TTK 4240 – Øving 5

Utlervert dato: 22.09.2016 Veiledningstime: 29.09.2016 Innleveringsfrist: 06.10.2016

Ansvarlig: Atle Rygg (atle.rygg@itk.ntnu.no)

INTRODUKSION – VISARREKNING OG EFFEKTBEREKNINGAR

Visarrekning (viserregning, phasor analysis) er det viktigaste hjelpemiddelet vi har til å rekne på kretsar med vekselsspenning (AC). Vi kallar det visar/viser pga. likhet med klokka sin visar for sekund/minutt. Med denne rekneteknikken kan vi rekne på AC-kretsar på tilsvarande måte som likespenningskretsar (DC). Visarrekning foregår i frekvensdomenet, men vi kallar det ofte for **visarplanet**. Kretselement representerast ved hjelp av sin impedans $Z(j\omega)$ som vi har lært om tidlegare. Straum og spenning på sinusform kan representerast i visarplanet ved hjelp av visartransformasjon (likning 9.15 i N&R):

$$V_{m}\cos(\omega t + \varphi) \Leftrightarrow V_{m}e^{j\varphi}$$
 (EKSTREMT VIKTIG LIKNING I TTK4240)

Ved å transformere ein cosinusfunksjon (eller sinus) til visarplanet misser vi altså informasjon om frekvensen ω , men det gjer ingenting fordi vi antar den er kjent og konstant (f.eks. 50 Hz). Visaren fortel oss to ting: amplitude og fasevinkel.

Når vi analyserer ein krets med visarrekning står vi fritt til å velje kva som skal vere «refereansevinkel», dvs. den visaren som har $\varphi=0$. Dette veljer vi ofte til å vere kildespenninga. I visarrekning brukar vi oftast RMS-verdiar for straum og spenning. Dette skal vi kome tilbake til i oppgåve 1, sjå også separat notat som blir lagt på It's Learning.

Effektberekningar

Når vi reknar på vekselsstraumkretsar er vi ofte interessert i effekt. Frå vgs. veit vi at $P = U \cdot I$, i TTK4240 introduserer vi den generaliserte varianten basert på visarrekning:

$$S = U \cdot I^* = P + jQ$$
 (* betyr komplekskonjugert) (EKSTREMT VIKTIG LIKNING I TTK4240)

U og *I* er her på visarform, dvs. komplekse tal. *S* kallar vi kompleks effekt eller **tilsynelatande effekt** (apparent power). *P* kallar vi **aktiv effekt**, og dette er det «nyttige» effekten som vi kan sjå virkninga av. *Q* kallar vi **reaktiv effekt**, og dette er den mystiske og unyttige effekten som blir kasta fram og tilbake i kretsen utan å bidra til noko som helst. Vi skal sjå i øvinga at induktans og kapasitans bidrar til Q.

Dagens siste definisjon er **effektfaktor**. Ein komponent som forbruker ein gitt effekt S=P+jQ har ein effektfaktor $\cos \varphi$ gitt av formelen $\cos \varphi = \frac{P}{S}$, dvs. forholdet mellom nyttig og total effekt.

Til slutt: Visarrekning er basert på Laplace og frekvensdomenet, einaste forskjellen er at vi forenklar representasjonen av straum og spenning til ein visar. Vi anbefaler å lese grundig gjennom kap. 9.1 til 9.3 i Nilson&Riedel for å lære seg dei grunnleggande samanhengane mellom tidsfunksjon og visar

1 RMS og gjennomsnittseffekt

Betrakt spenningsforløpet $v(t) = V_{peak} \sin(\omega t)$.

- a) Kva blir RMS-verdien til spenninga? Kva blir forholdet mellom amplitude og RMS-verdi? Definisjonen på RMS står nedanfor, men ver obs. på grensene for integralet.
- b) Viss denne spenninga blir påtrykt terminalane til ein motstand R, finn eit uttrykk for momentaneffekten forbrukt i motstanden, dvs. p(t) = v(t)i(t). Kor stor blir den gjennomsnittlige avgitte effekten, målt i watt? **NB:** Vi er ute etter gjennomsnittet over ein periode.
- c) Anta no at vi koblar den same motstanden R til ei konstant spenning V_x . Kor stor må V_x vere for at motstanden skal bruke like stor gjennomsnittleg effekt som for v(t)? Kva blir forholdet mellom amplituden til v(t) (dvs. V_{peak}) og V_x ?
- d) Bruk resultata frå a)-c) til å argumentere kvifor det er ein god ide å bruke RMS-verdiar av straum og spenning til effektberekningar på vekselsstraumkretsar.

Oppgitt: Definisjon på RMS av eit tidssignal: $X_{rms} = \sqrt{\frac{1}{T} \int_0^T x^2(t) dt}$

<u>Nyttig informasjon til seinare oppgåver:</u> Vi brukar nesten utelukkande RMS når vi reknar på vekselsstraumkretsar. Men vi er ikkje alltid så flinke til å understreke det. Derfor: **Viss du er i tvil om det er RMS eller amplitudeverdi som er oppgitt, bruk RMS!**

2 EFFEKTBEREKNING PÅ INDUKTANS

Anta vi påtrykker ei spenning $v(t) = V_m \cos \omega t$ på ein spole L som har i(0) = 0.

- a) Finn i(t) gjennom spolen for t > 0
- b) Finn momentaneffekten p(t) i spolen, samt gjennomsnittseffekten P.
- c) Finn den tilsynelatande effekten S, aktiv effekt P, samt reaktiv effekt Q. Kommenter resultata basert på svaret i b).
- d) Kva blir impedansen til spolen? Stemmer dette med det du har lært tidlegare?
- e) Ein straumkunde i Trondheim har ein spole på $L=1\,H$ som den einaste komponenten kobla til i huset sitt. Han brukar dermed ikkje straum på nokon andre ting enn denne induktansen. Spenninga er 230 Volt og straumprisen er 1 kr/kWH. Kor stor straumrekning bør denne kunden få av TrønderEnergi per månad viss vi antar den alltid er kobla til?

3 EFFEKTBEREKNINGAR FOR UKJENT KRETS

Denne oppgåva er basert på eksamensoppgåve frå des. 2015. Figuren viser tidsforløp for straum og spenning i ein einfasekrets.

Analyse i tids-domenet:

- a) Vis at forskjellen i fasevinkel mellom straum- og spenningskurva er lik $\gamma=45^o$
- b) Finn eit uttrykk for momentaneffekten p(t) forbrukt av kretsen. Det er ikkje nødvendig å forenkle uttryket.

Analyse i visarplanet:

- c) Finn tilsynelatande effekt *S*, aktiv effekt *P* og reaktiv effekt *Q* **forbrukt** av kretsen (som vanleg er både *P* og *Q* gjennomsnittsverdiar). Er kretsen induktiv eller kapasitiv? Forklar kvifor.
- d) Finn den ekvivalente impedansen $Z_{\it eq}$ til kretsen.
- e) Vis at for ein generell impedans så er $S = Z|I|^2$ og at $S = \frac{|V|^2}{Z^*}$, og bruk desse formlane til å kontrolere at svara i c)-e) er riktige. Desse formlane er det nyttig å kunne utleie på eksamen!

4 PRAKTISK EKSEMPEL: KRETSBEREKNING PÅ EIN HYBEL I TRONDHEIM

Figuren nedanfor viser forenkla oversikt over straumforbruket til ein hybel i Trondheim. Vi antar at berre tre komponentar brukar straum denne dagen: vaskemaskin, TV og panelovn. Alle stikkontakter i alle hus er kobla i parallell til 230 – spenningskjelda som kjem inn til huset via straumnettet.

Ein svært vanleg måte å modellere elektrisk forbruk på, er som konstant impedans. Ofte er det tilstrekkeleg å modellere forbruket som ein seriekobling av R og L. Då får vi følgande ekvivalent:

På baksida av komponentane les vi følgande:

- Vaskemaskin: Treng ein straum på 6 A viss spenninga er 230 V. $\cos \varphi = 0.95$ (induktiv)
- TV: Treng ein straum på 4 A viss spenninga er 230 V. $\cos \varphi = 0.98$ (induktiv)
- Panelovn: Treng ein straum på 7 A viss spenninga er 230 V. $\cos \varphi = 1.0$

Gjennom heile oppgåva skal vi anta $v(t) = 325.3\sin(\omega t)$, der $\omega = 2\pi \cdot 50$ rad/s

- a) Forklar kvifor det ville vore ein svært dårleg ide å koble komponentar i eit hus i seriekobling istaden for parallellkobling. Forklar også kvifor $v(t) = 325.3\sin(\omega t)$ sjølv om vi seier at dette er eit 230 volts nett.
- b) Finn straumane I_{tv}, I_{vm}, I_{po} på visarform, dvs. med amplitude og vinkel. Finn også summen $I_{tot} = I_{tv} + I_{vm} + I_{po}$. Forklar kvifor i_{tot} ikkje er nøyaktig lik 4+6+7=17 A?
- c) Basert på b): finn verdiane til R_{vm} , L_{vm} , R_{tv} , L_{fv} , R_{po} , L_{po}
- d) Finn S, P og Q for dei tre komponentane.
- e) Finn total effekt ($S_{tot}, P_{tot}, Q_{tot}$) basert på I_{tot} , og samanlikn med summen $P_{tv} + P_{vm} + P_{po}$ og $Q_{tv} + Q_{vm} + Q_{po}$

HINT OG TALSVAR

1. RMS og gjennomsnittseffekt

a. $V_{rms} = \frac{V_{peak}}{\sqrt{2}}$ Bruk definisjonen på RMS. Ver obs på kva slags grenser du set inn for

integralet, det skal tilsvare ein periode. Muligens trengs Rottmann eller google.

- b. $P = \frac{V_{peak}^2}{R} \frac{1}{2}$. Denne oppgåva blir også eit integral som skal løysast. Integralet har mykje til felles med oppgåve a)
- c. Set opp uttrykk for effekten i ein motstand ved konstant spenning, og set dette lik svaret frå b)
- d. Samanlikn svaret i c) med svaret i a). Kva har RMS-spenning og den konstante spenninga til felles?

2. Effektberekning på induktans

- a. Bruk spolelikninga $v = L \frac{di}{dt}$, så følger svaret etter litt integrering
- b. $p(t) = \frac{V_m^2}{2\omega L} \sin(2\omega t)$. Kan finnast som produkt av straum og spenning og ein ørliten trigonometrisk manipulasjon. For å finne gjennomsnittseffekten P må du integrere over ein periode.
- c. $S = \frac{V_m^2}{2\omega L}e^{j90}$ Eit alternativ er å finne straum og spenning på visarform. Då må vi definere ein referansevinkel. Tips er å bruke spenninga til dette, og deretter å finne vinkeldifferansen mellom straum og spenning. Alle formlar som trengs står på side 1
- d. $Z=j\omega L$. Einaste som trengs her er Ohms lov med visarane. Kontroller om dette har noko til felles med transferfunksjon til ein spole i frekvensdomenet
- e. Ai ai ai, dette er ei lureoppgåve!

3. Effektberekning for ukjent krets

- a. Les av tidsdifferansen målt i sekund/millisekund, og konverter til grader
- b. Skriv opp straum- og spenningsfunksjonane, og multipliser dei
- c. $S = \frac{15}{2}e^{j45}$. Velg ein referansevinkel, og bruk visaranalyse. Bruk definisjonen på kompleks effekt kombinert.
- d. $Z = \frac{5}{3}e^{j45}$. Bruk Ohms lov kombinert med svaret i c).
- e. Kombiner $V = ZI \mod S = VI^*$

4. Kretsberekning på ein hybel i Trondheim

- b. $I_{vm} = 6e^{-j18.19}$ Finn ein samanheng mellom ϕ og fasevinkelen til straumen. Hugs RMS
- c. $Z_{vm} = 38.33e^{j18.19}$. Bruk Ohms lov basert på svara i b) + spenningsvisaren
- d. $P_{vm} = 1311W$ $Q_{vm} = 431VAr$ Bruk definisjonen på kompleks effekt
- e. Bruk $S_{tot} = VI_{tot}^*$. Splitt opp i P_{tot}, Q_{tot} , dette skal bli likt med summane.