Learning Generative Models Generative Adversarial Networks

Sebastian Stober & Jens Johannsmeier

May 7, 2024

Outline for Today

VAE Recap

GAN Discussion
 & VAE Comparison

Recap: VAEs

Variational Auto-Encoder (VAE)

regularization term

reconstruction term

Recap: VAE ELBO

• define a variational lower bound on the data likelihood: $p_{\theta}(x) \geq \mathcal{L}(\theta, \phi, x)$

error introduced by approximate inference

- = KL-Divergence of q and p
- expected to be small for high-capacity q

Recap: VAE ELBO

• define a variational lower bound on the data likelihood: $p_{\theta}(x) \geq \mathcal{L}(\theta, \phi, x)$

Penalize deviation from prior!

How likely is the output x given the inferred values of the latent variables z?

VAE Introspection

Latent Space Visualization (for MNIST dataset)

Room for Improvements

generated images tend to be blurry

Kingma et al. 2016

Larsen et al. 2017

VAEs Summary

- probabilistic spin to traditional auto-encoders
- optimize a (variational) lower bound

pros:

- principled approach to generative models
- inference of q(z|x) can be useful feature representation

cons:

- maximizes only lower bound of likelihood
- samples blurrier and lower quality compared to GANs

active areas of research:

- more flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian
- incorporating structure in latent variables

GANs

Discussion

Generative Adversarial Network

Generative Adversarial Network

Generative Adversarial Network

objective_g
$$\min_{\theta} (1 - d_{\phi}(g_{\theta}(z)))$$
 objective_d $\max_{\phi} \begin{pmatrix} d_{\phi}(x) \\ + (1 - d_{\phi}(g_{\theta}(z))) \end{pmatrix}$

update θ to minimize $loss_q$

$$\begin{aligned} \log_{g} &= \log \left(1 - \, d_{\phi} \big(g_{\theta}(z) \big) \right) & \qquad \log_{d} = - \log \left(d_{\phi}(x) \right) \\ & \qquad \qquad - \log \left(1 - d_{\phi} \big(g_{\theta}(z) \big) \right) \end{aligned}$$
 update ϕ to minimize $\log_{d} = - \log \left(1 - d_{\phi} \big(g_{\theta}(z) \big) \right)$

The aim is to converge at $d_{\phi}(x) = 0.5 = d_{\phi}(x')$

Flipped Generator loss

In practice, we often minimize $-\log(d_{\phi}(g_{\theta}(z)))$ in the generator.

VAE vs. GAN

samples of VAE/GAN trained on CelebA dataset

vanilla VAE

- rather blurry
- more natural looking

vanilla GAN

- crisper
- distortions/artifacts

[Larsen et al., 2016]

→ there are more advanced VAEs and GANs as well as VAE/GAN hybrids

VAE vs. GAN

	VAE	GAN
training	How easy and stable is training?Is the training related to maximum likelihood?	
latent space	Is the latent space interpretable?Is the latent space used everywhere?Can you perform inference?	
results	 What are typical characteristics of the generated samples? Which are typical behaviors where you get bad samples? 	

VAE vs. GAN

VAE		GAN
rather stable trained with lower bound on likelihood	training	very unstable not trained based on likelihood
more interpretable possibly ignored parts of the latent space	latent space	not interpretable the whole latent space generates samples
more blurry depend on choice of $p(z)$ and $q(z x)$ posterior collapse: learns to ignore latent space and generate "average" examples	results	sharper might strongly vary with each run mode collapsing, unbalanced generator/discriminator

a lot of difficulties

→ there are more advanced VAEs and GANs as well as VAE/GAN hybrids

Inference in GANs

How is inference performed in GANs?

How could you perform inference in GANs?

Outlook: GAN Variants

- In theory, GANs optimize the Jensen-Shannon-Divergence
- Other divergences/distances lead to other losses, e.g. Least Squares GAN, Wasserstein GAN...
- In practice, most GANs do not actually optimize a divergence/distance

Outlook: GAN Variants

Feature matching: train D as normal; G optimizes

$$||\mathbb{E}_{oldsymbol{x} \sim p_{ ext{data}}} \mathbf{f}(oldsymbol{x}) - \mathbb{E}_{oldsymbol{z} \sim p_{oldsymbol{z}}(oldsymbol{z})} \mathbf{f}(G(oldsymbol{z}))||_2^2$$

- ...on one or more hidden layers f (of D)
- Spectral Normalization: Limit how fast the output of D can change in response to changes in input
- Progressive Growing: Train on low-resolution data first, then successively increase the resolution
- In practice, most functioning GANs use multiple loss functions and an array of "little tricks"