Examen partiel n°1 - Mathématiques

Exercice 1: Relations

- (1) Donner la définition de la réflexivité, de la transitivité, de la symétrie et de l'antisymétrie.
- (2) Qu'est-ce qu'une relation d'équivalence ? Qu'est-ce qu'une relation d'ordre ? Qu'est-ce qu'une relation totale ?
- (3) Les relations suivantes sont-elles des relations d'équivalence ? Des relations d'ordre ? Des relations totales ?
 - \bullet Les relations d'inclusions entre les sous-ensembles d'un ensemble E.
 - Sur $\mathbb{N}^* \times \mathbb{N}^*$, $a \sim b$ si et seulement si a divise b.
 - Sur $\mathbb{R} \times \mathbb{R}$, $x \sim y$ si et seulement si |x| = |y|.

Exercice 2: Logique et ensemble

- (1) À l'aide d'une table de vérité, montrer que $\neg (A \lor B)$ est équivalent à $\neg A \land \neg B$.
- (2) À l'aide d'une table de vérité, montrer que le connecteur implication $A \implies B$ est équivalent à $\neg A \lor B$.
- (3) Démontrer la transitivité de l'implication.
- (4) Donner la négation des propositions suivantes :
 - Toutes les voitures rouges sont rapides.
 - Toutes les voitures sont rouges et rapides.
 - Il existe une voiture rouge et rapide.
 - Il existe une voiture rouge qui n'est pas rapide.
- (5) Soit E un ensemble et soient F, G et H des sous-ensembles de E. Montrer que

$$F \cap (G \cup H) = (F \cap G) \cup (F \cap H).$$

Exercice 3 : Raisonnement par récurrence

(1) Soit (u_n) une suite définie par

$$u_0 = 2 \text{ et } u_{n+1} = \frac{u_n}{1 + u_n}.$$

Démontrer que pour tout entier naturel n,

$$u_n = \frac{2}{2n+1}.$$

(2) Pour un entier naturel n, on considère la propriété suivante :

$$\mathcal{P}_n: 5^n \ge 3^n + 4^n$$
.

Montrer que, pour $n \ge 2$, $\mathcal{P}_n \Longrightarrow \mathcal{P}_{n+1}$. Pour quelles valeurs de n, \mathcal{P}_n est-elle vraie?