A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 7EG

Bookmark

Show all steps: (

ON

Problem

In the next three parts, let ω be a primitive pth root of unity, where p is a prime.

Use part 5 to prove that $Gal(\mathbb{Q}(\omega) : \mathbb{Q})$ is a cyclic group.

Step-by-step solution

Step 1 of 2

Consider a primitive pth root of unity ω , where p is a prime. The objective is to prove that $G = Gal(\mathbb{Q}(\omega); \mathbb{Q})$ is a cyclic group.

Comment

Step 2 of 2

Show that $G = \mathbb{Z}_p^{\times}$ the multiplicative group of units of a finite field.

 ω is algebraic over \mathbb{Q} with minimal polynomial $f(x) = 1 + x + ... + x^{p-1}$ and that

 $S = \{\omega, \omega^2, ..., \omega^{p-1}\}$ is the set of conjugates of ω in \mathbb{Q} .

If $\tau \in G$, then τ is determined by its action on ω and must take ω to an element of S.

Define $\Theta: G \to \mathbb{Z}_p^{\times}$ as follows:

$$\Theta(\tau) = [k]$$
 provided $\tau(\omega) = \omega^k$.

If $\tau, \alpha \in G$ with $\tau(\omega) = w^k$ and $\alpha(\omega) = \omega^m$, where $1 \le k, m \le p-1$, then

$$\tau \alpha (\omega) = \tau (\omega^m)$$

$$=(\tau(\omega))^m$$

$$= w^{mk}$$

and hence

$$\Theta(\tau\alpha) = [km]$$

$$= [k][m]$$

$$= \Theta(\tau)\Theta(\alpha),$$

and it follows that Θ is a group homomorphism.

Clearly → (a) is onto.

Let
$$\tau(\omega) = \alpha(\omega)$$
.

Then $\omega^k = \omega^m$.

$$\Rightarrow k=m \quad , \quad 1 \leq k, m \leq p-1$$

$$\Rightarrow [k] = [m]$$

$$\Rightarrow \Theta(\tau) = \Theta(\alpha)$$

Thus $, \Theta$ is one-one.

Hence \bullet \bullet is an isomorphism.

Since G is isomorphic to the multiplicative group of units of a finite field $\cdot G$ is a cyclic group as the multiplicative group of units of a finite field is cyclic.

Comment