1. Dans un graphe orienté, le sommet x e	st adjacent au sommet y si?
• (a) Il existe un arc (x,y)	
(b) Il existe un arc (y,x)	
(c) Il existe un chemin (x,,y)	
(d) Il existe un chemin (y,,x)	
2) L'ordre d'un graphe orienté est?	
(a) Le nombre d'arcs du graphe	
(b) Le nombre de sommets du graphe	
(c) Le coût du graphe	
(d) La liste triée des arcs du graphe	
3. Un graphe orienté G défini par le triple	et $G=$ est?
(a) etiqueté	
(b) valué	
(c) valorisé	
(d) numéroté	
4. Un graphe peut être?	
(a) Orienté	
Non orienté	
(c) A moitié orienté	
(d) Désorienté	
Dans un graphe orienté, on dit que l'ar	$\operatorname{cc} \widetilde{U} = y o x \operatorname{est} ?$
(a) incident à x vers l'extérieur	
(%) accident à x vers l'extérieur	
(c) incident à x vers l'intérieur	
(*) accident à x vers l'intérieur	
	cs ayant le sommet x pour extrémité terminale
est appelé?	
(a) le demi-degré extérieur de x	re 1
(b) le degré de x	/ * ,
c) le demi-degré intérieur de x	()

- 7. Dans un graphe orienté, s'il existe un arc $U = y \to x$ pour tout couple de sommet $\{x,y\}$ le graphe est?
 - (a) complet
 - (b) partiel
 - (c) parfait
- 8. Dans un graphe orienté, un sommet de degré zéro est appelé?
 - (a) sommet unique
 - (b) sommet isolé
 - (c) sommet nul
 - (d) sommet perdu
- 9. Deux arcs d'un graphe orienté sont dits adjacents si?
- (a) il existe deux arcs les joignant
 - (b) le graphe est complet
- (c) ils ont au moins une extrémité commune

- 10. Dans un graphe orienté valué G=<S,A,C>, les coûts sont portés par?
 - (a) les arcs
 - (b) les sommets

QCM N°4

lundi 23 octobre 2017

Question 11

Soient E, F deux \mathbb{R} -ev et $u \in \mathcal{L}(E, F)$. Alors

- (a) Ker(u) est un sev de E
- (b.) Im(u) est un sev de F
 - c. E = Ker(u) + Im(u)
 - d. $E = Ker(u) \oplus Im(u)$
 - e. rien de ce qui précède

Question 12

Soient E, F deux \mathbb{R} -ev et $u \in \mathcal{L}(E, F)$. Alors

- a. u injective ssi Im(u) = F
- b. u surjective ssi $Ker(u) = \{0\}$
- (c) u injective ssi $Ker(u) = \{0\}$
- d. u injective ssi $Ker(u) = \emptyset$
- (e) u surjective ssi Im(u) = F

Question 13

Soient f et g deux endomorphismes d'un \mathbb{R} -ev E. Alors

- (a)f + g est un endomorphisme de E
- b. fg est un endomorphisme de E
- (c.) $f \circ g$ est un endomorphisme de E
- d. rien de ce qui précède

Question 14

Soient f et g deux endomorphismes d'un \mathbb{R} -ev E. Alors

- - b. $\operatorname{Ker}(g \circ f) \subset \operatorname{Ker}(f)$
 - c. $\operatorname{Im}(f) \subset \operatorname{Im}(g \circ f)$
- (d) $Im(g \circ f) \subset Im(g)$
 - e. rien de ce qui précède

Question 15

Soient E un \mathbb{R} -ev de dimension finie, F et G deux sev de E. Alors

a.
$$\dim(F+G) = \dim(F) + \dim(G)$$

b.
$$\dim(F+G) = \dim(F)\dim(G)$$

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$

disi
$$F$$
 et G sont supplémentaires dans E , alors $\dim(F+G)=\dim(F)+\dim(G)$

e. rien de ce qui précède

Question 16

Soient F et G deux sev supplémentaires dans un \mathbb{R} -ev E. Alors

$$E = F + G \text{ et } F \cap G = \{0\}$$

b.
$$E = F + G$$
 et $F \cap G = \emptyset$

c.
$$E = F \cup F$$
 et $F \cap G = \emptyset$

- $\stackrel{\frown}{\text{d}}$ Tout vecteur de E se décompose d'une unique façon comme la somme d'un vecteur de F et d'un vecteur de G
 - e. rien de ce qui précède

Question 17

Soient E un \mathbb{R} -ev de dimension finie $n \in \mathbb{N}^*$ et B une famille de vecteurs de E.

- (a) Si B est libre et contient n vecteurs, alors B est une base de E
- (b) Si B engendre E et contient n vecteurs, alors B est une base de E
- \bigcap Si B est libre et engendre E, alors B est une base de E
 - d. rien de ce qui précède

Question 18

Soit $\alpha \in \mathbb{R}$. Alors

- a. $\sum \frac{(-1)^n}{n^{\alpha}}$ converge via le critère spécial des séries alternées
- b Si $\alpha > 0$, $\sum \frac{(-1)^n}{n^{\alpha}}$ converge via le critère spécial des séries alternées
- C. Si $\alpha > 1$, $\sum \frac{(-1)^n}{n^{\alpha}}$ converge via le critère spécial des séries alternées
- d. Si $\alpha > 0$, $\sum \frac{(-1)^n}{n^{\alpha}}$ converge absolument
- (e.) Si $\alpha > 1$, $\sum \frac{(-1)^n}{n^{\alpha}}$ converge absolument

Q.C.M n°4 de Physique

41- On considère le dipôle (-Q, +Q), voir schéma ci-dessous :

Le champ électrique créé au point O est

(a)
$$E(O) = \frac{2k \cdot Q}{a^2}$$
 b) $E(O) = 0$ c) $E(O) = \frac{k \cdot Q}{2a^2}$

b)
$$E(O) = 0$$

c)
$$E(O) = \frac{k.Q}{2a^2}$$

- 42- Un électron envoyé entre les deux plaques d'un condensateur plan est soumis à une force électrique \vec{F}_{ϵ} qui vérifie :
 - a) \vec{F}_e parallèle aux deux plaques
 - b) \vec{F}_e orientée de la plaque (+) vers la plaque (-)
 - •(c) \vec{F}_e orientée de la plaque (-) vers la plaque (+)
- 43- Une distribution de charges sphérique crée au point M un potentiel électrique V(r,θ), on peut donc affirmer que le vecteur champ électrique s'écrira

a)
$$\vec{E} \begin{pmatrix} 0 \\ 0 \\ E_{\alpha} \end{pmatrix}$$

a) $\vec{E} \begin{pmatrix} 0 \\ 0 \\ E_{\alpha} \end{pmatrix}$ b) $\vec{E} \begin{pmatrix} E_r \\ 0 \\ E_z \end{pmatrix}$ (c) $\vec{E} \begin{pmatrix} E_r \\ E_{\theta} \\ 0 \end{pmatrix}$ d) $\vec{E} \begin{pmatrix} 0 \\ E_{\theta} \\ E \end{pmatrix}$

- 44 l'opérateur gradient s'applique
 - a) à un vecteur et le résultat est une fonction scalaire
 - (b) à une fonction scalaire et le résultat est un vecteur
 - c) à une fonction salaire et le résultat est une fonction scalaire
- 45- En appliquant la relation champ-potentiel, les composantes du champ électrique en un point M, tel que le potentiel électrique vérifie $V(x,z) = 3z^2x^3 - \frac{2x}{z}$ sont:

$$\begin{array}{l}
\mathbf{E} = \begin{pmatrix} -9x^2z^2 + \frac{2}{z} \\ 0 \\ -6x^3z - \frac{2x}{z^2} \end{pmatrix} \quad \text{b) } \vec{E} = \begin{pmatrix} 9x^2z^2 - \frac{2}{z} \\ \frac{2}{z} \\ 6x^3z + \frac{2x}{z^2} \end{pmatrix} \quad \text{c) } \vec{E} = \begin{pmatrix} 9x^2z^2 - \frac{2}{z} \\ 0 \\ 6x^3z + \frac{2x}{z^2} \end{pmatrix}$$

c)
$$\vec{E} = \begin{pmatrix} 9x^2z^2 - \frac{2}{z} \\ 0 \\ 6x^3z + \frac{2x}{z^2} \end{pmatrix}$$

46- Soit un anneau de rayon R et d'axe (Oz), chargé avec une densité linéique λ supposée constante et positive. La charge totale de l'anneau est

(a) $Q = \lambda . 2\pi . R$ b) $Q = \lambda . R$ c) $Q = \lambda \pi R^2$

- 47- On considère l'anneau de la question (46) et un point M situé sur l'axe (Oz), (z > 0), le champ électrique créé par l'anneau au point M est

a) perpendiculaire à l'axe (Oz)

b) porté par l'axe (Oz) vers les z < 0

•(c) porté par l'axe (Oz) vers les z > 0

(48) On montre qu'un élément infinitésimal situé en P d'un fil de charge linéique λ crée un champ électrique en un point M extérieur au fil $dE_x(x) = \frac{k \cdot \lambda}{r} \cos(\alpha) d\alpha$ où α est tel qu'indiqué ci-dessous.

Le champ électrique créé par un fil infini vaut :

a)
$$E(x) = \frac{k\lambda}{x}$$

$$\oint E(x) = \frac{2k\lambda}{x} \qquad \text{c) } E(x) = \frac{k\lambda}{x^2}$$

c)
$$E(x) = \frac{k\lambda}{x^2}$$

49. En utilisant la formule donnée dans la question (48), on peut exprimer le champ électrique créé par un fil fini de longueur 2a, en un point M de sa médiatrice par :

a)
$$E(x) = \frac{2k\lambda}{a}$$
 b) $E(x) = \frac{k\lambda}{x} \sin(\alpha)$ c) $E(x) = \frac{2k\lambda a}{x\sqrt{x^2+a^2}}$

$$\widehat{c}E(x) = \frac{2k\lambda a}{x\sqrt{x^2 + a^2}}$$

(50) Le potentiel élémentaire créé au point M d'un axe (Oz) d'un anneau de rayon R et uniformément chargé est : $dV(M) = \frac{k\lambda Rd\theta}{PM}$ (P : point quelconque de l'anneau). Le potentiel total créé par l'anneau au point M est

a) $V(z) = \frac{k\lambda R.\pi}{\sqrt{z^2 + R^2}}$ b) $V(z) = \frac{2k\lambda R.\pi.z}{\sqrt{z^2 + R^2}}$ c) $V(z) = \frac{2k\lambda R.\pi}{\sqrt{z^2 + R^2}}$ d) $V(z) = \frac{2k\lambda R.\pi}{z^2 + R^2}$

QCM Electronique – InfoS3

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Q1. Le dopage permet de favoriser le phénomène de thermogénération.

a- VRAI

(b-) FAUX

Ce circuit est:

- (a-) Bloqué
- ●b- Passant

- Q3. Quelle est l'affirmation correcte?
 - a- Une diode est un quadripôle non linéaire
 - b- Une diode est un dipôle linéaire.
 - 🖟 Un modèle est une représentation complexe d'un système simple.
 - On peut approcher le fonctionnement de la diode en la remplaçant par des composants linéaires.
- Q4. Par quoi remplace-t-on la diode bloquée si on utilise le modèle à seuil?

Q5.) Par quoi remplace-t-on la diode passante si on utilise le modèle réel?

- Q6. Quel modèle permet la représentation la plus précise de la diode ?
 - a- Le modèle idéal

(c-) Le modèle réel

b- Le modèle à seuil

- d- Les trois modèles sont équivalents
- Q7. Soit le circuit ci-contre, dans lequel on considère la diode idéale : Que vaut la tension aux bornes de R si E=10V, $R=100\Omega$.
 - a- 0*V*

c- 1 kV

6 10 *V*

d- 0,1 V

Soit le circuit ci-contre, dans lequel on modélise la diode par son modèle à seuil avec $V_0=0.6V$. Choisir l'affirmation correcte si $E_1=1~V$, $R_1=50\Omega$, et $R_2=100\Omega$:

- a- La diode est bloquée et la tension à ses bornes est égale à $\frac{1}{3}V$.
- b- La diode est passante et le courant qui la traverse vaut 100 mA
- c- La diode est passante et le courant qui la traverse vaut 5A.
- d- La diode est passante et le courant qui la traverse est égal à 200mA.

Soit le circuit ci-contre :

Q9.) Quelle type de porte logique réalise ce montage ?

c- NON ET

b- OU

d- NON OU

Q10. Soit le schéma suivant : Que vaut la tension U si l'interrupteur K est ouvert ?

a-
$$U = 0$$

b-
$$U = \frac{E}{2}$$

$$\bullet$$
 (c-) $U = E$

$$d- U = -E$$

QCM 4 Architecture des ordinateurs

Lundi 23 octobre 2017

- 11. Soit l'instruction suivante : MOVE.L (A0)+,D0
 - A. A0 est incrémenté de 2.
 - B. A0 est incrémenté de 1.
 - (C.) A0 est incrémenté de 4.
 - D. A0 ne change pas.
- 12. Soit l'instruction suivante: MOVE.L -4(A0), D0
 - A. A0 est décrémenté de 2.
 - B. A0 est décrémenté de 1.
 - C. A0 ne change pas.
 - D. A0 est décrémenté de 4.
- 13. Soient les deux instructions suivantes :

TST.B D0

BMI NEXT

L'instruction BMI effectue le branchement si :

- A. D0 = \$7F
- B. D0 = \$01
- 00 = 80
 - D. D0 = \$5A
- (14) Soient les deux instructions suivantes :

CMP.L D1,D2

BLT NEXT

L'instruction BLT effectue le branchement si :

- A. D2 < D1 (comparaison non signée)
- (B.) D2 < D1 (comparaison signée)
- D1 < D2 (comparaison signée)
- 'D'. D1 < D2 (comparaison non signée)

(13) Soient les deux instructions suivantes :

CMP.L D1,D2

BLO NEXT

L'instruction BLO effectue le branchement si :

- D2 < D1 (comparaison non signée)
- B. D1 < D2 (comparaison non signée)
- C. D1 < D2 (comparaison signée)
- D. D2 < D1 (comparaison signée)
- Si D0 = \$000056AB et D1=\$00006A55, quelles sont les valeurs des flags après l'instruction suivante ? ADD.B D0,D1

A. N = 0, Z = 1, V = 1, C = 0

- B. N = 0, Z = 1, V = 1, C = 1
- C. N = 1, Z = 1, V = 0, C = 1
- (D) N = 0, Z = 1, V = 0, C = 1
- 17. Si D0 = \$000056AB et D1=\$00006A55, quelles sont les valeurs des flags après l'instruction suivante ? ADD.W D0,D1
 - N = 1, Z = 0, V = 1, C = 0
 - B. N = 1, Z = 0, V = 0, C = 1
 - C. N = 1, Z = 0, V = 1, C = 1
 - D. N = 0, Z = 0, V = 1, C = 0
- 18. Si D0 = \$000056AB et D1=\$00006A55, quelles sont les valeurs des flags après l'instruction suivante ? ADD. L D0, D1
 - A. N = 1, Z = 0, V = 1, C = 1
 - (B) N = 0, Z = 0, V = 0, C = 0
 - \widetilde{C} . N = 1, Z = 0, V = 1, C = 0
 - D. N = 1, Z = 0, V = 0, C = 1
- (19) Soient les cinq instructions suivantes :

MOVE.L (A7)+,D2

MOVE.L (A7)+,D3

MOVE.L (A7)+,D4

MOVE.L (A7)+,A4

MOVE.L (A7)+,A5

Elles sont équivalentes à (une ou plusieurs réponses sont possibles) :

- A. MOVEM-L (A7)+,D2-D4/A4/A5
- (B) MOVEM.L (A7)+,D4/D2/D3/A4/A5
- C-MOVEM.L D2/D3/D4/A4/A5,(A7)+
- (D.) MOVEM.L (A7)+,A5/A4/D3/D2/D4

Architecture des ordinateurs – EPITA – S3 – 2017.

20) Soient les einq instructions suivantes :

```
MOVE.L A5,-(A7)
```

Elles sont équivalentes à (plusieurs réponses possibles) :

- A MOVEM.L A5/D2-D4/A4,-(A7)
- B. MOVEM.L D2/D4/A4/A5,-(A7)
- C. MOVEM.L -(A7),A5/A4/D4/D3/D2
- D MOVEM.L A4-A5/D4/D3/D2,-(A7)