Job No.:
 EHB 268 - 1
 Address:
 28 Hereford Street, Wright Bush, New Zealand
 Date:
 31/10/2024

 Latitude:
 -46.299316
 Longitude:
 168.198098
 Elevation:
 19.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N5	Ground Snow Load	0.9 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	5.9 m
Wind Region	NZ4	Terrain Category	2.0	Design Wind Speed	44.78 m/s
Wind Pressure	1.2 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Very High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 5.3 m Cpe = -0.9 pe = -0.88 KPa pnet = -0.88 KPa

For roof CP,e from 5.3 m To 10.6 m Cpe = -0.5 pe = -0.49 KPa pnet = -0.49 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 8 m Cpe = 0.7 pe = 0.76 KPa pnet = 1.12 KPa

For side wall CP,e from 0 m To 5.3 m Cpe = pe = -0.70 KPa pnet = -0.70 KPa

Maximum Upward pressure used in roof member Design = 0.88 KPa

Maximum Downward pressure used in roof member Design = 0.43 KPa

Maximum Wall pressure used in Design = 1.12 KPa

Maximum Racking pressure used in Design = 1.12 KPa

Design Summary

Rafter Design External

External Rafter Load Width = 2350 mm External Rafter Span = 3976 mm Try Rafter 300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

 $K1 \; Short \; term = 1 \qquad K1 \; Medium \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.94$

K8 Upward =0.94 S1 Downward =13.93 S1 Upward =13.93

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	1.57 Kn-m	Capacity	4.72 Kn-m	Passing Percentage	300.64 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	4.32 Kn-m	Capacity	6.30 Kn-m	Passing Percentage	145.83 %
$M_{0.9D\text{-W}n\text{Up}}$	-3.04 Kn-m	Capacity	-7.87 Kn-m	Passing Percentage	258.88 %
V _{1.35D}	1.58 Kn	Capacity	14.47 Kn	Passing Percentage	915.82 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 4.34 Kn Capacity 19.30 Kn Passing Percentage 444.70 % $V_{0.9D-WnUp}$ -3.06 Kn Capacity -24.12 Kn Passing Percentage 788.24 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 3.87 mm Deflection under Dead and Service Wind = 4.61 mm Limit by Woolcock et al, 1999 Span/240= 16.67 mm Limit by Woolcock et al, 1999 Span/100 = 40.00 mm

Reactions

Maximum downward = 4.34 kn Maximum upward = -3.06 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 50 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -25.20 \text{ kn} > -3.06 \text{ Kn}$

Single Shear Capacity under short term loads = -10.84 Kn > -3.06 Kn

Intermediate Design Sides

Intermediate Spacing = 2000 mm Intermediate Span = 5150 mm Try Intermediate 2x250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =1.00 S1 Downward =12.68 S1 Upward =0.96

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 3.71 Kn-m
 Capacity
 11.66 Kn-m
 Passing Percentage
 314.29 %

 V0.9D-WnUp
 2.88 Kn
 Capacity
 40.2 Kn
 Passing Percentage
 1395.83 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 52.625 mm

Limit by Woolcock et al, 1999 Span/100 = 51.50 mm

Reactions

Maximum = 2.88 kn

Girt Design Front and Back

Girt's Spacing = 250 mm

Girt's Span = 2350 mm

Try Girt 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.92 S1 Downward =12.68 S1 Upward =14.49

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 0.19 Kn-m
 Capacity
 5.36 Kn-m
 Passing Percentage
 2821.05 %

 V0.9D-WnUp
 0.33 Kn
 Capacity
 20.10 Kn
 Passing Percentage
 6090.91 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.40 mm

Limit by Woolcock et al, 1999 Span/100 = 23.50 mm

Sag during installation = 1.85 mm

Reactions

Maximum = 0.33 kn

Girt Design Sides

Girt's Spacing = 900 mm

Girt's Span = 2000 mm

Try Girt 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.72 S1 Downward =12.68 S1 Upward =18.90

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 0.50 Kn-m Capacity 4.22 Kn-m Passing Percentage 844.00 % $V_{0.9D-WnUp}$ 1.01 Kn Capacity 20.10 Kn Passing Percentage 1990.10 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.75 mm

Limit by Woolcock et al. 1999 Span/100 = 20.00 mm

Sag during installation =0.97 mm

Reactions

Maximum = 1.01 kn

End Pole Design

Geometry For End Bay Pole

Geometry

225 SED H5 (Minimum 250 dia. at Floor Level)	Dry Use	Height	5600 mm
Area	44279 mm2	As	33209.1796875 mm2
Ix	156100441 mm4	Zx	1314530 mm3
Iy	156100441 mm4	Zx	1314530 mm3
T -41 D4!4			

Lateral Restraint mm c/c

Loads

Total Area over Pole = 9.4 m^2

Dead	2.35 Kn	Live	2.35 Kn
Wind Down	4.04 Kn	Snow	5.92 Kn
Moment Wind	11.42 Kn-m	Moment snow	2.07 Kn-m
Phi	0.8	K8	0.51
K1 snow	0.8	K1 Dead	0.6
IZ 1	1		

K1wind

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	324.65 Kn	PhiMnx Wind	19.44 Kn-m	PhiVnx Wind	78.64 Kn
PhiNcx Dead	194.79 Kn	PhiMnx Dead	11.66 Kn-m	PhiVnx Dead	47.18 Kn
PhiNcx Snow	259.72 Kn	PhiMnx Snow	15.55 Kn-m	PhiVnx Snow	62.91 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.63 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.38 < 1 \text{ OK}$

Deflection at top under service lateral loads = 38.57 mm < 58.85 mm

Ds =	0.6 mm	Pile Diameter
L=	1500 mm	Pile embedment length
f1 =	4425 mm	Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 9.4 m2

Moment Wind = 11.42 Kn-m Moment Snow = 2.07 Kn-m

5/7

Shear Wind = 2.58 Kn Shear Snow = 2.07 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.08 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 12.96 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.88 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1500 mm Pile embedment length

f1 = 4425 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 11.42 Kn-m Moment Snow = 2.07 Kn-m Shear Wind = 2.58 Kn Shear Snow = 2.07 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.08 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 12.96 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.88 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1800) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1800)

Skin Friction = 26.17 Kn

Weight of Pile + Pile Skin Friction = 29.78 Kn

Uplift on one Pile = 12.31 Kn

Uplift is ok