ECE 786

Programming assignment 3

Report

Thread Coarsening optimization:

This optimization aims at obtaining performance improvement through register reusing. In this technique the computations of 2 successive elements are carried out in the same thread, such that there is reuse of a register in the second computation. Hence the number of threads along a particular dimension reduces to half the initial number. The following changes were made in the code for thread coarsening:

```
m=m*2;
                                      //reducing the number of threads along y-dimension
if (m<c_rows && n<c_cols)
{
 for(int p=0;p<=(j-1);p++)
 {
       for(int q=0;q<=(k-1);q++)
       {
            if(!((m-p)<0 \parallel (n-q)<0 \parallel (m-p)>=z \parallel (n-q)>=i)) //For first element
            {
                     c[(m*c\_cols)+n]+=h[(p*k)+q]*a[((m-p)*i)+(n-q)];
                     __syncthreads();
             }
            if(!(((m+1)-p)<0 || (n-q)<0 || ((m+1)-p)>=z || (n-q)>=i)) //For second element
            {
                      c[((m+1)*c\_cols)+n]+=h[(p*k)+q]*a[(((m+1)-p)*i)+(n-q)];
                      __syncthreads();
             }
        }
  }
}
```

Performance:

Time taken for executing 500*500 A matrix without thread coarsening: 16us

Time taken for executing 500*500 A matrix with thread coarsening: 28us

Analysing global memory accesses:

Considering an input matrices A of dimension 5*5 and H of dimension 3*3 we get output matrix of dimension 7*7.

The thread block configuration is 32*32 with each element being of double type. Hence in each cache line 16 elements would be stored each of double type.

For warp 0 of threadblock 0:

Idx: 0~31

Idy:0

For matrix h:

Each element of h is accessed in the following manner for each computation: h[(p*k)+q]

Since the access of h is independent of idx or idy, therefore we obtain **coalesced** memory access for h matrix.

For matrix a:

Each element of a is accessed in the following manner for each computation: $a[(idy-p)*a_cols+(idx-q)]$

Consider p=0 & q=0. Since a_cols=5, idy=0 & idx=0~31,

Element of $a=a[idx]=a[0\sim31]$

Since each element is of double type, we get **uncoalesced** memory access for matrix a.

For matrix c:

Each element of a is accessed in the following manner for each computation: $c[(idy*c_cols)+idx)]$

Consider p=0 & q=0. Since c_cols=7, idy=0 & idx=0~31,

Element of $c=c[idx]=c[0\sim31]$

Since each element is of double type, we get uncoalesced memory access for matrix c.

Tiling Optimization

This optimization aims at obtaining performance improvement through cache reusing. In this technique submatrix of matrix a and h of dimensions Tile_size*Tile_size is loaded into the cache memory. The following changes were made in the code for tiling:

```
int n = blockIdx.x * Tile_size + threadIdx.x; //idx
int m = blockIdx.y * Tile_size + threadIdx.y; //idy
{
  __shared__ double H[Tile_size][Tile_size];
  __shared__ double A[Tile_size][Tile_size];
  if(m < j && n < k)
       H[m][n]=h[(k*m)+n];
  __syncthreads();
  if(m < i && n < z)
       A[m][n]=a[(i*m)+n];
  __syncthreads();
  if (m<c_rows && n<c_cols)
  {
       for(int p=0;p<=(Tile_size-1);p++)</pre>
       {
               for(int q=0;q<=(Tile_size-1);q++)</pre>
               {
                      if(!((m-p)<0 || (n-q)<0 || (m-p)>=z || (n-q)>=i))
                       {
                              c[(m*c\_cols)+n]+=H[p][q]*A[(m-p)][(n-q)];
                              __syncthreads();
                       }
               }
       }
  }
```

Performance:

Time taken for executing 16*16 A matrix without tiling: 16us

Time taken for executing 16*16 A matrix with tiling: 23us

Analysing global memory accesses:

Considering an input matrices A of dimension 5*5 and H of dimension 3*3 we get output matrix of dimension 7*7.

The thread block configuration is Tile_size*Tile_size, where the Tile_size is 16, with each element being of double type. Hence in each cache line 16 elements would be stored each of double type.

For warp 0 of threadblock 0:

Idx: 0~15

Idy:0~1

For matrix h:

Each element of h is accessed in the following manner for each computation: h[(h_cols*idy)+idx].

Since h_cols=3,

Element of h=h[3*idy+idx]

For idy =0: Elements of $h=h[0\sim15]$

For idy =1: Elements of $h=h[3+0\sim15]$

Therefore there would be 2 cache line accesses for accessing elements of matrix h. Hence we get **uncoalesced** memory access for matrix h.

For matrix a:

Each element of a is accessed in the following manner for each computation: $a[(idy)*a_cols+(idx)]$

Since a_cols=5,

Element of a=a[5*idy+idx]

For idy =0: Elements of $a=a[0\sim15]$

For idy =1: Elements of $a=a[5+0\sim15]$

Therefore there would be 2 cache line accesses for accessing elements of matrix a. Hence we get **uncoalesced** memory access for matrix a.

For matrix c:

Each element of a is accessed in the following manner for each computation: $c[(idy*c_cols)+idx)]$

Since c_cols=7,

Element of c=c[7*idy+idx]

For idy =0: Elements of $c=c[0\sim15]$

For idy =1: Elements of $c=c[7+0\sim15]$

Therefore there would be 2 cache line accesses for accessing elements of matrix c. Hence we get **uncoalesced** memory access for matrix c.

Analysing shared memory accesses:

Considering an input matrices A of dimension 5*5 and H of dimension 3*3 we get output matrix of dimension 7*7.

For warp 0 of threadblock 0:

Idx: 0~15

Idy:0~1

For matrix H:

Each element of H is accessed in the following manner for each computation: H[p][q].

Since the access of H is independent of idx or idy, therefore we obtain **no bank conflicts** for accessing elements of matrix H.

For matrix A:

Each element of A is accessed in the following manner for each computation: A[(idy-p)][(idx-q)].

Consider p=0 & q=0,

Elements of A = A[idy][idx]

For idy=0: Elements of $A=A[0][0\sim15]$

For idy=1: Elements of $A=A[1][0\sim15]$

Each shared memory bank has the capacity to store 4 bytes, hence 8 byte(type double) element of A would be stored in 2 consecutive banks. Hence we get **bank conflicts** for accessing elements of matrix A.