

主讲人: 聂兰顺

本讲主题

拥塞控制原理(1)

拥塞控制

拥塞(Congestion)

- ❖非正式定义: "太多发送主机发送了太多数据或者发送速度太快
- ,以至于网络无法处理"
- ❖表现:
 - 分组丢失(路由器缓存溢出)
 - 分组延迟过大(在路由器缓存中排队)
- ❖拥塞控制 vs. 流量控制
- ❖A top-10 problem.

- ❖ 两个senders,两个 receivers
- ❖ 一个路由器, 无限缓 存
- * 没有重传

- ❖ 拥塞时分组延迟 太大
- ❖ 达到最大 throughput

- ❖一个路由器,有限buffers
- * Sender重传分组

*情况a: Sender能够通过某种机制获知路由器buffer信息,有空闲才发 $\lambda_{in} = \lambda_{out}$ (goodput)

*情况b: 丢失后才重发: $\lambda'_{in} \lambda'_{out}$

❖ 情况**c**: 分组丢失和定时器超时后都重发, λ_{in}' 变得更大

拥塞的代价:

- □ 对给定的"goodput",要做更多的工作(重传)
- □ 造成资源的浪费

- * 四个发送方
- ❖ 多跳
- ❖ 超时/重传

Q: 随着 λ_{in} 和 λ_{in} 不断增加,会怎么样 ?

拥塞的另一个代价:

□ 当分组被drop时,任何用于该分组的"上游"传输能力全都被 浪费掉

