# **Analysis of High-Dimensional Data**

Leif Kobbelt





#### Motivation

Given: n samples in d-dimensional space

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in R^{d \times n}$$





#### Motivation

Given: n samples in d-dimensional space

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in R^{d \times n}$$

- Decrease *d*  $\Longrightarrow$  dimensionality reduction:
  - -PCA
  - -MDS





- Idea: Compute orthorgonal linear transformation that transforms the data into a new coordinate system s.t.
  - greatest variance on first coordinate axis
  - second greatest variance on second axis
  - -etc.
- Optimal transform for a given data set in the least squares sense
- Dimensionality reduction: project data into lower dimensional space spanned by first principal components





Given: *n* samples scattered in *d*-dimensional space, written as a matrix

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \in R^{d \times n}$$

compute the centered covariance matrix:

$$C = (X - \overline{X})(X - \overline{X})^T \in R^{d \times d}$$

(interpretation as map from  $R^d$  to  $R^d$ )





computation of C with the "centering matrix":

$$C = (XJ)(XJ)^{T} = X J J^{T} X^{T}$$

$$J = I_{n} - \frac{1}{n} \mathbf{1} \mathbf{1}^{T}$$

principal component(s): eigenvector(s)  $v_i$  to largest eigenvalue(s)  $\lambda_i$  of C(low rank approximation)





$$C = V D V^{T}$$

$$= \left[ \mathbf{v}_{1} \dots \mathbf{v}_{d} \right] \operatorname{diag} \left[ \lambda_{1} \dots \lambda_{d} \right] \left[ \mathbf{v}_{1} \dots \mathbf{v}_{d} \right]^{T}$$

$$\approx \left[ \mathbf{v}_{1} \dots \mathbf{v}_{q} \right] \operatorname{diag} \left[ \lambda_{1} \dots \lambda_{q} \right] \left[ \mathbf{v}_{1} \dots \mathbf{v}_{q} \right]^{T}$$

$$X^* \coloneqq \begin{bmatrix} \mathbf{v}_1 \dots \mathbf{v}_q \end{bmatrix}^T X J \in \mathbb{R}^{q \times n}$$





#### Relation to SVD

singular value decomposition

$$XJ = V \Sigma U^T$$

$$C = XJ (XJ)^{T} = V \Sigma U^{T}U \Sigma^{T}V^{T}$$
$$= V \Sigma^{2}V^{T}$$





#### ... for very large dimension d

$$C = XJ (XJ)^T \in R^{d \times d}$$

$$\widetilde{C} = (XJ)^T XJ \in \mathbb{R}^{n \times n}$$

$$C v = \lambda v \qquad w = (XJ)^T v$$

$$\widetilde{C} w = (XJ)^T XJ (XJ)^T v = \lambda (XJ)^T v = \lambda w$$





# Example

# 10 points in $R^2$







#### **Example**

# 10 points in $R^2$

$$C = \begin{pmatrix} 0.617 & 0.615 \\ 0.615 & 0.717 \end{pmatrix}$$

$$e_1 = \begin{pmatrix} -0.74 \\ 0.68 \end{pmatrix}$$

$$e_2 = \begin{pmatrix} -0.68 \\ -0.74 \end{pmatrix}$$







Given: For n unknown samples  $\mathbf{X} \in \mathbb{R}^{d \times n}$  in high-dimensional space

$$\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}, \quad \mathbf{x}_i \in R^d$$

we are given a matrix  $D \in \mathbb{R}^{n \times n}$  of pairwise (squared) distances:

$$D_{i,j} = \left\| x_i - x_j \right\|^2$$





samples X in some *abstract* space:

$$\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}, \quad \mathbf{x}_i \in A$$

matrix  $D \in \mathbb{R}^{n \times n}$  of pairwise *abstract* distances:

$$D_{i,j}$$





Goal:find an embedding of X in a low-dimensional space such that the pairwise (variations of) distances  $\hat{D}$  are preserved.

$$\rho(D, \hat{D}) = \left\| J^T (D - \hat{D}) J \right\|_F^2$$

other measures  $\rho(D,\hat{D})$  are possible but they cannot be solved easily.





closed form solution: first q eigenvectors  $\mathbf{V}_1, \dots, \mathbf{V}_q$  of the matrix

$$-\frac{1}{2}J^TDJ \in R^{n\times n}$$

define the coordinates of a q-dimensional embedding

$$\mathbf{X'} = \left[ \sqrt{\lambda_1} \, \frac{\mathbf{v}_1}{\left\| \mathbf{v}_1 \right\|}, \cdots, \sqrt{\lambda_q} \, \frac{\mathbf{v}_q}{\left\| \mathbf{v}_q \right\|} \right]^T \quad \in R^{q \times n}$$





Principal Components projection of the digits (time 0.00s)









#### **Motivation**

Given: n samples in d-dimensional space

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in R^{d \times n}$$

- Decrease  $n \implies$  clustering:
  - -k-means
  - -EM
  - Mean shift
  - Spectral clustering
  - Hierarchical clustering





#### **Cluster Analysis**

 Task: Given a set of observations / data samples, assign them into clusters so that observations in the same cluster are similar.







#### **Cluster Analysis**

 Task: Given a set of observations / data samples, assign them into clusters so that observations in the same cluster are similar.







- Idea: partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean.
- Given: data samples  $\mathbf{x}_1, \dots, \mathbf{x}_n \quad \mathbf{x}_i \in \mathbb{R}^d$
- Goal: partition the n samples into k sets  $(k \le n)$   $S_1, S_2, ..., S_k$  such that

$$\underset{S}{\operatorname{arg\,min}} = \sum_{i=1}^{k} \sum_{\mathbf{x}_{j} \in S_{i}} \|\mathbf{x}_{j} - \boldsymbol{\mu}_{i}\|^{2}$$

is minimized, where  $\mu_i$  is the mean of points in  $S_i$ .





- Two step algorithm:
  - Assignment step: Assign each sample to the cluster with the closest mean (Voronoi Diagram)

$$S_i^t = \left\{ \mathbf{x}_j : \left\| \mathbf{x}_j - \mathbf{m}_i^t \right\| \le \left\| \mathbf{x}_j - \mathbf{m}_{i^*}^t \right\|, \forall i^* = 1, \dots, k \right\}$$

 Update step: Calculate the new means to be the centroid of the observations in the cluster.

$$\mathbf{m}_{i}^{t+1} = \frac{1}{\left|S_{i}^{t}\right|} \sum_{\mathbf{x}_{j} \in S_{i}^{t}} \mathbf{x}_{j}$$

 Iterate until convergence (assignments change no longer)













































































#### k-means Clustering - Comments

#### Advantages:

- Efficient
- Always converges to a solution

#### Drawbacks:

- Not necessarily globally optimal solution
- -#clusters k is an input parameter
- Sensitive to initial clusters
- Cluster model: data is split halfway between cluster means





## **Clustering Results**

#### Different cluster analysis results on "mouse" data set:







#### **EM Algorithm**

- Expectation Maximization (EM)
- Probabilistic assignments to clusters instead of deterministic assignments
- Multivariate Gaussian distributions instead of means





#### **EM Algorithm**

- Given: data samples  $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}, \mathbf{x}_i \in R^d$
- Assumption: data was generated by k Gaussians
- Goal: Fit Gaussian mixture model (GMM) to data X Find (j = 1,...,k)
  - means
  - –covariances of the Gaussians  $\Sigma_i$
  - -probabilities (weights)  $\omega_j$  that the samples come from the Gaussian j



## **EM Algorithm – Example (1D)**



- Three samples drawn from each mixture component
- means:  $\mu_1 = -2, \mu_2 = 2$





## **EM Algorithm – Example (2D)**

#### Waiting time vs Eruption time Old Faithful geyser







## **EM Algorithm – Example (2D)**

#### Waiting time vs Eruption time Old Faithful geyser







# **EM Algorithm – Example (2D)**

#### Waiting time vs Eruption time Old Faithful geyser







#### **EM Algorithm**

1. Initialization: Choose initial estimates  $\omega_j^0, \mu_j^0, \Sigma_j^0, \quad j=1,...,k$  and compute the initial log-likelihood

$$L^{0} = \frac{1}{n} \sum_{i=1}^{n} \log \left( \sum_{j=1}^{k} \omega_{j}^{0} \cdot \phi(\mathbf{x}_{i} | \mathbf{\mu}_{j}^{0}, \mathbf{\Sigma}_{j}^{0}) \right)$$

2. E-step: Compute

$$\gamma_{ij}^{m} = \frac{\omega_{j}^{m} \cdot \phi(\mathbf{x}_{i} | \mathbf{\mu}_{j}^{m}, \mathbf{\Sigma}_{j}^{m})}{\sum_{l=1}^{k} \omega_{l}^{m} \cdot \phi(\mathbf{x}_{i} | \mathbf{\mu}_{l}^{m}, \mathbf{\Sigma}_{l}^{m})}, \quad i = 1, \dots, n, j = 1, \dots, k$$

and

$$n_j^m = \sum_{i=1}^n \gamma_{ij}^m, \quad j = 1, ..., k$$





#### **EM Algorithm**

3. M-step: Compute new estimates (j=1,...,k)

$$\omega_{j}^{m+1} = \frac{n_{j}^{m}}{n}$$

$$\mu_{j}^{m+1} = \frac{1}{n_{j}^{m}} \sum_{i=1}^{n} \gamma_{ij}^{m} \mathbf{x}_{i}$$

$$\Sigma_{j}^{m+1} = \frac{1}{n_{j}^{m}} \sum_{i=1}^{n} \gamma_{ij}^{m} \left(\mathbf{x}_{i} - \boldsymbol{\mu}_{j}^{m+1}\right) \left(\mathbf{x}_{i} - \boldsymbol{\mu}_{j}^{m+1}\right)^{T}$$

4. Convergence check: Compute new loglikelihood

$$L^{m+1} = \frac{1}{n} \sum_{i=1}^{n} \log \left( \sum_{j=1}^{k} \omega_j^{m+1} \phi(\mathbf{x}_i | \mathbf{\mu}_j^{m+1}, \Sigma_j^{m+1}) \right)$$





## **Example (2D)**

#### Ground truth:

- Means: 
$$\mu_1 = \begin{pmatrix} 0 \\ 4 \end{pmatrix}, \mu_2 = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$$

– Covariance matrices:

$$\Sigma_1 = \begin{pmatrix} 3 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}, \Sigma_2 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

– Weights:

$$w_1 = 0.6, w_2 = 0.4$$

 Input to EM-algorithm: 1000 samples





#### **Initial Estimate**



#### Initial density estimation:

$$\mu_1 = \begin{pmatrix} 0.08 \\ 3.92 \end{pmatrix}, \mu_2 = \begin{pmatrix} -2.07 \\ -0.23 \end{pmatrix}$$

(centroids of k-means result)

$$w_1 = 0.5, w_2 = 0.5$$

$$\Sigma_1 = \Sigma_2 = I_2$$





## 1st Iteration







#### 2nd Iteration







#### 3rd Iteration



#### Estimates after three iterations:

$$\mu_1 = \begin{pmatrix} 0.08 \\ 3.94 \end{pmatrix}, \mu_2 = \begin{pmatrix} -2.02 \\ -0.17 \end{pmatrix}$$

$$\Sigma_1 = \begin{pmatrix} 2.75 & 0.06 \\ 0.06 & 0.48 \end{pmatrix},$$

$$\Sigma_2 = \begin{pmatrix} 0.87 & -0.02 \\ -0.01 & 1.79 \end{pmatrix}$$

$$w_1 = 0.59, w_2 = 0.41$$





- Non-parametric clustering technique
- No prior knowledge of #clusters
- No constraints on shape of clusters





#### Mean Shift Clustering - Idea

- Interprete points in feature space as empirical probability density function
- Dense regions in feature space correspond to local maxima of the underlying distribution
- For each sample: run gradient ascent procedure on local estimated density until convergence
- Stationary points = maxima of distribution
- Samples associted with the same stationary point are considered to be in the same cluster





- Given: data samples  $\mathbf{x}_1, \dots, \mathbf{x}_n \quad \mathbf{x}_i \in \mathbb{R}^d$
- Multi-variate kernel density estimate with radially symmetric kernel  $K(\mathbf{x})$  and window radius h

$$f(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$
• The radially symmetric kernel is defined as

$$K(\mathbf{x}) = c_{k,d} k \left\| \mathbf{x} \right\|^2$$

where  $c_{k,d}$  is a normalization constant

 Modes of density function are located at zeros of gradient function  $\nabla f(\mathbf{x}) = 0$ 





## Gradient of density estimator

$$\nabla f(\mathbf{x}) = \frac{2c_{k,d}}{nh^{d+2}} \left[ \sum_{i=1}^{n} g\left( \left\| \frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right\|^{2} \right) \right] \cdot \left| \frac{\sum_{i=1}^{n} \mathbf{x}_{i} g\left( \left\| \frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right\|^{2} \right)}{\sum_{i=1}^{n} g\left( \left\| \frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right\|^{2} \right)} - \mathbf{x} \right|$$

where  $g(\mathbf{x}) = -k'(\mathbf{x})$  denotes the derivative of the kernel profile  $k(\mathbf{x})$ 





## Gradient of density estimator

$$\nabla f(\mathbf{x}) = \frac{2c_{k,d}}{nh^{d+2}} \left[ \sum_{i=1}^{n} g\left( \left\| \frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right\|^{2} \right) \right] \cdot \left[ \frac{\sum_{i=1}^{n} \mathbf{x}_{i} g\left( \left\| \frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right\|^{2} \right)}{\sum_{i=1}^{n} g\left( \left\| \frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right\|^{2} \right)} - \mathbf{x} \right]$$
proportional to density estimate at  $\mathbf{x}$ 

$$m_{h}(\mathbf{x})$$

mean shift vector  $m_h(\mathbf{x})$  points toward direction of maximum increase in the density.





Mean shift procedure for sample  $X_i$ :

- 1. Compute mean shift vector  $\mathbf{m}(\mathbf{x}_i^t)$
- Translate density estimation window

$$\mathbf{x}_i^{t+1} = \mathbf{x}_i^t + m(\mathbf{x}_i^t)$$

Iterate 1. and 2. until convergence, i.e.,

$$\nabla f(\mathbf{x}_i) = 0$$















**Visual Computing** 

























#### **Mean Shift - Comments**

- Advantages:
  - No prior knowledge of #clusters
  - No constraints on shape of clusters
- Drawbacks:
  - Computationally expensive:
    - Run algorithm for every sample
    - Identification of sample neighborhood requires multi-dimensional range search
  - How to choose the bandwidth parameter h?





#### **Summary**

Given: n samples in d-dimensional space

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in R^{d \times n}$$

- Decrease  $d \implies$  dimensionality reduction:
  - -PCA
  - -MDS
- Decrease  $n \implies$  clustering:
  - k-means
  - -EM
  - Mean shift
  - Spectral clustering
  - Hierarchical clustering





Model similarity between data points as graph



Clustering: Find connected components in graph





Model similarity between data points as graph





• (weighted) Adjacency Matrix W: 
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
• Degree Matrix D: 
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$egin{pmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{pmatrix}$$



- Graphs:
  - Similarity graph: fully connected, model local neighborhood relations
    - Gaussian kernel similarity function:  $w_{i,j} = e^{-\frac{||x_i x_j||^2}{2\sigma^2}}$
  - K-nearest neighbour graph
  - $\varepsilon$ -neighbourhood graph





Model similarity between data points as graph





• (weighted) Adjacency Matrix W: 
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
• Degree Matrix D: 
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

• Graph Laplacian L = D – W: 
$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$



- Properties of the Graph Laplacian L:
  - For every vector  $f \in \mathbb{R}^n$  :  $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{i,j} (f_i f_j)^2$
  - L is symmetric and positive semi-definite
  - The smallest eigenvalue of L is 0
    - The corresonding eigenvector is the constant one vector 1
  - L has n non-negative, real-valued eigenvalues  $0=\lambda_1\leq \lambda_2\leq \cdots \leq \lambda_n$





- The multiplicity k of the eigenvalue 0 of L equals the number of connected components in the graph
  - Consider k = 1. Assume f is eigenvector with eigenvalue 0:

$$0 = f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{i,j} (f_i - f_j)^2$$

- The sum only vanishes if all terms  $w_{i,j}(f_i-f_j)^2$ vanish
- If two vertices are connected (their edge weight > 0)  $f_i \stackrel{!}{=} f_j$
- f needs to be constant for all vertices which can be connected by a path
- All vertices of a connected component in an undirected graph can be connected by a path:
  - f needs to be constant on the whole connected component





- Laplacian of graph with 1 connected component has one constant vector 1 with eigenvalue 0
- For k > 1: Wlog. assume that vertices are ordered according to connected components

$$L = \begin{pmatrix} L_1 & & & \\ & L_2 & & \\ & & \ddots & \\ & & & L_k \end{pmatrix}$$

- Each  $L_i$  is a graph Laplacian of a fully connected graph:
  - Each  $L_i$  has one eigenvalue 0 with constant one vector on the i-th connected comp.
- Spectrum of L is given by union of the spectra of  $L_i$





Graph:





• Graph Laplacian 
$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

Eigenvectors for eigenvalues 
$$\lambda_1=\lambda_2=0:\begin{pmatrix}0.71\\0.71\\0\\0\end{pmatrix},\begin{pmatrix}0\\0\\0.71\\0.71\end{pmatrix}$$



Graph:





- Project vertices into subspace spanned by k eigenvectors

• Projected vertices: 
$$\begin{pmatrix} 0.71 \\ 0 \end{pmatrix}$$
,  $\begin{pmatrix} 0.71 \\ 0 \end{pmatrix}$ ,  $\begin{pmatrix} 0 \\ 0.71 \end{pmatrix}$ ,  $\begin{pmatrix} 0 \\ 0.71 \end{pmatrix}$ 

$$\begin{pmatrix}
0.71 & 0 \\
0.71 & 0 \\
0 & 0.71 \\
0 & 0.71
\end{pmatrix}$$

- K-means clustering recovers the connected components
  - Embedding is the same regardless of data ordering

$$\begin{pmatrix} 0.71 \\ 0 \end{pmatrix}, \begin{pmatrix} 0.71 \\ 0 \end{pmatrix}$$

$$, \begin{pmatrix} 0 \\ 0.71 \end{pmatrix}, \begin{pmatrix} 0 \\ 0.71 \end{pmatrix}$$



Similarity Graph:





Similarity Graph:



• L = 
$$\begin{pmatrix} 1.1 & -0.9 & -0.1 & -0.1 \\ -0.9 & 1.1 & -0.1 & -0.1 \\ -0.1 & -0.1 & 1.1 & -0.9 \\ -0.1 & -0.1 & -0.9 & 1.1 \end{pmatrix}$$

Eigenvalues: 0, 0.4, 2, 2

• Eigenvectors : 
$$\begin{pmatrix} -0.5 \\ -0.5 \\ -0.5 \\ -0.5 \end{pmatrix}, \begin{pmatrix} 0.5 \\ 0.5 \\ -0.5 \\ -0.5 \end{pmatrix} \begin{pmatrix} 0.71 \\ -0.71 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -0.71 \\ 0.71 \end{pmatrix}$$



Similarity Graph:



- For fully connected graph we want to find the Min-Cut:
  - Partition graph into 2 sets of vertices such that the weight of edges connecting them is minimal:
    - Vertices in each set should be similar to vertices in the same set, but dissimilar to vertices from the other set
  - Partitions often not balanced: isolated vertices







Similarity Graph:



- For fully connected graph we want to find the Normalized Cut:
  - Partition graph into 2 sets of vertices such that the weight of edges connecting them is minimal
  - Partitions should have similar size





- Min-Cut: minimize  $cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$
- Normalized Cut: minimize  $Ncut(A,B)=cut(A,B)(\frac{1}{vol(A)}+\frac{1}{vol(B)})$   $vol(A)=\sum_{i\in A}d_i$ 
  - $\ \frac{1}{vol(A)} + \frac{1}{vol(B)} \ \ \text{minimal if} \ \ vol(A) = vol(B)$



• Reformulate with Graph Laplacian  $Ncut(A,B) = cut(A,B)(\frac{1}{vol(A)} + \frac{1}{vol(B)})$ 

• Construct f: 
$$f_i = \begin{cases} \sqrt{\frac{vol(B)}{vol(A)}}, & \text{if } i \in A \\ -\sqrt{\frac{vol(A)}{vol(B)}}, & \text{if } i \in B \end{cases}$$

$$\begin{split} Df^T\mathbf{1} &= \sum_{i \in A} d_i \sqrt{\frac{vol(B)}{vol(A)}} - \sum_{j \in B} d_j \sqrt{\frac{vol(A)}{vol(B)}} \\ &= vol(A) \sqrt{\frac{vol(B)}{vol(A)}} - vol(B) \sqrt{\frac{vol(A)}{vol(B)}} = 0 \\ f^TDf &= vol(V) \\ f^TLf &= vol(V)Ncut(A, B) \end{split}$$





- Reformulate Ncut:  $\frac{f^T L f}{f^T D f} = \frac{vol(V) N cut(A,B)}{vol(V)}$
- Minimize  $\frac{f^T L f}{f^T D f}$  subject to  $Df \perp \mathbf{1}$ 
  - Partition (cluster) assignment by thresholding f at 0
  - NP hard to compute since f is discrete
  - Relax problem by allowing f to take arbitrary real values
    - Solution: second eigenvector of  $L' = D^{-1}L$  (normalized Graph Laplacian)
- For k > 2 we can similarly construct indicator vectors like f and relax the problem for minimization:
  - Project the vertices into the subspace spanned by the first k eigenvectors of L'
  - Clustering the embedded vertices yields the solution
- Spectral clustering (with normalized Graph Laplacian) approximates Ncut











- Summary:
  - Useful for non-convex clustering problems
  - Computation intensive because of eigenvalue computation (for large matrices)
  - Choice of k necessary:
    - A heuristic can be used that tries to find jumps in the eigenvalues (eigengap)
  - Similarity has to be defined for graph construction:
    - Size of Gaussian kernel?
    - Size of neighbourhood?





- Bottom up:
  - Each data point is it's own cluster
  - Greedily merge clusters according to some criteria







- Requirements:
  - Metric: distance between data points d(x, y)
  - Linkage: distance between data point sets:
    - Maximum linkage:  $l(A,B) = \max d(x,y) : x \in A, y \in B$
    - Average linkage:  $l(A,B) = \frac{1}{|A||B|} \sum_{x \in A} \sum_{y \in B} d(x,y)$
    - Ward linkage:  $l(A,B) = \sum_{i \in A \cup B} ||x_i m_{A \cup B}||^2$   $\sum_{i \in A} ||x_i m_A||^2 \sum_{i \in B} ||x_i m_B||^2$



- Algorithm:
  - Start out with a cluster for each data point
  - Merge two clusters that result in the least increase in linkage criteria
  - Repeat until k clusters remain
- Maximum linkage:
  - Minimizes maximimal distance of data points in each cluster
- Average linkage:
  - Minimizes average distance of data points in each cluster
- Ward linkage:
  - Minimizes inter-cluster variance





 We can add connectivity constraints that enforce which clusters can be merged

Without connectivity constraints (time 0.79s)



With connectivity constraints (time 0.16s)





#### Summary:

- Flexibel: any pairwise distance can be used
- Choice of k, distance and linkage necessary
- Instead of specifying k we can use a heuristic which stops cluster merging if the linkage increases too much
- Given connectivity constraints hierarchical clustering scales well for large number of data points
- How do we choose connectivity constraints?
  - K-nearest neighbour graph
  - $\varepsilon$ -neighbourhood graph



