Chapter 4 and 5 Review

1. Discuss and draw the Bohr Model of the atom.

BOHR constructed THIS Model BASED ON Spectral lines that were observed. Electrons have energy levels that can allow energy transitions producing different bonds of light

2. Atomic Orbitals

Energy Level	Number of sublevels possible	Type of sublevel(s)	Total number of Electrons Possible	
N=1	1	5	2	
N=2	2	5 P	8	
N=3	3	< 0 0		
N=4	Ų	5,004	32	

3. Electron Configuration – Write the regular and short hand configuration for each element, underline and identify the number of valence electrons.

Calcium
$$15^{2}25^{2}2\rho^{6}35^{2}3\rho^{6}45^{2}$$
, [Ar] 45^{2} , $2e^{2}$
Phosphorous $15^{2}25^{2}2\rho^{6}35^{2}3\rho^{3}$, [Ne] $35^{2}3\rho^{3}$, $5e^{2}$
Zinc $15^{2}25^{2}2\rho^{6}35^{2}3\rho^{6}45^{2}3d^{6}$ [Ar] $45^{2}3d^{6}$, $2e^{2}3d^{6}$

4. What are the three rules for writing electron configuration?

-	1	Author	principal		,	ř.,
	2	Pauli 3	exclusion	prinipal	Look	up these
	(3)	14 cods	rule.			16 KW

5. Write the definition; give the Greek symbol and units for wavelength and frequency

Wavelength = 2 distance from crest to crest or trough to traight
Frequency > V, man number of cycles that over per second.

7. a. What is the wavelength of a gamma wave that has the frequency of 3.0×10^{29} Hz?

b. What is the energy of this wave?

N= C = 3.0×108 = 2.19×106 =						
b. What is the energy of this wave?						
E=hv= (6.616x103 VJ3) (2.41x103)						
E = 1.41 ×10-27 J						
9. Why are all noble gases inert (unreactive)?						
They have their outermost shell (Valence) Fell.						
10. What charge do all Alkaline Earth Metals form? Why does this happen? Is this a cation or anion? They lose de leaving an ownell + charge . Cation.						
11. Name the elements that have the following subshell as their last electron filled subshell.						
a. $4s^2$ Calcium b. $6p^3$ Bisnoth c. $4f^{13}$ Marbium						
12. How do you know if an element is a S, P, D or F block element?						
Based on the last subshell that is filled in the electron configuration.						
13. Rank the following elements 1-4 based on largest atomic radius.						
Arsenic Nitrogen Bismuth Fluorine						
14. Rank the following elements 1-4 based on having the <u>smallest of ionization energy.</u>						
Potassium Rubidium Cesium Lithium						
3 (2) (1) (4) 3 4 x longert						
15. Rank the following elements 1-4 based on the having the greatest ionization energy.						
Phosphorous Magnesium Argon Chlorine						
(3) (4) (1) (2)						
16. Rank the following elements 1-5 by the most electronegative atom. (1) largest (most) electronegative						
Aluminum Boron Fluorine Chlorine Thallium						
17. Explain the shielding effect.						
ENERET Level containing electrons the act as a shield blacking						
the nucleus from outside electrons (valence electrons).						

8. a. What is the frequency of a radio wave that has a wavelength of $1.04 \times 10^2 \text{m}$?