Elementi di Teoria della Computazione

Classe: Resto_2 - Prof.ssa Marcella Anselmo

Tutorato 18/05/2022 ore 14:00-16:00

Seconda Esercitazione

a cura della dott.ssa Manuela Flores

Esercizio: Linguaggio associato al problema DOMINATING-SET su elearning.informatica.unisa.it

Un sottoinsieme D di vertici di un grafo non orientato G = (V, E) è un **insieme dominante** per G se ogni vertice in $V \setminus D$ è adiacente a un vertice in D (cioè i due vertici sono connessi mediante un arco in E).

Si consideri il seguente **problema di decisione**:

"Dati un grafo non orientato G = (V, E) e un intero positivo k, esiste un insieme dominante D di cardinalità k? "

(a) Definire il linguaggio DOMINATING-SET associato a tale problema.

Lezione 24 pag. 32

Linguaggio associato a un problema di decisione

Sia G = (V, E) un grafo non orientato, con insieme V di nodi e insieme E di archi. Un sottoinsieme V' di nodi di G è un independent set in G se per ogni u, v in V', la coppia (u, v) non è un arco, cioè u e v non sono adiacenti.

Definire il linguaggio *INDEPENDENT-SET* associato al seguente problema di decisione:

Sia G un grafo non orientato e k un intero positivo. G ha un independent set di cardinalità k?

INDEPENDENT-SET = $\{\langle G, k \rangle \mid G \text{ è un grafo non orientato, } k \text{ è un intero positivo e } G \text{ ha un independent set di cardinalità } k \}$

Esercizio 13: Linguaggio associato al problema DOMINATING-SET su elearning.informatica.unisa.it

Un sottoinsieme D di vertici di un grafo non orientato G = (V, E) è un **insieme dominante** per G se ogni vertice in $V \setminus D$ è adiacente a un vertice in D (cioè i due vertici sono connessi mediante un arco in E).

Si consideri il seguente **problema di decisione**:

"Dati un grafo non orientato G = (V, E) e un intero positivo k, esiste un insieme dominante D di cardinalità k? "

(a) Definire il linguaggio DOMINATING-SET associato a tale problema.

Linguaggio associato a un problema di decisione

Sia G = (V, E) un grafo non orientato, con insieme V di nodi e insieme E di archi. Un sottoinsieme V' di nodi di G è un independent set in G se per ogni u, v in V', la coppia (u, v) non è un arco, cioè u e v non sono adiacenti.

Definire il linguaggio *INDEPENDENT-SET* associato al seguente problema di decisione:

Sia G un grafo non orientato e k un intero positivo. G ha un independent set di cardinalità k?

INDEPENDENT-SET = $\{\langle G, k \rangle \mid G \text{ è un grafo non orientato, } k \text{ è un intero positivo e } G \text{ ha un independent set di cardinalità } k \}$

Esercizio: Problema accettazione di DFA

su elearning.informatica.unisa.it

- (a) Si descriva la relazione esistente tra un problema di decisione e il linguaggio associato.
- (b) Dato il problema

Problema dell'accettazione di un DFA: Sia \mathcal{B} un DFA e w una parola. L'automa \mathcal{B} accetta w?

definire il linguaggio associato A_{DFA} , spiegando la corrispondenza.

(c) Si consideri l'automa finito deterministico $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, dove $Q = \{q_0, q_1\}$, $\Sigma = \{a, b\}$, $F = \{q_1\}$ e δ è tale che $\delta(q_0, a) = q_0$, $\delta(q_0, b) = q_1$, $\delta(q_1, a) = \delta(q_1, b) = q_1$. Precisare quali delle seguenti stringhe sono elementi di A_{DFA} : $\langle \mathcal{A}, aa \rangle$, $\langle \mathcal{A}, aba \rangle$, $\langle \mathcal{A}, 00 \rangle$.

(a) vedi slide successiva

Lezione 24 pag. 29

Linguaggio associato a un problema di decisione

- Mentre l'insieme delle istanze si divide in due sottoinsiemi (l'insieme delle istanze sì e quello delle istanze no), l'insieme delle stringhe su Σ si divide in **tre** sottoinsiemi:
 - 1 L'insieme delle stringhe w che codificano istanze con risposta sì.
 - 2 L'insieme delle stringhe w che codificano istanze con risposta no.
 - 3 L'insieme delle stringhe w che non sono codifiche di istanze.
- Il linguaggio L associato a un problema di decisione \mathbb{P} è il linguaggio delle codifiche delle istanze che hanno risposta sì.

Lezione 25 pag. 36

Un problema indecidibile

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una MdT e } M \text{ accetta } w \}$$

 A_{TM} è il linguaggio associato al problema decisionale dell'accettazione di una macchina di Turing.

Teorema

Il linguaggio A_{TM} non è decidibile.

Esercizio: Riduzione da A_TM al complemento di EQ_TM su elearning.informatica.unisa.it

Esercizio (riduzione da A_{TM} a $\overline{EQ_{TM}}$)

Sia f_{A-NE} la funzione di riduzione esibita per dimostrare che $A_{TM} \leq_m \overline{E_{TM}}$ e sia f_{E-EQ} la funzione di riduzione esibita per dimostrare che $E_{TM} \leq_m E_{QTM}$.

E' possibile utilizzare f_{A-NE} e f_{E-EQ} per esibire una funzione di riduzione f_{A-NEQ} per dimostrare che $A_{TM} \leq_m \overline{EQ_{TM}}$?

Se sì, la funzione f_{A-NEQ} è la stessa di quella esibita nelle slide precedenti per dimostrare che $A_{TM} \leq_m \overline{EQ_{TM}}$?

Lezione 28 pag. 10

Problema del vuoto

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM e } w \in L(M) \}$$

 $E_{TM} = \{ \langle M \rangle \mid M \text{ è una } TM \text{ e } L(M) = \emptyset \}$

$$A_{TM} \leq_m \overline{E_{TM}}$$

Consideriamo $f: \Sigma^* \to \Sigma^*$ tale che $f(\langle M, w \rangle) = \langle M_1 \rangle$ dove

$$M_1: x \to \boxed{x = ?w} \to \begin{cases} No & \to \\ Si & w \to \boxed{M} \to accetta \end{cases} \to \begin{cases} rifiuta \\ accetta \end{cases}$$

Quindi
$$L(M_1) = \begin{cases} \{w\} & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{altrimenti} \end{cases}$$

Lezione 28 pag. 15

EQ_{TM} è indecidibile

$$E_{TM} = \{\langle M \rangle \mid M \text{ è una } MdT \text{ e } L(M) = \emptyset\}$$

 $EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ sono MdT e } L(M_1) = L(M_2)\}$

$$E_{TM} \leq_m EQ_{TM}$$

Sia M_1 una macchina di Turing tale che $L(M_1) = \emptyset$. $f: \langle M \rangle \to \langle M, M_1 \rangle$ è una riduzione di E_{TM} a EQ_{TM} .

Lezione 27 pag. 19

Teoremi

Teorema

 $A \leq_m B$ se e solo se $\overline{A} \leq_m \overline{B}$.

Dimostrazione

Per ipotesi $A \leq_m B$, quindi esiste una riduzione di A a B.

Poiché f è una riduzione, f è calcolabile e inoltre

$$\forall w \in \Sigma^* \quad w \in A \Leftrightarrow f(w) \in B$$

Proviamo che f è anche una riduzione da \overline{A} a \overline{B} .

Esercizio: Riduzione da A_TM al complemento di EQ_TM

su elearning.informatica.unisa.it

Esercizio (riduzione da A_{TM} a $\overline{EQ_{TM}}$)

Sia f_{A-NE} la funzione di riduzione esibita per dimostrare che $A_{TM} \leq_m \overline{E_{TM}}$ e sia f_{E-EQ} la funzione di riduzione esibita per dimostrare che $E_{TM} \leq_m EQ_{TM}$.

E' possibile utilizzare f_{A-NE} e f_{E-EQ} per esibire una funzione di riduzione f_{A-NEQ} per dimostrare che $A_{TM} \leq_m \overline{EQ_{TM}}$?

Se sì, la funzione f_{A-NEQ} è la stessa di quella esibita nelle slide precedenti per dimostrare che $A_{TM} \leq_m \overline{EQ_{TM}}$?

f: $\langle M, w \rangle \rightarrow \langle M_1 \rangle$ è una riduzione di A_{TM} a ' E_{TM} .

$$M_1: x o oxedsymbol{x = ?w} o egin{cases} \textit{No} & o \\ \textit{Si} & \textit{w} o oxedsymbol{M} o \textit{accetta} \end{pmatrix} o egin{cases} \textit{rifiuta} \\ \textit{accetta} \end{cases}$$

Quindi
$$L(M_1) = \begin{cases} \{w\} & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{altrimenti} \end{cases}$$

Sia M_1 una macchina di Turing tale che $L(M_1) = \emptyset$. $f: \langle M \rangle \to \langle M, M_1 \rangle$ è una riduzione di E_{TM} a EQ_{TM} .

Esercizio: Riduzione da A_TM al complemento di EQ_TM

su elearning.informatica.unisa.it

Esercizio (riduzione da A_{TM} a $\overline{EQ_{TM}}$)

Sia f_{A-NE} la funzione di riduzione esibita per dimostrare che $A_{TM} \leq_m \overline{E_{TM}}$ e sia f_{E-EQ} la funzione di riduzione esibita per dimostrare che $E_{TM} \leq_m EQ_{TM}$.

E' possibile utilizzare f_{A-NE} e f_{E-EQ} per esibire una funzione di riduzione f_{A-NEQ} per dimostrare che $A_{TM} \leq_m \overline{EQ_{TM}}$?

Se sì, la funzione f_{A-NEQ} è la stessa di quella esibita nelle slide precedenti per dimostrare che $A_{TM} \leq_m \overline{EQ_{TM}}$?

f: $\langle M, w \rangle \rightarrow \langle M_1 \rangle$ è una riduzione di A_{TM} a ' E_{TM} .

$$M_1: x o oxedsymbol{x = ?w} o egin{cases} \textit{No} & o \\ \textit{Si} & \textit{w} o oxedsymbol{M} o \textit{accetta} \end{pmatrix} o egin{cases} \textit{rifiuta} \\ \textit{accetta} \end{cases}$$

Quindi
$$L(M_1) = \begin{cases} \{w\} & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{altrimenti} \end{cases}$$

Sia T1 una macchina di Turing tale che L(T1) = \emptyset , g: $\langle T \rangle \rightarrow \langle T, T1 \rangle$ è una riduzione di 'E_{TM} a 'EQ_{TM}.

Lezione 28 pag. 17

Riduzione da A_{TM} al complemento di EQ_{TM}

 $f: \langle M, w \rangle \to \langle M_1, M_2 \rangle$ è riduzione che prova $A_{TM} \leq_m EQ_{TM}$.

$$L(M_1) = \Sigma^*$$
; $L(M_2) = \begin{cases} \Sigma^* & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{se } \langle M, w \rangle \notin A_{TM} \end{cases}$

Possiamo modificare f per dimostrare che $A_{TM} \leq_m \overline{EQ_{TM}}$?

Lasciamo la stessa M_2 e cambiamo M_1 in M_3 .

$$g: \langle M, w \rangle \to \langle M_3, M_2 \rangle$$

$$\mathbf{L}(\mathbf{M_3}) = \emptyset; \ L(M_2) = \begin{cases} \Sigma^* & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{se } \langle M, w \rangle \notin A_{TM} \end{cases}$$

Esercizio: Linguaggio L_x

Sia L_x l'insieme di stringhe binarie che rappresentano la codifica delle coppie (M,w) tali che M è una codifica di una macchina di Turing e w è la codifica di una stringa binaria di input accettata da tale macchina M.

Definire formalmente tale linguaggio e confrontarlo con quello riconosciuto da una MdT Universale U e con A_{TM}

Lezione 26 pag. 36

Macchina di Turing Universale

- Una MdT universale U simula la computazione di una qualsiasi MdT M
- ▶ U riceve in input una **rappresentazione** $\langle M, w \rangle$ di M e di un possibile input w di M
- ightharpoonup È chiamata universale perchè la computazione di una qualsiasi MdT può essere simulata da U

$$\langle M,w \rangle o \boxed{U} o egin{cases} accetta & \text{se M accetta w} \\ rifiuta & \text{se M rifiuta w} \\ non \ termina & \text{se M non termina} \\ \end{cases}$$

Lezione 25 pag. 36

Un problema indecidibile

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una MdT e } M \text{ accetta } w \}$$

 A_{TM} è il linguaggio associato al problema decisionale dell'accettazione di una macchina di Turing.

Teorema

Il linguaggio A_{TM} non è decidibile.

Esercizio: Riduzione da HALT_TM

su elearning.informatica.unisa.it

Si consideri il linguaggio

 $L = \{ \langle M \rangle \mid M \text{ è una MdT che si arresta su } 11 \text{ e non si arresta su } 00 \}.$

Definire il linguaggio $HALT_{TM}$ e dimostrare che $HALT_{TM} \leq_m L$.

Lezione 27 pag. 17

Riducibilità mediante funzione

Definizione

Un linguaggio $A \subseteq \Sigma^*$ è riducibile mediante funzione a un linguaggio $B \subseteq \Sigma^*$, e scriveremo $A \leq_m B$, se esiste una funzione calcolabile $f: \Sigma^* \to \Sigma^*$ tale che $\forall w \in \Sigma^*$

$$w \in A \Leftrightarrow f(w) \in B$$

La funzione f è chiamata una riduzione da A a B.

Lezione 27 pag. 25

Indecidibilità del problema della fermata

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una MdT e } M \text{ accetta } w \}$$

$$HALT_{TM} = \{\langle M, w \rangle \mid M \text{ è una MdT e } M \text{ si arresta su } w\}$$

Teorema

 $A_{TM} \leq_m HALT_{TM}$.

Dimostrazione

Occorre definire una funzione calcolabile $f: \Sigma^* \to \Sigma^*$ tale che $f(\langle M, w \rangle) = \langle M', w \rangle$ e

$$\langle M, w \rangle \in A_{TM}$$
 sse $\langle M', w \rangle \in HALT_{TM}$

Prossimo tutorato

Ci vediamo mercoledì prossimo ore 14-16

sempre su questo canale del Team...

... buono studio ©

