

최적화된 전달량 함수를 이용한 저조도 영상 복원

LOW-LIGHT IMAGE RESTORATION
USING OPTIMIZED TRANSMISSION MAP

2016년 12월 6일 중앙대학교 첨단영상대학원 고승용

Contents

Part I

- l. 연구 실적
- Ⅱ. 수강 과목

Part II

- l. 연구 목표 및 중요성
- Ⅱ. 연구 배경
- Ⅲ. 제안하는 방법
- Ⅳ. 실험 결과
- V. 결론

PART 1

- l. 연구 실적
- Ⅱ. 수강 과목

I. 연구 실적

• 국제 저널

- B. Moon, S. Yu, **S. Ko**, S. Park, and J. Paik, "Continuous Digital Zooming Using Local Self-Similarity-Based Super-Resolution For Asymmetric Dual Camera System," *Journal of the Optical Society of America A*, **submitted for publication**, November 2016. (SCI)
- S. Ko, S. Yu, W. Kang, C. Park, S. Lee, and J. Paik, "Artifact-free Low-light Video Enhancement Using Temporal Similarity and Guide Map," *IEEE Trans. Industrial Electronics*, revision for publication, November 2016. (SCI, IF 6.38)
- S. Ko, S. Yu, B. Moon, S. Park, and J. Paik, "Inverse Dark Channel Prior-based Low-light Video Enhancement and Its Application to Object Tracking," *EURASIP Journal on Image and Video Processing*, submitted for publication, October 2016. (SCI, IF 1.06)
- S, Park, B. Moon, S. Ko, S. Yu, and J. Paik, "Low-light Image Restoration Using Bright Channel Prior-Based Variational Retinex Model," *EURASIP Journal on Image and Video Processing*, submitted for publication, October 2016. (SCI)
- S. Yu, W. Kang, **S. Ko**, and J. Paik, "Single Image Super-Resolution Using Locally Adaptive Multiple Linear Regression," *Journal of the Optical Society America-A: Optics, Image Science and Vision*, vol. 32, no. 12, pp. 2264-2275, December 2015. (SCI)
- W. Kang, S. Yu, **S. Ko**, and J. Paik, "Multisensor Super Resolution Using Directionally Adaptive Regularization for UAV Images," *Sensors*, vol. 15, no. 5, pp. 12053-12079, May 2015. (SCI-E)

• 국제 학회

- S. Ko, S. Yu, B. Moon, S. Park and J. Paik, "Variational Optimization based Simultaneous Destriping and Denosing for Multispectral Imaging System," *Proc. IEIE Int. Conf. Electronics, Information and Communication*, to appear, January 2017.
- S. Park, B. Moon, S. Ko, S. Yu, and J. Paik, "Low-light Image Enhancement Using Variational Optimization-based Retinex Model," *Proc. IEEE Int. Conf. Consumer Electronics*, to appear, January 2017.
- V. Maik, S. Yu, **S. Ko**, and J. Paik, "Color Reproduction Using Intensity Compensation Function for Dual Camera Systems," *Proc. IEEE/IEIE Int. Conf. Consumer Electronics Asia 2016*, pp. 258-259, October 2016.
- S. Park, B. Moon, S. Park, S. Ko, S. Yu, and J. Paik, "Brightness and Color Correction for Dual Camera Image Registration," *Proc. IEEE/IEIE Int. Conf. Consumer Electronics Asia 2016*, pp. 492-493, October 2016
- B. Moon, S. Yu, **S. Ko**, S. Park, and J. Paik, "Local Self Similarity-Based Super-Resolution for Asymmetric Dual-Camera," *Proc. IEEE 2016 Int. Conf. Consumer Electronics—Berlin*, accepted for publication, March 2016.
- S. Ko, S. Yu, W. Kang, and J. Paik, "Flicker-free Low-light Video Enhancement Using Patch-Similarity and Adaptive Accumulation," *Proc. IEEE 2016 Int. Conf. Consumer Electronics*, pp. 235-236, January 2016.
- S. Yu, **S. Ko**, W. Kang, and J. Paik, "Low-light Image Enhancement Using Fast Adaptive Binning for Mobile Phone Cameras," *Proc. IEEE 2015 Int. Conf. Consumer Electronics-Berlin*, pp. 170-171, September 2015.
- S. Ko, S. Yu, W. Kang, and J. Paik, "Example-based Low-light Image Enhancement Using Neural Network for Driver Assistance Systems," Proc. International Technical Conference on Circuits/Systems, Computers and Communications, pp. 138-139, June 2015.

I. 연구 실적

• 프로젝트

- LG전자 (프로젝트기간: 2014.06-2015.12)
 - CMOS 카메라용 저조도 컬러 영상 개선 기술 연구
- SK텔레콤 종합기술원 (프로젝트기간: 2016.03-2016.08)
 - Vivid Scene Creation 개발
- 항공우주연구원 (프로젝트 기간: 2016.07-2016.02)
 - · K7 고해상도 광학영상 처리 속도 향상 및 검보정 관련 기술 선행개발

• 첨단영상제

- 고승용, "영화속으로," 2015년 제 16회 중앙대학교 첨단영상대학원 첨단영상제

Ⅱ. 수강 과목

Subjects	Grades
디지털비디오시스템	A+
첨단영상세미나	A+
영상공학수학	B+
계산적영상처리1	Α
최적영상처리론1	A+
모바일영상처리1	Α
감성공학	A+
특수효과제작프로젝트	A+
디지털영상처리	Α
현대미술론	A+

PART 2

- l. 연구 목표 및 중요성
- Ⅱ. 배경이론
- Ⅲ. 제안하는 방법
- IV. 실험결과
- V. 결론 및 추후연구

1. 연구 목표 및 중요성

- 연구의 중요성
 - 저조도 환경에서는 빛의 신호가 약하기 때문에 낮은 SNR(Signal-to-Noise Ratio)의 영상을 획득함.

(a) Low-light image

I. 연구 목표 및 중요성

• 연구의 중요성

- 저조도 환경에서는 빛의 신호가 약하기 때문에 낮은 SNR(Signal-to-Noise Ratio)의 영상을 획득함.
- 영상의 밝기 신호 개선 시, 잡음 성분이 함께 증폭되는 문제가 발생함.
- 높은 SNR을 갖는 고품질의 영상으로 복원하기 위한 효율적인 방법이 필요함.

I. 연구 목표 및 중요성

• 연구의 중요성

- 저조도 환경에서는 빛의 신호가 약하기 때문에 낮은 SNR(Signal-to-Noise Ratio)의 영상을 획득함.
- 영상의 밝기 신호 개선 시, 잡음 성분이 함께 증폭되는 문제가 발생함.
- 높은 SNR을 갖는 고품질의 영상으로 복원하기 위한 효율적인 방법이 필요함.

• 연구 목표

- 저조도 환경에서 대비 개선과 잡음제거를 동시적으로 수행하는 새로운 에너지함수 제안
- 새로운 변분법 기반의 저조도 영상 복원 방법 제안

Ⅱ. 배경이론

- Dark channel prior-based Haze removal
- Dark channel prior-based haze removal method

Haze removed image

$$f = \frac{g_{haze} - A}{e^{-kd}} + A$$

Ⅱ. 배경이론

- Dark channel prior-based Haze removal
- Dark channel prior-based haze removal method

 Haze removal-based low-light image enhancement process


```
\underset{f_{inv},T}{argmin} \{E(?)\}
```


$$\underset{f_{\textit{inv}},T}{\operatorname{argmin}} \; \{ \|g_{\textit{inv}} - [f_{\textit{inv}} \; (1-T) + AT] \|_2^2 \}$$
 data-fidelity term

$$\underset{f_{\textit{inv}},T}{\operatorname{argmin}} \left\{ \|g_{\textit{inv}} - [f_{\textit{inv}} (1-T) + AT]\|_2^2 + \lambda_1 \|\nabla f_{\textit{inv}}\|_1 \right\}$$
 data-fidelity term

$$\underset{f_{\textit{inv}},T}{\operatorname{argmin}} \left\{ \|g_{\textit{inv}} - [f_{\textit{inv}} (1-T) + AT]\|_2^2 + \lambda_1 \|\nabla f_{\textit{inv}}\|_1 + \lambda_2 \|\nabla T\|_2^2 \right\}$$
 data-fidelity term TV term Smoothness term

$$\underset{f_{\textit{inv}},T}{\operatorname{argmin}} \left\{ \|g_{\textit{inv}} - [f_{\textit{inv}} (1-T) + AT]\|_2^2 + \lambda_1 \|\nabla f_{\textit{inv}}\|_1 \right. \\ + \lambda_2 \|\nabla T\|_2^2 + \lambda_3 \|T^0 - T\|_2^2 \right\}$$
 data-fidelity term
$$\text{TV term} \qquad \text{Smoothness term} \qquad \text{Transmission mapfidelity term}$$

Combined Low-light Image Restoration Model

$$\underset{f_{\textit{inv}},T}{\operatorname{argmin}} \left\{ \|g_{\textit{inv}} - [f_{\textit{inv}} (1-T) + AT]\|_2^2 + \lambda_1 \|\nabla f_{\textit{inv}}\|_1 \right. \\ + \lambda_2 \|\nabla T\|_2^2 + \lambda_3 \|T^0 - T\|_2^2 \right\}$$
 data-fidelity term
$$\text{TV term} \qquad \text{Smoothness term} \qquad \text{Transmission mapfidelity term}$$

★부록 A. 제안하는 에너지 함수의 최적해 전개 내용 추가 (pp. 46-48)

Optimization Using Split Bregman Iteration

$$\underset{f_{inv},T}{\operatorname{argmin}} \left\{ \|g_{inv} - [f_{inv}(1-T) + AT]\|_{2}^{2} + \lambda_{1} \|\nabla f_{inv}\|_{1} + \lambda_{2} \|\nabla T\|_{2}^{2} + \lambda_{3} \|T^{0} - T\|_{2}^{2} \right\}$$

Splitting method

$$\underset{f_{inv},T,d,b}{\arg\min} \|g_{inv} - [f_{inv} (1-T) + AT]\|_{2}^{2} + \frac{\lambda_{1} \|d\|_{1}}{\lambda_{1} \|d\|_{1}} + \lambda_{2} \|d - \nabla f_{inv} - b\|_{2}^{2} + \lambda_{3} \|\nabla T\|_{2}^{2} + \lambda_{4} \|T^{0} - T\|_{2}^{2}$$

Optimization Using Split Bregman Iteration

- T-related sub-problem with f_{inv} fixed
- f_{inv} -related sub-problem with T fixed
- d- and b-related sub-problem

Optimization Using Split Bregman Iteration

$$\arg\min_{f_{inv},T,d,b} \|g_{inv} - [f_{inv}(1-T) + AT]\|_{2}^{2} + \lambda_{1} \|d\|_{1} + \lambda_{2} \|d - \nabla f_{inv} - b\|_{2}^{2} + \lambda_{3} \|\nabla T\|_{2}^{2} + \lambda_{4} \|T^{0} - T\|_{2}^{2}$$

■ T-related sub-problem with f_{inv} fixed

$$\underset{T}{\operatorname{argmin}} \left\| T - \frac{g_{inv} - f_{inv}}{A - f_{inv}} \right\|_{2}^{2} + \lambda_{3} \|\nabla T\|_{2}^{2} + \lambda_{4} \|T^{0} - T\|_{2}^{2}$$

Euler-Lagrange Equation $\frac{\partial E}{\partial T} = \mathbf{0}$

$$(\mathbf{I} + \lambda_3 \Delta + \lambda_4 \mathbf{I}) T^{k+1} = \left(\frac{g_{inv} - f_{inv}^k}{A - f_{inv}^k}\right) + \lambda_4 T^0$$

Conjugate gradient or Fast Fourier Transform

III. 제안하는 방법

Optimization Using Split Bregman Iteration

$$\underset{f_{inv},T,d,b}{arg \min} \|g_{inv} - [f_{inv}(1-T) + AT]\|_{2}^{2} + \lambda_{1} \|d\|_{1} + \lambda_{2} \|d - \nabla f_{inv} - b\|_{2}^{2} + \lambda_{3} \|\nabla T\|_{2}^{2} + \lambda_{4} \|T^{0} - T\|_{2}^{2}$$

• f_{inv} -related sub-problem with T fixed

$$\underset{f_{inv}}{argmin} \left\| f_{inv} - \frac{g_{inv} - AT}{1 - T} \right\|_{2}^{2} + \lambda_{2} \| d - \nabla f_{inv} - b \|_{2}^{2}$$

$$(\mathbf{I} + \lambda_2 \Delta) f_{inv}^{k+1} = \left(\frac{g_{inv} - AT^k}{1 - T^k}\right) + \lambda_2 \nabla^T (d^k - b^k)$$

Conjugate gradient or Fast Fourier Transform

Optimization Using Split Bregman Iteration

 $\underset{f_{inv},T,d,b}{\arg\min} \|g_{inv} - [f_{inv}(1-T) + AT]\|_{2}^{2} + \lambda_{1} \|d\|_{1} + \lambda_{2} \|d - \nabla f_{inv} - b\|_{2}^{2} + \lambda_{3} \|\nabla T\|_{2}^{2} + \lambda_{4} \|T^{0} - T\|_{2}^{2}$

■ d- and b-related sub-problem with T fixed

★부록 B. 제안하는 에너지 함수의 최적해 전개 내용 추가 (pp. 49-55)

$$\underset{d,b}{\operatorname{argmin}} \ \lambda_1 \|d\|_1 + \lambda_2 \|d - \nabla f_{nv} - b\|_2^2$$

$$d^{k+1} = \sinh k \quad \left(\nabla f_{iv}^{k+1} + b, \frac{\lambda_1}{\lambda_2} \right) \quad \text{Soft Shrinkage method}$$

$$\textit{where shrink} \quad (\gamma, \varepsilon) = \frac{r}{|r|} * \max(r - \varepsilon, 0)$$

$$b^{k+1} = b^{k+1} + (\nabla f_{inv}^{k+1} - d^{k+1})$$
 Bregman variable update

Optimization Using Split Bregman Iteration

 $\underset{f_{inv},T,d,b}{\arg\min} \|g_{inv} - [f_{inv}(1-T) + AT]\|_{2}^{2} + \lambda_{1} \|d\|_{1} + \lambda_{2} \|d - \nabla f_{inv} - b\|_{2}^{2} + \lambda_{3} \|\nabla T\|_{2}^{2} + \lambda_{4} \|T^{0} - T\|_{2}^{2}$

Iteration Process

 f_{inv} $\overline{$ -추정 결과

T - 추정 결과

입력 저조도 영상

제안하는 방법의 결과 영상

그림 1. 실제 저조도 동영상을 이용한 제안하는 방법의 결과.

입력 저조도 영상

제안하는 방법의 결과 영상

그림 2. 실제 저조도 동영상을 이용한 제안하는 방법의 결과.

입력 저조도 영상

제안하는 방법의 결과 영상

그림 3. 실제 저조도 동영상을 이용한 제안하는 방법의 결과.

• 정칙화 항에 대한 실험결과 및 분석

그림 4. 제안하는 에너지 함수의 정칙화 파라미터에 대한 PSNR 값 변화 그래프. 좌: 감마 보정 비율 변화에 대한 그래프, 우: 가우시안 잡음의 표준 편차 변화에 대한 그래프.

• 정칙화 항에 대한 실험결과 및 분석

그림 5. 가우시안 잡음 변화와 제안하는 방법의 반복 (iteration) 횟수에 대한 PSNR 비교.

• 정칙화 항에 대한 실험결과 및 분석

그림 6. 정칙화 파라미터 변화에 대한 영상 변화: (a) 원본 영상, 열화 영상, 기본 값으로 복원된 영상 $(\lambda_1=10, \lambda_2=10, \lambda_3=1, \lambda_4=50)$, (b) λ_1 파라미터 변화에 대한 결과 영상, (c) λ_2 파라미터 변화에 대한 결과 영상, (d) λ_3 파라미터 변화에 대한 전달량 함수 결과, 그리고 (e) λ_4 파라미터 변화에 대한 전달량 함수 결과.

• 정칙화 항에 대한 실험결과 및 분석

그림 6. 정칙화 파라미터 변화에 대한 영상 변화: (a) 원본 영상, 열화 영상, 기본 값으로 복원된 영상 $(\lambda_1=10, \lambda_2=10, \lambda_3=1, \lambda_4=50)$, (b) λ_1 파라미터 변화에 대한 결과 영상, (c) λ_2 파라미터 변화에 대한 결과 영상, (d) λ_3 파라미터 변화에 대한 전달량 함수 결과, 그리고 (e) λ_4 파라미터 변화에 대한 전달량 함수 결과.

• 시뮬레이션 저조도 영상을 이용한 정량적 평가

• Noise variance $\sigma = 5$, gamma correction with $\sigma = 1.35$

그림 7. 시뮬레이션 저조도 영상 개선 결과: (a) 원본 영상, (b) 시뮬레이션 영상 ($\gamma=1.35$, $\sigma=5$), (c) Chen의 방법 [1], (d) Kim의 방법 [2], (e) Jobson의 방법 [4], (f) Ma의 방법 [6], (g) Jiang의 방법 [7], (h) Yoo의 방법 [11], 그리고 (i) 제안하는 방법 ($\lambda_1=10$, $\lambda_2=10$, $\lambda_3=1$, $\lambda_4=50$).

• 시뮬레이션 저조도 영상을 이용한 정량적 평가

• Noise variance $\sigma = 5$, gamma correction with $\sigma = 1.35$

그림 8. 시뮬레이션 저조도 영상 개선 결과: (a) 원본 영상, (b) 시뮬레이션 영상 ($\gamma=1.35$, $\sigma=5$), (c) Chen의 방법 [1], (d) Kim의 방법 [2], (e) Jobson의 방법 [4], (f) Ma의 방법 [6], (g) Jiang의 방법 [7], (h) Yoo의 방법 [11], 그리고 (i) 제안하는 방법 ($\lambda_1=10$, $\lambda_2=10$, $\lambda_3=1$, $\lambda_4=50$).

• 시뮬레이션 저조도 영상을 이용한 정량적 평가

• Noise variance $\sigma = 15$, gamma correction with $\sigma = 1.35$

그림 9. 시뮬레이션 저조도 영상 개선 결과: (a) 원본 영상, (b) 시뮬레이션 영상 $(\gamma=1.35,\,\sigma=5)$, (c) Chen의 방법 [1], (d) Kim의 방법 [2], (e) Jobson의 방법 [4], (f) Ma의 방법 [6], (g) Jiang의 방법 [7], (h) Yoo의 방법 [11], 그리고 (i) 제안하는 방법 $(\lambda_1=10,\,\lambda_2=10,\,\lambda_3=1,\,\lambda_4=50$].

• 시뮬레이션 저조도 영상을 이용한 정량적 평가

• Noise variance $\sigma = 15$, gamma correction with $\sigma = 1.35$

그림 10. 시뮬레이션 저조도 영상 개선 결과: (a) 원본 영상, (b) 시뮬레이션 영상 ($\gamma=1.35$, $\sigma=5$), (c) Chen의 방법 [1], (d) Kim의 방법 [2], (e) Jobson의 방법 [4], (f) Ma의 방법 [6], (g) Jiang의 방법 [7], (h) Yoo의 방법 [11], 그리고 (i) 제안하는 방법 ($\lambda_1=10$, $\lambda_2=10$, $\lambda_3=1$, $\lambda_4=50$).

Table 1. Comparison of the Objective Assessments using the PSNR and SSIM for the Low-light Image Enhancement Performance of the Proposed and Existing Methods with $\sigma=5$. Each Test Image is Degraded by the Different Gamma Correction Ratio. From the First to Fourth Row, γ is Set to 1.05, 1.15, 1.25, and 1.35.

	Chen [1]		Kim [2]		Jobson [4]		Ma [6]		Jiang [7]		Yoo [11]		Proposed	
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
	26.66	0.724	19.35	0.640	18.28	0.557	22.10	0.767	19.96	0.661	14.05	0.549	19.44	0.695
	21.28	0.528	18.81	0.506	17.86	0.477	21.02	0.633	18.80	0.463	13.62	0.479	20.81	0.720
	17.69	0.371	17.92	0.381	17.16	0.380	19.98	0.495	20.28	0.418	13.69	0.398	22.36	0.754
	15.43	0.259	16.89	0.284	16.15	0.285	18.94	0.372	18.65	0.378	13.63	0.311	19.90	0.727
	28.96	0.812	24.56	0.791	18.81	0.621	20.46	0.733	18.56	0.688	14.99	0.531	18.81	0.614
	22.96	0.670	23.39	0.683	18.53	0.576	19.52	0.626	19.27	0.593	14.77	0.511	19.91	0.645
	19.10	0.531	21.80	0.574	18.06	0.512	18.66	0.519	18.43	0.512	14.55	0.447	20.00	0.648
	16.48	0.416	20.02	0.471	17.40	0.439	17.82	0.422	17.92	0.407	14.37	0.374	17.70	0.613
Zon.	24.50	0.569	13.57	0.340	15.88	0.478	24.63	0.737	20.38	0.650	12.60	0.365	21.18	0.733
	18.14	0.343	13.25	0.245	14.99	0.340	22.82	0.573	18.83	0.481	12.08	0.240	21.92	0.748
	15.31	0.246	12.98	0.195	13.92	0.239	21.12	0.422	18.63	0.369	11.98	0.149	22.98	0.767
	13.26	0.183	12.64	0.160	12.92	0.178	19.55	0.303	17.84	0.268	12.22	0.103	23.93	0.791
	25.92	0.696	20.48	0.671	17.73	0.531	23.52	0.761	20.27	0.703	14.22	0.545	21.41	0.765
	21.28	0.521	19.68	0.526	17.37	0.452	22.71	0.630	20.49	0.592	13.86	0.488	22.33	0.763
	18.27	0.386	18.68	0.400	16.74	0.367	20.83	0.495	19.39	0.461	13.73	0.411	21.44	0.728
	16.30	0.288	17.71	0.307	15.99	0.294	19.55	0.377	19.50	0.364	13.49	0.329	18.29	0.627

Table 2. Comparison of the Objective Assessments using the PSNR and SSIM for the Low-light Image Enhancement Performance of the Proposed and Existing Methods with $\sigma=15$. Each Test Image is Degraded by the Different Gamma Correction Ratio. From the First to Fourth Row, γ is Set to 1.05, 1.15, 1.25, and 1.35.

	Chen [1]		Kim [2]		Jobson [4]		Ma [6]		Jiang [7]		Yoo [11]		Proposed	
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
	20.95	0.349	17.21	0.314	16.72	0.323	19.86	0.384	17.40	0.275	14.66	0.431	19.77	0.702
	16.87	0.205	15.65	0.200	15.16	0.203	17.75	0.235	14.81	0.154	14.63	0.291	21.58	0.728
	13.45	0.124	14.09	0.133	13.86	0.132	15.74	0.143	12.60	0.097	14.89	0.205	22.82	0.722
	11.37	0.078	12.81	0.092	12.87	0.091	13.89	0.090	10.85	0.068	14.95	0.153	18.89	0.590
	21.90	0.506	20.61	0.502	17.65	0.450	18.88	0.450	16.69	0.418	15.16	0.428	19.21	0.623
	17.50	0.350	17.89	0.360	16.38	0.336	17.10	0.316	15.90	0.302	15.38	0.360	20.32	0.649
	14.10	0.228	15.52	0.252	14.93	0.235	15.35	0.218	12.92	0.190	15.02	0.270	20.00	0.635
	11.82	0.148	13.71	0.177	13.69	0.168	13.72	0.151	12.09	0.140	14.99	0.220	16.88	0.536
	19.89	0.293	12.83	0.180	13.60	0.213	20.85	0.333	18.45	0.283	13.66	0.241	20.64	0.715
	15.16	0.170	12.18	0.135	12.29	0.140	18.00	0.199	16.33	0.167	13.86	0.145	21.41	0.730
	12.58	0.111	11.38	0.099	11.44	0.095	15.47	0.122	12.34	0.094	14.08	0.105	22.73	0.748
	10.74	0.076	10.64	0.073	10.90	0.069	13.33	0.079	11.84	0.069	13.89	0.081	22.97	0.725
	21.00	0.341	18.19	0.318	16.32	0.311	20.57	0.380	18.50	0.336	14.67	0.427	21.59	0.770
	17.15	0.211	16.42	0.210	15.07	0.212	18.21	0.236	16.28	0.194	14.81	0.309	22.60	0.762
	14.25	0.136	14.72	0.143	13.91	0.140	16.08	0.149	14.81	0.127	14.69	0.219	21.59	0.706
	12.21	0.089	13.31	0.101	12.95	0.098	14.20	0.098	11.61	0.076	14.57	0.163	17.85	0.534

• 실제 저조도 영상을 이용한 정성적 평가

그림 11. 실제 저조도 영상 개선 결과: (a) 실제 저조도 영상, (b) Chen의 방법 [1], (c) Kim의 방법 [2], (d) Jobson의 방법 [4], (e) Ma의 방법 [6], (f) Jiang의 방법 [7], (g) Yoo의 방법 [11], 그리고 (h) 제안하는 방법 $(\lambda_1=5, \lambda_2=10, \lambda_3=10, \lambda_4=20)$.

• 실제 저조도 영상을 이용한 정성적 평가

그림 12. 실제 저조도 영상 개선 결과: (a) 실제 저조도 영상, (b) Chen의 방법 [1], (c) Kim의 방법 [2], (d) Jobson의 방법 [4], (e) Ma의 방법 [6], (f) Jiang의 방법 [7], (g) Yoo의 방법 [11], 그리고 (h) 제안하는 방법 $(\lambda_1=5, \lambda_2=10, \lambda_3=10, \lambda_4=20)$.

• 실제 저조도 영상을 이용한 정성적 평가

그림 13. 실제 저조도 영상 개선 결과: (a) 실제 저조도 영상, (b) Chen의 방법 [1], (c) Kim의 방법 [2], (d) Jobson의 방법 [4], (e) Ma의 방법 [6], (f) Jiang의 방법 [7], (g) Yoo의 방법 [11], 그리고 (h) 제안하는 방법 $(\lambda_1=5, \lambda_2=20, \lambda_3=20, \lambda_4=20)$.

• 제안하는 방법을 이용한 안개제거 성능 비교

(b) He's method [9] (c) Ancuti's method [12] (d) Proposed method

그림 14. 제안하는 방법을 이용한 안개제거 성능 비교.

그림 16. 제안하는 방법과 기존 방법을 이용한 위성 영상 활용 결과: (a) 위성 영상, (b) Kim의 방법 [2], (c) Ma의 방법 [6], 그리고 (d) 제안하는 방법 ($\lambda_1=5$, $\lambda_2=10$, $\lambda_3=10$, $\lambda_4=20$).

그림 17. 제안하는 방법과 기존 방법을 이용한 위성 영상 활용 결과: (a) 위성 영상, (b) Kim의 방법 [2], (c) Ma의 방법 [6], 그리고 (d) 제안하는 방법 ($\lambda_1=10,\,\lambda_2=10,\,\lambda_3=1,\,\lambda_4=50$).

그림 18. 제안하는 방법과 기존 방법을 이용한 위성 영상 활용 결과: (a) 위성 영상, (b) Kim의 방법 [11], (c) Ma의 방법 [21], 그리고 (d) 제안하는 방법 $(\lambda_1=10,\,\lambda_2=10,\,\lambda_3=1,\,\lambda_4=50)$.

그림 19. 제안하는 방법과 기존 방법을 이용한 위성 영상 활용 결과: (a) 위성 영상, (b) Kim의 방법 [11], (c) Ma의 방법 [21], 그리고 (d) 제안하는 방법 $(\lambda_1=10,\,\lambda_2=10,\,\lambda_3=1,\,\lambda_4=50)$.

V. 결론

• 결론

- 변분법 기반의 최적화 방법을 이용해 저조도 영상 복원.
- 밝기 개선과 잡음제거를 동시에 수행하기 위한 새로운 에너지 함수를 제안함.
- TV term을 적용하여, 엣지 성분을 보존하며 잡음 성분을 최소화함.
- 기존 방법에 비해 잡음 증폭 없이 높은 SNR을 갖는 영상 제공 가능.
- 안개제거, 위성영상 등 다양한 분야에 적용 가능함.

• 추후 연구

- 저조도 환경에서 발생하는 Non-uniform 블러링 현상을 최소화하기 위한 연구
- 밝기 개선, 잡음제거, 디블러를 결합한 복합적 열화모델 및 에너지함수 제안을 위한 연구

Reference

- [1] S.-D. Chen and A. R. Ramli, "Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation," IEEE Trans. Consum. Electron., vol. 49, no. 4, pp. 1301–1309, 2003.
- [2] T. Kim and J. Paik, "Adaptive contrast enhancement using gain controllable clipped histogram equalization," IEEE Trans. Consum. Electron., vol. 54, no. 4, pp. 1803–1810, 2008.
- [3] D. J. Jobson, Z.-u. Rahman, and G. A. Woodell, "Properties and performance of a center/surround retinex," IEEE Trans. Image Process., vol. 6, no. 3, pp. 451–462, 1997.
- [4] D. J. Jobson, Z.-u. Rahman, and G. A. Woodell, "A multiscale retinex for bridging the gap between color images and the human observation of scenes," IEEE Trans. Image Process., vol. 6, no. 7, pp. 965–976, 1997.
- [5] R. Kimmel, M. Elad, D. Shaked, R. Keshet, and I. Sobel, "A variational framework for retinex," Int. J. Comput. Vis., vol. 52, no. 1, pp. 7–23, 2003.
- [6] W. Ma, J.-M. Morel, S. Osher, and A. Chien, "An I1-based variational model for retinex theory and its application to medical images," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2011, pp. 153–160.
- [7] X. Jiang, H. Yao, S. Zhang, X. Lu, and W. Zeng, "Night video enhancement using improved dark channel prior," in Proc. IEEE Conf. Image Process., 2013, pp. 553–557.
- [8] T. Goldstein and S. Osher, "The split bregman method for I1-regularized problems," SIAM J. Imaging Sci., vol. 2, no. 2, pp. 323-343, 2009.
- [9] K. He, J. Sun, and X. Tang, "Single image haze removal using dark channel prior," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12, pp. 2341–2353, 2011.
- [10] L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D., vol. 60, no. 1, pp. 259–268, 1992.
- [11] Y. Yoo, J. Im, and J. Paik, "Low-light image enhancement using adaptive digital pixel binning," Sensors, vol. 15, no. 7, pp. 14 917–14 931, 2015.
- [12] C. O. Ancuti and C. Ancuti, "Single image dehazing by multi-scale fusion," IEEE Trans. Image Process., vol. 22, no. 8, pp. 3271–3282, 2013.

