

Chapter 6: Network Layer

Introduction to Networks

Cisco Networking Academy® Mind Wide Open™

In this chapter, you will be able to:

- Explain how network layer protocols and services support communications across data networks.
- Explain how routers enable end-to-end connectivity in a small-tomedium-sized business network.

- 6.1 Network Layer Protocols
- 6.2 Routing
- 6.3 Routers

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

6.1 Network Layer Protocols

Cisco | Networking Academy® | Mind Wide Open™

The Network Layer

The network layer, or OSI Layer 3, provides services to allow end devices to exchange data across the network. To accomplish this end-to-end transport, the network layer uses four basic processes:

- Addressing end devices
- Encapsulation
- Routing
- De-encapsulating

Network Layer Protocols

Common network layer protocols include:

- IP version 4 (IPv4)
- IP version 6 (IPv6)

Legacy network layer protocols include:

- Novell Internetwork Packet Exchange (IPX)
- AppleTalk
- Connectionless Network Service (CLNS/DECNet)

IP Components

IP Packets flow through the internetwork.

- Connectionless No connection is established before sending data packets.
- Best Effort (unreliable) No overhead is used to guarantee packet delivery.
- Media Independent Operates independently of the medium carrying the data.

7

Characteristics of the IP protocol

IP - Connectionless

Characteristics of the IP protocol

Best Effort Delivery

As an unreliable network layer protocol, IP does not guarantee that all sent packets will be received. Other protocols manage the process of tracking packets and ensuring their delivery.

Characteristics of the IP protocol

IP – Media Independent

IP packets can travel over different media.

Encapsulating IP

Transport Layer Encapsulation Segment Header Data

IP Packet

Network Layer Encapsulation

IP Header Transport Layer PDU

Network Layer PDU

The network layer adds a header so packets can be routed through complex networks and reach their destination. In TCP/IP based networks, the network layer PDU is the IP packet.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

IPv4 Packet Header

Contents of the IPv4 packet header

IPv4 Header Fields

IPv4 Header Fields

Version Always set to 0100 for IPv4	Differentiated Services Identifies the priority of each packet
Time-to-Live Commonly referred to as hop count	Protocol Identifies the upper-layer protocol to be used next
Source IP Address Identifies the IP address of the sending host	Destination IP Address Identifies the IP address of the recipient host

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

IPv4 Header Fields

Contents of the IPv4 header fields

14

IPv4 Header Fields

IPv4 Header Fields

Internet Header Length

Identifies the number of 32-bit words in the header

Total Length

Maximum value is 65,535 bytes

Header Checksum

Error-checks the IP header – if incorrect, the packet is discarded

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 15

IPv4 Header Fields

- Identification identifies each packet and its fragments, which keep the packet's original ID to enable defragmentation at the receiver computer.
- The More flag. If set, signifies that the packet has been fragmented and more fragments follow this current fragment. If not set, the flag signifies that either the packet was not fragmented or that this is the last of several fragments.
- The Do-Not-Fragment flag. If set, prevents fragmentation of the packet; if the packet exceeds the outgoing link's Maximum
- packet; if the packet exceeds the outgoing link's Maximum Transmission Unit (MTU) it will be dropped.
- Fragment Offset signifies the position of the fragment within the original packet. If this is the first fragment, or the packet has not been fragmented then the offset will be zero.

IP Address depletion

 IPv4 has a limited number of unique public IP addresses available

Internet routing table expansion

 As the number of servers (nodes) connected to the Internet increases, so too does the number of network routes

Lack of end-to-end connectivity

 Network Address Translation (NAT) is a technology commonly implemented within IPv4 networks. NAT provides a way for multiple devices to share a single public IP address. However, because the public IP address is shared, the IP address of an internal network host is hidden.

Network Layer in Communication Introducing IPv6

- Increased address space
- Improved packet handling
- Eliminates the need for NAT
- Integrated security
- 4 billion IPv4 addresses 4,000,000,000

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Encapsulating IPv6

IPv6 Packet Header

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

6.2 Routing

Cisco Networking Academy® Mind Wide Open®

Host Routing Tables

Host Packet Forwarding Decision

Hosts must maintain their own, local, routing table to ensure that network layer packets are directed to the correct destination network. The local table of the host typically contains:

- Direct connection
- Local network route
- Local default route

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Router Packet Forwarding Decision

IPv4 Router Routing Table


```
R1#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
        10.1.1.0/24 [90/2170112] via 209.165.200.226, 00:00:05, Serial0/0/0
D
D
        10.1.2.0/24 [90/2170112] via 209.165.200.226, 00:00:05, Serial0/0/0
     192.168.10.0/24 is variably subnetted, 2 subnets, 3 masks
        192.168.10.0/24 is directly connected, GigabitEthernet0/0
C
        192.168.10.1/32 is directly connected, GigabitEthernet0/0
L
     192.168.11.0/24 is variably subnetted, 2 subnets, 3 masks
        192.168.11.0/24 is directly connected, GigabitEthernet0/1
С
L
        192.168.11.1/32 is directly connected, GigabitEthernet0/1
     209.165.200.0/24 is variably subnetted, 2 subnets, 3 masks
        209.165.200.224/30 is directly connected, Serial0/0/0
С
        209.165.200.225/32 is directly connected, Serial0/0/0
R1#
```

L

Directly Connected Routing Table Entries

A Identifies how the network was learned by the router.					
B Identifies the destination network and how it is connected.					
	С	Identifies the interface on the router connected to the destination network.			

192.168.10.1/32 is directly connected, GigabitEthernet0/0

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Remote Network Routing Table Entries

Α	Identifies how the network was learned by the router.					
В	B Identifies the destination network.					
C Identifies the administrative distance (trustworthiness) of the route source.						
D	Identifies the metric to reach the remote network.					
E	Identifies the next hop IP address to reach the remote network.					
F	F Identifies the amount of elapsed time since the network was discovered.					
G	G Identifies the outgoing interface on the router to reach the destination network.					

	A	В	C	D	E	F
The elapsed time since the network was discovered.						
The administrative distance (source) and metric to reach the remote network.						
3. How the network was learned by the router.						
4. Shows the destination network.						
5. The next hop IP address to reach the remote network.						

	A	В	C	D	E	F
The elapsed time since the network was discovered.					Ø	
The administrative distance (source) and metric to reach the remote network.			Ø			
3. How the network was learned by the router.	0					
4. Shows the destination network.		Ø				
5. The next hop IP address to reach the remote network.				0		

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

6.3 Routers

Cisco | Networking Academy® | Mind Wide Open™

Anatomy of a Router

A Router is a Computer

Anatomy of a Router

Router CPU and OS

Memory	Volatile / Non-Volatile	Stores
RAM	Volatile	 Running IOS Running configuration file IP routing and ARP tables Packet buffer
ROM	Non-Volatile	Bootup instructionsBasic diagnostic softwareLimited IOS
NVRAM	Non-Volatile	Startup configuration file
Flash	Non-Volatile	IOSOther system files

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Anatomy of a Router

Inside a Router

- Power Supply
- Shield for WIC (WAN Interface Card)
- 3. Fan
- 4. SDRAM
- 5. NVRAM
- 6. CPU
- 7. Advanced Integration Module

Anatomy of a Router Router Backplane

Anatomy of a Router

Connecting to a Router

Anatomy of a Router

LAN and WAN Interfaces

Serial Interfaces

Router Boot-up Cisco IOS

The Cisco IOS operational details vary on different internetworking devices, depending on the device's purpose and feature set. However, Cisco IOS for routers provides the following:

- Addressing
- Interfaces
- Routing
- Security
- QoS
- Resources Management

onfidential 3

Router Boot-up

Bootset Files

Cisco | Networking Academy® | Mind Wide Open™