Anmerkungen und Lösungen zu

Einführung in die Algebra Blatt 4

Jendrik Stelzner

Letzte Änderung: 17. November 2017

Aufgabe 3

(b)

Wir haben im Tutorium gesehen, dass für $A \in \mathcal{M}_n(K)$ die Implikationen

Aist nicht injektiv $\implies A$ ist ein Linksnullteiler

und

A ist nicht surjektiv $\implies A$ ist ein Rechtsnullteiler

gelten. Dabei handelt es sich tatsächlich schon um Äquivalenzen. Aus der linearen Algebra wissen wir dabei, dass wegen der Endlichdimensionalität von K^n die Injektivität und Surjektivität von A äquivalent sind. Deshalb kann der Matrizenring $M_n(K)$ keine Beispiele liefern.

Im Tutorium haben wir das Problem dadurch gelöst, dass wir den endlichdimensionalen K-Vektorraums K^n durch einen unendlichdimensionalen K-Vektorraum V ersetzt haben, und anstelle $\mathrm{M}_n(K) \cong \mathrm{End}(K^n)$ den Endomorphismenring $\mathrm{End}(V)$ betrachtet haben.

Ein anderer Ansatz besteht darin, die Einträge der Matrizen nicht aus einem Körper K zu wählen.