109.1 Основы интернет протоколов

Студент должен продемонстрировать понимание сетей TCP/IP.

Изучаем:

- классовую и бесклассовую адресацию;
- маски подсетей;
- публичные и частные адреса;
- основные ТСР и UDP порты и службы (20, 21, 22, 23, 25, 53, 80, 110, 123, 139, 143, 161, 162, 389, 443, 465, 514, 636, 993, 995);
 - протоколы TCP, UDP, ICMP;
 - особенности IPv6 и отличие его от IPv4.

Большинство современных сетей, как частных, так и публичных (в том числе интернет) построены на базе стека протоколов TCP/IP. Знакомство с этим стеком протоколов позволяет говорить о готовности студентов управлять сетевыми устройствами, службами и клиеннтами.

IPv4 адрес представляет собой четыре группы цифр (октетов, или восьми двоичных разрядов), разделенных точкой. Каждый октет представлен в десятичном виде и может принимать значения от 0 до 255.

Например, 192.168.0.101

192.168.0.101

11000000 . 10101000 . 00000000 . 01100101

«Десятичное значение равно сумме степеней двойки на позициях не равных нолю»

двоичное значение:

позиция двойки:

разряды неравные нулю:

десятичное значение: $2^0 + 2^2 + 2^5 + 2^6 = 1 + 4 + 32 + 64 = 101$

Рисунок 1. Пример получения десятичного значения адреса

«Десятичное значение равно сумме степеней двойки на позициях не равных нолю»

$$10101010_2 = 2^1 + 2^3 + 2^5 + 2^7 = 170_{10}$$

Рисунок 2. Пример перевода из двоичной в десятичную систему счисления

«Для получения двоичного значения можно делить десятичное на двойку, записывая остаток»

$$180/2 = 90$$
 (остаток 0) $90/2 = 45$ (остаток 0) $45/2 = 22$ (остаток 1) $22/2 = 11$ (остаток 0) $11/2 = 5$ (остаток 1) $2/2 = 1$ (остаток 0) $1/2 = 0$ (остаток 0) $1/2 = 0$ (остаток 1) $1/2 = 0$ (остаток 1) $1/2 = 0$ (остаток 1) $1/2 = 0$ (остаток 1)

Рисунок 3. Примеры перевода из десятичной в двоичную систему счисления

Для того чтобы узлы могли обмениваться данными, они должны быть в одной сети (иметь одинаковую маску подсети).

255.	255.	255.	0
11111111.	11111111.	11111111.	00000000
	/:	24	

192.168.0.101/24									
11111111.	11111111.	11111111.	00000000						
11000000.	10101000.	00000000.	01100101						

Рисунок 4. Формат маски сети

То есть с маской 255.255.255.0 мы имеем последний октет под адреса узлов, а это $2^8 = 256$ адресов.

255.	255.	255.	0
1111111.	11111111.	11111111.	00000000
1111111.	111111111.	11111111.	000000

192.168.0.0/24 - адрес сети;

192.168.0.(0-255) возможные значения адресов;

192.168.0.255 - широковещательный адрес сети.

Рисунок 5. Пример маски 255.255.255.0.

То есть с маской 255.255.0.0 мы имеем два последних октета под адреса узлов, а это $2^16 = 65536$ адресов.

255.	255.	0.	0
11111111.	11111111.	00000000.	00000000
	/:	16	

192.168.0.0/16 - адрес сети;

192.168.(0-255).(0-255) возможные значения адресов;

192.168.255.255 - широковещательный адрес.

Рисунок 6. Пример маски 255.255.0.0

Сети ТСР/ІР изначально делились на пять классов.

255.	255.	255.	0
11111111.	11111111.	11111111.	00000000

Рисунок 7. Классы сетей

0 адрес сети (7 бит) адрес хоста (24 бита)

Маска: 255.0.0.0

Сетей: 2^7 = 128

Хостов в каждой сети: 2^24 = 16 777 216

Адреса сетей: (1-126).0.0.0 (min 1-й октет 00000000 max 01111110)

Адреса хостов: (1-126).(0-255).(0-255).(0-255)

Рисунок 8. Сети класса А

10 адрес сети (14 бит) адрес хоста (16 бит)

Маска: 255.255.0.0

Сетей: 2^14 = 16 384

Хостов в каждой сети: 2^16 = 65 536

Адреса сетей: (128-191).(0-255).0.0 (min 1-й октет 10000000 max 10111111)

Адреса хостов: (128-191).(0-255).(0-255).(0-255)

Рисунок 9. Сети класса В

110 адрес сети (21 бит) адрес хоста (8 бит)

Маска: 255.255.255.0

Сетей: 2^21 = 2 097 152

Хостов в каждой сети: 2^8 = 256

Адреса сетей: (192-223).(0-255).(0-255).0 (min 1-й октет 11000000 max 11011111)

Адреса хостов: (192-223).(0-255).(0-255).

Рисунок 10. Сети класса С

Маска: не предусмотрена

Доступные адреса: (224-239).(0-255).(0-255).(0-255)

(min 1-й октет 11100000 max 11101111)

Рисунок 11. Сети класса D

1111 Зарезервировано

Маска: не предусмотрена

Доступные адреса: (240-254).(0-255).(0-255).(0-255)

(min 1-й октет 11110000 max 11111111)

Рисунок 12. Сети класса Е

Первые биты ір-адреса говорят о том, к какому классу сетей относится данная сеть/узел:

- 0: класс А;
- 10: класс В;
- 110: класс C; *Например*: 145.14.12.13
- 1110: класс D;
- 1111: класс E. 145₁₀=100010001₂

Адрес относится к сетям класса В

Рисунок 13. Первые биты

сеть.хост например, 192.168.0.15/24

сеть.00000000	:адрес сети	ex: 192.168.0.0/24
сеть.11111111	:направленная рассылка	ex: 192.168.0.255/24
111111111.11111111	:ограниченная рассылка	ex: 255.255.255.255
00000000.00000000	:нулевой адрес	ex: 0.0.0.0
00000000.XOCT	:адрес хоста	ex: 0.0.0.15
127.*	:петлевой адрес	ex: 127.0.0.1

Рисунок 14. Специальные адреса ірv4

Классовая адресация — длина маски фиксирована целыми октетами, определяет классы сетей.

VLSM (variable length subnet mask) – маска переменной длины, создает подсети.

CIDR (Classless Inter-Domain Routing) – бесклассовая внутридоменная маршрутизация, использующая VLSM, может адресовать блоки адресов.

Сеть 192.168.10.0 с маской 255.255.255.0

Используя VLSM можно маршрутизировать подсети.

Например, с масками от 255.255.255.0 до 255.255.255.252 (252, потому что максимальный октет последней маски 11111100)

Используя CIDR можно объединить подсети в сеть.

Например, 256 сетей (от 192.168.0.0/24 до 192.168.255.0/24) можно объединить в сеть 192.168.0.0/16

Рисунок 15. Пример использования VLSM и CIDR

Сеть: 192.168.0.0/24 (1 сеть, 256 адресов)

Маска: 255.255.255.0

мин. адр: 192.168.0.0

макс. адр.: 192.168.0.255

Рисунок 16. Маска /24

Маска: 255.255.255.128

Маска: 11111111 . 11111111 . 111111111 . <u>1</u>0000000

Получаем 2 подсети по 128 адресов:

• первая сеть: 11000000.10101000.000000000.00000000 unu (192.168.0.0/25)

адреса: 192.168.0.(0-127)/25 (от <u>0</u>00000000 до <u>0</u>1111111)

вторая сеть: 11000000.10101000.00000000.10000000 или (192.168.0.128/25)

адреса: 192.168.0.(128-255)/25 (от <u>1</u>00000000 до <u>1</u>11111111)

Рисунок 17. Маска /25

Маска: 255.255.255.192

Маска: 11111111 . 11111111 . 111111111 . 11000000

Получаем 4 подсети по 64 адреса:

адреса: 192.168.0.(0-63)/26 (от 00000000 до 00111111)

адреса: 192.168.0.(64-127)/26 (от 01000000 до 011111111)

адреса: 192.168.0.(128-191)/26 (от 10000000 до 10111111)

адреса: 192.168.0.(192-255)/26 (от 110000000 до 111111111)

Рисунок 18. Маска /26

Маска /30: 255.255.255.252

Получаем 64 подсети по 4 адреса.

Маска /31: 255.255.255.254

Маска: 11111111 . 11111111 . 111111111 . **1111111**0

Получаем 128 подсетей по 2 адреса.

Маска /32: 255.255.255.255

Получаем 256 подсетей по 1 адресу.

Рисунок 17. Последние биты маски

Маска: 255.255.254.0

Получаем 1 сеть на 512 адресов:

адреса: 192.168.(0-1).(0-255)/23 (от <u>0.</u>00000000 до <u>1.</u>11111111)

Рисунок 18. Маска /23

Маска: 255.255.252.0

Получаем 1 сеть на 1024 адресов:

адреса: 192.168.(0-3).(0-255)/22 (от 00.00000000 до 11.11111111)

Рисунок 19. Маска /22

Адреса ipv4 можно поделить на:

- Частные (серые, локальные, внутренние) адреса не маршрутизируются в среде интернет.
- Публичные (белые, внешние) адреса маршрутизируются в среде интернет.

К частным диапазонам адресов относятся:

- 10.(0-255).(0-255).(0-255)/8
- 172.(16-31).(0-255).(0-255)/12

192.168.(0-255).(0-255)/16

Для классификации сетевых протоколов была создана эталонная модель взаимодействия открытых систем: OSI/ISO.

The second state of	Vertical			
Тип данных	Уровень	Функции		
	7. Прикладной	Приложения		
Данные	6. Представительский	Синтаксис		
	5. Сеансовый	Синхронизация		
Сегменты	4. Транспортный	Связь		
Пакеты	3. Сетевой	Маршрутизация		
Кадры	2. Канальный	Адресация		
Биты	1. Физический	Передача сигнала		

Рисунок 20. Модель ISO/OSI

	TCP/IP	OSI
7		Прикладной
6	Прикладной	Представления
5		Сеансовый
4	Транспортный	Транспортный
3	Сетевой	Сетевой
2	Канальный	Канальный
1	канальный	Физический

Рисунок 21. Coomветствие моделей TCP/IP и OSI

Основными протоколами, организующими работу стека ТСР/ІР являются:

- **IP (Internet Protocol)** протокол, передающий данные пакетами, без гарантированной доставки.
- TCP (Transmission Control Protocol) протокол, осуществляющий надежную передачу данных.
- UDP (User Datagram Protocol) протокол, передающий данные без создания специальной среды.
- ICMP (Internet Control Message Protocol) протокол, используемый для отправки сообщений.

Взаимодействие устройств по сети осуществляется при помощи сетевых служб, которые создают слушающие сокеты, привязанные к выделенным портам.

Сокет – программный интерфейс, предназначенный для обмена данными по сети.

Порт – число, определяющее программу или процесс на данном сетевом адресе:

- 0-1023 общеизвестные порты;
- 1024-49151 зарегистрированные порты;
- 49152-65535 динамические порты.

№ порта	TCP	UDP	Описание
20	1		FTP (данные)
21	1		FTP (авторизация)
22	1	1	SSH (управление)
23	1	1	Telnet (управление)
25	1	1	SMTP (отправка почты)
53	1	1	DNS (имена)
80	1	1	НТТР (веб-страницы)
№ порта	TCP	UDP	Описание
110	1	1	РОРЗ (получение почты)
123	1	1	NTP (время)
139	1	1	NetBios (сети Microsoft)
143	1	1	ІМАР (синхронизация почты)
161	1	1	SNMP (управление)
162	1	1	SNMPTRAP (отправка сигнала)
389	1	1	LDAP (служба каталогов)
№ порта	TCP	UDP	Описание
443	1	1	HTTPS
465	1	1	SMTPS
514		1	SYSLOG (сообщения системы)
636	1	1	LDAPS
993	1	1	IMAPS
995	1	1	POP3S

Рисунок 22. Примеры портов и служб

IPv6 – обновленная версия протокола IP, используемая сейчас во многих технологиях и частично в интернете. Использует свою систему адресации. Интересной задачей является организация совместной работы сетей на базе ipv4 и ipv6.

ipv4: 4 октета по 8 бит формата сеть.хост 192.168.0.50/24

ірv6: 8 блоков по 16 бит формата префикс:подсеть:идентификатор

Блок состоит из 4 шестнадцатеричных цифр, например:

21DA:7654:DE12:2F3A:02AD:FEF9:9C5A:6DA3/64

Рисунок 23. Формат іру6-адреса

192₁₀=11000000₂

 $12094_{10} = 0001 1111 0011 1110_2 = 2F3E_{16}$

16*	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
10*	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2*	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

21DA:7654:DE12:2F3A:02AD:FEF9:9C5A:6DA3/64

Рисунок 24. Пример перевода в шестнадцатеричную систему счисления

IPv6 адреса можно разделить на:

- Unicast адрес конкретного интерфейса;
- Anycast адрес группы интерфейсов (один получатель);
- Multicast адрес группы интерфейсов (все получатели).

Unicast и **Anycast** : ≥48 бит ≤16 бит =64 бита

префикс подсеть идентификатор

Рисунок 25. Формат Unicast и Anycast адресов

Link-local: 10 бит 54 бит 64 бита префикс ноли идентификатор

Multicast: 8 бит 4 бита 4 бита 112 бит префикс flg sc group id

Рисунок 26. Формат Link-local и Multicast адресов

В свою очередь Unicast адреса делятся на:

- **global** соответствуют публичным ipv4 адресам (сейчас раздаются начинающиеся с 2000::/3);
- link-local соответствует автонастроенным при помощи APIPA ipv4 адресам (начинается с FE80::/10);
 - loopback соответствует петлевым ipv4 адресам (::1/128);
 - unique-local соответствует внутренним адресам (начинается с FC00 и FD00).
 - unspecified неопределенный адрес (::/128);
 - ipv4 embedded встроенные адреса ipv4.

Для ipv6 адресов справедливы следующие правила записи:

- одну или несколько групп нолей можно заменить на ::
- ведущие (располагающиеся в начале блока) ноли можно не указывать.

2001:0db8:0000:0000:0000:0000:1428:57ab

2001:0db8:0000:0000:0000::1428:57ab

2001:0db8:0:0:0:0:1428:57ab

2001:0db8:0:0::1428:57ab

2001:0db8::1428:57ab

2001:db8::1428:57ab

https://[2001:0db8:85a3:08d3:1319:8a2e:0370:7348]:443/

Рисунок 27. Пример записи ірv6 адресов

Для совместного использования іру4 и іру6 можно воспользоваться:

- двойной стек (одновременная поддержка обоих стеков);
- туннелированние (перенос пакета ipv6 внутри ipv4);

• преобразование (технология NAT64).

Основные преимущества ірv6:

- 1. Большое адресное пространство.
- 2. Автоконфигурация адресов.
- 3. Постоянное наличие локальных адресов.
- 4. Джамбограммы