

INGENIERÍA DE REDES

Grado en Ingeniería Informática

Tema 1: Arquitectura de la red Internet

Roberto García Fernández Área de Ingeniería Telemática Universidad de Oviedo

Arquitectura de la red Internet

- Internet es una red de redes que está formada por múltiples redes físicas conectadas entre sí por encaminadores (routers)
- Internet es un conjunto descentralizado de redes de comunicación interconectadas
- Utilizan la familia de protocolos TCP/IP
- Cada red individual puede tener características específicas e interactúa con las demás a través del protocolo IP

The large system of connected computers around the world that allows people to share information and communicate with each other

Source: Cambridge Dictionary

Aplicación

Transporte

Internet (IP)

Acceso a la Red

Física

Gestión de Internet

Agentes que intervienen en gestión y funcionamiento de Internet

- En 1972 se crea Internet Assigned Numbers Authority (IANA)
 - Supervisa la asignación de direcciones IP y sistemas autónomos
 Organismos de estandarización de direcciones IP y sistemas autónomos
- En 1986 se crea el Internet Engineering Task Force (IETF)
 - A cargo de generar protocolos y estándares.
- En 1998 se crea la Internet Corporation for Assigned Names and Numbers (ICANN)
 - Coordina el Sistema de resolución de Nombres (DNS)
- En 2003 nace Number Resource Organization (NRO)
 - Coordinan esfuerzos de los Regional Internetdores y proveedores de Registries (RIR)
- En 2006 nace Internet Governance Forum (IGF)
 - Foro de múltiples partes interesadas para abordar cuestiones de política pública relacionadas con Internet

https://www.internetsociety.org/es/internet/who-makes-it-work/

Evolución de Internet

Sistemas autónomos

- Los Protocolos de Routing Externo se basan en la utilización de Códigos de Sistema Autónomo (o ASNs):
 - Gestionados por IANA de forma centralizada, se transfieren a los Regional Internet Registry (RIR) bajo solicitud

Asignación de ASNs: https://www.iana.org/assignments/as-numbers/as-numbers.xhtml

Colección de subredes

Internet es un conjunto de subredes interconectadas

Jerarquía de Internet

 Point of Presence (PoP): Lugar físico donde un proveedor de servicios tiene equipamiento.

- Internet Exchange Points
 (IXPs): infraestructura física
 a través de la cual ISPs y
 proveedores de servicios
 intercambian información
- Internet Service Provider
 (ISP): Empresa que provee
 conexión a Internet a
 clientes.
- Single-home ISP: Hay una conexión con el ISP
- Dual-home ISP: Hay dos conexiones con un ISP
- Multi-home ISP: Hay conexiones con al menos 2 ISPs

Jerarquía de Internet. Definiciones

Algunas redes Tier 1

Level 3 Communications

Cogent Communications

AT&T

CenturyLink

Zayo Group

Global Telecom & Technology

Verizon Enterprise Solutions

NTT Communications (America)

XO Communications

TeliaSonera International Carrier

Tata Communications (America)

Deutsche Telekom

Telecom Italia Sparkle

Telefonica Global Solutions

- Peering:
 - Intercambio de tránsito IP entre dos redes
- Transit: Pagar a
 otra red para que te
 de acceso a Internet
 o parte
- Customer: Otra red que te paga para que le des acceso a Internet

- Tier 1 Networks: pueden acceder a cualquier otra red sin contratar acceso
- Tier 2 Networks: se alía con otras redes para transportar tráfico, pero aún necesita contratar parte
- Tier 3 Networks: contrata todo su tráfico a otras redes
 - Típicamente un ISP
 - Puede ser Single o Multihomed (uno o varios puntos de interconexión)

Ejemplo de acuerdo de *peering* (Colorado State University) https://www.acns.colostate.edu/media/sites/100/2016/08/fccn_peering_agreement.pdf

Protocolos TCP/IP

Redes locales (L2)

PC

Switch

L2

Procesado de paquetes TCP/IP Ingeniería Telemática

Switch

L2

PC

11

INGENIERÍA DE REDES

Router

L3

Capa de acceso a la red/enlace Ingeniería (Layer 2)

- Se encarga de enviar los datos a los dispositivos conectados a la red
- Necesita conocer las características de la red para poder realizar el envío: formato del paquete de datos, direccionamiento físico, etc.
- Encapsula los datagramas IP dentro del formato de trama utilizado por la red y traduce la dirección IP en un dirección física

12

Protocolo ARP (Address Resolution Protocol)

- Traduce direcciones IP a direcciones de red de área local
- Definido en el estándar RFC 826
- Hosts manejan una tabla ARP donde figuran las traducciones entre dirección IP y dirección física realizadas hasta el momento

 Protocolo ARP: pasos a seguir en la resolución de direcciones

 Protocolo ARP: pasos a seguir en la resolución de direcciones

Protocolo ARP: formato de la trama

Tipo de hardware		Tipo de protocolo	
Tamaño dir. física Tamaño dir. de red		Tipo de mensaje (solicitud, respuesta)	
	Dirección fí	sica origen	
Dirección de red origen			
Dirección física destino			
Dirección de red destino			

- Tipo de hardware: especifica el tipo de dirección física, por ejemplo ethernet
- Tipo de protocolo: especifica el tipo de dirección de red, por ejemplo IP
- Tamaño dir. física: especifica el tamaño en bytes de la dirección física
- Tamaño dir. de red: especifica el tamaño den bytes de la dirección de red
- Tipo de mensaje: especifica el tipo de operación

(1: petición ARP; 2: respuesta ARP)

ARP: Conmutación LAN

Capa de red/IP (Layer 3)

- Sin establecimiento de llamada
- Los routers no mantienen estado de las posibles conexiones extremo a extremo
 - A nivel de red no existe el concepto de conexión
- Los paquetes se encaminan en función de la dirección IP del destino

 Los paquetes entre un mismo par <origen,destino> pueden seguir rutas distintas

Capa IP (Layer 3)

Protocolo IP

- Datagrama IP: unidad básica de información
- No orientado a conexión: cada datagrama se trata de forma independiente, pudiendo seguir caminos distintos
- No fiable: cuando se produzca algún error los datagramas se perderán
- Inseguro: la entrega de los datagramas no está garantizada, se pueden perder, duplicar, retasar o entregarse fuera de orden

Datagrama IP

- Se controla el tiempo de vida de los datagramas
 - Encaminadores rápidos decrementan en 1 el tiempo de vida
 - Encaminadores lentos decrementan en x segundos el tiempo de vida
- En ocasiones es necesario descartarlos:
 - Expira su tiempo de vida
 - Existen problemas de congestión
 - Se producen errores en su contenido
- Es necesario implementar mecanismos de segmentación y reensamblado de los datagramas para atravesar diferentes tipos de redes

INGENIERÍA DE REDES 19

Capa Internet (Layer 3)

Formato del datagrama IP

Versión	IHL	Tipo de servicio		Longitud total	
Idei	Identificación Indicadores		De	splazamiento del fragmento	
Tiempo	de vida	Protocolo		Suma de comprobación de la cabecera	
Dirección de origen					
Dirección de destino					
Opciones + Relleno					
Datos					

- Versión: versión del protocolo IP
- IHL: longitud de la cabecera medida en palabras de 32 bits
- **Tipo de servicio:** información sobre el camino a seguir (el más rápido, el de mayor capacidad, el de mayor seguridad, ...)
- Longitud total: longitud del datagrama medido en bytes.
- **Identificación**: identifica al datagrama
- Indicadores: indican si el datagrama debe ser fragmentado o no

Formato del datagrama IP

Versión	IHL	Tipo de servicio		Longitud total		
Idei	Identificación Indicadores		De	esplazamiento del fragmento		
Tiempo	de vida	Protocolo		Suma de comprobación de la cabecera		
	Dirección de origen					
Dirección de destino						
Opciones + Relleno						
Datos						

- **Desplazamiento**: indica el desplazamiento de los datos con respecto a los enviados en el datagrama inicial
- Tiempo de vida: tiempo en segundos que el datagrama puede seguir existiendo
- **Protocolo**: protocolo de nivel superior que transporta el datagrama (TCP, UDP)
- Suma de comprobación: asegura la integridad de la cabecera
- **Origen**: dirección IP del origen
- **Destino**: dirección IP del destino
- Opciones: lista con información del datagrama

Direccionamiento IP

- Dirección IP: número de 32 bits
 - Parte de red: se asigna de forma global por IANA
 - Parte de host: se asigna de forma local
 - Host de una misma red comparten la parte de red
- Máscara de red: número de 32 bits que se utiliza para separar la parte de red de la parte de host en una dirección IP

Direccionamiento IP

- Direcciones especiales:
 - Parte de host a 0: dirección base de la red
 - Parte de host a 1: dirección de difusión de la red
 - 127.0.0.1: bucle local
- No se puede asignar a ningún dispositivo una dirección cuya parte de host sea todo 0s o todo 1s
- Direcciones privadas: los encaminadores las descartan
 - Clase A: 10.0.0.0 hasta 10.255.255.255
 - Clase B: 172.16.0.0 hasta 172.31.255.255
 - Clase C: 192.168.0.0 hasta 192.168.255.255

Direccionamiento IP

- Creación de subredes: técnica VLSM
 - Utilizar bits de la parte de host para crear las subredes

Dirección IP	red	host		Creación de subredes
Dirección IP	red	subred host		
Máscara	1s	1s	0s	

- Creación de la máscara de red:
 - Parte de red y subred: 1
 - Parte de host: 0
- Utilización de la máscara de red:
 - Dirección de red: AND bit a bit de la dirección IP y de la máscara
 - Dirección de difusión: OR bit a bit de la dirección IP y el complemento a 1 de la máscara

Capa Internet. NAT/PAT

Direccionamiento IP: IP Enmascarada

- NAT/PAT (Network Address Port Translation)
- Uso de direcciones IP virtuales dentro de la red LAN
- Sólo es necesario emplear una dirección IP pública para los dispositivos de la red LAN
- Las distintas conexiones se mapean a números de puertos distintos del equipo encargado de gestionar la traducción NAT/PAT (tabla de traducciones)
 - Paquete de salida:
 - IP origen se sustituye por IP pública
 - Puerto origen se sustituye por un puerto del equipo que gestiona las traducciones
 - Paquete de entrada:
 - Se examina la tabla de traducciones para cambiar la IP destino y el puerto destino por la IP virtual y el puerto indicados en la entrada de la tabla

Ejemplo de NAT/PAT

Capa Internet. DHCP

Direccionamiento IP: Configuración de un host

- Asignación de direcciones
 - Configuración manual
 - Protocolo de autoconfiguración (DHCP)
- Parámetros necesarios
 - Dirección IP
 - Máscara de red
 - Dirección IP encaminador de salida
 - Dirección IP de servidores DNS

Capa Internet. DHCP

Direccionamiento IP: Configuración de un host

- DHCP (Dynamic Host Configuration Protocol):
 - Protocolo para obtener parámetros de configuración automáticamente desde la red (por ejemplo, dirección IP)
 - Basado en el modelo cliente-servidor: el cliente (por ejemplo un PC) contacta con un servidor DHCP para obtener sus parámetros
 - Asignación de dirección IP
 - Apropiada a la red (subred) a la que se conecta el cliente
 - No asignada a otra máquina
 - Modelos de asignación de direcciones IP
 - Dinámico: el servidor elige una dirección de un grupo de direcciones disponibles. La concesión de la dirección IP tiene un plazo limitado
 - Automático: igual que el modelo dinámico pero con un plazo ilimitado
- Estático (o manual): preasignación manual de direcciones IP a direcciones físicas

Capa Internet. DHCP

Direccionamiento IP: Configuración de un host

- DHCP: Pasos seguidos para obtener una dirección IP
 - La máquina difunde de un mensaje de descubrimiento (DHCPDISCOVER) para buscar servidores DHCP en su red física
 - 2. Los servidores de la red responden con un mensaje de ofrecimiento (DHCPOFFER) que proporciona una dirección IP
 - 3. La máquina selecciona uno de los ofrecimientos y difunde un mensaje de solicitud (DHCPREQUEST), identificando al servidor
 - 4. El servidor seleccionado asigna una dirección IP a la máquina y envía un mensaje DHCPACK
 - El cliente recibe el mensaje DHCPACK con la dirección IP que puede comenzar a usar

Capa Internet. Routing

Encaminamiento IP

- El encaminamiento (routing) en IP consiste en seleccionar por qué ruta debe ser enviado un Datagrama IP
- El encaminamiento se puede entender desde dos puntos de vista:
 - Entrega directa: encaminamiento entre dos máquinas que están en la misma red física
 - Entrega indirecta: la entrega del datagrama se realizará a un encaminador (router) que se encargará de encaminarlo hacia la red de destino. El datagrama saltará de encaminador a encaminador hasta que llegue a la red física de destino y se pueda realizar una entrega directa

Capa Internet. Routing

Encaminamiento IP

- Los sistemas finales y los dispositivos de encaminamiento disponen de una tabla de encaminamiento (tabla de rutas).
- Cada entrada en la tabla de encaminamiento permite saber cuál es el siguiente salto en la ruta hacia un destino determinado.
- Modificación del datagrama a lo largo del camino
 - Cabecera IP:
 - Tiempo de vida
 - Suma de comprobación de la cabecera
 - Cabecera de nivel de enlace:
 - Direcciones físicas (MAC) para identificar al router que realiza el salto y al router destino del salto

Capa Internet. ICMP

Control de errores

- IP no envía mensajes de error.
- Se utiliza el protocolo ICMP (Internet Control Message Protocol)
- Utilizado para enviar mensajes de control entre máquinas
- Encapsulado dentro de datagramas IP
- ICMP es un protocolo no seguro
- Algunos mensajes de control ICMP:
 - Destino inalcanzable: enviado por un encaminador cuando no sabe cómo alcanzar la red de destino o cuando un datagrama debe ser fragmentado y está activado el bit de no fragmentación.
 - Tiempo excedido: enviado por un encaminador si el tiempo de vida del datagrama ha expirado. Enviado por un host cuando no puede completar el reensamblaje.
 - Ralentización del origen: enviado por un encaminador o un host destino a un host origen para que reduzca la velocidad a la que envía sus datos al destino Internet. Se puede utilizar para anticiparse a la congestión.

- Proporciona un servicio de transferencia de datos extremo a extremo que aísla a la capa de aplicación de los detalles de la red o redes intermedias
- Se emplean dos protocolos principalmente:
 - TCP (Transmission Control Protocol)
 - UDP (User Datagram Protocol)
- Se emplea un segundo nivel de direccionamiento que permite identificar al programa o aplicación del que proceden o al que van dirigidos los mensajes: los puertos

Protocolo TCP

- Protocolo orientado a conexión:
 - 3 fases: establecimiento de conexión, transferencia, cierre de conexión
- Es Fiable:
 - Se utilizan asentimientos
 - Solicita reenvíos
- Utiliza un sistema de ventana deslizante para la gestión del flujo a este nivel
- Utiliza buffers para la transferencia haciéndola más eficiente.
 - Acumula datos hasta que tiene suficientes para llenar un datagrama
 - También se puede forzar el envío
- Se intercambian flujos de bytes, divididos en segmentos

Protocolo TCP: Fiabilidad

Pérdida de segmentos:

- Los segmentos tienen número de secuencia
- Se responderá a la llegada de segmentos correctos mediante asentimientos (ACK)
- Los asentimientos hacen referencia al flujo de bytes recibidos, no a segmentos individuales
- Se utilizarán temporizadores para controlar la pérdida de tramas: retransmisión

- Duplicados:

- Cada pérdida falsa será detectada y se enviará un duplicado
- El receptor detectará el doble envío gracias al número de secuencia y descartará la trama

Protocolo TCP: Fiabilidad

- Eficiencia y control de flujo:
 - Se utilizará un sistema de ventana deslizante para gestionar el flujo
 - Ventana del emisor: número de bytes que puede enviar sin recibir asentimiento
 - Ventana del receptor: número de bytes que puede aceptar (créditos)
 - Se utilizará un tamaño de ventana variable controlado por el receptor
 - Los asentimientos transportan el número de bytes recibidos correctamente y el tamaño de la ventana receptora, que puede aumentar o disminuir.
 - Se utilizará el sistema de superposición para el ahorro de ancho de banda consumido por los ACKs

– Control de errores:

• Suma de comprobación

Protocolo TCP: Cabecera

Puerto de origen		gen	Puerto de destino	
Número d			e secuencia	
Númer			o de ACK	
Longitud	Reserv	Control	Ventana	
Suma de comprobación Puntero urgente			Puntero urgente	
Opciones + Relleno				

- **Puerto de origen y destino**: contiene el número de puerto del origen y el destino.
- **Número de secuencia**: identifica el número de secuencia del primer byte de datos del segmento. Si es un segmento SYN, es el número de secuencia inicial.
- **Número de ACK**: identifica el número del siguiente byte que se espera recibir.
- Longitud de cabecera: nos indica la longitud de la cabecera medida en palabras de 32 bits.

37

Protocolo TCP: Cabecera

Puerto de origen		gen	Puerto de destino
Número d			e secuencia
Númer			o de ACK
Longitud	Reserv	Control	Ventana
Suma de comprobación			Puntero urgente
Opciones + Relleno			

Bits de control:

- URG: indica que el campo puntero de datos urgentes se encuentra activo.
- ACK: cuando está a 1 indica que sirve como asentimiento.
- PSH: indica la entrega inmediata de los datos al nivel inferior. No se espera a que se llene el buffer (forzado de envío de datos).
- **RST**: se reinicia la conexión cuando tiene valor 1.
- SYN: es el flag de establecimiento de la conexión.
- **FIN**: indica el cierre de la conexión.

Protocolo TCP: Cabecera

Puerto de origen		gen	Puerto de destino	
Número d			e secuencia	
Númer			o de ACK	
Longitud	Reserv	Control	Ventana	
Suma de comprobación Puntero urgente			Puntero urgente	
Opciones + Relleno				

- **Ventana**: indica el tamaño de la ventana. Puede ser 0.
- **Suma de comprobación**: se calcula utilizando el segmento TCP más una pseudocabecera de la cabecera IP formada por los campos dirección origen y destino, protocolo y longitud del segmento.
- **Puntero urgente**: sumado al número de secuencia del segmento permite saber el último byte de la secuencia de datos urgentes.
- **Opciones**: se creó para añadir características extras no cubiertas por la cabecera normal.

Puertos de comunicación

- Puede pensarse en ellos como una cola donde el protocolo sitúa los datagramas
- TCP los utiliza para averiguar el destino último dentro de la máquina que recibe la trama
- Permite que varios programas dentro de una misma máquina se comuniquen concurrentemente
- TCP se encargará de multiplexar los datos entrantes de diferentes programas

Puertos de comunicación

Ejemplos de puertos bien conocidos:

DECIMAL	KEYWORD	DESCRIPTION
21	ftp	Transferencia de ficheros
23	telnet	Conexión con terminal
25	SMTP	Simple Mail Transfer Protocol
79	finger	Finger
80	http	Acceso al web

Protocolo UDP

- Protocolo no orientado a conexión
- Es un protocolo no fiable
- Sus mensajes pueden llegar fuera de secuencia o perderse
- Reduce la información suplementaria a enviar
- No se envían asentimientos: se reduce el tráfico de la red
- Aplicaciones:
 - Diseminar datos de salida
 - Recolección de datos de entrada
 - VolP
 - · Aplicaciones de tiempo real
 - Transmisión de vídeo

Protocolo UDP: Cabecera

Puerto de origen	Puerto de destino	
Longitud	Suma de comprobación	

- **Puerto de origen y destino**: contiene el número de puerto del origen y el destino
- Longitud: longitud de los datos del datagrama IP
- Suma de comprobación: asegura la integridad del datagrama. Se calcula utilizando la cabecera UDP y el campo de datos. Su cálculo no es obligatorio