

Árboles de Decisión

Juego de las 20 preguntas

Hacia una era de **Universidad y** Humanidad

Notebook

 Un árbol de decisión es una serie de preguntas si/no que se hacen de forma secuencial en los datos

x_{1}	x ₂	У
3.5	2	1
5	2.5	2
1	3	1
2	4	1
4	2	1
6	6	2
2	9	2
4	9	2
5	4	1
3	8	2

 Un árbol de decisión es una serie de preguntas si/no que se hacen de forma secuencial en los datos

x_1	x ₂	у
3.5	2	1
5	2.5	2
1	3	1
2	4	1
4	2	1
6	6	2
2	9	2
4	9	2
5	4	1
3	8	2

 Un árbol de decisión es una serie de preguntas si/no que se hacen de forma secuencial en los datos

X ₁	x ₂	У
3.5	2	1
5	2.5	2
1	3	1
2	4	1
4	2	1
6	6	2
2	9	2
4	9	2
5	4	1
3	8	2

 Un árbol de decisión es una serie de preguntas si/no que se hacen de forma secuencial en los datos

Gráfico de dispersión

x_{1}	x ₂	У
3.5	2	1
5	2.5	2
1	3	1
2	4	1
4	2	1
6	6	2
2	9	2
4	9	2
5	4	1
3	8	2

 Un árbol de decisión es una serie de preguntas si/no que se hacen de forma secuencial en los datos

 Un árbol de decisión es una serie de preguntas si/no que se hacen de forma secuencial en los datos

 Un árbol de decisión es una serie de preguntas si/no que se hacen de forma secuencial en los datos

Predicción con algún dato

x_1	x ₂	У
3.5	2	1
5	2.5	2
1	1 3	
2	4	1
4	2	1
6	6	2
2	9	2
4	9	2
5	4	1
3	8 2	

• Los árboles aprenden al dividir recursivamente cada nodo de manera que maximiza el incremento de "pureza"

- El proceso finaliza con un criterio de parada:
 - Cuando se alcanza una profundidad máxima
 - Cuando se alcanza un número máximo de hojas
 - Cuando hay muy pocos datos en una hoja particular
 - Cuando las hojas han alcanzado un nivel de pureza deseado

• Para que el aprendizaje es importante manejar alguna noción de impureza. Esto sirve para decidir qué pregunta hacer en cada rama, al considerar la impureza en sus hijos (ramas si/no).

• Se busca que la impureza sea lo más baja posible, o lo que es igual, que la pureza sea alta.

Impureza

Clase 1

Clase 2

• Existen principalmente dos opciones:

• Entropía:
$$i(p_1,\ldots,p_k) = -\sum_{j=1}^k p_j \log_2(p_j)$$

• Gini:
$$i(p_1,\ldots,p_k)=\sum_{j=1}^k p_j(1-p_j)$$

• Son extremadamente similares, no presentan diferencia en el rendimiento del modelo final. Generalmente se utiliza Gini index.

Ejemplo numérico

Ejemplo de cálculo de Gini:

- ¿Qué valor de Gini nos da si realizamos la pregunta en rama "Llueve?"
- ¿Qué valor de Gini si preguntamos "Tengo dinero"?

$$i(p_1,\ldots,p_k) = \sum_{j=1}^k p_j (1-p_j)$$

Llueve	Tengo dinero	°C	Salir
Sí	Sí	7	NO
Sí	No	12	NO
No	Sí	18	SÍ
No	Sí	23	SÍ
Sí	Sí	26	SÍ
Sí	No	32	NO
No	No	34	NO

MUCHAS GRACIAS!

Alcaldía de Medellín

Distrito de Ciencia, Tecnología e Innovación