Plane Algebraic Curves

Dhruv Goel

June 2024

Contents

Preface				1
1	Lecture Notes			
	1.1	06/10	/24 - Introduction	4
		1.1.1	Motivating Questions	5
		1.1.2	Some Unimportant Remarks	6
2	Exercise Sheets			8
	2.1	Exercise Sheet 1		
		2.1.1	Numerical and Exploration	9
		2.1.2	PODASIPs	11
	2.2	Exerci	se Sheet 2	12
		2.2.1	PODASIPs	12
Bibliography				

Preface

These are lecture notes for a course taught at Ross/Ohio 2024 intended for peer mentors and counselors.

Chapter 1

Lecture Notes

1.1 06/10/24 - Introduction

We will fix a field k throughout (see Unimportant Remark 1.1.17).

Definition 1.1.1. The affine plane over k, denoted \mathbb{A}^2_k , is the set of ordered pairs of elements

$$\mathbb{A}_{k}^{2} := \{ (p, q) : p, q \in k \}.$$

If you want, see Unimportant Remark 1.1.18 for an explanation of why we use \mathbb{A}^2_k to denote the set others sometimes denote by k^2 .

Given a function $F: \mathbb{A}^2_k \to k$, we can look at its vanishing locus, denoted variously by

$$F^{-1}(0) = C_F = \mathbb{V}(F) = \mathbb{Z}(F) = \{(p,q) : F(p,q) = 0\}.$$

We will usually stick to the notation C_F .

Remark 1.1.2. More generally, we can look at the level sets $F^{-1}(a)$ for all $a \in k$. Why does this perspective not add anything new?

Any polynomial $f(x,y) \in k[x,y]$ gives rise to a function $F_f: \mathbb{A}^2_k \to k$ by evaluation.

Remark 1.1.3. Why is it important to keep the notions of a polynomial and polynomial function separate? See Exercise 2.2.1.

Definition 1.1.4. An affine plane algebraic curve is the vanishing locus of a polynomial function in the affine plane, i.e. a subset $C \subset \mathbb{A}^2_k$ of the form $C = C_{F_f}$ for some nonconstant polynomial $f(x, y) \in k[x, y]$.

For simplicity, we'll use the notation $C_f := C_{F_f}$. We will sometimes write $C_f(k)$ to denote C_f if we want to emphasize the underlying field. Finally, we will often abbreviate "affine plane algebraic curves" to simply "curves," since we will not have occasion to deal with other kinds of curves, at least initially.

Example 1.1.5 (Student Examples). Get Desmos to plot the subsets of the plane (over $k = \mathbb{R}$) defined by the following polynomials

- (a) 3x + 4y 7 (line)
- (b) $x^2 + y^2 1$ (circle),
- (c) $y x^2$ (parabola),
- (d) $y^2 + x^3$ (semicubical parabola/cuspidal cubic), (e) $y^2 x^3 x$ (one-component elliptic curve),
- (f) $y^2 x^3 + x$ (two-component elliptic curve),
- (g) $(x^2 + y^2)(x + y 1)$ (line and point not on it),
- (h) xy 1 (hyperbola), and
- (i) $x^2 + y^2 + 1$ (empty set).

These are all examples of algebraic curves. Now get Desmos to plot

- (a) $y \sin(1/x)$, and
- (b) y |x|.

These are not plane algebraic curves (why?). See also Exercise 2.1.8.

Remark 1.1.6. Our definition is currently a little weird. For instance, with our current definition, for certain fields k, a curve can be

- empty (think $x^2 + y^2 + 1 = 0$ over \mathbb{R}),
- a finite collection of points (think $x^2 + y^2 = 0$ over \mathbb{R} and Proposition 1.1.7, or think of what happens when $k = \mathbb{F}_q$ is a finite field),
- and all of \mathbb{A}^2_k (again think of $k = \mathbb{F}_q$ being a finite field).

Neither of these sets seem to be "1-dimensional," which is the elusive notion we are trying to capture. We could either choose to restrict ourselves to working over infinite fields or algebraically closed fields (even in positive characteristic—see Exercise 2.2.2), but this misses a lot of important number theory (see Example ??). Alternatively, we can accept that our definition is broader than initially intended, and try to study the consequences.

Proposition 1.1.7. Let k be a field. If $C, D \subset \mathbb{A}^2_k$ are curves, then so is $C \cup D$.

Proof. If
$$C = C_f$$
 and $D = C_g$ for $f, g \in k[x, y]$, then $C \cup D = C_{fg}$.

Remark 1.1.8. Here we are using that k[x, y] is a ring (how?), and that k is a field (or at least that it is a domain—what happens if k is not even a domain?). We will say more about this when we talk about irreducibility and reducedness of curves.

1.1.1 Motivating Questions

Given a field k and a curve $C \subset \mathbb{A}^2_k$, we can ask several questions about it.

Question 1.1.9. Is $C = \emptyset$?

This is not at all as trivial as it seems. Many number-theoretic questions can be phrased in this language, if we take k to be \mathbb{Q} or a finite field \mathbb{F}_q , for instance.

Example 1.1.10. Take $k = \mathbb{Q}$, fix a prime p, and look at the curve C defined by

$$f(x,y) := x^2 + y^2 - p \in \mathbb{Q}[x,y].$$

Then $C = \emptyset$ iff p satisfies a certain congruence condition (which?). See Exercise 2.1.1.

Example 1.1.11. Take $k = \mathbb{F}_p$ to be a finite field of prime order and $a \in k$ to be any element, and look at the curve C defined by

$$f(x,y) = x^2 - a \in \mathbb{F}_p[x,y].$$

Then $C = \emptyset$ iff a is quadratic nonresidue modulo p, i.e. $\left(\frac{a}{p}\right) = -1$.

Remark 1.1.12. For any field k, if $f(x,y) \in k[x,y]$ is a polynomial of x only, then the curve C_f defined by f is a finite (possibly empty) union of "vertical lines". Can yo umake this precise?

Example 1.1.13. Take $k = \mathbb{Q}$ and $n \ge 1$ to be a positive integer. Let

$$f_n(x,y) := x^n + y^n - 1 \in \mathbb{Q}[x,y],$$

and $C_n := C_{f_n}$ be the curve defined by f_n . Then Fermat's Last Theorem says that

$$C_n = \emptyset \Leftrightarrow n > 2.$$

Question 1.1.14. If C is nonempty, what can we say about the locus C? Is it finite or infinite? What can we say about its topology^a?

^aWhat's that?

Example 1.1.15. For instance, if k is finite, what is the cardinality of C(k)? Suppose $k = \mathbb{F}_q$ is a finite field, and that C is an elliptic curve¹, e.g. the curve defined by

$$f(x,y) = y^2 - x^3 - x \in \mathbb{F}_q[x,y]$$

when q is not a power of 2. The Hasse Theorem says that, in the above case,

$$(\sqrt{q}-1)^2 \le \#C(\mathbb{F}_q) \le (\sqrt{q}+1)^2.$$

In particular, we have $\#C(F_q) \sim q$ for all large q. (What does that even mean? Aren't we starting with a fixed q to begin with?) We will not prove this theorem in this course.

Example 1.1.16. If $k = \mathbb{R}$ or $k = \mathbb{C}$, how many pieces (i.e. connected components) does C(k) have? How are they related to each other? See Exercise 2.1.2 for the case when $k = \mathbb{R}$. Another theorem, which will not prove in this course, asserts that if $k = \mathbb{C}$, then any irreducible curve is connected.

1.1.2 Some Unimportant Remarks

Remark 1.1.17. Why did we require k to be a field? What would happen if k were just a ring-does the notion of an affine plane curve over a ring make sense? [Hint: some things make sense, whereas other things like Proposition 1.1.7 break down. See Remark 1.1.8.] Can you see how far you can go till things break down and what you can salvage by adapting definitions?

Remark 1.1.18. As sets, \mathbb{A}^2_k and $k^2 = k \times k$ are identical³, but \mathbb{A}^2_k does not come equipped with additional structure that k^2 is often (implicitly) interpreted to have: k^2 is often seen (by students who have seen some linear algebra) as a vector space with an additive structure and a distinguished origin, but for us \mathbb{A}^2_k is just a set⁴ and, as will become clear when we discuss affine changes of coordinates, there is no distinguished point in \mathbb{A}^2_k —all points "look the same". In slightly more grown-up terminology, the affine plane over k is a principal homogenous space or torsor for the (underlying additive group) of the vector space k^2 . If you do not understand what this remark means, you can safely ignore it.

Remark 1.1.19. Regarding the different choices of the field k: it's often easiest to plot curves over $k = \mathbb{R}$, but plots can also be made over other fields such as $k = \mathbb{C}$ (using some ingenuity and imagination—how?) or $k = \mathbb{F}_q$ (this may be a silly, uninstructive plot, but not always!). We will see throughout the course that it is, in fact, easier to work with curves over $k = \mathbb{C}$ than over $k = \mathbb{R}$ (why do you think this might be?). However, curves over other fields are equally important:

(a) Fields such as $k = \mathbb{Q}$, \mathbb{F}_p (or finite extensions and completions of these–such as $k = \mathbb{Q}_p$) show up a lot in solving number-theoretic questions. See Examples 1.1.10, 1.1.11 and 1.1.13.

¹We will define this notion formally later.

²Now, what's that?

³Only according to our definition! There are other accepted definitions of \mathbb{A}^2_k , such as $\mathbb{A}^2_k = \operatorname{Spec} k[x,y]$, for which this is no longer the case. You don't have to wrorry too much about this right now.

⁴Later on in your studies, it can, and will, be given the structure of a topological space, and in fact a locally ringed space (even affine scheme).

- (b) Another case of interest is when k = K(t) for some other field k. When $K = \mathbb{F}_q$ is a finite field, working with curves over $k = \mathbb{F}_q(t)$ is known as a the "function field analog" of the theory of curves. Many important questions which are unsolved in the "usual case" have been solved in the function field case (such as the Riemann Hypothesis), and this provides (one strand of) evidence for the Riemann Hypothesis.
- (c) In (b), when we take $K = \mathbb{C}$, so that we are looking at curves over $k = \mathbb{C}(t)$, we are really looking at one-parameter families of curves that fit together into an algebraic surface. For instance, elliptic curves over $\mathbb{C}(t)$ often give rise to elliptic K3 surfaces. This perspective is very helpful in the study of higher-dimensional algebraic varieties as well.

Figure 1.1: The elliptic curve over $k = \mathbb{C}(z)$ defined by $y^2 = x^3 - 3zx + (z^3 + 1)(z + 2)^{-1}$ in blue, along with its hyperplane section at z = 2, which is the elliptic curve $y^2 = x^3 - 6x + 9/4$. Picture made with Desmos 3D.

Therefore, it is helpful to have the flexibility to work over arbitrary fields from the beginning.

Chapter 2

Exercise Sheets

2.1 Exercise Sheet 1

2.1.1 Numerical and Exploration

Exercise 2.1.1. For an ordered pair (a, b) of rational numbers, consider the polynomial

$$f_{a,b}(x,y) := ax^2 + by^2 - 1 \in \mathbb{Q}[x,y].$$

Let $C(a,b) = C_{f_{a,b}} \subset \mathbb{A}^2_{\mathbb{Q}}$ be the rational affine plane algebraic curve defined by $f_{a,b}$.

- (a) Show that $C(2/5, 1/5) = \emptyset$.
- (b) Characterize all primes p such that $C(1/p, 1/p) = \emptyset$.
- (c) Characterize all pairs (a, b) such that $C(a, b) = \emptyset$.

Exercise 2.1.2.

- (a) Play around with graphs of real affine plane algebraic curves (RAPACs) on, say, Desmos or WolframAlpha. What is the coolest thing you can get a graph to do (cross itself thrice, look like a heart, etc.)?
- (b) How many pieces (i.e. connected components) can a RAPAC of degree d=2 have? How about d=3? What about $d\in\{4,5,6,7\}$?
- (c) What can you say in general? Can you come up with upper or lower bounds for the number of pieces?
- (d) Does the number of pieces depend on the nesting relations¹ between them? Does it depend on (or dictate) their shapes (e.g. convexity)?²

Exercise 2.1.3.

(a) Let $P \subset \mathbb{A}^2_{\mathbb{R}}$ be the polar curve implicitly defined by the equation

$$r^3 + r\cos\theta - \sin 4\theta = 0.$$

Find a nonconstant polynomial $f(x,y) \in \mathbb{R}[x,y]$ such that the curve $C_f \subset \mathbb{A}^2_{\mathbb{R}}$ defined by f contains P, i.e. satisfies $P \subset C_f$.

- (b) What is the degree of your f? What is the smallest possible degree of such an f?
- (c) By your choice of f, we have the containment $P \subset C_f$. Is P all of C_f ? If so, can you explain why (perhaps by retracing steps)? If not, how would you describe the extraneous components of $C_f \setminus P$? Could you have predicted them? Can you pick an f that provably minimizes the number of extraneous components?
- (d) Repeat the same analysis as in (a) through (c) for other such implicitly defined polar curves of your own devising.
- (e) Can you perform the same analysis as above for the Archimedean spiral, which is the polar curve implicitly defined by the equation $r = \theta$?

Draw pictures, or get a computer to draw them for you, but beware—is your software doing exactly what you think it is? For instance, plotting the equation

$$(x^2 + y^2)^{3/2} + x - \sin\left(4\arctan\left(\frac{y}{x}\right)\right) = 0$$

in Desmos does not give you the correct picture for P. (Why?)

¹What does that mean? What are those?

²Here's a harder result to whet your appetite: if d=4 and there is a nested pair of closed ovals, then the inner oval must be convex and there cannot be more components, although there may be up to 4 non-convex components in general. You may not be able to prove this now, but you should be able to solve this problem by the end of the course.

 $^{^3}$ I like to use the symbol \subseteq to mean "is contained in or equal to". Others prefer the symbol \subseteq to denote the same thing. I will use the symbol \subseteq when I want to exclude the possibility of equality.

Exercise 2.1.4. Consider the surface defined by the equation $z^3 + xz - y = 0$, pictured in Figure 2.1. The orthogonal projection of this surface to the xy-plane outlines a cuspidal curve.

- (a) Find the equation describing this cuspidal curve, and prove the assertion made above.
- (b) How does all of this relate to the Cardano formula for the solution to the cubic equation?

Figure 2.1: The surface $z^3 + xz - y = 0$ when orthogonally projected onto the xy-plane outlines a cuspidal curve. Picture made with Desmos 3D.

Exercise 2.1.5. Can you find a way to use the conchoid of Nichomedes (Example ??) to trisect a given angle? You may suppose that you know how to construct a conchoid with any given parameters. (Hint: see Figure 2.2.) How far can you take this—what else can you do with conchoids of different parameters? Once you've done that, use the cissoid of Diocles to give a compass and ruler (and cissoid) construction of $\sqrt[3]{2}$. Why do these constructions not contradict results from Galois theory?

Figure 2.2: The Conchoid of Nichomedes and Angle Trisection. Picture made with Desmos and edited in Notability.

Exercise 2.1.6. Show that over $k = \mathbb{C}$, every affine conic section, i.e. plane curve of degree 2 defined by a polynomial of the form

$$f(x,y) = ax^{2} + 2hxy + by^{2} + 2ex + 2fy + c \in \mathbb{C}[x,y]$$

for some $a, b, c, e, f, h \in \mathbb{C}$, not all zero, can be brought by an affine change of coordinates into one of the following forms:

- (a) an ellipse/circle/hyperbola defined by $x^2 + y^2 = 1$,
- (b) a parabola defined by $y = x^2$, or
- (c) a pair of lines defined by xy = 0, or
- (d) a double line defined by $x^2 = 0$.

Note that the equivalence of the circle $x^2 + y^2 = 1$ and hyperbola $x^2 - y^2 = 1$ in $\mathbb{A}^2_{\mathbb{C}}$ uses that \mathbb{C} contains a square root of -1 (how?). Can you come up with a similar classification over $k = \mathbb{R}$? What about other fields like $k = \mathbb{F}_q$?

2.1.2**PODASIPs**

Prove or disprove and salvage if possible the following statements.

Exercise 2.1.7. Let k be a field, $C \subset \mathbb{A}^2_k$ be an algebraic curve, and $\ell \subset \mathbb{A}^2_k$ be a line. Then the intersection $C \cap \ell \subset \mathbb{A}^2_k$ of C and ℓ is finite.

Exercise 2.1.8. Given any field k and function $f: k \to k$, we define its graph to be the subset

$$\Gamma_f := \mathbb{V}(y - f(x)) = \{(x, f(x)) : x \in k\} \subset \mathbb{A}_k^2.$$

- (a) When $k = \mathbb{R}$ and $f(x) = \sin x$, the graph $\Gamma_f \subset \mathbb{A}^2_{\mathbb{R}}$ is an algebraic curve.
- (b) When $k = \mathbb{R}$ and $f(x) = e^x$, the graph $\Gamma_f \subset \mathbb{A}^2_{\mathbb{R}}$ is an algebraic curve. (c) In the setting of (b), every line $\ell \subset \mathbb{A}^2_{\mathbb{R}}$ meets Γ_f in at most two points. (d) When $k = \mathbb{C}$ and $f(x) = e^x$, the graph $\Gamma_f \subset \mathbb{A}^2_{\mathbb{C}}$ is an algebraic curve.

Possible Hints: For (a), see Exercise 2.1.7. For (b), the exponential function grows very fast, so that your solution to (a) may not work for (b) thanks to (c). You may either use this growth to your advantage, or you may first solve (d) and use a little bit of complex analysis.]

Exercise 2.1.9 (Apparently Transcendental Curves).

(a) The curve $C_1 \subset \mathbb{A}^2_{\mathbb{R}}$ given parametrically as

$$C_1 = \{(e^{2t} + e^t + 1, e^{3t} - 2) : t \in \mathbb{R}\}\$$

is an algebraic curve.

(b) The curve $C_2 \subset \mathbb{A}^2_{\mathbb{R}}$ defined by the vanishing of the function f defined by

$$f(x,y) = x^2 + y^2 + \sin^2(x+y)$$

is an algebraic curve.

These examples are a little silly, but they illustrate important points (what?). Can we improve our definition of a plane algebraic curve to avoid such silliness?

Exercise 2.1.10. Given any $g(r,c,s) \in \mathbb{R}[r,c,s]$, there is a unique polynomial $f(x,y) \in \mathbb{R}[x,y]$ such that the polar algebraic curve P_g implicitly defined by g (see §??) is contained in the algebraic curve C_f defined by f, i.e. satisfies $P_g \subset C_f$.

2.2 Exercise Sheet 2

2.2.1 PODASIPs

Prove or disprove and salvage if possible the following statements.

Exercise 2.2.1. For a field k, let $\mathrm{Maps}(\mathbb{A}^2_k, k)$ be the set of all functions $F: \mathbb{A}^2_k \to k$. Claim: the map

$$k[x,y] \to \operatorname{Maps}(\mathbb{A}^2_k,k), \quad f \mapsto F_f$$

which sends a polynomial to the corresponding polynomial function is injective. In other words, if two polynomials $f,g\in k[x,y]$ agree at all points $(p,q)\in \mathbb{A}^2_k$, then f=g.

Exercise 2.2.2. A field is algebraically closed if and only if it is infinite.

Bibliography