6

ન્યુક્લિયસ

6.1 प्रस्तावना (Introduction) :

અગાઉના પ્રકરણમાં આપણે જોયું છે કે પરમાણુનો બધો જ ધન વિદ્યુતભાર અને લગભગ બધું દળ તેના કેન્દ્ર પરના સૂક્ષ્મ વિસ્તારમાં કેન્દ્રિત થયેલાં છે. આ સૂક્ષ્મ વિસ્તારને ન્યુક્લિયસ કહે છે. આ પ્રકરણમાં આપણે ન્યુક્લિયસનાં બંધારણ, પરિમાણ, દળ, સ્થાયીપણા ઉપરાંત તેનાં ઘટકક્શો વચ્ચે લાગતાં બળો, રેડિયો-ઍક્ટિવિટી, વિખંડન, સંલયન, તારાઓમાં ઉદ્ભવતી ઊર્જા વગેરે અંગે અભ્યાસ કરીશું.

6.2 પરમાણુદળો અને ન્યુક્લિયસનું બંધારણ (Atomic Masses and the Constitution of Nucleus) :

તમે એ તો જાણો જ છો કે ન્યુક્લિયસ એ પ્રોટોન અને ન્યુટ્રૉન નામના કણોનું બનેલું હોય છે, પરંતુ હાઇડ્રોજન તત્ત્વના સૌથી હલકા પરમાણુનું ન્યુક્લિયસ એક પ્રોટોનનું જ બનેલું હોય છે, તેમાં ન્યુટ્રૉન હોતા નથી. પ્રોટોનના વિદ્યુતભારનું મૂલ્ય ઇલેક્ટ્રૉનના વિદ્યુતભાર જેટલું જ એટલે કે 1.6×10^{-19} C છે, પણ આ વિદ્યુતભાર ધન છે. ન્યુટ્રૉન વિદ્યુતભાર વિહિન છે. પ્રોટોન અને ન્યુટ્રૉન દરેકને ન્યુક્લિયોન (Nucleon) પણ કહે છે. સમગ્ર પરમાણુને બદલે તેના માત્ર ન્યુક્લિયસના એકલાના ગુણધર્મોનો અભ્યાસ કરીએ ત્યારે ન્યુક્લિયસને ન્યુક્લાઇડ પણ કહે છે. તત્ત્વના પરમાણુના ન્યુક્લિયસને 2 સંત્રેત દ્વારા દર્શાવાય છે. અહીં X એ જે તે તત્ત્વ માટેનો રાસાયણિક સંકેત છે. Z એ તત્ત્વનો પરમાણુકમાંક (Atomic Number) છે, જે-તે તત્ત્વના ન્યુક્લિયસમાં રહેલા પ્રોટોનની સંખ્યા દર્શાવે છે. વળી, પરમાણુકમાંક, તત્ત્વનું આવર્તકોષ્ટકમાં સ્થાન પણ દર્શાવે છે. પરમાણુ વિદ્યુતની દષ્ટિએ તટસ્થ હોવાથી તેના માટે ઇલેક્ટ્રૉનની સંખ્યા પણ Z હોય છે. A ને તે તત્ત્વના ન્યુક્લિયસનો પરમાણુદળાંક (Atomic Mass Number) કહે છે અને તે ન્યુક્લિયસમાં રહેલા ન્યુક્લિયોન (પ્રોટોન અને ન્યુટ્રૉન)ની કુલ સંખ્યા દર્શાવે છે. જેને ન્યુક્લિયોન અંક પણ કહે છે. A – Z = Nને ન્યુટ્રૉન-અંક કહે છે, જે ન્યુક્લિયસમાં રહેલા ન્યુટ્રૉનની સંખ્યા દર્શાવે છે. દા.ત., કાર્બનતત્ત્વના પરમાણુનું ન્યુક્લિયસ 12 C વડે દર્શાવાય છે. તેમાં 6 પ્રોટોન અને (12 – 6 =)6 ન્યુટ્રૉન હોય છે. વળી, 6 C પરમાણુમાં 6 ઇલેક્ટ્રૉન હોય છે. 208 Pbના ન્યુક્લિયસમાં 82 પ્રોટોન અને (208 – 82 =) 126 ન્યુટ્રૉન હોય છે. વળી, 208 Pbના પરમાણુમાં 82 ઇલેક્ટ્રૉન પણ હોય છે.

પરમાશુદળો 1 kg દળની સરખામશીએ અત્યંત સૂક્ષ્મ હોય છે. દા. ત. $^{12}_{6}$ C પરમાશુનું દળ 1.992647 × 10^{-26} kg છે. આવાં સૂક્ષ્મ દળોને kgને બદલે Atomic Mass Unit નામના એકમમાં દર્શાવવાનું વધારે સુગમ છે. તેની સંજ્ઞા μ છે. (કોઈક વાર amu પણ લખાય છે.)

અનુત્તેજિત દ્ર^{C12} પરમાણુના દળના બારમા ભાગને 1 Atomic Mass Unit કહે છે.

^{*} Hનો સૌથી હલકો પરમાશુ ¹H છે. બીજા ²H અને ³H પરમાશુઓ ¦H કરતાં ભારે છે.

એટલે કે 1
$$u$$
 (દળ) = $\frac{1.992647 \times 10^{-26}}{12}$ kg
= 1.660539×10^{-27} kg

તેને સામાન્ય ગણતરીઓ માટે $1.66 \times 10^{-27} \, \mathrm{kg}$ તરીકે પણ લેવાય છે.

જુદાં-જુદાં તત્ત્વોનાં પરમાણુદળોને Atomic Mass Unit (u) એકમમાં દર્શાવતાં તેઓ મહદ્ અંશે હાઇડ્રોજન પરમાણુના દળના લગભગ પૂર્ણાંક ગુણાંક જેટલા જણાય છે. જોકે તેમાં કેટલાક અપવાદો પણ છે. દા.ત., Cા ના પરમાણુનું દળ $35.46\ u$ છે. તેનું કારણ હવે જોઈશું.

પરમાણુઓનાં દળ ચોકસાઈપૂર્વક mass-spectrometer નામના ઉપકરણ વડે માપવામાં આવે છે. આવા પ્રયોગોમાં એક જ તત્ત્વનાં એક કરતાં વધુ પ્રકારના એવા પરમાણુઓ જણાયા છે કે જેમનાં રાસાયણિક ગુણધર્મી સમાન હોય પણ દળ જુદાં હોય. આવા એક જ તત્ત્વના છતાં જેમનાં દળ જુદાં હોય તેવા પરમાણુઓને સમસ્થાનિકો (Isotopes) કહે છે. (ગ્રીક ભાષામાં Isotopes એટલે Same Place). આવા પરમાણુઓ આવર્તકોષ્ટકમાં એક જ સ્થાન ધરાવે છે. આમ, એક જ તત્ત્વના જુદા-જુદા isotopesનાં ન્યુક્લિયસોમાંના પ્રોટોનની સંખ્યા સમાન હોય છે પણ ન્યુટ્રોનની સંખ્યા જુદી-જુદી હોય છે અને તેથી દળ જુદાં હોય છે.માસ-સ્પેક્ટ્રૉમીટરના પ્રયોગો પરથી એમ પણ જાણવા મળ્યું કે કુદરતમાં મળી આવતા પદાર્થીમાં દરેક તત્ત્વ તેના જુદા-જુદા isotopesના મિશ્રણનું બનેલું છે અને મિશ્રણમાં આવા isotopesનાં સાપેક્ષ પ્રમાણ જુદાં-જુદાં તત્ત્વો માટે જુદાં-જુદાં હોય છે. દા.ત. CI માટે 34.98 પનું પ્રમાણ 75.4% અને 36.98 પનું પ્રમાણ 24.6% હોય છે. એટલે CI પરમાણુનું દળ તેમના ભારિત સરેરાશ પરથી મળે છે.

આમ, C1 પરમાણનું દળ =
$$\frac{(75.4 \times 34.98) + (24.6 \times 36.98)}{100}$$
 = 35.47 u

આ મુલ્ય પ્રાયોગિક પરિણામો સાથે સામ્યતા ધરાવે છે.

(34.98 u દળવાળા CI પરમાશુને 35 CI તરીકે અને 36.98 u દળવાળા CI પરમાશુને 37 CI તરીકે સામાન્યતઃ લખાય છે.) પરમાશુના દળમાંથી તેમાંના ઇલેક્ટ્રૉનનું દળ (એક ઇલેક્ટ્રૉનનું દળ $m_e=0.00055$ u છે.) બાદ કરીને તે પરમાશુના ન્યુક્લિયસનું દળ મેળવાય છે.

1932માં ચેડ્વિક (Chadwick) નામના વિજ્ઞાનીએ Be પર α -કર્ણો (તે $_2$ He 4 પરમાશુના ન્યુક્લિયસ છે. તેમના વિષે આગળ ઉપર જોઈશું.)નો મારો ચલાવ્યો. તેમાં ઉદ્દ્ભવતી ઘટનામાં ઊર્જા-સંરક્ષણનો નિયમ અને વેગમાન-સંરક્ષણનો નિયમ લાગુ પાડીને એમ દર્શાવ્યું કે આ ઘટનામાં ઉત્સર્જિત કર્ણ વિદ્યુતની દેષ્ટિએ તટસ્થ છે અને તેનું દળ લગભગ પ્રોટોનના દળ જેટલું જ છે. તે કર્ણને ન્યુટ્રોન નામ આપવામાં આવ્યું. ન્યુટ્રોનની આ શોધ માટે ચેડ્વિકને 1935માં નોબેલ પ્રાઇઝ એનાયત થયું હતું. હાલમાં ન્યુટ્રૉનનું દળ વધુ ચોકસાઇપૂર્વક મેળવી શકાયું છે. જે $m_p = 1.00866$ $u = 1.6749 \times 10^{-27}$ kg લેવામાં આવે છે.

જે ન્યુક્લિયસો માટે ન્યુટ્રૉનસંખ્યા (N=A-Z) સમાન હોય (પરંતુ Zનાં મૂલ્યો અસમાન હોય તેમજ Aનાં મૂલ્યો પણ અસમાન હોય) તેમને એકબીજાનાં આઇસોટોન (Isotone) કહે છે. જે ન્યુક્લિયસો માટે પરમાણુદળાંક (A=N+Z) સમાન હોય તેમને એકબીજાના આઇસોબાર (Isobar સમદળીય) કહે છે. કેટલાક ન્યુક્લિયસો માટે Z સમાન તેમજ A પણ સમાન હોય છે. પરંતુ તેમના રેડિયો ઍક્ટિવ ગુણધર્મો જુદા-જુદા હોય છે. તેમને એકબીજાનાં આઇસોમર (Isomer, સમઘટક) કહે છે. $^{80}_{35}Br$ આઈસોમરની એક જોડ ધરાવે છે. નીચે કેટલાંક ન્યુક્લાઇડ્સ આપેલા છે. તેમાંથી આઇસોટોપ્સ, આઇસોટોન્સ અને આઇસોબાર્સ ન્યુક્લાઇડ્સનાં જૂથ બનાવો :

¹H, ⁴He, ⁸Li, ⁹Be, ¹⁰Be, ¹²C, ¹H, ¹⁴C, ¹⁶O, ¹⁴N,

¹³C, ²³³U, ²³⁵U, ²³⁸U, ²¹⁴Pb, ²¹⁴Bi, ³H, ³He, ⁷Li,

ઉદાહરણ 1: બોરોનના બે આઇસોટોપ્સ $^{10}_5$ B અને $^{11}_5$ Bનાં દળો અનુક્રમે 10.01294~u અને 11.00931~u છે. જો બોરોનનું પરમાણુ દળ 10.811~u હોય, તો આ બે આઇસોટોપ્સનું પ્રમાણ શોધો.

634 : જો $^{10}_{5}$ Bનું પ્રમાણ x % હોય તો $^{11}_{5}$ Bનું પ્રમાણ (100-x)% હોય.

$$\therefore 10.811 = \frac{(x)(10.01294) + (100 - x)(11.00931)}{100}$$

 \therefore 1081.1 = (10.01294 - 11.00931) x + 1100.931

 $\therefore 0.99637x = 19.831$

x = 19.90 %

∴ ¹0Bનું પ્રમાણ 19.90% અને ¹¹Bનું પ્રમાણ 80.10 % હશે.

6.3 ન્યુક્લિયર-બળો (Nuclear Forces)

સૂક્ષ્મ એવા ન્યુક્લિયસમાં ધન વિદ્યુતભારિત પ્રોટોન અને વિદ્યુતભારવિહીન એવા ન્યુટ્રૉન હોય છે. પ્રોટોન-પ્રોટોન વચ્ચે લાગતાં કુલંબ-અપાકર્ષણબળો લઘુ તેમજ ગુરુ એવાં બધાં અંતરો સુધી લાગુ પડે છે. આથી ન્યુક્લિયસ જેવા સૂક્ષ્મ વિસ્તારમાં તેઓ એકબીજા સાથે જકડાઈને કેવી રીતે રહેતા હશે એવો સ્વાભાવિક પ્રશ્ન થાય. ન્યુક્લિસમાંના ન્યુક્લિયોન વચ્ચે કોઈ અન્ય આકર્ષણ પ્રકારનું બળ, કુલંબ અપાકર્ષણબળની અસરને સમતોલી તેનાથી ઉપરવટ જઈ તેમને જકડી રાખી શકે તેટલું પ્રબળ લાગતું હોવું જોઈએ.

પ્રયોગો દર્શાવે છે કે ન્યુક્લિયસમાં બે પ્રોટોન વચ્ચે બે ન્યુટ્રૉન વચ્ચે અને પ્રોટોન-ન્યુટ્રૉન વચ્ચે આવું પ્રબળ આકર્ષણ બળ લાગે છે. તેને સ્ટ્રૉગ (અથવા ન્યુક્લિયર) બળ કહે છે. 1930 થી 1950 સુધીમાં થયેલા પ્રયોગો પરથી આવા બળ અંગેનાં જાણવા મળેલા કેટલાંક લક્ષણો નીચે મુજબ છે :

- (1) ન્યુક્લિયર બળ કુલંબબળ કરતાં ઘણું વધારે પ્રબળ છે. (કુલંબબળ ગુરુત્વબળ કરતાં ઘણું વધારે પ્રબળ છે તે તમે જાણો જ છો.)
- (2) આ ન્યુક્લિયર બળ થોડા ફ્રેમ્ટોમીટર અંતર $[1\ fm=1\ femtometer=10^{-15}\ m$. આ અંતર $1\$ ફર્મિ (fm) તરીકે પણ ઓળખાય છે] કરતાં વધારે અંતર માટે ઝડપથી ઘટીને શૂન્ય બને છે. વાસ્તવમાં આ બળ $0.8\ fm$ અંતર કરતાં વધુ અંતર માટે (થોડા અંતર સુધી જ !) આકર્ષણ પ્રકારનું હોય છે. અને $0.8\ fm$ અંતર કરતાં ઓછા અંતર માટે અપાકર્ષણ પ્રકારનું (!!) હોય છે.
- (3) ન્યુક્લિયર બળ વિદ્યુતભાર પર આધારિત નથી. એટલે કે બે પ્રોટોન વચ્ચે, બે ન્યુટ્રૉન વચ્ચે કે પ્રોટોન-ન્યુટ્રૉન વચ્ચેનું ન્યુક્લિયર બળ લગભગ સમાન જ છે. તેથી તો તેમને બંનેને ન્યુક્લિયોનના સહિયારા નામે ઓળખવામાં આવે છે.

આકૃતિ 6.1 બે ન્યુક્લિયોન વચ્ચેની સ્થિતિ-ઊર્જા

(4) આ સ્ટ્રૉગ બળ લઘુઅંતરી બળ છે. તેથી નાના ન્યુક્લિયસ સિવાયના ન્યુક્લિયસમાં કોઈ એક આપેલો ન્યુક્લિયોન તેની તદ્દન નજીકનાં થોડાક પડોશી ન્યુક્લિયોન સાથે જ આંતરક્રિયા કરી શકે છે, બધા ન્યુક્લિયોન સાથે નહિ. આ બાબતને ન્યુક્લિયોન લચ્ચે લાગતાં બળને અનુરૂપ સ્થિતિ-ઊર્જાના અંતર સાથેના આલેખનું સ્વરૂપ આકૃતિ 6.1માં દર્શાવ્યુ છે. લગભગ 0.8 fm કરતાં વધુ અંતર (ત્યારે બળ આકર્ષણનું

હોય છે) માટે આ આલેખને $U(r)=-g^2\frac{e^{\frac{-r}{R}}}{r}$. વડે દર્શાવી શકાય છે. R અને g અચળાકો છે. g^2 ને સ્ટ્રેન્થ પ્રાચલ કહે છે.

- (5) ન્યુક્લિયોન ન્યુક્લિયોન વચ્ચે લાગતાં સ્ટ્રૉગ બળોને હવે મૂળભૂત બળોના વર્ગમાં સમાવવામાં આવતાં નથી. હાલમાં ન્યુટ્રૉન અને પ્રોટોન ક્વાર્કના બનેલા ગણવામાં આવે છે. અને ક્વાર્ક-ક્વાર્ક વચ્ચે લાગતાં બળોને હવે મૂળભૂત બળો ગણવામાં આવે છે. અને આવાં બળો છેવટે ન્યુક્લિયોન-ન્યુક્લિયોન વચ્ચે લાગતાં ન્યુક્લિયર બળોમાં પરિણમે છે. હાલમાં કુલ 6 પ્રકારના ક્વાર્ક્સનું અસ્તિત્ત્વ જાણી શકાયું છે. (તેમને up, down, charm, strange, top, bottom એવાં નામ અપાયાં છે.) ક્વાર્ક્સને ન્યુટ્રૉન કે પ્રોટોનમાંથી છૂટા પાડી શકાતા નથી. કોઈ એકલો ક્વાર્ક મુક્ત અવસ્થામાં મળી શકયો નથી.
 - (6) ન્યુક્લિયર બળો ન્યુક્લિયોનની 'સ્પિન'ના નમન પર આધારિત છે.
- (7) ગુરુત્વબળ અને વિદ્યુતબળ માટે સરળ સૂત્ર મળે છે.પણ કોઈ સરળ સ્વરૂપનું સૂત્ર ન્યુક્લિયર બળ માટે મળતું નથી.

6.4 न्युક्લિયર त्रिજ्या (Nuclear radius)

રધરફર્ડના α --કણના પ્રકીર્ણનના પ્રયોગો પરથી પ્રાથમિક અંદાજ મુજબ ન્યુક્લિયસની ત્રિજયા $10^{-14}\,\mathrm{m}$ ρ ના ક્રમની હોવાનું જણાયું હતું. ત્યાર બાદ આધુનિક પ્રયોગો દ્વારા વધુ ચોકસાઈભર્યાં અવલોકનો મેળવાયાં છે.

ન્યુક્લિયસના દ્રવ્યની ઘનતા સમગ્ર ન્યુક્લિયસમાં એકસમાન હોતી નથી. તેના કેન્દ્રથી અંતર (r) સાથે ન્યુક્લિયસના દ્રવ્યની ઘનતા (ρ)નો ફેરફાર આકૃતિ 6.2માં દર્શાવ્યો છે. ન્યુક્લિયસના કેન્દ્રિય ભાગમાં ઘનતા એકસમાન મૂલ્યની છે. પરંતુ તેના પૃષ્ઠ વિસ્તારમાં તે ક્રમશઃ ઘટતી જાય છે. આમ, ન્યુક્લિયસને ચોક્કસ પૃષ્ઠ નથી. પરંતુ તેને લાક્ષણિક સરેરાશ (અથવા અસરકારક) ત્રિજયા R હોય છે, જે નીચેના સૃત્ર પરથી મળે છે :

આકૃતિ 6.2 ન્યુક્લિયસના દ્રવ્યની ઘનતાનો ફેરફાર

$$R = R_0 A^{\frac{1}{3}}, ag{6.4.1}$$

જ્યાં A પરમાશુદળાંક અને R_0 અચળ છે. R_0 નું મૂલ્ય કઈ ભૌતિક ઘટના પર આધારિત પ્રયોગો કરવામાં આવ્યા છે તેના પર આધારિત છે. ઉદાહરણ તરીકે, જો ઇલેક્ટ્રૉન-ન્યુક્લિયસ સંઘાતના પ્રયોગ કરીને ન્યુક્લિયસની ઘનતા માપવામાં આવે, તો કેન્દ્રથી જે અંતરે ઘનતા 50% થાય તે અંતરને સરેરાશ ન્યુક્લિયર ત્રિજયા તરીકે લેવામાં આવે છે.

તેના બદલે α -કર્ણો અને ન્યુક્લિયસ વચ્ચેના સંઘાતની મદદથી મેળવેલી ત્રિજ્યાને આંતરિક્રિયા (interaction) ત્રિજ્યા કહે છે. પરતું બંને પ્રકારના પ્રયોગોમાં જુદા-જુદા કિસ્સાઓમાં મળતું R_0 નું મૂલ્ય 1.1 થી 1.2~fmની નજીક હોય છે. આપણે ગણતરી માટે $R_0=1.1~fm$ લઈશું.

ન્યુક્લિયસના Aના મૂલ્ય પરથી R મેળવીને તેનું કદ મેળવી શકાય છે. તેનાં દળ અને કદ પરથી તેની ઘનતા શોધી શકાય છે. બધાં ન્યુક્લિયસ માટે ઘનતાનું મૂલ્ય લગભગ $2.3 \times 10^{17}~{
m kg~m^{-3}}$ મળે છે. આ મૂલ્ય પાણીની ઘનતા કરતાં 2.3×10^{14} ગણું છે. સરખામણી કરતાં જણાય છે કે પરમાણુ કરતાં ન્યુક્લિયસની ત્રિજ્યા 10^{-4} ગણી અને કદ 10^{-12} ગણું હોય છે, પણ તેમાં પરમાણુનું 99.9% દળ સમાયેલું છે. આથી તેની ઘનતા પ્રચંડ છે.

માત્ર જાણકારી માટે : ન્યુક્લિયસ કરતાં પરમાણુની ત્રિજયા લગભગ 10⁴ ગણી છે. એટલે ન્યુક્લિયસની પાસે એક હારમાં તેના જેવા બીજા 9999 ન્યુક્લિયસ સમાય તેટલી જગ્યા ખાલી છે અને પછી ઇલેક્ટ્રૉન રહેલો છે. આનો વિચાર કરતાં તો એવું લાગે છે, કે સામાન્ય દ્રવ્ય કે જે પરમાણુઓનું બનેલું છે, તેમાં ખાલી જગ્યા (Empty Space)નું પ્રમાણ ખૂબ વધારે છે !!

6.5 ન્યુક્લિયસનું સ્થાયીપણું (Nuclear Stabiliy)

એવું જોવા મળ્યું છે કે હલકાં તત્ત્વોના સ્થાયી પરમાણુઓના ન્યુક્લિયસમાં પ્રોટોનની સંખ્યા (Z) અને ન્યુટ્રૉનની સંખ્યા (N) સમાન કે લગભગ સમાન હોય છે, જ્યારે ભારે એવાં તત્ત્વોનાં સ્થાયી ન્યુક્લિયસોમાં ન્યુટ્રૉનની સંખ્યા પ્રોટોનની સંખ્યા કરતાં વધુ હોય છે. ઉદાહરણ તરીકે, $^{12}_6$ C સ્થાયી છે અને તેમાં પ્રોટોન અને ન્યુટ્રૉનની સંખ્યા સમાન છે. $^{82}_{82}$ Pb 208 ભારે તત્ત્વનું સ્થાયી ન્યુક્લિયસ છે. જેમાં પ્રોટોનની સંખ્યા કરતાં ન્યુટ્રૉનની સંખ્યા 44 જેટલી વધુ છે. આમ હલકાં તત્ત્વોનાં સ્થાયી ન્યુક્લિયસ માટે $\frac{N}{Z}$ મૂલ્ય લગભગ 1 હોય છે. જ્યારે ભારે તત્ત્વોનાં સ્થાયી ન્યુક્લિયસો માટે $\frac{N}{Z}$ નું મૂલ્ય 1 કરતાં મોટું હોય છે.

આકૃતિ 6.3 સ્થાયી ન્યુક્લિયસ માટે Z-N આલેખ

આકૃતિ 6.3માં કેટલાંક સ્થાયી ન્યુક્લિયસ માટે પ્રોટોનની સંખ્યા (Z) વિરુધ્ધ ન્યુટ્રૉનની સંખ્યા (N)ના આલેખનું સ્વરૂપ ત્રુટક રેખા દ્વારા દર્શાવ્યું છે. આવા આલેખને ન્યુક્લિડીક ચાર્ટ (Nuclidic Chart) કહે છે. આ ત્રુટક રેખાને સ્થાયીત્વ રેખા (કે સ્થિરતા રેખા પણ) કહે છે.

સ્થાયી ન્યુક્લિયસનું સ્થાન આ રેખા પર કે તેની નજીક હોય છે. અને અસ્થાયી ન્યુક્લિયસનું સ્થાન આ રેખાથી પ્રમાણમાં દૂર હોય છે.

ઉપરાંત, આકૃતિમાં Z=N રેખા પણ દર્શાવી છે. સ્થાયીત્વ રેખાનો શરૂઆતનો થોડો ભાગ Z=N રેખાસાથે લગભગ સંપાત થાય છે. ત્યાર બાદ સ્થાયીત્વરેખા N-અક્ષ તરફ ઢળતી જાય છે. તે ભારે સ્થાયી ન્યુક્લિયસમાં Nનું મૂલ્ય Z કરતાં વધુ હોવાનું સૂચવે છે. આનું કારણ નીચે મુજબ છે :

હલકાં તત્ત્વથી ભારે તરફ જતાં ન્યુક્લિયસમાં જો એક પ્રોટોન અને એક ન્યુટ્રૉન વધે તો (1) તેમાંનો પ્રોટોન ન્યુક્લિયસમાંના બીજા બધા પ્રોટોન સાથે આંતરક્રિયા કરી કુલંબ અપાકર્ષણ બળ વધારે છે. (2) તે પ્રોટોન સ્ટ્રૉગ બળ દ્વારા તો માત્ર તદ્દન નજીકના થોડા પડોશી ન્યુક્લિયોન સાથે આંતરક્રિયા કરીને આકર્ષણબળ વધારે છે. (3) ન્યુટ્રૉન પણ થોડા નજીકના પડોશી ન્યુક્લિયોન સાથે જ આંતરક્રિયા કરીને આકર્ષણ વધારે છે. આથી અપાકર્ષણ બળમાંનો વધારો આકર્ષણ બળમાંના વધારા કરતાં વધુ હોય છે. પરંતુ જો એક પ્રોટોન સાથે એક કરતાં વધુ ન્યુટ્રૉન ઉમેરાય, તો અપાકર્ષણબળને સમતોલે તેટલું આકર્ષણબળ ઉપજાવી શકાય અને ન્યુક્લિયસનું સ્થાયીપણું જળવાય. હલકાં ન્યુક્લિયસમાં પ્રોટોન-ન્યુટ્રૉનની સંખ્યા ઓછી હોવાથી આવો પ્રશ્ન રહેતો નથી.

6.6 દળ-ઊર્જા અને ન્યુક્લિયસની બંધન-ઊર્જા (Mass-energy and Nuclear Binding Energy)

દળ-ઊર્જા : આઇન્સ્ટાઇને તેનો વિશિષ્ટ સાપેક્ષવાદ રજૂ કર્યો તે અગાઉ દરેક પ્રક્રિયામાં દળનું અને ઊર્જાનું એમ દરેકનું અલગ અલગ સંરક્ષણ થવાની માન્યતા હતી. પરંતુ આઇન્સ્ટાઇને વિશિષ્ટ સાપેક્ષવાદ પરથી દળનું ઊર્જામાં અને ઊર્જાનું દળમાં રૂપાંતર થઈ શકે છે અને તેમની વચ્ચેનો સંબંધ

$$E = mc^2 (6.6.1)$$

છે તેમ દર્શાવ્યું.

જયાં E= ઊર્જા, m= રૂપાંતર પામતું દળ, c= પ્રકાશનો શૂન્યાવકાશમાં વેગ. આમ, m દળ અને mc^2 ઊર્જા એકબીજાને સમતુલ્ય છે. એટલે દળને પણ ઊર્જાનું એક સ્વરૂપ ગણવું જોઈએ.

પરમાણુ અને ન્યુક્લિયર ભૌતિકવિજ્ઞાનમાં ઇલેક્ટ્રૉન-વૉલ્ટ (સંજ્ઞા : eV) નામનો ઊર્જાનો એકમ વપરાય છે.

"1 વૉલ્ટના વિદ્યુતસ્થિતિમાનના તફાવત હેઠળથી પસાર થતાં ઇલેક્ટ્રૉનની ગતિ-ઊર્જામાં થતા ફેરફારને 1 ઇલેક્ટ્રૉન-વોલ્ટ (eV) કહે છે."

અત્રે સ્પષ્ટ છે કે, $1eV = 1.6 \times 10^{-19} \text{ J}$

આ ઉપરાંત keV અને MeV એકમો પણ વપરાય છે.

 $1 \ keV = 1$ ક્લિંો ઇલેક્ટ્રોન-વૉલ્ટ = $10^3 eV = 1.6 \times 10^{-16} \ J$

1 MeV = 1 મિલિયન ઇલેક્ટ્રોન-વૉલ્ટ = $10^6 eV = 1.6 \times 10^{-13} J$

આપણે 1 (u) દળને સમતુલ્ય ઊર્જા પણ $\mathrm{E}=mc^2$ સૂત્ર પરથી શોધી શકીએ. આ રીતે,

$$1 \ u \ (\epsilon q) = 931.48 \ MeV \ (\Im g)$$
 (6.6.2)

મળે છે. હવે કોઈ પણ પ્રક્રિયામાં આપણે દળનું સંરક્ષણ કે ઊર્જાનું સંરક્ષણ એમ અલગ-અલગ સંરક્ષણની વાત કરવાને બદલે ઊર્જાનું સંરક્ષણ થાય છે તેમ ગણીશું અને ઊર્જાના પ્રકારોમાં દળને સમતુલ્ય ઊર્જાનો પણ સમાવેશ કરીશું.

ન્યુક્લિયસની બંધન-ઊર્જા : ન્યુક્લિયસ ન્યુટ્રૉન અને પ્રોટોનનો બનેલો હોવાથી ન્યુક્લિયસનું દળ તેના બધા પ્રોટોન અને બધા ન્યુટ્રૉનના મુક્ત અવસ્થામાંનાં દળના સરવાળા જેટલું હશે તેમ પ્રથમ દષ્ટિએ લાગે છે. પરંતુ ન્યુક્લિયસનું દળ હંમેશાં તેના ઘટકક્ષોના મુક્ત અવસ્થામાંના કુલ દળ કરતાં ઓછું જ હોય તેમ જણાયું છે. દળના આ ઘટાડાને દળ ક્ષતિ (Δm) કહે છે. જો કોઈ ન્યુક્લિયસ $^{A}_{Z}X$ નું દળ M હોય અને મુક્ત અવસ્થામાંના પ્રોટોનનું દળ m_p અને ન્યુટ્રૉનનું દળ m_n વડે દર્શાવીએ, તો હંમેશાં $M < Zm_p + Nm_n$ હોય છે, જયાં N = A - Z = - 4્ટ્રૉનસંખ્યા અને,

$$(Zm_n + Nm_n) - M =$$
દળક્ષતિ (Δm) (6.6.3)

આ બાબતને સમજાવવા માટે આપણને દળ અને ઊર્જાની સમતુલ્યતા મદદરૂપ થાય છે. જો મુક્ત અવસ્થામાંના તે ઘટકકણો વડે આ ન્યુક્લિયસની રચના કરીએ તો દળ-ક્ષતિ (Δm) ને સમતુલ્ય ઊર્જા (Δmc^2) ઉત્પન્ન થઈને ઉત્સર્જિત થઈ જાય છે. એટલે હવે જો આપણે આ ન્યુક્લિયસમાંથી બધા પ્રોટોન અને ન્યુટ્રૉનને સંપૂર્ણ મુકત અવસ્થામાં લઈ જવા હોય તો આટલી ઊર્જા બહારથી આપવી પડે. એટલે દળ-ક્ષતિ Δm ને સમતુલ્ય ઊર્જા (Δmc^2) ને તે ન્યુક્લિયસની બંધન-ઊર્જા E_{p} કહે છે. ન્યુક્લિયસની બંધન-ઊર્જાને તેના

ન્યુક્લિયોનની સંખ્યા (A) વડે ભાગવાથી દર એક ન્યુક્લિયોન દીઠ સરેરાશ બંધન-ઊર્જા $\mathrm{E}_{bn}\!\left(=\frac{\mathrm{E}_b}{\mathrm{A}}\right)$ મળે

 ${rac{1}{20}}$, આમ, ${
m E}_{bn}$ એ ન્યુક્લિયસમાંથી બધા ઘટકક્ષોને મુક્ત કરી દેવા માટે ન્યુક્લિયોન દીઠ આપવી પડતી સરેરાશ ઊર્જા છે.

ન્યુક્લિયોન દીઠ સરેરાશ બંધન-ઊર્જા એ ન્યુક્લિયસના સ્થાયીપણા (Stability) નું માપ છે.

ડ્યુટેરોન ($_1\mathrm{H}^2$) ન્યુક્લિયસ વિચારો. તેનું દળ 2.0141u છે. વળી, 1 પ્રોટોન અને 1 ન્યુટ્રૉનના મુકત અવસ્થામાંના દળોનો સરવાળો 2.0165 u છે. તેથી $_1\mathrm{H}^2$ માટે દળ-ક્ષતિ $\Delta m=2.0165-2.0141=0.0024u$. છે.

આ દળ ક્ષતિ ને સમતુલ્ય ઊર્જા $0.0024 \times 931.48 = 2.24~{
m MeV}$ છે. આ ઊર્જાને $_1^2{
m H}$,ની બંધન ઊર્જા કહે છે. આમ, $_1{
m H}^2$ માંથી પ્રોટોન અને ન્યુટ્રૉનને મુકત કરવા માટે $2.24~{
m MeV}$ જેટલી ઊર્જા તેને બહારથી આપવી પડે. તેથી ઊલટું જો $1~{
m V}$ ોટોન અને $1~{
m H}^2$ ન્યુટ્રૉન ભેગા કરી, $_1{
m H}^2$ રચી શકાય તો $2.24~{
m MeV}$ ઊર્જાનું ઉત્સર્જન થાય. $_1{
m H}^2$ ન્યુક્લિયસ માટે ન્યુક્લિયોન દીઠ સરેરાશ બંધન-ઊર્જા $E_{bn}=\frac{2.24}{2}=1.12\frac{{
m MeV}}{{
m nucleon}}$ થાય. ન્યુક્લિયોન દીઠ બંધન ઊર્જા E_{bn} વિરુદ્ધ પરમાણુદળાંક $E_{bn}=\frac{2.24}{2}=1.12$

આકૃતિ 6.4 E_{bn} - Aનો આલેખ

આ આલેખ પરથી જાણવા મળતી નોંધપાત્ર બાબતો નીચે મુજબ છે :

- (1) આલેખ શરૂઆતમાં ઝડપથી ઊંચે જાય છે. ત્યાર બાદ ધીમેથી ઊંચે જાય છે. લોખંડના ન્યુક્લિયસ (A=56)ની નજીકમાં E_{bn} નું મૂલ્ય મહત્તમ અને લગભગ $8.8~\frac{MeV}{\text{nucleon}}$ જેટલું છે. ત્યાર બાદ આલેખ ખૂબ ધીમે નીચે ઊતરે છે.
 - (2) A < 30 અને A > 170 માટે ન્યુક્લિયોન દીઠ બંધન ઊર્જાનાં મૂલ્યો નાનાં છે.
- (3) વચગાળાનાં દળ (30 < M < 170) ધરાવતાં ન્યુક્લિયસો માટે E_{bn} નું મૂલ્ય લગભગ અચળ છે. આ ન્યુક્લિયસો સૌથી વધુ સ્થાયી છે. એટલે તેમાંથી ન્યુક્લિયોન્સને મુક્ત કરવા માટે ઘણી વધુ ઊર્જા આપવી પડે છે. ન્યુક્લિયોન દીઠ બંધન-ઊર્જાનું મૂલ્ય લગભગ અચળ હોવું એ ન્યુક્લિયર બળો લઘુઅંતરી બળો હોવાનું પરિણામ છે (એટલે કે ન્યુક્લિયર બળોના સંત્પ્રતાના ગુણધર્મને આભારી છે.).

પુરતા પ્રમાણમાં મોટા ન્યુક્લિયસમાં મોટા ભાગના ન્યુક્લિયોન અંદરના ભાગમાં રહે છે. અને સપાટી પરના ન્યુક્લિયોનની સંખ્યા ઓછી છે. વળી દરેક ન્યુક્લિયોન તદ્દન નજીકના પડોશી ન્યુક્લિયોન સાથે જ આંતરિક્રિયા કરી શકે છે. હવે તેમાં કોઈ એક ન્યુક્લિયોન ઉમેરવામાં આવે તોપણ તે અંદર રહેલા ન્યુક્લિયોનની સાથે આંતરિક્રિયા તો કરતો જ નથી અને સપાટી પર તો ન્યુક્લિયસની સંખ્યા પ્રમાણમાં ઓછી હોય છે, તેથી \mathbf{E}_{bn} માં ફેરફાર ઘણો ઓછી થાય છે.

- (4) He^4 , Be^8 , C^{12} , O^{16} , માટે ન્યુક્લિયોન દીઠ બંધન-ઊર્જાનાં મૂલ્યો તેમના પડોશી ન્યુક્લિયસ માટેનાં મૂલ્ય કરતાં વધારે છે. આ બાબત ન્યુક્લિયસમાં પણ (પરમાણુની જેમ) કવચ પ્રકારનું બંધારણ હોવાનું સૂચવે છે.
- (5) વચગાળાનાં દળ ધરાવતા ન્યુક્લિયસો માટે $E_{bn}\left(=\frac{E_b}{A}\right)$ નું મૂલ્ય તેમનાથી ભારે ન્યુક્લિયસો (A>170) માટેના E_{bn} ના મૂલ્ય કરતાં વધુ છે. એટલે જો એવું ભારે ન્યુક્લિયસ બે હલકા ન્યુક્લિયસમાં વિભાજિત થાય તો ન્યુક્લિયોન દીઠ બંધન-ઊર્જાનું મૂલ્ય વધે છે. એટલે ન્યુક્લિયોન્સ એકબીજા સાથે વધુ ચુસ્તતાથી (tightly) જકડાય છે. આ દર્શાવે છે કે આ ક્રિયામાં ઊર્જા ઉત્પન્ન થાય છે. (છૂટી પડે છે.) આ પ્રક્રિયાને ન્યુક્લિયર વિખંડન (fission) કહે છે.

તેનાથી ઊલટું જો યોગ્ય તેવા બે હલકા ન્યુક્લિયસ (with A < 10)ને સંલગ્ન કરીને ભારે ન્યુક્લિયસ રચી શકાય તો પણ ન્યુક્લિયોન દીઠ બંધન-ઊર્જાનું મૂલ્ય અગાઉ કરતાં વધે છે. આમ, આ ક્રિયામાં પણ ઊર્જા ઉત્પન્ન થાય છે. આ ક્રિયાને ન્યુક્લિયર સંલયન (Fusion) કહે છે. ઉદાહરણ 2 : (a) નીચે આપેલ વિગતો પરથી $^{56}_{26}$ Fe ન્યુક્લિયસની ન્યુક્લિયોન દીઠ બંધન-ઊર્જા ગણો. (b) આ ન્યુક્લિયસમાં સૌથી ઓછું બંધન ધરાવતો પ્રોટોન ઉત્સર્જાય, તો $^{55}_{25}$ Mn ન્યુક્લિયસ બને છે, તો આ પ્રોટોનની બંધન-ઊર્જા ગણો.

પ્રોટોનનું દળ $m_p=1.007825~u$, ન્યુટ્રૉનનું દળ $m_n=1.008665~u$, $\mathrm{M}_{\mathrm{F}e}=55.934939~u$, $\mathrm{M}n$ ન્યુક્લિયસનું દળ m=54.938046~u, $1~u=931.494\mathrm{MeV}$.

ઉકેલ : (a) 56 Fe ન્યુક્લિયસમાં 26 પ્રોટોન અને 30 ન્યુટ્રૉન છે. તે બધા મુક્ત અવસ્થામાં હોય, ત્યારે તેમનું કુલ દળ = $\mathbf{Z}m_p$ + $\mathbf{N}m_n$ = $26m_p$ + $30m_n$

:. દળક્ષતિ
$$\Delta m = (Zm_p + Nm_n) - (M_{Fe})$$

$$= (26 \times 1.007825 + 30 \times 1.008665) - (55.934939)$$

$$= 0.528461u$$

 \therefore બંધન-ઊર્જા $\mathbf{E}_b = \Delta m$ દળને સમતુલ્યઊર્જા = 0.528461 imes 931.494 = 492.258 MeV

$$\therefore$$
 ન્યુક્લિયોન દીઠ બંધન-ઊર્જા ${\rm E}_{bn}=rac{{
m E}_b}{{
m A}}=rac{492.258}{56}$

$$\therefore$$
 E_{bn} = 8.79 $\frac{\text{MeV}}{\text{nucleon}}$

(b) : $^{56}_{26}\mathrm{Fe}$ માંથી પ્રોટોન છૂટો પડે, તો બનતી પ્રક્રિયા નીચે મુજબ છે.

$$_{26}^{56}$$
Fe $\rightarrow _{25}^{55}$ Mn + $_{1}^{1}p$

 $\mathbf{M}n$ અને pના દળનો સરવાળો = 54.938046 + 1.007825= 55.945871u

અને $_{26}^{56}$ Fe નું દળ = 55.934939u છે.

આમ, અત્રે દળમાં વધારો થાય છે. તે દર્શાવે છે કે આ ક્રિયા આપમેળે થતી નથી પણ બહારથી ઊર્જા આપીએ તો જ ક્રિયા થાય છે.

∴ પ્રોટોનની બંધન-ઊર્જા = આપવી પડતી ઊર્જા

= (દળમાં વધારાને સમતુલ્ય ઊર્જા)

= (55.945871 - 55.934939) (931.494) MeV

 $= 0.010932 \times 931.494$

= 10.18 MeV.

ન્યુક્લિયસમાંથી એક ન્યુક્લિયોનને છૂટો પાડવા માટે જરૂરી ઊર્જાને Separation Energy કહે છે.

6.7 નૈસર્ગિક રેડિયો-ઍક્ટિવિટી (Natural Radioactivity)

ઈ. સ. 1895માં રોંજન (Rontgen)નામના વિજ્ઞાનીએ X-raysની શોધ કરી. ત્યાર બાદ ઈ.સ. 1896માં X-raysની ઉત્પત્તિનો પ્રસ્ફુરણની ઘટના સાથેનો સંબંધ જાણવાના અભ્યાસમાં બેક્વેરેલ નામના વિજ્ઞાનીએ એમ શોધ્યું કે યુરેનિયમમાંથી અમુક વિશિષ્ટ ગુણધર્મો ધરાવતાં વિકિરણોનું નૈસર્ગિક રીતે જ ઉત્સર્જન થાય છે. આ ઘટનાને નૈસર્ગિક રેડિયો-એક્ટિવિટી કહેવામાં આવી. વળી, તે વિકિરણો શરૂઆતમાં બેક્વેરેલ કિરણો તરીકે ઓળખાયાં.

મેડમ ક્યૂરિ (Madame Curie) અને તેમના પતિ પિયરી ક્યૂરિ (Pierre Curie) એ પિચબ્લેન્ડ નામના યુરેનિયમના ખનિજમાંથી બે નવાં તત્ત્વો છૂટાં પાડ્યાં. તેમને પોલોનિયમ (Polonium) અને રેડિયમ (Radium) નામ આપવામાં આવ્યાં. આ તત્ત્વો પણ નૈસર્ગિક રેડિયો-ઍક્ટિવિટી ધરાવે છે અને તેમની એક્ટિવિટી યુરેનિયમની ઍક્ટિવિટી કરતાં અનેક ગણી છે.

ત્યાર બાદ બીજા કેટલાક વિજ્ઞાનીઓએ શોધ્યું કે થોરિયમ, ઍક્ટિનિયમ જેવાં બીજા ભારે તત્ત્વો પણ રેડિયો-ઍક્ટિવિટીનો ગુણધર્મ ધરાવે છે. આવાં તત્ત્વોને રેડિયો-ઍક્ટિવ તત્ત્વો અને તેમાંથી ઉત્સર્જિત વિકિરણોને રેડિયો-ઍક્ટિવ વિકિરણો કહે છે. આ ઘટનાની નોંધપાત્ર બાબતો આ મુજબ છે :

- (1) રેડિયો-ઍક્ટિવ વિકિરણોનું ઉત્સર્જન સ્વતઃ (એટલે કે આપમેળે), તત્કાલીન અને સતત છે. તેના પર બાહ્ય પરિબળો જેવાં કે તાપમાન કે દબાણમાં ફેરફાર, વિદ્યુત કે ચુંબકીય ક્ષેત્રની હાજરીની કોઈ અસર થતી નથી. આવાં પરિબળો દ્વારા રેડિયો-ઍક્ટિવ વિકિરણોના ઉત્સર્જનની ક્રિયાને અટકાવી શકાતી નથી કે ઉત્સર્જનનો દર બદલી શકાતો નથી.
- (2) રેડિયો-ઍક્ટિવ તત્ત્વનું બીજા કોઈ તત્ત્વ સાથે રાસાયશિક સંયોજન કરવા છતાં વિકિરણના ઉત્સર્જનના દર પર કંઈ જ અસર થતી નથી.

આ બંને મુદ્દાઓ દર્શાવે છે કે રેડિયો-ઍક્ટિવિટી એ ન્યુક્લિયર ઘટના છે.

વાસ્તવમાં ભારે તત્ત્વોનાં ન્યુક્લિયસ કુદરતમાં જન્મથી જ અસ્થાયી (Unstable) હોય છે અને સ્થાયીપણું પ્રાપ્ત કરવાના પ્રયત્નોમાં રેડિયો-ઍક્ટિવ વિકિરણોનું ઉત્સર્જન કરે છે.

આ શોધને આધુનિક ભૌતિકવિજ્ઞાનના વિકાસમાં ઘણી મહત્ત્વની ગણી શકાય છે.

6.8 રેડિયો-ઍક્ટિવ વિકિરણો (Radioactive radiations)

રેડિયો-ઍક્ટિવ વિકિરણોના ત્રણ પ્રકાર છે : α -કિરણો, β -કિરણો અને γ -કિરણો. વિજ્ઞાનીઓએ પ્રયોગો પરથી મેળવેલી માહિતી પરથી તેમના ગુણધર્મો નીચે મુજબ જણાયા છે.

 α -કિરણો : α -કિરણો એ 2 પ્રોટોન અને 2 ન્યુટ્રૉનના બનેલા દ્રવ્યક્શો છે. એટલે કે હિલિયમ પરમાણુના ન્યુક્લિયસ ($_3$ He 4) જ છે. તેમનો વિદ્યુતભાર +2e છે. તેમનો વેગ તેમને ઉત્સર્જિત કરતા ન્યુક્લાઇડ પર આધારિત છે.

β-કિરણો : β-કિરણો એ ઇલેક્ટ્રૉન પોતે જ છે (પણ ન્યુક્લિયસમાંથી ઉત્સર્જિત થઈને આવેલાં છે). આમ, તે દ્રવ્યક્શ છે. તેનો વેગ પણ તેને ઉત્સર્જિત કરતા ન્યુક્લાઇડ પર આધારિત છે.

γ-કિરણો : તેઓ દ્રવ્યક્શો નથી, પણ વિદ્યુતચુંબકીય તરંગો છે.

આ બધાં રેડિયો-ઍક્ટિવ વિકિરણો ફોટોગ્રાફિક પ્લેટ પર અસર કરે છે, પ્રસ્કુરણ ઉપજાવે છે, માધ્યમમાંથી પસાર થવા દરમિયાન માધ્યમના પરમાણુઓનું આયનીકરણ કરે છે અને માધ્યમમાં અમુક અંતર સુધીનું ભેદન કરી શકે છે. તેમની આયનીકરણશક્તિ અને ભેદનશક્તિનાં સાપેક્ષ મૃલ્યો ટેબલ-1માં દર્શાવ્યાં છે.

ટેબલ 1

	α	β	γ
સાપેક્ષ આયનીકરણશક્તિ	10000	100	1
સાપેક્ષ ભેદનશકિત	1	100	10000

6.9 રેડિયો-ઍક્ટિવ નિયતાંક અને ઍક્ટિવિટી (Radioactive constant and activity)

રેડિયો-ઍક્ટિવ દ્રવ્યના નમૂનામાં કોઈ t સમયે કોઈ તત્ત્વના અવિભંજિત ન્યુક્લિયસની સંખ્યા N હોય અને ત્યાર બાદ Δt સમયગાળામાં Δ N ન્યુક્લિયસ વિભંજન પામતાં હોય તો $\frac{\lim}{\Delta t \to 0} \frac{\Delta N}{\Delta t} = \frac{dN}{dt}$ ને આ તત્ત્વનો t સમયે વિભંજન-દર અથવા ક્ષય-દર અથવા ઍક્ટિવિટી I કહે છે. ઍક્ટિવિટી એટલે એકમ સમય દીઠ વિભંજન પામતા ન્યુક્લિયસની સંખ્યા.

આ ક્રિયામાં એમ જણાયું છે કે વિભંજન-દર તે સમયે અવિભંજિત ન્યુક્લિયસની સંખ્યાના સમપ્રમાણમાં હોય છે.

$$\therefore \frac{dN}{dt} \sim -N$$
 (ૠણ ચિક્ત સૂચવે છે કે સમય પસાર થાય તેમ N ઘટે છે.) (6.9.1)

$$\therefore \frac{dN}{dt} = -\lambda N \tag{6.9.2}$$

અથવા
$$I = -\lambda N$$
 (6.9.3)

અત્રે λ અચળાંક છે, જેને વિભંજન પામતા તત્ત્વનો રેડિયો-ઍક્ટિવ નિયતાંક (અથવા ક્ષય નિયતાંક) કહે છે. તેનો એકમ s^{-1} છે. તેનું મૂલ્ય વિભંજન પામતા તત્ત્વના પ્રકાર પર આધારિત છે, પરતું એક જ તત્ત્વના જુદા-જુદા અસ્થાયી આઇસોટોપ્સ માટે λ નાં મૂલ્યો જુદાં-જુદાં હોય છે.

λનું મોટું મૂલ્ય વિભંજનદર મોટો હોવાનું સૂચવે છે. આવાં તત્ત્વો અલ્પજીવી (Short lived) હોય છે. λનું નાનું મૂલ્ય વિભંજનદર નાનો હોવાનું સૂચવે છે. આવાં તત્ત્વો દીર્ઘજીવી (long lived) હોય છે. λના મૂલ્ય પર કોઈ બાહ્ય પરિબળો (દબાણ તાપમાન, વિદ્યુતક્ષેત્ર, ચુંબકીય ક્ષેત્ર) અસર કરતાં નથી.

સમીકરણ (6.9.2)
$$\frac{d{
m N}}{dt}=-\lambda{
m N}$$
માં સમયગાળો $dt=$ એકમ લેતાં, $\lambda=-rac{d{
m N}}{{
m N}}$

આથી "આપેલ તત્ત્વના ન્યુક્લિયસ માટે λ એ એકમ સમય દીઠ વિભંજન થવાની સંભાવના દર્શાવે છે." એવું અર્થઘટન કરી શકાય છે.

ઍક્ટિવિટીના એકમો (Units of Activity) : બેક્વેરેલની યાદમાં ઍક્ટિવિટીનો SI એકમ બેક્વેરેલ (Bq) રાખવામાં આવ્યો છે. ''જે પદાર્થમાં દર એક સેંકડ દીઠ 1 વિભંજન થાય તે પદાર્થની ઍક્ટિવિટી 1 બેક્વેરેલ કહેવાય છે.''

1 Bq = 1 વિભંજન/સેકંડ

મેડમ ક્યૂરિની યાદમાં નક્કી થયેલો ઍક્ટિવિટીનો એકમ ક્યૂરિ (Ci) તરીકે પ્રચલિત છે. "જે પદાર્થમાં દર એક સેકંડ દીઠ 3.7×10^{10} વિભંજન થાય તે પદાર્થની એક્ટિવિટીને 1 ક્યુરિ (Ci) કહે છે." વ્યાવહારિક હેતુઓ માટે મિલિક્યુરિ અને માઇક્રોક્યૂરિ એકમો પણ વપરાય છે.

1 mC
$$i = 10^{-3}$$
C i , 1 μ C $i = 10^{-6}$ C i

6.10 રેડિયો-ઍક્ટિવ વિભંજનનો ચરઘાતાંકી નિયમ (Exponential law of radioactive disintegration) :

ધારો કે કોઈ રેડિયો-ઍક્ટિવ દ્રવ્યના નમૂનામાં t=0 સમયે રેડિયો-ઍક્ટિવ તત્ત્વના અવિભંજિત ન્યુક્લિયસની સંખ્યા N_0 છે અને t=t સમયે તે N છે આ સમયે તેનો વિભંજન-દર $\left(\frac{\lim}{\Delta t \to 0} \frac{\Delta N}{\Delta t}\right) = \frac{dN}{dt}$, Nના સમપ્રમાણમાં છે અને સમીકરણ (6.9.2) મુજબ

$$\frac{dN}{dt} = -\lambda N$$

$$\therefore \frac{dN}{N} = -\lambda dt \tag{6.10.1}$$

બંને બાજુએ સંકલન કરતાં

$$ln N = -\lambda t + C \tag{6.10.2}$$

જ્યાં $\mathbf{C}=$ સંકલનનો અચળાંક. t=0 માટે $\mathbf{N}=\mathbf{N}_0$ હોવાથી

$$ln N_0 = 0 + C = C ag{6.10.3}$$

આ મૂલ્ય સમીકરણ (6.10.2)માં મૂકતાં

$$ln N = -\lambda t + ln N_0$$

$$\therefore$$
 $ln N - ln N_0 = -\lambda t$

$$\therefore \ln\left(\frac{N}{N_0}\right) = -\lambda t$$

$$\therefore \frac{N}{N_0} = e^{-\lambda t} \tag{6.10.4}$$

$$\therefore N = N_0 e^{-\lambda t} \tag{6.10.5}$$

$$I \propto N$$
, હોવાથી $I = I_0 e^{-\lambda t}$ (6.10.6)

સમીકરણ (6.10.5)ને રેડિયો-એક્ટિવ વિભંજનનો ચરઘાતાંકી નિયમ કહે છે. તે દર્શાવે છે કે સમય પસાર થાય તેમ રેડિયો-એક્ટિવ તત્ત્વના ન્યુક્લિયસની સંખ્યા ચરઘાતાંકી નિયમ અનુસાર ઘટતી જાય છે. આથી એક્ટિવિટી પણ આ નિયમ મુજબ ઘટતી જાય છે. વાસ્તવમાં રેડિયો-એક્ટિવ તત્ત્વના ન્યુક્લિયસની સંખ્યા કરતાં એક્ટિવિટી (એટલે કે વિભંજન દર) વધુ પ્રત્યક્ષ રીતે માપી શકાતી રાશિ છે. આપેલ રેડિયો-એક્ટિવ તત્ત્વ માટે N વિરુદ્ધ t નો આલેખ આકૃતિમાં દર્શાવ્યો છે. આ વકને ક્ષય-વક (Decay Curve) કહે છે. I-t નો આલેખ પણ આવો જ મળે તે સ્વયંસ્પષ્ટ છે.

6.11 અર્ધ-આયુ (Half-life) ^τ 1

સમય પસાર થાય તે સાથે રેડિયો-ઍક્ટિવ તત્ત્વના ન્યુક્લિયસની સંખ્યા ઘટતી જાય છે. આ ઘટના સાથે સંકળાયેલ અર્ધ-આયુ ($au_{rac{1}{2}}$) નામની રાશિને નીચે મુજબ વ્યાખ્યાયિત કરવામાં આવે છે :

"જે સમયગાળામાં રેડિયો-ઍક્ટિવ તત્ત્વના ન્યુક્લિયસની સંખ્યા સમયગાળાના પ્રારંભની સંખ્યાના અડધા મૂલ્યની બને તે સમયગાળાને તે તત્ત્વનો અર્ધ-આયુ ($^{ au}_{rac{1}{2}}$) કહે છે."

આ વ્યાખ્યા અનુસાર રેડિયો-ઍક્ટિવ વિભંજનના ચરઘાતાંકી નિયમ $N=N_0e^{-\lambda t}$ માં $N=rac{N_0}{2}$ બને તે માટેનો સમયગાળો t= અર્ધ-આયુ $au_{rac{1}{2}}$ બને.

$$\therefore \frac{N_0}{2} = N_0 e^{-\lambda \tau_1 \over 2} \tag{6.11.1}$$

$$\therefore 2 = e^{\lambda \tau_{\frac{1}{2}}}$$

$$\therefore \ln 2 = \lambda \tau_{\frac{1}{2}}$$

$$\therefore (2.303) (log 2) = \lambda \tau_{\frac{1}{2}}$$

$$\therefore \quad \tau_{\frac{1}{2}} \; = \; \frac{(2.303)\,(0.3010)}{\lambda}$$

$$\therefore \quad \tau_{\frac{1}{2}} = \frac{0.693}{\lambda} \tag{6.11.2}$$

રેડિયો-ઍક્ટિવ તત્ત્વની ઍક્ટિવિટી અવિભંજિત ન્યુક્લિયસની સંખ્યા Nના સમપ્રમાણમાં હોવાથી અર્ધ-આયુ જેટલા સમયગાળામાં ઍક્ટિવિટી પણ અડધી થાય તે \uparrow સમજી શકાય તેવી બાબત છે. જુદાં-જુદાં રેડિયો- \uparrow ઍક્ટિવ તત્ત્વોના અર્ધ-આયુ આશરે 10^{-7} sથી 10^{10} N yr જેટલા મોટા ગાળામાં હોય છે.

જો કોઈ તત્ત્વનાં અર્ધ-આયુ 10 વર્ષ હોય, તો 20 વર્ષે આ તત્ત્વના બધા ન્યુક્લિયસ વિભંજિત થઈ જશે (એટલે કે આ તત્ત્વનું અસ્તિત્વ લુપ્ત થઈ જશે) એવો અર્થ કરીએ તો તે સત્ય નથી. વાસ્તવમાં દર 10 વર્ષે તેના ન્યુક્લિયસની સંખ્યા અડધી બનતી જાય અને ઘણા લાંબા સમય પછી પણ આ તત્ત્વના અમુક સંખ્યાના ન્યુક્લિયસ અસ્તિત્વ ધરાવે છે. આ પરથી આપણે નીચે મુજબ પણ રજૂઆત કરી શકીએ :

$$t=1$$
 $(au_{rac{1}{2}})$ સમયે $\left(rac{N}{N_0}
ight)=\left(rac{1}{2}
ight)^{\!\!1}$ બને.

$$t=2$$
 $(au_{rac{1}{2}})$ સમયે $\left(rac{ ext{N}}{ ext{N}_0}
ight)=\left(rac{1}{2}
ight)^{\!\! 1}=\left(rac{1}{2}\!
ight)^{\!\! 2}$ બને.

$$t=3$$
 $(au_{rac{1}{2}})$ સમયે $\left(rac{N}{N_0}
ight)=\left(rac{1}{2}
ight)\left(rac{1}{2}
ight)^2=\left(rac{1}{2}
ight)^3$ બને.
$$\vdots$$

$$t = n \ (\overset{\centerdot}{\overset{\centerdot}{\tau_{\frac{1}{2}}}})$$
 સમયે $\left(\frac{\mathrm{N}}{\mathrm{N}_{0}}\right) = \left(\frac{1}{2}\right)^{n}$ બને.

આમ, ક્રોઈ સમય (t)ને અંતે $\frac{\mathrm{N}}{\mathrm{N}_0} = \left(\frac{1}{2}\right)^n$ બને.

જયાં,
$$n = \frac{0 \text{ condition}(t)}{0 \text{ condition}(\tau_{\frac{1}{2}})}$$
 (6.11.4)

6.12 સરેરાશ જીવનકાળ (Mean Lifetime τ)

"જે સમયગાળામાં રેડિયો-ઍક્ટિવ તત્ત્વના ન્યુકિલયસની સંખ્યા મૂળ સંખ્યાના e મા ભાગની બને તે સમયગાળાને તે તત્ત્વનો સરેરાશ જીવનકાળ (τ) કહે છે." (e=2.718)

રેડિયો-ઍક્ટિવ વિભંજનના ચરઘાતાંકી નિયમ $N=N_0e^{-\lambda t}$ માં $N=rac{N_0}{e}$, બને તે સમયગાળો t= સરેરાશ જીવનકાળ = au મૂકતાં,

$$\therefore \frac{N_0}{e} = N_0 e^{-\lambda \tau}$$

$$\therefore e = e^{\lambda \tau}$$

$$\therefore 1 = \lambda \tau$$

$$\therefore \ \tau = \frac{1}{\lambda} \tag{6.12.1}$$

આમ, સરેરાશ જીવનકાળ એ ક્ષય-નિયતાંકના વ્યસ્ત જેટલો છે.

ખૂબ જ ટૂંકો જીવનકાળ ધરાવતાં રેડિયો-ઍક્ટિવ તત્ત્વો (દા.ત., પ્લુટોનિયમ)નું અર્ધઆયુ, બ્રહ્માંડની ઉંમર (1500 કરોડ વર્ષ) કરતાં ઘણું ઓછું હોઈ તેમનો ઘણા સમય અગાઉ ક્ષય થઈ ગયો હશે અને હાલમાં કુદરતમાં મળી આવતાં નથી (એટલે કે પ્રમાણ અત્યંત અલ્પ હશે). જોકે તેમને કૃત્રિમ ન્યુક્લિયર પ્રક્રિયાઓમાં બનાવી શકાય છે.

સમીકરણ (6.11.2) અને (6.12.1) પરથી સ્પષ્ટ છે કે

$$\tau_{\frac{1}{2}} = (0.693)(\tau) \tag{6.12.2}$$

અહીં નોંધો કે $\tau_{\frac{1}{2}} > \frac{\tau}{2}$

$$\text{qull, } \tau = \frac{\tau_{\frac{1}{2}}}{0.693} = 1.44 \frac{\tau_{\frac{1}{2}}}{2} \tag{6.12.3}$$

કેટલાક એવા પણ કિસ્સાઓ જોવા મળ્યા છેકે એક જ તત્ત્વના કેટલાંક ન્યુક્લિયસ α -કણના ઉત્સર્જન દ્વારા અને તે સમયે બીજા કેટલાક ન્યુકલિયસ β -કણના ઉત્સર્જન દ્વારા વિભંજન પામતા હોય. આને શાખા-વિભંજન (Branch Disintegration) કહે છે. આ ઘટનામાં α -કણના ઉત્સર્જન માટેનો ક્ષય-નિયતાંક λ_{α} અને β -કણના ઉત્સર્જન માટેનો ક્ષય-નિયતાંક λ_{β} હોય, તો તે તત્ત્વનો કુલ ક્ષય-નિયતાંક $\lambda = \lambda_{\alpha} + \lambda_{\beta}$ થશે, અને તેનો સરેરાશ જીવનકાળ $\tau = \frac{1}{\lambda_{\alpha} + \lambda_{\beta}}$ થશે. આ પરથી $\frac{1}{\tau} = \frac{1}{\tau_{\alpha}} + \frac{1}{\tau_{\beta}}$ મળે છે, જ્યાં τ_{α} અને τ_{β} એ અનુક્રમે α -કણના અને β -ક્શના ઉત્સર્જનને અનુરૂપ સરેરાશ આયુ છે.

(આ પરથી
$$\frac{1}{\tau_{\frac{1}{2}}} = \frac{1}{\tau_{\frac{1}{2}(\alpha)}} + \frac{1}{\tau_{\frac{1}{2}(\beta)}}$$
 પણ લખી શકીએ, જ્યાં $\tau_{\frac{1}{2}} = \S$ લ (અસરકારક) અર્ધ-આયુ)

ઉદાહરણ 3: યુરેનિયમના ખનિજના એક નમૂનામાંથી α -કણો $9.3 \times 10^5~\mathrm{s}^{-1}$ ના દરથી ઉત્સર્જાય છે. આ α -કણો $^{235}\mathrm{U}$ માંથી ઉત્સર્જાય છે. જો યુરેનિયમના ઉપર્યુક્ત નમૂનામાં 0.72% $^{235}\mathrm{U}$ હોય, તો ખનિજના આ નમૂનાનું દળ શોધો. $^{235}\mathrm{U}$ નો અર્ધ-આયુ $7.04 \times 10^8~\mathrm{yr}$, છે. $(1~\mathrm{yr} = 3.16 \times 10^7~\mathrm{s}$ લો.)

6કેલ $^{\circ}$ $^{\circ}$ 235U માટે ઍક્ટિવિટી $I=9.3\times10^5$ વિભંજન/સેકંડ આપેલ છે.

$$au_{rac{1}{2}} = rac{0.693}{\lambda}$$
 પરથી $\lambda = rac{0.693}{ au_{rac{1}{2}}} = rac{0.693}{7.04 imes 10^8 imes 3.16 imes 10^7} \, ext{s}^{-1}$

જો N= આપેલ નમૂનામાં તે સમયે 235 Uના પરમાશુઓની સંખ્યા N હોય તો $I=\lambda N$...(ઋણ નિશાની અવગણતાં)

$$= \left(\frac{0.693}{\frac{\tau_1}{2}}\right) N$$

$$\therefore N = \frac{(I)\left(\tau_{\frac{1}{2}}\right)}{0.693} = \frac{(9.3 \times 10^5) (7.04 \times 10^8 \times 3.16 \times 10^7)}{0.693}$$
$$= 3 \times 10^{22}$$

હવે, 235~g યુરેનિયમ (235 U)માં એવોગેડ્રો-અંક જેટલા એટલે કે 6.02×10^{23} પરમાણુઓ હોય છે. આ હકીકત પરથી, 235 Uના 3×10^{22} પરમાણુઓનું દળ આ પ્રમાણે શોધાય ઃ

 6.02×10^{23} 235 U પરમાશુઓનું દળ 235 g

 $\therefore 3 \times 10^{22}$ પરમાણુઓનું દળ = m (ધારો કે)

$$\therefore m = \frac{235 \times 3.0 \times 10^{22}}{6.02 \times 10^{23}} \approx 12 g$$

અત્રે $^{235}\mathrm{U}$ નું ખિનજમાં પ્રમાણ 0.72 % છે. એટલે કે $^{235}\mathrm{U}$ જો 0.72 g હોય, તો ખિનજનું દળ 100 g હોય. આ હકીકતનો ઉપયોગ કરતાં ખિનજનું દળ, આ પ્રમાણે શોધી શકાય : 0.72 g $^{235}\mathrm{U}$ માટે ખિનજનું દળ $100~\mathrm{g}$

∴ 12 g માટે ખનિજનું દળ = M (ધારો કે)

$$\therefore$$
 M = $\frac{100 \times 12}{0.72}$ = 1666 g = 1.666 kg

ઉદાહરણ $4:\frac{1}{\lambda}$ સમય (જયાં $\lambda=$ ક્ષય-નિયતાંક) ને અંતે કોઈ એક રેડિયો-ઍક્ટિવ તત્ત્વના નમૂનામાં મૂળ જથ્થાના

- (1) કેટલા ટકા અવિભંજિત રહ્યા હશે ?
- (2) કેટલા ટકા વિભંજિત થયા હશે ?

ઉકેલ : (1) t સમયે અવિભંજિત ન્યુક્લિયસની સંખ્યા

$$N = N_0 e^{-\lambda t} = N_0 e^{-\lambda (\frac{1}{\lambda})} \qquad (\because t = \frac{1}{\lambda})$$
$$= N_0 e^{-1} = \frac{N_0}{e}$$

∴ આ સમયે મૂળ જથ્થાનો અવિભંજિત રહેલો ભાગ

$$\frac{N}{N_0} = \frac{1}{e} = \frac{1}{2.718} = 0.368$$

∴ આ સમયે મૂળ જથ્થાના અવિભંજિત રહેલા ભાગનું ટકાવાર પ્રમાણ

$$= \frac{N}{N_0} \times 100 = 0.368 \times 100 = 36.8\%$$

(2) આ સમયે વિભંજિત ન્યુક્લિયસની સંખ્યા N' હોય તો

$$N' = N_0 - N$$

$$= N_0 - \frac{N_0}{e} = N_0 \left(\frac{e-1}{e}\right)$$

$$= N_0 \left(\frac{1.718}{2.718}\right) = N_0 (0.632)$$

 \therefore આ સમયે મૂળ જથ્થાનો વિભંજિત થયેલો ભાગ = $\frac{N'}{N_0}$ = 0.632

 \therefore આ સમયે વિભંજિત થયેલા ભાગનું ટકાવાર પ્રમાણ = $\frac{N'}{N_0}$ imes 100 = 63.2%

ઉદાહરણ 5 : એક રેડિયો-ઍક્ટિવ તત્ત્વનો અર્ધ-આયુ 0.693 hour છે. તેના 80% ન્યુક્લિયસોનું વિભંજન થતાં કેટલો સમય લાગશે ?

ઉકેલ :
$$\tau_{\frac{1}{2}} = 0.693$$
 hr., $\lambda = \frac{0.693}{\tau_{\frac{1}{2}}}$

 $N_0 = 100$ હોય તો 80 વિભંજન પામે અને N = 20 અવિભંજિત રહે.

$$N = N_0 \cdot e^{-\lambda t}$$
 પરથી

$$20 = 100e^{-\lambda t}$$

$$\therefore \frac{1}{5} = e^{-\lambda t}$$

$$\therefore 5 = e^{\lambda t}$$

$$\therefore ln \ 5 = \lambda t$$

$$\therefore (2.303)(\log_{10} 5) = \left(\frac{0.693}{\frac{\tau_1}{2}}\right)t$$

$$\therefore (2.303)(0.6990) = \left(\frac{0.693}{0.693}\right)t$$

$$\therefore t = 1.61 \text{ hour}$$

ઉદાહરણ 6 : ધારો કે રેડિયો-ઍક્ટિવ તત્ત્વ Aમાંથી તત્ત્વ Bના ઉત્પાદનનો દર $\alpha=$ અચળ છે. જો t=0 સમયે Bના પરમાણુની સંખ્યા \mathbf{N}_0 હોય અને B તત્ત્વ પણ રેડિયો-ઍક્ટિવ હોય તથા તેનો ક્ષય-નિયતાંક λ હોય, તો સાબિત કરો કે t સમયે Bના પરમાણુની સંખ્યા $\mathbf{N}=\frac{1}{\lambda}\left[\alpha-(\alpha-\lambda\mathbf{N}_0)e^{-\lambda t}\right]$ છે.

ઉકેલ : Aમાંથી B તત્ત્વનો બનવાનો (ઉત્પાદનનો) દર $\alpha =$ અચળ. જો t સમયે B તત્ત્વમાં પરમાશુની સંખ્યા N હશે, તો તે સમયે B તત્ત્વના વિભંજનનો દર $= -\lambda N$.

∴ B તત્ત્વના પરમાશુની સંખ્યાના ફેરફારનો દર

$$\frac{dN}{dt} = \alpha - \lambda N$$

$$\therefore \frac{dN}{a-\lambda N} = dt$$

$$\therefore \int_{N_0}^{N} \frac{dN}{\alpha - \lambda N} = \int_{0}^{t} dt$$

$$\therefore \left(-\frac{1}{2}\right) \left[ln(\alpha - \lambda N)\right]_{N_0}^{N} = \left[t\right]_0^t$$

$$\therefore [ln(\alpha - \lambda N) - ln(\alpha - \lambda N_0)] = -\lambda [t - 0]$$

$$\therefore \ln \frac{\alpha - \lambda N}{\alpha - \lambda N_0} = -\lambda t$$

$$\therefore \frac{\alpha - \lambda N}{\alpha - \lambda N_0} = e^{-\lambda t}$$

$$\therefore \alpha - \lambda N = (\alpha - \lambda N_0)e^{-\lambda t}$$

$$\therefore \lambda N = \alpha - (\alpha - \lambda N_0)e^{-\lambda t}$$

$$\therefore N = \frac{1}{\lambda} [\alpha - (\alpha - \lambda N_0) e^{-\lambda t}]$$

ઉદાહરણ 7: જેમના ક્ષય-નિયતાંકો અનુક્રમે 0.1 day^{-1} અને 0.2 day^{-1} છે, તેવાં બે તત્ત્વો A અને Bના મિશ્રણમાં પ્રારંભમાં Aની ઍક્ટિવિટી Bની ઍક્ટિવિટી કરતાં 3 ગણી છે. જો મિશ્રણની પ્રારંભિક ઍક્ટિવિટી 2mCi હોય તો 10 days પછી મિશ્રણની ઍક્ટિવિટી શોધો.

$$634 : \lambda_A = 0.1 \text{ day}^{-1}, \lambda_B = 0.2 \text{ day}^{-1}$$

$$(I_0)_A = 3(I_0)_B$$

t=0 સમયે મિશ્રણની ઍક્ટિવિટી

$$I_0 = (I_0)_A + (I_0)_B = (3I_0)_B + (I_0)_B$$

 $\therefore 2 = 4(I_0)_B$
 $\therefore (I_0)_B = 0.5 \text{ mC}i$

$$(I_0)_A = 1.5 \text{ mC}i$$

$$t$$
 સમયે Aની ઍક્ટિવિટી $I_A=(I_0)_A\cdot e^{-\lambda_A t}$
$$=(1.5)(e)^{-(0.1)(10)}$$

$$=\frac{1.5}{2.719}=0.552 \text{ n}$$

$$=rac{1.5}{e}=rac{1.5}{2.718}=0.552~{
m mC}i$$
 t સમયે Bની ઍક્ટિવિટી ${
m I_B}={
m (I_0)_B}\cdot e^{-\lambda_{
m B}t}$

=
$$(0.5)[e^{-(0.2)(10)}]$$

= $\frac{0.5}{e^2} = \frac{0.5}{2.718^2} = 0.067 \text{ mC}i$

∴ t સમયે મિશ્રણની કુલ ઍક્ટિવિટી

$$I = I_A + I_B = 0.552 + 0.067 = 0.619 \text{ mC}i$$

ઉદાહરણ 8: 15hrના અર્ધ-આયુ તેમજ 1 માઇક્રોક્યૂરિ ઍક્ટિવિટી ધરાવતા રેડિયો ન્યુક્લાઇડ 24 Na ધરાવતા દ્રાવણને થોડી માત્રામાં એક વ્યક્તિના રક્તમાં દાખલ કરવામાં આવે છે. 5hr પછી 1 cm 3 કદનો રક્તનો નમૂનો લેતાં તેની ઍક્ટિવિટી 296 વિભંજન/મિનિટ જણાય છે. તે વ્યક્તિના શરીરમાં રક્તનું કુલ કદ શોધો. 1 ક્યૂરિ $= 3.7 \times 10^{10}$ વિભંજન/સેકંડ.

ઉકેલ : ²⁴Naની પ્રારંભિક ઍક્ટિવિટી

$$I_0=1.0~\mu Ci=1.0 \times 10^{-6} \times 3.7 \times 10^{10}~$$
 વિભંજન/ સેકંડ = $3.7 \times 10^4~$ વિભંજન/સેકંડ

$$\lambda = \frac{0.693}{\tau_{\frac{1}{2}}} = \frac{0.693}{15 \times 3600} \, s^{-1}$$

$$I_0 = \lambda N_0$$

$$\therefore N_0 = \frac{I_0}{\lambda} = \frac{(3.7 \times 10^4) \cdot (15 \times 3600)}{0.693}$$

 $= 2.883 \times 10^9 = {}^{24}{
m N}a$ ના દ્રાવણમાં ન્યુક્લિયસની કુલ પ્રારંભિક સંખ્યા.

 $1~{
m cm}^3$ રક્તના નમૂનામાં $5{
m hr}$ પછી રેડિયો-ન્યુક્લિયસની સંખ્યા N હોય અને તે સમયની ઍક્ટિવિટી $I=\frac{296}{60}~{
m lamin}$ વિભંજન/સેકંડ હોય તો $I=\lambda N$ પરથી

$$N = \frac{I}{\lambda} = \frac{296}{60} \times \frac{15 \times 3600}{0.693}$$

 $= 3.844 \times 10^5$

= 5 કલાકને અંતે $1~{
m cm}^3$ નમૂનામાં $^{24}{
m N}a$ નાં ન્યુક્લિયસની સંખ્યા.

જો આ $1~{
m cm}^3$ રકતના નમૂનામાં રેડિયો–ઍક્ટિવ ન્યુક્લિયસની પ્રારંભિક સંખ્યા ($t=~0~{
m a}$ મયે) ${
m N_0}^{\prime}$ હોય, તો

$$\left(\frac{N}{N_0}\right) = \left(\frac{1}{2}\right)^{\frac{t}{\tau}} \frac{t}{2} = \left(\frac{1}{2}\right)^{\frac{5}{15}} = \left(\frac{1}{2}\right)^{\frac{3}{2}}$$

$$N_0' = (N)(2)^{\frac{1}{3}} = (N)(1.269)$$
$$= (3.844 \times 10^5)(1.269)$$

આમ, N_0 ' રેડિયો-ન્યુક્લાઇડ માટે ૨ક્તનું કદ $1~{
m cm}^3$ હોય

તો, N_0 રેડિયો-ન્યુક્લાઇડ માટે રક્તનું કદ (?)

∴ રક્તાનું કદ =
$$\frac{N_0}{N_0}$$
' = $\frac{2.883 \times 10^9}{(1.269)(3.844 \times 10^5)}$
= $5.91 \times 10^3 \text{ cm}^3$
= 5.91 litre

ઉદાહરણ $9:10^2$ m ત્રિજ્યાવાળા એક ગોળામાં રેડિયો-ઍક્ટિવ દ્રવ્ય 5×10^7 s⁻¹ના દરથી β -ક્શોનું ઉત્સર્જન કરે છે. જો ઉત્સર્જાતા β -ક્શોમાંથી 40% ક્શો ગોળા પરથી છટકી જતાં હોય, તો ગોળાનું સ્થિતિમાન 0થી વધીને $16\ V$ થતાં કેટલો સમય લાગશે? ($k=9\times 10^9\ SI$ લો.)

ઉંકેલ : ઉત્સર્જન પામેલા β^- -ક્શોમાંથી દર એક સેકંડે ગોળાને છોડી જતાં β^- -ક્શોની સંખ્યા $=n=(0.4)(5\times 10^7).$

$$= (2 \times 10^7) \text{ s}^{-1}$$

 \therefore t સેકંડમાં ગોળાને છોડી જતાં β^- -કર્ણોની સંખ્યા $= n \times t$.

 \therefore t સેંકડમાં ગોળાને મળતો વિદ્યુતભાર $= n \times t \times e$ (ધન)

તેનાથી ઉદ્ભવતું સ્થિતિમાન V હોય તો,

$$V = \frac{kQ}{R} = \frac{k(n \times t \times e)}{R}$$

$$\therefore 16 = 9 \times 10^9 \frac{(2 \times 10^7)(t)(1.6 \times 10^{-19})}{10^2}$$

$$\therefore t = \frac{16 \times 10^2}{9 \times 2 \times 1.6 \times 10^{-3}} = 55578 \text{ s} = 15.438 \text{ hr}$$

6.13 α-क्षय (α-Decay)

રેડિયો-ઍક્ટિવિટીની ઘટનામાં રેડિયો-ઍક્ટિવ તત્ત્વના ન્યુક્લિયસ અસ્થાયી હોવાથી વિભંજન પામે છે અને નવો ન્યુક્લિયસ બનાવે છે. વિભંજન પામતા ન્યુક્લિયસને જનક (Parent) ન્યુક્લિયસ અને નવા બનતા ન્યુક્લિયસને જનિત (Daughter) ન્યુક્લિયસ કહે છે.

Z>83 ધરાવતા મોટા ભાગના ન્યુક્લિયસ α -કર્ષાનું ઉત્સર્જન કરે છે. ઉદાહરણ તરીકે $_{92}{\rm U}^{238}$ ન્યુક્લિયસ α -કર્ષાનું ઉત્સર્જન કરીને $_{90}{\rm T}h^{234}$ માં ફેરવાય છે.

આ પ્રકિયાને નીચે મુજબ લખાય છે.

$$_{92}U^{238} \rightarrow _{90}Th^{234} + _{2}He^{4}$$
 (6.13.1)

આમ, α-ક્ષયની ઘટનામાં જનક તત્ત્વ કરતાં જનિત તત્ત્વના પરમાશુક્રમાંકનું મૂલ્ય 2 એકમ અને પરમાશુ-દળાંકનું મૂલ્ય 4 એકમ ઓછું હોય છે.

 α -કશનું ઉત્સર્જન કરતા પદાર્થમાંના બધાં ન્યુક્લિયસો એક જ સમયે (એકીસાથે) α -કશોનું ઉત્સર્જન કરતા નથી. આ ઘટના સંભાવના સાથે સંકળાયેલ છે. તેથી કોઈ α -કશ ન્યુક્લિયસમાં રચાયા બાદ તરતજ કે બધા α -કશો એકીસાથે ઉત્સર્જન પામતા નથી, વળી જો $_{92}$ U 238 નું દળ $_{90}$ T h^{234} અને α -કશાના સરવાળા કરતાં વધુ હોય તો જ કશનું આપમેળે ઉત્સર્જન શક્ય છે. જો આમ ન હોય તો આ પ્રક્રિયા આપમેળે થઈ શકે નહિ. (બહારથી ઊર્જા આપીને થઈ શકે). ન્યુક્લિયસનાં દળ પ્રમાણભૂત કોષ્ટક (Table)ની મદદથી મેળવી આપણે આ બાબતની ચકાસણી કરી શકીએ છીએ.

અહીં એ સ્પષ્ટ છે કે આ કિસ્સામાં ઉદભવતી ઊર્જાનું મૂલ્ય $[\mathbf{M}_{\mathrm{U}}-(\mathbf{M}_{\mathrm{T}h}+\mathbf{M}_{\alpha})]c^2$ જેટલું હશે, જ્યાં \mathbf{M} એ અનુરૂપ ન્યુક્લાઇડનું દળ છે.

6.14 **B**-क्षय (**B**-Decay)

 β -ક્ષયની પ્રક્રિયામાં ન્યુક્લિયસ આપમેળે ઇલેક્ટ્રૉનનું અથવા પોઝિટ્રૉનનું ઉત્સર્જનકરે છે. પોઝિટ્રૉન એ ઇલેક્ટ્રૉન જેટલો જ પણ ધનવિદ્યુતભાર ધરાવે છે, અને તેના બીજા ગુણધર્મો બિલકુલ ઇલેક્ટ્રૉનના ગુણધર્મો જેવા જ (indetial properties) છે. આમ, પોઝિટ્રૉન એ ઇલેક્ટ્રૉનનો પ્રતિક્ષ્ણ (antiparticle) છે. પોઝિટ્રૉન અને ઇલેક્ટ્રૉનને અનુક્રમે β^+ અને β^- અથવા $_{-1}^0e$ અને $_{-1}^0e$ અથવા $_{-1}^0e$ અમે $_{-1}^0e$ અથવા $_{-1}^0e$ અથવા $_{-1}^0e$ અમે $_{-1}^0e$ અથવા $_{-1}^0e$ અમે $_{-1}^0e$ અમે $_{-1}^0e$ અથવા $_{-1}^0e$ અમે $_{-1}^0e$ અમે ઇલેક્ટ્રૉનન મહિલા પ્રાપ્યા પ્રાપ્યા પ્રાપ્યા પ્રાપ્યા પ્રાપ્યા પ્રાપ્ય પ્રાપ્યા પ્રાપ્ય પ

$$_{15}P^{32} \rightarrow _{16}S^{32} + _{-1}^{0}e + \bar{\nu}$$
 (6.14.1)

(ઇલેક્ટ્રૉન) (ઍન્ટિન્યુટ્રિનો)
$${}_{11}{\rm N}a^{22} \rightarrow {}_{10}{\rm N}e^{22} + {}_{+1}^0e + \nu \end{(4.14.2)}$$
 (પોઝિટ્રૉન) (ન્યુટ્રિનો)

જનક તત્ત્વ કરતાં જિનત તત્ત્વના પરમાશુક્રમાંકનું મૂલ્ય β^- -ક્ષયમાં એક એકમ વધુ અને β^+ -ક્ષયમાં એક એકમ ઓછું હોય છે. બંને કિસ્સામાં જિનત તત્ત્વનો પરમાશુદળાંક જનક તત્ત્વ જેટલો જ હોય છે. e^+ ના ઉત્સર્જન સાથે ન્યુટ્રિનો અને e^- ના ઉત્સર્જન સાથે ઍન્ટિન્યુટ્રિનો નામના ક્ષ્મ પણ ઉત્સર્જાય છે. ન્યુટ્રિનો અને ઍન્ટિન્યુટ્રિનો એક બીજાના પ્રતિક્ષ છે. તેઓ વિદ્યુત-તટસ્થ છે અને તેમનું દળ ઇલેક્ટ્રૉનની સરખામશીમાં પણ અત્યંત અલ્પ છે. બીજા ક્ષ્મો સાથે તેમની આંતરિક્રયા નહિવત્ હોવાથી તેમની પરખ (Detection) કરવી અત્યંત મુશ્કેલ છે. તેઓ ખૂબ ન્યુક્લિયસ

મોટા દ્રવ્યમાંથી (સમગ્ર પૃથ્વીની આરપાર પણ) કંઈ પણ આંતરક્રિયા કર્યા વિના પસાર થઈ શકે છે. તેઓ $\frac{2}{2}$ (જ્યાં $\hbar = \frac{h}{2\pi}$ છે.) સ્પિન ધરાવે છે.

 β -ક્ષયમાં ઇલેક્ટ્રૉન ન્યુક્લિયસમાંથી ઉત્સર્જિત થાય છે. (ન્યુક્લિયસની બહારની ઇલેક્ટ્રૉનની કક્ષાઓમાંથી નહિ). ન્યુક્લિયસમાં ઇલેક્ટ્રૉન રહેતા નથી તો પછી ન્યુક્લિયસમાંથી કેવી રીતે ઉત્સર્જાઈ શકે ? હકીકતમાં ન્યુક્લિયસમાંના એક ન્યુટ્રૉનનું પ્રોટોન અને ઇલેક્ટ્રૉનમાં વિભંજન થાય છે અને આ નવો જન્મેલો ઇલેક્ટ્રૉન (તે ન્યુક્લિયસમાં જન્મી શકે પણ ત્યાં રહી ન શકે) તત્કાળ ઉત્સર્જિત થાય છે, જેને આપણે β^- -કણ કહીએ છીએ. સ્થાયીપણા માટે જરૂરી હોય તેટલા કરતાં વધુ ન્યુટ્રોન ધરાવતા ન્યુક્લિયસમાં ન્યુટ્રોનનું વિભંજન થઈ β^- નું ઉત્સર્જન થાય છે.

$$n \rightarrow p + e^- + \overline{\nu}$$

જો pનું ન્યુટ્રૉનમાં રૂપાંતર થાય, તો e^+ ઉત્સર્જાય છે.

$$p \rightarrow n + e^+ + v$$

6.15 γ-क्षय (γ-Decay)

પરમાણુઓનાં જેમ ઊર્જાસ્તરો હોય છે, તેમ ન્યુક્લિયસોનાં પણ ઊર્જાસ્તરો હોય છે. પરમાણુની જેમ ન્યુક્લિયસ પણ વધારે ઊર્જાવાળા સ્તરમાંથી ઓછી ઊર્જાવાળા સ્તરમાં સંક્રાંતિ કરે છે ત્યારે તેમના તફાવત જેટલી ઊર્જા ધરાવતો ફોટોન ઉત્સર્જન પામે છે. ન્યુક્લિયસનાં ઊર્જાસ્તરો ΜeVના ક્રમનાં હોય છે. આવાં સ્તરો વચ્ચેનો ઊર્જા-તફાવત 1 MeV હોય, તો પણ ઉત્સર્જિત ફોટોનની તરંગલંબાઈ γ-કિરણોના વિસ્તારમાં મળે છે, તે નીચેની ગણતરી પરથી સ્પષ્ટ થશે.

$$hf = 1$$
 MeV, પરથી $\frac{hc}{\lambda} = (1 \times 10^6) \ (1.6 \times 10^{-19} \ \mathrm{J})$

$$\therefore \lambda = \frac{hc}{(1\times10^6)(1.6\times10^{-19})}$$

$$\therefore \ \lambda \ = \ \frac{(6.6\times 10^{-34})\,(3.0\times 10^8)}{1\times 10^6\times 1.6\times 10^{-19}} \ = \ 12.37 \ \times \ 10^{-13} m \ = \ 0.0012 \ nm$$

 λ નું આ મૂલ્ય γ -િકરણોના વિભાગમાં આવે છે. આમ, આ વિકિરણ γ -િકરણ છે. જયારે ન્યુક્લિયસમાંથી α કે β -કણનું ઉત્સર્જન થાય છે ત્યારે જનિત ન્યુક્લિયસ મોટા ભાગે ઉત્તેજિત અવસ્થામાં હોય છે. આવું જનિત ન્યુક્લિયસ એક કે વધુ સંક્રાંતિ કરીને અનુરૂપ γ -ફોટોનનું ઉત્સર્જન કરે છે.

ઉદાહરણ તરીકે $^{60}_{27}\text{Co}$ એ β^- -કણનું ઉત્સર્જન કરીને $^{60}_{28}\text{N}i$ માં રૂપાંતર થાય છે ત્યારે $^{60}_{28}\text{N}i$ ન્યુક્લિયસ ઉત્તેજિત અવસ્થામાં હોય છે. અને તેમાંથી તબક્કાવાર સંક્રાંતિ કરીને 1.17~MeV અને 1.33~MeV ઊર્જાવાળાં γ -કિરણોના ફોટોનનાં ઉત્સર્જન કરે છે.

ઉદાહરણ 10 : $^{238}_{92}$ U નો પરંપરિત ક્ષય થઈને $^{206}_{82}$ Pb અંતિમ નીપજ મળતી હોય, તો કેટલા α અને β કણોનું ઉત્સર્જન થયું હશે?

ઉકેલ ઃ ધારો કે આ પ્રક્રિયામાં x, α-ક્શો અને y, β-ક્શો ઉત્સર્જિત થાય છે.

$$\therefore {}^{238}_{92}\text{U} \rightarrow {}^{206}_{82}\text{P}b + x {}^{4}_{2}\text{H}e + y {}^{0}_{-1}e$$

બંને બાજુનાં પરમાણુ-દળાંક સરખાવતાં,

$$238 = 206 + x(4) + y(0)$$

$$\therefore x = 8$$

હવે બંને બાજુ પરમાણુક્રમાંક સરખાવતાં

$$92 = 82 + 2x + y(-1)$$
$$= 82 + 16 - y$$

$$\therefore y = 6$$

આમ આ પ્રક્રિયામાં 8 α-કર્ણો અને 6 β-કર્ણો ઉત્સર્જિત થયા છે.

6.16 ન્યુક્લિયર પ્રક્રિયાઓ (Nuclear Reactions)

રધરફર્ડે ઈ.સ. 1919માં એમ દર્શાવ્યું કે કોઈ સ્થાયી તત્ત્વ પર યોગ્ય ઊર્જાવાળા યોગ્ય ક્રણોનું પ્રતાડન કરીને તે તત્ત્વનું બીજા તત્ત્વમાં રૂપાંતરણ (Tranformation) કરી શકાય છે. આવી પ્રક્રિયાને કૃત્રિમ ન્યુક્લિયર રૂપાંતરણ કહે છે. તેણે દર્શાવ્યું કે α-ક્શોનું પ્રતાડન નાઇટ્રોજન પર કરવાથી નાઇટ્રોજનનું ઑક્સિજનમાં રૂપાંતરણ થાય છે. આ પ્રક્રિયા નીચે મુજબ લખી શકાય છે.

$$^{14}_{7}N + ^{4}_{2}He \rightarrow ^{17}_{8}O + ^{1}_{1}H + Q$$
 (6.16.1)

આવી, ન્યુક્લિયસમાં ફેરફાર થાય તેવી, પ્રક્રિયાઓને ન્યુક્લિયર પ્રક્રિયાઓ કહે છે. અત્રે Qને ન્યુક્લિયર પ્રક્રિયાનું Q-મૂલ્ય કહે છે અને તે પ્રક્રિયામાં ઉદ્દ્ભવતી ઊર્જા દર્શાવે છે. વળી, આવી પ્રક્રિયાને $A+a\to B+b+Q$ અથવા A(a,b) B સંકેત દ્વારા પણ દર્શાવાય છે.

અહીં Aને ટાર્ગેટ (લક્ષ્ય) ન્યુક્લિયસ,

aને પ્રક્ષિપ્તકણ,

Bને નીપજ ન્યુક્લિયસ અને

bને ઉત્સર્જિત કણ કહે છે.

પ્રક્રિયામાં ઉદ્ભવતી ઊર્જા Q, પ્રક્રિયામાં થતા દળના ઘટાડાને સમતુલ્ય ઊર્જા જેટલી હોય છે.

$$Q = [m_A + m_a - m_B - m_b]c^2 (6.16.2)$$

જ્યાં m અનુરૂપ કણના દળ છે.

ઉદ્ભવતી આ ઊર્જા, પ્રક્રિયામાં થતા ગતિ-ઊર્જાના વધારા સ્વરૂપે દેખાય છે. જો Q>0, હોય, તો પ્રક્રિયાને ઊર્જાક્ષેપક (Exoergic) કહે છે અને જો Q<0 હોય તો પ્રક્રિયાને ઊર્જાશોષક (Endoergic) પ્રક્રિયા કહે છે. ઊર્જાશોષક પ્રક્રિયા આપમેળે થઈ શકે નહિ પણ પૂરતી ઊર્જા આપવામાં આવે, તો જ આવી પ્રક્રિયા થઈ શકે, તે સ્વયંસ્પષ્ટ છે.

ન્યુક્લિયર પ્રક્રિયાઓમાં વેગમાનનું, વિદ્યુતભારનું અને ઊર્જાનું એમ દરેકનું સંરક્ષણ થાય તે જરૂરી છે. વિદ્યુતભારનું સંરક્ષણ થાય છે તે બાબત પરમાશુક્રમાંક પરથી જોઈ શકાય છે. વળી, પ્રક્રિયામાં પરમાશુ-દળાંકના સરવાળા પણ પ્રક્રિયા અગાઉ અને પછી સમાન હોય છે, પણ દળમાં ફેરફાર થઈ શકે છે. આપણે ટૂંકમાં નોંધીશું કે પ્રક્રિયાનું Q મૂલ્ય = પ્રક્રિયામાં થતાં દળના ઘટાડાને સમતુલ્ય ઊર્જા = ગતિઊર્જાનો વધારો.

ઉદાહરણ 11: સામાન્ય રીતે લૅબોરેટરીમાં 226 Raમાંથી ઉત્સર્જાતા α -કર્શાને બેરિલિયમ 9_4 Be પર પ્રતાડિત કરી. 9_4 Be + 4_2 He \rightarrow $^{12}_6$ C + 1_0n પ્રક્રિયા દ્વારા ન્યુટ્રૉન મેળવાય છે. આ α -કર્શની ઊર્જા 4.78 MeV છે, તો ન્યુટ્રૉનને મળતી મહત્તમ ગતિ-ઊર્જા શોધો.

 $[M_{\alpha} = 4.002603 \ u, \ M_{Be} = 9.012183 \ u, \ M_{c} = 12.000000 \ u, \ M_{n} = 1.0086 \ u, \ 1 \ u = 931.494 \ MeV \ \text{ell.}]$

$$634: {}_{4}^{9}Be + {}_{2}^{4}He \rightarrow {}_{6}^{12}C + {}_{0}^{1}n$$

ઊર્જા-સંરક્ષણના નિયમ અનુસાર

$$(M_{Re} + M_{\alpha})c^2 + K_{\alpha} = (M_c + M_n)c^2 + K_n + K_c$$

અહીં, ન્યુટ્રૉનને મહત્તમ ગતિ-ઊર્જા મળતી હોવાથી કાર્બનની ગતિ-ઊર્જા (\mathbf{K}_e)શૂન્ય હોય. (Be લક્ષ્ય હોવાથી $\mathbf{K}_{\mathrm{B}e}=0$ ગણેલ છે)

 $\therefore (9.012183 + 4.002603)(931.494) + 4.78 = [12.000000 + 1.0086] \times 931.494 + K_n$

$$\therefore K_n = 10.54 \text{ MeV}$$

ઉદાહરણ 12 : સ્થિર સ્થિતિમાં રહેલા 241 Am માંથી α -કણનું ઉત્સર્જન 241 A $m o lpha + ^{237}$ N $_p$ પ્રક્રિયા મુજબ થાય છે. નીચેની વિગતોનો ઉપયોગ કરી α -કણની ગતિ-ઊર્જા શોધો.

$$M_{Am} = 241.05682 \ u, \ M_{\alpha} = 4.002603 \ u, \ M_{Np} = 237.04817 \ u, \ 1 \ u = 931.474 \ MeV$$

ઉકેલ : ઊર્જા-સંરક્ષણના નિયમ મુજબ,

$$(M_{Am})c^2 = (M_{\alpha} + M_{Np})c^2 + K_f$$

જ્યાં $\mathbf{K}_{f}=$ નીપજો α અને \mathbf{N}_{p} ની કુલ ગતિ-ઊર્જા

$$\therefore K_f = (M_{Am} - M_{\alpha} - M_{Np})c^2$$

= દળ-તફાવતને સમતુલ્ય ઊર્જા

 $= [241.05682 - 4.002603 - 237.04817] \times 931.474 \text{ MeV}$

$$= 5.6326 \text{ MeV}$$

વેગમાન-સંરક્ષણના નિયમ મુજબ,

$$0 = \overrightarrow{P_{\alpha}} + \overrightarrow{P}_{Np}$$
 ($:$ Amનું વેગમાન શૂન્ય છે.)

$$∴ P_{Np} = P_{\alpha} \quad (મૂલ્યમાં)$$

$$\therefore$$
 કુલ ગતિ-ઊર્જા $\mathbf{K}_f = \frac{{p_{lpha}}^2}{2\mathbf{M}_{lpha}} + \frac{{p_{\mathrm{N}p}}^2}{2\mathbf{M}_{\mathrm{N}p}}$ (\because ગતિ-ઊર્જા $= \frac{{p^2}}{2m}$)
$$= \frac{{p_{\alpha}}^2}{2\mathbf{M}_{\alpha}} + \frac{{p_{\alpha}}^2}{2\mathbf{M}_{\mathrm{N}p}} \qquad (\because \mathbf{p}_{\mathrm{N}_p} = \mathbf{P}_{\alpha})$$

$$= \frac{{p_{\alpha}}^2}{2} \left[\frac{1}{\mathbf{M}_{\alpha}} + \frac{1}{\mathbf{M}_{\mathrm{N}p}} \right] = \frac{{p_{\alpha}}^2}{2} \left[\frac{\mathbf{M}_{\mathrm{N}p} + \mathbf{M}_{\alpha}}{\mathbf{M}_{\alpha}\mathbf{M}_{\mathrm{N}p}} \right]$$

:.
$$\alpha$$
-કણની ગતિ-ઊર્જા = $\frac{p_{\alpha}^{-2}}{2\mathrm{M}_{\alpha}}$ = $\frac{\mathrm{K}_f \cdot \mathrm{M}_{\mathrm{N}p}}{\mathrm{M}_{\mathrm{N}p} + \mathrm{M}_{\alpha}}$ = $\frac{(5.6326)(237.04817)}{237.04817 + 4.002603}$ = 5.539 MeV

ઉદાહરણ 13 : સ્થિર ન્યુક્લિયસ Xની $_Z^A$ X $ightarrow \begin{subarray}{c} A-4 \\ Z-2 \end{subarray} + {}_2^4 He + Q પ્રક્રિયામાં <math>\alpha$ -કણનું દળ M_{α} અને Y-ન્યુક્લિયસનું દળ M_{γ} નો ગુણોત્તર $\frac{M_{\alpha}}{M_{\gamma}} = \frac{4}{A-4}$ લઈને પ્રક્રિયાનું Q-મૂલ્ય, $Q = K_{\alpha} \Big(\frac{A}{A-4} \Big)$ વડે મળે છે, તેમ દર્શાવો. $K_{\alpha} = \alpha$ -કણની ગતિ ઊર્જા છે.

ઉકેલ : પ્રક્રિયાનું Q મૂલ્ય = દળ-તફાવતને સમતુલ્ય ઊર્જા
$$= (M_X - M_Y - M_\alpha)c^2$$

$$= ગતિ-ઊર્જામાં વધારો
$$= (K_\alpha + K_Y) - 0 \ (\because \ X \ \mbox{-યુક્લિયસ સ્થિર છે.)}$$

$$= \frac{1}{2} M_\alpha v_\alpha^2 + \frac{1}{2} M_Y v_Y^2 \eqno(1)$$$$

વેગમાન-સંરક્ષણના નિયમ પરથી

$$\begin{split} & M_{\alpha} \overset{\Gamma}{\nu}_{\alpha} + M_{Y} \overset{\Gamma}{\nu}_{Y} = 0 \\ & \therefore & M_{Y} \nu_{Y} = M_{\alpha} \nu_{\alpha} \; (\text{ugeuni}) \\ & \therefore & \nu_{Y} = \left(\frac{M_{\alpha}}{M_{Y}}\right) \nu_{\alpha} \end{split} \tag{2}$$

આ મૂલ્ય (1)માં મૂકતાં

$$\begin{split} Q &= \frac{1}{2} M_{\alpha} v_{\alpha}^{2} + \frac{1}{2} M_{Y} \left(\frac{M_{\alpha}}{M_{Y}} \right)^{2} v_{\alpha}^{2} \\ &= \frac{1}{2} M_{\alpha} v_{\alpha}^{2} \left[\frac{M_{\alpha}}{M_{Y}} + 1 \right] = K_{\alpha} \left(\frac{4}{A - 4} + 1 \right) \\ &= K_{\alpha} \left(\frac{A}{A - 4} \right) \end{split}$$

6.17 ન્યુક્લિયર-વિખંડન (Nuclear Fission)

ઈ.સ. 1932માં ચેડ્વિકે ન્યુટ્રૉનની શોધ કરી. ત્યાર બાદ ફર્મિએ એમ સૂચવ્યું કે ન્યુટ્રૉન વિદ્યુતભારવિહીન હોવાથી તેને કુલંબ અપાકર્ષણ બળોનો સામનો કરવો પડતો નથી. તેથી ન્યુક્લિયસ પર ન્યુટ્રોનનો મારો ચલાવતાં તે ન્યુક્લિયસમાં દૂસી શકે છે. આથી તે સારો પ્રક્ષિપ્ત કણ છે.

હાન (Hann) અને સ્ટ્રાસમેને (Strassman) યુરેનિયમનાં સંયોજનો પર થર્મલ ન્યુટ્રૉન (ઊર્જા લગભગ \approx 0.04 eV) નો મારો ચલાવ્યો ત્યારે ઉદ્દ્ભવેલા નવાં રેડિયો-ઍક્ટિવ તત્ત્વમાં $_{56}Ba^{144}$ મળ્યું. આ પરિણામ તેમને અશ્ચર્યજનક લાગ્યું હતું. મિટનર (Meitner) અને ક્રિશ (Frisch) નામના વિજ્ઞાનીઓએ એમ શોધ્યું કે જયારે યુરેનિયમના ન્યુક્લિયસ પર થર્મલ ન્યુટ્રૉનનો મારો ચલાવવામાં આવે છે, ત્યારે તે યુરેનિયમના ન્યુક્લિયસનું બે લગભગ સરખા ભાગમાં વિભાજન કરે છે અને આ ક્રિયામાં વિપુલ ઊર્જા ઉત્પન્ન થાય છે. આ ઘટનાને ન્યુક્લિયર–વિખંડન (Nuclear Fission) નામ આપવામાં આવ્યું.

યુરેનિયમના વિખંડનમાં જુદા-જુદા અનેક નીપજ ન્યુક્લિયસો મળી શક્યા છે.

વિખંડનથી ઉદ્દ્ભવતા નીપજ ન્યુક્લિયસોને વિખંડન ટુકડાઓ (Fission Fragments) કહે છે; ન્યુટ્રૉનને વિખંડન ન્યુટ્રૉન અને ઊર્જાને વિખંડન-ઊર્જા કહે છે. ઉપરની પ્રક્રિયામાં વિખંડન ટુકડાઓ તરીકે 60 જેટલા જુદા-જુદા ન્યુક્લિયસ મળે છે, જેમનાં Z મૂલ્યો 36થી 56 વચ્ચે હોય છે. A=95 અને A=140 વાળા ન્યુક્લિયસો બનવાની સંભાવના મહત્તમ હોય છે. વિખંડન ટુકડાઓ રેડિયો-ઍક્ટિવ હોય છે અને β^- -ક્શોના પરંપરિત ઉત્સર્જન દ્વારા સ્થાયી ન્યુક્લિયસમાં પરિશમે છે.

આ ઘટનામાં ઉદ્ભવતા ન્યુટ્રોન ઝડપી (ઊર્જા લગભગ 2 MeV) હોય છે.

આ પ્રક્રિયાનું Q-મૂલ્ય એટલે કે ઉદ્દ્ભવતી ઊર્જાનું મૂલ્ય, વિખંડન દીઠ લગભગ 200 MeV જેટલું પ્રંચડ હોય છે. આ ઊર્જા પ્રક્રિયકો અને નીપજોના દળના તફાવતનું ઊર્જામાં રૂપાંતર થવાથી મળે છે. આ ઊર્જા પ્રારંભમાં વિખંડન ટુકડાઓ અને ન્યુટ્રૉનની ગતિ-ઊર્જા સ્વરૂપે હોય છે, જે અંતે આસપાસના દ્રવ્યમાં ઉખ્મા ઊર્જા રૂપે રૂપાંતરિત થાય છે.

વિદ્યુતપાવર ઉત્પન્ન કરતા ન્યુક્લિયર રિઍક્ટરમાં આવી ન્યુક્લિયર વિખંડનની પરંપરિત (Successive) પ્રક્રિયા થાય છે પણ નિયંત્રિત સ્વરૂપમાં હોય છે. જ્યારે ન્યુક્લિયર બૉમ્બમાં આવી પરંપરિત પ્રક્રિયા અનિયંત્રિત સ્વરૂપમાં થઈને વિસ્ફોટ સર્જે છે.

ન્યુક્લિયર વિખંડનની પ્રક્રિયાની સૈદ્ધાંતિક સમજૂતી "ન્યુક્લિયસના પ્રવાહી બુંદ મોંડેલ" (Liquid Drop Model of Nucleus) દ્વારા આપવામાં આવે છે. જેમાં ન્યુક્લિયસને પ્રવાહીના એક બુંદ સાથે સરખાવેલ છે.

6.18 ન્યુક્લિયર શૃંખલા-પ્રક્રિયા અને ન્યુક્લિયર રિઍક્ટર (Nuclear Chain Reaction and Nuclear Reactor)

ન્યુક્લિયર શૃંખલા-પ્રક્રિયા : અગાઉના પરિચ્છેદમાં આપણે જોયું કે ધીમા ન્યુટ્રૉન વડે $^{235}_{92}$ Uના ન્યુક્લિયસના વિખંડનની પ્રક્રિયામાં એક કે એકથી વધારે ન્યુટ્રૉન પણ ઉત્સર્જન પામે છે. સરેરાશ રીતે તેના દર એક વિખંડન દીઠ 2 ½ ન્યુટ્રૉન મળે છે. અહીં દેખાતા અપૂર્ણાંકનું કારણ એ છે કે કેટલીક વિખંડન ઘટનામાં 3 ન્યુટ્રૉન તો કેટલીકમાં 4 કે 2 ન્યુટ્રૉન ઉત્સર્જિત થાય છે. ઈ.સ. 1939માં ફર્મિએ સૂચવ્યું કે આ રીતે ઉદ્ભવતા ન્યુટ્રૉન વડે બીજા વધુ U ન્યુક્લિયસોનું વિખંડન ઉપજાવી શકાય તો હજી વધારે ઊર્જા અને હજી વધારે ન્યુટ્રૉન પણ મળે. આવી પ્રક્રિયાની હારમાળાને ન્યુક્લિયર શૃંખલા-પ્રક્રિયા કહે છે. જો આવી પ્રક્રિયાને યોગ્ય રીતે નિયંત્રિત કરી શકાય તો એક સમાન દરથી ઊર્જા સતત મળતી રહે - જેનું ઉદાહરણ છે ન્યુક્લિયર રિએક્ટર. જો આવી પ્રક્રિયા અનિયંત્રિત રહે, તો ઉત્પન્ન ઊર્જાથી વિસ્ફોટ થાય છે - જેનું ઉદાહરણ છે ન્યુક્લિયર બૉમ્બ.

હવે આપણે ન્યુક્લિયર શૃંખલા-પ્રક્રિયાની સફળતા આડે આવતી મુશ્કેલીઓ અને તેના નિવારણ અંગે જોઈશું.

(1) વિખંડન ન્યુટ્રૉન ઘણા ઝડપી (સરેરાશ ઊર્જા 2 MeV) હોય છે. તેમને વિખંડન દ્રવ્યમાંથી છટકી જતા અટકાવવા પડે. વળી, તેમને ધીમા પાડી વિખંડન માટે યોગ્ય એવા થર્મલ ન્યુટ્રૉનમાં (ઊર્જા લગભગ $0.04\ eV$) માં ફેરવવા પડે.

ન્યુટ્રૉનને છટકી જતા અટકાવવા માટે ન્યુટ્રૉન પરાવર્તક સપાટીઓ રાખવામાં આવે છે અને વિખંડન દ્રવ્યની ગોઠવણીમાં પૃષ્ઠ / કદ ગુણોત્તર નાનો બને તેવી યોજના કરવામાં આવે છે, કારણકે ન્યુટ્રૉનના લીકેજની પ્રક્રિયા પૃષ્ઠ (Surface) પ્રક્રિયા છે. ન્યુટ્રૉનને ધીમા પાડવા માટે મૉડરેટર (Moderater) તરીકે ઓળખાતાં દ્રવ્યો વિખંડન દ્રવ્યની સાથે જ રાખવામાં આવે છે. સામાન્ય પાણી (H_2O), ભારે પાણી (D_2O), ગ્રેફાઇટ, બેરિલિયમ વગેરે સારાં મૉડરેટર છે. તેઓ ન્યુટ્રૉનને ધીમા પાડે છે પણ ન્યુટ્રૉનનું શોષણ નથી કરતાં.

ઝડપી કરતાં ધીમા ન્યુટ્રૉન $^{235}_{92}\mathrm{U}$ નું વિખંડન ઉપજાવવામાં વધુ અસરકારક છે.

(2) આવી શૃંખલા-પ્રક્રિયામાં પુષ્કળ ઉષ્મા-ઊર્જા ઉત્પન્ન થતાં તાપમાન 10^6 K થવાની સંભાવવા છે. આથી વિખંડન-દ્રવ્ય, મૉડરેટર વગેરેને ઠંડા પાડી તે ઉષ્મા-ઊર્જાને ઉપયોગી સ્વરૂપમાં ફેરવવી પડે. આ માટે શીતક (Coolant) દ્રવ્યો વપરાય છે.

પાણી, પ્રવાહી સોડિયમ ધાતુ, વાયુ વગેરેને આવા શીતક તરીકે વિખંડન ચેમ્બરમાં નળીઓ દ્વારા પસાર કરવામાં આવે છે.

(3) ન્યુક્લિયર વિખંડન શૃંખલા-પ્રક્રિયામાં કોઈ પણ તબક્કે ઉત્પન્ન થયેલ ન્યુટ્રૉનની સંખ્યા અને તે તબક્કે આપાત ન્યુટ્રૉનની સંખ્યાના ગુણોત્તરને ગુણક અંક અથવા મલ્ટિપ્લિકેશન ફેક્ટર K કહે છે. તે ન્યુટ્રૉનની સંખ્યાના વૃદ્ધિદરનું માપ છે. જયારે K = 1 થાય ત્યારે રિએક્ટર ક્રિટિકલ થયાનું કહેવાય છે. જો Kનું મૂલ્ય 1 કરતાં વધી જાય તો રિએક્ટર સુપરક્રિટિકલ સ્થિતિમાં હોવાનું કહેવાય છે. આવી સ્થિતિમાં પ્રક્રિયાનો દર અને ઊર્જા ખૂબ ઝડપથી વધી જતાં વિસ્ફોટ થાય છે. જો Kનું મૂલ્ય 1 કરતાં ઓછું (Subcritical State) હોય, તો પ્રક્રિયા ધીમી પડીને અટકી જાય અને સતત સમાન દરે ઊર્જા મળે નહિ. આથી Kનું નિયંત્રણ કરવા માટે ન્યુટ્રૉનનું શોષણ કરી લે તેવા દ્રવ્ય - કેડમિયમ અને બોરોનના સળિયા વિખંડન-દ્રવ્યમાં રાખેલા હોય છે. આ સળિયાનાં સ્થાન સ્વયં નિયંત્રિત હોય છે.

Kનું મૂલ્ય 1 કરતાં વધી જાય તો ન્યુટ્રૉનનું વધુ શોષણ કરી લેવા માટે આ સળિયા, વિખંડન-દ્રવ્યમાં વધારે અંદર જાય છે. Kનું મૂલ્ય 1 કરતાં ઓછું થાય તો, આ સળિયા આપો આપ બહાર ધસી જાય અને ન્યુટ્રૉનનું શોષણ ઓછું કરે. આવા સળિયાઓને નિયંત્રક સળિયાઓ (Controlling Rods) કહે છે.

આ બધી જરૂરિયાતો એક સાથે સંતોષાય ત્યારે રિઍક્ટર માંથી સતત સમાન દરે ઊર્જા પ્રાપ્ત થાય છે. ન્યુક્લિયર રિઍક્ટર : તે નિયંત્રિત ન્યુક્લિયર શૃંખલા પ્રક્રિયાના સિદ્ધાંત પર કાર્ય કરે છે. એક ખાસ પ્રકારના ન્યુક્લિયર રિઍક્ટર પાવર પ્લાન્ટની રેખાકૃતિ આકૃતિ 6.8 માં દર્શાવી છે. થર્મલ ન્યુટ્રૉન વડે વિખંડન થઈ શકે તે માટે $^{235}_{92}$ U ને બળતણ તરીકે લેવામાં આવે છે. પણ કુદરતી યુરેનિયમમાં તેનું પ્રમાણ માત્ર 0.7% છે. અને $^{238}_{92}$ U નું પ્રમાણ 99.3% છે. ખાસ પ્રક્રિયાઓ દ્વારા $^{235}_{92}$ U નું પ્રમાણ લગભગ 3% કરવામાં આવે છે. આવા યુરેનિયમને સમૃદ્ધ (Enriched) યુરેનિયમ કહે છે. જયારે $^{238}_{92}$ U ન્યુટ્રૉનનું શોષણ કરે છે, ત્યારે નીચેની પ્રક્રિયાઓ મુજબ પ્લુટોનિયમ $^{239}_{04}$ Pu બનાવે છે.

આકૃતિ 6.8 ન્યુક્લિયર રિએક્ટર

આ પ્લુટોનિયમ તીવ્ર રેડિયો-ઍક્ટિવ છે અને ધીમા ન્યુટ્રૉન વડે તેનું વિખંડન થઈ શકે છે.

રિએક્ટરના ગર્ભ (Core) ભાગમાં બળતણ અને મૉડરેટર દ્રવ્યો રાખેલાં હોય છે. બળતણ દ્રવ્યમાં વિખંડન થાય છે. અહીં મૉડરેટર તરીકે અને શીતક તરીકે સાદું પાણી વપરાય છે. આને Pressurised Water Reactor કહે છે. પાણીને પંપ મારફતે રિએક્ટરના coreમાં ધકેલવામાં આવે છે. તે Coreમાંથી બહાર આવે ત્યારે 150 atm દબાણે તેનું તાપમાન 600 K થાય છે. તેને સ્ટીમ જનરેટરમાં પસાર કરવામાં આવે છે. તેમાં ઉત્પન્ન થતી ભારે દબાણવાળી steam ટર્બાઇન ચલાવે છે, જેનાથી વિદ્યુતપાવર ઉત્પન્ન થાય છે. ટર્બાઇન ચલાવ્યા બાદ Steamનું દબાણ ઘટી જાય છે.

આ સ્ટીમને ઠંડી પાડી તેનું પાણીમાં રૂપાંતર કરવામાં આવે છે. અને ફરી પાછુ તેને પંપ મારફ્રતે રિઍક્ટરમાં મોકલવામાં આવે છે. ગુણક અંક Kનું નિયંત્રણ કરવા માટે રિઍક્ટરમાં નિયંત્રક સળિયાઓ રાખેલા હોય છે. 6.19 સૂર્ય અને અન્ય તારાઓમાં તાપ-ન્યુક્લિયર સંલયન (Thermo Nuclear fusion in Sun and Other Stars)

સૂર્ય લગભગ 500 કરોડ વર્ષથી 3.8×10^{26} J/s જેટલા વિપુલ દરથી ઊર્જા ઉત્સર્જન કરતો રહ્યો છે. આટલી બધી ઊર્જાનું ઉદ્દગમ ઘણાં વર્ષો સુધી વિજ્ઞાનીઓ માટે અજ્ઞાત હતું, પરંતુ ન્યુક્લિયર ભૌતિક વિજ્ઞાનના અભ્યાસો પરથી આ અંગેની સમજૂતી મળી શકી છે.

ભારે ન્યુક્લિયસનું વિખંડન થતાં ઊર્જા મળે છે, તેના કરતાં ઊલટું, બે હલકાં યોગ્ય ન્યુક્લિયસને ઘણાં ઊચાં તાપમાને સંલગ્ન કરી ભારે ન્યુક્લિયસ બનાવાય ત્યારે પણ વિપુલ માત્રામાં ઊર્જા ઉત્પન્ન થાય છે. આવી પ્રક્રિયાને તાપ ન્યુક્લિયર સંલયન કહે છે. ઉદાહરણ તરીકે પ્રોટોન કે ડ્યુટેરોનમાંથી હિલિયમ ન્યુક્લિયસ બનાવાય ત્યારે ખૂબ ઊર્જા ઉત્પન્ન થાય છે. સૂર્યમાં અને અન્ય તારાઓમાં તાપન્યુક્લિયર સંલયનની પ્રક્રિયા દ્વારા ઊર્જા ઉત્પન્ન થાય છે.

સૂર્યમાં નીચે દર્શાવેલા તબક્કા મુજબ પ્રોટોન-પ્રોટોનચક્ર તરીકે ઓળખાતી પ્રક્રિયા દ્વારા આવી ઊર્જા ઉત્પન્ન થાય છે.

$${}_{1}^{1}H + {}_{1}^{1}H \rightarrow {}_{1}^{2}H + {}_{+1}e^{0} + \nu + 0.42 \text{ MeV}$$
 (6.19.1)

$$_{+1}e^{0} + _{-1}e^{0} \rightarrow 2\gamma + 1.02 \text{ MeV}$$
 (6.19.2)

$$^{2}_{1}H + ^{1}_{1}H \rightarrow ^{3}_{2}He + \gamma + 5.49 \text{ MeV}$$
 (6.19.3)

$${}_{2}^{3}\text{He} + {}_{2}^{3}\text{He} \rightarrow {}_{2}^{4}\text{He} + {}_{1}^{1}\text{H} + {}_{1}^{1}\text{H} + 12.86 \text{ MeV}$$
 (6.19.4)

પ્રથમ 3 પ્રક્રિયાઓ બે વાર થાય, ત્યારે તેમાં ઉત્પન્ન થતા બે $_2^3{\rm He}$ ન્યુક્લિયસ વચ્ચે ચોથી પ્રક્રિયા થાય છે. બધી પ્રક્રિયાઓના પરિણામસ્વરૂપે $4_1^1{
m H}$ અને $2_{-1}{
m e}^0$ માંથી α -કણ, 2ν અને 6γ -ફોટોન ઉત્પન્ન થાય છે.

અત્રે $2 \times 0.42 + 2 \times 1.02 + 2 \times 5.49 + 12.86 = 26.7$ MeV ઊર્જા છૂટી પડે છે. આ ઉપરાંત તારાઓમાં ઉદ્દ્ભવતી ઊર્જા માટે એક બીજી કાર્બન-નાઇટ્રોજન-ચક્કીય પ્રક્રિયા પણ સૂચવવામાં આવી છે, જેની વિગતોમાં અત્યારે જઈશું નહીં. સૂર્યના કેન્દ્રિય ભાગમાં (Coreમાં) બધો હાઇડ્રોજન દહન પામીને હિલિયમ બની જાય, તેમાં હજી પણ બીજા લગભગ 500 કરોડ વર્ષ લાગે તેમ છે. ત્યાર બાદ હાઇડ્રોજનનું દહન બંધ થવાથી સૂર્ય ઠંડો પડવા લાગશે. અને પોતાના ગુરુત્વાકર્ષણની અસર નીચે સંકોચાવા (Collapse થવા) લાગશે. તેનાથી વળી પાછું કેન્દ્રિય ભાગનું તાપમાન વધી જશે અને બાહ્ય આવરણ વિસ્તાર પામશે અને સૂર્ય red giant માં પરિવર્તિત થઈ જશે. ફરીથી તાપમાન જો વધીને 10^8 K જેટલું થશે, તો હવે He નું દહન થઈ C બનશે. એવા તારાની હજી આગળ ઉત્ક્રાંતિ (Evolution) થઈ હજી ઊચું તાપમાન થશે અને બીજી સંલયન-પ્રક્રિયાઓ દ્વારા બીજાં ભારે તત્ત્વો નિર્માણ પામશે. પરંતુ બંધન-ઊર્જાના આલેખની ટોચ નજીકના દળ કરતાં વધુ દળવાળાં તત્ત્વો હજી આગળ વધતી સંલયન-પ્રક્રિયાઓથી પણ નિર્માણ પામશે નહિ.

ન્યુક્લિયર-સંલયનની નિયંત્રિત શૃંખલા-પ્રક્રિયા દ્વારા નિયમિત સતત ઊર્જા (વિદ્યુત પાવર) ઉત્પન્ન કરવાના પ્રયત્નો વિશ્વના અનેક દેશોમાં કરવામાં આવે છે. જે હજી બહુ સફળતાના તબક્કે પહોંચ્યા નથી. ભારતમાં આવું સંશોધન અમદાવાદ નજીક ભાટ ખાતે Institute for Plasma Research (IPR)માં ચાલી રહ્યું છે.

ઉદાહરણ 14 : સૂર્ય સંપૂર્ણ રીતે પ્રોટોન્સનો બનેલો છે તેમ ધારો. સૂર્યમાં થતી પ્રોટોન-પ્રોટોન-ચક્રીય પ્રક્રિયામાં જયારે 4 પ્રોટોન્સ ભેગા મળી 4_2 He બનાવે છે, ત્યારે પ્રોટોન દીઠ ઉત્પન્ન થતી ઊર્જા 6.7 MeV છે. સૂર્યનો કુલ પાવર આઉટપુટ 3.9×10^{26} W લો. જો આ પાવર આઉટપુટ અચળ રહેતો હોવાનું ધારીએ અને સૂર્યનું દળ $2.0 \times 10^{30}~{\rm kg}$ લઈએ, તો સૂર્યને સંપૂર્ણ બળી જઈ 4_2 Heના ક્શોમાં ફેરવાઈ જતાં કેટલો સમય લાગે ?

[પ્રોટોનનું દળ =
$$1.67 \times 10^{-27} \text{ kg}$$
, $1 \text{ yr} = 3.16 \times 10^7 \text{ s}$]

ઉકેલ : સૂર્યનું કુલ દળ $= 2.0 \times 10^{30} \text{ kg}$

$$\therefore$$
 સૂર્યમાં પ્રોટોનની સંખ્યા = $\frac{2.0 \times 10^{30}}{1.67 \times 10^{-27}}$ = 1.2×10^{57} પ્રોટોન્સ

સૂર્યનો કુલ પાવર આઉટપુટ = $3.9 \times 10^{26} \, \mathrm{J \ s^{-1}}$

અને 1 પ્રોટોન દીઠ મળતી ઊર્જા = 6.7 MeV = $6.7 \times 10^6 \times 1.6 \times 10^{-19}$ J

જો એક સેકન્ડમાં નાશ પામતા પ્રોટોનની સંખ્યા N હોય તો,

(N)
$$(6.7 \times 10^6 \times 1.6 \times 10^{-19}) = 3.9 \times 10^{26}$$

$$Arr$$
 N = $\frac{3.9 \times 10^{26}}{6.7 \times 10^6 \times 1.6 \times 10^{-19}}$ = 3.6×10^{38} પ્રોટોન્સ/સેકન્ડ નાશ પામે.

હવે, જો 3.6×10^{38} પ્રોટોન્સનો નાશ થતા 1s લાગે

તો 1.2×10^{57} પ્રોટોન્સનો નાશ થતાં સમય $- t \, \mathrm{s}$ લાગે

જ્યાં,
$$t = \frac{1.2 \times 10^{57}}{3.6 \times 10^{38}} = 0.33 \times 10^{19} \text{ s} = \frac{0.33 \times 10^{19}}{3.16 \times 10^7} \text{ yr} = 1.044 \times 10^{11} \text{ yr}$$

= 104.4 Billion Year

6.20 ન્યુક્લિયર ખતરા (Nuclear Hazards)

ન્યુક્લિયર વિખંડન અને ન્યુક્લિયર-સંલયનને લીધે મળતી ઊર્જા અનેક રીતે ઉપયોગી જણાય છે. પરતું તેને લીધે મહાવિનાશક સંકટો પણ ઊભાં થયાં છે. પરમાણુબૉમ્બની વિનાશક અસર માનવજાતે અનુભવી છે.

ન્યુક્લિયર રિઍક્ટર્સ વડે પાવર (વિદ્યુત) મેળવવાનું લાભદાયી તો લાગે છે પણ તેમાંથી ઉત્પન્ન થતો કચરો (Waste Products) તીવ્ર રેડિયો-ઍક્ટિવ હોવાથી જીવસૃષ્ટિ માટે નુકસાનકારક છે અને તેને સંઘરવા કે નિકાલ કરવા અંગે હજી સુધી કોઈ સંતોષકારક ઉકેલ મળ્યો નથી. વળી, આવા રિઍક્ટરમાં અકસ્માતથી આસપાસ વિનાશ થવાની શકયતા પણ છે. ઈ.સ. 1986ના એપ્રિલમાં યુક્રેનમાં આવેલા ચેર્નોબીલ ખાતેના રિઍક્ટરમાં ધડાકો થવાથી આસપાસમાં વિપુલ પ્રમાણમાં થયેલ જાન-માલની હાનિ તેનું ઉદાહરણ છે.

પૃથ્વી પર હાલ ન્યુક્લિયર શસ્ત્રોનો વિપુલ જથ્થો હાજર છે. તે પૃથ્વી પરની સમગ્ર જીવસૃષ્ટિને અનેક વાર નષ્ટ કરી શકે તેમ છે. એટલું જ નહિ પણ તેની નીપજો આ પૃથ્વીને કાયમ માટે જીવન માટે અયોગ્ય બનાવી દે તેમ છે.

સૈદ્ધાંતિક ગણતરીઓ એવું દર્શાવે છે કે ન્યુક્લિયર ઊર્જાના અસંયમિત ઉપયોગથી રેડિયો-ઍક્ટિવ કચરો પૃથ્વીના વાતાવરણમાં વાદળની પેઠે લટકતો હશે અને સૂર્યના વિકિરણનું શોષણ કરી લઈ પૃથ્વી પર "ન્યુક્લિયર શિયાળો (Winter)" ઉત્પન્ન કરી દેશે.

સારાંશ

- 1. પરમાશુનો બધો જ ધન વિદ્યુતભાર અને લગભગ બધું દળ ન્યુક્લિયસમાં કેન્દ્રિત થયેલ છે.
- 2. $^{A}_{Z}X$ અથવા $_{Z}X^{A}$ માં Z એ તત્ત્વનો પરમાશુ ક્રમાંક અને A એ પરમાશુ-દળાંક દર્શાવે છે. A-Z=N એ ન્યુક્લિયસમાં ન્યુટ્રૉનની સંખ્યા દર્શાવે છે. પરમાશુ અને ન્યુક્લિયસનાં દળોને atomic mass unit નામના એકમમાં દર્શાવાય છે. (સંકેત amu અથવા u). અનુત્તેજિત $^{12}_{6}C$ પરમાશુના દળના બારમા ભાગને 1u દળ કહે છે.

 $1\ u\ (\epsilon v) = 1.66 \times 10^{-27}\ kg$. પરમાશુ-ક્રમાંક (Z) સમાન હોય અને પરમાશુ-દળાંક (A) જુદા હોય તેવા ન્યુક્લિયસોને સમસ્થાનિકો (isotopes) કહે છે. જે ન્યુક્લિયસો માટે ન્યુટ્રૉનસંખ્યા (N = A - Z) સમાન હોય, તેમને એકબીજાના આઇસોટોન્સ કહે છે.

જે ન્યુક્લિયસો માટે પરમાશુ-દળાંક (A = N + Z)નાં મૂલ્યો સમાન હોય તેમને એકબીજાના સમદળીય (Isobars) કહે છે.

જે ન્યુક્લિયસો માટે Z સમાન હોય અને A પણ સમાન હોય પણ તેમના રેડિયો-ઍક્ટિવ ગુણધર્મો જુદા હોય તેમને એકબીજાના આઇસોમર કહે છે.

3. ન્યુક્લિયસમાં પ્રોટોન્સ વચ્ચેના અપાકર્ષણબળને સમતોલીને બધા ન્યુક્લિયોનને ન્યુક્લિયસમાં ચુસ્ત (Tightly) જકડી રાખી શકે તેવું પ્રબળ આકર્ષણ બળ લાગે છે. આવું ન્યુક્લિયર બળ લઘુ અંતરી હોઈ દરેક ન્યુક્લિયોન નજીકના થોડા પડોશી ન્યુક્લિયોન સાથે જ પ્રબળ બળ દ્વારા આંતરક્રિયા કરે છે (સંત્પતાનો ગુણધર્મ).

મૂળભૂત રીતે ક્વાર્ક-ક્વાર્ક વચ્ચે લાગતાં બળો ન્યુક્લિયર બળોમાં પરિશમે છે. ન્યુક્લિયર બળો ન્યુક્લિયોનની 'સ્પિન' પર આધારિત છે.

- 4. ન્યુક્લિયસની લાક્ષણિક સરેરાશ ત્રિજ્યા $\mathbf{R}=\mathbf{R}_0\mathbf{A}^{\frac{1}{3}}$, જ્યાં $\mathbf{A}=$ પરમાણુ-દળાંક, $\mathbf{R}_0=1.1f_m=$ અચળ. ન્યુક્લિયસની ઘનતા લગભગ $2.3\times 10^{17}~\mathrm{kg}~\mathrm{m}^{-3}$. છે.
- 5. હલકાં સ્થાયી તત્ત્વોનાં ન્યુક્લિયસમાં પ્રોટોનની સંખ્યા (Z) અને ન્યુટ્રૉનની સંખ્યા (N) સમાન કે લગભગ સમાન હોય છે. જ્યારે ભારે સ્થાયી ન્યુક્લિયસોમાં ન્યુટ્રૉનની સંખ્યા પ્રોટોનની સંખ્યા કરતાં વધુ હોય છે.
- 6. આઇન્સ્ટાઇનના વિશિષ્ટ સાપેક્ષવાદ અનુસાર દળ અને ઊર્જાનું એકબીજામાં રૂપાંતર થઈ શકે છે. m દળ mc^2 ઊર્જાને સમતુલ્ય છે. $E=mc^2$, જ્યાં c= પ્રકાશનો શૂન્યવકાશમાં વેગ. 1 વૉલ્ટના વિદ્યુતસ્થિતિમાનના તફાવત હેઠળથી પસાર થતાં ઇલેક્ટ્રૉનની ગતિ-ઊર્જામાં થતા ફેરફારને 1eV (ઇલેક્ટ્રોન વૉલ્ટ) ઊર્જા કહે છે.

 $1 \text{ keV} = 10^3 \text{eV}, 1 \text{ MeV} = 10^6 \text{eV}$

1 u (६৭) = 931.48 MeV (এর্পা)

ન્યુક્લિયસનું દળ તેના ઘટકકણોના મુક્ત અવસ્થામાંના કુલ દળ કરતાં હંમેશાં થોડું ઓછુ જ હોય છે. આ દળ તફાવતને દળક્ષતિ (Mass Defect) Δm કહે છે. તેને સમતુલ્ય ઊર્જા $E_b=(\Delta m)c^2$ ને તે ન્યુક્લિયસની બંધન-ઊર્જા કહે છે. બંધન-ઊર્જાને ન્યુક્લિયોનની કુલ સંખ્યા (A) વડે ભાગવાથી

ન્યુક્લિયોન દીઠ સરેરાશ બંધન-ઊર્જા $\mathrm{E}_{bn}\Big(=\frac{\mathrm{E}_b}{\mathrm{A}}\Big)$ મળે છે. તે ન્યુક્લિયસના સ્થાયીપણાનું માપ છે. E_{bn} નું મહત્તમ મૂલ્ય 8.8 MeV/nucleon જેટલું Feના ન્યુક્લિયસ માટે મળે છે. વચગાળાનાં દળવાળા ન્યુક્લિયસ માટે E_{bn} નું મૂલ્ય લગભગ અચળ હોય છે. તેનાથી હલકા કે ભારે ન્યુક્લિયસો માટે E_{bn} નું મૂલ્ય ઓછું હોય છે. ન્યુક્લિયસનું બંધારણ કવચ પ્રકારનું છે.

- U જેવા ભારે ન્યુક્લિયસના વિખંડનથી ઊર્જા ઉત્પન્ન થાય છે. તેને ન્યુક્લિયર-વિખંડન (Nuclear Fission) કહે છે. યોગ્ય હલકાં ન્યુક્લિયસોનું સંલયન કરવાથી પણ ઊર્જા ઉત્પન્ન થાય છે, તેને ન્યુક્લિયર-સંલયન (Nuclear Fusion) કહે છે.
- 7. બેંક્વેરેલે એમ શોધ્યું કે યુરેનિયમ પોતાનામાંથી સ્વતઃ (આપમેળે), સતત વિશિષ્ટ ગુણધર્માવાળાં વિકિરણોનું ઉત્સર્જન કરે છે. આ ઘટનાને નૈસર્ગિક રેડિયો ઍક્ટિવિટી કહે છે. મેડમક્યુરિએ યુરેનિયમના ખિનજમાંથી મેળવેલાં તત્ત્વો રેડિયમ અને પોલોનિયમ પણ રેડિયો ઍક્ટિવ છે. રેડિયો-ઍક્ટિવિટી એન્યુક્લિયર ઘટના છે.
- 8. α -િકરણો 4_2 He પરમાશુના ન્યુક્લિયસ છે. β -િકરણો એ ઇલેક્ટ્રૉન્સ જ છે. γ -િકરણો એ દ્રવ્યક્શો નથી પણ વિદ્યુતચુંબકીય તરંગો છે. એ બધાં પ્રસ્કુરણ ઉપજાવે છે. ફોટોગ્રાફિક પ્લેટ પર અસર કરે છે, આયનીકરણ કરી શકે છે અને ભેદન કરી શકે છે.
- 9. આપેલા નમૂનામાં આપેલ સમયે એકમસમય દીઠ વિભંજન પામતા ન્યુક્લિયસની સંખ્યાને તે તત્ત્વનો તે સમયે વિભંજન-દર (અથવા ઍક્ટિવિટી I કહે છે. અને તે, તે સમયે અવિભંજિત ન્યુક્લિયસની સંખ્યાના સમપ્રમાણમાં હોય છે. $\frac{dN}{dt} = \lambda N$. અહીં λ ને ક્ષય-નિયતાંક અથવા રેડિયો-ઍક્ટિવ નિયતાંક કહે છે. તે વિભંજન પામતા તત્ત્વના પ્રકાર પર આધારિત છે. અને તે તત્ત્વના સમગ્ર જીવનકાળ દરમિયાન અચળ રહે છે. ઍક્ટિવિટીનો SI એકમ બેકવેરેલ (Bq) છે. "જે પદાર્થમાં દર એક સેકંડ દીઠ 1 વિભંજન થાય તેની ઍક્ટિવિટીને 1 બેક્વેરેલ કહે છે." "જે પદાર્થમાં દર સેકંડ દીઠ 3.7 \times 10^{10} વિભંજન થાય તે પદાર્થની ઍક્ટિવિટીને 1 ક્યૂરિ (Ci) ઍક્ટિવિટી કહે છે."

1 $mCi = 10^{-3} Ci$, 1 $\mu Ci = 10^{-6} Ci$

- 10. વિભંજન-દર $\frac{dN}{dt} = -\lambda N$ પરથી t સમયે અવિભંજિત ન્યુક્લિયસની સંખ્યા $N = N_0 e^{-\lambda t}$. મળે છે. તેને રેડિયો-ઍક્ટિવ વિભંજનનો ચરઘાતાંકી નિયમ કહે છે. N-tના આલેખને ક્ષય-વક્ર કહે છે.
- 11. "જે સમયગાળામાં રેડિયો-ઍક્ટિવ તત્ત્વના ન્યુક્લિયસની સંખ્યા (N) સમયગાળાના પ્રારંભની સંખ્યા (N_0)ના અડધા મૂલ્યની બને તે સમયગાળાને તે તત્ત્વનો અર્ધ-આયુ ($au_{rac{1}{2}}$) કહે છે."

$$\tau_1 = \frac{0.693}{\lambda}$$
.

જો $\frac{0.0000}{0.000}\frac{0.000}{0.000}(t) = n$, હોય તો આપેલ t સમયે ન્યુક્લિયસની સંખ્યા N

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n$$
 પરથી મળે છે.

12. "જે સમયગાળામાં રેડિયો-ઍક્ટિવ તત્ત્વના ન્યુક્લિયસની સંખ્યા મૂળ સંખ્યાના eમા ભાગની બને તે સમયગાળાને તે તત્ત્વનો સરેરાશ જીવનકાળ (τ) કહે છે." (e=2.718)

$$\tau = \frac{1}{\lambda}, \ \tau_{\frac{1}{2}} = (0.693)(\tau)$$

$$\tau = \frac{\tau_1}{0.693} = 1.44 \, \tau_{\frac{1}{2}}$$

13. α-ક્ષયની ઘટનામાં જનક તત્ત્વ કરતાં જનિત તત્ત્વના પરમાશુક્રમાંકનું મૂલ્ય 2 એકમ અને પરમાશુ ,દળાંકનું મૂલ્ય 4 એકમ ઓછું હોય છે.

$$_{z}^{A}X \rightarrow _{z-2}^{A-4}Y + _{2}^{4}He$$

આ પ્રક્રિયામાં ઉદ્ભવતી ઊર્જાનું મૂલ્ય ($M_{_{
m X}}-M_{_{
m Y}}-M_{_{
m He}})c^2$ જેટલું હોય છે.

14. જનક તત્ત્વ કરતા જનિત તત્ત્વના પરમાશુક્રમાંકનું મૂલ્ય β^- -ક્ષયમાં એક એકમ વધુ અને β^+ -ક્ષયમાં તે એકમ ઓછું હોય છે. બંને કિસ્સામાં પરમાશુ-દળાંકમાં કોઈ ફેર પડતો નથી.

$$_{\rm Z}^{\rm A}{
m X} \;
ightarrow \; _{{
m Z}+1}^{\rm A}{
m Y} \; + \; _{{
m -1}}^{\rm 0}e \; + \; _{{
m
u}}^{\rm -} \qquad \qquad (eta^{\rm -}$$
 -ક્ષય)

$$_{Z}^{A}X \rightarrow _{Z-1}^{A}Y + _{+1}^{0}e + \nu$$
 (β+-ક્ષય)

v અને \overline{v} અનુક્રમે ન્યુટ્રિનો એને ઍન્ટિન્યુટ્રિનો છે. તેમની દ્રવ્ય સાથેની આંતરક્રિયા નહિવત્ હોવાથી તેમની પરખ અત્યંત મુશ્કેલ છે. તેઓ વિદ્યુતભારવિહીન છે. તેમજ અત્યંત અલ્પદળ અને $\frac{2}{2}$ સ્પિન ધરાવે છે.

 β^- -ક્ષયમાં ન્યુક્લિયસમાં રહેલા ન્યુટ્રૉનનું પ્રોટોન અને ઇલેક્ટ્રૉનમાં વિભંજન થઈ આ નવો જન્મેલો ઇલેક્ટ્રૉન તત્ક્ષ્ણ ઉત્સર્જન પામે છે.

- 15. ન્યુક્લિયસનાં ઊર્જાસ્તરોની ઊર્જા MeVના ક્રમની હોય છે. તેમની વચ્ચે ન્યુક્લિયસની સંક્રાંતિ થતાં MeVના ક્રમની ઊર્જાના વિદ્યુતચુંબકીય તરંગો ઉત્સર્જિત થાય છે, જે γ-કિરણો છે.
- 16. ૨ધરફર્ડ એમ શોધ્યું કે કોઈ સ્થાયી તત્ત્વ પર યોગ્ય ઊર્જાવાળા યોગ્ય ક્શોનું પ્રતાડન કરવામાં આવે, તો તે તત્ત્વનું બીજા તત્ત્વમાં રૂપાંતરણ થાય છે.

$$^{14}_{7}N + ^{4}_{2}He \rightarrow ^{17}_{8}O + ^{1}_{1}H + Q$$

Qને પ્રક્રિયાનું Q-મૂલ્ય કહે છે, અને તે પ્રક્રિયામાં ઉદ્દ્ભવતી ઊર્જા દર્શાવે છે. તેનું મૂલ્ય પ્રક્રિયા દરિમયાન થતા દળના ફેરફારને સમતુલ્ય ઊર્જા જેટલું હોય છે. Q>0 વાળી પ્રક્રિયાને ઊર્જાક્ષેપક પ્રક્રિયા કહે છે. Q<0 વાળી પ્રક્રિયાને ઊર્જાશોષક પ્રક્રિયા કહે છે. આ પ્રક્રિયાઓમાં વેગમાનનું સંરક્ષણ વિદ્યુતભારનું સંરક્ષણ અને ઊર્જાનું સંરક્ષણ થાય છે.

17. હાન અને સ્ટ્રાસમેન તથા મિટનર અને ફ્રિશના પ્રયોગો પરથી ફ્લિત થયું કે યુરેનિયમ પર થર્મલ ન્યુટ્રૉનનો મારો ચલાવવામાં આવે છે ત્યારે ન્યુટ્રૉન યુરેનિયમના ન્યુક્લિયસનું બે લગભગ સરખા ભાગમાં વિભાજન કરે છે અને આ ક્રિયામાં વિપુલ ઊર્જા ઉત્પન્ન થાય છે. આ ઘટનાને ન્યુક્લિયર- વિખંડન નામ આપવામાં આવ્યું.

$$_{92}\mathrm{U}^{235} + _{0}n^{1} \rightarrow _{92}\mathrm{U}^{236} \rightarrow _{56}\mathrm{B}a^{144} + _{36}\mathrm{K}r^{89} + _{30}n^{1} + \mathrm{Q}$$

આવી પ્રક્રિયામાં બીજાં તત્ત્વો પણ નિર્માણ પામે છે. આવાં જુદા-જુદા 60 નીપજ ન્યુક્લિયસો મળી શકે છે. જેમનાં Z મૂલ્યો 36 થી 56ની વચ્ચે હોય છે. આ વિખંડન ટુકડાઓ અત્યંત રેડિયો-ઍક્ટિવ હોય છે. અત્રે ઉદ્ભવતા ન્યુટ્રૉન ઝડપી (ઊર્જા લગભગ 2 MeV) હોય છે. આ પ્રક્રિયામાં ઉદ્ભવતી ઊર્જા 200 MeV જેટલી પ્રંચડ હોય છે.

18. ધીમા ન્યુટ્રૉન વડે $_{92}U^{235}$ ન્યુક્લિયસના વિખંડનની પ્રક્રિયામાં એક કરતાં વધુ ન્યુટ્રૉન ઉત્પન્ન થાય છે. તેમનો ઉપયોગ બીજા યુરેનિયમ ન્યુક્લિયસોના વિખંડન માટે કરતાં હજી વધુ ઊર્જા અને બીજા વધુ ન્યુટ્રૉન મળે. આવી પ્રક્રિયાની હારમાળાને ન્યુક્લિયર શૃંખલા-પ્રક્રિયા કહે છે. આ પ્રક્રિયાને

નિયંત્રિત કરીને ન્યુક્લિયર રિઍક્ટર દ્વારા એક સમાન દરથી સતત ઊર્જા મેળવી શકાય છે. આ માટે પ્રક્રિયામાં ઉદ્ભવતા ઝડપી ન્યુટ્રૉનને છટકી જતા અટકાવવા અને ધીમા પાડવા જરૂરી છે. આ માટે અનુક્રમે ન્યુટ્રૉન પરાવર્તક સપાટીઓ અને મૉડરેટર વપરાય છે. મૉડરેટર ન્યુટ્રૉનને ધીમા પાડે છે. પણ તેમનું શોષણ કરતા નથી. H_2O , D_2O , ગ્રેફાઇટ, બેરિલિયમ વગેરે સારાં મૉડરેટર છે. ખૂબ ઉષ્મા ઉદ્ભવતી હોવાથી તાપમાન 10^6 K થવાની સંભાવના છે. તેથી શીતક દ્રવ્યોની મદદથી બળતણ અને મૉડરેટરને ઠંડા પાડવામાં આવે છે. H_2O પ્રવાહી સોડિયમ ધાતુ, વાયુ વગેરે શીતક તરીકે વપરાય છે. વિખંડનની શૃંખલા પ્રક્રિયામાં કોઈ પણ તબક્કે ઉદ્ભવતા ન્યુટ્રૉનની સંખ્યા અને આપાત ન્યુટ્રૉનની સંખ્યાના ગુણોત્તર ને ગુણક અંક (મલ્ટિપ્લિકેશન ફૅક્ટર) K કહે છે. K=1 માટે રિએક્ટર ક્રિટિકલ થયાનું કહેવાય છે. Kનું મૂલ્ય 1 કરતાં વધે તો રિઍક્ટર સુપર ક્રિટિકલ સ્થિતિમાં હોવાનું કહેવાય છે. અને વિસ્ફોટ થાય છે. Kનું મૂલ્ય 1 કરતાં ઓછું થાય તો રિઍક્ટર ધીમે-ધીમે બંધ પડી જાય છે. Kના મૂલ્યનું નિયંત્રણ કરવા માટે Cd અને Bના સળિયા વિખંડન દ્રવ્યમાં રાખેલ હોય છે. તેઓ ન્યુટ્રૉનનું શોષણ કરી શકે છે. તેમનાં સ્થાન સ્વયંચાલિત હોય છે.

- 19. સૂર્ય અને અન્ય તારાઓમાં ન્યુક્લિયર સંલયનની પ્રક્રિયા દ્વારા ઊર્જા ઉત્પન્ન થાય છે. યોગ્ય હલકા ન્યુક્લિયસ (દા.ત. પ્રોટોન)ને ઘણા ઊચાં તાપમાને સંલગ્ન કરી ભારે ન્યુક્લિયસ (દા.ત., He) બનાવાય, ત્યારે વિપુલ ઊર્જા ઉત્પન્ન થાય છે. આવી પ્રક્રિયાને તાપ-ન્યુક્લિયર સંલયન કહે છે. સૂર્યમાં પ્રોટોન-પ્રોટોનચક્ર તરીકે ઓળખાતી પ્રક્રિયા દ્વારા આવી ઊર્જા ઉત્પન્ન થાય છે. ન્યુક્લિયર-સંલયનની નિયંત્રિત શુંખલા પ્રક્રિયા દ્વારા ઊર્જા મેળવવાનાં સંશોધનો વિશ્વભરમાં ચાલી રહ્યા છે.
- 20. ન્યુક્લિયર રિઍક્ટર્સ માંથી ઉત્પન્ન થતો કચરો અત્યંત તીવ્ર રેડિયો-ઍક્ટિવ હોય છે અને તેથી જીવસૃષ્ટિ માટે નુકસાન કારક છે. વળી રિઍક્ટરમાં અકસ્માતની શકયતા પણ છે.

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

1.	²⁰⁶ Pb ન્યુક્લિયસ	. અનુક્રમે કેટલા પ્રોટોન,	ન્યુટ્રૉન અને ન્યુક્લિયોનન્	ું બનેલું છે ?	
	(A) 82, 206, 28	88 (B) 206, 82,	288 (C) 82, 124,	206 (D) 12	4, 82, 206
2.	¹⁴ ₆ C, ¹² ₅ B અને છે ?	¹³ N માંથી ¹² C ના અન્	ુક્રમે આઇસોટોપ, આઇસોટો	.ન અને આઇસોબા	.૨ ન્યુક્લિયસ કયા
	(A) ${}^{14}_{6}\text{C}$, ${}^{13}_{7}\text{N}$	$^{12}_{5}B$ (B) $^{12}_{5}B$, $^{14}_{6}C$, ${}^{13}_{7}$ N (C) ${}^{13}_{7}$ N, ${}^{12}_{5}$ B	, ¹⁴ ₆ C (D) ¹⁴ ₆	C, ${}^{12}_{5}B$, ${}^{13}_{7}N$
3.	જો ²⁷ A <i>l</i> અને	$^{64}_{30}{ m Z}n$ ન્યુક્લિયસોની ત્રિ	જ્યાઓ અનુક્રમે $\mathbf{R}_{_{1}}$ અને	R_2 હોય, તો $\frac{R}{R_2}$	$\frac{1}{2} = \dots $.
	(A) $\frac{27}{64}$	(B) $\frac{3}{4}$	(C) $\frac{9}{16}$	(D) $\frac{13}{30}$	3
4	(2)	21612121 2112 2116120	1 c) c sis 1 9 m 1 1 3	4 - 37 - 31 3 4 TT	ל בנו וכונוסוו

4. ડ્યુટેરોન $\binom{2}{1}$ ન્યુક્લિયસ માટે ન્યુક્લિયોન દીઠ બંધન-ઊર્જા 1.1 MeV અને $\binom{4}{2}$ He ન્યુક્લિયસ માટે તે 7 MeV છે. જો બે ડ્યુટેરોન ન્યુક્લિયસ ભેગાં મળી $\binom{4}{2}$ He ન્યુક્લિયસની રચના કરે, તો ઉત્પન્ન થતી ઊર્જા કેટલી હશે ?

189

(A) 11.8 MeV (B) 23.6 MeV (C) 26.9 MeV (D) 32.4MeV 5. ન્યુક્લિયસ નૈસર્ગિક રીતે રેડિયો-ઍક્ટિવ હોય તે માટેની જરૂરી અને પર્યાપ્ત શરત કઈ છે?

(A) Z > 50 (B) Z > 60 (C) Z > 70 (D) Z > 83 ન્યુક્લિયસ

6.	α, β, γની સાપેક્ષ આયનીકરણશક્તિની	બાબતમાં નીચેનામાંથી કયું સત્ય છે ?
	(A) તે α કણ માટે મહત્તમ છે.	(B) તે β ક્શ માટે મહત્તમ છે.
	(C) તે γ વિકિરણ માટે મહત્તમ છે.	(D) તે α, β, γ માટે સમાન છે.
7.	રેડિયો-એક્ટિવ તત્ત્વના જીવનકાળ દરમિયા જાય છે અને તે સાથે	ન જેમ સમય વ્યતીત થાય તેમ તેના ન્યુક્લિયસની સંખ્યા ઘટતી
	(A) ઍક્ટિવિટી અને λ ઘટતાં જાય છે.	(B) ઍક્ટિવિટી અને λ વધતાં જાય છે.
	(C) ઍક્ટિવિટી ઘટે છે, પણ λ અ ચળ	રહે છે. (D) ઍક્ટિવિટી ઘટે છે, પણ λ વધે છે.
8.	એક રેડિયો-ઍક્ટિવ તત્ત્વનો અર્ધ-આયુ 5 r રહેશે.	nin છે, તો 20 minને અંતે તેનો ટકા જથ્થો અવિભંજિત
	(A) 93.73 (B) 75	(C) 25 (D) 6.25
9.		યો-ઍક્ટિવ તત્ત્વની ઍક્ટિવિટી પ્રારંભિક ઍક્ટિવિટીના કેટલા ગણી ૧ના કેટલા ગણું હશે? અથવા (c) ન્યુક્લિયસની સંખ્યા પ્રારંભિક
	(A) 2^3 (B) 3^2	(C) $\frac{1}{3^2}$ (D) $\frac{1}{2^3}$
10.	$_{94} \mathrm{P} u^{241}$ નું વિભંજન થતાં ઉત્પન્ન થતું તત્ત્વ	પણ રેડિયો-ઍક્ટિવ હોઈ વિભંજન પામે છે. આવી પરંપરામાં કુલ
	8 α-ક્શો અને 5 β-ક્શો ઉત્સર્જન પામીને	ક્રિયા વિરામ પામે છે તો ઉત્પન્ન થયેલું અંતિમ તત્ત્વ કયું હશે ?
	(A) $_{83}\text{B}i^{209}$ (B) $_{82}\text{P}b^{209}$	(C) $_{83}\text{B}i^{214}$ (D) $_{82}\text{P}b^{214}$
11.	1 g રેડિયો-ઍક્ટિવ તત્ત્વ 2 દિવસને અંત રહેશે ?	ો $rac{1}{3}$ g થઈ જાય છે, તો કુલ 6 દિવસને અંતે કેટલું દળ બાકી
	(A) $\frac{1}{27}$ g (B) $\frac{1}{6}$ g	(C) $\frac{1}{9}$ g (D) $\frac{1}{12}$ g
12.	$_{z}^{n}$ P અને $_{z}^{2n}$ Q ન્યુક્લિયસોની ન્યુક્લિયોન	ા દીઠ બંધન-ઊર્જા અનુક્રમે x અને y છે, તો $^n_z P$ + $^n_z P$ =
	z^{2n} Q પ્રક્રિયામાં શોષાતી ઊર્જા કેટલી હશે	?
	(A) $2nxy$ (B) $2ny + 2ny + 2$	$2nx$ (C) $2ny - 2nx$ (D) $\frac{2nx}{2ny}$
13.	t સમયે અવિભંજિત ન્યુક્લિયસની સંખ્યા વિભંજન પામેલાં ન્યુક્લિયસની સંખ્યા કેટ	$\mathrm{N}=\mathrm{N}_0e^{-\lambda t}$ પરથી મળતી હોય તો, $t_{_1}$ થી $t_{_2}$ સમય દરમિયાન લી હશે ?
	(A) $N_0(e^{-\lambda t_2} - e^{-\lambda t_1})$	(B) $N_0(e^{-\lambda t_1} - e^{-\lambda t_2})$
	(C) $N_0(e^{\lambda t_2} - e^{\lambda t_1})$	(D) $N_0(e^{\lambda t_1} - e^{\lambda t_2})$
14.	α અને β ક્ષય માટે એક રેડિયો-ઍક્ટિવ વર્ષ પછી તેની કુલ ઍક્ટિવિટી મૂળ ઍ	તત્ત્વના અર્ધ-આયુ અનુક્રમે 4 વર્ષ અને 12 વર્ષ હોય, તો 12 ક્ટેવિટીના કેટલા ટકા થશે ?
	(A) 50 (B) 25	(C) 12.5 (D) 6.25
190		ભૌતિકવિજ્ઞાન- IV

15.	Cd, પ્રવાહી Na-ધાતુ અને ગ્રેફાઇટ એ બધામાંથી અનુક્રમે મૉડરેટર, શીતક અને નિયંત્રક સળિયાના દ્રવ્ય
	તરીકે રિઍક્ટરમાં ક્યાં-ક્યાં વાપરી શકાય ?
	(A) પ્રવાહી Na ધાતુ, ગ્રેકાઇટ, Cd (B) ગ્રેકાઇટ, પ્રવાહી Na ધાતુ, Cd
	(C) C d , પ્રવાહી N a ધાતુ, ગ્રેફાઇટ (D) ગ્રેફાઇટ, C d , પ્રવાહી N a ધાતુ
16.	જો $^{27}_{13}\mathrm{A}\mathit{l}$ એ સ્થાયી ન્યુક્લિયસ હોય, તો $^{32}_{13}\mathrm{A}\mathit{l}$ ના ન્યુક્લિયસમાંથી શાનું ઉત્સર્જન થઈ શકે ?
	(A) α -કણ (B) β^- -કણ (C) પ્રોટોન (D) β^+ -કણ
17.	એક રેડિયો-ઍક્ટિવ તત્ત્વનો અર્ધ-આયુ 2 hr અને બીજાનું 4 hr છે. તેમની પ્રારંભિક ઍક્ટિવિટી સમાન છે, તો 4 hrને અંતે તેમની ઍક્ટિવિટીનો ગુણોત્તર કેટલો હશે ?
	(A) 1 : 4 (B) 1 : 3 (C) 1 : 2 (D) 1 : 1
18.	αનું ઉત્સર્જન કરતું 1 મોલ તત્ત્વ એક પાત્રમાં મૂકેલ છે, જે તેમનો સંગ્રહ કરે છે. તે તત્ત્વનો અર્ધ-આયુ
	5 hr છે. તે પાત્રમાં 4.515 $ imes$ 10^{23} $lpha$ -ક્ષ્ણોનો સંગ્રહ થવા માટે કેટલો સમય લાગશે ?
	(A) 4.515 hr (B) 9.030 hr (C) 10 hr (D) 20 hr
19.	રેડિયો-ઍક્ટિવ રૂપાંતરણ $^{\mathrm{A}}_{z}\mathrm{X} ightarrow ^{\mathrm{A}}_{z+1}\mathrm{X}_{1} ightarrow ^{\mathrm{A-4}}_{z-1}\mathrm{X}_{2} ightarrow ^{\mathrm{A-4}}_{z}\mathrm{X}_{3}$ માં કયાં રેડિયો-ઍક્ટિવ વિકિરણ ક્રમશઃ ઉત્સર્જન
	પામે છે ?
	(A) α , β^- , β^- (B) β^- , α , β^- (C) β^- , β^- , α (D) α , α , β^-
20.	રેડિયો-ઍક્ટિવ રૂપાંતરણ $x \xrightarrow{\alpha} x_1 \xrightarrow{\beta^-} x_2 \xrightarrow{\beta^-} x_3$ માં કયા બે આઇસોટોપ્સ (સમસ્થાનિકો) છે ?
21.	(A) X અને X_1 (B) X અને X_3 (C) X_1 અને X_2 (D) X_2 અને X_3 રેડિયો-ઍક્ટિવ તત્ત્વ Xનો અર્ધ-આયુ 3 hr છે. તે રૂપાંતર પામીને સ્થાયી તત્ત્વ Y બનાવે છે. Xના જન્મ પછી t સમયે X અને Yના ન્યુક્લિયસની સંખ્યાનો ગુણોત્તર 1:15 છે, તો t નું મૂલ્ય કેટલું હશે ?
	(A) 12 hr (B) 6 hr (C) 24 hr (D) 45 hr
22.	જો હાઇડ્રોજનમાંથી હિલિયમ થવાની પ્રક્રિયામાં દળક્ષતિ 0.5% હોય, તો 1 kg હાઇડ્રોજનમાંથી હિલિયમ બને,
	ત્યારે ઉદ્ભવતી ઊર્જા કેટલી હશે ? [1 $k{ m WH}=36 imes10^5{ m J}$]
	(A) 1.25 k WH (B) 1.25 \times 10 ⁶ k WH (C) 1.25 \times 10 ⁸ k WH (D) 1.25 \times 10 ⁴ k WH
23.	રેડિયો-ઍક્ટિવ તત્ત્વ X નીચે મુજબનાં પરંપરિત વિભંજનો અનુભવે છે.
	$X \xrightarrow{\alpha} X_1 \xrightarrow{\beta^-} X_2 \xrightarrow{\alpha} X_3 \xrightarrow{\gamma} X_4$.
	જો Xના પરમાણુ-ક્રમાંક અને પરમાણુ-દળાંકનાં મૂલ્યો અનુક્રમે 72 અને 180 હોય તો, \mathbf{X}_4 માટેનાં અનુરૂપ
	મૂલ્યો કર્યા હશે ?
	(A) 69, 176 (B) 69, 172 (C) 71, 176 (D) 71, 172
24.	રેડિયો-ઍક્ટિવ તત્ત્વ Xનું અર્ધ-આયુ બીજા તત્ત્વ Yના સરેરાશ જીવનકાળ જેટલું છે. પ્રારંભમાં બંનેમાં
	પરમાશુઓની સંખ્યા સમાન છે, તો
	(A) પ્રારંભમાં X અને Yના વિભંજન-દર સમાન હશે.
	(B) X અને Y હંમેશા સમાન દરથી વિભંજન પામતા હશે.
	(C) પ્રારંભમાં Yનો વિભંજન-દર X કરતાં વધુ હશે.
	(D) પ્રારંભમાં Xનો વિભંજન-દર Y કરતાં વધુ હશે.

ન્યુક્લિયસ

191

- 25. બે તત્ત્વો X_1 અને X_2 ના ક્ષય-નિયતાંકો અનુક્રમે 10λ અને λ છે. જો પ્રારંભમાં તેઓનાં ન્યુક્લિયસની સંખ્યા સમાન હોય, તો કેટલા સમય બાદ X_1 અને X_2 ના ન્યુક્લિયસોની સંખ્યાનો ગુણોત્તર $\frac{1}{\ell}$ થશે ?
 - (A) $\frac{1}{10\lambda}$
- (B) $\frac{1}{11\lambda}$
- (C) $\frac{11}{10\lambda}$
- (D) $\frac{1}{9\lambda}$

જવાબો

- 1. (C) 2. (A) 3. (B) 4. (B) 5. (D) 6. (A)
- 7. (C) 8. (D) 9. (D) 10. (A) 11. (A) 12. (C)
- 13. (B) 14. (D) 15. (B) 16. (B) 17. (C) 18. (C)
- 19. (B) 20. (B) 21. (A) 22. (C) 23. (B) 24. (C)
- 25. (D)

નીચે આપેલ પ્રશ્નોના ટૂંકમાં જવાબ આપો :

- 1. દળ-ક્ષતિ એટલે શું ?
- 2. રેડિયો-ઍક્ટિવિટી એ ન્યુક્લિયર ઘટના છે, તેમ શા પરથી કહી શકાય ?
- 3. વિભંજન-દર એટલે શું ?
- 4. 5 mCi =Bq. (ખાલી જગ્યા પૂરો)
- 5. $ln \ \mathrm{I} t$ ના આલેખનો ઢાળ કેટલો હશે ? ($\mathrm{I} =$ ઍક્ટિવિટી)
- 6. એક નમૂનામાં t=0 સમયે રેડિયો-ઍક્ટિવ તત્ત્વનાં ન્યુક્લિયસની સંખ્યા 2048 છે. તેનું અર્ધ-આયુ 5 hr હોય, તો 25 કલાકમાં કેટલા ન્યુક્લિયસ વિભંજન પામી ગયા હશે ? [જવાબ : 1984]
- 7. ''રેડિયો-ઍક્ટિવ તત્ત્વનો અર્ધ-આયુ તેના કુલ જીવનકાળ (આયુ)નો અડધો ભાગ દર્શાવે છે.'' આ સત્ય છે ?
- 8. કૃત્રિમ ન્યુક્લિયર-વિભંજન એટલે શું ?
- 🦜 ન્યુક્લિયર પ્રક્રિયાનું Q-મૂલ્ય એટલે શું ?
- 10. ન્યુક્લિયર-વિખંડન એટલે શું ?
- 11. ''ન્યુટ્રૉન એ સારો પ્રક્ષિપ્ત ક્ર્ છે.'' શા માટે ?
- 12. U^{235} ના ન્યુક્લિયસના વિખંડનથી કેટલી ઊર્જા ઉદ્ભવે છે ?
- 13. ન્યુક્લિયર શુંખલા-પ્રક્રિયા એટલે શું ?
- 14. મૉડરેટરનું કાર્ય શું છે ?
- 15. ન્યુક્લિયર શૃંખલા-પ્રક્રિયામાં મલ્ટિપ્લિકેશન ફૅક્ટર (K) એટલે શું ?
- 16. ન્યુક્લિયર-રિઍક્ટરમાં નિયંત્રક સળિયાઓ (Control Rods)નું કાર્ય શું છે ?
- 17. ન્યુક્લિયર-સંલયન એટલે શું ?
- 18. રેડિયો-ઍક્ટિવિટીના SI એકમની વ્યાખ્યા આપો.
- 19. ઍક્ટિવિટી માટેના એકમ 'ક્યૂરિ'ની વ્યાખ્યા આપો.
- 20. ન્યુક્લિયસમાં ઇલેક્ટ્રૉન રહેતા નથી, તો પછી β⁻-ક્ષયની પ્રક્રિયામાં ન્યુક્લિયસમાંથી ઇલેક્ટ્રૉન કેવી રીતે આવે છે ?

નીચેના પ્રશ્નોના જવાબ આપો :

- 🥼 ન્યુક્લિયર બળો અંગે ટૂંકમાં માહિતી આપો.
- ન્યુક્લિયસના સ્થાયીપણા વિષે સમજાવો.
- ₃ ન્યુક્લિયસની બંધન-ઊર્જા અંગે સમજાવો.

- 4. ન્યુક્લિયોન દીઠ સરેરાશ બંધન-ઊર્જા વિરુદ્ધ પરમાશુ-દળાંકના આલેખનું સ્વરૂપ દર્શાવી, તેના નોંધપાત્ર મુદ્દા સમજાવો.
- 5. નૈસર્ગિક રેડિયો-ઍક્ટિવિટી અંગે સમજૂતી આપો.
- 6. રેડિયો-ઍક્ટિવ વિકિરણો કયાં છે ? તેમના ગુણધર્મો જણાવો.
- રેડિયો-ઍક્ટિવ તત્ત્વના વિભંજન દર અને ક્ષય-નિયતાંક વિષે સમજાવો.
- 8. રેડિયો-ઍક્ટિવ વિભંજનનો ચરઘાતાંકી નિયમ મેળવો.
- 🥦 રેડિયો-ઍક્ટિવ તત્ત્વના અર્ધ-આયુની વ્યાખ્યા આપી તેનું સૂત્ર મેળવો.
- 10. રેડિયો-ઍક્ટિવ તત્ત્વનો સરેરાશ જીવનકાળ એટલે શું? તેનું સૂત્ર મેળવો. તેનો અર્ધ-આયુ સાથેનો સંબંધ દર્શાવો.
- 11. β-ક્ષય ઘટના સમજાવો.
- 12. ન્યુક્લિયર પ્રક્રિયાના Q-મૂલ્યની સમજૂતી આપો.
- 13. ન્યુક્લિયર વિખંડનની ઘટના વિગતવાર સમજાવો.
- 14. ન્યુક્લિયર શૃંખલા-પ્રક્રિયા એટલે શું ? તેની સફળતા આડે રહેલી મુશ્કેલીઓ અને તેના નિવારણ અંગે સમજાવો.
- 15. ન્યુક્લિયર-રિઍક્ટર અને તેની કાર્યપદ્ધતિ વિષે સમજાવો.
- 16. સૂર્ય અને અન્ય તારાઓમાં થતું તાપ-ન્યુક્લિયર સંલયન સમજાવો.
- 17. ન્યુક્લિયર ખતરાઓ અંગે ચર્ચા કરો.

નીચેના દાખલા ગણો :

 આકૃતિમાં ન્યુક્લિયોન દીઠ સરેરાશ બંધન-ઊર્જા વિરુદ્ધ પરમાશુ-દળાંકનો આલેખ દર્શાવ્યો છે, તો નીચેનામાંથી કઈ પ્રક્રિયામાં ઊર્જાનું ઉત્સર્જન થશે તે શોધો.

$$(b) W \rightarrow 2Y$$

[જવાબ : પ્રક્રિયા (b)]

એક રેડિયો-ઍક્ટિવ તત્ત્વ α અને β એમ બંને ક્શોનું ઉત્સર્જન કરે છે. α ઉત્સર્જન માટેનો તેનો સરેરાશ જીવનકાળ 1600 yr છે અને β-ઉત્સર્જન માટેનો સરેરાશ જીવનકાળ 400 yr છે. જો આ બંને ઉત્સર્જનો સાથે જ થતાં હોય, તો આ નમુનાનો 75% ભાગ ક્ષય પામે તે માટે લાગતો સમય શોધો.

[४वाध : 443.52 yr]

- 3. એક તારામાં બે પ્રોટોન સન્મુખ સંઘાત (Head on Collision) અનુભવે છે. જો આ દરેક પ્રોટોનની ગતિ- ઊર્જા એકબીજાથી ખૂબ દૂરની સ્થિતિમાં 18~keV હોય તો તેમની વચ્ચેનું લઘુતમ અંતર (Distance of Closest Approach) કેટલું હશે? ($k=9\times 10^9~{\rm Nm^2C^{-2}}$) [જવાબ : $4\times 10^{-14}~{\rm m}$]
- 4. રેડિયો-ઍક્ટિવ ડોઝ આપેલા દર્દીની નજીક કાઉન્ટર લાવતાં કોઈ એક ક્ષણે તે દર મિનિટ દીઠ 16000 કાઉન્ટ નોંધે છે. 4 કલાક બાદ સમાન સંજોગોમાં આ કાઉન્ટની સંખ્યા દર મિનિટ દીઠ 500 થાય છે, તો આપેલ ડોઝમાંના રેડિયો-ઍક્ટિવ તત્ત્વનો અર્ધ-આયુ શોધો. [જવાબ : 48 min]
- 5. R a^{226} નો અર્ધ-આયુ 4.98×10^{10} s છે, તો તેના 1 g નમૂનાની ઍક્ટિવિટી શોધો. એવોગેડ્રો-અંક $6.02 \times 10^{23}~\text{mol}^{-1}$ લો.

6. $^{35}_{17}$ CI ના ન્યુક્લિયસનું દળ 34.9800 u છે. જો પ્રોટોનનું દળ 1.00783 u અને ન્યુટ્રૉનનું દળ 1.00866 u હોય, તો $^{35}_{17}$ CI ન્યુક્લિયસની ન્યુક્લિયોન દીઠ બંધન-ઊર્જા શોધો. (1 u = 931 MeV લો.)

7. એક ન્યુક્લિયસની સરેરાશ ત્રિજ્યા 6.6 fermi છે. જો ન્યુક્લિયોનનું સરેરાશ દળ 1.0088~u હોય તો ન્યુક્લિયસની સરેરાશ ઘનતા શોધો. ($R_0=1.1~fermi,~1~u=1.66\times10^{-27}~kg$)

[જવાબ :
$$3 \times 10^{17} \text{ kg m}^{-3}$$
]

8. કોઈ એક ક્ષણે આપેલ નમૂનામાં રેડિયો-ઍક્ટિવ તત્ત્વના વિભંજનનો દર 8000 વિભંજન/સેકંડ છે. આ ક્ષણે તેમાં આ તત્ત્વના અવિભંજિત ન્યુક્લિયસની સંખ્યા 8×10^7 છે, તો તે તત્ત્વનો ક્ષય-નિયતાંક અને અર્ધ-આયુ શોધો.

[୪ସାଧ :
$$\lambda = 10^{-4} \text{ s}^{-1}, \ \frac{\tau_1}{2} = 6930 \text{ s}$$
]

9. $_1\mathrm{H}^2+_1\mathrm{H}^2\to _2^3\mathrm{He}+_0n^1+3.27~\mathrm{MeV}$ પ્રક્રિયા મુજબ 1 kg ડ્યુટેરિયમ ($_1\mathrm{H}^2$)ના સંલયનથી 100 Wનો વિદ્યુતબલ્બ કેટલો સમય સુધી અજવાળી શકે ? ($\mathrm{N_A}=6.02\times 10^{23},~1~\mathrm{yr}=3.16\times 10^7~\mathrm{s}$)

[જવાબ : લગભગ 24917 yr]

ભૌતિકવિજ્ઞાન-IV