

節末問題 4.3 的解答

問題 4.3.1

這是測試對多項式函數的微分(→4.3.3項)的理解的問題。答案如下所示。。

- 1. f'(x) = 7
- 2. f'(x) = 2x + 4
- 3. $f'(x) = 5x^4 + 4x^3 + 3x^2 + 2x + 1$

問題 4.3.2

 $\sqrt[3]{2}$ 的值可以根據以下方法求得(→**4.3.6項**)。

- 首先,設定一個任意的初始值a。
- 然後, 持續將 a 的值更新如下。

通過點 (a, f(a)) 之切線與直線 y = 2 的交點的 x 座標

因此, 撰寫如下程式即可。

此時,輸出會如下所示。急遽地逼近に $\sqrt[3]{2} = 1.259921049894 ...$,僅用5次而達到小數點後 12 位數的一致性。

```
Step #1: a = 2.00000000000 -> 1.500000000000

Step #2: a = 1.50000000000 -> 1.296296296296

Step #3: a = 1.296296296296 -> 1.260932224742

Step #4: a = 1.260932224742 -> 1.259921860566

Step #5: a = 1.259921860566 -> 1.259921049895
```

另外,有關Python、Java、C的原始碼,請參閱 GitHub 上的 chap4-3.md。

問題 4.3.3

使用二元搜尋法,手動計算√2的過程如下表所示。。

操作次數	l	r	m	$m^2 < 2$ 嗎?	範圍示意圖
第1次	1.00000	2.00000	1 .50000	No	
第2次	1.00000	1.50000	1 .25000	Yes	
第3次	1.25000	1.50000	1 .37500	Yes	
第 4 次	1.37500	1.50000	1.4 3750	No	
第 5 次	1.37500	1.43750	1.40625	Yes	
第6次	1.40625	1.43750	1.4 2188	No	
第7次	1.40625	1.42188	1.41406	Yes	
第8次	1.41406	1.42188	1.41797	No	
第9次	1.41406	1.41797	1.41602	No	

雖然進行了 9 次操作,但 $\sqrt{2} = 1.41421$... 的小數點後 6 位仍未能一致。

因此,製作如下程式,來檢查需要多少次操作才能達到小數點後6位一致吧。(Python、Java、C的程式請參閱chap4-3.md)

輸出如下所示,可知在 第15次 操作時,終於達到小數點後 6 位一致。由於牛頓法只需 3次操作,與之相比較慢。

```
Step #1: m = 1.500000000000
Step #2: m = 1.250000000000
Step #3: m = 1.375000000000
Step #4: m = 1.437500000000
Step #5: m = 1.406250000000
Step #6: m = 1.421875000000
Step #7: m = 1.414062500000
Step #8: m = 1.417968750000
Step #9: m = 1.416015625000
Step #10: m = 1.415039062500
Step #11: m = 1.414550781250
Step #12: m = 1.414306640625
Step #13: m = 1.414184570312
Step #14: m = 1.414245605469
Step #15: m = 1.414215087891
Step #16: m = 1.414199829102
Step #17: m = 1.414207458496
Step #18: m = 1.414211273193
Step #19: m = 1.414213180542
Step #20: m = 1.414214134216
```

這樣的二元搜尋法,藉由 1 次操作將精準度變成 2 倍,因此要將精準度提高 P 倍,大約需要 $\log_2 P$ 次操作。本次操作中 $P=10^5$,因此操作次數為 $\log_2 P = 16$ 次,與實際次數幾乎一致。

問題 4.3.4

根據指數法則(\rightarrow **2.3.9項**) $10^{0.3} = 1000^{0.1} = \sqrt[10]{1000}$ 。因此,可以考慮例如以下的方法。。

注意,如 x^5 的乘方(整數次方),即使不使用 pow 函數,也可以只用四則運算如 x * x * x * x 來計算。

方法1

令 $f(x) = x^{10}, r = 2$, 適用一般化的牛頓法(\rightarrow **4.3.6項**) 。在此, $f'(x) = 10x^9$ 。

方法2

透過二元搜尋法(\rightarrow **節末問題4.3.3**)求出使 $x^{10}=1000$ 的 x 值。顯然 1< x<2,因此可以設初始值為 l=1, r=2。

還有許多其他方法, 請務必思考看看。