Outline

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Data Generalization by Attribute-Oriented Induction
- Summary

What is Datawarehouse?

- Defined in many different ways, but not rigorously.
 - A decision support database that is maintained separately from the organization's operational database
 - Support information processing by providing a solid platform of consolidated, historical data for analysis.
- It is a repository of multiple heterogeneous data sources organized under a unified schema at a single site
 to facilitate management decision making
- "A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management's decision-making process."—W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses

Datawarehouse –Subject Oriented

- Organized around major subjects, such as customer, product, sales
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc.
 among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems
 - Operational database: current value data
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element"

Data Warehouse—Nonvolatile

- A physically separate store of data transformed from the operational environment
- Operational update of data does not occur in the data warehouse environment
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data

OLTP vs. OLAP

	OLTP	OLAP					
users	clerk, IT professional	knowledge worker					
function	day to day transactional operations	decision support and data analysis					
Data structure	normalized	Star schema or snowflake schema					
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated					
usage	repetitive	ad-hoc					
access	read/write index/hash on prim. key	lots of scans					
unit of work	short, simple transaction	complex query					
# records accessed	tens	millions					
#users	thousands	hundreds					
DB size	100MB-GB	100GB-TB					
	Oracle,MySQL,SQL server,DB2	Tableau, Power BI, and SAP					

Why a Separate Data Warehouse?

- High performance for both systems
 - DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation
- Different functions and different data:
 - missing data: Decision support requires historical data which operational DBs do not typically maintain
 - data consolidation: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - data quality: different sources typically use inconsistent data representations, codes and formats which have to be reconciled
- Note: There are more and more systems which perform OLAP analysis directly on relational databases

Why a Separate Data Warehouse?

- High performance for both systems
 - DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation
- Different functions and different data:
 - missing data: Decision support requires historical data which operational DBs do not typically maintain
 - data consolidation: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - data quality: different sources typically use inconsistent data representations, codes and formats which have to be reconciled
- Note: There are more and more systems which perform OLAP analysis directly on relational databases

Data Warehouse: A Multi-Tiered Architecture

Why a Separate Data Warehouse?

- High performance for both systems
 - DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation
- Different functions and different data:
 - missing data: Decision support requires historical data which operational DBs do not typically maintain
 - data consolidation: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - data quality: different sources typically use inconsistent data representations, codes and formats which have to be reconciled
- Note: There are more and more systems which perform OLAP analysis directly on relational databases

Three Data Warehouse Models

- Enterprise warehouse
 - collects all of the information about subjects spanning the entire organization
- Data Mart
 - a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
 - Independent vs. dependent (directly from warehouse) data mart
- Virtual warehouse
 - A set of views over operational databases
 - Only some of the possible summary views may be materialized

Extraction, Transformation, and Loading (ETL)

Data extraction

get data from multiple, heterogeneous, and external sources

Data cleaning

detect errors in the data and rectify them when possible

Data transformation

convert data from legacy or host format to warehouse format

Load

 sort, summarize, consolidate, compute views, check integrity, and build indicies and partitions

Refresh

propagate the updates from the data sources to the warehouse

Metadata Repository

- Meta data is the data defining warehouse objects. It stores:
- Description of the structure of the data warehouse
 - schema, view, dimensions, hierarchies, derived data defn, data mart locations and contents
- Operational meta-data
 - data lineage (history of migrated data and transformation path), currency of data (active, archived, or purged), monitoring information (warehouse usage statistics, error reports, audit trails)
- The algorithms used for summarization
- The mapping from operational environment to the data warehouse
- Data related to system performance
 - warehouse schema, view and derived data definitions
- Business data
 - business terms and definitions, ownership of data, charging policies

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP

- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Data Generalization by Attribute-Oriented Induction
- Summary

From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions.
 - Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
- In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube
- A lattice of cuboids is a structure that represents data in a data warehouse as a data cube, which
 is a multidimensional model that allows data to be viewed in multiple dimensions.

2-D Data Cube (Table) Example

2-D View of Sales Data for AllElectronics According to time and item

	location = "Vancouver"										
	item (type)										
time (quarter)	home entertainment	computer	phone	security							
Q1	605	825	14	400							
Q2	680	952	31	512							
Q1 Q2 Q3 Q4	812	1023	30	501							
Q4	927	1038	38	580							

3-D Data Cube Represented as 2 or more 2-D Datacubes

Table 4.3 3-D View of Sales Data for AllElectronics According to time, item, and location

	location = "Chicago"				location = "New York"			location = "Toronto"			location = "Vancouver"					
								item								
100	home	3			home				home				home			
time	ent	comp.	phone	sec,	ent	comp.	phone	sec.	ent	comp.	phone	sec.	ent	comp.	phone	sec.
Q1	854	882	89	623	1087	968	38	872	818	746	43	591	605	825	14	400
Q2	943	890	64	698	1130	1024	41	925	894	769	52	682	680	952	31	512
Q3	1032	924	59	789	1034	1048	45	1002	940	795	58	728	812	1023	30	501
Q4	1129	992	63	870	1142	1091	54	984	978	864	59	784	927	1038	38	580

3-D Data Cube

4-D Data Cube represented as 2 or more 3-D Datacubes

Example for 3-D and 2-D cuboids

3-D Data Cube shown as two 2-D tables

We get 2-D Data Cube if we aggregate the above data along location dimension

3-D Data Cube

Cube: A Lattice of Cuboids

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Example of Star Schema

Example of Snowflake Schema

Example of Fact Constellation

A Concept Hierarchy: Dimension (location)

Concept Hierarchy (Time)

