ASSIGNMENT 02 [Final-TERM]

American International University- Bangladesh (AIUB)

Submitted by:

Name: Nokibul Arfin Siam. Student ID: 21-44793-1.

Section: K.

Problem-01

(i) Hene

$$e(t) = 282.845 \text{ in loo} t V$$

$$R = 6 - n - L = 80 \text{ mH} = 0.017$$

$$X_{L} = wL = (100 \times 0.08) = 8 - n$$

(i) Herre

$$e(t) = 282.89 \sin | 00 \pm v$$
 $R = 8.66 \Omega$
 $C = 2mF = 0.002F$
 $X_{c} = \frac{1}{wc} = \frac{1}{100 \times 0.002} = 5 \Omega$

(ii)

(i) Herre,

Impedance $\vec{Z} = R + j \chi_L - j \chi_C$ = [0.2 + j 20.2 - j 30.2]= [0.2 - j 10]= $[0.19 \angle -95^\circ]$

Problem -2

Fig-200)

(i) Here

$$R = 10 \text{ s.} \quad X_L = 16 \text{ s.}$$
 $G = \frac{1}{10} = 0.0635$
 $B_L = \frac{1}{16} = 0.0635$

Admittence,
$$Y = G_{C} - jB_{L}$$

= 0.15 - j0.063
= 0.12 L-32.21°

$$R = 10.2$$

$$GL = \frac{1}{10} = 0.15$$

$$X_{C} = 32.2$$

$$B_{C} = \frac{1}{32} = 0.0315$$

Admirtonce,
$$V = G_1 + jB_2$$

= 0.1 + j 0.0315
= 0.1 $\angle 17.22^{\circ}$

Civ

Fig-2(c)

(i) Here,

$$R = [0.1, Gc = \frac{1}{10} = 0.15]$$
 $X_L = [6.1, B_L = \frac{1}{16} = 0.0635]$
 $X_C = 32.1, B_C = \frac{1}{32} = 0.0315$

Admittonce
$$Y = Gc - jB_L + jB_C$$

= 0.15 - j(0.063 - 0.031)s
= 0.15 - j0.032
= 0.15 \(L - 17.74°

Problem-3

$$\overrightarrow{Z} = 10.2 L 53.13^{\circ}$$
 $e(\pounds) = 282.84 \sin 100 £ V$
 $\overrightarrow{E} = (0.707 \times 282.84) L 0^{\circ}$
 $= 200 L 0^{\circ}$
 $R = 6.2 / X_{L} = 8.2$

$$\vec{T} = \frac{\vec{E}}{\vec{Z}} = \frac{20020^{\circ}}{10253.13^{\circ}}$$

$$= 202 - 53.13^{\circ}$$

$$\begin{array}{l}
\cdot \cdot \cdot V_{R} = \overrightarrow{I} \overrightarrow{Z}_{R} = (20L - 53.13^{\circ}) \times (6L0^{\circ}) \\
= 120L - 53.13^{\circ} \\
\cdot \cdot \cdot V_{L} = \overrightarrow{I} \overrightarrow{Z}_{L} = (20L - 53.13^{\circ}) \times (8L90^{\circ}) \\
= 160L36.87^{\circ}
\end{array}$$

(11)

Problem-4

$$I = \overrightarrow{F} \cdot \overrightarrow{Y} = (156 \times 20^{\circ}) \times (0.1 \times 16.7^{\circ})$$

$$= 15 \times 216.7^{\circ}$$

$$\frac{1}{1000} = \frac{1500}{1000} = \frac{1500}{10000} = \frac{1500}{1500}$$

$$\frac{1}{100000} = \frac{1500}{32000} = \frac{1500}{32000}$$

$$= 9.382-90^{\circ}$$

(ii)

(i)
$$Z_{T} = \frac{1}{\frac{1}{10} + \frac{1}{16} + \frac{1}{-j32}}$$

$$\frac{1}{10} + \frac{1}{5/6} - \frac{1}{532}$$

Rective factor,

Rf = SinOz

Power consumes by resistor, =
$$\frac{E^2}{R}$$
= $\frac{(150)^2}{10}$
= $2250W$

reactive power consumed by the

inductor,

$$=\frac{E^{2}}{X_{L}}=\frac{(150)^{2}}{16}$$
$$=1406.25 \text{ Vare}$$

Reactive power supply by capaciton

$$\frac{E^{2}}{X_{0}} = \frac{(150)^{2}}{32}$$
= 703.125 van

The net neactive power, &

$$\frac{\partial z + \partial c}{x_{L} + \frac{E^{2}}{x_{c}}}$$

$$= (1402.25) + (703.125)$$

$$= 2109.875 var$$

$$S = \gamma(P) + (Q)$$

$$= \gamma(2250) + (2109.315)$$

$$= 3084.14 VA$$

Lii)

