Mathematics-III Unit Wise Important Questions

S. No	Question	Blooms Taxonomy Level	Course Outcome
	UNIT-I Linear ODE with variable coefficients and series solution (second ord	er only)	
1	Solve in series the equation $\frac{d^2y}{dx^2} - y = 0$ about x=0.	Evaluate	С
2	Solve in series the equation $y'' + y = 0$ about x=0.	Evaluate	С
3	Solve in series the equation $\frac{d^2y}{dx^2} + xy = 0$.	Evaluate	с
4	Solve in series the equation $y'' + x^2y = 0$ about x=0.	Evaluate	С
5	Solve in series the equation $2x^2y'' + (x^2 - x)y' + y = 0$.	Evaluate	С
6	Solve in series the equation $x(1-x)y'' - (1+3x)y' - y = 0$.	Evaluate	С
7	Solve in series the equation $(x - x^2)y'' + (1 - 5x)y' - 4y = 0$.	Evaluate	С

S. No	Question	Blooms Taxonomy Level	Course Outcome
8	Solve $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{12\log x}{x^2}$.	Evaluate	c
9	Solve $\left(x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4\right) y = x^4.$	Evaluate	С
10	Find the power series solution of the equation $y'' + (x - 3)y' + y = 0 \text{ in powers of (x-2) (i.e,about x=2)}.$	Analyse	c
	UNIT-II		
	Special functions		
1	Show that $\int_0^x x^n J_{n-1}(x) dx = x^n J_n(x).$	Analyse	d
2	Show that $\int_0^x x^{n+1} J_n(x) dx = x^{n+1} J_{n+1}(x)$.	Analyse	d
3	Prove that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.	Analyse	d
4	Show that $J_0(x) = \frac{1}{\pi} \int_0^{\pi} cos(xsin\theta) d\theta$ satisfies Bessel's equation of order zero.	Analyse	d
5	Express $J_2(x)$ in terms of $J_0(x)$ and $J_1(x)$.	Apply	d
6	Show that $J_3(x) + 3J_0'(x) + 4J_0'''(x) = 0$.	Analyse	d
7	Prove that $\frac{d}{dx} x^n J_n(x) = x^n J_{n-1}(x)$.	Analyse	d
8	Prove that $\int_0^r x J_0(ax) = \frac{r}{a} J_1(ar)$.	Analyse	d
9	Show that $J_n(x)$ is an even function if 'n' is even and odd function when 'n' is odd.	Remember	d
10	Prove that $\left[J_{\frac{1}{2}}\right]^2 + \left[J_{\frac{1}{2}}\right]^2 = \frac{2}{\pi x}$.	Analyse	d
	UNIT-III Complex functions-differentiation and integration		
	Let $w = f(z) = z^2$ find the values of w which correspond to		
1	(i) $z = 2+i$ (ii) $z = 1+3i$	Analyse	e
2	Show that $f(z) = z ^2$ is a function which is continuous at all z but not differentiable at any $z \neq 0$.	Understand	e
3	Find all values of k such that $f(x) = e^x(cosky + isinky)$ is analytic.	Understand	e
4	Show that $u = e^{-x}(xsiny - ycosy)$ is harmonic.	Understand	e
5	Verify that $u = x^2 - y^2 - y$ is harmonic in the whole complex plane and find a	Understand	e

S. No	Question	Blooms Taxonomy Level	Course Outcome
	conjugate harmonic function v of u .		<u>.</u>
6	Find k such that $f(x,y) = x^3 + 3kxy^2$ may be harmonic and find its conjugate.	Analyse	f
7	Find the most general analytic function whose real part is $u = x^2 - y^2 - x.$	Analyse	Ą
	Find an analytic function whose imaginary part is		
8	$v = e^x(xsiny + ycosy).$	Understand	f
9	If f(z) is an analytic function of z and if $u - v = \frac{cosx + sinx - e^{-y}}{2cosx - e^y - e^{-y}}$, find f(z) subject to the condition $f(\frac{\pi}{2}) = 0$.	Analyse	f
10	If f(z) is an analytic function of z and if $u + v = \frac{\sin 2x}{2\cos h 2y - \cos 2x}$ find f(z) in terms of z.	Remember	f
	UNIT-IV Power series expansions of complex functions and contour integra	tion	
1	Find the poles and residues of $\frac{1}{z^2-1}$.	Analyse	gg
2	Find zeros and poles of $\left(\frac{z+1}{z^2+1}\right)^2$.	Analyse	g
3	Find the poles of the function $f(z) = \frac{1}{(z+1)(z+3)}$ and residues at these poles.	Analyse	ρΩ
4	Find the residue of the function $f(z) = \frac{z^3}{(z^2 - 1)} at \ z = \infty$.	Evaluate	g)
6	Find the residue of $\frac{z^2}{(z-a)(z-b)(z-c)}$ at $z=\infty$.	Evaluate	g

S. No	Question		Blooms Taxonomy Level	Course Outcome
7	Determine the poles and the residue of the function $f(z) = \frac{ze^z}{(z+2)^4}$	$\frac{1}{(z-1)}$.	Remember	g
8	Find the region in the w-plane in which the rectangle bounded by the lin $= 0$ x=2 and y=1 is mapped under the transformation w = z+(2+3i).	es x=0,y	Analyse	gg
9	Obtain the Taylor series expansion of $f(z) = \frac{1}{z}$ about the point		Analyse	k
	z = 1.			
	Obtain the Taylor series expansion of $f(z) = e^z$ about the point			
10	z = 1.		Evaluate	k
	UNIT-V Conformal mapping			
1	Determine the bilinear transformation whose fixed points are 1,-1.	Rem	ember	i
2	Determine the bilinear transformation whose fixed points are i,-i.	An	alyse	i
3	Find the fixed points of the transformation $w = \frac{2i - 6z}{iz - 3}.$	Rem	ember	i
4	Evaluate $\int_{c} \frac{2z-1}{z(2z+1)(z+2)} dz$ where c is the circle $ z = 1$.	Eva	ıluate	i
5	Evaluate $\int_{c} \frac{12z - 7}{(2z + 3)(z - 1)^2} dz$ where c is the circle $x^2 + y^2 = 4$.	Unde	erstand	m
6	Evaluate $\int_{c} \frac{e^{z}}{(z-3)z} dz$ where c is the circle $ z = 2$ using Residue	Unde	erstand	m
	theorem.			
7	Evaluate $\int_{c} \frac{3z-4}{(z-1)z} dz$ where c is the circle $ z =2$ using Residue theorem.	Unde	erstand	m

S. No	Question		Blooms Taxonomy Level	Course Outcome
8	Show that $\int_{0}^{2\pi} \frac{d\theta}{4\cos^2\theta + \sin^2\theta} = \pi.$	Unde	erstand	m
9	Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + 1)(x^2 + 4)}$.	Unde	erstand	m
10	Evaluate $\int_{0}^{\infty} \frac{x \sin mx}{(x^4 + 16)} dx$.	Unde	erstand	m

1. Group - B (Long Answer Questions)

		Blooms Taxonomy	Course
S. No	Question	Level	Outcome
	UNIT-I	Level	Outcome
	Linear ODE with variable coefficients and series solution (se	cond order only)	
1		cond order omy)	
1	Solve $(x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y) = (1+x)^2$.	Evaluate	a
2	Solve $\left(x^3 \frac{d^3 y}{dx^3} + 3x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + 8\right) y = 65 \cos(\log x)$.	Understand	a
3	Solve $(x + 1)^2 \frac{d^2y}{dx^2} + (x + 1) \frac{dy}{dx} = (2x+1)(2x+4).$	Evaluate	a
4	Solve $(x+1)^2 \frac{d^2y}{dx^2} + (x+1)\frac{dy}{dx} + y = sin2(log(1+x)).$	Evaluate	a
5	Find the power series solution of the equation $y'' + (x - 3)y' + y = 0 \text{ in powers of (x-2) (i.e,about x=2)}.$	Evaluate	с
6	Solve in series the equation $2x(1-x)\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + 3y = 0$.	Analyse	c
7	Solve in series the equation $(x - x^2)y'' + (1 - x)y' - y = 0$.	Understand	С
8	Solve in series the equation $x(1-x)y'' - (1+3x)y' - y = 0$.	Evaluate	С
9	Solve $(x^2D^2 - 4xD + 6)y = (log x)^2$.	Analyse	b

S. No	Question	Blooms Taxonomy Level	Course Outcome
10	Solve $(x + a)^2 \frac{d^2 y}{dx^2} - 4(x + a) \frac{dy}{dx} + 6y = x$.	Evaluate	b
	UNIT-II Special functions		
1	State and prove Rodrigue's formula.	Evaluate	d
2	Show that $x^4 = \frac{8}{35}P_4(x) + \frac{4}{7}P_2(x) + \frac{1}{5}P_0(x)$.	Understand	d
3	Express $P(x) = x^4 + 2x^3 + 2x^2 - x - 3$ in terms of Legendre Polynomials.	Evaluate	d
4	Using Rodrigue's formula prove that $\int_{-1}^{1} x^m p_n(x) dx = 0$ if m <n.< td=""><td>Evaluate</td><td>d</td></n.<>	Evaluate	d
5	State and prove orthogonality of Legendre polynomials.	Analyse	d
6	If $f(x) = 0$ if $-1 < x < 0$ =1 if $0 < x < 1$ then show that $f(x) = \frac{1}{2}P_0(x) + \frac{3}{4}P_1(x) - \frac{7}{16}P_3(x) + \cdots$	Evaluate	d
7	Show that $P_n(x)$ is the coefficient of t^n in the expansion of $(1 - 2xt + t^2)^{\frac{-1}{2}}.$	Remember	d
8	Prove $(2n+1) xP_n(x) = (n+1)P_{n+1}(x) + nP_{n-1}(x)$.	Understand	d
9	Prove that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = \begin{cases} 0, & \text{if } \alpha \neq \beta \\ \frac{1}{2} [J_{n+1}(\alpha)]^{2} & \text{if } \alpha = \beta \end{cases}.$	Evaluate	d
10	Show that a) $J_n(x) = \frac{1}{\pi} \int_0^{\pi} cos(n\theta - xsin\theta)d\theta$. b) $J_0(x) = \frac{1}{\pi} \int_0^{\pi} cos(xsin\theta)d\theta = \frac{1}{\pi} \int_0^{\pi} cos(xcos\theta)d\theta$.	Remember	d
	UNIT-III Complex functions-differentiation and integrat	ion	l
1	Prove that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ $Realf(z) ^2 = 2 f'(z) ^2$ where $w = f(z)$ is analytic.	Apply	e
2	Prove that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \log f'(z) $ where w = f(z) is analytic.	Apply	e
3	If f(z) is a regular function of z prove that	Apply	e

S. No	Question	Blooms Taxonomy Level	Course Outcome
	$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} f(z) ^2 = f'(z) ^2.$	20,02	
4	Show that the function defined by $f(z) = \begin{cases} \frac{xy^2 (x+iy)}{x^2+y^4}, z \neq 0 \\ 0, z = 0 \end{cases}$ is not analytic although Cauchy Riemann equations are satisfied at the origin.	Apply	e
5	Show that $u = x^3 - 3xy^2$ is harmonic and find its harmonic conjugate and the corresponding analytic function $f(z)$ in terms of z.	Analyse	f
6	Evaluate $\int_{0}^{1+i} (x - y + ix^{2}) dz$		
	(i) along the straight from $z=0$ to $z=1+i$. (ii) along the real axis from $z=0$ to $z=1$ and then along a line parallel to real axis from $z=1$ to $z=1+i$ along the imaginary axis from $z=0$ to $z=1$ and then along a line parallel to real axis $z=i$ to $z=1+i$.	Apply	e
7	Verify Cauchy's theorem for the integral of z ³ taken over the boundary of the rectangle with vertices -1 ,1,1+i ,-1+i.	Apply	e
8	Evaluate $\int_{c} \frac{e^{2z}}{(z-1)(z-2)} dz$ where c is the circle $ z =3$.	Apply	e
9	Evaluate $\int_{c} \frac{z^{3}e^{-z}}{(z-1)^{3}} dz$ where c is $ z-1 = \frac{1}{2}$ using Cauchy's integral formula.	evaluate	e
	UNIT-IV Power series expansions of complex functions and contou	ır integration	
1	Expand $f(z) = \frac{z-1}{z+1}$ in Taylor's series about the point (i) $z = 0$ (ii) $z = 1$.	Apply	k
2	Expand $f(z) = \frac{z-1}{z^2}$ in Taylor's series in powers of z -1 and determine the region of convergence.	Evaluate	k
3	Obtain Laurent's series expansion of $f(z) = \frac{z^2 - 4}{z^2 + 5z + 4}$ valid in $1 < z < 2$.	Analyse	k
4	Expand $f(z) = \frac{e^{2z}}{(z-1)^3}$ about $z = 1$ as Laurent's series and also find	Evaluate	k

S. No	Question	Blooms Taxonomy Level	Course Outcome
	the region of convergence.	Devel	outcome
5	Expand $f(z) = \frac{7z-2}{z(z+1)(z-2)}$ about z=-1 in the region $1 < z+1 < 3$ as Laurent's series.	Evaluate	k
6	Determine the poles and the residue of the function $f(z) = \frac{ze^z}{(z+2)^4(z-1)}.$	Evaluate	h
7	Evaluate $\oint_c \frac{4-3z}{(z-2)(z-1)z}$ dz where c is the circle $ z = 1.5$ using residue theorem.	Apply	e
8	Show that $\int_{0}^{2\pi} \frac{1 + 4\cos\theta}{17 + 8\cos\theta} d\theta = 0.$	Apply	i
9	Evaluate $\int_{0}^{\infty} \frac{dx}{x^6 + 1}$.	Apply	i
10	Show that $\int_{0}^{2\pi} \frac{d\theta}{4\cos^{2}\theta + \sin^{2}\theta} = \pi.$	Analyse	i
	UNIT-V Conformal mapping		
1	Find the Bi-linear transformation which carries the points from $(0,1,\infty)to(-5,-1,3)$.	Evaluate	m
2	Find the image of the triangle with vertices $1,1+I,1-i$ in the z-plane under the transformation $w=3z+4-2i$.	Evaluate	m
3	Find the Bi-linear transformation which carries the points from (-i,0,i) to (-1,i,1).	Remember	m
4	Sketch the transformation $w = e^z$.	Understand	m
5	Sketch the transformation $w = \log z$.	Understand	m
6	Find the Bi-linear transformation which carries the points from $(1,i,-1)to(0,1,\infty)$	Apply	m
7	Show that transformation $w = z^2$ maps the circle $ z - 1 = 1$ into the cardioid $r = 2(1+\cos\theta)$ where $w = re^{i\theta}$ in the w-plane.	Evaluate	m

S. No	Question	Blooms Taxonomy Level	Course Outcome
8	Determine the bilinear transformation that maps the points (1-2i,2+i,2+3i) into the points (2+i,1+3i,4).	Apply	m
9	Under the transformation $w = \frac{z - i}{1 - iz}$, find the image of the circle (i) $w = 1$ ii) $z =1$ in the w-plane.	Apply	m
10	Find the image of the region in the z-plane between the lines $y = 0$ and $y = \frac{\pi}{2}$ under the transformation $w = e^z$.	Evaluate	m

3. Group - III (Analytical Questions)

C M-	Overettiens	Blooms Taxonomy	Program
S. No	Questions	Level	Outcome
	UNIT-I		
	Linear ODE with variable coefficients and series solution (se	cond order only)	
	Find the singular points and classify them (regular or irregular)		
1	$x^2 y'' + ax y' + by = 0$.	Analyse	b
	Find the singular points and classify them (regular or irregular)		
2	$x^2 y'' + x y' + (x^2 - n^2)y = 0.$	Evaluate	b
3	Find the singular points and classify them (regular or irregular) (1 –	Understand	b
3	$x^{2})y'' - 2xy' + n(n+1)y = 0.$	Understand	U
4	Define Ordinary and Regular singular point.	Analyse	b
5	Explain Frobenius method about regular singular points.	Evaluate	b
6	Explain the method of solving Legendre's differential equation.	Analyse	a
7	Explain the method of solving Cauchy's differential equation.	Analyse	a
8	Find the singular points and classify them (regular or irregular) $x^2 y'' - 5y' + 3x^2y = 0$.	Evaluate	b
	Find the singular points and classify them (regular or irregular) $x^2 y'' + (x + x^2)y' - y = 0$.	Analyse	b
10	Find the singular points and classify them (regular or irregular) $x^3(x - 2)y'' + x^3y' + 6y = 0$.	Understand	b
	UNIT-II		
	Special functions	1	
1	Find the value of $J_{\frac{1}{2}}(x)$.	Evaluate	d
2	Find the generating function for $J_n(x)$.	Apply	
3	Write the integral form of Bessel's function.	Analyse	d
4	Find the value of $J_{\frac{5}{2}}(x)$.	Analyse	d

S. No	Questions	Blooms Taxonomy Level	Program Outcome		
5	Express $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$.	Evaluate	d		
6	Prove that $2J_0''(x) = J_2(x) - J_0(x)$.	Remember	d		
7	Show that $x^3 = \frac{2}{5}P_3(x) + \frac{3}{5}P_1(x)$.	Analyse	d		
8	Show that $J_0(x) = \frac{1}{\pi} \int_0^{\pi} cos(xsin\theta) d\theta$ satisfies Bessel's equation of order zero.	Analyse	d		
9	Prove that $J_n(-x) = (-1)^n J_n(x)$ where n is a positive or negative integer.	Evaluate	d		
10	Find the value of $\int_{-1}^{1} P_3(x) P_4(x) dx$.	Analyse	d		
	UNIT-III Complex functions-differentiation and integration	on			
1	Show that $f(z) = z^3$ is analytic for all z.	Understand	e		
2	Find whether $f(z) = sinxsiny - icosxcosy$ is analytic or not.	Understand	e		
3	Show that both the real and imaginary parts of an analytic function are harmonic.	Analyse	e		
4	Show that the function $u = 2\log(x^2 + y^2)$ is harmonic and find its harmonic conjugate.	Analyse	e		
5	Find an analytic function whose real part is $u = e^{x}[(x^{2} - y^{2})cosy - 2xysiny)].$	Analyse	e		
6	Find an analytic function whose real part is $u = \frac{\sin 2x}{\cos h2y - \cos 2x}$.	Evaluate	e		
7	If $f(z)$ is an analytic function of z and if $u - v = \frac{cosx + sinx - e^{-y}}{2cosx - e^y - e^{-y}}$ find $f(z)$ subject to the condition $f(\frac{\pi}{2}) = 0$.	Analyse	e		
8	Find whether $f(z) = sinxsiny - icosxcosy$ is analytic or not.	Evaluate	e		
9	Show that $f(z) = x + iy$ is everywhere continous but is not analytic.	Understand	f		
10	Show that $u = e^{-x}(x\sin y - y\cos y)$ is harmonic.	Analyse	f		
	UNIT-IV Power series expansions of complex functions and contour integration				
1	Find $\oint_c \frac{1}{(z^2+4)^2} dz$ where c is the circle $ z-i =2$.	Analyse	i		

S. No	Questions	Blooms Taxonomy Level	Program Outcome		
2	Find the poles and residues at each pole of $f(z) = \frac{z \sin z}{(z - \pi)^3}$.	Remember	i		
3	Find $\oint_c \frac{1}{(z^2+1)(z^2-4)}$ dz where c is the circle $ z = 1.5$	Understand	i		
4	Find $\int_{0}^{\infty} \frac{dx}{x^6 + 1}$.	Understand	i		
5	Find poles and residues of each pole of tanhz.	Understand	h		
6	Write the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$.	Analyse	h		
7	Find $\int_{c} \frac{2z-1}{z(2z+1)(z+2)} dz$ where c is the circle $ z = 1$.	Understand	i		
8	Find the Laurent expansion of $f(z) = \frac{1}{z^2 - 4z + 3}$ for $1 < z < 3$ (ii) $ z < 1$ (iii) $ z > 3$.	Analyse	k		
9	Expand $f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$ in the region where (i) $ z < 1$ (ii) $1 < z < 4$.	Analyse	k		
10	Find $\int_{0}^{\infty} \frac{\sin mx}{x} dx$.	Evaluate	i		
UNIT-V Conformal mapping					
1	Show that the function $w = \frac{1}{z}$ transforms the straight line x=c in the z-plane into a circle in the w-plane.	Analyse	m		
2	Find the fixed points of the transformation $w = \frac{2i-6z}{iz-3}.$	Analyse	m		
3	Find the invariant points of the tranformation $w = \frac{z-1}{z+1}$.	Understand	m		

S. No	Questions	Blooms Taxonomy Level	Program Outcome
4	Find the critical points of $w = \frac{6z - 9}{z}$.	Understand	m
5	Show that the transformation $w = \frac{2z+3}{z-4}$ changes the circle $x^2 + y^2 - 4x = 0$ into the straight line 4u+3=0.	Analyse	m
6	Find the image of the triangle with vertices at i,1+i,1-i in the z-plane under the transformation $w = 3z+4-2i$.	Understand	m
7	Find the image of the domain in the z-plane to the left of the line x=-3 under the transformation $w = z^2$.	Understand	m
8	Show that the function $w = \frac{4}{z}$ transforms the straight line $x = c$ in the z-plane into a circle in the w- plane.	Understand	m
9	Define Translation ,Rotation and magnification of the transform.	Evaluate	m
10	Define and sketch Joukowski's transformation.	Apply	m

