A \in A'$ , thus x. lies in A eventually;
- (b) For any  $A_1, A_2 \in \mathcal{A}$  there  $\exists \mathcal{A}_1, \mathcal{A}_2 \in \mathcal{C}$ , s.t.  $A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2$  and  $\mathcal{A}_1$  is comparable with  $\mathcal{A}_2$  w.r.t.  $\subseteq$ , for example  $\mathcal{A}_1 \subseteq \mathcal{A}_2$ , then  $A_1, A_2 \in \mathcal{A}_2 \Rightarrow A_1 \cap A_2 \in \mathcal{A}_2 \subseteq \cup_{\mathcal{A} \in \mathcal{C}} \mathcal{A}$ .

Thus  $\exists$  maximal element  $A_0$  of Y.

- 2. Let  $D_0 := \{(A, \alpha) \in A_0 \times D | x_\alpha \in A\}$  with the pre-order  $\geq_0$  on  $D_0$ :  $(A', \alpha') \geq_0 (A, \alpha) \Leftrightarrow A' \subseteq A$  and  $\alpha' \geq_D \alpha$ . Since
  - (a) For any  $A \in \mathcal{A}_{\prime}$ ,  $\alpha \in D$ ,  $A \subseteq A$  and  $\alpha \geq_D \alpha \Rightarrow (A, \alpha) \geq_0 (A, \alpha)$ ;
  - (b) For any  $(A_1, \alpha_1)$ ,  $(A_2, \alpha_2)$ ,  $(A_3, \alpha_3) \in D_0$ ,  $(A_1, \alpha_1) \ge_0 (A_2, \alpha_2)$  and  $(A_2, \alpha_2) \ge_0 (A_3, \alpha_3)$  means

$$\alpha_1 \geq_D \alpha_2 \geq_D \alpha_3$$

and

$$A_1 \subseteq A_2 \subseteq A_3$$

thus  $(A_1, \alpha_1) \ge_0 (A_3, \alpha_3)$ 

(c) For any  $(A_1, \alpha_1)$ ,  $(A_2, \alpha_2) \in D_0$ ,  $A_0 \ni A_1 \cap A_2 \subseteq A_1$  and  $A_2$ ; and  $\exists \alpha' \ge_D \alpha_1$  and  $\alpha_2 \Rightarrow D_0 \ni (A_1 \cap A_2, \alpha') \ge_0 (A_1, \alpha_1)$  and  $(A_2, \alpha_2)$ .

Thus  $(D_0, \geq_0)$  is a directed set.

3. And then we can define a final map  $D_0 \xrightarrow{h} D$  where  $(A, \alpha) \mapsto \alpha$ . Given  $\delta \in D$ , for any  $A \in \mathcal{A}_0$ , since x. lies in A frequently,  $\exists \alpha \in D$ , s.t.  $\alpha \geq \delta$  and  $x_\alpha \in A$ , and hence  $(A, \alpha) \in D_0$ . For any  $(A', \alpha') \geq_0 (A, \alpha)$ , we have that  $h((A', \alpha')) = \alpha' \geq \alpha \geq \delta$ , thus h is a final map.

In particular, we donate the subnet of x., i.e. the composite of  $D_0 \xrightarrow{h} D \xrightarrow{x} X$  as  $D_0 \xrightarrow{y := x . \circ h} X$  where  $(A, \alpha) \mapsto x_{\alpha} = y_{(A, \alpha)}$ .

4. Let  $S \subseteq X$ , we will show that the subnet y. is universal: if  $\neg$  (y. lies in  $X \setminus S$  eventually)  $\Leftrightarrow$  (y. lies in S frequently) then we will show that it implies y. lies in S eventually.

For any  $A \in \mathcal{A}_0$ , x. lies in A frequently  $\Rightarrow$  for any  $\delta \in D$ , there exists  $\alpha \in D$ , s.t.  $\alpha \geq_D \delta$  and  $x_\alpha \in A$  and hence  $(A,\alpha) \in D_0$ . And since y. lies in S frequently,  $\exists (A_1,\alpha_1) \in D_0$ , s.t.  $(A_1,\alpha_1) \geq_0 (A,\alpha)$ , (i.e.  $A_1 \subseteq A$  and  $\alpha_1 \geq_D \alpha_0$ ) and  $y_{(A_1,\alpha_1)} \in S$ . And  $y_{(A_1,\alpha_1)} = x_{\alpha_1} \in A_1$  since  $(A_1,\alpha_1) \in D_0$ . Thus

$$x_{\alpha_1} = y_{(A_1,\alpha_1)} \in S \cap A_1 \subseteq S \cap A$$

thus x. lies in  $S \cap A$  frequently for any  $A \in \mathcal{A}_0$  and thus x. lies in S frequently, thus we have that

$$\mathcal{A}_0 \cup \{S \cap A | A \in \mathcal{A}_0\} \cup \{S\} \in Y$$

by the definition of Y, and since  $A_0$  is the maximal element of  $Y \Rightarrow S \in A_0$ .

If  $\neg$  ( y. lies in S eventually ) holds, then y. lies in  $X \setminus S$  frequently holds  $\Rightarrow X \setminus S \in \mathcal{A}_0$ , thus  $S, X \setminus S \in \mathcal{A}_0 \Rightarrow \emptyset = S \cap (X \setminus S) \in \mathcal{A}_0$ , which leads to a contradiction with x. lies in it frequently.

*Remark* 52. Thus we have a corollary: if x. is a universal net in X,  $S \subseteq X$ , then  $\neg$  (x. lies in S eventually)  $\Rightarrow x$ . lies in  $X \setminus S$  eventually.

## 6.5 Net and Compactness

**Proposition 9.** *Let X be a topology space, the following are equivalent:* 

- 1. X is a compact space;
- 2.  $\forall$  family  $\mathcal{F}$  of closed subsets of X,  $\mathcal{F}$  has  $FIP \Leftrightarrow \cap \mathcal{F} \neq \emptyset$ ;
- 3.  $\forall$  universal net in X converges;
- 4.  $\forall$  net in X has a convergent subnet.

*Proof.* We will prove this in order  $1 \Rightarrow 3 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$ .

 $1 \Rightarrow 3$ : Suppose that  $x_{\alpha}(\alpha \in D)$  is a universal net in X which does not converge to any  $x \in X$ , thus  $\exists$  open nbd.  $U_x$  of x in X s.t.  $\neg$  (x. lies in  $U_x$  eventually)  $\Rightarrow x$ . lies in  $X \setminus U_x$  frequently. Since  $X = \bigcup_{x \in X} U_x$  and X is compact, there  $\exists$  finite  $X_0 \subseteq X$ , s.t.  $X = \bigcup_{x \in X_0} U_x \Rightarrow \emptyset = \bigcup_{x \in X_0} (X \setminus U_x)$  which leads to a contradiction with x. lines in  $X \setminus U_x$  frequently.

 $3 \Rightarrow 4$ :  $\forall$  net in *X* has a universal subnet and it is convergent by 3.

 $4 \Rightarrow 2$ : Let  $\mathcal{F}$  be a family of closed subsets of X which has FIP, we can **expand** it as  $\mathcal{F}' := \{ \bigcap_{i=1}^m F_i | m \in \mathbb{N}, F_i \in \mathcal{F}, i = 1, \cdots, m \}$ . Note that there are 3 facts for  $\mathcal{F}'$ :

- 1.  $\mathcal{F}'$  also has FIP;
  - since finite intersection of  $\mathcal{F}'$  is a finite intersection of  $\mathcal{F}$ ;
- 2.  $\cap \mathcal{F}' = \cap \mathcal{F};$

since for any  $c \in \cap \mathcal{F}' \Rightarrow c \in \text{every finite intersection of } \mathcal{F} \Rightarrow c \in \cap_{F \in \{F\}} F = F$  for  $\forall F \in \mathcal{F} \Rightarrow c \in \cap \mathcal{F}$ . On the contrary, for any  $c \in \cap \mathcal{F} \Rightarrow c \in F$  for any  $F \in \mathcal{F} \Rightarrow c \in \mathcal{F}'$ .

3.  $\mathcal{F}'$  is closed under  $\cap$ .

It is direct to see that  $(\mathcal{F}', \geq')$  with  $\geq' := \subseteq$  is a directed set. For any  $C \in \mathcal{F}'$ , (it is finite intersection of  $\mathcal{F}$  and hence  $C \neq \emptyset$ ,) choose  $x_C \in C$  and form a net  $\mathcal{F}' \xrightarrow{x_C} X$  where  $C \mapsto x_C$ .

By 4, net x. has a convergent subnet, that is  $\exists$  a final map  $D \xrightarrow{h} \mathcal{F}'$  for some directed set  $(D, \geq_D)$ , s.t. subnet  $D \xrightarrow{y} X$  (where  $\alpha \mapsto x_{h(\alpha)} = y_{\alpha}$ ) converges to some point  $x \in X$ .

Since h is finial,  $\forall C \in \mathcal{F}'$ ,  $\exists \alpha \in D, \forall \beta \in D, \beta \geq_D \alpha \Rightarrow h(\beta) \geq C \Leftrightarrow h(\beta) \subseteq C$  and thus

$$y_{\beta} = x_{h(\beta)} \in h(\beta) \subseteq C$$

thus y. lies in C eventually. For any  $C \in \mathcal{F}'$ , y. converges to  $x \Rightarrow x \in C$  since C is closed, thus  $x \in \cap_{C \in \mathcal{F}'} C = \cap \mathcal{F} \Rightarrow \mathcal{F} \neq \emptyset$ .

 $2 \Rightarrow 1$ : has been given in *Point Set Topology Lecture 6*.

*Remark* 53. 1  $\Rightarrow$  3: A common routine to utilize the compactness of X: find an open nbd.  $U_x$  for any  $x \in X$ , and then  $X = \bigcup_{x \in X} U_x$ .

 $4 \Rightarrow 2$ : The key to form a net is to find some sets  $\neq \emptyset$ .

**Lemma 3.** Let  $X_j (j \in J)$  be a family of topology spaces and  $D \xrightarrow{x_i} \prod_{j \in J} X_j$  where  $\alpha \mapsto x_\alpha = (x_{\alpha_j})_{j \in J}$  be a net. There are groups of corresponding projective nets  $D \xrightarrow{x_{\gamma_j}} X_j$  where  $\alpha \mapsto x_{\alpha_j}$  for  $j \in J$ .

Then x. converges to x in  $\prod_{j \in J} X_j$  (equipped with the product topology)  $\Leftrightarrow \forall j \in J, x_{.j}$  converges  $x_j$  in  $X_j$  where  $x_j = \pi_j(x)$ .

*Proof.*  $\Rightarrow$ : Since  $\prod_{j \in J} X_j \xrightarrow{\pi_k} X_k$  where  $(x_j)_{j \in J} \mapsto x_k$  is continuous and  $x_{\cdot_k} = \pi_k(x_{\cdot})$ , then  $x_{\cdot_k} \to x_{\cdot_k} = \pi_k(x_{\cdot_k}) \to \pi_k(x_{\cdot_k}) \to \pi_k(x_{\cdot_k}) \to \pi_k(x_{\cdot_k})$ 

 $\Leftarrow$ : Recall that  $\mathcal{B} := \{\prod_{j \in J} Y_j | Y_j \subseteq_{open} X_j (j \in J) \land \{j \in J | Y_j \neq X_j\}$  is finite} is a basis of the product space  $\prod_{j \in J} X_j$ . For any open nbd. U of x, there exists  $\prod_{j \in J} Y_j \in \mathcal{B}$  s.t.

$$x \in \prod_{j \in J} Y_j \subseteq U$$

Let  $J_0 = \{j \in J | Y_j \subsetneq X_j\}$ , which is a finite set.  $x_{,j}$  converges to  $x_j \in X_j \Rightarrow x_{,j}$  lies in  $Y_j$  eventually i.e.  $\exists \alpha_j \in D$ , s.t.  $\forall \alpha \in D$ ,  $\alpha \geq \alpha_j \Rightarrow x_{\alpha_j} \in Y_j$  for all  $j \in J_0$ .

Choose  $\tilde{\alpha} \in D$ , s.t.  $\tilde{\alpha} \ge \alpha_j$  for all  $j \in J_0$ , then for  $D \ni \alpha \ge \tilde{\alpha}$ ,  $x_{\alpha_j} \in Y_j$  for all  $j \in J_0$  and hence for all  $j \in J$ .

**Theorem 11** (Tychonoff Theorem). For compact space  $X_j (j \in J)$  the product space  $\prod_{j \in J} X_j =: X$  is also compact.

*Proof.* Let x. be a universal net in X, then  $x_{.j} = \pi_j(x)$ . is a universal net in  $X_j$ , for every  $j \in J \Rightarrow x_{.j}$  converges in  $X_j$  since  $X_j$  is compact  $\Rightarrow x$ . converges by Lemma  $\Rightarrow X$  is compact.

# Chapter 7

# **Revisit Compactness**

### 7.1 Generalization of Ascoli's Theorem

Recall that for metric spaces X and Y, a family  $\mathcal{F}$  of maps from X to Y (i.e. Y - valued functions on X) is **equicontinuous** at a point  $x_0 \in X$  if  $\forall \epsilon > 0, \exists \delta > 0, \forall f \in \mathcal{F}$  and  $x \in X$ ,  $d(x_0, x) < \delta \Rightarrow d(f(x_0), f(x)) < \epsilon$ . We now generalize this concept.

**Definition 48** (Equicontinuous). Let X be a topology space and Y be a metric space, a family  $\mathcal{F}$  of maps from X to Y is equicontinuous at a point  $x_0 \in X$  if  $\forall \epsilon > 0$ ,  $\exists$  open nbd. U of  $x_0$  s.t.  $\forall f \in \mathcal{F}$  and  $x \in X$ ,  $x \in U \Rightarrow d(f(x_0), f(x)) < \epsilon$ .

**Definition 49** (Point-wise convergence). Let X, Y be metric spaces, and  $X \xrightarrow{f_n} Y (n \in \mathbb{N})$  is a sequence of functions, then  $f_n$  converges point-wise to  $X \xrightarrow{f} Y$  if for  $\forall x \in X$  one has  $f_n(x) \to f(x)$  as  $n \to \infty$ .

**Definition 50** (Uniform convergence). Let X,Y be metric spaces, a sequence of functions  $X \xrightarrow{f_n} Y(n \in \mathbb{N})$  converges uniformly to  $X \xrightarrow{f} Y$  if for  $\forall \epsilon > 0, \exists N \in \mathbb{N}$  such that for  $\forall n \geq N$  and  $\forall x \in X$  one has  $d(f_n(x), f(x)) < \epsilon$ .

**Definition 51** (Compact convergence). Let  $(X, \mathcal{T})$  be a topological space and  $(Y, d_Y)$  be a metric space. A sequence of functions  $X \xrightarrow{f_n} Y(n \in \mathbb{N})$  is said to converge compactly to some function  $X \xrightarrow{f} Y$  if, for every compact set  $K \subseteq X$ ,  $f_n|_K \to f|_K$  uniformly.

**Theorem 12** (A generalization of Ascoli's theorem). Let X be a topology space and  $\mathcal{F}$  be a family of  $\mathbb{R}$  - valued functions on X, if

- 1. X is separable;
- 2.  $\mathcal{F}$  is equicontinuous for  $\forall x \in X$ ;
- 3. for  $\forall x \in X$ ,  $\{f(x)|f \in \mathcal{F}\}$  is a bounded subset of  $\mathbb{R}$ ,

then every seq. in  $\mathcal{F}$  has a subseq. which converges compactly, i.e. uniformly on every compact subset of X.

*Proof.* Let  $A = \{a_1, a_2, \dots\}$  be a countable dense subset, suppose  $f_n(n \in \mathbb{N})$  is a seq. in  $\mathcal{F}$ .

**Claim 1**:  $\exists$  subseq.  $f_{n_m}(m \in \mathbb{N})$  which converges point-wise on A:

For  $a_1 \in A$ , we have that  $\{f_n(a_1)|n \in \mathbb{N}\}\subseteq \{f(a_1)|f \in \mathcal{F}\}\subseteq_{bdd}$ .  $\mathbb{R}$ . Then by Bolzano-Weierstrass theorem, there exists a  $n_m^{(1)}(m \in \mathbb{N})$ , which is strictly monotone, such that  $f_{n_m^{(1)}}(a_1)$  converges. Inductively, we can construct  $n_m^{(j)}(m \in \mathbb{N})(j \in \mathbb{N}_0)$ , and let  $n_m^{(0)}=m$ , such that

- 1.  $n^{(j)}$  monotone strictly;
- 2.  $\{n_m^{(j)}|m\in\mathbb{N}\}\subseteq\{n_m^{(j-1)}|m\in\mathbb{N}\};$
- 3.  $f_{n_m^{(j)}}(a_j)$  converges as  $m \to \infty$ .

Let  $n_m := n_m^{(m)}(m \in \mathbb{N})$ , then  $f_{n_m}(m = k, k+1, \cdots)$  is a subseq. of  $f_{n_m^{(k)}}(m \in \mathbb{N})$  and hence  $f_{n_m}(a_k)$  converges as  $m \to \infty$  for every  $k \in \mathbb{N}$ .

Remark 54. For instance,  $f_{n_m^{(2)}}$  is a subseq. of  $f_{n_m^{(1)}}$  and  $f_{n_m^{(1)}}(a_1)$  converges hence  $f_{n_m^{(2)}}(a_1)$  converges as well. Thus  $f_{n_m^{(2)}}(a_1)$  and  $f_{n_m^{(2)}}(a_2)$  both converge.

Since given  $j \in \mathbb{N}$ , the tail of seq.  $f_{n_m} = f_{n_m^{(m)}}$  is subseq. of  $f_{n_m^{(j)}}$ , for example,  $f_{n_m}(m=3,4,\cdots)$  is subseq. of  $f_{n_m^{(3)}}(m\in\mathbb{N})$ , thus  $f_{n_m}(a_j)$  converges for all  $j\in\mathbb{N}$ .



Figure 7.1:  $f_m(m \in \mathbb{N})$ ,  $a_i(j \in \mathbb{N})$ 

**Claim 2**:  $\forall \epsilon > 0$  and  $x \in X$ ,  $\exists$  (open) nbd.  $U_x$  of x in X and a number  $N_x > 0$  s.t. if  $x' \in U_x$  and  $k, l \ge N_x \Rightarrow |f_{n_k}(x') - f_{n_l}(x')| < \epsilon$ .

Since  $\mathcal{F}$  is equicontinuous at x, thus for  $\forall \epsilon > 0$ ,  $\exists$  (open) nbd.  $U_x$  of x, s.t.  $|f(z) - f(x)| < \epsilon/6$  for  $f \in \mathcal{F}, z \in U_x$ . Since  $A \subseteq_{dense} X$ ,  $\exists a \in U_x \cap A$ . For any  $x' \in U_x$  we

have that

$$|f_{n_k}(x') - f_{n_l}(x')| \le |f_{n_k}(x') - f_{n_k}(x)| + |f_{n_k}(x) - f_{n_k}(a)| + |f_{n_k}(a) - f_{n_l}(a)| + |f_{n_l}(a) - f_{n_l}(x)| + |f_{n_l}(x) - f_{n_l}(x')| < |f_{n_k}(a) - f_{n_l}(a)| + \frac{2}{3}\epsilon.$$

since  $f_{n.}(a)$  converges  $\Rightarrow \exists N_x > 0$ , s.t.  $\forall k, l \geq N \Rightarrow |f_{n_k}(a) - f_{n_l}(a)| < \epsilon/3 \Rightarrow |f_{n_k}(x') - f_{n_l}(x')| < \epsilon$ .

**Claim 3**:  $\forall K \subseteq_{cpt.} X$ ,  $f_{n_m}|_K (m \in \mathbb{N})$  converges uniformly.

For any given  $\epsilon > 0$ , we have found  $U_x$  and  $N_x$  as in Claim 2,  $K = \bigcup_{x \in K} \{x\} \subseteq \bigcup_{x \in K} U_x$ ,  $K \subseteq_{cpt.} X \Rightarrow \exists x_1, \cdots, x_p$ , s.t.  $K \subseteq U_{x_1} \cup \cdots \cup U_{x_p}$ . Let  $N = \max\{N_{x_1}, \cdots, N_{x_p}\}$ , then for any  $q \in K$  and  $k, l \geq N$  we have  $|f_{n_k}(q) - f_{n_l}(q)| < \epsilon$ . Thus  $f_{n_m}(q)(m \in \mathbb{N})$  is a Cauchy seq. in compact set  $K \Rightarrow f_{n_m}(q) \to f(q)$  as  $m \to \infty$ , thus  $f_{n_n}$  converges uniformly in K.

*Remark* 55. The condition (3) is equivalent to that  $\mathcal{F}$  is uniformly bounded when X is assumed to be compact and  $\mathcal{F}$  is equicontinuous everywhere.

## 7.2 Relatively Compact

**Definition 52.** Let X be a topology space and  $A \subseteq X$ , A is relatively compact if  $\overline{A}$  is compact.

**Example 14.** Every subset of a compact subset of a Hausdorff space is relatively compact: Suppose X is Hausdorff,  $Y \subseteq_{cpt.} X \Rightarrow Y \subseteq_{close} X$ . For  $\forall Z \subseteq Y, \overline{Z} \subseteq \overline{Y} = Y$ . And since  $\overline{Z} \subseteq_{close} Y$ , Z is compact  $\Rightarrow \overline{Z}$  is compact.

**Exercise 75.** Let (X,d) is a metric space,  $A \subseteq X$ , show that A is rel. cpt.  $\Leftrightarrow$  any seq. in A has a subseq. which converges in X.

*Proof.*  $\Rightarrow$ : A is rel. cpt.  $\Rightarrow \overline{A}$  is cpt.  $\Leftrightarrow \overline{A}$  is sequential compact  $\Rightarrow$  every seq. in  $\overline{A}$  converges  $\Rightarrow$  every seq. in A converges in  $\overline{A}$  (or in X).

 $\Leftarrow$ : Suppose that  $\overline{A}$  is not compact then there is a seq.  $\{a_n\}$  in  $\overline{A}$  which is not convergent. So then for each  $n \in \mathbb{N}$  define  $A_n := A \cap B_{\frac{1}{n}}(a_n) \neq \emptyset$ . Then pick a  $b_n$  from each  $A_n$  so that  $\{b_n\}$  is a sequence in A, where for any  $\epsilon > 0$ , there is a  $N \in \mathbb{N}$  such that for any n > N,

$$d(a_n, b_n) < 1/n < \epsilon$$
.

Then  $\{b_n\}$  has a convergent subseq.  $\{b_{n_k}\}$  with limit b by assumption. Thus for any  $\epsilon > 0$ , there exists a  $K \in \mathbb{N}$  such that for all k > K,

$$d(a_{n_k}, b) \leq d(a_{n_k}, b_{n_k}) + d(b_{n_k, b}) < \epsilon/2 + \epsilon/2,$$

where  $\{a_{n_k}\}$  is the corresponding subseq. of  $\{a_n\}$ , thus  $a_{n_k} \to b$  as  $k \to \infty$ , implying  $\overline{A}$  is seq. cpt. and hence cpt. and contradicting the supposition.

*Remark* 56. At first glance, the definition of A being **rel. cpt.** appears to be the same as **seq. cpt.** (which is equivalent to cpt. in metric space), but there is a difference: the subseq. are required to converge in X (or  $\overline{A}$  since it is closed), not necessarily in A, while actual seq. cpt. does require it to be in A. (more)

**Example 15.** Let X be a compact topology space,  $C(X,\mathbb{R}) := \{X \xrightarrow{f} \mathbb{R} | f \text{ if continuous} \}$  and  $d_{\sup} := \sup_{x \in X} |f(x) - g(x)|$  (=  $\max_{x \in X} |f(x) - g(x)|$  since X is compact ) Then  $(C(X,\mathbb{R}),d_{\sup})$  is a complete metric space, and  $f_n(n \in \mathbb{N})$  converges w.r.t.  $d_{\sup} \Leftrightarrow f_n$  converges uniformly on  $X \Leftrightarrow f_n$  is uniformly Cauchy seq. By the generalization of Ascoli's theorem, when X is compact and separable,  $\mathcal{F} \subseteq C(X,\mathbb{R})$  is equiconti. and uniformly bdd. (or satisfies condition 3.)  $\Rightarrow \mathcal{F}$  is rel. cpt. by Ex1.