

Triangle Solution

5.

- 1. Answer: (A)
 Clearly, P + b + h = 70(i)
 Also, $P^2 + b^2 = h^2$ (ii) P = 21, b = 20, h = 29 satisfies both the equations
 So, Area = $1/2 \times P \times b$ = $1/2 \times 21 \times 20$ = 210
- 2. Answer: (D) $Area = \frac{\sqrt{3}}{4}a^2$ $= \frac{\sqrt{3}}{4} \times (4)^2$ $= 4\sqrt{3} \text{ cm}^2$

3.

4.

Answer: (C)
Height of equilateral tringle = $\frac{\sqrt{3}}{2}$ a $\frac{\sqrt{3}}{2}$ a = $20\sqrt{2}$ $a = 40\sqrt{\frac{2}{3}}$ Area of equilateral tringle = $\frac{\sqrt{3}}{2}$ a²

Area of triangle = $\frac{1}{2} \times \text{base} \times \text{altitude}$ = $\frac{1}{2} \times 24 \times 7$ = 84 cm²

B \bigcirc C Height = $\sqrt{41^2 - 9^2}$ Height = $\sqrt{1600}$ Height = 40 cm Area of triangle = $1/2 \times \text{base} \times \text{altitude}$ = $1/2 \times 9 \times 40 = 180 \text{ cm}^2$ **Answer:(B)**

 $h = \sqrt{10^2 - 6^2}$ h = 8cmArea of triangle = 1/2 × base × altitude $= 1/2 \times 12 \times 8$ $= 48 \text{ cm}^2$

7.

ISO Certified

$$AB^2 = 36$$

$$AB = 6cm = BC$$

Area of triangle = $12 \times 6 \times 6$ = 18cm^2

8. Answer: C

Side of a square = 12

Diagonal= a $\sqrt{2} = 12\sqrt{2}$

Area of an equilateral triangle with side

$$12\sqrt{2}$$

$$=\frac{\sqrt{3}}{4}a^2$$

$$=\frac{\sqrt{3}}{4}(12\sqrt{2})$$

$$=\frac{\sqrt{3}}{4} \times 144 \times 2 = 72\sqrt{3}$$

9. Answer: (B)

Side of square = a = 10 cm

Diagonal of square = $\sqrt{2} \times a = \sqrt{2} \times 10$ cm

Side of equilateral triangle= diagonal of square = $\sqrt{2} \times 10$

Area of equilateral triangle = $(\sqrt{3}/4) \times \text{side}^2$ = $(\sqrt{3}/4) (\sqrt{2} \times 10)^2 = 50\sqrt{3} \text{ cm}^2$

10. Answer: (A)

Area of equilateral traingle

$$= \frac{(\text{side})^2 \sqrt{3}}{1}$$

Given,

Side = 8 cm

Area of the triangle = $(8^2 \sqrt{3}) / 4$

 \therefore Area of the triangle = $16\sqrt{3}$ cm²

11. Answer: (A)

ΔBDE~ΔBAC

$$\frac{\text{Ar}(\Delta \text{BDE})}{\text{Ar}(\Delta \text{ABC})} = \left[\frac{\text{BD}}{\text{AB}}\right]^2 = \left[\frac{2}{5}\right]^2$$
$$\text{Ar}(\Delta \text{BDE}) \qquad 4$$

$$\frac{Ar(\Delta ABC)}{Ar(\Delta ABC)} = \frac{1}{2}$$

$$\frac{Ar(\Delta BDE)}{A(\Delta AGED)} = \frac{4}{25} = \frac{4}{25}$$

$$\frac{\text{Ar}(\Delta ACED)}{\text{Ar}(\Delta ACED)} = \frac{1}{25 - 4} = \frac{1}{21}$$

Keep in touch:

www.mockopedia.com

12. Answer: (D)

$$\angle BPC = 90^{\circ} - \frac{\angle A}{2}$$

$$\angle BPC = 90^{\circ} - \frac{72^{\circ}}{3}$$

$$\angle BPC = 90^{\circ} - 36^{\circ}$$

$$\angle BPC = 54^{\circ}$$

13. Answer: (A)

When bisectors of ∠B and ∠C meet at

ertificpoint D

$$\angle BDC = 90^{\circ} + 2\angle A$$

14.

$$=\Delta ADE \sim \Delta ABC$$

$$= \frac{AD}{AB} = \frac{DE}{BC}$$

$$\frac{7.6}{7.2+4.2} = \frac{DE}{8.4}$$

$$\frac{7.6}{11.4} = \frac{DE}{8.4}$$

$$\frac{1}{11.4} = \frac{1}{8.4}$$

DE =5.6cm

Since
$$\triangle ABC \sim \triangle QPR$$

ISO Certified

$\frac{\text{Ar}(\Delta \text{ABC})}{\text{Ar}(\Delta \text{QPR})} = \left[\frac{\text{AB}}{\text{QP}}\right]^2 = \left[\frac{\text{BC}}{\text{PR}}\right]^2 = \left[\frac{\text{AC}}{\text{QR}}\right]^2$ $\frac{3}{4} = \frac{12}{QP}$ QP = 16cm

16. Answer: (A)

$$\angle DAE = 23^{\circ}$$

17. Answer: (B)

In **\Delta LAB**

$$\left[\frac{AC}{2}\right]^{2} + AB^{2} = BL^{2}$$

$$AC^{2} + 4AB^{2} = 4BL^{2} - \dots (1)$$

In **\Delta LAB**

$$\left[\frac{AC}{2}\right]^2 + AB^2 = BL^2$$

$$4AC^2 + AB^2 + 4CM^2$$
.....(2)

Adding (1) and (2)

$$5[AC^2 + AB^2] = 4[BL^2 + CM^2]$$

$$4[BL^2 + CM^2] = 5BC^2$$

18. Answer: (A) ΔABC~ΔQPR

$$\frac{\text{Ar(ABC)}}{\text{Ar(QPR)}} = \left[\frac{\text{AB}}{\text{QP}}\right]^2 = \left[\frac{\text{BC}}{\text{PR}}\right]^2 = \left[\frac{\text{AC}}{\text{QR}}\right]^2$$

Keep in touch:

www.mockopedia.com

$$\frac{9}{16} = \left[\frac{9}{QR}\right]^2$$

$$\frac{3}{4} = \frac{9}{QR}$$

$$OR = 12cm$$

Answer: (B)

19.

$$\angle BIC = 90^{\circ} + \frac{\angle A}{2}$$

$$\angle BIC = 90^{\circ} + \frac{64^{\circ}}{2}$$
$$\angle BIC = 122^{\circ}$$

20. Answer: (C)

According to internal bisector theorem

Let
$$CD = x$$

$$cb=a-xx$$

$$cx = ab - bx$$

$$x = ab/b + c$$
 _____(i)

From (1)

$$BD = a - ab/b + c$$

$$BD = ab + ac - ab/b + c$$

$$BD = acb + c$$

A.T.Q

$$= BD - DC$$

$$= ac/b + c-ab/b + c$$

$$= a(c-b)/b + c$$