Введём следующее обозначение:

$$K(x,y) = \frac{-1}{p(0) \cdot W(0)} \cdot \left\{ \begin{cases} u_0(x) \cdot u_l(y), & x < y \\ u_0(y) \cdot u_l(x), & x > y \end{cases} \right\}.$$

Очевидна следующая лемма.

Лемма 4.7. Функция $K:[0,l]^2 \to \mathbb{R}$ – непрерывна и K(x,y) = K(y,x).

Лемма 4.8. Любые два ненулевых решения $u_1(x)$, $u_2(x)$ задачи Штурма—Лиувилля (39), (40) линейно зависимы.

Доказательство. В силу условий (40) можем записать

$$\begin{cases} \alpha \cdot u_1(0) - \beta \cdot u_1'(0) = 0 \\ \alpha \cdot u_2(0) - \beta \cdot u_2'(0) = 0 \end{cases}$$

Таким образом, (α, β) — ненулевое решение этой линейной системы. Значит, её определитель равен нулю. Но этот определитель есть Вронскиан для пары $u_1(x)$, $u_2(x)$, вычисленный при x = 0. Вронскиан линейно независимой пары решений был бы отличен от нуля в любой точке. Значит, функции $u_1(x)$, $u_2(x)$ линейно зависимы.

Теорема 4.9. Если $\lambda = 0$ – не собственное число задачи Штурма– Лиувилля (39), (40), то задача

$$Tu - \lambda u = f, \quad u \in M(T)$$
 (44)

равносильна интегральному уравнению

$$u(x) - \lambda \cdot \int_{0}^{l} K(x, y) \cdot u(y) dy = \int_{0}^{l} K(x, y) \cdot f(y) dy$$
 (45)

Доказательство. Пусть $u_0(x)$ – решение задачи (44). Тогда, очевидно, $u_0(x)$ есть также решение задачи $Tu=f+\lambda u_0,\quad u\in M(T)$, которое, по теореме 4.6, записывается в виде

$$u_0(x) = \lambda \cdot \int_0^l K(x, y) \cdot u_0(y) dy + \int_0^l K(x, y) \cdot f(y) dy,$$

что означает, что $u_0(x)$ удовлетворяет (45).

Обратно, пусть $u_0(x)$ есть решение уравнения (45). Снова рассмотрим вспомогательную задачу $Tu = f + \lambda u_0, \quad u \in M(T)$. По теореме 4.6 её решение

равно

$$u(x) = \int_{0}^{l} K(x, y) \cdot (\lambda \cdot u_0(y) + f(y)) dy.$$

В то же время, $u_0(x)$ удовлетворяет (45), что означает

$$u_0(x) = \int_0^l K(x, y) \cdot (\lambda \cdot u_0(y) + f(y)) dy.$$

Значит, $u(x) = u_0(x)$, и $Tu_0 = f + \lambda u_0$, $u_0 \in M(T)$, то есть $u_0(x)$ — решение задачи (44).

Рассмотрим интегральный оператор Фредгольма $S: L_2(0,l) \to L_2(0,l)$,

$$Su(x) = \int_{0}^{l} K(x, y) \cdot u(y) dy.$$

Лемма 4.10. Оператор S — вполне непрерывный и самосопряжённый. Доказательство. Как известно из курса функционального анализа, интегральный оператор Фредгольма с непрерывным и симметричным ядром (лемма 4.7) вполне непрерывный и самосопряжённый.

Лемма 4.11. Если $\lambda = 0$ – не собственное число задачи Штурма– Лиувилля (39), (40), то

- а) Операторы T и S имеют одни и те же собственные функции.
- б) Число $\lambda \neq 0$ собственное для $T \Leftrightarrow 1/\lambda$ собственное число для S.
- в) Собственные числа оператора T вещественны.

Доказательство. Применим теорему 4.9 в частном случае $f \equiv 0$: Если $\lambda = 0$ — не собственное число задачи (39), (40), то задача $Tu = \lambda u$, $u \in M(T)$

равносильна интегральному уравнению
$$Su = \int_{0}^{l} K(x,y) \cdot u(y) dy = \frac{1}{\lambda} \cdot u$$
. Это

доказывает сразу пункты а) и б). Но, так как оператор S самосопряжённый, то $1/\lambda \in \mathbb{R}$, а значит и $\lambda \in \mathbb{R}$, что доказывает в).

Лемма 4.12. Если $\lambda = 0$ – не собственное число задачи Штурма— Лиувилля (39), (40), то операторы T и S взаимно обратны на M(T).

Доказательство. При $\lambda = 0$ задачи (44), (45) принимают, соответственно, вид Tu = f и u = Sf, что и доказывает утверждение.

Следствие 4.13. Если $\lambda = 0$ — не собственное число задачи Штурма— Лиувилля (39), (40), то $\mu = 0$ — не собственное число оператора S.

Доказательство. Если, наоборот, $\mu = 0$ — собственное число для S, то существует ненулевая функция v, такая, что $Sv = 0 \cdot v = 0$. Поскольку, в силу линейности S, ещё и S(0) = 0, то S — не инъективный оператор. Значит, он не может иметь обратного, в противоречие с леммой 4.12.

Непосредственно из леммы 4.11 a), следствия 4.13 и теоремы Гильберта–Шмидта вытекает

Следствие 4.14. В гильбертовом пространстве $L_2(0,l)$ существует ортонормированный базис из собственных функций задачи (39), (40).

В заключение параграфа покажем, как следствие 4.14 применяется к решению краевых задач.

Пример 4.15. Усложним пример 4.1, взяв в качестве начальных данных произвольные функции $u_0(x)$, $u_1(x)$ из пространства $L_2(0,l)$.

$$u_{tt} - a^2 u_{xx} = 0, (46)$$

$$u(0,x) = u_0(x), \quad u_t(0,x) = u_1(x),$$
 (46-H)

$$u(t,0) = 0, \quad u(t,l) = 0.$$
 (46- Γ)

Для получения решения данной задачи попытаемся свести её к задачам вида (36), (36-н), (36-г) из примера 4.1. Для этого надо функции $u_0(x)$, $u_1(x)$ разложить в ряды Фурье по собственным функциям оператора $\frac{d^2}{dx^2}$. Найдём такие собственные функции, налагая на них дополнительно условия (46-г). Стало быть, мы имеем задачу Штурма—Лиувилля

$$f_{rr} - \lambda \cdot f = 0, \quad f(0) = f(l) = 0,$$
 (47)

получающуюся из задачи (39), (40) при $p(x) \equiv 1$, $q(x) \equiv 0$, $\alpha = \gamma = 1$, $\beta = \delta = 0$. Легко убедиться, что число $\lambda = 0$ – не собственное для задачи (47). Действительно, при $\lambda = 0$ уравнение принимает вид $f_{xx} = 0$ и имеет общее решение $f(x) = C \cdot x + D$. Применив граничные условия f(0) = f(l) = 0, найдём, что C = 0, D = 0, то есть $f \equiv 0$. Значит, по следствию 4.14,

собственные функции задачи (47), которые мы найдём, образуют (ортонормированный) базис в пространстве $L_2(0,l)$. Так как, по лемме 4.11 в) собственные числа задачи (47) вещественны, то осталось рассмотреть случаи $\lambda > 0$ и $\lambda < 0$.

При $\lambda > 0$ общее решение уравнения $f_{xx} - \lambda \cdot f = 0$ можно записать в виде $f(x) = C \cdot ch\sqrt{\lambda}x + D \cdot sh\sqrt{\lambda}x$. Далее, из условия f(0) = 0 получаем C = 0, то есть $f(x) = D \cdot sh\sqrt{\lambda}x$. Теперь из f(l) = 0 выводим $D \cdot sh\sqrt{\lambda}l = 0$. При $\lambda > 0$ $sh\sqrt{\lambda}l \neq 0$, поэтому D = 0, а значит опять $f \equiv 0$.

Наконец, при $\lambda < 0$ общее решение уравнения $f_{xx} - \lambda \cdot f = 0$ записывается в виде $f(x) = C \cdot \cos \sqrt{-\lambda} x + D \cdot \sin \sqrt{-\lambda} x$. Снова из f(0) = 0 следует C = 0. Поэтому $f(l) = D \cdot \sin \sqrt{-\lambda} l = 0$, откуда $\lambda = \lambda_n = -\binom{n\pi}{l}^2$, D - произвольно, $f_n(x) = D \cdot \sin \binom{n\pi x}{l}$, $n \in \mathbb{N}$.

Теперь нормируем найденные собственные функции $f_n(x)$, выбрав подходящие значения D: мы требуем

$$1 = \|f_n\|^2 = D^2 \cdot \int_0^l \sin^2\left(n\pi x/l\right) dx = D^2 \cdot \frac{l}{2}$$
, значит $D = \sqrt{\frac{2}{l}}$.

Итак, мы нашли ортонормированный базис в $L_2(0,l)$, состоящий из функций

$$f_n(x) = \sqrt{\frac{2}{l}} \cdot \sin\left(\frac{n\pi x}{l}\right). \tag{48}$$

Используем теперь этот базис для решения задачи (46), (46-н), (46-г). Разложим функции $u_0(x)$, $u_1(x)$ из (46-н) в ряды Фурье по базису (48):

$$u_0(x) = \sum_{n=1}^{\infty} \frac{2}{l} \cdot \int_{0}^{l} u_0(x) \cdot \sin\left(\frac{n\pi x}{l}\right) dx \cdot \sin\left(\frac{n\pi x}{l}\right) = \sum_{n=1}^{\infty} a_n \cdot \sin\left(\frac{n\pi x}{l}\right), \tag{49}$$

$$u_1(x) = \sum_{n=1}^{\infty} \frac{2}{l} \cdot \int_{0}^{l} u_1(x) \cdot \sin\left(\frac{n\pi x}{l}\right) dx \cdot \sin\left(\frac{n\pi x}{l}\right) = \sum_{n=1}^{\infty} b_n \cdot \sin\left(\frac{n\pi x}{l}\right). \tag{50}$$

Решение задачи (46), (46-н), (46-г) будем также искать в виде

функционального ряда
$$u(t,x) = \sum_{n=1}^{\infty} u^n(t,x)$$
 . (51)

Теперь неизвестные слагаемые ряда (51) достаточно найти как решения задач

$$u_{tt}^n - a^2 u_{xx}^n = 0, (52)$$

$$u^{n}(0,x) = a_{n} \cdot \sin \frac{\pi nx}{l}, \quad u_{t}^{n}(0,x) = b_{n} \cdot \sin \frac{\pi nx}{l},$$
 (52-H)

$$u^{n}(t,0) = 0, \quad u^{n}(t,l) = 0.$$
 (52- Γ)

Способ решения задач (52), (52-н), (52-г) описан в примере 4.1. Пользуясь его результатом, можем записать:

$$u^{n}(t,x) = \left(a_{n} \cdot \cos \frac{a\pi nt}{l} + \frac{b_{n} \cdot l}{5a\pi} \cdot \sin \frac{a\pi nt}{l}\right) \cdot \sin \frac{\pi nx}{l}.$$

Подставляя найденные функции в ряд (51), получим решение задачи (46),

(46-н), (46-г):
$$u(t,x) = \sum_{n=1}^{\infty} \left(a_n \cdot \cos \frac{a\pi nt}{l} + \frac{b_n \cdot l}{5a\pi} \cdot \sin \frac{a\pi nt}{l} \right) \cdot \sin \frac{\pi nx}{l} .$$