

特别说明

此资料来自豆丁网(http://www.docin.com/)

您现在所看到的文档是使用下载器所生成的文档

此文档的原件位于

http://www.docin.com/p-34522342.html

感谢您的支持

抱米花

http://blog.sina.com.cn/lotusbaob

结构特点

- 全集成罗盘模块
- 配有电子元件的双轴磁传感器
- 微型(6.5×6.5×1.4mm)24 针 LCC 封装
- 2.7 至 5.2 伏供电电压范围
- 精确的定向能力
- I2C 数字接口
- 用户可选择的从地址

关于产品的描述

霍尼韦尔 HMC6352 双轴数字集成罗盘的设计方案将双轴 MR 磁场传感器结构与所需的模拟和数字电路集成到一起,用于定向计算。

通过将传感器元件和所有处理电子元件集成到一个 6.5mm² 的 LCC 封装中,设计人员可得到低成本,大空间的电子罗盘,这样的罗盘可用于无绳电话,家用电子设备,车辆的定位,和天线的定位。

底视图

图表

引出线 顶视图

1 OHONEY WELL HMC 6352 XXXX

方框图

HM C6352 技术参数

特性	条件 ⁽¹⁾	最小值	标准值	最大值	单位
供电电压	与接地间的电压	2.7	3.0	5.2	V
供电电流	与接地间的电压				
	稳定状态(V 供电=3.0V)		1		mA
	稳定状态(V 供电=5.0V)		2		mA
	动态峰值			10	mA
磁场范围(2)	所有施加的磁场	0.10	8 2 3	0.75	高斯
定向的精度	HMC6352E		3		度
	HMC6352		9		(均方根值)
定向的分辨率			0.3		度
定向的可重复性			TBD		度
干扰场	灵敏度开始降低。	20			高斯
	启用置位/复位功能来恢复灵敏度。				
最大暴露磁场	无永久性破坏和置位/复位功能			10000	高斯
	恢复功能。				
工作温度	环境温度	-20		70	$^{\circ}$ C
贮存温度	环境温度	-40		125	$^{\circ}$
输出	数字-I2C接口				
尺寸规格	6.5×6.5×1.4				mm
重量			TBD		克

- (1). 除非另有规定, 否则在 25℃测定。
- (2). 可使用 CA1/CA2 和 CB1/CB2 之间的外部电阻扩大磁场上限。

引脚配置/插件尺寸

关于引脚的说明

引脚编号	名称	描述
1	OF-	非用户连接(偏置带, 负)
2	SR+	非用户连接(置位/复位带,正)
3	NC	非用户连接
4	NC	非用户连接
5	GND	系统接地
6	NC	非用户连接
7	SDI	I2C 数据输出(SPI 数据入口)
8	SDO	非用户连接(SPI 数据出口)
9	PGM	非用户连接(程序"使能")
10	SCL	I2C 时钟(SPI 时钟)
11	SS	非用户连接("从"选择)
12	NC	非用户连接
13	NC	非用户连接
14	VDD	供电电压, 正输入(+2.7VDC 到+5.0VDC)
15	NC	非用户连接
16	NC	非用户连接
17	NC	非用户连接
18	NC	非用户连接
19	CB2	放大器 B, 滤波电容连接
20	CB1	放大器 B, 滤波电容连接
21	NC	非用户连接
22	CA2	放大器 A, 滤波电容连接
23	CA1	放大器 A, 滤波电容连接
24	OF+	非用户连接(偏移置带,正)

应用说明

HMC6352 集成罗盘传感器电路包括两个相互垂直定位的磁阻(MR)传感器,用于传感地球磁场的水平分量(0 到 630 毫高斯),以及两个放大器、一个置位/复位驱动电路和一个微处理器(μP)。在洁净的磁场环境(自由空气)中,保持与重力方向成水平或垂直的方向,可获得最高的精度。在最坏情况下,与水平方向每偏斜 1°,罗盘的定向误差会增加两度。如果在靠近强磁场源,例如话筒或扬声器磁铁,试验设备中的变压器,和电视显示器/监视器中的 CRT 偏转线圈等地方工作,则可能产生磁场误差。通过执行校准程序通常可降低或完全消除这些磁场误差。

在将 HMC6352 放入密集的印刷电路板结构中时,应采取预防措施,防止这个磁场传感设备受到软铁效应的影响,软铁效应使地球的磁场方向发生弯曲,来自无磁滞的铁基材料,也可能来自诸如 SMT 元件触点上的镍层,和 RFI/EMI 屏蔽材料之类。由软铁效应引起 HMC6352 的偏移量是变化的,取决于材料数量、材料形状和距离。

可采用 HMC6352 中的用户校准模式来消除用户使用产品的所在地的硬铁效应。硬铁效应来自附近具有磁滞的铁材料,它们抵销或增加地球磁场强度,致使定向产生误差。这样的硬铁效应来自车辆底盘、扬声器磁铁和高电流导线,或电路。

I^2C 通信协议

HMC6352 通过作为"从"装置的一个二线 I²C 母线系统进行通信。HMC6352 采用分层协议,以及根据 I²C 母线技术要求定义的接口协议,和由霍尼韦尔定义的低指令协议。数据传输速度为标准模式 100kb,符合由 I²C 母线技术参数 2.1 中的规定。母线位格式为一个 8 位数据/地址发送和一个确认位。数据字节格式(有效负载)应是传输给"从"HMC6352 的敏感的 ASCII 字符或二进制数据,和

返回的二进制数据。负二进制数值就是补码形式。缺省的 HMC6352 "从"地址,用于命令时为 42(十六进制),用于响应数据字节时为 43(十六进制);它是一个 7 位地址,其 0 位(LSB, Least significant bit)为读/写选择。

HMC6352 串行时钟(SCL)和串行数据线不具备内部上拉电阻,因此在主设备和 HMC6352 间要求电阻上拉。额定电压为 3.0V 的电源推荐采用约 10kΩ的上拉电阻值。也可以采用 I²C 母线技术要求 2.1 中所定义的其它值。

命令协议

命令协议定义了主设备(主微处理器)和"从"设备(HMC6352)所发送的 I²C 协议数据(有效负载)字节的内容。

在主设备发送了7位"从"地址,1位读/写后,得到1位返回的"从"设备确认位;接下来发出的一个到三个数据字节被定义为输入命令和自变量字节。为了保存数据信号,所有响应数据(读)应该对上一个发送命令(写)的内容敏感。所有命令应具有清楚的LSB位的地址字节(缺省值为42(十六进制))。通常,这些命令的后面是ASCII命令字节和命令特有的二进制自变量字节:

(命令 ASCII 字节)(自变量二进制(高位)MS 字节)(自变量二进制 LS(低位)字节)

从设备(HMC6352)应根据 I²C 协议,在每个数据字节间提供确认位。通过发送 LSB 的地址字节(缺省值为 43(十六进制)),和随后读取一个或两个与上一个命令有关的响应字节。例如,一个"A"命令提示 HMC6352 进行传感器测量,并发送两字节的罗盘航向或磁力计数据等所有读数。随后,在发送了从地址字节后,所有连续成功的读数应记录两个响应字节。表 1 显示了 HMC8352 命令和响应数据流。

命令字节	自变量字节 1	自变量字节 2	响应字节 1	响应字节 2	
(ASCII)	(二进制)	(二进制)	(二进制)	(二进制)	说 明
W	地址	数据			写入 EEPROM
R	地址		数据		从 EEPROM 中读取
G	地址	数据	93		写到 RAM 寄存器中
g	地址		数据		从 RAM 寄存器中读取
S					进入睡眠模式(睡眠)
W					退出睡眠模式(醒来)
О					更新电桥偏置(置位/复位)
C					进入用户校准模式
E					退出用户校准模式
L					将操作模式保存到
					EEPROM
A			MSB 数据	LSB 数据	得到数据, 计算新的航向

表 1-接口命令/响应

操作模式

HMC6352 拥有 3 种操作模式,而且,通过命令进入/退出非操作(睡眠)模式的能力。睡眠模式可使内部微处理器的时钟断电,从而节省电能,通过"W"命令(醒来)可使其返回操作模式。"S"命令可使处理器返回到睡眠模式。3 个操作模式由内部 HMC6352 操作模式寄存器的两个位定义。如果主设备发送"L"命令,则 RAM 寄存器内的当前操作模式字节被加载到内部 EEPROM 寄存器内,并成为下一次通电启动时的缺省操作模式。操作模式选择字节 RAM 寄存器的地址是 74(十六进制)。

待机模式: (操作模式 0)。这是工厂设置的缺省模式。HMC6352等待主设备的命令或操作模式的改变。接到"A"命令(获取数据)使 HMC6352执行传感器(磁力计)测量,计算被补偿的磁力计和航向数据,并等待下一个读数或命令。在发送下一个"A"命令前,不进行新的测量。

询问模式: (操作模式 1)。在这个模式下,内部处理器等待"A"命令(获取数据),进行测量和计算,并等待下一个读取命令来输出数据。在每个读取命令后,HMC6352自动执行另一个获取数据程序,并更新数据寄存器。此模式被设计用于在无重复"A"命令的情况下根据需要获取数据,由主设备负责控制时间和整个数据。

连续模式: (操作模式 2)。HMC6352 以可选择的速度: 1Hz, 5 Hz, 10 Hz, 或 20 Hz, 执行连续的传感器测量和数据计算,并更新输出数据字节。除非需要与命令再次同步,否则不需要随后的"A"命令。数据读取自动获取最近的更新内容。

连续模式测量速度由操作模式选择字节中的两个位,以及模式选择和定期置位/复位位选定。在发生(磁场扰动)、操作温度漂移和磁场区域的正常热扰动情况下,定期的置位/复位功能会执行传感器磁场区域的重新调整。当 HMC6352 暴露到高于 20 高斯的磁场中(干扰场的阈值),可导致测量不精确或"卡住"传感器读数,直到执行置位/复位功能时为止。在置位了定期置位/复位位后,置位/复位功能每几分钟发生一次。

操作模式字节的语法

如上所述,HMC6352的操作模式、测量速度和定期置位/复位都是被选择,并保存在处理器 RAM 寄存器和 EEPROM 中。一旦上电,EEPROM 把保存的操作模式字节传送到寄存器地址 74(十六进制)。以下便是字节的形式:

位 7=0

位 6 和位 5(连续模式测量速度)

位 6	位 5	说 明
0	0	1Hz 测量速度
0	1	5Hz 测量速度
1	0	10Hz 测量速度
1	1	20Hz 测量速度

位 4(定期置位/复位), 0=关, 1=开

位 3=0

位 2=0

位 1 和位 0(操作模式值)

位 1	位 0	说 明
0	0	待机模式
0	1	询问模式
1	0	连续模式
1	1	不允许使用

操作模式字节的每个位的格式如下表所示。

位 7(MSB)	位 6	位 5	位 4	位 3	位 2	位 1	位 0(LSB)
0	测量速度 高位	测量速度 低位	Per.S/R 定期置位/复位	0	0	操作模式 高位	操作模式 低位

输出数据

"A"命令后的读取响应字节,将使HMC6352返回两个二进制格式的字节。依据输出数据选择字节的数值,可以得到航向或磁力计数据。有负符号的磁力计数据将以补码形式被返回。这个选择字节,位于RAM寄存器中的位置4E(十六进制),上电时的缺省值为0(定向)。

以下是字节格式:

位7到位3=0

位 0, 位 1, 位 2(输出模式值)

位 2	位 1	位 0	说 明
0	0	0	航向模式
0	0	1	原始的磁力计X模式
0	1	0	原始的磁力计Y模式
0	1	1	磁力计X模式
1	0	0	磁力计Y模式

输出模式字节的各个位格式如下表所示:

位 7(MSB)	位 6	位 5	位 4	位 3	位 2	位 1	位 0(LSB)
0	0	0	0	0	模式	模式	模式

航向模式: 航向输出数据将是几十度的数值, 范围从 0 到 3599, 并且为两个字节提供二进制格式。

原始磁力计模式:这些 X 和 Y 轴原始磁力计数据读数,是放大器 A 和 B 分别输出的传感数值,是引脚 CA1 和 CB1 处模拟电压的 10-位二进制的补码 ADC 读数。MSB 上的前 6-位为 0,或负值的补码。0 值大约是供电电压的一半。如果算出了测量平均值,则 MSB 可能包含总的读数值。

磁力计模式:这些 X 和 Y 磁力计数据读数是原始磁力计读数加上偏置量和所用的换算系数。数据格式与原始磁力计数据相同。这些作了补偿的数据值,是根据校准程序系数和由置位/复位程序得到的附加偏置系数得到的。

用户校准

HMC6352 提供了用户校准程序,在发出"C"命令的情况下允许进入校准模式,而发出"E"命令将退出校准模式。一旦进入校准模式,则要求用户至少转动罗盘一整圈,与此同时,HMC6352 以每秒几个读数的方式收集各个航向数值。为了收集到均匀分布的读数,一定要平稳地转动罗盘。最理想的做法是在20秒的时间内连续转动两圈罗盘,这样可得到精确的校准。根据最终用户的平台,我们建议校准时间窗口为6秒钟到3分钟。

校准程序收集的这些读数,用于校正由硬铁效应引起的地球磁场变形。这些硬铁效应是由靠近 HMC6352 的磁化材料引起的,它们的位置与最终用户平台相对固定。一个具体实例便是安装了罗盘的车辆内,被磁化的底盘或发动机组。一旦退出校准模式,磁力计偏置和换算系数将被更新。

不丢失的存储器

HMC6352 包含有 EEPROM 形式的不丢失的存储器,用于保存电子罗盘关键的操作参数和置位值。表 2 显示了存储器位置的地址和字节的说明。

表 2-EEPROM 的内容

地址(十六进制)	字节说明
00	I ² C 从属地址
01	磁力计 X 偏移 MSB
02	磁力计 X 偏移 LSB
03	磁力计 Y 偏移 MSB
04	磁力计 Y 偏移 LSB
05	延时(0 到 255 毫秒)
06	总共测量的次数(1到16)
07	软件的版本号

I^2C 从地址

 I^2C 从地址字节包含 7 个 MSB,LSB 填为 0。如前所述,缺省值为 42(十六进制),而合法的 I^2C 的限值在 I^2C 的限值在 I^2C 的 I^2C 的 I

磁力计偏置

磁力计偏置字节是在完成上一个工厂或用户校准程序后保存的数值。其它的数值变化也是可能的,但下一个校准程序完成时将被改写。请注意,为了将原始的磁力计数据转化为经过补偿的数据,应将这些偏置值,加上由置位/复位程序计算得到的传感器的偏置值。

延迟

EEPROM 延时字节,是从发出测量请求到进行实际测量这段时间几个毫秒数的二进制值。缺省值为 01(十六进制),表示无延迟。考虑到放大器自 HMC6352 快速启动后需稳定,或进行外部滤波电容的选择以限制放大器各级带宽和时间响应,可能需要多一些测量延时。

测量值求和

EEPROM 求和测量字节,允许设计者/用户对输出数据(航向,磁力计值)进行平均,或数据平滑处理,以减少数据显示中的跳动。缺省值是 04(十六进制),表示最后 5 个测量值的总和。00 值表示不进行求和。可以最多选择 16 组磁力计数据进行平均值求取。

软件版本

EEPROM 软件版本号字节是二进制值。01(十六进制)以及以上的数值被认为是生产软件。

参考设计

图 1 中的简图显示了配有最少外部元件的基本 HMC6352 应用电路。

根据图 1 可看出,主微处理器(μP)通过 I²C 串行数据接口线控制 HMC6352 的数据(SDA)和时钟 (SCL)。当接口线未占用时,连接到额定 3V 直流电源上的 2 个 10kΩ外部上拉电阻,通常会产生高逻辑状态。主设备通过创建 100kHz 时钟和数据线电压下降,来启动接口,指示启动状态。

只有在时钟低状态期间才允许数据线逻辑状态的转换,并要求数据线在高电平下,并处于稳定状态, 启动和停机情况除外。

如果在整个电路设计中已包括有供电滤波电容器,则在这参考设计电路中可以不采用 0.01μF 的供电解耦电容器。如果供电线路延伸到离 HMC6352 超过 2 英寸,则建议在 HMC6352 附近增加一台本地的供电解耦电容器,以保持电路具有最佳的稳定性。

在 HMC6352 无接口故障的情况下,可以将其它的主设备和从设备添加到 I²C 母线线路中。并不需要任何定期维护命令,甚至可以不破坏数据线或时钟线,完成 HMC6352 睡眠模式或停机。

放大器滤波器的连接

HMC6352 结构具有以下设施,通过 CA1, CA2, CB1 和 CB2 引脚触点可访问每级放大器反馈回路。 触点和 HMC6352 内部之间为放大器部分,以及用于置位电压增益的 1200kΩ反馈电阻。通过在 CA1 到 CA2(或 CB1 到 CB2)间放置小数值的陶瓷电容,设计者可以将经过放大的磁力计信号的带宽置位为-3dB,以降低假的磁场干扰。例如,放大器反馈回路内的一个 120 皮法的电容器(Cext)可将带宽限定为约 1kHz。应认识到,较大的电容值会降低放大器的响应速度,因此为了得到稳定的测量信号,可能需要增加测量延时时间 EEPROM 字节的数值。图 2 显示了放大器反馈回路的局部图。

也可以将一个可选的增益减少电阻(Rext)放置到放大器各级的反馈回路中。在利用内部 1200kΩ反馈电阻将放大器置位为最大±750 毫高斯的磁场强度后,如果需要,可采用第二个外部 1200kΩ电阻来平分增益,并具有±1.5 高斯的容量。需要将增益降低,用于最大量程为±6 高斯的唯一应用或定向,是在周围存在强大杂乱磁场的情况下。

订购信息

订购编号	产品
HMC6352I	数字式罗盘方案, I ² C
HMC6352E	数字式罗盘方案, I ² C, 增强型