東芝 MOS 形デジタル集積回路 シリコンモノリシック シリコンゲート CMOS

64M (4M×16) ビット CMOS FLASH MEMORY

無鉛製品

1. 概 要

TC58FVM6(T/B)5B は、67,108,864 ビット (4,194,304 × 16 ビット構成) で、3 V 単一電源による電気的消去および書き込み可能なフラッシュメモリです。

TC58FVM6(T/B)5B は、標準的な E^2 PROM の JEDEC 標準コマンドコントロール方式を用いていますのでマイクロプロセッサとのインタフェースが容易で、実装ボード上で書き込みおよび消去の制御を容易に行うことができます。書き込みおよび消去動作は、実行・検証を内部で自動的に行います。同時実行機能を搭載していますので、書き込みや消去動作中でもデータの読み出しを行うことが可能です。さらに高速の書き込み及び読み出しを行うためのページリード動作が可能です。

2. 特 長

- 電源 V_{DD} = 2.7 V~ 3.6V
- 動作温度(周囲) Ta = −40°C~85°C
- 構成 4M×16 ワード
- 機能

書き込み/消去と読み出しの同時実行非同期ページリード(8ワード) 自動プログラム/ページプログラム 連続プログラム/アクセラレーション 自動チップ消去/自動ブロック消去 データポーリング/トグルビット プログラムサスペンド/レジューム 消去サスペンド/レジューム ブロック保護/ブートブロック保護 オートマチックスリープ Hidden ROM 領域 CFI 準拠

- ブロック消去アーキテクチャ 8×8Kバイト/127×64Kバイト
- バンクアーキテクチャ 8M ビット×8バンク
- ブートブロックアーキテクチャTC58FVM6T5B … トップブートブロック TC58FVM6B5B … ボトムブートブロック
- モードコントロール JEDEC 標準コマンド準拠
- 書き替え回数 10⁵回以上
- アクセスタイム (ランダム/ページ) 65ns / 25ns (CL=30pF) 70ns / 30ns (CL=100pF)
- ページ長: 8ワード
- 消費電流

10uA (待機時)15mA (書き込み/消去時)5mA (ページリード時)55mA (ランダムリード時)

- 11mA (アドレスインクリメントリード時)
- パッケージ

TC58FVM6(T/B)5BTG

TSOPI48-P-1220-0.50 (質量: 0.51 g)

TC58FVM6(T/B)5BXG

P-TFBGA56-0710-0.80DZ (質量: 0.125 g)

無鉛製品

目次

34M(4M×16)ビット CMOS FLASH MEMORY	<u> 1</u>
1. 概 要	1
2. 特 長	
1 次	
9. オーダ型名	
4. ピン接続図(TOP VIEW)	
5. ブロック図	
6. モード選択	
7. ID コード表	
8. コマンドシーケンス	
9. 同時実行機能	
10. 基本動作モード	
10.1 リード	
10.2. ID リード	10
10.3. スタンバイ	
10.4. オートマチックスリープ	10
10.5. 出力ディセーブル	10
10.6. コマンドライト	11
10.7. ソフトウェアリセット	11
10.8. ハードウェアリセット	
10.9. ソフトウェアリセットとハードウェアリセットの違い	11
10.10. 自動プログラム	
10.11. 自動ページプログラム	
10.12. 連続プログラム	
10.13. アクセラレーション機能	
10.14. プログラムサスペンド/レジューム	
10.15. 自動チップ消去	
10.16. 自動ブロック消去/自動マルチブロック消去	10
10.17. 消去サスペンド/レジューム	
10.18. ブロック保護	
10.19. Hidden ROM 領域	
10.20. CFI (Common Flash memory Interface)	
10.21. ハードウェアシーケンスフラグ	
11. データ保護	
11.1. 低 VDD 書き込み消去防止	
11.2. ライトパルス"グリッチ"誤動作防止	
11.3. 電源投入時誤動作防止	
12. 絶対最大定格	26
13. ピン容量 (TA = 25°C, F = 1 MHZ)	26
14. DC 許容動作条件	26
15. DC 電気的特性	27
16. AC テスト条件	27
17. AC 電気的特性	
17.1. リードサイクル	
17.2. ブロック保護	
17.3. 書き込み/消去特性	
17.4. コマンドライト/プログラム/消去サイクル	
18. タイミング図	
19. フローチャート	
20. ブロックアドレス表	
20.1. TC58FVM6T5B (Top Boot Block) 1/5	
20.1. TC58FVM6B5B (Bottom Boot Block) 1/5	
21. ブロックサイズ表	
21.1. TC58FVM6T5B (Top Boot Block)	
21.2. TC58FVM6B5B (Bottom Boot Block)	
22. 外形図	
23. 変更履歴	78

3. オーダ型名

型名	機能	ブートブロック	スピード バージョン	パッケージ
TC58FVM6T5BXG65	ページ	トップ	65 ns	P-TFBGA56-0710-0.80DZ
TC58FVM6B5BXG65	ページ	ボトム	03 118	(鉛フリー)
TC58FVM6T5BTG65	ページ	トップ	65 ns	TSOPI48-P-1220-0.50
TC58FVM6B5BTG65	ページ	ボトム	03 118	(鉛フリー)

4. ピン接続図(TOP VIEW)

<u>ピン名称</u>

TC58FVM6T5BTG / TC58FVM6B5BTG

A15 □ 1 [○]	48 □ A16
A14 ☐ 2	47 □ N.C.
A13 □ 3	46 □ Vss
A12 □ 4	45 □ DQ15
A11 🗗 5	44 □ DQ7
A10	43 □ DQ14
A9 🗆 7	42 DQ6
A8 🗆 8	41 DQ13
A8 □ 8 A19 □ 9	40 □ DQ5
A20 10	39 DQ12
WE 411	38 DQ4
	37 - VDD
A21 d 13	36 □ DQ11
RESET 12 A21 13 WP/A <u>CC</u> 14	35 DQ3
RY/BY 415	34 □ DQ10
RY/BY	33 DQ2
A17 🗆 17	32 Þ DQ9
A7 □ 18	31 P DQ1
A6 🗆 19	30 DQ8
A5 $\Box \overset{10}{20}$	29 □ DQ0
A4 21	28
A3 🗆 22	27 D VSS
	26 P CE
A2 □ 23 A1 □ 24	25 Þ AÖ

A0~A21	アドレス入力
DQ0~DQ15	データ入出力
CE	チップイネーブル入力
ŌĒ	アウトプットイネーブル入力
WE	ライトイネーブル入力
RY/BY	レディ・レディ/ビジー出力
RESET	ハードウェアリセット入力
WP/ACC	ライトプロテクト/ アクセラレーション入力
V _{DD}	電源
V _{SS}	グラウンド
N.C	無接続

TC58FVM6T5BXG / TC58FVM6B5BXG

ボールアサイン TOP VEIW

<u>5. ブロック図</u>

6. モード選択

モード	CE	ŌE	WE	A9	A6	A1	A0	RESET	WP/ACC	DQ0~DQ15
リード/ページリード	L	L	Н	A9	A6	A1	A0	Н	*	D _{OUT}
ID リード (メーカーコード)	L	L	Ι	V_{ID}	Ш	Ш	L	H	*	Code
ID リード (デバイスコード)	L	L	Н	V _{ID}	L	L	Н	Н	*	Code
スタンドバイ	Н	*	*	*	*	*	*	Н	*	High-Z
出力ディセーブル	*	Н	Н	*	*	*	*	*	*	High-Z
ライト	L	Н	(1) 1	A9	A6	A1	A0	Н	*	D _{IN}
ブロック保護 1	L	V _{ID}	(1) -	V _{ID}	L	Н	L	Н	*	*
ブロック保護 2	L	Н	Н	*	L	Н	L	V_{ID}	*	*
ベリファイブロック保護	L	L	Н	V _{ID}	L	Н	L	Н	*	Code
一時的なブロック保護解除	*	*	*	*	*	*	*	V _{ID}	*	*
ハードウェアリセット/ スタンドバイ	*	*	*	*	*	*	*	L	*	High-Z
ブートブロック保護	*	*	*	*	*	*	*	*	L	*

注: *: V_{IH} or V_{IL} L: V_{IL} H: V_{IH} (1) パルス入力

<u>7. ID コード表</u>

9 -	A21~A12	A6	A1	A0	コード (HEX)	
メーカーコード	Х	L	L	L	0098h	
TC58FVM6T5		Х	L	L	Н	002Dh
デバイスコード	TC58FVM6B5	Х	L	L	Н	002Eh
ベリファイブロック保証	BA ⁽¹⁾	L	Н	L	Data ⁽²⁾	

注: X: V_{IH} or V_{IL} L: V_{IL} H: V_{IH}

(1) BA: ブロックアドレス

(2) 0001h-保護されたブロックでの出力 0000h-保護されていないブロックでの出力

<u>8. コマンドシーケンス</u>

モード	バスサイ	第1バ. ライトサイ		第 2 ライト !	バス ナイクル	第3. ライトサ		第 4 ライト †		第 5 ライト ル	サイク		ìバス サイクル
	クル数	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data
リード/リセット	1	XXXh	F0h										
リード/リセット	3	555h	AAh	2AAh	55h	555h	F0h	RA ⁽¹⁾	RD ⁽²⁾				
ום יו — וי	3	555h	AAh	2AAh	55h	BK ⁽³⁾ + 555h	90h	IA ⁽⁴⁾	ID ⁽⁵⁾				
自動プログラム	4	555h	AAh	2AAh	55h	555h	A0h	PA ⁽⁶⁾	PD ⁽⁷⁾				
自動 ページプログラム	11	555h	AAh	2AAh	55h	555h	E6h	PA ⁽⁶⁾	PD ⁽⁷⁾	PA ⁽⁶⁾	PD ⁽⁷⁾	PA ⁽⁶⁾	PD ⁽⁷⁾
プログラムサスペンド	1	вк ⁽³⁾	B0h										
プログラムレジューム	1	вк ⁽³⁾	30h										
自動チップ消去	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	555h	10h
自動ブロック消去	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	BA ⁽⁸⁾	30h
ブロック消去サスペンド	1	вк ⁽³⁾	B0h										
ブロック消去レジューム	1	вк ⁽³⁾	30h										
連続プログラム セット	3	555h	AAh	2AAh	55h	555h	20h						
連続プログラム	2	XXXh	A0h	PA ⁽⁶⁾	PD ⁽⁷⁾								
連続プログラムリセット	2	XXXh	90h	XXXh	F0h ⁽⁹⁾								
ブロック保護 2 ⁽¹⁰⁾	3	XXXh	60h	BPA ⁽¹¹⁾	60h	XXXh	40h	BPA ⁽¹¹⁾	BPD ⁽¹²⁾				
Hidden ROM モード Entry	3	555h	AAh	2AAh	55h	555h	88h						
Hidden ROM プログラム	4	555h	AAh	2AAh	55h	555h	A0h	PA ⁽⁶⁾	PD ⁽⁷⁾				
Hidden ROM 消去	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	BA ⁽⁸⁾	30h
Hidden ROM 保護	5	555h	AAh	2AAh	55h	555h	60h	XX1Ah	68h	XX1Ah	48h	RA ⁽¹⁾	RD ⁽²⁾
Hidden ROM Exit	4	555h	AAh	2AAh	55h	555h	90h	XXXh	00h				
CFI	1	BK ⁽³⁾ + 55h	98h	CA ⁽¹³⁾	CD ⁽¹⁴⁾								

注:コマンド入力時の有効アドレス 555h または 2AAh (A10~A0)

DQ8~DQ15 の入力は無視します。

- X: VIH or VIL (0h-Fh)
 - (1) RA: リードアドレス
 - (2) RD:リードデータ出力
 - (3) BK: バンクアドレス = A21~A19
 - (4) IA: バンクアドレスと ID リードアドレス (A6,A1,A0) バンクアドレス = A21~A19

メーカーコード = (0,0,0)デバイスコード = (0,0,1)

- (5) ID:ID コード出力
- (6) PA: プログラムアドレス

ページプログラムの場合は(A0,A1,A2)=(0,0,0)~(1,1,1)

の連続した8アドレスを入力

(7) PD: プログラムデータ入力

(ページプログラムの場合第 4 バスライトサイクル から第 11 バスライトサイクルまで入力が必要)

- BA: ブロックアドレス = A21~A12 (8)
- (9) F0h: 00h も使用可能
- (10) RESET =VID を入力
- (11) BPA: ブロックアドレスと ID リードアドレス (A6,A1,A0)

ブロックアドレス = A21~A12 ID リードアドレス = (0,1,0)

- (12) BPD:ベリファイデータ出力
- (13) CA: CFI アドレス
- (14) CD: CFI データ出力

:リード動作

TOSHIBA

8. コマンドシーケンス(続き)

モード	バス サイ	-1-	バス ナイクル	第 2 ライトサ	バス ナイクル	第 3 ライト !			· バス サイクル		バス ナイクル	***	うバス サイクル		バス サイクル
	クル 数	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data	Addr.	Data
		555h	AAh	2AAh	55h	555h	38h	XX0h	PD0 ⁽¹⁾						
パスワード プログラム	4	555h	AAh	2AAh	55h	555h	38h	XX1h	PD1 ⁽¹⁾						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4	555h	AAh	2AAh	55h	555h	38h	XX2h	PD2 ⁽¹⁾						
		555h	AAh	2AAh	55h	555h	38h	XX3h	PD3 ⁽¹⁾						
パスワード アンロック	7	555h	AAh	2AAh	55h	555h	28h	XX0h	PD0 ⁽¹⁾	XX1h	PD1 ⁽¹⁾	XX2h	PD2 ⁽¹⁾	XX3h	PD3 ⁽¹⁾
パスワード ベリファイ	4	555h	AAh	2AAh	55h	555h	C8h	PWA ⁽²⁾	PWD ⁽³⁾						
パスワード保護モード ロック	6	555h	AAh	2AAh	55h	555h	60h	X0Ah	68h	X0Ah	48h	XXh	PD(0) ⁽⁴⁾		
ノンパスワード保護 モードロック	6	555h	AAh	2AAh	55h	555h	60h	X12h	68h	X12h	48h	XXh	PD(0) ⁽⁴⁾		
PPB セット	6	555h	AAh	2AAh	55h	555h	60h	BA ⁽⁵⁾ + XX02h	68h	BA ⁽⁵⁾ + XX02h	48h	XXh	PD(0) ⁽⁴⁾		
ALL PPB 解除	6	555h	AAh	2AAh	55h	555h	60h	XX02h	60h	BA ⁽⁵⁾ + XX02h	40h	XXh	PD(0) ⁽⁴⁾		
ベリファイ ブロック保護	4	555h	AAh	2AAh	55h	BA ⁽⁵⁾ + 555h	90h	BA ⁽⁵⁾ + XX02h	PD(0) ⁽⁴⁾						
PPB ロック セット	3	555h	AAh	2AAh	55h	555h	78h	(5)							
PPB ロック ベリファイ	4	555h	AAh	2AAh	55h	555h	58h	BA ⁽⁵⁾	PD(1) ⁽⁴⁾						
DPB セット	4	555h	AAh	2AAh	55h	555h	48h	BA ⁽⁵⁾	X1h						
DPB 解除	4	555h	AAh	2AAh	55h	555h	48h	BA ⁽⁵⁾	X0h						
DPB ベリファイ	4	555h	AAh	2AAh	55h	555h	58h	BA ⁽⁵⁾	PD(0) ⁽⁴⁾						

注:コマンド入力時の有効アドレス

555h または 2AAh (A10~A0)

DQ8~DQ15 の入力は無視します。

X: VIH or VIL (0h-Fh)

(1) PD0: パスワード(64bit)の 1-16bit のデータ PD1: パスワード(64bit)の 17-32bit のデータ PD2: パスワード(64bit)の 33-48bit のデータ PD3: パスワード(64bit)の 49-64bit のデータ

(2) PWA: パスワードアドレス入力

(3) PWD: パスワードデータ出力

(4) PD(0): DQ0 データ (1: セット / 0: リセット) PD(1): DQ1 データ (1: セット / 0: リセット)

(5) BA: ブロックアドレス = A21~A12

:リード動作

9. 同時実行機能

TC58FVM6(T/B)5B は、同時実行機能を搭載しています。同時実行は、任意のバンクで書き込みや消去等の動作をさせながら、同時に他のバンクからデータを読み出すことができる機能です。

本デバイスのバンク構成は、8Mbits x 8 の 8 バンク構成になっています。バンクの切り替えはバンクアドレス (A21~A19) で行います。バンクに対応するブロックやアドレスは、「ブロックアドレス表」や「ブロックサイズ表」を参照してください。

同時実行動作は、同一バンクで複数の動作を行うことができません。下表に同時実行が可能な動作モードを示します。

なお、自動プログラムや自動ブロック消去動作実行中は、同一バンク内の動作非対象のアドレスのデータは同時実行機能では読み出すことができません。この場合は、プログラムサスペンド、または消去サスペンド機能を用いることにより可能になります。

自動動作実行中に同時動作を行う為にバンクを切り替える時には、 \overline{OE} を V_{IH} にする必要があります。

同時実行モード一覧

任意のバンクの状態	他のバンクの状態
リード	
ID 1)— F ⁽¹⁾	
自動プログラム	
自動ページプログラム	
連続プログラム ⁽²⁾	
プログラムサスペンド	リード
自動ブロック消去	9-1-
自動マルチブロック消去 ⁽³⁾	
消去サスペンド	
消去サスペンド中のプログラム	
消去サスペンド中のプログラムサスペンド	
CFI	

- (1) コマンドモードのみ有効です。
- (2) アクセラレーション機能使用時を除く。
- (3) 選択ブロックがすべてのバンクに存在するとき、同時実行できません。

10. 基本動作モード

TC58FVM6(T/B)5Bは、リード、ページリード、プログラム、消去モードの他にブロック保護や、データポーリングなど多様な機能を備えています。ご使用にあたりましては、以下の説明とともにタイミング図やフローチャートも適宜参照してください。

10.1 リード

メモリーセルアレイからデータを読み出す場合、デバイスをリードモードにセットします。

電源導入直後や自動動作の終了後は、自動的にリードモードになります。また、ソフトウェアリセットによって、ID リードモードの解除や自動動作が異常終了したときのロックを解除し、リードモードにセットできます。ハードウェアリセットは、デバイスの動作を中止して、リードモードにリセットします。なお、電源投入直後にアドレスを変化させずに読み出しを行う場合、ハードウェアリセットでデバイスをリセットするか、 \overline{CE} を "H" から "L" に変化させてから行ってください。

またリードモード時は A0-2 で指定されるアドレス(8 ワード)単位でのページアクセスが可能です。

10.2. ID リード

ID リードモードは、デバイスのメーカーコードとデバイスコードを読み出すのに用いられます。EPROM プログラマなどでデバイスのタイプを自動的に認識する場合に有効です。

ID リードを実行するには以下の二つの方法があります。ID リードのアクセスタイムはリード動作と同じです。コードは「ID コード表」を参照してください。

(1) A9 に V_{TD}を印加する方法

主に EPROM プログラマで使用されている方法です。A9 に V_{ID} を印加するとデバイスが ID リードモードになり、アドレス 00h 番地からメーカーコード、01h 番地からデバイスコードを出力します。A9 の V_{ID} を解除することで、リードモードに復帰します。この方法では、すべてのバンクが ID リードモードになるため、同時実行動作はできません。またこの方法は非同期モードの時に使用できます。

(2) コマンドシーケンスを入力する方法

コマンドシーケンスを用いる方法では、同時実行動作が可能です。ID リードコマンドを入力すると、指定されたバンクは ID リードモードになります。バンクの指定は、コマンドサイクルの第 3 バスライトサイクルでバンクアドレス (BK) を入力することで行います。ID コードを読み出すには、ID リードアドレスに加えてバンクアドレスも指定する必要があります。アドレス BK + 00 番地からメーカーコード、BK + 01 番地からデバイスコードを出力します。他のバンクからはメモリセルのデータを出力します。リセットコマンドを入力すると、本モードを解除してリードモードに復帰します。

10.3. スタンバイ

TC58FVM6(T/B)5B は、以下の二つの方法でスタンバイモードにすることができます。スタンバイモード時の DQ は、ハイインピーダンスになります。

(1) $\overline{\text{CE}}$ と $\overline{\text{RESET}}$ でコントロールする方法

デバイスがリードモードのときに、 $\overline{\text{CE}}$ と $\overline{\text{RESET}}$ に $V_{DD} \pm 0.3$ V を入力します。このときデバイスはスタンバイモードになり、電流はスタンバイ電流(I_{DDS1})になります。ただしデバイスが同時実行動作中の場合は、スタンバイモードにはならずに動作電流を流します。

(2) RESET のみでコントロールする方法

デバイスがリードモードのときに、RESET に $V_{SS}\pm0.3$ V を入力します。このときデバイスはスタンバイモードになり、電流はスタンバイ電流 (I_{DDS1}) になります。この方法では、デバイスが同時実行動作中の場合でも、実行中の動作を中止してスタンバイモードにすることができます。これは、後述するハードウェアリセットです。

10.4. オートマチックスリープ

オートマチックスリープはリード動作中の消費電力を抑える機能です。非同期リード時はアドレス入力が 150 ns 以上の間変化しないとき、デバイスは自動的にスリープモードになり、電流はスタンバイ電流 (IDDS2) になります。ただしデバイスが同時実行動作中の場合は、スリープモードにはならずに動作電流を流します。

スリープモード中は出力データをラッチしているので、データの出力は可能です。アドレスを変化させるとスリープモードは自動的に解除され、変化したアドレスのデータが出力されます。

10.5. 出力ディセーブル

 \overline{OE} に V_{IH} を入力すると、デバイスの出力はディセーブルになり、DQ はハイインピーダンスになります。

10.6. コマンドライト

TC58FVM6(T/B)5B は、標準的な E^2 PROM の JEDEC 標準コマンドコントロール方式を用いています。デバイスは、アドレス と DQ に入力された信号をコマンドレジスタにラッチし、命令を実行します。コマンドライトは、 \overline{CE} を \overline{VIL} 、 \overline{OE} を \overline{VIH} として \overline{WE} にパルスを与えることで行います (\overline{WE} コントロール)。また、 \overline{WE} を \overline{VIL} として \overline{CE} にパルスを与えることでも可能です(\overline{CE} コントロール)。デバイスは、 \overline{WE} または \overline{CE} の遅い方の立ち下がりでアドレス、 \overline{WE} または \overline{CE} の早い方の立ち上がりでデータをラッチします。データ入力は、 $\overline{DQ0}$ ~DQ7 を用いて行います。 $\overline{DQ8}$ ~DQ15 の入力は無視されます。

コマンドシーケンスの入力を途中でキャンセルしたい場合は、ソフトウェアリセットを使用します。デバイスはコマンドレジスタをリセットし、リードモードになります。また、間違ったコマンドシーケンスを入力した場合、デバイスはコマンドレジスタをリセットし、リードモードになります。

<u>10.7. ソフトウェアリセット</u>

ソフトウェアリセットは、リード/リセットコマンドを入力して実行します。ID リード/CFI モードからリードモードへの復帰や、自動動作が異常終了した場合のロック状態の解除、またコマンドレジスタのクリアを行うことができます。

10.8. ハードウェアリセット

ハードウェアリセットは、デバイスを初期化しリードモードにセットする機能です。 $\overline{\text{RESET}}$ に t_{RP} のパルス入力を行うと、デバイスはそれまでの動作を終了して t_{READY} の後にリードモードになります。書き込みや消去などデータの書き替え動作中にハードウェアリセットを行うと、そのアドレスまたはブロックのデータは不確定になりますので注意が必要です。

リセット動作が完了した時点で、 \overline{RESET} が V_{IH} のときはリードモードに、 V_{IL} のときはスタンバイモードになります。 \overline{RESET} が V_{IL} の間の DQ はハイインピーダンスになります。データの読み出しまたはコマンドシーケンスの入力を行う際は、デバイスがリードモードに復帰してから行ってください。

10.9. ソフトウェアリセットとハードウェアリセットの違い

動作	ソフトウェアリセット	ハードウェアリセット
ID リード/CFI モードの終了	可能	可能
コマンドレジスタのクリア	可能	可能
自動動作が異常終了したときのロック状態解除	可能	可能
自動動作の中止	不可	可能
上記以外のすべての動作中止、リードモードへの復帰	不可	可能

10.10. 自動プログラム

TC58FVM6(T/B)5B は、ワード単位でメモリセルに書き込みを行います。自動プログラム動作は第4バスライトサイクルで、プログラムアドレスとプログラムデータをそれぞれラッチします。プログラムデータをラッチしたときから自動プログラム動作を開始します。動作を開始すると、プログラムおよびプログラムベリファイを内部で自動的に行います。自動プログラム動作の状態は、ハードウェアシーケンスフラグで確認できます。シーケンスフラグを読むときは、書き込みを行っているアドレスを指定する必要があります。

自動プログラムの動作中は、動作実行中のバンクに対するコマンドシーケンスの入力は受け付けません。動作を中止する場合は、ハードウェアリセットを用います。動作を中止させた場合、データの書き込みは正常に行えないので、注意してください。

また、保護されたブロック内のメモリセルにはデータの書き込みはできません。この場合、デバイスは自動プログラムを実行せず、コマンドシーケンスの第4バスライトサイクルのプログラムデータのラッチから約3μs後にリードモードになります。

もし自動プログラム動作が不良になった場合、デバイスはこのモードのままロックします。この状態はハードウェアシーケンスフラグで確認できます。リードモードに復帰させるために、リセットコマンドかハードウェアリセットを用いてデバイスをリセットする必要があります。この場合、このアドレスへの書き込みが不良となっています。より信頼性の高いシステムを構築される場合は、不良となったブロックは以後使用しないようにホスト側で管理を行ってください。

なお、書き込み動作では、1 データセルを0 データにすることはできますが、0 データセルを1 データにすることはできません。このとき、自動プログラムの動作は不良となりますが、デバイスの不良ではなく、使用方法が正しくないことを示しています。0 データセルを1 データにするには消去を行います。

10.11. 自動ページプログラム

ページプログラムは、8 ワード分のデータを一度にプログラムすることが可能な機能です。この機能を使用することでチップあたりの書き込み時間で比較すると約 60%に短縮することが可能です。第 1 バスライトサイクルから第 3 バスライトサイクルでページプログラムコマンドを入力し、第 4 バスライトサイクルに(A0,A1,A2)= (0,0,0)のアドレスおよびプログラムデータを入力し、その後のバスライトサイクルでは順番にアドレスをインクリメントし、プログラムデータを入力します。第 11 バスライトサイクルで(A0,A1,A2)=(1,1,1)のアドレスおよびプログラムデータを入力することでページプログラム動作が開始します。

10.12. 連続プログラム

連続プログラムは、自動プログラムのコマンドシーケンスを、2サイクルで実行できるようにする機能です。モード中は、通常 4サイクル必要なコマンドシーケンスの最初の 2サイクルを省略し、残りの 2サイクルのみで書き込み動作を行います。連続プログラムを行うには、連続プログラムセットコマンドを入力します。モード中の書き込みは連続プログラムコマンドを用いますが、動作は通常の自動プログラムと同様です。ハードウェアシーケンスフラグによるデバイスの状態確認や、読み出し動作も通常どおり行うことができます。連続プログラムモードを終了させるためには、連続プログラムリセットコマンドを入力します。以降の書き込み動作は通常のモードに戻ります。

10.13. アクセラレーション機能

TC58FVM6(T/B)5B は、書き込み時間の短縮を目的としたアクセラレーション機能があります。 WP/ACC ピンに V_{ACC} を印加すると自動的にアクセラレーションモードになります。アクセラレーションモード中は、ブロック保護は一時的ブロック保護解除の状態になります。また書き込みモードは連続プログラムになります。モードの切り替わりは WP/ACC の信号でコントロールされるので、一時的ブロック保護解除の操作や連続プログラムのセットおよびリセットは必要ありません。書き込みの動作は、自動プログラムと同様です。 WP/ACC の V_{ACC} を解除すると、アクセラレーションモードを終了します。この機能を選択中は自動プログラムまたは自動ページプログラム動作のみが有効です。 ID リードなど他のコマンドは動作しません。

10.14. プログラムサスペンド/レジューム

プログラムサスペンドは、書き込み動作を一時的に中断しデータを読み出すことができる機能です。デバイスは、書き込みモード (消去サスペンド時の書き込みモードも含む) のときにプログラムサスペンドコマンドを受け付け、その他のモードでは無視します。コマンド入力時に書き込み中のバンクアドレスを指定する必要があります。プログラムサスペンドモードでは、リードコマンド、ID リードコマンド、CFI コマンド、およびレジュームコマンド以外は無効です。コマンド入力後、デバイスは tsusp でプログラムサスペンドリードモードになります。

プログラムサスペンド中は、セルデータの読み出しが行えます。書き込みを中断したアドレスからの出力は不確定になります。 プログラムサスペンドを終了し書き込みモードに戻るには、プログラムレジュームコマンドを入力します。コマンド入力時は、 書き込み中のバンクアドレスを指定する必要があります。レジュームコマンドを受け付けると、デバイスは書き込みモードに戻り、 書き込み中のバンクからは、ふたたびハードウェアシーケンスフラグを出力します。

プログラムサスペンドは、連続プログラムやアクセラレーション機能でも動作します。ただし、アクセラレーション機能を用いている場合は、VACCを解除しないください。

10.15. 自動チップ消去

自動チップ消去動作は、コマンドサイクルの第6バスライトサイクルのコマンドラッチから開始します。動作を開始すると、デバイス内部で自動的にすべてのメモリセルに0データのプリプログラムを行い、続けて消去と消去ベリファイを実行します。自動チップ消去動作の状態は、ハードウェアシーケンスフラグで確認できます。

自動チップ消去動作中は、コマンドシーケンスの入力は受け付けません。動作を中止する場合は、ハードウェアリセットを用います。動作を中止させた場合、データの消去は正常に行えないので、再度自動チップ消去を行わなくてはなりません。

また、保護されているブロックがある場合、そのブロックの消去は行いません。すべてのブロックが保護されている場合は、自動チップ消去を実行せず、コマンドシーケンスの第6バスライトサイクルのコマンドラッチから約400 μs 後にリードモードになります。

もし自動チップ消去動作が不良になった場合、デバイスはこのモードのままロックします。この状態はハードウェアシーケンスフラグで確認できます。リードモードに復帰させるために、リセットコマンドかハードウェアリセットを用いてデバイスをリセットする必要があります。この場合、不良が発生したブロックの検知はできません。デバイスの使用を中止するか、より信頼性の高いシステムを構築される場合は、ブロック消去を行い、不良ブロックを特定して、不良となったブロックは以後使用しないようにホスト側で管理を行ってください。

10.16. 自動ブロック消去/自動マルチブロック消去

自動ブロック消去は、第6バスライトサイクルのコマンドラッチから tBEH (消去ホールドタイム) が経過した後に消去動作を開始します。複数のブロックを消去する場合は、第6バスライトサイクルを繰り返し、それぞれのブロックアドレスと自動ブロック 消去コマンドを消去ホールドタイム内に入力します (自動マルチブロック消去)。消去ホールドタイム中に、自動ブロック消去または消去サスペンドコマンド以外のコマンドシーケンスを入力した場合、デバイスはコマンドレジスタをリセットし、リードモードになります。消去ホールドタイムは、コマンドラッチごとに開始します。動作を開始すると、自動的にデバイス内部で選択したブロック内のすべてのメモリセルに0データのプリプログラムを行い、続けて消去と消去ベリファイを実行します。自動ブロック消去動作の状態は、ハードウェアシーケンスフラグで確認できます。シーケンスフラグを読むときは、消去を行っているブロックアドレスを指定する必要があります。なお、選択したブロックがすべてのバンクに存在するとき、同時実行動作はできません。

自動ブロック消去動作中は、消去サスペンドコマンドのみ受け付け、その他のコマンドシーケンスの入力は受け付けません。動作を中止する場合は、ハードウェアリセットを用います。この場合、データの消去は正常に行えないので、再度自動ブロック消去を行う必要があります。

また、選択したブロックに保護されているブロックがある場合、そのブロックの消去は行いません。選択したすべてのブロックが保護されている場合は、自動ブロック消去を実行せず、コマンドシーケンスの最後のバスライトサイクルのコマンドラッチから約 400 us 後にリードモードになります。

もし自動ブロック消去動作が不良となった場合、デバイスはこのモードのままロックします。この状態はハードウェアシーケンスフラグで確認できます。リードモードに復帰させるために、リセットコマンドかハードウェアリセットを用いてデバイスをリセットする必要があります。複数のブロックを選択している場合、不良が発生したブロックの検知はできません。デバイスの使用を中止するか、個々にブロック消去を行い不良ブロックを特定して、その不良ブロックの使用を中止してください。より信頼性の高いシステムを構築される場合は、不良となったブロックは以後使用しないようにホスト側で管理を行ってください。

10.17. 消去サスペンド/レジューム

消去サスペンドモードを使うことにより、自動ブロック消去動作を一時中断し、非選択ブロックのデータ読み出し、および書き込みを行うことができます。デバイスは消去サスペンドコマンドを自動ブロック消去動作時にのみ受け付け、その他のモードでは無視します。コマンド入力時に消去中のバンクアドレスを指定する必要があります。

消去サスペンドモードでは、リードコマンド、ID リードコマンド、CFI コマンド、プログラムコマンドおよびレジュームコマンド以外は無効です。自動ブロック消去動作中に消去サスペンドコマンドを入力した場合、デバイスは t_{SUSE} で消去サスペンドリードモードになったことは、ハードウェアシーケンスフラグで確認できます。自動ブロック消去の選択ブロックに対して連続した読み出しを行うと、DQ2 はトグル出力します。また、DQ6 はそれまでのトグルの出力を停止し、非同期モード時は RY/\overline{BY} はハイインピーダンスになります。

消去サスペンド中に書き込みコマンドを入力することにより、自動ブロック消去の非選択ブロックへの書き込みが可能です。書き込み方法は通常の書き込みと同様です。

自動ブロック消去を再開するには消去レジュームコマンドを入力します。コマンド入力時に、消去を行っていたバンクアドレスを指定する必要があります。消去レジュームコマンドを受け付けると、デバイスは消去サスペンドコマンドを入力したときの状態に戻ります。消去サスペンドコマンドを消去ホールドタイム中に入力した場合は、消去ホールドタイムの開始に戻ります。ここで消去ブロックを追加することができます。また、自動ブロック消去動作中に入力した場合は、消去動作を再開します。このとき、DQ6 は再びトグル出力を開始し、RY/BY は VII. を出力します。

10.18. ブロック保護

ブロック保護は、ブロック単位で書き込みと消去の両方を禁止する機能です。ブロック保護にはいくつかの種類があります。 保護されたブロックにプログラムまたは消去を実行した場合、デバイスはコマンドを無視しリードモードに戻ります。保護されたブロックへのプログラムは、リードモードに戻る前に、およそ3 μsの間のステータス・ポーリングを出力します。保護されたブロックへの消去コマンドは、リードモードに戻る前に、およそ400 μs間のステータス・ポーリングを出力します。

(1) ライトプロテクト (\overline{WP}/ACC ピン) [ハードウェアプロテクト]

デバイスは \overline{WP}/ACC ピンによるブートブロックの一部をハードウェアで書き込みと消去の両方を禁止させる機能を持っています。 \overline{WP}/ACC に V_{IL} を入力するだけで保護ができます。対象ブロックは、ブートブロック中の二つのブロックで、トップブートブロック品が BA133/BA134、ボトムブートブロック品が BA0/BA1 です。 \overline{WP}/ACC に V_{IH} を入力すると本モードは解除されます。このとき、ブロックの保護は、通常のブロック保護モードで設定された状態になります。 \overline{WP}/ACC ピンは書き込みまたは消去動作を行っている間は、 \overline{V}_{IH} または \overline{V}_{IL} に固定しておかなければなりません。

(2) ブロック保護1 パーシステント保護ビット (PPB) [VIDプロテクト]

デバイスに対して、A9 と \overline{OE} に V_{ID} 、A1 に V_{IH} 、 \overline{CE} 、A0 と A6 に V_{IL} を指定し、さらにブロックアドレスを指定します。 ここで、 \overline{WE} に t_{PPLH} のパルスを与えると、デバイスはパーシステント保護ビット(PPB)への書き込みを行います。書き込みが完了したかどうかを確認するには、ベリファイブロック保護を行います。 \overline{OE} を V_{IL} にするとベリファイモードになり、保護が完了していると "01h" を出力します。それ以外が出力された場合は再度書き込みを行ってください。A9 と \overline{OE} の V_{ID} を解除すると、本モードを終了します。

(3) ブロック保護 2 パーシステント保護ビット (PPB) [VIDプロテクト]

RESET に V_{ID} を印加し、ブロック保護 2 コマンドを入力することで、ブロック保護を行います。コマンドシーケンスの最初の 1 サイクルはセットアップコマンドです。第 2 サイクルはブロック保護コマンドで、ブロックアドレスと、A1 に V_{IH} 、A0 と A6 に V_{IL} を入力します。この時点でデバイスはパーシステント保護ビット(PPB)への書き込みを行います。書き込みの動作が終了するまで、 t_{PPLH} の間待つ必要がありますが、この期間中にデバイスのコントロールは必要ありません。第 3 サイクルはベリファイコマンドで、保護回路の書き込みベリファイを行います。第 4 サイクルで読み出しを行い、保護動作が完了していると"01h"を出力します。それ以外が出力された場合は、再度ブロック保護コマンドを入力してください。 RESETの V_{ID} を解除すると、本モードを終了します。

(4) ブロック保護 3 パーシステント保護ビット (PPB) [ソフトウェアプロテクション]

 V_{ID} を使用せずにブロック保護を行う機能です。パーシステント保護ビット(PPB)を使用することで各ブロックに対して保護が設定できます。また PPB は、電源遮断でも保持されます。PPB は PPB セットによって各ブロックに対し保護を設定する事ができ、PPB 解除によって保護を解除することができます。PPB 解除時は PPB プログラムと異なりすべての PPB を同時に解除いたします。PPB の状態は、PPB ベリファイで確認することが出来ます。

PPBセットの第5、6バスライトサイクルは、ベリファイのためのコマンドです。動作が完了していると第6バスライトサイクルでDQ0が"1"を出力します。第6バスライトサイクルでDQ0が"0"を出力した場合、PPBの設定が完了していないので再度PPBセットを第4バスライトサイクルから繰り返す必要があります。同様にPPB解除では、動作が完了していると第6バスライトサイクルでDQ0が"0"を出力します。第6バスライトサイクルでDQ0が"1"を出力した場合、PPBの解除が完了していないのでので再度PPB解除を第4バスライトサイクルから繰り返す必要があります。

PPBロックセットコマンドによってPPBロックが設定されると、PPBセットとPPB解除を行うことが出来なくなります。 PPBロックの状態はPPBロックベリファイ時のDQ1の出力で確認することが出来き、DQ1が"1 "のときが設定、"0"のときが解除状態となります。 PPBロックの挙動は、パスワード保護モード、ノンパスワード保護モード時によって異なります。

PPBセット、 PPB解除、PPBロックベリファイ、PPBロックセットは、コマンド終了後Hidden ROM Exitコマンドが必要となります。

PPBとPPBロックの出荷時の状態は解除状態です。

(5) ブロック保護4 ダイナミック保護ビット (DPB) [ソフトウェアプロテクション]

VIDを使用せずにブロック保護を行う機能です。ダイナミック保護ビット(DPB)を使用することで各ブロックに対して保護が設定できます。また、電源投入後、またはハードウェアリセットによって"0"状態(解除状態)になります。DPBセットとDPB解除は、ブロック毎に設定が可能です。

DPBベリファイコマンドを入力することにより、DPBセットかDPB解除かどうか確認できます。DPBセットが完了した時、デバイスは、DPBベリファイの第4バスサイクルのDQ0上に、"1"を出力します。デバイスがDQ0に"0"を出力した時、DPBセットは、完了していません。その場合、DPBセットコマンドから再度、やり直しをしなければいけません。

同様に、DPB解除が完了した時、デバイスは、DPBベリファイの第4バスサイクルのDQ0上に"0"を出力します。デバイスがDQ0に"1"を出力した時、DPB解除は、完了していません。その場合、DPB解除コマンドから再度、やり直しをしなければいけません。DPBセット、DPB解除、DPBベリファイ終了後は、Hidden ROM Exitコマンドが必要となります(DPBコマンド動作のフローチャート p.63参照)。

10.18.1. 各ブロック保護動作の関係

^{*} PPB、DPB のどちらかがプログラムされていると、対象ブロックは保護されます。

10.18.2. ブロックプロテクト対応表

ハードウコ	∟ア保護	ソフトウ	ェア保護	ブロック保護の状態		
WP/ACC	RESET	PPB	DPB	ブート2ブロック	その他ブロック	
		解除	解除		アンプロテクト	
	Н	セット	Χ	-P h 1	プロテクト	
-		Χ	セット	プロテクト	フロノット	
	VID	X	Х		アンプロテクト	
		解除	解除	アンプロテクト	アンプロテクト	
н	Н	セット	Χ	プロテクト	プロテクト	
		Χ	セット	フロノグド	プロノグト	
	VID	Χ	Χ	アンプロテクト	アンプロテクト	

注 X: H or L 、セット状態 or 解除状態

10.18.3. ノンパスワード保護モードとパスワード保護モード

ブロック保護3を使用するにあたり、本デバイスはノンパスワード保護モードとパスワード保護モードの2つの設定があります。 それぞれのモードによって PPB ロックの動作が異なります。本デバイスの使用前にノンパスワード保護モードとパスワードモードのどちらのモードで使用するか選択する必要があります。

本デバイスは、ノンパスワード保護モードロックを行うことでノンパスワード保護モードに設定され、パスワード保護モードロックを行うことでパスワード保護モードに設定されます。保護モードロックは1回のみ設定が可能で、一度設定すると変更はできません。出荷状態は、ノンパスワード保護モードロック、パスワード保護モードロックは、共に解除状態となっております。ノンパスワード保護モードで使用する場合、パスワード保護モードへの切り替え防止のために、ノンパスワード保護モードロックを行わなければなりません。パスワード保護モードで使用する場合は、パスワード保護モードロックを行って下さい。保護モードは一度セットすると、永久に書き換えをすることは出来ません。

ノンパスワード保護モードロック、パスワード保護モードロック時は、第 4 バスライトサイクルで"68h"コマンドを入力した後に、100us の間待たなければなりません。その後、第 5、6 バスライトサイクルのベリファイコマンドを実行し第 6 バスライトサイクルで DQ0 の出力が"1"であれば保護モードロックが完了したことが確認出来ます。第 6 バスライトサイクルでの DQ0 の出力が"0"の場合は、第 4 バスライトサイクル以降を繰り返し行ってください。コマンド終了後は、Hidden ROM Exit コマンドが必要となります。

ノンパスワード保護モード ロック	パスワード保護モード ロック	デバイス状態
0	0	ノンパスワード保護モード(出荷時)
プログラム("1")	0	ノンパスワード保護モード
0	プログラム("1")	パスワード保護モード
プログラム("1")	プログラム("1")	禁止

10.18.4. ノンパスワード保護モードとパスワード保護モード時のPPBロック

ノンパスワード保護モードでは、電源投入時に PPB ロックは解除状態になります。PPB ロックセットを行うと、ブロック保護 3 による PPB の設定/解除が不可能となります。電源再投入またはハードウェアリセットによって PPB ロックは解除され PPB の設定/解除は可能になります。ノンパスワード保護モードでは、パスワードアンロックコマンドは無視されます。

パスワード保護モードでは、PPBロックは電源投入時に設定状態になります。パスワード保護モードロックを行うと、PPBロックはパスワード アンロックコマンドを実行しない限り設定状態で、PPBセットとPPB解除を行うことは出来ません。また、パスワード保護モードロックコマンド前後でPPBロックの状態は変更されません。パスワード アンロックでPPBロックを解除しても、電源再投入、ハードウェアリセット、PPBロックセットによってPPBロックが再度設定されます。また、一度パスワード保護モードロックを行うと、パスワードプログラム、パスワード ベリファイは永久に不可能となります。そのため、ユーザーがパスワード保護モードでの使用を選択された場合、パスワード保護モードロックを行う前に64ビットのパスワードのプログラムを本デバイスに対して行う必要があります。パスワード プログラムを行った後に、確実に所望のパスワードが設定されているかパスワードベリファイで確認してください。一度パスワード保護モードに設定すると、パスワードを確認する手段はなくなます。PPBの変更には、64ビットのパスワードが必要なパスワードアンロックコマンドが必須なため、パスワードは確実に設定してください。

ノンパスワード保護モード、パスワード保護モードにおける PPB ロック状態

	ノンパスワード保護モード	パスワード保護モード
電源投入時状態	PPBロック 解除状態	PPBロック セット状態

ノンパスワード保護モード、パスワード保護モードにおける PPB ロック状態変更方法

	ノンパスワード保護モード	パスワード保護モード
PPBロック設定方法	PPBロックセット	電源再投入/ PPBロックセット ハードウェアリセット
PPBロック解除方法	電源再投入 ハードウェアリセット	パスワード アンロック

10.18.5. パスワードコマンド説明

(1) パスワードプログラムコマンド

パスワードプログラムコマンドは、パスワードをプログラムするコマンドです。パスワードは64ビット長です。16ビットを4回に分けてプログラムすることで、64ビットのパスワードを本デバイスに設定することが出来ます。既にパスワード保護モードロックをした状態ではパスワードベリファイ、パスワードプログラムを行うことができません。パスワードプログラム中は、同時実行動作を行う事は出来ません。本体のリードを行う時は、プログラム状態から戻る必要があります。プログラムの実行状態は、ハードウェアシーケンスフラグで確認をする事が出来ます。コマンド終了後は、Hidden ROM Exit コマンドが必要となります。工場出荷時、パスワードの4ワードは"FFFFh"にセットしてあります。

パスワード書き込み中のハードウェアシーケンスフラグ

	DQ7	DQ6	DQ5	DQ4	DQ3	DQ2	DQ1	DQ0	RY/BY
実行中	0	トグル	0	0	0	1	0	0	0
プログラム終了	1	1	0	0	0	1	0	0	High-Z
プログラム不良	0	トグル	1	0	0	1	0	0	0

(2) パスワードベリファイコマンド

パスワード ベリファイコマンドは、パスワードをベリファイするコマンドです。パスワードベリファイはパスワード保護モードロックプログラムの前に行います。パスワード保護モードロックが設定された後のパスワードベリファイは FFFFh"を出力します。パスワードベリファイは Hidden ROM モード Entry 後に実施してください。また、パスワードベリファイ中は、同時実行動作を行う事は出来ません。パスワードベリファイの第4バスライトサイクルにおいて、アドレスの下位2ビット(A1,A0)は確定しておきます。コマンド終了後は、Hidden ROM Exit コマンドが必要となります。

(3) パスワードアンロックコマンド

パスワードアンロックコマンドは、パスワード保護モード時に PPB ロックを解除するのに使用します。パスワードアンロックは、パスワードの入力が必要となります。パスワードアンロックコマンドは、2us 以上の間隔でコマンドを入力する必要があります。2us より短い間隔で入力されると、コマンドは無視されます。

パスワードアンロックは、64 ビット長のパスワードを第 4, 5, 6, 7 ライトバスサイクルに分けて入力します。第 4 バスライトサイクルが A1:A0=00、第 5 バスライトサイクルが A1:A0=01、第 6 バスライトサイクルが A1:A0=10、最後に第 7 バスライトサイクルで A1:A0=11 を入力します。正しいパスワードアンロックコマンドが入力されなかった場合、PPB ロックは設定されたままです。

パスワード アンロックコマンド中デバイスは、非同期モード時にビジーとなり RY/ $\overline{\text{BY}}$ が V_{IL} となります。パスワード アンロックの実行状態は、ハードウェアシーケンスフラグによって確認することが出来ます。このときアドレスは、ボトム 品は Bank0、トップ品は Bank7 に指定してください。他のバンクからはセルのデータが出力されます。ハードウェアシーケンスフラグによって、第 4-7 バスライトサイクルが 2us 以上の間隔を持って正確に入力されたことを確認することが出来ます。第 4-7 の各バスライトサイクルでパスワード入力中は DQ6 がトグルをします。約 2us をおいて第 4-6 の各バスライトサイクルで、パスワード入力が完了すると $RY/\overline{\text{BY}}$ は V_{IL} のままで、DQ6 のトグルはとまります。その後、次のパスワードの入力を行います。第 7 サイクルが完了した後、Hidden ROM Exit コマンドを入力することでパスワードアンロックは完了いたします。パスワードアンロックが成功したかは、PPB ロックベリファイによって確認することが出来ます。

<u>パスワードアンロックコマンド実行時のハ</u>ードウェアシーケンスフラグ

	DQ7	DQ6	DQ5	DQ4	DQ3	DQ2	DQ1	DQ0	RY/BY
第 4-7 各バスライト	0	トグル	0	0	0	1	0	0	0
サイクル実行中									
パスワード入力終了 ⁽¹⁾	0 ⁽²⁾	1	0	0	0	1	0	0	0
パスワード入力終了 ⁽¹⁾	1 ⁽³⁾	1	0	0	0	1	0	0	High-Z
パスワード入力終了 ⁽⁴⁾		データ					High-Z		

- 注 (1) Bank-0(ボトム品)/ Bank-7(トップ品)内の BA の指定
 - (2) DQ7 は第4, 5, 6 バスライトサイクル入力直後は 0 を出力、
 - (3) DQ7 は第7バスライトサイクル目入力後に1を出力
 - (4) Bank-0(ボトム品)/ Bank-7 (トップ品)以外の BA の指定

10.18.6. 一時的なブロック保護解除

TC58FVM6(T/B)5B は、一時的にブロックの保護を解除することができます。一時的なブロック保護解除を行うには、 $\overline{\text{RESET}}$ に VID を印加します。このとき、ライトプロテクトにより保護されているブロックを除いたすべてのブロックに対して、書き込み及び消去動作を行うことができます。ただし、Hidden ROM 領域の保護の一時的な解除できません。本モードを解除すると、ブロックは再び保護されます。

10.18.7. ベリファイブロック保護

ベリファイブロック保護は、ブロックが保護されているかどうかを確認するのに用いられます。本モードのセットは ID リードモードと同様で、 V_{ID} を用いる方法とコマンドシーケンスを用いる方法があります。ブロック保護の有無を確認するブロックのアドレスと A0、A6 に V_{IL} 、A1 に V_{IH} を指定して、データを読み出します。保護されているブロックからは "01h"、保護されていないブロックからは "00h" が読み出されます。

コマンドシーケンスを用いる方法では指定されたバンクはベリファイブロック保護モードになります。リセットコマンドを入力すると、本モードを解除してリードモードに復帰します。そのためバンク間にわたってベリファイブロック保護を実行する場合はバンクの切替え時にリセットコマンドが必要となります。

10.19. Hidden ROM 領域

TC58FVM6(T/B)5B は、メモリセルとは別に 64K バイトのサイズを持つ Hidden ROM 領域があります。この領域は 1 ブロックの構成で、データの読み出し、書き替え、およびブロック保護ができます。保護解除ができないため、一度保護すると書き替えができなくなります。

Hidden ROM 領域は、「Hidden ROM 領域アドレス表」に示すアドレス空間に現れます。通常のアクセスはメモリセルに対して行われているため、Hidden ROM 領域を使用するために Hidden ROM モード Entry コマンドを入力します。このときデバイスは Hidden ROM モードになり、リード、書き込み、消去、ブロック保護の各動作を行うことができます。書き込み、消去動作は、デバイスが Hidden ROM モードであること以外は通常の自動動作と同一です。

Hidden ROM 領域を保護するには、HidenROM 保護ビットプログラムコマンドを用いるか、ブロック保護 1 またはブロック保護 2 のブロック保護機能を用います。ブロック保護 2 の動作は、RESET を V_{ID} ではなく V_{IH} にすること以外は通常のブロック保護動作と同一です。 PPB ロックが設定された場合、ブロック保護 1 またはブロック保護 2 での HiddenROM 保護の状態を変更できなくなりますので、PPB ロックを設定する前に HiddenROM 保護の状態をデバイスにセットしておく必要があります。一度保護すると、一時的ブロック保護解除機能を用いても保護の解除はできませんので、注意して使用してください。

また、Hidden ROM モード中の同時実行動作に関しては、トップブート品は BANK7,ボトムブート品は BANK0 のみ不可となります。それ以外のバンクへの同時実行動作は可能となります。

Hidden ROM モードを解除するには、Hidden ROM モード Exit コマンドを入力します。デバイスは、リードモードに復帰します。

Hidden ROM 領域アドレス表

製品名	ブートブロック	ワードモード		
表吅石	アーキテクチャ	アドレス範囲	サイズ	
TC58FVM6T5B	トップブートブロック	3F8000h~3FFFFFh	32 Kwords	
TC58FVM6B5B	ボトムブートブロック	000000h~007FFFh	32 Kwords	

10.20. CFI (Common Flash memory Interface)

TC58FVM6(T/B)5B は CFI に準拠しています。CFI によって、デバイスの仕様や特性などの情報を得ることができます。デバイスから情報を読み出すためには、CFI コマンドを入力し、続けてアドレスを入力します。CFI モード中は同時実行動作が可能ですので、CFI コマンド入力時とアドレス指定時にバンクアドレスも指定してください。ワードモード時、DQ8~DQ15 はすべて 0 を出力します。本モードを終了させるには、リセットコマンドを入力します。

<u>CFI コードー覧表 1<続く></u>

アドレス A6~A0	データ DQ15~DQ0	内容
10h 11h 12h	0051h 0052h 0059h	"QRY" (ASCII ⊐— ド)
13h 14h	0002h 0000h	主要コマンドセット 2: AMD/FJ 標準型
15h 16h	0040h 0000h	PRIMARY テーブルの開始アドレス
17h 18h	0000h 0000h	副コマンドセット 0: 未対応
19h 1Ah	0000h 0000h	副アルゴリズムテーブルの開始アドレス
1Bh	0023h	V _{DD} 最小電圧 (書き込み/消去) DQ7~DQ4: 1 V DQ3~DQ0: 100 mV
1Ch	0036h	V _{DD} 最大電圧 (書き込み/消去) DQ7~DQ4: 1 V DQ3~DQ0: 100 mV
1Dh	0000h	Vpp 最小電圧
1Eh	0000h	Vpp 最大電圧
1Fh	0004h	ワード書き込み標準時間 (2 ^N μs)
20h	0000h	バッファ書き込み標準時間 (2 ^N μs)
21h	000Ah	ブロック消去標準時間 (2 ^N ms)
22h	0000h	チップ消去標準時間 (2 ^N ms)
23h	0005h	ワード書き込み最大時間 (標準時間 × 2 ^N)
24h	0006h	バッファ書き込み最大時間 (標準時間 × 2 ^N)
25h	0004h	ブロック消去最大時間 (標準時間 × 2 ^N)
26h	0000h	チップ消去最大時間 (標準時間 × 2 ^N)
27h	0017h	容量 (2 ^N Byte) 17h:64bit ,18h:128Mbit
28h 29h	0001h 0000h	I/O 情報 1: x16
2Ah 2Bh	0004h 0000h	複数書き込み時の最大バイト数 (2 ^N)

<u>CFI コードー覧表 2<続く></u>

アドレス A6~A0	データ DQ15~DQ0	内容
2Ch	0002h	消去ブロック種類
2Dh 2Eh 2Fh 30h	0007h 0000h 0020h 0000h	消去ブロック 1 の情報 0~15 Bit: y = ブロック数 16~31 Bit: z = サイズ (z × 256 Byte)
31h 32h 33h 34h	00FEh 0000h 0000h 0001h	消去ブロック 2 の情報
40h 41h 42h	0050h 0052h 0049h	"PRI" (ASCII ⊐ — ド)
43h	0031h	メインバージョン (ASCII コード)
44h	0031h	マイナーバージョン (ASCII コード)
45h	0000h	コマンド入力時のアドレス 0: 必須 1: 不要
46h	0002h	消去サスペンド機能 0: 未対応 1: 読み出しのみ 2: 読み出し、書き込み
47h	0001h	ブロック保護 0: 未対応 X: 同時に保護するブロック数
48h	0001h	一時的ブロック保護解除 0: 未対応 1: 対応
49h	0007h	ブロック保護アルゴリズム
4Ah	0001h	同時実行 0: 未対応 1: 対応
4Bh	0000h	バーストモード 0: 未対応
4Ch	0001h	ページモード 0: 未対応 1: 対応
4Dh	0085h	V _{ACC} 最小電圧 DQ7~DQ4: 1 V DQ3~DQ0: 100 mV
4Eh	00C6h	V _{ACC} 最大電圧 DQ7~DQ4: 1 V DQ3~DQ0: 100 mV
4Fh	000xh	ブート構成 x=2: ボトム: TC58FVM6B5B x=3: トップ: TC58FVM6T5B
50h	0001h	プログラムサスペンド 0: 未対応 1: 対応

TOSHIBA

アドレス A6~A0	データ DQ15~DQ0	内容
57h	0010h	バンク構成 00h : 4Ah が 00h のとき X:総バンク数
58h	00XXh	バンク 0 の情報 XX:バンク 0 のブロック数 TOP: 10h BOTTOM:17h
59h	0010h	バンク 1 の情報 バンク 1 のブロック数 n=16
5Ah	0010h	バンク2の情報 バンク2のブロック数 n=16
5Bh	0010h	バンク3の情報 バンク3のブロック数 n=16
5Ch	0010h	バンク 4 の情報 バンク 4 のブロック数 n=16
5Dh	0010h	バンク 5 の情報 バンク 5 のブロック数 n=16
5Eh	0010h	バンク 6 の情報 バンク 6 のブロック数 n=16
5Fh	00XXh	バンク 7 の情報 XX:バンク 1 のブロック数 TOP: 17h BOTTOM:10h

10.21. ハードウェアシーケンスフラグ

TC58FVM6(T/B)5B の自動動作の実行状態を、ハードウェアシーケンスフラグにより確認することができます。動作実行中に $\overline{\text{CE}}$ と $\overline{\text{OE}}$ を $\overline{\text{VIL}}$ にすると、リードモードと同じタイミングでフラグの読み出しができます。また、 RY/ $\overline{\text{BY}}$ は $\overline{\text{CE}}$ 、 $\overline{\text{OE}}$ に関係なく読み出すことが可能です。

デバイスは、自動動作を終了すると自動的にリードモードに復帰します。動作の状態は、自動動作実行中はハードウェアシーケンスフラグ、終了後は読み出したデータがセルデータと一致することで確認できます。

状態			DQ7	DQ6	DQ5	DQ3	DQ2	RY/\overline{BY}	
	自動プログラ	ラム / 自動ページプロ	コグラム	DQ7 (4)	トグル	0	0	1	0
	プログラムサ	ナスペンド時の読み出	さし動作 ⁽¹⁾	データ	データ	データ	データ	データ	High-Z
		消去	選択 ⁽²⁾	0	トグル	0	0	トグル	0
	自動消去	ホールドタイム中	非選択 ⁽³⁾	0	トグル	0	0	1	0
自動動作	モード	" " " " " " " "	選択	0	トグル	0	1	トグル	0
実行中		消去動作中	非選択	0	トグル	0	1	1	0
	消去 サスペンド モード	読み出し動作	選択	1	1	0	0	トグル	High-Z
			非選択	データ	データ	データ	データ	データ	High-Z
		書き込み動作	選択	DQ7	トグル	0	0	トグル	0
			非選択	DQ7	トグル	0	0	1	0
タイムアウト (自動動作不良)	自動プログラム / 自動ページプログラム			DQ7 (4)	トグル	1	0	1	0
	自動消去			0	トグル	1	1	N/A	0
(======================================	消去サスペン	ノド中のプログラム		DQ7	トグル	1	0	N/A	0

- 注: 動作が正常に終了すると、DQ ピンはセルデータを出力、RY/BY は High-Z となります。
 - DQ0、DQ1 は将来のための予約ピンです。DQ0、DQ1、DQ4 は 0 を出力します。
 - (1) 書き込み中のアドレスからの出力データは不確定です。
 - (2) 消去の対象になっているブロックアドレスを指定して読み出しを行ったときの出力。
 - (3) 消去対象ブロックと同一バンク内で、消去の対象になっていないブロックアドレスを指定して読み出しを行ったときの出力。なお、チップ消去時はすべてのブロックが選択状態になります。
 - (4) ページプログラムの場合は第 11 バスライトサイクル時の(A0,A1,A2)=(1,1,1)のアドレスのプログラムデータ。

10.21.1. DQ7(DATA ポーリング)

DATA ポーリング機能により、ホスト側からデバイスの自動動作の状態を確認できます。

DATA ポーリングの出力は、自動動作のコマンドシーケンスの最終のバスライトサイクルの WE の立ち上がりから開始します。自動プログラム動作中は DQ7 に書き込んだデータの反転データを出力し、終了後は DQ7 のセルデータを出力しますので、DQ7 を読み出すことで動作状態の識別ができます。なおページ書き込みの場合は 8 アドレス目に DQ7 に書き込んだデータが対象となります。自動消去動作中は DQ7 に 0 を出力し、終了後は 1 (セルデータ)を出力します。また、自動動作の結果が不良であった場合、DQ7 に動作中のデータをそのまま継続して出力します。

デバイスは、動作が終了した時点でアドレスのラッチを解除しますので、データを読み出す際は書き込みを行ったアドレスまたは消去中の保護されていない任意のブロックアドレスを指定する必要があります。読み出すデータは \overline{OE} の立ち下がりとは非同期で変化します。

10.21.2. DQ6 (トグルビット 1)

自動動作の状態を認識する方法として、DATA ポーリングの他にトグルビット出力機能があります。

自動動作実行中に、デバイスに対して連続した読み出しを行うと、 \overline{CE} または \overline{OE} を V_{IH} から V_{IL} にするたびに 1 と 0 を繰り返して DQ6 に出力します (トグル動作)。

トグル出力は、自動動作のコマンドシーケンスの最終バスライトサイクルの \overline{WE} の立ち上がりから開始します。自動動作が終了すると、デバイスはDQ6のトグル出力を停止しセルデータを出力します。また、自動動作の結果が不良であった場合、トグル出力は継続して行われます。

自動プログラム動作を保護されているブロック内のメモリセルに対して行った場合、デバイスは約 $3\mu s$ の間トグル出力を行った後、動作を停止してリードモードになります。また、自動消去動作を保護されているブロックのみに対して行った場合、デバイスは約 $400\mu s$ の間トグル出力を行った後、動作を停止してリードモードになります。

10.21.3. DQ5 (内部タイマー超過)

デバイスは、自動動作を正常に行っているとき、DQ5 に 0 を出力します。もし、自動動作がデバイス内部で規定した時間を越えた場合は、DQ5 の出力は 1 に変わります。これは、自動動作が正常に終了しなかったことを示し、デバイスが不良である可能性があります。

ただし、0 データセルに対して 1 データを書き込むと、DQ5 の出力は 1 となりデバイスが不良と判定した状態になります。このデバイスは、プログラムモードで 1 データセルを 0 データにすることはできますが、0 データセルを 1 データにすることはできません。この場合、DQ5 の出力はデバイスの不良を示すのではなく、使用方法が正しくないことを示します。

デバイスは、正常に自動動作を終了すると、リードモードになりセルデータを出力します。このため、DQ5 の出力だけではセルデータかハードウェアシーケンスフラグであるかを確認することができません。この場合は、続けて DQ7 か DQ6 あるいは RY/\overline{BY} を読み出し、デバイスの自動動作の実行状態を確認してください。

内部タイマー超過の場合、デバイスはロックされ自動的にリードモードには復帰しませんので、リセットコマンドかハードウェアリセットを用いてデバイスをリセットする必要があります。

10.2<u>1.4. DQ3(ブロック消去タイマー)</u>

DQ3 は、自動ブロック消去の消去ブロックを追加する際に、消去ホールドタイムが有効であるかどうかを判断するのに用いられます。

自動ブロック消去のコマンドシーケンスを入力して、デバイスが消去ホールドタイムになったとき、DQ3 は 0 を出力します。消去ホールドタイムは tBEH で、この時間中に消去を行うブロックを追加することができます。消去ホールドタイムが終了すると、デバイスは自動的に消去動作を開始し、DQ3 は 1 を出力します。また、自動動作の結果が不良であった場合、DQ3 は 1 を出力します。

10.21.5. DQ2 (トグルビット 2)

DQ2 は、自動ブロック消去の選択ブロックの検出や、デバイスが消去サスペンドモードあるかを検出するのに用いられます。 自動ブロック消去実行中に、選択ブロックに対して連続した読み出しを行うと、DQ2 はトグル出力します。これに対して、選択していないブロックからは 1 を出力するので、消去の対象になっているブロックの検出を行うことができます。デバイスが消去サスペンドリードモードのとき、自動ブロック消去の選択ブロックに対して連続した読み出しを行うと、DQ2 はトグル出力します。このとき、DQ6 はトグル出力しないので、消去サスペンドモードであることが検出できます。デバイスが消去サスペンド中の書き込みモードのとき、書き込み実行中のアドレスを読み出すと DQ2 は 1 を出力します。

10.21.6. RY/BY (レディ/ビジー)

TC58FVM6(T/B)5B は、自動動作の状態を確認する方法として、 RY/\overline{BY} 出力端子を備えています。 RY/\overline{BY} 端子はオープンドレイン構造になっていますので、プルアップ抵抗を用いて V_{DD} 端子などに接続する必要があります。

自動動作のコマンドシーケンスを入力すると、RY/BY はその最終バスライトサイクルの WE の立ち上がりから 0 を出力し、デバイスが自動動作実行中(ビジー)であることを示します。自動動作実行中に消去サスペンドコマンドを入力し、デバイスが消去サスペンドモードになったとき、RY/BY はハイインピーダンスになります。レジュームコマンドによって、デバイスがふたたび自動動作に復帰したときは、RY/BY は 0 を出力します。自動動作が正常に終了すると、RY/BY はハイインピーダンスになり、デバイスが待機状態(レディ)であることを示します。また、自動動作の結果が不良であった場合、RY/BY は継続して 0 を出力します。

11. データ保護

TC58FVM6(T/B)5Bは、誤動作やデータ破壊を起こりにくくする機能を搭載しています。

11.1. 低 VDD 書き込み消去防止

電源投入時や遮断時の書き込み消去動作の開始を防止するために、VDDが VLKO以下ではコマンドを受け付けません。この状態でのコマンド入力は無視されます。

また、自動動作の実行中にVDDがVLKOを下回ると、デバイスは自動動作を中止します。この場合、再度VDDが推奨電源電圧に復帰した場合でも自動動作は再開しませんので書き込み/消去を再開するにあたって、再度コマンドを入力する必要があります。なお、VDDがVLKO以上では正しいコマンドが確実にデバイスに入力されるようにシステム側での対応をお願いいたします。

11.2. ライトパルス"グリッチ"誤動作防止

動作中のシステムノイズによるライト誤動作を防止するため、 $\overline{\text{WE}}$ 、 $\overline{\text{CE}}$ 、 $\overline{\text{OE}}$ に入力される 3 ns (標準) 以内のパルスは受け付けない設計になっています。しかし、システムで 3 ns (標準) を超えるグリッチが発生しデバイスに入力されると、ライト誤動作を起こす恐れがあります。

本デバイスは JEDEC 標準コマンドを採用しており、システムノイズによるコマンドの成立が起こりにくくなっています。しかし、システムノイズにより、まれにコマンドシーケンスの一部が成立してしまう場合が考えられます。このときデバイスは、途中のコマンドまで認識した状態になっているので、正規のコマンド入力を行ってもデバイスは動作しません。これは、コマンド入力を行う前にコマンドレジスタをクリアすることで回避できます。システムノイズが発生しやすい環境では、コマンド入力の前にソフトウェアリセット、またはハードウェアリセットを入力することを推奨します。

11.3. 電源投入時誤動作防止

電源投入時の突発的なノイズ等によるデータ破壊を防止するため、 \overline{WE} 、 \overline{CE} が V_{IL} の状態で電源が投入されたとき、最初の \overline{WE} または \overline{CE} の立ち上がりではコマンドのラッチを行いません。デバイスは自動的にコマンドレジスタをリセットし、リードモード になります。

12. 絶対最大定格

記号		項目	定格	単位
V_{DD}	V _{DD} 電源電圧		-0.6~4.6V	V
V _{IN}	入力ピン電圧		-0.5~ VDD+0.5(≦4.6) ⁽¹⁾	V
V_{DQ}	入力/出力電圧		-0.5~ VDD+0.5 (≦4.6) ⁽¹⁾	V
V_{ID}	A9、ŌE、R	ESET 高電圧入力電圧 ⁽²⁾	13.0	V
V _{ACC}	WP/ACC 高	電圧入力電圧 ⁽²⁾	13.0	V
P _D	消費電力		600	mW
T _{solder}	はんだ付け加	熱温度 (10 s)	260	°C
т.	保存温度	TC58FVM6(T/B)5BTG	−55~150	°C
T _{stg}	休仔温度 	TC58FVM6(T/B)5BXG	−55~125	°C
T _{opr}	動作温度		-40~85	°C
I _{OSHORT}	出力短絡回路	電流 ⁽³⁾	100	mA

- (1) アンダーシュート: -2V(パルス幅 20ns 以下) オーバーシュート: +2V(パルス幅 20ns 以下)
- (2) V_{DD} 電源電圧印加中のみ、V_{ID}/V_{ACC} を印加してください。
- (3) 1秒以上短絡しないでください。また、同時に複数ピンを短絡しないでください。

13. ピン容量(Ta = 25°C, f = 1 MHz)

記号	項目	条件	最大	単位
C _{IN}	入力ピン容量	$V_{IN} = 0 V$	7	pF
C _{OUT}	出力ピン容量	V _{OUT} = 0 V	12	pF
C _{IN2}	コントロールピン容量	$V_{IN} = 0 V$	7	pF
C _{IN3}	WP/ACC 容量	$V_{IN} = 0 V$	14	pF

この項目は、抜き取り検査のみで全数検査は行っていません。

14. DC 許容動作条件

記号	項目	最 小	最大	単 位
V_{DD}	V _{DD} 電源電圧	2.7	3.6	
V _{IH}	高レベル入力電圧	$0.7 \times V_{DD}$	V _{DD} + 0.3	
V_{IL}	低レベル入力電圧	-0.3	$0.2 \times V_{DD}$	V
V_{ID}	A9、OE 、RESET 高電圧入力電圧	11.4	12.6	
V _{ACC}	WP/ACC 高電圧入力電圧	8.5	12.6	
Та	動作温度(周囲)	-40	85	°C

15. DC 電気的特性

記号	項目	条件	最小	標準	最大	単位	
ILI	入力端子リーク電流	$0 \text{ V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{DD}}$	_	_	±1	^	
I _{LO}	出力端子リーク電流	$0 \text{ V} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{DD}}$	_	_	±1	μΑ	
\/	高レベル出力電圧	I _{OH} = -0.1 mA	V _{DD} – 0.4				
V _{OH}		$I_{OH} = -2.5 \text{ mA}$	0.85 X V _{DD}	_	_	V	
V _{OL}	低レベル出力電圧	I _{OL} =4.0 mA	_	_	0.4		
I _{DDO1}	V _{DD} ランダムリード時平均動作電流	$V_{IN} = V_{IH}/V_{IL}$, $I_{OUT} = 0$ mA $t_{RC} = 100$ ns	_	37	55		
I _{DDO2}	V _{DD} 書き込み時平均動作電流	$V_{IN} = V_{IH}/V_{IL}$, $I_{OUT} = 0$ mA	_	11	15		
I _{DDO3}	V _{DD} 消去時平均動作電流	$V_{IN} = V_{IH}/V_{IL}$, $I_{OUT} = 0$ mA	_	9	15		
I _{DDO4}	V _{DD} 書き込み中の 読み出し時平均動作電流	$V_{IN} = V_{IH}/V_{IL}, I_{OUT} = 0 \text{ mA}$ $t_{RC} = 100 \text{ns}$	_	48	70		
I _{DDO5}	V _{DD} 消去中の 読み出し時平均動作電流	$V_{IN} = V_{IH}/V_{IL}$, $I_{OUT} = 0$ mA $t_{RC} = 100$ ns	_	46	70	mA	
I _{DDO6}	V _{DD} 消去サスペンド中の 書き込み時平均動作電流	V _{IN} = V _{IH} /V _{IL} , I _{OUT} = 0 mA	_	11	15		
I _{DDO7}	ページリード時平均動作電流	$V_{IN} = V_{IH}/V_{IL}$, $I_{OUT} = 0$ mA $t_{PRC} = 25$ ns	_	2	5		
I _{DDO8}	アドレスインクリメントリード時平均 動作電流(2)	$V_{IN} = V_{IH}/V_{IL}$, $I_{OUT} = 0$ mA $t_{RC} = 100$ ns $t_{PRC} = 25$ ns	_	5	11		
I _{DDS1}	V _{DD} スタンバイ電流	$\overline{WP}/ACC = V_{DD}$ かつ $\overline{CE} = \overline{RESET} = V_{DD}$ または $\overline{RESET} = V_{SS}$	_	3	10		
I _{DDS2}	V _{DD} スタンバイ電流 (オートマチックスリープ ⁽¹⁾)	V _{IH} = V _{DD} V _{IL} = V _{SS}	_	3	10	μА	
I _{ID}	A9、OE 、RESET 高電圧入力電流	$11.4 \text{ V} \leq \text{V}_{\text{ID}} \leq 12.6 \text{ V}$	_		35		
I _{ACC}	WP/ACC高電圧入力電流	8.5V ≦ V _{ACC} ≦12.6 V	_		20	mA	
V _{LKO}	低 V _{DD} ロックアウト電圧	_	1.5	_	2.0	V	

⁽¹⁾ アドレス入力が 150 ns 以上変化しないとき、自動的にスリープモードになります。

<u>16. AC テスト条件</u>

項目	条件
入力パルスレベル	V _{DD} , 0.0 V
入力パルス立ち上がり/立ち下がり時間 (10%~90%)	5 ns
入力タイミング測定比較レベル	V _{DD} /2 , V _{DD} /2
出力タイミング測定比較レベル	V _{DD} /2 , V _{DD} /2
出力負荷	C _L (100 pF) + 1 TTL Gate / C _L (30 pF) + 1 TTL Gate

⁽²⁾ $(I_{DDO1}+I_{DDO7}\times7)/8$ words

17. AC 電気的特性

<u>17.1. リードサイクル</u>

	出力負荷容量		pF	100 pF		
記号	項目	最小	最大	最小	最大	単位
t _{RC}	リードサイクルタイム	65	_	70	_	ns
t _{PRC}	ページリードサイクルタイム	25	_	30	_	ns
t _{ACC}	アドレスアクセスタイム	_	65	_	70	ns
t _{CE}	CE アクセスタイム	_	65	_	70	ns
t _{OE}	OE アクセスタイム	_	25	_	30	ns
t _{PACC}	ページアクセスタイム	_	25	_	30	ns
toeH	OE 高レベルホールドタイム(リード)	0	_	0	_	ns
t _{CEE}	CE から出力低インピーダンスになるまでの時間	0	_	0	_	ns
toee	OE から出力低インピーダンスになるまでの時間	0	_	0	_	ns
toH	出力データホールドタイム	0	_	0	_	ns
t _{AOH}	出力データホールドタイム(ページアクセス)	0	_	0	_	ns
t _{DF1}	CE から出力高インピーダンスになるまでの時間	_	25	_	25	ns
t _{DF2}	OE から出力高インピーダンスになるまでの時間	_	25	_	25	ns

ハードウェアリセット($\overline{\text{RESET}}$)

記号	項目	最 小	最 大	単 位
t _{READY}	RESET からリードモードに復帰するまでの時間(自動動作実行時)	_	25	μS
t _{READY}	RESET からリードモードに復帰するまでの時間(自動動作非実行時)	_	500	ns
t_{RP}	RESET 低レベルホールドタイム	500	_	ns
t _{RH}	RESET からのリカバリタイム	50	_	ns
t _{RPD}	RESET ローからのスタンバイモードになる時間	20	_	μS

17.2. ブロック保護

記号	項目	最 小	最大	単位
t _{VPT}	V _{ID} トランジットタイム	4		μS
t _{VPS}	V _{ID} セットアップタイム	4	_	μS
t _{CESP}	CE セットアップタイム	4	_	μS
t _{VPH}	OE ホールドタイム	4	_	μS
t _{PPLH}	WE 低レベルホールドタイム	100	_	μS

17.3. 書き込み/消去特性

記号	項目	最小	標準	最大	単位
t _{PPW}	自動プログラムタイム (ワードモード)	_	11	300	μ\$
t _{PPW}	アクセラレーション自動プログラムタイム (ワードモード)		8	300	μS
t _{PPAW}	自動ページプログラムタイム		58	2400	μS
t _{PPAW}	アクセラレーション自動ページプログラムタイム	_	21	2400	μS
t _{PCEW}	自動チップ消去タイム ⁽¹⁾	_	184	675	S
t _{PCEW}	アクセラレーション自動チップ消去タイム ⁽¹⁾	_	158	675	S
t _{PBEW}	自動ブロック消去タイム ⁽¹⁾	_	0.7	5 ⁽²⁾	S
t _{EW}	書き替え回数	10 ⁵	_	_	Сус.

- (1) 自動チップ消去タイム/自動ブロック消去タイムは内部でのプリプログラム時間を含みます。
- (2) レジュームからサスペンドまでの間を 150µs 以内の間隔で連続して繰り返し実行した場合、消去時間の最大値を満たせない場合があります。

17.4. コマンドライト/プログラム/消去サイクル

記号	項目	最 小	最大	単位
t _{CMD}	コマンドサイクルタイム	60	_	ns
t _{AS}	アドレスセットアップタイム	0	_	ns
t _{AH}	アドレスホールドタイム	30	_	ns
t _{DS}	データセットアップタイム	30	_	ns
t _{DH}	データホールドタイム	0	_	ns
t _{WELH}	WE 低レベルホールドタイム (WE コントロール)	30	_	ns
t _{WEHH}	WE 高レベルホールドタイム (WE コントロール)	20	_	ns
t _{CES}	CE セットアップタイム (WE コントロール)	0	_	ns
t _{CEH}	CE ホールドタイム (WE コントロール)	0	_	ns
tCELH	CE 低レベルホールドタイム (CE コントロール)	30	_	ns
tCEHH	CE 高レベルホールドタイム (CE コントロール)	20	_	ns
t _{WES}	WE セットアップタイム (CE コントロール)	0	_	ns
t _{WEH}	WE ホールドタイム (CE コントロール)	0	_	ns
toes	OE セットアップタイム	0	_	ns
toehp	OE 高レベルホールドタイム(ポーリング)	10	_	ns
toeht	OE 高レベルホールドタイム(トグルリード)	20	_	ns
tCEHT	CE 高レベルホールドタイム(トグルリード)	20	_	ns
t _{AHT}	アドレスホールドタイム (トグル)	0	_	ns
t _{AST}	アドレスセットアップタイム (トグル)	0	_	ns
t _{BEH}	消去ホールドタイム	50	_	μS
t _{VDS}	V _{DD} セットアップタイム	500	_	μS
	自動プログラム/自動消去が有効になるまでの RY /BY の遅れ	_	90	ns
t _{BUSY}	サスペンドモード時の 自動プログラム/自動消去が有効になるまでの RY/BY の遅れ	_	300	ns
t _{RB}	RY/BY からのリカバリタイム	0	_	ns
tsusp	プログラムサスペンドコマンド入力からサスペンドモードになるまでの時間	_	2	μS
tsuspa	ページプログラムサスペンドコマンド入力からサスペンドモードになるまでの時間	_	2.5	μS
t _{RESP}	プログラムレジュームコマンド入力からプログラムモードに復帰するまでの時間	_	1	μS
tsuse	消去サスペンドコマンド入力からサスペンドモードになるまでの時間	_	25	μS
t _{RESE}	消去レジュームコマンド入力から消去モードに復帰するまでの時間	_	1	μS

<u>18. タイミング図</u>

<u>リード/ID リード動作</u>

ID リード動作(V_{ID} 印加モード)

ページリード動作

<u>コマンド入力直後のリード (Hidden Rom / CFI Read のみ)</u>

コマンドライト動作

コマンド入力を行う際のタイミングです。以降のページのタイミング図は、特に指定のない限り、このページのタイミングに準じます。

 $\overline{\mathrm{WE}}$ コントロール

• <u>CE</u>コントロール

ID リード動作(コマンドモード)

(下段に続く)

注: BK: バンクアドレス

自動プログラム動作(WE コントロール)

注: PA: プログラムアドレス PD: プログラムデータ

自動ページプログラム動作(WEコントロール)

注: PA: プログラムアドレス PD: プログラムデータ

<u>自動チップ消去/自動ブロック消去(WEコントロール)</u>

自動プログラム動作(CE コントロール)

注: PA: プログラムアドレス PD: プログラムデータ

自動ページプログラム動作(CEコントロール)

注: PA: プログラムアドレス PD: プログラムデータ

自動チップ消去/自動ブロック消去(CEコントロール)

注: BA: 自動ブロック消去時のブロックアドレス

プログラム/消去サスペンド動作

プログラム/消去レジューム動作

BK : バンクアドレス BA : ブロックアドレス RA : リードアドレス

フラグ: ハードウェアシーケンスフラグ出力

自動動作実行中のRY/BY動作

ハードウェアリセット動作

RESET からのリード

ハードウェアシーケンスフラグ(DATA ポーリング)

PA: プログラムアドレス BA: ブロックアドレス

ハードウェアシーケンスフラグ(トグルビット)

ブロック保護1動作(PPB セット)

注: BA: ブロックアドレス

*:ブロックが保護されたことを示します。

ブロック保護 2 動作(PPB セット)

注: BA : ブロックアドレス BA+1: 次のブロックアドレス

* : ブロックが保護されたことを示します。

19. フローチャート

自動プログラム

自動プログラムコマンドシーケンス (アドレス/データ)

自動ページプログラム

連続プログラム

連続プログラムセットコマンドシーケンス (アドレス/データ) 連続プログラムリセットコマンドシーケンス (アドレス/データ) (アドレス/アータ) (

自動消去

自動チップ消去コマンドシーケンス

自動ブロック/マルチブロック消去コマンドシーケンス (アドレス/データ) (アドレス/データ) 555h/AAh 555h/AAh

DQ7 DATA ポーリング

DQ6 トグルビット

VA: 自動プログラム時は、書き込みを行っているアドレス 自動チップ消去時は、任意のアドレス 自動ブロック消去時は、選択したブロックアドレス

ブロック保護1動作

ブロック保護2動作

BPA: ブロックアドレスと ID リードアドレス (A6, A1, A0) ID リードアドレス = (0, 1, 0)

Hidden ROM Exit コマンド

パスワード保護モードロックセット動作

パスワードプログラム動作

パスワードベリファイ動作

パスワードアンロックコマンド動作

ノンパスワード保護モードロック動作

PPB セットコマンドシーケンス

PPB 解除コマンドシーケンス

<u>PPB ロック:動作</u>

PPB ロックセット

PPB ロック解除

PPB ロックベリファイ

DPB コマンド動作

DPB セット

DPB ベリファイ

DPB 解除 1

DPB 解除 2

<u>20. ブロックアドレス表</u>

* : V_{IH} or V_{IL}

20.1. TC58FVM6T5B (Top Boot Block) 1/5

54446	DI GOI		BL	OCK A	DDRE	SS						
BANK "	BLOCK	BAN	< ADDF	RESS								ADDRESS RANGE
#	#	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	
	BA0	L	L	L	L	L	L	L	*	*	*	000000h~007FFFh
	BA1	L	L	L	L	L	L	Н	*	*	*	008000h~00FFFFh
	BA2	L	L	L	L	L	Н	L	*	*	*	010000h~017FFFh
	BA3	L	L	L	L	L	Н	Н	*	*	*	018000h~01FFFFh
	BA4	L	L	L	L	Н	L	L	*	*	*	020000h~027FFFh
	BA5	L	L	L	L	Н	L	Н	*	*	*	028000h~02FFFFh
	BA6	L	L	L	L	Н	Н	L	*	*	*	030000h~037FFFh
BK0	BA7	L	L	L	L	Н	Н	Н	*	*	*	038000h~03FFFFh
	BA8	L	L	L	Н	L	L	L	*	*	*	040000h~047FFFh
	BA9	L	L	L	Н	L	L	Н	*	*	*	048000h~04FFFFh
	BA10	L	L	L	Н	L	Н	L	*	*	*	050000h~057FFFh
	BA11	L	L	L	Н	L	Н	Н	*	*	*	058000h~05FFFFh
	BA12	L	L	L	Н	Н	L	L	*	*	*	060000h~067FFFh
	BA13	L	L	L	Н	Н	L	Н	*	*	*	068000h~06FFFFh
	BA14	L	L	L	Н	Н	Н	L	*	*	*	070000h~077FFFh
	BA15	L	L	L	Н	Н	Н	Н	*	*	*	078000h~07FFFFh
	BA16	L	L	Н	L	L	L	L	*	*	*	080000h~087FFFh
	BA17	L	L	Н	L	L	L	Н	*	*	*	088000h~08FFFFh
	BA18	L	L	Н	L	L	Н	L	*	*	*	090000h~097FFFh
	BA19	L	L	Н	L	L	Н	Н	*	*	*	098000h~09FFFFh
	BA20	L	L	Н	L	Н	L	L	*	*	*	0A0000h~0A7FFFh
	BA21	L	L	Н	L	Н	L	Н	*	*	*	0A8000h~0AFFFFh
	BA22	L	L	Н	L	Н	Н	L	*	*	*	0B0000h~0B7FFFh
BK1	BA23	L	L	Н	L	Н	Н	Н	*	*	*	0B8000h~0BFFFFh
DIV I	BA24	L	L	Н	Н	L	L	L	*	*	*	0C0000h~0C7FFh
	BA25	L	L	Н	Н	L	L	Н	*	*	*	0C8000h~0CFFFFh
	BA26	L	L	Н	Н	L	Н	L	*	*	*	0D0000h~0D7FFFh
	BA27	L	L	Н	Н	L	Н	Н	*	*	*	0D8000h~0DFFFFh
	BA28	L	L	Н	Н	Н	L	L	*	*	*	0E0000h~0E7FFh
	BA29	L	L	Н	Н	Н	L	Н	*	*	*	0E8000h~0EFFFFh
	BA30	L	L	Н	Н	Н	Н	L	*	*	*	0F0000h~0F7FFh
	BA31	L	L	Н	Н	Н	Н	Н	*	*	*	0F8000h~0FFFFh

20.1. TC58FVM6T5B (Top Boot Block) 2/5

DANIK	DI OOK		BL	OCK A	DDRE	SS						
BANK #	BLOCK #	BAN	< ADDF	RESS								ADDRESS RANGE
#	#	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	
	BA32	L	Н	L	L	L	L	L	*	*	*	100000h~107FFFh
	BA33	L	Н	L	L	L	L	Н	*	*	*	108000h~10FFFFh
	BA34	L	Н	L	L	L	Н	L	*	*	*	110000h~117FFFh
	BA35	L	Н	L	L	L	Н	Н	*	*	*	118000h~11FFFFh
	BA36	L	Н	L	L	Н	L	L	*	*	*	120000h~127FFFh
	BA37	L	Н	L	L	Н	L	Н	*	*	*	128000h~12FFFFh
	BA38	L	Н	L	L	Н	Н	L	*	*	*	130000h~137FFFh
BK2	BA39	L	Н	L	L	Н	Н	Н	*	*	*	138000h~13FFFFh
BNZ	BA40	L	Н	L	Н	L	L	L	*	*	*	140000h~147FFFh
	BA41	L	Н	L	Н	L	L	Н	*	*	*	148000h~14FFFFh
	BA42	L	Н	L	Н	L	Н	L	*	*	*	150000h~157FFFh
	BA43	L	Н	L	Н	L	Н	Н	*	*	*	158000h~15FFFFh
	BA44	L	Н	L	Н	Н	L	L	*	*	*	160000h~167FFFh
	BA45	L	Н	L	Н	Н	L	Н	*	*	*	168000h~16FFFFh
	BA46	L	Н	L	Ι	Ι	Н	L	*	*	*	170000h~177FFFh
	BA47	L	Н	L	Н	Н	Н	Н	*	*	*	178000h~17FFFFh
	BA48	L	Н	Н	L	L	L	L	*	*	*	180000h~187FFFh
	BA49	L	Н	Н	L	L	L	Н	*	*	*	188000h~18FFFFh
	BA50	L	Н	Н	L	L	Н	L	*	*	*	190000h~197FFFh
	BA51	L	Н	Н	L	L	Н	Н	*	*	*	198000h~19FFFFh
	BA52	L	Н	Н	L	Н	L	L	*	*	*	1A0000h~1A7FFFh
	BA53	L	Н	Н	L	Н	L	Н	*	*	*	1A8000h~1AFFFFh
	BA54	L	Н	Н	L	Н	Н	L	*	*	*	1B0000h~1B7FFFh
BK3	BA55	L	Н	Ι	L	Ι	Н	Ι	*	*	*	1B8000h~1BFFFFh
БКЗ	BA56	L	Н	Н	Н	L	L	L	*	*	*	1C0000h~1C7FFFh
	BA57	L	Н	Н	Н	L	L	Н	*	*	*	1C8000h~1CFFFFh
	BA58	L	Н	Н	Н	L	Н	L	*	*	*	1D0000h~1D7FFFh
	BA59	L	Н	Н	Н	L	Н	Н	*	*	*	1D8000h~1DFFFFh
	BA60	L	Н	Н	Н	Н	L	L	*	*	*	1E0000h~1E7FFh
	BA61	L	Н	Н	Н	Н	L	Н	*	*	*	1E8000h~1EFFFFh
	BA62	L	Н	Η	Н	Н	Н	L	*	*	*	1F0000h~1F7FFFh
	BA63	L	Н	Н	Н	Н	Н	Н	*	*	*	1F8000h~1FFFFFh

20.1. TC58FVM6T5B (Top Boot Block) 3/5

BANK	BLOCK		BL	OCK A	DDRE	SS						
#	#	BANI	K ADDF	RESS		_	_	_	_	_		ADDRESS RANGE
#	#	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	
	BA64	Н	L	L	L	L	L	L	*	*	*	200000h~207FFFh
	BA65	Н	L	L	L	L	L	Н	*	*	*	208000h~20FFFFh
	BA66	Н	L	L	L	L	Н	L	*	*	*	210000h~217FFFh
	BA67	Н	L	L	L	L	Н	Н	*	*	*	218000h~21FFFFh
	BA68	Н	L	L	Ш	Н	L	L	*	*	*	220000h~227FFFh
	BA69	Н	L	L	L	Н	L	Н	*	*	*	228000h~22FFFFh
	BA70	Н	L	L	L	Н	Н	L	*	*	*	230000h~237FFFh
BK4	BA71	Н	L	L	Ш	Н	Н	Н	*	*	*	238000h~23FFFFh
DN4	BA72	Н	L	L	Η	L	L	L	*	*	*	240000h~247FFFh
	BA73	Н	L	L	Ι	L	L	Н	*	*	*	248000h~24FFFFh
	BA74	Н	L	L	Η	L	Н	L	*	*	*	250000h~257FFFh
	BA75	Н	L	L	Ι	L	Н	Н	*	*	*	258000h~25FFFFh
	BA76	Н	L	L	Н	Н	L	L	*	*	*	260000h~267FFFh
	BA77	Н	L	L	Η	Н	L	Н	*	*	*	268000h~26FFFFh
	BA78	Н	L	L	Н	Н	Н	L	*	*	*	270000h~277FFFh
	BA79	Н	L	L	Н	Н	Н	Н	*	*	*	278000h~27FFFFh
	BA80	Н	L	Н	L	L	L	L	*	*	*	280000h~287FFFh
	BA81	Н	L	Н	L	L	L	Н	*	*	*	288000h~28FFFFh
	BA82	Н	L	Н	L	L	Н	L	*	*	*	290000h~297FFFh
	BA83	Н	L	Н	L	L	Н	Н	*	*	*	298000h~29FFFFh
	BA84	Н	L	Н	L	Н	L	L	*	*	*	2A0000h~2A7FFFh
	BA85	Н	L	Н	L	Н	L	Н	*	*	*	2A8000h~2AFFFFh
	BA86	Н	L	Н	L	Н	Н	L	*	*	*	2B0000h~2B7FFFh
BK5	BA87	Н	L	Н	L	Н	Н	Н	*	*	*	2B8000h~2BFFFFh
БКЭ	BA88	Н	L	Н	Н	L	L	L	*	*	*	2C0000h~2C7FFFh
	BA89	Н	L	Н	Н	L	L	Н	*	*	*	2C8000h~2CFFFFh
	BA90	Н	L	Н	Н	L	Н	L	*	*	*	2D0000h~2D7FFFh
	BA91	Н	L	Н	Н	L	Н	Н	*	*	*	2D8000h~2DFFFFh
	BA92	Н	L	Н	Н	Н	L	L	*	*	*	2E0000h~2E7FFh
	BA93	Н	L	Н	Н	Н	L	Н	*	*	*	2E8000h~2EFFFFh
	BA94	Н	L	Н	Н	Н	Н	L	*	*	*	2F0000h~2F7FFh
	BA95	Н	L	Н	Н	Н	Н	Н	*	*	*	2F8000h~2FFFFh

20.1. TC58FVM6T5B (Top Boot Block) 4/5

BANK	BLOCK		BL	OCK A	DDRE	SS						
#	#	BANI	K ADDF	RESS		-		-	-	_		ADDRESS RANGE
#	#	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	
	BA96	Н	Н	L	L	L	L	L	*	*	*	300000h~307FFFh
	BA97	Н	Н	L	L	L	L	Н	*	*	*	308000h~30FFFFh
	BA98	Н	Н	L	L	L	Н	L	*	*	*	310000h~317FFFh
	BA99	Н	Н	L	L	L	Н	Н	*	*	*	318000h~31FFFFh
	BA100	Н	Н	Ш	┙	Н	L	L	*	*	*	320000h~327FFFh
	BA101	Н	Н	L	┙	Н	L	Н	*	*	*	328000h~32FFFFh
	BA102	Н	Н	L	L	Н	Н	L	*	*	*	330000h~337FFFh
BK6	BA103	Н	Н	Ш	┙	Н	Н	Н	*	*	*	338000h~33FFFFh
DNO	BA104	Н	Н	L	Н	L	L	L	*	*	*	340000h~347FFFh
	BA105	Н	Н	Ш	Ι	L	L	Н	*	*	*	348000h~34FFFFh
	BA106	Н	Н	L	Н	L	Н	L	*	*	*	350000h~357FFFh
	BA107	Н	Н	L	Ι	L	Н	Н	*	*	*	358000h~35FFFFh
	BA108	Н	Н	L	Н	Н	L	L	*	*	*	360000h~367FFFh
	BA109	Н	Н	L	Н	Н	L	Н	*	*	*	368000h~36FFFFh
	BA110	Н	Н	L	Н	Н	Н	L	*	*	*	370000h~377FFFh
	BA111	Н	Н	L	Н	Н	Н	Н	*	*	*	378000h~37FFFFh
	BA112	Н	Н	Н	L	L	L	L	*	*	*	380000h~387FFFh
	BA113	Н	Н	Н	L	L	L	Н	*	*	*	388000h~38FFFFh
	BA114	Н	Н	Н	L	L	Н	L	*	*	*	390000h~397FFFh
	BA115	Н	Н	Н	L	L	Н	Н	*	*	*	398000h~39FFFFh
	BA116	Н	Н	Н	L	Н	L	L	*	*	*	3A0000h~3A7FFFh
	BA117	Н	Н	Н	L	Н	L	Н	*	*	*	3A8000h~3AFFFFh
	BA118	Н	Н	Н	L	Н	Н	L	*	*	*	3B0000h~3B7FFFh
BK7	BA119	Н	Н	Н	L	Н	Н	Н	*	*	*	3B8000h~3BFFFFh
DK/	BA120	Н	Н	Н	Н	L	L	L	*	*	*	3C0000h~3C7FFFh
	BA121	Н	Н	Н	Н	L	L	Н	*	*	*	3C8000h~3CFFFFh
	BA122	Н	Н	Н	Н	L	Н	L	*	*	*	3D0000h~3D7FFFh
	BA123	Н	Н	Н	Н	L	Н	Н	*	*	*	3D8000h~3DFFFFh
	BA124	Н	Н	Н	Н	Н	L	L	*	*	*	3E0000h~3E7FFFh
	BA125	Н	Н	Н	Н	Н	L	Н	*	*	*	3E8000h~3EFFFFh
	BA126	Н	Н	Η	Н	Н	Н	L	*	*	*	3F0000h~3F7FFFh
	BA127	Н	Н	Н	Н	Н	Н	Н	*	*	*	3F8000h~3FFFFh

20.1. TC58FVM6T5B (Top Boot Block) 5/5

DANK	DI OCK		BL	OCK A	DDRE	SS						
BANK #	BLOCK #	BANI	K ADDF	RESS		_	-	_	<u>.</u>	-		ADDRESS RANGE
#	#	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	
	BA127	Н	Н	Н	Н	Н	Н	Н	L	L	L	3F8000h~3F8FFFh
	BA128	Н	Н	Н	Ι	Н	Ι	Н	L	Ш	Ι	3F9000h~3F9FFFh
	BA129	Н	Н	Н	Η	Н	Ι	Н	L	Ι	L	3FA000h~3FAFFFh
BK7	BA130	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	3FB000h~3FBFFFh
DICI	BA131	Н	Н	Н	Н	Н	Н	Н	Н	L	L	3FC000h~3FCFFFh
	BA132	Н	Н	Н	Ι	Н	Ι	Н	Н	Ш	Н	3FD000h~3FDFFFh
	BA133	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	3FE000h~3FEFFFh
	BA134	Н	Н	Н	Ι	Н	Ι	Н	Н	Ι	Ι	3FF000h~3FFFFFh

20.2. TC58FVM6B5B (Bottom Boot Block) 1/5

DANK	DI OCK		BL	OCK A	DDRE	SS						
BANK #	BLOCK #	BAN	K ADDF	RESS		_	-	-	<u>.</u>	-	_	ADDRESS RANGE
π	#	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	
	BA0	L	L	L	L	L	L	L	L	L	L	000000h~000FFFh
	BA1	L	L	Ш	┙	L	┙	Ш	L	Ш	Н	001000h~001FFFh
	BA2	L	L	L	L	L	L	L	L	Η	L	002000h~002FFFh
BK0	BA3	L	L	┙	┙	L	┙	لــ	L	Ι	Н	003000h~003FFFh
	BA4	L	L	L	L	L	L	L	Н	L	L	004000h~004FFFh
	BA5	L L L		L	L	L	L	L	Н	L	Н	005000h~005FFFh
	BA6		L	L	L	L	L	L	Н	Н	L	006000h~006FFFh
	BA7	L	L	L	L	L	L	L	Н	Н	Н	007000h~007FFFh

20.2. TC58FVM6B5B (Bottom Boot Block) 2/5

BANK	BLOCK		BL	OCK A	DDRE	SS						
#	#	BANI	K ADDF	RESS								ADDRESS RANGE
,,	"	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	
	BA8	L	L	L	L	L	L	Н	*	*	*	008000h~00FFFFh
	BA9	L	L	L	L	L	Н	L	*	*	*	010000h~017FFFh
	BA10	L	L	L	L	L	Н	Н	*	*	*	018000h~01FFFFh
	BA11	L	┙	Ш	┙	Н	L	L	*	*	*	020000h~027FFFh
	BA12	L	L	L	L	Н	L	Н	*	*	*	028000h~02FFFFh
	BA13	L	L	L	L	Н	Н	L	*	*	*	030000h~037FFFh
	BA14	L	┙	Ш	┙	Н	Н	Н	*	*	*	038000h~03FFFFh
BK0	BA15	L	L	Ш	Ι	L	L	L	*	*	*	040000h~047FFFh
	BA16	L	Ш	Ш	Η	L	L	Н	*	*	*	048000h~04FFFFh
	BA17	L	L	Ш	Ι	L	Н	L	*	*	*	050000h~057FFFh
	BA18	L	Ш	Ш	Η	L	Н	Н	*	*	*	058000h~05FFFFh
	BA19	L	┙	Ш	Ι	Н	L	L	*	*	*	060000h~067FFFh
	BA20	L	L	Ш	Ι	Н	L	Н	*	*	*	068000h~06FFFFh
	BA21	L	Ш	Ш	Η	Н	Н	L	*	*	*	070000h~077FFFh
	BA22	L	┙	Ш	Ι	Н	Н	Н	*	*	*	078000h~07FFFFh
	BA23	L	L	Ι	┙	L	L	L	*	*	*	080000h~087FFFh
	BA24	L	Ш	Ι	Ш	L	L	Н	*	*	*	088000h~08FFFFh
	BA25	L	L	Η	L	L	Н	L	*	*	*	090000h~097FFFh
	BA26	L	L	Η	L	L	Н	Н	*	*	*	098000h~09FFFFh
	BA27	L	L	Η	L	Н	L	L	*	*	*	0A0000h~0A7FFFh
	BA28	L	L	Ι	┙	Н	L	Н	*	*	*	0A8000h~0AFFFFh
	BA29	L	L	Η	L	Н	Н	L	*	*	*	0B0000h~0B7FFFh
BK1	BA30	L	L	Η	L	Н	Н	Н	*	*	*	0B8000h~0BFFFFh
DKI	BA31	L	L	Ι	Η	L	L	L	*	*	*	0C0000h~0C7FFFh
	BA32	L	L	Ι	Ι	L	L	Н	*	*	*	0C8000h~0CFFFFh
	BA33	L	L	Η	Н	L	Н	L	*	*	*	0D0000h~0D7FFFh
	BA34	L	L	Н	Н	L	Н	Н	*	*	*	0D8000h~0DFFFFh
	BA35	L	L	Η	Н	Н	L	L	*	*	*	0E0000h~0E7FFh
	BA36	L	L	Η	Н	Н	L	Н	*	*	*	0E8000h~0EFFFFh
	BA37	L	L	Н	Н	Н	Н	L	*	*	*	0F0000h~0F7FFh
	BA38	L	L	Н	Н	Н	Н	Н	*	*	*	0F8000h~0FFFFh

20.2. TC58FVM6B5B (Bottom Boot Block) 3/5

BANK	BLOCK		BL	OCK A	DDRE	SS						
#	#	BANI	K ADDF	RESS		ā.	ā.		ā.	ā.	ā.	ADDRESS RANGE
"	π	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	
	BA39	L	Н	L	L	L	L	L	*	*	*	100000h~107FFFh
	BA40	L	Н	L	L	L	L	Н	*	*	*	108000h~10FFFFh
	BA41	L	Н	L	L	L	Н	L	*	*	*	110000h~117FFFh
	BA42	L	Н	L	L	L	Н	Н	*	*	*	118000h~11FFFFh
	BA43	L	Н	L	L	Н	L	L	*	*	*	120000h~127FFFh
	BA44	L	Н	L	L	Н	L	Н	*	*	*	128000h~12FFFFh
	BA45	L	Н	L	L	Н	Н	L	*	*	*	130000h~137FFFh
DIKO	BA46	L	Н	L	L	Н	Н	Н	*	*	*	138000h~13FFFFh
BK2	BA47	L	Н	L	Н	L	L	L	*	*	*	140000h~147FFFh
	BA48	L	Н	L	Н	L	L	Н	*	*	*	148000h~14FFFFh
	BA49	L	Н	L	Н	L	Н	L	*	*	*	150000h~157FFFh
	BA50	L	Н	L	Н	L	Н	Н	*	*	*	158000h~15FFFFh
	BA51	L	Н	L	Н	Н	L	L	*	*	*	160000h~167FFFh
	BA52	L	Н	L	Н	Н	L	Н	*	*	*	168000h~16FFFFh
	BA53	L	Н	L	Н	Н	Н	L	*	*	*	170000h~177FFFh
	BA54	L	Н	L	Н	Н	Н	Н	*	*	*	178000h~17FFFFh
	BA55	L	Н	Н	L	L	L	L	*	*	*	180000h~187FFFh
	BA56	L	Н	Н	L	L	L	Н	*	*	*	188000h~18FFFFh
	BA57	L	Н	Н	L	L	Н	L	*	*	*	190000h~197FFFh
	BA58	L	Н	Н	L	L	Н	Н	*	*	*	198000h~19FFFFh
	BA59	L	Н	Н	L	Н	L	L	*	*	*	1A0000h~1A7FFFh
	BA60	L	Н	Н	L	Н	L	Н	*	*	*	1A8000h~1AFFFFh
	BA61	L	Н	Н	L	Н	Н	L	*	*	*	1B0000h~1B7FFFh
DIKO	BA62	L	Н	Н	L	Н	Н	Н	*	*	*	1B8000h~1BFFFFh
ВК3	BA63	L	Н	Н	Н	L	L	L	*	*	*	1C0000h~1C7FFFh
	BA64	L	Н	Н	Н	L	L	Н	*	*	*	1C8000h~1CFFFFh
	BA65	L	Н	Н	Н	L	Н	L	*	*	*	1D0000h~1D7FFFh
	BA66	L	Н	Н	Н	L	Н	Н	*	*	*	1D8000h~1DFFFFh
	BA67	L	Н	Н	Н	Н	L	L	*	*	*	1E0000h~1E7FFh
	BA68	L	Н	Н	Н	Н	L	Н	*	*	*	1E8000h~1EFFFFh
	BA69	L	Н	Н	Н	Н	Н	L	*	*	*	1F0000h~1F7FFFh
	BA70	L	Н	Н	Н	Н	Н	Н	*	*	*	1F8000h~1FFFFFh

20.2. TC58FVM6B5B (Bottom Boot Block) 4/5

DANII	DI OOK		BL	OCK A	DDRE	SS						
BANK "	BLOCK "	BAN	< ADDF	RESS								ADDRESS RANGE
#	#	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	
	BA71	Н	L	L	L	L	L	L	*	*	*	200000h~207FFFh
	BA72	Н	L	L	L	L	L	Н	*	*	*	208000h~20FFFFh
	BA73	Н	L	L	L	L	Н	L	*	*	*	210000h~217FFFh
	BA74	Н	L	L	L	L	Н	Н	*	*	*	218000h~21FFFFh
	BA75	Н	L	L	L	Н	L	L	*	*	*	220000h~227FFFh
	BA76	Н	L	L	L	Н	L	Н	*	*	*	228000h~22FFFFh
	BA77	Н	L	L	L	Н	Н	L	*	*	*	230000h~237FFFh
BK4	BA78	Н	L	L	L	Н	Н	Н	*	*	*	238000h~23FFFFh
DN4	BA79	Н	L	L	Н	L	L	L	*	*	*	240000h~247FFFh
	BA80	Н	L	L	Н	L	L	Н	*	*	*	248000h~24FFFFh
	BA81	Н	L	L	Н	L	Н	L	*	*	*	250000h~257FFFh
	BA82	Н	L	L	Н	L	Н	Н	*	*	*	258000h~25FFFFh
	BA83	Н	L	L	Н	Н	L	L	*	*	*	260000h~267FFFh
	BA84	Н	L	L	Н	Н	L	Н	*	*	*	268000h~26FFFFh
	BA85	Н	L	L	Н	Н	Н	L	*	*	*	270000h~277FFFh
	BA86	Н	L	L	Н	Н	Н	Н	*	*	*	278000h~27FFFFh
	BA87	Н	L	Н	L	L	L	L	*	*	*	280000h~287FFFh
	BA88	Н	L	Н	L	L	L	Н	*	*	*	288000h~28FFFFh
	BA89	Н	L	Н	L	L	Н	L	*	*	*	290000h~297FFFh
	BA90	Н	L	Н	L	L	Н	Н	*	*	*	298000h~29FFFFh
	BA91	Н	L	Н	L	Н	L	L	*	*	*	2A0000h~2A7FFFh
	BA92	Н	L	Н	L	Н	L	Н	*	*	*	2A8000h~2AFFFFh
	BA93	Н	L	Н	L	Н	Н	L	*	*	*	2B0000h~2B7FFFh
BK5	BA94	Н	L	Н	L	Н	Н	Н	*	*	*	2B8000h~2BFFFFh
BNO	BA95	Н	L	Н	Н	L	L	L	*	*	*	2C0000h~2C7FFFh
	BA96	Н	L	Н	Н	L	L	Н	*	*	*	2C8000h~2CFFFFh
	BA97	Н	L	Н	Н	L	Н	L	*	*	*	2D0000h~2D7FFFh
	BA98	Н	L	Н	Н	L	Н	Н	*	*	*	2D8000h~2DFFFFh
	BA99	Н	L	Н	Н	Н	L	L	*	*	*	2E0000h~2E7FFh
	BA100	Н	L	Н	Н	Н	L	Н	*	*	*	2E8000h~2EFFFFh
	BA101	Н	L	Н	Н	Н	Н	L	*	*	*	2F0000h~2F7FFh
	BA102	Н	L	Н	Н	Н	Н	Н	*	*	*	2F8000h~2FFFFh

20.2. TC58FVM6B5B (Bottom Boot Block) 5/5

BANK	BLOCK		BL	OCK A	DDRE	SS						
#	#	BANI	K ADDF	RESS								ADDRESS RANGE
#	#	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	
	BA103	Н	Н	L	L	L	L	L	*	*	*	300000h~307FFFh
	BA104	Н	Н	L	L	L	L	Н	*	*	*	308000h~30FFFFh
	BA105	Н	Н	L	L	L	Н	L	*	*	*	310000h~317FFFh
	BA106	Н	Н	L	L	L	Н	Н	*	*	*	318000h~31FFFFh
	BA107	Н	Н	L	L	Н	L	L	*	*	*	320000h~327FFFh
	BA108	Н	Н	L	L	Н	L	Н	*	*	*	328000h~32FFFFh
	BA109	Н	Н	L	L	Н	Н	L	*	*	*	330000h~337FFFh
DIKO	BA110	Н	Н	L	L	Н	Н	Н	*	*	*	338000h~33FFFFh
BK6	BA111	Н	Н	L	Н	L	L	L	*	*	*	340000h~347FFFh
	BA112	Н	Н	L	Н	L	L	Н	*	*	*	348000h~34FFFFh
	BA113	Н	Н	L	Н	L	Н	L	*	*	*	350000h~357FFFh
	BA114	Н	Н	L	Н	L	Н	Н	*	*	*	358000h~35FFFFh
	BA115	Н	Н	L	Н	Н	L	L	*	*	*	360000h~367FFFh
	BA116	Н	Н	L	Н	Н	L	Н	*	*	*	368000h~36FFFFh
	BA117	Н	Н	L	Н	Н	Н	L	*	*	*	370000h~377FFFh
	BA118	Н	Н	L	Н	Н	Н	Н	*	*	*	378000h~37FFFFh
	BA119	Н	Н	Н	L	L	L	L	*	*	*	380000h~387FFFh
	BA120	Н	Н	Н	L	L	L	Н	*	*	*	388000h~38FFFFh
	BA121	Н	Н	Н	L	L	Н	L	*	*	*	390000h~397FFFh
	BA122	Н	Н	Н	L	L	Н	Н	*	*	*	398000h~39FFFFh
	BA123	Н	Н	Н	L	Н	L	L	*	*	*	3A0000h~3A7FFFh
	BA124	Н	Н	Н	L	Н	L	Н	*	*	*	3A8000h~3AFFFFh
	BA125	Н	Н	Н	L	Н	Н	L	*	*	*	3B0000h~3B7FFFh
DI/Z	BA126	Н	Н	Н	L	Н	Н	Н	*	*	*	3B8000h~3BFFFFh
BK7	BA127	Н	Н	Н	Н	L	L	L	*	*	*	3C0000h~3C7FFh
	BA128	Н	Н	Н	Н	L	L	Н	*	*	*	3C8000h~3CFFFFh
	BA129	Н	Н	Н	Н	L	Н	L	*	*	*	3D0000h~3D7FFFh
	BA130	Н	Н	Н	Н	L	Н	Н	*	*	*	3D8000h~3DFFFFh
	BA131	Н	Н	Н	Н	Н	L	L	*	*	*	3E0000h~3E7FFFh
	BA132	Н	Н	Н	Н	Н	L	Н	*	*	*	3E8000h~3EFFFFh
	BA133	Н	Н	Н	Н	Н	Н	L	*	*	*	3F0000h~3F7FFFh
	BA134	Н	Н	Н	Н	Н	Н	Н	*	*	*	3F8000h~3FFFFh

<u>21. ブロックサイズ表</u>

21.1. TC58FVM6T5B (Top Boot Block)

BLOCK #	BLOCK SIZE	BANK #	BANK SIZE	BLOCK COUNT
BA0~BA15	32 Kwords x 16	BK0	512 Kwords	16
BA16~BA31	32 Kwords x 16	BK1	512 Kwords	16
BA32~BA47	32 Kwords x 16	BK2	512 Kwords	16
BA48~BA63	32 Kwords x 16	BK3	512 Kwords	16
BA64~BA79	32 Kwords x 16	BK4	512 Kwords	16
BA80~BA95	32 Kwords x 16	BK5	512 Kwords	16
BA96~BA111	32 Kwords x 16	BK6	512 Kwords	16
BA112~BA134	32 Kwords x 15 + 4 Kwords x 8	BK7	512 Kwords	23

21.2. TC58FVM6B5B (Bottom Boot Block)

BLOCK #	BLOCK SIZE	BANK #	BANK SIZE	BLOCK COUNT
BA0~BA22	32 Kwords x 15 + 4 Kwords x 8	BK0	512 Kwords	23
BA23~BA38	32 Kwords x 16	BK1	512 Kwords	16
BA39~BA54	32 Kwords x 16	BK2	512 Kwords	16
BA55~BA70	32 Kwords x 16	BK3	512 Kwords	16
BA71~BA86	32 Kwords x 16	BK4	512 Kwords	16
BA87~BA102	32 Kwords x 16	BK5	512 Kwords	16
BA103~BA118	32 Kwords x 16	BK6	512 Kwords	16
BA119~BA134	32 Kwords x 16	BK7	512 Kwords	16

22. 外形図

P-TFBGA56-0710-0.80DZ

単位: mm

TSOPI48-P-1220-0.50

23. 変更履歴

変更日付	REV.	変更内容
2003/10/27	1.00	Original Version
2004/06/09	1.01	SPEC変更
2004/06/29	1.02	SPEC 変更(tPCEW)
2004/09/06	1.03	Password Unlock の有効アドレス変更
2004/10/04	1.04	Password モード時のRY/BY ピンの状態追加
2004/11/08	1.05	SPEC 変更(tSUSP)
2004/11/17	1.06	Hidden Rom Exit Address 変更
2005/01/11	1.07	SPEC 変更(tSUSE/tREADY/tPPAW)
2005/02/28	1.08	同時実行モードコメント変更、FBGA 図面変更
2005/03/07	1.09	コマンドシーケンスの誤記修正 (p8)
2005/06/24	1.10	Min VDD を 2.7V に変更
2005/08/02	1.11	Pin 容量 SPEC 追加(WP/ACC)
2005/08/22	1.12	ハードウェアシーケンスフラグコメント修正
2006/01/31	1.13	オーダ型名のパッケージ名称修正
2006/02/23	1.14	無鉛製品の表記追加 (p.1)
2006/04/06	1.15	ブロック保護コメント修正 (p.14)
2006/05/10	1.16	プログラムサスペンド/レジューム、および消去サスペンド/レジュームのコメント修正

当社半導体製品取り扱い上のお願い

000629TBA

- 当社は品質、信頼性の向上に努めておりますが、一般に半導体製品は誤作動したり故障することがあります。当社半導体製品をご使用いただく場合は、半導体製品の誤作動や故障により、生命・身体・財産が侵害されることのないように、購入者側の責任において、機器の安全設計を行うことをお願いします。なお、設計に際しては、最新の製品仕様をご確認の上、製品保証範囲内でご使用いただくと共に、考慮されるべき注意事項や条件について「東芝半導体製品の取り扱い上のご注意とお願い」、「半導体信頼性ハンドブック」などでご確認ください。
- 本資料に掲載されている製品は、一般的電子機器 (コンピュータ、パーソナル機器、事務機器、計測機器、産業用 ロボット、家電機器など) に使用されることを意図しています。特別に高い品質・信頼性が要求され、その故障や 誤作動が直接人命を脅かしたり人体に危害を及ぼす恐れのある機器 (原子力制御機器、航空宇宙機器、輸送機器、 交通信号機器、燃焼制御、医療機器、各種安全装置など) にこれらの製品を使用すること (以下"特定用途"とい う) は意図もされていませんし、また保証もされていません。本資料に掲載されている製品を当該特定用途に使用 することは、お客様の責任でなされることとなります。
- 本資料に掲載されている製品は、外国為替および外国貿易法により、輸出または海外への提供が規制されている ものです。
- 本資料に掲載されている技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当社および第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。