CLAIMS

What is claimed is:

5

15

1. A method, a sensor array that employs a parameter to induce a time-varying phase angle ϕ on an optical signal that comprises a phase generated carrier with a demodulation phase offset β , the method comprising the steps of:

filtering an output signal from the sensor array to create a filtered signal; and calculating the phase angle ϕ independently of the demodulation phase offset β through employment of the filtered signal.

2. The method of claim 1, further comprising the step of:

sampling an output signal from the sensor array to obtain a plurality of samples S_n , wherein n=0 to x;

wherein the step of calculating the phase angle φ independently of the demodulation phase offset β through employment of the filtered signal comprises the step of:

calculating the phase angle ϕ independently of the demodulation phase offset β through employment of one or more of the plurality of samples S_n .

3. The method of claim 1, wherein the step of calculating the phase angle ϕ independently of the demodulation phase offset β through employment of the one or more of the plurality of samples S_n comprises the steps of:

calculating one or more quadrature terms and one or more in-phase terms through employment of one or more of the plurality of samples S_n , wherein one or more of the one or more quadrature terms and one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β ; and

5

15

20

calculating the phase angle ϕ through employment of the one or more quadrature terms and the one or more in-phase terms.

10 4. The method of claim 2, wherein the output signal comprises a period T_{pulse} , wherein the step of sampling the output signal from the sensor array to obtain the plurality of samples S_n , wherein n=0 to x comprises the step of:

sampling the output signal from the sensor array to obtain a plurality of samples S_n within a period T_s , wherein n=0 to x, wherein T_s is less than or equal to T_{pulse} .

5. The method of claim 4, wherein the step of calculating the phase angle ϕ independently of the demodulation phase offset β through employment of the one or more of the plurality of samples S_n comprises the steps of:

calculating one or more quadrature terms and one or more in-phase terms through employment of one or more of the plurality of samples S_n , wherein one or more of the one or more quadrature terms and one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β ;

calculating the phase angle $\boldsymbol{\phi}$ through employment of the one or more quadrature terms and the one or more in-phase terms.

6. The method of claim 5, wherein the step of calculating the one or more quadrature terms and the one or more in-phase terms through employment of the one or more of the plurality of samples S_n , wherein the one or more of the one or more quadrature terms and the one or more of the one or more in-phase terms are substantially independent of the demodulation phase offset β comprises the steps of:

calculating a set of quadrature terms Q_j and a set of in-phase terms I_k through employment of one or more of the plurality of samples S_n , wherein j=0 to y, wherein k=0 to z;

calculating a quadrature term $Q_s = \sqrt{\sum_{j=0}^{j=y} Q_j^2}$, wherein Q_s is substantially

independent of the demodulation phase offset β ;

5

15

calculating an in-phase term $I_s = C_1 \times \sqrt{\sum_{k=0}^{k=z} I_k^2}$, wherein I_s is substantially independent of the demodulation phase offset β ; and

calculating the constant C_1 such that a maximum magnitude of the quadrature term Q_s and a maximum magnitude of the in-phase term I_s comprise a substantially same magnitude for a modulation depth M of an operating range for the phase generated carrier.

7. The method of claim 6, wherein x=7, y=3, z=1, wherein the step of calculating the set of quadrature terms Q_j and the set of in-phase terms I_k through employment of the one or more of the plurality of samples S_n , wherein j=0 to y, wherein k=0 to z comprises the steps of:

calculating $Q_0 = S_0 - S_4$; calculating $Q_1 = S_1 - S_5$; calculating $Q_2 = S_2 - S_6$; calculating $Q_3 = S_3 - S_7$; calculating $I_0 = (S_0 + S_4) - (S_2 + S_6)$; and calculating $I_1 = (S_1 + S_5) - (S_3 + S_7)$. 8. The method of claim 6, wherein x = 15, y = 7, z = 3, wherein the step of calculating the set of quadrature terms Q_j and the set of in-phase terms I_k through employment of the one or more of the plurality of samples S_n , wherein j = 0 to j = 0

```
 \begin{array}{ll} 5 & \text{calculating } Q_0 = S_0 - S_8; \\ & \text{calculating } Q_1 = S_1 - S_9; \\ & \text{calculating } Q_2 = S_2 - S_{10}; \\ & \text{calculating } Q_3 = S_3 - S_{11}; \\ & \text{calculating } Q_4 = S_4 - S_{12}; \\ & \text{10} & \text{calculating } Q_5 = S_5 - S_{13}; \\ & \text{calculating } Q_6 = S_6 - S_{14}; \\ & \text{calculating } Q_7 = S_7 - S_{15}; \\ & \text{calculating } I_0 = \left( \left. S_0 + S_8 \right. \right) - \left( \left. S_4 + S_{12} \right. \right); \\ & \text{calculating } I_1 = \left( \left. S_1 + S_9 \right. \right) - \left( \left. S_5 + S_{13} \right. \right); \\ & \text{calculating } I_0 = \left( \left. S_2 + S_{10} \right. \right) - \left( \left. S_6 + S_{14} \right. \right); \text{ and } \\ & \text{calculating } I_1 = \left( \left. S_3 + S_{11} \right. \right) - \left( \left. S_7 + S_{15} \right. \right). \\ \end{array}
```

9. The method of claim 6, wherein the step of calculating the phase angle φ through employment of the one or more quadrature terms and the one or more in-phase terms comprises the steps of:

calculating a quadrature term Q from a magnitude of the quadrature term Q_s and one or more quadrature terms of the set of quadrature terms Q_i ;

calculating an in-phase term I from a magnitude of the in-phase term I_s and one or more in-phase terms of the set of in-phase terms I_k ; and

calculating the phase angle $\boldsymbol{\phi}$ of the output signal from an arctangent of a quantity Q /

I.

5

- 10. An apparatus, a sensor array that employs a parameter to induce a time-varying phase angle φ on an optical signal that comprises a phase generated carrier with a demodulation phase offset β , the apparatus comprising:
- a filter component that filters an output signal from the sensor array to create a filtered signal; and
 - a processor component that employs the filtered signal to calculate the phase angle ϕ independent from the demodulation phase offset β .
 - 11. The apparatus of claim 10, wherein the processor component obtains a plurality of samples S_n of the filtered signal, wherein n = 0 to x;
 - wherein the processor component employs one or more of the plurality of samples S_n to calculate the phase angle ϕ independent from the demodulation phase offset β .

10

15

12. The apparatus of claim 11, wherein the processor component employs one or more of the plurality of samples S_n of the output signal to calculate one or more quadrature terms and one or more in-phase terms, wherein one or more of the one or more quadrature terms and one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β of the phase generated carrier;

wherein the processor component employs the one or more quadrature terms and the one or more in-phase terms to calculate the phase angle ϕ .

The apparatus of claim 11, wherein the output signal comprises a period T_{pulse},
 wherein the processor component obtains the plurality of samples S_n within a period T_s,
 wherein T_s is less than or equal to T_{pulse}.

14. The apparatus of claim 13, wherein the processor component employs one or more of the plurality of samples S_n of the output signal to calculate one or more quadrature terms and one or more in-phase terms, wherein one or more of the one or more quadrature terms and one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β of the phase generated carrier;

wherein the processor component employs the one or more quadrature terms and the one or more in-phase terms to calculate the phase angle φ .

5

10

15

15. The apparatus of claim 14, wherein the one or more of the one or more quadrature terms comprise a quadrature term Q_s , wherein the one or more of the one or more in-phase terms comprise an in-phase term I_s ;

wherein the processor component employs one or more of the plurality of samples S_n , the quadrature term Q_s , and the in-phase term I_s to calculate the phase angle ϕ .

16. The apparatus of claim 15, wherein the processor component employs the plurality of samples S_n to calculate a set of quadrature terms Q_j and a set of in-phase terms I_k , wherein j=0 to y, wherein k=0 to z;

wherein the processor component employs the set of quadrature terms Q_j and the set of in-phase terms I_k to calculate the quadrature term Q_s , and the in-phase term I_s .

17. The apparatus of claim 16, wherein the processor component calculates a constant C_1 , wherein the processor component calculates:

$$Q_s = \sqrt{\sum_{j=0}^{j=y} Q_j^2}$$
;

wherein the processor component calculates:

5
$$I_s = C_1 \times \sqrt{\sum_{k=0}^{k=z} I_k^2}$$
;

wherein the processor component calculates the constant C_1 such that a magnitude of the quadrature term Q_s and a magnitude of the in-phase term I_s comprise a substantially same magnitude at a modulation depth M of an operating range for the phase generated carrier.

18. The apparatus of claim 17, wherein the processor component employs the quadrature term Q_s and the set of quadrature terms Q_j to calculate a quadrature term Q_s wherein the processor component employs the in-phase term I_s and the set of in-phase terms I_k to calculate an in-phase term I_s

wherein the processor component calculates:

$$Q = \pm Q_s$$
;

wherein the processor component calculates:

$$I = \pm I_s$$
;

wherein the processor component employs the set of quadrature terms Q_j to determine a sign of Q;

wherein the processor component employs the set of in-phase terms I_k to determine a 20 sign of I;

wherein the processor component calculates:

$$\varphi = \operatorname{arctangent} (Q/I).$$

19. The apparatus of claim 18, wherein x = 7, y = 3, and z = 1; wherein the processor component calculates:

$$Q_0 = S_0 - S_4$$
, $Q_1 = S_1 - S_5$, $Q_2 = S_2 - S_6$, and $Q_3 = S_3 - S_7$;

wherein the processor component calculates:

5
$$I_0 = (S_0 + S_4) - (S_2 + S_6)$$
; and $I_1 = (S_1 + S_5) - (S_3 + S_7)$.

20. The apparatus of claim 18, wherein x = 15, y = 7, and z = 3; wherein the processor component calculates:

$$Q_0 = S_0 - S_8$$
, $Q_1 = S_1 - S_9$, $Q_2 = S_2 - S_{10}$, $Q_3 = S_3 - S_{11}$,

10
$$Q_4 = S_4 - S_{12}$$
, $Q_5 = S_5 - S_{13}$, $Q_6 = S_6 - S_{14}$, and $Q_7 = S_7 - S_{15}$;

wherein the processor component calculates:

$$I_0 = (S_0 + S_8) - (S_4 + S_{12}), I_1 = (S_1 + S_9) - (S_5 + S_{13}),$$

 $I_2 = (S_2 + S_{10}) - (S_6 + S_{14}), \text{ and } I_3 = (S_3 + S_{11}) - (S_7 + S_{15}).$

- 21. The apparatus of claim 10, wherein the period T_{pgc} of the phase generated carrier comprises a frequency f_{pgc} equal to 1 / T_{pgc}, wherein the frequency f_{pgc} is approximately between 2 MHz and 20 MHz, wherein the phase generated carrier comprises a modulation depth M approximately between 1.0 radians and 1.7 radians, wherein the filter component comprises a 3dB roll-off frequency approximately between 10 MHz and 60 MHz.
- 22. The apparatus of claim 21, wherein the filter component comprises a fourth 20 order Bessel low-pass filter.
 - 23. The apparatus of claim 21, wherein the filter component comprises a fourth order real pole filter.

24. An article, a sensor array that employs a parameter to induce a time-varying phase angle φ on an optical signal that comprises a phase generated carrier with a demodulation phase offset β , the article comprising:

one or more computer-readable signal-bearing media;

5

means in the one or more media for filtering an output signal from the sensor array to create a filtered signal; and

means in the one or more media for calculating the phase angle ϕ independently of the demodulation phase offset β through employment of the filtered signal.

25. The article of claim 24, further comprising:

means in the one or more media for sampling the filtered signal to obtain a plurality of samples S_n , wherein n = 0 to x;

wherein the means in the one or more media for calculating the phase angle ϕ independently of the demodulation phase offset β through employment of the filtered signal comprises:

means in the one or more media for calculating the phase angle ϕ independently of the demodulation phase offset β through employment of one or more of the plurality of samples S_n .

26. The article of claim 25, wherein the means in the one or more media for calculating the phase angle ϕ independently of the demodulation phase offset β through employment of the one or more of the plurality of samples S_n comprises:

means in the one or more media for calculating one or more quadrature terms and one or more in-phase terms through employment of one or more of the plurality of samples S_n , wherein one or more of the one or more quadrature terms and one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β ; and

5

15

means in the one or more media for calculating the phase angle ϕ through employment of the one or more quadrature terms and the one or more in-phase terms.

10 27. The article of claim 26, wherein the output signal comprises a period T_{pulse} , wherein the means in the one or more media for sampling the output signal from the sensor array to obtain the plurality of samples S_n , wherein n=0 to x comprises:

means in the one or more media for sampling the output signal from the sensor array to obtain the plurality of samples S_n within a period T_s , wherein n=0 to x, wherein T_s is less than or equal to T_{pulse} .

28. The article of claim 27, wherein the means in the one or more media for calculating the phase angle ϕ independently of the demodulation phase offset β through employment of the one or more of the plurality of samples S_n comprises:

means in the one or more media for calculating one or more quadrature terms and one or more in-phase terms through employment of one or more of the plurality of samples S_n , wherein one or more of the one or more quadrature terms and one or more of the one or more in-phase terms are substantially independent from the demodulation phase offset β ; and

means in the one or more media for calculating the phase angle ϕ through employment of the one or more quadrature terms and the one or more in-phase terms.

10

5

* * * * *