Peano Axioms, Integers, Rationals

Parasar Mohanty, 2022

1

1 Peano Axioms

- **Axiom 1:** 1 is a natural number.
- **Axiom 2:** If n is a natural number then n has a *successor* denote it by (n+).
- **Axiom 3:** 1 is not a successor of any natural number.
- **Axiom 4:** Different natural numbers must have different successors.
- **Axiom 5:** (Mathematical Induction) Let P(n) be any property pertaining to natural number. Suppose P(1) is true and suppose whenever P(n) is true then P(n+) is also true. Then P(n) is true for every natural number n.

Through Peano axioms we define Natural numbers. We also have addition in \mathbb{N} . If $m, n \in \mathbb{N}$ then $m + n = ((((((m+)+)+)+)...)+, i.e. n^{th}$ successor of n.

Proposition 1.1. If $A \subset \mathbb{N}$ then it has an element which is not a successor of any element in A.

Exercise 1.1. 1. Prove that 111...111 (729 ones) is divisible by 729.

- 2. A set of n points is taken on a circle and each pair is connected by a segment. It happens that no three of these segments meet at the same point. Into how many parts do they divide the interior of the circle?
- 3. Show that $1 + 3 + \cdots + (2n 1) = n^2$.
- 4. Show that $1.2 + 2.3 + \cdots + (n-1).n = (n-1)n(n+1)/3$.
- 5. Show that $\frac{1}{1.2} + \frac{1}{2.3} + \cdots + \frac{(n-1)n}{n} \frac{n-1}{n}$.
- 6. Let $l, k \in \mathbb{N}$. Show that $\frac{1}{l(l+k)} + \frac{1}{l(+k)(l+2k)} + \cdots + \frac{1}{(l+(n-1)k)(l+nk)} = \frac{n}{l(l+nk)}$.

¹Part of this note is based on materials from Analysis I by Terrence Tao

2 Integers

Define a relation on $\mathbb{N} \times \mathbb{N}$ as $(m, n) \sim (p, q)$ if m + q = n + p. This is an equivalence relation. Denote m - n = (m, n). An integer is an expression of the form m - n where m and n belongs to \mathbb{N} . Two integers are considered to be equal, $m_1 - n_1 = m_2 - n_2$, if and only if $m_1 + n_2 = m_2 + n_1$.

Let us denote \mathbb{Z} to be the set of all integers. We have the following well defined addition and multiplications in \mathbb{Z} .

Add: (m-n) + (p-q) = (m+p) - (n+q).

Mult: $(m-n) \times (p-q) = (mp + nq) - (np + mq)$.

Exercise 2.1. Show that addition and multiplication are well defined.

Definition 2.2. If m-n is an integer then define negation of m-n to be the pair (n,m).

Lemma 2.3. Let x be an integer. Then exactly one of the following statement is true.

- 1. x = (m, m)
- 2. x = (m, n) where m > n
- 3. x = (m, n) where m < n.

Proposition 2.1 (No zero divisors). Let $m, n \in \mathbb{Z}$ such that mn = 0. Then either m = 0 or n = 0.

Proof. Let us assume both are not zero. Then considering signs of m and n one can conclude $mn \neq 0$, by using the fact integers are of three types.

3 Rational Number

Define a relation on $\mathbb{Z} \times \mathbb{Z} \cup \{0\}$ as $(m,n) \sim (p,q)$ if mq = np. This is an equivalence relation. Denote $\frac{p}{q} = (p,q)$. A rational number is an expression of the form $\frac{p}{q}$ where p and q are integers and $q \neq 0$. Let us denote \mathbb{Q} to be the set of rationals. We have addition, multiplication and division for rationals.

Add: $\frac{m}{n} + \frac{p}{q} = \frac{mq + pn}{nq}$.

Mult: $\frac{m}{n} \times \frac{p}{q} = \frac{mp}{nq}$.

Div: $\frac{m}{n}/\frac{p}{q} = \frac{mq}{np}, p \neq 0.$

Let $x, y \in \mathbb{Q}$ we say that x > y if x - y > 0 and x < y if y > x. Also, $x \ge y$ iff either x > y or x = y, similarly we can define $x \le y$.

Proposition 3.1. Let $x, y \in \mathbb{Q}$ then exactly one of the three statements is true: (i) x > y (ii) x = y (iii) x < y.

Definition 3.1 (Absolute Value). Let $x \in \mathbb{Q}$ define

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

(Distance) Let $x, y \in \mathbb{Q}$ define d(x, y) = |x - y|.

Proposition 3.2.

Let $x, y, z \in \mathbb{Q}$. Then following statements holds.

- 1. (Non-degenracy) $d(x,y) \ge 0$. Also $d(x,y) = 0 \iff x = y$.
- 2. (Symmetry) d(x, y) = d(y, x).
- 3. (Traingle Inequality) $d(x,y) \le d(x,z) + d(y,z)$.

3.1 Differences between \mathbb{Z} and \mathbb{Q}

- 1. Each integer has a *successor*. However, this is not true in \mathbb{Q} . As let $x, y \in \mathbb{Q}$ and x < y then there exists a $z \in \mathbb{Q}$ such that x < z < y.
- 2. \mathbb{Q} is a field but \mathbb{Z} is not.
- 3. For $x \in Q$ and $0 < \epsilon \in \mathbb{Q}$ define $B_{\epsilon}(x) = \{y \in \mathbb{Q} : d(y,x) < \epsilon\}$. If $0 < \epsilon < 1$ and $x \in \mathbb{Z}$ then then the set $B_{\epsilon}(x) \cap \mathbb{Z} = \emptyset$. However, for $x \in \mathbb{Q}$ we have $B_{\epsilon}(x) \cap \mathbb{Q} \neq \emptyset$.

4.

Definition 3.2. Let $A \subset \mathbb{Q}$. We say that A is **bounded above** if there exists a $M \in \mathbb{Q}$ such that $x \leq M$ for all $x \in A$. Similarly, A is **bounded below** if there exists a $N \in \mathbb{Q}$ such that $x \geq N$ for all $x \in A$. A is said to be bounded if it is both bounded above as well as bounded below.

M is called an upper bound for A. Similarly N is called a lower bound.

Proposition 3.3. Let $A \subset \mathbb{Z}$ and bounded above. There exists $N \in A$ such that $N \leq M$ for any upper bound of A.

Similarly, for $A \subset \mathbb{Z}$ and bounded below. There exists $N \in A$ such that $N \geq M$ for any other lower bound of A.

We do not have this property in Q!!

Proposition 3.4. There exists a set $A \subset \mathbb{Q}$ which is bounded above with the property that any $\alpha \in A$ of A there is a $\beta \in A$ such that $\beta > \alpha$.

Proof. Consider $A = \{x \in \mathbb{Q} : x^2 < 2\}$. Clearly 2 is an upper bound of A, so A is bounded above. Let $\alpha \in A$. Let $\beta = \alpha + \frac{2-\alpha^2}{\alpha+2}$. Clearly, $\beta > \alpha$ and $\beta \in \mathbb{Q}$. Also, $\beta^2 - 2 = \frac{2(\alpha^2 - 2)}{(\alpha + 2)^2} < 0$. \square

3.2 Striking Similarity between \mathbb{Z} and \mathbb{Q}

There exists a bijection from \mathbb{Z} to \mathbb{Q} .

3.2.1 Cardinality

Cardinality of a set A is the number of elements of A, we denote it by |A|. It can be finite and it can be infinite. If there exists a bijection $f: A \to B$ then we say that |A| = |B|.

Definition 3.3. We say that a set A is countable if there exists a bijection $f: N \to A$ where $N \subsetneq \mathbb{N}$ is finite or $N = \mathbb{N}$. In the first case we say that A is finite and in the later case we say A is countably infinite.

Example 3.4. \mathbb{Z} is countable. Define $f: \mathbb{N} \to \mathbb{Z}$ as

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n-1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Example 3.5. Suppose $A \subseteq \mathbb{N}$ and infinite then $|A| = |\mathbb{N}|$.

Proof. Let a_1 is the smallest element of A, a_2 be the smallest element of $A \setminus \{a_1\}$, a_3 be the smallest element of $A \setminus \{a_1, a_2\}$ and so on. So we have $a_1 < a_2 < a_3 < \dots$ If $a \in A$ consider $\{n \in A : n \leq a\}$ this set is finite say k elements then $a = a_k$. So the map $f(l) = a_l$, $l \in \mathbb{N}$ will give us the required bijection.

Example 3.6. Finite union of countable sets is countable.

Proof. If all of them are finite then nothing to prove. Let A_1 and A_2 be two countably infinite set. Then there exists bijections $\phi_1: 2\mathbb{N} \to A_1$ and $\phi_2: (2\mathbb{N}+1) \to A_2$. Combining these two bijections we easily get bijection from \mathbb{N} onto $A_1 \cup A_2$.

What about countable union? Let $A_1, A_2, ...$ be countable sets. To avoid repetition let $B_1 = A_1$ and $B_i = A_i \setminus \bigcup_{k=1}^{i-1} A_k$. Each B_i is countable so list its elements as $b_{i,1}, b_{i,2}, ...$ and $A = \bigcup_{i \geq 1} A_i = \bigcup_{i \geq 1} B_i$. Consider the map $f: A \to \mathbb{N} \times \mathbb{N}$ as $f(b_{i,j}) = (i,j)$ is one-one. Thus $|A| \leq |\mathbb{N} \times \mathbb{N}|$. Following proposition will tell us it is countable.

Proposition 3.5. The set $\mathbb{N} \times \mathbb{N}$ is countable.

In particular, countable union of countable sets is countable.

Proof. Define $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as $f(m,n) = 2^{m-1}(2n-1)$. Observe $2^{m-1}(2n-1) = 2^{p-1}(2q-1)$ if and only if m = p and n = q. For onto consider $l \in \mathbb{N}$ then either l is odd or even. If it is odd then l = 2p-1 for some $p \in \mathbb{N}$ consider m = 1 and n = p. If even the it can be factorized into powers of 2 and an odd number.

Corollary 3.7. $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}|$.

Does there exists an uncountable set? i.e does there exists an infinity bigger than the countable infinity.

Consider $T(\mathbb{N}) = \{f : \mathbb{N} \to \{0,1\}\}$. What is the cardinality of $T(\mathbb{N})$?

Proposition 3.6. No bijection from \mathbb{N} to $T(\mathbb{N})$

Proof. Let $\phi: \mathbb{N} \to T(\mathbb{N})$ be a one-one map. Denote $\phi(n) = f_n$. Define $h(n) = \begin{cases} 1 & \text{if } f_n(n) = 0 \\ 0 & \text{if } f_n(n) = 1. \end{cases}$ Certainly $h \in T(\mathbb{N})$. If ϕ is onto then there exists a $l \in \mathbb{N}$ such that $\phi(l) = h$. Then, $h(l) = 1 \Rightarrow f_l(l) = 0 \Rightarrow \phi(l) = 0$. Similarly if $h(l) = 0 \Rightarrow f_l(l) = 1 \Rightarrow \phi(l) = 1$. Hence a contradiction. Corollary 3.8. $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$ and $\mathcal{P}(\mathbb{N})$ is not countable.

Proof. Considering the map $x \mapsto \{x\}$ we get $|\mathbb{N}| \leq |\mathcal{P}(\mathbb{N})|$. Now consider the bijection $\psi : \mathcal{P}(\mathbb{N}) \to T(\mathbb{N})$ by $\psi(B) = \chi_B$. To show it is onto, let $f \in T(\mathbb{N})$ define $B = \{n \in \mathbb{N} : f(n) = 1\}$.

In fact the following more general statement is true.

Theorem 3.9. Let A be any set then $|A| < |\mathcal{P}(A)|$.

Proof. If $|A| < \infty$ then $|\mathcal{P}(A)| = 2^{|A|}$. Assume A is an infinite set. Suppose there exists a bijection $f: A \to \mathcal{P}(A)$. Consider $B = \{x: x \not\in f(x)\}$. Clearly $B \in \mathcal{P}(A)$. If f is bijection then there exists a $y \in A$ such that f(y) = B. Now either $y \in B$ or $y \notin B$. If $y \in B$ then $y \in f(y)$ a contradict. If $y \notin B$ then $y \in f(y) = B$. Hence f cannot be a bijection. So, $|A| < |\mathcal{P}(A)|$.

3.3 Cantor-Schröeder-Bernstein

Theorem 3.10. Let X and Y be two sets. If $|X| \leq |Y|$ and $|Y| \leq |X|$ then |X| = |Y|.

Proof. (Sketch) Let $M \subset Y$ and $N \subset X$ such that there exist bijections $f: X \to M$ and $g: Y \to N$. Let $x \in X$. If $x \in g(Y)$ we consider $g^{-1}(x)$ call it first ancestor of x. If $g^{-1}(x) \in M$ then we consider $(f^{-1}g^{-1})(x)$. Call it second ancestor. Continue the process of identifying ancestry of every x. Now there are three cases

- 1. x has infinitely many ancestors. Denote those x as X_i .
- 2. x has even number of ancestor(s) (0 is an even number!) Denote those x as X_e .
- 3. x has odd numbers of ancestors. Denote those x as X_o .

Clearly,
$$X = X_i \cup X_e \cup X_o$$
. Define $F : X \to Y$ as $F(x) = \begin{cases} f(x) & \text{if } x \in X_i \cup X_e \\ g^{-1}(x) & \text{if } x \in X_o. \end{cases}$