Resolução da Lista de Modelagem

Pesquisa Operacional I

1º semestre / 2017

Monitor: Hugo Casado Waismann

Orientador: Eduardo Uchoa Barboza

Revisado por Victória Monteiro (UFPB), Eduardo Luiz (UFPB) e Teobaldo Bulhões (UFPB).

Questão 1

	Custo Fixo	Capacidade Máxima		Requisições de Minério	
Mina 1	50000	11500	10	12300	Usina 1
Mina 2	40000	16500	8 9	15400	Usina 2
Mina 3	30000	13000	13 16	13300	Usina 3

- 1. Dados (já representados no diagrama):
 - Custo Fixo mensal para cada mina;
 - Capacidade Máxima de produção mensal de cada mina;
 - Custo de Transporte entre cada mina e usina;
 - Requisições mensais de minério para cada usina.

2. Variáveis:

- x_{ij} : quantidade de minério comprada da mina i pela usina j;
- y_i : indica se houve compra de minério proveniente da mina i (variável binária, tomando o valor 1 se houve compra, e o valor 0 em caso negativo).

3. Formulação:

$$\begin{array}{ll} \mathit{Min} & 10x_{11} + 8x_{21} + 13x_{31} + 7x_{12} + 9x_{22} + 16x_{32} + 6,5x_{13} + 10,8x_{23} + 12,6x_{33} + \\ & 50000y_1 + 40000y_2 + 30000y_3 \end{array}$$

S.a.
$$x_{11} + x_{21} + x_{31} = 12300$$

$$x_{12} + x_{22} + x_{32} = 15400$$

$$x_{13} + x_{23} + x_{33} = 13300$$

$$x_{11} + x_{12} + x_{13} \le 11500y_1 *$$

$$x_{21} + x_{22} + x_{23} \le 16500y_2$$
 *

$$x_{31} + x_{32} + x_{33} \le 13000y_3$$
 *

$$x \ge 0$$

$$0 \le y \le 1$$

y inteiro

Pelo UFFLP, obtemos os seguintes resultados:

$$x_{11} = 0$$
 $x_{21} = 12300$ $x_{31} = 0$ $x_{31} = 0$ $x_{12} = 11200$ $x_{22} = 4200$ $x_{32} = 0$ $x_{33} = 13000$ $x_{13} = 300$ $x_{23} = 0$ $x_{24} = 1$ $x_{25} = 1$ $x_{35} = 1$

* Essas restrições têm duas funções: a primeira é de proibir que alguma mina que não teve minérios comprados dela possa vendê-los (em outras palavras, se $y_i = 0$, teremos que $x_{i1} = x_{i2} = x_{i3} = 0$ necessariamente, pois todas as variáveis são maiores ou iguais a zero); e a outra é de que uma vez que a mina tenha minérios comprados dela, essa quantidade de compra não seja superior a sua capacidade máxima.

- 1. Dados:
 - Área total de cada região (em alqueires);
 - Disponibilidade de água em cada região (em m^3);
 - Área máxima por produto (em alqueires);
 - Consumo de água por área de terreno (em m^3 /alqueire);
 - Lucro por unidade de área (em \$/alqueire).
- 2. Variáveis:
 - x_{ij} : área plantada com produto i (em alqueires) na região j.
- 3. Formulação:

$$\begin{array}{ll} \mathit{Max} & 400x_{1A} + 400x_{1B} + 400x_{1C} + 300x_{2A} + 300x_{2B} + 300x_{2C} + 100x_{3A} + 100x_{3B} + \\ & 100x_{3C} \end{array}$$

$$S.a. \quad x_{1A} + x_{2A} + x_{3A} \leq 400$$

$$x_{1B} + x_{2B} + x_{3B} \leq 600$$

$$x_{1C} + x_{2C} + x_{3C} \leq 300$$

$$3x_{1A} + 2x_{2A} + x_{3A} \leq 600$$

$$3x_{1B} + 2x_{2B} + x_{3B} \leq 800$$

$$3x_{1C} + 2x_{2C} + x_{3C} \leq 375$$
 disponibilidade de água em cada região

$$x_{1A}+x_{1B}+x_{1C}\leq 600$$

$$x_{2A}+x_{2B}+x_{2C}\leq 500$$

$$x_{3A}+x_{3B}+x_{3C}\leq 325$$

$$x\geq 0$$
 área máxima por produto

OBS₁: Geralmente, quando temos questões sem valores numéricos, escrevemos os índices das variáveis usando apenas números. Isso facilita o uso da notação de somatório (ex.: $\sum_{j=1}^{n} x_j = 1$) e de "para todo" (ex.: $\forall i = 1, ..., m$). Porém, em questões com valores numéricos, podem-se usar letras ou até palavras como índices (como, nesse caso, os nomes das regiões) para facilitar o entendimento da modelagem.

Pelo UFFLP, obtemos os seguintes resultados:

$x_{1A} = 0$	$x_{2A} = 300$	$x_{3A} = 0$
$x_{1B} = 133,33$	$x_{2B} = 200$	$x_{3B} = 0$
$x_{1C} = 125$	$x_{2C} = 0$	$x_{3C} = 0$
	FO = 253333,33	

Questão 6

Neste exercício, precisaremos construir uma tabela, a partir das informações disponíveis no enunciado, que indique cada uma das maneiras de cortar a barra de 6 metros e quantas barras menores cada um desses cortes fornecerá:

	Corte 1	Corte 2	Corte 3	Corte 4
Barra de 2m	3	1	1	0
Barra de 3m	0	1	0	2
Barra de 4m	0	0	1	0
Resto (em m)	0	1	0	0

Demanda (em unidades)
50
60
90

Agora, já temos dados suficientes para modelar o problema.

OBS: Não é necessário colocar na tabela cortes em que o resto é maior ou igual ao comprimento da menor barra. Por exemplo, neste exercício, qualquer tipo de corte que produza um resto maior ou igual a 2m poderá ser melhorado fabricando uma barra menor a mais e reduzindo o resto. (Essa observação é válida para quando as barras menores e os cortes não têm custo específico de produção)

1. Dados:

- Demanda de cada barra menor;
- Quantidade de cortes possíveis;

- Quantidade da barra menor *i* produzida no corte *j*.
- 2. Variáveis:
 - x_i : quantidade do corte j realizado.
- 3. Formulação:

$$Min \quad x_1 + x_2 + x_3 + x_4$$

S.a.
$$3x_1 + x_2 + x_3 \ge 50$$

 $x_2 + 2x_4 \ge 60$

$$x_3 \ge 90$$

$$x \ge 0$$

Pelo UFFLP, obtemos os seguintes resultados:

$$x_1 = 0$$
 $x_2 = 0$ $x_3 = 90$ $x_4 = 30$ $FO = 120$

Área\Padrão	P1	P2	Р3	P4
(2cm x 4cm)	2	1	2	5
(4cm x 7cm)	1	1	1	0
Resto	0	1	0	0

Tipos de tiras	Demanda
(2cm x 4cm)	2000
(4cm x 7cm)	1000

- 1. Dados:
- Demanda de cada tipo de tira metálica
- Quantas tiras de cada tipo são obtidas em cada padrão de corte

- 2. Variáveis:
- x_1 : número de cortes do padrão 1 a serem feitos.
- x_2 : número de cortes do padrão 2 a serem feitos.
- x_3 : número de cortes do padrão 3 a serem feitos.
- x_4 : número de cortes do padrão 4 a serem feitos.
- y₁: número de chapas adquiridas de tamanho (10cm x 3000cm) 30000cm²
- y₂: número de chapas adquiridas de tamanho (11cm x 2000cm) 22000cm²
- 3. Formulação:

$$Min \quad 30000y_1 + 22000y_2$$

$$s.a \quad 2x_1 + x_2 + 2x_3 + 5x_4 \ge 2000$$

$$x_1 + x_2 + x_3 \ge 1000$$

$$y_1 = (x_2 + x_4)/750$$

$$y_2 = (x_1 + x_3)/500$$

$$y_1, y_2 \ge 0$$

$$x_1, x_2, x_3 \ge 0$$

$$y_1, y_2 \in Z$$

$$x_1, x_2, x_3, x_4 \in Z$$

Pelo algoritmo Branch-and-Bound, obtemos os seguintes resultados:

$$FO = 44000 \quad x_1 = 1000 \quad x_2 = 0 \quad x_3 = 0 \quad x_4 = 0 \quad y_1 = 0$$

 $y_2 = 2$

- 1. Dados:
 - Organizando os dados em uma tabela, temos:

Inspetor	Tipo 1	Tipo 2
Taxa de Inspeção	25 peças/hora	15 peças/hora
Taxa de Acerto	95%	95%
Salário	R\$4,00/hora	R\$3,00/hora

Disponibilidade	8	10

Assim podemos deduzir que:

- \Rightarrow Custo por hora do Inspetor $1 = 4 + (25 \times 0.05) \times 2 = 6.5$
- \Rightarrow Custo por hora do Inspetor 2 = 3 + (15 × 0,05) × 2 = 4,5
- 2. Variáveis:
 - x_i : número de inspetores do tipo i
- 3. Formulação:

Min
$$52x_1 + 36x_2$$

$$S.a. \quad 200x_1 + 120x_2 \ge 1800$$

$$x_1 \le 8$$

$$x_2 \le 10$$

x inteiro

$$x \ge 0$$

Pelo UFFLP, obtemos os seguintes resultados:

$$x_1 = 8$$

$$x_2 = 2$$

$$FO = 488$$

* Min
$$8 \times (6,5)x_1 + 8 \times (4,5)x_2$$

** $8 \times (25)x_1 + 8 \times (15)x_2 \ge 1800$, pois queremos que, ao final do dia (8 horas de jornada), os inspetores tenham inspecionados pelo menos 1800 peças.

- 1. Dados:
 - Número máximo de quartos que podem ser construídos;
 - Número mínimo de leitos;
 - Porcentagem máxima e mínima de quartos com um leito que devem ser construídos;
 - Gastos percentual com mão-de-obra dos pacientes dos quartos com 2 ou 3 leitos;
 - Relação de arrecadação com base na capacidade de pessoas no quarto.

- 2. Variáveis:
 - x_i : número de quartos com i leitos.

OBS₁: A formulação vai depender do enunciado de cada item. <u>É interessante observar que as restrições se repetirão para todos os itens.</u> O que irá diferenciá-los serão as funções-objetivo.

a)

3. Formulação:

Min
$$x_1 + 1,6x_2 + 2,4x_3$$
 *

S.a. $x_1 + x_2 + x_3 \le 70$

$$x_1 + 2x_2 + 3x_3 \ge 120$$

$$0,85x_1 - 0,15 x_2 - 0,15 x_3 \ge 0 \quad **$$

$$0,7x_1 - 0,3 x_2 - 0,3 x_3 \le 0 \quad **$$

$$x \text{ inteiro}$$

$$x \ge 0$$

Pelo UFFLP, obtemos os seguintes resultados:

$$x_1 = 7$$

$$x_2 = 1$$

$$x_3 = 37$$

$$FO = 97.4$$

* Considerando que nos quartos com dois e três leitos cada paciente exige 80% menos de mão-de-obra em relação aos pacientes de quartos com um leito, podemos inferir que os coeficientes das variáveis serão compostos pelo produto entre a porcentagem de mão-de-obra gasta (na forma decimal) e a quantidade de leitos no quarto.

Min
$$(1 \times 1)x_1 + (0.8 \times 2)x_2 + (0.8 \times 3)x_3$$

** As duas últimas restrições seguem o seguinte raciocínio:

$$x_1 \ge 0.15(x_1 + x_2 + x_3)$$

 $x_1 \le 0.30(x_1 + x_2 + x_3)$

Passando todas as variáveis para o lado esquerdo da inequação, encontraremos as expressões finais.

3. Formulação (as restrições são as mesmas da letra *a*):

$$Max \quad x_1 + x_2 + x_3 \quad *$$

Pelo UFFLP, obtemos os seguintes resultados:

$$x_1 = 21$$

$$x_2 = 0$$

$$x_3 = 49$$

$$FO = 70$$

* Considerando que a arrecadação do hospital por pessoa é inversamente proporcional ao número de leitos do quarto, podemos inferir que os coeficientes das variáveis serão compostos pelo produto entre a quantidade de pessoas no quarto e o inverso do número de leitos no quarto.

$$Max (1 \times 1)x_1 + (2 \times \frac{1}{2})x_2 + (3 \times \frac{1}{3})x_3$$

c)

3. Formulação (as restrições são as mesmas da letra *a*):

$$Max \quad x_1 + 2x_2 + 3x_3$$

Pelo UFFLP, obtemos os seguintes resultados:

$$x_1 = 11$$

$$x_2 = 0$$

$$x_3 = 59$$

$$FO = 188$$

d)

3. Formulação (as restrições são as mesmas da letra *a*):

$$Min 10x_1 + 14x_2 + 17x_3$$

Pelo UFFLP, obtemos os seguintes resultados:

$$x_1 = 7$$

$$x_2 = 1$$

$$x_3 = 37$$

$$FO = 713$$

Questão 13

1. Dados:

Organizando os dados em uma tabela, temos:

Horário Escalas	1P	1E	2P	2E	3P	3E	4P	4E	5P	5E	6P	6E	7P	7E	8P	8E	Demanda
24-3	Р	Е												Е	Р	Е	30
3-6	Р	E	Р	E												E	20
6-9		E	Р	E	Р	E											40
9-12				Е	Р	Е	Р	E									50
12-15						Е	Р	Е	Р	Е							60
15-18								E	Р	Е	Р	E					50
18-21										E	Р	E	Р	E			40
21-24												E	Р	E	Р	E	40

[&]quot;P": plantão do enfermeiro da escala correspondente;

Assim, temos:

- ⇒ Número total de escalas possíveis;
- \Rightarrow Demanda por enfermeiros na escala i;
 - Custo por hora de cada enfermeiro = $\frac{1}{6}$;
 - O Custo por hora dos enfermeiros cumprindo hora-extra $= \frac{1}{6} \times (1+0.5) = 0.25;$
 - Custo total do enfermeiro em hora-extra (3 horas de plantão) $= 3 \times 0.25 = 0.75$;
- \Rightarrow Custo total (9 horas de trabalho) dos enfermeiros que cumprem horaextra = 1 + 0,75 = 1,75.

2. Variáveis:

- x_i : número de enfermeiros na escala i que não farão hora-extra;
- e_i : número de enfermeiros da escala i que farão hora-extra;

[&]quot;E": plantão do enfermeiro que fará hora-extra.

3. Formulação:

$$\begin{array}{ll} \mathit{Min} & x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + 1,75e_1 + 1,75e_2 + 1,75e_3 + 1,75e_4 + \\ & 1,75e_5 + 1,75e_6 + 1,75e_7 + 1,75e_8 \end{array}$$

S.a.
$$x_1 + x_8 + e_1 + e_7 + e_8 \ge 30$$

 $x_1 + x_2 + e_1 + e_2 + e_8 \ge 20$
 $x_2 + x_3 + e_1 + e_2 + e_3 \ge 40$
 $x_3 + x_4 + e_2 + e_3 + e_4 \ge 50$
 $x_4 + x_5 + e_3 + e_4 + e_5 \ge 60$

$$x_5 + x_6 + e_4 + e_5 + e_6 \ge 50$$

$$x_6 + x_7 + e_5 + e_6 + e_7 \ge 40$$

$$x_7 + x_8 + e_6 + e_7 + e_8 \ge 40$$

$$-0.4x_1 - 0.4x_8 - 0.4e_1 + 0.6e_7 - 0.4e_8 \le 0$$
 *

$$-0.4x_1 - 0.4x_2 - 0.4e_1 - 0.4e_2 + 0.6e_8 \le 0$$
 *

$$-0.4x_2 - 0.4x_3 + 0.6e_1 - 0.4e_2 - 0.4e_3 \le 0$$
 *

$$-0.4x_3 - 0.4x_4 + 0.6e_2 - 0.4e_3 - 0.4e_4 \le 0$$
 *

$$-0.4x_4 - 0.4x_5 + 0.6e_3 - 0.4e_4 - 0.4e_5 \le 0$$

$$-0.4x_5 - 0.4x_6 + 0.6e_4 - 0.4e_5 - 0.4e_6 \le 0$$
 *

$$-0.4x_6 - 0.4x_7 + 0.6e_5 - 0.4e_6 - 0.4e_7 \le 0$$

$$-0.4x_7 - 0.4x_8 + 0.6e_6 - 0.4e_7 - 0.4e_8 \le 0$$

x, e inteiros

$$x, e \ge 0$$

Pelo UFFLP, obtemos os seguintes resultados:

$x_1 = 20$	$e_1 = 0$
$x_2 = 0$	$e_2 = 0$
$x_3 = 30$	$e_3 = 10$
$x_4 = 10$	$e_4 = 0$
$x_5 = 40$	$e_5 = 0$
$x_6 = 10$	$e_6 = 0$
$x_7 = 30$	$e_7 = 0$
$x_8 = 10$	$e_8 = 0$

FO = 167,5

st Essas restrições representam o máximo de enfermeiros que podem estar cumprindo horaextra em determinado período. Para ilustrar o raciocínio, tomemos o período de 6-9 como exemplo. Nele, somente os enfermeiros da escala e_1 estarão fazendo hora-extra. Portanto:

$$e_1 \le 0.4(e_1 + x_2 + e_2 + x_3 + e_3)$$

Passando todas as variáveis para o lado esquerdo da inequação, encontraremos as expressões finais.

Questão 14

- 1. Dados:
 - Número de mochilas: m;
 - Capacidade (em peso) de cada mochila i: b_i;
 - Número de objetos: n;
 - Retorno de cada objeto j: p_j;
 - Peso de cada objeto j (em unidades): w_i .
- 2. Variáveis:
 - x_{ij} : indica se o objeto j vai ser alocado na mochila i (variável binária, tomando o valor 1 se o objeto vai ser alocado, e o valor 0 em caso negativo).
- 3. Formulação:

$$Max \qquad \sum_{j=1}^{n} \quad \sum_{i=1}^{m} \quad p_{j}x_{ij}$$

$$S. a. \qquad \sum_{j=1}^{n} \quad w_{j}x_{ij} \leq b_{i} \qquad \qquad \forall i=1,...,m$$

$$\sum_{i=1}^{m} \quad x_{ij} \leq 1 \qquad \qquad \forall j=1,...,n$$

 $0 \le x \le 1$

x inteiro

Questão 17

1. Dados:

- Número de possíveis localidades: *m*;
- Número de clientes a serem atendidos: n;
- Custo fixo de produção da fábrica *i*: f_i ;
- Capacidade de produção da fábrica i: p_i;
- Custo de transporte da fábrica i para o cliente j (por unidade): c_{ij} ;
- Demanda do cliente $j: d_j$.

2. Variáveis:

- x_{ij} : quantidade de produção que a fábrica i fornece ao cliente j;
- y_i : indica se a fábrica i será instalada (variável binária, tomando o valor 1 se a fábrica for instalada, e o valor 0 em caso negativo).

3. Formulação:

$$Min \sum_{j=1}^{n} \sum_{i=1}^{m} c_{ij}x_{ij} + \sum_{i=1}^{m} f_{i}y_{i}$$

$$S.a. \sum_{j=1}^{n} x_{ij} \leq p_{i}y_{i} \qquad \forall i = 1, ..., m$$

$$\sum_{i=1}^{m} x_{ij} = d_{j} \qquad \forall j = 1, ..., n$$

 $x \ge 0$

y inteiro

 $0 \le y \le 1$