Understanding Cryptography

by Christof Paar and Jan Pelzl
www.crypto-textbook.com

Chapter 12 2 Message Authentication Codes Cryptogla 2 Message (MACs)

These slides were prepared by Christof Paar and Jan Pelzl

Some legal stuff (sorry): Terms of Use

- The slides can used free of charge. All copyrights for the slides remain with Christof Paar and Jan Pelzl.
- The title of the accompanying book "Understanding Cryptography" by Springer and the author's names must remain on each slide.
- If the slides are modified, appropriate credits to the book authors and the book title must remain within the slides.
- It is not permitted to reproduce parts or all of the slides in printed form whatsoever without written consent by the authors.

Content of this Chapter

- The principle behind MACs
- The security properties that can be achieved with MACs
- How MACs can be realized with hash functions and with block ciphers

Principle of Message Authentication Codes

- Similar to digital signatures, MACs append an authentication tag to a message
- MACs use a symmetric key k for generation and verification
- Computation of a MAC: $m = MAC_k(x)$

Properties of Message Authentication Codes

1. Cryptographic checksum

A MAC generates a cryptographically secure authentication tag for a given message.

2. Symmetric

MACs are based on secret symmetric keys. The signing and verifying parties must share a secret key.

3. Arbitrary message size

MACs accept messages of arbitrary length.

4. Fixed output length

MACs generate fixed-size authentication tags.

5. Message integrity

MACs providemessage integrity: Any manipulations of a message during transit will be detected by the receiver.

6. Message authentication

The receiving party is assured of the origin of the message.

7. No nonrepudiation

Since MACs are based on symmetric principles, they do not provide nonrepudiation.

MACs from Hash Functions

- MAC is realized with cryptographic hash functions (e.g., SHA-1)
- HMAC is such a MAC built from hash functions
- Basic idea: Key is hashed together with the message
- Two possible constructions:
 - secret prefix MAC: $m = MAC_k(x) = h(k||x)$
 - secret suffix MAC: $m = MAC_k(x) = h(x||k)$
- Attacks:
 - secret prefix MAC: Attack MAC for the message $x = (x_1, x_2, \dots, x_n, x_{n+1})$, where x_{n+1} is an arbitrary additional block, can be constructed from m without knowing the secret key
 - secret suffix MAC: find collision x and x_0 such that $h(x) = h(x_0)$, then $m = h(x||k) = h(x_0||k)$
- Idea: Combine secret prefix and suffix: HMAC (cf. next slide)

HMAC

- Proposed by Mihir Bellare, Ran Canetti and Hugo Krawczyk in 1996
- Scheme consists of an inner and outer hash
 - k⁺ is expanded key k
 - expanded key k⁺ is XORed with the inner pad
 - ipad = 00110110,00110110, . . .,00110110
 - opad = 01011100,01011100, . . .,01011100
 - HMAC_k(x) = $h[(k^+ \oplus \text{opad})/[h[(k^+ \oplus \text{ipad})/[x]]]$

 HMAC is provable secure which means (informally speaking): The MAC can only be broken if a collision for the hash function can be found.

MACs from Block Ciphers

- MAC constructed from block ciphers (e.g. AES)
- Popular: Use AES in CBC mode

CBC-MAC:

CBC-MAC

MAC Generation

- Divide the message x into blocks x_i
- Compute first iteration $y_1 = e_k(x_1 \oplus IV)$
- Compute $y_i = e_k(x_i \oplus y_{i-1})$ for the next blocks
- Final block is the MAC value: $m = MAC_k(x) = y_n$

MAC Verification

- Repeat MAC computation (m')
- Compare results:In case m' = m, the message is verified as correct
- In case m' ≠ m, the message and/or the MAC value m have been altered during transmission

Lessons Learned

- MACs provide two security services, message integrity and message authentication, using symmetric techniques. MACs are widely used in protocols.
- Both of these services also provided by digital signatures, but MACs are much faster as they are based on symmetric algorithms.
- MACs do not provide nonrepudiation.
- In practice, MACs are either based on block ciphers or on hash functions.
- HMAC is a popular and very secure MAC, used in many practical protocols such as TLS.