

Winning Space Race with Data Science

<Maryia Makhnach>

Outline

- · Executive Summary
- Introduction
- Methodology
- Results
- · Conclusion
- Appendix

Executive Summary

- In my report I used the following methodoligies for data collection: API and Web Scrapping with BeautifulSoup python library;
- · For data cleaning: Data Wrangling
- Exploratory Data Analysis: SQL, Data Visualization with matplotlib, seaborn libraries
- Interactive Visual Analytics with Folium
- Machine Learning Prediction using 4 methods: KNN, Logistic regression, SVM and Decision Tree

Results: Very deep EDA, app Dashboard, interactive maps. Three out four ML prediction methods have similar accuracy around 0.833%.

Introduction

Project background and context

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. In this lab, you will create a machine learning pipeline to predict if the first stage will land given the data from the preceding labs.

- · Problems you want to find answers
- -Factors and interactions amongst various features that determine the success rate of a landing.
- How can we predict the most accurate results for successful landing?

Methodology

Executive Summary

Data collection methodology:

Data was collected using SpaceX API and BeatifulSoup web scraping from Wikipedia.

· Perform data wrangling

One-hot encoding was applied to categorical features.

- Perform exploratory data analysis (EDA) using pandas, matplotlib, seaborn visualization and SQL
- · Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models KNN, Logistic regression, SVM and Decision Tree

Data Collection

- I used Requests library that allows to make HTTP requests which I later used to get data from an API
- Then I requested json results using json_normalize meethod to convert the json result into a dataframe.
- · Took a sunset of dataframe to keep only interesting features
- Then I construct a dataset using getBoosterVersion function.
- · Cleaned the data, checked for missing values and fill in where necessary.
- Performed web scraping from Wikipedia for Falcon 9 launch records with BeautifulSoup.
- · HTML table was converted to dataframe using pandas.

Data Collection - SpaceX API

I used Requests library that allows to make HTTP requests which I later used to get data from an API

Data wrangling, cleaning, fulfill the missing values.

(https://github.com/maryiamk/ca pstoneProject/blob/master/Data% 20Collection%20API.ipynb)

Data Collection - Scraping

 Request the Falcon9 Launch Wiki page from its URL using BeautifulSoup, Extract all column/variable names, Create a data frame by parsing the launch HTML tables

https://github.com/maryiamk/cap stoneProject/blob/master/Data%2 OCollection%2Owith%2OWeb%2OSc rapping.ipynb

Data Wrangling

- Calculated the number of launches on each site value_counts()
- Calculated the number and occurrence of each orbit value_counts()
- Created a landing outcome label "Class" from Outcome column

https://github.com/maryiamk/capstoneProject/blob/master/ Data%20Wrangling.ipynb

EDA with Data Visualization

- Scatter plot was used to visualize the relationship between Flight Number and Launch Site (Orbit type as well), and between Payload and Launch Site (Orbit type as well)
- Horizontal Bar chart was used to visualize the relationship between success rate of each orbit type
- · Line plot helped me visualize the launch success yearly trend

https://github.com/maryiamk/capstoneProject/blob/master/EDA% 20with%20Visualization.ipynb

EDA with SQL

Here are some quesries I performed:

- %sql select ... from ...
- select ... count(...) as count from .. group by ...
- select * from ... where ... like ucase(...) limit(...)
- · select min/max/avg() ...
- select ... from ... where ... = (select max(...) from ...)

https://github.com/maryiamk/capstoneProject/blob/master/EDA% 20with%20SQL.ipynb

Build an Interactive Map with Folium

- First I put all location of the launching sites.
- · I have added such map objects as markers, circles, lines, etc.
- Circles to add a highlighted circle area with a text label on a specific coordinate;
- · Marker Cluster for successful and unsuccesssful launch
- · Lines to calculate the distance to the sea shore/highway and other objects

https://github.com/maryiamk/capstoneProject/blob/master/Data%20Visualization%20with%20Folium.ipynb

Build a Dashboard with Plotly Dash

- Interactive dashboard consisted of the pie chart showing the total launches from a certain site
- Scatter graph showed the relationship between success launch outcome and payload mass for the different booster version.

https://github.com/maryiamk/capstoneProject/blob/master/Dashboard%20with%20Plotly.ipynb

Predictive Analysis (Classification)

- · I transformed the data, split it into training and testing sets.
- I built four machine learning models: KNN, Decision Tree, SVM and Logistic Regression, and used different hyperparameters with GridSearchCV to determine the attributes with the best accuracy.
- Models accuracy using score method was used to determine the best performing model.
- Three out of four classification models showed the same result 0.83% of accuracy in predicting results on testing set.

https://github.com/maryiamk/capstoneProject/blob/master/Machine%20Learning%20Prediction.ipynb

Results

• Three out of four classification models showed the same result - 0.83% of accuracy in predicting results on testing set. Only Decision Tree model showed 0.78% of accuracy.

Flight Number vs. Launch Site

The larger the flight number at a launch site, the greater the success rate.

Payload vs. Launch Site

TASK 2: Visualize the relationship between Payload and Launch Site

We also want to observe if there is any relationship between launch sites and their payload mass.

We can see no rockets launched for heavypayload mass(greater than 10000)

Success Rate vs. Orbit Type

```
# HINT use groupby method on Orbit column and get the mean of Class column
df1.plot(kind='barh', figsize=(10, 6))
plt.xlabel('Orbit') # add to x-label to the plot
plt.ylabel('Success Rate') # add y-label to the plot
plt.title('Success Rate for each Orbit') # add title to the plot
plt.show()
                               Success Rate for each Orbit
 VLEO
  550
   50
   PO
  LEO
  HEO
  GTO
  GEO
 ES-L1
                  0.2
                                              0.6
```

SSO, HEO, GEO and ES-L1 have the highest success rate among all orbits.

Flight Number vs. Orbit Type

In the LEO orbit the Success appears related to the number of flights

Payload vs. Orbit Type

With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.

Launch Success Yearly Trend

```
Out[42]: []
          # Plot a line chart with x axis to be the extracted year and y axis to be the success rate
          sns.lineplot(y=df['Class'], x=Extract year(year))
         plt.xlabel("Success Rate", fontsize=20)
         plt.ylabel("Year", fontsize=20)
         plt.show()
            1.0
            0.8
            0.2
            0.0
               2010 2012 2013 2014 2015 2016 2017 2018 2019 2020
                            Success Rate
```

The sucess rate since 2013 kept increasing till 2020.

All Launch Site Names

Task 1 Display the names of the unique launch sites in the space mission In [43]: *sql select DISTINCT LAUNCH SITE from SPACEXTBL * ibm db sa://vdh90122:***@824dfd4d-99de-440d-9991-Done. launch site Out[43]: CCAFS LC-40 CCAFS SLC-40 KSC LC-39A VAFB SLC-4E

There are four unique launch sites.

Launch Site Names Begin with 'CCA'

Task 2 Display 5 records where launch sites begin with the string 'CCA' In [7]: *sql select * from SPACEXTBL where LAUNCH SITE like ucase('CCA%') limit(5); * ibm db sa://vdh90122:***@824dfd4d-99de-440d-9991-629c01b3832d.bs2io90108kgb1od8lcg.databases.appdomain.cloud:30119/BLUDB Done. Out[7]: DATE time_utc_ booster_version launch site payload payload_mass_kg_ orbit customer mission_outcome landing_outcome CCAFS Dragon Spacecraft Qualification Unit 2010-06-04 18:45:00 F9 v1.0 B0003 LEO SpaceX Success Failure (parachute) LC-40 Dragon demo flight C1, two CubeSats, barrel CCAFS LEO NASA (COTS) 0 Success Failure (parachute) 2010-12-08 15:43:00 F9 v1.0 B0004 LC-40 of Brouere cheese (ISS) NRO CCAFS LEO 07:44:00 Dragon demo flight C2 525 NASA (COTS) 2012-05-22 F9 v1.0 B0005 Success No attempt LC-40 (ISS) CCAFS LEO 2012-10-08 00:35:00 F9 v1.0 B0006 SpaceX CRS-1 500 NASA (CRS) Success No attempt LC-40 CCAFS SpaceX CRS-2 677 NASA (CRS) 2013-03-01 15:10:00 F9 v1.0 B0007 Success No attempt LC-40

Total Payload Mass

Task 3 Display the total payload mass carried by boosters launched by NASA (CRS) In [8]: *sql select sum(PAYLOAD_MASS__KG_) as total_payload_mass from SPACEXTBL where CUSTOMER = 'NASA (CRS)'; * ibm_db_sa://vdh90122:***@824dfd4d-99de-440d-9991-629c01b3832d.bs2io90108kqblod8lcg.databases.appdomain.cl Done. Out[8]: total_payload_mass 45596

Average Payload Mass by F9 v1.1

Task 4 Display average payload mass carried by booster version F9 v1.1 In [9]: %sql select avg(PAYLOAD_MASS__KG_) as avg_payload_mass from SPACEXTBL where booster_version ='F9 v1.1'; * ibm_db_sa://vdh90122:***@824dfd4d-99de-440d-9991-629c01b3832d.bs2io90108kqb1od8lcg.databases.appdomain.clo Done. Out[9]: avg_payload_mass 2928

First Successful Ground Landing Date

Task 5 List the date when the first successful landing outcome in ground pad was acheived. Hint:Use min function In [10]: *sql select min(DATE) as date from SPACEXTBL where landing_outcome = 'Success (ground pad)'; * ibm_db_sa://vdh90122:***@824dfd4d-99de-440d-9991-629c01b3832d.bs2io90108kqb1od8lcg.databases Done. Out[10]: DATE 2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

Task 6 List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000 In [11]: *sql select booster version, landing outcome, PAYLOAD MASS KG from SPACEXTBL where landing outcome = 'Success (drone ship)' and : * ibm db sa://vdh90122:***@824dfd4d-99de-440d-9991-629c01b3832d.bs2io90108kqb1od8lcg.databases.appdomain.cloud:30119/BLUDB Done. booster version landing outcome payload mass kg Out[11]: F9 FT B1022 Success (drone ship) 4696 F9 FT B1026 Success (drone ship) 4600 F9 FT B1021.2 Success (drone ship) 5300 F9 FT B1031.2 Success (drone ship) 5200

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

2015 Launch Records

Task 9 List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015 In [14]: *sql select landing_outcome, booster_version, launch_site from SPACEXTBL where landing_outcome like 'Failure*' and YEAR(DATE) = '20 * ibm_db_sa://vdh90122:***&824dfd4d-99de-440d-9991-629c01b3832d.bs21o90108kqb1od8lcg.databases.appdomain.cloud:30119/BLUDB Done. Out[14]: landing_outcome booster_version launch_site Failure (drone ship) F9 v1.1 B1012 CCAFS LC-40 Failure (drone ship) F9 v1.1 B1015 CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Launch sites - global map - North America

Florida and California are two states where there are launch sites of Falcon 9.

Successful launch class markers

• Two closely related launch sites in Florida idicated by marker clusters which shows successful class of the launch. Green - success, red - failure.

It help us to understand if the site is in the close proximity to coastline

Pie chart of total success launches by the launch site

Success ratio of launches on the KSC LC 39A station

Payload Mass VS. Success lauching

The success launching is higher if the payload mass is lower.

Classification Accuracy

- Machine Learning Prediction 4 methods: KNN, Logistic regression, SVM and Decision Tree.
- Three out of four classification models showed the same result 0.83% of accuracy in predicting results on testing set. Only Decision Tree model showed 0.78% of accuracy.

Confusion Matrix

Since three models showed the same accuracy level, their confusion matrixes seemed to be the same as well.

On the screenshot you can see the confusion matrix for logistic regression model.

Conclusions

- The larger the number of flights at a launch site, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 and continued to 2020.
- · Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- KSC LC-39A had the most successful launches of any sites.
- We can use any of these three models: KNN, SVM and LG, for machine learning task of prediction the success rate.

