Subject Index

4	in amp, 2.7, 3.38-39, 3.42, 10.5
Aavid 5801, heat sink, 5.28	bridge signal conditioning circuit,
Absorption, 10.47-49	4.9-10
AC induction motor control, block diagram,	common mode choke, 10.42
6.18-19	composite, performance summary, 3.40
AC power supply:	equivalent input circuit, overvoltage,
filtering, 10.34-36	10.61-62
noise filtering, 10.36	error analysis, 3.45-46
Accelerometer, 1.2, 5.1, 5.26, 6.1, 6.19-23	filtering, 10.41-42
applications, 6.20	schematic, 10.61-62
basic sensor unit, 6.19-20	three op amp:
DC acceleration measurement, 6.19	overvoltage protection, 3.36
internal signal conditioning, 6.21	schematic, 3.36-37
micromachining, 6.20	single-supply, rail-to-rail input, 3.39
tilt measurement, 6.21-22	Superbeta input, 3.36
Active sensor, 1.1-2	AD620B:
Actuator, 1.3-4	bridge amplifier, error budget, table, 3.46
AD210:	precision in amp, performance, 3.47
isolation amplifier:	AD621, in amp, pin-programmable, gain,
three-port, 3.54-55	3.42
applications, 3.55-56	AD621B, precision in amp, performance,
circuit, 3.54	3.47
key features, 3.55	AD622, precision in amp, performance, 3.47
AD260:	AD623:
digital isolator, 10.55-57	in amp, 2.7, 3.40-41, 3.46
key specifications, 10.57	data sheet, 3.40
schematic, 10.56	key specifications, 3.41
AD261:	single-supply, architecture, 3.41
digital isolator, 10.55-57	AD623 and AD627 Instrumentation
key specifications, 10.57	Amplifier
schematic, 10.56	Data Sheets, 3.58
AD420:	AD623B, in amp, single-supply,
4-20mA DAC, 9.1-2	performance,
16-bit sigma-delta DAC, 9.2	3.47
AD421:	AD624C:
loop-powered 16-bit DAC, 9.2	in amp, 3.47
smart sensor, 9.2	precision in amp, performance, 3.47
AD524, in amp, series-protection FETs,	AD625C, precision in amp, performance,
3.48	3.47
AD524C, precision in amp, performance,	AD626:
3.47	in amp, 3.46
AD549, BiFET op amp, low bias current	common mode voltage attenuation, 3.23
precision, 5.6	AD626B, in amp, single-supply,
AD588, precision voltage reference, 4.10	performance,
AD592:	3.47
current output temperature sensor,	AD627:
7.21-22	in amp, 2.7, 3.34
specifications, 7.22	architecture, 3.35
AD594, in amp, type J thermocouple, 7.9-10	data sheet, 3.34
AD595, in amp, type K thermocouple,	key specifications, 3.34-35
7.9-10	rail-to-rail output, 3.34
AD598, LVTD signal conditioner, 6.3, 6.5	two op amp in-amp, 10.64
AD598 and AD698 Data Sheet, 6.24	AD627B:
∆D620·	in amn [.]

CMR, 3.34	low input current, 5.30-31
single-supply, performance, 3.47	pH probe buffer, 5.30-31
AD645:	AD795K, preamplifier, total output offset
BiFET op amp, low bias current, 5.6	error,
JFET amplifier, 3.15	5.11
AD688, stable voltage reference, 3.9	AD820:
AD698:	op amp, single supply, 8.8-9
half-bridge LVDT, 6.5-6	photodiode preamplifier, 5.22
LVDT signal conditioner, 6.5-6	precision op amp, single-supply,
AD707:	performance
op amp, bias-current compensated	characteristics, 3.27-28
bipolar, 3.6	AD822:
precision bipolar amplifier, noise, 3.51	in amp, composite, performance
precision op amp, 2.16, 10.3	summary, 3.40
1/f corner frequency, 3.11	precision op amp:
CMR, 3.16	JFET-input dual rail-to-rail output,
input voltage noise, 3.11	3.38,
offset adjustment, 3.5	3.40
PSR, 3.17-18	single-supply, performance
stability, 3.4	characteristics,
AD743:	3.27-28
BiFET amplifier:	AD823, photodiode preamplifier, 5.21-25
characteristics, 5.29	AD824, precision op amp, single-supply,
low noise, 5.28-29	performance characteristics, 3.27-28
FET-input op amp, 3.11-12, 3.15	AD843, photodiode preamplifier, 5.22
JFET input, 5.29-30	AD845, photodiode preamplifier, 5.22
photodiode preamplifier, 5.22	AD974, 16-bit SAR ADC, 8.5
AD744:	AD77XX family:
JFET amplifier, 3.15	sigma-delta ÅDCs, 7.11, 7.14-15, 8.22
photodiode preamplifier, 5.22	equivalent input circuits, 8.32
AD745:	AD77XX-Series Data Sheets, 8.38
BiFET amplifier:	AD789X family, SAR ADC, single supply,
characteristics, 5.29-30	8.8
low noise, 5.28-29	AD1879, 18-bit sigma-delta ADC, 8.22
FET-input op amp, 3.11-12, 3.15	AD7472, 12-bit SAR ADC, 8.5
JFET input, 5.29-30	AD7670, 16-bit SAR ADC, 8.5
op amp, high input impedance, 5.27-30	AD7705, 16-bit sigma-delta ADC, 8.23
photodiode preamplifier, 5.22	AD7706, 16-bit sigma-delta ADC, 8.23
AD795:	AD7710, sigma-delta ADC, 8.23
BiFET op amp:	AD7711, sigma-delta ADC, 8.23
key specifications, 5.7	AD7712, sigma-delta ADC, 8.23
low bias current, 5.6-9	AD7713, sigma-delta ADC, 8.23
buffer amplifier, low input current, 5.30	AD7714, sigma-delta ADC, 8.23, 9.2
DIP package, guarding techniques, 5.6,	AD7715, sigma-delta ADC, 9.2
5.8-9	AD7716:
guarding techniques, virgin Teflon	quad sigma-delta ADC, 8.32
insulation, 5.8, 5.10	functional diagram, 8.33
photodiode preamplifier, 5.22	key specifications, 8.34
preamplifier:	AD7722, 16-bit ADC, 10.7
circuit performance summary, 5.18-19	AD7730:
DC offset errors, circuit, 5.11	24-bit sigma-delta ADC, 4.12
noise gain plot, 5.14	internal programmable gain amplifier
offset null adjustment, 5.18	4.12
voltage and current noise spectral	load-cell application, 4.13
densities,	sigma-delta ADC, 2.14, 8.23, 10.7
5.14-15	bridge application, schematic, 8.31
precision BiFET op amp:	calibration options, 8.29-30

characteristics, 8.25	AD7890-10:
circuit, 8.26	12-bit ADC, 8.8-9
external voltage reference, 8.30	diagram, 8.9
FASTStep mode, 8.28	thin-film input attenuator, 10.63, 10.65
filter settling time, 8.29	AD7891, 12-bit SAR ADC, 8.5
high impedance input buffer, 8.31	AD7892, 12-bit SAR ADC, 10.7
internal programmable digital filter,	AD8531, op amp, rail-to-rail input, 3.23
8.27	AD8532, op amp, rail-to-rail input, 3.23
frequency response, 8.28	AD8534, op amp, rail-to-rail input, 3.23
key specifications, 8.26	AD8551:
oversampling frequency, 8.27	chopper-stabilized ADC, 2.16-17
AD7730 Data Sheet, 2.19, 4.14	key specifications, 3.52
AD7731, sigma-delta ADC, 8.23, 10.7	noise, 3.51
AD7750:	AD8552:
sigma-delta ADC, 8.34-37	chopper-stabilized ADC, 2.16-17
block diagram, 8.35-36	key specifications, 3.52
power meter single-phase application,	noise, 3.51
diagram, 8.37	AD8554:
AD7751, Energy Metering IC, 8.36	chopper-stabilized ADC, 2.16-17
AD7816:	key specifications, 3.52
digital temperature on-chip sensor,	noise, 3.51
7.32-34	AD9814, 14-bit ADC, analog front end
block diagram, 7.33	solution,
key specifications, 7.34	5.37
AD7817:	AD9816:
digital temperature on-chip sensor,	12-bit ADC:
7.32-34	analog front end solution, 5.37
block diagram, 7.33	charge coupled device/contact image
key specifications, 7.34	sensor processor, 5.37
AD7818:	key specifications, 5.38
digital temperature on-chip sensor,	AD22103:
7.32-34	ratiometric voltage output sensor, 7.22-23
block diagram, 7.34	specifications, 7.23
key specifications, 7.34	AD22151:
AD7856, 14-bit SAR ADC, 8.5	linear magnetic field sensor, 6.8
AD7857, 14-bit SAR ADC, 8.5	circuit, 6.9
AD7858:	AD22151 Data Sheet, 6.24
12-bit SAR ADC, 8.5	Adams, R.W., 8.38-39
circuit, 8.8-9	ADC:
12-bit single-supply ADC, 8.14-15	12-bit, two-stage pipelined, 8.6-7
integrated IC data acquisition system,	digital output, Faraday shield, 10.14
8.14-15	first-order sigma-delta, diagram, 8.18
key specifications, 8.15	high speed architecture, 8.2
AD7858L:	high-resolution, output code histogram,
12-bit single-supply ADC, 8.14-15	8.23-24
integrated IC data acquisition system,	input range within supply voltage, input
8.14-15	protection, 10.64
key specifications, 8.15	multiple sigma-delta, in simultaneous
AD7859:	sampling, 8.33
12-bit SAR ADC, 8.5	on-chip temperature sensor, 7.32-34
circuit, 8.8-9	SAR:
parallel output device, key specifications,	multiplexed, filtering and timing,
8.15	8.11-12
AD7859L, parallel output device, key	multiplexed inputs, 8.10-14
specifications, 8.15	single-pole filter settling, 8.13
AD7887, 12-bit SAR ADC, 8.5	single-supply, resolution/conversion
AD7888, 12-bit SAR ADC, 8.5	time

comparison, 8.5	circuit, 10.29
switched capacitor, 8.8	driving low dropout regulator, 10.31
timing, 8.6	waveforms, 10.31
second-order sigma-delta, diagram,	filtered output, 10.30
8.20-21	output waveform, 10.30
sigma-delta, 8.1-2, 8.16-37	ADP3310:
characteristics, 8.16	low dropout buck regulator, 10.30-31
high resolution, low frequency, 8.23-34	driven by synchronous buck regulator,
oversampling, 8.22	10.31
in power meters, 8.34-37	waveforms, 10.31
signal conditioning, 8.1-2, 8.16-37	ADS290:
signal conditioning, 8.1-37	integrated resolver-to-digital converter,
design issues, 8.1	6.14
high speed architecture, 8.2	key specifications, 6.15
successive approximation, 8.1-9	ADT05, thermostatic switch, 7.29-30
single-supply, thin film resistor input	ADT14, quad setpoint controller, 7.32
attenuator, input protection, 10.65	ADT22, programmable setpoint controller,
subranging, pipelined, 8.6-7	7.32
successive approximation, 8.1-8	ADT23, programmable setpoint controller,
basic diagram, 8.3	7.32
SAR reset, 8.2	ADT45, absolute voltage output
SHA in hold, 8.2	temperature
tracking, for resolver-to-digital converter,	sensor, 7.24-25
6.14	ADT50, absolute voltage output
ADG7XX family, switch/multiplex, 8.12	temperature
ADG451, switch/multiplex, 8.12	sensor, 7.24-25
ADG452, switch/multiplex, 8.12	ADT70, RTD signal conditioner, 7.14
ADG453, switch/multiplex, 8.12	ADuC810:
ADG465:	MicroConverter:
CMOS channel protector, 10.65-67	basic analog I/O functionality, 9.8
key specifications, 10.67	on-chip flash memory, 9.9
ADG466:	on-chip microcontroller, 9.9
CMOS channel protector, 10.65-67	ADuC812:
key specifications, 10.67	MicroConverter:
overvoltage and power supply	12-bit successive approximation ADC,
sequencing,	9.11
10.67	basic analog I/O functionality, 9.8
ADG467:	functional block diagram, 9.12
CMOS channel protector, 10.65-67	on-chip flash memory, 9.9
key specifications, 10.67	on-chip microcontroller, 9.9
ADG508F, switch/multiplex, 8.12	performance specifications, 9.12-13
ADG509F, switch/multiplex, 8.12	ADuC816:
ADG527F, switch/multiplex, 8.12	MicroConverter:
ADM1021:	basic analog I/O functionality, 9.8
microprocessor temperature monitor,	functional block diagram, 9.10
7.35-38	highest resolution product, 9.10
block diagram, 7.37	on-chip flash memory, 9.9
input signal conditioning circuits, 7.36	on-chip microcontroller, 9.9
key specifications, 7.38	performance specifications, 9.11
on-chip temperature sensor, 7.37	ADXL202, dual axis accelerometer, 6.22-23
ADM3311E RS-232 Port Transceiver Data	Air discharge, 10.68
Sheet, 10.77	Air-gap discharge, 10.73
ADMC300, 16-bit ADC system, 6.18-19	Aluminum electrolytic capacitor, 10.22-23
ADMC330, 12-bit ADC system, 6.18-19	AMP01A, precision in amp, performance,
ADMC331, 12-bit ADC system, 6.18-19	3.47
ADP1148:	AMP02, in amp, series-protection FETs,
synchronous buck regulator, 10,28-31	3.48

AMP02E, precision in amp, performance,	constant current:
3.47	all-element varying, 2.6
AMP04E, in amp, single-supply,	configurations, 2.6
performance,	single-element varying, 2.6
3.47	sources, 2.5-6
Amplifier:	two-element varying, 2.6
bipolar versus chopper, input voltage	constant voltage:
noise,	all-element varying, 2.4
3.51	linear, 2.4
chopper stabilized, 3.49-52	configurations, 2.4
critical parameters, signal conditioning,	error, 2.4
3.1-58	single-element varying, 2.4
DC error budget analysis, 3.19	two-element varying, 2.4
resolution error, 3.19	driving, 2.11-18
temperature, 3.19	error minimizing, ratiometric technique,
isolation, 3.52-56	2.14-15
noise model, 5.15-16	four-wire sensing, 2.13-14
offset voltage, error source, 2.16	Kelvin sensing, 2.13-14
selection criteria, 3.1-2	linearization methods, 2.5
types, 3.1	linearizing, 2.9-11
see also In amp; Op amp	nonlinearity, 2.5
Amplifier Applications Guide (1992), 3.57,	offset error, sources, 2.16
10.57, 10.77	output, amplifying and linearizing, 2.7-11
Analog front end solution, for signal	output amplifying, by in-amp, 2.7-8
processing	output voltage, linearity error, 2.4
problems, 5.36	remote:
Analog ground, 10.12-14	driving:
Analog-to-digital converter, see: ADC	Kelvin sensing, 2.15
Andreas, D., 8.38	ratiometric connection, 2.15
Aperture jitter, 10.16	single-element varying, three-wire
ASI, industrial network standard, 9.5	connection, 2.13
Auto-focus device, 5.2	resistance, null, 2.3
Average real power, 8.35	resistance measurement, 2.3
riverage rear power, 0.00	sensitivity, 2.4
В	sensor applications, 2.4
Baker, Bonnie, 10.20	single-element varying, 2.4, 2.6
Bandgap temperature sensor, 7.21	linearizing, 2.9-10
Bar code scanner, 5.2	op-amp, null, 2.9
Barnes, Erik, 5.40	output, amplifying, 2.7-8
Base-emitter junction breakdown, 10.59	two-element varying, 2.4, 2.6
Bell 202 Communications Standard, 9.2	linearizing, 2.10-11
Bias current, error source, 2.16	Wheatstone, 2.2-3
Blood particle analyzer, 5.2	wiring resistance, effects, 2.12
Bode plot, 5.12-13, 5.16, 5.20	Bridge circuit, 1.3, 2.1-19
Boltzmann's constant, 3.13, 5.15, 7.19	fundamentals, 2.1
Bonded strain gage, 4.2	Bridge signal conditioning circuit, 4.9-13
Boser, B., 8.38	all-element varying, 4.9-10
Bridge:	Brokaw cell, 7.20-21
AC, drive circuit, diagram, 2.18	Brokaw, Paul, 7.39, 9.17, 10.20, 10.58
AC excitation, offset voltage	Bryant, James, 3.1, 7.1, 8.1, 8.16 10.1,
minimization,	10.7, 10.20,10.58, 10.68
2.17	Bryant, James M., 8.16
all-element varying, 2.4, 2.6	Buxton, Joe, 2.19, 3.57, 8.1, 10.59
six-lead assemblies, 2.13	
amplifier, 2.8	C
considerations, 2.7	Cable:

coaxial, grounding, 10.53-54	double-sided versus multilayer printed,
"electrical length", 10.51-52	10.9-10
shielded:	ground planes, 10.18
grounding, 10.53-54	layout guidelines, 10.18-19
remote passive sensor, 10.53	multicard, mixed signal systems, 10.10-11
shielding, 10.51-54	multilayer, 10.10
grounding, 10.52	noise minimization, 10.18
twisted pair, shielded, ground loops, 10.52	partitioning, 10.18
Cage jack, 10.8	traces, termination, 10.44
CAN-Bus, industrial network standard, 9.5	track impedance, calculation, 10.45
Capacitor, 10.22	CIS, see: contact image sensor
equivalent circuit and pulse response,	Clelland, Ian, 10.37
10.25	CMOS channel protector, 10.65-67
ESR degradation with temperature, 10.24	application, 10.66-67
finite ESR, 10.24	circuit, 10.66
impedance versus frequency, 10.26	key specifications, 10.67
low ESL/ESR, 10.32	properties, 10.65-66
noise regulation, 10.22	CMRR:
parasitic elements, 10.25	definition, 3.16
shunt resistance, 10.25	offset error calculation, 3.17
types, 10.22	output offset voltage error, 3.16
Card entry filter, 10.28	Coaxial cable, grounding, 10.53-54
CAT scanner, 5.2	Code flicker, 8.25
CCD, see: charge coupled device	Cold junction, 7.6
Ceramic capacitor, 10.9, 10.22, 10.24	ice point reference, 7.7
advantages, 10.24	temperature sensor, 7.7
multilayer "chip caps",	Columbia Research Labs 2682 strain
bypassing/filtering, 10.24	sensor, 4.10
Charge coupled device, 5.1 CMOS fabrication, 5.33	Common mode rejection, <i>see</i> : CMR Common mode rejection ratio, <i>see</i> : CMRR
image processing, 5.31-38	Compatibility of Analog Signals for
kT/C noise, 5.33-35	Electronic
linear arrays, 5.33	Industrial Process Instruments, 9.17
output stage, 5.33-34	Conduction, 10.59
Charged Device Model, ESD model, 10.73	Connelly, J.A., 10.20
Charpentier, A., 8.38	Constantan wire, 4.2
Chemical sensor, 5.1	Contact discharge, 10.68, 10.73
Chestnut, Bill, 9.1, 10.21	Contact image sensor, 5.1
Choke, common mode, 10.41	applications, 5.35
Chop mode, 8.27	image processing, 5.31-38
Chopper-stabilized amplifier, 3.49-52	waveforms, 5.36
architecture, 3.50	Control loop, 4-20mA, 9.1-3
circuit, 3.49	Correlated double sampling, to reduce kT/C
input signal, 3.50	noise, 5.34-36
low frequency 1/f noise, 3.51	Counts, Lew, 2.19, 3.57
nulling, 3.50	Coussens, P.J.M., 6.24
Christie, S.H., developer of Wheatstone	Crosstalk, 8.10
bridge,	Crystal Oscillators: MF Electronics, 10.20
2.2	
Circuit:	D
bridge, 2.1-19	DAC:
ESD-susceptible interfaces, design	3-bit switched capacitor, track (sample)
precautions, 10.76	mode,
shielding, conductive enclosures, 10.47	8.4
signal conditioning, 1.3	4-20mA, 9.2-3
Circuit board:	

Dark current, photodiode, 5.3	EMC Test & Design, 10.58
Data acquisition system, on chip, 8.14	EMG, isolation amplifiers, 3.52
Dattorro, J., 8.38	EMI:
Decimation, 8.16, 8.18	maximum radiation through opening,
Decoupling:	10.50
circuit points, 10.15	path, 10.21
mixed-signal ICs, 10.12-14	receptor, 10.21
Del Signore, B.P., 8.38	source, 10.21
Designing for EMC (Workshop Notes), 10.57	Energy Metering IC, 8.36
Designing a Watt-Hour Energy Meter	Engelhardt, E., 8.38
Based on	ENOB, 8.17-18
the AD7750, 8.39	effective resolution, 8.24
Device-Net, industrial network standard,	Equivalent series resistance, <i>see</i> : ESR
9.5	ESD, 10.68-76
DIGI-KEY, 10.38	
	catastrophic destruction, from arcing or
Digital camera, imaging system, generic, 5.32	heating, 10.74
	damage, 10.69
Digital current, in analog return path,	examples, 10.68
10.8-9	generation, 10.68
Digital filtering, 8.16	models and testing, 10.72-76
Digital ground, 10.12-14	protection plan, 10.72
Digital-to-analog converter, see: DAC	testing standards, comparison, 10.74
DIP packaging, 5.6, 5.8-9, 10.8	see also Electrostatic discharge
guarding, PCB layout, 5.9	ESD Association Draft Standard DS5.3 for
Doebelin, Ernest O., 4.14	Electrostatic Discharge (ESD) Sensitivity
Dostal, J., 2.19, 3.57	TestingCharged Device Model(CDM)
_	Component Testing, 10.77
E	ESD Association Standard S5.2 for
E-Series LVDT Data Sheet, 6.24	Electrostatic
Early effects, 7.19	Discharge (ESD)Sensitivity
ECG, isolation amplifiers, 3.52	TestingMachine
Eckbauer, F., 8.38	Model (MM)Component Level, 10.77
EDN's Designer's Guide to Electromagnetic	ESD Prevention Manual, 10.77
Compatibility, 10.57	ESD-sensitive device:
EEG, isolation amplifiers, 3.52	assembling with other components, 10.71
EEPROM, 8.29	labeling, 10.70
Effective input noise, 8.23	packaging and handling, 10.69-71
Effective number of bits, see: ENOB	workbench, 10.69, 10.71
Effective resolution, 8.17	Ethernet, industrial network standard, 9.5
definition, 8.24	
ENOB, 8.24	F
EIAJ ED-4701 Test Method C-111,	Fair-Rite Linear Ferrites Catalog, 10.37
Electrostatic	Faraday shield, 10.35
Discharges, 10.77	ADC digital output, 10.14
Eichhoff Electronics, Inc., 10.38	FASTStep mode, 8.28
80C51, microcontroller, 7.28	Fatigue monitor, bridge signal conditioning
Electric motor, types, operations, 6.17-18	circuit, 4.9-10
Electrocardiograph, isolation amplifiers,	Ferguson, P. Jr., 8.39
3.52	Ferguson, P.F. Jr., 8.38
Electroencephalograph, isolation	Ferrite:
amplifiers, 3.52	bead, 10.9
Electrolytic capacitor, 10.22	impedance, 10.27
switching, 10.23	leaded, 10.27
Electromagnetic interference, see: EMI	characteristics, 10.26
Electrostatic discharge, see: ESD	impedance, calculation;, 10.27-28
EMC Design Workshop Notes, 10.37	power supply filters, 10.25

surface mount bead, 10.27	digital, 10.14
Fiber optic receiver, 5.2	islands, 10.9
Fieldbuses: Look Before You Leap, 9.17	mandatory on circuit boards, 10.10
Film capacitor, 10.22-24	separation of analog and digital, 10.12
limiting frequencies, 10.24	Ground screen, 10.11-12
stacked, 10.24	Grounding:
Filter:	circuit, precautions, 10.28-29
analog, quantization noise, 8.20	circuit points, 10.15
card entry, 10.28	mixed-signal ICs, 10.12-14
common and differential mode, 10.41	mixed-signal systems, 10.7-20
localized high frequency, for decoupling	***
to	H
ground plane, 10.33	Hageman, Steve, 10.37
switching supply:	Hall effect magnetic sensor, 6.1, 6.7-9
layout/construction guidelines, 10.33-34	diagram, 6.7
summary, 10.32	as rotation sensor, 6.8
Fisher, J., 8.38	Hall voltage, 6.7
Flash control, 5.2	Handbook of Chemistry and Physics, 7.39
FLASH Memory, 1.4	Hardware, design techniques, 10.1-77
Flatness, 8.10	Harrington, M.B., 6.25
Flett, F.P., 6.24	Harris, Steven, 8.39
The Flow and Level Handbook, Vol. 29,	Harrold, Dave, 9.17
4.14	HART:
Flow measurement:	industrial network standard, 9.4-5
bending vane with strain gage, 4.9	intelligent remote transmitter:
pitot tube, 4.7-8	block diagram, 9.3
pressure sensors, 4.7-9	using AD421 loop-powered 4-20mA
venturi effect, 4.7-8	DAC,
Foundation Fieldbus, industrial network	9.3
standard, 9.5	HART protocol, 9.2-4
Four-wire sensing, 2.13-14	Hauser, Max W., 8.39
Fraden, Jacob, 4.14	Headlight dimmer, 5.2
Franco, Sergio, 2.19, 3.57 Endrickson Thomas M. 2.57, 5.20	Heise, B., 8.38
Fredrickson, Thomas M., 3.57, 5.39 Freeman, Wes, 10.59, 10.68	High impedance charge output sensor, 5.26-31
	High Speed Design Techniques (1996), 3.57
Frequency shift keying, 9.2 Fu, Dennis, 6.24	
ru, Dennis, 0.24	High-speed digital signal processor, 6.18 High-speed resolver-to-digital converter,
G	6.18
Ganesan, A., 8.39	How to Reliably Protect CMOS Circuits
Gelbach, Herman, 10.58	Against
Gerber file, 10.19	Power Supply Overvoltaging, 10.77
Goodenough, Frank, 6.25	HP5082-4204 PIN Photodiode, 5.22-23
Graeme, Jerald, 5.40, 10.20	Human Body Model, ESD model, 10.73
Graham, Martin, 10.20	Humidity monitor, 5.1
Grant, Doug, 10.6	Hydrophone, 5.1, 5.26, 5.28
Gray code, used in optical encoder, 6.10	Hysteresis, programmed, 7.31
Gray, Paul R., 3.57	Trysteresis, programmed, 7.01
Ground:	I
digital noise, 10.13-14	I-O lines, ESD vulnerability, 10.74
separating analog and digital, 10.11-12	IC, mixed-signal, decoupling and
Ground pin:	grounding,
IC, 10.8	10.12-14
multiple, 10.18-19	Ice point junction, 7.6
Ground plane, 10.7-9	IEC1000-4-2:
backplane, 10.10	comparison with MIL-STD Human Body
r,	paraori

Model, 10.75	circuit, 3.36
waveforms, 10.76	CMR, 3.36
European Community ESD standard,	internal node voltages, 3.37
testing,	single-supply operation, 3.37
10.73	restrictions, 3.37
IEC1000-4-x, European Community ESD	total input offset voltage, 3.43
standards, table, 10.74	total output offset error, 3.43
IEEE 1451.2, sensor interface standard,	two op amp:
9.4-6	circuit, 3.32
Imaging system, light-sensing element,	CMR, 3.33
5.32	disadvantage, 3.32-33
iMEMS, Analog Devices' accelerometer,	input protection, 10.64
6.19	single supply:
Impedance, and noise sources, 3.14	high gain, 3.33-34
In amp, 3.30-48	low gain, 3.33
as amplifier, in single-element varying	zero-volt common mode input voltages,
bridge,	restriction, 3.34
2.8	Indirect field-oriented control, 6.18
bridge amplifier, error budget analysis,	Inductosyn, 6.1, 6.15-17
3.45-46	components, 6.15
circuit diagram, 3.30	diagram, 6.16
CMR, 3.30, 3.43	linear position measurement, 6.15
composite:	operation similar to resolver, 6.16
single-supply:	rotary, 6.17
performance summary, 3.40	Industrial network standard, listing, 9.5
rail-to-rail output, schematic, 3.39	Industrial process control, sensor
configurations, 3.31-41	application,
DC error sources, 3.42-44	1.3-4
gain, 3.42	Input bias current:
error specifications, 3.42	models, 3.5-7
nonlinearity, 3.42	offset errors, 3.5-6
RTI, summary, 3.44	precision op amp, PNP or NPN standard
definition, 3.30	bipolar input stage, 3.6
dual-supply, rail-to-rail op amp gain	Input offset voltage:
stage,	air flow effects, 3.4
3.38	change with time, 3.4
external voltage protection circuit, 10.63	control by device selection, 3.4
input bias currents, offset errors, 3.43	long-term stability, 3.4
input overvoltage, 3.48	measurement, 3.3-5
input overvoltage protection, 3.48	mechanical board layout, 3.3
internal feedback resistor network, 3.30	RTI, 3.3
noise sources, 3.44-45	models, 3.5-7
gain, 3.45	diagram, 3.6
model, 3.44-45	parasitic thermocouple junctions, 3.3
total output noise calculation, 3.44	precision amplifier error source, 3.2
offset voltage model, 3.43	temperature effects, 3.4
performance tables, 3.46-47	Input overvoltage, 10.60
precision:	Input-referred noise, 8.23
common mode RFI, 10.39	Instantaneous power, 8.34-35
ferrite bead filter, 10.41	Instantaneous real power, 8.34-36
filtering, 10.40	Instrumentation amplifier, see: In amp
against EMI/RFI, 10.42	Interbus-S, industrial network standard,
performance, table, 3.47	9.5
PSR, 3.43	Interference:
RTI CMR, 3.43	impedance, 10.47
single-supply, performance, table, 3.47	sources, 10.47
three op amp, 3.35-36	An Introduction to the Imaging CCD Array,

5.39	bridge,
Isolated gate bipolar transistor, 6.18	2.5
Isolation, as form of shielding, 10.55	Load-cell amplifier, circuit, 4.10-11
Isolation amplifier, 3.52-56	Logic:
applications, 3.53-54	circuit separation, 10.45
input circuit, 3.53	families, circuit board termination, 10.44
linearity, 3.53	high speed, 10.44-46
three-port, 3.54	slowing, EMI/RFI minimization, 10.47
_	Lonwork, industrial network standard, 9.5
J	Lucey, D.J., 6.25
Jantzi, S.A., 8.38	LVDT, 1.2, 6.1-7
Jitter, sampling clock, 10.16	advantages, 6.2
Johnson noise, 3.13, 3.14, 5.15, 8.23	improved, signal processing output, 6.3-4
from feedforward resistor, 5.17	linear distance measurement,
op amp, 3.11, 3.13, 3.14	applications, 6.1
Johnson, Howard W., 10.20	measurement ranges, 6.2
Jung, Walt, 3.1, 7.1, 10.1, 10.21, 10.37,	position-to-electrical sensor, 6.2
10.39,	precision rectifier, 6.3-4
10.58	Lyne, Niall, 6.25, 10.77
Jung, Walter G., 3.57	
	M
K	Machine Model, ESD model, 10.73
Kaufman, M., 2.19, 3.57	MacKenzie, I. Scott, 9.17
Keil, third-party tools for MicroConverter,	Marsh, Dick, 10.37
9.15	Matsuya, Y., 8.38-39
Kelvin connection, RTD, 7.14	Melsa, James L., 3.57, 5.39
Kelvin sensing, 2.13-14	Metalink, third-party tools for
Kerridge, Brian, 10.6	MicroConverter,
Kester, Walt, 1.1, 2.1, 2.19, 3.1, 4.1, 4.14,	9.15
5.1,	Meyer, Robert G., 3.57
5.39, 6.1, 7.1, 7.39, 8.1, 9.1, 10.1, 10.7,	MicroConverter:
10.20, 10.21, 10.39, 10.59, 10.68	12-bit voltage output DAC, 9.7-8
Kettle, P., 6.25	based on 8052 core, 9.12
King, Grayson, 9.1, 9.4	basic analog I/O functionality, 9.8
Kitchin, Charles, 2.19, 3.57, 5.1, 10.39	characteristics, 9.8
Koch, R., 8.38	design support matrix, 9.13
kT/C noise, 8.23	future developments, 9.15
reduction, by correlated double sampling,	product roadmap, 9.16
5.34-36	QuickStart development kit, 9.14
_	smart sensor, 1.6, 9.6-8
L	primary functions, 9.7-8
Laser printer, 5.2	third-party tools, 9.15
Law of Intermediate Metals, 7.6	Web site, 9.14
Lee, Wai Laing, 8.38	MicroConverter Technology Backgrounder,
Lee, W.L., 8.38	9.17
Light meter, 5.2	Microprocessor:
Light-sensing element, 5.32	supply voltage and temperature, critical
Linear Design Seminar (1994), 10.77	parameters, 7.35
Linear Design Seminar (1995), 3.57, 8.38	temperature monitoring, 7.35-38
The Linear Variable Differential	Microstrain, 4.2
Transformer,	Migration, 10.59 MIL STD 882 Method 2015, for ESD
by Herman Schaevitz, in 1946, 6.1-2	MIL-STD-883 Method 3015, for ESD
Linear variable differential transformer,	sensitivity, 10.72, 10.74 MIL STD 883 Method 3015 Flortrestatic
See:	MIL-STD-883 Method 3015, Electrostatic
LVDT	Discharge Sensitivity Classification, 10.77
Load cell, sensor, all-element varying	10.11

MIL-STD-883 Method 3015.7:	Nyquist criterion, 8.18
Human Body Model:	• •
comparison with IEC, 10.75	0
waveforms, 10.76	Offset errors, AC excitation, offset voltage
Mixed Signal Design Seminar (1991), 8.38	minimization, 2.17
Mixed signal system, grounding, 10.7-20	Offset referred to input, see: RTI
Mixed-signal grounding, techniques, 10.16	O'Grady, Albert, 9.17
Modulation, 8.10	OMEGA Temperature Measurement
Modulator:	Handbook,
sigma-delta:	7.39
linearized model, 8.19	On-chip programmable-gain amplifier, see:
quantization noise shaping, 8.21	PGA
Morrison, Ralph, 10.20, 10.57, 10.58	OP07:
MOSFET:	bipolar op amp:
Kelvin sensing, 2.17	ultra-low offset voltage, 5.5
N-Channel, 2.17	open-loop gain, 3.21
P-Channel, 2.17	voltage noise, 3.12
Motchenbacher, C.D., 10.20	OP27:
Motor control current sensing, isolation	bipolar op amp:
amplifier, circuit, 3.56	bias-current compensated, 5.29-30
Multiplexed SAR ADC, filtering and	low voltage noise, 3.12, 3.14-15
timing,	OP42, photodiode preamplifier, 5.22
8.11-12	OP97, super-beta bipolar op amp, bias
Multiplexer:	current
analog, diagram, 8.11	compensation, 5.5
key specifications, 8.10	OP113:
Multiplexing, 8.10	precision op amp:
Multipoint ground, diagram, 10.11	high open-loop gain, 3.21
Muncy, Neil, 10.58	single-supply, performance
Murray, Aengus, 6.25	characteristics,
MUX, see also Multiplex	3.27-28
•	OP177:
N	precision bipolar op amp, 2.18, 10.3
N-Channel MOSFET switch, 8.10	1/f corner frequency, 3.11
Nash, Eamon, 3.58	bias-current compensated bipolar, 3.6
Negative temperature coefficient, see: NTC	CMR, 3.16
Network:	gain nonlinearity, 3.10
industrial, diagram, 9.4	input voltage noise, 3.11
standard, HART, 9.2-4	noise, 3.51
Nichrome wire, 4.2	offset adjustment, 3.5
Noise:	PSR, 3.17-18
1/f corner frequency, 3.11	stability, 3.4
RMS, equation, 3.12	OP177A, op amp, room temperature error
switcher, high frequency, tools, 10.21-22	budget analysis, 3.19
white, 3.11-12	OP181, precision op amp, single-supply,
Noise shaping, 8.19	performance characteristics, 3.27-28
Noise-free code resolution, definition,	OP184:
8.24-25	precision op amp:
Nonlinearity:	rail-to-rail input, 3.24
closed loop gain:	single-supply, performance
calculations, 3.10	characteristics,
op amp, 3.8	3.27-28
definition, 3.42	OP191:
open loop gain, calculations, 3.10	precision op amp:
Null measurement, feedback system, 2.3	common mode crossover threshold, 3.24
Nyquist band, 8.17	single-supply, performance

characteristics,	common mode crossover threshold, 3.24
3.27-28	single-supply, performance
OP193, precision op amp, single-supply,	characteristics,
performance characteristics, 3.27-28	3.27-28
OP196, precision op amp, single-supply,	OP493, precision op amp, single-supply,
performance characteristics, 3.27-28	performance characteristics, 3.27-28
OP213:	OP496, precision op amp, single-supply,
precision op amp, high open-loop gain,	performance characteristics, 3.27-28
3.21	Op amp:
two op amp in-amp, 4.11	1/f noise, 3.11
single-supply, performance	as amplifier, in single-element varying
characteristics,	bridge,
3.27-28, 3.37	2.8
OP250, op amp, rail-to-rail input, 3.23	bias compensated, low voltage noise, 3.14
OP279, op amp, common mode crossover	BiFET:
threshold, 3.24	input stage, circuit, 5.6
OP281, precision op amp, single-supply,	specifications, 3.15
performance characteristics, 3.27-28	bipolar:
OP282, op amp, P-channel JFET input	bias-current compensated, 3.6
pair,	specifications, 3.15
3.23	breakdown voltage, 10.59
OP284:	chopper stabilized, 3.1
precision op amp:	no 1/f noise, 3.51
rail-to-rail input, 3.24	noise reduction, 3.12
single-supply, performance	CMRR, definition, 3.16
characteristics,	current noise, 3.11
3.27-28, 3.37	DC open loop gain nonlinearity,
OP291:	measurement,
	3.8-9
precision op amp: common mode crossover threshold, 3.24	
	decoupling techniques, 3.18 input bias current compensated, diagram
single-supply, performance characteristics,	3.7
3.27-28, 3.37	input voltage noise, 3.11
	JFET, specifications, 3.15
OP293, precision op amp, single-supply, performance characteristics, 3.27-28	JFET versus bipolar, 5.29-30
OP296, precision op amp, single-supply,	source resistance, effects on noise and
performance characteristics, 3.27-28	offset
OP413:	voltage, 5.30
	<u>e</u>
precision op amp:	low-frequency CMR, 3.31
high open-loop gain, 3.21	noise, 3.11-15
single-supply, performance	Johnson, voltage, 3.13
characteristics,	low frequency, 3.11
3.27-28	model, 3.13
OP450, op amp, rail-to-rail input, 3.23	noise model, 5.15-16
OP481, precision op amp, single-supply,	non-inverting:
performance characteristics, 3.27-28	gain variation with temperature, 10.1
OP482, op amp, P-channel JFET input	resistor temperature coefficient
pair,	mismatches,
3.23	10.1
OP484:	noninverting mode, 3.16-17
precision op amp:	offset adjustment pins, diagram, 3.5
rail-to-rail input, 3.24	offset drift with temperature, 3.5
single-supply, performance	overvoltage:
characteristics,	conduction, 10.59
3.27-28	protection circuit, 10.61
OP491:	precision:
precision op amp:	characteristics, 3.2-18

CMR, 3.16-18	output stages, 3.22
DC open loop gain nonlinearity,	selection criteria, 3.27-28
3.7-10	SNR, 3.22
measurement, 3.8-9	performance, 3.21
input bias current, models, 3.5-7	voltage noise increase, 3.21
input offset voltage, 3.2-5	subtractor, 3.31
models, 3.5-7	temperature, offset drift, 3.5
noise, 3.11-15	types, null capability, 3.5
PSR, 3.16-18	voltage noise, 3.11
CMR, 3.16	white noise, 3.11
gain nonlinearity, plot, 3.10	Optical encoder:
gain uncertainty, 3.7-8	absolute, expense, 6.10
key performance specifications, 3.2	diagrams, 6.10
noise gain, 3.7	disadvantages, 6.9-10
offset null, 3.4	incremental, 6.9-10
open loop gain, 3.7	position measurement, 6.9-10
PNP or NPN bipolar input stage, input	use of Gray code, 6.10
bias	Optical rotational encoder, 6.1
currents, 3.6	Optoelectronics Data Book, 5.39
PSR, 3.17-18	Optoisolator, 3.53, 10.55
PSRR, 3.17	Organic semiconductor electrolytic
frequency dependent, 3.17	capacitor,
ramp generator output, 3.9	10.22-23
frequency, 3.9	OS-CON Aluminum Electrolytic Capacitor
resistance, Johnson noise, 3.11	93/94 Technical Book, 10.37
resistor Johnson noise, 5.15	OS-CON electrolytic capacitor, 10.22-23
single supply, 3.20-29	Ott, Henry, 10.20, 10.37, 10.57
advantages, 3.20	Output ripple, 10.32
design tradeoffs, 3.20	Oversampling, 8.16-17
gain accuracy, 3.21	ratio, 8.17
input bias current, CMR, 3.24	Overvoltage:
input stages, 3.22-25	CMOS channel protector, 10.65-67
characteristics, 3.22	protection, 10.59-67
N-channel JFET, 3.22-23	Schottky diode, 10.60-61
offset voltage, 3.25	
overvoltage, 3.22	P
parallel NPN and PNP, 3.21	P-Channel MOSFET switch, 8.10
transient response, 3.25	P-NET, industrial network standard, 9.5
output stages, 3.25-28	Pallas-Areny, Ramon, 2.19, 4.14, 5.39, 6.24,
"almost" rail-to-rail, 3.27	7.39
asymmetry, 3.25	Parasitic thermocouples, error sources, 2.16
bipolar processes, 3.25	Parzefall, F., 8.38
CMOS FETs, 3.26	Passive sensor, 1.1-2
complementary common-	Pattavina, Jeffrey S., 10.20
emitter/common-source, 3.26-27	Permanent magnet synchronous motor,
performance characteristics, summary,	6.18
3.27-28	pH monitor, 5.1
process technologies, 3.28-29	pH probe buffer amplifier, 5.30-31
BiMOS or CBCMOS use, 3.29	Phase jitter, 10.16-17
JFET use, 3.29	Photodiode 1991 Catalog, 5.39
summary, 3.28-29	Photodiode, 1.2
PSR, 3.17	amplifier:
rail-to-rail, 3.20	low noise:
ground reference, 3.21	circuits, 5.27-28
input stage:	source impedance balancing, 5.27
design, 3.24	applications, 5.2
long-tailed pairs, 3.23-24	

circuit, leakage paths, 5.7-8	non-inverting input current noise, 5.17
current proportional to illumination, 5.1-2	offset null adjustment, 5.18
current-to-voltage converter, 5.4-5	offset voltage and drift analysis, 5.10-11
SNR, 5.5	offset voltage errors, summary, 5.10-11
equivalent circuit, 5.1-3	shunt resistance, function of
shunt resistance, 5.3	temperature,
high speed current-to-voltage converter:	5.10-11
compensation, 5.20-25	signal bandwidth, 5.13-14
input capacitance compensation, 5.20	reverse bias, 5.3
high speed preamplifier:	dark current, 5.3
dark current compensation, circuit, 5.24	specifications, 5.4
design, 5.22-24	thermoelectric voltage, source of input
dynamic range, 5.22	offset
equivalent noise bandwidth, 5.24	voltage, 5.12
noise analysis, 5.24-25	wideband converter, op amp selection,
output noise analysis, equivalent	5.21-22
circuit,	zero bias, 5.3
5.25	Piezoelectric, 1.2
output voltage, 5.23	sensor amplifier, 5.28
total RMS noise, 5.25	Piezoelectric sensor, 5.26
modes of operation, circuits, 5.3	Piezoelectric transducer:
op amp, current-to-voltage converter,	amplifier, lower bias current, 5.28
5.4-5	displacement type, 4.4
parasitic leakage, 5.7-8	output voltage, 4.4-5
photoconductive mode, 5.3	Piezoresistance, semiconductor strain gage,
photovoltaic mode, 5.3	4.4
short circuit current, light intensity, 5.4	Pin socket, 10.8
preamplifier, 5.1	Pitot tube, flow measurement, 4.7-8
Bode plot, 5.12-13	Plug and play, 9.5-6
circuit noise:	Polyester capacitor, 10.22-23
gain versus frequency, 5.12-13	Position sensor, 5.2
summary, 5.17	Power:
circuit performance summary, 5.18-19	average real, 8.35
circuit tradeoffs, 5.19	instantaneous, 8.34-35
closed loop bandwidth, 5.13-14	instantaneous real, 8.34-35
design, 5.1-19	measurement basics, 8.35
design, bandwidth, and stability,	Power meter, single-phase application,
5.12-14	8.36-37
Bode plot, 5.12-13	Power plane, 10.7-9
circuit noise gain versus frequency,	Power supply:
5.12-13	AC, filtering, 10.34-36
FET-input op amp, comparisons, 5.22	commercial EMI filter, 10.34-35
input bias current, function of	EMI generation, 10.34
temperature,	filter, ferrites, 10.25
5.10-11	localized high frequency, filtering,
input voltage noise, 5.16	10.32-34
Bode plot, 5.16	noise reduction and filtering, 10.21-38
Johnson noise from feedforward	separate for analog and digital circuits,
resistor,	10.15
5.17	switching, 10.21
Johnson noise of resistor in	analog ready, 10.21
non-inverting	drawbacks, 10.21
input, 5.17	filters, 10.21
noise analysis, 5.14-18	Power supply rejection, see: PSR
noise gain plot, 5.13-14	Power supply rejection ratio, see: PSRR
noise reduction, via output filtering,	Practical Analog Design Techniques (1996),
5.18	3.57

Practical Design Techniques for Power and Thermal Management, 10.38 Precision load-cell amplifier, 4.11-12 single-supply, 4.12-13 circuit, 4.13 Precision Resistor Co., Inc., 5.40 PT146, 5.30 Pressure sensor: resistance, 2.1 transducers, 4.7 The Pressure, Strain, and Force Handbook, Vol. 29, 4.14 Product-to-Frequency Converter, 8.34, 8.36 Profibus, industrial network standard, 9.5 Programmable-gain amplifier, see: PGA Proximity detector, 6.1 PT146, Precision Resistor Co., 5.30	equation, 3.12 gaussian distribution, 8.24 Roberge, J.K., 3.57 Roche, P.J., 6.25 Rotary variable differential transformer, 6.1 LVDT variant, 6.7 RS-232 port, ESD-sensitive, 10.72-73, 10.75 RS-485 port, ESD-sensitive, 10.75 RTD, 1.1-3, 2.1-2 demodulates AC error signal, 6.13 diagram, 6.12-13 four-resistor bridge circuit, 7.13-14 measurement errors, 7.12-13 passive temperature sensor, 7.11-15 platinum, 2.2 interfaced to high resolution ADC, circuit,
Pulse Engineering, Inc., 10.43	7.15
Q Quantization error, 8.17 Quantization noise, 8.17-18 Quantization noise shaping, 8.16	resistance, 2.1 resistance versus Seebeck coefficient, 7.12 single-element varying bridge, 2.4-5 temperature sensor, 7.2, 7.11-15 tracking, 6.14
R	S C C C C C C C C C C C C C C C C C C C
Radiofrequency interference, see: RFI	Sample-and-hold, see: SHA
Ramp generator, frequency, 3.9 RCD Components, Inc., 10.6	Sampling clock: ground planes, 10.17
REF195, bridge drive, 4.11	grounding and decoupling, 10.15
Reflection, 10.47-49	jitter, 10.16
Relative humidity sensor, resistance, 2.1	SNR, 10.16
Rempfer, William C., 10.20	Sauerwald, Mark, 10.20
Resistance:	Scannell, J.R., 6.25
measurement:	Scanner, imaging system, generic, 5.32
bridge, 2.2-3	Schaevitz E100 LVTD:
indirect, 2.2	diagram, 6.2
Resistance temperature device, see: RTD	key specifications, 6.3
Resistive strain gage, 4.1	Schaevitz, Herman, 6.24
Resistor:	Schmidt, Ernest D.D., 6.24
error, high accuracy system, 10.1-6	Schottky diode, 3.48, 10.12, 10.60-61,
Johnson noise, 3.13, 5.15	10.63-64
model, with thermocouples, 10.2-3	Schultz, Donald G., 3.57, 5.39
orientation, error minimization, 10.3-4	Scott-T transformer, in synchro, 6.12 Seebeck coefficient:
self-heating, gain variation with input level,	and RTD, 7.12
10.2	temperature variation, 7.3-4
Resolver, 6.10-15	Self-generating sensor, 1.1-2
brushless, 6.11	Semiconductor:
diagram, 6.11	strain gage, 4.4
rotating transformer, 6.11	advantages, 4.4
RFI rectification:	piezoresistance, 4.4
filtering, 10.39-40	temperature sensor, 7.2, 7.19-34
prevention, 10.39-43	advantages, 7.19
Rich, A., 10.58	basic relationships, 7.19-20
RMS noise:	Sensor:

active, 1.1-2	Smart sensor, 9.1-16
charge coupled device, 5.1	4-20mA loop powered, 9.2
charge output, 5.1	applications, 1.5
classification, 1.1, 1.3	basic elements, 1.5
definition, 1.1	Smart Transducer Interface Module, smart
digital interface, standardization, 1.5	sensor, 9.5-6
electrical character, 1.3	Smith, Lewis, 3.57, 5.39
external active circuitry, 1.1	Smoke detector, 5.1
high impedance, 5.1-38	Snelgrove, M., 8.38
charge amplifier, 5.26	SNR versus oversampling ratio, 8.22
circuits, 5.27-28	SO-8 packaging, 7.27
charge output, 5.26-31	Sockolov, Steve, 10.6
interfaced with network, 9.4-16	Sodini, C.G., 8.38
output, 1.2	SOIC packaging, 5.6, 5.8-9, 5.19, 8.26
overview, 1.2	guarding, PCB layout, 5.9
passive, 1.1-2	SOT-23-3 packaging, temperature sensors,
examples, 1.1	7.24-26
piezoelectric, 5.1	Standard, industrial network, listing, 9.5
popular, resistances, 2.1	Star ground, 10.10-11
position and motion, 6.1-23	STIM, smart sensor, 9.5-6
process control system application, 1.3-4	Stout, D., 2.19, 3.57
remote resistive bridge, errors, 2.12	Strain gage, 1.2, 4.1-9
resistive elements, 2.1	bonded, 4.2-3
self-generating, 1.1-2	diagram, 4.3
smart, 9.1-16	bridge circuit, 4.9-10
temperature, 7.1-38	comparisons, 4.4
applications, 7.1	flow devices, 4.1
see also Temperature sensor	foil-type, 4.2-3
types, 1.3	force measurement, 4.5
uses, 1.1	fullscale variation, 2.12
Setpoint controller, temperature sensor,	gas and liquid pressure measurements,
7.29-32	4.6
Sheingold, Dan, 2.19, 3.57, 4.14, 5.39, 6.24,	load cell, 4.1, 4.5-6
7.39, 8.39	precision amplifier, 4.11
	low impedance, 4.5
Shielded cable, grounding, 10.53-54 Shielding:	metal foil, diagram, 4.3
absorption, 10.47-49	<u> </u>
-	piezoelectric transducers, 4.1
effectiveness, calculation, 10.50	precision, sensor amplifier, 4.10
magnetic fields, loss, 10.48	pressure devices, 4.1 resistance, 2.1
materials, conductivity and permeability,	
summary, 10.50 reflection, 10.47-48	resistive, 4.1 semiconductor, 4.4
review, 10.47-58	unbonded, 4.1-2
Sigma dalta ADC 24 bits internal BCA for	Successive approximation register, <i>see</i> : SAR
Sigma-delta ADC, 24 bits, internal PGA, for	Swanson, E.J., 8.38
bridges, 2.14	Switch, CMOS analog, basic, 8.10
Signal conditioning:	Switching regulator, experiment, 10.28-32
amplifiers, 3.1-58	Synchro, 6.10-15
circuit, 1.3	diagram, 6.11
Signal-to-noise ratio, see: SNR	rotating transformer, 6.11
Silicon Detector Corporation, 5.39	Scott-T transformer, 6.12
Silicon Detector Part Number	three stator coils, 6.11
SD-020-12-001,	Synchro and resolver, 6.1
5.4 Silian anno 1.0	System, definition, 1.1
Silicon sensor, 1.2	System Applications Guide (1993), 8.38,
68HC11, microcontroller, 7.28	10.43,
Slattery, B., 10.57	10.77

System Applications Guide (1994), 3.57, 10.57	type J: Seebeck coefficient, 7.5 sensitivity, 7.3-4
T	type K, 7.5
Tantalum electrolytic capacitor, 10.22-23	Seebeck coefficient, 7.8
Tantalum Electrolytic Capacitor SPICE	type S, 7.5
Models,	types, 7.2-3
10.38	voltage generation, 7.6
Tantalum Electrolytic and Ceramic	voltage-temperature curves, 7.3-4
Capacitor	Thermoelectric emf, thermocouple, 7.5
Families, 10.37	Thermostatic switch, temperature sensor,
TEDS, in microcontroller, 9.5	7.29-32
Temperature monitoring, microprocessor,	Thermostream-type heater/cooler, amplifier
7.35-38	temperature controller, 3.4
Temperature sensor, 7.1-38	TII, in sensor, 9.5
applications, 7.1	TMP01:
bandgap, 7.21	programmable setpoint controller, 7.31-32
current and voltage output, 7.21-25	key features, 7.32
digital output, 7.26-29	TMP03:
direct digitization, by ADCs, 7.2	digital output sensor, 7.26-29
EMI/RFI effects, 7.25	diagram, 7.27
nonlinear transfer functions, 7.1	output format, 7.27
RTD, 7.2, 7.11-15	thermal monitoring, 7.29
semiconductor, 7.2, 7.19-34	TMP04:
setpoint controller, 7.29-32	digital output sensor, 7.26-29
thermistor, 7.2, 7.16-19	diagram, 7.27
thermocouple, 7.2-11	high power microprocessor monitoring,
thermostatic switch, 7.29-32	7.29
types, 7.2	output format, 7.27
Tesla, Nikola, 6.17	thermal monitoring, 7.29
Thermal EMF, thermocouple effect, 10.2	microcontroller interfacing, 7.28
Thermistor, 1.2	TMP17:
amplifier, linearized, 7.19	current output temperature sensor,
definition, 7.16	7.21-22
fragility, 7.17	specifications, 7.22
NTC, 7.16	TMP35:
linearization, 7.18	absolute voltage output temperature
resistance characteristics, 7.16	sensor,
temperature coefficient, 7.17	7.23
resistance, 2.1	voltage output sensor, 7.8-9, 7.11
sensitivity, 7.17	TMP36, absolute voltage output
single-element varying bridge, 2.4-5	temperature
temperature sensor, 7.2, 7.16-19	sensor, 7.23
Thermocouple, 1.2	TMP37, absolute voltage output
basic principles, 7.5-6	temperature
characteristics, 7.2	sensor, 7.23
cold-junction compensation, 7.2-11	TO-92 packaging, 7.27
effect, thermal EMF, 10.2	TO-99 packaging, 5.6, 5.12
error, high accuracy system, 10.1-6	Transducer, 1.2
isothermal block, 7.8	Transducer Electronic Data Sheet, in
parasitic, circuit, 10.5	microcontroller, 9.5
reference cold junction, 7.3-4	Transducer Independent Interface, in
reference junction, 7.6	sensor, 9.5
Seebeck coefficient and temperature,	Transformer, best common-mode power line
7.3-4	isolation, 10.35
thermoelectric emf, 7.5	Transient Voltage Suppresser, 3.48, 10.63 TransZorb, 10.63, 10.75

TransZorbs Available from General Semiconductor, Inc., 10.77 Travis, Bill, 6.24 Triboelectric effect, 10.68 Trietley, Harry L., 4.14, 6.24 TSSOP packaging, 7.27, 8.26 TVS, see: Transient Voltage Suppresser Twilight detector, 5.2 Two op amp in amp, circuit, 3.32 Type 5MC Metallized Polycarbonate Capacitor, 10.37 Type 5250 and 6000-101K chokes, 10.38 Type EXCEL leaded ferrite bead EMI filter, and type EXC L leadless ferrite bead, 10.37 Type HFQ Aluminum Electrolytic Capacitor and Type V Stacked Polyester Film Capacitor, 10.37

U-V

Unbonded strain gage, 4.1-2 wire, 4.2 Universal Serial Bus, industrial network standard, 9.5 USB, industrial network standard, 9.5 Vector AC induction motor control, 6.17-19 Vector control, 6.18 Venturi effect, flow measurement, 4.7-8 VLSI mixed-signal processing, 8.14

W-Z

Webster, John G., 2.19, 4.14, 5.39, 6.24, 7.39
Weigh-scale load cell, resistance, 2.1
Welland, D.R., 8.38
Wheatstone bridge, 2.2-3
circuit, 2.3
Williams, Jim, 7.39
Wong, James, 7.39, 10.6
Wooley, Bruce, 8.38
WorldFIP, industrial network standard, 9.5
Wurcer, Scott, 5.1, 10.6
Wynne, J., 10.57
Zener diode, 10.63

Analog Devices Parts Index

8.31-32

_	
A	
AD210, 3.54-56	ADGOOV Condition
AD260, 10.55-57	AD789X family, 8.8
AD261, 10.55-57	AD1555, 8.23
AD2S90, 6.14-15	AD1556, 8.23
AD420, 9.1-2	AD1879, 8.22
AD421, 9.2-3	AD7472, 8.5
AD524, 3.48	AD7670, 8.5
AD524C, 3.47	AD7705, 8.23
AD549, 5.6, 5.8	AD7706, 8.23
AD588, 4.10-11	AD7710, 8.23
AD592, 7.21-22	AD7711, 8.23
AD592CN, 7.21	AD7712, 8.23
AD594, 7.9	AD7713, 8.23
AD595, 7.9	AD7714, 8.23, 9.2
AD598, 6.3, 6.5	AD7715, 8.23, 9.2
AD620, 2.7, 3.36-40, 3.42, 3.45-46,	AD7716, 8.32-34
3.55-56,	AD7722, 10.7
4.9-11, 10.5, 10.41-42, 10.61-62	AD7730, 2.14-15, 2.17, 4.12-13, 8.23, 8.25-31,
AD620B, 3.46-47	10.7
•	AD7731, 8.23, 10.7
AD621, 3.42	AD7750, 8.34-37
AD621B, 3.47	AD7751, 8.36
AD622, 3.47	AD7816, 7.32-34
AD623, 2.7, 3.40-41, 3.46	AD7817, 7.32-34 AD7817, 7.32-34
AD623B, 3.47	
AD624C, 3.42	AD7818, 7.32-34
AD625C, 3.47	AD7856, 8.5
AD626, 3.23, 3.46	AD7857, 8.5
AD626B, 3.47	AD7858, 8.5, 8.14-15
AD627, 2.7, 3.34-35, 3.46, 10.64	AD7858L, 8.14-15
AD627B, 3.34, 3.47	AD7859, 8.5, 8.15
AD645, 3.15, 5.6	AD7859L, 8.15
AD688, 3.9	AD7887, 8.5
AD698, 6.5-6	AD7888, 8.5
AD707, 2.16, 3.4, 3.5, 3.6, 3.11, 3.16-18,	AD7890-10, 8.8-9, 10.63, 10.65
3.51,	AD7891, 8.5
10.3	AD7892, 10.7
AD743, 3.11, 3.14, 3.15, 5.22, 5.28-29	AD8531, 3.23
AD744, 3.15, 5.22	AD8532, 3.23
AD745, 3.11, 3.14, 5.22, 5.27-30, 5.28-29	AD8534, 3.23
AD795, 5.6-9, 5.22	AD8551, 2.16, 3.51-52
AD795K, 5.11, 5.18	AD8552, 2.16, 3.51-52
AD820, 3.27-28, 5.22, 8.8-9	AD8554, 2.16, 3.51-52
AD822, 3.27-28, 3.38, 3.40	AD9814, 5.37
AD823, 5.21-25	AD9816, 5.37-38
AD824, 3.27-28	AD22103, 7.22-23
AD843, 5.22	AD22151, 6.8-9
AD845, 5.22	ADG7XX family, 8.12
AD974, 8.5, 8.8	ADG451, 8.12
AD974, 8.8, 8.8	ADG452, 8.12
AD970, 8.8 AD977, 8.8	ADG453, 8.12
AD77XX family, 7.11, 7.14-15, 8.22, 8.25,	ADG465, 10.65-67
Δυτιλλ lailing, τ.11, τ.14-13, ο.22, ο.23,	ADG466, 10.65-67
	112 3 100, 10.00 01

ADG467, 10.65-67 ADG508F, 8.12 ADG509F, 8.12 ADG527F, 8.12 ADMXXX-E, 10.75-76 ADM1021, 7.35-38 ADMC300, 6.18-19 ADMC330, 6.18-19 ADMC331, 6.18-19 ADP1148, 10.28-31 ADP3310, 10.30-31 ADT05, 7.29-30 ADT14, 7.32 ADT22, 7.32 ADT23, 7.32 ADT45, 7.24-25 ADT50, 7.24-25 ADT70, 7.14-15 ADT71, 7.14 ADT701, 7.14 ADuC810, 9.8-9, 9.15-16 ADuC812, 9.8, 9.11-13, 9.15-16 ADuC816, 9.8-11, 9.15-16 ADXL05, 6.23 ADXL150, 6.23 ADXL190, 6.23 ADXL202, 6.22-23 ADXL210, 6.23 ADXL250, 6.23 AMP01A, 3.47 AMP02, 3.48 AMP02E, 3.47 AMP04E, 3.47 M

MicroConverter, 1.4, 1.6, 9.6-8

0

OP07, 3.12, 3.15, 3.21, 5.5 OP27, 3.12, 3.14-15, 5.29-30 OP42, 5.22 OP97, 5.5 OP113, 3.21, 3.27-28 OP177, 2.16, 3.4-6, 3.10-11, 3.16-18, 3.51, 4.9-11, 10.3 OP177A, 3.3, 3.19 OP181, 3.27-28 OP184, 3.24, 3.27-28 OP191, 3.24, 3.27-28 OP193, 3.27-28, 7.9 OP196, 3.27-28 OP213, 3.21, 3.27-28, 3.37, 4.11-12 OP250, 3.23 OP279, 3.24 OP281, 3.27-28 OP282, 3.23

OP284, 3.24, 3.27-28, 3.37 OP291, 3.24, 3.27-28, 3.37 OP293, 3.27-28 OP296, 3.27-28 OP413, 3.21, 3.27-28 OP450, 3.23 OP481, 3.27-28 OP482, 3.23 OP484, 3.24, 3.27-28 OP491, 3.24, 3.27-28 OP493, 3.27-28 OP496, 3.27-28

R

REF195, 4.11-12

Т

TMP01, 7.31-32 TMP03, 7.26-29 TMP04, 7.26-29 TMP17, 7.21-22 TMP35, 7.8-9, 7.11, 7.23 TMP36, 7.23 TMP37, 7.23 TMP17F, 7.21