

# ADITYA MAJALI

+49 176 8797 2312 adityamajali.de@gmail.com aditya.majali@rwth-aachen.de linkedin.com/in/aditya-majali/

Nationality: Indian

**Languages:** English(C2) | German(A2)

#### **EDUCATION**

## **RWTH Aachen University**

Master of Science | Robotic Systems Engineering

Oct. 2022 – Present Aachen, Germany

# Birla Institute of Technology and Science, Pilani

Master of Science | *Physics*Bachelor of Engineering | *Mechanical Engineering* 

Aug. 2017 – Aug. 2022 Pilani, India Grade - 7.03/10.0

#### WORK EXPERIENCE

### University of Auckland, New Zealand

Student Researcher (Link to Lab Homepage)

January 2022 – May 2022 Thesis Report

- Worked on simulating fully actuated robotic hands in the MuJoCo physics engine.
- Additionally, we compared the position of the grasped object after mapping the robotic hand movement in real life to the movement in the MuJoCo engine.

# National Institute of Technology Surathkal, India

Student Researcher

August 2021 – December 2021 Thesis Report

• Worked on the Modelling and Simulation of Lower Limb Exoskeleton. Utilized MATLAB, Simulink and Simscape to model the human upper body and integrated it with the lower body.

# Henkel Adhesives Technologies India Private Limited

May 2019 – July 2019

Summer Intern

- Recommended measures to increase production and cut down on transportation costs at the factory.
- Analyzed the factory's warehouse storage capacity and transportation patterns and recommended measures
  to increase capacity.

## SKILLS SUMMARY

Programming Languages: Python3(Numpy, Matplotlib, Pandas, Tensorflow), C++, MATLAB, HTML5

Analysis and System Modelling: ANSYS (Mechanical), MuJoCo, Simulink, Simscape

**Design and Modelling**: SolidWorks, AutoCAD, Autodesk Fusion 360 **Miscellaneous Software**: LaTex, Microsoft Office, Adobe Premiere Pro

#### **PUBLICATIONS**

**Majali, A.**, Mulay, A., Iyengar, V., Nayak, A. and Singru, P. Fault Identification and Remaining Useful Life Prediction of Bearings using Poincare Maps, Fast Fourier Transform and Convolutional Neural Networks. *Mathematical Models in Engineering [https://doi.org/10.21595/mme.2022.22364]*