Roll	No:										
	Co	omputer Sc	ience and	Engineeri	ng Departi	nent					
	Thapa	r Institute	of Enginee	ring and I	Technology	y, Patiala					
Cour		ne Learning				Code: UN	/IL501				
Time	:: 3 Hrs; D	ate: 12.12.2	019				I: 100				
Note	: Attempt	ALL questic	ons. Answe	er must be	e in brief a						
1 a)											
	How can SVM be used to classify the non-linear dataset? Explain the process of classifying non-linear dataset with SVM with an example.										
b)						_	5				
-,	What is the significance of the Random Forest Classifier? How it is different from a tree classifier?										
1		achine Learn					5				
	Performance (P) and identify E, T and P for placement prediction task.										
d)	In order t	o build a ro	bot for figh	ting with	enemies, wł	ich type of	5				
	machine learning model will you use? Justify your answer and										
	elaborate all important components of building a robot for fighting										
	with enemies.										
2 a)		en regression	a datacat fix	ad the heat	:J1						
,	using filter	approach-ba	ised selectio	n.	ındependen	t feature by	10				
		F ₁	F ₂	F ₃	Output						
		7	10	7	8		- 1				
		8	16	6	10						
		8	10	6	3						
		2	17	7	6						
		7	17	5	10						
		1	7	1	4						
		8	6	10	6						
		1	9	5	6						

b) Predict the class for the given unknown instance for the following training dataset by using a Naïve Bayes classifier. Indicate all the intermediate steps.

PTO

Unknown Instance

Owns Home	Married	Gender	Employed	Credit rating	Class
Yes	No	Male	Yes	A	7

Training dataset

Owns Home	Married	Gender	Employed	Credit rating	Class	
Yes	Yes Mal		Yes	А	11	
No	No	Female	Yes	Α	1	
Yes	Yes	l emale	Yes	В	III	
Yes	No	Male	No	В	11	
No	Yes	Female	Yes	В	111	
No	No	Female	Yes	В	1	
No	No	Male	No	В	.11	
Yes	No	Lemale	Yes	A	1	
No	Yes	Female	Yes	А	111	
Yes	Yes	Fernale	Yes	А	111	

3 a) Build a neural network for the following case study by taking initial weights given in the figure below:

Assume that a sigmoid function is being used as the activation function. Show the first iteration (forward as well as back propagation) only.

b)	The following by considering stride 1.											
		0 0	0	0	0				0			
		0 1	0	1	0					1	0	
		0 0	0	0	0				0	0	0	
		0 0	1	0	0	1			1	1	1	
) 1	1	0	1	+				Filte	r	
	Input Image											
c)	Apply N	lax po	oling	by co	nsid	erin	g m	atri	x size o	of axa ar	nd stride 1.	1
		-	Ü	J			0		n onne c	, 3^3 αι	id stride 1.	3
					0	1	0	0	0			
					0	1	1	1	0			
					1	0	1	2	1			
					1	4	2	1	0			
					0	0	1	2	1			
d)	Differen											2
4 a)	What is the need of elitism in Genetic algorithm?										5	
b)	How GA can be applied to find to global minima. Explain each stage of										10	
	GA with respect to find a global minimum out of multiple local minima											
	for a give											
c)	What are	e differ	ent te	chni	ques	for	sele	ctio	n of a	parent?		-
5 2)	What are different techniques for selection of a parent? As a data scientist you have analysed that in a regression problem the										5	
	dependent variable is not changing linearly with respect to an										5	
	independent variable. Which regression to be independent variable.											
	independent variable. Which regression technique will you use to build the model and why?											
b)	What are		_	tions	of a	vnlo	noti	on l	2022 4 1			
												5
0)	examples	Com	oncep parak	oth t	ınc	iucti	ive	anc	1 Ana	lytical 1	earning with	10
<u>i</u>)	examples. Compare both techniques in a tabular manner. Let us suppose that there are 200 pages available on the Internet for											
	Machine Learning The search on the internet for										5	
	Machine Learning. The search on this term returns total 210 pages, out of which 190 belongs to Machine Learning. Calculate the precision and											
	or which :	190 bel	ongs	to M	achii	ne L	earr	ing	. Calcu	late the	precision and	
	recall for	our alg	gorith	m.								