comparing two independent means

Dr. Merlise Clyde

effect of distraction on snacking

randomized study to compare snacking

- eat lunch while playing solitaire
- eat lunch without distraction

biscuit intake in grams

	ybar	S	n
solitaire	52.10	45.10	22
no distraction	27.10	26.40	22

model and priors

model

$$Y_{A,i} \stackrel{ ext{iiid}}{\sim} \mathsf{N}(\mu_A, \sigma_A^2)$$
 $Y_{B,i} \stackrel{ ext{iiid}}{\sim} \mathsf{N}(\mu_B, \sigma_B^2)$

independent Jeffrey's prior

$$p(\mu_A, \sigma_A^2) \propto 1/\sigma_A^2$$

 $p(\mu_B, \sigma_B^2) \propto 1/\sigma_B^2$

independent $\mu_A \mid \text{data} \sim \mathsf{t}_{n_A-1} \left(\bar{Y}_A, s_A^2/n_A \right)$ posterior $\mu_B \mid \text{data} \sim \mathsf{t}_{n_B-1} \left(\bar{Y}_B, s_B^2/n_B \right)$

posterior of difference in means

• estimate of the difference between snack consumption with and without distractions

$$52.1 - 27.1 = 25 g$$

- credible interval for difference in means
-) no closed form distribution of μ_A μ_B given data

Monte Carlo sampling

- I. simulate M realizations for μ_A from t distribution
- 2. simulate M realizations for μ_B from t distribution
- 3. calculate $\mu_A^{(m)} \mu_B^{(m)}$ from sample m
- 4. summarize sample from posterior (histogram, means, quantiles, etc.)

distracted eaters example

summary

- estimate of the difference between snack consumption with and without distractions
- independent Jeffrey's prior
- under assumptions that there is a difference $\mu_A \neq \mu_B$

next:

• evidence that $\mu_A \neq \mu_B$ via Bayes factors