Chapitre 2 : Suites réelles

I Définition

A) Généralités

Soit *E* un ensemble.

Soit K un intervalle de N (du type $[n_0, n_1], n_0 \le n_1$ ou $\{n \in \mathbb{N}, n > n_0\}$) non vide.

Une suite d'éléments de E indexée par K est une application $u: K \to E$. $k \mapsto u_k$

L'ensemble des suites d'éléments de E indexées par K est noté E^K (c'est aussi $\mathfrak{F}(K,E)$)

Dans le cas où $E = \mathbb{R}$, on parle de suites à valeurs réelles, ou suites réelles. Si $E = \mathbb{C}$, on parle alors de suites complexes.

Pour $u \in E^K$, l'ensemble des valeurs de la suite est $\{u_k, k \in K\}$. On dit qu'une suite est infinie si elle est indexée par un ensemble infini. u_k est le terme de rang k.

On s'intéresse dans ce chapitre à $\mathbb{R}^{\mathbb{N}}$

B) Opérations sur les suites réelles

Soient $u, v \in \mathbb{R}^N$, $\lambda \in \mathbb{R}$.

u + v désigne la suite réelle w définie par :

$$\forall n \in \mathbb{N}, w_n = u_n + v_n$$

• $u \times v$ désigne la suite réelle h définie par :

$$\forall n \in \mathbb{N}, h_n = u_n \times v_n$$

• $\lambda \cdot u$ désigne la suite réelle u' définie par :

$$\forall n \in \mathbb{N}, u'_n = \lambda \cdot u_n$$
.

"." : loi de composition à opérateur externe : $\mathbb{R} \times \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$. $(\lambda,u) \mapsto \lambda u$

• $0_{\mathbb{R}^N}$ désigne la suite réelle dont tous les termes sont nuls : $\forall n \in \mathbb{N}, 0_n = 0$. (de même, $1_{\mathbb{R}^N}$ ou 1 si il n'y a pas d'ambiguïté.)

Remarque:

Il n'y a pas intégrité, c'est-à-dire:

$$\operatorname{non}(\forall u, v \in \mathbb{R}^{\mathbb{N}}, (u \times v = 0_{\mathbb{R}^{\mathbb{N}}} \Rightarrow u = 0_{\mathbb{R}^{\mathbb{N}}} \text{ ou } v = 0_{\mathbb{R}^{\mathbb{N}}}))$$

Par exemple:

$$u_n = \begin{cases} 0 \text{ si } n \text{ est pair} \\ 1 \text{ sinon} \end{cases} \quad v_n = \begin{cases} 1 \text{ si } n \text{ est pair} \\ 0 \text{ sinon} \end{cases}$$

Alors $u \times v = 0_{\mathbb{R}^N}$, mais $u \neq 0_{\mathbb{R}^N}$ et $v \neq 0_{\mathbb{R}^N}$.

C) Divers modes de définition de suites

- Définition explicite; donnée, pour chaque $n \in \mathbb{N}$, de u_n en fonction de n (de façon plus ou moins complexe, avec éventuellement des sommes ou des conditions...)
- Définition récurrente :
 - récurrence « simple » : $(u_n)_{n \in \mathbb{N}}$ est telle que :

$$\begin{cases} u_0 = \dots \\ \forall n \in \mathbb{N}, u_{n+1} = f(u_n) \end{cases}$$

(Problème de définition éventuelle, dépend de *f*. On peut résoudre ce problème par récurrence)

- récurrence « double » :

$$\begin{cases} u_0 = \dots & u_1 = \dots \\ \forall n \in \mathbb{N}, u_{n+2} = f(u_n, u_{n+1}) \end{cases}$$

• Définition implicite. Par exemple : « pour $n \ge 2$, u_n est la solution réelle positive de l'équation $x^n = x + 1$ ».

On peut aussi imaginer d'autres modes de définitions de suites, plus complexes...

D) Suite croissante, décroissante...

Soit $(u_n)_{n \in \mathbb{N}}$ une suite réelle.

Définition, proposition:

•
$$(u_n)$$
 est croissante $\underset{\text{def}}{\Leftrightarrow} \forall n, p \in \mathbb{N}, (n \leq p \Rightarrow u_n \leq u_p)$
 $\iff \forall n \in \mathbb{N}, (u_n \leq u_{n+1})$

Démonstration:

- Supposons que $\forall n, p \in \mathbb{N}, (n \le p \Rightarrow u_n \le u_p)$. Soit $n \in \mathbb{N}$. Comme $n \le n+1$, on a bien $u_n \le u_{n+1}$
- Supposons que $\forall n \in \mathbb{N}, (u_n \le u_{n+1})$. Soient $n, p \in \mathbb{N}$. Si n = p, on a $u_n \le u_p$. Si n < p, alors $u_n \le u_{n+1} \le ... \le u_p$ (idem si n > p)

•
$$(u_n)$$
 est strictement croissante $\underset{\text{def}}{\Leftrightarrow} \forall n, p \in \mathbb{N}, (n
 $\Leftrightarrow \forall n \in \mathbb{N}, (u_n < u_{n+1})$$

$$\Leftrightarrow \forall n \in \mathbb{N}, (u_n < u_{n+1})$$
• (u_n) est décroissante $\Leftrightarrow \forall n, p \in \mathbb{N}, (n \le p \Rightarrow u_n \ge u_p)$

$$\Leftrightarrow \forall n \in \mathbb{N}, (u_n \ge u_n)$$

$$\Leftrightarrow \forall n \in \mathbb{N}, (u_n \ge u_{n+1})$$
• (u_n) est strictement décroissante $\Leftrightarrow \forall n, p \in \mathbb{N}, (n u_p)$

$$\Leftrightarrow \forall n \in \mathbb{N}, (u_n > u_{n+1})$$

•
$$(u_n)$$
 est constante $\Leftrightarrow \exists a \in R, \forall n \in \mathbb{N}, u_n = a$
 $\Leftrightarrow \forall n \in \mathbb{N}, u_n = u_{n+1}$
 $\Leftrightarrow (u_n)$ est croissante et (u_n) est décroissante

E) Suite majorée, minorée...

Soit
$$u \in \mathbb{R}^{N}$$

•
$$u$$
 est majorée $\Leftrightarrow \{u_n, n \in \mathbb{N}\}$ est majoré $\Leftrightarrow \exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leq M$

•
$$u$$
 est minorée $\Leftrightarrow \{u_n, n \in \mathbb{N}\}$ est minoré $\Leftrightarrow \exists m \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \geq m$

•
$$u$$
 est bornée $\Leftrightarrow \{u_n, n \in \mathbb{N}\}$ est borné $\Leftrightarrow \exists M \in \mathbb{R}, \forall n \in \mathbb{N}, |u_n| \leq M$ $\Leftrightarrow u$ est majorée et minorée

F) Propriétés « à partir d'un certain rang »

Soit $u \in \mathbb{R}^{N}$

Exemple : u est croissante à partir du rang 4 si et seulement si $\forall n \ge 4, (u_n \le u_{n+1})$.

On définit de même pour les autres propriétés.

Une suite constante à partir d'un certain rang est dite stationnaire.

G) Suite extraite

Définition :

Soit
$$u = (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$$
, $v = (v_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$.

On dit que v est extraite de u lorsqu'il existe une application $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $\forall n \in \mathbb{N}, v_n = u_{\varphi(n)}$.

Exemple:

Soit u la suite définie par $\forall n \in \mathbb{N}, u_n = (-1)^n$. Alors les suites suivantes en sont extraites :

- La suite $v = (v_n)_{n \in \mathbb{N}} = (u_{2n})_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ est constante et égale à 1.
- La suite $w = (u_{2n+1})_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ est constante égale à -1.
- La suite $h = (u_{\varphi(n)})_{n \in \mathbb{N}}$ où $\varphi : \mathbb{N} \to \mathbb{N}$ qui à 0 associe 0 et à $n \in \mathbb{N}$ * associe le n-ième nombre premier est stationnaire à partir du rang 2.
- La suite $v' = (u_{3n+2})_{n \in \mathbb{N}}$ est égale à la suite u.

II Suites convergentes

A) Définition

Soit $u = (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$. On dit que la suite $(u_n)_{n \in \mathbb{N}}$ est convergente lorsqu'il existe $l \in \mathbb{R}$ tel que $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow |u_n - l| < \varepsilon)$

Remarque:

$$|u_n - l| < \varepsilon \Leftrightarrow -\varepsilon < u_n - l < \varepsilon \Leftrightarrow l - \varepsilon < u_n < l + \varepsilon \Leftrightarrow u_n \in J - \varepsilon, l + \varepsilon [$$

« Aussi petit que soit ε strictement positif, il existe un rang à partir duquel les termes de la suite $(u_n)_{n\in\mathbb{N}}$ sont dans l'intervalle $]l-\varepsilon,l+\varepsilon[$ ».

Théorème:

Soit
$$(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$$
, $l,l'\in\mathbb{R}$

Si $(u_n)_{n \in \mathbb{N}}$ converge vers l et l', alors l = l'.

Démonstration : par l'absurde.

Supposons $l \neq l'$, par exemple l < l'.

Soit
$$\varepsilon$$
 tel que $0 < \varepsilon < \frac{l'-l}{2}$ (ce qui est possible car $\frac{l'-l}{2} > 0$)

Alors:

$$\exists N \in \mathbb{N}, \forall n \geq N, l - \varepsilon < u_n < l + \varepsilon$$

et
$$\exists N' \in \mathbb{N}, \forall n \geq N', l' - \varepsilon < u_n < l' + \varepsilon$$

Si on prend $n \ge \max(N, N')$, on aura alors :

$$l - \varepsilon < u_n < l + \varepsilon$$
 et $l' - \varepsilon < u_n < l' + \varepsilon$

Donc $l' - \varepsilon < u_n < l + \varepsilon$; $l' - \varepsilon < l + \varepsilon$; $2\varepsilon > l' - l$. Contradiction avec le choix de ε

Conséquence:

Si $(u_n)_{n\in\mathbb{N}}$ converge, l'unique réel l tel que $\forall \varepsilon>0, \exists N\in\mathbb{N}, \forall n\geq N, |u_n-l|<\varepsilon$ est appelé la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

On note $l = \lim_{n \to +\infty} u_n$, ou $l = \lim_{n \to +\infty} u_n$ (attention aux notations : dans les deux premières égalités, on a des suites en argument, dans la troisième, on a un terme).

Pour dire « la suite $(u_n)_{n\in\mathbb{N}}$ converge », on peut dire aussi « $(u_n)_{n\in\mathbb{N}}$ admet une limite réelle ».

Exemples de base :

• Soit *a* un réel. La suite constante égale à *a* converge vers *a*.

En effet : Soit $\varepsilon > 0$. Alors $\forall n \ge 0$, $|u_n - a| < \varepsilon$ puisque $|u_n - a| = 0$. On a donc trouvé N (à savoir 0) tel que $\forall n \ge N, |u_n - a| < \varepsilon$.

Donc $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |u_n - a| < \varepsilon$

• La suite
$$\left\{ \text{de terme général } u_n = \frac{1}{n} \ (n \ge 1) \right\}$$
 converge vers 0. $u = \left\{ \frac{1}{n} \right\}_{n \in \mathbb{N}^*}$ $n \mapsto \frac{1}{n}$

Démonstration:

Soit $\varepsilon > 0$. Soit $N \in \mathbb{N}^*$ tel que $\frac{1}{N} < \varepsilon$. Alors, pour tout $n \ge N$, on a:

$$\frac{1}{n} \le \frac{1}{N} < \varepsilon$$
, or, $|u_n| = \frac{1}{n}$ donc $|u_n| < \varepsilon$. Donc la suite converge vers 0.

Proposition:

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $l\in\mathbb{R}$. On a les équivalences :

$$u_{n} \xrightarrow[n \to +\infty]{} l \Leftrightarrow u_{n} - l \xrightarrow[n \to +\infty]{} 0 \Leftrightarrow \left| u_{n} - l \right| \xrightarrow[n \to +\infty]{} 0$$

En effet:

$$\begin{split} u_{n} & \xrightarrow[n \to +\infty]{} l \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \left| u_{n} - l \right| < \varepsilon \\ u_{n} - l & \xrightarrow[n \to +\infty]{} 0 \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \left| (u_{n} - l) - 0 \right| < \varepsilon \\ \left| u_{n} - l \right| & \xrightarrow[n \to +\infty]{} 0 \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \left| u_{n} - l \right| - 0 \right| < \varepsilon \end{split}$$

Exemple:

La suite $n \mapsto 2 - \frac{1}{n}$ converge vers 2.

B) Convergence et suite bornée

Théorème:

Si une suite $(u_n)_{n\in\mathbb{N}}$ converge, alors elle est bornée.

Démonstration :

Supposons que $(u_n)_{n\in\mathbb{N}}$ converge. Notons l sa limite.

Selon la définition de la convergence vers l, il existe $N \in \mathbb{N}$ tel que $\forall n \ge N$, $|u_n - l| < 3$. Donc $\forall n \ge N$, $|u_n| = |u_n - l + l| \le |u_n - l| + |l| \le 3 + |l|$.

Ainsi, en posant $M = \max(|l| + 3, |u_0|, |u_1|, ..., |u_N|)$, il est clair que $\forall n \in \mathbb{N}, |u_n| \leq M$.

Contraposée:

Si $(u_n)_{n\in\mathbb{N}}$ n'est pas bornée, alors elle ne converge pas (elle diverge).

Attention, la réciproque est fausse :

 $u: n \mapsto (-1)^n$ est bornée, mais ne converge pas.

En effet:

Soit $l \in \mathbb{R}$. Montrons que $(u_n)_{n \in \mathbb{N}}$ ne converge pas vers l.

Prenons $\varepsilon = \frac{1}{2}$. Alors il n'existe aucun N tel que $\forall n \ge N$, $|u_n - l| < \varepsilon$.

En effet, supposons qu'il en existe.

Alors $|u_N - l| < \varepsilon$ et $|u_{N+1} - l| < \varepsilon$.

Donc $|u_{N+1} - u_N| = |u_{N+1} - l - (u_N - l)| \le |u_{N+1} - l| + |u_N - l| < 2\varepsilon \le 1$.

Contradiction car $|u_{N+1} - u_N| = 2$.

C) « La notion de limite ne dépend pas des premiers termes »

Proposition:

Soit $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$. Si u et v sont égales à partir d'un certain rang, alors elles sont de même nature (convergente ou divergente), et si elles convergent, c'est vers la même limite.

Démonstration:

Soit $N \in \mathbb{N}$ tel que $\forall n \geq N, u_n = v_n$. Supposons que $(u_n)_{n \in \mathbb{N}}$ converge vers une limite $l \in \mathbb{R}$.

Alors $(v_n)_{n \in \mathbb{N}}$ converge aussi vers l:

Soit $\varepsilon > 0$. On peut introduire $N' \in \mathbb{N}$ tel que $\forall n \ge N', |u_n - l| < \varepsilon$.

Alors, si on pose $P = \max(N, N')$, on a $\forall n \ge P, |v_n - l| < \varepsilon$.

Donc $\forall \varepsilon > 0, \exists P \in \mathbb{N}, \forall n \ge P, |v_n - l| < \varepsilon$. Donc $(v_n)_{n \in \mathbb{N}}$ converge vers l.

Etant donnés les rôles symétriques joués par $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$, on a donc l'équivalence $(u_n)_{n\in\mathbb{N}}$ converge $\Leftrightarrow (v_n)_{n\in\mathbb{N}}$ converge ; donc, par contraposée, $(u_n)_{n\in\mathbb{N}}$ diverge $\Leftrightarrow (v_n)_{n\in\mathbb{N}}$ diverge.

D) Convergence et suite extraite

Lemme:

Soit φ une application strictement croissante de N dans N.

Alors $\forall k \in \mathbb{N}, \varphi(k) \ge k$

Démonstration par récurrence :

 $\varphi(0) \ge 0 \text{ car } \varphi(0) \in \mathbb{N}$

Soit $k \in \mathbb{N}$, supposons que $\varphi(k) \ge k$.

Alors $\varphi(k+1) > \varphi(k) \ge k$; $\varphi(k+1) > k$; $\varphi(k+1) \ge k+1$.

Théorème :

Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}$, alors toute suite extraite converge vers l.

Démonstration:

Supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers l.

Soit $(v_n)_{n\in\mathbb{N}}$ une suite extraite de $(u_n)_{n\in\mathbb{N}}$.

Soit $\varphi: \mathbb{N} \to \mathbb{N}$, strictement croissante, telle que $\forall n \in \mathbb{N}, v_n = u_{\varphi(n)}$.

Soit $\varepsilon > 0$.

Comme $(u_n)_{n\in\mathbb{N}}$ converge vers l, il existe $N\in\mathbb{N}$ tel que $\forall n\geq N, |u_n-l|<\varepsilon$.

Alors pour tout $k \ge N$, on a $\varphi(k) \ge k \ge N$, donc $|u_{\varphi(k)} - l| < \varepsilon$.

Ainsi, on a montré que $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall k \geq N, |v_k - l| < \varepsilon$

Application:

Généralement pour la contraposée.

• Soit $(u_n)_{n \in \mathbb{N}}$ la suite de terme général $u_n = (-1)^n$.

$$\lim_{n \to \infty} (u_{2n}) = 1$$

$$\lim_{n \to \infty} (u_{2n+1}) = -1$$
donc $(u_n)_{n \in \mathbb{N}}$ diverge.

• Soit $(u_n)_{n \in \mathbb{N}}$ la suite de terme général $u_n = \sin\left(\frac{n\pi}{2}\right)$

$$\lim(u_{2n}) = 0$$

$$\lim(u_{4n+3}) = -1$$

$$\lim(u_{4n+1}) = 1$$
donc $(u_n)_{n \in \mathbb{N}}$ diverge.

Proposition:

Si $(u_{2k})_{k\in\mathbb{N}}$ et $(u_{2k+1})_{k\in\mathbb{N}}$ convergent vers la même limite l, alors $(u_n)_{n\in\mathbb{N}}$ converge aussi vers l.

Démonstration:

Soit $\varepsilon > 0$

Soit $K \in \mathbb{N}$ tel que $\forall k \geq K, |u_{2k} - l| < \varepsilon$

Soit $K' \in \mathbb{N}$ tel que $\forall k \geq K', |u_{2k+1} - l| < \varepsilon$.

Alors $\forall n \ge \max(2K, 2K'+1), |u_n - l| < \varepsilon$.

En effet : soit $n \ge \max(2K, 2K'+1)$.

Si n est pair, n s'écrit sous la forme n=2k, et comme $n\geq 2K$, on a $k\geq K$, donc $\left|u_{2k}-l\right|<\varepsilon$, soit, comme n=2k, $\left|u_n-l\right|<\varepsilon$. Il en est de même si n est impair.

Donc $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |u_n - l| < \varepsilon$

III Convergence et inégalités

Proposition:

Si $(u_n)_{n\in\mathbb{N}}$ converge vers l et si l est un intervalle ouvert contenant l, alors il existe un rang à partir duquel les termes sont dans l.

Démonstration:

Il est clair que si I est ouvert, et si $l \in I$, on peut trouver $\varepsilon > 0$ tel que $|l - \varepsilon, l + \varepsilon| \subset I$. Soit alors un tel $\varepsilon > 0$. Il existe donc $N \in \mathbb{N}$ tel que $\forall n \geq N, |u_n - l| < \varepsilon$, c'est-à-dire $\forall n \geq N, u_n \in |l - \varepsilon, l + \varepsilon| \subset I$

Théorème (passage à la limite dans une inégalité) :

Si deux suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ convergent vers l, l' respectivement, et si il existe n_0 tel que $\forall n\geq n_0, u_n\leq v_n$, alors $l\leq l$ '.

Démonstration par l'absurde :

Avec les hypothèses du théorème, supposons que l > l'.

Soit alors ε tel que $0 < \varepsilon < \frac{l-l'}{2}$. Ainsi, $l' + \varepsilon < l - \varepsilon$

Il existe donc $N \in \mathbb{N}$ tel que $\forall n \ge N, l - \varepsilon < u_n < l + \varepsilon$

Et aussi $N' \in \mathbb{N}$ tel que $\forall n \ge N', l' - \varepsilon < v_n < l' + \varepsilon$

Alors, pour $n \ge \max(N, N', n_0)$:

 $v_n < l' + \varepsilon < l - \varepsilon < u_n$. Contradiction, car $u_n \le v_n$.

Remarque:

Les inégalités strictes ne se conservent pas par passage à la limite.

Par exemple: $\forall n \in \mathbb{N}^*, 2 - \frac{1}{n} < 2 + \frac{1}{n}$, mais $\lim_{n \to +\infty} 2 - \frac{1}{n} = \lim_{n \to +\infty} 2 + \frac{1}{n} = 2$

Cas particulier:

Si $(u_n)_{n\in\mathbb{N}}$ a une limite, et si $\forall n\in\mathbb{N}, u_n\leq a$, alors $\lim(u_n)\leq a$

Théorème (des gendarmes):

Soient $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}, (w_n)_{n\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$.

Si $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent vers une même limite $l\in\mathbb{R}$, et si il existe n_0 tel que $\forall n\geq n_0, u_n\leq v_n\leq w_n$, alors $(v_n)_{n\in\mathbb{N}}$ converge vers l.

Démonstration :

Soit $\varepsilon > 0$.

Il existe donc $N \in \mathbb{N}$ tel que $\forall n \ge N, l - \varepsilon < u_n < l + \varepsilon$.

Et aussi $N' \in \mathbb{N}$ tel que $\forall n \geq N', l - \varepsilon < w_n < l + \varepsilon$

Alors, pour $n \ge \max(N, N', n_0)$, on a $l - \varepsilon < u_n \le v_n \le w_n < l + \varepsilon$

On a donc trouvé M tel que $\forall n \ge M, l - \varepsilon < v_n < l + \varepsilon$.

Donc $\forall \varepsilon > 0, \exists M \in \mathbb{N}, \forall n \ge M, |v_n - l| < \varepsilon$

Cas particulier:

Si $(v_n)_{n\in\mathbb{N}}$ converge vers 0, et si $\forall n\in\mathbb{N}$, $|u_n|\leq v_n$, alors $(u_n)_{n\in\mathbb{N}}$ converge vers 0.

Plus généralement, si $(v_n)_{n\in\mathbb{N}}$ converge vers 0, et si $\forall n\in\mathbb{N}$, $|u_n-l|\leq v_n$, alors $(u_n)_{n\in\mathbb{N}}$ converge vers l.

IV Convergence et opérations sur les suites

Proposition:

Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}$, alors $(|u_n|)_{n\in\mathbb{N}}$ converge vers |l|.

Démonstration

Pour tout $n \in \mathbb{N}$, $||u_n| - |l|| \le |u_n - l|$. Donc, d'après le théorème des gendarmes, $(|u_n|)_{n \in \mathbb{N}}$ converge vers |l|.

(Attention, la réciproque est fausse, sauf si l = 0)

Proposition:

Soient $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}, \ \lambda \in \mathbb{R}$.

Si $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}$, $(v_n)_{n\in\mathbb{N}}$ vers $l'\in\mathbb{R}$, alors:

- $(u_n + v_n)_{n \in \mathbb{N}}$ converge vers l + l'
- $(\lambda u_n)_{n\in\mathbb{N}}$ converge vers λl
- $(u_n v_n)_{n \in \mathbb{N}}$ converge vers $l \times l'$

Démonstration:

• Soit $\varepsilon > 0$.

Il existe donc $N \in \mathbb{N}$ tel que $\forall n \ge N, |u_n - l| < \varepsilon/2 \text{ (car } \varepsilon/2 > 0 \text{)}$

Et $N' \in \mathbb{N}$ tel que $\forall n \ge N', |v_n - l'| < \varepsilon/2$.

Alors, pour $n \ge \max(N, N')$, $|u_n + v_n - (l + l')| \le |u_n - l| + |v_n - l'| < \varepsilon$

Donc $\forall \varepsilon > 0, \exists M \in \mathbb{N}, \forall n \ge M, |(u_n + v_n - (l + l'))| < \varepsilon$.

Donc $(u_n + v_n)_{n \in \mathbb{N}}$ converge vers l + l'.

• 1^{er} cas : $\lambda \neq 0$

Soit $\varepsilon > 0$.

Il existe donc $N \in \mathbb{N}$ tel que $\forall n \ge N, |u_n - l| < \varepsilon/|\lambda|$ (car $\varepsilon/|\lambda| > 0$)

Alors, pour tout $n \ge N$, on a: $|\lambda u_n - \lambda l| = |\lambda| |u_n - l| < |\lambda| \frac{\varepsilon}{|\lambda|} = \varepsilon$

 $2^{\text{ème}}$ cas : $\lambda = 0$: trivial, la suite nulle converge vers 0.

La suite $(u_n)_{n\in\mathbb{N}}$ converge, elle est donc bornée.

On introduit alors $M \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}, |u_n| < M$

On a alors, pour tout $n \in \mathbb{N}$:

On a alors, pour tout
$$n \in \mathbb{N}$$
: $|u_n v_n - l'| = |u_n (v_n - l') + l' (u_n - l)| \le |u_n| |v_n - l'| + |l'| |u_n - l| \le \underline{M|v_n - l'|} + \underline{|l'||u_n - l|} = \underline{M|v_n - l'|} + \underline{|l'||u_n - l|}$

Donc, d'après le théorème des gendarmes, $(u_n v_n)_{n \in \mathbb{N}}$ converge vers l'l.

Proposition:

Si $(u_n)_{n\in\mathbb{N}}$ est bornée, et si $(v_n)_{n\in\mathbb{N}}\to 0$, alors $(u_nv_n)_{n\in\mathbb{N}}\to 0$.

En effet, on a : $\forall n \in \mathbb{N}, |u_n v_n| \leq M |v_n|$ (voir démonstration précédente)

Proposition:

Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}^*$, alors $\left(\frac{1}{u}\right)$ est définie à partir d'un certain

rang et converge vers $\frac{1}{1}$.

Démonstration :

 $(u_n)_{n\in\mathbb{N}}$ converge vers l. Donc $(|u_n|)_{n\in\mathbb{N}}$ converge vers |l|>0.

Soit alors α tel que $0 < \alpha < |l|$. Il existe donc $P \in \mathbb{N}$ tel que $\forall n \ge P$, $|u_n| > \alpha$.

Donc $\left(\frac{1}{u}\right)$ est définie au moins à partir de P.

Montrons que $\lim_{n \to \infty} \left(\frac{1}{n} \right) = \frac{1}{l}$

Pour tout $n \ge P$, on a: $\left| \frac{1}{u_n} - \frac{1}{l} \right| = \frac{1}{|u_n||l|} |u_n - l| \le \frac{1}{|\alpha||l|} |u_n - l|$.

Donc d'après le théorème des gendarmes, $\left(\frac{1}{u}\right)$ converge vers $\frac{1}{l}$.

Proposition (démontrée plus tard) :

Soit $(u_n)_{n\in\mathbb{N}}$ à valeurs dans I. Supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in I$.

Si f est une fonction continue définie sur I, alors $f(u_n) \xrightarrow[n \to +\infty]{} f(l)$

$\underline{\mathbf{V}}$ Limites dans \mathbb{R}

On note $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$

On prolonge la loi + et la relation \leq sur $\overline{\mathbb{R}}$ de la façon suivante :

$$\forall x \in \mathbb{R}, (-\infty) + x = -\infty, (+\infty) + x = +\infty$$

$$-\infty + (-\infty) = -\infty, +\infty + (+\infty) = +\infty$$

(Prolongation partielle)

 $\forall x \in \mathbb{R}, x < +\infty, -\infty < x$

 $-\infty < +\infty$

(Prolongation totale)

Remarque:

 $\overline{\mathbb{R}}$ admet un maximum $(+\infty)$ et un minimum $(-\infty)$.

Définition:

Soit $u = (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$

 $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ lorsque $\forall A\in\mathbb{R}, \exists N\in\mathbb{N}, \forall n\geq N, u_n\geq A$

 $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ lorsque $\forall A\in\mathbb{R}, \exists N\in\mathbb{N}, \forall n\geq N, u_n\leq A$

« étant donné n'importe quel réel, il y a un rang à partir duquel on le dépasse »

Proposition:

Si une suite $(u_n)_{n\in\mathbb{N}}$ a une limite dans $\overline{\mathbb{R}}$, alors elle n'en a qu'une.

Démonstration :

On suppose que $(u_n)_{n \in \mathbb{N}}$ tend vers $l, l \in \overline{\mathbb{R}}$, avec l' < l

 $1^{\text{er}} \text{ cas} : l, l' \in \mathbb{R}$, déjà vu.

 $2^{\text{ème}}$ cas: $l' = -\infty$, $l \in \mathbb{R}$.

Il existe $N \in \mathbb{N}$ tel que $\forall n \ge N, u_n \in]l'-1, l'+1[$

Soit $A \in \mathbb{R}$ tel que A < l'-1.

Il existe $N' \in \mathbb{N}$ tel que $\forall n \ge N', u_n \le A$

Contradiction lorsque $n \ge \max(N, N')$

Autres cas ($l \in \mathbb{R}$, $l = +\infty$ ou $l' = -\infty$, $l = +\infty$): procéder de même que pour le $2^{\text{ème}}$ cas.

$$(u_n)_{n\in\mathbb{N}}$$
 a une limite dans $\overline{\mathbb{R}} \begin{cases} (u_n)_{n\in\mathbb{N}} \to l \in \mathbb{R} \\ (u_n)_{n\in\mathbb{N}} \to \pm \infty \end{cases} \begin{cases} (u_n)_{n\in\mathbb{N}} & \text{onverge} \\ (u_n)_{n\in\mathbb{N}} & \text{n'a pas de limite dans } \overline{\mathbb{R}} \end{cases}$

Proposition:

Si $(u_n)_{n\in\mathbb{N}}\to +\infty$, alors $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée.

Si $(u_n)_{n\in\mathbb{N}} \to -\infty$, alors $(u_n)_{n\in\mathbb{N}}$ n'est pas minorée.

Proposition:

Si $(u_n)_{n\in\mathbb{N}} \to \pm \infty$, alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ tend vers $\pm \infty$ (même démonstration que pour l)

Ainsi, si $(u_n)_{n\in\mathbb{N}} \to l \in \overline{\mathbb{R}}$, alors toute suite extraite tend aussi vers l.

Proposition:

Si $(u_n)_{n\in\mathbb{N}} \to +\infty$, alors $u_n > 0$ à partir d'un certain rang

(prendre A > 0 dans la définition)

Proposition:

Si
$$(u_n)_{n\in\mathbb{N}} \to l \in \overline{\mathbb{R}}$$
, $(v_n)_{n\in\mathbb{N}} \to l' \in \overline{\mathbb{R}}$ et si $\forall n \in \mathbb{N}, u_n \leq v_n$, alors $l \leq l'$.

Théorème:

Si
$$(u_n)_{n\in\mathbb{N}} \to +\infty$$
, et si $\forall n \in \mathbb{N}, u_n \le v_n$, alors $(v_n)_{n\in\mathbb{N}} \to +\infty$

Si
$$(u_n)_{n\in\mathbb{N}} \to -\infty$$
, et si $\forall n \in \mathbb{N}, v_n \le u_n$, alors $(v_n)_{n\in\mathbb{N}} \to -\infty$

Proposition:

Si
$$(u_n)_{n\in\mathbb{N}}\to\pm\infty$$
, alors $(|u_n|)_{n\in\mathbb{N}}\to+\infty$

$$\mathrm{Si}\ \left(u_{_{n}}\right)_{_{n\in\mathbb{N}}}\to\pm\infty\,,\,\,\mathrm{et\,\,si}\ \lambda\in\mathbb{R}\,,\,\mathrm{alors}\ \left(\lambda u_{_{n}}\right)_{_{n\in\mathbb{N}}}\to\begin{cases}\pm\,\infty\,\mathrm{si}\ \lambda>0\\0\,\mathrm{si}\ \lambda=0\\\mp\,\infty\,\mathrm{si}\ \lambda<0\end{cases}$$

Proposition:

Si
$$(u_n)_{n\in\mathbb{N}}\to +\infty$$
 et si $(v_n)_{n\in\mathbb{N}}$ est minorée, alors $(u_n+v_n)_{n\in\mathbb{N}}\to +\infty$

Démonstration:

Soit $M \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}, M \leq v_n$

Alors $\forall n \in \mathbb{N}, M + u_n \le v_n + u_n$

Soit $A \in \mathbb{R}$. Comme $(u_n)_{n \in \mathbb{N}} \to +\infty$, il existe $N \in \mathbb{N}$ tel que $\forall n \geq N, u_n \geq A - M$

Alors $\forall n \ge N, u_n + v_n \ge A$

Proposition:

Si $(u_n)_{n\in\mathbb{N}}\to +\infty$ et si il existe a>0 tel que, à partir d'un certain rang, $v_n\geq a$, alors $(u_nv_n)_{n\in\mathbb{N}}\to +\infty$

La démonstration est identique à celle de la proposition précédente.

Proposition:

Si $(u_n)_{n\in\mathbb{N}} \to +\infty$, alors $\left(\frac{1}{u_n}\right)$ est définie à partir d'un certain rang et tend vers 0.

Si $(u_n)_{n\in\mathbb{N}} \to 0$ et si $u_n > 0$ à partir d'un certain rang, alors $\left(\frac{1}{u_n}\right)$ est définie à partir de

ce rang et tend vers $+\infty$.

<u>VI Suite arithmétique – géométrique</u>

A) Suite arithmétique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison $r\in\mathbb{R}$.

Alors:

 $\forall n \in \mathbb{N}, u_n = u_0 + nr$

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} u_k = (n+1) \frac{u_0 + u_r}{2}$$

Si r=0, $(u_n)_{n\in\mathbb{N}}=$ cte

Si r > 0, $(u_n)_{n \in \mathbb{N}}$ est strictement croissante et tend vers $+\infty$.

Si r < 0, $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante et tend vers $-\infty$

B) Suite géométrique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $q\in\mathbb{R}$.

Alors:

 $\forall n \in \mathbb{N}, u_n = u_0 q^n$

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} u_k = \begin{cases} \frac{u_0 - u_{n+1}}{1 - q} & \text{si } q \neq 1\\ (n+1)u_0 & \text{si } q = 1 \end{cases}$$

Si q = 0, $(u_n)_{n \in \mathbb{N}}$ est nulle à partir du rang 1.

Si q = 1, $(u_n)_{n \in \mathbb{N}}$ est constante.

Pour $q \in \mathbb{R} \setminus \{0,1\}$, étude de la suite géométrique de terme général $u_n = q^n \ (u_0 = 1)$

- Si q > 1, $(u_n)_{n \in \mathbb{N}}$ est strictement croissante
- Si 0 < q < 1, $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante
- Si q < 0, $(u_n)_{n \in \mathbb{N}}$ n'est pas monotone.

Démonstration:

Démonsulation.

Pour les deux premiers : $\forall n \in \mathbb{N}, u_{n+1} - u_n = \underbrace{q^n}_{>0} \underbrace{(q-1)}_{>0 \text{ single}}$

Pour le troisième : $\forall n \in \mathbb{N}, u_{n+1} - u_n = \underbrace{q^n}_{\text{signe}} \underbrace{(q-1)}_{\text{signe alterné constant}}$

Pour les limites :

- Si q > 1, $(u_n)_{n \in \mathbb{N}}$ tend vers $+ \infty$
- Si -1 < q < 1, $(u_n)_{n \in \mathbb{N}}$ tend vers 0.
- Si $q \le -1$, pas de limite.

En effet: pour q > 1, $q^n = (1 + (q - 1))^n = 1 + n(q - 1) + ... \ge 1 + n(q - 1)$ et 1+n(q-1) tend vers $+\infty$, donc q^n tend vers $+\infty$.

Pour |q| < 1 et $q \neq 0$, $\left| \frac{1}{u_n} \right| = \left(\frac{1}{|q|} \right)^n \to +\infty$. Donc $(|u_n|) \to 0$, soit $(u_n) \to 0$.

VII Comparaison de suites

A) Suite négligeable devant une autre

Définition:

 $(u_n)_{n\in\mathbb{N}}$ est négligeable devant $(v_n)_{n\in\mathbb{N}}$ quand n tend vers $+\infty$ lorsqu'il existe une suite ε qui tend vers 0 telle que $u_n = \varepsilon_n v_n$ à partir d'un certain rang.

On note alors $u \ll v$

Exemple:

$$\frac{1}{n^2} \ll \frac{1}{n}$$
 puisque $\forall n \ge 1, \frac{1}{n^2} = \frac{1}{n} \times \frac{1}{n}$

Définition équivalente dans un cas courant :

Si la suite v ne s'annule pas à partir d'un certain rang, alors on a l'équivalence :

$$u \ll v \Leftrightarrow \frac{u}{v}$$
 tend vers 0.

Ou encore:

$$u_n \leqslant v_n \Leftrightarrow \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 0$$

Démonstration : si v ne s'annule pas à partir du rang q.

Supposons que $u \ll v$. Il existe alors $(\mathcal{E}_n)_{n \in \mathbb{N}}$ et $p \in \mathbb{N}$ tel que $\forall n \geq p, u_n = \mathcal{E}_n v_n$.

Alors
$$\forall n \ge \max(p,q), \frac{u_n}{v_n} = \varepsilon_n \xrightarrow[n \to +\infty]{} 0$$

Supposons que
$$\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 0$$
. Alors, $\forall n \ge q, u_n = \frac{u_n}{v_n} v_n$. Donc $u << v$

Proposition:

La relation << définie sur $\mathbb{R}^{\mathbb{N}}$ est transitive, compatible avec la multiplication, mais pas avec l'addition.

En effet:

- Si u << v et v << w, alors $u_n = \mathcal{E}_n v_n$ à partir d'un certain rang, et $v_n = \mathcal{E}'_n w_n$ à partir d'un certain rang. Alors, à partir du plus grand des deux rangs, $u_n = \underbrace{\mathcal{E}_n \mathcal{E}'_n}_{>0} w_n$. Donc u << w.
- Si $u \ll v$ et $u' \ll v'$, alors $u_n = \varepsilon_n v_n$ à partir d'un certain rang, et $u'_n = \varepsilon'_n v'_n$ à partir d'un certain rang. Donc $u_n u'_n = \underbrace{\varepsilon_n \varepsilon'_n}_{=0} v_n v'_n$. Donc $u u' \ll v v'$
- Contre-exemple pour l'addition :

$$\frac{1}{n^2} \ll \frac{1}{n} + \frac{1}{n^2}; \frac{1}{n^3} \ll -\frac{1}{n}, \text{ mais } \frac{1}{n^2} + \frac{1}{n^3} \not\ll \frac{1}{n^2} : \frac{\frac{1}{n^2}}{\frac{1}{n^2} + \frac{1}{n^3}} \to 1$$

Cependant, si $u \ll v$ et $u' \ll v$, alors $u + u' \ll v$.

En effet

 $u_n = \mathcal{E}_n v_n$, $u'_n = \mathcal{E}'_n v_n$ à partir d'un certain rang, donc $u_n + u'_n = (\mathcal{E}_n + \mathcal{E}'_n) v_n$...

B) Comparaisons classiques

Pour les suites qui tendent vers $+\infty$:

•
$$\ln n \ll n$$

Plus généralement,
$$\forall \alpha, \beta \in \mathbb{R}_{+}^{*}, \ln^{\alpha} n << n^{\beta}$$
 (exemple : $(\ln n)^{10^{9}} << \sqrt{n}$)

Soient $\alpha, \beta \in \mathbb{R}_+^*$. Alors:

$$\frac{\ln^{\alpha} n}{n^{\beta}} = \left(\frac{\frac{\alpha}{\beta} \ln(n^{\beta/\alpha})}{n^{\beta/\alpha}}\right)^{\alpha} = \left(\frac{\alpha}{\beta}\right)^{\alpha} \left(\frac{\ln(n^{\beta/\alpha})}{n^{\beta/\alpha}}\right)^{\alpha}$$

- $n^{\alpha} << n^{\beta}$ lorsque $0 < \alpha < \beta$
- $n << a^n$ lorsque a > 1

Démonstration:

$$a = 1 + b$$
, où $b > 0$

$$a^n = (1+b)^n \ge \binom{n}{p} b^p \text{ si } n \ge p.$$

Soit
$$a^n \ge \frac{n(n-1)}{2}(a-1)^2$$
. Donc $\frac{a^n}{n} \to +\infty$, soit $\frac{a}{a^n} \to 0$

Plus généralement, $\forall \alpha > 0, \forall a > 1, n^{\alpha} << a^{n}$

En effet:

$$\frac{n^{\alpha}}{a^n} = \left(\frac{n}{a^{n/\alpha}}\right)^{\alpha} = \left(\frac{n}{(a^{1/\alpha})^n}\right)^{\alpha}. \text{ Or, } a^{1/\alpha} > 1. \text{ Donc } \frac{n}{(a^{1/\alpha})^n} \to 0. \text{ Comme } \alpha > 0,$$

on a bien
$$\left(\frac{n}{(a^{1/\alpha})^n}\right)^{\alpha} \to 0$$

$$\frac{a^n}{n!} = \underbrace{\frac{a \times a \times ... \times a}{1 \times 2 \times ... \times n}}_{= \underbrace{1 \times 2 \times ... \times p}} = \underbrace{\frac{a \times a \times ... \times a}{1 \times 2 \times ... \times p \times (p+1) \times ... \times n}}_{\substack{n-p \text{ termes } > 1}} \le \frac{a^p}{p!} \left(\frac{a}{p}\right)^{n-p}.$$

Si on prend p > a, on a, pour tout $n \ge p$: $0 \le \frac{a^n}{n!} \le \frac{a^p}{p!} \left(\frac{a}{p}\right)^r \times \left(\frac{a}{p}\right)$.

Done
$$\frac{a^n}{n!} \to 0$$

$$\bullet n! << n^n$$

•
$$n! << n^n$$

En effet :
$$0 \le \frac{n!}{n^n} = \frac{1 \times 2 \times ... \times n}{n \times n \times ... \times n} = \frac{1}{n} \underbrace{\frac{2 \times ... \times n}{n \times ... \times n}}_{\le 1} \le \frac{1}{n}$$

Notation:

Pour dire qu'une suite u est négligeable devant une autre suite v, on note :

$$u_n = o(v_n)$$
 (« $(u_n)_{n \in \mathbb{N}}$ égale une suite négligeable devant $(v_n)_{n \in \mathbb{N}}$ »)

Ainsi, $o(v_n)$ désigne une suite négligeable devant $(v_n)_{n \in \mathbb{N}}$.

C) Suites équivalentes

Définition:

$$u$$
 équivaut à $v(u \sim v)$
 u_n est équivalente à v_n en $+\infty(u_n \underset{n \to +\infty}{\sim} v_n)$ \iff il existe une suite $h = (h_n)_{n \in \mathbb{N}}$ qui

tend vers 1 telle que $u_n = h_n v_n$ à partir d'un certain rang.

Définition simplifiée :

Si v_n ne s'annule pas à partir d'un certain rang, alors $u_n \sim v_n \Leftrightarrow \frac{u_n}{v_n} \to 1$

Exemple:

$$n^2 + n \sim n^2$$

$$\frac{1}{n} + \frac{1}{n^2} \sim \frac{1}{n}$$

Autre définition :

$$u_n \sim v_n \iff u_n = v_n + o(v_n)$$
 au voisinage de $+\infty$.

Démonstration :

- Si $u_n \sim v_n$, alors $u_n = h_n v_n$ à partir d'un certain rang, où $h_n \to 1$. Mais $h_n = 1 + \varepsilon_n$, où $\varepsilon_n \to 0$. D'où $u_n = v_n + \varepsilon_n v_n = v_n + o(v_n)$.
- Inversement : identique.

Proposition:

La relation ~ est transitive, réflexive, antisymétrique.

Démonstration de la symétrie (les deux autres étant immédiats) :

Si $u \sim v$, alors $u_n = h_n v_n$ à partir d'un certain rang, où $h_n \to 1$. Mais alors

$$v_n = \frac{1}{h_n} u_n$$
 à partir d'un certain rang, et $\frac{1}{h_n} \to 1$, donc $v \sim u$.

Une relation transitive, réflexive, symétrique est une relation d'équivalence.

Une relation transitive, réflexive, antisymétrique est une relation d'ordre.

La relation \sim est compatible avec \times , mais pas avec +; la démonstration est la même que pour <<.

$$\begin{cases} \frac{1}{n} + \frac{1}{n^2} \sim \frac{1}{n} \\ -\frac{1}{n} + \frac{1}{n^3} \sim -\frac{1}{n} \end{cases} \text{ mais } \frac{1}{n^2} + \frac{1}{n^3} \neq 0.$$

Remarque:

 $u_n \sim 0 \Leftrightarrow u_n = h_n \times 0$ à partir d'un certain rang $\Leftrightarrow (u_n)_{n \in \mathbb{N}}$ est stationnaire en 0.

Proposition:

• Si $u_n \sim v_n$, et si $u_n \to l \in \overline{\mathbb{R}}$, alors $v_n \to l$

En effet, $v_n = h_n u_n$ à partir d'un certain rang.

• La réciproque est fausse, sauf si $l \in \mathbb{R}^*$

Démonstration:

Si $u_n \to l \in \mathbb{R}^*$, alors $u_n \sim l$. Par transitivité, si $v_n \to l \in \mathbb{R}^*$, alors $u_n \sim v_n$.

Contre-exemples si $l = 0, \pm \infty$: $n^2 \neq n$, $\frac{1}{n^2} \neq \frac{1}{n}$.

Divers vrai/faux classiques:

- Si $u_n \sim v_n$, alors $u_n^2 \sim v_n^2$ (compatibilité avec \times) \rightarrow vrai
- Si $u_n \sim v_n$, alors $\frac{1}{u_n} \sim \frac{1}{v_n} (u_n = h_n v_n \Rightarrow \frac{1}{u_n} = \frac{1}{h_n} \frac{1}{v_n}) \Rightarrow \text{vrai}$
- Si $u_n \sim v_n$, alors $\forall \alpha \in \mathbb{R}, u_n^{\alpha} \sim v_n^{\alpha}$ (si défini) \rightarrow vrai.
- Si $u_n \sim v_n$, alors $u_n^n \sim v_n^n$ est <u>fausse</u> en général $\left(1 + \frac{1}{n} \sim 1, \text{ et } \left(1 + \frac{1}{n}\right)^n \to e\right)$
- Si $u_n \sim v_n$, alors $f(u_n) \sim f(v_n)$ est <u>fausse</u> en général.

D) Equivalents usuels

Si $u_n \to 0$, alors:

- $\sin(u_n) \sim u_n$
- $\ln(1+u_n) \sim u_n$
- $\bullet e^{u_n} 1 \sim u_n$
- $(1+u_n)^{\alpha}-1\sim\alpha.u_n$ (α indépendant de n)

E) Suite dominée par une autre

On dit que $(u_n)_{n\in\mathbb{N}}$ est dominée par $(v_n)_{n\in\mathbb{N}}$ lorsqu'il existe une suite bornée $(k_n)_{n\in\mathbb{N}}$ telle que $u_n=k_nh_n$ à partir d'un certain rang.

Cela revient à dire :

 $(u_n)_{n\in\mathbb{N}}$ est dominée par $(v_n)_{n\in\mathbb{N}}$ \Leftrightarrow il existe $K\in\mathbb{R}^+$ tel que $|u_n|\leq K|v_n|$ à partir d'un certain rang.

Lorsque $(u_n)_{n \in \mathbb{N}}$ est dominée par $(v_n)_{n \in \mathbb{N}}$, on note $u_n = O(v_n)$

Exemple:

- $\bullet u_n = o(v_n) \Longrightarrow u_n = O(v_n)$
- $n \sin n \neq n$ $n \sin n \neq o(n)$ mais $n \sin n = O(n)$

VIII Théorèmes portant sur les suites monotones

A) Le théorème « de la limite monotone » (pour les suites)

Théorème 1:

Soit $(u_n)_{n \in \mathbb{N}}$ une suite croissante de réels.

- Si $(u_n)_{n\in\mathbb{N}}$ est majorée, alors $(u_n)_{n\in\mathbb{N}}$ converge vers $\sup\{u_n,n\in\mathbb{N}\}$
- Si $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée, alors $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.

Ainsi, dans les deux cas, $(u_n)_{n\in\mathbb{N}}$ a une limite dans $\overline{\mathbb{R}}$.

Démonstration :

Soit $(u_n)_{n\in\mathbb{N}}$ une suite croissante.

• Supposons $(u_n)_{n\in\mathbb{N}}$ majorée, c'est-à-dire que $\{u_n, n\in\mathbb{N}\}$ est majorée.

Cet ensemble est une partie non vide et majorée de \mathbb{R} . Il admet donc une borne supérieure $l \in \mathbb{R}$. Montrons alors que $(u_n)_{n \in \mathbb{N}}$ converge vers l.

Soit $\varepsilon > 0$. Alors $l - \varepsilon$ ne majore pas $(u_n)_{n \in \mathbb{N}}$ (puisque l est le plus petit majorant) Il existe donc $N \in \mathbb{N}$ tel que $u_N > l - \varepsilon$. Ainsi, comme $(u_n)_{n \in \mathbb{N}}$ est croissante, on a : $\forall n \geq N$, $l - \varepsilon < u_N \leq u_n \leq l$ ($< l + \varepsilon$).

D'où la convergence de $(u_n)_{n\in\mathbb{N}}$ vers l.

• Supposons $(u_n)_{n\in\mathbb{N}}$ non majorée. Montrons que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.

Soit $A \in \mathbb{R}$. A n'est pas un majorant de $(u_n)_{n \in \mathbb{N}}$. Il existe donc $N \in \mathbb{N}$ tel que $u_N > A$. Donc, comme $(u_n)_{n \in \mathbb{N}}$ est croissante, $\forall n \geq N$, $u_n \geq u_N > A$.

Donc $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.

Théorème 2:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante.

- Si $(u_n)_{n\in\mathbb{N}}$ est minorée, alors elle tend vers sa borne inférieure.
- Si $(u_n)_{n\in\mathbb{N}}$ n'est pas minorée, alors elle tend vers $-\infty$.

Ainsi, dans les deux cas, $(u_n)_{n\in\mathbb{N}}$ a une limite dans \mathbb{R} .

Démonstration:

Soit $(u_n)_{n \in \mathbb{N}}$ une suite décroissante.

- (1) Appliquer le théorème précédent à $(v_n)_{n \in \mathbb{N}} = (-u_n)_{n \in \mathbb{N}}$
- (2) Recopier la démonstration précédente en adaptant.

B) Suites adjacentes

Théorème:

Soient deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.

Si $(u_n)_{n\in\mathbb{N}}$ est croissante, si $(v_n)_{n\in\mathbb{N}}$ est décroissante et si $(u_n-v_n)_{n\in\mathbb{N}}$ tend vers 0, alors elles convergent vers une même limite.

Vocabulaire:

$$(u_n)_{n \in \mathbb{N}} \operatorname{croît}, (v_n)_{n \in \mathbb{N}} \operatorname{d\acute{e}croît} \} \underset{\text{d\acute{e}f}}{\Longleftrightarrow} (u_n)_{n \in \mathbb{N}} \operatorname{et} (v_n)_{n \in \mathbb{N}} \operatorname{sont adjacentes}$$

Démonstration:

Supposons $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ adjacentes.

- Déjà, pour tout $n \in \mathbb{N}$, $u_n \le v_n$.

En effet, s'il existe $p \in \mathbb{N}$ tel que $u_p > v_p$, alors, pour tout $n \ge p$:

 $v_n \le v_p < u_p \le u_n$ (car $(u_n)_{n \in \mathbb{N}}$ est croissante et $(v_n)_{n \in \mathbb{N}}$ décroissante)

Soit
$$u_n - v_n \ge u_p - v_n$$
, et $v_n \le v_p$ donc $u_p - v_n \ge u_p - v_p$.

C'est-à-dire : $\forall n \ge p, u_n - v_n \ge u_p - v_p$

D'où, par passage à la limite lorsque *n* tend vers $+\infty$, $0 \ge u_p - v_p$.

Ce qui est contradictoire puisqu'on a supposé $u_p > v_p$

Donc $\forall n \in \mathbb{N}, u_n \leq v_n$

- Il en résulte que pour tout $n \in \mathbb{N}$, $u_n \le v_n \le v_0$.

Donc $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée. Elle converge donc vers $l\in\mathbb{R}$.

De même, $(v_n)_{n\in\mathbb{N}}$ converge vers $l'\in\mathbb{R}$.

Comme $(u_n - v_n)_{n \in \mathbb{N}} \to 0$, et $(u_n - v_n)_{n \in \mathbb{N}} \to l - l'$, on a donc l - l' = 0, c'est-à-dire l = l'. Donc $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ tendent vars la même limite.

Exemple:

Pour tout $n \in \mathbb{N}$, posons:

$$u_n = \sum_{k=1}^{n} \frac{1}{k!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$

Et
$$v_n = u_n + \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{1}{n!}$$

-
$$(u_n)_{n\in\mathbb{N}}$$
 est croissante, car pour tout $n\in\mathbb{N}$, $u_{n+1}=u_n+\frac{1}{n!}$.

- Pour tout
$$n \in \mathbb{N}$$
, $v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{(n+1)!} - \frac{1}{n!} = \frac{2}{(n+1)!} - \frac{1}{n!} = \frac{1-n}{(n+1)!}$

Donc $(v_n)_{n\in\mathbb{N}}$ est décroissante à partir du rang 1.

$$-v_n-u_n=\frac{1}{n!}\to 0$$

Donc $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, donc convergent vers une même limite e. Montrons que e>2 et que $e\notin\mathbb{Q}$.

- Déjà,
$$(u_n)_{n\in\mathbb{N}} \to e$$
, et $\forall n \ge 2, u_n \ge 2 + \frac{1}{2}$.

Donc en passant à la limite $e \ge 2 + \frac{1}{2} > 2$.

- Supposons que $e = \frac{p}{q}$, avec $p, q \in \mathbb{N}^*$. Alors, comme $(u_n)_{n \in \mathbb{N}}$ est strictement croissante et $(v_n)_{n \in \mathbb{N}}$ est strictement décroissante et tendent vers e, on a :

$$\forall n \in \mathbb{N} \setminus \{0,1\}, \ u_n < e < v_n.$$

C'est-à-dire, pour tout
$$n \ge 2$$
, $1 + \frac{1}{1!} + \frac{1}{2!} + ... + \frac{1}{n!} < e < 1 + \frac{1}{1!} + \frac{1}{2!} + ... + \frac{1}{n!} + \frac{1}{n!}$

Donc, pour n = q (on peut s'arranger pour que $q \ge 2$ puisque la fraction n'est pas nécessairement irréductible):

$$\frac{a}{q!} < \frac{p}{q} < \frac{a+1}{q!}$$
, où a est un entier naturel.

C'est-à-dire a < p(q-1)! < a+1, ce qui est impossible car $p(q-1)! \in \mathbb{N}$.

Donc $e \notin \mathbb{Q}$.

C) Théorème des « segments emboîtés »

Théorème :

Soit $(S_n)_{n\in\mathbb{N}}$ une suite décroissante (au sens de l'inclusion) de segments emboîtés de \mathbb{R} . Alors $\bigcap_{n \in \mathbb{N}} S_n$ n'est pas vide, et si, de plus, l'amplitude de S_n tend vers 0 lorsque n

tend vers $+\infty$, alors $\bigcap_{n\in\mathbb{N}} S_n$ est un singleton.

Démonstration:

- Soient $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$ les deux suites réelles telles que :

$$\forall n \in \mathbb{N}, (a_n < b_n \text{ et } S_n = [a_n, b_n])$$

- Comme les S_n sont emboîtés, on a $\forall n \in \mathbb{N}, S_{n+1} \subset S_n$.

C'est-à-dire :
$$\forall n \in \mathbb{N}, a_n \le a_{n+1} \le b_{n+1} \le b_n$$
.

Ainsi, $(a_n)_{n\in\mathbb{N}}$ est croissante, et $(b_n)_{n\in\mathbb{N}}$ est décroissante.

De plus, $(a_n)_{n\in\mathbb{N}}$ est majorée (par b_0), et $(b_n)_{n\in\mathbb{N}}$ est minorée (par a_0).

Donc $(a_n)_{n\in\mathbb{N}}$ converge vers $\alpha\in\mathbb{R}$, et $(b_n)_{n\in\mathbb{N}}$ vers $\beta\in\mathbb{R}$.

$$\begin{split} &\text{Donc } \forall n \in \mathbb{N}, a_n \leq \alpha \leq \beta \leq b_n \text{. Donc } [\alpha, \beta] \subset \bigcap_{n \in \mathbb{N}} S_n \text{ . Donc } \bigcap_{n \in \mathbb{N}} S_n \neq \varnothing \\ &\text{- Si de plus l'amplitude de } S_n \text{ tend vers } 0 \text{, alors } b_n - a_n \to 0 \text{, donc } \alpha = \beta \end{split}$$

Donc
$$\{\alpha\}\subset\bigcap_{n\in\mathbb{N}}S_n$$
. Mais on a aussi $\bigcap_{n\in\mathbb{N}}S_n\subset\{\alpha\}$. En effet :

Soit
$$x \in \bigcap_{n \in \mathbb{N}} S_n$$
.

Alors $\forall n \in \mathbb{N}, a_n \le x \le b_n$. D'où, par passage à la limite, $\alpha \le x \le \beta$.

Donc, comme $\alpha = \beta$, $x \in \{\alpha\}$. D'où l'inclusion. Donc $\bigcap_{\alpha \in \mathbb{N}} S_n = \{\alpha\}$.

D) Un exemple très important : les suites construites par dichotomie

Soient $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$ deux suites réelles telles que :

$$(1) a_0 \le b_0$$

$$(1)a_0 \le b_0$$

$$(2) \forall n \in \mathbb{N}, (a_{n+1}, b_{n+1}) = \begin{cases} \left(a_n, \frac{a_n + b_n}{2}\right) \\ ou\left(\frac{a_n + b_n}{2}, a_n\right) \end{cases}$$

Alors:

 $\forall n \in \mathbb{N}, a_0 \le a_n \le b_n \le b_0$.

 $(a_n)_{n\in\mathbb{N}}$ est croissante, $(b_n)_{n\in\mathbb{N}}$ est décroissante.

$$\forall n \in \mathbb{N}, b_n - a_n = \frac{b_0 - a_0}{2^n}.$$

Ainsi, $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes, et convergent vers la même limite.

Démonstration:

- Montrons par récurrence que $\forall n \in \mathbb{N}, a_0 \le a_n \le b_n \le b_0$.

C'est vrai pour n = 0.

Soit $n \in \mathbb{N}$, supposons que $a_0 \le a_n \le b_n \le b_0$.

Alors
$$a_0 \le a_n \le \frac{a_n + b_n}{2} \le b_n \le b_0$$
.

Or,
$$(a_{n+1}, b_{n+1}) = \begin{cases} (a_n, \frac{a_n + b_n}{2}) \\ ou(\frac{a_n + b_n}{2}, a_n) \end{cases}$$
.

Donc $a_0 \le a_n \le a_{n+1} \le b_{n+1} \le b_0$, ou $a_0 \le a_{n+1} \le b_n \le b_0$. Soit, dans les deux cas, $a_0 \le a_{n+1} \le b_{n+1} \le b_0$, ce qui achève la récurrence.

- Soit $n \in \mathbb{N}$. On a montré que $a_n \le b_n$.

Donc
$$a_n \le \frac{a_n + b_n}{2} \le b_n$$
. Or, $(a_{n+1}, b_{n+1}) = \begin{cases} (a_n, \frac{a_n + b_n}{2}) \\ ou(\frac{a_n + b_n}{2}, a_n) \end{cases}$.

Donc $a_n \le a_{n+1} \le b_{n+1} \le b_n$, ce qui est valable pour tout n.

Donc $(a_n)_{n\in\mathbb{N}}$ est croissante et $(b_n)_{n\in\mathbb{N}}$ est décroissante.

- Soit
$$n \in \mathbb{N}$$
. Alors $b_{n+1} - a_{n+1} = \frac{1}{2}(b_n - a_n)$.

Donc $(b_n - a_n)_{n \in \mathbb{N}}$ est géométrique de raison $\frac{1}{2}$.

Donc
$$\forall n \in \mathbb{N}, b_n - a_n = \frac{b_0 - a_0}{2^n}$$
.

IX Le théorème de Bolzano–Weierstrass

Théorème:

De toute suite bornée de réels, on peut extraire une suite convergente.

Démonstration:

Soit $(u_n)_{n \in \mathbb{N}}$ une suite réelle bornée.

On introduit alors $a, b \in \mathbb{R}$, avec $a \le b$, tels que pour tout $n \in \mathbb{N}$, $u_n \in [a, b]$.

- On commence par construire deux suites $(a_k)_{k\in\mathbb{N}}$, $(b_k)_{k\in\mathbb{N}}$ telles que :
 - $(a_k)_{k \in \mathbb{N}}$, $(b_k)_{k \in \mathbb{N}}$ convergent vers la même limite.

- Pour tout $k \in \mathbb{N}$, l'ensemble des entiers n tels que $u_n \in [a_k, b_k]$ est infini.

Pour cela, on procède par dichotomie :

- On prend $a_0 = a$, $b_0 = b$. L'ensemble des entiers n tels que $u_n \in [a_0, b_0]$ est infini, puisque c'est \mathbb{N} .
- En supposant a_k et b_k de sorte que $a_k \le b_k$ et que l'ensemble des entiers n tels que $u_n \in [a_k, b_k]$ est infini, on construit a_{k+1} et b_{k+1} de la manière suivante :
 - O Si l'ensemble des entiers n tels que $u_n \in \left[a_k, \frac{a_k + b_k}{2}\right]$ est infini, on pose $a_{k+1} = a_k$ et $b_{k+1} = \frac{a_k + b_k}{2}$.
 - O Sinon, l'ensemble des entiers n tels que $u_n \in \left[\frac{a_k + b_k}{2}, b_k\right]$ est nécessairement infini, et on pose alors $a_{k+1} = \frac{a_k + b_k}{2}$ et $b_{k+1} = b_k$.

On a bien alors $a_{k+1} \le b_{k+1}$, et l'ensemble des entiers n tels que $u_n \in [a_{k+1}, b_{k+1}]$ est infini La construction dichotomique de $(a_k)_{k \in \mathbb{N}}$ et $(b_k)_{k \in \mathbb{N}}$ assure de plus que ces deux suites convergent vers la même limite.

• On construit une suite strictement croissante $(n_k)_{k \in \mathbb{N}}$ d'entiers naturels de sorte que, pour tout $k \in \mathbb{N}$, $u_{n_k} \in [a_k, b_k]$.

Pour cela, on fait la construction récurrente suivante :

- On prend $n_0 \in \mathbb{N}$ tel que $u_{n_0} \in [a_0, b_0]$: il en existe puisque l'ensemble des entiers n tels que $u_n \in [a_0, b_0]$ est infini.
- En supposant n_k construit : comme l'ensemble des entiers n tels que $u_n \in [a_{k+1}, b_{k+1}]$ est infini, il contient nécessairement des entiers strictement plus grands que n_k ; on peut donc trouver $n_{k+1} > n_k$ tel que $u_{n_{k+1}} \in [a_{k+1}, b_{k+1}]$
 - Conclusion :

La suite $(u_{n_k})_{k \in \mathbb{N}}$ est une suite extraite de $(u_n)_{n \in \mathbb{N}}$ (puisque $k \mapsto n_k$ est une application strictement croissante de \mathbb{N} dans \mathbb{N}), et elle converge :

En effet, on a, pour tout $k \in \mathbb{N}$, $a_k \le u_{n_k} \le b_k$. Or, $(a_k)_{k \in \mathbb{N}}$ et $(b_k)_{k \in \mathbb{N}}$ convergent vers une même limite, donc $(u_{n_k})_{k \in \mathbb{N}}$ aussi d'après le théorème des gendarmes.

X Compléments

Proposition:

Tout réel est limite d'une suite de rationnels.

Démonstration :

Soit $a \in \mathbb{R}$.

Pour tout $n \in \mathbb{N}$, on peut introduire un rationnel r_n tel que $a < r_n < a + \frac{1}{n+1}$.

Donc la suite $(r_n)_{n\in\mathbb{N}}$ converge vers a.

Idées pour les suites définies par des relations de récurrence du type $u_{n+1} = f(u_n)$:

- Intérêt d'un « intervalle stable par f ».
- Intérêt du graphe de f.
- Intérêt des points fixes de f.
- Intérêt du signe de f(x) x
- Intérêt de la croissance de f sur un intervalle stable contenant u_0 : la suite est monotone.
- Intérêt de la décroissance de f sur un intervalle contenant u_0 : $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones de sens contraire.
- Intérêt de majorations du type $\forall x, y, |f(x) f(y)| \le k|x y|$.

Développement décimal illimité propre d'un réel :

Pour tout
$$n \in \mathbb{N}$$
, notons $D_n = \left\{ \frac{a}{10^n}, a \in \mathbb{Z}_t \right\}$

Proposition:

Soient $x \in \mathbb{R}$, $n \in \mathbb{N}$.

Alors il existe un unique décimal $d_n \in D_n$ tel que $d_n \le x < d_n + 10^{-n}$.

On l'appelle la valeur décimale approchée par défaut d'ordre n de x.

Démonstration:

Pour tout $a \in \mathbb{Z}$, on a les équivalences :

$$\frac{a}{10^n} \le x < \frac{a}{10^n} + 10^{-n} \iff a \le 10^n x < a + 1 \iff a = \left[10^n x\right]$$

D'où l'existence et l'unicité de $d_n \in D_n$ tel que $d_n \le x < d_n + 10^{-n}$, $d_n = \frac{1}{10^n} [10^n x]$.

Remarques:

- d_0 est la partie entière de x.
- On a, pour tout $n \in \mathbb{N}$, $x 10^{-n} \le d_n \le x$, donc $(d_n)_{n \in \mathbb{N}}$ converge vers x.

Proposition

Avec les notations précédentes, on note, pour tout $n \in \mathbb{N}^*$, $\alpha_n = 10^n (d_n - d_{n-1})$.

Alors:

- $\bullet \ \forall n \in \mathbb{N}^*, \alpha_n \in \left\{0,1,...9\right\}$
- $\forall n \in \mathbb{N}^*, d_n = d_0 + \frac{\alpha_1}{10} + \frac{\alpha_2}{10^2} + ... + \frac{\alpha_n}{10^n}$

Démonstration:

Soit $n \in \mathbb{N}$.

Déjà, α_n est un entier (puisque $10^n d_n$ et $10^{n-1} d_{n-1}$ le sont)

De plus, on a :
$$x-10^{-n} < d_n \le x$$
, et $x-10^{-n+1} < d_{n-1} \le x$.

Donc
$$-10^{-n} < d_n - d_{n-1} < -10^{-n+1}$$
, soit $-1 < \alpha_n < 10$, d'où $\alpha_n \in \{0,1,...9\}$.

De plus,
$$d_n = d_0 + \sum_{k=1}^n (d_k - d_{k-1}) = d_0 + \sum_{k=1}^n \frac{\alpha_k}{10^k}$$
.

(On peut montrer de plus par l'absurde que $(\alpha_n)_{n \in \mathbb{N}^*}$ n'est pas stationnaire à 9)