Ali Siahkoohi

Simons Postdoctoral Fellow Dept. of Comp. Applied Math. & Operations Research Rice University alisk@ucf.edu https://alisiahkoohi.github.io Last updated: July 14, 2025

August 2025

August 2022

Atlanta, GA, USA

Orlando, FL, USA

Research Interests

I work on **uncertainty quantification** for high-dimensional problems in computational science and engineering, with an emphasis on **uncertainty-aware AI**.

Academic Appointments

University of Central Florida Tenure-Track Assistant Professor Department of Computer Science

Rice UniversitySimons Postdoctoral Fellow

August 2022 – July 2025
Houston, TX, USA

Department of Computational Applied Mathematics & Operations Research Jointly hosted by Maarten V. de Hoop and Richard G. Baraniuk

Education

Georgia Institute of Technology
Ph.D. in Computational Science and Engineering
Advised by Felix J. Herrmann

University of Tehran
March 2016
M.Sc. in Geophysics
Tehran, Iran

Sharif University of TechnologyAugust 2013B.Sc. in Electrical EngineeringTehran, Iran

Publications

Google Scholar profile: https://scholar.google.com/citations?user=sxRMqYIAAAAJ&h

In Preparation & Under Review

- P2. <u>A. Siahkoohi</u>, R. Morel, R. Balestriero, E. Allys, G. Sainton, T. Kawamura, and M. V. de Hoop. Multi-scale clustering and source separation of InSight mission seismic data. Preprint arXiv:2305.16189, 2025 [pdf] [code] [slides] [bib]
- P1. P. M. Mayer, L. Luzi, <u>A. Siahkoohi</u>, D. H. Johnson, and R. G. Baraniuk. Improving fairness and mitigating MADness in generative models. Preprint arXiv:2405.13977, 2024 [pdf] [code] [slides] [bib]

Journal Publications

- J8. R. Orozco, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. ASPIRE: Iterative amortized posterior inference for Bayesian inverse problems. *Inverse Problems*, 41(4):045001, 2025 [pdf] [code] [link] [bib]
- J7. R. Orozco, P. Witte, M. Louboutin, <u>A. Siahkoohi</u>, G. Rizzuti, B. Peters, and F. J. Herrmann. InvertibleNetworks.jl: A Julia package for scalable normalizing flows. *Journal of Open Source Software*, 9(99):6554, 2024

[pdf] [code] [link] [bib]

- J6. L. Luzi, P. M. Mayer, J. Casco-Rodriguez, <u>A. Siahkoohi</u>, and R. G. Baraniuk. Boomerang: Local sampling on image manifolds using diffusion models. *Transactions on Machine Learning Research*, 2024a [pdf] [code] [link] [bib]
- J5. M. Louboutin, Z. Yin, R. Orozco, T. J. Grady II, <u>A. Siahkoohi</u>, G. Rizzuti, P. A. Witte, O. Møyner, G. J. Gorman, and F. J. Herrmann. Learned multiphysics inversion with differentiable programming and machine learning. *The Leading Edge*, 42(7):474–486, 2023

 [pdf] [link] [bib] [featured in Seismic Soundoff] [journal's most downloaded paper in '23]
- J4. Y. Zhang, Z. Yin, O. López, <u>A. Siahkoohi</u>, M. Louboutin, R. Kumar, and F. J. Herrmann. Optimized time-lapse acquisition design via spectral gap ratio minimization. *Geophysics*, 88(4):A19–A23, 2023a [pdf] [link] [bib]
- J3. <u>A. Siahkoohi</u>, G. Rizzuti, R. Orozco, and F. J. Herrmann. Reliable amortized variational inference with physics-based latent distribution correction. *Geophysics*, 88(3):R297–R322, 2023a [pdf] [slides] [code] [link] [bib] [featured in Geophysics Bright Spots]
- J2. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. Deep Bayesian inference for seismic imaging with tasks. *Geophysics*, 87(5):S281–S302, 2022a [pdf] [code] [link] [bib]
- J1. <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. The importance of transfer learning in seismic modeling and imaging. *Geophysics*, 84(6):A47–A52, 2019a [pdf] [code] [link] [bib]

Peer-Reviewed Conference Proceedings

- C32. S. Alemohammad, J. Casco-Rodriguez, L. Luzi, A. I. Humayun, H. Babaei, D. LeJeune, <u>A. Siahkoohi</u>, and R. G. Baraniuk. Self-consuming generative models go MAD. In *The Twelfth International Conference on Learning Representations*, 2024 [pdf] [extended pdf] [poster] [link] [bib] [featured in the news ^{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}]
- C31. L. Luzi, D. LeJeune, A. Siahkoohi, S. Alemohammad, V. Saragadam, H. Babaei, N. Liu, Z. Wang, and R. G. Baraniuk. Titan: Bringing the deep image prior to implicit representations. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pages 6165–6169, 2024b [pdf] [code] [link] [bib]
- C30. L. Baldassari, <u>A. Siahkoohi</u>, J. Garnier, K. Sølna, and M. V. de Hoop. Conditional score-based diffusion models for Bayesian inference in infinite dimensions. In *Advances in Neural Information Processing Systems*, volume 36, pages 24262–24290, 2023
 [pdf] [slides] [poster] [code] [link] [bib] [featured as a Spotlight presentation]
- C29. <u>A. Siahkoohi</u>, R. Morel, M. V. de Hoop, E. Allys, G. Sainton, and T. Kawamura. Unearthing InSights into Mars: Unsupervised source separation with limited data. In *Proceedings of the 40th International Conference on Machine Learning*, volume 202, pages 31754–31772, 2023b [pdf] [slides] [poster] [code] [link] [bib]
- C28. R. Orozco, M. Louboutin, <u>A. Siahkoohi</u>, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann. Amortized normalizing flows for transcranial ultrasound with uncertainty quantification. In *Medical Imaging with Deep Learning*, volume 227, pages 332–349, 2023a [pdf] [link] [bib]
- C27. R. Orozco, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Refining amortized posterior approximations using gradient-based summary statistics. In *5th Symposium on Advances in Approximate Bayesian Inference*, 2023b [pdf] [link] [bib]
- C26. R. Orozco, <u>A. Siahkoohi</u>, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann. Adjoint operators enable fast and amortized machine learning based Bayesian uncertainty quantification. In *Medical Imaging* 2023: *Image Processing*, volume 12464, page 124641L, 2023c [pdf] [link] [bib]

- C25. Y. Zhang, Z. Yin, O. Lopez, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. 3D seismic survey design by maximizing the spectral gap. In *Third International Meeting for Applied Geoscience & Energy*, 2023b
 [pdf] [poster] [bib]
- C24. <u>A. Siahkoohi</u>, M. Chinen, T. Denton, W. B. Kleijn, and J. Skoglund. Ultra-low-bitrate speech coding with pretrained Transformers. In *Proceedings of Interspeech*, pages 4421–4425, 2022b [pdf] [link] [bib]
- C23. <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Velocity continuation with Fourier neural operators for accelerated uncertainty quantification. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1765–1769, 2022c [pdf] [slides] [code] [link] [bib]
- C22. M. Louboutin, P. Witte, <u>A. Siahkoohi</u>, G. Rizzuti, Z. Yin, R. Orozco, and F. J. Herrmann. Accelerating innovation with software abstractions for scalable computational geophysics. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1482–1486, 2022 [pdf] [slides] [link] [bib]
- C21. Z. Yin, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Learned coupled inversion for carbon sequestration monitoring and forecasting with Fourier neural operators. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 467–472, 2022 [pdf] [slides] [code] [link] [bib] [student oral paper honorable mention]
- C20. Y. Zhang, M. Louboutin, <u>A. Siahkoohi</u>, Z. Yin, R. Kumar, and F. J. Herrmann. A simulation-free seismic survey design by maximizing the spectral gap. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 15–20, 2022 [pdf] [slides] [code] [link] [bib]
- C19. <u>A. Siahkoohi</u>, R. Orozco, G. Rizzuti, and F. J. Herrmann. Wave-equation based inversion with amortized variational Bayesian inference. In *EAGE Deep learning for seismic processing: Investigating the foundations workshop*, 2022d [pdf] [slides] [code] [link] [bib]
- C18. R. Orozco, <u>A. Siahkoohi</u>, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann. Photoacoustic imaging with conditional priors from normalizing flows. In *NeurIPS Workshop on Deep Learning and Inverse Problems*, 2021
 [pdf] [poster] [link] [bib]
- C17. <u>A. Siahkoohi</u>, G. Rizzuti, M. Louboutin, P. Witte, and F. J. Herrmann. Preconditioned training of normalizing flows for variational inference in inverse problems. In *3rd Symposium on Advances in Approximate Bayesian Inference*, 2021 [pdf] [slides] [code] [link] [bib]
- C16. <u>A. Siahkoohi</u> and F. J. Herrmann. Learning by example: Fast reliability-aware seismic imaging with normalizing flows. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1580–1585, 2021 [pdf] [slides] [code] [link] [bib]
- C15. R. Kumar, M. Kotsi, <u>A. Siahkoohi</u>, and A. Malcolm. Enabling uncertainty quantification for seismic data preprocessing using normalizing flows (NF)—An interpolation example. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1515–1519, 2021 [pdf] [code] [link] [bib]
- C14. G. Rizzuti, <u>A. Siahkoohi</u>, P. A. Witte, and F. J. Herrmann. Parameterizing uncertainty by deep invertible networks, an application to reservoir characterization. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1541–1545, 2020 [pdf] [slides] [code] [link] [bib]
- C13. M. Zhang, <u>A. Siahkoohi</u>, and F. J. Herrmann. Transfer learning in large-scale ocean bottom seismic wavefield reconstruction. In *Society of Exploration Geophysicists Technical Program Expanded*

- Abstracts, pages 1666–1670, 2020 [pdf] [slides] [code] [link] [bib]
- C12. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. Weak deep priors for seismic imaging. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 2998–3002, 2020a [pdf] [slides] [code] [link] [bib]
- C11. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. Uncertainty quantification in imaging and automatic horizon tracking—A Bayesian deep-prior based approach. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1636–1640, 2020b [pdf] [slides] [code] [link] [bib]
- C10. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification. In *European Association of Geoscientists & Engineers Conference and Exhibition Extended Abstracts*, 2020c [pdf] [slides] [code] [link] [bib]
- C9. F. J. Herrmann, <u>A. Siahkoohi</u>, and G. Rizzuti. Learned imaging with constraints and uncertainty quantification. In *NeurIPS Deep Inverse Workshop*, 2019 [pdf] [slides] [poster] [link] [bib]
- C8. <u>A. Siahkoohi</u>, R. Kumar, and F. J. Herrmann. Deep-learning based ocean bottom seismic wavefield recovery. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 2232–2237, 2019b
 [pdf] [code] [slides] [link] [bib]
- C7. <u>A. Siahkoohi</u>, D. J. Verschuur, and F. J. Herrmann. Surface-related multiple elimination with deep learning. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 4629–4634, 2019c [pdf] [slides] [link] [bib]
- C6. G. Rizzuti, <u>A. Siahkoohi</u>, and F. J. Herrmann. Learned iterative solvers for the Helmholtz equation. In *European Association of Geoscientists & Engineers Conference and Exhibition Extended Abstracts*, 2019
 [pdf] [slides] [link] [bib]
- C5. <u>A. Siahkoohi</u>, M. Louboutin, R. Kumar, and F. J. Herrmann. Deep convolutional neural networks in prestack seismic—two exploratory examples. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 2196–2200, 2018a [pdf] [poster] [link] [bib]
- C4. <u>A. Siahkoohi</u>, R. Kumar, and F. J. Herrmann. Seismic data reconstruction with generative adversarial networks. In *European Association of Geoscientists & Engineers Conference and Exhibition Extended Abstracts*, 2018b
 [pdf] [slides] [link] [bib]
- C3. <u>A. Siahkoohi</u> and A. Gholami. Sparsity promoting least squares migration for laterally inhomogeneous media. In *7th EAGE Saint Petersburg International Conference and Exhibition*, 2016 [pdf] [link] [bib]
- C2. M. S. Ebrahimi, M. H. Daraei, J. Rezaei, and <u>A. Siahkoohi</u>. A novel utilization of wireless sensor networks as data acquisition system in smart grids. In *Materials Science and Information Technology*, volume 433-440, pages 6725–6730, 2012 [pdf] [link] [bib]
- C1. A. Najafi, <u>A. Siahkoohi</u>, and M. B. Shamsollahi. A content-based digital image watermarking algorithm robust against JPEG compression. In *IEEE International Symposium on Signal Processing and Information Technology*, pages 432–437, 2011 [pdf] [link] [bib]

Theses

T1. <u>A. Siahkoohi</u>. *Deep generative models for solving geophysical inverse problems*. PhD thesis, **Georgia Institute of Technology**, 2022 [pdf] [slides] [link] [bib]

Technical Reports

- R4. L. Baldassari, <u>A. Siahkoohi</u>, J. Garnier, K. Sølna, and M. V. de Hoop. Taming score-based diffusion priors for infinite-dimensional nonlinear inverse problems. Technical Report arXiv:2405.15676, Rice University, 2024

 [pdf] [bib]
- R3. M. Louboutin, <u>A. Siahkoohi</u>, R. Wang, and F. J. Herrmann. Low-memory stochastic backpropagation with multi-channel randomized trace estimation. Technical Report arXiv:2106.06998, Georgia Institute of Technology, 2021 [pdf] [code] [link] [bib]
- R2. <u>A. Siahkoohi</u>, G. Rizzuti, P. A. Witte, and F. J. Herrmann. Faster uncertainty quantification for inverse problems with conditional normalizing flows. Technical Report arXiv:2007.07985, Georgia Institute of Technology, 2020d [pdf] [link] [bib]
- R1. <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Neural network augmented wave-equation simulation. Technical Report arXiv:1910.00925, Georgia Institute of Technology, 2019d [pdf] [code] [link] [bib]

Awards

Future Faculty Fellows Award

June 2024

Rice University, George R. Brown School of Engineering and Computing

Houston, TX, USA

Selected Research Proposal Experience

Scientific ML-supported subsurface characterization in physical function spaces

Awarded, 2024

- ▶ Funding Source: Occidental Petroleum Corporation, PI: Maarten V. de Hoop
- ► Contributions: Developed ideas and contributed to writing for two of the four research thrusts entitled "Score diffusion, nonlinear operators, and uncertainty quantification in function spaces" and "Unsupervised, factorial data decomposition and hidden signals: Reservoir characterization below salt, denoising, and monitoring"

Learning and forecasting complex fault dynamics – Predictability of earthquakes

Not funded, 2024

- ▶ Funding Source: National Science Foundation, PI: Maarten V. de Hoop
- ► Contributions: Developed ideas and contributed to writing for one of the four research thrusts entitled "Structure in data, clustering, lattice theory, and diffusion models"

Exploring the local geometry of deep networks

Awarded, 2023

- ▶ Funding Source: Office of Naval Research (DURIP), PI: Richard G. Baraniuk
- ► Contributions: Developed ideas and wrote research objectives for one of the three research thrusts entitled "The geometry of deep probabilistic models"

A deep-learning framework for stable, interpretable, and uncertainty-quantified hybrid modeling of multi-scale complex systems Not funded, 2023

- ▶ Funding Source: Department of Energy, PI: Pedram Hassanzadeh
- ► Contributions: Coordinated efforts within Richard G. Baraniuk's group (a co-PI) to develop and write research objectives for one of the four research thrusts entitled "Spline operator-based analysis of Deep neural networks"

Topological deep learning, causal inference, and data-driven forecasting for subsurface multiscale multiphysics systems Awarded, 2022

► Funding Source: Department of Energy, PI: Maarten V. de Hoop

► Contributions: Led the effort to write the annual progress report

Mentoring Experience

Jeffrey J. Sam [link] 2024 – 2025

M.Sc. Student, Rice University

Houston, TX, USA

Contributions: Advised on the design and implementation of experiments for a project in preparation for submission

Paul M. Mayer [link] 2022 – 2025

Ph.D. Student, Rice University

Houston, TX, USA

Contributions: Advised on the development of methods and software for two projects and co-authored two papers (Luzi et al., 2024a; Mayer et al., 2024)

Rafael Orozco [link]

Ph.D. Student, Georgia Institute of Technology

Atlanta, GA, USA

Contributions: Advised on the development of methods and software for main Ph.D. thesis and co-authored four papers (Orozco et al., 2021, 2023b,c, 2025)

Mi Zhang [link] 2019 – 2020

Visiting Ph.D. Student, China University of Petroleum-Beijing

Atlanta, GA, USA

Contributions: Advised on the development of methods and software for a project and co-authored a paper (Zhang et al., 2020)

Teaching Experience

Rice University Houston, TX, USA

Department of Computational Applied Mathematics & Operations Research

Fall 2024

Atlanta, GA, USA

► Numerical Analysis
Substitute Instructor (12 lectures)

Fall 2022

► Numerical Analysis I Substitute Instructor (18 lectures)

Georgia Institute of Technology

School of Computational Science and Engineering

► Computational Foundations of Machine Learning Spring 2022

Teaching Assistant

► Imaging with Data-Driven Models Fall 2019

Teaching Assistant

▶ Numerical Analysis I Fall 2018

Teaching Assistant

Sharif University of Technology Tehran, Iran

Department of Electrical Engineering

▶ Digital Signal Processing Spring 2011

Teaching Assistant

► Signals and Systems Spring 2011

Teaching Assistant

► Linear Algebra Spring 2010

Teaching Assistant

► Electrical Engineering: Principles and Laboratory Fall 2009

Teaching Assistant

Talks

Invited Talks T29. IEEE Computer Society, Chapter of San Diego June 2025 Mitigating biases in self-consuming generative models Virtual oral presentation Open Research Institute (ORI) [video] T28. University of Central Florida April 2025 Towards reliable AI: A framework for quantification of AI uncertainty Oral presentation Department of Computer Science T27. Montana State University March 2025 Towards reliable AI: A framework for quantification of AI uncertainty Oral presentation Gianforte School of Computing T26. The University of California, Santa Barbara February 2025 Towards reliable AI: A framework for quantification of AI uncertainty Oral presentation Department of Mechanical Engineering T25. Johns Hopkins University January 2025 Towards reliable AI: A framework for quantification of AI uncertainty Oral presentation Department of Electrical and Computer Engineering T24. ISCL Seminar Series, Pennsylvania State University November 2024 Mitigating biases in self-consuming generative models Virtual oral presentation Interdisciplinary Scientific Computing Laboratory (Dr. Romit Maulik) [video] T23. CNRS, Université Montpellier January 2023 Low-cost uncertainty quantification for large-scale inverse problems Virtual oral presentation RhEoVOLUTION Group (Dr. Andréa Tommasi) T22. Workshop on Subsurface Uncertainty Description and Estimation August 2022 Reliable amortized variational inference with conditional normalizing flows via Oral presentation physics-based latent distribution correction International Meeting for Applied Geoscience & Energy T21. Intelligent illumination of the Earth Workshop June 2021 Fast and reliability-aware seismic imaging with conditional normalizing flows Virtual oral presentation King Abdullah University of Science and Technology T20. Advances in Seismic Imaging and Inversion Mini-symposium October 2020 Unsupervised data-guided uncertainty analysis in imaging and horizon Virtual oral presentation tracking The 3rd Annual Meeting of the SIAM Texas-Louisiana Section **Contributed Talks** T19. Geo-Mathematical Imaging Group Partners Meeting, Rice University November 2024 Improving fairness and mitigating MADness in generative models Oral presentation T18. International Conference on Machine Learning July 2023 Unearthing InSights into Mars: Unsupervised source separation with limited data Poster presentation T17. Symposium on Advances in Approximate Bayesian Inference July 2023 Refining amortized posterior approximations using gradient-based summary Poster presentation statistics T16. Geo-Mathematical Imaging Group Partners Meeting, Rice University May 2023

Oral presentation

Martian time-series unraveled: A multi-scale nested approach with factorial

variational autoencoders T15. Geo-Mathematical Imaging Group Partners Meeting, Rice University May 2023 Unearthing InSights into Mars: Unsupervised source separation with limited data Oral presentation T14. International Meeting for Applied Geoscience & Energy August 2022 Velocity continuation with Fourier neural operators for accelerated uncertainty Oral presentation quantification T13. Chrome Media Team, Google December 2021 Low-bitrate speech coding with Transformers Virtual oral presentation T12. ML4SEISMIC Partners Meeting, Georgia Institute of Technology November 2021 Multifidelity conditional normalizing flows for physics-guided Bayesian Virtual oral presentation inference T11. ML4SEISMIC Partners Meeting, Georgia Institute of Technology November 2021 Uncertainty quantification in imaging and automatic horizon tracking—A Virtual oral presentation Bayesian deep-prior based approach T10. Society of Exploration Geophysicists International Exposition and Annual Meeting September 2021 Learning by example: Fast reliability-aware seismic imaging with Virtual oral presentation normalizing flows [video] T9. Symposium on Advances in Approximate Bayesian Inference January 2021 Preconditioned training of normalizing flows for variational Prerecorded short oral presentation inference in inverse problems [video] T8. European Association of Geoscientists & Engineers Annual Conference & Exhibition December A deep-learning based Bayesian approach to seismic imaging and Virtual oral presentation uncertainty quantification T7. Society of Exploration Geophysicists International Exposition and Annual Meeting October 2020 Uncertainty quantification in imaging and automatic horizon tracking—A Virtual oral presentation Bayesian deep-prior based approach [video] T6. Society of Exploration Geophysicists International Exposition and Annual Meeting October 2020 Weak deep priors for seismic imaging Virtual oral presentation [video] T5. Society of Exploration Geophysicists Student Chapter, Georgia Tech February 2020 A deep-learning based Bayesian approach to seismic imaging and uncertainty Oral presentation quantification T4. HotCSE Seminar, CSE Department, Georgia Institute of Technology November 2019 Learned imaging with constraints and uncertainty quantification Oral presentation T3. Society of Exploration Geophysicists International Exposition & Annual Meeting September 2019 Deep-learning based ocean bottom seismic wavefield recovery Oral presentation T2. Society of Exploration Geophysicists International Exposition & Annual Meeting September 2019 Surface-related multiple elimination with deep learning Oral presentation

Professional Service

examples

October 2018

Poster presentation

T1. Society of Exploration Geophysicists International Exposition & Annual Meeting

Deep convolutional neural networks in prestack seismic—two exploratory

TO.	11			- 1			•
Нo	αn	11(าหา	aı	3	ervi	ıce

► Acta Geophysica, Associate Editor	2024 – Pr	esent
Applied Geophysics section • Journal of Mathematics, Guest Editor Special issue on Applied Mathematics in Inverse Problems and Uncertainty Quantification	2023 – n	- 2024
Conference Organization		
▶ International Meeting for Applied Geoscience & Energy, Session Chair		2022
Technical Program Committee Member and Reviewer		
► Annual AAAI Conference on Artificial Intelligence	2025 -	- 2026
► Neural Information Processing Systems (NeurIPS)	2023 -	- 2025
► Frontiers in Probabilistic Inference: Sampling Meets Learning (ICLR workshop)		2025
► International Conference on Machine Learning (ICML)	2024 -	- 2025
► Artificial Intelligence and Statistics Conference (AISTATS)	2024 -	- 2025
► International Conference on Learning Representations (ICLR)	2024 -	- 2025
► Advances in Approximate Bayesian Inference (AABI)	2023 -	- 2024
► Structured Probabilistic Inference & Generative Modeling (ICML workshop)	2023 -	- 2024
► International Speech Communication Association (Interspeech)		2023
▶ Deep Generative Models for Health (NeurIPS workshop)		2023
► International Meeting for Applied Geoscience & Energy		2023
Journal Reviewer		
► Transactions on Machine Learning Research		

- ▶ IEEE Transactions on Computational Imaging
- ▶ IEEE Transactions on Neural Networks and Learning Systems
- ► IEEE Geoscience and Remote Sensing Letters
- ▶ IEEE Transactions on Geoscience and Remote Sensing
- ▶ Notices of the American Mathematical Society (AMS)
- ► Remote Sensing
- ▶ Journal of Geophysical Research Solid Earth
- ► Geophysical Prospecting
- ▶ Geophysics
- ▶ Geosciences
- ► Entropy

Industry Research Experience

Google Research Intern (cf. A. Siahkoohi et al. (2022b))

August 2021 – December 2021 San Francisco, CA, USA

Chrome Media Team

Selected Media Coverage

Future Faculty Fellow Ali Siahkoohi joins University of Central Florida as assistant professor June 2025 Rice University Engineering News [link]

AI's Mad Loops Rice Magazine February 2025

[link] AI Appears to Be Slowly Killing Itself August 2024 **Futurism** [link] When A.I.'s Output Is a Threat to A.I. Itself August 2024 The New York Times [link] Breaking MAD: Generative AI could break the internet July 2024 Rice News, Rice University [link] 'Cesspool of AI crap' or smash hit? LinkedIn's AI-powered collaborative articles offer April 2024 a sobering peek at the future of content Fortune [link] AI's 'mad cow disease' problem tramples into earnings season April 2024 Yahoo!finance [link] 'Mad' AI risks destroying the Information Age February 2024 The Telegraph [link] When AI Is Trained on AI-Generated Data, Strange Things Start to Happen August 2023 **Futurism** [link] Episode 194: Improving integration in machine learning workflows July 2023 Seismic Soundoff Podcast, Society of Exploration Geophysicists Training AI With Outputs of Generative AI Is Mad July 2023 **CDOtrends** [link] Als trained on AI-generated images produce glitches and blurs July 2023 **NewScientist** [link] Scientists make AI go crazy by feeding it AI-generated content July 2023 TweakTown [link] AI Loses Its Mind After Being Trained on AI-Generated Data July 2023 **Futurism** [link] Generative AI Goes 'MAD' When Trained on AI-Created Data Over Five Times July 2023 Tom's Hardware [link] Group Brings Seismic Imaging to Climate-Change Conversations and Beyond August 2022 College of Computing News, Georgia Institute of Technology [link]