5

20

ABSTRACT OF THE DISCLOSURE

An optical imaging system is provided that includes a rod lens array and has the optimum refractive index distribution for achieving a high resolving power. The refractive index distribution of rod lenses can be expressed by

Eq. 45
$$\mathbf{n}(\mathbf{r})^2 = \mathbf{n}_0^2 \cdot \{1 - (\mathbf{g} \cdot \mathbf{r})^2 + \mathbf{h}_4 \cdot (\mathbf{g} \cdot \mathbf{r})^4 + \mathbf{h}_6 \cdot (\mathbf{g} \cdot \mathbf{r})^6 + \mathbf{h}_8 \cdot (\mathbf{g} \cdot \mathbf{r})^8 \}$$

where r is a radial distance from the optical axis of the rod lenses, n₀ is a refractive index on the optical axis of the rod lenses, and g, h₄, h₆ and h₈ are refractive index distribution coefficients. The refractive index distribution coefficients h₄, h₆ and h₈ are set on a spheroid in a Cartesian coordinate system with h₄ being x-axis, h₆ being y-axis and h₈ being z-axis. The spheroid is defined by a vector X* that is expressed by

$$Eq. 46 X^* = (x, y, z) = O^* + k_A A^* + k_B B^* + k_C C^*$$

where O* is a vector from the origin of the Cartesian coordinate system to the center of the spheroid, A*, B* and C* are vectors in the directions of the major axis, the mean axis and the minor axis of the spheroid, respectively, and k_A , k_B and k_C satisfy $k_{A^2} + k_{B^2} + k_{C^2} \le 1$.