Diagonalisation et Trigonalisation

Pour décrire un endomorphisme f d'un espace vectoriel E, on cherche une base de E dans laquelle la matrice de f soit la plus simple. Pour diverses raisons, on voudrait que cette matrice soit diagonale, c'est-à-dire que les coefficients en dehors de la diagonale soient nuls.

Dans toute la suite $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et $n \in \mathbb{N}^*$.

1 Diagonalisation

1.1 Valeurs propres et vecteurs propres d'un endomorphisme

Soit E un espace vectoriel sur \mathbb{K} et f un endomorphisme de E.

Définition 1.1. On dit que $\alpha \in \mathbb{K}$ est valeur propre de f s'il existe un vecteur non nul x de E tel que $f(x) = \alpha x$; x est alors appelé vecteur propre de f associé à la valeur propre α .

Définition 1.2. L'ensemble des valeurs propres d'un endomorphisme f de E s'appelle le spectre de f et on le note $Sp_{\mathbb{K}}(f)$ ou tout simplement Sp(f) s'il n y a pas d'ambiguité sur \mathbb{K}

Exemples 1.1. 1) Si f est une homothétie d'un espace vectoriel E, $f = a \cdot Id_E$, alors tout vecteur non nul est un vecteur propre associé à la valeur propre a.

2) Soit E l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} , indéfiniment dérivables. L'application $D: E \longrightarrow E$ qui à une fonction associe sa dérivée est un endomorphisme de E. Alors pour tout réel α , la fonction $f_{\alpha}(t) = \exp(\alpha t)$ est un vecteur propre associé à la valeur propre α , car $f_{\alpha} \neq 0$ et $D(f_{\alpha}) = f' = \alpha f_{\alpha}$.

Dans le théorème suivant nous caractérisons de façons plus précise les valeurs propres d'un endomorphisme

Théorème 1.1. Soit $f \in \mathcal{L}(E)$ et α un scalaire. Les assertions suivantes sont équivalentes:

- i) α est une valeur propre de f.
- ii) L'endomorphisme $f \alpha Id_E$ n'est pas injectif.
- $iii) det(f \alpha Id_E) = 0.$
- iv) $det(A \alpha I_n) = 0$, où A est la matrice de f dans n'importe quelle base de E.

Preuve. Exercice.

1.2 Polynôme caractéristique

Définition 1.3. Le polynôme caractéristique de $f \in \mathcal{L}(E)$ est défini par

$$\chi_f(X) = det(f - \alpha Id_E).$$

Si E est un \mathbb{K} -espace vectoriel, alors $\chi_f(X) \in \mathbb{K}[X]$. De plus, si M est la matrice de f dans une base quelconque B de E, alors $\chi_f(X) = \det(M - XI_n)$.

Exemple 1.1. Si $A = [a_{i,j}]$ est une matrice carrée d'ordre $n \ge 1$, le polynôme caractéristique de A, que l'on note χ_A , est le déterminant

$$\chi_A(X) = \det(A - XI_n) = \begin{vmatrix} a_{1,1} - X & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} - X & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} - X \end{vmatrix}$$

Exemple 1.2. Voici quelques polynômes caractéristiques de matrices :

- 1) matrice nulle: $\chi_0 = (-1)^n X^n$;
- 2) matrice unité d'ordre $n: \chi_{I_n} = (1-X)^n$;
- 3) matrice diagonale $D = diag(\lambda_1, \dots, \lambda_n) : \chi_D = \prod_{i=1}^n (\lambda_i X);$
- 4) matrice triangulaire $T = [t_{i,j}] : \chi_T = \prod_{i=1}^n (t_{i,i} X)$.

Théoréme 1.2. Les valeurs propres d'un endomorphisme f sur un \mathbb{K} -espace vectoriel E sont exactement les racines de son polynôme caractéristique qui sont dans K.

Preuve. Exercice.

Remarque 1.1. Le développement du déterminant $det(f - \alpha Id_E)$ donne un polynome en α de degré $n = dim_{\mathbb{K}}E$ et à coefficients dans \mathbb{K} .

Comme un polynôme de degré n a au plus n racines on obtient :

Corollaire 1.1. En dimension n un endomorphisme (ou une matrice d'ordre n) a au plus n valeurs propres distinctes.

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E. L'ordre de multiplicité d'une valeur propre α de f est l'ordre de multiplicité de la racine α du polynôme caractéris- tique de f.

Deux coefficients importants du polynôme caractéristique

Définition 1.4. Soit $A = (a_{ij})_{1 \leq i,j \leq n} \in M_n(\mathbb{K})$. On appelle trace de A, que l'on note tr(A), la somme des ééments diagonaux de A; soit

$$tr(A) := \sum_{i=1}^{n} a_{ii}.$$

Proposition 1.1. Soit $A \in M_n(\mathbb{K})$. Le polynôme caractéristique de A s'écrit :

$$P_A(\alpha) = (-1)^n \alpha^n + (-1)^{n-1} tr(A) \alpha^{n-1} + \dots + det(A).$$

Preuve. Exercice.

Proposition 1.2. Montrer que Deux matrices semblables de $M_n(\mathbb{K})$ ont le même polynôme caractéristique et les mêmes valeurs propres.

Preuve. Rappelons que deux matrices semblables ont le même déterminant. Si A et B sont deux matrices semblables, et P une matrice inversible telle que $B = P^{-1}AP$, alors

$$B = P^{-1}AP \Longrightarrow B - XI_n = P^{-1}AP - XI_n = P^{-1}(A - XI_n)P$$

les matrices $B - XI_n$ et $A - XI_n$ sont semblables, d'où

$$\det(B - XI_n) = \det(P^{-1}(A - XI_n)P) = \det(A - XI_n)$$

ce qui donne le résultat.

Corollaire 1.2. Deux matrices carrées semblables ont la même trace

Preuve. Soient $A, B \in M_n(\mathbb{K})$ tel que $A \sim B$. D'après la proposition 1.2, on a $P_A = P_B$. Ceci entraîne que P_A et P_B ont les mêmes coefficients. En particulier, le coefficient de α^{n-1} dans P_A est égale au coefficient de α^{n-1} dans P_B . Ce qui donne (en vertu de la proposition 1.1)

$$(-1)^{n-1}tr(A) = (-1)^{n-1}tr(B).$$

D'où tr(A) = tr(B), comme il fallait le prouver.

1.3 Sous-espaces vectoriels stables

Définition 1.5. Soient E un \mathbb{K} -espace vectoriel et u un endomorphisme de E; un sous-espace vectoriel F de E est dit stable pour u si, et seulement si, u(F) est inclus dans F.

Proposition 1.3 (Application induite sur un sous-espace vectoriel stable). Si f est un endomorphisme de E et F un sous-espace vectoriel stable pour f, l'application

$$u := f_{|F} \quad x \in F \longmapsto f(x)$$

induite par u sur F, est un endomorphisme de F.

Preuve. Exercice.

Théoréme 1.3 (Stabilité de l'image et du noyau). Si u et v sont deux endomorphismes de E qui commutent, im(u) et ker(u) sont stables par v.

Preuve. Exercice.

Sous-espace propre

Définition 1.6. Soit α une valeur propre d'un endomorphisme f. On appelle sous- espace propre associé à α , le sous-espace vectoriel de E défini par $E_{\alpha} = ker(f - \alpha Id_E)$.

L'analogue de cette définition pour les matrices carrées est évident.

Remarque 1.2. 1) C'est en cherchant le noyau de l'application $f - \alpha Id_E$ que l'on détermine les vecteurs propres associés à la valeur propre α .

2) Un espace propre est toujours de dimension ≥ 1 (car il contient au moins un vecteur propre, qui est un vecteur non nul).

Nous passons maintenant à étudier quelques théorèmes sur les sous espaces propres.

Théorème 1.4. Soient f un endomorphisme de E et $\alpha_1, \dots \alpha_p (p \ge 2)$ des valeurs propres deux-à-deux distinctes de f. Alors la somme :

$$E_{\alpha_1} + E_{\alpha_2} + \cdots + E_{\alpha_n}$$

est directe.

Preuve. Exercice.

Théoréme 1.5. Soit $f \in \mathcal{L}_{\mathbb{K}}(E)$ et α une valeur propre de f. Alors la dimension du sous-espace propre associé à la valeur propre α est inférieure ou égale à la multiplicité de la valeur propre α . En particulier, si α est une valeur propre simple (multiplicité égale à 1) alors $dim(E_{\alpha}) = 1$.

Définition 1.7. Soient f un endomorphisme de E et α une valeur propre de f.

- 1) On définit la multiplicité algébrique de α , que l'on note $m_a(\alpha)$, comme étant la multiplicité de α en tant que racine du polynôme caractéristique P_f de f.
- 2) On définit la multiplicité géométrique de α , que l'on note $m_g(\alpha)$, comme étant la dimension de l'espace propre E_{α} associé à α .

Théoréme 1.6. Soit f un endomorphisme de E. Alors pour toute valeur propre α de f, on a:

$$m_g(\alpha) \le m_a(\alpha).$$

1.3.1 Critères de diagonalisation

Définition 1.8. On dit qu'un polynôme P(X) est scindé dans \mathbb{K} s'il est décomposable en un produit de facteurs du premier degré à coefficients dans \mathbb{K} , c'est-à-dire s'il peut s'écrire sous la forme :

$$P(X) = c \prod_{i=1}^{n} (X - \alpha_i) \quad c, \alpha_1, \cdot, \alpha_n \in \mathbb{K}.$$

Si le polynôme caractéristique $P_f(X)$ d'un endomorphisme f est scindé dans \mathbb{K} , alors on peut l'écrire sous la forme

$$P_f(X) = (-1)^n \prod_{i=1}^r (X - \alpha_i)^{m_i}$$

où $r, 1 \leq r \leq n$, représente le nombre de valeurs propres distinctes, les $(\alpha_i)_{1 \leq i \leq r}$ sont les différentes valeurs propres et les $(m_i)_{1 \leq i \leq r}$ sont leurs ordres de multiplicité respectifs. On a de plus $\sum_{i=1}^r m_i = n$.

Définition 1.9. Un endomorphisme f de E est dit diagonalisable s'il existe une base $(V_i)_{1 \leq i \leq n}$ de E telle que la matrice associée à f relativement à $(V_i)_{1 \leq i \leq n}$ soit diagonale, c'est-'a-dire de la forme :

$$D = \begin{pmatrix} \lambda_1 & & (\mathbf{0}) \\ & \ddots & \\ (\mathbf{0}) & & \lambda_n \end{pmatrix}$$

(avec $\lambda_1 \cdots \lambda_n \in \mathbb{K}$).

La version matricielle de cette définition est la suivante :

Définition 1.10. Une matrice A de $M_n(\mathbb{K})$ est dite diagonalisable si elle est semblable à une matrice diagonale ; autrement dit, s'il existe $P \in GL_n(\mathbb{K})$ tel que la matrice $P^{-1}AP$ soit diagonale.

Proposition 1.4. Un endomorphisme f de E est diagonalisable si et seule- ment s'il existe une base de E qui soit constituée de vecteurs propres de f.

Preuve. Exercice.

Théorème 1.7 (fondamentale). Soit f un endomorphisme de E. Alors f est diagonalisable si et seulement si les deux conditions suivantes sont satisfaites :

- i) Le polynôme caractéristique P_f de f est scindé sur \mathbb{K} .
- ii) Pour toute valeur propre α de f, on a: $m_a(\alpha) = m_g(\alpha)$.

Preuve. Exercice.

Le corollaire suivant est presque immédiat mais il est trés important.

Corollaire 1.3. Soit f un endomorphisme de E. Si le polynôme caractéristique P_f de f est scindé sur K et ne posséde que des racines simples alors f est diagonalisable.

Théoréme 1.8. Soient f un endomorphisme de E et $\alpha_1, \dots, \alpha_p$ $(p \in \mathbb{N}^*)$ les valeurs propres deux à deux distinctes de f. Alors f est diagonalisable si et seulement si l'on a:

$$E_{\alpha_1} \bigoplus E_{\alpha_2} \bigoplus \cdots \bigoplus E_{\alpha_p} = E.$$

Méthode de diagonalisation

Afin de diagonaliser un endomorphisme f, on peut procéder comme suit :

- 1) Calcule et scindage de P_f : $P_f(X) = \prod_{i=1}^r (\lambda_i X)^{m_i}$. si P_f n'est pas scindé, alors f n'est pas diagonalisable.
- 2) Pour chaque racine λ_i de P_f , détermination d'une base $\{u_{i_1}, \dots, u_{i_{n_i}}\}$ du sous-espace propre $E_{\lambda_i} = \ker(f \lambda_i Id_E)$.
 - i) Si l'une de ces bases vérifie : $n_i = dim(E_{\lambda_i}) < m_i$, (où m_i la multiplicité de λ_i), alors f n'est pas diagonalisable.
 - ii) Sinon, on a $n_i = dim(E_{\lambda_i}) = m_i$ pour tout i et l'on obtient une base de E en les juxtaposant. La matrice de passage à cette nouvelle base et la matrice diagonale représentant f dans cette dernière s'en déduisent immédiatement :

2 Trigonalisation

2.0.1 Préliminaires

Définition 2.1. Une matrice $A = (a_{ij})_{1 \le i,j \le n} \in M_n(K)$ est dite triangulaire supérieure si:

$$a_{ij} = 0$$
 pour tous $i, j \in \{1, \dots, n\}$ tels que $i > j$.

Elle est dite triangulaire inférieure si :

$$a_{ij} = 0$$
 pour tous $i, j \in \{1, \dots, n\}$ tels que $i < j$.

Définition 2.2. Un endomorphisme f de E est dit trigonalisable s'il existe une base $(V_i)_{1 \leq i \leq n}$ de E suivant laquelle la matrice représentant f soit triangulaire supérieure.

La version matricielle de cette définition est la suivante :

Définition 2.3. Une matrice carrée A est dite trigonalisable si elle est semblable à une matrice triangulaire T, supérieure ou inférieure, c'est-à-dire s'il existe une matrice inversible P telle que $A = P^{-1}TP$.

Trigonaliser f signifie : Rechercher une telle base. Si f a dans la base $\{u_1, u_2, \dots, u_n\}$ une matrice triangulaire supérieure.

alors pour tout j $f(u_j) = \sum_{i=1}^{j} a_{ij}u_i$

Trigonaliser $f: E \longrightarrow E$ revient donc à chercher une base $\{u_1, u_2, \cdots, u_n\}$ de E telle que pour tout $j \in \{1, 2, \cdots, n\}$, $f(u_j)$ appartient au sous-espace engendré par les vecteurs u_1, u_2, \cdots, u_j :

$$f(u_j) \in vect(u_1, u_2, \cdots, u_j)$$

En particulier, u_1 est nécessairement un vecteur propre de f.

2.1 Caractérisation des endomorphismes trigonalisables

La caractérisation des endomorphismes trigonalisables est donnée par le théorèeme suivant:

Théoréme 2.1. Soient E un \mathbb{K} -espace vectoriel de dimension finie n et f un endomorphisme de E. Alors u est trigonalisable, si et seulement si, le polynôme caractéristique de f est scindé sur \mathbb{K} .

Preuve. Exercice.

Remarque 2.1. 1) Tout endomorphisme (ou matrice) diagonalisable est trigonalisable.

- 2) Si \mathbb{K} est un corps algèbriquement clôs et si E est un \mathbb{K} -espace vectoriel, alors tout endomorphisme de E est trigonalisable. Donc en particulier, tout endomorphisme d'un \mathbb{C} -espace vectoriel est trigonalisable.
- 3) Si f est un endomorphisme trigonalisable et si A est une matrice triangulaire qui représente f dans une base de E, alors les éléments diagonaux A sont les valeurs propres de f, c'est à dire, on a

$$A = \begin{pmatrix} \lambda_1 & a_{12} & \dots & a_{1n} \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1n} \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

où $\lambda_1, \lambda_2, \dots, \lambda_n$ sont les valeurs propres non nécessirement deux à deux distinctes de f. On voit donc que le déterminant et la trace de f s'expriment uniquement en fonction des valeurs propres :

$$det(f) = \prod_{i=1}^{n} \lambda_i \ et \ tr(f) = \sum_{i=1}^{n} \lambda_i.$$

3 Polynômes et endomorphismes

Soit E un \mathbb{K} -espace vectoriel. Pour tout endomorphisme f de E et pour tout entier r > 0, on définit um par récurrence de la manière suivante :

- i) Pour r = 0. On pose $f^0 = Id_E$.
- 2) Pour $r \geq 1$. $f^r = f \circ f^{r-1} = f^{r-1} \circ f$. Autrement dit, pour tout $r \in \mathbb{N}^*$, on a

$$f^r = \underbrace{f \circ f \circ \cdots \circ f}_{r \text{ fois}}$$

Soit, maintenant, P un polynôme de $\mathbb{K}[X]$, avec $P = a_o + a_1X + \cdots + a_rX^r$. On définit l'endomorphisme P(f), appelé polynôme en f, par :

$$P(f) = a_0 I d_E + a_1 f + \dots + a_r f^r = \sum_{i=0}^r a_i f^i.$$

On obtient alors les propriétés mentionnées dans la proposition suivante :

Proposition 3.1. 1) Si P = 1 alors $P(f) = ld_E$.

- 2) $\forall P \in \mathbb{K}[X], \forall Q \in \mathbb{K}[X], (P+Q)(f) = P(f) + Q(f).$
- 3) $\forall P \in \mathbb{K}[X], \forall Q \in \mathbb{K}[X], (P \circ Q)(f) = P(f) \circ Q(f).$

1),2) et 3) montrent que l'application $\varphi_f: P \in \mathbb{K}[X] \longmapsto P(u) \in \mathcal{L}(E)$ est un morphisme d'algèbre.

Preuve. La démonstration est laissée à titre d'exercice.

Remarque 3.1. Si A est la matrice de f dans une base B de E, alors le polynôme de matrice P(A) défini par :

$$P(A) = a_0 I_n + a_1 A + \dots + a_r A^r.$$

est la matrice de P(f) dans la base B.

Puisque u^p commute avec u^q , les endomorphismes u et P(u) commutent, ainsi que P(u) et Q(u), ce qui donne la

Proposition 3.2. Pour tout polynôme P à coefficients dans \mathbb{K} et tout endomorphisme u de E, imP(u) et kerP(u) sont stables par u.

Théoréme 3.1. Pour tout endomorphisme f de E, il existe un polynôme non nul $Q \in \mathbb{K}[X]$ tel que Q(f) = 0 (où 0 est l'endomorphisme nul de E).

Preuve. E un \mathbb{K} -espace vectoriel de dimension n, donc $\mathcal{L}(E)$ est un \mathbb{K} -espace vectoriel de dimension n^2 . Par conséquent, les $n^2 + 1$ endomorphismes Id_E , f, $f^2 \cdots , f^{n^2}$ sont liés. Donc il existe des coefficients $a_0, a_1, \cdots , a_{n^2}$ de \mathbb{K} non tous nuls, tels que

$$a_0 I d_E + a_1 f + \dots + a_{n^2} f^{n^2} = 0.$$

C'est-à-dire le polynôme non nul $Q(X) = a_0 + a_1X + \cdots + a_{n^2}X^{n^2}$ vérifie Q(f) = 0.

Définition 3.1. On appelle polynôme annulateur de f tout polynôme $Q(X) \in \mathbb{K}[X]$ tel que Q(f) = 0.

3.1 Polynôn1e minimal

Théoréme 3.2. Soit E un \mathbb{K} -espace vectoriel de dimension finie = n, avec n > 1. Alors pour tout endomorphisme f de E, il existe un unique polynôme $P \in \mathbb{K}[X]$, non constant et unitaire, tel que

- i) P(f) = O.
- ii) Si Q est un autre polynôme de $\mathbb{K}[X]$, vérifiant Q(f) = 0, alors P divise Q.

Si Q est un autre polynôme de $\mathbb{K}[X]$, vérifiant Q(f) = 0, alors P divise Q. Dans ce cas, P s'ppelle le polynôme minimal de f et se note M_f