project

January 9, 2025

```
[147]: library(tidyr)
    library("pxweb")
    library("tidyverse")
    library("GGally")
    library("ggpubr")
    library(gridExtra)
    library(cowplot)
```

We are going to explore if it is reasonable to use a MLR model to predict the number of people graduating from three different levels of education. We will also explore if the model performs better for the entire population or for men and women separately.

```
[148]: | # d <- pxweb_interactive("https://api.scb.se/OV0104/v1/doris/sv/ssd/UF/UF0550/
        →UF0550C/Historisk11bN")
       API_wait <- 1e-3
       pxq_edu <-
         list(
           "Examen" = c("*"), # Use "*" to select all
           "Kon" = c("*"),
           "ContentsCode" = c("000004NE"),
           "Tid" = c("*")
       pxg_edu <- pxweb_get("https://api.scb.se/OV0104/v1/doris/sv/ssd/START/UF/UF0550/</pre>
        ⇔UF0550C/Historisk11bN", pxq_edu)
       Sys.sleep(API_wait)
       pxq_pop <-
         list(
           "Kon" = c("*"),
           "ContentsCode" = c("000000LV"),
           "Tid" = c("*")
         )
       pxg_pop <- pxweb_get("https://api.scb.se/OV0104/v1/doris/sv/ssd/START/BE/BE0101/</pre>
        →BE0101G/BefUtvKon1749", pxq_pop)
       Sys.sleep(API_wait)
       # https://api.scb.se/OV0104/v1/doris/sv/ssd/START/HE/HE0103/HE0103A/ArbInk28
       pxq_income <- list(</pre>
         "Kon" = c("*"),
```

We start by gathering data from SCB about education, income, KPI and population. Then we clean and modify the data to fit our needs.

```
[ ]: edu_df <- as.data.frame(pxg_edu)</pre>
     edu_df <- as_tibble(edu_df)
     doktor df <- edu df %>%
         filter(examen %in% c("Doktorsgrad", "Doktorsexamen")) %>%
         group_by(läsår, kön) %>%
         mutate(`Utfärdade examina vid universitet och högskolor` = sum(`Utfärdade_
      →examina vid universitet och högskolor`)) %>%
         filter(examen == "Doktorsexamen") %>%
         ungroup()
     licenciat df <- edu df %>%
         filter(examen %in% c("Licentiatexamen", "Licentiatexamen (Äldre)")) %>%
         group by(läsår, kön) %>%
         mutate(`Utfärdade examina vid universitet och högskolor` = sum(`Utfärdade_
      →examina vid universitet och högskolor`)) %>%
         filter(examen == "Licentiatexamen") %>%
         ungroup()
     edu_df \leftarrow edu_df \%
         filter(examen == "Examen från grundutbildning") %>%
         full_join(licenciat_df) %>%
         full join(doktor df) %>%
         pivot_wider(names_from = kön, values_from = `Utfärdade examina vidu
      →universitet och högskolor`) %>%
         mutate(läsår = as.integer(str_extract(läsår, "^\\w*"))) %>%
         rename(år = läsår) %>%
```

```
pivot_longer(!c(år, examen), names_to = "kön", values_to = "antal") %>%
    mutate(
        kön = str_replace(kön, "båda könen", "totalt"),
        examen = factor(examen,
            ordered = FALSE,
            levels = c(
                "Examen från grundutbildning", "Licentiatexamen", u
 →"Licentiatexamen (Äldre)", "Doktorsgrad", "Doktorsexamen"
            ),
            labels = c(
                "Grundutbildning", "Licentiatexamen", "Licentiatexamen", u
 →"Doktorsexamen", "Doktorsexamen"
        )
    )
pop_df <- as.data.frame(pxg_pop)</pre>
pop_df <- as_tibble(pop_df) %>% mutate(år = as.integer(år)) # %>%
income_df <- as.data.frame(pxg_income)</pre>
income_df <- as_tibble(income_df) %>%
    filter(år >= 1936) %>%
    mutate(år = as.integer(år))
kpi_df <- as.data.frame(pxg_kpi)</pre>
kpi_df <- as_tibble(kpi_df) %>%
    mutate(manad = str_extract(manad, "(20|19)[\\d]{2}")) %>%
    rename("ar" = "manad") %>%
    group_by(ar) %>%
    mutate(år = as.integer(år)) %>%
    summarize(`AVG KPI Fastställd` = mean(`KPI, fastställda tal`)) %>%
    ungroup()
final_df <- edu_df %>%
    left_join(income_df, by = join_by("ar", kön == kön)) %>%
    left_join(kpi_df, by = "ar") %>%
    left_join(pop_df, by = join_by("ar", kön == kön)) %>%
    rename(medelinkomst = `Medelvärde, tkr`) %>%
    mutate(kön = factor(kön, levels = c("totalt", "kvinnor", "män"), ordered = __
 →FALSE)) %>%
    drop_na()
final_df %>% filter(ar == 1980)
```

Joining with `by = join_by(examen, kön, läsår, `Utfärdade examina vid universitet och högskolor`)`
Joining with `by = join_by(examen, kön, läsår, `Utfärdade examina vid universitet och högskolor`)`

	examen	år	kön	antal	medelinkomst	AVG_KPI_Fastställd	Folkmän
A tibble: 9×7	<fct $>$	<int $>$	<fct $>$	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	Grundutbildning	1980	totalt	34536	172.3	100	8317937
	Grundutbildning	1980	män	12110	220.4	100	4119822
	Grundutbildning	1980	kvinnor	22426	122.9	100	4198115
	Licentiatexamen	1980	totalt	1	172.3	100	8317937
	Licentiatexamen	1980	män	1	220.4	100	4119822
	Licentiatexamen	1980	kvinnor	0	122.9	100	4198115
	Doktorsexamen	1980	totalt	812	172.3	100	8317937
	Doktorsexamen	1980	män	666	220.4	100	4119822
	Doktorsexamen	1980	kvinnor	146	122.9	100	4198115

We then do some eploratory data analysis on the collected data

```
[150]: dok_df <- final_df %>%
           filter(examen == "Doktorsexamen", kön != "totalt") %>%
           mutate(Folkmängd = 1e-6 * Folkmängd)
       lic_df <- final_df %>%
           filter(examen == "Licentiatexamen", kön != "totalt") %>%
           mutate(Folkmängd = 1e-6 * Folkmängd)
       grund_df <- final_df %>%
           filter(examen == "Grundutbildning", kön != "totalt") %>%
           mutate(Folkmängd = 1e-6 * Folkmängd)
       dok_pairs <- ggpairs(</pre>
           data = dok_df,
           columns = c("ar", "antal", "medelinkomst", "AVG_KPI_Fastställd", __
        ⇔"Folkmängd"),
           mapping = aes(color = kön)
       )
       lic_pairs <- ggpairs(</pre>
           data = lic_df, columns = c("ar", "antal", "medelinkomst", 

¬"AVG_KPI_Fastställd", "Folkmängd"),
           mapping = aes(color = kön)
       grund_pairs <- ggpairs(</pre>
           data = grund_df, columns = c("ar", "antal", "medelinkomst", 
        →"AVG_KPI_Fastställd", "Folkmängd"),
           mapping = aes(color = kön)
```

```
plot_grid(
    ggmatrix_gtable(dok_pairs), ggmatrix_gtable(lic_pairs),
    sggmatrix_gtable(grund_pairs),
    ncol = 1
)
```


We can see that there is some collinearity between some of the columns and that it differs between different types of degrees.

As a naive approach the first model will contain all available data in the multiple linear regression for the amount of graduates.

```
[151]: naive model <- lm(antal ~ år + kön + examen + medelinkomst + Folkmängd +
       →AVG_KPI_Fastställd, data = final_df %>% filter(kön != "totalt"))
      summary(naive_model)
      Call:
      lm(formula = antal ~ år + kön + examen + medelinkomst + Folkmängd +
          AVG_KPI_Fastställd, data = final_df %>% filter(kön != "totalt"))
      Residuals:
         Min
                  1Q Median
                                  3Q
                                         Max
      -7336.1 -2820.9 -343.8 2509.4 20567.5
      Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
                           -1.674e+06 6.974e+05 -2.400 0.01733 *
      (Intercept)
      år
                            8.648e+02 3.656e+02
                                                 2.365 0.01898 *
      könmän
                           -1.241e+03 3.123e+03 -0.397 0.69157
      examenLicentiatexamen -2.188e+04 8.268e+02 -26.464 < 2e-16 ***
      examenDoktorsexamen -2.129e+04 8.268e+02 -25.744 < 2e-16 ***
      medelinkomst
                           -3.498e+01 3.875e+01 -0.903 0.36787
                           -1.050e-03 8.651e-03 -0.121 0.90357
      Folkmängd
                           -7.788e+01 2.982e+01 -2.611 0.00972 **
      AVG_KPI_Fastställd
      Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
      Residual standard error: 4821 on 196 degrees of freedom
      Multiple R-squared: 0.836,
                                        Adjusted R-squared: 0.8301
      F-statistic: 142.7 on 7 and 196 DF, p-value: < 2.2e-16
[152]: naive_model2 <- lm(antal ~ år + kön + examen + medelinkomst +
       →AVG_KPI_Fastställd, data = final_df %>% filter(kön != "totalt"))
      summary(naive_model2)
      Call:
      lm(formula = antal ~ år + kön + examen + medelinkomst + AVG_KPI_Fastställd,
          data = final_df %>% filter(kön != "totalt"))
      Residuals:
        Min
                              3Q
                1Q Median
                                    Max
       -7296 -2807
                     -362
                            2527 20515
      Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
      (Intercept)
                           -1.628e+06 5.878e+05 -2.770 0.00613 **
                            8.397e+02 3.006e+02 2.793 0.00573 **
      år
```

```
-1.184e+03 3.080e+03 -0.384
                                                    0.70108
könmän
examenLicentiatexamen -2.188e+04 8.247e+02 -26.531
                                                    < 2e-16 ***
                     -2.129e+04
                                 8.247e+02 -25.809
                                                    < 2e-16 ***
examenDoktorsexamen
                                 3.852e+01 -0.898
medelinkomst
                      -3.458e+01
                                                    0.37042
AVG KPI Fastställd
                     -7.729e+01
                                 2.934e+01 -2.634
                                                    0.00911 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4809 on 197 degrees of freedom
Multiple R-squared: 0.8359,
                                   Adjusted R-squared:
F-statistic: 167.3 on 6 and 197 DF, p-value: < 2.2e-16
```

This naive model results in a relatively high R^2 and R^2_{adj} values of $R^2 = 0.836$, $R^2_{adj} = 0.830$. The most significant regressors were the average KPI that year and if the degree was a "Licenciat" or PH. That the type of degree was significant is not at all unexpected as a Bachelor's level degree is a prerequesite for further studies. That KPI was significant could hint at the state of the economy being important in people studying or not. But the model is quite hard to interpret as a person, because of the large amount of explanatory variables. Because of this the regressor with the highest p-value was removed from the model, this being the population variable.

The new model had $R^2 = 0.836$, $R_{adj}^2 = 0.831$ meaning it performed slightly better than the naive model. Altough it should be noted that all of the *p*-values barely changed.

In order to increase the interpretability of the model and to more easily choose our variables, we will instead create two new models one for the amount of people graduating with a Bachelor's level degree and another for the amount of people graduating with either a "Licenciat" or PHD.

We will also approach the problem of choosing variables in the opposite way from what was done to the naive model, that is we will add one variable at a time instead of removing them.

Stepwise Summary

Step → R2	Variable	AIC	SBC	SBIC	R2	Adj.
0	Base Model	1447.805	1452.244	1251.378	0.00000	0.
1 →5853	Folkmängd	1388.922	1395.580	1191.690	0.59153	0.

2	kön	1339.183	1348.061	1142.668	0.80914	0.
- 80326	6					
3	medelinkomst	1327.645	1338.743	1131.189	0.84359	0.
<u> </u>	5					
4	AVG_KPI_Fastställd	1320.904	1334.221	1124.602	0.86246	0.
⇔ 85373	3					
5	år	1291.093	1306.629	1099.260	0.91385	0.
9069 0	0					
,0000	•					

Final Model Output

Model Summary

R	0.956	RMSE	2897.053
R-Squared	0.914	MSE	8392914.012
Adj. R-Squared	0.907	Coef. Var	13.662
Pred R-Squared	0.896	AIC	1291.093
MAE	2360.274	SBC	1306.629

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	6053846173.952 570718152.798 6624564326.750	5 62 67	1210769234.790 9205131.497	131.532	0.0000

Parameter Estimates

↔	model lower	Beta upper	Std. Error	Std. Beta	t	Sig u	
↔	(Intercept) -6263743.089	-4744231.247 -3224719.405	760146.820		-6.241	0.000 _L	
	Folkmängd	0.001	0.009	0.021	0.113	0.911 <mark></mark>	
\hookrightarrow	-0.018	0.020					

4	könmän -11297.563	-4492.417 2312.728	3404.323	-0.228	-1.320	0.192 _L
	medelinkomst	-98.245	42.241	-0.536	-2.326	0.023 _L
\hookrightarrow	-182.683	-13.807				
AVG_F	KPI_Fastställd	-231.133	32.509	-1.486	-7.110	0.000 _L
\hookrightarrow	-296.118	-166.148				
	år	2423.482	398.513	2.409	6.081	0.000 _L
\hookrightarrow	1626.866	3220.097				

Stepwise Summary

Step → R2	Variable	AIC	SBC	SBIC	R2	Adj.
0	Base Model	2054.785	2060.611	1665.554	0.00000	0.
1 ⊶4234	examen 4	1980.883	1989.621	1590.585	0.42771	0.
2 ⊶75928	medelinkomst 3	1863.077	1874.728	1473.845	0.76284	0.
3	AVG_KPI_Fastställd	1817.731	1832.294	1429.629	0.83257	0.
4	Folkmängd 2	1804.162	1821.638	1416.537	0.85068	0.
5 ⊶86809	år 9	1784.163	1804.551	1398.030	0.87298	0.
6 ⊶8758:	kön 1	1776.912	1800.214	1391.715	0.88133	0.

Final Model Output

Model Summary

R	0.939	RMSE	156.805
R-Squared	0.881	MSE	24587.845
Adj. R-Squared	0.876	Coef. Var	25.765
Pred R-Squared	0.868	AIC	1776.912
MAE	132.207	SBC	1800.214

RMSE: Root Mean Square Error

MSE: Mean Square Error

MAE: Mean Absolute Error

AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	24834911.666 3343946.892 28178858.559	6 129 135	4139151.944 25922.069	159.677	0.0000

Parameter Estimates

\hookrightarrow	model lower	Beta upper	Std. Error	Std. Beta	t	Sig u	
 -	(Intercept) -216632.090	-160197.705 -103763.320	28523.471		-5.616	0.000⊔	
exam	enDoktorsexamen 540.752	595.382 650.013	27.612	0.654	21.563	0.000 _L	
, 4	medelinkomst -6.477	-3.341 -0.205	1.585	-0.395	-2.108	0.037 <mark>u</mark>	
AVG	_KPI_Fastställd	-1.257	1.220	-0.175	-1.030	0.305 <mark>u</mark>	
\hookrightarrow	-3.670 Folkmängd	1.157	0.000	-0.905	-5.951	0.000 _L	
\hookrightarrow	-0.003 år	-0.001 85.460	14.954	1.842	5.715	0.000 _L	
\hookrightarrow	55.874 könmän	115.046 384.918	127.743	0.423	3.013	0.003 <mark></mark>	
\hookrightarrow	132.176	637.660					

The variable selection algorithm for the Bachelor's level model resulted in the following choices: 1. Population 2. Gender 3. Average income 4. Average KPI 5. Year

On first glance this result was surprising to me as the first variable it chose was population in contrast to the naive model were it had the largest p-values, and that the variable with the lowest p-value except type of degree was added second to last.

Altough from the pairs plot we knew that there was collinearity between some of the variables so it is to be excepted that they would interact in nonintuitive ways.

For the model of the other two degrees, forward selection resulted in the choices: