Ejercicio 1 – Javier Monjes 202100081

Definición del problema de optimización

Variables de decisión:

- x_A : Número de tubos del tipo A a fabricar.
- x_B : Número de tubos del tipo B a fabricar.

Función objetivo:

• Maximizar el beneficio total:

$$Z = 25x_A + 30x_B$$

Restricción:

Cobre;

$$1x_A + 1.5x_B \le 750$$

Acero:

$$1.5x_A + 1x_B \le 750$$

Nonegatividad:

$$x_A \leq 0, x_B \leq 0$$

Gráfica:

$$x_B = \frac{750 - 1x_A}{1.5} x_A$$

$$x_B = 500 - \frac{2}{3}x_A$$

Para maximizar el beneficio, se deben fabricar:

- 300 tubos de tipo A.
- 300 tubos de tipo B.

Esto generará un beneficio máximo de Q16,500

Ejercicio 6 - Javier Monjes 202100081

Definición del problema de optimización

Variables de decisión:

- x_1 : Número de bicicletas de paseo a producir.
- x_2 : Número de bicicletas resistentes a los impactos a producir.

Función objetivo:

• Maximizar el ingreso total:

$$Z = 20000x_1 + 15000x_2$$

Restricción:

Aluminio;

$$3x_1 + 2x_2 \le 120$$

Acero:

$$x_1 + 2x_2 \le 80$$

Nonegatividad:

$$x_1 \ge 0, x_2 \ge 0$$

Paso a forma estándar:

$$3x_1 + 2x_2 + s_1 = 120$$

$$x_1 + 2x_2 + s_2 = 80$$

$$F_o = 20000x_1 + 15000x_1 + 0s_1 + s_2$$

Tabla inicial del método simplex

Básicas	X1	X2	S1	S2	R
s_1	3	2	1	0	120
s_2	1	2	0	1	80
Z	-20000	-15000	0	0	0

pivote

•
$$\frac{120}{3} = 40$$

•
$$\frac{80}{1} = 40$$

El menor valor es 40, por lo que la fila pivote es la fila 1.

Básicas	X1	X2	S1	S2	R
s_1	1	2	1	0	40
		$\frac{\overline{3}}{3}$	$\frac{\overline{3}}{3}$		
s_2	0	4	1	1	40
_		$\frac{\overline{3}}{3}$	$-\frac{1}{3}$		
Z	0	5000	20000	0	800000
		3	3		

Pivote

•
$$\frac{\frac{40}{2}}{3} = 60$$

•
$$\frac{\frac{40}{4}}{3} = 30$$

Básicas	X1	X2	S1	S2	R
s_1	1	0	5	1	20
			$\frac{\overline{4}}{4}$	$-\frac{1}{2}$	
s_2	0	1	1	3	30
_			$-\frac{1}{4}$	$\frac{\overline{4}}{4}$	
Z	0	0	5000	5000	850000
			4	4	

Solución Óptima

Cuando ya no hay valores negativos en la fila de Z, hemos alcanzado la solución óptima.

•
$$x_1 = 20$$

•
$$x_2 = 30$$

Por lo tanto, la empresa debe producir 20 bicicletas de paseo y 30 bicicletas resistentes para maximizar las utilidades con un ingreso total de Q850,000