Math 12, Fall 2007 Lecture 16

Scott Pauls 1

¹Department of Mathematics Dartmouth College

11/2/07

Outline

- Review and overview
 - Last class
- Today's material
 - Triple Integrals
- Next class

Outline

- Review and overview
 - Last class
- Today's material
 - Triple Integrals
- Next class

Changing coordinates

- Change of variables formula
- Polar coords: $x = r \cos(\theta), y = r \sin(\theta)$

Outline

- Review and overview
 - Last class
- Today's material
 - Triple Integrals
- Next class

Integrals of functions of three variables

- **1** Integrate a function of three variables over a region R in \mathbb{R}^3
- Same derivation using Riemannian sums (just three sums instead of two)

$$\iiint_D g(x,y,z) \ dV = \int_e^f \int_c^d \int_a^b g(x,y,z) \ dxdydz$$

Theorems

- Fubini's theorem still holds: one can calculate iterated integrals and switch the order of integration.
- Integrals over regions other than boxes: parameterize and change bounds of integration.
- Triple integrals can be used to find volumes of regions:

$$\iiint_R dV = Volume(R)$$

Examples

- Find the volume enclosed by the paraboloid $z = x^2 + y^2$ and the plane z = 9,
- Find the volume of the solid enclosed by the cylinder $x^2 + y^2 = 9$ and the planes y + z = 5 and z = 1.
- Calculate

$$\iiint_F x^2 e^y \ dV$$

where *E* is bounded by $z = 1 - y^2$ and the plane z = 0, x = 1, x = -1.

Center of mass

If $\rho(x, y, z)$ is a density function of an object occupying the region E then the mass of the object is

$$m = \iiint_E \rho \ dV$$

The moments about the three coordinate planes are

$$M_{yz} = \iiint_E x \rho \ dV, \ M_{xz} = \iiint_E y \rho \ dV, \ M_{xy} = \iiint_E z \rho \ dV$$

and the center of mass is given by

$$(\bar{x}, \bar{y}, \bar{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)$$

Center of mass

Example: Find the center of mass of a solid occupying the region E with density function $\rho(x, y, z) = x^2 + y^2 + z^2$ where E is the cube $[0, a] \times [0, a] \times [0, a]$

Work for next class

- Read 16.8
- f07hw18