VOLKAN KURSUN **Bilkent University**

Synchronous Sequential **Circuits - Part II**

VOLKAN KURSUN

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

Bilkent University

VOLKAN KURSUN

Serial Adder

Parallel adders are fast but also complex and costly

- □ If speed is not very important, a serial adder is a low-cost alternative
- □ Serial adder: bits are added a pair at a time
- □ Design a serial adder that adds a pair of bits (a and

b) in each clock cycle Shifted n-times (n clock After n-1 shift right operations (n-1 cycles) to the right to store clock cycles) the most significant the complete n-bit result bits are at the LSB position sum = a + b Shift register Adder Shift register **FSM** Shift register Sum = A + BClock **EEE 102 Introduction to Digital Circuit Design VOLKAN KURSUN**

VOLKAN KURSUN

Outline

Serial Adder

- Digital Door Lock
- Vending Machine
- State Minimization

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN **Bilkent University**

Bilkent University

VOLKAN KURSUN Serial Adder FSM

- □ The adder needs to be an FSM to be able to hold the carry generated at each clock cycle
- □ Two states G and H are needed for the states where the carry output is 0 and 1, respectively

VOLKAN KURSUN Serial Adder State Diagram

□ Two states G and H are needed for the states where the carry output is 0 and 1, respectively

VOLKAN KURS<u>u</u>n Bilkent University Serial Adder State Assigned Table

Present	Next state				Output				
state	ab=00	01	10	11	00	01	10	11	
У		Y			A	S			
0	0	0	0	1	0	1	1	0	
1	0	1	1	1	1	0	0	1	

□ Derive the next state and output logic circuits

y ab	00	01	11	10
0	0	0	1	0
1	0	1	1	1

$$Y = ab + yb + ya$$

y ab	00	01	11	10
0	0	1	0	1
1	1	0	1	0

$$s = ya'b' + y'a'b + yab + y'ab'$$

 $s = y(a'b' + ab) + y'(a'b + ab')$
 $s = y(a \oplus b)' + y'(a \oplus b)$
 $s = y \oplus a \oplus b$

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN **Serial Adder State Table**

□ A single flip-flop is needed to represent the two states G and H

Present	N	Output s						
state	ab=00	01	10	11	00	01	10	11
G	G	G	G	H	0	1	1	0
Н	G	Н	Н	Н	1	0	0	1

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN Serial Adder Mealy FSM Circuit

☐ The serial adder can be used to add numbers of any length depending on the size of the shifters (with nbit shifters you can serially add n-bit numbers)

VOLKAN KURSUN loore FSM For Serial Adder

- the state of the machine
- □ For both the carry-0 and carry-1 states, the sum can be either 0 or 1: split each of the G and H states of the Mealy machine into two states in the Moore machine: G0 (carry = 0, sum = 0), G1 (carry = 0, sum = 1), H0 (carry = 1, sum = 0), and H1 (carry = 1, sum = 0)sum = 1Reset

VOLKAN KURSUN Bilkent_University **Moore Serial Adder State Assigned Table**

 \Box G0 (carry = 0, sum = 0), G1 (carry = 0, sum = 1), H0 (carry = 1, sum = 0), and H1 (carry = 1, sum = 1)

<u> </u>				,						
Present			1	Vextsta	ite					
state	a	<i>b</i> =	00	01	10	1	11		Output	
<i>y</i> 2 <i>y</i> 1				$Y_2 Y_1$					S	
00			0 0	01	01 01 1				О	
01 10			0 0	01	$\begin{array}{c} 0 \ 1 \\ 1 \ 0 \end{array}$		O 1		1 O	
11				10 10	1 O 1 O		1		1	\
ab		4.4	10	\ 2	ab on	04	44	40		7
y_2y_1	01	11	10	y_2y_1	1D 00	01	11	10	s =	y ₁
00 0	0	1	0	00	0	1	0	1		
01 0	0	1	0	01	0	1	0	1		
11 0	1	1	1	11	1	0	1	0		
10 0	1	1	1	10	1	0	1	0		
	$Y_2 = ab + y_2b + y_2a$ E 102 Introduction to Digital Circuit Design					$Y_1 = y_2 a'b' + y_2'a'b + y$ + $y_2'ab' = y_2 \oplus a \oplus b$				KURSUN

VOLKAN KURSUN Bilkent University Moore Serial Adder State Table

- □ In a Moore machine, the outputs can only be determined by the state of the machine
- □ For both the carry-0 and carry-1 states, the sum output can be either 0 or 1: G0 (carry = 0, sum = 0), G1 (carry = 0, sum = 1), H0 (carry = 1, sum = 0), and H1 (carry = 1, sum = 1)

Present	N	Nextstate						
state	ab=00	01	10	11	S			
G_0	G_0	G_1	G_1	H_0	0			
G_1	G_0	G_1	G_1	H_0	1 1			
H_0	G_1	H_0	H_0	H_1	0			
H_1	G_1	H_0	H_0	H_1	1			

EEE 102 Introduction to Digital Circuit Design

Bilkent University

VOLKAN KURSUN

VOLKAN KURSUN Serial Adder Moore FSM Ci

☐ In the Moore machine, the sum output is stored in a flip-flop, thereby delaying availability of the sum bit for the shifter by one clock cycle as compared to the Mealy machine

$$Y_2 = ab + y_2b + y_2a$$
 $s = y_1$
 $Y_1 = y_2a'b' + y_2'a'b + y_2ab + y_2'ab' = y_2 \oplus a \oplus b$

VOLKAN KURSUN Moore versus Mealy Serial Adder FSM

- □ In the Mealy machine, change in the inputs is reflected in the output after the combinational circuit (full adder) delay
- ☐ In the **Moore machine**, the sum output does not change until the change in the inputs moves the machine into a new state, which happens one clock cycle later

VOLKAN KURSUN Bilkent University Door Unlock Sequence

□ Unlock the door when the 0b1011010 bit sequence is detected

VOLKAN KURSUN Outline

Serial Adder

- Digital Door Lock
- Vending Machine
- State Minimization

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN **Bilkent University**

Bilkent University

VOLKAN KURSUN

State Table

□ 8 states (S0, S1, S2, S3, S4, S5, S6, UN): 3 flip-flops needed

□ Unlock the door when the 0b1011010 bit sequence is detected

Binary Sequence	1	0	1	1	0	1	0
State Name	S1	S2	S3	S4	S5	S6	UN
State Assigned Code	001	010	011	100	101	110	111

Bilkent University VOLKAN KURSUN State Assigned Table

□ 8 states (S0, S1, S2, S3, S4, S5, S6, UN): 3 flip-flops needed

□ Unlock the door when the 0b1011010 bit sequence is detected

Binary Sequence	1	0	1	1	0	1	0
State Name	S1	S2	S3	S4	S5	S6	UN
State Assigned Code	001	010	011	100	101	110	111

	Present	Present State Code			Nex	t Sta	ite C	ode		Output	
	State Name			In = 0		ı	n = 1		Output		
(NV) (SD)		q_2	\mathbf{q}_{1}	q_0	D_2	D_1	D_0	D_2	D_1	D_0	U
(30)	S0	0	0	0	0	0	0	0	0	1	0
(\$1)	S1	0	0	1	0	1	0	0	0	1	0
	S2	0	1	0	0	0	0	0	1	1	0
(\$5)	S3	0	1	1	0	1	0	1	0	0	0
	S4	1	0	0	1	0	1	0	0	1	0
(22)	S5	1	0	1	0	0	0	1	1	0	0
	S6	1	1	0	1	1	1	1	0	0	0
1 (3)	UN	1	1	1	1	1	1	1	1	1	1
EEE 102 Introduction to Digital Circuit Design VOLKAN KU								LKAN KURSUN			

VOLKAN KURSUN

Next State Combinational Logic

□ Derive the next state expressions using D flip-flops to implement the circuit: find the flip-flop input equations (next state equations, Q(t+1) = D)

P	Present			Next State Code						
Sta	te C	ode		n = 0	>	In = 1				
q ₂	91	qo	D_2	D ₁	Do	D ₂	D ₁	Do		
0	0	0	0	0	0	0	0	1		
0	0	1	0	1	0	0	0	1		
0	1	0	0	0	0	0	1	1		
0	1	1	0	1	0	1	0	0		
1	0	0	1	0	1	0	0	1		
1	0	1	0	0	0	1	1	0		
1	1	0	1	1	1	7	0	0		
1	1	1	1	1	1	1	1	1		

c	d ₀ III	00	01	11	10
•	00	0	0	0	1
	01	0	1	0	1
	11	1	0	1	1
	10	0	0	1	0

$$D_1 = \frac{q_2 q_1 \ln^2 + q_2 q_0 \ln^2 + q_2 q_0 \ln + q_2$$

VOLKAN KURSUN

Next State Combinational Logic

□ Derive the next state expressions using D flip-flops to implement the circuit: find the flip-flop input equations (next state equations, Q(t+1) = D)

 $D_2 = q_2q_1 + q_1q_0ln + q_2q_0ln + q_2q_0'ln'$ EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

Next State Combinational Logic

□ Derive the next state expressions using D flip-flops to implement the circuit: find the flip-flop input equations (next state equations O(t+1) = D)

	Juanon	3 (1167									
	rese	nt		Nex	t Sta	ite C	ode				
Sta	te C	ode		$\mathbf{n} = \mathbf{c}$	•	In = 1					
92	q ₁	qo	D_2	D ₁	Do	D_2	D ₁	Do			
0	0	0	0	0	0	0	0	1			
0	0	1	0	1	0	0	0	1			
0	1	0	0	0	0	0	1	1			
0	1	1	0	1	0	1	0	0			
1	0	0	1	0	1	0	0	1			
1	0	1	0	0	0	1	1	0			
1	1	0	1	1	1	1	0	0			
1	1	1	7	1	1	1	1	1			
			q_0 In \vdash								
Cost	Cost: 4 inverters +			00 01	1, 11	10					
_	nput AN	D	00	0 1	1	0					

gates + 1*5-input OR gate

c	$q_0 = q_0 $	00	01	11	10
	00	0	1	1	0
	01	0	1	0	0
	11	1	0	1	1
	10	1	1	0	0

 $D_0 = q_2 q_0' \ln' + q_1' q_0' \ln + q_2' q_1' \ln + q_2' q_0' \ln + q_2 q_1 q_0'$ **EEE 102 Introduction to Digital Circuit Design** VOLKAN KURSUN VOLKAN KURSUN Bilkent University

Next State Combinational Logic

 □ Derive the next state expressions using D flip-flops to implement the circuit: find the flip-flop input equations (next state equations, Q(t+1) = D)

 $D_0 = q_2 q_0' ln' + q_2 q_1' q_0' + q_2' q_1' ln + q_2' q_0' ln + q_2 q_1 q_0$ EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSU

VOLKAN KURSUN Output Combinational Logic

□ Derive the output expression to unlock (U):

Moore machine output:

 $U = q_2 q_1 q_0$

Present	Р	rese	nt		Nex	t Sta	ite C	ode		Output
State Name	Sta	te Co	ode	ı	n = ()	ı	n = 1	ı	Output
	q_2	\mathbf{q}_1	\mathbf{q}_{0}	D_2	D_1	\mathbf{D}_{0}	D_2	\mathbf{D}_1	\mathbf{D}_{0}	U
S0	0	0	0	0	0	0	0	0	1	0
S1	0	0 0 1			1	0	0	0	1	0
S2	0				0	0	0	1	1	0
S 3	0	1	1	0	1	0	1	0	0	0
S4	1	0	0	1	0	1	0	0	1	0
S 5	1	0	1	0	0	0	1	1	0	0
S6	1			1	1	1	1	0	0	0
UN			1	1	1	1	1	1	1	1
EEE 102 Introduction to Digit	al Circuit	Design				VOLKAN KURSUN				

VOLKAN KURSUN
Bilkent University

Next State Combinational Logic

 □ Derive the next state expressions using D flip-flops to implement the circuit: find the flip-flop input equations (next state equations, Q(t+1) = D)

Sta	te Co	ode		In =	– o			In = 1	
q ₂	q ₁	qo	D_2	D	1	D _o	D2	D ₁	Do
0	0	0	0	C	•	0	0	0	1
0	0	1	0	1	ı	0	0	0	1
0	1	0	0	C	>	0	0	1	1
0	1	1	0	1	ı	0	1	0	0
1	0	0	1	C	>	1	0	0	1
1	0	1	0	C	>	0	1	1	0
1	1	0	1	1	ı	1	1	0	0
1	1	1	1	1	ı	1	1	1	1
	ond native ession		q ₀ In 1 ₂ q ₁ 00 01 11 10	00 0 0 1	01 1 0 1	11 1 0 1 0	10 0 0 1 1	Cost-3: 4 inverters 5*3-input gates + 7 input OR	+ t AND 1*5-

 $D_0 = q_2 q_1 \ln' + q_2 q_1' q_0' + q_2' q_1' \ln + q_2' q_0' \ln + q_2 q_1 q_0$ EEE 102 Introduction to Digital Circuit Design VOLKAN KURSUN

Door Lock with T Flip-Flops

□ 3 T flip-flops are used: each state variable is held in a separate T flip-flop

 \Box Derive the T flip-flop input equations for T₂, T₁, and T₀

T Flip-Flop Excitation Table

	_	\leq		-			_						0		0	0
0				2	(z	·)							0		1	1
1			-	₹									1		0	1
				~	Z	•							1		1	0
Present		rese						Nex	t Sta	ite C	ode					
State Name		State Code				ln :	= 0					ln :	= 1			Output
	q_2	\mathbf{q}_{1}	\mathbf{q}_{0}	Q_2	Q_1	\mathbf{Q}_0	T ₂	T ₁	T ₀	Q_2	Q_1	\mathbf{Q}_0	T ₂	T ₁	T ₀	U
S0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0
S1	0	0	1	0	1	0	0	1	1	0	0	1	0	0	0	0
S2	0	1	0	0	0	0	0	1	0	0	1	1	0	0	1	0
S 3	0	1	1	0	1	0	0	0	1	1	0	0	1	1	1	0
S4	1	0	0	1	0	1	0	0	1	0	0	1	1	0	1	0
S 5	1	0	1	0	0	0	1	0	1	1	1	0	0	1	1	0
S6	1	1	0	1	1	1	0	0	1	1	0	0	0	1	0	0
UN	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	1
EEE 102 Introductio	n to Di	gital C	ircuit [Design											VOL	KAN KURSUN

Door Lock with T Flip-Flops

	⊾ a∘ln				
C	q ₀ In I ₂ q ₁	00	01	11	10
	00	0	0	0	0
	01	0	0	1	0
	11	0	0	0	0
	10	0	1	0	1

 $T_2 = q_2 q_1' q_0' ln + q_2' q_1 q_0 ln + q_2 q_1' q_0 ln'$

			٠ ۷	7127	11 40	Next State Code								
	rese						Nex	t Sta	ate C	ode				
	State Code				ln :	= 0					ln :	= 1		
q_2	\mathbf{q}_1	qo	Q_2	\mathbf{Q}_{1}	\mathbf{Q}_{0}	T ₂	T ₁	To	Q_2	\mathbf{Q}_{1}	\mathbf{Q}_{0}	T ₂	T ₁	To
О	0	О	0	0	0	0	0	0	0	0	1	0	0	1
О	0	1	0	1	0	О	1	1	0	O	1	О	0	О
О	1	0	0	0	0	0	1	0	0	1	1	0	0	1
O	1	1	0	1	0	О	0	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1	0	0	1	1	0	1
1	0	1	0	0	0	1	0	1	1	1	0	О	1	1
1	1	О	1	1	1	О	0	1	1	0	0	0	1	0
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					О	0	O	1	1	1	0	0	O
EEE 10	2 Introdu	ction to	Digital Ci	rcuit Desi	ign	VOLKAN KURS						URSUN		

Door Lock with T Flip-Flops

	ຼ d∘ln					
C	q ₀ In ֈ ₂ q ₁	00	01	11	10	
	00	0	1	0	1	4
	01	0	1	1	1	
	11	1	0	0	0	9
	10	1	1	1	1	9

Cost-1: 4 inverters + 4*3-input AND gates + 1*2-input AND gate + 1*5-input OR gate

 $T_0 = q_2 q_0' \ln' + q_2 q_1' + q_2' q_0' \ln + q_2' q_1 q_0 + q_2' q_0 \ln'$

	rese						Nex	t Sta	ate C	ode				
	State Code				ln :	= o					ln :	= 1		
q_2	\mathbf{q}_1	\mathbf{q}_{0}	Q_2	\mathbf{Q}_1	\mathbf{Q}_{0}	T ₂	T_1	To	Q_2	\mathbf{Q}_1	\mathbf{Q}_{0}	T ₂	T ₁	To
О	0	0	0	0	0	0	0	0	0	0	1	0	0	1
О	0	1	0	1	0	0	1	1	0	0	1	0	0	О
О	1	0	0	0	0	0	1	0	0	1	1	0	0	1
О	1	1	0	1	0	0	0	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1	0	0	1	1	0	1
1	0	1	0	0	0	1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1	1	0	0	0	1	0
1 1 1 1 1 O O O EEE 102 Introduction to Digital Circuit Design								0	1	1	1	O	O OLKAN K	O URSUN

Door Lock with T Flip-Flops

	a d ln				
C	q ₀ In <u>1</u> 2q ₁	00	01	11	10
	00	0	0	0	1
	01	1	0	1	0
	11	0	1	0	0
	10	0	0	1	0

 $T_1 = q_2'q_1q_0'ln' + q_2q_1'q_0'ln + q_2'q_1q_0ln + q_2q_1'q_0ln'$

	Present Next State Code													
							Nex	t Sta	ite C	ode				
	State Code				ln :	= o					In:	= 1		
q_2	\mathbf{q}_1	qo	Q_2	\mathbf{Q}_{1}	\mathbf{Q}_{0}	T ₂	T ₁	To	Q_2	\mathbf{Q}_{1}	\mathbf{Q}_{0}	T ₂	T ₁	To
О	0	О	0	0	0	0	0	O	0	0	1	О	0	1
O	0	1	0	1	0	0	1	1	0	0	1	0	0	0
О	1	0	0	0	0	0	1	0	0	1	1	0	0	1
O	1	1	0	1	0	0	0	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1	0	0	1	1	0	1
1	0	1	0	0	0	1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1	1	0	0	0	1	O
1	1	1	1	1	1	0	0	0	1	1	1	0	0	0
EEE 10	2 Introdu	ction to I	Digital Cii	rcuit Desi	ign							V	DLKAN K	UKSUN

Door Lock with T Flip-Flops

Alternative expression for T₀:

	_ a。In					
C	q ₀ ln q ₂ q ₁	00	01	11	10	
	00	0	1	0	1	
	01	0	1	1	1	
	11	1	0	0	0	
	10	1	1	1	1	

Cost-2: 4 inverters + 4*3-input AND gates + 1*2-input AND gate + 1*5-input OR gate

 $T_0 = q_2 q_0' \ln' + q_2 q_1' + q_1' q_0' \ln + q_2' q_1 \ln + q_2' q_0 \ln'$

	rese						Nex	t Sta	ate C	ode				
	State Code				In:	= o					ln :	= 1		
q_2	\mathbf{q}_1	\mathbf{q}_{0}	Q_2	\mathbf{Q}_{1}	\mathbf{Q}_{0}	T ₂	T ₁	To	Q_2	\mathbf{Q}_{1}	\mathbf{Q}_{0}	T ₂	T ₁	To
0	0	0	0	0	0	0	0	0	0	0	1	0	O	1
0	0	1	0	1	0	О	1	1	0	0	1	0	0	О
0	1	0	0	0	0	0	1	0	0	1	1	0	0	1
0	1	1	0	1	0	О	0	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1	0	0	1	1	0	1
1	0	1	0	0	0	1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1	1	0	0	0	1	0
1 EEE 10	1 2 Introdu	1 ction to	1 Digital Cir	1 rcuit Desi	1 an	О	0	0	1 1 1 0 0 0 VOLKAN KURSUN					
			5											

Door Lock with JK FF

Х

Homework Bilkent University Homework

Compare the D, T, and JK flip-flop based implementations of the digital door lock for cost. Identify the lowest cost solution.

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

Bilkent University

VOLKAN KURSUN

Outline

Serial Adder

- Digital Door Lock
- Vending Machine
- State Minimization

Digital Door Lock VHDL Note: The state of t

Mealy Coffee Vending Machine

- ☐ Mealy machine output = function (present_state, inputs)
- Design the controller for a coffee vending machine that accepts only 1€ and 0.5€ coins
- □ The mechanical coin slot produces a two bit digital signal (VF) that indicates whether a valid 1€ or 0.5€ coin has been inserted at any given time
- Let the V output of the coin sensor represent 1€ and the F output of the coin sensor represent 0.5€. At any given time only one of V (1€) or F (0.5€) outputs can be asserted by the coin sensor. Coffee price = 2€
- Output Release (R): Asserted if the total coin deposit reaches
 2€. Otherwise, R is maintained deasserted
- □ The machine does not return change
- ☐ There is no expiration (time out) for the inserted coin credit

EEE 102 Introduction to Digital Circuit Design

Mealy Machine State Diagram

Mealy State Assigned Table

Present	Present	1	Next State Code				Out	put	
State	state code	VF = 00	VF = 01	VF = 11	VF = 10	VF = 00	VF = 01	VF = 11	VF = 10
	q_1q_0	D_1D_0	D_1D_0	D_1D_0	D_1D_0		F	₹	
S0	00	00	01	XX	11	0	0	X	0
S50	01	01	11	XX	10	0	0	X	0
S100	11	11	10	XX	00	0	0	Χ	1
S150	10	10	00	XX	01	0	1	X	1

□ Derive the next state logic circuits

	VF							_
C	q_1q_0	00	0	1	11		10	
	00	0	C)	X		1	
	01	0	1		X		1	
	11	1	1		Х	Ţ	0	
	10	1	C)	Х		0	

$$D_1 = q_1 V'F' + q_0 F + q_1'V$$
EEE 102 Introduction to Digital Circuit Design

	VF				
C	q_1q_0	00	01	, 11	10
	00	0	1	X	1_/
	01	1	1	Х	0
	11	1	0	Х	0
	10	0	0	X	1
				7	,

 $D_1 = q_1 V'F' + q_0 F + q_1'V$ $D_0 = q_0 V'F' + q_1'F + q_0'V$

Mealy Machine State Table

Present	Next State			Output (R)				
State	VF = 00	VF = 01	VF = 11	VF = 10	VF = 00	VF = 01	VF = 11	VF = 10
S0	S0	S50	XX	S100	0	0	X	0
S50	S50	S100	XX	S150	0	0	X	0
S100	S100	S150	XX	S0	0	0	X	1
S150	S150	S0	XX	S50	0	1	X	1
EEE 102 Introduct	ion to Digital C	ircuit Design					VOL	KAN KURSUN

Mealy State Assigned Table

Present	Present	N	Next State Code			Output				
State	state code	VF = 00	VF = 01	VF = 11	VF = 10	VF = 00	VF = 01	VF = 11	VF = 10	
	q_1q_0	D_1D_0	D_1D_0	D_1D_0	D_1D_0		F	₹		
S0	00	00	01	XX	11	0	0	X	0	
S50	01	01	11	XX	10	0	0	X	0	
S100	11	11	10	XX	00	0	0	Χ	1	
S150	10	10	00	XX	01	0	1	Χ	1	

□ Derive the output logic circuit

	VF				
C	q_1q_0	00	01	11	10
	00	0	0	X	0
	01	0	0	Х	0
	11	0	0	X	1
	10	0	1	X	1

EEE 102 Introduction to Digital Circuit Design

The digital signal that controls the coffee release

Homework
Design a
Moore type
coffee vending
machine

VOLKAN KURSUN

Outline

Bilkent University

Serial Adder

Digital Door Lock

Vending Machine

State Minimization

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN Bilkent University State Minimization Example

E and G are equivalent: remove the present state G row and replace all G with E in the rest of the Table

Present	Next	State	Output		
State	X = 0	X = 1	X = 0	X = 1	
Α	Α	В	0	0	
В	С	D	0	0	
С	Α	D	0	0	
D	Е	F	0	1	
Е	Α	F	0	1	
F	G	F	0	1	
G	Α	F	0	1	

Present	Next State		Output	
State	X = 0	X = 1	X = 0	X = 1
Α	Α	В	0	0
В	С	D	0	0
С	Α	D	0	0
D	Е	F	0	1
Е	Α	F	0	1
F	ŒΈ	F	0	1

Present	Next	State	Output			
State	X = 0	X = 1	X = 0	X = 1		
Α	Α	В	0	0		
В	С	D	0	0		
С	Α	D	0	0		
D	Е	ЖД	0	1		
E	Α	X≠D	0	1		
	VOLKAN KURSUN					

D and F are equivalent: remove the present state F row and replace all F with D in the rest of the Table EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN Bilkent University

State Minimization

- □ An initial design may have more states than the actual requirement
- □ Minimize the number of states to reduce the number of flip-flops that represent the states and lower the complexity of the combinational circuit
- □ If the **number of states** in an FSM can be **reduced**, then **some states** in the original design must be **equivalent**
- □ Two states are **equivalent if and only if** for every possible input sequence, the same output and next state sequence is produced

 EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN

State Minimization with Partitioning

Instead of trying to show that some states are

- equivalent, an alternative approach is to show that some states are definitely **NOT** equivalent
- □ Let k represent the set of all possible input combinations in a state machine. If states Si and S_J are equivalent, then their ksuccessors (for all k) are also equivalent.
- □ A partition consists of one or more blocks, where each block comprises a set of states that may be equivalent, but the states in a given block are definitely NOT equivalent to the states in other blocks

EEE 102 Introduction to Digital Circuit Design

FSM Partitioning Procedure

- □ Step 0: initially assume all states are equivalent. All states are in one block P0 in the initial step.
- □ Step 1: form the first partition P1 in which the set of states is partitioned into blocks such that the states in each block generate the same output values. The states that generate different outputs can NOT be equivalent and must be placed in different blocks.
- □ Step 2: continue to form new partitions by testing whether the k-successors of the states in each block are contained in one block. Those states whose ksuccessors are in different blocks can NOT be equivalent and must be partitioned into new blocks.
- □ **Step final**: The process ends when further partitioning is not possible. Then all states in one block are equivalent and the FSM can be simplified by eliminating the equivalent states.

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN FSM Partitioning Example Step 2

Present	Next	Output	
state	w = 0	w = 1	z
A	В	C	1
\mathbf{B}	D	\mathbf{F}	1
C	F	E	О
D	В	G	1
E	\mathbf{F}	\mathbf{C}	0
\mathbf{F}	\mathbf{E}	D	O
G	\mathbf{F}	G	O

- □ P1 = (ABD)(CEFG)
- □ Step 2: Consider all 0 and 1 successors of the states in each block. The **0-successors** of block (ABD) are (**BDB**) and they are all in the same block. The **1-successors** of block (ABD) are (CFG) and they are also all in the same block. A, B, and D therefore may be equivalent and will remain in the same block in the next partition P2.

Bilkent University FSM Partitioning Example

□ Consider the following state table of an FSM with 7 states.

Present	Next	Next state			
state	w = 0	w = 1	Output z		
A	В	С	1		
$ \mathbf{B} $	D	${f F}$	1		
$\overline{\mathbf{C}}$	${f F}$	${f E}$	О		
D	\mathbf{B}	G	1		
E	\mathbf{F}	\mathbf{C}	O		
\mathbf{F}	${f E}$	\mathbf{D}	0		
G	\mathbf{F}	G	О		

- □ Step 0 (initial step): contains all states in one block P0 P0 = (ABCDEFG)
- □ **Step 1**: separate the states that have different outputs. States A, B, and D must be different from states C, E, F, and G since they have different outputs. The first partition with two blocks is P1 = (ABD)(CEFG)
 EEE 102 Introduction to Digital Circuit Design VOLKAN KURSUN

VOLKAN KURSUN

FSM Partitioning Example Step 2

Present	Next	state	Output
state	w = 0	w = 1	z
A	В	C	1
В	D	F	1
D	$egin{array}{c} oldsymbol{\mathrm{F}} \ oldsymbol{\mathrm{B}} \end{array}$	E G	O 1
E	F	C	$\frac{1}{\mathbf{O}}$
F	$ \mathbf{E} $	D	Ö
G	F	G	O

- □ P1 = (ABD)(CEFG)
- □ Step 2 continues: Consider all 0 and 1 successors of the states in (CEFG) block. The **0-successors** of block (CEFG) are (**FFEF**) and they are all in the same block. The 1-successors of block (CEFG) are (ECDG) and they are NOT all in the same block in P1. F must be different from the states C, E, and G since its 1-successor is D which is in a different block from C. E. and G's 1-successors.

EEE 102 Introduction to Digital Circuit Design

FSM Partitioning Example Step 3

Present	Next state		Output
state	w = 0	w = 1	z
A	В	C	1
В	D	F	1
C	\mathbf{F}	\mathbf{E}	О
D	В	G	1
E	F	C	O
F	E	D	O
G	\mathbf{F}	G	O

- □ Separate F in partition 2: P2 = (ABD)(CEG)(F)
- □ Step 3: Consider all 0 and 1 successors of the states in each block. The **0-successors** of block (CEG) are (**FFF**) and they are all in the same block. The 1-successors of block (CEG) are (ECG) and they are all in the same block in P2. C, E, and G therefore may be equivalent and will remain in the same block in the next partition P3.

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN

VOLKAN KURSUN

FSM Partitioning Example Step 4

_			
Present	Next state		Output
state	w = 0	w = 1	z
A	В	C	1
В	D	$\overline{\mathbf{F}}$	1
C	\mathbf{F}	\mathbf{E}	O
D	\mathbf{B}	G	1
E	$\overline{\mathbf{F}}$	$\overline{\mathbf{C}}$	О
F	\mathbf{E}	D	O
G	\mathbf{F}	G	O

- \square Separate B in partition 3: P3 = (AD)(B)(CEG)(F)
- □ Step 4: Consider all 0 and 1 successors of the states in each block. The **0-successors** of block (AD) are (BB) and they are all in the same block. The 1-successors of block (AD) are (CG) and they are all in the same block in P3. A and D therefore may be equivalent and will remain in the same block in the next partition P4.

VOLKAN KURSUN Bilkent University

FSM Partitioning Example Step 3

Present	Next state		Output
state	w = 0	w = 1	z
A	В	C	1
В	D	F	1
C	F	E	О
D	В	G	1
E	\mathbf{F}	\mathbf{C}	0
\mathbf{F}	\mathbf{E}	D	0
G	\mathbf{F}	G	О

- □ Separate F in partition 2: P2 = (ABD)(CEG)(F)
- □ **Step 3 continues**: Consider all 0 and 1 successors of the states in the (ABD) block. The **0-successors** of block (ABD) are (**BDB**) and they are all in the same block. The **1-successors** of block (ABD) are (CFG) and they are NOT all in the same block in P3. B must be different from the states A and D since its 1-successor is F which is in a different block from A and D's 1-successors.

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN

FSM Partitioning Example Step 4

Present	Present Next state		Output
state	w = 0	w = 1	z
Α	В	C	1
${f B}$	D	\mathbf{F}	1
C	\mathbf{F}	E	О
D	В	G	1
E	\mathbf{F}	C	0
F	E	D	О
G	$oxed{\mathbf{F}}$	G	O

- \square Separate B in partition 3: P3 = (AD)(B)(CEG)(F)
- □ Step 4: Consider all 0 and 1 successors of the states in the (CEG) block. The **0-successors** of block (CEG) are (FFF) and they are all in the same block. The 1-successors of block (CEG) are (ECG) and they are all in the same block in P3. C, E, and G therefore may be equivalent and will remain in the same block in the next partition P4.

EEE 102 Introduction to Digital Circuit Design

FSM Final Partition: P4

		<u> </u>	<u></u>
Present	Next state		Output
state	w = 0	w = 1	z
A	В	O	1
В	D	\mathbf{F}	1
C	\mathbf{F}	${f E}$	O
D	\mathbf{B}	G	1
E	\mathbf{F}	\mathbf{C}	О
F	\mathbf{E}	\mathbf{D}	O
G	\mathbf{F}	G	O

- \square Partition 4: P4 = (AD)(B)(CEG)(F) = P3
- □ No new blocks were generated for P4. Since P4 = P3, the states in each block in P4 are now guaranteed to be equivalent.
- □ Block (AD): states A and D are equivalent
- □ **Block (CEG)**: states C, E, and G are equivalent
- □ Each block can be represented by a single state in the final partition

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

Minimized State Table

Present	Nextstate		Output
state	$\mathbf{w} = 0$	$\mathbf{w} = 1$	$\mathbf{z}^{'}$
A	В	С	1
В	XA	\mathbf{F}	1
C	${f F}$	K C	О
F	K C	XA	О

- □ Partition 4: P4 = (AD)(B)(CEG)(F) = P3
- □ Each block can be represented by a single state in the final partition
- <u>Block (AD)</u>: states A and D are equivalent. Let A represent both states A and D in the minimized state table
- **Block (CEG)**: states C, E, and G are equivalent. Let state C represent states C, E, and G in the minimized state table.
- □ Number of states reduced from 7 to 4: only 2 flip-flops are needed instead of the original design with 3 flip-flops

EEE 102 Introduction to Digital Circuit Design

OI KAN KURSUN