02 - Math Preliminaries

Dr. Robert Lowe

Division of Mathematics and Computer Science
Maryville College

Outline

Relations

Closures of Relations

Outline

Relations

2 Closures of Relations

• A **relation**, *R* between two sets, *A* and *B* is:

$$R \subset A \times B$$

• A **relation**, *R* between two sets, *A* and *B* is:

$$R \subset A \times B$$

A relation, R between two sets, A and B is:

$$R \subset A \times B$$

Let
$$S = T = \{1, 2, 3\}$$

• A **relation**, *R* between two sets, *A* and *B* is:

$$R \subset A \times B$$

Let
$$S = T = \{1, 2, 3\}$$

 $S \times T = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$

A relation, R between two sets, A and B is:

$$R \subset A \times B$$

Let
$$S = T = \{1, 2, 3\}$$

 $S \times T = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$
 $U = \{(1, 2), (1, 3), (2, 3)\}$

A relation, R between two sets, A and B is:

$$R \subset A \times B$$

For example, consider the < relation:

Let
$$S = T = \{1, 2, 3\}$$

 $S \times T = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$
 $U = \{(1, 2), (1, 3), (2, 3)\}$

Thus *U* is the sought after < relation!

A relation, R between two sets, A and B is:

$$R \subset A \times B$$

For example, consider the < relation:

Let
$$S = T = \{1, 2, 3\}$$

 $S \times T = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$
 $U = \{(1, 2), (1, 3), (2, 3)\}$

Thus *U* is the sought after < relation!

 We often write relations this: aUb where aUb is true if and only if (a, b) ∈ U

Digraphs

A **digraph** is a graphical representation of a relation.

Example 2.3.1

The relationship 'is a town in' between S = the set of towns and T = the set of countries looks like this:

Fig. 2.1

From Davie and

Maryville

• A includes B if, $\forall s \in S$ and $t \in T$, $sBt \implies sAt$

- A includes B if, $\forall s \in S$ and $t \in T$, $sBt \implies sAt$
- A is the **transpose** of B if, $\forall s \in S$ and $t \in T$, $sAt \iff tBs$

- A includes B if, $\forall s \in S$ and $t \in T$, $sBt \implies sAt$
- A is the **transpose** of B if, $\forall s \in S$ and $t \in T$, $sAt \iff tBs$
- A is **reflexive** if S = T and $\forall s \in S$, sAs is true.

- A includes B if, $\forall s \in S$ and $t \in T$, $sBt \implies sAt$
- A is the **transpose** of B if, $\forall s \in S$ and $t \in T$, $sAt \iff tBs$
- A is **reflexive** if S = T and $\forall s \in S$, sAs is true.
- A is transitive if S = T and $\forall r, s, t \in R, S, T$, rAs and $sAt \implies rAt$

- A includes B if, $\forall s \in S$ and $t \in T$, $sBt \implies sAt$
- A is the **transpose** of B if, $\forall s \in S$ and $t \in T$, $sAt \iff tBs$
- A is **reflexive** if S = T and $\forall s \in S$, sAs is true.
- A is transitive if S = T and $\forall r, s, t \in R, S, T$, rAs and $sAt \implies rAt$

Exercise

For each of the above properties, define a relation that exhibits this property.

• Let A be a relation between R and S. $(A \subset R \times S)$

- Let A be a relation between R and S. $(A \subset R \times S)$
- Let *B* be a relation between *S* and *T*. ($B \subset S \times T$)

- Let A be a relation between R and S. $(A \subset R \times S)$
- Let *B* be a relation between *S* and *T*. ($B \subset S \times T$)
- The **product** $AB \subset R \times T$ is defined as:

```
rABt \iff \exists s \in S : rAs \text{ and } sBt
```


- Let A be a relation between R and S. $(A \subset R \times S)$
- Let *B* be a relation between *S* and *T*. ($B \subset S \times T$)
- The **product** $AB \subset R \times T$ is defined as: $rABt \iff \exists s \in S : rAs \text{ and } sBt$
- This product is associative but not commutative.

- Let A be a relation between R and S. $(A \subset R \times S)$
- Let *B* be a relation between *S* and *T*. ($B \subset S \times T$)
- The **product** $AB \subset R \times T$ is defined as: $rABt \iff \exists s \in S : rAs \text{ and } sBt$
- This product is associative but not commutative.
- The equality relation, *I*, is the identity

$$I_{s}A = A = AI_{t}$$

- Let A be a relation between R and S. $(A \subset R \times S)$
- Let *B* be a relation between *S* and *T*. ($B \subset S \times T$)
- The **product** $AB \subset R \times T$ is defined as: $rABt \iff \exists s \in S : rAs \text{ and } sBt$
- This product is associative but not commutative.
- The equality relation, *I*, is the identity

$$I_{s}A = A = AI_{t}$$

• We define **powers** of *A* as:

- Let A be a relation between R and S. $(A \subset R \times S)$
- Let *B* be a relation between *S* and *T*. ($B \subset S \times T$)
- The **product** $AB \subset R \times T$ is defined as: $rABt \iff \exists s \in S : rAs \text{ and } sBt$
- This product is associative but not commutative.
- The equality relation, I, is the identity

$$I_{s}A = A = AI_{t}$$

- We define powers of A as:
 - $A^0 = I$

- Let A be a relation between R and S. $(A \subset R \times S)$
- Let *B* be a relation between *S* and *T*. ($B \subset S \times T$)
- The **product** $AB \subset R \times T$ is defined as:
 - $rABt \iff \exists s \in S : rAs \text{ and } sBt$
- This product is associative but not commutative.
- The equality relation, I, is the identity

$$I_{s}A = A = AI_{t}$$

- We define powers of A as:
 - $A^0 = I$
 - $A^{n+1} = A^n A$ for n > 0

Outline

Relations

Closures of Relations

Transitive Closure

• let $A \subset S \times S$

Transitive Closure

- let $A \subset S \times S$
- The transitive closure of A is:

$$A^+ = \sum_{i=1}^{\infty} A^i$$

Transitive Closure

- let $A \subset S \times S$
- The transitive closure of A is:

$$A^+ = \sum_{i=1}^{\infty} A^i$$

• Finite closures exist when A⁺ converges.

Reflexive Transitive Closure

Adding $I = A^0$ to A^+ yields the reflexive transitive closure of A.

$$A^* = \sum_{i=0}^{\infty} A^i$$

Example: Direct Divisor Relation

• Let S = T = the set of divisors of 12.

Example: Direct Divisor Relation

- Let S = T = the set of divisors of 12.
- The direct divisor relation is
 {(1,2), (1,3), (2,4), (2,6), (3,6), (4,12), (6,12)}

Example: Direct Divisor Relation

- Let S = T = the set of divisors of 12.
- The direct divisor relation is {(1,2), (1,3), (2,4), (2,6), (3,6), (4,12), (6,12)}
- This relation's digraph is:

(Davie and Morrison page 30)

Example: Binary Matrix of Direct Divisor Relation

(Davie and Morrison page 30)

$$\bullet \ M(A+B)=M(A)\vee M(B)$$

$$M(A+B) = M(A) \vee M(B)$$

• Let's compute $M(A^2)$

$$M(A+B) = M(A) \vee M(B)$$

- Let's compute $M(A^2)$
- Next, compute $M(A + A^2)$

- $M(A+B) = M(A) \vee M(B)$
- Let's compute $M(A^2)$
- Next, compute $M(A + A^2)$
- Let's compute $A + A^2 + \dots$ until it "settles down"

- $M(A+B) = M(A) \vee M(B)$
- Let's compute $M(A^2)$
- Next, compute $M(A + A^2)$
- Let's compute $A + A^2 + \dots$ until it "settles down"
- This gives us A^+ , to get A^* we just make all diagonal elements true.

Computing transitive closure in S-Algol

From Davie and Morrison page 33

