DAMT-5301-Spring 2019 HW6- Solution

11.1 We are given: n = 30, \(\bar{x} = 126\), \(s_x = 35\), \(\bar{y} = 0.04\), \(s_y = 0.01\), and \(r = 0.86\).
Compute the least squares estimates,

$$b_1 = r\left(\frac{s_y}{s_x}\right) = (0.86)\left(\frac{0.01}{35}\right) = 0.000246$$

 $b_0 = \bar{y} - b_1\bar{x} = 0.04 - (0.000246)(126) = 0.009.$

The fitted regression line has an equation

$$y = 0.009 + 0.000246x$$

The time it takes to transmit a 400 Kbyte file is predicted as

$$\hat{y}_* = 0.009 + 0.000246x_* = 0.009 + (0.000246)(400) = 0.107 \text{ seconds}$$

- **11.2** Here n = 75, $\bar{x} = 32.2$, $s_x^2 = 6.4$, $\bar{y} = 8.4$, $s_y^2 = 2.8$, and $s_{xy} = 3.6$.
 - (a) Compute the least squares estimates

$$\begin{array}{lll} b_1 & = & \frac{s_{xy}}{s_x^2} = \frac{3.6}{6.4} = 0.5625 \\ b_0 & = & \bar{y} - b_1 \bar{x} = 8.4 - (0.5625)(32.2) = -9.7125. \end{array}$$

The sample regression line is

$$y = -9.7125 + 0.5625x$$

(b) Compute the sums of squares,

$$\begin{array}{lll} SS_{\rm TOT} &=& (n-1)s_y^2 = (75-1)(2.8) = 207.2 \\ SS_{\rm REG} &=& b_1^2S_{xx} = b_1^2s_x^2(n-1) = (0.5625)^2(6.4)(75-1) = 149.85 \\ SS_{\rm ERR} &=& SS_{\rm TOT} - SS_{\rm REG} = 57.35 \end{array}$$

Also, compute degrees of freedom

$$df_{TOT} = n - 1 = 74$$
, $df_{REG} = 1$, and $df_{ERR} = n - 2 = 73$

and the mean squares

$$MS_{\text{REG}} = \frac{SS_{\text{REG}}}{df_{\text{REG}}} = 149.85, \quad MS_{\text{ERR}} = \frac{SS_{\text{ERR}}}{df_{\text{ERR}}} = \frac{57.35}{73} = 0.7856.$$

Finally, we compute the F-ratio

$$F = \frac{MS_{REG}}{MS_{ERR}} = 190.75$$

and find from Table A7 (1 and 73 d.f.) that it is significant at the 0.1% level. Complete the ANOVA table:

Source	Sum of squares	Degrees of freedom	Mean squares	F
Model	149.85	1	149.5	190.75
Error	57.35	73	0.7856	
Total	207.2	74		

Predictor X can explain

$$R^2 = SS_{REG}/SS_{TOT} = 0.7232 \text{ or } 72.32\%$$

of the total variation.

(c) The 99% confidence interval for β₁ is

$$b_1 \pm t_{\alpha/2} \frac{s}{\sqrt{S_{xx}}} = b_1 \pm t_{0.005} \frac{\sqrt{MS_{\text{ERR}}}}{\sqrt{(n-1)s_x^2}}$$
$$= 0.5625 \pm (2.648) \frac{\sqrt{0.7856}}{\sqrt{(74)(6.4)}}$$
$$= 0.5625 \pm 0.1078 \text{ or } [0.4547, 0.6703]$$

where $t_{0.005}$ is obtained from Table A5 with 73 d.f.

This interval does not contain 0, therefore, the slope is significant (significantly different from 0) at a 1% level of significance.

$$X = \begin{pmatrix}
1 & 3 & 0 \\
1 & 4 & 0 \\
1 & 5 & 1 \\
1 & 6 & 0 \\
1 & 7 & 1 \\
1 & 8 & 1 \\
1 & 9 & 1 \\
1 & 10 & 1 \\
1 & 11 & 0 \\
1 & 12 & 1 \\
1 & 13 & 1
\end{pmatrix}$$
and
$$y = \begin{pmatrix}
17 \\
23 \\
31 \\
29 \\
33 \\
39 \\
40 \\
41 \\
44 \\
47
\end{pmatrix}$$

The 3rd column of the design matrix X is the dummy variable Z that equals 1 if the company reports profit and 0 otherwise. In the 2rd column of X, we again defined

$$X = year - 2000$$
,

to simplify the calculations.

We then compute

$$\boldsymbol{X}^T\boldsymbol{X} = \begin{pmatrix} 11 & 88 & 7 \\ 88 & 814 & 64 \\ 7 & 64 & 7 \end{pmatrix},$$

$$(\boldsymbol{X}^T\boldsymbol{X})^{-1} = \begin{pmatrix} 0.6742 & -0.0707 & -0.0278 \\ -0.0707 & 0.0118 & -0.0370 \\ -0.0278 & -0.0370 & 0.5093 \end{pmatrix},$$

and

$$\boldsymbol{b} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} = \begin{pmatrix} 13.3586 \\ 2.3569 \\ 4.0926 \end{pmatrix}$$

That is,

$$b_0=13.3586,\ b_1=2.3569,\ b_2=4.0926$$

(b) The estimated regression equation is

$$\hat{y} = 13.3586 + 2.3569x + 4.0926z$$

For a company reporting profit $(z_* = 1)$ in 2015 (that is, $x_* = 15$), we predict the investment amount as

$$\hat{y}_* = 13.3586 + 2.3569(15) + 4.0926(1) = 52.8047 \text{ thousand dollars}$$

- (c) The slope β₂ is the change in the response variable when the dummy variable z changes from 0 to 1. Thus, if the company reports a loss during year 2007 instead of a gain, its expected investment amount reduces by β₂. Our prediction will decrease by b₂ = 4.0926 thousand dollars.
- (d) The total sum of squares

$$SS_{\text{TOT}} = S_{yy} = \sum (Y_i - \bar{Y})^2 = 841.64$$

is computed in the previous exercise.

The error sum of squares can be computed, say, by filling the table,

	Y_i	\hat{Y}_i	$Y_i - \hat{Y}_i$	$(Y_i - \hat{Y}_i)^2$
Ÿ	17	20.4293	-3.4293	11.7600
	23	22.7862	0.2138	0.0457
	31	29.2357	1.7643	3.1128
	29	27.5000	1.5000	2.2500
	33	33.9495	-0.9495	0.9015
	39	36.3064	2.6936	7.2555
	39	38.6633	0.3367	0.1134
	40	41.0202	-1.0202	1.0408
	41	39.2845	1.7155	2.9429
	44	45.7340	-1.7340	3.0068
	47	48.0909	-1.0909	1.1901

Alternatively, one can multiply matrices,

$$SS_{ERR} = (\boldsymbol{y} - \hat{\boldsymbol{y}})^T (\boldsymbol{y} - \hat{\boldsymbol{y}}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b})$$

Then

$$SS_{ERR} = \sum_{i} (Y_i - \hat{Y}_i)^2 = 33.62$$

and

$$SS_{REG} = SS_{TOT} - SS_{ERR} = 841.64 - 33.62 = 808.02$$

Complete the ANOVA table:

Source	Sum of squares	Degrees of freedom	Mean squares	F
Model	808.02	2	404.01	96.14
Error	33.62	8	4.20	
Total	841.64	10		

Comparing $F_{obs} = 96.14$ against Table A7 with 2 and 8 d.f., we find that the model is significant at the 0.1% level (in fact, its P-value is less than 0.0001).

(e) From Exercise 11.4,

$$SS_{ERR}(Reduced) = (MS_{ERR})(df_{ERR}) = (9)(7.39) = 66.51$$
 (9 d.f.)

This error sum of squares is obtained from the reduced model where investment is predicted based on the year only.

For the full model of Exercise 11.5,

$$SS_{ERR}(Full) = 33.62$$
 (8 d.f.)

Hence, the new variable explains additional

$$\frac{SS_{\text{EX}}}{SS_{\text{TOT}}} \cdot 100\% = \frac{6.51 - 33.62}{841.64} \cdot 100\% = \underline{3.9\%}$$

of the total variation.

Significance of the new dummy variable (reporting profit) in addition to the time trend is tested by the partial F-statistic

$$\begin{split} F_{\mathrm{obs}} &= \frac{SS_{\mathrm{EX}}/\mathrm{df_{\mathrm{EX}}}}{MS_{\mathrm{ERR}}(Full)} = \frac{(SS_{\mathrm{ERR}}(Reduced) - SS_{\mathrm{ERR}}(Full))/(9-8)}{MS_{\mathrm{ERR}}(Full)} \\ &= \frac{6.51 - 33.62}{4.20} = \underline{7.83}. \end{split}$$

From Table A7 with 1 and 8 d.f., addition of the new variable is significant at the 2.5% but not at the 1% level. The P-value of this test is between 0.01 and 0.025.

11.9 From the data in Example 11.10 on p. 390, we can obtain:

$$n = 7$$
, $\bar{x}_2 = 9.57$, $s_{x_2}^2 = 63.29$, $\bar{y} = 35$, $s_y^2 = 242$, $r_{x_2y} = 0.758$

Compute the least squares estimates

$$b_1 = r\sqrt{\frac{s_y^2}{s_{x_2}^2}} = (0.758)\sqrt{\frac{242}{63.29}} = 1.48$$

 $b_0 = \bar{y} - b_1\bar{x_2} = 35 - (1.48)(9.57) = 20.84.$

The fitted regression line has the equation

$$\hat{y} = 20.84 + 1.48x_2$$

The coefficient of determination is

$$R^2 = r^2 = 0.575$$

showing that 57.5% of the total variation of the number of processed requests is explained by the number of tables only.

Next, compute sums of squares,

$$SS_{TOT} = (n-1)s_y^2 = (6)(242) = 1452 \quad (n-1=6 \text{ d.f.})$$

 $SS_{REG} = R^2SS_{TOT} = (0.575)(1452) = 834.9 \quad (1 \text{ d.f.})$
 $SS_{ERR} = SS_{TOT} - SS_{REG} = 1452 - 834.9 = 617.1 \quad (n-2=5 \text{ d.f.})$

Based on this, the adjusted R-square is

$$R_{\text{adj}}^2 = 1 - \frac{SS_{\text{ERR}}/\text{df}_{\text{ERR}}}{SS_{\text{TOT}}/\text{df}_{\text{TOT}}} = 1 - \frac{617.1/5}{1452/6} = \boxed{0.51}$$

which is lower than the adjusted R-square of the full model ($R_{adj}^2 = 0.68$) in Example 11.10. According to the adjusted R-square criterion, the full model is better. Complete the ANOVA table,

Source	Sum of squares	Degrees of freedom	Mean squares	F
Model	834.9	1	834.9	6.77
Error	617.1	5	123.4	
Total	1452	6		

This F-statistic (6.77) is just a little higher than $F_{0.05} = 6.61$ from Table A7 with 1 and 5 d.f. Therefore, the P-value is just below 0.05, and this reduced model predicting the number of processed requests based on the number of tables is significant at the 5% level.