PARTIEL

Lundi 6 novembre 2017 - Durée : 1h45

Exercice 1 (Question de cours):

- 1. Rappeler la définition d'une extraction. Démontrer que pour toute extraction φ , on a pour tout $n \geq 0$, $\varphi(n) \geq n$.
- 2. Soit (u_n) une suite réelle dont on suppose qu'elle converge vers $l \in \mathbb{R}$ et φ une extraction. Que pouvez-vous dire quant à la convergence de la suite extraite $(u_{\varphi(n)})$ pour $n \to \infty$?
- 3. Démontrez l'assertion précédente.

Exercice 2 : Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue sur \mathbb{R} vérifiant l'équation fonctionnelle suivante :

$$\forall x \in \mathbb{R}, \ f(x) = f\left(\frac{1+x}{2}\right).$$

Soit $x \in \mathbb{R}$ fixé et soit (u_n) la suite définie par $u_0 = x$ et par $u_{n+1} = \frac{1+u_n}{2}$, pour $n \ge 0$.

- 1. Quelle propriété simple est vérifiée par la suite $(f(u_n))$?
- 2. On étudie maintenant la suite (u_n) . On suppose pour commencer que $x \geq 1$.
 - (a) Montrer que pour tout $n \geq 0$, $u_n \geq 1$.
 - (b) Montrer que la suite (u_n) converge vers un réel que l'on déterminera.
- 3. Dans le cas où x < 1, justifier de façon semblable la convergence de la suite (u_n) . On se contentera dans cette question de donner les principaux arguments de la démonstration sans refaire de preuve détaillée.
- 4. Déduire des questions précédentes que f est une fonction constante.

Exercice 3 : Soit (u_n) la suite définie par

$$u_n = (-1)^n n^2 \sin\left(\pi\sqrt{n^2 + 1}\right), \ n \ge 0.$$

- 1. Pour tout $x \in \mathbb{R}$, $n \ge 0$, exprimer $\sin(x n\pi)$ en fonction de $\sin(x)$. En déduire que pour $n \ge 0$, $u_n = n^2 \sin\left(\frac{\pi}{n + \sqrt{n^2 + 1}}\right)$.
- 2. Donner un équivalent simple de u_n pour $n \to \infty$.
- 3. Soit pour n > 0, $v_n = \left(1 \frac{2}{n}\right)^{u_n}$. Etudier la convergence de la suite (v_n) et préciser sa limite, si elle existe.

Exercice 4: Dans cet exercice, les questions 2., 3. et 4. sont indépendantes. Soit f une fonction de [0,1] à valeurs dans [0,1]. On se pose la question de savoir si f admet un point fixe sur [0,1], c'est-à-dire un réel $l \in [0,1]$ tel que f(l) = l.

1. Soit

$$A = \{x \in [0, 1], \ x \le f(x)\}. \tag{1}$$

Montrer que A admet une borne supérieure, notée l.

- 2. On suppose dans cette question que f est croissante.
 - (a) Montrer que f(l) est un majorant de A. En déduire que $l \leq f(l)$.
 - (b) Montrer que $f(l) \in A$.
 - (c) Conclure que f(l) = l.
 - (d) Le point fixe de f est-il nécessairement unique?
- 3. On suppose dans cette question que f est décroissante.
 - (a) Montrer que, s'il existe, le point fixe de f est unique.
 - (b) Est-il vrai que f admet toujours un point fixe dans ce cas?
- 4. On suppose dans cette question que f est continue sur [0,1]. On souhaite montrer que f a au moins un point fixe sur [0,1]. Soit A l'ensemble défini en (1) et l sa borne supérieure.
 - (a) Montrer que $l \leq f(l)$ (on pourra utiliser, en justifiant son existence, une suite (t_n) d'éléments de A qui converge vers l). Que pouvez-vous conclure si l = 1?
 - (b) On suppose maintenant l < 1. Montrer que pour tout $x \in]l, 1[, f(x) < x]$.
 - (c) En déduire que $f(l) \leq l$. Conclure.

Fin de l'épreuve.