ÖDEV #1

Ödevlerinizi kâğıtta yazılı olarak elden ya da elektronik ortamda e-postayla 30 Ekim 2012 Salı gününe kadar teslim ediniz. Ödevleriniz birbirinizinkine birbirinizden alındığını düşündürtecek kadar benzememelidir. Aksi halde o sorudan alınan bir kişilik puan bu öğrenciler arasında paylaştırılır.

1) Kâğıt(k)-taş(t)-makas(m) oyununda kazanan veya berabere kalınan seçimi $A=\{k,t,m\}$ üzerinde tanımlı Δ işleminin sonucu olarak tanımlarsak, yani

Δ	k	t	m
k	k	k	m
t	k	t	t
m	m	t	m

ise (A, Δ) bir değişmeli bir grup mudur?

- 2) A boş olmayan bir küme ve A 'nın bütün altkümelerinden oluşan küme (evrensel küme) E olsun.
- a) (E, U) değişmeli bir grup mudur?
- **b)** (E, ∩) değişmeli bir grup mudur?
- 3) D = $\{d \mid d = a + b\sqrt{3} \text{ biçiminde yazılabilen sayılar, a ve b rasyonel olmak üzere} \}$ kümesi bilinen toplama ve çarpma işlemleriyle bir cisim midir? Gösteriniz.
- 4) $B = \{p, q, r\}$ kümesi ile birlikte bir cisim oluşturacak iki işlem (\oplus ve \otimes) tanımlayınız. Yani

$$p \oplus q = ?$$

$$p \otimes q = ?$$

$$p \oplus r = ?$$

$$p \otimes r = ?$$

$$q \oplus r = ?$$

$$q \otimes r = ?$$

$$-p = ? -q = ? -r = ?$$

$$p^{-1} = ?$$
 $q^{-1} = ?$ $r^{-1} = ?$ (Sıfır olanı hariç)

5) F bir cisim ve $V = \{f \mid f : F \to F\}$ vektör uzayı olsun. (V, F) vektör uzayının iki alt kümesi de

$$V_T = \{f \mid \text{Her } x \in F \text{ için } f(-x) = -f(x) \}$$
 (Tek fonksiyonlar kümesi)

$$V_C = \{f \mid \text{Her } x \in F \text{ için } f(-x) = f(x) \}$$
 (Cift fonksiyonlar kümesi)

olarak tanımlanıyor. V_T ve V_C altuzay mıdır? Gösteriniz.

Yard. Doç. Dr. Ata SEVİNÇ

ÖDEV #2

Ödevlerinizi kâğıtta yazılı olarak elden ya da elektronik ortamda e-postayla 06 Kasım 2012 Salı gününe kadar teslim ediniz. Ödevleriniz birbirinizinkine birbirinizden alındığını düşündürtecek kadar benzememelidir. Aksi halde o sorudan alınan bir kişilik puan bu öğrenciler arasında paylaştırılır.

1) Bilinen toplama ve çarpma işlemleriyle tanımlı R cismi üzerinde fonksiyonların bilinen toplama ve reel sayıyla çarpım işlemleriyle tanımlı

 $V = \{ f \mid f: \Re \rightarrow \Re \text{ olan 3. dereceye kadarki polinom fonksiyonlar } \}$

Vektör uzayını ele alalım. Bu vektör uzayı için \mathcal{B} ve \mathcal{B} ' sıralı tabanları şöyle tanımlanıyor:

$$\mathcal{B} = \{ 1, x, x^2, x^3 \}$$
 $\mathcal{B}' = \{ 1, (x+a), (x+a)^2, (x+a)^3 \}$

(Bu kümelerin elemanlarını, fonksiyonun özel bir x reel sayısındaki değeri olarak **değil**, fonksiyonun bütünü olarak düşünüyoruz. Sadece kolaylık için böyle yazdık.)

 \mathcal{B} tabanına göre koordinat vektörünü \mathcal{B} ' tabanına göre koordinat vektörüne dönüştüren matrisi bulunuz. Yani [f] _{B'} = P· [f] _B için gereken P matrisini bulunuz. (Kısa yol gösterme: Taylor serisine açma kuralından faydalanarak daha kolay çözebilirsiniz.)

2) 1. sorudaki V vektör uzayı üzerinde Laplace dönüşümünün (L) matris gösterimini verilen sıralı tabanlar için bulunuz. Şöyle ki:

$$\mathcal{L}: \mathbf{V} \rightarrow \mathbf{W}$$

V için sıralı taban :
$$\mathcal{B} = \{1, x, x^2, x^3\}$$
, W için sıralı taban : $\mathcal{B}' = \{\frac{1}{s}, \frac{1}{s^2}, \frac{1}{s^3}, \frac{1}{s^4}\}$

(Bu kümelerin elemanlarını, fonksiyonun özel bir x veya s reel veya karmaşık sayısındaki değeri olarak değil, fonksiyonun bütünü olarak düşünüyoruz. Sadece kolaylık için böyle yazdık.)

- 3) Size özel olarak verilen A matrisinin görüntü uzayı için bir taban bulunuz.
- 4) Size özel olarak verilen A matrisinin sıfır uzayı için bir taban bulunuz.

İsminizin kısaltmasına göre kişiye özel A matrisleri:

M.U. için:
$$A = \begin{bmatrix}
-5 & -3 & 1 & -5 & 3 & 3 & -1 \\
-3 & -6 & 1 & -8 & 2 & 5 & 1 \\
-2 & -8 & 0 & -8 & 2 & 4 & 8 \\
-8 & -4 & 1 & -6 & 5 & 3 & 1 \\
-3 & -1 & 0 & -1 & 2 & 0 & 2
\end{bmatrix}$$

M.U. için: İ.B. için:
$$A = \begin{bmatrix} -5 & -3 & 1 & -5 & 3 & 3 & -1 \\ -3 & -6 & 1 & -8 & 2 & 5 & 1 \\ -2 & -8 & 0 & -8 & 2 & 4 & 8 \\ -8 & -4 & 1 & -6 & 5 & 3 & 1 \\ -3 & -1 & 0 & -1 & 2 & 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} -5 & -3 & 1 & -5 & 3 & 3 & -1 \\ -3 & -6 & 1 & -8 & 2 & 5 & 1 \\ -2 & -8 & 0 & -8 & 2 & 4 & 8 \\ -8 & -4 & 1 & -6 & 5 & 3 & 1 \\ -3 & -1 & 0 & -1 & 2 & 0 & 2 \end{bmatrix}$$

B.K. için:
$$A = \begin{bmatrix}
-5 & -3 & 1 & -5 & 3 & 3 & -1 \\
-3 & -6 & 1 & -8 & 2 & 5 & 1 \\
-2 & -8 & 0 & -8 & 2 & 4 & 8 \\
-8 & -4 & 1 & -6 & 5 & 3 & 1 \\
-3 & -1 & 0 & -1 & 2 & 0 & 2
\end{bmatrix}$$

$$A = \begin{bmatrix} -4 & 3 & 4 & -4 & -7 & 4 & 0 \\ 4 & -3 & -4 & 4 & 7 & -4 & 0 \\ -5 & -1 & -2 & 1 & 0 & -2 & -3 \\ -1 & -4 & -6 & 5 & 7 & -6 & -3 \\ 0 & 3 & -7 & -6 & -2 & 4 & 4 \end{bmatrix}$$

Varsa başka öğrenci için:

Varsa başka ögrenci için:
$$A = \begin{bmatrix} -1 & 2 & -4 & 0 & 2 & -2 & 5 \\ 3 & 2 & -1 & -5 & -6 & 3 & 2 \\ 1 & -2 & 4 & 0 & -2 & 2 & -5 \\ 4 & 0 & 3 & -5 & -8 & 5 & -3 \\ 5 & 9 & -1 & 4 & -2 & 6 & -2 \end{bmatrix}$$