

디지털논리회로 [Digital Logic Circuits]

5 강.

부울함수의 간소화 및 구현(2)

컴퓨터과학과 강지훈교수

제4장 | 부울함수의 간소화 및 구현

학습 목차 5 강

- 카르노 도표 방법(2)
 - 4변수 카르노 도표
 - 무관조건
 - 기타 카르노 도표
- NAND 게이트와 NOR 게이트를 이용한 논리회로 구현
 - 개요
 - NAND 게이트를 이용한 구현방법
 - NOR 게이트를 이용한 구현방법

지4장. 부울함수의 간소화 및 구현

4.2 카르노 도표 방법(2)

- 4개의 변수를 가지는 부울함수
 - 16개의 최소항이 존재하며, 16개의 사각형으로 구성
 - 각 사각형은 하나의 최소항에 대응

\searrow YZ					$\searrow YZ$				
WX	00	01	11	10	WX	00	01	11	10
00	m_o	m_1	m_3	m_2	00	$\overline{W}\overline{X}\overline{Y}\overline{Z}$	$\overline{W}\overline{X}\overline{Y}Z$	$\overline{W}\overline{X}YZ$	$\left \overline{W} \overline{X} Y \overline{Z} \right $
01	m_4	m_5	m_7	m_6	01	$\overline{W}X\overline{Y}\overline{Z}$	$\overline{W}X\overline{Y}Z$	$\overline{W}XYZ$	$\overline{W}XYar{Z}$
11	m_{12}	m_{13}	m_{15}	m_{14}	11	$WXar{Y}ar{Z}$	$WX\overline{Y}Z$	WXYZ	$WXYar{Z}$
10	m_8	m_9	m_{11}	m_{10}	10	$War{X}ar{Y}ar{Z}$	$W \bar{X} \bar{Y} Z$	$W\bar{X}YZ$	$W\bar{X}Y\bar{Z}$

- 4변수 카르노 도표에서 사각형들의 묶음
 - 하나의 묶음을 만들 때는 가능한 가장 큰 2의 거듭제곱 크기로

• $F(W, X, Y, Z) = \Sigma m(1, 3, 4, 5, 11, 12, 13)$ 의 간소화

F(W, X, Y, Z) $= X\overline{Y} + \overline{W}\overline{X}Z + \overline{X}YZ$

• 인접 사각형

YZ WX	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

• 진리표를 만족하는 간소화된 논리회로도

W	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
X	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
Y	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
F	1	0	1	1	0	1	1	1	1	0	1	1	0	0	1	1

WX	00	01	11	10
00	1		1	1
01		1	1	1
11			1	1
10	1		1	1

$$F = Y + \bar{X}\bar{Z} + \bar{W}XZ$$

• $F = Y + \overline{X}\overline{Z} + \overline{W}XZ$ 의 논리 회로도

4.2.7 무관조건

- 무관조건(don't care condition)
 - ・특정 입력변수들의 조합에서 함수 값이 발생하지 않는 경우
 - 회로에서 특정 조합이 입력으로 사용되지 않음
 - 함수 값이 0과 1중 어떤 출력 값으로 나와도 무관한 조합
 - ➡ 특정 조합이 회로에 입력되지 않기 때문에 어떤 값이든 무관함

• 무관조건의 예

• BCD 코드

10진수	2진수
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

- 값을 표현하기 위해 4개의 비트가 필요함
- · 나머지 조합인 1010~1111까지 6개의 조합은 사용되지 않음
- BCD 코드를 사용하는 논리회로에서는 6개의 조합은 발생하지 않는다는 가정하에 작동됨

즉, 사용되지 않는 조합과 무관하게 동작하는 회로가 구성됨

• 부울 함수에서 무관조건의 표현

$$d(X,Y,Z) = \Sigma m(0,1,7) \qquad F(X,Y,Z) = \Sigma m(2,3,4,5,6) + d(0,1,7)$$

3개의 변수 X, Y, Z에 대한 2진수 열 000, 001, 111은 해당 부울함수의 출력이 0 이든 1이든 무관하다는 의미

• 카르노 도표에서의 무관 조건의 표현

YZ	00	01	11	10
0	Х	Х		
1			X	

X표시된 칸은 1 또는 O로 사용될 수 있음

4.2.7 무관조건

• 무관 조건은 부울함수를 간소화 하는데 사용됨

$$F(W, X, Y, Z) = \Sigma m(0, 3, 6, 9)$$

$$d(W, X, Y, Z) = \Sigma m(10, 11, 12, 13, 14, 15)$$

YZ	$\overline{W}\overline{X}\overline{Y}\overline{Z}$		$\bar{X}YZ$		
WX	00	01	11	10	
00	1		1		
01				1	
11	Х	X	X	X	1
10		1	X	Х	
'		WZ			

$$F = \overline{W}\overline{X}\overline{Y}\overline{Z} + XY\overline{Z} + \overline{X}YZ + WZ$$

 $XY\bar{Z}$

- 카르노 도표에서 무관조건을 포함하여 인근항을 묶는 것은...
 - 회로는 기본적으로 입력된 모든 것을 처리함
 - 사용하지 않는 비트 조합이라도 논리식의 영향을 받음
 - 무관조건에 해당하는 입력 조합이 절대 발생하지 않는다는 전제가 있어야 함
 - 무관조건을 포함한 묶음은 당연하게 무관조건에 해당하는 항들의 영향을 받음
 - 하지만, 해당 회로에서는 무관조건에 대한 입력이 절대 발생하지 않기 때문에 무관조건으로 인한 영향이 제거됨

4.2.7 무관조건

• 무관조건을 포함한 묶음

• 간소화된 부울함수는 무관조건이 반영되어 있지만 무관조건이 입력으로 사용되지 않기 때문에 부울함수에서는 처리되지 않음

X	Y	F	Y
0	0	0	
0	1	1	$0 \qquad 1 \qquad \Rightarrow F = \bar{X}Y$
1	0	0	$ \left \begin{array}{c c} & \\ & \end{array} \right \times \left \begin{array}{c c} & \\ & \end{array} \right F = Y $
1	1		

· XOR의 카르노 도표

- 2변수 XOR: 오직 하나의 변수만 1인 경우
- 3변수 XOR: 하나의 변수만 1이거나 세 변수 모두가 1인 경우
- 다중 변수 XOR: 홀수개의 변수가 1인 경우 XOR 연산은 홀수 함수(Odd function) 성질을 가짐

• 3변수 XOR 카르노 도표

$$F = X \oplus Y \oplus Z$$

• 4변수 XOR 카르노 도표

$$F = W \oplus X \oplus Y \oplus Z$$

YZ WX	00	01	11	10
00		1		1
01	1		1	
11		1		1
10	1		1	

- XOR 카르노 도표의 사용처
 - 카르노 도표에서 XOR 패턴을 찾고 XOR로 변환

$$F = X\bar{Y}\bar{Z} + \bar{X}Y\bar{Z} + \bar{X}\bar{Y}Z + XYZ$$

X^{YZ}	00	01	11	10
0		1	11	1
1	1		1	

· XOR을 AND-OR로 변환

$$X \oplus Y \oplus Z = X \overline{Y} \overline{Z} + \overline{X} Y \overline{Z} + \overline{X} \overline{Y} Z + X Y Z$$

지4장. 부울함수의 간소화 및 구현

4.3 NAND와 NOR 게이트를 이용한 구현방법

- NAND와 NOR 게이트를 이용한 부울함수
 - 모든 부울함수는 NOT, AND, OR 게이트로 구현할 수 있음
 - NOT, AND, OR 게이트의 조합은 함수적 완결성을 가짐-고전적인 완전 집합
 - 하지만 실제회로는 NAND나 NOR 게이트로 구현
 - NAND와 NOR 게이트는 단독으로 함수적 완결성을 가짐
 - 여러 구성요소를 활용하는 것 보다 단일 요소를 사용하는 것이 유리함
 - 이로 인해 NAND와 NOR를 만능 게이트라고도 부름

• NAND의 함수적 완결성

	입	입력 출력		
	X	Y	F	
	0	0	1	둘다 0이면 1,
	0	1	1	둘다 1이면 0 $X \text{ NAND } X = \overline{X}$
	1	0	1	
	1	1	0	
7	NANE) 게이트	진리표	

• 함수적 완결성

연산 집합	함수적 완결성 여부	비고
{AND, OR, NOT}	예	전통적인 완전 논리 집합
{NAND}	예	하나로 모든 연산 구현 가능
{NOR}	예	하나로 모든 연산 구현 가능
{AND, OR}	아니오	NOT 연산이 없으므로 불완전
{AND, NOT}	예	OR을 만들어낼 수 있음
{OR, NOT}	예	AND를 만들어낼 수 있음
{XOR, AND}	아니오	모든 논리식을 표현하지 못함

• NAND 게이트 만을 활용한 AND, OR, NOT 연산 표현

NOT X	$X \longrightarrow \bar{X}$	$\bar{X} = X \text{ NAND } X$
XANDY	X Y X Y	XY = (X NAND Y) NAND(X NAND Y)
XOR Y	X = X + Y $Y = X + Y$	X + Y = $(X NAND X) NAND(Y NAND Y)$

- NAND 게이트의 개념 및 구성
 - 회로도를 그릴 때는 복잡도를 최소화 하기위해 NOT은 그대로 사용

• NAND 게이트의 기호

NOT-OR 형태의 NAND 게이트

• 임의의 부울 함수를 NAND 게이트로 표현

• F = WX + XYZ 의 2단계 구현

• 임의의 부울 함수를 NAND 게이트로 표현

• 임의의 부울 함수를 NAND 게이트로 표현

•
$$F = (\overline{X} + Y)(W + YZ) + \overline{W}$$
의 다단계 구현(2)

NOT 머들들 확인 동일 라인의 두 버블은 서로 상쇄, 상쇄되지 않는 원은 NOT을 추가 혹은 입력변수에 보수를 취함

• NOR 게이트 만을 활용한 AND, OR, NOT 연산 표현

NOT X	$X \longrightarrow \bar{X}$	$\bar{X} = X \text{ NOR } X$
XANDY	X X Y	XY = (X NOR X) NOR(Y NOR Y)
XOR Y	$X \longrightarrow X + Y$	X + Y = $(X NOR Y) NOR(X NOR Y)$

- NOR 게이트의 개념 및 구성
 - 회로도를 그릴 때는 복잡도를 최소화 하기위해 NOT은 그대로 사용

• NOR 게이트의 기호

NOT-AND 형태의 NOR 게이트

• 임의의 부울 함수를 NOR 게이트로 표현

• F = W(X + Y)의 2단계 구현

• 임의의 부울 함수를 NOR 게이트로 표현

• $F = W(XY + Z)(\overline{YZ} + \overline{W})$ 의 다단계 구현(1)

기본 회로도

AND 게이트를 NOT-AND 형태로 OR 게이트를 OR-NOT 형태로 변환

• 임의의 부울 함수를 NOR 게이트로 표현

• $F = W(XY + Z)(\overline{Y}\overline{Z} + \overline{W})$ 의 다단계 구현(2)

Summary Contents 5강 | 부울함수의 간소화 및 구현(2)

- 01 카르노 도표를 이용한 부울함수의 간소화
- 02 무관조건
- 03 기타 카르노 도표
- 04 NAND, NOR 게이트를 이용한 논리회로 구현

디 지 털 + 논리회로

Digital Logic Circuits

디지털논리회로 [Digital Logic Circuits]

6강.

조합논리회로(1)

