This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Международное бюро

OMP

МЕЖДУНАРОДНАЯ ЗАЯВКА, ОПУБЛИКОВАННАЯ В СООТВЕТСТВИИ С ДОГОВОРОМ О ПАТЕНТНОЙ КООПЕРАЦИИ (РСТ)

(51) Международная классификация изобретения ⁵:

Вогот 19/06

(11) Номер международной публикации: WO 94/08719

(43) Дата международн й публикации: 28 апреля 1994 (28.04.94)

RU

(21) Н мер международн й заявки: PCT/RU92/00224
(22) Дата международной подачи:
1 декабря 1992 (01.12/92)

(30) Данные о приоритете: 5065596 12 октября 1992 (12.10.92)

(71)(72) Заявитель и изобретатель: СОРОКИН Владимир Николаевич [RU/RU]; Москва 109004, ул. Большая Коммунистическая, д. 2/22, кв. 45 (RU) [SOROKIN, Vladimir Nikolaevich, Moscow (RU)].

(74) АГЕНТ: KOOПЕРАТИВНОЕ АГЕНТСТВО ПО ПАТЕНТНОЙ ИНФОРМАЦИИ; Москва 113834, Раушская наб., д. 4 (RU) [KOOPERATIVNOE AGENTSTVO PO PATENTNOI INFORMATSII, Moscow (RU)].

(81) Указанные государства: JP, KR, US, европейский патент (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE)

Опубликована

С отчетом о международном поиске.

(54) Title: PROCESS FOR COMMINUTION OF MATERIALS BY TURBULENCE

(54) Название изобретения: СПОСОБ ВИХРЕВОГО ИЗМЕЛЬЧЕНИЯ МАТЕРИАЛОВ

(57) Abstract

The invention concerns processes for producing dispersed powders, suspensions, aerosols, for the fine and ultra-fine comminution of materials. It facilitates the production of finely and ultra-finely comminuted viscous and solid materials. The proposed process involves: subjecting the comminuted material in a closed chamber to the action of a vortex created by bringing together two turbulent gas jets delivered via nozzles; acting physically on the boundary layer of the jets in the nozzle; and extracting the dust-gas mixture thus formed from the comminution area through the walls f the closed chamber.

Изобретение относится к способам получения дисперсных порошков, суспензий, аэрозолей, для тонкого и сверхтонкого измельчения материалов.

Изобретение позволяет получать тонкий и сверхтонкий помол вязких и твердых материалов. Предлагаемый способ заключается в том, что воздействуют на измельчаемый материал в замкнутом пространстве вихревым потоком образованным приводимыми во взаимодействие турбулентными газовыми струями подаваемыми из сопел, осуществляют физическое воздействие на пограничный слой струи в сопле и выводят образованную пылегазовую смесь из зоны измельчения через стенки замкнутого пространства.

исключительно для целей информации

Коды, используемые для обозначения стран-членов РСТ на титульных листах брошюр, в которых публикуются международные заявки в соответствии с РСТ.

AT	Anamara	FI	Финлянлия	MR	Мавритания
	Австрия			MW	Малави
AU	Австралия	FR	Франция		
BB	Барбадос	GA	Габон	NE	Нигер
BE	Бельгия	GB	Великобритания	NL	Нидерланды
BF	Буркина Фасо	GN	Гвинея	NO	Норвегия
\mathbf{BG}	Болгария	GR	Греция	NZ	Новая Зеландия
ВJ	Бенин	HU	Венгрия	PL	Польша
BR	Бразилия	Æ	Ирландия	PT	Португалия
CA	Канада	IT	Италия	RO	Румыния
CF	Центральноафриканская	JP	Япония	RU	Российская Федерация
	Республика	KP	Корейская Народно-Демо-	SD	Судан
BY	Беларусь		кратическая Республика	SE	Швеция
CG	Конго	KR	Корейская Республика	SI	Словения
CH	Швейцария	KZ	Казахстан	SK	Словакия
CI	Кот д'Ивуар	LI	Лихтенштейн	SN	Сенегал
CM	Камерун	LK	Шри Ланка	TD	Чад
CN	Китай	LU	Люксембург	TG	Toro
CS .	Чехословакия	LV	Латвия	UA	Украина
CZ	Чешская Республика	MC	Монако	US	Соединённые Штаты
DE	Германия	MG	Мадагаскар		Америки
DK	Дания	ML	Мали	UZ	Узбекистан
ES	Испания	MN	Монголия	VN	Вьетнам

СПОСОБ ВИХРЕВОГО ИЗМЕЛЬЧЕНИЯ МАТЕРИАЛОВ Область техники

Изобретение относится к способам получения дисперсных порошков, суспензий, аэрозолей, для тонкого и сверхтонкого измельчения материалов, а именно к способу вихревого измельчения материалов.

Предшествующий уровень техники

Известен способ вихревого измельчения материалов, включающий ввод газовых струй под углом к радиусу зоны 10 измельчения, ограниченную боковой и торцевыми стенками, образование вихря с высокой скоростью вращения, подачу частиц и вовлечения их в вихревое движение, вывод измельченной пылегазовой смеси (US, A, 3648936). Данный способ измельчения, совмещенный с классификацией и возвратом на домол крупных частиц удобен для пользователя. Но он не позволяет осуществлять измельчения вязких и твердых материалов из-за относительно невысоких скоростей вращения потока в вихре, не превышающих входную скорость. Это связано с потерей скорости струи на входе в камеру из-за ее расширения, потерей энергии потока на перемещение частиц по восходящему и нисходящему каналам и на разгон частиц, возвращаемых на домол.

Известен способ вихревого измельчения материалов, включающий ввод газовых струй под углом к радиусу зоны 25 измельчения, ограниченную боковой и торцевыми стенками, образование внутри нее вихря с высокой скоростью вращения, подачу частиц и вовлечение их в вихревое движение, вывод измельченной пылегазовой смеси через центральное отверстие (ЈР, A, 48-42905). В указанном способе измельчения энергия потока используется только на преодоление сопротивления вращения, поэтому поток разгоняется до скоростей больших, чем входные в I,2-I,3 раза.

Однако в указанном способе получаемые скорости вращения потока недостаточны для измельчения вязких и 35 сверхтвердых материалов. Недостаточные скорости вращения связаны со значительной турбулентностью газовых струй на входе в зону измельчения.

Известен также способ вихревого измельчения, вклю-чающий в себя ввод газовых струй под углом к радиусу зоны

измельчения, ограниченную боковой и торцевыми стенками, образование внутри нее вихря с высокой скоростью вращения, подачу частиц и вовлечение их в вихревое движение, вывод измельченной пылегазовой смеси через отверстия в боковой и торцевой стенках (зу, А, 1533С79). Отвод части пылегазовой смеси через боковую стенку позволяет снизить статическое давление в зоне измельчения, увеличить скорость вращения и следовательно интенсивность взаимодействия частиц. Однако описанный способ не позволяет получить увеличения скорости вращения, более чем в 1,3 раза относительно входной окружной скорости из—за тормозящего действия стенок и расширения газовой струи, в результате ее интенсивной турбулизации.

Раскрытие изобретения

- В основу изобретения положена задача создания способа вихревого измельчения материала, который обеспечил бы увеличение длины начального участка взаимодействующих газовых струй с шириной, близкой ширине щели и утончение слоя смешения.
- Поставленная задача решается тем, что в способе вихревого измельчения материала воздействуют на измельчаемый материал в замкнутом пространстве вихревым потоком,
 образованным приводимыми во взаимодействие турбулентными
 газовыми струями, подаваемыми из плоских или осесимметрич25 ных сопел, и образованную пылегазовую смесь выводят через
 стенки замкнутого пространства, согласно изобретению,
 для заданной скорости вихревого потока доводят отношение
 масштаба турбулентности приводимых во взаимодействие газовых струй по меньшей мере к одному из поперечных раз30 меров сопла до величины менее 0,1 и интенсивность турбулентности до величины менее 5% путем физического воздействия на пограничный слой в сопле.

Описанный способ позволяет снижать параметры турбулентности и стабилизировать вводимые газовые струи, что
35 обеспечивает увеличение длины начального участка струи
с шириной, близкой ширине щели, уменьшение эжекции, утончение слоя смешения и ослабление турбулентного перемешивания в струе, то есть сохранение высоких скоростей газа

FULL RUZZI UUZZ

5

ΙO

I5

20

25

30

35

близких к скорости в сопле. В результате скорость вращения пылегазовой смеси в зоне измельчения увеличивалась в I,8-2, I раза по сравнению с входной, что позволило измельчать полиэтилен высокого давления, фторопласт, латунь, нитриды бора.

Для сохранения стабильности процесса измельчения материалов необходимо следить за скоростью ядра газовой струи и при ее уменьшении относительно заданной величины уменьшать масштаб и/или интенсивность турбулентности.

Стабилизировать струю можно осуществляя температурное воздействие на нее. При нагреве пограничного слоя струи, увеличивается его вязкость и возникающие турбулентные возмущения диссипируют в нем с большей интенсивностью. Это позволяет сохранять высокую скорость в ядре струи. Однако такой способ требует дополнительных энергетических затрат.

Возможен вариант стабилизации струи путем воздействия высокочастотным газовым возмущением. Такое воздействие не требует дополнительных внешних энергетических затрат и может быть осуществлено с помощью размещения по меньшей мере на одной из стенок сопла у его выхода полого звукового резонатора. Такое воздействие на струю наиболее эффективно, так как высокочастотные газовые возмущения действуют по всему объему струи и препятствуют интенсификации параметров турбулентности потока в ней. Однако эти возмущения отрицательно сказываются на окружающей среде и требуют тщательной звукоизоляции.

Стабилизировать струю можно также осуществляя ме-ханическое воздействие на ее пограничный слой.

Наиболее простым способом осуществить механическое воздействие можно с помощью продольных по течению струи ребер по меньшей мере на одной из стенок на его выходе. Указанные ребра разрезают поток на узкие струйки, в которых турбулентные возмущения более мелкие, поэтому уменьшаются параметры турбулентности струи в целом. В этом случае воздействие осуществляется только в пределах пограничного слоя и не проникает внутрь струи. В некоторых случаях такое воздействие является недостаточ-

HUM.

Более эффективным механическим воздействием на пограничный слой струи является воздействие, которое осуществляется с помощью установленной на стенке сопла по меньшей 5 мере одной пластины с упругими подвижными лентами, расположенными вдоль направления струи и закрепленными одним концом к вышеуказанной пластине. Механические возмущения создаваемые колебаниями гибких лент в струе частично проходят внутрь струи, способствуя лучшей стабилизации струи. 10 Однако надежность лент не велика. Ленты имеют малую тол-

щину и при эксплуатации быстро выходят из строя, отрываясь от пластин.

Более надежным и эффективным является механическое возмущение создаваемое подпружиненной пластиной установлен-

возмущение создаваемое подпружиненной пластиной установлен 15 ной в пазу по меньшей мере в одной из стенок сопла на его выходе. При таком воздействии создаваемые колеблющейся пластиной пульсации проникают внутрь струи и способствуют большей ее стабилизации.

Краткое описание чертежей

20 Далее изобретение поясняется описанием конкретных, но не ограничивающих настоящее изобретение, вариантов выполнения и прилагаемыми чертежами, на поторых:

фиг. І изображает продольный разрез устройства, сопла которого имеют полые резонаторы;

25 ğur.2 - cevenue I-I устройства по фиг.I;

фиг.3 - продольный разрез сопла устройства с установленными на его выходе продольными ребрами;

фиг.4 - продольный разрез сопла снабженного гибкими подвижными лентами:

30 фиг.5 — продольный разрез сопла снабженного подпру-жаненной пластиной.

Лучшие варианты осуществления изобретения Рассмотрим устройство на фиг. I, 2, которое реализует предлагаемый способ.

35 Это устройство содержит зону измельчения I, образованную боковой стенкой 2 и торцевыми стенками 3, которые охвачены полым пыленепроницаемым кожухом 4 для изоляции зоны измельчения I от окружающей среды. На верхней торце-

вой стенке 3 закреплен пылепровод системы загрузки 5, а также на торцевой стенке 3 имеется центральное отверстие отвода пылегазовой смеси 6. Боковая стенка 2 (фиг.2) снабжена двумя плоскими соплами 7 для формирования газовых

5 струй и патрубками 8 для вывода пылегазовой смеси. На
торцевых стенках 3 также имеются патрубки 8 для вывода
пылегазовой смеси. Пыленепроницаемый кожух 4 снабжен трубой 9 для отвода пылегазовой смеси. Сопла 7 на выходе
имеют полые резонаторы 10, представляющие собой канавки

10 на противолежащих стенках сопла, расположенные со сдвигом относительно друг друга. Сечение канавок может быть
любым, например, как показано на фиг.2 круглого и прямоугольного сечения.

Далее рассмотрим работу данного устройства из кото-15 рого станет ясна и сущность заявляемого способа.

Через оба сопла 7 в зону измельчения I подается сжатый воздух, а через верхнюю торцевую стенку 3 по системе загрузки 5 подается измельчаемый материал.

Струя воздуха формируемая в сопле 7 испытывает воз-20 действие высокочастотными газовыми возмущениями, которые возникают при затекании воздуха в резонаторы 10. В результате такого воздействия масштаб турбулентности относительно ширины сопла уменьшается до величины менее 0, I, а интенсивность турбулентности до величины 5%. В 25 этом случае сформированная струя не разрушается на длине до 40 калибров. Сформированные таким образом две струи направленные навстречу друг другу закручиваются в зоне измельчения и образуют вихрь со скоростью вращения. выше Твердые частицы подаваемого материала вовлекают-30 ся в вихревое движение и взаимодействуя между собой и со стенками 2 и 3 измельчаются. За счет повышения скорости струй процесс измельчения происходит более интенсивно. Измельченный материал удаляется из зоны измельчения І через отверстие 6, патрубки 8 в трубу 9. Через трубу 9 35 измельченный материал выводится из устройства.

Из вышеприведенного следует, что в способе вихревого измельчения материала, заключающемся в воздействии на измельчаемый материал в замкнутом пространстве вихревым потоком образованным приводимыми во взаимодействие

турбулентными газовыми струями подаваемыми из сопел и в выводе образованной пылегазовой смеси через стенки замкну— того пространства, согласно изобретению, для заданной скорости вихревого потока доводят отношение масштаба турбулент— ности приводимых во взаимодействие газовых струй по мень— шей мере к одному из поперечных размеров сопла до величи— ны менее 0, I и интенсивности турбулентности до величины менее 5% путем физического воздействия на пограничный слой в сопле.

IC Для поддержания стабильности процесса измельчения материала, необходимо следить за продольной скоростью струи. Это можно осуществить с помощью датчика II - тер-моанемометра установленного на боковой стенке 2 (фиг. I).

При уменьшении продольной скорости струи, которая 15 прямо зависит от увеличения масштаба турбулентности и/или интенсивности турбулентности дополнительно налагают возмущения на пограничный слой струи, от внешнего источника, например, осуществляя нагрев стенок сопла 7 (на чертеже не показано). При нагреве стенок сопла 7 20 происходит нагрев пограничного слоя струи и увеличение вязкости пограничного слоя, что препятствует росту интенсивности турбулентности струи в целом.

На фиг. 3 изображено сопло 7, одна стенка которого снабжена тонкими ребрами I2, которые расположены по всей 25 ширине стенки сопла 7 вдоль подаваемой струи. Разрезая пограничный слой струи ребрами I2 снижают интенсивность турбулентности в струе, что позволяет на выходе сопла 7 уменьшить уровень снижения скорости и увеличить длину струи.

- На фиг. 4 изображен другой вариант механического воздействия на пограничный слой струк. В данном случае воздействие осуществляется путем установки на стенке сопла ? пластины 15 с прикрепленными к ней тонкими гложкым лентами 16. Механизм стабилизации такой же как был описан выше.
- 35 Ленти IS в струе создают вибрации воздужа, которые разбивают турбулентные завимрения на более мелкие, тем самым замедляя процесс разрушения струи в целом.

На фиг.5 изображено сопло 7, в стенке которого имеется паз I7 для размещения в нем пластины I8 прикрепленной к стенке сопла пружиной I9. При движении струи в сопле 7 в пазу I7 создается аэродинамическое разряжение вытягивающее пластину I8 из паза I7, а пружина I9 возвращает пластину в первоначальное положение. Под действием струи и пружины I9 пластина совершает колебательные движения, которые также создают вибрации воздуха, разбивающие турбулентные завихрения.

ПО Далее приводятся сравнительные данные двух способов измельчения — без физического воздействия на пограничный слой, и с воздействием на него, причем воздействия рассматривались трех видов: акустические колебания, механическое и температурное воздействие.

15 Исходные условия следующие: измельчаемый материал — 40 г нитрида бора с размером частиц от I,0 до I,4 мм, расход подаваемого газа составил 3,5 м³/мин при давлении 0,32 МПа.

Результаты сведены в таблицу.

20

Таблица

			·	
		вым воз- дейст-	С меха- ническим воздейст- вием	TDOTO-
I	2	3	4	5
Длительность измельче- ния, с	6	8	8	3
Размер измельченной фракции, мкм	0,5-3,0	I - 8	I _ 3	3 – 6

Как видно из таблицы наилучшие результаты при измельчении сверхтвердого материала нитрида бора были получены вышеописанным способом при использовании акустического воздействия на пограничный слой струи. Этот способ воз-25 действия позволяет получить наиболее мелкий помол частиц за минимальное время. Однако это требует хорошей звукоизоляции. Хорошие результаты с достаточно мелкой фракцией были получены при использовании механического воз5

действия на пограничный слой струи.

Таким образом указанный способ измельчения позволяет увеличить тонину помола сверхтвердых материалов до размера менее 3 мкм за 6-3 секунд за счет увеличения частоты и силы ударов частиц друг о друга и неподвижные стенки вследствие увеличения скорости в вихре из-за снижения значений турбулентных характеристик струи.

Промышленная применимость

Предлагаемый способ вихревого измельчения материала 10 может широко использоваться для получения дисперсных порошков, суспензий, аэрозолей в химической, строительной, цементной, пищевой и медицинской отраслях промышленности, где необходимо получать тонкое и сверхтонкое измельчение материалов.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ вихревого измельчения материала, заключающийся в том, что воздействуют на измельчаемый материал в замкнутом пространстве вихревым потоком, образованным приводимыми во взаимодействие турбулентными газовыми струями, подаваемыми из плоских или осесимметричных сонел, и образованную пылегазовую смесь выводят через стенки замкнутого пространства, о т л и ч а ю щ и й с я тем, что для заданной скорости вихревого потока доводят отношение масштаба турбулентности приводимых во взаимодействие газовых струй по меньшей мере к одному из поперечных размеров сопла до величины менее 0,1 и интенсив-

ности турбулентности до величины менее 5% путем физичес-

2. Способ по п.І, о т л и ч а ю щ и й с я тем, что следят за скоростью ядра газовой струи и при ее уменьшении относительно заданной величины уменьшают масштаб и/или интенсивность турбулентности.

кого воздействия на пограничный слой в сопле.

- 3. Способ по п.І, отличающийся тем, 20 что физическое воздействие представляет собой температурное воздействие.
 - 4. Способ по п.І, о т л и ч а ю щ и й с я тем, что физическое воздействие представляет собой воздействие высокочастотным газовым возмущением.
- 25 5. Способ по п.4, о т л и ч а ю щ и й с я тем, что воздействие высокочастотным газовым возмущением осуществляют путем размещения на стенке сопла у его выхода полого звукового резонатора.
- 6. Способ по п.І, стличающийся тем, что 30 физическое воздействие представляет собой механическое воздействие.
- 7. Способ по п.6, о т л и ч а ю щ и й с я тем, что механическое воздействие осуществляют путем размещения подпружиненной пластины в пазу по меньшей мере одной 35 из стенок сопла на его выходе.
 - 8. Способ по п.6, о т л и ч а ю щ и й с я тем, что механическое воздействие осуществляют путем размещения по меньшей мере на одной из стенок сопла пластины с уп-

ругими подвижными лентами, расположенными вдоль направления струи и закрепленными одним концом к вышеуказанной пластине.

9. Способ по п.6, о т л и ч а ю щ и й с я тем, что механическое воздействие осуществляют путем размещения продольных по течению струи ребер на выходе сопла.

FIG. 3

FIG. 4

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No. PCT/RU 92/00224

A. CLASSIFICATION OF SUBJECT MATTER					
IPC ⁵ B02C 19/06					
According to International Patent Classification (IPC) or to both national classification and IPC					
	LDS SEARCHED ocumentation searched (classification system followed b	or closel@-strorankele\			
_	•	by classification symbols)			
IPC					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.		
Α	US,A,3648936 (NICHOLAS N. STEP 14 March 1972 (14.03.72), the (cited in the description)		1		
Α	SU,A,919732 (Drepropetrovsky g 15 April 1982 (15.04.82) figure 1				
Α	SU,A,1077628 (Galperin V.I. et 7 March 1984 (07.03.84)	1			
A	US,A,3877647 (VLADIMIR IVANOVI ROBERTS et al.) 15 April 1975 (15.04.75)	1			
		·	·		
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.			
"A" documento be of	categories of cited documents: nt defining the general state of the art which is not considered particular relevance	the principle or theory underlying the	cation but cited to understand		
"L" document cited to	ocument but published on or after the international filing date of which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other eason (as specified)	considered novel or cannot be considered to involve an inventive			
O" document means	at referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such	step when the document is documents, such combination		
'P" document the prior	nt published prior to the international filing date but later than ity date claimed	"&" document member of the same patent			
	ctual completion of the international search ay 1993 (13.05.93)	Date of mailing of the international sear 19 May 1993 (19.05.93)	rch report		
Name and m	ailing address of the ISA/	Authorized officer			
RI	J	•			
Pacsimile No).	Telephone No.			

А. КЛАССИФИКАЦИЯ ПРЕДМЕТА ИЗОБРЕТЕНИЯ B02C 19/06 Согласно Международной патентной классификации (МКИ-5) В. ОБЛАСТИ ПОИСКА Проверенный минимум документации (Система классификации и индексы):МКИ-5 B02C 19/00-19/06 Другая проверенная документация в той мере, в какой она вклю-чена в поисковые подрорки: Электронная база данных, использовавшаяся при поиске ние базы и, если возможно, поисковые термины): С. ДОКУМЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ Катего-Ссылки на документы с указанием, возможно, релевантных частей Относится к пункту No. где это Α US, A, 3648936 (NICHOLAS N.STEPHANOFT). 1 14 марта 1972 (14.03.72), реферат, (указано в описании) Α SU, A, 919732 (ДНЕПРОПЕТРОВСКИЙ ГОРНЫЙ 1 последующие документы ука- данные о патентах-анало-заны в продолжении графы С Гах указаны в приложении * Особые категории ссылочных документов: более поздний документ опуоликованный после даты международной поддачи или даты приоритета и не порочащий заявтиму, но приведенный для понимания принципа или теории, на которых основывается изоорететию. документ, определяющий общий уровень техники и не считающийся осооо релевантным более ранний документ, но опуоликованный на дату международной подачи или после нее. ДОКУМЕНТ, ПОДВЕРГАЮЩИЙ СОМ-НЕНИЮ ПРИТЯЗАНИЕ(Я) На ПРИОРИТЕТ, ИЛИ КОТОРЫЙ ПРИ-ВОДИТСЯ С ЦЕЛЬЮ УСТАНОВЛЕ-НИЯ ДАТЫ ПУОЛИКАЦИИ ДРУГО-ГО ССЫЛОЧНОГО ДОКУМЕНТА, а ТАКЖЕ В ДРУГИХ ЦЕЛЯХ (Как УКАЗАНО). "L" ДОКУМЕНТ, ИМЕЮЩИЙ НАИ-ООЛЕЕ ОЛИЗКОЕ ОТНОШЕНИЕ К ПРЕДМЕТУ ПОИСКА; ЗА-ЯВЛЕННОЕ ИЗООРЕТЕНИЕ НЕ ООЛАДАЕТ НОВИЗНОЙ И ИЗООРЕТАТЕЛЬСКИМ УРОВ-НЕМ В СРАВНЕНИИ С ДОКУ-МЕНТОМ, ВЗЯТЫМ В ОТ-ДЕЛЬНОСТИ ..O.. документ, относящийся к устному раскрытию, исполь-зованию, экспонированию и документ, имеющий наиболее олизкое отношение к
предмету поиска и порочащий изобретательский
уровень заявленного
изобретения в очевидном
для лица, обладающего
познаниями в данной области техники, сочетании
с одним или несколькими
документами той же кадокумент, опубликованный до даты международной подачи, но после даты испрашивае-мого приоритета. "P" документ, являющийся па-тентом-аналогом Дата действительного заверше-ния международного поиска 13 мая 1993 (13.05.93) Дата отправки настоящего отчета о международном поиске 19 мая 1993 (19.05.93) Наименование и адрес Междуна- Уполномо родного поискового органа: Научно-исследовательский институт государственной патентной экспертизы, Россия, 121858, тел. (095)240-33-37, телетайп 114818 ПОДАЧА Уполномоченное лицо: Н. Бибина тел. (095)240-58-22

Форма PCT/ISA/210 (второй лист) (июль 1992)

ОТЧЕТ О МЕЖДУНАРОДНОМ ПОИСКЕ

Международная заявка No. PCT/RU 92/00224

C /77==		027 00224				
	одолжение) ДОКУМЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ					
Karero- pus *)	Ссылки на документы с указанием. где это возможно, релевантных частей	Относится к пункту No.				
	ИНСТИТУТ ИМ.АРТЕМА), 15 апреля 1982 (15.04.82), фиг.1					
A	SU, A, 1077628 (ГАЛЬПЕРИН В.И. и другие) 7 марта 1984 (07.03.84)	1				
А	US, A, 3877647 (VLADIMIR IVANOVICH GO- ROBETS и другие). 15 апреля 1975 (15.04.75)	1				
	•					
	•	·				
Annua DOS	2/ISA/210 (====================================					

Форма PCT/ISA/210 (продолжение второго листа) (июль 1992)