## << Search more Solutions!

# **Expert Answer**

### **General Guidance**

The answer provided below has been developed in a clear step by step manner. Step: 1



Propagation speed  $v = 2.5 \times 10^8 \text{ m/s}$ 

Hence:

Propagation delay from A-R1 =  $10^6$  m/  $2.5 \times 10^8$  m/s =  $4 \times 10^{-3}$  s

Given RTT from A to R1 =  $12ms = 12 \times 10^{-3} s$ 

Here RTT is the total time from from transmitting the first bit of request packet to recieving the last bit of the response packet.

Traceroute packet size L = 50 bytes =  $50 \times 8$  bits = 400 bits

Thus:  $12ms = 2 \times 4ms + 2xL/B_1$ 

1 of 3 2/6/2023, 2:03 AM

$$==> 800/B_1 = 4 \times 10^{-3}$$

$$==> B_1 = 2 \times 10^5 \text{ bits/sec} = 0.2 \text{ Mbps}$$

#### **Similarly**

Propagation delay from A-R2 =  $3x10^6$  m/ 2.5 x  $10^8$  m/s = 12 x  $10^{-3}$  s = 12ms

Given RTT from A to R2 =  $36ms = 36 \times 10^{-3} s$ 

Traceroute packet size L = 50 bytes =  $50 \times 8$  bits = 400 bits

Thus:  $36ms = 2 \times 12ms + L/B_1 + L/B_2$ 

$$==> 12ms = 400/(2 \times 10^5) + 400/B_2$$

$$==> 12ms = 2ms + 400/B_2$$

$$==> B_2 = 400/10 \text{ms} = 40/10^{-3} \text{ bits/sec} = 40 \text{ Kbps}$$

#### At Last

Propagation delay from A-B =  $6x10^6$  m/  $2.5 \times 10^8$  m/s =  $24 \times 10^{-3}$  s = 24ms

Given RTT from A to B =  $76ms = 76 \times 10^{-3} s$ 

Traceroute packet size L = 50 bytes =  $50 \times 8$  bits = 400 bits

Thus: 
$$76ms = 2 \times 24ms + L/B_1 + L/B_3$$

$$==> 28 \text{ms} = 400/(2 \times 10^5) + 400/B_3$$

$$==> 28ms = 2ms + 400/B_3$$

==> 
$$B_3 = 400/26$$
ms =  $400/26$ x $10^{-3}$  bits/sec =  $15.38$  Kbps

Explanation:Please refer to solution in this step.

### **Answer:**

Link Transmission Rate

A-R1 200Kbps

R1-R2 40Kbps

R2-B 15.38Kbps

Kbps stands for kilo bits per second.

3 of 3