LIMSI Séminaire TLP 5 octobre 2010

Hervé BREDIN

- bâtiment S
- poste 81 84
- bredin@limsi.fr
- www.limsi.fr/Individu/bredin

PARCOURS

- 2001-2004
 - Elève ingénieur @ Télécom Paris
 - Traitement du signal / reconnaissance des formes
- 2004-2007
 - Doctorat @ Télécom Paris
 - Vérification audiovisuelle de l'identité
- 2008
 - Post-doctorat @ Dublin City University
 - Résumé automatique de séquences audiovisuelles
- 2008-2010
 - CNRS @ Institut de Recherche en Informatique de Toulouse
 - Indexation sémantique de documents audiovisuels

Travaux de thèse à Télécom Paris (2004-2007)

VÉRIFICATION AUDIOVISUELLE DE L'IDENTITÉ

VÉRIFICATION AUDIOVISUELLE DE L'IDENTITÉ Contexte

- réseau d'excellence BioSecure
 - « Biometrics for Secure Authentication »
 - Empreinte digitale, main, iris, signature, voix,
 visage
 - Fusion multi-modale
- projet SecurePhone
 - « enabling biometrically authenticated users to deal m-contracts during a mobile phone call »
 - Empreinte digitale, voix, visage, signature

VÉRIFICATION AUDIOVISUELLE DE L'IDENTITÉ Principe général

Enrôlement

Test

VÉRIFICATION AUDIOVISUELLE DE L'IDENTITÉ Fusion multimodale (voix + visage)

- Système de référence (baseline)
 - Vérification du locuteur
 - MFCC / GMM-UBM
 - Reconnaissance du visage
 - *Eigenfaces /* Distance euclidienne
 - Fusion tardive
 - Somme pondérée des scores normalisés

VÉRIFICATION AUDIOVISUELLE DE L'IDENTITÉ Robustesse à l'imposture

VÉRIFICATION AUDIOVISUELLE DE L'IDENTITÉ Modalité voix x lèvres (enrôlement)

extraction de paramètres

 X^{λ} Paramètres audio : coefficients MFCC

 Y^{λ} Paramètres visuels : coefficients DCT de la région de la bouche

analyse de co-inertie

$$(\mathbf{a}_{1}^{\lambda}, \mathbf{b}_{1}^{\lambda}) = \operatorname{argmax}_{(a,b)} \operatorname{cov} (a^{t} X^{\lambda}, b^{t} Y^{\lambda})$$

$$\mathbf{A}^{\lambda} = [\mathbf{a}_{1}^{\lambda}, \mathbf{a}_{2}^{\lambda}, \dots, \mathbf{a}_{d}^{\lambda}]$$

$$\mathbf{B}^{\lambda} = [\mathbf{b}_{1}^{\lambda}, \mathbf{b}_{2}^{\lambda}, \dots, \mathbf{b}_{d}^{\lambda}]$$

VÉRIFICATION AUDIOVISUELLE DE L'IDENTITÉ

Modalité voix x lèvres (test)

mesure de synchronie dépendante du client

$$S_{\text{synchrony}} = \frac{1}{D} \sum_{k=1}^{D} \text{corr} \left(\mathbf{a}_k^{\lambda^t} X^{\epsilon}, \mathbf{b}_k^{\lambda^t} Y^{\epsilon} \right)$$

Accepté (ϵ = λ) si $S_{
m synchrony} > \theta$, rejeté sinon.

VÉRIFICATION AUDIOVISUELLE DE L'IDENTITÉ

Fusion adaptative

Somme pondérée adaptative

$$\begin{split} S_{\text{final}} &= \alpha(S_{\text{synchrony}}) \cdot S_{\text{baseline}} \\ &+ \left[1 - \alpha(S_{\text{synchrony}})\right] \cdot S_{\text{synchrony}} \end{split}$$

VÉRIFICATION AUDIOVISUELLE DE L'IDENTITÉ Expériences (base BANCA)

	Baseline (face + speaker)	New system (synchrony)	New fusion strategy
Random imposture	DCF = 5.8% $FAR = 2.1%$ $FRR = 38%$	DCF = 8.6% $FAR = 1.0%$ $FRR = 77%$	DCF = 6.0% $FAR = 0.0%$ $FRR = 54%$
Deliberate imposture	DCF = 97% $FAR = 94%$ $FRR = 38%$	DCF = 7.6% $FAR = 0%$ $FRR = 77%$	DCF = 7.3% $FAR = 1.9%$ $FRR = 5470$

Performance brute du système de référence &

Robustesses aux attaques

VÉRIFICATION AUDIOVISUELLE DE L'IDENTITÉ Robustesse à l'imposture

Travaux de post-doctorat à Dublin City University (2008)

RÉSUMÉ AUTOMATIQUE DE SÉQUENCES AUDIOVISUELLES

Contexte

- Aide à la navigation dans les vidéos Montage automatique
- Tâche
 - Entrée : document audiovisuel de durée D
 - Sortie : document audiovisuel de durée inférieure à
 2% de D « représentatif » du document original
 - NIST: "at least the summary should be usable by a professional"
- @ DCU
 - D. Byrne, H. Lee, N. O'Connor, G. Jones

Principe général

- Segmentation en plan
- Description bas-niveau de chaque plan
- Sélection des plans représentatifs de la vidéo
- Sélection des segments représentatifs

Description des trames

Réduction de la dimensionalité
Principal Components Analysis (PCA)
Linear Discriminant Analysis (LDA)

« Empreinte » visuelle

Sélection des plans représentatifs

Sélection du segment représentatif

Exemples de résumé

TRECVID 2008

CNRS IRIT (2008-2010) LIMSI (2010-...)

INDEXATION PAR LE CONTENU DE DOCUMENTS AUDIOVISUELS

Détection de concepts sémantiques

- Problématique
 - le concept X apparaît-il dans la vidéo ?

stadium	dog	prisoner	chair	crowd
explosion	bridges	tent	vegetation	
soccer player	hospitals	athlete	indoor	laboratory
, , , , , , , , , , , , , , , , , , ,	wa	lking		
doorway		driver	eater	
musical instrume	ent	US flag	demonstration	
roadway juncti	on	tennis	scientist	
singing	meeting		dancing	waterscape

Fusion tardive audio/vidéo

Extraction de descripteurs bas-niveauClassification

Fusion tardive audio/vidéo + transcription

Extraction de descripteurs bas-niveauClassification

Fusion précoce / hiérarchique

Extraction de descripteurs bas-niveauClassification

LIMSI Séminaire TLP 5 octobre 2010

THE END