Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL2110 Laboratorio de Mediciones Eléctricas Profesor. Ing. Carlos Mauricio Segura Quirós I Semestre 2019

Experimento 5 - Mediciones en circuitos básicos

Objetivo

• Practicar los procesos de medición en circuitos de mayor complejidad.

Investigación previa

- 1. Investigue qué es un puente de Wheatstone.
- 2. ¿A qué condición se refiere la expresión "el puente está balanceado"?
- 3. ¿Cuáles son los usos de este tipo de circuitos?
- 4. Determine los valores teóricos de las tablas 7 y 8.
- 5. Explique en qué consiste el principio de superposición.
- 6. ¿Qué es un potenciómetro? Explique su funcionamiento.

Equipo

- 1 Fuente en corriente continua dual
- 1 Multímetro digital
- 2 Resistores de 1 k Ω (Proveer por el estudiante)
- 1 Resistores de 510Ω (Proveer por el estudiante)
- 1 Resistores de 2,2 k Ω (Proveer por el estudiante)
- 1 Resistores de 5 k Ω . (Proveer por el estudiante)
- 1 Potenciómetro de 1 k Ω (Proveer por el estudiante)
- 1 Placa para prototipado (protoboard). (Proveer por el estudiante)

Instrucciones

Circuito puente

La primera configuración es conocida como puente de Wheatstone. La salida del circuito se tomará entre los nodos marcados como A y B.

1. Se utilizará el circuito de la figura 1. Mida el valor de las resistencias R_1 , R_2 , R_3 y R_L (1 k Ω).

Tabla 1 Valor experimental de los resistores de la figura 1

Elemento	Resistencia	Incertidumbre
Resistor		
R ₁		
Resistor		
R ₂		
Resistor		
R ₃		

2. Ajuste la fuente de tensión a 10 V. Corrobore este valor por medio del voltímetro y anótelo:

Tabla 2 Valor experimental de la fuente de alimentación de la figura 1

Elemento	Tensión	Incertidumbre
Fuente V _{in}		

- 3. Ensamble el circuito de la figura 1. Conecte el voltímetro para medir la tensión VAB.
- 4. Coloque la resistencia RL entre los puntos A y B.
- 5. Ajuste el potenciómetro (representado como R_4 en la figura) de forma que la tensión V_{AB} sea lo más cercana posible a cero.
- 6. Determine las tensiones V_{R1} , V_{R2} , V_{R3} y V_{R4} .

Tabla 3 Valor experimental de la tensión en los resistores de la figura 1

Tensión	Valor	Incertidumbre
V _{R1}		
V _{R2}		
V _{R3}		
V _{R4}		

- 7. Mida la corriente a través de la resistencia R_L.
- 8. Retire la resistencia RL del circuito. Verifique que las tensiones V_{AB} , V_{R1} , V_{R2} , V_{R3} y V_{R4} mantienen sus valores.
- 9. Retire el potenciómetro y mida el valor de la resistencia ajustada.

Tabla 4 Valor experimental del potenciómetro

Elemento	Resistencia	Incertidumbre
Potenciómetro		

Figura 1 Esquema del circuito puente

Circuito con varias fuentes

Ahora se trabajará con un circuito con dos fuentes de alimentación. Tenga cuidado de conectar los cables en sus polaridades correctas.

10. Mida las resistencias a utilizar.

Tabla 5 Valores experimentales de los resistores en la figura 2

Elemento	Resistencia	Incertidumbre
Resistor R ₁		
Resistor R ₂		
Resistor R ₃		
Resistor R ₄		

Figura 2 Esquema del circuito con dos fuentes

11. Ajuste las fuentes de tensión. Mida con el voltímetro los valores fijados.

Tabla 6 Valores experimentales de las fuentes de alimentación en la figura 2

Tensión	Valor	Incertidumbre
V _{in1}		
V _{in2}		

- 12. Ensamble el circuito de la figura 2.
- 13. Mida las corrientes I_a, I_b e I_c.

Tabla 7 Valor experimental de las corrientes en la figura 2

Tensión	Valor	Incertidumbre
la		
I _b		
Ic		

14. Mida las tensiones en los resistores.

Tabla 8 Valor experimental de la tensión en los resistores en la figura 2

Tensión	Valor	Incertidumbre
V_{R1}		
V _{R2}		
V _{R3}		

Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL2110 Laboratorio de Mediciones Eléctricas Profesor. Ing. Carlos Mauricio Segura Quirós I Semestre 2019

15. Apague la fuente V_{in1}. Mida la corriente la y la tensión V_{R1}.

Tabla 9 Valor experimental de las corrientes en la figura 2 con V_{in1} apagada

Variable	Valor	Incertidumbre
la		
V _{R1}		

16. Ahora encienda V_{in1} y apague V_{in2}. Mida la corriente la y la tensión V_{R1}.

Tabla 10 Valor experimental de las corrientes en la figura 2 con V_{in2} apagada

Variable	Valor	Incertidumbre
la		
V_{R1}		

Reflexiones finales

 Compare el valor medido de R₃ y R₄ en el circuito puente. Considerando el valor de R₁ y R₂ ¿corresponde a un puente balanceado?
 Si se conoce el valor de R₁, R₂ y R₄, y se sabe que el puente está balanceado ¿cuál es la ecuación qué se utilizaría para calcular el valor de una resistencia R₃ desconocida?
3. En el circuito de la figura 2 ¿se cumple el principio de superposición? Explique.