利用 CEC2014 函数集测试 GA 算法的性能

1. GA

(1) 什么是遗传算法?遗传算法的起源是什么?

遗传算法是一种概率算法,通过模拟自然进化搜索最优解的方法。

遗传算法的起源是模拟某些自然现象的随机搜索算法,模拟和继承达尔文的适者生存理论的计算模型。

(2) 遗传算法是如何工作的?

- 1. 在搜索空间定义一个适应度函数,给定种群规模、交叉概率、变异概率, 迭代次数
 - 2. 初始种群,产生 n 个个体
 - 3. 计算每个个体的适应度
 - 4. 取适应度中最大的个体作为所求结果, 算法结束

(3) 最早提出遗传算法的人物是谁?遗传算法的发展历程如何?

最早可以追溯到 50 年代初,由几个生物学家用计算机来模拟生物系统,后由 John Holland 的工作导致了今天的遗传算法。

(4) 发展历程中,有什么代表性的人物和著作?

John Holland、I. Rechenberg、H. -P. Schwfel、C. Janikow、J. Koza 及 N. Wirth 的《Algorithms+Data Structures = Evolution Programs》

2. 思考遗传算法实数编码与二进制编码的不同之处以及优势?

实数编码优于二进制编码,执行更快更稳定、标准差更低,实数直觉上更靠近问题空间,更容易设计并入与问题有关的其他算子。二进制编码在初始编码时给定编码长度,在计算适应度函数时,一般要对二进制编码进行解码。

3. 实验结果

表 1 CEC2014 测试函数

 类型	ID	函数
	f_1	Rotated high conditioned Elliptic 函数
单峰函数	f_2	Rotated bent Cigar 函数
	f_3	Rotated Discus 函数
	f_4	Shifted and rotated Rosenbrock 函数
	f_5	Shifted and rotated Ackley's 函数
	f_6	Shifted and rotated Weierstrass 函数
	f_7	Shifted and rotated Griewank's 函数
	f_8	Shifted Rastrigin 函数
多峰函数	f_9	Shifted and rotated Rastrigin's 函数
	f_{10}	Shifted Schwefel 函数
	f_{11}	Shifted and rotated Schwefel's 函数
	f_{12}	Shifted and rotated Katsuura 函数
	f_{13}	Shifted and rotated HappyCat 函数
	f_{14}	Shifted and rotated HGBat 函数
	f_{15}	Shifted and rotated Expanded Griewank's
		Plus Rosenbrock's 函数
	f_{16}	Shifted and rotated Expanded Scaffer's 函数
	f_{17}	混合函数 1 $(f_9; f_8; f_1)$
	f_{18}	混合函数 2 $(f_2; f_{12}; f_8)$
混合函数	f_{19}	混合函数 3 $(f_7; f_6; f_4; f_{14})$
	f_{20}	混合函数 $4(f_{12}; f_3; f_{13}; f_8)$
	f_{21}	混合函数 5 $(f_{14}; f_{12}; f_4; f_9; f_1)$
	f_{22}	混合函数 6 $(f_{10}; f_{11}; f_{13}; f_9; f_5)$
	f_{23}	组合函数 $1(f_4; f_1; f_2; f_3; f_1)$
	f_{24}	组合函数 $2(f_{10}; f_9; f_4)$
	f_{25}	组合函数 $3(f_{11}; f_9; f_1)$
组合函数	f_{26}	组合函数 $4(f_{11}; f_{13}; f_1; f_6; f_7)$
	f_{27}	组合函数 $5(f_{14}; f_9; f_{11}; f_6; f_1)$
	f_{28}	组合函数 $6(f_{15}; f_{13}; f_{11}; f_{16}; f_1)$
	f_{29}	组合函数 $7(f_{17}; f_{18}; f_{19})$
	f_{30}	组合函数 $8(f_{20}; f_{21}; f_{22})$

表 2 种群大小在 8 个函数上的实验结果

 优化函数	代数	最佳适应度	平均值	 标准差
	2000	6.21E+10	5.12E+10	9.96E+09
	4000	6.21E+10	5.07E+10	1.05E+10
	6000	6.21E+10	4.85E+10	1.26E+10
	8000	6.21E+10	5.31E+10	1.03E+10
f_1	10000	6.21E+10	5.22E+10	9.86E+09
, <u>-</u>	12000	6.21E+10	4.90E+10	9.58E+09
	14000	6.22E+10	4.82E+10	1.22E+10
	16000	6.22E+10	5.00E+10	1.04E+10
	18000	6.22E+10	4.84E+10	1.08E+10
	20000	6.22E+10	4.96E+10	1.02E+10
	2000	2.14E+10	1.90E+10	2.86E+09
	4000	2.14E+10	2.03E+10	1.58E+09
	6000	2.14E+10	2.02E+10	2.70E+09
	8000	2.14E+10	2.02E+10	2.45E+09
f_3	10000	2.14E+10	1.96E+10	3.18E+09
	12000	2.14E+10	2.03E+10	2.46E+09
	14000	2.14E+10	2.00E+10	3.07E+09
	16000	2.14E+10	1.99E+10	2.33E+09
	18000	2.14E+10	2.02E+10	2.30E+09
	20000	2.14E+10	1.95E+10	3.36E+09
	2000	1.46E+03	1.17E+03	8.66E+01
	4000	1.48E+03	1.24E+03	1.00E+02
	6000	1.48E+03	1.19E+03	6.83E+01
	8000	1.49E+03	1.23E+03	1.02E+02
f_8	10000	1.49E+03	1.21E+03	7.01E+01
	12000	1.49E+03	1.20E+03	8.58E+01
	14000	1.49E+03	1.19E+03	8.77E+01
	16000	1.49E+03	1.22E+03	8.41E+01
	18000	1.49E+03	1.14E+03	7.98E+01
	20000	1.49E+03	1.20E+03	9.52E+01
	2000	1.25E+03	1.22E+03	7.62E+00
	4000	1.25E+03	1.22E+03	8.31E+00
	6000	1.25E+03	1.22E+03	5.88E+00
	8000	1.25E+03	1.22E+03	7.36E+00
f_{12}	10000	1.25E+03	1.22E+03	6.54E+00
	12000	1.25E+03	1.22E+03	7.55E+00
	14000	1.25E+03	1.22E+03	6.87E+00
	16000	1.25E+03	1.22E+03	7.71E+00
	18000	1.25E+03	1.22E+03	8.42E+00
	20000	1.25E+03	1.22E+03	6.81E+00

	2000	3.32E+10	3.01E+10	4.77E+09
	4000	3.32E+10	3.03E+10	4.94E+09
	6000	3.32E+10	3.09E+10	4.04E+09
	8000	3.32E+10	2.93E+10	5.56E+09
	10000	3.32E+10	3.01E+10	5.43E+09
f_{18}	12000	3.32E+10	2.83E+10	5.22E+09
710	14000	3.32E+10	2.86E+10	6.01E+09
	16000	3.32E+10	3.09E+10	4.35E+09
	18000	3.32E+10	2.95E+10	5.44E+09
	20000	3.32E+10	2.94E+10	5.84E+09
	2000	9.17E+10	8.76E+10	8.99E+09
	4000	9.17E+10	8.70E+10	9.93E+09
	6000	9.17E+10	8.23E+10	1.85E+10
	8000	9.17E+10	8.76E+10	1.08E+10
f_{20}	10000	9.18E+10	8.62E+10	1.23E+10
720	12000	9.18E+10	8.83E+10	1.12E+10
	14000	9.18E+10	9.05E+10	4.98E+09
	16000	9.18E+10	8.63E+10	1.17E+10
	18000	9.18E+10	8.97E+10	5.59E+09
	20000	9.18E+10	8.71E+10	1.37E+10
	2000	6.18E+03	4.26E+03	8.17E+02
	4000	6.18E+03	4.55E+03	6.55E+02
	6000	6.19E+03	4.40E+03	7.61E+02
	8000	6.20E+03	4.41E+03	7.43E+02
f_{25}	10000	6.20E+03	4.67E+03	8.44E+02
723	12000	6.20E+03	4.45E+03	6.63E+02
	14000	6.20E+03	4.74E+03	7.75E+02
	16000	6.20E+03	4.79E+03	7.72E+02
	18000	6.21E+03	4.52E+03	8.51E+02
	20000	6.21E+03	4.73E+03	6.88E+02
	2000	3.64E+09	2.69E+09	6.75E+08
	4000	3.65E+09	2.68E+09	6.82E+08
	6000	3.65E+09	2.77E+09	6.65E+08
f_{30}	8000	3.65E+09	2.81E+09	6.62E+08
7 30	10000	3.65E+09	2.66E+09	7.13E+08
	12000	3.65E+09	2.72E+09	6.64E+08
	14000	3.65E+09	2.61E+09	5.63E+08
	16000	3.65E+09	2.59E+09	6.49E+08
	18000	3.65E+09	2.64E+09	6.54E+08
	20000	3.65E+09	2.56E+09	6.28E+08
	_0000		1.11	

注: PXOVER = 0.6, PMUTATION = 0.07, 种群大小以 POPSIZE = 100 为例。

表 3 交叉率在 8 个函数上的实验结果

 优化函数	代数	最佳适应度	平均值	 标准差
	2000	6.20E+10	5.30E+10	9.11E+09
	4000	6.20E+10	5.14E+10	1.18E+10
	6000	6.21E+10	4.93E+10	1.05E+10
	8000	6.21E+10	4.97E+10	1.21E+10
f_1	10000	6.21E+10	5.19E+10	1.01E+10
	12000	6.22E+10	4.81E+10	1.01E+10
	14000	6.22E+10	5.11E+10	8.75E+09
	16000	6.22E+10	4.89E+10	1.21E+10
	18000	6.22E+10	5.15E+10	9.90E+09
	20000	6.22E+10	4.84E+10	1.01E+10
	2000	2.14E+10	2.01E+10	2.27E+09
	4000	2.14E+10	2.00E+10	2.21E+09
	6000	2.14E+10	1.97E+10	2.48E+09
	8000	2.14E+10	1.92E+10	4.68E+09
f_3	10000	2.14E+10	2.03E+10	3.05E+09
	12000	2.14E+10	2.12E+10	4.60E+08
	14000	2.14E+10	2.03E+10	2.00E+09
	16000	2.14E+10	2.08E+10	2.60E+09
	18000	2.14E+10	1.97E+10	2.93E+09
	20000	2.14E+10	1.96E+10	2.72E+09
	2000	1.47E+03	1.22E+03	7.18E+01
	4000	1.48E+03	1.27E+03	7.72E+01
	6000	1.49E+03	1.33E+03	6.71E+01
	8000	1.49E+03	1.25E+03	9.21E+01
f_8	10000	1.49E+03	1.26E+03	5.41E+01
	12000	1.49E+03	1.24E+03	9.05E+01
	14000	1.49E+03	1.26E+03	8.83E+01
	16000	1.49E+03	1.16E+03	1.00E+02
	18000	1.49E+03	1.20E+03	8.69E+01
	20000	1.49E+03	1.28E+03	8.35E+01
	2000	1.25E+03	1.22E+03	7.06E+00
	4000	1.25E+03	1.22E+03	6.97E+00
	6000	1.25E+03	1.22E+03	8.01E+00
	8000	1.25E+03	1.22E+03	8.29E+00
f_{12}	10000	1.25E+03	1.22E+03	6.33E+00
	12000	1.25E+03	1.22E+03	4.91E+00
	14000	1.25E+03	1.22E+03	8.89E+00
	16000	1.25E+03	1.21E+03	9.28E+00
	18000	1.25E+03	1.22E+03	8.40E+00
	20000	1.25E+03	1.22E+03	8.60E+00

	2000	3.32E+10	2.94E+10	5.51E+09
	4000	3.32E+10	2.93E+10	5.48E+09
	6000	3.32E+10	2.96E+10	5.38E+09
	8000	3.32E+10	2.92E+10	4.71E+09
	10000	3.32E+10	3.02E+10	5.14E+09
f_{18}	12000	3.32E+10	3.04E+10	4.72E+09
7 10	14000	3.32E+10	2.93E+10	7.39E+09
	16000	3.32E+10	2.90E+10	5.67E+09
	18000	3.32E+10	2.78E+10	7.69E+09
	20000	3.32E+10	3.17E+10	4.72E+09
	2000	9.15E+10	8.90E+10	7.46E+09
	4000	9.18E+10	8.79E+10	1.13E+10
	6000	9.18E+10	8.43E+10	1.25E+10
	8000	9.18E+10	9.12E+10	5.66E+08
f_{20}	10000	9.18E+10	8.63E+10	1.09E+10
7 = 0	12000	9.18E+10	9.07E+10	5.18E+09
	14000	9.18E+10	8.22E+10	1.78E+10
	16000	9.18E+10	9.12E+10	2.20E+09
	18000	9.18E+10	8.86E+10	8.38E+09
	20000	9.18E+10	7.92E+10	2.18E+10
	2000	6.00E+03	4.86E+03	8.94E+02
	4000	6.04E+03	4.63E+03	6.86E+02
	6000	6.06E+03	4.61E+03	9.18E+02
	8000	6.06E+03	4.67E+03	6.93E+02
f_{25}	10000	6.06E+03	4.48E+03	6.55E+02
	12000	6.07E+03	4.76E+03	7.82E+02
	14000	6.07E+03	4.52E+03	8.30E+02
	16000	6.07E+03	4.86E+03	7.53E+02
	18000	6.07E+03	4.85E+03	6.40E+02
	20000	6.07E+03	4.56E+03	8.31E+02
	2000	3.64E+09	2.94E+09	4.92E+08
	4000	3.64E+09	2.68E+09	8.22E+08
	6000	3.64E+09	3.03E+09	5.50E+08
f_{30}	8000	3.64E+09	2.70E+09	6.24E+08
	10000	3.64E+09	2.52E+09	5.55E+08
	12000	3.64E+09	2.77E+09	6.15E+08
	14000	3.64E+09	2.86E+09	6.44E+08
	16000	3.64E+09	2.97E+09	6.10E+08
	18000	3.64E+09	2.66E+09	6.60E+08
	20000	3.64E+09	2.91E+09	6.29E+08
				.1 1=1

注: POPSIZE = 50, PMUTATION = 0.07, 交叉率以 PXOVER = 0.5 为例。

表 4 变异率在 8 个函数上的实验结果

 优化函数	代数	最佳适应度	平均值	标准差
	2000	6.20E+10	5.16E+10	9.23E+09
	4000	6.21E+10	5.09E+10	1.36E+10
	6000	6.21E+10	4.81E+10	1.23E+10
	8000	6.21E+10	4.91E+10	1.09E+10
f_1	10000	6.21E+10	5.29E+10	1.10E+10
	12000	6.21E+10	5.07E+10	8.47E+09
	14000	6.21E+10	4.70E+10	1.15E+10
	16000	6.22E+10	5.07E+10	1.05E+10
	18000	6.22E+10	5.10E+10	1.10E+10
	20000	6.22E+10	5.15E+10	1.12E+10
	2000	2.14E+10	2.07E+10	2.10E+09
	4000	2.14E+10	2.08E+10	7.38E+08
	6000	2.14E+10	2.05E+10	1.37E+09
	8000	2.14E+10	2.07E+10	1.17E+09
f_3	10000	2.14E+10	2.02E+10	3.21E+09
	12000	2.14E+10	2.06E+10	2.64E+09
	14000	2.14E+10	2.02E+10	2.12E+09
	16000	2.14E+10	2.01E+10	3.83E+09
	18000	2.14E+10	2.06E+10	1.41E+09
	20000	2.14E+10	1.99E+10	3.21E+09
	2000	1.47E+03	1.25E+03	8.83E+01
	4000	1.48E+03	1.31E+03	4.13E+01
	6000	1.48E+03	1.21E+03	8.92E+01
	8000	1.49E+03	1.30E+03	8.62E+01
f_8	10000	1.49E+03	1.26E+03	7.30E+01
	12000	1.49E+03	1.22E+03	7.41E+01
	14000	1.49E+03	1.31E+03	8.71E+01
	16000	1.49E+03	1.25E+03	9.49E+01
	18000	1.49E+03	1.24E+03	8.32E+01
	20000	1.49E+03	1.24E+03	7.41E+01
	2000	1.25E+03	1.22E+03	6.53E+00
	4000	1.25E+03	1.22E+03	8.31E+00
	6000	1.25E+03	1.22E+03	7.80E+00
	8000	1.25E+03	1.21E+03	4.94E+00
f_{12}	10000	1.25E+03	1.22E+03	8.76E+00
	12000	1.25E+03	1.22E+03	8.79E+00
	14000	1.25E+03	1.22E+03	1.07E+01
	16000	1.25E+03	1.23E+03	1.01E+01
	18000	1.25E+03	1.22E+03	8.03E+00
	20000	1.25E+03	1.22E+03	9.40E+00

	2000	3.32E+10	2.92E+10	4.81E+09
	4000	3.32E+10	3.12E+10	4.13E+09
	6000	3.32E+10	3.18E+10	2.49E+09
	8000	3.32E+10	3.17E+10	3.60E+09
	10000	3.32E+10	2.93E+10	5.48E+09
f_{18}	12000	3.32E+10	2.92E+10	6.79E+09
7 10	14000	3.32E+10	3.11E+10	4.75E+09
	16000	3.32E+10	3.13E+10	3.80E+09
	18000	3.32E+10	2.98E+10	2.99E+09
	20000	3.32E+10	3.00E+10	5.07E+09
	2000	9.18E+10	8.69E+10	9.38E+09
	4000	9.18E+10	9.01E+10	4.76E+09
	6000	9.18E+10	8.89E+10	5.70E+09
	8000	9.18E+10	8.76E+10	1.36E+10
f_{20}	10000	9.18E+10	8.75E+10	1.11E+10
720	12000	9.18E+10	8.79E+10	9.17E+09
	14000	9.18E+10	9.07E+10	3.40E+09
	16000	9.18E+10	8.91E+10	1.02E+10
	18000	9.18E+10	8.82E+10	1.30E+10
	20000	9.18E+10	8.82E+10	8.23E+09
	2000	6.13E+03	4.87E+03	6.69E+02
	4000	6.15E+03	4.89E+03	5.79E+02
	6000	6.15E+03	4.76E+03	7.91E+02
	8000	6.15E+03	4.82E+03	1.02E+03
f_{25}	10000	6.16E+03	5.10E+03	7.72E+02
723	12000	6.16E+03	4.69E+03	7.52E+02
	14000	6.16E+03	5.36E+03	5.88E+02
	16000	6.16E+03	4.70E+03	8.27E+02
	18000	6.16E+03	4.28E+03	6.94E+02
	20000	6.16E+03	4.73E+03	7.25E+02
	2000	3.64E+09	2.77E+09	7.22E+08
	4000	3.64E+09	2.92E+09	6.54E+08
	6000	3.64E+09	2.96E+09	6.51E+08
	8000	3.65E+09	2.90E+09	7.70E+08
f_{30}	10000	3.65E+09	2.99E+09	6.55E+08
, 30	12000	3.65E+09	2.85E+09	7.77E+08
	14000	3.65E+09	2.89E+09	5.65E+08
	16000	3.65E+09	3.06E+09	6.36E+08
	18000	3.65E+09	2.84E+09	5.67E+08
	20000	3.65E+09	2.78E+09	5.93E+08
Ì. D∩DSIZE - 50			TATION - 0.05	

注: POPSIZE = 50, PXOVER = 0.6, 变异率以 PMUTATION = 0.05 为例。

图 2 $f_1 - PX$

图 3 $f_1 - PM$

图 5 $f_3 - PX$

图 6 $f_3 - PM$

图 8 $f_8 - PX$

图 9 f₈ - PM

图 10 f₁₂ - P

图 11 $f_{12} - PX$

图 12 $f_{12} - PM$

图 13 $f_{18} - P$

图 14 f₁₈ - PX

图 15 $f_{18} - PM$

图 17 f₂₀ - PX

图 18 $f_{20} - PM$

图 19 f₂₅ - P

图 20 $f_{25} - PX$

图 21 f₂₅ - PM

图 23 $f_{30} - PX$

图 24 $f_{30} - PM$

4. 结果分析:

 $f_1 - P$

POPSIZE=80, Generation=18000、20000 处取得极大值: 6. 22E+10

POPSIZE=20, Generation=2000 处取得极小值: 6.17E+10

 $f_1 - PX$

PXOVER=0.7, Generation=18000、20000 处取得极大值: 6.22E+10

PXOVER=0.4, Generation=2000 处取得极小值: 6.16E+10

 $f_1 - PM$

PMUTATION=0.06, Generation=14000、16000、18000、20000 处取得极大值: 6.22E+10

PMUTATION =0.01, Generation= 2000 处取得极小值: 6.14E+10

 $f_3 - P$

POPSIZE=80, Generation=20000 处取得极大值: 2.14E+10

POPSIZE=20, Generation=2000 处取得极小值: 2.13E+10

 $f_3 - P$

PXOVER=0.7, Generation=20000 处取得极大值: 2.14E+10

PXOVER=0.9, Generation=2000 处取得极小值: 2.14E+10

 $f_3 - PM$

PMUTATION=0.09, Generation=10000、12000、14000、16000、18000、20000 处取得极大值: 2.14E+10

PMUTATION=0.07, Generation= 2000 处取得极小值: 2.14E+10

 $f_8 - P$

POPSIZE=180, Generation=20000 处取得极大值: 1.49E+03

POPSIZE=140, Generation=2000 处取得极小值: 1.46E+03

 $f_8 - PX$

PXOVER=0. 2, Generation=16000、18000、20000 处取得极大值: 1. 49E+03

PXOVER=0.7, Generation=2000 处取得极小值: 1.47E+03

 $f_8 - PM$

PMUTATION=0.03, Generation=16000、18000、20000 处取得极大值: 1.49E+03

PMUTATION=0.1, Generation=2000 处取得极小值: 1.45E+03

 $f_{12} - P$

POPSIZE=120, Generation=12000、14000、16000、18000、20000 处取得极大值: 1. 25E+03

POPSIZE=120, Generation=2000 处取得极小值: 1.25E+03

 $f_{12} - PX$

PXOVER=0. 2, Generation=12000、14000、16000、18000、20000 处取得极大值: 1. 25E+03

PXOVER=0.6, Generation=2000 处取得极小值: 1.25E+03

 $f_{12} - PM$

PMUTATION=0.01, Generation=20000 处取得极大值: 1.25E+03

PMUTATION=0.1, Generation=2000 处取得极小值: 1.25E+03

$f_{18} - P$

POPSIZE=160, Generation=8000、10000、12000、14000、16000、18000、20000 处取得极大值: 3.32E+10

POPSIZE=80, Generation=2000 处取得极小值: 3.32E+10

 $f_{18} - PX$

PXOVER=0. 2, Generation=12000、14000、16000、18000、20000 处取得极大值: 3. 32E+10

PXOVER=0.4, Generation=2000 处取得极小值: 3.31E+10

 $f_{18} - PM$

PMUTATION=0.05, Generation=20000 处取得极大值: 3.32E+10

PMUTATION=0.03, Generation=2000 处取得极小值: 3.31E+10

$f_{20} - P$

POPSIZE=200, Generation=20000 处取得极大值: 9.18E+10

POPSIZE=20, Generation=2000 处取得极小值: 9.16E+10

 $f_{20} - PX$

PXOVER=0. 8, Generation=10000、12000、14000、16000、18000、20000 处取得极大值: 9. 18E+10

PXOVER=0.5, Generation=2000 处取得极小值: 9.15E+10

 $f_{20} - PM$

PMUTATION=0.07, Generation=6000、8000、1000、12000、14000、16000、18000、20000 处取得极大值: 9.18E+10

PMUTATION=0.02, Generation=2000 处取得极小值: 9.15E+10

$f_{25} - P$

POPSIZE=120, Generation=12000、14000、16000、18000、20000 取得极大值: 6. 21E+03 POPSIZE=20, Generation=2000 处取得极小值: 6. 02E+03

 $f_{25} - PX$

PXOVER=0.4, Generation=20000 处取得极大值: 6.21E+03

PXOVER=0.2, Generation=2000 处取得极小值: 5.99E+03

 $f_{25} - PM$

PMUTATION=0.02, Generation=8000、1000、12000、14000、16000、18000、20000 处取得极大值: 6.21E+03

PMUTATION=0.01, Generation=2000 处取得极小值: 6.01E+03

$f_{30} - P$

POPSIZE=40, Generation=18000、20000 取得极大值: 3.65E+09

POPSIZE=20, Generation=2000 处取得极小值: 3.64E+09

 $f_{30} - PX$

PXOVER=0.8, Generation=16000、18000、20000 处取得极大值: 3.65E+09

PXOVER=0. 2, Generation=2000 处取得极小值: 3. 63E+09

 $f_{30}-PM$

PMUTATION=0.1, Generation=14000、16000、18000、20000 处取得极大值: 3.65E+09 PMUTATION=0.01, Generation=2000 处取得极小值: 2.72E+09

注1:

本次实验中,CEC2014 功能函数记作X:

当种群大小变化,初始交叉率 0.7、变异率 0.06,函数记作 $f_x - P$,当交叉率变化,初始种群大小 50、变异率 0.06,函数记作 $f_x - PX$,当变异率变化,初始种群大小 50、交叉率 0.7,函数记作 $f_x - PM$ 。

注2:

文中在表达适应度、极值数据均为指数型,其表达存在小数点后几位大小不同,例如:极大值为1.25E+03,极小值为1.25E+03,两者指数表达相同,但实际数据为1250.09996、1249.63526,文中在表达极值进行忽略处理,更详细的数据请见附表。