

Submission 2

1 message

Google Forms <forms-receipts-noreply@google.com> To: deepanshu21249@iiitd.ac.in

Tue, Feb 1, 2022 at 6:30 PM

Google Forms

Thanks for filling out Submission 2

Here's what was received.

Edit response

Submission 2

Your email (deepanshu21249@iiitd.ac.in) was recorded when you submitted this form.

Question *

Let A be an $m \times n$ matrix (where $m, n \in \mathbb{N}$) and let A' be a matrix obtained by performing a row operation on A.

- If A has linearly independent rows then A' must have linearly independent rows.
- If A' has linearly independent rows then A must have linearly independent rows.
- A has linearly independent rows if and only if A' has linearly independent rows.
- None of the above.

Question *

Let v_1, v_2 and v_3 be three non-collinear vectors in \mathbb{R}^3 . Let

$$S = \{c_1v_1 + c_2v_2 + c_3v_3 \mid c_1, c_2, c_3 \in (0, 1), c_1 + c_2 + c_3 = 1\}$$

Choose any correct statement from the following:

 $S \subsetneq \mathsf{Span}\{v_1, v_2, v_3\}$ $S \not\subset \operatorname{Span}\{v_1, v_2, v_3\}$ $A \subseteq B$ means A is a proper subset of B) $(A \not\subset B \text{ means } A \text{ is not a subset of } B)$ 'Screenshot from 2022-01-31 19-11-'Screenshot from 2022-01-31 19-13-58.png' 32.png' S is the interior of a triangle which passes through the origin S is the interior of a triangle and whose vertices are v_1 , v_2 whose vertices are v_1 , v_2 and v_3 and v_3 'Screenshot from 2022-01-31 19-12-'Screenshot from 2022-01-31 19-14-01.png' 33.png' $S = \mathsf{Span}\{v_1, v_2, v_3\}$ $\mathsf{Span}\{v_1,v_2,v_3\}\subset S$ 'Screenshot from 2022-01-31 19-11-'Screenshot from 2022-01-31 19-11-11.png' 21.png' S is a plane in \mathbb{R}^3 which passes through the origin 'Screenshot from 2022-01-31 19-18-32.png'

Question *

Let A be an $m \times n$ matrix (where $m, n \in \mathbb{N}$). Identify the correct contrapositive and converse of the following statement:

If $A\mathbf{x} = 0$, for every $\mathbf{x} \in \mathbb{R}^n$, then A = 0.

Contrapositive: If $A \neq 0$ then there exists a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} \neq 0$. Converse: If there exists a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} \neq 0$, then $A \neq 0$.	Converse: If $A \neq 0$ then there exists a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} \neq 0$. Contrapositive: If $A = 0$ then $A\mathbf{x} = 0$ for every $\mathbf{x} \in \mathbb{R}^n$.
'Screenshot from 2022-01-31 19-14-32.png'	'Screenshot from 2022-01-31 19-12- 08.png'
Contrapositive: If $A \neq 0$ then $A\mathbf{x} \neq 0$ for every $\mathbf{x} \in \mathbb{R}^n$. Converse: If there exists a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} \neq 0$, then $A \neq 0$.	Converse: If $A \neq 0$ then $A\mathbf{x} \neq 0$ for every $\mathbf{x} \in \mathbb{R}^n$. Contrapositive: If there exists a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} \neq 0$, then $A \neq 0$.
'Screenshot from 2022-01-31 19-13-53.png'	'Screenshot from 2022-01-31 19-18- 09.png'
Question * Let A be an $m \times n$ matrix (where $m, n \in \mathbb{N}$). Let A' be the RREF of A . Decide whether the following statement is true or false:	
If one of the entries of A' is a number which is other than 0 or 1 then the columns of A must be linearly dependent.	
True	
False	

Create your own Google Form Report Abuse