

Vidyavardhini's College of Engineering and Technology, Vasai

First Year Engineering

Internal Assessment Test-II (IAT-II)

Subject: Applied Physics NEP-2020 Sem: I

Max. Marks / Duration: 15 / 1 Hr Date: 04/12/24

Note: All Questions are compulsory.

Figures to the right indicates full marks.

Q.	Questions	IAT of	BL	CO
No.		Marks		
		(15)		
Q1	Each question of two marks (solve any three)	5		
1(a)	What is the divergence of a vector field? Find the divergence of a field for $\vec{A} = x^2y \ i - 3xyz^2 \ j + 2xy \ k$ at (1,1,1)	2	2	4
	OR			
	What is the curl of a vector field? Find the curl of a Vector field for $\vec{E} = 4x i + 2y j + 3z k$			
1(b)	Derive Maxwell's 3 rd equation in differential form, which describes how the electric field circulates around the time-varying magnetic field. OR	3	2	
	Derive Maxwell's first equation in differential form for static electric field produced by charge enclosed within a closed surface.			
Q2	Solve any one	5		
(a)	What is Heisenberg's Uncertainty Principle? Prove that electron cannot exist in the nucleus using H.U.P.	5	2	5
	OR			
(b)	Derive Schrodinger Time dependent Wave Equation.			
Q3	Solve any one	5		
(a) (b)	Explain conductivity and mobility. Calculate the conductivity of a Ge specimen if the donor impurity added to Ge is 1.5 x 10 ²⁵ atoms / m ³ . Given mobility of electron is 3900 cm ² /V-sec. OR Explain Fermi-Dirac distribution function. If the fermi level in K is 2.2eV,	5	3	6
	Calculate the energy for which the probability of occupancy at 300°K is 0.98?			

BL -Bloom's Taxonomy Levels

(1- Remembering, 2- Understanding, 3- Applying, 4- Analyzing, 5- Evaluating, 6 - Creating)

CO - Course Outcomes

- CO4: Illustrate the significance of Maxwell's equations in the field of modern technology.
- CO5: Apply the foundations of quantum mechanics for the development of modern technology.
- CO6: Explain the types of semiconductors based on variations in fermi level with temperature and doping concentration.