We claim:

1. A process for the racemoselective preparation of silicon-bridged dialkyl-ansa-metallocenes of the formula (I)

5

15

10

which comprises reacting a ligand starting compound of the formula (II)

25

20

with a transition metal dialkyl compound of the formula (III)

$$M^1X_xR^1_2*D_y$$
 (III)

30

40

where

- M¹ is an element of group 4, 5 or 6 of the Periodic Table of the Elements,
- R¹ are identical C₁-C₂₀-alkyl or C₇-C₄₀-arylalkyl radicals,
 - X are identical or different halogens,
 - R² are identical or different C₁-C₄₀ radicals,

R³ a

5

are identical or different C1-C40 radicals,

- is a divalent C₁-C₄₀ group which together with the cyclopentadienyl ring forms a further saturated or unsaturated ring system which has a ring size of from 5 to 12 atoms, where T may contain the heteroatoms Si, Ge, N, P, O or S in the ring system fused onto the cyclopentadienyl ring,
- M² is Li, Na, K, MgCl, MgBr, Mgl, Mg or Ca,
- 10 D is an uncharged Lewis base ligand,
 - x is equal to the oxidation number of M¹ minus 2,
 - y is from 0 to 2

and

15

20

25

30

- p is 1 in the case of doubly positively charged metal ions or 2 in the case of singly positively charged metal ions or metal ion fragments.
- 2. A process as claimed in claim 1, wherein
 - T is a 1,3-butadiene-1,4-diyl group which may be unsubstituted or be substituted by from 1 to 4 radicals R⁴, where the two 1,3-butadiene-1,4-diyl groups may be different,
 - R⁴ are identical or different C₁-C₂₀ radicals,
 - M¹ is titanium, zirconium or hafnium,
 - R^1 are identical C_1 - C_5 -alkyl or C_7 - C_{20} -arylalkyl radicals,
 - X is halogen and
- 35 R^2 , R^3 , M^2 , D, p, x and y are as defined in claim 1.
 - 3. A process as claimed in claim 1 or 2, wherein the transition metal dialkyl compound of the formula (III) is produced at above –30°C by combining a compound M¹X_{x+2} with from 2 to 2.5 equivalents of a compound R¹M³ in the presence of a ligand compound D, where

M³ is Li[†], Na[†], K[†], MgCl[†], MgBr[†], Mgl[†], ½ [Mg^{††}] or ½ [Zn^{††}], and

the other variables are as defined in claim 1 or 2.

5

- 4. A process as claimed in claim 1 or 2, wherein the ligand starting compound of the formula (II) or (V) is combined with the transition metal dialkyl compound of the formula (III) at above -30°C.
- 10 5. A process as claimed in claim 4, wherein the reaction mixture is maintained at from 30°C to 150°C for a period of at least 10 minutes after the reaction components have been combined.
- 6. A process as claimed in any of claims 1 to 5, wherein the reaction is carried out in an organic solvent or solvent mixture which comprises at least 10% by volume of an ether.
 - 7. A process as claimed in any of claims 1 to 6, wherein the racemoselectivity = (proportion of rac proportion of meso)/(proportion of rac + proportion of meso) is greater than zero.
- 20 8. The use of a transition metal dialkyl compound of the formula (III) for the racemoselective preparation of silicon-bridged dialkyl-ansa-metallocenes of the formula (I).

25

30

35