Definition

Let V be a vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . An inner product on V is a function $<,>: V \times V \to \mathbb{F}$, such that it satisfies the following four properties:

- 1. Conjugate symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in V$
- 2. Linearity: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$ for all $x, y, z \in V$, $a, b \in \mathbb{F}$
- 3. Non-negativity: $\langle x, x \rangle \geq 0$ for all $x \in V$
- 4. Non-degeneracy: $\langle x, x \rangle = 0$ if and only if x = 0

A vector space V over \mathbb{F} together with an inner product is called an inner product space. Given an inner product space, We define the norm as $||x|| = \sqrt{\langle x, x \rangle}$.

Questions

1. Prove that for vectors in a inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C}

$$||x \pm y||^2 = ||x||^2 + ||y||^2 \pm 2\text{Re} < x, y > 0$$

where Re $z = \frac{1}{2}(z + \bar{z})$

- 2. Show that $\langle A, B \rangle = \operatorname{trace}(A + B)$ is not an inner product on the space of real 2×2 matrices
- 3. Show that $\langle f, g \rangle = \int_0^1 f'(t) \overline{g(t)} dt$ is not an inner product on the space of polynomials.
- 4. Show that $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$ is not an inner product on \mathbb{C}^n
- 5. Show that $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i}$ define an inner product on \mathbb{C}^n
- 6. Let $v_1, ..., v_n$ be a spanning set of an inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Prove that
 - (a) If $\langle x, v \rangle = 0$ for all $v \in V$, then x = 0
 - (b) If $\langle x, v_k \rangle = 0$ for all k, then x = 0
 - (c) If $\langle x, v_k \rangle = \langle y, v_k \rangle$ for all k, then x = y