ISEN Lille 28 février 2019

\mathscr{M} athématiques $\mathcal{C}i\,\mathbf{R}^2$

a) Montrer qu'une opération binaire ne peut admettre au maximum qu'un seul élément neutre.

Soit * une opération binaire sur un ensemble E et $e,e'\in E$ deux éléments neutres pour *. Alors

$$e = e * e' = e'$$
.

b) Existe-t-il des opérations admettant un élément qui soit à la fois neutre et absorbant?

Soit * une opération sur un ensemble $E, e \in E$ un élément neutre et absorbant. Alors, pour tout $x \in E$ on a :

$$x = x * e = e$$

on conclut donc que $E = \{e\}$ muni de l'unique opération possible : e * e = e.

c) Décrire les classes d'équivalence d'une relation qui serait à la fois d'ordre et d'équivalence.

Soit \sim une relation d'ordre et d'équivalence sur un ensemble E et supposons que $x \sim y$. Comme la relation est symétrique (car d'équivalence), on doit aussi avoir $y \sim x$. Or la relation est également antisymétrique car elle est d'ordre, on doit donc conclure que x = y. Comme la relation est réflexive, on a donc :

$$x \sim y \iff x = y,$$

et les classes d'équivalences sont des singletons ($\overline{x} = \{x\}$).

On munit l'ensemble $Q := \mathbf{Z} \times \mathbf{Z}$ de la loi de composition

$$(a,b) \diamond (c,d) := (ad + bc, bd).$$

- a) Vérifier qu'il s'agit d'une opération associative et commutative. Admet-elle un neutre? Un élément absorbant?
 - Il s'agit bien d'une loi de composition interne car pour $(a,b),(c,d)\in\mathcal{Q}$ on a bien $(a,b)\diamond(c,d)\in\mathcal{Q}$.
 - Associativité:

$$((a,b) \diamond (c,d)) \diamond (e,f) = (ad+bc,bd) \diamond (e,f) = ((ad+bc)f + (bd)e,(bd)f)$$

$$= (a(df) + b(cf+de),b(df)) = (a,b) \diamond (cf+de,df) = (a,b) \diamond ((c,d) \diamond (e,f)) \checkmark$$

• Commutativité:

$$(a,b) \diamond (c,d) = (ad+bc,bd) = (cb+da,db) = (c,d) \diamond (a,b) \checkmark$$

• Neutre :

$$(a,b) \diamond (0,1) = (a \cdot 1 + b \cdot 0, b \cdot 1) = (a,b) \checkmark$$

• Absorbant :

$$(a,b) \diamond (0,0) = (a \cdot 0 + b \cdot 0, b \cdot 0) = (0,0) \checkmark$$

Remarque: il s'agit de la loi d'addition des fractions $\frac{a}{b}$ étendue au cas où b peut être nul.

b) Vérifier que les fonctions $\iota, \kappa : \mathbf{Z} \to \mathcal{Q}$ définies par $\iota(x) := (x, 1)$ et $\kappa(x) := (0, x)$ sont des morphismes de monoïdes, en précisant pour chacune la structure considérée sur \mathbf{Z} .

$$\iota(x) \diamond \iota(y) = (x,1) \diamond (y,1) = (x+y,1) = \iota(x+y)$$

et $\iota(0) = (0,1)$, donc ι est un morphisme (injectif) de $(\mathbf{Z},+,0)$ vers \mathcal{Q} .

$$\kappa(x) \diamond \kappa(y) = (0, x) \diamond (0, y) = (0, xy) = \kappa(xy)$$

et $\kappa(1) = (0,1)$, donc κ est un morphisme (injectif) de $(\mathbf{Z}, \cdot, 1)$ vers \mathcal{Q} .

c) La relation $(a,b) \triangleleft (c,d) \iff ad \leqslant bc$ est-elle une relation d'ordre total sur Q?

Elle est bien réflexive et totale (toute paire d'éléments est comparable), mais non antisymétrique : par exemple

$$(1,1) \triangleleft (0,0)$$
 et $(0,0) \triangleleft (1,1)$ même si $(1,1) \neq (0,0)$,

ni transitive : par exemple

$$(1,0) \triangleleft (0,0)$$
 et $(0,0) \triangleleft (1,1)$ mais $(1,0) \not \triangleleft (0,1)$

a) Soient E et F deux ensembles munis d'opérations binaires, notées \top et \bot , respectivement. Rappeler la définition d'un morphisme de (E, \top) vers (F, \bot) et la signification de l'écriture $(E, \top) \cong (F, \bot)$.

Un morphisme de (E, \top) vers (F, \bot) est une fonction $\varphi : E \to F$ pour laquelle

$$\varphi(x \top y) = \varphi(x) \perp \varphi(y) \quad \forall_{x,y \in E}.$$

 $(E, \top) \cong (F, \bot)$ signifie que les deux structures sont isomorphes, *i.e.* qu'il existe un morphisme bijectif (isomorphisme) de (E, \top) vers (F, \bot) .

b) Si (E, \top) et (F, \bot) sont isomorphes et que \top admet un élément neutre, montrer que \bot aussi. Est-ce également vrai pour un élément absorbant?

Soit φ un isomorphisme de (E, \top) vers (F, \bot) .

Si $e \in E$ est neutre pour \top , montrons que $\varphi(e) \in F$ est neutre pour \bot : pour tout $y \in F$, il existe $x \in E$ pour lequel $y = \varphi(x)$, de sorte que

$$\varphi(e) \perp y = \varphi(e) \perp \varphi(x) = \varphi(e \top x) = \varphi(x) = y$$

et de même $y \perp \varphi(e) = y$.

Le même argument fonctionne si on a un élément absorbant $a \in E$: alors

$$\varphi(a) \perp y = \varphi(a) \perp \varphi(x) = \varphi(a \top x) = \varphi(a)$$

et de même $y \perp \varphi(a) = \varphi(a)$ pour tout $y \in F$, donc $\varphi(a)$ est absorbant dans F.

Remarque: on n'a pas utilisé l'injectivité de φ , l'énoncé reste vrai si on ne suppose que l'existence d'un morphisme surjectif de E vers F.

c) Soit $\operatorname{End}(E)$ l'ensemble des morphismes de (E, \top) dans lui-même (endomorphismes). Vérifier que $\operatorname{End}(E)$ est un sous-monoïde de $\mathcal{F}(E)$.

L'ensemble $\mathcal{F}(E)$ des applications de E dans lui-même est un monoïde pour la composition avec neutre id_E .

Pour vérifier que End(E) est un sous-monoïde :

- neutre : $\mathrm{id}_E \in \mathrm{End}(E)$ puisque $\mathrm{id}_E(x \top y) = x \top y = \mathrm{id}_E(x) \top \mathrm{id}_E(y)$ pour tous $x, y \in E$.
- stabilité sous \circ : si $\varphi, \psi \in \text{End}(E)$, alors $\varphi \circ \psi \in \text{End}(E)$ car pour tous $x, y \in E$,

$$(\varphi \circ \psi)(x \top y) = \varphi(\psi(x \top y)) = \varphi(\psi(x) \top \psi(y)) = \varphi(\psi(x)) \top \varphi(\psi(y)) = (\varphi \circ \psi)(x) \top (\varphi \circ \psi)(y) \checkmark$$

a) Quel est le cardinal du sous-monoïde multiplicatif de $\mathcal{M}_2(\mathbf{R})$ engendré par $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ et $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$?

Si on effectue tous les produits possibles avec X et Z on trouve :

où les lignes bleues désignent une multiplication par X et les rouges une multiplication par Z (trait plein par la droite, pointillé par la gauche). Conclusion : il s'agit d'un monoïde à 8 éléments.

Remarque: Les matrices X et Z jouent un rôle important en informatique quantique où elles jouent le rôle de portes logiques opérant sur des qubits.

b) Montrer que l'ensemble $\mathcal{P}(\mathbf{N})$ des parties de \mathbf{N} est infini non dénombrable.

 $\mathcal{P}(\mathbf{N})$ est infini : la fonction $A \mapsto 2A = \{2a | a \in A\}$ est une injection non surjective de $\mathcal{P}(\mathbf{N})$ dans lui-même, montrant que $\mathcal{P}(\mathbf{N})$ est équipotent à une partie stricte de lui-même (à savoir, $\mathcal{P}(2\mathbf{N})$), ce qui montre que $\mathcal{P}(\mathbf{N})$ est infini.

 $\mathcal{P}(\mathbf{N})$ est non dénombrable : montrons que $|\mathcal{P}(\mathbf{N})| > \aleph_0$ en montrant qu'aucune application $f : \mathbf{N} \to \mathcal{P}(\mathbf{N})$ n'est surjective. Prenons donc $f : \mathbf{N} \to \mathcal{P}(\mathbf{N})$ associant à chaque $n \in \mathbf{N}$ un sous-ensemble $f(n) \subseteq \mathbf{N}$. Argument diagonal de Cantor : considérons l'ensemble

$$\Omega_f := \{ n \in \mathbf{N} \mid n \notin f(n) \}.$$

En d'autres termes, $n \in \Omega_f \iff n \notin f(n)$; on remarque alors que Ω_f ne peut pas être de la forme f(n), montrant que f n'est pas surjective.

c) Soit $\mathcal{P}_f(\mathbf{N})$ l'ensemble des parties finies de \mathbf{N} et considérons la fonction $\varphi: \mathcal{P}_f(\mathbf{N}) \to \mathbf{N}$ définie par

$$\varphi(S) := \prod_{i \in S} p_i,$$

où p_i désigne le i^e nombre premier – par exemple : $\varphi(\{0,2,3\}) = 2 \cdot 5 \cdot 7 = 70$. Montrer que φ est une injection croissante (pour \subseteq et \le) et en déduire que $\mathcal{P}_f(\mathbf{N})$ est dénombrable.

 φ est injective par l'unicité de la décomposition en facteurs premiers ; et φ est croissante car si $S\subseteq T$, on remarque que

$$\varphi(T) = \varphi(S \cup T \setminus S) = \varphi(S) \cdot \varphi(S \setminus T) \geqslant \varphi(S).$$

Puisque $\mathcal{P}_f(\mathbf{N})$ s'injecte dans \mathbf{N} , on sait que $|\mathcal{P}_f(\mathbf{N})| \leq |\mathbf{N}|$. Par ailleurs, \mathbf{N} s'injecte aussi dans $\mathcal{P}_f(\mathbf{N})$ par exemple via la fonction $n \mapsto \{n\}$, de sorte que $|\mathbf{N}| \leq |\mathcal{P}_f(\mathbf{N})|$.

D'après le théorème de Cantor-Bernstein, on conclut que $|\mathcal{P}_f(\mathbf{N})| = |\mathbf{N}| = \aleph_0$.

Bonus (culture générale)

À bord de quel vaisseau voyageait Ripley dans le film Alien (1979) et combien de passagers contenait-il?

Il y avait 8 passagers à bord du Nostromo : 6 humains, 1 androïde et 1 xénomorphe.