# C21 Nonlinear Systems

Mark Cannon

4 lectures

Trinity Term 2020



### Lecture 1

Introduction and Concepts of Stability

# Organisation

| $\triangleright$ | 4 lectures: | week 1              | Mon<br>Tue<br>Thu<br>Fri | 10-11 am<br>10-11 am<br>10-11 am<br>10-11 am |
|------------------|-------------|---------------------|--------------------------|----------------------------------------------|
| $\triangleright$ | 1 class:    | week 6<br>or week 7 |                          | 11-12 pm<br>10-11 am                         |

### Course outline

- 1. Types of stability
- 2. Linearization
- 3. Lyapunov's direct method
- 4. Regions of attraction
- 5. Linear systems and passive systems

### Books

- ▷ J.-J. Slotine & W. Li Applied Nonlinear Control, Prentice-Hall 1991.
  - ⋆ Stability
  - \* Interconnected systems and passive systems
- - \* Stability
  - ⋆ Passive systems
- M. Vidyasagar Nonlinear Systems Analysis, Prentice-Hall 1993.
  - \* Stability & passivity (more technical detail)

### Why use nonlinear control?

- Real systems are nonlinear
  - friction, non-ideal components
  - actuator saturation
  - sensor nonlinearity
- Analysis via linearization
  - accuracy of approximation?
  - conservative?
- ▶ Account for nonlinearities in high performance applications
  - Robotics, Aerospace, Petrochemical industries, Process control,
     Power generation . . .
- Account for nonlinearities if linear models inadequate
  - large operating region
  - model properties change at linearization point

# Linear vs nonlinear system properties

### Free response

### Linear system

$$\dot{x} = Ax$$

Unique equilibrium point:

$$Ax = 0 \iff x = 0$$

Stability independent of initial conditions

### Nonlinear system

$$\dot{x} = f(x)$$

- Multiple equilibrium points f(x) = 0
- Stability dependent on initial conditions

## Linear systems reminder

### Linear system free response

$$\dot{x} = Ax$$

Eigen-decomposition:  $Av_i = v_i \lambda_i$ 

$$\begin{array}{ll} \text{let} & V = \begin{bmatrix} v_1, \dots, v_n \end{bmatrix} \\ & \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} \end{array}$$

then  $A = V \Lambda V^{-1}$  (if  $V^{-1}$  exists)

$$\Rightarrow \quad \dot{z} = \Lambda z, \quad z = V^{-1} x$$
$$z(t) = e^{\Lambda t} z(0)$$

$$\Rightarrow x(t) = Ve^{\Lambda t}V^{-1}x(0)$$
$$= e^{At}x(0)$$

System is stable if  $\operatorname{Re}(\lambda_i) < 0 \ \forall i$ 

## Linear vs nonlinear system properties

### Forced response

### Linear system

$$\dot{x} = Ax + Bu$$

- ||u|| finite  $\Rightarrow ||x||$  finite if open-loop stable
- Frequency response:  $u = U \sin \omega t \implies x = X \sin(\omega t + \phi)$ 
  - Superposition:  $u = u_1 + u_2 \Rightarrow x = x_1 + x_2$

### Nonlinear system

$$\dot{x} = f(x, u)$$

- $\bullet \ \|u\| \ \text{finite} \not \Rightarrow \|x\| \ \text{finite} \\$
- No frequency response  $u = U \sin \omega t \implies x \text{ sinusoidal}$
- No linear superposition  $u = u_1 + u_2 \implies x = x_1 + x_2$

## Linear systems reminder

### Linear system free response

$$\dot{x} = Ax$$

Eigen-decomposition:  $Av_i = v_i \lambda_i$ 

Let 
$$V = \begin{bmatrix} v_1, \dots, v_n \end{bmatrix}$$
 
$$\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

then  $A = V\Lambda V^{-1}$  (if  $V^{-1}$  exists)

$$\Rightarrow \quad \dot{z} = \Lambda z, \quad z = V^{-1} x$$
$$z(t) = e^{\Lambda t} z(0)$$

$$\Rightarrow x(t) = Ve^{\Lambda t}V^{-1}x(0)$$
$$= e^{At}x(0)$$

System is stable if  $Re(\lambda_i) < 0$ 

### Forced response

$$\dot{x} = Ax + Bu$$

$$\Rightarrow x(t) = \int_0^t e^{A(t-h)} Bu(h) dh$$

$$+ e^{At} x(0)$$

System is bounded-input bounded-output (BIBO) stable:

$$\sup_{t\geq 0} \|x(t)\| \leq \gamma \sup_{t\geq 0} \|u(t)\|$$

$$\gamma = \|B\| \int_{-\infty}^{\infty} \|e^{At}\| dt, \text{ if } \operatorname{Re}(\lambda_i) < 0$$

### Frequency response

$$\dot{x} = Ax + Bu$$

$$u = U(\omega)e^{j\omega t} \implies x = X(\omega)e^{j\omega t}$$

$$\implies X(\omega) = (j\omega I - A)^{-1}BU(\omega)$$

# Example: step response

### Mass-spring-damper system



### Equation of motion:

$$m\ddot{x} + c(\dot{x}) + k(x) = u$$

$$c(\dot{x}) = \dot{x}$$
  
 $k(x)$  nonlinear:







apparent damping ratio depends on size of input step

### Example: multiple equilibria

First order system:  $\dot{x} = f(x)$ 



- $x_a$ ,  $x_c$  are unstable equilibrium points
- $x_b$  is a stable equilibrium point

## Example: multiple equilibria

First order system:  $\dot{x} = f(x)$ 



 $x < x_c$   $\Longrightarrow$  f(x) < 0  $\Longrightarrow$  x(t) decreases

- $x_a$ ,  $x_c$  are unstable equilibrium points
- $x_b$  is a stable equilibrium point

## Example: limit cycle

Van der Pol oscillator:

$$\ddot{x} + (x^2 - 1)\dot{x} + x = 0$$

- Response x(t) tends to a limit cycle (= trajectory forming a closed curve)
- Amplitude independent of initial conditions



Response with x(0)=0.05,  $\dot{x}(0)=0.05$ 



State trajectories  $(x(t), \dot{x}(t))$ 

### Strange attractor



#### Lorenz attractor

Simplified model of atmospheric convection:

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = x(\rho - z) - y$$

$$\dot{z} = xy - \beta z$$

State variables

x(t): fluid velocity

y(t): difference in temperature of acsending and descending fluid

z(t): characterizes distortion of vertical temperature profile

 $\bullet$  Parameters  $\sigma=10$ ,  $\beta=8/3$ ,  $\rho=$  variable

### Lorenz attractor

$$\rho=28 \implies$$
 "strange attractor":



Lorenz attractor

sensitivity to initial conditions



#### Lorenz attractor

sensitivity to initial conditions blue: (x,y,z)=(0,1,1.05)red: (x,y,z)=(0,1,1.050001)



### Lorenz attractor

$$\rho = 99.96 \implies \text{limit cycle}$$
:



Lorenz attractor

 $\rho=14 \implies$  convergence to a stable equilibrium:



### State space equations

A continuous-time nonlinear system

$$\dot{x} = f(x,u,t) \qquad x \; : \; \mathsf{state} \\ u \; : \; \mathsf{input}$$

e.g. nth order differential equation:

$$\frac{d^n y}{dt^n} = h\left(y, \dots, \frac{d^{n-1} y}{dt^{n-1}}, u, t\right)$$

has state vector (one possible choice)

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y \\ \dot{y} \\ \vdots \\ d^{n-1}y/dt^{n-1} \end{bmatrix}$$

and state space dynamics:

$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ \vdots \\ h(x_1, x_2, \dots, x_n, u, t) \end{bmatrix} = f(x, u, t)$$

# Equilibrium points

 $x^*$  is an equilibrium point of system  $\dot{x} = f(x)$  if (and only if):

$$x(0) = x^*$$
 implies  $x(t) = x^* \quad \forall t > 0$ 

- i.e.  $f(x^*) = 0$ 
  - ★ Consider local stability of individual equilibrium points
  - $\star$  Convention: define f so that x=0 is equilibrium point of interest
  - $\star$  Autonomous system:  $\dot{x} = f(x) \implies x^* = \text{constant}$

### Examples:

(a). 
$$\ddot{y} + \alpha \dot{y}^2 + \beta \sin y = 0$$
 (damped pendulum)

$$x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}, \quad x^* = \begin{bmatrix} n\pi \\ 0 \end{bmatrix}, \ n = 0, \pm 1$$

(b). 
$$\ddot{y} + (y-1)^2 \dot{y} + y - \sin(\pi y/2) = 0$$

$$x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}, \quad x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \ \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

## Equilibrium points

EQUILIBRIUM POINT EXAMPLES

(a). 
$$\ddot{y} + \alpha \dot{y}^2 + \beta \sin y = 0$$
  
STATE  $x = \begin{pmatrix} y \\ \dot{y} \end{pmatrix}$  :  $\dot{x} = \begin{pmatrix} \dot{y} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} \dot{y} \\ -\alpha \dot{y}^2 - \beta \sin y \end{pmatrix}$   
 $\epsilon \alpha M$ :  $\dot{x} = 0 \Rightarrow \langle \dot{y} = 0 \rangle \Rightarrow x^* = \begin{pmatrix} n\pi \\ 0 \end{pmatrix}, n = 0, 1, ...$ 

(b) 
$$\dot{y} + (y-1)^2 \dot{y} + y - \sin(\pi y/2) = 0$$
  
STATE  $\kappa = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}$   $\dot{\kappa} = \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \dot{y} \\ -(y-1)^2 \dot{y} - y + \epsilon^{2} \sqrt{(\pi y/2)} \end{bmatrix}$   
EQM:  $\dot{\kappa} = 0 \implies \begin{cases} \dot{y} = 0 \\ y = \epsilon^{2} \sqrt{(\pi y/2)} \end{cases} \implies \kappa^{4} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}$ 



## Stability definition

An equilibrium point x = 0 is stable iff:

$$\max_t \|x(t)\| \text{ can be made arbitrarily small}$$
 by making  $\|x(0)\|$  small enough 
$$\updownarrow$$

 $\begin{array}{ll} \text{for any } R>0, \text{ there exists } r>0 \text{ so that} \\ \|x(0)\| < r \implies \|x(t)\| < R \quad \forall t>0 \end{array}$ 



- Is x = 0 a stable equilibrium for the Van der Pol oscillator example?
- No guarantee of convergence to the equilibrium point

# Stability definition

An equilibrium point x = 0 is stable iff:

$$\max_t \|x(t)\| \text{ can be made arbitrarily small}$$
 by making  $\|x(0)\|$  small enough 
$$\updownarrow$$

 $\begin{array}{ll} \text{for any } R>0 \text{, there exists } r>0 \text{ so that} \\ \|x(0)\| < r \implies \|x(t)\| < R \quad \forall t>0 \end{array}$ 



- Is x=0 a stable equilibrium for the Van der Pol oscillator example?
- No guarantee of convergence to the equilibrium point

## Asymptotic stability definition

An equilibrium point x=0 is asymptotically stable iff:

(i). 
$$x=0$$
 is stable (ii).  $\|x(0)\| < r \implies \|x(t)\| \to 0$  as  $t \to \infty$ 

(ii) is equivalent to:

$$\begin{cases} \text{for any } R>0, \\ \|x(0)\| < r \implies \|x(t)\| < R \quad \forall t>T \\ \text{for some } r, \ T \end{cases}$$

## Exponential stability definition

An equilibrium point x=0 is exponentially stable iff:

$$||x(0)|| < r \implies ||x(t)|| \le \beta e^{-\alpha t} \quad \forall t > 0$$

exponential stability is a special case of asymptotic stability



# Region of attraction

The region of attraction of x=0 is the set of all initial conditions x(0) for which  $x(t)\to 0$  as  $t\to \infty$ 



- Every asymptotically stable equilibrium point has a region of attraction
- $\begin{array}{ccc} \bullet & r = \infty & \Longrightarrow & \text{entire state space is a region of attraction} \\ & \Longrightarrow & x = 0 \text{ is globally asymptotically stable} \end{array}$
- Are stable linear systems asymptotically stable?

### Summary

- ightharpoonup Nonlinear state space equations:  $\dot{x}=f(x,u)$  x= state vector, u= control input
- $\,\,\,\,\,\,\,\,\,$  Equilibrium points:  $x^*$  is an equilibrium point of  $\dot{x}=f(x)$  if  $f(x^*)=0$
- ightharpoonup Stable equilibrium point:  $x^*$  is stable if state trajectories starting close to  $x^*$  remain near  $x^*$  at all times
- ightharpoonup Asymptotically stable equilibrium point:  $x^*$  must be stable and state trajectories starting near  $x^*$  must tend to  $x^*$  asymptotically
- ightharpoonup Region of attraction: the set of initial conditions from which state trajectories converge asymptotically to equilibrium  $x^*$

### Lecture 2

Linearization and Lyapunov's direct method

## Linearization and Lyapunov's direct method

- Direct method for stability
- ▷ Direct method for asymptotic stability

# Review of stability definitions

System: 
$$\dot{x} = f(x)$$

- ⋆ unforced system (i.e. closed-loop)
- ★ consider stability of individual equilibrium points



0 is a stable equilibrium if:

$$\|x(0)\| \leq r \implies \|x(t)\| \leq R$$
 for any  $R > 0$ 

x(t) x(0) x(0) x(0)

0 is asymptotically stable if:

$$\|x(0)\| \le r \implies \|x(t)\| \to 0$$
 as  $t \to \infty$ 

Stability o local property Asymptotic stability o global if  $r=\infty$  allowed

# Review of stability definitions

System: 
$$\dot{x} = f(x)$$

- System:  $\dot{x} = f(x)$  \* unforced system (i.e. closed-loop)
  - \* consider stability of individual equilibrium points



0 is a stable equilibrium if:

$$\|x(0)\| \leq r \implies \|x(t)\| \leq R$$
 for any  $R > 0$ 

Stability Asymptotic stability



0 is asymptotically stable if:

$$||x(0)|| \le r \implies ||x(t)|| \to 0$$
 as  $t \to \infty$ 

 $\rightarrow$  global if  $r = \infty$  allowed

## Historical development of Stability Theory

- Potential energy in conservative mechanics (Lagrange 1788):
  - An equilibrium point of a conservative system is stable if it corresponds to a minimum of the potential energy stored in the system
- Energy storage analogy for general ODEs (Lyapunov 1892)
- Invariant sets (Lefschetz, La Salle 1960s)



J-L. Lagrange 1736-1813



A. M. Lyapunov 1857-1918



S. Lefschetz 1884-1972

# Lyapunov's linearization method

- Determine stability of equilibrium at x=0 by analyzing the stability of the linearized system at x = 0.
- Jacobian linearization:

$$\dot{x}=f(x)$$
 original nonlinear dynam 
$$=f(0)+\frac{\partial f}{\partial x}\Big|_{x=0}x+R_1(x)$$
 Taylor's series expansion 
$$pprox Ax$$
 since  $f(0)=0$ 

original nonlinear dynamics

since f(0) = 0

where

$$A = \frac{\partial f}{\partial x}\Big|_{x=0} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$
 Jacobian matrix

 $R_1(x) \to 0$  as  $x \to 0$ 

remainder

# Taylor's Theorem reminder

- If 
$$f(x)$$
 is differentiable AT  $x=0$ , then
$$f(x) = f(0) + \frac{2f}{7x} \Big|_{x=0} x + R_{x}(x)$$
Where  $R_{x}(x) \to 0$  As  $x \to 0$ 

WHICH IMPLIES THAT, FOR ANY E>O, THERE EXISTS AN 1>O SUCH THAT



# Lyapunov's linearization method

Conditions on  ${\cal A}$  for stability of original nonlinear system at x=0:

| stability of linearization        | stability of nonlinear system at $\boldsymbol{x} = \boldsymbol{0}$ |
|-----------------------------------|--------------------------------------------------------------------|
| $Reig(\lambda(A)ig) < 0$          | asymptotically stable (locally)                                    |
| $\max Re\big(\lambda(A)\big) = 0$ | stable or unstable                                                 |
| $\max Re ig( \lambda(A) ig) > 0$  | unstable                                                           |
|                                   |                                                                    |

2 - 7

# Lyapunov's linearization method: examples

4 
$$\dot{\chi} = \chi \cos \chi \implies \dot{\chi} = \left[\cos \chi - \chi \sin \chi\right]_{\chi \in \Omega} \chi = \chi$$

or  $\dot{\chi} = \chi \left(1 - \frac{\chi^2}{2} + \dots\right) \approx \chi$ 

Line Aris Ation:  $\dot{\chi} = \chi \implies \lambda = 1 \implies \chi = 2$  is An unstable Exm

2 - 8

### Lyapunov's linearization method

• Linearization may not provide enough information:

$$\begin{array}{lll} \text{(stable)} & & \dot{x} = -x^3 & \xrightarrow{\text{linearize}} & \dot{x} = 0 & \text{(indeterminate)} \\ \text{(unstable)} & & \dot{x} = x^3 & \xrightarrow{\text{linearize}} & \dot{x} = 0 & \text{(indeterminate)} \\ & & & & & & \end{array}$$

higher order terms determine stability

- Why does linear control work?
  - 1. Linearize the model:

$$f = f(x, u)$$
  
 $f \approx Ax + Bu,$   $A = \frac{\partial f}{\partial x}(0, 0), B = \frac{\partial f}{\partial u}(0, 0)$ 

2. Design a linear feedback controller using the linearized model

$$u=-Kx, \quad \max \operatorname{Re} ig(\lambda(A-BK)ig) < 0$$
 closed-loop linear model strictly stable

nonlinear system  $\dot{x} = f(x, -Kx)$  is locally asymptotically stable at x = 0

### Lyapunov's linearization method

Linearization may not provide enough information:

$$\begin{array}{lll} \text{(stable)} & & \dot{x} = -x^3 & \xrightarrow{\text{linearize}} & \dot{x} = 0 & \text{(indeterminate)} \\ \text{(unstable)} & & \dot{x} = x^3 & \xrightarrow{\text{linearize}} & \dot{x} = 0 & \text{(indeterminate)} \\ & & & & & & \end{array}$$

higher order terms determine stability

- Why does linear control work?
  - 1. Linearize the model:

$$\dot{x} = f(x, u)$$
 
$$\approx Ax + Bu, \qquad A = \frac{\partial f}{\partial x}(0, 0), \ B = \frac{\partial f}{\partial u}(0, 0)$$

2. Design a linear feedback controller using the linearized model:

$$u = -Kx, \quad \max \mathrm{Re} \big( \lambda (A - BK) \big) < 0$$
 closed-loop linear model strictly stable

nonlinear system  $\dot{x} = f(x, -Kx)$  is locally asymptotically stable at x = 0

# Lyapunov's direct method: mass-spring-damper example





Equation of motion:

$$m\ddot{y} + c(\dot{y}) + k(y) = 0$$

Stored energy:

$$V = \text{K.E.} + \text{P.E.}$$
 
$$\begin{cases} \text{K.E.} = \frac{1}{2}m\dot{y}^2 \\ \text{P.E.} = \int_0^y k(y) \, dy \end{cases}$$

Rate of energy dissipation

$$\dot{V} = \frac{1}{2}m\ddot{y}\frac{d}{d\dot{y}}\dot{y}^2 + \dot{y}\frac{d}{dy}\left[\int_0^y k(y)\,dy\right]$$
$$= m\ddot{y}\dot{y} + \dot{y}k(y)$$

but 
$$m\ddot{y}+k(y)=-c(\dot{y})$$
, so  $\dot{V}=-c(\dot{y})\dot{y}$  
$$\leq 0 \qquad \qquad \leftarrow \mathrm{since}\;\mathrm{sign}\big(c(\dot{y})\big)=\mathrm{sign}(\dot{y})$$

# Lyapunov's direct method: mass-spring-damper example





$$m\ddot{y} + c(\dot{y}) + k(y) = 0$$

$$V = \text{K.E.} + \text{P.E.}$$
 
$$\begin{cases} \text{K.E.} = \frac{1}{2}m\dot{y}^2 \\ \text{P.E.} = \int_0^y k(y) \, dy \end{cases}$$

$$\dot{V} = \frac{1}{2}m\ddot{y}\frac{d}{d\dot{y}}\dot{y}^2 + \dot{y}\frac{d}{dy}\left[\int_0^y k(y) dy\right]$$
$$= m\ddot{y}\dot{y} + \dot{y}k(y)$$

but 
$$m\ddot{y}+k(y)=-c(\dot{y})$$
, so  $\dot{V}=-c(\dot{y})\dot{y}$   $<0$ 

$$\leftarrow \operatorname{since} \operatorname{sign}(c(\dot{y})) = \operatorname{sign}(\dot{y})$$

# Mass-spring-damper example contd.

- $\bullet \ \ \text{System state: e.g.} \ x = [y \ \ \dot{y}]^T$
- $\dot{V}(x) \leq 0$  implies that x=0 is stable  $\uparrow \\ V(x(t)) \text{ must decrease over time } \\ \text{but}$ 
  - V(x) increases with increasing  $\|x\|$



Formal argument

for any given 
$$R>0$$
:

$$\|x\| < R \qquad \text{ whenever } \qquad V(x) < \overline{V} \text{ for some } \overline{V}$$
 and  $V(x) < \overline{V} \qquad \text{ whenever } \qquad \|x\| < r \quad \text{ for some } r$ 

$$\begin{split} \therefore \|x(0)\| < r &\implies V\big(x(0)\big) < \overline{V} \\ &\implies V\big(x(t)\big) < \overline{V} \quad \text{ for all } t > 0 \\ &\implies \|x(t)\| < R \quad \text{ for all } t > 0 \end{split}$$

# Mass-spring-damper example contd.

- $\bullet \ \ \text{System state: e.g.} \ x = [y \ \dot{y}]^T$



Formal argument:

for any given R>0:

$$\|x\| < R \qquad \text{whenever} \qquad V(x) < \overline{V} \ \text{ for some } \overline{V}$$
 and  $V(x) < \overline{V} \qquad \text{whenever} \qquad \|x\| < r \quad \text{ for some } r$ 

$$\begin{split} \therefore \|x(0)\| < r &\implies V\big(x(0)\big) < \overline{V} \\ &\implies V\big(x(t)\big) < \overline{V} \quad \text{ for all } t > 0 \\ &\implies \|x(t)\| < R \quad \text{ for all } t > 0 \end{split}$$

#### Positive definite functions

- What if V(x) is not monotonically increasing in ||x||?
- Same arguments apply if V(x) is continuous and positive definite, i.e.

$$\begin{array}{ll} \mbox{(i)}. & V(0) = 0 \\ \mbox{(ii)}. & V(x) > 0 & \mbox{ for all } x \neq 0 \end{array}$$



for any given  $\overline{V}>0$ , can always find r so that

V(x) < V whenever ||x|| < r

 $V(x) \ge \alpha ||x||^n$  for some constants  $\alpha$ , n, so

 $\|x\| < (\overline{V}/lpha)^{1/n}$  wheneve

V(x) < 0

#### Positive definite functions

- What if V(x) is not monotonically increasing in ||x||?
- ullet Same arguments apply if V(x) is continuous and positive definite, i.e.

$$\begin{array}{ll} \mbox{(i)}. & V(0) = 0 \\ \mbox{(ii)}. & V(x) > 0 \quad \mbox{ for all } x \neq 0 \end{array}$$



for any given  $\overline{{\cal V}}>0$  , can always find r so that

$$V(x) < \overline{V}$$
 whenever  $\|x\| < r$ 

$$V(x) \ge \alpha ||x||^n$$
 for some constants  $\alpha$ ,  $n$ , so

$$\|x\| < (\overline{V}/\alpha)^{1/n}$$
 whenever  $V(x) < \overline{V}$ 

If there exists a continuous function  $V(\boldsymbol{x})$  such that

$$V(x)$$
 is positive definite 
$$\dot{V}(x) \leq 0$$

then x = 0 is stable.

To show that this implies  $\|x(t)\| < R$  for all t>0 whenever  $\|x(0)\| < r$  for any R and some r

- 1. choose  $\overline{V}$  as the minimum of V(x) for  $\|x\|=R$
- 2. find r so that  $V(x)<\overline{V}$  whenever  $\|x\|< r$
- 3. then  $\dot{V}(x) \leq 0$  ensures that

$$V(x(t)) < \overline{V} \quad \forall t > 0 \quad \text{if } ||x(0)|| < r$$
  
  $\therefore ||x(t)|| < R \quad \forall t > 0$ 



If there exists a continuous function  $V(\boldsymbol{x})$  such that

$$V(x)$$
 is positive definite  $\dot{V}(x) \leq 0$ 

then x = 0 is stable.

To show that this implies  $\|x(t)\| < R$  for all t>0 whenever  $\|x(0)\| < r$  for any R and some r:

- 1. choose  $\overline{V}$  as the minimum of V(x) for  $\|x\|=R$
- 2. find r so that  $V(x)<\overline{V}$  whenever  $\|x\|< r$
- 3. then  $\dot{V}(x) \leq 0$  ensures that  $V(x) \leq \overline{V}$

$$V(x(t)) < \overline{V} \quad \forall t > 0 \quad \text{if } ||x(0)|| < r$$
  
  $\therefore ||x(t)|| < R \quad \forall t > 0$ 



 $\bullet$  Lyapunov's direct method also applies if V(x) is locally positive definite, i.e. if

(i). 
$$V(0) = 0$$
   
 (ii).  $V(x) > 0$  for  $x \neq 0$  and  $||x|| < R_0$ 

then x = 0 is stable if  $\dot{V}(x) \le 0$  whenever  $||x|| < R_0$ .

- Apply the theorem without determining R, r only need to find p.d. V(x) satisfying  $\dot{V}(x) \leq 0$ .
- Examples

(i). 
$$\dot{x}=-a(t)x$$
,  $a(t)>0$  
$$V=\frac{1}{2}x^2 \implies \dot{V}=x\dot{x}$$
 
$$=-a(t)x^2\leq 0$$
 (ii).  $\dot{x}=-a(x)$ ,  $\mathrm{sign}\big(a(x)\big)=\mathrm{sign}(x)$  
$$V=\frac{1}{2}x^2 \implies \dot{V}=x\dot{x}$$

 $\bullet$  Lyapunov's direct method also applies if V(x) is locally positive definite, i.e. if

(i). 
$$V(0) = 0$$
 (ii). 
$$V(x) > 0 \quad \text{ for } x \neq 0 \text{ and } \|x\| < R_0$$

then x = 0 is stable if  $\dot{V}(x) \le 0$  whenever  $||x|| < R_0$ .

- Apply the theorem without determining R, r only need to find p.d. V(x) satisfying  $\dot{V}(x) \leq 0$ .
- Examples

(i). 
$$\dot{x}=-a(t)x$$
,  $a(t)>0$  
$$V=\frac{1}{2}x^2 \implies \dot{V}=x\dot{x}$$
 
$$=-a(t)x^2\leq 0$$

(ii). 
$$\dot{x}=-a(x), \quad \mathrm{sign}\big(a(x)\big)=\mathrm{sign}(x)$$
 
$$V=\tfrac{1}{2}x^2 \implies \dot{V}=x\dot{x}$$
 
$$=-a(x)x\leq 0$$



More examples

(iii). 
$$\dot{x}=-a(x), \quad \int_0^x a(x)\,dx>0$$
 
$$V=\int_0^x a(x)\,dx \quad \Longrightarrow \quad \dot{V}=a(x)\dot{x}$$
 
$$=-a^2(x)\leq 0$$

(iv). 
$$\ddot{\theta} + \sin \theta = 0$$
 
$$V = \frac{1}{2}\dot{\theta}^2 + \int_0^{\theta} \sin \theta \ d\theta \implies \dot{V} = \ddot{\theta}\dot{\theta} + \dot{\theta}\sin \theta$$
$$= 0$$

# Asymptotic stability theorem

If there exists a continuous function  $V(\boldsymbol{x})$  such that

 $\begin{array}{ll} V(x) & \text{is positive definite} \\ \dot{V}(x) & \text{is negative definite} \end{array}$ 

then x=0 is locally asymptotically stable.  $(\dot{V} \text{ negative definite } \iff -\dot{V} \text{ positive definite})$ 

Asymptotic convergence x(t) 
ightarrow 0 as  $t 
ightarrow \infty$  can be shown by contradiction

if  $\|x(t)\| > R'$  for all  $t \ge 0$ , then

$$\begin{array}{c} \dot{V}(x) < -W \\ \\ V(x) \geq \underline{V} \end{array} \qquad \text{for all } t \geq 0$$



## Asymptotic stability theorem

If there exists a continuous function  $V(\boldsymbol{x})$  such that

$$\begin{array}{ll} V(x) & \text{is positive definite} \\ \dot{V}(x) & \text{is negative definite} \end{array}$$

then x=0 is locally asymptotically stable.  $(\dot{V} \text{ negative definite } \iff -\dot{V} \text{ positive definite} )$ 

Asymptotic convergence  $x(t) \to 0$  as  $t \to \infty$  can be shown by contradiction:

if 
$$\|x(t)\|>R'$$
 for all  $t\geq 0$ , then 
$$\dot{V}(x)<-W$$
 for all  $t\geq 0$  
$$V(x)\geq \underline{V}$$



### Linearization method and asymptotic stability

- $\bullet$  Asymptotic stability result also applies if  $\dot{V}(x)$  is only locally negative definite.
- Why does the linearization method work?
  - $\star$  consider 1st order system:  $\dot{x} = f(x)$ linearize about x = 0: = -ax + R(x)
  - $\star$  assume a > 0 and try Lyapunov function V:

$$\begin{array}{ll} V(x) &=& \frac{1}{2}x^2 \\ \dot{V}(x) &=& x\dot{x} = -ax^2 + xR(x) = -x^2(a - R(x)/x) \\ &\leq& -x^2(a - |R(x)/x|) \end{array}$$

 $\star$  but we can choose  $\epsilon$  so that  $|R(x)/x|<\epsilon$  whenever  $|x|\leq r$ , so

$$\dot{V} \leq -x^2(a-\epsilon) \\ \leq -\gamma x^2 \qquad \text{with } a-\epsilon = \gamma > 0 \text{ if } |x| \leq r$$

- $\Rightarrow \dot{V}$  negative definite for |x| small enough
- $\implies x = 0$  locally asymptotically stable

Generalization to nth order systems is straightforward

### Linearization method and asymptotic stability

- $\bullet$  Asymptotic stability result also applies if  $\dot{V}(x)$  is only locally negative definite.
- Why does the linearization method work?
  - $\begin{array}{lll} \star \ \mbox{consider 1st order system:} & \dot{x} = f(x) \\ & \mbox{linearize about } x = 0 : & = -ax + R(x) \end{array}$
  - $\star$  assume a > 0 and try Lyapunov function V:

$$V(x) = \frac{1}{2}x^{2}$$

$$\dot{V}(x) = x\dot{x} = -ax^{2} + xR(x) = -x^{2}(a - R(x)/x)$$

$$\leq -x^{2}(a - |R(x)/x|)$$

 $\star$  but we can choose  $\epsilon$  so that  $|R(x)/x|<\epsilon$  whenever  $|x|\le r$  , so

$$\begin{array}{ll} \dot{V} \, \leq \, -x^2(a-\epsilon) \\ \leq \, -\gamma x^2 & \text{with } a-\epsilon = \gamma > 0 \text{ if } |x| \leq r \end{array}$$

- $\implies \dot{V}$  negative definite for |x| small enough
- $\implies x = 0$  locally asymptotically stable

Generalization to nth order systems is straightforward

### Global asymptotic stability theorem

If there exists a continuous function  $V(\boldsymbol{x})$  such that

$$\begin{array}{c} V(x) & \text{is positive definite} \\ \dot{V}(x) & \text{is negative definite} \\ V(x) \to \infty \text{ as } \|x\| \to \infty \end{array} \right\} \text{ for all } x$$

then x = 0 is globally asymptotically stable

- If  $V(x) \to \infty$  as  $||x|| \to \infty$ , then V(x) is radially unbounded
- Test whether V(x) is radially unbounded by checking if  $V(x) \to \infty$  as each individual element of x tends to infinity (necessary).

### Global asymptotic stability theorem

Global asymptotic stability requires:

$$\|x(t)\| \text{ finite } \left\{ \begin{array}{c} \text{ for all } t>0 \\ \text{ for all } x(0) \end{array} \right.$$

not guaranteed by  $\dot{V}$  negative definite

in addition to asymptotic stability of  $\boldsymbol{x}=\boldsymbol{0}$ 

$$\begin{array}{c} \bullet \text{ Hence add extra condition: } V(x) \to \infty \text{ as } \|x\| \to \infty \\ & \updownarrow \text{ equiv. to} \\ & \text{ level sets } \{x \ : \ V(x) = \overline{V}\} \text{ are bounded} \\ & \updownarrow \text{ equiv. to} \\ & \|x\| \text{ is finite whenever } V(x) \text{ is finite} \\ & & \uparrow \\ & \text{ prevents } x(t) \text{ drifting away from } 0 \text{ despite } \dot{V} < 0 \\ \end{array}$$

# Asymptotic stability example

$$\begin{array}{ll} \text{System:} & \dot{x}_1{=}(x_2-1)x_1^3\\ & \dot{x}_2{=}{-}\frac{x_1^4}{(1+x_1^2)^2}-\frac{x_2}{1+x_2^2} \end{array}$$

• Trial Lyapunov function  $V(x) = x_1^2 + x_2^2$ :

$$\dot{V}(x) = 2x_1\dot{x}_1 + 2x_2\dot{x}_2$$

$$= -2x_1^4 + 2x_2x_1^4 - 2\frac{x_2x_1^4}{(1+x_1^2)^2} - 2\frac{x_2^2}{1+x_2^2} \not\leq 0$$

change V to make these terms cancel

## Asymptotic stability example

• New trial Lyapunov function  $V(x) = \frac{x_1^2}{1 + x_1^2} + x_2^2$ :

$$\dot{V}(x) = 2\left[\frac{x_1}{1+x_1^2} - \frac{x_1^3}{(1+x_1^2)^2}\right]\dot{x_1} + 2x_2\dot{x_2}$$
$$= -2\frac{x_1^4}{(1+x_1^2)^2} - 2\frac{x_2^2}{1+x_2^2} \le 0$$

V(x) positive definite,  $\dot{V}(x)$  negative definite  $\implies x=0$  a.s. But V(x) not radially unbounded, so cannot conclude global asymptotic stability

 $V_0 = 3$   $V_0 = 1$   $V_0 = 0.5$   $V_0 = 3$   $V_0 = 3$ 

State trajectories:

### Summary

- Positive definite functions
- Derivative of V(x) along trajectories of  $\dot{x} = f(x)$
- Lyapunov's direct method for: stability asymptotic stability global stability
- Lyapunov's linearization method

#### Lecture 3

# Convergence and invariant sets

# Convergence and invariant sets

- ▶ Invariant sets

## Review of Lyapunov's direct method

#### Positive definite functions

If

$$V(0) = 0$$

$$V(x) > 0 \quad \text{for all } x \neq 0$$

then V(x) is positive definite

- If S is a set containing x = 0 and

$$V(0) = 0$$
  
 $V(x) > 0$  for all  $x \neq 0$ .  $x \in S$ 

then V(x) is locally positive definite (within S)

- e.g.

$$V(x) = x^{\top}x$$
  $\leftarrow$  positive definite

$$V(x) = x^\top x (1 - x^\top x) \qquad \leftarrow \quad \text{locally positive definite} \\ \quad \text{within } \mathcal{S} = \{x \ : \ x^\top x < 1\}$$

### Review of Lyapunov's direct method

System: 
$$\dot{x} = f(x), \quad f(0) = 0$$
   
Storage function:  $V(x)$    
Time-derivative of  $V$ :  $\dot{V}(x) = \frac{\partial V}{\partial x} \frac{dx}{dt} = \nabla V(x)^{\top} \dot{x} = \nabla V(x)^{\top} f(x)$    
- If   
(i).  $V(x)$  is positive definite   
(ii).  $\dot{V}(x) \leq 0$   $\bigg\}$  for all  $x \in \mathcal{S}$ 

then the equilibrium x = 0 is stable

- If  $\hbox{(iii). } \dot{V}(x) \text{ is negative definite } \qquad \text{for all } x \in \mathcal{S}$  then the equilibrium x=0 is asymptotically stable
- If  $\text{(iv). } S = \text{entire state space} \\ \text{(v). } V(x) \to \infty \text{ as } \|x\| \to \infty \\ \text{then the equilibrium } x=0 \text{ is globally asymptotically stable}$

#### Convergence analysis

- What can be said about convergence of x(t) to 0 if  $\dot{V}(x) \leq 0$  but  $\dot{V}(x)$  is not negative definite?
- Revisit m-s-d example:





Equation of motion:  $m\ddot{y} + c(\dot{y}) + k(y) = 0$ 

Storage function: 
$$V={\rm K.E.}+{\rm P.E.}={\textstyle\frac{1}{2}}m\dot{y}^2+\int_0^yk(y)\,dy$$
 
$$\dot{V}=-c(\dot{y})\dot{y}$$

#### Convergence analysis

- V is p.d. and  $\dot{V} \leq 0$  so:  $(y,\dot{y})=(0,0)$  is stable and  $V(y,\dot{y})$  tends to a finite limit as  $t\to\infty$
- but does  $(y, \dot{y})$  converge to (0, 0)?

‡ equivalent to

can 
$$V(y,\dot{y})$$
 "get stuck" at  $V=V_0\neq 0$  as  $t\to\infty$ ?

1

need to consider motion at points  $(y,\dot{y})$  for which  $\dot{V}=0$ 

#### Example

Equation of motion: 
$$m\ddot{y} + c(\dot{y}) + k(y) = 0$$









Storage function: 
$$V = \frac{1}{2}\dot{y}^2 + \int_0^y 5\tan^{-1}(y/5)\,dy$$
 
$$\dot{V} = -c(\dot{y})\dot{y} \le 0$$
 
$$\dot{V} = 0 \text{ when } \dot{y} = 0$$
 but  $k(y) \ne 0 \implies \ddot{y} \ne 0 \implies \ddot{V} \ne 0$ 

#### Example

Equation of motion: 
$$m\ddot{y} + c(\dot{y}) + k(y) = 0$$







#### Storage function:

$$V = \frac{1}{2}\dot{y}^2 + \int_0^y 5 \tan^{-1}(y/5) \, dy$$
 
$$\dot{V} = -c(\dot{y})\dot{y} \le 0$$
 
$$\dot{V} = 0 \text{ when } \dot{y} = 0$$
 but  $k(y) \ne 0 \implies \ddot{y} \ne 0 \implies \ddot{V} \ne 0$ 

V continues to decrease until  $y=\dot{y}=0$ 

3 - 7

### Convergence analysis

#### Summary of method:

- 1. show that  $\dot{V}(x) \to 0$  as  $t \to \infty$
- 2. determine the set  $\mathcal{R}$  of points x for which  $\dot{V}(x)=0$
- 3. identify the subset  ${\mathcal M}$  of  ${\mathcal R}$  for which  $\dot{V}(x)=0$  at all future times

then x(t) has to converge to  $\mathcal{M}$  as  $t\to\infty$ 

This approach is the basis of the invariant set theorems

#### Barbalat's Lemma

Barbalat's lemma: For any function  $\phi(t)$ , if

- (i).  $\int_0^t \phi(\tau)\,d\tau$  converges to a finite limit as  $t\to\infty$  (ii).  $\dot{\phi}(t)$  exists and remains finite for all t

then  $\lim_{t\to\infty} \phi(t) = 0$ 

 $\star$  If  $\phi$  is uniformly continuous, then

$$\int_0^t \phi(\tau) \, d\tau \to \text{constant} \qquad \Longrightarrow \qquad \phi(t) \to 0 \text{ as } t \to \infty$$

- $\star$  Condition (ii) ensures that  $\phi(t)$  is continuous for all t
- $\star$  Without (ii) we could have  $\int_0^t \phi(\tau)\,d\tau \to {\rm constant} \\ {\rm and} \quad \phi(t)\not\to 0$  as  $t\to\infty$

#### Barbalat's Lemma

Example: pulse train  $\phi(t) = \sum_{k=0}^{\infty} e^{-4^k(t-k)^2}$ :



From the plots it is clear that

$$\int_0^t \phi(s) \, ds \text{ tends to a finite limit}$$

but 
$$\phi(t) 
eq 0$$
 as  $t \to \infty$  because  $\dot{\phi}(t) \to \infty$  as  $t \to \infty$ 

### Barbalat's Lemma

Apply Barbalat's Lemma to  $\dot{V}\big(x(t)\big) = \phi(t) \leq 0$ :

(a) Integrate:

$$\int_0^t \phi(s) \, ds = V \big( x(t) \big) - V \big( x(0) \big) \qquad \qquad \leftarrow \text{ finite limit as } t \to \infty$$

(b) Differentiate:

$$\begin{split} \dot{\phi}(t) &= \ddot{V}\big(x(t)\big) = f(x)^\top \frac{\partial^2 V}{\partial x^2}(x) f(x) + \nabla V(x)^\top \frac{\partial f}{\partial x}(x) f(x) \\ &= \text{finite for all } t \text{ if } f(x) \text{ continuous and } V(x) \text{ continuously differentiable} \end{split}$$

1

$$\dot{V}(x) 
ightarrow 0$$
 as  $t 
ightarrow \infty$ 

(a) and (b) rely on ||x(t)|| remaining finite for all t, which is implied by:

$$V(x)$$
 positive definite  $\dot{V}(x) \leq 0$  
$$V(x) \rightarrow \infty \text{ as } \|x\| \rightarrow \infty$$

# Convergence analysis

#### Summary of method:

- 1. show that  $\dot{V}(x) \to 0$  as  $t \to \infty$   $\to$  true whenever  $\dot{V} \le 0$  & V,f are smooth &  $\|x(t)\|$  is bounded [by Barbalat's Lemma
- 2. determine the set  $\mathcal{R}$  of points x for which  $\dot{V}(x)=0$   $\rightarrow$  algebra!
- 3. identify the subset  $\mathcal M$  of  $\mathcal R$  for which  $\dot V(x)=0$  at all future times  $\to \mathcal M$  must be invariant

then x(t) has to converge to  $\mathcal{M}$  as  $t\to\infty$ 

This approach is the basis of the invariant set theorems

# Convergence analysis

#### Summary of method:

- $\begin{array}{l} \text{1. show that } \dot{V}(x) \to 0 \text{ as } t \to \infty \\ \to \text{ true whenever } \dot{V} \le 0 \text{ \& } V, f \text{ are smooth \& } \|x(t)\| \text{ is bounded} \\ \text{ [by Barbalat's Lemma]} \\ \end{array}$
- 2. determine the set  $\mathcal R$  of points x for which  $\dot V(x)=0$   $\to$  algebra!
- 3. identify the subset  $\mathcal M$  of  $\mathcal R$  for which  $\dot V(x)=0$  at all future times  $\to \mathcal M$  must be invariant

then x(t) has to converge to  $\mathcal{M}$  as  $t\to\infty$ 

This approach is the basis of the invariant set theorems

#### Invariant sets

A set of points M in state space is invariant if

$$x(t_0) \in \mathcal{M} \quad \Longrightarrow \quad x(t) \in \mathcal{M} \quad \text{ for all } t > t_0$$

#### Examples:

- \* Equilibrium points
- \* Limit cycles
- $\star$  If  $\dot{V}(x) \leq 0$ , then sublevel sets of V(x) are invariant

sublevel sets of 
$$V(x)$$
 are  $\{x:V(x)\leq\alpha\}$  for constant  $\alpha$ 

• If  $\dot{V}(x) \to 0$  as  $t \to \infty$ , then

x(t) must converge to an invariant set  $\mathcal{M}$  contained within the set of points on which  $\dot{V}(x)=0$ 

as  $t \to \infty$ 

### Global invariant set theorem

If there exists a continuously differentiable function  $V(\boldsymbol{x})$  such that

$$V(x)$$
 is positive definite  $\dot{V}(x) \leq 0$  
$$V(x) \rightarrow \infty \text{ as } \|x\| \rightarrow \infty$$

- then: (i).  $\dot{V}(x) \rightarrow 0$  as  $t \rightarrow \infty$ 
  - (ii).  $x(t) \to \mathcal{M} = \text{the largest invariant set contained in } \mathcal{R}$

where  $\mathcal{R} = \{x: \dot{V}(x) = 0\}$ 

- $\dot{V}(x)$  negative definite  $\implies \mathcal{M}=0$  (c.f. Lyapunov's direct method)
- Determine  $\mathcal{M}$  by considering system dynamics within  $\mathcal{R}$

### Global invariant set theorem

#### Revisit m-s-d example

• V(x) is positive definite,  $V(x) \to \infty$  as  $||x|| \to \infty$ , and

$$\dot{V}(y,\dot{y}) = -c(\dot{y})\dot{y} \le 0$$

- therefore  $\dot{V} \to 0$ , implying  $\dot{y} \to 0$  as  $t \to \infty$  i.e.  $\mathcal{R} = \{(y,\dot{y}): \dot{y} = 0\}$
- but  $\dot{y} = 0$  implies  $\ddot{y} = -k(y)/m$
- therefore  $\ddot{y}\neq 0$  unless y=0, so  $\dot{y}(t)=0$  for all t only if y(t)=0 i.e.  $\mathcal{M}=\{(y,\dot{y}):(y,\dot{y})=(0,0)\}$



 $(y, \dot{y}) = (0, 0)$  is a globally asymptotically stable equilibrium!

#### Local invariant set theorem

If there exists a continuously differentiable function  $V(\boldsymbol{x})$  such that

the sublevel set  $\Omega=\{x:V(x)\leq\alpha\}$  is bounded for some  $\alpha$  and  $\dot{V}(x)\leq0$  whenever  $x\in\Omega$ 

#### then:

- (i).  $\Omega$  is an invariant set
- (ii).  $x(0) \in \Omega \implies \dot{V}(x) \to 0 \text{ as } t \to \infty$
- (iii).  $x(t) o \mathcal{M} = \text{largest invariant set contained in } \mathcal{R} \cap \Omega$

where  $\mathcal{R} = \{x : \dot{V}(x) = 0\}$ 

#### Local invariant set theorem

ullet V(x) doesn't have to be positive definite or radially unbounded

ullet Result is based on Barbalat's Lemma applied to  $\dot{V}$ 

↑

applies here because boundedness of  $\Omega$  implies  $\|x(t)\|$  finite for all t since  $x(0)\in\Omega$  and  $\dot{V}\leq0$ 

ullet  $\Omega$  is a region of attraction for  ${\mathcal M}$ 

- Second order system:  $\dot{x}_1=x_2 \\ \dot{x}_2=-(x_1-1)^2x_2^3-x_1+\sin(\pi x_1/2)$
- Equilibrium points:  $(x_1, x_2) = (0, 0), (1, 0), (-1, 0)$
- Trial storage function:

$$V(x) = \frac{1}{2}x_2^2 + \int_0^{x_1} (y - \sin(\pi y/2)) dy$$

V is not positive definite but  $V(x) \to \infty$  if  $x_1 \to \infty$  or  $x_2 \to \infty$ 



sublevel sets of V are bounded



• Differentiate: 
$$\dot{V}(x)=-(x_1-1)^2x_2^4\leq 0$$
 
$$\dot{V}(x)=0 \iff x\in\mathcal{R}=\{x:x_1=1 \text{ or } x_2=0\}$$

• From the system model,  $x \in \mathcal{R}$  implies:

$$\begin{array}{ll} x_1=1 & \Longrightarrow & (\dot{x}_1,\dot{x}_2)=(x_2,0) \\ \text{and} & \\ x_2=0 & \Longrightarrow & (\dot{x}_1,\dot{x}_2)=(0,\sin(\pi x_1/2)-x_1) \end{array}$$
 therefore 
$$\left\{ \begin{array}{ll} x(t) \text{ remains on line } x_1=1 \text{ only if } x_2=0 \\ x(t) \text{ remains on line } x_2=0 \text{ only if } x_1=0,\ 1 \text{ or } -1 \end{array} \right.$$
 
$$\Longrightarrow \mathcal{M}=\left\{ (0,0),(1,0),(-1,0) \right\}$$

System: 
$$\dot{\chi}_1 = \chi_2$$

$$\dot{\chi}_2 = -(\chi_1, -1)^2 \chi_2^3 - \chi_1 + \sin(\overline{\eta} \chi_1/2)$$

$$\chi_1 = \chi_2 = -(\chi_1, -1)^2 \chi_2^3 - \chi_1 + \sin(\overline{\eta} \chi_1/2)$$

$$\chi_1 = \chi_2 = 0$$

$$\chi_1 = 0$$

$$\chi_1 = 0$$

$$\chi_2 = 0$$

$$\chi_3 = 0$$

$$\chi_4 = 0$$

$$\chi_5 = 0$$

$$\chi_5 = 0$$

$$\chi_5 = 0$$

$$\chi_6 = 0$$

$$\chi_7 = 0$$

$$\chi_7 = 0$$

$$\chi_8 = 0$$

• Apply the local invariant set theorem to any sublevel set  $\Omega = \{x: V(x) \leq \alpha\}$  containing x(0):

$$\begin{array}{c} \Omega \text{ is bounded} \\ \dot{V} \leq 0 \end{array} \right\} \implies x(t) \rightarrow \mathcal{M} = \{(0,0),(1,0),(-1,0)\} \text{ as } t \rightarrow \infty$$

• For any given x(0), we can choose sufficiently large  $\alpha$  so that  $\Omega = \{x : V(x) \le \alpha\}$  contains x(0)

so 
$$x(t) \to \mathcal{M} = \{(0,0), (1,0), (-1,0)\}$$
 as  $t \to \infty$  for all  $x(0)$ 

Can we find more precise limits for x(t)?

We have shown x(t) converges asymptotically to (0,0), (1,0) or (-1,0) but:

- (a). x=(0,0) is unstable since the linearization at (0,0) has poles  $\pm\sqrt{\frac{\pi}{2}-1}$
- (b). V(x) has sublevel sets that contain only (1,0) or (-1,0)



apply the local invariant set theorem to  $\Omega=\{x:V(x)\leq\alpha\}$  for  $\alpha<0$   $\downarrow$   $x=(1,0),\ x=(-1,0) \text{ are stable equilibrium points}$ 

# Summary

- Convergence analysis using Barbalat's lemma
- Invariant sets
- Invariant set methods for convergence analysis:

local invariant set theorem global invariant set theorem

#### Lecture 4

Linear systems, passivity, and the circle criterion

# Linear systems, passivity, and the circle criterion

- > Summary of stability methods

# Summary of stability methods

Linearization method

$$\dot{x}=Ax$$
 is strictly stable,  $A=\frac{\partial f}{\partial x}\Big|_{x=0}$   $\downarrow$   $x=0$  locally asymptotically stable

Lyapunov's direct method

Invariant set theorems

$$\begin{array}{l} V(x) \text{ p.d.} \\ \dot{V}(x) \leq 0 \\ V(x) \rightarrow \infty \text{ as } \|x\| \rightarrow \infty \end{array} \qquad \begin{array}{l} \Omega = \{x \ : \ V(x) \leq V_0\} \text{ bounded} \\ \dot{V}(x) \leq 0 \text{ for all } x \in \Omega \end{array}$$

x(t) converges to the union of invariant sets contained in  $\{x: \dot{V}(x)=0\}$ 

4 - 3

## Summary of stability methods

▶ Instability theorems analogous to Lyapunov's direct method, e.g.

$$\left. egin{array}{ll} V(x) \ \mathsf{p.d.} \\ \dot{V}(x) \ \mathsf{p.d.} \end{array} \right\} \quad \Longrightarrow \quad x=0 \ \mathsf{unstable}$$

Lyapunov stability criteria are only sufficient, e.g.

$$\left. \begin{array}{c} V(x) \text{ p.d.} \\ \dot{V}(x) \not \leq 0 \end{array} \right\} \qquad \not \Longrightarrow \qquad x = 0 \text{ unstable} \\ \qquad \qquad \left( \text{some other } V(x) \text{ demonstrating stability may exist} \right)$$

▶ Converse theorems

$$x=0$$
 stable  $\implies V(x)$  demonstrating stability exists (can swap premises and conclusions in Lyapunov's direct method)



But no general method for constructing V(x)

- ▶ Systematic method for constructing storage function  $V(x) = x^{\top} P x$ 
  - $\dot{x} = Ax$  strictly stable  $\implies$  can always find constant matrix I so that  $\dot{V}(x)$  is negative definite
- ightharpoonup Only need consider symmetric P

$$x^{\top}Px = \frac{1}{2}x^{\top}Px + \frac{1}{2}x^{\top}P^{\top}x = \frac{1}{2}x^{\top}\underbrace{(P+P^{\top})}_{\text{SYMMETRIC}}x$$

▶ Need  $\lambda(P) > 0$  for positive definite  $V(x) = x^{\top} P x$ 

$$P = U\Lambda U^\top \qquad \text{eigenvector/value decomposition}$$
 
$$\downarrow \\ x^\top P x = z^\top \Lambda z \qquad \qquad z = U^\top x$$
 
$$\downarrow \\ x^\top P x \text{ positive definite} \qquad \qquad \begin{cases} \text{notation: } P \succ 0 \\ \text{or } "P \text{ is positive definite}" \end{cases}$$

- Systematic method for constructing storage function  $V(x) = x^{\top} P x$   $\dot{x} = Ax$  strictly stable  $\implies$  can always find constant matrix P so that  $\dot{V}(x)$  is negative definite
- ▶ Only need consider symmetric P

$$\boldsymbol{x}^\top P \boldsymbol{x} = \tfrac{1}{2} \boldsymbol{x}^\top P \boldsymbol{x} + \tfrac{1}{2} \boldsymbol{x}^\top P^\top \boldsymbol{x} = \tfrac{1}{2} \boldsymbol{x}^\top \underbrace{(\boldsymbol{P} + \boldsymbol{P}^\top)}_{\text{SYMMETRIC}} \boldsymbol{x}$$

▶ Need  $\lambda(P) > 0$  for positive definite  $V(x) = x^{\top} P x$ 

$$\begin{array}{cccc} P = U \Lambda U^\top & \text{eigenvector/value decomposition} \\ & & & & \\ x^\top P x = z^\top \Lambda z & & z = U^\top x \\ & & & \\ x^\top P x \text{ positive definite} & & \\ \text{iff } \Lambda \text{ strictly positive} & & \\ \end{array}$$

▶ How is *P* computed?

$$\begin{array}{c} \dot{x} = Ax \\ V(x) = x^{\top}Px \end{array} \right\} \quad \Longrightarrow \quad \begin{array}{c} \dot{V}(x) = x^{\top}P\dot{x} + \dot{x}^{\top}Px \\ = x^{\top}(PA + A^{\top}P)x \end{array}$$

 $\therefore x = 0$  is globally asymptotically stable if, for some Q:

$$PA + A^{\top}P = -Q \qquad Q = Q^{\top} \succ 0$$

Lyapunov matrix equation

▶ Pick  $Q \succ 0$  and solve  $PA + A^{\top}P = -Q$  for P, then

$$\operatorname{Re} \big[ \lambda(A) \big] < 0 \qquad \Longleftrightarrow \qquad \begin{array}{c} \text{unique solution for } P \\ \text{and } P = P^\top \succ 0 \end{array}$$

4 - (

CLAM : PA + ATP = -Q HAS A UNIQUE SOLUTION P>0 FOR ENGRY Q>0 IF AND ONLY IF  $\text{Re}\left[\lambda(A)\right]<0$ 

PROOF: LET i= Ax AND V= 1227Px

- (1) IF  $PA + A^TP = -Q$  WITH P, Q > 0 THEN: V is positive Definite AND  $\dot{V} = \frac{1}{L}x^T(A^TP + PA)x = -\frac{1}{L}x^TQx$  is negative Definite SO Re[X(A)] < 0 By Lyapund's Direct method
- (2) If  $Q_{\mathbb{Q}}[\chi(A)] < D$  THEN  $\chi(t) = e^{At} \chi(D)$  AND  $\dot{V} = -\frac{1}{2} \chi^T Q \chi$  implies  $\int_{0}^{\infty} \dot{V}(t) dt = -\frac{1}{2} \chi^T(D) \int_{0}^{\infty} e^{A^T t} Q e^{At} dt \chi(D)$   $\therefore V(D) \lim_{t \to \infty} V(t) = \chi^T(D) \cdot \frac{1}{2} \int_{0}^{\infty} e^{A^T t} Q e^{At} dt \cdot \chi(D)$  = P  $5D V = \chi^T P \chi \quad \text{AND} \quad P > D \quad \text{If} \quad Q > D$

# Example: Lyapunov matrix equation

Stable linear system 
$$\dot{x} = Ax$$
:  $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & -16 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \lambda(A) = -1 \pm i\sqrt{15}$ 

Solve  $PA + A^{\top}P = -Q$  for P:

$$Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \ \Rightarrow \ P_1 = \begin{bmatrix} 0.33 & -0.5 \\ -0.5 & 4.25 \end{bmatrix}, \ Q_2 = \begin{bmatrix} 0.41 & -0.19 \\ -0.19 & 0.11 \end{bmatrix} \ \Rightarrow \ P_2 = \begin{bmatrix} 0.12 & -0.21 \\ -0.21 & 1.67 \end{bmatrix}$$



- $\star$  any choice of  $Q \succ 0$  gives  $P \succ 0$  (since A is strictly stable)
- \* but not every  $P \succ 0$  gives  $Q \succ 0$

## Passive systems

#### Systematic method for constructing storage functions

based on the input-output representation of a system:



The system mapping u to y is:

- passive if

$$\dot{V} = yu - g \quad \text{ with } \quad V(t) \geq 0, \quad g(t) \geq 0$$

- dissipative if it is passive and

$$\int_0^\infty g\,dt>0\quad \text{whenever}\quad \int_0^\infty yu\,dt\neq 0$$

4 - 9

## Passive systems

Passivity is motivated by electrical networks with no internal power generation



ightharpoonup Passive mechanical systems (robotics, automotive, aerospace ...) e.g. passive m-s-d system mapping input F to output  $\dot{y}$ :



## Passive systems

Passivity is useful for determining storage functions for feedback systems

• Closed-loop system with passive subsystems  $S_1$ ,  $S_2$ :



$$S_1: V_1 \ge 0 \quad \dot{V}_1 = y_1 u_1 - g_1$$
  
 $S_2: V_2 \ge 0 \quad \dot{V}_2 = y_2 u_2 - g_2$ 

$$V_1 + V_2 \ge 0$$

$$\dot{V}_1 + \dot{V}_2 = y_1 u_1 + y_2 u_2 - g_1 - g_2$$

$$= y_1 (-y_2) + y_2 y_1 - g_1 - g_2$$

$$= -g_1 - g_2$$

$$< 0$$

 $\implies V = V_1 + V_2$  is a Lyapunov function for the closed-loop system if V is a p.d. function of the system state

## Interconnected passive systems

Parallel connection:



$$V_1 + V_2 \ge 0$$
  
 $\dot{V}_1 + \dot{V}_2 = y_1 u_1 + y_2 u_2 - g_1 - g_2$   
 $= (y_1 + y_2)u - g_1 - g_2$   
 $= yu - g_1 - g_2$ 

Overall system from  $\boldsymbol{u}$  to  $\boldsymbol{y}$  is passive

• Feedback connection:



$$V_1 + V_2 \ge 0$$

$$\dot{V}_1 + \dot{V}_2 = y_1 u_1 + y_2 u_2 - g_1 - g_2$$

$$= y(u - y_2) + y_2 y - g_1 - g_2$$

$$= yu - g_1 - g_2$$

Overall system from u to y is passive

# Passive linear systems

- ► H is passive if and only if
  - (i).  $\operatorname{Re}(p_i) \leq 0$ , where  $\{p_i\}$  are the poles of H(s)(ii).  $\operatorname{Re}[H(j\omega)] \geq 0$  for all  $0 \leq \omega \leq \infty$

  - $\star$  H must be stable, otherwise  $V(t) = \int_0^t yu \, dt$  is not defined for all u
  - ★ From Parseval's theorem:

$$\operatorname{Re}\big[H(j\omega)\big] \geq 0 \qquad \Longleftrightarrow \qquad \int_0^t yu \ dt \geq 0 \text{ for all } u(t) \text{ and } t$$

frequency domain criterion for passivity

# Passive linear systems

- ▶ H is dissipative if and only if  $\mathrm{Re}(p_i) \le 0$  and  $\mathrm{Re}\big[H(j\omega)\big] > 0 \text{ for all } 0 \le \omega < \infty$
- Kalman-Yakubovich-Popov (KYP) Lemma:

If 
$$H$$
 is dissipative, then there exists  $P\succ 0$  such that 
$$V=x^\top Px \text{ and } \dot{V}=yu-x^\top Qx,\, Q\succ 0$$

- $\star~x$  is the state (of any controllable state space realization) of H
- $\star \ x=0$  is globally asymptotically stable with passive output feedback

# Linear system + static nonlinearity



$$H$$
 linear:  $\frac{Y(s)}{U(s)} = H(s)$ 

 $\phi$  static nonlinearity:  $z = \phi(y)$ 

What are the conditions on H and  $\phi$  for closed-loop stability?

- A common problem in practice, due to e.g.
  - ★ actuator saturation (valves, dc motors, etc.)
  - ⋆ sensor nonlinearity
- Determine closed-loop stability given:

$$\phi$$
 belongs to sector  $[a,b]$  
$$\label{eq:definition} \updownarrow$$
 
$$a \leq \frac{\phi(y)}{y} \leq b$$

"Absolute stability problem"



# Linear system + static nonlinearity

• Aizerman's conjecture (1949):

Closed-loop system is stable if stable for 
$$\phi(y)=ky$$
,  $a\leq k\leq b$  false (necessary but not sufficient)

Sufficient conditions for closed-loop stability:

- The passivity approach:
  - (1). If H is dissipative (i.e. if  $\operatorname{Re}[H(j\omega)] > 0$  and H is stable), then:

$$\begin{array}{c} V = x^\top P x \\ \dot{V} = y u - x^\top Q x \end{array} \right\} \text{ for some } P > 0, \quad Q > 0 \\ = -y \phi(y) - x^\top Q x \qquad \qquad \leftarrow x = \text{ state of } H$$

(2). If  $\phi$  belongs to sector  $[0,\infty)$ , then:

$$y\phi(y) \geq 0$$
  $\qquad \qquad \leftarrow \frac{\psi(y)}{y}$ 

(1) & (2) 
$$\implies \dot{V} \leq -x^{\top}Qx$$
  
 $\implies x = 0$  is globally asymptotically stable

## Circle criterion

Use loop transformations to generalize the approach for



 $\phi \in [a, b]$  a, b arbitrary



$$H'(j\omega) = \frac{H(j\omega)}{1 + aH(j\omega)} + \frac{1}{b-a}$$

#### Circle criterion

To make 
$$H'(j\omega) = \frac{H(j\omega)}{1 + aH(j\omega)} + \frac{1}{b-a}$$
 dissipative, need:

(i). 
$$H'$$
 stable  $\iff \frac{H(j\omega)}{1+aH(j\omega)}$  stable  $\updownarrow$ 

Nyquist plot of  $H(j\omega)$  goes through  $\nu$  anti-clockwise encirclements of -1/a as  $\omega$  goes from  $-\infty$  to  $\infty$ 

(
$$\nu=$$
 no. poles of  $H(j\omega)$  in RHP)

(ii). 
$$\operatorname{Re}[H'(j\omega)] > 0 \iff \begin{cases} H(j\omega) \text{ lies outside } \frac{D(a,b)}{D(a,b)} & \text{if } ab > 0 \\ H(j\omega) \text{ lies inside } \frac{D(a,b)}{D(a,b)} & \text{if } ab < 0 \end{cases}$$



# Graphical interpretation of circle criterion

x=0 is globally asymptotically stable if:

$$\star 0 < a < b$$

 $H(j\omega)$  lies in shaded region and does  $\nu$  anti-clockwise encirclements of D(a,b)

$$\star b > a = 0$$

 $H(j\omega)$  lies in shaded region and  $\nu=0$  (can't encircle -1/a)

$$\star a < 0 < b$$

 $H(j\omega)$  lies in shaded region and  $\nu=0$  (can't encircle -1/a)

$$\star a < b < 0$$

 $-H(j\omega)$  lies in shaded region and does  $\nu$  anti-clockwise encirclements of D(-b,-a)



#### Circle criterion

 $\triangleright$  Circle criterion is equivalent to Nyquist criterion for a=b>0

$$\begin{array}{c} \uparrow \\ D(a,b) = -\frac{1}{a} \ \ \mbox{(single point)} \end{array}$$

ightharpoonup Circle criterion is only sufficient for closed-loop stability for general a,b

hd Results apply to time-varying static nonlinearity:  $\phi(y,t)$ 

## Example: Active suspension system

> Active suspension system for high-speed train:



$$Q = \phi(u)$$
$$\dot{x}_a = Q/A$$

 $u: \mathsf{valve} \mathsf{input} \mathsf{signal}$ 

 $Q: \mathsf{flow} \mathsf{\ rate}$ 

 $\phi$ : valve characteristics,  $\phi \in [0.005, 0.1]$ 

A: actuator working area

ightharpoonup Force exerted by suspension system on carriage body:  $F_{
m susp}$ 

$$\begin{split} F_{\text{susp}} &= k(x_a - x) + c(\dot{x}_a - \dot{x}) \\ &= \left(k \int^t Q \, dt + cQ\right) / A - kx - c\dot{x}, \qquad Q = \phi(u) \end{split}$$

ightharpoonup Design controller to compensate for the effects of (constant) unknown load on displacement x despite uncertain valve characteristics  $\phi(u)$ .

# Active suspension system contd.

Dynamics:

$$F_{\rm susp} - F = m\ddot{x}$$
 
$$\Longrightarrow \qquad m\ddot{x} + c\dot{x} + kx = \left(k \int^t Q \, dt + c \, Q\right) / A - F, \qquad Q = \phi(u)$$

F: unknown load on suspension unit m: effective carriage mass

$$X(s) = \frac{cs+k}{ms^2+cs+k} \cdot \frac{Q(s)}{As} - \frac{F}{ms^2+cs+k} \qquad Q = \phi(u)$$

 $\triangleright$  Try linear compensator C(s):

$$U(s) = C(s)E(s) \qquad e = -x, \quad \text{setpoint: } x = 0$$
 
$$0 \qquad + e \qquad C(s) \qquad u \qquad \phi(\cdot) \qquad Q \qquad cs + k \qquad + cs + k \qquad x$$

## Active suspension system contd.

 $\triangleright$  For constant F, we need to stabilize the closed-loop system:



static nonlinearity:  $\phi \in [0.005, 0.1]$ 

⊳ P+D compensator (no integral term needed):

$$C(s) = K(1+\alpha s) \qquad \Longrightarrow \qquad H(s) = \frac{K(1+\alpha s)(cs+k)}{As(ms^2+cs+k)}$$
 
$$H \text{ open-loop stable } (\nu=0)$$

From the circle criterion, closed-loop (global asymptotic) stability is ensured if:

$$H(j\omega)$$
 lies outside  $D(0.005,0.1)$ 
 $\uparrow$ 
sufficient condition:  $\mathrm{Re}\big[H(j\omega)\big] > -10$ 

# Active suspension system contd.

ho Nyquist plot of  $H(j\omega)$  for K=1 and  $\alpha=0,0.2,0.4,0.8$ :



∇o maximize gain margin:

# Summary

At the end of the course you should be able to do the following:

| •                                                                               | Understand the basic Lyapunov stability definitions                                                     | (lecture 1)         |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------|
| <b>&gt;</b>                                                                     | Analyse stability using the linearization method                                                        | (lecture 2)         |
| <b>&gt;</b>                                                                     | Analyse stability by Lyapunov's direct method                                                           | (lecture 2)         |
| <b>&gt;</b>                                                                     | Determine convergence using Barbalat's Lemma                                                            | (lecture 3)         |
| ▶ Understand how invariant sets can determine regions of attraction (lecture 3) |                                                                                                         |                     |
| •                                                                               | <ul> <li>Construct Lyapunov functions for linear systems and passive systems<br/>(lecture 4)</li> </ul> |                     |
| •                                                                               | Use the circle criterion to design controllers for systems with st                                      | atic<br>(lecture 4) |