

- -Accelerometer
- -Gyroscope
- -Magnetometer

- -Retrieve orientation from IMU data:
- -Fuse different sources:
 - -Acc+gyro: 3D orientation
 - -Acc+gyro+mang: Absolute orientation

ROS package imu_tools implements a set of filters to fuse IMU data and retrieve robot orientation

http://wiki.ros.org/imu_tools

sudo apt-get install ros-kinetic-imu-tools

Than we run the complementary filter node using a launch file and setting the proper parameters

Default configuration subscribe to imu/data_raw and publish on imu/data


```
<!-- ComplementaryFilter configuration -->
<launch>
<node pkg="imu_complementary_filter" type="complementary_filter_node"</pre>
      name="complementary filter gain node" output="screen">
    <param name="do bias estimation" value="true"/>
    <param name="do adaptive gain" value="true"/>
    <param name="use mag" value="false"/>
    <param name="gain acc" value="0.01"/>
    <param name="gain mag" value="0.01"/>
   </node>
</launch>
```


The imu tools package also offers a rviz plugin for imu visualization: open rviz, then go to add->by display type->rviz imu plugin->imu

Now on the left window, under imu-> Topic select the imu topic

In the rviz visualization window you can see the imu axis

ROBOTICS

Collection of state estimation nodes:

-ekf_localization_node and ukf_localization node for imu and odometry sensors fusion

-navsat_transform_node for gps data integration

Unlimited number of sensors

15 dimension state estimation

Collection of state estimation nodes:

-ekf_localization_node and ukf_localization node for imu and odometry sensors fusion

-navsat_transform_node for gps data integration

Unlimited number of sensors

15 dimension state estimation

Requires sensors to be properly mounted on the vehicle:

REP 103 as a reference

Data using ENU

acceleration:

* Measure 9.81 meters per second squared for the Z axis.

* If the sensor is rolled 90 degrees (left side up), the acceleration should be 9.81 meters per second squared for the Y axis.

* If the sensor is pitched 90 degrees (front side down), it should read 9.81 meters per second squared for the X axis.

Requires a properly formed TF tree

State estimation nodes

To add a sensor:

<param name="sensor" value="/topic"/>

The configure it:

Set to true the values you want to use from your sensor

State estimation nodes

frequency: frequency at which the filter will produce data

sensor_timeout: time in s after we consider a sensor to time out

two_d_mode: if we work in 2D, it automatically set to false all third dimension components of sensors initialization

[sensor]_differential: if you only have pose sensors and you want to retrieve velocity

[sensor]_relative: compute pose from initial point (if you want everythin to start at (0,0,0))

imuN_remove_gravitational_acceleration: if you imu does not automatically substract g force

navsat_transform_node

magnetic_declination_radians: correct the magnetometer based on position

yaw_offset: yaw should be O when facing est, otherwise you have to correct it

use_odometry_yaw: if you don't want to use IMU for initial heading

datum: can specify the origin

Basic configuration

Data visualization (mapviz)

ROBOTICS

mapviz

Rviz works fine if you want to visualize robot data, but it does not support gps data visualization

Mapviz is a ros package built especially for gps visualization with great integration with maps

sudo apt-get install ros-kinetic-mapviz*

mapviz

To start mapviz use its launch file, do not simply start using rosrun, instead use:

roslaunch mapviz mapviz.launch

Similarly to rviz you can select the tipe of sources, for GPS data select navsat, than select the topic you want to subscribe

And also superimpose a map, selecting the source on tile_map menu

In the robot localization project folder is also saved a file with the configuration for this project, so you can directly laod it

mapviz

