

Machine Learning Fundamentals- DTSC 102

Lecture 1
Introduction to ML

Contents

- ➤ Course Overview
- ➤ Machine Learning: what and why?
- ➤ Machine Learning Classes
- **≻**Examples

Course Assessment

Assessment Type	Weight	
Final Exam	40%	
Project	20%	£ 0000
Lab Assignments	40%	CLIFFE. TUMBLR. COM

➤ Facebook's Face Recognition

➤ Google Search

➤ Spam Filtering in e-mails

And in many other scenarios:

- ➤ Data Mining programs detecting fraudulent credit card transactions
- >Learning users' preferences
- Self-driving vehicles and many more...

Growth of Machine Learning

Machine Learning is the preferred approach for:

- Speech recognition
- Natural language processing
- Computer vision
- Medical outcomes analysis
- Robot control
- Computational biology
- Sensor networks

Growth of Machine Learning

Machine Learning is accelerating due to:

- Improved machine learning algorithms
- Big Data and need for big data analytics
- Faster computers
- Software that is too complex to write by hand
- Sensors & IO devices constructing IoT
- Demand for self-customization to user and environment

So What is Machine Learning?

It is the science of getting computers to learn without being explicitly programmed,

Through constructing computer programs that automatically improve with experience

So What is Machine Learning?

Machine Learning:

Study of Algorithms that

- Improve their <u>performance P</u>
- at some task T
- With <u>experience E</u>

So a well defined learning task is represented as {P,T,E}

Machine Learning Examples

Example: Spam Filtering process

• T : Classifying e-mails as spam or not

• E: Watching you label emails as spam or not spam

• P: number of correctly classified e-mails as

spam/not spam

Machine Learning Examples

Example: Image Recognition

- T : Detecting faces in images
- E : Given example training images
- P : number of correctly recognized faces

Example training images for each orientation

Types of Machine Learning

Supervised Learning

- Also known as predictive learning
- Figure 3. Since P in P in
- ➤ <u>Goal</u>: Learn a mapping from inputs *x* to outputs *y*
- ➤ Has two types:
 - 1. Regression: when *y* is a continuous value output
 - 2. Classification: when *y* is a discrete value output

Unsupervised Learning

- Also known as descriptive learning
- Figure 5. Since P Given: Training set P of P inputs P and P inputs P inputs
- ➤ <u>Goal</u>: Finding interesting patterns in the data
- ➤ Has two types:
 - 1. Clustering: grouping data into cohesive groups
 - 2. Non-Clustering: finding structure in a chaotic environment

Other types:

Reinforcement Learning

Supervised Learning

>Given:

Training set D of N input-output pairs $D = \{(x_i, y_i)\}, i = 1, ... N$

where

 x_i is the input variable (also called input features) y_i is the output/target value (x_i, y_i) is a training example

► Goal: Learn a function $h: x \to y$ such that h(x) is a good predictor for the corresponding value of y

Supervised Learning

Example: Predicting house prices

- Assume we are given a training set of living areas and prices for *n* houses
- ➤ Perform Regression to estimate the hypothesis function to predict continuous valued output

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
i :	i :

Supervised Learning

Example: Shape Recognition

- ➤ Assume we are given a training set of different shapes corresponding to two classes C=Yes/No
- > Perform Classification to estimate the hypothesis function to predict discrete valued output
- ➤ If C=2 output classes
 - ✓ BinaryClassification

If C>2

✓ Multiclass

Classification

> Given:

Only input data is given without any outputs

➤ Goal:

Deriving structure from data where we don't necessarily know the effect of the variable

Example: Clustering according to height and weight

- > Assume we are given a heights and weights of a group
- > Perform Clustering to divide the data into groups

More examples:

- ➤ Organizing computer clusters: servers who work together are placed together for better data center performance
- Social Network AnalysisDetecting cohesive groups and suggesting friends
- ➤ Market Segmentation
 Grouping customers into segments for better marketing

Organize computing clusters

Example: Cocktail Party Problem

- > Assume a cocktail party where everyone is speaking at the same time
- > Trying to recognize what everyone is saying
- > Perform a non-clustering algorithm to find structure in a chaotic environment

