Finite Automata 07

Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

Show that $C = \{ w \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

- ullet Assume that C is regular
- Since C is regular, the Pumping lemma says that for any string $s \in C$ of length at least p, s can be divided into s = xyz satisfying the following conditions:

 - |y| > 0
 - $|xy| \le p$
- Let $s = (01)^p$
 - $\bullet \ s \in C \ {\operatorname{\hspace{1cm}--}} \ {\operatorname{good}}$

Show that $C = \{w \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

- $s = (01)^p$
- Let $x = \varepsilon$, y = 01, and $z = (01)^{p-1}$ and check all three conditions:
 - $\ \, \mathbf{0} \ \, \varepsilon(01)^i(01)^{p-1} \in C \ \, \text{for any} \, \, i \geq 0$
 - ullet Every time you insert a y, you add equal number of 0 and 1
 - |01| = 2 > 0
 - **③** $|\varepsilon 01| = 2 ≤ p$

All three condition can be true (no contradiction)

- Important: No contradiction means nothing
 - ullet You also cannot conclude that C is regular
- But if we pick $s = 0^p 1^p$, we will get a contradiction
 - Same kind of proof as in previous example but focus on the number of 0s and 1s (no pattern)

Show that $C = \{w \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular

Assume that C is regular. Since C is regular, the Pumping lemma says that for any string $s \in C$ of length at least p, s can be divided into s = xyz satisfying the following conditions:

- |y| > 0
- $|xy| \leq p$

Let $s=0^p1^p$. Since s starts with p 0s, to satisfy the third condition, x and y are strings that contain nothing but 0s. In other words, $x=0^j$ for any $j\geq 0$, and $y=0^k$ for any k>0. Note that k must be greater than 0 because $|y|=|0^k|=k$, and the condition 2 says that |y|>0. Since $x=0^j$ and $y=0^k$, $z=0^{p-(j+k)}1^p$. Let i=2. We have

$$xy^{i}z = xy^{2}z$$

$$= xyyz$$

$$= 0^{j}0^{k}0^{k}0^{p-(j+k)}1^{p}$$

$$= 0^{p+k}1^{p}$$

For the string $0^{p+k}1^p$ to be in C, the number of 0s must be equal to the number of 1s. In other words, p+k must be equal to p. This requires k to be 0. But since k must be greater than 0, $xy^2z \notin B$ — contradiction. Therefore, C is not regular.

Show that $D = \{ w \mid w \text{ has more number of 0s than number of 1s} \}$ is not regular.

- \bullet As usual, assume that D is regular and followed by the statement from the Pumping lemma
- If you pick $s=0^{2p}1^p$, you will not get a contradiction
 - $\bullet \ x = 0^j \ \text{for any} \ j \geq 0$
 - $y = 0^k$ for any k > 0
 - $z = 0^{2p (j+k)} 1^p$
 - \bullet For $i\geq 2$ in $xy^iz,$ you add more 0s which makes the result string still have more 0s than 1s
 - $\bullet \ \ \mathsf{For} \ i=0$
 - $xy^0z = xz = 0^j 0^{2p-(j+k)} 1^p = 0^{2p-k} 1^p$
 - If k is 1, 2p-1>p (the number of 0s is greater than the number of 1s) no contradiction
 - If k is p-1, 2p-(p-1)=p+1>p no contradiction
 - Note that $0 < k \le p$ from (2) and (3)
 - If there is a k that works, no contradiction

- Let's try $s=1^p0^{2p}$. Note that $s\in D$ and $|s|\geq p$.
 - Again, to satisfy (2) and (3), we have
 - $x = 1^j$ for any $j \ge 0$
 - $y = 1^k$ for any k > 0
 - $z = 1^{p-(j+k)}0^{2p}$
 - We have $xy^iz = 1^j(1^k)^i1^{p-(j+k)}0^{2p} = 1^{p+ki-k}0^{2p}$
 - If we increase i, we increase the number of 1s
 - To get a contradiction, we need the number of 1s to be greater than or equal to the number of 0s
 - In other words, $p + ki k \ge 2p$

$$p + ki - k \ge 2p$$

$$ki - k \ge p$$

$$k(i - 1) \ge p$$

$$i - 1 \ge p/k$$

$$i \ge (p/k) + 1$$

• $xy^{(p/k)+1}z = 1^{2p}0^{2p} \notin D$ — contradiction

Show that

$D = \{w \mid w \text{ has more number of 0s than number of 1s} \}$ is not regular

Assume that D is regular. Since D is regular, the Pumping lemma says that for any string $s \in D$ of length at least p, s can be divided into s = xyz satisfying the following conditions:

- |y| > 0
- $|xy| \le p$

Let $s=1^p0^{p+1}$. Since s starts with p 1s, to satisfy the third condition, x and y are strings that contain nothing but 1s. In other words, $x=1^j$ for any $j\geq 0$, and $y=1^k$ for any k>0. Note that k must be greater than 0 because $|y|=|1^k|=k$, and the condition 2 says that |y|>0. Since $x=1^j$ and $y=1^k$, $z=1^{p-(j+k)}0^{p+1}$. Let i=2. We have

$$xy^{i}z = xy^{2}z = xyyz$$

$$= 1^{j}1^{k}1^{k}1^{p-(j+k)}0^{p+1}$$

$$= 1^{p+k}0^{p+1}$$

For the string $1^{p+k}0^{p+1}$ to be in D, the number of 0s must be greater than the number of 1s. In other words, p+1 must be greater than p+k. This requires k to be 0. But since k must be greater than 0, $xy^2z\not\in D$ — contradiction. Therefore, D is not regular.

Rule of Thumb

- If a condition of the language is about inequality (<, ≤, >, ≥), pick a string that is right at the border line to break the condition
 - $D = \{w \mid w \text{ has more number of 0s than number of 1s} \}$
 - 1^p0^{p+1} needs xy^2z to add at least one 1
 - ullet $0^p 1^{p-1}$ needs xy^0z to take out at least one 0
 - ullet No need to find a large value of i

Show that $E = \{0^{(i^2)} \mid i \ge 0\}$ is not regular.

- Let's try to understand this language first
 - If i = 0, $0^{(0^2)} = 0^0 = \varepsilon$
 - If i = 1, $0^{(1^2)} = 0^1 = 0$
 - If i = 2, $0^{(2^2)} = 0^4 = 0000$
 - If i = 3, $0^{(3^2)} = 0^9 = 000000000$, and so on
- Thus, we have

 $E = \{ w \mid w \text{ contains nothing but } 0 \text{s and}$ the number of $0 \text{s is } i^2 \text{ for some } i \geq 0 \}$

- Important: You cannot pick $s = 0^p$
 - There is nothing to guarantee that $p=i^2$ for some $i\geq 0$
 - We need to pick $s = 0^{(p^2)}$

Show that $E = \{0^{i^2} \mid i \ge 0\}$ is not regular.

- \bullet As usual, assume that E is regular and followed by the statement from the Pumping lemma
- Let $s = 0^{(p^2)}$
 - $\bullet \ \, \mathsf{Note} \,\, \mathsf{that} \,\, s \in E \,\, \mathsf{and} \,\,$
 - $|s| = p^2 \ge p$.
- From the second and third conditions (|y| > 0 and $|xy| \le p$), we have

$$0 < |y| \le p$$

• Note that since s = xyz and $|s| = p^2$, $|xyz| = p^2$.

- ullet Let's do some analysis about xy^2z
 - $p^2 = |xyz|$
 - $|xyz| < |xy^2z| = |xyyz|$ because |y| > 0
 - $|xyyz| = |xyz| + |y| = p^2 + |y|$
 - $p^2 + |y| \le p^2 + p$ because $|y| \le p$
 - $p^2 + p < p^2 + 2p + 1 = (p+1)^2$
- Note that the string xy^2z can in E if $|xy^2z|=q^2$ for some q
- Above analysis shows that $p^2 < |xy^2z| < (p+1)^2$
- ullet But there is no q such that $p^2 < q^2 < (p+1)^2$
- Thus, $xy^2z \notin E$ contradiction
- ullet E is not regular