

Math Methods for Political Science

Lecture 18: the Karush-Kuhn-Tucker conditions

Reminder: Lagrange's method

Consider the following optimization problem:

$$\min_{x}/\max_{x} \quad f_0(x)$$
 subject to $f_i(x) = b_i, \ i = 1, \dots, m.$

Definition 1 (Lagrangian and Lagrange's multipliers)

 $L(x, \lambda_1, \dots, \lambda_m) = f_0(x) - \sum_{i=1}^m \lambda_i (f_i(x) - b_i)$ is the **Lagrangian** and $\lambda_1, \dots, \lambda_m$ are the **Lagrange's multipliers**.

To solve the problem above, notice that

$$\nabla L(x, \lambda_1, \dots, \lambda_m) = 0 \iff \begin{cases} \nabla f_0(x) &= \sum_{i=1}^m \lambda_i \nabla f_i(x) \\ f_i(x) &= b_i \ i = 1, \dots, m \end{cases}$$

Theorem 1 (First order conditions)

Under some regularity conditions, if x^* is a local optimum, then there exists λ^* , such that $\nabla L(x^*, \lambda^*) = 0$

Local maximum or minimum?

Definition 2 (Bordered Hessian)

The bordered Hessian is

$$H = \begin{bmatrix} 0 & 0 & \cdots & 0 & \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ 0 & 0 & \cdots & 0 & \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots & \frac{\partial f_m}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \\ \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} & \frac{\partial^2 L}{\partial x_1^2} & \frac{\partial^2 L}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 L}{\partial x_1 \partial x_n} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} & \frac{\partial^2 L}{\partial x_1 \partial x_2} & \frac{\partial^2 L}{\partial x_2^2} & \cdots & \frac{\partial^2 L}{\partial x_2 \partial x_n} \\ \frac{\partial f_1}{\partial x_n} & \frac{\partial f_2}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_1} & \frac{\partial^2 L}{\partial x_1 \partial x_n} & \frac{\partial^2 L}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 L}{\partial \partial x_n^2} \end{bmatrix}$$

Theorem 2 (Second order conditions)

If the n-m largest principal minors

- alternate in sign with the smallest one having the sign of $(-1)^{m+1} \implies local\ maximum$,
- have the sign of $(-1)^m \implies local$ minimum.

The Karush–Kuhn–Tucker approach

Consider the following optimization problem:

$$\min_{x}/\max_{x}$$
 $f_0(x)$ subject to $g_i(x)=0, i=1,\ldots,m$ $h_j(x)\leq 0, j=1,\ldots,l.$

Definition 3 (Lagrangian and KKT multipliers)

The Lagrangian is

$$L(x, \lambda, \mu) = f_0(x_1, \dots, x_n) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{j=1}^l \mu_j h_j(x),$$

and λ and μ are the Karush–Kuhn–Tucker multipliers.

The Karush–Kuhn–Tucker conditions

Theorem 3 (First order/Karush-Kuhn-Tucker conditions)

Under some regularity conditions, if x^* is a local optimum, then there exists λ^* and μ^* , such that

- **Stationarity:**
 - (minimizing) $-\nabla f_0(x^*) = \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) + \sum_{i=1}^l \mu_i^* \nabla h_i(x^*)$
 - ho (maximizing) $\nabla f_0(x^*) = \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) + \sum_{j=1}^l \mu_j^* \nabla h_j(x^*)$
- Primal feasibility:
 - (equalities) $g_i(x^*) = b_i$, i = 1, ..., m
 - (inequalities) $h_j(x^*) \le c_j, j = 1, ..., I$
- **Dual feasibility:** $\mu_i^* \ge 0$, j = 1, ..., I
- Complementary slackness: $\mu_j^*(h_j(x^*) c_j) = 0, j = 1, ..., I$

Definition 4 (Binding and non-binding constraints)

Constraint j is **binding** if $h_i(x^*) = c_i$ and **slack** otherwise.

Binding and non-binding constraints

Complementary slackness condition together with constraint j being slack implies $\mu_i^* = 0$. How about \iff ?

$$\begin{array}{ll}
\text{maximize} & 1 - x^2 \\
\text{subject to} & x \le c
\end{array}$$

Modern portfolio theory

The setup:

- The mean vector for the returns is $\mu = E[r]$.
- The covariance matrix for the returns is $\Sigma = Cov[r]$.
- A portfolio is a set of weights $x = (x_1, \dots, x_n)$.
- The portfolio return is $r_p = \sum x_i r_i = x^\top r$.

The basic mean-variance optimization problem:

$$\begin{array}{ll} \text{minimize} & \frac{1}{2} \text{Var}[r_p] & \text{minimize} & \frac{1}{2} x^\top \Sigma x \\ \text{subject to} & E[r_p] \geq c \iff \text{subject to} & x^\top \mu \geq c \\ & x^\top e = 1 & x^\top e = 1 \end{array}$$