# **POS** tagging

### What it is?

 POS Tagging is a process that attaches each word in a sentence with a suitable tag from a given set of tags.



# Where does POS tagging fit in



## **Categories of POS**

- Open and closed classes
- Closed classes have a fixed membership of words: determiners, pronouns, prepositions
- Closed class words are usually function word: frequently occurring, grammatically important, often short (e.g. of, it, the, in)
- Open classes: nouns, verbs, adjectives and adverbs

# Parts of Speech: How many?

### Open class words (content words):

- nouns, verbs, adjectives, adverbs
- mostly content-bearing: they refer to objects, actions, and features in the world
- open class, since new words are added all the time

# Parts of Speech: How many?

### Closed class words

- pronouns, determiners, prepositions, connectives, ...
- there is a limited number of these
- mostly functional: to tie the concepts of a sentence together

## POS examples

| <ul><li>N</li></ul> | noun | chair, bandwidth, pacing |
|---------------------|------|--------------------------|
|---------------------|------|--------------------------|

- V verb study, debate, munch
- ADJ adj purple, tall, ridiculous
- ADV adverb unfortunately, slowly,
- P preposition of, by, to
- PRO pronoun I, me, mine
- DET determiner the, a, that, those

## POS tagging: Choosing a tagset

- To do POS tagging, a standard set needs to be chosen
- Could pick very coarse tagsets
   N, V, Adj, Adv
- More commonly used set is finer grained,
   "UPenn TreeBank tagset", 45 tags

### A Nice Tutorial on POS tags:

https://sites.google.com/site/partofspeechhelp/

## UPenn TreeBank POS tag set

| Tag   | Description           | Example         | Tag  | Description           | Example     |
|-------|-----------------------|-----------------|------|-----------------------|-------------|
| CC    | Coordin. Conjunction  | and, but, or    | SYM  | Symbol                | +,%, &      |
| CD    | Cardinal number       | one, two, three | TO   | "to"                  | to          |
| DT    | Determiner            | a, the          | UH   | Interjection          | ah, oops    |
| EX    | Existential 'there'   | there           | VB   | Verb, base form       | eat         |
| FW    | Foreign word          | mea culpa       | VBD  | Verb, past tense      | ate         |
| IN    | Preposition/sub-conj  | of, in, by      | VBG  | Verb, gerund          | eating      |
| JJ    | Adjective             | yellow          | VBN  | Verb, past participle | eaten       |
| JJR   | Adj., comparative     | bigger          | VBP  | Verb, non-3sg pres    | eat         |
| JJS   | Adj., superlative     | wildest         | VBZ  | Verb, 3sg pres        | eats        |
| LS    | List item marker      | 1, 2, One       | WDT  | Wh-determiner         | which, that |
| MD    | Modal                 | can, should     | WP   | Wh-pronoun            | what, who   |
| NN    | Noun, sing. or mass   | llama           | WP\$ | Possessive wh-        | whose       |
| NNS   | Noun, plural          | llamas          | WRB  | Wh-adverb             | how, where  |
| NNP   | Proper noun, singular | IBM             | \$   | Dollar sign           | \$          |
| NNPS  | Proper noun, plural   | Carolinas       | #    | Pound sign            | #           |
| PDT   | Predeterminer         | all, both       | 66   | Left quote            | (' or ")    |
| POS   | Possessive ending     | 's              | ,,   | Right quote           | (' or ")    |
| PRP   | Personal pronoun      | I, you, he      | (    | Left parenthesis      | ([,(,{,<)   |
| PRP\$ | Possessive pronoun    | your, one's     | )    | Right parenthesis     | (],),},>)   |
| RB    | Adverb                | quickly, never  | ,    | Comma                 | ,           |
| RBR   | Adverb, comparative   | faster          |      | Sentence-final punc   | (.!?)       |
| RBS   | Adverb, superlative   | fastest         | :    | Mid-sentence punc     | (: ;)       |
| RP    | Particle              | up, off         |      |                       |             |

### **Definition**

### Example1:

<s> Come in August, and the COEP campus is abuzz with new and returning students.
</s>

### **After POS tagging:**

```
<s> Come_VB in_IN August_NNP,_, and_CC the_DT COEP_NNP campus_NN is_VBZ abuzz_JJ with_IN new_JJ and_CC returning_VBG students_NNS.
```

## **POS tagging: Definition**

Example 2: "\_" The\_DT guys\_NNS that\_WDT make\_VBP traditional\_JJ hardware\_NN are\_VBP really\_RB being\_VBG obsoleted\_VBN by\_IN microprocessorbased\_JJ machines\_NNS ,\_, "\_" said\_VBD Mr.\_NNP Benton\_NNP .\_.

## Why is POS tagging hard?

Words often have more than one POS.

### Example word: back

- The back door: back/JJ
- On my back: back/NN
- Win the voters back: back/RB
- Promised to back the bill: back/VB

### **POS tagging problem:**

To determine the POS tag for a particular instance of a word

## Brown Corpus: Ambiguous word types

### **Ambiguity in the Brown corpus:**

- 40% of word tokens are ambiguous
- 12% of word types are ambiguous
- Breakdown of ambiguous word types:

| Unambiguous (1 tag)  | 35,340      |
|----------------------|-------------|
| Ambiguous (2–7 tags) | 4,100       |
| 2 tags               | 3,760       |
| 3 tags               | 264         |
| 4 tags               | 61          |
| 5 tags               | 12          |
| 6 tags               | 2           |
| 7 tags               | 1 ("still") |

## How bad is the ambiguity problem?

- One tag is usually more likely than the others.
  - In the Brown corpus, race is a noun 98% of the time, and a verb 2% of the time
- A tagger for English that simply chooses the most likely tag for each word can achieve good performance
- Any new approach should be compared against the unigram baseline (assigning each token to its most likely tag)

## Deciding the correct POS

### Can be difficult even for people:

- 1. Mrs./NNP Shroff/NNP never/RB got/VBD around/\_ to/TO joining/VBG.
- 2. All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/\_ the/DT corner/NN.
- 3. Organic/NNP Onions/NNP costs/VBZ around/\_ 250/CD.

### **Assigning tags:**

- Mrs./NNP Shroff/NNP never/RB got/VBD around/RP to/TO joining/VBG.
- All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN.
- Organic/NNP Onions/NNP costs/VBZ around/RB 250/CD.

## Relevant knowledge for POS tagging

### The word itself:

- Some words may only be nouns, e.g. arrow
- Some words are ambiguous, e.g. flies, like, bank
- Probabilities may help, if one tag is more likely than another

## Relevant knowledge for POS tagging

### **Local context:**

- Two determiners rarely follow each other
- Two base form verbs rarely follow each other
- Determiner is almost always followed by adjective or noun

## POS tagging: Two approaches

### **Rule-based Approach:**

- Assign each word in the input a list of potential POS tags
- Then reduce down this list to a single tag using hand-written rules

### Statistical tagging:

- Get a training corpus of tagged text, learn the transformation rules from the most frequent tags
- Probabilistic: Find the most likely sequence of tags T for a sequence of words W

# Probabilistic Tagging: Two different families of models

#### **Problem at hand:**

 We have some data {(d, c)} of paired observations d and hidden classes c.

#### Different instances of d and c:

- Part-of-Speech Tagging: words are observed and tags are hidden.
- Text Classification: sentences/documents are observed and the category is hidden.
- Categories can be positive/negative for sentiments ...
- sports/politics/business for documents ...

### Gives rise to two families?

 Whether they generate the observed data from hidden stuff or the hidden structure given the data?

### **Generative vs. Conditional Models**

### Generative (Joint) Models:

- Generate the observed data from hidden stuff, i.e.
   put a probability over the observations given the class: P(d, c) in terms of P(d/c)
- Egs: Naïve Bayes' classifiers, Hidden Markov Models etc.

### Discriminative (Conditional) Models:

- Take the data as given, and put a probability over hidden structure given the data: P(c/d)
- e.g. Logistic regression, maximum entropy models, conditional random fields

## Generative vs. Discriminative Models



### Joint vs. conditional likelihood:

- A joint model gives probabilities P(d/c) and tries to maximize this joint likelihood.
- A conditional model gives probabilities P(c/d), taking the data as given and modeling only the conditional probability of the class.

## **Generative (Joint) Models**

Example: Naive Bayes



- In Generative Model, we have to learn p(x|y) and p(y) (class priors) i.e. p(y=negative tweets), p(y=positive)
- Generative algorithms try to learn p(x, y) which can be transformed into p(y|x) later to classify the data.

## **Generative (Joint) Models**

- Suppose we have model: p(x/y) and p(y)
- Given new x.
- To predict class for x, we need to compute:

$$p(y=1/x) = p(x/y=1) * p(y=1)$$
 by Bayes rule 
$$p(x)$$

Now, we have p(x/y) and p(y) from the model and

$$p(x) = \sum_{y} p(x,y) = p(x/y = 1) \ p(y = 1) + p(x/y = 0) \ p(y = 0)$$

## **Example: Generative Model**

 Suppose we have trained a generative model, and get a new test example x. Our model tells us that:

```
p(x/y=0)=0.01
p(x/y=1)=0.03
p(y=1)=p(y=0)= 0.5
What is p(y=1/x) ?
Solution:
```

## Discriminative (Conditional) Models

**Example: Logistic regression** 



- •In Discriminative Model, it directly tries to find a straight line separating the two classes.
- Learns p(y/x) directly

## Discriminative (Conditional) Models

- A discriminative algorithm does not care about how the data was generated, it simply categorizes the given data.
- So, discriminative algorithms try to learn p(y|x) directly from the data and then try to classify data.
- Discriminative models do not need to model the distribution of the observed variables.

# **Mathematics of POS tagging**

## **Argmax Computation**

Suppose:

$$x^* = \operatorname{argmax} (f(x))$$

Find out value of x which maximizes f(x)

## **Bigram Assumption**

```
Best tag sequence
   =T^*
    = argmax P(T|W)
    = argmax P(T)P(W|T) (by Bayes Theorem)
P(T) = P(t0=^t1t2 ... tn+1= .)
    = P(t0)P(t1|t0)P(t2|t1t0)P(t3|t2t1t0) ...
                  P(tn|tn-1tn-2...t0)P(tn+1|tntn-1...t0)
    = P(t0)P(t1|t0)P(t2|t1) ... P(tn|tn-1)P(tn+1|tn)
                        Bigram Assumption
     = \prod_{i=1}^{N+1} P(t_i | t_{i-1})
        I = 0
```

# **Lexical Probability Assumption**

$$P(W|T) = P(w_0|t_0-t_{n+1})P(w_1|w_0t_0-t_{n+1})P(w_2|w_1w_0t_0-t_{n+1}) ...$$

$$P(w_n|w_0-w_{n-1}t_0-t_{n+1})P(w_{n+1}|w_0-w_nt_0-t_{n+1})$$

Assumption: A word is determined completely by its tag. This is inspired by speech recognition

$$= P(w_0|t_0)P(w_1|t_1) \dots P(w_{n+1}|t_{n+1})$$

$$= \prod_{i=0}^{n+1} P(w_i|t_i)$$

$$= \prod_{i=0}^{n+1} P(w_i|t_i) \quad \text{(Lexical Probability Assumption)}$$

## Best tag sequence

$$T^* = \operatorname{argmax} P(T)P(W|T)$$

$$P(w_i/t_i)$$

$$= \prod_{i=0}^{N+1} P(t_i|t_{i-1})$$

## **Process**

- 1. List all possible tag for each word in sentence.
- 2. Choose best suitable tag sequence.

### **Example**

"People jump high".

- People : Noun/Verb/Adjective
- jump : Noun/Verb/Adjective
- high: Noun/Verb/Adjective

## **Process:**



## Model



This model is called Generative model. Here words are observed from tags as states. This is similar to HMM.

## Bigram probabilities from the Corpus

Corpus contains:300 sentences & 4 categories(N,V,Art,P)

Words: 1998, Nouns: 833, Verbs: 300,

Articles: 558, Prepositions: 307

 $P(ART/^{\prime}) = Count(^{\prime}, ART) / Count(^{\prime})$ 

| Category | Count | Pair   | Count | Bigram    | Prob. Estimate |
|----------|-------|--------|-------|-----------|----------------|
| ٨        | 300   | ^, ART | 213   | P(ART/ ^) | 0.71           |
| ٨        | 300   | ^, N   | 87    | P(N /^)   | 0.29           |
| ART      | 558   | ART, N | 558   | P(N /ART) | 1              |
| N        | 833   | N, V   | 358   | P(V /N )  | 0.43           |
| N        | 833   | N, N   | 108   | P(N/N)    | 0.13           |
| N        | 833   | N, P   | 366   | P(P/ N)   | 0.44           |
| V        | 300   | V, N   | 75    | P(N /V)   | 0.35           |
| V        | 300   | V, ART | 194   | P(ART/V)  | 0.65           |
| Р        | 307   | P, ART | 226   | P(ART /P) | 0.74           |
| Р        | 307   | P, N   | 81    | P(N /P)   | 0.26           |

Summary of word count in corpus

|         | N   | V   | ART | Р   | TOTAL |
|---------|-----|-----|-----|-----|-------|
| flies   | 21  | 23  | 0   | 0   | 44    |
| fruit   | 49  | 5   | 1   | 0   | 55    |
| like    | 10  | 30  | 0   | 21  | 61    |
| а       | 1   | 0   | 201 | 0   | 202   |
| the     | 1   | 0   | 300 | 2   | 303   |
| flower  | 53  | 15  | 0   | 0   | 68    |
| flowers | 42  | 16  | 0   | 0   | 58    |
| birds   | 64  | 1   | 0   | 0   | 65    |
| others  | 592 | 210 | 56  | 284 | 1142  |
| Total   | 833 | 300 | 558 | 307 | 1998  |

Lexical generation Probabilities: P(the/ART) = Count (the as ART)
Count(ART)

| P(the/ART) | 0.54  | P(like/P) | 0.068 | P(flower/N)  | 0.063 |
|------------|-------|-----------|-------|--------------|-------|
| P(flies/N) | 0.025 | P(like/N) | 0.012 | P(flowers/V) | 0.05  |
| P(flies/V) | 0.076 | P(a/ART)  | 0.360 | P(birds/N)   | 0.076 |
| P(like/V)  | 1     | P(a/N)    | 0.001 | P(fruit/N)   | 0.06  |

## Calculation from actual data

- Corpus
  - ^ People Jump High .

# Bigram probabilities

|   | N   | V   | Α   |
|---|-----|-----|-----|
|   |     |     |     |
| N | 0.2 | 0.7 | 0.1 |
|   |     |     |     |
| V | 0.6 | 0.2 | 0.2 |
|   |     |     |     |
| А | 0.5 | 0.2 | 0.3 |
|   |     |     |     |

# Lexical Probability

|        | Noun | Verb       | Adjective |
|--------|------|------------|-----------|
| People | 10-5 | 0.4 X 10-3 | 10-7      |
| Jump   | 10-7 | 10-2       | 10-7      |
| high   | 0    | 0          | 10-1      |

values in cell are P(row-heading/col-heading)

# Observations leading to why probability is needed

- 1. Many tasks are sequence labeling tasks
- 2. Tasks carried out in layers
- 3. Within a layer, there are limited windows of information
- 4. This naturally calls for strategies for dealing with uncertainty
- 5. Probability and Markov process give a way for dealing with uncertainty.