

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் ஐந்தாம் தவணைப் பரீட்சை - 2022

Conducted by Field Work Centre, Thondaimanaru.

FWC 5th Term Term Examination - 2022

தரம்	:- 13	(2022)		பௌதிக	வியல்		Ц6	ர்ளித்த <u>ி</u> ட்டப்	b
				பகுதி	- I				
01)	1	11)	4	21)	3	31)	3	41)	2
02)	2	12)	5	22)	4	32)	5	42)	5
03)	2	13)	3	23)	2	33)	3	43)	1
04)	3	14)	4	24)	1	34)	5	44)	2
05)	4	15)	3	25)	5	35)	1	45)	2
06)	5	16)	5	26)	2	36)	3	46)	3
07)	2	17)	1	27)	3	37)	3	47)	5
08)	2	18)	3	28)	3	38)	5	48)	4
09)	2	19)	2	29)	1	39)	1	49)	1
10)	5	20)	2	30)	4	40)	2	50)	1

(50 x 1 = 50 புள்ளிகள்)

Essay Structured Part IIA 01) a) Set square | compass, metre ruler | half metre ruler (O1)+(O1) b) Electronic balance | Triple beam balance (0)c) Pull down the middle mass a little and release and test whether it returns to the original d) By applying lubricant to (the axle of) the pulleys (1) e) Weights act in the vertical plane If not the tension would not be equal to the weight hung) In addition to the weights frictional forces too will contribute to the tension forcec. (O) ታ) (9) Place the mirror strip below the string. Mark two dots when the string eovers Hos own image -(b) Presence of stretton in the pulleys (9) strings may have weight (5) (1) ito identify the length of OA as 10 units (5 cm) ... (0) scale: 5 g / unit (10 g/cm) OR 1 unit to represent 59 (0) · (4) Completing the parallelogram (M) Mass of the stone = 12x5=609 ---(1) upthrust = apparent weight loss 4 (units) × 5 = 20 9 Relative density = weight (in air) 60 = 3 ~~*(*61) apthrust (in water) 20 02) a. Paper rider <u>ෙ</u> b. 1) To determine the mass per unit length (වෝ) the sonometer wire ii) 1. Mass of the wire O1) triple beam balance (O) 2. Length of the wire metre ruler C. On the sonometre box (stem normal to the surface) Energy transfer is efficient or Air column ... (0) inside the sonometer box will vibrate with maximum amplitude / will resonate OR surface of the Sonometer will vibrate with maximum amplitude

d) (place the paper rider on (the middle) the coire?)
(Place the stem of the vibrated tuning fork on top of the sonometer surface)
Adjust the bridges one of the bridges until the paper
rider jumps off (very) quickly linetantly to a maximum height
e) (1)
(h) Transverse, standing
(iii) By the spe superposition of two identical
opposite direction
(f) $a_{\text{max}} = 9$, $\omega^2 A = 9$ }.
$(w = 2\pi f) \qquad A = 9$ $4\pi^2 f^2$
(a) (i) $V = \sqrt{\frac{Mg}{m}} - \frac{4\pi^2 g^2}{m} - \frac{1}{2} = \frac$
$f=V=\frac{1}{2}$
$f^2 = \frac{1}{42^2} \cdot \frac{Mg}{m}$
$\frac{Q^2}{4} = \left(\frac{9}{4f^2m}\right)_{x}^{M}$ $\frac{1}{9} = \frac{9}{4f^2m} = \frac{9}{2}$ $\frac{1}{2} = \frac{9}{4f^2m} = \frac{9}{2}$
(111) 9 = gradient &
45°m
$g^{2} = \frac{9}{4 \text{ m/s gradient}} = \frac{10}{4 \times 1 \times 10^{-3} \times 0.01} = \frac{10}{4}$
f = 500 Hz
3) a) A-Steam generator, B-Steam trap, C-Heat insulating (3) sheet
b) A - To supply continuous stream of steam - ~ (61)
B- To send dry steam to the calorimeter - 61) C- To minize transfer of heat to the calorimeter
his radiation or trovent the transfer
directly from the burner and sceam grant
c) Electronic balance Four beam balance (5)
d) D- mercury in glace thermometer - can read temp of close to 100°C
E-alcohol in glass bhermometer - smaller L. a more accurate precise 61
e) To send dry steam (without water) to the water - 01
f) selecting the initial temp. 5°C below the RT and mixing of steam is commenced with stirring of Mixing of steam is stopped when the temp. is increased by about 10°C (The maximum temp reached will be noted) of
by about to a withe maximum temp reached will be noted)

(9) Initial temp. should not below the dew point	Ď
Al Maco of empty calorimeter (with stirrer) (1)	
mace of calorimeter with water (x) (MIS)	H)
India temperature of water (13)	
Maximum temp. of water after mixing with	~~
mass of the calorimeter with the mixture (xs)	
(4) Heat lost by steam = Heat-gained by calorimeter and water	
(X5-X2) L+(X5-X2) Cw (100-X4) = [X1C+(X2-X1) Cw (X4-X3)	
L. H. 2)
R.H.s	D
	•
(1) Item (1)	
by Won uniformity luniformity of the potentioneter wire (1)	I
Temp. dependence of the resistance of the pot. corre	
OR Temp. coefficient of the resistance of the potiwire of	,
c) Resistance box	
a) yes)
Range can be adjusted by varying the value of R, OB	
By increasing (varying the length of the potrioire 6	D
e) Yes, zero error of the galvanometer does not affect the results of the experiment	
It is the deflection, not the zero reading of	
the galvanometer that matters in the experiment us	
Expt. can be continued by observing the deflection	`
	ノ
e = e $v = l$ $v = l$	>
$V = E_{R+r}^{R}$ OR $V = R_{R+r}^{R}$)
$\frac{R}{R+r} = \frac{l}{l_0}$	
r= R(20-1))
(9) 0 - 20.0 1 0.0 1 0 - 50.2 - 0.2 - 50.5 + 60	
$r = 10 \left(\frac{72.2 + 0.2}{50.2 - 0.2} - 1 \right)$	
7 = 10 × (24-1) = 4.48 2	
J	
Ju de de la la de de la	
y; look to 3 - Of	
	./

as

$$\frac{V-S}{t} = \frac{2\pi\tau}{\tau} ; \tau = 2\pi$$

(iv) The wheel can only perform notational motion about the axis 0 - 0

(II) t=Dt DL $\omega_{pr} = \frac{\Delta \theta}{\Lambda t} \qquad \Delta \theta = \frac{\Delta L}{Lc} \qquad D$ = · DL/Ls
At $= \frac{1}{L_s} \times \frac{\Delta L}{\Lambda +} \qquad T_p = \frac{\Delta L}{\Lambda t}$ Tpr = TIr2 Ws. $= \frac{10\pi^2 (0.3)^2}{10\times 0.18}$ (v) The wheel falls vertically and oskillates

Ff - Frictional force acting on the solid cylinder R - Normal reaction acts on the solid cylinder. Mg - weight of the cylinder. (ii) (iii) . In = $F_f r$, ; a= $r \alpha$ Iq = Ffx Ff = 72 -0 From Newtons and law, Ma=mgsino-Ft -- 0 Ma = Mg SinB - Ia a[Mr2+I] = Mg r2 sind -0 a = My2sino/(My2+My2) I= My2 (iv) For a solid cylinder to roll down a stope without slipping, FIXMR - (1) Ia < Mmg cose R= mg cose (v) 3 tang = 13 tan 60 M> /g tan B - 0 $=\frac{\sqrt{3}}{3}=0.58$; $\mu=0.6$ M > 12 tano .'. The solid cylinder to roll down a slope without slipping — 1 30

2) a) (i)

1-M=-Df M=1+Df -- D

b) (i) X - angle subtended at the unaided eye by the object at the near point Cleast distance of distinct vision) β - angle subtended at the eye by the image

Cii

Ray diagram for objective — ©

Ray diagram for exeplece -3

1) Up = +10mm, f=-8mm, Vo=?

2) f=-50mm, Ve=250mm, Ne=?

$$= \frac{V_0}{U_0} \times \frac{V_e}{U_e}$$

$$= \left(\frac{40}{10}\right) \left(\frac{250}{250} \times 6\right)$$

$$= 24$$

$$\frac{1}{Ve} - \frac{1}{AD} = -\frac{1}{50} - \boxed{0}$$

$$\frac{1}{V_e} = \frac{1}{40} - \frac{1}{50} = \frac{5-4}{200}$$

(2)
$$M = \frac{V_0}{V_0} \times \frac{V_0}{V_0} = 0$$

$$= \frac{40}{10} \left(\frac{200}{250} \times b \right) = 0$$

30

ii)
$$m^3 \bar{s}^2 - 2$$

Liii

Force acting on the satellite = Centripetal force

$$\frac{G_1Mm}{\gamma^2} = \frac{mv^2}{\gamma} - 0$$

$$V^2 = \frac{G_1M}{\gamma}$$

(iv) speed of the satellite = distance

$$\int_{-\infty}^{\infty} = \frac{2\pi \gamma}{\Gamma} - O$$

b) Angular speed of the geostationary satellite is equal to the angular speed of earth.

Period of geostationary satellite is equal to the period of Earth.

Angular velocity - Angle

w=0.25 rad h - 0

(ii)
$$\tau^{2} = 4\pi^{2} \gamma^{3} \mu$$
 $\gamma^{3} = \tau^{2} \mu / 4\pi^{2}$
 $\gamma^{3} = \frac{(24 \times 3600)^{2} \mu}{4\pi^{2}}$
 $\gamma = \frac{(24 \times 3600)^{2} \mu}{4\pi^{2}}$
 $\gamma = \frac{(592 \mu)^{1/3}}{4\pi^{2}}$

(iii) $V = \gamma \omega$
 $V = 42000 \times 10^{3} \alpha \frac{b}{24 \times 3600}$
 $= 2916.67 \text{ ms}^{-1}$

(2916-2917 ms)

(2) (i) Total freezey of meteorite meteorite at Eath Surface

 $O = -\frac{GiMm}{R} + \frac{1}{2}mu^{2} - O$
 $\frac{1}{2}mu^{2} = \frac{GiMm}{R}$
 $u^{2} = \frac{2}{4}n/R$
 $u^{2} = \frac{2}{4}n/R$
 $u^{2} = \frac{2}{4}n/R$

(ii) $u = \frac{1}{2}\frac{2}{4}\frac{1}{2}\frac{1}{6}\frac{1}{4}\frac{1}{4}\frac{1}{$

(iii) satellite moves towards Earth When It Stops Circular motion
Deceleration using a parachute
[30]
04) as
(i) When a neuron 15 non conducting a signature (i) when a neuron 15 non conducting a signature (ii)
(ii) It refers to the potential of the interior with respect to the exterior of the membrane.
(iii) Anaction potential occurs due to a change in membrane potential above a threshold value (resting potential) due to stimulus — 2
(iv) Indepolarization phases — (i)
p> (1)
d to figure - 0
Gaussian surface with area bA
Charge to be covered by the surface
Total flux $\phi = E \cdot DA$
From chauss's law
d= 5. AA (OR d= Q/E)

E.
$$\Delta A = \frac{\sigma}{\epsilon}$$
 $E = \frac{\sigma}{\epsilon}$
 $C = \frac{\sigma}{\epsilon}$

$$W = \frac{1}{2} \times n^2 + \frac{6^2}{2C}$$

$$N = \frac{1}{2} \times 6^4$$

$$= \frac{1}{2} \times 6^4$$

$$W = \frac{1}{2} \frac{K \alpha^4}{(2 \epsilon A K)^2} + \frac{\alpha}{2} \frac{\alpha}{R \epsilon} \left(d_0 - \frac{\alpha^2}{2 \epsilon A K} \right) \qquad (1)$$

(For the correct substitution)

$$= \frac{Q^4}{8\epsilon^2 A^2 n} - \frac{Q^4}{4A^2 \epsilon^2 k} + \frac{Q^2 do}{2\epsilon A}$$

$$W = \frac{Q^2 do}{2ER} - \frac{Q^4}{8n^2 \epsilon^2 k} - 0$$

When k is small, ion pumps work until the distance distance of reaches zero. That is ion pumps work until the capacitance of membrane reaches infinity. Thus the membrane has no electric energy.

- (ii) A Proportional limit

 B Elastic limit

 C Yield Point

 D Fracture Point

$$d)(F - mg)\Delta t = m \int_{29h} - D$$

$$(20 \times 10^{6} \times 3 \times 10^{74} - 700) 0.14 = 70 \int_{29h}$$

$$\int_{29h} = 10.6$$

$$h = 10.6^{2} / 20$$

$$h = 5.618 \text{ m}. - D$$

30

06) (A)

as (i) First law!

The algebraic sum of currents in a network of conductors meeting at a point is zero

second law:

The directed sum of the potential differences (Voltages) around any closed loop is zero

(iv)
$$0 = \frac{1}{2}R_3 - \frac{1}{2}R_2 - 0$$

From (10) above,

From (ii) drove,

$$j_1 = j_2 + j_3$$
 $j_1 = 2j_2 + 2j_3$
 $j_2 = 14$
 $j_3 = 2j_4$
 $j_4 = 2j_5$

BM
$$\hat{i}_1 = 2B$$
 $\hat{i}_2 = 1B - \hat{i}$

b)
$$V_{BC} = 1_1R_1 = 2x10 = 20V$$
 $V_{CO} = 1_2R_2 = 2x10 = 20V$

D) i) Resistance of L_1, L_2 $(R) = \frac{V^2}{p}$

$$= \frac{Px12}{12}$$

$$= 12 - 10$$

When switch S_1 is operated,

 $V = TR$ (for the Circuit)

 $16 = Tx8$
 $T = 2P$

Potential difference across $L_1 = 1x12$

$$= 12V$$

OV

 $V = E = Tr$

$$= 16 - 2x2 = 12V$$

ii) Resistance of H_1, H_2 $(R) = \frac{V^2}{p}$

$$= \frac{12 \times 12}{24}$$

$$= \frac{12 \times 12}{24}$$

$$= \frac{6 - 2}{24} = \frac{0}{24}$$

Si, S_2 should furn on when the head lamps are on,

for the circuit, $V = TR$

$$16 = T \times 4$$

Potential difference across H1. ニドーゴァ = 16 = 4×2 (iii) power generated by the battery, POEI = 16×4 = 64W ----O (iv) The brightness will decrease — O Because the potential difference will decrease -0 (V) The brightness will increase - 1 Because the potential difference will decrease (ii) 5A — (ii) (iv) A,B,C —— (iv) 7A —— (iv) (V) 3A ——(1) 30

ay(i) P => Q = A.A = A _ 0

 $Q \Rightarrow Q_2 = \overline{(\overline{A} \cdot B)} \cdot \overline{(\overline{A} \cdot B)} = \overline{A} \cdot B = A \cdot B$ $\therefore AND \longrightarrow \overline{\Box}$

for anythree entries are correct

,	n	В	Q	
, •	0	Ó	0	
	0	1	1	\sim
	1	ь	1	②
	1	1.	0	

for any three entries are correct of marks

 $\cdot (ii)$

· XOR	

12	1.	<u> </u>			•
<i>ל</i> עב	り	A	В	Q	
		OV	٥٧	ON	
		OV	50	OV	
		5V	οv	DV	
	*.	50	SV	57	
		4,			

	1			
	A	B	Q	1 -
	O	0	O	· @
	0	١	0	-(1)
	l	0	0	
	1	1	1	
-			^	\sim

... AND -----

(FO (a) (i) Definition - D (ii) · DQ = DU+DW; DQ - Heat given to the system Du - Change in internal energy of the system DW - work done by the system (iii) Definition — (2) b) (i) process Parts A->13 Adiabatic compression Compressor - m Constant Volume Condenser __(1) BJC Adiabatic expansion Expansion value _ (1) C---) Evaporator -0 Constant Volume n-A ΔQ = ΔU+ΔW => O = DU + (-500), ΔU= 500] DQ=DU+DW => DQ=3950 +0, DQ=3950] C)(i) 0/1 = m3, D, +mL +m5, 02 3600 $= \frac{600}{3600} \left[30 \times 4100 + 3.36 \times 10^{5} + 2100 \times 6 \right]$ = 79.1 kJ -- 0 (ii) By evaporation, heat 13 absorbed from the brine During a cycle = 3950] 3950 = 20 -0 (iii) O/t = mso $79.1 \times 10^3 = \frac{m}{t} \times 4000 \times 10 - 0$ $\frac{m}{t} = 1.97 \text{ kg s}^{-1} - 0$ (IV) The Freezing Point of brine 13 below -20°C, If water 15 used, the water will preeze 30

