Рекомендательные системы

По материалам Евгения Соколова

Занятие 1

Опрос

• Какие рекомендательные системы вы знаете?

Опрос

- Какие рекомендательные системы вы знаете?
- Рекомендации чего вы хотели бы получать?

Рекомендательные системы

- Фильмы, видео
- Музыка
- Книги
- Приложения
- Товары
- Посты в социальных сетях
- Баннерные системы
- Люди (социальные сети, сервисы знакомств)
- Услуги (рестораны, отели, ...)
- Научные публикации

Рекомендательные системы

- Рекомендательные системы сокращают объём информации, необходимый для принятия решения
- Не нужно читать отзывы на 1000 фильмов модель сама выберет лучший

- Netflix: 2/3 просмотренных фильмов найдены через рекомендательную систему
- Amazon: 35% продаж через полки рекомендаций
- Youtube: 60% просмотров благодаря рекомендациям

Amazon

Try Amazon Prime today and get unlimited fast, FREE shipping See more

Amazon

Recommendations for you in Books

Amazon

Books best sellers See more

Netflix

Netflix

Profile Type	Score Image A	Score Image B		
Comedy	5.7	6.3		
Romance	7.2	6.5		

Image B

Рекомендации контента

- Медийный бум приводит к взрывному росту объёмов информации в сети
- Рекомендательные системы помогают ориентироваться
- Для авторов поиск целевой аудитории

• Пионеры в Китае — Toutiao (более 100 миллионов активных пользователей) и другие платформы

Цели с точки зрения продавца

• 5

Цели с точки зрения продавца

- Продать больше товаров
- Продать больше редких товаров
- Повысить лояльность пользователя
- Лучше понять покупателей

Цели с точки зрения покупателя

Цели с точки зрения покупателя

- Купить то, что нужно
- Понять, что покупать вместе с данным товаром
- Понять, что интересно (если нет задачи купить что-то конкретное)

Краткая история

- Начало 90-х: одна из первых рекомендательных систем (GroupLens, рекомендации записей в Usenet)
- Начало 2000-х: активные исследования, коммерциализация
- 2006: Netflix Prize
- 2007: первая конференция RecSys

Netflix Prize

- Предсказываем, какую оценку пользователь поставит фильму
- Метрика: RMSE
- Задача: улучшить на 10% качество предсказания
- Конкурс шёл с 02.10.2006 по 21.09.2009
- Главный приз: \$1,000,000
- Размеры:
 - 500 тысяч пользователей
 - 17 тысяч фильмов
 - 10⁸ рейтингов

Netflix Prize

- Одно из первых крупных соревнований по анализу данных (предшественник kaggle и т.д.)
- Первый большой открытый набор данных для тестирования алгоритмов рекомендаций
- Алгоритмы, разработанные участниками конкурса, до сих пор популярны в индустрии
- Netflix Prize привёл к большой популярности RMSE как метрики качества рекомендаций (не самый лучший результат)

Netflix Prize

На основе чего можно строить рекомендации?

На основе чего можно строить рекомендации?

- Данные по другим пользователям «что смотрят люди с похожими на мои интересами?»
- Данные по объектам (фильмам) «какие фильмы похожи на те, которые мне понравились?»

Типичная рекомендательная система

- Объект: пара «user-item»
- Целевая переменная: клики, длинные клики, досмотры, покупки, дослушивания, лайки и т.д.
- Решаем задачу классификации/регрессии/ранжирования

Типичная рекомендательная система

- Объект: пара «user-item»
- Целевая переменная: клики, длинные клики, досмотры, покупки, дослушивания, лайки и т.д.
- Решаем задачу классификации/регрессии/ранжирования

Особенности:

- Выбор целевой переменной
- Выбор метрики качества
- Факторы для модели
- Слишком много товаров/видео/песен/...

Отбор кандидатов

- Простая и быстрая модель, которая отбирает тысячи товаров для данного пользователя
- Сложная модель применяется только к отобранным кандидатам

Основные подходы

- Есть методы, разработанные напрямую для рекомендаций
- Коллаборативная фильтрация
 - Рекомендации на основе сходства действий пользователей
- Контентные рекомендации

Memory-based models

Обозначения

- Множество товаров: *I*
- Множество пользователей: U
- Множество пар «пользователь-товар», для которых известны оценки: R
- Если для пары (u,i) известен рейтинг, то будем писать $\exists r_{ui}$
- Оценки рейтинги фильмов, индикаторы покупки товара и т.д.

Оценки

- Оценки (или фидбэк) бывают явные и неявные
- Явные оценки
 - Пользователь поставил оценку фильму/товару
 - Пользователь написал отзыв
 - Пользователь поставил лайк
- Неявные оценки
 - Пользователь посмотрел фильм
 - Пользователь добавил товар в корзину
 - Пользователь долго смотрел на запись в социальной сети
- Неявные оценки более шумные, но их больше

Сходство пользователей

- $I_{uv} = \{i \in I \mid \exists r_{ui} \text{ и } \exists r_{vi}\}$ множество товаров, которые оценили и пользователь u, и пользователь v
- Сходство пользователей:

$$w_{uv} = \frac{\sum_{i \in I_{uv}} (r_{ui} - \bar{r}_u)(r_{vi} - \bar{r}_v)}{\sqrt{\sum_{i \in I_{uv}} (r_{ui} - \bar{r}_u)^2} \sqrt{\sum_{i \in I_{uv}} (r_{vi} - \bar{r}_v)^2}},$$

где $\overline{r_u}$ и $\overline{r_v}$ — средние рейтинги пользователей

- Дан пользователь u_0
- Найдём пользователей, которые похожи на него:

$$U(u_0) = \{ v \in U \mid w_{u_0 v} > \alpha \}$$

• Порекомендуем те товары, которые часто покупались пользователями из $U(u_0)$

Товары

1	1	0		1	
0	1	1			1
			1	1	0
	1	1		0	
	1				1

Товары

1	1	0		1	
0	1	1			1
			1	1	0
	1	1		0	
	1				1

Товары

1	1	0		1		
0	1	1			1	
			1	1	0	
	1	1		0		
	1				1	

Похожие

Товары

Недостатки:

- Много параметров, которые сложно выбирать
 - Какой порог сходства для пользователей?
 - Сколько похожих пользователей должны были купить товар, чтобы мы его порекомендовали?
- Требуется хранить всю матрицу оценок

Есть и другие методы, основанные на сходствах, но все обладают теми же недостатками.