

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: 0 545 099 A2

(2)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92119105.2

(51) Int. Cl.⁵: C07D 213/82, C07D 231/14,
C07D 277/56, C07D 263/34,
C07D 307/68, C07D 309/28,
C07D 327/06, C07C 233/64,
A01N 37/22, A01N 43/00

(22) Anmeldetag: 07.11.92

(33) Priorität: 22.11.91 DE 4138387
18.02.92 DE 4204764
18.02.92 DE 4204766
18.02.92 DE 4204767
18.02.92 DE 4204768

(43) Veröffentlichungstag der Anmeldung:
09.06.93 Patentblatt 93/23

(44) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IE IT LI NL PT
SE

(71) Anmelder: BASF Aktiengesellschaft
Carl-Bosch-Strasse 38
W-6700 Ludwigshafen(DE)

(72) Erfinder: Eicken, Karl, Dr.

Am Huettenwingert 12
W-6706 Wachenheim(DE)
Erfinder: Goetz, Norbert, Dr.
Schoefferstrasse 25
W-6520 Worms 1(DE)
Erfinder: Harreus, Albrecht, Dr.
Teichgasse 13
W-6700 Ludwigshafen(DE)
Erfinder: Ammermann, Eberhard, Dr.
Von Gagern-Strasse 2
W-6148 Heppenheim(DE)
Erfinder: Lorenz, Gisela, Dr.
Erlenweg 13
W-6730 Neustadt(DE)
Erfinder: Rang, Harald, Dr.
Maximilianstrasse 30
W-6700 Ludwigshafen(DE)

(54) Säureanilid-Derivate und ihre Verwendung zur Bekämpfung von Botrytis.

(57) Verwendung von Nicotinsäureanilid-Derivaten der allgemeinen Formel

I,

in der die Substituenten folgende Bedeutung haben:

R¹ Halogen, Methyl, Trifluormethyl, Methoxy, Methylthio, Methylsulfinyl, Methylsulfonyl
R² gegebenenfalls durch Halogen substituiertes Alkyl, gegebenenfalls durch Halogen substituiertes Alkenyl, Alkinyl, gegebenenfalls durch Halogen substituiertes Alkoxy, gegebenenfalls durch Halogen substituiertes Alkenyloxi, Alkinyloxi, Cycloalkyl, Cycloalkenyl, Cycloalkyloxi, Cycloalkenyloxi
zur Bekämpfung von Botrytis und Nicotinsäureanilide der Formel I.

EP 0 545 099 A2

Die vorliegende Erfindung betrifft die Verwendung von Säureanilid-Derivaten der allgemeinen Formel

5

10 in der A die folgenden Bedeutungen hat
Pyridin-3-yl, substituiert in 2-Stellung durch Halogen, Methyl, Trifluormethyl, Methoxy, Methylthio, Methylsulfinyl, Methylsulfonyl,
Phenyl, substituiert in 2-Stellung durch Methyl, Trifluormethyl, Chlor, Brom, Iod,
2-Methyl-5,6-dihydropyran-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4-oxid, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4,4-dioxid; 2-Methyl-furan-3-yl, substituiert in 4- und 5-Stellung durch Wasserstoff oder Methyl; Thiazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; Thiazol-4-yl, substituiert in 2- und 5-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; 1-Methylpyrazol-4-yl, substituiert in 3- und 5-Stellung durch Methyl, Chlor, Trifluormethyl; Oxazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor und

15 20 R die folgenden Bedeutungen hat, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxy, C₃-C₁₂-Alkinyloxy, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxy, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxy, gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen, substituiertes Phenyl,

25 zur Bekämpfung von Botrytis.

Ferner betrifft die vorliegende Erfindung neue Ssäureanilid-Derivate.

Es ist bekannt, Nicotinsäureanilide, z.B. das 2-Chlornicotinsäure-2'-ethylanilid (US 4 001 416) oder das

30 2-Chlornicotinsäure-3'-isopropylanilid (DE 26 11 601) als Fungizide zu verwenden.

Es wurde nun gefunden, daß die eingangs definierten Säureanilid-Derivate eine gute Wirkung gegen Botrytis besitzen.

Im Hinblick auf ihre Wirksamkeit sind Verbindungen bevorzugt, in denen die Substituenten folgende Bedeutung haben:

35 Halogen z.B. Fluor, Chlor, Brom,
Alkyl wie insbesondere Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 40 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl, n-Heptyl, 1-Methylhexyl, 1-Ethylpentyl, 2-Ethylpentyl, 1-Propylbutyl, Octyl, Decyl, Dodecyl wobei das Alkyl ein bis drei der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor tragen kann,
Alkenyl, wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-45 Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butene, 1,2-Dimethyl-2-butene, 1,2-Dimethyl-3-butene, 1,3-Dimethyl-2-butene, 1,3-Dimethyl-3-butene, 2,2-Dimethyl-3-butene, 2,3-Dimethyl-2-butene, 2,3-Dimethyl-3-butene, 1-Ethyl-2-butene, 1-Ethyl-3-butene, 2-Ethyl-2-butene, 2-Ethyl-3-butene, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl, insbesondere 2-Propenyl, 2-Butenyl, 3-Methyl-2-butene und 3-Methyl-2-pentenyl;
wobei das Alkenyl ein bis drei der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor tragen kann,
Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Alkinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-penti-

nyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,2-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl,

5 Alkoxy wie insbesondere Ethoxi, Propoxi, 1-Methylethoxi, Butoxi, 1-Methylpropoxi, 2-Methylpropoxi, 1,1-Dimethylethoxi, n-Pentyloxi, 1-Methylbutoxi, 2-Methylbutoxi, 3-Methylbutoxi, 1,2-Dimethylpropoxi, 1,1-Dimethylpropoxi, 2,2-Dimethylpropoxi, 1-Ethylpropoxi, n-Hexyloxi, 1-Methylpentyloxi, 2-Methylpentyloxi, 3-Methylpentyloxi, 4-Methylpentyloxi, 1,2-Dimethylbutoxi, 1,3-Dimethylbutoxi, 2,3-Dimethylbutoxi, 1,1-Dimethylbutoxi, 2,2-Dimethylbutoxi, 3,3-Dimethylbutoxi, 1,1,2-Trimethylpropoxi, 1,2,2-Trimethylpropoxi, 1-Ethylbutoxi, 2-Ethylbutoxi, 1-Ethyl-2-methylpropoxi, n-Heptyloxi, 1-Methylhexyloxi, 2-Methylhexyloxi, 3-Methylhexyloxi, 4-Methylhexyloxi, 5-Methylhexyloxi, 1-Ethylpentyloxi, 2-Ethylpentyloxi, 1-Propylbutoxi, Octyloxi, Decyloxi, Dodecyloxi, wobei das Alkoxy ein bis drei der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor tragen kann,

10 Alkenyloxi wie 2-Propenyloxi, 2-Butenyloxi, 3-Butenyloxi, 1-Methyl-2-propenyloxi, 2-Methyl-2-propenyloxi, 2-Pentenyloxi, 3-Pentenyloxi, 4-Pentenyloxi, 1-Methyl-2-butenyloxi, 2-Methyl-2-butenyloxi, 3-Methyl-2-butenyloxi, 1-Methyl-3-butenyloxi, 2-Methyl-3-butenyloxi, 3-Methyl-3-butenyloxi, 1,1-Dimethyl-2-propenyloxi, 1,2-Dimethyl-2-propenyloxi, 1-Ethyl-2-propenyloxi, 2-Hexenyloxi, 3-Hexenyloxi, 4-Hexenyloxi, 5-Hexenyloxi, 1-Methyl-2-pentenyloxi, 2-Methyl-2-pentenyloxi, 3-Methyl-2-pentenyloxi, 4-Methyl-2-pentenyloxi, 1-Methyl-3-pentenyloxi, 2-Methyl-3-pentenyloxi, 3-Methyl-3-pentenyloxi, 4-Methyl-3-pentenyloxi, 1-Methyl-4-pentenyloxi, 2-Methyl-4-pentenyloxi, 3-Methyl-4-pentenyloxi, 4-Methyl-4-pentenyloxi, 1,1-Dimethyl-2-butenyloxi, 1,1-Dimethyl-3-butenyloxi, 1,2-Dimethyl-2-butenyloxi, 1,3-Dimethyl-2-butenyloxi, 1,3-Dimethyl-3-butenyloxi, 2,2-Dimethyl-3-butenyloxi, 2,3-Dimethyl-2-butenyloxi, 2,3-Dimethyl-3-butenyloxi, 1-Ethyl-2-butenyloxi, 1-Ethyl-3-butenyloxi, 2-Ethyl-2-butenyloxi, 2-Ethyl-3-butenyloxi, 1,1,2-Trimethyl-2-propenyloxi, 1-Ethyl-1-methyl-2-propenyloxi und 1-Ethyl-2-methyl-2-propenyloxi, insbesondere 2-Propenyloxi, 2-Butenyloxi, 3-Methyl-2-butenyloxi, und 3-Methyl-2-pentenyloxi;

15 25 wobei das Alkenyloxy ein bis drei der vorstehend genannte Halogenatome, insbesondere Fluor und Chlor tragen kann.

Alkinyloxi wie 2-Propinyloxi, 2-Butinyloxi, 3-Butinyloxi, 1-Methyl-2-propinyloxi, 2-Pentinyloxi, 3-Pentinyloxi, 4-Pentinyloxi, 1-Methyl-3-butinyloxi, 2-Methyl-3-butinyloxi, 1-Methyl-2-butinyloxi, 1,1-Dimethyl-2-propinyloxi, 1-Ethyl-2-propinyloxi, 2-Hexinyloxi, 3-Hexinyloxi, 4-Alkinyloxi, 5-Hexinyloxi, 1-Methyl-2-pentinyloxi, 1-Methyl-4-pentinyloxi, 2-Methyl-3-pentinyloxi, 2-Methyl-4-pentinyloxi, 3-Methyl-4-pentinyloxi, 4-Methyl-3-pentinyloxi, 1,1-Dimethyl-2-butinyloxi, 1,1-Dimethyl-3-butinyloxi, 1,2-Dimethyl-3-butinyloxi, 2,2-Dimethyl-3-butinyloxi, 1-Ethyl-2-butinyloxi, 1-Ethyl-3-butinyloxi, 2-Ethyl-3-butinyloxi und 1-Ethyl-1-methyl-2-propinyloxi, vorzugsweise 2-Propinyloxi, 2-Butinyloxi, 1-Methyl-2-propinyloxi und 1-Methyl-2-butinyloxi,

30 35 C₃-C₆-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, wobei das Cycloalkyl gegebenenfalls durch ein bis drei C₁-C₄-Alkylreste substituiert ist;

C₄-C₆-Cycloalkenyl, wie Cyclobutenyl, Cyclopentenyl, Cyclohexenyl, das gegebenenfalls durch ein bis drei C₁-C₄-Alkylreste substituiert ist.

35 40 C₅-C₆-Cycloalkoxi wie Cyclopentyloxi oder Cyclohexyloxi, das durch ein bis drei C₁-C₄-Alkylreste substituiert sein kann.

C₅-C₆-Cycloalkenyloxi wie Cyclopentyloxi oder Cyclohexaryloxi, das durch ein bis drei C₁-C₄-Alkylreste substituiert sein kann.

Bevorzugt wird die Verwendung von Nicotinsäureanilid-Derivaten der allgemeinen Formel I,

45

50

in der die Substituenten folgende Bedeutung haben:

R¹ Halogen, Methyl, Trifluormethyl, Methoxy, Methylthio, Methylsulfinyl, Methylsulfonyl

R² gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi,

55 gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi

zur Bekämpfung von Botrytis.

EP 0 545 099 A2

Die Verbindungen der Formel I erhält man beispielsweise, in dem man ein entsprechend substituiertes Nicotinsäurehalogenid der Formel 2

Hal ist Chlor oder Brom, mit einem ortho-substituierten Anilin der Formel 3 in Gegenwart einer Base umsetzt. Die Nicotinsäuren bzw. deren Halogenide der Formel 2 sind bekannt. Die Aniline der Formel 3 sind bekannt oder können nach bekannten Verfahren hergestellt werden (Helv. Chim. Acta 60, 978 (1977); Zb. Org. Khim 26, 1527 (1990); Heterocyclo 26, 1885 (1987); Izv. Akad. Nauk. SSSR Ser. Khim 1982, 2160).

Insbesondere bevorzugt sind Verbindungen, der Formel I in denen der Rest R¹ für Chlor steht und der Rest R² die eingangs erwähnte Bedeutung hat.

20 Tabelle 1 Verbindungen der Formel I

Nr.	R1	R2	phys. Dat. FP [°C]
30	1.1	F n-C ₃ H ₇	
35	1.2	F i-C ₃ H ₇	
	1.3	F sec.-C ₄ H ₉	52 - 54
40	1.4	F i-C ₄ H ₉	87 - 89
	1.5	C1 n-C ₃ H ₇	103 - 104
	1.6	C1 n-C ₄ H ₉	
	1.7	C1 sec.-C ₄ H ₉	94 - 96
	1.8	C1 i-C ₄ H ₉	99 - 101

45

50

55

Nr.	R1	R2	phys. Dat. FP [°C]
5	1.9	C1 tert.-C ₄ H ₉	118 - 120
	1.10	C1 n-C ₅ H ₁₁	
	1.11	C1 sec.-C ₅ H ₁₁	
10	1.12	C1 n-C ₆ H ₁₃	
	1.13	C1 n-C ₇ H ₁₅	
	1.14	C1 sec.-C ₇ H ₁₅	
15	1.15	C1 n-C ₈ H ₁₇	
	1.16	C1 n-C ₁₀ H ₂₃	
	1.17	C1 n-C ₁₂ H ₂₅	
20	1.18	C1 1-Methylvinyl	90 - 91
	1.19	C1 2-Methylvinyl	
	1.20	C1 Allyl	
25	1.21	C1 2-Methylallyl	
	1.22	C1 2-Ethylallyl	
	1.23	C1 1-Methylallyl	
30	1.24	C1 1-Ethylallyl	
	1.25	C1 1-Methyl-2-butenyl	
	1.26	C1 1-Ethyl-2-butenyl	
35	1.27	C1 1-Isopropyl-2-butenyl	
	1.28	C1 1-n-Butyl-2-butenyl	
	1.29	C1 1-Methyl-2-pentenyl	
40	1.30	C1 1,4-Dimethyl-2-pentenyl	
	1.31	C1 Propargyl	
	1.32	C1 2-Butinyl	
45	1.33	C1 3-Butinyl	
	1.34	C1 Ethoxi	131 - 132
	1.35	C1 Propoxi	
50	1.36	C1 1-Methylethoxi	65 - 67
	1.37	C1 n-Butoxi	84 - 85
	1.38	C1 1-Methylpropoxi	72 - 74
	1.39	C1 2-Methylpropoxi	81 - 84
	1.40	C1 1,1-Dimethylethoxi	
	1.41	C1 n-Pentyloxi	
	1.42	C1 n-Hexyloxi	
	1.43	C1 n-Hopyloxi	

	Nr.	R1	R2	phys. Dat. FP [°C]
5	1.44	Cl	n-Octyloxi	
	1.45	Cl	2-Ethylhexyloxi	
	1.46	Cl	n-Decyloxi	
10	1.47	Cl	2-Propenyloxi	86 - 88
	1.48	Cl	2-Butentyloxi	92 - 95
	1.49	Cl	2-Methyl-2-propenyloxi	75 - 76
15	1.50	Cl	2-Pentenyloxi	
	1.51	Cl	3-Pentenyloxi	
	1.52	Cl	3-Chlor-2-propenyloxi	
20	1.53	Cl	2,3-Dichlor-2-propenyloxi	
	1.54	Cl	2,3,3-Trichlor-propenyloxi	
	1.55	Cl	2-Propinyloxi	79 - 84
25	1.56	Cl	2-Butinyl-oxi	
	1.57	Cl	3-Butinyl-oxi	
	1.58	Cl	1-Methyl-2-propinyloxi	
30	1.59	Cl	Cyclopropyl	144 - 145
	1.60	Cl	Cyclobutyl	
	1.61	Cl	Cyclopentyl	112 - 114
35	1.62	Cl	Cyclohexyl	141 - 142
	1.63	Cl	2-Cyclopentenyl	123 - 124
	1.64	Cl	1-Cyclopentenyl	
40	1.65	Cl	2-Cyclohexenyl	92 - 93
	1.66	Cl	1-Cyclohexenyl	
	1.67	Cl	Cyclopentyloxi	80 - 82
45	1.68	Cl	Cyclohexyloxi	
	1.69	Cl	2-Cyclopentenyloxi	
	1.70	Cl	2-Cyclohexenyloxi	Öl
50	1.71	Br	sec.-Butyl	
	1.72	Br	i-Butyl	
	1.73	CH ₃	sec.-Butyl	
55	1.74	CH ₃	i-Butyl	
	1.75	CF ₃	i-Propyl	
	1.76	CF ₃	sec.-Butyl	
60	1.77	CF ₃	i-Butyl	
	1.78	OCH ₃	i-Propyl	

	Nr.	R1	R2	phys. Dat. FP [°C]
5	1.79	OCH ₃	sec.-Butyl	Öl NMR 0,8t (3H); 1,2d (3H); 1,6m (2H); 3,0q (1H); 4,1s (3H); 7,2m (3H); 7,3m (1H); 8,3m (1H); 8,4m (1H), 9,8s (1H)
10	1.80	OCH ₃	i-Butyl	Öl NMR 0,8d (6H); 1,9m (1H); 2,5d (2H), 4,05s (3H), 7,2m (4H); 7,8d (1H); 8,3d (1H); 8,4m (1H); 9,8s (1H)
15	1.81	SCH ₃	i-Propyl	
1.82	SCH ₃	sec.-Butyl	89 - 91	
1.83	SCH ₃	i-Butyl	140 - 141	
1.84	SO ₂ CH ₃	sec.-Butyl	191 - 192	
1.85	SO ₂ CH ₃	i-Butyl	150 - 153	
20	1.86	Cl	2-Ethylpropoxy	65 - 66
	1.87	Cl	3-Methyl-3-butenyloxy	83 - 84

25 Herstellungsbeispiele

Beispiel 1

Zu einer Lösung von 2,7 g 2-n-Propylanilin und 2,0 g Triethylamin in 30 ml Tetrahydrofuran tropft man bei 0°C 3,5 g 2-Chlornicotinsäurechlorid und röhrt noch 2 Stdn. bei 0°C. Nach Verdünnen mit 300 ml Wasser isoliert man 3,2 g 2-Chlornicotinsäure-2-n-propylanilid von Fp.: 103 - 104°C (Nr. 1.5).

Beispiel 2

35 4,4 g 2-Chlornicotinsäure-2-sec.-butylanilid (Tabelle 1, Nr. 7) werden in einer Lösung von 5,5 g 30 % Natriummethylat-Lösung in 20 ml Methanol 2 Stdn. am Rückfluß gekocht. Nach Verdünnen mit 250 ml Wasser wird zweimal mit je 100 ml Essigester extrahiert. Aus den vereinigten organ. Phasen isoliert man nach Trocknen und Verdampfen des Lösungsmittels 3,8 g 2-Methoxy-nicotinsäure-2-sec.-butylanilid als Öl. (Nr. 1.79).

40 Beispiel 3

Aus 5,7 g 2-Methylthionicotinsäurechlorid, 4,6 g 2-sec-Butylanilin und 3,1 g Triethylamin erhält man in analoger wie Beispiel 1 6,6 g 2-Methylthionicotinsäure-2-sec.-butylanilid vom Fp.: 89 - 91°C (Nr. 1.82).

45 Beispiel 4

In eine Mischung aus 2,00 g des obigen Produkts (Beispiel 3) in 5 ml Eisessig und 0,13 g Natriumwolframat tropft man unter Rühren bei 35°C 2,20 g 30 % Wasserstoffperoxid zu und röhrt 3 Stdn. 50 bei 35°C nach. Nach Verdünnen mit 15 ml Wasser, Absaugen der Kristalle, Waschen mit Wasser und Trocknen erhält man 1,7 g 2-Methylsulfonylnicotinsäure-2-sec.-butylanilid vom FP.: 191 - 192°C (Nr. 1.84). Die Erfindung betrifft ferner die Verwendung von Anilid-Derivaten der Formel II,

in der die Substituenten folgende Bedeutung haben:

10

A

15

(A1)

(A2)

X Methylen oder Schwefel

20 R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi

zur Bekämpfung von Botrytis.

Die Verbindungen der Formel 2 erhält man beispielsweise, in dem man ein entsprechend substituiertes Carbonsäurehalogenid der Formel 4 mit einem ortho-substituierten Anilin der Formel 3 in Gegenwart einer Base umsetzt.

30

+

II

35

4

3

40 Hal ist Chlor oder Brom.

Die Carbonsäuren bzw. deren Halogenid ACO₂H bzw. A-CO-Hal (4) sind bekannt.

45

50

55

5
Tabelle 2
Verbindungen der Formel II

10

25

Nr.	A	R	X	phys. Dat. Fp [°C]
2.1	A ₁	i-C ₃ H ₇	-	108 - 109
2.2	A ₁	n-C ₃ H ₇	-	112 - 114
2.3	A ₁	n-C ₄ H ₉	-	
2.4	A ₁	sec.-C ₄ H ₉	-	89 - 90
2.5	A ₁	i-C ₄ H ₉	-	118 - 11
2.6	A ₁	tert.-C ₄ H ₉	-	

30

35

40

45

50

55

Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.7	A ₁	n-C ₅ H ₁₁	-
	2.8	A ₁	sec.-C ₅ H ₁₁	-
	2.9	A ₁	n-C ₆ H ₁₃	-
	2.10	A ₁	n-C ₇ H ₁₅	-
10	2.11	A ₁	sec.-C ₇ H ₁₅	-
	2.12	A ₁	1-Methylvinyl	-
	2.13	A ₁	2-Methylvinyl	-
	2.14	A ₁	Allyl	-
15	2.15	A ₁	2-Methylallyl	-
	2.16	A ₁	2-Ethylallyl	-
	2.17	A ₁	1-Methylallyl	-
	2.18	A ₁	1-Ethylallyl	-
20	2.19	A ₁	1-Methyl-2-butenyl	-
	2.20	A ₁	1-Ethyl-2-butenyl	-
	2.21	A ₁	1-Isopropyl-2-butenyl	-
	2.22	A ₁	1-n-Butyl-2-butenyl	-
25	2.23	A ₁	1-Methyl-2-pentenyl	-
	2.24	A ₁	1,4-Dimethyl-2-pentenyl	-
	2.25	A ₁	Propargyl	-
	2.26	A ₁	2-Butinyl	-
30	2.27	A ₁	3-Butinyl	-
	2.28	A ₁	Ethoxi	-
	2.29	A ₁	Propoxi	-
	2.30	A ₁	1-Methylethoxi	-
35	2.31	A ₁	n-Butoxi	-
	2.32	A ₁	1-Methylpropoxi	-
	2.33	A ₁	2-Methylpropoxi	-
	2.34	A ₁	1,1-Dimethylethoxi	-
40	2.35	A ₁	n-Pentyloxi	-
	2.36	A ₁	n-Hexyloxi	-
	2.37	A ₁	2-Ethylhexyloxi	-
	2.38	A ₁	2-Propenyloxi	-
45	2.39	A ₁	2-Butentyloxi	-
	2.40	A ₁	2-Methyl-2-propenyloxi	-
	2.41	A ₁	2-Pentenyloxi	-
				Öl

Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.42	A ₁	3-Pentenyloxi	-
	2.43	A ₁	3-Chlor-2-propenyloxi	-
	2.44	A ₁	2,3-Dichlor-2-propenyloxi	-
	2.45	A ₁	2,3,3-Trichlor-propenyloxi	-
10	2.46	A ₁	2-Propinyloxi	-
	2.47	A ₁	2-Butinyl-oxi	-
	2.48	A ₁	3-Butinyl-oxi	-
	2.49	A ₁	1-Methyl-2-propinyloxi	-
15	2.50	A ₁	Cyclopropyl	-
	2.51	A ₁	Cyclobutyl	-
	2.52	A ₁	Cyclopentyl	- 112 - 113
	2.53	A ₁	Cyclohexyl	- 120 - 121
20	2.54	A ₁	2-Cyclopentenyl	- 128 - 129
	2.55	A ₁	1-Cyclopentenyl	-
	2.56	A ₁	2-Cyclohexenyl	- 95 - 96
	2.57	A ₁	1-Cyclohexenyl	-
25	2.58	A ₁	Cyclopentyloxi	-
	2.59	A ₁	Cyclohexyloxi	-
	2.60	A ₁	2-Cyclopentenyloxi	-
	2.61	A ₁	2-Cyclohexenyloxi	- Öl
30	2.62	A ₂	i-C ₃ H ₇	CH ₂ 99 - 101
	2.63	A ₂	n-C ₃ H ₇	CH ₂
	2.64	A ₂	n-C ₄ H ₉	CH ₂
	2.65	A ₂	sec.-C ₄ H ₉	CH ₂ 81 - 82
35	2.66	A ₂	i-C ₄ H ₉	CH ₂ 81 - 83
	2.67	A ₂	tert.-C ₄ H ₉	CH ₂
	2.68	A ₂	n-C ₅ H ₁₁	CH ₂
	2.69	A ₂	sec.-C ₅ H ₁₁	CH ₂
40	2.70	A ₂	n-C ₆ H ₁₃	CH ₂
	2.71	A ₂	n-C ₇ H ₁₅	CH ₂
	2.72	A ₂	sec.-C ₇ H ₁₅	CH ₂
	2.73	A ₂	1-Methylvinyl	CH ₂
45	2.74	A ₂	2-Methylvinyl	CH ₂
	2.75	A ₂	Allyl	CH ₂
	2.76	A ₂	2-Methylallyl	CH ₂

Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.77	A ₂	2-Ethylallyl	CH ₂
	2.78	A ₂	1-Methylallyl	CH ₂
	2.79	A ₂	1-Ethylallyl	CH ₂
10	2.80	A ₂	1-Methyl-2-butenyl	CH ₂
	2.81	A ₂	1-Ethyl-2-butenyl	CH ₂
	2.82	A ₂	1-Isopropyl-2-butenyl	CH ₂
15	2.83	A ₂	1-n-Butyl-2-butenyl	CH ₂
	2.84	A ₂	1-Methyl-2-pentenyl	CH ₂
	2.85	A ₂	1,4-Dimethyl-2-pentenyl	CH ₂
20	2.86	A ₂	Propargyl	CH ₂
	2.87	A ₂	2-Butinyl	CH ₂
	2.88	A ₂	3-Butinyl	CH ₂
25	2.89	A ₂	Ethoxi	CH ₂
	2.90	A ₂	Propoxi	CH ₂
	2.91	A ₂	1-Methylethoxi	CH ₂
30	2.92	A ₂	n-Butoxi	CH ₂
	2.93	A ₂	1-Methylpropoxi	CH ₂
	2.94	A ₂	2-Methylpropoxi	CH ₂
35	2.95	A ₂	1,1-Dimethylethoxi	CH ₂
	2.96	A ₂	n-Pentyloxi	CH ₂
	2.97	A ₂	n-Hexyloxi	CH ₂
40	2.98	A ₂	2-Ethylhexyloxi	CH ₂
	2.99	A ₂	2-Propenyloxi	CH ₂
	2.100	A ₂	2-Butentyloxi	CH ₂
45	2.101	A ₂	1-Methyl-2-propenyloxi	CH ₂ 67 - 69
	2.102	A ₂	2-Pentenyloxi	CH ₂
	2.103	A ₂	3-Pentenyloxi	CH ₂
50	2.104	A ₂	3-Chlor-2-propenyloxi	CH ₂
	2.105	A ₂	2,3-Dichlor-2-propenyloxi	CH ₂
	2.106	A ₂	2,3,3-Trichlor-propenyloxi	CH ₂
55	2.107	A ₂	2-Propinyloxi	CH ₂
	2.108	A ₂	2-Butinyl-oxi	CH ₂
	2.109	A ₂	3-Butinyl-oxi	CH ₂
60	2.110	A ₂	1-Methyl-2-propinyl-oxi	CH ₂
	2.111	A ₂	Cyclopropyl	CH ₂

Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.112	A ₂	Cyclobutyl	CH ₂
	2.113	A ₂	Cyclopentyl	CH ₂
	2.114	A ₂	Cyclohexyl	CH ₂
10	2.115	A ₂	2-Cyclopentenyl	CH ₂
	2.116	A ₂	1-Cyclopentenyl	CH ₂
	2.117	A ₂	2-Cyclohexenyl	CH ₂
	2.118	A ₂	1-Cyclohexenyl	CH ₂
15	2.119	A ₂	Cyclopentyloxi	CH ₂
	2.120	A ₂	Cyclohexyloxi	CH ₂
	2.121	A ₂	2-Cyclopentenyloxi	CH ₂
	2.122	A ₂	2-Cyclohexenyloxi	CH ₂
20	2.123	A ₂	i-C ₃ H ₇	S
	2.124	A ₂	n-C ₃ H ₇	S
	2.125	A ₂	n-C ₄ H ₉	S
25	2.126	A ₂	sec.-C ₄ H ₉	S
	2.127	A ₂	i-C ₄ H ₉	S
	2.128	A ₂	tert.-C ₄ H ₉	S
	2.129	A ₂	n-C ₅ H ₁₁	S
30	2.130	A ₂	sec.-C ₅ H ₁₁	S
	2.131	A ₂	n-C ₆ H ₁₃	S
	2.132	A ₂	n-C ₇ H ₁₅	S
	2.133	A ₂	sec.-C ₇ H ₁₅	S
35	2.134	A ₂	1-Methylvinyl	S
	2.135	A ₂	2-Methylvinyl	S
	2.136	A ₂	Allyl	S
	2.137	A ₂	2-Methylallyl	S
40	2.138	A ₂	2-Ethylallyl	S
	2.139	A ₂	1-Methylallyl	S
	2.140	A ₂	1-Ethylallyl	S
45	2.141	A ₂	1-Methyl-2-butenyl	S
	2.142	A ₂	1-Ethyl-2-butenyl	S
	2.143	A ₂	1-Isopropyl-2-butenyl	S
	2.144	A ₂	1-n-Butyl-2-butenyl	S
50	2.145	A ₂	1-Methyl-2-pentenyl	S
	2.146	A ₂	1,4-Dimethyl-2-pentenyl	S

	Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.147	A ₂	Propargyl	S	
	2.148	A ₂	2-Butinyl	S	
	2.149	A ₂	3-Butinyl	S	
10	2.150	A ₂	Ethoxi	S	
	2.151	A ₂	Propoxi	S	
	2.152	A ₂	1-Methylethoxi	S	
15	2.153	A ₂	n-Butoxi	S	
	2.154	A ₂	1-Methylpropoxi	S	Ö1
	2.155	A ₂	2-Methylpropoxi	S	
20	2.156	A ₂	1,1-Dimethylethoxi	S	
	2.157	A ₂	n-Pentyloxi	S	
	2.158	A ₂	n-Hexyloxi	S	
25	2.159	A ₂	2-Ethylhexyloxi	S	
	2.160	A ₂	2-Propenyloxi	S	
	2.161	A ₂	2-Butentyloxi	S	
30	2.162	A ₂	1-Methyl-2-propenyloxi	S	65 - 67
	2.163	A ₂	2-Pentenyloxi	S	
	2.164	A ₂	3-Pentenyloxi	S	
35	2.165	A ₂	3-Chlor-2-propenyloxi	S	
	2.166	A ₂	2,3-Dichlor-2-propenyloxi	S	
	2.167	A ₂	2,3,3-Trichlor-propenyloxi	S	
40	2.168	A ₂	2-Propinyloxi	S	
	2.169	A ₂	2-Butinyl-oxi	S	
	2.170	A ₂	3-Butinyl-oxi	S	
45	2.171	A ₂	1-Methyl-2-propinyloxi	S	
	2.172	A ₂	Cyclopropyl	S	
	2.173	A ₂	Cyclobutyl	S	
50	2.174	A ₂	Cyclopentyl	S	62 - 64
	2.175	A ₂	Cyclohexyl	S	120 - 122
	2.176	A ₂	2-Cyclopentenyl	S	76 - 78
55	2.177	A ₂	1-Cyclopentenyl	S	
	2.178	A ₂	2-Cyclohexenyl	S	70 - 72
	2.179	A ₂	1-Cyclohexenyl	S	
60	2.180	A ₂	Cyclopentyloxi	S	88 - 90
	2.181	A ₂	Cyclohexyloxi	S	

Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.182	A ₂	2-Cyclopentenyloxi	S
	2.183	A ₂	2-Cyclohexenyloxi	S Öl
	2.184	A ₁	1-Ethylpropoxy	- 65 - 66
10	2.185	A ₁	3-Methyl-2-butenyloxy	- Öl
	2.186	A ₂	1-Ethylpropoxy	CH ₂ Öl
15	2.187	A ₂	1-Ethylpropoxy	S Öl

Herstellungsbeispiele

Beispiel 5

20 Zu einer Lösung von 3,0 g sec.-Butyl-anilin und 2,0 g Triethylamin in 30 ml Tetrahydrofuran tropft man bei 0 °C 3,1 g 2-Methylbenzoësäurechlorid und röhrt noch 2 Stdn. bei 0 °C. Nach Verdünnen mit 500 ml Wasser, Extraktion mit Essigester und Verdampfen des Lösungsmittels, isoliert man 2-Methylbenzoësäure-2-sec.-butylanilid vom Fp: 89 - 90 °C (Verbindung Nr. 2.4).

Beispiel 6

Zu einer Lösung von 3,0 g 2-Methyl-5,6-dihydropyran-3-carbonsäure in 20 ml Pyridin tropft man bei 0 °C 2,5 g Thionylchlorid, nach 1 Stunde Nachröhren setzt man 2,8 g 2-Isopropylanilin zu und röhrt 12 Stunden bei Raumtemperatur (20 °C) nach. Nach Verdampfen des Pyridins wird mit 50 ml Wasser aufgerührt mit verd. Salzsäure auf pH 3 eingestellt und mit Essigester extrahiert. Nach Verdampfen des Lösungsmittels und Mischen des Rückstandes mit Diisopropylether isoliert man 3,3 g 2-Methyl-5,6-dihydropyran-3-carbonsäure-2-isopropylanilid vom Fp: 99 - 101 °C (Verbindung Nr. 2.62).

Die Erfindung betrifft ferner die Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel II,

40

in der die Substituenten folgende Bedeutung haben:

45

50

55

X Methylen, Schwefel, Sulfinyl, Sulfonyl (SO_2),

R¹ Methyl, Trifluormethyl, Chlor, Brom, Jod

30 R² Trifluormethyl, Chlor

R³ Wasserstoff oder Methyl

R⁴ Methyl, Trifluormethyl, Chlor

R⁵ Wasserstoff, Methyl, C

R⁶ Methyl, Trifluoromethyl

R⁷ Methyl, Chlor

R⁸ C₁-C₄-Alkyl, C₁-C₄-

Die Verbindungen der Formel III erhält man beispielsweise, indem man ein entsprechend substituiertes

50 Hal ist Chlor oder Brom, mit einem ortho-substituierten Anilin der Formel 5 in Gegenwart einer Base umsetzt. Die Carbonsäuren bzw. deren Halogenide der Formel 4 sind bekannt. Die Aniline der Formel 5 sind z. Teil bekannt oder können nach bekannten Verfahren hergestellt werden (Tetrahedron Letters, Vol. 28 S. 5093 (1987); THL Vol 29 5463 (1988)).

55

5

10

15

20

25

30

35

40

45

50

55

Tabelle 3

Nr.	A	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	X	phys. Daten [°C]
3.1	A ₁	CH ₃	-	-	-	-	-	-	2-F	-	
3.2	A ₁	CH ₃	-	-	-	-	-	-	4-F	-	
3.3	A ₁	CF ₃	-	-	-	-	-	-	2-F	-	
3.4	A ₁	CF ₃	-	-	-	-	-	-	4-F	-	
3.5	A ₂	-	C ₁	-	-	-	-	-	2-F	-	
3.6	A ₂	-	C ₁	-	-	-	-	-	2-CH ₃	-	71 - 73
3.7	A ₂	-	C ₁	-	-	-	-	-	2-Cl	-	
3.8	A ₂	-	C ₁	-	-	-	-	-	2-OCH ₃	-	
3.9	A ₂	-	C ₁	-	-	-	-	-	3-F	-	
3.10	A ₂	-	C ₁	-	-	-	-	-	3-Cl	-	95 - 98
3.11	A ₂	-	C ₁	-	-	-	-	-	3-CH ₃	-	
3.12	A ₂	-	C ₁	-	-	-	-	-	3-OCH ₃	-	
3.13	A ₂	-	C ₁	-	-	-	-	-	3-OiC ₃ H ₇	-	
3.14	A ₂	-	C ₁	-	-	-	-	-	3-Br	-	
3.15	A ₂	-	C ₁	-	-	-	-	-	4-F	-	156 - 157
3.16	A ₂	-	C ₁	-	-	-	-	-	4-Cl	-	
3.17	A ₂	-	C ₁	-	-	-	-	-	4-CH ₃	-	
3.18	A ₂	-	C ₁	-	-	-	-	-	4-OCH ₃	-	
3.19	A ₂	-	C ₁	-	-	-	-	-	4-SCH ₃	-	

5

10

15

20

25

30

35

40

45

50

55

Nr.	A	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	X	phys. Daten [°C]
3.20	A ₃	-	-	-	-	-	-	-	-	2-F	CH ₂
3.21	A ₃	-	-	-	-	-	-	-	-	3-F	CH ₂
3.22	A ₃	-	-	-	-	-	-	-	-	4-F	CH ₂
3.23	A ₃	-	-	-	-	-	-	-	-	3-C1	CH ₂
3.24	A ₃	-	-	-	-	-	-	-	-	3-CH ₃	CH ₂
3.25	A ₃	-	-	-	-	-	-	-	-	2-F	S
3.26	A ₃	-	-	-	-	-	-	-	-	3-F	S
3.27	A ₃	-	-	-	-	-	-	-	-	4-F	S
3.28	A ₃	-	-	-	-	-	-	-	-	3-C1	S
3.29	A ₃	-	-	-	-	-	-	-	-	3-CH ₃	S
3.30	A ₃	-	-	-	-	-	-	-	-	2-F	SO ₂
3.31	A ₃	-	-	-	-	-	-	-	-	3-F	SO ₂
3.32	A ₃	-	-	-	-	-	-	-	-	4-F	SO ₂
3.33	A ₃	-	-	-	-	-	-	-	-	3-C1	SO ₂
3.34	A ₃	-	-	-	-	-	-	-	-	3-CH ₃	SO ₂
3.35	A ₅	-	-	-	-	CF ₃	CH ₃	-	-	2-F	-
3.36	A ₅	-	-	-	-	CF ₃	CH ₃	-	-	3-F	-
3.37	A ₅	-	-	-	-	CF ₃	CH ₃	-	-	4-F	-
3.38	A ₇	-	-	-	-	-	CH ₃	C1	-	2-F	-
3.39	A ₇	-	-	-	-	-	CH ₃	C1	-	3-F	-
3.40	A ₇	-	-	-	-	-	CH ₃	C1	-	4-F	-

5

10

15

20

25

30

35

40

45

50

Die Erfindung betrifft ferner die Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel IV,

55

Nr.	A	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	X	phys. Daten [°C]
3.41	A ₇	-	-	-	-	-	CF ₃	C1	2-F	-	
3.42	A ₇	-	-	-	-	-	CF ₃	C1	4-F	-	

in der die Substituenten folgende Bedeutung haben:

10

15

25

35

- X Methylen, Sulfinyl, Sulfonyl (SO_2),
- R¹ Methyl, Trifluormethyl, Chlor, Brom, Jod
- R² Trifluormethyl, Chlor
- R³ Wasserstoff oder Methyl
- R⁴ Methyl, Trifluormethyl, Chlor
- R⁵ Wasserstoff, Methyl, Chlor
- R⁶ Methyl, Trifluormethyl
- R⁷ Methyl, Chlor,

zur Bekämpfung von Botrytis.

45 Die Verbindung der Formel IV erhält man beispielsweise, indem man ein entsprechendes aromatisches oder heterocyclisches Säurehalogenid 4 mit 2-Aminobiphenyl 6 in Gegenwart einer Base umsetzt.

50

+

55

Hal ist Chlor oder Brom.

Die Säuren der Formel A-CO₂H bzw. deren Halogenide II sind bekannt.

5

10

15

20

25

30

35

40

45

50

55

Tabelle 4

Nr.	A	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	X	phys. Daten [°C]
4.1	A ₁	CH ₃	-	-	-	-	-	-	-	87 - 88
4.2	A ₁	Br	-	-	-	-	-	-	-	113 - 115
4.3	A ₂	-	C1	-	-	-	-	-	-	151 - 152
4.4	A ₃	-	-	-	-	-	-	-	CH ₂	76 - 77
4.5	A ₄	-	-	CH ₃	-	-	-	-	-	104 - 106
4.6	A ₅	-	-	-	CH ₃	CH ₃	-	-	-	136 - 137

5

10

15

20

25

30

35

40

45

50

55

Tabelle 5

Nr.	A	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	X	phys.	Daten [°C]	PS-Nr.
5.1	A ₁	CF ₃	-	-	-	-	-	-	-	-	138-139	
5.2	A ₁	J	-	-	-	-	-	-	-	-	129-132	
5.3	A ₂	-	CF ₃	-	-	-	-	-	-	-		
5.4	A ₃	-	-	-	-	-	-	-	SO	-		
5.5	A ₃	-	-	-	-	-	-	-	SO ₂	-		
5.6	A ₅	-	-	-	CF ₃	CH ₃	-	-	-	-	116-118	
5.7	A ₆	-	-	-	CH ₃	CH ₃	-	-	-	-		
5.8	A ₆	-	-	-	C ₁	C ₁	-	-	-	-		
5.9	A ₇	-	-	-	-	-	CH ₃	C ₁	-	-	108-109	
5.10	A ₇	-	-	-	-	-	CF ₃	C ₁	-	-		
5.11	A ₇	-	-	-	-	-	CH ₃	CH ₃	-	-		
5.11	A ₁	C ₁	-	-	-	-	-	-	-	-	100-103	

Die Erfindung betrifft ferner die Verwendung von Carbonsäureanilid-Derivaten der allg. Formel V,

in der die Substituenten folgende Bedeutung haben:

n 1 oder 2

R¹ Trifluormethyl, Chlor, Brom, Jod

R² Wasserstoff oder Methyl

R³ Methyl, Trifluormethyl, Chlor

R⁴ Wasserstoff, Methyl, Chlor

R⁵ Methyl, Trifluormethyl

R⁶ Methyl, Chlor

R⁷ gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi zur Bekämpfung von Botrytis.

45

50

55

Tabelle 6
Verbindungen der Formel I mit A in der Bedeutung A₁

5

10

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
15	6.1 CF ₃	i-C ₃ H ₇	160-162
	6.2 CF ₃	n-C ₃ H ₇	151-152
	6.3 CF ₃	n-C ₄ H ₉	
20	6.4 CF ₃	sec.-C ₄ H ₉	83- 84
	6.5 CF ₃	i-C ₄ H ₉	133-135
	6.6 CF ₃	tert.-C ₄ H ₉	
25	6.7 CF ₃	n-C ₅ H ₁₁	
	6.8 CF ₃	sec.-C ₅ H ₁₁	
	6.9 CF ₃	n-C ₆ H ₁₃	
30	6.10 CF ₃	n-C ₇ H ₁₅	
	6.11 CF ₃	sec.-C ₇ H ₁₅	
	6.12 CF ₃	1-Methylvinyl	
	6.13 CF ₃	2-Methylvinyl	
35	6.14 CF ₃	Allyl	
	6.15 CF ₃	2-Methylallyl	

40

45

50

55

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	6.16	CF ₃	2-Ethylallyl	
	6.17	CF ₃	1-Methylallyl	
	6.18	CF ₃	1-Ethylallyl	
10	6.19	CF ₃	1-Methyl-2-butenyl	
	6.20	CF ₃	1-Ethyl-2-butenyl	
	6.21	CF ₃	1-Isopropyl-2-butenyl	
	6.22	CF ₃	1-n-Butyl-2-butenyl	
15	6.23	CF ₃	1-Methyl-2-pentenyl	
	6.24	CF ₃	1,4-Dimethyl-2-pentenyl	
	6.25	CF ₃	Propargyl	
	6.26	CF ₃	2-Butinyl	
20	6.27	CF ₃	3-Butinyl	
	6.28	CF ₃	Ethoxi	
	6.29	CF ₃	Propoxi	
	6.30	CF ₃	1-Methylethoxi	
25	6.31	CF ₃	n-Butoxi	
	6.32	CF ₃	1-Methylpropoxi	
	6.33	CF ₃	2-Methylpropoxi	
	6.34	CF ₃	1,1-Dimethylethoxi	
30	6.35	CF ₃	n-Pentyloxi	
	6.36	CF ₃	n-Hexyloxi	
	6.37	CF ₃	2-Ethylhexyloxi	
35	6.38	CF ₃	2-Propenyloxi	
	6.39	CF ₃	2-Butentyloxi	
	6.40	CF ₃	2-Methyl-2-propenyloxi	
	6.41	CF ₃	2-Pentenyloxi	
40	6.42	CF ₃	3-Pentenyloxi	
	6.43	CF ₃	3-Chlor-2-propenyloxi	
	6.44	CF ₃	2,3-Dichlor-2-propenyloxi	
	6.45	CF ₃	2,3,3-Trichlor-propenyloxi	
45	6.46	CF ₃	2-Propinyloxi	
	6.47	CF ₃	2-Butinyl-oxi	
	6.48	CF ₃	3-Butinyl-oxi	
50	6.49	CF ₃	1-Methyl-2-propinyloxi	
	6.50	CF ₃	Cyclopropyl	

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	6.51	CF ₃	Cyclobutyl	
	6.52	CF ₃	Cyclopentyl	150-152
	6.53	CF ₃	Cyclohexyl	130-132
10	6.54	CF ₃	2-Cyclopentenyl	160-161
	6.55	CF ₃	1-Cyclopentenyl	
	6.56	CF ₃	2-Cyclohexenyl	103-105
15	6.57	CF ₃	1-Cyclohexenyl	
	6.58	CF ₃	Cyclopentyloxi	
	6.59	CF ₃	Cyclohexyloxi	
20	6.60	CF ₃	2-Cyclopentenyloxi	
	6.61	CF ₃	2-Cyclohexenyloxi	

20

Tabelle 7
Verbindungen der Formel V mit A in der Bedeutung A₁

25

30

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
35	7.1	C1	i-C ₃ H ₇	125-127
	7.2	C1	n-C ₃ H ₇	108-110
	7.3	C1	n-C ₄ H ₉	
40	7.4	C1	sec.-C ₄ H ₉	73- 74
	7.5	C1	i-C ₄ H ₉	90- 92
	7.6	C1	tert.-C ₄ H ₉	
45	7.7	C1	n-C ₅ H ₁₁	
	7.8	C1	sec.-C ₅ H ₁₁	
	7.9	C1	n-C ₆ H ₁₃	
50	7.10	C1	n-C ₇ H ₁₅	
	7.11	C1	sec.-C ₇ H ₁₅	
	7.12	C1	1-Methylvinyl	
	7.13	C1	2-Methylvinyl	

55

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	7.14	C1	Allyl	
	7.15	C1	2-Methylallyl	
	7.16	C1	2-Ethylallyl	
10	7.17	C1	1-Methylallyl	
	7.18	C1	1-Ethylallyl	
	7.19	C1	1-Methyl-2-butenyl	
	7.20	C1	1-Ethyl-2-butenyl	
15	7.21	C1	1-Isopropyl-2-butenyl	
	7.22	C1	1-n-Butyl-2-butenyl	
	7.23	C1	1-Methyl-2-pentenyl	
	7.24	C1	1,4-Dimethyl-2-pentenyl	
20	7.25	C1	Propargyl	
	7.26	C1	2-Butinyl	
	7.27	C1	3-Butinyl	
	7.28	C1	Ethoxi	
25	7.29	C1	Propoxi	
	7.30	C1	1-Methylethoxi	
	7.31	C1	n-Butoxi	
30	7.32	C1	1-Methylpropoxi	
	7.33	C1	2-Methylpropoxi	
	7.34	C1	1,1-Dimethylethoxi	
	7.35	C1	n-Pentyloxi	
35	7.36	C1	n-Hexyloxi	
	7.37	C1	2-Ethylhexyloxi	
	7.38	C1	2-Propenyloxi	
	7.39	C1	2-Butentyloxi	
40	7.40	C1	2-Methyl-2-propenyloxi	
	7.41	C1	2-Pentenyloxi	
	7.42	C1	3-Pentenyloxi	
	7.43	C1	3-Chlor-2-propenyloxi	
45	7.44	C1	2,3-Dichlor-2-propenyloxi	
	7.45	C1	2,3,3-Trichlor-propenyloxi	
	7.46	C1	2-Propinyloxi	
50	7.47	C1	2-Butinyl-oxi	
	7.48	C1	3-Butinyl-oxi	

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]	
5	7.49	Cl	1-Methyl-2-propynyloxi	
	7.50	Cl	Cyclopropyl	
	7.51	Cl	Cyclobutyl	
10	7.52	Cl	Cyclopentyl	110-111
	7.53	Cl	Cyclohexyl	141-142
	7.54	Cl	2-Cyclopentenyl	110-112
15	7.55	Cl	1-Cyclopentenyl	
	7.56	Cl	2-Cyclohexenyl	84- 86
	7.57	Cl	1-Cyclohexenyl	
20	7.58	Cl	Cyclopentyloxi	
	7.59	Cl	Cyclohexyloxi	
	7.60	Cl	2-Cyclopentenyloxi	
	7.61	Cl	2-Cyclohexenyloxi	

Tabelle 8

Verbindungen der Formel V mit A in der Bedeutung A₂

30

35

Nr.	n	R ⁷	phys.Dat. Fp [°C]
35	8.1	i-C ₃ H ₇	
	8.2	n-C ₃ H ₇	
40	8.3	n-C ₄ H ₉	
	8.4	sec.-C ₄ H ₉	96-98
45	8.5	i-C ₄ H ₉	85-86
	8.6	tert.-C ₄ H ₉	
50	8.7	n-C ₅ H ₁₁	
	8.8	sec.-C ₅ H ₁₁	
	8.9	n-C ₆ H ₁₃	
	8.10	n-C ₇ H ₁₅	
	8.11	sec.-C ₇ H ₁₅	

55

Nr.	n	R ⁷	phys.Dat. Fp [°C]	
5	8.12	2	1-Methylvinyl	
	8.13	2	2-Methylvinyl	
	8.14	2	Allyl	
10	8.15	2	2-Methylallyl	
	8.16	2	2-Ethylallyl	
	8.17	2	1-Methylallyl	
	8.18	2	1-Ethylallyl	
15	8.19	2	1-Methyl-2-butenyl	
	8.20	2	1-Ethyl-2-butenyl	
	8.21	2	1-Isopropyl-2-butenyl	
	8.22	2	1-n-Butyl-2-butenyl	
20	8.23	2	1-Methyl-2-pentenyl	
	8.24	2	1,4-Dimethyl-2-pentenyl	
	8.25	2	Propargyl	
	8.26	2	2-Butinyl	
25	8.27	2	3-Butinyl	
	8.28	2	Ethoxi	
	8.29	2	Propoxi	
30	8.30	2	1-Methylethoxi	
	8.31	2	n-Butoxi	
	8.32	2	1-Methylpropoxi	100-102
	8.33	2	2-Methylpropoxi	
35	8.34	2	1,1-Dimethylethoxi	
	8.35	2	n-Pentyloxi	
	8.36	2	n-Hexyloxi	
	8.37	2	2-Ethylhexyloxi	
40	8.38	2	2-Propenyloxi	
	8.39	2	2-Butentyloxi	
	8.40	2	2-Methyl-2-propenyloxi	
45	8.41	2	2-Pentenyloxi	
	8.42	2	3-Pentenyloxi	
	8.43	2	3-Chlor-2-propenyloxi	
	8.44	2	2,3-Dichlor-2-propenyloxi	
50	8.45	2	2,3,3-Trichlor-propenyloxi	
	8.46	2	2-Propinyloxi	

	Nr.	n	R ⁷	phys.Dat. Fp [°C]
5	8.47	2	2-Butinyl-oxi	
	8.48	2	3-Butinyl-oxi	
	8.49	2	1-Methyl-2-propinyloxi	
10	8.50	2	Cyclopropyl	
	8.51	2	Cyclobutyl	
15	8.52	2	Cyclopentyl	128-130
	8.53	2	Cyclohexyl	134-135
20	8.54	2	2-Cyclopentenyl	
	8.55	2	1-Cyclopentenyl	
25	8.56	2	2-Cyclohexenyl	
	8.57	2	1-Cyclohexenyl	
30	8.58	2	Cyclopentyloxi	
	8.59	2	Cyclohexyloxi	
35	8.60	2	2-Cyclopentenyloxi	
	8.61	2	2-Cyclohexenyloxi	
40	8.62	1	i-C ₃ H ₇	
	8.63	1	n-C ₃ H ₇	
45	8.64	1	n-C ₄ H ₉	
	8.65	1	sec.-C ₄ H ₉	Öl
50	8.66	1	i-C ₄ H ₉	Öl
	8.67	1	tert.-C ₄ H ₉	
	8.68	1	n-C ₅ H ₁₁	
	8.69	1	sec.-C ₅ H ₁₁	
	8.70	1	n-C ₆ H ₁₃	
	8.71	1	n-C ₇ H ₁₅	
	8.72	1	sec.-C ₇ H ₁₅	
	8.73	1	Ethoxi	
	8.74	1	Propoxi	
	8.75	1	1-Methylethoxi	
	8.76	1	n-Butoxi	
	8.77	1	1-Methylpropoxi	
	8.78	1	2-Methylpropoxi	
	8.79	1	1,1-Dimethylethoxi	
	8.80	1	n-Pentyloxi	

Nr.	n	R ⁷	phys.Dat. Fp [°C]
5 8.81	1	n-Hexyloxi	
8.82	1	Cyclopentyl	

Tabelle 9

Verbindungen der Formel V mit A in der Bedeutung A₄

10

15

Nr.	R ³	R ⁴	R ⁷	phys.Dat. Fp [°C]
20 9.1	CF ₃	CH ₃	i-C ₃ H ₇	115-116
9.2	CF ₃	CH ₃	n-C ₃ H ₇	114-116
9.3	CF ₃	CH ₃	n-C ₄ H ₉	
25 9.4	CF ₃	CH ₃	sec.-C ₄ H ₉	73- 75
9.5	CF ₃	CH ₃	i-C ₄ H ₉	100-102
9.6	CF ₃	CH ₃	tert.-C ₄ H ₉	
30 9.7	CF ₃	CH ₃	n-C ₅ H ₁₁	
9.8	CF ₃	CH ₃	sec.-C ₅ H ₁₁	
9.9	CF ₃	CH ₃	n-C ₆ H ₁₃	
9.10	CF ₃	CH ₃	n-C ₇ H ₁₅	
35 9.11	CF ₃	CH ₃	sec.-C ₇ H ₁₅	
9.12	CF ₃	CH ₃	1-Methylvinyl	
9.13	CF ₃	CH ₃	2-Methylvinyl	
9.14	CF ₃	CH ₃	Allyl	
40 9.15	CF ₃	CH ₃	2-Methylallyl	
9.16	CF ₃	CH ₃	2-Ethylallyl	
9.17	CF ₃	CH ₃	1-Methylallyl	
45 9.18	CF ₃	CH ₃	1-Ethylallyl	
9.19	CF ₃	CH ₃	1-Methyl-2-butenyl	
9.20	CF ₃	CH ₃	1-Ethyl-2-butenyl	
50 9.21	CF ₃	CH ₃	1-Isopropyl-2-buteneyl	
9.22	CF ₃	CH ₃	1-n-Butyl-2-buteneyl	
9.23	CF ₃	CH ₃	1-Methyl-2-pentenyl	

	Nr.	R ³	R ⁴	R ⁷	phys.Dat. Fp [°C]
5	9.24	CF ₃	CH ₃	1,4-Dimethyl-2-pentenyl	
	9.25	CF ₃	CH ₃	Propargyl	
	9.26	CF ₃	CH ₃	2-Butinyl	
	9.27	CF ₃	CH ₃	3-Butinyl	
10	9.28	CF ₃	CH ₃	Ethoxi	
	9.29	CF ₃	CH ₃	Propoxi	
	9.30	CF ₃	CH ₃	1-Methylethoxi	
	9.31	CF ₃	CH ₃	n-Butoxi	
15	9.32	CF ₃	CH ₃	1-Methylpropoxi	
	9.33	CF ₃	CH ₃	2-Methylpropoxi	
	9.34	CF ₃	CH ₃	1,1-Dimethylethoxi	
	9.35	CF ₃	CH ₃	n-Pentyloxi	
20	9.36	CF ₃	CH ₃	n-Hexyloxi	
	9.37	CF ₃	CH ₃	2-Ethylhexyloxi	
	9.38	CF ₃	CH ₃	2-Propenyloxi	
	9.39	CF ₃	CH ₃	2-Butentyloxi	
25	9.40	CF ₃	CH ₃	2-Methyl-2-propenyloxi	
	9.41	CF ₃	CH ₃	2-Pentenyloxi	
	9.42	CF ₃	CH ₃	3-Pentenyloxi	
	9.43	CF ₃	CH ₃	3-Chlor-2-propenyloxi	
30	9.44	CF ₃	CH ₃	2,3-Dichlor-2-propenyloxi	
	9.45	CF ₃	CH ₃	2,3,3-Trichlor-propenyloxi	
	9.46	CF ₃	CH ₃	2-Propinyloxi	
	9.47	CF ₃	CH ₃	2-Butinyl-oxi	
35	9.48	CF ₃	CH ₃	3-Butinyl-oxi	
	9.49	CF ₃	CH ₃	1-Methyl-2-propinyloxi	
	9.50	CF ₃	CH ₃	Cyclopropyl	
	9.51	CF ₃	CH ₃	Cyclobutyl	
40	9.52	CF ₃	CH ₃	Cyclopentyl	114-118
	9.53	CF ₃	CH ₃	Cyclohexyl	100-104
	9.54	CF ₃	CH ₃	2-Cyclopentenyl	116-120
	9.55	CF ₃	CH ₃	1-Cyclopentenyl	
45	9.56	CF ₃	CH ₃	2-Cyclohexenyl	96-98
	9.57	CF ₃	CH ₃	1-Cyclohexenyl	
	9.58	CF ₃	CH ₃	Cyclopentyloxi	

	Nr.	R ³	R ⁴	R ⁷	phys.Dat. Fp [°C]
5	9.59	CF ₃	CH ₃	Cyclohexyloxi	
	9.60	CF ₃	CH ₃	2-Cyclopentenyloxi	
	9.61	CF ₃	CH ₃	2-Cyclohexenyloxi	
10	9.62	CH ₃	CH ₃	i-C ₃ H ₇	
	9.63	CH ₃	CH ₃	n-C ₃ H ₇	
	9.64	CH ₃	CH ₃	n-C ₄ H ₉	
15	9.65	CH ₃	CH ₃	sec.-C ₄ H ₉	136
	9.66	CH ₃	CH ₃	i-C ₄ H ₉	96- 97
	9.67	CH ₃	CH ₃	tert.-C ₄ H ₉	
20	9.68	CH ₃	CH ₃	n-C ₅ H ₁₁	
	9.69	CH ₃	CH ₃	sec.-C ₅ H ₁₁	
	9.70	CH ₃	CH ₃	n-C ₆ H ₁₃	
25	9.71	CH ₃	CH ₃	n-C ₇ H ₁₅	
	9.72	CH ₃	CH ₃	sec.-C ₇ H ₁₅	
	9.73	CH ₃	CH ₃	Ethoxi	
30	9.74	CH ₃	CH ₃	Propoxi	
	9.75	CH ₃	CH ₃	1-Methylethoxi	
	9.76	CH ₃	CH ₃	n-Butoxi	
35	9.77	CH ₃	CH ₃	1-Methylpropoxi	
	9.78	CH ₃	CH ₃	2-Methylpropoxi	
	9.79	CH ₃	CH ₃	1,1-Dimethylethoxi	
40	9.80	CH ₃	CH ₃	n-Pentyloxi	
	9.81	CH ₃	CH ₃	n-Hexyloxi	
	9.82	CH ₃	CH ₃	Cyclopentyl	128-130
45	9.83	CH ₃	CH ₃	Cyclopentenyl	128-129
	9.84	CH ₃	CH ₃	Cyclohexyl	128-129
	9.85	CH ₃	CH ₃	1-Ethyl-propoxy	45-47
	9.86	CH ₃	CH ₃	Cyclopentyloxy	97-99
	9.87	CH ₃	CH ₃	2-Cyclohexenyloxy	87-89
	9.88	CH ₃	CH ₃	2-Methyl-2-propenyloxy	103-105

45

50

55

Tabelle 10
Verbindungen der Formel V mit A in der Bedeutung A₆

5

10

	Nr.	R ⁵	R ⁶	R ⁷	phys.Dat. Fp [°C]
15	10.1	CH ₃	Cl	i-C ₃ H ₇	108-110
	10.2	CH ₃	Cl	n-C ₃ H ₇	129-130
	10.3	CH ₃	Cl	n-C ₄ H ₉	
20	10.4	CH ₃	Cl	sec.-C ₄ H ₉	71- 73
	10.5	CH ₃	Cl	i-C ₄ H ₉	119-120
	10.6	CH ₃	Cl	tert.-C ₄ H ₉	
25	10.7	CH ₃	Cl	n-C ₅ H ₁₁	
	10.8	CH ₃	Cl	sec.-C ₅ H ₁₁	
	10.9	CH ₃	Cl	n-C ₆ H ₁₃	
30	10.10	CH ₃	Cl	n-C ₇ H ₁₅	
	10.11	CH ₃	Cl	sec.-C ₇ H ₁₅	
	10.12	CH ₃	Cl	1-Methylvinyl	
35	10.13	CH ₃	Cl	2-Methylvinyl	
	10.14	CH ₃	Cl	Allyl	
	10.15	CH ₃	Cl	2-Methylallyl	
40	10.16	CH ₃	Cl	2-Ethylallyl	
	10.17	CH ₃	Cl	1-Methylallyl	
	10.18	CH ₃	Cl	1-Ethylallyl	
45	10.19	CH ₃	Cl	1-Methyl-2-butenyl	
	10.20	CH ₃	Cl	1-Ethyl-2-butenyl	
	10.21	CH ₃	Cl	1-Isopropyl-2-butenyl	
50	10.22	CH ₃	Cl	1-n-Butyl-2-butenyl	
	10.23	CH ₃	Cl	1-Methyl-2-pentenyl	
	10.24	CH ₃	Cl	1,4-Dimethyl-2-pentenyl	
55	10.25	CH ₃	Cl	Propargyl	
	10.26	CH ₃	Cl	2-Butinyl	
	10.27	CH ₃	Cl	3-Butinyl	

	Nr.	R ⁵	R ⁶	R ⁷	phys.Dat. Fp [°C]
5	10.28	CH ₃	Cl	Ethoxi	
	10.29	CH ₃	Cl	Propoxi	
	10.30	CH ₃	Cl	1-Methylethoxi	
	10.31	CH ₃	Cl	n-Butoxi	
10	10.32	CH ₃	Cl	1-Methylpropoxi	
	10.33	CH ₃	Cl	2-Methylpropoxi	
	10.34	CH ₃	Cl	1,1-Dimethylethoxi	
	10.35	CH ₃	Cl	n-Pentyloxi	
15	10.36	CH ₃	Cl	n-Hexyloxi	
	10.37	CH ₃	Cl	2-Ethylhexyloxi	
	10.38	CH ₃	Cl	2-Propenyloxi	
	10.39	CH ₃	Cl	2-Butentyloxi	
20	10.40	CH ₃	Cl	2-Methyl-2-propenyloxi	
	10.41	CH ₃	Cl	2-Pentenyloxi	
	10.42	CH ₃	Cl	3-Pentenyloxi	
	10.43	CH ₃	Cl	3-Chlor-2-propenyloxi	
25	10.44	CH ₃	Cl	2,3-Dichlor-2-propenyloxi	
	10.45	CH ₃	Cl	2,3,3-Trichlor-propenyloxi	
	10.46	CH ₃	Cl	2-Propinyloxi	
	10.47	CH ₃	Cl	2-Butinyl-oxi	
30	10.48	CH ₃	Cl	3-Butinyl-oxi	
	10.49	CH ₃	Cl	1-Methyl-2-propinyloxi	
	10.50	CH ₃	Cl	Cyclopropyl	
	10.51	CH ₃	Cl	Cyclobutyl	
35	10.52	CH ₃	Cl	Cyclopentyl	122-123
	10.53	CH ₃	Cl	Cyclohexyl	143-144
	10.54	CH ₃	Cl	2-Cyclopentenyl	123-125
	10.55	CH ₃	Cl	1-Cyclopentenyl	
40	10.56	CH ₃	Cl	2-Cyclohexenyl	114-116
	10.57	CH ₃	Cl	1-Cyclohexenyl	
	10.58	CH ₃	Cl	Cyclopentyloxi	
	10.59	CH ₃	Cl	Cyclohexyloxi	
45	10.60	CH ₃	Cl	2-Cyclopentenyloxi	
	10.61	CH ₃	Cl	2-Cyclohexenyloxi	
	10.62	CF ₃	Cl	i-C ₃ H ₇	

Nr.	R ⁵	R ⁶	R ⁷	phys.Dat. Fp [°C]
5	10.63	CF ₃	Cl	n-C ₃ H ₇
	10.64	CF ₃	Cl	n-C ₄ H ₉
	10.65	CF ₃	Cl	sec.-C ₄ H ₉
10	10.66	CF ₃	Cl	i-C ₄ H ₉
	10.67	CF ₃	Cl	tert.-C ₄ H ₉
	10.68	CF ₃	Cl	n-C ₅ H ₁₁
15	10.69	CF ₃	Cl	sec.-C ₅ H ₁₁
	10.70	CF ₃	Cl	n-C ₆ H ₁₃
	10.71	CF ₃	Cl	n-C ₇ H ₁₅
20	10.72	CF ₃	Cl	sec.-C ₇ H ₁₅
	10.73	CF ₃	Cl	Ethoxi
	10.74	CF ₃	Cl	Propoxi
25	10.75	CF ₃	Cl	1-Methylethoxi
	10.76	CF ₃	Cl	n-Butoxi
	10.77	CF ₃	Cl	1-Methylpropoxi
30	10.78	CF ₃	Cl	2-Methylpropoxi
	10.79	CF ₃	Cl	1,1-Dimethylethoxi
	10.80	CF ₃	Cl	n-Pentyloxi
35	10.81	CF ₃	Cl	n-Hexyloxi
	10.82	CF ₃	Cl	Cyclopentyl
	10.83	CF ₃	Cl	Cyclopentenyl
				113-115
				132-133

Tabelle 11

Verbindungen der Formel V mit A in der Bedeutung A₇

Nr.	R ²	R ⁶	R ⁷	phys.Dat. Fp [°C]
45	11.1	H	CH ₃	i-C ₃ H ₇
	11.2	H	CH ₃	n-C ₃ H ₇
	11.3	H	CH ₃	n-C ₄ H ₉

Nr.	R ²	R ⁶	R ⁷	phys.Dat. Fp [°C]
5	11.4	H	CH ₃	sec.-C ₄ H ₉
	11.5	H	CH ₃	i-C ₄ H ₉
10	11.6	H	CH ₃	tert.-C ₄ H ₉
	11.7	H	CH ₃	n-C ₅ H ₁₁
15	11.8	H	CH ₃	sec.-C ₅ H ₁₁
	11.9	H	CH ₃	n-C ₆ H ₁₃
20	11.10	H	CH ₃	n-C ₇ H ₁₅
	11.11	H	CH ₃	sec.-C ₇ H ₁₅
25	11.12	H	CH ₃	Ethoxi
	11.13	H	CH ₃	Propoxi
30	11.14	H	CH ₃	1-Methylethoxi
	11.15	H	CH ₃	n-Butoxi
35	11.16	H	CH ₃	1-Methylpropoxi
	11.17	H	CH ₃	2-Methylpropoxi
40	11.18	H	CH ₃	1,1-Dimethylethoxi
	11.19	H	CH ₃	n-Pentyloxi
45	11.20	H	CH ₃	n-Hexyloxi
	11.21	H	CH ₃	Cyclopentyl
50	11.22	H	CH ₃	Cyclopentenyl

Tabelle 12
Verbindungen der Formel V mit A in der Bedeutung A₃

Nr.	R ²	R ⁷	phys.Dat. Fp [°C]
45	12.1	H	i-C ₃ H ₇
	12.2	H	n-C ₃ H ₇
50	12.3	H	n-C ₄ H ₉
	12.4	H	sec.-C ₄ H ₉
	12.5	H	i-C ₄ H ₉

	Nr.	R ²	R ⁷	phys.Dat. Fp [°C]
5	12.6	H	tert.-C ₄ H ₉	
	12.7	H	n-C ₅ H ₁₁	
	12.8	H	sec.-C ₅ H ₁₁	
	12.9	H	n-C ₆ H ₁₃	
10	12.10	H	n-C ₇ H ₁₅	
	12.11	H	sec.-C ₇ H ₁₅	
	12.12	H	Ethoxi	
	12.13	H	Propoxi	
15	12.14	H	1-Methylethoxi	
	12.15	H	n-Butoxi	
	12.16	H	1-Methylpropoxi	
	12.17	H	2-Methylpropoxi	
20	12.18	H	1,1-Dimethylethoxi	
	12.19	H	n-Pentyloxi	
	12.20	H	n-Hexyloxi	
	12.21	H	Cyclopentyl	97- 98
25	12.22	H	Cyclohexyl	125-127
	12.23	H	2-Cyclopentenyl	98- 99
	12.24	H	1-Cyclopentenyl	
	12.25	H	2-Cyclohexenyl	82- 84
30	12.26	H	1-Cyclohexenyl	
	12.27	H	Cyclopentyloxi	73 - 75
	12.28	H	Cyclohexyloxi	
	12.29	H	2-Cyclopentenyloxi	
35	12.30	CH ₃	i-C ₃ H ₇	
	12.31	CH ₃	n-C ₃ H ₇	
	12.32	CH ₃	n-C ₄ H ₉	
	12.33	CH ₃	sec.-C ₄ H ₉	80- 82
40	12.34	CH ₃	i-C ₄ H ₉	114-116
	12.35	CH ₃	tert.-C ₄ H ₉	
	12.36	CH ₃	n-C ₅ H ₁₁	
	12.37	CH ₃	sec.-C ₅ H ₁₁	
45	12.38	CH ₃	n-C ₆ H ₁₃	
	12.39	CH ₃	n-C ₇ H ₁₅	
	12.40	CH ₃	sec.-C ₇ H ₁₅	

	Nr.	R ²	R ⁷	phys.Dat. Fp [°C]
5	12.41	CH ₃	Ethoxi	
	12.42	CH ₃	Propoxi	
	12.43	CH ₃	1-Methylethoxi	
10	12.44	CH ₃	n-Butoxi	
	12.45	CH ₃	1-Methylpropoxi	
	12.46	CH ₃	2-Methylpropoxi	
15	12.47	CH ₃	1,1-Dimethylethoxi	
	12.48	CH ₃	n-Pentyloxi	
	12.49	CH ₃	n-Hexyloxi	
20	12.50	CH ₃	Cyclopentyl	
	12.51	H	2-Methyl-2-propenylloxy	40 - 41
	12.52	H	1-Ethyl-propoxy	Öl
	12.53	H	2-Cyclohexenylloxy	51 - 53

25 Herstellbeispiele

Beispiel 7

30 Zu einer Lösung von 1,4 g 2-n-Propylanilin und 1,1 g Triethylamin in 15 ml Tetrahydrofuran tropft man bei 0°C 2,3 g 2-Methyl-4-trifluormethyl-thiazol-5-carbonsäurechlorid und röhrt noch 12 Stdn. bei 20°C.

Nach Verdünnen mit 300 ml Wasser, Extraktion mit Methyltert.-butylether (2x 70 ml), Verdampfen des Lösungsmittels und Mischen des Rückstandes mit wenig n-Pantan isoliert man 2,8 g 2-Methyl-4-trifluormethyl-thiazol-5-carbonsäure-2-n-propyl-anilid vom Fp.: 114-116°C (Tabelle 9, Nr. 2).

35 Beispiel 8

Zu einer Lösung von 2,7 g 2-i-Propylanilin und 2,2 g Triethylamin in 40 ml Dichlormethan tropft man bei 0°C 3,8 g 1,3-Dimethyl-5-chlor-pyrazol-4-carbonsäurechlorid und röhrt noch 2 Stdn. bei 0°C.

40 Nach Waschen mit 50 ml Wasser, Verdampfen des Lösungsmittels und Umkristallisieren aus Cyclohexan isoliert man 3,3 g 1,3-Dimethyl-5-chlor-pyrazol-4-carbonsäure-2-isopropylanilid vom Fp. 108 - 110°C (Tabelle 10, Nr. 1).

45

50

55

Tabelle 13

Verbindungen der Formel V mit A in der Bedeutung A₁

5

10

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
13.1	Br	i-C ₃ H ₇	
13.2	Br	n-C ₃ H ₇	
13.3	Br	n-C ₄ H ₉	
13.4	Br	sec.-C ₄ H ₉	74 - 75
13.5	Br	i-C ₄ H ₉	110 - 112
13.6	Br	tert.-C ₄ H ₉	
13.7	Br	n-C ₅ H ₁₁	
13.8	Br	sec.-C ₅ H ₁₁	
13.9	Br	n-C ₆ H ₁₃	
13.10	Br	n-C ₇ H ₁₅	
13.11	Br	sec.-C ₇ H ₁₅	
13.12	Br	1-Methylvinyl	
13.13	Br	2-Methylvinyl	
13.14	Br	Allyl	
13.15	Br	2-Methylallyl	
13.16	Br	2-Ethylallyl	
13.17	Br	1-Methylallyl	
13.18	Br	1-Ethylallyl	
13.19	Br	1-Methyl-2-butenyl	
13.20	Br	1-Ethyl-2-butenyl	
13.21	Br	1-Isopropyl-2-butenyl	
13.22	Br	1-n-Butyl-2-butenyl	
13.23	Br	1-Methyl-2-pentenyl	

50

55

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	13.24	Br	1,4-Dimethyl-2-pentenyl	
	13.25	Br	Propargyl	
	13.26	Br	2-Butinyl	
10	13.27	Br	3-Butinyl	
	13.28	Br	Ethoxi	
	13.29	Br	Propoxi	
	13.30	Br	1-Methylethoxi	
15	13.31	Br	n-Butoxi	
	13.32	Br	1-Methylpropoxi	
	13.33	Br	2-Methylpropoxi	
	13.34	Br	1,1-Dimethylethoxi	
20	13.35	Br	n-Pentyloxi	
	13.36	Br	n-Hexyloxi	
	13.37	Br	2-Ethylhexyloxi	
	13.38	Br	2-Propenyloxi	
25	13.39	Br	2-Butentyloxi	
	13.40	Br	2-Methyl-2-propenyloxi	
	13.41	Br	2-Pentenyloxi	
	13.42	Br	3-Pentenyloxi	
30	13.43	Br	3-Chlor-2-propenyloxi	
	13.44	Br	2,3-Dichlor-2-propenyloxi	
	13.45	Br	2,3,3-Trichlor-propenyloxi	
35	13.46	Br	2-Propinyloxi	
	13.47	Br	2-Butinyl-oxi	
	13.48	Br	3-Butinyl-oxi	
	13.49	Br	1-Methyl-2-propinyloxi	
40	13.50	Br	Cyclopropyl	
	13.51	Br	Cyclobutyl	
	13.52	Br	Cyclopentyl	
	13.53	Br	Cyclohexyl	
45	13.54	Br	2-Cyclopentenyl	
	13.55	Br	1-Cyclopentenyl	
	13.56	Br	2-Cyclohexenyl	
50	13.57	Br	1-Cyclohexenyl	
	13.58	Br	Cyclopentyloxi	

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	13.59	Br	Cyclohexyloxi
10	13.60	Br	2-Cyclopentenyloxi
13.61	Br	2-Cyclohexenyloxi	

10 Tabelle 14
Verbindungen der Formel V mit A in der Bedeutung A₁

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
20	14.1	J i-C ₃ H ₇	
25	14.2	J n-C ₃ H ₇	
30	14.3	J n-C ₄ H ₉	
35	14.4	J sec.-C ₄ H ₉	97 - 98
40	14.5	J i-C ₄ H ₉	148 - 149
45	14.6	J tert.-C ₄ H ₉	
50	14.7	J n-C ₅ H ₁₁	
	14.8	J sec.-C ₅ H ₁₁	
	14.9	J n-C ₆ H ₁₃	
	14.10	J n-C ₇ H ₁₅	
	14.11	J sec.-C ₇ H ₁₅	
	14.12	J 1-Methylvinyl	
	14.13	J 2-Methylvinyl	
	14.14	J Allyl	
	14.15	J 2-Methylallyl	
	14.16	J 2-Ethylallyl	
	14.17	J 1-Methylallyl	
	14.18	J 1-Ethylallyl	
	14.19	J 1-Methyl-2-butenyl	
	14.20	J 1-Ethyl-2-butenyl	
	14.21	J 1-Isopropyl-2-but enyl	

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	14.22	J	1-n-Butyl-2-butenyl	
	14.23	J	1-Methyl-2-pentenyl	
	14.24	J	1,4-Dimethyl-2-pentenyl	
10	14.25	J	Propargyl	
	14.26	J	2-Butinyl	
	14.27	J	3-Butinyl	
	14.28	J	Ethoxi	
15	14.29	J	Propoxi	
	14.30	J	1-Methylethoxi	
	14.31	J	n-Butoxi	
	14.32	J	1-Methylpropoxi	
20	14.33	J	2-Methylpropoxi	
	14.34	J	1,1-Dimethylethoxi	
	14.35	J	n-Pentyloxi	
	14.36	J	n-Hexyloxi	
25	14.37	J	2-Ethylhexyloxi	
	14.38	J	2-Propenyloxi	
	14.39	J	2-Butentyloxi	
	14.40	J	2-Methyl-2-propenyloxi	
30	14.41	J	2-Pentenyloxi	
	14.42	J	3-Pentenyloxi	
	14.43	J	3-Chlor-2-propenyloxi	
	14.44	J	2,3-Dichlor-2-propenyloxi	
35	14.45	J	2,3,3-Trichlor-propenyloxi	
	14.46	J	2-Propinyloxi	
	14.47	J	2-Butinyl-oxi	
	14.48	J	3-Butinyl-oxi	
40	14.49	J	1-Methyl-2-propinyloxi	
	14.50	J	Cyclopropyl	
	14.51	J	Cyclobutyl	
	14.52	J	Cyclopentyl	
45	14.53	J	Cyclohexyl	
	14.54	J	2-Cyclopentenyl	
	14.55	J	1-Cyclopentenyl	
	14.56	J	2-Cyclohexenyl	

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	14.57	J	1-Cyclohexenyl	
	14.58	J	Cyclopentyloxi	
	14.59	J	Cyclohexyloxi	
	14.60	J	2-Cyclopentenyloxi	
	14.61	J	2-Cyclohexenyloxi	

Tabelle 15
Verbindungen der Formel V mit A in der Bedeutung A₃

15

20

25

30

35

40

45

50

	Nr.	R ⁷	phys.Dat. Fp [°C]
	15.1	i-C ₃ H ₇	
	15.2	n-C ₃ H ₇	
	15.3	n-C ₄ H ₉	
	15.4	sec.-C ₄ H ₉	78-80
	15.5	i-C ₄ H ₉	106-107
	15.6	tert.-C ₄ H ₉	
	15.7	n-C ₅ H ₁₁	
	15.8	sec.-C ₅ H ₁₁	
	15.9	n-C ₆ H ₁₃	
	15.10	n-C ₇ H ₁₅	
	15.11	sec.-C ₇ H ₁₅	
	15.12	Ethoxi	
	15.13	Propoxi	
	15.14	1-Methylethoxi	
	15.15	n-Butoxi	
	15.16	1-Methylpropoxi	
	15.17	2-Methylpropoxi	
	15.18	1,1-Dimethylethoxi	
	15.19	n-Pentyloxi	

55

Nr.	R ⁷	phys.Dat. Fp [°C]
5	15.20 n-Hexyloxi	
	15.21 Cyclopentyl	
	15.22 Cyclohexyl	
10	15.23 2-Cyclopentenyl	
	15.24 1-Cyclopentenyl	
	15.25 2-Cyclohexenyl	
	15.26 1-Cyclohexenyl	
	15.27 Cyclopentyloxi	
15	15.28 Ethoxi	
	15.29 Propoxi	
	15.30 1-Methylethoxi	
	15.31 n-Butoxi	
20	15.32 1-Methylpropoxi	
	15.33 2-Methylpropoxi	
	15.34 1,1-Dimethylethoxi	
25	15.35 n-Pentyloxi	
	15.36 n-Hexyloxi	
	15.37 2-Ethylhexyloxi	
	15.38 2-Propenyloxi	
30	15.39 2-Butentyloxi	
	15.40 2-Methyl-2-propenyloxi	Öl
	15.41 2-Pentenyloxi	
	15.42 3-Pentenyloxi	
35	15.43 3-Chlor-2-propenyloxi	
	15.44 2,3-Dichlor-2-propenyloxi	
	15.45 2,3,3-Trichlor-propenyloxi	
40	15.46 2-Propinyloxi	
	15.47 2-Butinyl-oxi	
	15.48 3-Butinyl-oxi	
	15.49 1-Methyl-2-propinyloxi	
45	15.50 Cyclopropyl	
	15.51 Cyclobutyl	
	15.52 Cyclopentyl	
	15.53 Cyclohexyl	
50	15.54 2-Cyclopentenyl	

Nr.	R ⁷	phys.Dat. Fp [°C]
5	1-Cyclopentenyl	
	15.56 2-Cyclohexenyl	
	15.57 1-Cyclohexenyl	
10	15.58 Cyclopentyloxi	Öl
	15.59 Cyclohexyloxi	
	15.60 2-Cyclopentenyloxi	
	15.61 2-Cyclohexenyloxi	Öl
15	15.62 1-Ethylpropoxy	Öl

Die Erfindung betrifft ferner die folgenden neuen Verbindungen:

Nicotinsäureanilid-Derivate der allgemeinen Formel I

20

25

in der die Substituenten folgende Bedeutung haben:

R¹ Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl,

R² gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkynyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R² verschieden von Isopropyl ist, wenn R¹ Chlor bedeutet.

Anilid-Derivate der allgemeinen Formel II,

35

40

in der die Substituenten folgende Bedeutung haben:

45

A

50

(A1)

(A2)

X Methylen oder Schwefel

R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkynyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes

C_4 - C_6 -Cycloalkenyl, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkyloxi, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkenyloxi mit der Maßgabe, daß

5 A nicht A_1 ist, wenn R Ethoxi, Isopropoxi oder Allyloxi ist
 A nicht A_2 mit X in der Bedeutung Schwefel ist, wenn R Ethoxi, Propoxi, n-Butoxi, sec.-Butoxi, n-Pentyloxi ist
 A nicht A_2 mit X in der Bedeutung Methylen ist, wenn R Isopropyl ist.
 2-Aminobiphenyl-Derivate der allgemeinen Formel III,

10

III,

15

in der die Substituenten folgende Bedeutung haben:

20

25

(A1)

(A2)

(A3)

30

(A4)

(A5)

(A6)

35

40

(A7)

(A8)

45

X Methylen, Schwefel, Sulfinyl, Sulfonyl (SO_2),
 R¹ Methyl, Trifluormethyl, Chlor, Brom, Jod
 R² Trifluormethyl, Chlor
 R³ Wasserstoff oder Methyl
 R⁴ Methyl, Trifluormethyl, Chlor
 R⁵ Wasserstoff, Methyl, Chlor
 R⁶ Methyl, Trifluormethyl
 R⁷ Methyl, Chlor
 R⁸ C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Halogen.
 55 Carbonsäureanilid-Derivate der allg. Formel V,

in der die Substituenten folgende Bedeutung haben

n = 1 oder 2

R¹ Trifluormethyl, Chlor, Brom, Jod

30 R² Wasserstoff oder Methyl

R³ Methyl, Trifluormethyl, Chlor

R⁴ Wasserstoff, Methyl, Chlor

R⁵ Methyl, Trifluormethyl

R⁶ Methyl, Chlor

35 R⁷ gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R⁷

40 verschieden von 3-Methyl-but-2-en-1-yl oder 3-Methyl-but-3-en-1-yl ist, wenn R¹ Trifluormethyl ist.

Die neuen Verbindungen eignen sich als Fungizide.

Die erfindungsgemäßen fungiziden Verbindungen bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wässrigen, ölichen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Normalerweise werden die Pflanzen mit den Wirkstoffen besprüht oder bestäubt oder die Samen der Pflanzen mit den Wirkstoffen behandelt.

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstreichen des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Betracht: Lösungsmittel wie Aromaten (z.B. Xylo), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene

und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Ligninsulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfosäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatiertes Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfonierte Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfosäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylene, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Beispiele für solche Zubereitungen sind:

- I. eine Lösung aus 90 Gew.-Teilen der Verbindung Nr. 1.7 und 10 Gew.-Teilen N-Methyl-a-pyrrolidon, die zur Anwendung in Form kleinstter Tropfen geeignet ist;
- II. eine Mischung aus 20 Gew.-Teilen der Verbindung Nr. 1.8, 80 Gew.-Teilen Xylool, 10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfosäure, 5 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl; durch feines Verteilen der Lösung in Wasser erhält man eine Dispersion.
- III. eine wässrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 1.3, 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl;
- IV. eine wässrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 1.4, 25 Gew.-Teilen Cyclohexanol, 65 Gew.-Teilen einer Mineralölfaktion vom Siedepunkt 210 bis 280°C und 10 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl;
- V. eine in einer Hammermühle vermahlene Mischung aus 80 Gew.-Teilen der Verbindung Nr. 1.5, 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-a-sulfosäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfosäure aus einer Sulfitablaage und 7 Gew.-Teilen pulverförmigem Kieselsäuregel; durch feines Verteilen der Mischung in Wasser erhält man eine Spritzbrühe;
- VI. eine innige Mischung aus 3 Gew.-Teilen der Verbindung Nr. 1.7 und 97 Gew.-Teilen feinteiligem Kaolin; dieses Stäubemittel enthält 3 Gew.-% Wirkstoff;
- VII. eine innige Mischung aus 30 Gew.-Teilen der Verbindung Nr. 1.8, 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprührt wurde; diese Aufbereitung gibt dem Wirkstoff eine gute Haftfähigkeit;
- VIII. eine stabile wässrige Dispersion aus 40 Gew.-Teilen der Verbindung Nr. 1.9, 10 Gew.-Teilen des Natriumsalzes eines Phenolsulfosäure-harnstoff-formaldehydkondensates, 2 Gew.-Teilen Kieselgel und 48 Gew.-Teilen Wasser, die weiter verdünnt werden kann;
- IX. eine stabile ölige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 1.33, 2 Gew.-Teilen des Calciumsalzes der Dodecylbenzolsulfosäure, 8 Gew.-Teilen Fettalkohol-polyglykolether, 20 Gew.-Teilen des Natriumsalzes eines Phenolsulfosäure-harnstoff-formaldehydkondensates und 68 Gew.-Teilen eines paraffinischen Mineralöls.

Die neuen Verbindungen zeichnen sich durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere gegen Botrytis aus. Sie sind zum Teil systemisch wirksam und können als Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

Die Verbindungen werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Saatgüter, Pflanzen, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt.

Die Anwendung erfolgt vor oder nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze.

Speziell eignen sich die Verbindungen zur Bekämpfung folgender Pflanzenkrankheiten:

Erysiphe graminis (echter Mehltau) in Getreide,

5 Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,

Podosphaera leucotricha an Äpfeln,

Uncinula necator an Reben,

Venturia inaequalis (Schorf) an Äpfeln,

Helminthosporium-Arten an Getreide,

10 Septoria nodorum an Weizen,

Botrytis cinerea (Grauschimmel) an Erdbeeren, Reben,

Cercospora arachidicola an Erdnüssen,

Pseudocercosporella herpotrichoides an Weizen, Gerste, Pyricularia oryzae an Reis,

Fusarium- und Verticillium-Arten an verschiedenen Pflanzen, Alternaria-Arten an Gemüse und Obst.

15 Die Anwendung gegen Botrytis wird bevorzugt.

Die neuen Verbindungen können auch im Materialschutz (Holzschutz) eingesetzt werden, z.B. gegen Paecilomyces variotii.

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.% Wirkstoff.

20 Die Aufwandsmengen liegen je nach Art des gewünschten Effektes zwischen 0,02 und 3 kg Wirkstoff pro ha.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 50 g, vorzugsweise 0,01 bis 10 g je Kilogramm Saatgut benötigt.

25 Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln.

Beim Vermischen mit Fungiziden erhält man dabei in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

30 Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

Schwefel,

Dithiocarbamate und deren Derivate, wie

Ferridimethyldithiocarbamat,

Zinkdimethyldithiocarbamat,

35 Zinkethylenbisdithiocarbamat,

Manganethylenbisdithiocarbamat,

Mangan-Zink-ethylendiamin-bis-dithiocarbamat,

Tetramethylthiuramdisulfide,

Ammoniak-Komplex von Zink-(N,N-ethylen-bis-dithiocarbamat),

40 Ammoniak-Komplex von Zink-(N,N'-propylen-bis-dithiocarbamat),

Zink-(N,N'-propylen-bis-dithiocarbamat),

N,N'-Polypropylen-bis-(thiocarbamoyl)-disulfid,;

Nitroderivate, wie

Dinitro-(1-methylheptyl)-phenylcrotonat,

45 2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylat,

2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat,

5-Nitro-isophthalsäure-di-isopropylester;

heterocyclische Substanzen, wie

2-Heptadecyl-2-imidazolin-acetat,

50 2,4-Dichlor-6-(o-chloranilino)-s-triazin,

O,O-Diethyl-phthalimidophosphonothioat,

5-Amino-1-βbis-(dimethylamino)-phosphinyl-3-phenyl-1,2,4-triazol,

2,3-Dicyano-1,4-dithioanthrachinon,

2-Thio-1,3-dithioloβ4,5-b'chinoxalin,

55 1-(Butylcarbamoyl)-2-benzimidazol-carbaminsäuremethylester,

2-Methoxycarbonylamino-benzimidazol,

2-(Furyl-(2))-benzimidazol,

2-(Thiazolyl-(4))-benzimidazol,

N-(1,1,2,2-Tetrachlorethylthio)-tetrahydropthalimid,
 N-Trichlormethylthio-tetrahydropthalimid,
 N-Trichlormethylthio-phthalimid,
 N-Dichlorfluormethylthio-N',N'-dimethyl-N-phenyl-schwefelsäurediamid,

5 5-Ethoxy-3-trichlormethyl-1,2,3-thiadiazol,
 2-Rhodanmethylthiobenzthiazol,
 1,4-Dichlor-2,5-dimethoxybenzol,
 4-(2-Chlorphenylhydrazono)-3-methyl-5-isoxazolon,
 Pyridin-2-thio-1-oxid,

10 8-Hydroxychinolin bzw. dessen Kupfersalz,
 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin,
 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid,
 2-Methyl-5,6-dihydro-4H-pyran-3-carbonsäure-anilid,
 2-Methyl-furan-3-carbonsäureanilid,

15 2,5-Dimethyl-furan-3-carbonsäureanilid,
 2,4,5-Trimethyl-furan-3-carbonsäureanilid,
 2,5-Dimethyl-furan-3-carbonsäurecyclohexylamid,
 N-Cyclohexyl-N-methoxy-2,5-dimethyl-furan-3-carbonsäureamid,
 2-Methyl-benzoësäure-anilid,

20 2-Iod-benzoësäure-anilid,
 N-Formyl-N-morpholin-2,2,2-trichlorethylacetal,
 Piperazin-1,4-diylbis-(1-(2,2,2-trichlor-ethyl)-formamid),
 1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan,
 2,6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze,

25 2,6-Dimethyl-N-cyclododecyl-morpholin bzw. dessen Salze,
 N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-cis-2,6-dimethylmorpholin,
 N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-piperidin,
 1-[2-(2,4-Dichlorphenyl)-4-ethyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol
 1-[2-(2,4-Dichlorphenyl)-4-n-propyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol

30 N-(n-Propyl)-N-(2,4,6-trichlorphenoxyethyl)-N'-imidazol-yl-harnstoff,
 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanon,
 1-(4-Chlorphenyl)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol,
 α -(2-Chlorphenyl)- α -(4-chlorphenyl)-5-pyrimidin-methanol,
 5-Butyl-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin,

35 Bis-(p-chlorphényl)-3-pyridinmethanol,
 1,2-Bis-(3-ethoxycarbonyl-2-thioureido)-benzol,
 1,2-Bis-83-methoxycarbonyl-2-thioureido)-benzol,
 sowie verschiedene Fungizide, wie
 Dodecylguanidinacetat,

40 3-[3-(3,5-Dimethyl-2-oxyoctahexyl)-2-hydroxyethyl]glutarimid,
 Hexachlorbenzol,
 DL-Methyl-N-(2,6-dimethyl-phenyl)-N-furoyl (2)-alaninat,
 DL-N-(2,6-Dimethyl-phenyl)-N-(2'-methoxyacetyl)-alanin-methylester,
 N-(2,6-Dimethylphenyl)-N-chloracetyl-D,L-2-aminobutyrolacton,

45 DL-N-(2,6-Dimethylphenyl)-N-(phenylacetyl)-alaninmethylester,
 5-Methyl-5-vinyl-3-(3,5-dichlorphenyl)-2,4-dioxo-1,3-oxazolidin,
 3-[3,5-Dichlorphenyl](-5-methyl-5-methoxymethyl)-1,3-oxazolidin-2,4-dion,
 3-(3,5-Dichlorhenyl)-1-isopropylcarbamoylhydantoin,
 N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarbonsäureimid,

50 2-Cyano-[N-(ethylaminocarbonyl)-2-methoximino]-acetamid,
 1-[2-(2,4-Dichlorphenyl)-pentyl]-1H-1,2,4-triazol,
 2,4-Difluor- α -(1H-1,2,4-triazolyl-1-methyl)-benzhydrylalkohol,
 N-(3-Chlor-2,6-dinitro-4-trifluormethyl-phenyl)-5-trifluormethyl-3-chlor-2-aminopyridin,
 1-((bis-(4-Fluorophenyl)-methylsilyl)-methyl)-1H-1,2,4-triazol.

Anwendungsbeispiele

Als Vergleichswirkstoffe wurden 2-Chlornicotinsäure-2'-ethylanilid (A) - bekannt aus US 4 001 416 - und 2-Chlornicotinsäure-3'-isopropylanilid (B) - bekannt aus DE 26 11 601 - benutzt.

5

Anwendungsbeispiel 1**Wirksamkeit gegen Botrytis cinerea auf Paprikaschoten**

10 Scheiben von grünen Paprikaschoten wurden mit wäßriger Wirkstoffaufbereitung, die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielt, tropfnäß besprüht. 2 Stunden nach dem Antrocknen des Spritzbelages wurden die Fruchtscheiben mit einer Sporensuspension von Botrytis cinerea, die $1,7 \times 10^6$ Sporen pro ml einer 2 %igen Biomalzlösung enthielt, behandelt. Die Fruchtscheiben wurden anschließend in feuchten Kammern bei 18 °C für 4 Tage aufbewahrt. Danach erfolgte visuell die Auswertung der Botrytis-Entwicklung auf den befallenen Fruchtscheiben.

Das Ergebnis zeigt, daß die Wirkstoffe 1.5, 1.7 und 1.8 bei der Anwendung als 500 ppm hältige Spritzbrühe eine bessere fungizide Wirkung zeigen (95 %) als die bekannten Vergleichswirkstoffe A (10 %) und B (65 %).

20 **Anwendungsbeispiel 2****Wirksamkeit gegen Botrytis cinerea auf Paprikaschoten**

Die Innenfläche von aufgeschnittenen Paprikaschoten wurde mit einer wäßrigen Wirkstoffaufbereitung, 25 die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielt, bis zur Tropfnässe besprüht. Nach dem Antrocknen der wäßrigen Wirkstoffaufbereitung wurden die Fruchtstücke mit einer wäßrigen Sporensuspension von Botrytis cinerea, die $1,7 \times 10^6$ Sporen/ml enthielt, inkuliert.

Anschließend wurden die Fruchtstücke für 4 Tage in Klimaschränke bei 20 - 22 °C gestellt. Dann wurde das Ausmaß des Pilzbewuchses visuell ausgewertet.

30 Das Ergebnis des Versuchs zeigt ferner, daß die Verbindungen Nr. 2.4, 4.4, 6.4, 7.4, 7.5, 9.1, 9.2, 9.4, 9.5, 10.1, 10.2, 10.4, 10.5, 12.4, 12.6, 2.65 und 2.66 bei der Anwendung als 1000 ppm Wirkstoff enthaltende wäßrige Spritzbrühen eine gute fungizide Wirkung (100 %) haben.

Patentansprüche

35

1. Verwendung von Anilid-derivaten der Formel

40

45

in der A die folgenden Bedeutungen hat

Pyridin-3-yl, substituiert in 2-Stellung durch Halogen, Methyl, Trifluormethyl, Methoxy, Methylthio, Methylsulfinyl, Methylsulfonyl,

Phenyl, substituiert in 2-Stellung durch Methyl, Trifluormethyl, Chlor, Brom, Iod,

50 2-Methyl-5,6-dihydropyran-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4-oxid, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4,4-dioxid; 2-Methyl-furan-3-yl, substituiert in 4- und 5-Stellung durch Wasserstoff oder Methyl; Thiazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; Thiazol-4-yl, substituiert in 2- und 5-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; 1-Methylpyrazol-4-yl, substituiert in 3- und 5-Stellung durch Methyl, Chlor, Trifluormethyl; Oxazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor und

55 R die folgenden Bedeutungen hat, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxy, C₃-C₁₂-

Alkinyloxy, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxy, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxy, gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkythio, Halogen, substituiertes Phenyl,
zur Bekämpfung von Botrytis.

2. Verwendung von Nicotinsäureanilid-Derivaten der allgemeinen Formel I,

10

I,

15

in der die Substituenten folgende Bedeutung haben:

R¹ Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl

R² gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkynyl, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi,

20

C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi
zur Bekämpfung von Botrytis.

3. Verwendung von Anilid-Derivaten der Formel II,

25

II,

30

in der die Substituenten folgende Bedeutung haben:

35

A

40

(A1)

(A2)

X Methylen oder Schwefel

R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkynyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi,

45

gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi

50

zur Bekämpfung von Botrytis.

4. Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel III,

55

in der die Substituenten folgende Bedeutung haben:

10

15

20

25

30

35

X Methylen, Schwefel, Sulfinyl, Sulfonyl (SO_2),
 R¹ Methyl, Trifluormethyl, Chlor, Brom, Jod
 R² Trifluormethyl, Chlor
 R³ Wasserstoff oder Methyl
 R⁴ Methyl, Trifluormethyl, Chlor
 R⁵ Wasserstoff, Methyl, Chlor
 R⁶ Methyl, Trifluormethyl
 R⁷ Methyl, Chlor
 R⁸ C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen

zur Bekämpfung von Botrytis.

5. Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel IV,

50

55

in der die Substituenten folgende Bedeutung haben:

	X	Methylen, Sulfinyl, Sulfonyl (SO_2),
	R ¹	Methyl, Trifluormethyl, Chlor, Brom, Jod
	R ²	Trifluormethyl, Chlor
30	R ³	Wasserstoff oder Methyl
	R ⁴	Methyl, Trifluormethyl, Chlor
	R ⁵	Wasserstoff, Methyl, Chlor
	R ⁶	Methyl, Trifluormethyl
	R ⁷	Methyl, Chlor,
35	zur Bekämpfung von Botrytis.	

6. Verwendung von Carbonsäureanilid-Derivaten der allg. Formel V,

in der die Substituenten folgende Bedeutung haben:

n = 1 oder 2

20	R ¹	Trifluormethyl, Chlor, Brom, Jod
	R ²	Wasserstoff oder Methyl
	R ³	Methyl, Trifluormethyl, Chlor
	R ⁴	Wasserstoff, Methyl, Chlor
	R ⁵	Methyl, Trifluormethyl

25	R⁶	Methyl, Chlor
	R⁷	gegebenenfalls durch Halogen substituiertes C ₃ -C ₁₂ -Alkyl, gegebenenfalls durch Halogen substituiertes C ₃ -C ₁₂ -Alkenyl, C ₃ -C ₆ -Alkinyl gegebenenfalls durch Halogen substituiertes C ₂ -C ₁₂ -Alkoxi, gegebenenfalls durch Halogen substituiertes C ₃ -C ₁₂ -Alkenyloxi, C ₃ -C ₁₂ -Alkinyloxi, gegebenenfalls durch C ₁ -C ₄ -Alkyl substituiertes C ₃ -C ₆ -Cycloalkyl, gegebenenfalls durch C ₁ -C ₄ -Alkyl substituiertes C ₄ -C ₆ -Cycloalkenyl, gegebenenfalls durch C ₁ -C ₄ -Alkyl substituiertes C ₅ -C ₆ -Cycloalkyloxi, gegebenenfalls durch C ₁ -C ₄ -Alkyl substituiertes C ₅ -C ₆ -Cycloalkenyloxi
30		zur Bekämpfung von Botrytis.

7. Nicotinsäureanilid-Derivate der allgemeinen Formel I

35

40

in der die Substituenten folgende Bedeutung haben

B¹ Halogen, Methyl, Trifluoromethyl, Methoxy, Methylthio, Methylsulfinyl, Methylsulfonyl,

R² gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R² verschieden von Isopropyl ist, wenn R¹ Chlor bedeutet.

50 8 Anilid-Derivate der allg. Formel II

EP 0 545 099 A2

in der die Substituenten folgende Bedeutung haben:

5

A

(A1)

10

(A2)

X Methylen oder Schwefel
 R gegebenenfalls durch Halogen substituiertes $\text{C}_3\text{-}\text{C}_{12}$ -Alkyl, gegebenenfalls durch Halogen substituiertes $\text{C}_3\text{-}\text{C}_{12}$ -Alkenyl, $\text{C}_3\text{-}\text{C}_6$ -Alkinyl gegebenenfalls durch Halogen substituiertes $\text{C}_2\text{-}\text{C}_{12}$ -Alkoxi, gegebenenfalls durch Halogen substituiertes $\text{C}_3\text{-}\text{C}_{12}$ -Alkenyloxi, $\text{C}_3\text{-}\text{C}_{12}$ -Alkinyloxi,
 15 gegebenenfalls durch $\text{C}_1\text{-}\text{C}_4$ -Alkyl substituiertes $\text{C}_3\text{-}\text{C}_6$ -Cycloalkyl, gegebenenfalls durch $\text{C}_1\text{-}\text{C}_4$ -Alkyl substituiertes $\text{C}_4\text{-}\text{C}_6$ -Cycloalkenyl, gegebenenfalls durch $\text{C}_1\text{-}\text{C}_4$ -Alkyl substituiertes $\text{C}_5\text{-}\text{C}_6$ -Cycloalkyloxi, gegebenenfalls durch $\text{C}_1\text{-}\text{C}_4$ -Alkyl substituiertes $\text{C}_5\text{-}\text{C}_6$ -Cycloalkenyloxi
 mit der Maßgabe, daß
 20 A nicht A_1 ist, wenn R Ethoxi, Isopropoxi oder Allyloxi ist
 A nicht A_2 mit X in der Bedeutung Schwefel ist, wenn R Ethoxi, Propoxi, n-Butoxi, sec.-Butoxi, n-Pentyloxi ist
 A nicht A_2 mit X in der Bedeutung Methylen ist, wenn R Isopropyl ist.

25 9. 2-Aminobiphenyl-Derivate der allgemeinen Formel III,

30

III,

35

40

45

50

55

	X	Methylen, Schwefel, Sulfinyl, Sulfonyl (SO_2),
	R ¹	Methyl, Trifluormethyl, Chlor, Brom, Jod
	R ²	Trifluormethyl, Chlor
30	R ³	Wasserstoff oder Methyl
	R ⁴	Methyl, Trifluormethyl, Chlor
	R ⁵	Wasserstoff, Methyl, Chlor
	R ⁶	Methyl, Trifluormethyl
	R ⁷	Methyl, Chlor
35	R ⁸	C ₁ -C ₄ -Alkyl, C ₁ -C ₄ -Alkoxy, C ₁ -C ₄ -Alkylthio, Halogen.

10. 2-Aminobiphenyl-Derivate der allgemeinen Formel IV,

45 in der die Substituenten folgende Bedeutung haben:

X	Methylen, Sulfinyl, Sulfonyl (SO_2),
R ¹	Trifluormethyl, Chlor, Jod
R ²	Trifluormethyl, Chlor
R ³	Wasserstoff oder Methyl
R ⁴	Methyl, Trifluormethyl, Chlor
R ⁵	Wasserstoff, Methyl, Chlor
R ⁶	Methyl, Trifluormethyl
R ⁷	Methyl, Chlor.

11. Carbonsäureanilid-Derivate der allg. Formel V,

45 in der die Substituenten folgende Bedeutung haben

50

55

n 1 oder 2
 R¹ Trifluormethyl, Chlor, Brom, Jod
 R² Wasserstoff oder Methyl
 R³ Methyl, Trifluormethyl, Chlor
 R⁴ Wasserstoff, Methyl, Chlor
 R⁵ Methyl, Trifluormethyl
 R⁶ Methyl, Chlor
 R⁷ gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R⁷ verschieden von 3-Methyl-but-2-en-1-yl oder 3-Methyl-but-3-en-1-yl ist, wenn R¹ Trifluormethyl ist.

35

40

45

50

55

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: **0 545 099 A3**

(2)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92119105.2

(51) Int. Cl.5: C07D 213/82, C07D 231/14,
C07D 277/56, C07D 263/34,
C07D 307/68, C07D 309/28,
C07D 327/06, C07C 233/64,
A01N 37/22, A01N 43/00

(22) Anmeldetag: 07.11.92

(30) Priorität: 22.11.91 DE 4138387
18.02.92 DE 4204764
18.02.92 DE 4204766
18.02.92 DE 4204767
18.02.92 DE 4204768

(31) Veröffentlichungstag der Anmeldung:
09.06.93 Patentblatt 93/23

(32) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IE IT LI NL PT
SE

(33) Veröffentlichungstag des später veröffentlichten
Recherchenberichts: 24.11.93 Patentblatt 93/47

(37) Anmelder: BASF Aktiengesellschaft
Carl-Bosch-Strasse 38
D-67063 Ludwigshafen(DE)

(72) Erfinder: Eicken, Karl, Dr.
Am Huettenwingert 12
W-6706 Wachenheim(DE)
Erfinder: Goetz, Norbert, Dr.
Schoefferstrasse 25
W-6520 Worms 1(DE)
Erfinder: Harreus, Albrecht, Dr.
Teichgasse 13
W-6700 Ludwigshafen(DE)
Erfinder: Ammermann, Eberhard, Dr.
Von Gagern-Strasse 2
W-6148 Heppenheim(DE)
Erfinder: Lorenz, Gisela, Dr.
Erlenweg 13
W-6730 Neustadt(DE)
Erfinder: Rang, Harald, Dr.
Maximilianstrasse 30
W-6700 Ludwigshafen(DE)

(54) Säureanilid-Derivate und Ihre Verwendung zur Bekämpfung von Botrytis.

(55) Verwendung von Anilid-derivaten der Formel

in der A die folgenden Bedeutungen hat

EP 0 545 099 A3

EP 0 545 099 A3

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

zur Bekämpfung von Botrytis, sowie einige Verbindungen der Formel II

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 92 11 9105 - 2
Seite 1

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kenntzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrift Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CL.5)
X	PHYTOPATHOLOGY Bd. 57, Nr. 11, 1967, ST. PAUL Seiten 1256 - 1257 L.V. EDGINGTON ET AL. 'Fungitoxic spectrum of oxathiin compounds.' * das ganze Dokument * ---	1	C07D213/82 C07D231/14 C07D277/56 C07D263/34 C07D307/68 C07D309/28 C07D327/06 C07C233/64 A01N37/22 A01N43/00
E	CHEMICAL ABSTRACTS, vol. 117, no. 23, 7. Dezember 1992, Columbus, Ohio, US; abstract no. 228322b, M. ODA ET AL. 'Structure-activity relations of 2-chloropyridine- 3-carboxamide fungicides.' Seite 303; *Zusammenfassung; CAS RN 144297-65-4 und 144297-64-3* *CAS RN 57842-00-9 und 57841-44-8* *CAS RN 57841-47-1*	1,2,7	
X,P	& NIPPON NOYAKU GAKKAISHI Bd. 17, Nr. 2, 1992, TOKYO Seiten 91 - 98 ---	1,2 1,5,10 1,2,5,7, 10	
A,D	DE-A-2 611 601 (BASF AG) * das ganze Dokument * ---	1,2	RECHERCHIERTE SACHGEBiete (Int. Cl.5) C07D
X	DE-A-2 417 216 (BASF AG) *Beispiel 5, 2-Chlornicotinsäure-2'-phenylanilid* * Ansprüche 1-3 *	1,5,10	
X	*Beispiel 5, 2-Chlornicotinsäure-2'-isopropylanilid*	1,2,7	
A	*Beispiel 5, 2-Chlornicotinsäure-2'-äthylanilid*	1,2	
D	& US-A-4 001 416 ---		
A	EP-A-0 256 503 (MITSUBISHI CHEMICAL INDUSTRIES LIMITED) * das ganze Dokument * ---	1,2,4,5, 7,9,10	
		-/-	
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Rechercheort	Abmeldedatum der Recherche	Prüfer	
DEN HAAG	09 SEPTEMBER 1993	P. BOSMA	
KATEGORIE DER GENANNTEN DOKUMENTE		T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus anderer Gründen angeführtes Dokument	
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur		----- A : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	

GEBÜHRENPFlichtige PATENTANSPRÜCHE

Die vorliegende europäische Patentanmeldung enthielt bei ihrer Einreichung mehr als zehn Patentansprüche.

- Alle Anspruchsgebühren wurden innerhalb der vorgeschriebenen Frist entrichtet. Der vorliegende europäische Recherchenbericht wurde für alle Patentansprüche erstellt.
- Nur ein Teil der Anspruchsgebühren wurde innerhalb der vorgeschriebenen Frist entrichtet. Der vorliegende europäische Recherchenbericht wurde für die ersten zehn sowie für jene Patentansprüche erstellt für die Anspruchsgebühren entrichtet wurden,
nämlich Patentansprüche:
- Keine der Anspruchsgebühren wurde innerhalb der vorgeschriebenen Frist entrichtet. Der vorliegende europäische Recherchenbericht wurde für die ersten zehn Patentansprüche erstellt.

MANGELNDE EINHEITLICHKEIT DER ERFINDUNG

Nach Auffassung der Recherchenabteilung entspricht die vorliegende europäische Patentanmeldung nicht den Anforderungen an die Einheitlichkeit der Erfindung; sie enthält mehrere Erfindungen oder Gruppen von Erfindungen,
nämlich:

Siehe Blatt -B-

- Alle weiteren Recherchengebühren wurden innerhalb der gesetzten Frist entrichtet. Der vorliegende europäische Recherchenbericht wurde für alle Patentansprüche erstellt.
- Nur ein Teil der weiteren Recherchengebühren wurde innerhalb der gesetzten Frist entrichtet. Der vorliegende europäische Recherchenbericht wurde für die Teile der Anmeldung erstellt, die sich auf Erfindungen beziehen,
für die Recherchengebühren entrichtet worden sind.
nämlich Patentansprüche: **siehe Erfindungsgruppe 1,7,8**
- Keine der weiteren Recherchengebühren wurde innerhalb der gesetzten Frist entrichtet. Der vorliegende europäische Recherchenbericht wurde für die Teile der Anmeldung erstellt, die sich auf die zuerst in den Patentansprüchen erwähnte Erfindung beziehen.
nämlich Patentansprüche:

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 92 11 9105
Seite 2

EINSCHLÄGIGE DOKUMENTE			KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betreff Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
A	EP-A-0 314 428 (ICI AMERICAS INC.) * Seite 5, Zeile 15 - Seite 6, Zeile 34; Ansprüche 1,6,7; Beispiele * ---	1,2,4,5, 7,9,10	RECHERCHIERTE SACHGEBiete (Int. Cl.5)
E	WO-A-9 311 117 (MONSANTO COMPANY) 10. Juni 1993 ---	1,6,11	RECHERCHIERTE SACHGEBiete (Int. Cl.5)
X	FR-A-2 337 997 (COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION) *Tabelle I; Verbindung 17* * Ansprüche 1,10 * ---	1,6,11	RECHERCHIERTE SACHGEBiete (Int. Cl.5)
A	EP-A-0 276 177 (SUMITOMO CHEMICAL INDUSTRIES LTD.) ---	1,6,11	RECHERCHIERTE SACHGEBiete (Int. Cl.5)
X	EP-A-0 371 950 (MONSANTO COMPANY) * Seite 3, Zeile 10 - Zeile 40; Ansprüche 1-4,14,21-24 * ---	1,6,11	RECHERCHIERTE SACHGEBiete (Int. Cl.5)
X	CHEMICAL ABSTRACTS, vol. 81, no. 19, 11. November 1974, Columbus, Ohio, US; abstract no. 115750, M.F.A. ABDEL-LATEEF ET AL. 'Systemic and chemotherapeutic fungicidal activity-chemical structure relation of some 4-methyl-5-thiazolecarboxylic acid derivatives. Laboratory screening tests.' Seite 142 ; *CAS RN 53040-20-3* * Zusammenfassung * & ACTA PHYTOPATHOLOGICA Bd. 8, Nr. 3-4, 1973, BUDAPEST Seiten 269 - 282 ---	1	RECHERCHIERTE SACHGEBiete (Int. Cl.5)
X	EP-A-0 279 239 (CIBA-GEIGY) * Seite 9, Zeile 43 - Zeile 57; Ansprüche 1-4,14,15; Beispiel 3.5; Tabelle 3.077 * ---	1	RECHERCHIERTE SACHGEBiete (Int. Cl.5)
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Erstellerin	Abschlußdatum der Recherche	Prüfer	
DEN HAAG	09 SEPTEMBER 1993	P. BOSMA	
KATEGORIE DER GENANNTEN DOKUMENTE	T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldeatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus andern Gründen angeführtes Dokument A : technologischer Hintergrund O : nichttechnische Offenbarung P : Zwischenliteratur	A : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 92 11 9105
Seite 3

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrift Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
A	WO-A-9 101 311 (MONSANTO COMPANY) * das ganze Dokument * ---	1,6,11	
A	EP-A-0 296 673 (SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.) * Beispiele 25,33,44c * ---	1,6,11	
X	FR-A-1 546 183 (UNIROYAL INC.) * Ansprüche; Tabelle II * ---	1,6,11	
A	DE-A-1 914 954 (SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ N.V. DEN HAAG) *Seiten 10,17,18* * Ansprüche 1-3 * -----	1,6,11	
RECHERCHIERTE SACHGEBIETE (Int. Cl.5)			
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Rechercheort DEN HAAG	Abschlußdatum der Recherche 09 SEPTEMBER 1993	Praktiker P. BOSMA	
KATEGORIE DER GENANNTEN DOKUMENTE		T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmelddatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus anderen Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	
X : von besonderer Bedeutung allein betrachtet			
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie			
A : technologischer Hintergrund			
O : nichtschriftliche Offenbarung			
P : Zwischenliteratur			

Europäisches
Patentamt

EP 92 11 9105 -B-

MANGELNDE EINHEITLICHKEIT DER ERFINDUNG A POSTERIORI

Nach Auffassung der Recherchenabteilung entspricht die vorliegende europäische Patentanmeldung nicht den Anforderungen an die Einheitlichkeit der Erfindung; sie enthält mehrere Erfindungen oder Gruppen von Erfindungen, nämlich:

1. Patentansprüche 2 und 7 (vollständig); 1,4,5,9 (teilweise) :
Pyridin-3-yl-Derivate.
2. Patentansprüche 1,3-6,8-11 (teilweise) :
Phenyl-Derivate.
3. Patentansprüche 1,3-5,8-10 (teilweise) :
2-Methyl-5,6-dihydropyran-3-yl-Derivate.
4. Patentansprüche 1,3,4,8 und 9 (teilweise) :
2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-Derivate.
5. Patentansprüche 1,4-6,9-11 (teilweise) :
2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4-oxid- und
2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4-dioxid-Derivate.
6. Patentansprüche 1,4-6,9-11 (teilweise) :
2-Methylfuran-3-yl-Derivate.
7. Patentansprüche 1,4-6,9-11 (teilweise) :
Thiazol-4-yl-Derivate,
Thiazol-5-yl-Derivate und
Oxazol-5-yl-Derivate.
8. Patentansprüche 1,4-6,9-11 (teilweise) :
Pyrazol-4-yl-Derivate.

Die der Erfindung zugrunde liegende allgemeine Aufgabe ist nicht neu, sondern bereits gelöst, und sie weist keine erfinderische Tätigkeit auf gegenüber dem Stand der Technik bekannt aus

Phytopathology 57(11), Seiten 1256-1257 (1967)
Hieraus ist bekannt dass eine Oxathiin-Verbindung
(CAS RN 6577-34-0) benutzt werden kann zur Bekämpfung von Botrytis, welche Verbindung auch beansprucht wird in der zugrundeliegenden Anmeldung zur Bekämpfung von Botrytis.

Die ursprüngliche einzige allgemeine erforderliche Idee ist deshalb nicht mehr zulässig; der technische Zusammenhang oder die technische Wechselwirkung zwischen den einzelnen Lösungen muss somit neu geprüft werden.

Dabei ergibt sich die vorstehende neue Einordnung unter verschiedene Sachverhalte, von denen jeder eine unterschiedliche mögliche erforderliche Idee verwirklicht.