Solución a la tarea del día 20 de mayo

1) Representa las siguientes funciones y da las características:

a)
$$f(x) = 3^x$$

$$a = 3$$

Debido que valor de la a>1 sabemos que la función es creciente.

x	-1	-0.5	0	0.5	1
f(x)	0.33	0.57	1	1.73	3

$$Dom(f(x)) = \mathbb{R}$$

 $Im(f(x)) = \mathbb{R}^+ = (0, +\infty)$
 $Corte\ eje\ Y: (0, 1)$
 $Creciente\ en\ \mathbb{R}$

$$b) \ f(x) = \left(\frac{1}{4}\right)^x$$

$$a = \frac{1}{4} = 0.25$$

Debido que valor de la a < 1 sabemos que la función es decreciente.

	-1.5						1.5
f(x)	8	4	2	1	0.5	0.25	0.125

$$Dom(f(x)) = \mathbb{R}$$

 $Im(f(x)) = \mathbb{R}^+ = (0, +\infty)$
Corte eje Y: (0, 1)
Decreciente en \mathbb{R}

c)
$$f(x) = 5^{-x}$$

Lo primero que debemos hacer es quitar el signo negativo del exponente. Para ello, utilizamos las propiedades de las potencias:

$$f(x) = 5^{-x} = \frac{1}{5^x} = \left(\frac{1}{5}\right)^x$$

$$a = \frac{1}{5} = 0.2$$

Debido que valor de la a < 1 sabemos que la función es decreciente.

x	-1.5	-1	-0.5	0	0.5	1	1.5
f(x)	11.18	5	2.23	1	0.44	0.2	0.08

$$Dom(f(x)) = \mathbb{R}$$

 $Im(f(x)) = \mathbb{R}^+ = (0, +\infty)$
 $Corte\ eje\ Y: (0, 1)$
 $Decreciente\ en\ \mathbb{R}$

$$d) \ f(x) = 2 \cdot 3^x$$

Aunque haya un número delante multiplicando, la función sigue siendo $f(x)=3^x$

$$a = 3$$

Debido que valor de la a>1 sabemos que la función es creciente.

Ojo! Ahora en la tabla sí debemos multiplicar por 2:

		-1					
f(x)	0.38	0.66	1.15	2	3.46	6	10.39

$$Dom(f(x)) = \mathbb{R}$$

 $Im(f(x)) = \mathbb{R}^+ = (0, +\infty)$
 $Corte\ eje\ Y: (0, 2)$
 $Creciente\ en\ \mathbb{R}$

$$e) \ f(x) = \left(\frac{1}{2}\right) \cdot 2^x$$

$$a = \frac{1}{2} = 0.5$$

Debido que valor de la a < 1 sabemos que la función es decreciente.

		-1.5					
f(x)	0.08	0.17	0.25	0.5	1	1.41	2.82

$$Dom(f(x)) = \mathbb{R}$$

$$Im(f(x)) = \mathbb{R}^+ = (0, +\infty)$$

$$Im\big(f(x)\big) = \mathbb{R}^+ = (0, +\infty)$$

Corte eje Y: (0, 0.5)

Creciente en $\mathbb R$

2) Las amebas son seres unicelulares que se reproducen partiéndose en dos. Supongamos que las condiciones de un cultivo son tales que las amebas se duplican aproximadamente cada hora, y que inicialmente sólo hay una ameba. Calcular el número de amebas que habrá según pasan las horas:

Tiempo(h)	1	2	3	4	5	6	7	8	9
Nº de amebas	2	4	8	16	32	64	128	256	512

En este caso, la función viene definida por la expresión:

$$f(x) = 2^x$$

Si representamos la función:

- "X" representa el Tiempo(h)
- "Y" representa el número de amebas.

3) La siguiente tabla muestra la población aproximada (expresa en millones) de una colonia de bacterias. El registro se ha hecho cada hora. Analízala y contesta a las preguntas.

Tiempo(h)	0	1	2	3	4	5
Nº bacterias	6	12	24	48	96	192

- a) Representa gráficamente la situación planteada y mira si cumple las características de un crecimiento exponencial.
- b) ¿Cuál es la tasa de crecimiento en cada hora?
- c) A partir de la gráfica estima cuántas bacterias habrá después de seis horas y de ocho horas.

Se puede ver que cada valor es el doble que el anterior, por lo tanto se trata de una función exponencial, pero a su vez hay que multiplicar por una constante. Así que la función que define la tabla es:

$$f(x) = 6 \cdot 2^x$$

La tasa de crecimiento es 2.

Bacterias a las 6 horas $\rightarrow f(6) = 6 \cdot 2^6 = 384$

Bacterias a las 8 horas $\rightarrow f(8) = 6 \cdot 2^8 = 1536$