Lesson 14

Thursday 3/14/24

2 Coin Flip Experiment

flip a coin - time 2

flip a coin - time 1

	Heads	Tails	Total
Heads	246	250	496
Tails	251	253	504
Total	497	503	1000

There are a few probability-related questions we could ask about this.

Exhaustive Set of Outcomes - Flip a coin once.

flip a coin - time 2

flip a coin - time 1

	Heads	Tails	Total
Heads	246	250	496
Tails	251	253	504
Total	497	503	1000

Exhaustive: if we flip a coin one time, there are 2 and only 2 possible outcomes. Remember mutual exclusivity means that only one of the outcomes is possible on a single coin flip. Exhaustive means that H and T are the only possible outcomes. These 2 outcomes exhaust all of the possibilities.

$$S = \{H, T\}$$

S means "sample space"

Exhaustive Set of Outcomes - Flip a coin twice

flip a coin - time 2

flip	a
coin	_
time	1

	Heads	Tails	Total
Heads	246	250	496
Tails	251	253	504
Total	497	503	1000

Exhaustive: flip a coin twice. What is the set of possible outcomes?

 $S = \{HH, HT, TH, TT\}$

There are no possibilities besides these 4. In other words, these 4 outcomes exhaust all of the possibilities.

Mutual exclusivity - flip a coin once

flip a coin - time 2

flip	a
coin	_
time	1

	Heads	Tails	Total
Heads	246	250	496
Tails	251	253	504
Total	497	503	1000

Mutual exclusivity: the outcome of a single coin flip must be H or T. It cannot be both.

$$S = \{H, T\}$$

Mutual exclusivity - flip a coin twice

flip a coin - time 2

flip	a
coin	_
time	1

	Heads	Tails	Total
Heads	246	250	496
Tails	251	253	504
Total	497	503	1000

Mutual exclusivity: do the coin flip experiment twice. What is the set of mutually exclusive outcomes?

 $S = \{HH, HT, TH, TT\}$

If you flip a coin twice, the outcome can be one and only one of the elements in this set. It can't be more than one.

What is p(H at Time 1 or H at Time 2)?

Restricted addition rule:

$$p(H_1+H_2) = p(H_1) + p(H_2)$$

flip a coin - time 2

flip	a
coin	_
time	1

	Heads	Tails	Total
Heads	246	250	496
Tails	251	253	504
Total	497	503	1000

Additive Parts:

p(H at Time 1) = 496/1000p(H at Time 2) = 497/1000

Solution:

496/1000 + 497/1000 =

0.496 + 0.497 = 0.993

Notice that the 246 is being counted twice here...

What is p(H at Time 1 or H at Time 2)? (continued)

General addition rule:

$$p(H_1+H_2) = p(H_1) + p(H_2) - p(H_1 \text{ and } H_2)$$

flip a coin - time 2

flip	a
coin	_
time	1

	Heads	Tails	Total
Heads	246	250	496
Tails	251	253	504
Total	497	503	1000

Additive Parts:

p(H at Time 1) = 496/1000p(H at Time 2) = 497/1000p(H at Time 1 & H at Time 2) = 246/1000

Solution:

496/1000 + 497/1000 - 246/1000 = 0.496 + 0.497 - 0.246 = 0.747

Independence of 2 Variables - each coin flip is a variable

flip a coin - time 2

flip a coin - time 1

	Heads	Tails	Total
Heads	246	250	496
Tails	251	253	504
Total	497	503	1000

Independence: suppose I flip a fair coin 2 times. If I know the outcome of the first flip, does that help me predict the outcome of the second flip?

If the answer is "no", then the 2 flips are independent of each other.

So, how can we tell? We could use our common sense but there is also a way we can check...

What is p(H at Time 1 and H at Time 2)?

Restricted multiplication rule:

$$p(H_1 \& H_2) = p(H_1) \times p(H_2)$$

flip a
coin - time 2

Assumes Independence

flip	a
coin	_
t i me	1

	Heads	Tails	Total
Heads	246	250	496
Tails	251	253	504
Total	497	503	1000

Multiplicative Parts:

 $p(H \text{ at Time 1}) = p(H_1) = 496/1000$ $p(H \text{ at Time 2}) = p(H_1) = 497/1000$

Solution:

496/1000 × 497/1000 =

 $0.496 \times 0.497 = 0.247$

What is p(H at Time 1 and H at Time 2)? (Continued)

General multiplication rule:

$$p(H_1 \& H_2) = p(H_1) \times p(H_2 | H_1)$$

coin - time 2

flip a

		Heads	Ialls	Iotal
flip a coin - time 1	Heads	246	250	496
	Tails	251	253	504
	Total	497	503	1000

Does Not Assume Independence

Multiplicative Parts:

 $p(H \text{ at Time 1}) = p(H_1) = 496/1000$ $p(H_2|H_1) = 246/496 = 246/496$

Solution:

 $496/1000 \times 246/496 =$

 $0.496 \times 0.496 = 0.246$

compare to what we got on previous slide -- evidence that the two events are independent.

What is p(carry a weapon or commit a crime)?

	Weapon = No	Weapon = Yes	Total
Crime = No	335	11	346
Crime = Yes	70	16	86
Total	405	27	432

Restricted Addition Rule

$$p(a+b) = p(a) + p(b)$$

$$p(w+c) = p(w) + p(c) = 27/432 + 86/432$$

$$= 0.063 + 0.199 = 0.262$$

*problem is that the 16 people are being counted twice.

What is p(carry a weapon or commit a crime)?

	Weapon = No	Weapon = Yes	Total
Crime = No	335	11	346
Crime = Yes	70	16	86
Total	405	27	432

(Continued)

General Addition Rule

$$p(a+b) = p(a) + p(b) - p(a&b)$$

 $p(w+c) = p(w) + p(c) - p(w & c) =$
 $27/432 + 86/432 - 16/432 =$

= 0.063 + 0.199 - 0.037 = 0.225

What is p(carry a weapon and commit a crime)?

	Weapon = No	Weapon = Yes	Total
Crime = No	335	11	346
Crime = Yes	70	16	86
Total	405	27	432

Restricted Multiplication Rule - Assumes Independence

$$p(a \& b) = p(a) \times p(b)$$

$$p(w \& c) = p(w) \times p(c) = 27/432 \times 86/432$$

$$= 0.063 \times 0.199 = 0.013$$

What is p(carry a weapon and commit a crime)?

	Weapon = No	Weapon = Yes	Total
Crime = No	335	11	346
Crime = Yes	70	16	86
Total	405	27	432

(Continued)

General Multiplication Rule - Does Not Assume Independence

$$p(a \& b) = p(a) \times p(b|a)$$

$$p(w \& c) = p(w) \times p(c|w) = 27/432 \times 16/27$$

$$= 0.063 \times 0.593 = 0.037$$

Suppose previous research tells us that about 40% of juvenile probationers will fail a drug test. The local juvenile court gives a drug test to the first 7 juvenile probationers this month. What is the probability distribution for the variable that measures the following quantity: "out of the 7 drug tests administered, how many will be positive"?

$$S_{BT} = \{0,1\}$$
 Sample space for each individual drug test (0=neg, 1=pos)

$$S_C = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

Sample space for number of positive tests when 7 individual persons are tested.

**In both sample spaces, the elements are mutually exclusive and exhaustive; note that S_{BT} stands for the sample space of a Bernoulli trial (variable); S_{C} stands for the sample space of a counted outcome variable.

Suppose previous research tells us that about 40% of juvenile probationers will fail a drug test. The local juvenile court gives a drug test to the first 7 juvenile probationers this month. What is the probability distribution for the variable that measures the following quantity: "out of the 7 drug tests administered, how many will be positive"?

Let's start by estimating the probability that none of the 7 tests is positive:

$$p(0 \& 0 \& 0 \& 0 \& 0) =$$

$$0.6 \times 0.6 \times 0.6 \times 0.6 \times 0.6 \times 0.6 \times 0.6 = 0.028$$

**Assumption: each of the 7 tests are independent of each other; we can use restricted multiplication rule.

**Note: Each of the 7 drug tests is considered an independent Bernoulli trial; the probability of zero positive drug tests is governed by a Bernoulli process.

The calculation on the previous slide is do-able but it is tedious. Another way might be easier.

$$p(0 \text{ positive drug tests}) = {7 \choose 0} \times 0.4^0 \times (1 - 0.4)^{7-0}$$

_

$$p(0 \text{ positive drug tests}) = \frac{7!}{0!(7-0)!} \times 0.4^0 \times (1-0.4)^{7-0}$$

Convince yourself that you will get the same answer as the previous slide...

Let's try the next one now: what is the probability of exactly one positive drug test, out of the 7 administered?

$$p(1 \text{ positive drug test}) = \frac{7!}{1!(7-1)!} \times 0.4^1 \times (1-0.4)^{7-1}$$

$$p(1 \text{ positive drug test}) = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{1 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \times 0.4^{1} \times 0.6^{6}$$

$$p(1 \text{ positive drug test}) = \frac{5040}{720} \times 0.4^{1} \times 0.6^{6}$$

$$p(1 \text{ positive drug test}) = 7 \times 0.4 \times 0.047$$

Solution: 0.132

We are now ready to write the binomial probability mass function for this problem:

$$p(k \text{ positive drug tests out of n tests}) = \frac{n!}{k!(n-k)!} \times p^k \times (1-p)^{n-k}$$

for k = 0, 1, 2, ..., 7 and p = 0.4 (given)

k	p(k)	7
0	0.028	Verify: $\sum p(k) = 1.0$
2	0.131 0.262	k=0
3	0.290	
4	0.194	
5	0.077	

0.017

0.002

6

We can now answer questions like "what is our best guess for the number of positive drug tests in a sample of 7 people?" (assuming that the previously understood probability of a positive test is 0.4.