Introducción a la Concurrencia - Primer Parcial Práctico 2018

Lea atentamente el enunciado para comprender correctamente antes de comenzar a resolver.

Devuelva todas las hojas, incluso enunciados, debidamente identificadas y numeradas.

Procure que su examen sea prolijo y legible!.

Nombre y Apellido:

01/04) Deadlocks. Algoritmo del Banquero.

Considere un sistema que se encuentra en el siguiente estado:

	Matriz de Asignación				I	Matriz 1	Máxim	a	Matriz Disponible				
	Ra	Rb	Rc	Rd	Ra	Rb	Rc	Rd	Ra	Rb	Rc	Rd	
P_0	0	0	1	2	0	0	1	2	1	5	2	0	
\mathbf{P}_1	1	0	0	0	1	7	5	0					
P_2	1	3	5	4	2	3	5	6					
P_3	0	6	3	2	0	6	5	2					
\mathbf{P}_4	0	0	1	4	0	6	5	6					

En relación al algoritmo del banquero:

- a) cuál es el contenido de la matriz "necesarios (need)"?
- b) Está el sistema en un estado seguro?
- c) Si arriba un requerimiento de P_1 por (0, 4, 2, 0), puede ser otorgado inmediatamente? En caso de ser posible dicha asignación, que consecuencias trae?, en caso contrario justifique.

Incidencia: 20%

02/04) Primitivas de semáforos con swap.

Suponga que Ud. cuenta con un Sistema que dispone de una instrucción de máquina indivisible de intercambio: (**swap [a,b]**) que funciona del siguiente modo:

```
boolean a, b;
{
    boolean t;
    t := a;
    a := b;
    b := t;
}
```

Muestre cómo puede utilizar esta instrucción swap para implementar las primitivas de semáforos **wait** y **signal**.

Incidencia: 20/%

03/04) Puerto Amarrate: muelle, barco y carga de containers con semáforos.

En el puerto de "Amarrate", el proceso de carga de un barco transportador es el siguiente:

Existen 2 vehículos cargadores de containers que acomodan hasta un máximo de 10 al lado del barco. El barco a su vez posee una única grúa que va metiendo dichos containers en sus bóvedas. A medida que la grúa libera un espacio al lado del barco, los cargadores pueden ir

ocupando ese espacio y colocar un nuevo container. El proceso culmina cuando los $\bf n$ containers disponibles se han cargado al barco.

Escriba un programa concurrente que utiliza semáforos para sincronizar el trabajo de los vehículos cargadores y la grúa. En todo momento este programa debe indicar cuántos containers hay ubicados al lado del barco.

Incidencia: 45%

04/04) Alternancia estricta con semáforos.

	m Es	posible	implementa	r un	meca	anismo	de	alternancia	estricta	entre	dos	procesos
utiliza	ando a	semáforo	os?. En caso a	afirm	ativo,	escriba	a el	código corre	spondient	te, en d	aso (contrario,
expliq	ue po	rqué.										

Incidencia: 15% ------- Fin examen -------