

CHAPTER 9

Relational Database Design by ER- and EERR-to-Relational Mapping

ER and EER
Conceptual data models

Relational Model (Tables)

How to convert EER to Relational Model (next Lecture)

Chapter Outline

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types.
- Step 5: Mapping of Binary M:N Relationship Types.
- Step 6: Mapping of Multivalued attributes.
- Step 7: Mapping of N-ary Relationship Types.

Mapping EER Model Constructs to Relations

- Step 8: Options for Mapping Specialization or Generalization.
- Step 9: Mapping of Union Types (Categories).

GOALS during Mapping

- Preserve all information (that includes all attributes)
- Maintain the constraints to the extent possible (Relational Model cannot preserve all contstraints- e.g., max cardinality ratio such as 1:10 in ER; exhaustive classification into subtypes, e.g., STUDENTS are specialized into Domestic and Foreign)
- Minimize null values

The mapping procedure described has been implemented in many commercial tools.

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types.
 - For each regular (strong) entity type E in the ER schema, create a relation R that includes all the simple attributes of E.
 - Choose one of the key attributes of E as the primary key for R.
 - If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R.
- Example: We create the relations EMPLOYEE,
 DEPARTMENT, and PROJECT in the relational schema corresponding to the regular entities in the ER diagram.
 - SSN, DNUMBER, and PNUMBER are the primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT as shown.

Figure 9.1 The ER conceptual schema diagram for the COMPANY database.

Figure 9.2 Result of mapping the COMPANY ER schema into a relational database schema.

Step 2: Mapping of Weak Entity Types

- For each weak entity type W in the ER schema with owner entity type E, create a relation R & include all simple attributes (or simple components of composite attributes) of W as attributes of R.
- Also, include as foreign key attributes of R the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s).
- The primary key of R is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type W, if any.
- Example: Create the relation DEPENDENT in this step to correspond to the weak entity type DEPENDENT.
 - Include the primary key SSN of the EMPLOYEE relation as a foreign key attribute of DEPENDENT (renamed to ESSN).
 - The primary key of the DEPENDENT relation is the combination {ESSN, DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of DEPENDENT.

- Step 3: Mapping of Binary 1:1 Relation Types
 - For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that correspond to the entity types participating in R.
- There are three possible approaches:
 - 1. Foreign Key (2 relations) approach: Choose one of the relations-say S-and include a foreign key in S the primary key of T. It is better to choose an entity type with total participation in R in the role of S.
 - Example: 1:1 relation MANAGES is mapped by choosing the participating entity type DEPARTMENT to serve in the role of S, because its participation in the MANAGES relationship type is total.
 - 2. Merged relation (1 relation) option: An alternate mapping of a 1:1 relationship type is possible by merging the two entity types and the relationship into a single relation. This may be appropriate when both participations are total.
 - 3. Cross-reference or relationship relation (3 relations) option: The third alternative is to set up a third relation R for the purpose of crossreferencing the primary keys of the two relations S and T representing the entity types.

- Step 4: Mapping of Binary 1:N Relationship Types.
 - For each regular binary 1:N relationship type R, identify the relation S that represent the participating entity type at the N-side of the relationship type.
 - Include as foreign key in S the primary key of the relation T that represents the other entity type participating in R.
 - Include any simple attributes of the 1:N relation type as attributes of S.
- Example: 1:N relationship types WORKS_FOR, CONTROLS, and SUPERVISION in the figure.
 - For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT relation as foreign key in the EMPLOYEE relation and call it DNO.
- An alternative approach is to use a Relationship relation
 (cross referencing relation) this is rarely done.
 Slide 9- 11

- Step 5: Mapping of Binary M:N Relationship Types.
 - For each regular binary M:N relationship type R, create a new relation S to represent R. This is a relationship relation.
 - Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; their combination will form the primary key of S.
 - Also include any simple attributes of the M:N relationship type (or simple components of composite attributes) as attributes of S.
- Example: The M:N relationship type WORKS_ON from the ER diagram is mapped by creating a relation WORKS_ON in the relational database schema.
 - The primary keys of the PROJECT and EMPLOYEE relations are included as foreign keys in WORKS_ON and renamed PNO and ESSN, respectively.
 - Attribute HOURS in WORKS_ON represents the HOURS attribute of the relation type. The primary key of the WORKS_ON relation is the combination of the foreign key attributes {ESSN, PNO}.

Step 6: Mapping of Multivalued attributes.

- For each multivalued attribute A, create a new relation R.
- This relation R will include an attribute corresponding to A, plus the primary key attribute K-as a foreign key in R-of the relation that represents the entity type of relationship type that has A as an attribute.
- The primary key of R is the combination of A and K. If the multivalued attribute is composite, we include its simple components.

Example: The relation DEPT_LOCATIONS is created.

- The attribute DLOCATION represents the multivalued attribute LOCATIONS of DEPARTMENT, while DNUMBER-as foreign keyrepresents the primary key of the DEPARTMENT relation.
- The primary key of R is the combination of {DNUMBER, DLOCATION}.

- Step 7: Mapping of N-ary Relationship Types.
 - For each n-ary relationship type R, where n>2, create a new relationship S to represent R.
 - Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
 - Also include any simple attributes of the n-ary relationship type (or simple components of composite attributes) as attributes of S.
- Example: The relationship type SUPPY in the ER on the next slide.
 - This can be mapped to the relation SUPPLY shown in the relational schema, whose primary key is the combination of the three foreign keys {SNAME, PARTNO, PROJNAME}

Figure 9.2 Result of mapping the COMPANY ER schema into a relational database schema.

Summary of Mapping constructs and constraints

Table 9.1 Correspondence between ER and Relational Models

ER MODEL	RELATIONAL MODEL

Entity type Entity relation

1:1 or 1:N relationship type Foreign key (or *relationship* relation)

M:N relationship type Relationship relation and two foreign keys

n-ary relationship type *Relationship* relation and *n* foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

Mapping of Generalization and Specialization Hierarchies to a Relational Schema

Mapping EER Model Constructs to Relations

- Step8: Options for Mapping Specialization or Generalization.
 - Convert each specialization with m subclasses {S1, S2,...,Sm} and generalized superclass C, where the attributes of C are {k,a1,...an} and k is the (primary) key, into relational schemas using one of the four following options:
 - Option 8A: Multiple relations-Superclass and subclasses
 - Option 8B: Multiple relations-Subclass relations only
 - Option 8C: Single relation with one type attribute
 - Option 8D: Single relation with multiple type attributes

Mapping EER Model Constructs to Relations

Option 8A: Multiple relations-Superclass and subclasses

Create a relation L for C with attributes Attrs(L) = {k,a1,...an} and PK(L) = k. Create a relation Li for each subclass Si, 1 < i < m, with the attributesAttrs(Li) = {k} U {attributes of Si} and PK(Li)=k. This option works for any specialization (total or partial, disjoint of over-lapping).</p>

Option 8B: Multiple relations-Subclass relations only

Create a relation Li for each subclass Si, 1 < i < m, with the attributes Attr(Li) = {attributes of Si} U {k,a1...,an} and PK(Li) = k. This option only works for a specialization whose subclasses are total (every entity in the superclass must belong to (at least) one of the subclasses).

Mapping EER Model Constructs to Relations (contd.)

Option 8C: Single relation with one type attribute

Create a single relation L with attributes Attrs(L) = {k,a₁,...a_n} U {attributes of S₁} U...U {attributes of S_m} U {t} and PK(L) = k.
 The attribute t is called a type (or **discriminating**) attribute that indicates the subclass to which each tuple belongs

Option 8D: Single relation with multiple type attributes

• Create a single relation schema L with attributes Attrs(L) = $\{k,a_1,...a_n\}$ U $\{attributes of S_1\}$ U...U $\{attributes of S_m\}$ U $\{t_1, t_2,...,t_m\}$ and PK(L) = k. Each t_i , 1 < I < m, is a Boolean type attribute indicating whether a tuple belongs to the subclass S_i .

FIGURE 4.4

EER diagram notation for an attribute-defined specialization on JobType.

Mapping the EER schema in Figure 4.4 using option 8A

(a) EMPLOYEE

SS	<u>SN</u>	FName	MInit	LName	BirthDate	Address	JobType
----	-----------	-------	-------	-------	-----------	---------	---------

SECRETARY

SSN TypingSpeed

TECHNICIAN

SSN TGrade

ENGINEER

SSN EngType

Mapping the EER schema in Figure 4.4 using option 8C

(c) EMPLOYEE

FIGURE 4.3 (b)

Generalizing CAR and TRUCK into the superclass VEHICLE.

Mapping the EER schema in Figure 4.3b using option 8B.

(b) CAR

	VehicleId	LicensePlateNo	Price	MaxSpeed	NoOfPassengers
--	-----------	----------------	-------	----------	----------------

TRUCK

VehicleId LicensePlateNo	Price	NoOfAxles	
--------------------------	-------	-----------	--

FIGURE 4.5

An overlapping (non-disjoint) specialization.

Mapping Figure 4.5 using option 8D with Boolean type fields Mflag and Pflag.

(d)	PART									
	<u>PartNo</u>	Description	MFlag	DrawingNo	ManufactureDate	BatchNo	PFlag	SupplierName	ListPrice	

Fig. 9.5: Different Options for Mapping Generalization Hierarchies - summary

(a) EMPLOYEE Minit Ssn Fname Lname Birth date Address Job_type **SECRETARY TECHNICIAN ENGINEER** Ssn Typing_speed Ssn Tgrade Ssn Eng_type (b) CAR Vehicle_id License_plate_no Price Max_speed No_of_passengers **TRUCK** Vehicle_id No of axles License_plate_no Price Tonnage (c) EMPLOYEE Ssn Fname Minit Lname Birth date Address Typing speed Tgrade Eng_type Job type (d) PART

Manufacture date

Pflag

Supplier name

Batch no

List_price

Mflag

Drawing_no

Description

Part no

Mapping Exercise-1

Exercise 9.4: Map this schema into a set of relations.

Mapping Exercise-2

Exercise 9.9: Map this schema into a set of relations

Chapter Summary

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types.
- Step 5: Mapping of Binary M:N Relationship Types.
- Step 6: Mapping of Multivalued attributes.
- Step 7: Mapping of N-ary Relationship Types.

Mapping EER Model Constructs to Relations

- Step 8: Options for Mapping Specialization or Generalization.
- Step 9: Mapping of Union Types (Categories).