Table of Contents

	- 1
Duestion 1	
Duestion 2a	
Duestion 2b	
Duestion 3	
Duestion 4a	
Duestion 4b	5
Duestion 5	
Duestion 5	7
Duestion 7	

Question 1

Question 2a

Question 2b

When zooming in on the graph in Matlab the Euler method is seperated from the other graphs showing that the other methods are better.

Question 3

Question 4a

Question 4b

When determining the analytical solution I used D operators. This gave $y = Ae^{(4.1*x)} + Be^{(-4.1*x)}$. Using the initial conditions in 4a, A = 0 and B = 1. So when solving using the analytical method The A term is not there for 4a. Hence only the $Be^{(-4.1*x)}$ contributes.

When using initial conditions from 4b, A = 0.034 and B = 0.966. Now that A is there, the $Ae^{(4.1*x)}$ contributes to solution and causes it to be different from the solutions of y for initial conditions 4a

Question 5

ytrue =

- 1.0000000000000000
- 0.905139080782970
- 0.820916948718187
- 0.747515678018091
- 0.684773832571705
- 0.632336662186250
- 0.589783357612850
- 0.556734581678095
- 0.532946980587607
- 0.518404216653756
- 0.513417119032592 0.518749934691400
- 0.535796957667456
- 0.566846538740496
- 0.615491998566963
- 0.687289278790972
- 0.790834417170762
- 0.939569644705407
- 1.154884108524915
- 1.471575114107691

1.947734041054678

Question 5 Question 7

Published with MATLAB® R2021b