

### Regression

SANTHOSH KUMAR K P

#### What is Regression?

Regression Analysis is a predictive modelling technique

It estimates the relationship between a dependent (target) and an independent variable (predictor)



### Uses of Regression

Three major uses for regression analysis are

- Determining the strength of predictors
- Forecasting an effect, and
- Trend forecasting



#### **Regression Models**



#### **Curvilinear relationships**



#### **Types of Relationships**





#### **Types of Relationships**



## Linear Regression Algorithm



Independent Variable

# Linear Regression Algorithm



Independent Variable

## Linear Regression Algorithm















#### **Mean Square Error**



$$m = 0.4$$
  
 $c = 2.4$   
 $y = 0.4x + 2.4$ 

For given m = 0.4 & c = 2.4, lets predict values for y for  $x = \{1,2,3,4,5\}$ 

$$y = 0.4 \times 1 + 2.4 = 2.8$$
  
 $y = 0.4 \times 2 + 2.4 = 3.2$   
 $y = 0.4 \times 3 + 2.4 = 3.6$   
 $y = 0.4 \times 4 + 2.4 = 4.0$   
 $y = 0.4 \times 5 + 2.4 = 4.4$ 

#### Let's check the Goodness of fit

### What is R-Square?

- R-squared value is a statistical measure of how close the data are to the fitted regression line
- It is also known as coefficient of determination, or the coefficient of multiple determination



Distance actual - mean

VS

Distance predicted - mean

This is nothing but 
$$R^2 = \frac{\sum (y_p - \bar{y})^2}{\sum (y - \bar{y})^2}$$

X Independent Variable



| x | y | $y - \bar{y}$ |  |  |
|---|---|---------------|--|--|
| 1 | 3 | - 0.6         |  |  |
| 2 | 4 | 0.4           |  |  |
| 3 | 2 | -1.6          |  |  |
| 4 | 4 | 0.4           |  |  |
| 5 | 5 | 1.4           |  |  |

mean y 3.6

$$R^{2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}}$$

Independent Variable



| x | у | y - y | $(y - y)^2$ | $y_p$ | $(y_p - y)$ | $(y_p-y)$ |
|---|---|-------|-------------|-------|-------------|-----------|
| 1 | 3 | - 0.6 | 0.36        | 2.8   | -0.8        | 0.64      |
| 2 | 4 | 0.4   | 0.16        | 3.2   | -0.4        | 0.16      |
| 3 | 2 | -1.6  | 2.56        | 3.6   | 0           | 0         |
| 4 | 4 | 0.4   | 0.16        | 4.0   | 0.4         | 0.16      |
| 5 | 5 | 1.4   | 1.96        | 4.4   | 0.8         | 0.64      |

mean y 3.

3.6

 $\sum$  5.2

$$R^2 = \frac{1.6}{5.2} = \frac{\sum (y_p - \bar{y})^2}{\sum (y - \dot{y})^2}$$

X Independent Variable



$$R^2 \approx 0.3$$

X Independent Variable



$$R^2 \approx 1$$



$$R^2 \approx 0.02$$

X Independent Variable

#### EXAMPLES



What lines "really" best fit each case? – different approaches

#### **Logistic Regression: What And Why?**

Logistic Regression produces results in a binary format which is used to predict the outcome of a categorical dependent variable. So the outcome should be discrete/ categorical such as:



#### Why Not Linear Regression?





Since our value of Y will be between 0 and 1, the linear line has to be clipped at 0 and 1.

#### Why Not Linear Regression?





#### **Logistic Regression Curve**



 $\log \left[\frac{Y}{1-Y}\right] \implies Y = C + BIX1 + B2X2 + ....$ 

Final Logistic Regression Equation

 $f(x) = rac{1}{1 + e^{-x}}$ 

#### **Linear Vs Logistic Regression**



**Linear Regression** 

- 1 Continuous variables
- 2 Solves Regression Problems
- 3 Straight line



**Logistic Regression** 



- Categorical variables
- 2 Solves Classification Problems
- 3 S-Curve

#### **Logistic Regression: Use - Cases**









Your best quote that reflects your approach... "It's one small step for man, one giant leap for mankind."

- NEIL ARMSTRONG