Final Exam

Total points (100 pts)

Problem 1: (20 pts)

- (a) Suppose that $\Omega = \{x \in \mathbb{R}^n | h(x) = c\}$ is convex, where $h : \mathbb{R}^n \to \mathbb{R}$ and $c \in \mathbb{R}$. Show that h is convex and concave over Ω .
- (b) Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, $m \le n$, rank(A) = m, and $x_0 \in \mathbb{R}^n$. Derive an expression for the closest point to x_0 that satisfies Ax = b in terms of A, b and x_0 .

Problem 2: [20 pts]

Suppose that we use the golden section algorithm to find the minimizer of a function.

- (a) Consider the function $f(x) = 2x^2 5x + 3$ over the range [0, 2]. Perform one iteration of Golden section algorithm and determine the uncertainty range. (Recall the Golden section number $\rho = \frac{3-\sqrt{5}}{2} \approx 0.382$)
- (b) Let u_k be the uncertainty range at the k-th iteration. Find the order of convergence of $\{u_k\}$ and determine the iterations number that is needed to reduce the uncertainty range to 0.1 (express the result in logarithm function).

Problem 3: [20 pts] Consider the minimization of

$$f(x_1, x_2) = -\frac{3}{2}x_1 + x_1^2 + x_2^2 - x_1x_2 + 50$$

- (a) Express $f(\mathbf{x})$, $\mathbf{x} = [x_1, x_2]^T$ in the form of $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^TQ\mathbf{x}^T \mathbf{x}^Tb + c$ and determine an optimal solution \mathbf{x}^* analytically. Is the solution local or global minimizer?
- (b) If we perform the <u>fixed-step-size gradient</u> method $\mathbf{x}^{(k)} := \mathbf{x}^{(k-1)} \alpha \nabla f(\mathbf{x}^{(k-1)})$, find the range of the step size α for the sequence $\mathbf{x}^{(k)}$ convergent to \mathbf{x}^* ?
- (c) Perform one iteration of <u>steepest descent</u> method with the starting point $\mathbf{x}^{(0)} = \mathbf{0}$ and compute $\mathbf{x}^{(1)}$.
- (d) Use the conjugate gradient algorithm to construct a vector $\mathbf{d}^{(1)}$ that is Q conjugate with $\mathbf{d}^{(0)} = -\nabla f(x^{(0)})$, where $\mathbf{x}^{(0)} = \mathbf{0}$.

Problem 4: [20 pts] Consider the linear program

maximize
$$2x_1 + x_2$$

subject to $x_1 \le 5$
 $x_1 + x_2 \le 9$
 $x_1 \ge 0, x_2 \ge 0$.

- (a) Solve it using the simplex method. Show all your work to get the full credit.
- (b) Write down the dual of the linear programming problem, and find the solution to the dual using the complementary slackness condition.

Problem 5: (20 pts) Consider the problem

$$\min_{x \in \mathbb{R}^2} \quad (x_1 - 1)^2 + x_2 - 2$$
subject to
$$x_2 - x_1 - 1 = 0$$

$$x_1 + x_2 - 2 \le 0$$

- (a) State the KKT conditions for this problem and find all the points (and KKT multipliers) that satisfy the condition. In each case, determine if the point is regular.
- (b) Use the second-order conditions to specify which points are (strict) local minimizers.