Mathematics for Computer Science Linear Algebra (Part 2) Least Squares

Karl Southern

Durham University

February 24th, 2025

Thanks to Andrei Krokhin and William Moses for use of slides.

Outline

- Plan for Today
- QR Decomposition of Matrices
- 3 Least Squares Solutions of Inconsistent Linear Systems
 - Setting Things Up
 - Actually Finding a Least Squares Solution
- Wrapping Things Up

Roadmap for Lectures 5-8

- End Goal: Application linear regression.
- Using: Least Squares.
- Using: QR decomposition.
- Requires knowledge of some basics: Inner product spaces and Gram-Schmidt Orthogonalisation.

Roadmap for Lectures 5-8

- End Goal: Application linear regression.
- Using: Least Squares.
- Using: QR decomposition.
- Requires knowledge of some basics: Inner product spaces and Gram-Schmidt Orthogonalisation.

Now we recap last lectures & look at what we'll cover today.

Last Lecture Reminder

- Orthonormal = consisting of unit vectors, which are pairwise orthogonal
- Every finite-dimensional inner product space V has an orthonormal basis, which can be constructed from any basis of V via the Gram-Schmidt process.

Last Lecture Reminder

- Orthonormal = consisting of unit vectors, which are pairwise orthogonal
- Every finite-dimensional inner product space V has an orthonormal basis, which can be constructed from any basis of V via the Gram-Schmidt process.
- \bullet For a subspace W of an inner product space V, its orthogonal complement is

$$W^{\perp} = \{ \mathbf{x} \in V \mid \langle \mathbf{u}, \mathbf{x} \rangle = 0 \text{ for all } \mathbf{u} \in W \}$$

• If V (or even only W) is finite-dimensional then every vector $\mathbf{u} \in V$ can be uniquely expressed as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

Then $\mathbf{w}_1 = \operatorname{proj}_W \mathbf{u}$ is the orthogonal projection of \mathbf{u} onto W.

Today's Lecture Contents

- QR decomposition
- Least squares solutions of inconsistent linear systems

Outline

- Plan for Today
- QR Decomposition of Matrices
- 3 Least Squares Solutions of Inconsistent Linear Systems
 - Setting Things Up
 - Actually Finding a Least Squares Solution
- Wrapping Things Up

Let A be an $m \times n$ matrix with linearly independent columns $\mathbf{u}_1, \dots, \mathbf{u}_n$ Let $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ be the orthonormal set obtained by applying Gram-Schmidt to $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$. How does $A = [\mathbf{u}_1| \dots |\mathbf{u}_n]$ relate to the matrix $Q = [\mathbf{q}_1| \dots |\mathbf{q}_n]$?

Let A be an $m \times n$ matrix with linearly independent columns $\mathbf{u}_1, \ldots, \mathbf{u}_n$ Let $\{\mathbf{q}_1, \ldots, \mathbf{q}_n\}$ be the orthonormal set obtained by applying Gram-Schmidt to $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$. How does $A = [\mathbf{u}_1| \ldots |\mathbf{u}_n]$ relate to the matrix $Q = [\mathbf{q}_1| \ldots |\mathbf{q}_n]$? Since $\{\mathbf{q}_1, \ldots, \mathbf{q}_n\}$ is an orthonormal basis for $span(\mathbf{u}_1, \ldots, \mathbf{u}_n)$, we have

$$\mathbf{u}_{1} = \langle \mathbf{u}_{1}, \mathbf{q}_{1} \rangle \mathbf{q}_{1} + \langle \mathbf{u}_{1}, \mathbf{q}_{2} \rangle \mathbf{q}_{2} + \ldots + \langle \mathbf{u}_{1}, \mathbf{q}_{n} \rangle \mathbf{q}_{n}$$

$$\mathbf{u}_{2} = \langle \mathbf{u}_{2}, \mathbf{q}_{1} \rangle \mathbf{q}_{1} + \langle \mathbf{u}_{2}, \mathbf{q}_{2} \rangle \mathbf{q}_{2} + \ldots + \langle \mathbf{u}_{2}, \mathbf{q}_{n} \rangle \mathbf{q}_{n}$$

$$\vdots$$

$$\mathbf{u}_{n} = \langle \mathbf{u}_{n}, \mathbf{q}_{1} \rangle \mathbf{q}_{1} + \langle \mathbf{u}_{n}, \mathbf{q}_{2} \rangle \mathbf{q}_{2} + \ldots + \langle \mathbf{u}_{n}, \mathbf{q}_{n} \rangle \mathbf{q}_{n}$$

$$\begin{array}{rcl} \textbf{u}_1 & = & \langle \textbf{u}_1, \textbf{q}_1 \rangle \textbf{q}_1 + \langle \textbf{u}_1, \textbf{q}_2 \rangle \textbf{q}_2 + \ldots + \langle \textbf{u}_1, \textbf{q}_n \rangle \textbf{q}_n \\ \textbf{u}_2 & = & \langle \textbf{u}_2, \textbf{q}_1 \rangle \textbf{q}_1 + \langle \textbf{u}_2, \textbf{q}_2 \rangle \textbf{q}_2 + \ldots + \langle \textbf{u}_2, \textbf{q}_n \rangle \textbf{q}_n \\ & \vdots \\ \textbf{u}_n & = & \langle \textbf{u}_n, \textbf{q}_1 \rangle \textbf{q}_1 + \langle \textbf{u}_n, \textbf{q}_2 \rangle \textbf{q}_2 + \ldots + \langle \textbf{u}_n, \textbf{q}_n \rangle \textbf{q}_n \end{array}$$

$$\begin{array}{rcl} \textbf{u}_1 & = & \langle \textbf{u}_1, \textbf{q}_1 \rangle \textbf{q}_1 + \langle \textbf{u}_1, \textbf{q}_2 \rangle \textbf{q}_2 + \ldots + \langle \textbf{u}_1, \textbf{q}_n \rangle \textbf{q}_n \\ \textbf{u}_2 & = & \langle \textbf{u}_2, \textbf{q}_1 \rangle \textbf{q}_1 + \langle \textbf{u}_2, \textbf{q}_2 \rangle \textbf{q}_2 + \ldots + \langle \textbf{u}_2, \textbf{q}_n \rangle \textbf{q}_n \\ & \vdots \\ \textbf{u}_n & = & \langle \textbf{u}_n, \textbf{q}_1 \rangle \textbf{q}_1 + \langle \textbf{u}_n, \textbf{q}_2 \rangle \textbf{q}_2 + \ldots + \langle \textbf{u}_n, \textbf{q}_n \rangle \textbf{q}_n \end{array}$$

or, in the matrix form,

$$A = [\mathbf{u}_1| \dots | \mathbf{u}_n] = [\mathbf{q}_1| \dots | \mathbf{q}_n] \begin{pmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_1 \rangle \\ \langle \mathbf{u}_1, \mathbf{q}_2 \rangle & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_2 \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle \mathbf{u}_1, \mathbf{q}_n \rangle & \langle \mathbf{u}_2, \mathbf{q}_n \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \end{pmatrix} = QR.$$

What can we say about the matrix R?

From Gram-Schmidt, for each $j \geq 2$, \mathbf{q}_j is orthogonal to $\mathbf{u}_1, \dots, \mathbf{u}_{j-1}$. Hence R is

$$\begin{pmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_1 \rangle \\ \langle \mathbf{u}_1, \mathbf{q}_2 \rangle & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_2 \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle \mathbf{u}_1, \mathbf{q}_n \rangle & \langle \mathbf{u}_2, \mathbf{q}_n \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \end{pmatrix} = \begin{pmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_1 \rangle \\ 0 & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_2 \rangle \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \end{pmatrix}.$$

What can we say about the matrix R?

From Gram-Schmidt, for each $j \geq 2$, \mathbf{q}_j is orthogonal to $\mathbf{u}_1, \dots, \mathbf{u}_{j-1}$. Hence R is

$$\begin{pmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_1 \rangle \\ \langle \mathbf{u}_1, \mathbf{q}_2 \rangle & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_2 \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle \mathbf{u}_1, \mathbf{q}_n \rangle & \langle \mathbf{u}_2, \mathbf{q}_n \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \end{pmatrix} = \begin{pmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_1 \rangle \\ 0 & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_2 \rangle \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \end{pmatrix}.$$

From Gram-Schmidt, $\langle \mathbf{u}_i, \mathbf{q}_i \rangle = \langle \mathbf{u}_i, \frac{1}{||\mathbf{v}_i||} \mathbf{v}_i \rangle = \frac{1}{||\mathbf{v}_i||} \langle \mathbf{u}_i, \mathbf{v}_i \rangle = \frac{1}{||\mathbf{v}_i||} \langle \mathbf{v}_i, \mathbf{v}_i \rangle > 0.$

What can we say about the matrix R?

From Gram-Schmidt, for each $j \geq 2$, \mathbf{q}_j is orthogonal to $\mathbf{u}_1, \dots, \mathbf{u}_{j-1}$. Hence R is

$$\begin{pmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_1 \rangle \\ \langle \mathbf{u}_1, \mathbf{q}_2 \rangle & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_2 \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle \mathbf{u}_1, \mathbf{q}_n \rangle & \langle \mathbf{u}_2, \mathbf{q}_n \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \end{pmatrix} = \begin{pmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_1 \rangle \\ 0 & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_2 \rangle \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \end{pmatrix}.$$

From Gram-Schmidt, $\langle \mathbf{u}_i, \mathbf{q}_i \rangle = \langle \mathbf{u}_i, \frac{1}{||\mathbf{v}_i||} \mathbf{v}_i \rangle = \frac{1}{||\mathbf{v}_i||} \langle \mathbf{u}_i, \mathbf{v}_i \rangle = \frac{1}{||\mathbf{v}_i||} \langle \mathbf{v}_i, \mathbf{v}_i \rangle > 0.$

Theorem (QR Decomposition)

If A is an $m \times n$ matrix with linearly independent column vectors, then it can be factored as

$$A = QR$$

where Q has orthonormal columns and R is an invertible upper triangular matrix.

Theorem (QR Decomposition)

If A is an $m \times n$ matrix with linearly independent column vectors, then it can be factored as

$$A = QR$$

where Q has orthonormal columns and R is an invertible upper triangular matrix.

Theorem (QR Decomposition)

If A is an $m \times n$ matrix with linearly independent column vectors, then it can be factored as

$$A = QR$$

where Q has orthonormal columns and R is an invertible upper triangular matrix.

For m = n, this theorem says that every invertible matrix has a QR-decomposition.

Example 17.1 QR decomposition

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
, find a QR decomposition of A .

Step 1. From Ex 16.2 we have: $\mathbf{q}_1 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), \ \mathbf{q}_2 = (-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}), \ \mathbf{q}_3 = (0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$

Step 2. Compute
$$\begin{pmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \langle \mathbf{u}_3, \mathbf{q}_1 \rangle \\ 0 & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \langle \mathbf{u}_3, \mathbf{q}_2 \rangle \\ 0 & 0 & \langle \mathbf{u}_3, \mathbf{q}_3 \rangle \end{pmatrix} = \begin{pmatrix} \sqrt{3} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Step 3.
$$A = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}}\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{3} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}}\\ 0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{6}}\\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Outline

- Plan for Today
- QR Decomposition of Matrices
- 3 Least Squares Solutions of Inconsistent Linear Systems
 - Setting Things Up
 - Actually Finding a Least Squares Solution
- Wrapping Things Up

Outline

- Plan for Today
- QR Decomposition of Matrices
- 3 Least Squares Solutions of Inconsistent Linear Systems
 - Setting Things Up
 - Actually Finding a Least Squares Solution
- Wrapping Things Up

Let $A = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n]$ be an $m \times n$ matrix with column vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.

Let $A = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n]$ be an $m \times n$ matrix with column vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.

The column space of A is a subspace of \mathbb{R}^m , denoted by $\mathcal{C}(A)$ and defined as

$$C(A) = span(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) = \{x_1\mathbf{u}_1 + x_2\mathbf{u}_2 + \dots + x_n\mathbf{u}_n \mid x_1, \dots, x_n \in \mathbb{R}\}$$

Let $A = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n]$ be an $m \times n$ matrix with column vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.

The column space of A is a subspace of \mathbb{R}^m , denoted by $\mathcal{C}(A)$ and defined as

$$C(A) = span(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) = \{x_1\mathbf{u}_1 + x_2\mathbf{u}_2 + \dots + x_n\mathbf{u}_n \mid x_1, \dots, x_n \in \mathbb{R}\}$$

which we can re-write in matrix notation as

$$\mathcal{C}(A) = span(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) = \{ [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n] \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \mid \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \}$$

Let $A = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n]$ be an $m \times n$ matrix with column vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.

The column space of A is a subspace of \mathbb{R}^m , denoted by $\mathcal{C}(A)$ and defined as

$$C(A) = span(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) = \{x_1\mathbf{u}_1 + x_2\mathbf{u}_2 + \dots + x_n\mathbf{u}_n \mid x_1, \dots, x_n \in \mathbb{R}\}$$

which we can re-write in matrix notation as

$$\mathcal{C}(A) = span(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) = \{ [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n] \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \mid \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \}$$

and hence also as

$$C(A) = span(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}.$$

- Assume that we have an inconsistent linear system $A\mathbf{x} = \mathbf{b}$.
- Can we find a vector that comes as close as possible to a being a solution?

- Assume that we have an inconsistent linear system $A\mathbf{x} = \mathbf{b}$.
- Can we find a vector that comes as close as possible to a being a solution?

Definition (Least Squares Problem)

Given a linear system $A\mathbf{x} = \mathbf{b}$ with m equations and n variables, find a vector \mathbf{x} that minimises $||\mathbf{b} - A\mathbf{x}||$ (w.r.t. the Euclidean inner product on \mathbb{R}^m).

We call such a vector \mathbf{x} a least squares solution to the system, the vector $\mathbf{b} - A\mathbf{x}$ is the least squares error vector, and the number $||\mathbf{b} - A\mathbf{x}||$ is the least squares error.

- Assume that we have an inconsistent linear system $A\mathbf{x} = \mathbf{b}$.
- Can we find a vector that comes as close as possible to a being a solution?

Definition (Least Squares Problem)

Given a linear system $A\mathbf{x} = \mathbf{b}$ with m equations and n variables, find a vector \mathbf{x} that minimises $||\mathbf{b} - A\mathbf{x}||$ (w.r.t. the Euclidean inner product on \mathbb{R}^m).

We call such a vector \mathbf{x} a least squares solution to the system, the vector $\mathbf{b} - A\mathbf{x}$ is the least squares error vector, and the number $||\mathbf{b} - A\mathbf{x}||$ is the least squares error.

"Least squares" - because the norm is the (square root of the) sum of squares:

if
$$Ax = a$$
 then $||\mathbf{b} - Ax|| = ||\mathbf{b} - a|| = \sqrt{(b_1 - a_1)^2 + \ldots + (b_m - a_m)^2}$.

- Assume that we have an inconsistent linear system $A\mathbf{x} = \mathbf{b}$.
- Can we find a vector that comes as close as possible to a being a solution?

Definition (Least Squares Problem)

Given a linear system $A\mathbf{x} = \mathbf{b}$ with m equations and n variables, find a vector \mathbf{x} that minimises $||\mathbf{b} - A\mathbf{x}||$ (w.r.t. the Euclidean inner product on \mathbb{R}^m).

We call such a vector \mathbf{x} a least squares solution to the system, the vector $\mathbf{b} - A\mathbf{x}$ is the least squares error vector, and the number $||\mathbf{b} - A\mathbf{x}||$ is the least squares error.

"Least squares" - because the norm is the (square root of the) sum of squares:

if
$$A\mathbf{x} = \mathbf{a}$$
 then $||\mathbf{b} - A\mathbf{x}|| = ||\mathbf{b} - \mathbf{a}|| = \sqrt{(b_1 - a_1)^2 + \ldots + (b_m - a_m)^2}$.

If we trust different measurements/equations differently, we can use the weighted Euclidean inner product to compute the norm and get the weighted least squares.

Theorem

If W is a finite-dimensional subspace in an inner product space V and $\mathbf{b} \in V$ then $\operatorname{proj}_W \mathbf{b}$ is the best approximation to \mathbf{b} from W in the sense that

$$||\mathbf{b} - \operatorname{proj}_{W} \mathbf{b}|| \le ||\mathbf{b} - \mathbf{w}||$$

for each vector $\mathbf{w} \in W$, and the inequality is strict for all $\mathbf{w} \neq \operatorname{proj}_W \mathbf{b}$.

Theorem

If W is a finite-dimensional subspace in an inner product space V and $\mathbf{b} \in V$ then $\operatorname{proj}_W \mathbf{b}$ is the best approximation to \mathbf{b} from W in the sense that

$$||\mathbf{b} - \operatorname{proj}_{W} \mathbf{b}|| \le ||\mathbf{b} - \mathbf{w}||$$

for each vector $\mathbf{w} \in W$, and the inequality is strict for all $\mathbf{w} \neq \operatorname{proj}_W \mathbf{b}$.

For any vector
$$\mathbf{w} \in W$$
, write $\mathbf{b} - \mathbf{w} = \underbrace{\left(\mathbf{b} - \mathrm{proj}_W \mathbf{b}\right)}_{\text{in } W^{\perp}} + \underbrace{\left(\mathrm{proj}_W \mathbf{b} - \mathbf{w}\right)}_{\text{in } W}$.

Theorem

If W is a finite-dimensional subspace in an inner product space V and $\mathbf{b} \in V$ then $\operatorname{proj}_W \mathbf{b}$ is the best approximation to \mathbf{b} from W in the sense that

$$||\mathbf{b} - \operatorname{proj}_{W} \mathbf{b}|| \le ||\mathbf{b} - \mathbf{w}||$$

for each vector $\mathbf{w} \in W$, and the inequality is strict for all $\mathbf{w} \neq \operatorname{proj}_W \mathbf{b}$.

For any vector
$$\mathbf{w} \in W$$
, write $\mathbf{b} - \mathbf{w} = \underbrace{\left(\mathbf{b} - \operatorname{proj}_W \mathbf{b}\right)}_{\mathbf{i} = W} + \underbrace{\left(\operatorname{proj}_W \mathbf{b} - \mathbf{w}\right)}_{\mathbf{i} = W}$.

By Pythagoras' theorem (if
$$\langle \mathbf{u}, \mathbf{v} \rangle = 0$$
 then $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$),

Theorem

If W is a finite-dimensional subspace in an inner product space V and $\mathbf{b} \in V$ then $\operatorname{proj}_W \mathbf{b}$ is the best approximation to \mathbf{b} from W in the sense that

$$||\mathbf{b} - \operatorname{proj}_{W} \mathbf{b}|| \le ||\mathbf{b} - \mathbf{w}||$$

for each vector $\mathbf{w} \in W$, and the inequality is strict for all $\mathbf{w} \neq \operatorname{proj}_W \mathbf{b}$.

For any vector
$$\mathbf{w} \in W$$
, write $\mathbf{b} - \mathbf{w} = \underbrace{\left(\mathbf{b} - \mathrm{proj}_W \mathbf{b}\right)}_{\text{in } W^\perp} + \underbrace{\left(\mathrm{proj}_W \mathbf{b} - \mathbf{w}\right)}_{\text{in } W}.$ By Pythagoras' theorem (if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ then $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$), we have $||\mathbf{b} - \mathbf{w}||^2 = ||\mathbf{b} - \mathrm{proj}_W \mathbf{b}||^2 + ||\mathrm{proj}_W \mathbf{b} - \mathbf{w}||^2$

Theorem

If W is a finite-dimensional subspace in an inner product space V and $\mathbf{b} \in V$ then $\operatorname{proj}_W \mathbf{b}$ is the best approximation to \mathbf{b} from W in the sense that

$$||\mathbf{b} - \operatorname{proj}_{W} \mathbf{b}|| \le ||\mathbf{b} - \mathbf{w}||$$

for each vector $\mathbf{w} \in W$, and the inequality is strict for all $\mathbf{w} \neq \operatorname{proj}_W \mathbf{b}$.

For any vector
$$\mathbf{w} \in W$$
, write $\mathbf{b} - \mathbf{w} = \underbrace{\left(\mathbf{b} - \mathrm{proj}_W \mathbf{b}\right)}_{\text{in } W^{\perp}} + \underbrace{\left(\mathrm{proj}_W \mathbf{b} - \mathbf{w}\right)}_{\text{in } W}.$ By Pythagoras' theorem (if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ then $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$), we have $||\mathbf{b} - \mathbf{w}||^2 = ||\mathbf{b} - \mathrm{proj}_W \mathbf{b}||^2 + ||\mathrm{proj}_W \mathbf{b} - \mathbf{w}||^2 \ge ||\mathbf{b} - \mathrm{proj}_W \mathbf{b}||^2$.

Theorem

If W is a finite-dimensional subspace in an inner product space V and $\mathbf{b} \in V$ then $\operatorname{proj}_W \mathbf{b}$ is the best approximation to \mathbf{b} from W in the sense that

$$||\mathbf{b} - \operatorname{proj}_{W} \mathbf{b}|| \le ||\mathbf{b} - \mathbf{w}||$$

for each vector $\mathbf{w} \in W$, and the inequality is strict for all $\mathbf{w} \neq \operatorname{proj}_W \mathbf{b}$.

Proof.

For any vector
$$\mathbf{w} \in W$$
, write $\mathbf{b} - \mathbf{w} = \underbrace{\left(\mathbf{b} - \operatorname{proj}_W \mathbf{b}\right)}_{\text{in } W^{\perp}} + \underbrace{\left(\operatorname{proj}_W \mathbf{b} - \mathbf{w}\right)}_{\text{in } W}$.

By Pythagoras' theorem (if
$$\langle \mathbf{u}, \mathbf{v} \rangle = 0$$
 then $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$), we have

$$||\mathbf{b} - \mathbf{w}||^2 = ||\mathbf{b} - \operatorname{proj}_{\mathcal{W}} \mathbf{b}||^2 + ||\operatorname{proj}_{\mathcal{W}} \mathbf{b} - \mathbf{w}||^2 \ge ||\mathbf{b} - \operatorname{proj}_{\mathcal{W}} \mathbf{b}||^2.$$

Moreover, the inequality is strict whenever $\mathbf{w} \neq \operatorname{proj}_{\mathcal{W}} \mathbf{b}$.

Outline

- Plan for Today
- QR Decomposition of Matrices
- 3 Least Squares Solutions of Inconsistent Linear Systems
 - Setting Things Up
 - Actually Finding a Least Squares Solution
- 4 Wrapping Things Up

- Let $W = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$ be the column space of A.
- Since $\operatorname{proj}_{W} \mathbf{b}$ is the best approximation to \mathbf{b} from W, least squares solutions to $A\mathbf{x} = \mathbf{b}$ (i.e., vectors \mathbf{x} minimising $||\mathbf{b} A\mathbf{x}||$) are exactly solutions to

$$A\mathbf{x} = \operatorname{proj}_{W}\mathbf{b}.$$

• We can compute $\operatorname{proj}_{W}\mathbf{b}$ and solve the system, but there's a more useful way.

- Let $W = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$ be the column space of A.
- Since $\operatorname{proj}_W \mathbf{b}$ is the best approximation to \mathbf{b} from W, least squares solutions to $A\mathbf{x} = \mathbf{b}$ (i.e., vectors \mathbf{x} minimising $||\mathbf{b} A\mathbf{x}||$) are exactly solutions to

$$A\mathbf{x} = \operatorname{proj}_{W} \mathbf{b}.$$

- ullet We can compute $\mathrm{proj}_W \mathbf{b}$ and solve the system, but there's a more useful way.
- The representation $\mathbf{b} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$ is unique, so the equation $A\mathbf{x} = \operatorname{proj}_W \mathbf{b}$ is equivalent to the condition $\mathbf{b} A\mathbf{x} \in W^{\perp}$.

- Let $W = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$ be the column space of A.
- Since $\operatorname{proj}_W \mathbf{b}$ is the best approximation to \mathbf{b} from W, least squares solutions to $A\mathbf{x} = \mathbf{b}$ (i.e., vectors \mathbf{x} minimising $||\mathbf{b} A\mathbf{x}||$) are exactly solutions to

$$A\mathbf{x} = \operatorname{proj}_{W}\mathbf{b}.$$

- We can compute $\operatorname{proj}_W \mathbf{b}$ and solve the system, but there's a more useful way.
- The representation $\mathbf{b} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$ is unique, so the equation $A\mathbf{x} = \operatorname{proj}_W \mathbf{b}$ is equivalent to the condition $\mathbf{b} A\mathbf{x} \in W^{\perp}$.
- The columns of A are the rows of A^T , so the condition $\mathbf{b} A\mathbf{x} \in W^{\perp}$ is equivalent to $A^T(\mathbf{b} A\mathbf{x}) = \mathbf{0}$,

- Let $W = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$ be the column space of A.
- Since $\operatorname{proj}_W \mathbf{b}$ is the best approximation to \mathbf{b} from W, least squares solutions to $A\mathbf{x} = \mathbf{b}$ (i.e., vectors \mathbf{x} minimising $||\mathbf{b} A\mathbf{x}||$) are exactly solutions to

$$A\mathbf{x} = \operatorname{proj}_{W} \mathbf{b}.$$

- We can compute $\operatorname{proj}_W \mathbf{b}$ and solve the system, but there's a more useful way.
- The representation $\mathbf{b} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$ is unique, so the equation $A\mathbf{x} = \operatorname{proj}_W \mathbf{b}$ is equivalent to the condition $\mathbf{b} A\mathbf{x} \in W^{\perp}$.
- The columns of A are the rows of A^T , so the condition $\mathbf{b} A\mathbf{x} \in W^{\perp}$ is equivalent to $A^T(\mathbf{b} A\mathbf{x}) = \mathbf{0}$, which we can re-write as

$$A^T A \mathbf{x} = A^T \mathbf{b}$$
.

• This is the normal equation (or normal system) associated with $A\mathbf{x} = \mathbf{b}$.

On the previous slide, we proved the following.

Theorem

- For every linear system $A\mathbf{x} = \mathbf{b}$, the associated normal system $A^T A \mathbf{x} = A^T \mathbf{b}$ is consistent, and its solutions are exactly least square solutions of $A\mathbf{x} = \mathbf{b}$.
- **2** Moreover, if W is the column space of A and \mathbf{x}_0 is any least squares solution of $A\mathbf{x} = \mathbf{b}$ then $A\mathbf{x}_0 = \operatorname{proj}_W \mathbf{b}$.

Example 17.2: Computing Least Squares Solutions

Find least squares solutions for the linear system, using the euclidean dot product.

$$\begin{array}{rcl} x_1-x_2&=&4\\ 3x_1+2x_2&=&1\\ -2x_1+4x_2&=&3 \end{array} \quad A\mathbf{x}=\left(\begin{array}{cc} 1&-1\\ 3&2\\ -2&4 \end{array}\right)\left(\begin{array}{c} x_1\\ x_2 \end{array}\right)=\left(\begin{array}{c} 4\\ 1\\ 3 \end{array}\right)=\mathbf{b}.$$

The associated normal system $A^T A \mathbf{x} = A^T \mathbf{b}$ is

$$\left(\begin{array}{rrr} 1 & 3 & -2 \\ -1 & 2 & 4 \end{array}\right) \left(\begin{array}{rrr} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{array}\right) \left(\begin{array}{rrr} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{rrr} 1 & 3 & -2 \\ -1 & 2 & 4 \end{array}\right) \left(\begin{array}{rrr} 4 \\ 1 \\ 3 \end{array}\right).$$

Computing the matrix products, we get

$$\left(\begin{array}{cc} 14 & -3 \\ -3 & 21 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 1 \\ 10 \end{array}\right).$$

Solving this yields a unique least squares solution $x_1 = 17/95$ and $x_2 = 143/285$.

(If needed, can now easily compute the error vector $\mathbf{b} - A\mathbf{x}$ and error $||\mathbf{b} - A\mathbf{x}||$.)

Karl Southern (Durham University)

Outline

- Plan for Today
- QR Decomposition of Matrices
- 3 Least Squares Solutions of Inconsistent Linear Systems
 - Setting Things Up
 - Actually Finding a Least Squares Solution
- Wrapping Things Up

Example exam question

(b) Give the QR decomposition of
$$A=\begin{pmatrix} 2 & 2\\ 2 & 2\\ 2 & 1\\ 2 & 1 \end{pmatrix}$$
 .

[10 Marks]

Wrapping Things Up

Today:

- QR decomposition
- Least squares fitting to data

Next time:

• Linear regression

The End

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Proof.

• The columns of A are linearly indep iff $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Proof.

- The columns of A are linearly indep iff $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
 - A^TA is square, so it is invertible iff $A^TAx = 0$ has only the trivial solution.

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Proof.

- The columns of A are linearly indep iff $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- A^TA is square, so it is invertible iff $A^TAx = 0$ has only the trivial solution.
- Each solution of $A\mathbf{x} = \mathbf{0}$ is a solution of $A^T A \mathbf{x} = \mathbf{0}$.

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Proof.

- The columns of A are linearly indep iff $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- A^TA is square, so it is invertible iff $A^TA\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- Each solution of $A\mathbf{x} = \mathbf{0}$ is a solution of $A^T A \mathbf{x} = \mathbf{0}$.
- Let \mathbf{x}_0 be a solution of $A^T A \mathbf{x} = \mathbf{0}$, i.e., $A^T A \mathbf{x}_0 = \mathbf{0}$.

Then $A\mathbf{x}_0$ is both in the column space of A and in the null space of A^T (which are orthogonal complements of each other). Hence, $A\mathbf{x}_0 = \mathbf{0}$.

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Proof.

- The columns of A are linearly indep iff $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- A^TA is square, so it is invertible iff $A^TAx = 0$ has only the trivial solution.
- Each solution of $A\mathbf{x} = \mathbf{0}$ is a solution of $A^T A\mathbf{x} = \mathbf{0}$.
- Let \mathbf{x}_0 be a solution of $A^T A \mathbf{x} = \mathbf{0}$, i.e., $A^T A \mathbf{x}_0 = \mathbf{0}$.
 - Then $A\mathbf{x}_0$ is both in the column space of A and in the null space of A^T (which are orthogonal complements of each other). Hence, $A\mathbf{x}_0 = \mathbf{0}$.
- Thus $A\mathbf{x} = \mathbf{0}$ has only the trivial solution iff the same is true for $A^T A \mathbf{x} = \mathbf{0}$.