PRESENTATION Prédire un revenu

SOMMAIRE

MISSION

PRESENTATION DES DONNEES
DESCRIPTION
CREATION DES REVENUS PARENTS
PREDICTION DE REVENU ENFANT

MISSION

OBJECTIF Prédire un revenu enfant

MISSION Modéliser selon les pays

CONDITION Revenus simulés des parents

DONNEES revenus : world income Gini : banque mondiale

PRESENTATION DES DONNEES

PAYS (Banque Mondiale)

Année utilisée 2010 Nombre de pays 81 sur 160 (193) Population couverte 79 %

REVENUS DES PAYS(World Income Distribution)

percentiles 100 quantiles intérêt rendre les pays comparables

PRESENTATION DES DONNEES

Problématique

Données manquantes pour le Gini

Méthode de résolution

trouver l'année la plus remplie remplir avec la moyenne du pays

Explication

La variation du Gini faible sur 20 ans

PRESENTATION DES DONNEES

Problématique (fichier world income distribution) Données numériques pour les quantiles

Méthode de résolution méthode de classe pd.read_csv signalement : virgule=décimale

5 Gini les plus hauts Afrique du Sud(63,55), Namibie, Botswana, Brésil, Honduras

5 Gini les plus bas Danemark, République de Slovakie, Ukraine, République tchèque, Slovénie (24,89)

Gini moyen: 38,89 Place de la France: 129

CREATION DES REVENUS PARENTS

Créer les coefficients d'élasticité

- fichier GDIM : données manquantes
- · imputation par médiane de région
- 50 % de données manquantes

Générer les probabilités conditionnelles

- Génèrer les classes parents (loi normale)
- Calculer les cardinaux
- Diviser les classes parents par les cardinaux

Générer les clones

Multiplier les probabilités par les clones

CREATION DES REVENUS PARENTS

Problématique

Temps d'éxecution du script très long +10min

Méthode de résolution

Ecriture d'un code optimisé et commenté Evaluer la performance avec un chronomètre

Explication

méthode de calcul scientifique : Numpy utilisation des méthodes Pandas

CREATION DES REVENUS PARENTS

Problématique

Impossible de cloner 500 individus décimales des probabilités conditionnelles

Méthode de résolution Générer 1000 individus

Synthèse

- de + 10min à 15 secondes
- générer 2 fois plus d'individus

Vérification avant régression

Normalité des revenus

Formes des revenus

- sans transformation
- avec transformation logarithme

Explication

« On devient ce que l'on mange »

Sans transformation

Avec transformation

ANOVA

Variable à expliquer : logarithme des revenus

Variable explicative: Pays

Méthode des moindres carrés

Variance expliquée 72 %

Problématique

Améliorer la qualité du modèle

Méthode de résolution Backward Elimination

- fixer un seuil de pvalue
- inclure tous les pays
- enlever le pays où la pvalue supérieur seuil
- réitérer la regression tant qu'il reste un pays

Problématique

Boucle infinie pour le backward elimination

Méthode de résolution

- trouver la raison
- filtrer les pays déjà enlevés

Synthèse

- 78 % : gain de 6 %
- enlever les pays hors distribution

Régression linéaire multiple 1

Variable à expliquer : logarithme des revenus

Variables explicatives:

- revenu moyen
- indice de Gini

Variance expliquée 78 %

Coefficients

- revenu moyen: 0,99
- indice de Gini : 0,02 (impact négligeable)
- constante : 0,52

Régression linéaire multiple 2

Variables explicatives:

- revenu moyen + indice de Gini du pays
- classe des revenus des parents

Variance expliquée 82 %

Coefficients

- revenu moyen: 0,99
- indice de Gini : 0,02 (impact négligeable)
- classe des parents : 0,01
- constante : 0,02

modèle imprécis : pourquoi ?

logarithme des revenus

80 % population

2 populations statistiques différentes

CONCLUSION

IMPACTANT

MOYENNE DU PAYS CONNAISSANCE REVENUS PARENTS

NON IMPACTANT

INEGALITES DE REVENUS

ELEMENT CLEF
2 CATEGORIES DE POPULATIONS

QUESTIONS