SAT-Based Model Checking

Fabio Somenzi

Department of Electrical, Computer, and Energy Engineering University of Colorado at Boulder

SAT-SMT Summer School, 10 July 2014

Outline

- A Short Intro to Model Checking
 - Structures
 - Properties
- SAT Solver Interface
 - To The Solver
 - From The Solver
- Checking Invariants
 - Bounded Model Checking
 - Interpolation
 - Proving Invariants by Induction
 - IC3: Incremental Inductive Verification
- 4 Progress Properties and Branching Time
 - Bounded Model Checking
 - Incremental Inductive Verification (FAIR and k-Liveness)
 - Model Checking CTL

Outline

- A Short Intro to Model Checking
 - Structures
 - Properties
- SAT Solver Interface
 - To The Solver
 - From The Solver
- Checking Invariants
 - Bounded Model Checking
 - Interpolation
 - Proving Invariants by Induction
 - IC3: Incremental Inductive Verification
- 4 Progress Properties and Branching Time
 - Bounded Model Checking
 - Incremental Inductive Verification (FAIR and k-Liveness)
 - Model Checking CTL

Simple Synchronous Arbiter (Verilog)

```
module arbsim (input clock, input [1:2] r, output reg [1:2] g); initial g <= 0; always @ (posedge clock) begin  g[1] <= r[1] \ \& \ (\sim r[2] \mid g[2]); \\ g[2] <= r[2] \ \& \ (\sim r[1] \mid \sim g[2]); \\ end \\ endmodule \ // \ arbsim
```

Mutual Exclusion for the Simple Arbiter

$$I(\overline{g}) = \neg g_1 \wedge \neg g_2$$

$$\exists r_1, r_2 . T(\overline{r}, \overline{g}, \overline{g}') = \neg g_1' \vee \neg g_2'$$

$$P(\overline{g}) = \neg g_1 \vee \neg g_2$$

The Model Checking Question

- Given a structure S and a property φ , is S a model of φ ?
- Written $S \models \varphi$
- More in detail: does φ hold for all computations of S?
 - From all initial states

Finite-State Transition Systems

Symbolic representation of a system:

$$S:(\overline{i}, \overline{x}, I(\overline{x}), T(\overline{i}, \overline{x}, \overline{x}'))$$

- \overline{i} : primary inputs
- \overline{x} : state variables
- \overline{x}' : next state variables
- $I(\overline{x})$: initial states
- $T(\overline{i}, \overline{x}, \overline{x}')$: transition relation

I and T define a finite transition structure (Kripke structure)

- Every valuation of \overline{x} is a state
- $\exists \overline{i} \cdot T(\overline{i}, \overline{x}, \overline{x}') = T(\overline{x}, \overline{x}')$ defines the transitions

Composition

- Complex systems are composed of several modules
- Each module is described as a finite state structure S_i
- The overall Kripke structure is obtained as the product of the structures
 - State explosion!
- The product can be either synchronous or asynchronous (interleaving)

- G p: p is invariably true (always along all paths)
 - p is an atomic proposition
 - G is a temporal operator
- F p: p is inevitably true (sometimes true along all paths)
- p U q: q eventually holds and p holds until then
- $G(p \to X q)$: every p is immediately followed by a q
 - Only allowed if time is discrete
- GF($p \rightarrow q$): if p is persistent, then q is inevitable

- G p: p is invariably true (always along all paths)
 - p is an atomic proposition
 - G is a temporal operator
- F p: p is inevitably true (sometimes true along all paths)
- p U q: q eventually holds and p holds until then
- $G(p \to X q)$: every p is immediately followed by a q
 - Only allowed if time is discrete
- GF($p \rightarrow q$): if p is persistent, then q is inevitable

- G p: p is invariably true (always along all paths)
 - p is an atomic proposition
 - G is a temporal operator
- F p: p is inevitably true (sometimes true along all paths)
- p U q: q eventually holds and p holds until then
- G(p → X q): every p is immediately followed by a q
 Only allowed if time is discrete
- GF($p \rightarrow q$): if p is persistent, then q is inevitable

- G p: p is invariably true (always along all paths)
 - p is an atomic proposition
 - G is a temporal operator
- F p: p is inevitably true (sometimes true along all paths)
- p U q: q eventually holds and p holds until then
- $G(p \rightarrow X q)$: every p is immediately followed by a q
 - Only allowed if time is discrete
- GF($p \rightarrow q$): if p is persistent, then q is inevitable

- G p: p is invariably true (always along all paths)
 - p is an atomic proposition
 - G is a temporal operator
- F p: p is inevitably true (sometimes true along all paths)
- $p \cup q$: q eventually holds and p holds until then
- $G(p \rightarrow X q)$: every p is immediately followed by a q
 - Only allowed if time is discrete
- $GF(p \rightarrow q)$: if p is persistent, then q is inevitable

- Properties are sets of behaviors
- Various specification mechanisms are in use: Temporal logics and automata are popular
- The examples we have seen are formulae of the temporal logic LTL (Linear-Time Logic)
- Syntactic sugar often useful (e.g., PSL, Property Specification Language)

- Properties are sets of behaviors
- Various specification mechanisms are in use: Temporal logics and automata are popular
- The examples we have seen are formulae of the temporal logic LTL (Linear-Time Logic)
- Syntactic sugar often useful (e.g., PSL, Property Specification Language)

- Properties are sets of behaviors
- Various specification mechanisms are in use: Temporal logics and automata are popular
- The examples we have seen are formulae of the temporal logic LTL (Linear-Time Logic)
- Syntactic sugar often useful (e.g., PSL, Property Specification Language)

- Properties are sets of behaviors
- Various specification mechanisms are in use: Temporal logics and automata are popular
- The examples we have seen are formulae of the temporal logic LTL (Linear-Time Logic)
- Syntactic sugar often useful (e.g., PSL, Property Specification Language)

Linear Time

Linear time logics reason about sets of computation paths

Branching Time

Branching time logics reason about computation trees

- Invariance properties say that certain states are unreachable
 - Reachability analysis
- Safety properties say that certain events never happen
 - Generalize invariants and can be reduced to them
- Progress properties are the non-safety properties
 - Cycle detection (for finite state systems)
- Liveness (Alpern and Schneider [1985]) is related to progress, but not the same
- This can be made (a lot) more formal
 - Why is $G(p \to X q)$ a safety property, but $G(p \to F q)$ is not?
 - Borel hierarchy, (Landweber [1969])

- Invariance properties say that certain states are unreachable
 - Reachability analysis
- Safety properties say that certain events never happen
 - Generalize invariants and can be reduced to them
- Progress properties are the non-safety properties
 - Cycle detection (for finite state systems)
- Liveness (Alpern and Schneider [1985]) is related to progress, but not the same
- This can be made (a lot) more formal
 - ullet Why is $\mathsf{G}(p o \mathsf{X}\, q)$ a safety property, but $\mathsf{G}(p o \mathsf{F}\, q)$ is not?
 - Borel hierarchy, (Landweber [1969])

- Invariance properties say that certain states are unreachable
 - Reachability analysis
- Safety properties say that certain events never happen
 - Generalize invariants and can be reduced to them
- Progress properties are the non-safety properties
 - Cycle detection (for finite state systems)
- Liveness (Alpern and Schneider [1985]) is related to progress, but not the same
- This can be made (a lot) more formal
 - Why is $G(p \to X q)$ a safety property, but $G(p \to F q)$ is not?
 - Borel hierarchy, (Landweber [1969])

- Invariance properties say that certain states are unreachable
 - Reachability analysis
- Safety properties say that certain events never happen
 - Generalize invariants and can be reduced to them
- Progress properties are the non-safety properties
 - Cycle detection (for finite state systems)
- Liveness (Alpern and Schneider [1985]) is related to progress, but not the same
- This can be made (a lot) more formal
 - ullet Why is $\mathsf{G}(p o \mathsf{X}\, q)$ a safety property, but $\mathsf{G}(p o \mathsf{F}\, q)$ is not?
 - Borel hierarchy, (Landweber [1969])

- Invariance properties say that certain states are unreachable
 - Reachability analysis
- Safety properties say that certain events never happen
 - Generalize invariants and can be reduced to them
- Progress properties are the non-safety properties
 - Cycle detection (for finite state systems)
- Liveness (Alpern and Schneider [1985]) is related to progress, but not the same
- This can be made (a lot) more formal
 - Why is $\mathsf{G}(p \to \mathsf{X}\, q)$ a safety property, but $\mathsf{G}(p \to \mathsf{F}\, q)$ is not?
 - Borel hierarchy, (Landweber [1969])

Automata

- Properties may be described by automata that take the computation of the system as input and either accept it or reject it
- For non-terminating computations and linear-time properties we need ω -automata, which accept ω -regular languages
- For linear-time model checking we need the automaton for the negation of the property of interest
 - Model checking reduced to checking language emptiness of an ω -automaton

Automata

- Properties may be described by automata that take the computation of the system as input and either accept it or reject it
- For non-terminating computations and linear-time properties we need ω -automata, which accept ω -regular languages
- For linear-time model checking we need the automaton for the negation of the property of interest
 - Model checking reduced to checking language emptiness of an ω -automaton

Automata

- Properties may be described by automata that take the computation of the system as input and either accept it or reject it
- For non-terminating computations and linear-time properties we need ω -automata, which accept ω -regular languages
- For linear-time model checking we need the automaton for the negation of the property of interest
 - Model checking reduced to checking language emptiness of an ω -automaton

Omega-Automata

- ω -automata describe linear-time properties
 - Nondeterministic Büchi automata recognize all ω -regular properties
- Examples of Büchi automata (an accepting run visits some accepting state infinitely often)

• They are more expressive than LTL

From Formula to Büchi Automaton

$$\psi \, \mathsf{U} \, \varphi = \varphi \vee [\psi \wedge \mathsf{X} (\psi \, \mathsf{U} \, \varphi)]$$

- Expansion produces a DNF whose every term is the conjunction of:
 - a propositional formula that must hold now and
 - 2 a temporal formula that must hold from the next step

- Add path quantifiers to LTL to obtain CTL*
 - A: for all paths
 - E: for at least one path
- AG EF p: resetability
- LTL is embedded in CTL* by prepending A to all formulae
 - $\bullet \ \mathsf{AG}(p \to \mathsf{F}\,q)$
- $AG(p \rightarrow Fq)$ is equivalent to $AG(p \rightarrow AFq)$, but...
- AFAG p is not equivalent to AFG p
- Maidl [2000] for more info
- In CTL every temporal operator must be immediately preceded by a path quantifier
 - $AG\varphi$, $A\psi U\varphi$, $AF\varphi$, $AX\varphi$, $EG\varphi$, $E\psi U\varphi$, $EF\varphi$, $EX\varphi$

- Add path quantifiers to LTL to obtain CTL*
 - A: for all paths
 - E: for at least one path
- AG EF p: resetability
- LTL is embedded in CTL* by prepending A to all formulae
 - $AG(p \rightarrow Fq)$
- $AG(p \rightarrow Fq)$ is equivalent to $AG(p \rightarrow AFq)$, but...
- AFAG p is not equivalent to AFG p
- Maidl [2000] for more info
- In CTL every temporal operator must be immediately preceded by a path quantifier
 - $AG\varphi$, $A\psi U\varphi$, $AF\varphi$, $AX\varphi$, $EG\varphi$, $E\psi U\varphi$, $EF\varphi$, $EX\varphi$

- Add path quantifiers to LTL to obtain CTL*
 - A: for all paths
 - E: for at least one path
- AG EF p: resetability
- LTL is embedded in CTL* by prepending A to all formulae
 - $AG(p \rightarrow Fq)$
- $AG(p \rightarrow Fq)$ is equivalent to $AG(p \rightarrow AFq)$, but...
- AFAG p is not equivalent to AFG p
- Maidl [2000] for more info
- In CTL every temporal operator must be immediately preceded by a path quantifier
 - $AG\varphi$, $A\psi U\varphi$, $AF\varphi$, $AX\varphi$, $EG\varphi$, $E\psi U\varphi$, $EF\varphi$, $EX\varphi$

- Add path quantifiers to LTL to obtain CTL*
 - A: for all paths
 - E: for at least one path
- AG EF p: resetability
- LTL is embedded in CTL* by prepending A to all formulae
 - $AG(p \rightarrow Fq)$
- $AG(p \rightarrow Fq)$ is equivalent to $AG(p \rightarrow AFq)$, but...
- AFAG p is not equivalent to AFG p
- Maidl [2000] for more info
- In CTL every temporal operator must be immediately preceded by a path quantifier
 - $AG\varphi$, $A\psi U\varphi$, $AF\varphi$, $AX\varphi$, $EG\varphi$, $E\psi U\varphi$, $EF\varphi$, $EX\varphi$

- Add path quantifiers to LTL to obtain CTL*
 - A: for all paths
 - E: for at least one path
- AG EF p: resetability
- LTL is embedded in CTL* by prepending A to all formulae
 - $AG(p \rightarrow Fq)$
- $AG(p \rightarrow Fq)$ is equivalent to $AG(p \rightarrow AFq)$, but...
- AF AG p is not equivalent to AF G p
- Maidl [2000] for more info
- In CTL every temporal operator must be immediately preceded by a path quantifier
 - $AG\varphi$, $A\psi U\varphi$, $AF\varphi$, $AX\varphi$, $EG\varphi$, $E\psi U\varphi$, $EF\varphi$, $EX\varphi$

- Add path quantifiers to LTL to obtain CTL*
 - A: for all paths
 - E: for at least one path
- AG EF p: resetability
- LTL is embedded in CTL* by prepending A to all formulae
 - $AG(p \rightarrow Fq)$
- $AG(p \to Fq)$ is equivalent to $AG(p \to AFq)$, but...
- AFAG p is not equivalent to AFG p
- Maidl [2000] for more info
- In CTL every temporal operator must be immediately preceded by a path quantifier
 - $AG\varphi$, $A\psi U\varphi$, $AF\varphi$, $AX\varphi$, $EG\varphi$, $E\psi U\varphi$, $EF\varphi$, $EX\varphi$

- Add path quantifiers to LTL to obtain CTL*
 - A: for all paths
 - E: for at least one path
- AG EF p: resetability
- LTL is embedded in CTL* by prepending A to all formulae
 - $AG(p \rightarrow Fq)$
- $AG(p \rightarrow Fq)$ is equivalent to $AG(p \rightarrow AFq)$, but...
- AF AG p is not equivalent to AF G p
- Maidl [2000] for more info
- In CTL every temporal operator must be immediately preceded by a path quantifier
 - AG φ , A ψ U φ , AF φ , AX φ , EG φ , E ψ U φ , EF φ , EX φ

- Branching time is more powerful, but less intuitive
 - Resetability
 - AFG φ vs. AFAG φ
- Structure equivalence is finer-grained for branching time:
 - Linear time ↔ language (trace) equivalence
 - Branching time ↔ simulation relations
- Linear time is more suitable for compositional verification and Bounded Model Checking
- Counterexample generation simpler for linear time

- Branching time is more powerful, but less intuitive
 - Resetability
 - AFG φ vs. AFAG φ
- Structure equivalence is finer-grained for branching time:
 - Linear time ↔ language (trace) equivalence
 - ullet Branching time \leftrightarrow simulation relations
- Linear time is more suitable for compositional verification and Bounded Model Checking
- Counterexample generation simpler for linear time

- Branching time is more powerful, but less intuitive
 - Resetability
 - AFG φ vs. AFAG φ
- Structure equivalence is finer-grained for branching time:
 - Linear time ↔ language (trace) equivalence
 - ullet Branching time \leftrightarrow simulation relations
- Linear time is more suitable for compositional verification and Bounded Model Checking
- Counterexample generation simpler for linear time

- Branching time is more powerful, but less intuitive
 - Resetability
 - AFG φ vs. AFAG φ
- Structure equivalence is finer-grained for branching time:
 - Linear time ↔ language (trace) equivalence
 - ullet Branching time \leftrightarrow simulation relations
- Linear time is more suitable for compositional verification and Bounded Model Checking
- Counterexample generation simpler for linear time

Outline

- A Short Intro to Model Checking
 - Structures
 - Properties
- SAT Solver Interface
 - To The Solver
 - From The Solver
- Checking Invariants
 - Bounded Model Checking
 - Interpolation
 - Proving Invariants by Induction
 - IC3: Incremental Inductive Verification
- Progress Properties and Branching Time
 - Bounded Model Checking
 - Incremental Inductive Verification (FAIR and k-Liveness)
 - Model Checking CTL

- From source code to CDFG
- From CDFG to formulae over bit vectors and finite-domain variables
 - May involve abstraction
- Bit-blasting (binary encoding) to Boolean circuit plus memory elements
- Optimization of Boolean circuit
 - Often uses And-Inverter Graphs (AIGs) or similar data structures
- Conversion of circuit to CNF.

- From source code to CDFG
- From CDFG to formulae over bit vectors and finite-domain variables
 - May involve abstraction
- Bit-blasting (binary encoding) to Boolean circuit plus memory elements
- Optimization of Boolean circuit
 - Often uses And-Inverter Graphs (AIGs) or similar data structures
- Conversion of circuit to CNF

- From source code to CDFG
- From CDFG to formulae over bit vectors and finite-domain variables
 - May involve abstraction
- Bit-blasting (binary encoding) to Boolean circuit plus memory elements
- Optimization of Boolean circuit
 - Often uses And-Inverter Graphs (AIGs) or similar data structures
- Conversion of circuit to CNF

- From source code to CDFG
- From CDFG to formulae over bit vectors and finite-domain variables
 - May involve abstraction
- Bit-blasting (binary encoding) to Boolean circuit plus memory elements
- Optimization of Boolean circuit
 - Often uses And-Inverter Graphs (AIGs) or similar data structures
- Conversion of circuit to CNF

- From source code to CDFG
- From CDFG to formulae over bit vectors and finite-domain variables
 - May involve abstraction
- Bit-blasting (binary encoding) to Boolean circuit plus memory elements
- Optimization of Boolean circuit
 - Often uses And-Inverter Graphs (AIGs) or similar data structures
- Conversion of circuit to CNF

- Apply $(a \land b) \lor c = (a \lor c) \land (b \lor c)$ systematically along with simplifications
- Preserves equivalence and does not introduce new variables
- Size may blow up
 - $(a \wedge b) \vee (c \wedge d) = (a \vee c) \wedge (a \vee d) \wedge (b \vee c) \wedge (b \vee d)$
 - $(x_1 \wedge x_2 \wedge x_3) \vee (x_4 \wedge x_5 \wedge x_6) \vee \cdots$
- Seldom applied in its pure form

- Apply $(a \land b) \lor c = (a \lor c) \land (b \lor c)$ systematically along with simplifications
- Preserves equivalence and does not introduce new variables
- Size may blow up
 - $(a \land b) \lor (c \land d) = (a \lor c) \land (a \lor d) \land (b \lor c) \land (b \lor d)$
 - $(x_1 \wedge x_2 \wedge x_3) \vee (x_4 \wedge x_5 \wedge x_6) \vee \cdots$
- Seldom applied in its pure form

- Apply $(a \land b) \lor c = (a \lor c) \land (b \lor c)$ systematically along with simplifications
- Preserves equivalence and does not introduce new variables
- Size may blow up
 - $(a \wedge b) \vee (c \wedge d) = (a \vee c) \wedge (a \vee d) \wedge (b \vee c) \wedge (b \vee d)$
 - $(x_1 \wedge x_2 \wedge x_3) \vee (x_4 \wedge x_5 \wedge x_6) \vee \cdots$
- Seldom applied in its pure form

- Apply $(a \land b) \lor c = (a \lor c) \land (b \lor c)$ systematically along with simplifications
- Preserves equivalence and does not introduce new variables
- Size may blow up
 - $(a \wedge b) \vee (c \wedge d) = (a \vee c) \wedge (a \vee d) \wedge (b \vee c) \wedge (b \vee d)$
 - $(x_1 \wedge x_2 \wedge x_3) \vee (x_4 \wedge x_5 \wedge x_6) \vee \cdots$
- Seldom applied in its pure form

Equisatisfiability

Two formulae F and G are equisatisfiable if

- F is satisfiable iff G is satisfiable.
- ② If η_F (η_G) is a satisfying assignment for F (G), there exists a satisfying assignment η_G (η_F) for G (F) that agrees with η_F (η_G) on all the variables that F and G have in common.

A common case occurs when one of the two formulae, say G, contains all the variables in the other formula. Then a satisfying assignment for F can be easily derived from one for G by dropping the extra variables.

Tseitin

Use definitions for subformulae

$$f \leftrightarrow g \lor h$$
$$g \leftrightarrow a \land b$$
$$h \leftrightarrow c \land d$$

Then, from $(a \wedge b) \vee (c \wedge d)$, we get

$$(a \lor \neg g) \land (b \lor \neg g) \land (\neg a \lor \neg b \lor g)$$
$$\land (c \lor \neg h) \land (d \lor \neg h) \land (\neg c \lor \neg d \lor h)$$
$$\land (\neg g \lor f) \land (\neg h \lor f) \land (g \lor h \lor \neg f) \land f$$

Simpler Equisatisfiable CNF Formulae

If the formula is in negation normal form, Tseitin's translation can be simplified (Plaisted and Greenbaum [1986])

$$f \to g \lor h$$
$$g \to a \land b$$
$$h \to c \land d$$

Then, from $(a \wedge b) \vee (c \wedge d)$, we get

$$(a \lor \neg g) \land (b \lor \neg g)$$

 $\land (c \lor \neg h) \land (d \lor \neg h)$
 $\land (g \lor h \lor \neg f) \land f$

More Conversions to CNF

- Wilson, Sheridan
- Nice DAGs
- Cut-based
- BDD-based
- SAT preprocessor

More Conversions to CNF

- Wilson, Sheridan
- Nice DAGs
- Cut-based
- BDD-based
- SAT preprocessor

Proofs of Unsatisfiability

Different verification techniques require

- Resolution proofs
- UNSAT cores
- Assumptions (unit clauses) in UNSAT cores
 - Can be extracted with minimal overhead (Eén and Sörensson [2003])

Incremental Solving

- Solve sequences of related SAT instances
- Ability to push and pop clauses (efficiently)
- Keep learned clauses that are still valid
 - All learned clauses remain valid if no clause is popped
- Keep variable scores
- Multiple solver objects

Outline

- A Short Intro to Model Checking
 - Structures
 - Properties
- SAT Solver Interface
 - To The Solver
 - From The Solver
- Checking Invariants
 - Bounded Model Checking
 - Interpolation
 - Proving Invariants by Induction
 - IC3: Incremental Inductive Verification
- 4 Progress Properties and Branching Time
 - Bounded Model Checking
 - Incremental Inductive Verification (FAIR and k-Liveness)
 - Model Checking CTL

- A technique to falsify invariants ("bug finding")
- Based on unrolling the transition relation
- Looks for counterexamples of certain lengths
- May be extended to a complete method

- A technique to falsify invariants ("bug finding")
- Based on unrolling the transition relation
- Looks for counterexamples of certain lengths
- May be extended to a complete method

- A technique to falsify invariants ("bug finding")
- Based on unrolling the transition relation
- Looks for counterexamples of certain lengths
- May be extended to a complete method

- A technique to falsify invariants ("bug finding")
- Based on unrolling the transition relation
- Looks for counterexamples of certain lengths
- May be extended to a complete method

- Checks for a counterexample to a property of a model
 - We assume finite state
- Encodes the property checking problem as propositional satisfiability (SAT)
- Constructs a propositional formula that is satisfiable iff there exits a length-k counterexample, e.g.,

$$I(\overline{x}_0) \wedge \bigwedge_{0 \leq i < k} T(\overline{i}_i, \overline{x}_i, \overline{x}_{i+1}) \wedge \neg P(\overline{x}_k)$$

- If no counterexample is found, BMC increases k until
 - a counterexample is found,
 - the search becomes intractable, or
 - k reaches a certain bound

- Checks for a counterexample to a property of a model
 - We assume finite state
- Encodes the property checking problem as propositional satisfiability (SAT)
- Constructs a propositional formula that is satisfiable iff there exits a length-k counterexample, e.g.,

$$I(\overline{x}_0) \wedge \bigwedge_{0 \le i \le k} T(\overline{i}_i, \overline{x}_i, \overline{x}_{i+1}) \wedge \neg P(\overline{x}_k)$$

- If no counterexample is found, BMC increases k until
 - a counterexample is found,
 - the search becomes intractable, or
 - k reaches a certain bound

- Checks for a counterexample to a property of a model
 - We assume finite state
- Encodes the property checking problem as propositional satisfiability (SAT)
- Constructs a propositional formula that is satisfiable iff there exits a length-k counterexample, e.g.,

$$I(\overline{x}_0) \wedge \bigwedge_{0 \leq i < k} T(\overline{i}_i, \overline{x}_i, \overline{x}_{i+1}) \wedge \neg P(\overline{x}_k)$$

- If no counterexample is found, BMC increases k until
 - a counterexample is found,
 - the search becomes intractable, or
 - k reaches a certain bound

- Checks for a counterexample to a property of a model
 - We assume finite state
- Encodes the property checking problem as propositional satisfiability (SAT)
- Constructs a propositional formula that is satisfiable iff there exits a length-k counterexample, e.g.,

$$I(\overline{x}_0) \wedge \bigwedge_{0 \leq i < k} T(\overline{i}_i, \overline{x}_i, \overline{x}_{i+1}) \wedge \neg P(\overline{x}_k)$$

- If no counterexample is found, BMC increases k until
 - a counterexample is found,
 - the search becomes intractable, or
 - k reaches a certain bound

- The original BMC algorithm (Biere et al. [1999]), although complete for finite state, is limited in practice to falsification
- BMC can prove that an invariant ψ holds on a model S only if a bound, κ , is known such that:
 - ullet if no counterexample of length up to κ is found, then $S\models\psi$
- ullet Several methods exist to compute a suitable κ
- The optimum value of κ , however, is usually very expensive to obtain
 - Finding it is at least as hard as checking whether $S \models \psi$ (Clarke et al. [2004])

- The original BMC algorithm (Biere et al. [1999]), although complete for finite state, is limited in practice to falsification
- BMC can prove that an invariant ψ holds on a model S only if a bound, κ , is known such that:
 - ullet if no counterexample of length up to κ is found, then $\mathcal{S}\models\psi$
- ullet Several methods exist to compute a suitable κ
- The optimum value of κ , however, is usually very expensive to obtain
 - Finding it is at least as hard as checking whether $S \models \psi$ (Clarke et al. [2004])

- The original BMC algorithm (Biere et al. [1999]), although complete for finite state, is limited in practice to falsification
- BMC can prove that an invariant ψ holds on a model S only if a bound, κ , is known such that:
 - ullet if no counterexample of length up to κ is found, then $\mathcal{S}\models\psi$
- ullet Several methods exist to compute a suitable κ
- The optimum value of κ , however, is usually very expensive to obtain
 - Finding it is at least as hard as checking whether $S \models \psi$ (Clarke et al. [2004])

- The original BMC algorithm (Biere et al. [1999]), although complete for finite state, is limited in practice to falsification
- BMC can prove that an invariant ψ holds on a model S only if a bound, κ , is known such that:
 - ullet if no counterexample of length up to κ is found, then ${\mathcal S} \models \psi$
- ullet Several methods exist to compute a suitable κ
- ullet The optimum value of κ , however, is usually very expensive to obtain
 - Finding it is at least as hard as checking whether $S \models \psi$ (Clarke et al. [2004])

Finding The Bound κ

- Compute diameter of graph
 - Minimum d such that, if there is a path of length d+1 between two states, then there is a path of length at most d between the same states
 - $\forall \overline{x}_0, \dots, \overline{x}_{d+1} \cdot \bigwedge_{0 \le i \le d} T(\overline{x}_i, \overline{x}_{i+1}) \rightarrow \exists \overline{x}'_0, \dots, \overline{x}'_d \cdot (\bigwedge_{0 \le i < d} T(\overline{x}'_i, \overline{x}'_{i+1}) \wedge \overline{x}'_0 = \overline{x}_0 \wedge \bigvee_{0 \le i \le d} \overline{x}'_i = \overline{x}_{d+1})$
- If one end of the path is constrained to an initial (target) state, one obtains the forward (backward) recursive radius of the graph
- Restrict search to simple paths (next slide)

Finding The Bound κ

- Compute diameter of graph
 - Minimum d such that, if there is a path of length d+1 between two states, then there is a path of length at most d between the same states
 - $\forall \overline{x}_0, \dots, \overline{x}_{d+1} \cdot \bigwedge_{0 \le i \le d} T(\overline{x}_i, \overline{x}_{i+1}) \rightarrow \exists \overline{x}'_0, \dots, \overline{x}'_d \cdot (\bigwedge_{0 \le i < d} T(\overline{x}'_i, \overline{x}'_{i+1}) \wedge \overline{x}'_0 = \overline{x}_0 \wedge \bigvee_{0 \le i \le d} \overline{x}'_i = \overline{x}_{d+1})$
- If one end of the path is constrained to an initial (target) state, one obtains the forward (backward) recursive radius of the graph
- Restrict search to simple paths (next slide)

Finding The Bound κ

- Compute diameter of graph
 - Minimum d such that, if there is a path of length d+1 between two states, then there is a path of length at most d between the same states
 - $\forall \overline{x}_0, \dots, \overline{x}_{d+1} \cdot \bigwedge_{0 \le i \le d} T(\overline{x}_i, \overline{x}_{i+1}) \rightarrow \exists \overline{x}'_0, \dots, \overline{x}'_d \cdot (\bigwedge_{0 \le i < d} T(\overline{x}'_i, \overline{x}'_{i+1}) \wedge \overline{x}'_0 = \overline{x}_0 \wedge \bigvee_{0 \le i \le d} \overline{x}'_i = \overline{x}_{d+1})$
- If one end of the path is constrained to an initial (target) state, one obtains the forward (backward) recursive radius of the graph
- Restrict search to simple paths (next slide)

Simple Paths

- A counterexample to an invariant is a finite prefix path to a state that satisfies ¬P (bad state)
- If a counterexample exists, then there is a simple path from an initial state to a bad state that goes through no other initial or bad state
- An invariant holds (Sheeran et al. [2000]) if:
 - there is no counterexample of length k to $\neg P$, and
 - no simple path of length k+1 to $\neg P$ that does not go through any other states satisfying $\neg P$, or
 - no simple path of length k+1 from an initial state that does not go through any other initial states

Simple Paths

- A counterexample to an invariant is a finite prefix path to a state that satisfies $\neg P$ (bad state)
- If a counterexample exists, then there is a simple path from an initial state to a bad state that goes through no other initial or bad state
- An invariant holds (Sheeran et al. [2000]) if:
 - there is no counterexample of length k to $\neg P$, and
 - no simple path of length k+1 to $\neg P$ that does not go through any other states satisfying $\neg P$, or
 - no simple path of length k+1 from an initial state that does not go through any other initial states

Simple Paths

- A counterexample to an invariant is a finite prefix path to a state that satisfies ¬P (bad state)
- If a counterexample exists, then there is a simple path from an initial state to a bad state that goes through no other initial or bad state
- An invariant holds (Sheeran et al. [2000]) if:
 - there is no counterexample of length k to $\neg P$, and
 - no simple path of length k+1 to $\neg P$ that does not go through any other states satisfying $\neg P$, or
 - no simple path of length k+1 from an initial state that does not go through any other initial states

Checking for Simple Paths

• Simple-minded check produces quadratic formula

$$\bigwedge_{0 < i \le k} \bigwedge_{0 \le j < i} (\overline{x}_i \ne \overline{x}_j)$$

- Using a bitonic sorting network (Kröning and Strichman [2003]) reduces the complexity to $O(k \log^2 k)$
- Lazy checking is more effective in practice (Sörensson's thesis)

Checking for Simple Paths

Simple-minded check produces quadratic formula

$$\bigwedge_{0 < i \le k} \bigwedge_{0 \le j < i} (\overline{x}_i \ne \overline{x}_j)$$

- Using a bitonic sorting network (Kröning and Strichman [2003]) reduces the complexity to $O(k \log^2 k)$
- Lazy checking is more effective in practice (Sörensson's thesis)

Checking for Simple Paths

Simple-minded check produces quadratic formula

$$\bigwedge_{0 < i \le k} \bigwedge_{0 \le j < i} (\overline{x}_i \ne \overline{x}_j)$$

- Using a bitonic sorting network (Kröning and Strichman [2003]) reduces the complexity to $O(k \log^2 k)$
- Lazy checking is more effective in practice (Sörensson's thesis)

k-Induction

- Sheeran et al. call their method k-induction
- If all states on length-k paths from the initial states satisfy p, and
- k consecutive states satisfying p are always followed by a state satisfying p, then
- all states reachable from the initial states satisfy p
- ullet The second premise is verified when there are no simple paths of length k+1

Abstraction Refinement

- Assume abstract model S_a and abstraction of property φ_a such that $S_a \models \varphi_a$ implies $S \models \varphi$
- Use complete method on abstract model S_a , but use BMC on the concrete model S when a counterexample is found in S_a
 - Use the counterexample(s) found in S_a to constrain search in S
 - If concretization fails, use UNSAT core to refine abstraction
 - One-to-one and one-to-many concretization possible
- It is possible to reverse the order: proof-based abstraction (Amla and McMillan [2004])
 - Use BMC and periodically extract abstract model from UNSAT core and check it with complete method

Abstraction Refinement

- Assume abstract model S_a and abstraction of property φ_a such that $S_a \models \varphi_a$ implies $S \models \varphi$
- Use complete method on abstract model S_a , but use BMC on the concrete model S when a counterexample is found in S_a
 - Use the counterexample(s) found in S_a to constrain search in S
 - If concretization fails, use UNSAT core to refine abstraction
 - One-to-one and one-to-many concretization possible
- It is possible to reverse the order: proof-based abstraction (Amla and McMillan [2004])
 - Use BMC and periodically extract abstract model from UNSAT core and check it with complete method

Abstraction Refinement

- Assume abstract model S_a and abstraction of property φ_a such that $S_a \models \varphi_a$ implies $S \models \varphi$
- Use complete method on abstract model S_a , but use BMC on the concrete model S when a counterexample is found in S_a
 - Use the counterexample(s) found in S_a to constrain search in S
 - If concretization fails, use UNSAT core to refine abstraction
 - One-to-one and one-to-many concretization possible
- It is possible to reverse the order: proof-based abstraction (Amla and McMillan [2004])
 - Use BMC and periodically extract abstract model from UNSAT core and check it with complete method

- Suppose $I(\overline{x}_0) \wedge T(\overline{x}_0, \overline{x}_1) \wedge T(\overline{x}_1, \overline{x}_2) \wedge \cdots \wedge T(\overline{x}_{k-1}, \overline{x}_k) \wedge \neg P(\overline{x}_k)$ is unsatisfiable
- Let $F_1 = I(\overline{x}_0) \wedge T(\overline{x}_0, \overline{x}_1)$ and $F_2 = T(\overline{x}_1, \overline{x}_2) \wedge \cdots \wedge T(\overline{x}_{k-1}, \overline{x}_k) \wedge \neg P(\overline{x}_k)$
- Then $F_1(\overline{x}_0, \overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- Interpolant $\mathcal{I}_1(\overline{x}_1)$ is such that
 - $F_1(\overline{x}_0, \overline{x}_1) \rightarrow \mathcal{I}_1(\overline{x}_1)$
 - $\mathcal{I}_1(\overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- $\mathcal{I}_1(\overline{x}_1)$ can be computed in linear time from a resolution proof that $F_1(\overline{x}_0, \overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- $\exists \overline{x}_0 . I(\overline{x}_0) \land T(\overline{x}_0, \overline{x}_1)$ is the strongest interpolant
 - set of states reachable from $I(\overline{x}_0)$ in one step

- Suppose $I(\overline{x}_0) \wedge T(\overline{x}_0, \overline{x}_1) \wedge T(\overline{x}_1, \overline{x}_2) \wedge \cdots \wedge T(\overline{x}_{k-1}, \overline{x}_k) \wedge \neg P(\overline{x}_k)$ is unsatisfiable
- Let $F_1 = I(\overline{x}_0) \wedge T(\overline{x}_0, \overline{x}_1)$ and $F_2 = T(\overline{x}_1, \overline{x}_2) \wedge \cdots \wedge T(\overline{x}_{k-1}, \overline{x}_k) \wedge \neg P(\overline{x}_k)$
- Then $F_1(\overline{x}_0, \overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- Interpolant $\mathcal{I}_1(\overline{x}_1)$ is such that
 - $F_1(\overline{x}_0, \overline{x}_1) \rightarrow \mathcal{I}_1(\overline{x}_1)$
 - $\mathcal{I}_1(\overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- $\mathcal{I}_1(\overline{x}_1)$ can be computed in linear time from a resolution proof that $F_1(\overline{x}_0, \overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- $\exists \overline{x}_0 . I(\overline{x}_0) \land T(\overline{x}_0, \overline{x}_1)$ is the strongest interpolant
 - set of states reachable from $I(\overline{x}_0)$ in one step

- Suppose $I(\overline{x}_0) \wedge T(\overline{x}_0, \overline{x}_1) \wedge T(\overline{x}_1, \overline{x}_2) \wedge \cdots \wedge T(\overline{x}_{k-1}, \overline{x}_k) \wedge \neg P(\overline{x}_k)$ is unsatisfiable
- Let $F_1 = I(\overline{x}_0) \wedge T(\overline{x}_0, \overline{x}_1)$ and $F_2 = T(\overline{x}_1, \overline{x}_2) \wedge \cdots \wedge T(\overline{x}_{k-1}, \overline{x}_k) \wedge \neg P(\overline{x}_k)$
- Then $F_1(\overline{x}_0, \overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- Interpolant $\mathcal{I}_1(\overline{x}_1)$ is such that
 - $F_1(\overline{x}_0, \overline{x}_1) \rightarrow \mathcal{I}_1(\overline{x}_1)$
 - $\mathcal{I}_1(\overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- $\mathcal{I}_1(\overline{x}_1)$ can be computed in linear time from a resolution proof that $F_1(\overline{x}_0, \overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- $\exists \overline{x}_0 . I(\overline{x}_0) \land T(\overline{x}_0, \overline{x}_1)$ is the strongest interpolant
 - set of states reachable from $I(\overline{x}_0)$ in one step

- Suppose $I(\overline{x}_0) \wedge T(\overline{x}_0, \overline{x}_1) \wedge T(\overline{x}_1, \overline{x}_2) \wedge \cdots \wedge T(\overline{x}_{k-1}, \overline{x}_k) \wedge \neg P(\overline{x}_k)$ is unsatisfiable
- Let $F_1 = I(\overline{x}_0) \wedge T(\overline{x}_0, \overline{x}_1)$ and $F_2 = T(\overline{x}_1, \overline{x}_2) \wedge \cdots \wedge T(\overline{x}_{k-1}, \overline{x}_k) \wedge \neg P(\overline{x}_k)$
- Then $F_1(\overline{x}_0, \overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- Interpolant $\mathcal{I}_1(\overline{x}_1)$ is such that
 - $F_1(\overline{x}_0, \overline{x}_1) \rightarrow \mathcal{I}_1(\overline{x}_1)$
 - $\mathcal{I}_1(\overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- $\mathcal{I}_1(\overline{x}_1)$ can be computed in linear time from a resolution proof that $F_1(\overline{x}_0, \overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- $\exists \overline{x}_0 . I(\overline{x}_0) \land T(\overline{x}_0, \overline{x}_1)$ is the strongest interpolant
 - set of states reachable from $I(\overline{x}_0)$ in one step

- Suppose $I(\overline{x}_0) \wedge T(\overline{x}_0, \overline{x}_1) \wedge T(\overline{x}_1, \overline{x}_2) \wedge \cdots \wedge T(\overline{x}_{k-1}, \overline{x}_k) \wedge \neg P(\overline{x}_k)$ is unsatisfiable
- Let $F_1 = I(\overline{x}_0) \wedge T(\overline{x}_0, \overline{x}_1)$ and $F_2 = T(\overline{x}_1, \overline{x}_2) \wedge \cdots \wedge T(\overline{x}_{k-1}, \overline{x}_k) \wedge \neg P(\overline{x}_k)$
- Then $F_1(\overline{x}_0, \overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- Interpolant $\mathcal{I}_1(\overline{x}_1)$ is such that
 - $F_1(\overline{x}_0, \overline{x}_1) \rightarrow \mathcal{I}_1(\overline{x}_1)$
 - $\mathcal{I}_1(\overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- $\mathcal{I}_1(\overline{x}_1)$ can be computed in linear time from a resolution proof that $F_1(\overline{x}_0, \overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- $\exists \overline{x}_0 . I(\overline{x}_0) \land T(\overline{x}_0, \overline{x}_1)$ is the strongest interpolant
 - set of states reachable from $I(\overline{x}_0)$ in one step

- Suppose $I(\overline{x}_0) \wedge T(\overline{x}_0, \overline{x}_1) \wedge T(\overline{x}_1, \overline{x}_2) \wedge \cdots \wedge T(\overline{x}_{k-1}, \overline{x}_k) \wedge \neg P(\overline{x}_k)$ is unsatisfiable
- Let $F_1 = I(\overline{x}_0) \wedge T(\overline{x}_0, \overline{x}_1)$ and $F_2 = T(\overline{x}_1, \overline{x}_2) \wedge \cdots \wedge T(\overline{x}_{k-1}, \overline{x}_k) \wedge \neg P(\overline{x}_k)$
- Then $F_1(\overline{x}_0, \overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- Interpolant $\mathcal{I}_1(\overline{x}_1)$ is such that
 - $F_1(\overline{x}_0, \overline{x}_1) \rightarrow \mathcal{I}_1(\overline{x}_1)$
 - $\mathcal{I}_1(\overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- $\mathcal{I}_1(\overline{x}_1)$ can be computed in linear time from a resolution proof that $F_1(\overline{x}_0, \overline{x}_1) \wedge F_2(\overline{x}_1, \dots, \overline{x}_k)$ is unsatisfiable
- $\exists \overline{x}_0 . I(\overline{x}_0) \land T(\overline{x}_0, \overline{x}_1)$ is the strongest interpolant
 - set of states reachable from $I(\overline{x}_0)$ in one step

- $\mathcal{I}_1(\overline{x}_1)$ is a superset of the states reachable in one step such that no member state has a path of length k-1 to a bad state
- Replace $I(\overline{x}_0)$ with $I(\overline{x}_0) \vee \mathcal{I}_1(\overline{x}_0)$ and repeat
 - If formula still unsatisfiable, interpolant $\mathcal{I}_2(\overline{x}_1)$ is a superset of states reachable in one or two steps such that no member state has a path of length k-1 to a bad state
- A converging sequence of interpolants means that no states satisfying ¬p (bad states) are reachable
- At convergence, an inductive invariant is obtained
- Convergence guaranteed when the backward recursive radius is reached

- $\mathcal{I}_1(\overline{x}_1)$ is a superset of the states reachable in one step such that no member state has a path of length k-1 to a bad state
- Replace $I(\overline{x}_0)$ with $I(\overline{x}_0) \vee \mathcal{I}_1(\overline{x}_0)$ and repeat
 - If formula still unsatisfiable, interpolant $\mathcal{I}_2(\overline{x}_1)$ is a superset of states reachable in one or two steps such that no member state has a path of length k-1 to a bad state
- A converging sequence of interpolants means that no states satisfying ¬p (bad states) are reachable
- At convergence, an inductive invariant is obtained
- Convergence guaranteed when the backward recursive radius is reached

- $\mathcal{I}_1(\overline{x}_1)$ is a superset of the states reachable in one step such that no member state has a path of length k-1 to a bad state
- Replace $I(\overline{x}_0)$ with $I(\overline{x}_0) \vee \mathcal{I}_1(\overline{x}_0)$ and repeat
 - If formula still unsatisfiable, interpolant $\mathcal{I}_2(\overline{x}_1)$ is a superset of states reachable in one or two steps such that no member state has a path of length k-1 to a bad state
- A converging sequence of interpolants means that no states satisfying $\neg p$ (bad states) are reachable
- At convergence, an inductive invariant is obtained
- Convergence guaranteed when the backward recursive radius is reached

- $\mathcal{I}_1(\overline{x}_1)$ is a superset of the states reachable in one step such that no member state has a path of length k-1 to a bad state
- Replace $I(\overline{x}_0)$ with $I(\overline{x}_0) \vee \mathcal{I}_1(\overline{x}_0)$ and repeat
 - If formula still unsatisfiable, interpolant $\mathcal{I}_2(\overline{x}_1)$ is a superset of states reachable in one or two steps such that no member state has a path of length k-1 to a bad state
- A converging sequence of interpolants means that no states satisfying ¬p (bad states) are reachable
- At convergence, an inductive invariant is obtained
- Convergence guaranteed when the backward recursive radius is reached

- $\mathcal{I}_1(\overline{x}_1)$ is a superset of the states reachable in one step such that no member state has a path of length k-1 to a bad state
- Replace $I(\overline{x}_0)$ with $I(\overline{x}_0) \vee \mathcal{I}_1(\overline{x}_0)$ and repeat
 - If formula still unsatisfiable, interpolant $\mathcal{I}_2(\overline{x}_1)$ is a superset of states reachable in one or two steps such that no member state has a path of length k-1 to a bad state
- A converging sequence of interpolants means that no states satisfying ¬p (bad states) are reachable
- At convergence, an inductive invariant is obtained
- Convergence guaranteed when the backward recursive radius is reached

- Let $Pre(Q(\overline{x}))$ be the predicate describing the states that are predecessors of the states described by Q
- Repeated application of Pre from ¬P corresponds to backward breadth-first search from the error states
 - It computes an inductive strengthening of the property
- Common approach with BDDs
- Can be adapted to CNF (McMillan [2002])
 - Introduced the use of blocking clauses

- Let $Pre(Q(\overline{x}))$ be the predicate describing the states that are predecessors of the states described by Q
- Repeated application of Pre from ¬P corresponds to backward breadth-first search from the error states
 - It computes an inductive strengthening of the property
- Common approach with BDDs
- Can be adapted to CNF (McMillan [2002])
 - Introduced the use of blocking clauses

- Let $Pre(Q(\overline{x}))$ be the predicate describing the states that are predecessors of the states described by Q
- Repeated application of Pre from ¬P corresponds to backward breadth-first search from the error states
 - It computes an inductive strengthening of the property
- Common approach with BDDs
- Can be adapted to CNF (McMillan [2002])
 - Introduced the use of blocking clauses

- Let $Pre(Q(\overline{x}))$ be the predicate describing the states that are predecessors of the states described by Q
- Repeated application of Pre from ¬P corresponds to backward breadth-first search from the error states
 - It computes an inductive strengthening of the property
- Common approach with BDDs
- Can be adapted to CNF (McMillan [2002])
 - Introduced the use of blocking clauses

Back to The Simple Arbiter

$$I(\overline{g}) = \neg g_1 \wedge \neg g_2$$

$$\exists r_1, r_2 . T(\overline{r}, \overline{g}, \overline{g}') = \neg g_1' \vee \neg g_2'$$

$$P(\overline{g}) = \neg g_1 \vee \neg g_2$$

Inductive Proofs for Transition Systems

- Prove initiation (base case)
 - $I(\overline{x}) \Rightarrow P(\overline{x})$
 - All initial states satisfy P
 - $\bullet \ (\neg g_1 \land \neg g_2) \Rightarrow (\neg g_1 \lor \neg g_2)$
- Prove consecution (inductive step)
 - $P(\overline{x}) \wedge T(\overline{i}, \overline{x}, \overline{x}') \Rightarrow P(\overline{x}')$
 - All successors of states satisfying P satisfy P
 - $(\neg g_1 \lor \neg g_2) \land (\neg g_1' \lor \neg g_2') \Rightarrow (\neg g_1' \lor \neg g_2')$
- If both pass, all reachable states satisfy the property
 - S ⊨ P

Visualizing Inductive Proofs

The inductive assertion (yellow) contains all initial (blue) states and no arrow leaves it (it is closed under the transition relation)

Counterexamples to Induction: The Troublemakers

Counterexamples to Induction: The Troublemakers

Strong and Weak Invariants

Induction is not restricted to:

- the strongest inductive invariant (forward-reachable states)
- ... or the weakest inductive invariant (complement of the backward-reachable states)
- $\neg x_1$ is simpler than $\neg x_1 \land (\neg x_2 \lor \neg x_3)$ (strongest) and $(\neg x_1 \lor \neg x_3)$ (weakest)

Completeness for Finite-State Systems

- CTIs are effectively bad states
 - If a CTI is reachable so is at least one bad state
- Remove CTI from P and try again
- Eventually either:
 - An inductive strengthening of *P* results
 - An initial state is removed from P
- In the latter case, a counterexample is obtained

Examples of Strengthening Strategies

- Removing one CTI at a time is very inefficient!
 - Several strategies in use to avoid that
- Fixpoint-based invariant checking: if $\nu Z \cdot p \wedge AX Z$ converges in n > 0 iterations, then $\bigwedge_{0 \le i < n} AX^i p$ is an inductive invariant
 - In fact, the weakest inductive invariant
- k-induction: if all states on length-k paths from the initial states satisfy p, and k distinct consecutive states satisfying p are always followed by a state satisfying p, then all states reachable from the initial states satisfy p.
- Interpolation-based model checking: the converged interpolant is an inductive invariant
- fsis algorithm (Bradley and Manna [2007]): try to extract an inductive clause from CTI to exclude multiple CTIs

$$\varphi = \neg x_1 \wedge (x_1 \vee \neg x_2)$$

 $\neg x_1$ is not inductive

 $x_1 \vee \neg x_2$ is inductive

 $\neg x_1$ is inductive relative to $x_1 \lor \neg x_2$

$$P = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$\varphi = (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$$

$$(x_1 \lor x_2) \land P \land T \not\Rightarrow (x'_1 \lor x'_2)$$

$$(\neg x_1 \lor \neg x_2) \land P \land T \not\Rightarrow (\neg x_1' \lor \neg x_2')$$

$$(x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land P \land T \Rightarrow (x_1' \lor x_2') \land (\neg x_1' \lor \neg x_2')$$

 $(x_1 \lor x_2)$ and $(\neg x_1 \lor \neg x_2)$ are mutually inductive

IC3: Basic Algorithm

IC3 (Bradley [2011]) stands for

- Incremental Construction of
- 2 Inductive Clauses for
- Indubitable Correctness

IC3 is an Incremental Inductive Verification (IIV) algorithm

Basic Tenets

- Approximate reachability assumptions
 - F_i: contains at least all the states reachable in i steps or less
 - If $S \models P$, F_i eventually becomes inductive for some i
 - Approximation is desirable: IC3 does not attempt to get the most precise F_i's
- Stepwise relative induction
 - Learn useful facts via induction relative to reachability assumptions
- Clausal representation
 - Learn clauses (lemmas) from CTIs
 - A form of abstract interpretation

IC3 Invariants

The four main invariants of IC3:

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad 0 \le i < k$$

- Established if there are no counterexamples of length 0 or 1
- The implicit invariant of the outer loop: no counterexamples of length k or less

Reasonable Invariants

- $I \Rightarrow F_0$: F_0 overapproximates the initial condition. (In practice, $I = F_0$.)
- $F_i \Rightarrow F_{i+1}$: a state believed to be reachable in i steps or less is also believed to be reachable in i+1 steps or less
- $F_i \Rightarrow P$: no state believed to be reachable in i steps or less violates P
- $F_i \wedge T \Rightarrow F'_{i+1}$: all the immediate successors of a state believed to be reachable in i steps or less are believed to be reachable in i+1 steps or less

Pseudo-Pseudocode

```
bool IC3 {
     if (I \not\Rightarrow P \text{ or } I \land T \not\Rightarrow P')
           return |
     F_0 = I: F_1 = P: k = 1
     repeat {
           while (there are CTIs in F_k) {
                 either find a counterexample and return \perp
                 or refine F_1, \ldots, F_k
           set F_k = P and propagate clauses
           if (F_i = F_{i+1} \text{ for some } 0 < i < k)
                 return ⊤
```

No counterexamples of length 0 or 1

$$I = \neg x_1 \land \neg x_2$$
$$P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad 0 \le i < k$$

Does $F_1 \wedge T \Rightarrow P'$?

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \land T \Rightarrow F'_{i+1}$$

$$0 \le i < k$$

Found CTI $s = x_1 \wedge x_2$

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \land T \Rightarrow F'_{i+1}$$

$$0 \le i < k$$

$$0 \le i \le k$$

Is $\neg s = \neg x_1 \lor \neg x_2$ inductive relative to F_1 ?

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$

 $F_i \Rightarrow F_{i+1}$ $0 \le i < k$
 $F_i \Rightarrow P$ $0 \le i \le k$
 $F_i \wedge T \Rightarrow F'_{i+1}$ $0 \le i < k$

No. Is $\neg s = \neg x_1 \lor \neg x_2$ inductive relative to F_0 ?

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$

 $F_i \Rightarrow F_{i+1}$ $0 \le i < k$
 $F_i \Rightarrow P$ $0 \le i \le k$
 $F_i \land T \Rightarrow F'_{i+1}$ $0 \le i < k$

Yes. Generalize $\neg s$ at level 0 in one of the two possible ways: either $\neg x_1$ or $\neg x_2$

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$

 $F_i \Rightarrow F_{i+1}$ $0 \le i < k$
 $F_i \Rightarrow P$ $0 \le i \le k$
 $F_i \land T \Rightarrow F'_{i+1}$ $0 \le i < k$

Update F_1

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = (\neg x_1 \lor x_2) \land \neg x_2$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \land T \Rightarrow F'_{i+1}$$

$$0 \le i < k$$
$$0 \le i \le k$$
$$0 < i < k$$

No more CTIs in F_1 . No counterexamples of length 2. Instantiate F_2

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = (\neg x_1 \lor x_2) \land \neg x_2$$

$$F_2 = P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \land T \Rightarrow F'_{i+1} \qquad 0 \le i < k$$

Propagate clauses from F_1 to F_2

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \wedge T \Rightarrow F'_{i+1}$$

$$0 \le i < k$$
$$0 \le i \le k$$

$$0 \le i < k$$

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = (\neg x_1 \lor x_2) \land \neg x_2$$

$$F_2 = (\neg x_1 \lor x_2) \land \neg x_2$$

 F_1 and F_2 are identical. Property proved

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \land T \Rightarrow F'_{i+1}$$

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = (\neg x_1 \lor x_2) \land \neg x_2$$

$$F_2 = (\neg x_1 \lor x_2) \land \neg x_2$$

$$0 \le i < k$$
$$0 \le i \le k$$
$$0 \le i < k$$

What happens if we generalize $\neg s = \neg x_1 \lor \neg x_2$ at level 0 in the other way $(\neg x_1)$?

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$

 $F_i \Rightarrow F_{i+1}$ $0 \le i < k$
 $F_i \Rightarrow P$ $0 \le i \le k$
 $F_i \land T \Rightarrow F'_{i+1}$ $0 \le i < k$

Update F_1

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = (\neg x_1 \lor x_2) \land \neg x_1$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \land T \Rightarrow F'_{i+1}$$

$$0 \le i < k$$
$$0 \le i \le k$$

$$0 \le i < k$$

No more CTIs in F_1 . No counterexamples of length 2. Instantiate F_2

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$0 \le i < k$$

$$F_i \Rightarrow F_{i+1}$$
 $0 \le i < k$
 $F_i \Rightarrow P$ $0 \le i \le k$
 $F_i \wedge T \Rightarrow F'_{i+1}$ $0 \le i < k$

 $F_0 = I = \neg x_1 \land \neg x_2$ $F_1 = (\neg x_1 \lor x_2) \land \neg x_1$ $F_2 = P = \neg x_1 \lor x_2$

No clauses propagate from F_1 to F_2

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \land T \Rightarrow F'_{i+1}$$

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = (\neg x_1 \lor x_2) \land \neg x_1$$

$$F_2 = P = \neg x_1 \lor x_2$$

$$0 \le i < k$$
$$0 \le i \le k$$
$$0 \le i \le k$$

Remove subsumed clauses

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = \neg x_1$$

$$F_2 = P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \land T \Rightarrow F'_{i+1} \qquad 0 \le i < k$$

Does $F_2 \wedge T \Rightarrow P'$?

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \wedge T \Rightarrow F'_{i+1}$$

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = \neg x_1$$

$$F_2 = P = \neg x_1 \lor x_2$$

$$0 \le i < k$$
$$0 \le i \le k$$

Found CTI $s = x_1 \land x_2$ (same as before)

$$I \Rightarrow F_0$$
$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \wedge T \Rightarrow F'_{i+1}$$

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = \neg x_1$$

$$F_2 = P = \neg x_1 \lor x_2$$

$$0 \le i < k$$
$$0 \le i \le k$$

$$0 \le i < k$$

Is $\neg s = \neg x_1 \lor \neg x_2$ inductive relative to F_1 ?

$$F_1 = \neg x_1$$

$$F_2 = P = \neg x_1 \lor x_2$$

 $F_0 = I = \neg x_1 \wedge \neg x_2$

$$I \Rightarrow F_0$$

 $F_i \Rightarrow F_{i+1}$ $0 \le i < k$
 $F_i \Rightarrow P$ $0 \le i \le k$
 $F_i \land T \Rightarrow F'_{i+1}$ $0 \le i < k$

No. We know it is inductive at level 0.

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \wedge T \Rightarrow F'_{i+1}$$

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = \neg x_1$$

$$F_2 = P = \neg x_1 \lor x_2$$

$$0 \le i < k$$
$$0 < i < k$$

$$0 \le i < k$$

If generalization produces $\neg x_1$ again, the CTI is not eliminated

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = \neg x_1$$

$$F_2 = P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \land T \Rightarrow F'_{i+1} \qquad 0 \le i < k$$

Find predecessor t of CTI $x_1 \wedge x_2$ in $F_1 \setminus F_0$

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = \neg x_1$$

$$F_2 = P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$

 $F_i \Rightarrow F_{i+1}$ $0 \le i < k$
 $F_i \Rightarrow P$ $0 \le i \le k$
 $F_i \land T \Rightarrow F'_{i+1}$ $0 \le i < k$

Found $t = \neg x_1 \land x_2$

$$F_1 = \neg x_1$$

$$F_2 = P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$
 $F_i \Rightarrow F_{i+1}$
 $F_i \Rightarrow P$
 $F_i \wedge T \Rightarrow F'_{i+1}$

$$0 \le i < k$$
$$0 \le i \le k$$

 $F_0 = I = \neg x_1 \wedge \neg x_2$

The clause $\neg t = x_1 \lor \neg x_2$ is inductive at all levels

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = \neg x_1$$

$$F_2 = P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \land T \Rightarrow F'_{i+1}$$

$$0 \le i < k$$
$$0 \le i \le k$$

$$0 \le i < k$$

Generalization of $\neg t = x_1 \lor \neg x_2$ produces $\neg x_2$

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = \neg x_1$$

$$F_2 = P = \neg x_1 \lor x_2$$

$$I \Rightarrow F_0$$
 $F_i \Rightarrow F_{i+1}$
 $F_i \Rightarrow P$
 $F_i \wedge T \Rightarrow F'_{i+1}$

$$0 \le i < k$$
$$0 \le i \le k$$
$$0 < i < k$$

Update F_1 and F_2

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \land T \Rightarrow F'_{i+1}$$

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = \neg x_1 \land \neg x_2$$

$$F_2 = (\neg x_1 \lor x_2) \land \neg x_2$$

$$0 \le i < k$$
$$0 \le i \le k$$
$$0 < i < k$$

 F_1 and F_2 are equivalent. Property (almost) proved

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1}$$

$$F_i \Rightarrow P$$

$$F_i \wedge T \Rightarrow F'_{i+1}$$

$$F_0 = I = \neg x_1 \land \neg x_2$$

$$F_1 = \neg x_1 \land \neg x_2$$

$$F_2 = (\neg x_1 \lor x_2) \land \neg x_2$$

$$0 \le i < k$$

$$0 \le i \le k$$

$$0 \le i < k$$

No counterexamples of length 0 or 1

$$I = \neg x_1 \land \neg x_3 \land \neg x_3$$
$$P = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad 0 < i < k$$

Does $F_1 \wedge T \Rightarrow P'$?

$$F_0 = I = \neg x_1 \land \neg x_3 \land \neg x_3$$

$$F_1 = P = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad 0 \le i < k$$

Found CTI
$$s = \neg x_1 \land x_2 \land x_3$$

$$F_0 = I = \neg x_1 \land \neg x_3 \land \neg x_3$$

$$F_1 = P = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad 0 < i < k$$

The clause $\neg s = x_1 \lor \neg x_2 \lor \neg x_3$ generalizes to $\neg x_2$ at level 0

$$F_0 = I = \neg x_1 \land \neg x_3 \land \neg x_3$$

$$F_1 = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land \neg x_2$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad 0 < i < k$$

No CTI left: no counterexample of length 2. F_2 instantiated, but no clause propagated

$$F_0 = I = \neg x_1 \land \neg x_3 \land \neg x_3$$

$$F_1 = \neg x_2$$

$$F_2 = P = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

$$I \Rightarrow F_0$$

 $F_i \Rightarrow F_{i+1}$ $0 \le i < k$
 $F_i \Rightarrow P$ $0 \le i \le k$
 $F_i \land T \Rightarrow F'_{i+1}$ $0 \le i < k$

The clause $\neg s = x_1 \vee \neg x_2 \vee \neg x_3$ generalizes again to $\neg x_2$ at level 0

$$F_0 = I = \neg x_1 \land \neg x_3 \land \neg x_3$$

$$F_1 = \neg x_2$$

$$F_2 = P = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad 0 \le i < k$$

Suppose IC3 recurs on $t = \neg x_1 \wedge \neg x_2 \wedge x_3$ in $F_1 \setminus F_0$

$$F_0 = I = \neg x_1 \land \neg x_3 \land \neg x_3$$

$$F_1 = \neg x_2$$

$$F_2 = P = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad 0 \le i < k$$

Clause $\neg t = x_1 \lor x_2 \lor \neg x_3$ is not inductive at level 0: the property fails

$$F_0 = I = \neg x_1 \land \neg x_3 \land \neg x_3$$

$$F_1 = \neg x_2$$

$$F_2 = P = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad 0 \le i < k$$

Suppose now IC3 recurs on $t = x_1 \land \neg x_2 \land x_3$ in $F_1 \setminus F_0$

$$F_0 = I = \neg x_1 \land \neg x_3 \land \neg x_3$$

$$F_1 = \neg x_2$$

$$F_2 = P = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad 0 \le i < k$$

Clause $\neg t = \neg x_1 \lor x_2 \lor \neg x_3$ is inductive at level 1

$$F_0 = I = \neg x_1 \land \neg x_3 \land \neg x_3$$

$$F_1 = \neg x_2$$

$$F_2 = P = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

$$I \Rightarrow F_0$$

 $F_i \Rightarrow F_{i+1}$ $0 \le i < k$
 $F_i \Rightarrow P$ $0 \le i \le k$
 $F_i \land T \Rightarrow F'_{i+1}$ $0 \le i < k$

Generalization of $\neg t$ adds $\neg x_1$ to F_1 and F_2

$$F_0 = I = \neg x_1 \land \neg x_3 \land \neg x_3$$

$$F_1 = \neg x_2 \land \neg x_1$$

$$F_2 = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land \neg x_1$$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad 0 \le i < k$$

Only $t = \neg x_1 \wedge \neg x_2 \wedge x_3$ remains in $F_1 \setminus F_0$

$$I \Rightarrow F_0$$

$$F_i \Rightarrow F_{i+1} \qquad 0 \le i < k$$

$$F_i \Rightarrow P \qquad 0 \le i \le k$$

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad 0 < i < k$$

The same counterexample as before is found

$$I \Rightarrow F_0$$

 $F_i \Rightarrow F_{i+1}$ $0 \le i < k$
 $F_i \Rightarrow P$ $0 \le i \le k$
 $F_i \land T \Rightarrow F'_{i+1}$ $0 \le i < k$

Clause Generalization

- A CTI is a cube (conjunction of literals)
 - e.g., $s = x_1 \land \neg x_2 \land x_3$
- The negation of a CTI is a clause
 - e.g., $\neg s = \neg x_1 \lor x_2 \lor \neg x_3$
- Conjoining ¬s to a reachability assumption F_i excludes the CTI from it
- Generalization extracts a subclause from ¬s that excludes more states that are "like the CTI"
 - e.g., $\neg x_3$ may be a subclause of $\neg s$ that excludes states that, like the CTI, are not reachable in i steps
 - Every literal dropped doubles the number of states excluded by a clause
 - Generalization is time-consuming, but critical to performance

Generalization

- Crucial for efficiency
- Generalization in IC3 produces a minimal inductive clause (MIC)
- The MIC algorithm is based on DOWN and UP.
- DOWN extracts the (unique) maximal subclause
- UP finds a small, but not necessarily minimal subclause
- MIC recurs on subclauses of the result of UP

Use of UNSAT Cores

- $\neg s \land F_i \land T \Rightarrow \neg s'$ if and only if $\neg s \land F_i \land T \land s'$ is unsatisfiable
- The literals of s' are (unit) clauses in the SAT query
- If the implication holds, the SAT solver returns an unsatisfiable core
- Any literal of s' not in the core can be removed from s' because it does not contribute to the implication . . .
- ullet and from $\neg s$ because strengthening the antecedent preserves the implication

Use of UNSAT Core Example

• $\neg s \wedge F_0 \wedge T \Rightarrow \neg s'$ with

$$\neg s = \neg x_1 \lor \neg x_2$$

$$F_0 = \neg x_1 \land \neg x_2$$

$$T = (\neg x_1 \land \neg x_2 \land \neg x_1' \land \neg x_2') \lor \cdots$$

The SAT query, after some simplification, is

$$\neg x_1 \wedge \neg x_2 \wedge \neg x_1' \wedge \neg x_2' \wedge x_1' \wedge x_2'$$

Two UNSAT cores are

$$\neg x_1' \wedge x_1' \neg x_2' \wedge x_2'$$

from which the two generalizations we saw before follow

Clause Clean-Up

- As IC3 proceeds, clauses may be added to some F_i that subsume other clauses
- The weaker, subsumed clauses no longer contribute to the definition of F_i
- However, a weaker clause may propagate to F_{i+1} when the stronger clause does not
- Weak clauses are eliminated by subsumption only between major iterations and after propagation

More Efficiency-Related Issues

- State encoding determines what clauses are derived
- Incremental vs. monolithic
 - Reachability assumptions carry global information
 - ... but are built incrementally
- Semantic vs. syntactic approach
 - Generalization "jumps over large distances"
- Long counterexamples at low k
 - Typically more efficient than increasing k
- Consequences of no unrolling
 - Many cheap (incremental) SAT calls
- Ability to parallelize
 - Clauses are easy to exchange

Outline

- A Short Intro to Model Checking
 - Structures
 - Properties
- SAT Solver Interface
 - To The Solver
 - From The Solver
- Checking Invariants
 - Bounded Model Checking
 - Interpolation
 - Proving Invariants by Induction
 - IC3: Incremental Inductive Verification
- 4 Progress Properties and Branching Time
 - Bounded Model Checking
 - Incremental Inductive Verification (FAIR and k-Liveness)
 - Model Checking CTL

BMC: Translation from LTL

• Various techniques have been devised to translate an LTL formula φ into a propositional formula that expresses the constraints on a path that is a model of $\neg \varphi$. For instance:

$$\llbracket \neg \mathsf{F} \mathsf{G} \neg p \rrbracket = \bigvee_{0 \le l \le k} (T(\overline{x}_k, \overline{x}_l) \land \bigvee_{l \le i \le k} p(\overline{x}_i))$$

• k-induction can be extended to provide a termination criterion

BMC: Translation from LTL

• Various techniques have been devised to translate an LTL formula φ into a propositional formula that expresses the constraints on a path that is a model of $\neg \varphi$. For instance:

$$\llbracket \neg \mathsf{F} \mathsf{G} \neg p \rrbracket = \bigvee_{0 \le l \le k} (T(\overline{x}_k, \overline{x}_l) \wedge \bigvee_{l \le i \le k} p(\overline{x}_i))$$

• k-induction can be extended to provide a termination criterion

- Checking progress properties requires cycle detection
- Augment model with shadow register
- The augmented model can nondeterministically save a snapshot of the current state in the shadow register
- If a state is subsequently reached that is identical to the one saved, a cycle has been detected
- Constraints can be added to make sure the cycle is an accepting one
- With this transformation an invariant checker suffices for all LTL properties

- Checking progress properties requires cycle detection
- Augment model with shadow register
- The augmented model can nondeterministically save a snapshot of the current state in the shadow register
- If a state is subsequently reached that is identical to the one saved, a cycle has been detected
- Constraints can be added to make sure the cycle is an accepting one
- With this transformation an invariant checker suffices for all LTL properties

- Checking progress properties requires cycle detection
- Augment model with shadow register
- The augmented model can nondeterministically save a snapshot of the current state in the shadow register
- If a state is subsequently reached that is identical to the one saved, a cycle has been detected
- Constraints can be added to make sure the cycle is an accepting one
- With this transformation an invariant checker suffices for all LTL properties

- Checking progress properties requires cycle detection
- Augment model with shadow register
- The augmented model can nondeterministically save a snapshot of the current state in the shadow register
- If a state is subsequently reached that is identical to the one saved, a cycle has been detected
- Constraints can be added to make sure the cycle is an accepting one
- With this transformation an invariant checker suffices for all LTL properties

- Checking progress properties requires cycle detection
- Augment model with shadow register
- The augmented model can nondeterministically save a snapshot of the current state in the shadow register
- If a state is subsequently reached that is identical to the one saved, a cycle has been detected
- Constraints can be added to make sure the cycle is an accepting one
- With this transformation an invariant checker suffices for all LTL properties

- Check language nonemptiness of the composition of structure S and generalized Büchi automaton for $\neg \varphi$
- Generalized means that multiple acceptance conditions (aka fairness constraints may be given: each must be satisfied
- FAIR (Bradley et al. [2011]) looks for a reachable fair cycle
- The search for a cycle is decomposed into several reachability queries
 - Each reachability query is a call to IC3

- Check language nonemptiness of the composition of structure S and generalized Büchi automaton for $\neg \varphi$
- Generalized means that multiple acceptance conditions (aka fairness constraints may be given: each must be satisfied
- FAIR (Bradley et al. [2011]) looks for a reachable fair cycle
- The search for a cycle is decomposed into several reachability queries
 - Each reachability query is a call to IC3

- Check language nonemptiness of the composition of structure S and generalized Büchi automaton for $\neg \varphi$
- Generalized means that multiple acceptance conditions (aka fairness constraints may be given: each must be satisfied
- FAIR (Bradley et al. [2011]) looks for a reachable fair cycle
- The search for a cycle is decomposed into several reachability queries
 - Each reachability query is a call to IC3

- Check language nonemptiness of the composition of structure S and generalized Büchi automaton for $\neg \varphi$
- Generalized means that multiple acceptance conditions (aka fairness constraints may be given: each must be satisfied
- FAIR (Bradley et al. [2011]) looks for a reachable fair cycle
- The search for a cycle is decomposed into several reachability queries
 - Each reachability query is a call to IC3

- A counterexample to a progress property is a lasso-shaped path that satisfies fairness constraints
- A lasso's cycle is contained in a strongly connected component (SCC) of the state graph
- A nonempty set of states is SCC-closed if every SCC is either contained in it or disjoint from it
- A partition of the states into SCC-closed sets is a coarser partition than the SCC partition; hence, . . .
- Every cycle of a graph is contained in some SCC-closed set
- Maintain a partition of the states into SCC-closed set
 - Refine it until a reachable fair cycle is found or none is proved to exist

- A counterexample to a progress property is a lasso-shaped path that satisfies fairness constraints
- A lasso's cycle is contained in a strongly connected component (SCC) of the state graph
- A nonempty set of states is SCC-closed if every SCC is either contained in it or disjoint from it
- A partition of the states into SCC-closed sets is a coarser partition than the SCC partition; hence, . . .
- Every cycle of a graph is contained in some SCC-closed set
- Maintain a partition of the states into SCC-closed set
 - Refine it until a reachable fair cycle is found or none is proved to exist

- A counterexample to a progress property is a lasso-shaped path that satisfies fairness constraints
- A lasso's cycle is contained in a strongly connected component (SCC) of the state graph
- A nonempty set of states is SCC-closed if every SCC is either contained in it or disjoint from it
- A partition of the states into SCC-closed sets is a coarser partition than the SCC partition; hence, . . .
- Every cycle of a graph is contained in some SCC-closed set
- Maintain a partition of the states into SCC-closed set
 - Refine it until a reachable fair cycle is found or none is proved to exist

- A counterexample to a progress property is a lasso-shaped path that satisfies fairness constraints
- A lasso's cycle is contained in a strongly connected component (SCC) of the state graph
- A nonempty set of states is SCC-closed if every SCC is either contained in it or disjoint from it
- A partition of the states into SCC-closed sets is a coarser partition than the SCC partition; hence, . . .
- Every cycle of a graph is contained in some SCC-closed set
- Maintain a partition of the states into SCC-closed set
 - Refine it until a reachable fair cycle is found or none is proved to exist

- A counterexample to a progress property is a lasso-shaped path that satisfies fairness constraints
- A lasso's cycle is contained in a strongly connected component (SCC) of the state graph
- A nonempty set of states is SCC-closed if every SCC is either contained in it or disjoint from it
- A partition of the states into SCC-closed sets is a coarser partition than the SCC partition; hence, . . .
- Every cycle of a graph is contained in some SCC-closed set
- Maintain a partition of the states into SCC-closed set
 - Refine it until a reachable fair cycle is found or none is proved to exist

- A counterexample to a progress property is a lasso-shaped path that satisfies fairness constraints
- A lasso's cycle is contained in a strongly connected component (SCC) of the state graph
- A nonempty set of states is SCC-closed if every SCC is either contained in it or disjoint from it
- A partition of the states into SCC-closed sets is a coarser partition than the SCC partition; hence, . . .
- Every cycle of a graph is contained in some SCC-closed set
- Maintain a partition of the states into SCC-closed set
 - Refine it until a reachable fair cycle is found or none is proved to exist

Reduce search for reachable fair cycle to a set of safety problems:

Skeleton:

•

States of skeleton together satisfy all fairness constraints.

Task: Connect states to form lasso.

Reach Queries

Each connection task is a reach query.

• Stem query: Connect initial condition to a state:

Cycle query: Connect one state to another:

(To itself if skeleton has only one state.)

Witness to Nonemptiness

If all queries are answered positively:

Witness to nonemptiness of C.

Global Reachability

If a stem query is answered negatively: new inductive global reachability information.

- Constrains subsequent selection of skeletons.
- Constrains subsequent reach (stem and cycle) queries.
- Improve proof by strengthening (using ideas from IC3).

Barriers: Discovering SCC-Closed Sets

If a cycle query is answered negatively: new information about SCC structure of state graph.

- Inductive proof: "one-way barrier"
- Each "side" of the proof is SCC-closed.
- Constrains subsequent selections of skeletons: all states on one side.

$$s_0 s_1$$
 sk1 010 110

$$s_0$$
 s_1 sk1 010 110

stem query produces $x_1 \vee \neg x_2$

 s_0 s_1 sk2 101 110states satisfy $x_1 \lor \neg x_2$

 s_0 s_1 sk2 101 110 $states satisfy <math>s_1 \lor \neg s_2$

stem query passes

 s_0 s_1 sk2 101 110 states satisfy

 $x_1 \vee \neg x_2$

$$\operatorname{reach}(S, (x_1 \vee \neg x_2), s_0, s_1)$$
 passes

 $\begin{array}{ccc} s_0 & s_1 \\ \text{sk2} & 101 & 110 \\ \end{array}$ states satisfy

 $x_1 \vee \neg x_2$

$$\operatorname{reach}(S, (x_1 \vee \neg x_2), s_1, s_0) \text{ produces } x_2$$

 s_0 s_1 sk2 101 110 states satisfy

 $x_1 \vee \neg x_2$

because $x_1 \wedge x_2 \wedge \neg x_3 \Rightarrow x_2 \dots$

 s_0 s_1 sk2 101 110 states satisfy $s_1 \lor \lnot s_2$

and
$$x_2 \wedge (x_1 \vee \neg x_2) \wedge T \Rightarrow x_2'$$

 $\begin{array}{ccc} s_0 & s_1 \\ \text{sk3} & 101 & 100 \\ \end{array}$ states satisfy $(x_1 \lor \neg x_2) \land \neg x_2$

$$s_0$$
 s_1 $sk3$ 101 100 $states satisfy $(x_1 \lor \neg x_2) \land \neg x_2$$

stem query passes

 $\begin{array}{ccc} s_0 & s_1 \\ \text{sk3} & 101 & 100 \\ \text{states satisfy} \\ \left(x_1 \lor \neg x_2\right) \land \neg x_2 \end{array}$

$$\operatorname{reach}(S, (x_1 \vee \neg x_2) \wedge \neg x_2, s_0, s_1) \text{ produces } x_2 \vee x_3$$

Example: Empty Language

no skeletons left

 $\begin{array}{ccc} s_0 & s_1 \\ \text{sk1} & 101 & 101 \end{array}$

 s_0 s_1 sk1 101 101

stem query passes

 $\begin{array}{ccc} s_0 & s_1 \\ \text{sk1} & 101 & 101 \end{array}$

reach
$$(S, \top, post(S, s_0), s_0)$$
 produces $x_1 \wedge x_2$
and $(\neg x_1 \vee \neg x_2) \wedge (\neg x_1 \vee \neg x_3)$

 $\begin{array}{ccc} s_0 & s_1 \\ \text{sk2} & 001 & 100 \\ \text{states satisfy} \\ (\neg x_1 \lor \neg x_2) \land \\ (\neg x_1 \lor \neg x_3) \end{array}$

 $\begin{array}{ccc} s_0 & s_1 \\ \text{sk2} & 001 & 100 \\ \text{states satisfy} \\ (\neg x_1 \lor \neg x_2) \land \\ (\neg x_1 \lor \neg x_3) \end{array}$

stem query passes

 $\begin{array}{ccc} s_0 & s_1 \\ \text{sk2} & 001 & 100 \\ \text{states satisfy} \\ \left(\neg x_1 \lor \neg x_2\right) \land \\ \left(\neg x_1 \lor \neg x_3\right) \end{array}$

$$\operatorname{reach}(S, (\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_3), s_0, s_1) \text{ produces } x_2 \lor x_3$$

sk3 001 011

states satisfy $(\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_3) \land (x_2 \lor x_3)$

sk3 001 011

states satisfy
$$(\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_3) \land (x_2 \lor x_3)$$

stem query passes

$$\begin{array}{ccc} s_0 & s_1 \\ \text{sk3} & 001 & 011 \\ \end{array}$$

$$\text{states satisfy}$$

$$(\neg x_1 \lor \neg x_2) \land \\ (\neg x_1 \lor \neg x_3) \land \\ (x_2 \lor x_3) \\ \end{array}$$

$$\operatorname{reach}(S, (\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_3) \land (x_2 \lor x_3), s_0, s_1) \text{ produces } \neg x_2$$

sk4 010 011 states satisfy $(\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_3) \land (x_2 \lor x_3) \land x_2$

 $\begin{array}{ccc} s_0 & s_1 \\ \text{sk4} & 010 & 011 \end{array}$ states satisfy $\begin{pmatrix} \neg x_1 \lor \neg x_2 \end{pmatrix} \land \\ \begin{pmatrix} \neg x_1 \lor \neg x_3 \end{pmatrix} \land \\ (x_2 \lor x_3) \land x_2 \end{array}$

stem query produces $x_1 \vee \neg x_2$

no skeletons left

Persistent Signals

• Signal p is persistent in structure S if

$$S \models G(p \rightarrow X p)$$

or

$$S \models \mathsf{G}(\neg p \to \mathsf{X}\, \neg p)$$

• Checking for persistence by a SAT check:

$$p \wedge T \Rightarrow p'$$

$$\neg p \wedge T \Rightarrow \neg p$$

Persistent Signals

• Signal p is persistent in structure S if

$$S \models G(p \rightarrow X p)$$

or

$$S \models \mathsf{G}(\neg p \to \mathsf{X} \, \neg p)$$

Checking for persistence by a SAT check:

$$p \wedge T \Rightarrow p'$$

$$\neg p \land T \Rightarrow \neg p'$$

- Signals may be persistent under assumptions
 - Another signal is persistent
 - Another signal has a given value
- A persistent signal defines a barrier
- One side of the barrier may have no skeletons
- Then the persistent signal may be assumed to have a fixed value

- Signals may be persistent under assumptions
 - Another signal is persistent
 - Another signal has a given value
- A persistent signal defines a barrier
- One side of the barrier may have no skeletons
- Then the persistent signal may be assumed to have a fixed value

- Signals may be persistent under assumptions
 - Another signal is persistent
 - Another signal has a given value
- A persistent signal defines a barrier
- One side of the barrier may have no skeletons
- Then the persistent signal may be assumed to have a fixed value

- Signals may be persistent under assumptions
 - Another signal is persistent
 - Another signal has a given value
- A persistent signal defines a barrier
- One side of the barrier may have no skeletons
- Then the persistent signal may be assumed to have a fixed value

Key Insights

- Inductive assertions describe SCC-closed sets.
- Arena: Set of states all on the same side of each barrier.
- Unlike previous symbolic methods:

Barrier constraints on the transition relation combined with the over-approximating nature of IC3 enable the simultaneous (symbolic) consideration of all arenas.

 A proof can provide information about many arenas even though the motivating skeleton comes from one arena.

Methodological Parallels with IC3

IC3 FAIR

Seed: CTI Skeleton

Lemma: Inductive clause Global reachability proof

One-way barrier

Relative to previously discovered lemmas.

CEX: CTI sequence Connected skeleton

Discovery guided by lemmas. Not minimal.

Proof: Inductive strengthening All arenas skeleton-free Sufficient set of lemmas.

- If property holds in S, then $S \models FG \neg p$
 - p holds finitely many times
- Approximate with sequence of safety properties
 - p is never true
 - p holds at most once
 - p holds at most twice . . .
 - p holds at most k times . . .
- If any property in the sequence holds, so does $FG \neg p$
- If S is finite-state, then $S \models \mathsf{FG} \neg p$ holds only if there is k such that p holds at most k times
- k-liveness is in practice a semi-decision procedure
 - Interleave BMC calls to check whether property fails
- For each value of k, IC3 decides whether safety property holds
 - In principle, any safety model checker would do

- If property holds in *S*, then $S \models FG \neg p$
 - p holds finitely many times
- Approximate with sequence of safety properties
 - p is never true
 - p holds at most once
 - p holds at most twice . . .
 - p holds at most k times . . .
- If any property in the sequence holds, so does $FG \neg p$
- If S is finite-state, then $S \models \mathsf{FG} \neg p$ holds only if there is k such that p holds at most k times
- k-liveness is in practice a semi-decision procedure
 - Interleave BMC calls to check whether property fails
- For each value of k, IC3 decides whether safety property holds
 - In principle, any safety model checker would do

- If property holds in S, then $S \models FG \neg p$
 - p holds finitely many times
- Approximate with sequence of safety properties
 - p is never true
 - p holds at most once
 - p holds at most twice . . .
 - p holds at most k times . . .
- If any property in the sequence holds, so does $FG \neg p$
- If S is finite-state, then $S \models \mathsf{FG} \neg p$ holds only if there is k such that p holds at most k times
- k-liveness is in practice a semi-decision procedure
 - Interleave BMC calls to check whether property fails
- For each value of k, IC3 decides whether safety property holds
 - In principle, any safety model checker would do

- If property holds in S, then $S \models FG \neg p$
 - p holds finitely many times
- Approximate with sequence of safety properties
 - p is never true
 - p holds at most once
 - p holds at most twice . . .
 - p holds at most k times . . .
- If any property in the sequence holds, so does $FG \neg p$
- If S is finite-state, then $S \models FG \neg p$ holds only if there is k such that p holds at most k times
- k-liveness is in practice a semi-decision procedure
 - Interleave BMC calls to check whether property fails
- For each value of k, IC3 decides whether safety property holds
 - In principle, any safety model checker would do

- If property holds in S, then $S \models FG \neg p$
 - p holds finitely many times
- Approximate with sequence of safety properties
 - p is never true
 - p holds at most once
 - p holds at most twice . . .
 - p holds at most k times . . .
- If any property in the sequence holds, so does $FG \neg p$
- If S is finite-state, then $S \models FG \neg p$ holds only if there is k such that p holds at most k times
- k-liveness is in practice a semi-decision procedure
 - Interleave BMC calls to check whether property fails
- For each value of k, IC3 decides whether safety property holds
 - In principle, any safety model checker would do

- If property holds in S, then $S \models FG \neg p$
 - p holds finitely many times
- Approximate with sequence of safety properties
 - p is never true
 - p holds at most once
 - p holds at most twice . . .
 - p holds at most k times . . .
- If any property in the sequence holds, so does $FG \neg p$
- If S is finite-state, then $S \models FG \neg p$ holds only if there is k such that p holds at most k times
- k-liveness is in practice a semi-decision procedure
 - Interleave BMC calls to check whether property fails
- For each value of k, IC3 decides whether safety property holds
 - In principle, any safety model checker would do

Iterative Counting Circuit

- Each subcircuit absorbs one occurrence of p
- Increasing k means adding another instance of the subcircuit
- This solution works well with an incremental safety solver
- General approach relies on representing property as a universal co-Büchi word automaton (Filiot et al. [2009], bounded synthesis)

Iterative Counting Circuit

- Each subcircuit absorbs one occurrence of p
- Increasing k means adding another instance of the subcircuit
- This solution works well with an incremental safety solver
- General approach relies on representing property as a universal co-Büchi word automaton (Filiot et al. [2009], bounded synthesis)

Iterative Counting Circuit

- Each subcircuit *absorbs* one occurrence of *p*
- Increasing k means adding another instance of the subcircuit
- This solution works well with an incremental safety solver
- General approach relies on representing property as a universal co-Büchi word automaton (Filiot et al. [2009], bounded synthesis)

Iterative Counting Circuit

- Each subcircuit *absorbs* one occurrence of *p*
- Increasing k means adding another instance of the subcircuit
- This solution works well with an incremental safety solver
- General approach relies on representing property as a universal co-Büchi word automaton (Filiot et al. [2009], bounded synthesis)

Persistent Signals in k-Liveness

- Persistent signals are computed just as in FAIR
 - They are used to constrain the transition relation
 - More likely to prove the property at a lower k

- Without constraints:
 - FG $\neg f$ proved at k = 5
- With constraints $f \wedge (x_1 \leftrightarrow x_1') \wedge (x_0 \leftrightarrow x_0')$:
 - No infinite paths: $FG \neg f$ proved at k = 0

Persistent Signals in k-Liveness

- Persistent signals are computed just as in FAIR
 - They are used to constrain the transition relation
 - More likely to prove the property at a lower k

- Without constraints:
 - FG $\neg f$ proved at k = 5
- With constraints $f \wedge (x_1 \leftrightarrow x_1') \wedge (x_0 \leftrightarrow x_0')$:
 - No infinite paths: $FG \neg f$ proved at k = 0

Persistent Signals in k-Liveness

- Persistent signals are computed just as in FAIR
 - They are used to constrain the transition relation
 - More likely to prove the property at a lower k

- Without constraints:
 - FG $\neg f$ proved at k=5
- With constraints $f \wedge (x_1 \leftrightarrow x_1') \wedge (x_0 \leftrightarrow x_0')$:
 - No infinite paths: $FG \neg f$ proved at k = 0

IICTL: Incremental Inductive CTL Model Checking

- Task-directed strategy
- Maintains upper and lower bounds on states satisfying each subformula
- States in between the bounds are undecided
- Typically don't need to decide all states to decide the property (Traditional symbolic CTL algorithms do)
- Decide states by executing appropriate query:
 - EX: SAT query
 - EU: Safety model checker (e.g., IC3)
 - EG: Fair cycle finder (e.g., FAIR)
- Generalizing decisions (proofs or counterexamples) to other states and refining the bounds

Property: AG EF $p = \neg EF \neg EFp$

 $I \wedge \neg U_0$? No: Property fails

Property: AG EF $p = \neg EF \neg EFp$

 $I \wedge \neg U_0$? Yes

 $I \wedge \neg L_0$? Yes: Property holds

$$I \land \neg U_0$$
? Yes $s \models U_0$
 $I \land \neg L_0$? No $s \not\models L_0$

$$\psi_0$$
 $I \wedge \neg U_0$? Yes $s \models U_0$ $s \text{ is } undecided \text{ for node } 0$ $I \wedge \neg L_0$? No $s \not\models L_0$

$$U \wedge \neg U_0$$
? Yes $s \models U_0$
 $U \wedge \neg U_0$? No $s \not\models U_0$ s is undecided for node 0

 $s \models \psi_1$?

IICTL Example

$$I \land \neg U_0$$
? Yes $s \models U_0$
 $I \land \neg L_0$? No $s \not\models L_0$ s is undecided for node 0

$$\psi_0$$
 $V = V_0$? Yes $v = V_0$ $v =$

$$s \models \psi_1? \iff s \models \mathsf{EF}\,\psi_2? \iff \mathsf{can}\,\, s \;\mathsf{reach}\,\,\psi_2?$$

$$\psi_0$$
 $I \wedge \neg U_0$? Yes $s \models U_0$ s is undecided for node 0 $I \wedge \neg L_0$? No $s \not\models L_0$

$$s \models \psi_1? \iff s \models \mathsf{EF}\,\psi_2? \iff \mathsf{can}\, s \;\mathsf{reach}\; \psi_2?$$
 can $s \;\mathsf{reach}\; L_2?$

Property: AG EF $p = \neg EF \neg EFp$

$$\psi_0$$
 $I \wedge \neg U_0$? Yes $s \models U_0$ s is undecided for node 0 $I \wedge \neg L_0$? No $s \not\models L_0$

 $s \models \psi_1? \iff s \models \mathsf{EF}\,\psi_2? \iff \mathsf{can}\,s\,\mathsf{reach}\,\psi_2?$ can s reach L_2 ? Yes: s can also reach ψ_2

Property: AG EF $p = \neg EF \neg EFp$

$$\psi_0$$
 $I \wedge \neg U_0$? Yes $s \models U_0$ s is undecided for node 0 $I \wedge \neg L_0$? No $s \not\models L_0$

 $s \models \psi_1? \iff s \models \mathsf{EF}\,\psi_2? \iff \mathsf{can}\,\, s \;\mathsf{reach}\,\,\psi_2?$ can s reach L_2 ? No

Property: AG EF $p = \neg EF \neg EFp$

s is undecided for node 0 can s reach U_2 ? $s \models \psi_1? \iff s \models \mathsf{EF}\,\psi_2? \iff \mathsf{can}\,s\,\mathsf{reach}\,\psi_2?$ can s reach L_2 ? No

Property: AG EF $p = \neg EF \neg EFp$

 $I \land \neg U_0$? Yes $s \models U_0$ s is undecided for node 0 $I \land \neg L_0$? No $s \not\models L_0$ can s reach U_2 ? No: s cannot reach ψ_2 $s \models \psi_1? \iff s \models \mathsf{EF}\,\psi_2? \iff \mathsf{can}\, s \;\mathsf{reach}\, \psi_2?$ can s reach L_2 ? No

Property: AG EF $p = \neg EF \neg EFp$

s is undecided for node 0 can s reach U_2 ? Yes $s \models \psi_1? \iff s \models \mathsf{EF}\,\psi_2? \iff \mathsf{can}\,s\,\mathsf{reach}\,\psi_2?$ can s reach L_2 ? No

Property: AG EF $p = \neg EF \neg EFp$

 $I \wedge \neg U_0$? Yes $s \models U_0$ s is undecided for node 0 $I \wedge \neg L_0$? No $s \not\models L_0$ can s reach U_2 ? Yes $t \models U_2$ $s \models \psi_1? \iff s \models \mathsf{EF}\,\psi_2? \iff \mathsf{can}\,\, s \;\mathsf{reach}\,\,\psi_2?$ can s reach L_2 ? No

Property: AG EF $p = \neg EF \neg EFp$

 $I \wedge \neg U_0$? Yes $s \models U_0$ s is undecided for node 0 $I \wedge \neg L_0$? No $s \not\models L_0$ can s reach U_2 ? Yes $t \models U_2$ $s \models \psi_1? \iff s \models \mathsf{EF}\,\psi_2? \iff \mathsf{can}\, s \; \mathsf{reach}\, \psi_2?$ can $s \; \mathsf{reach}\, L_2? \; \mathsf{No} \quad t \not\models L_2$

Property: AG EF $p = \neg EF \neg EFp$

s is undecided for node 0 can s reach U_2 ? Yes $t \models U_2$ t is undecided for node 2 can s reach L_2 ? No $t \not\models L_2$

Property: AG EF $p = \neg EF \neg EFp$

s is undecided for node 0 can s reach U_2 ? Yes $t \models U_2$ t is undecided for node 2 can s reach L_2 ? No $t \not\models L_2$

s is undecided for node 0 can s reach U_2 ? Yes $t \models U_2$ t is undecided for node 2 can s reach L_2 ? No $t \not\models L_2$

IICTL Algorithm

IICTI

- Construct the parse-graph of the formula
- Initialize bounds
- Are all initial states in lower bound of root node? Yes: property holds
- Is any of the initial states not in upper bound of root? Yes: property fails
- There is an undecided state s. Decide s recursively and generalize.
- Repeat step 3