Rawgment: Noise-Accounted RAW Augmentation Enables Recognition in a Wide Variety of Environments

Masakazu Yoshimura Junji Otsuka Atsushi Irie Takeshi Ohashi Sony Group Corporation

{masakazu.yoshimura, junji.otsuka, atsushi.irie, takeshi.a.ohashi}@sony.com

CVPR 2023

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

- Introduction
- Framework
- Method
- Experiment
- Conclusion

- Preliminary
- Introduction
- Framework
- Method
- Experiment
- Conclusion

CMOS Active Pixel Structure

Figure 1: Structure of a CMOS active pixel [5].

Photodiode

Figure 1: Structure of a CMOS active pixel [5].

→ 光電子移動的順序

- 光打在 nPD 上, 光電效應產生光電子
- 接著因為 p+ Pinning Layer 的電場,克服 nPD 與 p well 之間的 depletion region 使電子加速移動到 p Well (Potential Well) 裡儲存
- 接著因為 TG (Transfer Gate) 給的電壓,使 p Well 與 nFD (Floating Diffusion) 連通,讓電子最後存在 nFD
- nFD 電壓改變,等待 Sense Node 來 read out 這個電壓,成為 working voltage。

4T transistor design

- Transfer gate and transfer transister (TG)
- Source follower transistor (amplifier)
- Row select transistor (MRS)
- Reset transistor (MRST)

Noise overview

- Preliminary
- Introduction
- Method
- Experiment
- Conclusion

Introduction

- Preliminary
- Introduction
- Method
- Experiment
- Conclusion

Noise modeling

$$x = g(\underline{\alpha}\underline{u} + \underline{n}_d) + \underline{n}_r.$$

$$x \sim g\left(\alpha \mathcal{N}\left(\bar{u}, \bar{u}\right) + \mathcal{N}\left(0, \sigma_d^2\right)\right) + \mathcal{N}\left(0, \sigma_r^2\right).$$

Noise modeling

$$x \sim g\left(\alpha \mathcal{N}\left(\bar{u}, \bar{u}\right) + \mathcal{N}\left(0, \sigma_d^2\right)\right) + \mathcal{N}\left(0, \sigma_r^2\right).$$

$$\begin{cases} X \sim \mathcal{N} \left(\mu_X, \sigma_X^2 \right) \\ Y \sim \mathcal{N} \left(\mu_Y, \sigma_Y^2 \right) \\ X + Y \sim \mathcal{N} \left(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2 \right) \\ cX \sim \mathcal{N} \left(c\mu_X, c^2 \sigma_X^2 \right) \end{cases},$$

$$x \sim \mathcal{N}\left(g\alpha \bar{u}, g^2\alpha^2 \bar{u} + g^2\sigma_d^2 + \sigma_r^2\right).$$

$$x \sim \mathcal{N}\left(\mu_x, \frac{\sigma_x^2}{\sigma_x} = g\alpha\mu_x + g^2\sigma_d^2 + \sigma_r^2\right).$$

Noise Model Calibration

$$x \sim \mathcal{N}\left(\mu_x, \frac{\sigma_x^2}{\sigma_x} = g\alpha\mu_x + g^2\sigma_d^2 + \sigma_r^2\right).$$

Noise-Accounted RAW Augmentation

$$x \sim \mathcal{N}\left(g\alpha\bar{u}, g^2\alpha^2\bar{u} + g^2\sigma_d^2 + \sigma_r^2\right).$$

$$x \sim \mathcal{N}\left(\mu_x, \frac{\sigma_x^2}{\sigma_x} = g\alpha\mu_x + g^2\sigma_d^2 + \sigma_r^2\right).$$

$$x_{new} \sim \mathcal{N} \left(\frac{(\mathbf{p_g}g)\alpha(\mathbf{p_u}\bar{u})}{(\mathbf{p_g}g)^2\alpha^2(\mathbf{p_u}\bar{u}) + (\mathbf{p_g}g)^2\sigma_d^2 + \sigma_r^2} \right).$$

Noise-Accounted RAW Augmentation

$$x_{new} \sim \mathcal{N} \left(\frac{(\mathbf{p_g}g)\alpha(\mathbf{p_u}\bar{u})}{(\mathbf{p_g}g)^2\alpha^2(\mathbf{p_u}\bar{u}) + (\mathbf{p_g}g)^2\sigma_d^2 + \sigma_r^2} \right).$$

$$x_{new} \sim \frac{p_u p_g}{p_g x_{pre}} + \frac{\mathcal{N}(0, p_u (1 - p_u) p_g^2 g \alpha \mu_x}{\mathcal{N}(1 - p_u) p_g^2 g^2 \sigma_d^2 + (1 - p_u^2 p_g^2) \sigma_r^2)}.$$
(11)

Noise-Accounted Blur Augmentation

$$x \sim \mathcal{N}\left(g\alpha\bar{u}, g^2\alpha^2\bar{u} + g^2\sigma_d^2 + \sigma_r^2\right).$$

$$x \sim \mathcal{N}\left(\mu_x, \frac{\sigma_x^2}{\sigma_x} = g\alpha\mu_x + g^2\sigma_d^2 + \sigma_r^2\right).$$

$$x_{new} \sim \mathcal{N}\left(g\alpha \sum_{k} w_{k} \bar{u_{k}}, g^{2}\alpha^{2} \sum_{k} w_{k} \bar{u_{k}} + g^{2}\sigma_{d}^{2} + \sigma_{r}^{2}\right), \tag{14}$$

Noise-Accounted Blur Augmentation

$$x_{new} \sim \mathcal{N}\left(g\alpha \sum_{k} w_{k} \bar{u_{k}}, g^{2}\alpha^{2} \sum_{k} w_{k} \bar{u_{k}} + g^{2}\sigma_{d}^{2} + \sigma_{r}^{2}\right),$$

$$(14)$$

$$\sum_{k} w_{k} x_{pre} + \mathcal{N}(0, g\alpha \sum_{k} (1 - w_{k}) w_{k} x_{pre,k} + (1 - \sum_{k} w_{k}^{2}) (g^{2}\sigma_{d}^{2} + \sigma_{r}^{2})).$$

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Dataset

Results

Results

coefficients of determination, R^2 , for these line estimations are 0.9833, 0.9884, 0.9862 for 6, 12, and 24dB respectively

Results

	AP@0.5:0.95 [%]	
method	w/o ISP	w/ ISP
concat [2]	16.5	21.5
aug. + concat [2]	35.0	31.6
our aug. + concat [2]	33.7	40.4
K-Sigma [44]	14.3	27.5
K-Sigma [44] + aug.	25.0	34.1
aug. + K-Sigma [44]	26.6	42.1
our aug. + K-Sigma [44]	26.3	44.0
our aug.	32.8	45.3

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Conclusion

• Propose a noise-accounted RAW augmentation method

• Unlike previous noise-accounted methods, ours takes the prior input noise into account.