Class: MATH 2410

Mathematical Statement

Statement	is any declarative sentence which is either true
	or false.
Atomic	if it cannot be divided into smaller statements
Molecular	if it can be divided into smaller statements.
conjunction	$p \wedge q$ equivalent to "p and q".
disjunction	$p \vee q$ equivalent to "p or q".
	where p is the hypothesis and q the conclusion
Implication	$p \to q$ equivalent to "if p then q".
Biconditional	$p \leftrightarrow q$ equivalent to "if and only if p then q".
Negation	$\neg p$ equivalent to "not p ".
Converse	
Contrapositive	
There is a x	$\exists x$
For all x	$\forall x$

Naive Set Theory

Set Notation

Universal set	\mathbb{U}	(
Empty set	$\emptyset = \{\}, \text{ Remember: } \forall A(\emptyset \subset A)$	•
Power set	$\mathcal{P}(A)$ is the set of all the subsets of A.	
Partition of A	A collection of nonempty, pairwise-disjoir	ıt
	subsets whose union is A .	
Element of	\in . Example: $2 \in \{1, 2, 3\}$	
Subset of	\subseteq . Example: $\{A, B, C\} \subseteq \{B, C, D\}$	
	$A \subseteq B \Leftrightarrow \forall x$	
Proper subset of	\subset . Example: $\{A, B, C\} \subset \{A, B, C, D\}$	I
Intersection	$\bigcap_{i \in I} A_i = \{ x \in \mathbb{U} \forall i \in I, x \in A_i \}$	(
	$A \cap B = \{ x \in \mathbb{U} x \in A \land x \in B \}$	7
Union	$\bigcup_{i \in I} A_i = \{ x \in \mathbb{U} \exists i \in I, x \in A_i \}$	t.
	$A \cup B = \{x \in \mathbb{U} x \in A \lor x \in B\}$	Ş
Difference	$A \backslash B = \{ x \in A x \notin B \}$	
Symmetric difference	$A\Delta B = (A\backslash B) \cup (B\backslash A)$	1
Cartesian Product	$A \times B = \{(x, y) x \in A \land y \in B\}$	
Complement of	$\bar{A} = \{ x \in \mathbb{U} x \notin A \}$	ľ
Cardinality	A	,

Cardinality

finite set	Let X be a finite set then $ X \in \mathbb{N}$
countable set	A set S is countable if and only if that is finit
	or $ S = \mathbb{N} $.
- 1 1 11	1771

aleph null. $\aleph_0 = |\mathbb{N}|$

Theorem 1 Let A and B be sets, then |A| = |B| if and only if there is a one-to-one correspondence from A to B.

Theorem 2 If A and B are countable, then $A \cup B$ is countable.

Theorem 3 (Cantor's Theorem) For every set A, $|A| < |\mathcal{P}(A)|$.

Theorem 4 (Schröder–Bernstein) If there are injective function(one-to-one) functions $f:A\to B$ and $g:B\to A$, then there is a one-to-one correspondence between A and B. In other words If A and B are set with $|A|\neq |B|$ and $|B|\neq |A|$, then |A|=|B|.

Functions

ıe	Functions	A rule that assigns each input exactly one
		output.
ts.	Domain	The set of all input of a function. $(X \text{ in } f: X \to Y)$
	Codomain	The set of all output a function.(Y in $f: X \to Y$
	Range	Is the subset of Y of elements that have an
		antecedent in X by f
on.	$f: x \to y$	a function f with a domain x and a codomain y .
	Recursive f.	
	Injective	every element of the codomain is the image of
		$f(a) = f(b) \Rightarrow a = b$
		at most one element from the domain.
	Surjective	every element of the codomain is the image of
		at least one element from the domain.
	Bijection	A function that is Injective and Surjective .
	Image	$f(A) = \{f(a) \in Y : a \in A\}, \text{ where } A \subset \text{domain.}$
	Inverse Image	$f^{-1}(B) = \{f(b) \in X : b \in B\}, \text{ where}$
		$B \subset \text{codomain}$.

Counting

	power set cardinality	$ \mathcal{P}(A) = 2^{ A }$
n-bit string		
	bit string weight	the number of 1 in a bit string.
	B_{r}^{n}	the set of all n-bit strings of weight k.

Additive Principle

General Definition: if event A can occur in m ways, and even B can occur in n **disjoint** (A and B can't apen at the same time.) ways, then A and B can occur in m + n ways. **Set Definition:** Given 2 sets A and B, if $A \cap B = \emptyset$, then

Set Definition: Given 2 sets A and B, if $A \cap B = \emptyset$, then $|A \cap B| = |A| + |B|$.

Multiplicative Principle

General Definition: if event A can occur m ways, and each possibility for A allows for exactly n ways for event B, then the event "A and B" can occur $m \cdot n$ ways.

Set Definition: Given 2 sets A and B, we have $|A \times B| = |A| \cdot |B|$.

Binomial coefficient

Sequences

Symbolic Logic

Name	\mathbf{Symbol}	Translate to
	\wedge	and
	\vee	or
Implication	\Rightarrow	if
Biconditional	\Leftrightarrow	if and only if

Important Equivalences

• $p \land T \equiv p \bullet p \land \bot \equiv \bot \bullet p \lor T \equiv T \bullet p \lor \bot \equiv P \bullet p \Rightarrow q \equiv \neg p \Rightarrow \neg q$ • $p \Rightarrow q \equiv \neg p \lor q \bullet p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$

 $\bullet \quad \neg \forall x P(x) = \exists x p(x) \quad \bullet \quad \neg \exists x P(x) = \forall x p(x) \text{ Graph Theory} \\ \bullet \quad \neg (a_1 \land a_2 \land \cdots \land a_n) \equiv \neg a_1 \lor \neg a_2 \lor \cdots \lor \neg a_n$

 $\bullet \neg (a_1 \lor a_2 \lor \dots \lor a_n) \equiv \neg a_1 \land \neg a_2 \land \dots \land \neg a_n$