SalidasInformeFinal-junio 2021

PRIMER PARTE: CORRE CÓDIGOS Y FUNCIONES

```
library(knitr) # para generar reporte Rmarkdown
library(stringr)
library(reshape)
library(dplyr)
library(ggplot2)
library(ggthemes) # para qqplot
library(patchwork) # para unir gráficos de gaplot
library(strucchange) # libreria utilizada para análisis de quiebres
            <-"Figuras/" # carpeta de las figuras utilizadas y generadas en este estudio
dir.Fig
            <-c("pdf") # formato de figuras generadas por este código
fig
dir.0
            <-getwd() # directorio de trabajo
dir.1
            <-paste(dir.0,"/codigos_admb",sep="") # carpeta de códigos ADMB
dir.2
            <-paste(dir.0, "/Retrospectivobase", sep="") # carpeta de códigos ADMB
dir.3
            <-paste(dir.0,"/Retrospectivoalternativo",sep="") # carpeta de códigos ADMB</pre>
            <-paste(dir.0,"/Verosimilitudalternativo",sep="") # carpeta de códigos ADMB</pre>
dir.4
dir.5
            <-paste(dir.0,"/Verosimilitudbase", sep="") # carpeta de códigos ADMB
            <-paste(dir.0,"/funciones/",sep="") # carpeta de funciones utilizadas en este informe</pre>
source(paste(dir.fun, "functions.R", sep="")) # functiones para leer .dat y .rep
source(paste(dir.fun, "Fn_PBRs.R", sep="")) # functiones para leer .dat y .rep
setwd(dir.1)
#Asesoría septiembre 2020 MODELO BASE
data.0 <- lisread(paste(dir.1,"MTT0920.dat", sep='/'));</pre>
names(data.0)<-str_trim(names(data.0), side="right")</pre>
rep0
       <- reptoRlist("MTT0920.rep")</pre>
std0
         <- read.table("MTT0920.std",header=T,sep="",na="NA",fill=T)</pre>
#Asesoría junio 2021 MODELO BASE
data.1 <- lisread(paste(dir.1,"MTT0621.dat", sep='/'));</pre>
names(data.1)<-str_trim(names(data.1), side="right")</pre>
         <- reptoRlist("MTT0621.rep")
std1
         <- read.table("MTT0621.std",header=T,sep="",na="NA",fill=T)</pre>
```

FUNCIÓN DE RETROSPECTIVO FUNCIÓN DE VEROSIMILITUD FUNCIÓN DE CBA

CORRE CODIGOS DE ASESORÍAS PREVIAS MODELO BASE Y ALTERNATIVO

LEE SALIDAS DE ASESORÍAS PREVIAS MODELO BASE Y ALTERNATIVO

```
setwd(dir.1)
# MODELO BASE
#modelo base junio 2020 - Hito 2
data0b <- lisread(paste(dir.1,"MTT0520.dat", sep='/'));</pre>
names(data0b) <- str_trim(names(data0b), side="right")</pre>
rep.0b <- reptoRlist("MTT0520.rep")</pre>
std.0b
          <- read.table("MTT0520.std",header=T,sep="",na="NA",fill=T)</pre>
#modelo base septiembre 2019 - Hito 1
data0a <- lisread(paste(dir.1,"MTT0819.dat", sep='/'));</pre>
names(data0a) <- str trim(names(data0a), side="right")</pre>
rep.0a <- reptoRlist("MTT0819.rep")</pre>
         <- read.table("MTT0819.std",header=T,sep="",na="NA",fill=T)</pre>
std.0a
```

CÁLCULO DE TAMAÑO DE MUESTRA

```
#Proporci?n predicha
ppredF<-rep1$Propfl_pred
ppredR<-rep1$Propcru_pred
#----#
# M?TODO de Francis
#=============#
Nf1 <-60
Nr1 < -34
#----#
#FLOTA
fanos<-years
fobs <-pobsF
fpre <-ppredF</pre>
#RECLAS
ranos<-years
robs <-pobsR[rowSums(pobsR)>0,]
rpre <-ppredR[rowSums(pobsR)>0,]
#composicion de edad Flota
Of <- rep(0,length(fanos))
Ef <- rep(0,length(fanos))</pre>
vf <- rep(0,length(fanos))</pre>
vNf <- rep(0,length(fanos))</pre>
#composicion de edad crucero de verano reclas
Or <- rep(0,length(robs[,1]))
Er <- rep(0,length(robs[,1]))</pre>
vr <- rep(0,length(robs[,1]))</pre>
vNr <- rep(0,length(robs[,1]))</pre>
#-----#
#composicion de edad Flota
for(i in 1:length(fanos)){
   Of[i] <- sum(fobs[i,]*age)
   Ef[i] <- sum(fpre[i,]*age)</pre>
   vf[i] <- sum(fpre[i,]*age^2)-Ef[i]^2</pre>
   vNf[i] <- vf[i]/Nf1}</pre>
#composicion de edad crucero de verano reclas
for(i in 1:length(robs[,1])){
   Or[i] <- sum(robs[i,]*age)</pre>
   Er[i] <- sum(rpre[i,]*age)</pre>
   vr[i] <- sum(rpre[i,]*age^2)-Er[i]^2</pre>
  vNr[i] <- vr[i]/Nr1}</pre>
#-----#
wf <- 1/var((Of-Ef)/sqrt(vNf)) #Flota
wr <- 1/var((Or-Er)/sqrt(vNr)) #Reclas
Nf2 <- Nf1*wf
                         # NM FLOTA
Nr2 <- Nr1*wr
                         # NM RECLAS
\#NM\_Fran \leftarrow data.frame(nmF=c(Nf1,Nf2),nmR=c(Nr1,Nr2));NM\_Fran
#-----#
# M?todo de Ianelli 2002
#-----#
```

```
#Composici?n de edad de la FLOTA
Ofl <-ppredF[rowSums(pobsF)>0,]*(1-ppredF[rowSums(pobsF)>0,])
Ef1 <-(pobsF[rowSums(pobsF)>0,]-ppredF[rowSums(pobsF)>0,])^2
wfl <-rep(0,length(Ofl[,1]))
for(i in 1:length(Ofl[,1])){
   wfl[i] <-sum(Ofl[i,])/sum(Efl[i,])}</pre>
nmf_ari <-mean(wfl)</pre>
                                    # MEDIA ARITMETICA
nmf_geo <-exp(sum(log(wfl))/length(wfl)) # MEDIA GEOM?TRICA
nmf_arm <-1/mean(1/wfl)</pre>
                                   # MEDIA ARM?NICA
#-----
#Composici?n de edad Crucero de verano RECLAS
Ore <-ppredR[rowSums(pobsR)>0,]*(1-ppredR[rowSums(pobsR)>0,])
Ere <-(pobsR[rowSums(pobsR)>0,]-ppredR[rowSums(pobsR)>0,])^2
wre <-rep(0,length(Ore[,1]))</pre>
for(i in 1:length(Ore[,1])){
   wre[i] <-sum(Ore[i,])/sum(Ere[i,])}</pre>
nmr_ari <-mean(wre)
                                   # MEDIA ARITMETICA
nmr_geo <-exp(sum(log(wre))/length(wre)) # MEDIA GEOM?TRICA
nmr_arm <-1/mean(1/wre) # MEDIA ARM?NICA
#-----
NM_Ian <- data.frame(nmF=c(nmf_ari,nmf_geo,nmf_arm),nmR=c(nmr_ari,nmr_geo,nmr_arm));NM_Ian
        nmF
## 1 56.59619 50.78137
## 2 52.80846 43.21859
## 3 48.78160 37.90656
```

SEGUNDA PARTE: GENERA GRÁFICAS Y TABLAS

1. Antecedentes

```
year<-seq(2006,2021,1)
desemb<-c(39146,50506,45078,49225,20123,16429,19763,21888,22951,23643,18495,14134,8366,12565,14194,NA)
cuota<-c(40522,50872,41904,58481,30966,17693,14500,21670,18276,23848,18380,20000,18897,11137,15471,1234)

par(mfcol=c(1,1),mar=c(4,4,1,1))
plot(year,desemb,type="h",lwd=15,ylab="Desembarques (t.)",xlab="Año",ylim=c(0,60000),xaxp=c(2000,2022,2 lines(year,cuota,type="l",lwd=2,col=1)
legend(2011,60000,c("Datos oficiales","CBA"),lwd=c(10,2),col=c("cadetblue4",1),bty="n",cex=0.8)</pre>
```



```
datafrec<-read.table(paste(getwd(), "/Tallasmensuales.txt", sep=""), header = FALSE, sep = "")
           <-seq(5.5,20,0.5)
tallas
ntallas
           <-length(tallas)
etf_obs <- data.frame(datafrec[,3:32])</pre>
        <- datafrec[,1]
yearf
nyearf <-length(yearf)</pre>
month <- datafrec[,2]</pre>
nmonth <-length(month)</pre>
obs <- as.data.frame(etf_obs) %>% mutate(year=yearf) %>% mutate(mes=month) %>% melt(id.vars=c('year',')
          mutate(talla = rep(tallas, each=nyearf))
fig0 <-
          ggplot(filter(obs,year==2017)) +
          geom bar(aes(x = talla, y = value), stat="identity", fill='gray66', color = 'gray28') +
          facet_grid(mes~year) +
          labs(x = '', y = 'Proporción de tallas de la captura') +
```

```
theme(panel.background = element_rect(fill ="gray99"),axis.text.y = element_text(hjust = 1, s
          theme(panel.grid=element_line(color=NA)) +
          scale_x_continuous(breaks = seq(from = 2, to = 20, by = 2))+
          scale_y_continuous(breaks = seq(from = 0, to = 0.3, by = 0.1))
fig1 <-
         ggplot(filter(obs,year==2018)) +
         geom_bar(aes(x = talla, y = value), stat="identity", fill='gray66', color = 'gray28') +
         facet grid(mes~year) +
         labs(x = 'Tallas', y = 'Proporción de tallas de la captura') +
          theme(panel.background = element_rect(fill = "gray99"),axis.text.y = element_text(hjust = 1, s
          theme(panel.grid=element_line(color=NA)) +
          scale_x_continuous(breaks = seq(from = 2, to = 20, by = 2)) +
          scale_y_continuous(breaks = seq(from = 0, to = 0.3, by = 0.1))
fig2 <-
         ggplot(filter(obs,year==2019)) +
         geom_bar(aes(x = talla, y = value), stat="identity", fill='gray66', color = 'gray28') +
         facet_grid(mes~year) +
         labs(x = '', y = '') +
          theme(panel.background = element_rect(fill = "gray99"),axis.text.y = element_text(hjust = 1, s
          theme(panel.grid=element_line(color=NA)) +
          scale_x_continuous(breaks = seq(from = 2, to = 20, by = 2))+
         scale_y_continuous(breaks = seq(from = 0, to = 0.3, by = 0.1))
fig3 <-
         ggplot(filter(obs,year==2020)) +
         geom_bar(aes(x = talla, y = value), stat="identity", fill='gray66', color = 'gray28') +
         facet_grid(mes~year) +
         labs(x = 'Tallas', y = '') +
          theme(panel.background = element_rect(fill = "gray99"),axis.text.y = element_text(hjust = 1, s
         theme(panel.grid=element_line(color=NA)) +
          scale_x_continuous(breaks = seq(from = 2, to = 20, by = 2))+
          scale_y_continuous(breaks = seq(from = 0, to = 0.3, by = 0.1))
fig0+fig2+fig1+fig3
```


2. Metodología

Modelo base (Asesoría Septiembre 2020)

3. RESULTADOS OBJETIVO 1

3.1. Descripción de los datos de entrada al modelo de evaluación de stock

ESTRUCTURA DE TALLAS DE LA FLOTA

```
<-seq(5.5,20,0.5)
age
     <-length(age)
nage
etf_obs_jun <- data.frame(rep1$Propfl_obs)</pre>
yearf
     <- rep1$Years
nyearf <- length(yearf)</pre>
        <- as.data.frame(etf_obs_jun) %>% mutate(year=yearf) %>% melt(id.vars='year') %>%
obs
          mutate(edad = rep(age, each=nyearf)) %>% mutate(type='obs')
mat <- rbind(obs)</pre>
# GRAFICAS
fig1 <- ggplot(filter(mat, type=='obs')) +</pre>
      geom_bar(aes(x = edad, y = value),
             stat="identity", fill='gray66', color = 'gray28') +
      facet_wrap(~year, dir = 'v', as.table = TRUE) +
      labs(x = 'Tallas', y = 'Proporción de tallas de la captura') +
      theme(panel.background = element_rect(fill ="gray99")) +
      theme(panel.grid=element_line(color=NA))
fig1
```


ESTRUCTURA DE TALLAS DEL CRUCERO

```
# AREGLOS DE DATOS
<-seq(5.5,20,0.5)
    <-length(age)
etc_obs_jun <- data.frame(rep1$Propcru_obs)</pre>
    <- rep1$Years
yearc
nyearc <-length(yearc)</pre>
     <- as.data.frame(etc_obs_jun) %>% mutate(year=yearc) %>% melt(id.vars='year') %>%
obs
       mutate(edad = rep(age, each=nyearc)) %>% mutate(type='obs')
  <- rbind(obs)
mat
# GRAFICAS
```


3.2. Ajustes del modelo a los datos de índices

```
# AREGLOS DE DATOS
library(patchwork)
yrs <- rep1$Years
nyrs <- length(yrs)</pre>
lasty <- yrs[nyrs]</pre>
cvCB <-data.1$Ind[,7]
cvcpue <-data.1$Ind[,5]</pre>
cvdes <-data.1$Ind[,3]</pre>
ind obs <- cbind(c(rep0$Bcru obs,NA),c(rep0$CPUE obs,NA),c(rep0$Desemb obs,NA)); ind obs[ind obs==0] <
colnames(ind obs) <- c('Biomasa Crucero', 'CPUE', 'Desembarques')</pre>
      <- cbind(c(rep1$Bcru_pred), c(rep1$CPUE_pred), c(rep1$Desemb_pred))</pre>
colnames(ind jun) <- c('Biomasa Crucero', 'CPUE', 'Desembarques')</pre>
ind_sept <- cbind(c(rep0$Bcru_pred,NA), c(rep0$CPUE_pred,NA), c(rep0$Desemb_pred,NA))
colnames(ind_sept) <- c('Biomasa_Crucero', 'CPUE', 'Desembarques')</pre>
ind
      <- data.frame(ind_obs) %>% mutate(Asesoría='observado') %>%
         mutate (yrs= yrs) %>% melt(id.var=c('yrs', 'Asesoría'))
      <- data.frame(ind_jun) %>% mutate (Asesoría='junio_2020') %>%
         mutate (yrs= yrs) %>% melt(id.var=c('yrs', 'Asesoría'))
      <- data.frame(ind_sept) %>% mutate (Asesoría='septiembre_2020') %>%
sept
         mutate (yrs= yrs) %>% melt(id.var=c('yrs', 'Asesoría'))
base1 <- data.frame(rbind(ind, junio, sept))</pre>
# GRAFICAS
f1 <- ggplot(base1 %>% filter(Asesoría!='observado', variable=='Biomasa_Crucero'),
      aes(yrs, value/1000000)) +
      geom_line(aes(colour=Asesoría), size=1) +
      scale_colour_manual(values=c('red','black')) +
      geom_point(data = base1 %>% filter(Asesoría=='observado',
                                     variable=='Biomasa_Crucero'),
      aes(yrs,value/1000000), shape = 19, colour = 'gray30') +
      geom_errorbar(data = base1 %>% filter(Asesoría=='observado',
                                       variable=='Biomasa_Crucero'),
      aes(ymin = value*exp(-1.96*cvCB)*10^{-6},
          ymax = value*exp(1.96*cvCB)*10^-6), color = 'gray30') +
      scale_x_continuous(breaks = seq(from = 1985, to = 2020, by = 5)) +
      labs(title='Biomasa de Crucero', x = 'Año', y = 'Toneladas (millones)') +
      theme_bw(base_size=9)
f2 <- ggplot(base1 %>% filter(Asesoría!='observado', variable=='CPUE'),
          aes(yrs,value/1000000)) +
```

```
geom_line(aes(colour=Asesoría), size=1) +
        scale_colour_manual(values=c('red','black')) +
        geom_point(data = base1 %>% filter(Asesoría=='observado',
                                           variable=='CPUE'),
        aes(yrs,value/1000000), shape = 19, colour = 'gray30') +
       geom_errorbar(data = base1 %>% filter(Asesoría=='observado',
                                              variable=='CPUE'),
       aes(ymin = value*exp(-1.96*cvcpue)*10^{-6},
            ymax = value*exp(1.96*cvcpue)*10^-6), color = 'gray30') +
        scale_x_continuous(breaks = seq(from = 1985, to = 2020, by = 5)) +
        labs(title='CPUE', x = 'Año', y = 'toneladas/viaje') +
        theme_bw(base_size=9)
f3 <- ggplot(base1 %>% filter(Asesoría!='observado', variable=='Desembarques'),
        aes(yrs,value/1000)) + geom_line(aes(colour=Asesoria), size=1) +
        scale_colour_manual(values=c('red','black')) +
        geom_point(data = base1 %>% filter(Asesoría=='observado',
                                           variable=='Desembarques'),
        aes(yrs,value/1000), shape = 19, colour = 'gray30') +
        geom_errorbar(data = base1 %>% filter(Asesoría=='observado',
                                              variable=='Desembarques'),
       aes(ymin = value*exp(-1.96*cvdes)*10^-3,
           ymax = value*exp(1.96*cvdes)*10^-3), color = 'gray30') +
        scale_x_continuous(breaks = seq(from = 1985, to = 2020, by = 5)) +
        labs(title='Desembarques', x = 'Año', y = 'Toneladas (miles)') +
        theme_bw(base_size=9)
f1/f2/f3 + plot_layout(guides="collect")
```


3.2. Análisis de Residuales de los índices

```
# AREGLOS DE DATOS
Res_maet <- data.frame(log(ind_obs) - log(ind_jun)) %>%
         mutate(yrs = yrs) %>% mutate(Asesoría = 'junio 2021')
Res_matt <- data.frame(log(ind_obs) - log(ind_sept)) %>%
         mutate(yrs = yrs) %>% mutate(Asesoría = 'Septiembre 2020')
       <- rbind(Res_maet, Res_matt) %>% melt(id.vars= c('yrs','Asesoría'))
Res
       <- base1 %>% filter(Asesoría!='observado') %>% mutate (pred = log(value))
pred
predm
       <- pred$pred
Res2
       <- cbind(Res, predm)
# GRAFICAS
r1 <- ggplot(Res, aes(yrs, value)) +
    geom_bar(aes(fill=Asesoría), stat='identity', position='dodge') +
    scale fill manual(values=c("red","black"))+
    geom_hline(yintercept = 0) +
    facet_wrap(. ~ variable, ncol = 1) +
    labs(x= 'Año', y = 'Residuales (escala log)') +
    theme_bw(base_size=12)
r2 <- ggplot(Res2, aes(predm, value)) +
    geom_point(aes(colour=Asesoría), size = 1.5) +
    scale_colour_manual(values=c('red',"black")) +
    geom_hline(yintercept = 0) +
    facet_wrap(. ~ variable, ncol = 1) +
    labs(x= 'Predicho (log)', y = 'Residuales') +
    theme_bw(base_size=12)
r3 <- ggplot(Res, aes(value, colour=Asesoría)) +
     geom_histogram(fill='white', position = 'dodge') +
    facet_wrap(. ~ variable, ncol = 1) +
    labs(x= 'Residuales', y = 'Histograma de Residuos (Frecuencia)') +
    theme_bw(base_size=12)
r4 <- ggplot(Res, aes(sample = value, colour = Asesoría)) +
    stat_qq() +
    stat_qq_line() +
    scale_colour_manual(values=c('red',"black")) +
    facet_wrap(. ~ variable, ncol = 1) +
    labs(x= 'Sample Quantiles', y ='Theoretical') +
    theme_bw(base_size=12)
r1+r4 + plot layout(guides="collect")
```


3.3. Ajustes del modelo a los datos de Composiciones de tallas

FLOTA

```
# AREGLOS DE DATOS
<-seq(5.5,20,0.5)
age
      <-length(age)
nage
etf_obs_jun <- data.frame(rep1$Propfl_obs)</pre>
etf_pre_jun <- rep1$Propfl_pred</pre>
etf_obs_sept <- data.frame(rbind(rep0$Propfl_obs,rep(NA,nage)))</pre>
etf_pre_sept <- data.frame(rbind(rep0$Propfl_pred,rep(NA,nage)))</pre>
yearf
      <- rep1$Years
nyearf <- length(yearf)</pre>
         <- as.data.frame(etf_obs_jun) %>% mutate(year=yearf) %>% melt(id.vars='year') %>%
obs
           mutate(edad = rep(age, each=nyearf)) %>% mutate(type='obs')
pred_jun <- as.data.frame(etf_pre_jun) %>% mutate(year=yearf) %>% melt(id.vars='year') %>%
           mutate(edad = rep(age, each=nyearf)) %>% mutate(type='pred_jun')
pred_sept <- as.data.frame(etf_pre_sept) %>% mutate(year=yearf) %>% melt(id.vars='year') %>%
           mutate(edad = rep(age, each=nyearf)) %>% mutate(type='pred_sept')
mat <- rbind(obs,pred_jun,pred_sept)</pre>
# GRAFICAS
fig1 <- ggplot(filter(mat, type=='obs')) +</pre>
       geom bar(aes(x = edad, y = value),
              stat="identity", fill='gray66', color = 'gray28') +
       facet_wrap(~year, dir = 'v', as.table = TRUE) +
       labs(x = 'Tallas', y = 'Proporción de tallas de la captura') +
       geom_line(data = filter(mat, type=='pred_sept'),
               aes(x = edad, y = value), color = 'black', size = 1) +
       geom_line(data = filter(mat, type=='pred_jun'),
               aes(x = edad, y = value), color = 'red', size = 1) +
       theme(panel.background = element_rect(fill = "gray99")) +
       theme(panel.grid=element_line(color=NA))
fig1
```


CRUCERO

```
# AREGLOS DE DATOS
<-seq(5.5,20,0.5)
age
nage
      <-length(age)
etc_obs_sept <- data.frame(rbind(rep0$Propcru_obs,rep(NA,nage)))</pre>
etc pre sept <- data.frame(rbind(rep0$Propcru pred,rep(NA,nage)))
etc_obs_jun <- data.frame(rep1$Propcru_obs)</pre>
etc_pre_jun <- rep1$Propcru_pred
      <- rep1$Years
yearc
nyearc <-length(yearc)</pre>
obs
        <- as.data.frame(etc_obs_jun) %>% mutate(year=yearc) %>% melt(id.vars='year') %>%
          mutate(edad = rep(age, each=nyearc)) %>% mutate(type='obs')
pred_jun <- as.data.frame(etc_pre_jun) %>% mutate(year=yearc) %>% melt(id.vars='year') %>%
          mutate(edad = rep(age, each=nyearf)) %>% mutate(type='pred jun')
pred_sept <- as.data.frame(etc_pre_sept) %>% mutate(year=yearc) %>% melt(id.vars='year') %>%
           mutate(edad = rep(age, each=nyearf)) %>% mutate(type='pred_sept')
mat <- rbind(obs,pred jun,pred sept)</pre>
# GRAFICAS
fig1 <- ggplot(filter(mat, type=='obs')) +</pre>
       geom_bar(aes(x = edad, y = value),
              stat="identity", fill='gray66', color = 'gray28') +
       facet_wrap(~year, dir = 'v', as.table = TRUE) +
       labs(x = 'Tallas', y = 'Proporción de tallas del Crucero') +
       geom_line(data = filter(mat, type=='pred_sept'),
               aes(x = edad, y = value),color = 'black', size = 1) +
       geom line(data = filter(mat, type=='pred jun'),
               aes(x = edad, y = value),color = 'red', size = 1) +
       theme(panel.background = element rect(fill ="gray99")) +
       theme(panel.grid=element line(color=NA))
fig1
```


3.4. Análisis de Residuales de Composiciones de tallas

```
par(mfcol=c(1,2))
#Flota
cx < -0.7
# Residuales Flota
anos
         <-rep1$Years</pre>
obsF_alt
         <-rep1$Propfl_obs</pre>
preF_alt <-rep1$Propfl_pred</pre>
resF_alt <-obsF_alt-preF_alt
rng <-range(resF_alt,na.rm=T)</pre>
dd <-dim(resF_alt)</pre>
est <-matrix(NA,nrow=dd[1],ncol=dd[2])</pre>
for(j in 1:dd[1]){for(k in 1:dd[2]){val<-resF_alt[j,k]</pre>
if(val>0){est[j,k]<-val/rng[2]}</pre>
else{est[j,k]<-val/rng[1]*-1}}}
par(mar=c(5.4,6.7,2,1),cex.axis=cx,cex.lab=cx)
image(age,anos,t(est),col=0,yaxt="n",xlab="",ylab="")
ee <-dim(est)
for(n in 1:ee[1]){for(m in 1:ee[2]){vol<-est[n,m]</pre>
if(is.na(vol)==FALSE){
   if(vol>0){points(age[m],anos[n],pch=19,cex=2*sqrt(vol),col=1)}
   if(vol<0){points(age[m],anos[n],pch=1,cex=2*sqrt(vol*-1),col=1)}</pre>
}}}
mtext("Flota - junio 2021", side=3, cex=cx)
mtext("Tallas (cm)",side=1,line=3.2,cex=cx);posi<-seq(1,57,by=4)</pre>
axis(2,at=anos,labels=anos,las=2,cex=cx)
mtext("Años",side=2,line=4.7,cex=cx)
box()
# Residuales Cruceros
obsB alt <-rep1$Propcru obs
preB_alt <-rep1$Propcru_pred</pre>
resB_alt <-obsB_alt-preB_alt
rng <-range(resB_alt,na.rm=T)</pre>
dd <-dim(resB_alt)</pre>
est <-matrix(NA,nrow=dd[1],ncol=dd[2])
for(j in 1:dd[1]){for(k in 1:dd[2]){val<-resB_alt[j,k]</pre>
if(val>0){est[j,k]<-val/rng[2]}</pre>
else{est[j,k]<-val/rng[1]*-1}}}
par(mar=c(5.4,6.7,2,1),cex.axis=cx,cex.lab=cx)
image(age,anos,t(est),col=0,yaxt="n",xlab="",ylab="")
ee <-dim(est)
for(n in 1:ee[1]){for(m in 1:ee[2]){vol<-est[n,m]</pre>
if(is.na(vol)==FALSE){
```

```
if(vol>0){points(age[m],anos[n],pch=19,cex=2*sqrt(vol),col=1)}
if(vol<0){points(age[m],anos[n],pch=1,cex=2*sqrt(vol*-1),col=1)}
}}
mtext("Crucero Acústico - junio 2021",side=3,cex=cx)
mtext("Tallas (cm)",side=1,line=3.2,cex=cx);posi<-seq(1,57,by=4)
axis(2,at=anos,labels=anos,las=2,cex=cx)
mtext("Años",side=2,line=4.7,cex=cx)
box()</pre>
```


3.5. Comparación con evaluaciones anteriores

```
# AREGLOS DE DATOS
years.1 <- data.1$Ind[,1] ; nyears.1 <- data.1$nanos</pre>
years.0 <- data.1$Ind[,1] ; nyears.0 <- data.1$nanos</pre>
R jun19
        <- c(6215,9079,13095,19689,8096,8467,10623,6528,5133,5375,13802,2383,12211,</pre>
              3249,2441,4388,2445,6665,NA,NA)
R_{sept19} < c(6174,9049,13026,19810,8084,8452,10630,6544,5134,5369,13770,2410,12176,
              3261,2505,4861,2735,4690,NA,NA)
BD_jun19 < c(40355,56370,55954,56952,74917,58016,37351,29081,28055,26737,29062,44469,
              37477,40608,30858,17861,17043,17109,NA,NA)
BD sept19 <- c(39991,56080,55914,57142,75339,58468,37718,29360,28317,26985,29433,44484,
              37546,40817,31226,18630,19126,18793,NA,NA)
         < c(0.5,0.35,0.4,0.5,0.33,0.6,0.72,0.95,0.38,0.33,0.28,0.29,0.35,0.35,0.43,
F jun19
              0.49, 0.29, 0.33, NA, NA)
F_{\text{sept19}} < c(0.5, 0.35, 0.4, 0.49, 0.33, 0.59, 0.71, 0.94, 0.38, 0.33, 0.28, 0.3, 0.37, 0.36, 0.43,
              0.48, 0.26, 0.34, NA, NA)
dat3c <- data.frame(years=years.0,</pre>
                   Rt=c(R_jun19),
                   SSBt=c(BD_jun19),
                   Ft=c(F_jun19))%>%
        mutate(Series=rep("jun19",nyears.0))%>%mutate(Modelo=rep("M_base",nyears.0))%>%
        melt(id.var=c('years', 'Series', 'Modelo'))
dat2c <- data.frame(years=years.0,</pre>
                   Rt=c(R sept19),
                   SSBt=c(BD_sept19),
                   Ft=c(F sept19))%>%
        mutate(Series=rep("sept19",nyears.0))%>%mutate(Modelo=rep("M base",nyears.0))%>%
        melt(id.var=c('years', 'Series', 'Modelo'))
dat1c <- data.frame(years=years.0,</pre>
                   Rt=c(rep.Ob$Reclutamiento, NA),
                   SSBt=c(rep.Ob$Biomasa_desovante,NA),
                   Ft=c(rep.0b\$F,NA))\%>\%
        mutate(Series=rep("jun20",nyears.0))%>%mutate(Modelo=rep("M_base",nyears.0))%>%
        melt(id.var=c('years', 'Series', 'Modelo'))
dat0c <- data.frame(years=years.0,</pre>
                   Rt=c(rep0$Reclutamiento,NA),
                   SSBt=c(rep0$Biomasa_desovante,NA),
                   Ft=c(rep0$F,NA))%>%
        mutate(Series=rep("sept20",nyears.0))%>%mutate(Modelo=rep("M_base",nyears.0))%>%
        melt(id.var=c('years', 'Series', 'Modelo'))
datc <- data.frame(years=years.1,</pre>
                  Rt=c(rep1$Reclutamiento),
                  SSBt=c(rep1$Biomasa desovante),
                  Ft=c(rep1$F))%>%
        mutate(Series=rep("jun21",nyears.0))%>%mutate(Modelo=rep("M_base",nyears.1))%>%
```

```
melt(id.var=c('years', 'Series', 'Modelo'))
data <- data.frame(rbind(dat3c,dat2c,dat1c,dat0c,datc))</pre>
# GRAFICAS
f1<- ggplot(data %>% filter(variable=='Rt', Modelo=='M base'),
          aes(years, value/10^6)) +
    geom line(aes(colour=Series), size=0.3)+
    labs(x = '', y = 'Reclutamientos', colour='Asesorías') +
    scale_x_continuous(breaks = seq(from = 1990, to = 2020, by = 5)) +
    scale_colour_manual(values=seq(1,5,1))+
    theme_bw(base_size=11) +
    ggtitle('Modelo base')+
    theme(plot.title = element_text(hjust = 0.5),legend.position="none")
f2<- ggplot(data %>% filter(variable=='SSBt',Modelo=='M_base'),
          aes(years, value/10^6)) +
    geom_line(aes(colour=Series), size=0.3)+
    labs(x = '', y = 'Biomasa desovante (t)',colour='Asesorías') +
    scale_x_continuous(breaks = seq(from = 1990, to = 2020, by = 5)) +
    scale_colour_manual(values=seq(1,5,1))+
    theme_bw(base_size=11) +
    theme(plot.title = element text(hjust = 0.5),legend.position="right")
f3<- ggplot(data %>% filter(variable=='Ft', Modelo=='M base'),
          aes(years, value)) +
    geom_line(aes(colour=Series), size=0.3)+
    labs(x = '', y = 'Mortalidad por pesca',colour='Asesorías') +
    scale_x_continuous(breaks = seq(from = 1990, to = 2020, by = 5)) +
    scale_colour_manual(values=seq(1,5,1))+
    theme_bw(base_size=11) +
    theme(plot.title = element_text(hjust = 0.5),legend.position="none")
 (f1/f2/f3)
```


3.6. Análisis retrospectivo

```
years<-rep1$Years
nyears<-length(years)</pre>
       <- subset(std1,name=="Reclutas")$value
Rt1
Rt1std <- subset(std1,name=="Reclutas")$std
BT1
      <- subset(std1,name=="BT")$value
BT1std <- subset(std1,name=="BT")$std
BD1
      <- subset(std1,name=="BD")$value
BD1std <- subset(std1,name=="BD")$std
     <- subset(std1,name=="log_F")$value
Ft1std <- subset(std1,name=="log_F")$std
VarPob jun <- data.frame(x=years, Rt1=Rt1,BT1=BT1,BD1=BD1,Ft1=exp(Ft1),
       lowerRt1 = (Rt1 - 1.96*Rt1std), upperRt1 = (Rt1+1.96*Rt1std),
       lowerBT1 = (BT1 -1.96*BT1std), upperBT1 = (BT1+1.96*BT1std),
       lowerBD1 = (BD1 -1.96*BD1std), upperBD1 = (BD1+1.96*BD1std),
       lowerFt1 = exp(Ft1 -1.96*Ft1std), upperFt1 = exp(Ft1+1.96*Ft1std))
# AREGLOS DE DATOS
dir<-paste(dir.0, "/RetrospectivobaseJun", sep="")
setwd(dir)
admb<-"MTT0621"
<- rep1$Years
years
        <- length(years)
nvears
        <- seq(1,4)
retros
nretros
        <- length(retros)
year_retros <- as.factor(years[(nyears-(nretros-1)):nyears])</pre>
         <- matrix(0,nrow=nyears,ncol=nretros+1)
retroR
        <- matrix(0,nrow=nyears,ncol=nretros+1)
retroBD
retroF
        <- matrix(0,nrow=nyears,ncol=nretros+1)
for(i in 1:length(retros)){
 rep <- reptoRlist(paste(admb, "s",i,".rep",sep=""))</pre>
 retroR[,i+1] <- c(rep$Reclutamiento,rep(NA,i-1))
 retroBD[,i+1] <- c(rep$Biomasa_desovante,rep(NA,i-1))
 retroF[,i+1] <- c(rep$F,rep(NA,i-1)) }
# retrospectivo relativo (cálculo)
mohn.r <- rep(NA, nretros)
   rel.diff.r <- matrix(NA, nrow=nyears, ncol=(nretros))</pre>
   mohn.ssb <- rep(NA, nretros)
   rel.diff.ssb <- matrix(NA, nrow=nyears, ncol=(nretros))</pre>
   mohn.f <- rep(NA, nretros)
   rel.diff.f <- matrix(NA, nrow=nyears, ncol=(nretros))</pre>
```

```
for(j in 1:nretros){
    rel.diff.r[,j] <- (retroR[,(j+1)]-retroR[,2])/retroR[,2]</pre>
                 <- rel.diff.r[(nyears-j),j]</pre>
     mohn.r[j]
    rel.diff.ssb[,j] <- (retroBD[,(j+1)]-retroBD[,2])/retroBD[,2]</pre>
     mohn.ssb[j] <- rel.diff.ssb[(nyears-j),j]</pre>
     rel.diff.f[,j] <- (retroF[,(j+1)]-retroF[,2])/retroF[,2]</pre>
                  <- rel.diff.f[(nyears-j),j]}</pre>
    mohn.f[j]
   ave.mohn.r <- mean(mohn.r)
   ave.mohn.ssb <- mean(mohn.ssb)</pre>
   ave.mohn.f <- mean(mohn.f)</pre>
# Para retrospectivo tradicional
Rt_retro <- data.frame(x=years,</pre>
                  y1=retroR[,2],
                  y2=retroR[,3],
                  y3=retroR[,4],
                  y4=retroR[,5],
                  lower = (Rt1 - 1.96 * Rt1 std),
                  upper = (Rt1+1.96*Rt1std))
BD_retro <- data.frame(x=years,
                  y1=retroBD[,2],
                  y2=retroBD[,3],
                  y3=retroBD[,4],
                  y4=retroBD[,5],
                  lower = (BD1 -1.96*BD1std),
                  upper = (BD1+1.96*BD1std))
Ft_retro <- data.frame(x=years,</pre>
                  y1=retroF[,2],
                  y2=retroF[,3],
                  y3=retroF[,4],
                  y4=retroF[,5],
                  lower = exp(Ft1-1.96*Ft1std),
                  upper = exp(Ft1+1.96*Ft1std))
# Para restrospectivo relativo
Rt_retroRel <- data.frame(x=years,</pre>
                    y1=rel.diff.r[,1],
                    y2=rel.diff.r[,2],
                    y3=rel.diff.r[,3],
                    y4=rel.diff.r[,4])
BD_retroRel <- data.frame(x=years,</pre>
                    y1=rel.diff.ssb[,1],
                    y2=rel.diff.ssb[,2],
                    y3=rel.diff.ssb[,3],
                    y4=rel.diff.ssb[,4])
Ft_retroRel <- data.frame(x=years,</pre>
                    y1=rel.diff.f[,1],
                    y2=rel.diff.f[,2],
```

```
y3=rel.diff.f[,3],
                     y4=rel.diff.f[,4])
# GRAFICAS
#Retrospectivo tradicional
Rt <- ggplot(Rt_retro) +</pre>
     geom_ribbon(aes(ymin=lower, ymax=upper, x=x, fill = "IC asintótico"), alpha = 0.2)+
     geom_line(aes(y=y1, x=x, colour = year_retros[nretros]), size=0.5)+
     geom line(aes(y=y2, x=x, colour = year retros[nretros-1]), size=0.5)+
     geom_line(aes(y=y3, x=x, colour = year_retros[nretros-2]), size=0.5)+
     geom_line(aes(y=y4, x=x, colour = year_retros[nretros-3]), size=0.5)+
     labs(x = '', y = 'Reclutamientos ',colour='Asesorías') +
     scale_x_continuous(breaks = seq(from = 1995, to = 2020, by = 2)) +
     scale_colour_manual("",values=c("green","blue","red","black"))+
     scale fill manual("", values=c("grey30"))+
     theme_bw(base_size=8) +
     ggtitle('')+
     theme(plot.title = element_text(hjust = 0.5),legend.position="top")
BD <- ggplot(BD_retro) +
     geom_ribbon(aes(ymin=lower, ymax=upper, x=x, fill = ""), alpha = 0.2)+
     geom_line(aes(y=y1, x=x, colour = year_retros[nretros]), size=0.5)+
     geom_line(aes(y=y2, x=x, colour = year_retros[nretros-1]), size=0.5)+
     geom_line(aes(y=y3, x=x, colour = year_retros[nretros-2]), size=0.5)+
     geom_line(aes(y=y4, x=x, colour = year_retros[nretros-3]), size=0.5)+
     labs(x = '', y = 'Biomasa desovante (t)',colour='Asesorías') +
     scale x continuous(breaks = seq(from = 1995, to = 2020, by = 2)) +
     scale_colour_manual("",values=c("green","blue","red","black"))+
     scale_fill_manual("", values=c("grey30"))+
     theme_bw(base_size=8) +
     ggtitle('')+
     theme(plot.title = element_text(hjust = 0.5),legend.position="none")
Ft <- ggplot(Ft_retro) +
     geom_ribbon(aes(ymin=lower, ymax=upper, x=x, fill = ""), alpha = 0.2)+
     geom_line(aes(y=y1, x=x, colour = year_retros[nretros]), size=0.5)+
     geom_line(aes(y=y2, x=x, colour = year_retros[nretros-1]), size=0.5)+
     geom line(aes(y=y3, x=x, colour = year retros[nretros-2]), size=0.5)+
     geom_line(aes(y=y4, x=x, colour = year_retros[nretros-3]), size=0.5)+
     labs(x = '', y = 'Mortalidad por pesca (F)',colour='Asesorías') +
     scale_x_continuous(breaks = seq(from = 1995, to = 2020, by = 2)) +
     scale_colour_manual("",values=c("green","blue","red","black"))+
     scale fill manual("", values=c("grey30"))+
     theme_bw(base_size=8) +
     ggtitle('')+
     theme(plot.title = element_text(hjust = 0.5),legend.position="none")
#Retrospectivo relativo
Rtrel <- ggplot(Rt_retroRel) + lims(y=c(-1,1)) +</pre>
```

```
geom_line(aes(y=y1, x=x, colour = year_retros[nretros]), size=0.5)+
    geom_line(aes(y=y2, x=x, colour = year_retros[nretros-1]), size=0.5)+
    geom_line(aes(y=y3, x=x, colour = year_retros[nretros-2]), size=0.5)+
    geom_line(aes(y=y4, x=x, colour = year_retros[nretros-3]), size=0.5)+
   annotate("text", x=2004, y=0.75, label=paste("Rho =",round(ave.mohn.r,2))) +
   labs(x = '', y = 'Diferencia porcentual del último año',colour='Asesorías') +
   scale_x_continuous(breaks = seq(from = 1995, to = 2020, by = 2)) +
    scale colour manual("",values=c("green","blue","red","black"))+
    scale fill manual("", values=c("grey30"))+
    theme bw(base size=8) +
     ggtitle('')+
     theme(plot.title = element_text(hjust = 0.5),legend.position="none")
BDrel <- ggplot(BD_retroRel) + lims(y=c(-1,1)) +
     geom_line(aes(y=y1, x=x, colour = year_retros[nretros]), size=0.5)+
    geom_line(aes(y=y2, x=x, colour = year_retros[nretros-1]), size=0.5)+
    geom_line(aes(y=y3, x=x, colour = year_retros[nretros-2]), size=0.5)+
    geom_line(aes(y=y4, x=x, colour = year_retros[nretros-3]), size=0.5)+
   annotate("text", x=2004, y=0.75,label=paste("Rho =",round(ave.mohn.ssb,2))) +
   labs(x = '', y = 'Diferencia porcentual del último año',colour='Asesorías') +
    scale_x_continuous(breaks = seq(from = 1995, to = 2020, by = 2)) +
    scale_colour_manual("",values=c("green","blue","red","black"))+
    scale_fill_manual("",values=c("grey30"))+
   theme_bw(base_size=8) +
     ggtitle('')+
     theme(plot.title = element_text(hjust = 0.5),legend.position="none")
Ftrel <- ggplot(Ft_retroRel) + lims(y=c(-1,1)) +</pre>
    geom_line(aes(y=y1, x=x, colour = year_retros[nretros]), size=0.5)+
    geom_line(aes(y=y2, x=x, colour = year_retros[nretros-1]), size=0.5)+
   geom_line(aes(y=y3, x=x, colour = year_retros[nretros-2]), size=0.5)+
    geom_line(aes(y=y4, x=x, colour = year_retros[nretros-3]), size=0.5)+
   annotate("text", x=2004, y=0.75, label=paste("Rho =",round(ave.mohn.f,2))) +
   labs(x = '', y = 'Diferencia porcentual del último año',colour='Asesorías') +
   scale_x_continuous(breaks = seq(from = 1995, to = 2020, by = 2)) +
    scale_colour_manual("",values=c("green","blue","red","black"))+
    scale_fill_manual("",values=c("grey30"))+
   theme_bw(base_size=8) +
    ggtitle('')+
    theme(plot.title = element_text(hjust = 0.5),legend.position="none")
Rt/BD/Ft |Rtrel/BDrel/Ftrel
```


3.7. Perfil de verosimilitud

```
# AREGLOS DE DATOS
admb<-"MTT0621"
dir<-paste(dir.0,"/VerosimilitudbaseJun",sep="")</pre>
casos <-35
 logRo
      <- rep(0,casos)
 likeval <- matrix(ncol=9,nrow=casos)</pre>
 slikeval <- matrix(ncol=10,nrow=casos)</pre>
 for(i in 1:casos){
  rep <- reptoRlist(paste(admb, "s",i,".rep", sep=""))
         <- readLines(paste(admb, "s",i,".dat", sep=''),encoding="UTF-8")</pre>
  data
  logRo[i] <- as.numeric(data[161])</pre>
  likeval[i,] <- rep$Likeval}</pre>
 #-----
 # SEXTO PASO: ESTANDARIZAR VEROSIMILITUD
 #-----
      <- data.frame(round(likeval,3),Total=apply(likeval,1,sum))
 minLik <- apply(like,2,min)</pre>
                                     # busca el minimo
 for(i in 1:10){slikeval[,i]<-like[,i]-minLik[i]} # Estandarizacin</pre>
 # ULTIMO PASO: GUARDAR TABLAS Y FIGURA
 names<-c("Ro", "cpue", "cru", "mph", "desemb", "proflo", "procru",
       "desvRo", "desNo", "Lo", "Total")
 # Tabla verosimilitud
 TLk1 <- data.frame(exp(logRo),like);</pre>
 colnames (TLk1) <-names
 # Tabla estandarizada
 TLk2 <- data.frame(exp(logRo),slikeval);</pre>
 colnames(TLk2)<-names</pre>
# GRAFICAS
par(mar=c(4,4,1,1)+0.5)
 plot(TLk2$Ro,TLk2$Total,type="1",lwd=3,ylim=c(0,4),xlim=c(2500,8000),
    xaxs= "i",yaxs= "i", ylab="L-min(L)",xlab="Ro", las=1,
    main="Modelo base",cex.main=0.7,cex.axis=0.7,cex.lab=0.7)
 abline(h=2,col=1,lty=2)
 for(i in 2:7){
 lines(TLk2$Ro,TLk2[,i],col=i,lty=2,lwd=2)}
 legend(6000,4,names[c(11,2:7)],col=1:8,lty=c(1,rep(2,7)),
      lwd=2,bty="n",cex=0.8)
```


3.8. Sensibilidad a la actualización de datos

4. RESULTADOS OBJETIVO 2

4.1. Indicadores del stock

Tabla 13.

Indicadores poblacionales de sardina austral en aguas interiores de Chiloé. Tabla comparativa entre los resultados de la evaluación de septiembre (primer hito) y junio (segundo hito).

anos	$BD_{\rm sep}$	BD_jun	BT_sep	BT_jun	R_sep}	R_jun	F_sep	F_jun
2002	40951	41213	194920	197200	6280	6315	0.49	0.50
2003	57096	57682	200800	203060	9191	9222	0.34	0.35
2004	57102	57678	210790	212490	13264	13307	0.39	0.40
2005	58821	59315	266800	269680	20282	20573	0.48	0.49
2006	77957	78422	252550	254240	8370	8305	0.32	0.32
2007	61494	61186	207380	207580	8651	8624	0.56	0.58
2008	40283	39547	176060	175740	10848	10919	0.67	0.70
2009	31677	30768	150360	149630	6789	6773	0.88	0.92
2010	30535	29728	107450	106140	5312	5301	0.36	0.37
2011	29097	28405	99342	98159	5564	5544	0.31	0.32
2012	31432	31171	146180	146100	14058	14146	0.26	0.27
2013	46501	46065	140570	140240	2521	2501	0.30	0.32
2014	39131	38953	149190	150040	12319	12489	0.38	0.39
2015	42501	42512	135130	136350	3317	3406	0.36	0.37
2016	32793	32993	90698	92081	2550	2649	0.42	0.43
2017	19677	20264	74464	77529	4984	5324	0.48	0.48
2018	20680	22170	70331	76962	3551	4166	0.25	0.25
2019	24776	28464	110240	124640	10586	11918	0.25	0.22
2020	38349	45275	113800	128280	2378	2356	0.26	0.21
2021	NA	39749	NA	108910	NA	5475	NA	0.23

```
write.csv(VarPobl1, file="TablaVarpob.csv")
```

4.2. Estados de explotación


```
<- rep1$Years
yrs
       <- length(yrs)
nyrs
tallas \leftarrow seq(5,19.5,0.5)
ntallas <- length(tallas)</pre>
       <- seq(0,4,1)
age
       <- length(age)
nage
x1 <-c(yrs,rev(yrs))</pre>
x0_1 <-c(yrs[1], yrs[nyrs]+1, nyrs+1/2) #xaxp
x0_2 <-c(yrs[1]-1,yrs[nyrs]+1) #xlim
years.0
         <-rep0$Years
x0 <-c(years.0,rev(years.0))</pre>
years.1
         <-rep1$Years
# Asesoría de septiembre
<-subset(std0,name=="RPR")$value
Rpr0
Rpr0std <-subset(std0,name=="RPR")$std</pre>
Frpr0
       <-subset(std0,name=="Frpr")$value
Frpr0std <-subset(std0,name=="Frpr")$std</pre>
       <-c((Rpr0-1.96*Rpr0std))
rpr0
       rev((Rpr0+1.96*Rpr0std)));
frpr0
       <-c((Frpr0-1.96*Frpr0std),
       rev((Frpr0+1.96*Frpr0std)))
# Asesoría de junio
Rpr1
       <-subset(std1,name=="RPR")$value
Rpr1std <-subset(std1,name=="RPR")$std</pre>
       <-subset(std1,name=="Frpr")$value
Frpr1std <-subset(std1,name=="Frpr")$std</pre>
       <-c((Rpr1 -1.96*Rpr1std),
rpr1
```

```
rev((Rpr1 +1.96*Rpr1std)));
frpr1
     <-c((Frpr1 -1.96*Frpr1std),
      rev((Frpr1 +1.96*Frpr1std)))
### *MODELO BASE Asesoría septiembre 2020*
# biomasa desovante vs BDrms
xbs1 <-rnorm(1000, mean = Rpr0[length(years.0)],</pre>
             sd = Rpr0std[length(years.0)])
xbs <-seq(min(xbs1), max(xbs1), 0.005)
ybs <-dnorm(xbs, mean = Rpr0[length(years.0)],
            sd = Rpr0std[length(years.0)])
icbs <-qnorm(c(0.05,0.95,0.5),
        Rpr0[length(years.0)],
        Rpr0std[length(years.0)])
xxbs <-c(xbs[xbs>=icbs[1]&xbs<=icbs[2]],</pre>
   rev(xbs[xbs>=icbs[1]&xbs<=icbs[2]]))
yybs <-c(ybs[xbs>=icbs[1]&xbs<=icbs[2]],</pre>
   rep(0,length(ybs[xbs>=icbs[1]&xbs<=icbs[2]])))
# mortalidad por pesca vs Frms
xfs1 <- rnorm(1000, mean = Frpr0[length(years.0)],</pre>
              sd = Frpr0std[length(years.0)])
xfs <-seq(min(xfs1),</pre>
      \max(xfs1), 0.005)
yfs <-dnorm(xfs, mean = Frpr0[length(years.0)],
            sd = Frpr0std[length(years.0)])
icfs <-qnorm(c(0.05, 0.95, 0.5),
        Frpr0[length(years.0)],
        Frpr0std[length(years.0)])
xxfs <-c(xfs[xfs>=icfs[1]&xfs<=icfs[2]],
   rev(xfs[xfs>=icfs[1]&xfs<=icfs[2]]))
yyfs <-c(yfs[xfs>=icfs[1]&xfs<=icfs[2]],
   rep(0,length(yfs[xfs>=icfs[1]&xfs<=icfs[2]])))</pre>
### *MODELO BASE Asesoría junio 2020*
# biomasa desovante vs BDrms
xbm1 <- rnorm(1000, mean = Rpr1[length(years.1)],</pre>
              sd = Rpr1std[length(years.1)])
```

```
xbm <- seq(min(xbm1),</pre>
          max(xbm1),0.005)
ybm <- dnorm(xbm, mean = Rpr1[length(years.1)],</pre>
                    sd = Rpr1std[length(years.1)])
icbm \leftarrow qnorm(c(0.05, 0.95, 0.5),
            Rpr1[length(years.1)],
            Rpr1std[length(years.1)])
xxbm \leftarrow c(xbm[xbm = icbm[1] & xbm = icbm[2]],
     rev(xbm[xbm>=icbm[1]&xbm<=icbm[2]]))</pre>
yybm <- c(ybm[xbm>=icbm[1]&xbm<=icbm[2]],
     rep(0,length(ybm[xbm>=icbm[1]&xbm<=icbm[2]])))</pre>
# mortalidad por pesca vs Frms
xfm1 <-rnorm(1000, mean = Frpr1[length(years.0)],</pre>
                    sd = Frpr1std[length(years.0)])
xfm <-seq(min(xfm1),</pre>
          \max(xfm1), 0.005)
yfm <-dnorm(xfm, mean = Frpr1[length(years.0)],</pre>
                   sd = Frpr1std[length(years.0)])
icfm <-qnorm(c(0.05,0.95,0.5),
            Frpr1[length(years.0)],
            Frpr1std[length(years.0)])
xxfm <-c(xfm[xfm>=icfm[1]&xfm<=icfm[2]],
    rev(xfm[xfm>=icfm[1]&xfm<=icfm[2]]))</pre>
yyfm <-c(yfm[xfm>=icfm[1]&xfm<=icfm[2]],</pre>
    rep(0,length(yfm[xfm>=icfm[1]&xfm<=icfm[2]])))</pre>
### *Probabilidad de estar bajo BRMS*
pa1<-pnorm(1,Rpr0[length(years.0)],</pre>
          Rpr0std[length(years.0)],
          lower.tail = TRUE,log.p = F)
pa2<-pnorm(1,Rpr1[length(years.1)],</pre>
          Rpr1std[length(years.1)],
          lower.tail = TRUE,log.p = F)
### *Probabilidad de estar bajo FRMS*
pb1<-1-pnorm(1,Frpr0[length(years.0)],
            Frpr0std[length(years.0)],
            lower.tail = TRUE,log.p = F)
pb2<-1-pnorm(1,Frpr1[length(years.1)],</pre>
            Frpr1std[length(years.1)],
            lower.tail = TRUE,log.p = F)
### *Probabilidad de estar en zona de sobreexplotacion*
pc1<-pnorm(0.9,Rpr0[length(years.0)],</pre>
          Rpr0std[length(years.0)],
```

```
lower.tail = TRUE,log.p = F)
pc2<-pnorm(0.9,Rpr1[length(years.1)],</pre>
           Rpr1std[length(years.1)],
           lower.tail = TRUE,log.p = F)
### *Probabilidad de estar en zona de colapso*
pd1<-pnorm(0.5,Rpr0[length(years.0)],
           Rpr0std[length(years.0)],
           lower.tail = TRUE,log.p = F)
pd2<-pnorm(0.5,Rpr1[length(years.1)],
           Rpr1std[length(years.1)],
           lower.tail = TRUE,log.p = F)
### *Probailidad de sobrepesca*
pe1<-1-pnorm(1.1,Frpr0[length(years.0)],</pre>
             Frpr0std[length(years.0)],
             lower.tail = TRUE,log.p = F)
pe2<-1-pnorm(1.1,Frpr1[length(years.1)],</pre>
             Frpr1std[length(years.1)],
             lower.tail = TRUE,log.p = F)
PBRs<-round(rbind("BD~0~"=c(BDo0,BDo1)/1000,
                   "BD~RMS~"=c(BRMS0,BRMS1)/1000,
                   "BD~LIM~"=c(BDlim0,BDlim1)/1000,
                   "F~RMS~"=c(FRMS0,FRMS1),
                   "p(BD~last~<BD~RMS)~"=round(c(pa1,pa2),2),</pre>
                  "p(F~last~>F~RMS~)"=round(c(pb1,pb2),2),
                   "p(BD~last~<0.9BD~RMS~)"=round(c(pc1,pc2),2),</pre>
                   "p(BD~last~<0.5BD~RMS~)"=round(c(pd1,pd2),2),
                   "p(F~last~>1.1F~RMS~)"=round(c(pe1,pe2),2)),3)
colnames(PBRs)<-c("sept","junio")</pre>
kable(PBRs)
```

	sept	junio
BD_0	53.725	54.592
$\mathrm{BD}_{\mathrm{RMS}}$	29.549	30.026
$\mathrm{BD}_{\mathrm{LIM}}$	14.774	15.013
F_{RMS}	0.310	0.320
$p(BD_{last} < BD_{RMS})$	0.080	0.050
$p(F_{last}>F_{RMS})$	0.190	0.040
$p(BD_{last} < 0.9BD_{RMS})$	0.030	0.020
$p(BD_{last} < 0.5BD_{RMS})$	0.000	0.000
$p(F_{last}{>}1.1F_{RMS})$	0.080	0.010

Variación interanual de F respecto de FRMS (F/F RMS), BD respecto de BDRMS (BD/BD RMS), y de las tasas de explotación referidos a la biomasa total (Y/BT) en la pesquería de sardina austral. Comparación entre las Estimaciones de la evaluación de stock actual (sept 2018) y anterior (jun 2018).

anos	$F/F_{RMS}S$	$F/F_{RMS}\mathbf{J}$	$\mathrm{BD/BD_{RMS}}\mathbf{S}$	$\mathrm{BD}/\mathrm{BD}_{\mathrm{RMS}}\mathbf{J}$	Y/BT_ S	Y/BT_ J
2002	1.592	1.570	1.386	1.373	0.187	0.189
2003	1.106	1.087	1.932	1.921	0.157	0.158
2004	1.272	1.252	1.932	1.921	0.166	0.169
2005	1.547	1.523	1.991	1.975	0.182	0.184
2006	1.022	1.010	2.638	2.612	0.154	0.156
2007	1.822	1.818	2.081	2.038	0.249	0.255
2008	2.176	2.188	1.363	1.317	0.258	0.265
2009	2.850	2.883	1.072	1.025	0.335	0.344
2010	1.148	1.159	1.033	0.990	0.191	0.198
2011	1.002	1.012	0.985	0.946	0.168	0.174
2012	0.854	0.849	1.064	1.038	0.135	0.138

anos	$F/F_{\rm RMS}\mathbf{S}$	$F/F_{RMS}\mathbf{J}$	$\mathrm{BD}/\mathrm{BD}_{\mathrm{RMS}}\mathbf{S}$	$\mathrm{BD}/\mathrm{BD}_{\mathrm{RMS}}\mathbf{J}$	Y/BT_S	Y/BT _J
2013	0.976	0.986	1.574	1.534	0.156	0.160
2014	1.211	1.216	1.324	1.297	0.159	0.162
2015	1.166	1.164	1.438	1.416	0.179	0.182
2016	1.369	1.351	1.110	1.099	0.213	0.215
2017	1.564	1.506	0.666	0.675	0.207	0.203
2018	0.822	0.776	0.700	0.738	0.121	0.116
2019	0.796	0.683	0.838	0.948	0.101	0.089
2020	0.830	0.656	1.298	1.508	0.134	0.111
2021	NA	0.723	NA	1.324	NA	0.116

write.csv(VarPobl2, file="TablaEstatus.csv")

Diagramas de Fase

```
source(paste(dir.fun, "Fn_DiagramaFase.R", sep="")) # functiones para leer .dat y .rep
name<-"Asesoría septiembre 2020"
DiagramaFase(name,FRMS0,BRMS0,BD0,BD0std,Ft0,Ft0std,years0)
#cruz del año previo
lastB1
         <- BD0[nyears0-1]/BRMS0
lastB
         <- BD0[nyears0-1]
lastF
         <- exp(Ft0[nyears0-1])/FRMS0
# Calculate confidence intervals
         \leftarrow -qnorm((1-(80/100))/2.0)
sbSE
         <- BD0std[nyears0-1]</pre>
sb95
         <- c(lastB-Qmult*sbSE,lastB+Qmult*sbSE)
B95
         <- sb95/BRMS0
         <- Ft0std[nyears0-1]
FvSE
         <- c(lastF*exp(-Qmult*FvSE),lastF*exp(Qmult*FvSE))
F95
arrows(x0=B95[1],
       y0=lastF,
       x1=B95[2],
       y1=lastF,
       length=0.05,angle=90,col=4,lwd=1,code=3,lty=2)
arrows(x0=lastB1,
       y0=F95[1],
       x1=lastB1,
       y1=F95[2],
       length=0.05,angle=90,col=4,lwd=1,code=3,lty=2)
points(lastB1,lastF,pch=19,col=4)
text(lastB1,lastF-0.1,years0[nyears0-1],cex=0.8)
```



```
name<-"Asesoría junio 2021"
DiagramaFase(name,FRMS1,BRMS1,BD1,BD1std,Ft1,Ft1std,years1)
#cruz del año previo
lastB1
         <- BD1[nyears1-1]/BRMS1
lastB
         <- BD1[nyears1-1]
         <- exp(Ft1[nyears1-1])/FRMS1
lastF
# Calculate confidence intervals
Qmult
         <- -qnorm((1-(80/100))/2.0)
         <- BD1std[nyears1-1]
sbSE
sb95
         <- c(lastB-Qmult*sbSE,lastB+Qmult*sbSE)
B95
         <- sb95/BRMS1
FvSE
         <- Ft1std[nyears1-1]
F95
         <- c(lastF*exp(-Qmult*FvSE),lastF*exp(Qmult*FvSE))
arrows(x0=B95[1],
       y0=lastF,
       x1=B95[2],
       y1=lastF,
       length=0.05,angle=90,col=4,lwd=1,code=3)
arrows(x0=lastB1,
       y0=F95[1],
       x1=lastB1,
       y1=F95[2],
       length=0.05,angle=90,col=4,lwd=1,code=3)
points(lastB1,lastF,pch=19,col=4)
text(lastB1,lastF+0.1,years1[nyears1-1],cex=0.8)
```


\textbf{Figura 26}. Diagrama de fases de explotación de sardina austral en aguas interiores de la Región de Los

Lagos, basado en mortalidad por pesca (F) y Biomasa desovante (BD/BDo)

5. RESULTADOS OBJETIVO 3

Cálculo de CBA inicial (Septiembre - Hito 1)

```
carpeta<-"/cba_septiembre2020_base/"</pre>
           <- reptoRlist(paste(dir.0,carpeta,"MTT0920s1.rep", sep='/'))</pre>
reps1b
           <- reptoRlist(paste(dir.0,carpeta,"MTT0920s2.rep", sep='/'))</pre>
reps2b
          <- reptoRlist(paste(dir.0, carpeta, "MTT0920s3.rep", sep='/'))</pre>
reps3b
stds1
          <- read.table(paste(dir.0,carpeta,"MTT0920s1.std", sep='/'),header=T,sep="",na="NA",fill=T)</pre>
          <- read.table(paste(dir.0,carpeta,"MTT0920s2.std", sep='/'),header=T,sep="",na="NA",fill=T)
stds2
stds3
          <- read.table(paste(dir.0,carpeta,"MTT0920s3.std", sep='/'),header=T,sep="",na="NA",fill=T)</pre>
          <- subset(stds1,name=="Yp")$value[3];
cbas1
cbas1std <- subset(stds1,name=="Yp")$std[3] #reclutamiento medios
          <- subset(stds2,name=="Yp")$value[3];
cbas2
cbas2std <- subset(stds2,name=="Yp")$std[3] #reclutamiento 2018
          <- subset(stds3,name=="Yp")$value[3];
cbas3
cbas3std <- subset(stds3,name=="Yp")$std[3] #reclutamiento 2012
        <- seq(0.1,0.5,0.1) # niveles de riesgo (cuantiles)
nq
        <- length(q)
         \leftarrow rep(0,nq)
CBAs1
CBAs2
        \leftarrow rep(0,nq)
CBAs3
        \leftarrow rep(0,nq)
buffer1 <- rep(0,nq)</pre>
buffer2 <- rep(0,nq)</pre>
buffer3 <- rep(0,nq)</pre>
for(j in 1:nq){CBAs1[j] <-qnorm(q[j],cbas1,cbas1std)}</pre>
for(j in 1:nq){CBAs2[j]<-qnorm(q[j],cbas2,cbas2std)}</pre>
for(j in 1:nq){CBAs3[j]<-qnorm(q[j],cbas3,cbas3std)}</pre>
for(j in 1:nq){buffer1[j] <-round(1-CBAs1[j]/CBAs1[5],2)}</pre>
for(j in 1:nq){buffer2[j] <-round(1-CBAs2[j]/CBAs2[5],2)}</pre>
for(j in 1:nq){buffer3[j] <-round(1-CBAs3[j]/CBAs3[5],2)}</pre>
tCBA<-cbind(CBAs3,CBAs1,CBAs2)
rownames(tCBA)<-c(seq(10,50,10))
colnames(tCBA)<-c("R bajo(2018)","R Med","R alto(2012))")</pre>
kable(t(round(tCBA,0)))
```

	1.0	20	90	40	
	10	20	30	40	50
R_bajo(2018)	10005	11300	12234	13032	13778
R_Med	10899	12213	13161	13971	14728
$R_{alto}(2012)$	14253	15766	16857	17789	18660

```
tbuffer<-cbind(buffer1,buffer2,buffer3)
rownames(tbuffer)<-c(seq(10,50,10))</pre>
```

```
colnames(tbuffer)<-c("R_bajo(2018)","R_Med","R_alto(2012))")
kable(t(round(tbuffer,2)))</pre>
```

	10	20	30	40	50
$\overline{R_bajo(2018)}$	0.26	0.17	0.11	0.05	0
R_Med	0.24	0.16	0.10	0.05	0
$R_alto(2012)$	0.27	0.18	0.11	0.05	0

Cálculo de CBA actualizada (Junio- Hito 2)

percentil	CBA_final	CBA_finaldesc	Resguardo
10	12987	12688	0.23
20	14334	14005	0.15
30	15306	14954	0.09
40	16136	15765	0.05
50	16912	16523	0.00

```
# Asesoría junio
# densidad de probabilidad
xbm1 <-rnorm(1000, mean = cbas0, sd = cbas0std)
xbm <-seq(min(xbm1),max(xbm1),0.5)
ybm <-dnorm(xbm, mean = cbas0, sd =cbas0std)
icbm <-qnorm(c(0.10,0.50,0.5),cbas0,cbas0std)
#distribución probabilidad
xxbm
       <- c(xbm[xbm>=icbm[1]&xbm<=icbm[2]],
           rev(xbm[xbm>=icbm[1]&xbm<=icbm[2]]))</pre>
       <- c(ybm[xbm>=icbm[1]&xbm<=icbm[2]],
yybm
           rep(0,length(ybm[xbm>=icbm[1]&xbm<=icbm[2]])))</pre>
densb_bm <- data.frame(x=xxbm, y=yybm , t=rep('a', length(xxbm)), r=seq(1,length(xxbm),1))</pre>
# Asesoría septiembre #reclutamiento medios
# densidad de probabilidad
```

```
xbs1a <-rnorm(1000, mean = cbas1, sd = cbas1std)
xbsa <-seq(min(xbs1a), max(xbs1a), 0.5)
ybsa <-dnorm(xbsa, mean = cbas1, sd =cbas1std)</pre>
icbsa <-qnorm(c(0.10,0.50,0.5),cbas1,cbas1std)
#distribución probabilidad
        <- c(xbsa[xbsa>=icbsa[1]&xbsa<=icbsa[2]],
xxbsa
             rev(xbsa[xbsa>=icbsa[1]&xbsa<=icbsa[2]]))</pre>
          <- c(ybsa[xbsa>=icbsa[1]&xbsa<=icbsa[2]],
yybsa
              rep(0,length(ybsa[xbsa>=icbsa[1]&xbsa<=icbsa[2]])))</pre>
densb_bsa <- data.frame(x=xxbsa, y=yybsa , t=rep('a', length(xxbsa)), r=seq(1,length(xxbsa),1))</pre>
# Asesoría septiembre #reclutamiento 2018
# densidad de probabilidad
xbs1b <-rnorm(1000, mean = cbas2, sd = cbas2std)
xbsb <-seq(min(xbs1b), max(xbs1b), 0.5)
ybsb <-dnorm(xbsb, mean = cbas2, sd =cbas2std)</pre>
icbsb <-qnorm(c(0.10,0.50,0.5),cbas2,cbas2std)
#distribución probabilidad
          <- c(xbsb[xbsb>=icbsb[1]&xbsb<=icbsb[2]],
xxbsb
              rev(xbsb[xbsb>=icbsb[1]&xbsb<=icbsb[2]]))</pre>
          <- c(ybsb[xbsb>=icbsb[1]&xbsb<=icbsb[2]],
yybsb
              rep(0,length(ybsb[xbsb>=icbsb[1]&xbsb<=icbsb[2]])))</pre>
densb_bsb <- data.frame(x=xxbsb, y=yybsb , t=rep('a', length(xxbsb)), r=seq(1,length(xxbsb),1))</pre>
# Asesoría septiembre #reclutamiento 2012
# densidad de probabilidad
xbs1c <-rnorm(1000, mean = cbas3, sd = cbas3std)</pre>
xbsc <-seq(min(xbs1c),max(xbs1c),0.5)
ybsc <-dnorm(xbsc, mean = cbas3, sd =cbas3std)</pre>
icbsc <-qnorm(c(0.10,0.50,0.5),cbas3,cbas3std)
#distribución probabilidad
         <- c(xbsc[xbsc>=icbsc[1]&xbsc<=icbsc[2]],
xxbsc
             rev(xbsc[xbsc>=icbsc[1]&xbsc<=icbsc[2]]))</pre>
          <- c(ybsc[xbsc>=icbsc[1]&xbsc<=icbsc[2]],
yybsc
              rep(0,length(ybsc[xbsc>=icbsc[1]&xbsc<=icbsc[2]])))</pre>
densb_bsc <- data.frame(x=xxbsc, y=yybsc , t=rep('a', length(xxbsc)), r=seq(1,length(xxbsc),1))</pre>
\#par(layout( matrix(c(1,1,2,3), nrow=2, byrow=TRUE)), mar=c(4,4,1,1)+0.5)
par(mfrow=c(2,2), mar=c(4,4,1,1)+0.5)
tallas < -seq(5.5, 20, 0.5)
plot(tallas,reps1b$CTPp,type="l",ylim=c(0,3500),main="",xaxs="i",yaxs= "i",
    ylab="Captura 2021 a la talla (toneladas)",xlab="Tallas (cm)",col=4)
lines(tallas,reps2b$CTPp,col=3)
```

```
lines(tallas,reps3b$CTPp,col=2)
lines(tallas,rep1$CTP,col=1,lwd=2,lty=2)
legend(6,3500,c("CBA2021_Hito2","CBA2021_Hito1_Rbajo","CBA2021_Hito1_Rmedio","CBA2021_Hito1_Ralto"),lwd
text(904.3,0.0022,"Crms")
plot(xbm,ybm ,type="n",ylab="Densidad de probabilidad",xaxs="i",yaxs= "i",xlab="CBA 2021 (toneladas)",
polygon(xxbm,yybm,col=gray(0.7,0.7),border="gray70")
polygon(xxbsc,yybsc,col=gray(0.9,0.3),border="gray95")
polygon(xxbsb,yybsb,col=gray(0.9,0.3),border="gray95")
polygon(xxbsa,yybsa,col=gray(0.9,0.3),border="gray95")
lines(xbm,ybm,lwd=2,lty=1,col=1)
lines(xbsc,ybsc,lwd=1,lty=1,col=2)
lines(xbsb,ybsb,lwd=1,lty=1,col=3)
lines(xbsa,ybsa,lwd=1,lty=1,col=4)
legend(1000,0.00017,c("CBA2021_Hito2","CBA2021_Hito1_Rbajo","CBA2021_Hito1_Rmedio","CBA2021_Hito1_Ralto
text(904.3,0.0022,"Crms")
plot(seq(0.1,0.5,0.1), CBAs3, type="o", col=2, ylim=c(5000, 22000), ylab="CBA 2021 (toneladas)", xlab="Percent
lines(seq(0.1,0.5,0.1),CBAs2,type="o",col=3)
lines(seq(0.1,0.5,0.1),CBAs1,type="o",col=4)
lines(seq(0.1,0.5,0.1), CBAsO, type="o", col=1, lwd=2, lty=2)
plot(seq(10,50,10),buffer0,type="o",ylim=c(0,0.3), ylab="Resguardo = (1-CBA/Crms)",xlab="Percentil de C
lines(seq(10,50,10),buffer3,type="o",col=2)
lines(seq(10,50,10),buffer2,type="o",col=3)
lines(seq(10,50,10),buffer1,type="o",col=4)
```



```
legend(1000,0.00017,c("CBA_Hito1_Rbajo","CBA_Hito1_Rmedio","CBA_Hito1_Ralto"),lwd=c(1,1,1),col=c(2,1,3)
text(904.3,0.0022,"Crms")

plot(seq(0.1,0.5,0.1),CBAs3,type="o",col=2,ylim=c(5000,22000),ylab="CBA (toneladas)",xlab="Percentiles
lines(seq(0.1,0.5,0.1),CBAs2,type="o",col=3)
lines(seq(0.1,0.5,0.1),CBAs1,type="o",col=1)
#lines(seq(0.1,0.5,0.1),CBAs0,type="o",col=1,lwd=2,lty=1)
legend(0.1,22000,c("CBA_Hito1_Rbajo","CBA_Hito1_Rmedio","CBA_Hito1_Ralto"),lwd=c(1,1,1),col=c(2,1,3),lt

plot(seq(10,50,10),buffer0,type="n",ylim=c(0,0.3), ylab="Resguardo = (1-CBA/Crms)",xlab="Percentil de C
lines(seq(10,50,10),buffer3,type="o",col=2)
lines(seq(10,50,10),buffer2,type="o",col=3)
lines(seq(10,50,10),buffer1,type="o",col=1)
```


Proyección del stock

La Figura 28 muestra la proyección de la biomasa desovante, la reducción del stock (BD/BD_{MRS}) y capturas en cinco años bajo tres escenarios de reclutamiento proyectado

```
carpeta<-"/cba_septiembre2020_base/"</pre>
          <- read.table(paste(dir.0,carpeta,"MTT0920s1.std", sep=''),header=T,sep="",na="NA",fill=T)</pre>
stds1
          <- read.table(paste(dir.0,carpeta,"MTT0920s2.std", sep=''),header=T,sep="",na="NA",fill=T)</pre>
stds2
stds3
          <- read.table(paste(dir.0,carpeta,"MTT0920s3.std", sep=''),header=T,sep="",na="NA",fill=T)</pre>
         <- subset(stds1,name=="Bp")$value[3]; bds1std <- subset(stds1,name=="Bp")$std[3] #reclutamie</pre>
bds1
         <- subset(stds2,name=="Bp")$value[3] ; bds2std <- subset(stds2,name=="Bp")$std[3] #reclutamie</pre>
bds2
         <- subset(stds3,name=="Bp")$value[3] ; bds3std <- subset(stds3,name=="Bp")$std[3] #reclutamie</pre>
bds3
        <- subset(stds1,name=="Yp")$value[3]; cs1std <- subset(stds1,name=="Yp")$std[3] #reclutamient
cs1
        <- subset(stds2,name=="Yp")$value[3] ; cs2std <- subset(stds2,name=="Yp")$std[3] #reclutamient</pre>
cs2
        <- subset(stds3,name=="Yp")$value[3] ; cs3std <- subset(stds3,name=="Yp")$std[3] #reclutamient</pre>
cs3
par(mfcol=c(3,1), mar=c(4,4,1,1)+0.5)
yearProy<-2021
plot(c(rep0$Years, seq(yearProy, yearProy, 1)),
     c(rep0$Biomasa desovante,bds3),
     type="o",ylab="Biomasa desovante (t)",xlab="Años",col=2,
     ylim=c(0,95000),xlim=c(2000,2023),pch=19,main="Proyección año 2021 - Asesoría septiembre 2020 - Hi
lines(c(rep0$Years, seq(yearProy, yearProy, 1)),
      c(rep0$Biomasa_desovante,bds2),
      type="o",col=3,pch=19)
lines(c(rep0$Years, seq(yearProy, yearProy, 1)),
      c(rep0$Biomasa_desovante,bds1),type="o",col=1,pch=19)
abline(v=yearProy-1,lty=2)
legend(2011,95000,c("R_alto (2012)","R_Med","R_bajo (2018)"),pch=19,lwd=1,col=c(3,1,2),bty="n")
plot(c(rep0$Years, seq(yearProy, yearProy, 1)),
     c(rep0$Biomasa_desovante,bds3)/BRMS0,
     type="o", ylab="BD/BDrms", col=2, xlab="Años", pch=19, xlim=c(2000, 2023),)
lines(c(rep0$Years, seq(yearProy, yearProy, 1)),
      c(rep0$Biomasa_desovante,bds2)/BRMS0,
      type="o",col=3,pch=19)
lines(c(rep0$Years, seq(yearProy, yearProy, 1)),
      c(rep0$Biomasa_desovante,bds1)/BRMS0,
      type="o",col=1,pch=19)
abline(v=yearProy-1,h=1,lty=2)
plot(c(rep0$Years, seq(yearProy, yearProy, 1)),
     c(rep0$Desemb_pred,cs3),type="o",
     ylab="Capturas (t)",col=2,ylim=c(0,55000),xlab="Años",pch=19,xlim=c(2000,2023),)
lines(c(rep0$Years,seq(yearProy,yearProy,1)),
      c(rep0$Desemb_pred,cs2),
      type="o",col=3,pch=19)
lines(c(rep0$Years, seq(yearProy, yearProy, 1)),
      c(rep0$Desemb_pred,cs1),
      type="o",col=1,pch=19)
abline(v=yearProy-1,lty=2)
```



```
<- subset(stds2,name=="Yp")$value[3] ; cs2std <- subset(stds2,name=="Yp")$std[3] #reclutamient</pre>
cs2
        <- subset(stds3,name=="Yp")$value[3] ; cs3std <- subset(stds3,name=="Yp")$std[3] #reclutamient</pre>
cs3
par(mfcol=c(3,1), mar=c(4,4,1,1)+0.5)
plot(c(rep1$Years, seq(2022, 2022, 1)),
     c(rep1$Biomasa_desovante,bds3),
     type="o",ylab="Biomasa desovante (t)",xlab="Años",col=2,
     ylim=c(0,95000),xlim=c(2000,2023),pch=19,main="Proyección año 2022 - Asesoría junio 2021 - Hito 2"
lines(c(rep1$Years, seq(2022, 2022, 1)),
      c(rep1$Biomasa desovante,bds2),
      type="o",col=3,pch=19)
lines(c(rep1$Years, seq(2022, 2022, 1)),
      c(rep1$Biomasa_desovante,bds1),type="o",col=1,pch=19)
abline(v=2021,lty=2)
legend(2011,95000,c("R alto (2012)","R Med","R bajo (2018)"),pch=19,lwd=1,col=c(3,1,2),bty="n")
plot(c(rep1$Years, seq(2022, 2022, 1)),
     c(rep1$Biomasa_desovante,bds3)/BRMS1,
     type="o",ylab="BD/BDrms",col=2,xlab="Años",xlim=c(2000,2023),pch=19)
lines(c(rep1$Years, seq(2022, 2022, 1)),
      c(rep1$Biomasa_desovante,bds2)/BRMS1,
      type="o",col=3,pch=19)
lines(c(rep1$Years, seq(2022, 2022, 1)),
      c(rep1$Biomasa_desovante,bds1)/BRMS1,
      type="o",col=1,pch=19)
abline(v=2021,h=1,lty=2)
plot(c(rep1$Years, seq(2022, 2022, 1)),
     c(rep1$Desemb_pred,cs3),type="o",
     ylab="Capturas (t)",col=2,ylim=c(0,55000),xlim=c(2000,2023),xlab="Años",pch=19)
lines(c(rep1$Years, seq(2022, 2022, 1)),
      c(rep1$Desemb pred,cs2),
      type="o",col=3,pch=19)
lines(c(rep1$Years, seq(2022, 2022, 1)),
      c(rep1$Desemb_pred,cs1),
      type="o",col=1,pch=19)
abline(v=2021,lty=2)
```

