Math 1152 Lecture Notes

July 1, 2022

1 Flow Chart

2 More on Sequences, Cont'd

Last time, we said that a cluster point of a sequence (a_n) should be a point x with the property that every interval about x contains an element of (a_n) . We then got an idea about what that should look like. There's just one problem.

What if $x = a_k$ for some k?

Definition 1. A point x is a **cluster point** of a sequence (a_n) if every interval about x contains infinitely many points of (a_n) .

We give a special name to the biggest and smallest cluster points.

Definition 2. The **lim-inf (or limit infimum) of** a_n , written **lim inf** a_n is L if L is a cluster point of (a_n) and $L \leq x$ for every other cluster point, x, of (a_n) .

Similarly,

 $\liminf a_n = U$

if U is the largest cluster point of (a_n) .

• How do we know that the liminf and limsup actually exist?

3 More on Series

The Ratio Comparison Test

If

$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$$

for all large enough n, and $\sum b_n$ converges, then $\sum a_n$ converges.

Cauchy's Condensation Test

If $a_n \downarrow 0$, then $\sum a_n$ converges if and only if $\sum 2^n a_{2^n}$ converges.

Kummer's Tests

Let (D_n) denote any sequence of positive numbers, and

$$L = \lim \inf \left(D_n \frac{a_n}{a_{n+1}} - D_{n+1} \right).$$

If L > 0, then $\sum a_n$ converges.

If $L \leq 0$ and $\sum \frac{1}{D_n}$ diverges, then $\sum a_n$ diverges.

Exercise 1. What is Kummer's Test when $D_n \equiv 1$ for all n?

Raabe's Ratio Test

Let

$$L = \liminf n \left(\frac{a_n}{a_{n+1}} - 1 \right).$$

Then

- 1.) If L > 1, the series converges.
- 2.) If L < 1, the series diverges.
- 3.) If L = 1, the test is inconclusive.

Exercise 2. Determine whether

$$\sum \frac{n^n}{e^n n!}$$

converges.

4 Sequences, Series, and Complex Numbers

Consider the sequence (c_n) where $c_n = a_n + ib_n$. We say that $c_n \to z = a + ib$ if $a_n \to a$ and $b_n \to b$.

Exercise 3. If $c_n = a_n + ib_n$, $|a_n| \to s$ and $|b_n| \to t$, does $|c_n| \to \sqrt{s^2 + t^2}$?

Exercise 4. Find $\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{in}$.

Exercise 5. For which values of z does

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n}$$

converge?

Exercise 6. For which values of z does

$$\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

converge?