

BIENVENIDOS

QUE TODOS LOS HUÉSPEDES QUE ENTREN, SE VAYAN SIENDO AMIGOS

App Airbnb

Juan Ruiz - Martín García - David Melo - Santiago Murgueitio - José Carrera

SELECCIÓN DEL DATASET OBJETIVO

New York Airbnb Open Data 2024

Airbnb listings and metrics in NYC, NY, USA as of (05 January, 2024)

k kaggle.com

ALTERNATIVAS A ANALIZAR

Característica	Kubernetes	Docker Swarm	Apache Mesos	
Lanzamiento	2014	2015	2009	
Desarrollador	Google	Docker, Inc.	Apache Software Foundation	
Modelo de gestión	Declarativo	Imperativo	Mixto (Declarativo e Imperativo)	
Escalabilidad	Alta (miles de nodos)	Media (cientos de nodos)	Alta (miles de nodos)	
Resiliencia	Alta con auto-reparación	Moderada	Alta	
Balanceo de carga	Integrado y configurable	Integrado y más simple	Requiere configuración externa	
Compatibilidad	Amplia con CNCF y herramientas de terceros	Buena con herramientas Docker	Requiere integración con Marathon u otras herramientas	
Interfaz de usuario	Compleja (kubectl y dashboard UI)	Simple (CLI similar a Docker)	Compleja (requiere interfaces adicionales)	
Comunidad y soporte	Muy amplia y activa	Amplia, pero menor que Kubernetes	Amplia en entornos de gran escala	
Casos de uso típicos	Aplicaciones a gran escala, microservicios	Proyectos más pequeños o inicios rápidos	Grandes clústeres de datos, aplicaciones intensivas en recursos	

- Ideal para grandes entornos de producción.
- Perfecto para microservicios.
- Alta disponibilidad y escalabilidad.
- Comunidad activa y soporte constante.

DOCKER SWARM

- Simple de configurar y usar.
- Bueno para desarrolladores y proyectos pequeños.
- Rápido y menos complejo.
- Escalabilidad adecuada para muchos usos, pero inferior a Kubernetes.

APACHE MESOS

- Orientado a entornos de gran escala.
- Maneja aplicaciones que consumen muchos recursos.
- Efectivo en la gestión de grandes clústeres de datos.
- Comúnmente usado con Marathon para contenedores.

DEFINICION DE ARQUITECTURA

BASES DE DATOS (DB)

ALMACENA Y GESTIONA LOS DATOS PERSISTENTES DEL SISTEMA

MICROSERVICIOS

MICROSERVICIOS

CREDENCIALES DE ACCESO

INFORMACION DEL PERFIL

HISTORIAL DE ACTIVIDAD

MICROSERVICIOS

DETALLES DE LA RESERVA

ESTADO DE LA RESERVA

MICROSERVICIOS

DETALLES DE LA PROPIEDAD

APP WEB

INTERFAZ INTERACTIVA Y AMIGABLE PARA QUE LOS USUARIOS PUEDAN INTERACTUAR CON EL SISTEMA

BALANCEO DE CARGA

WEB 1

WEB 2

EMPAQUETADO

DOCKER SWARM

COMPUESTO POR

DB USUARIOS AIRBNBS

RESERVAS WEB1 WEB2

HAPROXY TRANSFERENCIA_DF

DOCKER SWARM

web2:

USO DE DEPLOY - PLACEMENT - CONSTRAINTS

```
image: mitgar14/web-airbnbs
depends_on:
  - usuarios
  - airbnbs
                                              haproxy:
  - reservas
                                                image: mitgar14/haproxy-airbnbs
deploy:
                                                depends_on:
  placement:
                                                  - web1
    constraints:
                                                  - web2
      - node.hostname == workerAirbnb
                                                ports:
                                                  - "5080:80"
                                                deploy:
                                                  placement:
                                                    constraints:
                                                      - node.hostname == serverAirbnb
```

http://server-airbnb.eastus2.cloudapp.azure.com:5080

ANALITICA DE DATOS

GENERAR REPORTES Y DASHBOARDS INTERACTIVOS.

DIAGRAMA DE COMPONENTES

DIAGRAMA DE DESPLIEGUE

PIPELINE

FUNCIONA EL BALANCEO DE CARGA

EN COMPOSE CON HAPROXY Y SE REPITE LA PRUEBA EN SWARM

Tablas de resultados – Pruebas de carga normal

Compon	Répli	Path	Err	Tiempo de
ente	cas	(GET	or	respuesta
		-	%	promedio
		HTTP		(THROUG
)		HPUT)
HAProx	1	N/A	0.0	10.1
y			0	
Micro	1	/usuar	0.0	3.6
Usuarios		ios	0	

Tablas de resultados – Pruebas de carga alta

Compon	Répli	Path	Err	Tiempo de
ente	cas	(GET	or	respuesta
		-	%	promedio
		HTTP		(THROUG
)		HPUT)
HAProx	1	N/A	0.0	4.8
y			0	
Micro	1	/usuar	0.0	18.0
Usuarios		ios	0	

Tablas de resultados – Pruebas de carga estrés

Compon	Répli	Path	Err	Tiempo de
ente	cas	(GET	or	respuesta
		-	%	promedio
		HTTP		(THROUG
)		HPUT)
HAProx	1	N/A	0.0	332.8
у			0	
Micro	1	/usuar	0.0	85.7
Usuarios		ios	0	

CONCLUSIONES

THANKYOU