椭圆曲线公钥密码体制(ECC)

清华大学计算机系 于红波 2023年5月17日

关于椭圆曲线

- ▶椭圆曲线问题的研究有150多年的历史
- ▶1985年

Washington 大学的Neal Koblitz IBM 的Victor Miller 把椭圆曲线应用于密码领域

▶目前,椭圆曲线和RSA算法是使用最广泛的 公钥加密算法

实数域上的椭圆曲线

- □椭圆曲线并非椭圆,之所以称为椭圆曲线 是因为它的曲线方程与计算椭圆周长的方 程类似。一般来讲,椭圆曲线的曲线方程 是以下形式的三次方程:
- $\Box y^2 + axy + by = x^3 + cx^2 + dx + e$
- □其中a, b, c, d, e是满足某些简单条件的 实数。

椭圆曲线的加法

▶依据:

如果在椭圆曲线上有三个点存在于一条直线 上,则它们的和为无穷远点。

▶其中无穷远点记为○

求点P的二倍的特例

有限域上的椭圆曲线

定义:

对于曲线

 $y^2 = x^3 + ax + b \pmod{p}$, a, b为小于p的整数,当 $4a^3 + 27b^2 \pmod{p}$ 不为零时构成有限域 F_p 上的椭圆曲线群。记为 $E_p(a,b)$

有限域中椭圆曲线的运算

假设 E 是一个非奇异椭圆曲线。我们在 E 上定义一个二元运算,使其成为一个阿贝尔群。这个二元运算通常用加法表示。无穷远点 O 是单位元。

因此有 P+O = O+P = P, 对于所有 $P \in E$ 。 假设 $P,Q \in E$, 其中 $P = (x_P,y_P),Q = (x_O,y_O)$ 。

分三种情形讨论:

- 1) $x_P \neq x_Q$
- 2) $x_P = x_O$, $\exists y_P = y_O$
- 3) $x_P = x_O$, $\coprod y_P = -y_O$

有限域上的两个点的加法

1) 若 $P = (x_P, y_P), Q = (x_O, y_O).$

若 P和Q是不同的点且Q不是-F

$$P + Q = -R$$
 按如下方法计算:
 $\lambda = (y_P - y_Q) / (x_P - x_Q) \mod p$
 $x_R = \lambda^2 - x_P - x_Q \mod p$
 $y_R = -y_P + \lambda(x_P - x_R) \mod p$

例题

仍以E₂₃(1,1)为例,设P=(3,10),Q=(9,7),求P+Q

$$\lambda = \frac{7-10}{9-3} = \frac{-3}{6} = \frac{-1}{2} \equiv 11 \mod 23$$

$$x_3 = 11^2 - 3 - 9 = 109 \equiv 17 \mod 23$$

$$y_3 = 11(3-17) - 10 = -164 \equiv 20 \mod 23$$

所以P+Q=(17, 20), 仍为E₂₃(1, 1)中的点。

求点P的2倍

2) 若 $P = (x_P, y_P)$

若 y_p 不为 0

2P = -R 按如下方法计 \mathfrak{g} :

$$\lambda = (3x_p^2 + a) / (2y_p)$$

mod p

$$x_R = \lambda^2 - 2x_p \mod p$$

$$y_R = -y_p + \lambda(x_p - x_R)$$

$$mod p$$

例题

仍以E₂₃(1,1)为例,设P=(3,10),求2P

$$\lambda = \frac{3 \cdot 3^2 + 1}{2 \times 10} = \frac{5}{20} = \frac{1}{4} \equiv 6 \mod 23$$

$$x_3 = 6^2 - 3 - 3 = 30 \equiv 7 \mod 23$$

$$y_3 = 6(3-7)-10 = -34 \equiv 12 \mod 23$$

所以2P=(7,12)。

3)
$$x_P = x_Q$$
, $\exists y_P = -y_Q$

当 $x_P = x_Q, y_P = -y_Q$ 时定义

$$(x,y)+(x,-y)=0,$$

$$(x,y) \in E$$

有限域Fn上的椭圆曲线群

加法运算的下列性质应该是明确的:

- 1. 加法在集合 E 上是封闭的。
- 2. 加法是可交换的。
- 3. 0 是加法的单位元。
- 4. E 上每一点有关于加法的逆元。
- 5. 要证明 (E,+) 是阿贝尔群, 还须证明加法满 足结合律。(此部分略)

有限域上的椭圆曲线的点的构造

- 1. 对于每一个x (0<=x<p), 计算 $z=x^3 + ax + b \pmod{p}$;
- 2. 若z不是模p的平方根, 则没有具有x值的 $E_p(a,b)$ 点; 若z是模p的平方根, 则存在满足条件的两个点。

模素数的椭圆曲线

设 $E \neq \mathbb{Z}_{11}$ 上的椭圆曲线 $y^2 = x^3 + x + 6$ 。我们首先确定 E 的点。这可 以通过对每个 $x \in \mathbb{Z}_{11}$, 计算 $x^3 + x + 6 \mod 11$, 试着解方程 (5) 求 y。

对于给定的x, 可以利用 Euler 判别法来测试是否 $z=x^3+x+6 \mod 11$ 是一个二次剩余。我们知道,对素数 $p \equiv 3 \pmod{4}$,有个现成的公式 计算模 p 的剩余。利用这个公式,二次剩余 z 的平方根是:

$$\pm z^{\frac{11+1}{4}} \mod 11 = \pm z^3 \mod 11$$

椭圆曲线E₁₁(1,6) 的点的构造

即 $y^2 = x^3 + x + 6$ 在有限域 F_{11} 上的点的构造

	3	ローソールも人	
x	$x^3 + x + 6 \mod 11$	是否为二次剩余	У
0	6	否	
1	8	否	
2	5	是	4, 7
3	3	是	5, 6
4	8	否	
5	4	是	2, 9
6	8	否是	
7	4	是	2, 9
8	9	是	3, 8
9	7	否	
10	4	是	2, 9

椭圆曲线E23(1,0)的点的构造

即 $y^2 = x^3 + x$ 在有限域 F_{23} 上的点的构造

椭圆曲线E23(1,0) 的点的构造

满足条件的23个点是:

(0,0)	(1,5)	(1,18)	(9,5)	(9,18)
(11,10)	(11,13)	(13,5)	(13,18)	(15,3)
(15,20)	(16,8)	(16,15)	(17,10)	(17,13)
(18,10)	(18,13)	(19,1)	(19,22)	(20,4)
(20,19)	(21,6)	(21,17)		

Elliptic curve equation: $y^2 = x^3 + x$ over F_{23}

椭圆曲线的离散对数问题

给定椭圆曲线上的点 P 和点 Q, 寻找数 k 使得 kP = Q, 其中k称为Q基于P的离散对数。

▶例如:

对于椭圆曲线:

$$y^2 = x^3 + 9x + 17$$
 over F_{23} , 求点 $Q = (4,5)$ 基于点 $P = (16,5)$ 的离散对数 k

椭圆曲线的离散对数问题的遍 历求法

计算kP, 直到的到Q为止

P = (16,5) 2P = (20,20)

 $3P = (14,14) \ 4P = (19,20)$

5P = (13,10) 6P = (7,3)

7P = (8,7) 8P = (12,17)

9P = (4,5)

离散对数为k = 9.

群 Z_n* 和E(F_n) 的比较

群	Z_{p}^{*}	$E(F_p)$
群元素	整数 {1, 2,, <i>p</i> -1}	坐标属于F _p 的椭圆曲线上的点的集合加上O
群上的运算	模 p乘法	点的加法
表示	元素: g, h 乘法 : g*h 逆: g* ¹ 除法: g/h 幂: g ⁸	元素: P, Q 加法: P+Q 逆: -P 碱法: P-Q 乘: aP
离散对数问题	已知 $g \in Z_p^*$ 和 $h = g^a \mod p$, 求 a	已知 P ∈ E(Z _p) 和 Q = aP, 求 a

椭圆曲线上的Diffie-Hellman密钥交换

步骤:

- 1. Alice和Bob共享一个椭圆曲线E_q(a,b), 以及一个基点G, E_q(a,b)的阶是n.
- 2. Alice秘密随机选取正整数 $n_A < n$, 计算 $P_A = n_A \square G$ 同时Bob选择随机数 $n_B < n$, 计算 $P_B = n_B \square G$
- 3. Alice发送P_A给Bob, 且Bob发送P_B给Alice (Eve也知道P_A和P_B)。
- 4. Alice计算 $K_A = n_A \square P_B$, Bob计算 $K_b = n_B \square P_A$; 则 $K_A = n_A \square P_B = n_A \square (n_B \square G) = n_B \square (n_A \square G) = n_B \square P_A = K_B$

ECEIGamal加密体制

主要参数:

- 1. 选取有限域 F_p 、椭圆曲线 E_p 及基点P ∈ E(p) (这些参数可由一组用户公用).
- 2. 选取随机数a, 计算Q=aP.
- 3. O作为公钥, a作为私钥

ECEIGamal加密体制的加/解 密过程

▶ 加密:

Bob发送秘密消息m给Alice::

- 1. 将消息m转化为椭圆曲线上的点M;
- 2. 随机选取正整数k.
- 3. 计算kP, kQ=(x, y), 若x=0或y=0返回第2步, 直到 $x\neq 0, y\neq 0$.

发送C=(kP,M+kQ)给Alice.

▶ 解密:

收到密文 C后.

Alice计算a(kP)=kQ,得到M,进而的到明文m

举例

取p=751, $E_p(-1,188)$,

即椭圆曲线为y²=x³-x+188,

 $E_n(-1,188)$ 的一个生成元是G=(0,376),

A的公开钥为P_A=(201,5)。

假定B已将欲发往A的消息嵌入到椭圆曲线上的 $\triangle P_m = (562,201)$,

B选取随机数k=386,由 kG=386(0,376)=(676,558),P_m+kP_A=(562, 201)+386(201,5)=(385,328),

得密文为{(676,558),(385,328)}。

练习

已知ECElGamal加密算法中

的椭圆曲线为T: (q=11, a=1, b=6, G=(2, 7)) B的私钥为n_R=7

- 1. 确定B的公钥
- 2. A要加密消息P_m=(10,9), 并且选择了随机数 K=3,

确定A发送给B的密文

SM2加密算法

- □SM2 椭圆曲线公钥密码算法(简称 SM2)于 2010 年由国家密码管理局发布, 2012 年成为密码行业标 准, 2016 年转化为国家标准
- □SM2 算法的国家标准包括总则、数字签名算法、密 钥交换协议、公钥加密算法、参数定义共 5 个部分
- □其中 SM2 数字签名算法于 2017 年被 ISO 采纳成为 国际标准

SM2加密算法

• 系统参数: (p,a,b,G,n) 定义了椭圆曲线

$$E(\mathbb{F}_p) \triangleq \{(x,y) \in \mathbb{F}_p : y^2 = x^3 + ax + b\}$$

及一个n 阶元 $G \in E(\mathbb{F}_p)$ 。其中,p,n 均为大素数,KDF 和 H 为公开的密钥派生算法和哈希算法(均可由 SM3 加适当填充和编码规则来实例化),细节略(可参考标准文档)。

• 公私钥: 私钥 $d \stackrel{\$}{\leftarrow} [1, n-2]$, 公钥 $P \leftarrow dG$

• 加密算法: 对消息 m 的加密为密文 $C = (C_1, C_2, C_3)$, 计算如下:

• $k \stackrel{\$}{\leftarrow} [1, n-1], C_1 \leftarrow kG \triangleq (x_1, y_1), T \leftarrow kP \triangleq (x_2, y_2)$

• $e = \text{KDF}(x_2 || y_2, |m|), C_2 \leftarrow m \oplus e, C_3 \leftarrow H(x_2 || m || y_2)$

• 解密算法: 请同学们思考

34

 Elliptic curve logarithm using Pollard's rho algorithm

Key size: p	MIPS-year
150	3.8×10 ¹⁰
205	7.1×10 ¹⁸
234	1.6×10 ²⁸

 Integer factorization using generalized number field sieve

Key size: n	MIPS-year
512	3×10 ⁴
768	2×108
1024	3×10 ¹¹
1280	1×10 ¹⁴
1536	3×10 ¹⁶
2048	3×10 ²⁰

表1. RSA和ECC安全模长的比较

攻破时间	RSA/DSA	ECC密钥长度	RSA/ECC
MIPS年	密钥长度	ECCETHINE	密钥长度比
10 ⁴	512	106	5:1
10 ⁸	768	132	6:1
10 ¹¹	1024	160	7:1
10 ²⁰	2048	210	10:1
10 ⁷⁸	21000	600	35:1

谢谢!

公钥密码系统中ECC与RSA的 对比

- ► RSA 算法的特点之一是数学原理简单、在工程应用中比较易于实现,但它的单位安全强度相对较低。
- ▶一般数域筛(*NFS*)方法去破译和攻击*RSA*算法, 它的破译或求解难度是亚指数级的。
- ➤ ECC 算法的数学理论非常深奥和复杂,在工程应用中比较难于实现,但它的单位安全强度相对较高。
- ▶ *Pollard rho*方法去破译和攻击*ECC*算法,它的破译或求解难度基本上是指数级的。

表2. RSA和ECC速度比较

功能	Security Builder 1.2	BSAFE 3.0	
-508E	163位ECC (ms)	1,024位RSA (ms)	
密钥对生成	3.8	4,708.3	
签名	2.1 (ECNRA)	228.4	
☆☆	3.0 (ECDSA)	220.4	
认证	9.9 (ECNRA)	12.7	
νш	10.7 (ECDSA)		
DiffieHellman 密钥交换	7.3	1,654.0	