PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 96/26272		
C12N 15/12, 15/64, C12Q 1/68, C07K 14/435	A1	(43) International Publication Date: 29 August 1996 (29.08.96)		
(21) International Application Number: PCT/US (22) International Filing Date: 23 February 1996 ((US). HESTON, Warren, D., W. [US/US]; Apartment 18B, 400 East 85th Street, New York, NY 10028 (US). FAIR, William, R. [US/US]; Apartment 3501, 400 East 70th Street, New York, NY 10021 (US).			
(30) Priority Data: 08/394,152	Published With international search report.			

(54) Title: PROSTATE-SPECIFIC MEMBRANE ANTIGEN AND USES THEREOF

(71) Applicant (for all designated States except US): SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH [US/US]; 1275 York Avenue, New York, NY 10021 (US).

(75) Inventors/Applicants (for US only): ISRAELI, Ron, S. [US/US]; 528 Liberty Avenue, Staten Island, NY 10305

(57) Abstract

(72) Inventors; and

This invention provides an isolated mammalian nucleic acid molecule encoding an alternatively spliced prostate-specific membrane (PSM') antigen. This invention provides an isolated nucleic acid molecule encoding a prostate-specific membrane antigen promoter. This invention provides a method of detecting hematogenous micrometastic tumor cells of a subject, and determining prostate cancer progression in a subject.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ĀŪ	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JР	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belanus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	КР	Democratic People's Republic	SD	Sudan
CF	Central African Republic	~_	of Korea	SE.	Sweden
CF	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ.	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	и и	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN CN	China	· LR	Liberia	SZ	Swaziland
cs cs	Czerhoslovskia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembours	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikisten
DK	Denmark	MC	Monaco	ŤŤ	Trinidad and Tobago
		MD	Republic of Moldova	ÜA	Ukraine
EE	Estonia	' MG	Madagescer	UG	Uganda .
ES	Spain	ML.	Mali	US	· United States of America
FI	Finland	MN	Mongolia	UZ.	Uzbekistan
FR	France	MR	Mauritania	VN	Viet Nam
GA	Gabon	MIN	Press Harris	***	TREE CYMEN

PROSTATE-SPECIFIC MEMBRANE ANTIGEN AND USES THEREOF

5

10

15

This application is a continuation-in-part of United States Application Serial Nos. 08/466,381 and 08/470,735, both filed June 2, 1995, which are continuations of U.S. Serial No. 08/394,152, filed February 24, 1995, the contents of which are hereby incorporated by reference.

This invention disclosed herein was made in part with Government support under NIH Grants No. DK47650 and CA58192, CA-39203, CA-29502, CA-08748-29 from the Department of Health and Human Services. Accordingly, the U.S. Government has certain rights in this invention.

20 BACKGROUND OF THE INVENTION

Throughout this application various references are referred to within parentheses. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full bibliographic citation for these references may be found at the end of each set of Examples in the Experimental Details section.

30

35

25

Prostate cancer is among the most significant medical problems in the United States, as the disease is now the most common malignancy diagnosed in American males. In 1992 there were over 132,000 new cases of prostate cancer detected with over 36,000 deaths attributable to the disease, representing a 17.3% increase over 4 years (2). Five year survival rates for patients with prostate cancer range from 88% for those with localized disease to 29% for those with metastatic disease. The

5

rapid increase in the number of cases appears to result in part from an increase in disease awareness as well as the widespread use of clinical markers such as the secreted proteins prostate-specific antigen (PSA) and prostatic acid phosphatase (PAP) (37).

-2-

The prostate gland is a site of significant pathology affected by conditions such as benign growth (BPH), (prostatic cancer) and infection neoplasia (prostatitis). Prostate cancer represents the second 10 leading cause of death from cancer in man (1). However prostatic cancer is the leading site for cancer development in men. The difference between these two facts relates to prostatic cancer occurring with increasing frequency as men age, especially in the ages 15 beyond 60 at a time when death from other factors often Also, the spectrum of biologic intervenes. aggressiveness of prostatic cancer is great, so that in some men following detection the tumor remains a latent 20 histologic tumor and does not become clinically significant, whereas in other it progresses rapidly, metastasizes and kills the man in a relatively short 2-5 year period (1, 3).

In prostate cancer cells, two specific proteins that 25 are made in very high concentrations are prostatic acid phosphatase (PAP) and prostate specific antigen (PSA) (4, 5, 6). These proteins have been characterized and have been used to follow response to therapy. With the development of cancer, the normal architecture of the 30 gland becomes altered, including loss of the normal duct structure for the removal of secretions and thus the secretions reach the serum. Indeed measurement of serum PSA is suggested as a potential screening method for prostatic cancer. Indeed, the relative amount of 35 PSA and/or PAP in the cancer reduces as compared to normal or benign tissue.

-3-

PAP was one of the earliest serum markers for detecting metastatic spread (4). PAP hydrolyses tyrosine phosphate and has a broad substrate specificity. Tyrosine phosphorylation is often increased with oncogenic transformation. It has been hypothesized that during neoplastic transformation there is less phosphatase activity available to inactivate proteins that are activated by phosphorylation on tyrosine residues. In some instances, insertion of phosphatases that have tyrosine phosphatase activity has reversed the malignant phenotype.

5

10

35

PSA is a protease and it is not readily appreciated how loss of its activity correlates with cancer development 15 The proteolytic activity of PSA is inhibited by zinc. Zinc concentrations are high in the normal prostate and reduced in prostatic cancer. Possibly the loss of zinc allows for increased proteolytic activity As proteases are involved in metastasis and 20 some proteases stimulate mitotic activity, the potentially increased activity of PSA could be hypothesized to play a role in the tumors metastases and spread (7).

- Both PSA and PAP are found in prostatic secretions. Both appear to be dependent on the presence of androgens for their production and are substantially reduced following androgen deprivation.
- Prostate-specific membrane antigen (PSM) which appears to be localized to the prostatic membrane has been identified. This antigen was identified as the result of generating monoclonal antibodies to a prostatic cancer cell, LNCaP (8).

Dr. Horoszewicz established a cell line designated LNCaP from the lymph node of a hormone refractory,

5

10

15

heavily pretreated patient (9). This line was found to have an aneuploid human male karyotype. It maintained prostatic differentiation functionality in that it produced both PSA and PAP. It possessed an androgen receptor of high affinity and specificity. Mice were immunized with LNCaP cells and hybridomas were derived from sensitized animals. A monoclonal antibody was derived and was designated 7E11-C5 (8). The antibody staining was consistent with a membrane location and isolated fractions of LNCaP cell membranes exhibited a strongly positive reaction with immunoblotting and ELISA techniques. This antibody did not inhibit or enhance the growth of LNCaP cells in vitro or in vivo. The antibody to this antigen was remarkably specific to prostatic epithelial cells, as no reactivity was observed in any other component. Immunohistochemical staining of cancerous epithelial cells was more intense than that of normal or benign epithelial cells.

-4-

20 Dr. Horoszewicz also reported detection of immunoreactive material using 7E11-C5 in serum of prostatic cancer patients (8). The immunoreactivity was detectable in nearly 60% of patients with stage D-2 disease and in a slightly lower percentage of patients with earlier stage disease, but the numbers of patients 25 in the latter group are small. Patients with benign prostatic hyperplasia (BPH) were negative. with no apparent disease were negative, but 50-60% of ... patients in remission yet with active stable disease or 30 progression demonstrated positive reactivity. Patients with non prostatic tumors did not show immunoreactivity with 7E11-C5.

The 7E11-C5 monoclonal antibody is currently in clinical trials. The aldehyde groups of the antibody were oxidized and the linker-chelator glycol-tyrosyl(n, ε-diethylenetriamine-pentacetic acid)-lysine (GYK-

5

10

15

20

-5-

DTPA) was coupled to the reactive aldehydes of the heavy chain (10). The resulting antibody was designated CYT-356. Immunohistochemical patterns were similar except that the CYT-356 modified antibody stained skeletal muscle. The comparison of CYT-356 with 7E11-C5 monoclonal antibody suggested both had binding to type 2 muscle fibers. The reason for the discrepancy with the earlier study, which reported skeletal muscle to be negative, was suggested to be due to differences in tissue fixation techniques. Still, the most intense and definite reaction was observed with prostatic epithelial cells, especially cancerous Reactivity with mouse skeletal muscle was detected with immunohistochemistry but not in imaging The Indium 111-labeled antibody localized to LNCaP tumors grown in nude mice with an uptake of nearly 30% of the injected dose per gram tumor at four In-vivo, no selective retention of the antibody was observed in antigen negative tumors such as PC-3 and DU-145, or by skeletal muscle. Very little was known about the PSM antigen. An effort at purification and characterization has been described at meetings by Dr. George Wright and colleagues (11, 12).

5

BRIEF DESCRIPTION OF THE FIGURES

Figure 1: Signal in lane 2 represent the 100kD PSM antigen. The EGFr was used as the positive control and is shown in lane 1. Incubation with rabbit antimouse (RAM) antibody alone served as negative control and is shown in lane 3.

10 Figures 2A-2D: Upper two photos show LNCaP cytospins staining positively for PSM antigen.

Lower left in DU-145 and lower right is PC-3 cytospin, both negative for PSM antigen expression.

Figures 3A-3D: Upper two panels are human prostate sections (BPH) staining positively for PSM antigen. The lower two panels show invasive prostate carcinoma human sections staining positively for expression of the PSM antigen.

Figure 4: 100kD PSM antigen following immunoprecipitation of ³⁵S-Methionine labelled LNCaP cells with Cyt-356 antibody.

Figure 5: 3% agarose gels stained with Ethidium bromide revealing PCR products obtained using the degenerate PSM antigen primers. The arrow points to sample IN-20, which is a 1.1 kb PCR product which was later confirmed to be a partial cDNA coding for the PSM gene.

Figures 6A-6B: 2% agarose gels of plasmid DNA

resulting from TA cloning of PCR products. Inserts are excised from the PCR II vector (Invitrogen Corp.) by digestion with EcoRI. 1.1 kb PSM gene partial cDNA product is shown in lane 3 of gel 1.

5

10

15

Figure 7: Autoradiogram showing size of cDNA represented in applicants' LNCaP library using M-MLV reverse transcriptase.

Figure 8:

Restriction analysis of full-length clones of PSM gene obtained after screening cDNA library. Samples have been cut with Not I and Sal I restriction enzymes to liberate the insert.

20 Figure 9:

Plasmid Southern autoradiogram of full length PSM gene clones. Size is approximately 2.7 kb.

Figure 10:

Northern blot revealing PSM expression limited to LNCaP prostate cancer line and H26 Ras-transfected LNCaP cell line. PC-3, DU-145, T-24, SKRC-27, HELA, MCF-7, HL-60, and others were are all negative.

(kb), and 28S and 18S ribosomal RNA

30

25

Figure 11: Autoradiogram of Northern analysis revealing expression of 2.8 kb PSM message unique to the LNCaP cell line (lane 1), and absent from the DU-145 (lane 2) and PC-3 cell lines (lane 3). RNA size ladder is shown on the left

35

-8-

bands are indicated on the right.

Figures 12A-12B:

Results of PCR of human prostate 5 tissues using PSM gene primers. Lanes are numbered from left to right. Lane 1, LNCaP; Lane 2, H26; Lane 3, DU-145; Lane 4, Normal Prostate; Lane 5, BPH; Lane 6, Prostate Cancer; Lane 7, BPH; 10 Lane 8, Normal; Lane 9, BPH; Lane 10, BPH; Lane 11, BPH; Lane 12, Normal; Lane 13, Normal; Lane 14, Cancer; Lane 15, Cancer; Lane 16, Cancer; Lane 17, Normal; Lane 18, Cancer; Lane 19, IN-20 Control; Lane 20, PSM cDNA 15

Figure 13: Isoelectric point of PSM antigen (non-glycosylated)

20 Figures 14:1-8 Secondary structure of PSM antigen

Figures 15A-15B:

A. Hydrophilicity plot of PSM antigen
B. Prediction of membrane spanning segments

Figures 16:1-11

25

30

35

Homology with chicken, rat and human transferrin receptor sequence.

Figures 17A-17C:

Immunohistochemical detection of PSM antigen expression in prostate cell lines. Top panel reveals uniformly high level of expression in LNCaP cells; middle panel and lower panel are DU-145 and PC-3 cells respectively,

both negative.

Figure 18: Autoradiogram of protein gel revealing products of PSM coupled in-vitro transcription/translation. Non-glycosylated PSM polypeptide is seen at 84 kDa (lane 1) and PSM glycoprotein synthesized following the addition of microsomes is seen at 100 kDa (lane 2).

10

Figure 19: Western Blot analysis detecting PSM expression in transfected expressing PC-3 cells. 100 kDa PSM glycoprotein species is clearly seen in LNCaP membranes (lane 1), LNCaP crude lysate (lane 2), and PSM-transfected PC-3 cells (lane 4). undetectable in native PC-3 cells (lane 3).

20

25

30

15

Figure 20: Autoradiogram of ribonuclease protection gel assaying for PSM mRNA expression in normal human tissues. Radiolabeled 1 kb DNA ladder (Gibco-BRL) is shown in lane 1. Undigested probe is 400 nucleotides (lane expected protected PSM band is nucleotides, and tRNA control is shown (lane 3). A strong signal is seen in human prostate (lane 11), with very faint, but detectable signals seen in human brain (lane 4) and human salivary gland (lane 12).

35 Figure 21:

Autoradiogram of ribonuclease protection gel assaying for PSM mRNA expression in LNCaP tumors grown in

5

10

15

25

30

35

nude mice, and in human prostatic tissues. 32P-labeled 1 kb DNA ladder is shown in lane 1. 298 nucleotide undigested probe is shown (lane 2), and tRNA control is shown (lane 3). mRNA expression is clearly detectable in LNCaP cells (lane 4), orthotopically grown LNCaP tumors in nude mice with and without matrigel (lanes 5 and 6), and subcutaneously implanted and grown LNCaP tumors in nude mice (lane 7). PSM mRNA expression is also seen in normal human prostate (lane 8), and in moderately differentiated prostatic adenocarcinoma (lane 10). Very faint expression is seen in a sample of human prostate tissue with benign hyperplasia (lane 9).

20 Figure 22:

Ribonuclease protection assay for PSM expression in LNCaP cells treated with physiologic doses of various steroids for 24 hours. 32P-labeled DNA ladder is shown in lane 1. 298 nucleotide undigested probe is shown (lane 2), and tRNA control is shown (lane 3). mRNA expression is highest in untreated LNCaP cells in charcoal-stripped media (lane 4). Applicant see significantly diminished PSM expression in LNCaP cells treated with DHT (lane 5). Testosterone (lane 6), Estradiol (lane 7), and Progesterone (lane 8), with little response to Dexamethasone (lane 9).

Figure 23:

Data illustrating results of PSM DNA

-11-

and RNA presence in transfect Dunning cell lines employing Southern and Northern blotting techniques

5 Figures 24A-24B:

10

15

Figure A indicates the power of cytokine transfected cells to teach unmodified cells. Administration was directed to the parental flank or prostate cells. The results indicate the microenvironment considerations.

Figure B indicates actual potency at a particular site. The tumor was implanted in prostate cells and treated with immune cells at two different sites.

Figures 25A-25B:

Relates potency of cytokines in inhibiting growth of primary tumors.

Animals administered un-modified parental tumor cells and administered as a vaccine transfected cells.

Following prostatectomy of rodent tumor results in survival increase.

Figure 26: PCR amplification with nested primers improved the level of detection of prostatic cells from approximately one prostatic cell per 10,000 MCF-7 cells to better than one cell per million MCF-7 cells, using either PSA.

Figure 27: PCR amplification with nested primers improved the level of detection of prostatic cells from approximately one

-12-

prostatic cell per 10,000 MCF-7 cells to better than one cell per million MCF-7 cells, using PSM-derived primers.

Figure 28: A representative ethidium stained gel photograph for PSM-PCR. Samples run in lane A represent PCR products generated from the outer primers and samples in lanes labeled B are products of inner

10 primer pairs.

Figure 29: PSM Southern blot autoradiograph. The sensitivity of the Southern blot analysis exceeded that of ethidium staining, as can be seen in several samples where the outer product is not visible on figure 3, but is detectable by Southern blotting as shown in figure

4.

Figure 30: Characteristics of the 16 patients analyzed with respect to their clinical stage, treatment, serum PSA and PAP values, and results of assay.

Figures 31A-31D:

15

20

25

30

35

The DNA sequence of the 3 kb XhoI fragment of p683 which includes 500 bp of DNA from the RNA start site was determined Sequence 683XFRVS starts from the 5' distal end of PSM promoter.

Figure 32: Potential binding sites on the PSM promoter.

Figure 33: Promoter activity of PSM up-stream fragment/CAT gene chimera.

Figure 34:

Comparison between PSM and PSM' cDNA. Sequence of the 5' end of PSM cDNA (5) is shown. Underlined region denotes nucleotides which are present in PSM cDNA sequence but absent in PSM' cDNA. Boxed region represents the putative transmembrane domain of PSM antigen.

* Asterisk denotes the putative translation initiation site for PSM'.

10

15

5

Figure 35:

Graphical representation of PSM and PSM' cDNA sequences and antisense PSM RNA probe (b). PSM cDNA sequence with complete coding region (5). (a) PSM' cDNA sequence from this study. (c) Cross hatched and open boxes denote sequences identity in PSM and PSM'. Hatched box indicates sequence absent from PSM'. Regions of cDNA sequence complementary to the antisense probe are indicated by dashed lines between the sequences.

20

Figure 36:

RNase protection assay with PSM specific probe in primary prostatic Total cellular RNA was isolated from human prostatic samples: normal prostate, BPH, and CaP. PSM and PSM' spliced variants are indicated with arrows at right. The left lane is a DNA ladder. Samples from different patients are classified as: lanes 3-6, CaP, carcinoma of prostate; BPH, benign prostatic hypertrophy, lanes 7-9: normal, normal prostatic tissue, lanes Autoradiograph was exposed for longer period to read lanes 5 and 9.

30

25

35

WO 96/26272

-14-

PCT/US96/02424

Figure 37: Tumor Index, a quantification of the expression of PSM and PSM'. Expression of PSM and PSM' (Fig.3) was quantified by densitometry and expressed as a ratio of PSM/PSM' on the Y-axis. Three samples each were quantitated for primary CaP, BPH and normal prostate tissues. Two samples were quantitated for LNCaP. Normal, normal prostate tissue.

Figure 38: Characterization of PSM membrane bound and PSM' in the cytosol.

15 Figure 39: Intron 1F: Forward Sequence. Intron 1 contains a number of trinucleotide repeats which can be area associated with chromosomal instability in tumor cells. LNCaP cells and primary prostate tissue are identical, however in the PC-3 and Du-145 tumors they have substantially altered levels of these trinucleotide repeats which may relate to their lack of expression of PSM.

Figures 40A-40B:

30

Intron 1R: Reverse Sequence

Figure 41: Intron 2F: Forward Sequence

Figure 42: Intron 2R: Reverse Sequence

Figures 43A-43B:

Intron 3F: Forward Sequence

35 Figures 44A-44B:

Intron 3R: Reverse Sequence

Figures 45A-45B:

-15-

Intron 4F: Forward Sequence

Figures 46A-46B:

Intron 4R: Reverse Sequence

5

Figures 47A-47D:

Sequence of the genomic region upstream of the 5' transcription start site of PSM.

10

15

Figure 48:

Photograph of ethidium bromide stained gel depicting representative negative and positive controls used in the 1-5 Samples study. were respectively: male with prostatis, a healthy female volunteer, a male with BPH, a control 1:1,000,000 dilution of LNCaP cells, and a patient with renal cell carcinoma. Below each reaction is the corresponding control reaction with beta-2-microglobulin performed primers to assure RNA integrity. PCR products were detected for any of these negative controls.

20

25

Figure 49:

Photograph of gel displaying representative positive PCR results using PSM primers in selected patients with either localized or disseminated prostate cancer. Sample 1-5 were from. respectively: a patient with clinically localized stage Tl, disease, a radical patient with prostatectomy organ confined disease and a negative serum PSA, a radical prostatectomy patient with locally advanced disease and a negative serum PSA, a patient with

35

30

-16-

treated stage D2 disease, and a patient with treated hormone refractory disease.

- 5 Figure 50: Chromosomal location of PSM based on cosmid construction.
- Figure 51: Human monochromosomal somatic cell hybrid blot showing that chromosome 11 contained the PSM genetic sequence by Southern analysis. DNA panel digested with PstI restriction enzyme and probed with PSM cDNA. Lanes M and H refer to mouse and hamster DNAs. The numbers correspond to the human chromosomal DNA in that hybrid.
- Figure 52: Ribonuclease protection assay using PSM radiolabeled RNA probe revels an abundant PSM mRNA expression in AT6.1-11 clone 1, but not in AT6.1-11 clone 2, thereby mapping PSM to 11p11.2-13 region.
- 25 Figure 53: Tissue specific expression of PSM RNA by Northern blotting and RNAse protection assay.
- Figure 54: Mapping of the PSM gene to the 11p11.2p13 region of human chromosome 11 by
 southern blotting and in-situ
 hybridization.
- Figure 55: Schematic of potential response elements.
 - Figure 56: Genomic organization of PSM gene.

-17-

Figure 57: Schematic of metastatic prostate cell

Figure 58A-58C:

Nucleic acid of PSM genomic DNA is read

5 prime away from the transcription
start site: number on the sequences
indicates nucleotide upstream from the
start site. Therefore, nucleotide #121

10 is actually -121 using conventional
numbering system.

Figure 59:

Representation of NAAG 1, acividin, azotomycin, and 6-diazo-5-oxonorleucine, DON.

Figure 60:

Preparation of N20 acetylaspartylglutamate, NAAG 1.

Figure 61:

Synthesis of N-acetylaspartylglutamate, NAAG 1.

25

Figure 62:

Synthesis of N-phosphonoacetylaspartyl-L-glutamate.

30 Figure 63:

Synthesis of 5-diethylphosphonon-2 amino benzylvalerate intermediate.

Figure 64:

35 Synthesis of analog 4 and 5.

Figure 65:

-18-

Representation of DON, analogs 17-20.

5 Figure 66:

Substrates for targeted drug delivery, analog 21 and 22.

Figure 67:

Dynemycin A and its mode of action.

Figure 68:

Synthesis of analog 28.

15 Figure 69:

Synthesis for intermediate analog 28.

Figure 70:

Attachment points for PALA.

20

Figure 71:

Mode of action for substrate 21.

Figures 72A-72D:

25 Intron 1F: Forward Sequence.

Figures 73A-73E:

Intron 1R: Reverse Sequence

30 Figures 74A-74C:

Intron 2F: Forward Sequence

Figures 75A-75C:

Intron 2R: Reverse Sequence

35

Figures 76A-76B:

Intron 3F: Forward Sequence

-19-

Figures 77A-77B:

Intron 3R: Reverse Sequence

5 Figures 78A-78C:

Intron 4F: Forward Sequence

Figures 79A-79E:

Intron 4RF: Reverse Sequence

10

15

20

25

30

Figure 80:

PSM genomic organization of the exons and 19 intron junction sequences. The exon/intron junctions (See Example 15) are as follows:

- Exon /intron 1 at bp 389-390;
- Exon /intron 2 at bp 490-491;
- Exon /intron 3 at bp 681-682;
- 4. Exon /intron 4 at bp 784-785;
- 5. Exon /intron 5 at bp 911-912;
- Exon /intron 6 at bp 1096-1097;
- 7. Exon /intron 7 at bp 1190-1191;
- 8. Exon /intron 8 at bp 1289- 1290;
- 9. Exon /intron 9 at bp 1375-1376;
- 10. Exon /intron 10 at bp 1496-1497;
 - 11. Exon /intron 11 at bp 1579-1580;
 - 12. Exon /intron 12 at bp 1640-1641;
 - 13. Exon /intron 13 at bp 1708-1709;
 - 14. Exon /intron 14 at bp 1803-1804;
 - 15. Exon /intron 15 at bp 1892-1893;
 - 16. Exon /intron 16 at bp 2158-2159;
 - 17. Exon /intron 17 at bp 2240-2241;
 - 18. Exon /intron 18 at bp 2334-2335;
 - 19. Exon /intron 19 at bp 2644-2645.

35

5

SUMMARY OF THE INVENTION

This invention provides an isolated mammalian nucleic acid molecule encoding an alternatively spliced prostate-specific membrane (PSM') antigen.

This invention provides an isolated nucleic acid molecule encoding a prostate-specific membrane antigen promoter. This invention provides a method of detecting hematogenous micrometastic tumor cells of a subject, and determining prostate cancer progression in a subject.

WO 96/26272

5

Detailed Description of the Invention

Throughout this application, references to specific nucleotides are to nucleotides present on the coding strand of the nucleic acid. The following standard abbreviations are used throughout the specification to indicate specific nucleotides:

C=cytosine A=adenosine
T=thymidine G=guanosine

A "gene" means a nucleic acid molecule, the sequence of which includes all the information required for the normal regulated production of a particular protein, including the structural coding sequence, promoters and enhancers.

This invention provides an isolated mammalian nucleic acid encoding an alternatively spliced prostate-specific membrane (PSM') antigen.

This invention provides an isolated mammalian nucleic acid encoding a mammalian prostate-specific membrane (PSM) antigen.

25

30

35

15

20

This invention further provides an isolated mammalian DNA molecule of an isolated mammalian nucleic acid molecule encoding an alternatively spliced prostatespecific membrane antigen. This invention also provides an isolated mammalian cDNA molecule encoding a mammalian alternatively spliced prostate-specific membrane antigen. This invention provides an isolated mammalian RNA molecule encoding mammalian alternatively spliced prostate-specific cytosolic antigen.

This invention further provides an isolated mammalian

DNA molecule of an isolated mammalian nucleic acid molecule encoding a mammalian prostate-specific membrane antigen. This invention also provides an isolated mammalian cDNA molecule encoding a mammalian prostate-specific membrane antigen. This invention provides an isolated mammalian RNA molecule encoding a mammalian prostate-specific membrane antigen.

In the preferred embodiment of this invention, the isolated nucleic sequence is cDNA from human as shown in Figures 47A-47D. This human sequence was submitted to GenBank (Los Alamos National Laboratory, Los Alamos, New Mexico) with Accession Number, M99487 and the description as PSM, Homo sapiens, 2653 base-pairs.

15

20

25

30

35

5

10

This invention also encompasses DNAs and cDNAs which encode amino acid sequences which differ from those of PSM or PSM' antigen, but which should not produce phenotypic changes. Alternatively, this invention also encompasses DNAs and cDNAs which hybridize to the DNA and cDNA of the subject invention. Hybridization methods are well known to those of skill in the art.

For example, high stringent hybridization conditions are selected at about 5° C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a Typically, perfectly matched probe. stringent the those in which conditions will be concentration is at least about 0.02 molar at pH 7 and the temperature is at least about 60°C. As other factors may significantly affect the stringency of among including, others, hybridization, composition and size of the complementary strands, the presence of organic solvents, ie. salt or formamide WO 96/26272

5

25

30

concentration, and the extent of base mismatching, the combination of parameters is more important than the absolute measure of any one. For Example high stringency may be attained for example by overnight hybridization at about 68°C in a 6x SSC solution, washing at room temperature with 6x SSC solution, followed by washing at about 68°C in a 6x SSC in a 0.6x SSX solution.

10 Hybridization with moderate stringency may be attained for example by: 1) filter pre-hybridizing and hybridizing with a solution of 3x sodium chloride, sodium citrate (SSC), 50% formamide, 0.1M Tris buffer Ph 7.5, 5x Denhardt's solution; at hybridization at 37°C for 4 hours; 3) hybridization at 15 37°C with amount of labelled probe equal to 3,000,000 cpm total for 16 hours; 4) wash in 2x SSC and 0.1% SDS solution; 5) wash 4x for 1 minute each at room temperature at 4x at 60°C for 30 minutes each; and 6) 20 dry and expose to film.

The DNA molecules described and claimed herein are useful for the information which they provide concerning the amino acid sequence of the polypeptide and as products for the large scale synthesis of the polypeptide by a variety of recombinant techniques. The molecule is useful for generating new cloning and expression vectors, transformed and transfected prokaryotic and eukaryotic host cells, and new and useful methods for cultured growth of such host cells capable of expression of the polypeptide and related products.

Moreover, the isolated mammalian nucleic acid molecules encoding a mammalian prostate-specific membrane antigen and the alternatively spliced PSM' are useful for the development of probes to study the tumorigenesis of

PCT/US96/02424

5

20

25

30

35

prostate cancer.

This invention also provides an isolated nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of a nucleic acid molecule encoding the prostate-specific membrane antigen or the alternatively spliced prostate specific membrane antigen.

This nucleic acid molecule produced can either be DNA or RNA. As used herein, the phrase "specifically hybridizing" means the ability of a nucleic acid molecule to recognize a nucleic acid sequence complementary to its own and to form double-helical segments through hydrogen bonding between complementary base pairs.

This nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of a nucleic acid molecule encoding the prostate-specific membrane antigen can be used as a probe. Nucleic acid probe technology is well known to those skilled in the art who will readily appreciate that such probes may vary greatly in length and may be labeled with a detectable label, such as a radioisotope or fluorescent dye, to facilitate detection of the probe. DNA probe molecules may be produced by insertion of a DNA molecule which encodes PSM antigen into suitable vectors, such as plasmids or bacteriophages, followed by transforming into suitable bacterial host cells, replication in the transformed bacterial host cells and harvesting of the DNA probes, using methods well known in the art. Alternatively, probes may be generated chemically from DNA synthesizers.

RNA probes may be generated by inserting the PSM antigen molecule downstream of a bacteriophage promoter

-25-

such as T3, T7 or SP6. Large amounts of RNA probe may be produced by incubating the labeled nucleotides with the linearized PSM antigen fragment where it contains an upstream promoter in the presence of the appropriate RNA polymerase.

5

10

This invention also provides a nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of a nucleic acid molecule which is complementary to the mammalian nucleic acid molecule encoding a mammalian prostate-specific membrane antigen. This molecule may either be a DNA or RNA molecule.

The current invention further provides a method of 15 detecting the expression of a mammalian PSM or PSM' antigen expression in a cell which comprises obtaining total mRNA from the cell, contacting the mRNA so obtained with a labelled nucleic acid molecule of at 20 nucleotides least 15 capable of specifically hybridizing with a sequence of the nucleic acid molecule encoding a mammalian PSM or PSM' antigen under hybridizing conditions, determining the presence of mRNA hybridized to the molecule and thereby detecting 25 the expression of the mammalian prostate-specific membrane antigen in the cell. The nucleic acid molecules synthesized above may be used to detect expression of a PSM or PSM' antigen by detecting the presence of mRNA coding for the PSM antigen. 30 mRNA from the cell may be isolated by many procedures well known to a person of ordinary skill in the art. The hybridizing conditions of the labelled nucleic acid molecules may be determined by routine experimentation well known in the art. The presence of mRNA hybridized 35 to the probe may be determined by gel electrophoresis or other methods known in the art. By measuring the amount of the hybrid made, the expression of the PSM

antigen by the cell can be determined. The labeling may be radioactive. For an example, one or more radioactive nucleotides can be incorporated in the nucleic acid when it is made.

5

10

15

In one embodiment of this invention, nucleic acids are extracted by precipitation from lysed cells and the mRNA is isolated from the extract using an oligo-dT column which binds the poly-A tails of the mRNA mRNA is then exposed The molecules (13). radioactively labelled probe on a nitrocellulose membrane, and the probe hybridizes to and thereby labels complementary mRNA sequences. Binding may be autoradiography luminescence detected by However, other methods for scintillation counting. performing these steps are well known to those skilled in the art, and the discussion above is merely an example.

This invention further provides another method to 20 detect expression of a PSM or PSM' antigen in tissue sections which comprises contacting the tissue sections with a labelled nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of nucleic acid molecules encoding a mammalian 25 PSM antigen under hybridizing conditions, determining the presence of mRNA hybridized to the molecule and thereby detecting the expression of the mammalian PSM or PSM' antigen in tissue sections. The probes are also useful for in-situ hybridization or in order to 30 locate tissues which express this gene, or for other hybridization assays for the presence of this gene or its mRNA in various biological tissues. hybridization using a labelled nucleic acid molecule is well known in the art. Essentially, tissue sections 35 are incubated with the labelled nucleic acid molecule to allow the hybridization to occur. The molecule will

-27-

carry a marker for the detection because it is "labelled", the amount of the hybrid will be determined based on the detection of the amount of the marker and so will the expression of PSM antigen.

5

10

15

20

25

30

35

This invention further provides isolated PSM or PSM' antigen nucleic acid molecule operatively linked to a promoter of RNA transcription. The isolated PSM or PSM' antigen sequence can be linked to vector systems. Various vectors including plasmid vectors, cosmid vectors, bacteriophage vectors and other viruses are well known to ordinary skilled practitioners. This invention further provides a vector which comprises the isolated nucleic acid molecule encoding for the PSM or PSM' antigen.

As an example to obtain these vectors, insert and vector DNA can both be exposed to a restriction enzyme to create complementary ends on both molecules which base pair with each other and are then ligated together with DNA ligase. Alternatively, linkers can be ligated to the insert DNA which correspond to a restriction site in the vector DNA, which is then digested with the restriction enzyme which cuts at that site. Other means are also available and known to an ordinary skilled practitioner.

In an embodiment, the PSM sequence is cloned in the Not I/Sal I site of pSPORT/vector (Gibco® - BRL). This plasmid, p55A-PSM, was deposited on August 14, 1992 with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A. under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganism for the Purposes of Patent Procedure. Plasmid, p55A-PSM, was accorded ATCC Accession Number 75294.

5

10

20

25

30

This invention further provides a host vector system for the production of a polypeptide having the biological activity of the prostate-specific membrane These vectors may be transformed into a suitable host cell to form a host cell vector system for the production of a polypeptide having the biological activity of PSM antigen.

Regulatory elements required for expression include promoter sequences to bind RNA polymerase initiation sequences for ribosome transcription For example, a bacterial expression vector binding. includes a promoter such as the lac promoter and for transcription initiation the Shine-Dalgarno sequence and the start codon AUG (14). Similarly, a eukaryotic 15 expression vector includes a heterologous or homologous RNA polymerase II, for a downstream polyadenylation signal, the start codon AUG, and a termination codon for detachment of the ribosome. Such vectors may be obtained commercially or assembled from the sequences described by methods well known in the art, for example the methods described above for constructing vectors in general. Expression vectors are useful to produce cells that express the PSM antigen.

> This invention further provides an isolated DNA or cDNA molecule described hereinabove wherein the host cell is selected from the group consisting of bacterial cells (such as <u>E.coli</u>), yeast cells, fungal cells, insect cells and animal cells. Suitable animal cells include, but are not limited to Vero cells, HeLa cells, Cos cells, CV1 cells and various primary mammalian cells.

This invention further provides a method of producing 35 a polypeptide having the biological activity of the prostate-specific membrane antigen which comprising

-29-

growing host cells of a vector system containing the PSM antigen sequence under suitable conditions permitting production of the polypeptide and recovering the polypeptide so produced.

5

This invention provides a mammalian cell comprising a DNA molecule encoding a mammalian PSM or PSM' antigen, such as a mammalian cell comprising a plasmid adapted for expression in a mammalian cell, which comprises a DNA molecule encoding a mammalian PSM antigen and the regulatory elements necessary for expression of the DNA in the mammalian cell so located relative to the DNA encoding the mammalian PSM or PSM' antigen as to permit expression thereof.

15

20

25

30 `

.35

10

Numerous mammalian cells may be used as hosts, including, but not limited to, the mouse fibroblast cell NIH3T3, CHO cells, HeLa cells, Ltk' cells, Cos cells, etc. Expression plasmids such as that described supra may be used to transfect mammalian cells by methods well known in the art such as calcium phosphate precipitation, electroporation or DNA encoding the mammalian PSM antigen may be otherwise introduced into mammalian cells, e.g., by microinjection, to obtain mammalian cells which comprise DNA, e.g., cDNA or a plasmid, encoding a mammalian PSM antigen.

This invention provides a method for determining whether a ligand can bind to a mammalian prostate-specific membrane antigen which comprises contacting a mammalian cell comprising an isolated DNA molecule encoding a mammalian prostate-specific membrane antigen with the ligand under conditions permitting binding of ligands to the mammalian prostate-specific membrane antigen, and thereby determining whether the ligand binds to a mammalian prostate-specific membrane antigen.

-30-

PCT/US96/02424

This invention further provides ligands bound to the mammalian PSM or PSM' antigen.

This invention also provides a therapeutic agent comprising a ligand identified by the above-described method and a cytotoxic agent conjugated thereto. The cytotoxic agent may either be a radioisotope or a toxin. Examples of radioisotopes or toxins are well known to one of ordinary skill in the art.

10

15

20

25

30

35

5

WO 96/26272

This invention also provides a method of imaging prostate cancer in human patients which comprises administering to the patients at least one ligand identified by the above-described method, capable of binding to the cell surface of the prostate cancer cell and labelled with an imaging agent under conditions permitting formation of a complex between the ligand and the cell surface PSM or PSM' antigen. invention further provides a composition comprising an effective imaging agent of the PSM OR PSM' antigen ligand and a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are well known to one of ordinary skill in the art. For an example, such pharmaceutically acceptable carrier can be physiological saline.

Also provided by this invention is a purified mammalian As used herein, the term PSM and PSM' antigen. "purified prostate-specific membrane antigen" shall mean isolated naturally-occurring prostate-specific membrane antiqen or protein (purified from nature or manufactured such that the primary, secondary and tertiary conformation, and posttranslational modifications are identical to naturally-occurring non-naturally occurring well as as polypeptides having a primary structural conformation (i.e. continuous sequence of amino acid residues).

-31-

Such polypeptides include derivatives and analogs.

This invention provides an isolated nucleic acid molecule encoding a prostate-specific membrane antigen promoter. In one embodiment the PSM promoter has at least the sequence as in Figures 58A-58C.

This invention provides an isolated nucleic acid molecule encoding an alternatively spliced prostate-specific membrane antigen promoter.

This invention further provides a polypeptide encoded by the isolated mammalian nucleic acid sequence of PSM and PSM' antigen.

15

20

25

30

35

10

5

It is believed that there may be natural ligand interacting with the PSM or PSM' antigen. invention provides a method to identify such natural ligand or other ligand which can bind to the PSM or antigen. A method to identify the ligand comprises a) coupling the purified mammalian PSM or PSM' antigen to a solid matrix, b) incubating the coupled purified mammalian PSM or PSM' protein with the potential ligands under the conditions permitting binding of ligands and the purified PSM or PSM' antigen; c) washing the ligand and coupled purified mammalian PSM or PSM' antigen complex formed in b) to eliminate the nonspecific binding and impurities and finally d) eluting the ligand from the bound purified mammalian PSM or PSM' antigen. The techniques of coupling proteins to a solid matrix are well known in. the art. Potential ligands may either be deduced from the structure of mammalian PSM or PSM' by other empirical experiments known by ordinary skilled practitioners. The conditions for binding may also easily be determined and protocols for carrying such experimentation have long been well documented (15).

WO 96/26272

The ligand-PSM antigen complex will be washed. Finally, the bound ligand will be eluted and characterized. Standard ligands characterization techniques are well known in the art.

-32-

PCT/US96/02424

5 .

10

25

30

35

The above method may also be used to purify ligands from any biological source. For purification of natural ligands in the cell, cell lysates, serum or other biological samples will be used to incubate with the mammalian PSM or PSM' antigen bound on a matrix. Specific natural ligand will then be identified and purified as above described.

With the protein sequence information, antigenic areas may be identified and antibodies directed against these areas may be generated and targeted to the prostate cancer for imaging the cancer or therapies.

This invention provides an antibody directed against the amino acid sequence of a mammalian PSM or PSM' antigen.

This invention provides a method to select specific regions on the PSM or PSM' antigen to generate The protein sequence may be determined antibodies. from the PSM or PSM' DNA sequence. Amino acid sequences may be analyzed by methods well known to those skilled in the art to determine whether they produce hydrophobic or hydrophilic regions in the In the case of cell proteins which they build. membrane proteins, hydrophobic regions are well known to form the part of the protein that is inserted into the lipid bilayer of the cell membrane, hydrophilic regions are located on the cell surface, in Usually, the hydrophilic an aqueous environment. regions will be more immunogenic than the hydrophobic Therefore the hydrophilic amino acid regions.

WO 96/26272

sequences may be selected and used to generate antibodies specific to mammalian PSM antigen. For an example, hydrophilic sequences of the human PSM antigen shown in hydrophilicity plot of Figures 16:1-11 may be easily selected. The selected peptides may be prepared using commercially available machines. As an alternative, DNA, such as a cDNA or a fragment thereof, may be cloned and expressed and the resulting polypeptide recovered and used as an immunogen.

10

15

20

5

Polyclonal antibodies against these peptides may be produced by immunizing animals using the selected peptides. Monoclonal antibodies are prepared using hybridoma technology by fusing antibody producing B cells from immunized animals with myeloma cells and selecting the resulting hybridoma cell line producing the desired antibody. Alternatively, monoclonal antibodies may be produced by in vitro techniques known to a person of ordinary skill in the art. These antibodies are useful to detect the expression of mammalian PSM antigen in living animals, in humans, or in biological tissues or fluids isolated from animals or humans.

- In one embodiment, peptides Asp-Glu-Leu-Lys-Ala-Glu (SEQ ID No.), Asn-Glu-Asp-Gly-Asn-Glu (SEQ ID No.) and Lys-Ser-Pro-Asp-Glu-Gly (SEQ ID No.) of human PSM antigen are selected.
- This invention further provides polyclonal and monoclonal antibody(ies) against peptides Asp-Glu-Leu-Lys-Ala-Glu (SEQ ID No.), Asn-Glu-Asp-Gly-Asn-Glu (SEQ ID No.) and Lys-Ser-Pro-Asp-Glu-Gly (SEQ ID No.).

35

This invention provides a therapeutic agent comprising antibodies or ligand(s) directed against PSM antigen

and a cytotoxic agent conjugated thereto or antibodies linked enzymes which activate prodrug to kill the tumor. The cytotoxic agent may either be a radioisotope or toxin.

5

10

15

20

25

This invention provides a method of imaging prostate cancer in human patients which comprises administering to the patient the monoclonal antibody directed against the peptide of the mammalian PSM or PSM' antigen capable of binding to the cell surface of the prostate cancer cell and labeled with an imaging agent under conditions permitting formation of a complex between the monoclonal antibody and the cell surface prostate-specific membrane antigen. The imaging agent is a radioisotope such as Indium¹¹¹.

This invention further provides a prostate cancer specific imaging agent comprising the antibody directed against PSM or PSM' antigen and a radioisotope conjugated thereto.

This invention also provides a composition comprising an effective imaging amount of the antibody directed against the PSM or PSM' antigen and a pharmaceutically acceptable carrier. The methods to determine effective imaging amounts are well known to a skilled practitioner. One method is by titration using different amounts of the antibody.

This invention further provides an immunoassay for measuring the amount of the prostate-specific membrane antigen in a biological sample comprising steps of a) contacting the biological sample with at least one antibody directed against the PSM or PSM' antigen to form a complex with said antibody and the prostate-specific membrane antigen, and b) measuring the amount of the prostate-specific membrane antigen in said

-35-

biological sample by measuring the amount of said complex. One example of the biological sample is a serum sample.

This invention provides a method to purify mammalian prostate-specific membrane antigen comprising steps of a) coupling the antibody directed against the PSM or PSM' antigen to a solid matrix; b) incubating the coupled antibody of a) with lysate containing prostate-specific membrane antigen under the condition which the antibody and prostate membrane specific can bind; c) washing the solid matrix to eliminate impurities and d) eluting the prostate-specific membrane antigen from the coupled antibody.

15

20

25

30

35

This invention also provides a transgenic nonhuman mammal which comprises the isolated nucleic acid molecule encoding a mammalian PSM or PSM' antigen. This invention further provides a transgenic nonhuman mammal whose genome comprises antisense DNA complementary to DNA encoding a mammalian prostate-specific membrane antigen so placed as to be transcribed into antisense mRNA complementary to mRNA encoding the prostate-specific membrane antigen and which hybridizes to mRNA encoding the prostate specific antigen thereby reducing its translation.

Animal model systems which elucidate the physiological and behavioral roles of mammalian PSM or PSM' antigen are produced by creating transgenic animals in which the expression of the PSM or PSM' antigen is either increased or decreased, or the amino acid sequence of the expressed PSM antigen is altered, by a variety of techniques. Examples of these techniques include, but are not limited to: 1) Insertion of normal or mutant versions of DNA encoding a mammalian PSM or PSM' antigen, by microinjection, electroporation, retroviral

transfection or other means well known to those skilled in the art, into appropriate fertilized embryos in order to produce a transgenic animal (16) or 2) Homologous recombination (17) of mutant or normal, human or animal versions of these genes with the native gene locus in transgenic animals to alter regulation of expression or the structure of these PSM or PSM' antigen sequences. The technique of homologous recombination is well known in the art. It replaces the native gene with the inserted gene and so is useful for producing an animal that cannot express native PSM antigen but does express, for example, an inserted mutant PSM antigen, which has replaced the native PSM antigen in the animal's genome by recombination, resulting in undere xpression of the transporter. Microinjection adds genes to the genome, but does not remove them, and so is useful for producing an animal which expresses its own and added PSM antigens, resulting in over expression of the PSM antigens.

20

25

30

35

15

5

10

One means available for producing a transgenic animal, with a mouse as an example, is as follows: mice are mated, and the resulting fertilized eggs are dissected out of their oviducts. The eggs are stored in an appropriate medium such as Me medium (16). DNA or cDNA encoding a mammalian PSM antigen is purified from a vector by methods well known in the art. Inducible promoters may be fused with the coding region of the DNA to provide an experimental means to regulate expression of the trans-gene. Alternatively or in addition, tissue specific regulatory elements may be fused with the coding region to permit tissue-specific The DNA, in an expression of the trans-gene. appropriately buffered solution, is put microinjection needle (which may be made from capillary tubing using a pipet puller) and the egg to be injected is put in a depression slide. The needle is inserted

-37-

into the pronucleus of the egg, and the DNA solution is injected. The injected egg is then transferred into the oviduct of a pseudopregnant mouse (a mouse stimulated by the appropriate hormones to maintain pregnancy but which is not actually pregnant), where it proceeds to the uterus, implants, and develops to term. As noted above, microinjection is not the only method for inserting DNA into the egg cell, and is used here only for exemplary purposes.

10

15

20

25

30

5

Another use of the PSM antigen sequence is to isolate homologous gene or genes in different mammals. The gene or genes can be isolated by low stringency screening of either cDNA or genomic libraries of different mammals using probes from PSM sequence. The positive clones identified will be further analyzed by DNA sequencing techniques which are well known to an ordinary person skilled in the art. For example, the detection of members of the protein serine kinase family by homology probing.

This invention provides a method of suppressing or modulating metastatic ability of prostate tumor cells, prostate tumor growth or elimination of prostate tumor cells comprising introducing a DNA molecule encoding a prostate specific membrane antigen operatively linked to a 5' regulatory element into a tumor cell of a subject, in a way that expression of the prostate specific membrane antigen is under the control of the regulatory element, thereby suppressing or modulating metastatic ability of prostate tumor cells, prostate tumor growth or elimination of prostate tumor cells. The subject may be a mammal or more specifically a human.

35

In one embodiment, the DNA molecule encoding prostate specific membrane antigen operatively linked to a 5'

regulatory element forms part of a transfer vector which is inserted into a cell or organism. In addition the vector is capable or replication and expression of prostate specific membrane antigen. The DNA molecule encoding prostate specific membrane antigen can be integrated into a genome of a eukaryotic or prokaryotic cell or in a host cell containing and/or expressing a prostate specific membrane antigen.

Further, the DNA molecule encoding prostate specific membrane antigen may be introduced by a bacterial, viral, fungal, animal, or liposomal delivery vehicle. Other means are also available and known to an ordinary skilled practitioner.

15 ·

20

25

30

35

Further, the DNA molecule encoding a prostate specific membrane antigen operatively linked to a promoter or enhancer. A number of viral vectors have been described including those made from various promoters and other regulatory elements derived from virus sources. Promoters consist of short arrays of nucleic acid sequences that interact specifically with cellular proteins involved in transcription. The combination of different recognition sequences and the cellular concentration of the cognate transcription factors determines the efficiency with which a gene is transcribed in a particular cell type.

Examples of suitable promoters include a viral promoter. Viral promoters include: adenovirus promoter, an simian virus 40 (SV40) promoter, a cytomegalovirus (CMV) promoter, a mouse mammary tumor virus (MMTV) promoter, a Malony murine leukemia virus promoter, a murine sarcoma virus promoter, and a Rous sarcoma virus promoter.

Further, another suitable promoter is a heat shock

20

25

30

35

promoter. Additionally, a suitable promoter is a bacteriophage promoter. Examples of suitable bacteriophage promoters include but not limited to, a T7 promoter, a T3 promoter, an SP6 promoter, a lambda promoter, a baculovirus promoter.

Also suitable as a promoter is an animal cell promoter such as an interferon promoter, a metallothionein promoter, an immunoglobulin promoter. A fungal promoter is also a suitable promoter. Examples of fungal promoters include but are not limited to, an ADC1 promoter, an ARG promoter, an ADH promoter, a CYC1 promoter, a CUP promoter, an ENO1 promoter, a GAL promoter, a PHO promoter, a PGK promoter, a GAPDH promoter, a mating type factor promoter. Further, plant cell promoters and insect cell promoters are also suitable for the methods described herein.

This invention provides a method of suppressing or modulating metastatic ability of prostate tumor cells, prostate tumor growth or elimination of prostate tumor cells, comprising introducing a DNA molecule encoding a

prostate specific membrane antigen operatively linked to a 5' regulatory element coupled with a therapeutic DNA into a tumor cell of a subject, thereby suppressing or modulating metastatic ability of prostate tumor cells, prostate tumor growth or elimination of prostate tumor cells. The subject may be a mammal or more specifically a human.

Further, the therapeutic DNA which is coupled to the DNA molecule encoding a prostate specific membrane antigen operatively linked to a 5' regulatory element into a tumor cell may code for a cytokine, viral antigen, or a pro-drug activating enzyme. Other means are also available and known to an ordinary skilled

20

25

30 .

practitioner.

In addition, this invention provides a prostate tumor cell, comprising a DNA molecule isolated from mammalian nucleic acid encoding a mammalian prostate-specific membrane antigen under the control of a prostate specific membrane antigen operatively linked to a 5' regulatory element.

As used herein, DNA molecules include complementary DNA (cDNA), synthetic DNA, and genomic DNA.

This invention provides a therapeutic vaccine for preventing human prostate tumor growth or stimulation of prostate tumor cells in a subject, comprising administering an effective amount to the prostate cell, and a pharmaceutical acceptable carrier, thereby preventing the tumor growth or stimulation of tumor cells in the subject. Other means are also available and known to an ordinary skilled practitioner.

method of detecting invention provides а hematogenous micrometastic tumor cells of a subject, comprising (A) performing nested polymerase chain reaction (PCR) on blood, bone marrow or lymph node samples of the subject using the prostate specific membrane antigen primers or alternatively spliced prostate specific antigen primers, and (B) verifying by DNA sequencing and micrometastases analysis, thereby detecting hematogenous micrometastic tumor cells of the subject. The subject may be a mammal or more specifically a human.

The micrometastatic tumor cell may be a prostatic cancer and the DNA primers may be derived from prostate specific antigen. Further, the subject may be administered with simultaneously an effective amount of

hormones, so as to increase expression of prostate specific membrane antigen. Further, growth factors or cytokine may be administered in separately or in conjunction with hormones. Cytokines include, but are not limited to: transforming growth factor beta, 5 epidermal growth factor (EGF) family, fibroblast growth factors, hepatocyte growth factor, insulin-like growth factors, B-nerve growth factor, platelet-derived growth factor, vascular endothelial growth factor, interleukin 10 1, IL-1 receptor antagonist, interleukin 2, interleukin 3, interleukin 4, interleukin 5, interleukin 6, IL-6 soluble receptor, interleukin 7. interleukin 8. interleukin 9, interleukin 10, interleukin 11, interleukin 12, interleukin 13, angiogenin, chemokines, 15 colony stimulating factors, granulocyte-macrophage colony stimulating factors, erythropoietin, interferon, interferon gamma, leukemia inhibitory factor. oncostatin Μ, pleiotrophin, secretory leukocyte protease inhibitor, stem cell factor, tumor necrosis 20 factors, adhesion molecule, and soluble tumor necrosis factor (TNF) receptors.

This invention provides a method of abrogating the mitogenic response due to transferrin, comprising introducing a DNA molecule encoding prostate specific membrane antigen operatively linked to a 5' regulatory element into a tumor cell, the expression of which gene is directly associated with a defined pathological effect within a multicellular organism, thereby abrogating mitogen response due to transferrin. The tumor cell may be a prostate cell.

25

30

35

This invention provides a method of determining prostate cancer progression in a subject which comprises: a) obtaining a suitable prostate tissue sample; b) extracting RNA from the prostate tissue sample; c) performing a RNAse protection assay on the

PCT/US96/02424

5

10

15

20

25

30

35

RNA thereby forming a duplex RNA-RNA hybrid; d) detecting PSM and PSM' amounts in the tissue sample; e) calculating a PSM/PSM' tumor index, thereby determining prostate cancer progression in the subject. In-situ hyribridization may be performed in conjunction with the above detection method.

This invention provides a method of detecting prostate cancer in a subject which comprises: (a) obtaining from a subject a prostate tissue sample; (b) treating the tissue sample so as to separately recover nucleic acid molecules present in the prostate tissue sample; (c) contacting the resulting nucleic acid molecules single-stranded multiple pairs of oligonucleotide primers, each such pair being capable of specifically hybridizing to the tissue sample, under (d) amplifying any nucleic hybridizing conditions; acid molecules to which a pair of primers hybridizes so as to obtain a double-stranded amplification product; (e) treating any such double-stranded amplification product so as to obtain single-stranded nucleic acid (f) contacting any resulting molecules therefrom; single-stranded nucleic acid molecules with multiple single-stranded labeled oligonucleotide probes, each such probe containing the same label and being capable of specifically hybridizing with such tissue sample, (g) contacting any under hybridizing conditions; resulting hybrids with an antibody to which a marker is attached and which is capable of specifically forming a complex with the labeled-probe, when the probe is present in such a complex, under complexing conditions; (h) detecting the presence of any resulting complexes, the presence thereof being indicative of prostate cancer in a subject.

This invention provides a method of enhancing antibody based targeting of PSM or PSM' in prostate tissue for

diagnosis or therapy of prostate cancer comprising administering to a patient b-FGF in sufficient amount to cause upregulation of PSM or PSM' expression.

This invention provides a method of enhancing antibody based targeting of PSM or PSM' in prostate tissue for diagnosis or therapy of prostate cancer comprising administering to a patient TGF in sufficient amount to cause upregulation of PSM expression or PSM'.

10

15

30

This invention provides a method of enhancing antibody based targeting of PSM or PSM' in prostate tissue for diagnosis or therapy of prostate cancer comprising administering to a patient EGF in sufficient amount to cause upregulation of PSM or PSM' expression.

This invention provides a pharmaceutical composition comprising an effective amount of PSM or the

- alternatively spliced PSM and a carrier or diluent.

 Further, this invention provides a method for administering to a subject, preferably a human, the pharmaceutical composition. Further, this invention provides a composition comprising an amount of PSM or the alternatively spliced PSM and a carrier or diluent.
- 25 Specifically, this invention may be used as a food additive.

The compositions are administered in a manner compatible with the dosage formulation, and in a therapeutically effective amount. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner and are peculiar to each subject.

Suitable regimes for initial administration and booster shots are also variable, but are typified by an initial administration followed by repeated doses at one or

10

15

20

25

30

PCT/US96/02424

more hour intervals by a subsequent injection or other administration.

As used herein administration means a method of administering to a subject. Such methods are well known to those skilled in the art and include, but are not limited to, administration topically, parenterally, orally, intravenously, intramuscularly, subcutaneously or by aerosol. Administration of PSM may be effected continuously or intermittently.

The pharmaceutical formulations or compositions of this invention may be in the dosage form of solid, semisolid, or liquid such as, e.g., suspensions, aerosols Preferably the compositions or the like. administered in unit dosage forms suitable for single administration of precise dosage amounts. compositions may also include, depending on formulation desired, pharmaceutically-acceptable, nontoxic carriers or diluents, which are defined as vehicles commonly used to formulate pharmaceutical compositions for animal or human administration. diluent is selected so as not to affect the biological activity of the combination. Examples of such diluents are distilled water, physiological saline, Ringer's solution, dextrose solution, and Hank's solution. addition, the pharmaceutical composition or formulation may also include other carriers, adjuvants; nontoxic, nontherapeutic, nonimmunogenic stabilizers Effective amounts of such diluent or and the like. carrier are those amounts which are effective to obtain a pharmaceutically acceptable formulation in terms of solubility of components, or biological activity, etc

This invention will be better understood from the Experimental Details which follow. However, one skilled in the art will readily appreciate that the

specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which follow thereafter.

-46-

EXPERIMENTAL DETAILS

EXAMPLE 1:

Materials and Methods: The approach for cloning the gene involved purification of the antigen by immunoprecipitation, and microsequencing of several internal peptides for use in synthesizing degenerate oligonucleotide primers for subsequent use in the polymerase chain reaction (19, 20). A partial cDNA was amplified as a PCR product and this was used as a homologous probe to clone the full-length cDNA molecule from a LNCaP (Lymph Node Carcinoma of Prostate) cell line cDNA plasmid library (8).

15

20

25

30

35

Western Analysis of the PSM Antigen: Membrane proteins were isolated from cells by hypotonic lysis followed by centrifugation over a sucrose density gradient (21). $10-20\mu g$ of LNCaP, DU-145, and PC-3 membrane proteins were electrophoresed through a 10% SDS-PAGE resolving gel with a 4% stacking gel at 9-10 milliamps for 16-18 Proteins were electroblotted onto PVDF membranes (Millipore® Corp.) in transfer buffer (48mM Tris base, 39mM Glycine, 20% Methanol) at 25 volts overnight at 4°C. Membranes were blocked in TSB (0.15M NaCl, 0.01M Tris base, 5% BSA) for 30 minutes at room temperature followed by incubation with $10-15\mu g/ml$ of CYT-356 monoclonal antibody (Cytogen Corp.) for 2 hours. Membranes were then incubated with $10-15\mu g/ml$ immunoglobulin anti-mouse of rabbit Scientific) for 1 hour at room temperature followed by incubation with 125 I-Protein A (Amersham $^{\odot}$) at 1×10^6 cpm/ml at room temperature. Membranes were then washed and autoradiographed for 12-24 hours at -70°C (Figure 1).

Immunohistochemical Analysis of PSM Antigen Expression: avidin-biotin method of immunohistochemical detection was employed to analyze both human tissue sections and cell lines for PSM Antigen expression 5 Cryostat-cut prostate tissue sections (4-6 um (22). thick) were fixed in methanol/acetone for 10 minutes. Cell cytospins were made on glass slides using 50,000 cells/100µl/slide. Samples were treated with 1% hydrogen peroxide in PBS for 10-15 minutes in order to remove any endogenous peroxidase activity. 10 sections were washed several times in PBS, and then incubated with the appropriate suppressor serum for 20 minutes. The suppressor serum was drained off and the sections or cells were then incubated with the diluted CYT-356 monoclonal antibody for 1 hour. Samples were 15 then washed with PBS and sequentially incubated with secondary antibodies (horse or goat immunoglobulins, 1:200 dilution for 30 minutes), and with avidin-biotin complexes (1:25 dilution for 30 minutes). DAB was used 20 as a chromogen, followed by hematoxylin counterstaining and mounting. Frozen sections of prostate samples and duplicate cell cytospins were used as controls for each experiment. As a positive control, the anticytokeratin monoclonal antibody CAM 5.2 was used 25 following the same procedure described above. sections are considered by us to express the PSM antigen if at least 5% of the cells demonstrate immunoreactivity. The scoring system is as follows: 1 = <5%; 2 = 5-19%; 3 = 20-75%; and 4 = >75% positive 30 cells. Homogeneity versus heterogeneity was accounted for by evaluating positive and negative cells in 3-5 high power light microscopic fields (400x), recording the percentage of positive cells among 100-500 cells. The intensity of immunostaining is graded on a 1+ to 4+ 35 scale, where 1+ represents mild, 2-3+ represents moderate, and 4+ represents intense immunostaining as compared to positive controls.

10

20

25

30

35

Immunoprecipitation of the PSM Antigen: 80%-confluent LNCaP cells in 100mm petri dishes were starved in RPMI media without methionine for 2 hours, after which 35S-Methionine was added at $100\mu\text{Ci/ml}$ and the cells were grown for another 16-18 hours. Cells were then washed and lysed by the addition of 1ml of lysis buffer (1% Triton X-100, 50mM Hepes pH 7.5, 10% glycerol, 150mM MgCl₂, lmM PMSF, and lmM EGTA) with incubation for 20 minutes at 4°C. Lysates were pre-cleared by mixing with Pansorbin® cells (Calbiochem®) for 90 minutes at Cell lysates were then mixed with Protein A Sepharose® CL-4B beads (Pharmacia®) previously bound with CYT-356 antibody (Cytogen Corp.) and RAM antibody (Accurate Scientific) for 3-4 hours at 4°C. antibody was used per 3mg of beads per petri dish. Beads were then washed with HNTG buffer (20mM Hepes pH 7.5, 150mM NaCl, 0.1% Triton X-100, 10% glycerol, and 2mM Sodium Orthovanadate), resuspended in sample loading buffer containing &-mercaptoethanol, denatured at 95°C for 5-10 minutes and run on a 10% SDS-PAGE gel with a 4° stacking gel at 10 milliamps overnight. Gels were stained with Coomassie Blue, destained with acetic acid/methanol, and dried down in a vacuum dryer at 60°C. Gels were then autoradiographed for 16-24 hours at -70°C (Figures 2A-2D).

Immunoprecipitation and Peptide Sequencing:

The procedure described above for immunoprecipitation was repeated with 8 confluent petri dishes containing LNCaP cells. 6x10⁷ approximately immunoprecipitation product was pooled and loaded into two lanes of a 10% SDS-PAGE gel and electrophoresed at Proteins hours. for 16 milliamps 9-10 electroblotted onto Nitrocellulose BA-85 membranes (Schleicher and Schuell®) for 2 hours at 75 volts at 4°C in transfer buffer. Membranes were stained with Ponceau Red to visualize the proteins and the 100kD

-49-

protein band was excised, solubilized, and digested proteolytically with trypsin. HPLC was then performed on the digested sample on an Applied Biosystems Model 171C and clear dominant peptide peaks were selected and sequenced by modified Edman degradation on a modified liquid Applied Biosystems post Protein/Peptide Microsequencer (23). Sequencing data on all of the peptides is included within this The amino-terminus of the PSM antigen was document. sequenced by a similar method which involved purifying the antigen by immunoprecipitation and transfer via electro-blotting to a PVDF membrane (Millipore®). Protein was analyzed on an Applied Biosystems Model 477A Protein/Peptide Sequencer and the amino terminus was found to be blocked, and therefore no sequence data could be obtained by this technique.

PSM Antigen Peptide Sequences:

5

10

15

30

35

```
SLYES (W) TK (SEQ ID No.
20
      2T17 #5
                 (S) YPDGXNLPGG(g) VQR (SEQ ID No. )
      2T22 #9
      2T26 #3
                FYDPMFK (SEQ ID No. )
                IYNVIGTL(K) (SEQ ID No. )
      2T27 #4
                FLYXXTQIPHLAGTEQNFQLAK (SEQ ID No. )
      2T34 #6
25
      2T35 #2
                G/PVILYSDPADYFAPD/GVK (SEQ ID No. )
      2T38 #1
                AFIDPLGLPDRPFYR (SEQ ID No.
                YAGESFPGIYDALFDIESK (SEQ ID No.
      2T46 #8
      2T47 #7
                 TILFAS (W) DAEEFGXX (q) STE (e) A (E) ... (SEQ ID No.
       )
```

Notes: X means that no residue could be identified at this position. Capital denotes identification but with a lower degree of confidence. (lower case) means residue present but at very low levels. ... indicates sequence continues but has dropped below detection limit.

All of these peptide sequences were verified to be unique after a complete homology search of the translated Genbank computer database.

Degenerate PCR: Sense and anti-sense 5'unphosphorylated degenerate oligonucleotide primers 17
to 20 nucleotides in length corresponding to portions
of the above peptides were synthesized on an Applied
Biosystems Model 394A DNA Synthesizer. These primers
have degeneracies from 32 to 144. The primers used are
shown below. The underlined amino acids in the
peptides represent the residues used in primer design.

Peptide 3: FYDPMFK (SEQ ID No.)

15

PSM Primer "A" TT(C or T) - TA(C or T) - GA(C or T) - CCX - ATG - TT (SEQ ID No.)

PSM Primer "B" AAC - ATX - GG(A or G) - TC(A or G)
TA(A or G) - AA (SEQ ID No.)

Primer A is sense primer and B is anti-sense. Degeneracy is 32-fold.

25 Peptide 4: IYNVIGTL(R) (SEQ ID No. 6)

PSM Primer "C" AT(T or C or A) - TA(T or C) - AA(T or C) - GTX - AT(T or C or A) - GG (SEQ ID No.)

PSM Primer "D" CC(A or T or G) - ATX - AC(G or A) - TT(A or G) - TA(A or G or T) - AT (SEQ ID No.)

Primer C is sense primer and D is anti-sense. Degeneracy is 144-fold.

Peptide 2: G/PVILYSDPADYFAPD/GVK (SEQ ID No.)

30

PSM Primer "E" CCX - GCX - GA(T or C) - TA(T or C) - TT(T or C) - GC (SEQ ID No.)

PSM Primer "F" GC(G or A) - AA(A or G) - TA(A or G)
TXC - GCX - GG (SEQ ID No.)

Primer E is sense primer and F is antisense primer. Degeneracy is 128-fold.

- 10 Peptide 6: FLYXXTQIPHLAGTEONFOLAK (SEQ ID No.)
 - PSM Primer "I" ACX GA(A or G) CA(A or G) AA(T or C) TT(T or C) CA(A or G) CT (SEQ ID No.)
- PSM Primer "J" AG (T or C)TG (A or G)AA (A or G)TT (T or C)TG (T or C)TC XGT (SEQ ID No.)
 - PSM Primer "K" GA(A or G) CA(A or G) AA(T or C) TT(T or C) CA(A or G) CT (SEQ ID No.)
 - PSM Primer "L" AG (T or C)TG (A or G)AA (A or G)TT (T or C)TG (T or C)TC (SEQ ID No. 22)
- Primers I and K are sense primers and J and L are antisense. I and J have degeneracies of 128-fold and K and L have 32-fold degeneracy.
 - Peptide 7: TILFAS (W) DAEEFGXX (q) STE (e) A (E) ... (SEQ ID No.)
- PSM Primer "M" TGG GA(T or C) GCX GA(A or G) GA(A or G) TT(C or T) GG (SEQ ID No.)
- PSM Primer "N" CC (G or A)AA (T or C)TC (T or C)TC XGC (A or G)TC CCA (SEQ ID No.)
 - PSM Primer "O" TGG GA(T or C) GCX GA(A or G) -

GA(A or G) - TT (SEQ ID No.)

PSM Primer "P" AA - (T or C)TC - (T or C)TC - XGC - (A or G)TC - CCA (SEQ ID No.)

5

15

Primers M and O are sense primers and N and P are antisense. M and N have degeneracy of 64-fold and O and P are 32-fold degenerate.

- Degenerate PCR was performed using a Perkin-Elmer Model 10 480 DNA thermal cycler. cDNA template for the PCR was prepared from LNCaP mRNA which had been isolated by dT chromatography of oligo methods standard The cDNA synthesis was (Collaborative Research). carried out as follows:
 - LNCaP poly A+ RNA (2µg) 4.5μ l Oligo dT primers $(0.5\mu g)$ 1.0μ l

<u>dH,O</u> <u>4.5µl</u>

10µl 20

> Incubate at 68° C x 10 minutes. Quick chill on ice x 5 minutes.

25 Add:

5 x RT Buffer 4 µ l

0.1M DTT 2µ1

10mM dNTPs 1μ l

RNasin (Promega) 0.5μ l 30

> 1.5<u>µl</u> <u>dH</u>,0

 19μ l

Incubate for 2 minutes at 37°C.

Add 1µl Superscript® Reverse Transcriptase (Gibco®-BRL) 35 Incubate for 1 hour at 37°C.

Add $30\mu l$ dH₂O. Use $2\mu l$ per PCR reaction.

Degenerate PCR reactions were optimized by varying the annealing temperatures, Mg++ concentrations, primer concentrations, buffer composition, extension times and number of cycles. The optimal thermal cycler profile was: Denaturation at 94°C x 30 seconds, Annealing at 45-55°C for 1 minute (depending on the mean T_m of the primers used), and Extension at 72°C for 2 minutes.

5µ1 10 x PCR Buffer* 5µ1 2.5mM dNTP Mix 5µ1 Primer Mix (containing 0.5-1.0µg each of and anti-sense primers) 15 sense 5µ1 100mM ß-mercaptoethanol $2\mu l$ LNCaP cDNA template 5µ1 25mM MgCl, (2.5mM final) 21µ1 dH'0 diluted Taq Polymerase $(0.5U/\mu 1)$ 20 $2\mu l$ 50μ l total volume

Tubes were overlaid with 60μ l of light mineral oil and amplified for 30 cycles. PCR products were analyzed by electrophoresing 5μ l of each sample on a 2-3% agarose gel followed by staining with Ethidium bromide and photography.

*10x PCR Buffer 166mM NH₄SO₄ 670mM Tris, pH 8.8 2mg/ml BSA

Representative photographs displaying PCR products are shown in Figure 5.

Cloning of PCR Products: In order to further analyze

10

these PCR products, these products were cloned into a suitable plasmid vector using "TA Cloning" (Invitrogen® Corp.). The cloning strategy employed here is to directly ligate PCR products into a plasmid vector possessing overhanging T residues at the insertion site, exploiting the fact that Taq polymerase leaves overhanging A residues at the ends of the PCR products. The ligation mixes are transformed into competent E. coli cells and resulting colonies are grown up, plasmid DNA is isolated by the alkaline lysis method (24), and screened by restriction analysis (Figures 6A-6B).

DNA Sequencing of PCR Products: TA Clones of PCR products were then sequenced by the dideoxy method (25) using Sequenase (U.S. Biochemical). 3-4µg of each 15 plasmid DNA was denatured with NaOH and ethanol precipitated. Labeling reactions were carried out as per the manufacturers recommendations using 35S-ATP, and the reactions were terminated as per the same protocol. then analyzed Sequencing products were 20 polyacrylamide/7M Urea gels using an IBI sequencing Gels were run at 120 watts for 2 hours. apparatus. Following electrophoresis, the gels were fixed for 15-20 minutes in 10% methanol/10% acetic acid, transferred onto Whatman 3MM paper and dried down in a Biorad® 25 vacuum dryer at 80°C for 2 hours. Gels were then autoradiographed at room temperature for 16-24 hours. In order to determine whether the PCR products were the correct clones, the sequences obtained at the 5' and 3' ends of the molecules were analyzed for the correct 30 primer sequences, as well as adjacent sequences which corresponded to portions of the peptides not used in the design of the primers.

IN-20 was confirmed to be correct and represent a partial cDNA for the PSM gene. In this PCR reaction, I and N primers were used. The DNA sequence reading

from the I primer was:

ACG GAG CAA AAC TTT CAG CTT GCA AAG (SEQ ID No.)

T E O N F Q L A K (SEQ ID No.)

5

10

The underlined amino acids were the portion of peptide 6 that was used to design this sense primer and the remaining amino acids which agree with those present within the peptide confirm that this end of the molecule represents the correct protein (PSM antigen).

When analyzed the other end of the molecule by reading from the N primer the anti-sense sequence was:

15 CTC TTC GGC ATC CCA GCT TGC AAA CAA AAT TGT TCT (SEQ ID No.)

Sense (complementary) Sequence:

AGA ACA ATT TTG TTT GCA AGC TGG GAT GCC AAG GAG (SEQ ID No.)

R T I L F A S W D A E E (SEQ ID No.)

The underlined amino acids here represent the portion of peptide 7 used to create primer N. All of the amino acids upstream of this primer are correct in the IN-20 clone, agreeing with the amino acids found in peptide 7. Further DNA sequencing has enabled us to identify the presence of other PSM peptides within the DNA sequence of the positive clone.

The DNA sequence of this partial cDNA was found to be unique when screened on the Genbank computer database.

35

cDNA Library Construction and Cloning of Full - Length PSM cDNA: A cDNA library from LNCaP mRNA was

-56-

constructed using the Superscript® plasmid system The library was transformed using (BRL®-Gibco). competent DH5- α cells and plated onto 100mm plates containing LB plus $100\mu g/ml$ of Carbenicillin. Plates were grown overnight at 37°C and colonies were transferred to nitrocellulose filters. Filters were processed and screened as per Grunstein and Hogness (26), using the 1.1kb partial cDNA homologous probe which was radiolabelled with 32P-dCTP by random priming Eight positive colonies were obtained which upon DNA restriction and sequencing analysis proved to represent full-length cDNA molecules coding for the PSM antigen. Shown in Figure 7 is an autoradiogram showing the size of the cDNA molecules represented in the library and in Figure 8 restriction analysis of several Figure 9 is a plasmid full-length clones is shown. Southern analysis of the samples in Figure 8, showing that they all hybridize to the 1.1kb partial cDNA probe.

20

5

10

15

Both the cDNA as well as the antigen have been screened through the Genbank Computer database (Human Genome Project) and have been found to be unique.

- Northern Analysis of PSM Gene Expression: Northern analysis (28) of the PSM gene has revealed that expression is limited to the prostate and to prostate carcinoma.
- RNA samples (either 10µg of total RNA or 2µg of poly A+RNA) were denatured and electrophoresed through 1.1% agarose/formaldehyde gels at 60 milliamps for 6-8 hours. RNA was then transferred to Nytran® nylon membranes (Schleicher and Schuell®) by pressure blotting in 10x SSC with a Posi-blotter (Stratagene®).

 RNA was cross-linked to the membranes using a Stratalinker (Stratagene®) and subsequently baked in a

20

25

30

35

vacuum oven at 80°C for 2 hours. Blots were prehybridized at 65°C for 2 hours in prehybridization solution (BRL®) and subsequently hybridized for 16 hours in hybridization buffer (BRL®) containing 1-2 x 10⁶ cpm/ml of ³² P-labelled random-primed cDNA probe. Membranes were washed twice in 1x SSPE/1% SDS and twice in 0.1x SSPE/1% SDS at 42°C. Membranes were then airdried and autoradiographed for 12-36 hours at -70°C.

PCR Analysis of PSM Gene Expression in Human Prostate
Tissues: PCR was performed on 15 human prostate samples
to determine PSM gene expression. Five samples each
from normal prostate tissue, benign prostatic
hyperplasia, and prostate cancer were used (histology
confirmed by MSKCC Pathology Department).

 $10\mu g$ of total RNA from each sample was reverse transcribed to made cDNA template as previously described in section IV. The primers used corresponded to the 5' and 3' ends of the 1.1kb partial cDNA, IN-20, and therefore the expected size of the amplified band is 1.1kb. Since the T_m of the primers is 64°C. PCR primers were annealed at 60°C. PCR was carried out for 35 cycles using the same conditions previously described in section IV.

LNCaP and H26 - Ras transfected LNCaP (29) were included as a positive control and DU-145 as a negative control. 14/15 samples clearly amplified the 1.1kb band and therefore express the gene.

Experimental Results

The gene which encodes the 100kD PSM antigen has been identified. The complete cDNA sequence is shown in Sequence ID #1. Underneath that nucleic acid sequence is the predicted translated amino acid sequence. The total number of the amino acids is 750, ID #2. The

hydrophilicity of the predicted protein sequence is shown in Figures 16:1-11. Shown in Figures 17A-17C are three peptides with the highest point of hydrophilicity. They are: Asp-Glu-Leu-Lys-Ala-Glu (SEQ ID No.); Asn-Glu-Asp-Gly-Asn-Glu (SEQ ID No. ; and Lys-Ser-Pro-Asp-Glu-Gly (SEQ ID No.).

By the method of Klein, Kanehisa and DeLisi, a specific membrane-spanning domain is identified. The sequence is from the amino acid #19 to amino acid #44: Ala-Gly-Ala-Leu-Val-Leu-Aal-Gly-Gly-Phe-Phe-Leu-Leu-Gly-Phe-Leu-Phe (SEQ ID No.).

This predicted membrane-spanning domain was computed on PC Gene (computer software program). This data enables prediction of inner and outer membrane domains of the PSM antigen which aids in designing antibodies for uses in targeting and imaging prostate cancer.

When the PSM antigen sequence with other known sequences of the GeneBank were compared, homology between the PSM antigen sequence and the transferrin receptor sequence were found. The data are shown in Figure 18.

25

35

Experimental Discussions

Potential Uses for PSM Antigen:

30 1. Tumor detection:

Microscopic:

Unambiguous tumor designation can be accomplished by use of probes for different antigens. For prostatic cancer, the PSM antigen probe may prove beneficial. Thus PSM could be used for diagnostic purposes and this could be accomplished at the microscopic level using in-situ hybridization using sense (control) and

10

15

20

antisense probes derived from the coding region of the cDNA cloned by the applicants. This could be used in assessment of local extraprostatic extension. involvement of lymph node, bone or other metastatic As bone metastasis presents a major problem in prostatic cancer, early detection of metastatic spread is required especially for staging. In some tumors detection of tumor cells in bone marrow portends a grim prognosis and suggests that interventions aimed at metastasis be tried. Detection of PSM antigen expression in bone marrow aspirates or sections may provide such early information. PCR amplification or in-situ hybridization may be used. Using RT-PCR cells in the circulating can be detected by hematogenous metastasis.

2. Antigenic site identification

The knowledge of the cDNA for the antigen also provides for the identification of areas that would serve as good antigens for the development of antibodies for use against specific amino acid sequences of the antigen. Such sequences may be at different regions such as outside, membrane or inside of the PSM antigen. The development of these specific antibodies would provide for immunohistochemical identification of the antigen. These derived antibodies could then be developed for use, especially ones that work in paraffin fixed sections as well as frozen section as they have the greatest utility for immunodiagnosis.

30

35

25

3. Restriction fragment length polymorphism and genomic DNA

Restriction fragment length polymorphisms (RFLPS) have proven to be useful in documenting the progression of genetic damage that occurs during tumor initiation and promotion. It may be that RFLP analysis will demonstrate that changes in PSM sequence restriction

mapping may provide evidence of predisposition to risk or malignant potential or progression of the prostatic tumor.

Depending on the chromosomal location of the PSM antigen, the PSM antigen gene may serve as a useful chromosome location marker for chromosome analysis.

4. Serum

With the development of antigen specific antibodies, if the antigen or selected antigen fragments appear in the serum they may provide for a serum marker for the presence of metastatic disease and be useful individually or in combination with other prostate specific markers.

5. Imaging

20

25

30

As the cDNA sequence implies that the antigen has the characteristics of a membrane spanning protein with the majority of the protein on the exofacial surface, antibodies, especially monoclonal antibodies to the peptide fragments exposed and specific to the tumor may provide for tumor imaging local extension of metastatic tumor or residual tumor following prostatectomy or The knowledge of the coding region irradiation. permits the generation of monoclonal antibodies and these can be used in combination to provide for maximal Because the antigen shares a imaging purposes. similarity with the transferrin receptor based on cDNA analysis (approximately 54%), it may be that there is a specific normal ligand for this antigen and that identification of the ligand(s) would provide another means of imaging.

35 6. Isolation of ligands

The PSM antigen can be used to isolate the normal ligand(s) that bind to it. These ligand(s) depending

10

on specificity may be used for targeting, or their serum levels may be predictive of disease status. If it is found that the normal ligand for PSM is a carrier molecule then it may be that PSM could be used to bind to that ligand for therapy purposes (like an iron chelating substance) to help remove the ligand from the circulation. If the ligand promotes tumor growth or metastasis then providing soluble PSM antigen would remove the ligand from binding the prostate. Knowledge of PSM antigen structure could lend to generation of small fragment that binds ligand which could serve the same purpose.

7. Therapeutic uses

- a) Ligands. The knowledge that the cDNA structure of PSM antigen shares structural homology with the transferrin receptor (54% on the nucleic acid level) implies that there may be an endogenous ligand for the receptor that may or may not be transferrin-like.
- Transferrin is thought to be a ligand that transports iron into the cell after binding to the transferrin receptor. However, apotransferrin is being reported to be a growth factor for some cells which express the transferrin receptor (30). Whether transferrin is a
- ligand for this antigen or some other ligand binds to this ligand remains to be determined. If a ligand is identified it may carry a specific substance such as a metal ion (iron or zinc or other) into the tumor and thus serve as a means to deliver toxic_substances
- (radioactive or cytotoxic chemical i.e. toxin like ricin or cytotoxic alkylating agent or cytotoxic prodrug) to the tumor.

The main metastatic site for prostatic tumor is the bone. The bone and bone stroma are rich in transferrin. Recent studies suggest that this microenvironment is what provides the right "soil" for

prostatic metastasis in the bone (31). It may be that this also promotes attachment as well, these factors which reduce this ability may diminish prostatic metastasis to the bone and prostatic metastatic growth in the bone.

It was found that the ligand for the new antigen (thought to be an oncogene and marker of malignant phenotype in breast carcinoma) served to induce differentiation of breast cancer cells and thus could serve as a treatment for rather than promotor of the disease. It may be that ligand binding to the right region of PSM whether with natural ligand or with an antibody may serve a similar function.

15

5

10

Antibodies against PSM antigen coupled with a cytotoxic agent will be useful to eliminate prostate cancer cells. Transferrin receptor antibodies with toxin conjugates are cytotoxic to a number of tumor cells as tumor cells tend to express increased levels of transferrin receptor (32). Transferrin receptors take up molecules into the cell by endocytosis. Antibody drug combinations can be toxic. Transferrin linked toxin can be toxic.

25

30

35

20

b) Antibodies against PSM antigen coupled with a cytotoxic agent will be useful to eliminate prostate cancer cells. The cytotoxic agent may be a radioisotope or toxin as known in ordinary skill of the art. The linkage of the antibody and the toxin or radioisotope can be chemical. Examples of direct linked toxins are doxorubicin, chlorambucil, ricin, pseudomonas exotoxin etc., or a hybrid toxin can be generated % with specificity for PSM and the other % with specificity for the toxin. Such a bivalent molecule can serve to bind to the tumor and the other % to deliver a cytotoxic to the tumor or to bind to and

10

15.

20

activate a cytotoxic lymphocyte such as binding to the T, - T receptor complex. Antibodies of required specificity can also be cloned into T cells and by replacing the immunoglobulin domain of the T cell receptor (TcR); cloning in the desired MAb heavy and light chains; splicing the $\mathbf{U}_{\mathbf{h}}$ and $\mathbf{U}_{\mathbf{L}}$ gene segments with the constant regions of the α and β TCR chains and transfecting these chimeric Ab/TcR genes in patients' T cells, propagating these hybrid cells and infusing them into the patient (33). knowledge of tissue specific antigens for targets and generation of MAb's specific for such targets will help make this a usable approach. Because the PSM antigen coding region provides knowledge of the entire coding region, it is possible to generate a number of antibodies which could then be used in combination to achieve an additive or synergistic anti-tumor action. The antibodies can be linked to enzymes which can activate non-toxic prodrugs at its site of the tumor such as Ab-carboxypeptidase and 4-(bis(2 chloroethyl)amino)benzoyl-α-glutamic acid and its active parent drug in mice (34).

It is possible to produce a toxic genetic chimera such as TP-40 a genetic recombinant that possesses the cDNA from TGF-alpha and the toxic portion of pseudomonas exotoxin so the TGF and portion of the hybrid binds the epidermal growth factor receptor (EGFR) and the pseudomonas portion gets taken up into the cell enzymatically and inactivates the ribosomes ability to perform protein synthesis resulting in cell death.

In addition, once the ligand for the PSM antigen is identified, toxin can be chemically conjugated to the ligands. Such conjugated ligands can be therapeutically useful. Examples of the toxins are daunomycin, chlorambucil, ricin, pseudomonas exotoxin,

-64-

etc. Alternatively, chimeric construct can be created linking the cDNA of the ligand with the cDNA of the toxin. An example of such toxin is $TGF\alpha$ and pseudomonas exotoxin (35).

5

10

15

20

25

8. Others

The PSM antigen may have other uses. It is well known that the prostate is rich in zinc, if the antigen provides function relative to this or other biologic function the PSM antigen may provide for utility in the treatment of other prostatic pathologies such as benign hyperplastic growth and/or prostatitis.

Because purified PSM antigen can be generated, the purified PSM antigen can be linked to beads and use it like a standard "affinity" purification. Serum, urine or other biological samples can be used to incubate with the PSM antigen bound onto beads. The beads may be washed thoroughly and then eluted with salt or pH gradient. The eluted material is SDS gel purified and used as a sample for microsequencing. The sequences will be compared with other known proteins and if unique, the technique of degenerated PCR can be employed for obtaining the ligand. Once known, the affinity of the ligand will be determined by standard protocols (15).

References of Example 1

- Chiaroda, A. (1991) National roundtable of prostate cancer: research directions. Cancer Res. 51: 2498-2505.
 - Coffey, D.S. Prostate Cancer An overview of an increasing dilemma. Cancer Supplement, 71,3: 880-886, 1993.

10

5

- 3. Warner, J.A., et al., (1991) Future developments of non-hormonal systemic therapy for prostatic carcinoma. Urologic Clin. North Amer. 18:25-33.
- 15 4. Nguyen, L., et al., (1990) Prostatic acid phosphatase in the serum of cancer patients with prostatic cancer is a specific phosphotyrosine acid phosphatase. Clin. Chem. 35:1450-1455.
- 5. Henttu, P., et al., (1989) cDNA coding for the entire human prostate specific antigen show high homologies to the human tissue kallikrein genes.

 Bioch. Biophys. Res. Comm. 160:903-908.
- Yong, CY-F., et al., (1991) Hormonal regulation of prostate-specific antigen messenger RNA in human prostatic adenocarcinoma cell line LNCaP. Cancer Res. 51:3748-3752.
- Liotta, L.A. (1986) Tumor invasion and metastases: role of the extracellular matrix. Cancer Res. 46:1-7.
- 8. Horoszewicz, J.S., et al. (1987) Monoclonal
 antibodies to a new antigenic marker in epithelial
 prostatic cells and serum of prostatic cancer
 patients. Anticancer Res. 7:927-936.

-66-

 Horoszewicz, J.S., et al. (1983) LNCaP model of human prostatic carcinoma. Cancer Res., 43:1809-1818.

- 5 10. Lopes, D., et al. (1990) Immunohistochemical and pharmacokinetic characterization of the site-specific immunoconjugate CYT-356, derived from anti-prostate monoclonal antibody 7E11-C5. Cancer Res., 50:6423-6429.
- 10
 11. Wright, Jr., et al., (1990) Characterization of a
 new carcinoma associated marker:7Ell-C5. Antibod.
 Immunoconj. Radiopharm.3:(abst#193).
- 15 12. Feng, Q., et al., (1991) Purification and biochemical characterization of the 7E11-C5 prostate carcinoma associated antigen. Proc. Amer. Assoc. Cancer Res. 32:239.
- 20 13. Axelrod, H.R., et al., Preclinical results and human immunohistochemical studies with 90Y-CYT-356. A New prostate cancer agent. Abstract 596. AUA 87th Annual Meeting, May 10-14, 1992. Washington, D.C.
- 25
 14. Maniatis, T., et al., (1982) Molecular Cloning;
 Cold Spring Harbor Laboratory, pp.197-98 (1982).
- 15. Maniatis, et al., (1982) Molecular Cloning, Cold
 30 Spring Harbor Laboratory.
 - 16. Methods in Enzymology vol. 34: 1-810, 1974 (E) B. Jacoby and M. Wilchek Academic Press, New York 1974.
- 17. Hogan B. et al. (1986) Manipulating the Mouse Embryo, A Laboratory Manual, Cold Spring Harbor

25

35

Laboratory.

- 18. Capecchi M.R. Science (1989) 244:1288-1292;
 Zimmer, A. and Gruss, P. (1989) Nature 338:1505 153.
- 19. Trowbridge, I.S., (1982) Prospects for the clinical use of cytotoxic monoclonal antibodies conjugates in the treatment of cancer. Cancer Surveys 1:543-556.
- 20. Hank, S.K. (1987) Homology probing:
 Identification of cDNA clones encoding members of
 the protein-serine kinase family. Proc. Natl.
 Acad. Sci. 84:388-392.
 - 21. Lee, C.C., et al., (1988) Generation of cDNA probes directed by amino acid sequences: cloning of urate oxidase. Science, 239, 1288.
- 22. Girgis, S.I., et al. (1988) Generation of DNA probes for peptides with highly degenerate codons using mixed primer PCR. Nucleic Acids Res. 16:10932.
 - 23. Kartner, N., et al. (1977) Isolation of plasma membranes from human skin fibroblasts. J. Membrane Biology, 36:191-211.
- 30 24. Hsu, S.M., et al. (1981) Comparative study of the immunoperoxidase, anti-peroxidase, and avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am. J. Pathology, 75:734.
 - 25. Tempst, P., et al. (1989) Examination of automated polypeptide sequencing using standard

phenylisothiocyanate reagent and subpicomole high performance liquid chromatography analysis. Analytical Biochem. 183:290-300.

- 5 26. Birnboim, H.C. (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. Meth. Enzymol, 100:243-255.
- 27. Sanger, F., et al. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74:5463-5467.
- 28. Grunstein, M., et al. (1975) Colony hybridization as a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA, 72:3961.
- 29. Feinberg, A.P., et al. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem, 132, 6.
- 30. Rave, N., et al. (1979) Identification of procollagen mRNAs transferred to diazobenzylomethyl paper from formaldehyde gels.
 Nucleic Acids Research, 6:3559.
- 31. Voeller, H.J., et al. (1991) v-ras^H expression confers hormone-independent in-vitro growth to

 LNCaP prostate carcinoma cells. Molec.
 Endocrinology. Vol. 5. No. 2, 209-216.
- 32. Sirbasku, D.A. (1991) Purification of an equine apotransferrin variant (thyromedin) essential for thyroid hormone dependent growth of GH₁, rat pituitary tumor cells in chemically defined culture. Biochem., 30:295-301.

33. Rossi, M.C. (1992) Selective stimulation of prostatic carcinoma cell proliferation by transferrin. Proc. Natl. Acad. Sci. (USA) 89:6197-6201.

5

10

15

20

- 34. Eshhan, Z. (1990) Chimeric T cell receptor which incorporates the anti-tumor specificity of a monoclonal antibody with the cytolytic activity of T cells: a model system for immunotherapeutic approach. B. J. Cancer 62:27-29.
- 35. Antonie, P. (1990) Disposition of the prodrug 4- (bis(2 chloroethyl) amino)benzoyl-α-glutamic acid and its active parent in mice. B. J. Cancer 62:905-914.
- 36. Heimbrook, D.C., et al. (1990) Transforming growth factor alpha-pseudomonas exotoxin fusion protein prolongs survival of nude mice bearing tumor xenografts. Proc. Natl. Acad. Sci. (USA) 87:4697-4701.
- 37. Chiarodo, A. National Cancer Institute roundtable on prostate cancer; future research directions.

 Cancer Res., 51: 2498-2505, 1991.
- 38. Abdel-Nabi, H., Wright, G.L., Gulfo, J.V., Petrylak, D.P., Neal, C.E., Texter, J.E., Begun, F.P., Tyson, I., Heal, A., Mitchell, E., Purnell, G., and Harwood, S.J. Monoclonal antibodies and radioimmunoconjugates in the diagnosis and treatment of prostate cancer. Semin. Urol., 10: 45-54, 1992.

EXAMPLE 2:

EXPRESSION OF THE PROSTATE SPECIFIC MEMBRANE ANTIGEN

A 2.65 kb complementary DNA encoding PSM was cloned. 5 Immunohistochemical analysis of the LNCaP, DU-145, and PC-3 prostate cancer cell lines for PSM expression using the 7E11-C5.3 antibody reveals intense staining in the LNCaP cells, with no detectable expression in both the DU-145 and PC-3 cells. Coupled in-vitro 10 transcription/ translation of the 2.65 kb full-length PSM cDNA yields an 84 kDa protein corresponding to the predicted polypeptide molecular weight of PSM. Posttranslational modification of this protein with pancreatic canine microsomes yields the expected 100 15 kDa PSM antigen. Following transfection of PC-3 cells the full-length PSM cDNA in a eukaryotic expression vector applicant's detect expression of the PSM glycoprotein by Western analysis using the 7E11-C5.3 monoclonal antibody. Ribonuclease protection 20 analysis demonstrates that the expression of PSM mRNA is almost entirely prostate-specific in human tissues. PSM expression appears to be highest in hormonedeprived states and is hormonally modulated by steroids, with DHT downregulating PSM expression in the 25 human prostate cancer cell line LNCaP by 8-10 fold, testosterone downregulating PSM by 3-4 fold, corticosteroids showing no significant effect. Normal and malignant prostatic tissues consistently show high PSM expression, whereas heterogeneous, and at times 30 absent, from expression of PSM in benign prostatic hyperplasia. LNCaP tumors implanted and grown both orthotopically and subcutaneously in nude mice, abundantly express PSM providing an excellent in-vivo model system to study the regulation and modulation of 35 PSM expression.

10

15

20

25

30

35

Materials and Methods:

Cells and Reagents: The LNCaP, DU-145, and PC-3 cell lines were obtained from the American Type Culture Details regarding the establishment and Collection. characteristics of these cell lines have previously published (5A,7A,8A). Unless specified otherwise, LNCaP cells were grown in RPMI 1640 media supplemented with L-glutamine, nonessential amino acids, and 5% fetal calf serum (Gibco-BRL, Gaithersburg, MD.) in a CO, incubator at 37C. DU-145 and PC-3 cells were grown in minimal essential medium supplemented with 10% fetal calf serum. All cell media were obtained from the MSKCC Media Preparation Restriction and modifying enzymes were Facility. purchased from Gibco-BRL unless otherwise specified.

Immunohistochemical Detection of PSM: Avidin-biotin method of detection was employed to analyze prostate cancer cell lines for PSM antigen expression (9A). Cell cytospins were made on glass slides using 5x104 cells/100ul per slide. Slides were washed twice with PBS and then incubated with the appropriate suppressor serum for 20 minutes. The suppressor serum was drained off and the cells were incubated with diluted 7E11-C5.3 (5g/ml) monoclonal antibody for 1 hour. Samples were then washed with PBS and sequentially incubated with secondary antibodies for 30 minutes and with avidinbiotin complexes for 30 minutes. Diaminobenzidine served as the chromogen and color development followed by hematoxylin counterstaining and mounting. Duplicate cytospins were used as controls for each cell a positive control, the antiexperiment. As cytokeratin monoclonal antibody CAM 5.2 was used following the same procedure described above. Human EJ bladder carcinoma cells served as a negative control.

In-Vitro Transcription/Translation of PSM Antigen: Plasmid 55A containing the full length 2.65 kb PSM cDNA in the plasmid pSPORT 1 (Gibco-BRL) was transcribed invitro using the Promega TNT system (Promega Corp. Madison, WI). T7 RNA polymerase was added to the cDNA in a reaction mixture containing rabbit reticulocyte lysate, an amino acid mixture lacking methionine, buffer, and 35S-Methionine (Amersham) and incubated at 30C for 90 minutes. Post-translational modification of the resulting protein was accomplished by the addition of pancreatic canine microsomes into the reaction mixture (Promega Corp. Madison, WI.). Protein products were analyzed by electrophoresis on 10% SDS-PAGE gels subsequently treated with autoradiography enhancer (Amersham, Arlington Heights, IL.) according to the manufacturers instructions and 80C in a vacuum dryer. autoradiographed overnight at -70C using Hyperfilm MP (Amersham).

20

25

30

35

5

10

15

Transfection of PSM into PC-3 Cells: The full length PSM cDNA was subcloned into the pREP7 eukaryotic expression vector (Invitrogen, San Diego, CA.). Plasmid DNA was purified from transformed DH5-alpha bacteria (Gibco-BRL) using Qiagen maxi-prep plasmid isolation columns (Qiagen Inc., Chatsworth, CA.). Purified plasmid DNA (6-10g) was diluted with 900ul of Optimem media (Gibco-BRL) and mixed with 30ul of which (Gibco-BRL) reagent Lipofectin previously diluted with 900l of Optimem media. mixture was added to T-75 flasks of 40-50% confluent PC-3 cells in Optimem media. After 24-36 hours, cells into 100mm dishes were trypsinized and split containing RPMI 1640 media supplemented with 10% fetal calf serum and 1 mg/ml of Hygromycin B (Calbiochem, La The dose of Hygromycin B used was Jolla, CA.). previously determined by a time course/dose response

10

cytotoxicity assay. Cells were maintained in this media for 2-3 weeks with changes of media and Hygromycin B every 4-5 days until discrete colonies appeared. Colonies were isolated using 6mm cloning cylinders and expanded in the same media. As a control, PC-3 cells were also transfected with the pREP7 plasmid alone. RNA was isolated from the transfected cells and PSM mRNA expression was detected by both RNase Protection analysis (described later) and by Northern analysis.

Western Blot Detection of PSM Expression: Crude protein lysates were isolated from LNCaP, PC-3, and PSMtransfected PC-3 cells as previously described (10A). 15 LNCaP cell membranes were also isolated according to published methods (10A). Protein concentrations were quantitated by the Bradford method using the BioRad protein reagent kit (BioRad, Richmond, CA.). Following denaturation, 20µg of protein was electrophoresed on a 10% SDS-PAGE gel at 25 mA for 4 hours. 20 Gels were electroblotted onto Immobilon P membranes (Millipore, Bedford, MA.) overnight at 4C. Membranes were blocked in 0.15M NaCl/0.01M Tris-HCl (TS) plus 5% BSA followed by a 1 hour incubation with 7E11-C5.3 monoclonal 25 antibody $(10\mu g/ml)$. Blots were washed 4 times with 0.15M NaCl/0.01M Tris-HCl/0.05% Triton-X 100 (TS-X) and incubated for 1 hour with rabbit anti-mouse (Accurate Scientific, Westbury, N.Y.) at concentration of $10\mu g/ml$.

30

35

Blots were then washed 4 times with TS-X and labeled with ¹²⁵I-Protein A (Amersham, Arlington Heights, IL.) at a concentration of 1 million cpm/ml. Blots were then washed 4 times with TS-X and dried on Whatman 3MM paper, followed by overnight autoradiography at -70C using Hyperfilm MP (Amersham).

Orthotopic and Subcutaneous LNCaP Tumor Growth in Nude Mice: LNCaP cells were harvested from sub-confluent cultures by a one minute exposure to a solution of 0.25% trypsin and 0.02% EDTA. Cells were resuspended in RPMI 1640 media with 5% fetal bovine serum, washed 5 and diluted in either Matrigel (Collaborative Biomedical Products, Bedford, MA.) or calcium and magnesium-free Hank's balanced salt solution (HBSS). Only single cell suspensions with greater than 90% viability by trypan blue exclusion were used for in 10 vivo injection. Male athymic Swiss (nu/nu) nude mice 4-6 weeks of age were obtained from the Memorial Sloan-Kettering Cancer Center Animal Facility. subcutaneous tumor cell injection one million LNCaP cells resuspended in 0.2 mls. of Matrigel were injected 15 into the hindlimb of each mouse using a disposable syringe fitted with a 28 gauge needle. For orthotopic injection, mice were first anesthetized with an intraperitoneal injection of Pentobarbital and placed in the supine position. The abdomen was cleansed with 20 Betadine and the prostate was exposed through a midline 2.5 million LNCaP tumor cells in 0.1 ml. were injected directly into either posterior lobe using a 1 ml disposable syringe and a 28 gauge needle. LNCaP cells with and without Matrigel were injected. 25 Abdominal closure was achieved in one layer using Autoclip wound clips (Clay Adams, Parsippany, N.J.). Tumors were harvested in confirmed 6-8 weeks, histologically by faculty of the Memorial Sloan-Kettering Cancer Center Pathology Department, and 30 frozen in liquid nitrogen for subsequent RNA isolation.

RNA Isolation: Total cellular RNA was isolated from cells and tissues by standard techniques (11,12) as well as by using RNAzol B (Cinna/Biotecx, Houston, TX.). RNA concentrations and quality were assessed by UV spectroscopy on a Beckman DU 640 spectrophotometer

35

and by gel analysis. Human tissue total RNA samples were purchased from Clontech Laboratories, Inc., Palo Alto, CA.

5 Ribonuclease Protection Assays: A portion of the PSM cDNA was subcloned into the plasmid vector pSPORT 1 and the orientation of the cDNA insert (Gibco-BRL) relative to the flanking T7 and SP6 RNA polymerase promoters was verified by restriction Linearization of this plasmid upstream of the PSM 10 followed by transcription with polymerase yields a 400 nucleotide antisense RNA probe, of which 350 nucleotides should be protected from RNase digestion by PSM RNA. This probe was used in Figure 15 Plasmid IN-20, containing a 1 kb partial PSM cDNA in the plasmid pCR II (Invitrogen) was also used for riboprobe synthesis. IN-20 linearized with Xmn I (Gibco-BRL) yields a 298 nucleotide anti-sense RNA probe when transcribed using SP6 RNA polymerase, of which 260 nucleotides should be protected from RNase 20 digestion by PSM mRNA. This probe was used in Figures 21 and 22. Probes were synthesized using SP6 RNA polymerase (Gibco-BRL), rNTPs (Gibco-BRL), (Promega), and \$2P-rCTP (NEN, Wilmington, DE.) according to published protocols (13). Probes were purified over 25 NENSORB 20 purification columns (NEN) and approximately 1 million cpm of purified, radiolabeled PSM probe was mixed with 10μ of each RNA and hybridized overnight at 45C using buffers and reagents from the RPA II kit 30 (Ambion, Austin, TX). Samples were processed as per manufacturer's instructions and analyzed polyacrilamide/7M urea denaturing gels using Seg ACRYL reagents (ISS, Natick, MA.). Gels were pre-heated to 55C and run for approximately 1-2 hours at 25 watts. 35 Gels were then fixed for 30 minutes in 10% methanol/10% acetic acid, dried onto Whatman 3MM paper at 80C in a BioRad vacuum dryer and autoradiographed overnight with

Hyperfilm MP (Amersham). Quantitation of PSM expression was determined by using a scanning laser densitometer (LKB, Piscataway, NJ.).

Steroid Modulation Experiment: LNCaP cells (2 million) 5 were plated onto T-75 flasks in RPMI 1640 media supplemented with 5% fetal calf serum and grown 24 hours until approximately 30-40% confluent. were then washed several times with phophate-buffered saline and RPMI medium supplemented with 5% charcoal-10 extracted serum was added. Cells were then grown for another 24 hours, at which time dihydrotesterone, estradiol, progesterone, testosterone, dexamethasone (Steraloids Inc., Wilton, NH.) were added at a final concentration of 2 nM. Cells were grown for 15 another 24 hours and RNA was then harvested as previously described and PSM expression analyzed by ribonuclease protection analysis.

20

25

Experimental Results

Immunohistochemical Detection of PSM: Using the 7E11-C5.3 anti-PSM monoclonal antibody, PSM expression is clearly detectable in the LNCaP prostate cancer cell line, but not in the PC-3 and DU-145 cell lines (Figures 17A-17C). All normal and malignant prostatic tissues analyzed stained positively for PSM expression.

In-Vitro Transcription/Translation of PSM Antigen: As shown in Figure 18, coupled in-vitro transcription/ translation of the 2.65 kb full-length PSM cDNA yields an 84 kDa protein species in agreement with the expected protein product from the 750 amino acid PSM open reading frame. Following post-translational modification using pancreatic canine microsomes were obtained a 100 kDa glycosylated protein species

10

15

20

25

30.

35

consistent with the mature, native PSM antigen.

Detection of PSM Antigen in LNCaP Cell Membranes and Transfected PC-3 Cells: PC-3 cells transfected with the full length PSM cDNA in the pREP7 expression vector were assayed for expression of SM mRNA by Northern analysis. A clone with high PSM mRNA expression was selected for PSM antigen analysis by Western blotting using the 7E11-C5.3 antibody. In Figure 19, the 100 kDa PSM antigen is well expressed in LNCaP cell lysate and membrane fractions, as well as in PSM-transfected PC-3 cells but not in native PC-3 cells. This detectable expression in the transfected PC-3 cells proves that the previously cloned 2.65 kb PSM cDNA encodes the antigen recognized by the 7E11-C5.3 antiprostate monoclonal antibody.

PSM mRNA Expression: Expression of PSM mRNA in normal was human tissues analyzed using ribonuclease protection assays. Tissue expression of PSM appears predominantly within the prostate, with very low levels of expression detectable in human brain and salivary gland (Figure 20). No detectable PSM mRNA expression was evident in non-prostatic human tissues when analyzed by Northern analysis. On occasion it is noted that detectable PSM expression in normal human small intestine tissue, however this mRNA expression is variable depending upon the specific riboprobe used. All samples of normal human prostate and human prostatic adenocarcinoma assayed have revealed clearly detectable PSM expression, whereas generally decreased or absent expression of PSM in tissues exhibiting benign hyperplasia (Figure 21). In human LNCaP tumors grown both orthotopically and subcutaneously in nude mice abundant PSM expression with or without the use of matrigel, which is required for the growth subcutaneously implanted LNCaP cells was detected

PSM mRNA expression is distinctly (Figure 21). modulated by the presence of steroids in physiologic doses (Figure 22). DHT downregulated expression by 8-10 fold after 24 hours and testosterone diminished PSM expression by 3-4 fold. Estradiol and progesterone also downregulated PSM expression in LNCaP cells, perhaps as a result of binding to the mutated androgen receptor known to exist in the LNCaP cell. Overall, PSM expression is highest in the untreated LNCaP cells grown in steroid-depleted media, a situation that simulates the hormone-deprived (castrate) state invivo. This experiment was repeated at steroid dosages ranging from 2-200 nM and at time points from 6 hours to 7 days with similar results; maximal downregulation of PSM mRNA was seen with DHT at 24 hours at doses of 2-20 nM.

Experimental Discussion

5

10

15

20

25

30

35

Previous research has provided two valuable prostatic bio-markers, PAP and PSA, both of which have had a significant impact on the diagnosis, treatment, and management of prostate malignancies. The present work describing the preliminary characterization of the prostate-specific membrane antigen (PSM) reveals it to be a gene with many interesting features. almost entirely prostate-specific as are PAP and PSA, and as such may enable further delineation of the unique functions and behavior of the prostate. predicted sequence of the PSM protein (3) and its presence in the LNCaP cell membrane as determined by Western blotting and immunohistochemistry, indicate that it is an integral membrane protein. Thus, PSM provides an attractive cell surface epitope for antibody-directed diagnostic imaging and cytotoxic targeting modalities (14). The ability to synthesize the PSM antigen in-vitro and to produce tumor

10

xenografts maintaining high levels of PSM expression provides us with a convenient and attractive model system to further study and characterize the regulation and modulation of PSM expression. Also, the high level of PSM expression in the LNCaP cells provides an excellent in-vitro model system. Since PSM expression is hormonally-responsive to steroids and may be highly expressed in hormone-refractory disease (15). detection of PSM mRNA expression in minute quantities in brain, salivary gland, and small intestine warrants further investigation, although these tissues were negative for expression of PSM antigen immunohistochemistry using the 7E11-C5.3 antibody (16). In all of these tissues, particularly small intestine, mRNA expression using a probe corresponding to a region of the PSM cDNA near the 3' end, whereas expression when using a 5' end PSM probe was not detected. results may indicate that the PSM mRNA transcript undergoes alternative splicing in different tissues.

20

25

30

35

15

Applicants approach is based on prostate tissue specific promotor: enzyme or cytokine chimeras. Promotor specific activation of prodrugs such as non toxic gancyclovir which is converted to a toxic metabolite by herpes simplex thymidine kinase or the prodrug 4-(bis(2chloroethyl)amino)benzoyl-1-glutamic acid to the benzoic acid mustard alkylating agent by the pseudomonas carboxy peptidase G2 was examined. these drugs are activated by the enzyme (chimera) specifically in the tumor the active drug is released only locally in the tumor environment, destroying the surrounding tumor cells. Promotor specific activation of cytokines such as IL-12, IL-2 or GM-CSF for activation and specific antitumor vaccination Lastly the tissue specific promotor examined. activation of cellular death genes may also prove to be useful in this area.

-80-

Gene Therapy Chimeras: The establishment of "chimeric DNA" for gene therapy requires the joining of different segments of DNA together to make a new DNA that has characteristics of both precursor DNA species involved in the linkage. In this proposal the two pieces being linked involve different functional aspects of DNA, the promotor region which allows for the reading of the DNA for the formation of mRNA will provide specificity and the DNA sequence coding for the mRNA will provide for therapeutic functional DNA.

5

10

15

20

25

30

DNA-Specified Enzyme or Cytokine mRNA: When effective, antitumor drugs can cause the regression of very large amounts of tumor. The main requirements for antitumor drug activity is the requirement to achieve both a long enough time (t) and high enough concentration (c) (cxt) of exposure of the tumor to the toxic drug to assure sufficient cell damage for cell death to occur. drug also must be "active" and the toxicity for the tumor greater than for the hosts normal cells (22). The availability of the drug to the tumor depends on tumor blood flow and the drugs diffusion ability. Blood flow to the tumor does not provide for selectivity as blood flow to many normal tissues is often as great or greater than that to the tumor. majority of chemotherapeutic cytotoxic drugs are often as toxic to normal tissue as to tumor tissue. Dividing cells are often more sensitive than non-dividing normal cells, but in many slow growing solid tumors such as prostatic cancer this does not provide for antitumor specificity (22).

Previously a means to increase tumor specificity of antitumor drugs was to utilize tumor associated enzymes to activate nontoxic prodrugs to cytotoxic agents (19). A problem with this approach was that most of the enzymes found in tumors were not totally specific in

their activity and similar substrate active enzymes or the same enzyme at only slightly lower amounts was found in other tissue and thus normal tissues were still at risk for damage.

5

10

15

20

25

35

To provide absolute specificity and unique activity, viral, bacterial and fungal enzymes which have unique specificity for selected prodrugs were found which were not present in human or other animal cells. to utilize enzymes such as herpes simplex thymidine kinase, bacterial cytosine deaminase carboxypeptidase G-2 were linked to antibody targeting systems with modest success (19). Unfortunately, antibody targeted enzymes limit the number of enzymes available per cell. Also, most antibodies do not have a high tumor target to normal tissue ratio thus normal tissues are still exposed reducing the specificity of these unique enzymes. Antibodies are large molecules that have poor diffusion properties and the addition of the enzymes molecular weight further reduces the antibodies diffusion.

Gene therapy could produce the best desired result if it could achieve the specific expression of a protein in the tumor and not normal tissue in order that a high local concentration of the enzyme be available for the production in the tumor environment of active drug (21).

30 Cytokines:

Results demonstrated that tumors such as the bladder and prostate were not immunogenic, that is the administration of irradiated tumor cells to the animal prior to subsequent administration of non-irradiated tumor cells did not result in a reduction of either the number of tumor cells to produce a tumor nor did it reduce the growth rate of the tumor. But if the tumor

was transfected with a retrovirus and secreted large concentrations of cytokines such as Il-2 then this could act as an antitumor vaccine and could also reduce the growth potential of an already established and IL-2 was the best, GM-CSF also had growing tumor. activity whereas a number of other cytokines were much less active. In clinical studies just using IL-2 for immunostimulation, very large concentrations had to be given which proved to be toxic. The key to the success of the cytokine gene modified tumor cell is that the cytokine is produced at the tumor site locally and is not toxic and that it stimulates immune recognition of the tumor and allows specific and non toxic recognition and destruction of the tumor. The exact mechanisms of how IL-2 production by the tumor cell activates immune fully understood, not recognition is explanation is that it bypasses the need for cytokine production by helper T cells and directly stimulates cytotoxic cells. CD8 antigen activated Activation of antigen presenting cells may also occur.

Tissue Promotor-Specific Chimera DNA Activation

Non-Prostatic Tumor Systems:

5

10

15

20

It has been observed in non-prostatic tumors that the 25 use of promotor specific activation can selectively lead to tissue specific gene expression of In melanoma the use of transfected gene. tyrosinase promotor which codes for the enzyme responsible for melanin expression produced over a 50 30 fold greater expression of the promotor driven reporter gene expression in melanoma cells and not non melanoma Similar specific activation was seen in the cells. melanoma cells transfected when they were growing in mice. In that experiment no non-melanoma or melanocyte 35 cell expressed the tyrosinase drive reporter gene product. The research group at Welcome Laboratories

10

15

have cloned and sequenced the promoter region of the gene coding for carcinoembryonic antigen (CEA). CEA is expressed on colon and colon carcinoma cells but specifically on metastatic. A gene chimera was generated which cytosine deaminase. Cytosine deaminase which converts 5 flurorocytosine into 5 fluorouracil and observed a large increase in the ability to selectively kill CEA promotor driven colon tumor cells but not normal liver cells. In vivo they observed that bystander tumor cells which were not transfected with the cytosine deaminase gene were also killed, and that there was no toxicity to the host animal as the large tumors were regressing following treatment. simplex virus, (HSV), thymidine kinase similarly activates the prodrug gancyclovir to be toxic towards dividing cancer cells and HSV thymidine kinase has been shown to be specifically activatable by tissue specific promoters.

Prostatic Tumor Systems: The therapeutic key to 20 effective cancer therapy is to achieve specificity and spare the patient toxicity. Gene therapy may provide a key part to specificity in that non-essential tissues such as the prostate and prostatic tumors produce 25 tissue specific proteins, such as acid phosphatase (PAP), prostate specific antigen (PSA), and a gene which was cloned, prostate-specific membrane antigen Tissues such as the prostate contain selected specific transcription factors which 30 responsible for binding to the promoter region of the DNA of these tissue specific mRNA. The promoter for PSA has been cloned. Usually patients who are being treated for metastatic prostatic cancer have been put on androgen deprivation therapy which dramatically 35 reduces the expression of mRNA for PSA. PSM on the other hand increases in expression with hormone deprivation which-means it would be even more intensely

-84-

expressed on patients being treated with hormone therapy.

References of Example 2

- Coffey, D.S. Prostate Cancer An overview of an increasing dilemma. Cancer Supplement, 71,3:
 880-886, 1993.
 - Chiarodo, A. National Cancer Institute roundtable on prostate cancer; future research directions. Cancer Res., 51: 2498-2505, 1991.

10

15

- 3. Israeli, R.S., Powell, C.T., Fair, W.R., and Heston, W.D.W. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res., 53: 227-230, 1993.
- Horoszewicz, J.S., Kawinski, E., and Murphy, G.P.
 Monoclonal antibodies to a new antigenic marker in epithelial cells and serum of prostatic cancer
- 20 patients. Anticancer Res., 7: 927-936, 1987.
- Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A., and Murphy, G.P. LNCaP model of human prostatic carcinoma. Cancer Res., 43: 1809-1818, 1983.
- 6. Abdel-Nabi, H., Wright, G.L., Gulfo, J.V., Petrylak, D.P., Neal, C.E., Texter, J.E., Begun, F.P., Tyson, I., Heal, A., Mitchell, E., Purnell, G., and Harwood, S.J. Monoclonal antibodies and radioimmunoconjugates in the diagnosis and treatment of prostate cancer. Semin. Urol., 10: 45-54, 1992.

35

7. Stone, K.R., Mickey, D.D., Wunderli, H., Mickey, G.H., and Paulson, D.F. Isolation of a human

-86-

prostate carcinoma cell line (DU-145). Int. J. Cancer, 21: 274-281, 1978.

- 8. Kaign, M.E., Narayan, K.S., Ohnuki, Y., and
 Lechner, J.F. Establishment and characterization
 of a human prostatic carcinoma cell line (PC-3).
 Invest. Urol., 17: 16-23, 1979.
- 9. Hsu, S.M., Raine, L., and Fanger, H. Review of present methods of immunohistochemical detection.
 Am. J. Clin. Path. 75: 734-738, 1981.
- 10. Harlow, E., and Lane, D. Antibodies: A Laboratory Manual. New York: Cold Spring Harbor Laboratory, p. 449, 1988.
- 11. Glisin, V., Crkvenjakov, R., and Byus, C.
 Ribonucleic acid isolated by cesium chloride
 centrifugation. Biochemistry, 13: 2633-2637,
 20 1974.
- 12. Aviv, H., and Leder, P. Purification of biologically active globin messenger RNA by chromotography on oligo-thymidylic acid cellulose. Proc. Natl. Acad. Sci. USA, 69: 1408-1412, 1972.
- 13. Melton, D.A., Krieg, P.A., Rebagliati, M.R., Maniatis, T.A., Zinn, K., and Careen, M.R.

 Efficient in-vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucl. Acids. Res. 12: 7035-7056, 1984.

35 14.

20

25

30

- 15. Axelrod, H.R., Gilman, S.C., D'Aleo, C.J., Petrylak, D., Reuter, V., Gulfo, J.V., Saad, A., Cordon-Cardo, C., and Scher, H.I. Preclinical results and human immunohistochemical studies with 90Y-CYT-356; a new prostatic cancer therapeutic agent. AUA Proceedings, Abstract 596, 1992.
- 16. Lopes, A.D., Davis, W.L., Rosenstraus, M.J., 10 Uveges, A.J., and Gilman, Immunohistochemical and pharmacokinetic characterization of the site-specific immunoconjugate CYT-356 derived from antiprostate monoclonal antibody 7E11-C5. Cancer Res., 50: 6423-6429, 1990. 15
 - 17. Troyer, J.K., Qi, F., Beckett, M.L., Morningstar, M.M., and Wright, G.L. Molecular characterization of the 7Ell-C5 prostate tumorassociated antigen. AUA Proceedings. Abstract 482, 1993.
 - 18. Roemer, K., Friedmann, T. Concepts and strategies for human gene therapy. FEBS. 223:212-225.
 - 19. Antonie, P. Springer, C.J., Bagshawe, F., Searle, F., Melton, R.G., Rogers, G.T., Burke, P.J., Sherwood, R.F. Disposition of the prodrug 4-bis(2chloroethyl) amino) benzoyl-1-glutamic acid and its active parent drug in mice. Br.J.Cancer 62:909-914, 1990.
- 20. Connor, J. Bannerji, R., Saito, S., Heston, W.D.W., Fair, W.R., Gilboa, E. Regression of bladder tumors in mice treated with interleukin 2 gene-modified tumor cells. J.Exp.Med. 177:1127-1134, 1993. (appendix)

WO 96/26272

-88-

PCT/US96/02424

- 21. Vile R., Hart, I.R. In vitro and in vivo targeting of gene expression to melanoma cells.

 Cancer Res. 53:962-967, 1993.
- 5 "22. Warner, J.A., Heston, W.D.W. Future developments of nonhormonal systemic therapy for prostatic carcinoma. Urologic Clinics of North America. 18:25-33, 1991.
- Vile, R.G., Hart, I.R. Use of tissue specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res. 53:3860-3864, 1993.

10

15

20

25

30

35

EXAMPLE 3:

Sensitive Detection of Prostatic Hematogenous Micrometastases Using PSA and PSM-Derived Primers in the Polymerase Chain Reaction

A PCR-based assay was developed enabling sensitive detection of hematogenous micrometastases in patients with prostate cancer. "Nested PCR", was performed by amplifying mRNA sequences unique to prostate-specific antigen and to the prostate-specific membrane antigen. and have compared their respective results. Micrometastases were detected in 2/30 patients (6.7%) by PCR with PSA-derived primers, while PSM-derived primers detected tumor cells in 19/16 patients (63.3%). All 8 negative controls were negative with both PSA and Assays were repeated to confirm results, and PCR products were verified by DNA sequencing and Southern analysis. Patients harboring circulating prostatic tumor cells as detected by PSM, and not by PSA-PCR included 4 patients previously treated with radical prostatectomy and with non-measurable serum PSA levels at the time of this assay. The significance of findings with respect to future disease recurrence and progression will be investigated.

Improvement in the overall survival of patients with prostate cancer will depend upon earlier diagnosis. Localized disease, without evidence of extra-prostatic spread, is successfully treated with either radical prostatectomy or external beam radiation, with excellent long-term results (2,3). The major problem is that approximately two-thirds of men diagnosed with prostate cancer already have evidence of advanced extra-prostatic spread at the time of diagnosis, for which there is at present no cure (4). The use of clinical serum markers such as prostate-specific

5

10

15

20

25

30

35

-90-

antigen (PSA) and prostatic acid phosphatase (PAP) have enabled clinicians to detect prostatic carcinomas earlier and provide useful parameters to follow responses to therapy (5). Yet, despite the advent of sensitive serum PSA assays, radionuclide bone scans, CT scans and other imaging modalities, results have not detected the presence of micrometastatic cells prior to their establishment of solid metastases. Previous work has been done utilizing the polymerase chain reaction to amplify mRNA sequences unique to breast, leukemia, and other malignant cells in the circulation and enable early detection of micrometastases (6,7). Recently, a PCR-based approach utilizing primers derived from the PSA DNA sequence was published (8). In this study 3/12 patients with advanced, stage D prostate cancer had detectable hematogenous micrometastases.

PSM appears to be an integral membrane glycoprotein which is very highly expressed in prostatic tumors and metastases and is almost entirely prostate-specific (10). Many anaplastic tumors and bone metastases have variable and at times no detectable expression of PSA, whereas these lesions appear to consistently express high levels of PSM. Prostatic tumor cells that escape from the prostate gland and enter the circulation are likely to have the potential to form metastases and are possibly the more aggressive and possibly anaplastic cells, a population of cells that may not express high levels of PSA, but may retain high expression of PSM. DNA primers derived from the sequences of both PSA and PSM in a PCR assay were used to detect micrometastatic cells in the peripheral circulation. Despite the high level of amplification and sensitivity of conventional RNA PCR, "Nested" PCR approach in which a amplified target sequence was employed, and subsequently use this PCR product as the template for another round of PCR amplification with a new set of primers totally

-91-

contained within the sequence of the previous product. This approach has enabled us to increase the level of detection from one prostatic tumor cell per 10,000 cells to better than one cell per ten million cells.

5

10

15

20

25

30

35

Materials and Methods

Cells and Reagents: LNCaP and MCF-7 cells were obtained from the American Type Culture Collection (Rockville, Details regarding the establishment MD.). characteristics of these cell lines have been previously published (11,12). Cells were grown in RPMI 1640 media supplemented with L-glutamine, nonessential amino acids, obtained from the MSKCC Media Preparation Facility, and 5% fetal calf serum (Gibco-BRL, Gaithersburg, MD.) in a CO, incubator at 37C. All cell media was obtained from the MSKCC Media Preparation Routine chemical reagents were of the Facility. highest grade possible and were obtained from Sigma Chemical Company, St. Louis, MO.

Patient Blood Specimens: All blood specimens used in this study were from patients seen in the outpatient offices of urologists on staff at MSKCC. Two anticoagulated (purple top) tubes per patient were obtained at the time of their regularly scheduled blood draws. Specimen procurement was conducted as per the approval of the MSKCC Institutional Review Board. Samples were promptly brought to the laboratory for immediate Serum PSA and PAP determinations were processing. performed by standard techniques by the MSKCC Clinical Chemistry Laboratory. PSA determinations performed using the Tandem PSA assay (Hybritech, San Diego, CA.). The eight blood specimens used as negative controls were from 2 males with normal serum PSA values and biopsy-proven BPH, one healthy female, 3 healthy males, one patient with bladder cancer, and

-92-

one patient with acute promyelocytic leukemia.

5

10

15

20

25

30

35

Blood Sample Processing/RNA Extraction: 4 ml of whole anticoagulated venous blood was mixed with 3 ml of ice cold phosphate buffered saline and then carefully layered atop 8 ml of Ficoll (Pharmacia, Uppsala, Sweden) in a 15-ml polystyrene tube. Tubes were centrifuged at 200 x g for 30 min. at 4C. Using a sterile pasteur pipette, the buffy coat layer (approx. 1 ml.) was carefully removed and rediluted up to 50 ml with ice cold phosphate buffered saline in a 50 ml polypropylene tube. This tube was then centrifuged at for 30 min at 4C. The supernatant was 2000 x g carefully decanted and the pellet was allowed to drip dry. One ml of RNazol B was then added to the pellet and total RNA was isolated as per manufacturers (Cinna/Biotecx, Houston. TX.). directions concentrations and purity were determined by UV spectroscopy on a Beckman DU 640 spectrophotometer and by gel analysis.

Determination of PCR Sensitivity: RNA was isolated from LNCaP cells and from mixtures of LNCaP and MCF-7 cells at fixed ratios (i.e. 1:100, 1:1000, etc.) using RNAzol B. Nested PCR was then performed as described below with both PSA and PSM primers in order to determine the limit of detection for the assay. LNCaP:MCF-7 (1:100,000) cDNA was diluted with distilled water to obtain concentrations of 1:1,000,000 and 1:10,000,000. MCF-7 cells were chosen because they have been previously tested and shown not to express PSM by PCR.

Polymerase Chain Reaction: The PSA outer primers used span portions of exons 4 and 5 to yield a 486 bp PCR product and enable differentiation between cDNA and possible contaminating genomic DNA amplification. The upstream primer sequence beginning at nucleotide 494 in

10

15

20

25

30

35

PSA cDNA sequence is 5'-TACCCACTGCATCAGGAACA-3' (SEQ. ID. No.) and the downstream primer at nucleotide 960 is 5'-CCTTGAAGCACCACTTACA-3' (SEQ. ID. No. PSA inner upstream primer (beginning at nucleotide 559) 5'-ACACAGGCCAGGTATTTCAG-3' (SEQ. ID. No.) and the nucleotide 894) downstream primer (at GTCCAGCGTCCAGCACACAG-3' (SEQ. ID. No.) yield a 355 bb PCR product. All primers were synthesized by the MSKCC Microchemistry Core Facility. $5\mu q$ of total RNA was reverse-transcribed into cDNA in a total volume of 20µl using Superscript reverse transcriptase (Gibco-BRL) according to the manufacturers recommendations. 1µl of this cDNA served as the starting template for the outer primer PCR reaction. The 20µl PCR mix included: 0.5U Tag polymerase (Promega Corp., Madison, WI.), Promega reaction buffer, 1.5mM MgCl₂, 200mM dNTPs, and 1.0 μ M of each primer. This mix was then transferred to a Perkin Elmer 9600 DNA thermal cycler and incubated for 25 PCR profile was as follows: 94C x 15 The sec., 60C x 15 sec., and 72C for 45 sec. After 25 cycles, samples were placed on ice, and 1µl of this reaction mix served as the template for another round of PCR using the inner primers. The first set of tubes were returned to the thermal cycler for 25 additional cycles. PSM-PCR required the selection of primer pairs that also spanned an intron in order to be certain that cDNA and not genomic DNA were being amplified.

The PSM outer primers yield a 946 bp product and the inner primers a 434 bp product. The PSM outer upstream primer used was 5'-ATGGGTGTTTGGTGGTATTGACC-3' (SEQ. ID. No.) (beginning at nucleotide 1401) and the downstream nucleotide 2348) was (at primer TGCTTGGAGCATAGATGACATGC-3' (SEQ. ID. No.) inner upstream primer (at nucleotide 1581) was ACTCCTTCAAGAGCGTGGCG-3' (SEQ. ID. No.) 2015) 5'downstream primer (at nucleotide was

10

15

20

AACACCATCCCTCCTCGAACC-3'(SEQ. ID. No.). was the same as for the PSA assay. The 501 PCR mix included: 1U Tag Polymerase (Promega), 250M dNTPs, 10mM -mercaptoethanol, 2mM MgCl,, and 5l of a 10x buffer mix containing: 166mM NH,SO,, 670mM Tris pH 8.8, and 2 mg/ml of acetylated BSA. PCR was carried out in a Perkin Elmer 480 DNA thermal cycler with the following parameters: 94C x 4 minutes for 1 cycle, 94C x 30 sec., 58C x 1 minute, and 72C x 1 minute for 25 cycles, followed by 72C x 10 minutes. Samples were then iced and 21 of this reaction mix was used as the template for another 25 cycles with a new reaction mix containing the inner PSM primers. cDNA quality was verified by performing control reactions using primers derived from -actin yielding a 446 bp PCR product. upstream primer used was 5'-AGGCCAACCGCGAGAAGATGA-3' (SEQ. ID. No.) (exon 3) and the downstream primer was 5'-ATGTCACACTGGGGAAGC-3' (SEQ. ID. No.) (exon 4). The entire PSA mix and 101 of each PSM reaction mix were run on 1.5-2% agarose gels, stained with ethidium bromide and photographed in an Eagle Eye Video Imaging System (Stratagene, Torrey Pines, CA.). Assays were repeated at least 3 times to verify results.

Cloning and Sequencing of PCR Products: PCR products 25 were cloned into the pCR II plasmid vector using the TA cloning system (Invitrogen). These plasmids were transformed into competent E. coli cells using standard methods (13) and plasmid DNA was isolated using Magic (Promega) and screened by restriction Minipreps 30 analysis. TA clones were then sequenced by the dideoxy method (14) using Sequenase (U.S. Biochemical). 3-4g of each plasmid was denatured with NaOH and ethanol Labeling reactions were carried out precipitated. according to the manufacturers recommendations using 35 35S-dATP (NEN), and the reactions were terminated as discussed in the same protocol. Sequencing products

were then analyzed on 6% polyacrilamide/7M urea gels run at 120 watts for 2 hours. Gels were fixed for 20 minutes in 10% methanol/10% acetic acid, transferred to Whatman 3MM paper and dried down in a vacuum dryer for 2 hours at 80C. Gels were then autoradiographed at room temperature for 18 hours.

Southern Analysis: Ethidium-stained agarose gels of PCR products were soaked for 15 minutes in 0.2N HCl, followed by 30 minutes each in 0.5N NaOH/1.5M NaCl and pH 7.5/1.5M NaCl. Gels were then equilibrated for 10 minutes in 10x SSC (1.5M NaCl/0.15M Sodium Citrate. DNA was transferred onto Nytran nylon (Schleicher and Schuell) by pressure blotting in 10x SSC with a Posi-blotter (Stratagene). DNA was cross-linked to the membrane using a UV Blots were pre-hybridized Stratalinker (Stratagene). at 65C for 2 hourthes and subsequently hybridized with denatured 32P-labeled, random-primed cDNA probes (either PSM or PSA) (9,15). Blots were washed twice in 1x SSPE/0.5% SDS at 42C and twice in 0.1x SSPE/0.5% SDS at 50C for 20 minutes each. Membranes were air-dried and autoradiographed for 30 minutes to 1 hour at -70C with Kodak X-Omat film.

25

30

35

20

5

10

15

Experimental Results

PCR amplification with nested primers improved the level of detection of prostatic cells from approximately one prostatic cell per 10,000 MCF-7 cells to better than one cell per million MCF-7 cells, using either PSA or PSM-derived primers (Figures 26 and 27). This represents a substantial improvement in the ability to detect minimal disease. Characteristics of the 16 patients analyzed with respect to their clinical stage, treatment, serum PSA and PAP values, and results of the assay are shown. In total, PSA-PCR detected

tumor cells in 2/30 patients (6.7%), whereas PSM-PCR detected cells in 19/30 patients (63.3%). no patients positive for tumor cells by PSA and not by while PSM provided 8 positive patients not detected by PSA. Patients 10 and 11 in table 1, both with very advanced hormone-refractory disease were detected by both PSA and PSM. Both of these patients have died since the time these samples were obtained. Patients 4, 7, and 12, all of whom were treated with radical prostatectomies for clinically localized disease, and all of whom have non-measurable serum PSA values 1-2 years postoperatively were positive for circulating prostatic tumor cells by PSM-PCR, but negative by PSA-PCR. A representative ethidium stained gel photograph for PSM-PCR is shown in Figure 28. Samples run in lane A represent PCR products generated from the outer primers and samples in lanes labeled B are products of inner primer pairs. The corresponding PSM Southern blot autoradiograph is shown in Figure 29. The sensitivity of the Southern blot analysis exceeded that of ethidium staining, as can be seen in several samples where the outer product is not visible on Figure 28, but is detectable by Southern blotting as shown in Figure 29. In addition, sample 3 on Figures 28 and 29 (patient 6 in Figure 30) appears to contain both outer and inner bands that are smaller than the corresponding bands in the other patients. DNA sequencing has confirmed that the nucleotide sequence of these bands matches that of PSM, with the exception This may represent either an of a small deletion. artifact of PCR, alternative splicing of PSM mRNA in this patient, or a PSM mutation. All samples sequenced and analyzed by Southern analysis have been confirmed as true positives for PSA and PSM.

35

5

10

15

20

25

30

Experimental Details

The ability to accurately stage patients with prostate

10

15

20

25

30

35

cancer at the time of diagnosis is clearly of paramount importance in selecting appropriate therapy and in predicting long-term response to treatment, potential cure. Pre-surgical staging presently consists of physical examination, serum PSA and PAP determinations, and numerous imaging modalities including transrectal ultrasonography, CT scanning, radionuclide bone scans, and even MRI scanning. present modality, however, addresses the issue of hematogenous micrometastatic disease and the potential negative impact on prognosis that this may produce. Previous work has shown that only a fractional percentage of circulating tumor cells will inevitably go on to form a solid metastasis (16), however, the detection of and potential quantification circulating tumor cell burden may prove valuable in more accurately staging disease. The long-term impact of hematogenous micrometastatic disease must be studied by comparing the clinical courses of patients found to have these cells in their circulation with patients of similar stage and treatment who test negatively.

The significantly higher level of detection of tumor cells with PSM as compared to PSA is not surprising to us, since more consistent expression of PSM in prostate carcinomas of all stages and grades as compared to variable expression of PSA in more poorly differentiated and anaplastic prostate cancers is The detection of tumor cells in the three noted. patients that had undergone radical prostatectomies with subsequent undetectable amounts of serum PSA was These patients would be considered to be suprising. surgical "cures" by standard criteria, yet they apparently continue to harbor prostatic tumor cells. It will be interesting to follow the clinical course of these patients as compared to others without PCR evidence of residual disease.

References of Example 3

10

35

- Boring, C.C., Squires, T.S., and Tong, T.: Cancer Statistics, 1993. CA Cancer J. Clin., 43:7-26, 1993.
 - Lepor, H., and Walsh, P.C.: Long-term results of radical prostatectomy in clinically localized prostate cancer: Experience at the Johns Hopkins Hospital. NCI Monogr., 7:117-122, 1988.
 - 3. Bagshaw, M.A., Cox, R.S., and Ray, G.R.: Status of radiation treatment of prostate cancer at Stanford University. NCI Monogr., 7:47-60, 1988.
- Thompson, I.M., Rounder, J.B., Teague, J.L., et al.: Impact of routine screening for adenocarcinoma of the prostate on stage distribution. J. Urol., 137:424-426, 1987.
- 5. Chiarodo, A.: A National Cancer Institute roundtable on prostate cancer; future research directions. Cancer Res., 51:2498-2505, 1991.
- 25 6. Wu, A., Ben-Ezra, J., and Colombero, A.:
 Detection of micrometastasis in breast cancer by
 the polymerase chain reaction. Lab. Invest.,
 62:109A, 1990.
- 7. Fey, M.F., Kulozik, A.E., and Hansen-Hagge, T.E.: The polymerase chain reaction: A new tool for the detection of minimal residual disease in hematological malignancies. Eur. J. Cancer, 27:89-94, 1991.
 - 8. Moreno, J.G., Croce, C.M., Fischer, R., Monne, M., Vihko, P., Mulholland, S.G., and Gomella,

- L.G.: Detection of hematogenous micrometastasis in patients with prostate cancer. Cancer Res., 52:6110-6112, 1992.
- 9. Israeli, R.S., Powell, C.T., Fair, W.R., and Heston, W.D.W.: Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res., 53:227-230, 1993.
- 10 10. Israeli, R.S., Powell, C.T., Corr, J.G., Fair, W.R., and Heston, W.D.W.: Expression of the prostate-specific membrane antigen (PSM).: Submitted to Cancer Research.
- 15 11. Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A., and Murphy, G.P.: LNCaP model of human prostatic carcinoma. Cancer Res., 43:1809-1818, 1983.

12. Soule, H.D., Vazquez, J., Long, A., Albert, S., and Brennan, M.: A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Can. Inst., 51:1409-1416, 1973.

25

- 13. Hanahan, D.: Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol., 166:557-580, 1983.
- 30 14. Sanger, F., Nicklen, S., and Coulson, A.R.: DNA sequencing with chain-terminating inhibitors.

 Proc. Natl. Acad. Sci. USA, 74:5463-5467, 1977.
- 15. Lundwall, A., and Lilja, H.: Molecular cloning of a human prostate specific antigen cDNA. FEBS Letters, 214:317, 1987.

5

-100-

16. Liotta, L.A., Kleinerman, J., and Saidel, G.M.:
Quantitative relationships of intravascular tumor
cells, tumor vessels, and pulmonary metastases
following tumor implantation. Cancer Res.,
34:997-1003, 1974.

EXAMPLE 4:

EXPRESSION OF THE PROSTATE SPECIFIC MEMBRANE ANTIGEN

(PSM) DIMINISHES THE MITOGENIC STIMULATION OF

AGGRESSIVE HUMAN PROSTATIC CARCINOMA CELLS BY

TRANSFERRIN

An association between transferrin and human prostate cancer has been suggested by several investigators. 10 has been shown that the expressed prostatic secretions of patients with prostate cancer are enriched with respect to their content of transferrin and that prostate cancer cells are rich in transferrin receptors (J. Urol. 143, 381, 1990). Transferrin derived from 15 bone marrow has been shown to selectively stimulate the growth of aggressive prostate cancer cells (PNAS 89, 6197, 1992). DNA sequence analysis has revealed that a portion of the coding region, from nucleotide 1250 to 1700 possesses a 54% homology to the human transferrin 20 receptor. PC-3 cells do not express PSM mRNA or protein and exhibit increased cell growth in response to transferrin, whereas, LNCaP prostate cancer cells which highly express PSM have a very weak response to transferrin. To determine whether PSM expression by 25 prostatic cancer cells impacts upon their mitogenic response to transferrin the full-length PSM cDNA was transfected into the PC-3 prostate cancer cells. Clones highly expressing PSM mRNA were identified by Northern analysis and expression of PSM protein was 30 . verified by Western analysis using the anti-PSM monoclonal antibody 7E11-C5.3.

 2×10^4 PC-3 or PSM-transfected PC-3 cells per well ere plated in RPMI medium supplemented with 10% fetal bovine serum and at 24 hrs. added 1 μ g per ml. of holotransferrin to the cells. Cells were counted at 1 day to be highly mitogenic to the PC-3 cells. Cells

-102-

were counted at 1 day to determine plating efficiency and at 5 days to determine the effect of the transferrin. Experiments were repeated to verify the results.

5

10

PC-3 cells experienced an average increase of 275% over controls, whereas the LNCaP cells were only stimulated 43%. Growth kinetics revealed that the PSM-transfected PC-3 cells grew 30% slower than native PC-3 cells. This data suggests that PSM expression in aggressive, metastatic human prostate cancer cells significantly abrogates their mitogenic response to transferrin.

The use of therapeutic vaccines consisting of cytokinesecreting tumor cell preparations for the treatment of 15 established prostate cancer was investigated in the Dunning R3327-MatLyLu rat prostatic adenocarcinoma Only IL-2 secreting, irradiated tumor cell preparations were capable of curing animals from subcutaneously established tumors, and engendered 20 immunological memory that protected the animals from another tumor challenge. Immunotherapy was less effective when tumors were induced orthotopically, but nevertheless led to improved outcome, significantly delaying, and occasionally preventing recurrence of 25 tumors after resection of the cancerous prostate. Induction of a potent immune response in tumor bearing animals against the nonimmunogenic MatLyLu tumor supports the view that active immunotherapy of prostate cancer may have therapeutic benefits. 30

EXAMPLE 5:

CLONING AND CHARACTERIZATION OF THE PROSTATE SPECIFIC MEMBRANE ANTIGEN (PSM) PROMOTER.

5

The expression and regulation of the PSM gene is complex. By immunostaining, PSM antigen was found to be expressed brilliantly in metastasized tumor, and in organ confined tumor, less so in normal prostatic 10 tissue and more heterogenous in BPH. PSM is strongly expressed in both anaplastic and hormone refractory tumors. PSM mRNA has been shown to be down regulated Expression of PSM RNA is also modulated by androgen. by a host of cytokines and growth factors. Knowledge of 15 the regulation of PSM expression should aid in such diagnostic and therapeutic strategies imunoscintigraphic imaging of prostate cancer and protate-specific promoter-driven gene therapy.

20

25

- Sequencing of a 3 kb genomic DNA clone that contained 2.5 kb upstream of the transcription start site revealed that two stretches of about 300 b.p. (-260 to -600; and -1325 to -1625) have substantial homology (79-87%) to known genes. The promoter lacks a GC rich region, nor does it have a consensus TATA box. However, it contains a TA-rich region from position -35 to -65.
- 30 Several consensus recognition sites for general transcription factors such as AP1, AP2, NFkB, GRE and E2-RE were identified. Chimeric constructs containing fragments of the upstream region of the PSM gene fused to a promoterless chloramphenical acetyl transferase gene were transfected into, and transiently expressed in LNCaP, PC-3, and SW620 (a colonic cell line). With an additional SV40 enhancer, sequence from -565 to +76

-104-

exhibited promoter activity in LNCaP but not in PC-3 nor in SW620.

Materials and Methods

5

10

15

Cell Lines. LNCaP and PC-3 prostatic carcinoma cell lines (American Type Culture Collection) were cultured in RPMI and MEM respectively, supplemented with 5% fetal calf serum at 37°C and 5% CO₂. SW620, a colonic cell line, is a gift from Melisa.

Polymerase Chain Reaction. The reaction was performed in a 50 μ l volume with a final concentration of the following reagents: 16.6 mM NH₄SO₄, 67 mM Tris-HCl pH 8.8, acetylated BSA 0.2 mg/ml, 2mM MgCl₂, 250 μ M dNTPs, 10 mM ß-mercaptoethanol, and 1 U of rth 111 Taq polymerase (Boehringer Mannhiem, CA). A total of 25 cycles were completed with the following profile: cycle 1, 94°C 4 min.; cycle 2 through 25, 94°C 1 min, 60°C 1 min, 72°C 1 min. The final reaction was extended for 10 min at 72°C. Aliquots of the reaction were electrophoresed on 1 % agarose gels in 1X Tris-acetate-EDTA buffer.

25

30

35

20

Cloning of PSM promoter. A bacteriophage P1 library of human fibroblast genomic DNA (Genomic Sysytems, Inc., St. Louis, MI), was screened using a PCR method of Pierce et al. Primers located at the 5' end of PSM cDNA were used:5'-CTCAAAAGGGGCCGGATTTCC-3' and 5'CTCTCAATCTCACTAATGCCTC-3'. A positive clone, p683, was digested with Xhol restriction enzyme. Southern analysis of the restricted fragments using a DNA probe from the extreme 5' to the Ava-1 site of PSM cDNA confirmed that a 3Kb fragment contains the 5' regulatory sequence of the PSM gene. The 3 kb Xhol fragment was subcloned into pKSBluescrpt vectors and

-105-

sequenced using the dideoxy method.

Functional Assay of PSM Promoter. Chloramphenicol Transferase, (CAT) gene plasmids constructed from the Smal-HindIII fragments subfragements (using either restriction enzyme subfragments or PCR) by insertion into promoterless pCAT basic or pCAT-enhancer vectors (Promega). constructs were cotransfected with pSVBgal plasmid (5 μg of each plasmid) into cell lines in duplicates, using a calcium phosphate method (Gibco-BRL, Gaithersburg, MD). The transfected cells were harvested 72 hours later and assayed (15µg of lysate) for CAT activity using the LSC method and for Bgal activity (Promega). CAT activities were standardized by comparision to that of the figal activities.

Results

5

10

15

25

30

35

20 Sequence of the 5' end of the PSM gene.

The DNA sequence of the 3 kb XhoI fragment of p683 which includes 500 bp of DNA from the RNA start site was determined (Figures 31A-31D) Sequence 683XFRVS starts from the 5' distal end of PSM promoter, it overlaps with the published PSM putative promoter at nt 2485, i.e. the putative transcription start site is at nt 2485; sequence 683XF107 is the reverse, complement of 683XFRVS). The sequence from the XhoI fragment displayed a remarkable arrays of elements and motifs which are characteristic of eukaryotic promoters and regulatory regions found in other genes (Figure 32).

Functional Analysis of upstream PSM genomic elements for promoter activity.

Various pCAT-PSM promoter constructs were tested for promoter activities in two prostatic cell lines:

LNCaP, PC-3 and a colonic SW620 (Figure 33). Induction of CAT activity was neither observed in p1070-CAT which contained a 1070 bp PSM 5' promoter fragment, nor in p676-CAT which contained a 641 bp PSM 5' promoter fragment. However, with an additional SV-40 enhancer, sequence from -565 to +76 (p676-CATE) exhibited promoter activity in LNCaP but not in PC-3 nor in SW620.

Therefore, a LNCaP specific promoter fragment from -565 to +76 has been isolated which can be used in PSM promoter-driven gene therapy.

EXAMPLE 6:

15

25

30

35

5

ALTERNATIVELY SPLICED VARIANTS OF PROSTATE SPECIFIC MEMBRANE ANTIGEN RNA: RATIO OF EXPRESSION AS A POTENTIAL MEASUREMENT OF PROGRESSION

20 MATERIALS AND METHODS

Cell Lines. LNCaP and PC-3 prostatic carcinoma cell lines were cultured in RPMI and MEM respectively, supplemented with 5% fetal calf serum at 37°C and 5% CO₂.

Primary tissues. Primary prostatic tissues were obtained from MSKCC's in-house tumor procurement service. Gross specimen were pathologically staged by MSKCC's pathology service.

Total RNA was isolated by a RNA Isolation. thiocynate/phenol/chloroform quanidinium modified method using a RNAzol B kit (Tel-Test, Friendswood, TX). RNA was stored in diethyl pyrocarbonate-treated quantified using was RNA -80°C. at water spectrophometric absorption at 260nm.

-107-

cDNA synthesis. Two different batches of normal prostate mRNAs obtained from trauma-dead males (Clontech, Palo Alto, CA) were denatured at 70°C for 10 min., then reverse transcribed into cDNA using random hexamers and Superscript II reverse transcriptase (GIBCO-BRL, Gaithersburg, MD) at 50°C for 30 min. followed by a 94°C incubation for 5 min.

5

35

Polymerase Chain Reaction. Oligonucleotide primers(5'-CTCAAAAGGGGCCGGATTTCC-3' 10 and AGGCTACTTCACTCAAAG-3'), specific for the 5' and 3' ends of PSM cDNA were designed to span the cDNA sequence. The reaction was performed in a 50 μ l volume with a final concentration of the following reagents: 16.6 mM NH,SO,, 67 mM Tris-HCl pH 8.8, acetylated BSA 0.2 mg/ml, 15 2mM MgCl, 250 \(\mu \) dNTPs, 10 mM \(\mathbb{G} \)-mercaptoethanol, and 1 U of rTth polymerase (Perkin Elmer, Norwalk, CT). A total of 25 cycles were completed with the following profile: cycle 1, 94°C 4 min.; cycle 2 through 25, 94°C 1 min, 60°C 1 min, 72°C 1 min. The final reaction was 20 extended for 10 min at 72°C. Aliquots of the reaction were electrophoresed on 1 % agarose gels in 1X Trisacetate-EDTA buffer.

- 25 Cloning of PCR products. PCR products were cloned by the TA cloning method into pCRII vector using a kit from Invitrogen (San Diego, CA). Ligation mixture were transformed into competent Escherichia coli Inv5α.
- Sequencing. Sequencing was done by the dideoxy method using a sequenase kit from US Biochemical (Cleveland, OH). Sequencing products were electrophoresed on a 5% polyacrylamide/7M urea gel at 52°C.

RNase Protection Assays. Full length PSM cDNA clone was digested with NgoM 1 and Nhel. A 350 b.p. fragment

was isolated and subcloned into pSPORT1 vector (GIBCOBRL, Gaithersburg, MD). The resultant plasmid, pSP350, was linearized, and the insert was transcribed by SP6 RNA polymerase to yield antisense probe of 395 nucleotide long, of which 355 nucleotides and/or 210 nucleotides should be protected from RNAse digestion by PSM or PSM' RNA respectively (Fig.2). Total celluar RNA (20 μ g) from different tissues were hybridized to the aforementioned antisense RNA probe. Assays were performed as described (7). tRNA was used as negative control. RPAs for LNCaP and PC-3 were repeated.

RESULTS

5

10

15

20

25

30

35

RT-PCR of mRNA from normal prostatic tissue. Two independent RT-PCR of mRNA from normal prostates were performed as described in Materials and Methods. Subsequent cloning and sequencing of the PCR products revealed the presence of an alternatively spliced PSM' has a shorter cDNA (2387 PSM'. variant, nucleotides) than PSM (2653 nucleotides). The results of the sequence analysis are shown in Figure 34. cDNAs are identical except for a 266 nucleotide region near the 5' end of PSM cDNA (nucleotide 114 to 380) is absent in PSM' cDNA. Two independent repetitions of RT-PCR of different mRNA samples yielded identical results.

RNase Protection Assays. An RNA probe complementary to PSM RNA and spanning the 3' splice junction of PSM' RNA was used to measure relative expression of PSM and PSM' mRNAs (Figure 35). With this probe, both PSM and PSM' RNAs in LNCaP cells was detected and the predominant form was PSM. Neither PSM nor PSM' RNA was detected in PC-3 cells, in agreement with previous Northern and Western blot data (5,6). Figure 36 showed the presence of both splice variants in human primary prostatic tissues. In primary prostatic tumor, PSM is

-109-

the dominant form. In contrast, normal prostate expressed more PSM' than PSM. BPH samples showed about equal expression of both variants.

Tumor Index. The relative expression of PSM and PSM' (Figure 36) was quantified by densitometry and expressed as a tumor index (Figure 37). LNCaP has an index ranging from 9-11; CaP from 3-6; BPH from 0.75 to 1.6; normal prostate has values from 0.075 to 0.45.

10

15

20

25

DISCUSSION

Sequencing data of PCR products derived from human normal prostatic mRNA with 5' and 3' end PSM oligonucleotide primers revealed a second splice variant, PSM', in addition to the previously described PSM cDNA.

PSM is a 750 a.a. protein with a calculated molecular weight of 84,330. PSM was hypothesized to be a type II integral membrane protein (5). A classic type II membrane protein is the transferrin receptor and indeed PSM has a region that has modest homology with the transferrin receptor (5). Analysis of the PSM amino acid sequence by either the methods of Rao and Argos (7) or Eisenburg et. al. (8) strongly predicted one transmembrane helix in the region from a.a.#20 to #43. Both programs found other regions that could be membrane associated but were not considered likely candidates for being transmembrane regions.

30

35

PSM' antigen, on the other hand, is a 693 a.a. protein as deduced from its mRNA sequence with a molecular weight of 78,000. PSM' antigen lacks the first 57 amino acids present in PSM antigen (Figure 34). It is likely that PSM' antigen is cytosolic.

The function of PSM and PSM' are probably different.

5

10

15

20

25

30

35

-110-

The cellular location of PSM antigen suggests that it may interact with either extra- or intra- cellular ligand(s) or both; while that of PSM' implies that PSM' can only react with cytosolic ligand(s). Furthermore, PSM antigen has 3 potential phosphorylation sites on These sites are absent in PSM' its cytosolic domain. On the other hand, PSM' antigen has 25 antigen. potential phosphorylation sites, 10 N-myristoylation sites and 9 N-glycosylation sites. For PSM antigen, all of these potential sites would be on the The modifications of these extracellular surface. sites for these homologous proteins would be different depending on their cellular locations. Consequently, the function(s) of each form would depend on how they are modified.

The relative differences in expression of PSM and PSM' by RNase protection assays was analyzed. Results of expression of PSM and PSM' in primary prostatic tissues strongly suggested a relationship between the relative expression of these variants and the status of the While it is noted cell: either normal or cancerous. here that the sample size of the study is small (Figures 36 and 37), the consistency of the trend is evident. The samples used were gross specimens from patients. The results may have been even more dramatic if specimens that were pure in content of CaP, BPH or Nevertheless, in these normal had been used. specimens, it is clear that there is a relative increase of PSM over PSM' mRNA in the change from normal to CaP. The Tumor Index (Figure 37) could be useful in measuring the pathologic state of a given It is also possible that the change in sample. expression of PSM over PSM' may be a reason for tumor progression. A more differentiated tumor state may be restored by PSM' either by transfection or by the use of differentiation agents.

25

30 .

35

References of Example 6

- Murphy, G.P. Report on the American Urologic Association/American Cancer Society Scientific Seminar on the Detection and treatment of Early-Stage Prostate Cancer. CA Cancer J. Clin. 44:91-95,1994.
- 2. Israeli, R.S., Miller Jr., W.H., Su, S.L.,
 Powell, C.T., Fair, W.R., Samadi, D.S.,
 Huryk, R.F., DelBlasio, A., Edwards, E.T,
 and Heston, W.D.W. Sensitive Nested Reverse
 Transcription Polymerase Chain Reaction
 Detection of Circulating Prostatic Tumor
 Cells: Comparision of Prostate-specific
 Membrane Antigen and Prostate-specific
 Antigen-based Assays. Cancer Res., 54:
 6325-6329,1994.
- 3. Horoszewicz, J.S., Kawinski, E., and Murphy, G.P. Monoclonal antibodies to a new antigenic marker in epithelial cells and serum of prostatic cancer patients.

 Anticancer Res., 7:927-936,1987.
 - 4. Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A. and Murphy, G.P. LNCaP model of human prostatic Carcinoma. Cancer Res., 43:1809-1818,1983.
 - 5. Israeli, R.S., Powell, C.T., Fair, W.R. and Heston, W.D.W. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res.,53:227-230,1993.

-112-

6. Israeli, R.S., Powell, C.T., Corr, J.G., Fair, W.R. and Heston, W.D.W. Expression of the prostate-specific membrane antigen. Cancer Res., 54:1807-1811,1994.

٠5

10

- Melton, D.A., Krieg, P.A., Rebagliati, M.R., Maniatis, T., Zinn, K. and Green, M.R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res., 12:7035-7056, 1984.
- 8. Rao, M.J.K. and Argos, P. A conformational preference parameter to predict helices in integral membrane proteins. Biochim. Biophys. Acta, 869:197-214,1986.
- 9. Eisenburg, D., Schwarz, E., Komaromy, M. and Wall, R. Analysis of membrane and surface protein sequences with the hydrophbic moment plot, J. Mol. Biol. 179:125-142,1984.
- 25 10. Troyer, J.K. and Wright Jr.,G.L.
 Biochemical characterization and mapping of
 7E-11 C-5.3. Epitope of the prostate
 specific membrane antigen (PSMA). American
 Association for Cancer Research Special
 Conference: Basic and Clinical Aspect of
 Prostate Cancer. Abstract C-38, 1994.

EXAMPLE 7:

ENHANCED DETECTION OF PROSTATIC HEMATOGENOUS MICRO-METASTASES WITH PSM PRIMERS AS COMPARED TO PSA PRIMERS USING A SENSITIVE NESTED REVERSE TRANSCRIPTASE-PCR ASSAY.

77 randomly selected samples were analyzed from 10 patients with prostate cancer and reveals that PSM and PSA primers detected circulating prostate cells in 48 (62.3%) and 7 (9.1%) patients, respectively. treated stage D disease patients, PSM primers detected cells in 16 of 24 (66.7%), while PSA primers detected 15 cells in 6 of 24 patients (25%). In hormone-refractory prostate cancer (stage D3), 6 of 7 patients were positive with both PSA and PSM primers. these patients died within 2-6 months of their assay, despite aggressive cytotoxic chemotherapy, in contrast 20 to the single patient that tested negatively in this group and is alive 15 months after his assay, suggesting that PSA-PCR positivity may serve as a predictor of early mortality. In post-radical prostatectomy patients with negative serum PSA values, 25 PSM primers detected metastases in 21 of 31 patients (67.7%), while PSA primers detected cells in only 1 of 33 (3.0%), indicating that micrometastatic spread may be a relatively early event in prostate cancer. analysis of 40 individuals without known prostate 30 cancer provides evidence that this assay is highly specific and suggests that PSM expression may predict the development of cancer in patients without clinically apparent prostate cancer. Using PSM primers, micrometastases were detected in 4 of 40 35 controls, two of whom had known BPH by prostate biopsy and were later found to have previously undetected prostate cancer following repeat prostate biopsy

-114-

performed for a rising serum PSA value. These results show the clinical significance of detection of hematogenous micrometastatic prostate cells using PSM primers and potential applications of this molecular assay.

EXAMPLE 8:

5

15

20

25

30

35

MODULATION OF PROSTATE SPECIFIC MEMBRANE ANTIGEN (PSM) 10 EXPRESSION IN VITRO BY CYTOKINES AND GROWTH FACTORS.

The effectiveness of CYT-356 imaging is enhanced by manipulating expression of PSM. PSM mRNA expression is downregulated by steroids. This is consistent with the clinical observations that PSM is strongly expressed in both anaplastic and hormone refractory lesions. In contrast, PSA expression is decreased following hormone withdrawal. In hormone refractory disease, believed that tumor cells may produce both growth factors and receptors, thus establishing an autocrine loop that permits the cells to overcome normal growth Many prostate tumor epithelial cells constraints. express both TGFa and its receptor, epidermal growth factor receptor. Results indicate that the effects of TGFq and other selected growth factors and cytokines on the expression of PSM in-vitro, in the human prostatic carcinoma cell line LNCaP.

 2×10^6 LNCaP cells growing in androgen-depleted media were treated for 24 to 72 hours with EGF, TGF α , TNFß or TNF α in concentrations ranging from 0.1 ng/ml to 100 ng/ml. Total RNA was extracted from the cells and PSM mRNA expression was quantitated by Northern blot analysis and laser densitometry. Both b-FGF and TGF α yielded a dose-dependent 10-fold upregulation of PSM expression, and EGF a 5-fold upregulation, compared to untreated LNCaP. In contrast, other groups have shown

20

25

30

35

a marked downregulation in PSA expression induced by these growth factors in this same in-vitro model. $TNF\alpha$, which is cytotoxic to LNCaP cells, and $TNF\beta$ downregulated PSM expression 8-fold in androgen depleted LNCaP cells.

TGFα is mitogenic for aggressive prostate cancer cells. There are multiple forms of PSM and only the membrane form is found in association with tumor progression.

The ability to manipulate PSM expression by treatment with cytokines and growth factors may enhance the efficacy of Cytogen 356 imaging, and therapeutic targeting of prostatic metastases.

15 EXAMPLE 9:

NEOADJUVANT ANDROGEN-DEPRIVATION THERAPY (ADT) PRIOR TO RADICAL PROSTATECTOMY RESULTS IN A SIGNIFICANTLY DECREASED INCIDENCE OF RESIDUAL MICROMETASTATIC DISEASE AS DETECTED BY NESTED RT-PCT WITH PRIMERS.

Radical prostatectomy for clinically localized prostate cancer is considered by many the "gold standard" treatment. Advances over the past decade have served to decrease morbidity dramatically. Improvements intended to assist clinicians in better patients preoperatively have been developed, however the incidence of extra-prostatic spread still exceeds 50%, as reported in numerous studies. A phase III prospective randomized clinical study designed to compare the effects of ADT for 3 months in patients undergoing radical prostatectomy with similarly matched controls receiving surgery alone was conducted. previously completed phase II study revealed a 10% margin positive rate in the ADT group (N=69) as compared to a 33% positive rate (N=72) in the surgery alone group.

-116-

Patients who have completed the phase III study were analyzed to determine if there are any differences between the two groups with respect to residual micrometastatic disease. A positive PCR result in a post-prostatectomy patient identifies viable metastatic cells in the circulation.

Nested RT-PCR was performed with PSM primers on 12 patients from the ADT group and on 10 patients from the control group. Micrometastatic cells were detected in 9/10 patients (90%) in the control group, as compared to only 2/12 (16.7%) in the ADT group. In the ADT group, 1 of 7 patients with organ-confined disease tested positively, as compared to 3 of 3 patients in the control group. In patients with extra-prostatic disease, 1 of 5 were positive in the ADT group, as compared to 6 of 7 in the control group. These results indicate that a significantly higher number of patients may be rendered tumor-free, and potentially "cured" by the use of neoadjuvant ADT.

EXAMPLE 10:

5

10

15

20

30

35

SENSITIVE NESTED RT-PCR DETECTION OF CIRCULATION PROSTATIC TUMOR CELLS - COMPARISON OF PSM AND PSA-BASED ASSAYS

Despite the improved and expanded arsenal of modalities available to clinician today, including sensitive serum PSA assays, CT scan, transrectal ultrasonography, endorectal co.I MRI, etc., many patients are still found to have metastatic disease at the time of pelvic lymph node dissection and radical prostatectomy. A highly sensitive reverse transcription PCR assay capable of detecting occult hematogenous micrometastatic prostatic cells that would otherwise go undetected by presently available staging modalities

25

30

35

was developed. This assay is a modification of similar PCR assays performed in patients with prostate cancer and other malignancies^{2,3,4,5}. The assay employs PCR primers derived from the cDNA sequences of prostate-specific antigen⁶ and the prostate-specific membrane antigen recently cloned and sequenced.

Materials and Methods

10 Cells and Reagents. LNCaP and MCF-7 cells were obtained from the American Type Culture Collection (Rockville, MD.). Details regarding the establishment and characteristics of these cell lines have been previously published8,9. Cells grown in RPMI 1640 medium and supplemented with L-glutamine, nonessential 15 amino acids, and 5% fetal calf serum (Gibco-BRL, Gaithersburg, MD.) In a 5% CO, incubator at 37°C. media was obtained from the MSKCC Media Preparation Facility. Routine chemical reagents were of the highest grade possible and were obtained from 20 Sigma Chemical Company (St. Louis, MO).

Patient Blood Specimens. All blood specimens used in this study were from patients seen in the outpatient offices of urologists on staff at MSKCC. Two anticoagulated tubes per patient were obtained at the time of their regularly scheduled blood draws. Specimens were obtained with informed consent of each patient , as per a protocol approved by the MSKCC Institutional Review Board. Samples were promptly brought to the laboratory for immediate processing. Seventy-seven specimens from patients with prostate cancer were randomly selected and delivered to the laboratory "blinded" along with samples from negative controls for processing. These included 24 patients with stage D disease (3 with D_0 , 3 with D^1 , 11 with D^2 , and 7 with D^3), 31 patients who had previously undergone radical

5

10

15

20

25

30

35

-118-

prostatectomy and had undetectable postoperative serum PSA levels (18 with pT2 lesions, 11 with pT3, and 2 pT4), 2 patients with locally recurrent disease following radical prostatectomy, 4 patients who had received either external beam radiation therapy or interstitial 1¹²⁵ implants, 10 patients with untreated clinical stage T1-T2 disease, and 6 patients with clinical stage T3 disease on anti-androgen therapy. The forty blood specimens used as negative controls were from 10 health males, 9 males with biopsy-proven BPH and elevated serum PSA levels, 7 healthy females, 4 male patients with renal cell carcinoma, 2 patients with prostatic intraepithelial neoplasia (PIN), 2 patients with transitional cell carcinoma of the bladder and a pathologically normal prostate, 1 patient patient with acute prostatitis, 1 promyelocytic leukemia, 1 patient with testicular cancer, 1 female patient with renal cell carcinoma, 1 patient with lung cancer, and 1 patient with a cyst of the testicle.

Blood Sample Processing/RNA Extraction. 4 ml of whole anticoagulated venous blood was mixed with 3 ml of ice cold PBS and then carefully layered atop 8 ml of Ficoll (Pharmacia, Uppsala, Sweden) in a 14-ml polystyrene Tubes were centrifuged at 200 x g for 30 min. at tube. The buffy coat layer (approx. 1 ml.) was 4°C. carefully removed and rediluted to 50 ml with ice cold PBS in a 50 ml polypropylene tube. This tube was then centrifuged at 2000 x g for 30 min. at 4°C. The supernatant was carefully decanted and the pellet was allowed to drip dry. One ml of RNazol B was then added to the pellet and total RNA was isolated as per manufacturers directions (Cinna/Biotecx, Houston, TX.) RNA concentrations and purity were determined by UV spectroscopy on a Beckman DU 640 spectrophotometer and by gel analysis.

30

35

Determination of PCR Sensitivity. RNA was isolated from LNCaP cells and from mixtures of LNCaP and MCF-7 cells at fixed ratios (i.e. 1:100, 1:1,000, etc.) using RNAzol B. Nested PCR was then performed as described below with both PSA and PSM primers in order to determine the limit of detection for the assay. LNCaP:MCF-7 (1:100,000) cDNA was diluted with distilled water to obtain concentrations of 1:1,000,000. The human breast cancer cell line MCF-7 was chosen because they had previously been tested by us and shown not to express either PSM nor PSA by both immunohistochemistry and conventional and nested PCR.

Polymerase Chain Reaction. The PSA outer primer sequences are nucleotides 494-513 (sense) in exon 4 and nucleotides 960-979 (anti-sense) in exon 5 of the PSA cDNA. These primers yield a 486 bp PCR product from PSA CDNA that can be distinguished from a product synthesized from possible contaminating genomic DNA.

PSA-494 5'-TAC CCA CTG CAT CAG GAA CA-3'
PSA-960 5'-CCT TGA AGC ACA CCA TTA CA-3'

The PSA inner upstream primer begins at nucleotide 559 and the downstream primer at nucleotide 894 to yield a 355 bp PCR product.

PSA-559 5'-ACA CAG GCC AGG TAT TTC AG-3' PSA-894 5'-GTC CAG CGT CCA GCA CAC AG-3'

All primers were synthesized by the MSKCC Microchemistry Core Facility. $5\mu g$ of total RNA was reverse-transcribed into cDNA using random hexamer primers (Gibco-BRL) and Superscript II reverse transcriptase (Gibco-BRL) according to the manufacturers recommendations. 1µl of this CDNA served as the starting template for the outer primer PCR reaction. The 20μ l PCR mix included: 0.5U Tag polymerase (Promega) Promega reaction buffer, 1.5mM MgCl₂, 200μM dNTPs, and 1.0μM of each primer. This mix was then transferred to a Perkin Elmer 9600 DNA thermal cycler and incubated for 25 cycles. The PCR profile was as follows: 94°C x 15 sec., 60°C x 15 sec., and 72°C for 45 sec. After 25 cycles, samples—were placed on ice, and 1µl of this reaction mix served as the template for another 25 cycles using the inner primers. The first set of tubes were returned to the thermal cycler for 25 additional cycles. The PSM outer upstream primer sequences are nucleotides 1368-1390 and the downstream primers are nucleotides 1995-2015, yielding a 67 bp PCR product.

PSM-1368 5'-CAG ATA TGT CAT TCT GGG AGG TC-3' PSM-2015 5'-AAC ACC ATC CCT CGA ACC-3'

The PSM inner upstream primer span nucleotides 1689-1713 and the downstream primer span nucleotides 1899-1923, yielding a 234 bp PCR product.

PSM-1689 5'-CCT AAC AAA AGA GCT GAA AAG CCC-3' PSM-1923 5'-ACT GTG ATA CAG TGG ATA GCC GCT-3'

20

25

30

35

for these primers are:

 $2\mu l$ of cDNA was used as the starting DNA template in The $50\mu l$ PCR mix included: 1U Taq the PCR assay. polymerase (Boehringer Mannheim), 250 µM cNTPs, 10 mM ßmercaptoethanol, $2mM \ MgCl_2$, and $5\mu l$ of a $10x \ buffer \ mix$ containing: 166mM NH₄SO₄, 670mM Tris pH 8.8, and 2mg/ml of acetylated BSA. PCR was carried out in a Perkin Elmer 480 DNA thermal cycler with the following parameters: 94°C x 4 minutes for 1 cycle, 94°C x 30 sec., 58° C x 1 minute, and 72° C x 1 minute for 25 cycles, followed by 72°C x 10 minutes. Samples were then iced and $2.5\mu l$ of this reaction mix was used as the template for another 25 cycles with a new reaction mix containing the inner PSM primers. cDNA quality was verified by performing control reactions using primers derived from the ß-2-microglobulin gene sequence 10 a ubiquitous housekeeping gene. These primers span exons 2-4 and generate a 620 bp PCR product. The sequences

ß-2 (exon 2) 5'-AGC AGA GAA TGG AAA GTC AAA-3'

S-2 (exon 4) 5'-TGT TGA TGT TGG ATA AGA GAA-3'

The entire PSA mix and 7-10 μ l of each PSM reaction mix were run on 1.5-2% agarose gels, stained with ethidium bromide and photographed in an Eage Eye Video Imaging System (Statagene, Torrey Pines, CA.). Assays were repeated at least twice to verify results.

Cloning and Sequencing of PCR Products. PCR products were cloned into the pCR II plasmid vector using the TA 10 cloning system (Invitrogen). These plasmids were transformed into competent E. coli cells using standard methods 11 and plasmid DNA was isolated using Magic Minipreps (Promega) and screened by restriction 15 analysis. Double-stranded TA clones were sequenced by the dideoxy method¹² using ³⁵S-cCTP (NEN) and Sequenase (U.S. Biochemical). Sequencing products were then analyzed on 6% polyacrilamide/7M urea gels, which were fixed, dried, and autoradiographed as 20 described.

Southern Analysis. PCR products were transferred from ethidium-stained agarose gels to Nytran nylon membranes (Schletcher and Schuell) by pressure blotting with a Posi-blotter (Stratagene) according to the manufacturer's instructions. DNA was cross-linked to the membrane using a UV Stratalinker (Stratagene). Blots were pre-hybridized at 65°C for 2 hours and subsequently hybridized with denatured ³²P-labeled, random-primed DNA probes (either PSA or PSM). Blots were washed twice in 1x SSC/0.5% SDS at 42°C and twice in 0.1x SSC/0.1% SDS at 50°C for 20 minutes each. Membranes were air-dried and autoradiographed for 1-3 hours at room temperature with Hyperfilm MP (Amersham).

25

30

5

Results

25

30

35

PSA and PSM Nested PCR Assays: The application of nested PCR increased the level of detection from an average of 1:10,000 using outer primers alone, to 5 better than 1:1,000,000. Dilution curves demonstrating this added sensitivity are shown for PSA and PSM-PCR in Figures 1 and 2 respectively. Figure 1 shows that the 486 bp product of the PSA outer primer set is clearly ethidium staining to detectable with 10 dilutions, whereas the PSA inner primer 355 bp product is clearly detectable in all dilutions shown. Figure 2 the PSM outer primer 647 bp product is also clearly detectable in dilutions to only 1:10,000 with conventional PCR, in contrast to the PSM inner nested 15 . PCR 234 bp product which is detected in dilutions as low as 1:1,000,000. Southern blotting was performed on all controls and most of the patient samples in order Southern blots of the to confirm specificity. respective dilution curves confirmed the primer 20 specificities but did not reveal any significantly increased sensitivity.

PCR in Negative Controls: Nested PSA and PSM PCR was performed on 40 samples from patients and volunteers as described in the methods and materials section. Figure 48 reveals results from 4 representative negative control specimens, in addition to a positive control. Each specimen in the study was also assayed with the \$2-microglobulin control, as shown in the figure, in order to verify RNA integrity. Negative results were obtained on 39 of these samples using the PSA primers, however PSM nested PCR yielded 4 positive results. Two of these "false positives" represented patients with elevated serum PSA values and an enlarged prostate who underwent a transrectal prostate biopsy revealing stromal and fibromuscular hyperplasia. In both of

10

15

these patients the serum PSA level continued to rise and a repeat prostate biopsy performed at a later date revealed prostate cancer. One patient who presented to the clinic with a testicular cyst was noted to have a positive PSM nested PCR result which has been unable to Unfortunately, this patient never returned explain. for follow up, and thus have not been able to obtain another blood sample to repeat this assay. result were obtained with both PSA and PSM primers in a 61 year old male patient with renal cell carcinoma. This patient has a normal serum PSA level and a normal digital rectal examination. Overall, if the two patients were excluded in whom a positive PCR, but no other clinical test, accurately predicted the presence of prostate cancer, 36/38 (94.7%) of the negative controls were negative with PSM primers, and 39/40 (97.5%) were negative using PSA primers.

Patient Samples: In a "blinded" fashion, in which the 20 laboratory staff were unaware of the nature of each specimen, 117 samples from 77 patients mixed randomly with 40 negative controls were assayed. The patient samples represented a diverse and heterogeneous group as described earlier. Several representative patient 25 samples are displayed in Figure 49, corresponding to positive results from patients with both localized and disseminated disease. Patients 4 and 5, both with stage D prostate cancer exhibit positive results with both the outer and inner primer pairs, indicating a large circulating tumor cell burden, as compared to the 30 other samples. Although the PSM and PSA primers yielded similar sensitivities in LNCaP dilution curves previously shown. **PSM** primers micrometastases in 62.3% of the patient 35 whereas PSA primers only detected 9.1%. In patients with documented metastatic prostate cancer (stages D_0 receiving anti-androgen treatment, PSM primers

10

25

30

35

detected micrometastases in 16/24 (66.7%), whereas PSA primers detected circulating cells in only 6/24 (25%). In the study 6/7 patients with hormone-refractory prostate cancer (stage D₃) were positive. In the study, PSA primers revealed micrometastatic cells in only 1/15 (6.7%) patients with either pT3 or pT4 (locally-advanced) prostate cancer following radical prostatectomy. PSM primers detected circulating cells in 9/15 (60%) of these patients. Interestingly, circulating cells 13/18 (72.2%) patients with pT2 (organ-confined) prostate cancer following radical prostatectomy using PSM primers was detected. None of these patient samples were positive by PSA-PCR.

Improved and more sensitive method for the detection of minimal, occult micrometastic disease have been reported for a number of malignancies by use of immunohistochemical methods (14), as well as the polymerase chain reaction (3, 4, 5). The application of PCR to detect occult hematogenous micrometastases in prostate cancer was first described by Moreno, et al. (2) using conventional PCR with PSA-derived primers.

When human prostate tumors and prostate cancer cells in-vitro were studied by immunohistochemistry and mRNA analysis, PSM appeared to be highly expressed in anaplastic cells, hormone-refractory cells, and bony metastases (22, 23, 24), in contrast to PSA. If cells capable of hematogenous micrometastasis represent the more aggressive and poorly-differentiated cells, they may express a higher level of PSM per cell as compared to PSA, enhancing their detectibility by RT-PCR.

Nested RT-PCR assays are both sensitive and specific. Results have been reliably reproduced on repeated occasions. Long term testing of both cDNA and RNA stability is presently underway. Both assays are

-125-

capable of detecting one prostatic cell in at least one million non-prostatic cells of similar size. confirms the validity of the comparison of PSM vs. PSA Similar levels of PSM expression in both human prostatic cancer cells in-vivo and LNCaP cells in-vitro resulted. The specificity of the PSM-PCR assay was supported by the finding that two "negative control" patients with positive PSM-PCR results were both subsequently found to have prostate cancer. suggests an exciting potential application for this technique for use in cancer screening. In contrast to recently published data (18), significant ability for PSA primers to accurately detect micrometastatic cells in patients with pathologically with pathologically organ-confined prostate cancer, despite the sensitivity of the assay failed to result. Rather a surprisingly high percentage of patients with localized prostate cancer that harbor occult circulating prostate cells following "curative" radical prostatectomy results which suggests that micrometastasis is an early event in prostate cancer.

The application of this powerful new modality to potentially stage and/or follow the response to therapy in patients with prostate cancer certainly merits further investigation. In comparison to molecular detection of occult tumor cells, present clinical modalities for the detection of prostate cancer spread appear inadequate.

5

10

15

20

25

-126-

References for Example 10

 Boring, C.C., Squires, T.S., Tong, T., and Montgomery, S. Cancer Statistics, 1994. CA., 44:
 7-26, 1994.

- Moreno, J.G., Croce, C.M., Fischer, R., Monne, M., Vihko, P., Mulholland, S.G., and Gomella, L.G., Detection of hematogenous micrometastasis in patients with prostate cancer. Cancer Res., 52:6110-6112, 1992.
- 3. Wu, A., Ben-Ezra, J., and Colombero, A.:
 Detection of micrometastasis in breast cancer by
 the polymerase chain reaction. Lab. Ivest., 62:
 109A, 1990.
- 4. Fey, M.F., Kulozik, A.E., and Hansen-Hagge, T.E.:
 The polymerase chain reactipn: A new tool for
 the detection of minimal residual disease in
 hematological malignacies. Eur. J. Cancer, 27:
 89-94, 1991.
- Miller, W.H., Jr., Levine, K., DeBlasio, A.,
 Frankel, S.R., Dmitrovsky, E., and Warrell, R.P.,
 Jr. Detection of mininal residual disease in Acute Promyelocytic Leukemia by a reverse transciption polymerase chain reaction assay for th PML/RAR-α fusion mRNA. Blood, 82: 1689-1694,
 1993.

35

- 6. Lundwall, A., and Lilja, H: Molecular cloning of a human prostate specific antigen cDNA. FEBS
 Letters, 214: 317, 1987.
- 7. Isaeli, R.S., Powell, C.T., Fair, W.R., and Heston, W.D.W.: Molecular cloning of a

complementary DNA encoding a prostate-specific membran antigen. Cancer Res., 53: 227-230, 1993.

- 8. Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A., and Murphy, G.P.: LNCaP model of human prostactic carcinoma. Cancer Res., 43: 1809-1818, 1983.
- Soule, H.D., Vazquez, J., Long, A., Albert, S., and Brennan, M.: A human cell line from a pleural effusion derived from a breast carcinoma.
 J. Natl. Can. Inst., 51: 1409-1416, 1973.
- 10. Gussow, D., Rein, R., Ginjaar, I., Hochstenbach, F., Seemann, G., Kottman, A., Ploegh, H.L. The human ß-2-Microglobulin gene. Primary structure and definition of the transcriptional unit. J. of Immunol. 139:3132-3138, 1987.

11. Hanahan, D.: Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol., 166:557-580, 1983.

- 25 12. Sanger, F., Nicklen, S., and Coulson, A.R.: DNA sequncing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74:5463-5467, 1977.
- for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem., 132:6-13, 1983.
- 14. Oberneder, R., Riesenberg, R., Kriegmair, M.,

 Bitzer, U., Klammert, R., Schneede, P.,

 Hofstetter, A., Riethmuller, G., and Pantel, K.

 Immunocytochemcical detection and phenytypic

characterization of micrometastatic tumour cells in bone marrow of patients with prostate cancer. Urol. Res. 22:3-8, 1994.

- 5 15. Israeli, R.S., Miller, W.H., Jr., Su, S.L., Samadi, D.S., Powell, C.T., Heston, W.D.W., Wise, G.J., and Fair, W.R. Sensitive detection of prostatic hematogenous micrometastases using prostate-specific antigen (PSA) and prostate-specific membran antigen (PSM) derived primers in the polymerase chain reaction. J. Urol. 151:373A, 1994.
- 16. Israeli, R.S., Miller, W.H., Jr., Su, S.L, Samadi, D.S., Powell, C.T. Heston, W.D.W., Wise, G.J., and Fair, W.S. Sensitive detection of prostatic hematogenous micrometastases using PsA and PSM-derived primers in the polymerase chain reaction. In press J. Urology.
- 17. Vessella, R., Stray, J., Arman, E., Ellis, W., and Lange, P. Reverse transcription polymerase chain reaction (RT-PCR) detects metastatic prostate cancer cells in lymph nodes, blood and potentially bone marrow using PSA-mRNA as template, J. Urol. 151:412A, 1994.
- 18. Katz, A.E., Olsson, C.A., Raffo, A.J., Cama, C., Perlman, H., Seaman, E., O'Toole, K.M., McMahon, D., Benson, M., and Buttyan, R., Molecular staging of prostate cancer with the use of an enhanced reverse transcriptase-PCR assay. Urology 43:765-775, 1994.
- 35 19. Wood, D.P., Jr., Banks, E.R., Humphries, S., McRoberts, J.W., and Rangenkar, V.M. Identification of micrometastases in paitents

-129-

with prostate cancer. J. Urol. 151:303A, 1994.

- Deguchi, T., Doi, T., Ehara, H., Ito, 20. Υ., Y., Takahashi, Nishino, Fujihiro, S., 5 Kawamura, T., Komeda, H., Horie, M., Kaji, H., Shimokawa, K., Tanaka, T., and Kawada, Detection of micrometastic prostate cancer cells nodes in lymph by reverse-transcriptase polymerase chain reaction. Cancer Res. 53:5350-4, 1993. 10
 - 21. Ghossein, R., Scher, H., Gerald, W., Hoffman, A., Kelley, W., Curely, T., Libertz, C., and Rosai, J. Detection of cirulating tumor cells in peripheral blood of patients with advanced prostatic carcinoma. Proc. Amer. Soc. of Clin. Oncol., 13:237, 1994.

15

30

35

- 22. Israeli, R.S., Powel, C.T., Corr, J.G., Fair,
 20 W.R., and Heston, W.D.W.: Expression of the
 prostate-specific membrane antigen. Cancer Res.,
 54:1807-1811, 1994.
- 23. Axelrod, H.R., Gilman, S.C., D'Aleo, C.H.

 Petrylak, D., Reuter, V., Gulfo, J.V., Saad A.,

 Cordon-Cardo, C., and Scher, H.I. Preclinical

 results and human immunohistochemical strudies

 with 90Y-CYT-356: a new prostatic cancer
 therapeutic agent. J.Urol., 147:361A, 1992.
 - 24. Wright, G.L., Jr., Haley, C., Beckett, M.L., and Schellhammer, P.F. Expression of the prostate biomaker 7E11-C5 in primary and metastic prostate carcinoma. Proc. Amer. Ass. for Can. Res. 35:233, 1994.
 - 25. Liotta, L.A., Kleinerman, J., and Saidel, G.M.:

PCT/US96/02424

-130-

Quantitative relationships of intravascular tumor cells, tumors vessels, and pulmonary metastases following tumore implantation. Cancer Res., 34:997-1003, 1974.

5

WO 96/26272

N

-131-

EXAMPLE 11:

CHROMOSOMAL LOCALIZATION OF COSMID CLONES 194 AND 683 BY FLUORESCENCE IN-SITU HYBRIDIZATION:

PSM was initially mapped as being located on chromosome 11p11.2-p13 (Figures 51-54). Further information from CDNA in-situ hybridizations the experiments demonstrated as much hybridization on the q as p arms. Much larger fragments of genomic DNA was obtained as cosmids and two of these of about 60 kilobases each one going 3' and the other 5' both demonstrated binding to chromosome 11 p and q under low stringency. under higher stringency conditions only the binding at 11q14-q21 remained. This result suggests that there is another gene on 11p that is very similar to PSM because it is so strongly binding to nearly 120 kilobases of genomic DNA (Figure 50).

20

25

30

35

5

10

15

Purified DNA from cosmid clones 194 and 683 was labelled with biotin dUTP by nick translation. Labelled probes were combined with sheared human DNA independently hybridized to normal metaphase chromosomes derived from PHA stimulated peripheral lymphocytes in a solution containing formamide, 10% dectran sulfate, and 2XSSC. hybridization signals were detected by incubating the hybridized slides in fluoresein conjugated avidin. Following signal detection the slides counterstained with propidium iodide and analyzed. These first experiments resulted in the specific labelling of a group C chromosome on both the long and This chromosome was believed to be chromosome 11 on the basis of its size and morphology. A second set of experiments were performed in which a specific probe centromere chromosome 11

cohybridized with the cosmid clones. These experiments were carried out in 60% formamide in an attempt to eliminate the cross reactive signal which was observed when low stringency hybridizations were done. These experiments resulted in the specific labelling of the centromere and the long arm of chromosome 11. Measurements of 10 specifically labelled chromosomes 11 demonstrated that the cosmid clones are located at a position which is 44% of the distance from the centromere to the telomere of chromosome arm 11q, an area that corresponds to band 14q. A total of 160 metaphase cells were examined with 153 cells exhibiting specific labelling.

Cloning of the 5' upstream and 3' downstream regions of 15 the PSM genomic DNA. A bacteriophage P1 library of human fibroblast genomic DNA (Genomic Systems, St. Louis, MI) was screened using the PCR method of Pierce et. al. Primer pairs located at either the 5' or 3' termini of PSM cDNA were used. Positive cosmid clones 20 were digested with restriction enzymes and confirmed by Southern analysis using probes which were constructed from either the 5' or 3' ends of PSM cDNA. Positive clone p683 contains the 5' region of PSM cDNA and about Clone -194 contains the 3' 60 kb upstream region. 25 terminal of the PSM cDNA and about 60 kb downstream.

EXAMPLE 12:

35

30 PEPTIDASE ENZYMATIC ACTIVITY

PSM is a type two membrane protein. Most type two membrane proteins are binding proteins, transport proteins or peptidases. PSM appears to have peptidase activity. When examining LNCaP cells with a substrate N-acetyl-aspartyl-14C-glutamic acid, NAAG, glutamic acid was released, thus acting as a carboxypeptidase. In

10

15

30

vitro translated PSM message also had this peptidase activity..

The result is that seminal plasma is rich in its content of glutamic acid, and are able to design inhibitors to enhance the activity of the non degraded normal substrate if its increased level will have a biologic desired activity. Also biologic activity can be measured to see how it correlates wit the level of message. Tissue may be examined for activity directly rather than indirectly using in-situ analysis or immunohistochemical probes. Because there is another gene highly similar on the other arm of chromosome 11 when isolated the expressed cloned genes can be used to determine what are the substrate differences and use those substrates for identification of PSM related activity, say in circulating cells when looking for metastases.

20 EXAMPLE 13:

IONOTROPICGLUTAMATE RECEPTOR DISTRIBUTION IN PROSTATE TISSUE

25 Introduction:

Excitatory neurotransmission in the central nervous system (CNS) is mediated predominantly by glutamate receptors. Two types of glutamate receptors have been identified in human CNS: metabotropic receptors, which are coupled to second-messenger systems, and ionotropic receptors, which serve as ligand-gated ion channels. The presence of ionotropic glutamate receptors in human prostate tissue was investigated.

35 Methods:

Detection of glutamate receptor expression was performed using anti-GluR2/3 and anti-biotin

-134-

immunohistochemical technique in paraffin-embedded tissues. PSM antigen prostate neurocarboxypeptidase that acts to release glutamate. In the CNS glutamate acts as a neurotransmitter by acting on glutaminergic ion channels and increases the flow of ions like calcium ions. One way the glutamate signal is transduced into cell activity is the activation of nitric oxide synthase, and nitric oxide synthase has recently been found to be present in human prostatic tissue. NO is a major signalling mechanism and is involved in control of cell growth and death, in response to inflammation, in smooth muscle cell contraction, etc,. In the prostate much of the stroma is smooth muscle. It was discovered that the prostate is rich in glutaminergic receptors and have begun to define this relationship. Stromal abnormalities are epithelial Stromal BPH. key feature of interactions are of importance in bothe BPH and CaP. The other glutaminergic receptors through G proteins to change the metabolism of the cell.

Results:

5

10

15

20

25

Anti-GluR2/3 immunoreactivity was unique to prostatic stroma and was absent in the prostatic epithelial compartment. Strong anti-GluR4 immunoreactivity was observed in basal cells of prostatic acini.

Discussion:

The differential distribution of ionotropic glutamate receptor subtypes between the stromal and epithelial compartments of the prostate has not been previously described. Prostate-specific membrane antigen (PSMA) has an analogous prostatic distribution, with expression restricted to the epithelial compartment.

PSM antigen is a neurocarboxypeptidase that acts to

5

10

15

20

25

30

35

-135-

release glutamate from NAAG 1, also a potential nerotransmitter. In the CNS glutamate acts as a neurotransmitter by acting on glutaminergic channels and increases the flow of ions like calcium ions. One way the glutamate signal is transduced into cell activity is the activation of nitric oxide synthase, and nitric oxide synthase has recently been found to be present in human prostatic tissue. NO is a major signaling mechanism and is involved in control of cell growth and death, in response to inflammation, in smooth muscle cell contraction, etc... prostate much of the stroma is smooth muscle. prostate is rich in glutaminergic receptors. abnormalities are the key feature of BPH. epithelial interactions are of importance in both BPH and CaP. The other glutaminergic receptors through G proteins to change the metabolism of the cell. Glutamate can be produced in the cerebral cortex through the carboxypeptidase activity of the prostatespecific membrane antigen (PSMA). In this location. PSMA cleaves glutamate from acetyl-aspartyl-glutamate. Taken together, these observations suggest a function for PSMA in the human prostate; glutamate may be an autocrine and/or paracrine signalling possibly mediating epithelial-stromal interactions. Ionotropic glutamate receptors display compartmental distribution in the human prostate.

The carboxypeptidase like activity and one substrate is the dipeptide N-acetyl-aspartyl glutamic acid, NAAG which is one of the best substrates found to date to act as a neurotransmitter in the central nervous system and its abnormal function may be associated with neurotoxic disorder such as epilepsy, ALS, alzheimers etc. PSM carboxypeptidase may serve to process neuropeptide transmitters in the prostate. Neuropeptide transmitters are associated with the

neuroendocrine cells of the prostate and neuroendocrine cells and are thought to play a role in prostatic tumor progression. Interestingly PSM antigen's expression is upregulated in cancer. Peptides known to act as prostatic growth factors such as TGF-a and bFGF, up regulate the expression of the antigen. TNF on the other hand downregulate PSM. TGF and FGF act through the mitogen activated signaling pathway, while TNF acts through the stress activated protein kinase pathway. Thus modulation of PSM expression is useful for enhancing therapy.

EXAMPLE 14:

5

10

15

20

25

30

35

IDENTIFICATION OF A MEMBRANE-BOUND PTEROYLPOLYGAMMA-GLUTAMYL CARBOXYPEPTIDASE (FOLATE HYDROLASE) THAT IS EXPRESSED IN HUMAN PROSTATIC CARCINOMA

PSM may have activities both as a folate hydrolase and For the cytotoxic drug a carboxyneuropeptidase. methotrexate to be a tumor toxin it has to get into the cell and be polygammaglutamated which to be active, because polyglutamated forms serve as the enzyme substrates and because polyglutamated forms or toxins are also retained by the cell. Folate hydrolase is a competing reaction and deglutamates methotrexate which then can diffuse back out of the cell. Cells that overexpose folate hydrolase activity are resistant to Prostate cancer has always been methotrexate. absolutely refractory to methotrexate therapy and this may explain why, since the prostate and prostate cancer has a lot of folate hydolase activity. However, based on this activity, prodrugs may be generated which would be activate at the site of the tumor such as Nphosphonoacetyl-l-aspartate-glutamate. PALglu is an inhibitor of the enzyme activity with NAAG as a substrate.

-137-

Prostate specific membrane antigen was immuno precipitated from the prostate cancer cell line LNCaP and demonstrated it to be rich in folate hydolase activity, with gammaglutamated folate or polyglutamated methotrexate being much more potent inhibitors of the neuropeptidase activity than was quisqualate, which was the most potent inhibitor reported up to this time and consistent with the notion that polyglutamated folates may be the preferred substrate.

10

15

20

25

30

35

5

Penta-gammaglutamyl-folate is a very potent inhibitor of activity (inhibition of the activity of the enzyme As penta-gammaglutamyl-folate may is with 0.5um Ki.) also be a substrate and as folates have to be depolygammaglutamated in order to be transported into the cell, this suggest that this enzyme may also play a role in folate metabolism. Folate is necessary for the support of cell function and growth and thus this enzyme may serve to modulate folate access to the prostate and prostate tumor. The other area where PSM is expressed is in the small intestine. It turns out that a key enzyme of the small intestine that is in folate uptake acts as a involved sequentially proteolytically carboxypeptidase in removing the terminal gammaglutaminyl group from folate. In the bone there is a high level of unusual gammaglutamate modified proteins in which the gamma glutamyl group is further carboxylated to produce gammacarboxyglutamate, or GLA. One such protein is osteonectin.

Using capillary electrophoresisis pteroyl poly-gammaglutamate carboxypeptidase (hydrolase) activity was investigated in membrane preparations from androgensensitive human prostatic carcinoma cells (LNCaP). The enzyme immunologically cross-reacts with a derivative of an anti-prostate monoclonal antibody (7E11-C5) that

-138-

recognizes prostate specific membrane (PSM) antigen. The PSM enzyme hydrolyzes gamma-glutamyl linkages and is an exopeptidase as it liberates progressively glutamates from methotrexate triuglutamate (MTXGlu,) and folate pentaglutamate (Pte Glu;) with accumulation of MTX and Pte Glu respectively. The semi-purified membrane-bound enzyme has a broad activity from pH 2 to 10 and is maximally active at pH4.0. Enzymatic activity was weakly inhibited by dithfothreitol (≥0.2 mM) but not by reduced glutathione, homocysteine, or phydroxymercuribenzoate (0.05-0.5 mM). By contrast to LNCaP cell membranes, membranes isolated from androgeninsensitive human prostate (TSU-Prl, Duke-145, PC-3) and estrogen-sensitive mammary adenocarcinoma (MCF-7) cells do not exhibit comparable hydrolase activity nor do they react with 7E11-C5. Thus, a folate hydrolase identified in LNCap cells that exopeptidase activity and is strongly expressed by these cells.

20

25

30

35

15

5

10

PALA-Glutamate 3 was tested for efficacy of the prodrug strategy by preparing N-acetylaspartylglutamate, NAAG 1(Figure 59). NAAG was synthesized from commercially available gamma-benzylaspartate which was acetylated with acetic anhydride in pyridine to afford N-acetylgamma-benzyl aspartate in nearly quantitative yield. The latter was activated as its pentafluorophenyl ester by treatment with pentafluorophenyltrifluoroacetate in pyridine at 0 deg.C for an hour. This activated ester constitutes the central piece in the preparation of compounds 1 and 4 (Figure 60). When 6 is reacted with epsilon-benzyl-L-glutamate in the presence of HOAT(1hydroxy-7-azabenzotriazole) in (tetrahydrofuran, N.N- dimethylformamide) at reflux for an overnight period and after removal of the benzyl protecting groups by hydrogenolysis (H2, 30 psi, 10% Pd/C in ethylacetate) gave a product which was

-139-

identical in all respects to commercially available NAAG (Sigma).

PALA-Glutamate 3 and analog 5, was synthesized in a similar manner with the addition to the introduction of a protected phosphonoacetate moiety instead of a simple acetate. It is compatible with the function of diethylphosphonoacetic acid which allows the removal of the ethyl groups under relatively mild conditions.

10

15

20

25

30

35

5

Commercially available diethylphosphonoacetic acid was treated with perfluorophenyl acetate in pyridine at 0 deg.C to room temperature for an hour to afford the pentafluorophenyl corresponding ester in nearly yield after short path column quantitative chromatography. This was then reacted with gammabenzylaspartate and HOAT in tetrahydrofuran for half an hour at reflux temperature to give protected PALA 7 (Nphosphonoacetylaspartate) in 90% yield after flash The free acid was then column chromatography. activated as its pentafluorophenyl ester 8, then it was reacted with delta-benzyl-L-glutamate and HOAT in a mixture of THF-DMF (9:1, v/v) for 12 hours at reflux to give fully protected PALA-Glutamate 9 in 66% yield after column chromatography. Sequential removal of the groups followed by the debenzylation was accomplished for a one step deprotection of both the benzyl and ethyl groups. Hence protected PALA-Glutamate was heated up to reflux neat trimethylsilylchloride for an overnight period. resulting bistrimethylsilylphosphonate ester 10 was submitted without purification to hydrogenolysis (H, 30 psi, 10% Pd/C, ethylacetate). The desired material 3 was isolated after purification by reverse phase column chromatography and ion exchange resin.

Analogs 4 and 5 were synthesized by preparation of

-140-

phosphonoglutamate 14 from the alpha-carboxyl-protected glutamate.

Commercially available alpha-benzyl-N-Boc-L-glutamate with refluxing THF treated at afford the to boranedimethylsulfide complex corresponding alcohol in 90% yield. This transformed into bromide 12 by the usual procedure (Pph, CBr,).

10

15

5

The Michaelis-Arbuzov reaction using triethylphosphite to give the corresponding diethylphosphonate 13 which deprotected the nitrogen at would trifluoroacetic acid to give free amine 14. The latter with separately condensed pentafluorophenylesters 6 or 8 to give 16 and 15 under conditions similar to those respectively, described for 3. 15 and 16 would be deprotected in the same manner as for 3 to yield desired analogs 4 and 5.

20

An inhibitor of the metabolism of purines and pyrimidine like DON (6-diazo-5-oxo-norleucine) or its aspartate-like 17, and glutamate-like 18 analogs would be added to the series of substrates.

25

30

35

Analog 20 is transformed into compound 17 by treatment with oxalyl chloride followed by diazomethane and deprotection under known conditions to afford the desired analogs. In addition, azotomycin is active only after in vivo conversion to DON which will be released after action of PSM on analogs 17, 18, and 19.

In addition, most if not all chemotherapies rely on one hypothesis; fast growing cells possess a far higher appetite for nutrients than normal cells. Hence, they uptake most of the chemotherapeutic drugs in their proximity. This is why chemotherapy is associated with

serious secondary effects (weakening of the immune system, loss of hair, ...) that sometimes put the patient's life in danger. A selective and effective drug that cures where it should without damaging what it shouldn't damage is embodied in representative structures 21 and 22.

Representative compounds, 21 and 22, were designed based on some of the specific effects and properties of 10 PSM, and the unique features of some newly discovered cytotoxic molecules with now known mode of action. latter, referred to commonly as enedignes, dynemycin A 23 and or its active analogs. The recent isolation of new natural products like Dynemycin A 23, 15 has generated a tremendous and rapidly growing interest in the medical and chemical sciences. They have displayed cytotoxicities to many cancer cell lines at the sub-nanomolar level. One problem is they are very toxic, unstable, and non-selective. Although they have 20 been demonstrated, in vitro, to exert their activity through DNA damage by a radical mechanism as described below, their high level of toxicity might imply that they should be able to equally damage anything in their path, from proteins to enzymes, ...etc.

25

30

35

5

These molecules possess unusual structural features that provide them with exceptional reactivities. Dynemycin A 23 is relatively stable until the anthraquinone moiety is bioreduced hydroanthraquinone 24. This triggers a chain of events by which a diradical species 25 is generated as a result of a Bergman cycloaromatization. species 25 is the ultimate damaging edge of dynemycin It subtracts 2(two) protons from any neighboring molecule or molecules(ie. DNA) producing radicals therein. These radicals in turn combine with molecular oxygen to give hydroperoxide intermediates that, in the

30

35

case of DNA, lead to single and double strand incision, and consequent cell death. Another interesting feature was provided by the extensive work of many organic chemists who not only achieved the total synthesis of (+)-dynemycin A 23 and other enedignes. but also designed and efficiently prepared simpler yet as active analogs like 26.

Enediyne 26 is also triggerable and acts by virtue of the same mechanism as for 23. This aspect is very relevant to the present proposed study in that 27 (a very close analog of 26) is connected to NAAG such that the NAAG-27 molecule, 21, would be inert anywhere in the body (blood, organs, normal prostate cells, ...etc.) except in the vicinity of prostate cancer, and metastatic cells. In this connection NAAG plays a multiple role:

- Solubilization and transport: analogs of 2620 type are hydrophobic and insoluble in aqueous media,
 but with a water soluble dipeptide that is indigenous
 to the body, substrate 21 should follow the ways by
 which NAAG is transported and stored in the body.
- 25 Recognition, guidance, and selectivity: Homologs of PSM are located in the small intestines and in the brain.

In the latter, a compound like 27 when attached to a multiply charged dipeptide like NAAG, has no chance of crossing the blood brain barrier. In the former case, PSM homolog concentration in the small intestines is very low compared to that of PSM in prostrate cancer cells. In addition, one could enhance the selectivity of delivery of the prodrug by local injection in the prostate. Another image of this strategy could be formulated as follows. If prostate cancer were a war

-143-

in which one needed a "smart bomb" to minimize the damage within the peaceful surroundings of the war zone, then 21 would be that "smart bomb". NAAG would be its guidance system, PSM would be the trigger, and 27 would be the warhead.

26 and its analogs are established active molecules that portray the activity of dynemycin A. Their syntheses are described in the literature. The total synthesis of optically active 27 has been described. The synthetic scheme that for the preparation of 28 is almost the same as that of 27. However, they differ only at the position of the methoxy group which is meta to the nitrogen in the case of 28. This requires an intermediate of type 29, and this is going to be prepared by modification of the Myers' method. Compound 28 is perhaps the closest optically active analog that resembles very much 26, and since the activity of the latter is known and very high.

20

25

5

10

15

Since NAAG is optically pure, its combination with racemic material sometimes complicates purification of intermediates. In addition, to be able to modify the components of this system one at a time, optically pure intermediates of the type 21 and 22 are prepared. 27 was prepared in 17 steps starting fro commercially available material. Another interesting feature of 27 is as demonstrates in a very close analog 26, it possesses two(2) triggers as shown by the arrows.

30

35

The oxygen and the nitrogen can both engender the Bergman cycloaromatization and hence the desired damage. The simple protection deprotection manipulation of either functionality should permit the selective positioning of NAAG at the nitrogen or at the oxygen centers. PSM should recognize the NAAG portion of 21 or 22, then it would remove the glutamic acid

5

10

-144-

moiety. This leaves 27 attached to N-acetylaspartate.

Intramolecular assisted hydrolysis of systems like N-acetylaspartyle is well documented in the literature. The aminoacid portion should facilitate the hydrolysis of such a linkage. In the event this would not work when NAAG is placed on the nitrogen, an alternative would be to attach NAAG to the oxygen giving rise to phenolic ester 22 which is per se labile and removable under milder conditions. PSM specific substrates can be designed that could activate pro-drugs at the site of prostatic tumor cells to kill those cells. PSM specific substrates may be used in treatment of benign prostatic hyperplasia.

-145-

EXAMPLE 15:

GENOMIC ORGANIZATION OF PSM EXON/INTRON JUNCTION

5 SEQUENCES

EXON 1 Intron 1

1F. strand

CGGCTTCCTCTTCGG

10 cggcttcctcttcgg taggggggcgcctcgcggag...tatttttca

1R. strand

...ataaaaagtCCCACCAAA

15

Exon 2 Intron 2

2F. strand

ACATCAAGAAGTTCT

acatcaagaagttct caagtaagtccatactcgaag...

20 2R. strand ...caagtggtcATTAAAATG

Exon 3 Intron 3

3F. strand

25 GAAGATGGAAATGAG

gaagatggaaatgag gtaaaatataaataaataa...

Exon 4

Intron 4

30 4F. strand

AAGGAATGCCAGAGG

aaggaatgccagagg taaaaacacagtgcaacaaa...

4R. strand

...agagttgTCCCGCTAGAT

3'5

-146-

Intron 5 Exon 5 5F. strand CAGAGGAAATAAGGT cagaggaaataaggt aggtaaaaattatctcttttt... ...gtgttttctAGGTTAAAAATG 5 ...cacttttgaTCCAATTT 5R. strand Intron 6 Exon 6 10 6F. strand GTTACCCAGCAAATG gtgaatgatcaatccttgaat... gttacccagcaatg ...aaaaaaagtCTTATACGAATA 6R. strand 15 Intron 7 Exon 7 7F. strand ACAGAAGCTCCTAGA 20 acagaagctcctaga gtaagtttgtaagaaaccargg... ...aaacacaggttatcTTTTTACCCA 7R. strand Intron 8 Exon 8 25 8F. strand AAACTTTTCTACACA aaacttttctacaca gttaagagactatataaatttta...aaacgtaatcaTTTTCAGTTCTAC 8R. strand 30 Intron 9 Exon 9 9F. strand AGCAGTGGAACCAG agcagtggaaccag gtaaaggaatcgtttgctagca...

...tttctagatAGATATGTCATTC

35

-147-

9R. strand

...aaagaTCTGTCTATACAGTAA

Exon 10

Intron 10

10F. Strand

5 CTGAAAAAGGAAGG

ctgaaaaaggaagg taatacaaacaaatagcaagaa...

Exon 11 Intron 11

10 11F. Strand

TGAGTGGGCAGAGG

agagg ttagttggtaatttgctataatata...

15

Exon 13 Intron 12

12R. strand

GAGTGTAGTTTCCT

gtagtttcct gaaaaataagaaaagaatagat...

20

Exon 14 Intron 13

13R. strand

AGGGCTTTTCAGCT

agggcttttcagct acacaaattaaaagaaaaaaag...

25

Exon 14 Intron 14

14F. strand

GTGGCATGCCCAGG

30 gtggcatgcccagg taaataaatgaatgaagtttcca...

Exon 16

Intron 15

15R. strand

AATTTGTTTGTTTCC

35 aatttgtttgtttcc tacagaaaaaacaacaaca...

-148-

Exon 16 Intron 16

16F. strand

CAGTGTATCATTTG

cagtgtatcatttg gtatgttacccttcctttttcaaatt...

5 ...tttcagATTCACTTTTT

16R. strand ...aaagtcTAAGTGAAAA

10 Exon 17 Intron 17

17F. strand

TTTGACAAAAGCAA

tttgacaaaagcaa gtatgttctacatatatgtgcatat...

15 17R. strand ...aaagagtcGGGTTA

Exon 18 Intron 18

18F. strand

20 GGCCTTTTTATAGG

ggcctttttatagg taaganaagaaaatatgactcct...

18R. strand ...aatagttgTGTAAACCC

25

Exon 19 Intron 19

19F. strand

GAATATTATATATA

gaatattatatata gttatgtgagtgtttatatatgtgtgt...

30

Notes: F: Forward strand

R: Reverse strand

35

-149-

What is claimed is:

- An isolated nucleic acid molecule encoding an alternatively spliced prostate-specific membrane
 (PSM') antigen.
 - 2. An isolated mammalian DNA molecule of claim 1.
 - 3. An isolated mammalian cDNA molecule of claim 2.

10

- 4. An isolated mammalian RNA molecule derived from claim 1.
- 5. An isolated nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of the isolated nucleic acid molecule of claim 1.
 - 6. A DNA molecule of claim 5.

20

- 7. A RNA molecule of claim 5.
- method detecting expression 8. of alternatively spliced prostate-specific membrane antigen in a cell which comprises 25 obtaining total mRNA from the cell, contacting the mRNA so obtained with a labelled nucleic acid molecule of claim 5 under hybridizing conditions, determining the presence of mRNA hybridized to and thereby 30 molecule, detecting expression of the alternatively spliced prostatespecific membrane (PSM') antigen in the cell.
- An isolated nucleic acid molecule of claim 2
 operatively linked to a promoter of RNA transcription.

-150-

- 10. A vector which comprises the isolated nucleic acid molecule of claim 1.
- 11. A host vector system for the production of a polypeptide having the biological activity of the alternatively spliced prostate-specific membrane (PSM') antigen which comprises the vector of claim 10 and a suitable host.
- 10 12. A host vector system of claim 11, wherein the suitable host is a bacterial cell, insect cell, or mammalian cell.
- 13. A method of producing a polypeptide having the biological activity of the prostate-specific membrane antigen which comprises growing the host cells of the host vector system of claim 12 under suitable conditions permitting production of the polypeptide and recovering the polypeptide so produced.
 - 14. An isolated nucleic acid molecule encoding a prostate-specific membrane antigen promoter.
- 25 15. A polypeptide encoded by the isolated nucleic acid molecule of claim 1.
- A method of detecting hematogenous micrometastic 16. tumor cells of a subject, comprising performing nested polymerase chain reaction (PCR) 30 on blood, bone marrow or lymph node samples of the subject using the prostate specific membrane and (B) verifying primers, micrometastases by DNA sequencing and Southern hematogenous detecting analysis, thereby 35 micrometastic tumor cells of the subject.

- 17. The method of claim 16, wherein the primers are derived from prostate specific antigen.
- 18. The method of claim 16, wherein the subjects is administered hormones, epidermal growth factor, b-fibroblast growth factors, or tumor necrosis factor.
- prostate of determining 19. method progression in a subject which comprises: a) 10 obtaining a suitable prostate tissue sample; b) extracting RNA from the prostate tissue sample; c) performing a RNAse protection assay on the RNA, thereby forming a duplex RNA-RNA hybrid; d) detecting PSM and PSM' amounts in the tissue 15 sample; e) calculating a PSM/PSM' tumor index, thereby determining prostate cancer progression in the subject.
- 20 20. The method of claim 19, further comprising performing in-situ hyribridization.

FIGURE 1

1 - anti- EGFr PoAB RK-2

2 - Cyt-356 MoAB/RAM 3 - RAM

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIGURE 4

100.5

72.0

43.0

28.5

FIGURE 5

FIGURE 7

FIGURE 8

FIGURE 9

4 —

3 –

2-

1.6-

FIGURE 10

FIGURE 11

1 2 3

9.5__

7.5___

4.4 ___

2.4 ___

1.4 ___

13/130 FIGURE 13

sednence. 750. the complete Total number of residues is: Done on sequence PMSANTIGEN. Analysis done on

10.1% **^** <u>۸</u> î **^**|| Z Z X Z 264 309 76 101 CNAT CNAT CNAT CNAT -75 -88 0 11 11 П Π SOL conformation conformation conformation conformation (E) (E) (C) Extended Helical Turn Co 11 In In In

Sequence shown with conformation codes.

14/130

given conformation Ø more residues in or ហ stretch of Consecutive overlined.

are

IE II II IM II II 回 II II H II 1= IE IX 10 回 II 10 lE 10 IX E 1= 10 161 II 10 回 IX 回 IX H H E 10 딥 C 10 回 口 10 IU IX ы 工 10 FI II II IH IX IX II IX II IX İ IX II II IH II II IX II II 161 II IH 1 II II IM IH 二 **[E**] IX II 回 IX II IH IE 31 61

ы

Ē

E

H

H

H

回

15/	1	3	O
-----	---	---	---

H	Ħ	IX	लि	ы	ाध	ाध	ाल	धि	ပ	ပ	ाध
ाध	H	IEI	IE	ध	ाध	ाध	लि	IШ	Ŧ	नि	नि
IEI	ပ	लि	जि	Ŧ	回	E	回	जि	ပ	E	EI
लि	ပ	धि	धि	ाध	田	M	E	IEI	ပ	le1	ाध
ि	υ	EI	ल	回	EI	回	IП	वि	ပ	IП	lei
नि	υ	回	ल	धि	υ	E	लि	回	E	EI	E
II	H	IEI	EI	回	H	lM	धि	E	H	IEI	IX
II	H	回	ाध	E	H	IM	लि	B	E	H	IΞ
IX	E	IE	IEI	H	H	P	国	नि	छ	ပ	IX
II	াল	IEI	回	H	IEI	回	H	लि	េ	ပ	IX
IΞ	लि	ပ	1E	阳	IEI	ບ	团	Ö	回	ပ	IΞ
II	लि	ບ	E	लि	E	Ö	H	ပ	H	H	IX
IX	ल	ပ	H	लि	163	IM	H	ပ	ပ	H	IX
I	I	H	H	回	लि	E	回	ပ	ပ	H	 =
IX	U	U	H	नि	िल	E	Ħ	回	ບ	ပ	IH
Ö	Ö	Ö	IX	नि	न	E	ပ	四	ा	ບ	IX
ပ	Ħ	Ħ	II	चि	ाध	回	ပ	E	[EI	Ö	IX
H	ပ	Ŧ	I	lei	ाध	ाध	Ö	IX	回	IX	II
H	回	回	I	I	ပ	田	ບ	II	回	II	ບ
ធា	E	回	IX		H	回	H	I	नि	IX	ပ
ध	IEI	le ₁	II	II	H	H	Ħ	IX	्राध्य	IX	ပ
ध	लि	le1	IX	IX	ပ	I	H	IX	धि	IX	Ö
ບ	ि	Ī	IX	I	ပ	IEI	团	I	回	团	IX
H	回	लि	II	I	田	नि	I	Ö	lei	田	I
មា	E	ाध	II	II	H	IE	I	ল	लि	E	IX
II	ाध	लि	II	II	Ħ	IEI	IX	U	lΕ	E	IX
H	ပ	िस	II	S	T	IEI	II	M	IEI	H	IX
I	υ·	ि	II	S	H	ပ	II	ाध	लि	H	IX
II	H	लि	ΙΞ	H	M	ပ	. 1=	E	लि	H	IX
I	H	H	II	H	E	ပ	IX	IE	वि	ပ	I
91	121	151	181	211	241	271	301	331	361	391	121

Ξ	ाध	H	İΞ	IX	नि	नि	ाटा	Ö	IX
Ξ	E	ပ	II	II	धि	नि	िल	ပ	IH
I	धि	回	IX	II	ि	EI	लि	ΙΞ	II
Ξ	न	H	IX	H	लि	ပ	<u>।</u> ध	II	ΙΞ
X	E	H	IX	回	161	ပ	回	II	IX
X	H	函	IX	ाध	<u> </u>	F	回	II	IX
X	10	凹	II	ाध	नि	H	ाध	II	I
=	D	E	IX	नि	IX	H	H	IΞ	IH
ध	U	U	I	回	I	II	ပ	IΞ	IH
দ্র	Ö	Ö	I	 	IX	I	ပ	II	I
ध	10	U	IX	II	II	II	ပ	IX	IX
E	H	H	H	IX	IX	IX	H	দ্র	IX
FÌ	H	II	IX	II	υ	II	Ħ	E	IH
딥	H	IX	IX	II	Ö	I	E)	H	F
臼	II	I	回	II	I	I	田	E	i E
FI	IX	II	नि	ाध	लि	IX	II	नि	E
ध्य	IX	IX	लि	नि	लि	IX	II	ध	E
田	IH	E	ाध	ल	田	IX	H	।	E
더	IX	Ħ	िल	ा	वि	I	I	ि	ाध
E	I	田	्राध्य	लि	नि	II	I	लि	i E
Ŀ	I	10	लि	IΕ	ΙΞ	II	I	H	回
	II	10	लि	E	IX	I	I	ပ	IX
H	I	10	ပ	i 回	II	II	IX	ပ	IH
田	I	10	E	नि	I	I	II	ပ	IH
E	IH	IJ	IF	I	I	II	IX	ບ	II
ပ	I	ाध	15	ध	IX	IX	H	H	IX
ပ	II	回	H	II	IX		I	नि	IX
F	Ö	ि	IH	II	II	IX	旧	E	IX
田	ပ	लि	Ħ	IX	II	IX	नि	लि	IX
凹	IX	ie:	H	II	I	IX	E	मि	ບ
51	81.	11	41	171	101	31	61	91	21

17/130

Semi-graphical output.

STOOMAS	used	in the	semi-g	raphica	symbols used in the semi-graphical representation:	itation:	
Helical Turn	confc	conformation: conformation:	 × ×	М Ж	tended cor Coil cor	<pre>Extended conformation: Coil</pre>	. 1 #
	10	20		30	40	50	
MWNLLHEI	I FDSAVAT	ARRPRW	LCAGAL	 Vlaggff	 HWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEAT	 KSSNEAT	
< <xxxxxxxxxxxxxxxxxxxxxxxxxxxx< th=""><th>XXXXXX (XXXXXX</th><th>1 < <</th><th></th><th></th><th>X<*******XXXXXXXXXXXXXXXXXXXXXXXXXXXXX</th><th>X<****</th><th>•</th></xxxxxxxxxxxxxxxxxxxxxxxxxxxx<>	XXXXXX (XXXXXX	1 < <			X<*******XXXXXXXXXXXXXXXXXXXXXXXXXXXXX	X<****	•
	09	70		80	06	100	
NITPKHNE	KAFLDE	LKAENI	KKFLYNI	FTQIPHL	NITPKHNMKAFLDELKAENİKKFLYNFTQİPHLAGTEQNFQLAKQIQSQW	KQIQSQW	

18/130

150 FEPPPPG	^ * * * * * * * * * * * * * * * * * * *	200	INCSGKI
140 DGNEIFNTSL	X**	190	 OFFKLERDMK
130 HPNYISIINE		180	LVYVNYARTEI
120 OVLLSYPNKTH	**<<<	170	FSPQGMPEGDI
110 KEFGLDSVELAHYD	->>**XXXXXXXXX ->>**XXXXXXXXX	160	YENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFFKLERDMKINCSGKI
	120 130 140 AHYDVLLSYPNKTHPNYISIINEDGNEIFNTSLFEPP		

19/130

KX>>>	250 XGWNLPG	\##!\\\\	300 	! ! ! ! ! ! ! !	350 HIHSTN	* * * * * * * * * * * * * * * * * * * *	400 /IIEIVR
-<<<<	240 FAPGVKSYPI	^^	290 EAVGLPSIPV		340 Gnfstokvkm	*-*XXXXXX-*	390 SIDPQSGAAV
1 1	230 SVILYSDPADY		280 NEYAYRRGIA	XX	330 VPYNVGPGFT		380 GGHRDSWVFGC
14-6	220 VKNAQLAGAKO	>**XXXXXXX**<	270 NGDPLTPGYPA		320 PDSSWRGSLK		370 AVEPDRYVILA
\\	210 220 230 240 250 	* ^	260 270 280 290 300 GGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYY	#<<<	310 320 330 340 350 DAQKLLEKMGGSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTN	XXXXXXX->>>++++>>->>->	360 370 380 390 400 EVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDPQSGAAVVHEIVR
*	VIA	1 1 1 1 1 1	GGV	4 4	DAQI	XXX XXX	EVTR

20/130

FIGURE 14-8

VYETYELVEKFYDPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDY
LYHSVYETYELVEKF)

XXXXXXXXXXXXXX-xXXXXXX>XXX 610 620 630 640 650		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	002 680 690 700	QDFDKSNPIVLRMMNDQLMCLERAFIDPLGLPDRPFYRHVIYAPSSHNKY
	 AVVLRKYADKIYSISMKHPQ	XXXXX##XXXXXXXXXXXXXXXXXXXXXXX	660 670	QDFDKSNPIVLRMMNDQLMC

\	750	TLSEVA
	740	AAFTVQAAAE
X>	730	WGEVKRQIYV
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	720	ESKVDPSKA
XX>>>**XXXXXXXXXXXXX>-+	710	AGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTVQAAAETLSEVA

22/130 FIGURE 15A

FIGURE 15B

* PREDICTION OF ANTIGENIC DETERMINANTS *

Done on sequence PMSANTIGEN. Total number of residues is: 750. Analysis done on the complete sequence. The method used is that of Hopp and Woods.
The averaging group length is: 6 amino acids.
-> This is the value recommended by the authors

The three highest points of hydrophilicity are:

Asp-Glu-Leu-Lys-Ala-Glu Asn-Glu-Asp-Gly-Asn-Glu 137 **6**8 to t 132 From From 1.62 1.57 **1**-42 7

Lys-Ser-Pro-Asp-Glu-Gly 487 to 482 From 1.55 Ah-

Ah stands for: Average hydrophilicity.

group. The second and third points Note that, on a group of control proteins, only the highest point was in 100% proportion of 33% of incorrect predictions a known antigenic of the cases assigned to gave a

24	11	2	n
4 7	, ,	J	v

The best	t scores are:	initn	initı	opt
CHKTFER RATTRFR HIMTEDD	G.gallus mRNA for transferrin receptor Rat transferrin receptor mRNA, 3' end.	203	120 164	321
	numan translerrin receptor mkNA, complete cd	145	145	266
CHKTFER 51.9%	G.gallus mRNA for transferrin receptor identity in 717 nt overlap	203	120 3	321
pmsgen	1020 1030 1040 1050 1060 1070 TGTCCAGCGTGGAAATATCCTAAATCTGAATGGTGCAGGAGACCCTCTCACACCAGGTTA	1070	0 CAGGTTA	_
CHKTFE	CHKTFE TACACTTATCCCATTCGGACATGCCCACCTTGGAACTGGAGACCCTTACACCCCAGGCTT 990 1000 1010 1020 1030 1040	ACCC	CAGGCTT 1040	.,
pmsgen	1090 AAATGAAT	1130 CTTCC) CAAGTAT	
CHKTFE	CCCTTCGTTCAACCACACCAGTTTCCACCAGTTGAATCTTCAGGACTACCCCACAT 1050 1060 1070 1080 1090 1100	CTACC	CCACAT	
pmsgen	1140 1150 1160 1170 1180 1190 TCCTGTTCATCCAATGGATGCTGCTG	1190 ATGGG		
CHKTFE	TGCTGTTCAGACCATCTCTAGCAGTGCAGCCAGGCTGTTCAGCAAAATGGATGG	::::::::::::::::::::::::::::::::::::::	::: TGGAGA	

FIGURE 16-2

	1200	1210	1220	1230	1240	1250
pmsger	pmsgen AGCACCACC	CAGATAGCA(CTGGAGAGGA	AGTCTCAAAGI	GCCCTACAAT	AGATAGCAGCTGGAGAGGAGTCTCAAAGTGCCCTACAATGTTGGACCTGG
CHKTFE	CACATGCT	CTGA-AG(TTGGAAAGGT	3CGATCCA	Trccrerade	CHKTFE CACATGCTCTGA-AGGTTGGAAAGGTGCGATCCATTCCTGTAAGGTGACAA
	117	0 /	1180	1190	1200	1210
pmsgen	1260 CTTTACTG	1270 SAAACTTTTC	1280 TACACAAAAA	1290 STCAAGATGCA	1300 CATCCACTCT	1260 1270 1280 1290 1300 1310 pmsgen CTTTACTGGAAACTTTTCTACAAAAAGTCAAGATGCACATCCACTCTACCAATGAAGT
CHKTFE	CAAAGCAGO	3AGAGC	CAGA-TAATG	TGAAACTAGA	TGTGAACAAT	CHKTFE CAAAGCAGGAGAGCCAGA-TAATGGTGAAACTAGATGTGAACAATTCCATGAAAGA
	122	0.	1230	1240	1250	1260
	1320	1330	1340 CATAGGTACTC	1350	1360	1320 1320 1330 1340 1350 1360 1360 1370 mmmaca a promote
nahswd		:				
CHKTFE	CAGGAAGAT	TCTGAACAT	CTTCGGTGCTA	TCCAGGGATT	TGAAGAACCTC	CHKTFE CAGGAAGATTCTGAACATCTTCGGTGCTATCCAGGGATTTGAAGAACCTGATCGGTATGT
	1270	1280	1290	1300	1310	1320
	1380	1390	1400	1410	1420	1430
pmsgen	CATTCTGGGA	AGGTCACCG	rcaccgggactcatgggtgtttggtggtatttgaccctcagagtgga	TGTTTGGTGG		CATTCTGGGAGGTCACCGGGACTCATGGGTGTTTTGGTGTTTTTGACCCTCAGAGTGGAGC
CHKTFE	TGTGATTGG	AGCCCAGAGI	AGACTCCTGGG	GCCCAGGAGT	GGCTAAAGCTG 1370	CHKTFE TGTGATTGGAGCCCAGAGACTCCTGGGGCCCCAGGAGTGGCTAAAGCTGGCACTGGAAC
•)) 1) •)) 	 	

FIGURE 16-3

	26	/130	
1490 GGAAGGGTGGAG :::::: CGAGGGCTACAA 1440	1550 rcttcttggttc : :::::	1610 GTGGCTTATATTAA : ::: :: : TTCACTTACATCA- 1560	.60
1470 1480 1490 GAGCTTTGGAACACTGAAAAGGAAGGGTG ::::::::::::::::::::::::	1540 GAAGAATTTGG : :: : :: GGAGACTACGG	1600 GAGCGTGGCGTC : : : GCCAAAGCTTTC	50 1660 3AGTTGATTGTA : : : AGATTTCTGCCA
1470 GAGCTTTGGA ::::: FGTGATCTCAGAC	1510 1520 1530 1540 1550 \[\text{ATTTTGTTTGCAAGCTGGATGCAGAAGAATTTGGTCTTCTTGGT} \\ :::::::::::::::::::::::::::::::::::	1580 1590 CAAGACTCCTTCAAGA X ::::: CTGCCATGCTGCATGC 30 1540	1640 1650 16 IGGAAACTA-CACTCTGAGAGTTGATTG ::::::::::::::::::::::::::
50 1460 TGAAATTGTGAG- ::::::: GGAACTTGCCCGT	1510 15 AATTTTGTTTGCA :: X:::: CATCATCTTTGCT	1570 15 GAGGAGAATTCA ::::::X GAGGGGTACTCT 20 1530	1630 164 TATAGAAGGAAACT : : : : : CAGTCCTGGGAGCA
1440 1450 1460 1470 1480 1490 AGCTGTTGTTCATGAAATTGTGAGGAGCTTTGGAACACTGAAAAAGGAAGGTGGAG :::::::::::::::::::::	1500 1510 1520 1530 1540 1550 pmsgen ACCTAGAACAATTTTGTTTGCAAGCTGGGATGCAGAAGAATTTTGGTCTTCTTGGTTC :::::::::::::::::::::	1560 1570 1580 1590 1600 1610 pmsgen TACTGAGTGGCAGAGGAATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATTAA :::::::::::::::::::::::::::::::	1620 1630 1640 1650 1660 1670 pmsgen TGC-TGACTCTATAGAAGGAAACTA-CACTCTGAGAGTTGATTGTACACCGCTGATG ::::::::::::::::::::::::::::::::::
pmsgen A CHKTFE T	pmsgen A : CHKTFE A	pmsgen T. : CHKTFE T.	pmsgen TC CHKTFE -(

FIGURE 16-4

	0891	1690	1690 1700	1710	1720	1730
pmsgen	pmegen TACAGCTTGGTACACAACCTAACAAAAGAGCTGAAAAGCCCTGATGAAGGCTTTGAAGGC	CACAACCTA	ACAAAAGAGC	TGAAAAGCCCT	GATGAAGGCT	TTGAAGGC
	•••	••	•••		•••	••
CHKTFE	CHKTFE TATATGCTGCTGGGGGTATTATGAAGGGGGTGAAGAATCCAGCAGCAGTCTCAGAGAGC	GGGAGTATT	ATGAAGGGGG	TGAAGAATCCA	GCAGCAGTCT	CAGAGAGC
	1630	1640	1650	1660	1670	1680
	1740	1750	1760	1770	1780	1790
pmsgen	pmsgen AAATCTCTTTATGAAAGTTGGACTAAAAAAAGTCCTTCCCCAGAGTTCAGTGGCATGCCC	GAAAGTTGG	ACTAAAAAAA	STCCTTCCCCA	GAGTTCAGTG	SCATGCCC
	••	•••	••			
CHKTFE	CTCTATAACAGACTTGGCCCAGACTGGGTAAAAGCAGTTGTTCCTCTTGGCCTGGA	CAGACTTGG	CCCAGACTGG	TAAAAGCAGT	TGTTCCTCTT	SGCCTGGA
	1690	1700	1710	1720	1730	

31]	ļ •••	TC	
164	TGGCT	TAGAT	0 ATG ATGTA
164	1240 1250 AAAGTGCCCTACAATGTTGGACCTGGCTT :::::::::::::::::::::::::::::::	agttggaata 660	1310 ACTCT-ACCAA ::::::::::
3' end.	1240 GTGCCCTACA	CTGTCCTCCT 650	1300 TGCACATC-CA :::::: TGTGAAGCTCA
ptor mRNA, rlap	1230 AAGTCTCAAA	TGGAAGGAAA 640	80 1290 1300 1310 CAAAAAGTCAAGATGCACATC-CACTCT-ACCAATG :::::::::::::::::::::::::::::::::::
Rat transferrin receptor mRNA, 3' end. lentity in 560 nt overlap	1220 Agctggagagg	ATTCAAAAACA 630	1280 TTTCTACACAA :: GGAACTTTCAC
TTRFR Rat transferrin receptor 55.5% identity in 560 nt overlap	1210 1220 1230 1240 1250 pmsgen ccaccagatagcagcagagagagagagagagagagagaga	RATTRF TGCAGAAAAGCTATTCAAAAACATGGAAGGAAACTGTCCTCCTAGTTGGAATATAGATTC 610 620 630 630	1260 1270 1280 1290 1300 1310 pmsgen -TACTGGAAACTTTTCTACACAAAAAGTCAAGATGCACATC-CACTCT-ACCAATG : ::::::::::::::::::::::::::::::::
RATTRFR 55.5%	pmsgen C(RATTRF TO	1260 pmsgen -T : RATTRF CT

	,	יייירו	1110		1240	1350	1360	1370
pmagen	AAGT	GACAAGAA	TTTACA	ATGTGAT	AGGTACTO	TCAGAGGA	pmsgenAAGTGACAAGAATTTACAATGTGATAGGTACTCTCAGAGGAGCAGTGGAACCAGACAG	CAGACAG
RATTRF 7	::: F GAAAGA 730	AACAAGAA 7	TACTTAA 750	ACATCTT 0	:: TGGCGTTA 760	TTAAAGGCT	RATTRF GAAAGAAACAAGAATACTTAACATCTTTGGCGTTATTAAAGGCTATGAGGAACCAGACCG 730 780 750 760	CAGACCG
pmsgen	1380 pmsgen ATATGTCATTC	1380 CATTCTGGG	1390 GAGGTC	ACCGGGA	1400 ACTCATGGG	1390 1400 1410 1420 TGGGAGGTCACGGGACTCATGGGTGTTTGGTGGTATTGA	1390 1400 1410 1420 1430 CTGGGAGGTCACCGGACTCATGGGTGTTTGGTGGTATTGACCCTCAGAG	1430 CTCAGAG
RATTRF 7	F CTACAT	TGTAGTAGC	SAGCCCA 810	AGAGAGA 0	CGCTTGGG 820	SGCCCTGGT- 830	RATTRF CTACATTGTAGGAGCCCAGAGAGACGCTTGGGGCCCTGGT-GTTGCGAAGTCCAGTG	TCCAGTG
pmagen	T-GGAG	1440 CAGCTGTTC	1450 STTCATG	0 GAAATTG	1460 TGAGGAGC	1470 TTTGGAACA		1480 -AAAAGGAA
RATTRF	: : : : : : : : : : : : : : : : : : :	CAGGTCTT- 860	-crgrr	TT-CTGTTGAAACTT 870	GCCCAAGT 880	::::::::::::::::::::::::::::::::::::::	TTT 90	CAAAAGAT O
pmsgen	1490 GGGTGGAGACC	1500 AGACCTAGA X:	AGAAC,	1510 AATTTTG	1520 TTTGCAAG	500 1510 1520 1530 1 AGAAGAACAATTTTGTTTGCAAGCTGGGATGCAGAAGT	1490 1500 1510 1520 1530 1540 pmsgen GGGTGGAGACCTAGAAGAACAATTTTGTTTGCAAGCTGGGATGCAGAAGAATTTTGTTTTGCAAGCTGGGATGCAGAAGAATTTTGTTTTTTTT	40 TGGTCTT
RATTRF	GGATTT	AGACCCAGC 920	CAGGAG	TATTATC 930	TTTGCCAG 940	CTGGACTGC 950	RATTRF GGATTTAGACCCAGCAGGAGTATTATCTTTGCCAGCTGGACTGCAGGAGACTATGGAGCT 910 920 930 930 940	TGGAGCT

pmsgen RATTRF	1550 CTTGGTTCT ::::: GTTGGTCCG	1560 CTGAGTGGGC ::::::: CTGAGTGGCT	1570 :AGAGGAGAA :::: X :GGAGGGGTACC 990	1580 TTCAAGACTCC :::: CCTTTCATCTTTGC 1000	1590 TTCAAGAGC :: ::: ATCTAAAG-	1600 GTGGCGTG : : GCTTTC 1020
pmøgen Rattrf	1610 pmsgen GCTTATATTA :::::::: RATTRF ACTTACATTA	1610 1620 ::::::::::::::::::::::::::::::::::::	1630 ATCTATAGAAG : : : AAGTCGTCCTG	1640 GAAACTA-CA(: ::: :: 3GTACTAGCA/ 1060	1620 1630 1640 1650 1660 AATGCTGACTCATCTATAGAAGGAAACTA-CACTCTGAGAGTTGATTGTAC ::::::::::::::::::::::::::::::::::::	1660 SATTGTAC : : CCTGCCAG 1080
pmsgen	1670 ACCGCTGATGT	1680 ACAGCTTGG1	1690 FACACAACCTAA	1700 Caaaagaget	1670 1680 1690 1700 1710 1720 pmsgen ACCGCTGATGTACATGTACAACTTGGTACAACCTAACAAAAGAGCTGAAAAGC-CCTGATGAAG	1720 GATGAAG

	1730	1740		1750	1760	1770
pmsgen	pmsgen GCTTTGAAGG	CAAATCTCTT	TAT-GAA	AGTTGGAC	TAAAAAAAG'	CAAATCTCTTTAT-GAAAGTTGGACTAAAAAAAGTCCTTCCCCAG
	••		••	••	•••	••
RATTRF		AAAATATCTA	TATCGAAACA	GTAATTGGAT	TAGCAAAAT	TTGATGGAAAATATCTATATCGAAACAGTAATTGGATTAGCAAAATTGAGGAACTTT
	1140	1150	1160	1170	1180	1190
	1780	1790	1800	1810	1820	1830
pmsgen	AGTTCAGTGG	CATGCCCAGG	ATAAGCAAAT	TGGGATCTGG	AAATGATTT	pmsgen AGTTCAGTGGCATGCCCAGGATAAGCAAATTGGGATCTGGAAATGATTTTGAGGTGTTCT
RATTRF	CCTTGGACAA	FGCTGCATTC	CCTTTTCTTG	CATATTCAGG	AATCCCAGC	RATTRF CCTTGGACAATGCTGCATTCCCTTTTCTTGCATATTCAGGAATCCCAGCAGTTTCTTTC
	1200	1210	1220	1210 1220 1230 1240 1250	1240	1250

pmsgen CCGGGACTCATGGTGTTTGGTGTATTGACCCTCAGAGT-GGAGCAGCTGTTGTTCATG

HUMTFR GAGAGATGCATGGGGCCCTGGAGCTGCAAAATC-CGGTGTAGGCACAGCTCTCTATTGA

FIGURE 16-9

266	
145	
145	
complete cd	
Human transferrin receptor mRNA,	entity in 464 nt overlap
HUMTFRR	54.3% identity

		1230	1240	1250	1260	1270	
pmsgen	AGGAAGI	<i>ICTCAAAG</i>	TGCCCTACAA	pmsgen AGGAAGTCTCAAAGTGCCCTACAATGTTGGACCTGGCTTTAC-TGGAAACTTTTCTACAC	GCTTTAC-1	GGAAACTTTT	CTACAC
•				••	•••	••	••
HUMTFR	TATGGA	AGGAGACT	GTCCCTCTGA	HUMTFR TATGGAAGGAGACTGTCCCTCTGACTGGAAAACAGACTCTACATGTAGGATGGTAACCTC	SACTCTACAT	CTAGGATGGT	AACCTC
11	1140	1150	1160	1170	1180	1190	
1280	0	1290	1300	1310		1320	1330
pmagen	AAAAAGI	FCAAGATG	CACATC-CAC	pmsgen AAAAAGTCAAGATGCACATC-CACTCT-ACCAATG-	1	AAGTGACAAGAATTTACAA	TTACAA
•	••	••	••			•••	••
HUMTFR	AGAAAGC	CAAGAATG	TGAAGCTCAC	HUMTFR AGAAAGCAAGAATGTGAAGCTCACTGTGAGCAATGTGCTGAAAGAGAGATAAAAATTCTTAA	STGCTGAAAG	AGATAAAAT	TCTTAA
12	1200	1210	1220	1230	1240	1250	
	13	1340	1350	1360	1370	1380	1390
pasqen	TGTGATA	AGGTACTC	TCAGAGGAGC	pasqen TGTGATAGGTACTCTCAGAGGAGCAGTGGAACCAGACAGA	SACAGATATG	TCATTCTGGG	AGGTCA
•	••	••	•••		••	•••	••
HUMTFR	CATCTT	rggagtta	TTAAAGGCTT	HUMTFR CATCTTTGGAGTTATTAAAGGCTTTGTAGAACCAGATCACTATGTTGTAGTTGGGGGCCCA	SATCACTATE	TTGTAGTTGG	GGCCCA
12	1260	1270	. 1280	1290	1300	1310	

35/130 FIGURE 17A

FIGURE 17B

FIGURE 17C

SUBSTITUTE SHEET (RULE 26)

FIGURE 18

1 2

100 –

68 –

43 -

FIGURE 19

1 2 3 4

200 kDa — PSM
69 kDa —

FIGURE 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

400

350

FIGURE 21

1 2 3 4 5 6 7 8 9 10

FIGURE 22 1 2 3 4 5 6 7 8 9

41/130 FIGURE 23

CELL LINE/TYPE	11p11.2-13 REGION	METASTATIC	PSM RNA DETECTED	PSM DNA DETECTED
LNCap			++	ND
HUMAN PROSTATE			++	ND
A9 (FIBROSARCOMA)	NO	NO	-	-
A9(11) (A9+HUM. 11)	YES	NO	-	REPEAT
AT6.1 (RAT PROSTATE)	NO	YES	-	-
AT6.1-11-c11	YES	NO	+	++
AT6.1-11-c12	NO	YES	-	-
R1564 (RAT MAMMARY)	NO	YES	-	-
R1564-11-c14	YES	YES	-	+
R1564-11-c15	YES	YES	-	REPEAT
R1564-11-c16	YES	YES	-	ND ·
R1564-11-c12	YES	YES	ND	+

FIGURE 26

FIGURE 27

48/130

Stage	Treatment	PSA	PAP	PSA-PCR	PSM-PCR
TONIVMO					
IZIANIAIO	None	8.9	0.7	-	+
T2NoMo	RRP 7/93	6.1	-	-	+
T2CNoMo	PLND 5/93	4.5	0.1	-	+
T2BNoMo	RRP 3/92	NMA	0.4	_	+
T3NxMo	Proscar + Flutamide	51.3	1.0	-	+
Recur T3	I-125 1986	54.7	1.4	-	+
T3ANoMo	RRP 10/92	NMA	0.3	. -	+
T3NxMo	XRT 1987	7.5	0.1		_
T3NxMo	Proscar + Flutamide	35.4	0.7	-	-
D2	S/P XRT Flutamide +Emcyt	311	4.5	+	+
D2	RRP 4/91 Lupron 10/92 Velban + Emcyt 12/92	1534	1.4	+	+
T2NoMo	RRP 8/91	NMA	0.5	-	+
T3NoMo	RRP 1/88 Lupron + Flutamide 5/92	0.1	0.3	-	
D1	PLND 1989 XRT 1989	1.6	0.4	-	-
D1	Proscar + Flutamide	20.8	0.5	-	-
T2CNoMo	RRP 4/92	0.1	0.3	-	-
	T2CNoMo T2BNoMo T3NxMo Recur T3 T3ANoMo T3NxMo T3NxMo D2 D2 T2NoMo T3NoMo T3NoMo T3NoMo	T2NoMo RRP 7/93 T2CNoMo PLND 5/93 T2BNoMo RRP 3/92 T3NxMo Proscar + Flutamide Recur T3 I-125 1986 T3ANoMo RRP 10/92 T3NxMo XRT 1987 T3NxMo Proscar + Flutamide D2 S/P XRT Flutamide D2 S/P XRT Flutamide + Emcyt D2 RRP 4/91 Lupron 10/92 Velban + Emcyt 12/92 T2NoMo RRP 8/91 T3NoMo RRP 1/88 Lupron + Flutamide 5/92 D1 PLND 1989 XRT 1989 D1 Proscar + Flutamide	T2NoMo RRP 7/93 6.1 T2CNoMo PLND 5/93 4.5 T2BNoMo RRP 3/92 NMA T3NxMo Proscar + Flutamide 51.3 Recur T3 I-125 1986 54.7 T3ANoMo RRP 10/92 NMA T3NxMo XRT 1987 7.5 T3NxMo Proscar + Flutamide 35.4 D2 S/P XRT Flutamide 311 D2 S/P XRT Flutamide 1534 Lupron 10/92 Velban + Emcyt 12/92 1534 T2NoMo RRP 8/91 NMA T3NoMo RRP 1/88 Lupron + Flutamide 5/92 0.1 D1 PLND 1989 XRT 1989 1.6 D1 Proscar + Flutamide 20.8	T2NoMo RRP 7/93 6.1 — T2CNoMo PLND 5/93 4.5 0.1 T2BNoMo RRP 3/92 NMA 0.4 T3NxMo Proscar + 51.3 1.0 Flutamide Recur T3 I-125 1986 54.7 1.4 T3ANoMo RRP 10/92 NMA 0.3 T3NxMo XRT 1987 7.5 0.1 T3NxMo Proscar + 35.4 0.7 Flutamide D2 S/P XRT Flutamide + Emcyt D2 RRP 4/91 1534 1.4 Lupron 10/92 Velban + Emcyt 12/92 T2NoMo RRP 8/91 NMA 0.5 T3NoMo RRP 1/88 0.1 0.3 Lupron + Flutamide 5/92 D1 PLND 1989 1.6 0.4 XRT 1989 D1 Proscar + 20.8 0.5 Flutamide	T2NoMo RRP 7/93 6.1 - - T2CNoMo PLND 5/93 4.5 0.1 - T2BNoMo RRP 3/92 NMA 0.4 - T3NxMo Proscar + Flutamide 51.3 1.0 - Recur T3 1-125 1986 54.7 1.4 - T3ANoMo RRP 10/92 NMA 0.3 - T3NxMo XRT 1987 7.5 0.1 - T3NxMo Proscar + Flutamide 35.4 0.7 - D2 S/P XRT Flutamide 311 4.5 + D2 S/P XRT Flutamide 1534 1.4 + D2 RRP 4/91 Lupron 10/92 Velban + Emcyt 12/92 1534 1.4 + T3NoMo RRP 8/91 NMA 0.5 - T3NoMo RRP 1/88 Lupron + Flutamide 5/92 0.1 0.3 - D1 PLND 1989 XRT 1989 1.6 0.4 - D1 Proscar + Flutamide 20.8 0.5 <td< td=""></td<>

WO 96/26272 PCT/US96/02424

49/130

FIGURE 31A

	10	20	30	40	50	. 60
1	AAGGGTGCTC	CTTAGGCTGA	ATGCTTGCAG	ACAGGATGCT	TGGTTACAGA	TGGGCTGTGA
	TTCCCACGAG	GAATCCGACT	TACGAACGTC	TGTCCTACGA	ACCAATGTCT	ACCCGACACT
61	CTCGAGTGGA	GTTTTATAAG	GGTGCTCCTT	AGGCTGAATG	CTTGCAGACA	GGATGCTTGG
	GAGCTCACCT	CAAAATATTC	CCACGAGGAA	TCCGACTTAC	GAACGTCTGT	CCTACGAACC
121	TTACAGATGG	GCTGTGAGCT	GGGTGCTTGT	AAGAGGATGC	TTGGGTGCTA	AGTGAGCCAT
	AATGTCTACC	CGACACTCGA	CCCACGAACA	TTCTCCTACG	AACCCACGAT	TCACTCGGTA
181	TTGCAGTTGA	CCCTATTCTT	GGAACATTCA	TTCCCCTCTA	CCCCTGTTTC	TGTTCCTGCC
	AACGTCAACT	GGGATAAGAA	CCTTGTAAGT	AAGGGGAGAT	GGGGACAAAG	ACAAGGACGG
241	AGCTAAGCCC	ATTTTTCATT	TTTCTTTTAA	CTCCTTAGCG	CTCCGCAAAA	CTTAATCAAT
	TCGATTCGGG	TAAAAAGTAA	AAAGAAAATT	GAGGAATCGC	GAGGCGTTTT	GAATTAGTTA
301	TTCTTTAAAC	CTCAGTTTTC	TTATCTGTAA	AAGGTAAATA	ATAATACAGG	GTGCAACAGA
	AAGAAATTTG	GAGTCAAAAS	AATAGACATT	TTCCATTTAT	TATTATGTCC	CACGTTGTCT
36:	AAAATCTAGT	GTGGTTTÄCA	TAATCACCTG	TTAGAGATTT	TAXATTATTT	CAGGATAAGT
	TYTTAGATCA	CACCAAATGT	ATTAGTGGAC	AATCTCTAAA	ATTTAATAA	GTCCTATTCA
421	CATGATAATT	AAATGAAATA	ATGCACATAA	AGCACATAGT	GTGGTGTCCT	CCATATAGAA
	GTACTATTAA	TTTACTTTAT	TACGTGTATT	TCGTGTATCA	CACCACAGGA	GGTATATCTT
481	AATGCTCAGT	ATATTGGTTA	TTAACTACTT	GTTGAAGGTT	TATCTTCTCC	ACTAAACTGT
	TTACGAGTCA	TATAACCAAT	AATTGATGAA	CAACTTCCAA	ATAGAAGAGG	TGATTTGACA
541		AGCCTTACAA TCGGAATGTT				
601	ACATCCTCTT	CACCATAGCG	TCTTATTAAT	TGAATTATTA	ATTGAATAAA	TTCTATTGTT
	TGTAGGAGAA	GTGGTATCGC	AGAATAATTA	ACTTAATAAT	TAACTTATTT	AAGATAACAA
661		TTTTATATTT				
721	AGAAAACACA	TTAACCAACT	GTACTGGGTA	ATGTTACTGG	GTGATCCCAC	GTTTTACAAA
	TCTTTTGTGT	AATTGGTTGA	CATGACCCAT	TACAATGACC	CACTAGGGTG	CAAAATGTTT

FIGURE 31B

			. ICACTIAT	- ANTEGIGGGT	CCCCATTAGT	GCTTGGACAG CGAACCTGTC
84	1 GACCAGGTC CTGGTCCAG	C AAAGACTGTT G TTTCTGACAA	AAGAGTCTT	C TGACTCCAAA G ACTGAGGTTT	CTCAGTGCTC GAGTCACGAG	CCTCCAGTGC GGAGGTCACG
90:	1 CACAAGCAA	A CTCCATAAAG	GTATCCTGTG	CTGAATAGAG	ACTGTAGAGT	GGTACAAAGT
	GTGTTCGTT	T GAGGTATTTC	CATAGGACAG	GACTTATCTC	TGACATCTCA	CCATGTTTCA
96	1 AAGACAGACI	A TTATATTANG	TCTTAGCTTT	GTGACTTCGA	ATGACTTACC	TAATCTAGCT
	TTCTGTCTGT	C AATATAATTO	AGAATCGAAJ	CACTGAAGCT	TACTGAATGG	ATTAGATCGA
1023	AAATTTCAG1	TTTACCATGT	GTAAATCAGG	AAGAGTAATA	GAACAAACCT	TGAAGGGTCC
	TTTAAAGTCA	AAATGGTACA	CATTTAGTCG	TTCTCATTAT	CTTGTTTGGA	ACTTCCCAGG
1081	CANTGGTGAT	TAAATGAGGT	GATGTACATA	ACATGCATCA	CTCATAATAA	GTGCTCTTTA
	GTTACCACTA	ATTTACTCCA	CTACATGTAT	TGTACGTAGT	GAGTATTATT	CACGAGAAAT
1141	AATATTAGTO	ACTATTATTA	GCCATCTCTG	ATTAGATTTG	ACAATAGGAA	CATTAGGAAA
	ITATAATCAG	TGATAATAAT	CGGTAGAGAC	TAATCTAAAC	TGTTATCCTT	GTAATCCTTT
1201	GATATAGTAC	ATTCAGGATT	TTGTTAGAAA	GAGATGAAGA	AATTCCCTTC	CTTCCTGCCC
	CTATATCATG	TAAGTCCTAA	AACAATCTTT	CTCTACTTCT	TTAAGGGAAG	GAAGGACGGG
1261	TAGGTCATCT	AGGAGTTGTC	ATGGTTCATT	GTTGACAAAT	TAATTTTCCC	AAATTTTTCA
	ATCCASTAGA	TCCTCAACAG	TACCAAGTAA	CAACTGTTTA	ATTAAAAGGG	TITAAAAAGT
1321	CTTTGCTCAG	AAAGTCTACA	TCGAAGCACC	CAAGACTGTA	CAATCTAGTC	CATCTTTTTC
	GAAACGAGTC	TTTCAGATGT	AGCTTCGTGG	GTTCTGACAT	GTTAGATCAG	GTAGAAAAAG
1381	CACTTAACTC	ATACTGTGCT	CTCCCTTTCT	CAAAGCAAAC	TGTTTGCTAT	TCCTTGAATA
	GTGAATTGAG	TATGACACGA	GAGGGAAAGA	GTTTCGTTTG	ACAAACGATA	AGGAACTTAT
1441	CACTCTGAGT	TTTCTGCCTT	TGCCTACTCA	GCTGGCCCAT	GGCCCCTAAT	GTTTCTTCTC
	GTGAGACTCA	AAAGACGGAA	ACGGATGAGT	CGACCGGGTA	CCGGGGATTA	CAAAGAAGAG
1501	ATCTCCACTG	GGTCAAATCC	TACCTGTACC	TTATGGTTCT	GTTAAAAGCA	GTGCTTCCAT
	TAGAGGTGAC	CCAGTTTAGG	ATGGACATGG	AATACCAAGA	CAATTTTCGT	CACGAAGGTA
1561	AAAGTACTCC	TAGCAAATGC	ACGGCCTCTC	TCACGGATTA	TAAGAACACA	GTTTATTTTA

FIGURE 31C

	TTTCATGAGG	S ATCGTTTACG	TGCCGGAGAG	AGTGCCTAAT	ATTCTTGTGT	CAAATAAAAT
1621	TAAAGCATG1 ATTTCGTACI	AGCTATTCTC A TCGATAAGAG	TCCCTCGAAA AGGGAGCTTT	TACGATTATT ATGCTAATAA	ATTATTAAGA TAATAATTCT	ATTTATAGCA TAAATATCGT
1681	GGGATATAAT	TTTGTATGAT AAACATACTA	GATTCTTCTG CTAAGAAGAC	GTTAATCCAA CAATTAGGTT	CCAAGATTGA GGTTCTAACT	TTTTATATCT AAAATATAGA
1741	ATTACGTAAG	ACAGTAGCCA	GACATAGCCG	GGATATGAAA	ATAAAGTCTC	TGCCTTCAAC
	TAATGCATTC	TGTCATCGGT	CTGTATCGGC	CCTATACTTT	TATTTCAGAG	ACGGAAGTTG
1801	AAGTTCCAGT TTCAAGGTCA	TANGANANGA	TTCCTCCCCT AAGGAGGGGA	CCCCTCCCCT GGGGAGGGGA	CCCTTCCCCT GGGAAGGGGA	CCCCTTCCTT GGGGAAGGAA
1861	CCCTTTCCCT GGGAAAGGGA	TCCCTTCCTT AGGGAAGGAA	TCTTTCTTGA AGAAAGAACT	GGGAGTCTCA CCCTCAGAGT	CTCTGTCACC GAGACAGTGG	AGGCTCCAGT TCCGAGGTCA
1921	GCAGTGGCGC	TATCTTGGCT	GACTGCAACC	TCCGCCTCCC	CGGTTCAAGC	GATTCTCCTG
	CGTCACCGCG	ATAGAACCGA	CTGACGTTGG	AGGCGGAGGG	GCCAAGTTCG	CTAAGAGGAC
1981	CCTCAGCCTC	CTGAGTAGCT	GGGACTACAG	GAGCCCGCCA	CCACGCCCAG	CTAATTTTTG
	GGAGTCGGAG	GACTCATCGA	CCCTGATGTC	CTCGGGCGGT	GGTGCGGGTC	GATTAAAAAC
2041	TATTTTAGT	AGAGATGGGG	TTTCACCATG	TTGGCCAGGA	TGGTCTCGAT	TTCTCGACTT
	ATAAAAATCA	TCTCTACCCC	AAAGTGGTAC	AACCGGTCCT	ACCAGAGCTA	AAGAGCTGAA
2101	CGTGATCCGC	CTGTCTGGGC	CTCCCAAAGT	GCTGGGATTA	CAGGCGTGAG	CCACCACGCC
	GCACTAGGCG	GACAGACCCG	GAGGGTTTCA	CGACCCTAAT	GTCCGCACTC	GGTGGTGCGG
2161	CGGCTTTAAA	AAATGGTTTT	GTAATGTAAG	TGGAGGATAA	TACCCTACAT	GTTTATTAAT
	GCCGAAATTT	TTTACCAAAA	CATTACATTC	ACCTCCTATT	ATGGGATGTA	CAAATAATTA
2221	AACAATAATA	TTCTTTAGGA	AAAAGGGCGC	GGTGGTGATT	TÄCACTGATG	ACAAGCATTC
	TTGTTATTAT	AAGAAATCCT	TTTTCCCGCG	CCACCACTAA	ATGTGACTAC	TGTTCGTAAG
2281	CCGACTATGG	AAAAAAAGCG	CAGCTTTTTC	TGCTCTGCTT	TTATTCAGTA	GAGTATTGTA
	GGCTGATACC	TTTTTTTCGC	GTCGAAAAAG	ACGAGACGAA	AATAAGTCAT	CTCATAACAT
2341	GAGATTGTAT	AGAATTTCAG	AGTTGAATAA	AAGTTCCTCA	TAATTATAGG	AGTGGAGAGA
	CTCTAACATA	TCTTAAAGTC	TCAACTTATT	TTCAAGGAGT	ATTAATATCC	TCACCTCTCT

WO 96/26272 PCT/US96/02424

52/130

FIGURE 31D

2401	GGAGAGTCTC CCTCTCAGAC	TTTCTTCCTT AAAGAAGGAA	TCATTTTAT AGTAAAAATA	ATTTAAGCAA TAAATTCGTT	GAGCTGGACA CTCGACCTGT	TTTTCCAAGA AAAAGGTTCT
2461	AAGTTTTTTT	TTTTTAAGGC	GCCTCTCAAA CGGAGAGTTT	AGGGGCCGGA TCCCCGGCCT	TTTCCTTCTC AAAGGAAGAG	CTGGAGGCAG GACCTCCGTC
2521	ATGTTGCCTC	TCTCTCTCGC	TCGGATTGGT	TCAGTGCACT	CTAGAAACAC	TGCTGTGGTG
	TACAACGGAG	AGAGAGAGCG	AGCCTAACCA	AGTCACGTGA	GATCTTTGTG	ACGACACCAC
2581	GAGAAACTGG	ACCCCAGGTC	TGGAGCGAAT	TCCAGCCTGC	AGGGCTGATA	AGCGAGGCAT
	CTCTTTGACC	TGGGGTCCAG	ACCTCGCTTA	AGGTCGGACG	TCCCGACTAT	TCGCTCCGTA
2641	TAGTGAGATT	GAGAGAGACT	TTACCCCGCC	GTGGTGGTTG	GAGGGCGCGC	AGTAGAGCAG
	ATCACTCTAA	CTCTCTCTGA	AATGGGGCGG	CACCACCAAC	CTCCCGCGCG	TCATCTCGTC
2701	CAGCACAGGC	GCGGGTCCCG	GGAGGCCGGC	TCTGCTCGCG	CCGAGATGTG	GAATCTCCTT
	GTCGTGTCCG	CGCCCAGGGC	CCTCCGGCCG	AGACGAGCGC	GGCTCTACAC	CTTAGAGGAA
2761	CACGAAACCG GTGCTTTGGC	ACTCGGCTGT TGAGCCGACA	GGCCACCGCG CCGGTGGCGC	ccccccccc	GCTGGCTGTG CGACCGACAC	CGCTGGGGCG GCGACCCCGC
2821	CTGGTGCTGG	CGGGTGGCTT	CTTTCTCCTC	GGCTTCCTCT	TCGGTAGGGG	GGCGCCTCGC
	GACCACGACC	GCCCACCGAA	GAAAGAGGAG	CCGAAGGAGA	AGCCATCCCC	CCGCGGAGCG
2881	GGAGCAAACC	TCGGAGTCTT	CCCCGTGGTG	CCGCGGTGCT	GGGACTCGCG	GGTCAGCTGC
	CCTCGTTTGG	AGCCTCAGAA	GGGGCACCAC	GGCGCCACGA	CCCTGAGCGC	CCAGTCGACG
2941	CGAGTGGGAT	CCTGTTGCTG	GTCTTCCCCA	GGGGCGGCGA	TTAGGGTCGG	GGTAATGTGG
	GCTCACCCTA	GGACAACGAC	CAGAAGGGGT	CCCCGCCGCT	AATCCCAGCC	CCATTACACC
	GGTGAGCACC CCACTCGTGG					

FIGURE 32

Potential binding sites on the PSM promoter*

Site	Seq	**Location	n #nt matched
AP1	TKAGTCA	1145	חד
E2-RS	ACCNNNNNNGG	T 1940 1951	12/12 12/12
GHF	NNNTAAATNNN	580 753 1340 1882 1930 1979 2001 2334 2374 2591 2620 2686	11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11
JVC repea	: GGGNGGRR	1:65 1:75 1:180 1:185 1:190	8/8 8/8 8/8 8/8 8/8
NFkB	GGGRHTYYHC	SE:	10/10
uteroglobi		250 921 1104	8/8 8/8 8/8
IFN AAV	VAANGAAAGGR590	13/13	Cell 41:509 (1985)

^{*} the PSM promoter sequence 683XFRVS (Fig. 1) starts from the 5' end of the promoter fragment. The 3' region overlapps the previously published PSM cDNA at nt#2485,i.e. the putatative transcription start site is at nt#2485 on sequence 683XFRVS. **The number refered to in this table is in reference to sequence 683XF107 which is the complement and inverse of 683XFRVS.

SUBSTITUTE SHEET (RULE 26)

CTCAAAAGGGGGCGGATTTCCT TET TUBANUCABATATTOCCTCTCTCTCUCTCUUATTOUTTCAUTGCACTCTABAACACTGTGTGTGGAAAACA BOACCC ABB TCTUBABCBAATTCCA BCCTBCABBCTBAIAABCBABBCATTABTBABATTBABABACTTTACCC

FIGURE 34

ATO TOO AAT CTC CTT CAC OAA ACC OAC TCO OCT OTO OCC ACC OCO COC COC CCO COC TOO CTO Trp Leu Pro Arg ۸ı۵ ۸۲۵ 7 Val Ais Ais Met Trp Aen Leu Leu IIIe Glu Thr Asp Ser Als

Phe TOC OCT GOO OCO CTO UTO CTO OCO OOT UUCTIC TIT CTC CTC OOC TTC CTC TIC OOA TOO TIT 416 Phe Oly Gly Phe Phe Leu Leu Gly Phe Leu Ala Leu Vai Leu Ala Gly Cys Als ATA AAA TCC TCC AAT BAA UCT ACT AAC ATT ACT CCA AAB CAT AAT ATB AAA BCA TTT TTB BAT BAA Aen Glu Ais Thr Aen 11s Thr Pro Lys 111s Aen Met Lys Ais Phe Leu 301 He Lys Ser

YCY Ę TOO AAA OCT OAG AAC ATC AAG AAG TTC TTA TAT AAT TTT ACA CAG ATA CCA CAT TTA OCA OOA C A 110 Pro IIIe Leu Ale Lys Lys Phe Leu Tyr Asn Phe Thr Oln Ale Glu Aen Ile Lou Lye

56/130

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

58/130

59/130

	10	20	30	40	50	60
1	TTTGCAGACT	TGACCAACTT	TCTAAGAAAA	GCAGAACCAC	ACAGGCAAGC	TCAGACTCT:
	AAACGTCTGA	ACTGGTTGAA	AGATTCTTTT	CGTCTTGGTG	TGTCCGTTCG	AGTCTGAGAA
61	TTATTAAATT	CCAGTTTTGA	CTTTGCCACT	TCTTAGTGGC	CTTGAACAAG	TTACCGAGTC
	AATTAATTAA	GGTCAAAACT	GAAACGGTGA	AGAATCACCG	GAACTTGTTC	AATGGCTCAG
121	CTCTCAGCGT	TAGTTACCCT	ATTITAATGA	TGAGGATAAT	ATTATCTGCC	CAAATTATTG
	GAGAGTCGCA	ATCAATGGGA	TAAAATTACT	ACTCCTATTA	TAATAGACGG	GTTTAATAAC
181	GTATAGTAAA	TATATAGCAT	GTAAATCTCC	TAGCAGAGTA	CTGGGATTTC	GCCACTTTAT
	CATATCATTT	ATATATCGTA	CATTTAGAGG	ATCGTCTCAT	GACCCTAAAG	CGGTGAAATA
241	TTCTTCTTTA	CCAAGATACT	CCTATTGGAC	TTAATACACA	GGACTAGTCT	AAGGTATCAC
	AAGAAGAAAT	GGTTCTATGA	GGATAACCTG	AATTATGTGT	CCTGATCAGA	TTCCATAGTG
301	CAGGTAGTCC	ACTECTGCTC	GGAATCTGAC	CCGGGATTAG	AGTAGGGCAT	GGACCAGATG
	GTCCATCAGG	TGAGGACGAG	CCTTAGACTG	GGCCCTAATC	TCATCCCGTA	COTGGTCTAC
361	GGTTTAAACA	AATTCAATAT	CTTCCACTAG	CTTCACCTTG	GGGTTGTAAA	AGTTTTTGAA
	CCAAATTTGT	TTAAGTTATA	GAAGGTGATC	GAAGTGGAAC	CCCAACATTT	TCAAAAACTT
42:	DDACACACTG	TGCTCATAAC	AATCTTCATC	TCTTAAAAGG	ATTTTATICT	TCCTGGTATC
	BBTBTGTGAC	ACGAGTATTG	TTAGAAGTAG	AGAATTTTCC	TAXAATAAGA	AGGACCATAG
481	CTCACTCTCA	TCCCTTGTAT	TCCGTGCTCA	GTGGCTGACA	CAGAAGAGTT	CTTTATHNHH
	GAGTGAGAGT	AGGGAACATA	AGGCACGAGT	CACCGACTGT	GTCTTCTCAA	GAAATAHNHH
541	ининининини	CATCCTGTTC	ATTTTTCAGA	TCTCAGTTCA	AGCATCTCGT	CCTCAGTGTG
	нининининин	GTAGGACAAG	TAAAAAGTCT	AGAGTCAAGT	TCGTAGAGCA	GGAGTCACAC
601	GTGTTNNCTG	ATCCCTCACT	CTAATCCAAG	TCTTTCTGTT	TTATGCACAG	GTTGGAATCT
	CACAANNGAC	TAGGGAGTGA	GATTAGGTTC	AGAAAGACAA	AATACGTGTC	CAACCTTAGA
661	TATTTCCGTT	TGCGNNCCAA	TCHAATHGTA	TTTAATATGC	ATGTATATAT	GTATGTGCAT
	ATAAAGGCAA	ACGCNNGGTT	AGHTTANCAT	AAATTATACG	TACATATATA	CATACACGTA
721	TTGTATGCTA	NGCGATTAAG	AACTAGAATA	ATTAATAATT	GGAAGTCTAG	AAGTGG
	AACATACGAT	NCGCTAATTC	TTGATCTTAT	TAATTATTAA	CCTTCAGATC	TTCACC

WO 96/26272 PCT/US96/02424

61/130

FIGURE 40A

	10	20	30	40	50	60
1	TGAAAAATAC	ATCAAAAATA	GGCATGAGAT	ACGAGCCTAT	AGATAGGACT	TATTTTT :
	ACTITITATE	TAGTTTTAT	CCGTACTCTA	TGCTCGGATA	TCTATCCTGA	ATAAAAATA
61	TATTGTTGTA	TGTATTATTT	GTAAAACACA	AATTATCAAT	ATTACCTCTG	ACATTAGGTG
		ACATAATAAA				
121	AGATATTCTG TCTATAAGAC	TTAAAATT AATTAAAATT	TCTCTTGCCT AGAGAACGGA	ACTITCACTG TGAAAGTGAC	AAAAAGAGTC TTTTTCTCAG	ATGCAAACAS TACGTTTGTC
181	ATTITTAAGT TAAAAATTCA	TGCAAACCAA ACGTTTGGTT	TTGCAAAATA AACGTTTTAT	TTTTTTTTTC	CAACTTCAAT	GATAGGTATT
241	GCTGTTAATT	CTAAGATATG GATTCTATAC	CATTAATTGT	TTCAACTAAT	GGGTGTCAAA	CGAGATGTTC
		GATICIATAC	GIANITANCA	AAGTTGATTA	CCCACAGTTT	GCTCTACAAG
301	TGAAAATGAA	GGCAAAAAGG	AGATOCACCT	TCTACTTTCA	TAXAGTTTCT	ATCTTCCTCT
	ACTITIACIT	CCGTTTTTCC	TCTAGGTGGA	AGATGAAAGT	ATTTCAAASA	TAGAAGGAGA
361	GCTGACTCAA	ATAAGCATTT	AATACATTTT	ATAACGAATT	AATTATGAAT	ATATTTCAAA
	CGACTGAGTT	TATTOSTALA	TTATGTAAAA	TATTGCTTAA	TTAATACTTA	TATAAAGTTT
421	TAAATAAATT	ATTTCCAAGT	GTTGAASGAA	ATTCASACTT	CTAATTTGCT	CTGATTCTGA
		TAAAGGTTCA				
481	AACTAAAACA	AATGCTCTGT	GAGAGTTTGC	GTTTCCAGTG	AASTAGCGTG	AGAAATCCAA
	IIGATITIGI	TTACGAGACA	CICICAAACS	CAAAGGTCAC	TTCATCGCAC	TCTTTAGGTT
541	GTCAGACAGC	TACATGAAAC	TACATTTAIL	AGCTCTCTGC	CAGACACCAG	TGCACGATAG
	chdicidica	ATGTACTTTG	AIGIAAAIGG	TCGAGAGACG	GTCTGTGGTC	ACGTGCTATC
601	CGCAGAACAT	GTAGCTAGAT	CTCAGTCATA	GCT ИИИИИИИ	инининини	AGACCTTGCA
	GCGTCTTGTX	CATCGATCTA	GAGTCAGTAT	ССАИНИНИНИ	нинининини	TCTGGAACGT
661	GTTGGCTTTT	AACCTGAAGG	AGATAAGGCA	AGATTCCAGG	GTTTATTTAG	AGAAATTACA
	CAACCUAAAA	TTGGACTTCC	TCTATTCCGT	TCTAAGGTCC	CAAATAAATC	TCTTTAATGT
721	GGATCTGGGA	ATAAAGTAGT	TACAAAATTA	GTCCCCAACC	AGCTTTCATG	GAGCTTTCAA
	CONTRACTOR	TATTTCATCA	AIGTITIAAT	CAGGGGTTGG	TCGAAAGTAC	CTCGAAAGTT

FIGURE 40B

, 61	1101100110	1101701101	170110007.0	CATACAATGC	VCWIVCWIVI	ALACAIGCA.
	TAATTAAT	AAGATCAAGA	ATTAGCGTAC	GTATGTTACS	TGTATGTATA	TATGTACGTA
841	ATTAAAATAC TAATTTTATG	ATGATTGGAC TACTAACCTG	GCAAACGGAA CGTTTGCCTT	ATAAGATTCC TATTCTAAGG	ACCTGTGCAT TGGACACGTA	AAAACAGAAA TTTTGTCTT
201	c) concent;	C) CTC) CCC)	TC\CC\\\ 0	0010100010		
901	GACTTGGTTA CTGAACCAAT	CTCACTCCCT	AGTCCTTTGT	GGTGTGACTC	CTGCTCTACN	иииииииииииииииииииииииииииииииииииии
961	NTAGTGGGTG	GGGGGGGGAC CCCCGCCTG	ATCAATAAAG TAGTTATTO	AACTCTTCTG	TGTCAGCCAC	TGAGCACGGA
021	ATAAAGGGAT TATTTCCCTA	GAGASTGASS CTCTCACTCC	GCAANTACCA CGTTNATGGT	GAAGAATAAA CTTCTTATTT	ATCCTTTTAA TAGGAAAATT	GAGATGAAGA CTCTACTTCT
081	TIGITATGAS	CACAGTGTGT	GUNTTCAAAA	ATCTTTTAAC	AACCCCAAGG	TGAAGCTAGT
	AACAATACTC	GTGTCACACA	CCNAAGTTTT	TAGAAAATTG	TTGGGGTTCC	ACTTCGATCA
14i	TGGAAGATAT ACCTTCTATA	TTGAATTTGT AACTTAAACA				
201	GAGGTCAAGA	ATTOCASON	GASTOSACTA	CCTGTGATAC		TOTTOTOTA
		TAAGGCTCGT				
261	TCAAGTCCAA	TGAGAGTATC ACTCTCATAG				
			ハーフィックィーフィ	ンドエクレクログラブ	TUGGICIUGN	

FIGURE 41

	10	20	30	40	50	60
1					CCTACCCAAA GGATGGGTTT	
61					TAAAAAATAA ATTTTTTATT	
121			· · · ·		CTTCTATGAA GAAGATACTT	
181					CTGTGAATAC GACACTTATG	
241					ACTGGGTTTA TGACCCAAAT	
,301					TCAAATATGA AGTTTATACT	
	TIGGASGITC	GTATTTTTCT	CTATGAAATA	TTTTCTCCAA	CTTTTTTCT	*****
411					GTGGTGCCAT CACCACGGTA	
	ACSTTGGAGG	TGGAGGGTAC	AAGTTCCCTA	AGAGGAAGGA	CAGTCTCCTG GTCAGAGGAC	TCATCGACCC
	TAATGTCCAC	ACGTGGTGGT	STSGGTCGAT	TAAAAACATA	TTTTAATAGA	CTGTCCCAAA
-	GCTAGCTAIA	ACCGGTCCGA	TCAGAGETTS	AGGACTGGAG	TAGGTGATCC	TGGGCGAGTC
	GAGGGTŢTĊA	ACATCTTAAT	GTGCACACTC	CGTGACGCGG	AACGGTCCTC	ATACATTTTT TATGTAAAAA
721	GATAGGTTTA CTATCCAAAT	ATTTATAAAG TAAATATTTC	ACACTGCACA TGTGACGTGT	GATTTGAGTT CTAAACTCAA	GCTGGGAAAT CGACCCTTTA	GCACGGATTC CGTGCCTAAG

781 CAGTATGCA GTCATACGT

FIGURE 42

09	 AATGAATAT"F TTAC1"IATAA
50	AATCAAAATA AAACAGTTAA AGTTTATA CTATAATCAA ACACAAAAAA AATGAATATT TTAGTTTTAT TTTGTCAATT TCAAACTAAT GATATTAGTT TGTGTTTTT TTACTTATAA
40	CTATANTCAA GATATTAGTT
30	AGTTTTTA TCAAACTEAAT
5.	AAACAGTTAA TTTTGTCAAFF
10	

61 ATCTTTTATG TCAGTAGAGG GIGANIGAAT CCITICAGGAT HITGATGATA GTATCAGATA TAGAAAATAC AGTCATCTCC GAGTITA GGAAGIGCCTA AAACTACTAT CATAGTCTAT

CCCAGCACTA TGCTAGAAGT TGTGAAGAAT TGAGAGATG AATAAATGAC AGATTCTGTC GGGTGGTGAT ACGATGTTGA ACACTTGTTA AGGGCTGTAG TTATTAGTG TGTAAGACAG 121

CTCAAAATGG TTAGATCTAT TCAGGAAACA AAGCTAAAAA AACCCCACCA ATAACTAAAA GAGTTTTACC AATCTAGATA AGTCCTTTGT TTCGATTTT TTGGGGTGGT TATTGATTTT 181

241 ATCAACCAAA TGAAAAACAA CAATCATAAA ATAAGTAAGT ACCTATAGAA AGAAAAGCTC TAGTTGGTT ACTTTTTGTT GTTTGTTT TATTTCATTCA TGGATATCTT TCTTTTGAG

AGAGGAGGTA ANAAGAATCT CCTTAAAAGG AATACTATAT ACTGTAAAAC TGTGACTGAT TCTCCTCCAT TTTTCTTAGA GGAATTTTCC TTATGATATA TGACATTTTG ACACTGACTA 301

361 AGAAGGAA TCTTCCTT

65/130

FIGURE 43A

	10	20	30	40	50	60
1	TATGGGAAAG ATACCCTTTC	TTTTCAGAGG AAAAGTCTCC	AAATAAGGTA TTTATTCCAT	AGGGAAAAGT TCCCTTTTCA	TATCTCTTTT ATAGAGAAAA	TTTCTCTCCC ANAGAGAGGG
61	CCAATGTAAA GGTTACATTT	AAGTTATAGT TTCAATATCA	GGGTTTTACA CCCAAAATGT	TGTGTAGAAT ACACATCTTA	CATTTTCTTA GTAAAAGAAT	AAACTTTATG TTTGAAATAC
121	AATACCATTA TTATGGTAAT	TTTTCTTGTA AAAAGAACAT	TTCTGTGACA AAGACACTGT	TGCCACCTTA ACGGTGGAAT	CAGAGAGGAC GTCTCTCCTG	ACATTTACTA TGTAAATGAT
181	GGTTATATCC CCAATATAGG	CGGGGTTAAA GCCCCAATTT	TTCGAGCATT AAGCTCGTAA	GGAATTTGGC CCTTAAACCG	CAGTGTAGAT GTCACATCTA	GTTTAGAGTG CAAATCTCAC
241	AACAGAACAA TIGICTIGII	TTTTTCTGTG	CTTACAGGTT GAATGTCCAA	ATGGCTGTGG TACCGACACC	CGTA DAAGAA GCATGTTCTT	GCATGCACTG CGTACGTGAC
301	GGTTTATTAT CCAAATAATA	TAACTTTCAG ATTGAAAGTC				
361	ATTAAATTGT TAATTTAACA	AGTATGAATT TCATATTTAA	GTTATAAATA CAATATITAT	AAAEEDADTA' TTTCCCTCAT	CATTTACACA GTAAATGTGT	TAGCAAATTT ATCGTTTAAA
421	AAAAATTACT TTTTTAATGA	STOATTTGAT CASTAAACTA	TTGTTAATAT AA IAATTATA	ATTTTTCTCT TAXAAGAGA	TTASTGGGAA AATCACCCTT	ATTAATTAA TAATTTAAT
461	AAAATTCCTT TTTTAAGGAA	TOSACTOTOA AGCTGACAST	GACAATAGGA CTGTTATCCT	TIGCTSTGGT AACGACACCA	CTACTYGETT GATGAACGAA	ATTATATTTG TAATATAAAC
541	TAGAGTCTAG ATCTCAGATC	AATGCAATCT TTACGTTAGA				
60,1	TGAGAAACTA ACTCTTTGAT	TTCCAGACCT AAGGTCTGGA				
661	CAGGGTGACT GTCCCACTGA	TCTHCCTCHH AGANGGAGHH				
721	ACAATTAATC TGTTAATTAG	AACTAGCATT TTGATCGTAA				

PCT/US96/02424

66/130

FIGURE 43B

- TSI TGAAGCTTIN NTCACTGTCA ATTCTGATCA GATATATGAC AATTTTAAAT TATTTGCAGT ACTTCGAAAN NAGTGACAGT TAAGACTAGT CTATATACTG TTAAAATTTA ATAAACGTCA
- 841 GTGTAAGAAA CGCTTCAGGT AGTTTAAATT TAAGGCT CACATTCTTT GCGAAGTCCA TCAAATTTAA ATTCCGA

67/130

FIGURE 44A

	10	20	30	40	— 5 <u>0</u>	60
1	CTCCTTTGGC GAGGAAACCG	CCCTGCCAGC GGGACGGTCG	TGGGCATTTT ACCCGTAAAA	TAACCTAGTT ATTGGATCAA	TACACAGTGT ATGTGTCACA	CTTTTTTTCC GAAAAAAAGG
£i	AAATTTAAA TTTAAAATAA	TTGGTTGTTC AACCAACAAG	CAGATTCGGT GTCTAAGCCA	AATATCAATT TTATAGTTAA	ATTATATTA AAATTATAAA	CACTTAAATG GTGAATTTAC
121	AGTACCAGAA TCATGGTCTT	CTTTATCTTC GAAATAGAAG	AACCTTTTTC TTGGAAAAAG	TCATTAGGCC AGTAATCCGG	TACAACATAG ATGTTGTATC	GACATCTCGG CTGTAGAGCC
181	ATAGAATTTC TATCTTAAAG	CTTTTCTTTT GAAAAGAAAA	TGCTACTATA ACGATGATAT	AGCTGCTAAA TCGACGATTT	ATCCTCAGAA TAGGAGTCTT	CATCAGATTT GTAGTCTAAA
241	AGAAATGTTC TCTTTACAAG	TTATTAGTGG AATAATCACC	TAGTGAGCAT ATCACTCGTA	TTGCTATTTC AACGATAAAG	CTACCACTAG GATGGTGATC	CTTACAAATA GAATGTTTAT
331					TCTACAGTCG AGATGTCAGC	
361					CAATCAAATT GTTAGTTTAA	
421					ACAATTCATA TGTTAAGTAT	
481					TACTGAAAGT ATGACTTTCA	
:::					GCACAGAAAA CGTGTCTTTT	
601					ATTTAACCCC TAAATTGGGG	
661					GAATACAGAA CTTATGTCTT	
721					ACCCACTATA TGGGTGATAT	

PCT/US96/02424

68/130

FIGURE 44B

E41 CATATOTGGC AATTAGAATT TICCCAGAGC AATTGATTTT CATGTCCGT TCC GTATAGACCG TTAATGTTAA AAGGGTCTCG TTAACTAAAA GTACAGGGCA AGG

69/130

FIGURE 45A

	10	20	30	40	50	6:
1	GATGCTATTT CTACGATAAA	GGGCAATTTC CCCGTTAAAG	TTATTGACAG AATAACTGTC	TTTTGAAATG AAAACTTTAC	TTAGGCTTTT AATCCGAAAA	ATCTCCATTT
61	TTTAGTACTT	AAATTTTCCA	ACATGGGTGT	ТССТТСТТАТ	TTTATCACTA	M 1111 M 1
	AAA TCA TOAA	TTTAAAAGGT	TGTACCCACA	ACGAACAATA	AAATAGTCAT	ATTTTATCTT
121	GAGTGGTTCT CTCACCAAGA	GTTCTGGAAT CAAGACCTTA	TTAGTATATA AATCATATAT	CATGAGTATC GTACTCATAG	TAGTGTATGT ATCACATACA	CAGCCATGAA GTCGGTACTT
181	AATGAACCTT TTACTTGGAA	TCAGATGTTT AGTCTACAAA	AACTTCAGGG TTGAAGTCCC	AACCTAATTG TTGGATTAAC	AGTCATTGCT TCAGTAACGA	CCAGACATTG
			·			
241	AACGAAACTT	CCCACTATAT GGGTGATATA	THENSELDE	CGGGCAATER GCCCGTTACT	CTCAGTGTGG GAGTCACACC	CAAGGATACT GITCCTATGA
301	ACTGCAGGCC TGACGTCCGG	TGTTTCTGGA ACAAAJAICT	AGGCACTGGA TCCSTGACCT	STOCTOTGAT SASGAGACTA	GCAAACTTTG CGTTTGAAAC	GCCAGGGACT CGGTCCCTGA
351		TCTTAAATAG				
	GGAACTATCG	AGAATTTATO	TACSACSTSG	TTGTGAGAGA	AAGAAAAGAG	AGAAAAASAA
421	TATTCAATAT	TAGACTACAA	GCATTITALAI	SACTICTOAG	GGTTTCTAGC	TOTOTOTOAT
	A.M.O	ATCTGATGTT	CO. LAGAI". L	J.JAAGAGTC	CCAAAJATCG	AGAGAGAGTA
48:	TTCACACATG AASTGTGTAS	CTTTCCTAGT GAAAGGATCA	AATCTCTACT TTAGAGATGA	CATATATCTT	ACTGCTACGC	TGGGGCCAGA
541	TAACHUNNUN ATTGUNUNUN	CTTCCATTTT GAAGGTAAAA	GTTTTTATCT CAAAAATAGA	CTATTCTTCT GATAAGAAGA	TCCCCTTCTG AGGGGAAGAC	CTTTCATTAT GAAAGTAATA
601	TGAAACTTTC	TGCTTTCATT	ATTGAAACTT	TCCCAGATTT	GTTCTGCTTA	ACCTGGCATT
	NET T T GAMAG	ACGAAAGTAA	IAACITIGAA	AGGGTCTAAA	CAAGACGAAT	TGGACCGTAA
661	GGAACTGTTT CCTTGACAAA	CCTCTTCCCT GGAGAAGGGA	GTGCTGCTTT CACGACGAAA	CTCCCATTGC GAGGGTAACG	CATGTCCTTT GTACAGGAAA	TTTTTTTTT AAAAAAAA
721	TTTTTTTTTT	TGAGACAGTG ACTCTGTCAC	TCACTCTGTT AGTGAGACAA	GCCCAGGCTG CGGGTCCGAC	GAGTGCAATG CTCACGTTAC	GTGCAATCTT CACGTTAGAA

PCT/US96/02424

70/130

FIGURE 45B

781	GGCCACTGCA	ACCCCGACTC TGGGGCTGAG	CGGGTTCAAG GCCCAAGTTC	TGATTCTCTA ACTAAGAGAT	CCTGCCTCAG GGACGGAGTC	CCTCCTGAGT GGAGGACTCA
6 4 1	AGCTGGGATT	ACAGGTGCCA	CCACTATGCC	GGCTGATTTT	GTATTTTAGT	AGAGATGGGT
	TCGACCCTAA	TGTCCACGGT	GGTGATACGG	CCGACTAAAA	CATAAAATCA	TCTCTACCCA
901	TCACATGCAG	ATCAGCTGTT	CCGACTCTGA	CCAGNINNNN	ининининини	ATCAAAGTCA
	AGTGTAGGTC	TAGTCGACAA	GGCTGAGACT	GGTCNNNNN	ининининин	TAGTTTCAGT
961	GCCAAAGTGC	TAGGCTTAGA	GTAATTGTGT	AATTTCCACA	CAAGTGCAAC	CTAGTGTAAT
	CSSTTTCACG	ATCCGAATCT	CATTAACACA	TTAAAGGTGT	GTTCACGTTG	GATCACATTA
:::	S DOT DAAGAA	TGTNNNTATG	AATGTCTCGA	ACGTTAGTAA	CTAATAACAA	GTAGTTAGTT
	DEGAGTTOTT	ACAUMMATAC	TTACAGAGCT	TGCAATCATT	GATTATTGTT	CATCAATCAA
GB1	TATAGATGTA	TCCTASTATG	TAGCA			

71/130

FIGURE 46A

	10	20	30	40	50	60
1	CACAAAAAA	GATTATTAGC	CACAAAAAA	CCTTGAAGTA	ACGCATTAAA	ATGTTAATGG
	GTGTTTTTT	CTAATAATCG	GTGTTTTTT	GGAACTTCAT	TGCGTAATTT	TACAATTACC
61	ATTCACTITA	TTGAGCATCT	GCTCATAATA	CTTTAATGAG	TGCAAAGTGC	TTTGAATATA
	TAAGTGAAAT	AACTCGTAGA	CGAGTATTAT	GAAATTACTC	ACGTTTCACG	AAACTTATAT
121	ATACGTCATT	TAAACCTTAC	CATAATTCTG	AGGAATTGCT	ACCTCCACTT	CACAGATGGG
	TATGCAGTAA	ATTTGGAATG	GTATTAAGAC	TCCTTAACGA	TGGAGGTGAA	GTGTCTACCC
181	GCACAGGAGG	CTTAGATAAC	ATGCCCAAAG	TCATGCTTCT	AGTAAATGGA	TATAATTAAG
	CGTGTCCTCC	GAATCTATTG	TACGGGTTTC	AGTACGAAGA	TCATTTACCT	ATATTAATTC
241	ATTCAAATTA TAAGTTTAAT	TTGATAAGAA AACTATTCTT	TTTGATCTGC AAACTAGACG	CAATGGTCATA	TCTAGTAGTA AGATCATCAT	AATCTAAAAG TTAGATTTTC
301	CGCTTTCCAG	AGCATGTGCT	GTTGATAGAG	CTTGATGTCT	AACTCTCTGA	AATTTTCCAT
	GCGAAAGGTC	TCGTACACGA	CAACTATCTC	GAACTACAGA	TTGAGAGACT	TTAAAAGGTA
361	TCTTATTTGT	CTCACTGGTA	TATAGTTATT	TTTTACTACT	TTCATACACC	TACTAAGAAG
	AGAATAAACA	GAGTGACCAT	ATATCAATAA	AAAATGATGA	AAGTATGTGG	ATGATTCTTC
421	ACAGGAGGAT	CAAAGATAGG	ATTTCATTTA	JAATGOOTAA	AGCTTCACGT	ATTTTAATTC
	TGTCCTCCTA	STTTCTATCC	TAAAGTAAAT	OTTAGGGATT	TCGAAGTGCA	TAAAATTAAG
481	AGAATAAGAT	TCAGGCAGAC	CACCAGTATA	TECCATESTC	CCTGGTTATC	TTTCAGCAGG
	TCTTATTCTA	AGTCCGTCTG	GTGGTCATAT	ACGSTACCAG	GGACCAATAG	AAAGTCGTCC
541	TGACCGAGAA	AGAAAACATG	GTAATGTTTA	TGAAATGGTG	GGTTCTTGTA	GTTTCACTTC
	ACTGGCTCTT	TCTTTTGTAC	CATTACAAAT	ACTTTACCAC	CCAAGAACAT	CAAAGTGAAG
601 [.]	AACATATCTS	CCTTTACTGT	ATTAAGATGA	TGGATTAACT	TATTCTTGAT	ATGGGCATGT
	TTGTATAGAC	GGAAATGACA	TAATTCTACT	ACCTAATTGA	ATAAGAACTA	TACCCGTACA
661	AAAACAATAT	ACTTTTACTA	AACAGCTACA	GAGAGACAAA	TGTGTTTCCA	GACAAACTTA
	TTTTGTTATA	TGAAAATGAT	TTGTCGATGT	CTCTCTGTTT	ACACAAAGGT	CTGTTTGAAT
721	AGAGACTGAG	TGTTCAAACT	GAATAATCTC	GACCTTAATT	GTAACTATAT	TTTATGAAAT
	TCTCTGACTC	ACAAGTTTGA	CTTATTAGAG	CTGGAATTAA	CATTGATATA	AAATACTTTA

72/130

FIGURE 46B

- 781 CCAGCTGTAA GGCAAAACAG ACTCTTGGCT ACACGGCATT TGTCTGTTAA TGATACTCAA GGTCGACATT CCGTTTTGTC TGAGAACCGA TGTGCCGTAA ACAGACAATT ACTATGAGTT
- 841 COTTAACCGT CACTTAATAA TGCTGAATAA TGTCATTAAT CTGAGATGTT AGTATGATCA GGAATTGGCA GTGAATTATT ACGACTTATT ACAGTAATTA GACTCTACAA TCATACTAGT
- 911 ATSSEARTER CTGCTGAGCT CTCGAAGCCC TACCCTTAGT GACGACTCGA GAGCTTCGGG

FIGURE 47A

-120	90	180	270	360	430	340
23	69	41°	ËĚ	35	2 t 2	84
	8	₹;	\$ ¥ €	175	ង ខ	77
20	23	A F	35	3.5°	7.5	¥ ë
25. 25.	ATE ACC UCG CO: CCC CCC CCC CCC TOG CTG TOC CCT GGG GCG CTG GTG CTG GCG GGT ALE THE ALE ALE ALE CLY ALE LEU VEL LEU ALE GLY	TUC AAT GAA GUT ACT AAC ATT ACT GCA AAG CAT AAT ATG Ser Aen Glu Ale The Aen Ile The Pro Lys Bie Aen Het	G C C	TTO TOC Leu Ser	OCT OCT	CCA CCI IIC AGI GCI IIC ICI CCI CAA GCA ATU CCA GAG GCC GAI CIA GTG IAI GII AAG IAI Pro Pro Pro Pro Pae Sar Ala Pre Ser Pro Gin Gly Het. Pro Glu Gly Aap Leu Val Tyr Val Aan Tyr
2000 2000 2000	83	CAT BI.	ð ë	CTC Let	ក្តដ	77.
2007 24.00 2	85	AAG Ly•	CCA CCA	61C V•1	TCA TTA TTT GAA Ser Leu Phe Glu	615 • 1
77 X X X X X X X X X X X X X X X X X X	89	85	A14	A.P	E£	CT > 1
25 X	84	A T	11A L•4	TAT	11A	A 54
200 200 200 200 200 200 200 200 200 200	52	ATT 110	CAT N1.	TY B	7. S	82
CT0C/	83	Y **	ង្គ	84	ACA THE	350
ACC.	5 5	ACT The	TIT ACA CA: ATA CCA CAT ITA	CAG 10G AAA GAA 1TT GCC CTG GAT ICT GTT GAS CTA GCA CAT TAT GAT GTC CTG GIn frp Lya Glu i'ie Gly i.eu Aep Ser Vel Glu Leu Ala Bie Tyr Aep Vel Leu Ala Bie Tyr Aep Vel Leu Ala Bie Tyr Aep Vel Leu	GIG ATT TTC AAC ACA	J.
23	₹ Ş	Al.	35	GAS G1.	710	ATC Het.
AGAG	ည္သင္မ	₹ 2	ACA	CTT Val	¥ :	35
15.57 15.57	CCC Are	**	ב ב	Ser	C 1.0	₹ 5
SQC SQC	¥ 8	TCC Ser	AAC ATG AAG AAG TTC TTA TAT AAT ABII 110 Lys Lys Ins Lou Tyr Agii	GAT A.p	¥ \$	CCT Fro
¥: ∀	\$ 4	30.5	171	1.0	63A 61y	1CT Ser
1100	The The	AAA Ly•	117 L•1	85	¥ &	77
A:X:T:X	A1.	TIC GUS TOO TITE ATA AAA TOO Phe Gly Try Ine 11e 1.ye Ser	11C	EÉ	TCA ATA ATT AAT GAA Ser Ile Ile Aen Glu	84
17. AC	25	2 C	. Ly	35	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N AG
ZC:X	. V	- 5 <u>- 1</u>	 	₹.	£ :	F 4
TAC	GAC TCG OUT GTG Asp Sec Ale Vel	35	A TO	7.1	A AT.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
OXC TO	3 4	Ĭ.	¥ .	35	Ω. Ω. Ω.	
123	Δŧ	ני ני	4 64	5 4 4 5 8	r A	T CT
551	<u>გ</u> ნ	EE	A 0C	ან ⊭•	7. T.Y	TA T
TOOK!	ე <u>ლ</u>	9 5 9 5	č ď ĽŢ	¥ 5	₹ ₹	75 Z
1751	53	ρ 3 Γ Ω	11 11	55	84	71
322	27	53	26	2.5 5.5	35	, c
SCACE	25	- 문론	5 Z	F3	3 t	₹ \$
CTOCTOGAGGCAGATGTTGCCTCTCTCTCTCTCTCTCTCTCTCTCT	ATO TOO AAT CTC CTT CAC GAA ACC Het Trp Aen Leu Leu Bie Glu Thr	OCC TIC TIT CIC CIC GOC TIC CIC GIT PAS PAS LOU GAY FAS LOU	TIT TTG GAI GAA TTG AAA CCT GAG Phe Leu Aap Glu Leu Lye Ale Glu	CAS CTT OCA AND CAA ATT CAA TCC OLD Leu Ala Lye Gln Ile Gln Ser	AAT AAD ACT CAT CCC AAC TAC ATC Agn Lye The Bie Pro Aen Tyr 11e	TAT GAA AAT GTT TCG GAT ATT GTA
υď	< I	ō ol	⊢ E	J O	4 4	pi fi

73/130

261 CTCAAAAQQQQQQQATTTQCTT -239

FIGURE 47B

630 210	720	810 270	900	910	1080
5 5	AAG Ly•	CC.	TAT	912 017	5
Ë.	GTG V-1	ŞĚ	TAC	G11 V•1	ATA
C11	555 CLy	7. 1.	8 t	74	25
₹\$	CCT	Rr.	ATT 110	37.	¥
85 58 58	\$.	GAC A.p.	CCA	ន្តិះ	TAC
17T 17E	ΕÉ	C17	CAT H1.	CTG V•1	ATT
V V	TAC: 171	\$ \ \	GIT Vel	₹ ;	V V
84	GAC TAC TIT Amp Tye Pho	G3.T G1.J	CC 1	CTC Lea	ACA CAA AAA GIC AAG ATU GAC ATG CAN ICT ANG AAT GAA GIG ACA AGA ATI IAC AAT GIG ATA. The Glin Lya Wal Lya Mat His (16 His Sar The Asis Glis Wal The Asis His Tars Asis Wal The
14	A 4.	A • • • • • • • • • • • • • • • • • • •	AGT ATT 5•r 11•	AGT Ser	616
0 TA	CCT Pro	CTG L•11	AGT Ser	CGA C1y	Z CAA
	CAC Asp	M	ઇ ટ	TOT MIA	AA.T
* \$	55.	C17	CTT Lea	155 11 p	ACC The
GAA COS GAC ATG AAA ATG AAT 1140 1617 GAS AAA ATT GTA ATT Glu Atg Amp Hat. Lye 11e Apr Cym Ser Gly Lym 11e Val 11e	CTP TAG	ATC 11.	GIT GGT CIT Val Gly Leu	λ. 5. τ.	Į,
3. T	= =	¥ ¥	C1 7 V A 1	GAT AD:	Ž
) (1)	A11	85. 7.	SCT Ale	CAT Asp	ATC
^ \ \	Cir Cit ATT	Ar A	GIN AL	¥ 2.	7
¥ -	4: 0 1: 0	¥	8.4	S C	A T.
₹ :	444	51. 2.	A	8 4 8 8 4 8	3
H H	× 4	÷ 5	45.4 6.1.y	ATG UCT GC TCA	GTC
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3.17	617	TAT ACS CGT	8.2	₹
	CTG (XIA Lest ALe	CCT CCA Pro Gly	Arg.	55.	₹5
				ATG H•L	
1 2 3	יי אל פרויי	110	A1.		
	900 A1•	**************************************	1 TAT 1	CAA	E
E	Intron F ANA ANT CCC of Libe Ann Ale C	r 106	CAA Glu	C17	Y VVC
ĔĚ	= } 	r 001	A A A I	0.00	¥ 50
3 2	5 *	A GAT	A OCA	i Ag	T ACT
370	t AAG n Ly•	45°			11.6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A AAT		1 TAC 7 TYE		25
1 8	924	5°	120	CAT	8

FIGURE 47C

		75	/130)		
390	1260	1350	1440	1530	1620	1710 570
\$ 5.0	AOC Ser	ATT 11.	61°	28	MA	Eé
0 C C C	8 =	TAT Tyr	₹\$	ATG	₹\$	7 T
12 8	E.E	A1.	VE.	920	P. T.	P. C.
75 & C	23	GT0 V•L	43	A01	MY.	32
ATT 11.	114	250	** Y	F.	V 88	YY.
CCT C17	A H	7 CO1	3 =	GAO	84 4	EÉ
05T 617	AGA Are	CAU Glu	GTA Vel	r S	AGA Are	Ly & 6
E £	ACA Are	₹ 5	23	TCC Ser	950	33
C1C V•1	CCT Pro	CTT Lea	AOC 3er	Pro Pro	TCA Ser	CTC
55	AGA Are	CTC	1AC 17.5	AGT Ser	24 14	110
S CA	138 1 r p	AGA	ATG Het	Ky.	11.	250
GAC A* p	(A)	TCA Ser	C101	AAA Ly•	06A 017	TAT
Ar 6	Ş? CF¢	AAT Aen	855	P. T.	E3	Z E
CAC #1.	AAG I.ye	GLU Aen	A:A	138 1 - 5	Ara Ara	CAA
0.00 1.1.7	۲, ۲,	25.25	5.5	ACT Ser	35	TAT Tyr
CCA 1:17	i.TG L•∗i	TAS GAT	\$ 64 \$ •	86 €	110 9.50	GTC Vel
CTG	A:A	35.	C11 • • • • • • • • • • • • • • • • • • •	TAT Tyr	ËÉ	AUT Ser
A11	.	35.	AGA Ara	CTT L•4	010 V•1	3 €
CTC ~*	ËÉ	The The	0.1G	TCT Ser	35	TAT Tyr
17. 17.	ACC Ser	12.5	ACT THE	¥:	E £	CT5
ACA Ara	CAT GAA ATT GTG AGG	GGI CIT CIT GGI Gly Leu Len Gly	1AC 17:	25	CAT A.p	ន្ទន
GAC A.p.	61C	5.5	A AC	₹ 3	AAT A	171
ន្តដ	A11	53	8 5	ËĒ	55 t	6.50 6.47
₹	₹ 5	12.5	₹ 5	627	77.1 Ser	AOC Ser
CTO V•1	5=	EÉ	ATA 11.	₹ 0 CF	2 G	AAA 11C Lye Phe
¥ 8	G11 V•1	33	7CT Ser	A & CA	213	35
919	CTT V•1	₩ Constant	TCA Ser	25.	₹\$	A Asa
AGA Aca	Al.	8 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 6 5 6 5 6	CAC A.P	AOC Ser	7 AQC	A F
53	484	CAT	AL.	1,7	ATA (S GE
Į.	929	SE	\$\$	83	A A	B 5

0009	630	1980	1070	2160	2250 750	2368
TAT 16 Tyr 6	184 20 1	GTA 11	910 20 V	GAC 2	7 • 1V	17 2
12 d d d d d d d d d d d d d d d d d d d	E E	ATA G	CAT G	01°V	CTA Q Vel A	ATAT
3 ₹ 7 88	25. 25. 25.	Pre P	Ars B	K 4 G	6 × 0	7.E.
υς. Σ.δ.	CTA TO	AAC Q	TAT M Tyr A	AOC A	ACT G Ser G	V VV
Ag 12	AGT G	AOC A	FF.	GL S	TTC A	₩V
3 ₹	TAC A	AAA Ly• &	Pro H	ATT 6	ACT T	17 77.
Pro Pro	ACA I	GAC A	ACC O	CAT A	GAG A	TATA
5 3 o ਯ	AAG A	111 G	CAC A	F. 6	A16	1100
27	5. L	CAC T	S &	CTO T	1 × 0	AAAA
7 × C	GAA ATG	CAG G	Leu	A1.	X:	E
GIT CGA UGA (73) ATH HIS TIT GAG CTA ON: AAT TOO ATA GTG CTC Vel Arg GLy Hit Het Hel The Glu Len Ale Aen Ser ite Vel Leu	35	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 710	GAT G	GTG CAG OCA OCT	¥.
15	Pr. 200	ACA 1	TTA 025 Leu 617	rat (3TG (ATT
;; ;	CA1	010	χŝ	ATT TAT	A PIE	CTAT
¥.	AAA .	15 % 10 %	ATT LAF	35	DE E	ATCO
040	ATG Het	11C	110	7 ° 2	TAT GTT GCA GCC TTC Tyr Val Ale Ale Pie	CCTA
E é	7177 Ser	1. y	Ate the	110 5.6	٠ ٧٠ ٧	J.AAT
;; 1	ATT- TOT	FITC AAG	₹.¥.	Y :	E -	V: V
A1:	AST.	IXT AI®	A A S	CAG TOA TTG	1AT 17F	M:TC
35	₹ ¥ ₹	114 -:-	₹ 20	0 Z Z	F. :	1/110
25A	110	GAA	CTC Leu	% <u>₹</u>	CAG 11.0	(X)TA
7 33	GAC AAA Aap 1.ye	TTT A:A Ph. Thr	ATG TTT Het Ihe	AAG TAT Lye Tyr	AAG AGA Lye Are	crcı
						1117
955	187	AAT Agn	A CTC			ATTG.
₩ 1 1	G TAT		₹5 15 15 16	C CAC r Ble		מנט
T CTC	A AAG		E CAT	C AOC		GAAT
ACT TPE	A AGA		C AAT			TAG
CTC CTC			ATO ATO			
TAT CAC Tyr 81.	OTA OTT Vel Vel		AGA A1			AOCA
W 17	25.4 25.4 25.4	25.	174 AC			
<u> </u>	5∢	FN	H -4	<	ט 4	- 1

FIGURE 47D

FIGURE 48

79/130

FIGURE 51

FIGURE 52

-	•					clone 1	clone 2				clone 4	clone 6
Markers	Uncut	t RNA	LnCap	PC3	AT6.1	AT6.1-11	A76.1-11	۷۵	(11) 6V	R1564	R1564-11 clone	R1564-11

82/130

FIGURE 53

TISSEE/ CELL	CANCIRCELL	A NO INSA	VNN INST
I.I.			
HUMAN PROSTATE	7.7.	•	+
HUMAN MAMMARY	1 %	+	: ,
A16.1	RAT PROSTATIC	:	•
AT6.1-11-CLI		: +	· · ·
AT6.1.11.CL2	=	:	
R1564	RAT MAMMARY ADENOCARCINOMA		!
R1564-11-C1.2	=	+	
R1564-11-C1.1	:	+	
R1564-11-(1.5	:	+	: '
R1564-11-C1.6	:	.	:
	MOUSE FIROSARCOMA	:	
(11)61			

83/130

84/130

86/130

Prostate Specific Promoter:
Cytosine Deaminase Chimera

FIGURE 58A

	10	25	30	40	50 	60
:	GCGCCTTAAA CGCGGAATTT	AAAAAAAAA TTTTTTTTT	TTCTTGGAÅ	AATGTCCAGC TTACAGSTCS	TCTTGCTTAA AGAACGAATT	TAAAAATATATATATATATATATATATATATATATATA
é l	GAAAGGAAGA CTTTCCTTCT	AAGAGACTCT (CCTCTCTCCA GGAGAGAGGT	CTCCTATAAT GAGGATATTA	TATGAGGAAC ATACTCCTTG	TTTTATTCAA AAAATAAGTT
121	CTCTGAAATT GAGACTTTAA	CTATACAATC 1	TCTACAATAC AGATGTTATG	TCTACTGAAT AGATGACTTA	AAAAGCAGAG TTTTCGTCTC	CAIAAAAGC GTCTTTTTCG
181	TGCGCTTTTT ACGCGAAAAA	TTCCATAGTC AAGGTATCAG	GGGAATICTT CCCTTACGAA	GTCATCAGTG CAGTAGTCAC	TAAATCACCA ATTTAGTGGT	CCSCGCCCTT GGCGCGGGAA
241	TTTCCTAAAG AAAGGATTT	PITATTATTS DAATATTATT	TTATTAATAA TTATTAATAA	ACATGTAGGG TGTACATCCC	TATTATCCTC	CACTTACATT GTGAATGTAA
361	A TAAAACCAT TSTTTTTGGTA	TTTTTAAAGC AAAAATTTGG	CGGGCGTGGT GCCCGCACCA	GICTCACGCC IIIAGTGCGC	TSTAATCOCA ACATTAGGGT	GCACTTTGGG CGTGAAACCC
3 £ 1	AGGCCCAGAC TODGGGGGTCTC	AGGCGGATCA TOCCCCTAGT	COALSTOGAG GCTTCAGCTC	AAATCGAGAC TTTAGCTCTG	CATCCTGGCG GTAGGACCGG	AACATGGTGA TIGTACCACT
423	AACCCCATC TTGGGGTAG	T CTACTAAAA A GATGATTTT	TA CARAAATT AT STITTTAA	ADDTOGGGG TUGACOGGA	GETEGEGGG CEACCECEC	TCCTGTAGTC AGGACATCAG
48	: COASCTACT GGTCGATIA	C AGGAGGOTGA G TOOTGOGACT	000200222	TOSCTTGAAC ASCGAACTTC	: c3039AG9C 3 000007009	G GAGGTTGCAG C CTCCAACGTC
54	1 TCAGCCAAG AGTCGGTTC	A TAGOGGGAGT T ATCGGGGTGA	JCACTGGAGC CSTJACCTCS	: CIBGTGACÁG : GACCACIGIG	ASTGAGACT TCACTCTGA	C CCTCAAGAAA G GUAUTTOTTT
60	1 GAAAJSAAG CTTTCCTTC	G GAAGGGAAAG CTTCCCTTTC	SSAASSAASS CCTTCCTTCC	GGAGGGGAA CCTCCCCTT	G GGAGGGGAG C CCTCCCCTC	G GGAGGGGAGG C CCTCCCCTCC
66	1 AAAGAAAAG TTTCTTTTC	A ATACTGGAAC T TATGACCTTG	TTGTTGAAG:	CAGAGACTT CGTCTGAA	T ATTTTCATA A TAAAAGTAT	T CCCGGCTATG A GGGCCGATAC
72	TCTGGCTAC AGACCGATG	T GTCTTACGTA A CAGAATGCAT	ATAGATATA TATCTATAT	A AATCAATCI T TTAGTTAGA	T GGTTGGATT A CCAACCTAI	ACCAGAAGAA AT TGGTCTTCTT

FIGURE 58B

781	TGAGAAGATA	TATTCTGGTA ATAAGACCAT	AGTTGAATAC TCAACTTATG	ANICOTOGGT	CCCCATTAGT	CANCETOTE
841	CACCAGGTCC	ANGACTOTT TTTCTGACAA	AAGAGTCTTC TTCTCAGAAG	TGACTCCAAA ACTGAGGTTT	CTCAGTOCTC CACTCACGAG	CTCCAGTGC SGAGGTCACG
901	CACAAGCAAA GTGTT©GTTT	CTCCATAAAG BAGGIATTIC	GTATCCTGTG CATAGGACAC	CTGAATAGAG GACTTATCTC	ACTGTAGAGT TGACATCTCA	GGTACAAAGT CCATGTTTCA
961	AAGACAGACA TTCTGTCTGT	TTATATTAAG AATATAATTC	TCTTAGCTTT AGAATCGAAA	GTGACTTCGA CACTGAAGCT	ATGACTTACC TACTGAATGG	TAATCTAGCT ATTAGATCGA
1021	AAATTTCAGT TTTAAAGTCA	TTTACCATGT AAATGGTACA	GTALATCAGG CATTTAGTCC	AAGAGTAATA TTCTCATIAT	CAACAAACCT CTTGTTTOGA	TGAAGGGTCC ACTTCCCAGG
1081	CAATGGTGAT GTTACCACTA	TAXATGAGGT ATTTACTCCA	GATGTACATA CTACATGTAT	ACATGCATCA TGTACGTAGT	CTCATAATAA GAGTATTATT	GTGCTCTTTA CACGAGAAAT
1141	AATATTAGTC TTATAATCAG	ACTATTATTA IGATAATAAT	GCCATCTCTG CGGTAGAGAC	ATTAGATITG TAATCTAAAC	ACANTAGGAN TGTTATCCTT	CATTAGGAAA GTAATCCTTT
1201	GATATAGTAC CTATATCATO	: ATTCAGGATT : TAAGTCCTAA	TTGTTAGAAA AACAATCTTT	GAGATGAAGA CTCTACTTCT	AATTCCCTTC TTAAGGGAAG	CTTCCTGCCC
1261	TAGGTCATCT ATCCAGTAGA	TAGGAGTTGTO TCCTCAACAC	ATGGTTCATT TACCAAGIA	GTTGACAAAT CAACTGTTTA	TAATTTTCCC ATTAAAAGGG	AAATITTICA TITAAAAAAT
1321	CTTTGCTCAC GAAACGAGTC	ANAGTETACI TTTCASATG	TOGANGONO: NOCTTOGTG:	CAAGACTGTA GTTCTGACAT	CAATCTAGTC GTTAGATCAG	CATCTTTTTC GTAGAAAAG
1361	CACTTAACTO GTGAATTGAS	C ATACTUTGC C TATGACACG	CTCCCTTTC A GAGGGAAAG	T CAAAGCAAAG A GTTTCGTTTC	TGITTGCTAT ACAAACGATA	TCCTTGAATA AGGAACTTAT
1441	CTGAGACTC	T TTTCTGCCT A AAAGACGGA	T TGCCTACTC A ACGGATGAG	A SCTGGCCA' T CGACCGGGT	T GGCCCTAAT A CCGGGGATTA	CANGARGA CANGARGA
150	ATCTCCACT TAGAGGTGA	G GGTCAAATC C CCAGTTTAG	C TACCTGTAC C ATGGACATG	C ITATGGTIC G AATACCAAG	T GTTALLACO A CAATTTTCGT	GTGCTTCCAT CACGAAGGTA
156	AAAGTACTC	C TAGCAAATG	C ACGSCCTCT	C TOACGGATT	A TAASAACACI	GTTTATTTTA
					T ATTETTETET	
	ATTICGIAC	Y lighting.			T ATTATTANGE A TANTANTTO	
168	1 GGGATATAN CCCTATAT	AT TITGTATOS	T GATTCTTCT	C CAATTAGG	A CCAAGATTG T GGTTCTAAC	A TITTATATCT I AAAATATAGA
174	1 ATTACGTAL TARTSCAT	AG ACAGTAGES	LA GACATAGO YT CTGTATOGO	CCTATACT	LA ATALAGTET IT TAITTCAGA	C TOCCTTCAM
180	1 AASTTCCA TTCAAGGT	OT ATTOPPTE CA TAMBANA	IN MAGNESS	CT CCCTCCC	CT CCCTTCCCC QA GGGAAGGGC	T CCCTTCCT
180	SI COCTITICO	CT TOCOTTOO	TT TOTTTOTT	CT CCCTCAGA	CA CTCTGTCA CT GAGACAGT	C AGGTGGAG

89/130

FIGURE 58C

1921		TATCTTGGCT ATAGAACCGA				
1981		CTGAGTAGCT GACTCATCGA				
2041		AGAGATGGGG TCTCTACCCC				
2101		CTGTCTOGGC GACAGACCCG				
2161		AATGGTTTT TTTACCAAA				
2221		TTCTTTAGGA AAGAAATCCT				
2281		AAAAAAGCG TTTTTTTCGC				
2341		AGAATTTCAG TCTTAAAGTC				
2401	GGAGAGTCTC CCTCTCAGAG	TTTCTTCCTT	TCATTTTTAT AGTAMANATA	atttaageaa Taaaiteott	GAGCTGGACA CTCGACCTOT	TTTTCCAAGA AAAAGGTTCT
2461	ALGITTITIT TTCAMANA	TTTTTAAGGC AAAAATTCCG	GCCTCTCAAA CSGAGAGTTT	AGGGGCCGGA TCCCCGGCCT	TITOCTTOTC ALAGGAAGAG	CTGGAGGCAG GACCTCCGTC
2521	ATGTTGCCTC TACAACGGAG	TCTCTCTCGC AGAGAGAGCG	TCGGATTGGT AGCCTAACCA	TCAGTGCACT ASTCACGTGA	CTACALACAC	TGCTGTGGTG ACGACACCAC
2581	GAGAAACTGG CTCTTTGACC	ACCCCAGGTC TGGGGTCCAG	TGGAGCGAAT ACCTCGCTTA	TCCAGCCTGC AGGTCGGACG	ACCCCACTATA TCCCGACTAT	AGCGAGGCAT TCGCTCCGTA
2641		GAGAGAGACT CTCTCTCA				
2701	CASCACAGGC GTCGTGTCCG	CCCCAGGC	CCICCCCCCC	TCTGCTCGCG AGACGAGCGC	CCGAGATGTG GGCTCTACAC	GAATCTCCTT CTTAGAGGAA
2761	CACGRAACCG GTGCTTTGGC	ACTOGGCTGT TGAGCOGACA	GGCCACCGCC CCGGTGGCGC	aceecaces ceccaces	CCTCCCTGTG CCACCCACAC	CCCTGGGGGC
2821	CTGGTGCTGG GACCACGACC	CCCCACCGAA	CTTTCTCCTC GAAAGAGGAG	GGCTTCCTCT CCGAAGGAGA	TCOGTAGGGG AGCCATCCCC	COCCIONOCC
2881	GGAGCAAACC CCTCGTTTGG	TCGGAGTCTT AGCCTCAGAA	CCCCCTGGTG	COCCOCTOCT	GOGACTOSCO	GGTCAGCTGC CCAGTCGACG
2941	CCAOTCOGAT GCTCACCCTA	CCTCTTCCTC	OTCTTCCCCA CAGAASGOOT	GCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TTAGGGTCGG AATCCCAGCC	GCTAATOTCG CCATTACACC
3001	CCACTCOTGG					

FIG. 59

$$\alpha$$
-linked α -linked

NAAG 1 N-acetylaspartyl-L-glutamate

Acivida

Azotomycin, becomes active by in vivo conversion to DON

6-dlazo-5-oxo-norleucine, DON

FIG. 65

FIG. 65

FIG. 65

FIG. 65

$$N_2$$
 N_2
 N_3
 N_4
 FIG. 67

THE WARHEAD"

FIG. 72A

9	GTGCTGGGAC CACGACCCTG	GGCGATTAGG CCGCTAATCC	GGAACGGTGC	gtagaactga catcttgact	GACAGAGGAA CTGTCTCCTT	TGTTTGTTTG ACAAACAAAC	GCTTGGGAAC CGAACCCTTG	GCTGTTTTTC CGACAAAAG	ACACAGGCAA TGTGTCCGTT	GCCTTGAACA CGGAACTTGT
0 -	TGGTGCCGCG	CCCCAGGGGC	aggctagctg Tcccatcgac	CAGGTTGAGG	AGCCCTGCAA TCGGGACGTT	TTGTTTTGTT AACAAAACAA	ACAGAGGCAA Totctcgtt	CGGGTCTTTTGCCCAGAAAA	AAGCAGAACC TTCGTCTTGG	CTTCTTAGTG Gaagaatcac
0 -	GTCTTCCCCG	TGCTGGTCTT	acttaggagg Tcaatcctcc	GACAGTCACT CTGTCAGTGA	CAAGTGCTGG GTTCACGACC	TIGITITIGIT AACAAAACAA	CTTGGAAGTA	TCTTTACCAG AGAAATGGTC	TTTCTAAGAA Aagattctt	GACTITGCCA CTGAAACGGT
C.C.	AAACCTCGGA TTTGGAGCCT	GGGATCCTGT	GCACCCCTCG	CTGCTGGTAG	ACGAAGGTTC TCCTTCCAAG	TTGTTTTGTT AACAAAACAA	TTCTTTCTTC AAGAAAGAAG	TCTGGACAGG Agacctgtcc	ttgatccaac aactaggttg	ttccagtttt Aaggtcaaaa
20	ccrccccaAG GGAGCCCTC	GCTGCCCAGT	TGTGGGGTGA ACACCCCACT	TCTC3ACAAG Agagetgtec	AACTGGGCGT TTGACCCGCA	TGCTTTTGTT ACGAAAACAA	TCTCTGTGCA AGAGACACGT	TGTGTGAACC AGGTCAGCAA ACACACTTGG TCCAGTTGGTT	attegcagac Taaacgtceg	TTTTATTAAA AAAATAATTT
10	TAGGGGGGGG ATCCCCCCGC	TCGCGGGTCA	GTCGGGGTAA CAGCCCCATT	AGGGCTGAGT TCCCGACTCA	GAGAACCTGA CTCTTGGACT	GITITITIT	TTTTTTACC AAAAAATGG	TGTGTGAACC ACACACTTGG	CTGGGTACTG GACCCATGAC	GCTCAGACTC
	ન	19	121	181	241	301	361	421	481	541

FIG. 72B

601 AGTTACCGAG TCCCTCTCAG CGTTAGTTAC CCTATTTAT GATGAGGATA ATALLAICIG	TCAATGGCTC AGGGAGAGTC GCAATCAATG GGATAAAATA CTACTCCTAT TATAATAGAC
GATGAGGATA	CTACTCCTAT
CCTATTTAT	GGATAAAATA
CGTTAGTTAC	GCAATCAATG
TCCCTCTCAG	AGGGAGAGTC
AGTTACCGAG	TCAATGGCTC
603	

TACTOCALT	ATGACCCTAA
CCTAGCACAC	GGATCGTGTC
ATGIAMATCI	TACATTTAGA
ATATATAGC	TATTATATCG
GTAATACTAA	CATTATCATT
661 CAAATTATTO GTAATAGTAA ATAATATAGC ATGTAAATCT CCIAGCACAG TACLGGGALT	GITTAATAAC CATTATCATT TATTATATCG TACATITAGA GGATCGIGIC AIGACCCIAA
661	1

TACACAGGAC	Argigicarg
721 TICOCCACIT TATITICITY TITACCAAGA TACICCICAT IGGACITIAA TACACAGGAC	AAGCGGTGAA ATAAAGAAGA AAATGGTTCT ATGAGGAGTA ACCTGAAATT ATGTGTCCTG
TACTCCTCAT	ATCACGAGTA
TTTACCAAGA	AAATGGTTCT
TATTTCTTCT	ATANGANGA
TTCGCCACTT	AAGCGGTGAA
721	

TCTTTCGGGA AGAAAGCCCT
TTCTTGACCC AAGAACTGGG
CTGCTCGGAA
TAGTCCACTC ATCAGGTGAG
TATCACCAGG ATAGTGGTCC
181 TAGTCTAAGG TATCACCAGG TAGTCCACTC CTGCTCGGAA TTCTTGACCC TCTTTCGGGA ATCAGACTGG AGAAAGCCCT

841 TTTAGAAGAA TAGGGCATGG ACCAGATGGG TTTAAACAAA "FICAATATCT TCCACTAGCT AAATTTGTTT AAGTTATAGA AGGTGATCGA	CHACCELORICE CHOCKET CHOCKET CONTRACTOR CONT
TICAATATCT AAGTTATAGA	いるないないないと
TTTAAACAAA AAATTTGTTT	
ACCAGATOGO TOGTCTACCC	C & Change and C & C
TAGGGCATGG ATCCCGTACC	
TTTAGAAGAA AAATCTTGTT	
841	

901 TCACCTTGGG GTTGTTAAAA GATTTTTGAA CCACACGGG TGCTCAIAAC AATCLICAIC	AGTEGAACCC CAACAATTIT CTAAAAACTT GGTGTGTGAC ACGAGTATTG TTAGAAGTAG
Tecreatasc	ACGAGTATTG
CCACACACTG	GGTGTGTGAC
GATTTTGAA	CTANANACTT
GTTGTTAAAA	CAACAATTTT
TCACCTTGGG	AGTGGAACCC
901	

961 TCTTABAAGG ATTTTATICT TCCTGGTATT GCCCTCACTC TCATCCCTGT ATTCCGTGCT AGAATTTTCC TAAAATAAGA AGGACCATAA CGGGAGTGAG AGTAGGGACA TAAGGCACGA

FIG. 720

1021	CAGIGGCIGA GICACCGACI	CACAGAAGAG GTGTCTTCTC	ttctttattg ragaaataac	ATGTCCGCCC TACAGGCGGG	CCCACCCACT	aggattctct Tcctaagaga
1081	GCTCTCCCCT	CCCCCTACAG	GCCTCCATCC	TCTTCATCCT	GTTCATTTTT	CAGATCTCAG GTCTAGAGTC
1141	TTCAAGCATC AAGTTCGTAG	TCGTCCTCAG AGCAGGAGTC	TGTGGTGTTT ACACCACAAA	CCTGATCCCT	CACTCTAATC GTGAGATTAG	Caagtettte Gttcagaarg
1201	TGTTTTATGC ACAAAATACG	ACAGGTGGAA TGTCCACCTT	TCTTATTTCC AGAATAAAGG	GTTTGCGTCC CAAACGCAGG	aatcatgtat Ttagtacata	tttaatasgc aaattatacg
1521	ATGTATATAT TACATATATA	GTATCTGCAT CATACACGTA	TTGTATGCAT AACATACGTA	OCGATTAAGA CGCTAATTCT	ACTAGAATAA TGATCTTATT	ttaataattg aattattaac
1321	GAAAGCTCCA CTTTCGAGGT	TGAAAGCTGG ACTITCGACC	TTGGGGACTA AACCCCTGAT	ATTTTGTAAC TAAAACATTG	TACTTTATTC ATGAAATAAG	CCAGATCCTG GGTCTAGGAC
1381	TAATTTCTCT ATTAAAGAGA	AAATAAACCC TTTATTTGGG	tggaatcttg Accttagaac	CCTTATCTCC	ttcaggttaa Aagtccaatt	AAGCCAACTG TTCGGTTGAC
1441	CAAGGTCTAA GTTCCAGATT	TGACTGCAGG ACTGACGTCC	atctagctat Tagatcgata	CCATTGTTTC	TGGCCGCCTA Accggcgcat	TGCGTGCACT ACGCACGTGA
1501	GGGTGTCTGG	CAGAGAGGCT GTCTCTCCGA	GGGTAAATTG CCCATTTAAC	TAGTTTCATT ATCAAAGTAA	GTAGCTGTCT CATCGACAGA	Gacttggatt Ctgaacctaa
1561	TCTCACGCCT	ACTTCACTOG TGAAGTGACC	AAACGCAAAC TTTGCGTTTG	TCTCACAGCA AGAGTGTCGT	TTTTGTTTTA AAAACAAAAT	GTTTCAGAAT
1621	CAGAGCAAAT GTCTCGTTTA	tagaagtetg atetteagae	AATTTCCTTC TTAAAGGAAG	AACACTTGGA TTGTGAACCT	aataattat Ttattaaata	TTATTTGAAA AATAAACTTT
1681	TATATTCATA	attaattegt taattaagea	tataaaatg atattttag	tattaaatgc ataatitacg	ttatttgagt aataaactca	CAGCAGAGGA GICGICICCT

FIG. 72D

TGCCTTCATT TTCAGAACAT ACGGAAGTAA AAGTCTTGTA TTCAGAACAT TAGAGGAANA TAGAAGGTGG ATCTCCTTTT ATCTTCCACC AAATACTTTC TTTATGAAAG AGATAGAAAC TCTATCTTTO 1741

GATTATCTCA CTAATAGAGT TTTTCGTCCT AAAAGCAGGA TGTCATTTTA ACAGTAAAAT GAAACATTAA CCCATTAGIT CTCGTTTACA 1801

AAATATTTTG TTTATAAAAC GTTGGATAAG CAACCTATTC ATAGTAACT'F TATCATTGAA CAGCAATACC CTTAGAATAA GAATCTTATT TAAAACATTT ATTTTGTAAA 1861

AGTAGGCAAG TCATCCGTTC TTTCAGTGAA Aagtcactt GTACTGAGAA CATGACTCTT AATCTGTTTG TTAGACAAAC GCAACTTAAA CAATTGGTTT

1921

ATGTCAGAGG TAATATTGAT AATTTGTGTT TACAGTCTCC ATTATAACTA TTAAACACAA ATCTCACCTA TAGAGTGGAT ATTCAGAAAT TAAGTCTTTA AGAAATTAAA TCTTTAATTT 1981

AATAAGTCCT ATCTATAGGC TCGTATCTCA TTATTCAGGA TAGATATCCG AGCATAGAGT TACATACAAC AATAATGAAA ATGTATGTTG TTATTACTTT TTACAAATAA AATGTTTATT 2041

2101 TGCCTATTT TGGATGTAT TTTCA ACGGATAAAA ACCTACATAA AAAGT

atcaaaaatá ggcatgagat acgagcctat agataggact tatttttat tagittitat ccgtactcta tgctcggata tctatcctga ataaaaata TGAAAAATAĊ ACTTTTTATG -1

FIG. 73A

AATTATCAAT ATTACCTCTG ACATTAGGTG TTAATAGTTA TAATGGAGAC TGTAATCCAC GTAAAACACA CATTTTGTGT ACATAATAAA TGTATTATT TATTGTTGTA 61

ATGCAMACAG TACGTTTGTC AAAAAAAATC ACTITICACTG TGAAAGTGAC AATITIAATT TCTCTTGCCT TTAAAATTAA AGAGAACGGA AGATATTCTG TCTATAAGAC 121

GATAGGTATT CAACTTCAAT GTTGAAGTTA ATTITITABGT TGCAAACCAA TTGCAAAATA TTITITITATC TAAAAATTCA ACGTTTGGTT AACGTTTAI AAAAAAAAA 181

CGAGATGTTC GGGTGTCAAA TTCAACTAAT CATTAATTGT GTAATTAACA CTAAGATATG GATTCTATAC GCTGTTAATT CGACAATTAA 241

ATCTTCCTCT TAGAAGGAGA GGCAAAAAGG AGATCCACCT TCTACTTTCA TAAAGTTTCT CCGTTTTTCC TCTAGGTGCA AGATGAAAGT ATTTCAAAGA TGANAATGAA ACTTTTACTT 301

AATTATGAAT ATATTTCAAA TTAATACTTA TATAAAGTTT ATAACGAATT TATTGCTTAA AATACATTTT ATAAGCATTT TATTCGTAAA GCTGACTCAA CGACTGAGTT 361

GACTAAGACT CTGATTCTGA GATTAAACGA CTAATTTGCT ATTCAGACTT CAACTTCCTT TAAGTCTGAA GTTGAAGGAA TANAGGTTCA ATTTCCAAGT TAMATAMAT ATTIATIA 421

FIG. 738

AATGCTCTGT GAGAGTTTGC GTTTCCAGTG AAGTAGCGTG AGAAATCCAA TTACGAGACA CTCTCAAACG CAAAGGTCAC TTCATCGCAC TCTTTAGGTT ACTAMAACA 481

CADACACCAG TGCACGATAG GTCTGTGGTC ACGTGCTATC TACATGAAAC TACATTTACC AGCTCTCTGC ATGTACTTTG ATGTAATGG TCGAGAGACG GTCAGACAGC CAGTCTGTCG 541

GCTNNNNNN NNNNNNNNN AGACCTTGGACGT CGCAGANCAT GTAGCTAGAT CTCAGTCATA GCGTCTTGTA CATCGATCTA GAGTCAGTAT 601

GITTAITTAG AGAAATTACA CAAATAAATC TCTTTAATGT ADATAAGGCA AGATTCCAGG TCTATTCCGT TCTAAGGTCC GTTGGCTTTT AACCTGAAGG CAACCGAAAA TTGGACTTCC 199

711 GGATCTGGGA ATAAAGTAGT TACAAAATTA GTCCCCAACC AGCTTTCATG GAGCTTTCAA CCTAGACCCT TATTTCATCA ATGTTTTAAT CAGGGGTTGG TCGAAAGTAC CTCGAAAGTT

C)
ć)
٢	
C	j
Ì	

781 TINITANITA TICTAGITCI TAATCGCAIG CATACAATGC ACATACATAT ATACATGCAT AATAATTAAT AAGATCAAGA ATTAGCGTAC GTATGTTACG TGTATGTATA TATGTACGTA
ACATACATAT TCTATGTATA
CATACAATGC GTATGTTACG
TAATCGCATG ATTAGCGTAC
TTCTAGTICT AAGATCAAGA
TTATTAATTA AATAATTAAT
781

841 ATTAMARTAC ATGAITGGAC GCAAACGGAA ATAAGAITCC ACCIGIGCAI AAAACAGAAAA TAATTITATG TACTAACCTC CGITTGCCTT TATTCTAAGG TGGACACGTA TTTTGTCTTT	
TGGACACGTA	
ATAAGATTCC TATTCTAAGG	
GCAAACGGAA	
ATGATTGGAC TACTAACCTG	
ATTANALTAC TAATTTTATG	
841	

AND CAPTEGETTA GAGTGAGGGA TCAGGAAACA CCACACTGAG GACGAGATGN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	CICAACCAAT CICACTCCCT AGICCTIIGT GGIGIGACTC CIGCICTACN NNNNNNNNNN
GACGAGATGN	CTCCTCTACN
CCACACTGAG	GGTGTGACTC
TCAGGAAACA	Agreertrer
GAGTGAGGGA	CTCACTCCCT
C & CYTICGTYTA	CTGAACCAAT
5	4

961 NTAGTOGGTO GCGCGCGCAC ATCAATAAAG AACTCTTCTG TGTCAGCCAC TGAGCACGCA	NATCACCCAC CCCCCCCTG TAGITATITC TIGAGAAGAC ACAGICGGIG ACICGICCI
TGTCAGCCAC	9155715KJK
AACTCTTCTG	Treagander
ATCAATAAAG	TAGITATITC
GGGGGGGGAC	CCCCCCCCTG
NTAGTGGGTG	NATCACCCAC
196	

GAGATGAAGA CTCTACTTCT	
1021 ATAAAGGAT GAGAGTGAGG GCAANTACCA GAAGAATAAA ATCCTTTAA GAGATGAAGA ATCTTTAA CAGATGAAGA ATTTCCCTA CTCTCACTCC CGTTNATGGT CTTCTTATTT TAGGAAAATT CTCTACTTCT	
GAAGAATAAA CTICTTATTT	
GCAANTACCA	
GAGAGTGAGG	
ATAAAGGGAT	
1021	

TCA	
TOAAGCT	
AACCCCAAGG	
ATCTTTTAAC TAGAAAATTG	
GONTICAAAA	
CACAGTGTGT GTGTCACACA	
1081 TIGITATGAG CACAGTGTGT GONTTCAAAA ATCTITIAAC AACCCCAAGG TOAAGCTAGT	
1081	

¹¹⁴¹ TGGAAGATAT TTGAATTTGT TTAAACCCAT CTGGTCCTAG CCCTATTCTT TGAATCCCGA ACCTTCTATA AACTTAAACA AATTTGGGTA GACCAGGATC GGGATAAGAA ACTTAGGGCT

FIG. 73D

ACTAGTCCTG TGATCAGGAC GATACCITAG GCAGGAGTGG ACTACCTGGT CGTCCTCACC TGATGGACCA AGAATTCCGA TCTTAAGGCT AAGAGGGTCA TTCTCCCAGT 1201

TOTATTALAG TCCAATGAGG AGTATCTTGG TAAAATAATA AATAAAGTCC CGAAAATCCC ACATAATTTC AGGTTACTCC TCATAGAACC ATTTTATTAT TTATTTCAGG GCTTTTAGGG TOTATTANAG 1261

THNHHHNNT AATTTGCAGA AHNNHNNNNA TEAAACOTCT TIATTTACTA ... ACATGCTATA TGTACGATAT TAGGAGATTT ATCCTCTAAA AGTACTGTGC TCATGACACG 1321

GIVACTIBIT GAGGGACTCO CTAACGCTGA AATAGGGTAA CTCATCATAA AATAGGGTAA GAGTAGTATT TTATCCCATT TANTATTATC 1381

TCTAGCTTGC AATAAAAGAG TTATTTTCTC CTOGAATTT AAAGTCAAAA TTTCAGTTTT CAAGGCCACT AAGAAGTGGC GTTCCGGTGA TTCTTCACGG 1441

CCCAGGAMA GGGTCCTTT CANATCAGTA GANNAAGTET CTGCTTTTCT TAGAAAGTTG GACGAAAAGA ATCTTTCAAC CTGTGTGGTT GACACACCAA 1501

1551 ACAGCAAAAG ACCCGCTGGT AAAGACCTGT CCAGAFTGCT GACCTGGTTC ACACANNTCC

FIG. 73E

TGICGITITIC IGGGCGACCA TIICTGGACA GGICTAACGA CTGGACCAAG IGIGINNAGG

GAGAGGTAAA AAAACAAACA CTCTCCATTT TTTTGTTTGT 1621 AAGCITGCCT CTGTTACITC CAAGGAAGAA AGAATGCACA TTCGAACGGA GACAATGAAG GTTCCTTCTT TCTTACGTGT

AAACTTCCTC TTTGAAGGAG AACAAAACAA AACAAAACAA AAGCAAAAAA TEGTITITITI TIGTITITITI AACCAAACAA TTGGTTTGTT

1681

TGICTIGCAG GGCTCCAGCA CTIGGAACCT TCCTACGTCC TANTITCAGG TFCICTCAGT ACAGAACGTC CCGAGGTCGT GAACCTIGGA AGGATGCAGG ATNAAAGTCC AAGAGAGTCA 1741

TCTACCCTCA ACCTGAGTGA CTGTCCTACC AGCAGCTTGT CGAGAACTCA GCCCTGCACC AGATGGGAGGTGG TCGTCGAACA GCTCTTGAGT CGGGACGTGG 1801

1861 GITCCCAGCT ACCCTCCTCC TAACTCGASG GGIGCT CAAGGGTCGA TGGGAGGAGG ATTGAGCTCC CCACGA

FIG. 74A

9 —	aagactcat Ttctgagta
o –	1 GGNTTCTGTT GAGGCCTAGC TCATTATGAT GTCCTGTTGT CCTACCCAAA TAAGACTCAT CCTAAGACAA CTCGGGATCG AGTAATACTA CAGGACAACA GGATGGGGTTT ATTCTGAGTA
•	GTCCTGTTGT
90	TCATTATGAT AGTAATACTA
20	GAGCCTAGC
0T	1 GGATICTGIT GAGGCCTAGC TCATTATGAT GTCCTGTTGT CCTACCCAAA TAAGACTCAT CCTAAGACAA CTCGGGATCG AGTAATACTA CAGGACAACA GGATGGGGTTT ATTCTGAGTA

ATANATAANT TATTTATTTA TCTCABTAAT TAATGAAGAT GGAAATGAGG TAAAAATAA AGAGTTATTA ATTACTTCTA CCTTTACTCC ATTITTATT CCCAACTACA 61

ATANTOTTCT TATTACAAGA CTGTGAATAC CTTTAATATC GACACTTATG GAAATTATAG CTTCTATGA AAAGTTTATG AAATATTAAT AGAAATCAAT ATTATTGGAA TTTATAATTA TCTTTAGTTA TAATAACCTT TTCCCCCCA TTTATTATT AAGGGGGGT AATAATAAA AAAGAAACA : ATCCCTCTCT TAGGGAGAGA 181 121

GTGTCAACTA CTTTCCTATG ATGTTGAGTT ACTGGGTTTA GAAGTCGGGA CACAGTTGAT GAAAGGATAC TACAACTCAA TGACCCAAAT CTTCAGCCCT TCATTATCCG 241

AATAATGCTG TAAANNNNN AGTTAGTCTA CACACCAATA TCAAATATGA TATACTTGTA TTATTACGAC ATTINNNNN TCAATCAGAT GTGTGGTTAT AGTTTATACT ATATGAACAT 301

GATACITIAT AAAAGGIT CITITITICI ITITITITITI CIATGAAATA TITICICCAA GAAAAAAGA AAAAAAAAA CATAMANANA CATATTTTTTTT C 361 AACCTCCAAG TTGGAGGTTC

FIG. 74E

GTGGTGCCAT CTCGGCTCAC CACCACGGTA GAGCCGAGTG GTTTCACTCC TGTCAGGCAG GCNGAGTGCACACAAAGTGAGG ACAGTCCGTC CGNCTCACGT TCCAGATGGA

AOTAOCTOGG TCATCGACCC CAGTCTCCTO ACCTCCCATG ITCAAGGAT TCTCCTTCCT TGGAAGGAAGGA AGTTCCCTA AGAGGAAGGA TGCAACCTCC 481

ATTACAGGTG TGCACCACCA CACCCAGCTA ATTITITGTAT TTTATAGA GACAGGGTT TAATGTCCAC ACGTGGTGGT GTGGGTCGAT TAAAAACATA AAAATTATCT CTGTCCCAAA ATTACAGGTG TGCACCACCA 541

CCCGCCTCAG AGGTGATCCA TCCACTAGGT CCTGACCTCT GGCCAGGCIA GICTCGAACT CCGGTCCGAT CAGAGCTTGA CATCGATGTT 601

CCTCCCAAAG TTGTAGAAIT ACACGTGTGA GGCACTGCTC TGGCCAGGAG ATACATTTTT GGAGGGTTTC AACATCTTAA TGTGCACACT CCGTGACGAG ACCGGTCCTC TATGTAAAAA 661

CATAGGITTA AITIATANAG ACACTGCACA GATTIGGAGT TGCTGGGAAA TCACGATCCA CIAICCAAAI IAAATATITC TGTGACGTGT CIAAACCTCA ACGACCCTTI AGIGCTAGGT 721

781 GTATGCATT GACCCAGCAA TTTTTATTGG TACITAATJA TTATATCTCA ATTGATGAGG	CATACGTAAA CTGGGTCGTT AAAAATAACC ATGAATTACT AATATAGAGT TAACTAGTCC
TTATATCTCA	NATATAGAGT
TACITAATSA	ATGAATTACT
TTTTTTGG	AMANTANCO
GACCCAGCAA	CTGGGTCGTT
GTATGCATTT	CATACGTANA
781	!

841 THEAACHCHE HECGAAGAAT THEHETETEC ACATITERSA GGACAGTITE GAGGCAAGGT	AACTTGAGAC ACGCTTCTTA AACACACA TGTAAACTCT CCTGTCAAAC CTCCGTTCCA
OGACAGITIG	CCTGTCAAAC
ACATITGAGA	TGTANACTCT
Treference	AACACACACC
TGCGAAGAAT	ACCCTTCTTA
TTGAACTCTG	AACTTGAGAC
841))

101 ATITIAGEA STITIAAGAA TITGAATCIT GITTGCAAGT IGGGSCATAT ACTGAGAAAS	TANANTCATC THANTITICIT ANACTTAGAA CAAACGTTCA ACCCCGTATA TGACTCTITC
TOGGESCATAT	ACCCCCTATA
OTTTOCAAGT	CAAACGTTCA
TTTCAATCTT	ANACTTAGAA
ATTIMAGAN	TAMPTECET
AT PTTAGTAG	TAMATCATC
100	

961 AGAAGACAAT GCAGATAAAT TGATATATTT ATTATGATGT ATGTTCAATA TGAAAGATCA	TCTTCTGTTA CGTCTATTTA ACTATATANA TAATACTACA TACAAGTTAT ACTTTCTAGT
ATCATTCAATA	TACAAGTTAT
ATTATGATGT	TANTACTACA
TGATATATT	ACTATATALA
GCAGATAMAT	CGTCTATTTA
AGAAGACAAT	TCTTCTGTTA
191	;

CCGTATGTA	
ATATAGAGCT A	
CATACCTCAG	
TCTTACTTAA	
CATACATHNA	
1021 CAAAATATAA CATACATNNA TCTTACITAA CATACCTCAG ITTTAGAGCT ACCGTATGTA GTTTTATATATAT GFATGTANNI AGAATGAATT GTATGGAGTC AAAATCTCGA TGGCATACAI	

GTACATATAT ANTITITIT CATAGIAGGT CAATAACCTC CTTITATIGA CTAATGAATC CATGIATATA TTAAAAAAA GTAFCAICCA GTTATIGGAG GNAAAAAACT GATTACTIAG 1201

¹²⁶¹ ACTTCTCTAA TGATTATACG TCAAGAGATT ACTAATATGC

FIG. 75A

0. 9	AATGAATATT TTACTTATAA
00.0	ACACAAAAA TGTGTTTTTT
40	AATCAAAATA AAACAGTTAA AGTTTGATTA CTATAATCAA ACACAAAAA AATGAATATT TTAGTTTTAT TTTGTCAATT TCAAACTAAT GATATTAGTT TGTGTTTTTT TTACTTATAA
30	AGTTTGATTA TCAAACTAAT
20	AAACAGTTAA TTTGTCAATT
10	1 AATCAAAATA TTAGTTTTAT

GTATCAGATA TTTGATGATA AAACTACTAT GACTTACTTA GGAAGTCCTA ATCTTTATG TCAGTAGAGG TAGAAATAC AGTCATCTCC 19

AGATTCTOTC CCCAGCACTA TGCTAGAAGT TGTGAAGAAT TCACGAGATG AATAAATCAG GGGTCGTGAT ACGATCTTCA ACACTTCTTA AGTGCTCTAC TTATTTAGTG 121

ATAACTAAAA TATTGATTTT AACCCCACCA AAGCTAAAAA TTCGATTTTT CTCAAAATGG TTAGATCTAT TCAGGAAACA GAGTTTTACC AATCTAGATA AGTCCTTTGT 181

AGAAAAGCTC TCTTTTCGAG ACCTATAGAA TGGATATCTT CAATCATAAA ATAAGTAAGT GITAGTATTT TATTCATTCA TGANAAACAA ATCAACCAAA 241

CTGTGTACTG GACACATGAC AGAGGAGGTA AAAAGATAAC TCTTCCAAAA GGAATACTAT ATACTGTAAA TCTCCTCCAT TTTTCTATIG AGAAGGTTTT CCTTATGATA TATGACATTT 301

NNNNNNNTG TAAGTGGCAT ACATACTAAG CTAGTGTGAA NNNNNNNNAC ATTCACCGTA TGTATGATTC GATCACACTT GAATTAGAAA CITAATCTIT ATAGAAGGAA TATCTTCCTT 361

FIG. 75B

턴	5
CICATGAA	GAGTACTE
GTANATIMAC	CATITAATIG
AAGGTTAGAA	TICCAATCIT
TGCTTCACAG	SGAT TIATACATCA ACGAAGTGTC TICCAATCTT CATTTAATTG GAGTACTTAA
AATATGTAGT	TTATACATCA
421 CACAAGCCTA AATAIGTAGI TGCTTCACAG AAGGTTAGAA GTAAATTAAC CTCATGAATT	GTGTTCGGAT
421	

GAAAGATTTT AATACCAAAT CTTTCTAAAA TTATGGTTTA TCTTGAGAGA ACTTGTAAGG ACTAAGCTTT CGATTTTGGA AGAACTCTCT TGAACATTCC TGATTCGAAA GCTAAAACCT 481

TTTGTTTGGT ANTCTCANTC ATTATANTAG TGCTTAGATA ATACCTAGGA AAACAAACCA TTAGAGTTAG TAATATTATC ACGAATCTAT TATGGATCCT AAAAAGTACC TTTTTCATGG 541

ALAGTACATG ATTGGGGAAT CACAACTGGC TTTCATGTAC TAACCCCTTA GTGTTGACGG 601 ACAMATTAMA TATTAMATTT ACTTTAMAMA TGITTAMITT ATAMTTTAMA TGAMATTTT AAAACACTG AACCAATAT TTTTTGTGAC TTGGTTTATA GAAAAGAATG CTTACTAGAT TCTCTNNNNN NATATGCACT GAATGATCTA AGAGANNNNN NTATACGTGA 199

AAGGAATAIC AGAAGCAAAA TICCTIATAG ICITICGITIT AAGITTAAAA TTAAATIGGA AAAAAATAGI TICAAAITIT AATITTAACCI TI'ITITATCA NTGTTTTTT NACAAAAAA 721

`		
)		
5		
_		

くりつってりててい	TITATITIAC TITCGITCIT AGGAGICICC AICGIGCITI AAACCGAAAC GAAICTACCI
781 AAATAAAATG AAAGCAAGAA TCCTCAGAGG TAGCACGAAA TITGGCTTTU CITAGATGAA	MACCGMAC
I ACCACGASA	ATCGTGCTTT
TCCICAGACC	AGGAGTCTCC
AAAGCAAGAA	TTICGITCIL
MATANATG	TTTATTAC
781	

11 TCTATCAAAG CTATGGCCCA TGAAAAGAT TCAGGAGITA GITTAAAGCI GGILAACATA AGATAGTTTC GATACCGGGT ACTTTTCCTA AGTCCTCAAT CAAATTTCGA CCAAGTGTAT
11 TCTATCAAAG CTATGGCCCA TGAAAAGAT TCAGGAGTIA GILTAAAGC GGLLCACAI AGATAGTTTC GATACGGGGT ACTTTTCCTA AGTCCTCAAT CAAATTTCGA CCAAGTGTAT
AGTCCTCAAT
TGAAAGGAT
CTATGGCCCA
TCTATCAAAG Agatagtttc
4

901 ATGGAATCTA GCAGAAGACT GTGCATAAAG GTGGTCTAAG AACAACAATA TCCTGACGAG	TACCTTAGAT CGTCTTCTGA CACGTATTTC CACCAGATTC TTGTTGTTAT AGGACTGGTC
MCMACATA	TTGTTGTTAT
GTGGTCTANG	CACCAGATTC
GTGCATAAAG	CACGTATTTC
GCACAACACT	CGTCTTCTGA
ATGGAATCTA	TACCTTAGAT
106	

961 GIGAGGGGG TCACNCINAA INCCAGCACT TIGGGAGCCC AAGGIGGGIG GATCACGAGG CACTCCCCCG AGIGNGANIT ANGGICGIGA AACCCICGGG TICCACCCAC
AAGGTGGGTG TTCCACCCAC
TTGGGAGCCC AACCCTCGGG
TNCCAGCACT ANGGTCGTGA
TCACNCTNAA AGTGNGANTT
GTGAGGGGGC CACTCCCCCG
961

1021 TCAGGAGITT GAGACCAGCC TGACCAACAT GGTGAAACCG CGTCTCTACT AAAAATAGAA	ASTOCICAAA CICIDGICGG ACIGGITGIA CCACTITGGC GCAGAGATGA IITITIATCIL
CGTCTCTACT	CCAGAGATGA
GGTGAAACCG	CCACTTTGGC
TOACCAACAT	ACTOGITGEA
GAGACCAGCC	CTCTGGTCGG
TCAGGAGTTT	AGTCCTCAAA
1021	

1081 NANTTAGCCG NGCCTACGTG CTTCTAATCC CAGCTGAACT CAGGAGACTG AGACAGAGA TOBS: NATTAATCGGC NCGGATGCAC GAAGATTAGG GTCGACTTGA GTCCTCTGAC TCTGTCCTCT	
CAGCTGAACT C	
CTTCTAATCC GAAGATTAGG	
NGCCTACGTG NCGGATGCAC	
AAATTAGCCG TTTAATCGGC	
1081	

AGGGTGCAN	TCCCACGTTT
ACTCCAGCCT	TGAGGTCGGA
NNGCCACTGC	NNCGGTGACG
AAGCTTNNNN	TTCGAANNN
CCCAGCATGC	GGGTCGTACG
1141 BICENTHER COCRECATION ANGOCATION NICOCACTED ACTOCAGOOT AGGITGCAA	TAGTGAACTT GGGTCGTACG TTCGAANNN NNCGGTGACG TGAGGTCGGA TCCCACGTTT
114	

1201 AAAAAAAA ANGACACATT ACTCAGGTAA GGTAATCAAT AA TETETETETE TNCTGTGTAA TGAGTCCATT CCATTAGTTA TT

FIG. 76A

-	$\overline{1111}$	111	1111	111	1111	ΪĪĪ		ĪЩ	1111		1111	IIII	TTAT	ĬĬ	-
	IIII	ĪĪĪ		111	IIII	H	1111	111		$\Pi\Pi$	$\overline{1111}$	$\Pi\Pi$	ACCA!	ĪĪ	-
-	1111	III		ĬĬĬ	ĬĬĬĬ		ĬĬĬĬ	III		HII			ATTT ATTT	ÏĬ	-
-	TIH	111	ΠΉ	111		1111	1111	111	$\Pi\Pi$	1111	$\Pi\Pi$		ctct: ctct:	11	-
-	1111	111	HH			HÜ	TH	111	1111	1111		1111	TGGC TGGC	11	-
-	1111			111	$\Pi\Pi$	111	HH	HH	HH			11111	ATCT ATCT	11	-
<u>-</u>	+1111	$\Pi\Pi$		$\Pi\Pi$	111	1111	111	$\Pi\Pi$	1111		1111	1111	GTAT GTAT	11	<u>-</u>
-	111		III	1111	111	1111	111	1111			1111	11111	TAAA TAAA	11	-
<u>-</u>	TTA	TG1	CAT	ITG/ ITG/	TTT TTT	GTTA GTTA	ata: ata:	TATI TATI	TTT(CICT CICT	TTAC TTAC	rgggj rgggj	UNTI UNTI	\ \ \ \ \ \	-
		 .					~~		110	1 2 A TT	1001	3 mm/m	cee	Yam	_

FIG. 76B

-	ATTT	نسد	TTCCC	PTTCG.	CTCTA	GAACA	AATAGO	AATTT	GCCTC) FT -
-	GGGGT(!	11111	11111	111111			Ī
	TGCTC! TGCTC!	11111	11111	5 6 1 1 1 1	11111	11111	111111	\mathbf{H}		ī
	TITAGI TITAGI		11111	\$!	11111	11111	111111	111111		Ĭ
-	CTTTGT CTTTGT	TGTAG TGTAG	GCCTA GCCTA	ATGAGI 	11111 	TTGAA TTGAA	GATAA GATAA	GTTCT(GTTCT(GGTACT GGTACT	
-	ATTTN ATTTN	GTGTA GTGTA	ATATT ATATT	32222 	TGATA TGATA	TTACC TTACC	GAATCI GAATCI	GGYYCI 	MCCN 	(T -
-	TTAXU TTAXU		11111	111111	11111		Ī			

	9-	COGTANTATC
	08 -	ADANABCACA GEGETETET TECTEATET TANATEGGET GETCCAGAIT CGGEAATATC FCITETGTGE CACAGAAAA AAGGAATAAA ATTIAACCAA CAAGGECTAA GCCAFFAFAG
FIG. 77A	04	TAATTGGTT
FIG.	or	TTCCTTATTT AAGGAATAAA
	0-	GTGTCTTTCT CACAGAAAGA
	01	AGAMACACA TCTTTTGTGT

CTTCAACCTT TTCTCATTAG GAAGTTGGAA AAGAGTAATC AGAACTTTAT AATITICAAT ATTACACTIA AATGAGTACC TIAAAAQTIA TAATGIGAAT TIACICAIGG 61

COGATAGAAT TTCCCTTTTC TTTTTGCTAC TATAAGCTCT GCCTAICTTA AAGGGAAAAG AAAAACGATG ATATTCGAGA AAGGACATCT TTCCTGTAGA GCCTACAACA 121

GCATTTGCTA GTGGTAGTGA GTTCTTATTA CAAGAATAAT AGAACATCAG ATTTAGAAAT TCTTGTAGTC TAAATCTTTA AAAAATCCTC TTTTTAGGAG 181

CCCACAGGCC AAATTCCTAT GGGTGTCCGG TTTAAGGATA GCAAGTAGAC AATATAATAA TTATATTATT CTAGCTTACA TTTCCTACCA 241

CCCACTARAG AGARARIAT GGGTGATTTC TCTTTTTATA AATTTAATTT GTCGANAGGG AATTTTTAA CAGCTTTCCC TTAAAAATT TTGTTCTACA (301

TTTCCCTCAT AAAGGGAGTA TGTAAATTGT ACATTTAACA ATTTGCTATG TAAACGATAC CAAATGACAG TAATTTTTAA GTTTACTGTC ATTAAAAATT ATTAACAAAT TAATTGTTTA 361

TTTTTGTAGA AAATATTTAA AAAAACATCT TTTATAAATT TATTTATAAC AATTCATACT ACAATTTAAT TTAGTAACA ATAAATATTG TTAAGTATGA TGTTAAATTA AATCATTTGT 421

FIG. 77B

AACAAAGATA CIGAAAGITA AIAINAAACC CAGTGCATGC TTCTIGTAGG CCACAGCCAT TIGTTTCTAT GACTTICAAT LATANI'ITGG GTCACGTACG AAGAACATCC GGIGTCGGIA 481

TITGITCTGT TACTCTAAAC ATCTACACTG GCCAAATTCC AAACAAGACA AIGAGAITTG TAGATGTGAC CGGTTTAAGG AACCTGTAAG CACAGAAAA TTGGACATTC GTGTCTTTT

541

AATGCTCGAA TITAACCCCG GGATATAACC TAGTAAATGT GTCCTCTCTG TAAGGTGGGC TTACGAGCTT AAATTGGGGC CCTATATTGG ATCATTTACA CAGGAGAGAGAC ATTCCACCCG AATGCTCGAA 601

GATTCTACAC ATAATGGTAT TCATAAAGTT TTAAGAAAT TATTACCATA AGTAITTCAA AATTCTTTTA ATGTCACAGA ATACAAGAAA TACAGTGTCT TATGTTCTTT 661

721 ATGTAAAACC CACTATAACT TTTTACATTG GGGGAGAGAA AAAAAGAGAT AATTTTTACC TACATTTTGG GTGATATTGA AAAATGTAAC CCCCTCTCTT TTTTTCTCTA TTAAAAATGG

781 TT

FIG. 78/

9-	Atciccatit Tagaggtaaa
8 0	GATOCTATTT GOGCAATTTC TTATTGACAG TTTTGAAATG TTAGGCTTTT ATCTCCATTT CTACGATAAA CCCGTTAAAG AATAACTGTC AAAACTTTAC AATCCGAAAA TAGAGGTAAA
9-	TTTTGAAATG AAAACTTTAC
30	TTATTGACAG AATAACTGTC
70	GOGCAATTTC
10	1 GATOCTATTT CTACGATAAA

TTTAGTACTT 61

GTCGGTACTT CATGAGTATC TAGTGTATGT GTACTCATAGA ATCACATACA GTTCTGGAAT TTAGTATATA CAAGACCTTA AATCATATAT GAGTGGTTCT 121

CCAGACATTG GGTCTGTAAC AATGAACCTT TCAGATGTTT AACTTCAGGG AACCTAATTG AGTCATTGCT TTACTTGGAA AGTCTACAAA TTGAAGTCCC TTGGATTAAC TCAGTAACGA 181

CAAGGATACT GTTCCTATGA CTCAGTGTGG GAGTCACACC COGGCAATGA CCCACTATAT TNNNNNNCT GGGTGATATA ANNNNNGA TTGCTTTGAA AACGAAACTT 241

ACTGCAGGCC TGTTTCTGGA AGGCACTGGA CTCCTCTGAT GCAAACTTTG GCCAGGGACT TGACGTCCGG ACAAGACCT TCCGTGACCT GAGGAGACTA CGTTTGAAAC CGGTCCCTGA ACTGCAGGCC TGTTTCTGGA AGGCACTGGA 301

361

FIG. 78B

421 TATTCAATAT TAGACTACAA GCAGTCTAAG GACTTCTCAG GGTTTCTAGC TCTCTCAT ATAAGTTATA ATCTGATGTT CGTCAGATTC CTGAAGAGTC CCAAAGATCG AGAGAGATA
GGTTTCTAGC
GACTTCTCAG
GCAGTCTAAG CGTCAGATTC
TAGACTACAA ATCTGATGTT
TATTCAATAT ATAAGTTATA
421

CAIATATCTT ACTGCTACGC TGGGGCCAGA GTATATAGAA TGACGATGCG ACCCGGGTCT AATCTCTACT TTAGAGATGA CTTTCCTAGT GALAGGATCA TTCACACATG AAGTGTGTAC 481

TAACNNNNN CTTCCATTTT GTTTTTAICT CTATTCTTCT TCCCCTTCTG CTTTCATTAT ATTCNNNNN GAAGGTAAAA CAAAAATAGA GATAAGAAGA AGGGGAAGAC GAAAGTAATA

541

GTTCTGCTTA ACCTGGCATT CAAGACGAAT TGGACCGTAA TGAAACTITC TGCTTTCATT ATTGAAACTT TCCCAGATTT ACTTTGAAAG ACGAAAGTAA TAACTTTGAA AGGGTCTAAA 601

CCTCTTCCCT GTGCTGCTTT GGAGAAAGGGA CACGACGAAA CCTTGACAAA

CATGICCITI ITITITITI GIACAGGAA AAAAAAAA

CTCCCATTGC

GGAACTGTTT

661

TITITITIT TOAGACAGIG TCACTCIGIT GCCCAGGCTG GAGTGCAATG GTGCAATCIT AAAAAAAAA ACTCTGTCAC AGTGAGACAA CGGGTCCGAC CTCACGTTAC CACGTTAGAA 721 TITITITIT

FIG. 78C

181 GGCCACTGCA ACCCCCGCCT CCCGGGTTCA AGTGATTCTC CTGCCTCAGC CTCCTGAGTA CCGGTGACGT TCACTAAGAG GACGGAGTCG GAGGACTCAT
CTGCCTCAGC
AGTGATTCTC TCACTAAGAG
CCCGGGTTCA
ACCCCCGCCT
GGCCACTGCA
781

GCTGGGATTA CAGGTGCCCA CCACTATGCC CGGCTGATTT TTGTATTTTT AGTAGAGATN CGACCCTAAT GTCCACGGGT GGTGATACG GCCGACTAAA AACATAAAAA TCATCTCTAN 841

CCTSACCGCA GTGANTCCGC GGACTGGCGT CACTNAGGCG NNNNNNTTT CACCATNGCT GATCAGGCTG GTCTCGAACT NNNNNNAAA GTGGTANCGA CTAGTCCGAC CAGAGCTTGA

901

CICCCAAAGI GCIGACAITA CAGGCAIGAG ICACIGCONC CAGCCACCAI GAGGGIITCA CGACICIAAI GICCGIACIC AGIGACGCNG GICGGIGGIA CCTCCTTGGC (196

1021 INTICTOTAG AGGIGAGAGA ACACTGGCTC TTCTAACAAG TTGAAATTTG ATAGAGACC ATAAGAGATC TCCACTCTT TGTGACCGAG AAGATTGTTC AACTTTAAAC TATCTCTGG

FIG. 79A

ATTCACTTTA TTGAGCATCT GCTCATANTA CTTTAATGAG TGCAAAGTGC TTTGAATATA TAAGTGAAAT AACTCACGTAGA CGAGTATTAT GAAATTACTC ACGTTTCACG AAACTTATAT 79

121 ATACGTCATT TAAACCTTAC CATAATICIG AGGAATIGCT ACCTCCACTT CACAGATGGG TATGCAGTAA ATTTGGAATG GTATTAAGAC TCCTTAACGA TGGAGGTGAA GTGTCTACCC	
ACCTCCACTT TGGAGGTGAA	
aggaat fgct Tccttaagga	
CATAATICIG GTATTAAGAC	
TAMCCITAC	
ATACGTCATT TATGCAGTAA	
121	

GCACAGGAGG CTTAGATAAC ATGCCCAAAG TCATGCTTCT AGTAAATGGA TATAATTAAG CGTGTCCTC GAATCTATTG TACGGGTTTC AGTACGAAGA TCATTTACCT ATATTAATTC 181

CITACCAGTA TCTAGTAGTA AATCTAAAAG GAATGCTCAT AGATCATCAT TTAGATTTTC TTTGATCTGC AAACTAGACG 241 ATTCAAATTA TTGATAAGAA TAAGTTTAAT AACTATTCTT AACTCTCTGA AATTTTCCAT TTGAGAGACT TTAAAAGGTA CAACTATCTC GAACTACAGA CTTGATGICT GTTGATAGAG TCGTACACGA CGCTTTCCAG AGCATGTGCT GCGAAAGGTC 301

TCTIATITGI CICACIGGIA INIAGIINIT ITITACIACI ITCAIACACC IACIAAGAAG AGAAIAAACA GAGIGACCAT AIAICAATAA AAAAIGAIGA AAGIAIGIGG AIGAIICTIC 361

FIG. 79B

GAATGCCTAA AGCTTCACGT ATTTTAATTC CTTACGGATT TCGAAGTGCA TAAAATTAAG ATTTCATTTA TAAAGTAAAT CAAAGATAGG GILTCLATCC 421 ACAGGAGGAT TGTCCTCCTA CCTDGTTATC TITCAGCAGG GGACCAATAG AAAGTCGTCC AGANTAAGAT TCAGGCAGAC CACCAGTATA TGCCATGGTC TCTTATTCTA AGICCGTCTG GIGGTCATAT ACGGTACCAG GGTICTTGTA GTTTCACTTC CCAAGAACAT CAAGTGAAG GIANTGIITA TGAAATGGTG CATTACAAAT ACTTIACCAC AGANACATG TCTTTTGTAC TOACCOAGAA

541

481

CCTTIACIGI ATTAAGATGA TGGATTAACT TATTCTTGAT ATGGGCATGT GGAAATGACA TAATICTACT ACCTAATTGA ATAAGAACTA TACCCGTACA AACATATCTG TTGTATAGAC 601

GACAAACITA TGTGTTTCCA ACACAAAGGT GAGAGACAAA ACTITTACTA AACAGCTACA TGAAAATGAT TTGTCGATGT AAAACAATAT TTTTSTTATA 661

GIAACTATAT TITATGAAAT CATTGATATA AAATACTTTA GACCTTAATT GAATAATCTC (CTTATTAGAG C AGAGACIGAG IGITCAAACI TCICIGACIC ACAAGITIGA 721

FIG. 79C

781 CCAGCTGTAA GGCAAAAACA GACTTCTTTG GGCCTACCAC GGGCATTTTG TTCCTGTTAN	GGTCGACATT CCGTTTTTGT CTGAAGAAAC CCGGATGGTG CCCGTAAAAC AAGGACAATN
GGGCATTTG	CCCGTANAC
GGCCTACCAC	CCCCATGGTG
GACTTCTTTG	CTGAAGAAAC
CCCAAAAACA	CCGTTTTTGT
CCAGCTGTAA	CCTCGACATT
781	

	_
AAAIGICAII	TTTACAGTA
	COGACCTTTA
841 NNNTACTICA AACCITAAAC CCACGTCCAC TIAAATAAIG GCCIGGAAAI AAAIGILAII	NNNATIGAGGT TIGGAATITG GGTGCAGGTG AATTTATAC CGGACCTTTA TTTACAGTAA
CCACGICCAC	GGTGCAGGTG
AACCTTAAAC	TIGGAATITG
NNNTACTCCA	NNNATGAGGT
841	•

901 APCTGATATT ATACTGAGAT GITTAGTTAT GANATCANA GIGGAGAATT TUAATGIGT	TAGACTATAA TATGACTCTA CAAATCAATA CTTTAGTTTT CACCTCTTAA AGTTAGACAG
CICCASANI	CACCTCTTAA
GANATCANA	CTTTAGTTTT
GITTAGITAT	CAATCAATA
ATACTGAGAT	TATGACTCTA
ATCTGATATT	TAGACTATAA
901	•

AGCATOCT
961 CTGTAAGCTT TCTCTGCGGT CACGACCCTC ATGCACTCAG GCTGTGCGGT GCAGCATGCT
ATGCACTCAG C
CACGACCCIC
TCTCTGCGGT
CTGTAAGCTT
961

1021 CTGTCATGTC TGTTTTCTTC TGCCTGTACA CGGGTGGTTG TTCCTGTCTA CCTGTTTGAG
TTCCTGTCTA AAGCACAGAT
CCCACCAAC
'rgcctgtaca Acceacatgt
TGTTTTCTTC
CTGTCATGTC
1021

¹¹⁴¹ AGAATCACTT TCTCGTGGAA AATTCATTAG AATTAACATC TCGTTTTAAA ATGCTCTATC TCTTAGTGAA AGAGCACCTT TTAAGTAA'FC TTAATTGTAG AGCAAAATTT TAGGAGATAG

FIG. 79D

ATATTANACA AGGAGTTTGT TCCTCAAACA TTTTTCACTA GAGAAAAGGG CTCTTTTCCC TAATTCCTCT ATTAAGGAGA AAAGTGTAAA 1201

ACMATMAMAT GCCACGTATA TOTTATITE CGGTGCATAT TAAATTTATT TAANNTATTT ATTTAAATAA ATTNNATAAA GANTITICAS TANTOTATA CITAAAGITIC ATTACATAAT 1261

MACAGCAG TTTTGTCGTC ATACATAGTC TATOTATCAG AGCATCAAGC AACATGANNN NNNCATTGGT AGAAAGCACA TCGTAGTTCG TTGTACTNNN NNNGTAACCA TCTTTCGTGT

1321

TACTTAATTA AATATACATA TTATATGTAT OCANGTANAG CSTTCATTTC TITGCAAAAG G AGINITAANI AAACAGAAAA TCAIAAITIA ITIGICITIT 1381 AGTATTAAAT

AAGCAGATAA IGGGGGCAAC TTCGTCTATT ACCCCCGTTG GAAATTTAGT CTTTAAATCA TACATARAAT ATTORTACAG GAGGTAGAAA ATGTATTITA TAACTATGTC CTCCATCTTT 1441 TACATAAAAT

TITITITI AMMANAAAA CATAAATTA GTTATTTAAT AAAAGCAGCC CCTTCTAACA GCAGAGCTTC (CGTCTCGAAG AGAGTCCTCA TCTCAGGAGT 1501

1561 CTAACAAAA GCAGCCTGAA AAATCGAGCT GCAAACATAG ATTAGCAATC GGCTGAAAGT

FIG. 79E

CCGACTTTCA	ogcocorocc ccocccAcco	GAGGTCGGGA CTCCAGCCCT	TITITITITI	CTGAGGCAGG GACTCCGTCC	tcattgcact Agt aa cgtga
GATTOTITIT CGTCGGACIT IITAGCTCGA CGITIGIAIC IAATCGTTAG CCGACITICA	ccTGGAGCCG GGCGCGTGGC GGACCTCGGC CCGCGCACCG	TCACGCTGTA ATCCCAGCAC TTTGGGAGGG CGAGGCAACG CGGATCACCT GAGGTCGGGA AGTGCGGGA AGTGCGTCCC GCTCCGTTGC GCCTAGTGGA CTCCAGCCCT	TACTAMAMA AMMAMAMA ATGATTTTT TTTTTTTTT	AATGAGCCGG GCATGGTGGC ACATGCCTTG CACATCCCAG CTGAGGCAGG TTACTCGGCC CGTACCACCG TGTACGGAAC GTGTAGGGTC GACTCCGTCC	1861 AGAATTCACT TGAACCTGGG AGGTAGAGAT TGCGGTGAAG CGAGATCACG TCATTGCACT TCTTAAGTGA ACTTGGACCC TCCATCTCTA ACGCCACTTC GCTCTAGTGA ACTTGGACCC TCCATCTCTA ACGCCACTTC GCTCTAGTGC AGTAACGTGA
cerricialc	GCGCGGAAAT GCTGGCAGCT GTGCCAATAG TAAAGGGCTA CGCCCTCTTA CGACCGTCGA CACGGTTATC ATTTCCCGAT	cgaggcaacg gctccgttgc	AGCCCGACCA ACATGGAGAA ACCCCGTCTC TCGGGCTGGT TGTACCTCTT TGGGGCAGAG	ACATGCCTTG TGTACGGAAC	TGAACCTGGG AGGTAGAGAT TGCGGTGAAG ACTTGGACCC TCCATCTCTA ACGCCACTTC
TITAGCICGA	GTGCCAATAG CACGGTTATC	TTTGGGAGGG AAACCCTCCC	AGCCCGACCA ACATGGAGAA ACCCCGTCTC TCGGGCTGGT TGTACCTCTT TGGGGCAGAG	AATGAGCCGG GCATGGTGGC ACATGCCTTG TTACTCGGCC CGTACCACCG TGTACGGAAC	AGGTAGAGAT TCCATCTCTA
CGTCGGACTT	GCTGGCAGCT CGACCGTCGA	ATCCCAGCAC TAGGGTCGTG	AGCCCGACCA TCGGGCTGGT	AATGAGCCGG TTACTCGGCC	TGAACCTGGG ACTTGGACCC
GATTOTTTT	GCGCGCTCTTA	TCACGCTGTA AGTGCGACAT	GTTTGAGATC CAAACTCTAG	AAAGGCAAAA TTTCCGTTTT	AGAATTCACT TCTTAAGTGA
	1621	1681	1741	1801	1861

CCAGCCTGGG CAAAAAGAGC AAAACTTAGT CTCAAAAAA AAAANNCAAA GAAAAAA ggtcggaccc gttttctcg tittgaatca gagtttttt tittnngtit chifitt 1921

Genomic Organization of PSM Gene

FIG. 80

INTERNATIONAL SEARCH REPORT

International application No. FCT/US96/02424

. CLAS	SSIFICATION OF SUBJECT MATTER		
IPC(6) :	C12N 15/12, 15/64; C12Q 1/68; C07K 14/435		
US CL :	536/23.5; 435/6, 7.1, 320.1, 252.3, 69.3; 530/350 n International Patent Classification (IPC) or to both na	tional classification and IPC	
	DS SEARCHED		
. FIEL	ocumentation searched (classification system followed b	y classification symbols)	
		•	
U.S. : 3	536/23.5; 435/6, 7.1, 320.1, 252.3, 69.3; 530/350		
ocumentat	ion searched other than minimum documentation to the e	xtent that such documents are included in the fields searched	i
lectronic d		e of data base and, where practicable, search terms used)	
search te	erms: prostate specific membrane antigen		
. DOC	CUMENTS CONSIDERED TO BE RELEVANT		
Calegory*	Citation of document, with indication, where app	ropriate, of the relevant passages Relevant to claim	No.
K	WO, A, 94/09820 (SLOAN-KETT CANCER RESEARCH) 11 May 1994	ERING INSTITUTE FOR 1-20 1, see entire document.	
	Ì		
:	•		
	·		
]	
Fur	ther documents are listed in the continuation of Box C.	See patent family annex.	
• ;	Special categories of cited documents:	*T* later document published after the international filing date or p date and not in conflict with the application but cited to understa	niority and the
٠,٠٠٠	document defining the general state of the art which is not considered	principle or theory underlying the invention	
	to be of particular relevance earlier document published on or after the international filing date	"X" document of porticular relevance; the claimed invention can considered novel or cannot be considered to involve an inventi-	ne smb non pe
		when the document is taken alone	
	document which may discussed and another citation or other cited to establish the publication date of another citation or other special reason (se specified)	"Y" document of particular relevance; the claimed invention can considered to involve an inventive step when the document	nen s
	document referring to an oral disclosure, use, exhibition or other means	combined with one or more other such documents, such come being obvious to a person skilled in the art	bination
	document published prior to the international filing date but later than the priority date claimed	*&* document member of the same patent family Date of mailing of the international search report	
Date of the	he actual completion of the international search	1	
29 APF	RIL 1996	14 MAY 1996	
Name an	d mailing address of the ISA/US	Authorized officer	1
Box PC	ssioner of Patents and Trademarks	ANTHONY C. CAPUTA & WATE	1-
1	gion, D.C. 2023 I e No. (703) 305-3230	Telephone No. (703) 308-0196	ـــــــــــــــــــــــــــــــــــــــ
Facsimile	t No. 17031 303-3230		-

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.