Relation Networks for Object Detection

Han Hu* Jiayuan Gu*,† Zheng Zhang* Jifeng Dai Yichen Wei

Microsoft Research Asia

https://arxiv.org/abs/1711.11575

Object Relation Module

Hu H, Gu J, Zhang Z, et al. Relation Networks for Object Detection[J]. arXiv preprint arXiv:1711.11575, 2017.

Object relation module (illustrated as red dashed boxes) can be conveniently adopted to improve both instance recognition and duplicate removal steps, resulting in an end-to-end object detector.

Hu H, Gu J, Zhang Z, et al. Relation Networks for Object Detection[J]. arXiv preprint arXiv:1711.11575, 2017.

- 1: generates full image features
- 2: generates regional features
- 3: performs instance recognition
- 4: performs duplicate removal

Instance Recongnition

$$\begin{array}{ccc}
RoI_Feat_n & \xrightarrow{FC} & 1024 \\
& \xrightarrow{FC} & 1024 \\
& \xrightarrow{LINEAR} & (score_n, bbox_n)
\end{array}$$

$$\{RoI_Feat_n\}_{n=1}^{N} \xrightarrow{FC} 1024 \cdot N \xrightarrow{\{RM\}^{r_1}} 1024 \cdot N$$

$$\xrightarrow{FC} 1024 \cdot N \xrightarrow{\{RM\}^{r_2}} 1024 \cdot N$$

$$\xrightarrow{LINEAR} \{(score_n, bbox_n)\}_{n=1}^{N}$$

Hu H, Gu J, Zhang Z, et al. Relation Networks for Object Detection[J]. arXiv preprint arXiv:1711.11575, 2017.

Duplicate Remove

Hu H, Gu J, Zhang Z, et al. Relation Networks for Object Detection[J]. arXiv preprint arXiv:1711.11575, 2017.

Experiments

1 Ablation study on relation module structure and parameter

2fc baseline	(a): usage of geometric feature			(b): number of relations N_r					(c): number of relation modules $\{r_1, r_2\}$					
	none	unary	ours*	1	2	4	8	16*	32	$\{1, 0\}$	$\{0, 1\}$	$\{1,1\}^*$	$\{2, 2\}$	$\{4, 4\}$
29.6	30.3	31.1	31.9	30.5	30.6	31.3	31.7	31.9	31.7	31.7	31.4	31.9	32.5	32.8

Table 1. Ablation study of relation module structure and parameters (* for default). mAP@all is reported.

Hu H, Gu J, Zhang Z, et al. Relation Networks for Object Detection[J]. arXiv preprint arXiv:1711.11575, 2017.

head	mAP	mAP_{50}	mAP_{75}	# params	# FLOPS
(a) 2fc (1024)	29.6	50.9	30.1	38.0M	80.2B
(b) 2fc (1432)	29.7	50.3	30.2	44.1M	82.0B
(c) 3fc (1024)	29.0	49.4	29.6	39.0M	80.5B
(d) 2fc+res $\{r_1, r_2\}$ = $\{1, 1\}$	29.9	50.6	30.5	44.0M	82.1B
(e) $2fc (1024) + global$	29.6	50.3	30.8	38.2M	82.2B
(f) 2fc+RM $\{r_1, r_2\}$ = $\{1, 1\}$	31.9	53.7	33.1	44.0M	82.6B
(g) 2fc+res $\{r_1, r_2\}=\{2, 2\}$	29.8	50.5	30.5	50.0M	84.0B
(h) 2fc+RM $\{r_1, r_2\}$ = $\{2, 2\}$	32.5	54.0	33.8	50.0M	84.9B

Table 2. Comparison of various heads with similar complexity.

NMS	ours	rank	f_R	appearance f	geometric bbox		
	$\{f_R, f, bbox\}$	none	s_0	none	none	unary	
29.6	30.3	26.6	28.3	29.9	28.1	28.2	

Table 3. Ablation study of input features for duplicate removal network (*none* indicates without such feature).

Figure 4. Representative examples with high relation weights in Eq. (3). The reference object n is blue. The other objects contributing a high weight (shown on the top-left) are yellow.