

Netflix Content Classification and Recommendation System

Team ID: 06

Team Members: J Joshua Haniel (RA2311003040056)

S Yashwant (RA2311003040116)

Project Guide: Dr. G.Paavai Anand

INTRODUCTION AND MOTIVATION

- OTT platforms like Netflix have a massive and growing content library.
- Users struggle to find relevant content quickly.
- Classification of titles (Movies vs. TV Shows) and recommendation engines can improve user experience.
- Motivation: Enhance content discovery using AI/ML.

SCOPE OF THE PROJECT

- Automated classification of Netflix titles based on descriptions.
- Content-based recommendation system to suggest similar shows/movies.
- Support for both keyword-based (TF-IDF) and semantic (transformer embeddings) recommendations.
- Interactive UI using Gradio for easy exploration.

ABSTRACT

This project presents a machine learning-driven system to classify Netflix titles and recommend similar content. Logistic Regression, Naive Bayes, and Support Vector Machines were evaluated on TF-IDF features to predict whether a title is a Movie or a TV Show. Additionally, two content-based recommendation engines were built—one leveraging TF-IDF similarity and another using sentencetransformer embeddings for semantic similarity. The system is deployed with an interactive UI to demonstrate real-world usability.

LITERATURE SURVEY

- Content-Based Filtering: Prior works rely on metadata similarity (e.g., TF-IDF of movie plots).
- Collaborative Filtering: Requires user-rating data, often unavailable for proprietary datasets.
- Deep Learning for NLP: Transformers (like BERT, MiniLM) achieve better contextual understanding for recommendations.

EXISTING METHODS

<u>Category</u>	<u>Existing</u>	<u>Description</u>	Advantages Limitations
Existing	Manual Browsing & Search	Users manually browse categories, search by keywords, or rely on Netflix's in-built UI.	Limitations: Time-consuming, not personalized, difficult to scale with growing content.
Existing	Rule-based Metadata Filtering	Filters based on genre, year, or country metadata.	Limitations: Rigid, ignores context and semantics, often gives irrelevant results.
Existing	Basic Content-Based Filtering (TF-IDF only)	Uses simple TF-IDF on text (like plot/description) to compute similarity.	Limitations: Ignores deep semantic meaning, requires large feature space, only moderately accurate.
Proposed	Classical ML with Advanced TF-IDF Models	Logistic Regression, SVM, Naive Bayes on TF-IDF features for classification (Movie vs TV Show).	Advantages: Strong baseline, interpretable, good accuracy. Limitation: Context understanding is still shallow.
Proposed	Transformer-based Semantic Recommendation (Sentence- BERT / MiniLM)	Generates sentence embeddings of descriptions and metadata, computes similarity for recommendations.	Advantages: High accuracy, semantic understanding, scalable. Limitation: Requires more computational resources.
Proposed	Interactive Deployment via Gradio UI	Unified interface with tabs for classification and recommendation (TF-IDF & Semantic).	Advantages: Easy to use, interactive, presentation-ready. Limitation: Needs stable environment for deployment.

PROBLEM STATEMENT

Users on OTT platforms face difficulty in finding relevant content due to:

- Huge volume of titles.
- Limited traditional recommendation systems.
- Lack of intelligent classification of new content.

Our problem statement:

"Can we build an ML-based system to classify Netflix titles and provide intelligent, accurate content recommendations?"

OBJECTIVES

- 1. Build an ML model to classify titles as Movies or TV Shows.
- 2. Compare multiple models (Logistic Regression, SVM, Naive Bayes).
- 3. Develop content-based recommenders using TF-IDF and semantic embeddings.
- 4. Provide an interactive UI for classification and recommendations.

ARCHITECTURE DIAGRAM

LIST OF MODULES

- 1. Data Preprocessing
- 2. Classification (Movie vs. TV Show)
- 3. TF-IDF Based Recommendation
- 4. Semantic (Transformer) Recommendation
- 5. Visualization & Evaluation
- 6. Gradio UI Deployment

MODULE DESCRIPTION

- Data Preprocessing: Cleaning, normalization, handling missing values.
- Classification: TF-IDF + ML models, tuned via GridSearchCV.
- TF-IDF Recommendation: Keyword overlap-based similarity.
- Semantic Recommendation: Sentence embeddings for deep semantic matching.
- Visualization: Trends by year, genres, countries, confusion matrices.
- UI Deployment: Interactive Gradio interface with recommendation and classification tabs.

REFERENCE

- 1. Suvarna, V. (2023). Netflix Titles Dataset. Kaggle. Retrieved from https://www.kaggle.com/datasets/venkateshsuvarna27/netflix-title
- 2. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
- 3. Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics.
- 4. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459.
- 5. Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to Recommender Systems Handbook. Springer.
- 6. Abhishek, T. (2020). Building Recommendation Systems with Machine Learning and AI. Packt Publishing.
- 7. Gradio. (2023). Gradio Documentation. Retrieved from https://www.gradio.app

THANK YOU