

Data Science 101

Janis Keuper

01.04.20

Data Science 101 - Outline

- What is "Data Science?"
- Key Skills for Data Scientists
- Data Science Work Flow
- Python for Data Science
- Case Study I: predicting supermarket sales

Simple Question: What is Data Science?

Simple Question: What is Data Science?

→ many different answers

(all right in some way)

Historic motivation

Multiplying Factor	SI Prefix	Scientific Notation	Name
1 000 000 000 000 000 000 000 000	Yotta (Y)	1024	1 septillion
1 000 000 000 000 000 000 000	Zetta (Z)	1021	1 sextillion
1 000 000 000 000 000 000	Exa (E)	1018	1 quintillion
1 000 000 000 000 000	Peta (P)	1015	1 quadrillion
1 000 000 000 000	Tera (T)	1012	1 trillion
1 000 000 000	Giga (G)	10°	1 billion
1 000 000	Mega (M)	106	1 million
1 000	kilo (k)	10 ³	1 thousand
0 001	milli (m)	10-3	1 thousandth
0 000 001	micro (u)	10-6	1 millionth
0 000 000 001	nano (n)	10-9	1 billionth
0 000 000 000 001	pico (p)	10-12	1 trillionth
0 000 000 000 000 001	femto (f)	10-15	1 quadrillionth
0 000 000 000 000 000 001	atto (a)	10-18	1 quintillionth
0 000 000 000 000 000 000 001	zepto (z)	10-21	1 sextillionth
0 000 000 000 000 000 000 000 001	yocto (y)	10-24	1 septillionth

[4]

Historic motivation

- Where is this data coming from?
- What are we going to do with it?
- Who is going to do it?

Historic motivation

- Where is this data coming from?
 - Internet of Things (IoT: sensors every where)
 - Industry 4.0 (connecting everything)
 - Big Data (storing all the information you can in the hope generate gain)
 - Social Media (and other internet services)
- What are we going to do with it?
- Who is going to do it?

Historic motivation

- Where is this data coming from?
 - Internet of Things (IoT: sensors every where)
 - Industry 4.0 (connecting everything)
 - Big Data (storing all the information you can in the hope generate gain)
 - Social Media (and other internet services)
- What are we going to do with it?
 - Analyze the past
 - Predict the future (at least try to)
 - Machine Learning (data driven computing)
 - AI (what ever that is)

Historic motivation

- Where is this data coming from?

 - **Big Data (storing all the information you can in the hope generate gain) ords in figure 1.0 Social Media (and other internet services)

 **Hat are we going to do with it?*

 Analyze the past Predict the future (at least try to)

 Machine Learning (data drives)
- What are we going to do with it?

 - Machine Learning (data driven computing)
 - AI (what ever that is)

Historic motivation

- Where is this data coming from?
- What are we going to do with it?
- Who is going to do it? → Data Science!

Motivation by tasks:

What is expected of Data Science?

What are typical tasks / applications?

Typical Data Science Tasks:

- Data Acquisition
- Data cleaning
- Storing data and making it accessible
- Selecting and pre-processing data
- Structuring and describing data (Descriptive Statistics)
- Exploration and Inference (Learning)
- Modeling and Abstraction
- Verification
- Visualization and Reporting

Motivation by tasks:

What is expected of Data Science?

What are typical tasks / applications?

→ Data Science as mesh-up of many tasks and skills

Data Science – Science of data?

Definition of Data:

Wikipedia:

Data (I'deItə/ DAY-tə, I'dætə/ DA-tə, or I'dɑːtə/ DAH-tə) is a set of values of qualitative or quantitative variables; restated, pieces of data are individual pieces of information. Data is measured, collected and reported, and analyzed, whereupon it can be visualized using graphs or images. Data as a general concept refers to the fact that some existing information or knowledge is represented or coded in some form suitable for better usage or processing.

Scientific perspectives at data:

- Looking at Data like a Statistician, you see the world in terms of
 - Variables (sets)
 - (joint) Distributions
 - Densities
 - Correlations
 - Likelihoods
 - Hypothesis

Scientific perspectives at data:

- Looking at Data like a Mathematician, data forms
 - Structures (Algebras, Sets, Groups, Graphs ...)
 - Spaces (i.e. high-dimensional Eucledian space)
 - Change (i.e. expressed in differential equations)
 - in practice: a lot of numerical optimization

- you think in data structures
- algorithms and their efficiency
- levels of abstraction
- use cases (reusability)
- parallelization

Scientific perspectives at data:

- Looking at Data like a Data Engineer, you see
 - Databases
 - Storage
 - System Architectures

- how to get the data (from devices, web databases, streams ...)
- how to extract the data (from binaries, proprietary formats ...)
- how to use data in unconventional ways

Scientific perspectives at data:

- Looking at Data like a Visual Artist, you think about
 - how to visualize the key information hidden in the data
 - how to depict change
 - how to setting data into relation
 - how to present complex problems

Looking at Data as a Domain Expert

- Domain knowledge is important to set data in the correct meta-relation
 - i.e. helps to ask the "right" questions
 - helps to avoid trivial miss-interpretations (due to missing meta data/information)
- But, domain knowledge also might be misleading and preventing data-driven discoveries

Key Skills for Data Science

Just be:

- A Statistician
- Mathematician
- Programmer
- Engineer
- Hacker
- Artist
- And Expert in many domains :-)

Key Skills for Data Science

On top of that:

- Very good communication skills
 - Presenting your work
 - Getting information from domain experts
- Be a quick learner
 - Adaption to new domains
 - Fast moving field (e.g. machine learning)

Job Opportunities Data Science

https://media.thinknum.com/articles/massive-increase-in-demand-for-data-science-jobs-in-2019/

Start: Hypothesis

Idea

Problem setting

Need: Basic understanding of the problem → Domain knowledge

Pre-process

• clean

- We will use Python (more exactly tools with python interface) for this course
- Python is the most dominant language used in Data
 Science, Dats Analytics and Machine Learning to day

Alternatives: R, Julia and Matlab

[2]

- Triggered by ML + Data Science
- Python pushes convergence of technologies:
 - HPC
 - Cloud
 - Big-Data

[2]

- Very low entry barrier (easy to learn)
- Quite universal in programming approaches
- Easy to interface existing high peformance libs
- Huge Community
- Libraries !!!
- Python as "glue code" for rapid development and markup

https://www.anaconda.com/distribution/

Install on you local computer

- Easy installation on Linux/Mac/Win
 - See Howto in Moodle
 - User space install (no admin needed)
- Conda Python package management
 - Simple install/update/sharing of software
- All open source!

NOTE:

There are two versions of Python:

Python2 and Python3

Support for Python2 ended 31.12.19

→ get started with Python3!

Interactive Python Introduction

→ Lab session Friday

Case Study I: predicting sales

Problem Formulation

Bigmart is a big supermarket chain, with stores all around the country and its current board set out a challenge to all Data Scientist out there to help them create a **model that can predict the sales**, **per product**, **for each store**. BigMart has collected sales data from the year 2013, for **1559 products across 10 stores in different cities**. With this information the corporation hopes we can identify the products and stores which play a key role in their sales and use that information to take the correct measures to ensure success of their business.

Problem Formulation

Bigmart is a big supermarket chain, with stores all around the country and its current board set out a challenge to all Data Scientist out there to help them create a **model that can predict the sales**, **per product**, **for each store**. BigMart has collected sales data from the year 2013, for **1559 products across 10 stores in different cities**. With this information the corporation hopes we can identify the products and stores which play a key role in their sales and use that information to take the correct measures to ensure success of their business.

Discussion:

- What are the goals?
- What data is supplied?
- What expert knowledge is needed?

Case Study I: predicting sales

→ demo on Colab

Literature

- [1] free icons taken from https://www.flaticon.com
- [2] https://stackoverflow.blog/2017/09/06/incredible-growth-python/
- [3] https://datahack.analyticsvidhya.com/contest/practice-problem-bigmart-sales-prediction/
- [4] https://www.eetimes.com/author.asp?section_id=36&doc_id=1330462#