

Μαθηματική Ανάλυση Διάλεξη 10

Κωνσταντίνος Γιαννουτάκης Επίκουρος Καθηγητής

> Σπύρος Χαλκίδης Ε.ΔΙ.Π.

Δεκέμβριος 2022

Θέματα 10ης διάλεξης

- Διαφορικές εξισώσεις
- Ταξινόμηση διαφορικών εξισώσεων
- Γραμμικές διαφορικές εξισώσεις πρώτης τάξης
- Μέθοδος χωριζόμενων μεταβλητών
- Μη αυτόνομες διαφορικές εξισώσεις πρώτης τάξης
- Διαφορικές εξισώσεις Bernoulli και Riccati

Βασικές έννοιες

Μια εξίσωση που περιέχει τις παραγώγους μίας ή περισσοτέρων εξαρτημένων μεταβλητών, σε σχέση με μία ή περισσότερες ανεξάρτητες μεταβλητές, ονομάζεται Δ ιαφορική Εξίσωση (Δ .Ε.).

Παραδείγματα:

$$ightharpoonup \frac{dy}{dx} = y$$

Συμβολισμοί

Συμβολισμός με χρήση τόνων

$$y' + 5y = e^{-x}$$

Συμβολισμός Leibniz

$$\frac{d^2x}{dt^2} + 10x = 0$$

Συμβολισμός Newton

$$\ddot{x} = -3$$

Συμβολισμός με χρήση υποδεικτών

$$u_{xx}+u_{yy}=0$$

Ταξινόμηση διαφορικών εξισώσεων (ως προς τον τύπο)

Οι διαφορικές εξισώσεις διακρίνονται σε:

Αν η διαφορική εξίσωση περιέχει μόνο παραγώγους μίας ή περισσοτέρων συναρτήσεων ως προς μία μόνο ανεξάρτητη μεταβλητή ονομάζεται Συνήθης Διαφορική Εξίσωση (Σ.Δ.Ε.). Παραδείγματα:

Μια εξίσωση που περιλαμβάνει μόνο μερικές παραγώγους μίας ή περισσοτέρων συναρτήσεων δύο ή περισσοτέρων ανεξάρτητων μεταβλητών ονομάζεται
 Μερική Διαφορική Εξίσωση (Μ.Δ.Ε.). Παραδείγματα:

Ταξινόμηση διαφορικών εξισώσεων (ως προς την τάξη)

Ορισμός: Η τάξη μιας διαφορικής εξίσωσης ($\Sigma.\Delta.E.$ ή $M.\Delta.E.$) είναι η τάξη της ανώτερης παραγώγου στην εξίσωση.

Παραδείγματα:

- lackbox Δεύτερης τάξης: $rac{d^2y}{dx^2}+5\left(rac{dy}{dx}
 ight)^4-y=e^x$
- ightharpoonup Τρίτης τάξης: $\frac{\partial^3 f}{\partial x^3} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$
- ightharpoonup Τέταρτης τάξης: $2\frac{\partial^4 u}{\partial x^4} + \frac{\partial^2 u}{\partial t^2} = 0$

Ταξινόμηση διαφορικών εξισώσεων (ως προς τη γραμμικότητα)

Μια Σ.Δ.Ε. n τάξης ονομάζεται **γραμμική** ως προς τη μεταβλητή y, εάν είναι της μορφής

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

όπου g, a_0 , a_1 , ..., a_n συνεχείς συναρτήσεις.

 Δ ύο συμαντικές ειδικές περιπτώσεις γραμμικών εξισώσεων, είναι ή γραμμική $\Sigma.\Delta.E.$ πρώτης τάξης (n=1):

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

και η γραμμική $\Sigma.\Delta.E.$ δεύτερης τάξης (n=2):

$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Γραμμικές διαφορικές εξισώσεις πρώτης τάξης

Ορισμός: Η γενική μορφή της γραμμικής, αυτόνομης διαφορικής εξίσωσης πρώτης τάξης με σταθερούς συντελεστές είναι

$$\dot{y} + \alpha y = b$$

όπου lpha και b είναι γνωστές σταθερές, ενώ εάν y=y(t) τότε $\dot{y}=rac{dy}{dt}$.

Αν με y_h συμβολίσουμε τη γενική λύση της ομογενούς μορφής (που λαμβάνεται θέτοντας b=0) και με y_p συμβολίσουμε τη **μερική λύση**, τότε μπορούμε να έχουμε το αποτέλεσμα

$$y = y_h + y_p$$

Δηλαδή η γενική λύση y της πλήρους εξίσωσης είναι το άθροισμα της γενικής λύσης της ομογενούς μορφής και μίας μερικής λύσης της πλήρους εξίσωσης, όπως η λύση της σταθερής κατάστασης ισορροπίας.

Η ομογενής λύση

Ορισμός: Η **ομογενής** μορφή της γραμμικής αυτόνομης διαφορικής εξίσωσης πρώτης τάξης είναι:

$$\dot{y} + \alpha y = 0$$
, $\alpha \neq 0$

Αν $\alpha=0$, η λύση είναι εύκολο να βρεθεί με άμεση ολοκλήρωση $(y(t)=C,\ C\in\mathbb{R})$. Στη γενική περίπτωση με $\alpha\neq 0$ μπορούμε να λύσουμε την ομογενή μορφή με άμεση ολοκλήρωση, αφού την φέρουμε σε κατάλληλη μορφη. Αφαιρούμε το αy και από τα δύο μέλη της εξίσωσης και στη συνέχεια διαιρούμε με y. Έτσι καταλήγουμε:

$$\frac{\dot{y}}{v} = -c$$

Η ομογενής λύση

Στη μορφή αυτή μπορούμε να ολοκληρώσουμε κάθε μέλος ως προς την ανεξάρτητη μεταβλητή, έστω t, δηλαδή

 $\int \frac{\dot{y}}{y} dt = -\int \alpha dt$

Το ολοκλήρωμα του δεξιού μέλους είναι $-\alpha t + C_1$ όπου C_1 είναι μία σταθερά ολοκλήρωσης. Το ολοκλήρωμα του αριστερού μέλους γράφεται ως

$$\int \frac{\dot{y}}{y} dt$$

Δεδομένου ότι $\dot{y}=rac{dy}{dt}$, αυτό γίνεται

$$\int \frac{dy/dt}{y}dt$$

και μετά την απαλοιφή των όρων dt, παίρνει τη μορφή

$$\int \frac{1}{v} dy$$

Η ομογενής λύση

Το ολοκλήρωμα του 1/y είναι $\ln |y| + C_2$, όπου C_2 είναι μία σταθερά ολοκλήρωσης. Τώρα έχουμε βρει το ολοκλήρωμα και των δύο μελών και καταλήγουμε στη σχέση:

$$\ln|y| + C_2 = -\alpha t + C_1$$

Έτσι:

$$|y| = e^{-\alpha t + C_1 - C_2} =$$

$$e^{-\alpha t} e^{C_1 - C_2} =$$

$$Ce^{-\alpha t}$$

Θεώρημα: Η γενική λύση της ομογενούς μορφής της γραμμικής, αυτόνομης διαφορικής εξίσωσης πρώτης τάξης είναι:

$$y_h(t) = Ce^{-\alpha t}$$

Να επιλυθεί η ομογενής μορφή της διαφορικής εξίσωσης $\dot{y} = 3y + 2$.

Η ομογενής μορφή είναι:

$$\dot{y} - 3y = 0 \Leftrightarrow \frac{\dot{y}}{y} = 3 \Leftrightarrow$$

$$\ln|y| + C_2 = 3t + C_1 \Leftrightarrow y_h(t) = Ce^{3t}$$

Η μερική λύση

Ορισμός: Μία τιμή σταθερής κατάστασης ισορροπίας προσδιορίζεται από τη συνθήκη $\dot{y}=0$. Είναι η τιμή της y, στην οποία αυτή είναι στάσιμη. Θα την συμβολίσουμε με \bar{y} .

Θέτοντας $\dot{y}=0$ έχουμε

$$0 + \alpha \bar{y} = b \Leftrightarrow \bar{y} = \frac{b}{\alpha}$$

Άρα $y_p=ar{y}$. Αντικαθιστώντας το $ar{y}$ στην πλήρη διαφορική εξίσωση έχουμε

$$0 + \alpha \bar{y} = b$$

που ισχύει.

Η γενική λύση

Θεώρημα: Η λύση μίας οποιασδήποτε γραμμικής αυτόνομης διαφορικής εξίσωσης πρώτης τάξης είναι ίση με το άθροισμα της ομογενούς λύσης και μίας οποιασδήποτε μερικής λύσης της πλήρους διαφορικής εξίσωσης:

$$y = y_h + y_p$$

Απόδειξη: Έστω ότι y_1 και y_2 είναι δύο οποιεσδήποτε λύσεις της πλήρους διαφορικής εξίσωσης και ορίζουμε ως $z=y_1-y_2$ τη διαφορά ανάμεσα σε αυτές τις δύο λύσεις. Μπορούμε να δείξουμε ότι η z είναι μία λύση της ομογενούς διαφορικής εξίσωσης. Αυτό γίνεται ως εξής:

$$\dot{z} = \dot{y_1} - \dot{y_2} = (-\alpha y_1 + b) - (-\alpha y_2 + b) = -\alpha (y_1 - y_2) = -\alpha z$$

Επομένως

$$\dot{z} + \alpha z = 0$$

που σημαίνει ότι η z ικανοποιεί την ομογενή μορφή της διαφορικής εξίσωσης και συνεπώς είναι μία λύση της.

Η γενική λύση

Έστω τώρα ότι y είναι μία γενική λύση της διαφορικής εξίσωσης και έστω y_p ότι είναι μία μερική λύση. Αφού η y και η y_p είναι δύο λύσεις της πλήρους εξίσωσης, τότε, όπως αποδείξαμε, η $z=y-y_p$ θα είναι μία λύση της ομογενούς μορφής της. Επειδή είναι λύση της ομογενούς εξίσωσης την ονομάζουμε y_h . Συνεπώς $y_h=y-y_p \Leftrightarrow y=y_h+y_p$

Θεώρημα: Η γενική λύση της πλήρους, αυτόνομης διαφορικής εξίσωσης πρώτης τάξης είναι:

$$y(t) = Ce^{-\alpha t} + \frac{b}{\alpha}$$

Να λυθεί η διαφορική εξίσωση:

$$\dot{y} + 2y = 8$$

 \mathbf{H} ομογενής μορφή είναι $\dot{y}=-2y$.

Επομένως η λύση της ομογενούς μορφής είναι $y_h(t) = Ce^{-2t}$

Η μερική λύση προκύπτει από την τιμή σταθερής κατάστασης της y στη γενική μορφή της διαφορικής εξίσωσης θέτοντας $\dot{y}=0$. Συνεπώς:

$$0 + 2\bar{y} = 8 \Leftrightarrow \bar{y} = 4$$

Επομένως, η γενική λύση της διαφορικής εξίσωσης είναι:

$$y = Ce^{-2t} + 4$$

Το πρόβλημα της αρχικής τιμής

Να επιλυθεί η διαφορική εξίσωση

$$\dot{y} = 0.1y - 1$$

ώστε να ικανοποιεί την αρχική συνθήκη y(0) = 5.

Η λύση της ομογενούς διαφορικής εξίσωσης είναι: $y_h = Ce^{0.1t}$

Η μερική λύση που χρησιμοποιούμε είναι η λύση της σταθερής κατάστασης: $\bar{y}=10$ Συνεπώς η γενική λύση είναι:

$$y = Ce^{0.1t} + 10$$

Για την αρχική συνθήκη έχουμε:

$$5 = C + 10 \Leftrightarrow C = -5$$

Συνεπώς η γενική λύση η οποία ικανοποιεί την αρχική συνθήκη είναι

$$y = -5e^{0.1t} + 10$$

Η μέθοδος των χωριζόμενων μεταβλητών

Αν μία διαφορική εξίσωση πρώτης τάξης είναι της μορφής:

$$\frac{dy}{dx} = f(x)g(y)$$

τότε είναι δυνατό να χωρίσουμε τις μεταβλητές και έτσι η παραπάνω εξίσωση να γραφεί

$$\frac{1}{g(y)}\frac{dy}{dx} = f(x)$$

Ολοκληρώνοντας τα δύο μέλη ως προς x έχουμε:

$$\int \frac{1}{g(y)} \frac{dy}{dx} dx = \int f(x) dx \Leftrightarrow$$

$$\int \frac{1}{g(y)} dy = \int f(x) dx$$

Έστω η διαφορική εξίσωση:

$$x\frac{dy}{dx}=y(y+1), x>0$$

Χωρίζουμε τις μεταβλητές

$$\frac{dy}{y(y+1)} = \frac{dx}{x}$$

Θέτοντας $\frac{1}{y(y+1)}=\frac{A}{y}+\frac{B}{y+1}$ έχουμε ισοδύναμα $\frac{1}{y(y+1)}=\frac{Ay+A+By}{y(y+1)}$ Ισοδύναμα A+B=0 και A=1. Συνεπώς B=-1. Άρα $\frac{1}{y(y+1)}=\frac{1}{y}-\frac{1}{y+1}$

Συνεπώς

$$\int \left(\frac{1}{y} - \frac{1}{y+1}\right) dy = \int \frac{dx}{x} \Leftrightarrow$$

$$\ln|y| - \ln|y+1| = \ln x + C \Leftrightarrow$$

$$y = \frac{x}{A - x}$$

Έστω η διαφορική εξίσωση:

$$y' = y^2 e^{-x}$$

Χωρίζουμε τις μεταβλητές (για $y \neq 0$, για y = 0 η εξίσωση ικανοποιείται)

$$\frac{dy}{y^2} = e^{-x} dx$$

Συνεπώς έχουμε

$$\int \frac{dy}{y^2} = \int e^{-x} dx \Leftrightarrow$$

$$-\frac{1}{y} = -e^{-x} + C \Leftrightarrow$$

$$y = \frac{1}{e^{-x} - C}$$

Έστω η διαφορική εξίσωση:

$$\frac{dy}{dx} = \sqrt{x + y - 2} - 1$$
, $\mu \epsilon \ y(0) = 3$

Επειδή ο διαχωρισμός των μεταβλητών δεν μπορεί να γίνει άμεσα, θα θέσουμε z(x) = x + y(x) - 2, επομένως:

$$\frac{dz}{dx} = 1 + \frac{dy}{dx} \Leftrightarrow \frac{dy}{dx} = \frac{dz}{dx} - 1$$

επομένως η αρχική μας διαφορική εξίσωση γίνεται:

$$\frac{dz}{dx} - 1 = \sqrt{z} - 1 \Leftrightarrow \frac{dz}{dx} = \sqrt{z}$$

Αυτή η Σ.Δ.Ε. είναι χωριζομένων μεταβλητών, οπότε:

$$\frac{dz}{\sqrt{z}} = dx \Leftrightarrow \int z^{-\frac{1}{2}} dz = \int dx \Leftrightarrow \frac{z^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} = x + c \Leftrightarrow 2\sqrt{z} = x + c$$

Χρησιμοποιώντας την αρχική συνθήκη y(0)=3 στη σχέση z(x)=x+y(x)-2, παίρνουμε

$$z = 0 + 3 - 2 = 1$$

οπότε η $2\sqrt{z} = x + c$ για t = 0 δίνει

$$2\sqrt{1} = 0 + c \Leftrightarrow c = 2$$

Άρα η σχέση $2\sqrt{z} = x + c$ γίνεται:

$$2\sqrt{z} = x + 2 \Leftrightarrow 2\sqrt{x + y - 2} = x + 2 \Leftrightarrow \sqrt{x + y - 2} = \frac{x + 2}{2}, \ x + 2 \ge 0$$

Άρα

$$x + y - 2 = \left(\frac{x}{2} + 1\right)^2 \Leftrightarrow x + y - 2 = \frac{x^2}{4} + 1 + x \Leftrightarrow y = \frac{x^2}{4} + 3, \ x + 2 \ge 0$$

Η σταθερή κατάσταση ισορροπίας και η σύγκλιση

Η εξίσωση της γενικής λύσης $(y(t)=Ce^{-at}+\frac{b}{a})$ για t=0 δίνει $y(0)=y_0=C+b/\alpha\Leftrightarrow C=y_0-(b/\alpha)$. Επειδή $\bar{y}=b/\alpha$ έχουμε $C=y_0-\bar{y}$ και μπορούμε να γράψουμε

$$y(t) = (y_0 - \bar{y})e^{-\alpha t} + \bar{y}$$

Τότε

$$\lim_{t\to\infty}y(t)=\lim_{t\to\infty}((y_0-\bar{y})e^{-\alpha t}+\bar{y})$$

Αν $\alpha>0$ τότε το y(t) συγκλίνει στο \bar{y} ενω αν $\alpha<0$ τότε το y(t) αποκλίνει.

Θεώρημα Η λύση y(t) σε μία γραμμική αυτόνομη διαφορική εξίσωση πρώτης τάξης συγκλίνει προς την σταθερή κατάσταση ισορροπίας $\bar{y}=b/\alpha$, ανεξάρτητα από την αρχική τιμή y_0 αν και μόνο αν ο συντελεστής α της διαφορικής εξίσωσης είναι θετικός.

Έστω η διαφορική εξίσωση

$$\dot{y} = 5y - 10$$

Αν κατά τη χρονική στιγμή t=0, y(t)=100 να βρεθεί αν συγκλίνει προς μία κατάσταση ισορροπίας:

$$y(t) = Ce^{5t} + 2$$

Τη χρονική στιγμή t=0 πρέπει να ικανοποιεί την y(0)=100. Αυτό σημαίνει

$$100 = C + 2 \Leftrightarrow C = 98$$

Η λύση γίνεται:

$$y(t) = 98e^{5t} + 2$$

που αποκλίνει από την σταθερή κατάσταση ισορροπίας $\bar{y}=2$ γιατί το e^{5t} τείνει στο άπειρο καθώς $t\to +\infty$.

H περίπτωση του $\alpha = 0$

Αν $\alpha=0$ η λύση της σταθερής κατάστασης δεν ορίζεται. Σε αυτήν την περίπτωση έχουμε τη διαφορική εξίσωση

$$\dot{y} = b$$

μπορεί να ολοκληρωθεί άμεσα και έχουμε y(t)=bt+C

Εαν ο συντελεστής α ή/και ο όρος b σε μία γραμμική διαφορική εξίσωση είναι συνάρτηση του χρόνου τότε η εξίσωση είναι μη αυτόνομη.

Ορισμός: Η γενική μορφή της γραμμικής διαφορικής εξίσωσης πρώτης τάξης είναι

$$\dot{y} + \alpha(t)y = b(t)$$

όπου $\alpha(t)$ και b(t) είναι γνωστές συνεχείς συναρτήσεις του t.

Θεώρημα: Η γενική λύση μίας οποιασδήποτε γραμμικής διαφορικής εξίσωσης πρώτης τάξης είναι

$$y(t) = e^{-A(t)} \left(\int e^{A(t)} b(t) dt + C \right)$$

Στο θεώρημα χρησιμοποιούμε τον όρο A(t), ο οποίος ορίζεται ως το ολοκλήρωμα του συντελεστή $\alpha(t)$ $(A(t)=\int a(t)dt)$. Για να δούμε πώς μπορούμε να πάρουμε τη γενική λύση, παραγωγίζουμε τη συνάρτηση:

$$e^{A(t)}y(t)$$

όπου προκύπτει:

$$e^{A(t)}\left(\frac{dA(t)}{dt}y(t)+\dot{y}\right)$$

Αφού $lpha(t)=rac{dA(t)}{dt}$ έχουμε δείξει ότι

$$\frac{d}{dt}(e^{A(t)}y(t)) = e^{A(t)}(\alpha(t)y(t) + \dot{y})$$

Το προηγούμενο αποτέλεσμα δείχνει ότι μπορούμε να χρησιμοποιήσουμε την ακόλουθη τεχνική για να λύσουμε τη διαφορική εξίσωση: Πολλαπλασιάζουμε ολόκληρη την εξίσωση επί τον όρο $e^{A(t)}$. Έτσι προκύπτει:

$$e^{A(t)}(\alpha(t)y(t)+\dot{y})=e^{A(t)}b(t)$$

Όπως δείξαμε προηγουμένως το αριστερό μέλος είναι ίσο με $\frac{d}{dt}(e^{A(t)}y(t))$ οπότε

$$\frac{d}{dt}(e^{A(t)}y(t)) = e^{A(t)}b(t)$$

Ολοκληρώνοντας παίρνουμε

$$e^{A(t)}y(t) = \int e^{A(t)}b(t)dt + C$$

 Δ ιαιρώντας με $e^{A(t)}$ προκύπτει τελικά

$$y(t) = e^{-A(t)} \left(\int e^{A(t)} b(t) dt + C \right)$$

Θεώρημα: Η γενική μορφή του παράγοντα ολοκλήρωσης για τη γραμμική διαφορική εξίσωση πρώτης τάξης είναι

$$e^{A(t)}$$

όπου
$$A(t) = \int \alpha(t) dt$$
.

Να λυθεί η διαφορική εξίσωση

$$\dot{y} - 2ty = bt$$

Σε αυτήν την περίπτωση έχουμε lpha(t)=-2t, επομένως

$$A(t) = \int (-2t)dt = -t^2$$

Πολλαπλασιάζοντας τα δύο μέλη της διαφορικής εξίσωσης επί τον παράγοντα ολοκλήρωσης έχουμε:

$$e^{-t^2}(\dot{y}-2ty)=e^{-t^2}bt$$

Ισοδύναμα

$$\frac{d}{dt}(e^{-t^2}y) = e^{-t^2}bt$$

Ολοκληρώνοντας και τα δύο μέλη έχουμε:

$$e^{-t^2}y = -\frac{be^{-t^2}}{2} + C$$

 Δ ιαιρώντας με e^{-t^2}

$$y = e^{t^2} \left(-\frac{be^{-t^2}}{2} + C \right) = -\frac{b}{2} + Ce^{t^2}$$

Να λυθεί η διαφορική εξίσωση

$$\cos(x)\frac{dy}{dx} + (\cos(x) + \sin(x))y = \sin(x)\cos^2(x), -\frac{\pi}{2} < x < \frac{\pi}{2}$$

 Δ ιαιρούμε πρώτα με cos(x)

$$\frac{dy}{dx} + (1 + \tan(x))y = \sin(x)\cos(x)$$

Σε αυτήν την περίπτωση έχουμε lpha(x)=1+ an(x) επομένως

$$A(x) = \int (1 + \tan(x))dx = x - \ln(\cos(x))$$

Ο ολοκληρωτικός παράγοντας είναι

$$e^{x-\ln(\cos(x))} = \frac{e^x}{\cos(x)}$$

Πολλαπλασιάζοντας την αρχική Σ.Δ.Ε. με τον ολοκληρωτικό παράγοντα έχουμε:

$$\frac{e^x}{\cos(x)}\frac{dy}{dx} + \frac{e^x}{\cos(x)}(1+\tan(x))y = e^x\sin(x)$$

Το πρώτο μέλος αυτής της εξίσωσης πρέπει να είναι της μορφής

$$\frac{d}{dx}\left(\frac{e^x}{\cos(x)}y\right)$$

Έτσι έχουμε (μπορούμε να το επαληθεύσουμε)

$$\frac{d}{dx}\left(\frac{e^x}{\cos(x)}y\right) = e^x \sin(x)$$

(Όντως
$$\frac{d}{dx}(\frac{e^x}{\cos(x)}y) = \frac{e^x}{\cos(x)}\frac{dy}{dx} + \frac{e^x\cos(x) - e^x(-\sin(x))}{\cos^2(x)}y = \frac{e^x}{\cos(x)}\frac{dy}{dx} + \frac{e^x}{\cos(x)}(1 + \tan(x))y$$
)

Ολοκληρώνοντας και τα δύο μέλη έχουμε:

$$\frac{e^x}{\cos(x)}y = \int e^x \sin(x) dx$$

 $K=\int e^x \sin(x) dx$ που ολοκληρώνοντας κατά παράγοντες δίνει

 $K = e^x \sin(x) - \int e^x \cos(x) dx = e^x \sin(x) - e^x \cos(x) - \int e^x \sin(x) dx$. Συνεπώς $2K = e^x (\sin(x) - \cos(x)) + C$ ή $\int e^x \sin(x) dx = \frac{e^x}{2} (\sin(x) - \cos(x)) + C_1$, όπου $C_1 = C/2$.

Αντικαθιστώντας έχουμε

$$\frac{e^x}{\cos(x)}y = \frac{e^x}{2}(\sin(x) - \cos(x)) + C_1$$

ή ισοδύναμα

$$y = \frac{\cos(x)}{2}(\sin(x) - \cos(x)) + C_1\cos(x)e^{-x}$$

Διαφορικές εξισώσεις Bernoulli

Οι διαφορικές εξισώσεις Bernoulli είναι της μορφής

$$y' + g(x)y = f(x)y^n$$

Οι εξισώσεις αυτές μετασχηματίζονται σε γραμμικές διαφορικές εξισώσεις, πολλαπλασιάζοντας και τα δύο μέλη της με y^{-n}

$$y'y^{-n} + g(x)y^{1-n} = f(x)$$

Στη συνέχεια θέτουμε $u(x)=y^{1-n}$, οπότε $u'(x)=(1-n)y^{-n}y'(x)$, και παίρνουμε

$$\frac{u'(x)}{1-n} + g(x)u(x) = f(x) \Leftrightarrow$$

$$u'(x) + (1 - n)g(x)u(x) = (1 - n)f(x)$$

που είναι γραμμική διαφορική εξίσωση.

Να λυθεί η διαφορική εξίσωση: $y' = \frac{3}{x}y + x^4\sqrt[3]{y}$

Η διαφορική εξίσωση γράφεται και ως

$$y' - \frac{3}{x}y = x^4 y^{\frac{1}{3}}$$

οπότε είναι διαφορική εξίσωση Bernoulli με $n=\frac{1}{3}$. Πολλαπλασιάζουμε και τα δύο μέλη με $y^{-\frac{1}{3}}$ και παίρνουμε

$$y'y^{-\frac{1}{3}} - \frac{3}{x}y^{\frac{2}{3}} = x^4$$

Θέτουμε $u(x)=y^{1-\frac{1}{3}}=y^{\frac{2}{3}}$, οπότε $u'(x)=\frac{2}{3}y^{-\frac{1}{3}}y'(x)\Rightarrow y'(x)=\frac{3}{2}y^{\frac{1}{3}}u'(x)$, επομένως καταλήγουμε στη γραμμική εξίσωση

$$\frac{3}{2}y^{\frac{1}{3}}u'(x)y^{-\frac{1}{3}} - \frac{3}{x}u(x) = x^4 \Rightarrow \frac{3}{2}u'(x) - \frac{3}{x}u(x) = x^4 \Rightarrow u'(x) - \frac{2}{x}u(x) = \frac{2}{3}x^4$$

Η γενική λύση της γραμμικής εξίσωσης είναι

$$u(x) = e^{-\int -\frac{2}{x} dx} \left(\int \frac{2}{3} x^4 e^{\int -\frac{2}{x} dx} dx + c \right)$$

$$= e^{\ln(x^2)} \left(\int \frac{2}{3} x^4 e^{\ln x^{-2}} dx + c \right)$$

$$= x^2 \left(\int \frac{2}{3} x^2 dx + c \right)$$

$$= x^2 \left(\frac{2}{9} x^3 + c \right)$$

$$= \frac{2}{9} x^5 + cx^2$$

Άρα τελικά

$$y^{\frac{2}{3}} = \frac{2}{9}x^5 + cx^2 \Leftrightarrow y = \left(cx^2 + \frac{2}{9}x^5\right)^{\frac{5}{2}}$$

Διαφορικές εξισώσεις Riccati

Οι διαφορικές εξισώσεις Riccati είναι της μορφής

$$y' + f(x)y^2 + g(x)y + h(x) = 0$$

Εάν γνωρίζουμε μία μερική τους λύση, έστω $y_1(x)$, τότε μετασχηματίζονται σε γραμμικές διαφορικές εξισώσεις με την αντικατάσταση

$$y(x) = y_1(x) + \frac{1}{u(x)}$$

Να λυθεί η διαφορική εξίσωση:

$$y' + \frac{1-x}{2x^2}y^2 - \frac{y}{x} + \frac{x-1}{2} = 0$$

η οποία έχει μερική λύση την $y_1(x) = x$.

Θέτουμε
$$y(x)=x+rac{1}{u(x)}$$
, οπότε $y'(x)=1-rac{u'(x)}{u^2(x)}$ άρα η αρχική μας διαφορική γίνεται

$$1 - \frac{u'}{u^2} + \frac{1 - x}{2x^2} \left(x^2 + \frac{2}{u} x + \frac{1}{u^2} \right) - \frac{1}{x} \left(x + \frac{1}{u} \right) + \frac{x - 1}{2} = 0 \Rightarrow$$

$$1 - \frac{u'}{u^2} + \frac{1 - x}{2} + \frac{1 - x}{xu} + \frac{1 - x}{2x^2 u^2} - 1 - \frac{1}{xu} + \frac{x - 1}{2} = 0 \Rightarrow$$

$$- \frac{u'}{u^2} + \frac{1 - x}{xu} + \frac{1 - x}{2x^2 u^2} - \frac{1}{xu} = 0 \Rightarrow$$

$$-2x^{2}u' + 2xu(1-x) + (1-x) - 2xu = 0 \Rightarrow$$
$$-2x^{2}u' - 2x^{2}u + (1-x) = 0 \Rightarrow u' + u = \frac{1-x}{2x^{2}}$$

Η λύση της γραμμικής διαφορικής εξίσωσης $u'+u=rac{1-x}{2x^2}$ είναι

$$u(x) = e^{-\int dx} \left(\int \frac{1-x}{2x^2} e^{\int dx} dx + c \right) = e^{-x} \left(\int \frac{1-x}{2x^2} e^x dx + c \right)$$
$$= e^{-x} \left(\int \left(-\frac{e^x}{2x} \right)' dx + c \right) = e^{-x} \left(-\frac{e^x}{2x} + c \right) = -\frac{1}{2x} + ce^{-x}$$

Άρα

$$y(x) = x + \frac{1}{u(x)} = x + \frac{1}{-\frac{1}{2x} + ce^{-x}}$$

