近世代数教程

 root

March 17, 2015

目录

0.1 半群和幺半群

0.1.1 预备知识

在近世代数中,集合论与图论中的术语被广泛的使用。所以我们先来回顾一下集合论中的一些基本概念,那就是集合与映射。

数学归纳法

数学归纳法在近世代数中被广泛的使用。我们在这里给出数学归纳法的证明。在前面的课程中,我们只是利用数学归纳法给出证明。但是数学归纳法的正确性并没有被谈及。在这里我们给出数学归纳法的正确性证明。首先给出良序原理,又称为最小数原理。英文是 well ordering principle

最小数原理:

定理 0.1.1 对于自然数集合 Z^+ 的每一个非空子集都有一个最小元素。

第一数学归纳法:

定理 0.1.2 设 P(n) 是关于正整数 n 的一个命题,如果下面的两个事实成立:

- (1) P(1) 是真的;
- (2) 对于每一个正整数 k,如果 P(k) 是真的,那么 P(k+1) 也是真的。 那么在上述条件下,就能得出结论:对于所有的正整数 n,P(n) 都是真的。

目录

如果 $Z_1 \neq \phi$, 那么由于 $Z_1 \subseteq Z^+$, 由最小数原理知 Z_1 中必有一个最小数, 设这个最小数是 m_o 由于 P(1) 为真, 所以 $m \neq 1$, 这样有 m > 1。由于它是 Z_1 中最小的元素, 所以有 P(m) 不真, 但 P(m-1) 为真。由 m > 1,所以m-1 > 0,m-1 是自然数集合 Z^+ 中的一元。由归纳法的第二个条件知P(m) 为真。所以 m 应该不在 Z_1 中。这与 m 是在 Z_1 中的最小元素相矛盾。

第二数学归纳法:

定理 0.1.3 设 P(n) 是关于正整数 n 的一个命题,如果下面的两个事实成立:

- (1)P(1) 是真的;
- (2)对于每一个正整数 m,如果对于所有正整数 k < m,P(k) 是真的,那 么 P(m) 也是真的。

在这种情况下, 我们就能够得出结论: 对于所有的正整数 n, P(n) 都是真的。

例子

4

the Fibonacci sequence $\ (f_1,f_2,f_3,\cdot)$ is defined as follows: $\\[f_1=f_2=1, f_n=f_{n-1}+f_{n-2}) \ for \ \ all \ \ n\geq 3\\[Prove that \ (f_{5k})\ is divisible by 5 for every \ (k\geq 1), that is, 5 divides every 5th member of the fibonacci sequence <math>\ (f_{5k}) \ for every \ (f_{5k}) \ for every \$

证明: 2 这个数列的前几项为 $1,1,2,3,5,8,13,21,\cdots$,可以看出 $f_5=5$,所

证明: 2 这个数列的制几项为 $1,1,2,3,5,8,13,21,\cdots$,可以看出 $f_5=5,M$ 以 $5|f_5$. 这说明当 k=1 时结论成立。

假定当 k=m 时结论成立,也就是说 $5|f_{5m}$,于是

$$f_{5(m+1)} = f_{5m+5} = f_{5m+4} + f_{5m+3}$$

$$= 2f_{5m+3} + f_{5m+2}$$

$$= 3f_{5m+2} + 2f_{5m+1}$$

$$= 5f_{5m+1} + 3f_{5m}$$
(1)

从而 5 整除上式的右端,得到 $5|f_{5(m+1)}$,也就是当 k=m+1 时结论也成立。由数学归纳法知对任意的正整数 k,都有 $5|f_{5k}$ 。

归纳法在使用的时候应该注意各个步骤的衔接,不能大意,否则就会出问题。下面的例子称为是瞒天过海。让你证明所有的马都具有相同的颜色。

设 $\langle (P(n) \setminus)$ 是如下的命题:"对于每个由 $\langle (n \setminus)$ 匹马组成的集合来说,集合中所有的马都具有同样的颜色"。我们用归纳法证明对所有的 $\langle (n \setminus), (P(n) \setminus)$ 成立。

证明: 3 显然 P(1) 是真的。假设 P(m) 是真的,我们来证明 P(m+1) 也是真的。设 S 是 m+1 匹马组成的集合, $S=\{h_1,h_2,\cdots,h_{m+1}\}$,因为 h_1,h_2,\cdots,h_m 是 m 匹马,由于 P(m) 成立,所以 h_1,h_2,\cdots,h_m 具有同样的颜色,同理 h_2,h_3,\cdots,h_{m+1} 是 m 匹马,所以 h_2,h_3,\cdots,h_{m+1} 也具有同样的颜色。将这两个论断结合在一起,就有所有的 m+1 匹马都具有同样的颜色(比如,它们都有 h_2 的颜色)。

在上述的证明过程中,对于任意的 k > 1,如果 P(k) 为真,可以推得 P(k+1) 也为真。如果能够正确使用第一数学归纳法,当 k = 1,也可以做同样地推理 才可以。但此时不能从 P(1) 为真,推出 P(2) 也为真。这说明第一数学归纳 法的第二个条件是不成立的。

0.1.2 若干基本概念

代数运算

下面给出二元代数运算的定义:

定义 0.1.1 设 X 是一个集合,一个从 $X \times X$ 到 X 的一个映射 φ 称为 X 上 的一个二元代数运算。

设\($X=\setminus\{a,b\setminus\}\setminus$),\($\setminus phi\setminus$)是\($(X\setminus)$ 上的一个二元代数运算,于是它是一个从\($(X^2\setminus)$)到\($(X\setminus)$)的映射。不妨设\($\setminus phi(a,a)=a, \setminus phi(a,b)=b, \setminus phi(b,a)=b, \setminus phi(b,b)=a\setminus$)。可以用下面的表来表示这样一个映射:

目录

| b | b | a |

该表被称之为Cayley乘法表。

二元函数 $\phi(x,y)$ 有三种表示方法, $\phi(x,y),x\phi y,(x,y)\phi$ 。

 $\phi(x,y)$ 称为前缀表示, $x\phi y$ 称为中缀表示, $(x,y)\phi$ 称为后缀表示。

二元代数运算往往用中缀表示 $x\phi y$, 并且 ϕ 往往用符号 "。"或 "*"表示,读作乘法。

定义 0.1.2 一个从集合 X 到集合 Y 的映射称为 X 到 Y 的一个一元代数运 算。当 X = Y 时,称此一元代数运算为 X 上的一元代数运算。

X 上的一元二元代数运算对于运算是封闭的。

运算律

定义 0.1.3 设"o"是 X 上的二元代数运算,如果对于 $\forall a,b,c \in X$, 恒有

$$(a \circ b) \circ c = a \circ (b \circ c) \tag{2}$$

则称二元代数运算"o"满足结合律。如果对于 $\forall a,b \in X$, 恒有

$$a \circ b = b \circ a \tag{3}$$

则称二元代数运算"。"满足交换律。

定义 0.1.4 设 "。" 是非空集合 S 上的一个二元代数运算,则称二元组 (S, \circ) 为一个 (有一个代数运算的) 代数系。

类似的可以定义具有多个代数运算的代数系,代数系也称为代数结构。

定理 0.1.4 设 (S, \circ) 为一个代数系。如果二元代数运算 " \circ "满足结合律,则 $\forall a_i \in S, i = 1, 2, \cdots, n, a_1, a_2, \cdots, a_n$ 的乘积仅与这 n 个元素及其次序有关 而唯一确定。

证明: 4 用第二数学归纳法进行证明。当 n = 3 时结论成立。因为对 $\forall a_1, a_2, a_3 \in S$,按照结合律的定义有 $(a_1 \circ a_2) \circ a_3 = a_1 \circ (a_2 \circ a_3)$ 。

假设 k < m 时,结论成立。当 n = m 时,我们可以证明 m 个元素的任何 一种相乘的方式都和 $(\cdots((a_1 \circ a_2) \circ a_3) \circ \cdots \circ a_{m-1}) \circ a_m$ 相等。

任意给定一种相乘的方式,由于 a_1,a_2,a_3,\cdots,a_m 的顺序已经排定,而代数运算"。"是一个二元代数运算,所以这 m 个元素的乘积最终一定化归为 S 中的两个元素相乘而得到最终结果。从而一定有一个正整数 k,使得这两个元素分别是前面的 k 个元素相乘的结果和后面 n-k 个元素相乘的结果。由于这两部分中的元素个数 < m,所以由归纳假设,这两部分乘积只与这些元素及其顺序有关。这个乘积可以写成 $(a_1 \circ a_2 \circ \cdots \circ a_k) \circ (a_{k+1} \circ a_{k+2} \circ \cdots \circ a_m)$ 。

如果 k = m - 1,那么上式的第一项中的元素个数 < m,由归纳假设知 $a_1 \circ a_2 \circ \cdots \circ a_{m-1} = (\cdots ((a_1 \circ a_2) \circ a_3) \circ \cdots \circ a_{m-2}) \circ a_{m-1} \circ 从而$

$$(a_1 \circ a_2 \circ \cdots \circ a_k) \circ (a_{k+1} \circ a_{k+2} \circ \cdots \circ a_m) = (a_1 \circ a_2 \circ \cdots \circ a_{m-1}) \circ a_m$$
$$= ((\cdots ((a_1 \circ a_2) \circ a_3) \circ \cdots \circ a_{m-2}) \circ a_{m-1}) \circ a_m$$
$$\tag{4}$$

如果 k < m - 1,那么

$$(a_1 \circ a_2 \circ \cdots \circ a_k) \circ (a_{k+1} \circ a_{k+2} \circ \cdots \circ a_m) = (a_1 \circ a_2 \circ \cdots \circ a_k) \circ ((a_{k+1} \circ a_{k+2} \circ \cdots \circ a_{m-1}) \circ a_m)$$
$$= ((a_1 \circ a_2 \circ \cdots \circ a_k) \circ (a_{k+1} \circ a_{k+2} \circ \cdots \circ a_{m-1})) \circ a_m$$

$$(5)$$

上式右端的前一项中有 m-1 个元素,再由归纳假设知上式的最后乘积的结果为 $(a_1 \circ a_2 \circ \cdots \circ a_k) \circ (a_{k+1} \circ a_{k+2} \circ \cdots \circ a_m) = (a_1 \circ a_2 \circ \cdots \circ a_{m-1}) \circ a_m = (\cdots ((a_1 \circ a_2) \circ a_3) \circ \cdots \circ a_{m-1}) \circ a_m \circ$

定理 0.1.5 设 (S, \circ) 为一个代数系。如果二元代数运算 "。"满足结合律和交换律,则 $\forall a_i \in S, i = 1, 2, \cdots, n, a_1, a_2, \cdots, a_n$ 的乘积仅与这 n 个元素有关而与它们的次序无关。

定义 0.1.5 设 $(S, \circ, +)$ 是具有两个代数运算 " \circ "和 "+"的代数系。如果对于 $\forall a, b, c \in S$,恒有

$$a \circ (b+c) = a \circ b + a \circ c$$

则称"o"对"+"满足左分配律。如果对于 $\forall a, b, c \in S$, 总有

$$(b+c) \circ a = b \circ a + c \circ a$$

则称"o"对"+"满足右分配律。

定理 0.1.6 $(S, \circ, +)$ 是具有两个代数运算 " \circ "和 "+"的代数系。如果 +"满足 结合律," \circ "对 "+"满足左(右)分配律,则 $\forall a, a_i \in S, i = 1, 2, \cdots, n$,我们有

$$a \circ (a_1 + a_2 + \dots + a_n) = (a \circ a_1) + (a \circ a_2) + \dots + (a \circ a_n)$$

$$((a_1 + a_2 + \dots + a_n) \circ a = (a_1 \circ a) + (a_2 \circ a) + \dots + (a_n \circ a))$$

幺元和零元

定义 0.1.6 设 (S, \circ) 是一个代数系, 如果存在一个元素 $a_l \in S$,使得 $\forall a \in S$ 都有

$$a_l \circ a = a$$

则称 a_l 为乘法 "。"的左单位元素 (左幺元)。如果存在一个元素 $a_r \in S$, 使 $\theta \forall a \in S$ 都有

$$a \circ a_r = a$$

则称 a_r 为乘法 "。"的右单位元素 (右幺元)。如果存在一个元素 $e \in S$,使得 $\forall a \in S$ 都有

$$e\circ a=a\circ e=a$$

则称 e 为乘法"o"的单位元素(4元)。

定理 $0.1.7~(S,\circ)$ 是一个代数系。如果二元代数运算 "。"既有左单位元素 a_l ,又有右单位元素 a_r ,则 $a_l=a_r$,从而有单位元素。

定义 0.1.7 设 (S, \circ) 是一个代数系, 如果存在一个元素 $z \in S$,使得 $\forall a \in S$ 都有

$$z \circ a = a \circ z = z$$

则称 z 为乘法 "o"的零元素。

设 (S, \circ) 是一个具有二元代数运算" \circ "的代数系。 $A, B \subseteq S$,则定义

$$A \circ B = \{a \circ b | a \in A, b \in B\}$$

我们也常把 $A \circ B$ 写成 AB,把 $a \circ b$ 写成 ab。 当 $A = \{a\}$ 时, $AB = \{a\}B$,简记为 aB。于是

$$aB = \{a \circ b | b \in B\}$$

$$Ba = \{b \circ a | b \in B\}$$

0.1.3 半群与幺半群的概念

半群

定义 0.1.8 设 (S, \circ) 是一个代数系, 如果 "。"满足结合律,那么就称 S 对于乘法 "。"构成一个半群 (Semigroup),记为 (S, \circ) 。

交换半群或者可换半群,有限半群,无限半群。

半群的例子 \pozhehao 模 n 剩余类

```
[i]+[j]=[i+j]
\backslash
证明加法"\((+\setminus)"是\((Z n\setminus)上的一个二元代数运算。\((Z n,+)\setminus)是一个半群。
   集合上的二元关系关系的合成
定义 0.1.9 集合 A 上的一个二元关系 \rho 是笛卡尔乘积 A \times A 的一个子集。
令 \mathcal{R}(A) 表示 A 上的所有二元关系构成的集合。在集合 \mathcal{R}(A) 上定义二元
代数运算"o"如下:
  \rho \circ \sigma = \{(x,y) | (x,y) \in A \times A, 存在z \in A, 使得(x,z) \in \rho并且(z,y) \in \sigma\}
那么代数系 (\mathcal{R}(A), \circ) 形成一个半群。
全体偶数的集合\(E\)对于通常的乘法构成一个可换半群\((E,\cdot)\),它没有单位元。
设$S$是一切形如
\begin{displaymath}
\left( \left( \operatorname{array} \right) \right) 
a & b \\
0 & 0
\end{array}
\right),
a,b\in N
\end{displaymath}
的\(2\times 2\)矩阵的集合。容易验证\(S\)对矩阵的乘法\(\circ\)构成一个不可交换半群,并且
\begin{displaymath}
\left( \left( \left( \operatorname{array} \right) \right) \right)
1 & d \\
0 & 0
\setminus \operatorname{end}\{\operatorname{array}\}
\right)
```

\end{displaymath}

是左单位元素。从而\((S,\circ)\)有无限多个左单位元素。

幺半群

定理 0.1.8 如果半群 (S, \circ) 中既有左单位元素又有右单位元素,则左单位元素和右单位元素相等,从而有单位元素且单位元素唯一

定义 0.1.10 有单位元素 e 的半群 (S, \circ) 称为独异点或者称为幺半群。记为 (S, \circ, e) 。如果 S 是一个有限集合,则称 (S, \circ, e) 为有限幺半群,S 的基数称 为幺半群 (S, \circ, e) 的阶。

 $\mathcal{C}(S)$ 是一个非空集合,则\((2^S,\cup,\phi)\)和\((2^S,\cap,S)\)都是幺半群。

设\(S \)是一个非空集合,\(M(S)=\{f|f:S\rightarrow S\} \),则\(M(S) \)对映射的合成构成了一个以\(I_S \((M(S),\circ,I_S) \)。它是不可交换的幺半群。

有限半群成为幺半群的条件

定理 0.1.9 有限半群 (S, \circ) 是一个幺半群当且仅当 $\exists s, t \in S$ 使得

$$sS = S, St = S$$

证明: $5 \Rightarrow \mathcal{R}$

 \Leftrightarrow 设 (S, \circ) 是一个半群且 $\exists s, t \in S$ 使得 sS = S, St = S。令 $\varphi : S \to sS, \forall x \in S, \varphi(x) = s \circ x$ 。于是 φ 是满射。而由 sS = S 并且 $|S| < +\infty$,从而 φ 又是单射。从而 φ 是双射。由数学归纳法可以证明 $\forall x \in S, \varphi^n(x) = s^n x$ 。

任取 $x \in S$, 序列 x, $\phi(x)$, $\phi^2(x)$, \cdots , $\phi^n(x)$ 中必有两项相同,设 $\phi^p(x) = \phi^q(x)$, 其中 p < q, ϕ 有逆映射 ϕ^{-1} , 故 $\phi^{q-p}(x) = x$ 。 从而对任取的 x, 有非负整数 n_x ,使得 $\phi^{n_x}(x) = x$ 。 令 $k = lcm\{n_x|x \in S\}$,于是 $\phi^k(x) = \phi^{m_xn_x}(x) = \underbrace{(\phi^{n_x}\phi^{n_x}\cdots\phi^{n_x})(x) = (\phi^{n_x}\phi^{n_x}\cdots\phi^{n_x})(x) = \cdots = \phi^{n_x}(x) = x}_{m_x}$ 从而对 $\forall x \in S$,有 $s^k \circ x = \phi^k(x) = x$, s^k 为一个左幺元。

proof of semigroups with unity

proof of semigroups with unity111

另外一个证明方法

先看下面的例子,设集合 $S = \{a, b, c\}$,为一个有限半群,乘法由如下给定的

由此乘法表可知 $c \circ (a,b,c) = (b,c,a)$ 。 所以有 $c^2 \circ (a,b,c) = c \circ [c \circ (a,b,c)] = c \circ (b,c,a) = (c,a,b)$ 。这里面 $c \circ c = a$,由此可以得到 $a \circ (a,b,c) = (c,a,b)$,这就确定了上面乘法表中对应元素 a 的行。

继续下去,我们有 $c^3\circ(a,b,c)=c\circ[c^2\circ(a,b,c)]=c\circ(c,a,b)=(a,b,c)$ 。 而 $c^3=c^2\circ c=a\circ c=b$,上式变成 $b\circ(a,b,c)=(a,b,c)$,这就确定了上面乘法表中对应元素 b 的行。cayley 乘法表变成了

由此可以得到半群 S 的一个左幺元 b。

仿照这个例子,给出上面定理的一个证明。

设 (s_1, s_2, \cdots, s_n) 是 S 中所有不同元素构成的一个向量。由于 sS = S, 所以 $(ss_1, ss_2, \cdots, ss_n)$ 也是 S 中所有不同元素构成的一个向量。设 K 是 S 中所有不同元素构成向量的集合,即 $K = \{(s_1, s_2, \cdots, s_n) | s_i \in S, s_k \neq s_j (if \quad k \neq j)\}$ 。做映射 $\phi: K \to K$,使得 $\phi(s_1, s_2, \cdots, s_n) = (ss_1, ss_2, \cdots, ss_n)$ 。 可以证明 ϕ 为单射。即如果 $(s_1, s_2, \cdots, s_n) \neq (t_1, t_2, \cdots, t_n)$,那么必有 $(ss_1, ss_2, \cdots, ss_n) \neq (st_1, st_2, \cdots, st_n)$ 。否则 $ss_i = st_i (i = 1, 2, \cdots, n)$ 。不妨设 $s_1 \neq t_1$,但 $ss_1 = st_1$ 。于是 $sS = s(\{s_1, t_1\} \cup S\setminus\{s_1, t_1\}) = s\{s_1, t_1\} \cup s(S\setminus\{s_1, t_1\})$,从而 $|sS| = |s\{s_1, t_1\} \cup s(S\setminus\{s_1, t_1\})| \leq |s\{s_1, t_1\}| + |s(S\setminus\{s_1, t_1\})| \leq 1 + n - 2 = n - 1$,与 sS = S相矛盾。做序列 (s_1, s_2, \cdots, s_n) , $\phi(s_1, s_2, \cdots, s_n)$, $\phi^2(s_1, s_2, \cdots, s_n)$, \cdots ,这 些序列都在 K 中。但 K 中只有有限个元素,所以必有一个 k,使得 (s_1, s_2, \cdots, s_n) , $\phi(s_1, s_2, \cdots, s_n)$, $\phi^2(s_1, s_2, \cdots, s_n)$ 与前面的某一项相同。可以证明

13

 $\phi^{k+1}(s_1, s_2, \dots, s_n) = (s_1, s_2, \dots, s_n)$ 。否则如下图所示, $\phi^{k+1}(s_1, s_2, \dots, s_n) = \phi(s_1, s_2, \dots, s_n)$,那么 $\phi(s_1, s_2, \dots, s_n)$ 就会有两个不同的原像 (s_1, s_2, \dots, s_n) 和 $\phi^k(s_1, s_2, \dots, s_n)$ 。

这与 ϕ 是单射相矛盾。从而 $\phi^{k+1}(s_1, s_2, \dots, s_n) = (s_1, s_2, \dots, s_n)$ 。也就 是 $s^{k+1}s_i = s_i (i = 1, 2, \dots, n)$,所以 s^{k+1} 为 S 的一个左幺元。

元素的幂

在幺半群 (S, \circ, e) 中可以定义元素的非负整数次幂。对于 $\forall a \in S, a^0 = e, a^{n+1} = a^n \circ a \ (n \geq 0)$ 。

在半群 (S, \circ) 中可以定义元素的正整数次幂。对于 $\forall a \in S, a^1 = a, a^{n+1} = a^n \circ a \ (n \ge 1)$ 。

证明: 6 对 n 用数学归纳法。对第一个式子,当 n = 1 时,由定义知,由定义知 $a^{m+1} = a^m \circ a$ 。假设当 n = k 时成立,即 $a^{m+k} = a^m \circ a^k$ 。那么当 n = k+1 时 有 $a^{m+(k+1)} = a^{(m+k)+1} = a^{m+k} \circ a = (a^m \circ a^k) \circ a = a^m \circ (a^k \circ a) = a^m \circ a^{k+1}$ 。

对第二个式子, 当 n=1 时显然成立。假设当 n=k 时成立, 即 $(a^m)^k=a^{mk}$, 当 n=k+1 时有 $(a^m)^{k+1}=(a^m)^k\circ a^m=a^{mk}\circ a^m=a^{mk+m}=a^{m(k+1)}$

幺半群中的逆元素和群

定义 0.1.11 设 (S, \circ, e) 是一个幺半群, $a \in S$ 。称 a 有左逆元素,如果存在 $a_l \in S$ 使得 $a_l \circ a = e$,这时 a_l 称为 a 的左逆元素。称 a 有右逆元素,如果存在 $a_r \in S$ 使得 $a \circ a_r = e$,这时 a_r 称为 a 的右逆元素。如果存在 $b \in S$ 使得 $a \circ b = b \circ a = e$,则称 a 有逆元素,b 称为 a 的逆元素。

定义 0.1.12 每个元素都有逆元素的幺半群称为群。

定理 0.1.11 如果幺半群 (S, \circ, e) 中的元素 a 有左逆元素 a_l ,又有右逆元素 a_r ,则 $a_l = a_r$ 。于是 a 有逆元素并且逆元素唯一。记为 a^{-1}

定理 0.1.12 有限半群 (S, \circ) 是一个群当且仅当对于 $\forall s \in S$ 有 sS = S 并且 $\exists t \in S$ 使得 St = S 。

证明:有限半群\((S,\circ)\)中一定有一个元素\(a\in S\),使得\(a\circ a=a\)。

0.1.4 子半群、子幺半群和理想

定义 0.1.13 设 (S, \circ) 是一个半群,B 是 S 的一个非空子集。如果对于 $\forall a, b \in B$,都有 $a \circ b \in B$,则称代数系 (B, \circ) 是 (S, \circ) 的一个子半群。简称 B 是 S 的一个子半群。

 (B,\circ) 的乘法与 (S,\circ) 的乘法是一样的,否则即使 B 是 S 的子集, (B,\star) 也不是设 (S,\circ) 是一个子半群。

定义 0.1.14 设 (S, \circ, e) 是一个幺半群, $P \subseteq S$ 。如果 $e \in P$,并且 P 是 S 的子半群, 则称 P 是 S 的子幺半群。

 (E,\cdot) 也是 (Z,\cdot) 的一个子半群,但是不是子幺半群。

设\((S,\circ)\)是半群,\(a\in S\),\(B=\{a^{n}|n\setminus geq 1\}\)是\((S,\circ)\)的子半群。设\((M,\circ,e)\)的可逆元素的集合,则\((Q,\circ,e)\)也是\((M,\circ,e)\)的

有 A 生成的子半群和子幺半群

定理 0.1.13 一个幺半群的任意多个子幺半群的交集仍是子幺半群。

定理 0.1.14 设 (S, \circ) 是半群, $A \in S$ 的一个非空子集, 则 S 的一切包含 A 的子半群的交集 Q 也是子半群。

定义 0.1.15 设 (S, \circ) 是半群, A 是 S 的一个非空子集, 则 S 的一切包含 A 的子半群的交集称为由 A 生成的子半群, 记为 (A)。设 (M, \circ, e) 是幺半群, A 是 M 的一个非空子集, 则 M 的一切包含 A 的子幺半群的交集称为由 A 生成的子幺半群, 记为 (A)。

定义 0.1.16 半群 (S, \circ) 的一个非空子集 A 称为 S 的一个左(右)理想。如 果 $SA \subseteq A(AS \subseteq A)$ 。如果 A 既是 S 的左理想又是 S 的右理想,则称 A 是 S 的理想。

定义 0.1.17 设 $A \in (S, \circ)$ 的一个非空子集,由 $A \in A$ 生成的左 (A) 理想为所有包含 A 的左 (A) 理想的交。(S) 的一切包含 (A) 的理想的交称为由 (A) 生成的理想。

定理 0.1.15 设 A 是半群 (S, \circ) 的一个非空子集,则

- 1. 由 A 生成的左理想是 $A \cup SA$ 。
- 2. 由 A 生成的右理想是 $A \cup AS$ 。
- 3. 由 A 生成的理想是 $A \cup SA \cup AS \cup SAS$.

定理 0.1.16 设 A 是幺半群 (M, \circ, e) 的一个非空子集,则

- 1. 由 A 生成的 M 的左理想是 MA。
- 2. 由 A 生成的 M 的右理想是 AM。
- 3. 由 A 生成的 M 的理想是 MAM.

循环半群

定义 0.1.18 一个半群(幺半群)称为循环半群(循环幺半群),如果这个半群(幺半群)是由其中的某个元素生成的半群(幺半群)。由元素 a 生成的循环半群记为(a)。

自然数集合\($(N\setminus)$)对通常加法的半群\($(N,+)\setminus$)是由\($(1\setminus)$ 生成的循环半群。所有非负整数之集\($(N_0,+)\setminus$)是由\($(1\setminus)$ 生成的循环幺半群。

定理 0.1.17 循环半群(幺半群)必是可交换半群(幺半群)。

0.1.5 同构、同态

同构

定义 0.1.19 设 (S, \circ) 和 (T, *) 是两个半群。如果存在一个从 S 到 T 的一一 对应 φ , 使得 $\forall a, b \in S$ 有

$$\varphi(a \circ b) = \varphi(a) * \varphi(b)$$

则称半群 (S, \circ) 与 (T, *) 同构。记为 $(S, \circ) \cong (T, *)$,简记为 $S \cong T \circ \varphi$ 称 为从 S 到 T 的一个同构映射,简称同构。

定义 0.1.20 设 (M, \circ, e) 和 (M', *, e') 是两个幺半群。如果存在一个从 M 到 M' 的——对应 φ ,使得 $\forall x, y \in M$ 有

$$\varphi(e) = e', \varphi(x \circ y) = \varphi(x) * \varphi(y)$$

则称幺半群 (M, \circ, e) 和 (M', *, e') 同构。记为 $(M, \circ, e) \cong (M', *, e')$,简记为 $M \cong M'$ 。 φ 称为从 M 到 M' 的一个同构 (映射)。

定理 0.1.18 (\underline{S} 半群的 Cayley 定理) 任何 \underline{S} 任何 \underline{S} 半群 (M, \circ, e) 同构于变换 \underline{S} + 群 $(L(M), \circ, I_M)$ 。

证明: $7 L(M) = \{\rho_a | \rho_a : M \to M, a \in M, \rho_a(x) = a \circ x, \forall x \in M\}$ 。在L(M)上定义乘法"。"如下: $\rho_a \circ \rho_b = \rho_{a \circ b}, \forall \rho_a, \rho_b \in L(M)$ 。则 $(L(M), \circ)$ 构成一个2半群。}

做映射 $\psi: M \to L(M)$, 使得对 $\forall a \in M$, $\psi(a) = \rho_a$ 。可以证明 ψ 是一个同构映射。

17

同态

定义 0.1.21 设 (S, \circ) 和 (T, *) 是两个半群。如果存在一个从 S 到 T 的映射 φ , 使得 $\forall a, b \in S$ 有

$$\varphi(a \circ b) = \varphi(a) * \varphi(b)$$

则称半群 (S, \circ) 与 (T, *) 是同态的。 φ 称为从 S 到 T 的一个同态。 $\varphi(S)$ 称 为同态象。

 $\ddot{a}(M, \circ, e)$ 和 (M', *, e') 是两个幺半群。如果存在一个从 M 到 M' 的 映射 φ , 使得 $\forall x, y \in M$ 有

$$\varphi(e) = e', \varphi(x \circ y) = \varphi(x) * \varphi(y)$$

则称幺半群 (M, \circ, e) 与 (M', *, e') 同态。 φ 称为从 M 到 M' 的一个同态。

设\(S\)是一个非空

令\((M,\circ,e)\)和\((M',\ast,e')\)是两个幺

半群。设\(\varphi:M\rightarrow M',\forall x\in M,\varphi(x)=e'\),则\(\varphi\)是一个同态,但是若\(|M'|>1\),则\(\varphi\)不是满同态。

 $\diamondsuit((Z, \cdot (Z, \cdot (Z, \cdot)))$ 是整数的乘法幺半群。设

\(\varphi:Z\rightarrow Z,\forall z\in

 \mathbb{Z}_{\cdot} \varphi(z)=0\),则\(\varphi\)不是同态,因为\(\varphi(1)=0\neq 1\)。

定理 0.1.19 设 (S, \circ) 是一个半群,(T, *) 是一个具有二元代数运算 * 的代数 系。如果存在满映射 $\varphi: S \to T$ 使得 $\forall x, y \in S$ 有

$$\varphi(x \circ y) = \varphi(x) * \varphi(y)$$

 $\mathcal{M}(T,*)$ 是半群。

定理 0.1.20 设 (S, \circ, e) 是一个幺半群,(T, *) 是半群。如果 φ 是 S 到 T 的 满半群同态,则 $\varphi(e)$ 是 T 的单位元,从而 $(T, *, \varphi(e))$ 是幺半群。

定理 0.1.21 设 (M_1, \circ, e_1) 和 $(M_2, *, e_2)$ 是幺半群。如果 M_1 到 M_2 有一个 同态 φ ,则 M_1 的可逆元素 a 的象 $\varphi(a)$ 也可逆并且 $(\varphi(a))^{-1} = \varphi(a^{-1})$ 。

定理 0.1.22 设 φ 是半群 (S_1, \circ) 到 $(S_2, *)$ 的同态, ψ 是半群 $(S_2, *)$ 到 (S_3, \cdot) 的同态,则 $\varphi \circ \psi$ 是 (S_1, \circ) 到 (S_3, \cdot) 的同态。

由映射诱导出的等价关系