Module Interface Specification for Software Engineering

Team 4, EcoOptimizers

Nivetha Kuruparan Sevhena Walker Tanveer Brar Mya Hussain Ayushi Amin

 $January\ 18,\ 2025$

1 Revision History

Date	Version	Notes
Date 1	1.0	Notes
Date 2	1.1	Notes

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at

Contents

1	Revision History									
2	3 Introduction									
3										
4										
5	6 Module Decomposition									
6	MIS of									
	6.1 Module									
	6.2 Uses									
	6.3 Syntax									
	6.3.1 Exported Constants									
	6.3.2 Exported Access Programs									
	6.4 Semantics									
	6.4.1 State Variables									
	6.4.2 Environment Variables									
	6.4.3 Assumptions									
	6.4.4 Access Routine Semantics									
	6.4.5 Local Functions									
7	Appendix									

3 Introduction

The following document details the Module Interface Specifications for

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at

4 Notation

The structure of the MIS for modules comes from ?, with the addition that template modules have been adapted from ?. The mathematical notation comes from Chapter 3 of ?. For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Software Engineering.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	\mathbb{N}	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of Software Engineering uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Software Engineering uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding	
Behaviour-Hiding	Input Parameters Output Format Output Verification Temperature ODEs Energy Equations Control Module Specification Parameters Module
Software Decision	Sequence Data Structure ODE Solver Plotting

Table 1: Module Hierarchy

- 6 MIS of
- 6.1 Module
- 6.2 Uses
- 6.3 Syntax
- 6.3.1 Exported Constants
- 6.3.2 Exported Access Programs

Name	In	Out	Exceptions
·	-	-	-

- 6.4 Semantics
- 6.4.1 State Variables
- 6.4.2 Environment Variables
- 6.4.3 Assumptions
- 6.4.4 Access Routine Semantics

():

- transition:
- output:
- exception:
- 6.4.5 Local Functions

References

7 Appendix

Appendix — Reflection

The information in this section will be used to evaluate the team members on the graduate attribute of Problem Analysis and Design.

The purpose of reflection questions is to give you a chance to assess your own learning and that of your group as a whole, and to find ways to improve in the future. Reflection is an important part of the learning process. Reflection is also an essential component of a successful software development process.

Reflections are most interesting and useful when they're honest, even if the stories they tell are imperfect. You will be marked based on your depth of thought and analysis, and not based on the content of the reflections themselves. Thus, for full marks we encourage you to answer openly and honestly and to avoid simply writing "what you think the evaluator wants to hear."

Please answer the following questions. Some questions can be answered on the team level, but where appropriate, each team member should write their own response:

- 1. What went well while writing this deliverable?
- 2. What pain points did you experience during this deliverable, and how did you resolve them?
- 3. Which of your design decisions stemmed from speaking to your client(s) or a proxy (e.g. your peers, stakeholders, potential users)? For those that were not, why, and where did they come from?
- 4. While creating the design doc, what parts of your other documents (e.g. requirements, hazard analysis, etc), it any, needed to be changed, and why?
- 5. What are the limitations of your solution? Put another way, given unlimited resources, what could you do to make the project better? (LO_ProbSolutions)
- 6. Give a brief overview of other design solutions you considered. What are the benefits and tradeoffs of those other designs compared with the chosen design? From all the potential options, why did you select the documented design? (LO_Explores)