# Context Free Grammars

## Dhruva Sambrani

## February 26, 2020

#### Continued

 $G=(V,\Sigma,R,S)$  where - - V a finite set called the set of variables -  $\Sigma$  a finite set of characters -  $S\in V$  start variables - R is a set of rules  $A\to string$  of variables and/or letters from  $\Sigma$ 

#### Rules

supp. rule A  $\rightarrow$  0A1 And if w1 = 01A11  $\Longrightarrow$  w2 = 010A111 where w2 is derived from w1.

Also,

 $w1 \Longrightarrow w2 \Longrightarrow w3 \Longrightarrow w4 \Longrightarrow ... \Longrightarrow wn$ 

Then  $w1 = *\Longrightarrow wn$ 

Given a CFG G(= (V,Σ,R,S)), then the language generated by it is LG = { w | w∈Σ and S =⇒ w }

#### Example

In the previous case of the Grammar of arithmetic over add and sub, -  $\Sigma$  was  $\{0...9,\,(,\,),\,+,\,\text{-}\}$  - V was  $\{E,\,N\}$  - R was -  $E\to E+E$  | E-E | (E) | N -  $N\to 0$  | ... | 9 | NN - S=E

#### Parse Tree

# Stack

FILO - First in Last out. You push into the stack, but you must pop out the last element only.



Figure 1: parsetree.jpg

Parse to check if Expr.

Let St be a St.

- 1. Push E to St
- 2. Pop