CSC 225 - Summer 2019 Graphs II

Bill Bird

Department of Computer Science University of Victoria

July 8, 2019

Bipartite Graphs (1)

- ▶ A graph is **bipartite** if the vertices of *G* can be partitioned into sets *X* and *Y* such that no edge connects two vertices in *X* or two vertices in *Y*.
- ▶ The pair (X, Y) is called a **bipartition**.

Bipartite Graphs (2)

- ► The graph above is bipartite, since no pair of blue vertices is adjacent and no pair of red vertices is adjacent.
- ▶ There may be more than one possible bipartition.

Bipartite Graphs (3)

▶ A bipartite graph is also called **2-colourable**, since its vertices can be coloured with two colours such that no edge connects two vertices of the same colour.

Bipartite Graphs (4)

► Similarly, a bipartition can be called a '2-colouring'.

Bipartite Graphs (5)

- ▶ A **complete bipartite graph**, denoted $K_{m,n}$, consists of a set X of m vertices and set Y of n vertices, with all possible edges between the two sets.
- ▶ The graph above is $K_{3,5}$.

Bipartite Graphs (6)

▶ The number of edges in $K_{m,n}$ is mn.

Cycles (1)

▶ A **cycle graph**, denoted C_n , consists of a cycle with n vertices (and n edges).

Cycles (2)

- ▶ The cycle C_6 is bipartite.
- ▶ It is easy to demonstrate that a graph is bipartite by finding a bipartition.

Cycles (3)

- **Exercise**: Prove that C_5 is not bipartite.
- ► This requires showing that it is impossible for a bipartition to exist.

Cycles (4)

▶ To prove that C_5 is not bipartite, we will show that any possible 2-colouring leads to a contradiction.

Cycles (5)

- First, we can assume that at least one vertex must be red. Without loss of generality, assume that it is the vertex shown.
- ► This is a reasonable assumption because all of the vertices are equivalent with respect to the structure of the graph.

Cycles (6)

➤ Since the top vertex is red, both of its neighbours must be blue in a 2-colouring.

Cycles (7)

▶ The neighbour of the left blue vertex must be red.

Cycles (8)

- ▶ The remaining vertex cannot be assigned a colour without breaking the rules, since it is adjacent to both a red and a blue vertex.
- Therefore, no 2-colouring exists.

15

Cycles (9)

► The proof made exactly one assumption: There must be at least one red vertex.

Cycles (10)

All of the other steps in the proof were the result of mathematical requirements based on the definition of a 2-colouring.

Cycles (11)

▶ Warning: The proof is only correct because the assumption is justified and sound. Without justifying the assumption, the 'proof' would just be an example, which proves nothing.

Directed Graphs (1)

- ► A **directed graph** (or digraph) is a graph in which edges have a direction.
- ► Formally, edges in a directed graph correspond to ordered pairs of vertices.

Directed Graphs (2)

- Since edges are ordered pairs, the edges (b, c) and (c, b) are distinct.
- Edges in directed graphs are often called directed edges or arcs.

Directed Graphs (3)

► Every directed graph can be collapsed into an undirected graph by removing the directions from edges (and combining bi-directional edge pairs into single undirected edges).

Directed Graphs (4)

- ► A **directed path** is a path in a directed graph which respects the direction of edges.
- ▶ It is natural to refer to the endpoints of a directed path as the 'source' and the 'destination'.

Directed Graphs (5)

▶ A **directed cycle** is a directed path whose source and destination are the same.

Graph Representation (1)

$$V = \{a, b, c, d, e, f, g\}$$

$$E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, e\}, \{d, e\}, \{d, f\}, \{e, g\}, \{f, g\}\}$$

 $V = \{a, b, c, d, e, f, g\}$

$$E = \{(a, b), (a, c), (b, c), (c, b), (c, e), (d, b), (d, f), (e, d), (f, d), (g, e), (g, f)\}$$

► The most obvious way to represent a graph is to explicitly store the sets *V* and *E*.

Graph Representation (2)

$$V = \{a, b, c, d, e, f, g\}$$

$$E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, e\}, \{d, e\}, \{d, f\}, \{e, g\}, \{f, g\}\}$$

 $V = \{a, b, c, d, e, f, g\}$

$$E = \{(a, b), (a, c), (b, c), (c, b), (c, e), (d, b), (d, f), (e, d), (f, d), (g, e), (g, f)\}$$

For lack of a better term, this representation is called an **edge list**.

Graph Representation (3)

$$V = \{a, b, c, d, e, f, g\}$$

$$E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, e\}, \{d, e\}, \{d, f\}, \{e, g\}, \{f, g\}\}$$

 $V = \{a, b, c, d, e, f, g\}$

$$E = \{(a, b), (a, c), (b, c), (c, b), (c, e), (d, b), (d, f), (e, d), (f, d), (g, e), (g, f)\}$$

In an implementation, each edge could be represented by an object containing pointers to its endpoint vertices.

Graph Representation (4)

Count edges in G
Find all neighbours of
Test if edge vu exists
Add edge <i>vu</i>
Delete edge <i>vu</i>

	Edge	Adj. List	Adj. List	Adjacency
	List	(unsorted)	(sorted)	Matrix
	Θ(<i>m</i>)	Θ(<i>m</i>)	Θ(<i>m</i>)	$\Theta(n^2)$
,	Θ(<i>m</i>)	$\Theta(\deg(v))$	$\Theta(\deg(v))$	$\Theta(n)$
	Θ(<i>m</i>)	$\Theta(\deg(v))$	$\Theta(\log(\deg(v)))$	Θ(1)
	Θ(1)	Θ(1)	$\Theta(\deg(v))$	Θ(1)
	$\Theta(1)^1$	$\Theta(\deg(v))$	$\Theta(\log(\deg(v)))$	Θ(1)

Space Complexity

$\Theta(n+m) \mid \Theta(n+m) \mid \Theta(n+m) \mid \Theta(n)$	$\Theta(n+m)$	$\Theta(n+m)$	$\Theta(n+m)$	$\Theta(n^2)$
--	---------------	---------------	---------------	---------------

University of Victoria - CSC 225 - Summer 2019

If it is necessary to search for edge vu first, deletion takes $\Theta(m)$ time.

Adjacency Lists (1)

Adjacency List:

Circy List.
Neighbours
b, c
a, c, d
a, b, e
b, e, f
c, d, g
d, g
e, f

► An adjacency list structure represents a graph with lists of each vertex's neighbours.

Adjacency Lists (2)

Adjac	ency List:
ertex	Neighbour

Aujac	citcy List.
Vertex	Neighbours
а	b, c
b	С
С	b, e
d	b, f
е	d
f	d
g	e, f

- In a directed graph, the neighbour list normally only stores 'outbound' neighbours.
- A second set of lists can be created to store inbound neighbours if necessary.

Adjacency Lists (3)

Adjacency List:

Aujac	ciicy List.
Vertex	Neighbours
а	b, c
b	С
С	b, e
d	b, f
е	d
f	d
g	e, f

▶ The total size of all neighbour lists together is 2m, since each edge is represented twice (once for each endpoint).

Adjacency Lists (4)

Adjacency List:

Aujacency List.	
Vertex	Neighbours
а	b, c
b	С
С	b, e
d	b, f
е	d
f	d
g	e, f

One advantage of adjacency lists is their compactness: Graphs with few edges will require less space than more dense graphs.

Adjacency Lists (5)

Adjacency List:

Aujac	citcy List.
Vertex	Neighbours
0	1, 2, 4
1	0, 3, 5
2	0, 4, 6
3	1, 4, 6
4	0, 2, 3
5	1, 6
6	2, 3, 5

► In most cases, it is helpful to number vertices starting at 0 and use their indices to construct an adjacency list.

Adjacency Lists (6)

Adjacency List:

Aujacency List		ciicy List.
	Vertex	Neighbours
	0	1, 2, 4
	1	0, 3, 5
	2	0, 4, 6
	3	1, 4, 6
	4	0, 2, 3
	5	1, 6
	6	2, 3, 5

Assigning an index to each vertex allows the data structure to be stored in an array of *n* lists.

Adjacency Lists (7)

Adjacency List:

Aujacency List.	
Vertex	Neighbours
0	1, 2, 4
1	0, 3, 5
2	0, 4, 6
3	1, 4, 6
4	0, 2, 3
5	1, 6
6	2, 3, 5

Alternatively, the data structure can be represented by a set of vertex objects, each with a list of pointers to its neighbours.

Adjacency Lists (8)

Adjacency List:

Aujac	citcy List.
Vertex	Neighbours
0	1, 2, 4
1	0, 3, 5
2	0, 4, 6
3	1, 4, 6
4	0, 2, 3
5	1, 6
6	2, 3, 5

► The linked representation is preferable when vertices might be added to or removed from the graph after construction.

Adjacency Matrices (1)

Adjacency Matrix:

	~,,	ajuc	CIIC	<i>y</i>	ıuıı		
	а	b	С	d	е	f	g
а	0	1 0	1	0	0	0	0
b	1	0	1	1	0	0	0
С	1 0	1	0	0	1	0	0
d	0			0	1	1	0
е	0	0	1	1	0	0	1
f	0	0	0	1	0	0	1
g	0	0	0	0	1	1	0

An adjacency matrix structure represents a graph on n vertices with an $n \times n$ matrix of 0/1 values.

Adjacency Matrices (2)

Adjacency Matrix:

	Aujacency Matrix.							
	а	b	С	d	е	f	g	
a	0	1	1	0	0	0	0	
b		0	1	1	0	0	0	
С	1	1	0	0	1	0	0	
d	0	1	0	0	1	1	0	
е	0	0	1	1	0	0	1	
f	0	0	0	1	0	0	1	
g	0	0	0	0	1	1	0	

- Each vertex receives both a row and column of the matrix.
- ▶ If the entry in row *u* and column *v* of the matrix is 1, then there is an edge *uv* in the graph.

Adjacency Matrices (3)

Adjacency Matrix:

	Aujacency Matrix.							
	а	b	С	d	е	f	g	
а	0	1	1	0	0	0	0	
b	1		1	1	0	0	0	
С	1	1	0	0	1	0	0	
d	0	1	0	0	1	1	0	
е	0	0	1	1	0	0	1	
f	0	0	0	1	0	0	1	
g	0	0	0	0	1	1	0	

- ► The adjacency matrix of an undirected graph is always symmetric.
- ▶ The space complexity of an adjacency matrix is always $\Theta(n^2)$.

Adjacency Matrices (4)

Adjacency Matrix:

	rajacency water.							
	а	b	С	d	е	f	g	
a	0	1	1	0	0	0	0	
b	1	0	1	1	0	0	0	
С	1	1	0	0	1	0	0	
d	0	1	0	0	1	1	0	
е	0	0	1	1	0	0	1	
f	0	0	0	1	0	0	1	
g	0 1 1 0 0 0	0	0	0	1	1	0	

 On graphs with a small number of edges, adjacency matrices can be inefficient.

Adjacency Matrices (5)

Adjacency Matrix:

	Aujacency Matrix.							
	а	b	С	d	е	f	g	
а	0	1	1	0	0	0	0	
b	1	0	1	1	0	0	0	
С	1	1	0	0	1	0	0	
d	0	1	0	0	1	1	0	
е	0	0	1	1	0	0	1	
f	0	0	0	1	0	0	1	
g	0	0	0	0	1	1	0	

Finding all of the neighbours of a given vertex requires $\Theta(n)$ operations, since every entry in a row (or column) must be inspected.

Adjacency Matrices (6)

Adjacency Matrix:

				,			
	а	b	С	d	е	f	g
а	0	1	1	0	0	0	0
b	0	0	1	0	0	0	0
С	0	1	0	0	1	0	0
d	0	1	0	0	0	1	0
е	0	0	0	1	0	0	0
f	0	0	0	1	0	0	0
g	0	0	0	0	0 0 1 0 0 0	1	0

► For a directed graph, rows represent source vertices and columns represent destination vertices.

Adjacency Matrices (7)

Adjacency Matrix:

		-,,		,			
	а	b	С	d	е	f	g
а	0	1	1	0	0	0	0
b	0	0	1	0	0	0	0
С	0	1	0	0 0 0 0 1 1	1	0	0
d	0	1	0	0	0	1	0
e	0	0	0	1	0	0	0
f	0	0	0	1	0	0	0
g	0	0	0	0	1	1	0

▶ If the entry at row u and column v is 1, then there is an edge from u to v.

Adjacency Matrices (8)

Adjacency Matrix:									
	0	1	2	3	4	5	6		
0	0	1	1	0	1	0	0		
1	1	0	1	1	0	1	0		
2	1	0	0	0	1	0	1		
3	0	1	0	0	1	0	1		
4	1	0	1	1	0	0	0		
5	0	1	0	0	0	0	1		
6	0	0	1	1	0	1	0		

► As with adjacency lists, it can be helpful to assign vertices an index starting at 0 to allow fast indexing into the matrix.