Assignments - IX

Definition 1 (Integer Partition) *Let n be a non-negative integer. A rank k partition of n is a k-tuple of positive integers* $(\lambda_1, \lambda_2, ..., \lambda_k)$ *satisfying*

$$n = \sum_{i=1}^{k} \lambda_i, \quad n \ge \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k \ge 1. \tag{1}$$

The summands of the partition are known as parts. Hasse diagram is defined in terms of one partition is covered by another. Partition cover is formally defined as –

Definition 2 (Partition Cover) *If* λ *and* λ' *are two partitions of a positive integer* n, *then we say that* λ *is covered by* λ' , *written as* $\lambda \leq \lambda'$, *if two summands of* λ *can be added to form* λ' .

Example 1 *Let two partitions of* 7 *be* $\lambda = \langle 3, 2, 1, 1 \rangle$ *and* $\lambda' = \langle 5, 1, 1 \rangle$. λ *is covered by* λ' *because two summands of* λ , *i.e.*, 2 *and* 3 *is added to form* λ' .

Using the notion of the partition cover, Hasse diagram is defined as –

Definition 3 (Hasse Diagram) Let \mathcal{P}_n to be the set of all partitions of a positive integer n. We can organize \mathcal{P}_n using a graphical representation called a Hasse diagram \mathbb{G}_n in the following way. We create the graph \mathbb{G}_n with vertices $V = \{\lambda : \lambda \in \mathcal{P}_n\}$ arranged in rows, according to rank. We then add edges

$$E = \{(\lambda, \lambda') : \lambda, \lambda' \in \mathcal{P}_n \text{ and either } \lambda \lessdot \lambda' \text{ or } \lambda' \lessdot \lambda\}$$

A node in a Hasse diagram \mathbb{G}_n is represented as Node = $\langle nodeId, partition \rangle$.

- nodeId: It corresponds to the unique id assigned to each node. It is represented as Node.nodeId.
- partition: It represents the partition of an integer *n* corresponding to the node. It is denoted as Node.partition.

Figure 1: Hasse diagram for \mathcal{P}_7

The Hasse diagram G_7 is shown in Figure 1. The id of each node is shown adjacent to it in the circle.

Write a program to generate the Hasse Diagram given a positive integer $n(1 \le n \le 50)$. Perform BFS and DFS on this Hasse Diagram.