biniLasso vignette

AUTHOR Abdollah Safari

Introduction

The biniLasso and its sparse variant, miniLasso, are novel methods for prognostic analysis of high-dimensional survival data that enable detection of multiple cut-points per continuous feature to categorize them for obtaining more interpretable results from prediction models. This approach leverages the Cox proportional hazards model with two key innovations: (1) a cumulative binarization scheme with L1-penalized coefficients operating on context-dependent cut-point candidates, and (2) for miniLasso, additional uniLasso regularization, a recently developed two-stage regularized regression, to enforce sparsity while preserving univariate coefficient patterns. For details, see the original paper by Safari et al. available at https://arxiv.org/abs/2503.16687.

Initial setup

```
library(tidyverse)
library(magrittr)
library(survival)
library(glmnet)
library(pec)
library(uniLasso)
library(kableExtra)
library(biniLasso)
source("functions.R")
gbm_data_fnl <- read_rds("data/gbm_fnl.rds")</pre>
brca_data_fnl <- read_rds("data/brca_fnl.rds")</pre>
kirc_data_fnl <- read_rds("data/kirc_fnl.rds")</pre>
colnames(gbm_data_fnl) <-</pre>
  stringr::str_replace_all(colnames(gbm_data_fnl), "-", "_")
colnames(brca_data_fnl) <-</pre>
  stringr::str_replace_all(colnames(brca_data_fnl), "-", "_")
colnames(kirc_data_fnl) <-</pre>
  stringr::str_replace_all(colnames(kirc_data_fnl), "-", "_")
```

```
bussy_est <- read.csv("data/binacox_tcga_cuts.csv",</pre>
                      header = TRUE, row.names = NULL)
Bussy cuts <-
  bussy_est[-1, ] %>%
  select(data, cut_points_estimate_x) %>%
  rowwise %>%
  mutate(opt cuts bina = list(cuts to list(cut points estimate)
  select(data, opt_cuts_bina) %>%
  ungroup
names(Bussy cuts$opt cuts bina[Bussy cuts$data == "GBM"][[1]]) 
  colnames(gbm_data_fnl)[! colnames(gbm_data_fnl) %in% c("barco
names(Bussy_cuts$opt_cuts_bina[Bussy_cuts$data == "KIRC"][[1]])
  colnames(kirc_data_fnl)[! colnames(kirc_data_fnl) %in% c("barc
names(Bussy_cuts$opt_cuts_bina[Bussy_cuts$data == "BRCA"][[1]])
  colnames(brca_data_fnl)[! colnames(brca_data_fnl) %in% c("bare
n bins \leftarrow 50
set.seed(12345)
```

Data preprocessing and extract candidate cut-points

Before fitting the model to extract optimal cut-points, one needs to specify cut-points candidates. We will do this by using the num_to_cat function. This can be done either by simply specifying number of bins for numeric covariates (set n_bins argument), or more explicitly, passing the candidate cut-points per covariate by setting the cuts_list argument (see function help for more details and a simple example). Here, we use the former and set the number of bins to 50 for all genes.

Candidate cut-points for the first gene (COPS7B) in the GBM dataset:

```
gbm converted obj$x cuts[[1]][[1]]
 [1] -0.120676799 -0.111887338 -0.105920688 -0.101116373
-0.097607231
 [6] -0.095670007 -0.094208786 -0.089869405 -0.089061306
-0.086847336
[11] -0.081633436 -0.079574444 -0.077205496 -0.075799625
-0.074559802
[16] -0.072788626 -0.071493453 -0.069069156 -0.068072869
-0.064364469
[21] -0.060202206 -0.052076935 -0.045180418 -0.037586501
-0.025797110
[26] -0.010066852 -0.003912015 0.027426731 0.033005936
0.042448519
[31] 0.067078936 0.090491670 0.107849196 0.131184441
0.149117599
[36] 0.164737158 0.179360430 0.207699248 0.218005279
0.325183572
[41] 0.370658518 0.467453291 0.568211071 0.646928778
0.708731754
[46] 0.777231989 0.983053720 2.064810586 3.174076031
3.678285584
```

Candidate cut-points for the second gene (CYP3A7_CYP3A51P) in the GBM dataset:

```
[1] 0.1128850 0.1410298 0.1474293 0.1519350 0.1584651 0.1621220 0.1652564
[8] 0.1695010 0.1820388 0.2002578 0.2105754 0.2154077 0.2255946 0.2418546
[15] 0.2715013 0.2914834 0.3366718 0.3506462 0.4023646 0.4070663 0.4095478
[22] 0.4286157 0.4517323 0.5712332 0.6358160 0.6624588 0.7786294 0.9674801
[29] 1.0773818 1.1146035 1.3831868 1.8145657 2.0600324 2.6422568 3.1741340
```

gbm_converted_obj\$x_cuts[[1]][[2]]

As it can be seen, the first gene has 50 candidate cut-points as it was indicated in the input arguments of the cumBinarizer function. However, for the second gene, due to limited number of unique values in the gene expression data in the given gene, the function returns only 37 candidate cut-points, and therefore, the counts of different levels of the resulting categorical variables after categorization will be unbalanced.

Obtain optimal cut-points

```
gbm_cuts_comp <-</pre>
  opt_cuts_finder(x = gbm_converted_obj$x,
                   y = survival::Surv(gbm_data_fnl$tte, gbm_data_
                   method = "both",
                   family = "cox",
                   lasso_rule = "min",
                   lasso_nfolds = 10,
                   cols = colnames(gbm_data_fnl)[! colnames(gbm_d
                                                     c("barcode", '
                   x_cuts = gbm_converted_obj$x_cuts)
brca_cuts_comp <-</pre>
  opt_cuts_finder(x = brca_converted_obj$x,
                   y = survival::Surv(brca_data_fnl$tte, brca_data_
                   method = "both",
                   family = "cox",
                   lasso_rule = "min",
                   lasso_nfolds = 10,
                   cols = colnames(brca_data_fnl)[! colnames(brca_data_fnl)]
                                                     c("barcode", '
                   x_cuts = brca_converted_obj$x_cuts)
kirc_cuts_comp <-
  opt_cuts_finder(x = kirc_converted_obj$x,
                   y = survival::Surv(kirc data fnl$tte, kirc data
                   method = "both",
                   family = "cox",
                   lasso_rule = "min",
                   lasso nfolds = 10,
                   cols = colnames(kirc_data_fnl)[! colnames(kirc_data_fnl)]
                                                     c("barcode",
                   x_cuts = kirc_converted_obj$x_cuts)
Bussy_cuts$opt_cuts <-
  gbm_cuts_comp$opt_cuts[gbm_cuts_comp$method == "biniLasso"]
Bussy_cuts$opt_cuts[2] <-</pre>
  brca_cuts_comp$opt_cuts[brca_cuts_comp$method == "biniLasso"]
```

```
Bussy_cuts$opt_cuts[3] <-</pre>
  kirc_cuts_comp$opt_cuts[kirc_cuts_comp$method == "biniLasso"]
gbm cuts comp %>%
  select(method, opt_cuts) %>%
  rowwise %>%
 mutate(cuts_est_selected = list(unlist(opt_cuts)[! is.na(unlist)]
 ungroup %>%
 unnest_longer(cuts_est_selected) %>%
  rowwise %>%
 mutate(gene = unlist(strsplit(cuts_est_selected_id, "_"))[1])
 group by (method, gene) %>%
  reframe(cuts = paste0(sort(round(cuts_est_selected, 3)), colla
  pivot_wider(id_cols = gene,
              names_from = method,
              values_from = cuts) %>%
  rowwise %>%
 mutate(n_bini = as.numeric(! is.na(biniLasso)) * str_count(bin)
         n_Sbini = as.numeric(! is.na(`Sparse biniLasso`)) * st
 ungroup %>%
 arrange(desc(n_bini), desc(n_Sbini)) %>%
 select(gene, biniLasso, `Sparse biniLasso`) %>%
 kable(Caption = "Optimal cut-points found by different method)
 kable_styling()
```

gene	biniLasso	Sparse biniLasso
PTPRN2	-0.974 , -0.901 , -0.601 , -0.141 , 0.941	-0.141 , 0.941
LBH	-0.461 , -0.163 , 1.089	-0.163 , -0.099 , 0.879
AC008875.3	-0.715 , -0.536 , -0.294	-0.294 , 0.109
SCARA3	-0.626 , -0.558 , -0.446	0.025
AL592064.1	1.865 , 2.605	0.691 , 1.3
CASC20	-0.012 , 0.022	-0.012 , 0.005
FUT4	0.781 , 1.049	0.781 , 1.049
HPCAL1	0.01 , 0.556	0.01 , 0.556
AC073332.1	-0.588 , 0.314	0.148
AC083906.5	1.292 , 3.19	1.292
AC090114.1	0.041 , 1.397	1.397
PLK2	0.37 , 0.628	0.628
SSX7	3.126 , 3.274	3.274
BMP2	-0.497 , -0.37	NA

TSPAN13	0.494	0.184 , 0.494
CLEC5A	0.49	0.49
CPPED1	-0.853	-0.107
CPQ	0.323	0.323
DUSP6	0.347	0.347
ID1	3.227	3.227
INTS6P1	-0.67	1.224
LINC00906	1.164	1.164
P2RY6	0.454	0.454
PARP4P3	0.467	0.568
PODNL1	0.219	0.219
RNF175	0.591	0.591
SLC20A1	1.419	1.419
SLC43A3	1.035	1.035
TNFSF14	2.082	2.082
ZMIZ1	1.384	1.384
CYB561	-1.062	NA
KCNMB3P1	-0.259	NA
KCNN4	0.5	NA
L2HGDH	-0.275	NA
LINC01674	2.851	NA
NCSTNP1	3.434	NA
TBX2	2.11	NA
TP73	-0.954	NA
VDR	1.237	NA
GARS1P1	NA	2.904 , 3.446
ABI1	NA	1.693
MTHFD2	NA	0.03
TPTEP1	NA	0.171

```
brca_cuts_comp %>%
  select(method, opt_cuts) %>%
  rowwise %>%
  mutate(cuts_est_selected = list(unlist(opt_cuts)[! is.na(unlist)])
  ungroup %>%
```

```
unnest_longer(cuts_est_selected) %>%
rowwise %>%
mutate(gene = unlist(strsplit(cuts_est_selected_id, "_"))[1])
group_by(method, gene) %>%
reframe(cuts = paste0(sort(round(cuts_est_selected, 3)), colla
pivot_wider(id_cols = gene,
            names_from = method,
            values_from = cuts) %>%
rowwise %>%
mutate(n_bini = as.numeric(! is.na(biniLasso)) * str_count(bin)
       n_Sbini = as.numeric(! is.na(`Sparse biniLasso`)) * st
ungroup %>%
arrange(desc(n_bini), desc(n_Sbini)) %>%
select(gene, biniLasso, `Sparse biniLasso`) %>%
kable(Caption = "Optimal cut-points found by different methods
kable_styling()
```

gene	biniLasso	Sparse biniLasso
MAPT	-0.482 , -0.381 , -0.268	-0.268 , 1.429
LIMCH1	0.085 , 1.229	0.085 , 0.422 , 1.229
AL355864.1	-0.373 , 0.35	0.35
HNRNPC	-0.677 , 0.021	0.021
PSME1	-0.697 , -0.3	NA
ABCB5	2.334	1.115 , 3.286
AL033397.1	-0.045	-0.045
ANO6	-0.126	-0.126
CCNI2	1.139	1.139
CYRIA	2.298	2.654
FGF7	1.577	1.577
LINC02159	1.055	1.055
NFKB2	1.984	1.984
PICALM	0.706	0.706
PSME2	0.127	0.127
PSME2P1	-0.235	-0.11
SPPL2C	0.371	0.371
STXBP1	1.221	1.221
TAPBP	0.002	0.002
TMEM163	0.455	0.455

TMEM164	0.596	0.596
AL096701.1	-0.396	NA
CLTA	-0.586	NA
FBXO6	-1.236	NA
MAGEB4	0.466	NA
NFKBIE	-0.415	NA
POLR2G	-0.565	NA
PPIB	-0.89	NA
SLIT3	-0.748	NA
ABCA1	NA	2.103
EXOC1	NA	0.694
GEMIN6	NA	1.601
NT5E	NA	0.716
RPLP1	NA	2.18
STX7	NA	0.321

```
kirc_cuts_comp %>%
  select(method, opt_cuts) %>%
  bind_rows(Bussy_cuts %>%
                mutate(method = "Binacox") %>%
                filter(data == "KIRC") %>%
                select(method, opt_cuts = opt_cuts_bina)) %>%
  rowwise %>%
 mutate(cuts_est_selected = list(unlist(opt_cuts)[! is.na(unlist)]
 ungroup %>%
  unnest_longer(cuts_est_selected) %>%
  rowwise %>%
 mutate(gene = unlist(strsplit(cuts_est_selected_id, "_"))[1])
 group_by(method, gene) %>%
  reframe(cuts = paste0(sort(round(cuts est selected, 3)), colla
  pivot_wider(id_cols = gene,
              names_from = method,
              values_from = cuts) %>%
  rowwise %>%
 mutate(n_bini = as.numeric(! is.na(biniLasso)) * str_count(bin)
         n_Sbini = as.numeric(! is.na(`Sparse biniLasso`)) * st
         n_bina = as.numeric(! is.na(`Binacox`)) * str_count(`Binacox`))
 ungroup %>%
  arrange(desc(n_bini), desc(n_Sbini), desc(n_bina)) %>%
  select(gene, biniLasso, `Sparse biniLasso`, Binacox) %>%
  kable(Caption = "Optimal cut-points found by different methods)
```

gene	biniLasso	Sparse biniLasso	Binacox
DLGAP1	-0.162 , 0.229 , 0.55	0.451	-0.165
IL4	-0.149 , 0.332 , 1.392	1.392	NA
ANAPC7	0.423 , 0.594	0.423	NA
MBOAT7	-0.112 , 0.871	0.508	NA
SGCB	0.199	0.199	-0.33 , 0.2
CARS1	0.25	0.25	0.258
CUBN	0.655	0.655	-0.201
EIF4EBP2	0.407	0.338	0.408
SLC2A9	-0.066	-0.066	-0.137
CKAP4	0.927	1.294	NA
HJURP	0.186	0.186	NA
IMPDH1	1.961	1.961	NA
TXLNA	-0.045	-0.045	NA
DONSON	0.104	NA	0.071
SORBS2	-0.656	NA	-0.654
AR	0.775	NA	NA
CYP3A7	-0.555	NA	NA
DVL3	0.339	NA	NA
HES7	1.38	NA	NA
LIN54	-0.284	NA	NA
MGAT2P1	4.22	NA	NA
PTPRB	-0.76	NA	NA
SNORD100	-0.11	NA	NA
USB1	0.126	NA	NA
ADH5	NA	NA	-0.271
GIPC2	NA	NA	-0.11
MGAM	NA	NA	-0.266
MSH3	NA	NA	-0.386
MXD3	NA	NA	0.001
NCKAP5L	NA	NA	-0.032

SELENOP	NA	NA	-0.42
SLC16A12	NA	NA	-0.735
SLC27A2	NA	NA	-0.179

Compare models' performance

```
gbm cuts comp %>%
  select(method, opt_cuts) %>%
 bind_rows(Bussy_cuts %>%
                mutate(method = "Binacox") %>%
                filter(data == "GBM") %>%
                select(method, opt_cuts, opt_cuts_bina)) %>%
 group_by(method) %>%
 unnest_longer(opt_cuts) %>%
 mutate(`n-cuts` = if_else(method == "Binacox",
                            sum(! is.na(unlist(opt cuts bina)))
                            sum(! is.na(unlist(opt_cuts)))) %>
 group_by(method, `n-cuts`) %>%
 do(gbm biniFit =
       list(biniFit(data = gbm_data_fnl,
               optCuts = .,
               y = Surv(gbm_data_fnl$tte, gbm_data_fnl$vital_st
               family = "cox",
               col_cuts = "opt_cuts",
               col_x = "opt_cuts_id")$fit),
     gbm_biniFit_bina =
       list(biniFit(data = gbm_data_fnl,
               optCuts = ..
               y = Surv(gbm data fnl$tte, gbm data fnl$vital sta
               family = "cox",
               col_cuts = "opt_cuts_bina",
               col_x = "opt_cuts_id")$fit),
     gbm_bini_dataFit =
       list(biniFit(data = gbm_data_fnl,
               optCuts = .,
               y = Surv(gbm_data_fnl$tte, gbm_data_fnl$vital_state
               family = "cox",
               col_cuts = "opt_cuts",
               col_x = "opt_cuts_id")$dataFit)) %>%
  rowwise %>%
 mutate(AIC = if else(method == "Binacox",
                       round(AIC(gbm_biniFit_bina[[1]]), 0),
                       round(AIC(gbm_biniFit[[1]]), 0)),
         IBS = ibs(pec(list(Cox = gbm_biniFit[[1]]),
                       Hist(time, event) \sim 1,
```

```
data = gbm_bini_dataFit[[1]],
                     verbose = F))[if_else(method == "Binacox"
       `C-index` = if else(method == "Binacox",
                           paste0(round(concordance(gbm biniF)
                          " (", round(sqrt(concordance(gbm_bin
                          ")").
                          paste0(round(concordance(gbm biniFit
                          " (", round(sgrt(concordance(gbm bil
                          ")"))) %>%
ungroup %>%
mutate(Dataset = "GBM") %>%
relocate(Dataset, .before = "method") %>%
select(! c(gbm_biniFit, gbm_biniFit_bina, gbm_bini_dataFit)) 
kable(digits = 3,
      Caption = "Compare AIC of fitted Cox models by using de"
kable_styling()
```

Dataset	method	n-cuts	AIC	IBS	C-index
GBM	Binacox	0	3027	0.064	0.5 (0)
GBM	Sparse biniLasso	43	2803	0.037	0.779 (0.015)
GBM	biniLasso	59	2739	0.030	0.8 (0.013)

```
brca cuts comp %>%
 select(method, opt_cuts) %>%
 bind_rows(Bussy_cuts %>%
               mutate(method = "Binacox") %>%
                filter(data == "BRCA") %>%
                select(method, opt_cuts, opt_cuts_bina)) %>%
 group_by(method) %>%
 unnest_longer(opt_cuts) %>%
 mutate(`n-cuts` = if_else(method == "Binacox",
                            sum(! is.na(unlist(opt_cuts_bina)))
                            sum(! is.na(unlist(opt_cuts)))) %>
 group_by(method, `n-cuts`) %>%
 do(brca biniFit =
       list(biniFit(data = brca_data_fnl,
               optCuts = .,
               y = Surv(brca_data_fnl$tte, brca_data_fnl$vital_
               family = "cox",
               col_cuts = "opt_cuts",
               col_x = "opt_cuts_id")$fit),
    brca biniFit bina =
       list(biniFit(data = brca_data_fnl,
               optCuts = .,
               y = Surv(brca_data_fnl$tte, brca_data_fnl$vital_{
```

```
family = "cox",
             col_cuts = "opt_cuts_bina",
             col x = "opt cuts id") fit),
   brca bini dataFit =
     list(biniFit(data = brca_data_fnl,
             optCuts = .,
             y = Surv(brca data fnl$tte, brca data fnl$vital <
             family = "cox",
             col_cuts = "opt_cuts",
             col_x = "opt_cuts_id")$dataFit)) %>%
rowwise %>%
mutate(AIC = if else(method == "Binacox",
                     round(AIC(brca_biniFit_bina[[1]]), 0),
                     round(AIC(brca_biniFit[[1]]), 0)),
       IBS = ibs(pec(list(Cox = brca biniFit[[1]]),
                     Hist(time, event) \sim 1,
                     data = brca_bini_dataFit[[1]],
                     verbose = F))[if_else(method == "Binacox"
       `C-index` = if_else(method == "Binacox",
                           paste0(round(concordance(brca_binil
                          " (", round(sqrt(concordance(brca_b)
                          ")").
                          paste0(round(concordance(brca biniF)
                          " (", round(sqrt(concordance(brca_b
                          ")"))) %>%
ungroup %>%
mutate(Dataset = "BRCA") %>%
relocate(Dataset, .before = "method") %>%
select(! c(brca_biniFit, brca_biniFit_bina, brca_bini_dataFit
kable(digits = 3,
      Caption = "Compare AIC of fitted Cox models by using de
kable_styling()
```

Dataset	method	n-cuts	AIC	IBS	C-index
BRCA	Binacox	0	2109	0.163	0.5 (0)
BRCA	Sparse biniLasso	30	1966	0.096	0.761 (0.017)
BRCA	biniLasso	35	1974	0.089	0.772 (0.018)

```
unnest_longer(opt_cuts) %>%
mutate(`n-cuts` = sum(! is.na(unlist(opt_cuts)))) %>%
group_by(method, `n-cuts`) %>%
do(kirc biniFit =
     list(biniFit(data = kirc_data_fnl,
             optCuts = .,
             y = Surv(kirc data fnl$tte, kirc data fnl$vital {
             family = "cox",
             col_cuts = "opt_cuts",
             col_x = "opt_cuts_id")$fit),
   kirc bini dataFit =
     list(biniFit(data = kirc data fnl,
             optCuts = .,
             y = Surv(kirc_data_fnl$tte, kirc_data_fnl$vital_
             family = "cox",
             col_cuts = "opt_cuts",
             col_x = "opt_cuts_id")$dataFit)) %>%
rowwise %>%
mutate(AIC = round(AIC(kirc_biniFit[[1]]), 0),
       IBS = ibs(pec(list(Cox = kirc_biniFit[[1]]),
                     Hist(time, event) \sim 1,
                     data = kirc_bini_dataFit[[1]],
                     verbose = F))[2, 1],
       `C-index` = paste0(round(concordance(kirc_biniFit[[1]])
                          " (", round(sqrt(concordance(kirc_b)
                          ")")) %>%
ungroup %>%
mutate(Dataset = "KIRC") %>%
relocate(Dataset, .before = "method") %>%
select(! c(kirc_biniFit, kirc_bini_dataFit)) %>%
kable(digits = 3,
      Caption = "Compare AIC of fitted Cox models by using de-
kable styling()
```

Dataset	method	n-cuts	AIC	IBS	C-index
KIRC	Binacox	18	2109	0.154	0.736 (0.018)
KIRC	Sparse biniLasso	13	2069	0.152	0.764 (0.017)
KIRC	biniLasso	30	2073	0.123	0.777 (0.016)

Fixed number of optimal cut-points

```
gbm_fixedCuts_comp <-
opt_fixed_nCuts(x = gbm_converted_obj$x,</pre>
```

```
y = survival::Surv(gbm_data_fnl$tte, gbm_data_;
                 max_nCuts = 2,
                 method = "both",
                 family = "cox",
                 lasso_rule = "min",
                 lasso_nfolds = 10,
                 cols = colnames(gbm data fnl)[! colnames(gbm data
                                             c("barcode", "vital
                 x_cuts = gbm_converted_obj$x_cuts)
brca_fixedCuts_comp <-</pre>
 opt fixed nCuts(x = brca converted obj$x,
                 y = survival::Surv(brca data fnl$tte, brca data
                 max_nCuts = 2,
                 method = "both",
                 family = "cox",
                 lasso_rule = "min",
                 lasso_nfolds = 10,
                 cols = colnames(brca_data_fnl)[! colnames(brca_
                                             c("barcode", "vital]
                 x_cuts = brca_converted_obj$x_cuts)
kirc_fixedCuts_comp <-</pre>
 opt_fixed_nCuts(x = kirc_converted_obj$x,
                 y = survival::Surv(kirc_data_fnl$tte, kirc_data
                 max_nCuts = 2,
                 method = "both",
                 family = "cox",
                 lasso_rule = "min",
                 lasso_nfolds = 10,
                 cols = colnames(kirc_data_fnl)[! colnames(kirc_
                                             c("barcode", "vital]
                 x_cuts = kirc_converted_obj$x_cuts)
gbm_fixedCuts_comp %>%
  select(method, opt_cuts) %>%
  rowwise %>%
  mutate(cuts est selected = list(unlist(opt cuts)[! is.na(unlist)]
  ungroup %>%
  unnest_longer(cuts_est_selected) %>%
  rowwise %>%
  mutate(ind_tmp = gregexpr("_ENSG", cuts_est_selected_id)[[1]]
         gene = substr(cuts_est_selected_id, 1, ind_tmp)) %>%
  group_by(method, gene) %>%
  reframe(cuts = paste0(sort(round(cuts_est_selected, 3)), coll;
  pivot_wider(id_cols = gene,
              names from = method.
              values_from = cuts) %>%
  rowwise %>%
```

```
mutate(n_bini = as.numeric(! is.na(biniLasso)) * str_count(bin_Sbini = as.numeric(! is.na(`Sparse biniLasso`)) * st
ungroup %>%
arrange(desc(n_bini), desc(n_Sbini)) %>%
select(gene, biniLasso, `Sparse biniLasso`) %>%
kable(Caption = "Optimal cut-points found by different methods kable_styling()
```

gene	biniLasso	Sparse biniLasso
AC008875.3	-0.536 , -0.294	-0.294 , 0.167
GARS1P1	0.932 , 1.823	2.775 , 3.446
LBH	-0.163 , 0.879	-0.163 , 0.879
PTPRN2	-0.601 , -0.141	-0.141 , 0.941
SSX7	3.126 , 3.566	3.126 , 3.566
AC073332.1	-0.588 , 0.148	0.148
AC083906.5	1.232 , 3.19	1.232
AL592064.1	1.47	0.691 , 1.3
HPCAL1	0.556	0.01 , 0.556
SCARA3	-0.426	-0.426 , 0.025
ABI1	1.693	1.693
AC090114.1	1.397	1.397
CLEC5A	0.49	0.49
CPQ	0.208	0.323
DUSP6	0.347	0.347
FUT4	1.049	1.049
HTR7	-0.258	-0.258
ID1	3.227	3.227
INTS6P1	-0.67	1.224
KLKP1	-0.302	1.711
LINC00906	1.164	1.164
MTHFD2	0.03	0.03
P2RY6	0.454	0.454
PARP4P3	0.568	0.568
PLK2	0.37	0.628
RNF175	-0.687	0.591

SLC20A1	1.419	1.419
TNFSF14	2.082	2.082
TSPAN13	0.184	0.184
ZMIZ1_AS1	1.384	1.384
AC003688.2	3.96	NA
ANKH	-0.667	NA
CFTR	1.638	NA
CPPED1	-0.853	NA
CYB561	-1.062	NA
KCNN4	0.5	NA
L2HGDH	-0.275	NA
LINC01674	2.851	NA
NCSTNP1	4.812	NA
OSMR	-0.953	NA
SNRPB	2.247	NA
TBX2_AS1	2.11	NA
TP73_AS1	-0.954	NA
SLC43A3	NA	1.035

```
brca_fixedCuts_comp %>%
  select(method, opt_cuts) %>%
  rowwise %>%
 mutate(cuts_est_selected = list(unlist(opt_cuts)[! is.na(unlist)]
 ungroup %>%
 unnest_longer(cuts_est_selected) %>%
  rowwise %>%
 mutate(ind_tmp = gregexpr("_ENSG", cuts_est_selected_id)[[1]]
         gene = substr(cuts_est_selected_id, 1, ind_tmp)) %>%
 group_by(method, gene) %>%
  reframe(cuts = paste0(sort(round(cuts_est_selected, 3)), coll
  pivot_wider(id_cols = gene,
              names from = method,
              values_from = cuts) %>%
  rowwise %>%
 mutate(n_bini = as.numeric(! is.na(biniLasso)) * str_count(bin)
         n_Sbini = as.numeric(! is.na(`Sparse biniLasso`)) * st
 ungroup %>%
 arrange(desc(n_bini), desc(n_Sbini)) %>%
  select(gene, biniLasso, `Sparse biniLasso`) %>%
  kable(Caption = "Optimal cut-points found by different method
```

gene	biniLasso	Sparse biniLasso
MAPT_AS1	-0.381 , -0.268	-0.268 , 1.429
AL096701.1	-0.396 , 0.161	0.161
AL355864.1	-0.301 , 0.35	0.35
EXOC1	-0.22 , 0.694	0.694
LINC00488	0.058 , 0.141	0.058
RFTN1P1	2.07 , 2.933	2.07
AC136601.1	0.908 , 2.152	NA
ANO6	-0.126 , 1.273	NA
POLR2G	-1.148 , -0.565	NA
AL033397.1	0.006	-0.045 , 0.006
PNMA6B	0.453	0.453 , 0.587
PSME2P1	-0.235	-0.235 , -0.11
ABCB5	3.286	2.334
AC091078.1	2.959	2.959
AL049548.1	1.487	1.351
C2orf91	0.142	0.142
CCNI2	1.139	1.139
CLTA	-0.562	-0.562
FANCF	-0.04	-0.04
GEMIN6	1.601	1.601
LIMCH1	0.422	0.422
LINC02159	1.055	1.055
MAGEB4	0.466	0.466
МАРКАРК3	-0.545	-0.545
PARP12	1.046	1.046
PICALM	0.706	0.706
SPPL2C	0.371	0.371
TAPBP	-0.048	-0.048
TMEM163	0.455	0.455
TMEM164	0.667	0.596

ZNF25	1.384	1.384	
AC034159.2	-0.049	NA	
AC133065.2	-0.238	NA	
AKR1B10	-0.183	NA	
DAXX	0.344	NA	
FBXO6	-1.236	NA	
NT5E	-0.258	NA	
PPIB	-0.89	NA	
PSME2	0.127	NA	
STX7	0.321	NA	
TPMT	-0.85	NA	
CYRIA	NA	2.298	
HNRNPC	NA	0.021	
NFKB2	NA	1.984	
PRR32	NA	0.171	
PSME2P2	NA	0.328	
PTPN18	NA	1.013	
RIOX1	NA	1.114	
RPLP1	NA	2.18	
STXBP1	NA	1.221	
TMEM223	NA	1.421	

```
kirc_fixedCuts_comp %>%
 select(method, opt_cuts) %>%
  rowwise %>%
 mutate(cuts_est_selected = list(unlist(opt_cuts)[! is.na(unlist)]
 ungroup %>%
 unnest_longer(cuts_est_selected) %>%
  rowwise %>%
 mutate(ind_tmp = gregexpr("_ENSG", cuts_est_selected_id)[[1]]
         gene = substr(cuts_est_selected_id, 1, ind_tmp)) %>%
 group_by(method, gene) %>%
  reframe(cuts = paste0(sort(round(cuts_est_selected, 3)), coll;
 pivot_wider(id_cols = gene,
              names_from = method,
             values_from = cuts) %>%
  rowwise %>%
 mutate(n_bini = as.numeric(! is.na(biniLasso)) * str_count(bin)
```

```
n_Sbini = as.numeric(! is.na(`Sparse biniLasso`)) * st
ungroup %>%
arrange(desc(n_bini), desc(n_Sbini)) %>%
select(gene, biniLasso, `Sparse biniLasso`) %>%
kable(Caption = "Optimal cut-points found by different methods kable_styling()
```

gene	biniLasso	Sparse biniLasso
DLGAP1_AS2	-0.162 , 0.229	0.55
MBOAT7	-0.112 , 0.508	0.508
CYP3A7	-0.555 , 0.043	NA
RORA	-0.446 , 0.183	NA
SORBS2	-0.656 , -0.247	NA
ANAPC7	0.423	0.423
AR	-0.45	0.693
CARS1	0.25	0.25
CUBN	0.655	0.655
EIF4EBP2	0.338	0.407
HJURP	0.186	0.186
IL4	1.392	1.392
IMPDH1	1.961	1.577
SGCB	0.199	0.199
SLC2A9	-0.066	-0.066
TXLNA	-0.045	0.184
USB1	0.493	0.331
AC080129.2	1.218	NA
AL118508.2	0.179	NA
CRYZ	0.736	NA
CYP3A7_CYP3A51P	-0.041	NA
DONSON	0.104	NA
DVL3	0.339	NA
LIN54	-0.284	NA
MGAT2P1	4.22	NA
PTPRB	-0.76	NA
PURA	0.208	NA

SNORD100	-0.11	NA
SPTBN1	-0.066	NA
TFEC	-0.246	NA
TRIM27	0.091	NA
CKAP4	NA	1.294
HES7	NA	2.896

Compare performance of the models:

```
gbm_fixedCuts_comp %>%
  select(method, opt_cuts) %>%
 group_by(method) %>%
 unnest_longer(opt_cuts) %>%
 mutate(`n-cuts` = sum(! is.na(unlist(opt_cuts)))) %>%
 group_by(method, `n-cuts`) %>%
 do(gbm biniFit =
       list(biniFit(data = gbm_data_fnl,
               optCuts = .,
               y = Surv(gbm_data_fnl$tte, gbm_data_fnl$vital_stantal
               family = "cox",
               col_cuts = "opt_cuts",
               col_x = "opt_cuts_id")$fit),
     gbm bini dataFit =
       list(biniFit(data = gbm data fnl,
               optCuts = .,
               y = Surv(gbm_data_fnl$tte, gbm_data_fnl$vital_st
               family = "cox",
               col cuts = "opt cuts",
               col_x = "opt_cuts_id")$dataFit)) %>%
  rowwise %>%
 mutate(AIC = round(AIC(gbm_biniFit[[1]]), 0),
         IBS = ibs(pec(list(Cox = qbm biniFit[[1]]),
                       Hist(time, event) \sim 1,
                       data = gbm_bini_dataFit[[1]],
                       verbose = F))[2, 1],
         `C-index` = paste0(round(concordance(gbm_biniFit[[1]]);
                            " (", round(sqrt(concordance(gbm_bin
                            ")")) %>%
 ungroup %>%
 mutate(Dataset = "GBM") %>%
  relocate(Dataset, .before = "method") %>%
  select(! c(gbm_biniFit, gbm_bini_dataFit)) %>%
  kable(digits = 3,
        Caption = "Compare AIC of fitted Cox models by using de-
 kable_styling()
```

Dataset	method	n-cuts	AIC	IBS C-index
GBM	Sparse biniLasso	39	2806	0.037 0.777 (0.015)
GBM	biniLasso	50	2801	0.034 0.777 (0.015)

```
brca_fixedCuts_comp %>%
  select(method, opt_cuts) %>%
 group by (method) %>%
 unnest_longer(opt_cuts) %>%
 mutate(`n-cuts` = sum(! is.na(unlist(opt_cuts)))) %>%
 group_by(method, `n-cuts`) %>%
 do(brca_biniFit =
       list(biniFit(data = brca_data_fnl,
               optCuts = .,
               y = Surv(brca_data_fnl$tte, brca_data_fnl$vital_
               family = "cox",
               col cuts = "opt cuts",
               col_x = "opt_cuts_id")$fit),
     brca_bini_dataFit =
       list(biniFit(data = brca_data_fnl,
               optCuts = .,
               y = Surv(brca_data_fnl$tte, brca_data_fnl$vital_
               family = "cox",
               col_cuts = "opt_cuts",
               col_x = "opt_cuts_id")$dataFit)) %>%
  rowwise %>%
 mutate(AIC = round(AIC(brca biniFit[[1]]), 0),
         IBS = ibs(pec(list(Cox = brca_biniFit[[1]]),
                       Hist(time, event) \sim 1,
                       data = brca_bini_dataFit[[1]],
                       verbose = F))[2, 1],
         `C-index` = paste0(round(concordance(brca biniFit[[1]])
                            " (", round(sqrt(concordance(brca b
                            ")")) %>%
 ungroup %>%
 mutate(Dataset = "BRCA") %>%
  relocate(Dataset, .before = "method") %>%
  select(! c(brca_biniFit, brca_bini_dataFit)) %>%
 kable(digits = 3,
        Caption = "Compare AIC of fitted Cox models by using de
  kable_styling()
```

Dataset	method	n-cuts	AIC	IBS	C-index
BRCA	Sparse biniLasso	42	1958	0.084	0.783 (0.016)
BRCA	biniLasso	50	1956	0.078	0.786 (0.016)

```
kirc_fixedCuts_comp %>%
  select(method, opt_cuts) %>%
 group by(method) %>%
 unnest longer(opt cuts) %>%
 mutate(`n-cuts` = sum(! is.na(unlist(opt_cuts)))) %>%
 group_by(method, `n-cuts`) %>%
 do(kirc biniFit =
       list(biniFit(data = kirc_data_fnl,
               optCuts = .,
               y = Surv(kirc_data_fnl$tte, kirc_data_fnl$vital_!
               family = "cox",
               col_cuts = "opt_cuts",
               col_x = "opt_cuts_id")$fit),
     kirc_bini_dataFit =
       list(biniFit(data = kirc_data_fnl,
               optCuts = .,
               y = Surv(kirc_data_fnl$tte, kirc_data_fnl$vital_
               family = "cox",
               col_cuts = "opt_cuts",
               col_x = "opt_cuts_id")$dataFit)) %>%
  rowwise %>%
 mutate(AIC = round(AIC(kirc biniFit[[1]]), 0),
         IBS = ibs(pec(list(Cox = kirc_biniFit[[1]]),
                       Hist(time, event) \sim 1,
                       data = kirc_bini_dataFit[[1]],
                       verbose = F))[2, 1],
         `C-index` = paste0(round(concordance(kirc_biniFit[[1]])
                            " (", round(sqrt(concordance(kirc_b)
                            ")")) %>%
 ungroup %>%
 mutate(Dataset = "KIRC") %>%
  relocate(Dataset, .before = "method") %>%
 select(! c(kirc_biniFit, kirc_bini_dataFit)) %>%
 kable(digits = 3,
        Caption = "Compare AIC of fitted Cox models by using de-
 kable_styling()
```

Dataset	method	n-cuts	AIC	IBS	C-index
KIRC	Sparse biniLasso	16	2070	0.155	0.758 (0.017)
KIRC	biniLasso	36	2081	0.119	0.785 (0.016)