Project VISTA:

Progress Report Presentation

University of Puerto Rico, Mayagüez

Electrical and Computer Engineering Department

ICOM 5047

September 18th, 2025

Jason Gutiérrez - PM, Diego Green, Ricardo Blanco, Alexander González

Honeywell

Agenda

Introduction

- Problem Description
- Updates

Body

- Design Alternatives and Choices
- System Architecture and User Interface
- Project Status and Delays
- Deliverables and Milestones
- Budget Status

Conclusion

Problem Description

Disconnected systems:

 No stable centralized platform to manage project information and monitor laboratory environmental conditions.

Multiple tools required:

 Managers and engineers must switch between platforms to access tasks, project information, and laboratory environmental conditions.

• Consequences:

 Instability on information transmission, time inefficiency, limited project visibility, and increased monitoring risks (temperature/humidity).

Updates

- Visitor View:
 - Replaces Visitor role; simplified as the system Home Page.
- Security:
 - Implementing Single Sign-On (SSO) with Active Directory, per Honeywell guidelines.
- Temperature & Humidity Graphs:
 - Weekly summaries (avg/high/low) to bar charts and rolling averages, as requested by the client.

Design Alternatives and Choices

• Front-end choice: Razor Pages + HTMX

Option	Pros	Cons	Fit for VISTA
React / Angular (SPA)	Rich "desktop-app" UX, big ecosystem	Complex Microsoft SSO integration.	Overkill for read-mostly dashboards
Blazor Server	C# end-to-end, SPA-like feel, easy RBAC	Heavier server load, learning curve, scale limited	Possible, but extra tech risk
Razor Pages + HTMX	Great for Microsoft SSO, on-prem friendly (no CDNs)	Less SPA-like, interactivity added via HTMX/JS	Best balance for VISTA's use case

Table 1: Front-End Design Alternative Comparison

Design Alternatives and Choices

• Back-end choice: Python

Option	Pros	Cons	Fit for VISTA
Python with FastAPI Framework	Rapid development and prototyping.	Slower performance for heavy CPU-intensive tasks.	Best for Jira integration and REST API development.
.NET	Entity Framework simplifying SQL database interactions.	Can create performance bottlenecks during CPU-heavy tasks	Integrated within the Microsoft ecosystem
Node.js	A variety of ORM choices for SQL databases.	Can involve more boilerplate code and a heavier framework	Highly performant for I/O and real-time operations

Table 2: Back-End Design Alternative Comparison

Design Alternatives and Choices

• Database choice: MySQL

Option	Pros	Cons	Fit for VISTA	
MySQL	Open-source, common	Scaling and heavy load performance require tuning	High	
MongoDB	Flexible JSON schema; fast to iterate.	Not SQL/relational; weaker AD/SSO; more ops overhead.	Low	
Microsoft SQL	Best with Windows, SSO and tooling.	License cost for mass production; heavier.	Medium	

Table 3: Database Design Alternative Comparison

System Architecture

Figure 1: System Architecture Diagram

Front-End Mockups (Login page and Engineer Dashboard)

H Enrique で記せる VISTA **Welcome Enrique Torres** Torres **Sprint Progress** 85% T: 26°C RH: 60% My Priorities (Tasks this Sprint) TASK TITLE LINK TO JIRA TASK **Rolling Average** Bar chart TASK TITLE **LINK TO JIRA TASK Epics** EPIC NAME % COMPLETED My Mentions: EPIC NAME % COMPLETED TASK TITLE @Alexander mentioned you in TASK TITLE, LINK Issues Im Blocking Issues Blocking Me TASK TITLE TASK TITLE TASK TITLE @Alexander mentioned you in TASK TITLE, LINK **LINK TO JIRA LINK TO JIRA** TASK TITLE TASK TITLE LINK TO JIRA LINK TO JIRA @Alexander mentioned you in TASK TITLE, LINK

Figure 2: Dashboard Login/SSO Page

Figure 3: Engineer Dashboard

Front-End Mockups (Manager Overall and Specific Overview)

Figure 4: Manager Overall View Dashboard

Figure 5: Manager Specific Overview Dashboard

H Ricardo Rodriguez

Project 3

Velocity

Burnout

Sprint % Completed, Project %

Project Status

Completed Work:

- System Architecture
- User Interface Design
- Entity Relation & Table Diagram
- Sequence Diagram

In Progress:

Use Case Diagram

To Do:

- Class Diagram
- Visitor View

Project Delays

Context

• The third sprint was delayed due to technical and functional questions that needed clarification with the client.

Contingency Actions

- Tasks from the third sprint were moved to the next sprint to avoid blockers.
- Continued working on other designs.
- Technical questions were resolved, and the expected system behavior was clarified.
- Tasks were replanned in the backlog.

Deliverables and Milestones

Centralized Web Application:

 Provides a stable access point for managers, engineers, and visitors with custom views.

Data Management System:

 Maintains a database with historical laboratory and project data for analysis and reporting.

Project & Laboratory Dashboards:

- Displays project summaries (tasks, progress, budget, client, manager in charge).
- Monitors laboratory temperature/humidity with alerting features.

EXPENDITURE ANALYSIS

Budget Status

Figure 6: Expenditure Analysis of first 5 weeks

Conclusion

- Where we are (today)?
 - Design Phase Almost Done
 - Under budget by 3.13%
- What are we going to do next?
 - Finish design
 - Setup dev environment
 - Implement and Configure Database
 - Implement data ingestion and ETL Pipeline
- Which milestones are coming up soon?
 - Sept 22 Finish design.
 - Oct 10 Develop data ingestion program fully connected with database.

QUESTIONS?

UML Use Case Diagram

Appendix A: Interaction of Users with Vista Web-App and automatic data synchronization.