历南交通大學

《机器学习》 课程设计期末报告

报告题目:	经典数据集上的 KNN、决策树与朴素贝叶斯权重
学院名称:	计算机与人工智能学院
年 级:	2022 级
授课教师:	胡 节
学 生:	陈 垠作

二〇二四年十一月

一、引言

本篇报告主要研究三种经典的分类算法——K 近邻(KNN)、决策树(Decision Tree)和朴素贝叶斯(Naive Bayes),并在多个公开数据集上进行对比实验,旨在深入理解算法原理、性能差异及适用场景,为实际应用提供理论和实践参考。其中公开数据集包含 Iris,Wine, Breast Cancer, Digits 数据集。

二、相关工作

近年来,分类算法得到了深入研究和广泛应用。KNN 算法因其简单直观,在推荐系统和图像识别中表现出色[1]。决策树因其强大的解释性和良好的分类效果,广泛应用于金融风控和医学诊断领域[2]。朴素贝叶斯基于贝叶斯定理,适合文本分类和大规模数据处理[3]。本文综合比较三者性能,补充模型权重可视化及特征重要性分析。

三、算法原理

(一) K 近邻(KNN)

KNN 是一种基于实例的学习方法。分类时,计算待分类样本与训练集中所有样本的距离,选择距离最近的 K 个邻居,通过多数表决确定类别。其核心公式为欧氏距离:

$$d(x,x_i) = \sqrt{\sum_{j=1}^n (x_j-x_{ij})^2}$$

优点是无训练过程,简单易用;缺点是计算量大,易受噪声影响。

(二) 决策树(Decision Tree)

决策树使用树形结构将样本划分为不同类别。通过信息增益或基尼指数选择最优特征进行节点分裂。信息增益定义为:

$$IG(D,A) = rac{Ent(D) - \displaystyle\sum_{v \in Values(A)} rac{|D_v|}{|D|} Ent(D_v)}{|D|}$$

其中, Ent(D)Ent(D)Ent(D)是数据集 D的信息熵。决策树可解释性强,但易过拟合。

(三) 朴素贝叶斯(Naive Bayes)

朴素贝叶斯基于贝叶斯定理,假设特征条件独立,计算后验概率:

$$P(C_k|x) = rac{P(C_k)\prod_{i=1}^n P(x_i|C_k)}{P(x)}$$

选取后验概率最大的类别。算法高效,适合高维数据,但独立假设限制其性能。

四、数据集与预处理

数据集	特征数	类别数	样本数
Iris	4	3	150
Wine	13	3	178
Breast Cancer	30	2	569
Digits	64	10	1797

数据集来源于 `scikit-learn`, 划分比例为训练集 70%、测试集 30%。

五、实验设计

(一) 实验环境

系统: Windows 10 64 位

编程语言: Python 3.12

开发工具: PyCharm

依赖库: numpy、pandas、scikit-learn、matplotlib、pickle

(二) 数据预处理

缺失值填充 (Titanic 使用众数填充)

类别变量编码 (独热编码)

特征归一化 (Min-Max 归一化,确保 KNN 距离计算有效)

(三) 实现流程

- 1. 载入训练与测试数据
- 2. 数据预处理
- 3. 训练 KNN、决策树、朴素贝叶斯模型
- 4. 保存模型权重(pickle 格式)
- 5. 载入模型权重进行预测
- 6. 计算准确率与性能指标
- 7. 结果汇总与分析

六、实验结果与分析

数据集	KNN 准确率	决策树准确率	朴素贝叶斯准确率
Iris	0. 956	0. 911	0. 911
Wine	0. 648	0. 907	1.000
Breast Cancer	0. 918	0. 953	0. 936
Digits	0. 987	0. 822	0. 787

(一) 结果分析

1. Iris 数据集

KNN 算法表现最佳,准确率达 95.6%,决策树和朴素贝叶斯相同,均为 91.1%,说明简单距离度量方法对该数据集效果显著。

2. Wine 数据集

朴素贝叶斯达到 100%准确率,表现最好,说明其条件独立假设在此数据上符合较好; KNN 表现较差(64.8%),可能受数据高维影响。

3. Breast Cancer 数据集

决策树最高(95.3%), KNN 和朴素贝叶斯表现接近,表明决策树在医疗诊断类数据中具有较强分类能力。

4. Digits 数据集

KNN 准确率最高(98.7%),显示出 KNN 在图像数字识别中优秀的性能;决策树和朴素 贝叶斯准确率相对较低,可能因样本特征复杂和分布差异大。

(二) 权重获取

对于权重的获取,本代码保存在 pkl 中,但是介于 pkl 格式观察麻烦,为了方便查看写了 Read_pkl.py 来方便查看,且直接贴入报告

===== breast_cancer 数据集模型权重信息 ======

KNN 模型对象: <models.knn.KNNClassifier object at 0x0000029E0B9D9A00>

X_train 形状: (398, 30) y train 形状: (398,)

决策树模型对象: <models.decision tree.DecisionTreeClassifier object at 0x0000029E0B9D9FA0>

朴素贝叶斯模型对象: <models.naive_bayes.NaiveBayesClassifier object at 0x0000029E0DDE77A0> 类别: [0 1]

均值 (mean):

类别 0: [1.74477703e+01 2.16473649e+01 1.15229459e+02 9.73026351e+02

1.02433041e-01 1.45420676e-01 1.61745203e-01 8.74699324e-02

1.92947297e-01 6.26747973e-02 5.71679054e-01 1.15816149e+00

4.07153378e+00 6.68486486e+01 6.52691216e-03 3.22892365e-02

4.24848649e-02 1.48563311e-02 2.05538986e-02 3.97426351e-03

2.11802703e+01 2.94818919e+01 1.41713851e+02 1.42459865e+03

1.45122432e-01 3.88118919e-01 4.73537162e-01 1.85297770e-01

3.30266892e-01 9.26471622e-02]

类别 1: [1.21083240e+01 1.79764800e+01 7.77688800e+01 4.60016800e+02

9.18561600e-02 7.81153200e-02 4.50525028e-02 2.47113760e-02

```
1.73120000e-01 6.27301600e-02 2.85498000e-01 1.22155520e+00
    2.00520440e+00 2.12644120e+01 7.25062000e-03 2.12606760e-02
    2.60873064e-02 9.56348400e-03 2.07572360e-02 3.70663240e-03
    1.33576440e+01 2.36462800e+01 8.68007200e+01 5.57114800e+02
    1.24644000e-01 1.79648200e-01 1.63371588e-01 7.25632040e-02
    2.70838800e-01 7.92458000e-02]
   方差 (var):
   类别 0: [9.56097408e+00 1.64480302e+01 4.44059192e+02 1.16026203e+05
    1.46388686e-04 2.93242068e-03 5.47027202e-03 1.13322764e-03
    8.25088222e-04 5.97221290e-05 6.86552178e-02 2.07596687e-01
    4.10939656e+00 1.70854057e+03 8.19130465e-06 3.64450951e-04
    5.01027711e-04 3.38382273e-05 1.14453569e-04 4.12807379e-06
    1.81534878e+01 3.14568397e+01 8.60041926e+02 3.40704084e+05
    4.46504108e-04 3.15206611e-02 3.61106667e-02 2.23490015e-03
    6.00449619e-03 5.16988193e-04]
   类别 1: [3.07540636e+00 1.74153492e+01 1.34852384e+02 1.73386931e+04
    1.54717940e-04 1.10139203e-03 2.24812077e-03 2.42462223e-04
    6.15295000e-04 4.95901176e-05 1.34847173e-02 3.42400753e-01
    6.07603217e-01 8.54283350e+01 9.57904143e-06 2.94429738e-04
    1.38040630e-03 3.36631920e-05 5.38043641e-05 1.09831411e-05
    3.84861796e+00 3.23097930e+01 1.80943628e+02 2.61551303e+04
    3.96654797e-04 8.25793315e-03 2.08733070e-02 1.23263511e-03
    1.86967217e-03 2.03440453e-04]
   先验概率 (priors):
   类别 0: 0.37185929648241206
   类别 1: 0.628140703517588
   ===== iris 数据集模型权重信息 ======
   KNN 模型对象: <models.knn.KNNClassifier object at 0x0000029E0DDE77A0>
   X train 形状: (105, 4)
   y_train 形状: (105,)
   决策树模型对象: <models.decision_tree.DecisionTreeClassifier object at 0x0000029E0DE338C0>
   特征重要性: {'petal length (cm)<=2.4500': 0.166666666666666666666666, 'petal width (cm)<=1.5500':
朴素贝叶斯模型对象: <models.naive bayes.NaiveBayesClassifier object at 0x0000029E104E3290>
   类别:[012]
```

均值 (mean):

类别 0: [4.98857143 3.42571429 1.48571429 0.24

类别 1: [5.94857143 2.73142857 4.23714286 1.30857143]

类别 2: [6.68285714 3.00857143 5.63142857 2.06857143]

方差 (var):

类别 0: [0.10329796 0.17391021 0.02293878 0.00925714]

类别 1: [0.24078367 0.08558367 0.21147755 0.03564082] 类别 2: [0.42484898 0.1173551 0.32272653 0.06386939]

先验概率 (priors):

类别 0: 0.3333333333333333

类别 1: 0.3333333333333333

类别 2: 0.3333333333333333

===== wine 数据集模型权重信息 ======

KNN 模型对象: <models.knn.KNNClassifier object at 0x0000029E104E3290>

X_train 形状: (124, 13)

y_train 形状: (124,)

决策树模型对象: <models.decision_tree.DecisionTreeClassifier object at 0x0000029E0DE338C0>

特征重要性: {'flavanoids<=1.5750': 0.2, 'hue<=0.8980': 0.2, 'alcohol<=13.1650': 0.2, 'alcohol<=13.0200':

0.2, 'magnesium<=88.0000': 0.2}

朴素贝叶斯模型对象: <models.naive_bayes.NaiveBayesClassifier object at 0x0000029E1058BD40>

类别:[012]

均值 (mean):

类别 0: [1.37304878e+01 1.94707317e+00 2.44975610e+00 1.71024390e+01

1.06634146e+02 2.82853659e+00 2.94024390e+00 3.01707317e-01

1.85121951e+00 5.56780488e+00 1.05097561e+00 3.08853659e+00

1.11280488e+031

类别 1: [1.22424e+01 1.96260e+00 2.23280e+00 2.05240e+01 9.51400e+01 2.25360e+00

2.04680e+00 3.50800e-01 1.71220e+00 2.96080e+00 1.05892e+00 2.80220e+00

5.31260e+02]

类别 2: [1.30745455e+01 3.20090909e+00 2.45424242e+00 2.15606061e+01

9.92727273e+01 1.68757576e+00 7.87575758e-01 4.46363636e-01

1.13878788e+00 7.36272724e+00 6.73030303e-01 1.69060606e+00

6.24393939e+02]

方差 (var):

类别 0: [2.02950983e-01 3.95762166e-01 6.05975025e-02 7.29535991e+00

1.16280785e+02 1.14880786e-01 1.37626771e-01 5.39464704e-03

1.46386319e-01 1.48304152e+00 1.26624638e-02 1.08866152e-01

3.97256692e+04]

类别 1: [2.70046241e-01 1.10783524e+00 7.88841610e-02 1.05854240e+01

3.47600400e+02 2.97211041e-01 3.66681761e-01 1.23193610e-02

3.59241161e-01 7.50035361e-01 3.96851546e-02 2.28521161e-01

2.57562324e+04]

类别 2: [2.61655097e-01 8.79135538e-01 3.18062453e-02 4.78420569e+00

1.02865014e+02 1.47394124e-01 1.02339579e-01 1.45322324e-02

2.12774289e-01 5.87018938e+00 1.39726364e-02 8.49269064e-02

1.35632691e+04]

先验概率 (priors):

类别 0: 0.33064516129032256

类别 1: 0.4032258064516129

类别 2: 0.2661290322580645

七、代码说明与可执行性

代码结构清晰,模块化设计,易于维护 所有依赖库均为主流公开库,安装简单 使用 pickle 保存与加载模型,便于模型复用 详细注释说明每一步,方便理解与二次开发

八、参考文献

- [1] Tom Mitchell, Machine Learning, McGraw Hill, 1997.
- [2] L. Breiman et al., Classification and Regression Trees, Wadsworth, 1984.
- [3] T. Hastie et al., *The Elements of Statistical Learning*, Springer, 2009.
- [4] Pedregosa et al., Scikit-learn: Machine Learning in Python, JMLR, 2011.