Question One:

A)

Corresponding lean proof:

```
theorem q1a (A B C : Prop) :  (A \wedge C) \vee (B \wedge C) \rightarrow (A \vee B) \wedge C :=  assume h : (A \wedge C) \vee (B \wedge C), and intro  (\text{or.elim h} )  (assume k : A \wedge C, or.intro_left B (and.elim_left(k))) (assume 1 : B \wedge C, or.intro_right A (and.elim_left(1)))) (or.elim h (assume k : A \wedge C, and.elim_right(k)) (assume 1 : B \wedge C, and.elim_right(l)))
```

B)

Corresponding proof tree:

$$\frac{\frac{\overline{A \wedge C}}{A, C} \stackrel{k}{[\wedge E]}}{\frac{A \vee B, A, C}{(A \vee B) \wedge C} \stackrel{[\vee I]}{[\wedge I]}} + \frac{\frac{\overline{B \wedge C}}{B, C} \stackrel{k}{[\wedge E]}}{\frac{A \vee B, B, C}{(A \vee B) \wedge C}} \stackrel{[\vee I]}{[\wedge I]}}{\frac{(A \vee C) \vee (B \wedge C)}{A \rightarrow (A \vee B) \wedge C}} \stackrel{k}{\text{k}[\rightarrow I]}} + \frac{\frac{\overline{B \wedge C}}{A \vee B, B, C} \stackrel{[\vee I]}{[\wedge I]}}{A \rightarrow (A \vee B) \wedge C} \stackrel{k}{\text{k}[\rightarrow I]}}{\frac{(A \vee B) \wedge C}{(A \wedge C) \vee (B \wedge C) \rightarrow (A \vee B) \wedge C}} \stackrel{h}{\text{h}[\rightarrow I]}$$

Question Two:

Truth table to check validity of the logical equivalence $(A \wedge C) \vee (B \wedge C) \leftrightarrow (A \vee B) \wedge C$:

A	В	С	$A \wedge C$	$B \wedge C$	$(A \wedge C) \wedge (B \wedge C)$	$(A \vee B)$	$(A \lor B) \lor C$
F	F	F	F	F	F	F	F
F	F	Т	F	F	F	F	F
F	Γ	F	F	F	F	Т	F
F	Т	Т	F	Γ	${ m T}$	Т	Т
Т	F	F	F	F	F	${ m T}$	F
Т	F	Т	Т	F	${ m T}$	${ m T}$	Т
Т	Т	F	F	F	F	Т	F
Т	Т	Т	Т	Т	Т	Т	Т

Question Three:

A)

Proof tree for proof of $A \to (A \land B) \lor (A \land \neg B)$ by natural deduction:

$$\frac{\frac{A \times B}{A \wedge B} \times \frac{Y}{[\wedge I]}}{(A \wedge B) \vee (A \wedge \neg B)} \times \frac{\frac{A \times B}{A \wedge \neg B} \times \frac{Z}{[\wedge I]}}{(A \wedge B) \vee (A \wedge \neg B)} \times [(\vee I]] \times \frac{A \wedge \neg B}{(A \wedge B) \vee (A \wedge \neg B)} \times [(\vee I]] \times \frac{(A \wedge B) \vee (A \wedge \neg B)}{A \rightarrow (A \wedge B) \vee (A \wedge \neg B)} \times [(\vee I]] \times [(\vee E]]$$

B)

Proof implemented in lean:

```
open classical  \begin{array}{l} \text{theorem q3b } (\texttt{A} \; \texttt{B} \; : \; \texttt{Prop}) \; : \\ A \to (A \land B) \lor (A \land \neg B) \; := \\ \text{assume x : A,} \\ \text{or.elim (em B)} \\ \text{(assume y : B, or.intro\_left } (A \land \neg B) \; (\texttt{and.intro}(\texttt{x})(\texttt{y}))) \\ \text{(assume z : } \neg \texttt{B, or.intro\_right } (A \land B) \; (\texttt{and.intro}(\texttt{x})(\texttt{z}))) \\ \end{array}
```

Question 4:

A)

Expressing $P \wedge (Q \rightarrow R)$ in CNF form:

First we must create the corresponding truth table.

Р	Q	R	P	$Q \to R$	$P \wedge (Q \to R)$
F	F	F	F	Т	F
F	F	Т	F	Т	F
F	Т	F	F	F	F
F	Γ	Т	F	${ m T}$	F
$\mid T \mid$	F	F	Т	${ m T}$	T
$\mid T \mid$	F	Т	Т	${ m T}$	Т
$\mid T \mid$	Т	F	Т	F	F
Т	Т	Т	Т	${ m T}$	Т

Enumerating all the rows from the conclusion column.

1.
$$\neg P \land \neg Q \land \neg R$$

2.
$$\neg P \land \neg Q \land R$$

3.
$$\neg P \land Q \land \neg R$$

4.
$$\neg P \land Q \land R$$

5.
$$P \wedge Q \wedge R$$

After negating these formulae (from only the T rows) then joining them with an AND we get:

$$(P \lor Q \lor R) \land (P \lor Q \lor \neg R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$$

B)

Expressing $P \wedge (Q \to R)$ in DNF form: First we must create the corresponding truth table.

Р	Q	R	P	$Q \to R$	$P \wedge (Q \to R)$
F	F	F	F	Т	F
F	F	Т	F	${ m T}$	F
F	Т	F	F	F	F
F	Т	Т	F	${ m T}$	F
T	F	F	Т	${ m T}$	Т
T	F	Т	Т	${ m T}$	Т
T	Т	F	Т	F	F
Т	Т	Т	Т	${ m T}$	Т

Enumerating all the rows from the conclusion column.

1.
$$\neg P \land \neg Q \land \neg R$$

$$2. \ \neg P \wedge \neg Q \wedge R$$

3.
$$\neg P \land Q \land \neg R$$

4.
$$\neg P \land Q \land R$$

5.
$$P \wedge Q \wedge R$$

After joining these formulae (from only the T rows) with an OR we get:

$$(P \wedge \neg Q \wedge \neg R) \vee (P \wedge \neg Q \wedge R) \vee (P \wedge Q \wedge R)$$