<u>Directed graph with negative-weight edges Dijkstra's algorithm:</u>

To find the shortest path from A to B and from A to D using Dijkstra's algorithm.

Run Dijkstra's algorithm on the graph below, using vertex A as the source.

step	S	dist[A]	dist[B]	dist[C]	dist[D]
1	$\{A\}$	0	3	4	∞
2	$\{A,B\}$	0	3	4	7
3	$\{A, B, C\}$	0	3	4	7
4	$\{A,B,C,D\}$	0	3	4	7

From the above table, we found that the shortest path from A to B is 7 but the actual shortest path from A to B is 2 and same is happened for path from A to D is 7 but actual shortest path from A to D is 6.

Henceforth, Dijkstra's algorithm gives incorrect result when there is negative weight.

Consider any graph with a negative cycle.

RELAX is called a finite number of times but the distance to any vertex on the cycle is $-\infty$, so DIJKSTRA's algorithm cannot possibly be correct here.

The proof of theorem 24.6 doesn't go through because we can no longer guarantee that $\delta(s, y) \le \delta(s, u)$.