

BITCOIN PREDICTION USING ML

Linear Regression

Introduction

This project focuses on the prediction of the prices of Bitcoin, the most in-demand crypto-currency of today's world.
We predict the prices accurately by gathering data available at Binance while taking various hyper-parameters into consideration which have affected the bitcoin prices until now.

Overview

Since Bitcoin's first appearance in 2009, it has changed the world's financial landscape substantially. The decentralized cryptocurrency has established itself as an asset class recognized by many asset managers, large investment banks and hedge funds. As the speed of mainstream adoption continues to soar, it is also leading investors to explore new ventures, such as crypto options and futures.

Overview

Bitcoin has been historically known to be more volatile than regulated stocks and commodities. Its most recent surge in late December 2020, early January 2021 has brought about a lot of questions and uncertainties about the future financial landscape. Bitcoin is traded at slightly below USD 50,000, which is no small feat considering it entered 2020 at around USD 7,200.

Importing libraries 👼

At first import the required libraries

import pandas as pd
import requests
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

Loading dataset 💯

Loading the Dataset from the binance api

```
url = 'https://api.binance.com/api/v3/klines'
r = requests.get(url,params={'symbol':'BTCUSDT','interval': '1d','limit':2000})
r
<Response [200]>
```

formating the Dataset 🙇

format columns name

formating the Dataset 🙇

Create our dataframe and drop the useless columns

	open	high	low	close	volume	1.
Date						
2019-04-19	5258.44000000	5320.000000000	5175.00000000	5258.68000000	24611.23632300	
2019-04-20	5258.68000000	5333.42000000	5230.10000000	5291.73000000	19168.90827400	
2019-04-21	5292.91000000	5314.35000000	5165.00000000	5256.14000000	25549.57093900	
2019-04-22	5257.41000000	5400.00000000	5208.35000000	5357.14000000	29563.85230900	
2019-04-23	5357.14000000	5600.00000000	5332.41000000	5493.31000000	41262.10391700	

Preprocessing the Data

Creating a new column for better representing day-wise values and cleaning dataframe

Preprocessing the Data

create a new column 'Date' storing the converted values of date index

Linear regression is a statistical method for modeling relationships between a dependent variable with a given set of independent variables.

select the columns which we will use to fit our model. We will also select the target variable 'Close'.

```
required_colmn = ['low', 'high', 'open', 'volume', 'Mean']
output_label = 'close'
```


divide the our dataset into train and test parts.

```
X_train, X_test, Y_train, Y_test = train_test_split(
df[required_colmn],
df[output_label],
test_size = 0.3
)
```


Creating the Model

```
model = LinearRegression()
model.fit(X_train, Y_train)

LinearRegression()
```

Predicting the Prices

create a future dataset by shifting the original data by 20 days.

```
future_set = df.shift(20).tail(30)

prediction = model.predict(future_set[required_colmn])
```

Predicting the Prices

plot a graph showing the previous BTC prices in blue prices and our predicted prices in yellow

Before we get to the end.

We'd like to thank everyone.

It was an honor to get to know All.

Thank you!

Any question?

Group 2

