Matemática Discreta

2020 —2021 Conjuntos

Professores: João Araújo, Júlia Vaz Carvalho, Manuel Silva Departamento de Matemática FCT/UNL

Baseados em slides elaborados pelos Professores Dr. Vítor Hugo Fernandes , Drª. Isabel Oitavem e Drª. Cecília Perdigão

Programa

- Parte 1 Conjuntos e Relações e Funções
 - Conjuntos, representações e operações básicas; conjunto das partes; cardinalidade.
 - 2 Relações binárias: equivalências e ordens parciais.
 - 3 Funções: bijecções; inversão e composição.
- Parte 2 Indução
 - Definições indutivas
 - Indução nos naturais e estrutural
 - Primeiro e segundo princípios de indução
 - Funções recursivas e provas por indução
- Parte 3 Grafos e Aplicações
 - Generalidades
 - Conexidade
 - Arvores
 - Grafos Eulerianos
- Departamento de Matemática (FCT/UNL)

Um conjunto é uma "colecção" de objectos

- Os objectos que formam um conjunto designam-se por elementos, membros ou, por vezes, pontos.
- Usualmente utilizamos letras maiúsculas para representar conjuntos e minúsculas para representar os seus elementos.
- Para representar que a é um elemento do conjunto A escrevemos a ∈ A e lemos "a pertence a A" ou "a é elemento de A".
- Sejam A e B dois conjuntos. Recordemos que:
 - A está contido em B, e denotamos por A ⊆ B, se todo o elemento de A é também um elemento de B, i.e. ∀x ∈ A x ∈ B;
 - A e B são iguais se têm os mesmos elementos, i.e. $A \subseteq B \land B \subseteq A$.
 - Se $A \subseteq B$ e $B \subseteq C$ então $A \subseteq C$.

Notação:

- Øou {} representa o conjunto vazio, isto é, um conjunto sem elementos.
- $a \notin A$, abrevia $\sim (a \in A)$;
- $A \not\subseteq B$ abrevia $\sim (A \subseteq B)$ e $\sim (A = B)$;
- $A \subset B$ abrevia $A \subseteq B \land A \neq B$.

Exemplo

- $\mathbb{N} = \{1, 2, \dots, \}$ é o conjunto dos números naturais.
- ② Z é o conjunto dos números inteiros.
- R é o conjunto dos números reais.

Exemplos

- $\{1,3,5,6,8\} = \{6,8,3,5,1\};$
- Se $A = \{1, 2\}$, $B = \{1, 2, 3, 4, 5, 6\}$ então $A \subset B$;
- Para $C = \{1, 3, 5, 7, 9\}$, podemos afirmar que $3 \in C$ mas $4 \notin C$;
- $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$;
- $0 \notin \mathbb{N}$ mas $0 \in \mathbb{Z}$;
- $\frac{3}{2} \notin \mathbb{Z}$ mas $\frac{3}{2} \in \mathbb{Q}$;
- $\sqrt{2} \notin \mathbb{Q}$ mas $\sqrt{2} \in \mathbb{R}$.

1.1 Conjuntos - Representação de conjuntos

Se S é um conjunto, os elementos de S que verificam uma determinada propriedade ψ , isto é,

```
\{n \in S : \psi(n)\}\ é um conjunto.
```

Dizemos que o conjunto assim definido está representado em compreensão.

Exemplo

Consideremos $A = \{n \in \mathbb{N} : n \le 4\}$. O conjunto A está representado em compreeensão.

Quando um conjunto tem um número finito de elementos podemos representá-lo explicitando os seus elementos. Neste caso dizemos que o conjunto está representado em extensão.

Exemplo

Neste caso, o conjunto $A = \{n \in \mathbb{N} : n \le 4\}$ ao ser representado por $A = \{1, 2, 3, 4\}$ fica representado em extensão.

Designam-se por diagramas de Venn* os diagramas usados para simbolizar graficamente propriedades e problemas relativos aos conjuntos e sua teoria.

^{*(}diagramas que consistem em curvas fechadas simples desenhadas sobre um plano, de forma a simbolizar os conjuntos e permitir a representação das relações de pertença entre conjuntos e seus elementos)

1.1 Conjuntos - Representação de conjuntos

Exemplo

A propriedade anteriormente referida,

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
,

pode ilustrar-se, utilizando diagramas de Venn, da seguinte forma:

Sejam A e B subconjuntos de um conjunto S.

• A união de A com B é o conjunto

$$A \cup B = \{x \in S : x \in A \text{ ou } x \in B\};$$

• A intersecção de A com B é o conjunto

$$A \cap B = \{x \in S : x \in A \ e \ x \in B\};$$

A diferença de A e B (ou o complementar de B em A) é o conjunto
A − B (ou A \ B), é o conjunto

$$\{x \in S : x \in A \ e \ x \notin B\}.$$

A' ou A^c denota $S \setminus A$.

 A diferença simétrica entre os conjuntos A e B é o conjunto A ⊕ B , é o conjunto

$$(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$$

PROPRIEDADES	UNIÃO
Comutatividade	$A \cup B = B \cup A$
Associatividade	$(A \cup B) \cup C = A \cup (B \cup C)$
Idempotência	$A \cup A = A$
Existência de elemento neutro	$A \cup \varnothing = A = \varnothing \cup A$
Existência de elemento absorvente	$A \cup S = S = S \cup A$

PROPRIEDADES	INTERSECÇÃO
Comutatividade	$A \cap B = B \cap A$
Associatividade	$(A\cap B)\cap C=A\cap (B\cap C)$
Idempotência	$A \cap A = A$
Existência de elemento neutro	$A\cap S=A=S\cap A$
Existência de elemento absorvente	$A \cap \varnothing = \varnothing = \varnothing \cap A$

Distributividade da intersecção em relação à união, respectivamente à direita e à esquerda

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$(B \cup C) \cap A = (B \cap A) \cup (C \cap A).$$

Distributividade da união em relação à intersecção, respectivamente à direita e à esquerda

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(B \cap C) \cup A = (B \cup A) \cap (C \cup A).$$

Dupla complementação

$$(A^c)^c = A$$
.

Primeiras leis de De Morgan para conjuntos

Lei do complementar da intersecção: O complementar da intersecção de conjuntos é igual à união dos complementares, isto é,

$$(A\cap B)^c=A^c\cup B^c.$$

Lei do complementar da união: O complementar da união de conjuntos é igual à intersecção dos complementares, isto é,

$$(A \cup B)^c = A^c \cap B^c.$$

Observação

- Note-se que as propriedades atrás enunciadas bem como outras propriedades sobre conjuntos não podem ser demonstradas com base em diagramas de Venn.
- Os diagramas de Venn são úteis para ajudar a perceber a propriedade de conjuntos a demonstrar mas apenas se conseguem utilizar de modo eficaz quando o número de conjuntos envolvidos não é muito grande (3 ou 4 no máximo).

Conjuntos: Conjunto das partes

Podemos deparar-nos com conjuntos cujos elementos também são conjuntos.

Exemplo

• Dado um conjunto S ao conjunto $P(S) = \{A : A \subseteq S\}$ chamamos o conjunto das partes de S.

Exemplos

- **1** Dado $S = \{1,2\}$ $\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$
- 2 Dado $S = \{encarnado(E), verde(V), amarelo(A)\},$ $\mathcal{P}(S) = \{\emptyset, \{E\}, \{V\}, \{A\}, \{E, V\}, \{E, A\}, \{V, A\}, \{E, V, A\}\}.$

1.1 Conjuntos: Conjunto das partes

Dado um conjunto S, seja A um subconjunto de $\mathcal{P}(S)$. Os elementos de A são subconjuntos de S.

Assim, definimos:

- $\bigcup A = \{a \in S : \exists X \in A \mid a \in X\}$ união de todos os elementos do conjunto
- ullet $igcap A = \{a \in \mathcal{S}: orall X \in A \mid a \in X\}$ interseção de todos os elementos do conjunto

Exemplo

Se
$$S = \{0, 1, 2\}$$
, temos $\mathcal{P}(S) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$. Sendo $A = \{\{2\}, \{0, 2\}\} \subseteq \mathcal{P}(S)$ temos

1.1 Conjuntos: Conjunto das partes

Seja S um conjunto. Um conjunto $A \subseteq \mathcal{P}(S) \setminus \{\emptyset\}$ é uma partição de S se cada elemento de S pertence a um, e um só, elemento de A. Numa partição A de S os elementos de A são conjuntos disjuntos e $A \subseteq S$.

Exemplo

Se
$$S=\{0,1,2\}$$
, temos
$$\mathcal{P}(S)=\{\varnothing,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}\}.$$
 Considerando os conjuntos
$$A_1=\{\{1\},\{0,2\}\}$$

$$A_2=\{\{0\},\{1\},\{2\}\}$$

$$A_3=\{\{0\},\{1\},\{2\},\{0,2\}\}$$

$$A_4=\{\{1\},\{2\}\}$$

Os conjuntos A_1 e A_2 são partições de S mas os conjuntos A_3 e A_4 não são partições de S.

Conjuntos: Produto cartesiano

Definição

Dado um conjunto S e $a, b \in S$, o par ordenado formado por a e b é o conjunto $\{\{a\}, \{a, b\}\}$ que denotamos por (a, b).

Exemplo

$$(1,2) = \{\{1\}, \{1,2\}\} \text{ e } (2,1) = \{\{2\}, \{1,2\}\}, \log_{2}(1,2) \neq (2,1).$$

Proposição

Dado um conjunto S e $a, b, c, d \in S$, temos que (a, b) = (c, d) se, e só se, a = c e b = d.

Definição

O produto cartesiano de dois conjuntos A e B é o conjunto de pares ordenados

$$A \times B = \{(a, b) \subseteq \mathcal{P}(A \cup B) : a \in A \land b \in B\}.$$

Conjuntos: Produto cartesiano

Observação

As definições anteriores podem ser generalizadas para qualquer número natural n > 2, da seguinte forma:

- $(a_1, a_2, \ldots, a_n) = (a_1, (a_2, (\ldots, (a_{n-1}, a_n) \cdots)));$
- \bullet $A_1 \times A_2 \times \cdots \times A_n =$ $= \{(a_1, a_2, \dots, a_n) \subseteq \mathcal{P}(\cup_{1 < i < n} A_i) : a_i \in A_i \land i \in \{1, \dots, n\}\}.$
- A^n abrevia $A \times A \times \cdots \times A = (n \text{ vezes}).$

Conjuntos: Cardinalidade

- O número de elementos de um conjunto S é designado por cardinalidade de S e representa-se por |S| ou por #S.
- Um conjunto diz-se finito se tiver cardinalidade finita.

Exemplo

- $|\varnothing| = 0$
- 2 Seja $\mathbb{Z}_n = \{x \in \mathbb{Z} : 1 \le x \le n\}, \quad |\mathbb{Z}_n| = n$

Proposição

Qualquer subconjunto A de um conjunto finito S é finito e tem-se $|A| \leq |S|$.

Questões:

Se |S| = n, qual é a cardinalidade de $\mathcal{P}(S)$?

Se |A| = m e |B| = n, qual é a cardinalidade de $A \times B$?