

Computer System Overview

Lecturer:

William Fornaciari
Politecnico di Milano
fornacia@elet.polimi.it
www.elet.polimi.it/-fornacia

© 2002 William Fornaciari

Operating System

- Exploits the hardware resources of one or more processors
- Provides a set of services to system users
- Manages secondary memory and I/O devices

Operating Systems

Basic Elements

- Processor
- Main Memory
 - ▶ referred to as real memory or primary memory
 - ▶ volatile
- I/O modules
 - secondary memory devices
 - communications equipment
 - terminals
- System bus
 - communication among processors, memory, and I/O modules

Operating Systems

© 2002 William Fornaciari

Processor Registers

- User-visible registers
 - ► Enable programmer to minimize main-memory references by optimizing register use
- Control and status registers
 - Used by processor to control operating of the processor
 - Used by operating-system routines to control the execution of programs

Operating Systems

© 2002 William Fornaciari

User-Visible Registers

- May be referenced by machine language
- Available to all programs application programs and system programs
- Types of registers
 - ▶ Data
 - Address
 - Index
 - Segment pointer
 - Stack pointer

Operating Systems

© 2002 William Fornaciari

User-Visible Registers

- Address Registers
 - ▶ Index
 - involves adding an index to a base value to get an address
 - ▶ Segment pointer
 - when memory is divided into segments, memory is referenced by a segment and an offset
 - Stack pointer
 - points to top of stack

Operating Systems

© 2002 William Fornaciari

Control and Status Registers

- Program Counter (PC)
 - ▶ Contains the address of an instruction to be fetched
- Instruction Register (IR)
 - ▶ Contains the instruction most recently fetched
- Program Status Word (PSW)
 - condition codes
 - ► Interrupt enable/disable
 - Supervisor/user mode

Operating Systems

© 2002 William Fornaciari

Control and Status Registers

- Condition Codes or Flags
 - ▶ Bits set by the processor hardware as a result of operations
 - ▶ Can be accessed by a program but not altered
 - ▶ Examples
 - positive result
 - negative result
 - zero
 - Overflow

Operating Systems

© 2002 William Fornaciari

Instruction Fetch and Execute

- The processor fetches the instruction from memory
- Program counter (PC) holds address of the instruction to be fetched next
- Program counter is incremented after each fetch

Operating Systems

© 2002 William Fornaciari

Instruction Register

- Fetched instruction is placed in the instruction register
- Types of instructions
 - ▶ Processor-memory
 - transfer data between processor and memory
 - ► Processor-I/O
 - data transferred to or from a peripheral device
 - Data processing
 - arithmetic or logic operation on data
 - ▶ Control
 - alter sequence of execution

Operating Systems

© 2002 William Fornaciari

Example of Program Execution

Figure 1.4 Example of Program Execution (contents of memory and registers in hexadecimal)

Operating Systems

© 2002 William Fornaciari

Direct Memory Access (DMA)

- I/O exchanges occur directly with memory
- Processor grants I/O module authority to read from or write to memory
- Relieves the processor responsibility for the exchange
- Processor is free to do other things

Operating Systems

© 2002 William Fornaciari

Interrupts

- An interruption of the normal sequence of execution
- Improves processing efficiency
- Allows the processor to execute other instructions while an I/O operation is in progress
- A suspension of a process caused by an event external to that process and performed in such a way that the process can be resumed

Operating Systems

© 2002 William Fornaciari

Classes of Interrupts

- Program
 - ▶ arithmetic overflow
 - division by zero
 - execute illegal instruction
 - ▶ reference outside user's memory space
- Timer
- I/O
- Hardware failure

Operating Systems

© 2002 William Fornaciari

Interrupt Handler

- A program that determines nature of the interrupt and performs whatever actions are needed
- Control is transferred to this program
- Generally part of the operating system

Operating Systems

© 2002 William Fornaciari

Interrupt Cycle

- Processor checks for interrupts
- If no interrupts fetch the next instruction for the current program
- If an interrupt is pending, suspend execution of the current program, and execute the interrupt handler

Operating Systems

© 2002 William Fornaciari

Multiple Interrupts Sequential Order

- Disable interrupts so processor can complete task
- Interrupts remain pending until the processor enables interrupts
- After interrupt handler routine completes, the processor checks for additional interrupts

Operating Systems

© 2002 William Fornaciari

Multiple Interrupts Priorities

- Higher priority interrupts cause lower-priority interrupts to wait
- Causes a lower-priority interrupt handler to be interrupted
- Example when input arrives from communication line, it needs to be absorbed quickly to make room for more input

Operating Systems

© 2002 William Fornaciari

Multiprogramming

- Processor has more than one program to execute
- The sequence the programs are executed depend on their relative priority and whether they are waiting for I/O
- After an interrupt handler completes, control may not return to the program that was executing at the time of the interrupt

Operating Systems

© 2002 William Fornaciari

Going Down the Hierarchy

- Decreasing cost per bit
- Increasing capacity
- Increasing access time
- Decreasing frequency of access of the memory by the processor
 - ► locality of reference

Operating Systems

© 2002 William Fornaciari

Disk Cache

- A portion of main memory used as a buffer to temporarily to hold data for the disk
- Disk writes are clustered
- Some data written out may be referenced again.
 The data are retrieved rapidly from the software cache instead of slowly from disk

Operating Systems

© 2002 William Fornaciari

Cache Memory

- Invisible to operating system
- Increase the speed of memory
- Processor speed is faster than memory speed

Operating Systems

© 2002 William Fornaciari

Cache Memory

- Contains a portion of main memory
- Processor first checks cache
- If not found in cache, the block of memory containing the needed information is moved to the cache

Operating Systems

© 2002 William Fornaciari

Cache Design

- Cache size
 - ► small caches have a significant impact on performance
- Block size
 - ▶ the unit of data exchanged between cache and main memory
 - ▶ hit means the information was found in the cache
 - larger block size more hits until probability of using newly fetched data becomes less than the probability of reusing data that has been moved out of cache

Operating Systems

© 2002 William Fornaciari

Cache Design

- Mapping function
 - determines which cache location the block will occupy
- Replacement algorithm
 - determines which block to replace
 - ▶ Least-Recently-Used (LRU) algorithm

Operating Systems

© 2002 William Fornaciari

Cache Design

- Write policy
 - ▶ When the memory write operation takes place
 - ► Can occur every time block is updated
 - ► Can occur only when block is replaced
 - Minimizes memory operations
 - Leaves memory in an obsolete state

Operating Systems

© 2002 William Fornaciari

