Apuntes de Grafos

Paco Mora Manuel Franco

18 de octubre de 2021

CAPÍTULO 1

Tema 3. Árboles

Definición 1.0.1. Diremos que un grafo G = (V, E) es un árbol si es conexo y no tiene ciclos. Un árbol generador de un grafo G = (V, E) es un subgrafo parcial conexo y sin ciclos. Un bosque es un grafo G = (V, E) sin ciclos.

Definición 1.0.2. En un árbol, los nodos con grado de incidencia 1 se denominan hojas.

Teorema 1. Teorema de caracterización de árboles Sea G = (V, E). Son equivalentes:

- lacktriangledown G es conexo y sin ciclos
- Entre cada par de vértices distintos de V, existe una única cadena.
- G es conexo y m = n 1
- lacksquare G no contiene ciclos y m=n-1
- lacksquare G está minimalmente conectado
- G no contiene ciclos y su añadimos una arista entre dos vértices no adyacentes cualesquiera de V, el grafo que se obtiene contiene un único ciclo.

Demostración

 $1 \implies 2$

G es conexo sin nodos $\implies \forall u \neq v \exists !$ cadena u v. Existe una cadena por ser conexo, la yuxtaposición de dos cadenas diferentes u v, Gcontendría al menos un ciclo. $2 \implies 3$

Suponemos que existe una única cadena entre cada par de vértices u, v. Como existe una cadena entre cada par de vértices, G es conexo. Veamos que m = n - 1. Recordemos una proposición que decía:

"Si G es conexo $m \geq n-1$ "

Veamos la igualdad ahora por inducción sobre el número de nodos, el caso n=1,2 es directo. Si n>2, eliminamos una arista cualquiera del grafo: e=(u,v). Dado que esa cadena (u,(u,v),v) era la única que conectaba u,v, ahora estos vértices están en componentes conexas distintas, con n_1,n_2 nodos y m_1,m_2 aristas respectivamente, que siguen cumpliendo la hipótesis de inducción, luego $m_1=n_1-1$

 \Box

y
$$m_2 = n_2 - 1$$
. En G , $n = n_1 + n_2 = m_1 + 1 + m_2 + 1 = (m_1 + m_2 + 1) + 1 = m + 1$
3 \implies 4

G conexo y $m = n - 1 \implies G$ no contiene ciclos y m = n - 1

Supongamos que G contiene un ciclo y retiráramos una arista cualquiera e no desconectaría el grafo y tendría un grafo conexo con n nodos y (n-1)-1 aristas, por la proposición que hemos recordado antes, G no sería conexo, lo que contradice (3) $4 \implies 5$

G no tiene ciclos y $m = n - 1 \implies G$ está minimalmente conectado. Por la proposición que hemos recordado antes, basta demostrar que G es conexo.

Supongamos que G contiene s componentes conexas : $(V_1, E_1), ..., (V_s, E_s)$ con n_i nodos y m_i aristas, tengo ahora que G es acíclico, por lo que cada conexa por lo que cumple 1, y por tanto 3, y por tanto cada $m_i = n_i - 1$

(3)
$$\implies m_i = ni - 1 \forall i \ n = \sum_{i=1}^s n_i = \sum_{i=1}^s (m_i + 1) = \sum_{i=1}^s m_i + s = m + s$$

Como partiamos de que n = m + 1 y tenemos n = m + s, entonces s = 1 y hay solo una c^3 .

 $5 \implies 6$

Teorema 2. Algoritmo de Kruskal

Paso 1

Ordenar las aristas de E en orden ascendente de su peso:

$$V = \{v_1, ..., v_n\}, T^* = (V, \emptyset)$$

$$E := \{e_1, ..., e_m\} : \ \updownarrow \leq \updownarrow (e_i + 1) \forall i < m$$

Paso 2

 $A\tilde{n}adir n-1$ aristas a T^* sucesivamente (en el orden de sus pesos) sin que se formen ciclos.

Teorema 3. Algoritmo de Prim

Paso 1

Elegir un vértice $r \in V$ y hacer $V_1 = \{r\}, V_2 = V \setminus \{r\}.$

Paso 2

Añadir al árbol la arista de menor peso de $w(V_1)$, digamos (v_1, v_2) con $v_1 \in V_1$ y $v_2 \in V_2$. Añadir v_2 a V_1 y borrar v_2 de V_2 .

Paso 3

 $Si |V_1| = n \ parar. \ Si \ no, \ volver \ al \ Paso \ 2.$