GSOC PROJECT IN AUTOENCODERS

Aditya Choudhary

DATASET

4	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Р	Q
1	Run	Lumi	Event	MR	Rsq	E1	Px1	Py1	Pz1	E2	Px2	Py2	Pz2	HT	MET	nJets	nBJets
2	148029	388	3.02E+08	215.553	0.031977	136.71	-109.893	-54.0342	-58.9032	142.179	70.0254	41.1225	-116.513	203.666	18.311		2 0
3	148029	388	3.02E+08	155.437	0.042157	83.3865	81.15	6.88361	-12.9688	73.9025	-72.2472	11.8835	3.0899	154.659	14.7747		2 0
4	148029	388	3.02E+08	400.563	0.026938	253.184	139.902	102.64	-101.935	535.551	-110.379	-89.0929	-516.179	343.28	25.2211		3 0
5	148029	388	3.02E+08	286.245	0.094192	175.486	-156.024	-62.9535	-47.7434	112.851	89.0843	3.45025	67.9007	257.397	46.0288		2 0
6	148029	388	3.02E+08	204.514	0.018804	833.795	100.41	-16.659	-827.498	445.612	-91.1991	15.5583	-390.144	269.492	8.11345		3 0

- The columns other than A,B,C,P and Q were considered for data compression owing to their high entropy
- The dataset had 21726 rows and 17 columns with no empty/null value
- The data is similar to data obtained in collisions at LHC and hence holds scientific importance in the field of high energy physics

USING BALER

- The <u>Proton Collision Dataset</u> from Kaggle was used. The data was available in csv so to convert to a pandas dataframe, pd.read_csv was used directly and relevant columns were kept and others dropped.
- Owning to the small size, a batch size of 32 was used. The george_SAE model after some improvements gave the best results
- Other than Py I, Px2 and Py2 all other features showed good reconstruction. Best validation loss of 0.0030 I I was achieved during training with 20 epochs. Early Stopping condition wasn't invoked in any of the epochs
- PDFs containing results can be found in /deliverables

RESULTS

FURTHER IMPROVEMENTS

- Using VAE with convolutional layers and appropriate kernel may help in providing better results.
- Adjusting weight of the KLD Loss hyperparameter may help in giving better results than SAE.
- Number of hidden layers and their size can also be increased to get better results.
 Currently hidden layers with at most 256 nodes have been used.
- For this dataset, batch size can be further reduced to get better results at cost of increased training time.