

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[INVÁLIDO!! – NÃO RESOLVER (Procure o seu enunciado)]

Considere a função polinomial

$$p(x) = 48 \cdot x^4 - 14 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.35$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.4142$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.352897$

Q3-3 Função de iteração

Solução: $g(x) = \frac{144 \cdot x^4 - 14 \cdot x^2 - 1}{192 \cdot x^3 - 28 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[052204552 - Marco Paulo da Silva Veiga]

Considere a função polinomial

$$p(x) = 40 \cdot x^4 - 18 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.443107$

Q3-3 Função de iteração

Solução: $g(x) = \frac{120 \cdot x^4 - 18 \cdot x^2 - 2}{160 \cdot x^3 - 36 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[070221144 - Gabriel Ricardo Costa Soromenho]

Considere a função polinomial

$$p(x) = 30 \cdot x^4 - 11 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408204$

Q3-3 Função de iteração

Solução: $g(x) = \frac{90 \cdot x^4 - 11 \cdot x^2 - 1}{120 \cdot x^3 - 22 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[090221026 – Fábio Miguel Rodrigues Faustino]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577367$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

ibal Questao o de o Cotação. I v

[130221093 - Claudiu Alexandru Marinel]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408939$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[140221038 – Edilson de Jesus Jamba]

Considere a função polinomial

$$p(x) = 96 \cdot x^4 - 34 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.407880$

Q3-3 Função de iteração

Solução: $g(x) = \frac{288 \cdot x^4 - 34 \cdot x^2 - 3}{384 \cdot x^3 - 68 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[140221040 - Miguel Figueiredo Mário]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[140221070 - Rui Filipe Moita Andrade de Sousa]

Considere a função polinomial

$$p(x) = 45 \cdot x^4 - 19 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447285$

Q3-3 Função de iteração

Solução: $g(x) = \frac{135 \cdot x^4 - 19 \cdot x^2 - 2}{180 \cdot x^3 - 38 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[150221020 - Ricardo Filipe Maia Lemos]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 29 \cdot x^2 + x + 5$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577638$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 29 \cdot x^2 - 5}{168 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[150221082 – David Jorge Conceição Luz]

Considere a função polinomial

$$p(x) = 56 \cdot x^4 - 15 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.36$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2929$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.354692$

Q3-3 Função de iteração

Solução: $g(x) = \frac{168 \cdot x^4 - 15 \cdot x^2 - 1}{224 \cdot x^3 - 30 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[160210042 – Paulo Ruben de Faria Guapo]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577381$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[160221008 – André Miguel Martins Guerreiro]

Considere a função polinomial

$$p(x) = 95 \cdot x^4 - 39 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.448254$

Q3-3 Função de iteração

Solução: $g(x) = \frac{285 \cdot x^4 - 39 \cdot x^2 - 4}{380 \cdot x^3 - 78 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[160221011 - Francisco Maria Esteves Leal]

Considere a função polinomial

$$p(x) = 48 \cdot x^4 - 14 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.35$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.4142$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.352897$

Q3-3 Função de iteração

Solução: $g(x) = \frac{144 \cdot x^4 - 14 \cdot x^2 - 1}{192 \cdot x^3 - 28 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 C

Cotação: 4 val.

[160221033 – João Pedro Carromeu Martins]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577329$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[160221044 - Rui Pinho de Almeida]

Considere a função polinomial

$$p(x) = 40 \cdot x^4 - 18 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.443107$

Q3-3 Função de iteração

Solução: $g(x) = \frac{120 \cdot x^4 - 18 \cdot x^2 - 2}{160 \cdot x^3 - 36 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[160221046 - David Nuno Menoita Tavares]

Considere a função polinomial

$$p(x) = 56 \cdot x^4 - 15 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.35$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2929$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.353361$

Q3-3 Função de iteração

Solução: $g(x) = \frac{168 \cdot x^4 - 15 \cdot x^2 - 1}{224 \cdot x^3 - 30 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[160221049 - Daniel Ng dos Santos Faria]

Considere a função polinomial

$$p(x) = 60 \cdot x^4 - 22 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408913$

Q3-3 Função de iteração

Solução: $g(x) = \frac{180 \cdot x^4 - 22 \cdot x^2 - 2}{240 \cdot x^3 - 44 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[160221050 - Bruno Miguel Gonçalves Dias]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha = 1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[160221093 – Daniel Inácio Lima]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 13 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2441$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.377844$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 13 \cdot x^2 - 1}{168 \cdot x^3 - 26 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[170221024 - Miguel Ângelo Cadimas Carromeu]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[170221029 - João Paulo Pinto dos Santos]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 29 \cdot x^2 + x + 5$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577638$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 29 \cdot x^2 - 5}{168 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[170221037 - Frederico Albino Alcaria]

Considere a função polinomial

$$p(x) = 48 \cdot x^4 - 14 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.36$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.4142$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.354339$

Q3-3 Função de iteração

Solução: $g(x) = \frac{144 \cdot x^4 - 14 \cdot x^2 - 1}{192 \cdot x^3 - 28 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[170221049 – João Francisco Rodrigues dos Reis]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.404893$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[170221057 - Hugo Alexandre da Silva Modesto]

Considere a função polinomial

$$p(x) = 95 \cdot x^4 - 39 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.448254$

Q3-3 Função de iteração

Solução: $g(x) = \frac{285 \cdot x^4 - 39 \cdot x^2 - 4}{380 \cdot x^3 - 78 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[170221068 - Bruno Cunha Selistre]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577367$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[170221069 - Eugenio Duarte da Silva]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577329$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[170221078 – César Augusto Fonseca Fontinha]

Considere a função polinomial

$$p(x) = 60 \cdot x^4 - 22 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408913$

Q3-3 Função de iteração

Solução: $g(x) = \frac{180 \cdot x^4 - 22 \cdot x^2 - 2}{240 \cdot x^3 - 44 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[170221082 - Filipe dos Santos Serra do Amaral]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[170221084 - Rafael Alexandre Botas Rosado]

Considere a função polinomial

$$p(x) = 30 \cdot x^4 - 11 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408321$

Q3-3 Função de iteração

Solução: $g(x) = \frac{90 \cdot x^4 - 11 \cdot x^2 - 1}{120 \cdot x^3 - 22 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[170221100 – José Manuel Coelho Florindo]

Considere a função polinomial

$$p(x) = 95 \cdot x^4 - 39 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447365$

Q3-3 Função de iteração

Solução: $g(x) = \frac{285 \cdot x^4 - 39 \cdot x^2 - 4}{380 \cdot x^3 - 78 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5

Cotação: 4 val.

[180221001 - Weshiley Felix Aniceto]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha = 1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.404893$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221010 – César Alves Caldeira]

Considere a função polinomial

$$p(x) = 48 \cdot x^4 - 14 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.36$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.4142$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.354339$

Q3-3 Função de iteração

Solução: $g(x) = \frac{144 \cdot x^4 - 14 \cdot x^2 - 1}{192 \cdot x^3 - 28 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221015 - Francisco Miguel Luzio Moura]

Considere a função polinomial

$$p(x) = 95 \cdot x^4 - 39 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447365$

Q3-3 Função de iteração

Solução: $g(x) = \frac{285 \cdot x^4 - 39 \cdot x^2 - 4}{380 \cdot x^3 - 78 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[180221022 - Carlos Emanuel Martins]

Considere a função polinomial

$$p(x) = 56 \cdot x^4 - 15 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.36$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2929$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.354692$

Q3-3 Função de iteração

Solução: $g(x) = \frac{168 \cdot x^4 - 15 \cdot x^2 - 1}{224 \cdot x^3 - 30 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[180221029 - Daniel Mestre Lachkeev]

Considere a função polinomial

$$p(x) = 84 \cdot x^4 - 26 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.376669$

Q3-3 Função de iteração

Solução: $g(x) = \frac{252 \cdot x^4 - 26 \cdot x^2 - 2}{336 \cdot x^3 - 52 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época Questão 3 de 5

Cotação: 4 val.

[180221037 – João Vidal Martins]

Considere a função polinomial

$$p(x) = 45 \cdot x^4 - 19 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha = 1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447359$

Q3-3 Função de iteração

Solução: $g(x) = \frac{135 \cdot x^4 - 19 \cdot x^2 - 2}{180 \cdot x^3 - 38 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221039 - António Carlos Marques da Silva Miranda]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 13 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2441$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378117$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 13 \cdot x^2 - 1}{168 \cdot x^3 - 26 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[180221049 - Tomás Machado Correia]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221052 – António Pedro Guerreiro Milheiras]

Considere a função polinomial

$$p(x) = 91 \cdot x^4 - 27 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2441$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378339$

Q3-3 Função de iteração

Solução: $g(x) = \frac{273 \cdot x^4 - 27 \cdot x^2 - 2}{364 \cdot x^3 - 54 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221054 - Diogo Couchinho Rodrigues]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577381$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221060 – Bruno Alexandre da Silva Nunes]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577329$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221068 – Guilherme Miguel de Azevedo Martins]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577329$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221070 – Rafael André Anselmo Trindade]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 13 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2441$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378117$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 13 \cdot x^2 - 1}{168 \cdot x^3 - 26 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[180221072 – Miguel Ângelo Candeias Messias]

Considere a função polinomial

$$p(x) = 40 \cdot x^4 - 18 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.443107$

Q3-3 Função de iteração

Solução: $g(x) = \frac{120 \cdot x^4 - 18 \cdot x^2 - 2}{160 \cdot x^3 - 36 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221075 - Marco Alexandre Gonçalves Martins]

Considere a função polinomial

$$p(x) = 40 \cdot x^4 - 18 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.443107$

Q3-3 Função de iteração

Solução: $g(x) = \frac{120 \cdot x^4 - 18 \cdot x^2 - 2}{160 \cdot x^3 - 36 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221079 - Daniel Tiago dos Santos Azevedo]

Considere a função polinomial

$$p(x) = 60 \cdot x^4 - 22 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408913$

Q3-3 Função de iteração

Solução: $g(x) = \frac{180 \cdot x^4 - 22 \cdot x^2 - 2}{240 \cdot x^3 - 44 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[180221080 - Alexandre Miguel Machado Ferreira]

Considere a função polinomial

$$p(x) = 70 \cdot x^4 - 29 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447319$

Q3-3 Função de iteração

Solução: $g(x) = \frac{210 \cdot x^4 - 29 \cdot x^2 - 3}{280 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[180221083 - Gonçalo Fernandes Costa]

Considere a função polinomial

$$p(x) = 48 \cdot x^4 - 14 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.35$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.4142$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.352897$

Q3-3 Função de iteração

Solução: $g(x) = \frac{144 \cdot x^4 - 14 \cdot x^2 - 1}{192 \cdot x^3 - 28 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[180221088 – André Pinheiro Duarte]

Considere a função polinomial

$$p(x) = 66 \cdot x^4 - 23 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408575$

Q3-3 Função de iteração

Solução: $g(x) = \frac{198 \cdot x^4 - 23 \cdot x^2 - 2}{264 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221094 - Gonçalo Miguel dos Santos Pratas]

Considere a função polinomial

$$p(x) = 30 \cdot x^4 - 11 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408204$

Q3-3 Função de iteração

Solução: $g(x) = \frac{90 \cdot x^4 - 11 \cdot x^2 - 1}{120 \cdot x^3 - 22 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221096 - Nuno Miguel Prazeres Tavares]

Considere a função polinomial

$$p(x) = 56 \cdot x^4 - 15 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.36$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2929$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.354692$

Q3-3 Função de iteração

Solução: $g(x) = \frac{168 \cdot x^4 - 15 \cdot x^2 - 1}{224 \cdot x^3 - 30 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221099 – Dionicio Odi Djú]

Considere a função polinomial

$$p(x) = 91 \cdot x^4 - 27 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2441$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378163$

Q3-3 Função de iteração

Solução: $g(x) = \frac{273 \cdot x^4 - 27 \cdot x^2 - 2}{364 \cdot x^3 - 54 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221100 - Pedro Miguel Martins Lima]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408939$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221104 - Vitor Nuno Valente Gomes]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221106 - Ana Catarina Sales Duarte]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 29 \cdot x^2 + x + 5$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577354$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 29 \cdot x^2 - 5}{168 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221110 – Luís Miguel Dias Varela]

Considere a função polinomial

$$p(x) = 60 \cdot x^4 - 22 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408913$

Q3-3 Função de iteração

Solução: $g(x) = \frac{180 \cdot x^4 - 22 \cdot x^2 - 2}{240 \cdot x^3 - 44 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221116 - Victor Castilho de Barros]

Considere a função polinomial

$$p(x) = 35 \cdot x^4 - 12 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.375800$

Q3-3 Função de iteração

Solução: $g(x) = \frac{105 \cdot x^4 - 12 \cdot x^2 - 1}{140 \cdot x^3 - 24 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221118 - Daniel Franco Custódio]

Considere a função polinomial

$$p(x) = 66 \cdot x^4 - 23 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408340$

Q3-3 Função de iteração

Solução: $g(x) = \frac{198 \cdot x^4 - 23 \cdot x^2 - 2}{264 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[180221122 - Tiago Miguel Cotovio Fino]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 29 \cdot x^2 + x + 5$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577354$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 29 \cdot x^2 - 5}{168 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[180221123 – Iuri Sanchez Fidalgo Amaral Tomé]

Considere a função polinomial

$$p(x) = 96 \cdot x^4 - 34 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.407880$

Q3-3 Função de iteração

Solução: $g(x) = \frac{288 \cdot x^4 - 34 \cdot x^2 - 3}{384 \cdot x^3 - 68 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[180221132 - Rui M. Pitas de Almeida e Oliveira Nunes]

Considere a função polinomial

$$p(x) = 20 \cdot x^4 - 9 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha = 1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447214$

Q3-3 Função de iteração

Solução: $g(x) = \frac{60 \cdot x^4 - 9 \cdot x^2 - 1}{80 \cdot x^3 - 18 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190200040 - Rafael Bernardino Palma]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.404893$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5

Cotação: 4 val.

[190200043 - Pedro Miguel Viegas Ferreira]

Considere a função polinomial

$$p(x) = 40 \cdot x^4 - 18 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.448878$

Q3-3 Função de iteração

Solução: $g(x) = \frac{120 \cdot x^4 - 18 \cdot x^2 - 2}{160 \cdot x^3 - 36 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190200050 - Pedro Miguel Lima Fernandes]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 29 \cdot x^2 + x + 5$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577638$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 29 \cdot x^2 - 5}{168 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época Questão 3 de 5 Cotação: 4 val.

Considere a função polinomial

$$p(x) = 66 \cdot x^4 - 23 \cdot x^2 + x + 2$$

[190200051 – André Filipe Benjamim Castro]

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408340$

Q3-3 Função de iteração

Solução: $g(x) = \frac{198 \cdot x^4 - 23 \cdot x^2 - 2}{264 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190200054 - Tiago João Mateus de Lima]

Considere a função polinomial

$$p(x) = 20 \cdot x^4 - 9 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447214$

Q3-3 Função de iteração

Solução: $g(x) = \frac{60 \cdot x^4 - 9 \cdot x^2 - 1}{80 \cdot x^3 - 18 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190200059 - Tiago Lopes Quaresma]

Considere a função polinomial

$$p(x) = 45 \cdot x^4 - 19 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447359$

Q3-3 Função de iteração

Solução: $g(x) = \frac{135 \cdot x^4 - 19 \cdot x^2 - 2}{180 \cdot x^3 - 38 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190200060 – João Pedro Dias Daniel]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577367$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190200061 – João Guilherme Peniche Massano]

Considere a função polinomial

$$p(x) = 45 \cdot x^4 - 19 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447285$

Q3-3 Função de iteração

Solução: $g(x) = \frac{135 \cdot x^4 - 19 \cdot x^2 - 2}{180 \cdot x^3 - 38 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190200063 – André Filipe Rocha dos Santos]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408939$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190200064 - Rafael Carvalho Martins]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 29 \cdot x^2 + x + 5$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577638$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 29 \cdot x^2 - 5}{168 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190200085 - Sergio Trentin Junior]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577329$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época Questão 3 de 5 Cotação: 4 val.

[190221001 - Rafael Viegas Caumo]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577381$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 2ª Época

Questão 3 de 5 Cotação: 4 val.

[190221002 - Israel Pereira]

Considere a função polinomial

$$p(x) = 95 \cdot x^4 - 39 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447365$

Q3-3 Função de iteração

Solução: $g(x) = \frac{285 \cdot x^4 - 39 \cdot x^2 - 4}{380 \cdot x^3 - 78 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 2ª Época

Questão 3 de 5 Cotação: 4 val.

Questao 5 de 5 Cotação: 4 v.

[190221003 – Geovani de Souza Pereira]

Considere a função polinomial

$$p(x) = 96 \cdot x^4 - 34 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408881$

Q3-3 Função de iteração

Solução: $g(x) = \frac{288 \cdot x^4 - 34 \cdot x^2 - 3}{384 \cdot x^3 - 68 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221005 – Lunay António Gomes Simão]

Considere a função polinomial

$$p(x) = 60 \cdot x^4 - 22 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408913$

Q3-3 Função de iteração

Solução: $g(x) = \frac{180 \cdot x^4 - 22 \cdot x^2 - 2}{240 \cdot x^3 - 44 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31–07–2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221006 - Armindo Filipe da Costa]

Considere a função polinomial

$$p(x) = 35 \cdot x^4 - 12 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.375800$

Q3-3 Função de iteração

Solução: $g(x) = \frac{105 \cdot x^4 - 12 \cdot x^2 - 1}{140 \cdot x^3 - 24 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221008 – André Miguel Lança Lisboa]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577329$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 2ª Época

Questão 3 de 5 Cotação: 4 val.

[190221009 - Bernardo Serra Mota]

Considere a função polinomial

$$p(x) = 70 \cdot x^4 - 29 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447319$

Q3-3 Função de iteração

Solução: $g(x) = \frac{210 \cdot x^4 - 29 \cdot x^2 - 3}{280 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Co

Cotação: 4 val.

[190221010 – João Pedro Freitas Caetano]

Considere a função polinomial

$$p(x) = 90 \cdot x^4 - 38 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.448706$

Q3-3 Função de iteração

Solução: $g(x) = \frac{270 \cdot x^4 - 38 \cdot x^2 - 4}{360 \cdot x^3 - 76 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221013 - Sara Filomena Gonçalves Jorge]

Considere a função polinomial

$$p(x) = 30 \cdot x^4 - 11 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408321$

Q3-3 Função de iteração

Solução: $g(x) = \frac{90 \cdot x^4 - 11 \cdot x^2 - 1}{120 \cdot x^3 - 22 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221014 – Tiago Miguel Galvão Simão]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.404893$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221015 - Pedro Miguel Teixeira Palma Rosa]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 29 \cdot x^2 + x + 5$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577638$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 29 \cdot x^2 - 5}{168 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época Questão 3 de 5

Cotação: 4 val.

[190221016 - Tiago Filipe de Deus Folgado Pereira]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha = 1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408939$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221017 – André Fraga Pauli]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221018 – Diogo António Bettencourt Santos Félix]

Considere a função polinomial

$$p(x) = 30 \cdot x^4 - 11 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408204$

Q3-3 Função de iteração

Solução: $g(x) = \frac{90 \cdot x^4 - 11 \cdot x^2 - 1}{120 \cdot x^3 - 22 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica 2^o Semestre 2019/20Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221020 - Gonçalo Filipe Mesquita Fernandes]

Considere a função polinomial

$$p(x) = 45 \cdot x^4 - 19 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha = 1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447359$

Q3-3 Função de iteração

Solução: $g(x) = \frac{135 \cdot x^4 - 19 \cdot x^2 - 2}{180 \cdot x^3 - 38 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 2ª Época

Questão 3 de 5 Cotação: 4 val.

[190221021 - Marco Neves Gomes]

Considere a função polinomial

$$p(x) = 66 \cdot x^4 - 23 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408575$

Q3-3 Função de iteração

Solução: $g(x) = \frac{198 \cdot x^4 - 23 \cdot x^2 - 2}{264 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 2ª Época

Questão 3 de 5 Cotação: 4 val.

[190221022 - Duarte Mourão Pardal]

Considere a função polinomial

$$p(x) = 48 \cdot x^4 - 14 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.36$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.4142$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.354339$

Q3-3 Função de iteração

Solução: $g(x) = \frac{144 \cdot x^4 - 14 \cdot x^2 - 1}{192 \cdot x^3 - 28 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221023 - Jorge Filipe Carapinha Piteira]

Considere a função polinomial

$$p(x) = 30 \cdot x^4 - 11 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408321$

Q3-3 Função de iteração

Solução: $g(x) = \frac{90 \cdot x^4 - 11 \cdot x^2 - 1}{120 \cdot x^3 - 22 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221026 – João Tomás Ramos Ferreira]

Considere a função polinomial

$$p(x) = 48 \cdot x^4 - 14 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.35$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.4142$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.352897$

Q3-3 Função de iteração

Solução: $g(x) = \frac{144 \cdot x^4 - 14 \cdot x^2 - 1}{192 \cdot x^3 - 28 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221028 - Pedro Miguel Teixeira Alves]

Considere a função polinomial

$$p(x) = 35 \cdot x^4 - 12 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378476$

Q3-3 Função de iteração

Solução: $g(x) = \frac{105 \cdot x^4 - 12 \cdot x^2 - 1}{140 \cdot x^3 - 24 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 2ª Época

Questão 3 de 5 Cotação: 4 val.

[190221029 - Tomás Correia Barroso]

Considere a função polinomial

$$p(x) = 90 \cdot x^4 - 38 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.448706$

Q3-3 Função de iteração

Solução: $g(x) = \frac{270 \cdot x^4 - 38 \cdot x^2 - 4}{360 \cdot x^3 - 76 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221032 - Tiago Miguel Camacho Branco]

Considere a função polinomial

$$p(x) = 91 \cdot x^4 - 27 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2441$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378163$

Q3-3 Função de iteração

Solução: $g(x) = \frac{273 \cdot x^4 - 27 \cdot x^2 - 2}{364 \cdot x^3 - 54 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221034 – Daniel Alexandre de Morais e Sousa]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577367$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221036 – André Filipe Virtuoso Serrado]

Considere a função polinomial

$$p(x) = 84 \cdot x^4 - 26 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378433$

Q3-3 Função de iteração

Solução: $g(x) = \frac{252 \cdot x^4 - 26 \cdot x^2 - 2}{336 \cdot x^3 - 52 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221037 - Daniel Alexandre Andrade Singh]

Considere a função polinomial

$$p(x) = 60 \cdot x^4 - 22 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.405671$

Q3-3 Função de iteração

Solução: $g(x) = \frac{180 \cdot x^4 - 22 \cdot x^2 - 2}{240 \cdot x^3 - 44 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221039 – Hysa Mello de Alcântara]

Considere a função polinomial

$$p(x) = 84 \cdot x^4 - 26 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.376669$

Q3-3 Função de iteração

Solução: $g(x) = \frac{252 \cdot x^4 - 26 \cdot x^2 - 2}{336 \cdot x^3 - 52 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221040 - Sandro Miguel Sousa Santos]

Considere a função polinomial

$$p(x) = 66 \cdot x^4 - 23 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408340$

Q3-3 Função de iteração

Solução: $g(x) = \frac{198 \cdot x^4 - 23 \cdot x^2 - 2}{264 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221042 - Tiago Alexandre dos Santos Rosa]

Considere a função polinomial

$$p(x) = 48 \cdot x^4 - 14 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.35$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.4142$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.352897$

Q3-3 Função de iteração

Solução: $g(x) = \frac{144 \cdot x^4 - 14 \cdot x^2 - 1}{192 \cdot x^3 - 28 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221043 – Carolina Rabaçal da Cunha Lobo]

Considere a função polinomial

$$p(x) = 96 \cdot x^4 - 34 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408881$

Q3-3 Função de iteração

Solução: $g(x) = \frac{288 \cdot x^4 - 34 \cdot x^2 - 3}{384 \cdot x^3 - 68 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221044 - Eduardo Feliciano Ferra]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 13 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2441$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.377844$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 13 \cdot x^2 - 1}{168 \cdot x^3 - 26 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221045 – João Carlos de Brito Bandeira]

Considere a função polinomial

$$p(x) = 60 \cdot x^4 - 22 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408913$

Q3-3 Função de iteração

Solução: $g(x) = \frac{180 \cdot x^4 - 22 \cdot x^2 - 2}{240 \cdot x^3 - 44 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221046 – Joao Miguel dos Santos Cabete]

Considere a função polinomial

$$p(x) = 45 \cdot x^4 - 19 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447359$

Q3-3 Função de iteração

Solução: $g(x) = \frac{135 \cdot x^4 - 19 \cdot x^2 - 2}{180 \cdot x^3 - 38 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 2ª Época

Questão 3 de 5 Cotação

Cotação: 4 val.

[190221047 - Miguel Alexandre Marques Rodrigues]

Considere a função polinomial

$$p(x) = 20 \cdot x^4 - 9 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447260$

Q3-3 Função de iteração

Solução: $g(x) = \frac{60 \cdot x^4 - 9 \cdot x^2 - 1}{80 \cdot x^3 - 18 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221048 - Rafael da Rosa Marçalo]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221049 – André Luís da Cruz Santos]

Considere a função polinomial

$$p(x) = 35 \cdot x^4 - 12 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.375800$

Q3-3 Função de iteração

Solução: $g(x) = \frac{105 \cdot x^4 - 12 \cdot x^2 - 1}{140 \cdot x^3 - 24 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221050 - Bernardo Manuel Fernandes Vicente]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577367$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221051 – Bruno Miguel Lázaro Resende]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577329$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221052 - Daniel Filipe Martins Roque]

Considere a função polinomial

$$p(x) = 65 \cdot x^4 - 28 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.444174$

Q3-3 Função de iteração

Solução: $g(x) = \frac{195 \cdot x^4 - 28 \cdot x^2 - 3}{260 \cdot x^3 - 56 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotaç

Cotação: 4 val.

[190221053 – Ivo Martinho Garraio]

Considere a função polinomial

$$p(x) = 48 \cdot x^4 - 14 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.36$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.4142$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.354339$

Q3-3 Função de iteração

Solução: $g(x) = \frac{144 \cdot x^4 - 14 \cdot x^2 - 1}{192 \cdot x^3 - 28 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221054 – João Alexandre dos Anjos Soeiro]

Considere a função polinomial

$$p(x) = 60 \cdot x^4 - 22 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.405671$

Q3-3 Função de iteração

Solução: $g(x) = \frac{180 \cdot x^4 - 22 \cdot x^2 - 2}{240 \cdot x^3 - 44 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221055 – João Filipe Lopes Jardin]

Considere a função polinomial

$$p(x) = 35 \cdot x^4 - 12 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378476$

Q3-3 Função de iteração

Solução: $g(x) = \frac{105 \cdot x^4 - 12 \cdot x^2 - 1}{140 \cdot x^3 - 24 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221056 – Rúben Pereira Lourenço]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.404893$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221057 - Gabriel Soares Alves Dias Pais]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 13 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha = 1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2441$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.377844$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 13 \cdot x^2 - 1}{168 \cdot x^3 - 26 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221058 – Diogo André Fernandes dos Santos]

Considere a função polinomial

$$p(x) = 95 \cdot x^4 - 39 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447365$

Q3-3 Função de iteração

Solução: $g(x) = \frac{285 \cdot x^4 - 39 \cdot x^2 - 4}{380 \cdot x^3 - 78 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221059 - Marco Antonio Coelho Teodoro]

Considere a função polinomial

$$p(x) = 40 \cdot x^4 - 18 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.443107$

Q3-3 Função de iteração

Solução: $g(x) = \frac{120 \cdot x^4 - 18 \cdot x^2 - 2}{160 \cdot x^3 - 36 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221060 - Ricardo Filipe Sobral Ribeiro]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 29 \cdot x^2 + x + 5$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577638$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 29 \cdot x^2 - 5}{168 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221061 - Tiago Alexandre Morgado Rosa]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 13 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2441$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.377844$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 13 \cdot x^2 - 1}{168 \cdot x^3 - 26 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Co

Cotação: 4 val.

[190221062 – João Filipe Rodrigues Silva]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221063 – Gonçalo Mestre Páscoa]

Considere a função polinomial

$$p(x) = 65 \cdot x^4 - 28 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.444174$

Q3-3 Função de iteração

Solução: $g(x) = \frac{195 \cdot x^4 - 28 \cdot x^2 - 3}{260 \cdot x^3 - 56 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221064 - Henrique Candeias Madureira]

Considere a função polinomial

$$p(x) = 35 \cdot x^4 - 12 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378476$

Q3-3 Função de iteração

Solução: $g(x) = \frac{105 \cdot x^4 - 12 \cdot x^2 - 1}{140 \cdot x^3 - 24 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221065 – José Eduardo Lopes Castanhas]

Considere a função polinomial

$$p(x) = 30 \cdot x^4 - 11 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408204$

Q3-3 Função de iteração

Solução: $g(x) = \frac{90 \cdot x^4 - 11 \cdot x^2 - 1}{120 \cdot x^3 - 22 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221066 – Rúben Miguel da Costa Videira]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408939$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221067 - David Rodrigues Cerdeira]

Considere a função polinomial

$$p(x) = 60 \cdot x^4 - 22 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.405671$

Q3-3 Função de iteração

Solução: $g(x) = \frac{180 \cdot x^4 - 22 \cdot x^2 - 2}{240 \cdot x^3 - 44 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221068 – André Carlos Fernandes Dias]

Considere a função polinomial

$$p(x) = 95 \cdot x^4 - 39 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.448254$

Q3-3 Função de iteração

Solução: $g(x) = \frac{285 \cdot x^4 - 39 \cdot x^2 - 4}{380 \cdot x^3 - 78 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221069 – Luís Manuel Gonçalves Martins]

Considere a função polinomial

$$p(x) = 84 \cdot x^4 - 26 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.376669$

Q3-3 Função de iteração

Solução: $g(x) = \frac{252 \cdot x^4 - 26 \cdot x^2 - 2}{336 \cdot x^3 - 52 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221070 - Margarida Maunu]

Considere a função polinomial

$$p(x) = 90 \cdot x^4 - 38 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.446047$

Q3-3 Função de iteração

Solução: $g(x) = \frac{270 \cdot x^4 - 38 \cdot x^2 - 4}{360 \cdot x^3 - 76 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221071 – André Filipe Gonçalves Paiva]

Considere a função polinomial

$$p(x) = 20 \cdot x^4 - 9 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447260$

Q3-3 Função de iteração

Solução: $g(x) = \frac{60 \cdot x^4 - 9 \cdot x^2 - 1}{80 \cdot x^3 - 18 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221074 - Miguel Costa Coelho]

Considere a função polinomial

$$p(x) = 56 \cdot x^4 - 15 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.35$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2929$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.353361$

Q3-3 Função de iteração

Solução: $g(x) = \frac{168 \cdot x^4 - 15 \cdot x^2 - 1}{224 \cdot x^3 - 30 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221075 – André Galveia Castanho]

Considere a função polinomial

$$p(x) = 48 \cdot x^4 - 14 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.35$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.4142$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.352897$

Q3-3 Função de iteração

Solução: $g(x) = \frac{144 \cdot x^4 - 14 \cdot x^2 - 1}{192 \cdot x^3 - 28 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cota

Cotação: 4 val.

[190221076 - Filipe Alexandre Ribeiro Domingos]

Considere a função polinomial

$$p(x) = 90 \cdot x^4 - 38 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.448706$

Q3-3 Função de iteração

Solução: $g(x) = \frac{270 \cdot x^4 - 38 \cdot x^2 - 4}{360 \cdot x^3 - 76 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221077 – Duarte Vieira Nunes da Conceição]

Considere a função polinomial

$$p(x) = 95 \cdot x^4 - 39 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.448254$

Q3-3 Função de iteração

Solução: $g(x) = \frac{285 \cdot x^4 - 39 \cdot x^2 - 4}{380 \cdot x^3 - 78 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221078 – João Pedro Botelheiro Matias]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408939$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221079 – Adalberto Camará King]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221080 - Melo Carlos Pereira]

Considere a função polinomial

$$p(x) = 70 \cdot x^4 - 29 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447663$

Q3-3 Função de iteração

Solução: $g(x) = \frac{210 \cdot x^4 - 29 \cdot x^2 - 3}{280 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221081 – Pedro de Castro Vitória]

Considere a função polinomial

$$p(x) = 20 \cdot x^4 - 9 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447214$

Q3-3 Função de iteração

Solução: $g(x) = \frac{60 \cdot x^4 - 9 \cdot x^2 - 1}{80 \cdot x^3 - 18 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5

Cotação: 4 val.

[190221082 - Ricardo Luís Pinto Cabrito]

Considere a função polinomial

$$p(x) = 70 \cdot x^4 - 29 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447319$

Q3-3 Função de iteração

Solução: $g(x) = \frac{210 \cdot x^4 - 29 \cdot x^2 - 3}{280 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221084 - Carlos Manuel da Palma Oliveira]

Considere a função polinomial

$$p(x) = 66 \cdot x^4 - 23 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408340$

Q3-3 Função de iteração

Solução: $g(x) = \frac{198 \cdot x^4 - 23 \cdot x^2 - 2}{264 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221085 - David Eduardo Maia]

Considere a função polinomial

$$p(x) = 60 \cdot x^4 - 22 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.405671$

Q3-3 Função de iteração

Solução: $g(x) = \frac{180 \cdot x^4 - 22 \cdot x^2 - 2}{240 \cdot x^3 - 44 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221086 – André Filipe Lamas Rebelo]

Considere a função polinomial

$$p(x) = 35 \cdot x^4 - 12 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378476$

Q3-3 Função de iteração

Solução: $g(x) = \frac{105 \cdot x^4 - 12 \cdot x^2 - 1}{140 \cdot x^3 - 24 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221087 - Bruno Bispo Gibellino]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577381$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221088 - Pedro Alexandre Santos Vicente]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.404893$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221090 – Daniel Corrêa Saes]

Considere a função polinomial

$$p(x) = 70 \cdot x^4 - 29 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447319$

Q3-3 Função de iteração

Solução: $g(x) = \frac{210 \cdot x^4 - 29 \cdot x^2 - 3}{280 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221091 – Gonçalo Marchão Sousa Martins]

Considere a função polinomial

$$p(x) = 35 \cdot x^4 - 12 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.375800$

Q3-3 Função de iteração

Solução: $g(x) = \frac{105 \cdot x^4 - 12 \cdot x^2 - 1}{140 \cdot x^3 - 24 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221092 - Alberto Miguel Jardino Pereira]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221093 - Alexandre Manuel Parreira Coelho]

Considere a função polinomial

$$p(x) = 48 \cdot x^4 - 14 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.36$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.4142$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.354339$

Q3-3 Função de iteração

Solução: $g(x) = \frac{144 \cdot x^4 - 14 \cdot x^2 - 1}{192 \cdot x^3 - 28 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Co

Cotação: 4 val.

[190221094 – André Alexandre da Costa Pereira]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408939$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221095 – André Rodrigues Batista]

Considere a função polinomial

$$p(x) = 20 \cdot x^4 - 9 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447214$

Q3-3 Função de iteração

Solução: $g(x) = \frac{60 \cdot x^4 - 9 \cdot x^2 - 1}{80 \cdot x^3 - 18 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221096 – Bernardo José Lopes Batista Paulino]

Considere a função polinomial

$$p(x) = 66 \cdot x^4 - 23 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408575$

Q3-3 Função de iteração

Solução: $g(x) = \frac{198 \cdot x^4 - 23 \cdot x^2 - 2}{264 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221097 - Bruno Miguel Lopes Revez]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577329$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221099 - Carlos Eduardo Lúcio Antunes]

Considere a função polinomial

$$p(x) = 70 \cdot x^4 - 29 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447663$

Q3-3 Função de iteração

Solução: $g(x) = \frac{210 \cdot x^4 - 29 \cdot x^2 - 3}{280 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221100 - Catarina Filipa Balugas Alves]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 29 \cdot x^2 + x + 5$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577354$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 29 \cdot x^2 - 5}{168 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221101 - Daniel Domingos Cordeiro]

Considere a função polinomial

$$p(x) = 84 \cdot x^4 - 26 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378433$

Q3-3 Função de iteração

Solução: $g(x) = \frac{252 \cdot x^4 - 26 \cdot x^2 - 2}{336 \cdot x^3 - 52 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221102 - David Eduardo Passos Gomes]

Considere a função polinomial

$$p(x) = 84 \cdot x^4 - 26 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.376669$

Q3-3 Função de iteração

Solução: $g(x) = \frac{252 \cdot x^4 - 26 \cdot x^2 - 2}{336 \cdot x^3 - 52 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221103 – Diogo Alexandre Serra Pereira]

Considere a função polinomial

$$p(x) = 95 \cdot x^4 - 39 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447365$

Q3-3 Função de iteração

Solução: $g(x) = \frac{285 \cdot x^4 - 39 \cdot x^2 - 4}{380 \cdot x^3 - 78 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221104 - Diogo Alexandre Sobral Ferreira]

Considere a função polinomial

$$p(x) = 20 \cdot x^4 - 9 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447214$

Q3-3 Função de iteração

Solução: $g(x) = \frac{60 \cdot x^4 - 9 \cdot x^2 - 1}{80 \cdot x^3 - 18 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221105 - Francisco M. Serralha N. Belchior Zacarias]

Considere a função polinomial

$$p(x) = 96 \cdot x^4 - 34 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408881$

Q3-3 Função de iteração

Solução: $g(x) = \frac{288 \cdot x^4 - 34 \cdot x^2 - 3}{384 \cdot x^3 - 68 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Co

Cotação: 4 val.

[190221106 – Iúri Miguel Francês Pêta]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 13 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2441$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378117$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 13 \cdot x^2 - 1}{168 \cdot x^3 - 26 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221107 – João Grácio Coelho Rodrigues]

Considere a função polinomial

$$p(x) = 35 \cdot x^4 - 12 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378476$

Q3-3 Função de iteração

Solução: $g(x) = \frac{105 \cdot x^4 - 12 \cdot x^2 - 1}{140 \cdot x^3 - 24 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221108 – João José Lopes Batista da Silva Pinto]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 C

Cotação: 4 val.

[190221109 – João Pedro Pereira Rosete]

Considere a função polinomial

$$p(x) = 70 \cdot x^4 - 29 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447663$

Q3-3 Função de iteração

Solução: $g(x) = \frac{210 \cdot x^4 - 29 \cdot x^2 - 3}{280 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221110 – Jorge André Gomes de Sousa]

Considere a função polinomial

$$p(x) = 66 \cdot x^4 - 23 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408340$

Q3-3 Função de iteração

Solução: $g(x) = \frac{198 \cdot x^4 - 23 \cdot x^2 - 2}{264 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221111 – José Manuel Almeida Sousa Mendes]

Considere a função polinomial

$$p(x) = 48 \cdot x^4 - 14 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.36$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.4142$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.354339$

Q3-3 Função de iteração

Solução: $g(x) = \frac{144 \cdot x^4 - 14 \cdot x^2 - 1}{192 \cdot x^3 - 28 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221112 - Leonardo Costeira Costa]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577329$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221113 – Luís Carlos de Veloso Fernandes]

Considere a função polinomial

$$p(x) = 91 \cdot x^4 - 27 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.37$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2441$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378339$

Q3-3 Função de iteração

Solução: $g(x) = \frac{273 \cdot x^4 - 27 \cdot x^2 - 2}{364 \cdot x^3 - 54 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221114 - Marco António Botelho da Silva]

Considere a função polinomial

$$p(x) = 65 \cdot x^4 - 28 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.444174$

Q3-3 Função de iteração

Solução: $g(x) = \frac{195 \cdot x^4 - 28 \cdot x^2 - 3}{260 \cdot x^3 - 56 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221115 – Martim Antunes de Oliveira]

Considere a função polinomial

$$p(x) = 45 \cdot x^4 - 19 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447359$

Q3-3 Função de iteração

Solução: $g(x) = \frac{135 \cdot x^4 - 19 \cdot x^2 - 2}{180 \cdot x^3 - 38 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221117 – Miguel Ângelo Pereira Morgado]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577367$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221118 - Nicole Alexandra Martins Vieira]

Considere a função polinomial

$$p(x) = 66 \cdot x^4 - 23 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408575$

Q3-3 Função de iteração

Solução: $g(x) = \frac{198 \cdot x^4 - 23 \cdot x^2 - 2}{264 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221119 - Nuno Miguel Cortiço Viola]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 13 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2441$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378117$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 13 \cdot x^2 - 1}{168 \cdot x^3 - 26 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221120 – Pedro Afonso D' Além Dionísio]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 29 \cdot x^2 + x + 5$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577638$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 29 \cdot x^2 - 5}{168 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221122 – Pedro Manuel Gonçalves Paiva de Carvalho]

Considere a função polinomial

$$p(x) = 40 \cdot x^4 - 18 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0 = 0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.443107$

Q3-3 Função de iteração

Solução: $g(x) = \frac{120 \cdot x^4 - 18 \cdot x^2 - 2}{160 \cdot x^3 - 36 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221123 – Renato André Claro Nunes]

Considere a função polinomial

$$p(x) = 20 \cdot x^4 - 9 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447260$

Q3-3 Função de iteração

Solução: $g(x) = \frac{60 \cdot x^4 - 9 \cdot x^2 - 1}{80 \cdot x^3 - 18 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221124 - Ricardo Diogo Gonçalves Caetano]

Considere a função polinomial

$$p(x) = 56 \cdot x^4 - 15 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{8}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.35$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.2929$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.353361$

Q3-3 Função de iteração

Solução: $g(x) = \frac{168 \cdot x^4 - 15 \cdot x^2 - 1}{224 \cdot x^3 - 30 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221125 - Rodrigo Nave da Costa]

Considere a função polinomial

$$p(x) = 84 \cdot x^4 - 26 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378433$

Q3-3 Função de iteração

Solução: $g(x) = \frac{252 \cdot x^4 - 26 \cdot x^2 - 2}{336 \cdot x^3 - 52 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221126 - Rodrigo Roque Fontinha]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221127 - Sara Conceição Catarino de Jesus]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.404893$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221128 – Sérgio Manuel Pinhal Veríssimo]

Considere a função polinomial

$$p(x) = 45 \cdot x^4 - 19 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447285$

Q3-3 Função de iteração

Solução: $g(x) = \frac{135 \cdot x^4 - 19 \cdot x^2 - 2}{180 \cdot x^3 - 38 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221129 – Tiago Miguel de Albuquerque Eusébio]

Considere a função polinomial

$$p(x) = 30 \cdot x^4 - 11 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408321$

Q3-3 Função de iteração

Solução: $g(x) = \frac{90 \cdot x^4 - 11 \cdot x^2 - 1}{120 \cdot x^3 - 22 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221130 - Tiago Miguel Fumega Henriques]

Considere a função polinomial

$$p(x) = 30 \cdot x^4 - 11 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408321$

Q3-3 Função de iteração

Solução: $g(x) = \frac{90 \cdot x^4 - 11 \cdot x^2 - 1}{120 \cdot x^3 - 22 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221131 - Tim Tetelepta Rodrigues]

Considere a função polinomial

$$p(x) = 35 \cdot x^4 - 12 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{7}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.38$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.5119$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.378476$

Q3-3 Função de iteração

Solução: $g(x) = \frac{105 \cdot x^4 - 12 \cdot x^2 - 1}{140 \cdot x^3 - 24 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221132 - Vasco Miguel Ucha de Pinho]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 10 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.6330$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408939$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 10 \cdot x^2 - 1}{96 \cdot x^3 - 20 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221133 – António Pedro Resende Rebelo]

Considere a função polinomial

$$p(x) = 30 \cdot x^4 - 11 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.40$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408204$

Q3-3 Função de iteração

Solução: $g(x) = \frac{90 \cdot x^4 - 11 \cdot x^2 - 1}{120 \cdot x^3 - 22 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221134 – Miguel do Paço A. D'Albuquerque Serrano]

Considere a função polinomial

$$p(x) = 40 \cdot x^4 - 18 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.443107$

Q3-3 Função de iteração

Solução: $g(x) = \frac{120 \cdot x^4 - 18 \cdot x^2 - 2}{160 \cdot x^3 - 36 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221136 – Vítor Luís Domingues Nunes]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 29 \cdot x^2 + x + 5$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577354$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 29 \cdot x^2 - 5}{168 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221138 – João Sá Santos Mendes]

Considere a função polinomial

$$p(x) = 30 \cdot x^4 - 11 \cdot x^2 + x + 1$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408321$

Q3-3 Função de iteração

Solução: $g(x) = \frac{90 \cdot x^4 - 11 \cdot x^2 - 1}{120 \cdot x^3 - 22 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221140 - Ricardo Margarido Oliveira]

Considere a função polinomial

$$p(x) = 33 \cdot x^4 - 23 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577329$

Q3-3 Função de iteração

Solução: $g(x) = \frac{99 \cdot x^4 - 23 \cdot x^2 - 4}{132 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221141 - Gonçalo Santos Alves]

Considere a função polinomial

$$p(x) = 95 \cdot x^4 - 39 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447365$

Q3-3 Função de iteração

Solução: $g(x) = \frac{285 \cdot x^4 - 39 \cdot x^2 - 4}{380 \cdot x^3 - 78 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221142 – Francisco José dos Santos Vicente]

Considere a função polinomial

$$p(x) = 90 \cdot x^4 - 38 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.446047$

Q3-3 Função de iteração

Solução: $g(x) = \frac{270 \cdot x^4 - 38 \cdot x^2 - 4}{360 \cdot x^3 - 76 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221143 – João Pedro Vicente Rei]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[190221144 - Rodrigo Miguel Portilho Nunes]

Considere a função polinomial

$$p(x) = 90 \cdot x^4 - 38 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.7889$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.446047$

Q3-3 Função de iteração

Solução: $g(x) = \frac{270 \cdot x^4 - 38 \cdot x^2 - 4}{360 \cdot x^3 - 76 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221146 - Rafael Santos Mordomo]

Considere a função polinomial

$$p(x) = 42 \cdot x^4 - 29 \cdot x^2 + x + 5$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.58$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577354$

Q3-3 Função de iteração

Solução: $g(x) = \frac{126 \cdot x^4 - 29 \cdot x^2 - 5}{168 \cdot x^3 - 58 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221147 – Ricardo Sinaré Torres Ferreira]

Considere a função polinomial

$$p(x) = 45 \cdot x^4 - 19 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.44$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447359$

Q3-3 Função de iteração

Solução: $g(x) = \frac{135 \cdot x^4 - 19 \cdot x^2 - 2}{180 \cdot x^3 - 38 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5

Cotação: 4 val.

[190221148 – André Ricardo Nascimento Guerreiro]

Considere a função polinomial

$$p(x) = 95 \cdot x^4 - 39 \cdot x^2 + x + 4$$

- 1. Prove que o ponto $\alpha=1/\sqrt{5}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.45$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1056$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.447365$

Q3-3 Função de iteração

Solução: $g(x) = \frac{285 \cdot x^4 - 39 \cdot x^2 - 4}{380 \cdot x^3 - 78 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Questão 3 de 5 Cotação: 4 val.

[190221149 - Thiers Pinto de Mesquita Neto]

Considere a função polinomial

$$p(x) = 24 \cdot x^4 - 17 \cdot x^2 + x + 3$$

- 1. Prove que o ponto $\alpha=1/\sqrt{3}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.57$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = -0.1547$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.577161$

Q3-3 Função de iteração

Solução: $g(x) = \frac{72 \cdot x^4 - 17 \cdot x^2 - 3}{96 \cdot x^3 - 34 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Exame Final 2^a Época

Questão 3 de 5 Cotação: 4 val.

[Modelo – Docente]

Considere a função polinomial

$$p(x) = 66 \cdot x^4 - 23 \cdot x^2 + x + 2$$

- 1. Prove que o ponto $\alpha=1/\sqrt{6}$ é um ponto fixo de p. Determine $p'(\alpha)$ e justifique se a iteração de p(x) a partir de pontos próximos de α gera sucessões convergentes.
- 2. Determine o termo x_2 da sucessão (x_k) gerada a partir de $x_0=0.41$ por iteração de p(x) (apresente o valor com 6 algarismos significativos).
- 3. Determine a expressão analítica da função de iteração g(x) que deve ser aplicada para encontrar um ponto fixo de p(x) através do método de Newton-Raphson.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

Q3-1 Valor da derivada no ponto indicado

Solução: $p'(\alpha) = 0.1835$

Q3-2 Ponto x2 obtido:

Solução: $x_2 = 0.408340$

Q3-3 Função de iteração

Solução: $g(x) = \frac{198 \cdot x^4 - 23 \cdot x^2 - 2}{264 \cdot x^3 - 46 \cdot x}$

* DISPONÍVEL ÀS 10:30H (31-07-2020).

Resolução do modelo do docente

1

O ponto α será ponto fixo de p(x) se $p(\alpha) = \alpha$. Calculamos:

$$p(\alpha) = 66 \cdot (1/\sqrt{6})^4 - 23(1/\sqrt{6})^2 + (1/\sqrt{6}) + 2 = \frac{66}{36} - \frac{23}{6} + 2 - \frac{1}{\sqrt{6}} = \frac{11 - 23 + 12}{6} + \alpha = \alpha$$

Portanto $p(\alpha) = \alpha$, e este valor é ponto fixo de p(x).

Calculemos agora a derivada p'(x) em α :

$$p'(\alpha) = 66 \cdot 4 \cdot \alpha^3 - 23 \cdot 2 \cdot \alpha + 1 = 0.18350$$

Como $|p'(\alpha)| < 0.2 < 1$, e esta derivada é contínua, existe um intervalo da forma $[\alpha - \epsilon, \alpha + \epsilon]$ onde $|p'(x)| \le 0.2$. Neste intervalo p(x) é uma contração com coeficiente de contração c = 0.2, isto é, temos $|p(x) - p(y)| \le 0.2 \cdot |x - y|$ para qualquer par de pontos do intervalo (basta aplicar o teorema de Lagrange), e p(x) está no intervalo, para qualquer x do intervalo (porque $|x - \alpha| \le \epsilon \Rightarrow |p(x) - \alpha| = |p(x) - p(\alpha)| \le 0.2 \cdot |x - \alpha| < 0.2\epsilon < \epsilon$)

Por ser uma contração, deduzimos que qualquer escolha de x_0 neste intervalo gera, ao iterarmos p(x), uma sucessão convergente ao ponto fixo α

 $\mathbf{2}$

A sucessão obtida por iteração de p(x) tem termos $x_{k+1} = p(x_k)$, portanto:

$$x_1 = p(x_0) = p(0.41) = 0.40870$$

$$x_2 = p(x_1) = p(0.40870) = 0.408340$$

3

Queremos encontrar um ponto fixo de p(x), portanto uma solução de p(x) - x = 0. A função de iteração de Newton-Raphson para encontrar zeros desta função $f(x) = p(x) - x = 66x^4 - 23x^2 + 2$ é:

$$g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{66x^4 - 23x^2 + 2}{264x^3 - 46x} = \frac{198x^4 - 23x^2 - 2}{264x^3 - 46x}$$