Diamond Price Prediction

Life cycle of Machine learning Project

- 1. Understanding the problem statement
- 1. Data Collection
- 1. Exploratory Data Analysis
- 1. Data Cleaning
- 1. Data Pre-Processing
- 1. Model Training

Introduction About the Data:

The dataset The goal is to predict price of given diamond (Regression Analysis).

There are 10 independent variables (including id):

- id: unique identifier of each diamond
- carat : Carat (ct.) refers to the unique unit of weight measurement used exclusively to weigh gemstones and diamonds.
- cut : Quality of Diamond Cut
- color : Color of Diamond
- clarity: Diamond clarity is a measure of the purity and rarity of the stone, graded by the visibility of these characteristics under 10-power magnification.
- depth : The depth of diamond is its height (in millimeters) measured from the culet (bottom tip) to the table (flat, top surface)
- table: A diamond's table is the facet which can be seen when the stone is viewed face up.
- x : Diamond X dimension
- y: Diamond Y dimension
- x : Diamond Z dimension

Target variable:

• price: Price of the given Diamond.

Dataset Source Link: https://www.kaggle.com/competitions/playground-series-s3e8/data?select=train.csv

Importing Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Load the Dataset

```
In [2]:
## Data Ingestions step
df=pd.read_csv('gemstone.csv')
```

Show the ton 5 records

In [3]:
df.head()

Out[3]:

	id	carat	cut	color	clarity	depth	table	x	У	z	price
0	0	1.52	Premium	F	VS2	62.2	58.0	7.27	7.33	4.55	13619
1	1	2.03	Very Good	J	SI2	62.0	58.0	8.06	8.12	5.05	13387
2	2	0.70	Ideal	G	VS1	61.2	57.0	5.69	5.73	3.50	2772
3	3	0.32	Ideal	G	VS1	61.6	56.0	4.38	4.41	2.71	666
4	4	1.70	Premium	G	VS2	62.6	59.0	7.65	7.61	4.77	14453

Check Missing values

```
In [4]:
```

```
df.isnull().sum()
Out[4]:
           0
id
carat
cut
color
           0
clarity
           0
depth
           0
table
           0
           0
           0
У
Z
price
dtype: int64
In [5]:
### No missing values present in the data
```

Summary of Dataset

```
In [6]:
```

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 193573 entries, 0 to 193572
Data columns (total 11 columns):
 # Column Non-Null Count Dtype
 0 id
            193573 non-null int64
             193573 non-null float64
 1 carat
             193573 non-null object
   cut
   color 193573 non-null object
 3
   clarity 193573 non-null object depth 193573 non-null float64
 4
 5
              193573 non-null float64
 6
    table
 7
              193573 non-null float64
    X
 8
              193573 non-null float64
   У
    z
Z
9 z 193573 non-null float64
10 price 193573 non-null int64
dtypes: float64(6), int64(2), object(3)
memory usage: 16.2+ MB
```

descriptive summary of the dataset

```
In [42]:

df.describe()

Out[42]:
```

	carat	cut	color	clarity	depth	table	x	
count	193573.000000	193573.000000	193573.000000	193573.000000	193573.000000	193573.000000	193573.000000	193573.000
mean	0.790688	4.132152	3.516157	3.975084	61.820574	57.227675	5.715312	5.720
std	0.462688	0.994157	1.623091	1.501776	1.081704	1.918844	1.109422	1.102
min	0.200000	1.000000	1.000000	1.000000	52.100000	49.000000	0.000000	0.000
25%	0.400000	3.000000	2.000000	3.000000	61.300000	56.000000	4.700000	4.710
50%	0.700000	4.000000	4.000000	4.000000	61.900000	57.000000	5.700000	5.720
75%	1.030000	5.000000	5.000000	5.000000	62.400000	58.000000	6.510000	6.510
max	3.500000	5.000000	7.000000	8.000000	71.600000	79.000000	9.650000	10.010
4								Þ

shape of the dataset

```
In [43]:
df.shape
Out[43]:
(193573, 10)
```

Check column names

drop the id column

Out[8]:

```
In [8]:
## Lets drop the id column
df=df.drop(labels=['id'],axis=1)
df.head()
```

```
carat
              cut color clarity depth table
                                            х у
                                                      z price
0 1.52 Premium
                          VS2
                                62.2 58.0 7.27 7.33 4.55 13619
   2.03 Very Good
                          SI2
                                62.0 58.0 8.06 8.12 5.05 13387
2 0.70
            Ideal
                     G
                          VS1
                                61.2 57.0 5.69 5.73 3.50
                                                          2772
   0.32
            Ideal
                          VS1
                                61.6 56.0 4.38 4.41 2.71
                     G
                                                           666
 1.70
                          VS2
                                62.6 59.0 7.65 7.61 4.77 14453
         Premium
                     G
```

check the data type of every columns

```
In [44]:
df.dtypes
Out[44]:
          float64
carat
cut
            int64
color
            int64
clarity
           int64
         float64
depth
         float64
table
          float64
          float64
У
           float64
Z
            int64
price
dtype: object
check for duplicated records
In [9]:
```

```
In [9]:
## check for duplicated records
df.duplicated().sum()
Out[9]:
0
```

segregate numerical and categorical columns

```
In [10]:
## segregate numerical and categorical columns
numerical_columns=df.columns[df.dtypes!='object']
categorical_columns=df.columns[df.dtypes=='object']
print("Numerical columns:",numerical_columns)
print('Categorical Columns:',categorical_columns)
Numerical columns: Index(['carat', 'depth', 'table', 'x', 'y', 'z', 'price'], dtype='object')
Categorical Columns: Index(['cut', 'color', 'clarity'], dtype='object')
In [11]:
df[categorical_columns].describe()
Out[11]:
```

```
        cut
        color
        clarity

        count
        193573
        193573
        193573

        unique
        5
        7
        8

        top
        Ideal
        G
        SI1

        freq
        92454
        44391
        53272
```

```
In [12]:
```

```
df['cut'].value_counts()
Out[12]:
```

 Ideal
 92454

 Premium
 49910

 Verv Good
 37566

```
Good
             11622
Fair
              2021
Name: cut, dtype: int64
In [13]:
df['color'].value counts()
Out[13]:
     44391
Ε
     35869
F
     34258
Н
     30799
D
     24286
Ι
     17514
J
     6456
Name: color, dtype: int64
In [14]:
df['clarity'].value_counts()
Out[14]:
SI1
        53272
VS2
        48027
VS1
        30669
        30484
SI2
VVS2
        15762
VVS1
        10628
ΙF
         4219
          512
Name: clarity, dtype: int64
```

Histplot on Numerical columns

```
In [15]:
```

```
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(8,6))
x=0
for i in numerical_columns:
    sns.histplot(data=df,x=i,kde=True)
    print('\n')
    plt.show()
```


Check correlation

```
In [17]:
```

```
## correlation
sns.heatmap(df.corr(),annot=True)
```

Out[17]:

<AxesSubplot:>


```
In [18]:
##Currently we will not execute this
## df.drop(labels=['x','y','z'],axis=1)
In [19]:
df.head()
Out[19]:
  carat
             cut color clarity depth table
                                         X
                                                 z price
                                             У
   1.52
         Premium
                        VS2
                             62.2
                                  58.0 7.27 7.33 4.55 13619
   2.03 Very Good
                        SI2
                             62.0
                                  58.0 8.06 8.12 5.05 13387
2
   0.70
            Ideal
                    G
                        VS<sub>1</sub>
                             61.2 57.0 5.69 5.73 3.50
                                                     2772
   0.32
            Ideal
                    G
                        VS1
                             61.6 56.0 4.38 4.41 2.71
                                                      666
   1.70
                        VS2
                             62.6 59.0 7.65 7.61 4.77 14453
         Premium
Check unique in cut column
In [20]:
df['cut'].unique()
Out[20]:
array(['Premium', 'Very Good', 'Ideal', 'Good', 'Fair'], dtype=object)
In [21]:
cut map={"Fair":1, "Good":2, "Very Good":3, "Premium":4, "Ideal":5}
In [22]:
df['clarity'].unique()
Out[22]:
array(['VS2', 'SI2', 'VS1', 'SI1', 'IF', 'VVS2', 'VVS1', 'I1'],
      dtype=object)
In [23]:
clarity map = {"I1":1,"SI2":2 ,"SI1":3 ,"VS2":4 , "VS1":5 , "VVS2":6 , "VVS1":7 ,"IF":8}
In [24]:
df['color'].unique()
Out[24]:
array(['F', 'J', 'G', 'E', 'D', 'H', 'I'], dtype=object)
In [25]:
color map = {"D":1 ,"E":2 ,"F":3 , "G":4 ,"H":5 , "I":6, "J":7}
In [26]:
df['cut'] = df['cut'].map(cut map)
df['clarity'] = df['clarity'].map(clarity map)
df['color'] = df['color'].map(color map)
```

price

У

carat depth

table

```
Out[27]:
   carat cut color clarity depth table
                                                   price
                                      X
                                           У
                                                Z
    1.52
                          62.2
                               58.0 7.27 7.33 4.55 13619
    2.03
          3
                7
                          62.0
                               58.0 8.06 8.12 5.05 13387
                      2
2
    0.70
          5
                          61.2
                               57.0 5.69 5.73 3.50
                                                   2772
    0.32
          5
                4
                      5
                          61.6
                               56.0 4.38 4.41 2.71
                                                    666
    1.70
                          62.6
                               59.0 7.65 7.61 4.77 14453
Model Training
In [28]:
X = df.drop(labels=['price'],axis=1)
Y = df[['price']]
In [29]:
Υ
Out[29]:
        price
     0 13619
     1 13387
     2
         2772
     3
         666
     4 14453
 193568
         1130
 193569
         2874
         3036
 193570
 193571
         681
 193572
         2258
193573 rows × 1 columns
In [30]:
# Define which columns should be ordinal-encoded and which should be scaled
categorical cols = X.select dtypes(include='object').columns
numerical cols = X.select dtypes(exclude='object').columns
In [31]:
# Define the custom ranking for each ordinal variable
cut_categories = ['Fair', 'Good', 'Very Good', 'Premium', 'Ideal']
color_categories = ['D', 'E', 'F', 'G', 'H', 'I', 'J']
clarity categories = ['I1','SI2','SI1','VS2','VS1','VVS2','VVS1','IF']
In [32]:
from sklearn.impute import SimpleImputer ## HAndling Missing Values
```

from sklearn.preprocessing import StandardScaler # HAndling Feature Scaling

from sklearn.preprocessing import OrdinalEncoder # Ordinal Encoding

In |27|:

df.head()

```
from sklearn.compose import ColumnTransformer
 In [33]:
 ## Numerical Pipeline
 num pipeline=Pipeline(
     steps=[
      ('imputer', SimpleImputer(strategy='median')),
      ('scaler', StandardScaler())
 # Categorigal Pipeline
 cat pipeline=Pipeline(
     steps=[
     ('imputer', SimpleImputer(strategy='most frequent')),
     ('ordinalencoder', OrdinalEncoder(categories=[cut categories, color categories, clarity
 categories])),
     ('scaler', StandardScaler())
 preprocessor=ColumnTransformer([
 ('num_pipeline', num_pipeline, numerical cols),
 ('cat_pipeline', cat_pipeline, categorical_cols)
 ])
 Train test split
 In [34]:
 ## Train test split
 from sklearn.model selection import train test split
 X_train, X_test, y_train, y_test=train_test_split(X,Y,test_size=0.30,random_state=30)
X_train=pd.DataFrame(preprocessor.fit_transform(X_train),columns=preprocessor.get_feature_names_out())
X_test=pd.DataFrame(preprocessor.transform(X_test),columns=preprocessor.get_feature_names_out())
 In [35]:
 ## Model Training
 from sklearn.linear model import LinearRegression, Lasso, Ridge, ElasticNet
 from sklearn.metrics import r2 score, mean absolute error, mean squared error
 In [36]:
 regression=LinearRegression()
 regression.fit(X train,y train)
 Out[36]:
 LinearRegression()
 In [37]:
 regression.coef
```

72.89534931, -283.5924305, 433.73822644,

-36.71694327, -1550.78910628, -452.96841314,

pipelines

Out[37]:

array([[13908.5914125,

-122.8355985 ,

-91.86321724]])

from sklearn.pipeline import Pipeline

```
In [38]:
regression.intercept
Out[38]:
array([13417.41178519])
In [39]:
import numpy as np
def evaluate_model(true, predicted):
   mae = mean absolute error(true, predicted)
   mse = mean squared error(true, predicted)
    rmse = np.sqrt(mean squared error(true, predicted))
    r2 square = r2 score(true, predicted)
    return mae, rmse, r2 square
In [40]:
## Train multiple models
models={
    'LinearRegression':LinearRegression(),
    'Lasso':Lasso(),
    'Ridge':Ridge(),
    'Elasticnet':ElasticNet()
trained model list=[]
model list=[]
r2 list=[]
for i in range(len(list(models))):
    model=list(models.values())[i]
    model.fit(X train, y train)
    #Make Predictions
    y_pred=model.predict(X_test)
    mae, rmse, r2 square=evaluate model(y test,y pred)
    print(list(models.keys())[i])
    model list.append(list(models.keys())[i])
    print('Model Training Performance')
    print("RMSE:", rmse)
    print("MAE:", mae)
    print("R2 score", r2 square*100)
    r2 list.append(r2 square)
    print('='*35)
    print('\n')
LinearRegression
Model Training Performance
RMSE: 1013.9047094344003
MAE: 674.025511579685
R2 score 93.68908248567512
Lasso
Model Training Performance
RMSE: 1013.9959392651111
MAE: 676.0374759508263
R2 score 93.68794673823564
Ridge
Model Training Performance
```

MAE: 674.1622802042341 R2 score 93.68908077341561	
Elasticnet	
Model Training Performance RMSE: 1668.5101542521966	
MAE: 1147.899878068513	
R2 score 82.90945424489222	
In []:	
model_list	
In []:	
In []:	