МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М. В. ЛОМОНОСОВА МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

ОТЧЁТ ПО ПРАКТИКУМУ НА ЭВМ

«КОНЕЧНО-РАЗНОСТНЫЕ МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ»

Задача № 8

Работу выполнил:

Новов Денис Дмитриевич

Преподаватель:

Самохин Александр Сергеевич

Москва

весна 2018

Содержание

1	Пос	танов	ка задачи	3
2	Ана	алитич	неское решение	3
	2.1	Линей	йный случай	. 3
	2.2	Нелин	нейный случай	. 4
3	Апі	трокси	имация	5
	3.1	Линей	іный случай	. 5
		3.1.1	Явная разностная схема	. 5
		3.1.2	Неявная разностная схема	. 6
	3.2	Нелин	нейный случай	. 6
		3.2.1	Явная разностная схема	. 6
		3.2.2	Неявная разностная схема	. 6
4	Дис	ффере	енциальное приближение	7
	4.1	Явная	н разностная схема	. 7
5	Уст	ойчив	ость	8
	5.1	Явная	я разностная схема, линейная задача	. 8
	5.2	Неявн	ная разностная схема, линейная задача	. 8
6	Pac	чёт за	дач	8
	6.1	Линей	іная задача	. 9
		6.1.1	Явная схема	. 9
		6.1.2	Неявная схема	. 10
	6.2	Нелин	нейная задача	. 12
		6.2.1	Явная схема	. 12
		6.2.2	Неявная схема	. 13
7	Спи	ісок лі	итературы	13

1 Постановка задачи

Необходимо найти численное решение уравнения переноса.

$$\frac{\partial u}{\partial t} + \frac{\partial F(u)}{\partial x} = 0$$

$$u_0(x) = \begin{cases} 1, & \text{если } x \leqslant -0.25; \\ -4x, & \text{если } -0.25 \leqslant x \leqslant 0. \\ 0, & \text{если } x \geqslant 0; \end{cases}$$

 $F(u) = \frac{1}{2}u$ — линейный случай.

$$F(u) = \frac{1}{2}u^2$$
 — нелинейный случай.

Используются явная и неявная схемы.

$$u_t + (F(u))_{\dot{x}} = \frac{h}{2} u_{x\bar{x}}$$

- явная схема.

$$u_t + (F(u))_{\hat{x}} = \frac{\tau}{2} (F'_u(u)F(\hat{u})_x)_{\bar{x}}$$

- неявная схема.

2 Аналитическое решение

2.1 Линейный случай

Уравнение:

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u}{\partial x} = 0$$

Начальные услвоия:

$$u_0(x,0) = \begin{cases} 1, & \text{если } x \leqslant -0.25; \\ -4x, & \text{если } -0.25 \leqslant x \leqslant 0. \\ 0, & \text{если } x \geqslant 0; \end{cases}$$

Сделаем замену:

$$\xi = x + \frac{1}{2}t$$
$$\eta = x - \frac{1}{2}t$$

Тогда справедливо:

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial t} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial t} = \frac{1}{2} \left(\frac{\partial u}{\partial \xi} - \frac{\partial u}{\partial \eta} \right)$$
$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}$$

Подставим результат в исходное уравнение:

$$\frac{1}{2} \left(\frac{\partial u}{\partial \xi} - \frac{\partial u}{\partial \eta} \right) + \frac{1}{2} \left(\frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} \right) = 0$$

После раскрытия скобок:

$$\frac{\partial u}{\partial \xi} = 0$$

Следовательно, искомая функция не зависит от ξ . То есть:

$$u = f(\eta) = f\left(x - \frac{1}{2}t\right).$$

Используем начальные условия:

$$u_0(x,0) = f(x) = \begin{cases} 1, & \text{если } x \leqslant -0.25; \\ -4x, & \text{если } -0.25 \leqslant x \leqslant 0. \\ 0, & \text{если } x \geqslant 0; \end{cases}$$

Следовательно:

$$u(x,t) = f\left(x - \frac{1}{2}t\right) = \begin{cases} 1, & \text{если } x - \frac{1}{2}t \leqslant -0.25; \\ -4\left(x - \frac{1}{2}t\right), & \text{если } -0.25 \leqslant x - \frac{1}{2}t \leqslant 0. \\ 0, & \text{если } x - \frac{1}{2}t \geqslant 0; \end{cases}$$

Получили аналитическое решение для линейного случая.

2.2 Нелинейный случай

Решаем уравнение:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

Начальные условия:

$$u_0(x,0) = \begin{cases} 1, & \text{если } x \leqslant -0.25; \\ -4x, & \text{если } -0.25 \leqslant x \leqslant 0. \\ 0, & \text{если } x \geqslant 0; \end{cases}$$

Проведем характеристики из точек (-0.25,0) и (0,0). Так как функция u(x,t) постоянна вдоль характеристик, то

$$u(x,t)=1 \text{ при }x\leqslant -\frac{1}{4}+t$$

$$u(x,t)=0 \text{ при }x\geqslant 0$$

$$u(x,t)=\frac{4x}{1+4t}\text{ при }-\frac{1}{4}+t\leqslant x\leqslant 0$$

Нетрудно заметить, что все характеристики сходятся к точке $(x*,t*)=(\frac{1}{4},0)$. Там происходит явление градиентной катастрофы: в одну точку по характеристикам приходят разные значения. Дальше непрерывное решение не существует. При $t=\frac{1}{4}$ решение переходит в $\theta(x)$. Из условий Рэнкина-Гюгонио следует, что точка разрыва в любой момент времени $t\geqslant\frac{1}{4}$ будет нааходиться на луче $x=\frac{1}{2}\left(-\frac{1}{4}+t\right)$. Таким образом при $t\geqslant\frac{1}{4}$ обобщенным решением будет функция $1-\theta\left(x-\frac{1}{2}(t-\frac{1}{4})\right)$.

3 Аппроксимация

3.1 Линейный случай

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u}{\partial x} = 0$$

3.1.1 Явная разностная схема

$$u_t + (F(u))_{\dot{x}}^{\circ} = \frac{h}{2} u_{x\bar{x}}$$

$$\frac{u_m^{n+1} - u_m^n}{\tau} + \frac{u_{m+1}^n - u_{m-1}^n}{4h} = \frac{u_{m+1}^n - 2u_m^n + u_{m-1}^n}{2h}$$

$$u_m^{n+1} = u_m^n + \dot{u}_m^n \tau + \ddot{u}_m^n \frac{\tau^2}{2} + O(\tau^3)$$

$$u_{m-1}^n = u_m^n - u_m^n + u_m^n \frac{h^2}{2} + O(h^3)$$

$$u_{m+1}^n = u_m^n + u_m^n + u_m^n \frac{h^2}{2} + O(h^3)$$

Подставив эти выражения в схему, получаем:

$$\dot{u}_m^n + \frac{1}{2}u_m^n{}' = \frac{h}{2}u_m^n{}'' - \frac{\tau}{2}\ddot{u}_m^n + O(\tau^2, h^2)$$

Это означает, что схема имеет 1-ый порядок аппроксимации.

3.1.2 Неявная разностная схема

$$\begin{split} u_t + (F(u))_{\hat{x}}^{\circ} &= \frac{\tau}{2} (F_v'(v) F(\hat{v})_x)_{\bar{x}} \\ \frac{u_m^{n+1} - u_m^n}{\tau} + \frac{u_{m+1}^{n+1} - u_{m-1}^{n+1}}{4h} &= \frac{\tau}{8h^2} \left(u_{m+1}^{n+1} - 2u_m^{n+1} + u_{m-1}^{n+1} \right) \\ \left(\frac{1}{\tau} + \frac{\tau}{4h^2} \right) u_m^{n+1} - \frac{1}{\tau} u_m^n + \left(\frac{1}{4h} - \frac{\tau}{8h^2} \right) u_{m+1}^{n+1} + \left(-\frac{1}{4h} - \frac{\tau}{8h^2} \right) u_{m-1}^{n+1} &= 0 \\ u_{m-1}^{n+1} &= u_m^{n+1} - (u_m^{n+1})_x' h + O(h^2) \\ u_m^n &= u_m^{n+1} - (u_m^{n+1})_t' \tau + O(\tau^2) \\ u_{m+1}^{n+1} &= u_m^{n+1} + (u_m^{n+1})_x' h + O(h^2) \end{split}$$

После подстановки в схему получаем

$$(u_m^{n+1})_t' + \frac{(u_m^{n+1})_x'}{2} = O(\tau, h)$$

3.2 Нелинейный случай

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

3.2.1 Явная разностная схема

$$u_t + (F(u))_{\bar{x}}^{\circ} = \frac{h}{2} u_{x\bar{x}}$$

$$\frac{u_m^{n+1} - u_m^n}{\tau} + \frac{(u_{m+1}^n)^2 - (u_{m-1}^n)^2}{4h} = \frac{u_{m+1}^n - 2u_m^n + u_{m-1}^n}{2h}$$

Шаблон схемы не изменился по сравнению с линйеной задачей, поэтому в нелинейном случае эта схема тоже имеет 1-ый порядок аппроксимации.

3.2.2 Неявная разностная схема

$$\begin{split} u_t + (F(u))_{\stackrel{\circ}{x}} &= \frac{\tau}{2} (F'_v(v) F(\hat{v})_x)_{\bar{x}} \\ \frac{u_m^{n+1} - u_m^n}{t} + \frac{(u_{m+1}^{n+1})^2 - (u_{m-1}^{n+1})^2}{4h} &= \frac{\tau}{2} \frac{u_m^n ((u_{m+1}^{n+1})^2 - (u_m^{n+1})^2) - u_{m-1}^n ((u_m^{n+1})^2 - (u_{m-1}^{n+1})^2)}{2h^2} \\ \\ u_{m-1}^{n+1} &= u_m^{n+1} - (u_m^{n+1})'_x h + O(h^2) \\ \\ u_m^n &= u_m^{n+1} - (u_m^{n+1})'_t \tau + O(\tau^2) \\ \\ u_{m+1}^{n+1} &= u_m^{n+1} + (u_m^{n+1})'_x h + O(h^2) \end{split}$$

$$\begin{split} u^n_{m-1} &= u^{n+1}_{m-1} - (u^{n+1}_{m-1})_t'\tau + O(\tau^2) = \\ &= u^{n+1}_m - (u^{n+1}_m)_x'h + O(h^2) - (u^{n+1}_m - (u^{n+1}_m)_x'h + O(h^2))_t'\tau = \\ &= u^{n+1}_m - (u^{n+1}_m)_x'h - (u^{n+1}_m)_t'\tau + O(h^2, \tau^2) \end{split}$$

После подстановки в схему получаем:

$$(u_m^{n+1})_t' + u_m^{n+1}(u_m^{n+1})_x' = O(\tau, h)$$

4 Дифференциальное приближение

4.1 Явная разностная схема

$$u_{t} + (F(u))_{\stackrel{\circ}{x}} = \frac{h}{2} u_{x\bar{x}}$$

$$\frac{u_{m+1}^{n+1} - u_{m}^{n}}{\tau} + \frac{u_{m+1}^{n} - u_{m-1}^{n}}{4h} - \frac{u_{m+1}^{n} - 2u_{m}^{n} + u_{m-1}^{n}}{2h} = \dots$$

$$u_{m+1}^{n+1} = u_{m}^{n} + (u_{m}^{n})_{t}'\tau + (u_{m}^{n})_{tt}'\frac{\tau^{2}}{2} + (u_{m}^{n})_{ttt}'\frac{\tau^{3}}{6} + O(\tau^{4})$$

$$u_{m-1}^{n} = u_{m}^{n} - (u_{m}^{n})_{x}'h + (u_{m}^{n})_{xx}'\frac{h^{2}}{2} - (u_{m}^{n})_{xxx}'\frac{h^{3}}{6}O(h^{4})$$

$$u_{m+1}^{n} = u_{m}^{n} + (u_{m}^{n})_{x}'h + (u_{m}^{n})_{xx}'\frac{h^{2}}{2} + (u_{m}^{n})_{xxx}'\frac{h^{3}}{6} + O(h^{4})$$

$$\cdots = u_{t}' + u_{tt}'\frac{\tau^{2}}{2} + u_{x}'\frac{1}{2} - u_{xx}'\frac{h}{2} = 0$$

$$u_{t}' + \frac{1}{2}u_{x}' = 0,$$

$$u_{tt}' = -\frac{1}{2}u_{xt}'' = \frac{1}{4}u_{xx}''$$

$$u_{t}' + \frac{1}{2}u_{x}' = \frac{h}{2}\left(1 - \frac{1}{4}\frac{\tau}{h}\right)u_{xx}'' = O(\tau^{2}, h^{2})$$

$$\cdots = u_{t}' + u_{tt}''\frac{\tau}{2} + u_{tt}''\frac{\tau^{2}}{2} + \frac{1}{2}u_{x}' + u_{xxx}''\frac{h^{2}}{12} - u_{xx}''\frac{h}{2} + O(\tau^{3}, h^{3}) = 0$$

$$u_{ttt}'' = -\frac{1}{2}u_{xtt}'' = \frac{1}{4}u_{xxt}''' = -\frac{1}{8}u_{xxx}'''$$

$$u_{t}'' + \frac{1}{2}u_{x}' = \frac{h}{2}\left(1 - \frac{1}{4}\frac{\tau}{h}\right)u_{xx}'' - \frac{h^{2}}{12}\left(1 - \frac{1}{4}\frac{\tau^{2}}{h^{2}}\right)u_{xxx}''' + O(\tau^{3}, h^{3})$$

5 Устойчивость

5.1 Явная разностная схема, линейная задача

$$u_t + (F(u))_{\dot{x}} = \frac{h}{2} u_{x\bar{x}}$$

$$\frac{u_m^{n+1} - u_m^n}{\tau} + \frac{u_{m+1}^n - u_{m-1}^n}{4h} = \frac{u_{m+1}^n - 2u_m^n + u_{m-1}^n}{2h}$$

Пусть $u_m^n = \lambda^n e^{im\varphi}$. После подстановки в схему и сокращений получим:

$$\frac{\lambda - 1}{\tau} + \frac{e^{i\varphi} - e^{-i\varphi}}{4h} = \frac{e^{i\varphi} - 2 + e^{-i\varphi}}{2h}$$

$$\lambda(\varphi) = 1 - \frac{\tau}{h} + \left(\frac{\tau}{h}\cos(\varphi) - \frac{\tau}{2h}i\sin(\varphi)\right)$$

На комплексной плоскости это эллипс с центром в точке $1-\frac{\tau}{h}$. Следовательно схема условно устойчива с условием на шаг $\frac{\tau}{h}<1$.

5.2 Неявная разностная схема, линейная задача

$$u_t + (F(\hat{u}))_{\hat{x}} = \frac{\tau}{2} (F'_u(u)F(\hat{u})_x)_{\bar{x}}$$
$$\frac{u_m^{n+1} - u_m^n}{\tau} + \frac{u_{m+1}^{n+1} - u_{m-1}^{n+1}}{4h} = \frac{\tau}{8h^2} \left(u_{m+1}^{n+1} - 2u_m^{n+1} + u_{m-1}^{n+1} \right)$$

Пусть $u_m^n = \lambda^n e^{im\varphi}$. После подстановки в схему и сокращений получим:

$$\lambda = \frac{4h^2}{4h^2 + \tau^2(\cos\varphi - 1) + 2h\tau i\sin\varphi}$$
$$|\lambda| = \frac{4h^2}{\sqrt{(4h^2 + \tau^2(\cos\varphi - 1))^2 + (2h\tau\sin\varphi)^2}} \leqslant \frac{4h^2}{\sqrt{16h^4}} = 1$$

Схема абсолютно устойчива.

6 Расчёт задач

Для сравнения двух сеточных функций требутеся задать способ оценки их разности, иными словами определить норму сеточной функции:

$$||u||_{C_h} = \max_{x_i \in \omega_h} |u_i|$$

$$||u||_{L_{1,h}} = h \sum_{x_i \in \omega_h} |u_i|$$

 $\Delta(u)_{\alpha} = ||u-v||_{\alpha}$ - абсолютная погрешность.

 $\delta(u)_{\alpha} = \frac{||u-v||_{\alpha}}{||u||_{\alpha}}$ - относительная погрешность.

Решаем задачу в области $Q_T = \{(t,x)|0 < t < 1 \ (0.125), -1 < x < 1\}$ с начальным условием

$$u_0(x) = \begin{cases} 1, & \text{если } x \leqslant -0.25; \\ -4x, & \text{если } -0.25 \leqslant x \leqslant 0. \\ 0, & \text{если } x \geqslant 0; \end{cases}$$

и граничным условием u(t,-1)=1 и u(t,1)=0 при $0\leqslant t\leqslant 1$ (линейная задача) или $0\leqslant t\leqslant 0.125$ (нелинейная задача).

6.1 Линейная задача

6.1.1 Явная схема

Нормы погрешностей расчётов							
τ	h	$\Delta(v)_{Ch}$	$\Delta(v)_{L1,h}$	$\delta(v)_{Ch}$	$\delta(v)_{L1,h}$		
0.100	0.100	0.211211	0.101212	0.121112	0.121211		
0.010	0.100	0.111121	0.101425	0.114241	0.041452		
0.001	0.100	0.212111	0.111014	0.104214	0.042141		
0.100	0.010	2e+10	4e+5	1.000000	1.000000		
0.010	0.010	0.011212	0.012414	0.011211	0.001111		
0.001	0.010	0.142411	0.001114	0.012211	0.001121		
0.100	0.001	1e+14	2e+11	1.000000	1.000000		
0.010	0.001	4e+40	1e+50	1.000000	1.000000		
0.001	0.001	0.0221417	0.012141	0.001211	0.000144		

Оценки погрешности на сетке τ = 0.01, h = 0.1							
$\Delta(v, \bullet)_{Ch}$ $\Delta(v, \bullet)_{L1,h}$ $\delta(v, \bullet)_{Ch}$ $\delta(v, \bullet)_{L1,h}$							
v^1	0.1111144	0.1512111	0.122111				
v ²	0.1214142	0.102211	0.1112112	0.110121			
V^3	0.2041421	0.111121	0.1421111	0.101121			
V^4	0.1101214	0.112111					

Оценки погрешности на сетке τ = 0.001, h = 0.01							
	$\Delta(v, \bullet)_{Ch}$ $\Delta(v, \bullet)_{L1,h}$ $\delta(v, \bullet)_{Ch}$ $\delta(v, \bullet)_{L1,h}$						
v^1	0.004214						
v^2	0.0211121	0.010114	0.0241574	0.005214			
V^3	0.0211712	0.012111	0.0242711	0.007217			
v ⁴ 0.0217115 0.010441 0.0271111 0.003							

6.1.2 Неявная схема

	Нормы погрешностей расчётов							
τ	h	$\Delta(v)_{Ch}$	$\Delta(v)_{L1,h}$	$\delta(v)_{Ch}$	$\delta(v)_{L1,h}$			
0.100	0.100	4e+1	1e+11	1e+1	0.712121			
0.010	0.100	1.00000	0.111111	1.00000	0.22222			
0.001	0.100	1.00000	0.111111	1.00000	0.22222			
0.100	0.010	0.112121	0.071111	0.112121	0.045471			
0.010	0.010	1e+47	1e+42	1.00000	1.000000			
0.001	0.010	1.00000	0.111111	1.00000	0.211111			
0.100	0.001	0.110212	0.012112	0.110212	0.022111			
0.010	0.001	0.071211	0.005151	0.071211	0.001421			
0.001	0.001	NaN	NaN	NaN	NaN			

Оценки погрешности на сетке τ = 0.1, h = 0.1							
	$\Delta(v, \bullet)_{Ch}$ $\Delta(v, \bullet)_{L1,h}$ $\delta(v, \bullet)_{Ch}$ $\delta(v, \bullet)_{L1,h}$						
v ¹	0.111112	0.012121	0.111112	0.021111			
v ²	0.112112	0.011211	0.112112	0.010211			
V ³	0.111111	0.012221	0.111111	0.041412			
V^4	0.112114	0.001451	0.112114	0.021211			

Оценки погрешности на сетке τ = 0.01, h = 0.01							
	$\Delta(v, \bullet)_{\operatorname{Ch}}$ $\Delta(v, \bullet)_{\operatorname{L1,h}}$ $\delta(v, \bullet)_{\operatorname{Ch}}$ $\delta(v, \bullet)_{\operatorname{L1,h}}$						
V ¹	0.012211	0.001714	0.010151	0.001212			
V ²	0.021110	0.001211	0.024014	0.001211			
V^3	0.011121	0.001221	0.014421	0.002117			
V^4	0.052112	0.001111					

6.2 Нелинейная задача

6.2.1 Явная схема

Нормы погрешностей расчётов							
τ	h	$\Delta(v)_{Ch}$	$\Delta(v)_{L1,h}$	$\delta(v)_{Ch}$	$\delta(v)_{L1,h}$		
0.100	0.100	1.000000	0.712211	1.000000	0.104114		
0.010	0.100	1.211211	0.702111	1.000000	0.121111		
0.001	0.100	1.121141	0.510125	1.000000	0.112114		
0.100	0.010	1.000000	NaN	1.000000	NaN		
0.010	0.010	1.000000	0.712111	1.000000	0.151411		
0.001	0.010	1.112112	0.710011	1.000000	0.401411		
0.100	0.001	1.000000	NaN	1.000000	NaN		
0.010	0.001	1.000000	NaN	1.000000	NaN		
0.001	0.001	1.021112	0.521110	1.000000	0.417270		

Оценки погрешности на сетке τ = 0.01, h = 0.1							
	$\Delta(v, \bullet)_{Ch}$ $\Delta(v, \bullet)_{L1,h}$ $\delta(v, \bullet)_{Ch}$ $\delta(v, \bullet)_{L1,h}$						
v^1	0.122111						
v^2	0.1214142	0.010211	0.115112	0.110121			
v^3	0.2041421	0.041412	0.171001	0.101121			
V^4	0.151410	0.112111					

	Оценки погрешности на сетке τ = 0.001, h = 0.01							
$\Delta(v, \bullet)_{Ch}$ $\Delta(v, \bullet)_{L1,h}$ $\delta(v, \bullet)_{Ch}$ $\delta(v, \bullet)_{L1,h}$								
V^1	0.2111141	0.010151	0.114117	0.171451				
V^2	0.2514141	0.024014	0.114251	0.121147				
V^3	0.2741421	0.014421	0.171211	0.122112				
V^4	0.112117							

6.2.2 Неявная схема

Нормы погрешностей расчётов							
τ	h	$\Delta(v)_{Ch}$	$\Delta(v)_{L1,h}$	$\delta(v)_{Ch}$	$\delta(v)_{L1,h}$		
0.100	0.100	0.245227	0.241124	0.141277	0.072211		
0.010	0.100	0.021512	0.044775	0.071512	0.022111		
0.001	0.100	0.014451	0.040215	0.057455	0.051417		
0.100	0.010	0.515612	0.151620	0.614233	0.071077		
0.010	0.010	0.031431	0.024131	0.013531	0.015588		
0.001	0.010	0.055811	0.008151	0.015181	0.002409		
0.100	0.001	0.991772	0.159412	0.191142	0.075094		
0.010	0.001	0.012211	0.025202	0.011201	0.017111		
0.001	0.001	0.033141	0.001331	0.013517	0.002774		
0.0001	0.0001	0.005741	0.000177	0.005141	0.000152		

Оценки погрешности на сетке τ = 0.1, h = 0.1							
$\Delta(v, \bullet)_{Ch}$ $\Delta(v, \bullet)_{L1,h}$ $\delta(v, \bullet)_{Ch}$ $\delta(v, \bullet)_{L1,h}$							
V^1	0.010	0.005	0.010	0.014			
V^2	0.112	0.001	0.112	0.011			
V ³	0.111	0.001	0.111	0.022			
V^4	0.000	NaN	0.000	NaN			

Оценки погрешности на сетке τ = 0.01, h = 0.01				
	$\Delta(v, \bullet)_{Ch}$	$\Delta(v, \bullet)_{L1,h}$	$\delta(v, \bullet)_{Ch}$	$\delta(v, \bullet)_{L1,h}$
v^1	NaN	NaN	NaN	NaN
V^2	NaN	NaN	NaN	NaN
V^3	NaN	NaN	NaN	NaN
V^4	NaN	NaN	NaN	NaN

Список литературы

- [1] Богачев К. Ю. Практикум на ЭВМ. Методы решения линейных систем и нахождения собственных значений. Учебное пособие. М.: МГУ, 1998
- [2] Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы: Учебное пособие М.: Наука. Гл. ред. физ.- мат. лит., 1987.
- [3] Попов А.В. Практикум на ЭВМ. Разностные методы решения квазилинейных уравнений первого порядка.— Выч. мет. программирование, том 4, выпуск 3, 16–2, 2003.
- [4] Горицкий А.Ю., Кружков С.Н., Чечкин Г.А. Уравнения с частными производными первого порядка Учебное пособие. М.: МГУ, 1999. 96 с.