Selected Problems Chapter 2 Introduction to Probability for Data Science Stanley Chan

Mustaf Ahmed

March 30, 2022

Problem 2.1. A space S and three of its subsets are given by $S = \{1, 3, 5, 7, 9, 11\}, A =$ $\{1,3,5\}, B = \{7,9,11\}, \text{ and } C = \{1,3,9,11\}. \text{ Find } A \cap B \cap C, A^c \cap B, A - C, \text{ and } (A - B) \cup B.$

- **1.** $A \cap B \cap C = \{\}$
- **2.** $A^c \cap B = B$
- 3. $A C = \{5\}$
- **4.** $(A B) \cup B = S$

Problem 2.3. Simplify the following sets.

- (a). $[1,4] \cap ([0,2] \cup [3,5])$
- **(b).** $([0,1] \cup [2,3])^c$
- (c). $\bigcap_{i=1}^{\infty} \left(\frac{-1}{n}, \frac{1}{n}\right)$ (d). $\bigcup_{i=1}^{\infty} \left[5, 8 \frac{1}{2^n}\right]$
- (a). $[1,2] \cup [3,4]$
- **(b).** $(-\infty, 0) \cup (1, 2) \cup (3, \infty)$
- $(c).\{0\}$
- (d).[5,8)

Problem Theorem 2.5 Part 2. Prove that $(A \cup B)^c = A^c \cap B^c$.

Proof. We'll prove this with a series of equivalences:

$$x \in (A \cup B)^c \iff x \notin A \cup B$$

 $\iff x \notin A \text{ and } x \notin B$
 $\iff x \in A^c \text{ and } x \in B^c$
 $\iff x \in A^c \cap B^c$
 $\iff x \in A^c \cap B^c$