Item-based collaborative filtering

Mehrdad Mohammadian

Data

<u>Aa</u> Name	# Star wars	# Jurassic park	# Terminator 2	# Indep day
<u>sally</u>	7	6	3	7
<u>Bob</u>	7	4	4	6
<u>Chris</u>	3	7	7	2
<u>Lynn</u>	4	4	6	2
<u>Karen</u>	7	4	3	

Pearson Similarities

<u>Aa</u> Name	# Star wars	# Jurassic park	# Terminator 2	# indep day
Indep. Day	0.968314	-0.105621	-0.971894	1

For **K** = **2**:

Star wars: 0.96

Jurassic park: -0.10

Prediction:

$$P_{a,i} = ar{r_a} + rac{\sum_{u=1}^k (r_{ai} - ar{r_u}) imes sim(a,u)}{\sum_{u=1}^k sim(a,u)}$$

Calculation:

$$k = 2$$

$$P_{alice} = (17/4) + rac{(7-5.6) imes 0.96 + (4-5) imes -0.10}{0.96 - 0.10} = 5.92$$

The End