

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
18. Januar 2001 (18.01.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/04330 A1

- (51) Internationale Patentklassifikation⁷: C12N 15/82, 15/54, 9/10, 15/31, G01N 33/53, A01H 5/00
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): HERBERS, Karin [DE/DE]; Am Hange 6, D-06484 Quedlinburg (DE). BADUR, Ralf [DE/DE]; Petersilienstrasse 17, D-38640 Goslar (DE). KUNZE, Irene [DE/DE]; Mühlenweg 11, D-06466 Gatersleben (DE). GEIGER, Michael [DE/DE]; Neuer Weg 15, D-06484 Quedlinburg (DE).
- (21) Internationales Aktenzeichen: PCT/EP00/05862
- (22) Internationales Anmeldedatum:
23. Juni 2000 (23.06.2000)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
199 31 834.4 9. Juli 1999 (09.07.1999) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SUNGENE GMBH & CO. KGAA [DE/DE]; D-06468 Gatersleben (DE).
- (74) Anwalt: BIEBERBACH, Andreas; BASF Aktiengesellschaft, D-67056 Ludwigshafen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Fortsetzung auf der nächsten Seite]

(54) Title: IDENTIFICATION AND OVEREXPRESSION OF A DNA SEQUENCE CODING FOR 2-METHYL-6-PHYTYLHYDROQUINONE-METHYLTRANSFERASE IN PLANTS

(54) Bezeichnung: IDENTIFIZIERUNG UND ÜBEREXPRESSION EINER DNA-SEQUENZ KODIEREND FÜR EINE 2-METHYL-6-PHYTYLHYDROCHINON-METHYLTRANSFERASE IN PFLANZEN

WO 01/04330 A1

(57) Abstract: A method for the production of plants with an increased tocopherol and tocotrienol content by overexpression of a gene coding for 2-methyl-6-phytylhydroquinone-methyltransferase.

(57) Zusammenfassung: Verfahren zur Herstellung von Pflanzen mit erhöhtem Gehalt an Tocopherolen und Tocotrienolen durch Überexpression eines Gens codierend für eine 2-Methyl-6-phytylhydroquinon-methyltransferase.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— Mit internationalem Recherchenbericht.

— Vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Identifizierung und Überexpression einer DNA-Sequenz codierend für eine 2-Methyl-6-phytylhydrochinon-methyltransferase in Pflanzen

5

Beschreibung

- Die Erfindung betrifft eine DNA kodierend für ein Polypeptid mit 2-Methyl-6-phytylhydrochinon-methyltransferase Aktivität. Zudem 10 betrifft die Erfindung die Verwendung von DNA-Sequenzen codierend für ein Polypeptid mit 2-Methyl-6-phytylhydrochinon-Methyltransferase Aktivität zur Herstellung von Pflanzen mit erhöhtem Gehalt an Tocopherolen und Tocotrienolen, speziell die Verwendung der DNA-Sequenz SEQ-ID Nr. 1 oder SEQ-ID Nr. 7 oder mit dieser hybridierten 15 oder zur Gesamtsequenz oder zu Teilsequenzen homologen DNA-Sequenzen, einem Verfahren zur Herstellung von Pflanzen mit erhöhtem Gehalt an Tocopherolen und Tocotrienolen, sowie die derart hergestellte Pflanze selbst.
- 20 Ein wichtiges Ziel pflanzenmolekulargenetischer Arbeiten ist bisher die Erzeugung von Pflanzen mit erhöhtem Gehalt an Zuckern, Enzymen und Aminosäuren. Wirtschaftlich interessant ist jedoch auch die Entwicklung von Pflanzen mit erhöhtem Gehalt an Vitaminen, wie z.B. der Erhöhung des Tocopherol- und Tocotrienolgehaltes.
- 25

Die in der Natur vorkommenden acht Verbindungen mit Vitamin E-Aktivität sind Derivate des 6-Chromanols (Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 27 (1996), VCH Verlagsgesellschaft, Chapter 4., 478-488, Vitamin E). Die erste Gruppe (1a-d) stammt von Tocopherol ab, die zweite Gruppe besteht aus Derivaten des Tocotrienols (2a-d):

- 40 1a, α -Tocopherol: $R^1 = R^2 = R^3 = \text{CH}_3$
 1b, β -Tocopherol [148-03-8]: $R^1 = R^3 = \text{CH}_3$, $R^2 = \text{H}$
 1c, γ -Tocopherol [54-28-4]: $R^1 = \text{H}$, $R^2 = R^3 = \text{CH}_3$
 1d, δ -Tocopherol [119-13-1]: $R^1 = R^2 = \text{H}$, $R^3 = \text{CH}_3$

45

- 2a, α -Tocotrienol [1721-51-3]: $R^1 = R^2 = R^3 = CH_3$
 2b, β -Tocotrienol [490-23-3]: $R^1 = R^3 = CH_3$, $R^2 = H$
10 2c, γ -Tocotrienol [14101-61-2]: $R^1 = H$, $R^2 = R^3 = CH_3$
 2d, δ -Tocotrienol [25612-59-3]: $R^1 = R^2 = H$, $R^3 = CH_3$

Wirtschaftlich große Bedeutung besitzt α -Tocopherol.

- 15 Der Entwicklung von Kulturpflanzen mit erhöhtem Gehalt an Tocopherolen und Tocotrienolen durch klassische Züchtungsmethoden sind Grenzen gesetzt.

Eine sinnvolle Alternative ist das gentechnische Vorgehen,

- 20 beispielsweise die für die Tocopherol Syntheseleistung kodierenden, essentiellen Biosynthesegene zu isolieren und in Kulturpflanzen gezielt zu übertragen. Dieses Verfahren setzt voraus, daß die Biosynthese und deren Regulation bekannt ist und daß Gene, die die Biosyntheseleistung beeinflussen, identifiziert
25 werden.

Isoprenoide oder Terpenoide bestehen aus verschiedenen Klassen lipidlöslicher Moleküle und werden teilweise oder vollständig aus C₅-Isopren-Einheiten gebildet. Reine Prenyllipide (z.B.

- 30 Carotinoide) bestehen aus C-Gerüsten, die ausschließlich auf Isopren-Einheiten zurückgehen, während gemischte Prenyllipide (z.B. Chlorophylle, Tocopherole und Vitamin K) eine Isoprenoid-Seitenkette besitzen, die mit einem aromatischen Kern verbunden ist.

- 35 Ausgangspunkt der Biosynthese von Prenyllipiden sind 3 x Acetyl-CoA Einheiten, die über β -Hydroxymethylglutaryl-CoA (HMG-CoA) und Mevalonat in die Ausgangs-Isopren-Einheit (C5), dem Isopentenylpyrophosphat (IPP), umgewandelt werden. Kürzlich wurde durch *in vivo* Fütterungsexperimente mit C¹³ gezeigt, daß in verschiedenen
 40 Eubakterien, Grünalgen und pflanzlichen Chloroplasten ein Mevalonat-unabhängiger Weg zur Bildung von IPP beschritten wird. Dabei werden Hydroxyethylthiamin, das durch Decarboxylierung von Pyruvat entsteht, und Glycerinaldehyd-3-Phosphat (3-GAP) in einer durch die 1-Deoxy-D-Xylulose-5-Phosphat Synthase vermittelten
 45 "Transketolase"-Reaktion zunächst in 1-Deoxy-D-Xylulose-5-phosphat umgewandelt (Lange et al., 1998; Schwender et al., 1997; Arigoni et al., 1997; Lichtenthaler et al., 1997; Sprenger et

al, 1997). Dieses wird dann durch eine intramolekulare Umordnung in 2-C-Methyl-D-Erythritol-4-Phosphat und im weiteren zu IPP umgesetzt (Arigoni et al, 1997; Zeidler et al, 1998). Biochemische Daten deuten darauf hin, daß der Mevalonat-Weg im Zytosol operiert und zur Bildung von Phytosterolen führt. Das Antibiotikum Mevinolin, ein spezifischer Inhibitor der Mevalonat-Bildung, führt lediglich zur Inhibition der Sterol-Biosynthese im Zytoplasma, während die Prenyllipid-Bildung in den Plastiden unbeeinflußt ist (Bach & Lichtenthaler, 1993). Der Mevalonat-unabhängige Weg ist dagegen plastidär lokalisiert und führt vornehmlich zur Bildung von Carotinoiden und plastidären Prenyllipiden (Schwender et al, 1997; Arigoni et al, 1997).

IPP steht im Gleichgewicht mit seinem Isomer, dem Dimethylallyl Pyrophosphat (DMAPP). Eine Kondensation von IPP mit DMAPP in Kopf-Schwanz Anlagerung ergibt das Monoterpen (C10) Geranyl-Pyrophosphat (GPP). Die Addition von weiteren IPP Einheiten führt zum Sesquiterpen (C15) Farnesy-Pyrophosphat (FPP) und zum Diterpen (C20) Geranyl-Geranyl-Pyrophosphat (GGPP). Die Verknüpfung zweier GGPP Moleküle führt zur Bildung der C40-Vorläufer für Carotinoide.

Bei gemischten Prenyllipiden ist die Isopren-Seitenkette verschiedener Länge mit Nicht-Isopren Ringen verbunden wie beispielsweise ein Porphyrin-Ring bei Chlorophyll a und b. Die Chlorophylle und Phylloquinone enthalten eine C20 Phytyl-Kette, in der nur die erste Isopren-Einheit eine Doppelbindung enthält. GGPP wird durch die Geranylgeranyl-Pyrophosphat-Oxidoreduktase (GGPPOR) zum Phytyl-Pyrophosphat (PPP) umgeformt, dem Ausgangsstoff für die weitere Bildung von Tocopherolen.

Bei den Ringstrukturen der gemischten Prenyllipide, die zur Bildung der Vitamine E und K führen, handelt es sich um Quinone, deren Ausgangsmetabolite aus dem Shikimat-Weg stammen. Die aromatischen Aminosäuren Phenylalanin bzw. Tyrosin werden in Hydroxyphenyl-Pyruvat umgewandelt, welches durch Dioxygenierung in Homogentisinsäure überführt wird. Das Chorismat wird ausgehend von Erythrose-4-Phosphat und Phosphoenolpyruvat (PEP) durch deren Kondensation zu 3-deoxy-D-Arabinohexitulosonat-7-Phosphat (DAHP) über die Zwischenstufen des Shikimatweges 3'-Dehydroquinat, 3'-Dehydroshikimat, Shikimat, Shikimat-3-Phosphat und 5'-Enolpyruvylshikimat-3-Phosphat gebildet. Dabei wird das Erythrose-4-Phosphat vom Calvinzyklus gebildet und das PEP von der Glykolyse bereitgestellt. Die oben beschriebene Homogentisinsäure wird anschließend an Phytylpyrophosphat (PPP) bzw. Geranylgeranylpyrophosphat gebunden, um die Vorläufer von α -Tocopherol und α -Tocotrienol, das 2-Methyl-6-phytylhydrochinon bzw. das

2-Methyl-6-geranylgeranylhydrochinon zu bilden. Durch Methylierungsschritte mit S-Adenosylmethionin als Methyl-Gruppen-Donor entsteht zunächst 2,3-Dimethyl-6-phytylquinol, dann durch Zyklisierung α -Tocopherol und durch nochmalige Methylierung α -Tocopherol (Richter, Biochemie der Pflanzen, Georg Thieme Verlag Stuttgart, 1996).

In der Literatur finden sich Beispiele die zeigen, daß die Manipulation eines Enzyms den Metabolit-Fluß direktional beeinflußen kann. In Experimenten mit einer veränderten Expression der Phytoen Synthase, welche zwei GGPP-Moleküle zu 15-cis-Phytoen miteinander verknüpft, konnte ein direkter Einfluß auf die Carotinoid-Mengen dieser transgenen Tomatenpflanzen gemessen werden (Fray und Grierson, Plant Mol. Biol. 22(4), 589-602 (1993); Fray et al., Plant J., 8, 693-701 (1995)). Wie zu erwarten, zeigen transgene Tabakpflanzen mit verringerten Mengen an Phenylalanin-Ammonium Lyase reduzierte Phenylpropanoid-Mengen. Das Enzym Phenylalanin-Ammonium Lyase katalysiert den Abbau von Phenylalanin, entzieht es also der Phenylpropanoid-Biosynthese (Bate et al., Proc. Natl. Acad. Sci USA 91 (16): 7608-7612 (1994); Howles et al., Plant Physiol. 112. 1617-1624 (1996)).

Über die Erhöhung des Metabolitflusses zur Steigerung des Tocopherol- bzw. Tocotrienolgehaltes in Pflanzen durch Überexpression einzelner Biosynthesegene ist bisher wenig bekannt. Lediglich WO 97/27285 beschreibt eine Modifikation des Tocopherol-Gehaltes durch verstärkte Expression bzw. durch Herunterregulation des Enzyms p-Hydroxyphenylpyruvatdioxygenase (HPPD). WO 99/04622 beschreibt eine Gensequenz codierend für eine γ -Tocopherolmethyltransferase aus einem photosynthetisch aktiven Organismus. WO 99/23231 zeigt, daß die Expression einer Geranylgeranyl-Reductase in transgenen Pflanzen eine gesteigerte Tocopherolbiosynthese zur Folge hat.

Aufgabe der vorliegenden Erfindung war die Entwicklung einer transgenen Pflanze mit erhöhtem Gehalt an Tocopherolen und Tocotrienolen.

Die Aufgabe wurden überraschenderweise gelöst durch die Überexpression eines 2-Methyl-6-phytylhydrochinon-methyltransferase Gens in Pflanzen.

Zu diesem Zweck wurde in transgenen Pflanzen die Aktivität der 2-Methyl-6-phytylhydrochinon-methyltransferase (MPMT) durch Überexpression des MPMT-Gens aus Synechocystis spec. PCC 6803 er-

höht. Dies kann prinzipiell durch Expression homologer oder heterologer MPMT-Gene erreicht werden.

In Beispiel 2 wird erstmals die Klonierung einer MPMT-DNA-Sequenz 5 (SEQ-ID Nr. 1) aus *Synechocystis spec. PCC 6803* beschrieben. Um eine Plastidenlokalisierung zu gewährleisten wird der MPMT-Nukleotidsequenz aus *Synechocystis* eine Transitsignalsequenz (Abb. 3, Abb. 4) vorangestellt. Auch geeignet als Expressionskassette ist eine DNA-Sequenz, die für ein MPMT-Gen codiert, das mit 10 SEQ-ID Nr. 1 hybridisiert, bzw. zur Gesamtsequenz oder zu Teilesequenzen homolog ist und das aus anderen Organismen bzw. aus Pflanzen stammt.

Das durch die zusätzliche Expression des MPMT-Gens nun vermehrt 15 zur Verfügung stehende 2,3-Dimethyl-6-phytylhydrochinon wird weiter in Richtung Tocopherole und Tocotrienol umgesetzt (Abbildung 1).

Die Herstellung der transgenen Pflanzen erfolgt durch Transformation 20 der Pflanzen mit einem das MPMT-Gen enthaltenden Konstrukt. Als Modellpflanzen für die Produktion von Tocopherolen und Tocotrienolen wurden *Arabidopsis thaliana*, *Brassica napus* und *Nicotiana tabacum* eingesetzt.

25 Messungen an MPMT-*Synechocystis* knock out Mutanten ergaben bezüglich des Gehaltes an Tocopherolen und Tocotrienolen eine drastische Abnahme. Dies belegt den direkten Einfluß der plastidären pflanzlichen MPMT auf die Synthese von Tocopherolen und Tocotrienolen.

30 Gegenstand der Erfindung ist die Verwendung einer DNA-Sequenz SEQ-ID Nr. 1 aus *Synechocystis spec. PCC 6803*, die für eine MPMT oder deren funktionelle Äquivalente kodiert, zur Herstellung einer Pflanze mit erhöhtem Gehalt an Tocopherolen und Tocotrienolen. Die Nukleinsäuresequenz kann dabei z.B. eine DNA- oder cDNA-Sequenz sein. Zur Insertion in eine Expressionskassette geeignete 35 kodierende Sequenzen sind beispielsweise solche, die für eine MPMT kodieren und die dem Wirt die Fähigkeit zur Überproduktion von Tocopherolen und Tocotrienolen verleihen.

40 Die Expressionskassetten beinhalten außerdem regulative Nukleinsäuresequenzen, welche die Expression der kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfaßt eine Expressionskassette stromaufwärts, d.h. am 5'-Ende 45 der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden ko-

- dierenden Sequenz für das MPMT-Gen operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elementen derart, daß jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann. Die zur operativen Verknüpfung bevorzugten aber nicht darauf beschränkten Sequenzen sind Target-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Plastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärker wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693 -8711).
- Beispielhaft kann die pflanzliche Expressionskassette in ein Derivat des Transformationsvektors pBin-19 mit 35s Promotor (Bevan, M., Nucleic Acids Research 12: 8711-8721 (1984)) eingebaut werden. Abbildung 4 zeigt ein Derivat des Transformationsvektors pBin -19 mit samenspezifischem Legumin B4-Promotor.
- Als Promotoren der Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann. Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der CaMV 35S-Promotor aus dem Blumenkohl-Mosaik-Virus (Franck et al., Cell 21 (1980), 285 - 294). Dieser Promotor enthält bekanntlich unterschiedliche Erkennungssequenzen für transkriptionale Effektoren, die in ihrer Gesamtheit zu einer permanenten und konstitutiven Expression des eingeführten Gens führen (Benfey et al., EMBO J. 8 (1989), 2195-2202).
- Die Expressionskassette kann auch einen chemisch induzierbaren Promotor enthalten, durch den die Expression des exogenen MPMT-Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren wie z.B. der PRP1-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993), 361-366), ein durch Salizylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzenesulfonamid-induzierbarer (EP-A 388186), ein durch Tetrazyklin-induzierbarer (Gatz et al., (1992) Plant J. 2, 397-404), ein durch Abscisinsäure-induzierbarer (EP-A 335528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer (WO 93/21334) Promotor können u.a. verwendet werden.
- Weiterhin sind insbesonders solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen beispielsweise die Biosynthese von Tocopherol bzw. dessen Vorstu-

fen stattfindet. Insbesondere zu nennen sind Promotoren, die eine blattspezifische Expression gewährleisten. Zu nennen sind der Promotor der cytosolischen FBPase aus Kartoffel oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al., EMBO J. 8 (1989), 5 2445 - 245).

Mit Hilfe eines samenspezifischen Promotors konnte ein Fremdprotein stabil bis zu einem Anteil von 0,67 % des gesamten löslichen Samenproteins in den Samen transgener Tabakpflanzen exprimiert werden (Fiedler und Conrad, Bio/Technology 10 (1995), 10 1090-1094). Die Expressionskassette kann daher beispielsweise einen samenspezifischen Promotor (bevorzugt den Phaseolin-Promotor (US 5504200), den USP- (Baumlein, H. et al., Mol. Gen. Genet. (1991) 225 (3), 459 - 467) oder LEB4-Promotor (Fiedler und 15 Conrad, 1995)), das LEB4-Signalpeptid, das zu exprimierende Gen und ein ER-Retentionssignal enthalten.

Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten MPMT-DNA Sequenz 20 und vorzugsweise einer zwischen Promotor und MPMT-DNA-Sequenz inserierten DNA, die für ein chloroplastenspezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: 25 A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. 30 and Wiley-Interscience (1987) beschrieben sind.

Insbesondere bevorzugt sind Sequenzen, die ein Targeting in den Plastiden gewährleisten.

35 Es können auch Expressionskassetten verwendet werden, deren DNA-Sequenz für ein MPMT-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevorzugt sind für die Chloroplasten spezifische Transitpeptide, welche nach Translokation des MPMT-Gens in 40 die Chloroplasten vom MPMT-Teil enzymatisch abgespalten werden. Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären Nicotiana tabacum Transketolase oder einem anderen Transitpeptid (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco oder der Ferredoxin NADP Oxidoreduktase) oder dessen funktionalen Äquivalent abgeleitet ist.

Besonders bevorzugt sind DNA-Sequenzen von drei Kassetten des Plastiden-Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastern als KpnI/BamHI Fragmente mit einem ATG-Codon in der NcoI Schnittstelle:

5

pTP09

KpnI_GGTACCATGGCGTCTTCTTCTCACTCTCTCAAGCTATCCTCTCGTTCTGTC
CCTCGCCATGGCTCTGCCTCTCAACTTCCCCTCTCACTTTCCGCCCTAA
10 ATCCAATCCAATATCACCAACCTCCGCCCGTACTCCTCCTCCGCCGCCGCCGTG
TAAGGTACCGGCGATTCTGCCTCAGCTGCAACCATAAGAGAAAATGAGACTGCGGGGA
TCC_BamHI

pTP10

15

KpnI_GGTACCATGGCGTCTTCTTCTCACTCTCTCAAGCTATCCTCTCGTTCTGTC
CCTCGCCATGGCTCTGCCTCTCAACTTCCCCTCTCACTTTCCGCCCTAA
ATCCAATCCAATATCACCAACCTCCGCCCGTACTCCTCCTCCGCCGCCGCCGTG
TAAGGTACCGGCGATTCTGCCTCAGCTGCAACCATAAGAGAAAATGAGACTGCGCTG
20 GATCC_BamHI

pTP11

KpnI_GGTACCATGGCGTCTTCTTCTCACTCTCTCAAGCTATCCTCTCGTTCTGTC
25 CCTCGCCATGGCTCTGCCTCTCAACTTCCCCTCTCACTTTCCGCCCTAA
ATCCAATCCAATATCACCAACCTCCGCCCGTACTCCTCCTCCGCCGCCGCCGTG
TAAGGTACCGGCGATTCTGCCTCAGCTGCAACCATAAGAGAAAATGAGACTGCGGGG
ATCC_BamHI

30 Die inserierte Nukleotid-Sequenz kodierend für eine MPMT kann synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen DNA-Bestandteilen enthalten, sowie aus verschiedenen heterologen MPMT-Genabschnitten verschiedener Organismen bestehen. Im allgemeinen werden synthetische Nukleotid-Sequenzen mit Kodons erzeugt, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden. Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.

45

Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 5 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze 10 sein. Die Expressionskassette beinhaltet in der 5'-3'-Transkriptionsrichtung den Promotor, eine DNA-Sequenz die für ein MPMT-Gen codiert und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.

15

Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in vitro-Mutagenese, "primer repair", Restriktion oder Ligation verwendet werden. Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden 20 der Fragmente für die Ligation zur Verfügung gestellt werden.

25

Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids 30 pTiACH5 entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktionelle Äquivalente.

Vorzugsweise wird die fusionierte Expressionskassette, die für ein MPMT-Gen kodiert, in einen Vektor, beispielsweise pBin19, 35 kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren. Mit einem solchen Vektor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie z.B. von Tabakpflanzen, verwendet werden, indem beispielsweise verwundete Blätter oder 40 Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden. Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von 45 S.D. Kung und R. Wu, Academic Press, 1993, S. 15 - 38. Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden,

die ein in die Expressionskassette integriertes Gen für die Expression eines MPMT-Gens enthalten.

Zur Transformation einer Wirtspflanze mit einer für eine MPMT kodierenden DNA wird eine Expressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktionelle Regulationssignale, beispielsweise Sequenzen für Replikation oder Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Bio-
technology" (CRC Press), Kap. 6/7, S. 71 - 119 (1993) beschrieben.

Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermehrung, beispielsweise in E. coli, ermöglichen. Geeignete Klonierungsvektoren sind u.a. pBR322, pUC-Serien, M13mp-Serien und pACYC184. Besonders geeignet sind binäre Vektoren, die sowohl in E. coli als auch in Agrobakterien replizieren können.

Ein weiterer Gegenstand der Erfindung betrifft die Verwendung einer Expressionskassette enthaltend eine DNA-Sequenz SEQ-ID Nr. 1 oder eine mit dieser hybridisierende DNA-Sequenz zur Transformation von Pflanzen, -zellen, -geweben oder Pflanzenteilen.
Vorzugsweise ist Ziel der Verwendung die Erhöhung des Gehaltes an Tocopherolen und Tocotrienolen der Pflanze.

Dabei kann je nach Wahl des Promotors die Expression spezifisch in den Blättern, in den Samen, Blütenblättern oder anderen Teilen der Pflanze erfolgen. Solche transgenen Pflanzen, deren Vermehrungsgut, sowie deren Pflanzenzellen, -gewebe oder -teile sind ein weiterer Gegenstand der vorliegenden Erfindung.

Die Expressionskassette kann darüberhinaus auch zur Transformation von Bakterien, Cyanobakterien, Hefen, filamentösen Pilzen und Algen mit dem Ziel einer Erhöhung des Gehaltes an Tocopherolen und Tocotrienolen eingesetzt werden.

Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet. Es werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind die Protoplasten-
transformation durch Polyethylenglykol-induzierte DNA-Aufnahme,
das biolistische Verfahren mit der Genkanone - die sogenannte particle bombardment Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion

und der durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993), 128 - 143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205 - 225) beschrieben. Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 10 12 (1984), 8711).

Mit einer Expressionskassette transformierte Agrobakterien können ebenfalls in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie Getreide, Mais, Hafer, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und den verschiedenen Baum-, Nuß- und Weinspezies, verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.

Funktionell äquivalente Sequenzen, die für ein MPMT-Gen kodieren, sind solche Sequenzen, welche trotz abweichender Nukleotidsequenz noch die gewünschten Funktionen besitzen. Funktionelle Äquivalente umfassen somit natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z.B. durch chemische Synthese erhaltene, an den Kodon-Gebrauch einer Pflanze angepaßte, künstliche Nukleotid-Sequenzen.

Unter einem funktionellen Äquivalent versteht man insbesondere auch natürliche oder künstliche Mutationen einer ursprünglich isolierten für eine MPMT kodierende Sequenz, welche weiterhin die gewünschte Funktion zeigen. Mutationen umfassen Substitutionen, Additionen, Deletionen, Vertauschungen oder Insertionen eines oder mehrerer Nukleotidreste. Somit werden beispielsweise auch solche Nukleotidsequenzen durch die vorliegende Erfindung mit umfaßt, welche man durch Modifikation der MPMT-Nukleotidsequenz erhält. Ziel einer solchen Modifikation kann z.B. die weitere Einengung der darin enthaltenen kodierenden Sequenz oder z.B. auch die Einfügung weiterer Restriktionszym-Schnittstellen sein.

Beispiel 8 beschreibt einen Deletionsklon des MPMT-Gens, siehe SEQ-ID Nr. 7)

Funktionelle Äquivalente sind auch solche Varianten, deren Funktion, verglichen mit dem Ausgangsgen bzw. Genfragment, abgeschwächt oder verstärkt ist.

- Außerdem sind artifizielle DNA-Sequenzen geeignet, solange sie, wie oben beschrieben, die gewünschte Eigenschaft beispielsweise der Erhöhung des Tocopherol-Gehaltes in der Pflanze durch Überexpression eines MPMT-Gens in Kulturpflanzen vermitteln. Solche 5 artifiziellen DNA-Sequenzen können beispielsweise durch Rückübersetzung mittels Molecular Modelling konstruierter Proteine, die MPMT-Aktivität aufweisen oder durch in vitro-Selektion ermittelt werden. Besonders geeignet sind kodierende DNA-Sequenzen, die durch Rückübersetzung einer Polypeptidsequenz gemäß der für die 10 Wirtspflanze spezifischen Kodon-Nutzung erhalten wurden. Die spezifische Kodon-Nutzung kann ein mit pflanzengenetischen Methoden vertrauter Fachmann durch Computerauswertungen anderer, bekannter Gene der zu transformierenden Pflanze leicht ermitteln.
- 15 Als weitere geeignete äquivalente Nukleinsäure-Sequenzen sind zu nennen Sequenzen, welche für Fusionsproteine kodieren, wobei Bestandteil des Fusionsproteins ein MPMT-Polypeptid oder ein funktionell äquivalenter Teil davon ist. Der zweite Teil des Fusionsproteins kann z.B. ein weiteres Polypeptid mit enzymatischer 20 Aktivität sein oder eine antigene Polypeptidsequenz mit deren Hilfe ein Nachweis auf MPMT-Expression möglich ist (z.B. myc-tag oder his-tag). Bevorzugt handelt es sich dabei jedoch um eine regulative Proteinsequenz, wie z.B. ein Transitpeptid, das das MPMT-Protein in die Plastiden leitet.
- 25 Erhöhung des Gehaltes an Tocopherolen und Tocotrienolen bedeutet im Rahmen der vorliegenden Erfindung die künstlich erworbene Fähigkeit einer erhöhten Biosyntheseleistung dieser Verbindungen durch funktionelle Überexpression eines MPMT-Gens SEQ-ID Nr. 1 30 oder SEQ-ID Nr. 7 in der Pflanze gegenüber der nicht gentechnisch modifizierten Pflanze für die Dauer mindestens einer Pflanzengeneration.
- Dabei kann sowohl der Gehalt an Tocopherolen und Tocotrienolen 35 gesteigert werden. Vorzugsweise wird der Gehalt an Tocopherolen gesteigert. Aber es ist auch möglich unter bestimmten Bedingungen vorzugsweise den Gehalt an Tocotrienolen zu steigern.
- Der Biosyntheseort von Tocopherolen beispielsweise ist unter an- 40 derem das Blattgewebe, so daß eine blattspezifische Expression des MPMT-Gens sinnvoll ist. Es ist jedoch naheliegend, daß die Tocopherol-Biosynthese nicht auf das Blattgewebe beschränkt sein muß, sondern auch in allen übrigen Teilen der Pflanze - besonders in fetthaltigen Samen - gewebespezifisch erfolgen kann.

Darüberhinaus ist eine konstitutive Expression des exogenen MPMT-Gens von Vorteil. Andererseits kann aber auch eine induzierbare Expression wünschenswert erscheinen.

5 Die Wirksamkeit der Expression des transgen exprimierten MPMT-Gens kann beispielsweise *in vitro* durch Sproßmeristemvermehrung ermittelt werden. Zudem kann eine in Art und Höhe veränderte Expression des MPMT-Gens und deren Auswirkung auf die Tocopherol-Biosyntheseleistung an Testpflanzen in Gewächshausversuchen getestet werden.

Gegenstand der Erfindung sind außerdem transgene Pflanzen, transformiert mit einer Expressionskassette enthaltend die Sequenz SEQ-ID Nr. 1 oder SEQ-ID Nr. 7 oder eine mit dieser hybridisierende bzw. zur Gesamtsequenz oder zu Teilsequenzen homologen DNA-Sequenz, sowie transgene Zellen, Gewebe, Teile und Vermehrungsgut solcher Pflanzen. Besonders bevorzugt sind dabei transgene Kulturpflanzen, wie z.B. Gerste, Weizen, Roggen, Mais, Hafer, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, 20 Kartoffel, Tabak, Tomate, Raps, Alfalfa, Tagetes, Salat und die verschiedenen Baum-, Nuß- und Weinspezies.

Pflanzen im Sinne der Erfindung sind mono- und dikotyle Pflanzen.

25 Gegenstand der Erfindung sind weiterhin photosynthetisch aktive Organismen transformiert mit einer Expressionskassette enthaltend die Sequenz SEQ-ID Nr. 1 oder SEQ-ID Nr. 7 oder eine mit dieser hybridisierende bzw. zur Gesamtsequenz oder zu Teilsequenzen homologen DNA-Sequenz. Photosynthetisch aktive Organismen sind neben Pflanzen, beispielsweise Cyanobakterien, Moose und Algen.

Da es sich bei diesem Biosyntheseweg um einen ausschließlich plastidär-lokalisierten Stoffwechselweg handelt, bietet er optimale Targetenzyme für die Entwicklung von Inhibitoren. Da sich nach 35 heutigem Stand der Technik kein mit der Synechocystis MPMT identisches oder ähnliches Enzym in humanen und tierischen Organismen befindet, ist davon auszugehen, daß Inhibitoren sehr spezifisch auf Pflanzen wirken sollten.

40 Wie bereits erwähnt ist die MPMT ein potentielles Target für Herbizide. Um effiziente Hemmstoffe der MPMT finden zu können, ist es notwendig, geeignete Testsysteme, mit denen Inhibitor-Enzym-Bindungsstudien durchgeführt werden können, zur Verfügung zu stellen. Hierzu wird beispielsweise die komplette cDNA-Sequenz 45 der MPMT aus Synechocystis in einen Expressionsvektor (pQE, Qia-gen) kloniert und in *E. coli* überexprimiert.

Das mit Hilfe der erfindungsgemäßen Expressionskassette exprimierte MPMT-Protein eignet sich besonders zur Auffindung von für die MPMT spezifischen Hemmstoffen.

5 Dazu kann die MPMT beispielsweise in einem Enzymtest eingesetzt werden, bei dem die Aktivität der MPMT in An- und Abwesenheit des zu testenden Wirkstoffs ermittelt wird. Aus dem Vergleich der beiden Aktivitätsbestimmungen lässt sich eine qualitative und quantitative Aussage über das Hemmverhalten des zu testenden
10 Wirkstoffes machen.

Mit Hilfe des erfindungsgemäßen Testsystems kann eine Vielzahl von chemischen Verbindungen schnell und einfach auf herbizide Eigenschaften überprüft werden. Das Verfahren gestattet es,
15 reproduzierbar aus einer großen Anzahl von Substanzen gezielt solche mit großer Wirkstärke auszuwählen, um mit diesen Substanzen anschließend weitere, dem Fachmann geläufige vertiefte Prüfungen durchzuführen.

20 Ein weiterer Gegenstand der Erfindung sind Herbizide, die mit dem oben beschriebenen Testsystem identifizierbar sind.

Durch Überexpression der für eine MPMT kodierenden Gensequenz SEQ-ID Nr. 1 oder SEQ-ID Nr. 7 in einer Pflanze wird eine erhöhte
25 Resistenz gegenüber Inhibitoren der MPMT erreicht. Die derart hergestellten transgenen Pflanzen sind ebenfalls Gegenstand der Erfindung.

Das unter Verwendung der DNA-Sequenz SEQ-ID Nr. 1 oder SEQ-ID
30 Nr. 7 hergestellte MPMT-Protein eignet sich auch zur Durchführung von Biotransformationen zur Bereitstellung größerer Mengen 2,3-Dimethyl-6-phytylhydrochinon. Dabei wird 2-Methyl-6-phytylhydrochinon in Gegenwart des Enzyms MPMT und des Cosubstrats S-Adenosyl-L-Methionin zu 2,3-Dimethyl-6-phytylhydrochinon umgesetzt.
35 Die Biotransformation lässt sich prinzipiell mit ganzen Zellen, die das Enzym MPMT exprimieren oder Zellextrakten aus diesen Zellen oder aber mit aufgereinigter oder hochreiner MPMT in Gegenwart von S-Adenosyl-L-Methionin durchführen.

40 Weitere Gegenstände der Erfindung sind:

- Verfahren zur Transformation einer Pflanze dadurch gekennzeichnet, daß man Expressionskassetten enthaltend eine DNA-Sequenz SEQ-ID Nr. 1 oder SEQ-ID Nr. 7 oder eine mit dieser
45 hybridisierende, bzw. zur Gesamtsequenz oder zu Teilsequenzen homologen DNA-Sequenz in eine Pflanzenzelle oder Protoplasten

von Pflanzen einbringt und diese zu ganzen Pflanzen regeneriert.

- Verwendung der DNA-Sequenz SEQ-ID Nr. 1 oder SEQ-ID Nr. 7
5 oder eine mit dieser hybridisierende DNA-Sequenz zur Herstellung von Pflanzen mit erhöhtem Gehalt an Tocopherolen und Tocotrienolen durch Expression einer MPMT DNA-Sequenz in Pflanzen.

10 Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:

Sequenzanalyse rekombinanter DNA

15 Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzer der Firma Licor (Vertrieb durch MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463 - 5467).

20 Beispiel 1

Identifizierung einer 2-Methyl-6-phytylhydrochinon-methyltransferase aus *Synechocystis spec. PCC 6803*.

25 Die Klonierung und Identifizierung der 2-Methyl-6-phytylhydrochinon-methyltransferase aus *Synechocystis spec. PCC 6803* erfolgte folgendermaßen:

Unter Verwendung eines in S-Adenosyl-L-Methionin Methyltransferase 30 konservierten Sequenzmotivs, welches für die Bindung des S-Adenosyl-L-Methionin (SAM) verantwortlich ist (C.P. Joshi und V.L. Chiang. PMB. 37: 663-374, 1998), wurde eine genomische DNA Datenbank von *Synechocystis spec. PCC 6803* durchmustert (Kaneko et al., DNA Res. 34:109-136, 1996). Die bei der Durchmusterung 35 identifizierten hypothetischen Proteine, welche über das SAM-Bindemotiv verfügten, wurden mit den Primärsequenzen der *Synechocystis spec. PCC 6803* γ -Tocopherol-methyltransferase (bezeichnet als slr0089) sowie der *Arabidopsis thaliana* γ -Tocopherol-methyltransferase (David Shintani und Dean DellaPenna. Sience. 40 282:2098-2100, 1998) verglichen.

Dabei konnte ein hypothetisches Protein identifiziert werden (bezeichnet sll0418 SEQ.-ID Nr. 2), welches geringe Übereinstimmung in der Aminosäuresequenz mit den γ -Tocopherol-methyltransferasen 45 aus *Synechocystis spec. PCC 6803* und *Arabidopsis thaliana* aufwies (36% bzw. 28% Identität).

Weitere Untersuchungen der Primärsequenz des hypothetischen Proteins sll0418 belegten das Vorkommen einer putativen prokaryontischen Signalsequenz innerhalb der ersten 20 Aminosäuren (PSIGNAL, PC/GENE™ IntelliGenetics, Inc ©1991). Eine solche Sequenz konnte ebenfalls in der *Synechocystis spec. PCC 6803* γ -Tocopherolmethyltransferase (slr0089) identifiziert werden (D. Shintani und D. DellaPenna. Sience. 282:2098-2100, 1998) und deutet auf eine identische Lokalisation der beiden Proteine hin.

- 10 Das vorhergesagte Molekulargewicht des unprozessierten Proteins beträgt 34,9 kDa und liegt damit in einem Bereich der auch für die *Synechocystis spec. PCC 6803* γ -Tocopherolmethyltransferase (David Shintani und Dean DellaPenna, Sience. 282:2098-2100, 1998) und der aus Paprikafrüchten gereinigten γ -Tocopherolmethyltransferase (d'Harlingue and Camara, Plastid enzymes of terpenoid biosynthesis: Purification of γ -Tocopherol Methyltransferase from Capsicum Chromoplasts. Journal of Biological Chemistry, Vol. 269 No.28, 15200-152003, 1985) ermittelt wurde.
- 15 20 Unter Berücksichtigung der Fakten, schlußfolgerten wir, daß es sich bei dem hypothetischen Protein sll0418 um eine Tocopherolmethyltransferase handeln könnte.

Beispiel 2

- 25 Amplifikation und Klonierung der 2-Methyl-6-phytylhydrochinon-methyltransferase aus *Synechocystis spec. PCC 6803*

Die DNA kodierend für den ORF (open reading frame) sll0418 wurde 30 mittels polymerase chain reaction (PCR) aus *Synechocystis spec. PCC 6803* gemäß der Methode nach Crispin A. Howitt (BioTechniques 21:32-34, July 1996) unter Verwendung eines sense spezifischen Primers (sll04185' Seq. Nr. 5) und eines antisense spezifischen Primers (sll04183' Seq. Nr. 6) amplifiziert.

- 35 40 Die PCR Bedingungen waren die folgenden:

Die PCR erfolgte in einem 50 μ l Reaktionsansatz in dem enthalten war:

- 45 40 -5 μ l einer *Synechocystis spec. PCC 6803* Zellsuspension
-0,2 mM dATP, dTTP, dGTP, dCTP
-1,5 mM Mg(OAc)₂
-5 μ g Rinderserum-Albumin
-40pmol sll04185'
-40pmol sll04183'
-15 μ l 3,3x rTth DNA Polymerase XLPuffer (PE Applied Biosystems)

-5U rTth DNA Polymerase XL (PE Applied Biosystems)

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

Schritt 1: 5 Minuten 94°C (Denaturierung)

Schritt 2: 3 Sekunden 94°C

5 Schritt 3: 2 Minuten 58°C (Annealing)

Schritt 4: 2 Minuten 72°C (Elongation)

40 Wiederholungen der Schritte 2-4

Schritt 5: 10 Minuten 72°C (Post-Elongation)

Schritt 6: 4°C (Warteschleife)

10

Das Amplikon wurde unter Verwendung von Standardmethoden in den PCR Klonierungsvektor pGEM-T (Promega) kloniert. Die Identität des erzeugten Amplikons wurde durch Sequenzierung unter Verwendung des M13F (-40) Primers bestätigt.

15

Beispiel 3

Erzeugung einer sll0418 Knock out Mutante

20 Ein DNA Konstrukt zur Erzeugung einer Deletionsmutante des ORF sll0418 in Synechocystis spec. PCC 6803 wurde unter Anwendung von Standard Klonierungstechniken erzeugt.

Der Vektor pGEM-T/sll0418 wurde unter Verwendung des Restriktionsenzym Ball1 verdaut. Das Vorhandensein von zwei Ball1 Schnittstellen innerhalb der sll0418 Sequenz (Position Bp 109 bzw Bp 202) hatte den Verlust eines 93 Bp umfassenden internen Fragments zur Folge. In die Ball1 Schnittstellen des sll0418 ORF wurde die Aminoglycosid-3' Phosphotransferase des Transposons Tn903 kloniert. Dazu wurde das Tn903 als EcoR1 Fragment aus dem Vektor pUC4k (Vieira, J und Messing, J Gene:19, 259-268, 1982) isoliert, die überstehenden Enden des Restriktionsverdaus nach Standardmethoden in glatte Enden überführt und in den Ball1 geschnittenen Vektor pGEM-T/sll0418 ligiert. Der Ligationsansatz wurde zur Transformation von E.coli X11 blue Zellen verwendet. Transformanden wurden durch Verwendung von Kanamycin und Ampicillin selektioniert. Ein rekombinantes Plasmid (pGEM-T/sll0418::tn903) wurde isoliert und zur Transformation von Synechocystis spec. PCC 6803 gemäß der Methode nach Williams (Methods Enzymol. 167:776-778, 40 1987) eingesetzt.

Synechocystis spec. PCC 6803 Transformanden wurden selektioniert auf Kanamycin haltigem (kan) BG-11 Festmedium (Castenholz, Methods in Enzymology, Seite 68-93, 1988) bei 28°C und 30 μ mol 45 Photonen \times ($m^2 \times s$) $^{-1}$. Vier unabhängige Knock out Mutanten konnten

nach fünf Selektionsrunden (Passagen von Einzelkolonien auf frisches BG-11kn Medium) erzeugt werden.

Der vollständige Verlust des sll0418 Endogens bzw. der Austausch
5 gegen die rekombinante sll0418::tn903 DNA, wurde durch PCR Analy-
sen bestätigt.

Beispiel 4

10 Vergleich der Tocopherolproduktion in *Synechocystis* spec. PCC
6803 Wildtypzellen und den erzeugten Knock out Mutanten des ORF
sll0418.

Die auf den BG-11kan Agarmedium kultivierten Zellen der vier un-
15 abhängigen *Synechocystis* spec. PCC 6803 Knock out Mutanten des
ORF sll0418 sowie untransformierte Wildtypzellen wurden zum
Animpfen von Flüssigkulturen verwendet. Diese Kulturen wurden bei
28°C und 30 μ mol Photonen \times ($m^2 \times s$) $^{-1}$ (30 μ E) für ca. 3 Tage kulti-
viert. Nach Bestimmung der OD₇₃₀ der einzelnen Kulturen, wurde die
20 OD₇₃₀ aller Kulturen durch entsprechende Verdünnungen mit BG-11
(Wildtypen) bzw. BG-11kan (Mutanten) synchronisiert. Diese auf
Zelldichte synchronisierten Kulturen wurden zum Animpfen von drei
Kulturen pro Mutante bzw. der Wildtypkontrollen verwendet. Die
biochemischen Analysen konnten somit unter Verwendung von jeweils
25 drei unabhängig gewachsenen Kulturen einer Mutante und der ent-
sprechenden Wildtypen durchgeführt werden. Die Kulturen wurden
bis zu einer optischen Dichte von OD₇₃₀=0,3 angezogen. Das Medium
der Zellkultur wurde durch zweimalige Zentrifugation bei 14000
rpm in einer Eppendorf Tischzentrifuge entfernt. Der daran
30 anschließende Aufschluß der Zellen erfolgte durch viermalige In-
kubation im Eppendorfschüttler bei 30°C, 1000rpm in 100% Methanol
für 15 Minuten, wobei die jeweils erhaltenen Überstände vereinigt
wurden. Weitere Inkubationsschritte ergaben keine weitere Frei-
setzung von Tocopherolen oder Tocotrienolen.

35

Um Oxidation zu vermeiden, wurden die erhaltenen Extrakte direkt
nach der Extraktion mit Hilfe einer Waters Alliance 2690 HPLC-An-
lage analysiert. Tocopherole und Tocotrienole wurden über eine
reverse Phase Säule(ProntoSil 200-3-C30, Bischoff) mit einer mo-
40 bilen Phase von 100% Methanol getrennt und anhand von Standards
(Merck) identifiziert. Als Detektionssystem diente die Fluores-
zenz der Substanzen (Anregung 295nm, Emission 320 nm), die mit
Hilfe eines Jasco Fluoreszensdetektors FP 920 nachgewiesen wurde.

In den *Synechocystis* spec. PCC 6803 knock out Mutanten des ORF sll0418 konnten keine Tocopherole und Tocotrienole gefunden werden. Tocopherole und Tocotrienole wurden jedoch in den *Synechocystis* spec. PCC 6803 Wildtypzellen gemessen.

5

Der Verlust der Fähigkeit zur Produktion von Tocopherolen und Tocotrienolen innerhalb der knock out Mutanten des ORF sll0418 im Vergleich zu den *Synechocystis* spec. PCC 6803 Wildtypzellen zeigt, daß das Gen sll0418 für eine 2-Methyl-6-phytylhydrochinon-
10 methyltransferase kodiert.

Beispiel 5

Funktionelle Charakterisierung der 2-Methyl-6-phytylhydrochinon-
15 methyltransferase aus *Synechocystis* spec. PCC 6803 durch heterologe Expression in E.coli.

Das hypothetische Protein sll0418 aus *Synechocystis* spec. PCC 6803 konnte durch funktionelle Expression in E.coli als
20 2-Methyl-6-phytylhydrochinon-methyltransferase identifiziert werden.

Das aus *Synechocystis* spec. PCC 6803 amplifizierte Gen sll0418 wurde im korrekten Leserahmen in den Expressionsvektor pQE-30
25 (Qiagen) subkloniert. Die zur Amplifikation des OFR sll0418 aus *Synechocystis* spec. PCC 6803 verwendeten Primer sll04185' bzw. sll04183' (Sequenz ID Nr. 5 und 6) waren so konstruiert, daß an das 5' Ende und das 3' Ende des Amplikons BamH1 Restriktions-
schnittstellen addiert wurden, siehe Sequenz ID Nr. 3. Das
30 sll0418 Fragment wurde unter Verwendung dieser flankierenden BamH1 Restriktionschnittstellen aus dem rekombinanten Plasmid pGEM-T/sll0418 isoliert und unter Anwendung von Standardmethoden in einen BamHI geschnittenen pQE-30 ligiert. Der Ligationsansatz wurde zur Transformation von M15 E.coli Zellen verwendet und
35 Kanamycin und Ampicillin resistente Transformanden wurden analysiert. Die Kanamycin Resistenz wird durch das in den M15 Zellen enthaltene pREP-4 Plasmid vermittelt. Ein rekombinantes Plasmid (pQE-30/sll0418) welches das sll0418 Fragment in der richtigen Orientierung trug, wurde isoliert. Die Identität und Orientierung
40 des Inserts wurde durch Sequenzierung bestätigt.

Das rekombinante Plasmid pQE-30/sll0418 wurde zur Transformation von M15 E.coli Zellen verwendet, um rekombinantes sll0418 Protein zu erzeugen. Unter Verwendung einer aus der Transformation
45 hervorgegangenen Kolonie wurde eine Übernachtkultur in Luria Broth Medium mit 200µg/ml Ampicillin (Amp) und 50µg/ml Kanamycin (Kan) angeimpft. Ausgehend von dieser Kultur wurde am nächsten

Morgen eine 100ml Luria Broth Kultur (Amp/Kan) angeimpft.. Diese Kultur wurde bei 28°C auf einem Schüttelinkubator bis zum erreichten einer OD₆₀₀:0,35-0,4 inkubiert. Anschließend wurde die Produktion des rekombinanten Proteins durch Zugabe von 0,4 mM Iso-

5 propyl-β-D-thiogalaktopyranosid (IPTG) induziert. Die Kultur wurde für weitere 3 Stunden bei 28°C geschüttelt und die Zellen anschließend durch Zentrifugation bei 8000g pelletiert.

Das Pellet wurde in 600μl Lysispuffer (ca. 1-1,5 ml /g Pellet
10 Naßgewicht, 10 mM HEPES KOH pH 7,8, 5 mM Dithiothreitol (DTT), 0,24 M Sorbitol) resuspendiert. Anschließend wurde PMSF (Phenylmethylsulfonat) zu einer Endkonzentration von 0,15 mM beigefügt und der Ansatz für 10 Minuten auf Eis gestellt. Der Aufschluß der Zellen erfolgte durch einen 10 Sekunden Ultraschall-
15 Puls unter Verwendung eines Ultraschallstabes. Nach Zugabe von Triton X100 (Endkonzentration 0,1%) wurde die Zellsuspension für 30 Minuten auf Eis inkubiert. Der Ansatz wurde anschließend für 30 Minuten bei 25000xg abzentrifugiert und der Überstand zum Assay eingesetzt.

20 Die Aktivitätsbestimmung der 2-Methyl-6-phytylhydrochinon-methyltransferase erfolgt durch Nachweis des radioaktiv markierten Reaktionsproduktes 2,3-Dimethyl-6-phytylhydrochinon.

25 Dazu wurden 135μl des Enzyms (ca.300-600μg) zusammen mit 20μl Substrat (2-Methyl-6-phytylhydrochinon) und 15μl (0,46 mM SAM ¹⁴C) Methylgruppendonor in folgendem Reaktionspuffer : 200μl (125mM) Tricine-NaOH pH 7,6, 100μl (1,25 mM) Sorbitol, 10μl (50mM) MgCl₂ und 20μl (250mM) Ascorbat für 4 Stunden bei 25°C im Dunkeln
30 inkubiert.

Das Abstoppen der Reaktion erfolgte durch Zugabe von 750μl Chloroform/Methanol (1:2) + 150μl 0,9% NaCl. Der gemischte Ansatz wurde kurz zentrifugiert und die obere Phase wurde verworfen. Die
35 untere Phase wird in ein neues Reaktionsgefäß überführt und unter Stickstoff eingedampft. Die Rückstände wurden in 20μl Ether aufgenommen und auf eine Dünnschicht-Platte zur chromatographischen Trennung der Substanzen aufgetragen (feste Phase: HPTLC-Platten: Kieselgel 60 F₂₅₄ (Merk), flüssige Phase: Toluol). Der Nachweis
40 des radioaktiv markierten Reaktionsproduktes erfolgt durch Verwendung eines Phosphoimagers.

Diese Experimente bestätigten, daß es sich bei dem durch das Gen sll0418 (SEQ-ID Nr.1) aus Synechocystis spec. PCC 6803 kodierte
45 Protein um eine 2-Methyl-6-phytylhydrochinon-methyltransferase handelt, da es die enzymatische Aktivität zur Umwandlung von

2-Methyl-6-phytylhydrochinon in 2,3-Dimethyl-6-phytylhydrochinon besitzt.

Abbildung 2 zeigt einen Sequenzvergleich auf Aminosäureebene zwischen den γ -Tocopherolmethyltransferasen aus *Synechocystis spec.* PCC *Synechocystis spec.* PCC 6803 (slr0089) und *A.thaliana* (aratmt) mit der 2-Methyl-6-phytylhydrochinon-methyltransferase (sll04189) aus *Synechocystis spec.* PCC 6803. Die Übereinstimmung mit den γ -Tocopherolmethyltransferasen aus *Synechocystis spec.* PCC 10 6803 und *Arabisopsis thaliana* beträgt 36 bzw. 28 % Identität.

Beispiel 6

Substratspezifität der 2-Methyl-6-phytylhydrochinon-methyltransferase

Enzymatische Untersuchungen wie in Beispiel 5 durchgeführt belegen, daß das Enzym MPMT – kodiert durch das Gen sll0418 (SEQ-ID Nr. 1) aus *Synechocystis spec.* PCC 6803 – 2-Methyl-6-phytylhydrochinon in 2,3-Dimethyl-6-phytylhydrochinon umwandelt.

Zusätzlich besitzt das Enzym MPMT eine 2-Methyl-6-geranylgeranylhydrochinon-methyltransferase Aktivität, wohingegen eine γ -Tocopherolmethyltransferase Aktivität nicht nachgewiesen werden konnte. Somit ist belegt, daß das Enzym 2-Methyl-6-phytylhydrochinon-methyltransferase an der Biosynthese der Tocotrienole beteiligt ist, da es 2-Methyl-6-geranylgeranylhydrochinon zu 2,3-Dimethyl-6-geranylgeranyl-hydrochinon umwandelt. Dies zeigt deutlich die Verschiedenheit der Enzymaktivität der 30 2-Methyl-6-phytylhydrochinon-methyltransferase im Vergleich zur γ -Tocopherolmethyltransferase.

Beispiel 7

35 Herstellung von Expressionskassetten enthaltend das MPMT-Gen

Transgene Pflanzen wurden erzeugt, die die 2-Methyl-6-phytylhydrochinon-methyltransferase aus *Synechocystis spec.* PCC6803 zum einen unter Kontrolle des konstitutiven 35S-Promotor des CaMV 40 (Blumenkohlmosaikvirus) (Franck et al., Cell 21: 285-294, 1980) und zum anderen unter Kontrolle des samenspezifischen Promotors des Legumin Gens aus *Vicia faba* (Kafatos et al., Nuc. Acid. Res., 14(6): 2707-2720, 1986) exprimieren. Die Grundlage des zur konstitutiven Expression der 2-Methyl-6-phytylhydrochinon-methyltransferase aus *Synechocystis spec.* PCC 6803 erzeugten Plasmides war der pBinAR-TkTp-9 (Ralf Badur , Dissertation Universität Göttingen, 1998). Dieser Vektor ist ein Derivat des pBinAR (Höfgen

und Willmitzer, Plant Sci. 66: 221-230, 1990) und enthält den 35S-Promotor des CaMV (Blumenkohlmosaikvirus) (Franck et al., 1980), das Terminationssignal des Octopin-Synthase Gens (Gielen et al., EMBO J. 3: 835-846, 1984) sowie die für das Transitpeptid 5 der plastidären Nicotiana tabacum Transketolase kodierende DNA Sequenz (Ralf Badur, Dissertation Universität Göttingen, 1998). Die unter Berücksichtigung des korrekten Leserasters erfolgte Klonierung der 2-Methyl-6-phytylhydrochinon-methyltransferase aus Synechocystis spec. PCC6803 in diesen Vektor, erzeugt eine 10 Translationsfusion der 2-Methyl-6-phytylhydrochinon-methyltransferase mit dem plastidären Transitpeptid. Dadurch erfolgt ein Transport des Transgens in die Plastiden.

Zur Erstellung dieses Plasmides wurde das Gen sll0418 unter 15 Verwendung der flankierenden BamHI Restriktionsschnittstellen aus dem Plasmid pGEM-T/sll0418 isoliert. Dieses Fragment wurde unter Anwendung von Standardmethoden in einen BamHI geschnittenen pBinAR-TkTp-9 ligiert (siehe Abbildung 3). Dieses Plasmid (pBinAR-TkTp-9/sll0418) wurde zur Erzeugung transgener Arabidopsis thaliana, Brassica napus und Nicotiana tabacum verwendet. Fragment A (529 bp) in Abbildung 3 beinhaltet den 35S-Promotor des CaMV (Nukleotide 6909 bis 7437 des Blumenkohlmosaikvirus), Fragment B (245bp) kodiert für das Transitpeptid der Nicotiana tabacum Transketolase, Fragment C (977Bp) kodiert ORF sll0418 aus Synechocystis spec. PCC 6803, Fragment D (219Bp) kodiert für das 25 Terminationssignal des Octopin-Synthase Gens.

Zur Erzeugung eines Plasmides, welches die samenspezifische Expression der 2-Methyl-6-phytylhydrochinon-methyltransferase aus 30 Synechocystis spec. PCC 6803 in Pflanzen ermöglicht, wurde der samenspezifische Promotor des Legumin B4 Gens (Kafatos et al., Nuc. Acid. Res., 14(6):2707-2720, 1986) verwendet. Aus dem Plasmid PCR-Script/lePOCS wurde das 2,7 Kb Fragment des Legumin B4 Gen. Promotors unter Verwendung der den Promotor 5' flankierenden 35 EcoR1 und der 3' flankierenden Kpn1 Schnittstellen isoliert. Das Plasmid pBinAR-TkTp-9/sll0418 wurde ebenfalls mit den Restriktionsenzymen EcoR1 und Kpn1 behandelt. Dies hatte zur Folge, daß der 35S-Promotor des CaMV aus diesem Plasmid herausgetrennt wurde. Der Promotor des Legumin Gens wurde anschließend als 40 EcoR1/Kpn1 Fragment in diesen Vektor kloniert, wodurch ein Plasmid erzeugt wurde, welches die Expression des Gen sll0418 unter die Kontrolle dieses samenspezifischen Promotors stellte, siehe Abbildung 4. Dieses Plasmid (pBinARleP-TkTp-9/sll0418) wurde zur Erzeugung transgener Arabidopsis thaliana, Brassica 45 napus und Nicotiana tabacum Pflanzen verwendet.

Fragment A (2700 bp) in Abbildung 4 beinhaltet den Promotor des Legumin B4 Gens aus *Vicia faba*, Fragment B (245bp) kodiert für das Transitpeptid der *Nicotina tabacum* Transketolase, Fragment C (977Bp) kodiert für das ORF s110418 aus *Synechocystis spec. PCC 6803*, Fragment D (219Bp) für das Terminationssignal des Octopin-Synthase Gens.

Beispiel 8

10 Herstellung von Expressionskassetten enthaltend einen Deletionsklon des MPMT-Gens

Auf Grundlage einer Computeranalyse wurde in der Primärsequenz des ORF s110418 ein putatives prokaryontisches Sekretionssignal 15 identifiziert. Um sicherzustellen, daß dieses bei der Expression in Pflanzen keinen negativen Einfluß auf den Import des Proteins in die Plastiden nimmt, wurde ein Derivat der Sequenz des s110418 erzeugt, bei dem das putative Sekretionssignal deletiert wurde (Sequenz-ID Nr. 7). Diese Deletion wurde unter Anwendung der PCR 20 Technologie durchgeführt. Durch die dabei verwendeten Primer (s110418DSP5', Sequenz-ID Nr. 9 und s110418DSP3', Sequenz-ID Nr. 10) wurde an das 5' Ende der Sequenz eine EcoRV Restriktions- 25 schnittstelle und an das 3' Ende eine SalI Restriktionsschnittstelle addiert, durch die eine gerichtete Klonierung in den Vek- tor pBinAR-TkTp-9 ermöglicht wurde. Das entstandene Plasmid pBinAR-TkTp-9/s110418ΔSP ist in Abbildung 5 beschrieben. Fragment A (529 bp) in Abbildung 5 beinhaltet den 35S-Promotor des CaMV (Nukleotide 6909 bis 7437 des Blumenkohlmosaikvirus), Fragment B (245bp) Fragment kodiert für das Transitpeptid der Nicotiana 30 tabacum Transketolase, Fragment C (930Bp) ORF s110418ΔSP aus *Synechocystis spec. PCC 6803* Fragment D (219Bp) für das Terminationssignal des Octopin-Synthase Gens.

Zur Erzeugung eines Plasmides, welches die samenspezifische Expression des Deletionsklons der 2-Methyl-6-phytylhydrochinon-methyltransferase aus *Synechocystis spec. PCC6803* in Pflanzen ermöglicht, wurde ebenfalls der bereits beschriebene samenspezifische Promotor des Legumin B4 Gens (Kafatos et al., Nuc. Acid. Res., 14(6):2707-2720, 1986) verwendet. Aus dem Plasmid PCR- 35 Script/lePOCS wurde das 2,7 Kb Fragment des Legumin B4 Gen Promoters unter Verwendung der den Promotor 5' flankierenden EcoR1 und der 3' flankierenden Kpn1 Schnittstellen isoliert. Das Plasmid pBinAR-TkTp-9/s110418ΔSP wurde ebenfalls mit den Restriktionsenzymen EcoR1 und Kpn1 behandelt. Dies hatte zur Folge, daß 40 der 35S-Promotor des CaMV aus diesem Plasmid herausgetrennt wurde. Der Promotor des Legumin Gens wurde anschließend als EcoR1/Kpn1 Fragment in diesen Vektor kloniert, wodurch ein 45

Plasmid erzeugt wurde, welches die Expression des Deletionsklons des Gen sll0418 unter die Kontrolle dieses samenspezifischen Promotors stellte, siehe Abbildung 6. Fragment A (2700 bp) in Abbildung 6 beinhaltet den Promotor des Legumin B4 Gens aus Vicia faba, Fragment B (245bp) Fragment kodiert für das Transitpeptid der Nicotiana tabacum Transketolase, Fragment C (930Bp) ORF sll0418ΔSP aus Synechocystis spec. PCC 6803 Fragment D (219Bp) für das Terminationssignal des Octopin-Synthase Gens.

10 Dieses Plasmid (pBinARleP-TkTp-9/sll0418ΔSP) wurde zur Erzeugung transgener Arabidopsis thaliana, Brassica napus und Nicotiana tabacum Pflanzen verwendet.

Auch durch Expression der DNA-Sequenz SEQ-ID Nr. 7 in transgenen 15 Pflanzen wurde eine Steigerung des Gehaltes an Tocopherol und Tocotrienol gemessen.

Beispiel 9

20 Herstellung transgener Arabidopsis thaliana Pflanzen

Wildtyp Arabidopsis thaliana Pflanzen (Columbia) wurden mit dem Agrobacterium tumefaciens Stamm (EHA105) auf Grundlage einer modifizierten Vacuum Infiltrationsmethode transformiert (Steve 25 Clough und Andrew Bent, Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J. 16(6):735-43, 1998; Bechtold, N., Ellis, J. und Pellier, G., in: Planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CRAcad Sci Paris, 1993. 30 1144(2):204-212). Die verwendeten Agrobacterium tumefaciens Zellen waren im Vorfeld mit den Plasmiden pBinARleP-TkTp-9/sll0418 bzw. pBinAR-TkTp-9/sll0418 (Abbildung 3 und 4) transformiert worden.

35 Samen der Primärtransformanden wurden auf Grundlage der Antibiotikaresistenz selektioniert. Antibiotika resistente Keimlinge wurden in Erde gepflanzt und als vollentwickelte Pflanzen zur biochemischen Analyse verwendet.

40 Beispiel 10

Herstellung transgener Brassica napus Pflanzen

Die Herstellung transgener Raps Pflanzen orientierte sich an 45 einem Protokoll von Bade, J.B. und Damm, B. (in Gene Transfer to Plants, Potrykus, I. und Spangenberg, G., eds, Springer Lab Ma-

nual, Springer Verlag, 1995, 30-38), in welchem auch die Zusammensetzung der verwendeten Medien und Puffer angegeben ist.

Die Transformationen erfolgten mit dem Agrobacterium tumefaciens
5 Stamm EHA105. Zur Transformation wurden die Plasmide pBinARleP-TkTp-9/s110418 bzw. pBinAR-TkTp-9/s110418 verwendet. Samen von Brassica napus var. Westar wurden mit 70% Ethanol (v/v) oberflächensteril gemacht, 10 Minuten bei 55°C in Wasser gewaschen, in 1%iger Hypochlorit-Lösung (25% v/v Teepol, 0,1% v/v Tween 20) für
10 20 Minuten inkubiert und sechsmal mit steriles Wasser für jeweils 20 Minuten gewaschen. Die Samen wurden drei Tage auf Filterpapier getrocknet und 10-15 Samen in einem Glaskolben mit 15 ml Keimungsmedium zur Keimung gebracht. Von mehreren Keimlingen (ca. 10 cm groß) wurden die Wurzeln und Apices entfernt und die verbleibenden Hypokotyle in ca. 6 mm lange Stücke geschnitten. Die so gewonnenen ca. 600 Explantate wurden 30 Minuten mit 50 ml Basalmedium gewaschen und in einen 300 ml Kolben überführt. Nach Zugabe von 100 ml Kallusinduktionsmedium wurden die Kulturen für 24 Stunden bei 100 U/min inkubiert.

20

Vom Agrobacterium Stamm wurde eine Übernachtkultur bei 29°C in Luria Broth-Medium mit Kanamycin (20mg/l) angesetzt, davon 2 ml in 50 ml Luria Broth-Medium ohne Kanamycin für 4 Stunden bei 29°C bis zu einer OD₆₀₀ von 0,4-0,5 inkubiert. Nach der Pelletierung der
25 Kultur bei 2000 U/min für 25 min wurde das Zellpellet in 25 ml Basalmedium resuspendiert. Die Konzentration der Bakterien in der Lösung wurde durch Zugabe von weiterem Basalmedium auf eine OD₆₀₀ von 0,3 eingestellt.

30 Aus den Raps-Explanten wurde das Kallus-Induktionsmedium mit sterilen Pipetten entfernt, 50 ml Agrobacterium-Lösung hinzugefügt, vorsichtig gemischt und für 20 min inkubiert. Die Agrobakterien-Suspension wurde entfernt, die Raps-Explante für 1 min mit 50 ml Kallus-Induktionsmedium gewaschen und anschließend 100 ml Kallus-
35 Induktionsmedium hinzugefügt. Die Co-Kultivierung wurde für 24 h auf einem Rotationsschüttler bei 100 U/min durchgeführt. Die Co-Kultivierung wurde durch Wegnahme des Kallus-Induktionsmediums gestoppt und die Explante zweimal für jeweils 1 min mit 25 ml und zweimal für 60 min mit jeweils 100 ml Waschmedium bei 100 U/min
40 gewaschen. Das Waschmedium mit den Explanten wurde in 15 cm Petrischalen überführt und das Medium mit sterilen Pipetten entfernt.

Zur Regeneration wurden jeweils 20-30 Explante in 90 mm Petrischalen überführt, welche 25 ml Sproß-Induktionsmedium mit Kanamycin enthielten. Die Petrischalen wurden mit 2 Lagen Leukopor verschlossen und bei 25 °C und 2000 lux bei Photoperioden von 16

Stunden Licht/ 8 Stunden Dunkelheit inkubiert. Alle 12 Tage wurden die sich entwickelnden Kalli auf frische Petrischalen mit Sproß-Induktionsmedium umgesetzt. Alle weiteren Schritte zur Regeneration ganzer Pflanzen wurden wie von Bade, J.B und Damm, B.
5 (in: Gene Transfer to Plants, Potrykus, I. und Spangenberg, G., eds, Springer Lab Manual, Springer Verlag, 1995, 30-38) beschrieben durchgeführt.

Beispiel 11

10

Herstellung transgener Nicotiana tabacum Pflanzen

Zehn ml YEB-Medium mit Antibiotikum (5 g/l Rinder-Extrakt, 1 g/l Hefe-Extrakt, 5 g/l Pepton, 5 g/l Saccharose und 2 mM MgSo₄) werden mit einer Kolonie von Agrobacterium tumefaciens beimpft und über Nacht bei 28°C kultiviert. Die Zellen wurden 20 min bei 4°C, 3500 U/min in einer Tischzentrifuge pelletiert und danach in frischem YEB-Medium ohne Antibiotika unter sterilen Bedingungen resuspendiert. Die Zellsuspension wurde für die Transformation 20 eingesetzt.

Die Wildtyp-Pflanzen aus Sterilkultur wurden durch vegetative Replikation erhalten. Dazu wurde nur die Spitze der Pflanze abgeschnitten und auf frisches 2MS-Medium in ein steriles Einweckglas 25 überführt. Vom Rest der Pflanze wurden die Haare auf der Blattoberseite und die Mittelrippen der Blätter entfernt. Die Blätter wurden mit einer Rasierklinge in etwa 1 cm² große Stücke geschnitten. Die Agrobakterienkultur wurde in eine kleine Petrischale überführt (Durchmesser 2 cm). Die Blattstücke wurden kurz durch 30 die Lösung gezogen und mit der Blattunterseite auf 2MS-Medium in Petrischalen (Durchmesser 9 cm) gelegt, so daß sie das Medium berührten. Nach zwei Tagen im Dunkeln bei 25°C wurden die Explantate auf Platten mit Kallusinduktionsmedium überführt und in der Klimakammer auf 28°C temperiert. Das Medium mußte alle 7-10 Tage 35 wechselt werden. Sobald sich Kalli bildeten, wurden die Explantate in sterile Einweckgläser auf Sproßinduktionsmedium mit Claforan (siehe oben) überführt. Nach etwa einem Monat trat Organogenese ein und die gebildeten Sprossen konnten abgeschnitten werden. Die Kultivierung der Sprosse wurde auf 2MS-Medium mit Claforan und Selektionsmarker durchgeführt. Sobald sich ein kräftiger 40 Wurzelballen gebildet hatte, konnte die Pflanzen in Pikiererde getopft werden.

Beispiel 12

45

Charakterisierung der transgenen Pflanzen

Um zu bestätigen, daß durch die Expression der 2-Methyl-6-phytylhydrochinon-methyltransferase aus *Synechocystis spec. PCC 6803* die Vitamin E Biosynthese in den transgenen Pflanzen gesteigert wird, wurden die Tocopherol- und Tocotrienol-Gehalte in Blätter
5 und Samen der mit den Konstrukten pBinARleP-TkTp-9/s110418 bzw. pBinAR-TkTp-9/s110418 Pflanzen (*Arabidopsis thaliana*, *Brassica napus* und *Nicotiana tabacum*) analysiert. Dazu wurden die transgenen Pflanzen im Gewächshaus kultiviert und Pflanzen die das Gen
kodierend für die 2-Methyl-6-phytylhydrochinon-methyltransferase
10 aus *Synechocystis spec. PCC 6803* exprimieren auf Northern-Ebene analysiert. In Blättern und Samen dieser Pflanzen wurde der Tocopherolgehalt und der Tocotrienolgehalt ermittelt. In allen Fällen war die Tocopherol- bzw. Tocotrienol-Konzentration in transgenen Pflanzen, die zusätzlich eine DNA-Sequenz SEQ-ID Nr. 1 oder
15 SEQ-ID Nr. 7 exprimieren, im Vergleich zu nicht transformierten Pflanzen erhöht.

20

25

30

35

40

45

Patentansprüche

1. DNA-Sequenz SEQ-ID Nr. 1 oder SEQ-ID Nr. 7 und mit dieser hybridisierende oder zur Gesamtsequenz oder zu Teilsequenzen homologen DNA-Sequenz kodierend für eine 2-Methyl-6-phytylhydrochinon-methyltransferase aus *Synechocystis*.
2. Verwendung von DNA-Sequenzen codierend für eine 2-Methyl-6-phytylhydrochinon-methyltransferase zur Herstellung von Pflanzen und photosynthetisch aktiven Organismen mit erhöhtem Gehalt an Tocopherolen und Tocotrienolen.
3. Verwendung einer DNA-Sequenz SEQ-ID Nr. 1 oder SEQ-ID Nr. 7 oder einer mit dieser hybridisierenden DNA-Sequenz kodierend für eine 2-Methyl-6-phytylhydrochinon-methyltransferase zur Herstellung von Pflanzen und photosynthetisch aktiven Organismen mit erhöhtem Gehalt an Tocopherolen und Tocotrienolen.
4. Verfahren zur Herstellung von Pflanzen und photosynthetisch aktiven Organismen mit erhöhtem Gehalt an Tocopherolen und Tocotrienolen dadurch gekennzeichnet, daß eine DNA-Sequenz SEQ-ID Nr. 1 oder SEQ-ID Nr. 7 oder eine mit dieser hybridisierende oder zur Gesamtsequenz oder zu Teilsequenzen homologen DNA-Sequenz in Pflanzen und photosynthetisch aktiven Organismen exprimiert wird.
5. Verfahren zur Transformation einer Pflanze dadurch gekennzeichnet, daß man eine Expressionskassette enthaltend einen Promotor, eine Signalsequenz, eine DNA-Sequenz SEQ-ID Nr. 1 oder SEQ-ID Nr. 7 und einen Terminator oder eine mit dieser hybridisierende DNA-Sequenz in eine Pflanzenzelle, in Kallusgewebe, eine ganze Pflanze oder Protoplasten von Pflanzenzellen einbringt.
6. Verfahren zur Transformation von Pflanzen gemäß Anspruch 5, dadurch gekennzeichnet, daß die Transformation mit Hilfe des Stammes *Agrobacterium tumefaciens*, der Elektroporation oder der particle bombardment Methode erfolgt.
7. Pflanze mit erhöhtem Gehalt an Tocopherolen und Tocotrienolen enthaltend eine Expressionskassette gemäß Anspruch 5.

8. Pflanze nach Anspruch 7, ausgewählt aus der Gruppe Soja, Canola, Gerste, Hafer, Weizen, Raps, Mais, Roggen, Tagetes oder Sonnenblume.

5 9. Verwendung der DNA-Sequenz SEQ-ID Nr. 1 oder SEQ-ID Nr. 7 oder einer mit dieser hybridisierende DNA-Sequenz gemäß Anspruch 1 zur Herstellung eines Testsystems zur Identifizierung von Inhibitoren der 2-Methyl-6-phytylhydrochinon-methyltransferase.

10

10. Testsystem basierend auf der Expression der DNA-Sequenz SEQ-ID Nr. 1 oder SEQ-ID Nr. 7 oder einer mit dieser hybridisierende DNA-Sequenz gemäß Anspruch 1 zur Identifizierung von Inhibitoren der 2-Methyl-6-phytylhydrochinonmethyltransferase.

15

20

25

30

35

40

45

Tocopherolsynthese

2 / 5

Q V K R A X E L A X A X X L X X T A X F Q V A D A L D L P F K D G S P D X V W S Majority

170

180

190

200

128 Q V K R A T E L T P . P - - D V T A K F A V | D D A M A L S F | P D G S F D V | V W S | s110418 . PRO
 129 Q V E R A C E | R | A R | A L G L C S T C Q F Q V A N A L D L P P A S D S P D W V W S | s1r0089 . PRO
 161 O A K R A N D | L A A A Q S L S H K A S F Q V A D A L D Q P P E D G K P D L V W S | aratmt . PRO

X E S C E H M P D K A X F X K E L X R V X K P G G R L I X A T W C H R X X X G Majority

210

220

230

240

165 V E A C P H H P D K A V F A K E L L R V V K P G G I L V V A D W N Q R D D R Q V | s110418 . PRO
 169 L E S C E H M P N K A Q F L Q E A W R V L K P G G R L I L A T W C H R P I D P G | s1r0089 . PRO
 201 M E S C E H M P D K A K F V K E L V R V A A P G G R T I I V T W C H R N L S A G | aratmt . PRO

X X X L X X X E X X X L X X I X X X X L P A X X S X X D Y X X X A X X X X G Majority

250

260

270

280

205 P L N F W E K P V M R Q L L D Q W S H P A F A S I E G F A E N L E I A T G L V E G | s110418 . PRO
 209 N G P L T A D E R R H L Q A T Y D V Y C L P Y V V S L P D Y E A I A R E C G P C | s1r0089 . PRO
 241 E E A L Q P W E Q N I L D K I C K T F Y L P A W C S T D D Y V N L L Q S H S L Q | aratmt . PRO

X I K T A D W S V X V A P F W X X V I X X A X X X X L W X L X X G X K I X Majority

290

300

310

320

245 Q V T A D W T V P T L P A W L D T I W Q G I I R P Q G W L Q Y G I R G F I K S | s110418 . PRO
 249 B I K T A D W S V A V A P F W I E S A F D P R V L W A U G Q A G P K I T N | s1r0089 . PRO
 281 D I K C A D W S E N V A P F W P A V I R T A L T W K G L V S L R S C M K S I K | aratmt . PRO

4/5

X A L X X X L M X X C Y X X - - G L X R F - - G X X T X X K P L X X - X - - - Majority)

330 340 350 360

285 V R E V P T I L L M R L A P G V G L | C R F - - G M P K A V R K N A T Q A
 289 A [A L C L R [L M | K W G Y E R - - G L | V R P | - - G L L [T C I K P L | V - . 9 P Q S P s1r0089.
 321 G A L T H P [L M | E G Y K X - - G V I K F - - G I I T C Q K P L | aratmt.]

Majority)

—
318 —
324 R
348

s110418.
s1r0089.
aratmt.]

Abbildung 4

Abbildung 5

Abbildung 6

SEQUENZPROTOKOLL

<110> SunGene GmbH & Co.KGaA

<120> Ueberexpression einer DNA-Sequenz codierend fuer eine
2-Methyl-phytylhydrochinon-methyltransferase in
Pflanzen.

<130> MPMTSynechocystis

<140>

<141>

<160> 10

<170> PatentIn Vers. 2.0

<210> 1

<211> 957

<212> DNA

<213> Synechocystis PCC6803

<220>

<221> CDS

<222> (1)..(957)

<400> 1

atg ccc gag tat ttg ctt ctg ccc gct ggc cta att tcc ctc tcc ctg	48
Met Pro Glu Tyr Leu Leu Pro Ala Gly Leu Ile Ser Leu Ser Leu	
1 5 10 15	

gcg atc gcc gct gga ctg tat ctc cta act gcc cggtt ggc tat cag tca	96
Ala Ile Ala Ala Gly Leu Tyr Leu Leu Thr Ala Arg Gly Tyr Gln Ser	
20 25 30	

tcg gat tcc gtg gcc aac gcc tac gac caa tgg aca gag gac ggc att	144
Ser Asp Ser Val Ala Asn Ala Tyr Asp Gln Trp Thr Glu Asp Gly Ile	
35 40 45	

ttg gaa tat tac tgg ggc gac cat atc cac ctc ggc cat tat ggc gat	192
Leu Glu Tyr Tyr Trp Gly Asp His Ile His Leu Gly His Tyr Gly Asp	
50 55 60	

ccg cca gtg gcc aag gat ttc atc caa tcg aaa att gat ttt gtc cat	240
Pro Pro Val Ala Lys Asp Phe Ile Gln Ser Lys Ile Asp Phe Val His	
65 70 75 80	

gcc atg gcc cag tgg ggc gga tta gat aca ctt ccc ccc ggc aca acg	288
Ala Met Ala Gln Trp Gly Gly Leu Asp Thr Leu Pro Pro Gly Thr Thr	

2

85

90

95

gta ttg gat gtg ggt tgc ggc att ggc ggt agc agt cgc att ctc gcc 336
 Val Leu Asp Val Gly Cys Gly Ile Gly Ser Ser Arg Ile Leu Ala
 100 105 110

aaa gat tat ggt ttt aac gtt acc ggc atc acc att agt ccc caa cag 384
 Lys Asp Tyr Gly Phe Asn Val Thr Gly Ile Thr Ile Ser Pro Gln Gln
 115 120 125

gtg aaa cgg gcg acg gaa tta act cct ccc gat gtg acg gcc aag ttt 432
 Val Lys Arg Ala Thr Glu Leu Thr Pro Pro Asp Val Thr Ala Lys Phe
 130 135 140

gcg gtg gac gat gct atg gct ttg tct ttt cct gac ggt agt ttc gac 480
 Ala Val Asp Asp Ala Met Ala Leu Ser Phe Pro Asp Gly Ser Phe Asp
 145 150 155 160

gta gtt tgg tcg gtg gaa gca ggg ccc cac atg cct gac aaa gct gtg 528
 Val Val Trp Ser Val Glu Ala Gly Pro His Met Pro Asp Lys Ala Val
 165 170 175

ttt gcc aag gaa tta ctg cgg gtc gtg aaa cca ggg ggc att ctg gtg 576
 Phe Ala Lys Glu Leu Leu Arg Val Val Lys Pro Gly Gly Ile Leu Val
 180 185 190

gtg gcg gat tgg aat caa cgg gac gat cgc caa gtg ccc ctc aac ttc 624
 Val Ala Asp Trp Asn Gln Arg Asp Asp Arg Gln Val Pro Leu Asn Phe
 195 200 205

tgg gaa aaa cca gtg atg cga caa ctg ttg gat caa tgg tcc cac cct 672
 Trp Glu Lys Pro Val Met Arg Gln Leu Leu Asp Gln Trp Ser His Pro
 210 215 220

gcc ttt gcc agc att gaa ggt ttt gcg gaa aat ttg gaa gcc acg ggt 720
 Ala Phe Ala Ser Ile Glu Gly Phe Ala Glu Asn Leu Glu Ala Thr Gly
 225 230 235 240

ttg gtg gag ggc cag gtg act act gct gat tgg act gta ccg acc ctc 768
 Leu Val Glu Gly Gln Val Thr Thr Ala Asp Trp Thr Val Pro Thr Leu
 245 250 255

ccc gct tgg ttg gat acc att tgg cag ggc att atc cgg ccc cag ggc 816
 Pro Ala Trp Leu Asp Thr Ile Trp Gln Gly Ile Ile Arg Pro Gln Gly
 260 265 270

tgg tta caa tac ggc att cgt ggg ttt atc aaa tcc gtg ccg gaa gta 864
 Trp Leu Gln Tyr Gly Ile Arg Gly Phe Ile Lys Ser Val Arg Glu Val
 275 280 285

ccg act att tta ttg atg cgc ctt gcc ttt ggg gta gga ctt tgt cgc 912
Pro Thr Ile Leu Leu Met Arg Leu Ala Phe Gly Val Gly Leu Cys Arg
290 295 300

ttc ggt atg ttc aaa gca gtg cga aaa aac gcc act caa gct taa 957
Phe Gly Met Phe Lys Ala Val Arg Lys Asn Ala Thr Gln Ala
305 310 315

<210> 2

<211> 318

<212> PRT

<213> Synechocystis PCC6803

<400> 2

Met Pro Glu Tyr Leu Leu Leu Pro Ala Gly Leu Ile Ser Leu Ser Leu
1 5 10 15

Ala Ile Ala Ala Gly Leu Tyr Leu Leu Thr Ala Arg Gly Tyr Gln Ser
20 25 30

Ser Asp Ser Val Ala Asn Ala Tyr Asp Gln Trp Thr Glu Asp Gly Ile
35 40 45

Leu Glu Tyr Tyr Trp Gly Asp His Ile His Leu Gly His Tyr Gly Asp
50 55 60

Pro Pro Val Ala Lys Asp Phe Ile Gln Ser Lys Ile Asp Phe Val His
65 70 75 80

Ala Met Ala Gln Trp Gly Gly Leu Asp Thr Leu Pro Pro Gly Thr Thr
85 90 95

Val Leu Asp Val Gly Cys Gly Ile Gly Gly Ser Ser Arg Ile Leu Ala
100 105 110

Lys Asp Tyr Gly Phe Asn Val Thr Gly Ile Thr Ile Ser Pro Gln Gln
115 120 125

Val Lys Arg Ala Thr Glu Leu Thr Pro Pro Asp Val Thr Ala Lys Phe
130 135 140

Ala Val Asp Asp Ala Met Ala Leu Ser Phe Pro Asp Gly Ser Phe Asp
145 150 155 160

Val Val Trp Ser Val Glu Ala Gly Pro His Met Pro Asp Lys Ala Val
165 170 175

4

Phe Ala Lys Glu Leu Leu Arg Val Val Lys Pro Gly Gly Ile Leu Val
 180 185 190

Val Ala Asp Trp Asn Gln Arg Asp Asp Arg Gln Val Pro Leu Asn Phe
 195 200 205

Trp Glu Lys Pro Val Met Arg Gln Leu Leu Asp Gln Trp Ser His Pro
 210 215 220

Ala Phe Ala Ser Ile Glu Gly Phe Ala Glu Asn Leu Glu Ala Thr Gly
 225 230 235 240

Leu Val Glu Gly Gln Val Thr Thr Ala Asp Trp Thr Val Pro Thr Leu
 245 250 255

Pro Ala Trp Leu Asp Thr Ile Trp Gln Gly Ile Ile Arg Pro Gln Gly
 260 265 270

Trp Leu Gln Tyr Gly Ile Arg Gly Phe Ile Lys Ser Val Arg Glu Val
 275 280 285

Pro Thr Ile Leu Leu Met Arg Leu Ala Phe Gly Val Gly Leu Cys Arg
 290 295 300

Phe Gly Met Phe Lys Ala Val Arg Lys Asn Ala Thr Gln Ala
 305 310 315

<210> 3

<211> 974

<212> DNA

<213> Synechocystis PCC6803

<220>

<221> CDS

<222> (7)..(963)

<400> 3

ggatcc atg ccc gag tat ttg ctt ctg ccc gct ggc cta att tcc ctc 48
 Met Pro Glu Tyr Leu Leu Leu Pro Ala Gly Leu Ile Ser Leu
 1 5 10

tcc ctg gcg atc gcc gct gga ctg tat ctc cta act gcc cggttat 96
 Ser Leu Ala Ile Ala Ala Gly Leu Tyr Leu Leu Thr Ala Arg Gly Tyr
 15 20 25 30

cag tca tcg gat tcc gtg gcc aac gcc tac gac caa tgg aca gag gac 144
 Gln Ser Ser Asp Ser Val Ala Asn Ala Tyr Asp Gln Trp Thr Glu Asp
 35 40 45

ggc att ttg gaa tat tac tgg ggc gac cat atc cac ctc ggc cat tat 192
 Gly Ile Leu Glu Tyr Tyr Trp Gly Asp His Ile His Leu Gly His Tyr
 50 55 60

ggc gat ccg cca gtg gcc aag gat ttc atc caa tcg aaa att gat ttt 240
 Gly Asp Pro Pro Val Ala Lys Asp Phe Ile Gln Ser Lys Ile Asp Phe
 65 70 75

gtc cat gcc atg gcc cag tgg ggc gga tta gat aca ctt ccc ccc ggc 288
 Val His Ala Met Ala Gln Trp Gly Gly Leu Asp Thr Leu Pro Pro Gly
 80 85 90

aca acg gta ttg gat gtg ggt tgc ggc att ggc ggt agc agt cgc att 336
 Thr Thr Val Leu Asp Val Gly Cys Gly Ile Gly Ser Ser Arg Ile
 95 100 105 110

ctc gcc aaa gat tat ggt ttt aac gtt acc ggc atc acc att agt ccc 384
 Leu Ala Lys Asp Tyr Gly Phe Asn Val Thr Gly Ile Thr Ile Ser Pro
 115 120 125

caa cag gtg aaa cgg gcg acg gaa tta act cct ccc gat gtg acg gcc 432
 Gln Gln Val Lys Arg Ala Thr Glu Leu Thr Pro Pro Asp Val Thr Ala
 130 135 140

aag ttt gcg gtg gac gat gct atg gct ttg tct ttt cct gac ggt agt 480
 Lys Phe Ala Val Asp Asp Ala Met Ala Leu Ser Phe Pro Asp Gly Ser
 145 150 155

tgc gac gta gtt tgg tgc gtg gaa gca ggg ccc cac atg cct gac aaa 528
 Phe Asp Val Val Trp Ser Val Glu Ala Gly Pro His Met Pro Asp Lys
 160 165 170

gct gtg ttt gcc aag gaa tta ctg cgg gtc gtg aaa cca ggg ggc att 576
 Ala Val Phe Ala Lys Glu Leu Leu Arg Val Val Lys Pro Gly Gly Ile
 175 180 185 190

ctg gtg gtc gat tgg aat caa cgg gac gat cgc caa gtg ccc ctc 624
 Leu Val Val Ala Asp Trp Asn Gln Arg Asp Asp Arg Gln Val Pro Leu
 195 200 205

aac ttc tgg gaa aaa cca gtg atg cga caa ctg ttg gat caa tgg tcc 672
 Asn Phe Trp Glu Lys Pro Val Met Arg Gln Leu Leu Asp Gln Trp Ser
 210 215 220

cac cct gcc ttt gcc agc att gaa ggt ttt gcg gaa aat ttg gaa gcc 720
 His Pro Ala Phe Ala Ser Ile Glu Gly Phe Ala Glu Asn Leu Glu Ala
 225 230 235

6

acg ggt ttg gtg gag ggc cag gtg act act gct gat tgg act gta ccg 768
 Thr Gly Leu Val Glu Gly Gln Val Thr Thr Ala Asp Trp Thr Val Pro
 240 245 250

acc ctc ccc gct tgg ttg gat acc att tgg cag ggc att atc cg^g ccc 816
 Thr Leu Pro Ala Trp Leu Asp Thr Ile Trp Gln Gly Ile Ile Arg Pro
 255 260 265 270

cag ggc tgg tta caa tac ggc att cgt ggg ttt atc aaa tcc gtg cg^g 864
 Gln Gly Trp Leu Gln Tyr Gly Ile Arg Gly Phe Ile Lys Ser Val Arg
 275 280 285

gaa gta ccg act att tta ttg atg cgc ctt gcc ttt ggg gta gga ctt 912
 Glu Val Pro Thr Ile Leu Leu Met Arg Leu Ala Phe Gly Val Gly Leu
 290 295 300

tgt cgc ttc ggt atg ttc aaa gca gtg cga aaa aac gcc act caa gct 960
 Cys Arg Phe Gly Met Phe Lys Ala Val Arg Lys Asn Ala Thr Gln Ala
 305 310 315

taa attgcggatc c 974

<210> 4

<211> 318

<212> PRT

<213> Synechocystis PCC6803

<400> 4

Met Pro Glu Tyr Leu Leu Pro Ala Gly Leu Ile Ser Leu Ser Leu
 1 5 10 15

Ala Ile Ala Ala Gly Leu Tyr Leu Leu Thr Ala Arg Gly Tyr Gln Ser
 20 25 30

Ser Asp Ser Val Ala Asn Ala Tyr Asp Gln Trp Thr Glu Asp Gly Ile
 35 40 45

Leu Glu Tyr Tyr Trp Gly Asp His Ile His Leu Gly His Tyr Gly Asp
 50 55 60

Pro Pro Val Ala Lys Asp Phe Ile Gln Ser Lys Ile Asp Phe Val His
 65 70 75 80

Ala Met Ala Gln Trp Gly Gly Leu Asp Thr Leu Pro Pro Gly Thr Thr
 85 90 95

Val Leu Asp Val Gly Cys Gly Ile Gly Gly Ser Ser Arg Ile Leu Ala

7

100

105

110

Lys Asp Tyr Gly Phe Asn Val Thr Gly Ile Thr Ile Ser Pro Gln Gln
115 120 125

Val Lys Arg Ala Thr Glu Leu Thr Pro Pro Asp Val Thr Ala Lys Phe
130 135 140

Ala Val Asp Asp Ala Met Ala Leu Ser Phe Pro Asp Gly Ser Phe Asp
145 150 155 160

Val Val Trp Ser Val Glu Ala Gly Pro His Met Pro Asp Lys Ala Val
165 170 175

Phe Ala Lys Glu Leu Leu Arg Val Val Lys Pro Gly Gly Ile Leu Val
180 185 190

Val Ala Asp Trp Asn Gln Arg Asp Asp Arg Gln Val Pro Leu Asn Phe
195 200 205

Trp Glu Lys Pro Val Met Arg Gln Leu Leu Asp Gln Trp Ser His Pro
210 215 220

Ala Phe Ala Ser Ile Glu Gly Phe Ala Glu Asn Leu Glu Ala Thr Gly
225 230 235 240

Leu Val Glu Gly Gln Val Thr Thr Ala Asp Trp Thr Val Pro Thr Leu
245 250 255

Pro Ala Trp Leu Asp Thr Ile Trp Gln Gly Ile Ile Arg Pro Gln Gly
260 265 270

Trp Leu Gln Tyr Gly Ile Arg Gly Phe Ile Lys Ser Val Arg Glu Val
275 280 285

Pro Thr Ile Leu Leu Met Arg Leu Ala Phe Gly Val Gly Leu Cys Arg
290 295 300

Phe Gly Met Phe Lys Ala Val Arg Lys Asn Ala Thr Gln Ala
305 310 315

<210> 5

<211> 27

<212> DNA

<213> Synechocystis PCC6803

<220>

<221> primer_bind

<222> (1)..(27)

<400> 5

ggatccatgc ccgagtattt gcttcgt

27

<210> 6

<211> 26

<212> DNA

<213> Synechocystis PCC6803

<220>

<221> primer_bind

<222> (1)..(26)

<400> 6

ggatccgcaa tttaagcttg agtggc

26

<210> 7

<211> 930

<212> DNA

<213> Synechocystis PCC6803

<220>

<221> CDS

<222> (10)..(915)

<400> 7

gatatcacc atg gcc gct gga ctg tat ctc cta act gcc cgg ggc tat cag 51
Met Ala Ala Gly Leu Tyr Leu Leu Thr Ala Arg Gly Tyr Gln

1 5 10

tca tcg gat tcc gtg gcc aac gcc tac gac caa tgg aca gag gac ggc 99.
Ser Ser Asp Ser Val Ala Asn Ala Tyr Asp Gln Trp Thr Glu Asp Gly
15 20 25 30att ttg gaa tat tac tgg ggc gac cat atc cac ctc ggc cat tat ggc 147
Ile Leu Glu Tyr Tyr Trp Gly Asp His Ile His Leu Gly His Tyr Gly
35 40 45gat ccg cca gtg gcc aag gat ttc atc caa tcg aaa att gat ttt gtc 195
Asp Pro Pro Val Ala Lys Asp Phe Ile Gln Ser Lys Ile Asp Phe Val
50 55 60cat gcc atg gcc cag tgg ggc gga tta gat aca ctt ccc ccc ggc aca 243
His Ala Met Ala Gln Trp Gly Gly Leu Asp Thr Leu Pro Pro Gly Thr
65 70 75

acg gta ttg gat gtg ggt tgc ggc att ggc ggt agc agt cgc att ctc 291
 Thr Val Leu Asp Val Gly Cys Gly Ile Gly Ser Ser Arg Ile Leu
 80 85 90

gcc aaa gat tat ggt ttt aac gtt acc ggc atc acc att agt ccc caa 339
 Ala Lys Asp Tyr Gly Phe Asn Val Thr Gly Ile Thr Ile Ser Pro Gln
 95 100 105 110

cag gtg aaa cgg gcg acg gaa tta act cct ccc gat gtg acg gcc aag 387
 Gln Val Lys Arg Ala Thr Glu Leu Thr Pro Pro Asp Val Thr Ala Lys
 115 120 125

ttt gcg gtg gac gat gct atg gct ttg tct ttt cct gac ggt agt ttc 435
 Phe Ala Val Asp Asp Ala Met Ala Leu Ser Phe Pro Asp Gly Ser Phe
 130 135 140

gac gta gtt tgg tcg gtg gaa gca ggg ccc cac atg cct gac aaa gct 483
 Asp Val Val Trp Ser Val Glu Ala Gly Pro His Met Pro Asp Lys Ala
 145 150 155

gtg ttt gcc aag gaa tta ctg cgg gtc gtg aaa cca ggg ggc att ctg 531
 Val Phe Ala Lys Glu Leu Leu Arg Val Val Lys Pro Gly Gly Ile Leu
 160 165 170

gtg gtg gcg gat tgg aat caa cgg gac gat cgc caa gtg ccc ctc aac 579
 Val Val Ala Asp Trp Asn Gln Arg Asp Asp Arg Gln Val Pro Leu Asn
 175 180 185 190

ttc tgg gaa aaa cca gtg atg cga caa ctg ttg gat caa tgg tcc cac 627
 Phe Trp Glu Lys Pro Val Met Arg Gln Leu Leu Asp Gln Trp Ser His
 195 200 205

cct gcc ttt gcc agc att gaa ggt ttt gcg gaa aat ttg gaa gcc acg 675
 Pro Ala Phe Ala Ser Ile Glu Gly Phe Ala Glu Asn Leu Glu Ala Thr
 210 215 220

ggt ttg gtg gag ggc cag gtg act act gct gat tgg act gta ccg acc 723
 Gly Leu Val Glu Gly Gln Val Thr Thr Ala Asp Trp Thr Val Pro Thr
 225 230 235

ctc ccc gct tgg ttg gat acc att tgg cag ggc att atc cgg ccc cag 771
 Leu Pro Ala Trp Leu Asp Thr Ile Trp Gln Gly Ile Ile Arg Pro Gln
 240 245 250

ggc tgg tta caa tac ggc att cgt ggg ttt atc aaa tcc gtg ccg gaa 819
 Gly Trp Leu Gln Tyr Gly Ile Arg Gly Phe Ile Lys Ser Val Arg Glu
 255 260 265 270

gta ccg act att tta ttg atg cgc ctt gcc ttt ggg gta gga ctt tgt 867

10

Val Pro Thr Ile Leu Leu Met Arg Leu Ala Phe Gly Val Gly Leu Cys
275 280 285

cgc ttc ggt atg ttc aaa gca gtg cga aaa aac gcc act caa gct taa 915
Arg Phe Gly Met Phe Lys Ala Val Arg Lys Asn Ala Thr Gln Ala .
290 295 300

attcttaagg tcgac 930

<210> 8
<211> 301
<212> PRT
<213> *Synechocystis* PCC6803

<400> 8
Met Ala Ala Gly Leu Tyr Leu Leu Thr Ala Arg Gly Tyr Gln Ser Ser
1 5 10 15

Asp Ser Val Ala Asn Ala Tyr Asp Gln Trp Thr Glu Asp Gly Ile Leu
20 25 30

Glu Tyr Tyr Trp Gly Asp His Ile His Leu Gly His Tyr Gly Asp Pro
35 40 45

Pro Val Ala Lys Asp Phe Ile Gln Ser Lys Ile Asp Phe Val His Ala
50 55 60

Met Ala Gln Trp Gly Gly Leu Asp Thr Leu Pro Pro Gly Thr Thr Val
 65 70 75 80

Leu Asp Val Gly Cys Gly Ile Gly Gly Ser Ser Arg Ile Leu Ala Lys
85 90 95

Asp Tyr Gly Phe Asn Val Thr Gly Ile Thr Ile Ser Pro Gln Gln Val
100 105 110

Lys Arg Ala Thr Glu Leu Thr Pro Pro Asp Val Thr Ala Lys Phe Ala
115 120 125

Val Asp Asp Ala Met Ala Leu Ser Phe Pro Asp Gly Ser Phe Asp Val
130 135 140

Val Trp Ser Val Glu Ala Gly Pro His Met Pro Asp Lys Ala Val Phe
145 150 155 160

Ala Lys Glu Leu Leu Arg Val Val Lys Pro Gly Gly Ile Leu Val Val
165 170 175

11

Ala Asp Trp Asn Gln Arg Asp Asp Arg Gln Val Pro Leu Asn Phe Trp
 180 185 190

Glu Lys Pro Val Met Arg Gln Leu Leu Asp Gln Trp Ser His Pro Ala
 195 200 205

Phe Ala Ser Ile Glu Gly Phe Ala Glu Asn Leu Glu Ala Thr Gly Leu
 210 215 220

Val Glu Gly Gln Val Thr Thr Ala Asp Trp Thr Val Pro Thr Leu Pro
 225 230 235 240

Ala Trp Leu Asp Thr Ile Trp Gln Gly Ile Ile Arg Pro Gln Gly Trp
 245 250 255

Leu Gln Tyr Gly Ile Arg Gly Phe Ile Lys Ser Val Arg Glu Val Pro
 260 265 270

Thr Ile Leu Leu Met Arg Leu Ala Phe Gly Val Gly Leu Cys Arg Phe
 275 280 285

Gly Met Phe Lys Ala Val Arg Lys Asn Ala Thr Gln Ala
 290 295 300

<210> 9

<211> 31

<212> DNA

<213> Synechocystis PCC6803

<220>

<221> primer_bind

<222> (1)..(31)

<400> 9

gatatcacca tggccgctgg actgttatctc c

31

<210> 10

<211> 31

<212> DNA

<213> Synechocystis PCC6803

<220>

<221> primer_bind

<222> (1)..(31)

<400> 10

gtcgacctta agaatttaag cttgagtggc g

31

INTERNATIONAL SEARCH REPORT

Intern. 1st Application No
PCT/EP 00/05862

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/82 C12N15/54 C12N9/10 C12N15/31 G01N33/53
 A01H5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C12N G01N A01H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, PAJ, WPI Data, STRAND

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE EMBL SEQUENCE DATABASE 'Online! 31 October 1996 (1996-10-31) KANEKO, T., ET AL. : "sequence analysis of the genome of the unicellular cyanobacterium Syecchocystis sp. PCC6803. II. sequence determination of the entire genome and assignment of the potential protein-coding regions" XP002152668 accession no. D90914</p> <p style="text-align: center;">-/-</p>	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

22 November 2000

Date of mailing of the international search report

04/12/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patenttaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

Holtorf, S

INTERNATIONAL SEARCH REPORT

Interr	nal Application No
PCT/EP 00/05862	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	HOEFGEN R ET AL: "BIOCHEMICAL AND GENETIC ANALYSIS OF DIFFERENT PATATIN ISOFORMS EXPRESSED IN VARIOUS ORGANS OF POTATO SOLANUM-TUBEROSUM" PLANT SCIENCE (LIMERICK), vol. 66, no. 2, 1990, pages 221-230, XP000964790 ISSN: 0168-9452 cited in the application page 223, left-hand column ---	5,6
A	WO 99 04622 A (UNIV NEVADA) 4 February 1999 (1999-02-04) cited in the application ---	
P,X	WO 00 10380 A (UNIV NEVADA) 2 March 2000 (2000-03-02) the whole document ---	1-8
P,X	WO 00 32757 A (RAFALSKI J ANTONI ;DU PONT (US); COUGHLAN SEAN J (US); MIAO GUO HU) 8 June 2000 (2000-06-08) the whole document -----	9,10

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internat'l Application No
PCT/EP 00/05862

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9904622 A	04-02-1999	AU 8506198 A		16-02-1999
		EP 1009812 A		21-06-2000
WO 0010380 A	02-03-2000	AU 5786199 A		14-03-2000
WO 0032757 A	08-06-2000	AU 2037700 A		19-06-2000

INTERNATIONALER RECHERCHENBERICHT

Internales Aktenzeichen

PCT/EP 00/05862

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES					
IPK 7	C12N15/82	C12N15/54	C12N9/10	C12N15/31	G01N33/53
A01H5/00					

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 C12N G01N A01H

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, BIOSIS, PAJ, WPI Data, STRAND

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	<p>DATABASE EMBL SEQUENCE DATABASE 'Online! 31. Oktober 1996 (1996-10-31) KANEKO, T., ET AL. : "sequence analysis of the genome of the unicellular cyanobacterium Syecchocystis sp. PCC6803. II. sequence determination of the entire genome and assignment of the potential protein-coding regions" XP002152668 accession no. D90914</p> <p>----</p> <p style="text-align: center;">-/--</p>	1

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
22. November 2000	04/12/2000
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Holtorf, S

INTERNATIONALER RECHERCHENBERICHT

Intern. Aktenzeichen

PCT/EP 00/05862

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	HOEFGEN R ET AL: "BIOCHEMICAL AND GENETIC ANALYSIS OF DIFFERENT PATATIN ISOFORMS EXPRESSED IN VARIOUS ORGANS OF POTATO SOLANUM-TUBerosum" PLANT SCIENCE (LIMERICK), Bd. 66, Nr. 2, 1990, Seiten 221-230, XP000964790 ISSN: 0168-9452 in der Anmeldung erwähnt Seite 223, linke Spalte	5,6
A	WO 99 04622 A (UNIV NEVADA) 4. Februar 1999 (1999-02-04) in der Anmeldung erwähnt	
P,X	WO 00 10380 A (UNIV NEVADA) 2. März 2000 (2000-03-02) das ganze Dokument	1-8
P,X	WO 00 32757 A (RAFALSKI J ANTONI ;DU PONT (US); COUGHLAN SEAN J (US); MIAO GUO HU) 8. Juni 2000 (2000-06-08) das ganze Dokument	9,10

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Intem. Aktenzeichen

PCT/EP 00/05862

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9904622 A	04-02-1999	AU 8506198 A EP 1009812 A	16-02-1999 21-06-2000
WO 0010380 A	02-03-2000	AU 5786199 A	14-03-2000
WO 0032757 A	08-06-2000	AU 2037700 A	19-06-2000