Name ROHIT PAL Roll No. 1910 79509564

Class LSE-2

Exam No. Sub-DE

This is certified to be the bonafide work of the student in the

2.	Realization at logic lunctions	9 615.	20-8-2020	5-9-2020	
	Realization of logic functions with the help of universal gates - MAND Gate.				
	gates - MAND Gate.				
The state of the s					

Date.	
Expt. No. 2. Page No.	(2)
TAM:-	
Realization at logic lunctions with the	holb
Realization of logic functions with the	
Apparatus: - Logic terainer Kit, NAND 9 (IC 7400), Wires.	ates
1 115084	
NANDgate is actually a combi	ination
af two logic gates: AND gate fallowed	d by
NOT gate. So its output is complem	ent as
MAND gate is actually a combined two logic gates: AND gate fallowed NOT gate. So its output is complement the output of an AND gate.	
Thus gave can	rave
minimum two input, output is always one	e all
using only NAND gates, we can realize logic functions: AND, OR, NOT, X-OR, X-	·NOR.
NOR. So this gate is also called univer	sal gate
I CO I D	U
NAND gates as NOT gate A NOT produces complement of the St can have only input, tie the input NAND gate together. Now it will w as a NOT gate. Its cutput is	
A NOT produces complement af the	input.
It can have only input; tie the input) af a
NAMO gate together. Now ut will will	arc
as a NOT gate, sts cutput is Y= (A.A)'	
$\frac{72 \text{ Chirt}}{-100000000000000000000000000000000000$	
MAND gates as AND gate	
A NAND hardures comb loment at AND	gate.
ANAND produces complement at AND So, if the output of a NAND gate is	inverted
Teacher's Signature:	

Expt AO - 2.

AMI - Realization of logic functions with the Left of universel gales - NAVIO. gates.

term and an explain and another the little and

the Arms should be born and are divising

NAND gates as NOT gale

2 Inpu	nt NAN	D gate
A	В	ĀB
0	0	1
0	1	1
1	0	- 1
1	1	0

NOT	gate
A	Ā
0	1
1	0

NAND gates as AND gate

2 Input AND gate
A B AE
0 0 0
0 1 0
1 0 0
1 1 1
\Box $P-AB$

	Date
Expt. No.	Page No. 11
Overall output	will be that as an AND gate. Y = ((A.B)')'
	y = (A.B)
N	AND gates as OR gate
Forom DeMo.	organ's theoroms: (A.B)'=A+B ⁹ A'.B')' = A''+B'' = A+B
So, give the Obtain OR op	inverted inputs to a NAND gate, excition at output.
	gates as X-OR gate
The output Y = A'+B + A13 logic diagram	of a input X-OR gate is shown by 1. This can be achieved with the 2. Shown isn. the left Side.
	Sapats Output (AR)
2 A	, (AB)' (A(AB)')'
3 (AK 4 (ACE	(B (AB)')', (B (AB)')' A'B+ AB'
Now the output	from gate no. 4 1s the overall outpu
as the config	((A (AB)')' (B (AB)')')' ((A (AB)')' + (B (AB)')'')
	Teacher's Signature:

MAND gates as OR gate

2 Input NAND gate			
A	В	A.B	
0	0	1	
_0	1	1	
1	0	1	
1	1	0	

2 Inp	ut OR g	t OR gate		
Α	В	A+B		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

NAND gates as X-OR gate

2 Inp	ıt EXO	R gate
Α	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

	Date
Expt. No.	Page No
	= (Q/QQ') + (Q(QQ'))
	= (B(A'+R') + (B(A'+B'))
	= (AA' + AR') + (BA' + BB')
	= (0 + AB') + BA' + 0)
	$AB^2 + BA'$
y =	AB7 + A'B
NAN	Degates as X-NOR gete
X-NOR gate	is actually X-OR gute followed by 30 give the output of X-OR gute gate, overall output is that ay an
NOT gate. S	30 give the output of X-or gete
to a NOT	gate, overall output is that af an
X- NOR gate	
	y = AB + A'B'
N/	$\Omega M \Omega = 1$
/\/	4ND gates as NOR gate
	0 10 1 1 00-
A NOR gate	nnect the output of OR gate to a overall output is that of a
gate. So Con	nnect the output of OK gate to a
NOT gate,	overall output is that of a
Non gate.	() ()
	y= (A+B'
(D)	
PROCEDURE	
	(1) Connect the trainer Kit to ac
Dower Suppli	
Connect the	NAND gate Jos any at the logic
	Teacher's Signature :

MAND gates as X-NOR gate

2 (A(AB)')'

A © B

(AB)' A (B)

(AB)'B)'

X-NOR

MAMO gates as MOR gate

2 Inp	ut HAH	D gate
A.	8	AB
O	0	1
0	1	1
1	0	1
1	1	0

2 Inpu	n NOR	gate
Ä	В	A+B
0	0	1
O	1	0
1	0	0
1	1	n

	Date
Expt. No	Page No. 15
functions to be ozealised.	
[III) Connect the input of first	Stage to logic sources
and output at the last gate	to logic. indicator.
Apply vorous input combined	tions and observe
output for each one.	
12) verify the tructh table for	each inbut I outbut
Combination.	
W/ Repeat the process for all	logic lunctions
(V1) Switch as the ac bower 3	shirle
' 0 0	e