整理番号 K00020141 発送番号 056779

発送日 平成18年 2月14日

拒絶理由通知書

特許出願の番号

特願2000-379779

起案日

平成 18年 2月 9日 福村 拓

特許庁審査官

3308 2G00

特許出願人代理人

作田 康夫 様 第29条第2項、第36条

適用条文

<<<く 最後 >>>>

この出願は、次の理由によって拒絶をすべきものである。これについて意見があれば、この通知書の発送の日から60日以内に意見書を提出して下さい。

理由

理由1. この出願は、特許請求の範囲の記載が下記の点で、特許法第36条第6項第2号に規定する要件を満たしていない。

55

(1) 請求項1及び請求項8には、光源の輝度の関係について「前記周期に従って前記第1の電流値の電流及び前記第2の電流値の電流で前記光源を点灯させた場合の前記光源の輝度の積分値は(輝度の積分値A)、同一期間において、定格電流で前記光源の輝度の積分値(輝度の積分値B)より高い」と記載されている。ここで輝度の積分値A、Bは、第1の電流値及の電流値及び定格電流の大きさの関係によって決定されるものであると認められるが、それらの電流値について定義されていないことから、いかにして輝度の積分値Aを輝度の積分値Bより高くするのか、その具体化手段が明確に把握されない。

理由2. この出願の下記の請求項に係る発明は、その出願前日本国内又は外国において頒布された下記の刊行物に記載された発明又は電気通信回線を通じて公衆に利用可能となった発明に基いて、その出願前にその発明の属する技術の分野における通常の知識を有する者が容易に発明をすることができたものであるから、特許法第29条第2項の規定により特許を受けることができない。

記 (引用文献等については引用文献等一覧参照)

- ・請求項 1.8
- ・引用文献等 1-3.7
- ・備考

理由1で述べたとおり、請求項1、8に記載された輝度の積分値A, Bの関係を特定する具体的な手段が明確でないが、液晶表示装置の技術分野において、パックライトの輝度をどの程度とするかは、当該液晶表示装置の用途や使用環境等に応じて当業者が適宜設計する事項であるから、引用文献1ー3に記載された発明においてインパルス駆動する際に、パルス電源54の電流を所望の値となるように設定することは、当業者が適宜に行い得ることである。なお、バックライトの駆動電流として当該バックライトの定格電流以上の電流を供給する構成も本願出願時において公知のものであり(引用文献7)、引用文献1ー3に記載された発明において、バックライトの発光時に定格以上の電流とすることにも特段の困難は認められない。

- •請求項 2-7, 9-14, 16, 17
- ・引用文献等 1-7
- ・備考

引用文献4に記載された、液晶表示装置において動画の視認性を向上させるた

めに、1フレーム期間にパックライトのオン状態とオフ状態を切り替える構成(図7(f)及びその説明を参照。)、引用文献5に記載された、動き検出につい てブロック単位で局所的な検出を行う構成(段落【0074】参照。)、及び、 引用文献6に記載された、複数のパックライトを有する液晶表示装置において、 バックライトそれぞれについていわゆる黒挿入駆動して動画質を向上させる構成 (図1, 2及びその説明を参照。)を引用文献1に記載された発明に適用することは、当業者が容易になし得ることである。

- ・請求項 15
- ・引用文献等 1-7
- ・備考

引用文献4の図6参照。

- 51 用 文 献 等 1. 特開2000-221469号公報 2. 特開平9-2445455
- 2. 特開平9-244548号公報 /
- 3. 特開平6-160811号公報 4. 特開2000-19487号公報
- 5. 特開平11-231832号公報
- 8. 特開平11-202285号公報
- 7. 特開昭63-318524号公報

最後の拒絶理由通知とする理由

1. 最初の拒絶理由通知に対する応答時の補正によって通知することが必要にな った拒絶の理由のみを通知する拒絶理由通知である。

この拒絶理由通知の内容に関するお問い合わせ、または面接のご希望がござい ましたら下記までご連絡下さい。 特許審査第一部 ナノ物理 福村 持 TEL. 03 (3581) 1101 拓 内線 3225 FAX. 03 (3592) 8858

JP63318524 A SYSTEM FOR LIGHTING LIQUID CRYSTAL DISPLAY PART USHIO INC

Abstract:

PURPOSE: To observe clear images even if a miniaturized liquid crystal color TV using a fluorescent lamp for a back light is used under low temperature environment by regulating a lighting mode. CONSTITUTION: The fluorescent lamp 4 is lighted up at a high frequency in a prescribed lighting mode to illuminate a liquid crystal display part 5 from its rear face. A power supply circuit 1 for the fluorescent lamp 4 is a power variable type capable of changing the quantity of power supply to two steps or more and has a high frequency power supply part 2 and a power switching circuit part 3. Namely, power W2larger than the rated input power W1of the display part 5 at the tie of normal use is supplied to the lap 4 only for a short time (t) prior to the supply of the rated input power W1. Even if the environmental temperature is low, sufficient ultraviolet rays are radiated by the preceding large power and the fluorescent brightness of the lamp 4 can be improved. Consequently, the screen of the miniaturized liquid crystal color TV can be brightly and clearly observed even in an outdoor environment less than a freezing point.

COPYRIGHT: (C)1988, JPO&Japio

Inventor(s):

KAZUNAGA KENJI YOKOGAWA YOSHIHISA HIRAMOTO TATSUMI

Application No. 62154397 JP62154397 JP, Filed 19870623, A1 Published 19881227

⑲ 日本 国特許庁(JP)

① 特許出願公開

³ 公開特許公報(A)

昭63-318524

@Int.Cl.4

識別記号

庁内整理番号 7510~2日

❷公開 昭和63年(1988)12月27日

G 02 F 1/13 G 09 G 3/18

3 1 1

7510-2H 8621-5C

審査請求 未請求 発明の数 1 (全5頁)

❷発明の名称

⑫発

液晶表示部の照明方式

❷特 類 昭62→154397

❷出 顧 昭62(1987)6月23日

⑦発 明 者 数 ②発 明 者 横

眀

選 二 佳 久

躬

兵庫県姫路市別所町佐土1194番地 ウシオ電機株式会社内 兵庫県姫路市別所町佐土1194番地 ウシオ電機株式会社内 東京都千代田区大手町2丁目6番1号 朝日東海ビル1988

ウシオ電機株式会社内

砂出 願 人 ウシオ電機株式会社 砂代 理 人 弁理士 田原 寅之助

Ш

東京都千代田区大手町2丁目6番1号 朝日東海ビル19階

明 朝 书

1. 発明の名称

被品姿示部の思明方式

2. 特許請求の短週

徴品表示部を基面から風引するよう配配された 質光灯と、この蛍光灯の電源回路とを含み。

該電源回路は、供光灯に対して電力供給飛を2 放以上に変化できるよう構成され、

被品表示部の通常使用時の定格入力致力に先行して、確定格入力能力よりも大きな能力(電力磁を変勢させるときはその平均額)を知時間だけ使光灯に供給することが可能である特徴を有する液品表示部の個別方式。

3. 発明の詳細な説明

「歴象上の利川分野)

本発明は、後述カラーテレビ用のバックライト として強光灯を採用した場合の被品表示部の照明 方式に関するものである。

(健来技術とその問題点)

被品カラーテレビは、今日現在では、大面積の 被品及示部の製作が困難なために、小型のボケットテレビや誘帯用学レビが先に実用化されるに至っている。これらの小型被品カラーテレビは、当 然のことながら室内のみならず展外でも使用される。ところで、屋外の気温は地域や希瞼によって 大きく異なるが、気温が若しく低い粉合は、分別 灯をバッグライトとして使用すると強々の不都合 が生じる。

例えば、現在の小型被為カラーチレビの適面の 大きさは、3~5インチ程度が主流であるが、2 インチ以下の小さなものも実別化されている。 従って、かかる小型統品カラーテレビのバッグラウト トに使用される低光灯は、寸波が小さく、かつ桁 野電力も小さいことが必要であるが、同時に、明 るさが十分であり、使用券命も100日時間以上 あることが要求される。このような要請を深足す るめ光灯の溢計例の一つを示すと、次の通りである。

(1) ガラスパルブの内袋

2.6 ...

特開昭 63-318524(2)

(2) 危後心疑難

20 ...

- (3) 避常使旧時の定格入力能力 0.3 W
- (4) 電流値

4 . A

かかる理計例の蛍光灯において、定格入力電力が 0.3 W であっても、高周波点灯すると、電斑魚 皮が十分に高いときは、蛍光灯の脚度は5000 nt以上にすることができるので、小型粧品カラ ーテレビのバックライトに要求される明るさを論 足する。また、この路時彼点灯は、電観を小淵戦 量化できる利点がある。そして、危機の構造を、 電子放射性物質 (以下、エミッターと云う。) を 租持した金属体を金属パイプに内蔵せしめたもの にすると、高周波点灯しても使用影命(使用路始 当初の光景の70名主で光景が建設する時間)を 1000時間以上にできることが各種の実験によ って初切している。しかしながら、気温が低い屋 外で使用すると、この蛍光灯の輝度が全く上昇せ ず、筬角面面が孵いために小型液晶カラーテレビ は殆ど使用に耐えない。

一般的に、冷熱極モードで放電ランプを点灯し

ようとすると、熱陰極モードの場合に比べて高電圧が必要になる。また、希ガスに水銀蒸気を陥入した気体を動作ガスとする場合、弱漿凝度が低いと、水銀蒸気の分圧は指数関数的に低下してしまい、冷陰慎モードで点灯すると、ある温度下で、以下では事実上希ガスのみの放電になって鮮度があっては下してしまう。そして、小電力の場合はこのでは高く、と言には十10℃程度にもなるため、複めて低いにくいうンプになる。

盤光灯の輝度の環境温度依存性を改良する方法は、一般的には種々の手段があるが、小型被係カラーテレビのバックライト組織光灯は、

- (1) 小型で消費電力が小さいこと
- (2) 商風波点打されること
- (3) 拠川労命が1000時間以上であること
- (4) 20℃以下でも使用可値なこと

などを満足する必要があるために、従来知られている手段では輝度の環境温度依存性を簡単に改良することができず、ことに超小型関面の被品カラーテレビは実用化が困難である。

(発明の目的)

本発明は、これらの事情に超みてなされたものであり、その目的とするところは、氷点下の選外類様でも小型被協力ラーテレビの顧而が明るくて 館明になるように、そのバックライトとして使用 される徴光灯の点灯モードを規定することによって 世光灯の輝度を上昇せしめる被品表示部の原明 方式を提供することにある。

(発唱の構成とその作用)

本発明の被品表示部の照明方式は、

被品表示部を要面から風明するよう配置された 低光灯と、この低光灯の電源回路とを含み、

該電額回路は、飲光灯に対して能力供給量を2 取以上に変化できるよう構成され、

級品表示部の通常使用時の定格入力を力に先行して、 誠定格入力を力よりも大きな魅力 (電力値を変動させるときはその平均値) を短時間だけ扱 光灯に供給することが可能なことを特徴とし、

この先行する大きな電力によって、弱境性度が 低いときでも、希ガスのみの放電から水超蒸気の 故間に軽化し、これによって、充分な勢外線が放出し、蛍光輝度を高めることが可能になる。従って、氷点下の扇外線駅でも小型離晶カラーテレビの画面が叫るくて劇明になる。

〔突旋例〕

以下に図面に示す炎旅例に抜いて本効関を其体 的に説明する。

特開報 63-318524(3)

級 9 に納むきれたガラスピード 10 とガラスパルブ 8 とが封着され、ガラスパルブ 8 の内部には不活性ガスと水銀が封入されている。

かかる係成の鉄光灯4を、第1回に例を示す点 灯モードで高周波点灯し、第2回に示すように、 被磁表示部5を裏面から限明する。鉄光灯4 用の 電際回路1は、低力供給量を2 及以上に変化でき る窓力可変型であり、例えば高周波電器2 と電 力切替閉路部3を有しているが、低力供給量を2 及以上に変化させることは、従来緩知の電源回路 によって容易に実施できる。そして、供給される 高周波は大作20~6 0 k to 程度である。

第1図は、たて特に供給電力を、よこ軸に時間をとって点灯モードを表示したものであり、被品カラーテレビの1回の連続使用時間がTであり、返常はTは数分ないし数十分であり、ときには数時間に及ぶ。被品表示部の通常使用時の定格入力電力がW。であり、例えば0.5Wであるが、これに先行して、3砂型展の時間とだけ定格入力能力W。より大きい2~5W程度の成力W。を印加

♥(平均智力)印加し、T=10秒後における課 展を認定した。

これから 理解できるように、本発明の 曲線 A では、 解底は 環境 温度に 殆ど 影響されず、 環境 温度 がー20 でであっても、 3 秒 間だけ 3 W の 過入 なの かり でであっても、 3 秒 間だけ 3 W の 過入 ない ない を印加する だけで、 10 秒 後 には 大き を で を 被 品表 示 の ない と が で き る。 そして、 前 記 の 電 極 電 が け っ に と が で き る。 そして、 前 記 の 電 極 電 計 を 深 間 し に こ の 程度 の 過入 力 常 カ W。 を 短 時 間 印 加 し て も 近 光灯 の 世 川 み 命 に 殆 ど 孤 影 概 を 与 え な い 。

これに対して、助縁Bは、過入力型カツ。を印かるい従来何を示すが、環境温度が一20で、現場温度は40mを設度しか得られないのでは、現場温度を15で温度をで上昇させての投資をは100mを以下であり、バックライトの投資を発表さない。しかし、環境温度が20ではあることができる。このことから、本発明は、環境温度が20で以下のときに有効は、環境温度が20で以下のときに有効は、環境温度が20で以下のときに有効は、環境温度が20で以下のときに有効

する。時間もは、いずれにしても1秒ないし致砂間程度であるので、時間もの下に対する比率と比率は大は全く無視であるので、時間もの大きな無視型できる。第1回(a)は1つの大きな山型型ではないないでは、(c)は1つの大きなしたもの。(d)は1つの大きなのに電力を小さくしたもの。(d)は1つのたちなのに電力を小さくしたもの。(d)は1つのたちないとないるのモードが可能であるが、いずれのモードにおいても時間というであれる。

大に、金光灯を恒温室(森壌試験室)内で点灯し、環境及底を変化させたときの輝度を認定でした。 新泉を第4回に示す。山線Aが本発明の点灯モードで点灯した時の特性四線であるが、第1回(d)に示す点灯モードを採用した。ここで、被品級示師の通常使用時の定格入力を力型。かり、5 W 、 電洗値が5 m A の40k粒の高層被電力で強光灯を点灯するが、これに先行する大きな電力(過入力電力) を点灯するが、これに先行する大きな電力(過入力電力) W。として、t = 2 つまり3 秒間だけ3

ることが分かる。

次に、点灯後の経過時間が郵度に及ぼす影響を 第5回に示す。ここで、現境温度は - 20 ℃であ り、定格入力能力型。や過入力能力型。およびそ の印加時間と点灯モードは第1回(4)の場合と成 様である。そして、実験曲線Aは本発明の点灯モ ・ 一ドで点灯した場合を、点線歯科Bは過入力電力 ♥。を印加しない場合をそれぞれ示す。これから 分かるように、水是明の山峡Aでは、過入力電力 W』を印加しても、S砂袋では剛度は400n t しか得られない。しかし、その後は恋愛に上昇し、 10秒数では約5000mtになり、重に80秒 役では約10000mcになる。つまり、3Wの 過入力限力型。を3秒間印加すれば、その後は定 格入力思力の0.5型 を印加しておくだけで、1 0秒後には彼島表示部を風明するのに必要な躍成 まで上昇する。すなわち、点灯してから明るくて 鮮明な資像になる主での持機時間は10秒である。 一般に、過入力電力型。を大きくすれば、声度が 上昇してほど協和するまでの待機時間(水実施例

特開昭 63-318524(4)

では10秒)は短点され、逆に過入力電力W。を 小さくすれば、長くなる。また、本災施例は、冷 陰極モードで放電させた場合の結果であるが、こ の現象は熱路運モードで放電させる場合でも有効 である。

これに対して、従来例の的線Bでは、10秒後や30秒後、更には国示しないが100秒後でも 対政は殆ど上昇せず、被品表示徳のバックライト 用蛍光灯としては優雄しない。

このように、 強光灯の 点灯の時間モードと輝度の関係に注目すると、 低温の 屋外環境であっても 飲光灯を小型被 品カラーテレビのバックライトと して十分に使用可能であることが分かる。

【建明の効果】

以上趋明したように、

(1) 資先灯は、通常は、低温频磁では設計が期待 した輝産は得られないが、点灯初期に短時間だ け過入力電力で点灯し、その後は定格入力電力 で点灯すれば、設計で期待される輝度が得られ ること、

6 … 11 極 8 … ガラスパルプ ₩ . … 定格入力低力 ₩ . … 過入力気

> 山断人 ウシオ危侵株式会社 代理人 弁理士 田原實之助

(2) 過入力能力の向加時間は1秒もしくは数秒程度でよいから、危情を耐久性良く設計すれば、 使用外向に効と感影響を与えないこと、

- (3) 小型被品カラーテレビの使用時間や使用爆探を労働すると、所定の無度が持られるようになる特徴時間は10秒程度であるので、それほど不便を感じないこと、
- (4) 観々の点灯モードを作る電源図路は、従来技 掛がそのまま利用できること。

などから、点灯モードを規定することによって、 依光灯をパックライトに使用する小型被協力ラー テレビが、低温環境下であっても、明るくて即明 な画像で観賞できる利点を有する被品表示部の服 明方式を提供することができる。

4. 肉面の何単な説明

第1図は飲光灯の点灯モードの説明図、第2図は飲光灯用電磁回路の説明図、第3図は飲光灯の 所面図、第4図と第5図は使光灯の輝度に関する データの説明図である。

1 … 戏源回路 4 … 放光灯 5 … 被品表示部

特開略 63-318524(5)

