

6. Relationale Entwurfstheorie

- 1. Funktionale Abhängigkeiten
- 2. Armstrong-Kalkül
- 3. Zerlegung von Relationen
- 4. Normalformen und Normalisierungen

Einführung

Bis jetzt:

- Nutzen- und Anforderungsanalys (Pflichtenheft)
- Entity-Relationship-Entwurf
- relationales Schema

Zu tun:

- Feintuning des erstellten Schemas auf der Basis von intrarelationalen Abhängigkeiten
 - Funktionale Abhängigkeiten
 - Kriterien für gute Schemata, schlechte Schemata
 - Normalformen
 - Algorithmen zur Normalisierung

Was ist faul mit diesem Schema?

	ProfVorl						
PersNr	Name	Rang	Raum	VorlNr	Titel	SWS	
2125	Sokrates	W3	226	5041	Ethik	4	
2125	Sokrates	W3	226	5049	Mäeutik	2	
2125	Sokrates	W3	226	4052	Logik	4	
2132	Popper	W2	52	5259	Der Wiener Kreis	2	
2137	Kant	W3	7	4630	Die 3 Kritiken	4	

Änderungs-Anomalie

	ProfVorl						
PersNr	Name	Rang	Raum	VorlNr	Titel	SWS	
2125	Sokrates	W3	226	5041	Ethik	4	
2125	Sokrates	W3	226	5049	Mäeutik	2	
2125	Sokrates	W3	226	4052	Logik	4	
2132	Popper	W2	52	5259	Der Wiener Kreis	2	
2137	Kant	W3	7	4630	Die 3 Kritiken	4	

- Angenommen Sokrates soll von Raum 226 nach Raum 233 umziehen
- Die Information 'Raum' existiert in diesem Fall mehrfach
- Lösung: Änderung aller Einträge gleichzeitig
 - hoher Speicherbedarf durch Redundanz
 - erhöhter Zeitbedarf bei Änderungen

Einfüge-Anomalie

ProfVorl						
PersNr	Name	Rang	Raum	VorlNr	Titel	SWS
2125	Sokrates	W3	226	5041	Ethik	4
2125	Sokrates	W3	226	5049	Mäeutik	2
2125	Sokrates	W3	226	4052	Logik	4
2132	Popper	W2	52	5259	Der Wiener Kreis	2
2137	Kant	W3	7	4630	Die 3 Kritiken	4

- Schema kombiniert Informationen verschiedener unpassender Entitytypen
 - Hinzufügen eines Professors ohne Vorlesung
 - ⇒ NULL-Werte in VorlNr, Titel und SWS
 - Analog: Hinzufügen einer Vorlesung zu der noch kein Dozent festgelegt wurde
 - ⇒ NULL-Werte in PersNr, Name, Rang und Raum

Lösch-Anomalie

	ProfVorl					
PersNr	Name	Rang	Raum	VorlNr	Titel	SWS
2125	Sokrates	W3	226	5041	Ethik	4
2125	Sokrates	W3	226	5049	Mäeutik	2
2125	Sokrates	W3	226	4052	Logik	4
2132	Popper	W2	52	5259	Der Wiener Kreis	2
2137	Kant	W3	7	4630	Die 3 Kritiken	4

- Schema kombiniert Informationen verschiedener unpassender Entitytypen
 - Löschen von Elementen eines Entitytyps kann Verlust eines anderen Entitytyps bewirken
 - Löschen des Eintrags zu "Der Wiener Kreis" (die einzige Vorlesung von Popper) würde auch Informationen zu Popper löschen
 - Alternative: Prüfen der gesamten Datenbank, ob dieser Eintrag die einzige Vorlesung von Popper ist. In diesem Fall durch NULL-Werte ersetzen

6. Relationale Entwurfstheorie

- 1. Funktionale Abhängigkeiten
- 2. Armstrong-Kalkül
- 3. Zerlegung von Relationen
- 4. Normalformen und Normalisierungen

Funktionale Abhängigkeiten

- Das zentrale Konzept der relationalen Entwurfstheorie
- Sei X die Attributmenge eines Relationenschemas R. Die funktionalen Abhängigkeiten über X bilden eine zweistellige Relation "→" auf den Attributmengen aus X:

$$\alpha \to \beta$$
, für $\alpha, \beta \subseteq X$.

(gesprochen: von Alpha nach Beta)

- In Worten: β ist funktional abhängig von α oder die α -Werte bestimmen die β -Werte funktional (d.h. eindeutig)
- Für zwei Attributmengen $\alpha, \beta \subseteq X$ und eine Relation R sagen wir R erfüllt die funktionale Abhängigkeit $\alpha \to \beta$, wenn gilt:

$$r. \alpha = t. \alpha$$
 impliziert $r. \beta = t. \beta$ für alle $r, t \in R$.

Funktionale Abhängigkeiten

- Verallgemeinerung der Schlüsseleigenschaft
 - Eindeutigkeitseigenschaft der Schlüssel als funktionale Abhängigkeit:

$$\alpha \to X$$

• Eine funktionale Abhängigkeit $\alpha \to \beta$ lässt sich ebenfalls als intrarelationale Abhängigkeit auffassen:

$$\sigma_{\alpha \to \beta} : \operatorname{Rel}(X) \to \{true, false\}, \qquad R \mapsto \begin{cases} true, & \text{falls } \alpha \to \beta \text{ in } R \text{ gilt } \\ false, & \text{sonst} \end{cases}$$

- Ist $\beta \subseteq \alpha$, so heißt $\alpha \to \beta$ eine *triviale Abhängigkeit*
- Funktionale Abhängigkeiten werden auch als FDs (functional dependencies) abgekürzt

- Betrachte Schema R mit Attributmenge
 {A, B, C, D} und FD {A} → {B}.
 Die Ausprägung r erfüllt diese FD:
 nur für die Tupel t₂, t₃ gilt t₂. A = t₃. A (= a₁)
 und für diese gilt ebenfalls t₂. B = t₃. B (= b₁)
 - diese Ausprägung erfüllt auch die FDs
 - $\{A\} \rightarrow \{C\}$
 - $\{A,B\} \rightarrow \{C\}$
 - $\{C,D\} \rightarrow \{B\}$

nicht aber die FDs

- $\{B\} \rightarrow \{C\}$
- $\{A, B, C\} \rightarrow \{D\}$

	r				
	A	В	С	D	
t_1	a_4	b_2	c_4	d_3	
t_2	a_1	b_1	c_1	d_1	
t_3	a_1	b_1	c_1	d_2	
t_4	a_2	b_2	c_3	d_2	
t_5	a_3	b_2	c_4	d_3	

• Wichtig:

- funktionale Abhängigkeiten beschreiben die Menge aller gültigen Relationen (wenn nichts anderes gesagt wird)
- üblicherweise wird gefragt: welche zusätzlichen
 FDs lassen sich aus den gegebenen FDs ableiten
- es wird nicht gefragt: welche zusätzlichen FDs erfüllt diese konkrete Ausprägung
- Übrigens: die Notation

$${A,B,C} \rightarrow {D}$$

wird häufig auch abgekürzt, z.B. durch

$$A, B, C \rightarrow D$$
.

	r				
	Α	В	С	D	
t_1	a_4	b_2	c_4	d_3	
t_2	a_1	b_1	c_1	d_1	
t_3	a_1	b_1	c_1	d_2	
t_4	a_2	b_2	c_3	d_2	
t_5	a_3	b_2	c_4	d_3	

Student						
MatrNr: Inte	Name: String	#Semester: Into	Status: Status			
1234	Michael	6	eingeschrieben			
5678	Andrea	4	eingeschrieben			
4711	Sabine	8	beurlaubt			
815	Franz	12	exmatrikuliert			

$\sigma_{lpha ightarrow eta}$	Wert in der Ausprägung	Wert in allen Ausprägungen
$MatrNr \rightarrow Name, Semester, Status$		
$Name \rightarrow Semester, Status, MatrNr$		
$Semester \rightarrow Status$		
$Status \rightarrow Semester$		
$MatrNr, Name \rightarrow Semester, Status$		

Student						
MatrNr: Inte	Name: String	#Semester: Into	Status: Status			
1234	Michael	6	eingeschrieben			
5678	Andrea	4	eingeschrieben			
4711	Sabine	8	beurlaubt			
815	Franz	12	exmatrikuliert			

$\sigma_{lpha ightarrow eta}$	Wert in der Ausprägung	Wert in allen Ausprägungen
$MatrNr \rightarrow Name, Semester, Status$	true	true
$Name \rightarrow Semester, Status, MatrNr$	true	false
$Semester \rightarrow Status$	true	false
$Status \rightarrow Semester$	false	false
$MatrNr, Name \rightarrow Semester, Status$	true	true

Überprüfen funktionaler Abhängigkeiten

- Ein einfacher Algorithmus zur Überprüfung einer FD:
 - Eingabe: eine Relation R und eine FD $\alpha \rightarrow \beta$
 - Ausgabe: *ja* genau dann, wenn $\alpha \rightarrow \beta$ in R erfüllt ist
 - Algorithmus:
 - sortiere R nach den α -Werten
 - falls alle Gruppen, bestehend aus Tupeln mit gleichen α -Werten, auch gleiche β -Werte aufweisen: *ja*; sonst: *nein*
- Die Laufzeit dieses Algorithmus wird durch die Sortierung dominiert
 - Komplexität $O(n \log(n))$

Schlüssel

- Präzisierung des Schlüsselbegriffs
 - Dazu sei \mathcal{R} ein Relationenschema mit Attributmenge X und funktionalen Abhängigkeiten F
- Superschlüssel (Eindeutigkeit) :
 - $-\alpha \subseteq X$ heißt *Superschlüssel*, falls $\alpha \to X$ gilt
 - α bestimmt also alle anderen Attributwerte
 - X selbst ist stets auch ein Superschlüssel, da trivialerweise X → X gilt
- voll funktional abhängig (Minimalität):
 - $-\beta \subseteq X$ heißt voll funktional abhängig von α , falls
 - $\alpha \rightarrow \beta$ gilt
 - $\alpha \{A\} \nrightarrow \beta$ für alle $A \in \alpha$ gilt, d.h. α kann nicht "verkleinert" werden

Schlüssel

- Präzisierung des Schlüsselbegriffs
 - Dazu sei \mathcal{R} ein Relationenschema mit Attributmenge X und funktionalen Abhängigkeiten F
- Schlüsselkandidat:
 - Eine Attributmenge $\alpha \subseteq X$ heißt *Schlüsselkandidat*, falls X voll funktional abhängig von α ist
- Primärschlüssel:
 - In einem Relationenschema wird einer der Schlüsselkandidaten als Primärschlüssel ausgewählt
 - Fremdschlüssel sollten z.B. immer nur auf den Primärschlüssel verweisen

Schlüssel – Beispiel

Orte						
Name	BLand	Vorwahl	EW			
Frankfurt	Hessen	069	690.000			
Frankfurt	Brandenburg	0335	60.000			
München	Bayern	089	1.378.000.000			
Passau	Bayern	0851	50.000			

- · Annahme: Ortsnamen sind innerhalb eines Bundeslandes eindeutig
- Schlüsselkandidaten:

{ Name, BLand }, { Name, Vorwahl }

beide sind minimal:

- Städte in unterschiedlichen Bundesländern können denselben Namen besitzen
- kleine Dörfer können sich dieselbe Vorwahl teilen

6. Relationale Entwurfstheorie

- 1. Funktionale Abhängigkeiten
- 2. Armstrong-Kalkül
- 3. Zerlegung von Relationen
- 4. Normalformen und Normalisierungen

Bestimmung aller funktionalen Abhängigkeiten

- Frage: Ausgehend von einer Menge funktionaler Abhängigkeiten *F* (beim Datenbank-Entwurf erstellt), welche zusätzlichen funktionalen Abhängigkeiten sind implizit immer erfüllt?
- Beispiel:
 - Erweiterung von Universitäts-Beispiel um Adressen
 - erster Entwurf für Professoren und Adressen:

ProfessorenAdressen(PersNr, Name, Rang, Raum, Ort, Straße, Hausnummer, PLZ, Vorwahl, Bundesland)

Bestimmung aller funktionalen Abhängigkeiten – Beispiel

ProfessorenAdressen(PersNr, Name, Rang, Raum,

Ort, Straße, Hausnummer, PLZ, Vorwahl, Bundesland)

- Funktionale Abhängigkeiten *F*:
 - PersNr → PersNr, Name, Rang, ..., Vorwahl, Bundesland
 - Raum → PersNr
 - Ort, Bundesland → Vorwahl
 - Ort, Bundesland, Straße, Hausnummer → PLZ
 - PLZ → Ort, Bundesland
- implizierte funktionale Abhängigkeiten:
 - Raum → PersNr, Name, Rang, ..., Vorwahl, Bundesland
 - PLZ → Vorwahl

– ...

Implizierte funktionale Abhängigkeiten (Formalisierung)

- Seien X eine Attributmenge und F eine Menge von funktionalen Abhängigkeiten über X.
- Semantische Grundlagen:
 - Eine Relationsausprägung R erfüllt F, falls R jede funktionale Abhängigkeit $f \in F$ erfüllt (man sagt auch: R ist ein Modell von F)
 - Schreibweise:

$$R \vDash F \text{ oder } R \vDash f$$

- Die Menge aller gültigen Ausprägungen des Schemas $\mathcal R$ ist

$$Sat(F) = \{ R \in Rel(X) \mid R \models F \}$$

– Zwei Mengen F, G von funktionalen Abhängigkeiten über X heißen äquivalent, falls sie die gleichen gültigen Relationen definieren:

$$Sat(F) = Sat(G)$$

Implizierte funktionale Abhängigkeiten (Definition)

- Seien X eine Attributmenge und F eine Menge von funktionalen Abhängigkeiten über X.
- Implikation:
 - Wir sagen, dass die Menge funktionaler Abhängigkeiten F die funktionale Abhängigkeit f impliziert, falls alle F erfüllenden Relationenausprägungen R ∈ Sat(F) auch f erfüllen.
 - Schreibweise:

$$F \vDash f$$

 $F \vDash f$ ist eine semantische Beziehung

- nicht praktikabel: Überprüfe jede gültige Ausprägung $R \in Sat(F)$, ob f gilt
- stattdessen: Armstrong-Kalkül

Armstrong-Kalkül

- Algorithmische Bestimmung aller implizierten funktionalen Abhängigkeiten
- Hilfsmittel: Armstrong-Axiome Seien $\alpha, \beta, \gamma \subseteq X$ Attributmengen.
 - Reflexivität (A_1) : Ist $\beta \subseteq \alpha$ eine Teilmenge von α , so gilt auch $\alpha \to \beta$.
 - Verstärkung (A_2) : Falls $\alpha \to \beta$ gilt, so gilt auch $\alpha \gamma \to \beta \gamma$. Wobei hier $\alpha \gamma \coloneqq \alpha \cup \gamma$.
 - Transitivität (A_3) : Falls $\alpha \to \beta$ und $\beta \to \gamma$ gilt, so gilt auch $\alpha \to \gamma$.

Armstrong-Kalkül

- Algorithmische Bestimmung aller implizierten funktionalen Abhängigkeiten
- Ableitbar :
 - Wir sagen, dass die funktionale Abhängigkeit f aus der Menge der funktionalen Abhängigkeiten F ableitbar ist, falls: Es gibt eine endliche Folge $f_1, \dots, f_{n-1}, f_n = f$, sodass für jedes $1 \le i \le n$ gilt:

 f_i erhält man aus $F \cup \{f_1, \dots, f_{i-1}\}$ durch Anwendung der Axiome A_1, A_2 oder A_3

Schreibweise

$$F \vdash f$$

 $F \vdash f$ ist eine syntaktische Beziehung

Armstrong-Kalkül – Beispiel

Ableitbar :

ProfessorenAdressen(PersNr, Name, Rang, Raum,

Ort, Straße, Hausnummer, PLZ, Vorwahl, Bundesland)

- Funktionale Abhängigkeiten *F*:
 - Ort, Bundesland → Vorwahl
 - PLZ → Ort, Bundesland
 - ...
- Mithilfe der Transitivitätsregel (A_3) : Falls $\alpha \to \beta$ und $\beta \to \gamma$ gilt, so gilt auch $\alpha \to \gamma$ erhält man aus

$$PLZ \rightarrow Ort$$
, Bundesland,

Ort, Bundesland → Vorwahl

die funktionale Abhängigkeit PLZ → Vorwahl.

$$F \vdash (PLZ \rightarrow Vorwahl)$$

Armstrong-Kalkül – Korrektheit und Vollständigkeit

- Liefert das Armstrong-Kalkül alle "gültigen" bzw. von F implizierten FDs?
 Sei X eine Attributmenge und F eine Menge von FDs über X
 - Zu F nennen wir F^+ = { f | F ⊢ f } die (geschlossene) Hülle von F
 - Gilt also

$$F^+ = \{ f \mid F \models f \} ?$$

- Ja, der Armstrong-Kalkül ist korrekt und vollständig.
 - korrekt: Für jede funktionale Abhängigkeit f mit F ⊢ f gilt auch F ⊨ f (es lassen sich nur "gültige" funktionale Abhängigkeiten ableiten, "⊆")
 - *vollständig*: Jede von F implizierte funktionale Abhängigkeit f (also F ⊨ f) lässt sich mithilfe des Armstrong-Kalküls ableiten, d.h. F ⊢ f ("⊇")

(Beweis der Korrektheit jetzt, Beweis der Vollständigkeit später)

Armstrong-Kalkül – Korrektheit

- Korrektheit der Reflexivitätsregel (A_1): Für $\beta \subseteq \alpha$ gilt $\alpha \to \beta$.
 - Seien $R \in \operatorname{Sat}(F)$ eine gültige Relationsausprägung, $\alpha \subseteq X$ und $\beta \subseteq \alpha$. Außerdem seien $t_1, t_2 \in R$ zwei beliebige Tupel mit $t_1[\alpha] = t_2[\alpha]$. Dann gilt auch $t_1[\beta] = t_2[\beta]$.

Insgesamt: $\alpha \rightarrow \beta$ gilt auch in R.

Armstrong-Kalkül – Korrektheit

- Korrektheit der Verstärkungsregel (A_2): Für $\alpha \to \beta$ gilt auch $\alpha \gamma \to \beta \gamma$.
 - Seien $R \in \operatorname{Sat}(F)$ eine gültige Relationsausprägung, $\alpha, \beta, \gamma \subseteq X$ und $\alpha \to \beta \in F$. Außerdem seien $t_1, t_2 \in R$ zwei beliebige Tupel mit $t_1[\alpha \cup \gamma] = t_2[\alpha \cup \gamma]$. Dann gilt auch $t_1[\beta] = t_2[\beta]$ und $t_1[\gamma] = t_2[\gamma]$. Daraus folgt $t_1[\beta \cup \gamma] = t_2[\beta \cup \gamma]$. Insgesamt: $\alpha \cup \gamma \to \beta \cup \gamma$ gilt auch in R.

Armstrong-Kalkül – Korrektheit

- Korrektheit der Transitivitätsregel (A_3): Für $\alpha \to \beta$, $\beta \to \gamma$ gilt auch $\alpha \to \gamma$
 - Seien $R \in \operatorname{Sat}(F)$ eine gültige Relationenausprägung, $\alpha, \beta, \gamma \subseteq X$ und $\alpha \to \beta$, $\beta \to \gamma \in F$. Außerdem seien $t_1, t_2 \in R$ zwei beliebige Tupel mit $t_1[\alpha] = t_2[\alpha]$. Wegen $\alpha \to \beta$, gilt also auch $t_1[\beta] = t_2[\beta]$. Wegen $\beta \to \gamma$, gilt dann auch $t_1[\gamma] = t_2[\gamma]$. Insgesamt: $\alpha \to \gamma$ gilt auch in R.

Es ist für den Herleitungsprozess komfortabel, weitere Regeln hinzuzunehmen

Erweiterung der Armstrong-Axiome um drei Regeln:

Seien $\alpha, \beta, \gamma, \delta \subseteq X$ Attributmengen.

- Vereinigung (A_4) : Gelten $\alpha \to \beta$ und $\alpha \to \gamma$, so gilt auch $\alpha \to \beta \gamma$.

- Dekomposition (A_5) : Falls $\alpha \to \beta \gamma$ gilt, so gelten auch $\alpha \to \beta$ und $\alpha \to \gamma$.

- Pseudotransitivität (A_6): Falls $\alpha \to \beta$ und $\beta \gamma \to \delta$ gilt, so gilt auch $\alpha \gamma \to \delta$.

- Ableitung der Vereinigungsregel (A_4) : Gelten $\alpha \rightarrow \beta$ und $\alpha \rightarrow \gamma$, so gilt auch $\alpha \rightarrow \beta \gamma$.
 - Seien α → β und α → γ ∈ F. Über die Grundregeln erhalten wir

$$(A_2)$$
: Da $\alpha \to \beta$ gilt $\alpha \gamma \to \beta \gamma$

$$(A_2)$$
: Da $\alpha \to \gamma$ gilt $\alpha \to \alpha \gamma$

$$(A_3)$$
: Da $\alpha \to \alpha \gamma$ und $\alpha \gamma \to \beta \gamma$ gilt $\alpha \to \beta \gamma$

Ableitung der Dekompositionsregel (A₅₎):

Falls $\alpha \rightarrow \beta \gamma$ gilt, so gelten auch $\alpha \rightarrow \beta$ und $\alpha \rightarrow \gamma$.

- Sei α → β γ ∈ F. Über die Grundregeln erhalten wir

$$(A_1)$$
: Da $\beta \gamma := \beta \cup \gamma$ gilt $\beta \gamma \rightarrow \beta$

$$(A_1)$$
: Da $\beta \gamma := \beta \cup \gamma$ gilt $\beta \gamma \rightarrow \gamma$

$$(A_3)$$
: Da $\alpha \rightarrow \beta \gamma$ und $\beta \gamma \rightarrow \beta$ gilt $\alpha \rightarrow \beta$

$$(A_3)$$
: Da $\alpha \rightarrow \beta \gamma$ und $\beta \gamma \rightarrow \gamma$ gilt $\alpha \rightarrow \gamma$

• Ableitung der Pseudotransitivitätsregel (A_6) :

Falls $\alpha \to \beta$ und $\beta \gamma \to \delta$ gilt, so gilt auch $\alpha \gamma \to \delta$

Sei $\alpha \to \beta$ und $\beta \gamma \to \delta \in F$. Über die Grundregeln erhalten wir

$$(A_2)$$
: Da $\alpha \to \beta$ gilt $\alpha \gamma \to \beta \gamma$

$$(A_3)$$
: Da $\alpha \gamma \to \beta \gamma$ und $\beta \gamma \to \delta$ gilt $\alpha \gamma \to \delta$

Armstrong-Kalkül – Vereinigung

ProfessorenAdressen(PersNr, Name, Rang, Raum, Ort, Straße, Hausnummer, PLZ, Vorwahl, Bundesland)

- Funktionale Abhängigkeiten F:
 - Ort, Bundesland → Vorwahl
 - Ort, Bundesland, Straße, Hausnummer → PLZ
 - **–** ...
- Beispiel: f = Ort, Bundesland, Straße, Hausnummer $\rightarrow PLZ$, Vorwahl ist ebenfalls aus F ableitbar
 - $-(A_1): f_1 = (Ort, Bundesland, Straße, Hausnummer → Ort, Bundesland)$
 - $-(A_3): f_2 = (Ort, Bundesland, Straße, Hausnummer → Vorwahl)$
 - $-(A_4): f = f_3 = (Ort, Bundesland, Strasse, Hausnummer \rightarrow PLZ, Vorwahl)$

Attributhülle

- Oft ist man nicht an der gesamten Hülle F^+ interessiert:
 - Welche Attribute sind unter einer gegebenen Menge von FDs F von einer bestimmten Attributmenge α funktional bestimmt?
 - Man nennt α^+ die Attributhülle von α unter F

$$\alpha^+ = \{ x \mid \text{es gibt } \alpha \to \beta \in F^+ \text{ mit } x \in \beta \}$$

- Algorithmus zur Bestimmung von Attr $H\ddot{u}lle(F, \alpha)$:
 - $Erg := \alpha$ while (Änderungen an Erg) do foreach FD $\beta \to \gamma$ in F do if $\beta \subseteq Erg$ then $Erg := Erg \cup \gamma$; Ausgabe $\alpha^+ = Erg$;

 $\kappa \subseteq X$ ist genau dann ein Superschlüssel, falls gilt:

$$\kappa^+ = X$$

Attributhülle – Beispiel

Attributhülle

$$\alpha^+ = \{ x \mid \text{es gibt } \alpha \to \beta \in F^+ \text{ mit } x \in \beta \}$$

Beispiel:

$$F = \{A \rightarrow C, B \rightarrow A, AB \rightarrow C\}$$

– AttrHülle(F,{B}):

$$Erg = \{B\}$$

Durchlaufe F:

$$B \to A$$
: $\{A, B\}$.

$$A \rightarrow C: \{B\}, \qquad B \rightarrow A: \{A, B\}, \qquad AB \rightarrow C: \{A, B, C\}$$

Durchlaufe *F* nochmal:

keine Änderung

Ausgabe
$$B^+ = \{A, B, C\}$$

Attributhülle

$$\alpha^+ = \{ x \mid \text{es gibt } \alpha \to \beta \in F^+ \text{ mit } x \in \beta \}$$

- Lemma L1: Die Attributhülle besitzt folgende Eigenschaft.
 - Für jede Teilmenge $V \subseteq \alpha^+$ gilt auch $\alpha \to V \in F^+$.
- Beweis (Skizze):

Wir beschränken uns auf den Fall $V = \{a_1, a_2\}$. Da $V \subseteq \alpha^+$ ist, gibt es $\beta_1 = \{a_1, ...\}$ und $\beta_2 = \{a_2, ...\}$ mit $\alpha \to \beta_1$, $\alpha \to \beta_2 \in F^+$. Mit der Reflexivitätsregel (A_1) sind auch $\beta_1 \to \{a_1\}, \beta_2 \to \{a_2\} \in F^+$. Mit der Transitivitätsregel (A_3) und

$$\alpha \to \beta_1$$
, $\beta_1 \to \{a_1\}\alpha \to \beta_2$, $\beta_2 \to \{a_2\}$

sind auch $\alpha \to \{a_1\}$, $\alpha \to \{a_2\} \in F^+$. Mit der Vereinigungsregel (A_4) erhalten wir

$$\alpha \to \{a_1,a_2\} \in F^+.$$

Armstrong-Kalkül – Vollständigkeit

Das Armstrong-Kalkül ist vollständig, d.h. jede von funktionalen Abhängigkeiten F implizierte FD f lässt sich mithilfe des Armstrong-Kalküls ableiten. Es gilt also

$$F \vDash f \Rightarrow F \vdash f$$

- Beweis (durch Kontraposition):
 - Wir zeigen die Aussage F $\forall f \Rightarrow F \notin f$. D.h. ist eine funktionale Abhängigkeit f nicht ableitbar, so wird sie auch nicht von F impliziert. Sei dazu $f = \alpha \rightarrow \beta$ eine FD mit $F \not\vdash f$ und X die Menge aller Attribute aus F und f.
 - Um zu zeigen, dass $F \not\models f$ gilt, konstruieren wir eine Relation R, in der F gilt, aber f nicht. Konstruktion:

Seien
$$\alpha^+ = \{a_1, ..., a_n\}$$
 und $X \setminus \alpha^+ = \{b_1, ..., b_m\}$.

Konstruiere R wie rechts.

R	a_1 ,, a_n	b_1 ,, b_m
r	1, , 1	1, , 1
t	1, , 1	0,, 0

Armstrong-Kalkül – Vollständigkeit

- Zeige für Vollständigkeit: $F \not\vdash f \Rightarrow F \not\models f$
- Hilfslemma 1:

Es gilt $R \models F$, d.h. alle FDs in F werden von R erfüllt.

Beweis (durch Widerspruch):

Angenommen es existiert $V \to W \in F$ mit $R \not\models V \to W$. Dann muss für die beiden Tupel $r, t \in R$ gelten, dass r[V] = t[V] und $r[W] \neq t[W]$ ist. Nach Konstruktion von R kann r[V] = t[V] nur gelten, wenn $V \subseteq \{a_1, ..., a_n\} = \alpha^+$ ist. Ebenso impliziert $r[W] \neq t[W]$, dass $W \not\subseteq \alpha^+$ ist.

Nach dem vorigen Lemma **L1** folgt aus $V \subseteq \alpha^+$, dass $\alpha \to V \in F^+$ ist. Mit der

Transivititätsregel (A_3) erhalten wir aus $\alpha \to V$, $V \to W \in F^+$, dass auch $\alpha \to W \in F^+$ ist.

Dies liefert einen Widerspruch zu $W \nsubseteq \alpha^+$.

Armstrong-Kalkül – Vollständigkeit

- Zeige für Vollständigkeit: $F \not\vdash f \Rightarrow F \not\models f$
- Hilfslemma 2:

Es gilt $R \not\models f$, d.h. f wird von R nicht erfüllt.

Beweis:

Da f nicht aus F ableitbar ist $(F \not\vdash f)$ gilt insbesondere $\beta \not\subseteq \alpha^+$. Also existiert ein $b_k \in \beta$ mit $b_k \in X \setminus \alpha^+$. Direkt aus der Konstruktion von R folgt dann, dass $r[\alpha] = t[\alpha]$ ist, aber $r[b_k] = 1 \neq 0 = t[b_k]$. Insgesamt erhalten wir, dass $f = \alpha \to \beta$ von R nicht erfüllt wird.

• Es gilt also $R \models F$, aber $R \not\models f$. Darauf folgt $F \not\models f$.

Kanonische Überdeckung – Motivation

• Um für zwei Mengen F und G zu entscheiden, ob sie äquivalent sind (Sat(F) = Sat(G)), reicht es $F^+ = G^+$ zu überprüfen.

Warum?

Freiwillige Übung

- Im Allgemeinen ist die Hülle F^+ einer Menge von FDs sehr groß
- Vor allem bei Datenbankmodifikationen:
 - Überprüfen der Konsistenz anhand von F^+ sehr aufwändig (auch viele triviale Abhängigkeiten)
 - minimale Menge von "erzeugenden" funktionalen Abhängigkeiten wünschenswert
- Statt der Hülle F⁺: kanonische Überdeckung

Kanonische Überdeckung (Definition)

- Sei F eine Menge von funktionalen Abhängigkeiten über einer Attributmenge X. Dann heißt F_c eine K e
 - 1. $F_c^+ = F^+$, d.h. $Sat(F_c) = Sat(F)$ (äquivalent)
 - 2. In F_c existieren keine FDs $\alpha \to \beta$ bei denen α oder β überflüssige Attribute enthalten. D.h.
 - Für alle $A \in \alpha$: $(F_c \setminus (\alpha \to \beta)) \cup (\alpha \setminus A \to \beta) \not\equiv F_c$ (nicht äquivalent)
 - Für alle $B \in \beta$: $(F_c \setminus (\alpha \to \beta)) \cup (\alpha \to \beta \setminus B) \not\equiv F_c$
 - 3. Jede linke Seite einer FD ist einzigartig in F_c (sonst ersetze durch Vereinigungen)
- · Beispiel:

$$F = \{A \to C, B \to A, AB \to C\}$$

Eine kanonische Überdeckung ist $F_c = \{A \rightarrow C, B \rightarrow A\}$. (Algorithmus: nächste Folie)

Kanonische Überdeckung – Algorithmus

- Eingabe: Menge von FDs F, Ausgabe: Kanonische Überdeckung F_c
 - 1. Setze $F_c = F$
 - 2. Führe für jede FD $\alpha \rightarrow \beta \in F_c$ eine Linksreduktion durch:
 - Überprüfe für alle $A \in \alpha$, ob A überflüssig ist. D.h. ob gilt: $\beta \subseteq \text{AttrH\"ulle}(F_c, \alpha \setminus A)$ Falls ja: ersetze $\alpha \to \beta$ durch $\alpha \setminus A \to \beta$.
 - 3. Führe für jede FD $\alpha \rightarrow \beta \in F_c$ eine Rechtsreduktion durch:
 - Überprüfe für alle $B \in \beta$, ob B überflüssig ist. D.h. ob gilt:

$$B \in \text{AttrH\"ulle}((F_c \setminus (\alpha \to \beta)) \cup (\alpha \to \beta \setminus B), \alpha)$$

Falls ja: ersetze $\alpha \to \beta$ durch $\alpha \to \beta \setminus B$.

- 4. Entferne die im 3. Schritt entstandenen FDs der Form $\alpha \rightarrow \emptyset$
- 5. Fasse über die Vereinigungsregel FDs der Form $\alpha \to \beta_1, ..., \alpha \to \beta_n$

$$\alpha \to \beta_1 \cup \cdots \cup \beta_n$$

Beispiel:

$$F = \{A \to C, B \to A, AB \to C\}$$

- 1. Linksreduktion:
 - $A \rightarrow C$: C ist nicht in $(\{A\} \setminus \{A\})^+ = \emptyset^+$. Ok
 - $B \rightarrow A$: Ok
 - $AB \rightarrow C$: Überprüfe A. Ist $C \in (\{A, B\} \setminus \{A\})^+$? Ja, denn

$$B^+ = \{ \}$$

Ersetze $AB \rightarrow C$ durch $B \rightarrow C$.

B muss nun in $B \to C$ nicht mehr überprüft werden.

• Zwischenergebnis:

$$F_c = \{A \to C, B \to A, B \to C\}$$

Beispiel:

$$F = \{A \to C, B \to A, AB \to C\}$$

- 1. Linksreduktion:
 - $A \rightarrow C$: C ist nicht in $(\{A\} \setminus \{A\})^+ = \emptyset^+$. Ok
 - $B \rightarrow A$: Ok
 - $AB \rightarrow C$: Überprüfe A. Ist $C \in (\{A, B\} \setminus \{A\})^+$? Ja, denn

$$B^+ = \{B, A, C\}$$

Ersetze $AB \rightarrow C$ durch $B \rightarrow C$.

B muss nun in $B \to C$ nicht mehr überprüft werden.

• Zwischenergebnis:

$$F_c = \{A \to C, B \to A, B \to C\}$$

Zwischenergebnis:

$$F_C = \{A \rightarrow C, B \rightarrow A, B \rightarrow C\}$$

- 2. Rechtsreduktion:
 - $A \rightarrow C$: Überprüfe C. AttrHülle($\{A \rightarrow \emptyset, B \rightarrow A, B \rightarrow C\}, A$) $= \{$

Also ist C rechts nicht überflüssig.

- B → A: Analog: A ist rechts nicht überflüssig.
- $B \to C$: Überprüfe C. AttrHülle($\{A \to C, B \to A, B \to \emptyset\}, B$) $= \{$

Also ist C auf der rechten Seite überflüssig. Ersetze $B \to C$ durch $B \to \emptyset$.

• Neues Zwischenergebnis:

$$F_C = \{A \rightarrow C, B \rightarrow A, B \rightarrow \emptyset\}$$

• Zwischenergebnis:

$$F_C = \{A \rightarrow C, B \rightarrow A, B \rightarrow C\}$$

- 2. Rechtsreduktion:
 - $A \rightarrow C$: Überprüfe C. AttrHülle($\{A \rightarrow \emptyset, B \rightarrow A, B \rightarrow C\}, A$) $= \{A\}$

Also ist C rechts nicht überflüssig.

- B → A: Analog: A ist rechts nicht überflüssig.
- $B \to C$: Überprüfe C. AttrHülle($\{A \to C, B \to A, B \to \emptyset\}, B$) $= \{$

Also ist C auf der rechten Seite überflüssig. Ersetze $B \to C$ durch $B \to \emptyset$.

• Neues Zwischenergebnis:

$$F_C = \{A \rightarrow C, B \rightarrow A, B \rightarrow \emptyset\}$$

Zwischenergebnis:

$$F_C = \{A \rightarrow C, B \rightarrow A, B \rightarrow C\}$$

- 2. Rechtsreduktion:
 - $A \rightarrow C$: Überprüfe C. AttrHülle($\{A \rightarrow \emptyset, B \rightarrow A, B \rightarrow C\}, A$) $= \{A\}$

Also ist C rechts nicht überflüssig.

- B → A: Analog: A ist rechts nicht überflüssig.
- $B \to C$: Überprüfe C. AttrHülle($\{A \to C, B \to A, B \to \emptyset\}$, B)

$$= \{B, A, C\}$$

Also ist C auf der rechten Seite überflüssig. Ersetze $B \to C$ durch $B \to \emptyset$.

• Neues Zwischenergebnis:

$$F_C = \{A \rightarrow C, B \rightarrow A, B \rightarrow \emptyset\}$$

Zwischenergebnis:

$$F_C = \{A \rightarrow C, B \rightarrow A, B \rightarrow \emptyset\}$$

- 3. Entferne $\alpha \rightarrow \emptyset$:
 - Entferne die Abhängigkeit $B \rightarrow \emptyset$
- 4. Vereinigen:
 - Hier ist nichts zu tun.
- Ergebnis:

$$F_c = \{A \rightarrow C, B \rightarrow A\}$$

