

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு ஐந்தாம் தவணைப் பரீட்சை - 2024

National Field Work Centre, Thondaimanaru 5th Term Examination - 2024

இரசாயனவியல் Chemistry

Two Hours

Gr. 13 (2024)

- 01) ஐதரசன் அணுவின் காலல் நிறமாலையில் இடம்பெறும் கீழ் சென்னிறம், கட்புலன், ஊதா கடந்த பகுதியுடன் தொடர்புபட்ட 3 விஞ்ஞானிகள் முறையே,
 - (1) லைமன், பாமர், பாசன்

(2) பாமர், லைமன், பாசன்

(3) பாமர், பாசன், லைமன்

(4) பாசன், பாமர், லைமன்

- (5) லைமன், பாசன், பாமர்
- 02) பிழையான தொடர்பு
 - (1) அயனாரை $K^+ < 0^{2-} < Cl^- < S^{2-}$
 - (2) அனு ஆரை S < Li < Al < Na
 - (3) இரண்டாம் அயனாக்கசக்தி Mg < Si < Al < Na
 - (4) மின்காந்த கதிர்ப்பு சக்தி நுண் அலை < UV கதிர் < X கதிர் < γ கதிர்
 - (5) N இன் மின்னெதிர்தன்மை $NH_3 < NH_4^+ < NO_3^- < NO_2^+$
- 03) $Zr_3(PO_4)_4$ இன் Ksp $6.912 \times 10^{-46} \text{mol}^7 \text{dm}^{-21}$ எனின் Zr^{4+} செறிவு $moldm^{-3}$ இல்.

 - (1) 1×10^{-7} (2) 4×10^{-7} (3) 1×10^{-49} (4) 3×10^{-14}
- (5) 3×10^{-7}
- HC ≡ C CH CH COOH இன் IUPAC பெயர் யாது? 04)
 - (1) 2 chloro 3 formyl 4 pentynoic acid
 - (2) 2 chloro 3 formyl pent 4 ynoicacid
 - (3) 3 formyl 2 chloro 4 pentynoic acid
 - (4) 3 formyl 2 chloropent 4 ynoicacid
 - (5) 2 chloro 3 formyl 4 pentyneoic acid
- 05) பின்வரும் இரு அயன் கரைசல்களில் எந்த சோடி கலக்கப்படும் போது தெளிவான கரைசல் பெறப்படும் ஆனால் கொதிக்க வைக்கப்படும் போது வெள்ளை நிற வீழ்படிவு பெறப்படும்?
 - (1) $Pb(NO_3)_{2(aq)} + KCl_{(aq)} \rightarrow$
- (2) $Na_2CO_{3(aq)} + MgCl_{2(aq)} \rightarrow$
- (3) $NaHCO_{3(aq)} + Ba(NO_3)_{2(aq)} \rightarrow$
- (4) $Na_2SO_{4(aq)} + BaCl_{2(aq)} \rightarrow$
- (5) $K_2CO_{3(aq)} + SrCl_{2(aq)} \rightarrow$
- 06) $BrOCl_2F$, $BrFO_2$, BrF_3Cl^- ஆகியனவற்றில் மைய அணுவை சூழவுள்ள இலத்திரன் சோடி கேத்திரகணித வடிவம் முறையே,

1

- (1) சீசோ, முக்கோணகும்பு, தளச்சதுரம்
- (2) நான்முகி, தளமுக்கோணம், எண்முகி
- (3) முக்கோண இருகூம்பகம், நான்முகி, எண்முகி
- (4) எண்முகி, நான்முகி, முக்கோணஇருகம்பகம்
- (5) நான்முகி, முக்கோண இருகூம்பகம், எண்முகி

07) P_2V_2 P_1V_1 T_2 T_1

படத்தில் காட்டியவாறு ஆரம்பத்தில் இரு குடுவைகளில் ஒன்றுடன் ஒன்று தாக்கமுறாத இரு இலட்சியவாயுக்கள் அடைக்கப்பட்டுள்ளது பின் திருகி திறந்து இருவாயுக்களும்

ஒன்றுடன் ஒன்று கலக்க அனுமதிக்கப்பட்டது. இதன்போது அமுக்கம் $m P_3$ ஆகவும், வெப்பநிலை T_3 ஆகவும் காணப்பட்டது. T_3 க்கு பொருத்தமான கோவை

- $(2) \ \frac{(P_3V_1 + P_3V_2)T_1T_2}{T_2P_1V_1 + P_2V_2T_1} \qquad \qquad (3) \ \frac{P_3V_2 P_3V_1T_1T_2}{T_2(P_1V_1 + P_2V_2)T_1}$

- $(4) \frac{T_1 P_3 V_1 + P_3 V_2 T_2}{(P_1 V_1 P_2 V_2) T_1 T_2}$
- (5) $\frac{(P_3V_1 + P_2V_2)T_2}{(P_2V_2 + P_1V_1)T_1}$
- 08) பின்வரும் தாக்கங்களில் இருந்து $m H_2O_{(g)}$ இல் காணப்படும் m O-H இன் சராசரி பிணைப்பு கூட்டற்பிரிகை சக்தியாக அமையக்கூடியது $[{
 m kJmol}^{-1}$ இல்]

 O_2 இன் (பிணைப்பு பிரிகை) $\Delta H_D^0 = 500 \text{ kJmol}^{-1}$,

 ${
m H}$ இன் (அணுவாதல்) ${
m \Delta H_{atom}^0}=+216~{
m kJmol^{-1}},~{
m H_2O_{(l)}}$ இன் (தோன்றல்) ${
m \Delta H_f^0}=-284~{
m kJmol^{-1}},$ $H_2O_{(1)}$ இன் (ஆவியாதல்) $\Delta H_{\text{vap}}^0 = +44 \text{ kJmol}^{-1}$

- (1) + 478
- (2) + 461

- 09) $0.4\,\mathrm{M}$ செறிவுடைய $\mathrm{NH_3}$ கரைசல் ஒன்றின் $100\,\mathrm{cm^3}$ மாதிரிக்குள் $0.535\,\mathrm{g}$ திண்ம $\mathrm{NH_4Cl}$ கரைக்கப்பட்ட போது கரைசலின் pH பெறுமானம் $[\mathrm{NH}_4^+]$ இன் அமில அயனாக்க மாறிலி $K_a = 1 \times 10^{-9} \text{moldm}^{-3}$
 - (1) 9.4
- (2) 5.6
- (3) 5.4
- (4) 9.6
- (5) 10.6
- $CH_3 C NH_2 \xrightarrow{NaOH} A \xrightarrow{dil H_2SO_4} B \xrightarrow{PCl_3} C$ A, B, C ஆக அமைய பொருத்தமான சேதன விளைவுகள் முறையே, 10)

- (1) $CH_3CH_2NH_2$, $CH_3CH_2NH_3^+$, CH_3CH_2Cl
- (2) CH₃COOH, CH₃CHO, CH₃COCl
- (3) CH₃COO⁻Na⁺, CH₃COOH, CH₃CH₂Cl
- (4) CH₃COO⁻Na⁺, CH₃CH₂OH, CH₃CH₂Cl
- (5) CH₃COO⁻Na⁺, CH₃COOH, CH₃COCl
- 11) ${\rm Fe}_2{\rm O}_3$ ${\rm C}$ இனால் தாழ்த்தப்பட்டு ${\rm Fe}$ பெறப்படும் தாக்கம் சமன்படுத்தப்படாத சமன்பாட்டால் காட்டப்பட்டுள்ளது. $(Fe_2O_3 + C \rightarrow Fe + CO)$

 $350~{
m g}~{
m Fe_2O_3}$ ${
m C}$ ஆல் தாழ்த்தப்பட்ட போது $224{
m g}~{
m Fe}$ பெறப்பட்டது எனின் இங்கு பயன்படுத்தப்பட்ட C இன் இழிவு திணிவாக அமையக்கூடியது [Fe -56, C-12, O-16]

- (1) 36 g
- (2) 24 g
- (3) 12 g
- (4) 48 g
- (5) 72 g
- 12) நீலம், பச்சை, ஊதா ஆகிய நிறங்களை வெளிக்காண்பிக்க கூடிய சிக்கல் அயன்கள் முறையே,
 - (1) $[Ni(H_2O)_6]^{2+}$, $[Cu(NH_3)_4]^{2+}$, $[Cr(H_2O)_6]^{3+}$
 - (2) $[Cu(H_2O)_6]^{3+}$, $[Cr(H_2O)_6]^{3+}$, $[Co(H_2O)_6]^{2+}$
 - (3) $[Cu(H_2O)_6]^{2+}$, $[Ni(H_2O)_6]^{2+}$, $[Cr(H_2O)_6]^{3+}$
 - (4) $[Cu(NH_3)_4]^{2+}$, $[Ni(OH)_2(H_2O_{14})]$, $[CrCl_2(H_2O_{14})]^{+}$
 - (5) $[Co(NH_3)_6]^{2+}$, $[NiCl_4]^{2-}$, $[Zn(NH_3)_4]^{2+}$

- $A \to B$ எனும் முதன்மை தாக்கத்தில் A இன் செறிவு $1.6~{
 m moldm^{-3}}$ இல் இருந்து $0.05~{
 m moldm^{-3}}$ ஆக மாறுவதற்கு $5600~{
 m s}$ தேவைப்பட்டது. எனின் தாக்கவீதமாறிலியாக அமைய பொருத்தமானது.
 - (1) $6.93 \times 10^{-2} \text{ s}^{-1}$
- (2) $6.93 \times 10^{-4} \text{ s}^{-1}$
- (3) $0.693 \,\mathrm{s}^{-1}$

- (4) $6.93 \times 10^{-3} \text{ s}^{-1}$
- (5) $1.386 \times 10^{-2} \text{ s}^{-1}$
- 14) 0.1 M HCl இன் 1 cm³ சேர்க்கும் போது pH இல் அதிகுறைந்த மாற்றத்தை காண்பிக்க கூடியது.
 - $(1) H_2 O$

- (2) 0.1 M HCOOH / 0.1 M HCOONa
- (3) 0.1 M CH₃COOH / 0.1 M CH₃COONa
- (4) $0.1 \text{ M C}_2\text{H}_5\text{COOH} / 0.1 \text{ M C}_2\text{H}_5\text{COONa}$

- (5) 0.1 M CH₃COOH
- 15) சரியான கூற்று
 - (1) $AlCl_{3(aq)}$ இனுள் Na_2CO_3 சேர்க்கும் போது Al_2CO_3 வீழ்படிவு தோன்றும்
 - (2) KMnO₄ ஐ H₂SO₄ NaCl கரைசலுக்கு சேர்த்து சூடாக்க HCl வாயு வெளியேறும்.
 - (3) K $_2$ Cr $_2$ O $_7$ உடன் NaOH, சேர்க்கும் போது K $_2$ Cr $_2$ O $_4$ உம் Cr $_2$ OH) $_3$ உம் உருவாகும்.
 - (4) K₃[Fe(CN)₆] உடன் FeCl₃ சேர்க்கும் போது நீலநிறம் தோன்றும்.
 - (5) KI உப்புடன் செறி $m H_2SO_4$ சூடாக்கும் போது ஊதா நிற புகை வெளியேறும்.
- 16) மின்கலம் ஒன்றில் Ag / AgCl மின்வாய் கதோட்டாக தொழிற்படும் போது $2.5\,\mathrm{A}$ மின்னோட்டம் $386\,\mathrm{s}$ க்கு பெறப்பட்ட போது Ag / AgCl மின்வாயில் ஏற்பட்ட திணிவு மாற்றம் (Ag-108,Cl-35.5)
 - (1) 1.435 g இனால் அதிகரிக்கும்.
- (2) 1.435 g இனால் குறைவடையும்.
- (3) 0.355 g இனால் குறைவடையும்.
- (4) 0.355 g இனால் கூடும்.
- (5) 1.08 g இனால் குறைவடையும்.
- 17) பிழையான கூற்றை தெரிவுசெய்க.
 - (1) கூட்டம் 2 இல் Mg தாழ் உருகுநிலை உடையது.
 - (2) ${
 m AlF_3}$ உறுதி அடைவதற்காக ${
 m Al_2F_6}$ ஆக காணப்படகூடியது.
 - (3) NO, NO $_2$ ஆகியனவற்றில் N அட்டக நிலையை பூர்த்தி செய்யாத போது N $_2$ O $_3$ இல் பூர்த்திசெய்துள்ளது.
 - (4) Na⁺ இலும் பார்க்க Al³⁺ உயர்முனைவாக்கும் வலு உடையது.
 - (5) வைரத்திலும் பென்சிள்ளியின் உருகுநிலை சிறிது உயர்வு
- $18)\ {
 m T}\ {
 m K}\ {
 m Gau}$ ப்பநிலையில் நீரின் அயன்பெருக்கம் ${
 m k_w}=1\,{
 m x}\,10^{-13}{
 m mol}^2{
 m dm}^{-6}$ இவ்வெப்பநிலையில் $1\,{
 m x}\,10^{-2}{
 m mol}{
 m dm}^{-3}$ செறிவுடைய NaOH கரைசல் $100\,$ மடங்கு ஐதாக்கப்பட்டால் இறுதி pH யாது?
 - (1) 9
- (2) 10
- (3) 4
- (4) 2
- (5) 12

- 19) R ⇌ P ஆக அமையும் இரசாயன சமனிலை தாக்கம் ஒன்றில் மாறா அமுக்கத்தில் தாக்க அளவுடன் நியம கிப்ஸ் சக்தி மாறல் இருவேறு வெப்பநிலைகளில் காட்டப்பட்டுள்ளது. இத்தாக்கம் பற்றி சரியான கூற்று
 - (1) இது முற்தாக்கம் அகவெப்ப தாக்கமெனின் $T_2 > T_1$
 - (2) தாக்க சமனிலை மாறிலி T_1 இலும் T_2 இல் பெரிது

- (3) இது முற்தாக்கம் புறவெப்பதாக்கமெனின் $T_1 > T_2$
- (4) T_2 வெப்பநிலையில் $\Delta G>0$ ஆகவும் T_1 வெப்பநிலையில் ΔG ஏறத்தாள 0 சமனாகவும் உள்ளது.
- (5) T₂ வெப்பநிலையில் தாக்கம் விளைவுகளிற்கு அண்மையாக நிறைவுறும் நிலையில் உள்ளது.

CH2CONH2 20) CH₂COOH

எனும் மாற்றம் நிகழ்வதற்கு A, B, C, D ஆக அமைய பொருத்தமான முறையே,

- (1) PCC, $KMnO_4$, H_2SO_4 , NH_3
- (2) LiAlH₄, H_2SO_4 , PCC, NH_3
- (3) PCC, $[Ag(NH_3)_2]^+$, ஐதான HCl, NH_3 (4) $K_2Cr_2O_7$, $NaBH_4$, CH_3OH , NH_3
- (5) PCC, LiAlH₄, H₂SO₄, NH₃
- 21) நிறமுடைய அசேதன சேர்வை A வன்மையாக வெப்பமாக்கிய போது பச்சைநிற திண்ம மீதி ${f B}$ ஐயும் வாயு C ஐயும் கொடுத்தது வாயு C உலோகம் M உடன் தாக்கி சேர்வை D ஐ கொடுத்தது. D நீருடன் தாக்கி வாயு F ஐ கொடுத்தது எனின் A, B, C, D, E, M ஆக அமைய பொருத்தமானவை முறையே.

	A	В	C	D	E	M
(1)	$(NH_4)_2CrO_4$	Cr_2O_3	N_2	Mg_3N	NH_3	Na
(2)	$(NH_4)_2Cr_2O_7$	Cr_2O_3	N_2	Mg_3N_2	NH_3	Mg
(3)	$(NH_4)_2Cr_2O_7$	Cr_2O_3	N_2	K_3N	NH_3	K
(4)	$(NH_4)_2Cr_2O_7$	Cr_2O_3	N_2O	Ca_3N	NH_3	Ca
(5)	$(NH_4)_2Cr_2O_7$	CrO_3	N_2	Mg_3N_2	NH_3	Mg

- 22) 1 M செறிவுடைய CH₃COOH இன் 25 cm³ மாதிரி 1 M செறிவுடைய NaOH ஆல் நியமிக்கப்பட்ட போது பெறப்பட்ட pH வளையி கீழே காட்டப்பட்டுள்ளது. இதனுடன் தொடர்புபட்ட தவறான கூற்று.
 - (1) A பகுதியில் தாங்கல் தன்மையை காண்பிக்கும்.
 - (2) B பகுதி நியமிப்பின் முடிவு நிலையாக அமையும் அத்துடன் மூல இயல்புடைய உப்பு பெறப்படும்.
 - (3) C பகுதியில் தாங்கல் இயல்பு வெளிக்காண்பிக்கப்படும்.
 - (4) CH₃COOH இன் Ka இலும் கூடிய Ka உடைய அமிலத்தின் 1 moldm⁻³ கரைசலை பயன்படுத்தி இருப்பின் ஆரம்ப pH 3 இலும் குறைவாக அமையும்.
 - (5) NaOH இற்கு பதிலாக $NH_4OH_{(aa)}$ பயன்படுத்தினாலும் இதேபோன்று வரைபு பெறப்படும்.

- 23) ஒன்றுடன் ஒன்று கலக்காத திரவம் $A,\,B$ இடையே I_2 இன் பங்கீட்டு குணகம் $K_D=39$ ஆகும். கரைந்துள்ளது. இரண்டு தடவை m B யின் $100~
 m cm^3$ மாதிரி இதனுடன் குலுக்கி வேறாக்கினால் இறுதியாக A யில் I₂ இன் செறிவு moldm⁻³ இல்
 - (1) 0.005
- (2) 0.05
- (3) 0.5
- (4) 0.2
- (5) 0.02
- 24) FeCl $_{3}$ கரைசல் ஒன்றில் Fe $^{3+}$ இன் செறிவு 1300 ppm ஆகும். இக்கரைசலின் 250 cm $^{3-}$ காணப்படும் Cl^- இன் அளவு mg இல் (Fe-56, Cl-35.5)
 - (1) 840
- (2) 710
- (3) 532.5
- (4) 355
- (5) 213

- 25) AgCl $_{(s)}$ சிறிதளவு நீரில் கரைந்து அதன் அயன்களுடன் சமநிலையில் உள்ள கரைசல் ஒன்றை கருதுக. பின்வரும் கூற்றுகளில் சரியானது.
 - (1) சிறிதளவு AgNO_3 கரைசல் சேர்க்கும் போது AgCl கரையும்.
 - (2) சிறிதளவு KCl கரைசல் சேர்க்கும் போது AgCl கரையும்.
 - (3) சிறிதளவு KNO_3 கரைசல் சேர்க்கும் போது AgCl படியும்.
 - (4) சிறிதளவு K₂CrO₄ கரைசல் சேர்க்கும் போது AgCl சிறிதளவு கரைந்து செந்நிற வீழ்படிவு தோன்றும்.
 - (5) சிறிதளவு ${
 m NH_3}$ கரைசல் சேர்க்கும் போது வீழ்படிவின் அளவு மாறாது காணப்படும்.
- 26) பின்வரும் கூற்றுக்களில் தவறானது.
 - (1) Dow முறையிவ் Mg பிரித்தெடுக்கும் போது படிமுறை 2 இல் பிற்றன் கரைசலுடன் CaO சேர்க்கப்படும்.
 - (2) உருகிய ${
 m MgCl_2}$ ஐ மின்பகுக்கும் போது கதோட்டில் ${
 m Mg}$ படியும் அனோட்டில் ${
 m Cl_2}$ வாயு வெளியேறும்.
 - (3) மென்சவ்வு கலமுறையில எரிசோடா உற்பத்தி செய்யப்படும் போது Ti அனோட்டும், Ni கதோட்டும் பயன்படுத்தப்படும்.
 - (4) எரிசோடா உற்பத்தியின் போது கதோட்டு அறையில் ${
 m H}_2{
 m O}$ உட்செலுத்தப்பட்டு ${
 m NaOH}$ வெளியேற்றப்படும்.
 - (5) எரிசோடா உற்பத்தியில் மென்சவ்வு $H_{2(g)}$ உம் $\operatorname{Cl}_{2(g)}$ ம் தாக்கமடையாமல் தடுக்கும் தொழிலை மாத்திரம் மேற்கொள்ளும்.
- 27) பின்வரும் இரு மின்வாய்களினால் ஆன மின்கலம் ஒன்றை கருதுக.

$$\operatorname{Pt}_{(s)}/\operatorname{Hg}_{(s)},\operatorname{Hg}_{2}\operatorname{Cl}_{2(s)}/\operatorname{Cl}_{(aq)}^{-}$$

$$E^0 = 0.27 \text{ V}$$

$$Pt_{(s)} / Cl_{2(g)} / Cl_{(ag)}^{-}$$

$$E^0 = 1.36 \text{ V}$$

இம் மின்கலத்தின் ஒட்டுமொத்த கலத்தாக்கமும் அதன் மின்இயக்க விசையும்,

(1)
$$Hg_2Cl_{2(s)} \rightarrow 2Hg_{(l)} + Cl_{2(g)}$$

$$E^0 = -1.09 \text{ V}$$

(2)
$$2Hg_{(1)} + Cl_{2(g)} \rightarrow Hg_2Cl_{2(s)}$$

$$E^0 = 1.09 V$$

$$E^0 = 1.09 V$$

$$(3) 2Hg_{(l)} + 2Cl_{(aq)}^{-} \rightarrow Hg_2Cl_{2(s)}$$

(4)
$$Hg_2Cl_{2(s)} \rightarrow Hg_{2(aq)}^{2+} + 2Cl_{(aq)}^{-}$$

$$E^0 = 1.63 \text{ V}$$

(5)
$$Hg_{2(aq)}^{2+} + 2Cl_{(aq)}^{-} \rightarrow Hg_2Cl_{2(s)}$$

$$E^0 = 1.09 V$$

28) பின்வரும் சேதன தொகுப்பு தாக்கங்களில் இடைநிலை விளைவாக தோன்றமுடியாதது.

$$CH_3 - C \equiv CH \xrightarrow{HgSO_4, H_2SO_4} CH_3 - C = CH_2$$

$$^{(2)}$$
 CH₃ - CH₂ - CHO \longrightarrow CH₂CH₂CHO + H₂O

$$\begin{array}{c} \text{CH}_3 - \text{C} - \text{Cl} & \xrightarrow{} \text{OH} \\ \end{array} \xrightarrow{} \text{CH}_3 - \text{C} - \text{Cl} \\ \end{array}$$

$$CH_{3} - C - CI$$

$$CH_{3} CI / AgCl_{3}$$

(5)
$$CH_3CH = CH_2 \xrightarrow{Con H_2SO_4} CH_3 - CH - CH_3$$

- 29) இரண்டு ஒன்றுடன் ஒன்று கலக்கும் இரு திரவங்கள் A,B இலட்சிய கரைசலை ஆக்கும் போது கரைசலின் A:B 1:5 என்ற மூல்விகிதத்திலும் ஆவியில் A:B 4:3 என்ற விகிதத்திலும் காணப்படும் போது மொத்த அமுக்கம் $7 \times 10^4 \, \mathrm{Pa}$ எனின் A,B யின் நிரம்பலாவி அமுக்கம் முறையே
 - (1) 2.4×10^4 , 3.6×10^4

(2) 2×10^4 , 3×10^6

(3) 4 x 10^4 , 3 x 10^4

(4) 4.8×10^4 , 1.8×10^5

- (5) 2.4 x 10^5 , 3.6 x 10^4
- 30) SO₂ ஐ தாழ்த்தக்கூடிய இரசாயன இனம்
 - $(1) \text{ KMnO}_4 / \text{H}^+$

(2) H_2O_2

(3) FeCl₃

(4) H_2S

(5) CuSO₄

💠 31 – 40 வரையான வினாக்களுக்கான அறிவுறுத்தற் சுருக்கம்

(1)	(2)	(3)	(4)	(5)	
(a), (b) ஆகி யன மாத்திரம் திருத்தமானவை	(b), (c) ஆகி யன மாத்திரம் திருத்தமானவை.	(c), (d) ஆகி யன மாத்திரம் திருத்தமானவை	(a), (d) ஆகி யன மாத்திரம் திருத்தமானவை.	வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவை.	

- 31) மாறா வெப்பநிலையில் ஊக்கி ஒன்றை சேர்கையில் தாக்கவீதம் அதிகரிக்கின்றது என்பதை பின்வரும் எக்கூற்று / கூற்றுகள் விளக்குகின்றது.
 - a) ஊக்கி ஏவற்சக்தியை குறைக்கும்.
 - b) தாக்கமூலக்கூறுகளின் இயக்க சக்தியை அதிகரிக்க செய்யும்.
 - c) ஏவற்சக்தி குறைந்த புதிய பொறிமுறை ஊடாக தாக்கத்தை நிகழசெய்யும்.
 - d) விளைவுகளின் செறிவை கூட்டுவதன் மூலம் தாக்கவீதத்தை கூட்டும்.
- 32) தூய நீரில் சிறிதளவு NaCl கரைக்கப்படும் போது ஏற்படும் மாற்றம் எது / எவை?
 - a) கொதிநிலையில் உயர்ச்சி
 - b) உறைநிலையில் வீழ்ச்சி
 - c) நீரின் ஆவிபறப்பு அதிகரிக்கும்.
 - d) 3 அவத்தையும் சமனிலை அடையும் மும்மைபுள்ளி காணப்படாது.
- 33) butan 2 ol இருசமபகுதிய வடிவங்களில் காணப்படுகின்றது அவை பற்றிய சரியான கூற்று / கூற்றுக்கள்
 - (a) இரண்டும் ஒரே இரசாயன இயல்பு உடையன.
 - (b) ஒன்று மற்றையதன ஆடி விம்பமாக அமையாது, மேற்பொருத்தவும் மாட்டாது.
 - (c) இரண்டும் தளமுனைவாக்கப்பட்ட ஒளியை வெவ்வேறு கோணங்களால் திருப்பகூடியது.
 - (d) இரண்டும் சம அளவில் காணப்படும் தொகுதி தளமுனைவாக்கிய ஒளியை திருப்பாது.
- 34) $[Ni(H_2O)_6]_{(aq)}^{2+} + NH_{3(aq)} \rightleftharpoons [Ni(NH_3)_6]_{(aq)}^{2+}$ பற்றி சரியான கூற்று
 - (a) $Q_{\rm C} < K_{\rm C}$ ஆகும் போது நீலநிற செறிவு நேரத்துடன் கூடும்.
 - (b) $Q_C = K_C$ ஆகும் போது $\Delta G = 0$ ஆகும்.
 - (c) $Q_C > K_C$ ஆகும் போது பச்சை நிற செறிவு நேரத்துடன் கூடும்.
 - (d) $Q_C < K_C$ ஆகும் போது முற்தாக்க $\Delta G > 0$ ஆகும்.

- 35) பின்வருவனவற்றில் சரியான கூற்று எது / எவை?
 - (a) மென்னமிலம் ஒன்றின் செறிவை 100 மடங்கு ஐதாக்கும் போது pH 2 அலகால் அதிகரிக்கும்.
 - (b) வன்னமிலம் ஒன்றை 100 மடங்கு ஐதாக்கும் போது pH 2 அலகினால் கூடும்.
 - (c) வன்காரம் ஒன்றை 10 மடங்கு ஐதாக்கும் போது [H+] செறிவு 10 மடங்கினால் கூடும்.
 - (d) வன் அமிலம் ஒன்றை ஐதாக்கும் போது [H⁺] உம் [OH⁻] செறிவுகள் ஒரே அளவினால் மாற்றமடையும்.
- 36) A,B எனும் ஒன்றுடன் ஒன்று கலக்கும் இலட்சிய கரைசலால் ஆன தொகுதி பற்றி சரியான கூற்று / கூற்றுகள் $\left[P_A^0>P_B^0\right]$.
 - (a) திரவ அவத்தை A யின் மூல்பின்னத்துடன் மொத்த ஆவிஅமுக்கம் $P_{
 m T}$ அதிகரிக்கும்.
 - (b) திரவ அவத்தை A யின் மூல்பின்னம் X_A அதிகரிக்கையில் கொதிநிலை குறையும்.
 - (c) திரவ அவத்தையில் X_B அதிகரிக்கும் போது மொத்த ஆவிஅமுக்கம் கூடும்.
 - (d) மீள மீள காய்ச்சிவடிக்கையில் தூய B யை பெறலாம்.
- 37) பின்வரும் கூற்றுகள் எது / எவை தவறானது / தவறானவை?
 - (a) 3d மூலகங்களில் Sc தொடக்கம் Co வரை அணு ஆரை குறையும்.
 - (b) மின் எதிர்தன்மை Fe, Co, Ni, Cu ஆகியவற்றிலும் Zn க்கும் குறைவாகும்.
 - (c) 3ம் அயனாக்கசக்தி Cu > Zn ஆகும்.
 - $(d) \ \mathrm{Mn_2O_3}$ உம் $\mathrm{Cr_2O_3}$ உம் ஈரியல்புடைய ஓட்சைட்டுகள் ஆகும்.
- 38) அலசன்கள் தொடர்பான பின்வரும் கூற்றுகளில் சரியானது எது / எவை?
 - (a) பிணைப்பு சக்தி $F_2 < Cl_2$
 - (b) F_2 ஆனது H_2O உடன் ஒட்சியேற்றியாக தொழிற்பாட்டு O_2 வாயுவை வெளியேற்றும்.
 - (c) Cl₂ வாயு நீரில் கரையும் போது இருவழிவிகாரமடையும்.
 - (d) $I_2 Na_2S_2O_3$ உடன் தாழ்த்தும் கருவியாக தொழிற்படும்.
- 39) பின்வரும் வெப்ப இரசாயன செயன்முறைகளில் சரியானது?
 - (a) NaCl இன் சாலக பிரிகை வெப்பவுள்ளுறைமாற்றம் $NaCl_{(s)} o Na_{(g)}^+ + Cl_{(g)}^-$
 - (b) Hg இன் அணுஆதல் வெப்பவுள்ளுறை $\operatorname{Hg}_{(s)} o \operatorname{Hg}_{(g)}$
 - (c) $\mathrm{H}_{2(\mathrm{g})}$ இன் பிணைப்பு கூட்டற்பிரிகை வெப்பவுள்ளுறை $\frac{1}{2}\mathrm{H}_{2(\mathrm{g})} o \mathrm{H}_{(\mathrm{g})}$
 - (d) Na^+ இன் நீரேற்றல் வெப்பவுள்ளுறை $\mathrm{Na}^+_{(\mathrm{g})} + \mathrm{H}_2\mathrm{O}_{(l)} o \mathrm{Na}^+_{(\mathrm{aq})}$
- 40) பின்வரும் கூற்றுகளில் எது / எவை சரியானது / சரியானவை
 - (a) 25° C இல் $N_{2(g)}$ இனதும் $CO_{(g)}$ இனதும் இடைஇயக்க சக்தியும், இடைவர்க்க மூலகதியும் ஒன்றுக்கு ஒன்று சமன்.
 - (b) 25°C இல் He_(g) இனதும் CH_{4(g)} இனதும் இடைவர்க்க மூலக்கதிகளின் இடையிலான விகிதம் 2:1 ஆகும்.
 - (c) $N_{2(g)}$ இனதும் $H_2O_{(g)}$ இனதும் பரவுகை வீதத்தை வெப்பநிலை மாற்றுவதன் மூலம் சமனாக்கலாம்.
 - (d) ஒரே வெப்ப, அமுக்கத்தில் காணப்படும் $H_2,\ O_2$ இனதும் அடர்த்திகள் ஒன்றுக்கொன்று சமன்.

•					^ · ·	$ \land \cdot \cdot$	
***	41	_	50	வரையான	வினாக்களுக்கான	அறிவறுக்கல	みんでを全の

தெரிவுகள்	முதலாம் கூற்று	இரண்டாம் கூற்று
(01)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்குத்
		திருத்தமான விளக்கத்தைத் தருவது.
(02)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்குத்
		திருத்தமான விளக்கத்தைத் தராதது.
(03)	உண்மை	பொய்
(04)	பொய்	உண்மை
(05)	பொய்	பொய்

கூற்று I

- ${
 m CaCO_3} \,
 ightleftharpoons {
 m CaO_{(s)}} + {
 m CO_{2(g)}}$ எனும் சமனிலை தாக்கத்தில் ${
 m k_p} = {
 m k_cRT}$
- 42) சவர்க்காரம் என்பது நீண்ட C சங்கிலி கொண்ட காபொட்சிலிக்அமில Na உப்பாகும்.
- 43) ஒரு மின் இரசாயன கலத்தில் கூடிய தாழ்த்தல் அழுத்தம் உடைய மின்வாய் மறைமுனைவாக தொழிற்படும்
- 44) மழைநீரில் CO₂ இலும் பார்க்க SO₂ இன் கரைதிறன் உயர்வு
- 45) 25^0 C இல் $H_2O_{(l)} o H_2O_{(g)}$ ஆகும். செயன்முறை $\Delta G < 0$, $\Delta H > 0$, $\Delta S > 0$ ஆக அமையும்.
- 46) 25°C இல் NH₄ உப்பு ஒன்று அமில, மூல, நடுநிலை இயல்புகளை காண்பிக்ககூடியதாக அமையலாம்.
- 47) அமைட்டு ஒன்றை தாழ்த்துவதன் மூலம்அதன் மூலவலிமையை அதிகரிக்கலாம்.
- H_2 S அமில K_2 Cr $_2$ O $_7$ ஐ தாழ்த்தும் போது SO_2 வாயு விடுக்கப்படும்.
- 49) CCl₄ இலும் CF₄ இல் C அணுவின் மின்எதிர்தன்மை உயர்வு
- 50) ஒரே செறிவுடைய Mg²⁺, Ca²⁺ காணப்படும் கரைசல் ஒன்றில் NaOH_(aq) ஐ வழிந்தோடவிடும் போது முதலில் Mg(OH)₂ வீழ்படிவாகும்.

கூற்று II

 $k_p = k_c (RT)^{\Delta n}$ இல் $\Delta n = 2 - 1$ ஆகும்.

எண்ணெய்யில் காணப்படும் எசுத்தரை காரநீர்ப்பகுப்பு செய்வதன் மூலம் சவர்க்காரம் தயாரிக்கப்படும்.

இம் மின்வாய் கதோட்டாக தொழிற்படகூடியது.

 H_2CO_3 இலும் H_2SO_3 வன்னமிலம்

 $1 ext{ atm}$ அமுக்கத்தில் 0^{0} C வெப்பநிலையிலும் குறைந்த வெப்பநிலையில் இச் செயன்முறையில் $\Delta G > 0$ ஆகும்.

NH₄⁺ உடன் இணைந்துள்ள அன்னயன் அடிப்படையில் இயல்புகள் தீர்மானிக்கப்படும்.

அமைன்களின் அற்கைல் கூட்டம் N அணுவை நோக்கி பிணைப்பு சோடி இலத்திரனை விடுவிப்பதன் மூலவலிமை அதிகரிக்கும்.

 ${
m K_2Cr_2O_7}$ வலிமையான ஒட்சியேற்றும் கருவியாகும்.

கலப்பு, ஏற்றம், ஒட்சியேற்ற எண் என்பன சமனாக உள்ளபோது சுற்றயல் அணுக்களின் மின் எதிர்தன்மை அதிகரிக்கையில் மையஅணுமின் எதிர்தன்மையும் அதிகரிக்கும்.

Ksp குறைந்த கூறு எப்பொழுதும் முதலில் வீழ்படிவாகும்.