# Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Физтех-школа аэрокосмических технологий

# ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ – 2 Численное решение задачи Коши

Выполнил: Алиев Артем Эльдарович Группа Б03-907

Долгопрудный

2021 г.

# Содержание

| 1 Условие                         |   |  |
|-----------------------------------|---|--|
| 2 Теория                          | 3 |  |
| 3 Решение                         | 4 |  |
| 3.1 Проверка интеграла            | 4 |  |
| 3.2 Метод средних прямоугольников | 4 |  |
| 3.3 Метод правых прямоугольников  | 5 |  |
| 3.4 Метод трапеций                | 5 |  |
| 3.5 Метод Симпсона                | 6 |  |
| 4 Результаты                      | 6 |  |
| 5 Итог                            | 6 |  |

#### 1 Условие

Найти значение задачи Коши:  $(xy - x^2)y' + y^2 - 3xy - 2x^2 = 0$ , y(0) = 0 на отрезке [a, b], где **a = -1**, **b = 0.5** с заданной точностью **E = 10**-4, используя метод Эйлера с пересчетом:

#### 2 Теория

#### Метод Эйлера

Рассмотрим дифференциальное уравнение

$$y' = f(x, y) \tag{4.1}$$

с начальным условием

$$y(x_0) = y_0.$$
 (4.2)

Выбрав достаточно малый шаг h, построим систему равноотстоящих точек  $x_i = x_0 + ih$  (i = 0, 1, 2, ...).

В методе Эйлера приближенные значения  $y\left(x_{i}\right)\approx y_{i}$  вычисляются последовательно по формулам

$$y_{i+1} = y_i + hf(x_i, y_i)$$
  $(i = 0, 1, 2, ...).$  (4.3)

При этом искомая интегральная кривая y=y(x), проходящая через точку  $M_0(x_0, y_0)$ , заменяется ломаной  $M_0M_1M_2\ldots$  с вершинами  $M_i(x_i, y_i)$   $(i=0,1,2,\ldots)$ ; каждое звено  $M_iM_{i+1}$  этой ломаной, называемой ломаной Эйлера, имеет направление, совпадающее с направлением той интегральной кривой уравнения (4.1), которая проходит через точку  $M_i$ .

Если правая часть уравнения (4.1) в некотором прямоугольнике  $R\{|x-x_0| \le a, |y-y_0| \le b\}$  удовлетворяет условиям

$$|f(x, y_1) - f(x, y_2)| \le N|y_1 - y_2|$$
 (N = const), (4.4)

$$\left|\frac{df}{dx}\right| = \left|\frac{\partial f}{\partial x} + f\frac{\partial f}{\partial y}\right| \le M \quad (M = \text{const}),$$
 (4.5)

то имеет место следующая оценка погрешности:

$$|y(x_n)-y_n| \leq \frac{hM}{2N} [(1+hN)^n-1],$$
 (4.6)

где  $y(x_n)$ — значение точного решения уравнения при  $x=x_n$ , а  $y_n$  — приближенное значение, полученное на n-м шаге.

#### Метод Эйлера с пересчетом

Метод Эйлера — Коши решения задачи (4.1), (4.2) можно еще более уточнить, применяя итерационную обработку (см. [45]) каждого значения у. А именно, исходя из грубого приближения

$$y_{i+1}^{(0)} = y_i + hf(x_i, y_i), (6.1)$$

построим итерационный процесс

$$y_{i+1}^{(k)} = y_i + \frac{h}{2} \left[ f(x_i, y_i) + f(x_{i+1}, y_{i+1}^{(k-1)}) \right]. \tag{6.2}$$

Итерации продолжаем до тех пор, пока в двух последовательных приближениях  $y_{i+1}^{(k)}$ ,  $y_{i+1}^{(k+1)}$  не совпадут соответствующие десятичные знаки. После этого полагаем

$$y_{i+1} \approx y_{i+1}^{(k+1)}$$
.

Как правило, при достаточно малом h итерации быстро сходятся. Если после трех-четырех итераций не произошло совпадения нужного числа десятичных знаков, то следует уменьшить шаг расчета h.

Пример 6.1. Применяя метод итерационной обработки, найти с точностью до 10<sup>-4</sup> значение у (0,1) решения уравнения

$$y' = x + y$$

с начальным условием y(0) = 1.

#### 3 Решение

#### 3.1 Поиск шага h

```
while True:

N += 1 # число разбиений

h = (b - a) / N # шаг

res_1 = euler_recalculation(h / 2)

res_2 = euler_recalculation(h)

#print(res_1, res_2)

delta = abs((res_1 - res_2))

if delta < e:

print(h)

break
```

h = 0.0016835016835016834

## 3.2 Поиск решения ЗК на отрезке метрдом Эйлера с пересчетом

```
while x < xn:

# Считаем значение функции методом Эйлера
Y = y + h * func(x, y)
euler.append(Y)

# Пересчитываем полученное значение
y += 0.5 * h * (func(x, y) + func(x + h, Y))
euler_recal.append(y)
x += h
x value.append(x)
```

#### Выбрал 20 значений с шагом кратному h

| Euler recalculation: |       |
|----------------------|-------|
| x =                  | y =   |
| 0,00                 | 0,00  |
| 0,05                 | -0,05 |
| 0,10                 | -0,10 |
| 0,15                 | -0,15 |
| 0,20                 | -0,20 |
| 0,25                 | -0,25 |
| 0,30                 | -0,30 |
| 0,36                 | -0,35 |
| 0,41                 | -0,39 |
| 0,46                 | -0,44 |
| 0,51                 | -0,48 |
| 0,56                 | -0,52 |
| 0,61                 | -0,55 |
| 0,66                 | -0,58 |
| 0,71                 | -0,61 |
| 0,76                 | -0,64 |
| 0,81                 | -0,66 |
| 0,86                 | -0,69 |
| 0,91                 | -0,70 |
| 0,96                 | -0,72 |

## 4 Результаты

Сравним метод Эйлера с пересчетом с точными значением решения, посчитанный мною с теми же x с помощью Excel

| Formula: |      |       |
|----------|------|-------|
| x =      |      | у =   |
|          | 0,00 | 0,00  |
|          | 0,05 | -0,05 |
|          | 0,10 | -0,10 |
|          | 0,15 | -0,15 |
|          | 0,20 | -0,20 |
|          | 0,25 | -0,25 |
|          | 0,30 | -0,30 |
|          | 0,36 | -0,35 |
|          | 0,41 | -0,39 |
|          | 0,46 | -0,44 |
|          | 0,51 | -0,48 |
|          | 0,56 | -0,52 |
|          | 0,61 | -0,55 |
|          | 0,66 | -0,58 |
|          | 0,71 | -0,61 |
|          | 0,76 | -0,64 |
|          | 0,81 | -0,66 |
|          | 0,86 | -0,69 |
|          | 0,91 | -0,70 |
|          | 0,96 | -0,72 |



## 5 Вывод

В данной задаче мы воспользовались методом Эйлера с пересчетом для нахождения решения задачи Коши с заданной точностью. У нас получилось не выйти за рамки заданной точности, что можно считать успешным выполнением данной работы.

Ссылка на GitHub кода