

Learning Objective Client-Server Paradigm Addressing Multiplexing and Demultiplexing Connectionless/Connection-Oriented Reliable/Unreliable

		own ports used by UDP
Port	Protocol	Description
7	Echo	Echoes a received datagram back to the sender
9	Discard	Discards any datagram that is received
11	Users	Active users
13	Daytime	Returns the date and the time
17	Quote	Returns a quote of the day
19	Chargen	Returns a string of characters
53	Nameserver	Domain Name Service
67	Bootps	Server port to download bootstrap information
68	Bootpc	Client port to download bootstrap information
69	TFTP	Trivial File Transfer Protocol
111	RPC	Remote Procedure Call
123	NTP	Network Time Protocol
161	SNMP	Simple Network Management Protocol
162	SNMP	Simple Network Management Protocol (trap)

LE CONTENT	ТСР	
Port	Numbers	
Serv	rices	
Seq	uence Numbers	
Seg	ments	
Con	nection	
Tran	sition Diagram	
Flov	and Error Control	
Silly	Window Syndrome	

1	MAN CO RESIDENCE	Well	-known ports used by TCP
Ħ	Port	Protocol	Description
	7	Echo	Echoes a received datagram back to the sender
	9	Discard	Discards any datagram that is received
	11	Users	Active users
	13	Daytime	Returns the date and the time
	17	Quote	Returns a quote of the day
	19	Chargen	Returns a string of characters
	20	FTP, Data	File Transfer Protocol (data connection)
П	21	FTP, Control	File Transfer Protocol (control connection)
	23	TELNET	Terminal Network
	25	SMTP	Simple Mail Transfer Protocol
	53	DNS	Domain Name Server
	67	BOOTP	Bootstrap Protocol
	79	Finger	Finger
	80	HTTP	Hypertext Transfer Protocol
	111	RPC	Remote Procedure Call
0	Bharati Vidyapeeth	s Institute of Computer Ap	plications and Management, New Delhi-63 by Vishal Jain U4.21

Flag	Description	
URG	The value of the urgent pointer field is valid.	
ACK	The value of the acknowledgment field is valid.	
PSH	Push the data.	
RST	The connection must be reset.	
SYN	Synchronize sequence numbers during connection.	
FIN	Terminate the connection.	

States for TCP	
State	Description
CLOSED	There is no connection.
LISTEN	The server is waiting for calls from the client.
SYN-SENT	A connection request is sent; waiting for acknowledgment.
SYN-RCVD	A connection request is received.
ESTABLISHED	Connection is established.
FIN-WAIT-1	The application has requested the closing of the connection.
FIN-WAIT-2	The other side has accepted the closing of the connection.
TIME-WAIT	Waiting for retransmitted segments to die.
CLOSE-WAIT	The server is waiting for the application to close.
LAST-ACK	The server is waiting for the last acknowledgment.

Receiver window	
Empty, to receive more bytes from network Occupied part of the buffer recycled 199 198 197 196 195 194	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain	U4.39

MA CONTRACTOR	Cont
	Note:
	In TCP, the sender window size is totally controlled by the receiver indow value (the number of empty locations in the receiver buffer).
	owever, the actual window size can smaller if there is congestion in the network.

TCP timers

TCP maintains seven timers for each connection:-

Connection-establishment timer: starts when a SYN is sent to establish a new connection. If the sender doesn't receive an ACK within 75 seconds, the connection establishment is aborted.

Retransmission timer: is set when TCP sends data. If the other end does not acknowledge the data when this timer expires, TCP retransmits the data. This timer is calculated dynamically based on the RTT (round-trip time).

Delayed ACK timer: is set when TCP receives data that must be acknowledged but need not be acknowledged immediately. In Linux, this timer is set to 300ms.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

114.40

TCP timers

Persist timer: is set when the other end of a connection advertise a zero window but it still has data to send. The sender keeps probing the closed window during a retransmission interval. Its value is calculated dynamically.

Keepalive timer: If the connection is idle for 2 hours, the keepalive timer expires and a special segment is sent to the other end. If other end is down, the sender will receive a RESET and the connection will be closed. If there is a segment exchange during 2 hours, the keepalive timer is set to 2 hours again.

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

U4.5

TCP timers

FIN_WAIT_2 timer: is set to 10 minutes when a connection moves from the FIN_WAIT_1 state to the FIN_WAIT_2 state and the connection cannot receive any more data. When this timer expires it is reset to 75 seconds. When it expires, the connection is dropped.

2MSL timer: is set when the connection is actively closed. MSL (maximum segment lifetime) is the maximum amount of time any segment can exist in the network before being discarded. When TCP performs an active close, and sends the final acknowledgement, that connection must stay in the TIME_WAIT state for twice the MSL to let TCP resend the final ACK in case this ACK is lost.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

114.51

TCP timers

The delayed ACK timer is different from the other six because when it is set a delayed ACK must be sent the next time TCP's 300-ms timer expires. But the other six timers are counters that are decremented by 1 every time TCP's 500-ms timer expires. When any one of the counters reaches 0, one of the following actions is taken:

- · Drop the connection.
- · Retransmit a segment.
- · Send a keepalive probe.

© Bharati Vidyaneeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jair

ı Jaiii

DNS

- Introduction
- Namespace
- •DNS in the Internet
- Resolution

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jair

DNS

- •Domain Name System (DNS) is a Client /Server application programs used to help other application programs.
- •DNS is used to map a host name in the application layer to an IP address in the network layer.

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

DNS

Namespace

•The names assigned to machines must be unique because the addresses are unique. A name space that maps each address to a unique name can be organized in two ways: flat or hierarchical.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

DNS

•Domain Namespace

•The domain name space is hierarchical in design. The names are defined in an inverted-tree structure with the root at the top. The tree can have 128 levels: level 0 (root) to level 127.

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

DNS	
Resolution	
Mapping a name to an address or an address to a name is called name-address resolution.	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-53 by Vishal Jain	U4.68

DNS	
DNS can use the services of UDP or TCP using the well-known port 53.	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Dehl-63 by Vishal Jain	U4.71

Electr	onic Mail: SMTP, POP, and IMAP
To expla	in the architecture of email, there
are follo	wing Scenario :
First Sce	nario
Second S	Scenario
Third Sc	enario
Fourth S	Scenario

C sources	E-Mail	
	Fourth Scenario	
con or of I	When both sender and receiver are inected to the mail server via a LAN a WAN, we need two UAs, two pairs MTAs (client and server), and a pair f MAAs (client and server). This is the most common situation today.	
harati Vidyapeet	n's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain	ι

User Agent The user agent (UA) provides service to the user to make the process of sending and receiving a message easier.

E-Mail	
Some examples of command-driven user agents are mail, pine, and elm]
Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-53 by Vishal Jain	U4

Data Types and Sub Types in MIME					
Туре	Subtype	Description			
Message	RFC822	Body is an encapsulated message			
	Partial	Body is a fragment of a bigger message			
	External-Body	Body is a reference to another message			
Image	JPEG	Image is in JPEG format			
	GIF	Image is in GIF format			
Video	MPEG	Video is in MPEG format			
Audio	Basic	Single channel encoding of voice at 8 KHz			
Application	PostScript	Adobe PostScript			
	Octet-stream	General binary data (eight-bit bytes)			

Content Transfer Encoding				
Туре	Description			
7bit	NVT ASCII characters and short lines			
8bit	Non-ASCII characters and short lines			
Binary	Non-ASCII characters with unlimited-length lines			
Base64	6-bit blocks of data are encoded into 8-bit ASCII characters			
Quoted-printable	Non-ASCII characters are encoded as an equal sign followed by an ASCII code			
	-			

	C-IVIAII
	SMTP
transfer ag defines the	mail transfer requires message tents (MTAs). The protocol that MTA client and server in the called Simple Mail Transfer MTP).

O TOWARD

E-Mail Commands				
HELO	Sender's host name			
MAIL FROM	Sender of the message			
RCPT TO	Intended recipient of the message			
DATA	Body of the mail			
QUIT				
RSET				
VRFY	Name of recipient to be verified			
NOOP				
TURN				
EXPN	Mailing list to be expanded			
HELP	Command name			
SEND FROM	Intended recipient of the message			
SMOL FROM	Intended recipient of the message			
SMAL FROM	Intended recipient of the message			

Summary

- •The UA prepares the message, creates the envelope, and puts the message in the envelope.
- •The mail address consists of two parts : local part (user mail box) and domain name. localpart@domainname
- •MIME allows the transfer of multimedia messages.
- •MTA transfers the mail across the Internet.
- •SMTP uses commands and responses to transfer messages between an MTA client and an MTA server.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

WWW

•World Wide web

•The WWW is a distributed client-server service, in which a client using a browser can access a service using a server. The service provided is distributed over many locations called sites.

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

or Computer Applications and Management, New Delni-63 by Visnai Jain

www.]
Active documents are sometimes referred to as client-site dynamic documents.	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain U4.112	
	_
WWW	
НТТР	
The Hypertext Transfer Protocol (HTTP) is a protocol used mainly to access data on the World Wide Web. HTTP functions like a combination of FTP and SMTP.	
combination of P 11 and SM111.	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-43 by Vishal Jain U4.113	
	7
www.	
HTTP uses the services of TCP on well-known port 80.	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain U4.114	

	General Header
Header	Description
Cache-control	Specifies information about caching
Connection	Shows whether the connection should be closed or no
Date	Shows the current date
MIME-version	Shows the MIME version used
Upgrade	Specifies the preferred communication protocol

<i>y</i>	WWW
	Request Header
Header	Description
Accept	Shows the media format the client can accept
Accept-charset	Shows the character set the client can handle
Accept-encoding	Shows the encoding scheme the client can handle
Accept-language	Shows the language the client can accept
Authorization	Shows what permissions the client has
From	Shows the e-mail address of the user
Host	Shows the host and port number of the client
If-modified-since	Send the document if newer than specified date
If-match	Send the document only if it matches given tag
If-non-match	Send the document only if it does not match given tag
If-range	Send only the portion of the document that is missing
If-unmodified-since	Send the document if not changed since specified date
Referrer	Specifies the URL of the linked document
User-agent	Identifies the client program

	Response Header
Header	Description
Accept-range	Shows if server accepts the range requested by client
Age	Shows the age of the document
Public	Shows the supported list of methods
Retry-after	Specifies the date after which the server is available
Server	Shows the server name and version number

WWW	
	Entity Header
Header	Description
Allow	Lists valid methods that can be used with a URL
Content-encoding	Specifies the encoding scheme
Content-language	Specifies the language
Content-length	Shows the length of the document
Content-range	Specifies the range of the document
Content-type	Specifies the media type
Etag	Gives an entity tag
Expires	Gives the date and time when contents may change
Last-modified	Gives the date and time of the last change
Location	Specifies the location of the created or moved document

WWW

HTTP version 1.1 specifies a persistent connection by default.

Summary

- •www is a repository of information linked together from points all over the world.
- •Hypertexts are document linked to one another through the concept of pointers.
- •Browsers interpret and display a Web document.
- •HTTP uses a TCP connection to transfer files.
- •An HTTP message is similar in form to an SMTP message.
- •HTTP, version 1.1 specifies a persistent connection.
- •A proxy server keeps copies of responses to recent requests.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

Cryptography

Cryptography

- •The word cryptography in Greek means "secret writing." The term today refers to the science and art of transforming messages to make them secure and immune to attacks. Two Types of Cryptography:
- •Symmetric-Key Cryptography
- · Asymmetric-Key Cryptography

Cryptography **Cryptography Components**

In cryptography, the encryption/decryption algorithms are public; the keys are secret.

In symmetric-key cryptography, the same key is used by the sender (for encryption) and the receiver (for decryption). The key is shared.

Security in the Internet In this section we discuss a security method for each of the top 3 layers of the Internet model. At the IP level we discuss a protocol called IPSec; at the transport layer we discuss a protocol that "glues" a new layer to the transport layer; at the application layer

we discuss a security method called PGP.

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Vishal Jain

Summary

- •DNS is a client-server application that identifies each host on the Internet with a unique user-friendly name.
- •DNS organizes the name space in a hierarchical structure to decentralize the responsibilities involved in naming.
- •DNS can be pictured as an inverted hierarchical tree structure with one root node at the top and a maximum of 128 levels.
- •Each node in a tree has a domain name.
- Domain name can be FQDN and PQDN
- •FQDN Fully qualified domain name
- •PQDN Partially qualified domain name

Review Questions (OBJ)

- 1. Which of the following functions does UDP perform?
- A) process-to-process communication
- B) host-to-host communication
- C) end-to-end reliable data delivery
- D) none of the above
- 2. When the IP layer of a receiving host receives a datagram,
- A) delivery is complete
- B) a transport layer protocol takes over
- C) a header is added
- D) none of the above

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

Review Questions (OBJ)	
3. A port address in UDP isbits long. A) 8	
B) 16	
C) 32	
D) any of the above	
•	
4. Which of the following does UDP guarantee?	
A) flow control	
B) connection-oriented delivery	
C) flow control D) none of the above	
D) none of the above	
Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain U4.163	
Daview Overtiens (OD I)	
Review Questions (OBJ)	
5. The combination of an IP address and a port number is	
called a	
A) transport address	
B) network address	
C) socket address	
D) none of the above	
B) none of the teore	
6. To use the services of UDP, we need socket	
addresses.	
A) four	
B) two	
C) three	
D) none of the above	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain U4.164	
Review Questions (OBJ)	
7. UDP packets are called	
A) user datagrams	-
B) segments	
C) frames	
D) none of the above	
O HIDD 1 () C 1 () C 1	
8. UDP packets have a fixed-size header of bytes.	
A) 16	
B) 8	
C) 40	
D) none of the above	
© Rharal Virtyanaath's Institute of Computer Amplications and Management New Public S by Vichal Islan 114.165	

BAMA COMITS	Review Questions (OB	J)
9. TCP	is aprotocol.	
A) stre	eam-oriented	
B) me	ssage-oriented	
C) blo	ck-oriented	
D) nor	ne of the above	
10. TC	P is a protocol.	
A) cor	nection-oriented	
B) con	nectionless	
C) bot	h a and b	
D) nor	ne of the above	
© Bharati Vidyapeeth's	Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain	U4.166
-		

4	æ	b.
BMANA T	v	FROME
-	-	4

Review Questions (Short)

- Name various Congestion prevention policies on various layers.
- 2. Explain various timers in TCP.
- 3. Draw state transition diagram for TCP.
- 4. How is internetworking implemented in virtual circuits
- 5. What is silly window syndrome in TCP ?Explain use of Nagle's algorithm
- 6. Explain Token Bucket Algorithm.
- 7. Explain how congestion is controlled in TCP
- 8. Explain Distance vector routing in TCP.

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

U4.167

Review Questions (Short)

- 9. How is congestion controlled through choke packets.
- 10. What is Clark's algorithm and what role it plays in silly window syndrome in TCP

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

U4.168

Recommended reading

- 1. Forouzun, Data Communication and Networking, TMH
- 2. Tanenbaum , A computer Networks: Prentice Hall
- 3. Stallings , High speed Networks :Printice Hall
- 4. Comer D. Computer Networks: Printice hall
- 5. Kurose, J and ross , Computer Networking : Addison Wesley

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

U4.169

Review Questions

- In the _____ protocol we avoid unnecessary transmission by sending only frames that are corrupted.
- A) Stop-and-Wait ARQ
- B) Go-Back-N ARQ
- C) Selective-Repeat ARQ
- D) none of the above
- Both Go-Back-N and Selective-Repeat Protocols use a _____.
- A) sliding frame
- B) sliding window
- C) sliding packet
- D) none of the above

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishai Jain

U4.170

Review Questions

- In the _____ protocol we avoid unnecessary transmission by sending only frames that are corrupted.
- A) Stop-and-Wait ARQ
- B) Go-Back-N ARQ
- C) Selective-Repeat ARQ
- D) none of the above
- Both Go-Back-N and Selective-Repeat Protocols use a _____.
- A) sliding frame
- B) sliding window
- C) sliding packet
- D) none of the above

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain

U4.171

C sources	Review Questions	
tra co A) Str B) Go C) Se D) no 1. Bo us	n the protocol we avoid unnecessary insmission by sending only frames that are rrupted. op-and-Wait ARQ o-Back-N ARQ elective-Repeat ARQ one of the above oth Go-Back-N and Selective-Repeat Protocols e a ding frame	
1 ′	ding window	
1 ′	ding packet	
D) no	one of the above	
© Bharati Vidyapeet	h's Institute of Computer Applications and Management, New Delhi-63 by Vishal Jain	U4.172

BARRET CONTENT	Review Questions
1. Ir tra co A) Sto B) Go C) Se	n the protocol we avoid unnecessary nsmission by sending only frames that are rrupted. pp-and-Wait ARQ p-Back-N ARQ elective-Repeat ARQ
1. Bo us A) slid B) slid C) sli	ne of the above th Go-Back-N and Selective-Repeat Protocols e a ding frame ding window ding packet ne of the above

Review Questions 1. In the _____ protocol we avoid unnecessary transmission by sending only frames that are corrupted. A) Stop-and-Wait ARQ B) Go-Back-N ARQ C) Selective-Repeat ARQ D) none of the above 1. Both Go-Back-N and Selective-Repeat Protocols use a _____. A) sliding frame B) sliding window C) sliding packet D) none of the above