41952 - Arquitetura de Computadores II

http://elearning.ua.pt

Pedro Miguel Cabral

Normas e Informações

Esta introdução não invalida a obrigatoriedade da leitura do Dossiê Pedagógico da unidade curricular, disponível no moodle

202, 402

Pedro Miguel Cabral

Instituto de Telecomunicações

Edifício das Comunicações Óticas,

Comunicações Rádio e Robótica

Universidade de Aveiro

Campus Universitário de Santiago

3810-193 Aveiro

Telefone externo: 234 377 900

Email: pcabral@ua.pt

Introdução

Conhecimentos prévios

- Sistemas Digitais, Laboratório de Sistemas Digitais
- Programação em C e Assembly do MIPS
- Arquitetura de Computadores I

Arquitetura de Computadores II

- organização dos outros componentes dos sistemas de computação:
 - o sistema de entradas-saídas
 - interfaces e barramentos
 - sistema de memória
- componente prática:
 - programação de entradas-saídas
 - dispositivos periféricos
 - sistema de interrupções
 - barramentos de comunicação série

Introdução

2022

Planificação prevista

Guião	4 ^a	6 ^a	Sumário
1	9/3	11/3	Ferramentas de programação da placa DETPIC32. Assembly do MIPS. System calls.
2	16/3	18/3	Utilização do <i>core timer</i> do MIPS para gerar atrasos programáveis.
3	23/3	25/3	Estrutura básica e modo de configuração de um porto de I/O no microcontrolador PIC32. Programação de I/O em <i>assembly</i> . Exemplos simples de leitura e atuação.
4	30/3	1/4	Configuração e utilização dos portos de I/O do PIC32 em linguagem C.
5	6/4	8/4	Implementação de um sistema de visualização com dois displays de 7 segmentos.
6	20/4	12/4	Utilização da técnica de <i>polling</i> para detetar a ocorrência de um evento e efetuar o consequente processamento. Usar o conversor A/D do PIC32 para efetuar a conversão analógica/digital de um sinal de entrada e mostrar o resultado no sistema de visualização.
-	4/5	6/5	Teste prático 1
7	11/5	22/4	Deteção e processamento de um evento por interrupção. Efetuar a conversão analógica/digital de um sinal de entrada e mostrar o resultado no sistema de visualização interagindo com o conversor A/D por interrupção.
8	18/5	13/5	Programação e utilização de <i>timers</i> . Utilização das técnicas de <i>polling</i> e de interrupção para detetar a ocorrência do fim de contagem do <i>timer</i> e efetuar o consequente processamento.
9	25/5	20/5	Programação e utilização de <i>timers</i> com interrupções. Geração de sinais PWM.
10	1/6	27/5	Implementação de funções básicas de comunicação série através de uma UART (transmissão e receção), usando <i>polling</i> .
11	8/6	3/6	Implementação de funções básicas de comunicação série através de uma UART (transmissão e receção), usando interrupções.
-	15/6	17/6	Teste prático 2
-	22/6	-	Revisões

Bibliografia principal

- David A. Patterson, John L. Hennessy, "Computer Organization & Design The Hardware/Software Interface", Morgan Kaufmann Publishers
- V. P. Heuring, H. F. Jordan, "Computer Systems Design and Architecture", Addison-Wesley, 1997
 (capítulos 7 e 8)
- W. Stallings, "Computer Organization and Architecture designing for performance", Prentice-Hall
- Slides das aulas teóricas
- Vídeos das aulas teóricas do ano anterior

Avaliação (1)

- Componente teórica 60%
- Componente prática 40%
- Nota mínima em qualquer das componentes:
 - 7.5 valores (arredondada com 1 casa decimal)
- A falta a qualquer momento de avaliação (da componente T ou P) implica nota 0 (zero)

Avaliação (2)

- Teórica: avaliação final em época de Exames
 - (dia e hora marcados centralmente pelos serviços)
- Nota da componente laboratorial
 - 2 testes práticos individuais, presenciais, realizados nas aulas
 - 1º 45% (4 e 6 de maio)
 - 2º 55% (15 e 17 de junho)
 - NOTA_P = 0.45 * TP1 + 0.55 * TP2
- Alunos com estatuto de Trabalhador Estudante
 - Têm que estar inscritos numa turma prática
 - Realizam os testes práticos na turma em que estão inscritos

Regime de faltas

- Componente teórica-prática:
 - Não serão marcadas faltas
- Componente prática:
 - Não é permitido faltar, injustificadamente, <u>a mais do que 20%</u> das aulas práticas:
 - Máximo de 2 faltas não justificadas
 - Mais de 2 faltas => RPF
- Justificação de faltas:
 - O documento de justificação deverá ser entregue, <u>apenas</u>, na secretaria do DETI, que remeterá cópia para o regente coordenador.
 - Prazos para justificação de faltas: consultar ponto 9.2 do DP
 - Faltas justificáveis: consultar ponto 9.2 do DP

Funcionamento das aulas práticas

- Durante a aula é disponibilizada, a cada grupo de dois alunos, uma placa DETPIC32
- Os alunos que o pretendam, podem usar uma placa idêntica em horário extra-curricular, nas condições definidas no ponto 9.6 do DP
- Na UC de Arquitetura de Computadores II, não será permitida a utilização de smartphones, durante as aulas práticas, pelo que esses dispositivos deverão estar guardados e com o som desligado.
- Software para uso da Placa DETPIC32
 - Software de desenvolvimento em S.O. Linux, freeware (disponível no site de ACII)

Placa DETPIC32

