TRABAJO PRACTICO Nº 5: NÚMEROS ENTEROS Y COMPLEJOS

Números Enteros. Teoría de Números.

- 1) Encontrar el cociente y el resto de la división entera entre a y b $(b \neq 0)$ si:
 - a) a = 327; b = 49.
 - b) a = 142; b = -12
 - c) a = -215; b = -3
 - d) a = -158; b = 4
- **2)** a) Hallar todos los $m, n \in \mathbb{N} / m + n = 13$ y el resto de dividir cada uno de ellos por 3 es 2.
 - b) Hallar todos los $a, b \in \mathbb{Z}/a b = 2$ y el cociente de dividir cada uno de ellos por 5 es 42.
- 3) Analizar el valor de verdad de las siguientes proposiciones, justificando las respuestas:
 - a) $\forall n \in \mathbb{N}, n \mid 3^n + 1$

d) $\forall n \in \mathbb{N}, 2 \mid n^2 + n$

b) $\forall n \in \mathbb{N}, n \mid 5^n$

e) $\forall n \in N, 11 \mid 10^{2n} - 1$

c) $\forall n \in \mathbb{N}, 4 \mid 2.5^n - 1$

- f) $\forall n \in \mathbb{N}, 3 \mid n \Leftrightarrow 3 \mid n^2$
- **4)** Utilizando las propiedades de divisibilidad, demostrar por inducción que $\forall n \in N$:
 - a) $3|(10^n 1)$
- b) $9|(10^n 1)$
- c) 3|4ⁿ –1
- d) $7|3^{2n+1}+2^{n+2}$
- 5) Un viajante va a Rosario cada 18 días, otro va a Rosario cada 15 días y un tercero va cada 8 días. Hoy día han coincidido en Rosario los tres viajantes. ¿Dentro de cuántos días como mínimo volverán a coincidir en dicha ciudad?
- 6) El sistema de protección de una computadora realiza tres escaneos diferentes, el primero cada hora, el segundo cada 38 minutos y el tercero cada 42 minutos. Hoy a las 0 horas coincidieron los tres procesos. ¿A qué hora volverán a coincidir los tres? En los siguientes 15 días, ¿cuántas veces coincidirán los tres a la vez?
- 7) Un pequeño agricultor está organizando su producción: tiene 180 manzanas y 160 peras. Su idea es colocarlas en bolsas con la misma cantidad de frutas cada una, embolsando por separado las manzanas y las peras.
 - a) ¿De cuántas maneras distintas lo puede hacer?
 - b) ¿Cuántas unidades podrá poner como máximo en cada bolsa, y cuántas bolsas necesitará para cada fruta?
- 8) Utilizando el algoritmo de Euclides, determinar el m.c.d. de:
 - a) 63 y 28
- b) 56 y 27
- c) 721 y 448
- d) 441 y 725 e) 280 y 30
- 9) Un ebanista quiere cortar una plancha de madera de 256 cm de largo y 96 cm de ancho, en cuadrados lo más grandes posible.
 - a) ¿Cuál debe ser la longitud del lado de cada cuadrado?
 - b) ¿Cuántos cuadrados se obtienen de la plancha de madera?

Números Complejos.

1) a) Complete la siguiente tabla según lo solicitado:

Z	Re(z)	Im(z)	-z	z^{-1}	$\overline{oldsymbol{z}}$	z	Forma Binómica
							-1 - i
			2-4i				
(1, -3)							
					$\sqrt{2}-\frac{1}{2}i$		

- b) Para cada número complejo z de la tabla, representar en un sistema de ejes cartesianos ortogonales: z, -z, \bar{z} , z^{-1}
- i)¿Se puede establecer una relación gráfica entre z y -z ?¿Se podría anticipar en qué cuadrante se encuentra -z ?
- ii) ¿Se puede establecer una relación gráfica entre z y \bar{z} ? ¿Se podría anticipar en qué cuadrante se encuentra \bar{z} ?
- iii) ¿Se puede establecer una relación gráfica entre z y z^{-1} ? ¿Se podría anticipar en qué cuadrante se encuentra z^{-1} ?
- **2)** Dados los números complejos: $z_1 = (-5, 3)$; $z_2 = \frac{3}{2} 2i$; $z_3 = 2 + 4i$
 - a) Calcular:

i)
$$\bar{z}_3$$

ii)
$$z_3 - z_2$$

iii)
$$\overline{z_1 + z_2}$$

b) Calcular:

i)
$$Z_1.Z_2$$

ii)
$$\overline{Z_2 \cdot Z_3}$$

iii)
$$-2.(z_2-z_1)$$

iv)
$$\bar{z_3}.\bar{z_2}$$

$$V) \quad \frac{\overline{z_3} - z_1}{z_2}$$

iv) $z_3 + \bar{z_2}$

 $v) \quad \bar{z_2} + \bar{z_1}$

vi) $-z_2 + z_3 - \bar{z_1}$

$$\forall i$$
) $\left| \frac{z_1}{z_2} \right|$

vii)
$$|z_3 + z_1^{-1}|$$

3) a) Determinar:

i)
$$i^0 =$$

$$i^1 =$$

iii)
$$i^2 =$$

iv)
$$i^3 =$$

$$v) i^{4q+r} =$$

$$con q \in \mathbb{N} \ \land \ 0 \le r < 4$$

- b) Sean w_1 , w_2 , $w_3 \in \mathbb{C} / w_1 = (1, -1)$; $w_2 = (2, 0)$; $w_3 = (0, 1)$. Calcular:
 - $(w_1 w_2) \cdot i^2$
 - ii) $2. w_2. (\overline{\iota^3} w_3)$
 - i^{28} . $(4w_1 w_2)$ iii)
 - $\frac{2.w_1 + \overline{w_3}}{w_2^2}$
 - $\frac{w_1 3.w_2}{w_3}$ V)

Actividades complementarias

- 1) Sabiendo que a: 20 tiene resto 14, si es posible:
 - a) Determinar el cociente y el resto de (a + 90): 20. Justificar.
 - b) Determinar el cociente y el resto de (2a): 20. Justificar.
 - c) Determinar el cociente y el resto de (-a): 20. Justificar.
 - d) Determinar el cociente y el resto de a: (-20). Justificar.
- 2) Dados a y b enteros, con $a \neq 0$, tales que $a \mid b$. Determinar el valor de verdad de las siguientes afirmaciones, justificando las respuestas.
 - a) a|(b+4)
 - b) a|(4b)
 - c) (4a)|b
 - d) (a+4)(b+4)
 - e) a|(8b + a2)
- 3) Sabiendo que a: b tiene cociente c y resto r > 0, determinar si es posible el cociente y el resto de:

a)
$$(a + 4b)$$
: b

a)
$$(a + 4b)$$
: b $[a + 2b + (b - r)]$: b

- 4) Sabiendo que m = (-11). b. (-20), decidir si las siguientes afirmaciones son verdaderas o falsas para cualquier valor de b:
 - a) m es divisible por 11
 - b) 2 es divisor de m
 - c) 44 es divisor de *m*
 - d) 2b es divisor de m
 - e) 10 divide a *m*
 - m es divisor de b f)
 - g) 3 es divisor de m

- 5) Determinar si las siguientes afirmaciones son verdaderas o falsas
 - a) 5 es divisor del número 20.m + 5.m para cualquier valor de m
 - b) 8 es divisor del número 8m + 4m para cualquier valor de m
 - c) 6 es divisor del número 9.m + 3.(m + 2) para cualquier valor de m
- 6) Determinar si las siguientes afirmaciones son verdaderas siempre a veces o nunca
 - a) La expresión 6.a 27 es divisible por 3
 - b) La expresión 32.a 20 es divisible por 4
 - c) La expresión 6.a 27 es divisible por 9.
 - d) La expresión 20.a 32 es divisible por 8.
- 7) Teniendo en cuenta que abcd es un número de cuatro cifras, demostrar que:
 - a) $9|abcd \Leftrightarrow 9|(a+b+c+d)$
 - b) 4|abcd si y solo sí, la mitad de cd es par.
 - c) 11|*aabb*
- 8) Utilizando el algoritmo de Euclides, determinar el m.c.d. de:
 - a) 133 y 38
- b) 225 y 72
- c) 630 y 420
- d) 465 y 372
- e) 1120 y 840

9) Complete la siguiente tabla según lo solicitado:

Z	Re(z)	Im(z)	-z	z^{-1}	$\overline{oldsymbol{z}}$	z	Forma Binómica
(1, 1)							
(-4,2)							
(3,-1)							
$\left(-\sqrt{3},-1/3\right)$							

- 10) Proponer un número complejo que:
 - a) Se encuentre en el 2do Cuadrante y cuya parte real sea menor que -3. ¿Cuántos números complejos podemos encontrar que cumplan esta condición?
 - b) Su parte real sea menor que el opuesto de ¹/₂ y su parte imaginaria sea un número par.
 ¿Cuántos números complejos podemos encontrar que cumplan esta condición?
 ¿Se podrá establecer a qué cuadrante/ semieje pertenecen?

11) Dados los números complejos:

$$z_1 = (-2,7)$$
 ; $z_2 = \frac{1}{4} + i$; $z_3 = 3 - 5i$

- a) Calcular:
- i) $z_1 z_3$
- ii) $\overline{z_1-z_3}$
- iii) $z_1 \overline{z_2}$
- iv) $\bar{z_2} z_3 \bar{z_1}$
- b) Calcular:
- i) $-\overline{z_3}.z_2$
- ii) $\frac{3}{2}$. $(z_1 + z_3)$
- iii) $-2.\left(\frac{\overline{z_1}-z_2}{z_1}\right)$
- iv) $\left| \frac{z_1 \cdot \overline{z_3}}{z_2^2} \right|$
- v) $|z_2 + 3. z_1^{-1}|$