PROGRAMACIÓN Y MÉTODOS NUMÉRICOS 2503506

SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS – PARTE 2

Andrés Agudelo

Departamento de Ingeniería Mecánica

Oficina 20-409 - andres.agudelos@udea.edu.co

Facultad de Ingeniería

Sistemas de ecuaciones diferenciales

Sistemas de ecuaciones diferenciales

Sistemas de ecuaciones diferenciales

Existen muchos problemas prácticos de ingeniería que requieren la solución de un sistema de ecuaciones diferenciales simultáneas. Un sistema de EDO de primer orden se expresa de forma general como:

$$\frac{dy_1}{dx} = f_1(x, y_1, y_2, \dots, y_n)$$

$$\frac{dy_2}{dx} = f_2(x, y_1, y_2, \dots, y_n)$$

$$\vdots$$

$$\frac{dy_n}{dx} = f_n(x, y_1, y_2, \dots, y_n)$$
(1)

La solución de un sistema de este tipo requiere n condiciones iniciales en un valor dado de x.

Contenido

- Sistemas de ecuaciones diferenciales
 - RK de cuarto orden
- 2 Ecuaciones diferenciales de orden superior
- 3 A continuación

A. Agudelo (Universidad de Antioquia

Programación y métodos numéricos

2/4

Sistemas de ecuaciones diferenciales

Sistemas de ecuaciones diferenciales

Sistemas de ecuaciones diferenciales

Todos los métodos vistos antes para EDO de primer orden se pueden extender para resolver sistemas de EDO de primer orden.

El procedimiento consiste en aplicar el método seleccionado a cada ecuación en cada paso de cálculo, antes de seguir con el próximo paso de cálculo.

Sistemas de ecuaciones diferenciales

Sistemas de ecuaciones diferenciales Ejemplo

Sistemas de ecuaciones diferenciales

Ejemplo 1

Resuelva el sistema ecuaciones diferenciales dado usando el método de Euler, desde t=0 hasta t=0.5 s. Utilice un paso de tamaño 0.1 s.

La solución exacta se da a continuación, úsela para determinar los errores relativos de truncamiento en cada paso de cálculo.

$$I_1(t) = -3.375e^{-2t} + 1.875e^{-0.4t} + 1.5$$

$$I_2(t) = -2.25e^{-2t} + 2.25e^{-0.4t}$$

Sistemas de ecuaciones diferenciales Ejemplo

Sistemas de ecuaciones diferenciales – Ejemplo 1

Las corrientes de las dos mallas del circuito RLC mostrado en la figura están determinadas por las siguientes ecuaciones diferenciales:

$$\frac{dI_1}{dt} = -4I_1 + 3I_2 + 6 \qquad \qquad \frac{dI_2}{dt} = -2.4I_1 + 1.6I_2 + 3.6$$

$$\frac{dI_2}{dt} = -2.4I_1 + 1.6I_2 + 3.6$$

Es claro que el circuito funciona sólo si se activa el interruptor. Por lo tanto las condiciones iniciales son:

$$I_1(0) = 0$$

$$I_2(0) = 0$$

Sistemas de ecuaciones diferenciales Ejemplo

Sistemas de ecuaciones diferenciales

Ejemplo 1

Solución:

En este caso el método de Euler toma la siguiente forma:

$$\begin{cases} y_{1,i+1} = y_{1,i} + f_1(t_i, y_{1,i}, y_{2,i}) h \\ y_{2,i+1} = y_{2,i} + f_2(t_i, y_{1,i}, y_{2,i}) h \end{cases}$$

Donde:

$$\begin{cases} f_1(t, y_1, y_2) = -4y_1 + 3y_2 + 6 \\ f_2(t, y_1, y_2) = -2.4y_1 + 1.6y_2 + 3.6 \end{cases}$$

Sistemas de ecuaciones diferenciales

Ejemplo 1

Paso 1: $t_1 = 0.1 \ s$:

$$y_1(0.1) = y_{1,1} = y_{1,0} + f_1(t_0, y_{1,0}, y_{2,0})(h)$$

$$= 0 + f_1(0, 0, 0)(0.1)$$

$$= 0 + [-4(0) + 3(0) + 6](0.1) = 0.6$$

$$I_1(0.1) = 0.538264 \quad \Rightarrow \quad \varepsilon_{t,1,1} = 11.47 \%$$

$$y_{2}(0.1) = y_{2,1} = y_{2,0} + f_{2}(t_{0}, y_{1,0}, y_{2,0})(h)$$

$$= 0 + f_{2}(0, 0, 0)(0.1)$$

$$= 0 + [-2.4(0) + 1.6(0) + 3.6](0.1) = 0.36$$

$$I_2(0.1) = 0.319632 \quad \Rightarrow \quad \varepsilon_{t,2,1} = 12.63\%$$

Es importante notar que para calcular $y_{2,1}$ se debe usar $y_{1,0}=0$, y no $y_{1.1} = 0.6$.

Sistemas de ecuaciones diferenciales Ejemplo

Sistemas de ecuaciones diferenciales

Ejemplo 1

En los pasos 3 a 5 se procede de la misma forma que en los anteriores. Los resultados se presentan en la siguiente tabla:

\overline{x}	I_1	$I_{1,Euler}$	$\varepsilon_{t,1}$ [%]	I_2	$I_{2,Euler}$	$\varepsilon_{t,2}$ [%]
0	0	0	0	0	0	0
0.1	0.538264	0.6	11.47	0.319632	0.36	12.63
0.2	0.968513	1.068	10.27	0.568792	0.6336	11.39
0.3	1.310737	1.43088	9.17	0.760745	0.838656	10.24
0.4	1.581284	1.7101248	8.15	0.906333	0.989430	9.17
0.5	1.793527	1.922904	7.21	1.014415	1.097309	8.17

Sistemas de ecuaciones diferenciales

Ejemplo 1

Paso 2: $t_2 = 0.2 \ s$:

$$y_1(0.2) = y_{1,2} = y_{1,1} + f_1(t_1, y_{1,1}, y_{2,1})(h)$$

= $0.6 + f_1(0.1, 0.6, 0.36)(0.1)$
= $0.6 + 4.68(0.1)$ = 1.068

$$I_1(0.2) = 0.968513 \quad \Rightarrow \quad \varepsilon_{t,1,2} = 10.27 \,\%$$

$$y_2(0.2) = y_{2,2} = y_{2,1} + f_2(t_1, y_{1,1}, y_{2,1})(h)$$

= $0.36 + f_2(0.1, 0.6, 0.36)(0.1)$
= $0.36 + 2.736(0.1)$ = 0.6336

$$I_2(0.2) = 0.568792 \quad \Rightarrow \quad \varepsilon_{t,2,2} = 11.39 \%$$

Sistemas de ecuaciones diferenciales Ejemplo

Sistemas de ecuaciones diferenciales – Ejemplo 1

Sistemas de ecuaciones diferenciales

Importación de librerías:

1 import numpy as np

Entrada de datos:

```
1 F = {}
2 | n = int(input('Ingrese el número de ecuaciones diferenciales:
3 for i in range(n):
       mensaje = 'Ingrese la ecuación ' + str(i+1) + ': '
       dydx i = input(mensaje)
       F['dy''+str(i+1)+'dx'] = dydx_i
7 int_sol = eval(input('Intervalo de solución como lista ([a, b]): '))
8 a = float(int sol[0]); b = float(int sol[1])
9 h = float(input('Tamaño de paso (h): '))
10 y_0ls = input('Ingrese el vector semilla como una lista:
11 y 0 = np.array(eval('['+y 0ls+']')) # Vector fila
```

A. Agudelo (Universidad de Antioquia)

Programación y métodos numéricos

Sistemas de ecuaciones diferenciales Ejemplo

Sistemas de ecuaciones diferenciales

Implementación del método de Euler par sistemas de EDO:

```
1 \times sol = np.arange(a,b + h,h)
 2 n x = len(x sol)
 y = x = x = x = y y sol = np.zeros((n x,n)) # Matriz solución (n x, n)
 4 phi = np.zeros((n,1))
 5 y_{sol}[0,:] = y_{0}[0,:]
 6 for i in range(1,n x):
       x = x sol[i-1]
       y = y sol[i-1]
        for j in range(n):
10
            phi[j] = eval(F['dy '+str(j+1)+'dx'])
11
            y_sol[i,j] = y_sol[i-1,j] + phi[j]*h
```

Almacenamiento de resultados:

```
1 MR SEuler = np.column stack([x sol,y sol])
2 nom archivo = 'Res SMEuler Ej4 h020
3 np.savetxt(nom archivo,MR SEuler)
```

Sistemas de ecuaciones diferenciales

Entrada de ecuaciones:

Al ingresar las ecuaciones se debe tener en cuenta el formato, ya que cada incógnita se debe identificar como un elemento del vector solución v.

Por ejemplo, para un sistema de tres ecuaciones donde se tenga:

$$\frac{dy_1}{dx} = 3x^2 - 2y_1 + 4xy_2 - 5y_3\sqrt{y_1^2 + y_2^2} + 3$$

$$\frac{dy_2}{dx} = y_1 - y_2 y_3 - 14x$$

$$\frac{dy_3}{dx} = 2x\ln(y_1) + x^2 - 4\frac{y_2}{2y_3}$$

La forma correcta de ingresar esta ecuaciones será:

$$\begin{aligned} & dy1dx = 3*x**2 - 2*y[0] + 4*x*y[1] - 5*y[2]*np.sqrt(y[0]**2 + y[1]**2) + 3 \\ & dy2dx = y[0] - y[1]*y[2] - 14*x \\ & dy3dx = 2*x*np.log(y[0]) + x**2 - 4*(y[1]/(2*y[2])) \end{aligned}$$

A. Agudelo (Universidad de Antioquia)

Programación y métodos numéricos

Sistemas de ecuaciones diferenciales Ejemplo

Sistemas de ecuaciones diferenciales

Ejemplo 2

Resuelva el mismo problema del ejemplo 1, pero usando esta vez un tamaño de paso de la cuarta parte ($h = 0.025 \ s$).

RK de cuarto orden

RK de cuarto orden

El método clásico de Runge-Kutta de cuarto orden para una ecuación diferencial se plantea de la siguiente forma:

$$y_{i+1} = y_i + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) h$$
 (2)

Donde:

$$k_{1} = f(x_{i}, y_{i})$$

$$k_{2} = f\left(x_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{1}h\right)$$

$$k_{3} = f\left(x_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{2}h\right)$$

$$k_{4} = f(x_{i} + h, y_{i} + k_{3}h)$$
(3)

Sistemas de ecuaciones diferenciales RK de cuarto orden

RK de cuarto orden

RK de cuarto orden

RK de cuarto orden

Para generalizar el método a sistemas de ecuaciones diferenciales, se divide el dominio de la solución ([a, b]) en m intervalos o puntos de malla, de modo que h = (b - a)/m. Con esto se tiene que:

$$x_j = a + jh$$
 para $j = 0, 1, \dots, m$

En referencia al sistema de ecuaciones (1), se usa la notación de $y_{i,j}$, donde el subíndice i se refiere a la ecuación $(i = 0, 1, \dots, n)$. Por lo tanto, $y_{i,j}$ es la aproximación a la solución de la ecuación i en el punto de malla o paso de cálculo j.

Sistemas de ecuaciones diferenciales RK de cuarto orden

RK de cuarto orden

RK de cuarto orden

Una vez se ha calculado solución del sistema en el paso j, es decir, se tienen los valores $y_{1,j}, y_{2,j}, \dots, y_{n,j}$, se puede predecir la solución en el siguiente paso de cálculo, $y_{1,j+1}, y_{2,j+1}, \dots, y_{n,j+1}$, usando la siguiente ecuación:

$$y_{i,j+1} = y_{i,j} + \frac{1}{6} (k_{1,i} + 2k_{2,i} + 2k_{3,i} + k_{4,i}) h$$
 (4)

Donde:

$$k_{1,i} = f_i(x_j, y_{1,j}, y_{2,j}, \dots, y_{n,j})$$

$$k_{2,i} = f_i\left(x_j + \frac{1}{2}h, y_{1,j} + \frac{1}{2}k_{1,1}h, y_{2,j} + \frac{1}{2}k_{1,2}h, \dots, y_{n,j} + \frac{1}{2}k_{1,n}h\right)$$

$$k_{3,i} = f_i\left(x_j + \frac{1}{2}h, y_{1,j} + \frac{1}{2}k_{2,1}h, y_{2,j} + \frac{1}{2}k_{2,2}h, \dots, y_{n,j} + \frac{1}{2}k_{2,n}h\right)$$

$$k_{4,i} = f_i(x_j + h, y_{1,j} + k_{3,1}h, y_{2,j} + k_{3,2}h, \dots, y_{n,j} + k_{3,n}h)$$

$$(5)$$

RK de cuarto orden

RK de cuarto orden

Se observa que en cada paso de cálculo se deben calcular los términos $k_{1,1}, k_{1,2}, \ldots, k_{1,n}$, antes de calcular los términos $k_{2,i}$.

Por lo tanto, en cada paso de cálculo (i) se debe proceder calculando los términos k_1 para todas la ecuaciones, con estos valores se calculan los términos k_2 para las n ecuaciones. Usando estos valores se calculan los términos k_3 , de nuevo para todas las ecuaciones, y finalmente, usando estos valores, se calculan los términos k_4 para las n ecuaciones.

Una vez se tienen todos estos términos (ec. 5), se aplica la ecuación (4) a cada ecuación diferencial del sistema, para predecir el nuevo valor de cada una de las variables dependientes, y así poder pasar al siguiente paso de cálculo (j+1).

Sistemas de ecuaciones diferenciales Ejemplo

RK de cuarto orden

Ejemplo 3

Resuelva el problema del circuito RLC del ejemplo 1 usando el método de RK de cuarto orden, con el mismo tamaño de paso y el mismo dominio de solución.

Recuerde que:

$$\begin{cases} f_1(t, y_1, y_2) = -4y_1 + 3y_2 + 6 \\ f_2(t, y_1, y_2) = -2.4y_1 + 1.6y_2 + 3.6 \end{cases}$$

Solución:

El método consiste en calcular los parámetros k_1 a k_2 usando las ecuaciones (5), y luego predecir el valor futuro de cada función solución usando la ecuación (4):

Para aplicar las ecuaciones (4) y (5), se tiene que n=2 y m=5.

RK de cuarto orden

Procedimiento para sistemas de EDO

Para cada paso de cálculo (*j*):

• Cálculo de términos k_1 : k_{1} 1, k_{1} 2, ..., k_{1} n

 $k_{2,1}, k_{2,2}, \ldots, k_{2,n}$ Cálculo de términos k₂:

 $k_{3,1}, k_{3,2}, \ldots, k_{3,n}$ **3** Cálculo de términos k_3 :

 $k_{4}, k_{4}, \ldots, k_{4}$ **4** Cálculo de términos k_4 :

6 Cálculo de la aproximación a la solución:

$$y_{i,j+1} = y_{i,j} + \frac{1}{6} (k_{1,i} + 2k_{2,i} + 2k_{3,i} + k_{4,i}) h$$
 $(i = 1, 2, ..., n)$

o Se procede con el siguiente paso de cálculo (i + 1).

Sistemas de ecuaciones diferenciales Eiemplo

RK de cuarto orden

Ejemplo 3: j=1

Cálculo de k_1 :

$$k_{1,1} = f_1(t_0, y_{1,0}, y_{2,0}) = f_1(0, 0, 0) = -4(0) + 3(0) + 6 = 6$$

 $k_{1,2} = f_2(t_0, y_{1,0}, y_{2,0}) = f_2(0, 0, 0) = -2.4(0) + 1.6(0) + 3.6 = 3.6$

Cálculo de k_2 :

$$k_{2,1} = f_1 \left(t_0 + \frac{1}{2}h, y_{1,0} + \frac{1}{2}k_{1,1}h, y_{2,0} + \frac{1}{2}k_{1,2}h \right)$$
$$= f_1 (0.05, 0.3, 0.18) = -4(0.3) + 3(0.18) + 6 = 5.34$$

$$k_{2,2} = f_2 \left(t_0 + \frac{1}{2}h, y_{1,0} + \frac{1}{2}k_{1,1}h, y_{2,0} + \frac{1}{2}k_{1,2}h \right)$$

= $f_2 (0.05, 0.3, 0.18) = -2.4(0.3) + 1.6(0.18) + 3.6 = 3.168$

Programación y métodos numéricos

A. Agudelo (Universidad de Antioquia) Programación y métodos numérico

RK de cuarto orden

Ejemplo 3: j = 1

Cálculo de k_3 :

$$k_{3,1} = f_1 \left(t_0 + \frac{1}{2}h, y_{1,0} + \frac{1}{2}k_{2,1}h, y_{2,0} + \frac{1}{2}k_{2,2}h \right)$$
$$= f_1 \left(0.05, 0.267, 0.1584 \right) = 5.4072$$

$$k_{3,2} = f_2 \left(t_0 + \frac{1}{2}h, \ y_{1,0} + \frac{1}{2}k_{2,1}h, \ y_{2,0} + \frac{1}{2}k_{2,2}h \right)$$

= $f_2 \left(0.05, \ 0.267, \ 0.1584 \right) = 3.21264$

Sistemas de ecuaciones diferenciales Eiemplo

RK de cuarto orden

Ejemplo 3: j=1

Ahora se pueden calcular las predicciones para las dos funciones solución usando la ecuación (4):

$$y_{1,1} = y_{1,0} + \frac{1}{6} (k_{1,1} + 2k_{2,1} + 2k_{3,1} + k_{4,1}) h$$

= $0 + \frac{1}{6} [6 + 2(5.34) + 2(5.4072) + 4.800912] (0.1) = 0.538255$

$$I_1(0.1) = 0.538264 \quad \Rightarrow \quad \varepsilon_{t,1,1} = 0.0016 \%$$

$$y_{2,1} = y_{2,0} + \frac{1}{6} \left[k_{1,2} + 2k_{2,2} + 2k_{3,2} + k_{4,2} \right] h$$

= $0 + \frac{1}{6} \left(3.6 + 2(3.168) + 2(3.21264) + 2.8162944 \right) (0.1) = 0.319626$

$$I_2(0.1) = 0.319632 \quad \Rightarrow \quad \varepsilon_{t,2,1} = 0.0018 \%$$

RK de cuarto orden

Ejemplo 3: j=1

Cálculo de k_4 :

$$k_{4,1} = f_1 (t_0 + h, y_{1,0} + k_{3,1}h, y_{2,0} + k_{3,2}h)$$

= $f_1 (0.1, 0.54072, 0.321264) = 4.800912$

$$k_{4,2} = f_2 (t_0 + h, y_{1,0} + k_{3,1}h, y_{2,0} + k_{3,2}h)$$

= $f_2 (0.1, 0.54072, 0.321264) = 2.8162944$

Resumiendo, se tiene:

$k_{1,1} = 6$	$k_{2,1} = 5.34$	$k_{3,1} = 5.4072$	$k_{4,1} = 4.800912$
$k_{1,2} = 3.6$	$k_{2,2} = 3.168$	$k_{3,2} = 3.21264$	$k_{4,2} = 2.8162944$

Sistemas de ecuaciones diferenciales Eiemplo

RK de cuarto orden

Ejemplo 3

En los pasos 2 a 5 se procede de la misma forma que en el primero. Los resultados se presentan en la siguiente tabla:

\overline{x}	I_1	$I_{1,RK4}$	$\varepsilon_{t,1}$ [%]	I_2	$I_{2,RK4}$	$\varepsilon_{t,2}$ [%]
0	0	0	0	0	0	0
0.1	0.538264	0.538255	0.0016	0.319632	0.319626	0.0018
0.2	0.968513	0.968499	0.0015	0.568792	0.568782	0.0017
0.3	1.310737	1.310719	0.0013	0.760745	0.760733	0.0015
0.4	1.581284	1.581265	0.0012	0.906333	0.906321	0.0014
0.5	1.793527	1.793507	0.0011	1.014415	1.014402	0.0013

RK de cuarto orden – Ejemplo 3

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior

La ecuación (6) se puede reescribir usando la notación abreviada para las derivadas:

$$a_n y^{(n)}(x) + a_{n-1} y^{(n-1)}(x) + \dots + a_1 y'(x) = g(x,y)$$
 (7)

Despejando la derivada de mayor orden se obtiene:

$$y^{(n)}(x) = f(x, y, y', \dots, y^{(n-1)})$$
 (8)

Se deben establecer las condiciones iniciales:

$$y'(x_0) = \alpha_1 y'(x_0) = \alpha_2 y''(x_0) = \alpha_3 \dots y^{(n-1)}(x_0) = \alpha_n$$
 (9)

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior

En muchos problemas de ingeniería surgen problemas de valor inicial con ecuaciones de orden mayor que uno. Algunos ejemplos de estos problemas son los circuitos eléctricos y los sistemas con vibraciones mecánicas.

Las EDO de orden superior tienen la siguiente forma general:

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} = g(x,y) \quad (6)$$

Según el problema, puede surgir un sistema de EDO de orden superior simultáneas.

La técnica de solución en estos casos consiste en transformar dicho sistema en un gran sistema de EDO de primer orden.

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior

En estos casos se puede transformar cada ecuación de orden superior en un sistema de EDO de primer orden, con lo cual se pueden emplear los métodos numéricos para este tipo de problemas.

La transformación se realiza mediante el siguiente cambio de variables en la ecuación (8):

$$y_{1}(x) = y(x)$$

$$y_{2}(x) = y'(x)$$

$$y_{3}(x) = y''(x)$$

$$\vdots \qquad \vdots$$

$$y_{n}(x) = y^{(n-1)}(x)$$

$$(10)$$

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior

El sistema de n EDO de primer orden se obtiene al derivar las ecuaciones (10):

$$\frac{dy_1}{dx} = \frac{dy}{dx} = y_2$$

$$\frac{dy_2}{dx} = \frac{dy'}{dx} = y_3$$

 $\frac{dy_{n-1}}{dx} = \frac{dy^{(n-2)}}{dx} = y_n$

$$\frac{dy_n}{dx} = \frac{dy^{(n-1)}}{dx} = y^{(n)} = f(x, y, y', \dots, y^{(n-1)}) = f(x, y_1, y_2, \dots, y_n)$$

Programación y métodos numéricos

(11)

Ecuaciones diferenciales de orden superior Ejemplo

Ecuaciones diferenciales de orden superior

Ejemplo 4

Resuelva el siguiente problema de valor inicial usando el método de RK de orden 4:

$$y'' - 2y' + 2y = e^{2t}\operatorname{sen}(t)$$

Para

Con:

$$y(0) = -0.4$$

$$y(0) = -0.4 y'(0) = -0.6$$

Use un paso de 0.1 s.

La solución exacta de la ecuación de segundo orden es la siguiente:

$$y(t) = 0.2e^{2t} [sen(t) - 2cos(t)]$$

$$\Rightarrow y'(t) = 0.2e^{2t} [4 sen(t) - 3 cos(t)]$$

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior

Las condiciones iniciales se transforman en:

$$y_1(x_0) = y(x_0) = \alpha_1$$

$$y_2(x_0) = y'(x_0) = \alpha_2$$

$$y_n(x_0) = y^{(n-1)}(x_0) = \alpha_n$$

Ecuaciones diferenciales de orden superior Ejemplo

Ecuaciones diferenciales de orden superior

Ejemplo 4

Solución:

1. Despeje de la derivada de mayor orden:

$$y'' - 2y' + 2y = e^{2t} \operatorname{sen}(t) \quad \Rightarrow \quad y''(x) = e^{2x} \operatorname{sen}(x) - 2y(x) + 2y'(x)$$

2. Transformación de variables:

Usando la ecuación (10) se obtiene (cambiado la variable independiente tpor x):

$$y_1(x) = y(x) y_2(x) = y'(x)$$

3. Construcción del sistema de EDO de primer orden \rightarrow se derivan las ecuaciones anteriores:

$$\frac{dy_1}{dx} = y_1'(x) = y'(x)$$
 $\frac{dy_2}{dx} = y_2'(x) = \frac{dy'}{dx} = y''(x)$

$$\frac{dy_2}{dx} = y_2'(x) = \frac{dy'}{dx} = y''(x)$$

(12)

Ecuaciones diferenciales de orden superior

funciones que definen las dos ecuaciones diferenciales:

 $f_2(x, y_1, y_2) = e^{2x} \operatorname{sen}(x) - 2y_1(x) + 2y_2(x)$

Solución: Ahora que se tiene un sistema de dos EDO de primer orden, se puede obtener la solución usando el método de RK de cuarto orden

Para proceder con el cálculo de los términos k_1 a k_4 , se identifican las

Ecuaciones diferenciales de orden superior

Ejemplo 4

$$\Rightarrow \frac{dy_1}{dx} = y_2(x)$$

$$\frac{dy_2}{dx} = e^{2x} \operatorname{sen}(x) - 2y_1(x) + 2y_2(x)$$

Donde:

$$y_1(0) = y(0) = -0.4$$

 $y_2(0) = y'(0) = -0.6$

Ecuaciones diferenciales de orden superior Ejemplo

Ecuaciones diferenciales de orden superior

Ejemplo 4 – Paso 1

Cálculo de k_1 :

$$k_{1,1} = f_1(x_0, y_{1,0}, y_{2,0}) = y_{2,0} = -0.6$$

 $k_{1,2} = f_2(x_0, y_{1,0}, y_{2,0}) = e^{2x_0} \operatorname{sen}(x_0) - 2y_{1,0} + 2y_{2,0} = -0.4$

Cálculo de k_2 :

$$k_{2,1} = f_1 \left(x_0 + \frac{1}{2}h, y_{1,0} + \frac{1}{2}k_{1,1}h, y_{2,0} + \frac{1}{2}k_{1,2}h \right)$$

= $y_{2,0} + \frac{1}{2}k_{1,2}h = -0.62$

$$k_{2,2} = f_2 \left(x_0 + \frac{1}{2}h, y_{1,0} + \frac{1}{2}k_{1,1}h, y_{2,0} + \frac{1}{2}k_{1,2}h \right)$$

$$= e^{2(x_0 + 0.05)} \operatorname{sen}(x_0 + 0.05) - 2\left(y_{1,0} + \frac{1}{2}k_{1,1}h \right) + 2\left(y_{2,0} + \frac{1}{2}k_{1,2}h \right)$$

= -0.3247644757

Ejemplo 4

(ecuaciones 4 y 5).

 $f_1(x, y_1, y_2) = y_2(x)$

Ecuaciones diferenciales de orden superior Ejemplo

Ecuaciones diferenciales de orden superior

Ejemplo 4 – Paso 1

Cálculo de k_3 :

$$k_{3,1} = f_1 \left(x_0 + \frac{1}{2}h, \ y_{1,0} + \frac{1}{2}k_{2,1}h, \ y_{2,0} + \frac{1}{2}k_{2,2}h \right)$$
$$= y_{2,0} + \frac{1}{2}k_{2,2}h = -0.6162832238$$

$$k_{3,2} = f_2 \left(x_0 + \frac{1}{2}h, \ y_{1,0} + \frac{1}{2}k_{2,1}h, \ y_{2,0} + \frac{1}{2}k_{2,2}h \right)$$

$$= e^{2(x_0 + 0.05)} \operatorname{sen}(x_0 + 0.05) - 2\left(y_{1,0} + \frac{1}{2}k_{2,1}h \right) + 2\left(y_{2,0} + \frac{1}{2}k_{2,2}h \right)$$

$$= -0.3152409237$$

Ecuaciones diferenciales de orden superior

Ejemplo 4 – Paso 1

Cálculo de k_4 :

$$k_{4,1} = f_1 (x_0 + h, y_{1,0} + k_{3,1}h, y_{2,0} + k_{3,2}h)$$

= $y_{2,0} + k_{3,2}h = -0.6315240924$

$$k_{4,2} = f_2 (x_0 + h, y_{1,0} + k_{3,1}h, y_{2,0} + k_{3,2}h)$$

$$= e^{2(x_0 + 0.1)} \operatorname{sen}(x_0 + 0.1) - 2 (y_{1,0} + k_{3,1}h) + 2 (y_{2,0} + k_{3,2}h)$$

$$= -0.2178637298$$

Resumiendo, se tiene:

$k_{1,1} = -0.6$	$k_{2,1} = -0.62$	$k_{3,1} = -0.6162832$	$k_{4,1} = -0.6315241$
$k_{1,2} = -0.4$	$k_{2,2} = -0.3247645$	$k_{3,2} = -0.3152409$	$k_{4,2} = -0.2178637$

Ecuaciones diferenciales de orden superior Ejemplo

Ecuaciones diferenciales de orden superior

Ejemplo 4

En los pasos 2 a 10 se procede de la misma forma que en el primero. Los resultados se presentan en la siguiente tabla:

			F 0 / 1			F 0 / 1
x	y_1	$y_{1,RK4}$	$\varepsilon_{t,1}$ [%]	y_2	$y_{2,RK4}$	$\varepsilon_{t,2}$ [%]
0.0	-0.4	-0.4	0	-0.6	-0.6	0
0.1	-0.46173297	-0.46173334	0.00008	-0.6316304	-0.63163124	0.00013
0.2	-0.52555905	-0.52555988	0.00016	-0.6401478	-0.64014895	0.00018
0.3	-0.58860005	-0.58860144	0.00024	-0.613663	-0.61366381	0.00013
0.4	-0.64661028	-0.64661231	0.00031	-0.5365821	-0.53658203	0.00001
0.5	-0.69356395	-0.69356666	0.00039	-0.3887395	-0.3887381	0.00036
0.6	-0.72114849	-0.7211519	0.00047	-0.1443834	-0.14438087	0.00175
0.7	-0.7181489	-0.71815295	0.00056	0.2289917	0.22899702	0.00232
8.0	-0.66970677	-0.66971133	0.00068	0.7719815	0.7719918	0.00133
0.9	-0.55643814	-0.5564429	0.00086	1.534764	1.5347815	0.00114
1.0	-0.35339436	-0.35339886	0.00127	2.578741	2.5787663	0.00098

Ecuaciones diferenciales de orden superior

Ejemplo 4 – Paso 1

Ahora se pueden calcular las predicciones para las dos funciones solución usando la ecuación (4):

$$y_{1,1} = y_{1,0} + \frac{1}{6} (k_{1,1} + 2k_{2,1} + 2k_{3,1} + k_{4,1}) \ h = -0.4617333423$$

$$y_1(0.1) = -0.46173297 \quad \Rightarrow \quad \varepsilon_{t,1,1} = 0.00008 \%$$

$$y_{2,1} = y_{2,0} + \frac{1}{6} (k_{1,2} + 2k_{2,2} + 2k_{3,2} + k_{4,2}) \ h = -0.6316312421$$

$$y_2(0.1) = -0.6316304 \quad \Rightarrow \quad \varepsilon_{t,2,1} = 0.000013 \%$$

Ecuaciones diferenciales de orden superior Ejemplo

Ecuaciones diferenciales de orden superior – Ejemplo 4

Ecuaciones diferenciales de orden superior Ejemplo

Ecuaciones diferenciales de orden superior - Ejemplo 4

A. Agudelo (Universidad de Antioquia)

Programación y métodos numéricos

45 / 47

A continuación

A continuación

Próxima clase

• Solución de EDO - PVF

Ecuaciones diferenciales de orden superior Ejemplo

Ecuaciones diferenciales de orden superior - Ejemplo 4

A. Agudelo (Universidad de Antioquia)

Programación y métodos numéricos