

Ajeet K. Jain, M. Narsimlu

(ML TEAM)- SONET, KMIT, Hyderabad

Session – 30

This session deals with

Data Science Project Life cycle

Introduction to Case Study

Data Science-Project Life Cycle

A business problem statement in Data Science can be solved by following the phases

- 1. Define Problem Statement/ Business Requirement
- Data Collection
- 3. Data Cleaning /preparation
- 4. Data Exploration & Analysis
- 5. Data Modelling
- 6. Deployment & Optimization

Project Life Cycle -Architecture

Case Study -01

Problem statement

- Subsidy Inc. delivers subsidies to individuals based on their income
- Accurate income data is one of the hardest piece of data to obtain across the world
- Subsidy Inc. has obtained a large data set of authenticated data on individual income, demographic parameters, and a few financial parameters
- Subsidy Inc. wishes us to:

Develop an income classifier system for individuals

The Objective is to:

Simplify the data system by reducing the number of variables to be studied, without sacrificing too much of accuracy. Such a system would help Subsidy Inc. in planning subsidy outlay, monitoring and preventing misuse.

Required modules


```
#To visualize the data
import seaborn as sns
#To work with dataframes
import pandas as pd
#To perform numerical operations
import numpy as np
#To partition the data
from sklearn.model selection import train test split
#importing the library for logistic regression
from sklearn.linear model import LogisticRegression
#importing performance metrics
from sklearn.metrics import accuracy score,confusion matrix
```


Data Description


```
#importing data
data income=pd.read csv("income.csv")
#create a copy of original data
df income=data income.copy()
print(df income.describe())
```


Numerical Data Description

	age	capitalgain	capitalloss	hoursperweek
count	31978.000000	31978.000000	31978.000000	31978.000000
mean	38.579023	1064.360623	86.739352	40.417850
std	13.662085	7298.596271	401.594301	12.345285
min	17.000000	0.000000	0.000000	1.000000
25%	28.000000	0.000000	0.000000	40.000000
50%	37.000000	0.000000	0.000000	40.000000
75%	48.000000	0.000000	0.000000	45.000000
max	90.000000	99999.000000	4356.000000	99.000000

Information about Data Set


```
#importing data
data_income=pd.read_csv("income.csv")
#create a copy of original data
df_income=data_income.copy()
print(df_income.info())
```


Output


```
RangeIndex: 31978 entries, 0 to 31977
Data columns (total 13 columns):
                 31978 non-null int64
age
                 31978 non-null object
JobType
EdType
                 31978 non-null object
                 31978 non-null object
maritalstatus
                 31978 non-null object
occupation
relationship
                 31978 non-null object
                 31978 non-null object
race
                 31978 non-null object
gender
                 31978 non-null int64
capitalgain
capitalloss
                 31978 non-null int64
hoursperweek
                 31978 non-null int64
nativecountry
                 31978 non-null object
                 31978 non-null object
SalStat
```


Data Analytics Frame work

Data analytics framework

Problem conceptualization

Framework

- Problem conceptualization
 - Develop an income classifier for individuals with reduced no. of variables
- Problem characterization- Classification

Apriori Known:

- ✓ Dependent variable categorical (binary)
- ✓ Independent variables numerical + categorical

Framework

Framework

• Flow chart:

Solution conceptualization

Framework

- Solution conceptualization
 - Identify if data is clean
 - Look for missing values
 - Identify variables influencing salary status and look for possible relationships between variables
 - Correlation, chi-square test, box plots, scatter plots etc.
 - Identify if categories can be combined
 - Build a model with reduced number of variables to classify the individual's salary status to plan subsidy outlay, monitor and premisuse

Method Identification

Framework

- Method identification
 - Logistic Regression
 - Random Forest
 - K Nearest Neighbors
- Realization of solution
 - Evaluate performance metrics
 - If assumptions are satisfied and solutions are acceptable then model is

Data Exploratory Analysis


```
EDA
1.getting to know the data
2.Data Preprocessin
3.Cross tables and data visualization
#1.Getting to know the data
#To check variables data type
print(df income.info())
#To find the missing values in each feature
print(df income.isnull().sum())
#No missing values
#Summary of numerical variables
print(df_income.describe())
#Summary of categorical variables
print(df income.describe(include="0"))
#Frequency of each categories
print(df_income["JobType"].value_counts())
```

SONET Data Exploratory #importing data


```
df income=pd.read_csv("income.csv")
#checking for unique classes
print(np.unique((df_income["JobType"])))
print(np.unique(df income["occupation"]))
#checking other special characters in the dataset
data=pd.read csv("income.csv",na values=[" ?"])
#Check missing values in each feature
print(data.isnull().sum())
missing=data[data.isnull().any(axis=1)]
```

#To consider one missing column print(missing)

Data Exploratory Analysis

Private		22286
Self-emp-not-:	inc	2499
Local-gov		2067
;		1809
State-gov		1279
Self-emp-inc		1074
Federal-gov		943
Without-pay		14
Never-worked		7
Name: JobType,	dtype:	int64

Prof-specialty	4038
Craft-repair	4030
Exec-managerial	3992
Adm-clerical	3721
Sales	3584
Other-service	3212
Machine-op-inspct	1966
;	1816
Transport-moving	1572
Handlers-cleaners	1350
Farming-fishing	989
Tech-support	912
Protective-serv	644
Priv-house-serv	143
Armed-Forces	9

Finding missing Values and Correlation


```
#importing data
data=pd.read_csv("income.csv",na_values=[" ?"])
1.missing values in jobtype -
                                  1809
2.missing values in occupation - 1816
3. There are 1809 rows where tow soecific columns
i.e oocupation and jobtype have missing values
4.(1816-1809)=7 => still we have occupation unfilled for these rows.
because, jobtype is "never worked"
data2=data.dropna(axis=0)
#correlation between independent varaibles
corr rel=data2.corr()
print(corr_rel)
```


Output

Week4')				
	age	capitalgain	capitalloss	hoursperweek
age	1.000000	0.080154	0.060165	0.101599
capitalgain	0.080154	1.000000	-0.032229	0.080432
capitalloss	0.060165	-0.032229	1.000000	0.052417
hoursperweek	0.101599	0.080432	0.052417	1.000000

Age Vs Salary status -EDA


```
#importing data
data=pd.read_csv("income.csv",na_values=[" ?"])
data2=data.dropna(axis=0)
#cross tables and data visualization
#extract the columns
print(data2.columns)
gender_tab=pd.crosstab(index=data2["gender"],columns="counts",
                       normalize=True)
print(gender_tab)
#Relation between Gender vs salary
gender_salstat=pd.crosstab(index=data2["gender"],
                           columns=data2["SalStat"],
                           margins=True,normalize="index")
print(gender_salstat)
```


Output


```
Index(['age', 'JobType', 'EdType', 'maritalstatus', 'occupation',
       'relationship', 'race', 'gender', 'capitalgain', 'capitalloss',
       'hoursperweek', 'nativecountry', 'SalStat'],
     dtype='object')
col 0
          counts
gender
Female 0.324315
Male 0.675685
SalStat greater than 50,000 less than or equal to 50,000
gender
Female
                    0.113678
                                                    0.886322
Male
                     0.313837
                                                    0.686163
All
                                                    0.751078
                     0.248922
```


Bar plot b/w Salary status


```
#importing data
data=pd.read_csv("income.csv",na_values=[" ?"])
data2=data.dropna(axis=0)
#cross tables and data visualization
#frequency distribution of salary status
SalStat=sns.countplot(data2["SalStat"])
75% of people's salary status is <=50,000
25% of people's salary status is >50,000
11 11 11
```


Data Exploratory

Finding Age Frequency


```
#importing data
data=pd.read csv("income.csv",na_values=[" ?"])
data2=data.dropna(axis=0)
#histogram of Age
sns.distplot(data2["age"],bins=10,kde=False)
#people with age 20-45 age are high in frequency
```


Output

Finding the Outliers


```
#importing data
data=pd.read csv("income.csv",na values=[" ?"])
data2=data.dropna(axis=0)
#boxplot Age vs salary status
sns.boxplot("SalStat", "age", data=data2)
11 11 11
people with 35-50 age are more likely to earn >50000
people with 25-35 age are more likely to earn <=50000
11 11 11
```


Output

SONET Exploration of JobType vs Salary status DATA SCIENCE

EDA-

- 1. Jobtype VS salary status
- 2.create a cross table Jobtype Vs salary status

Output

SalStat	greater than 50,000	less than or equal to 50,000
JobType	50 E	17 CS70.
Federal-gov	0.387063	0.612937
Local-gov	0.294630	0.705370
Private	0.218792	0.781208
Self-emp-inc	0.558659	0.441341
Self-emp-not-inc	0.285714	0.714286
State-gov	0.268960	0.731040
Without-pay	0.000000	1.000000
All	0.248922	0.751078

You are aware of

Data Encoding

Project Life Cycle

We will proceed with

Case Study

