STARBUCKS Site Selection Analysis

Team The ONI 20121229 JunPyo Park 20161349 JaeHo Kim

Table of Contents

- 1. Motivation
- 2. Research Questions
- 3. Research Hypothesis
- 3. Research Methodology
- 4. Data Structure
- 5. Preliminary Data Analysis
- 6. Hypothesis Testing
- 7. Summary and Conclusion
- 8. Limitation and Further Development
- 9. Recommendation for Virtual Client

Motivation

Why there are no STARBUCKS near to UNIST?

STARBUCKS in Ulsan

```
In [41]: map_osm = folium.Map(location=울산태화, zoom_start=13)
        for ix, row in df.iterrows():
            location = (row['lat'], row['lot'])
            folium.Marker(location, popup=row['s_name'] + '점').add_to(map_osm)
        unist_loc = (35.573830,129.190944)
        folium.Marker(unist_loc, popup='UNIST').add_to(map_osm)
         map_osm
Out [41]:
                                                                                                    신천동
           +
                                                                   척과리
                                                                                                         호계동
                        구량리
             다개리
                                  천전리
                                                                                             상안동
                                                                                                                          무룡동
                                                          중리
                                                                                                           창평동
                                          대곡리
                                                                                  가대동
                   평리
                                                                                             시례동
                            반곡리
                                                                      서사리
                                                   망성리
             지내리
                                        UNIST
                                                           범서읍
                                                               구영리
                                                                                                         연암동
                          언양읍
              송대리
                                                                                     성안동
                                                                                                            효문동
                                                                                      중구 (Junggu) 남외동
         천전리
                                                                                유곡동
                              반천리
                                                     천상리
                                                                                                                  양정동
                   신화리
         삼남면
                                           둔기리
                           하잠리
                                               울주군
                                                                  문죽리
                                                                                                         장생포동
                                                          율리
                     보은리
                                                                                                           매암동
                            삼동면
```

Research Question

Has Multiple Features

- Longitude & Latitude
- Road Traffic Volume
- Number of Apartments
- Population Distribution
- Number of Office Worker
- Average Income Class

Question

Which one is important or not?

Research Hypothesis

Has Multiple Features

- Longitude & Latitude
- Road Traffic Volume
- Number of Apartments
- Population Distribution
- Number of Office Worker
- Average Income Class

Hypothesis
Among them there are some significance features.

Research Methodology: Logistic Regression

Has Multiple Features

- Longitude & Latitude
- Road Traffic Volume
- Number of Apartments
- Population Distribution
- Number of Office Worker
- Average Income Class

Logistic Regression to get Odds or Probability

Hypothesis Testing

LAERTETE CATOR -- ventDefault(); dolimeout (so collrorootes **Data Structure Data Source and Overview** var blinkSpeed = 200) Tar shadowType = 10 (h) \$('afform_send').animin \$ doTimeout('serville \$ (a#form sens

Ulsan Node-Link Data

Ulsan Node Data from ITS (국가교통정보센터)

5 노드/링크 구성

필드명	NODE_ID	NODE_TYPE	NODE_NAME	TURN_P	REMARK
속성명	노드 ID 노드유형 교차로명칭 회전제한유무 비고	노드유형	교차로명칭	회전제한유무	비고

40

링크를 구분하는 점(링크 시작점,링크 종료점)으로 표준 로드/링크 구축 운영 지침에 따라 도로교차점,도로 시종점, 교통통제점, 도로 구조 변환점,행정구역 변환점, 도로 운영 변환점, 교통 진출입점, 그외에 ITS사업 주체가 필요에 따라 정하는 지점

부가정보(회전제한정보)

회전제한이 존재하는 노드에 한해 회전제한 상세 정보를 입력한 테이블

필드명	LINK_ID	F_NODE	T_NODE	ROAD_USE	LANES	ROAD_RANK	ROAD_TYPE	ROAD_NO
속성명	링크ID	시작노드 ID	종료노드 ID	도로사용여부	차로수	도로등급	도로유형	도로번호

1	필드명	ROAD_NAME	MULTI_LINK	CONNECT	MAX_SPD	REST_VEH	REST_W	REST_H	REMARK
-	속성명	도로명	중용구간여부	연결로코드	최고제한속도	통과제한차량	통과제한하중	통과제한높이	비고

링크

노드와 노드를 이은 도로중심선을 방향별로 일정간격 이격시켜 생성한 선으로서 실제 도로구간에 대한 정보를 담 게됨

Ulsan Node-Link Data

Ulsan Node Data Overview

```
In [2]: nodes = pd.read_csv('ulsan_nodes.csv')
    links = pd.read_csv('ulsan_links.csv')

In [67]: nodes.sort_values(by='Lanes', ascending=False).head(10)
```

Out [67]:

	ld	NODE_NAME	STNL_REG	latitude	longitude	Lanes
34	1920011300	-	192	35.558685	129.327780	32.0
1128	1930003300	신부로터리	193	35.550077	129.263743	32.0
638	1930002304	공업탑로터리	193	35.532176	129.307525	30.0
603	1930041600	-	193	35.539861	129.347710	28.0
35	1920012900	mbc사거리	192	35.561221	129.331311	28.0
179	1920015000	병영사거리	192	35.568539	129.343471	28.0
600	1930041900	삼산사거리	193	35.539911	129.344027	28.0
596	1930049000	예술회관사거리	193	35.541637	129.326243	28.0
36	1920013600	복산사거리	192	35.564049	129.336121	28.0
619	1930059300	kbs사거리	193	35.545322	129.324646	28.0

Ulsan Node-Link Data

Ulsan Link(Edge) Data

■ Data Table ×			
Nodes Edges Oconfiguration	😉 Add node 🕣 Add edge 📸 Search/Re	eplace 🔠 Import Spreads	heet <equation-block> Export table</equation-block>
Source	Target		Weight
1610003100	1680004000	0	5367,867188
1610003100	1610003000	1	5223,630371
1610003100	1680003800	2	4171,646973
1610003000	1610002900	3	768,006042
1610003000	1610025700	4	812,851807
1610002900	1610002800	5	973,03772
1610002400	1610002200	6	570, 108093
1610002400	1610002500	7	217,577591
1610002300	1610002200	8	597,513245
1610002300	1610002100	9	838, 134888
1610002300	1610018200	10	810, 184448
1610002300	1610025700	11	1978, 141602
1610002100	1610002200	12	566, 683655
1610002100	1610000800	13	2318, 129639
1610002100	1610018200	14	619, 151855
1610000800	1610000700	15	399, 196625
1610000800	1610000600	16	1147, 136963
1610000700	1610007700	17	524,237122
1610000700	1610022800	18	585, 383179
1610000700	1610000600	19	875, 785339
1610000600	1610021100	20	912,308167
1610000600	1610007700	21	586, 073486
1610000500	1610000300	22	279,882141
1610000500	1610005200	23	95, 262077
1610000500	1610021300	24	80, 854507

Data Source

Data Source

http://utrhub.its.ulsan.kr/

Data Processing

*.shp files(Database -> SHP_to_CSV.ipynb)

Using Python to covert to csv files

Construct dataframe by using shp file

```
In [3]: # read data (Copy all files from nodelink into nodelink folder: I made it.)
# using old_data
shp_path_node = './HOUSPOP/XsDB_주거인구_100M_TM.shp'
sf_node = shapefile.Reader(shp_path_node)

.

In [243]: ulsan_data.to_csv('Ulsan_population.csv', encoding='cp949')
```

Ulsan_apart	2018-04-29 오전 4:43
Ulsan_income_class	2018-04-29 오전 4:57
Ulsan_population	2018-04-29 오전 4:15
Ulsan_STARBUCKS_list	2018-05-04 오후 3:19
Ulsan_worker_num	2018-04-29 오전 5:05

SHP File Processing Result

Example : Apart Price Distribution(for each unit cell)

PY_SUM	PR_SUM	PY_10U	PY_10	PY_20	PY_30	PY_40	PY_50O	PR_05U	PR_05	PR_1	PR_2	PR_3	PR_4	PR_5	PR_6	PR_7_O	latitude	longitude
2428	7.29E+09	0	0	68	22	0	0	C	9) () (0		0	0	0 (35.56446	129.1153
2391	1.38E+10	0	132	0	0	0	0	C) 2	112	2 (0		0	0	0 (35.54047	129.2616
1044	3.14E+09	0	0	48	0	0	0	C) 4	3 () (0		0	0	0 (35.5201	129.312
2594	8.03E+09	0	139	30	0	0	0	130	3	9 () (0		0	0	0 (35.52191	129.3121
10669	6.33E+10	0	195	300	0	0	0	C	8) 415	5 (0		0	0	0 (35.52718	129.3243
5058	2.94E+10	0	0	200	0	0	0	C	3	6 164	4 (0		0	0	0 (35.52891	129.3309
4022	1.28E+10	0	84	80	20	0	0	84	8) 20) (0		0	0	0 (35.47213	129.4093
3478	1.37E+10	0	0	144	0	0	0	C	10	3 36	6 (0		0	0	0 (35.48464	129.4184
6056	2.65E+10	0	349	0	0	0	0	C	34	9 () (0		0	0	0 (35.52062	129.4256
5722	1.96E+10	0	97	180	0	0	0	C	27	7 () (0		0	0	0 (35.49274	129.4196
1882	5.87E+09	0	105	0	0	0	0	8	9	7 () (0		0	0	0 (35.49273	129.4207
2050	1.03E+10	0	114	0	0	0	0	C	11	4 () (0)	0	0	0 (35.58084	129.3627
530	1.08E+09	56	0	0	0	0	0	56	6) () (0		0	0	0 (35.56714	129.1175
5302	1.54E+10	0	222	50	0	0	0	19	25	3 () (0		0	0	0 (35.48423	129.2949
7100	3.09E+10	0	0	180	0	60	0	C)	3 232	2 (0		0	0	0 (35.56568	129.2653
1816	6.16E+09	0	47	30	10	0	0	C	7	7 10) (0		0	0	0 (35.556	129.327
991	2.65E+09	0	27	23	0	0	0	27	2	3 () (0		0	0	0 (35.57834	129.3439
2156	1.09E+10	0	0	84	0	0	0	C)	0 84	4 (0		0	0	0 (35.5835	129.366
627	1.07E+09	0	36	0	0	0	0	36	6) () (0		0	0	0 (35.43272	129.3073
1168	4.11E+09	0	65	0	0	0	0	C	6	5 () (0		0	0	0 (35.52459	129.3143
4217	1.92E+10	0	0	176	0	0	0	C	3	5 140) (0		0	0	0 (35.54849	129.3533
2385	1.73E+10	0	0	0	0	50	0	C)) () 2	48	1	0	0	0 (35.55627	129.3016
1025	8.42E+09	0	0	40	0	0	0	C)) 4	4 36	6 0		0	0	0 (35.56494	129.3337
991	2.55E+09	32	44	0	0	0	0	71		5 () (0		0	0	0 (35.54868	129.3368
2180	1.04E+10	0	121	0	0	0	0	C	12	1 () (0		0	0	0 (35.48204	129.4095
6075	3.86E+10	0	0	244	0	0	0	C)	244	4 (0		0	0	0 (35.56859	129.2455
3140	1.86E+10	0	0	57	14	28	0	C)	58	3 41	0		0	0	0 (35.56536	129.1153
3126	2.6E+10	0	0	0	25	56	0	C)) () 22	2 57	,	2	0	0 (35.5389	129.3245
1521	6.91E+09	0	84	0	0	0	0	C	8-	4 () (0		0	0	0 (35.52896	129.3265
1641	4.16E+09	0	35	47	0	0	0	35	4	7 () (0		0	0	0 (35.48732	129.4206
2678	8.38E+09	0	148	0	0	0	0	C	14	3 () () 0		0	0	0 (35.56161	129.2223
5836	4.12E+10	0	0	0	149	0	0	C)) (149	9 0		0	0	0 (35.52004	129.3175
4568	1.66E+10	0	91	120	0	0	0	C	21	1 () () 0		0	0	0 (35.61681	129.4472

Special attribute (STARBUCKS Score)

Calculating 'Starbucks Score' by using the statistics by age


```
In [473]: weight = np.array([0.0093, 0.3, 0.42, 0.22, 0.045])
In [474]: # construct the 'POP 50 Over' attribute
          work num data['POP 50 0'] = work num data['POP 50'] + work num data['POP 60'] + work num data['POP 70'] + work num data['POP 80 0
In [475]: # Weighted average to get 'STARBUCKS SCORE'
          work num data['SB score'] = work num data['POP 10', 'POP 20', 'POP 30', 'POP 40', 'POP 50 0']].apply(lambda x : np.matmul(x,weig
         work_num_data['SB_score'].sort_values(ascending=False).head(10)
Out[476]: 1130
                 392.306864
                 200.761776
          6452
         1497
                 153.827386
                 136.096706
         7664
                  95.447389
         7807
                  94.060246
         8304
         1664
                  92.151632
          5909
                  88.265151
                  83.859728
          3749
                                             Apply same method to office worker(직장인) distribution data!
                  80.758033
          2605
         Name: SB score, dtype: float64
```

Traffic Data Construction Failure

Plan: Combine traffic data to Ulsan road network

Problem: Road names are different from each dataset......

Traffic Data Construction Failure

Problem: Too many unclassified traffic data...

Ulsan_Weekly_Traffic -> Add_Traffic_.ipynb

```
In [218]: total car = 0
          total bus = 0
          missing car = 0
          missing bus = 0
          for idx,row in data.iterrows():
             total car += row['Car'] * 2
             total bus += row['Bus'] * 2
             if(len(ulsan_node.loc[ulsan_node['NODE_NAME'] == row['시작지점'],'Car']) > 0 ): # 노드에 있는 도로의 경우
                 ulsan node.loc[ulsan node['NODE NAME'] == row['시작지점'],'Car'] += row['Car'] # 자동차 대수를 증가 시킵니다.
              else:
                 missing_car += row['Car'] # 노드에 없는 이름인 경우 missing value 를 증가 시킵니다.
              if(len(ulsan_node.loc[ulsan_node['NODE_NAME'] == row['종료지점'],'Car']) > 0 ):
                 ulsan node.loc[ulsan node['NODE NAME'] == row['종료지점'],'Car'] += row['Car']
              else:
                 missing car += row['Car']
             if(len(ulsan_node.loc[ulsan_node['NODE NAME'] == row['시작지점'],'Bus']) > 0):
                 ulsan node.loc[ulsan node['NODE NAME'] == row['시작지점'],'Bus'] += row['Bus']
              else:
                 missing bus += row['Bus']
             if(len(ulsan_node.loc[ulsan_node['NODE_NAME'] == row['종료지점'],'Bus']) > 0):
                 ulsan node.loc[ulsan node['NODE NAME'] == row['종료지점'],'Bus'] += row['Bus']
              else:
                 missing_bus += row['Bus']
In [220]: missing car / total car
Out[220]
         0.7124665727606904
In [221]: missing bus / total bus
Out[221]
        0.7306401211899067
```

Traffic Data Construction Failure

Solution

```
In [218]: total_car = 0
          total bus = 0
          missing car = 0
          missing bus = 0
          for idx,row in data.iterrows():
             total car += row['Car'] * 2
             total bus += row['Bus'] * 2
             if(len(ulsan node.loc[ulsan node['NODE NAME'] == row['시작지접'],'Car']) > 0 ): # 노드에 있는 도로의 경우
                 ulsan node.loc[ulsan node['NODE_NAME'] == row['시작지점'],'Car'] += row['Car'] # 자동차 대수를 증가 시킵니다.
             else:
                 missing_car += row['Car'] # 노드에 없는 이름인 경우 missing value 를 증가 시킵니다.
             if(len(ulsan_node.loc[ulsan_node['NODE_NAME'] = row['종료지점'],'Car']) > 0 ):
                 ulsan_node.loc[ulsan_node['IOIAIAE]W rMI'] += row['Car']
             else:
                 missing_car += row['Car']
             if(len(ulsan_node.loc[ulsan_node['NODE NAME'] == row['시작지점'],'Bus']) > 0):
                 ulsan node.loc[ulsan node['NODE NAME'] == row['시작지점'],'Bus'] += row['Bus']
             else:
                 missing_bus += row['Bus']
             if(len(ulsan_node.loc[ulsan_node['NODE_NAME'] == row['종료지점'],'Bus']) > 0):
                 ulsan node.loc[ulsan node['NODE NAME'] == row['종료지점'],'Bus'] += row['Bus']
             else:
                 missing_bus += row['Bus']
In [220]: missing car / total car
Out[220]
         0.7124665727606904
In [221]: missing bus / total bus
Out[221]:
        0.7306401211899067
```

Final Merged Data

```
In [4]: data = pd.read_csv('unlabled_final_data.csv')
  data = data[['latitude', 'longitude', 'SB_score', 'CLSS', 'SB_worker_score', 'PR_per_PY']]
  data.head(10)
```

Out[4]:

	latitude	longitude	SB_score	CLSS	SB_worker_score	PR_per_PY
0	35.380959	129.341694	29.796767	3	11.287944	1.879607e+06
1	35.383626	129.345041	78.290981	4	3.440323	2.439039e+06
2	35.401375	129.288085	106.704431	4	0.932416	2.319935e+06
3	35.404102	129.285927	61.260468	2	5.867073	3.380989e+06
4	35.404126	129.283725	64.346015	4	3.628084	2.211868e+06
5	35.404138	129.282624	46.157984	4	8.293141	3.271311e+06
6	35.404149	129.281523	40.445864	5	2.635290	3.263792e+06
7	35.406853	129.281566	105.559989	4	15.690818	2.302905e+06
8	35.406865	129.280465	150.039112	3	3.578586	2.448231e+06
9	35.409534	129.283811	38.161393	5	1.162007	2.831749e+06

Use these four features for regression analysis.

Brief Visualization

Apart Price Distribution(whole Ulsan)

Brief Visualization

Income Class Distribution

Brief Visualization

Worker Distribution

Calculating Distance between two points

-Assumption : The Earth is "sphere"

Distance

This uses the 'haversine' formula to calculate the great-circle distance between two points – that is, the shortest distance over the earth's surface – giving an 'as-the-crow-flies' distance between the points (ignoring any hills they fly over, of course!).

```
Haversine a = \sin^2(\Delta \phi/2) + \cos \phi_1 \cdot \cos \phi_2 \cdot \sin^2(\Delta \lambda/2) formula: c = 2 \cdot atan2(\sqrt{a}, \sqrt{1-a}) d = R \cdot c where \phi is latitude, \lambda is longitude, R is earth's radius (mean radius = 6,371km); note that angles need to be in radians to pass to trig functions!
```

Nearest Distance to STARBUCKS

Calculating nearest distance to STARBUCKS

Length Calculating Function between two point

```
In [13]: def get length(lat1,lon1,lat2,lon2):
             R = 6371e3
             lat1 *= np.pi / 180
             lon1 *= np.pi / 180
             lat2 *= np.pi / 180
             lon2 *= np.pi / 180
             d lat = lat2 - lat1
             d lon = lon2 - lon1
             a = np.sin(d_lat/2) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(d_lon/2) ** 2
             c = 2 * np.arctan2(a**0.5, (1-a) ** 0.5)
             d = R * c
             return d
In [21]: final_data = final_data.sort_values(by = ['distance_to_SB'])
```

final data.head()

Out[21]:

	PR_per_PY	latitude	longitude	\$B_score	CLSS	SB_worker_score	distance_to_SB
319	4.753507e+06	35.537216	129.313418	37.268609	4	7.587481	<u>18.845226</u>
341	5.387504e+06	35.539665	129.336618	91.735068	6	15.203293	<u>23.895260</u>
295	9.863784e+06	35.535664	129.290234	9.856892	4	0.626328	<u>55.361825</u>
445	3.807190e+06	35.550001	129.298185	200.612922	5	0.951267	<u>62.919465</u>
258	6.450355e+06	35.532734	129.311139	36.182702	7	2.805681	78.872308

Y_labeling with criteria = 300

Binary Labeling: 0 or 1 (pass or fail)

```
In [21]: # 300m is affordable when considering go to walk
          criteria = 300
In [22]: final data['y label'] = final data['distance to SB'].apply(lambda x : int(x < criteria))</pre>
          final data.head()
Out[22]:
                                                 SB score CLSS SB_worker_score distance_to_SB y_label
                 PR per PY
                              latitude
                                       longitude
           319 4.753507e+06 35.537216 129.313418
                                                 37.268609
                                                                        7.587481
                                                                                      18.845226
           341 5.387504e+06 35.539665 129.336618
                                                                       15.203293
                                                 91.735068
                                                                                      23.895260
           295 9.863784e+06 35.535664 129.290234
                                                  9.856892
                                                                        0.626328
                                                                                      55.361825
           445 3.807190e+06 35.550001 129.298185
                                                                        0.951267
                                                200.612922
                                                                                      62.919465
           258 6.450355e+06 35.532734 129.311139
                                                                        2.805681
                                                                                      78.872308
                                                36.182702
In [23]: len(final data[final data['y label'] == 1])
Out[23]: 50
In [24]: len(final data[final data['y label'] == 0])
Out[24]: 660
```

There are fifty data for y=1 and 660 for y=0

Y_labeling with criteria = 500

Binary Labeling: 0 or 1 (pass or fail)

```
In [23]: # 300m is affordable when considering go to walk
          criteria = 500
In [24]: final data['y label'] = final data['distance to SB'].apply(lambda x : int(x < criteria))</pre>
          final data.head()
Out[24]:
                 PR per PY
                                                SB score CLSS SB worker score distance to SB y label
                             latitude
                                      longitude
           319 4.753507e+06 35.537216 129.313418
                                                37.268609
                                                                       7.587481
                                                                                    18.845226
           341 5.387504e+06 35.539665 129.336618
                                                91.735068
                                                                      15.203293
                                                                                     23.895260
           295 9.863784e+06 35.535664 129.290234
                                                 9.856892
                                                                       0.626328
                                                                                    55.361825
           445 3.807190e+06 35.550001 129.298185
                                                                       0.951267
                                               200.612922
                                                                                    62.919465
          258 6.450355e+06 35.532734 129.311139
                                               36.182702
                                                                                    78.872308
                                                                       2.805681
In [25]: final data = final data.drop(['distance to SB'], axis=1)
In [26]: len(final_data[final_data['y label'] == 1])
Out[26]: 111
In [27]: len(final data[final data['y label'] == 0])
Out[27]: 599
                                                             I choose this criteria.
```

I choose this criteria.

Here labeling is imbalanced.

Final Y-Labeled Data

Binary Labeling without PCA

```
In [57]: final_data = final_data[col]
          final_data = final_data.reindex(list(range(len(final_data))))
          final_data.head()
Out [57]:
                                    SB_score CLSS SB_worker_score
                latitude
                         longitude
                                                                        PR_per_PY
                                                                                   y_label
           0 35.380959
                       129.341694
                                    29.796767
                                                            11.287944 1.879607e+06
           1 35.383626
                       129.345041
                                    78.290981
                                                            3.440323 2.439039e+06
                                                                                        0
           2 35.401375 129.288085
                                   106.704431
                                                            0.932416 2.319935e+06
                       129.285927
                                    61.260468
                                                            5.867073 3.380989e+06
                                                                                        0
           4 35.404126 129.283725
                                    64.346015
                                                            3.628084 2.211868e+06
```

Binary Labeling with PCA

```
pc_data = pd.concat([final_data[col[0:2]], score_df, final_data[col[-1]]], axis=1)
          pc_data.head()
Out [81]:
                                       PC 1
                                                 PC 2
                                                           PC 3
                                                                     PC 4 y_label
                         longitude
                latitude
                       129.341694 -0.179099 -1.538754
                                                                                0
                       129.345041 -0.346197 -0.674096 -0.080136
           2 35.401375 129.288085 -0.649273 -0.341075 -0.126003 -1.106231
                                                                                0
           3 35.404102 129.285927 -1.000125 -0.567735 -1.262804
                                                                 0.661681
           4 35.404126 129.283725 -0.243787 -0.964072 -0.085540 -0.617812
                                                                                0
```

Logistic Regression

Using R for Logistic Regression model fitting

Case I. Normalized Data with *imbalanced* training data set

```
x <- strata(c("y_label"), size=c(500, 100), method="srswor", data=data)
train = getdata(data,x)</pre>
```

Case II. Normalized Data with balanced training data set

```
x <- strata(c("y_label"), size=c(100, 100), method="srswor", data=data)
train = getdata(data,x)</pre>
```

Case III. PCA Data with *imbalanced* training data set

Case IV. PCA Data with balanced training data set

Logistic Regression with 1 Predictor

- β_0 , β are unknown parameters and must be estimated using maximum likelihood estimation
- Primary interest in estimating and testing hypotheses regarding β
- Large-Sample test (Wald Test):

$$-H_0:\beta=0$$
 vs. $H_A:\beta\neq0$

– Test statistic (TS):
$$X_{obs}^2 = \left(\frac{\widehat{\beta}}{\widehat{\sigma}_{\widehat{\beta}}}\right)^2$$

- Rejected region (RR): $X_{obs}^2 \ge \chi_{\alpha.1}^2$
- p value: $P(\chi^2 \ge X_{obs}^2)$

Hypothesis Testing: Case Introduction

Select Best Performance(AUC) Model

Case I. Normalized Data with *imbalanced* training data set

```
x <- strata(c("y_label"), size=c(500, 100), method="srswor", data=data)
train = getdata(data,x)</pre>
```

Case II. Normalized Data with balanced training data set

```
x <- strata(c("y_label"), size=c(100, 100), method="srswor", data=data)
train = getdata(data,x)</pre>
```

Case III. PCA Data with *imbalanced* training data set

Case IV. PCA Data with balanced training data set

Hypothesis Testing: Evaluation Result

Case II. Normalized Data with balanced training data set

```
пис
x <- strata(c("y label"), size=c(100, 100), method="srswor", data=data)
train = getdata(data,x)
                                                                                                  Hide
model <- glm(y label ~ SB score + CLSS + SB worker score + PR per PY, data = train, family = "binomial")
summary (model)
Call:
glm(formula = y_label ~ SB_score + CLSS + SB_worker_score + PR_per_PY,
    family = "binomial", data = train)
Deviance Residuals:
          1Q Median 3Q
-2.41853 -0.98154 -0.01023 1.02208 1.86395
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.08427 0.15706 -0.537 0.591565
SB score -0.46410 0.16838 -2.756 0.005848 **
            0.57305 0.17129 3.345 0.000821 ***
SB worker score 0.59607 0.26650 2.237 0.025308 *
PR per PY 0.35062 0.16486 2.127 0.033439 *
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 277.26 on 199 degrees of freedom
Residual deviance: 240.85 on 195 degrees of freedom
AIC: 250.85
Number of Fisher Scoring iterations: 4
```

Hypothesis Testing: Wald Test Result (ANOVA Table)

Case II. Normalized Data with balanced training data set

```
Hide
anova (model, test="Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: y label
Terms added sequentially (first to last)
               Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL
                               199
                                       277.26
                  8.7526
                                       268.51 0.003092 **
SB score
                               198
                1 15.6162
                               197 252.89 7.759e-05 ***
CLSS
SB_worker score 1 7.3851
                               196
                                       245.50 0.006577 **
PR per PY
               1 4.6551
                               195
                                       240.85 0.030962 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Hypothesis Testing: AUC-ROC Curve Result

Case II. Normalized Data with balanced training data set


```
auc <- performance(pr, measure = "auc")
auc <- auc@y.values[[1]]
auc</pre>
[1] 0.6857826
```


Conclusion: Feature Significance Result

```
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
                                 199
                                        277.26
NULL
SB score
                    8.7526
                                 198
                                        268.51
                                                0.003092 **
                   15.6162
                                 197
                                        252.89 7.759e-05 ***
CLSS
                  7.3851
                                 196
                                        245.50 0.006577 **
SB worker score
                                                0.030962 *
PR per PY
                    4.6551
                                 195
                                         240.85
Signif. codes:
               0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
               -0.08427
                           0.15706 -0.537 0.591565
(Intercept)
                           0.16838 -2.756 0.005848 **
               -0.46410
SB score
               0.57305
                           0.17129 3.345 0.000821 ***
CLSS
SB worker score 0.59607
                           0.26650 2.237 0.025308 *
                           0.16486 2.127 0.033439 *
PR per PY
                0.35062
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

Coefficients: Office Worker Score > Income Class > Land Price > Population Score (Negatively Related)

Conclusion: Probability Formula for Model

	Df	Deviar	ce F	Resid.	Df	Resid	. :	Dev	Pr	(>Chi)	
NULL					199	2	77	.26			
SB_score	1	8.75	26		198	2	68	.51	0.0	003092	**
CLSS	1	15.61	62		197	2	52	.89	7.75	59e-05	***
SB_worker_score	1	7.38	51		196	2	45	.50	0.0	006577	**
PR_per_PY	1	4.65	51		195	2	40	.85	0.0	030962	*
Signif. codes:	0	***/	.001	1**/	0.0)1 '*'	0	.05	1.1	0.1	′ 1
Coefficients:											
	Es	timate	Std	. Erro	r z	value	P	r(>	z)		
(Intercept)	-0	.08427	(0.1570	6 .	-0.537	0	.59	1565		
SB_score	-0	.46410	(0.1683	8	-2.756	0	.00	5848	**	
CLSS	0	.57305	(0.1712	a	3 345	0	0.00	0821	***	
	0			J . I / IZ	-	0.040	, ,				
SB_worker_score		.59607		0.2665							
SB_worker_score PR_per_PY	0		(0	2.237	0	.02	5308	*	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

$$P(y=1) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}} \qquad P(y=1) = \frac{e^{-0.08427 - 0.4610X_1 + 0.57305X_2 + 0.59607X_3 + 0.35062X_4}}{1 + e^{-0.08427 - 0.4610X_1 + 0.57305X_2 + 0.59607X_3 + 0.35062X_4}}$$

Visualization : Plot Probability Result

Visualization : Top 100 Probability Spot

Other Trial: Hub & Spoke Strategy

Add 'nearest distance to Starbucks' as a feature to mimic the Hub & Spoke Strategy

허브&스포크전략

스타벅스는 출점전략에서도 창조적 길을 걸었다. 허브앤스포크(Hub & Spoke) 전략은 자전거 바퀴에서 비롯됐다. 자전거 바퀴를 보면 한가운데 허브(Hub)가 있고 바퀴까지 가느다란 바퀴살(Spoke)이 펼쳐져 있다.

허브에서 뻗어 나온 에너지가 부채살처럼 바퀴에 전달된다. 원형의 영향력이 형성되며 전진하는 것이다. 다른 말로 표현하자면 클러스터(Cluster) 전략이다. 한 지역을 석권하듯 집중적으로 매장을 출점한후에 인근 지역과 인접 위성도시로 진출하는 것이다.

Other Trial: Hub & Spoke Strategy

Hub & Spoke Strategy Result

Other Trial: Hub & Spoke Strategy

Hub & Spoke Strategy Top 100 Spots Results

Floating Population Measure Failure

Failure of Traffic Data Construction with Node_Link Data

```
In [218]: total car = 0
         total bus = 0
         missing car = 0
         missing bus = 0
         for idx,row in data.iterrows():
             total car += row['Car'] * 2
             total bus += row['Bus'] * 2
             if(len(ulsan node.loc[ulsan node['NODE NAME'] == row['시작지점'],'Car']) > 0 ): # 노드에 있는 도로의 경우
                 ulsan_node.loc[ulsan_node['NODE_NAME'] == row['시작지점'],'Car'] += row['Car'] # 자동차 대수를 증가 시킵니다.
             else:
                 missing car += row['Car'] # 노드에 없는 이름인 경우 missing value 를 증가 시킵니다.
             if(len(ulsan_node.loc[ulsan_node['NODE_NAME'] == row['종료지점'],'Car']) > 0 ):
                 ulsan node.loc[ulsan node['NODE NAME'] == row['종료지점'],'Car'] += row['Car']
             else:
                 missing_car += row['Car']
             if(len(ulsan node.loc[ulsan node['NODE NAME'] == row['시작지점'],'Bus']) > 0):
                 ulsan node.loc[ulsan node['NODE NAME'] == row['시작지점'],'Bus'] += row['Bus']
             else:
                 missing bus += row['Bus']
             if(len(ulsan node.loc[ulsan node['NODE NAME'] == row['종료지점'],'Bus']) > 0):
                 ulsan_node.loc[ulsan_node['NODE_NAME'] == row['종료지점'],'Bus'] += row['Bus']
             else:
                 missing bus += row['Bus']
In [220]: missing car / total car
        0.7124665727606904
Out[220]:
In [221]: missing_bus / total_bus
Out[221]: 0.7306401211899067
```

Floating Population Measure Failure

Can not access to dataset like below

SKT시연용 Geovision 상권분석

■ 본 보고서에 사용 된 데이터 및 업데이트 주기

DB 제공사	DB 내역	DB 특징	업데이트 주기
	유동인구	기지국 통화량 통계분석 (시간, 성, 연령)	월별
SK 텔레콤	주간상주인구	건물데이터와 통화량 통계 분석	1 년
	주거인구	통계청 센서스와 행정안전부 주민등록 통계 활용	1년
SK 플래닛	지도	지도 및 시설정보 (POI)	3 개월
현대카드	업종 매출	업종별 카드 가맹점 매출 통계	월별
H = AL 114	부동산 시세/매물	부동산 시세 및 매물 정보(아파트, 상가)	월별
부동산 114	개발 예정 정보	개발 예정 구역 및 정보	수시

STARBUCKS Score for Population : Why negatively related?

	Df	Deviance	Resid. Df	Resid.	Dev	Pr(>Chi	L)	
NULL			199	271	7.26			
SB_score	1	8.7526	198	268	3.51	0.00309	92	* *
CLSS	1	15.6162	197	252	2.89	7.759e-0)5	***
SB_worker_score	1	7.3851	196	245	5.50	0.00657	77	**
PR_per_PY	1	4.6551	195	240	0.85	0.03096	52	*
Signif. codes:	0	**** 0.0	01 '**' 0.0	01 '*' (0.05	`.' 0.1	`	′ 1
Coefficients:								
	Eat	imate Ct						
	ESI	limate St	d. Error z	value i	Pr (>	z)		
(Intercept)		.08427	0.15706					
(Intercept) SB_score	-0.			-0.537	0.59	1565		
	-0. -0.	.08427	0.15706	-0.537 -2.756	0.59	1565 5848 **		
SB_score	-0. -0.	.08427	0.15706	-0.537 -2.756 3.345	0.59	1565 5848 ** 0821 ***		
SB_score CLSS	-0. -0. 0.	.08427 .46410 .57305	0.15706 0.16838 0.17129	-0.537 -2.756 3.345 2.237	0.59	1565 5848 ** 0821 *** 5308 *		
SB_score CLSS SB_worker_score	-0. -0. 0.	.08427 .46410 .57305 .59607	0.15706 0.16838 0.17129 0.26650	-0.537 -2.756 3.345 2.237	0.59	1565 5848 ** 0821 *** 5308 *		

We expect that this score will be important. However it is negatively related... We don't know why...

Business Location Analysis Consulting

이디야커피의 초기 입점전략..스타벅스 옆에 매장 오픈 커피 소비 많은 장소 손쉽게 찾아..저렴한 가격으로 소비자 빼앗아오기도

[이데일리 함정선 기자] '스타벅스 옆 이디야' 저가 커피의 '대명사'로 불리는 이디야커피의 초기 입점 전략이 눈길을 끌고 있다.

이디야는 초기 스타벅스 옆 자리를 사수하는 전략을 통해 지난해 대기업과 해외 유명 커피 전문점들을 제 치고 커피전문점 만족도 1위를 거머쥐는 쾌거를 이뤘다. 사실상 이디아가 살아남기 위해 기초 체력을 만 들기까지 스타벅스의 도움이 없었다면 더 많은 시간이 걸렸을 것이라고 전문가들은 평가하고 있다.

말 그대로 스타벅스 바로 옆 매장을 노린 것이다. 만약 스타벅스가 입점한 곳 바로 옆자리 월세가 비싸다면 뒷골목이나 옆 골목 등을 공략하는 '서브 스트리트' 전략을 썼다.

실제로 서울 명동이나 강남 테헤란로 등에서는 스타벅스 바로 옆에 자리를 잡은 이디야 매장을 발견하는 것이 어렵지 않다. 바로 옆 매장이 아니더라도 스타벅스 근처에서 손쉽게 이디야 매장을 찾을 수 있다.

Providing Intuitive Information to Client

We could recommend this spot to our virtual customers

