Chapter 4: General Programming Techniques

Efficiency and O-Notation

• Big-O: The time complexity is a function of the constants in the specification. O(f): upper bound of the number of steps (modulo a constant factor).

• Typical time complexities

$$O(2^N)$$
 exponential $O(N^2)$ quadratic $O(N^2)$ linear simulation $O(N)$ logarithmic simulation $O(\log N)$

Invariance Theorem

$$\{b\}$$
 po $S_0 \to S_0 \ [] \ B_1 \to S_1 \ od\{Q\}$

provided that

$$[P \land \neg B_0 \land \neg B_1 \Rightarrow Q]$$

 I_1 bas I_2 saban tanisat si I_3 (ii)

$$\{a\}^{0}S\{^{0}B\vee a\} -$$

$$\{a\}^{\mathsf{I}}S\{^{\mathsf{I}}B\vee a\} -$$

(iii) bound function t such that

$$- [P \land (B_0 \lor B_1) \Rightarrow t \geq 0]$$

$$\{D \land t\} \circ S \{D = t \land 0 B \land d\} -$$

$$\{D \land t\} \land S = C \land S \land \{t < C \}$$

Standard invariant?

Taking Conjuncts as Invariant

$$\{\overline{\oslash \lor d}\} \text{ po } S \leftarrow \overline{\oslash} \vdash \text{op}\{\overline{d}\}$$

• Example 1: Design S meeting

Taking true as invariant
$$P$$
, $x \le y$ as Q , we have
$$\{\text{true}\} S\{x \le y\}.$$
 for $x \ge y$ as Q , we have
$$\{\text{true}\} \text{do } x > y \to y, x \to y \text{ is also fine.})$$
 (Note: (1) $x \to y \to y \to y \text{ is a bound function.}$ (2) $x \coloneqq y \to y \to y \text{ is a bound function.}$

• Example 2: Design S meeting

$$\{p \geq o \land o \geq d \land d \geq o\}S\{\text{sunt}\}$$

Taking true as invariant P, we have

$$qo \ a > b \rightarrow a, b := c, b$$

$$qo \ a > b \rightarrow c, c := c, b$$

$$qo \ b \rightarrow c \rightarrow b, c := c, b$$

$$qo \ c \rightarrow b, c := c, b$$

$$qo \ c \rightarrow b, c := c, b$$

$$qo \ c \rightarrow b, c := c, b$$

$$qo \ c \rightarrow b, c := c, b$$

(Why does it terminate?)

• Example 3. Design divmod meeting the specification:

$$[0 < 8 \land 0 \le A \} \ tni : 8 \land A \ \textbf{noo}$$

$$tni : r, p \ \textbf{rev}$$

$$bomvib$$

$$\{8 \ \textbf{bom} \ A = r \land 8 \ \textbf{vib} \ A = p\}$$

Note that according to the definitions of div and mod , the post-condition R is

$$A > \eta \wedge \eta \geq 0 \wedge \eta + \mathcal{A} * p = A : \mathcal{A}$$

Yhat is a suitable invariant?

From the post-condition

$$A > \gamma \land \gamma \ge 0 \land \gamma + A * p = A : A$$

we may choose as invariant

$$\tau \ge 0 \ \land \ \tau + \mathbf{A} * \mathbf{p} = \mathbf{A} : \mathbf{q}$$

and as guard $\neg(r < B)$, leading to a program of the form:

$$\{\mathcal{A}\}$$
 bo $S \leftarrow \mathcal{A} \leq \gamma$ ob $\{\mathcal{A}\}$

```
A \leq \gamma \wedge A \Rightarrow (B - \gamma, 1 + p =: \gamma, p)A
                 Having q := q + 1 can keep the invariant, i.e.,
      \gamma \ge \mathcal{A} \wedge \gamma + \mathcal{A} * \underline{(1-p)} = \mathcal{A}
                             \equiv \{ \text{csyculus} \}
  A - \gamma \ge 0 \land A - \gamma + A * p = A
                       \{ \text{ noitutition } \}
                            A(\iota := \iota - B)
                                               - Choose S as r := r - B.
                                                       - Bound function: r
                           q gariylsites A, 0 =: x, p :noitestilsitinl -
```

This yields the following solution to divmod:

$$... A, 0 =: , r, p$$

$$(x) = 0, x + B + B + A = 0$$

$$(x) = 0, x + B + B = 0$$

$$(x) = 0, x + B + B = 0$$

$$(x) = 0, x +$$

Replacing Constants by Variables

• Example 1

Consider the problem of computation of A to the power B for given naturals A and B:

```
con A, B: int; var \ r: int; exponentiation \{r = A^B\}
```

What is a suitable invariant P?

We may introduce a fresh variable x and choose as invariant

$$B \geq x \vee x = 1 : A$$

as as bound B - x. This yields the following program scheme:

$$\{^{a} A = 1\}$$
 bo $A \leftarrow A \neq x$ ob $\{^{a} A\} = 1$ of $A = 1$

We investigate the efficient of increasing x by 1:

We obtain the following solution for exponentiation:

```
var x:ini:x var x:1:0; x:1:1:0; x:1:0; x:1:
```

• Example 2

Derive a solution to summation, satisfying the following specification:

```
[] con N:int\{N\geq 0\};\ f: array [0..N] of int; var x int; summation \\ \{x=(\Sigma i:0\leq i\leq N:f.i)\} []
```

We may choose as - invariant: $P = P_0 \wedge P_1$

əldsirav Areah , $\{(i.t:n>i\geq 0:i\mathbb{Z})=x\}=n^{A}*$ n resh variable n and for n hound n so $n\geq 0$ and n n so $n\geq 0$ and n

-n - N :noition: N - n.

 $^{-1}$ Find initial values satisfying $^{-1}$

$$0'0 = u'x$$

– Investigate the effect of increasing n by 1 (according to the termination requirement), and we can get the following:

$$\{d\} \ 1 + u \cdot u \cdot f + x = u \cdot x \ \{N \neq u \lor d\}$$

- Final solution for summation:

Strengthening Invariants

• Example 1
Derive a program for the computation of Fibonacci function.

```
(1+n).dit + n.dit = (2+n).dit
                 1 = 1.6it
                 0 = 0.dit
                              where fib is defined by
               \{V.dit = x\}
                   ison nod h
                 tani: x rev
      \{0 \leq N\} \ tni : N \ \mathbf{noo}
```

We may have as invariant $P_0 \wedge P_1$, where

$$n.dit = x \quad {}_{0}^{A}$$

$$N \ge n \ge 0 \quad {}_{1}^{A}$$

which is established by n, x := 0, 0. And we may take N - n as bound function.

Notice that

$$(1+n).dit = \mathcal{A} = (\mathcal{A} =: x; 1+n =: n)_0 \mathbf{A}$$

 $\dots n \dots x \dots = \mathcal{A} = (\mathcal{A} =: x; 1+n =: n)_0 \mathbf{A}$

By strengthening invariant to $P_0 \wedge P_1 \wedge Q$, where

$$(1+n).dit = y : \mathfrak{D}$$

and assuming $P_0 \wedge P_1 \wedge Q$, we have

$$(1+n).dit = x = (1+n=:n).0$$

$$v = x =$$

$$V \ge 1 + n \ge 0 = (1+n=:n).1$$

$$V \ne n \land L = y \Rightarrow$$

$$(1+(1+n)).dit = y = (1+n=:n).0$$

$$(1+n).dit + n.dit = y =$$

$$y + x = y =$$

So we can obtain the following solution.

```
\{0 \leq N\} \ ; tni: y, n \ \mathbf{xev}  (1,0,0::y,x,n \ ; 1,0,0::y,x,n \ ; 1,0,0::y,x,n \ )   \{n-N: \mathrm{bnuod}, Q \wedge P_1 \wedge Q_1 \ ; \mathrm{tnairsnvni} \}  \{n-N: \mathrm{bnuod}, Q \wedge P_1 \wedge Q_2 \ ; \mathrm{tnairsnvni} \}  \mathbf{bo} \ 1+n,y+x,y=:n,y,x \leftarrow N \neq n \ \mathbf{ob}  \{(1+N).dit=y \wedge N.dit=x \}
```

This program has the complexity of $\mathcal{O}(N)$.

• Example 2

Derive, given array f[0..N), a program for S, satisfying the following specification.

$$\inf_{i, ni} \ \text{fo} \ [(N..0]_{\text{VSTTS}}: t: \{0 \le N\} \ tni: N \ \text{nos} \\ \text{tni}: r \ \text{nev} \\ S \\ \{(0 \le i.t, i \land 0 \ge i.t: N > i > i \ge 0: i, i \pitchfork) = r\} \\$$

Derivation

1. Deriving Invariants.

By replacing constants by variables, we come up with the following

:stasitavai

$$(0 \le i.t \land 0 \ge i.t : n > i > i \ge 0 : i,i\#) = r : {}_{0}\!A$$

 $N \ge n \ge 0 : {}_{1}\!A$

which are initialized by n, r := 0, 0.

2. We change n:=n+1, and derive programs keeping invariants. Assuming $P_0 \wedge P_1 \wedge n \neq N$, we have

$$(0 \le i.t \land 0 \ge i.t : 1 + n > i > i \ge 0 : i, i\#)$$

$$\{ n = i \text{ flot tides } \}$$

$$+ (0 \le i.t \land 0 \ge i.t : n > i > i \ge 0 : i, i\#)$$

$$+ (0 \le i.t \land 0 \ge i.t : n > i \ge 0 : i, i\#)$$

$$\{ oA \}$$

For the invariance of \mathbb{Q} , we derive, assuming $P_0 \wedge P_1 \wedge \mathbb{Q} \wedge n \neq N$,

3. We summarize the above and obtain the following solution.

```
\{(0 \le i.t \land 0 \ge i.t : N > i > i \ge 0 : i,i\#) = \tau\}
                                                                           po
                                                        1 + u =: u
                                                                     : y
                                    1 + s =: s \leftarrow 0 \ge n.t \quad []
                                            \mathbf{dids} \leftarrow 0 < n.t li
                                                                     : y
                                    s + \tau =: \tau \leftarrow 0 \le n.t []
                                            \mathbf{dids} \leftarrow 0 > n.t li
                                                           \leftarrow N \neq u \text{ op}
                   \{n-N \text{ banod } Q \land I^{1} \land Q^{1} \text{ :tasirsvni}\}
                                                        0,0,0 =: s,r,n
                                             \{0 \le N\} ;tni: s ,n rev
```

Exercises

Problem 4

Derive a solution for the following programming problem:

]| stai to
$$(N..0]$$
 vertey $: t:\{0 \le N\}$ tai $: X,N$ node that $: t:i$ is the stain $: t:i$ to $: t:i$ to $: t:i$ interpolation $: t:i$ is $: t:i$ and $: t:i$ is $: t:i$ in $: t:i$ is $: t:i$ in $: t:i$ is $: t:i$ in $:$

Report 1

Please solve all the exercises so far (Problem 1 to Problem 4), and send your report by email to me (hu@mist.i.u-tokyo.ac.jp) no later than

May 31st, 2004.

Note that the subject of your email should be "MSP #1".