# Graphs: Minimum Spanning Tree

# Greedy Approach

- 1. Greedy: Take locally optimal move
  - When does that lead to global optimum?
    - Knapsack: Doesn't work
  - Minimum Spanning Tree (MST)
    - Greedy approach does work
    - Prove Kruskal's and Prim's algorithm
    - Cut property

# MST Problem

- 1. Given: Undirected graph G = (V,E) with weights w(e) for e in E
- 2. Goal: Find minimal size, connected subgraph of minimum weight
  - Find minimum weight spanning tree of G
    - Spanning tree: Minimal size, connected subgraph
  - Minimum weight: For T in E, w(T) = sum(w(e))

# Tree Properties

- 1. Tree = connected, acyclic graph
- 2. Basic properties:
  - Tree on n vertices has n-1 edges
  - In a tree, exactly one path between every pair of vertices
  - Any connected G = (V,E) with |E| = |V| 1 is a tree

# Greedy Approach for MST

- 1. Sort edges by increasing weight
  - If an edge doesn't create a cycle, add it to the MST

# Greedy approach for MST

Tree

# Kruskal's Algorithm

```
Kruskals(G):
input: undirected G=(V,E) with weights w(e)
Sort E by incrasing weight
Set X = {}
For e = (v,w) in E (go through in order):
   if x U e doesn't have a cycle:
   x = x U e
```

# Kruskal's Analysis

- 1. Runtime Analysis
  - Sort: O(mlogn) time
    - m = |E|, n = |V|
  - Let c(v) = component containing v in (v,x)
    - c(w) = component containing w in (w,x)
    - If c(v) = c(w) then add e to x
  - Use Union-find data structure
    - O(logn) time per operation
  - Total runtime: O(mlogn)
    - Steps 1 and 3 (sort and for loop) both take O(mlogn)

# Kruskal's Correctness

- 1. Proof by induction:
  - Assume X is correct so far

- X is a subgraph of T where T is a MST
- Add e=(v,w) to X
- Claim: X U e is a subgraph of T' where T' is a MST
- 2. Key Property
  - If we consider one component S=c(v), the set of vertices containing v
  - S' = rest of the vertices
  - Both S and S' are components
    - X doesn't cross S <-> S'
  - e is a minimum weight edge crossing from S to S'

### Cuts

- 1. For undirected G=(V,E)
  - Partition V = S U S'
  - $cut(S,S') = \{(v,w) \text{ in } E: v \text{ in } S, w \text{ in } S'\}$ 
    - = edges crossing S < -> S'



Cut

# **Cut Property**

- 1. Lemma: For undirected G=(V,E)
  - Take X as a subset of E where X is a subset of T for a MST T
  - Take S as a subset of V where no edge of X is in the cut (S,S')
  - Look at all edges of G in cut(S,S')
  - Let e\* be any minimum weight edge in cut(S,S')
  - Then: X U e\* is a subset of T' where T' is a MST

# Cut Property: Kruskal's

1. The above cut property is used to prove Kruskal's algorithm

### **Proof Outline**

- 1. Fix G, X, T, S
  - X is a subset of T where T is a MST
  - No edge of X crosses S <-> S'
  - $w(e^*) \le w(e_1), \ldots, w(e_4)$
- 2. Goal: Construct MST T' where:
  - X U e\* is a subset of T'

# Constructing T

- 1. Goal: Construct MST T' where:
  - X U e\* is a subset of T'
    - If  $e^*$  is in T: T' = T
    - If e\* is not in T
      - Look at T U e\*: Has a cycle C
      - Take e' in T crossing S <-> S'
        - \* This is guaranteed to be greater in weight than e\*
      - Set T' = T U e\* e'

# T' is a Tree

- 1.  $T' = T U e^* e'$ 
  - Show: T' is connected and has n-1 edges
    - n-1 edges: T was a tree, we added one edge and subtracted another
    - Connected: For y,z in V
      - \* Let P be path  $y \rightarrow z$  in T
      - \* Let C be cycle in T U e\*
      - \* Let P' = C e' is a path  $c \rightarrow d$  in T'
      - \* To go y -> z in T': Use P, replace e' by P'

### T is a MST

- 1.  $T' = T U e^* e'$ 
  - T' is a tree
  - Know w(T) is minimum
    - $w(e^*) \le w(e')$
    - $w(T') = w(T) + w(e^*) w(e') \le w(T)$ 
      - $* w(e^*) w(e^*) \le 0$
- 2. Key ideas:
  - Statement of cut property: Minimum weight edge across the cut is part of a MST
  - Proof of cut property: I can take a tree T and add an edge into that tree that creates a cycle. I can remove an edge from that cycle and get a new tree

# Prim's Algorithm

- 1. MST algorithm akin to Dijkstra's algorithm
  - Use cut property to prove correctness of Prim's algorithm