

Transformación de MER a Tablas

- •Licenciatura e Ingeniería en Informática
- •2do. año

Conceptos Generales

- Las estructuras consistirán en TABLAS
 - Sus columnas corresponden a ATRIBUTOS atómicos
 - Y sus filas serán los registros de datos.
- Un esquema de relación $R(A_1,...,A_n)$
 - R será el nombre de la relación
 - $-A_1...A_n$ serán los atributos con dominios $D_1...D_n$
 - Manejado por el DDL
- r(R)
 - Será una instancia de un esquema de relación R.
 - Conjunto de tuplas en un cierto instante del tiempo del contenido de la Base de Datos.
 - Manejado por el DML

Clave Primaria

- Dada una tabla T con atributos (a₁...a_n)
 - Diremos que un subconjunto de atributos es CLAVE de T si dada una combinación de datos a_i...a_m el resto de los atributos queda unívocamente determinado.
 - La clave que se utiliza para determinar una Entidad del mundo real se denomina *Clave Primaria* de T Pk(T)
- Ej. Empleados (CI, nombre, apellido)
 - Instancias serán
 - <"1.723.458-2","Ana","López">
 - <"3.723.689-3","Beatriz","García">

Claves Foráneas (Foreign Keys)

- Dado un esquema R, un conjunto de atributos X será una FK de R si:
 - Los atributos X coinciden en dominio con los de una clave Y de otro esquema S.
 - Los valores que tomará X en las tuplas de la instancia r(R) corresponden a valores de Y en la instancia s(S).
- Se dice que B posee clave foránea hacia A si todo elemento de la tabla B **debe** tener su atributo clave dentro de un atributo clave de alguna tupla de la tabla A

Fk(B) referencia Pk(A) y Pk(A) = Fk(B)

Integridad Referencial

- Reglas estáticas de definición de estructuras para garantizar su integridad.
- Si existe una Integridad Referencial entre R y S, donde R referencia a S, decimos que en R hay una FK sobre S.
- Ej.:
 - Todo Empleado pertenece a una Sección

EMPLEADOS(<u>CI</u>, Nombre, Dirección, NroSecc)
SECCIONES(<u>NroSecc</u>, NomSecc)

- Nrosecc <u>debe</u> ser clave en Secciones
- Empleados.Nrosecc <u>referencia</u> a Secciones.NroSecc (Toda tupla de empleados debe tener secciones existentes en Secciones)

Operaciones de modificación

- Dados el esquema R(a₁..a_n) y su instancia r(R)
- Insert
 - Insert $\langle a_1 ... a_n \rangle$ into R
 - Las tuplas insertadas deben cumplir la integridad referencial.
- Delete
 - Delete from R where condicion
 - Debo considerar las posibles violaciones de la integridad referencial que pueda causar un borrado.
- Update
 - Update R set <atr>=valor,... where condicion
 - Debo considerar cuando las actualizaciones puedan violar la integridad referencial

Entidades Fuertes (I)

- Por cada Entidad se crea una Tabla
 - Cada atributo <u>simple</u> será un nuevo atributo de la tabla.
 - Cada atributo <u>compuesto</u> agregará nuevos atributos en la tabla por cada sub-atributo de la estructura.
 - El atributo determinante será clave e irá subrayada.

EMPLEADOS(CI, Nombre, Sexo, Departamento, Ciudad, Calle, Nro_puerta)

Entidades Fuertes (II)

- Los atributos <u>multivaluados</u> generan una nueva tabla.
- Tendrá un atributo por cada componente.
- Tendrá la clave de la entidad
- La clave serán todos sus atributos.

EMPLEADOS +

EMP_TELEFONOS(<u>CI, nro_telefono</u>)

Entidad Débil (I)

- Por cada Entidad Débil se crea una Tabla
 - Se incluye como atributos la clave primaria de la Tabla de la entidad fuerte.
 - No se crea una tabla para la relación
 - Debe haber una clave foránea desde la entidad débil hacia la fuerte.

HOSPITAL(<u>NomHosp</u>, Direccion)

SALA(<u>NomHosp</u>, NroSala, #camas)

SALA.NomHosp REFERENCIA HOSPITAL.NomHosp

Entidad Débil (II)

- En el ejemplo, toda tupla de SALAS debe tener una pareja Hospital-Sala en alguna tupla de HOSPITALES con ese dato de Hospital
 - Nomhosp es clave en HOSPITALES
 - Nomhosp, Nomsala es clave en SALAS

Relaciones Binarias N:N

- Para cada Relación Binaria con cardinalidad N:N se crea una tabla.
 - Se colocan las claves primarias de las tablas que representan a cada una de las entidades participantes.
 - Los atributos de la relación se tratan como si fuera una entidad.
 - La clave dependerá de la realidad, por lo general será la pareja de claves de ambas entidades.

Relaciones Binarias N:N

• Ejemplos: Un alumno se podrá inscribir a una materia varias veces.

• Si tuviéramos la restricción de que se puede inscribir pero sólo una vez para cada fecha, entonces la relación INSCRIPTO sería:

INSCRIPTO (NroAlumno, CodMateria, Fecha)

Relaciones Binarias N:N

Otro ejemplo:

- SALAS(<u>nombre</u>,cant_camas)
- EMPLEADO(cedula, nombre, ciudad, calle, numero)
- TRABAJAN(nombreSala,cedula,entrada,salida)

Relaciones 1:N

- Si la relación es 1:N puede NO CREARSE una nueva tabla
 - Se puede representar la relación en la tabla que representa a la entidad con cardinalidad N.
 - Se agrega a dicha tabla los atributos que son clave primaria de la tabla que representa la otra entidad.
 - Se agregarán también sus atributos simples o estructurados.
- Si la relación es PARCIAL sobre B, cuando un elemento de B no esté relacionado con alguno de A clave_a contendrá el valor null
- Si la relación es TOTAL sobre B, se debe definir una restricción de integridad referencial de B hacia A.

Relaciones 1:N

• Ejemplos: Un empleado trabaja en una única sección

N empleados trabajan en 1 sala

- SALAS(<u>nombre</u>,cant_camas)
- EMPLEADOS(<u>cedula</u>,nombre,ciudad,calle,numero, **nombreSala,hEntrada,hSalida**)

Relaciones

- Mínimos y máximos definidos
 - Cuando existen mínimos > 1 o cotas superiores no se pueden definir mediante restricciones estáticas.
 - Deben ser definidas por código. Ej. Triggers.

Agregaciones

- Se tratan como una relación
- Independientemente de las cardinalidades se debe implementar como una nueva tabla (ya que se relacionará con alguna otra entidad.

Categorizaciones (I)

• Existen diferentes implementaciones, dependiendo de la cantidad de atributos, solapamiento y completitud.

Categorizaciones (II)

- Caso 1
 - Se crea una taba para la super entidad.
 - Se crea una tabla por cada sub-entidad con referencia a la super entidad.
 - Debo considerar las restricciones de integridad referencial entre las tablas.

Categorizaciones (III)

- Caso 2 (relación no total y la super entidad no posee atributos propios)
 - Se crea una tabla por cada sub entidad más la clave de la super entidad.
 - No se necesita crear una tabla para la super entidad.

Categorizaciones (IV)

- Caso 3 (relación total y sub entidades sin atributos propios)
 - Dos posibles soluciones
 - Crear una tabla para la super entidad con un atributo extra de **tipo**.
 - Crear una tabla para la super entidad con atributos booleanos como sub entidades existan.

Este material es de uso exclusivo para los cursos impartidos por Universidad de la Empresa y asociados

Categorizaciones (V)

- Ventajas y desventajas de las diferentes opciones:
 - Versión 1
 - No permite implementar solapamiento
 - Permite fácil agregado de nuevas sub entidades.
 - Versión 2
 - Permite solapamiento
 - Agregar nuevas sub entidades implica modificar el esquema de la super entidad.

Categorizaciones (VI)

- Caso 4 (todas las entidades poseen atributos propios)
 - Crear una única tabla conteniendo la unión de los atributos de la super entidad más las sub entidades (considerando tipo u atributos booleanos).
 - Puede contener valores nulos y exige restricción sobre datos correctos respecto a atributos particulares de las sub entidades.
 - Crear tablas para las sub entidades como entidades independientes que tendrán los atributos de la super entidad. Cubre solapamiento y totalidad, puede generar redundancia.
 - Crear tabla para la super entidad y tablas para las subentidades con la clave de la super entidad incluyendo restricciones de integridad desde las sub entidades a la super entidad.
 - Cubre solapamiento y totalidad, evita redundancia.