Chapitre 4 : Successions d'épreuves indépendantes

George Alexandru Uzunov

Table des matières

1	Représenter une succession d'epreuves 1.1 Rappel sur l'arbre pondeéré	
2	Loi de Bernoulli	3
3	Loi Binomiale 3.1 Schema de Bernoulli 3.2 Etude d'un exemple 3.3 Coefficients binomiaux 3.3 Coefficients binomiaux 3.4 Loi binomiale de parametres n et p 3.5 Exemple	3 4 4
4	Application de la loi binomiale	4

1 Représenter une succession d'epreuves

1.1 Rappel sur l'arbre pondeéré

FIGURE 1 -

1.2 Successions d'épreuves indépendantes

<u>Définition</u> Dans une succession d'épreuves, lorsque l'issue d'une épreuve ne dépend pas des épreuves précédentes, on dit qu'elle est indépendante.

Propriétés Lorsqu'on répète n fois de façon indépendante une éxpérience aléatoire dont les issues sont A_1, A_2, \ldots, A_n pour lesquelles les probabilités sont $P(A_1), P(A_2), \ldots, P(A_n)$, alors la probabilité d'obtenir la suite d'issues A_1 jusqu'à A_n est le produit de leur probabilités.

Exemple Soit un dé à quatre faces équilibré. Si ce dé est numéroté de 1 à 4 :

ſ	x	1	2	3	4	
	P(x)	$^{1}/_{4}$	1/4	1/4	1/4	

De même, soient un jeton A et deux jetons B placés dans un sac. Si, successivement nous lançons le dé puis nous tirons un jeton, les issues sont les suivantes.

FIGURE 2 -

Ceci donne la loi de probabilité suivante :

Issues	(1;A)	(1;B)	(2;A)	(2;B)	(3;A)	(3;B)	(4;A)	(4;B)
Probabilité de chaque issue	1/12	1/6	1/12	1/6	1/12	1/6	1/12	1/6

2 Loi de Bernoulli

<u>Définition</u> Une épreuve de Bernoulli est une éxperience aléatoire qui admet exactement deux issues possibles (succès 'S', échec 'E')

$$\begin{array}{c|cccc} k & \mathbf{0} & \mathbf{1} \\ P(X=k) & 1-p & p \end{array}$$

FIGURE 3 – Loi de Bernoulli de paramètre p

Propriétés

$$E(X) = 0(1-p) + 1 \times p = p$$
$$V(X) = p - p^2 = p(1-p)$$
$$\sigma(X) = \sqrt{p(1-p)}$$

3 Loi Binomiale

3.1 Schema de Bernoulli

<u>Définition</u> On apelle Schema de Bernoulli d'ordre n la répétition de n épreuves de Bernoulli identiques et indépendantes.

3.2 Etude d'un exemple

Soit un schéma de Bernoulli d'ordre 3.

Soit X la variable aléatoire modelisant le nombre (k) de succès. On a : $X(\Omega)=0;1;2;3$

3

3.3 Coefficients binomiaux

Définition On apelle factorielle de n le nombre n!.

$$n! = \prod_{i=1}^{n} i = n \times (n-1) \times (n-2) \times \cdots \times 1$$

Par convention 0! = 1.

<u>Définition</u> Soit un schéma de Bernoulli d'ordre n ($n \in \mathbb{N}^*$), représenté par un arbre, pour $k \in \mathbb{N}$, $0 \le k \le n$. On note $\binom{n}{k}$ le nombre de chemins de l'arbre réalisant k succès lors de n répétitions. Il s'apelle coéfficient binomial de k parmi n.

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Par convention : $\binom{0}{0} = 1$

Propriétés

 $- \forall n \geq 1, \binom{n}{0} = \binom{n}{n} = 1$

 $- \forall n \ge 1, \ 0 \le k \le n$ $\binom{n}{k} = \binom{n}{n-k}$

- Formule de pascal : $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

3.4 Loi binomiale de parametres n et p

<u>Définition</u> Soit un schema de Bernoulli d'ordre n ou la probabilite de succes est p. Soit X la variable aleatoire qui compte le nombre de succes.

$$X(\Omega) = 0, 1, 2, \dots, n$$

$$\forall k \in \mathbb{N} | 0 < k < n$$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

On dit que X suit une loi binomiale de parametre n et p. $X \sim \mathcal{B}(n;p)$

3.5 Exemple

Soit une urne contenant 5 boules gagnantes et 7 perdantes. Une experience consiste a tirer au hasard 4 fois de suite une boule. Cette boule est remise a chaque fois. On apelle X la variable aleatoire associee au nombre de tirages gagnants.

- Exeperience aleatoire
- Contexte d'equiprobabilite

$$p = \frac{\text{cas favorable}}{\text{cas possible}} = \frac{5}{12}$$

$$1 - p = \frac{7}{12}$$

Experience a deux issues.

D'ou epreuve de Bernoulli : Schema de Bernoulli : 4 tirages constitues de 4 epreuves de Bernoulli identiques et independant D'ou : $X \sim \mathcal{B}(4; \frac{5}{12})$, $P(X = k) = \binom{4}{3} \times (\frac{5}{12})^3 \times (\frac{7}{12})$

4 Application de la loi binomiale

Voir Poly.