An Inexact Fenchel Dual Gradient Algorithm for Distributed Optimization

He Wang and Jie Lu

ShanghaiTech University

ICCA 2020

Distributed Optimization

- ▶ Undirected connected graph G = (V, E):
 - Node set: $\mathcal{V} = \{1, \dots, N\}$.
 - Link set: $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$.

► Problem:

$$\begin{array}{ll}
\text{minimize}_{x \in \mathbb{R}^d} & \sum_{i \in \mathcal{V}} f_i(x) \\
\text{subject to} & x \in \bigcap_{i \in \mathcal{V}} X_i
\end{array}$$

- Each node has local objective f_i and local constraint X_i .
- Only local communications.
- Applications:
 - Wireless sensor network.
 - Cognitive radio network.
 - Large-scale machine learning.

Literature Review

- ▶ Unconstained optimization methods: DGD (Yuan, et al., 2016), EXTRA (Shi, et al., 2015) and DIGing (Nedić, et al., 2017), etc.
- ► Constrained optimization methods: the projected subgradient algorithm (Nedić, *et al.*, 2010), PG-EXTRA (Shi, *et al.*, 2015), and
 - Fenchel dual gradient (FDG) method (Wu & Lu, 2019)
 - Apply a weighted gradient method to the Fenchel dual.
 - ► Highly scalable in terms of the network size.
 - ▶ Require to solve a constrained convex optimization problem per iteration.
- Goal: Reduce the computational costs of FDG.

Contribution

- ▶ An Inexact Fenchel Dual Gradient (IFDG) algorithm.
- ▶ A significant reduction in computational costs of FDG.
- lacktriangleright An O(1/k) convergence rate for strongly convex and smooth local objectives.
- ▶ A linear rate if the problem is unconstrained.
- ▶ Numerical simulations demonstrate the convergence performance of IFDG.

Problem Formulation

Equivalent problem:

$$\begin{aligned} & \text{minimize}_{\mathbf{x} \in \mathbb{R}^{Nd}} & F(\mathbf{x}) := \sum_{i \in \mathcal{V}} f_i(x_i) \\ & \text{subject to} & x_i \in X_i, \ \forall i \in \mathcal{V} \ \text{and} \ \mathbf{x} \in S, \end{aligned}$$

where $\mathbf{x} = (x_1^T, \dots, x_N^T)^T \in \mathbb{R}^{Nd}$ and $S = {\mathbf{x} \in \mathbb{R}^{Nd} : x_1 = \dots = x_N}.$

Assumption 1: Each f_i , $i \in \mathcal{V}$ is strongly convex and smooth on X_i with convexity parameter $\mu_{f_i} > 0$ and smoothness parameter $L_{f_i} > 0$, i.e., $\forall x, y \in X_i$,

$$\mu_{f_i} \|y - x\|^2 \le (\nabla f_i(y) - \nabla f_i(x))^T (y - x) \le L_{f_i} \|y - x\|^2.$$

- ▶ Assumption 2: Each X_i , $i \in \mathcal{V}$ is a closed and convex set. In addition, rel int $\bigcap_{i \in \mathcal{V}} X_i \neq \emptyset$.
- ▶ Assumption $1 + Assumption 2 \implies A$ unique optimal solution.

Equivalent Fenchel Dual Problem

► The Fenchel dual problem is:

minimize
$$_{\mathbf{w} \in \mathbb{R}^{Nd}}$$
 $D(\mathbf{w}) = \sum_{i \in \mathcal{V}} d_i(w_i)$ (P2) subject to $\mathbf{w} \in S^{\perp}$,

where
$$d_i(w_i) := \sup_{x_i \in X_i} w_i^T x_i - f_i(x_i)$$
 and $S^{\perp} = \{ \mathbf{w} \in \mathbb{R}^{Nd} : w_1 + \dots + w_N = \mathbf{0}_d \}.$

▶ For each $i \in \mathcal{V}$, the gradient of d_i is $1/\mu_i$ -Lipschitz continuous. Furthermore,

$$\nabla d_i(w_i) = \arg\max_{x \in X_i} w_i^T x - f_i(x), \ \forall i \in \mathcal{V}.$$

Fenchel Dual Gradient (FDG) Method

Initialization:

$$\mathbf{w}^0 \in S^{\perp}, \text{ or simply } \mathbf{w}^0 = \mathbf{0}_{Nd}.$$

Update: for any k > 0,

Primal update:
$$\mathbf{x}^k = \arg\max_{\mathbf{x} \in X} (\mathbf{w}^k)^T \mathbf{x} - F(\mathbf{x}),$$
 Dual update:
$$\mathbf{w}^{k+1} = \mathbf{w}^k - \beta (H_{\mathcal{G}} \otimes I_d) \mathbf{x}^k,$$

Dual update:

where $X = X_1 \times X_2 \times \cdots \times X_N$ and $H_{\mathcal{G}} \in \mathbb{R}^{N \times N}$ is a symmetric and positive semidefinite matrix in the form of

$$[H_{\mathcal{G}}]_{ij} = egin{cases} \sum_{s \in \mathcal{N}_i} h_{is}, & \text{if } i = j, \\ -h_{ij}, & \text{if } \{i, j\} \in \mathcal{E}, \\ 0, & \text{otherwise,} \end{cases}$$

where $h_{ii} = h_{ii} > 0 \ \forall \{i, j\} \in \mathcal{E}$.

Drawbacks: Each iteration of FDG is computational expensive.

Inexact Fenchel Dual Gradient (IFDG) Method

Initialization:

$$\mathbf{w}^0 \in S^{\perp}$$
, or simply $\mathbf{w}^0 = \mathbf{0}_{Nd}$. Also, arbitrarily choose $\mathbf{x}^{-1} \in \mathbb{R}^{Nd}$.

Update: for any $k \ge 0$,

Primal update:
$$\mathbf{x}^k = \arg\max_{\mathbf{x} \in X} (\mathbf{w}^k)^T \mathbf{x} - F(\mathbf{x}).$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$\mathbf{x}^k = \operatorname{Proj}_X \{ \mathbf{x}^{k-1} - \alpha \nabla \phi^k(\mathbf{x}^{k-1}) \}, \text{ where } \phi^k(\mathbf{x}) = -(\mathbf{w}^k)^T \mathbf{x} + F(\mathbf{x}).$$
 Dual update:
$$\mathbf{w}^{k+1} = \mathbf{w}^k - \beta (H_G \otimes I_d) \mathbf{x}^k.$$

Distributed Implementation

Initialization: Each node $i \in \mathcal{V}$ sets $w_i^0 = \mathbf{0}_d$ and arbitrarily chooses $x_i^{-1} \in \mathbb{R}^d$.

Update: for any $k \ge 0$,

- ▶ Each node $i \in \mathcal{V}$ updates $x_i^k = \operatorname{Proj}_{X_i}\{x_i^{k-1} \alpha \nabla \phi_i^k(x_i^{k-1})\}$, where ϕ_i^k is the convex objective function given by $\phi_i^k(x_i) := -(w_i^k)^T x_i + f_i(x_i)$.
- ▶ Each node $i \in \mathcal{V}$ sends x_i^k to every neighbor $j \in \mathcal{N}_i$.
- ▶ Upon receiving $x_j^k \ \forall j \in \mathcal{N}_i$, each node $i \in \mathcal{V}$ updates $w_i^{k+1} = w_i^k \beta \sum_{j \in \mathcal{N}_i} h_{ij} (x_i^k x_j^k)$.

Convergence Analysis: Unconstrained Case

- Connection with EXTRA
 - The updates of IFDG in two successive iterations as follows:

$$\mathbf{w}^{k+1} = \mathbf{w}^{k} - \beta(H_{\mathcal{G}} \otimes I_{d})\mathbf{x}^{k},$$

$$\mathbf{x}^{k+1} = \mathbf{x}^{k} - \alpha\nabla F(\mathbf{x}^{k}) + \alpha\mathbf{w}^{k+1},$$

$$\mathbf{w}^{k+2} = \mathbf{w}^{k+1} - \beta(H_{\mathcal{G}} \otimes I_{d})\mathbf{x}^{k+1},$$

$$\mathbf{x}^{k+2} = \mathbf{x}^{k+1} - \alpha\nabla F(\mathbf{x}^{k+1}) + \alpha\mathbf{w}^{k+2}.$$

- By subtraction and substitution,

$$\mathbf{x}^{k+2} - \mathbf{x}^{k+1} = \boxed{(H + I_{Nd})} \mathbf{x}^{k+1} - \boxed{I_{Nd}} \mathbf{x}^k - \alpha [\nabla F(\mathbf{x}^{k+1}) - \nabla F(\mathbf{x}^k)],$$

where $H = -\alpha\beta H_G \otimes I_d \in \mathbb{R}^{Nd\times Nd}$ is a negative semidefinite matrix.

– The update of EXTRA:

$$\mathbf{x}^{k+2} - \mathbf{x}^{k+1} = \boxed{W} \mathbf{x}^{k+1} - \boxed{\tilde{W}} \mathbf{x}^k - \alpha [\nabla F(\mathbf{x}^{k+1}) - \nabla F(\mathbf{x}^k)]$$
 where $\frac{I+W}{2} \succeq \tilde{W}$.

Convergence Analysis: Unconstrained Case

▶ **Theorem**: If $X_i = \mathbb{R}^d \ \forall i \in \mathcal{V}$, then \mathbf{x}^k linearly converges to \mathbf{x}^* with proper algorithm parameters.

Convergence Analysis: Constrained Case

▶ Let $V = H_{\mathcal{G}} \otimes I_d$ and $\mathbf{r}^k = (V^{\frac{1}{2}})^{\dagger} \mathbf{w}^k / \beta$. Then, the updates of IFDG are:

$$\mathbf{x}^k = \arg\min_{\mathbf{x} \in \mathbb{R}^{N_d}} \{ u^{k-1}(\mathbf{x}) + I_X(\mathbf{x}) - \beta \langle V^{\frac{1}{2}} \mathbf{r}^k, \mathbf{x} \rangle \},$$

$$\mathbf{r}^{k+1} = \mathbf{r}^k - V^{\frac{1}{2}} \mathbf{x}^k,$$

where
$$u^k(\mathbf{x}) = \langle \nabla F(\mathbf{x}^k), \mathbf{x} \rangle + \frac{1}{2\alpha} \|\mathbf{x}\|^2 - \frac{1}{\alpha} \langle \mathbf{x}, \mathbf{x}^k \rangle$$
.

- $-u^k$ is a $\frac{1}{\alpha}$ -smooth and $\frac{1}{\alpha}$ -strongly convex function.
- $-\nabla u^k(\mathbf{x}) = \nabla F(\mathbf{x}^k) + \frac{1}{\alpha}(\mathbf{x} \mathbf{x}^k) \text{ and } \nabla u^k(\mathbf{x}^k) = \nabla F(\mathbf{x}^k).$
- ▶ **Theorem**: For each $K \ge 1$, let $\bar{\mathbf{x}}^K = \frac{1}{K} \sum_{k=0}^{K-1} \mathbf{x}^k$. Then, the following hold with proper algorithm parameters:
 - Objective value: $F(\bar{\mathbf{x}}^K) F(\mathbf{x}^*) \leq O(1/K)$.
 - Primal feasibility: $\|V^{\frac{1}{2}}\bar{\mathbf{x}}^K\| \leq O(1/K)$.

Numerical Example: Unconstrained Problem

Consider a logistic regression problem that often arises in machine learning.

$$\mathsf{minimize}_{x \in \mathbb{R}^5} \sum_{i \in \mathcal{V}} \sum_{j=1}^6 \log(1 + e^{-(u_{ij}^T x) v_{ij}}) + \frac{\lambda}{2} \|x\|^2$$

where
$$\lambda = 5$$
, $(u_{ij}, v_{ij}) \in \mathbb{R}^5 \times \{-1, 1\} \ \forall j = 1, \dots, 6, \ \forall i \in \mathcal{V}$, and $\mathcal{V} = \{1, \dots, 20\}$.

Numerical Example: Unconstrained Problem

Figure: Convergence performance of IFDG, FDG, and EXTRA in solving the logistic problem.

Table: Running time and accuracy after 300 iterations of IFDG, FDG and EXTRA in solving the logistic problem.

Algorithm	Running Time	Accuracy
IFDG	1.52s	2.44×10^{-5}
FDG	517.91s	6.04×10^{-5}
EXTRA	6.26s	1.10×10^{-5}

Numerical Example: Constrained Problem

► Consider a constrained quadratic programming problem:

$$\begin{aligned} & \text{minimize}_{x \in \mathbb{R}^5} & & \sum_{i \in \mathcal{V}} x^T A_i x + b_i^T x \\ & \text{subject to} & & x \in \bigcap_{i \in \mathcal{V}} \{x \in \mathbb{R}^5 : p_i \leq x \leq q_i\} \end{aligned}$$

where each $A_i \in \mathbb{R}^{5 \times 5}$ is symmetric positive definite, $b_i \in \mathbb{R}^5$, $p_i, q_i \in \mathbb{R}^5$, $i \in \mathcal{V}$ and $\mathcal{V} = \{1, \dots, 20\}$.

Numerical Example: Constrained Problem

Figure: Convergence performance of IFDG, FDG, and PG-EXTRA in solving the constrained problem.

Table: Running time and accuracy after 10000 iterations of IFDG, FDG, and PG-EXTRA in solving the constrained problem.

Algorithm	Running Time	Accuracy
IFDG	13.65s	2.70×10^{-2}
FDG	2069.87s	2.64×10^{-2}
PG-EXTRA	172.09s	2.00×10^{-2}

Conclusion

- ▶ Develop the Inexact Fenchel Dual Gradient (IFDG) method for solving distributed optimization problems.
- Provide rates of convergence to the optimal solution for IFDG.
 - Linear rate for unconstrained problems.
 - Sublinear rate for constrained problems.
- Comparable accuracy with FDG, but significant reduction in computational costs.
- Simulations validate the convergence performance.

Thanks!