Fuzzy 数 的 排 序

李 茂

(基础科学部)

摘要 至今已有六种n个Fuzzy数的排序方法,但是都存在着某种缺陷。本文定义一种新的序值并用以确定n个Fuzzy数的顺序,从而弥补了上述各方法的不足。而且,本文还研究了更一般的情况。这为Fuzzy数在Fuzzy决策及Fuz-zy专家系统中的应用提供了新的有效方法。

关键词 Fuzzy数,最大集,最小集,左序值,右序值,全序值,全序集

一、引言

自1976年Jain以来,许多人讨论了Fuzzy数(简记F数)的排序问题,先后给出六种不同的方法。但是,这些方法或缺少简便的计算公式,或有自身逻辑不相容之处,或导致反直观的结果,或与Fuzzy集的有关理论相违背。鉴于F数在决策科学、专家系统及控制论中的重要作用,本文在上述各方法的基础上,从应用的角度进一步探讨F数的排序问题。

二、预备知识

定义1 实 轴 E_1 上 的正则凸Fuzzy集叫做F数,记作 n_i ,其隶属函数 为 f_i (x), $\Pi f(a_1) = 1$ 。此时,称 a_i 为 F 数 n_i 的主值。

 E_1 上全体F数的集合记作 $N(E_1)$ 。

由于在应用中遇到的F数通常具有三角形、梯形、正态曲线等比较规则的 隶属函数,所以本文前四节中仅以三角形隶属函数的F数为研究对象,然后再将有关结果加以推广。

定义2 设 $N = \{n_i \mid n_i \in N \ (E_1), i=1,2,...,n\}, S = \bigcup_{i=1}^{n} \operatorname{Supp}_{n_i}$ 是 E_1 上的有界集。若Fuzzy集M的隶属函数 $f_{\mathbf{M}}(x)$ 定义为

$$f_{M}(x) = \begin{bmatrix} \frac{x - x_{\min}}{x_{\max} - x_{\min}} \end{bmatrix}^{1}, \quad x_{\min} \leq x \leq x_{\max}, \\ 0, \qquad \qquad \vdots \qquad \qquad \vdots$$

收稿日期: 1987年12月16日

则称M为N的最大集,若Fuzzy集m的隶属函数 f_m (x) 定义为

$$f_{m}(x) = \begin{bmatrix} \frac{x - x_{max}}{x_{min} - x_{max}} \end{bmatrix}^{x}, \quad x_{min} \leq x \leq x_{max}, \\ 0, \quad \text{if } E,$$

则称m为N的最小集,其中 $x_{min} = \triangle S$, $x_{max} = \bigvee S$,k为某个正参数,当 升偶 次 方时 仅取算术根, $\bigvee = sup$, $\triangle = inf$.

当k=1时, $f_M(x)$ 及 $f_m(x)$ 如图 1 所示。

命题 1 对任意有限集 N ⊂ N (E₁),有

- $1)\int_{\Pi}(x)$, $\int_{\mathbb{R}}(x)$ 是 E_1 上的连续函数;
- 2) f_M(x) 是单调增加的, f_m(x) 是单调减少的 证 显然。

二、F数的序值

定义3 设 $n_i \in N(E_i)$, n_i 的左序值 $V_i(i, \lambda)$ 定义为

 $V_{\perp}(i,\lambda) = (1-\lambda)[1-V(f_{m}(x)\wedge f_{\perp}(x)] + \lambda[1-f_{m}(n_{i})] : \underset{\sim}{n_{i}}$ 的右 序值 $V_{\perp}(i,\lambda)$ 定义为

 $V_{r}(i, \lambda) = (1-\lambda)(\forall (f_{H}(x) \land f_{\perp}(x))) + \lambda f_{H}(n_{i}),$ 其中, $\lambda \in \{0, 1\}, i=1, 2, \dots, n.$

 λ 反映了表达式中前后两部分在确定左、右序值中的重要程度,在某一过程中通常选取某个确定值,所以,下文一般省略 λ 。当 λ =0时,是〔3〕中所讨论的情况。当 λ =1时,只按主值讨论,与分明实数情况相同。

命题2 对任意 $n_i \in N$, 有 $0 \le V_+(i) \le 1$, $0 \le V_+(i) \le 1$.

证『只证第一式』

由定义1,2及命题1,有

$$f_{m}(x) \wedge f_{1}(x) = \begin{vmatrix} f_{i}(x), & a_{i} \leq x \leq b_{i}, \\ f_{m}(x), & b_{i} \leq x \leq c_{i}, \\ f_{1}(x), & c_{1} \leq x \leq d_{i}, \\ 0, & \# & \Xi, \end{vmatrix}$$

其中, a_i , b_i , c_i , d_i 如图 2 所示,且 a_i < b_i < n_i < c_i < d_i 。所以 \bigvee 〔 $f_{in}(x) \land f_i(x)$ 〕 = f_i (b_i)

又
$$0 < f_i(b_i) < 1$$
, $0 < f_m(n_i) < 1$, 故
$$V_1(i) = (1-\lambda)(1-f_i(b_i)) + \lambda (1-f_m(n_i)) \ge 0$$
,
$$V_1(i) = (1-\lambda)(1-f_i(b_i)) + \lambda (1-f_m(n_i))$$

$$\le (1-\lambda) + \lambda = 1$$

因此, $0 \leq V_i$ (i) ≤ 1 .

定义4 设有限集 $N \subset N$ (E₁), $n_i \in N$. n_i 的全序值V. (i, μ , λ) 定义为 V_i (i, μ , λ) = (1- μ) V_i (i, λ) $+\mu V_i$ (i, λ)

其中 $\mu \in (0, 1)$, $i = 1, 2, \dots, n$.

由于在某过程中通常取固定的 μ , λ , 故下文简记为 V_{ι} (i)。

命题3 对有限集N $\subset N$ (E_1), $n_i \in N$, 有 $0 \le V_i$ (i) ≤ 1 .

证 与命题2类似。

3k=1, $\lambda=\frac{1}{2}$, 时, $n_1<1$, 的四种情况如图 3 所示。此时, 对 $n_1<1$, $n_2<1$

也有完全类似的四种情况,图示略。

命**题** 4 若对任意 $\lambda \in [0, 1]$ 均 有 $n_i <_1 n_j$,不可能有 $n_i < n_i \perp b_j < b_i$, 符号意义见图 2。

证 用反证法。

假定 $n_i < n_i \perp b_i < b_i$ 对任 $\lambda \in [0, 1]$ 成立,由 $f_m(x)$ 的单减性有 $f_m(n_i) > f_m(n_i)$ 且 $f_m(b_i) > f_m(b_i)$

 $1 - f_{\rm m} (n_{\rm i}) < 1 - f_{\rm m} (n_{\rm i})$

 $\mathcal{B} \qquad 1 - \vee (f_{m}(x) \wedge f_{i}(x)) < 1 - \vee (f_{m}(x) \wedge f_{i}(x)).$ $(1 - f_{m}(n_{i})) - (1 - f_{m}(n_{i})) = \xi_{1},$ $(1 - \vee (f_{m}(x) \wedge f_{i}(x)) - (1 - \vee (f_{m}(x) \wedge f_{i}(x))) = \xi_{2},$

显然 $\xi_1 > 0$, $\xi_2 > 0$ 。取 λ_0 ,使 $0 < \lambda_0 < \frac{\xi_2}{\xi_1 + \xi_2} < 1$,则有

$$V_{i}(i) - V_{i}(j) = (1 - \lambda_{0})(1 - \forall (f_{m}(x) \land f_{i}(x)) + \lambda_{0}(1 - f_{m}(n_{i})) - (1 - \lambda_{0})(1 - \forall (f_{m}(x) \land f_{i}(x)) - \lambda_{0}(1 - f_{m}(n_{i})) = (1 - \lambda_{0})\{(1 - \forall (f_{m}(x) \land f_{i}(x))\} - (1 - \forall (f_{m}(x) \land f_{i}(x)) + (1 - \forall (f_{m}(x) \land f_{i}(x)) + (1 - f_{m}(n_{i})) - (1 - f_{m}(n_{i}))\}$$

$$= (1 - \lambda_0) \xi_2 + \lambda_0 (-\xi_1)$$

$$> (1 - \frac{\xi_2}{\xi_1 + \xi_2}) \xi_2 - \frac{\xi_1 \xi_2}{\xi_1 + \xi_2}$$

$$= 0.$$

故 V_{i} (i) > V_{i} (j) ,即 n_{J} <i n_{i} 。这与已知矛盾,因此命题 4 得证。同理可得命题 5 。

命题5 若对任意 $\lambda \in [0, 1]$ 均有 $n_1 < n_1$,则不可能有 $n_1 < n_1$ 且 $b_1 < b_1$,符 号的意义同上。

上述二命题说明, 若对任意的 λ 有 $n_i < (n_i < (n_i)$),则图 3 中的情况(4)(对应 $n_i < (n_i)$ 的相应情况)不可能存在。

定义6 设 n_i , $n_i \in \mathbb{N} \subset \mathbb{N}$ (E_i), \mathbb{N} 为有限集,又 $\lambda \in \{0, 1\}$ 。 岩 $V_i(i)$ = $V_i(j)$, 则称 n_i 与 n_i 左相等,记作 $n_i \approx_i n_i$: 岩 $V_i(i) = V_i(j)$,则称 n_i 与 n_j 右相等,记作 $n_i \approx_i n_j$: 者 $V_i(i) = V_i(j)$,则称 n_i 与 n_j 全相等,记作 $n_i \approx_i n_j$ 。

命题6 若对某个 $\lambda \in [0, 1]$ 有n, < n, 1 且n, < n, n 则对该 λ 及任意 $\mu \in (0, 1)$ 有n, < n, n 反之亦对。

证 设对某 λ 有n, $<_1$ n;且n, $<_r$ n, 则有 V_1 (i) $< V_1$ (j) 且 V_r (i) $< V_r$ (j).

所以,对任意μ∈(0,1)有

$$V_{i}(j) - V_{i}(i) = (1 - \mu) V_{1}(j) + \mu V_{i}(j) - (1 - \mu) V_{1}(i) + \mu V_{i}(i)$$

$$= (1 - \mu) (V_{1}(j) - V_{1}(i)) + \mu (V_{i}(j) - V_{i}(i)) > 0$$

即 n 1 < n 1。注意上述过程有可逆性,故命题得证。

, 命题7 设有限集N⊂N(E₁), n₁, n₃∈N。下面三种说法等价:

- (1) 对某 $\lambda \in [0, 1]$ $n_i \approx_i n_i \leq_i n_i$;
- (2) 对任意 $\mu \in (0, 1)$ 有 $n_i \approx n_f$:
- (3) n₁= n₁, "=" 表示Fuzzy集相等。

证 $(1) \Rightarrow (2)$ 因为对某 $\lambda 有 n_i \approx 1 n_j \perp n_i \approx 1 n_i$. 则有 $V_1(i)$

 $=V_1(j)$ 且 $V_i(i)=V_i(j)$, 对任意 μ 有

$$V_{t}(i) = (1 - \mu) V_{1}(i) + \mu V_{t}(i)$$

$$= (1 - \mu) V_{1}(j) + \mu V_{t}(j)$$

$$= V_{t}(j)_{a}$$

 $(2) \Rightarrow (1)$

由上述过程的可逆性得证。

 $(1) \Rightarrow (3)$

由(1)有对某 λ , $V_{\perp}(i) = V_{\perp}(j)$ 且 $V_{\perp}(i) = V_{\perp}(j)$,

$$\mathbb{P} V_1(i) - V_1(j) = (1 - \lambda) \left(1 - \bigvee (f_{m}(x) \land f_{\perp}(x)) + \lambda \left(1 - f_{m}(n_1) \right) - (1 - \lambda) (1 - \bigvee (f_{m}(x) \land f_{\perp}(x)) + \lambda \left(1 - f_{m}(n_1) \right) \right)$$

$$= (1 - \lambda) \left[\bigvee \left(f_{m} \left(x \right) \wedge f_{i} \left(x \right) \right) - \bigvee \left(f_{m} \left(x \right) \wedge f_{i} \left(x \right) \right) \right.$$

$$+ \lambda \left(f_{m} \left(n_{i} \right) - f_{m} \left(n_{i} \right) \right)$$

$$= (1 - \lambda) \left(f_{m} \left(b_{i} \right) - f_{m} \left(b_{i} \right) \right) + \lambda \left(f_{m} \left(n_{i} \right) - f_{m} \left(n_{i} \right) \right),$$

即 $f_m : b_1$) $-f_m (b_1) = 0$, $f_m (n_1) - f_m (n_2) = 0$ 。又 $f_m (x)$ 是单调减函数,必有 $b_1 = b_1$, $n_1 = n_2$, 所以,点 $(b_1, f_m (b_2))$ 与点 $(b_1, f_m (b_2))$ 重合, $(n_1, 1)$ 与 $(n_1, 1)$ 重合。同法可推得 $(c_1', f_m (c_2'))$ 与 $(c_1', f_m (c_2'))$ 重合,见图'4。

又 $f_i(x)$ 与 $f_i(x)$ 均为三角形隶属函数,故

$$f_i(x) = f_i(x)$$
 , $x \in E_1$ (3) \Rightarrow (1)

显然。

命题7是本文理论的重要完善,使"≈"与 "="在一定条件下统一起来,弥补了〔3〕中的 不完善之处,即〔3〕中认为图5所示的两F数是相 等的。

图

三、有关性质

5

命题8 对任有限集 $N \subset N$ (E_1), $n_1 \in \mathbb{N}$,

- (1) $S = \bigcup_{i=1}^{n} \operatorname{supp} n_{i}$ 是 E_{i} 上的有界集:
- (2) N的最大集M与最小集m对任给正数 k 是唯一的。

证(1)因为n,是三角形隶属函数的F数,则隶属函数f,(x)为

$$f_{i}(x) = \begin{pmatrix} \frac{x-a_{i}}{n_{i}-a_{i}}, & a_{i} \leq x \leq n_{i}, \\ \frac{x-d_{i}}{n_{i}-d_{i}}, & n_{i} \leq x \leq d_{i}, \\ 0, & \vdots, & \vdots \end{pmatrix}$$

 $\leq \bigcup_{i=1}^{n} \sup_{n \leq X_{\max}}$,故 $S = \bigcup_{i=1}^{n} \sup_{n \in \mathbb{Z}} \sup_{n \in \mathbb{Z}} \mathbb{Z}_{n}$ \mathbb{Z}_{n} \mathbb{Z}_{n}

对于给定的正数k, $f_M(x)$ 及 $f_m(x)$ 是唯一确定的。所以, 集 合 M 与m均 为 唯 一 的。

命题9 序值、

证 由定义 1, n,有唯一的主值n, 又由 $f_{\rm M}$ (x) 及 $f_{\rm m}$ (x)的特性, \forall ($f_{\rm m}$ (x) $\Lambda f_{\perp}(x)$) 及 $f_{m}(n_{\perp})$ 均唯一。所以,对于指定的 λ ,左序值可由定义 3 唯一确 定.

同理可证得右序值的唯一性。

根据左、右序值的唯一性、对指定的四面电定义;证得全序值的唯一性、

命题10 设 $N = \{n_i \mid n_i \in N \ (E_1), i=1, 2, \dots, n\}, 用 "\leq " 表示 "<"$ 或 "≈",则(N,≤)是全序集。

证 对于指定的 λ及4, 山定义 3 - 6 有

- $(1) n_i \le n_i$, $i = 1, 2, ..., n_i$
- (2) $\widetilde{\Xi}_{n_i} \leq n_i \underline{\Pi}_{n_i} \leq n_i$, 则 $\underline{n}_i \approx n_i$;
- (3) $\overline{\overline{x}}_{n,i} \leq n$,且 $\overline{n}_{i,j} \leq n_{k}$,则 $\overline{n}_{i,i} \leq n_{k}$;

即 (N, \leq) 构成偏序集。又对 n_i , $n_j \in N$ 有或 $V_i(i) \leq V_i(j)$ 或 $V_i(j) \leq V_i(i)$, 訓

(4) 或 $n_i \leq n_f$, 或 $n_i \leq n_i$ 。

因此,对任意指定的 A, µ及事先选取的 k, (N, ≤) 是全序集。

命题11 有限集N $\subset N$ (E_1) 中必有最大元素 (关于序≤)。 此命题是命题10的直接推论。

四、进一步的探讨

4.1 非正则的情况

设 $n_i \in N(E_i)$, 隶属函数为

$$w_{i} \frac{x-a_{i}}{n_{i}-a_{i}} , \quad a_{1} \leq x \leq n_{1} ,$$

$$f_{1}(x) = w_{i} \frac{x-d_{1}}{n_{1}-d_{1}} , \quad n_{i} \leq x \leq d_{1} ,$$

$$0 \qquad \qquad \exists \xi \in \mathcal{L} ,$$

其中 $w_i \in \{0, 1\}$, i=1, 2, ..., n, 见图 6。这是比较一般的情况,有如下最 大集和最小集定义:

定义7 设 n_i 具有图 6 所示的隶属函数, $i=1,2,\dots,n$ 。 { n_i }的最大集和最小 集的隶属函数可定义如下.

$$f_{M}(x) = \begin{bmatrix} x - x_{\min} \\ x_{\max} - x_{\min} \end{bmatrix}^{k}, x_{\min} \le x \le x_{\max} \\ 0 \qquad \qquad \downarrow \qquad$$

其中 $\omega = \bigwedge^n \omega_i$, k为正参数, 开偶次方时取算术根。在这种情况下, 仍可 一至三 的方法进行排序, 有关命题仍成立

4.2 有限支集上的无穷多个下数

命题12 设 $N = \{ n_i \mid n_i \in N \ (E_1) , i \in I \}$ 且 $S = U \operatorname{Supp} n_1$ 是 E_1 上的有界集 合.则

- (1) $\nabla n_i \in \mathbb{N}$ 及指定的 λ 和 μ . 有唯一的全序值 V_i (i): (2) 对于任意指定的 k, λ 和 μ , (\mathbb{N} , \leq) 是全序集, " \leq "的意义同命 顯10.

证 类似于命题9,10的证明,略,

(3) $f_{\rm M}(x)$ 与 $f_{\rm m}(x)$ 中k的意义

当k=1时, $f_M(x)$ 与 $f_m(x)$ 均为线性函数。在这种情况下的排序反映出决策者 的折衷的倾向,这时的决策属于折衷类型的。

类似地, 当 0 < k < 1 时, 属于保守型的决策; 当 k > 1 时, 属于冒险型决策。当 k = 1, k=1/2, k=2 时 $f_M(x)$ 的图形如图 7 所示。

由上述分析可知, 在实际应用中可根据需要选 取不同的 k 值。

五推广

5.1 对**F数**的推广

(1) 具有梯形隶属函数的F数

8 7 定义8 若 $n_i \in N$ (E_1), $i \in I$, 隶属函数为

$$f_{1}(x) = \begin{cases} w_{1} \frac{x-a_{1}}{n_{1}-a_{1}}, & a_{1} \leq x \leq b_{1}, \\ w_{1} & b_{1} \leq x \leq c_{1}, \\ w_{1} \frac{x-d_{1}}{n_{1}-d_{1}}, & c_{1} \leq x \leq d_{1}, \\ 0, & \text{if } C, \end{cases}$$

则称 $-\frac{b_i+c_i}{2}$ 为 n_i 的主值,记为 n_i , ω_i \in (0, 1)。如图8所示。

此时,可按定义7得到最大集M与最小集m,进而可定义左序值、右序值及全序值,从而进行排序。

(2) L-R型F数

L-R型 F 数的定义见文〔2〕第53~54页。 本文只讨论参照函数L (x), R (x) 在[0, ∞) 内单调减少且连续的情况。即,L-R型 F 数n_i的隶属函数f_i (x) 为

$$f_{i}(x) = \begin{bmatrix} L\left(\frac{n_{i}-x}{\alpha_{1}}\right), & x \leq n_{i}, & \alpha_{i} > 0 \\ R\left(\frac{x-n_{i}}{\beta_{i}}\right), & x \geq n_{i}, & \beta_{i} > 0 \end{bmatrix},$$

其中 n_1 为 n_2 的主值, α_1 与 β_1 为常数,详见文〔2〕

命题13 设L-R型F数 n_i , $N=\{n_i\mid i=1,2,\cdots,n\}$, $S=\bigcup_{i=1}^n\sup n_i$ C E_1 是有界的,则

- (1) 对给定的 k, $\lambda 及 \mu$, 全序值 $V_*(i)$ 唯一确定的;
- (2) (N, ≤) 是全序集, ≤同命题10。

证 与命题10类似,略。

命题13中S有界的条件可改为任意S, 即S无界, $S=(-\infty, +\infty)$ 或 $S=(-\infty, +\infty)$ 或 $S=(a, +\infty)$ 。下面只讨论 $S=(-\infty, +\infty)$ 的情况,后两种情况只是它的特例。

为了定义最大集M与最小集m, 取 α , 使

$$\alpha = \bigvee_{i=1}^{n} \left[\left(\lim_{x \to +\infty} f_{i}(x) \right) \vee \left(\lim_{x \to -\infty} f_{i}(x) \right) \right] + \varepsilon,$$

其中 $\epsilon \geq 0$ 。作S的 α 水平截集 S_{α} ,则 S_{α} 必有界集合。令 $x_{\min} = \bigwedge S_{\alpha}$, $x_{\min} = \bigvee S_{\alpha}$,则可定义 f_{M} (x)及f(x)。

$$f_{M}(x) = \begin{cases} (1-\alpha) \left[\frac{x-x_{\min}}{x_{\max}-x_{\min}} \right]^{k} + \alpha & x_{\min} \leq x \leq x_{\max}, \\ \alpha & & \text{if } E \end{cases},$$

$$f_{M}(x) = \begin{cases} (1-\alpha) \left[\frac{x-x_{\max}}{x_{\min}-x_{\max}} \right]^{k} + \alpha & x_{\min} \leq x \leq x_{\max}, \\ \alpha & & \text{if } E \end{cases},$$

$$f_{M}(x) = \begin{cases} (1-\alpha) \left[\frac{x-x_{\max}}{x_{\min}-x_{\max}} \right]^{k} + \alpha & x_{\min} \leq x \leq x_{\max}, \\ x_{\min} \leq x \leq x_{\max}, \\ x_{\min} \leq x \leq x_{\max}, \end{cases}$$

此时的M与m,可称为N的广义最大集与广义最小集。

命题14 对于无限支集S上的n个L—R型F数 n_i ,可用广义最大集M及广义最小集m进行排序,并且

- (1) 在上述意义下有唯一的左序值, 右序值及全序值;
- (2) ({ n₁}, ≤) 构成全序集。

证 只证明左序值 V_1 (i) 的唯一性。 $\forall n_1$,有

$$f_{i}(x) = \begin{cases} L\left(\frac{n_{i}-x}{\alpha_{i}}\right) &, & x \leq n_{i}, & \alpha_{i} > 0 \\ R\left(\frac{x-n_{i}}{\beta_{i}}\right) &, & x \geq n_{i}, & \beta_{i} > 0 \end{cases},$$

各符号意义如上所述。

又, $f_{m}(x)$ 为单调减函数,设 $f_{m}(x) \cap f_{i}(x) = \{ (\xi_{1}, f_{m}(\xi_{1})), (\xi_{2}, f_{m}(\xi_{2})) \}$. 由 $f_{i}(x)$ 的性质有

$$f_{m}(x) \wedge f_{i}(x) = \begin{cases} L\left(\frac{n_{i}-x}{\alpha_{i}}\right), & x_{\min} \leq x \leq \xi_{i}, \\ f_{m}(x) & \xi_{i} \leq x \leq \xi_{2}, \\ R\left(\frac{x-n_{i}}{\beta_{i}}\right), & \xi_{2} \leq x \leq x_{\max}, \\ \alpha, & \sharp \ \ddot{\mathbf{z}} \end{cases}$$

且 $\xi_1 < n_i < \xi_2$ 。 再根 α 的取值, 可选取较小的 ϵ 使 $\alpha < f_m(\xi_1)$,则 \vee ($f_m(x) \land f_i(x)$) = $f_m(\xi_1)$ 。又 $f_m(n_i)$ 也是唯一的,则在给定的k, λ 情况下, $V_1(i)$ 是 唯一的。

5.2 对最大集M与最小集加的推广

下面给出最大集M与最小集m的一般定义。

定义9 设函数 $f_{u}: E_1 \rightarrow [0, 1]$, 且满足

- (1) f_M单调增加;
- (2) f_M连续;
- (3) $f_M(-\infty) = 0$, $f_M(+\infty) = 1$.

则由 $f_{\rm m}$ 作隶属函数的Fuzzy集M就叫 $E_{\rm I}$ 上的最大集: 岩 $f_{\rm m}$ (x)= $f_{\rm M}$ ($\eta-x$),则由 $f_{\rm m}$ 作隶属函数的Fuzzy集m就叫 $E_{\rm I}$ 上的最小集,其中 η 为常数,可据需要选取。

关于用定义9的F数排序问题, 本文暂不讨论。

5.3 关于F数的相等

在应用中普遍感到,用Fuzzy集的相等来定义F数的相等有些过于严格,但 放宽条件后又不应出现逻辑上的不相容性。本文提出的等序值F数只是数相等的 一种 定义方式,还有等水平,等主值等定义方式。这些定义的合理性已得到了实践的验证,但所产生的一系列理论问题尚待研究。

参考文献

- [1] R.Jain, A procedure for multi-aspect decision making using fuzzy sets, Internat. J. Systems Sci. 8 (1977)
- [2] D. Dubois and H. Prade, Fuzzy sets and sysems, theory and applications. Academic Press, New York, 1980
- [3] Shan—Huo Chen Ranking fuzzy numbers with maximizing set and minimizing set, Fuzzy Sets and Systems, 17 (1985)

Ranking of Fuzzy Numders

Li Mao

Abstract

Up to now, there are six methods for ranking n fuzzy numbers in order, but these methods contain certain defects. In this paper, a new ordering value is defined and is used to determine the order of n fuzzy numbers, hence it is remedies the defects existing in above mentioned methods. And also in this paper, more genral cases are discussed. This is a new effective method for application of fuzzy numbers to fuzzy decision and fuzzy expert system.

Key words Fuzzy number, Maximizing set, Minimizing set, Left ordering value, Right ordering value, Total ordering value, Total ordering set