

جامعة حلب كلية الهندسة الكهربائية والالكترونية قسم هندسة التحكم والأتمتة مخبر التحكم

STM32

مقرر المتحكمات المصغرة الجلسة الرابعة

السنة الرابعة ميكاترونيك

2023/2202

مدرس المقرر:

الغاية من الجلسة:

- التعريف بشاشات الـ LCD
- عرض تطبيقات مختلفة مع عرض خطوات تنزيل المكتبة المناسبة لشاشات الـ LCD

شاشات الـ LCD:

وهي عبارة عن شاشة مؤلفة من سطر أو أكثر يحتوي كل سطر على عدد من الخانات, والخانة هي عبارة عن مربع صغير أبعاده (8*5) بكسل (Pixel)

وكل خانة تستطيع إظهار محرف واحد فقط.

وأكثر الشاشات شيوعاً هي الشاشات ذات القياسات التالية : 40x1 20x4 20x2 16x4 16x2 تتم تغذية هذه الشاشة بجهد 5V+ ويمكن ملائمتها بواسطة 4 أقطاب أو 8 أقطاب.

وتتميز هذه الشاشات بزاوية رؤية كبيرة واستهلاك منخفض للطاقة.

تملك شاشة الإظهار الكريستالية معالج إظهار خاص و تزود شاشة الـ LCD بذاكرة داخلية ومن الممكن إظهار جميع رموز الأسكى عليها وهي (189) رمز مختلف.

شرح أقطاب الـ LCD :

- القطب VSS : هو قطب التغذية لشاشة الـ LCD , و هو جهد الأرضي (0) منطقي
- القطب VDD : هو أيضاً قطب التغذية لشاشة الـ LCD , ولكن ذو القيمة (+5V)
- القطب VEE: هو قطب جهد التباين, ويقصد بالتباين هو حدة ظهور الرمز على الشاشة وأقل تباين أن لا نرى شيئاً على الشاشة يكون عند تطبيق (5V+) على هذا القطب, وأعلى تباين للشاشة يكون عند تطبيق (0 V).
- القطب RS: وهو مسجل اختيار الدخل لشاشة الـ LCD وذلك في حال طبق عليه (0) منطقي عندها نريد إرسال كلمة تحكم, بينما في حال طبق (1) منطقي فعندها نريد إرسال معطيات.
- القطب R/W: وهو للقراءة أو الكتابة إلى الشاشة, نطبق (0) منطقي على هذا القطب عندما نريد كتابة (إرسال) المعلومات إلى شاشة الـ LCD, ونطبق (1) منطقي عندما نريد قراءة (استقبال) المعلومات من شاشة الـ LCD.
- القطب E: وهو قطب تمكين شاشة الـ LCD , فكل معلومة يتم كتابتها أو قراءتها من شاشة الـ LCD يجب إرفاقها بنبضة تمكين على هذا القطب .
- الأقطاب D7----D7: هي أقطاب المعطيات (DATA), حيث يتم كتابة المعطيات أو كلمات التحكم عبر هذه الأقطاب إلى شاشة الـ LCD وكذلك قراءة المعطيات ويتم عملياً استخدام الأقطاب D4--D7 فقط لعملية القراءة و الكتابة.
- القطبين K و A تزود بعض الشاشات بهذين القطبين, وهما على الترتيب قطبي المهبط و المصعد للد الإضاءة الخلفية لشاشة الـ LCD.

التطبيق العملى1: إظهار جملة Hello STM32 على شاشة الـ LCD

ضبط إعدادات المشروع:

الخطوة الأولى: فتح بيئة STM32CubeIDE وإنشاء مشروع جديد ثم اختيار المتحكم STM32CubeIDE عند التطبيق العملي

الخطوة الثانية: اختيار اسم للمشروع

الخطوة الثالثة: اختر الأقطاب خرج PA0:PA5 كأقطاب خرج

الخطوة الرابعة: قم بضبط ساعة النظام على الساعة الداخلية (HSI) واختر التردد 16MHZ

الخطوة السادسة: قم بتوليد الكود اعتماداً على الإعدادات التي قمت بضبطها من خلال الضغط على زري Ctrl+S

الخطوة السابعة: إضافة مكتبة للـ LCD لتسهيل التعامل معها من خلال الخطوات التالية:

- المشروع inc للمشروع المجلد $lcd_txt.h$ للمشروع
- 2- نقوم بنسخ الملف lcd_txt.c ثم لصقه ضمن المجلد src للمشروع

3- نقوم بتعديل أسماء الأقطاب الموصولة مع الشاشة حسب التوصيل الخاص بمشروعنا

4- نستخدم الدوال التي تؤمنها المكتبة للتعامل مع الشاشة وهي:

```
/*----*/
void lcd_init(void);
void lcd_write(uint8_t type,uint8_t data);
void lcd_puts(uint8 t x, uint8 t y, int8 t *string);
void lcd_clear(void);
```

الكود بالكامل:

```
#include "main.h"
#include "lcd_txt.h"
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
int main(void)
{
    int8_t* str = (int8_t*)"Hello STM32";

    HAL_Init();
    SystemClock_Config();
    MX_GPIO_Init();
    /* USER CODE BEGIN 2 */
    lcd_init();
    lcd_puts(0,0,str);

while (1)
{
    }
    /* USER CODE END 2 */
}
```

الخطوة الثامنة: قم باستخدام STM32CubeProgrammer برفع الكود للمتحكم الموجود على البورد. التطبيق العملي2: إظهار عداد زوار و إظهار العدد على شاشة LCD حيث الحساس الأول يعبر عن زيادة العدد ويتم وصله على المدخل PB1 و الحساس الثاني يعبر عن إنقاص العدد ويتم وصله على المدخل PB1، استخدم المقاطعات الخارجية

ضبط إعدادات المشروع:

الخطوة الأولى: فتح بيئة STM32CubeIDE وإنشاء مشروع جديد ثم اختيار المتحكم STM32CubeIDE

الخطوة الثانية: اختيار اسم للمشروع

الخطوة الثالثة: اختر الأقطاب خرج، والأقطاب PB0:PB2 لضبطها كأقطاب خرج، والأقطاب PB0:PB2 لضبطها كأقطاب خرج، والأقطاب PA0:PA1 كأقطاب مقاطعة خارجية

الخطوة الرابعة: تفعيل المقاطعة الخارجية على الأقطاب PAO:PA1

الخطوة الخامسة: ضبط تردد الساعة للمتحكم على التردد 16MHZ

الخطوة السادسة: إضافة مكتبة الـ LCD كما فعلنا في التطبيق السابق

```
1 #ifndef
                     LCDTXT H
      2 #define
                     LCDTXT H
      4 #include "stm32G0xx hal.h"
      50/*---- Define LCD Use ----
     6 /*Note: Comment which not use */
     7 #define LCD16xN //For lcd16x2 or lcd16x4
     80//#define LCD20xN //For lcd20x4
      9 /*---- Define For Connection -----
     10 #define RS PORT
                            GPIOB
     11 #define RS PIN
                            GPIO PIN 0
     12 #define EN PORT
                            GPIOB
     13 #define EN PIN
                            GPIO PIN 1
     14 #define D7 PORT
                            GPIOB
     15 #define D7 PIN
                            GPIO PIN 12
                           GPIOB
     16 #define D6 PORT
     17 #define D6 PIN
                           GPIO PIN 11
     18 #define D5 PORT
                           GPIOB
     19 #define D5 PIN
                           GPIO PIN 10
     20 #define D4 PORT
                           GPIOB
     21 #define D4 PIN
                            GPIO PIN 2
                        الخطوة السابعة: توليد الكود من خلال الضغط على ctrl+s
                                                الكود النهائي:
#include "main.h"
#include "lcd txt.h"
#include"stdio.h"
void SystemClock Config(void);
static void MX GPIO Init(void);
int8 t i=0;
char buffer[16] ;
 int8 t* str ;
void HAL GPIO EXTI Falling Callback(uint16 t GPIO Pin)
         if (GPIO Pin ==GPIO PIN 0)
```

```
i++;
          if(GPIO_Pin ==GPIO PIN 1)
       if(i>0)
       i--;
 }
int main(void)
{
    HAL Init();
    SystemClock Config();
    MX GPIO Init();
    lcd init();
    lcd clear();
  while (1)
      sprintf(buffer, "people= %d", i);
      str = (int8 t*)buffer;
      lcd puts (0,0,str);
      HAL Delay(100);
      lcd clear();
}
}
```

ملاحظة:

الخطوات التي تم اتباعها لإضافة المكتبة الخاصة بشاشة الـ LCD هي نفسها لإضافة أي مكتبة على سبيل المثال الـ Driver الخاص بالـ:

```
Servo Motor -
Stepper Motor -
I2C_LCD -
KeyPAD -
CapTouch -
7Segments Display -
```

- MPU6050 -
 - OLED ·
 - RTC -

... .

التطبيق العملي3: قياس مستوى سائل باستخدام حساسات رقمية و إظهار المستوى على شاشة الإظهار الكريستالية :علماً أن المداخل تم تفعيل مقاومات الرفع لها و التوصيل و فق الشكل التالى.

ضبط إعدادات المشروع:

الخطوة الأولى: فتح بيئة STM32CubeIDE وإنشاء مشروع جديد ثم اختيار المتحكم STM32G0B1CEU6N

الخطوة الثانية: اختيار اسم للمشروع

الخطوة الثالثة: اختر الأقطاب خرج، والأقطاب PA8:PA10 ،PB13:PB15 لضبطها كأقطاب خرج، والأقطاب PA0:PA2 لضبطها كأقطاب دخل مع تفعيل مقاومة الرفع الداخلية

الخطوة الرابعة: ضبط تردد الساعة للمتحكم على التردد 16MHZ

الخطوة الخامسة: إضافة مكتبة الـ LCD كما فعلنا في التطبيق السابق

الخطوة السادسة: توليد الكود من خلال الضغط على ctrl+s

يصبح الكود النهائي:

```
#include "main.h"
#include "lcd txt.h"
```

```
void SystemClock Config(void);
static void MX GPIO Init(void);
int8 t* str1 = (int8 t*) "The level is 0%";
int8 t* str2 = (int8 t*) "The level is 30\%";
int8 t* str3 = (int8 t*) "The level is 60\%";
int8 t* str4 = (int8 t*) "The level is 100%";
int8 t* str5 = (int8 t*) "Error";
int main(void)
{
    HAL Init();
    SystemClock Config();
    MX GPIO Init();
    /* USER CODE BEGIN 2 */
    lcd init();
  while (1)
 if
         ( (HAL GPIO ReadPin(GPIOA, GPIO PIN 0) == 1) &&
            (HAL GPIO ReadPin(GPIOA, GPIO PIN 1) == 1) &&
            (HAL GPIO ReadPin(GPIOA, GPIO PIN 2) == 1)
)
           {
               lcd puts(0,0,str1);//Displaying on Lcd
 else if(
           (HAL GPIO ReadPin(GPIOA, GPIO PIN 0) == 0) &&
            (HAL GPIO ReadPin(GPIOA, GPIO PIN 1) == 1) &&
            (HAL GPIO ReadPin(GPIOA, GPIO PIN 2) == 1)
)
           {
               lcd puts(0,0,str2);//Displaying on Lcd
 else if(
           (HAL GPIO ReadPin(GPIOA, GPIO PIN 0) == 0) &&
            (HAL GPIO ReadPin(GPIOA, GPIO PIN 1) == 0) &&
            (HAL GPIO ReadPin(GPIOA, GPIO PIN 2) == 1))
          {
                 lcd puts(0,0,str3);//Displaying on Lcd
             (HAL GPIO ReadPin(GPIOA, GPIO PIN 0) == 0) &&
 else if(
             (HAL GPIO ReadPin(GPIOA, GPIO PIN 1) == 0) &&
```