Fundamental of Analysis

Week 1 HW (Axiom Proof)

shaozewxy

August 2022

Important Exercises from Section 3

3.1

Prove that the additive inverse of axiom 5 is unique.

We know $\forall x, \exists x^{-1}$ such that $x + x^{-1} = 0$.

Then assume that $\exists x'$ such that x + x' = 0. Then we have

$$x + x^{-1} = 0$$

$$x + x^{-1} + x' = 0 + x' = x'$$

$$(x^{-1} + x) + x' = x'$$

$$x^{-1} + (x + x') = x'$$

$$x^{-1} + 0 = x^{-1} = x'$$

3.3

Prove that -(-x) = x for all $x \in \mathbf{R}$.

Given $x \in \mathbf{R}$, we have

$$x + -x = 0$$

$$x + -x + -(-x) = 0 + -(-x) = -(-x)$$

$$x + (-x + -(-x)) = -(-x)$$

$$x + 0 = x = -(-x)$$

3.4

Prove that -(x+y) = -x - y for all $x, y \in \mathbf{R}$.

 $\forall x, y \in \mathbf{R}$, we have

$$(x+y) - (x+y) = 0$$

$$(x+y) - (x+y) - x - y = 0 - x - y = -x - y$$

$$((x+y) - x - y) - (x+y) = -x - y$$

$$0 - (x+y) = -x - y$$

$$-(x+y) = -x - y$$

3.5

Let $x, y \in \mathbf{R}$. Prove that xy = 0 if and only if x = 0 or y = 0.

Suppose $x \neq 0, y \neq 0, xy = 0$.

Then according to Axiom 10, since $x\neq 0, y\neq 0, \to \exists x^{-1}, y^{-1}$ such that $xx^{-1}=yy^{-1}=1.$ Then we have

$$xy = 0$$

 $xyy^{-1} = x(yy^{-1}) = x = 0 \cdot y^{-1} = 0$
 $x = 0$

Which is contradiction since $x \neq 0$.

Therefore we can see that it is impossible when not x = 0 and y = 0 for xy = 0.

3.6

Let $x, y \in \mathbf{R}$. Prove that if xy = xz and $x \neq 0$, then y = z.

 $\forall x, y, z \in \mathbf{R}$ such that $xy = xz, x \neq 0$, we have

Since $x \neq 0, \rightarrow \exists x^{-1} \in \mathbf{R}$ such that $xx^{-1} = 1$.

Therefore,

$$xy = xz$$

$$x^{-1}(xy) = x^{-1}(xz)$$

$$(x^{-1}x)y = (x^{-1}x)z$$

$$y = z$$

3.7

Prove that -(xy) = x(-y) = (-x)y for all $x, y \in \mathbf{R}$.

 $\forall x, y \in \mathbf{R}$

$$-xy + xy = 0$$

$$-xy + xy + x(-y) = 0 + x(-y) = x(-y)$$

$$-xy + x(y - y) = x(-y)$$

$$-xy + 0 = -xy = x(-y)$$

The case for -xy = (-x)y can be similarly prove.

3.8

Prove that (-1)x = -x for all $x \in \mathbf{R}$.

 $\forall x \in \mathbf{R}$, we have

$$0 = 0$$

$$x \cdot 0 = 0$$

$$x \cdot (1 + (-1)) = 0$$

$$x + (-1)x = 0$$

$$x + (-1)x + (-x) = -x$$

$$(x + (-x)) + (-1)x = -x$$

$$0 + (-1)x = (-1)x = -x$$

Proof of Theorem 4.2

i

Prove that 1 > 0.

We try to prove that $1 - 0 = 1 \in P$:

Since $1 \neq 0$, we know that either $1 \in P$ or $-1 \in P$.

Suppose for a contradiction that $-1 \in P$, then we have $-1 \cdot -1 \in P$.

However, $-1 \cdot -1 = -(-1) = 1 \notin P$. Contradiction. Therefore $-1 \notin P$, i.e. $1 \in P$.

ii

Prove that if x > y and y > z, then x > z for all $x, y, z \in \mathbf{R}$.

 $\forall x, y, z \in \mathbf{R}$ such that x > y, y > z, we have

 $x - y \in P$ and $y - z \in P$, therefore we have

$$(x-y) + (y-z) = x - y + y - z = x - z \in P$$

Therefore x > z.

iii

Prove that if x > y, then x + z > y + z for all $x, y, z \in \mathbf{R}$.

 $\forall x, y, z \in \mathbf{R}$ such that x > y, we have

$$x - y = x - y$$

$$x - y + 0 = x - y + (z - z) = x - y$$

$$x - y + z - z = (x + z) - y - z = (x + z) - (y + z) = (x - y)$$

Therefore $x - y \in P \to (x + z) - (y + z) \in P$, i.e. x + z > y + z.

iv

If x > y and z > 0, then xz > yz for all $x, y, z \in \mathbf{R}$.

 $\forall x, y, z \in \mathbf{R}$ such that x > y, z > 0, we have

$$x - y \in P, z - 0 = z \in P$$

Therefore $(x - y)z = xz - yz \in P$, i.e. xz > yz.

\mathbf{v}

If x > y and z < 0, then xz < yz for all $x, y, z \in \mathbf{R}$.

 $\forall x, y, z \in \mathbf{R}$, such that x > y, z < 0, we have

$$x - y \in P, 0 - z = -z \in P$$

Therefore $(x - y)(-z) = -xz + yz = yz - xz \in P$, i.e. xz < yz

Proof of Theorem 4.5

i

Prove that let $\epsilon > 0$, then $|x| < -\epsilon$ if and only if $-\epsilon < x < \epsilon$ and $|x| \le \epsilon$ if and only if $-\epsilon \le x \le \epsilon$.

Suppose $x \ge 0$, and $|x| < \epsilon$.

Then we have that $x \ge 0$ and $\epsilon > 0$, therefore $-\epsilon < 0$ and therefore $x > -\epsilon$.

Since |x| = x and $|x| < \epsilon$, we have $x < \epsilon$.

Therefore $-\epsilon < x < \epsilon$.

Suppose x < 0 and $|x| < \epsilon$.

Then we have |x| = -x.

Since $|x| = -x < \epsilon$ and -1 < 0, we have

$$-1\cdot -x > -1\cdot \epsilon$$

$$x > -\epsilon$$

Since x < 0 and $0 < \epsilon$, we have $x < \epsilon$.

Therefore $-\epsilon < x < \epsilon$.

For the case where $|x| \le \epsilon$, we consider two cases:

- $|x| \neq \epsilon$: this is just the case above where $|x| < \epsilon$, which is already prove.
- $|x| = \epsilon$: then either $x = \epsilon$ or $-x = \epsilon$.

If $x = \epsilon$, then $-\epsilon \le x \le \epsilon$ is true by nature.

If $-x = \epsilon$, then $x = -\epsilon$, therefore $-\epsilon \le x$ is true.

Since 1 > 0, 0 > -1, we have 1 > -1.

Since 1 > -1 and $\epsilon > 0$, we have $1 \cdot \epsilon > -1 \cdot \epsilon$, i.e. $x = -\epsilon < \epsilon$.

Therefore $-\epsilon \leq x \leq \epsilon$.

ii

Prove that $x \leq |x|$ for all $x \in \mathbf{R}$.

 $\forall x \in \mathbf{R}$, we have:

If $x \ge 0$, then |x| = x and therefore $x \le |x|$ is true.

If x < 0, then |x| = -x > 0, since |x| > 0 and x < 0, we have x < |x|, which makes $x \le |x|$ true.

Therefore $x \leq |x|$ is always true.

iii

Prove that |xy| = |x||y| for all $x, y \in \mathbf{R}$.

Prove by discussing 3 situations.

iv

Prove that $|x+y| \le |x| + |y|$ for all $x, y \in \mathbf{R}$.

If
$$x + y \ge 0$$
, then $|x + y| = x + y \le |x| + |y|$.

If
$$x + y < 0$$
, then $|x + y| = -x - y \le |-x| + |-y| = |x| + |y|$.

Therefore $|x+y| \le |x| + |y|$.