COMP 2280 - Introduction to Computer Systems

Module 5- Combinational Circuits

Introduction

- Microprocessors contain millions of transistors
 - AMD AM286 (1983): 134,000
 - AMD AM486 (1993): 1,185,000
 - Intel Pentium 4 (2000): 48 million
 - Intel core i7 quad (2008): 731 million
 - Intel i7 6 cores (2010): 2.27 billion
 - AMD Ryzen 9 16 cores (2020): 19.2 billion
- Logically, each transistor acts as a switch
 - Combined to implement logic functions AND, OR, NOT
 - Combined to build higher-level structures such as adders, multiplexers, decoders, registers, ...
 - Combined to build processor such as the LC-3

Introduction

- In digital design, we are concerned with designing and building circuits that work with binary data.
- We will start off by looking a very simple circuits and then building on top of them to get more complicated circuits.
- This will be a very brief introduction to design logic.
- Let's start off with the most basic of components that we need to build digital circuits: AND, OR, NOT, NOR, NAND.

Logic Gates

- Perform logic functions:
 - inversion (NOT), AND, OR, NAND, NOR, etc.
- Single-input:
 - NOT gate, buffer
- Two-input:
 - AND, OR, XOR, NAND, NOR, XNOR
- Multiple-input

Reference also found on Learn:

Boolean Algebra Basics

Two constants: 0 and 1

- 0 is equivalent to false
- 1 is equivalent to true

Operators			
Symbol	Description	Example	
•	AND	a•b	
+	OR	a+b	
_	NOT	\bar{a}	
•	NOT	a'	
⊕	XOR (exclusive or)	a⊕b	

Single-Input Logic Gates

Note: The circle is important, we'll see it again with the negated/"NOT-versions" of the other gates

Note: a line over an expression denotes negation

Two-Input Logic Gates

AND

$$Y = AB$$

A	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

OR

$$Y = A + B$$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

NAND

$$Y = \overline{AB}$$

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

NOR

$$Y = \overline{A + B}$$

A	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

XNOR

$$Y = \overline{A \oplus B}$$

_A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Note the circles on the gates, and the lines over the expression

Multiple-Input Logic Gates

NOR3

$$Y = \overline{A + B + C}$$

A	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

AND4

$$Y = ABCD$$

_ <i>A</i>	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

The Column for 'D' is missing but the output 'Y' is still only going to be true when all inputs are true

Multiple-Input Logic Gates

Note: Multi-input gates are equivalent to multiple two-input gates in series

We draw a 3-input AND gate by combining two 2-input AND gates.

- Digital circuits can be classified as either
 - Combinational
 - Sequential
- Combinational circuits are those whose output depends only on the current inputs.
- Sequential circuits are those whose output depends on current inputs and its current state.

Combinational Circuits

- output depends on the current inputs only
- Stateless
- outputs are defined by Boolean functions of the inputs
- any combinational circuit can be implemented as a sum-of-products (SOP) or product-of-sums (POS)
- always gives 2 level circuits which are very fast.

Boolean Equations

Functional specification of outputs in terms of inputs

• Example:
$$S = F(A, B, C_{in})$$

 $C_{out} = F(A, B, C_{in})$

$$S = A \oplus B \oplus C_{\text{in}}$$

$$C_{\text{out}} = AB + AC_{\text{in}} + BC_{\text{in}}$$

This may look complex, but you have already seen and used this Boolean equation.

Any ideas on what it is?

Boolean Equations

- Functional specification of outputs in terms of inputs
- Example: $S = F(A, B, C_{in})$ $C_{out} = F(A, B, C_{in})$

It's like a binary addition with the Carry-in and Carry-out bits!

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Truth Tables

- Truth tables specify the output of a circuit based on its inputs.
- Given a truth table, there are standard techniques for building a circuit that realizes the truth table.
- Two techniques
 - sum-of-products (SOP) technique
 - product-of-Sums (POS) Form
- Let's do a simple example.

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of all input variables
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
	B	Y	minterm	name
C	0	0	$\overline{A} \overline{B}$	m_0
	1	1	Ā B	m_1
1	. 0	0	\overline{AB}	m_2
(1	. 1	1	АВ	m_3

$$Y = \mathbf{F}(A, B) = \overline{\mathbf{A}}\mathbf{B} + \mathbf{A}\mathbf{B}$$

Aka: "List all possible ways for it to be True"

How to get a Minterm?

"With the current input on this row, how can I build an AND expression with NOTs that gives me TRUE?"

17

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a maxterm
- A maxterm is a sum (OR) of all input variable
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

				maxterm
_ A	В	Y	maxterm	name
0	0	0	A + B	M_{0}
0	1	1	$A + \overline{B}$	M_1
$\overline{1}$	0	0	A + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

 $Y = \mathbf{F}(A, B) = (A + B)(\overline{A} + B)$

Aka: "List (eliminate?) all possible ways for it to be False"

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You will only eat lunch (E):
 - If it's open (O) and
 - They don't serve corndogs (C)
 - Write a truth table for determining if you will eat lunch (E).

•	` '		
0	С	Ε	
0	0	0	
0	1	0	
1	0	1	
1	1	0	

SOP & POS Form

• SOP – sum-of-products

0	С	Ε	minterm
0	0	0	O C
0	1	0	O C
1	0	1	O C
1	1	0	O C

$$Y = O\overline{C}$$

Aka: "List all possible ways for it to be True"

POS – product-of-sums

0	С	Ε	maxterm
0	0	0	O + C)
0	1	0	$O + \overline{C}$
1	0	1	O + C
$\overline{1}$	1	0	$\overline{O} + \overline{C}$

$$Y = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$

Aka: "List (eliminate?) all possible ways for it to be False"

Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- Duality in axioms and theorems:
 - ANDs and ORs, 0's and 1's interchanged

Boolean Axioms

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

End of Part A

T1: Identity Theorem

• B • 1 = B

• B + 0 = B

B and 1 gives us B

B or O gives us B as well

$$B - = B$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = B$$

T2: Null Element Theorem

- B 0 = 0
- B + 1 = 1

B and O gives us O

B or 1 gives us 1

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

T3: Idempotency Theorem

•
$$B \cdot B = B$$

$$\bullet B + B = B$$

B and B gives us B

B or B gives us B

$$\begin{bmatrix} B \\ B \end{bmatrix} = B$$

$$\begin{bmatrix} B \\ B \end{bmatrix}$$
 = B

T4: Involution Theorem

$$\overline{\overline{B}} = B$$

The opposite of the opposite of B is... B

$$Not(Not(B)) = B$$

T5: Complement Theorem

• B •
$$\overline{B} = 0$$

•
$$B + \overline{B} = 1$$

B and NOT B is 0

B or NOT(B) is 1

$$\frac{B}{B}$$
 $=$ 0

$$\frac{B}{B}$$
 = 1

Boolean Theorems Summary

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Boolean Theorems of Several Vars

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9'	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11'	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$	Consensus
	$= B \bullet C + \overline{B} \bullet D$		$= (B + C) \bullet (\overline{B} + D)$	
T12	$B_0 \bullet B_1 \bullet B_2$	T12'	$B_0 + B_1 + B_2$	De Morgan's
	$= (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots)$		$= (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	Theorem

Think Math Algebra

Simplifying Boolean Equations

Example 1:

$$= B(1)$$
 T5', Complements

A or Not(A), that is the question...

Simplifying Boolean Equations

Example 2:

 $\bullet \ Y = A(AB + ABC)$

$$=A(AB(1+C))$$

$$=A(AB(1))$$

$$=A(AB)$$

$$= (AA)B$$

$$=AB$$

T8, common term AB

T2', C or 1, always 1

T1, AB and 1, easy

T7, A*(A*B)=(A*A)*B

T3, A and A, redundant

DeMorgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A \cdot B}$$

I go camping when there are: NOT (rain and thunderstorms) NOT(rain) or NOT(thunderstorms)

Α	В	Not(AB)	Not(A) + Not(B)
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

I go hiking when there are: NOT(Wolves or Bears) NOT(Wolves) and NOT(bears)

A	В	Not(A+B)	Not(A) * Not(B)
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Bubble Pushing

• Backward:

- Body changes
- Adds bubbles to inputs

• Forward:

- Body changes
- Adds bubble to output

Bubble Pushing

What is the Boolean expression for this circuit?

Bubble Pushing

What is the Boolean expression for this circuit?

$$Y = AB + CD$$

Bubble Pushing Rules

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel

Bubble Pushing Example

From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example: $Y = \overline{ABC} + A\overline{BC} + A\overline{BC}$

Multiple-Output Circuits

Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_3	A_2	A_{1}	A_{o}	Y_3	Y_2	Y ₁	Y_o
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 1 1 1 1	$egin{array}{cccc} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 &$	0 0 1 0 0 1 1 0 0 1 1 0 0 1	01010101010101	000000011111111	Y ₂ 0 0 0 1 1 1 0 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	Y _o 0 1 0 0 0 0 0 0 0 0 0

Priority Circuit Hardware

A_3	A_2	A_1	A_{o}	Y ₃	Y_2	Y ₁	Y_o
0		A_1 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1	0	0	0 0 0 0 1 1 1 0 0 0 0 0	0	Y _o 0 1 0 0 0 0 0 0 0 0 0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1 1	1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	000000011111111	0	0 0 1 1 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	0

Don't Cares

A_3	A_2	A_1	A_{o}	Y ₃ 0 0 0 0 0 0 0 1 1 1 1	Y_2	Y_1	Y _o 0 1 0 0 0 0 0 0 0 0 0 0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1 1	0 1 1 0 0 1 1 0 0 1 1	01010101010101	1	Y ₂ 0 0 0 0 1 1 1 0 0 0 0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	0

A_3	A_2	A_1	A_o	Y ₃	Y_2	Y ₁	Y_o
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Χ	0	0	1	0
0	1	Χ	Χ	0	1	0	0
1	X	Χ	X	0 0 0 0 1	0	0	0

- We now look at some common combinational circuits that are used in designing a CPU.
- These include: multiplexor, decoder and adders.

Multiplexer (Mux)

- Selects between one of N inputs to connect to output
- log₂N-bit select input control input
- Example: 2:1 Mux

Multiplexer Implementations

Logic gates

Decoders

• N inputs, 2^N outputs

One-hot outputs: only one output HIGH at once

A_1	A_0	Y_3	Y_2	Y ₁	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Decoder Implementation

1-Bit Adders

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A \oplus B$$

 $C_{out} = AB$

Full Adder

C_{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Adder

A B

Cout

Cin

Full

Alternate Drawings

Full Adder (1-bit addition)

Multibit Adders (CPAs)

- Types of Carry Propagate Adders (CPAs):
 - Ripple-carry (slow but simple)
 - Carry-lookahead (fast)
 The Carry-lookahead and Prefix Adders are NOT in any
 - Prefix (faster)
- Carry-lookahead and Prefix adders are faster for large adders with several bits, but require more hardware.

Symbol

The '/ N' denotes N input lines In this case, N bits of A and B

labs, assignments, or tests

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry "ripples" through entire chain
 - Ex: 0111 1111 1111 1111 + 1
- Disadvantage: slow

Ripple-Carry Adder - Example

- Let's add X to itself
- Let X be a 2-bit number, therefore: $X=X_1X_0$
- It just so happens that $X_1X_0 + X_1X_0 = X_1X_00$
- Why? Could we take a shortcut?

Ripple-Carry Adder - Shortcut

New and Improved:

Subtracter

Symbol

Implementation

The '/ N' denotes N input lines In this case, N bits of A and B

Logic Using Decoders

• Sum (OR) of Products (AND/minterms)

Programmable Logic Array (PLA)

 It is possible to build a logic circuit that uses logic circuits to decide what logic circuits to implement!

This PLA could, for instance, be used to build a 1-bit adder circuit by connecting \mathbf{W} to outputs 3, 5, 6 & 7 = $\mathbf{C}(i+1)$; and \mathbf{X} to outputs 1, 2, 4, & 7 = $\mathbf{S}(i)$.

Timing Diagrams

- A timing diagram is a graphical representation of the input and output signals (values) of circuit, where the domain is time.
- Timing diagrams are used to illustrate how a circuit works and are useful for debugging circuits.
- Commercial debugging tools such as oscilloscopes and logic analyzers generate timing diagrams for circuits they are connected to.
- When drawing a timing diagram for a circuit, you should display all your inputs.
- You should display the outputs you want to examine in your diagram.

Timing Diagrams

We will discuss this diagram in class.

Timing Diagrams

- In reality, each gate introduces a slight delay in a circuit. You can draw these into your diagram if you want.
- These delays can sometimes cause glitches in circuits.
 - An output jumps momentarily from 0 to 1 and then back to 0,
 or
 - An output jumps momentarily from 1 to 0 and then back to 1.
- These can be hard to debug, but can be dealt with by adding extra gates to the circuit.
- We will encounter timing diagrams throughout the course.