

PHYSICS

CHAPTER 4

3th secondary

FUERZAS

FUERZA

Cantidad física vectorial que mide la interacción entre dos cuerpos.

¿CÓMO SURGEN LAS FUERZAS?

Las fuerzas surgen en las interacciones.

INTERACCIÓN: Acción mutua entre dos cuerpos

TIPOS DE INTERACCIONES

POR CONTACTO

Existe un punto de contacto

A DISTANCIA

(no hay contacto)

Interacciona con la Tierra

Interacciona con el imán

TERCERA LEY DE NEWTON

En toda interacción surgen dos fuerzas denominadas de Acción y Reacción, que presentan igual módulo, son colineales de orientaciones opuestas y actúan en cuerpos

diferentes por lo cual no se anulan.

FUERZA DE GRAVEDAD ($\overrightarrow{F_g}$)

Debido a la atracción que ejerce la tierra a los cuerpos que están en su entorno.

Actúa en el centro de gravedad (C.G.) de los cuerpos.

Siempre se grafica vertical apuntando al centro de la tierra

En una persona

$$F_g = \text{m.g}$$

m = masa en kg g = módulo de la aceleración de la gravedad en $\frac{m}{s^2}$

FUERZA DE TENSION(T)

- Surge en las cuerdas al tensionarla oponiéndose a su deformación.
- Se realiza un corte imaginario, y se grafica del cuerpo hacia el corte.

FUERZA NORMAL(F_N)

- Surge en el contacto entre superficies.
- Se grafica hacia el cuerpo en dirección perpendicular a las superficies.

FUERZA ELASTICA $(\overrightarrow{F_E})$

En cuerpos elásticos deformados como resortes, ligas, entre otros.

Por la ley de Hooke:

$$F_e = k.x$$

K: Constante de rigidez del resorte en N/m

X: Deformación en m

DIAGRAMA DE CUERPO LIBRE (D.C.L.)

Es la representación grafica de todas las fuerzas que actúan sobre un cuerpo.

Para realizar un correcto D.C.L. debemos seguir los siguientes pasos :

D.C.L. del bloque B:

Realice el diagrama de cuerpo libre del tronco

Resolución:

DCL del tronco:

Realice el diagrama de cuerpo libre del bloque.

Resolución:

DCL del bloque:

Realice el diagrama de cuerpo libre del bloque si el resorte está estirado.

Resolución:

DCL del bloque:

Realice el diagrama de cuerpo libre de la barra si el resorte está comprimido.

DCL del sistema:

Realice el diagrama de cuerpo libre de la polea ideal y del bloque.

Resolución:

DC L de la polea:

DCL del bloque:

En la intersección de dos avenidas, se encuentra un semáforo, que está suspendido por unos cables como se muestra en la figura. Realice el D.C.L. del nudo A.

Resolución:

DCL del nudo (A):

En un partido clásico del fútbol español, el cual estaba empatado, al final se marcó un tiro libre. El delantero realizó el tiro y dejó parado al portero, pero el balón chocó en el travesaño, como se observa en la figura.

Resolución:

DCL del balón:

