GEOG 4/590: Geospatial Data Science Lecture 2: Vector data analysis

Email: <u>jryan4@uoregon.edu</u>
Office: 163A Condon Hall

Office hours: Monday 15:00-16:00 and Tuesday 14:00-15:00

Vector data analysis

The vector data model represents space as a series of discrete entities such as such as borders, buildings, streets, and roads. There are three different types of vector data: points, lines and polygons. Online mapping applications, such as **Google Maps** and **OpenStreetMap**, use this format to display data.

Vector data analysis

The vector data model represents space as a series of discrete entities such as such as borders, buildings, streets, and roads. There are three different types of vector data: points, lines and polygons. Online mapping applications, such as **Google Maps** and **OpenStreetMap**, use this format to display data.

The Python library GeoPandas provides somes great tools for working with vector data. As the name suggests, GeoPandas extends the popular data science library Pandas by adding support for geospatial data. The core data structure in GeoPandas is the GeoDataFrame. The key difference between the two is that a GeoDataFrame can store geometry data and perform spatial operations.

Vector data analysis

The geometry column can contain any geometry type (e.g. points, lines, polygons) or even a mixture.

Reading files

Assuming we have a file containing both data and geometry (e.g. GeoPackage, GeoJSON, Shapefile), we can read it using read_file, which automatically detects the filetype and creates a GeoDataFrame. In the this demo, we will be working with three shapefiles containing 1) cities and towns (as points), 2) urban growth boundaries (as polygons), and 3) counties (as polygons) in Oregon.

Reading files

Assuming we have a file containing both data and geometry (e.g. GeoPackage, GeoJSON, Shapefile), we can read it using read_file, which automatically detects the filetype and creates a GeoDataFrame. In the this demo, we will be working with three shapefiles containing 1) cities and towns (as points), 2) urban growth boundaries (as polygons), and 3) counties (as polygons) in Oregon.

```
import geopandas as gpd

cities = gpd.read_file('data/oregon_cities.shp')
cities.head()
```

Reading files

Assuming we have a file containing both data and geometry (e.g. GeoPackage, GeoJSON, Shapefile), we can read it using read_file, which automatically detects the filetype and creates a GeoDataFrame. In the this demo, we will be working with three shapefiles containing 1) cities and towns (as points), 2) urban growth boundaries (as polygons), and 3) counties (as polygons) in Oregon.

```
import geopandas as gpd

cities = gpd.read_file('data/oregon_cities.shp')
cities.head()
```

	name	lat	lon	geometry
0	Adair Village city	44.67	-123.22	POINT (-123.22000 44.67000)
1	Adams	45.77	-118.56	POINT (-118.56000 45.77000)
2	Adrian	43.74	-117.07	POINT (-117.07000 43.74000)
3	Albany	44.63	-123.10	POINT (-123.10000 44.63000)
4	Aloha	45.49	-122.87	POINT (-122.87000 45.49000)

DataFrame properties

We can analyze our GeoDataFrame using standard Pandas functions.

```
# Data types of each column
cities.dtypes
```

```
name object lat float64 lon float64 geometry geometry dtype: object
```

	name	lat	lon	geometry
0	Adair Village city	44.67	-123.22	POINT (-123.22000 44.67000)
1	Adams	45.77	-118.56	POINT (-118.56000 45.77000)
2	Adrian	43.74	-117.07	POINT (-117.07000 43.74000)
3	Albany	44.63	-123.10	POINT (-123.10000 44.63000)
4	Aloha	45.49	-122.87	POINT (-122.87000 45.49000)

DataFrame properties

We can analyze our GeoDataFrame using standard Pandas functions.

```
# Number of rows and columns
cities.shape
```

(377, 4)

	name	lat	lon	geometry
0	Adair Village city	44.67	-123.22	POINT (-123.22000 44.67000)
1	Adams	45.77	-118.56	POINT (-118.56000 45.77000)
2	Adrian	43.74	-117.07	POINT (-117.07000 43.74000)
3	Albany	44.63	-123.10	POINT (-123.10000 44.63000)
4	Aloha	45.49	-122.87	POINT (-122.87000 45.49000)

DataFrame properties

We can analyze our GeoDataFrame using standard Pandas functions.

```
# Name of columns
cities.columns
```

```
Index(['name', 'lat', 'lon', 'geometry'], dtype='object')
```

	name	lat	lon	geometry
0	Adair Village city	44.67	-123.22	POINT (-123.22000 44.67000)
1	Adams	45.77	-118.56	POINT (-118.56000 45.77000)
2	Adrian	43.74	-117.07	POINT (-117.07000 43.74000)
3	Albany	44.63	-123.10	POINT (-123.10000 44.63000)
4	Aloha	45.49	-122.87	POINT (-122.87000 45.49000)

We can select specific columns based on the column values. The basic syntax is dataframe[value], where value can be a single column name, or a list of column names.

```
# List the city names cities['name']
```

```
Adair Village city
                    Adams
                   Adrian
                   Albany
                    Aloha
             Wood Village
372
                 Woodburn
373
                  Yachats
374
                  Yamhill
375
                 Yoncalla
376
Name: name, Length: 377, dtype: object
```

	name	lat	lon	geometry
0	Adair Village city	44.67	-123.22	POINT (-123.22000 44.67000)
1	Adams	45.77	-118.56	POINT (-118.56000 45.77000)
2	Adrian	43.74	-117.07	POINT (-117.07000 43.74000)
3	Albany	44.63	-123.10	POINT (-123.10000 44.63000)
4	Aloha	45.49	-122.87	POINT (-122.87000 45.49000)

We can select specific columns based on the column values. The basic syntax is dataframe[value], where value can be a single column name, or a list of column names.

lon lat # List the latitudes and longitudes **0** 44.67 -123.22 cities[['lat','lon']] 45.77 -118.56 **2** 43.74 -117.07 **3** 44.63 -123.10 **4** 45.49 -122.87 **372** 45.54 -122.42 **373** 45.15 -122.86 **374** 44.31 -124.10 **375** 45.34 -123.19 **376** 43.60 -123.29 377 rows x 2 columns

We can select specific rows using the .iloc method.

```
# Second row
cities.iloc[1]
```

```
name Adams
lat 45.77
lon -118.56
geometry POINT (-118.56 45.77)
Name: 1, dtype: object
```

We can select specific rows using the .iloc method.

```
# Sixth to tenth rows
cities.iloc[5:10]
```

	name	lat	lon	geometry
5	Alpine	44.33	-123.36	POINT (-123.36000 44.33000)
6	Alsea	44.38	-123.60	POINT (-123.60000 44.38000)
7	Altamont	42.20	-121.72	POINT (-121.72000 42.20000)
8	Amity	45.12	-123.20	POINT (-123.20000 45.12000)
9	Annex	44.23	-116.99	POINT (-116.99000 44.23000)

We can sample of our DataFrame based on specific values by producing a **Boolean mask** (i.e. a list of values equal to True or False). To find cities that are East of -117.5 degrees longitude, we could write:

```
mask = cities['lon'] > -117.5
cities[mask]
```

We can sample of our DataFrame based on specific values by producing a **Boolean mask** (i.e. a list of values equal to True or False). To find cities that are East of -117.5 degrees longitude, we could write:

```
mask = cities['lon'] > -117.5
cities[mask]
```

	name	lat	lon	geometry
2	Adrian	43.74	-117.07	POINT (-117.07000 43.74000)
9	Annex	44.23	-116.99	POINT (-116.99000 44.23000)
97	Enterprise	45.43	-117.28	POINT (-117.28000 45.43000)
134	Halfway	44.88	-117.11	POINT (-117.11000 44.88000)
150	Huntington	44.35	-117.27	POINT (-117.27000 44.35000)
164	Jordan Valley	42.98	-117.06	POINT (-117.06000 42.98000)
165	Joseph	45.35	-117.23	POINT (-117.23000 45.35000)
190	Lostine	45.49	-117.43	POINT (-117.43000 45.49000)

It's more concise to just add the Boolean mask between square brackets. Here we find cities that contain a z in their name.

cities[cities['name'].str.contains('z')]

	name	lat	lon	geometry
34	Bonanza	42.20	-121.41	POINT (-121.41000 42.20000)
168	Keizer	45.00	-123.02	POINT (-123.02000 45.00000)
195	Manzanita	45.72	-123.94	POINT (-123.94000 45.72000)
206	Metzger	45.45	-122.76	POINT (-122.76000 45.45000)
302	Siletz	44.72	-123.92	POINT (-123.92000 44.72000)

Or use string matching to find a specific city.

```
cities[cities['name'] == 'Eugene']
```

	name	lat	lon	geometry
100	Eugene	44.06	-123.12	POINT (-123.12000 44.06000)

Pandas provides basic functions to calculate descriptive statistics.

```
# Minimum latitude value cities['lat'].min()
```

42.0

Pandas provides basic functions to calculate descriptive statistics.

```
# Minimum latitude value
cities['lat'].min()

42.0

# Mean longitude value
cities['lon'].mean()
```

Pandas provides basic functions to calculate descriptive statistics.

Sometimes we want to know which row contains the specific value which we can do using idxmax/idxmin.

```
cities['lat'].idxmin()
```

232

Pandas provides basic functions to calculate descriptive statistics.

Sometimes we want to know which row contains the specific value which we can do using idxmax/idxmin.

```
cities['lat'].idxmin()

232

cities.iloc[232]
```

```
name New Pine Creek
lat 42.0
lon -120.3
geometry POINT (-120.3 42)
Name: 232, dtype: object
```

Sorting

We can sort DataFrames using the sort_values function. This function takes two arguments, by and ascending which determine which column and which order we would like to sort by.

```
# Find the ten most northerly cities in Oregon
cities.sort_values(by='lat', ascending=False).head(10)
```

Sorting

We can sort DataFrames using the sort_values function. This function takes two arguments, by and ascending which determine which column and which order we would like to sort by.

```
# Find the ten most northerly cities in Oregon
cities.sort_values(by='lat', ascending=False).head(10)
```

	name	lat	lon	geometry
13	Astoria	46.19	-123.81	POINT (-123.81000 46.19000)
354	Warrenton	46.17	-123.92	POINT (-123.92000 46.17000)
159	Jeffers Gardens	46.15	-123.85	POINT (-123.85000 46.15000)
363	Westport	46.13	-123.37	POINT (-123.37000 46.13000)
60	Clatskanie	46.10	-123.21	POINT (-123.21000 46.10000)
269	Rainier	46.09	-122.95	POINT (-122.95000 46.09000)

The special thing about a GeoDataFrame is that it contains a geometry column. We can therefore apply spatial methods to these data. To demonstrate we will use our Oregon county shapefile.

```
# Read shapefile
counties = gpd.read_file('data/orcntypoly.shp')
```


Projections

GeoDataFrames have their own **CRS** which can be accessed using the **crs** method. The CRS tells GeoPandas where the coordinates of the geometries are located on the Earth's surface.

counties.crs

Projections

counties.crs

GeoDataFrames have their own **CRS** which can be accessed using the **crs** method. The CRS tells GeoPandas where the coordinates of the geometries are located on the Earth's surface.

```
<Compound CRS: EPSG:5498>
Name: NAD83 + NAVD88 height
Axis Info [ellipsoidal|vertical]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
- H[up]: Gravity-related height (metre)
Area of Use:
- name: United States (USA) - CONUS and Alaska - onshore - Alabama; Alaska mainland; Arizona;
- bounds: (-168.26, 24.41, -66.91, 71.4)
Datum: North American Datum 1983
- Ellipsoid: GRS 1980
- Prime Meridian: Greenwich
Sub CRS:

    NAD83

NAVD88 height
```

Projections

We can reproject a our data using the to_crs method.

```
counties_reproject = counties.to_crs('EPSG:32610')
counties reproject crs
<Derived Projected CRS: EPSG:32610>
Name: WGS 84 / UTM zone 10N
Axis Info [cartesian]:
- E[east]: Easting (metre)
- N[north]: Northing (metre)
Area of Use:
- name: Between 126°W and 120°W, northern hemisphere between equator and 84°N, onshore and off
- bounds: (-126.0, 0.0, -120.0, 84.0)
Coordinate Operation:
name: UTM zone 10N
- method: Transverse Mercator
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich
```

Now our data has a **projected CRS**, we can calculate the area of each county with no warnings.

```
counties_reproject['area'] = counties_reproject['geometry'].area
counties_reproject.head()
```

	county	geometry	area
0	Josephine County	POLYGON ((481193.348 4727817.470, 481193.815 4	4.246561e+09
1	Curry County	POLYGON ((433624.799 4737686.263, 433624.695 4	5.162416e+09
2	Jackson County	POLYGON ((558466.270 4760676.349, 558468.456 4	7.249726e+09
3	Coos County	POLYGON ((433624.799 4737686.263, 433230.247 4	4.684074e+09
4	Klamath County	POLYGON ((634510.330 4830646.470, 634516.612 4	1.588783e+10

There are other spatial methods we can apply to polygons such as the length of the outer edge (i.e. perimeter).

counties_reproject['perimeter'] = counties_reproject['geometry'].length
counties_reproject.head()

	county	geometry	area	perimeter
0	Josephine County	POLYGON ((481193.348 4727817.470, 481193.815 4	4.246561e+09	331219.627981
1	Curry County	POLYGON ((433624.799 4737686.263, 433624.695 4	5.162416e+09	438569.090594
2	Jackson County	POLYGON ((558466.270 4760676.349, 558468.456 4	7.249726e+09	378774.110802
3	Coos County	POLYGON ((433624.799 4737686.263, 433230.247 4	4.684074e+09	341177.961347
4	Klamath County	POLYGON ((634510.330 4830646.470, 634516.612 4	1.588783e+10	619485.806580

45.49

Our cities GeoDataFrame also has geometric properties. We can access the latitude and longitude using the x and y methods.

```
cities['geometry'].x
     -123.22
     -118.56
     -117.07
     -123.10
     -122.87
cities['geometry'].y
      44.67
      45.77
      43.74
3
      44.63
```

Measure distance

We can measure the distance between two points, provided they have a projected CRS.

```
cities_reproject = cities.to_crs('EPSG:32610')
```

Measure distance

We can measure the distance between two points, provided they have a projected CRS.

```
cities_reproject = cities.to_crs('EPSG:32610')
```

```
eugene = cities_reproject[cities_reproject['name'] == 'Eugene'].reset_index()
bend = cities_reproject[cities_reproject['name'] == 'Bend'].reset_index()
```

Measure distance

We can measure the distance between two points, provided they have a projected CRS.

```
cities_reproject = cities.to_crs('EPSG:32610')
```

```
eugene = cities_reproject[cities_reproject['name'] == 'Eugene'].reset_index()
bend = cities_reproject[cities_reproject['name'] == 'Bend'].reset_index()
```

```
eugene.distance(bend).values[0] / 1000
```

144.97607871968486

Plot

If our data are in the same projection system, we can plot them together.

```
ax = counties_reproject.plot(figsize=(10, 10), alpha=0.5, edgecolor='k')
cities_reproject.plot(ax=ax, color='black', markersize=5)
```


Spatial joins

One of the most useful things about GeoPandas is that it contains functions to perform **spatial joins** to combine two GeoDataFrames based on the **spatial relationships** between their geometries.

The order of the two GeoDataFrames is quite important here, as well as the how argument. A **left** outer join implies that we are interested in **retaining the geometries** of the GeoDataFrame on the left, i.e. the **point** locations of the cities. We then retain attributes of the **right** GeoDataFrame if they intersect and drop them if they don't.

Spatial joins

The following would provide the county attributes for all our cities based on a spatial intersection.

cities_reproject.sjoin(counties_reproject, how="left").head()

	name	lat	lon	geometry	index_right	county	ar
0	Adair Village city	44.67	-123.22	POINT (482561.392 4946316.184)	12	Benton County	1.755207e+
1	Adams	45.77	-118.56	POINT (845212.127 5078087.252)	33	Umatilla County	8.385719e+
2	Adrian	43.74	-117.07	POINT (977541.425 4860113.062)	10	Malheur County	2.581882e+
3	Albany	44.63	-123.10	POINT (492067.910 4941854.290)	13	Linn County	5.969370e+
4	Aloha	45.49	-122.87	POINT (510158.282 5037393.753)	27	Washington County	1.880526e+

Which county contains the most cities/towns?

We would do this would be to use the groupby function.

```
join = cities_reproject.sjoin(counties_reproject, how="left")
```

Which county contains the most cities/towns?

We would do this would be to use the groupby function.

The first argument groupby accepts is the column we want group our data into (county in our case). Next, it takes a column (or list of columns) to summarize. Finally, this function does nothing until we specify **how** we want to group our data (count).

It's actually nice to **reset the index** after using groupby so that we end up with a DataFrame (rather than a Series).

grouped = join.groupby('county')['name'].count().reset_index()
grouped.nlargest(n=10, columns='name')

23	Marion County	25
33	Washington County	24
2	Clackamas County	23
9	Douglas County	23
21	Linn County	23
29	Umatilla County	19
28	Tillamook County	18
14	Jackson County	17
8	Deschutes County	14
19	Lane County	12

county

Next time: Network data analysis

Email: jryan4@uoregon.edu
Office: 163A Condon Hall

Office hours: Monday 15:00-16:00 and Tuesday 14:00-15:00