Step-Down/ Type-A Chopper - Detailed Analysis

5:44 PM Monday, May 19, 2025

Created by: @ujjwal.0714

Source: PS Bimbhra

Buck/Step-Down Converter

1. Reduce vltg level at op side. $V_0 \le V_s$

$$@T_{on}, v_o = V_s.$$

 $@T_{off}, v_o = 0$ as load current flow by FD. So load terminals get shorted.

 $V_0 = \delta V_s \Rightarrow$ Load vltg is indpdt of load current.

2. So load vltg can be varied by varn of δ .

R-Load

When sw is close, $v_o = V_s$.

When sw is open, $v_0 = 0$.

$$i_o = \frac{v_o}{R}$$

Diode is useless here.

RL Load

When sw is close, $V_0 = V_s$. FD is inactive. Indt is charged in this state.

When sw is open, $V_0 = 0$. Indt discharge by diode path.

Fig. 7.2 (a) Elementry chopper circuit and (b) output voltage and current waveforms.

[Cont Load Current]

$$\frac{\text{Avg Load Voltage}}{V_o = \frac{1}{T} \int_0^T v_o dt = \frac{1}{T} \int_0^{T_{ON}} V_s dt = \frac{V_s T_{on}}{T} = \delta V_s$$

So varying δ , we can step down op vltg across load.

sw is always OFF $\Rightarrow \delta = 0 \Rightarrow V_0 = 0$

sw is always ON $\Rightarrow \delta = 1 \Rightarrow V_o = V_s$

 $\Rightarrow V_0 \in [0, V_s]$

Avg Load Current

$$I_o = \frac{V_o}{R} = \frac{\delta V_s}{R}$$
[R-Load]

$$V_{o(rms)} = \sqrt{\frac{1}{T}} \int_0^{T_{on}} V_s^2 dt = \sqrt{\frac{V_s^2 T_{on}}{T}} = V_s \sqrt{\delta}$$

For lossless converter, ip power et op power given by: $P_{i} = \frac{1}{T} \int_{0}^{\delta T} V_{o} i dt = \frac{1}{T} \int_{0}^{\delta T} \frac{V_{o}^{2}}{R} dt = \frac{1}{T} \frac{V_{s}^{2}}{R} (\delta T) = \frac{\delta V_{s}^{2}}{R}$ Effective Ip Rst seen by power source P $R_i = \frac{V_s}{I_o} = \frac{V_s}{\delta V_s / R} = \frac{R}{\alpha}$ SS Time-Domain Analysis of Type-A Chopper with RLE-Load Fig. 7.12. Type-A chopper (α) continuous load current (c) . (d) Fig. 7.12. Equivalent circuit for type-A chopper with (c) CH1 on and (d) CH1 off. (e) Fig. 7.12 (e) Pertaining to t'. For RLE-load, $@ \ t \in [T_{on}, T] \ \text{or} \ t' \in [0, T - T_{on} = T_{off}] \Rightarrow t' = t - T_{on}$ @ t \in $[0, T_{on}]$, sw is on sw is off, load current flow by FD. \Rightarrow V_s = Ri + $\frac{Ldi}{dt}$ + E $\Rightarrow 0 = Ri + \frac{Ldi}{dt} + E$ 2 boundary values are I_{mn}, I_{mx}. $\begin{aligned} &RI + L[sI - I_{mn}] = \frac{V_s - E}{s} \\ &I(s) = \frac{V_s - E}{s(R + Ls)} + \frac{LI_{mn}}{R + Ls} \\ &= \frac{V_s - E}{Ls\left(s + \frac{R}{L}\right)} + \frac{I_{mn}}{s + \frac{R}{L}} \end{aligned}$ $RI + L[sI - I_{mx}] = -\frac{E}{c}$ $\Rightarrow i(t') = -\frac{E}{D} \left(1 - e^{-\frac{Rt'}{L}} \right) + I_{mx} e^{-\frac{Rt'}{L}}, t \in [T_{on}, T]$ just replace t by t', $V_s = 0$ and I_{mn} by I_{mx} $\Rightarrow i(t) = \frac{V_s - E}{R} \left(1 - e^{-\frac{Rt}{L}}\right) + I_{mn}e^{-Rt/L}$

Let
$$\left[e^{\frac{T_{on}}{\tau}} = m, e^{\frac{T_{off}}{\tau}} = n, \tau = \frac{R}{L} \Rightarrow mn = e^{\frac{T}{\tau}} \right]$$

$= \frac{V_{s} + E}{R} (1 - m) + mI_{mn} $ $= -\frac{E}{R} (1 - n) + I_{mx} n$
Put I_{mn} in I_{mx} and solve for I_{mx} , then find I_{mn} from obtd eqn:
$\Rightarrow I_{mx} = \frac{V_s - E}{R}(1 - m) + m \left[-\frac{E}{R}(1 - n) + I_{mx}n \right]$
$\Rightarrow I_{mx} = -\frac{E}{R} + \frac{V_s}{R} \cdot \frac{(1-m)}{1-mn} = -\frac{E}{R} + \frac{1-e^{-\frac{T_{on}}{\tau}}}{1-e^{-\frac{T}{\tau}}}$
and $\Rightarrow I_{mn} = -\frac{E}{R}(1-n) + \left[-\frac{E}{R} + \frac{V_s}{R} \cdot \frac{(1-m)}{1-mn} \right] n$
$\Rightarrow I_{mn} = -\frac{E}{R} + \frac{n(1-m)}{1-mn} = -\frac{E}{R} + \frac{1-\frac{1}{m}}{1-\frac{1}{mn}} = -\frac{E}{R} + \frac{1-e^{\frac{T_{on}}{\tau}}}{1-e^{\frac{T}{\tau}}}$
If sw cont conduct, $T_{on} = T \Rightarrow I_{mx} = I_{mn} = \frac{V_s - E}{R}$
Steady State Ripple
Ripple Current = $\Delta I = I_{mx} - I_{mn} = \frac{V_s}{R} \cdot \frac{(1-m)}{1-mn} - \frac{E}{R} - \left[\frac{V_s}{R} \cdot \frac{n(1-m)}{1-mn} - \frac{E}{R} \right]$
$= \frac{V_{s}}{R} \cdot \frac{(1-n)(1-m)}{1-mn} = \frac{V_{s}}{R} \left[\frac{(1-e^{-\frac{T_{on}}{\tau}})(1-e^{-\frac{T_{off}}{\tau}})}{1-e^{-\frac{T}{\tau}}} \right]$
$= \frac{V_s}{R} \left[\frac{\left(1 - e^{-\frac{\delta T}{\tau}}\right) \left(1 - e^{-\left(1 - \delta\right)\frac{T}{\tau}}\right)}{1 - e^{-\frac{T}{\tau}}} \right]$
PU Ripple Crnt = $\frac{I_{mx} - I_{mn}}{V_s/R} = \frac{(1 - e^{-\frac{\delta T}{\tau}})(1 - e^{-(1 - \delta)\frac{T}{\tau}})}{1 - e^{-\frac{T}{\tau}}}$
This ripple current is indpdt of E. $1 - e^{-\frac{T}{\tau}}$
With L inc, $\tau = \frac{L}{R}$ inc and $\frac{T}{\tau}$ dec, so pu ripple current dec.
Ripple current has max value ΔI_{mx} @ $\delta = 0.5$. Put $\frac{T}{\tau} = x$
$\Delta I_{mx} = \frac{V_s}{R} \left[\frac{(1 - e^{-0.5x})(1 - e^{-0.5x})}{1 - e^{-x}} \right] = \frac{V_s}{R} \left[\frac{(1 - e^{-0.5x})(1 - e^{-0.5x})}{(1 - e^{-0.5x})(1 + e^{-0.5x})} \right]$
$= \frac{V_s}{R} \left[\frac{(1 - e^{-0.5x})}{(1 + e^{-0.5x})} \right] = \frac{V_s}{R} \tanh \frac{x}{4} = \frac{V_s}{R} \tanh \frac{T}{4\tau} = \frac{V_s}{R} \tanh \frac{R}{4fL}$
$\Rightarrow \Delta I_{mx} = \frac{V_s}{R} \tanh \frac{R}{4fL}$
If $4fL \gg R \Rightarrow \tanh \frac{R}{4fL} = \frac{R}{4fL} \Rightarrow \Delta I_{mx} = \frac{V_s}{4fL}$
$\Rightarrow \Delta I_{mx}$ is iprop to chopping freq and L

Fig. 7.13. Per unit ripple current as a function of α and T/T_{α} .

Limit of Continuous Conduction/ Critical Current

$$\begin{split} I_{mn} &= 0 \Rightarrow \frac{V_s}{R} \cdot \left[\frac{e^{\frac{T_{on}}{\tau}} - 1}{e^{\frac{T}{\tau}} - 1} \right] - \frac{E}{R} = 0 \Rightarrow \frac{T_{on}}{\tau} = \ln\left(1 + \frac{E}{V_s} \left[e^{\frac{T}{\tau}} - 1 \right] \right) \\ \Rightarrow \frac{T_{on}}{T} &= \delta = \frac{\tau}{T} \ln\left(1 + \frac{E}{V_s} \left[e^{\frac{T}{\tau}} - 1 \right] \right) \end{split}$$

Formula List

$$\begin{split} m &= e^{-\frac{T_{on}}{\tau}}, n = e^{-\frac{T_{off}}{\tau}} \\ mn &= e^{-\frac{T}{\tau}} \\ I_{mx} &= \frac{V_s}{R} \cdot \frac{1-m}{1-nn} - \frac{E}{R} \\ I_{mn} &= \frac{V_s}{R} \cdot \frac{n(1-m)}{1-mn} - \frac{E}{R} \\ I_{mx} &= I_{mn} = \frac{V_s}{R} \cdot \frac{(1-n)(1-m)}{1-mn} \end{split}$$

Extinction Time (t_v)

Above load crnt expressions apply for cont load currents. Crnt can be discont due to larger Toff.

$$t_x \in [T_{on}, T]$$

$$@t = t_x, I_{mn} = 0$$

$$I_{mn} = 0 = -\frac{E}{R} \left(1 - e^{-\frac{t_x - T_{on}}{\tau}} \right) + I_{mx} e^{-\frac{t_x - T_{on}}{\tau}}$$

$$= -\frac{E}{R} \left(1 - e^{-\frac{t_x - T_{on}}{\tau}}\right) + \left[\frac{V_s - E}{R} \left(1 - e^{-\frac{T_{on}}{\tau}}\right)\right] e^{-\frac{t_x - T_{on}}{\tau}}$$

$$\Rightarrow t_{x} = T_{on} + \tau \ln \left[1 + \frac{V_{s} - E}{E} \left(1 - e^{-\frac{T_{on}}{\tau}} \right) \right]$$

Avg Op Vltg for RLE discont mode =
$$V_o = \frac{\int_0^{T_{on}} V_s dt + 0 + \int_{t_x}^{T} E dt}{T} = \frac{V_s T_{on} + E(T - t_x)}{T}$$

Fourier Analysis of Op Voltage

Refer vltg wf for cont load current. Vltg is indpdt of load ckt.

$$v_{o} = V_{o} + \sum_{n=1}^{\infty} v_{n}$$

$v_n = A_n \sin(nwt + \theta_n) = \frac{2V_s}{n\pi} \sin(nwt + \theta_n) \rightarrow \text{value of nth harmonic vltg.}$
$V_0 = \delta V_S \rightarrow DC$ Level of Vltg
$\theta_{\rm n} = \tan^{-1} \left(\frac{\sin 2\pi n\delta}{1 - \cos 2\pi n\delta} \right)$
$A_n \rightarrow Ampt$ of nth harmonic vltg.
$@\sin n\pi\delta = 1, A_{n(mx)} = \frac{2V_s}{n\pi} = \frac{0.636V_s}{n} \text{ [Volts]}$
Its rms value = $A_{n(mx)rms} = \frac{2V_s}{\sqrt{2}n\pi} = \frac{0.45V_s}{n}$ [Volts]
V J
Harmonic crnt in load = $i_n = \frac{V_n}{Z_n}$
$Z_n = \sqrt{R^2 + (nwL)^2} \rightarrow Load \text{ impd at harmonic freq nf Hz}$ $V_n \qquad V_s$
For nglb load rst R, $i_n = \frac{v_n}{nwL} \Rightarrow i_n \propto \frac{V_s}{n^2}$
⇒ Harmonic vltg dec with n inc.
Det of harmonic component without calculating harmonics.
AC ripple vltg = $V_r = \sqrt{V_{rms}^2 - V_0^2}$
$V_{\rm rms} = \sqrt{\delta}V_{\rm s}, V_{\rm o} = \delta V_{\rm s} \Rightarrow V_{\rm r} = V_{\rm s}\sqrt{\delta(1-\delta)}$
RF is ratio of ac ripple vltg to avg vltg = $\frac{V_r}{V_o} = \sqrt{\frac{1}{\delta} - 1}$
V _o √o