

COMP110: Principles of Computing

5: Computational Complexity

Learning outcomes

- ► Explain the notion of computability
- Use "big O" notation to express computational complexity
- Apply appropriate algorithms to achieve efficiency

Computability

► Let A and B be **sets** of elements

- ▶ Let A and B be **sets** of elements
 - ▶ NB: A may be infinite

- Let A and B be sets of elements
 - NB: A may be infinite
- A function f : A → B is computable if there exists a Turing machine which computes f

- ▶ Let A and B be sets of elements
 - NB: A may be infinite
- A function f : A → B is computable if there exists a Turing machine which computes f
 - ▶ I.e. given an encoding of $a \in A$ as input, the Turing machine outputs an encoding of f(a)

The **halting problem**

► A = the set of all Turing machines (encoded as transition tables)

- ► A = the set of all Turing machines (encoded as transition tables)
- ▶ $B = \{ true, false \}$

- ➤ A = the set of all Turing machines (encoded as transition tables)
- ▶ $B = \{ \text{true}, \text{false} \}$
- $f(a) = \begin{cases} \text{true} & \text{if } a \text{ halts in finite time on all inputs} \\ \text{false} & \text{otherwise} \end{cases}$

- ➤ A = the set of all Turing machines (encoded as transition tables)
- ▶ $B = \{ true, false \}$
- $f(a) = \begin{cases} \text{true} & \text{if } a \text{ halts in finite time on all inputs} \\ \text{false} & \text{otherwise} \end{cases}$
- \blacktriangleright There is **no** Turing machine that computes f

- ➤ A = the set of all Turing machines (encoded as transition tables)
- ▶ $B = \{ true, false \}$
- $f(a) = \begin{cases} \text{true} & \text{if } a \text{ halts in finite time on all inputs} \\ \text{false} & \text{otherwise} \end{cases}$
- ▶ There is **no** Turing machine that computes f
- ► f is uncomputable

 A system (e.g. a computer or programming language) is **Turing complete** if it can implement any given Turing machine

- A system (e.g. a computer or programming language) is **Turing complete** if it can implement any given Turing machine
- If a function is effectively calculable, then it is computable by a Turing machine

- A system (e.g. a computer or programming language) is **Turing complete** if it can implement any given Turing machine
- If a function is effectively calculable, then it is computable by a Turing machine
- Effectively calculable = there is a method or algorithm for computing it

- A system (e.g. a computer or programming language) is **Turing complete** if it can implement any given Turing machine
- If a function is effectively calculable, then it is computable by a Turing machine
- Effectively calculable = there is a method or algorithm for computing it
- So in terms of computability, Turing machines are as powerful as computers can be

 Write a software tool that, given a Python program, predicts whether that program can go into an infinite loop

- Write a software tool that, given a Python program, predicts whether that program can go into an infinite loop
- ► Your tool must work for **all** Python programs

- Write a software tool that, given a Python program, predicts whether that program can go into an infinite loop
- Your tool must work for all Python programs
- ▶ Is this possible?

Computation time

► All programs use **resources**

- ► All programs use **resources**
 - ▶ Time

- ► All programs use **resources**
 - ▶ Time
 - Memory

- ► All programs use resources
 - ▶ Time
 - Memory
 - Network bandwidth

- ► All programs use resources
 - ▶ Time
 - Memory
 - Network bandwidth
 - ▶ Power

- ► All programs use resources
 - ▶ Time
 - Memory
 - Network bandwidth
 - ▶ Power
 - ٠.,

- All programs use resources
 - ▶ Time
 - Memory
 - Network bandwidth
 - ▶ Power
 - ٠...
- ▶ Often **time** is the resource we care about the most

- All programs use resources
 - ▶ Time
 - Memory
 - Network bandwidth
 - Power
 - **>** ...
- Often time is the resource we care about the most
 - Particularly in games: want to maintain a good frame rate free of lag or stuttering

Basic time measurement in Python

Repeating for better accuracy

```
import time

start_time = time.clock()

repetition_count = 1000

for repetition in range(repetition_count):
    ... do something here ...

end_time = time.clock()
time_per = (end_time - start_time) / repetition_count
print("Computation took", time_per, "seconds")
```

Scaling

Scaling

► Timing is dependent on hardware and software issues

Scaling

- Timing is dependent on hardware and software issues
- We are often less interested in how many milliseconds a particular computation takes on today's hardware, and more interested in how the execution time scales with the problem size

Search

Search

 We have a list of names, each with some data associated

Search

- We have a list of names, each with some data associated
- ► We want to find one of them

procedure FIND(name, list)

procedure FIND(name, list) **for** each item in list **do**

procedure FIND(name, list)
 for each item in list do
 if item.name = name then

procedure FIND(name, list)
for each item in list do
if item.name = name then
return item

```
procedure FIND(name, list)
for each item in list do
    if item.name = name then
    return item
    end if
    end for
    throw "Not found"
```

```
procedure FIND(name, list)
for each item in list do
    if item.name = name then
    return item
    end if
    end for
    throw "Not found"
end procedure
```

Socrative room code: FALCOMPED

Suppose there are 25 items in the list

- Suppose there are 25 items in the list
- ▶ In the **best case**, how many items do we need to visit before finding the one we want?

- Suppose there are 25 items in the list
- In the **best case**, how many items do we need to visit before finding the one we want?
- ► How about in the worst case?

Socrative room code: FALCOMPED

▶ If there are 25 items in the list, the worst case number of items visited is 25

- If there are 25 items in the list, the worst case number of items visited is 25
- ▶ How about if there are 50 items?

- ► If there are 25 items in the list, the worst case number of items visited is 25
- ► How about if there are 50 items?
- ► How about 100 items?

- If there are 25 items in the list, the worst case number of items visited is 25
- ▶ How about if there are 50 items?
- ► How about 100 items?
- ▶ If the number of items doubles, what happens to the amount of time the search takes?

Linear time

► The running time of linear search is proportional to the size n of the list

Linear time

- ► The running time of linear search is proportional to the size n of the list
- Linear search is said to have linear time complexity

Linear time

- The running time of linear search is proportional to the size n of the list
- Linear search is said to have linear time complexity
- Also written as O(n) time complexity

Searching a sorted list

▶ If the list is **sorted** in alphabetical order, we can do better than linear...

procedure FIND(name, list)

procedure FIND(name, list)
 if list is empty then
 throw "Not found"
 end if

```
procedure FIND(name, list)

if list is empty then

throw "Not found"

end if

mid ← the "middle" item of the list
```

```
procedure FIND(name, list)

if list is empty then

throw "Not found"

end if

mid ← the "middle" item of the list

if name = mid.name then

return mid
```

```
procedure FIND(name, list)

if list is empty then
throw "Not found"
end if
mid ← the "middle" item of the list
if name = mid.name then
return mid
else if name < mid.name then
return FIND(name, first half of list)
```

```
procedure FIND(name, list)
   if list is empty then
      throw "Not found"
   end if
   mid \leftarrow the "middle" item of the list
   if name = mid.name then
      return mid
   else if name < mid.name then
      return FIND(name, first half of list)
   else if name > mid.name then
      return FIND(name, second half of list)
```

```
procedure FIND(name, list)
   if list is empty then
      throw "Not found"
   end if
   mid \leftarrow the "middle" item of the list
   if name = mid.name then
      return mid
   else if name < mid.name then
      return FIND(name, first half of list)
   else if name > mid.name then
      return FIND(name, second half of list)
   end if
end procedure
```

Socrative room code: FALCOMPED

Each iteration cuts the list in half

- Each iteration cuts the list in half
- Worst case: we have to keep halving until we get down to a single element

- Each iteration cuts the list in half
- Worst case: we have to keep halving until we get down to a single element
- If the size of the list is doubled, what happens to the worst-case number of iterations required?

- Each iteration cuts the list in half
- Worst case: we have to keep halving until we get down to a single element
- If the size of the list is doubled, what happens to the worst-case number of iterations required?
- ► Answer: it increases by 1

- Each iteration cuts the list in half
- Worst case: we have to keep halving until we get down to a single element
- If the size of the list is doubled, what happens to the worst-case number of iterations required?
- ► Answer: it increases by 1
- ► The running time is logarithmic or O(log n)

- Each iteration cuts the list in half
- Worst case: we have to keep halving until we get down to a single element
- If the size of the list is doubled, what happens to the worst-case number of iterations required?
- ► Answer: it increases by 1
- ► The running time is logarithmic or O(log n)

Hidden complexity

if name < mid.name then
return FIND(name, first half of list)
else if name > mid.name then
return FIND(name, second half of list)
end if

if name < mid.name then
 return FIND(name, first half of list)
else if name > mid.name then
 return FIND(name, second half of list)
end if

Careful how you implement this!

if name < mid.name then
return FIND(name, first half of list)
else if name > mid.name then
return FIND(name, second half of list)
end if

- Careful how you implement this!
- ► Copying (half of) a list is linear O(n)

if name < mid.name then
 return FIND(name, first half of list)
else if name > mid.name then
 return FIND(name, second half of list)
end if

- Careful how you implement this!
- ► Copying (half of) a list is linear O(n)
- ► The actual running time would be O(n log n)

if name < mid.name then
return FIND(name, first half of list)
else if name > mid.name then
return FIND(name, second half of list)
end if

- Careful how you implement this!
- ► Copying (half of) a list is linear O(n)
- ► The actual running time would be O(n log n)
- Use pointers into the list instead of copying

Binary search done wrong

```
def binary_search(name, mylist):
    if mylist == []:
        raise ValueError("Not found")
    mid = len(mylist) / 2
    mid_name = mylist[mid_index].name
    if name == mid_name:
        return mid
    elif name < mid_name:</pre>
        return binary_search(name, mylist[:mid])
    else:
        return binary_search(name, mylist[mid+1:])
```

Binary search done right

```
def binary_search(name, mylist, start, end):
    if end <= start:
        raise ValueError("Not found")
    mid = (start + end) / 2
    mid_name = mylist[mid].name
    if name == mid_name:
        return mylist[mid]
    elif name < mid_name:</pre>
        return binary_search(name, mylist, start, mid)
    else:
        return binary_search(name, mylist, mid+1, end)
```

Binary search vs linear search

Socrative room code: FALCOMPED

► So binary search is better than linear search... right?

Binary search vs linear search

Socrative room code: FALCOMPED

- ► So binary search is better than linear search... right?
- ▶ Discuss in pairs
- On Socrative, post one reason why, or one situation where, linear search may be a better choice than binary search

 Come up with a hashing function which maps elements to numbers

- Come up with a hashing function which maps elements to numbers
- ► Example: assign A = 1, B = 2, C = 3 etc, and add them together

- Come up with a hashing function which maps elements to numbers
- ► Example: assign A = 1, B = 2, C = 3 etc, and add them together
- Use these numbers to assign each element to a "bin" where it can be found

- Come up with a hashing function which maps elements to numbers
- ► Example: assign A = 1, B = 2, C = 3 etc, and add them together
- Use these numbers to assign each element to a "bin" where it can be found

	:	
	•	
112	Ward, Jessica	
113	Baker, Theresa	
114	Collins, Jane	
115	_	
116	_	
117	Hughes, Aaron	
118	_	
119	_	
120	_	
121	_	
122	Brown, Janet	
123	_	
124	_	
125	Gonzalez, Adam	
	Lewis, Rose	
126	_	
127	_	
128	_	
129	_	
130	_	
131	_	
132	Young, Frank	
	•	

Hash look-up

98	Diaz, Harold		
99	Parker, Debra		
	Perez, Diana		
	White, Amanda		
112	Ward, Jessica		
113	Baker, Theresa		
114	Collins, Jane		
117	Hughes, Aaron		
122	Brown, Janet		
125	Gonzalez, Adam		
	Lewis, Rose		
132	Young, Frank		
135	Kelly, Philip		
138	Cox, Shirley		
142	Clark, Stephanie		
144	Scott, Michelle		
145	Miller, Jeremy		
147	Davis, Marilyn		
149	Lopez, Jeffrey		
151	Anderson, Martha		
158	Williams, Billy		
162	Sanders, Phillip		
171	Russell, Mildred		
175	Stewart, Howard		
183	Henderson, Lawrence		

"Lopez, Jeffrey"

Hash look-up

98	Diaz, Harold
99	Parker, Debra
	Perez, Diana
	White, Amanda
112	Ward, Jessica
113	Baker, Theresa
114	Collins, Jane
117	Hughes, Aaron
122	Brown, Janet
125	Gonzalez, Adam
	Lewis, Rose
132	Young, Frank
135	Kelly, Philip
138	Cox, Shirley
142	Clark, Stephanie
144	Scott, Michelle
145	Miller, Jeremy
147	Davis, Marilyn
149	Lopez, Jeffrey
151	Anderson, Martha
158	Williams, Billy
162	Sanders, Phillip
171	Russell, Mildred
175	Stewart, Howard
183	Henderson, Lawrence

► If there are no "collisions", look-up time is constant or O(1)

- If there are no "collisions", look-up time is constant or O(1)
 - ► (NB: constant with respect to n)

- If there are no "collisions", look-up time is constant or O(1)
 - ► (NB: constant with respect to n)
- ► I.e. doubling the size of the list **does not change** the look-up time

- If there are no "collisions", look-up time is constant or O(1)
 - (NB: constant with respect to n)
- I.e. doubling the size of the list does not change the look-up time
- When there are collisions, need to fall back on something like linear or binary search within each bin

 We are using search as an example, to learn the principles — in practice you should hardly ever implement your own search

- We are using search as an example, to learn the principles — in practice you should hardly ever implement your own search
- ► Linear search in Python:

- We are using search as an example, to learn the principles — in practice you should hardly ever implement your own search
- ► Linear search in Python:
 - ▶ list.index() method

- We are using search as an example, to learn the principles — in practice you should hardly ever implement your own search
- Linear search in Python:
 - ▶ list.index() method
 - List comprehension, e.g.

```
[person for person in people if person.name ←
== "Lopez, Jeffrey"]
```

- We are using search as an example, to learn the principles — in practice you should hardly ever implement your own search
- Linear search in Python:
 - ▶ list.index() method
 - List comprehension, e.g.

▶ Binary search in Python:

- We are using search as an example, to learn the principles — in practice you should hardly ever implement your own search
- Linear search in Python:
 - ▶ list.index() method
 - List comprehension, e.g.

- ► Binary search in Python:
 - ▶ The bisect module

- We are using search as an example, to learn the principles — in practice you should hardly ever implement your own search
- Linear search in Python:
 - ▶ list.index() method
 - List comprehension, e.g.

```
[person for person in people if person.name ← 
== "Lopez, Jeffrey"]
```

- ► Binary search in Python:
 - ▶ The bisect module
- ► Hash tables in Python:

- We are using search as an example, to learn the principles — in practice you should hardly ever implement your own search
- ► Linear search in Python:
 - ▶ list.index() method
 - List comprehension, e.g.

```
[person for person in people if person.name ← 
== "Lopez, Jeffrey"]
```

- ► Binary search in Python:
 - ▶ The bisect module
- ► Hash tables in Python:
 - ► The dict (dictionary) data structure

More on complexity

"Faster" Constant O(1)


```
"Faster" Constant O(1)

\uparrow Logarithmic O(\log n)
```

```
"Faster" Constant O(1)

† Logarithmic O(\log n)

| Fractional power O(n^k), k < 1
```

```
"Faster" Constant O(1)

\uparrow Logarithmic O(\log n)

\mid Fractional power O(n^k), k < 1

\mid Linear O(n)
```

```
"Faster" Constant O(1)

† Logarithmic O(\log n)

| Fractional power O(n^k), k < 1

| Linear O(n)

| Quadratic O(n^2)
```

"Faster"	Constant	O(1)
↑	Logarithmic	$O(\log n)$
	Fractional power	$O(n^k)$, $k < 1$
	Linear	O(n)
	Quadratic	$O(n^2)$
	Polynomial	$O(n^k), k > 1$

"Faster"	Constant	O(1)
†	Logarithmic	$O(\log n)$
	Fractional power	$O(n^k)$, $k < 1$
	Linear	O(n)
	Quadratic	$O(n^2)$
	Polynomial	$O(n^k), k > 1$
1	Exponential	$O(e^n)$

Common complexity classes

```
"Faster"
          Constant
                                   O(1)
          Logarithmic
                                 O(\log n)
                               O(n^k), k < 1
          Fractional power
          Linear
                                   O(n)
                                  O(n^2)
          Quadratic
                               O(n^k), k > 1
          Polynomial
          Exponential
                                  O(e^n)
"Slower"
          Factorial
                                  O(n!)
```

Common complexity classes

Can ignore leading constants

- Can ignore leading constants
 - If one algorithm takes n^2 operations, another takes $500n^2$ and a third takes $0.00000001n^2$, all three are $O(n^2)$

- Can ignore leading constants
 - If one algorithm takes n^2 operations, another takes $500n^2$ and a third takes $0.00000001n^2$, all three are $O(n^2)$
- ► Take only the **dominant term**

- Can ignore leading constants
 - If one algorithm takes n^2 operations, another takes $500n^2$ and a third takes $0.00000001n^2$, all three are $O(n^2)$
- Take only the dominant term
 - ▶ The term that is largest when *n* is large

- Can ignore leading constants
 - If one algorithm takes n^2 operations, another takes $500n^2$ and a third takes $0.00000001n^2$, all three are $O(n^2)$
- ► Take only the dominant term
 - ► The term that is largest when n is large
 - If an algorithm takes $0.1n^3 + 300n^2 + 7000$ operations, it is $O(n^3)$

- Can ignore leading constants
 - If one algorithm takes n^2 operations, another takes $500n^2$ and a third takes $0.00000001n^2$, all three are $O(n^2)$
- ► Take only the dominant term
 - ▶ The term that is largest when *n* is large
 - If an algorithm takes $0.1n^3 + 300n^2 + 7000$ operations, it is $O(n^3)$
- Multiply compound algorithms

- Can ignore leading constants
 - ▶ If one algorithm takes n^2 operations, another takes $500n^2$ and a third takes $0.00000001n^2$, all three are $O(n^2)$
- Take only the dominant term
 - ► The term that is largest when n is large
 - If an algorithm takes $0.1n^3 + 300n^2 + 7000$ operations, it is $O(n^3)$
- Multiply compound algorithms
 - ▶ If an algorithm does n "things" and each "thing" is O(n), then the overall algorithm is $O(n^2)$

Collision detection between n objects

- Collision detection between n objects
- The naïve way: check each pair of objects to see whether they have collided

- Collision detection between n objects
- The naïve way: check each pair of objects to see whether they have collided
- ► This is **quadratic** or $O(n^2)$

- Collision detection between n objects
- The naïve way: check each pair of objects to see whether they have collided
- ► This is **quadratic** or $O(n^2)$
- Doubling the number of objects would quadruple the time required!

- Collision detection between n objects
- The naïve way: check each pair of objects to see whether they have collided
- ► This is **quadratic** or $O(n^2)$
- Doubling the number of objects would quadruple the time required!
- Cleverer methods exist that are more scalable

- Collision detection between n objects
- The naïve way: check each pair of objects to see whether they have collided
- ► This is **quadratic** or $O(n^2)$
- Doubling the number of objects would quadruple the time required!
- Cleverer methods exist that are more scalable
 - Further reading: spatial hashing, quadtrees, octrees, Verlet lists

 A prime number is a number that is divisible only by 1 and itself

- A prime number is a number that is divisible only by 1 and itself
- ► Given an n-bit number m = pq that is a product of two primes p and q, find p and q.

- A prime number is a number that is divisible only by 1 and itself
- ► Given an n-bit number m = pq that is a product of two primes p and q, find p and q.

```
for p=2,3,\ldots,m do q\leftarrow m/p if q is an integer then return p,q end if
```

- A prime number is a number that is divisible only by 1 and itself
- ► Given an n-bit number m = pq that is a product of two primes p and q, find p and q.

```
for p = 2, 3, ..., m do q \leftarrow m/p if q is an integer then return p, q end if end for
```

▶ Since $m \le 2^n - 1$, in the worst case this is $O(2^n)$

- A prime number is a number that is divisible only by 1 and itself
- ► Given an n-bit number m = pq that is a product of two primes p and q, find p and q.

```
for p=2,3,\ldots,m do q\leftarrow m/p if q is an integer then return p,q end if
```

- ▶ Since $m \le 2^n 1$, in the worst case this is $O(2^n)$
 - Actually even slower because division is not O(1)

- A prime number is a number that is divisible only by 1 and itself
- ► Given an n-bit number m = pq that is a product of two primes p and q, find p and q.

```
for p=2,3,\ldots,m do q\leftarrow m/p if q is an integer then return p,q end if
```

- ▶ Since $m \le 2^n 1$, in the worst case this is $O(2^n)$
 - ightharpoonup Actually even slower because division is not O(1)
- Adding 1 to n potentially doubles the running time!

 A problem is "in P" if it can be solved with an algorithm running in O(nk) time

- A problem is "in P" if it can be solved with an algorithm running in O(nk) time
- A problem is in NP if a potential solution can be checked in O(n^k) time

- ➤ A problem is "in P" if it can be solved with an algorithm running in O(n^k) time
- A problem is in NP if a potential solution can be checked in O(n^k) time
 - Figure 2 Equivalently, it can be solved with an algorithm running in $O(n^k)$ time on an infinitely parallel machine

- ➤ A problem is "in P" if it can be solved with an algorithm running in O(n^k) time
- ▶ A problem is in NP if a potential solution can be checked in O(n^k) time
 - ► Equivalently, it can be solved with an algorithm running in $O(n^k)$ time on an infinitely parallel machine
- ▶ Are there any problems in NP but not in P?

▶ If you can find a **mathematical proof** that either P = NP or $P \neq NP$, there's a \$1 million prize...

- ▶ If you can find a **mathematical proof** that either P = NP or $P \neq NP$, there's a \$1 million prize...
- ▶ It is believed that $P \neq NP$, so large instances of NP-hard problems are not solvable in a feasible amount of time

- ▶ If you can find a **mathematical proof** that either P = NP or $P \neq NP$, there's a \$1 million prize...
- ► It is believed that P ≠ NP, so large instances of NP-hard problems are not solvable in a feasible amount of time
 - Many types of cryptography are based on this assumption

- ▶ If you can find a **mathematical proof** that either P = NP or $P \neq NP$, there's a \$1 million prize...
- ▶ It is believed that $P \neq NP$, so large instances of NP-hard problems are not solvable in a feasible amount of time
 - Many types of cryptography are based on this assumption
 - Quantum computers are "infinitely parallel" in a sense so can solve some large NP-hard problems

► Time complexity only tells us how an algorithm **scales** with the size of the input

- ► Time complexity only tells us how an algorithm **scales** with the size of the input
 - If we know the input will always be small, time complexity is not so important

- ► Time complexity only tells us how an algorithm **scales** with the size of the input
 - If we know the input will always be small, time complexity is not so important
 - Linear search is quicker than binary search if you only ever have 3 elements

- ► Time complexity only tells us how an algorithm scales with the size of the input
 - If we know the input will always be small, time complexity is not so important
 - Linear search is quicker than binary search if you only ever have 3 elements
 - Naïve collision detection is fine if your game only ever has 4 objects on screen

- ► Time complexity only tells us how an algorithm **scales** with the size of the input
 - If we know the input will always be small, time complexity is not so important
 - Linear search is quicker than binary search if you only ever have 3 elements
 - Naïve collision detection is fine if your game only ever has 4 objects on screen
 - Sometimes complexity in terms of other resources (e.g. space, bandwidth) are more important than time

- ► Time complexity only tells us how an algorithm **scales** with the size of the input
 - If we know the input will always be small, time complexity is not so important
 - Linear search is quicker than binary search if you only ever have 3 elements
 - Naïve collision detection is fine if your game only ever has 4 objects on screen
 - Sometimes complexity in terms of other resources (e.g. space, bandwidth) are more important than time
- Software development is all about choosing the right tool for the job

- ► Time complexity only tells us how an algorithm **scales** with the size of the input
 - If we know the input will always be small, time complexity is not so important
 - Linear search is quicker than binary search if you only ever have 3 elements
 - Naïve collision detection is fine if your game only ever has 4 objects on screen
 - Sometimes complexity in terms of other resources (e.g. space, bandwidth) are more important than time
- Software development is all about choosing the right tool for the job
 - If you need scalability, choose a scalable algorithm

- ► Time complexity only tells us how an algorithm **scales** with the size of the input
 - If we know the input will always be small, time complexity is not so important
 - Linear search is quicker than binary search if you only ever have 3 elements
 - Naïve collision detection is fine if your game only ever has 4 objects on screen
 - Sometimes complexity in terms of other resources (e.g. space, bandwidth) are more important than time
- Software development is all about choosing the right tool for the job
 - If you need scalability, choose a scalable algorithm
 - ► Otherwise, choose simplicity

Summary

➤ Time complexity tells us how the running time of an algorithm scales with the size of the data it is given

Summary

- ➤ Time complexity tells us how the running time of an algorithm scales with the size of the data it is given
- Choice of data structures and algorithms can have a large impact on the efficiency of your software

Summary

- ► Time complexity tells us how the running time of an algorithm scales with the size of the data it is given
- Choice of data structures and algorithms can have a large impact on the efficiency of your software
- ▶ ... but only if scalability is actually a factor