\star Spé - St Joseph/ICAM Toulouse \star

Math. - CC 2 - S1 - Analyse

vendredi 4 décembre 2020 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

PARTIE 1

Dans cette partie, α désigne un réel quelconque.

1. A l'aide de la règle de d'Alembert, déterminer le rayon de convergence de la série $\sum_{n>1} \frac{x^n}{n^{\alpha}}$.

On notera R_{α} ce nombre et f_{α} la somme de la série entière, c'est-à-dire pour tout $x \in]-R_{\alpha}, R_{\alpha}[:$

$$f_{\alpha}(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha}}$$

- **2.** Justifier que f_{α} est de classe C^{∞} sur $]-R_{\alpha},R_{\alpha}[.$
- **3.** Montrer que pour tout $x \in]-R_{\alpha}, R_{\alpha}[, f_{\alpha}(x) + f_{\alpha}(-x) = 2^{1-\alpha}f_{\alpha}(x^2).$
- **4.** Etablir une relation entre $f'_{\alpha+1}(x)$ et $f_{\alpha}(x)$, pour tout $x \in]-R_{\alpha}, R_{\alpha}[$.
- **5.** Justifier que pour tout réel $x \in]-R_{\alpha}, R_{\alpha}[:$

$$f_{\alpha+1}(x) = \int_0^x \frac{f_{\alpha}(t)}{t} dt$$

6. Expliciter f_0 et retrouver f_1 et f_{-1} en utilisant les résultats établis dans les questions précédentes.

PARTIE 2

Dans cette partie $\alpha = 2$, et on note $f_2 = S$.

- **1.** Justifier que S est définie sur [-1, 1].
- **2.** On considère la fonction φ définie sur]0,1[par

$$\varphi(x) = S(x) + S(1 - x) + \ln(x) \, \ln(1 - x)$$

- **a.** Justifier que φ est de classe C^1 sur]0,1[.
- **b.** Calculer S'(x) pour $x \in]0,1[$.
- **c.** En déduire que φ est constante sur]0,1[.
- **3.** Pour $x \in [0,1]$, et $n \in \mathbb{N}^*$, on note $S_n(x) = \sum_{k=1}^n \frac{x^k}{k^2}$.
 - **a.** Montrer que : $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall x \in [0,1], |S(x) S_N(x)| < \varepsilon.$
 - **b.** Montrer que : $\forall n \in \mathbb{N}^*, \forall \varepsilon > 0, \exists r > 0, \forall x \in [1 r, 1], |S_n(x) S_n(1)| < \varepsilon$.
 - ${\bf c.}\;\;$ Déduire des deux questions précédentes que S est continue en 1.
- **4.** Montrer que pour tout $x \in]0,1[,\varphi(x)=S(1).$
- 5. En admettant que $S(1) = \frac{\pi^2}{6}$, en déduire la valeur de la somme $\sum_{n=1}^{+\infty} \frac{1}{2^n n^2}$.

Fin de l'énoncé d'analyse