Package 'ThreeWay'

October 12, 2022

Type Package

Title Three-Way Component Analysis
Version 1.1.3
Date 2015-09-07
Author Maria Antonietta Del Ferraro, Henk A.L. Kiers, Paolo Giordani
Maintainer Paolo Giordani <paolo.giordani@uniroma1.it></paolo.giordani@uniroma1.it>
Description Component analysis for three- way data arrays by means of Candecomp/Parafac, Tucker3, Tucker2 and Tucker1 models.
Depends R(>= 2.8.1), base, stats, graphics, grDevices
License GPL (>= 2)
LazyLoad yes
Repository CRAN
NeedsCompilation no
Date/Publication 2015-09-07 10:22:29
R topics documented:
bootstrapCP
bootstrapT3
Bus
Cc
ccmat
cent39
CP
CPdimensionalityplot
CPfitpartitioning
CPfunc
CPfuncrep

CPrunsFit19DimSelector20jointplotgen21Kinship23

LineCon	24
meaudret	25
norm3	26
normvari	27
nrm2	28
ord	29
orth	30
orthmax2	31
<u>.</u>	32
pcasup1	33
pcasup2	35
pcasup3	36
L	38
permnew	39
<u> </u>	40
	40
	41
	42
renormsolT3	43
splithalfCP	44
	46
	48
···	49
	5 0
	52
	53
	55
1	57
11	59
	6 0
71	63
T3fitpartitioning	64
T3func	66
T3funcrep	68
T3runsApproxFit	7 0
threewayanova	71
tr	73
TV	73
varim	75
varimcoco	76

bootstrapCP 3

bootstrapCP	Bootstrap percentile intervals for CANDECOMP/PARAFAC	
-------------	--	--

Description

Produces percentile intervals for all output parameters. The percentile intervals indicate the instability of the sample solutions.

Usage

```
bootstrapCP(X, A, B, C, n, m, p, r, ort1, ort2, ort3, conv, centopt, normopt,
    scaleopt, maxit, laba, labb, labc)
```

Arguments

Χ	Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
Α	Component matrix for the A-mode
В	Component matrix for the B-mode
С	Component matrix for the C-mode
n	Number of A-mode entities of X
m	Number of B-mode entities of X
р	Number of C-mode entities of X
r	Number of extracted components
ort1	Type of constraints on A (see CP)
ort2	Type of constraints on B (see CP)
ort3	Type of constraints on C (see CP)
conv	Convergence criterion
centopt	Centering option (see cent3)
normopt	Normalization option (see norm3)
scaleopt	Scaling option (see renormsolCP)
maxit	Maximal number of iterations
laba	Optional vector of length n containing the labels of the A-mode entities
labb	Optional vector of length m containing the labels of the B-mode entities
labc	Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

Bint	Bootstrap percentile interval of every element of B
Cint	Bootstrap percentile interval of every element of C
fpint	Bootstrap percentile interval for the goodness of fit index expressed as a per-
	centage

4 bootstrapT3

Note

The preprocessing must be done in same way as for sample analysis.

The resampling mode must be the A-mode.

The starting points for every bootstrap solution are two: rational (using SVD) and solution from the observed sample.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (2004). Bootstrap confidence intervals for three-way methods. *Journal of Chemometrics* 18:22–36.

See Also

```
bootstrapT3, CP, percentile95
```

Examples

```
data(TV)
TVdata=TV[[1]]
labSCALE=TV[[2]]
labPROGRAM=TV[[3]]
labSTUDENT=TV[[4]]
# permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
# CP solution
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 1, 1, 1, 0, 1e-6, 10000)
## Not run:
# Bootstrap analysis on CP solution
boot <- bootstrapCP(TVdata, TVcp$A, TVcp$B, TVcp$C, 30, 16, 15, 2, 1, 1, 1,
1e-6, 0, 0, 0, 10000, labSTUDENT, labSCALE, labPROGRAM)
# Bootstrap analysis on CP solution (when labels are not available)
boot <- bootstrapCP(TVdata, TVcp$A, TVcp$B, TVcp$C, 30, 16, 15, 2, 1, 1, 1,
 1e-6, 0, 0, 0, 10000)
## End(Not run)
```

bootstrapT3

Bootstrap percentile intervals for Tucker3

Description

Produces percentile intervals for all output parameters. The percentile intervals indicate the instability of the sample solutions.

bootstrapT3 5

Usage

```
bootstrapT3(X, A, B, C, G, n, m, p, r1, r2, r3, conv, centopt, normopt, optimalmatch, laba, labb, labc)
```

Arguments

X	Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
A	Component matrix for the A-mode
В	Component matrix for the B-mode
С	Component matrix for the C-mode
G	Matricized core array (frontal slices)
n	Number of A-mode entities of X
m	Number of B-mode entities of X
p	Number of C-mode entities of X
r1	Number of extracted components for the A-mode
r2	Number of extracted components for the B-mode
r3	Number of extracted components for the C-mode
conv	Convergence criterion
centopt	Centering option (see cent3)
normopt	Normalization option (see norm3)
optimalmatch	Binary indicator (0 if the procedure uses matching via orthogonal rotation towards full solutions, 1 if the procedure uses matching via optimal transformation towards full solutions)
laba	Optional vector of length n containing the labels of the A-mode entities
labb	Optional vector of length m containing the labels of the B-mode entities
labc	Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

Bint	Bootstrap percentile interval of every element of B
Cint	Bootstrap percentile interval of every element of C
Gint	Bootstrap percentile interval of matricized core array (frontal slices) G
fpint	Bootstrap percentile interval for the goodness of fit index expressed as a percentage

Note

The preprocessing must be done in same way as for sample analysis.

The resampling mode must be the A-mode.

The starting points for every bootstrap solution are two: rational (using SVD) and solution from the observed sample.

6 Bus

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (2004). Bootstrap confidence intervals for three-way methods. *Journal of Chemometrics* 18:22–36.

See Also

```
bootstrapCP, percentile95, T3
```

Examples

```
data(Bus)
# labels for Bus data
laba <- rownames(Bus)</pre>
labb <- substr(colnames(Bus)[1:5],1,1)</pre>
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)],3,8)</pre>
# T3 solution
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
## Not run:
# Bootstrap analysis on T3 solution using matching via optimal transformation
boot <- bootstrapT3(Bus, BusT3$A, BusT3$B, BusT3$C, BusT3$H, 7, 5, 37, 2, 2, 2,
 1e-6, 0, 0, 1, laba, labb, labc)
# Bootstrap analysis on T3 solution using matching via orthogonal rotation
# (when labels are not available)
boot <- bootstrapT3(Bus, BusT3$A, BusT3$B, BusT3$C, BusT3$H, 7, 5, 37, 2, 2, 2,
 1e-6, 0, 0, 0)
## End(Not run)
```

Bus

Bus data

Description

Three-way data about the process of learning to read of seven first-grade children tested weekly (from week 3 to 47, but weeks 10, 19, 20, 29, 35, 36, 39, 43 were holidays and, thus, data on 37 weeks) with five different tests.

Usage

```
data(Bus)
```

Cc 7

Format

A matrix with 7 rows and 185 (5x37) columns.

The rows refer to the pupils.

The columns refer to the combinations of tests and weeks with the tests nested within the weeks.

The matrix contains the frontal slices next to each other of the original array.

The meanings and the ranges of the tests are as follows:

L: letter knowledge test (scores in 0-47);

P: regular orthographic short words (scores in 0-10);

Q: regular orthographic long words (scores in 0-10);

S: regular orthographic long and short words within context (scores in 0-15);

R: irregular orthographic long and short words (scores in 0-15).

Details

In the literature the Bus data have been analyzed by Tucker3 (see Kroonenberg, 1983; Timmerman, 2001). There is consensus on normalizing the data so to eliminate artificial differences among ranges of tests. Different centering options and numbers of extracted components have been chosen. Specifically, Kroonenberg (1983) suggests averaging over pupils and tests for each time occasions and extracting two components for every mode. Timmerman (2001) suggests to apply Tucker3 to the normalized data with two components for pupils and time occasions and one component for tests.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

P.M. Kroonenberg (1983). *Three-mode Principal Component Analysis. Theory and Applications*. DSWO Press, Leiden.

M.E. Timmerman (2001). *Component Analysis of Multisubject Multivariate Longitudinal Data*. Ph.D. Thesis, University of Groningen.

Сс

Columnwise centering of a matrix

Description

Computation of a columnwise centered version of a matrix.

Usage

Cc(A)

8 ccmat

Arguments

A Matrix of any order

Value

Ac Matrix columnwise centered

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

See Also

nrm2

Examples

```
X <- matrix(rnorm(6*3),ncol=3)
Y <- Cc(X)
apply(Y,2,mean)</pre>
```

ccmat

Columns concatenation

Description

Concatenates the columns of two matrices next to each other.

Usage

```
ccmat(A, B)
```

Arguments

A Matrix of the same order of B

B Matrix of the same order of A

Value

mat Matrix in which the columns of A and B are concatenated next to each other

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

cent3

Examples

```
X <- matrix(rnorm(6*3),ncol=3)
Y <- matrix(rnorm(6*3),ncol=3)
Z <- ccmat(X,Y)</pre>
```

cent3

Centering of a matricized array

Description

Centering of a matricized array across one mode (modes indicated by 1,2, or 3).

Usage

```
cent3(X, n, m, p, mode)
```

Arguments

X	Matrix (or data.frame coerced to a matrix) of order $(n \times mp)$ containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
p	Number of C-mode entities
mode	Centering option (1 if X is centered across A-mode, 2 if X is centered across B-mode, 3 if X is centered across C-mode)

Value

Y Matrix of order (n x mp) containing the centered matricized array (frontal slices)

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. *Journal of Chemometrics* 14:105–122.

See Also

```
Cc, norm3
```

10 CP

Examples

```
X <- array(c(rnorm(120)),c(6,5,4))
# matricized array
Y <- supermat(X)
# data centered across A-mode
Z <- cent3(Y$Xa, 6, 5, 4, 1)
apply(Z,2,mean)
# data centered also across B-modes (double centering)
Z <- cent3(Z, 6, 5, 4, 2)
apply(Z,1,mean)
apply(Z,2,mean)</pre>
```

CP

Interactive Candecomp/Parafac analysis

Description

Detects the underlying structure of a three-way array according to the Candecomp/Parafac (CP) model.

Usage

```
CP(data,laba,labb,labc)
```

Arguments

data	Array of order n by m by p or matrix or data.frame of order (n x mp) containing the matricized array (frontal slices)
laba	Optional vector of length n containing the labels of the A-mode entities
labb	Optional vector of length m containing the labels of the B-mode entities
labc	Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

A	Component matrix for the A-mode
В	Component matrix for the B-mode
С	Component matrix for the C-mode
fit	Fit value expressed as a percentage
tripcos	Matrix of the triple cosines among pairs of components (to inspect degeneracy)
fitValues	Fit values expressed as a percentage upon convergence for all the runs of the CP algorithm (see CPfunc)
funcValues	Function values upon convergence for all the runs of the CP algorithm (see CPfunc)

CP 11

cputime	Computation times for all the runs of the CP algorithm (see CPfunc)
iter	Numbers of iterations upon convergence for all the runs of the CP algorithm (see CPfunc)
fitA	Fit contributions for the A-mode entities (see CPfitpartitioning)
fitB	Fit contributions for the B-mode entities (see CPfitpartitioning)
fitC	Fit contributions for the C-mode entities (see CPfitpartitioning)
Bint	Bootstrap percentile interval of every element of B (see bootstrapCP)
Cint	Bootstrap percentile interval of every element of C (see bootstrapCP)
fpint	Bootstrap percentile interval for the goodness of fit index expressed as a percentage (see bootstrapCP)
Afull	Component matrix for the A-mode (full data) from split-half analysis (see splithalfCP)
As1	Component matrix for the A-mode (split n.1) from split-half analysis (see splithalfCP)
As2	Component matrix for the A-mode (split n.2) from split-half analysis (see splithalfCP)
Bfull	Component matrix for the B-mode (full data) from split-half analysis (see splithalfCP)
Bs1	Component matrix for the B-mode (split n.1) from split-half analysis (see splithalfCP)
Bs2	Component matrix for the B-mode (split n.2) from split-half analysis (see splithalfCP)
Cfull	Component matrix for the C-mode (full data) from split-half analysis (see splithalfCP)
Cs1	Component matrix for the C-mode (split n.1) from split-half analysis (see splithalfCP)
Cs2	Component matrix for the C-mode (split n.2) from split-half analysis (see splithalfCP)
A1	Component matrix for the A-mode from Principal Component Analysis of mean values (see pcamean)
B1	Component matrix for the B-mode from Principal Component Analysis of mean values (see pcamean)
C1	Component matrix for the C-mode from Principal Component Analysis of mean values (see pcamean)
A2	Component matrix for the A-mode from Principal Component Analysis of mean values (see pcamean)
B2	Component matrix for the B-mode from Principal Component Analysis of mean values (see pcamean)
C2	Component matrix for the C-mode from Principal Component Analysis of mean values (see pcamean)
laba	Vector of length n containing the labels of the A-mode entities
labb	Vector of length m containing the labels of the B-mode entities
labc	Vector of length P containing the labels of the C-mode entities
Xprep	Matrix of order $(n \times mp)$ containing the matricized array (frontal slices) after preprocessing used for the analysis

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it> Henk A.L. Kiers <h.a.l.kiers@rug.nl> Paolo Giordani <paolo.giordani@uniroma1.it>

References

J.D. Carroll and J.J. Chang (1970). Analysis of individual differences in multidimensional scaling via an *N*-way generalization of 'Eckart-Young' decomposition. *Psychometrika* 35:283–319. P. Giordani, H.A.L. Kiers, M.A. Del Ferraro (2014). Three-way component analysis using the R package ThreeWay. *Journal of Statistical Software* 57(7):1–23. http://www.jstatsoft.org/v57/i07/.

R.A. Harshman (1970). Foundations of the Parafac procedure: models and conditions for an 'explanatory' multi-mode factor analysis. *UCLA Working Papers in Phonetics 16:1–84*. P.M. Kroonenberg (2008). *Applied Multiway Data Analysis*. Wiley, New Jersey.

See Also

```
T3, T2, T1
```

Examples

```
data(TV)
TVdata=TV[[1]]
labSCALE=TV[[2]]
labPROGRAM=TV[[3]]
labSTUDENT=TV[[4]]
# permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
## Not run:
# interactive CP analysis
TVcp <- CP(TVdata, labSTUDENT, labSCALE, labPROGRAM)
# interactive CP analysis (when labels are not available)
TVcp <- CP(TVdata)
## End(Not run)</pre>
```

 ${\tt CPdimensionalityplot} \quad \textit{Plot fit of Candecomp/Parafac}$

Description

Plots fits against numbers of dimensions, with S as labels and fits against number of effective paramaters.

Usage

```
CPdimensionalityplot(A, n, m, p)
```

CPdimensionalityplot 13

Arguments

Α	A matrix with columns: number of components, goodness of fit (%)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities

Note

A is usually the first and fourth columns of the output of DimSelector.

The number of effective parameters in a Candecomp/Parafac analysis is discussed in Weesie and Van Houwelingen (1983).

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

- E. Ceulemans & H.A.L. Kiers (2006). Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method. *British Journal of Mathematical and Statistical Psychology* 59:133–150.
- J. Weesie \& H. Van Houwelingen (1983). *GEPCAM users' manual (first draft)*. Utrecht, The Netherlands: Institute of Mathematical Statistics, State University of Utrecht.

See Also

```
CP, DimSelector
```

Examples

```
data(TV)
TVdata=TV[[1]]
# permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
# Fit values of CP with different numbers of components (from 1 to 5)
FitCP <- CPrunsFit(TVdata, 30, 16, 15, 5)
OutCP <- FitCP[,c(1,4)]
CPdimensionalityplot(OutCP, 30, 16, 15)</pre>
```

14 CPfitpartitioning

of each entity per mode	Fit of each ent	fitpartitioning
-------------------------	-----------------	-----------------

Description

Computation of fit contributions.

Usage

```
CPfitpartitioning(Xprep, n, m, p, A, B, C, laba, labb, labc)
```

Arguments

Xprep	Matrix (or data.frame coerced to a matrix) of order $(n \times mp)$ containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
Α	Component matrix for the A-mode
В	Component matrix for the B-mode
С	Component matrix for the C-mode
laba	Optional vector of length n containing the labels of the A-mode entities
labb	Optional vector of length m containing the labels of the B-mode entities
labc	Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

fitA	Fit contribution for the A-mode entities
fitB	Fit contribution for the B-mode entities
fitC	Fit contribution for the C-mode entities

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

See Also

CP

CPfunc 15

Examples

```
data(TV)
TVdata=TV[[1]]
labSCALE=TV[[2]]
labPROGRAM=TV[[3]]
labSTUDENT=TV[[4]]
# permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
# CP solution
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 1, 1, 1, 0, 1e-6, 10000)
# Fitpartitioning of the CP solution
FitCP <- CPfitpartitioning(TVdata, 30, 16, 15, TVcp$A, TVcp$B, TVcp$C, labSTUDENT, labSCALE, labPROGRAM)
# Fitpartitioning of the CP solution (when labels are not available)
FitCP <- CPfitpartitioning(TVdata, 30, 16, 15, TVcp$A, TVcp$B, TVcp$C)</pre>
```

CPfunc

Algorithm for the Candecomp/Parafac (CP) model

Description

Alternating Least Squares algorithm for the minimization of the Candecomp/Parafac loss function.

Usage

```
CPfunc(X, n, m, p, r, ort1, ort2, ort3, start, conv, maxit, A, B, C)
```

Arguments

Χ	Matrix (or data.frame coerced to a matrix) of order ($n \times mp$) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
p	Number of C-mode entities
r	Number of extracted components
ort1	Type of constraints on A (1 for no constraints, 2 for orthogonality constraints, 3 for zero correlations constraints)
ort2	Type of constraints on B (1 for no constraints, 2 for orthogonality constraints, 3 for zero correlations constraints)
ort3	Type of constraints on C (1 for no constraints, 2 for orthogonality constraints, 3 for zero correlations constraints)
start	Starting point (0 for starting point of the algorithm from SVD's, 1 for random starting point (orthonormalized component matrices), 2 for user specified components

16 CPfunc

conv	Convergence criterion
maxit	Maximal number of iterations
A	Optional (necessary if start=2) starting value for A
В	Optional (necessary if start=2) starting value for B
С	Optional (necessary if start=2) starting value for C

Value

A list including the following components:

A	A	Component matrix for the A-mode
E	3	Component matrix for the B-mode
(Component matrix for the C-mode
1	f	Loss function value
1	fp	Fit value expressed as a percentage
İ	iter	Number of iterations
t	tripcos	Minimal triple cosine between two components across three component matrices (to inspect degeneracy)
r	nintripcos	Minimal triple cosine during the iterative algorithm observed at every 10 iterations (to inspect degeneracy)
1	ftiter	Matrix containing in each row the function value and the minimal triple cosine at every 10 iterations

Note

cputime

The loss function to be minimized is $sum(k)||X(k)-AD(k)B'||^2$, where D(k) is a diagonal matrix holding the k-th row of C.

CPfunc is the same as CPfuncrep except that all printings are available.

Computation time

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

R.A. Harshman (1970). Foundations of the Parafac procedure: models and conditions for an 'explanatory' multi-mode factor analysis. *UCLA Working Papers in Phonetics 16:1–84*.

See Also

CP, CPfuncrep

CPfuncrep 17

Examples

```
data(TV)
TVdata=TV[[1]]
# permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
# unconstrained CP solution using two components
# (rational starting point by SVD [start=0])
TVcp <- CPfunc(TVdata, 30, 16, 15, 2, 1, 1, 1, 0, 1e-6, 10000)
# constrained CP solution using two components with orthogonal A-mode
# component matrix (rational starting point by SVD [start=0])
TVcp <- CPfunc(TVdata, 30, 16, 15, 2, 2, 1, 1, 0, 1e-6, 10000)
# constrained CP solution using two components with orthogonal A-mode
# component matrix and zero correlated C-mode component matrix
# (rational starting point by SVD [start=0])
TVcp <- CPfunc(TVdata, 30, 16, 15, 2, 2, 1, 3, 0, 1e-6, 10000)
# unconstrained CP solution using two components
# (random orthonormalized starting point [start=1])
TVcp <- CPfunc(TVdata, 30, 16, 15, 2, 1, 1, 1, 1e-6, 10000)
# unconstrained CP solution using two components (user starting point [start=2])
TVcp <- CPfunc(TVdata, 30, 16, 15, 2, 1, 1, 1, 2, 1e-6, 10000,
 matrix(rnorm(30*2),nrow=30), matrix(rnorm(16*2),nrow=16),
 matrix(rnorm(15*2),nrow=15))
```

CPfuncrep

Algorithm for the Candecomp/Parafac (CP) model

Description

Alternating Least Squares algorithm for the minimization of the Candecomp/Parafac loss function.

Usage

```
CPfuncrep(X, n, m, p, r, ort1, ort2, ort3, start, conv, maxit, A, B, C)
```

Arguments

X	Matrix (or data.frame coerced to a matrix) of order $(n \times mp)$ containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
r	Number of extracted components
ort1	Type of constraints on A (1 for no constraints, 2 for orthogonality constraints, 3 for zero correlations constraints)
ort2	Type of constraints on B (1 for no constraints, 2 for orthogonality constraints, 3 for zero correlations constraints)

18 CPfuncrep

ort3	Type of constraints on C (1 for no constraints, 2 for orthogonality constraints, 3 for zero correlations constraints)
start	Starting point (0 for starting point of the algorithm from SVD's, 1 for random starting point (orthonormalized component matrices), 2 for user specified components
conv	Convergence criterion
maxit	Maximal number of iterations
Α	Optional (necessary if start=2) starting value for A
В	Optional (necessary if start=2) starting value for B
С	Optional (necessary if start=2) starting value for C

Value

A list including the following components:

Computation time

A	Component matrix for the A-mode
В	Component matrix for the B-mode
С	Component matrix for the C-mode
f	Loss function value
fp	Fit value expressed as a percentage
iter	Number of iterations
tripcos	Minimal triple cosine between two components across three component matrices (to inspect degeneracy)
mintripcos	Minimal triple cosine during the iterative algorithm observed at every 10 iterations (to inspect degeneracy)
ftiter	Matrix containing in each row the function value and the minimal triple cosine at every 10 iterations

Note

cputime

The loss function to be minimized is $sum(k)||X(k)-AD(k)B'||^2$, where D(k) is a diagonal matrix holding the k-th row of C.

CPfuncrep is the same as CPfunc except that all printings are suppressed. Thus, CPfuncrep can be helpful for simulation experiments.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani paolo.giordani@uniroma1.it>
```

References

R.A. Harshman (1970). Foundations of the Parafac procedure: models and conditions for an 'explanatory' multi-mode factor analysis. *UCLA Working Papers in Phonetics 16:1–84*.

CPrunsFit 19

See Also

CP, CPfunc

Examples

```
data(TV)
TVdata=TV[[1]]
# permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
# unconstrained CP solution using two components
# (rational starting point by SVD [start=0])
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 1, 1, 1, 0, 1e-6, 10000)
# constrained CP solution using two components with orthogonal A-mode
# component matrix (rational starting point by SVD [start=0])
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 2, 1, 1, 0, 1e-6, 10000)
# constrained CP solution using two components with orthogonal A-mode
# component matrix and zero correlated C-mode component matrix
# (rational starting point by SVD [start=0])
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 2, 1, 3, 0, 1e-6, 10000)
# unconstrained CP solution using two components
# (random orthonormalized starting point [start=1])
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 1, 1, 1, 1e-6, 10000)
# unconstrained CP solution using two components (user starting point [start=2])
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 1, 1, 1, 2, 1e-6, 10000,
matrix(rnorm(30*2),nrow=30), matrix(rnorm(16*2),nrow=16),
matrix(rnorm(15*2),nrow=15))
```

CPrunsFit

Candecomp/Parafac solutions

Description

Computes all the Candecomp/Parafac solutions (CP) with r (from 1 to maxC) components.

Usage

```
CPrunsFit(X, n, m, p, maxC)
```

Arguments

X	Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
maxC	Maximum dimensionality for the A-mode

20 DimSelector

Value

out

Matrix with columns: number of components for the A-mode, number of components for the B-mode, number of components for the C-mode, goodness of fit (%), total number of components

Note

The structure of out is consistent with Tucker models. In CP, the first and forth columns are sufficient for choosing the optimal number of components.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (1991). Hierarchical relations among three-way methods. *Psychometrika* 56:449–470.

See Also

```
DimSelector, LineCon, CP
```

Examples

```
data(TV)
TVdata=TV[[1]]
# permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
# Fit values of CP with different numbers of components (from 1 to 5)
FitCP <- CPrunsFit(TVdata, 30, 16, 15, 5)</pre>
```

DimSelector

Convex Hull procedure

Description

Selects among three-mode principal component models of different complexities.

Usage

```
DimSelector(out, n, m, p, model)
```

jointplotgen 21

Arguments

out	Matrix with columns: number of components for the A-mode, number of components for the B-mode, number of components for the C-mode, goodness of fit $(\%)$, total number of components
n	Number of A-mode entities
m	Number of B-mode entities
p	Number of C-mode entities
model	Kind of model (1 for Candecomp/Parafac, 2 for Tucke3, 3 for Tucker2, 4 for Tucker1

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

- E. Ceulemans and H.A.L. Kiers (2006). Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method. *British Journal of Mathematical and Statistical Psychology* 59:133–150.
- J. Weesie and H. Van Houwelingen (1983). *GEPCAM users' manual (first draft)*. Utrecht, The Netherlands: Institute of Mathematical Statistics, State University of Utrecht.

See Also

```
LineCon, T3runsApproxFit T2runsApproxFit T1runsFit CPrunsFit
```

Examples

```
data(Bus)
# Analysis on T3 with different numbers of components (from 1 to 4 for the A-mode,
# from 1 to 3 for the B-mode, from 1 to 5 for the C-mode)
FitT3 <- T3runsApproxFit(Bus,7,5,37,4,4,4)
T3opt <- DimSelector(FitT3,7,5,37,2)</pre>
```

jointplotgen Jointplots

Description

Program for producing jointplots in general.

Usage

```
jointplotgen(K, A, B, C, fixmode, fixunit, laba, labb, labc)
```

22 jointplotgen

Arguments

K	Matricized core array (frontal slices)
Α	Component matrix for the A-mode
В	Component matrix for the B-mode
С	Component matrix for the C-mode
fixmode	Mode for which one unit is to be chosen (1 for A-mode, 2 for B-mode, 3 for C-mode)
fixunit	Number of component for which joint plot is desired
laba	Vector of length n containing the labels of the A-mode entities
labb	Vector of length m containing the labels of the B-mode entities
labc	Vector of length p containing the labels of the C-mode entities

Value

fit Percentage of info for component at hand, explained by two-dimensional plot

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

P.M. Kroonenberg (2008). Applied Multiway Data Analysis. Wiley, New Jersey.

Examples

```
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8)
# <- T3 solution
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
# Joint plot for mode C and component 2
jointplotgen(BusT3$H, BusT3$A, BusT3$B, BusT3$C, 3, 2, laba, labb, labc)</pre>
```

Kinship 23

Kinship

Kinship terms data

Description

Three-way proximity data about 15 kinship terms produced by 6 groups of subjects.

Usage

data(Kinship)

Format

An array of order 15 x 15 x 6.

The A-mode and B-mode entities are the kinship terms (Aunt, Brother, Cousin, Daughter, Father, Granddaughter, Grandfather, Grandmother, Grandson, Mother, Nephew, Niece, Sister, Son, Uncle). The C-mode entities are groups of subjects (First female, Second female, First male, Second male, Single female, Single male).

Details

The original data have been introduced by Rosenborg & Kim (1975). The data were collected by asking to 6 groups of subjects to produce a partition of 15 kinship terms. Two groups (Single female and Single male) were composed by 85 male and 85 female college students, respectively, and provided a single partition. Two additional groups of, respectively, 80 male and 80 female students produced two partitions each (First female, Second female, First male, Second male). In fact, they were informed in advance that, after making the first partition, they should give a new partition of the kinship terms using a different basis of meaning. The array contains similarities. For every group of subjects, the numbers of times in which the kinship terms were grouped together are given.

Author(s)

```
Maria Antonietta Del Ferraro <a href="mariaantonietta">mariaantonietta</a>. delferraro@yahoo.it>
Henk A.L. Kiers <a href="mailto:kiers@rug.nl">h.a.l.kiers@rug.nl</a>
Paolo Giordani <a href="mailto:paolo.giordani@uniroma1.it">paolo.giordani@uniroma1.it</a>
```

References

S. Rosenborg & M.P. Kim (1975). The method of sorting as a data-gathering procedure in multivariate research. *Multivariate Behavioral Research* 10:489–502.

Examples

```
data(Kinship)
## The labels are in the data array
laba <- dimnames(Kinship)[[1]]
labb <- dimnames(Kinship)[[2]]</pre>
```

24 LineCon

```
labc <- dimnames(Kinship)[[3]]
## Candecomp/Parafac analysis
## Not run:
CP(Kinship,laba,labb,labc)
## End(Not run)</pre>
```

LineCon

Middle point location

Description

Checks whether the middle point is located below or on the line connecting its neighbors.

Usage

```
LineCon(f1, f2, f3, fp1, fp2, fp3)
```

Arguments

f1	Goodness-of-fit value for the first point
f2	Goodness-of-fit value for the second point
f3	Goodness-of-fit value for the third point
fp1	Number of effective parameters for the first point
fp2	Number of effective parameters for the second point
fp3	Number of effective parameters for the third point

Value

ret

Value that indicates if the middle point is located below or on the line connecting its neighbors (0 if the middle point is not located below the line connecting its neighbors, 1 if the middle point is not located on the line connecting its neighbors)

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

- E. Ceulemans and H.A.L. Kiers (2006). Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method. *British Journal of Mathematical and Statistical Psychology* 59:133–150.
- J. Weesie and H. Van Houwelingen (1983). *GEPCAM users' manual (first draft)*. Utrecht, The Netherlands: Institute of Mathematical Statistics, State University of Utrecht.

meaudret 25

See Also

DimSelector

Examples

```
data(Bus)
# T2-AB with 1 component for the A- and B-mode
FitBusT2AB11 <- T2funcrep(Bus, 7, 5, 37, 1, 1, 37, 0, 1e-6,1)$fp
# T2-AB with 2 components for the A-mode and 1 component for the B-mode
FitBusT2AB21 <- T2funcrep(Bus, 7, 5, 37, 2, 1, 37, 0, 1e-6, 1)$fp
# T2-AB with 1 component for the A-mode and 2 components for the B-mode
# T2-AB with 1 component for the A-mode and 2 components for the B-mode
# FitBusT2AB21>FitBusT2AB12
# T2-AB with 2 components for the A- and B-mode
FitBusT2AB22 <- T2funcrep(Bus, 7, 5, 37, 2, 2, 37, 0, 1e-6,1)$fp
# number of effective parameters n x r1 + m x r2 + r1 x r2 x p - r1^2 - r2^2
nepT2AB11 <- 47
nepT2AB21 <- 88
nepT2AB22 <- 164
ret <- LineCon(FitBusT2AB11, FitBusT2AB21, FitBusT2AB22, nepT2AB11, nepT2AB21, nepT2AB22)</pre>
```

meaudret

Meaudret data

Description

Three-way data about six sampling sites along a small French stream (the Meaudret) on which ten biological and chemical variables are collected four times.

Usage

```
data(meaudret)
```

Format

An array of order 6 x 10 x 4.

The A-mode entities are sampling sites (Site1, ..., Site6).

The B-mode entities are biological and chemical variables (Temp, Debi, PH, Cond, Oxyg, Biod, Chem, NH4, NO3, PO4).

The C-mode entities are months (June, August, November, February).

Details

The ranges of the variables are very different and, therefore, normalization of the raw data is recommended. The data have been used by Kiers (1991) in order to show the existing relations among three-way methods.

26 norm3

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (1991). Hierarchical relations among three-way methods. *Psychometrika* 56:449–470.

Examples

```
data(meaudret)
## The labels are in the data array
laba <- dimnames(meaudret)[[1]]
labb <- dimnames(meaudret)[[2]]
labc <- dimnames(meaudret)[[3]]
## Candecomp/Parafac analysis
## Not run:
CP(meaudret,laba,labb,labc)
## Tucker3 analysis
T3(meaudret,laba,labb,labc)
## Tucker2 analysis
T2(meaudret,laba,labb,labc)
## Tucker1 analysis
T1(meaudret,laba,labb,labc)</pre>
## End(Not run)
```

norm3

Normalization of a matricized array

Description

Normalization of a matricized array within one mode (modes indicated by 1,2, or 3) to sum of squares equal to product of size of other modes.

Usage

```
norm3(X, n, m, p, mode)
```

Arguments

X	Matrix (or data.frame coerced to a matrix) of order (n \times mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities

normvari 27

p Number of C-mode entities

mode Normalization option (1 if X is normalized within A-mode, 2 if X is normalized

within B-mode, 3 if X is normalized within C-mode)

Value

Y Matrix of order (n x mp) containing the normalized matricized array (frontal slices)

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. *Journal of Chemometrics* 14:105–122.

See Also

```
cent3, nrm2
```

Examples

```
X <- array(c(rnorm(120)), c(6,5,4))
# matricized array
Y <- supermat(X)
# data normalized within A-mode
Z <- norm3(Y$Xa, 6, 5, 4, 1)
apply(Z^2,1,sum)
# data normalized within C-mode
Z <- norm3(Y$Xa, 6, 5, 4, 3)
Z <- permnew(Z, 6, 5, 4)
Z <- permnew(Z, 6, 5, 4)
apply(Z^2, 1, sum)</pre>
```

normvari

Normalized varimax rotation

Description

Produces normalized varimax rotated version of A and rotation matrix T.

Usage

```
normvari(A)
```

28 nrm2

Arguments

A Matrix to be to be rotated

Value

A list including the following components:

B Rotated version of A (B=AT)

T Rotation matrix

f Varimax function value

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H. Kaiser (1958). The varimax criterion for analytic rotation in factor analysis. *Psychometrika* 23:187–200.

See Also

varim

Examples

```
X <- matrix(rnorm(6*3),ncol=3)
Y <- normvari(X)
# normalized varimax rotated version of X
Y$B
# rotation matrix
Y$T</pre>
```

nrm2

Columnwise normalization of a matrix

Description

Computation of a columnwise normalized version of a matrix.

Usage

nrm2(A)

Arguments

A Matrix of any order

ord 29

Value

N Matrix columnwise normalized

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

See Also

Сс

Examples

```
X <- matrix(rnorm(6*3),ncol=3)
Y <- nrm2(X)
apply(Y^2, 2, sum)</pre>
```

ord

Order

Description

In case of vectors, an ordering of its elements in ascending order is produced; in case of matrices, the ordering in ascending order refers to every column.

Usage

ord(X)

Arguments

X Vector or matrix to be ordered

Value

A Vector or matrix with the elements sorted in ascending order

a Vector or matrix with the ordering indices

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

30 orth

Examples

```
# vector
x <- rnorm(6)
y <- ord(x)
# matrix
X <- matrix(rnorm(6*3),ncol=3)
Y <- ord(X)</pre>
```

orth

Orthonormalization of a matrix

Description

Returns an orthonormal basis for the range of A.

Usage

orth(A)

Arguments

A Matrix to be orthogonalized

Value

Q Orthonormal basis for the range of A

Note

The columns of Q span the same space as the columns of A with t(Q)Q=I. The number of columns of Q is the rank of A.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

Examples

```
X <- matrix(rnorm(6*3),ncol=3)
Y <- orth(X)</pre>
```

orthmax2

orthmax	2
---------	---

Orthomax Rotation

Description

Produces a simultaneous orthomax rotation of two matrices (using one rotation matrix).

Usage

```
orthmax2(A1, A2, gam1, gam2, conv)
```

Arguments

A1	First matrix to be rotated with the same number of columns of A2
A2	Second matrix to be rotated with the same number of columns of $A1$
gam1	orthmax parameter for A1
gam2	orthmax parameter for A2
conv	Optional convergence value (default 1e-6)

Value

A list including the following components:

B1	Rotated version of A1
B2	Rotated version of A2
T	Rotation matrix
f	Orthomax function value

Note

```
The function to be maximized is f = sum((A1^2) - 1/m1 * gam1 * sum((sum(A1^2))^2))^2 + sum((A2^2) - 1/m2 * gam2 * sum((sum(A2^2))^2))^2.
```

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

R. Jennrich (1970). Orthogonal rotation algorithms. *Psychometrika* 35:229–235.

See Also

varim

pcamean pcamean

Examples

```
X <- matrix(rnorm(8*3),ncol=3)
Y <- matrix(rnorm(6*3),ncol=3)
orthXY <- orthmax2(X,Y,1,2)
# rotated version of X
orthXY$B1
# rotated version of Y
orthXY$B2
# rotation matrix
orthXY$T</pre>
```

pcamean

PCA of the mean matrix

Description

Performs Principal Component Analysis (PCA) of the mean matrix aggregated over mode number indicated by aggregmode.

Usage

```
pcamean(X, n, m, p, laba, labb, labc)
```

Arguments

X	Matrix (or data.frame coerced to a matrix) of order (n \times mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
laba	Optional vector of length n containing the labels of the A-mode entities
labb	Optional vector of length m containing the labels of the B-mode entities
labc	Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

Υ	An object of class matrix containing the mean matrix
ev	A vector containing the eigenvalues of Y
A1	Component matrix for the A mode based on varimax rotation of loadings
B1	Component matrix for the B mode based on varimax rotation of loadings
C1	Component matrix for the C mode based on varimax rotation of loadings
A2	Component matrix for the A mode based on oblique 'HKIC' (Harris-Kaiser Independent Cluster) orthomax rotation of loadings

pcasup1	33

B2	Component matrix for the B mode based on oblique 'HKIC' (Harris-Kaiser Independent Cluster) orthomax rotation of loadings
C2	Component matrix for the C mode based on oblique 'HKIC' (Harris-Kaiser Independent Cluster) orthomax rotation of loadings

Note

aggregmode denotes the mode over which means are computed (1 for A-mode, 2 for B-mode, 3 for C-mode).

aggregmode is provided interactively.

Author(s)

```
Maria Antonietta Del Ferraro <a href="mariaantonietta">mariaantonietta</a>. delferraro@yahoo.it>
Henk A.L. Kiers <a href="mailto:kiers@rug.nl">h.a.l.kiers@rug.nl</a>
Paolo Giordani <a href="mailto:paolo.giordani@uniroma1.it">paolo.giordani@uniroma1.it</a>
```

References

H. Kaiser (1958). The varimax criterion for analytic rotation in factor analysis. *Psychometrika* 23:187–200.

C. Harris & H. Kaiser (1964). Some mathematical notes on three-mode factor analysis. *Psychometrika* 29:347–362.

Examples

```
data(TV)
TVdata=TV[[1]]
labSCALE=TV[[2]]
labPROGRAM=TV[[3]]
labSTUDENT=TV[[4]]
# permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
## Not run:
# PCA on the mean matrix
TVpcamean <- pcamean(TVdata, 30, 16, 15, labSTUDENT, labSCALE, labPROGRAM)
# PCA on the mean matrix (when labels are not available)
TVpcamean <- pcamean(TVdata, 30, 16, 15)
## End(Not run)</pre>
```

pcasup1

PCASup Analysis

Description

Computes PCASup analysis for the direction concerning the reduced mode.

pcasup1

Usage

```
pcasup1(X, n, m, p, model)
```

Arguments

X	Matrix (or data.frame coerced to a matrix) of order $(n \times mp)$ containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
model	Tucker1 model choice (1 for T1-A, 2 for T1-B, 3 for T2-C)

Value

A list including the following components:

A	Matrix of the eingenvectors of the supermatrix containing the frontal slices of the array (A-mode)
В	Matrix of the eingenvectors of the supermatrix containing the horizontal slices of the array (B-mode)
С	Matrix of the eingenvectors of the supermatrix containing the lateral slices of the array $(C\text{-}mode)$
la	Vector of the eigenvalues of the supermatrix containing the frontal slices of the array (A-mode)
1b	Vector of the eigenvalues of the supermatrix containing the horizontal slices of the array $(B\text{-}mode)$
lc	Vector of the eigenvalues of the supermatrix containing the lateral slices of the array (C-mode) $$

Note

pcasup1 computes the Tucker1 solution.

Cumulative sum of eigenvalues and fits from PCAsup applied to the reduced mode are automatically printed.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (1991). Hierarchical relations among three-way methods. *Psychometrika 56: 449–470*.

H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. *Journal of Chemometrics* 14:105–122.

pcasup2 35

L.R Tucker (1966). Some mathematical notes on three-mode factor analysis. *Psychometrika 31:* 279–311.

See Also

T1

Examples

```
data(Bus)
# PCA-sup for T1-B
pcasupBus <- pcasup1(Bus, 7, 5, 37, 2)</pre>
```

pcasup2

PCASup Analysis

Description

Computes PCASup analysis for the directions concerning the reduced modes.

Usage

```
pcasup2(X, n, m, p, model)
```

Arguments

X	Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
	• •
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
model	Tucker2 model choice (1 for T2-AB, 2 for T2-AC, 3 for T2-BC)

Value

A list including the following components:

A	Matrix of the eingenvectors of the supermatrix containing the frontal slices of the array (A-mode)
В	Matrix of the eingenvectors of the supermatrix containing the horizontal slices of the array (B-mode)
С	Matrix of the eingenvectors of the supermatrix containing the lateral slices of the array (C-mode)
la	Vector of the eigenvalues of the supermatrix containing the frontal slices of the array (A-mode)
1b	Vector of the eigenvalues of the supermatrix containing the horizontal slices of the array (B-mode)
lc	Vector of the eigenvalues of the supermatrix containing the lateral slices of the array (C-mode)

36 pcasup3

Note

Cumulative sum of eigenvalues and fits from PCAsup applied to the reduced modes are automatically printed.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (1991). Hierarchical relations among three-way methods. *Psychometrika 56: 449–470.*

H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. *Journal of Chemometrics* 14:105–122.

L.R Tucker (1966). Some mathematical notes on three-mode factor analysis. *Psychometrika 31:* 279–311.

See Also

T2

Examples

```
data(Bus)
# PCA-sup for T2-AB
pcasupBus <- pcasup2(Bus, 7, 5, 37, 1)</pre>
```

pcasup3

PCASup Analysis

Description

Computes PCASup analysis in all the three directions.

Usage

```
pcasup3(X, n, m, p)
```

Arguments

Χ	Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
n	Number of C-mode entities

pcasup3 37

Value

A list including the following components:

A	Matrix of the eingenvectors of the supermatrix containing the frontal slices of the array (A-mode)
В	Matrix of the eingenvectors of the supermatrix containing the horizontal slices of the array (B-mode)
С	Matrix of the eingenvectors of the supermatrix containing the lateral slices of the array (C-mode)
la	Vector of the eigenvalues of the supermatrix containing the frontal slices of the array (A-mode)
1b	Vector of the eigenvalues of the supermatrix containing the horizontal slices of the array (B-mode)
lc	Vector of the eigenvalues of the supermatrix containing the lateral slices of the array (C-mode) $$

Note

pcasup3 computes the Tucker3 solution according to Tucker (1966).

Cumulative sum of eigenvalues and fits from PCAsup applied to the A-, B- and C-modes are automatically printed.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (1991). Hierarchical relations among three-way methods. *Psychometrika 56: 449–470*.

H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. *Journal of Chemometrics* 14:105–122.

L.R Tucker (1966). Some mathematical notes on three-mode factor analysis. *Psychometrika 31:* 279–311.

See Also

Т3

```
data(Bus)
## Not run:
# PCA-sup
pcasupBus <- pcasup3(Bus, 7, 5, 37)
## End(Not run)</pre>
```

38 percentile95

percentile95

95% percentile intervals

Description

Computes 2.5% and 97.5% percentiles for all columns of X.

Usage

```
percentile95(X)
```

Arguments

Χ

Matrix

Value

A list including the following components:

Vector of the 2.5% percentiles of the values in the columns of X

up Vector of the 97.5% percentiles of the values in the columns of X

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

See Also

bootstrapCP,bootstrapT3

```
X <- matrix(rnorm(50*3),ncol=3)
perc95X <- percentile95(X)</pre>
```

permnew 39

permnew	Permutation of a matricized array
•	· ·

Description

Permutes the matricized $(n \times m \times p)$ array X to the matricized array Y of order $(m \times p \times n)$.

Usage

```
permnew(X,n,m,p)
```

Arguments

Χ	Matrix (or data.frame coerced to a matrix) containing the matricized array
n	Number of A-mode entities of the array X
m	Number of B-mode entities of the array X
р	Number of C-mode entities of the array X

Value

Y Matrix containing the permuted matricized array

Author(s)

```
Maria Antonietta Del Ferraro <a href="mariaantonietta">mariaantonietta</a>. delferraro@yahoo.it>
Henk A.L. Kiers <a href="mailto:kiers@rug.nl">h.a.l.kiers@rug.nl</a>
Paolo Giordani <a href="mailto:paolo.giordani@uniroma1.it">paolo.giordani@uniroma1.it</a>
```

References

H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. *Journal of Chemometrics* 14:105–122.

```
X <- array(c(rnorm(120)),c(6,5,4))
dim(X)
# matricized array
Xa <- supermat(X)$Xa
# matricized X with the A-mode entities in its rows
dim(Xa)
# matricized X with the B-mode entities in its rows
Xb <- permnew(Xa, 6, 5, 4)
dim(Xb)
# matricized X with the C-mode entities in its rows
Xc <- permnew(Xb, 5, 4, 6)
dim(Xc)</pre>
```

40 phi

perms

Permutation

Description

Gives all the permutations of the first integer numbers.

Usage

```
perms(n)
```

Arguments

n

Integer

Value

z

Matrix containing in its rows all the permutation of the first n integer numbers

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (2004). Bootstrap confidence intervals for three-way methods. *Journal of Chemometrics* 18:22–36.

Examples

```
P \leftarrow perms(4)
```

phi

Phi coefficient

Description

Computes the phi coefficients among columns of two matrices.

Usage

```
phi(a,b)
```

rarray 41

Arguments

a	Vector or matrix of the same order of b
b	Vector or matrix of the same order of a

Value

p Matrix containing the phi coefficients

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

L.R Tucker (1951). A method for synthesis of factor analysis studies. *Personnel Research Section Report No. 984*. Department of the Army, Washington, DC.

Examples

```
X <- matrix(rnorm(6*3),ncol=3)
Y <- matrix(rnorm(6*3),ncol=3)
P <- phi(X,Y)</pre>
```

rarray

Array reconstruction

Description

Produces an array starting from its matricization with all the frontal slices of the array next to each other.

Usage

```
rarray(Xa, n, m, p)
```

Ха	Matrix (or data.frame coerced to a matrix) containing the elements of the frontal slices of an array
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities

42 renormsolCP

Value

X Array leading to Xa

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. *Journal of Chemometrics* 14:105–122.

Examples

```
# matricized array (frontal slice)
Xa <- matrix(1:8,nrow=2)
X <- rarray(Xa, 2, 2, 2)
# original array
X</pre>
```

renormsolCP

Scaling of the Candecomp/Parafac solution

Description

Scales the Candecomp/Parafac solution producing two component matrices normalized to unit sum of squares (and compensating this scaling in the remaining component matrix).

Usage

```
renormsolCP(A, B, C, mode)
```

Arguments

Α	Component matrix for the A-mode
В	Component matrix for the B-mode
С	Component matrix for the C-mode
mode	Scaling option (1 if scaling for B- and C-modes, 2 if scaling for A- and C-modes, 3 if scaling for A- and B-modes)

Value

A list including the following components:

Α	Component matrix for the A-mode after normalization
В	Component matrix for the B-mode after normalization
С	Component matrix for the C-mode after normalization

renormsolT3 43

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

Examples

```
data(TV)
TVdata=TV[[1]]
# permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
# CP solution
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 1, 1, 1, 0, 1e-6, 10000)
# sums of squares of A, B and C
sum(TVcp$A^2)
sum(TVcp$B^2)
sum(TVcp$C^2)
# Renormalization by scaling B- and C-modes
TVcpScalBC <- renormsolCP(TVcp$A, TVcp$B, TVcp$C, 1)</pre>
# sums of squares of A, B and C after renormalization
sum(TVcpScalBC$A^2)
sum(TVcpScalBC$B^2)
sum(TVcpScalBC$C^2)
```

renormsolT3

Renormalization of the Tucker3 (and Tucker2) solution

Description

Renormalizes the Tucker3 solution producing a core normalized to unit sum of squares (and compensating the core normalization in the component matrices).

Usage

```
renormsolT3(A, B, C, G, mode)
```

A	Component matrix for the A-mode
В	Component matrix for the B-mode
С	Component matrix for the C-mode
G	Matricized core array (frontal slices)
mode	Renormalization option (1 if renormalization with respect to A-mode, 2 if renormalization with respect to B-mode, 3 if renormalization with respect to C-mode)

44 splithalfCP

Value

A list including the following components:

Α	Component matrix for the A-mode after normalization of the core
В	Component matrix for the B-mode after normalization of the core
С	Component matrix for the C-mode after normalization of the core
Н	Normalized matricized core array (frontal slices)

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

Examples

```
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8)
# T3 solution
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
# sums of squares of A and core
sum(BusT3$A^2)
sum(BusT3$H^2)
# Renormalization with respect to the A-mode
BusT3rA <- renormsolT3(BusT3$A, BusT3$B, BusT3$C, BusT3$H,1)
# sums of squares of A and core after renormalization
sum(BusT3rA$A^2)
sum(BusT3rA$A^2)</pre>
```

splithalfCP

Split-Half Analysis

Description

Performs split-half analysis for Candecomp/Parafac.

Usage

```
splithalfCP(X, n, m, p, r, centopt, normopt, scaleopt, addanal, conv,
maxit, ort1, ort2, ort3, laba, labb, labc)
```

splithalfCP 45

Arguments

X	Matrix (or data.frame coerced to a matrix) of order (n \times mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
p	Number of C-mode entities
r	Number of extracted components
centopt	Centering option (see cent3)
normopt	Normalization option (see norm3)
scaleopt	Scaling option (see renormsolCP)
addanal	Number of additional runs
conv	Convergence criterion
maxit	Maximal number of iterations
ort1	Type of constraints on A (see CP)
ort2	Type of constraints on B (see CP)
ort3	Type of constraints on C (see CP)
laba	Optional vector of length n containing the labels of the A-mode entities
labb	Optional vector of length m containing the labels of the B-mode entities
labc	Optional vector of length p containing the labels of the C-mode entities

Value

Afull	Component matrix for the A-mode (full data)
As1	Component matrix for the A-mode (split n.1)
As2	Component matrix for the A-mode (split n.2)
Bfull	Component matrix for the B-mode (full data)
Bs1	Component matrix for the B-mode (split n.1)
Bs2	Component matrix for the B-mode (split n.2)
Cfull	Component matrix for the C-mode (full data)
Cs1	Component matrix for the C-mode (split n.1)
Cs2	Component matrix for the C-mode (split n.2)

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

P.M. Kroonenberg (2008). Applied Multiway Data Analysis. Wiley, New Jersey.

splithalfT3

See Also

CP

Examples

```
data(TV)
TVdata=TV[[1]]
labSCALE=TV[[2]]
labPROGRAM=TV[[3]]
labSTUDENT=TV[[4]]
# permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
## Not run:
# Split-half analysis on CP solution
splitCP <- splithalfCP(TVdata, 30, 16, 15, 2, 0, 0, 0, 5, 1e-6, 10000, 1, 1, 1, labSTUDENT, labSCALE, labPROGRAM)
# Split-half analysis on CP solution (when labels are not available)
splitCP <- splithalfCP(TVdata, 30, 16, 15, 2, 0, 0, 0, 5, 1e-6, 10000, 1, 1, 1)
## End(Not run)</pre>
```

splithalfT3

Split-Half Analysis

Description

Performs split-half analysis for Tucker3.

Usage

```
splithalfT3(X, n, m, p, r1, r2, r3, centopt, normopt, renormmode,
  wa_rel, wb_rel, wc_rel, addanal, conv, laba, labb, labc)
```

X	Matrix (or data.frame coerced to a matrix) of order (n \times mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
r1	Number of extracted components for the A-mode
r2	Number of extracted components for the B-mode
r3	Number of extracted components for the C-mode
centopt	Centering option (see cent3)
normopt	Normalization option (see norm3)

splithalfT3 47

renormmode	Renormalization option (see renormsolT3)
wa_rel	Relative weight for simplicity of A-mode
wb_rel	Relative weight for simplicity of B-mode
wc_rel	Relative weight for simplicity of C-mode
addanal	Number of additional runs
conv	Convergence criterion
laba	Optional vector of length n containing the labels of the A-mode entities
labb	Optional vector of length m containing the labels of the B-mode entities
labc	Optional vector of length p containing the labels of the C-mode entities

Value

Afull	Component matrix for the A-mode (full data)
As1	Component matrix for the A-mode (split n.1)
As2	Component matrix for the A-mode (split n.2)
Bfull	Component matrix for the B-mode (full data)
Bs1	Component matrix for the B-mode (split n.1)
Bs2	Component matrix for the B-mode (split n.2)
Cfull	Component matrix for the C-mode (full data)
Cs1	Component matrix for the C-mode (split n.1)
Cs2	Component matrix for the C-mode (split n.2)
Kfull	Matricized core array (frontal slices) (full data)
Ks1	Matricized core array (frontal slices) (split n.1)
Ks2	Matricized core array (frontal slices) (split n.2)
Kss1	Matricized core array (frontal slices) (using full data solutions for A,B and C for split n.1)
Kss2	Matricized core array (frontal slices) (using full data solutions for A,B and C for split n.2)

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

P.M. Kroonenberg (2008). Applied Multiway Data Analysis. Wiley, New Jersey.

See Also

48 SUM

Examples

```
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5],1,1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)],3,8)
## Not run:
# Split-half analysis on T3 solution
splitT3 <- splithalfT3(Bus, 7, 5, 37, 2, 2, 2, 0, 0, 0, 3, 3, 0, 5, 1e-6, laba, labb, labc)
# Split-half analysis on T3 solution (when labels are not available)
splitT3 <- splithalfT3(Bus, 7, 5, 37, 2, 2, 2, 0, 0, 0, 3, 3, 0, 5, 1e-6)
## End(Not run)</pre>
```

SUM

Summary

Description

Summary of the elements of a matrix.

Usage

SUM(A)

Arguments

A Matrix or data.frame (coerced to a matrix)

Value

A list including the following components:

row

Vector containing the sum of squares of every row row Vector containing the sum of squares of every column col mr Vector containing the mean of every row Vector containing the mean of every column mc Vector containing the minimum of every column minc Vector containing the maximum of every for column maxc valueMinr Vector containing the columns corresponding to the minimum values of every valueMinc Vector containing the rows corresponding to the minimum values of every colvalueMaxr Vector containing the columns corresponding to the maximum values of every supermat 49

valueMaxc Vector containing the rows corresponding to the maximum values of every col-

umn

ssq Sum of squares of the matrix

cumsumr Matrix containing the cumulative sums of every row
cumsumc Matrix containing the cumulative sums of every column

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

Examples

```
X <- matrix(rnorm(6*3),ncol=3)
summary <- SUM(X)</pre>
```

supermat

Matrix unfolding

Description

Produces matricizations of a three-way array into matrices denoted as super-matrices.

Usage

supermat(X)

Arguments

X Array to be unfolded

Value

A list including the following components:

Xa Super-matrix with B-mode entities nested within C-mode entities (all the frontal

slices of the array next to each other)

Xb Super-matrix with C-mode entities nested within A-mode entities (all the hori-

zontal slices of the array next to each other)

Xc Super-matrix with A-mode entities nested within B-mode entities (all the lateral

slices of the array next to each other)

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. *Journal of Chemometrics* 14:105–122.

Examples

```
# array (2x2x2) with integers from 1 to 8
X <- array(1:8,c(2,2,2))
Y <- supermat(X)
# matricized arrays
Y$Xa
Y$Xb
Y$Xc</pre>
```

T1

Interactive Tucker1 analysis

Description

Detects the underlying structure of a three-way array according to the Tucker1 (T1) model.

Usage

```
T1(dati, laba, labb, labc)
```

Arguments

dati	Array of order n by m by p or matrix or data.frame of order (n x mp) containing the matricized array (frontal slices)
laba	Optional vector of length n containing the labels of the A-mode entities
labb	Optional vector of length m containing the labels of the B-mode entities
labc	Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

A	Component matrix for the A-mode
В	Component matrix for the B-mode
С	Component matrix for the C-mode
core	Matricized core array (frontal slices)
fit	Fit value expressed as a percentage
fitA	Fit contributions for the A-mode entities (see T3fitpartitioning)
fitB	Fit contributions for the B-mode entities (see T3fitpartitioning)

T1 51

fitC	Fit contributions for the C-mode entities (see T3fitpartitioning)
laba	Vector of length n containing the labels of the A-mode entities
labb	Vector of length m containing the labels of the B-mode entities
labc	Vector of length P containing the labels of the C-mode entities
Хргер	Matrix of order (n \times mp) containing the matricized array (frontal slices) after preprocessing used for the analysis

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

P. Giordani, H.A.L. Kiers, M.A. Del Ferraro (2014). Three-way component analysis using the R package ThreeWay. *Journal of Statistical Software* 57(7):1–23. http://www.jstatsoft.org/v57/i07/.

P.M. Kroonenberg (2008). *Applied Multiway Data Analysis*. Wiley, New Jersey. L.R Tucker (1966). Some mathematical notes on three-mode factor analysis. *Psychometrika* 31:279–311.

See Also

```
CP,T3,T2
```

```
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5],1,1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)],3,8)
## Not run:
# interactive T1 analysis
BusT1 <- T1(Bus, laba, labb, labc)
# interactive T1 analysis (when labels are not available)
BusT1 <- T1(Bus)</pre>
## End(Not run)
```

52 T1runsFit

T1runsFit	Tucker1 solutions	

Description

Computes all the Tucker1 solutions using PCASup results with r1 (from 1 to maxa, if A-mode reduced), r2 (from 1 to maxb, if B-mode reduced) and r3 (from 1 to maxc, if C-mode reduced) components.

Usage

```
T1runsFit(X, n, m, p, maxa, maxb, maxc, model)
```

Arguments

X	Matrix (or data.frame coerced to a matrix) of order (n \times mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
maxa	Maximum dimensionality for the A-mode
maxb	Maximum dimensionality for the B-mode
maxc	Maximum dimensionality for the C-mode
model	Tucker1 model choice (1 for T1-A, 2 for T1-B, 3 for T2-C)

Value

out Matrix with columns: number of components for the A-mode, number of components for the B-mode, number of components for the C-mode, goodness of fit (%), total number of components

Note

Cumulative sum of eigenvalues and fits from PCAsup applied to the reduced mode are automatically printed.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (1991). Hierarchical relations among three-way methods. *Psychometrika* 56:449–470.

T2 53

See Also

```
DimSelector, LineCon, pcasup1, T1
```

Examples

```
data(Bus)
# Fit values of T1-A with different numbers of components (from 1 to 5)
FitT1 <- T1runsFit(Bus, 7, 5, 37, 5, 5, 37, 1)</pre>
```

T2

Interactive Tucker2 analysis

Description

Detects the underlying structure of a three-way array according to the Tucker2 (T2) model.

Usage

```
T2(dati, laba, labb, labc)
```

Arguments

dati	Array of order $n \times m \times p$ or matrix or data.frame of order $(n \times mp)$ containing the matricized array (frontal slices)
laba	Optional vector of length n containing the labels of the A-mode entities
labb	Optional vector of length m containing the labels of the B-mode entities
labc	Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

Α	Component matrix for the A-mode
В	Component matrix for the B-mode
С	Component matrix for the C-mode
core	Matricized core array (frontal slices)
fit	Fit value expressed as a percentage
fitValues	Fit values expressed as a percentage upon convergence for all the runs of the CP algorithm (see T2func)
funcValues	Function values upon convergence for all the runs of the CP algorithm (see $T2func$)
cputime	Computation times for all the runs of the CP algorithm (see T2func)
iter	Numbers of iterations upon convergence for all the runs of the CP algorithm (see T2func) $$

fitA	Fit contributions for the A-mode entities (see T3fitpartitioning)
fitB	Fit contributions for the B-mode entities (see T3fitpartitioning)
fitC	Fit contributions for the C-mode entities (see T3fitpartitioning)
fitAB	Fit contributions for the A-and mode B component combinations (see T3fitpartitioning)
fitAC	Fit contributions for the A-and mode C component combinations (see T3fitpartitioning)
fitBC	Fit contributions for the B-and mode C component combinations (see T3fitpartitioning)
laba	Vector of length n containing the labels of the A-mode entities
labb	Vector of length m containing the labels of the B-mode entities
labc	Vector of length P containing the labels of the C-mode entities
Хргер	Matrix of order (n x mp) containing the matricized array (frontal slices) after preprocessing used for the analysis

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

P. Giordani, H.A.L. Kiers, M.A. Del Ferraro (2014). Three-way component analysis using the R package ThreeWay. *Journal of Statistical Software* 57(7):1–23. http://www.jstatsoft.org/v57/i07/.

P.M. Kroonenberg (2008). *Applied Multiway Data Analysis*. Wiley, New Jersey. L.R Tucker (1966). Some mathematical notes on three-mode factor analysis. *Psychometrika*

See Also

CP,T3,T1

31:279–311.

```
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8)
## Not run:
# interactive T2 analysis
BusT2 <- T2(Bus, laba, labb, labc)
# interactive T2 analysis (when labels are not available)
BusT2 <- T2(Bus)
## End(Not run)</pre>
```

T2func 55

T2func Algorithm for the Tucker2 model	
--	--

Description

Alternating Least Squares algorithm for the minimization of the Tucker2 loss function.

Usage

```
T2func(X, n, m, p, r1, r2, r3, start, conv, model, A, B, C, H)
```

Arguments

X	Matrix (or data.frame coerced to a matrix) of order (n \times mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
r1	Number of extracted components for the A-mode
r2	Number of extracted components for the B-mode
r3	Number of extracted components for the C-mode
start	Starting point: 0 starting point of the algorithm from generalized eigenvalue decomposition, 1 random starting point (orthonormalized component matrices), 2 if users specified component matrices
conv	Convergence criterion
model	Tucker2 model choice (1 for T2-AB, 2 for T2-AC, 3 for T2-BC)
Α	Optional (necessary if start=2) starting value for A
В	Optional (necessary if start=2) starting value for B
С	Optional (necessary if start=2) starting value for C
Н	Optional (necessary if start=2) starting value for the matricized core array (frontal slices)

Value

A list including the following components:

Α	Orthonormal component matrix for the A-mode
В	Orthonormal component matrix for the B-mode
С	Orthonormal component matrix for the C-mode
Н	Matricized core array (frontal slices)
f	Loss function value

56 T2func

fp	Fit percentage
iter	Number of iterations
cputime	Computation time
La	Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for A-mode
Lb	Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for B-mode
Lc	Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for C-mode

Note

The loss function to be minimized is $||X_A - AG_Akron(C', B')||^2$ where X_A and G_A denote the matricized (frontal slices) data array and core array, respectively, and kron stands for the Kronecker product.

T2func is the same as T2funcrep except that all printings are available.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers, P.M. Kroonenberg & J.M.F. ten Berge (1992). An efficient algorithm for TUCK-ALS3 on data with large numbers of observation units. *Psychometrika* 57:415–422.

P.M. Kroonenberg and J. de Leeuw (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. *Psychometrika* 45:69–97.

See Also

```
T2, T2funcrep
```

```
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8)
# T2-AB solution using two components for the A- and B-modes
# (rational starting point by SVD [start=0])
BusT2 <- T2func(Bus, 7, 5, 37, 2, 2, 37, 0, 1e-6, 1)
# T2-AC solution using two components for for the A- and C-modes
# (random orthonormalized starting point [start=1])
BusT2 <- T2func(Bus, 7, 5, 37, 2, 5, 2, 1, 1e-6, 2)
# T2-BC solution using two components for the B- and C- modes
# (user starting point [start=2])</pre>
```

T2funcrep 57

```
BusT2 <- T2func(Bus, 7, 5, 37, 7, 2, 2, 1, 1e-6, 3, diag(7),
matrix(rnorm(5*2),nrow=5), matrix(rnorm(37*2),nrow=37),
matrix(rnorm(7*4),nrow=7))</pre>
```

T2funcrep

Algorithm for the Tucker2 model

Description

Alternating Least Squares algorithm for the minimization of the Tucker2 loss function.

Usage

```
T2funcrep(X, n, m, p, r1, r2, r3, start, conv, model, A, B, C, H)
```

X	Matrix (or data.frame coerced to a matrix) of order (n \times mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
r1	Number of extracted components for the A-mode
r2	Number of extracted components for the B-mode
r3	Number of extracted components for the C-mode
start	Starting point: 0 starting point of the algorithm from generalized eigenvalue decomposition, 1 random starting point (orthonormalized component matrices), 2 if users specified component matrices
conv	Convergence criterion
model	Tucker2 model choice (1 for T2-AB, 2 for T2-AC, 3 for T2-BC)
A	Optional (necessary if start=2) starting value for A
В	Optional (necessary if start=2) starting value for B
С	Optional (necessary if start=2) starting value for C
Н	Optional (necessary if start=2) starting value for the matricized core array (frontal slices)

T2funcrep

Value

A list including the following components:

A	Orthonormal component matrix for the A-mode
В	Orthonormal component matrix for the B-mode
С	Orthonormal component matrix for the C-mode
Н	Matricized core array (frontal slices)
f	Loss function value
fp	Fit percentage
iter	Number of iterations
cputime	Computation time
La	Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for A-mode
Lb	Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for B-mode
Lc	Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for C-mode

Note

The loss function to be minimized is $||X_A - AG_Akron(C', B')||^2$ where X_A and G_A denote the matricized (frontal slices) data array and core array, respectively, and kron stands for the Kronecker product.

T2funcrep is the same as T2func except that all printings are suppressed. Thus, T2funcrep can be helpful for simulation experiments.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers, P.M. Kroonenberg \& J.M.F. ten Berge (1992). An efficient algorithm for TUCK-ALS3 on data with large numbers of observation units. *Psychometrika* 57:415–422.

P.M. Kroonenberg and J. de Leeuw (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. *Psychometrika* 45:69–97.

See Also

T2, T2func

T2runsApproxFit 59

Examples

```
data(Bus)
# labels for Bus data
laba <- rownames(Bus)</pre>
labb <- substr(colnames(Bus)[1:5], 1, 1)</pre>
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8)</pre>
# T2-AB solution using two components for the A- and B-modes
# (rational starting point by SVD [start=0])
BusT2 <- T2funcrep(Bus, 7, 5, 37, 2, 2, 37, 0, 1e-6,1)
# T2-AC solution using two components for for the A- and C-modes
# (random orthonormalized starting point [start=1])
BusT2 <- T2funcrep(Bus, 7, 5, 37, 2, 5, 2, 1, 1e-6, 2)
\mbox{\tt\#} T2-BC solution using two components for the B- and C- modes
# (user starting point [start=2])
BusT2 <- T2funcrep(Bus, 7, 5, 37, 7, 2, 2, 1, 1e-6, 3, diag(7),
matrix(rnorm(5*2), nrow=5), matrix(rnorm(37*2), nrow=37),
 matrix(rnorm(7*4),nrow=7))
```

T2runsApproxFit

Approximated Tucker2 solutions

Description

Computes all the approximated Tucker2 solutions using PCASup results with r1 (from 1 to maxa, if A-mode reduced), r2 (from 1 to maxb, if B-mode reduced) and r3 (from 1 to maxc, if C-mode reduced) components.

Usage

```
T2runsApproxFit(X, n, m, p, maxa, maxb, maxc, model)
```

Arguments

X	Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
p	Number of C-mode entities
maxa	Maximum dimensionality for the A-mode
maxb	Maximum dimensionality for the B-mode
maxc	Maximum dimensionality for the C-mode
model	Tucker2 model choice (1 for T2-AB, 2 for T2-AC, 3 for T2-BC)

Value

out Matrix with columns: number of components for the A-mode, number of components for the B-mode, number of components for the C-mode, goodness of fit

(%), total number of components

Note

Cumulative sum of eigenvalues and fits from PCAsup applied to the reduced modes are automatically printed.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (1991). Hierarchical relations among three-way methods. *Psychometrika* 56:449–470.

See Also

```
DimSelector, LineCon, pcasup2, T2
```

Examples

```
data(Bus)
# Fit values of T2-AB with different numbers of components
# (from 1 to 3 for the B-mode, from 1 to 5 for the C-mode)
FitT2 <- T2runsApproxFit(Bus, 7, 5, 37, 7, 3, 5, 3)</pre>
```

Т3

Interactive Tucker3 analysis

Description

Detects the underlying structure of a three-way array according to the Tucker3 (T3) model.

Usage

```
T3(data, laba, labb, labc)
```

data	Array of order $n \times m \times p$ or matrix or data.frame of order $(n \times mp)$ containing the matricized array (frontal slices)
laba	Optional vector of length n containing the labels of the A-mode entities
labb	Optional vector of length m containing the labels of the B-mode entities
labc	Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

A	Component matrix for the A-mode
В	Component matrix for the B-mode
С	Component matrix for the C-mode
core	Matricized core array (frontal slices)
fit	Fit value expressed as a percentage
fitValues	Fit values expressed as a percentage upon convergence for all the runs of the CP algorithm (see T3func)
funcValues	Function values upon convergence for all the runs of the CP algorithm (see T3func)
cputime	Computation times for all the runs of the CP algorithm (see T3func)
iter	Numbers of iterations upon convergence for all the runs of the CP algorithm (see T3func)
fitA	Fit contributions for the A-mode entities (see T3fitpartitioning)
fitB	Fit contributions for the B-mode entities (see T3fitpartitioning)
fitC	Fit contributions for the C-mode entities (see T3fitpartitioning)
fitAB	Fit contributions for the A-and mode B component combinations (see T3fitpartitioning)
fitAC	Fit contributions for the A-and mode C component combinations (see T3fitpartitioning)
fitBC	Fit contributions for the B-and mode C component combinations (see T3fitpartitioning)
Bint	Bootstrap percentile interval of every element of B (see bootstrapT3)
Cint	Bootstrap percentile interval of every element of C (see bootstrapT3)
Kint	Bootstrap percentile interval of every element of core (see bootstrapT3)
fpint	Bootstrap percentile interval for the goodness of fit index expressed as a percentage (see bootstrapT3)
Afull	Component matrix for the A-mode (full data) from split-half analysis (see splithalfT3)
As1	Component matrix for the A-mode (split n.1) from split-half analysis (see splithalfT3)
As2	Component matrix for the A-mode (split n.2) from split-half analysis (see splithalfT3)
Bfull	Component matrix for the B-mode (full data) from split-half analysis (see splithalfT3)
Bs1	Component matrix for the B-mode (split n.1) from split-half analysis (see splithalfT3)
Bs2	Component matrix for the B-mode (split n.2) from split-half analysis (see splithalfT3)
Cfull	Component matrix for the C-mode (full data) from split-half analysis (see splithalfT3)
Cs1	Component matrix for the C-mode (split n.1) from split-half analysis (see splithalfT3)
Cs2	Component matrix for the C-mode (split n.2) from split-half analysis (see splithalfT3)
Kfull	Matricized core array (frontal slices) (full data) from split-half analysis (see splithalfT3)
Ks1	Matricized core array (frontal slices) (split n.1) from split-half analysis (see splithalfT3)

Ks2	Matricized core array (frontal slices) (split n.2) from split-half analysis (see $splithalfT3$)
Kss1	Matricized core array (frontal slices) (using full data solutions for A,B and C for split n.1) from split-half analysis (see splithalfT3)
Kss2	Matricized core array (frontal slices) (using full data solutions for A,B and C for split n.2) from split-half analysis (see splithalfT3)
Aplot	Coordinates for plots of the A-mode entities
Bplot	Coordinates for plots of the B-mode entities
Cplot	Coordinates for plots of the C-mode entities
CBplot	Coordinates for plots of the C and B-mode entities using the A-mode projected in it as axes (to be added in plot, i.e. coordinates in (\$CBplot,\$A))
ACplot	Coordinates for plots of the A and C-mode entities using the B-mode projected in it as axes (to be added in plot, i.e. coordinates in (\$ACplot,\$B))
BAplot	Coordinates for plots of the B and A-mode entities using the C-mode projected in it as axes (to be added in plot, i.e. coordinates in (\$BAplot,\$C))
A1	Component matrix for the A-mode from Principal Component Analysis of mean values (see pcamean)
B1	Component matrix for the B-mode from Principal Component Analysis of mean values (see pcamean)
C1	Component matrix for the C-mode from Principal Component Analysis of mean values (see pcamean)
A2	Component matrix for the A-mode from Principal Component Analysis of mean values (see pcamean)
B2	Component matrix for the B-mode from Principal Component Analysis of mean values (see pcamean)
C2	Component matrix for the C-mode from Principal Component Analysis of mean values (see pcamean)
laba	Vector of length n containing the labels of the A-mode entities
labb	Vector of length m containing the labels of the B-mode entities
labc	Vector of length P containing the labels of the C-mode entities
Xprep	Matrix of order (n \times mp) containing the matricized array (frontal slices) after preprocessing used for the analysis

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it> Henk A.L. Kiers <h.a.l.kiers@rug.nl> Paolo Giordani <paolo.giordani@uniroma1.it> T3dimensionalityplot 63

References

P. Giordani, H.A.L. Kiers, M.A. Del Ferraro (2014). Three-way component analysis using the R package ThreeWay. *Journal of Statistical Software* 57(7):1–23. http://www.jstatsoft.org/v57/i07/.

P.M. Kroonenberg (2008). Applied Multiway Data Analysis. Wiley, New Jersey.

L.R Tucker (1966). Some mathematical notes on three-mode factor analysis. *Psychometrika* 31:279–311.

See Also

```
CP,T2,T1
```

Examples

```
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5],1,1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)],3,8)
## Not run:
# interactive T3 analysis
BusT3 <- T3(Bus, laba, labb, labc)
# interactive T3 analysis (when labels are not available)
BusT3 <- T3(Bus)</pre>
## End(Not run)
```

T3dimensionalityplot Plot fit of Tucker3

Description

Plots fits against numbers of dimensions, with PQR as labels and fits against number of effective paramaters.

Usage

```
T3dimensionalityplot(A, n, m, p)
```

A	Matrix with columns: number of components for the A-mode, number of components for the B-mode, number of components for the C-mode, goodness of fit (%), total number of components
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities

64 T3fitpartitioning

Note

A is usually the output of DimSelector.

The number of effective parameters in a Candecomp/Parafac analysis is discussed in Weesie and Van Houwelingen (1983).

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

- E. Ceulemans \& H.A.L. Kiers (2006). Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method. *British Journal of Mathematical and Statistical Psychology* 59:133–150.
- J. Weesie and H. Van Houwelingen (1983). *GEPCAM users' manual (first draft)*. Utrecht, The Netherlands: Institute of Mathematical Statistics, State University of Utrecht.

See Also

```
T3, DimSelector
```

Examples

```
data(Bus)
# Fit values of T3 with different numbers of components (from 1 to 4 for the A-mode,
# from 1 to 3 for the B-mode, from 1 to 5 for the C-mode)
FitT3 <- T3runsApproxFit(Bus,7,5,37,4,3,5)
T3dimensionalityplot(FitT3,7,5,37)</pre>
```

T3fitpartitioning

Fit of each entity per mode

Description

Computation of fit contributions by combinations of modes in case of 'renormalization'.

Usage

```
T3fitpartitioning(Xprep, n, m, p, AS, BT, CU, K, renormmode, laba, labb, labc)
```

T3fitpartitioning 65

Arguments

Хргер	Matrix (or data.frame coerced to a matrix) of order ($n \times mp$) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
AS	Component matrix for the A-mode
BT	Component matrix for the B-mode
CU	Component matrix for the C-mode
K	Matricized core array (frontal slices)
renormmode	Renormalization option (0 for no renormalization, 1 for fit contribution to total fit of each B- and C-mode component combination, 2 for fit contribution to total fit of each A- and C-mode component combination, 3 for fit contribution to total fit of each A- and B-mode component combination)
laba	Optional vector of length n containing the labels of the A-mode entities
labb	Optional vector of length m containing the labels of the B-mode entities
labc	Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

fitA	Fit contribution for the A-mode entities
fitB	Fit contribution for the B-mode entities
fitC	Fit contribution for the C-mode entities
ABcontr	Contribution to the goodness of fit contributions by combinations of A- and B-modes in case of 'renormalization'
BCcontr	Contribution to the goodness of fit contributions by combinations of B- and C-modes in case of 'renormalization'
ACcontr	Contribution to the goodness of fit contributions by combinations of A- and C-modes in case of 'renormalization'

Note

The computation of the fit contributions by combinations of modes is done in case of 'renormalization'.

In Tucker1, renormmode must be equal to 0.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it> Henk A.L. Kiers <h.a.l.kiers@rug.nl> Paolo Giordani <paolo.giordani@uniroma1.it> 66 T3func

See Also

```
T3, T2, T1
```

Examples

```
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8)
# T3 solution
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
# Fitpartitioning of the T3 solution
FitT3 <- T3fitpartitioning(Bus, 7, 5, 37, BusT3$A, BusT3$B, BusT3$C, BusT3$H, 0, laba, labb, labc)
# Fitpartitioning of the T3 solution (when labels are not available)
FitT3 <- T3fitpartitioning(Bus, 7, 5, 37, BusT3$A, BusT3$B, BusT3$C, BusT3$H, 0)</pre>
```

T3func

Algorithm for the Tucker3 model

Description

Alternating Least Squares algorithm for the minimization of the Tucker3 loss function.

Usage

```
T3func(X, n, m, p, r1, r2, r3, start, conv, A, B, C, H)
```

Х	Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
r1	Number of extracted components for the A-mode
r2	Number of extracted components for the B-mode
r3	Number of extracted components for the C-mode
start	Starting point (0 starting point of the algorithm from generalized eigenvalue decomposition, 1 random starting point (orthonormalized component matrices), 2 if users specified component matrices
conv	Convergence criterion
Α	Optional (necessary if start=2) starting value for A

T3func 67

В	Optional (necessary if start=2) starting value for B
С	Optional (necessary if start=2) starting value for C
Н	Optional (necessary if start=2) starting value for the matricized core array (frontal slices)

Value

A list including the following components:

Α	Orthonormal component matrix for the A-mode
В	Orthonormal component matrix for the B-mode
С	Orthonormal component matrix for the C-mode
Н	Matricized core array (frontal slices)
f	Loss function value
fp	Fit percentage
iter	Number of iterations
cputime	Computation time
La	Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for A-mode
Lb	Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for B-mode
Lc	Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for C-mode

Note

The loss function to be minimized is $||X_A - AG_Akron(C', B')||^2$ where X_A and G_A denote the matricized (frontal slices) data array and core array, respectively, and kron stands for the Kronecker product.

T3func is the same as T3funcrep except that all printings are available.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers, P.M. Kroonenberg \& J.M.F. ten Berge (1992). An efficient algorithm for TUCK-ALS3 on data with large numbers of observation units. *Psychometrika* 57:415–422.

P.M. Kroonenberg \& J. de Leeuw (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. *Psychometrika* 45:69–97.

See Also

T3, T3funcrep

68 T3funcrep

Examples

```
data(Bus)
# labels for Bus data
laba <- rownames(Bus)</pre>
labb <- substr(colnames(Bus)[1:5], 1, 1)</pre>
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8)</pre>
# T3 solution using two components for all the modes
# (rational starting point by SVD [start=0])
BusT3 <- T3func(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
# T3 solution using two components for all the modes
# (random orthonormalized starting point [start=1])
BusT3 <- T3func(Bus, 7, 5, 37, 2, 2, 2, 1, 1e-6)
# T3 solution using two components for all the modes
# (user starting point [start=2])
BusT3 <- T3func(Bus, 7, 5, 37, 2, 2, 2, 1, 1e-6, matrix(rnorm(7*2),nrow=7),
matrix(rnorm(5*2), nrow=5), matrix(rnorm(37*2), nrow=37),
 matrix(rnorm(2*4),nrow=2))
```

T3funcrep

Algorithm for the Tucker3 model

Description

Alternating Least Squares algorithm for the minimization of the Tucker3 loss function.

Usage

```
T3funcrep(X, n, m, p, r1, r2, r3, start, conv, A, B, C, H)
```

Х	Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
r1	Number of extracted components for the A-mode
r2	Number of extracted components for the B-mode
r3	Number of extracted components for the C-mode
start	Starting point (0 starting point of the algorithm from generalized eigenvalue decomposition, 1 random starting point (orthonormalized component matrices), 2 if users specified component matrices
conv	Convergence criterion
Α	Optional (necessary if start=2) starting value for A

T3funcrep 69

В	Optional (necessary if start=2) starting value for B
С	Optional (necessary if start=2) starting value for C
Н	Optional (necessary if start=2) starting value for the matricized core array (frontal slices)

Value

A list including the following components:

A	Orthonormal component matrix for the A-mode
В	Orthonormal component matrix for the B-mode
С	Orthonormal component matrix for the C-mode
Н	Matricized core array (frontal slices)
f	Loss function value
fp	Fit percentage
iter	Number of iterations
cputime	Computation time
La	Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for A -mode
Lb	Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for $\ensuremath{B}\text{-}mode$
Lc	Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for C-mode

Note

The loss function to be minimized is $||X_A - AG_Akron(C', B')||^2$ where X_A and G_A denote the matricized (frontal slices) data array and core array, respectively, and kron stands for the Kronecker product.

T3funcrep is the same as T3func except that all printings are suppressed. Thus, T3funcrep can be helpful for simulation experiments.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers, P.M. Kroonenberg \& J.M.F. ten Berge (1992). An efficient algorithm for TUCK-ALS3 on data with large numbers of observation units. *Psychometrika* 57:415–422.

P.M. Kroonenberg & J. de Leeuw (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. *Psychometrika* 45:69–97.

70 T3runsApproxFit

See Also

T3, T3func

Examples

```
data(Bus)
# labels for Bus data
laba <- rownames(Bus)</pre>
labb <- substr(colnames(Bus)[1:5], 1, 1)</pre>
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8)</pre>
# T3 solution using two components for all the modes
# (rational starting point by SVD [start=0])
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
# T3 solution using two components for all the modes
# (random orthonormalized starting point [start=1])
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 1, 1e-6)
# T3 solution using two components for all the modes
# (user starting point [start=2])
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 1, 1e-6, matrix(rnorm(7*2),nrow=7),
matrix(rnorm(5*2),nrow=5), matrix(rnorm(37*2),nrow=37),
 matrix(rnorm(2*4),nrow=2))
```

T3runsApproxFit

Approximated Tucker3 solutions

Description

Computes all the approximated Tcker3 solutions using PCASup results with r1 (from 1 to maxa), r2 (from 1 to maxb) and r3 (from 1 to maxc) components.

Usage

```
T3runsApproxFit(X, n, m, p, maxa, maxb, maxc)
```

X	Matrix (or data.frame coerced to a matrix) of order (n \times mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities
maxa	Maximum dimensionality for the A-mode
maxb	Maximum dimensionality for the B-mode
maxc	Maximum dimensionality for the C-mode

threewayanova 71

Value

out

Matrix with columns: number of components for the A-mode, number of components for the B-mode, number of components for the C-mode, goodness of fit (%), total number of components

Note

Cumulative sum of eigenvalues and fits from PCAsup applied to the A-, B- and C-modes are automatically printed.

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (1991). Hierarchical relations among three-way methods. *Psychometrika* 56:449–470.

See Also

```
DimSelector, LineCon, pcasup3, T3
```

Examples

```
data(Bus)
# Fit values of T3 with different numbers of components (from 1 to 4 for the A-mode,
# from 1 to 3 for the B-mode, from 1 to 5 for the C-mode)
FitT3 <- T3runsApproxFit(Bus, 7, 5, 37, 4, 3, 5)</pre>
```

threewayanova

Three-way ANOVA

Description

Computation of three-way Analysis of Variance (ANOVA).

Usage

```
threewayanova(Y, n, m, p)
```

72 threewayanova

Arguments

Υ	Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n	Number of A-mode entities
m	Number of B-mode entities
р	Number of C-mode entities

Value

A list including the following components:

SS.a	Main effect for the A-mode
SS.b	Main effect for the B-mode
SS.c	Main effect for the C-mode
SS.ab	Second order interaction (A- and B-mode)
SS.bc	Second order interaction (B- and C-mode)
SS.ac	Second order interaction (A- and C-mode)
SS.abc	Residual sum of squares after subtraction of second order interactions

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers & I. Van Mechelen (2001). Three-way component analysis: principles and illustrative applications. *Psychological Methods* 6:84–110.

```
data(TV)
TVdata=TV[[1]]
anova3 <- threewayanova(TVdata, 16, 15, 30)</pre>
```

tr 73

tr *Trace*

Description

Computes the trace of a matrix.

Usage

tr(a)

Arguments

a Matrix

Value

t Trace of A

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it> Henk A.L. Kiers <h.a.l.kiers@rug.nl> Paolo Giordani <paolo.giordani@uniroma1.it>

Examples

```
X <- matrix(rnorm(6*6),ncol=6)
trace <- tr(X)</pre>
```

TV TV data

Description

Three-way data about ratings of 15 American television shows on 16 bipolar scales made by 30 students.

Usage

data(TV)

Format

A list containing one data.frame and three character vectors.

TV[[1]] is a data.frame with 16 rows and 450 (15 x 30) columns.

The rows refer to the American television shows.

The columns refer to the combinations of scales and students with the sclaes nested within the students.

The data frame contains the frontal slices next to each other of the original array.

The labels for the bipolar scales are in the character vector TV[[2]].

The labels for the TV programs are in the character vector TV[[3]].

The labels for the students are in the character vector TV[[4]].

Details

The original data set consists of ratings made by 40 subjects (psychology students at the University of Western Ontario in 1981). To avoid missing data, only 30 students are considered. The ratings are made on 13-point bipolar scales. Lundy et al. (1989) perform Candecomp/Parafac on the preprocessed data. Details on preprocessing are not reported, but should be centered within TV programs and scales. Three real components are extracted. However, the unconstrained Candecomp/Parafac solution with three components suffers from the so-called degeneracy (obtained solution with highly correlated and uninterpretable dimensions). Degeneracy (see, for instance, Harshman & Lundy, 1984; Stegeman, 2006, 2007; De Silva & Lim, 2008; Rocci & Giordani, 2010) can be overcome by imposing orthogonal constraints in one of the component matrices. The so-obtained solution with three components is meaningful and interpretable as described in Lundy et al. (1989).

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it> Henk A.L. Kiers <h.a.l.kiers@rug.nl> Paolo Giordani <paolo.giordani@uniroma1.it>

References

V. De Silva \& L.-H. Lim (2008). Tensor rank and the ill-posedness of the best low-rank approximation problem. *SIAM Journal on Matrix Analysis and Applications* 30:1084–1127.

R.A. Harshman & M.E. Lundy (1984). Data preprocessing and the extended PARAFAC model. In H.G. Law, C.W. Snyder Jr, J.A. Hattie, & R.P. McDonald (Eds.): Research methods for multimode data analysis. Praeger, New York (pp. 216–284).

M.E. Lundy, R.A. Harshman \& J.B. Kruskal (1989). A two-stage procedure incorporating good features of both trilinear and quadrilinear models. In *R. Coppi, S. Bolasco (Eds.): Multiway Data Analysis*. Elsevier, North Holland (pp. 123–130).

R. Rocci R \& P. Giordani (2010). A weak degeneracy decomposition for the CANDECOMP/PARAFAC model. *Journal of Chemometrics* 24:57–66.

A. Stegeman (2006). Degeneracy in Candecomp/Parafac explained for pxpx2 arrays of rank p+1 or higher. *Psychometrika* 71:483–501.

A. Stegeman (2007). Degeneracy in Candecomp/Parafac and Indscal explained for several three-sliced arrays with a two-valued typical rank. *Psychometrika* 72:601–619.

varim 75

Examples

```
# to perform stability check and produce bootstrap confidence intervals
# it is useful to permute the modes so that the A-mode refers to students
data(TV)

TVdata=TV[[1]]
labSCALE=TV[[2]]
labPROGRAM=TV[[3]]
labSTUDENT=TV[[4]]

TVdata <- permnew(TVdata, 16, 15, 30)

TVdata <- permnew(TVdata, 15, 30, 16)</pre>
```

varim

Varimax roation

Description

Produces varimax rotated version of A and rotation matrix T.

Usage

varim(A)

Arguments

A Matrix to be to be rotated

Value

A list including the following components:

B Rotated version of A (B=AT)

T Rotation matrix

f Varimax function value

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H. Kaiser (1958). The varimax criterion for analytic rotation in factor analysis. *Psychometrika* 23:187–200.

K. Nevels (1986). A direct solution for pairwise rotations in Kaiser's varimax method. *Psychometrika* 51:327–329.

76 varimcoco

See Also

normvari

Examples

```
X <- matrix(rnorm(6*3),ncol=3)
Y <- varim(X)
# varimax rotated version of X
Y$B
# rotation matrix
Y$T</pre>
```

varimcoco

Varimax Rotation for Tucker3 and Tucker2

Description

Performs varimax rotation of the core and component matrix rotations to simple structure.

Usage

```
varimcoco(A, B, C, H, wa_rel, wb_rel, wc_rel, rot1, rot2, rot3, nanal)
```

Arguments

A	Columnwise orthomornal component matrix for the A-mode
В	Columnwise orthomornal component matrix for the B-mode
С	Columnwise orthomornal component matrix for the C-mode
Н	Matricized core array (frontal slices)
wa_rel	relative weight (>=0) for the simplicity of A
wb_rel	relative weight (>=0) for the simplicity of B
wc_rel	relative weight (>=0) for the simplicity of C
rot1	binary indicator (1 if the A-mode is rotated, 0 otherwise, default 1)
rot2	binary indicator (1 if the B-mode is rotated, 0 otherwise, default 1)
rot3	binary indicator (1 if the C-mode is rotated, 0 otherwise, default 1)
nanal	Number of random starts, default 5

Value

A list including the following components:

AS	Rotated component matrix for the A-mode
BT	Rotated component matrix for the B-mode
CU	Rotated component matrix for the C-mode

varimcoco 77

K	Rotated matricized core array (frontal slices)
S	Rotation matrix for the A-mode
Т	Rotation matrix for the B-mode
U	Rotation matrix for the C-mode
f	Best solution for three-way orthomax function value
f1	Varimax value of H
f2a	Varimax value of AS
f2b	Varimax value of BT
f2c	Varimax value of CU
func	Function values upon convergence for all the runs of the orthomax algorithm

Note

The simplicity values f1, f2a, f2b, f2c are based on 'natural' weights and therefore comparable across matrices. When multiplied by the relative weights, they give the contribution to the overall simplicity value (they are I^2/p, J^2/q or K^2/r, respectively, times the sum of the variances of squared values).

Author(s)

```
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
```

References

H.A.L. Kiers (1998). Joint orthomax rotation of the core and component matrices resulting from three-mode principal components analysis. *Journal of Classification* 15:245–263.

See Also

```
orthmax2, varim
```

```
data(Bus)
# T3 solution
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
# Simplicity of A (with weight = 2.5), B (with weight = 2) and C (with weight = 1.5)
T3vmABC <- varimcoco(BusT3$A, BusT3$B, BusT3$C, BusT3$H, 2.5, 2, 1.5)
# Simplicity of only A (with weight = 2.5) and B (with weight = 2)
# rot3=0; the value of wc_rel (= 0) does not play an active role
T3vmAB <- varimcoco(BusT3$A, BusT3$B, BusT3$C, BusT3$H, 2.5, 2, 0, 1, 1, 0)
# simplicity repeatedly with different relative weights for A, B and C
T3vm <- list()
weight.a <- c(1, 3, 6)
weight.b <- c(0, 2, 5)
weight.c <- c(1, 4)</pre>
```

78 varimcoco

```
i <- 1
for (wa_rel in weight.a){
  for (wb_rel in weight.b){
   for (wc_rel in weight.c){
    T3vm[[i]] <- varimcoco(BusT3$A, BusT3$B, BusT3$C,
    BusT3$H, wa_rel, wb_rel, wc_rel)
    i <- i+1
  }
}</pre>
```

Index

* algebra	T2func, 55
bootstrapCP, 3	T2funcrep, 57
bootstrapT3,4	T2runsApproxFit, 59
Cc, 7	T3, 60
ccmat, 8	T3dimensionalityplot, 63
cent3, 9	T3fitpartitioning, 64
CP, 10	T3func, 66
CPdimensionalityplot, 12	T3funcrep, 68
CPfitpartitioning, 14	T3runsApproxFit, 70
CPfunc, 15	threewayanova, 71
CPfuncrep, 17	tr, 73
CPrunsFit, 19	varim, 75
DimSelector, 20	varimcoco, 76
jointplotgen, 21	* array
LineCon, 24	bootstrapCP, 3
norm3, 26	bootstrapT3,4
normvari, 27	Bus, 6
nrm2, 28	Cc, 7
ord, 29	ccmat, 8
orth, 30	cent3, 9
orthmax2,31	CP, 10
pcamean, 32	CPdimensionalityplot, 12
pcasup1, 33	CPfitpartitioning, 14
pcasup2, 35	CPfunc, 15
pcasup3, 36	CPfuncrep, 17
percentile95,38	CPrunsFit, 19
permnew, 39	DimSelector, 20
perms, 40	jointplotgen, 21
phi, 40	Kinship, 23
rarray, 41	LineCon, 24
renormsolCP, 42	meaudret, 25
renormsolT3, 43	norm3, 26
splithalfCP, 44	normvari, 27
splithalfT3,46	nrm2, 28
SUM, 48	ord, 29
supermat, 49	orth, 30
T1, 50	orthmax2, 31
T1runsFit, 52	pcamean, 32
T2, 53	pcasup1, 33

INDEX

	pcasup2, 35	DimSelector, 20
	pcasup3, 36	jointplotgen, 21
	percentile95,38	Kinship, 23
	permnew, 39	LineCon, 24
	perms, 40	meaudret, 25
	phi, 40	norm3, 26
	rarray, 41	normvari, 27
	renormsolCP, 42	nrm2, 28
	renormsolT3, 43	ord, 29
	splithalfCP, 44	orth, 30
	splithalfT3, 46	orthmax2, 31
	SUM, 48	pcamean, 32
	supermat, 49	pcasup1, 33
	T1, 50	pcasup2, 35
	T1runsFit, 52	pcasup3, 36
	T2, 53	percentile95,38
	T2func, 55	permnew, 39
	T2funcrep, 57	perms, 40
	T2runsApproxFit, 59	phi, 40
	T3, 60	rarray, 41
	T3dimensionalityplot, 63	renormsolCP, 42
	T3fitpartitioning, 64	renormsolT3,43
	T3func, 66	splithalfCP,44
	T3funcrep, 68	splithalfT3,46
	T3runsApproxFit, 70	SUM, 48
	threewayanova, 71	supermat, 49
	tr, 73	T1, 50
	TV, 73	T1runsFit, 52
	varim, 75	T2, 53
	varim; 75	T2func, 55
. d	ata	T2funcrep, 57
· u	Bus, 6	T2runsApproxFit, 59
	Kinship, 23	T3, 60
	meaudret, 25	T3dimensionalityplot, 63
	TV, 73	T3fitpartitioning, 64
m	ultivariate	T3func, 66
• 11	bootstrapCP. 3	T3funcrep, 68
	bootstrapT3, 4	T3runsApproxFit, 70
	Bus, 6	threewayanova, 71
	Cc, 7	tr, 73
	ccmat, 8	TV, 73
	cent3, 9	varim, <u>75</u>
	CP, 10	varimcoco, 76
	CPdimensionalityplot, 12	
	CPfitpartitioning, 14	bootstrapCP, 3, 6, 11, 38
	CPfunc, 15	bootstrapT3, 4, 4, 38, 61
	CPfunc, 13 CPfuncrep, 17	Bus, 6
	CPrunsFit, 19	Cc, 7, 9, 29
	Ciruisi It, 17	CC, 1, 7, 47

INDEX 81

ccmat, 8 cent3, 3, 5, 9, 27, 45, 46 CP, 3, 4, 10, 13, 14, 16, 19, 20, 45, 46, 51, 54, 63 CPdimensionalityplot, 12 CPfitpartitioning, 11, 14 CPfunc, 10, 11, 15, 19 CPfuncrep, 16, 17 CPrunsFit, 19, 21 DimSelector, 13, 20, 20, 25, 53, 60, 64, 71 jointplotgen, 21	T2runsApproxFit, 21, 59 T3, 6, 12, 37, 47, 51, 54, 60, 64, 66, 67, 70, 71 T3dimensionalityplot, 63 T3fitpartitioning, 50, 51, 54, 61, 64 T3func, 61, 66, 70 T3funcrep, 67, 68 T3runsApproxFit, 21, 70 threewayanova, 71 tr, 73 TV, 73 varim, 28, 31, 75, 77 varimcoco, 76
Kinship, 23	
LineCon, 20, 21, 24, 53, 60, 71	
meaudret, 25	
norm3, 3, 5, 9, 26, 45, 46 normvari, 27, 76 nrm2, 8, 27, 28	
ord, 29 orth, 30 orthmax2, 31, 77	
pcamean, 11, 32, 62 pcasup1, 33, 53 pcasup2, 35, 60 pcasup3, 36, 71 percentile95, 4, 6, 38 permnew, 39 perms, 40 phi, 40	
rarray, 41 renormsolCP, 3 , 42 , 45 renormsolT3, 43 , 47	
splithalfCP, <i>11</i> , 44 splithalfT3, 46, <i>61</i> , <i>62</i> SUM, 48 supermat, 49	
T1, 12, 35, 50, 53, 54, 63, 66 T1runsFit, 21, 52 T2, 12, 36, 51, 53, 56, 58, 60, 63, 66 T2func, 53, 55, 58 T2funcrep, 56, 57	