

Lecture 5: Multiple Linear Regression

Pilsung Kang
School of Industrial Management Engineering
Korea University

AGENDA

01	Multiple Linear Regression
02	Evaluating Regression Models
03	Variable Selection
04	R Exercise

• Regression Example: Predict the selling price of Toyota Corolla

Dependent variable (target)

Independent variables (attributes, features)

Variable	Description
Price	Offer Price in EUROs
Age_08_04	Age in months as in August 2004
KM	Accumulated Kilometers on odometer
Fuel_Type	Fuel Type (Petrol, Diesel, CNG)
HP	Horse Power
Met_Color	Metallic Color? (Yes=1, No=0)
Automatic	Automatic ((Yes=1, No=0)
CC	Cylinder Volume in cubic centimeters
Doors	Number of doors
Quarterly_Tax	Quarterly road tax in EUROs
Weight	Weight in Kilograms

Goal

✓ Fit a linear relationship between a quantitative dependent variable Y and a set of

predictors $X_1, X_2, ..., X_p$.

$$Y = (\beta_0) + (\beta_1)x_1 + (\beta_2)x_2 + \dots + (\beta_p)x_p + (\varepsilon)$$
coefficients
unexplained

• Explanatory vs. Predictive

Explanatory Regression

- Explain relationship between predictors (explanatory variables) and target.
- Familiar use of regression in data analysis.
- Model Goal: Fit the data well and understand the contribution of explanatory variables to the model.
- "goodness-of-fit": R², residual analysis, p-values.

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

Predictive Regression

- Predict target values in other data where we have predictor values, but not target values.
- Classic data mining context
- Model Goal: Optimize predictive accuracy
- Train model on training data
- Assess performance on validation (hold-out) data
- Explaining role of predictors is not primary purpose (but useful)

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

• Type of Regression

• Linear Regression

✓ Assume that the relationship between the input variable and the target variable is always linear.

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \varepsilon$$

• Which line is optimal?

- Estimating the coefficients
 - √ Ordinary least square (OLS)
 - Actual target: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \varepsilon$
 - Predicted target: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + ... + \hat{\beta}_p x_p$
 - Goal: minimize the difference between the actual and predicted target.

min
$$\frac{1}{2} \sum_{i=1}^{N} \varepsilon_i^2 = \frac{1}{2} (Y_i - \hat{Y}_i)^2$$
$$= \frac{1}{2} (Y - \hat{\beta}_0 - \hat{\beta}_1 x_1 - \hat{\beta}_2 x_2 - \dots - \hat{\beta}_p x_p)^2$$

- Estimating the coefficients
 - √ Ordinary least square (OLS)

Ordinary least square: Matrix solution

 \checkmark **X**: n by p matrix, **y**: n by I vector, **β**: p by I vector.

min
$$E(\mathbf{X}) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

 $\Rightarrow \frac{\partial E(\mathbf{X})}{\partial \boldsymbol{\beta}} = -(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}} \mathbf{X} = 0$
 $\Rightarrow -\mathbf{y}^{\mathrm{T}} \mathbf{X} + \boldsymbol{\beta}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X} = 0$
 $\Rightarrow \boldsymbol{\beta}^{\mathrm{T}} = (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{y}^{\mathrm{T}} \mathbf{X}$
 $\Rightarrow \boldsymbol{\beta} = ((\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{y}^{\mathrm{T}} \mathbf{X})^{\mathrm{T}}$

- Ordinary least square
 - \checkmark Finds the best estimates β when the following conditions are satisfied:
 - The noise ε follows a normal distribution.
 - The linear relationship is correct.
 - The cases are independent of each other.
 - The variability in Y values for a given set of predictors is the same regardless of the values of the predictors (<u>homoskedasticity</u>).

• Goodness-of-fit: (Adjusted) R²

$$R^{2} = 1 - \frac{\sum_{j=1}^{n} \hat{\varepsilon}_{j}^{2}}{\sum_{j=1}^{n} (y_{j} - \bar{y})^{2}} = \frac{\sum_{j=1}^{n} (\hat{y}_{j} - \bar{y})^{2}}{\sum_{j=1}^{n} (y_{j} - \bar{y})^{2}}$$

- \checkmark Gives the proportion of the total variation in the y_i 's explained by the predictor variables
- \checkmark R² equals I if the fitted equation passes through all the data points

Sum-of-Squares Decomposition

- Coefficient of Determination
 - ✓ The proportionate reduction of total variation associated with the use of the predictor variable Z.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SSR}{SST} \qquad 0 \le R^2 \le 1$$

Model Fit

- ✓ It is imperative to examine the adequacy of the model <u>before</u> the estimated function becomes a permanent part of the decision making apparatus.
- ✓ For general diagnostic purpose, residuals should be plotted as follows:
- 1. Plot the residuals $\hat{\varepsilon}_j$ against the predicted values $\hat{y}_j = \hat{\beta}_0 + \hat{\beta}_1 z_{j1} + \cdots + \hat{\beta}_r z_{jr}$. Departures from the assumptions of the model are typically indicated by two types of phenomena:
- **2.** Plot the residuals $\hat{\varepsilon}_j$ against a predictor variable, such as z_1 , or products of predictor variables, such as z_1^2 or z_1z_2 . A systematic pattern in these plots suggests the need for more terms in the model. This situation is illustrated in Figure 7.2(c).
- **3.** Q-Q plots and histograms. Do the errors appear to be normally distributed? To answer this question, the residuals $\hat{\varepsilon}_j$ or $\hat{\varepsilon}_j^*$ can be examined using the techniques discussed in Section 4.6. The Q-Q plots, histograms, and dot diagrams help to detect the presence of unusual observations or severe departures from normality that may require special attention in the analysis. If n is large, minor departures from normality will not greatly affect inferences about β .

Residual plots

Model checking

$$y = 2x + \varepsilon$$
, $\varepsilon \sim Gamma(2,1)$

Regression model

Multiple Linear Regression: Example

• Example: predict the selling price of Toyota corolla

Υ										
Price	Age_08_04	KM	Fuel_Type	HP	Met_Color	Automatic	СС	Doors	Quarterly_Tax	Weight
13500	23	46986	Diesel	90	1	0	2000	3	210	1165
13750	23	72937	Diesel	90	1	0	2000	3	210	1165
13950	24	41711	Diesel	90	1	0	2000	3	210	1165
14950	26	48000	Diesel	90	0	0	2000	3	210	1165
13750	30	38500	Diesel	90	0	0	2000	3	210	1170
12950	32	61000	Diesel	90	0	0	2000	3	210	1170
16900	27	94612	Diesel	90	1	0	2000	3	210	1245
18600	30	75889	Diesel	90	1	0	2000	3	210	1245
21500	27	19700	Petrol	192	0	0	1800	3	100	1185
12950	23	71138	Diesel	69	0	0	1900	3	185	1105
20950	25	31461	Petrol	192	0	0	1800	3	100	1185
19950	22	43610	Petrol	192	0	0	1800	3	100	1185
19600	25	32189	Petrol	192	0	0	1800	3	100	1185
21500	31	23000	Petrol	192	1	0	1800	3	100	1185
22500	32	34131	Petrol	192	1	0	1800	3	100	1185
22000	28	18739	Petrol	192	0	0	1800	3	100	1185
22750	30	34000	Petrol	192	1	0	1800	3	100	1185
17950	24	21716	Petrol	110	1	0	1600	3	85	1105
16750	24	25563	Petrol	110	0	0	1600	3	19	1065

Multiple Linear Regression: Example

Data preprocessing

√ Create dummy variables for fuel types

	Fuel_type = Disel	Fuel_type = Petrol	Fuel_type = CNG
Diesel	1	0	0
Petrol	0	1	0
CNG	0	0	1

Data partitioning

√ 60% training data / 40% validation data

Id	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type_Di	Fuel_Type_Pe
10	Model	1 1100	Agc_00_04	mig_month	mig_rear	TXIII	esel	trol
1	RRA 2/3-Doors	13500	23	10	2002	46986	1	0
4	RRA 2/3-Doors	14950	26	7	2002	48000	1	0
5	SOL 2/3-Doors	13750	30	3	2002	38500	1	0
6	SOL 2/3-Doors	12950	32	1	2002	61000	1	0
9	/VT I 2/3-Doors	21500	27	6	2002	19700	0	1
10	RRA 2/3-Doors	12950	23	10	2002	71138	1	0
12	BNS 2/3-Doors	19950	22	11	2002	43610	0	1
17	ORT 2/3-Doors	22750	30	3	2002	34000	0	1

Multiple Linear Regression: Example

Fitted linear regression model

· ·		· ·	,	
Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.620728	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.997833	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.052856	0.40124047	19223190
cc	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.0899086	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.4044657 <mark>9</mark>	0	214696000

β

Significance Probability

AGENDA

01	Multiple Linear Regression		
02	Evaluating Regression Models		
03	Variable Selection		
04	R Exercise		

• Example: predict a baby's weight (kg) based on his/her age

Age	Actual Weight(y)	Predicted Weight(y')
I	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

Average error

✓ Indicate whether the predictions are on average over- or under-predicted.

Age	Actual Weight(y)	Predicted Weight(y')
I	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

Average error =
$$\frac{1}{n} \sum_{i=1}^{n} (y - y')$$
$$= 0.342$$

- Mean absolute error (MAE)
 - ✓ Gives the magnitude of the average error

Age	Actual Weight(y)	Predicted Weight(y')
I	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y - y'|$$

= 0.829

- Mean absolute percentage error (MAPE)
 - ✓ Gives a percentage score of how predictions deviate (on average) from the actual values.

Age	Actual Weight(y)	Predicted Weight(y')			
I	5.6	6.0			
2	6.9	6.4			
3	10.4	10.9			
4	13.7	12.4			
5	17.4	15.6			
6	20.7	21.5			
7	23.5	23.0			

$$MAPE = 100\% \times \frac{1}{n} \sum_{i=1}^{n} \frac{|y - y'|}{|y|}$$

= 6.43%

- (Root) Mean squared error ((R)MSE)
 - √ Standard error of estimate
 - √ Same units as the variable predicted

Age	Actual Weight(y)	Predicted Weight(y')
I	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - y')^{2}$$

$$= 0.926$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y - y')^{2}}$$

$$= 0.962$$

AGENDA

01	Multiple Linear Regression
02	Evaluating Regression Models
03	Variable Selection
04	R Exercise

- Curse of Dimensionality
 - ✓ The number of instances increases exponentially to achieve the same explanation ability when the number of variables increases

"If there are various logical ways to explain a certain phenomenon, the simplest is the best" - Occam's Razor

Backgrounds

- ✓ Theoretically, model performance improves when the number of variables increases (Under variable independence condition)
- ✓ In reality, model performance degenerates due to variable dependence, existence of noise, etc.

Purpose

✓ Identify a subset of variables that best fit the model

Effect

- √ Remove correlations between variables
- √ Simplified post-processing
- √ Remove redundant or unnecessary variables while keeping relevant information
- ✓ Visualization can be possible

- Supervised vs. Unsupervised Dimensionality Reduction
 - √ Supervised dimensionality reduction
 - Use data mining models to verify the reduced dimensions
 - Dimensionality reduction results can be different according to the data mining algorithms employed
 - ✓ Unsupervised dimensionality reduction
 - Do not use data mining models during the process
 - Dimensionality reduction results are identical if the data and method is same

Dimensionality reduction techniques

√ Variable/feature selection

- Select a subset of variables from the original variable set
- Filter Variable selection and model training are independent
- Wrapper Variable selection is done to optimizes the result of the considered data mining model

√ Variable/feature extraction

- Extract a new smaller set of variables that preserve the characteristics of the original data
- Performance metric that is independent from data mining models is used

- Selection vs. Extraction
 - ✓ Conceptual difference between variable selection and variable extraction

- Supervised variable selection
 - ✓ Select d' variables from d variables (d' << d) in order to optimize the performance of the considered learning algorithm

- ✓ Select the learning algorithm before variable selection
- ✓ Different variable selection results are possible due to the variety of learning algorithms

- Exhaustive search
 - √ Search all possible combinations
 - Ex) 3 variables

A total of 6 possible subsets are tested

- ✓ Performance criteria for variable selection
 - Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), Adjusted R²,
 Mallow's C_p, etc.

- Exhaustive search
 - ✓ Assume that we have a computer that can evaluate 10,000 models/second

Forward selection

- √ From the model with no variable, significant variables are sequentially added.
- ✓ Once the variable is selected, it will never be removed (The number of variables gradually increases)

Backward Elimination

- ✓ From the model with all variables, irrelevant variables are sequentially removed
- ✓ Once a variable is removed, it will never be selected (The number of variables gradually decreases)

Stepwise Selection

- ✓ From the model with no variable, conduct the forward selection and backward elimination alternately
- ✓ Takes longer time than forward selection/backward elimination, but has more chances to find the optimal set of variables
- ✓ Variables that is either selected/removed can be reconsidered for selection/removal
- ✓ The number of variables increases in the early period, but it can either increase or decrease

Stepwise selection example

AGENDA

01	Multiple Linear Regression
02	Evaluating Regression Models
03	Variable Selection
04	R Exercise

• Data Set: Toyota Corolla Selling Price

Variable	Description	Variable	Description
		Guarantee_Period	Guarantee period in months
		ABS	Anti-Lock Brake System (Yes=1, No=0)
Price	Offer Price in EUROs	Airbag_1	Driver_Airbag (Yes=1, No=0)
Age_08_04	Age in months as in August 2004	Airbag_2	Passenger Airbag (Yes=1, No=0)
Mfg_Month	Manufacturing month (1-12)	Airco	Airconditioning (Yes=1, No=0)
Mfg_Year	Manufacturing Year	Automatic_airco	Automatic Airconditioning (Yes=1, No=0)
KM	Accumulated Kilometers on odometer	Boardcomputer	Boardcomputer (Yes=1, No=0)
Fuel_Type	Fuel Type (Petrol, Diesel, CNG)	CD_Player	CD Player (Yes=1, No=0)
HP	Horse Power	Central_Lock	Central Lock (Yes=1, No=0)
Met_Color	Metallic Color? (Yes=1, No=0)	Powered_Windows	Powered Windows (Yes=1, No=0)
Automatic	Automatic ((Yes=1, No=0)	Power_Steering	Power Steering (Yes=1, No=0)
CC	Cylinder Volume in cubic centimeters	Radio	Radio (Yes=1, No=0)
Doors	Number of doors	Mistlamps	Mistlamps (Yes=1, No=0)
Cylinders	Number of cylinders	Sport_Model	Sport Model (Yes=1, No=0)
Gears	Number of gear positions	Backseat_Divider	Backseat Divider (Yes=1, No=0)
Quarterly_Tax	Quarterly road tax in EUROs	Metallic_Rim	Metallic Rim (Yes=1, No=0)
Weight	Weight in Kilograms	Radio_cassette	Radio Cassette (Yes=1, No=0)
Mfr_Guarantee	Within Manufacturer's Guarantee period (Yes=1, No=0)	Parking_Assistant	Parking assistance system (Yes=1, No=0)
BOVAG_Guarantee	BOVAG (Dutch dealer network) Guarantee (Yes=1, No=0)	Tow_Bar	Tow Bar (Yes=1, No=0)

- Import the dataset & preprocessing
 - √ Convert categorical variable to binary variables (I-of-c coding)

Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	HP	Met_Color	Automatic	сс
13500	23	10	2002	46986	Diesel	90	1	0	2000
13750	23	10	2002	72937	Diesel	90	1	0	2000
13950	24	9	2002	41711	Diesel	90	1	0	2000
14950	26	7	2002	48000	Diesel	90	0	0	2000
13750	30	3	2002	38500	Diesel	90	0	0	2000
12950	32	1	2002	61000	Diesel	90	0	0	2000
16900	27	6	2002	94612	Diesel	90	1	0	2000
18600	30	3	2002	75889	Diesel	90	1	0	2000
21500	27	6	2002	19700	Petrol	192	0	0	1800
12950	23	10	2002	71138	Diesel	69	0	0	1900
20950	25	8	2002	31461	Petrol	192	0	0	1800
19950	22	11	2002	43610	Petrol	192	0	0	1800
19600	25	8	2002	32189	Petrol	192	0	0	1800
21500	31	2	2002	23000	Petrol	192	1	0	1800
22500	32	1	2002	34131	Petrol	192	1	0	1800

KM	HP	Met_Color
46986	90	1
72937	90	1
41711	90	1
48000	90	0
38500	90	0
61000	90	0
94612	90	1
75889	90	1
19700	192	0
71138	69	0
31461	192	0
43610	192	0
32189	192	0
23000	192	1

• Divide the dataset into training/validation

```
# Split the data into the training/validation sets
trn_idx <- sample(1:nCar, round(0.7*nCar))
trn_data <- mlr_data[trn_idx,]
val_data <- mlr_data[-trn_idx,]</pre>
```

Omlr_data	1436 obs. of 37 variables
<pre>trn_data</pre>	1005 obs. of 37 variables
🔾 val_data	431 obs. of 37 variables

MLR with all variables

```
# Train the MLR
full_model <- lm(Price ~ ., data = trn_data)
full_model
summary(full_model)
plot(full_model)

# Plot the result
plot(trn_data$Price, fitted(full_model), xlim = c(4000,35000), ylim = c(4000,35000))
abline(0,1,lty=3)
anova(full_model)
plot(fitted(full_model), resid(full_model), xlab="Fitted values", ylab="Residuals")</pre>
```

MLR with all variables

```
> summary(full_model)
lm(formula = Price ~ .. data = trn_data)
Residuals:
   Min
            10 Median
-6571.9 -640.9
                 -49.0
                         624.2 5972.3
Coefficients: (3 not defined because of singularities)
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 3.540e+03 1.724e+03 2.054 0.040257 *
                 -1.178e+02 3.914e+00 -30.104 < 2e-16 ***
Age_08_04
Mfg_Month
                 -1.059e+02 1.034e+01 -10.244 < 2e-16 ***
Mfg_Year
                 -1.710e-02 1.338e-03 -12.777 < 2e-16 ***
HP
                 1.911e+01 3.601e+00
                                      5.305 1.39e-07 ***
Met_Color
                 -4.358e+01 7.632e+01
                                       -0.571 0.568134
Automatic
                 3.746e+02 1.458e+02
                                        2.568 0.010368 *
                 -5.613e-02 7.515e-02
                                       -0.747 0.455279
Doors
                 7.198e+01 4.111e+01
                                        1.751 0.080257 .
cylinders
Gears
                 1.959e+02 2.142e+02
                                        0.915 0.360617
                 1.159e+01 2.128e+00
                                        5.446 6.52e-08 ***
Quarterly_Tax
                 8.879e+00 1.227e+00
Weight
                                        7.233 9.54e-13 ***
Mfr_Guarantee
                 2.360e+02 7.381e+01
                                        3.198 0.001430 **
                 3.989e+02 1.316e+02
                                        3.033 0.002490 **
BOVAG_Guarantee
Guarantee_Period 7.207e+01 1.459e+01
                                        4.938 9.27e-07 ***
                 -4.715e+01 1.300e+02
                                       -0.363 0.716844
AB5
                                        1.750 0.080375
Airbag_1
                 4.498e+02 2.570e+02
Airbag_2
                 -2.007e+02 1.314e+02
                                      -1.527 0.127121
                 2.245e+02 8.919e+01
                                        2.517 0.012008 *
Automatic airco
                 2.435e+03 1.889e+02
                                      12.890 < 2e-16 ***
Boardcomputer
                 -2.099e+02 1.194e+02
                                      -1.758 0.078992 .
CD_Player
                 8.442e+01 1.010e+02
                                        0.836 0.403239
                 -7.471e+01 1.419e+02
                                      -0.526 0.598678
Central_Lock
Powered Windows
                5.112e+02 1.424e+02
                                        3.589 0.000349 ***
Power_Steering
                -5.689e+02 2.842e+02 -2.002 0.045581 *
Radio
                 5.575e+02 6.295e+02
                                        0.886 0.376037
Mistlamps
                 1.869e+01 1.102e+02
                                        0.170 0.865286
Sport_Model
                 2.790e+02 8.906e+01
                                       3.132 0.001787 **
Backseat_Divider -6.961e+01 1.327e+02 -0.525 0.599953
Metallic_Rim
                 5.536e+01 9.675e+01
                                       0.572 0.567342
Radio_cassette
                -5.593e+02 6.299e+02 -0.888 0.374863
                 -1.990e+02 8.018e+01 -2.482 0.013216 *
Tow_Bar
Petrol
                 1.096e+03 4.339e+02
                                       2.527 0.011663 *
Diesel
                 5.269e+02 4.128e+02
                                        1,276 0,202180
CNG
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1060 on 971 degrees of freedom
Multiple R-squared: 0.9127, Adjusted R-squared: 0.9098
F-statistic: 307.7 on 33 and 971 DF, p-value: < 2.2e-16
```


- Variable selection 1: Forward selection
 - ✓ Starts with zero variable and adds the most significant variable at once

```
53 # 변수선택 1: 전진선택법
54 # Upperbound formula 만들기
55 tmp_x <- paste(colnames(trn_data)[-1], collapse=" + ")</pre>
56 tmp_xy <- paste("Price ~ ", tmp_x, collapse = "")
57 tmp_xy
   as.formula(tmp_xy)
59
60 forward_model <- step(lm(Price ~ 1, data = trn_data),</pre>
                         scope = list(upper = as.formula(tmp_xy), lower = Price ~ 1), direction="forward", trace=1)
61
    summarv(forward_model)
   anova(forward_model)
65 # 각 단계에서 선택된 변수 표시
66 forward_model$anova$Step
67 forward_modelsanovasAIC
68
69 # 선택된 변수에 따른 AIC 감소분 표시
   plot(forward_model anova AIC, pch = 17, cex=2, main = "AIC Decrease (Forward Selection)", xlab = "Number of Steps", ylab = "AIC")
71 text(forward_model$anova$AIC, forward_model$anova$Step, cex=1, pos=3, col="blue")
```

- Variable selection 1: Forward selection
 - ✓ Variable selection results (36 variables \rightarrow 20 variables)

```
> summary(forward_model)
call:
lm(formula = Price ~ Mfg_Year + Automatic_airco + Weight + KM +
    Powered_Windows + HP + Quarterly_Tax + Guarantee_Period +
    BOVAG_Guarantee + Petrol + Mfr_Guarantee + Sport_Model +
   Airco + Tow_Bar + Airbag_2 + Automatic + Boardcomputer +
   Power_Steering + Airbag_1 + Doors, data = trn_data)
Residuals:
   Min
             10 Median
-6747.2 -653.8
                          640.8
                                5908.7
                 -53.8
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 -2.807e+06 8.542e+04 -32.857 < 2e-16 ***
Mfg_Year
                 1.402e+03 4.286e+01 32.718 < 2e-16 ***
Automatic_airco
                 2.451e+03 1.746e+02 14.037 < 2e-16 ***
Weight
                 9.233e+00 1.166e+00
                                        7.918 6.50e-15 ***
KΜ
                 -1.734e-02 1.309e-03 -13.252 < 2e-16 ***
Powered_Windows
                 4.650e+02 8.300e+01
                                        5.602 2.74e-08 ***
                 1.819e+01 3.235e+00
                                        5.625 2.42e-08 ***
                 1.146e+01 2.013e+00
                                        5.694 1.63e-08 ***
Quarterly_Tax
Guarantee Period 7.624e+01 1.377e+01
                                        5.535 3.98e-08 ***
BOVAG Guarantee
                 4.078e+02 1.268e+02
                                        3.216 0.001342 **
Petrol
                  6.593e+02 2.956e+02
                                        2.231 0.025933 *
Mfr_Guarantee
                 2.263e+02 7.214e+01
                                        3.137 0.001757 **
Sport_Model
                 2.811e+02 8.226e+01
                                        3.417 0.000659 ***
Airco
                 2.430e+02 8.500e+01
                                        2.859 0.004334 **
Tow_Bar
                 -2.203e+02 7.742e+01
                                       -2.846 0.004523 **
                 -2.167e+02 9.707e+01
Airbag_2
                                       -2.232 0.025847
Automatic
                 3.395e+02 1.428e+02
                                        2.378 0.017586
Boardcomputer
                 -1.929e+02 1.126e+02
                                       -1.713 0.087054 .
                 -6.486e+02 2.715e+02
                                       -2.389 0.017075 *
Power_Steering
Airbag_1
                 4.773e+02 2.521e+02
                                        1.893 0.058598 .
Doors
                 5.867e+01 3.958e+01
                                        1.482 0.138578
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1056 on 984 degrees of freedom
Multiple R-squared: 0.9121, Adjusted R-squared: 0.9103
F-statistic: 510.6 on 20 and 984 DF, p-value: < 2.2e-16
```


Variable selection 2: Backward elimination

73 # 변수선택 2: 후진소거법

✓ Starts with all variable and removes the most insignificant variable at once

```
74 backward_model <- step(full_model, scope = list(upper = as.formula(tmp_xy), lower = Price ~ 1), direction="backward", trace=1)
75 summary(backward_model)
76 anova(backward_model)
78 # 각 단계에서 제거된 변수 표시
   backward_model$anova$Step
80
81 # 제거된 변수에 따른 AIC 감소분 표시
82 plot(backward_modelsanovasaic, pch = 15, cex=2, main = "AIC Decrease (Backward Selection)", xlab = "Number of Steps", ylab = "AIC")
83 text(backward_modelsanovasaic, backward_modelsanovasitep, cex=1, pos=3, col="red")
> backward_model$anova$Step
                              "- CNG" "- Cylinders"
"- Backseat_Divider" "- Central_Lock"
                                                                                 "- Mfg_Year"
                                                                                                          "- Mistlamps"
 [1]
                                                                                "- Met Color"
                                                                                                          "- Metallic_Rim"
 [6] "- ABS"
                                                                                 "- Radio_cassette"
[11] "- cc"
                               "- CD_Player"
                                                        "- Radio"
                                                                                                          "- Gears"
[16] "- Diesel"
```

- Variable selection 2: Backward elimination
 - √ Variable selection results (36 variables → 21 variables)

```
> summary(backward_model)
call:
lm(formula = Price ~ Age_08_04 + Mfg_Month + KM + HP + Automatic +
    Doors + Quarterly_Tax + Weight + Mfr_Guarantee + BOVAG_Guarantee +
    Guarantee_Period + Airbag_1 + Airbag_2 + Airco + Automatic_airco +
    Boardcomputer + Powered_Windows + Power_Steering + Sport_Model +
    Tow_Bar + Petrol, data = trn_data)
Residuals:
    Min
            1Q Median
                            3Q
-6744.2 -643.7
                 -43.5
                         630.5 5924.2
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                 4.528e+03 1.309e+03
                                        3,460 0,000563
(Intercept)
                 -1.176e+02 3.644e+00 -32.281 < 2e-16
Age_08_04
Mfg_Month
                -1.067e+02 1.021e+01 -10.456 < 2e-16
                 -1.711e-02 1.327e-03 -12.898 < 2e-16 ***
                 1.809e+01 3.236e+00
                                        5.590 2.95e-08 ***
                                        2.363 0.018341
Automatic
                 3.373e+02 1.428e+02
Doors
                 5.612e+01 3.965e+01
                                       1.415 0.157290
                 1.156e+01 2.015e+00
                                       5.738 1.27e-08 ***
Quarterly_Tax
                 9.259e+00 1.166e+00
                                       7.938 5.57e-15 ***
Weight
Mfr_Guarantee
                 2.249e+02 7.215e+01
                                       3.117 0.001879 **
BOVAG_Guarantee
                 4.138e+02 1.269e+02
                                        3.260 0.001150 **
Guarantee_Period 7.511e+01 1.381e+01
                                       5.437 6.82e-08 ***
                 4.597e+02 2.526e+02
                                       1.820 0.069067
Airbag_1
Airbag_2
                -2.272e+02 9.758e+01
                                      -2.329 0.020071
                 2.377e+02 8.514e+01
                                       2.791 0.005351 **
Airco
Automatic_airco 2.455e+03 1.746e+02 14.060 < 2e-16 ***
Boardcomputer
                -2.056e+02 1.133e+02
                                      -1.816 0.069700
Powered_Windows
               4.620e+02 8.304e+01
                                       5.563 3.41e-08 ***
Power_Steering
                -6.192e+02 2.729e+02
                                      -2.269 0.023479
Sport_Model
                 2.717e+02 8.273e+01
                                       3.284 0.001059 **
Tow_Bar
                -2.156e+02
                           7.754e+01
                                      -2.780 0.005531 **
Petrol
                 7.055e+02 2.988e+02
                                       2.361 0.018404 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1056 on 983 degrees of freedom
Multiple R-squared: 0.9122, Adjusted R-squared: 0.9103
F-statistic: 486.4 on 21 and 983 DF, p-value: < 2.2e-16
```


- Variable selection
 - ✓ Starts with zero variable and alternately adds the most significant variable and removes the most insignificant variable

```
85 # 변수선택 3: 단계적 선택법
   stepwise_model <- step(lm(Price ~ 1, data = trn_data),</pre>
                          scope = list(upper = as.formula(tmp_xy), lower = Price ~ 1), direction="both", trace=1)
  summary(stepwise_model)
   anova(stepwise_model)
  ■# 각 단계에서 선택/제거된 변수 표시
   stepwise_model$anova$Step
  stepwise_model$anova$AIC
  ■# 제거/선택된 변수에 따른 AIC 감소분 표시
   plot(stepwise_model anova AIC, pch = 19, cex=2, main = "AIC Decrease (Stepwise Selection)", xlab = "Number of Steps", ylab = "AIC")
97 text(stepwise_model$anova$AIC, stepwise_model$anova$Step, cex=1, pos=3, col="black")
> stepwise_model$anova$Step
 [1]
                           "+ Mfg_Year"
                                               "+ Automatic_airco" "+ Weight"
                                                                                          "+ KM"
                                                                                                               "+ Powered_Windows"
 [7] "+ HP"
                          "+ Quarterly_Tax"
                                               "+ Guarantee_Period" "+ BOVAG_Guarantee"
                                                                                                              "+ Mfr_Guarantee"
                                                                                         "+ Petrol"
[13] "+ Sport_Model"
                                                                    "+ Airbag_2"
                                                                                                              "+ Boardcomputer"
                          "+ Airco"
                                               "+ Tow Bar"
                                                                                         "+ Automatic"
[19] "+ Power_Steering"
                          "+ Airbag_1"
                                               "+ Doors"
```

Variable selection

√ Variable selection result

```
> summary(stepwise_model)
call:
lm(formula = Price ~ Mfg_Year + Automatic_airco + Weight + KM +
   Powered_Windows + HP + Quarterly_Tax + Guarantee_Period +
   BOVAG_Guarantee + Petrol + Mfr_Guarantee + Sport_Model +
   Airco + Tow_Bar + Airbag_2 + Automatic + Boardcomputer +
   Power_Steering + Airbag_1 + Doors, data = trn_data)
Residuals:
   Min
            10 Median
                            3Q
-6747.2 -653.8
                 -53.8
                         640.8
                               5908.7
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 -2.807e+06 8.542e+04 -32.857 < 2e-16
                 1.402e+03 4.286e+01 32.718 < 2e-16
Mfg_Year
Automatic_airco
                 2.451e+03 1.746e+02 14.037 < 2e-16
                 9.233e+00 1.166e+00
Weight
                                       7.918 6.50e-15
                 -1.734e-02 1.309e-03 -13.252 < 2e-16
Powered Windows
                 4.650e+02 8.300e+01
                                        5.602 2.74e-08
                 1.819e+01 3.235e+00
                                        5.625 2.42e-08
Quarterly_Tax
                 1.146e+01 2.013e+00
                                       5.694 1.63e-08
Guarantee_Period 7.624e+01 1.377e+01
                                        5.535 3.98e-08
BOVAG_Guarantee
                 4.078e+02 1.268e+02
                                        3,216 0,001342
                 6.593e+02 2.956e+02
Petrol
                                        2.231 0.025933
Mfr_Guarantee
                 2.263e+02 7.214e+01
                                        3.137 0.001757
                 2.811e+02 8.226e+01 3.417 0.000659
Sport_Model
Airco
                 2.430e+02 8.500e+01
                                        2.859 0.004334
Tow_Bar
                 -2.203e+02 7.742e+01 -2.846 0.004523
                -2.167e+02 9.707e+01 -2.232 0.025847
Airbag_2
Automatic
                 3.395e+02 1.428e+02
                                       2.378 0.017586
Boardcomputer
                 -1.929e+02 1.126e+02 -1.713 0.087054
                 -6.486e+02 2.715e+02
                                      -2.389 0.017075 *
Power_Steering
Airbag_1
                 4.773e+02 2.521e+02
                                       1.893 0.058598 .
                 5.867e+01 3.958e+01
Doors
                                       1.482 0.138578
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1056 on 984 degrees of freedom
Multiple R-squared: 0.9121, Adjusted R-squared: 0.9103
F-statistic: 510.6 on 20 and 984 DF, p-value: < 2.2e-16
```


Performance comparison among the variable selection techniques

```
# 검증 데이터에 대한 각 변수선택 결과의 예측 정확도 비교
    full_haty <- predict(full_model, newdata = val_data)
    forward_haty <- predict(forward_model, newdata = val_data)</pre>
     backward_haty <- predict(backward_model, newdata = val_data)</pre>
102
     stepwise_haty <- predict(stepwise_model, newdata = val_data)</pre>
103
104
     # 회귀분석 예측성능 평가지표
105
                                                                    > perf_mat
106
     # 1: Mean squared error (MSE)
                                                                                    A11
                                                                                              Forward
                                                                                                           Backward
                                                                                                                          Stepwise (
107
     perf_mat <- matrix(0,4,6)</pre>
                                                                    MSE 1.577365e+06 1.634343e+06 1.623485e+06 1.634343e+06
     perf_mat[1,1] <- mean((val_data$Price-full_haty)^2)</pre>
108
     perf_mat[1,2] <- mean((val_data$Price-forward_haty)^2)</pre>
                                                                    RMSE 1.255932e+03 1.278414e+03 1.274160e+03 1.278414e+03
109
110
     perf_mat[1,3] <- mean((val_data$Price-backward_haty)^2)</pre>
                                                                    MAE 9.121387e+02 9.242534e+02 9.211011e+02 9.242534e+02
     perf_mat[1,4] <- mean((val_data$Price-stepwise_haty)^2)</pre>
111
                                                                    MAPE 9.428209e+00 9.538071e+00 9.497384e+00 9.538071e+00
112
113
     # 2: Root mean squared error (RMSE)
     perf_mat[2,1] <- sgrt(mean((val_data$Price-full_haty)^2))</pre>
114
115
     perf_mat[2,2] <- sqrt(mean((val_data$Price-forward_haty)^2))</pre>
     perf_mat[2,3] <- sqrt(mean((val_data$Price-backward_haty)^2))</pre>
116
     perf_mat[2,4] <- sqrt(mean((val_data$Price-stepwise_haty)^2))</pre>
117
118
119
     # 3: Mean absolute error (MAE)
120
     perf_mat[3,1] <- mean(abs(val_data$Price-full_haty))</pre>
     perf_mat[3,2] <- mean(abs(val_data$Price-forward_haty))</pre>
121
     perf_mat[3,3] <- mean(abs(val_data$Price-backward_haty))</pre>
122
     perf_mat[3,4] <- mean(abs(val_data$Price-stepwise_haty))</pre>
123
124
125
     # 4: Mean absolute percentage error (MAPE)
     perf_mat[4,1] <- mean(abs((val_data$Price-full_haty)/val_data$Price))*100</pre>
126
     perf_mat[4,2] <- mean(abs((val_data$Price-forward_haty)/val_data$Price))*100</pre>
127
     perf_mat[4.3] <- mean(abs((val_data$Price-backward_haty)/val_data$Price))*100</pre>
128
     perf_mat[4.4] <- mean(abs((val_data$Price-stepwise_haty)/val_data$Price))*100</pre>
129
130
     # 변수선택 기법 결과 비교
131
     rownames(perf_mat) <- c("MSE", "RMSE", "MAE", "MAPE")
colnames(perf_mat) <- c("All", "Forward", "Backward", "Stepwise", "GA_default", "GA_yourOwn")</pre>
132
133
134
     perf_mat
```

