Customer Segmentation Analysis

March 11, 2024

```
[1]: import pandas as pd
     import matplotlib.pyplot as plt
     import numpy as np
     import seaborn as sns
    DATA
[2]: data = pd.read_excel("ifood_df.xlsx")
     data.head()
[3]:
[3]:
        Income
                Kidhome
                          Teenhome
                                     Recency
                                               MntWines
                                                         MntFruits MntMeatProducts
         58138
                                           58
                                                    635
                                                                 88
                                                                                  546
     1
         46344
                       1
                                  1
                                           38
                                                     11
                                                                  1
                                                                                    6
     2
         71613
                       0
                                  0
                                          26
                                                    426
                                                                 49
                                                                                   127
         26646
                                  0
                                           26
                                                                  4
                                                                                   20
     3
                       1
                                                     11
         58293
                       1
                                  0
                                          94
                                                    173
                                                                 43
                                                                                  118
        MntFishProducts MntSweetProducts
                                             MntGoldProds
                                                                marital_Together
                                         88
     0
                     172
                                                         88
                       2
                                                         6
                                                                                0
     1
                                          1
     2
                     111
                                         21
                                                         42 ...
                                                                                1
     3
                      10
                                          3
                                                         5
                                                                                1
     4
                      46
                                         27
                                                         15
                                                                                0
        marital_Widow
                        education_2n Cycle
                                              education_Basic
                                                                education_Graduation
     0
                     0
                                          0
                                                             0
                                                                                     1
                                           0
                                                             0
     1
                                                                                     1
                     0
                                                             0
     2
                                          0
                                                                                    1
     3
                     0
                                           0
                                                             0
                                                                                     1
                                                                                     0
                                           MntTotal MntRegularProds
        education_Master
                           education_PhD
     0
                        0
                                        0
                                                1529
                                                                  1441
     1
                        0
                                        0
                                                  21
                                                                     15
     2
                        0
                                        0
                                                 734
                                                                   692
     3
                        0
                                        0
                                                  48
                                                                    43
                        0
                                        1
                                                 407
                                                                   392
```

AcceptedCmpOverall

0	0
1	0
2	0
3	0
4	0

[5 rows x 39 columns]

DATA EXPLORATION AND DATA CLEANING

[4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2205 entries, 0 to 2204
Data columns (total 39 columns):

#	Column	Non-Null Count	Dtype
0	Income	2205 non-null	 int64
1	Kidhome	2205 non-null	int64
2	Teenhome	2205 non-null	int64
3	Recency	2205 non-null	int64
4	MntWines	2205 non-null	int64
5	MntFruits	2205 non-null	int64
6	MntMeatProducts	2205 non-null	int64
7	MntFishProducts	2205 non-null	int64
8	MntSweetProducts	2205 non-null	int64
9	${ t MntGoldProds}$	2205 non-null	int64
10	NumDealsPurchases	2205 non-null	int64
11	NumWebPurchases	2205 non-null	int64
12	${\tt NumCatalogPurchases}$	2205 non-null	int64
13	NumStorePurchases	2205 non-null	int64
14	${\tt NumWebVisitsMonth}$	2205 non-null	int64
15	AcceptedCmp3	2205 non-null	int64
16	AcceptedCmp4	2205 non-null	int64
17	AcceptedCmp5	2205 non-null	int64
18	AcceptedCmp1	2205 non-null	int64
19	AcceptedCmp2	2205 non-null	int64
20	Complain	2205 non-null	int64
21	$Z_{CostContact}$	2205 non-null	int64
22	Z_Revenue	2205 non-null	int64
23	Response	2205 non-null	int64
24	Age	2205 non-null	int64
25	Customer_Days	2205 non-null	int64
26	marital_Divorced	2205 non-null	int64
27	${\tt marital_Married}$	2205 non-null	int64
28	marital_Single	2205 non-null	int64

```
int64
29 marital_Together
                         2205 non-null
30 marital_Widow
                         2205 non-null
                                         int64
    education_2n Cycle
                         2205 non-null
                                         int64
 31
 32 education_Basic
                         2205 non-null
                                         int64
33 education_Graduation 2205 non-null int64
 34 education_Master
                         2205 non-null int64
    education PhD
                         2205 non-null int64
36 MntTotal
                         2205 non-null int64
 37 MntRegularProds
                         2205 non-null int64
 38 AcceptedCmpOverall
                         2205 non-null
                                         int64
dtypes: int64(39)
```

memory usage: 672.0 KB

[6]: # Check the dimensions of the dataset (number of rows and columns) print("\033[1mDimensions of the dataset:\033[0m", data.shape)

Dimensions of the dataset: (2205, 39)

```
[7]: # Check for missing values in each column
     print("\033[1mMissing values in each column:\033[0m")
     print(data.isnull().sum())
```

Missing values in each column:

Income	0
Kidhome	0
Teenhome	0
Recency	0
MntWines	0
MntFruits	0
MntMeatProducts	0
${\tt MntFishProducts}$	0
${\tt MntSweetProducts}$	0
MntGoldProds	0
NumDealsPurchases	0
NumWebPurchases	0
NumCatalogPurchases	0
NumStorePurchases	0
${\tt NumWebVisitsMonth}$	0
AcceptedCmp3	0
AcceptedCmp4	0
AcceptedCmp5	0
AcceptedCmp1	0
AcceptedCmp2	0
Complain	0
Z_CostContact	0
Z_Revenue	0
Response	0
Age	0
Customer_Days	0

```
marital_Divorced
                         0
marital_Married
                         0
marital_Single
                         0
marital_Together
                         0
marital_Widow
                         0
education_2n Cycle
                         0
education_Basic
                         0
education_Graduation
{\tt education\_Master}
                         0
education_PhD
                         0
MntTotal
                         0
MntRegularProds
                         0
AcceptedCmpOverall
                         0
dtype: int64
```

[8]: # Check for duplicate rows print("\033[1mNumber of duplicate rows:\033[0m", data.duplicated().sum())

Number of duplicate rows: 184 DESCRIPTIVE STATISTICS

[9]: data.describe()

[9]:		Income	Kidhome	Teenhome	Recency	MntWines	\
	count	2205.000000	2205.000000	2205.000000	2205.000000	2205.000000	
	mean	51622.094785	0.442177	0.506576	49.009070	306.164626	
	std	20713.063826	0.537132	0.544380	28.932111	337.493839	
	min	1730.000000	0.000000	0.000000	0.000000	0.000000	
	25%	35196.000000	0.000000	0.000000	24.000000	24.000000	
	50%	51287.000000	0.000000	0.000000	49.000000	178.000000	
	75%	68281.000000	1.000000	1.000000	74.000000	507.000000	
	max	113734.000000	2.000000	2.000000	99.000000	1493.000000	
		$ exttt{MntFruits}$	${ t IntMeatProducts}$	${ t MntFishPro}$	ducts MntSwe	etProducts \	
	count	2205.000000	2205.000000	2205.0	00000 2	205.000000	
	mean	26.403175	165.312018	37.7	56463	27.128345	
	std	39.784484	217.784507	54.8	24635	41.130468	
	min	0.000000	0.000000	0.0	00000	0.000000	
	25%	2.000000	16.000000	3.0	00000	1.000000	
	50%	8.000000	68.000000	12.0	00000	8.000000	
	75%	33.000000	232.000000	50.0	00000	34.000000	
	max	199.000000	1725.000000	259.0	00000	262.000000	
		${\tt MntGoldProds}$	marital_Tog	ether marit	al_Widow edu	.cation_2n Cycl	e \
	count	2205.000000	2205.0	00000 220	5.000000	2205.00000	0
	mean	44.057143	0.2	57596	0.034467	0.08979	6
	std	51.736211	0.4	37410	0.182467	0.28595	4

min	0.000000		0.00	00000	0.000000		0.000000	
25%	9.000000		0.00	00000	0.000000		0.00000	
50%	25.000000		0.00	00000	0.000000		0.000000	
75%	56.000000		1.00	00000	0.000000		0.00000	
max	321.000000		1.00	00000	1.000000		1.000000	
	education_Ba	sic	education_Gr	aduation	education_	Master	education_PhD	\
count	2205.000	000	220	05.000000	2205.	000000	2205.000000	
mean	0.024	490		0.504762	0.	165079	0.215873	
std	0.154	599		0.500091	0.	371336	0.411520	
min	0.000	000		0.000000	0.	000000	0.000000	
25%	0.000	000		0.000000	0.	000000	0.000000	
50%	0.000	000		1.000000	0.	000000	0.000000	
75%	0.000	000		1.000000	0.	000000	0.000000	
max	1.000	000		1.000000	1.	000000	1.000000	
	${ t MntTotal}$	Mnt	RegularProds	_	CmpOverall			
count	2205.000000		2205.000000		2205.00000			
mean	562.764626		518.707483		0.29932			
std	575.936911		553.847248		0.68044			
min	4.000000		-283.000000		0.00000			
25%	56.000000		42.000000		0.00000			
50%	343.000000		288.000000		0.00000			
75%	964.000000		884.000000		0.00000			
max	2491.000000		2458.000000		4.00000			
Γ0	20 - 1	_ 7						

[8 rows x 39 columns]

[10]: #Median

print("\033[1mMedian of each numerical column:\033[0m")
print(data.median())

Median of each numerical column:

Income	51287.0
Kidhome	0.0
Teenhome	0.0
Recency	49.0
MntWines	178.0
MntFruits	8.0
MntMeatProducts	68.0
MntFishProducts	12.0
MntSweetProducts	8.0
MntGoldProds	25.0
NumDealsPurchases	2.0
NumWebPurchases	4.0
NumCatalogPurchases	2.0
NumStorePurchases	5.0
NumWebVisitsMonth	6.0

AcceptedCmp3	0.0
AcceptedCmp4	0.0
AcceptedCmp5	0.0
AcceptedCmp1	0.0
AcceptedCmp2	0.0
Complain	0.0
Z_CostContact	3.0
Z_Revenue	11.0
Response	0.0
Age	50.0
Customer_Days	2515.0
marital_Divorced	0.0
marital_Married	0.0
marital_Single	0.0
marital_Together	0.0
marital_Widow	0.0
education_2n Cycle	0.0
education_Basic	0.0
education_Graduation	1.0
education_Master	0.0
education_PhD	0.0
MntTotal	343.0
MntRegularProds	288.0
AcceptedCmpOverall	0.0
dtype: float64	

[11]: #Standard deviation

print("\033[1mStandard deviation of each numerical column:\033[0m")
print(data.std())

Standard deviation of each numerical column:

Income	20713.063826
Kidhome	0.537132
Teenhome	0.544380
Recency	28.932111
MntWines	337.493839
MntFruits	39.784484
MntMeatProducts	217.784507
MntFishProducts	54.824635
MntSweetProducts	41.130468
MntGoldProds	51.736211
NumDealsPurchases	1.886107
NumWebPurchases	2.737424
NumCatalogPurchases	2.798647
NumStorePurchases	3.241796
NumWebVisitsMonth	2.413535
AcceptedCmp3	0.261705
AcceptedCmp4	0.262442

```
AcceptedCmp5
                             0.260222
AcceptedCmp1
                             0.245518
AcceptedCmp2
                             0.115872
Complain
                             0.094827
Z CostContact
                             0.000000
Z Revenue
                             0.000000
Response
                             0.358150
Age
                            11.705801
Customer_Days
                           202.563647
marital_Divorced
                             0.305730
marital_Married
                             0.487244
marital_Single
                             0.411833
marital_Together
                             0.437410
                             0.182467
marital_Widow
education_2n Cycle
                             0.285954
education_Basic
                             0.154599
education_Graduation
                             0.500091
education_Master
                             0.371336
{\tt education\_PhD}
                             0.411520
MntTotal
                           575.936911
                           553.847248
MntRegularProds
AcceptedCmpOverall
                             0.680440
dtype: float64
```

[12]: #Variance

print("\033[1mVariance of each numerical column:\033[0m")
print(data.var())

Variance of each numerical column:

Income 4.290310e+08 Kidhome 2.885107e-01 Teenhome 2.963497e-01 8.370671e+02 Recency MntWines 1.139021e+05 MntFruits 1.582805e+03 MntMeatProducts 4.743009e+04 MntFishProducts 3.005741e+03 MntSweetProducts 1.691715e+03 MntGoldProds 2.676636e+03 NumDealsPurchases 3.557398e+00 NumWebPurchases 7.493489e+00 NumCatalogPurchases 7.832425e+00 NumStorePurchases 1.050924e+01 NumWebVisitsMonth 5.825153e+00 AcceptedCmp3 6.848937e-02 AcceptedCmp4 6.887580e-02 AcceptedCmp5 6.771527e-02 AcceptedCmp1 6.027919e-02

```
AcceptedCmp2
                        1.342642e-02
Complain
                        8.992103e-03
Z_CostContact
                        0.000000e+00
Z_Revenue
                        0.000000e+00
Response
                        1.282714e-01
Age
                        1.370258e+02
Customer Days
                        4.103203e+04
marital Divorced
                        9.347054e-02
marital Married
                        2.374067e-01
marital_Single
                        1.696063e-01
marital_Together
                        1.913273e-01
marital_Widow
                        3.329424e-02
education_2n Cycle
                        8.176970e-02
education_Basic
                        2.390089e-02
education_Graduation
                        2.500907e-01
education_Master
                        1.378907e-01
education_PhD
                        1.693487e-01
MntTotal
                        3.317033e+05
MntRegularProds
                        3.067468e+05
AcceptedCmpOverall
                        4.629986e-01
dtype: float64
```

asype: 11sass

[13]: #Skewness
print("\033[1mSkewness of each numerical column:\033[0m")
print(data.skew())

Skewness of each numerical column: Income 0.013164 Kidhome 0.635495 Teenhome 0.404623 Recency -0.001874 MntWines 1.166917 MntFruits 2.099281 MntMeatProducts 1.818916 MntFishProducts 1.912028 MntSweetProducts 2.098355 MntGoldProds 1.834468 NumDealsPurchases 2.312369 NumWebPurchases 1.201376 NumCatalogPurchases 1.368122 NumStorePurchases 0.706960 NumWebVisitsMonth 0.229994 AcceptedCmp3 3.259123 AcceptedCmp4 3.246508 AcceptedCmp5 3.284676 AcceptedCmp1 3.551642 AcceptedCmp2 8.402967 Complain 10.363651

```
Z_CostContact
                         0.000000
Z_Revenue
                          0.000000
Response
                          1.950559
Age
                         0.089941
Customer Days
                         -0.019176
marital_Divorced
                          2.590858
marital Married
                         0.463015
marital_Single
                          1.378865
marital_Together
                          1.109366
marital_Widow
                          5.107283
education_2n Cycle
                         2.871626
education_Basic
                          6.157110
education_Graduation
                         -0.019061
education_Master
                          1.805504
education_PhD
                          1.382120
MntTotal
                         0.915811
MntRegularProds
                          0.984218
AcceptedCmpOverall
                          2.719448
dtype: float64
```

[14]: #Kurtosis

print("\033[1mKurtosis of each numerical column:\033[0m")
print(data.kurtosis())

Kurtosis of each numerical column:

-0.847564 Income Kidhome -0.789442 Teenhome -0.989633 Recency -1.198443MntWines 0.574909 MntFruits 4.050778 MntMeatProducts 3.248138 MntFishProducts 3.056338 MntSweetProducts 4.079829 MntGoldProds 3.143759 NumDealsPurchases 8.186671 NumWebPurchases 4.101823 NumCatalogPurchases 3.210414 NumStorePurchases -0.635247 NumWebVisitsMonth 1.904398 AcceptedCmp3 8.629707 AcceptedCmp4 8.547565 AcceptedCmp5 8.797075 AcceptedCmp1 10.623796 AcceptedCmp2 68.672133 Complain 105.500953 $Z_CostContact$ 0.000000 Z_Revenue 0.000000

```
Response
                          1.806319
Age
                         -0.797036
Customer_Days
                         -1.202857
marital_Divorced
                          4.716821
marital Married
                         -1.787239
marital_Single
                         -0.098821
marital Together
                         -0.770007
marital Widow
                         24.106203
education 2n Cycle
                         6.251906
education_Basic
                         35.942609
education_Graduation
                         -2.001453
education_Master
                          1.260988
education_PhD
                         -0.089827
MntTotal
                         -0.218527
MntRegularProds
                         -0.059651
AcceptedCmpOverall
                          7.974750
dtype: float64
```

CUSTOMER SEGMENTATION

```
[15]: from sklearn.cluster import KMeans
      from sklearn.preprocessing import StandardScaler
      from sklearn.metrics import silhouette_score
```

```
[16]: # Select relevant features for clustering
      selected_features = ['Income', 'Recency', 'MntWines',_
       → 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', '

    'MntGoldProds']
      # Standardize the selected features
      scaler = StandardScaler()
      data_scaled = scaler.fit_transform(data[selected_features])
```

```
[18]: # Determine the optimal number of clusters using silhouette score
      silhouette_scores = []
      for k in range(2, 11):
          kmeans = KMeans(n_clusters=k, random_state=42)
          kmeans.fit(data_scaled)
          silhouette_scores append((k, silhouette_score(data_scaled, kmeans.labels_)))
```

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=9.

warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:870:

FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=9.

warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto' in
1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=9.

warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto' in
1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=9.

warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto' in
1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=9.

warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto' in
1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=9.

warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto' in
1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=9.

warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto' in
1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=9.

warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto' in
1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=9.

warnings.warn(

[19]: # Choose the optimal number of clusters based on the highest silhouette score optimal_num_clusters = max(silhouette_scores, key=lambda x: x[1])[0] # Perform K-means clustering with the optimal number of clusters kmeans = KMeans(n_clusters=optimal_num_clusters, random_state=42) kmeans.fit(data_scaled)

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto' in
1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=9.

warnings.warn(

[19]: KMeans(n_clusters=2, random_state=42)

```
print(cluster_centers)
     Cluster centers:
              Income
                        Recency
                                  MntWines MntFruits MntMeatProducts \
     0 40509.257576 48.588154 146.756887
                                            7.480716
                                                             46.162534
     1 73050.832669 49.820717 613.548473 62.891102
                                                            395.066401
        MntFishProducts MntSweetProducts MntGoldProds
                                             25.344353
     0
              10.693526
                                7.440083
     1
              89.941567
                                65.092961
                                             80.140770
[21]: # Display the number of customers in each cluster
     print("\033[1mNumber of customers in each cluster:\033[0m")
     print(data['Cluster'].value_counts())
     Number of customers in each cluster:
     Cluster
     0
          1452
           753
     Name: count, dtype: int64
     DATA VISUALIZATION
[22]: # Scatter plot of two features colored by cluster
     plt.figure(figsize=(6, 4))
     plt.scatter(data['MntWines'], data['MntMeatProducts'],
       ⇔c=data['Cluster'],cmap='viridis')
     plt.xlabel('Amount spent on Wines')
     plt.ylabel('Amount spent on Meat Products')
     plt.title('Customer Segmentation: Wines vs. Meat Products')
     plt.colorbar(label='Cluster')
     plt.show()
```



```
[26]: # Create a pairplot colored by cluster
sns.pairplot(data, vars=['MntWines', 'MntMeatProducts',

→'Income'],hue='Cluster', palette='viridis')
plt.show()
```

C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119:
FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119:
FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119:
FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

