1 Warm up

Example 1.1 (India RMO 2003). Consider the set $X = \{1, 2, 3, \dots, 9, 10\}$. Find two disjoint nonempty subsets A and B of X such that

- (a) $A \cup B = X$,
- (b) prod(A) is divisible by prod(B), where for any finite set of numbers C, prod(C) denotes the product of all numbers in C,
- (c) the quotient $\operatorname{prod}(A)/\operatorname{prod}(B)$ is as small as possible.

Summary. It is equivalent to finding a subset B of $\{1, ..., 10\}$, other than $\emptyset, \{1, ..., 10\}$, such that $\operatorname{prod}(B)^2$ divides 10! and the quotient $10!/\operatorname{prod}(B)^2$ is minimized. To do so,

- write down the prime power factorization of 10!,
- throw in enough elements in B so that prod(B) is maximized, and $prod(B)^2$ divides 10!.

Walkthrough.

- (a) Observe that it is enough to find a nonempty proper subset B of $\{1, 2, ..., 10\}$ such that $prod(B)^2$ divides 10! and prod(B) is the maximum.
- (b) Writing down the prime power factorization of 10!, deduce that B does not contain 7, it contains a multiple of 5, and also a multiple of 2 and a multiple of 3.
- (c) Prove that B contains exactly one multiple of 5, and not more that two multiples of 3.
- (d) Show that B is equal to one of the subsets $\{5,3,6,2^3\}$, $\{10,3,6,2^2\}$, $\{10,9,2^3\}$ of $\{1,\ldots,10\}$.
- (e) Show that any of these three subsets also have the stated property.

Solution 1. Let A, B be two nonempty disjoint subsets of X satisfying the required conditions (note that such subsets exist since X can be written as the union of two disjoint subsets in finitely many ways only). Due to the equality

$$\frac{\operatorname{prod}(A)}{\operatorname{prod}(B)} = \frac{10!}{(\operatorname{prod}(B))^2},$$

it is equivalent to having a subset B of X such that $\operatorname{prod}(B)^2$ divides 10! and $\operatorname{prod}(B)$ is the maximum. Note that 10! is equal to the product $2^8 \cdot 3^4 \cdot 5^2 \cdot 7$.

So B does not contain 7. Moreover, B contains a multiple of 5, otherwise $(\operatorname{prod}(B \cup \{5\}))^2$ would divide 10! and $\operatorname{prod}(B \cup \{5\})$ would be strictly larger than $\operatorname{prod}(B)$, which contradicts the choice of B. Similarly, B also contains a multiple of 2 and a multiple of 3. Note that B contains exactly one multiple of 5 (since $5^3 \nmid 10!$). Since $(\operatorname{prod}(B))^2$ divides 10! and $\operatorname{prod}(B)$ is the maximum, B is equal to one of the following sets

- $\{5,3,2^3\},\{5,6,2^3\},\{5,3,6,2^3\},\{5,9,2^3\}$ if B contains 5,
- $\{10,3,2^3\},\{10,6,2^2\},\{10,3,6,2^2\},\{10,9,2^3\}$ if B contains 10.

The products of the elements of these sets are equal to 120, 240, 720, 360, 240, 480, 720, 720 respectively. So B is equal to one of the sets $\{5, 3, 6, 2^3\}$, $\{10, 3, 6, 2^2\}$, $\{10, 9, 2^3\}$.

Also note that if B denotes one of the subsets $\{5,3,6,2^3\}$, $\{10,3,6,2^2\}$, $\{10,9,2^3\}$ of $\{1,\ldots,10\}$, then $\operatorname{prod}(B)^2$ divides 10! and $\operatorname{prod}(B)$ is the maximum.

This proves that $\{5, 3, 6, 2^3\}$, $\{10, 3, 6, 2^2\}$, $\{10, 9, 2^3\}$ are precisely all the subsets of $\{1, ..., 10\}$ having the required property. Thus we could take $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{8, 9, 10\}$ for instance.