Holonomía y la Curvatura Gaussiana

Rafael Córdoba Luis Lima Luis Mantilla Manuel Pico

Universidad de los Andes

1. Introducción

La idea de este trabajo es unir los resultados del teorema de Gauss-Bonnet con el transporte paralelo. Para esto, necesitamos unos resultados de la sección 7.4 (Transporte paralelo y derivada covariante).

Definición 1.1 Un campo vectorial tangente es un mapa suave de un intervalo abierto (α, β) a \mathbb{R}^3 tal que $\mathbf{v}(t) \in T_{\gamma(t)}S$ para todo $t \in (\alpha, \beta)$.

Definición 1.2 Sea γ una curva en un superficie S y sea \mathbf{v} el campo vectorial tangente a lo largo de γ . La **derivada covariante** de \mathbf{v} a lo largo de γ es la proyección ortogonal $\nabla_{\gamma}\mathbf{v}$ de $\frac{d\mathbf{v}}{dt}$ sobre el plano tangente $T_{\gamma(t)}S$ en el punto $\gamma(t)$.

Definición 1.3 Con la notación anterior, \mathbf{v} se dice paralelo a lo largo de γ si $\nabla_{\gamma}\mathbf{v} = \mathbf{0}$.

El principal resultado de esta sección que necesitamos para las posteriores conclusiones es el siguiente teorema.

Proposición 1.4 Un campo vectorial tangente v es paralelo a lo largo de la curva γ en una superficie S si y solo si $\dot{\mathbf{v}}$ es perpendicular al plano tangente de S en todos los puntos de γ .

El resultado anterior es, intuitivamente cierto si uno lo piensa geométricamente. La prueba se encuentra en el libro.

Definición 1.5 Sean \mathbf{p} y \mathbf{q} dos puntos de γ y suponga que t_0 y t_1 son los parámetros correspondientes a \mathbf{p} y \mathbf{q} , respectivamente. Sea $\mathbf{v}_0 \in T_{\mathbf{p}}S$ y sea $\mathbf{v}(t)$ el único campo vectorial paralelo a lo largo de γ tal que $\mathbf{v}(\mathbf{t}_0) = \mathbf{v}_0$, y sea $\mathbf{v}(\mathbf{t}_1) = \mathbf{v}_1$. El mapa $\Pi_{\gamma}^{\mathbf{p}\mathbf{q}} : T_{\mathbf{p}}S \to T_{\mathbf{q}}S$ que toma $\mathbf{v}_0 \in T_{\mathbf{p}}S$ a $\mathbf{v}_1 \in T_{\mathbf{q}}S$ es llamado **transporte paralelo** de \mathbf{p} a \mathbf{q} a lo largo γ .

Proposición 1.6 El mapa $\Pi^{pq}_{\gamma}: T_pS \to T_qS$ es una isometría que preserva longitudes.

2. Holonomía

Proposición 2.1 Sean γ una curva parametrizada con longitud de arco, σ una carta para una superficie S y \mathbf{v} un campo vectorial paralelo no cero a lo largo de γ . Sea φ el ángulo orientado $\hat{\gamma}\mathbf{v}$ de $\dot{\gamma}$ a \mathbf{v} . Entonces la curvatura geodésica de γ es

$$\kappa_g = -\frac{d\varphi}{ds}$$

Prueba: Por la proposición 1.6, la longitud de \mathbf{v} es constante, y por tanto, multiplicando por algún escalar distinto a cero podemos asumir que $||\mathbf{v}|| = 1$. Entonces,

$$\mathbf{v} = cos\varphi\mathbf{t} + sen\varphi\mathbf{t_1}$$

donde $\mathbf{t} = \dot{\gamma}$ y $\mathbf{t_1} = \mathbf{N} \times \mathbf{t}$, siendo \mathbf{N} la normal unitaria de σ . Dado que \mathbf{v} es paralelo a lo largo de γ , $\dot{\mathbf{v}}$ es paralelo \mathbf{N} , por la proposición 1.4. Por tanto,

$$0 = \mathbf{t} \cdot \dot{\mathbf{v}} = \mathbf{t} \cdot ((\cos\varphi \dot{\mathbf{t}} + \sin\varphi \dot{\mathbf{t}}_1 + \dot{\varphi}(-\sin\varphi \mathbf{t} + \cos\varphi \mathbf{t}_1)) = \sin\varphi(\mathbf{t} \cdot \dot{\mathbf{t}}_1 - \dot{\varphi})$$

dado que $\mathbf{t} \cdot \dot{\mathbf{t}} = \mathbf{t} \cdot \mathbf{t_1} = \mathbf{0}$. Similarmente, $\mathbf{t_1} \cdot \dot{\mathbf{v}} = 0$ nos lleva a

$$0 = cos\varphi(\mathbf{t_1} \cdot \dot{\mathbf{t}} + \tilde{\varphi})$$

Ahora,

$$\kappa_q = \ddot{\gamma} \cdot (\mathbf{N} \times \dot{\gamma}) = \dot{\mathbf{t}} \cdot (\mathbf{N} \times \mathbf{t}) = \dot{\mathbf{t}} \cdot \mathbf{t_1}$$

y como $\mathbf{t} \cdot \mathbf{t_1} = 0$ tenemos que,

$$\mathbf{t} \cdot \mathbf{\dot{t}_1} = -\mathbf{\dot{t}} \cdot \mathbf{t_1} = -\kappa_g$$

Usando los dos resultados,

$$sin\varphi(\dot{\varphi}+\kappa_g)=0=cos\varphi(\kappa_g+\vec{\varphi})$$

Note que necesitamos ambos resultados por si el seno o el coseno se anula. \boxtimes El hecho de que $\kappa_g = \theta'$ significa que: la curvatura geodésica de γ mide la razón de viraje de su vector velocidad, estimado con respecto a un campo vectorial paralelo a lo largo de γ

Proposición 2.2 Sea γ una curva parametrizada con longitud de arco, cerrada y simple en una superficie σ . Sea κ_g la curvatura geodésica de γ , y sea \mathbf{v} un campo vectorial paralelo no nulo a lo largo de γ . Entonces, dando una vuelta a γ , \mathbf{v} rota a través de un ángulo

$$2\pi - \int_0^{\ell(\gamma)} \kappa_g ds$$

Prueba. Suponga que γ es una curva cerrada. Dando una vuelta a γ , φ se incrementa por

$$\int_0^{\ell(\gamma)} \frac{d\varphi}{ds} ds = -\int_0^{\ell(\gamma)} \kappa_g ds$$

donde $\ell(\gamma)$ es la longitud de γ . Si γ es una curva simple y cerrada, entonces el vector tangente $\dot{\gamma}$ también rota 2π yendo una vez alrededor de γ dado que la curvatura total orientada de una curva cerrada es $\pm 2\pi$. \boxtimes

Definición 2.3 Si γ es una curva bien parametrizada cerrada en una superficie S, el ángulo descrito en la proposición 2.2 es llamado la **holonomía** alrededor γ . Se denota h_{γ} .

$$h_{\gamma} = 2\pi - \int_{0}^{\ell(\gamma)} \kappa_g ds \tag{1}$$

Figure Parallel vector fields along three latitudinal curves

Otras definiciones: Si γ es una curva cerrada, entonces $\Pi_{\gamma}^{\mathbf{pp}}: T_{\mathbf{p}}S \to T_{\mathbf{p}}S$ (transporte paralelo) se denomina la holonomía alrededor de γ .

3. La Curvatura mide la holonomía infinitesimal

De la definición, recordando el teorema de Gauss-Bonnet:

Teorema(Gauss-Bonnet) Sea $\gamma(s)$ una curva suave, bien parametrizada, cerrada, simple sobre un parche σ cuya longitud esta dada por $\ell(\gamma)$ y asuma γ orientada positivamente, entonces se tiene:

$$\int_0^{\ell(\gamma)} \kappa_g ds = 2\pi - \int_{\text{int}(\gamma)} K d\mathcal{A}_{\sigma}$$

Por lo que nos permite deducir la siguiente proposición **Proposición 4.1** Si γ es una curva bien parametrizada cerrada y simple en una carta σ . Sea h_{γ} la holonomía alrededor γ , y sea K la curvatura Gaussiana de σ . Entonces

$$h_{\gamma} = \int_{int(\gamma)} K d\mathbf{A}_{\sigma}$$

Utilizando este teorema, podemos conseguir una forma de hallar la curvatura Gaussiana en un punto \mathbf{p} de una superficie S. Si γ es una pequeña curva simple cerrada orientada positivamente en la superficie que contiene a \mathbf{p} en su interior, la curvatura Gaussiana de S en \mathbf{p} será aproximadamente igual a

$$\frac{h_{\gamma}}{Area(int(\gamma))}$$

Proposición 4.2

Suponga que S es una superficie tal que. para cualquier punto $\mathbf{p}, \mathbf{q} \in S$, el transporte paralelo $\Pi_{\gamma}^{\mathbf{p}\mathbf{q}}$ es independiente de la curva γ que une \mathbf{p} y \mathbf{q} . Entonces, S es plana

Prueba: Por hipótesis, la holonomía alrededor de cualquier curva cerrada en S debe ser cero. Suponga que γ es tal curva, y si \mathbf{p} es un punto de γ , luego el transporte paralelo $\Pi^{\mathbf{p}\mathbf{p}}_{\gamma}$ de \mathbf{p} a \mathbf{p} a lo largo de γ debe ser la misma que de \mathbf{p} a \mathbf{p} a lo largo de cualquier curva constante en \mathbf{p} ; pero luego es obvio que tal mapa es la identidad. La integra de la curvatura gaussiana K sobre el interior de cualquier curva cerrada γ en S debe ser cero. Esto implica que K=0. Esto se debe que a que si $K\neq 0$ en algún punto $\mathbf{p}\in S$, digamos $K(\mathbf{P})>0$, entonces K>0 en algún abierto O de S que contiene \mathbf{p} ; pero luego la integral de K sobre el interior de la curva cerrada simple γ en O sería mayor a cero. γ

 \boxtimes

El siguiente ejemplo muestra cómo aplicar el teorema y, además, sirve para mostrar que el converso no es cierto.

Ejemplo 1 Sea $\sigma(u, v) = (vcosu, vsinu, v)$ la parametrización de un cono, calcule la holomomia en el circulo con v = 1

Solucion: Vamos a calcular la holonomia a partir de la ecuación (1), para esto, primero veamos la curvatura geodésica (k_g) . Recuerde que $k_g = \ddot{\gamma} \cdot (N \times \dot{\gamma}) = |\ddot{\gamma}| cos\theta$. Donde θ es el angulo entre N y $\dot{\gamma}$.

Note que por simetría en el cono, todos los vectores normales son los mismos bajo rotaciones en el plano además notamos que γ es también el mismo bajo rotaciones por lo tanto k_g es constante. Veamos entonces sobre un solo punto.

Tenemos:

$$\begin{split} \gamma &= (\cos(u), \sin(u), 1) \\ \dot{\gamma} &= (-\sin(u), \cos(u), 0) \\ \ddot{\gamma} &= (-\cos(u), -\sin(u), 0) \\ \sigma_u &= (-v\sin(u), v\cos(u), 0) \\ \sigma_v &= (\cos(u), \sin(u), 1) \\ N &= \frac{(v\cos(u), v\sin(u), -v)}{\sqrt{2v^2}} = \frac{(\cos(u), \sin(u), -1)}{\sqrt{2}} \end{split}$$

Coja u=0 entonces: $N\times\dot{\gamma}=(1,0,-1)/\sqrt{2}\times(0,1,0)=(1,0,1)/\sqrt{2}$ Por lo tanto tenemos, $k_g=\ddot{\gamma}\cdot(1,0,1)/\sqrt{2}=(-1,0,0)\cdot(1,0,1)/\sqrt{2}=1/\sqrt{2}$ Además como es un circulo, $\ell(\gamma)=2\pi$ tenemos:

$$h_{\gamma} = 2\pi - \int_{0}^{\ell(\gamma)} \kappa_{g} ds = 2\pi - \int_{0}^{2\pi} \frac{1}{\sqrt{2}} ds = 2\pi - 2\pi \frac{1}{\sqrt{2}} = 2\pi (1 - \frac{1}{\sqrt{2}})$$

Apartir del ejercicio concluimos que la holonomia es distinta de 0 contradiciendo el converso pues el cono es una superficie plana.

Remark: Recuerde que la curvatura geodesica en la esfera a lo largo de una latitud con $\phi = \phi_0$ es $k_q = cotg(\phi_0)$ por lo tanto, el cambio de ángulo en la esfera esta dado por:

$$\Delta\theta = \int_0^l \theta'(s)ds = \int_0^l \kappa_g(s)ds = (2\pi\sin\phi_0)\cot\phi_0 = 2\pi\cos\phi_0 \tag{2}$$

Note que $\ell = 2\pi \sin\phi_0$ porque es la lingitud de un circulo con radio $\sin\phi_0$

Ejemplo 2 Sea $\sigma(\theta, \varphi)$ la parametrización estándar de un toro. Muestre que la holonomía alrededor del círculo $\theta = \theta_0$ es $2\pi(1 - sen\theta_0)$. ¿Por qué es obvio que la holonomía alrededor de un círculo $\varphi = constante$ es 2π ?. Note que los círculos no son simples y cerradas en el toro.

Solucion: El circulo $\theta=\theta_0$ es un circulo en el plano $z=b\sin\theta_0$ con centro en el eje z, luego su normal principal es un vector unitario perpendicular al circulo y sobre este plano, por lo tanto es igual a to $(\cos\varphi,\sin\varphi,0)$ La normal unitaria σ is $\mathbf{N}=(-\cos\theta\cos\varphi,-\cos\theta\sin\varphi,-\sin\theta)$, Luego el ángulo entre \mathbf{N} y \mathbf{n} en un punto del circulo $\theta=\theta_0$ es θ_0 . El radio del circulo es $a+b\cos\theta_0$, entonces su curvatura geodésica es $\frac{\sin\theta_0}{a+b\cos\theta_0}$. Por tanto, $\int \kappa_g ds = 2\pi\sin\theta_0$ y la holonomía es $2\pi-2\pi\sin\theta_0$. Los circulos $\varphi=constant$ son geodesicas pues son meridianos en una superficie de revolución. Entonces $\kappa_g=0$ y la holonomía es $2\pi-0=2\pi$