Lecture 2: What is machine learning? - examples

기계학습개론 박상효

학습목표

- 기계학습의 분류를 이해
- 기계학습의 사례를 경험

핵심용어

- 지도학습
- 비지도학습

지도 방식에 따른 ML 유형

- 지도학습(Supervised learning)
- 비지도학습(Unsupervised learning)
- 준지도학습(Semi-supervised learning)
- 강화학습(Reinforcement learning)

Classes of Learning Problems

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Data: (x, y)

x is data, y is label

Data: x

x is data, no labels!

Data: state-action pairs

Goal: Learn function to map

 $x \rightarrow y$

Goal: Learn underlying

structure

Goal: Maximize future rewards over many time steps

Apple example:

This thing is an apple.

Apple example:

This thing is like the other thing.

Apple example:

Eat this thing because it will keep you alive.

Supervised learning

Supervised learning

- 특징 벡터 ※와 목표값 ※가 모두 주어진 상황
- Classification, Regression

Unsupervised learning

Unsupervised learning

Unsupervised learning

- 특징 벡터 ※는 주어지는데 목표값 ※ 가 주어지지 않는 상황
- Clustering, Dimensionality reduction, Anomaly/Novelty detection

Reinforcement learning

- Observe
- 2 Select action using policy

- Action!
- 4 Get reward or penalty

- 5 Update policy (learning step)
- 6 I terate until an optimal policy is found

Semi-supervised learning

Semi-supervised learning

- 일부는 ※와 ※를 모두 가지지만, 나머지는 ※만 가진 상황
- ※의 수집은 쉽지만, ※는 수작업이 필요한 경우 유용함.

다양한 기준에 따른 유형

• 오프라인 학습과 온라인 학습

- 결정론적(deterministic) 학습과 스토캐스틱(stochastic) 학습
 - 결정론적에서는 같은 데이터를 가지고 다시 학습하면 **같은 예측기**가 만들어짐
 - 스토캐스틱 학습은 학습 과정에서 난수를 사용하므로 같은 데이터로 다시 학습하면 **다 른 예측기**가 만들어짐.
- 분별(discriminative) 모델과 생성(generative) 모델
 - 분별 모델은 분류 예측에만 관심. 즉 $P(y|\mathbf{x})$ 의 추정에 관심
 - 생성 모델은 $P(\mathbf{x})$ 또는 $P(\mathbf{x}|y)$ 를 추정함

기계학습 예시(수식)

7 | 1.4, 1.7

간단한 기계학습 예

- 선형 회귀 문제
 - 식 (1.2)의 직선 모델을 사용하므로 두 개의 매개변수 $\Theta = (w, b)^{T}$

$$y = wx + b$$

(1.2)

그림 1-4 간단한 기계 학습 예제

간단한 기계학습 예

- 목적 함수objective function (또는 비용 함수cost function)
 - 식 (1.8)은 선형 회귀를 위한 목적 함수
 - $f_{\Theta}(\mathbf{x}_i)$ 는 예측함수의 출력, y_i 는 예측함수가 맞추어야 하는 목표값이므로 $f_{\Theta}(\mathbf{x}_i)$ - y_i 는 오차
 - 식 (1.8)을 평균제곱오차MSE(mean squared error)라 부름

$$J(\Theta) = \frac{1}{n} \sum_{i=1}^{n} (f_{\Theta}(\mathbf{x}_i) - y_i)^2$$
 (1.8)

[예제 1-1]

■ 훈련집합

$$X = \{x_1 = (2.0), x_2 = (4.0), x_3 = (6.0), x_4 = (8.0)\},\$$

 $Y = \{y_1 = 3.0, y_2 = 4.0, y_3 = 5.0, y_4 = 6.0\}$

■ 초기 직선의 매개변수 Θ₁ = (0.1,4.0)^T라 가정

$$\mathbf{x}_{1}, \mathbf{y}_{1} \rightarrow (f_{\Theta_{1}}(2.0) - 3.0)^{2} = ((0.1 * 2.0 + 4.0) - 3.0)^{2} = 1.44$$
 $\mathbf{x}_{2}, \mathbf{y}_{2} \rightarrow (f_{\Theta_{1}}(4.0) - 4.0)^{2} = ((0.1 * 4.0 + 4.0) - 4.0)^{2} = 0.16$
 $\mathbf{x}_{3}, \mathbf{y}_{3} \rightarrow (f_{\Theta_{1}}(6.0) - 5.0)^{2} = ((0.1 * 6.0 + 4.0) - 5.0)^{2} = 0.16$
 $\mathbf{x}_{4}, \mathbf{y}_{4} \rightarrow (f_{\Theta_{1}}(8.0) - 6.0)^{2} = ((0.1 * 8.0 + 4.0) - 6.0)^{2} = 1.44$

그림 1-4 간단한 기계 학습 예제

$$\longrightarrow$$
 $J(\Theta_1) = 0.8$

[예제 1-1] 훈련집합

■ Θ_1 을 개선하여 $\Theta_2 = (0.8,0.0)^{\text{T}}$ 가 되었다고 가정

$$\mathbf{x}_{1}, \mathbf{y}_{1} \rightarrow (f_{\Theta_{2}}(2.0) - 3.0)^{2} = ((0.8 * 2.0 + 0.0) - 3.0)^{2} = 1.96$$
 $\mathbf{x}_{2}, \mathbf{y}_{2} \rightarrow (f_{\Theta_{2}}(4.0) - 4.0)^{2} = ((0.8 * 4.0 + 0.0) - 4.0)^{2} = 0.64$
 $\mathbf{x}_{3}, \mathbf{y}_{3} \rightarrow (f_{\Theta_{2}}(6.0) - 5.0)^{2} = ((0.8 * 6.0 + 0.0) - 5.0)^{2} = 0.04$
 $\mathbf{x}_{4}, \mathbf{y}_{4} \rightarrow (f_{\Theta_{2}}(8.0) - 6.0)^{2} = ((0.8 * 8.0 + 0.0) - 6.0)^{2} = 0.16$

18

그림 1-4 간단한 기계 학습 예제

$$\rightarrow$$
 $J(\Theta_2) = 0.7$

- Θ_2 를 개선하여 $\Theta_3 = (0.5,2.0)^T$ 가 되었다고 가정
- 이때 $J(\Theta_3)=0.0$ 이 되어 Θ_3 은 최적값 $\widehat{\Theta}$ 이 됨

그림 1-11 기계 학습에서 목적함수의 역할

19

그림 1-4 간단한 기계 학습 예제

경북대학교 KYUNGPOOK NATIONAL UNIVERSITY 기계학습개론 2020-2

기계학습 예시(코드)

모1

폐암 수술 환자의 생존율 예측하기

폐암 환자 의료 데이터

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
1	293	1	3.8	2.8	0	0	0	0	0	0	12	0	0	0	1	0	62	0
2	1	2	2.88	2.16	1	0	0	0	1	1	14	0	0	0	1	0	60	0
3	8	2	3.19	2.5	1	0	0	0	1	0	11	0	0	1	1	0	66	1
4	14	2	3.98	3.06	2	0	0	0	1	1	14	0	0	0	1	0	80	1
5	17	2	2.21	1.88	0	0	1	0	0	0	12	0	0	0	1	0	56	0
6	18	2	2.96	1.67	0	0	0	0	0	0	12	0	0	0	1	0	61	0
7	35	2	2.76	2.2	1	0	0	0	1	0	11	0	0	0	0	0	76	0
8	42	2	3.24	2.52	1	0	0	0	1	0	12	0	0	0	1	0	63	1
9	65	2	3.15	2.76	1	0	1	0	1	0	12	0	0	0	1	0	59	0
10	111	2	4.48	4.2	0	0	0	0	0	0	12	0	0	0	1	0	55	0
11	121	2	3.84	2.56	1	0	0	0	1	0	11	0	0	0	0	0	59	0
12	123	2	2.8	2.12	1	0	0	1	1	0	13	0	0	0	1	0	80	0
13	130	2	5.6	4.64	1	0	0	0	1	0	11	0	0	0	1	0	45	0
14	132	2	2.12	1.72	1	0	0	0	0	0	12	0	0	0	1	0	74	0
15	133	2	2.5	71.1	0	0	0	1	0	0	13	0	0	0	1	0	64	1
16	137	2	3.76	3.08	1	0	0	0	1	0	13	0	0	0	1	0	54	0
17	141	2	2.16	1.56	1	0	0	0	1	0	11	0	0	0	1	0	63	0
18	145	2	3.64	2.48	2	0	0	0	1	1	11	0	0	0	1	0	70	0
19	164	2	2.4	1.96	1	0	0	0	1	0	12	0	0	0	0	0	73	0
20	165	2	3	2.4	1	0	0	0	1	0	14	0	0	0	1	0	58	0
		_				-	_	_				-	_	-		-		_

폐암 환자 의료 데이터

									속성								i	클래스
줄 항목	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	293	1	3.8	2.8	0	0	0	0	0	0	12	0	0	0	1	0	62	0
2	1	2	2,88	2.16	1	0	0	0	1	1	14	0	0	0	1	0	60	0
3	8	2	3.19	2,5	1	0	0	0	1	0	11	0	0	1	1	0	66	1
470	447	8	5.2	4.1	0	0	0	0	0	0	12	0	0	0	0	0	49	0

ML/DL 준비사항

- 데이터셋
- 작업환경
 - 본인의 PC/노트북
 - → CPU/GPU 여부에 따라 설치과정이나 성능 차이가 클 수 있음
 - 또는 Google Colab

Windows 10 기준

Windows 10 기준

Anaconda Prompt (Anaconda3)

(base) C:\Users\it>pip install tensorflow

- (base) > conda create -n iml
- (base) > conda activate iml
 - → Anaconda 가상환경이 만들어짐
 - → iml 외에 본인 편한 환경이름으로 바꾸어도 무방함
- (iml) > conda install pip
- (iml) > pip install tensorflow
- (iml) > conda install matplotlib pandas scikit-learn numpy -y
- (iml) > conda install ipython notebook -y

Windows 10 기준

• 설치 확인 **필수!**

```
Anaconda Prompt (Anaconda3) - python

(base) C:\Users\it, python
Python 3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.

>>> import tensorflow as tf
>>> print(tf._version_)

2.0.0

>>> import keras
Using TensorFlow backend.
>>>
```

• Keras를 별도로 설치하지 않은 경우, keras 확인이 다름

```
>>> import <mark>tensorflow.keras</mark> as keras
>>> print(keras.__version__)
2.4.0
>>>
```


코드/데이터 받기

- https://github.com/gilbutlTbook/080228
 - 다운 : <u>deeplearning.zip</u>

jupyter 실행

여기에 "deeplearning.zip" 압축 풀어놓기

• (iml)

> jupyter notebook --notebook-dir="C:/Your/Desired/Start/Directory/"

jupyter 실행

기계학습개론 2020-2

32

jupyter 실행

- 다음 셀을 추가로 삽입
- 다음 코드를 추가로 입력한 후
- 해당 셀을 실행해보세요


```
In [1]:
                               1 | # -*- coding: utf-8 -*-
                                 |# 코드 내부에 한글을 사용가능 하게 해주는 부분입니다.
코드 리뷰
                                 # 딥러닝을 구동하는 데 필요한 케라스 함수를 불러옵니다.
                                 from tensorflow.keras.models import Sequential
                                 from tensorflow.keras.layers import Dense
                                 # 필요한 라이브러리를 불러옵니다.
                                import numpy as np
                                 import tensorflow as tf
                                 |# 실행할 때마다 같은 결과를 출력하기 위해 설정하는 부분입니다.
                                 lnp.random.seed(3)
                                tf.random.set_seed(3)
                              15
                                |# 준비된 수술 환자 데이터를 불러들입니다.
                                 |Data_set = np.loadtxt("../dataset/ThoraricSurgery.csv", delimiter=",")
                              18
                                 |# 환자의 기록과 수술 결과를 X와 Y로 구분하여 저장합니다.
                                |X = Data_set[:,0:17]
                                 |Y = Data_set[:,17]
                                 |# 딥러님 구조를 결정합니다(모델을 설정하고 실행하는 부분입니다).
                                |model = Sequential()
                   ML:
                                 |model.add(Dense(30, input_dim=17, activation='relu'))
                                 model.add(Dense(1, activation='sigmoid'))
                                |# 딥러님을 실행합니다.
                                 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
```

model.fit(X, Y, epochs=100, batch_size=10)


```
In [1]:
                              |# 코드 내부에 한글을 사용가능 하게 해주는 부분입니다.
코드 리뷰
                               # 딥러님을 구동하는 데 필요한 케라스 함수를 불러옵니다.
                               from tensorflow.keras.models import Sequential
                                               as layers import Dense
예측
                                               를 불러옵니다.
              딥러닝의 층 구조
                              케라스의 model.add()
                                               s tf
                             model.add(3층 모델 옵션)
                - 3층 분석 모델 ◀-----
                                                결과를 출력하기 위해 설정하는 부분입니다.
                고층 분석 모델 ◀----- model.add(고층 모델 옵션)
                /층 분석 모델 ◀----- model.add(/층 모델 옵션)
                                               깨이터를 불러들입니다.
                                               d("../dataset/ThoraricSurgerv.csv", delimiter=".")
                                                결과를 X와 Y로 구분하여 저잠합니다.
입력
                            23 # 딥러님 구조를 결정합니다(모델을 설정하고 실행하는 부분입니다).
                               |model = Sequential()
                  ML:
                               |model.add(Dense(30, input_dim=17, activation='relu'))|
                               model.add(Dense(1, activation='sigmoid'))
```

model.fit(X, Y, epochs=100, batch_size=10)

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

|# 딥러님을 실행합니다.


```
In [1]:
                                  1 | # -*- coding: utf-8 -*-
                                   |# 코드 내부에 한글을 사용가능 하게 해주는 부분입니다.
   코드 리뷰
                                    # 딥러닝을 구동하는 데 필요한 케라스 함수를 불러옵니다.
                                    from tensorflow.keras.models import Sequential
                                    from tensorflow.keras.lavers import Dense
23 | # 딥러닝 구조를 결정합니다(모델을 설정하고 실행하는 부분입니다).
   lmodel = Sequential()
   model.add(Dense(60, input_dim=17, activation='relu'))
   model.add(Dense(60, activation='relu'))
                                                                                MULT.
   model.add(Dense(60, activation='relu'))
   model.add(Dense(1, activation='sigmoid'))
20.
                                   Data_set = np.loadtxt("../dataset/ThoraricSurgery.csv", delimiter=",")
    DL:
                                 18
                                    # 환자의 기록과 수술 결과를 X와 Y로 구분하여 저장합니다.
                                   |X = Data_set[:,0:17]
                                   |Y = Data_set[:,17]
                                    |# 딥러님 구조를 결정합니다(모델을 설정하고 실행하는 부분입니다).
                                   |model = Sequential()
                                    |model.add(Dense(30, input_dim=17, activation='relu'))
                                    |model.add(Dense(1, activation='sigmoid'))
                                   |# 딥러님을 실행합니다.
                                    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
                                    model.fit(X, Y, epochs=100, batch_size=10)
```

Summary

- 지도학습(Supervised learning)
- 비지도학습(Unsupervised learning)
- 준지도학습(Semi-supervised learning)
- 강화학습(Reinforcement learning)
- Cost function
 - MSE
- 간단한 Keras 코드 리뷰

In the next lecture...

- 기계학습 이해를 위한 기본 수학 개념
- 모델 훈련 관련 주요 용어
- 퀴즈 #1 (다소 높은 배점)
 - 범위: 1~2주 개념

참고자료

- 핸1
- フ|1
- 모1
- [online] "Introduction to Deep Learning," MIT, available at http://introtodeeplearning.com/
- Github
 - https://github.com/gilbutlTbook/080228

기: 기계학습, 오일석, 2017

핸: 핸즈온머신러닝, 2/E, 2020 (번역)

모: 모두의 딥러닝, 2/E, 2020

케: 케라스 창시자에게 배우는..., 2018 (번역) **머**: 머신러닝 도감 그림으로..., 2019 (번역)

파: Python machine learning, 2/E, 2019 (번역) → "머

신러닝 교과서 with 파이썬, ..." 2019

