Regression 2

Masashi Sugiyama, Takashi Ishida sugi@k.u-tokyo.ac.jp, ishi@k.u-tokyo.ac.jp http://www.ms.k.u-tokyo.ac.jp

Regression = Function Approximation

Learn a function that is close to the underlying function w/ training samples

Linear-in-parameter model

$$f_{m{ heta}}(m{x}) = \sum_{j=1}^b heta_j \phi_j(m{x}) rac{\{\phi_j(m{x})\}_{j=1}^b}{ ext{: basis functions}}$$

Linear model:

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=1}^{n} \theta_{j} K(\boldsymbol{x}, \boldsymbol{x}_{j})$$

Gaussian kernel

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=1}^{n} \theta_{j} K(\boldsymbol{x}, \boldsymbol{x}_{j}) K(\boldsymbol{x}, \boldsymbol{c}) = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{c}\|^{2}}{2h^{2}}\right)$$

Least squares regression

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2$$

Minimize the squared error between training outputs:

Regularization

$$\min_{\boldsymbol{\theta}} \left[\frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|^2 \right]$$

fit for training output

goodness of penalty term for preventing param values from becoming too large (regularization)

- The model strikes a good balance between fitting the training output well and keeping the parameter values small.
- Also called ℓ_{2} -Regularized regression

Cross validation

- Split training samples $Z = \{(x_i, y_i)\}_{i=1}^n$ into k groups: $\{Z_i\}_{i=1}^k$
- Use samples from groups excluding Z_i and learn θ (fix λ, h).
- Use the remaining Z_i to check the test error.
- Repeat this for all $i \in [k]$, and return the mean of the test errors.

Schedule

- 1. 04/8 Introduction
- 2. 04/15 Regression 1
- 3. 04/22 Regression 2
- 04/30 Cancelled
- 4. 05/13 Classification 1
- 5. 05/20 Classification 2
- 6. 05/27 Deep learning 1
- 06/03 No lecture
- 7. 06/10 Deep learning 2

- 8. 06/17 Deep learning 3
- 9. 06/24 Semi-supervised learning
- 10. 07/01 Language models
- 11. 07/08 Representation learning 1
- 12. 07/15 Representation learning 2
- 13. 07/22 Advanced topics

Sparsity of the model

- Having a large number of parameters makes computation more challenging.
 - Example: with kernel models, it is computationally difficult when the number of training samples is large since #params
 = #training samples:

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=1}^{n} \theta_j K(\boldsymbol{x}, \boldsymbol{x}_j)$$

If many parameter values are set to zero, the computation becomes easier and more interpretable.

Sparsity of the model

Naive approach 1:

- Decide to not use some of the parameters.
- When we have d params, we have 2^d different ways of choosing params.
- Not a realistic approach when d is too large.

Naive approach 2:

- First use ℓ_2 -regularized least squares.
- Simply choose the params that have a small absolute value, and squash it to zero.
- May suffer from rounding errors.

Contents

- 1. Sparse Regression
 - 1. ℓ_1 -constrained least squares regression
 - 2. Solving ℓ_1 -constrained LS
 - 3. Various extensions
- 2. Robust Regression

ℓ_1 -constrained least squares regression

- Constrain the model to be within \mathcal{C}_1 hyper-cube

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 \text{ subject to } \|\boldsymbol{\theta}\|_1 \le R$$

$$R \ge 0$$

$$R \ge 0$$
 $\|\theta\|_1 = \sum_{j=1}^{o} |\theta_j|$

Why do we get a sparse solution?

The solution tends to be on one of the coordinate axes.

 Also called sparse regression or LASSO (Least Absolute Shrinkage and Selection Operator)

Why do we get a sparse solution?

This does not always happen! For example, when both variables are essentially important:

Example

Gaussian kernel model:

Will explain algorithms soon!

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=1}^{n} \theta_{j} K(\boldsymbol{x}, \boldsymbol{x}_{j})$$

$$K(\boldsymbol{x}, \boldsymbol{c}) = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{c}\|^2}{2h^2}\right)$$

- The results of ℓ_1 -CLS and ℓ_2 -CLS are similar
- Out of the 50 params in ℓ_1 -CLS, 38 params are zero!

Feature Selection

If we perform sparse learning for a linear model w.r.t. the input, then some input variables will be cancelled out.

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \boldsymbol{\theta}^{\top} \boldsymbol{x} \quad \boldsymbol{x} = (x^{(1)}, \dots, x^{(d)})^{\top}$$

- Will be able to select the features useful for prediction automatically.
- Example: automatic selection of important genes
- Instead of considering all 2^d combinations, we just need to decide λ in sparse learning.

Contents

- 1. Sparse regression
 - 1. ℓ_1 -constrained least squares regression
 - 2. Solving ℓ_1 -constrained LS
 - 3. Various extensions
- 2. Robust regression

Deriving the solution

■ Equivalent expression with \mathcal{C}_1 hyper-cube constraint:

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 + \lambda \sum_{j=1}^{b} |\theta_j| \right]$$

 $\lambda (\geq 0)$: constant decided by R

- Instead of choosing R, we can specify λ .
- However, since the absolute value is not differentiable at the origin, the above optimization problem cannot be solved easily.

Approximate gradient method

Approximate the derivative of the absolute value

 But it is unstable and does not work well in practice because many solutions are zero.

Upper bound of ℓ_1 -norm

- In order to consider a different direction, we first recall that the \mathcal{C}_1 -norm is: $\| \boldsymbol{\theta} \|_1 = \sum_{j=1}^b \| \theta_j \|$
- Upper bound: $|\theta_j| \le \frac{\theta_j^2}{2c_j} + \frac{c_j}{2}$ for $c_j > 0$
 - Why? Apply inequality of arithmetic & geometric mean to RHS. Equality holds when $\theta_i = \pm c_i$.

Upper bound and learning objective

If we use the current param $\tilde{\theta}_j \neq 0$ for $c_{j'}$

$$|\theta_j| \le \frac{\theta_j^2}{2|\tilde{\theta}_j|} + \frac{|\tilde{\theta}_j|}{2}$$

If we regard $|\theta_j|=0$ for $\tilde{\theta}_j=0$, then the upper bound for parameter $\tilde{\theta}_j\neq0$:

$$|\theta_j| \le \frac{|\tilde{\theta}_j|^{\dagger}}{2} \theta_j^2 + \frac{|\tilde{\theta}_j|}{2}$$

 $|\theta| \dagger = 1/|\theta|$:

generalized inverse

Original objective:

$$J(\boldsymbol{\theta}) = J_{LS}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_{1}$$

• Upper bound of $J(\theta)$:

$$\tilde{J}(\boldsymbol{\theta}) = J_{\text{LS}}(\boldsymbol{\theta}) + \frac{\lambda}{2} \boldsymbol{\theta}^{\mathsf{T}} \tilde{\boldsymbol{\Theta}}^{\dagger} \boldsymbol{\theta} + \lambda \sum_{i=1}^{b} |\tilde{\theta}_{i}|/2$$

 $\tilde{\Theta}$: diagonal matrix with $|\tilde{\theta}_1|,...,|\tilde{\theta}_b|$ on diag

 $\tilde{\Theta}^{\dagger}$:diagonal matrix with $|\tilde{\theta}_i|^{\dagger}$ on the diag

Minimizing $\tilde{J}(\theta)$

$$\tilde{J}(\theta) = J_{\text{LS}}(\theta) + \frac{\lambda}{2}\theta^{\top}\tilde{\Theta}^{\dagger}\theta + \text{Constant}$$

If we are using a linear-in-parameter model $f_{\theta}(x) = \theta^{\top} \phi(x)$ then:

$$J_{\mathsf{LS}}(\boldsymbol{\theta}) = \frac{1}{2} \|\boldsymbol{\Phi}\boldsymbol{\theta} - \boldsymbol{y}\|^2.$$

- Recall from last week: $\mathbf{\Phi} = [\phi_j(\mathbf{x}_i)]_{j,i}$ is design matrix.
- The solution of minimizing $ilde{J}(oldsymbol{ heta})$:

$$\hat{\boldsymbol{\theta}} = (\boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Phi} + \lambda \tilde{\boldsymbol{\Theta}}^{\dagger})^{-1} \boldsymbol{\Phi}^{\mathsf{T}} y$$

Note that we can ignore $\sum_{j=1}^{b} |\tilde{\theta}_{j}|/2$ in the minimization problem since it is a constant w.r.t. $\boldsymbol{\theta}$.

Algorithm

- 1. Initialize parameter θ .
- 2. Form current θ , derive Θ :

$$\Theta \leftarrow \text{diag}(|\theta_1|,...,|\theta_b|).$$

 \blacksquare 3. Update θ :

$$\theta \leftarrow (\Phi^{\mathsf{T}}\Phi + \lambda \Theta^{\dagger})^{-1}\Phi^{\mathsf{T}}y.$$

Repeat 2 and 3 until convergence.

This is called: iteratively reweighted shrinkage

A closer look into the updates

- Some properties:
 - Since quadratic function is tangent to original function when $\theta = \tilde{\theta}$: $J(\tilde{\theta}) = \tilde{J}(\tilde{\theta})$.
 - Since $\hat{\theta}$ is the minimizer of \tilde{J} : $\tilde{J}(\tilde{\theta}) \geq \tilde{J}(\hat{\theta})$.
 - Since $\tilde{J}(\theta)$ is upper bound of $J: \tilde{J}(\hat{\theta}) \geq J(\hat{\theta})$.
- To summarize:

$$J(\tilde{\theta}) = \tilde{J}(\tilde{\theta}) \ge \tilde{J}(\hat{\theta}) \ge J(\hat{\theta})$$

Example

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=1}^{n} \theta_j \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}_j\|^2}{2h^2}\right)$$

Implementing this is homework!

- ℓ_1 -constraint results look roughly the same as ℓ_2 -constraint
- ullet However, the \mathcal{C}_1 -constraint has 37 out of 50 parameters that are zero!

Note: if absolute value is below 1e-3, we regard it as zero.

Issues of iteratively reweighted shrinkage

- The cost of 1 iteration is heavy and when c_j becomes extremely small, may become unstable due to $1/c_j$.
- Still, the super simple implementation makes it a practical choice.
- Many advanced methods exists, including:
 - Accelerated proximal gradient method
 - Alternating direction method of multipliers (ADMM)

Contents

- 1. Sparse regression
 - 1. ℓ_1 -constrained least squares regression
 - 2. Solving ℓ_1 -constrained LS
 - 3. Various extensions
 - A) Online learning
 - B) Generalized ℓ_1 -norm
 - c) ℓ_p -norm
 - D) $\ell_1 + \ell_2$ -norm
 - E) $\ell_{1,2}$ -norm
- 2. Robust regression

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 \qquad f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=1}^{b} \theta_j \phi_j(\boldsymbol{x})$$

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=1}^{b} \theta_{j} \phi_{j}(\boldsymbol{x})$$

- 1. Initialize parameter θ .
- 2. Gradient descent on a randomly chosen (x, y):

$$\begin{aligned} \boldsymbol{\theta} &\longleftarrow \boldsymbol{\theta} - \varepsilon \frac{\partial}{\partial \boldsymbol{\theta}} \frac{(f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y)^2}{2} \\ &= \boldsymbol{\theta} - \varepsilon \boldsymbol{\phi}(\boldsymbol{x}) \Big(\boldsymbol{\theta}^\top \boldsymbol{\phi}(\boldsymbol{x}) - y \Big) & \text{stepsize} \\ \varepsilon &> 0 \end{aligned}$$

- Repeat step 2. until convergence
- How can we satisfy the ℓ_1 constraint?

Sparse online learning

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 + \lambda \sum_{j=1}^{b} |\theta_j| \quad f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=1}^{b} \theta_j \phi_j(\boldsymbol{x})$$

- 1. Initialize parameter θ .
- 2. Gradient descent on a randomly chosen (x, y):

$$\boldsymbol{\theta} \longleftarrow \boldsymbol{\theta} - \varepsilon \boldsymbol{\phi}(\boldsymbol{x}) \Big(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\boldsymbol{x}) - y \Big) \quad \begin{array}{c} \text{stepsize} \\ \varepsilon > 0 \end{array}$$

3. Make the solution sparse:

$$\forall j = 1, \dots, b, \quad \theta_j \longleftarrow \begin{cases} \max(0, \theta_j - \lambda \varepsilon) & (\theta_j > 0), \\ \min(0, \theta_j + \lambda \varepsilon) & (\theta_j \leq 0). \end{cases}$$

4. Repeat steps 2, 3 until convergence.

Intuition of making it sparse

$$\theta_j \leftarrow \begin{cases} \max(0, \theta_j - \lambda \varepsilon) & (\theta_j > 0), \\ \min(0, \theta_j + \lambda \varepsilon) & (\theta_j \leq 0). \end{cases}$$

$$\max(0,\theta_j - \lambda\varepsilon) + \min(0,\theta_j + \lambda\varepsilon)$$

$$-\lambda\varepsilon$$

$$\lambda\varepsilon$$

$$\theta_j$$

- With regularization, we are closer to the origin.
- The method of performing corrections corresponding to the regularization term for stochastic gradient descent is called proximal gradient method.

Contents

- 1. Sparse regression
 - 1. 1 -constrained least squares regression
 - 2. Solving ℓ_1 -constrained LS
 - 3. Various extensions
 - A) Online learning
 - B) Generalized ℓ_1 -norm
 - c) ℓ_p -norm
 - D) $\ell_1 + \ell_2$ -norm
 - E) $\ell_{1,2}$ -norm
- 2. Robust regression

Generalized ℓ_1 -norm

$$\|oldsymbol{F}oldsymbol{ heta}\|_1 = \sum_j \left|\sum_{j'} F_{j,j'} heta_{j'}
ight|$$

Example: the norm of the difference of adjacent elements

$$\sum_{j} |\theta_{j+1} - \theta_{j}| F_{j,j'} = \begin{cases} 1 & (j' = j + 1) \\ -1 & (j' = j) \\ 0 & (\text{otherwise}) \end{cases}$$

- The generalized \mathcal{E}_1 version of LS is called fused lasso.

Generalized ℓ_1 -constrained least squares regression 32

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 \text{ subject to } \|\boldsymbol{F}\boldsymbol{\theta}\|_1 \le R$$

Example: total variation noise removal

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{y}\|^2$$
 subject to $\sum_{j} |\theta_{j+1} - \theta_{j}| \le R$

From Wikipedia
$$F_{j,j'} = \begin{cases} 1 & (j' = j + 1) \\ -1 & (j' = j) \\ 0 & (\text{otherwise}) \end{cases}$$

Contents

- 1. Sparse regression
 - 1. l_1 -constrained least squares regression
 - 2. Solving ℓ_1 -constrained LS
 - 3. Various extensions
 - A) Online learning
 - B) Generalized ℓ_1 -norm
 - c) ℓ_p -norm
 - D) $\ell_1 + \ell_2$ -norm
 - E) $\ell_{1,2}$ -norm
- 2. Robust regression

$$\ell_p$$
-norm

$$\|m{ heta}\|_p = \left(\sum_{j=1}^b | heta_j|^p\right)^{rac{1}{p}} \quad \|m{ heta}\|_p = \sum_{j=1}^b | heta_j|^p \quad p \ge 1$$

lp -constrained least squares regression

Restrict the model to be within \mathcal{E}_p -hypercube

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 \text{ subject to } \|\boldsymbol{\theta}\|_p \le R$$

ℓ_p -constrained least squares regression

- The solution becomes sparse: $0 \le p \le 1$
- Optimization problem is convex: $p \ge 1$ (Easier to achieve global solution)
- Only p = 1 satisfies both!

Contents

- 1. Sparse regression
 - 1. ℓ_1 -constrained least squares regression
 - 2. Solving ℓ_1 -constrained LS
 - 3. Various extensions
 - A) Online learning
 - B) Generalized ℓ_1 -norm
 - c) ℓ_p -norm
 - D) $\ell_1 + \ell_2$ -norm
 - E) $\ell_{1,2}$ -norm
- 2. Robust regression

Issue of ℓ_1 -constrained LS regression

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{n} \left(\sum_{j=1}^{b} \theta_{j} \phi_{j}(\boldsymbol{x}_{i}) - y_{i} \right)^{2} \text{ subject to } \sum_{j=1}^{b} |\theta_{j}| \leq R$$

- When some basis functions $\{\phi_j(x)\}_{j=1}^b$ are similar, only one of them is chosen.
- When b < n, this may perform worse compared with \mathcal{E}_2 -constrained LS regression.

$\ell_1 + \ell_2$ -constrained least squares regression ³⁹

$$(1 - \tau) \sum_{j=1}^{b} |\theta_j| + \tau \sum_{j=1}^{b} \theta_j^2 \le R \qquad 0 \le \tau < 1$$

Similar to ℓ_{14} -cube, but $\ell_1+\ell_2$ -cube is sharp

Also called elastic net.

Contents

- 1. Sparse regression
 - 1. ℓ_1 -constrained least squares regression
 - 2. Solving ℓ_1 -constrained LS
 - 3. Various extensions
 - A) Online learning
 - B) Generalized ℓ_1 -norm
 - c) ℓ_p -norm
 - D) $\ell_1 + \ell_2$ -norm
 - E) $\ell_{1,2}$ -norm
- 2. Robust regression

$\ell_{1.2}$ -norm

- Setup: there are variable groups that are similar, but we do not know whether they are helpful.
- When $\boldsymbol{\theta} = \left(\theta_1, ..., \theta_b\right)^{\mathsf{T}}$ has a group structure $\boldsymbol{\theta} = \left(\boldsymbol{\theta}^{(1)\mathsf{T}}, ..., \boldsymbol{\theta}^{(t)\mathsf{T}}\right)^{\mathsf{T}}$, then the following is called $\mathscr{E}_{1,2}$ -norm:

$$\|\boldsymbol{\theta}\|_{1,2} = \sum_{j=1}^{t} \|\boldsymbol{\theta}^{(j)}\|_{2}$$
 $\boldsymbol{\theta}^{(j)} \in \mathbb{R}^{b_{j}}$

 Called group regularization when this is used for the regularization term.

Exercise

The constraint of ℓ_2 -norm and ℓ_1 -norm in 3-dimensional case:

Similarly, visualize the constraint of $\ell_{1,2}$ -norm and the sparse solution: $\sqrt{\theta_1^2 + \theta_2^2} + \sqrt{\theta_3^2} \le R$

Visualization

Achieve sparsity at the group level!

$$\sum_{j=1}^{t} \|\boldsymbol{\theta}^{(j)}\| \le R$$

Summary of sparse regression

- Achieve sparsity by ℓ_1 -regularized learning.
- We no longer have an analytical solution.
- We can consider many different ideas: fused lasso, group lasso, elastic net, …
- Sparse regression is used widely in many domains.

Another Issue of Least Squares

With just a single outlier, the results are altered heavily:

$$f_{\boldsymbol{\theta}}(x) = \theta_1 + \theta_2 x$$

ℓ_2 loss function

$$\sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2$$

- Least squares regression: measures the goodness of fit of the training output by the \mathcal{C}_2 loss function.
- The influence of outliers is strengthened by the "squared" component.
- Need to reduce the influence of outliers to stabilize learning!

Contents

- 1. Sparse regression
- 2. Robust regression
 - 1. ℓ_1 -loss
 - 1. Relationship between median
 - 2. Robustness and estimation accuracy
 - 2. Huber loss
 - 3. Tukey loss

Robust regression with ℓ_1 loss

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left| f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right|$$

• Goodness of fit to training samples is measured by \mathcal{C}_1 function:

- The influence of the outlier becomes linear.
- Called least absolute (LA).

Will explain the methods soon!

Contents

- 1. Sparse regression
- 2. Robust regression
 - 1. ℓ_1 -loss
 - 1. Relationship between median
 - 2. Robustness and estimation accuracy
 - 2. Huber loss
 - 3. Tukey loss

Cumulative Distribution Function

Probability of a continuous random variable taking a value less than or equal to \boldsymbol{x}

$$P(x) = \operatorname{Prob}(X \le x) = \int_{-\infty}^{x} p(u)du$$

P(x): cumulative distribution function

$$P'(x) = \frac{\mathrm{d}P(x)}{\mathrm{d}x} = p(x)$$

• (Weakly) increasing function:

$$x_1 < x_2 \implies P(x_1) \le P(x_2)$$

• Range:

$$x \to -\infty \implies P(x) \to 0$$

 $x \to \infty \implies P(x) \to 1$

Expectation and Median

Expectation:

$$E[X] = \int xp(x) dx$$

Median:

$$x$$
 satisfying $Prob(X \le x) = \frac{1}{2}$

 Expected values can be inconsistent with our intuition when there are outliers.

Math exercise

- Consider density function p(y) with support [a, b].
- Show θ_2 that minimizes squared error $J_2(y)$ is the expectation of y.

$$\theta_2 = \underset{\theta}{\operatorname{argmin}} J_2(\theta)$$

$$J_2(\theta) = \int_a^b (y - \theta)^2 p(y) dy$$

Helpful info: derivative is zero at the minimum.

Math exercise

- Consider density function p(y) with support [a, b].
- ullet $heta_1$ that minimizes the absolute error $J_1(heta)$ is the median

$$\theta_1 = \underset{\theta}{\operatorname{argmin}} J_1(\theta)$$

$$J_1(\theta) = \int_a^b |y - \theta| p(y) dy$$

Helpful info: integration by parts

$$\int_{a}^{b} f(y)g'(y)dy = \left[f(y)g(y) \right]_{a}^{b} - \int_{a}^{b} f'(y)g(y)dy$$

Observed value = true value + noise:

$$\{y_i \mid y_i = \mu^* + \epsilon_i\}_{i=1}^n$$

• ℓ_2 -loss function: corresponds to the estimation of the **expectation** of the observations.

$$\underset{\mu}{\operatorname{argmin}} \left[\sum_{i=1}^{n} (y_i - \mu)^2 \right] = \operatorname{mean} \left(\{ y_i \}_{i=1}^{n} \right)$$

• \mathcal{C}_1 -loss function: corresponds to the estimation of **median** of the observations.

$$\underset{\mu}{\operatorname{argmin}} \left[\sum_{i=1}^{n} \left| y_i - \mu \right| \right] = \operatorname{median} \left(\left\{ y_i \right\}_{i=1}^{n} \right)$$

Contents

- 1. Sparse regression
- 2. Robust regression
 - 1. ℓ_1 -loss
 - 1. Relationship between median
 - 2. Robustness and estimation accuracy
 - 2. Huber loss
 - 3. Tukey loss

Robustness and Efficiency

 Breakpoint: the proportion of samples that will maintain non-breaking solutions when we replace samples with infinity.

- ℓ_2 -loss function: 0%
 - (not robust)
- \mathcal{C}_1 -loss function: 50%
 - (eg robust)

- However, the \mathcal{C}_1 -loss function is not efficient for Gaussian noise (large variance).

Requirements for robust regression

- Highly robust = ignoring more training samples
 - A regressor that always outputs 0 is meaningless but super robust.
- Practical requirements:
 - Want to be similar to LS when there are no outliers.
 - Need robustness when there are many or large outliers.

Contents

- 1. Sparse regression
- 2. Robust regression
 - 1. ℓ_1 -loss
 - 2. Huber loss
 - 3. Tukey loss

Huber loss

- The best of both world?
 - Squared for small errors
 - Absolute for larger errors

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \rho(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i)$$

$$\rho(r) = \begin{cases} r^2/2 & (|r| \le \eta) \\ \eta|r| - \eta^2/2 & (|r| > \eta) \end{cases} \quad \eta \ge 0$$

• Parameter η is designed by the user as the point at which errors may originate from outliers.

1st Approach

Huber loss is continuously differentiable.

$$\rho(r) = \begin{cases} r^2/2 & (|r| \le \eta) \\ \eta|r| - \eta^2/2 & (|r| > \eta) \end{cases}$$

$$\rho'(r) = \begin{cases} r & (|r| \le \eta) \\ \operatorname{sign}(r)\eta & (|r| > \eta) \end{cases}$$

Gradient method:

$$\boldsymbol{\theta} \longleftarrow \boldsymbol{\theta} - \varepsilon \nabla J(\boldsymbol{\theta})$$

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{n} \rho(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i)$$

2nd Approach

- Gradient methods are tricky to adjust step widths
- Iterative least squares algorithm:
 - Huber loss is suppressed from above by a quadratic function tangent to the current solution (different from Newton's method)
 - Minimizing the quadratic upper bound analytically to find a better solution step by step

Math exercise

$$\eta |r| - rac{\eta^2}{2}$$

• Huber loss when
$$|r|>\eta$$
:
$$\eta|r|-\frac{\eta^2}{2}$$

$$\rho(r)=\begin{cases} r^2/2 & (|r|\leq\eta)\\ \eta|r|-\eta^2/2 & (|r|>\eta) \end{cases}$$
 Derive a quadratic function that is tangent to the

Derive a quadratic function that is tangent to the huber loss.

Helpful info: from symmetry, quadratic function that is tangent at $\pm c$ can be expressed as $ar^2 + b$

Minimization of upper bound

$$\rho(r) = \begin{cases} r^2/2 & (|r| \le \eta) \\ \eta|r| - \eta^2/2 & (|r| > \eta) \end{cases}$$

Upper bound $\tilde{\rho}(r) \geq \rho(r)$ for residual $\tilde{r} = f_{\tilde{\theta}}(x) - y$ (where $\tilde{\theta}$ is current param):

$$\widetilde{\rho}(r) = \begin{cases} r^2/2 & (|\widetilde{r}| \leq \eta) \\ \frac{\eta}{2|\widetilde{r}|} r^2 + \frac{\eta|\widetilde{r}|}{2} - \frac{\eta^2}{2} & (|\widetilde{r}| > \eta) \end{cases}$$
 constant

$$=\frac{\widetilde{w}}{2}r^2+\mathrm{const}$$

$$= \frac{w}{2}r^2 + \text{const} \quad \widetilde{w} = \begin{cases} 1 & (|\widetilde{r}| \le \eta) \\ \eta/|\widetilde{r}| & (|\widetilde{r}| > \eta) \end{cases}$$

Minimization of upper bound (cont.)

Original objective we wanted to minimize:

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{n} \rho(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i) \quad \rho(r) = \begin{cases} r^2/2 & (|r| \le \eta) \\ \eta |r| - \eta^2/2 & (|r| > \eta) \end{cases}$$

Minimization of $ilde{J}$ (upper bound of J) derived with $ilde{m{ heta}}$:

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \widetilde{J}(\boldsymbol{\theta}) \ \widetilde{J}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \widetilde{w}_i \Big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \Big)^2$$

$$\widetilde{w}_i = \begin{cases} 1 & (|\widetilde{r}_i| \leq \eta) \\ \eta/|\widetilde{r}_i| & (|\widetilde{r}_i| > \eta) \end{cases} \widetilde{r}_i = f_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{x}_i) - y_i$$

Minimization of upper bound (cont.)

Upper bound is weighted least squares:

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{n} \widetilde{w}_i \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2$$

$$\widetilde{w}_{0.6}^{0.8}$$

Small weights are set for outliers

$$\widetilde{w}_i = \begin{cases} 1 & (|\widetilde{r}_i| \leq \eta) \\ \eta/|\widetilde{r}_i| & (|\widetilde{r}_i| > \eta) \end{cases} \quad \widetilde{r}_i = f_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{x}_i) - y_i$$

$$\widetilde{r}_i = f_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{x}_i) - y_i$$

The minimum solution of the upper bound is analytically obtained by $\widehat{\boldsymbol{\theta}} = (\mathbf{\Phi}^{\top} \widetilde{\boldsymbol{W}} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\top} \widetilde{\boldsymbol{W}} \boldsymbol{y}$

$$\widetilde{\boldsymbol{W}} = \operatorname{diag}\left(\widetilde{w}_1, \dots, \widetilde{w}_n\right)$$

Proving this is homework.

Minimization of upper bound (cont.)

- Since the upper bound is tangent at $\tilde{m{\theta}}$: $J(\tilde{m{\theta}}) = \tilde{J}(\tilde{m{\theta}})$
- If $\hat{\theta}$ is the minimal solution of the upper bound: $\widetilde{J}(\widetilde{\theta}) \geq \widetilde{J}(\widehat{\theta})$
- Since \widetilde{J} is the upper bound of J: $\widetilde{J}(\widehat{\theta}) \geq J(\widehat{\theta})$
- To summarize: $J(\widetilde{\boldsymbol{\theta}}) = \widetilde{J}(\widetilde{\boldsymbol{\theta}}) \geq \widetilde{J}(\widehat{\boldsymbol{\theta}}) \geq J(\widehat{\boldsymbol{\theta}})$
 - ho when updating from $ilde{ heta}$ to $ilde{ heta}$, J generally decreases

$$\widehat{\boldsymbol{\theta}} = \operatorname*{argmin} \widetilde{J}(\boldsymbol{\theta})$$

Iteratively reweighted LS algorithm

- Initialize θ .
- Repeat below until convergence:
 - Derive W from current solution heta (derive upper bound)

$$\mathbf{W} = \operatorname{diag}(w_1, \dots, w_n)$$

$$w_i = \begin{cases} 1 & (|f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i| \leq \eta) \\ \eta/|f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i| & (|f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i| > \eta) \end{cases}$$

• Update θ (minimize upper bound)

$$oldsymbol{ heta} \longleftarrow (oldsymbol{\Phi}^ op oldsymbol{W} oldsymbol{\Phi})^{-1} oldsymbol{\Phi}^ op oldsymbol{W} oldsymbol{y}$$

Python implementation 1

Iterative least squares algorithm for Huber regression for the linear model $f_{\theta}(x) = \theta_1 + \theta_2 x$.

```
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
np.random.seed(1)
def generate_sample(x_min=-3., x_max=3., sample_size=10):
    x = np.linspace(x_min, x_max, num=sample_size)
   y = x + np.random.normal(loc=0., scale=.2, size=sample_size)
   y[-1] = -4 # outlier
    return x, y
def build_design_matrix(x):
    phi = np.empty(x.shape + (2,))
    phi[:, 0] = 1.
    phi[:, 1] = x
    return phi
def iterative_reweighted_least_squares(x, y, eta=1., n_iter=1000):
    phi = build_design_matrix(x)
    # initialize theta using the solution of regularized ridge regression
    theta = theta_prev = np.linalg.solve(
        phi.T.dot(phi) + 1e-4 * np.identity(phi.shape[1]), phi.T.dot(y))
    for _ in range(n_iter):
        r = np.abs(phi.dot(theta_prev) - y)
        w = np.diag(np.where(r > eta, eta / r, 1.))
        phit_w_phi = phi.T.dot(w).dot(phi)
        phit_w_y = phi.T.dot(w).dot(y)
        theta = np.linalg.solve(phit_w_phi, phit_w_y)
        if np.linalg.norm(theta - theta_prev) < 1e-3:
            break
        theta_prev = theta
    return theta
```

Python implementation 2

```
def predict(x, theta):
    phi = build_design_matrix(x)
    return phi.dot(theta)
def visualize(x, y, theta, x_min=-4., x_max=4., filename='xxxxxxx.png'):
    X = np.linspace(x_min, x_max, 1000)
    Y = predict(X, theta)
    plt.clf()
    plt.plot(X, Y, color='green')
    plt.scatter(x, y, c='blue', marker='o')
    plt.savefig(filename)
x, y = generate_sample()
theta = iterative_reweighted_least_squares(x, y, eta=1.)
visualize(x, y, theta)
```


Contents

- 1. Sparse regression
- 2. Robust regression
 - 1. ℓ_1 -loss
 - 2. Huber loss
 - 3. Tukey loss

Can we improve further?

- Huber loss is robust compared with ℓ_2 -loss
- But... no upper bound on the loss, so the effect of outliers remain to some extent.

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \rho_{\text{Huber}}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i)$$

$$\rho_{\mathrm{Huber}}(r) = \begin{cases} r^2/2 & (|r| \leq \eta) & 1 \\ \eta |r| - \eta^2/2 & (|r| > \eta) & 0 \end{cases}$$

Tukey loss

$$r = f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y$$

Consider an upper bounded loss

$$\rho_{\text{Tukey}}(r) = \begin{cases} \left(1 - \left[1 - r^2/\eta^2\right]^3\right) / 6 & (|r| \le \eta) \\ 1 / 6 & (|r| > \eta) \end{cases}$$

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \rho(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i)$$

- Consider differentiable and symmetric loss $\rho(r)$.
- Quadratic upper bound that is tangent to $\rho(r)$ at $\pm \tilde{r}$:

$$\widetilde{
ho}(r)=rac{\widetilde{w}}{2}r^2+ ext{const}$$
 $rac{\widetilde{w}=
ho'(\widetilde{r})/\widetilde{r}}{ ext{prove this yourself)}}$ (You can try to

$$\widetilde{w} = \rho'(\widetilde{r})/\widetilde{r}$$

yourself)

Iterative LS algorithm:

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{n} \widetilde{w}_i \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 \qquad \frac{\widetilde{w}_i = \rho'(\widetilde{r}_i)/\widetilde{r}_i}{\widetilde{r}_i = f_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{x}_i) - q_i}$$

$$\widetilde{w}_i = \rho'(\widetilde{r}_i)/\widetilde{r}_i$$

$$\widetilde{r}_i = f_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{x}_i) - y_i$$

Weight function for Tukey loss

Tukey loss:

$$\rho_{\text{Tukey}}(r) = \begin{cases} \left(1 - \left[1 - r^2/\eta^2\right]^3\right) / 6 & (|r| \le \eta) \\ 1 / 6 & (|r| > \eta) \end{cases}$$

• Weight function for Tukey loss: $\widetilde{w} = \rho'(\widetilde{r})/\widetilde{r}$

$$\widetilde{w} = \rho'(\widetilde{r})/\widetilde{r}$$

$$w_{\text{Tukey}} = \begin{cases} (1 - r^2/\eta^2)^2 & (|r| \le \eta) \\ 0 & (|r| > \eta) \end{cases}$$

Weight is zero for large residuals

$$w_{\text{Huber}} = \begin{cases} 1 & (|r| \le \eta) \\ \eta/|r| & (|r| > \eta) \end{cases}$$

Simple example

- Tukey regression is more robust to outliers.
- Since it is a non-convex optimization problem, the solution may depend on initialization.

Summary of robust regression

- Squared loss (mean) is vulnerable to outliers
- Absolute loss (median) is robust to outliers
- Huber loss balances robustness and efficiency
 - Solution cannot be obtained analytically
- Tukey loss improves robustness further
 - May need to be a bit more cautious about optimization

Summary of regression

- 1. Learning models
- 2. Least squares regression
- 3. Regularized regression
- 4. Sparse regression
- 5. Robust regression

Summary of regression

- Models for learning functions
 - Linear models
 - Kernel models
 - Non-linear models
- Least-squares regression
 - Minimizes the squared error with the training sample
 - Solutions can be calculated analytically
- Online regression
 - Sequential learning by extracting data one at a time
 - Large amounts of data can be handled

Summary of regression

- ℓ_2 -regularized regression
 - Reduces over-fitting of least-squares regression
 - Solutions can be calculated analytically
 - Cross-validation is used for model selection
- ℓ_1 -regularized regression (sparse regression)
 - Data where many of the true parameter values are zero can be trained properly.
- Robust regression
 - Enhanced robustness against outliers.

Schedule

- 1. 04/8 Introduction
- 2. 04/15 Regression 1
- 3. 04/22 Regression 2
- 04/30 Cancelled
- 4. 05/13 Classification 1
- 5. 05/20 Classification 2
- 6. 05/27 Deep learning 1
- 06/03 No lecture
- 7. 06/10 Deep learning 2

- 06/17 Deep learning 3
- 9. 06/24 Semi-supervised learning
- 10. 07/01 Language models
- 11. 07/08 Representation learning 1
- 12. 07/15 Representation learning 2
- 13. 07/22 Advanced topics

Coming up next

Classification 1

Homework 1

Implement the ℓ_1 -constraint LS (iteratively reweighted shrinkage). You may use the same data from previous week. (No need to do cross validation).

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=1}^{n} \theta_j \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}_j\|^2}{2h^2}\right)$$

Homework 2

- Setup
 - Linear model: $f_{\theta}(x) = \sum_{j=1}^{b} \theta_j \phi_j(x)$
 - Basis functions: $\{\phi_j(x)\}_{j=1}^b$
- Prove that the solution to the weighted LS method is the following: $\widehat{\theta} = (\Phi^\top \widetilde{W} \Phi)^{-1} \Phi^\top \widetilde{W} y$
- Weighted LS problem: $\min_{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{n} \widetilde{w}_i \Big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) y_i \Big)^2$

$$oldsymbol{\Phi} = egin{pmatrix} \phi_1(oldsymbol{x}_1) & \cdots & \phi_b(oldsymbol{x}_1) \ dots & \ddots & dots \ \phi_1(oldsymbol{x}_n) & \cdots & \phi_b(oldsymbol{x}_n) \end{pmatrix}^{oldsymbol{v}} oldsymbol{\widetilde{oldsymbol{W}}} = \operatorname{diag}\left(\widetilde{w}_1, \dots, \widetilde{w}_n
ight) \ oldsymbol{y} = (y_1, \dots, y_n)^{ op}$$