

Background and Motivation

Unsupervised Anomaly Detection (UAD)

Matching Noise: Ubiquitous Yet Overlooked

UAD is widely used in industrial inspection, UAD relies on image- or feature-level matching, where only normal data is available for training a process inherent to both reconstruction- and due to the scarcity of anomalies. embedding-based methods.

While most methods follow the "single- I Such matching noise impairs the localization of model-per-category" design, unified multi- subtle or boundary-adjacent anomalies.

class UAD is emerging as a promising direction. I We address this via cost volume filtering,

Diverse inter-class and subtle intra-class inspired by concepts in stereo and flow tasks. anomalies pose major challenges.

Problem Formulation

The task targets image- and pixel-level anomaly detection using only synthesized anomalies, without access to real defects during training.

We reformulate multi-class UAD as a three-step process:

- 1. Feature extraction: from input and template or reconstructed samples.
- 2. Anomaly Cost Volume Construction: modeling spatial anomaly patterns and channel-wise matching similarity.
- 3. Cost Volume Filtering: with dual-stream attention guidance for noise suppression and anomaly refinement.

Challenges

- **♦** Matching Noise vs. Fine Anomalies
- Suppressing matching noise while preserving subtle anomaly cues.
- **♦** Subtle and Edge-bound Defects
- Low-contrast or boundary-adjacent anomalies are easily confused with normal regions.

 Identical Shortcut in Reconstruction-based or Embedding-based methods
- The "identical shortcut" effect always replicates anomalies, hindering residual-based detection.
- **♦** Category-wise Anomaly Diversity
- Multi-class UAD must handle varying anomaly types across categories, increasing the complexity.

Our contribution

- **New Unsupervised Anomaly Detection Formulation**
- We reinterpret anomaly detection as a cost filtering process to explicitly address matching noise.
- **Solution** CostFilter-AD Method
- A plug-and-play filtering network guided by attention to refine cost volumes and suppress noise.

 Broad Compatibility

Our method integrates seamlessly with both reconstruction- and embedding-based models.

- Strong Performance Gain
- We enhance 5 baselines across 7 metrics and achieve state-of-the-art results on 4 popular datasets.

Efficiency of Our Plug-and-Play Method

Table 6. Computational efficiency of baselines vs. + Ours.

	1	J		
Method	#Params	FLOPs	Mem. (GB)	Inf. (s/image)
UniAD / +Ours	7.7M / +43.0M	198.0G / 207.8G	4.53 / +0.56	0.01 / +0.04
Glad/+Ours	1.3B / +43.8M	>2.2T / 261.3G	8.79 / +2.07	3.96 / +0.37
HVQ-Trans/+Ours	18.0M / +43.0M	7.4G / 207.8G	4.78 / +0.94	0.05 / +0.07
AnomalDF/+Ours	21.0M / +43.8M	4.9G / 261.3G	3.25 / +0.82	0.31 / +0.32
Dinomaly/+Ours	132.8M / +43.6M	104.7G / 114.6G	4.32 / +1.11	0.11 / +0.05

CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering

Zhe Zhang, Mingxiu Cai, Hanxiao Wang, Gaochang Wu, Tianyou Chai, Xiatian Zhu

Correspondence to: Gaochang Wu <wugc@mail.neu.edu.cn>, Xiatian Zhu <Eddy.zhuxt@gmail.com>

From Heatmaps to Histograms: Revealing Ubiquitous Matching Noise

From Matching Noise to Filtering: Enhancing UAD via Cost Volume Denoising

Plug-and-Play Boosting of Multi-class UAD on Various Datasets and Metrics

Table 1. Multi-class UAD evaluation on MVTec-AD and MPDD, Table 2. Multi-class UAD evaluation on VisA and BTAD, reporting reporting category-wise mean results for each benchmark.

category-wise mean results for each benchmark.

Danahmanla	Mathad	Method Image-level Pixel-level Benchmark Method		Method	Image-level			Pixel-level									
Benchmark	Method	AU-ROC	AP	F1max	AU-ROC	AP	F1max	AUPRO	Denemiark	Wictiou	AU-ROC	AP	F1max	AU-ROC	AP	F1max	AUPRO
	UniAD (NeurIPS'22)	97.5	99.1	97.0	96.9	44.5	50.5	90.6		UniAD (NeurIPS'22)	91.5	93.6	88.5	98.0	32.7	38.4	76.1
	UniAD+Ours	99.0	99.7	98.1	97.5	60.5	59.9	91.3	i	UniAD+Ours	92.1	94.0	88.9	98.6	34.0	39.0	86.4
	HVQ-Trans (NeurIPS'23)	97.9	99.3	97.4	97.4	49.4	54.3	91.5	3.2 2.8 VisA Glad Glad Anomal Anom Dinoma	HVQ-Trans (NeurIPS'23)	91.5	93.4	88.1	98.5	35.5	39.6	86.4
	HVQ-Tran+Ours	99	99.7	98.6	97.9	58.1	61.2	93.2		HVQ-Tran+Ours	93.4	95.2	89.3	98.6	41.4	45.0	86.8
MVTec-AD	Glad (ECCV'24)	97.5	98.8	96.8	97.3	58.8	59.7	92.8		Glad (ECCV'24)	90.1	91.4	86.7	97.4	33.9	39.4	91.5
WIVICC-AD	Glad+Ours	98.7	99.6	97.8	98.2	66.8	64.4	94.1		Glad+Ours	93.2	94.1	89.2	98.1	40.7	43.7	91.5
	AnomalDF (WACV'25)	96.8	98.6	97.1	98.1	61.3	60.8	93.6		AnomalDF (WACV'25)	90.5	91.4	86.2	97.4	39.6	40.4	86.3
	AnomalDF+Ours	98.5	99.4	97.8	98.8	67.8	64.9	94.1		AnomalDF+Ours	94.3	95.1	90.6	99.2	44.6	45.5	86.3
	Dinomaly (CVPR'25)	99.6	99.8	99.0	98.3	68.7	68.7	94.6		Dinomaly (CVPR'25)	98.7	98.9	96.1	98.7	52.5	55.4	94.5
	Dinomaly+Ours	99.7	99.8	99.1	98.4	68.9	68.9	94.8		Dinomaly+Ours	98.7	99.0	96.3	98.8	53.2	55.8	94.7
	HVQ-Trans (NeurIPS'23)	86.5	87.9	85.6	96.9	26.4	30.5	88.0		HVQ-Trans (NeurIPS'23)	90.9	97.8	94.8	96.7	43.2	48.7	75.6
MPDD	HVQ-Tran+Ours	93.1	95.4	90.3	97.5	34.1	37.0	82.9	BTAD	HVQ-Tran+Ours	93.3	98.6	96.0	97.3	47.0	50.2	76.2
מטאוויו	Dinomaly (CVPR'25)	97.3	98.5	95.6	99.1	60.0	59.8	96.7	DIAD	Dinomaly (CVPR'25)	95.4	98.5	95.5	97.9	70.1	68.0	76.5
	Dinomaly+Ours	97.5	98.5	95.8	99.2	60.2	59.9	96.7		Dinomaly+Ours	95.5	98.6	95.8	98.1	74.3	69.8	77.5

Ablation Studies and Further Analysis

Table 3. Ablation studies of Glad+Ours on MVTec-AD. " $DN \rightarrow$ depth/channel" refers to mapping the matching dimension into the depth/channel dimension of the 3D U-Net. C_0 denotes the volume uisng the final denoising step, C_{N-1} indicates uisng N-1 intermediate steps. SG and MG denote dual-stream attention guidance. \mathcal{L}_F is focal loss, \mathcal{L}_{CE} corresponds to the class-aware adaptor, and \mathcal{L}_S is the combination of \mathcal{L}_{SSIM} and $\mathcal{L}_{Soft-Iou}$.

$DN \rightarrow$		$DN \rightarrow 0$	chann	el	$\mathcal{L}_{ ext{F}}$	$\mathcal{L}_{ ext{CE}}$	$\mathcal{L}_{ ext{S}}$	Results		
depth	$ C_0 $	$ \mathcal{C}_{N-1} $	SG	MG	∠F	CCE	Ls	Results		
\checkmark	-	-	-	-	✓	-	-	87.8/89.0		
-	✓	-	-	-	\checkmark	-		96.2/96.8		
-	✓	\checkmark	-	-	\checkmark	-		96.7/97.3		
-	✓	\checkmark	✓	-	\checkmark		-8	97.8/97.5		
-	✓	\checkmark	✓	 ✓	✓			98.3/97.8		
-	✓	\checkmark	✓	✓	✓	✓		98.5/98.0		
-	✓	_	✓	✓	✓	✓	✓	98.4/97.6		
-	🗸	✓	✓	✓	✓	✓	✓	98.7/98.2		

<i>Sable 4.</i> Exte	ended s	tudies or	ı sin	gle-cla	ss UAD	with	n our n	nodels.
Benchmark	Mathad	Imag	ge-lev	vel	Pixel-level			
Dencimark	Method	AU-ROC	AP	F1max	AU-ROC	AP	F1max	AUPRO
MVTec-AD	Glad +Ours	99.0	99.7	98.2	98.7	63.8	63.7	95.2
WIVIEC-AD	+Ours	99.3	99.7	98.3	98.9	66.2	65.0	96.4
VisA	Glad	99.3	99.6	97.6	98.3	35.8	42.4	94.1
	+Ours	99.5	99.7	98.1	98.6	37.3	45.3	94.5

Table 5. Evaluation of our models on various anomaly volumes.								
Test	MVTe	ec-AD	VisA					
Train	Recon.	Embed.	Recon.	Embed.				
Recon.	98.7 / 98.2	97.5↓ / 97.1↓	93.2 / 98.1	92.6↓ / 98.0↓				
Embed.	94.5↓ / 98.0↓	98.5 / 98.8	85.6↓ / 96.9↓	94.3 / 99.2				
Hybrid	98.8 ↑ / 98.1	98.6↑ / 98.9↑	93.1 / 98.2 ↑	92.9 / 99.3 ↑				

Ours vs. GLAD, HVQ-Trans, and AnomalDF: Localization Visualization

Progressive and Fine-grained Denoising

Failure Cases and Future Direction

