

Information extraction

Lê Thanh Hương

School of Information and Communication Technology

Email: huonglt@soict.hust.edu.vn

NLP in IR

- IR rarely considers semantics, e.g.
 - Search "Micheal Jordan" (basketball, machine learning)
 - Search "laptop", not "notebook"
- Focus on common short queries and news

Example – Search engine

[More results from www.benefitslink.com]

Example: a solution

🚯 Start 📗 🖀 1707 🧭 🖺

Microsoft PowerPoint - [sta...] @ job search find employmen...

₫ც 🚉 12:12 AM

IE on job ads from Web

Home Find Jobs Your Account

Resource Center

Return to Results | Modify Search | New Search

Learn While You Earn MBA, BA, AA Degrees Online & Project Mgt.

Click here to e-mail your resume to 1000's of Head Hunters with ResumeZapper.com

Breakthrough ebook shows why most people are WRONG about how to apply for jobs.

1 - 25 of 47 jobs shown below

12 Next >

Search these results for:

Search tips

Show Jobs Posted:

For all time periods

View: Brief | Detailed

Web Jobs: FlipDog technology has found these jobs on thousands of employer Web sites.

Food Pantry Workers at Lutheran Social Services	October 11, 2002	Archbold, OH
Cooks at Lutheran Social Services	October 11, 2002	Archbold, OH
Bakers Assistants at Fine Catering by Russell Morin	October 11, 2002	Attleboro, MA
Baker's Helper at Bird-in-Hand	October 11, 2002	United States
<u>Assistant Baker</u> at <u>Gourmet To Go</u>	October 11, 2002	Maryland Heights, MO
<u>Host/Hostess</u> at <u>Sharis Restaurants</u>	October 10, 2002	Beaverton, OR
Cooks at Alta's Rustler Lodge	October 10, 2002	Alta, UT
<u>Line Attendant</u> at <u>Sun Valley Coporation</u>	October 10, 2002	Huntsville, UT
Food Service Worker II at Garden Grove Unified School District	October 10, 2002	Garden Grove, CA
Night Cook / Baker at SONOCO	October 10, 2002	Houma, LA
Cooks/Prep Cooks at GrandView Lodge	October 10, 2002	Nisswa, MN
<u>Line Cook</u> at <u>Lone Mountain Ranch</u>	October 10, 2002	Big Sky, MT
Production Baker at Whole Foods Market	October 08, 2002	Willowbrook, IL
Cake Decorator/Baker at Mandalay Bay Hotel and Casino	October 08, 2002	Las Vegas, NV
Shift Supervisors at Brueggers Bagels	October 08, 2002	Minneapolis, MRN

Food Services

ob Openings:

ontinenta/

Information extraction

• IE systems:

- Detect and understand parts of the document
 - Explicit information (who did what to whom when?)
- Construct a structural representation of relevant information, similarly to relations in DBs
- Combine domain and linguistic knowledge
- Automatically extract required information

• Example

- Collect information on revenue from reports
- Learn drug-gene interactions from medical studies
- Generate smart tags (Microsoft) in documents

Real-estate ads

- Textual ads
- Add basic tags:
 just 70+ news
 agencies and 20+
 publishers can do

- <ADNUM> 2067206v1 </ADNUM>
- <DATE>March, 02 </DATE>
- <aDTITLE> MADDINGTON \$89,000</aDTITLE>
- <ADTEXT>OPEN 1.001.45
 U 11/10
 BERTRAM ST
 NEW TO
 MARKET
 Beautiful
 3brm

freestanding
 villa, close to shops & bus
 ideally

suit 1st home

buyer,
investor & 55 and

Why (document) search engine cannot?

- Search information about real-estate ads:
 - Location:
 - Phrase: only 45 minutes from Parramatta
 - Price: \$120K < M < \$200K
 - Multi-constraint: before \$155K, now \$145
 - Bedroms: synonyms (br, bdr, beds, B/R)

Information extraction

Objective:

Extract information from documents and fill in DBs

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said Bill Veghte, a Microsoft VP.
"That's a super-important shift for us in terms of code access."

Richard Stallman, founder of the Free Software Foundation, countered saying...

NAME	TITLE	ORGANIZATION
Bill Gates	CEO	Microsoft
Bill Veghte	VP	Microsoft
Richard Stallman	founder	Free Soft

Set of tools

Information Extraction = segmentation + classification + clustering + association

October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation CEO Bill Gates</u> railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, <u>founder</u> of the <u>Free Software</u> <u>Foundation</u>, countered saying...

Microsoft Corporation

CEO

Bill Gates

Microsoft

Gates "named entity

Microsoft extraction"

Bill

Veghte

Microsoft

Richard Stallman

founder

Free Software Foundation

N THÔNG

Set of tools

Information Extraction = segmentation + classification + association + clustering

October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation CEO Bill Gates</u> railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, <u>founder</u> of the <u>Free Software</u> <u>Foundation</u>, countered saying... **Microsoft Corporation**

CEO

Bill Gates

Microsoft

Gates

Microsoft

Bill

Veghte

WPcrosoft

Richard Stallman

founder

Free Software Foundation

Set of tools

Information Extraction = segmentation + classification + association + clustering

October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation CEO Bill Gates</u> railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, <u>founder</u> of the <u>Free Software</u> <u>Foundation</u>, countered saying...

Microsoft Corporation

CEO

Bill Gates

Microsoft

Gates

Microsoft

Bill Veghte

Microsoft

VP

Richard Stallman

founder

Free Software Foundation

N THÔNG

Set of tools

Information Extraction = segmentation + classification + association + clustering

October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation CEO Bill Gates</u> railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, <u>founder</u> of the <u>Free Software</u> <u>Foundation</u>, countered saying...

Microsoft Corporation CEO Bill Gates **Microsoft** Gates **Microsoft** Bill Veghte Microsoft **VP** Richard Stallman founder Free Software Foundation

Information extraction

Challenges in IE (1/4): Text format

Text paragraphs without formatting

Astro Teller is the CEO and co-founder of BodyMedia. Astro holds a Ph.D. in Artificial Intelligence from Carnegie Mellon University, where he was inducted as a national Hertz fellow. His M.S. in symbolic and heuristic computation and B.S. in computer science are from Stanford University. His work in science, literature and business has appeared in international media from the New York Times to CNN to NPR.

Non-grammatical snippets, rich formatting & links

Barto, Andrew G.	(413) 545-2109	barto@cs.umass.edu	CS276
Professor. Computational neuroscience motor control, artificial neu control, motor development	ral networks, adap		(1)
Berger, Emery D.	(413) 577-4211	emery@cs.umass.edu	CS344
Assistant Professor.			
Brock, Oliver	(413) 577-033	34 <u>oli@cs.umass.edu</u>	CS246
Assistant Professor.			1 (1)
Clarke, Lori A.	(413) 545-1328	clarke@cs.umass.edu	CS304
Professor. Software verification, testin and design.	g, and analysis; so	ftware architecture	1
Cohen, Paul R.	(413) 545-3638	cohen@cs.umass.edu	CS278
Professor. Planning, simulation, natur intelligent data analysis, int			1

Grammatical sentences and some formatting & links

Tables

8:30 - 9:30 AM	Invited Talk: Plausibility Measures: A General Approach for Representing Uncerts Joseph Y. Halpern, Cornell University					
9:30 - 10:00 AM	Coffee Break					
10:00 - 11:30 AM	Technical Paper Sessions:					
Cognitive Robotics	Logic Programming		Complexity Analysis	Neural Networks	Games	
739: A Logical Account of Causal and Topological Maps Emilio Remolina and Benjamin Kuipers	116: A-System: Problem Solving through Abduction Marc Denecker, Antonis Kakas, and Bert Van Nuffelen	758: Title Generation for Machine-Translated Documents Rong Jin and Alexander G. Hauptmann	417: Let's go Nats: Complexity of Nested Circumscription and Abnormality Theories Marco Cadoli, Thomas Eiter, and Georg Gottlob	Extraction and Comparison from Local	71: Iterative Widening Tristan Cazenave	
549: Online-Execution of ccGolog Plans Henrik Grosskreutz and Gerhard Lakemeyer	131: A Comparative Study of Logic Programs with Preference Torsten Schaub and Kewen	246: Dealing with Dependencies between Content Planning and Surface Realisation in a Pipeline Generation	470: A Perspective on Knowledge Compilation Adnan Darwiche and Pierre Marguis	258: Violation-Guided Learning for Constrained Formulations in Neural-Network Time-Series	353: Temporal Difference Learning Applied to a High Performance Game-Playing	

Challenges in IE (2/4): Domain

Web site specific

Formatting

Amazon.com Book Pages

Genre specific

Layout

Resumes

Wide, non-specific

Language

University Names

Challenges in IE (3/4): Complexity

E.g. word patterns:

Closed set

U.S. states

He was born in Alabama...

The big Wyoming sky...

Complex pattern

U.S. postal addresses

University of Arkansas P.O. Box 140
Hope, AR 71802

Headquarters:

1128 Main Street, 4th Floor Cincinnati, Ohio 45210

Regular set

U.S. phone numbers

Phone: <u>(413) 545-1323</u>

The CALD main office can be reached at 412-268-1299

Ambiguous patterns, needing context and many sources of evidence

Person names

...was among the six houses sold by <u>Hope Feldman</u> that year.

Pawel Opalinski, Software Engineer at WhizBang Labs.

Challenges in IE (4/4):

Data fields/records

Jack Welch will retire as CEO of General Electric tomorrow. The top role at the Connecticut company will be filled by Jeffrey Immelt.

Single entity

Person: Jack Welch

Person: Jeffrey Immelt

Location: Connecticut

Binary relationship

Relation: Person-Title Person: Jack Welch

Title: CEO

Relation: Company-Location

Company: General Electric

Location: Connecticut

N-ary record

Relation: Succession

Company: General Electric

Title: CEO

Out: Jack Welsh

In: Jeffrey Immelt

"Named entity" extraction

Evaluation

Golden:

Michael Kearns and Sebastian Seung will start Monday's tutorial, followed by Richard M. Karpe and Martin Cooke.

Prediction:

Michael Keams and Sebastian Seung will start Monday's tutorial, followed by Richard M. Karpe and Martin Cooke.

State-of-the-art

- NER from news
 - Person, Location, Organization, ...
 - $85\% \le F1 \le 95\%$
- Relation extraction
 - Contained-in (Location1, Location2) Member-of (Person1, Organization1)
 - $60\% \le F1 < 90\%$

Information extraction

 Named Entity Recognition: recognize and classify unit elements in the document (person, organization, location, time)

 Relation Extraction: extract relations between entities

NER

Input: Raw document, tag set

Ra: Tagged document

Example:

Hi. My name is <Person> Hang Dinh </Person>. I am currently attending the <Domain> Computer Science </Domain> PhD program at the <University> University of Connecticut </ University>.

NER

- Approach
 - Manual rule: Observe data patterns
 - Pro: Accurate
 - Cons: rules coverage
 - ML-generated rules: learn classifiers from annotated data
 - Pro: accurate
 - Cons: requires annotation

NER – Manual rules

- Rule: Contextual Pattern → Action
- Token features:
 - word
 - POS
 - format: capitalization, digit, ...
 - prefix, suffix, ...
- Action: entity tagging for a token sequence

NER – Manual rule

- NER rules have three types:
 - Content before an entity
 - Content in an entity
 - Content after an entity

Eg:

- "Dr. Peter"
 - ({DictionaryLookup = Titles}{String = "."}{Orthography type = capitalized word}) → Person Name.
 - Titles dictionary includes "Prof", "Dr", "Mr", ...
- "The XYZ Corp." or "ABC Ltd."
 - ({String="The"}? {Orthography type = All capitalized}
 - {Orthography type = Capitalized word, DictionaryType =
 - Company end}) → Company name.

GATE

- GATE General Architecture for Text Engineering
- GATE supports:
 - Software architecture
 - Framework
 - Software development environment
- GATE has three resources, called CREOLE (Collection of REusable Object for Language Engineering).
 - Language Resource
 - Processing Resource
 - Visual Resource

IE architecture in GATE


```
Rule: TheGazOrganization
Priority: 50
// Matches "The <in list of company names>"
( {Part of speech = DT | Part of speech = RB} {DictionaryLookup = organization})
\rightarrow Organization
Rule: LocOrganization
Priority: 50
// Matches "London Police"
({Dictionary Lookup = location \mid Dictionary Lookup = country}) {Dictionary Lookup}
= organization} {DictionaryLookup = organization}? ) → Organization
Rule: INOrgXandY
Priority: 200
// Matches "in Bradford & Bingley", or "in Bradford & Bingley Ltd"
( {Token string = "in" } )
({Part of speech = NNP}+ {Token string = "&"} {Orthography type =
upperInitial}+ {DictionaryLookup = organization end}? ):orgName → Organiza-
tion=:orgName
Rule: OrgDept
Priority: 25
// Matches "Department of Pure Mathematics and Physics"
({Token.string = "Department"} {Token.string = "of"} {Orthography type = up-
perInitial\}+(\{Token.string = "and"\} \{Orthography type = upperInitial\}+)?) \rightarrow
Organization
                                                                            29
```


Du lịch Hạ Long 1 Ngày

X khởi hành từ Hà Nội

Thời gian: 1 Ngày Giá tour: 695.000đ Giá KM: 599.000đ

Phương tiện: Ôtô + thuyền Khởi hành ngày: Hàng ngày

Giới thiệu tour: Hành trình du lịch Hạ Long 1 Ngày từ Hà Nội sẽ cùng quý khách đến với kỳ quan thiên nhiên thế giới tại Việt Nam. Từ trên cao nhìn xuống Vịnh Hạ Long như một bức tranh thuỷ mặc khỗng lồ vô cùng sống động. Đó là những tác phẩm tạo hình tuyệt mỹ, tài hoa của tạo hoá, của thiên nhiên ...

Đặt tour

xem tiếp

Du Lịch Hạ Long 2 Ngày (Ngủ Đêm Trên Du Thuyền 3 Sao Halong Dolphin)

Khởi hành từ Hà Nội

Thời gian: 2 Ngày 1 Đêm Giá tour: 2.650.000đ Giá KM: 1.795.000đ

Phương tiện: Ôtô + Du thuyền Khởi hành ngày: Hàng ngày

Giới thiệu tour: Hành trình tour du lịch Hạ Long 2 Ngày 1 đêm sẽ đưa quý khách thường thức vẽ đẹp kỳ bí của Vịnh Hạ Long trên du thuyển 3 sao Hạ Long Dolphin. Với dáng vẽ của tàu gỗ truyền thống, con tàu dài 32 mét, rộng 8 mét được làm từ chất liệu gỗ tốt nhất, được bao người nghệ nhân dày công chạm khắc. Chuyến đi ...

Đặt tour

xem tiep

Du lịch Hạ Long 3 Ngày (2 Đêm Trên Du Thuyền 3 Sao Halong Dolphin)

📈 khởi hành từ Hà Nội

Thời gian: 3 Ngày 2 Đêm Giá tour: 3:938:000đ Giá KM: 2:950:000đ Phương tiện: Ôtô + thuyền Khởi hành ngày: Hàng ngày

Giới thiệu tour: Đến với Vịnh Hạ Long như một bức tranh thuỷ mặc khổng lỗ vô cùng sống động. Với tour du lịch Hạ Long 3 Ngày giúp quý khách cảm nhận được những tác phẩm tạo hình tuyệt mỹ, tài hoa của tạo hoá, của thiên nhiên biến hàng ngàn đão đá vô tri tĩnh lặng kia trở nên những tác phẩm điêu khắc, hội

hoa

Dåt tour

xem tiép

Du lịch Hạ Long - Đảo Cát Bà 3 Ngày (1 đêm ngủ tàu + 1 đêm tại ks trên đảo Cát Bà)

X khởi hành từ Hà Nội

Thời gian: 3 Ngày 2 Đêm Giá tour: 3.570.000đ Giá KM: 2.956.000đ

Phương tiện: Ô tô + thuyển Khởi hành ngày: Hàng ngày

Giới thiệu tour: Cát Bà với vẽ đẹp nguyên sơ và hùng vĩ, Cát bà được mệnh danh là Hòn Ngọc của Vịnh Bắc Bộ. Với tour du lịch Hạ Long Cát Bà 3 ngày 2 đêm này, Du lịch Việt Nam sẽ đưa quý khách đến với đão Cát Bà - nơi có những bãi tắm mịn màng, phẳng lặng, có vườn Quốc Gia rộng 600 ha tạo ...

Exercise

Extract events from the following passages:

- Police sources have reported that unidentified individuals planted a bomb in front of a Mormon Church in Talcahuano District. The bomb, which exploded and caused property damage worth 50,000 pesos, was placed at a chapel of the Church of Jesus Christ of Latter-Day Saints located at No 3856 Gomez Carreno Street.
- Prosecutor Juan Carbone Herrera requested the 25 years imprisonment for General Rolando Cabezas Alarcon of the Republican Guard for ordering the shooting of 124 of the San Pedro prison inmates.
- Last night in San Clemente District, 9 km north of Pisco, a group of terrorists dynamited machinery belonging to Albolones Peruanos, Inc.

What are the problems in POS tagging and NER. Vd:

- 1. Give examples on information in the text
- 2. Give examples on named entities. Find rules to extract them

Exercise (cont)

- Now use Wordnet to analyze words in the example
- Problems when using WordNet for IE?

Exercise

Recognize named entites and propose rules:

- Hôm nay, chị Nguyễn Chi Mai đi thành phố Hồ Chí Minh
- Ông Võ Nguyên Giáp
- Công ty TNHH nhà đất Đại Nam, Hà Nội
- Đường Tạ Quang Bửu
- Andrew Grove là một giám đốc công ty
- Vinamilk, công ty sữa lớn nhất Việt Nam, được thành lập năm 1976.

IE techniques: models

Lexicons

Abraham Lincoln was born in Kentucky.

Classify Pre-segmented Candidates

Abraham Lincoln was born in Kentucky.

Sliding Window

Boundary Models

Finite State Machines

Abraham Lincoln was born in Kentucky.

Context Free Grammars

Abraham Lincoln was born in Kentucky.

Any of these models can be used to capture words, formatting or both.

Sliding Windows

E.g. Looking for seminar location GRAND CHALLENGES FOR MACHINE LEARNING

Jaime Carbonell School of Computer Science Carnegie Mellon University

> 3:30 pm 7500 Wean Hall

E.g.
Looking for seminar location

GRAND CHALLENGES FOR MACHINE LEARNING

Jaime Carbonell School of Computer Science Carnegie Mellon University

> 3:30 pm 7500 Wean Hall

E.g. Looking for seminar location GRAND CHALLENGES FOR MACHINE LEARNING

Jaime Carbonell School of Computer Science Carnegie Mellon University

> 3:30 pm 7500 Wean Hall

E.g.
Looking for seminar location

GRAND CHALLENGES FOR MACHINE LEARNING

Jaime Carbonell School of Computer Science Carnegie Mellon University

> 3:30 pm 7500 Wean Hall

Sliding windows with Naïve Bayes

[Freitag 1997]

Estimate Pr(LOCATION|window) using Bayes rules

Try all possible sliding windows (change length and position)

Use independence assumption with length, prefix, suffix, and content words

Evaluate from data: Pr("Place" in prefix|LOCATION)

If P("Wean Hall Rm 5409" = LOCATION) > θ , extract it.

Other method: decision tree on single words and their contexts

Sliding windows with Naïve Bayes: performance

Domain: CMU UseNet Seminar Announcements

GRAND CHALLENGES FOR MACHINE LEARNING

Jaime Carbonell School of Computer Science Carnegie Mellon University

> 3:30 pm 7500 Wean Hall

Machine learning has evolved from obscurity in the 1970s into a vibrant and popular discipline in artificial intelligence during the 1980s and 1990s. As a result of its success and growth, machine learning is evolving into a collection of related disciplines: inductive concept acquisition, analytic learning in problem solving (e.g. analogy, explanation-based learning), learning theory (e.g. PAC learning), genetic algorithms, connectionist learning, hybrid systems, and so on.

Field F

Person Name: 30%

Location: 61%

Start Time: 98%

BWI

[Freitag & Kushmerick, AAAI 2000]

- Estimate probability for three classes:
 - START(i) = Prob(i is start of a field)
 - END(j) = Prob(j is end of a field)
 - LEN(k) = Prob(extract field with length k)
- Extraction score (i,j): START(i) * END(j) * LEN(j-i)
- *LEN(k)* is estimated based on histogram

BWI: Learn to detect boundary

Problems with sliding window and BWI

- Decisions on neighbor words are independent
 - Naïve Bayes Sliding Window can predict "seminar end time" before "seminar start time".
 - In BWI, searching for left and right boundaries is independent

Semi-supervised learning based on coreference

[Sam Chanrathany, 2014]

Observation

- NER is able to recognize entities with contexts in the training data.
- Entites can have multiple mentions in the document in different contexts

Semi-supervised learning based on coreference

Coreference rules in

Vietnamese

N₁ and N₂ are corefered if

- 1. Same name
- 2.N1 is part of N2, e.g: "Mai Liêm Trực" và "Trực".
- 3. Alias, e.g: "Sài Gòn" và "TP Hồ Chí Minh".
- 4. Abbreviation, e.g. "IBM" và "International Bussiness Machines".
- 5. first k and last m letters are the same, k + m is the number of characters in N_2 , e.g. "Công ty Cổ phần Đại An" and "Công ty Đại An".

Coreference rules in Vietnamese

- 6. Except prefix, all letters in N_2 is in N_1 and prefix of N_2 is either the same as N_1 or abrre of N_1 , e.g. "Công ty TNHH Apave Việt Nam", "Cty Apave Việt Nam", "Công ty Apave"
- 7. A name is the last part of the other, e.g: "*Trịnh Chân Trâu*" và "*Chân Trâu*".
- 8. The last part of a name is abbreviation of last part of the other, the rests are the same, e.g, với " $B\hat{\rho}$ $Gi\acute{a}o$ dục $v\grave{a}$ Dạo tạo" and " $B\hat{\rho}$ GD & DT"

Coreference rules in

Vietnamese

- 9. k last letters are the same, first part of N_2 is abbre of first part of N_1 , N_2 has k + 1 letter, e.g. "Công ty HP VN" and "Cty HP VN".
- 10. Abbre in N_2 for phrases in N_1 and the rest in N_2 is in N_1 , e.g. "Công ty TNHH Hewlett Packard Việt Nam", "Cty HP VN", "HP VN", "HP Việt Nam" and "Công ty HP Việt Nam"
- 11. $N_1(N_2)$, N_2 has one syllable and is an organization. e.g: "Phòng Thương mại và Công nghiệp Việt Nam (VCCI)", or "Liên đoàn Bóng đá Việt Nam (VFF)", or "Tổng công ty Cao su VN (Geruco)".

Finite State Machines

Hidden Markov Models

HMMs is a sequence model used in speech processing, NLP, audio processing...

Finite state model

Graphical model

 $P(\overline{s,o}) \propto \prod P(s_t \mid s_t) P(o_t \mid s_t)$

Generates:

State sequence Observation sequence

$$o_7$$
 o_8

 O_5

Parameters: for all states $S = \{s_1, s_2, ...\}$

Start state probabilities: $P(s_t)$

Transition probabilities: $P(s_t/s_{t-1})$

Observation (emission) probabilities: $P(o_t|s_t)$

Usually a multinomial over atomic, fixed alphabet

Training: N CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG Maximize probability of training observations (w/ prior)

IE with HMM

Given a text

Yesterday Pedro Domingos spoke this example sentence.

and an HMM

Find the best tag sequence

 $arg max _{s}P(s, o)$

Person name: Pedro Domingos

Example HMM: "Nymble"

Task: Named Entity Extraction

[Bikel, et al 1998], [BBN "IdentiFinder"]

<u>Transition</u> probabilities

 $P(s_t | s_{t-1}, o_{t-1}) \quad P(o_t | s_t, s_{t-1})$

Observation probabilities

 $P(o_t | s_t, s_{t-1})$ or $P(o_t | s_t, o_{t-1})$

Back-off to:

 $P(s_t/s_{t-1})$

Back-off to:

 $P(o_t | s_t)$

 $P(s_t)$ $P(o_t)$

Trained on ~500k words from

news Result:

Case	Language	F1 .
Mixed	English	93%
Upper	English	91%
Mixed	Spanish	90%

More complicated models

Overlapped features

identity of word
ends in "-ski" is
capitalized
is part of a noun phrase
is in a list of city names
is under node X in WordNet
is in bold font
is indented
is in hyperlink anchor
last person name was female
next two words are "and Associates"

Problems

Dependent features

- Multiple unit levels: char, word, segment
- Multiple feature types: word, word shape, pattern

Two choices:

Modeling dependence Each state has a Bayesian network. But lack of training data Ignore dependence Repeatly count events (naïve Bayes). Big problem when combining events

Conditional Sequence Models

• Maximize conditional prob instead of joint prob $P(\overline{s}|\overline{o})$ instead of $P(\overline{s},\overline{o})$:

- Could check features, but do not generate them
- Could not explicitly model feature dependence

Conditional Markov Models (CMMs) vs HMMS

HMM

$$Pr(s,o) = \prod_{i} Pr(s_i \mid s_{i-1}) Pr(o_i \mid s_i)$$

$$Pr(s \mid o) = \prod_{i} Pr(s_i \mid s_{i-1}, o_i)$$

Several ways to infer $Pr(y \mid x)$

Conditional Finite State Sequence Models

[McCallum, Freitag & Pereira, 2000] [Lafferty, McCallum, Pereira 2001]

From HMMs to CRFs

$$\overrightarrow{s=s}, \underbrace{s}_{1}, \underbrace{s}_{2}, \dots \underbrace{s}_{n} \qquad \overrightarrow{o=o}, \underbrace{o}_{1}, \dots \underbrace{o}_{n}$$

$$P(\overrightarrow{s,o}) = \prod_{t=1}^{\overrightarrow{p}|} P(s_{t} \mid s_{t}) P(o_{t} \mid s_{t})$$

Conditional

$$P(\vec{s} \mid \vec{o}) = \frac{1}{P(o)} \prod_{t=1}^{|\vec{o}|} P(s_t \mid s_{t-1}) P(o_t \mid s_t)$$

$$= \frac{1}{Z(o)} \prod_{t=1}^{|\vec{o}|} \Phi_{s}(s_t, s_t) \Phi_{o}(o_t, s_t)$$

(a special case of Conditional Random Fields.)

Feature functions

Vd.
$$f_k(s, s, \overrightarrow{o}, t)$$
:

$$f_{\text{Capitalize d}, s_i, s_j>}(s_t, s_{t-1}, o, t) = \begin{cases} 1 & \text{if Capitalized}(o_t) \land s_i = s_t \land s_j = s_t \\ 0 & \text{otherwise} \end{cases}$$

 \overline{o} = Yesterday Pedro Domingos spoke this example sentence.

$$S_1$$
 S_2
 S_3
 S_4

$$o_1$$
 o_2 o_3 o_4 o_5 o_6

$$O_7$$

$$f_{< Capitalized, s_1, s_2>} = 1$$
 $(s, s, o, o, 2)$

Parameter learning

Given training data D, maximize log-likelihood with $\Lambda = \{\lambda_k\}$

$$L = \sum_{\substack{\langle s, o \rangle \in \\ D}} \log \left(\frac{1}{Z(o)} \prod_{1}^{\boxed{o}} \exp \left(\sum_{t=1}^{2} \lambda_{t} f_{t}(s_{t}, s_{t-1}, \overrightarrow{o}, t) \right) \right) - \sum_{t=1}^{2} \frac{\lambda_{t}^{2}}{2\sigma^{2}}$$

Log-likelihood gradient:

$$\frac{\partial L}{\partial \lambda_k} = \sum_{\langle s, o \rangle \in D} \#_k(\overrightarrow{s, o}) \quad \sum_{i} \sum_{s'} P_{\Lambda}(\overrightarrow{s'}|\overrightarrow{o^{(i)}}) \#_k(\overrightarrow{s'}, \overrightarrow{\delta^{(i)}}) - \frac{\lambda_k}{\sigma^2}$$

where
$$\#_k(\overrightarrow{s},\overrightarrow{o}) = \sum_t f_k(s_{t-1}, s_t, \overrightarrow{o}, t)$$

Method:

- iterative scaling (quite slow 2000 iterations from good start)
- gradient, conjugate gradient (faster)
- limited-memory quasi-Newton methods ("super fast")

NER using biLSTM + CRF

Thai-Hoang Pham, Phuong Le-Hong, "End-to-end Recurrent Neural Network Models for Vietnamese Named Entity Recognition: Word-level vs. Character-level" (PACLING 2017)

NER using biLSTM + CRF

NER using biLSTM + CRF

• Experiments on VLSP, performance F1=91.92%

Working with IE data

- Some characteristics of IE:
 - Based on extraction from documents
 - Noise (lack of events, unnormalized entities)
 - Need data cleansing
- Applications
 - Data mining
 - Fuzzy query [Cohen 1998]
 - Use as learning features [Cohen 2000]

