Procesamiento Digital de Señales

Introducción general

Introducción

Señales

que transportan

Mundo Real

Información

y son transformadas por

Sistemas

Introducción a las Señales

Temas a tratar

- Definiciones básicas de señales.
- Clasificación de las señales.
- Operaciones elementales sobre y entre señales.

- Contexto de la teoría de la señal.
- Tipos de procesamientos más usuales.

Objetivos

- Operar con señales discretas y reconocer las características y propiedades generales de las mismas.
- Aprender a aplicar en **ejemplos sencillos** las herramientas y conceptos en estudio.
- Motivar el interés mediante **ejemplos concretos de aplicación.**
- Generar y manipular señales digitales en forma de vectores por medio de un lenguaje de programación.

Señal: Definiciones técnicas

• Es una variable física, de la naturaleza que sea, que proporciona **información** sobre el estado o evolución de un **sistema**.

• Es la **representación** física de la **información** que transporta desde su fuente hasta su destino.

Podemos ver el mundo como...

Señales

que transportan

Información

y son transformadas por

Sistemas

Podemos ver el mundo como...

Observaciones

- Aunque las señales pueden ser representadas de muchas maneras, en cualquier señal la información está contenida en un patrón de variaciones de alguna magnitud.
- Las señales son representadas matemáticamente como funciones de una o más variables independientes.
- Generalmente se toma como variable independiente al tiempo.

Ejemplo: Evolución del índice MERVAL

Ejemplo: Señal de ECG y Presión

Ejemplo: Uso de CPU y Disco

Ejemplo: Señal de Voz

Ejemplo: Imágenes médicas

bonemarr.tif

Ejemplo: Imágenes médicas

- TAC de cráneo
- La reconstrucción da una señal 3D

Ejemplo: Señales hídricas...

Ruido

- Llamamos ruido a cualquier fenómeno que perturba la percepción o interpretación de una señal.
- Comparte la misma denominación que los efectos acústicos análogos.
- Generalmente aditiva, pero puede ser también: multiplicativa, convolucional, etc

Dicotomía Señal-Ruido

• La diferencia entre señal y ruido es artificial, y depende solamente del criterio del observador.

Relación señal-ruido

- •La relación señal-ruido (S/N o SNR) es una medida de cuanto una señal está contaminada por ruido.
- •Puede ser expresada como la razón ξ entre la potencias de la señal Ps y la potencia del ruido Pr:

$$\xi = P_{s} \, / \, P_{r}$$

$$\xi \, \text{dB} = 10 \, log(P_{s} \, / \, P_{r}) \, \text{dB}$$

Procesamiento de señales con ruido

- Normalmente un sistema trata correctamente a una señal cuando el nivel útil de la misma es más alto que el nivel de ruido.
- Algunos métodos de procesamiento más elaborados permiten trabajar con pequeñas SNR, gracias a la información acerca de propiedades de la señal o del ruido conocidas a priori.

Ubicación de las fuentes de ruido

- Relacionadas con el sistema bajo estudio:
 - Intrínsecas.
 - Asociadas.
- Relacionadas con el sistema de procesamiento o medida:
 - Internas.
 - Externas.

Sistema

Bajo estudio

Tipos de ruido

- Hay tantos tipos de ruido como señales, por lo tanto vale la misma clasificación.
- Es un error muy común suponer que el ruido es siempre aleatorio.
- Un tipo de ruido aleatorio muy utilizado es el ruido blanco...

Ejemplos: ruido acústico

Señales Físicas y Modelos Teóricos (funciones)...

• Una señal experimental es la imagen de un proceso físico, y por lo tanto debe ser físicamente realizable.

Señales Físicas y Modelos Teóricos (funciones)...

- Su energía debe ser finita.
- Su amplitud es necesariamente limitada.
- Esta amplitud es una función continua (la inercia del sistema prohíbe discontinuidad).
- El espectro de la señal es acotado (tiende a cero cuando la frecuencia tiende a infinito).

Señales Físicas y Modelos Teóricos (funciones)...

• Cuando se elige una función para representar en forma simplificada una señal física, no es necesario que el modelo cumpla con esas condiciones.

Clasificación de Señales

Criterios

Criterios de Clasificación de Señales

- Morfológico
- Fenomenológico
- Energético
- Dimensional
- Espectral

• Otros...

6/4/2021

28

Clasificación Morfológica

• Basada en el carácter continuo o discreto de la amplitud de la señal o de la variable independiente.

Señales Discretas y Continuas en el dominio temporal

- El eje temporal es discreto si consiste en un conjunto finito o numerable de instantes de tiempo
- Una señal cuyo eje temporal es discreto (sólo está definida para esos instantes) se denomina señal de tiempo discreto.

Señales Discretas y Continuas en el dominio temporal

- El eje temporal es continuo si consiste en un intervalo Real o Complejo. Este intervalo puede ser además infinito o semi-infinito.
- Una señal cuyo eje temporal es continuo se denomina señal de tiempo continuo.

Ejemplos

Clasificación Morfológica

- Señales Analógicas
- Señales Muestreadas
- Señales Cuantizadas
- Señales Digitales

Clasificación Fenomenológica

 Basada en la posibilidad de predecir o no la evolución "exacta" de la señal a lo largo del tiempo.

Clasificación Fenomenológica

• Señales Determinísticas

- Su evolución es perfectamente predecible por un modelo matemático.
- Los próximos valores de la señal pueden ser determinados exactamente si son conocidas ciertas condiciones anteriores (o iniciales).
- Señales Aleatorias o Estocásticas
 - Su comportamiento es impredecible y sólo pueden describirse mediante observaciones y modelos estadísticos

Aleatorio vs Determinístico

- La palabra aleatorio se usa para expresar una aparente carencia de propósito, causa, u orden.
- El resultado de todo proceso aleatorio no puede determinarse en ningún caso antes de que este se produzca.
- Sin embargo, la aleatoriedad no debe confundirse con la **impredecibilidad práctica**.

Dilbert

"El azar es la medida de nuestra ignorancia"

(Henri Poincaré, 1854 – 1912)

Por lo tanto no puede ser la explicación científica de ningún fenómeno...

Clasificación Fenomenológica

• Una señal continua es periódica si y sólo si

Caso Continuo:
$$x(t+T) = x(t)$$
 para todo $t \in (-\infty, \infty)$

Caso Discreto:
$$x(n + N) = x(n)$$
 para todo $n \in (-\infty, \infty)$

• El menor valor positivo de T o N para el que se cumple cada una de las ecuaciones anteriores se llama período de la señal.

Clasificación Fenomenológica

• Armónicos: ondas senoidales cuyas frecuencias obedecen a una relación sencilla de números enteros.

• La superposición de ondas senoidales armónicas resultará en una señal periódica.

• Si superponemos componentes no armónicas, obtendremos una forma de onda no periódica.

Pseudo-aleatorias:

- "Parecen" aleatorias pero en realidad no lo son.
- Por ejemplo: secuencia random de la computadora.

Período de repetición muy largo

Generador Congruencial Multiplicativo

• Cualquier señal determinística que no es periódica se dice que es aperiódica.

- Algunas señales aperiódicas tienen propiedades únicas y son conocidas como funciones singulares (no diferenciables).
 - Escalón unitario
 - Rampa unitaria
 - Delta de Dirac

Delta de Dirac Discreto

$$\delta[n] = 1, \quad n = 0$$

 $\delta[n] = 0, \quad n \neq 0$

Sinc

t

Cuasiperiódicas

- "Casi" periódicas: pequeñas variaciones entre "cuasiperiodos".
- Por ejemplo: duración, amplitud, etc.

Señales Transitorias

- Son aquellas que agotan su energía dentro del período de observación.
- Esta clasificación no depende tanto de la señal en sí, como de la escala temporal desde la cual se observa a la misma.
- No confundir con período transitorio de una señal o respuesta de un sistema.

Señales "caóticas"

- Son producidas por sistemas determinísticos bajo ciertas condiciones.
- La sensibilidad de estos sistemas a pequeñas perturbaciones las hace prácticamente impredecibles.

• Por ello pueden aparecer como si fueran aleatorias...

Proceso y Realización

- Una señal aleatoria es una realización o una muestra de un proceso.
- Una realización difiere de otra por su descripción temporal.
- El conjunto completo (infinito) de realizaciones definen el proceso.

Definición formal

Sea ξ que denota el valor de un experimento. Para cada valor suponemos que se asigna $\uparrow X(t,\xi)$

una forma de onda $X(t,\xi)$

La colección de esas señales

forman un proceso estocástico. $X(t,\xi_k)$

El conjunto de $\{\xi_k\}$ y el índice

temporal t pueden ser

continuos o discretos.

Para $\xi_i \in S$ fijo (el conjunto de todos los valores experimentales),

 $X(t,\xi)$ es una función específica del tiempo.

 $X(t,\xi_n)$ $X(t,\xi_k)$ $X(t,\xi_2)$ $X(t,\xi_1)$ 0 t_1 t_2 S), Fig. 1

Para t fijo, $X_1 = X(t_1, \xi_i)$ es una variable aleatoria. El arreglo de todas esas realizaciones $X(t, \xi)$ en el tiempo constituye el proceso aleatorio X(t).

53

Ejemplo: EEG

• Proceso: EEG de niños entre 8 y 12 años, sanos, tomados en REM

Estacionaridad

- Un proceso en el que las propiedades estadísticas de la señal no dependen del tiempo es estacionario.
- Un proceso se dice que es estacionario cuando la *fdp* no depende del tiempo.
- Prácticamente: de un proceso estacionario se pueden extraer parámetros estadísticos.

Estacionaridad

Ergodicidad

• El promedio estadístico a lo largo de la muestra es igual el promedio temporal a lo largo del eje del tiempo para cualquier función muestra.

•Ergodicidad ⇒ Estacionariedad

•Estacionariedad ≠ Ergodicidad

Estacionaria por tramos

- Señales derivadas de sistemas que varían sus parámetros en forma lenta.
- Si se plantea un intervalo de tiempo suficientemente pequeño es posible suponer que la señal se mantiene estacionaria.
- Esto da origen al análisis por tramos.

1

Clasificación Energética

• De acuerdo a si la señal posee, o no:

- Energía finita
- Potencia media finita

Clasificación Dimensional

• Basada en el número de variables independientes del modelo de la señal.

Clasificación Espectral

• Basada en la forma de la distribución de frecuencias del espectro de la señal.

- Baja Frecuencia
- Alta Frecuencia
- De banda Angosta
- De Banda Ancha

Otras Clasificaciones

- Limitadas en duración
- Limitadas en amplitud

•

Operaciones con señales

Operaciones básicas

- Operadores binarios
 - Adición sustracción ...
 - Productos
 - por un escalar
 - punto a punto
 - interno / externo

— ...

- Operadores unarios
 - Operaciones sobre el rango
 - Operaciones sobre el dominio
 - Interpolación y decimación

Operaciones sobre el rango

$$x_{nuevo}(t) = \rho(x_{viejo}(t))$$

Operaciones sobre el rango

$$x_{nuevo}(t) = \rho(x_{viejo}(t))$$

- Amplificación
- Rectificación
- Cuantización

•

Operaciones sobre el dominio

$$x_{nuevo}(t) = x_{viejo}(\tau(t))$$

Operaciones sobre el dominio

$$x_{nuevo}(t) = x_{viejo}(\tau(t))$$

- Compresión
- Expansión
- Inversión
- Traslación

•

Interpolación y decimación

- Interpolación lineal
- Interpolación polinómica
- Interpolación sinc
- Decimación (muestreo)

•

Interpolación

• La interpolación aumenta la frecuencia de muestreo original de una señal de tiempo discreto (puede ser hasta infinito).

Interpolación

$$x(t) = \sum_{n} x^{*}(nT)i(\frac{t-nT}{T})$$

Interpolación de orden 0

$$i_{step}(t) = \begin{cases} 1 & 0 \le t < 1 \\ 0 & \text{en otro caso} \end{cases}$$

Interpolación de orden 1

$$i_{lineal}(t) = \begin{cases} 1 - |t| & |t| < 1\\ 0 & \text{en otro caso} \end{cases}$$

El interpolador ideal

$$i_{sinc}(t) = \begin{cases} \sin(t)/t & t \neq 0 \\ 1 & t = 0 \end{cases}$$

Interpolación ideal

Decimación

• La decimación reduce la frecuencia de muestreo original de una señal de tiempo discreto, es lo opuesto a la interpolación.

Digitalización de señales

- Conversión analógico/digital (A/D)
 - Ventaneo
 - Muestreo
 - Retención
 - Cuantización
 - Codificación (ej: binaria)

Conversión A/D

• Muestreo:

- Solo medimos a intervalos prefijados por lo cual perdemos los cambios rápidos.
- Dependemos de la fiabilidad del reloj del sistema.

• Ventaneo:

- Solo medimos durante un intervalo finito de tiempo por lo cual perdemos los cambios más lentos.
- La forma de esta ventana también afecta el resultado.

- Un objeto que gira a de alta frecuencia y lo iluminamos a baja frecuencia.
- Una "cámara" acelera constantemente hacia la derecha a la misma velocidad que los objetos se desplazan hacia la izquierda.

Otros problemas de aliasing temporal: Efectos estroboscópicos o visuales

Muestreo de Imágenes

• Efecto de "Aliasing"

Muestreo y retención

- Muestreo Uniforme
- Muestreo No uniforme

Cuantización

$$\rho(x) = \begin{cases} 0 & x < 0 \\ H.int(x/H) & 0 \le x < (N-1)H \\ (N-1)H & x \ge (N-1)H \end{cases}$$

6/4/2021

84

Cuantización

Cuantización:

- La precisión está limitada al número de bits disponible.
- Depende también del rango dinámico de la señal.
- Los errores introducidos en el proceso son no lineales y dependientes de la señal.
- También pueden cometerse errores aritméticos dentro del procesador debido a la precisión.

Teoría de la Comunicación y Teoría de Señales

(2da parte)

Contexto

• El estudio de las señales se encuentra contenido en lo que se denomina

Teoría de la Comunicación

Ejemplo: la comunicación humana

Ejemplo: la comunicación por radio

Título del diagrama

Teoría de la Información

- La teoría de la información se ocupa de la medición de la información, de la representación de la misma y de la capacidad de los sistemas de comunicación para transmitir y procesar información.
- C. E. Shannon: "A Mathematical Theory of Communication" (1948).

Procesamiento de la Señal

• Es la disciplina técnica que, basada en los métodos de la teoría de la información y la señal, se encarga de la elaboración o interpretación de señales que transportan información, con la ayuda de la electrónica, la computación y física aplicada.

Procesamiento de Señales

Principales objetivos

- Extracción de la información útil que se encuentra en las señales y presentación los resultados en forma apropiada para el hombre o la máquina.
- Generación de señales, que permiten el estudio del comportamiento de sistemas.
- Transmisión o almacenamiento de la información contenida en las señales

Procesamiento Digital de Señales (DSP)

- Procesamiento
 - Realizar operaciones sobre datos de acuerdo con instrucciones programadas
- Digital
 - Operar mediante el uso de señales discretas para representar datos en forma de números
- Señal
 - Una variable por medio de la cual se transmite información en un circuito electrónico

Procesamiento Digital de Señales (DSP)

• Definición sencilla:

"Modificar o analizar señales representadas a partir de una secuencia discreta de números"

DSP: Ventajas

• Versatilidad:

- Pueden ser reprogramados fácilmente
- Pueden ser migrados a diferentes circuitos

• Repetibilidad:

- Pueden ser fácilmente duplicados
- No dependen de estrictas tolerancias de los coeficientes
- Sus respuestas no varían con la temperatura

• Simplicidad:

 Algunas cosas pueden ser hechas más fácilmente en forma digital que con sistemas analógicos

DSP: Desventajas

- Trabaja con señales que provienen del mundo real.
- Utiliza "mucha" matemática (multiplicando y sumando señales).
- Requiere un tiempo finito para dar una respuesta.
- Puede necesitar capacidades importantes de almacenamiento de datos.

DSP: Aplicaciones

• Se utiliza en una gran variedad de aplicaciones:

• Y extensamente en la tecnología actual...

Técnicas de Procesamiento de Señales

Amplificación

- Consiste en aumentar la amplitud, o potencia, de una señal eléctrica.
- Es uno de los procesamientos más "sencillos"

Técnicas de Procesamiento de Señales

Análisis

 Consiste en aislar los componentes del sistema que tienen una forma compleja para tratar de comprender mejor su naturaleza u origen.

Ej: Análisis Espectral de Sonido Cardíacos.

Ejemplo: Análisis Autosimilar con Onditas

Análisis

• Muchas veces se utiliza como etapa previa a un sistema automático de clasificación...

Ejemplo clasificación Vocales (Deterding)

Ejemplo de Vocales de Deterding

11 vocales de Ingles Británico hablado por 15 hablantes en un contexto h*d 528 de entrenamiento de 8 hablantes, 462 de prueba de los 7 restantes Cada ejemplo en forma de un vector con 10 dimensiones

Algunos Resultados

Clasificador	# de unidad	% correcto
Perceptron	-	33
PMC	88	51
PMC	22	45
PMC	11	44
RBR	528	53
RBR	88	48
1-NN	-	56

Modulación

• La modulación consiste en variar la amplitud, la fase o la frecuencia de una señal portadora con referencia a una señal mensaje o moduladora.

Ejemplo modulación AM

Ejemplo modulación AM

Ejemplo modulación FM

Ejemplo modulación FM

- Medición
- (especialmente en señales con componentes aleatorias)

 Se trata de estimar el valor de una variable característica de la señal, con un determinado nivel de confianza.

Ej: Medición de la temperatura corporal.

Medición: Precisión y Exactitud

Diferentes situaciones para una medida, el valor real es el centro del blanco.

Filtrado

 Consiste en la eliminación de componentes indeseadas de la señal, preservando las de interés.

Ej: Eliminación ruido 50 Hz ECG.

Filtrado

- Tipos de filtros:
 - Pasa-bajos (Lowpass)
 - Pasa-altos (Highpass)
 - Pasa-banda (Bandpass)
 - Rechaza-banda (Bandstop)
 - Multibanda (Multiband)

Ejemplo Filtrado lineal 1D

Ejemplo Filtrado no lineal 1D

• Limpieza de ruido con Onditas

Ejemplo Filtrado 2D

Regeneración

 Su objetivo es retornar la señal a su forma inicial, después que ésta haya sufrido algún tipo de distorsión.

Ej: Deconvolución de una Imagen Médica.

Ejemplo: Regeneración

• Imagen con iluminación no uniforme:

Detección

- Determinación de la presencia o ausencia de una señal
- Extracción de una señal útil de un ruido de fondo de grandes dimensiones.

Ej: Potenciales Evocados.

Detección y correlación...

- La correlación cruzada puede ser utilizada para detectar y localizar una señal conocida de referencia inmersa en ruido:
 - Una copia de la señal conocida de referencia se correlaciona con la señal desconocida.
 - La correlación será alta cuando la referencia sea similar a la señal desconocida.
 - Un valor grande de correlación muestra el grado de confianza en la detección de la señal.
 - Este valor indica también cuando ocurre la señal de referencia.

Detección y correlación...

6/4/2021

Otro ejemplo: detección del QRS

Identificación

- Es un proceso complementario, que permite clasificar la señal observada.
- Las técnicas de Correlación son frecuentemente usadas con este fin.
- En el caso paramétrico culmina en la obtención de un conjunto de parámetros que caracterizan a la señal.

Ej: Diagnóstico Automático de Patologías (para casos complejos puede requerir el uso de técnicas de Reconocimiento de Patrones e IA).

Identificación y correlación...

- La correlación cruzada puede ser utilizada para identificar una señal por comparación con una librería de señales conocidas de referencia:
 - La señal desconocida es correlacionada con un número de señales conocidas de referencia.
 - La mayor correlación corresponde al patrón o referencia más similar.

Identificación y correlación...

• Por ejemplo:

El canto de un ruiseñor...

se correlaciona fuertemente con otro ruiseñor...

pero débilmente con una paloma...

o un herón...

Identificación y correlación...

- La correlación cruzada es una de las formas en las cuales un sonar puede identificar distintos tipos de cuencas o lechos:
 - Cada cuenca tiene una "firma" de sonar única.
 - El sistema del sonar posee una librería de ecos pregrabados desde diferentes cuencas.
 - Un eco de sonar desconocido se correlaciona con la librería de ecos de referencia.
 - Cuando más grande es la correlación más probable es la coincidencia.

6/4/2021 129

Síntesis

 Es la operación opuesta al análisis, consiste en crear una señal con una forma apropiada mediante la combinación, por ejemplo, de un número de señales elementales.

Ej: Sintetizador de Voz Artificial.

Ej: Sintetizador paramétrico de voz

Codificación

- 1) Reducción de redundancia en una señal.
 - Es frecuentemente usada aprovechar el ancho de banda o el volúmen de memoria de una computadora. Ej: Compresión de ECG.
- 2) Reducción de los efectos del ruido
 - La modulación y traducción a frecuencias son las formas principales de adaptar una señal a las características de una línea de transmisión, de un filtro analizador, o de un medio de registro. Ej:

 Transmisión de ECG por TE.

133

Ejemplo de Codificación (1)

TP N°1: Procesamiento Digital de Señales

- Ejercicios obligatorios para presentar (del libro "Introducción a las Señales y los Sistemas Discretos").
 - Ejercicios 1 a 6, 9 y 10 del Capítulo 1.
 - Ejercicio 3 del Capítulo 3 (usar frecuencia de muestreo de 100 Hz).
- La resolución de los ejercicios originales del TP1 es opcional para repaso e introducción a Matlab.

Ejemplo de Codificación (2)

Bibliografía para esta Unidad

En general se puede encontrar una introducción a señales en casi cualquier texto de "Señales y Sistemas". Por ejemplo:

- Sinha: 2.1 a 2.5
- Kwakernaak: 1.1 a 1.3, 2.1 a 2.3, 2.5
- Oppenheim-Willsky: 2.1 a 2.4
- Cohen: 1.2, 1.3, 3.3

(Las referencias completas se encuentran en el libro de la Cátedra)