Convexity, Subgradients and SVM

Optimization for Machine Learning — Homework #1

Monday 8th May, 2023

The theory part can be handed-in physically during the exercise session, or digitally if typeset on Moodle. The programming part has to be sent on Moodle. Group work is allowed (2-3 people), but submissions are personal.

Part I: Theory

12+2 points

I.1. Convexity

Exercise I.1 (2+1 points). Let $f: \mathbb{R}^d \to \mathbb{R}$ and $g: \mathbb{R}^d \to \mathbb{R}$ be two convex functions. Show that f+g is convex.

Bonus: Show that $x \mapsto \max(f(x), g(x))$ is convex.

Exercise I.2 (2+1 points). Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a linear function (i.e. f(x) = Ax, for $A \in \mathbb{R}^{m \times n}$) and $g: \mathbb{R}^m \to \mathbb{R}$ be convex functions. Show that $g \circ f: \mathbb{R}^n \to \mathbb{R}$ is convex.

Bonus: What about if f is affine, i.e. f(x) = Ax + b, with $b \in \mathbb{R}^m$?

I.2. (Sub-) Gradients

Exercise I.3 (2 points). Let $\phi \colon \mathbb{R}^d \to \mathbb{R}^p$ be a differentiable basis function. Define the model $f \colon \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}$ as, for $b \in \mathbb{R}$,

$$f: \mathbb{R}^d \times \mathbb{R}^p \longrightarrow \mathbb{R}$$

 $(x, w) \longmapsto \langle w, \phi(x) \rangle + b$

- 1. What is $\nabla_w f(x, w)$?
- 2. What is $\nabla_x f(x, w)$?

Exercise I.4 (2 points). For $\lambda \geqslant 0$, let $E(w) = E_s(w) + \lambda ||w||_1$, where E_s is assumed to be convex and everywhere differentiable, and

$$||w||_1 := \sum_{i=1}^p |w_i|$$

is the 1-norm of w.

- 1. Is E convex?
- 2. Where is $w \mapsto ||w||_1$ (not) differentiable?
- 3. What is $\partial E(w)$ (as a function of $\nabla E_s(w)$)? (Hint: see what happens for p=1,2 first.)

I.3. Support Vector Machines

Exercise I.5 (4 points). The Support Vector Machines (SVM) algorithm solves a binary classification task. Given N couples samples I targets $\{x_i, t_i\}_{i \in [N]}$, with $x_i \in \mathbb{R}^d$ and $t_i \in \{-1, 1\}$ for each $i \in [N] := \{1, \ldots, N\}$, the goal is to classify the samples, i.e. find the regions where the positive (resp. negative) samples lie. We will do that by finding a **hyperplane that separates** (or **splits**) the dataset, with positive samples on one side of the hyperplane and the negative on the other. We assume that **such an hyperplane exists** (the samples are said to be *linearly separable*). One can picture the case for d = 2 or d = 3, where points are clustered in two groups and can be separated by a straight line (d = 2) or a plane (d = 3), see Figure 1a.

A hyperplane in \mathbb{R}^d is represented with a vector $w \in \mathbb{R}^d$ and a bias $b \in \mathbb{R}$ with the equation

$$y(x,w) = \langle w, x \rangle + b. \tag{1}$$

For $i \in [N]$, denote $y_i := y(x_i, w) = \langle w, x_i \rangle + b$. Note that y_i still depends on (x, w) even if the notation is dropped.

The hyperplane equation (1) splits \mathbb{R}^d into three regions:

- points x such that y(x) > 0,
- points x such that y(x) = 0 (the hyperplane itself),
- points x such that y(x) < 0.

Therefore, we would like to find an hyperplane such that the samples x_i that have a positive target $t_i=1$ all lie on the side of the hyperplane where y(x)>0, i.e. $t_i=1 \implies y_i>0$, and reciprocally all samples x_i such that $t_i=-1$ should be on the side where y(x)<0, i.e. $t_i=-1 \implies y_i<0$. Then, the target t_i could simply by read from y_i by looking at its sign.

With this requirement, the product $t_i y_i$ should **always be positive**, and the loss we define is

$$E(w) = \sum_{i=1}^{N} \max(0, 1 - t_i y_i) = \sum_{i=1}^{N} \max(0, 1 - t_i (\langle w, x_i \rangle + b)),$$
 (2)

which has the effect of pushing the product t_iy_i towards the greatest value possible, for all $i \in [N]$.

Let $\mathcal{I}_+ = \{i \in [N] \mid t_i = +1\}$ and $\mathcal{I}_- = \{i \in [N] \mid t_i = -1\}$ be the sets of the indices of the positive and negative samples. The loss can be further written as

 $\langle w, x \rangle + b > 0$

- (a) Possible solution found by SVM. Points with $t_i = +1$ (in red) are on the side where y(x) > 0, points with $t_i = -1$ (in blue) are on the side where y(x) < 0.
- (b) In red, the loss function for the samples that have $t_i=+1$. In blue, the loss function for the samples with $t_i=-1$.

Figure 1: SVM illustration, d = 2.

$$E(w) = \sum_{i \in \mathcal{I}_{+}} \max(0, 1 - y_i) + \sum_{i \in \mathcal{I}_{-}} \max(0, 1 + y_i) =: \sum_{i \in \mathcal{I}_{+}} h_{+}(y_i) + \sum_{i \in \mathcal{I}_{-}} h_{-}(y_i)$$

The functions h_+ and h_- are plotted in Figure 1b.

1. Why is the loss $w \mapsto E(w)$ convex? (*Hint*: if f and g are convex, then $\max(f,g)$ is convex).

Recall that the function $h_+ \colon \mathbb{R} \ni z \mapsto \max(0, 1 - z)$ has the following subgradient (see Exercise Sheet #2, I.2):

$$\partial h_{+}(z) = \begin{cases} \{-1\} & \text{if } z < 1, \\ [-1, 0] & \text{if } z = 1, \\ \{0\} & \text{if } z > 1. \end{cases}$$

2. Show that the subgradient of the function $h_-: \mathbb{R} \ni z \mapsto \max(0, 1+z)$ is

$$\partial h_{-}(z) = \begin{cases} \{0\} & \text{if } z < -1, \\ [0,1] & \text{if } z = -1, \\ \{1\} & \text{if } z > -1. \end{cases}$$

- 3. Compute the subgradient of the loss E at $w \in \mathbb{R}^p$.
- 4. What should be the (sub-) gradient descent algorithm to minimize E?

Part II: Programming

8+2 points

Exercise II.1 (8+2 points). This exercise implements some material from Exercise I.5. The data is generated with the helper function <code>gen_binary_data</code> in <code>ex02/utils.py</code>. The dimension is set to d=2 in order to visualize the result at the end. The generation simply draws some random points on the plane, draws an hyperplane, and classify the points depending on the sign of $\langle w, x \rangle + b$. Therefore, the training data is linearly separable.

- 1. Implement the loss from (2).
- 2. Implement the (sub-) gradient algorithm derived in I.5.4
- 3. Visualize the solution found by the algorithm, as well as its convergence.
- 4. *Bonus*: What happens if the data is not linearly separable?