GRE Math Subject Prep Course: Calculus I

June 14, 2021

1. (Chapter 2 Prob 46) The smallest positive integer x for which the power series $\sum_{n=1}^{\infty} \frac{n!(2n)!}{(3n)!} x^n$ does *not* converge is

(A) 4

(B) 6

(C) 7

(D) 8

(E) 9

2. (Chapter 2 Prob 47) In the Taylor series expansion (in powers of x) of the function $f(x) = e^{x^2-x}$, what is the coefficient of x^3 ?

(A) -7

(B) $-\frac{3}{2}$

(C) $-\frac{7}{6}$

(D) $\frac{7}{6}$

(E) $\frac{3}{2}$

3. (Week 3 Prob 1) Suppose $f(x) = \sum_{n=1}^{\infty} (-1)^n x^{3n}$ for $x \in (-1,1)$. Find a closed form of f'(x).

(A) $3x^2$

(B) $-3x^2$

(C) $\frac{3x^2}{1+x^3}$

- (D) $\frac{3x^2}{(1+x^3)^2}$
- (E) $-\frac{3x^2}{(1+x^3)^2}$

4. (Week 3 Prob 2) For which values of x does $\sum_{n=1}^{\infty} \frac{n! x^{2n}}{n^n (1+x^{2n})}$ converge?

- (A) It diverges for any $x \in \mathbb{R}$
- (B) It converges for any $x \in \mathbb{R}$
- (C) It converges only for |x| < e
- (D) It converges only for |x| < 2e
- (E) It converges only for $|x| < \frac{1}{e}$

5. (Week 3 Prob 3) Compute $\int_0^\infty \lfloor x \rfloor e^{-x} dx$ where $\lfloor x \rfloor$ denotes the largest integer smaller than x.

 $(\mathbf{A}) \quad \frac{1}{e-1}$

(B) $\frac{1}{e+1}$

(C) $\frac{1}{e}$

(D) e - 1

(E) e+1

- 6. (Week 3 Prob 6) For which x does $\sum_{n=1}^{\infty} nx^n$ converge?
 - (A) |x| < 1
- (B) |x| < 2
- (C) |x| < e

- (D) |x| < 2e
- (E) $|x| < e^2$
- 7. (Week 3 Prob 6) For which x does $\sum_{n=1}^{\infty} n! x^n$ converge?
 - (A) |x| < 1
- (B) |x| < 2
- (C) |x| < e

- (D) |x| < 2e
- (E) $|x| < e^2$
- 8. (Week 3 Prob 7) Find the Taylor series for $f(x) = \int_0^x \frac{\sin(t)}{t} dt$ around x = 0.
- (A) $\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!(2n)}$ (B) $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!(2n+1)}$ (C) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!(2n+1)}$ (D) $\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!(2n+1)}$ (E) $\sum_{n=1}^{\infty} \frac{x^{2n+1}}{(2n+1)!(2n+1)}$

- 9. (Week 3 Prob 9) Find $f^{100}(2)$ for $f(x) = \frac{3}{x^2 + 5x + 4}$.
 - (A) 100!

- (B) $100!(\frac{1}{3^{101}} \frac{1}{6^{101}})$ (C) $100!(\frac{1}{6^{101}} \frac{1}{3^{101}})$

- (D) $\frac{1}{3^{101}} \frac{1}{6^{101}}$
- (E) $\frac{1}{6^{101}} \frac{1}{3^{101}}$

Answer: CCEBA AACB