

Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior

Anming Gu¹ Edward Chien¹ Kristjan Greenewald²

¹Boston University ²IBM Research

Latent Trajectory Inference

Trajectory inference seeks to recover the temporal dynamics of a population from snapshots of its (uncoupled) temporal marginals, i.e. where observed particles are not tracked over time. Prior works [1, 2] framed the problem under a stochastic differential equation (SDE) model in observation space, proposed a non-parametric maximum likelihood estimator, and utilized the mean-field Langevin algorithm to solve this problem. We consider extending this setting where the dynamics is not directly observed using observable state-space models.

Contributions

We introduce the partially observed trajectory problem using observable state-space models and a dynamics prior. We extend the the estimator and algorithms from [1, 2] to our setting and show:

- Asymptotic consistency guarantees to underlying SDE as number of observations becomes dense.
- Convergence of algorithm.

Problem Setup

Let \mathcal{X} be the latent space and \mathcal{Y} be the observation space. We have a population following these dynamics on \mathcal{X} over the time interval [0,1] with initial condition \mathbf{P}_0 :

$$dX_t = -\Xi(t, X_t)dt - \nabla \Psi(t, X_t)dt + \sqrt{\tau}dB_t, \qquad X_0 \sim \mathbf{P}_0. \tag{1}$$

- B_t is a Brownian motion
- τ is the known diffusivity.
- ullet $\Xi:C([0,1] imes\mathcal{X}:\mathcal{X})$ is a known divergence-free vector field
- $\Psi: C^2([0,1] \times \mathcal{X})$ is an unknown potential function

Let $g: \mathcal{X} \to \mathcal{Y}$ be an observation function.

We have T observation times with $0 \le t_1^T < \cdots \le t_T^T \le 1$ with N_i^T i.i.d. datapoints at each time $i \in [T]$:

$$\left\{Y_{i,j}^T\right\}_{i=1}^{N_i^T} \sim g_{\sharp} \mathbf{P}_{t_i^T},$$

where \mathbf{P}_t is the marginal of Eq. (1) at time t and $g_{\sharp}\mathbf{P}_t$ is its pushforward onto observation space \mathcal{Y} . These datapoints form the empirical distribution:

$$\hat{\rho}_i^T = \frac{1}{N_i^T} \sum_{j=1}^{N_i^T} \delta_{Y_i^T}$$

Key assumption: observability

Assume Ψ is unknown but restricted to a class \mathcal{C}_{Ψ} . We say the tuple $(g, \Xi, \mathcal{C}_{\Psi})$ is \mathcal{C}_{Ψ} -ensemble observable if, given g, Ξ, τ and marginals $g_{\sharp}\mathbf{P}_t$, the marginals \mathbf{P}_t are uniquely determined for all $t \in [0, 1]$.

Statistical Estimator

Define the following fit function:

$$\operatorname{Fit}^{\lambda,\sigma}(g_{\sharp}\mathbf{R}_{t_{1}^{T}},\ldots,g_{\sharp}\mathbf{R}_{t_{T}^{T}}) := \frac{1}{\lambda}\sum_{i=1}^{T} \Delta t_{i}\operatorname{DF}^{\sigma}(g_{\sharp}\mathbf{R}_{t_{i}^{T}},\hat{\rho}_{i}^{T})$$

$$\operatorname{DF}^{\sigma}(g_{\sharp}\mathbf{R}_{t_{i}^{T}},\hat{\rho}_{i}^{T}) := H(\hat{\rho}_{i}^{T}|g_{\sharp}\mathbf{R}_{t_{i}^{T}}*\mathcal{N}_{\sigma}) + H(\hat{\rho}_{i}^{T}) + C,$$

where $H(\cdot|\cdot)$ is the Kullback-Leibler, $H(\cdot)$ is negative entropy, and C is a constant.

Our estimator is:

$$\mathcal{F}(\mathbf{R}) := \operatorname{Fit}^{\lambda,\sigma}(g_{\sharp}\mathbf{R}_{t_{1}^{T}}, \dots, g_{\sharp}\mathbf{R}_{t_{T}^{T}}) + \tau H(\mathbf{R}|\mathbf{W}^{\Xi,\tau}), \tag{2}$$

where $\mathbf{W}^{\Xi,\tau}$ is the divergence-free path measure.

Theoretical Results

Theorem (consistency). Suppose \mathbf{P} is the SDE, Eq. (1), with initial condition $\mathbf{P}_0 \in \mathcal{P}(\mathcal{X})$ such that $H(\mathbf{P}_0|\mathrm{vol}) < +\infty$. Let $\mathbf{R}^{T,\lambda,\sigma} \in \mathcal{P}(\Omega)$ be the unique minimizer of (2). If $\{t_i^T\}_{t\in[T]}$ becomes dense in [0,1], then $\lim_{\sigma\to 0,\lambda\to 0} \left(\lim_{T\to\infty} \mathbf{R}^{T,\lambda,\sigma}\right) = \mathbf{P}$ almost surely.

 \mathcal{F} is an optimization problem over the infinite-dimensional path space. We can introduce the following reduced objective on particle space:

$$F(\boldsymbol{\mu}) := \operatorname{Fit}^{\lambda,\sigma}(g_{\sharp}\boldsymbol{\mu}) + \sum_{i=1}^{T-1} \frac{1}{\Delta t_i} T_{\tau_i,\Xi}(\boldsymbol{\mu}^{(i)}, \boldsymbol{\mu}^{(i+1)}) + \tau H(\boldsymbol{\mu}), \tag{3}$$

where $H(\mu) = \sum_{i=1}^T \int \log(\mu^{(i)}) d\mu^{(i)}$ is the negative differential entropy of the family of measures μ and

$$T_{\tau_i,\Xi}(\mu,\nu) := \min_{\gamma \in \Pi(\mu,\nu)} \int c_{\tau_i}^\Xi(x,y) \, d\gamma(x,y) + \tau_i H(\gamma | \mu \otimes \nu)$$

are entropic optimal transport plans with cost function $c_{\tau_i}^{\Xi}(x,y) := -\tau_i \log(p_{\tau_i}^{\Xi}(x,y))$ and p_t^{Ξ} is the transition probability density of $\mathbf{W}^{\Xi,\tau}$ over the time interval [0,t].

We can show that minimizing Eq. (3) is equivalent to minimizing Eq. (2):

Theorem (representer). The following hold.

- (i) If $\mathcal F$ admits a minimizer $\mathbf R^*$ then $(\mathbf R^*_{t_1^T},\dots,\mathbf R^*_{t_T^T})$ is a minimizer for F.
- (ii) If F admits a minimizer $\mu^* \in \mathcal{P}(\mathcal{X})^T$, then a minimizer \mathbf{R}^* for \mathcal{F} is built as

$$\mathbf{R}^*(\cdot) = \int_{\mathcal{X}^T} \mathbf{W}^{\Xi,\tau}(\cdot|x_1,\ldots,x_T) d\mathbf{R}_{t_1^T,\ldots,t_T^T}(x_1,\ldots,x_T),$$

where $\mathbf{W}^{\Xi,\tau}(\cdot|x_1,\ldots,x_T)$ is the law of $\mathbf{W}^{\Xi,\tau}$ conditioned on passing through x_1,\ldots,x_T at times t_1^T,\ldots,t_T^T , respectively and $\mathbf{R}_{t_1^T,\ldots,t_T^T}$ is the composition of the entropic optimal transport plans γ_i that minimize $T_{\tau_i,\Xi}(\boldsymbol{\mu}^{*(i)},\boldsymbol{\mu}^{*(i+1)})$, for $i\in[T-1]$.

Algorithm

We optimize F, Eq. (3), using mean-field Langevin (MFL) dynamics, which has exponential convergence guarantees [3]:

Synthetic Experiments

Synthetic experimens for a simple constant velocity model:

(left) PO-MFL (ours) recovers positions while FO-MFL (baseline) does not converge because velocity is too high to catch up. (right) PO-MFL recovers hidden velocity and verification of exponential convergence.

Applications (Future Work)

- Single-cell genomic data analysis: learning the distribution of cellular gene expression trajectories.
- Learning subject trajectory distributions from independent surveys at various times without the need to maintain a consistent panel of respondents.
- Private synthetic trajectory generation.

References

^[1] H. Lavenant, S. Zhang, Y.-H. Kim, and G. Schiebinger. Toward a mathematical theory of trajectory inference. *The Annals of Applied Probability*, 2024 [2] L. Chizat, S. Zhang, M. Heitz, and G. Schiebinger. Trajectory inference via mean-field Langevin in path space. *Advances in Neural Information Processing Systems*, 2022.

^[3] L. Chizat. Mean-field Langevin dynamics: Exponential convergence and annealing. Transactions on Machine Learning Research, 2022.