Métodos de la física matemática I Ayudantía 2

Profesor: Edward Arévalo (earevalo@fis.puc.cl) Ayudante: Agustín Escobar (atescobar@uc.cl)

21 de agosto de 2016

Objetivos

- Trabajar el algebra de complejos mediante geometría en el plano y otras nociones
- Estudiar algunos conceptos de topología mediante ejemplos.

Problema 1: Geometría en el plano complejo

- 1. Encuentre la elipse de focos 1 e i que pasa por el orígen. ¿Cuál es la fórula correspondiente en geometría analítica?
- 2. Encontrar la ecuación de la parabola con foco z = i con directríz la recta Im(y) = -1.
- 3. Escribir la ecuación general de una hiperbola con focos a y b.

Problema 2: Teorema de Moivre

1. Mostrar que las raíces n-simas de la unidad están dadas por

$$z_n = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)$$

- 2. Reslover las siguientes ecuaciones utilizando el teorema de Moivre
 - a) $z^6 = 1$
 - b) $z^4 = -1$
 - c) $z^4 = -1 + \sqrt{3}i$

Problema 3: Esfera de Riemann

Mostrar que la distancia entre dos puntos en la proyección estereográfica de z y z' viene dada por

$$d(z, z') = \frac{2|z - z'|}{\sqrt{(1 + |z|^2)(1 + |z'|^2)}}$$

Encontrar el limite cuando $z' \to \infty$.

Problema 4: Nociones de topología

1. La clausura de un conjunto S es el conjunto más pequeño que contiene a S y a sus puntos de acumulación. Sea S dado por los puntos que cumplen $|z-z_0|<\delta$. Mostrar que la clausura de S está dada por \bar{S} dado por $|z-z_0|\leq\delta$

Los puntos que cumplen $|z-z_0| \le \delta$ automáticamente están dentro de la clausura y son puntos de acummulación. Los puntos contenidos en $|z-z_0| = \delta$ son tal que cualquier vecindad de ellos contiene infinitos puntos de S. Luego ellos son puntos de acumulación de S.

Los puntos que cumplen con $|z-z_0| > \delta$ forman un conjunto abierto (llamemoslo S^c) por lo que existe para cada punto $k \in S^c$ una vecindad ν_k tal que $\nu_k \subset S^c$ para todo k. Notar que $S \cap S^c = \phi$ por hipotesis, por lo que ν no incluye a ningun punto de S. Por definición, toda vecindad de un punto de acumulación de S debe contener infinitos puntos de S, por lo tanto, los puntos K no son de acumulación de K y por tanto no pertenecen a la clausura de K. Entonces, el conjunto más pequeño que contiene a K y contiene sus puntos de acumulación es K es la clausura de K

2. Mostrar que la unión de conjuntos abiertos es abierta.

Sea $p \in S = \bigcup_i S_i$. Luego $p \in S_i$ para algun i. Es claro que, como S_i es abierto, existe una vecindad ν de p contenida en el. Pero entonces $\nu \subset S$. Luego, como p es cualquier punto en S, S es abierto.

3. ¿Cuál es el punto de acumulación de el conjunto de puntos $z_n = 1/n$?

El punto de acumulación de dicha secuencia es z=0 pues si tomamos la vecindad ν de los puntos tales que $|z| < \epsilon$ eligiendo $n_0 = 1/\epsilon$ entonces $\forall m \geq n_0, z_m \in \nu$ y son infinitos puntos

4. Mostrar que un punto en una región es un punto de acumulación en dicha region

Una región R es un conjunto abierto conectado. Sea $p \in R$. Como R es conjunto abierto, exite una vecindad $|z - p| < \epsilon$ tal que esta totalmente contenida en R. Por lo tanto, cada punto p en su interior tiene una vecindad que está contenida en dicho conjunto. Luego, cada punto tiene una vecindad con infinitos puntos en que pertenecen a la región y esto es la definición de punto de acumulación.

Problema 5: Pendientes de la ay. pasada

Describir que conjunto de puntos en el plano complejo representan las siguientes desigualdades.

- 1. $|z i| \le 1$
- $2. \ |\frac{z-1}{z+1}| = 1$
- $3. \ \frac{1}{z} = \bar{z}$
- 4. $|z^2 1| < 1$
- 5. $|z|^2 = Im(z)$

Referencias

- William R. Derrick, Variable Compleja con Aplicacion.
- Bak & Newman, Complex Analysis.
- Pennisi, Elements of Complex Variable.
- Ahlfors, Complex Analysis.