Thesis

October 24, 2024

1 Master Thesis Notebook

1.1 Setup

```
[1]: # Importation of the classes and methods associated from classes import *
```

1.2 GPR VWC Analysis

1.2.1 Choosing the variogram model (field A)

A variogram, also known as a semivariogram, is a measure of spatial variability or spatial dependence of a variable across different locations in a spatial domain. It quantifies how the variance of a variable changes with distance and direction. The variogram is crucial in kriging because it defines the spatial structure or dependence of the variable being estimated.

```
experimental_vario_a = Variogram(resolution=1, field_letter="A", sample_number=6)

experimental_vario_a.determ_experimental_vario();

# ; hide output of the cell
```


[3]: experimental_vario_a.fit_models()

1.2.2 Choosing the variogram model (field B)

```
[4]: experimental_vario_b = Variogram(resolution=1, field_letter="B", sample_number=5)

experimental_vario_b.determ_experimental_vario();
```


[5]: experimental_vario_b.fit_models()

1.2.3 Raw data to Kriged data

```
[7]: # Raw Sample gpr_a.plot_raw_data()
```


[3]: gpr_b.plot_raw_data()

[4]: gpr_b.kriging(plot=True)

1.2.4 GPR derived VWC evolution

```
[4]: # Mean and median evolution (raw data)
gpr_a.plot_mean_median(plot=True)
```


1.2.5 Zonal tendencies (field A)

[6]: gpr_a.zonal_check()

1.2.6 Zonal tendencies (field B)

[7]: gpr_b.zonal_check()

1.3 TDR Verification

1.3.1 Field A

[8]: GprAnalysis(field_letter="A", sample_number=8).tdr_verification(10)

1.3.2 Field B

[9]: GprAnalysis(field_letter="B", sample_number=8).tdr_verification(10)

1.4 Rainfall Analysis

```
[10]: rf_mr = Rainfall()
rf_mr.plot_data()
```

d:\Coding\Python\Master-Thesis\classes.py:565: UserWarning: No artists with
labels found to put in legend. Note that artists whose label start with an
underscore are ignored when legend() is called with no argument.
 ax.legend()

1.5 VWC continuous Analysis

```
[11]: teros = Teros()
teros.plot_piezo_sampler_locations()
```


[12]: teros.plot_vwc_evolution()

1.6 Water table depth Analysis

```
[13]: wt = WaterTable()
wt.plot_wt_sampler_locations()
```


[14]: wt.plot_wt_evolution()

1.7 Multispectral analysis

1.7.1 TVDI

The formula used for the Temperature Vegetation Dryness Index (TVDI) calculation is:

$$\text{TVDI} = \frac{\text{LST} - T_{\text{min}}(\text{NDVI})}{T_{\text{max}}(\text{NDVI}) - T_{\text{min}}(\text{NDVI})}$$

Where: - LST is the Land Surface Temperature for a given pixel. - T max NDVI is the maximum temperature for a given NDVI value, typically represented as a linear function:

$$T_{\max}(\text{NDVI}) = a \cdot \text{NDVI} + b$$

- T min NDVI is the minimum temperature for a given NDVI value, typically represented as a linear function:

$$T_{\min}(\text{NDVI}) = c \cdot \text{NDVI} + d$$

Here the specific linear functions used were:

$$T_{\text{max}}(\text{NDVI}) = 40 \cdot \text{NDVI} + 300$$

$$T_{\min}(\text{NDVI}) = 20 \cdot \text{NDVI} + 250$$

```
[15]: multi_a = MultispecAnalysis(field_letter="A")
multi_a.calculate_tvdi()
```



```
[16]: multi_b = MultispecAnalysis(field_letter="B")
multi_b.calculate_tvdi()
```

