Санкт-Петербургский Политехнический Университет Петра Великого Кафедра компьютерных систем и программных технологий Отчёт по лабораторной работе N-3.1Курс: «Разработка экспертной системы на базе представленного описания» Выполнил студент: Ерниязов Т.Е. Группа: 13541/2Проверил: Болсуновская М.В.

Содержание

1	Лаб	абораторная работа №3.1				
	1.1	Цель работы	2			
	1.2	l.2 Программа работы				
	1.3	Ход работы	3			
		1.3.1 На примере одной из ЭС с сайта ExSys Corvid укажите содержание следующих компо-				
		нентов: диалогового компонента, решателя, базы данных, базы знаний	3			
		1.3.2 Выполнение лабораторных работ 1-6 из методических рекомендаций Д.И. Муромцевй	3			
		1.3.3 Разработка статической экспертной системы для нахождения характерных неисправно-				
		стей прибора Диск-250 ДД и метода их решения	8			
	1.4	Вывод	12			
	1.5	Список литературы	12			

Лабораторная работа №3.1

1.1 Цель работы

Научиться создавать экспертные системы с помощью конструктора Exsys CORVID.

1.2 Программа работы

- На примере ОДНОЙ ИЗ ЭС экспертной системы (примеры ЭС выбрать самостоятельно исходя из демо примеров с сайта ExSys Corvid) укажите содержание следующих компонентов: диалогового компонента, решателя, базы данных, базы знаний).
- Выполните лабораторные работы 1-6 из методических рекомендаций Д.И. Муромцев. Оболочка экспертных систем Exsys Corvid. СПб: СПб ГУ ИТМО, 2006. 69 с. В случае необходимости используйте методические рекомендации от разработчика.
- Разработайте статическую экспертную систему для нахождения характерных неисправностей прибора Диск-250 ДД и метода их решения. Прибор показывающий и регистрирующий Диск-250 ДД предназначен для измерения и регистрации силы тока, а также неэлектрических величин, преобразованных в силу тока. Данная ЭС предназначена для использования слесарями в целях быстрого обнаружения неисправности и ее устранения.

1.3 Ход работы

1.3.1 На примере одной из ЭС с сайта ExSys Corvid укажите содержание следующих компонентов: диалогового компонента, решателя, базы данных, базы знаний

Экспертная система: Restaurant Advisor Expert System

Диалоговый компонент	Java-Applet
База данных	Конкретные рестораны хранящиеся в базе данных.
База знаний	Набор статических инструкций.
Решатель	Формирователь правил, которые приводят к подбору
	подходящего ресторана. Данные для решения берутся из БД
	и БЗ.

Таблица 1.1: Компоненты системы Restaurant Advisor Expert System

1.3.2 Выполнение лабораторных работ 1-6 из методических рекомендаций Д.И. Муромцевй

Лабораторная работа №1. Создание простейшей системы

Разработаем простейшую экспертную систему, работающую по следующему алгоритму:

```
      1 IF
      Свет в Вашем доме внезапно перестал работать

      3 THEN
      замените лампочку

      5 6 7
      Свет в Вашем доме продолжает работать

      7 THEN
      Ничего не делать
```

Результат конструирования экспертной системы по методическим указаниям:

Рис. 1.1: Логический и командный блоки

Рис. 1.2: Если свет продолжает работать, то ничего не делать

Лабораторная работа №2. Улучшение интерфейса пользователя

Результат работы улучшения интерфейса пользователя экспертной системы по методическим указаниям: К сожалению, программа не позволяет запустить проект после установки областей на графической карте, что объясняется либо неточностью методических указаний или багом в программе.

Exsys Servlet Runtime

Exsys Servlet Runtime

Zamenite lampochku Conf=10.0

System Done

Svet v vashem dome vnezapno perestal rabotat

Restart

Рис. 1.3: Если свет не работает, то замените лампочку

Рис. 1.4: Изменение текста и шрифта выводимого текста

Рис. 1.5: Определение областей для графической карты

Лабораторная работа №3. Усиление логики работы системы

Расширим логику созданной экспертной системы:

Лабораторная работа №4. Обратная связь

Реализуем дополнительный логический блок обратной связи:

Рис. 1.6: Результирующий логический блок

Рис. 1.7: Если другие лампочки в доме продолжают гореть, то надо проверить выключатели

Рис. 1.8: Если другие лампочки в доме погасли, то надо позвонить поставщику электроэнергии

Система автоматически вызывает окно, спрашивающее пользователя о радио за стеной. Если радио работает, то с электричеством в доме все в порядке.

Рис. 1.9: Логический блок для реализации обратной связи

Рис. 1.10: Если слышно радио в другой комнате, то другие лампочки в доме продолжают гореть

Лабораторная работа №5. Числовые переменные и [[]] подстановки

Используем числовую переменную, которая отвечает за мощность лампочки:

```
☐... [CHANGE_BULB] =10

☐... [WATTAGE] > 75

☐.... [REPLACEMENT_WATTAGE] = 75

☐... [WATTAGE] <= 75

☐.... [WATTAGE] = [WATTAGE]
```

Рис. 1.11: Дополнение логического блока переменной

Если мощность больше 75 ватт, то предлагается использовать лампочку 75 ватт. Если меньше, то столько сколько указал пользователь.

Рис. 1.12: Если мощность больше 75 ватт, то предлагается использовать лампочку 75 ватт

Рис. 1.13: Если меньше 75 ватт, то столько сколько указал пользователь

Результат свидетельствует о том, что в коллекцию успешно добавилась необходимая запись.

Лабораторная работа №6. Переменные коллекции

Используем коллекцию для добавления записи в список покупок.

Рис. 1.14: Дополнение логического блока коллекцией

В результирующем диалоге будет выводиться весь список покупок.

1.3.3 Разработка статической экспертной системы для нахождения характерных неисправностей прибора Диск-250 ДД и метода их решения

Описание разрабатываемой экспертной системы для для нахождения характерных неисправностей прибора Диск- $250~\rm ДД$ и метода их решения:

Неисправность	Возможная причина	Способ обнаружения и устранения
	Отсутствует напряжение в сети	Проверьте наличие напряжения на клеммах питания внешнего разъема прибора. При отсутствии напряжения или значительном несоответствии его номинальному значению проверить внешний монтаж прибора.
При включении прибор не работает	Сгорела вставка плавкая	Заменить вставку плавкую.
	Неисправен выключатель	При наличии напряжения в разъеме питания прибора проверьте напряжение на клеммах колодки, при отсутствии напряжения проверьте исправность выключателя. Неисправный выключатель замените.
При включении прибора сгорает вставка плавкая	Короткое замыкание	Место короткого замыкания в приборе определите последовательным отсоединением отдельных элементов схемы (трансформатора, электродвигателя и т.п.) с последующей проверкой прибора включением в сеть. Дефектный элемент снимите и проверьте отдельно омметром, устраните неисправность.
При подаче на вход прибора сигнала, соответствующего началу шкалы, указатель идет к концу шкалы	Неправильно подсоединены выводы реохорда прибора	Поменяйте местами выводы реохорда согласно схеме соединений.
Электродвигатель не вращается	Неисправна кинематическая система	Проверьте вращения электродвигателя вручную, для чего снимите диаграммный диск и отверткой попробуйте вращать вал электродвигателя в обе стороны: вал должен медленно поворачиваться в ту и другую стороны при одинаковом усилии, приложенном к нему. Если вал заедает, электродвигатель снимите, разберите и устраните заедание.
	Обрыв в обмотках электродвигателя	Если механическая часть электродвигателя исправна, отсоедините кабель, подключающий электродвигатель к колодке на шасси и

		проверьте электродвигатель согласно указаниям в паспорте.
	Неисправен	, , , , , , , , , , , , , , , , , , , ,
	конденсатор,	Если электродвигатель исправен, но в схеме прибора не работает,
	шунтирующий	проверьте конденсаторы в цепи его обмоток. Неисправный
	обмотку	конденсатор замените.
	электродвигателя	
Электродвигатель	Нет напряжения на	Проверьте напряжение на зажимах колодки на шасси прибора. Если
самопроизвольно	управляющей	оно соответствует нормальному, проверьте, нет ли обрыва в цепи
реверсируется в конечных	обмотке	управляющей обмотки электродвигателя; неисправный
положениях	электродвигателя	электродвигатель замените.
	Загрязняется	Прочистите реохорд.
Указатель прибора	реохорд	прочистите реохорд.
двигается замедлено	Затирание в	Проверьте движение от руки: тугой ход указывает на наличие трения
	кинематической	в системе. Смажьте трущиеся детали.
	цепи	в системе. Смажьте трущиеся детали.
	Неисправен	
При включении прибора	синхронный	Проверьте синхронный электродвигатель и при неисправности
диаграммный диск не	электродвигатель	
вращается	привода	замените его.
	диаграммного диска	
Показания прибора не	Неисправны датчик	23MOUNTO BOTHAN MAIN VETROUNTO BORROWBOUNG B COORMINATORIUM
соответствуют истинным	или соединительные	Замените датчик или устраните повреждения в соединительных проводах.
значениям	провода	

Рис. 1.15: Логический блок заданной экспертной системы

Рис. 1.16: Список переменных заданной экспертной системы

Exsys Servlet Runtime

turned on yes

fuse burn out no

kinem sys fail no

winding break no

cond defect Conf=10.0

Рис. 1.17: Пример работы системы для причины "Неисправен выключатель"

1.4 Вывод

В данной работе была изучена система для конструирования экспертных систем Exsys Corvid. Данная система имеет ряд достоинств:

- Простота работы с системой.
- Наличие множества готовых шаблонных решений.
- Встроенные возможности для кастомизации.

А также набор недостатков:

- Использование безнадежно устаревшей технологии Java Applet, что ставит крест на использование этой системы в реальных проектах.
- Платная лицензия, что вызывает недоумение ввиду предыдущего пункта.
- Ошибки в системе, которые обнаруживаются буквально при первом запуске.
- Не работает локализация (по крайней мере в 30-дневной версии).
- Сомнительная полезность. Система подходит только для простых шаблонных ЭС, в то время какв реальность может потребоваться интегрируемая ЭС в другой программный продукт или более кастомизированная версия.

К сожалению, недостатки Exsys Corvid в 2017 году значительно перевешивают преимущества. Весьма сомнительно, что кто-либо всерьез заинтересуется данной системой после ее использования, а уж тем более будет использовать ее в дальнейшем.

1.5 Список литературы

[1] Exsys Corvid Expert System Demos [Электронный ресурс]. — URL: http://www.exsys.com/demomain.html (дата обращения 09.11.2018).

[2] ОБОЛОЧКА ЭКСПЕРТНЫХ СИСТЕМ EXSYS CORVID МЕТОДИЧЕСКОЕ ПОСОБИЕ [Электронный ресурс]. — URL: http://faculty.ifmo.ru/csd/dimour/ES/Corvid.pdf (дата обращения 09.11.2018).