Solucions Exercicis de Nivell de xarxa

E1.

El nombre màxim és 253, atès que de les 256 adreces IP que ens permet la màscara de 24 bits, tres d'aquestes es destinen a diferents usos: l'adreça XX.YY.ZZ.0 s'usa per a identificar la xarxa. L'adreça XX.YY.ZZ.255 s'usa per a les difusions i finalment s'hauria d'assignar una altra adreça al *router*.

E2.

- a) Atès que la màscara de xarxa és de 24 bits, tenim encara 8 bits lliures. Per a incloure almenys 20 *hosts* en cada subxarxa, necessitem usar 5 bits per a identificar els *hosts*. Això implica que la màscara de xarxa passa a tenir 27 bits.
- **b)** Atès que utilitzem 5 bits per a identificar els *hosts*, es poden assignar 30 *hosts* (32-2 adreces especials).
- c) El nombre màxim de subxarxes és 8 (tenim 3 bits per a especificar la subxarxa).

d) Les subxarxes serien:

```
11001000\ 00010011\ 00000001\ 000000000 \rightarrow 200.35.1.0/27
11001000\ 00010011\ 00000001\ 001000000 \rightarrow 200.35.1.32/27
11001000\ 00010011\ 00000001\ 011000000 \rightarrow 200.35.1.64/27
11001000\ 00010011\ 00000001\ 011000000 \rightarrow 200.35.1.96/27
11001000\ 00010011\ 00000001\ 101000000 \rightarrow 200.35.1.128/27
11001000\ 00010011\ 00000001\ 101000000 \rightarrow 200.35.1.160/27
11001000\ 00010011\ 00000001\ 11000000 \rightarrow 200.35.1.192/27
11001000\ 00010011\ 00000001\ 111000000 \rightarrow 200.35.1.224/27
e) De 11001000\ 00010011\ 000000001\ 110000001\ 10000001\ 10000001\ 10000001\ 100000001\ 11011110\ 200.35.1.222
f) 11001000\ 00010011\ 000000001\ 11011111\ \rightarrow 200.35.1.223
```

E3.

- a) Com s'estan utilitzant 18 bits fixos, del total dels 32 bits que té cada adreça IP queden 14 bits per a identificar un màxim de 2^{14} = 16.384 adreces IP.
- b) Perquè aquest client dispose de 800 adreces l'ISP necessita usar 10 bits per a identificar els *hosts* (2¹⁰=1024). Per tant, els quatre bits restants (dels 14 bits lliures) poden ser per a identificar la subxarxa. D'aquesta manera, se li assignarà un bloc /22, per exemple el 206.0.68.0/22, que és un bloc de 1024 (2¹⁰) adreces IP (4 blocs /24 contiguts). En el pitjor dels casos, aquesta assignació implicaria com a màxim una nova ruta en les taules d'encaminament dels *routers* d'Internet externs a l'ISP; tot i que com el bloc més general d'adreces ja està assignat al proveïdor i fins i tot en les taules d'encaminament dels *routers* externs, aquesta nova assignació no té per què afegir ni tan sols una nova entrada en les taules d'encaminament dels *routers* d'Internet externs a l'ISP.

206. 0 . 64. 0

Tin en compte que si no s'utilitza CIDR, al client, se li haurien assignat un bloc de quatre adreces de classe C, però això implicaria quatre noves entrades en les taules d'encaminament.

c) Si interpretem l'assignació emprant adreces amb classe, correspondria a 4 adreces de classe C, utilitzant totes les combinacions possibles per als dos primers bits del 3r octet (00, 01, 10, 11).

Classe 206.0.68.0	,	0:	11001110.000000000.01 0001 00.000000000
Classe 206.0.69.0	C ,	1:	11001110.000000000.01 0001 01.00000000
Classe 206.0.70.0	C ,	2:	<u>11001110.000000000.01</u> 0001 10.00000000
Classe 206.0.71.0	C ,	3:	<u>11001110.000000000.01</u> 0001 11.00000000

E4.

S'ha de veure el format en binari de cada adreça i veure la part comuna (si en tenen cap) per a totes les adreces.

212.56.132.0/24	<u>11010100.00111000.100001</u> 00 .000000000
212.56.133.0/24	<u>11010100.00111000.100001</u> 01 .00000000
212.56.134.0/24	<u>11010100.00111000.100001</u> 10 .000000000
212.56.135.0/24	<u>11010100.00111000.100001</u> 11 .00000000
Prefix comú:	<u>11010100.00111000.100001</u> 00 .00000000

L'agregació és 212.56.132.0/22.

E5.

S'ha de veure el format en binari de cada adreça i veure la part comuna (si en tenen cap) per a totes les adreces.

212.56.146.0/24	11010100.00111000.1001	001	0.00000000
212.56.147.0/24	11010100.00111000.1001	001	1.00000000
212.56.148.0/24	11010100.00111000.1001	010	0.00000000
212.56.149.0/24	11010100.00111000.1001	01 0	1.00000000

Aquest bloc /24 NO pot expressar-se com un únic bloc /22, atès que els primers 22 bits no són iguals. La millor cosa que pot fer-se és expressar-lo com dos blocs /23:

212.56.146.0/23	11010100 . 00111000. 1001001 0 .	00000000
212.56.148.0/23	11010100 00111000 1001000 0	00000000

Observa que perquè els dos blocs /23 puguen unir-se en un únic bloc /22, ambdós han de pertànyer al mateix bloc /22 (tenir els 22 bits de més a l'esquerra IGUALS). Atès que, al nostre cas, cadascun dels dos blocs /23 pertanyen a un bloc /22 diferent, no poden juntar-se en un únic bloc /22 (fins i tot encara que són consecutius i, en total, representen el mateix nombre d'adreces que un bloc /22). Podria pensar-se en la possibilitat d'unir-los en un únic bloc /21. No obstant això, aquesta unió inclouria quatre blocs addicionals /22 que no s'inclouen en l'enunciat del problema. Per tant, la unió més compacta possible són dos blocs /23.

E6.

Adreça IP	Subxarxa a què pertany	Tipus d'adreça
222.222.231	222.222.222.128/27	Adreça de host
222.222.222.160	222.222.222.160/27	Adreça de subxarxa
222.222.222.20	222.222.222.0/27	Adreça de host
222.222.222	222.222.222.192/27	Adreça de host
222.222.225	222.222.222.64/27	Adreça de difusió

E7.

a)

Red Destino	Máscara	Ruta	Interfaz
158.42.0.0	/19	0.0.0.0	158.42.1.3
132.41.2.0	/23	0.0.0.0	132.41.2.1
25.3.128.0	/17	0.0.0.0	25.3.128.255
158.42.32.0	/19	158.42.24.32	158.42.1.3
158.42.64.0	/18	158.42.24.32	158.42.1.3
180.96.208.0	/20	132.41.2.250	132.41.2.1
0.0.0.0	0.0.0.0	132.41.3.17	132.41.2.1

b)

E8.

Atès que l'empresa té 300 nodes, necessitem un bloc de 512 (2°) adreces, cosa que ens porta a usar 23 bits per a identificar la xarxa i 9 bits per a identificar a cada *host* en aquesta xarxa. Per a decidir el bloc concret que usa l'empresa s'hauria de veure quins blocs té disponibles l'ISP. Suposem, per exemple, que s'assigna a l'empresa el bloc 63.150.136.0/23. L'esquema quedaria com segueix:

Les taules d'encaminament del *router* i del *host* són (s'assumeix que el *router* següent en la ruta dels datagrames cap a Internet té l'adreça IP A.B.C.D):

Taula d'encaminament del host				
Destinació Màscara Ruta Interfície				
63.150.136.0	255.255.254.0	0.0.0.0	63.150.137.3	
0.0.0.0	0.0.0.0	63.150.136.128	63.150.137.3	

Taula d'encaminament del router				
Destinació Màscara Ruta Interfície				
63.150.136.0	255.255.254.0	0.0.0.0	63.150.136.128	
0.0.0.0	0.0.0.0	A.B.C.D	x.y.z.w	

E9.

Com s'han d'incloure almenys 900 nodes, es necessiten 10 bits de l'adreça per a l'identificador de *host*, cosa que ens deixa 22 bits per a l'identificador de xarxa. D'aquesta manera, la màscara de xarxa és 255.255.252.0. L'adreça IP de la xarxa és 215.128.132.0. L'adreça de difusió dirigida és 215.128.135.255.

E10.

E11.

a) Una possible assignació d'adreces IP és:

a) Amb l'assignació anterior les taules d'encaminament són:

Taula d'encaminament del router R1				
Destinació	Màscara	Ruta	Interficie	
197.8.4.96	255.255.255.224	197.8.4.34	197.8.4.33	
197.8.4.32	255.255.255.224	0.0.0.0	197.8.4.33	
197.8.4.0	255.255.255.224	0.0.0.0	197.8.4.3	
0.0.0.0	0.0.0.0	197.8.4.2	197.8.4.3	

Taula d'encaminament del router R2				
Destinació	Màscara	Ruta	Interficie	
197.8.4.96	255.255.255.224	197.8.4.3	197.8.4.2	
197.8.4.32	255.255.255.224	197.8.4.3	197.8.4.2	
197.8.4.0	255.255.255.224	0.0.0.0	197.8.4.2	
197.8.4.64	255.255.255.224	0.0.0.0	197.8.4.65	
197.8.4.128	255.255.255.224	197.8.4.66	197.8.4.65	
0.0.0.0	0.0.0.0	A.B.C.D	a.b.c.d	

Taula d'encaminament del router R3				
Destinació Màscara Ruta Interfície				
197.8.4.128	255.255.255.224	0.0.0.0	197.8.4.129	
197.8.4.64	255.255.255.224	0.0.0.0	197.8.4.66	
0.0.0.0	0.0.0.0	197.8.4.65	197.8.4.66	

Taula d'encaminament del router R4				
Destinació	Màscara	Ruta	Interficie	
197.8.4.96	255.255.255.224	0.0.0.0	197.8.4.97	
197.8.4.32	255.255.255.224	0.0.0.0	197.8.4.34	
0.0.0.0	0.0.0.0	197.8.4.33	197.8.4.34	

Taula d'encaminament del host D1					
Destinació Màscara Ruta Interfície					
197.8.4.96	255.255.255.224	0.0.0.0	197.8.4.98		
0.0.0.0	0.0.0.0	197.8.4.97	197.8.4.98		

c) Els diferents datagrames/fragments IP són els següents:

	ID	MF	Offset	Grandària	Adreça IP font
Datagrama Original	1	0	0	716	197.8.4.98
Fragment 1	1	1	0	252	197.8.4.98
Fragment 2	1	1	29	252	197.8.4.98
Fragment 3	1	0	58	252	197.8.4.98

E12.

a) L'adreça de xarxa de partida és una adreça /24 i, per tant, els bits que s'elegeixen per a diferenciar les 2 subxarxes s'han de prendre del quart octet de l'adreça IP (un únic bit serà suficient). Per tant, l'adreça de xarxa de la subxarxa 1 serà 200.50.0.128 i l'adreça de xarxa de la subxarxa 2 serà 200.50.0.0. A partir d'ací una possible assignació per als elements podria ser:

Host A: 200.50.0.135, connexió del router 1 a la subxarxa 1: 200.50.0.129.

Host B: 200.50.0.10, connexió del *router* 1 a la subxarxa 2: 200.50.0.2, connexió del *router* 2 a la subxarxa 2: 200.50.0.1.

b) Màscara de xarxa: 255.255.255.128 és única per a les dues subxarxes, permet esbrinar quins bits formen part de l'identificador de xarxa (estan a 1) i quins es dediquen a diferenciar les distintes connexions de la subxarxa (estan a 0).

Nombre màxim de connexions en cada subxarxa: en utilitzar 1 bit per a distingir les dues subxarxes queden set bits disponibles per a connexions: $2^7 = 126$ connexions disponibles. Restem dos perquè s'ha de descomptar l'adreça d'identificació de la subxarxa i la de difusió dirigida.

Adreces de difusió dirigida: els bits en negreta de l'últim octet identifiquen la subxarxa, per la qual cosa formen part de

l'identificador de xarxa i no es modifiquen, s'ha de posar a 1 els set bits restants del quart octet.

Subxarxa 1: 200.50.128 (1000 0000) adreça de difusió: 200.50.0.255

Subxarxa 2: 200.50.0 (**0**000 0000) adreça de difusió: 200.50.0.127

c)

Taula d'encaminament del router 2						
Destinació Màscara Ruta Interfície						
200.50.0.128	255.255.255.128	250.0.0.2	200.50.0.1			
200.50.0.0	255.255.255.128	0.0.0.0	200.50.0.1			
0.0.0.0	0.0.0.0	A.B.C.D	15.1.125.3			

E13.

a) Una possible assignació d'adreces IP és la següent:

a) 23.23.14.127

Justificació: Per a calcular l'adreça de difusió adreçada s'ha de posar a 1 els bits que formen l'identificador de *host*. En la xarxa 2, com la màscara de xarxa té 25 bits, l'identificador de *host* està format pels set bits menys significatius de l'últim octet. (L' últim octet per a l'adreça de difusió seria de la forma 0111 1111.)

b) Com la màscara de xarxa té 25 bits, 32-25=7 bits per a l'identificador de *host*. $(2^7=128)$. D'ací s'ha de descomptar l'adreça de xarxa (bits d'identificador de *host* a 0) i l'adreça de

difusió (bits d'identificador de *host* a 1) que no són assignables. Per tant, queden 126 adreces per a assignar.

NOTA: Si s'ha indicat que també s'ha de descomptar l'adreça del *router* i la del *host* B perquè ja estan assignades la resposta també és vàlida.

c)

Taula d'encaminament del router R					
Destinació Màscara Ruta Interfície					
15.15.254.64	255.255.255.192	0.0.0.0	15.15.254.65		
23.23.14.0	255.255.255.128	0.0.0.0	23.23.14.1		

Taula d'encaminament del host A					
Destinació Màscara Ruta Interfície					
15.15.254.64	255.255.255.192	0.0.0.0	15.15.254.66		
23.23.14.0	255.255.255.128	15.15.254.65	15.15.254.66		

NOTA: En el *host* A, el valor de la destinació 23.23.14.0/25 pot substituir-se pel valor per defecte 0.0.0.0/0. En el *router* R qualssevol de les dues destinacions podria ser la de defecte, però hauria de correspondre's amb la segona entrada de la taula (en aquest cas 23.23.14.0/25).

E14.

La informació rebuda en C, en forma de taula és:

Destinacions	Veïns			
	В	D	F	
A	1	3	1	
В	0	2	2	
D	2	0	2	
Е	1	1	1	
F	2	2	0	

Nota: la fila "C" no és necessari considerar-la perquè ja estem en C.

Si a la informació rebuda sumem els costos per anar des de C fins al veí corresponent, aleshores la taula queda com segueix:

Destinacions	Veïns		
	В	D	F
A	2	4	2
В	1	3	3
D	3	1	3
Е	2	2	2
F	3	3	1

Ara n'hi ha prou amb quedar-nos amb els costos mínims per a anar a cadascuna de les possibles destinacions:

Destinacions	Cost	Eixida
A	2	В
В	1	В
D	1	D
Е	2	F
F	1	F

E15.

El graf de la xarxa és:

A partir d'aquest graf, el càlcul de la taula d'encaminament del node F es reflecteix en la taula següent:

Pas	N	D(A),p(a)	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)
		,	,)	,	,
0	F	INFINIT	INFINIT	15, F	3, F	8, F
1	F,D	INFINIT	INFINIT	7, D		8, F
2	F,D,C	INFINIT	16, C			8, F
3	F,D,C,E	13, E	16, C			
4	F,D,C,E,A		16, C			
5	F,D,C,E,A,B					

La taula d'encaminament del node F és:

Destinacions	Cost	Eixida
A	13	Е
В	16	D
С	7	D
D	3	D
Е	8	Е

E16.

Mecanisme d'encamina -ment	Referit a sistemes autònoms, on s'empra? (intra-SA, inter-SA)	Tipus d'informació d'encamina- ment que genera cada node	A qui s'envia la informació encaminament generada per un node?	Protocol que usa el mecanisme (RIP, BGP, OSPF)
Vector de distàncies	intra-SA	Costos a totes les destinacions	Només als routers veïns	RIP
Estat de l'enllaç	intra-SA	Costos als veïns	A tots els routers de la xarxa	OSPF
Vector de camins	inter-SA	Seqüència de sistemes autònoms per a assolir una destinació donada	Als routers BGP veïns (en sistemes autònoms contigus)	BGP