

CVChess

Ved Patel, Gawthaman Senthilvelan Luthira Abeykoon, Darshan Kasundra

· OI · PROBLEM

THE CHESS RENAISSANCE

- > 55% Increase in Chess Tournament Viewership since 2020
- Manually keeping record of the moves of the game is exhausting
- CVChess proposes a way to automate the process

THE IDEA BEHIND CVCHESS

FEN Notation

Chess Recognition Dataset (ChessReD)

Metric	Blender Dataset		ChessReD		ChessReD*	
	Chesscog	ResNeXt	Chesscog	ResNeXt	Chesscog	ResNeXt
Mean incorrect squares per board	0.15	1.19	42.87	3.40	12.96	3.35
Boards with no mistakes (%)	93.86%	39.76%	2.30%	15.26%	6.69%	15.30%
Boards with ≤ 1 mistake (%)	99.71%	65.20%	7.79%	25.92%	22.67%	27.04%
Per-square error rate (%)	0.23%	1.86%	73.64%	5.31%	39.57%	5.24%

dataset outperforms related approaches, successfully recognizing the chess pieces' configuration in 15.26% of ChessReD's test images. This accuracy may seem low, but it is $\approx 7x$ better than the current state-of-the-art and

Excerpts from End-to-End Chess Recognition by Masouris et al.

DATA PROCESSING

DATASETS USED FOR CVCHESS

ChessReD

10,800 images Various angles 60/20/20 split

CVChess

445 images 89 unique moves Real World Testing

BOARD DETECTION AND PERSPECTIVE TRANSFORM

- ightharpoonup Convert to grayscale → Gaussian blur (5×5) → Canny edges (50-150) → Dilate
- > Extract largest 4-corner contour covering >5% of image
- > Arrange corners so a8 is top-left, h1 is bottom-right
- ➤ Apply cv2.getPerspectiveTransform() to warp board to a 400×400 top-down view

BOARD DETECTION AND PERSPECTIVE TRANSFORM

- Convert to grayscale \rightarrow Gaussian blur (5×5) \rightarrow Canny edges (50-150) \rightarrow Dilate
- > Extract largest 4-corner contour covering >5% of image
- > Arrange corners so a8 is top-left, h1 is bottom-right
- Apply cv2.getPerspectiveTransform() to warp board to a 400×400 top-down view

FEATURE EXTRACTION

- Corrects minor distortions and ensures accurate square boundaries
- Find line intersections → segment board into exact 8×8 grid.
- ightharpoonup Parse ground truth FEN ightharpoonup expand digits into empty squares ightharpoonup map each piece to 13 classes

· 03 · MODEL

CVCHESS CNN ARCHITECTURE

- ➤ 4 Convolutional Blocks
 - \circ Conv2D \rightarrow BatchNorm \rightarrow ReLU \rightarrow Pooling
 - Input resolution: 244x244 → progressively reduced to 8x8 (matches chess board)
- **Flatten** → Dense Layer for Classification
 - Shape of (64,13) for per-square classifying
- > Predicts 1 of 13 classes (12 pieces + empty)
- > Total # of Trainable Parameters: **11,032,525**
- > Design Choices:
 - AdaptiveAvgPool ensures spatial output matches chessboard grid size regardless of input size
 - BatchNorm to prevent covariate shift issues → faster convergence
 - Dropout (0.3) to prevent overfitting

- ightharpoonup Stem: 7×7 Conv ightharpoonup BN ightharpoonup Re
 - ⇒ 3 Residual Layers (Propression: 64→128
 - (matches chess board)
- ➤ Flatten → Dense Layer for 0
 - Shape of (64,13) for pe
 Predicts 1 of 13 classes (12
- > Predicts 1 of 13 classes (12
- > Total # of Trainable Paramete
- ➤ Design Choices:
 - AdaptiveAvgPool ensemble
 grid size regardless of
 - **BatchNorm** to prevent convergence
 - **Dropout** (0.3) to preve

CVCHESS MODEL ARCHITECTURE

· O4· RESULTS

Frequency of Errors Per Board

Final Model Accuracy

Our Model: 63.9%

Previous State of the Art: 15.6%

QUANTITATIVE RESULTS

Confusion Matrix of Predicted vs. Actual Classes

Accuracy and Loss Curves during Training and Validation

QUALITATIVE RESULTS - INCORRECT

png

GT FEN: r4rk1/p1pn1pp1/1pbbp1qp/8/2PP1B2/2P2N2/P2QBPPP/R4RK1 Pred FEN: r3r1k1/1p1nqpp1/p1pb1n1p/3p4/1P1P4/P1NQP3/1B1N1PPP/R4RK1 # wrong squares: 25

QUALITATIVE RESULTS - CORRECT

QUALITATIVE RESULTS – COMPARISON

Incorrect

Correct

· 05 · DISCUSSION

- Major performance gains by expanding training data + stronger preprocessing pipeline
- ➤ Without preprocessing → model fails to generalize
- ~% of images lost due to failed board detection
- ➤ Takeaway → Early pipeline planning & dataset inspection are <u>critical</u>

◆HOW LOCATION OF PIECE AFFECTS ACCURACY

REFERENCES