





Facultad de Ingeniería

#### Machine Learning Fundamentals

Workshop para América Latina y el Caribe (WALC) Track 3 – Inteligencia Artificial Aplicada November 12, 2024

#### Pontificia Universidad Javeriana – Bogotá, Colombia









#### School of Engineering

- 3.750 students (3000 undergrad)
- 104 professors
- 20.000 alumni



- 7 specializations
- 12 master programs
- 2 doctoral programs





Centers of Excellence

#### New Research and Laboratories Building

- 14.082 m<sup>2</sup> (700 for student workspaces)
- 93 meters high
- 15 floors and 3 basements
- 10.000 pieces of state-of-the-art equipment
- <a href="https://ingenieria.javeriana.edu.co/nuestro-edificio">https://ingenieria.javeriana.edu.co/nuestro-edificio</a>





#### Diego Méndez Chaves, Ph.D

School of Engineering – Pontificia Universidad Javeriana

Website: https://perfilesycapacidades.javeriana.edu.co/en/persons/diego-mendez-chaves

email: diego-mendez@javeriana.edu.co

- Associate Professor at the Department of Electronics Engineering.
- Director of the Master Program in Internet of Things.
- Director of the Master Program in Electronics Engineering.
- Technical Director of the Center of Excellence and Adoption in IoT (CEA-IoT)
- Research associate at the Marconi Lab in the International Centre for Theoretical Physics (ICTP), Trieste Italy.
- TinyML Academic Network Coordinator.
- Research interests: IoT, embedded systems, wireless sensor networks, participatory sensing, digital systems design and embedded operating systems.



### Agenda

#### • Parte 1:

- Introducción
- El paradigma de ML
- Exploración de la función de pérdida y costo
- Redes neuronales artificiales

#### Parte 2:

- Dense Neural Networks Regresión
- Dense Neural Networks Clasificación
- Métricas de ML





Alexa, play some rock music!

Playing the Rock Hits playlist

#### Al vs. ML vs. DL



Artificial intelligence (AI): any technique that enables computers to mimic human intelligence.

Machine learning (ML): a subset of AI that uses techniques that enable machines to use experience to improve at tasks.

Deep learning (DL): a subset of ML based on artificial neural networks (ANN). The learning process is deep because of its structure.

#### General Steps for Machine Learning

On a high level, the craft of creating machine learning (ML) processes is comprised of several steps:





"The future of ML is *tiny* and bright."

#### 3 main components

"Edge AI is a truly complete technology. As a topic, it makes use of knowledge from everything from the physical properties of semiconductor electronics all the way up to the engineering of high-level architectures that span devices and the cloud. It demands expertise in the most cutting-edge approaches to artificial intelligence and machine learning along with the most venerable skills of bare-metal embedded software engineering. It makes use of the entire history of computer science and electrical engineering, laid out end to end."

Situnayake, Daniel; Plunkett, Jenny Al at the Edge (pp. 215-216) O'Reilly Media Al at the Edge

# 3 main components



#### Interactions

Given your understanding of things at these various intersections, you will have a deep understanding for how to apply TinyML





# **Explicit Coding**

- Defining rules that determine behavior of a program
- Everything is pre-calculated and pre-determined by the programmer
- Scenarios are limited by program complexity



https://en.wikipedia.org/wiki/Breakout (video game)

### The Traditional Programming Paradigm



#### Consider Activity Detection



```
if(speed<4){
    status=WALKING;
}</pre>
```



```
if(speed<4){
    status=WALKING;
} else {
    status=RUNNING;
}</pre>
```



```
if(speed<4){
    status=WALKING;
} else if(speed<12){
    status=RUNNING;
} else {
    status=BIKING;
}</pre>
```



```
// ???
```

Way too complex to code!

### The Traditional Programming Paradigm





#### Activity Detection with Machine Learning



Label = WALKING



Label = RUNNING



Label = BIKING



1111111111010011101 00111110101111110101 010111010101010101110 1010101010100111110

Label = GOLFING



Label = WALKING



Label = RUNNING



Label = BIKING



1111111111010011101 00111110101111110101 0101110101010101011110 10101010101010111110

Label = GOLFING

# Two Approaches









# How good is your model?

a way to measure your accuracy

### Matching X to Y

$$X = \{-1, 0, 1, 2, 3, 4\}$$
  
 $Y = \{-3, -1, 1, 3, 5, 7\}$ 



#### Make a guess!

$$Y = 3X - 1$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$
 $My Y = \{-4, -1, 2, 5, 8, 11\}$ 

#### How good is the guess?

$$Y = 3X - 1$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$
 $My Y = \{-4, -1, 2, 5, 8, 11\}$ 
 $Real Y = \{-3, -1, 1, 3, 5, 7\}$ 









# Houston, we have a problem!



# What if we square<sup>2</sup> them?





# Total that (∑) and take the square root √

sqrt(1 + 1 + 4 + 9 + 16)

= sqrt(31)

= 5.57



### Make another guess!

$$Y = 2X - 2$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$

My 
$$Y = \{ -4, -2, 0, 2, 4, 6 \}$$

Real 
$$Y = \{-3, -1, 1, 3, 5, 7\}$$

$$Diff^2 = \{1, 1, 1, 1, 1\}$$



## Get the same difference, repeat the same process.

$$sqrt(1 + 1 + 1 + 1 + 1)$$

= sqrt(5)

= 2.23



### Make another guess!

$$Y = 2X - 1$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$

My 
$$Y = \{-3, -1, 1, 3, 5, 7\}$$

Real 
$$Y = \{-3, -1, 1, 3, 5, 7\}$$

$$Diff^2 = \{0, 0, 0, 0, 0\}$$



#### Make another guess!

$$Y = 2X - 1$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$

My Y = 
$$\{-3, -1, 1, 3, 5, 7\}$$

Real 
$$Y = \{-3, -1, 1, 3, 5, 7\}$$

$$Diff^2 = \{0, 0, 0, 0, 0\}$$

$$egin{equation} ext{MSE} & = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2 \end{aligned}$$



Goal is to Minimize MSE (Mean Squared Error)

# Finding out the best solution

Trial and error approach















































#### It is important to choose the correct Learning Rate (size of the step)



## Gradient Descent algorithm





#### **Gradient Descent for Two Parameters**



A single minima Global minima

#### **Gradient Descent for Two Parameters**



## Artificial Neural Networks



#### What is an Artificial Neural Network (ANN)?



#### A neuron

a neuron's output is a function of its inputs (in this case only one)



There are only two parameters to adjust: The weight for each input and a bias

First scenario: a regression

#### Linear Regression with a Single Neuron

colab.research.google.com

Regression.ipynb

```
import tensorflow as tf
import numpy as np
from tensorflow import keras
# define a neural network with one neuron
# for more information on TF functions see: https://www.tensorflow.org/api docs
my layer = keras.layers.Dense(units=1, input shape=[1])
model = tf.keras.Sequential([my layer])
# use stochastic gradient descent for optimization and
# the mean squared error loss function
model.compile(optimizer='sgd', loss='mean squared error')
# define some training data (xs as inputs and ys as outputs)
xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
ys = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)
# fit the model to the data (aka train the model)
model.fit(xs, ys, epochs=500)
```

1 layer, 1 neuron, 1 input

Stochastic gradient descent

Inputs and outputs (labels)

Train the model





#### Linear Regression with a Single Neuron

#### colab.research.google.com

Regression.ipynb

```
# [2] import tensorflow as tf
import numpy as np
from tensorflow import keras

# define a neural network with one neuron
# for more information on TF functions see: https://www.tensorflow.org/api_docs
my_layer = keras.layers.Dense(units=1, input_shape=[1])
model = tf.keras.Sequential([my_layer])

# use stochastic gradient descent for optimization and
# the mean squared error loss function
model.compile(optimizer='sgd', loss='mean_squared_error')

# define some training data (xs as inputs and ys as outputs)
xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
ys = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)
# fit the model to the data (aka train the model)
model.fit(xs, ys, epochs=500)
```



### Linear Regression with a Single Neuron

#### colab.research.google.com

Regression.ipynb

```
# [2] import tensorflow as tf
import numpy as np
from tensorflow import keras

# define a neural network with one neuron
# for more information on TF functions see: https://www.tensorflow.org/api docs
my_layer = keras.layers.Dense(units=1, input_shape=[1])
model = tf.keras.Sequential([my_layer])

# use stochastic gradient descent for optimization and
# the mean squared error loss function
model.compile(optimizer='sgd', loss='mean_squared_error')

# define some training data (xs as inputs and ys as outputs)
xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
ys = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)
# fit the model to the data (aka train the model)
model.fit(xs, ys, epochs=500)
```

$$Y = 2X - 1$$

$$Y = 1.9975X - 0.9922$$

Not perfect, but good enough for most cases!

### The Machine Learning Paradigm





$$y = f(x) = wx+b$$

y = 1.9975x - 0.9922



# Gracias!

Prof. Diego Méndez Chaves, Ph.D

Associate Professor - Electronics Engineering Department Director of the Master Program in Internet of Things Director of the Master Program in Electronics Engineering

https://perfilesycapacidades.javeriana.edu.co/en/persons/diego-mendez-chaves

diego-mendez@javeriana.edu.co

