Chapitre 24: Familles sommables

Familles de nombres positifs

Généralités

Définition 1.1. Soit $x = (x_j)_{j \in J}$ une famille de réels ≥ 0 indexés par une ensemble JOn définit

$$\sum_{j \in J} x_j = \sup \left\{ \sum_{j \in J_0} x_j \mid J_0 \in \mathcal{P}_f(J) \right\} \in [0, +\infty]$$

Avec la convention que la forme supérieure vaut $+\infty$ si l'ensemble n'est pas majoré. (Ici, \mathcal{P}_f désigne l'ensemble des parties finies de J)

Proposition 1.2. Soit $x, y \in \mathbb{R}^J_+$, des familles indexées par J

On a:

* Restriction : Si $K \subseteq J$, $\sum_{j \in K} x_j \le \sum_{j \in J} x_j$ * Linéarité : $\forall \lambda \in \mathbb{R}_+^*$, $\sum_{j \in J} (x_j + \lambda y_j) = \sum_{j \in J} x_j + \lambda \sum_{j \in J} y_j$ * Croissance : Si $\forall j \in J$, $x_j \le y_j$, alors $\sum_{j \in J} x_j \le \sum_{j \in J} y_j$

Corollaire 1.3. Supposons $j = \bigcup_{k=1}^{n} J_k$

Alors, pour toute famille $x \in \mathbb{R}^J_+$, on a $\sum\limits_{j \in J} x_j = \sum\limits_{k=1}^n \sum\limits_{i \in I_k} x_i$

1.2 Commutativité

Proposition 1.4.

* Soit $\sigma:I\to J$ une bijection et $x\in\mathbb{R}_+^J$

Alors
$$\sum_{i \in I} x_{\sigma(I)} = \sum_{j \in J} x_j$$

Alors $\sum\limits_{i\in I}x_{\sigma(I)}=\sum\limits_{j\in J}x_j$ * En particulier, si $\sigma:J\to I$ est bijective

$$\sum_{j \in J} x_j = \sum_{j \in J} x_{\sigma(j)}$$