A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 2ED	Bookmark	Show all steps: ON

Problem

If $\alpha = \sqrt[4]{2}$ is a real fourth root of 2, then the four fourth roots of 2 are $\pm \alpha$ and $\pm i\alpha$. Explain parts 1–6, briefly but carefully:

$$[\mathbb{Q}(\alpha):\mathbb{Q}]=4.$$

Step-by-step solution

Step 1 of 2

The objective is to show that $\left[\mathbb{Q}\left(\sqrt[4]{2}\right):\mathbb{Q}\right]=4$.

Comment

Step 2 of 2

Clearly $\frac{4}{2}$ is the root of $x^4 - 2$.

Also, x^4-2 is irreducible polynomial of lowest degree 4 over $\mathbb Q$ by Eisenstein (p=2).

Therefore
$$, \left[\mathbb{Q}\left(\sqrt[4]{2}\right):\mathbb{Q}\right] = deg\left(x^4 - 2\right) = 4.$$

Comment