Mun linear Regression
Recal linear regression:
f:f(x) = a, f(x) + a, f(x) + in + a, f(x)
to modata points.
$\begin{cases} f_{\lambda}(x_1) & f_{\lambda}(x_1) & \dots & f_{\lambda}(x_n) \\ f_{\lambda}(x_1) & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \end{cases}$
$f_n(x_1) f_n(x_m) \int_{-\infty}^{\infty} f_n(x_m) dx$
Now look at using a pon-linear Function, such as
$\frac{y(x) - q_1 x}{q_2 + x} - q = [q_1]$
Nut possible to make a linear System to Solve.
Use the Crauss- Newton Algerithm,
Let a set of m data points (xi, yi) be given and we want to fit a function y(x, a), where a is the lighter set (m)(m) or conficients
a function $V(X, g)$, where g is
the meeter of molecular coefficients

Define the residual at the mapants

$$\Gamma_i = Y_i - Y(X_i', q)$$
We want to minimize the objective
function

$$S(q) = \sum_{i=1}^{\infty} n_i^2$$

$$S(q) = \sum_{i=1}^{\infty} n_i^$$

and m

Hix=
$$2Z$$
 ($2r_i$ $2r_i$ r_i $2r_i$)

Craws- Newton ignores the r_i $2r_i$ part.

Record is that $2r_i$ Derivatives are noisy.

Hix $\approx 2Z$ $2r_i$ $2r_i$ $2r_i$ $2Z$ $3r_i$ $3r_i$

The r_i r

=> 916H = 916 - (3 T J K) -) J K MK
Typically this is combined who as line search!
line Search!
DK= - (DKDK) DF DK
then akt = ak + xx Dx
for an dx Such that 3(akti) (S(ak
Advantage of this method: Does not need 20 - Jeniu atives of r
Disaduantage: It might not convenges
For convergence you need the approx! mater H to be close to the true one,
=> \ r. \frac{1}{2a_5} \ da_k \ \ \ \ \frac{2}{2a_5} \ \frac{2}{2a_k} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
This typically happens of no is already small or if y(x, g) is only midly non-linear,
Dorivative higher than first

ere small.

But, there is only one interpolating puly numial, but there are many methods to obtain that function. - Lagrange form & Polynomial Interpolation Instead & A(x) = 90 + 9, x + 111 + 90-1 x n-1 Try f(x)=4, L, (x)+/2 Lolx)+111+1/2 Lolx) 1, 1/2, 111) In are Known Li(x) are the Lagrange Poly nomials Start w/ 2 points: (x, i/,) & (x, i/2) => A linear line = 1 + (x) = 1 + (x) + 1 + (x)be new f(x,)=/,=> L,(x,)=), L2(x,)=0 t(x2)=12=2 [(x2)=0 1 [x2)=1 $= 3 \text{ Ore } \int_{1}^{1} \left(x\right) = \frac{x^{3} - x^{3}}{x - x^{3}} \qquad \int_{2}^{3} \left(x\right) = \frac{x^{3} - x^{3}}{x - x^{3}}$ Notice that LI(x) + La(x) = 1

$$\frac{(\chi_1 - \chi_2)(\chi_1 - \chi_3)}{(\chi_1 - \chi_3)(\chi_1 - \chi_3)}$$

$$(x^{3}-x^{1})(x^{3}-x^{2})$$

$$(x^{3}-x^{1})(x^{3}-x^{2})$$

$$\frac{\left(\chi - \chi_{1}\right)\left(\chi - \chi_{2}\right)}{\left(\chi_{2} - \chi_{1}\right)\left(\chi_{3} - \chi_{2}\right)}$$

In general, n-points will have

$$\gamma(x) = \sum_{i=1}^{n} \gamma_i L_i(x)$$

$$\frac{C + C}{C} = \frac{C + C}{C} = \frac{C + C}{C}$$

$$\frac{C + C}{C} = \frac{C + C}{C} = \frac{C + C}{C}$$

The points at which adjacent Splines meet are called 11 Knuts" If 2 adjacent splines have the same function value at a must -> Co Continuous, To take derivatives, you need. C'- Continuous (1st Denivatives & values match (2 - Cont (Value, 1st & 200 denivation) Most Common Spline: Cubic Splines -> Let $f_{i}(x) = q_{i} + b_{i}(x-x_{i}) + c_{i}(x-x_{i})^{3}$ $\forall \psi', (x-\lambda',)$ valid in x E[xi, xi+1] Also, define hi= xi+1-xi U points -> 3 splines U unknowns per spline => 19 nukvoruz iv

In general, for n- Data points U(n-1) unknowns for cubic => New U(n-1) conditions HI hr need filxil=1; for (=1, 11, n-1 => q:=/; #2 New Continuous $-2(x_{(+)}) = 2(+)(x_{(+)})(z_{(+)})$ di+bihi+cihi2+dihi3= qi+1= 1i+1 +q'(x', -x',)3 > +(+1 (x(+1) = a(+1+1)2+1 (x(+1-x(+1) 9(,+1 (x(,+1 - x(,+1)) +

C'- Centinuous Fint Denivative 47 $f'(x_{(1)}) = f'_{(1)}(x_{(1)}) = f'_{(1)}(x_{(1)})$ $\pm \frac{1}{2}(x) = p! + 3c!(x-x!) + 3q!(x-x!)_{3}$ => bi + 2 Cihi + 3dihi2 = bi+1 (2- Continuous サい $2'' \cdot (x_{(i+1)}) = 2'' \cdot (x_{(i+1)}) \quad i=1, ..., n-2$ $t_{1,1}(x) = 3c_1 + 0q_1(x-x_1)$ -> Ci+3 dihi= Ci+1 Thus he have 2(n-1)+2(n-2) equations Still 2 short Common Options 1) Natural $P_{N-1}^{1}(x_{N}) = 0$ 2) Clamped $f'(x_1)=\beta_1$ $f_{n-1}(x_n)=\beta_2$ β_1 f β_2 and Known

3) "Not-a-knot"

$$f'''(x_3) = f'''(x_3)$$
 $f'''(x_{n-1}) = f'''(x_{n-1})$

Note: This Over result in a

 $U(n-1)$ by $U(n-1)$ them system

 $f'''(x_{n-1}) = f'''(x_{n-1})$

Aside: A closely related typic

is piece wice interpolation using
"weight" functions.

 ex_1 Cubic Hermite Spline Interpolation

Interpolate on $f''(x_1)$
 $f''(x_1) = f''(x_1)$
 $f''(x_1) = f''($

Value at
$$X \in C_{X'_i}, Y_{i+1} \supset i$$

$$\mathcal{P}\left(\frac{\mathcal{X}-\mathcal{X}^{c_{1}}}{\mathcal{X}-\mathcal{X}^{c_{1}}}\right)$$

$$\frac{\lambda^{\prime}}{\lambda^{\prime}}$$