Problem 11.2 (ALC Semantics)

os. Alc concepts $\forall R. (C \cap D) \not\in (\forall R.C) \cap (\forall R.D)$ $[[\forall R. (C \cap D)]] = \{ x \in D \mid \forall y . if \langle xy \rangle \in [[R]] \text{ then } y \in [[C \cap D]] \}$ $= \{ x \in D \mid \forall y . if \langle xy \rangle \in [[R]] \text{ then } (y \in [[C]]) \cap \forall \in [[D]]) \}$ $= \{ x \in D \mid \forall y . if \langle xy \rangle \in [[R]] \text{ then } y \in [[C]] \} \cap$ $= \{ x \in D \mid \forall y . if \langle xy \rangle \in [[R]] \text{ then } y \in [[D]] \}$ $= [[\forall R.C]] \cap [[\forall R.D]]$

02. FOL conversion:

(1)
$$AB \cdot C \sqcup AB \cdot D = \left(AAB(x'A) \rightarrow C(A)\right) \vee \left(AAB(x'A) \rightarrow D(A)\right)$$

(1) $AB \cdot (G \sqcup D) = AAB(x'A) \rightarrow (G(A) \vee D(A))$

$$\sqrt{\gamma} R(x,y) \rightarrow (C(y) \wedge D(y)) \iff (\sqrt{\gamma} R(x,y) \rightarrow C(y)) \wedge (\sqrt{\gamma} R(x,y) \rightarrow D(y))$$
Since, we need to show that two formulas are equivalent, then Natural Deduction calculus will be best swited for this case.