Exploratory Data Analysis Project

Introduction

This is data set from UCI

repository. https://archive.ics.uci.edu/ml/datasets/Chemical+Composition+of+Ceramic+Samples# it has percentage composition of various metallic oxides in various ceramics. It has 19 columns and 88 datapoints

```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
composition = pd.read_csv('composition.csv')
from scipy.stats import skew

composition.head()
```

Out[1]:

	Ceramic Name	Part	Na20	MgO	Al2O3	SiO2	K20	CaO	TiO2	Fe2O3	MnO	CuO	ZnO	PbO2	Rb2O	SrO	Y2O3	ZrO2	P2
0	FLQ-1-b	Body	0.62	0.38	19.61	71.99	4.84	0.31	0.07	1.18	630	10	70	10	430	0	40	80	
1	FLQ-2-b	Body	0.57	0.47	21.19	70.09	4.98	0.49	0.09	1.12	380	20	80	40	430	-10	40	100	1
2	FLQ-3-b	Body	0.49	0.19	18.60	74.70	3.47	0.43	0.06	1.07	420	20	50	50	380	40	40	80	2
3	FLQ-4-b	Body	0.89	0.30	18.01	74.19	4.01	0.27	0.09	1.23	460	20	70	60	380	10	40	70	2
4	FLQ-5-b	Body	0.03	0.36	18.41	73.99	4.33	0.65	0.05	1.19	380	40	90	40	360	10	30	80	1
4																			Þ

In [2]:

```
\label{lem:print}  \mbox{ print(f"There are {composition.shape[0]}} \mbox{ rows and {composition.shape[1]}} \mbox{ columns in datas et.")}
```

There are 88 rows and 19 columns in dataset.

In [3]:

```
composition.dtypes
```

Out[3]:

Ceramic	Name	object
Part		object
Na2O		float64
Mg0		float64
A1203		float64
SiO2		float64
K20		float64
Ca0		float64
TiO2		float64
Fe203		float64
MnO		int64
CuO		int64
ZnO		int64
Pb02		int64
Rb20		int64
Sr0		int64
Y203		int64
ZrO2		int64
P205		int64

```
In [4]:
composition.isnull().sum()
Out[4]:
Ceramic Name
Part.
                  0
Na20
                  0
                  0
MgO
                  0
A1203
SiO2
                  0
                  0
K20
CaO
                  0
TiO2
Fe203
MnO
                  0
CuO
                  0
ZnO
                  0
                  0
Pb02
                  0
Rb20
                  0
SrO
Y203
                  0
ZrO2
                  0
P205
dtype: int64
```

Plan for analysis and exploration

Some variables are in ppm(parts per million) and some are in percentage, so first i have converted into percentage for easire operation, then i have calculated sum of all the composition og]f the ceramics to check if they do not deviate too much from 100(>98.5%)

```
In [5]:

ppm_percent=['Mn0','Cu0','Zn0','Pb02','Rb20','Sr0','Y203','Zr02','P205']
composition[ppm_percent] = composition[ppm_percent]/10000
```

```
In [6]:
composition.head()
```

Out[6]:

dtype: object

	Ceramic Name	Part	Na20	MgO	Al2O3	SiO2	K20	CaO	TiO2	Fe2O3	MnO	CuO	ZnO	PbO2	Rb2O	SrO	Y2O3	ZrO2
0	FLQ-1-b	Body	0.62	0.38	19.61	71.99	4.84	0.31	0.07	1.18	0.063	0.001	0.007	0.001	0.043	0.000	0.004	0.008
1	FLQ-2-b	Body	0.57	0.47	21.19	70.09	4.98	0.49	0.09	1.12	0.038	0.002	0.008	0.004	0.043	0.001	0.004	0.010
2	FLQ-3-b	Body	0.49	0.19	18.60	74.70	3.47	0.43	0.06	1.07	0.042	0.002	0.005	0.005	0.038	0.004	0.004	0.008
3	FLQ-4-b	Body	0.89	0.30	18.01	74.19	4.01	0.27	0.09	1.23	0.046	0.002	0.007	0.006	0.038	0.001	0.004	0.007
4	FLQ-5-b	Body	0.03	0.36	18.41	73.99	4.33	0.65	0.05	1.19	0.038	0.004	0.009	0.004	0.036	0.001	0.003	0.008
4																		Þ

```
In [7]:
list=['Na20','Mg0','Al203','Si02','K20','Ca0','Ti02','Fe203','Mn0','Cu0','Zn0','Pb02','R
b20','Sr0','Y203','Zr02','P205']
```

```
In [8]:
composition
```

Out[8]:

	Ceramic Name	Part	Na2O	MgO	Al2O3	SiO2	K20	CaO	TiO2	Fe2O3	MnO	CuO	ZnO	PbO2	Rb2O	SrO	Y2O3	ZrO
0	FLQ-1-b	Body	0.62	0.38	19.61	71.99	4.84	0.31	0.07	1.18	0.063	0.001	0.007	0.001	0.043	0.000	0.004	0.00
1	FLQ-2-b	Body	0.57	0.47	21.19	70.09	4.98	0.49	0.09	1.12	0.038	0.002	0.008	0.004	0.043	0.001	0.004	0.01
2	FLQ-3-b	Body	0.49	0.19	18.60	74.70	3.47	0.43	0.06	1.07	0.042	0.002	0.005	0.005	0.038	0.004	0.004	0.00
3	FLQ-4-b	Body	0.89	0.30	18.01	74.19	4.01	0.27	0.09	1.23	0.046	0.002	0.007	0.006	0.038	0.001	0.004	0.00
4	FLQ-5-b	Body	0.03	0.36	18.41	73.99	4.33	0.65	0.05	1.19	0.038	0.004	0.009	0.004	0.036	0.001	0.003	0.00
83	DY-M- 3-g	Glaze	0.34	0.55	12.37	70.70	5.33	8.06	0.06	1.61	0.125	0.001	0.009	0.003	0.025	0.052	0.003	0.0
84	DY-QC- 1-g	Glaze	0.72	0.34	12.20	72.19	6.19	6.06	0.04	1.27	0.170	0.006	0.011	0.001	0.027	0.054	0.004	0.01
85	DY-QC- 2-g	Glaze	0.23	0.24	12.99	71.81	5.25	7.15	0.05	1.29	0.075	0.004	0.010	0.000	0.024	0.047	0.004	0.0
86	DY-QC- 3-g	Glaze	0.14	0.46	12.62	69.16	4.34	11.03	0.05	1.20	0.092	0.004	0.009	0.002	0.023	0.047	0.004	0.01
87	DY-QC- 4-g	Glaze	0.14	0.63	14.25	71.55	4.87	6.43	0.08	1.05	0.080	0.004	0.009	0.002	0.022	0.041	0.004	0.0

88 rows × 19 columns

4

Here i have checked the interquartile ranges for the complete data.

In [9]:

```
pd.set_option('display.float_format', lambda x: '%.3f' % x)
composition.describe().T
```

Out[9]:

	count	mean	std	min	25%	50%	75%	max
Na2O	88.000	0.472	0.349	0.030	0.247	0.375	0.642	1.880
MgO	88.000	0.430	0.215	0.070	0.270	0.405	0.530	1.320
Al2O3	88.000	17.461	4.703	11.300	13.008	16.205	21.707	26.480
SiO2	88.000	69.825	2.754	63.880	67.737	69.990	71.840	75.950
K20	88.000	4.978	0.879	2.730	4.338	5.065	5.590	6.740
CaO	88.000	4.172	4.306	0.120	0.180	2.690	7.912	13.690
TiO2	88.000	0.101	0.053	0.040	0.070	0.080	0.130	0.290
Fe2O3	88.000	1.562	0.604	0.580	1.098	1.510	1.925	3.110
MnO	88.000	0.082	0.061	0.018	0.038	0.059	0.098	0.297
CuO	88.000	0.003	0.002	0.000	0.002	0.003	0.004	0.008
ZnO	88.000	0.010	0.003	0.002	0.007	0.009	0.011	0.023
PbO2	88.000	0.004	0.003	0.000	0.002	0.003	0.006	0.010
Rb2O	88.000	0.031	0.007	0.018	0.025	0.032	0.037	0.045
SrO	88.000	0.023	0.026	-0.001	0.001	0.007	0.048	0.078
Y2O3	88.000	0.004	0.001	0.002	0.003	0.004	0.005	0.008
ZrO2	88.000	0.015	0.006	0.005	0.010	0.014	0.017	0.039
P205	88.000	0.044	0.040	0.005	0.010	0.036	0.070	0.161

```
composition['Part'].unique().tolist()
```

```
Out[10]:
['Body', 'Glaze']
```

Now i will be dividing the dataset into two parts because the properties of ceramic vary if it is body or glaze. this will let me see the trend of composition of compounds of ceramics classified as body or glaze

In [11]:

```
composition_b=composition[composition['Part']=="Body"]
composition_g=composition[composition['Part']=="Glaze"]
```

In [12]:

```
composition_g.insert(0, 'id', range(1, 1 + len(composition_g)))
composition_g
```

Out[12]:

	id	Ceramic Name	Part	Na20	MgO	Al2O3	SiO2	K20	CaO	TiO2	Fe2O3	MnO	CuO	ZnO	PbO2	Rb2O	SrO	Y :
44	1	FLQ-1-g	Glaze	0.970	0.070	11.420	74.410	5.700	5.340	0.050	1.040	0.055	0.002	0.006	0.002	0.031	0.015	0.
45	2	FLQ-2-g	Glaze	1.460	0.470	12.960	68.790	4.850	8.880	0.110	1.490	0.095	0.003	0.004	0.000	0.035	0.025	0
46	3	FLQ-3-g	Glaze	1.050	0.230	13.640	69.900	4.460	8.430	0.070	1.220	0.059	0.002	0.009	0.004	0.037	0.009	0
47	4	FLQ-4-g	Glaze	0.140	0.410	12.420	67.240	4.290	12.860	0.060	1.580	0.096	0.008	0.007	0.004	0.033	0.016	0
48	5	FLQ-5-g	Glaze	0.370	1.030	13.150	68.980	5.580	7.910	0.080	1.900	0.080	0.006	0.012	0.000	0.032	0.008	0.
49	6	FLQ-6-g	Glaze	1.090	0.500	13.470	68.510	5.970	7.230	0.190	2.050	0.087	0.002	0.005	0.004	0.036	0.024	0
50	7	FLQ-7-g	Glaze	1.160	0.580	13.830	71.370	5.140	5.990	0.080	0.850	0.105	0.006	0.009	0.002	0.038	0.024	0
51	8	FLQ-8-g	Glaze	1.010	0.100	11.840	71.130	3.840	9.400	0.100	1.580	0.052	0.004	0.005	0.004	0.018	0.016	0
52	9	FLQ-9-g	Glaze	1.880	0.580	12.950	67.580	2.980	10.280	0.120	2.610	0.059	0.008	0.009	0.003	0.023	0.019	0
53	10	FLQ-10- g	Glaze	0.730	0.250	13.000	71.010	5.780	6.430	0.100	1.710	0.109	0.004	0.007	0.002	0.033	0.018	0.
54	11	FLQ-11- g	Glaze	0.680	0.270	12.740	71.930	6.160	6.100	0.090	1.040	0.081	0.002	0.002	0.000	0.036	0.020	0.
55	12	FLQ-12- g	Glaze	1.290	0.320	12.830	68.810	5.800	7.920	0.070	1.970	0.068	0.003	0.004	0.002	0.034	0.021	0
56	13	FLQ-13- g	Glaze	1.270	0.540	13.010	73.110	5.460	4.120	0.130	1.360	0.066	0.001	0.004	0.002	0.040	0.016	0.
57	14	DY-BS- 1-g	Glaze	0.280	0.520	14.760	68.650	3.630	10.460	0.070	0.640	0.200	0.003	0.012	0.010	0.021	0.057	0
58	15	DY-BS- 2-g	Glaze	0.340	0.970	13.760	65.530	3.570	13.690	0.060	1.070	0.219	0.002	0.007	0.002	0.018	0.078	0
59	16	DY-BS- 3-g	Glaze	0.500	0.660	11.300	69.900	3.880	11.720	0.060	0.980	0.127	0.003	0.013	0.002	0.022	0.068	0
60	17	DY-BS- 4-g	Glaze	0.510	0.400	13.540	71.350	4.140	8.210	0.070	0.780	0.091	0.002	0.012	0.003	0.019	0.063	0
61	18	DY-BS- 5-g	Glaze	0.140	0.500	14.150	68.910	5.100	9.210	0.080	0.910	0.141	0.001	0.005	0.003	0.025	0.066	0.
62	19	DY-BS- 6-g	Glaze	0.380	1.040	12.370	67.700	3.890	12.170	0.070	1.380	0.183	0.004	0.014	0.003	0.023	0.054	0
63	20	DY-BS- 7-g	Glaze	0.250	0.470	14.090	68.460	4.710	9.810	0.070	1.140	0.146	0.001	0.010	0.002	0.027	0.061	0.
64	21	DY-NS- 1-g	Glaze	0.200	0.530	12.830	72.240	5.030	6.920	0.070	1.180	0.095	0.001	0.005	0.001	0.025	0.052	0
65	22	DY-NS-	Glaze	0.190	0.570	13.610	70.060	4.700	9.140	0.070	0.660	0.064	0.002	0.007	0.000	0.022	0.064	0.

66	id 23	2-g Ceramic Name S-	Part Glaze	Na2O 0.690	MgO 0.350	Al2O3 13.860	SiO2 71.380	K2O	CaO 6.710	TiO2	Fe2O3	MnO	CuO	ZnO	PbO2	Rb2O	SrO	Y :
-00		3-g	GIGZC	0.050	0.000	10.000	71.000	T.0-TO	0.7 10	0.100	0.010	0.011	0.000	0.012	0.000	0.020	0.040	
67	24	DY-NS- 4-g	Glaze	0.650	0.780	13.810	70.370	5.910	6.140	0.080	1.270	0.150	0.003	0.011	0.003	0.029	0.049	0.
68	25	DY-NS- 5-g	Glaze	0.030	1.010	13.050	72.280	5.560	5.770	0.070	1.240	0.175	0.002	0.015	0.003	0.027	0.033	0.
69	26	DY-NS- 6-g	Glaze	0.610	0.350	12.730	71.600	5.790	6.960	0.070	0.880	0.174	0.004	0.014	0.007	0.024	0.055	0.
70	27	DY-NS- 7-g	Glaze	0.030	0.540	13.970	67.300	3.560	12.530	0.100	0.970	0.134	0.004	0.007	0.003	0.018	0.069	0.
71	28	DY-NS- 8-g	Glaze	0.310	0.530	14.630	68.220	3.600	11.060	0.060	0.580	0.195	0.004	0.023	800.0	0.018	0.070	0.
72	29	DY-Y-1- g	Glaze	0.250	0.500	12.930	71.590	5.500	6.990	0.060	1.180	0.129	0.002	0.009	0.004	0.025	0.052	0.
73	30	DY-Y-2- g	Glaze	0.110	0.320	11.330	75.950	5.870	4.370	0.090	0.960	0.160	0.005	0.020	0.005	0.030	0.030	0.
74	31	DY-Y-3- g	Glaze	0.240	0.390	12.640	74.080	5.110	5.760	0.080	0.710	0.062	0.004	0.010	0.003	0.025	0.061	0.
75	32	DY-Y-4- g	Glaze	0.150	0.330	13.140	73.760	4.870	6.030	0.050	0.680	0.070	0.002	0.011	0.000	0.022	0.056	0.
76	33	DY-Y-5- g	Glaze	1.000	0.520	13.700	70.520	6.740	5.340	0.050	1.110	0.151	0.007	0.014	0.005	0.032	0.061	0.
77	34	DY-Y-6- g	Glaze	0.660	0.530	12.950	72.160	6.570	4.290	0.140	1.690	0.225	0.005	0.009	0.006	0.028	0.040	0.
78	35	DY-Y-7- g	Glaze	0.320	0.580	12.890	70.600	4.270	8.700	0.050	1.610	0.088	0.002	0.007	0.000	0.023	0.047	0.
79	36	DY-Y-8- g	Glaze	0.710	0.570	11.610	71.040	5.310	8.130	0.060	1.580	0.245	0.004	0.015	0.002	0.024	0.048	0.
80	37	DY-Y-9- g	Glaze	0.400	0.470	14.380	66.590	4.160	12.160	0.070	0.770	0.087	0.000	0.008	0.003	0.021	0.065	0.
81	38	DY-M- 1-g	Glaze	0.030	1.320	13.550	67.660	5.410	8.910	0.110	2.000	0.297	0.006	0.018	0.009	0.022	0.065	0.
82	39	DY-M- 2-g	Glaze	0.370	0.470	13.560	72.770	6.540	4.120	0.080	1.090	0.256	0.002	0.008	0.001	0.029	0.064	0.
83	40	DY-M- 3-g	Glaze	0.340	0.550	12.370	70.700	5.330	8.060	0.060	1.610	0.125	0.001	0.009	0.003	0.025	0.052	0.
84	41	DY-QC- 1-g	Glaze	0.720	0.340	12.200	72.190	6.190	6.060	0.040	1.270	0.170	0.006	0.011	0.001	0.027	0.054	0.
85	42	DY-QC- 2-g	Glaze	0.230	0.240	12.990	71.810	5.250	7.150	0.050	1.290	0.075	0.004	0.010	0.000	0.024	0.047	0.
86	43	DY-QC- 3-g	Glaze	0.140	0.460	12.620	69.160	4.340	11.030	0.050	1.200	0.092	0.004	0.009	0.002	0.023	0.047	0.
87	44	DY-QC- 4-g	Glaze	0.140	0.630	14.250	71.550	4.870	6.430	0.080	1.050	0.080	0.004	0.009	0.002	0.022	0.041	0.
4																		F

In [13]:

```
composition_b.insert(0, 'id', range(1, 1 + len(composition_b)))
composition_b
```

Out[13]:

	id	Ceramic Name	Part	Na2O	MgO	Al2O3	SiO2	K20	CaO	TiO2	Fe2O3	MnO	CuO	ZnO	PbO2	Rb2O	SrO	Y2C
0	1	FLQ-1-b	Body	0.620	0.380	19.610	71.990	4.840	0.310	0.070	1.180	0.063	0.001	0.007	0.001	0.043	0.000	0.0
1	2	FLQ-2-b	Body	0.570	0.470	21.190	70.090	4.980	0.490	0.090	1.120	0.038	0.002	0.008	0.004	0.043	- 0 001	0.00

J.JJ .

		Ceramic	_														0.00	
2	idg	Ceramic FLO-3-b Name	Bady	Nagg	M.#80	16:00	\$ i 0200	5.49 0	6.49 0	T!98 5	F q2 (373)	M:042	6.90 2	7:00 5	9998	9999	§!:00 4	83 6
3	4	FLQ-4-b	Body	0.890	0.300	18.010	74.190	4.010	0.270	0.090	1.230	0.046	0.002	0.007	0.006	0.038	0.001	0.0
4	5	FLQ-5-b	Body	0.030	0.360	18.410	73.990	4.330	0.650	0.050	1.190	0.038	0.004	0.009	0.004	0.036	0.001	0.0
5	6	FLQ-6-b	Body	0.620	0.180	18.820	73.790	4.280	0.300	0.040	0.960	0.035	0.002	0.008	0.001	0.039	0.001	0.0
6	7	FLQ-7-b	Body	0.450	0.330	17.650	74.990	3.530	0.700	0.070	1.280	0.065	0.002	0.009	0.009	0.041	0.003	0.0
7	8	FLQ-8-b	Body	0.590	0.450	21.420	71.460	3.470	0.350	0.050	1.200	0.050	0.001	0.007	0.005	0.038	0.007	0.0
8	9	FLQ-9-b	Body	0.420	0.530	23.120	67.410	3.810	0.740	0.160	2.810	0.034	0.004	0.012	0.003	0.037	0.002	0.0
9	10	FLQ-10- b	Body	0.560	0.490	19.860	72.000	4.510	0.250	0.230	1.100	0.033	0.002	0.007	0.002	0.035	0.001	0.0
10	11	FLQ-11- b	Body	0.350	0.230	19.530	72.870	4.620	0.280	0.070	1.050	0.032	0.007	0.004	0.002	0.045	0.001	0.0
11	12	FLQ-12- b	Body	0.430	0.700	19.350	71.210	4.770	1.260	0.040	1.230	0.042	0.000	0.009	0.003	0.043	0.001	0.0
12	13	FLQ-13- b	Body	0.760	0.440	19.450	72.520	3.940	0.580	0.070	1.240	0.042	0.005	0.010	0.001	0.039	0.003	0.00
13	14	DY-BS- 1-b																
14	15	DY-BS- 2-b																
15	16	DY-BS- 3-b																
16	17	DY-BS- 4-b																
17	18	DY-BS- 5-b		0.280	0.220	20.890	70.770	4.790	0.150	0.130	1.770	0.023	0.006	0.009	0.006	0.029	0.000	0.0
18	19	DY-BS- 6-b					69.920											
19	20	DY-BS- 7-b																
20	21	DY-NS- 1-b																
21	22	DY-NS- 2-b																
22	23	DY-NS- 3-b																
23	24	DY-NS- 4-b																
24	25	DY-NS- 5-b																
25	26	DY-NS- 6-b																
26	27	DY-NS- 7-b																
27	28	DY-NS- 8-b																
28	29	b																
29	30	DY-Y-2- b																
	31	b																
31		DY-Y-4- b																
32	33	DY-Y-5- h	Body	0.260	0.320	26.480	63.880	5.620	0.130	0.150	2.170	0.037	0.004	0.007	0.007	0.039	0.000	0.0

33	id 34	Ceramic DY-0-6- Name	Part Body	Na2O 0.860	MgO 0.190	Al2O3 21.540	SiO2 68.950	K2O 5.590	CaO 0.160	TiO2 0.080	Fe2O3 1.630	MnO 0.062	CuO 0.003	ZnO 0.012	PbO2 0.007	Rb2O 0.039	SrO 0.002	Y20
34	35	DY-Y-7-	Body	0.170	0.530	21.400	71.020	2.730	0.140	0.280	2.730	0.018	0.003	0.008	0.001	0.029	0.001	0.0
35	36	DY-Y-8- b	Body	0.320	0.220	22.340	68.860	5.280	0.130	0.120	1.730	0.030	0.000	0.010	0.006	0.037	0.000	0.0
36	37	DY-Y-9- b	Body	0.390	0.350	23.200	66.400	6.250	0.210	0.100	2.090	0.047	0.004	0.011	0.008	0.039	0.003	0.0
37	38	DY-M- 1-b	Body	0.180	0.180	23.250	67.860	5.370	0.140	0.110	1.920	0.039	0.002	0.012	0.006	0.034	0.000	0.0
38	39	DY-M- 2-b	Body	0.420	0.180	22.090	69.030	5.170	0.170	0.070	1.860	0.051	0.005	0.012	0.003	0.031	0.001	0.0
39	40	DY-M- 3-b	Body	0.290	0.210	24.350	65.430	6.070	0.130	0.100	2.410	0.042	0.002	0.010	0.004	0.038	0.001	0.0
40	41	DY-QC- 1-b	Body	0.550	0.270	21.580	69.910	4.610	0.130	0.100	1.860	0.033	0.004	0.011	0.001	0.031	0.000	0.0
41	42	DY-QC- 2-b	Body	0.640	0.190	21.310	69.340	4.900	0.220	0.140	2.270	0.042	0.004	0.012	0.006	0.032	0.002	0.0
42	43	DY-QC- 3-b	Body	0.140	0.270	24.010	66.700	5.470	0.230	0.090	2.080	0.042	0.003	0.007	0.007	0.032	0.003	0.00
43	44	DY-QC- 4-b	Body	0.310	0.280	23.230	67.080	5.630	0.160	0.130	2.180	0.036	0.002	0.009	0.003	0.032	0.001	0.0

In [14]:

```
for column in composition[list]:
    fig, ax = plt.subplots()
    sns.boxplot(x=composition[column], ax=ax, color="green");
    plt.title(f'Boxplot of {column.title().replace("_", " ")}')
```


Boxplot of Cao

4.5 5.0 K2O

5.5

6.0

6.5

4.0

3.5

3.0

Boxplot of Tio2

Boxplot of Fe2O3

Boxplot of Mno

Boxplot of Cuo

Boxplot of Zno

Boxplot of Pbo2

Boxplot of Rb2O

Boxplot of Sro

Boxplot of Y2O3

In [15]:

composition_b.head()

Out[15]:

	id	Ceramic Name	Part	Na20	MgO	Al2O3	SiO2	K20	CaO	TiO2	Fe2O3	MnO	CuO	ZnO	PbO2	Rb2O	SrO	Y2O3
0	1	FLQ-1-b	Body	0.620	0.380	19.610	71.990	4.840	0.310	0.070	1.180	0.063	0.001	0.007	0.001	0.043	0.000	0.004
1	2	FLQ-2-b	Body	0.570	0.470	21.190	70.090	4.980	0.490	0.090	1.120	0.038	0.002	0.008	0.004	0.043	0.001	0.004
2	3	FLQ-3-b	Body	0.490	0.190	18.600	74.700	3.470	0.430	0.060	1.070	0.042	0.002	0.005	0.005	0.038	0.004	0.004
3	4	FLQ-4-b	Body	0.890	0.300	18.010	74.190	4.010	0.270	0.090	1.230	0.046	0.002	0.007	0.006	0.038	0.001	0.004
4	5	FLQ-5-b	Body	0.030	0.360	18.410	73.990	4.330	0.650	0.050	1.190	0.038	0.004	0.009	0.004	0.036	0.001	0.003
4																		•

In [16]:

```
pd.set_option('display.float_format', lambda x: '%.3f' % x)
composition_b.describe().T
```

Out[16]:

	count count	mean mean	std std	min min	25% 25%	50% 50%	75% 75%	max max
id	44.000	22.500	12.845	1.000	11.750	22.500	33.250	44.000
Na20	44.000	0.397	0.211	0.030	0.258	0.370	0.552	0.890
MgO	44.000	0.342	0.125	0.180	0.237	0.325	0.453	0.700
Al2O3	44.000	21.812	2.301	17.650	19.590	21.835	23.310	26.480
SiO2	44.000	69.222	3.088	63.880	66.625	68.990	71.588	74.990
K20	44.000	4.949	0.846	2.730	4.490	5.005	5.500	6.560
CaO	44.000	0.277	0.221	0.120	0.150	0.180	0.285	1.260
TiO2	44.000	0.122	0.063	0.040	0.070	0.105	0.152	0.290
Fe2O3	44.000	1.878	0.584	0.960	1.270	1.860	2.155	3.110
MnO	44.000	0.039	0.010	0.018	0.033	0.038	0.042	0.065
CuO	44.000	0.003	0.002	0.000	0.002	0.003	0.004	0.008
ZnO	44.000	0.009	0.002	0.004	0.008	0.009	0.011	0.012
PbO2	44.000	0.005	0.003	0.000	0.003	0.005	0.007	0.010
Rb2O	44.000	0.036	0.005	0.023	0.032	0.037	0.038	0.045
SrO	44.000	0.002	0.001	-0.001	0.001	0.001	0.002	0.007
Y2O3	44.000	0.005	0.001	0.003	0.004	0.005	0.006	0.008
ZrO2	44.000	0.017	0.007	0.007	0.013	0.017	0.020	0.039
P205	44.000	0.011	0.007	0.005	0.007	0.009	0.014	0.044

In [17]:

```
for column in composition[list]:
    fig, ax = plt.subplots()
    sns.boxplot(x=composition_b[column], ax=ax, color="red");
    plt.title(f'Boxplot of {column.title().replace("_", " ")}')
```


Boxplot of Tio2

2.0 Fe2O3 2.5

3.0

1.0

1.5

Boxplot of Pbo2

0.006

0.004

0.008

0.010

0.000

0.002

Boxplot of Y2O3

In [18]:

composition_g.head()

Out[18]:

	id	Ceramic Name	Part	Na2O	MgO	Al2O3	SiO2	K20	CaO	TiO2	Fe2O3	MnO	CuO	ZnO	PbO2	Rb2O	SrO	Y2
44	1	FLQ-1-g	Glaze	0.970	0.070	11.420	74.410	5.700	5.340	0.050	1.040	0.055	0.002	0.006	0.002	0.031	0.015	0.
45	2	FLQ-2-g	Glaze	1.460	0.470	12.960	68.790	4.850	8.880	0.110	1.490	0.095	0.003	0.004	0.000	0.035	0.025	0.
46	3	FLQ-3-g	Glaze	1.050	0.230	13.640	69.900	4.460	8.430	0.070	1.220	0.059	0.002	0.009	0.004	0.037	0.009	0.
47	4	FLQ-4-g	Glaze	0.140	0.410	12.420	67.240	4.290	12.860	0.060	1.580	0.096	0.008	0.007	0.004	0.033	0.016	0.
48	5	FLQ-5-g	Glaze	0.370	1.030	13.150	68.980	5.580	7.910	0.080	1.900	0.080	0.006	0.012	0.000	0.032	0.008	0.
4															1000			F

In [19]:

```
pd.set_option('display.float_format', lambda x: '%.3f' % x)
composition_g.describe().T
```

Out[19]:

count mean std min 25% 50% 75% max

id	count 44.000	mean 22.500	std 12.845	min 1.000	25% 11.750	50% 22.500	75% 33.250	max 44.000
Na20	44.000	0.546	0.436	0.030	0.223	0.375	0.723	1.880
MgO	44.000	0.518	0.249	0.070	0.350	0.500	0.573	1.320
Al2O3	44.000	13.110	0.849	11.300	12.707	13.005	13.715	14.760
SiO2	44.000	70.428	2.251	65.530	68.755	70.650	71.840	75.950
K20	44.000	5.008	0.920	2.980	4.285	5.105	5.720	6.740
CaO	44.000	8.066	2.534	4.120	6.090	7.915	9.503	13.690
TiO2	44.000	0.080	0.031	0.040	0.060	0.070	0.090	0.190
Fe2O3	44.000	1.245	0.439	0.580	0.948	1.180	1.580	2.610
MnO	44.000	0.125	0.061	0.052	0.079	0.101	0.163	0.297
CuO	44.000	0.003	0.002	0.000	0.002	0.003	0.004	0.008
ZnO	44.000	0.010	0.004	0.002	0.007	0.009	0.012	0.023
PbO2	44.000	0.003	0.002	0.000	0.002	0.003	0.004	0.010
Rb2O	44.000	0.027	0.006	0.018	0.022	0.025	0.031	0.040
SrO	44.000	0.044	0.020	0.008	0.024	0.049	0.061	0.078
Y2O3	44.000	0.004	0.001	0.002	0.003	0.004	0.004	0.005
ZrO2	44.000	0.012	0.003	0.005	0.010	0.012	0.014	0.017
P205	44.000	0.077	0.032	0.036	0.051	0.071	0.097	0.161

In [20]:

```
for column in composition[list]:
    fig, ax = plt.subplots()
    sns.boxplot(x=composition_g[column], ax=ax, color="blue");
    plt.title(f'Boxplot of {column.title().replace("_", " ")}')
```


Boxplot of Tio2

Boxplot of Zno

Boxplot of Rb2O

Boxplot of Sro

Boxplot of Y2O3

Now i will plot all components of body and glaze so as to get a birds eye view of the varying composition for ceramics

In [21]:

```
for column in composition b[list]:
    figure, axes = plt.subplots(1, 2, figsize=(10,5))
    ax=composition b.plot(kind='line',x='id',y=[column],color='red',legend=False,ax=axes
[0])
    composition g.plot(kind='line',x='id',y=[column],color='blue',ax=ax,legend=False)
    ax.legend(["Body", "Glaze"]);
    ax.set xlabel("Number of entries")
    ax.set ylabel("Percentage composition")
    ax=composition_b.plot(kind='scatter', x='id', y=[column], color='red', legend=False, ax=a
xes[1])
    \verb|composition_g.plot(kind='scatter', x='id', y=[column], color='blue', ax=ax, legend=False)| \\
    ax.legend(["Body", "Glaze"]);
    ax.set xlabel("Number of entries")
    ax.set ylabel("Percentage composition")
    p=f'Graph for {column.title().replace(" ", " ")}'
    plt.suptitle(p)
```

Graph for Na2O

In [22]:

```
composition[list].skew()
```

Out[22]:

Na20 1.439 1.561 MgO 0.289 A1203 -0.079 SiO2 K20 -0.269 CaO 0.517 Ti02 1.512 Fe203 0.636 MnO 1.493 CuO 0.627 0.965 ZnO 0.512 Pb02 Rb20 -0.161 0.674 SrO 0.549 Y203 ZrO2 1.249 P205 0.962 dtype: float64

In [23]:

```
for column in composition_b[list]:
    ax=composition_b.plot(kind='density', x='id', y=[column], color='red', legend=False)
    composition_g.plot(kind='density', x='id', y=[column], color='blue', ax=ax, legend=False)
    ax.legend(["Body", "Glaze"]);
    ax.set_xticklabels([])
    p=f'Graph for {column.title().replace("_", " ")}'
    plt.title(p)
    ax.set_xlabel(f'Skewness of body {column.title().replace("_", " ")}-> '+ str(skew(composition_b[column]))+"\n"+f'Skewness of glaze {column.title().replace("_", " ")}-> '+ str(skew(composition_g[column])))
```


Skewness of body Mgo-> 0.6204176074995184 Skewness of glaze Mgo-> 1.1267689041221824

Skewness of body Al2O3-> 0.0009757822470763805 Skewness of glaze Al2O3-> -0.2949691761988996

Skewness of body Sio2-> 0.13725205921909403 Skewness of glaze Sio2-> 0.07361597811273572

Logistic Regression

Name: Part, dtype: int32

```
In [24]:
```

```
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
composition['Part'] = le.fit_transform(composition.Part)
composition['Part'].sample(2)

Out[24]:
63    1
```

In [25]:

Out[25]:

	Ceramic Name	Part	Na2O	MgO	Al2O3	SiO2	K20	CaO	TiO2	Fe2O3	MnO	CuO	ZnO	PbO2	Rb2O	SrO	Y2O3
0	FLQ-1-b	0	0.620	0.380	19.610	71.990	4.840	0.310	0.070	1.180	0.063	0.001	0.007	0.001	0.043	0.000	0.004
1	FLQ-2-b	0	0.570	0.470	21.190	70.090	4.980	0.490	0.090	1.120	0.038	0.002	0.008	0.004	0.043	0.001	0.004
2	FLQ-3-b	0	0.490	0.190	18.600	74.700	3.470	0.430	0.060	1.070	0.042	0.002	0.005	0.005	0.038	0.004	0.004
3	FLQ-4-b	0	0.890	0.300	18.010	74.190	4.010	0.270	0.090	1.230	0.046	0.002	0.007	0.006	0.038	0.001	0.004
4	FLQ-5-b	0	0.030	0.360	18.410	73.990	4.330	0.650	0.050	1.190	0.038	0.004	0.009	0.004	0.036	0.001	0.003
83	DY-M- 3-g	1	0.340	0.550	12.370	70.700	5.330	8.060	0.060	1.610	0.125	0.001	0.009	0.003	0.025	0.052	0.003
84	DY-QC- 1-g	1	0.720	0.340	12.200	72.190	6.190	6.060	0.040	1.270	0.170	0.006	0.011	0.001	0.027	0.054	0.004
85	DY-QC- 2-g	1	0.230	0.240	12.990	71.810	5.250	7.150	0.050	1.290	0.075	0.004	0.010	0.000	0.024	0.047	0.004
86	DY-QC- 3-g	1	0.140	0.460	12.620	69.160	4.340	11.030	0.050	1.200	0.092	0.004	0.009	0.002	0.023	0.047	0.004
87	DY-QC- 4-g	1	0.140	0.630	14.250	71.550	4.870	6.430	0.080	1.050	0.080	0.004	0.009	0.002	0.022	0.041	0.004

88 rows × 19 columns

In [26]:

In [27]:

```
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [28]:

```
sns.set_context('talk')
sns.set_style('white')

ax = corr_values.abs_correlation.hist(bins=50, figsize=(12, 8))
ax.set(xlabel='Absolute Correlation', ylabel='Frequency');
```


In [29]:

corr_values.sort_values('correlation', ascending=False).query('abs_correlation>0.8')

Out[29]:

	feature1	feature2	correlation	abs_correlation
80	CaO	P2O5	0.908	0.908
77	CaO	SrO	0.832	0.832
33	Al2O3	CaO	-0.843	0.843

In [30]:

In [31]:

```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(solver='liblinear').fit(X_train, y_train)
```

In [32]:

```
from sklearn.linear_model import LogisticRegressionCV
lr_l1 = LogisticRegressionCV(Cs=10, cv=4, penalty='l1', solver='liblinear').fit(X_train, y_train)
C:\Users\Aahil\anaconda3\lib\site-packages\sklearn\svm\_base.py:947: ConvergenceWarning:
```

Liblinear failed to converge, increase the number of iterations.

"the number of iterations.", ConvergenceWarning)

```
C:\Users\Aahil\anaconda3\lib\site-packages\sklearn\svm\_base.py:947: ConvergenceWarning:
Liblinear failed to converge, increase the number of iterations.
  "the number of iterations.", ConvergenceWarning)
C:\Users\Aahil\anaconda3\lib\site-packages\sklearn\svm\_base.py:947: ConvergenceWarning:
Liblinear failed to converge, increase the number of iterations.
  "the number of iterations.", ConvergenceWarning)
C:\Users\Aahil\anaconda3\lib\site-packages\sklearn\svm\_base.py:947: ConvergenceWarning:
Liblinear failed to converge, increase the number of iterations.
  "the number of iterations.", ConvergenceWarning)
```

In [33]:

```
lr_12 = LogisticRegressionCV(Cs=10, cv=4, penalty='12', solver='liblinear').fit(X_train, y_train)
```

In [34]:

Out[34]:

```
        ir
        i1
        i2

        0
        0
        0

        12
        -0.001
        0.000
        -0.000

        9
        0.000
        0.000
        0.000

        13
        0.007
        0.000
        0.000

        7
        -0.009
        0.000
        -0.004

        5
        0.820
        0.373
        0.064

        4
        0.274
        0.000
        0.004

        1
        0.026
        0.000
        0.002

        3
        0.126
        0.027
        0.013

        2
        -0.809
        -0.194
        -0.070

        8
        0.016
        0.000
        0.001
```

In [35]:

```
y_pred = []
y_prob = []

coeff_labels = ['lr', 'l1', 'l2']
coeff_models = [lr, lr_l1, lr_l2]

for lab, mod in zip(coeff_labels, coeff_models):
    y_pred.append(pd.Series(mod.predict(X_test), name=lab))
    y_prob.append(pd.Series(mod.predict_proba(X_test).max(axis=1), name=lab))

y_pred = pd.concat(y_pred, axis=1)
y_prob = pd.concat(y_prob, axis=1)
y_prob.head()
```

```
Out[35]:
       11
             12
0 1.000 0.958 0.677
1 0.986 0.809 0.563
2 1.000 0.935 0.668
3 0.997 0.913 0.635
4 0.999 0.959 0.661
In [36]:
from sklearn.metrics import precision recall fscore support as score
from sklearn.metrics import confusion matrix, accuracy_score, roc_auc_score
from sklearn.preprocessing import label binarize
metrics = []
cm = {}
for lab in coeff labels:
    precision, recall, fscore, _ = score(y_test, y_pred[lab], average='weighted')
    accuracy = accuracy_score(y_test, y_pred[lab])
    cm[lab] = confusion_matrix(y_test, y_pred[lab])
    metrics.append(pd.Series({'precision':precision, 'recall':recall,
                                 'fscore':fscore, 'accuracy':accuracy},
                               name=lab))
metrics = pd.concat(metrics, axis=1)
In [37]:
metrics
Out[37]:
             11
                  12
precision 1.000 1.000 1.000
   recall 1.000 1.000 1.000
  fscore 1.000 1.000 1.000
accuracy 1.000 1.000 1.000
In [38]:
fig, axList = plt.subplots(nrows=2, ncols=2)
axList = axList.flatten()
fig.set size inches(12, 10)
axList[-1].axis('off')
for ax, lab in zip(axList[:-1], coeff_labels):
    sns.heatmap(cm[lab], ax=ax, annot=True, fmt='d');
    ax.set(title=lab);
plt.tight layout()
                                                                     11
                     lr
                                          - 14
                                                                                           - 14
                                           - 12
                                                                                            - 12
           14
                                                            14
                             0
                                                                              0
0
                                                 0
                                           - 10
                                                                                           - 10
```


KNN

In [39]:

composition=composition.drop(columns='Ceramic Name')

In [40]:

composition

Out[40]:

	Part	Na2O	MgO	Al2O3	SiO2	K20	CaO	TiO2	Fe2O3	MnO	CuO	ZnO	PbO2	Rb2O	SrO	Y2O3	ZrO2	P2(
0	0	0.620	0.380	19.610	71.990	4.840	0.310	0.070	1.180	0.063	0.001	0.007	0.001	0.043	0.000	0.004	0.008	0.0
1	0	0.570	0.470	21.190	70.090	4.980	0.490	0.090	1.120	0.038	0.002	0.008	0.004	0.043	0.001	0.004	0.010	0.0
2	0	0.490	0.190	18.600	74.700	3.470	0.430	0.060	1.070	0.042	0.002	0.005	0.005	0.038	0.004	0.004	0.008	0.0
3	0	0.890	0.300	18.010	74.190	4.010	0.270	0.090	1.230	0.046	0.002	0.007	0.006	0.038	0.001	0.004	0.007	0.0
4	0	0.030	0.360	18.410	73.990	4.330	0.650	0.050	1.190	0.038	0.004	0.009	0.004	0.036	0.001	0.003	0.008	0.0
83	1	0.340	0.550	12.370	70.700	5.330	8.060	0.060	1.610	0.125	0.001	0.009	0.003	0.025	0.052	0.003	0.014	0.0
84	1	0.720	0.340	12.200	72.190	6.190	6.060	0.040	1.270	0.170	0.006	0.011	0.001	0.027	0.054	0.004	0.012	0.0
85	1	0.230	0.240	12.990	71.810	5.250	7.150	0.050	1.290	0.075	0.004	0.010	0.000	0.024	0.047	0.004	0.012	0.0
86	1	0.140	0.460	12.620	69.160	4.340	11.030	0.050	1.200	0.092	0.004	0.009	0.002	0.023	0.047	0.004	0.013	0.1
87	1	0.140	0.630	14.250	71.550	4.870	6.430	0.080	1.050	0.080	0.004	0.009	0.002	0.022	0.041	0.004	0.011	0.0

88 rows × 18 columns

In [41]:

```
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, fl_s
core
```

In [42]:

```
y, X = composition['Part'], composition.drop(columns='Part')
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)
```

In [43]:

```
knn = KNeighborsClassifier(n_neighbors=3)
knn = knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
print(classification_report(y_test, y_pred))
print('Accuracy score: ', round(accuracy_score(y_test, y_pred), 2))
print('F1 Score: ', round(f1_score(y_test, y_pred), 2))
```

	precision	recall	f1-score	support
0	1.00	1.00	1 00	21
U	1.00	1.00	1.00	21
1	1.00	1.00	1.00	15
accuracy			1.00	36
macro avg	1.00	1.00	1.00	36
weighted avg	1.00	1.00	1.00	36

Accuracy score: 1.0 F1 Score: 1.0

In [44]:

```
_, ax = plt.subplots(figsize=(12,12))
ax = sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d', annot_kws={"size": 40, "weight": "bold"})
labels = ['False', 'True']
ax.set_xticklabels(labels, fontsize=25);
ax.set_yticklabels(labels[::-1], fontsize=25);
ax.set_ylabel('Prediction', fontsize=30);
ax.set_xlabel('Ground Truth', fontsize=30)
```

Out[44]:

Text(0.5, 76.5, 'Ground Truth')

SVM

LSVC = LinearSVC() LSVC.fit(X, y)

```
In [45]:
correlations = composition[feature cols].corrwith(y)
In [46]:
correlations
Out[46]:
Na20
         0.214
        0.411
MgO
      -0.930
A1203
SiO2
        0.220
K20
        0.034
CaO
        0.910
TiO2
       -0.396
Fe203
      -0.527
MnO
        0.704
CuO
        0.144
        0.051
ZnO
       -0.331
Pb02
       -0.645
Rb20
        0.838
SrO
Y203
        -0.586
ZrO2
        -0.441
P205
        0.821
dtype: float64
In [47]:
from sklearn.preprocessing import MinMaxScaler
feature cols = correlations.map(abs).sort values().iloc[-2:].index
print(feature cols)
X = composition[feature cols]
scaler = MinMaxScaler()
X = scaler.fit transform(X)
X = pd.DataFrame(X, columns=['%s scaled' % fld for fld in feature cols])
print(X.columns)
Index(['CaO', 'Al2O3'], dtype='object')
Index(['CaO_scaled', 'Al203_scaled'], dtype='object')
In [48]:
from sklearn.svm import LinearSVC
```

```
X_color = X.sample(80, random_state=45)
y color = y.loc[X color.index]
y_color = y_color.map(lambda r: 'blue' if r == 1 else 'red')
ax = plt.axes()
ax.scatter(
   X color.iloc[:, 0], X color.iloc[:, 1],
   color=y color, alpha=1)
x = xis, y = xis = np.arange(0, 1.005, .005), np.arange(0, 1.005, .005)
xx, yy = np.meshgrid(x axis, y axis)
xx ravel = xx.ravel()
yy ravel = yy.ravel()
X grid = pd.DataFrame([xx ravel, yy ravel]).T
y grid predictions = LSVC.predict(X grid)
y_grid_predictions = y_grid_predictions.reshape(xx.shape)
ax.contourf(xx, yy, y_grid_predictions, alpha=.3)
ax.set(
   xlabel=feature_cols[0],
   ylabel=feature cols[1],
   xlim=[0, 1],
   ylim=[0, 1],
    title='decision boundary for LinearSVC');
```


Decision Trees

In [49]:

```
from sklearn.model_selection import StratifiedShuffleSplit
strat_shuff_split = StratifiedShuffleSplit(n_splits=1, test_size=0.3, random_state=42)

train_idx, test_idx = next(strat_shuff_split.split(composition[feature_cols], composition['Part']))

X_train = composition.loc[train_idx, feature_cols]
y_train = composition.loc[train_idx, 'Part']

X_test = composition.loc[test_idx, feature_cols]
y_test = composition.loc[test_idx, 'Part']
```

In [50]:

```
from sklearn.tree import DecisionTreeClassifier

dt = DecisionTreeClassifier(random_state=42)
dt = dt.fit(X_train, y_train)
```

In [51]:

```
dt.tree .node count, dt.tree .max depth
```

axis=1)

Out[53]:

accuracy 1.000 1.000
precision 1.000 1.000
recall 1.000 1.000
f1 1.000 1.000

train test full error

In []: