

الامتحان الوطني الموحد للبكالوريا الدورة الإستدراكية 2010 الموضوع

زارة التربية الوطنيسة التناسي التناسي الأطاسي تحكوبات الأطاسي الأطاسي البحداث المحددة الاعتدادات

7	المعامل:	RS22	الرياضيات	المــــادة:
3	مدة الإنجاز:	کیها	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسل	الشعب (ة) أو المسلك:

معلومات عامة

يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟

-مدة إنجاز موضوع الامتحان: 3 ساعات ؛

عدد الصفحات : 3 صفحات (الصفحة الأولى تتضمن معلومات والصفحتان المتبقيتان تتضمنان تمارين الامتحان)؟

- يمكن للمترشح إنجاز تمارين الامتحان في الترتيب الذي يناسبه ؟

-ينبغي تفادي استعمال اللون الأهمر عند تحرير الأجوبة .

-بالرغم من تكرار بعض الرموز في أكثر من تمرين فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

معلومات خاصة

-يتكون الموضوع من خمسة تمارين مستقلة فيما بينها و تتوزع حسب المجالات كما يلي :

النقطة الممنوحة	المجال	التمرين
3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثايي
3 نقط	حساب الاحتمالات	التمرين الثالث
3 نقط	المتتاليات العددية	التمرين الرابع
8 نقط	دراسة دالة وحساب التكامل	التمرين الخامس

-بالنسبة للتمرين الخامس ، In يرمز لدالة اللوغاريتم النبيري .

الصفحة الوطني الموحد للبكالوريا -الدورة الاستدراكية ١٥٥٥ – الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الامتحا
الموضوع	
التمرين الأول (3ن)	
المصحوبية المنسوب إلى معلم متعامد ممنظم مباشر $\left(O,ec{t},ec{j},ec{k} ight)$ ، النقط $A(0,-2,0)$ و $B(1,1,-4)$	
. $x^2 + y^2 + z^2 - 2x - 4y - 6z - 11 = 0$: بحیث $M(x, y, z)$ مجموعة النقط $M(x, y, z)$ بحیث $M(x, y, z)$ مجموعة النقط (S) مجموعة النقطة (S) بحدث (S) مجموعة النقطة (S) مجموعة (S) مجموعة النقطة (S) مجموعة (S)	0.5
بین أن (S) هي الفلكة التي مركزها النقطة $\Omega(1,2,3)$ و شعاعها S .	0.5
ABC) أ – بين أن $AB \wedge \overline{AC} = 4j + 3k$ واستنتج أن $ABC + 3z + 8 = 0$ هي معادلة ديكارتية للمستوى $d\left(\Omega,(ABC)\right)$.	$\begin{vmatrix} 1 \\ 0.5 \end{vmatrix}$
(BC) المستقيم المار من النقطة Ω والعمودي على المستوى (ABC).	0.5
$\begin{cases} x = 1 \end{cases}$	
(Δ) هو تمثيل بارامتري للمستقيم $y=2+4t$ هو تمثيل بارامتر $z=3+3t$	0.5
ب - بين أن مثلوث إحداثيات H نقطة تقاطع المستقيم (Δ) والمستوى (ABC) هو $(1,-2,0)$.	0.25
. (S) والفلكة (ABC) والفلكة H في نقطة تماس المستوى	0.25
التمرين الثاني (3ن)	
$z^2 - 8\sqrt{3}z + 64 = 0$ المعادلة: $c = 2 - 8\sqrt{3}z + 64 = 0$	1
نعتبر في المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر (O, \vec{u}, \vec{v}) ، النقط A و B التي ألحاقها $(2$	
$c=2\left(4\sqrt{3}+4i ight)$ و $b=4\sqrt{3}-4i$ و $a=8i$ على التوالي هي $a=8i$	
· · · · · · · · · · · · · · · · · · ·	
$rac{4\pi}{3}$ ليكن z لحق نقطة M من المستوى و z' لحق النقطة M صورة M بالدوران R الذي مركزه O وزاويته	
$z' = \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z$ ا $z' = \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z$ ا	0.5
$(egin{array}{cccccccccccccccccccccccccccccccccccc$	0.25
<u> </u>	
$rac{a-b}{c-b}=rac{1}{2}+irac{\sqrt{3}}{2}$ ج $-$ بين أن $rac{a-b}{c-b}=rac{1}{2}+irac{\sqrt{3}}{2}$ على الشكل المثلثي .	0.75
. حاستنتج أن المثلث ABC متساوي الأضلاع . $-$	0.5
التمرين الثالث (3ن)	
يحتوي صندوق على ثماني كرات تحمل الأعداد: \square و \square و \square و \square و على ثماني كرات تحمل الأعداد:	
(لا يمكن التمييز بينها باللمس) .	
نسحب عشوائيا بالتتابع وبدون إحلال كرتين من الصندوق . A الحدث : " الحصول على كرتين تحملان معا العدد A " .	1.25
و B الحدث : " الحصول على كرتين إحداهما على الأقل تحمل العدد B " .	
$P(B) = \frac{13}{28}$ وأن $P(A) = \frac{3}{28}$ بين أن	
28 28 28 28) ليكن X المتغير العشوائي الذي يربط كل سحبة بعدد الكرات التي تحمل عددا فرديا .	
X على X المصير المعنواني X . X .	0.25
$P(X=1) = \frac{15}{28}$: بين أن	0.75
X ج $-$ أعط قانون احتمال المتغير العشوائي X .	0.75
التمرين الرابع (3ن)	

. IN نعتبر المتتالية العددية u_n المعرفة بما يلي $u_n=1$ و $u_n=1$ و $u_n=1$ لكل u_n من

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية ١٥٥٥ – الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

 $u_n > 0$: بين أن $u_n > 0$ لكل $u_n > 0$

.
$$I\!N$$
 کن $u_{n+1} < \frac{1}{7}u_n$ نکل بین أن (2 0.75

. بین أن المتتالیة (u_n) تناقصیة وأنها متقاربة . 0.5

.
$$IN$$
 من $u_n \le \left(\frac{1}{7}\right)^n$: ناترجع أن : (4 0.75)

 (u_n) ب – حدد نهایة المتتالیه 0.5

التمرين الخامس (8ن)

.
$$g\left(x
ight)=x^{3}-x-2\ln x+3$$
 : بما يلي $g\left(x
ight)=x^{3}-x-2\ln x+3$ نعتبر الدالة العددية $g\left(x
ight)=x^{3}-x-2\ln x+3$

.
$$]0,+\infty[$$
 كن x ككل $3x^3-x-2=(x-1)(3x^2+3x+2)$ كا أ- تحقق من أن $(1 \quad 0.25$

.
$$]0,+\infty[$$
 کی $g'(x)=\frac{(x-1)(3x^2+3x+2)}{x}$ یک کی $g'(x)=\frac{(x-1)(3x^2+3x+2)}{x}$ یک کی $g'(x)=\frac{(x-1)(3x^2+3x+2)}{x}$

.
$$]0,+\infty[$$
 نكل x من أن 0 > 0 نكل من x من أن 0 (2 0.25

.
$$]0,+\infty[$$
 على $]0,+\infty[$ على $]0,+\infty[$ على $]0,+\infty[$ على $]0,+\infty[$ على $]0,+\infty[$

$$[1,+\infty[$$
 ان الدالة g تناقصية على $[0,1]$ وأنها تزايدية على $[0,+\infty[$

.
$$(g(1)>0)$$
 لكل $g(x)>0$ لكل $g(x)>0$ ب - استنتج أن $g(x)>0$ لكل $g(x)>0$

.
$$f(x) = x - 1 + \frac{x - 1 + \ln x}{x^2}$$
 : يعتبر الدالة العددية f المعرفة على $f(x) = x - 1 + \frac{x - 1 + \ln x}{x^2}$ المعرفة على $f(x) = x - 1 + \frac{x - 1 + \ln x}{x^2}$

. (
$$\left\| \vec{i} \right\| = \left\| \vec{j} \right\| = 1cm$$
 ناخذ (C) المنحنى الممثل للدالة f في معلم متعامد ممنظم (C) المنحنى الممثل للدالة الح

.
$$]0,+\infty[$$
 لكل $f'(x)=\frac{g(x)}{x^3}$: استنتج أن الدالة $f'(x)=\frac{g(x)}{x^3}$: ابين أن $f'(x)=\frac{g(x)}{x^3}$

أ ـ بين أن
$$\int_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty$$
 أ ـ بين أن $\int_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty$ أ ـ بين أن أن $\int_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty$

. (
$$\lim_{x \to +\infty} \frac{\ln x}{x^2} = 0$$
 نذکر أن) $\lim_{x \to +\infty} f(x) = +\infty$ ثم أن $\lim_{x \to +\infty} \frac{x - 1 + \ln x}{x^2} = 0$ نذکر أن 0.75

$$y=x-1$$
 بين أن المستقيم Δ) الذي معادلته $y=x-1$ مقارب مائل للمنحنى Δ بجوار Δ

.
$$(1,0)$$
 هي معادلة للمستقيم المماس للمنحنى (C) في النقطة التي زوج إحداثيتيها $y=3(x-1)$. $(3$

. (نقطة انعطاف وحيدة غير مطلوب تحديدها) (
$$(C)$$
 و المنحنى ((C) و المنحنى ((C)) نقطة انعطاف وحيدة غير مطلوب تحديدها) .

. (
$$v(x) = \ln x$$
 و $u'(x) = \frac{1}{x^2}$: ضع) $\int_{1}^{e} \frac{\ln x}{x^2} dx = 1 - \frac{2}{e}$ نين أن: 1

$$x=e$$
 و $x=1$ الذين معادلتاهما (Δ) و (Δ) و (Δ) و المستقيمين الذين معادلتاهما (Δ) .
$$(1-\frac{1}{e})cm^2$$
 هي

$(\Delta) : \left\{ y = 4t + 2 ; (t \in \mathbb{R}) \right\}$

التمرين الأول:

لدينا الفلكة (٤) معرفة بمعادلتها الديكارتية التالية :

(S):
$$x^2 + y^2 + z^2 - 2x - 4y - 6z - 11 = 0$$

: is it is a second of the content of the conte

$$(x^2 - 2x) + (y^2 - 4y) + (z^2 - 6z) - 11 = 0$$

 $(x - 1)^2 + (y - 2)^2 + (z - 3)^2 - 11 = 14$:

$$(x-1)^2 + (y-2)^2 + (z-3)^2 = 25$$
 يعني : $R = 5$ فلكة مركزها $\Omega(1;2;3)$ و شعاعها $\Omega(3;3;3)$

. C(0;1;-4) و B(1;1;-4) و A(0;-2;0) : لدينا $\overrightarrow{AC}(0;3;-4)$ و $\overrightarrow{AB}(1;3;-4)$:

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{pmatrix} 1\\3\\-4 \end{pmatrix} \wedge \begin{pmatrix} 0\\3\\-4 \end{pmatrix}$$

$$= \begin{vmatrix} 3&3\\-4&-4 \end{vmatrix} \vec{i} - \begin{vmatrix} 1&0\\-4&-4 \end{vmatrix} \vec{j} + \begin{vmatrix} 1&0\\3&3 \end{vmatrix} \vec{k}$$

$$= 0\vec{i} - (-4)\vec{j} + 3\vec{k}$$

$$= 4\vec{j} + 3\vec{k}$$

. (ABC) نقطة من المستوى M(x, y, z)

. (ABC) بما أن المتجهة $\overrightarrow{AB} \wedge \overrightarrow{AC} \wedge \overrightarrow{AC}$ بما أن المتجهة منظمية على المستوى فإن : المتجهتان $\overrightarrow{AB} \wedge \overrightarrow{AC}$ و \overrightarrow{AM} متعامدتان .

 $\overrightarrow{AM} \cdot (\overrightarrow{AB} \wedge \overrightarrow{AC}) = 0$: يعنى أن

4y + 3z + 8 = 0: يعنى 0x + 4(y + 2) + 3z = 0 يعنى و هذه الكتابة الأخيرة عبارة عن معادلة ديكارتية للمستوى (ABC).

(ABC) : 4y + 3z + 8 = 0 و $\Omega(1,2,3)$: لدينا

$$d(\Omega, (ABC)) = \frac{|0+8+9+8|}{\sqrt{0^2+4^2+3^2}} = \frac{25}{\sqrt{25}} = \sqrt{25} = 5$$
 : ذن

 $d(\Omega, (ABC)) = R$: نلاحظ أن

 $H(\alpha,\beta,\gamma)$ في النقطة (S) مماس للفلكة (ABC) في النقطة

علما أن المتجهة $\overrightarrow{AB} \wedge \overrightarrow{AC}(0,4,3)$ منظمية على المستوى M(x,y,z) نقطة من المستقيم

(ABC) بما أن (Δ) مار من Ω و عمودي على

فإن المتجهتان $\overrightarrow{\Omega M}$ و $\overrightarrow{AB} \wedge \overrightarrow{AC}$ متجهتان مستقيميتان .

 $(\exists t \in \mathbb{R})$; $\overrightarrow{\Omega M} = t \ \overrightarrow{n}$: یعنی

$$(\Delta)$$
 : $egin{cases} x-1=0t \ y-2=4t \ ; \ (t \in \mathbb{R}) \end{cases}$ يعني : $z-3=3t$

و هذه النظمة الأخيرة عبارة عن تمثيل بارامترى للمستقيم (Δ).

$$(ABC): 4y + 3z + 8 = 0$$

$$(x = 1)$$

$$\begin{cases} x = 1 \\ y = 2 + 4t ; (t \in \mathbb{R}) \end{cases}$$

$$\begin{cases} x = 1 \\ z = 3t + 3 \end{cases}$$

$$\begin{cases} ABC \text{ or simple a (S) ideal of the left in the$$

نعلم أن
$$H(\alpha,\beta,\gamma)$$
 هي نقطة تماس الفلكة (\mathcal{S}) و المستوى $H(\alpha,\beta,\gamma)$.
إذن : $(\Omega H) \pm (ABC)$

(3)
$$\Omega \epsilon (\Delta)$$
 و (2) $\Delta \pm (ABC)$ (3) (3) $\Omega \epsilon (\Delta)$

$$H\epsilon(\Delta)$$
 : يعني (ΩH) = (Δ) : من (1) و (2) و (3) نستنتج أن

$$\{H\epsilon(\Delta)\ (H\epsilon(ABC)\}$$
: ביניב إحداثيات النقطة H ننظلق من النظمة التالية :

$$egin{array}{l} lpha=1 \ eta=4t+2 \ \gamma=3t+3 \ +eta+3\gamma+8=0 \end{array}$$
 ; $(t\epsilon\mathbb{R})$: و هذه النظمة تُكافئ

: نعوض قيم
$$\alpha$$
 و β و γ في المعادلة الرابعة من النظمة نحصل على 4 (4 $t+2$) + 3(3 $t+3$) + 8 = 0

$$t=-1$$
 : نحل هذه المعادلة البسيطة نحصل على : $t=-1$: نعوض t بالعدد t في المعادلات الثلاث الأولى نجد :

$$\begin{cases} \alpha = 1 \\ \beta = 4(-1) + 2 = -2 \\ \gamma = 3(-1) + 3 = 0 \end{cases}$$

و بالتالي :
$$H(1;-2;0)$$
 هي نقطة تقاطع (Δ) و المستوى $H(1;-2;0)$.

(ABC) هي نقطة تماس المستوى H(1;-2;0) للتحقق من أن و الفلكة (S) يكفى أن نتحقق من أن مثلوث إحداثيات النقطة H يحقق كلا من معادلتي المستوى (ABC) و الفلكة (\mathcal{S}) .

$$\{(S): x^2 + y^2 + z^2 - 2x - 4y - 6z - 11 = 0 \}$$
 دينا : (ABC): $4y + 3z + 8 = 0$

$$z$$
 يكفي إذن أن نعوض x و z على التوالي بالأعداد z و z و في معادلتي z و z و نرى هل تتحقق المتساويات .

$$1^2 + (-2)^2 + 0^2 - 2 \times 1 - 4(-2) - 6 \times 0 - 11 = 0$$
 : لدينا $H \in (\mathcal{S})$

$$4(-2) + 3(0) + 8 = -8 + 8 = 0$$
 : و لدينا كذلك : $H \in (ABC)$

و بالتالي :
$$H$$
 هي نقطة تماس المستوى (ABC) و الفلكة (S) .

التمرين الثاني:

$$z^2-8\sqrt{3}~z+64=0$$
 : لنحل في 2 المعادلة $\Delta=\left(-8\sqrt{3}\right)^2-4\times64=-64=(8i)^2$: لدينا

إذن : المعادلة تقبل الحلين العقديين
$$z_1$$
 و z_2 المعرفين بما يلي : $z_1 = 8i$ $z_2 = 8i$

$$z_1 = \frac{8\sqrt{3} - 8i}{2} = 4\sqrt{3} - 4i \quad \text{s} \quad z_2 = \frac{8\sqrt{3} + 8i}{2} = 4\sqrt{3} + 4i$$

أو بتعبير آخر : أو بتعبير آخر $A\hat{B}\hat{C}=60^\circ$

B متساوى الساقين رأسه ABCو قياس الزاوية \widehat{B} هو $^{\circ}60$.

و بالتالى: ABC مثلث متساوي الأضلاع.

عندما نسحب عشوائيا كرتين بالتتابع و بدون إحلال من صندوق يحتوي على كرات فإنه توجد C_8^1 إمكانية لسحب الكرة الأولى و توجد C_7^1 إمكانية C_7^1 لسحب الكرة الثانية .

> . نتيجة ممكنة $C_8^1 imes C_7^1$ نتيجة ممكنة إذن هذه التجربة العشوائية تحتمل $card(\Omega) = C_8^1 \times C_7^1 = 8 \times 7 = 56$: يعني

بحيث: Ω هو كون إمكانيات هذه التجربة العشوائية.

للحصول على كرتين تحملان معا العدد 2 لدينا:

امكانية لسحب كرة أولى تحمل 2 في السحبة الأولى C_3^1

مكانية لسحب كرة ثانية تحمل 2 في السحبة الثانية \mathcal{C}_2^1

إذن احتمال الحصول على كرتين تحملان معا العدد 2 يساوي :

$$p(A) = \frac{card(A)}{card(\Omega)} = \frac{C_3^1 \times C_2^1}{56} = \frac{6}{56} = \frac{3}{28}$$

الحصول على كرتين إحداهما على الأقل تحمل 3 يمكن أن يتم عن طريق

الحالة الأولى: الحصول على الكرة الأولى تحمل 3 و الكرة الثانية تخالف 3 . ب $C_2^1 \times C_7^1$ إمكانية

الحالة الثانية: الحصول على الكرة الأولى مخالفة لـ 3 و الكرة الثانية تحمل . إمكانية $C_6^1 \times C_2^1$ إمكانية

إذن : احتمال الحصول على كرتين إحداهما على الأقل 3 يساوي :

$$p(B) = \frac{card(B)}{card(\Omega)} = \frac{C_2^1 \times C_7^1 + C_6^1 \times C_2^1}{56} = \frac{26}{56} = \frac{13}{28}$$

ليكن X المتغير العشوائي الذي يربط كل سحبة بعدد الكرات التي تحمل عددا

عندما نسحب كرتين بالتتابع و بدون إحلال من صندوق يحتوي على خمس كرات تحمل أعدادا فردية و 3 كرات تحمل أعدادا زوجية . فإنه يُحتمل أن نحصل على كرات كلها تحمل أعدادا فردية أو كرة واحدة تحمل عددا فرديا . و يمكن ألا نحصل على أية كرة تحمل عددا فرديا .

$$\begin{cases} aff(A) = a = 8i \\ aff(B) = b = 4\sqrt{3} - 4i \\ aff(C) = c = 2(4\sqrt{3} + 4i) \\ aff(M) = z \\ aff(M') = z' \end{cases}$$

 $\mathcal{R}_0\left(rac{4\pi}{3}
ight): (\mathcal{P}) \mapsto (\mathcal{P})$ و لدينا الدوران \mathcal{R} معرف بما يلي : $M(z) \mapsto M'(z')$

 $(z^{'}-0)=e^{rac{i4\pi}{3}}(z-0)$: R إذن حسب التعريف العقدي للدور ان $\mathcal{R}(M) = M'$: نظلق من الكتابة

$$z^{'} = \left(\cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)\right)z$$
 : يعني $z^{'} = \left(\cos\left(\pi + \frac{\pi}{3}\right) + i\sin\left(\pi + \frac{\pi}{3}\right)\right)z$: يعني

$$z = \left(\cos\left(\pi + \frac{\pi}{3}\right) + i\sin\left(\pi + \frac{\pi}{3}\right)\right)z$$
 يعني $z' = \left(-\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)\right)z$ يعني :

$$z^{'}=\left(-rac{1}{2}-i\,rac{\sqrt{3}}{2}
ight)\,z$$
 : يعني

$$aff(A) \times \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 8i\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$
 : لينا
$$= -4i + 4\sqrt{3} = aff(B)$$

 $aff(A) = \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) \times aff(B)$: حصلنا إذن على العلاقة التالية ${\mathcal R}$ و هي نفسها الكتابة العقدية للدوران

 $\mathcal{R}(A) = B$: ف من تلك الكتابة نستنتج أن

-

$$\frac{a-b}{c-b} = \frac{8i - (4\sqrt{3} - 4i)}{2(4\sqrt{3} + 4i) - (4\sqrt{3} - 4i)}$$

$$= \frac{12i - 4\sqrt{3}}{4\sqrt{3} + 12i} = \frac{4\sqrt{3}(\sqrt{3}i - 1)}{4\sqrt{3}(1 + \sqrt{3}i)}$$

$$= \frac{(\sqrt{3}i - 1)(\sqrt{3}i - 1)}{(1 + \sqrt{3}i)(\sqrt{3}i - 1)} = \frac{(\sqrt{3}i)^2 - 2(\sqrt{3}i) + 1^2}{(\sqrt{3}i)^2 - 1}$$

$$= \frac{-2 - 2\sqrt{3}i}{-4} = \frac{-2}{-4} + \frac{-2\sqrt{3}i}{-4} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$= \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) = e^{\frac{i\pi}{3}}$$

 $\frac{a-b}{c-h}=e^{\frac{i\pi}{3}}$: إذن

$$\begin{cases} \left|\frac{a-b}{c-b}\right|=1 \\ \arg\left(\frac{a-b}{c-b}\right)\equiv\frac{\pi}{3} \ [2\pi] \end{cases}$$
 : يعني
$$\frac{a-b}{c-b}=e^{\frac{i\pi}{3}}$$

$$\left\{ \begin{matrix} BA = BC \\ \left(\overrightarrow{\overline{BC}}; \overrightarrow{AB} \right) \equiv \frac{\pi}{3} \left[2\pi \right] \end{matrix} \right. : \underbrace{ \left\{ \begin{matrix} |a-b| = |c-b| \\ \left(\overrightarrow{\overline{BC}}; \overrightarrow{AB} \right) \equiv \frac{\pi}{3} \left[2\pi \right] \end{matrix} \right. }$$

الصفحة: 108

@@<u>%</u>@@<u>%</u>@@<u>%</u>@@ **@%@@%@@%@@%@@**

إذن : القيم التي يمكن أن يأخذها المتغير العشوائي X هي : 0 أو 1 أو 2 $X(\Omega) = \{0; 1; 2\}$: أو بتعبير أجمل

للإجابة على الأسئلة الأخرى نستعين بشجرة الاحتمالات التالية و التي تَمَّ الحصول عليها انطلاقا من التجربة العشوائية (السحب العشوائي بالتتابع و بدون إحلال)

. هو احتمال الحصول بالضبط على كرة تحمل عددا فرديا p[X=1]

إذن حسب شجرة الاحتمالات السابقة:

$$p[X = 1] = \frac{5}{8} \times \frac{3}{7} + \frac{3}{8} \times \frac{5}{7} = \frac{15}{56} + \frac{15}{56} = \frac{30}{56} = \frac{15}{28}$$

ullet

نقصد بقانون احتمال المتغير العشوائي X التطبيق P_X التالي :

 $P_X: \{0;1;2\} \mapsto [0;1]$

 $p[X=0]=rac{3}{28}$: إذن $p(A)=rac{3}{28}$: (1 لدينا حسب السؤال p[X=2]=1-p[X=0]-p[X=1] : ف لدينا كذلك : $=1-\frac{3}{28}-\frac{15}{28}=\frac{5}{14}$

و بالتالى : قانون احتمال المتغير العشوائي X هو التطبيق P_X المعرف $P_X: \{0;1;2\} \mapsto [0;1] \overline{}$: بما يلي: $0 \mapsto p[X=0] =$ $1 \mapsto p[X=1] = \frac{15}{28}$ $2 \mapsto p[X=2] = \frac{5}{14}$

التمرين الرابع:

 $(P_n): (\forall n \in \mathbb{N}) \; ; \; u_n > 0 \; :$ لنبر هن على صحة العبارة (P_n) التالية لدينا : $u_0 = 1 > 0$ إذن العبارة (P_0) صحيحة .

 $(\forall n \in \mathbb{N})$; $u_n > 0$: نفترض أن

إذن u_n كمية موجبة قطعا .

و منه فإن الكميتان u_n+21 و $3u_n$ موجبتان قطعا كذلك .

إذن الكمية $\frac{3u_n}{u_n+21}$ موجبة قطعا باعتبار ها خارج كميتين موجبتين .

من إعداد الأستاذ بدر الدين الفاتحى: (

 $(\forall n \in \mathbb{N})$; $\frac{3u_n}{21+u_n} > 0$: يعني

 $(\forall n \in \mathbb{N})$; $u_{n+1} > 0$: أي

يعني أن العبارة (P_{n+1}) عبارة صحيحة .

 $(\forall n \in \mathbb{N})$; $u_n > 0$: و بالتالى

ليكن n عددا صحيحا طبيعيا .

(المقام يجب أن يخالف الصفر الدينا). لدينا يغالف العبير $\frac{u_{n+1}}{u_n}$ أن يخالف الصفر $u_n>0$ $\frac{u_{n+1}}{u_n} = \frac{3u_n}{21 + u_n} \times \frac{1}{u_n} = \frac{3}{21 + u_n}$: لدينا $(\forall n \in \mathbb{N})$; $\frac{u_{n+1}}{u_n} = \frac{3}{21 + u_n}$: إذٰن

 $21 + u_n > 21$: إذن $u_n > 0$: نعلم أن

 $\frac{3}{21+u_n} < \frac{3}{21}$: $\frac{1}{21+u_n} < \frac{1}{21}$ $\frac{u_{n+1}}{u_n} < \frac{1}{7}$ يعني $\frac{3}{21 + u_n} < \frac{1}{7}$ يعني :

 $(\forall n \in \mathbb{N})$; $u_{n+1} < \frac{1}{7} u_n$: و بالتالي

 $\frac{1}{3} < 1$: نعلم أن

نضرب هذه المتفاوتة في العدد الموجب قطعا u_n نحصل على : $(\forall n \in \mathbb{N})$; $\frac{1}{7}u_n < u_n \mid (1)$

 $(2) \left| (\forall n \in \mathbb{N}) \right|$; $u_{n+1} < \frac{1}{7} u_n$: أن (2) أن أن أن حسب السؤال 2 $(\forall n \epsilon \mathbb{N})$; $\, u_{n+1} < u_n$: يلي نجد ما نجد (2) و (1) إذن من النتيجتين

و بالتالي : $(u_n)_{n\in\mathbb{N}}$ متتالية تناقصية .

و بما أنها مصغورة بالعدد 0 ($u_n>0$ فإنها متقاربة .

 $u_0=1\leq \left(rac{1}{7}
ight)^0$: لينا . n=0 من أجل n=0 إذن العبارة صحيحة من أجل $(\forall n \in \mathbb{N})$; $u_n \leq \left(\frac{1}{7}\right)^n$ نفترض أن

 $(\forall n \in \mathbb{N})$; $u_{n+1} < \frac{1}{7}u_n$: (2 لدينا حسب السؤال

 $(\forall n \in \mathbb{N})$; $u_{n+1} < \frac{1}{7}u_n \le \frac{1}{7}\left(\frac{1}{7}\right)^n$: إذن

 $(\forall n \in \mathbb{N})$; $u_{n+1} \leq \left(\frac{1}{7}\right)^{n+1}$: يعني

(n+1) إذن العبارة صحيحة من أجل

 $(\forall n \in \mathbb{N})$; $u_n \leq \left(\frac{1}{7}\right)^n$: و بالتالي

 $(\forall n \in \mathbb{N})$; $0 < u_n \leq \left(\frac{1}{7}\right)^n$: لدينا

و بما أن : $\left(\frac{1}{7}\right)^n$ متتالية هندسية أساسها $\frac{1}{7}$ و هو عدد موجب و أصغر من 1

 $\lim_{n \to \infty} \left(\frac{1}{7}\right)^n = 0$ $(\forall n \in \mathbb{N}) \; ; \; 0 < u_n \le \left(\frac{1}{7}\right)^n$

 $\lim u_n = 0$. التالي الصفر $(u_n)_{n \in \mathbb{N}}$: و بالتالي باتالي متتالية متقاربة و تؤول على

التمرين الخامس:

اليكن x عنصرا من المجال $]\infty+$ []. لدينا $(x-1)(3x^2+3x+2) = 3x^3+3x^2+2x-3x^2-3x-2$

 $= 3x^3 - x - 2$

 $10; +\infty$ منصرا من المجال $0; +\infty$

: اذن $g(x) = x^3 - x - 2 \ln x + 3$

$$g'(x) = 3x^2 - 1 - \frac{2}{x} = \frac{3x^3 - x - 2}{x} = \frac{(x - 1)(3x^2 + 3x + 2)}{x}$$

x > 0: يعنى يا المجال ∞ المجال من المجال يعنى x > 0 و $3x^2 + 3x + 2 > 0$ و إذن

و منه : $\frac{3x^2+3x+2}{x}$ موجبة قطعا باعتبار ها خارج كميتين موجبتين قطعا .

 $(\forall x > 0)$; $\frac{3x^2 + 3x + 2}{x} > 0$: و بالتالي

$$g'(x) = \frac{(x-1)(3x^2+3x+2)}{x}$$
 يليكن x عنصرا من المجال .]0; + ∞ [ليبنا :

 $(\forall x > 0)$; $\frac{3x^2 + 3x + 2}{x} > 0$: فقد علمنا من قبلُ أن

.]0; $+\infty$ [على المجال g'(x) يتعلق فقط بإشارة g'(x) على المجال

 $x \leq 1$: إذن يا المجال [0; 1] ليكن $x \leq 1$ $g'(x) \le 0$: $(x-1) \le 0$: $(x-1) \le 0$ [0,1] يعنى أن الدالة [0,1] تناقصية على المجال

 $x \ge 1$: إذن : $[1; +\infty[$ المجال من المجال $x \ge 1$ $g'(x) \ge 0$: يعنى $(x-1) \ge 0$: و منه

 $[1; +\infty]$ يعنى أن الدالة g تزايدية على المجال

: نفصل بين حالتين ين حالتين ين حالتين ين حالتين ين عنصر ا من المجال χ $x \le 1$: يعنى $x \in [0,1]$ يعنى

[0;1] الأن $g(x) \geq g(1)$ (الأن $g(x) \geq g(1)$

(1) $\forall x \in]0;1]$; g(x) > 0 : نن . g(1) > 0 : و لدينا $x \ge 1$ يعنى : $x \in [1; +\infty[$: الحالة الثانية

 $([1; +\infty]$ لأن g تزايدية على $g(x) \geq g(1)$: إذن (2) $\forall x \in [1; +\infty[; g(x) > 0 \mid : بانن . g(1) > 0]$. $\forall x \in [0; +\infty[; g(x) > 0 : 0]$ من النتيجتين (1) و (2) من النتيجتين

x اليكن x عنصرا من المجال ∞

$$f(x) = x - 1 + \frac{x - 1 + \ln x}{x^2}$$
 : لدينا

$$f'(x) = 1 + \frac{x^2 \left(1 + \frac{1}{x}\right) - 2x(x - 1 + \ln x)}{x^4} = 1 + \frac{x^2 + x - 2x^2 + 2x - 2x \ln x}{x^4} = 1 + \frac{-x^2 + 3x - 2x \ln x}{x^4} = \frac{x^3 - x - 2 \ln x + 3}{x^3}$$

$$(\forall x > 0) \; ; \; f'(x) = \frac{g(x)}{x^3}$$
 : و بالتالي :

$$(\forall x>0) \; ; \; g(x)>0 \; : ((3 \; (I \; U) \;)) ; \; g(x)>0 \; ; \; x^3>0 \; ; \;$$

 $(\forall x > 0)$; $\frac{g(x)}{r^3} > 0$: اذن $(\forall x > 0)$; f'(x) > 0 : يعنى

. $]0; +\infty[$ المجال صلح على المجال المجال أ

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left(x - 1 + \frac{x - 1 + \ln x}{x^{2}} \right) = \lim_{x \to 0^{+}} \left(x - 1 + \frac{1}{x} \left(1 - \frac{1}{x} + \frac{\ln x}{x} \right) \right)$$

$$+ \infty + \infty - \infty$$

$$= 0 - 1 + (+\infty)(1 - \infty - \infty)$$
$$= -1 + (+\infty)(+\infty) = -1 - \infty = -\infty$$

 $\lim_{x \to 0^+} f(x) = -\infty :$ و بالتالي

x=0 تأويل هذه النهاية هندسيا هو : " المستقيم ذو المعادلة (محور الأراتيب) مقارب عمودي للمنحني (كك) بجوار الصفر على اليمين

$$\lim_{x \to +\infty} \left(\frac{x - 1 + \ln x}{x^2} \right) = \lim_{x \to +\infty} \frac{1}{x} \left(1 - \frac{1}{x} + \frac{\ln x}{x} \right)$$
$$= 0(1 - 0 + 0) = 0$$

أجوبة امتحان الدورة الاستدراكية 2010 من إعداد الأستاذ بدر الدين الفاتحى: (الصفحة : 110

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x - 1 + \frac{x - 1 + \ln x}{x^2} \right)$ $= \lim_{x \to +\infty} (x - 1) + \lim_{x \to +\infty} \left(x - 1 + \frac{x - 1 + \ln x}{x^2} \right)$ $= (+\infty) + 0 = +\infty$

(1) $\lim_{x \to +\infty} f(x) = +\infty$ إذن :

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 - \frac{1}{x} + \frac{x - 1 + \ln x}{x^3} \right)$$

$$= 1 - 0 + \lim_{x \to +\infty} \frac{1}{x^2} \left(1 - \frac{1}{x} + \frac{\ln x}{x} \right)$$

$$= 1 + 0(1 - 0 + 0) = 1$$

$$\left(\frac{1}{\lim_{x \to +\infty} \frac{f(x)}{x}} = 1\right)$$

$$\lim_{x \to +\infty} (f(x) - 1x) = \lim_{x \to +\infty} \left(-1 + \frac{x - 1 + \ln x}{x^2} \right) : \text{ disc}$$

$$= -1 + \lim_{x \to +\infty} \left(\frac{x - 1 + \ln x}{x^2} \right)$$

$$= -1 + 0 = -1$$

$$\lim_{x \to +\infty} (f(x) - x) = -1$$
 إذن

من النهايات (1) و (2) و (3) نستنتج أن المستقيم (Δ) ذو المعادلة y=x-1 مقارب مائل للمنحنی y=x-1

•——————•

معادلة المماس (T) للمنحنى (G) في النقطة الذي زوج إحداثيتيها (T): y = f'(1)(x-1) + f(1) تكتب على الشكل (T): y = f'(1)(x-1) + f(1) و (T): y = 3(x-1) إذن (T): y = 3(x-1)

$$\int_{1}^{e} \frac{\ln x}{x^{2}} dx = \int_{1}^{e} \left(\frac{1}{x^{2}} \right) \times \underbrace{(\ln x)}_{v} dx = [uv]_{1}^{e} - \int_{1}^{e} uv \, dx$$

$$= \left[\frac{-\ln x}{x} \right]_{1}^{e} + \int_{1}^{e} \frac{1}{x^{2}} dx = \frac{-1}{e} + \left[-\frac{1}{x} \right]_{1}^{e}$$

$$= \frac{-1}{e} - \frac{1}{e} + 1 = \left[1 - \frac{2}{e} \right]$$

لتكن ${\cal A}$ مساحة الحيز من المستوى المحصور بين المنحنى ${\cal G}$ و المستقيم ${\cal A}$ و المستقيمين اللذين معادلتاهما ${\cal X}=e$ و ${\cal X}=1$. نقيس المساحة ${\cal A}$ باستعمال التكامل التالى :

$$\mathcal{A} = \int_{1}^{e} |f(x) - (x+1)| \, dx = \int_{1}^{e} \left| \frac{x - 1 + \ln x}{x^{2}} \right| \, dx$$

$$(2) \boxed{\ln x > 0} : \text{ هنه } (1) \boxed{x > 1} : \text{ i.i.} x \in [1, e] : \text{ i.i.} x \in [1, e] : \text{ i.i.} x + \ln x > 1 : \text{ i.i.} x \in [1, e] : \frac{x - 1 + \ln x}{x^{2}} > 0 : \text{ i.i.} x \in [1, e] : \text{ i.i.} x = 0$$

$$e \text{ o.i.} x \in [1, e] : \frac{x - 1 + \ln x}{x^{2}} > 0 : \text{ i.i.} x \in [1, e] : \text{ i.i.} x = 0$$

$$\forall \, x \in [1; e] \ ; \ \left| \frac{x - 1 + \ln x}{x^2} \right| = \frac{x - 1 + \ln x}{x^2} \quad \vdots \ \dot{\varphi}^{\dagger}$$

: نجد بالتالي بالرجوع إلى آخر تعبير للمساحة ${\cal A}$ نجد

$$\mathcal{A} = \int_{1}^{e} \left| \frac{x - 1 + \ln x}{x^{2}} \right| dx = \int_{1}^{e} \left(\frac{x - 1 + \ln x}{x^{2}} \right) dx$$

$$= \int_{1}^{e} \frac{1}{x} dx - \int_{1}^{e} \frac{1}{x^{2}} dx + \int_{1}^{e} \frac{\ln x}{x^{2}} dx$$

$$= [\ln x]_{1}^{e} - \left[\frac{-1}{x} \right]_{1}^{e} + \left(1 - \frac{2}{e} \right)$$

$$= 1 - \left(\frac{-1}{e} + 1 \right) + \left(1 - \frac{2}{e} \right) = \left(1 - \frac{2}{e} \right) unité^{2}$$

$$= \left(1 - \frac{1}{e} \right) (1 cm)^{2} = \left(1 - \frac{1}{e} \right) cm^{2}$$

