English Word Suggestion Based on Part of Speech Ngram

Hamana Laboratory, Gunma University

Borann Chanrathnak February 20, 2020

Table of Contents

Motivation

Part Of Speech Ngram (POS-Ngram)

Definitions

N-gram

POS-Ngram

Implementation

Tools

Programming Structure

• Word suggestion for note-taking app on mobile devices

• Word suggestion for note-taking app on mobile devices

• Word suggestion for note-taking app on mobile devices

Part Of Speech Ngram (POS-Ngram)

What does POS-Ngram mean?

 ${f N-gram}$ is a contiguous sequence of n items from a given sample of text or speech

Ex: I study english

- unigram (1-gram) : (I,), (study,), (english,)
- bigram (2-gram) : (I, study), (study, english)
- trigram (3-gram) : (I, study, english)

What does POS-Ngram mean?

N-gram is a contiguous sequence of n items from a given sample of text or speech

Ex: I study english

- unigram (1-gram) : (I,), (study,), (english,)
- bigram (2-gram) : (I, study), (study, english)
- trigram (3-gram) : (I, study, english)

N-gram model is one of statistical langauge models for predicting the next item (word) based on Markov assumption, and usually abbreviated as N-gram.

What does POS-Ngram mean?

N-gram is a contiguous sequence of n items from a given sample of text or speech

Ex: I study english

- unigram (1-gram) : (I,), (study,), (english,)
- bigram (2-gram) : (I, study), (study, english)
- trigram (3-gram) : (I, study, english)

N-gram model is one of statistical langauge models for predicting the next item (word) based on Markov assumption, and usually abbreviated as N-gram.

POS-Ngram is an improved model using part of speech as a class indicator.

How To Compute Probability of a Sentence?

How can we compute the joint probability of words in a sentence? **Ex:** "an apple is on the table"

P(an apple is on the table) = ?

Notation

Notation

• To represent the probability of a particular random variable X_i taking on the value "the", or $P(X_i = "the")$ we will use simplification P(the).

Notation

- To represent the probability of a particular random variable X_i taking on the value "the", or $P(X_i = "the")$ we will use simplification P(the).
- We represent a sequence of N words either as $w_1 \cdots w_n$ or w_1^n

Notation

- To represent the probability of a particular random variable X_i taking on the value "the", or $P(X_i = "the")$ we will use simplification P(the).
- We represent a sequence of N words either as $w_1 \cdots w_n$ or w_1^n
- Ex: "an apple is on the table" $\rightarrow w_1 = "an", w_2 = "apple", w_3 = "is", \cdots$

Notation

- To represent the probability of a particular random variable X_i taking on the value "the", or $P(X_i = "the")$ we will use simplification P(the).
- We represent a sequence of N words either as $w_1 \cdots w_n$ or w_1^n
- Ex: "an apple is on the table"

$$\rightarrow w_1 =$$
 "an", $w_2 =$ "apple", $w_3 =$ "is", \cdots

 $\rightarrow w_1^4 =$ "an apple is on"

Chain Rule Of Probability

In General

$$P(X_1 \cdots X_n) = P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_1^2) \cdots P(X_n \mid X_1^{n-1})$$

Chain Rule Of Probability

In General

$$P(X_1 \cdots X_n) = P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_1^2) \cdots P(X_n \mid X_1^{n-1})$$

By applying chain rule to a sequence of words

$$P(w_1 \cdots w_n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1^2) \cdots P(w_n \mid w_1^{n-1})$$

Chain Rule Of Probability

In General

$$P(X_1 \cdots X_n) = P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_1^2) \cdots P(X_n \mid X_1^{n-1})$$

By applying chain rule to a sequence of words

$$P(w_1 \cdots w_n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1^2) \cdots P(w_n \mid w_1^{n-1})$$

Examples

• $P(an \ apple \ is) = P(an) \times P(apple \ | \ an) \times P(is \ | \ an \ apple)$

Let's Apply Chain Rule

By applying chain rule to the phrase "an apple is on the":

$$P("an apple is on the") = P(an) \times P(apple \mid an) \times P(is \mid an apple) \times P(on \mid an apple is) \times P(the \mid an apple is on)$$

In practice chain rule does not help

• We don't know the way to compute the exact probability of a word given a long sequence of preceding words, $P(w_n \mid w_1^{n-1})$.

The Presence of N-gram

The general equation for this n-gram approximation to the conditional probability of the next word in a sequence is

$$P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n-N+1}^{n-1})$$

The Presence of N-gram

The general equation for this n-gram approximation to the conditional probability of the next word in a sequence is

$$P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n-N+1}^{n-1})$$

In case of Bigram (2-gram)

When we use bigram model to predict the conditional probability of the next word, we can approximate by

$$P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n-1})$$

The Presence of N-gram

The general equation for this n-gram approximation to the conditional probability of the next word in a sequence is

$$P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n-N+1}^{n-1})$$

In case of Bigram (2-gram)

When we use bigram model to predict the conditional probability of the next word, we can approximate by

$$P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n-1})$$

Example

$$P(the \mid an apple is on) \approx P(the \mid on)$$

Bigram in Practice

By supposing that C is the counts of a sequence of words from a corpus.

$$P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_{w \in dict} C(w_{n-1}w)}$$

Bigram in Practice

By supposing that C is the counts of a sequence of words from a corpus.

$$P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_{w \in dict} C(w_{n-1}w)}$$

Example

$$P(the \mid on) = \frac{C(on the)}{\sum_{x} C(on x)}$$

Bigram in Practice

By supposing that C is the counts of a sequence of words from a corpus.

$$P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_{w \in dict} C(w_{n-1}w)}$$

Example

$$P(the \mid on) = \frac{C(on the)}{\sum_{x} C(on x)}$$

(on x) means (on the), (on board), (on time), (on that), ...

The probability of a complete word sequence

Given the **Bigram** assumption for the probability of an individual word, we can compute the probability of complete word sequence by:

$$P(w_1^n) \approx \prod_{k=1}^n P(w_k \mid w_{k-1})$$

The probability of a complete word sequence

Given the **Bigram** assumption for the probability of an individual word, we can compute the probability of complete word sequence by:

$$P(w_1^n) \approx \prod_{k=1}^n P(w_k \mid w_{k-1})$$

Chain Rule

$$P("an apple is on the") = P(an) \times P(apple \mid an) \times P(is \mid an apple) \times P(on \mid an apple is) \times P(the \mid an apple is on)$$

The probability of a complete word sequence

Given the **Bigram** assumption for the probability of an individual word, we can compute the probability of complete word sequence by:

$$P(w_1^n) \approx \prod_{k=1}^n P(w_k \mid w_{k-1})$$

Chain Rule

$$P("an apple is on the") = P(an) \times P(apple \mid an) \times P(is \mid an apple) \times P(on \mid an apple is) \times P(the \mid an apple is on)$$

Bigram Assumption

$$P("an apple is on the") = P(apple | an) \times P(is | apple) \times P(on | is) \times P(the | on)$$

OOV & Smoothing

OOV stands for Out Of Vocabulary

- Words appear only in a test set but not in the training set.
- OOV problem occurs even when we work on big data.

Types of smoothing

- Laplace smoothing (Add-one smoothing)
- Add-k smoothing
- Back-off
- Linear interpolation
- . . .

Types of smoothing

- Laplace smoothing (Add-one smoothing)
- Add-k smoothing
- Back-off
- Linear interpolation
- ...

We mix the probability estimates from all the n-gram estimators, weighing and combining the trigram, bigram, and unigram counts.

We mix the probability estimates from all the n-gram estimators, weighing and combining the trigram, bigram, and unigram counts.

Bigram + Unigram

$$\hat{P}(table \mid the) = \lambda_1 P(table \mid the) + \lambda_2 P(table)$$

We mix the probability estimates from all the n-gram estimators, weighing and combining the trigram, bigram, and unigram counts.

Bigram + Unigram

$$\hat{P}(table \mid the) = \lambda_1 P(table \mid the) + \lambda_2 P(table)$$

Trigram + Bigram + Unigram

$$\hat{P}(table \mid on \ the) = \lambda_1 P(table \mid on \ the) + \lambda_2 P(table \mid the) + \lambda_3 P(table)$$

We mix the probability estimates from all the n-gram estimators, weighing and combining the trigram, bigram, and unigram counts.

Bigram + Unigram

$$\hat{P}(table \mid the) = \lambda_1 P(table \mid the) + \lambda_2 P(table)$$

Trigram + Bigram + Unigram

$$\hat{P}(table \mid on \ the) = \lambda_1 P(table \mid on \ the) + \lambda_2 P(table \mid the) + \lambda_3 P(table)$$

where we choose λ_i such that $\sum_i \lambda_i = 1$

How are the λ values set?

- They can be learned from a held-out corpus
- Can be found by EM algorithm.
- For the purpose of this project, we assume without loss of generality that $\lambda_i > \lambda_j (\forall i < j)$

Formula

$$P(w_n \mid w_1^{n-1}) = \sum_{c_n} P(w_n \mid c_n) \times P(c_n \mid c_{n-N+1}^{n-1})$$

where c_n is a class of w_n (In this context, c_n is considered a part of speech of the word w_n)

Formula

$$P(w_n \mid w_1^{n-1}) = \sum_{c_n} P(w_n \mid c_n) \times P(c_n \mid c_{n-N+1}^{n-1})$$

where c_n is a class of w_n (In this context, c_n is considered a part of speech of the word w_n)

Example

cat, dog, thought, · · ·	c ₁ :Noun
go, speak, · · ·	c ₂ :Verb
play, · · ·	c ₁ :Noun, c ₂ :Verb

Formula

$$P(w_n \mid w_1^{n-1}) = \sum_{c_n} P(w_n \mid c_n) \times P(c_n \mid c_{n-N+1}^{n-1})$$

where c_n is a class of w_n (In this context, c_n is considered a part of speech of the word w_n)

Example

cat, dog, thought, · · ·	c ₁ :Noun
go, speak, · · ·	c ₂ :Verb
play, · · ·	c ₁ :Noun, c ₂ :Verb

It means that to predict the next word w_n

- 1. $P(w_n \mid c_n) = \frac{C(w_n, c_n)}{C(c_n)}$
- 2. Compute $P(c_n | c_{n-N+1}^{n-1})$
- 3. w_n^* is determined by $\arg \max_{w_n} P(w_n \mid w_1^{n-1})$

Formula

$$P(w_n \mid w_1^{n-1}) = \sum_{c_n} P(w_n \mid c_n) \times P(c_n \mid c_{n-N+1}^{n-1})$$

where c_n is a class of w_n (In this context, c_n is considered a part of speech of the word w_n)

Example

cat, dog, thought, · · ·	c ₁ :Noun
go, speak, · · ·	c ₂ :Verb
play, · · ·	c ₁ :Noun, c ₂ :Verb

It means that to predict the next word w_n

- 1. $P(w_n | c_n) = \frac{C(w_n, c_n)}{C(c_n)}$
- 2. Compute $P(c_n \mid c_{n-N+1}^{n-1}) \sim P(w_n \mid w_{n-N+1}^{n-1})$
- 3. w_n^* is determined by $\arg \max_{w_n} P(w_n \mid w_1^{n-1})$

Implementation

Implementation

- Programming Language : Python
- Ui : Tkinter
- NLTK (Natural Language ToolKit)

Programming Structure

DEMO

References

- Speech and Language Processing (Chapter 3) (Daniel JurafskyStanford University, 1999)
- N-gram Language Modeling Tutorial (Lecture notes courtesy of Prof. Mari Ostendorf, 2007-06-21)
- Probabilistic Language Model (Chapter 3) (Kenji KITA, University of Tokyo Press, 1999)