Math 221 Lec 11

2.4: Elementary matrices, 2.5: Transpose

Asa Royal (ajr74)

October 3, 2023

1 Transpose

Remark. The transpose of a matrix A is the matrix A^{T} where $(A^{\mathsf{T}})_{ij} = A_{ji}$. Entries are reflected over the diagonal **Remark.** If $x, y \in \mathbb{R}^n$, we can think of their dot dot product $\mathbf{x} \cdot \mathbf{y}$ as

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^{\mathsf{T}} \mathbf{y}$$

Remark. The remark above reveals that vectors themselves are linear transformations. $\mathbf{x} \in \mathbb{R}^n$ is n-dimensional, but $\mathbf{x} \cdot \mathbf{y}$ is 1-dimensional, so x^{\intercal} is the $1 \times n$ matrix that encodes a linear transformation that takes an n-dimensional vector to 1 dimension. \mathbf{x}_1 tells us what the linear transformation maps \hat{i} to, and so on... Add all that hat vectors and you get a scalar: the output of the linear transformation.

Definition 1 (dual). The dual of a vector is the linear transformation it encodes. The dual of a linear transformation from n dimensions to 1 dimension is a certain vector.

Remark. Note then that $\mathbf{a}^{\mathsf{T}}\mathbf{a} = \mathbf{a} \cdot \mathbf{a} = \|\mathbf{a}\|^2$

Remark. $\mathbf{x} \cdot \mathbf{y}$ produces a scalar, so $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^{\mathsf{T}} \mathbf{y}$ or $\mathbf{y}^{\mathsf{T}} \mathbf{x}$ (both of which are 1×1 matrices), but $\mathbf{x} \cdot \mathbf{y} \neq \mathbf{y} \mathbf{x}^{\mathsf{T}}$ or $\mathbf{x} \mathbf{y}^{\mathsf{T}}$, both of which would be $n \times n$ matrices.

Remark. The linear transformation represented by the $n \times n$ matrix $\mathbf{a}\mathbf{a}^{\mathsf{T}}$ is $\operatorname{proj}_{\mathbf{a}}\mathbf{x}$. By expressing the projection formula in terms of \mathbf{a} and \mathbf{a}^{T} , we can clearly show that it is a function in terms of \mathbf{a} .

Proof.

$$\begin{aligned} \operatorname{proj}_{\mathbf{a}}\mathbf{x} &= \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} \\ &= \frac{\mathbf{a}^\mathsf{T}\mathbf{x}}{\|\mathbf{a}\|^2} \mathbf{a} \\ &= \mathbf{a} \frac{\mathbf{a}^\mathsf{T}\mathbf{x}}{\|\mathbf{a}\|^2} \end{aligned} \qquad \text{(express dot product as matrix mult, per second remark above)} \\ &= \mathbf{a} \frac{\mathbf{a}^\mathsf{T}\mathbf{x}}{\|\mathbf{a}\|^2} \qquad \text{(can move since one of the terms above is a scalar)} \\ &= \frac{\mathbf{a}\mathbf{a}^\mathsf{T}\mathbf{x}}{\mathbf{a} \cdot \mathbf{a}} \\ &= \left(\frac{\mathbf{a}\mathbf{a}^\mathsf{T}}{\mathbf{a}^\mathsf{T}\mathbf{a}}\right) \mathbf{x} \qquad \text{(again, express dot product as matrix mult)} \end{aligned}$$

Example (projection expressed with transposes).

$$\text{proj}_{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}}$$
 denom is $1 \times n$ times $n \times 1$, aka dot prod
$$= \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

1

Definition 2 (orthogonal matrix). An $n \times n$ matrix A is orthogonal if $A^{\mathsf{T}}A = I_n$, which is true iff $\mathbf{a}_i \cdot \mathbf{a}_j = 0$ for $i \neq j$ and 1 for i = j.

2 Left multiplication (row vector * matrix)

Remark. Let A be an $n \times m$ matrix. Let \mathbf{x} be a vector of length n. The operation in which a row vector is multiplied by a matrix can be expressed as $\mathbf{x}^{\mathsf{T}} \mathbf{A}$.

Proposition 3. $A\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{A}^{\mathsf{T}} \cdot \mathbf{y}$ (To move the matrix across a dot product operator, we must transpose it)

Proof.

$$(A\mathbf{x}) \cdot \mathbf{y} = (A\mathbf{x})^{\mathsf{T}} \mathbf{y}$$
 dot product as matrix mult
$$= \mathbf{x}^{\mathsf{T}} A^{\mathsf{T}} \mathbf{y}$$

$$= \mathbf{x}^{\mathsf{T}} (A^{\mathsf{T}} \mathbf{y})$$

$$= \mathbf{x} \cdot A^{\mathsf{T}} \mathbf{y}$$

3 Elementary matrices

Proposition 4. Every invertible matrix can be expressed as a product of elementary matrices.

Proof. Since A is invertible, we can row reduce it to the identity matrix. We do this by multiplying A on the left by a series of elementary matrices $E = (E_k)(\ldots)(E_2)(E_1)$ such that EA = I. Elementary matrices are invertible, so we can multiply both sides of that equation by E^{-1} . Then $A = E^{-1} = (E_1^{-1})(E_2^{-1})(\ldots)(E_k^{-1})$.

Remark. When we apply elementary operations to the rows of a matrix A, we multiply A on the left by an elementary matrix E, such that we get a transformed version of the rows of A.

$$EA = \begin{bmatrix} -E_1 A & -\\ -E_2 A & -\\ \vdots \\ -E_m A & - \end{bmatrix}$$

Remark. We construct a row swap elementary matrix E by taking I_m and interchanging rows i and j to swap A_i and A_j . A row of E, E_k , looks like

$$\begin{cases} e_k^{\mathsf{T}}, & \text{if } k \neq i \text{ or } j \\ e_j^{\mathsf{T}}, & \text{if } k = i \\ e_i^{\mathsf{T}}, & \text{if } k = j \end{cases}$$

where e_i is the *i*-th basis vector and e_i^{T} is the *i*-th basis row vector. Thus,

$$E_k A = \begin{cases} A_k, & \text{if } k \neq i \text{ or } j \\ A_j, & \text{if } k = i \\ A_i, & \text{if } k = j \end{cases}$$