奇异值分解

引理

- 1. 设 $A \in C^{m \times n}$,则 $A = 0 \Leftrightarrow A^H A = 0$
- 2. $R(A^{H}A) = R(AA^{H}) = R(A)$
- 3. 设 $A \in C_r^{m \times n}$ (r > 0),则 $A^H A$ 与 AA^H 都是半正定Hermite矩阵,其特征值都是非负实数,且非零特征值相同(这里的相同指的是非零特征值相同且对应的代数重数也相同)。对称矩阵与Hermite矩阵

定义

奇异值

定义 设 $A \in C_r^{m \times n}(r > 0)$, $A^H A$ 的特征值为 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0$ 则称 $\sigma_i = \sqrt{\lambda_i}(i = 1, 2, \cdots, n)$ 为A的奇异值.

奇异值分解

定理 设 $A \in C_r^{men}(r > 0)$, 则存在m阶酉 矩阵U 和n 阶酉矩阵V,使得

$$U^{H}AV = \begin{pmatrix} \Sigma & O \\ O & O \end{pmatrix}$$

其中 $\Sigma = diag(\sigma_1, \sigma_2, \cdots \sigma_r)$, 而 $\sigma_i(i=1,2,\cdots,r)$ 为

A 的全部非零奇异值.

$$\mathbb{P} A = U \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} V^H$$

例: 基于前述的定理条件,在奇异值分解中,设U和V的列向量分别为 u_1,u_2,\cdots,u_m 和 v_1,v_2,\cdots,v_n ,则有

$$N(A) = L(v_{r+1}, v_{r+2}, \dots, v_n)$$

$$R(A) = L(u_1, u_2, \dots, u_r)$$

$$A = \sigma_1 u_1 v_1^H + \sigma_2 u_2 v_2^H + \dots + \sigma_r u_r v_r^H$$

分解步骤

 \triangle 求复矩阵 $A_{m\times n}$ 的奇异值分解,可按下述步骤进行.

- (1) 求出 A^HA 的全部特征值及奇异值,由所有非零奇异值(包括重复的) $\sigma_1,\sigma_2,\cdots,\sigma_r$ 得到正线对角矩阵 Σ ,进而得到奇异值矩阵 S.
- (2) X $A^{H}A$ 的每一个不同的特征根,求出与之相应的特征向量的极大无关组,经正交化、单位化得 $A^{H}A$ 相应于该特征根的标准正交特征向量组. 将其中与<u>非零特征根</u>相应的那些小组(作为一些列向量)顺序排成矩阵 V ,其次序应与 Σ 中相关奇异值在对角线上的排列顺序相一致. 再以 $A^{H}A$ 相应于零特征根的标准正交特征向量(极大无关)组排成矩阵 V_2 ,于是可得酉矩阵 $V=(V_1,V_2)$.
 - (3) 计算 $U_1 = AV_1 \Sigma^{-1}$.
- (4) 求出 (AA^H) 相应于零特征根的一个标准正交特征向量(极大无关)组,由它们排成 $m \times (m-r)$ 的部分酉阵 (U_2) ,可得 (U_1,U_2) .

综上,便得到奇异值分解 $A=USV^H$.

- 对 U_2 的求法,亦可按如下方法:
- (5) 在 U_1 的r 个列基础上,再扩充m-r 个列使总共m 个列成为一个标准正交向量组,由后扩充进来的m-r 个列排成的矩阵就是 U_2 .

说明:由于 $A^H A$ 是Hermite矩阵,因此其一定有n个线性无关的特征向量、几何重数也肯定等于代数重数。

性质:

1. A的奇异值分解 $A=Uegin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}V^H$ 中,U的列向量是 AA^H 的特征向量,V的列向量是 A^HA 的特征向量。