

Cheatsheet

Properties of Tian Xiao tinyurl.com/tx-mal102r-sagemath

* represents an **optional** argument.

Italics represents **name** of an argument.

Basic Command

=	Assign a value
==	Equal sign
reset(*vars)	Delete and reset vars
show(expr)	Change display mode
_	Quote previous input
.n(*digits = value)	Approximations
var(* <i>var</i>)	Define a variable
assume(assumption)	Make an assumption
forget(*assumption)	Forget an assumption
assumptions()	Show all assumptions
.full_symplify()	Simplify an expression
.factor()	Factorise an expression
.expand()	Expand an expression

Basic Algebra

+-*/^	Basic operators
.sqrt()	Square root
^(1/n)	Principle n-th root
.nth_root(n)	Real n-th root
pi	п
.sin()	Trigonometric functions
.log(*base)	Logarithm functions
е	Euler constant
.exp()	Exponential functions
.factorial()	Factorial

Function and Equation

f(x) = expr	Assign a function
.substitute(x = value) f(value)	Substitute a value into a function
(min, max) [min, max]	Open/closed interval
<pre>piecewise([[interval, f(x)],])</pre>	Piecewise functions

<pre>plot(function, (*var, *xmin, *xmax), *ymin = value, *ymax = value, *plot_points = num, *color = color, *detect_poles = "show")</pre>	Plot a graph. To show the asymptote, key in the last kwarg
<pre>*equation.find_root(xmin , xmax)</pre>	Find roots in a certain interval
<pre>implicit_plot(equation, (xmin, xmax), (ymin, ymax))</pre>	Implicit plot
parametric_plot($(x(t), y(t))$, $(t, tmin, tmax)$)	Parametric plot
.solve(x, *algorithm = "sympy")	Solve an equation

Differentiation

<pre>.limit(x = value, *dir = "-")</pre>	Calculate the limit
Infinity oo	Infinity
.derivative(x, *order)	Differentiate with respect to x
.rhs()	Right-hand side
.implicit_derivative(y, x, *order)	Implicit differentiate dy/dx

Integration

.sum(var, min, max)	Sum an expression
.integral(x, *(x, xmin, xmax))	Integrate with respect to x

Differential Equation

<pre>desolve(ODE, y(x), *ics = [x0, y0, *moreics], *contrib_ode = True)</pre>	Solve a DE. If cannot be solved, we can try the last kwarg
_C _K1 _K2	Constants in DE
<pre>desolve_rk4(ODE, y(x), ics = [x0, y0, *moreics], *end_points = [xmin, xmax], *step = d, *output = "plot")</pre>	Approximate the solution of a DE
list_plot()	Plot a list