Transformation chimique, contrôle de qualité

Activité de réflexion

Etape 1

Acide	Fort/faible	Pourquoi ?	
HNO ₃	Fort	Réaction totale avec l'eau	
(les autres)	Faible	Réaction non totale avec l'eau	

Acide fort

: acide pour lequel la réaction avec l'eau est totale

Base forte

: base pour laquelle

Étape 2

Acide chlorhydrique

$$HCl_{(aq)} + H_2O_{(l)} \rightarrow Cl_{(aq)}^- + H_3O_{(aq)}^+$$

	HCl +	$H_2O \rightarrow$	Cl^- +	H_30^+
x = 0	CV	excès	0	0
x	CV - x	excès	x	x

1 sur 3 2019-10-24 à 19:04

.
$$HCl + H_2O \rightarrow Cl^- + H_3O^+$$

$$x_{\text{max}}$$
 $= 0$ $CV - x_{\text{max}}$ excès x_{max} x_{max}

$$pH = -\log[H_3O^+] \quad avec \ [H_3O^+] = \frac{x_{max}}{V}$$

$$CV - x_{\text{max}} = 0$$
, donc $x_{\text{max}} = C \cdot V$

$$[H_3O^+] = \frac{cV}{V} = C \Rightarrow pH = -\log[H_3O^+]$$

blablabla

Destop

$$\triangle \text{NaOH}_{(s)} \rightarrow \text{NaOH}_{2 \text{ (aq)}}^+ + \text{HO}_{(aq)}^-$$

$$HO_{(aq)}^- + H_2O_{(l)} \rightarrow H_2O_{(l)} + HO_{(aq)}^-$$

$$CV - x_{\text{max}} = 0$$
, donc $x_{\text{max}} = C \cdot V$

«La subtilité à trouver est toujours entre la rigueur et la perte de temps»

- Philippe Nayrac, 2019

$$\begin{aligned} \mathbf{p}\mathbf{H} &= -\log[H_3O^+] \\ K_e &= [H_3O^+][HO^-] \\ \mathsf{Donc}\left[H_3O^+\right] &= \frac{\kappa e}{[HO^-]} \end{aligned}$$

Donc pH =
$$-\log\left(\frac{Ke}{[HO^-]}\right)$$

$$pH = -(\log Ke - \log[HO^{-}])$$

2 sur 3 2019-10-24 à 19:04

$$pH = 14 + \log\left(\frac{x_{\text{max}}}{V}\right)$$

$$pH = 14 + \log C$$

$$pH = 14 + \log C$$

Valable pour toutes les bases forts

$$pH = -\log C$$

Valable pour tous les acides forts

Étape 3: Mission Impossible

Lorsqu'on mélange l'acide chlorhydrique et le destop, la réaction est la suivante:

Acide
$$H_3O^+ + Cl^- + H_2O + HO^- + Na^+ \rightarrow H_2O + H_2O + Cl^- + H_2O + Na^+$$

De plus, la réaction entre un acide fort et une base forte est **exothermique**^[1] (et très!)

En conclusion, avec ce mélange, on obtient de l'eau salée chaude, et les pâtes sont cuites!

À ne pas faire à la maison

Le danger est de réaliser un mélange qui ne soit pas dans les proportions stochiométriques: la réaction ne sera pas totale

Notes de bas de page

1. Elle dégage de la chaleur ←

3 sur 3 2019-10-24 à 19:04