Ma 6a PS1

Om Sanan

October 2025

§1 Find all $s, t \in \mathbb{Z}$ such that gcd(240, 84) = 240s + 84t.

Apply the Euclidean algorithm:

$$240 = 84 \cdot 2 + 72,$$

$$84 = 72 \cdot 1 + 12,$$

$$72 = 12 \cdot 6 + 0,$$

hence gcd(240, 84) = 12.

Express 12 as a linear combination of 240 and 84:

$$12 = 84 - 72 = 84 - (240 - 84 \cdot 2) = 84 \cdot 3 - 240.$$

Thus one solution is $(s_0, t_0) = (-1, 3)$, i.e.

$$12 = 240(-1) + 84(3).$$

All integer solutions are obtained by adding multiples of $\frac{84}{12} = 7$ to s and subtracting the corresponding multiples of $\frac{240}{12} = 20$ from t:

$$s = -1 + 7k, t = 3 - 20k, k \in \mathbb{Z}$$

§2 Show that for all $a, b, n \in \mathbb{N}$, we have $\gcd(an, bn) = n \gcd(a, b)$.

Let $d = \gcd(a, b)$. By Bezouts identity, there exist $x, y \in \mathbb{Z}$ such that

$$ax + by = d$$
.

Multiplying by n gives

$$(an)x + (bn)y = nd,$$

so nd is a common divisor of an and bn, hence $nd \leq \gcd(an, bn)$.

Conversely, let $g = \gcd(an, bn)$. Again by Bezout, there exist $u, v \in \mathbb{Z}$ with

$$(an)u + (bn)v = g.$$

Factor n:

$$n(au + bv) = g \implies n \mid g.$$

Set $t=g/n\in\mathbb{N}$. Since $t=\frac{g}{n}$ divides both a and b, $t\mid d$. On the other hand, from ax+by=d it follows that every common divisor of a and b divides d, so d is the greatest such that $d\geq t$. Combining $t\mid d$ with $d\geq t$ and $nd\leq g=nt$ forces d=t and hence g=nd.

Therefore, $gcd(an, bn) = n \ gcd(a, b)$ for all $a, b, n \in \mathbb{N}$.

§3 Show that for all $a,b,n\in\mathbb{N}^*$, if $n\mid ab$ and $\gcd(a,n)=1$, then $n\mid b$.

By Bezout, there exist $x, y \in \mathbb{Z}$ w/

$$ax + ny = 1.$$

Multiplying by b gives

$$abx + n(by) = b.$$

Both terms on the left are divisible by n (since $n \mid ab$ and trivially $n \mid n(by)$), hence $\mid n \mid b$.

§4 Prove that a natural number written in base 10 is divisible by 9 if and only if the sum of its digits is divisible by 9.

Let N have decimal digits d_0, d_1, \ldots, d_k such that

$$N = \sum_{i=0}^{k} d_i \, 10^i.$$

Since $10 \equiv 1 \pmod{9}$, it follows that $10^i \equiv 1 \pmod{9}$ for every i, hence

$$N \equiv \sum_{i=0}^{k} d_i \pmod{9}.$$

Therefore,
$$9 \mid N \iff 9 \mid \sum_{i=0}^{k} d_i$$
,

i.e., a base-10 number is divisible by 9 exactly when the sum of its digits is divisible by 9.

§5 Let F_n be the Fibonacci sequence, with $F_0=0$, $F_1=1$, and $F_{n+2}=F_{n+1}+F_n$ for all $n\geq 0$. Fix $m\in \mathbb{N}^*$. Show that the sequence $F_n \bmod m$ is periodic.

Let $F_0 = 0$, $F_1 = 1$, and $F_{n+2} = F_{n+1} + F_n$. Let's consider the pair sequence

$$P_n = (F_n \mod m, F_{n+1} \mod m) \in (\mathbb{Z}/m\mathbb{Z})^2.$$

The Fibonacci sequence is an updating linear transformations follows:

$$P_{n+1} = T(P_n), \qquad T(x,y) = (y, x+y) \pmod{m}.$$

Pigeonhole. The set $(\mathbb{Z}/m\mathbb{Z})^2$ has m^2 elements; hence among $P_0, P_1, \ldots, P_{m^2}$ two must be equal. Therefore the sequence of pairs eventually repeats.

No pre-period (therefore invertible). The map T is invertible under mod m, with inverse

$$T^{-1}(x,y) = (y-x, x) \pmod{m},$$

since

$$T(y-x,x) = (x, (y-x) + x) = (x,y).$$

Therefore we can say if $P_i = P_j$ for some i < j, applying T^{-1} repeatedly yields $P_{i-1} = P_{j-1}$, $P_{i-2} = P_{j-2}$, ..., and $P_0 = P_{j-i}$ by repated induction. Hence the first repeated pair is $P_0 = (0, 1)$, and the sequence is purely periodic.

Therefore there exists a least $T \geq 1$ such that

$$(F_{n+T}, F_{n+1+T}) \equiv (F_n, F_{n+1}) \pmod{m}$$
 for all n ,

or,

$$F_{n+T} \equiv F_n \pmod{m}$$
 for all n .

Finally, we conclude that a period exists with the bound $T \leq m^2$, so $\{F_n \mod m\}$ is periodic.