Things to Remember About Functions

• A relation is a function if for every *x*-value there is only 1 corresponding *y*-value. The graph of a relation represents a function if it passes the ______, that is, if a vertical line drawn anywhere along the graph intersects that graph at no more than one point.

- The _______of a function is the complete set of all possible values of the independent variable (x)
 - Set of all possible *x*-vales that will output real *y*-values
- The _______of a function is the complete set of all possible resulting values of the dependent variable (y)
 - \circ Set of all possible *y*-values we get after substituting all possible *x*-values
- For the function $f(x) = (x-1)^2 + 3$

• The degree of a function is the highest exponent in the expression

o
$$f(x) = 6x^3 - 3x^2 + 4x - 9$$
 has a degree of ____.

• An ______ is a line that a curve approaches more and more closely but never touches.

The function $y = \frac{1}{r+3}$ has two asymptotes:

Vertical Asymptote: Division by zero is undefined. Therefore the expression in the denominator of the function can not be zero. Therefore $x \neq -3$. This is why the vertical line x = -3 is an asymptote for this function.

Horizontal Asymptote: For the range, there can never be a situation where the result of the division is zero. Therefore the line y = 0 is a horizontal asymptote. For all functions where the denominator is a higher degree than the numerator, there will by a horizontal asymptote at y = 0.

Polynomial Functions

A polynomial function has the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x^1 + a_0$$

- *n* Is a whole number
- *x* Is a variable
- the _____ a_0 , a_1 , ..., a_n are real numbers
- the ______ of the function is n, the exponent of the greatest power of x
- a_n , the coefficient of the greatest power of x, is the _____
- a_0 , the term without a variable, is the _
- The domain of a polynomial function is the set of real numbers _____
- The range of a polynomial function may be all real numbers, or it may have a lower bound or an upper bound (but not both)
- The graph of polynomial functions do not have horizontal or vertical asymptotes
- The graphs of polynomial functions of degree 0 are _____. The shapes of other graphs depends on the degree of the function. Five typical shapes are shown for various degrees:

_is the simplest type of polynomial function and has the form:

$$f(x) = ax^n$$

- a is a real number
- *x* is a variable
- *n* is a whole number

Example 1: Determine which functions are polynomials. State the degree and the leading coefficient of each polynomial function.

$$\mathbf{a)} g(x) = \sin x$$

b) $f(x) = 2x^4$

c)
$$y = x^3 - 5x^2 + 6x - 8$$

d) $g(x) = 3^x$

Interval Notation

In this course, you will often describe the features of the graphs of a variety of types of functions in relation to real-number values. Sets of real numbers may be described in a variety of ways:

- 1) as an inequality $-3 < x \le 5$
- **2)** interval (or bracket) notation (-3, 5]
- **3)** graphically on a number line

Note:

- Intervals that are infinite are expressed using _____ or ____ or ____
- _____indicate that the end value is included in the interval
- _____indicate that the end value is NOT included in the interval
- A ______ bracket is always used at infinity and negative infinity

Example 2: Below are the graphs of common power functions. Use the graph to complete the table.

Power Function	Special Name	Graph	Domain	Range	End Behaviour as $x \to -\infty$	End Behaviour as $x \to \infty$
y = x	Linear	2 -4 -2 8 2 4 x -2 -4				
$y = x^2$	Quadratic	8 8 6 4 4 2 4 x -2 0 2 4 x -2 1				
$y = x^3$	Cubic	-4 -2 6 2 4 x				

Power Function	Special Name	Graph	Domain	Range	End Behaviour as $x \to -\infty$	End Behaviour as $x \to \infty$
$y = x^4$	Quartic	160 128 96 64 32 -4 -2 0 2 4x				
$y = x^5$	Quintic	96 64 32 -4 -2 0 2 4 x -32 -64				
$y = x^6$	Sextic	128 96 64 32 -4 -2 0 2 4x				

Key Features of EVEN Degree Power Functions

When the leading	ng coefficient (a) is positive	When the leading coefficient (a) is negative		
End behaviour		End behaviour		
Domain		Domain		
Range		Range		
Example: $f(x) = 2x$	2 2 2 3 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	Example: $f(x) =$	$=-3x^2$	

Line Symmetry

A graph has line symmetry if there is a vertical line x=a that divides the graph into two parts such that each part is a reflection of the other.

Note:

Key Features of ODD Degree Power Functions

When the leading	ng coefficient (a) is positive	When the leading coefficient (a) is negative		
End behaviour		End behaviour		
Domain		Domain		
Range		Range		
Example: $f(x) = 3$	x 5	Example: $f(x) =$	$=-2x^3$	

Point Symmetry

A graph has point point symmetry about a point (a, b) if each part of the graph on one side of (a, b) can be rotated 180° to coincide with part of the graph on the other side of (a, b).

Note:

Example 3: Write each function in the appropriate row of the second column of the table. Give reasons for your choices.

$$y = 2x$$
 $y = 5x^{6}$ $y = -3x^{2}$ $y = x^{7}$ $y = -\frac{2}{5}x^{9}$ $y = -4x^{5}$ $y = x^{10}$ $y = -0.5x^{8}$

End Behaviour	Functions	Reasons
Q3 to Q1		
Q2 to Q4		
Q2 to Q1		
Q3 to Q4		

Example 4: For each of the following functions

- i) State the domain and range
- ii) Describe the end behavior
- iii) Identify any symmetry

a)

i) Domain:

Range:

ii) As _____ and as ____ to ___ to ___

iii)

b)

i) Domain:

Range:

ii) As _____ and as ____ The graph extends from quadrant ____ to ____

iii)

c)

i) Domain:

Range:

ii) As _____ and as ____ The graph extends from quadrant ____ to ____

iii)