Overall perfomance

Match #	Opponent	AB_Improved Won Lost	AB_Custom Won Lost	AB_Custom_2 Won Lost	AB_Custom_3 Won Lost
1	Random	137 63	136 64	131 69	130 70
2	MM_Open	128 72	138 62	124 76	120 80
3	MM_Center	150 50	139 61	151 49	149 51
4	MM_Improved	123 77	126 74	130 70	125 75
5	AB_Open	107 93	102 98	113 87	91 109
6	AB_Center	107 93	117 83	101 99	110 90
7	AB_Improved	100 100	103 97	108 92	117 83
	Win Rate:	60.9%	61.5%	61.3%	60.1%

As we can see from above, the three score functions' result is just above the AB_improved winning rate, which is the benchmark of the test. I set game number between each set players to be 200, for minizing the variation on winning rate.

Custom 1

the score function I used in custom 1 is

```
player_moves - opponent_moves + 0.1 * player_distance_to_center
```

This function combines both AB_improved and AB_open. We put less weight on the distance since the performance of AB_improved is better than AB_open, also the scale of the distance is from 0~5, and we don't want it to be the dominating part.

It turns out is slightly better than AB improved, but not far ahead.

Custom 2

The score function in custom 2 is

```
players_moves - 2 * opponent_moves
```

This function is similar to AB_improved, but we put more weight on minimizing the opponent's available moves. Its performance is slight worse than custom 1 and better than AB_improved.

Custom 3

The score funtion I used in custom 3 is

```
min(player_moves - opponent_moves, player_distance_to_center)
```

This function is another comination of AB_improved and AB_open . It turns out is slightly worse than AB improved .