10%

、数字电路与逻辑设计 》复习

表1.2.1 典型二进制码

十进制数	4位自然二进制码。	典型格雷码	8421奇(偶)校验码
	****	(循环码)	信息码P(奇)	信息码P(偶)
0	0000	0000	0000 1	0000 0
1	0001	0001	0001 0	/ 0001 1
2	0010	0011	0010 0	0010 1
3	0011	0010	0011 1	0011 0
4	0100	0110	0100 0	0100 1
5	0101	0111	0101 1	0101 0
6	0110	0101	0110 1	0110 0
7	0111	9100	0111 0	0111 1
8	1000	1100	1000 0	1000 1
9	1001	1101	1001 1	1001 0
10	1010	1111	1010 1	1010 0
11	1011	, 1110	1011 0	1011 1
12	1100	1010	1100 1	1100 0
13	1101	1011	1101 0	1101 1
14	1110	1001	1110 0	$\vec{1}\vec{1}\vec{1}\vec{0}$
15	1111	1000	1111 1	$\overline{1111}$ $\overline{0}$

2.

表1.2.2 常用BCD码

十进制数	8421码	5421码	2421码	631-1码	余3码	余3循环码	格番码(2)	8421奇较验码
0 1 2 3 4 5 6 7 8	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001	0000 0001 0010 0011 0100 1000 1001 1010 1011 1100	0000 0001 0010 0011 0100 1011 1100 1101 1110	001-1 0010 0101 0111 0110 1001 1000 1010 1101 1100	0011 0100 0101 0110 0111 1000 1001 1010 1011 1100	0010 0110 0111 0101 0100 1100 1101 1111 1110	0000 0001 0011 0010 0110 0111 0101 010	00001 00010 00100 00111 01900 01011 01101 01110 10000

3.

8/3 线优先编码器 74148 功能表

使能输入	输	λ	输出	输出标志	使能输出
ĒN	Ī7 Ī6 Ī5 Ī4 Ī	3 Ī2 Ī1 Ī0	<u><u><u> </u></u></u>	Ŧ _{¥¥} x	Yen
1 0	ф ф ф ф ф 1 1 1 1)	1 1 1	71 输出 11 无效	1
0 0 0	1 1 0 1	P	0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 11 11 11 11 11 11

《数字电路与逻辑设计 B》 复习 第 1 页 共 19 页

4. 3/8 线译码器 (典型芯片 74138)

74138功能表

$\mathbf{E}_{\mathbf{I}}$	$\overline{E}_{2A} + \overline{E}_{2B}$	A_2	A	A_0	$\overline{\overline{\mathbf{Y}}}_{0}$	$\overline{\overline{\mathbf{V}}}_{1}$	Y	$\overline{\overline{Y}}$	$\overline{\overline{Y}}$	$\overline{\overline{Y}}$	$\overline{\overline{y}}$	$\overline{\overline{Y}}_{7}$	
ф 0	1 ф	ф ф	ф ф	ф ф	1	1	1 1	1 1	1 1°	1	1	1 }	芯片 不工作
and bread beaut	0 0	0 0	0	0	0 1	1 0 1	1 1 0	1	and bred	the proof	1 1	1 1	
d breed breed	0	0	1	1 0	1	1	1	0	1 0	1	1	1	一
1	0 0 0	bend brond bend	0 1 1	1 0 1	1 1 1	permet persons present	111	1 1 1	T-1 1-1	0 1 1	$\stackrel{-}{0}$	1 1 0	作

5. 表 4.2.7 二-十进制译码器 7442 的功能表

输入	输出
A ₃ A ₂ A ₁ A ₀	\overline{Y}_0 \overline{Y}_1 \overline{Y}_2 \overline{Y}_3 \overline{Y}_4 \overline{Y}_5 \overline{Y}_6 \overline{Y}_7 \overline{Y}_8 \overline{Y}_9
0 0 0 0	0 1 1 1 1 1 1 1 1
0 0 0 1	101111111
0 0 1 0	1 1 0 1 1 1 1 1 1 1
0 0 1 1	1 1 1 0 1 1 1 1 1 1
0 1 0 0	
0 1 0 1	1 1 1 1 1 0 1 1 1 1
0 1 1 0	1111110111
0111	1111111011
1000	111111101
1001	111111110
1010	111111111
1011	111111111
	1111111111
1101	1111111111
1110	1111111111
1111	111111111

6. 四选一数据选择器 (典型芯片:74153 为双四选一 MUX) 功能表

ĒN	Aı	Αo	Y
1	ф	ф	0
0.	0	0	Do
0	0	1	D_1
0	Toward .	0	D_2
0	-1	1	D_3

7. 八选一数据选择器 真值表

ĒÑ	A2	Aı	Αo	Y
1	ф	ф	ф	0
0	0	0	0	Do
0	0	0	The state of the s	Dı
0	0		0	D_2
0	0	1	1	D_3
0	1	0	0	D_4
0	1	0	1	D ₅
0	1	1	0	D ₆
0	1	1	1	D۲

74157 (四二选一数据选择器)

8. 4 位数值比较器 7485 功能表

	Nestablish and advantage of the second	输	nimuses and modern sections and a	入			箱	À	Ш
$A_3 B_3$	$A_2 B_2$	A ₁ B ₁	$A_0 B_0$	(A>B)	_i (A <b)<sub>i</b)<sub>	(A=B);	FAN	_B F _{A<i< sub=""></i<>}	$_{\rm B}F_{A=B}$
$A_3 > B_3$	ØØ	ØØ	ØØ	Ø	Ø	Ø	1	0	0
$A_3 < B_3$	ØØ	ØØ	øø	Ø	Ø	Ø	0	1	0
$A_3 = B_3$	$A_2 > B_2$	ØØ	ØØ.	Ø	Ø	Ø	1	0	0
$A_3=B_3$	$A_2 < B_2$	ØØ	Ø.Ø	Ø	Ø	Ø	0	1	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 > B_1$	_Ø Ø	Ø	Ø	Ø	í	0	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 < B_1$	ØØ	Ø	Ø	Ø	0	1	0
$A_3 = B_3$	$A_2=B_2$	$A_1=B_1$	$A_0 > B_0$	Ø	Ø	Ø	1	0	0
$A_3 = B_3$	$A_2 = B_2$	$A_1=B_1$	$A_0 < B_0$	Ø	Ø	Ø	0	1	0
$A_3=B_3$	$A_2 = B_2$	$A_1=B_1$	$A_0 = B_0$	1	0	0	1	0	0
$A_3 = B_3$	$A_2=B_2$	$A_1=B_1$	$A_0 = B_0$	0	1	0	0	1	0
$A_3=B_3$	$A_2=B_2$	$A_1 = B_1$	$A_0 = B_0$	0	0	4	0	0	1
$A_3=B_3$	$A_2=B_2$	$A_1=B_1$	$A_0 = B_0$	0	0	0	4	1	0
$A_3=B_3$	$A_2=B_2$	$A_1=B_1$	$A_0 = B_0$	0	1	1	0	0	1
$A_3=B_3$	$A_2=B_2$	$A_1=B_1$	$A_0 = B_0$	1	0	1	0	0	1
$A_3 = B_3$	$A_2=B_2$	$A_1=B_1$	$A_0 = B_0$	1	1	0	0	0	0
$A_3 = B_3$	$A_2=B_2$	$A_1=B_1$	$A_0=B_0$	1	1	1	0	0	4

+

9. 四位超前进位全加器

典型芯片为 74283

图4.2.34(c)简化符号

10. 74175 芯片除了功能表所示的异步清除、送数和保持之外,还可以实现移位功能。

表6.4.1 4位MSI 寄存器74175功能表

	输	ì	λ			输出					
CR	СР	ϰ	D,	D ₂	D_3	n+1 Q ₀	n+1 Q ₁	n+1 Q ₂	n+1 Q ₃	功能	
0	Ø	Q	Ø	Ø	Ø	0	0	0	0	异步 清"0"	
1	٨	ďo	d,	d _z	d ₃	d _o	d,	d ₂	d,	并行 输入	
1	0	Ø	Ø	Ø	Ø.	$Q_{\mathfrak{d}}^{n}$	Q_{i}^{n}	$Q_2^{\mathbf{n}}$	Q_3^{11}	保持	

11. 四位二进制(M=16)可预置同步加法计数器 74LS161

F 11/4	的功能表
/ A. G. Co. E	그런 나를 타는 그것
171108	ストココ じんじゅ

Marin Augusta													
CR	$\overline{L}_{ m D}$	$P(S_1)$	$T(S_2)$	СР	D_3	D_2	D_1	D_0	Q_3^{n+}	Q_2^{n+1}	Q_1^{n+1}	${\stackrel{1}{\mathcal{Q}}}_0^{n+1}$	功能
0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	0	0	0	异步清除
1	0	Ø	Ø	Ť	d_3	d_2	d_1	d_0	d_3	d_2	d_{i}	d_0	同步并入
1	1	1	parage	Ť	Ø	Ø	Ø	Ø	000	00	~ 1	111	计数
I	Transit (0	Amenda	Ø	Ø	Ø	Ø	Ø	$Q_3^{\mathfrak{n}}$	Q_2^n Q_C^n	Q_1^n	Q n	保持
STATE	The state of the s	Ø	0	Ø	Ø	Ø	Ø	Ø	Q_3^n	Q_2^n Q_0^n	Q_1^n $c = 0$	Q ⁿ 0	NV 1/1

图6.5.6 74161 逻辑符号

74LS163(四位二进制同步加法计数器)

相同之处:逻辑符号、芯片引脚及逻辑功能均和 74LS161 相同。

不同之处: 74LS163 是同步清"0", 74LS161 是异步清"0"。

12. MSI 移位寄存器

74194 的功能表

功能	\overline{CR}	M_{θ}	M_1	CP	D_{SR}	D_{SL}	D_0	D_1	D_2	D_3	$Q_0^{\mathfrak{n}+1}$	Q_1^{n+1}	$Q_2^{\mathrm{n+1}}$	Q_1^{n+1}
清除	0	Х	×	Х	×	×	×	Х	×	×	0	0	0	0
并入	ı	1	I	†	×	Х	d_0	d_1	d_2	d_3	d_0	d_1	d_2	d ₃
manimistation.	1	X	×	0	X	×	×	×	×	×	_ n	O.B		
保持	ı	0	0	×	Х	Х	×	×	×	×	Q_0^n	$Q_{\mathfrak{l}}^{\mathfrak{n}}$	Q_2^n	$Q_3^{\mathfrak{n}}$
	ı	1	0	4	1	×	X	×	×	×	1	Q_0^n	Q_1^n	Q_2^{B}
右移	1	ĺ	0	1	9	×	×	×	×	×	0	Q_0^{n}	Q_1^n	Q_2^n
-1 741	1	0	1	†	×	1	×	×	×	×	Q_1^n	Q_2^n	Q_3^n	1
左移	ı	0	1	†	×	0	×	×	×	×	Q_1^n	Q_2^n	Q_3^n	0

国家标准规定:逻辑图中的最低有效位(LSB)到最高有效位(MSB)的电路排列顺序应为从上到下;从左到右。

因此, 定义移位寄存器中的数据从低位触发器移向高位触发器为: 右移;

从高位触发器移向低位触发器为: 左移。

注:这一点,与计算机程序中的规定相反。

计算机程序从二进制数的自然排列考虑,将数据由低位移向高位定义为左移;

将数据由高位移向低位为右移。

图6.5.8 7490用作8421BCD计数器时的接法

图6.5.9 7490用作5421BCD计数器时的接法

-. 填空选择题

- ullet 1. 按十进制数 0,1,2,3 的顺序写出对应两位循环码的码型 $\underline{00}$ 、 $\underline{01}$ 、 $\underline{11}$ 、 $\underline{10}$ 。 一个 10 位的二进制数最大可表示的十进制数是 (1023
-)(信息码 1100 的审校验码是(11901)。 偶的个1, 房校库力以 **上任意两个最小项的乘积恒等于**
- 2. $(37)_{10} = (0011\ 0111)_{8421BCD} = (0011\ 1010)_{5421BCD}$ (10011.0011)2=(23.140)8, 要求转换精度不低于1%。(lg2=0.3,) ガン 解: $\Theta 8^{-\beta} \le 1\% = 10^{-2}$, $-\beta 1g8 \le -2$, 1g2 = 0.3, $\therefore \beta \ge$
- 3. $F(A,B,C,D) = A\overline{B} + \overline{A}B + ABCD + \overline{A}\overline{B}CD$ 的最简与或表达式为: $F(A,B,C,D) = A\overline{B} + \overline{A}B + CD$ 。 $F(A,B,C,D) = A\overline{B} + \overline{A}B + ABCD + \overline{A}\overline{B}CD = A(\overline{B} + BCD) + \overline{A}(B + \overline{B}CD)$ $=A(\overline{B}+CD)+\overline{A}(B+CD)=A\overline{B}+ACD+\overline{A}B+\overline{A}CD=A\overline{B}+\overline{A}B+CD$

直接写出 $F = A(B + C) + \overline{ABC}$ 的反函数表达式。

$$\overline{F} = (\overline{A} + \overline{B}C)(A + B + C)$$

直接写出 $F = AB + BC + \overline{CD}$ 的对偶函数表达式。

$$F' = (A+B)(B+C)C+D$$

用公式法将逻辑函数 $F = A\overline{B} + \overline{A}CD + B + \overline{D} + \overline{C}$ 化简为最简与或式。

$$F = A + \overline{A}CD + B + \overline{D} + \overline{C} = A + CD + B + \overline{D} + \overline{C} = A + C + B + \overline{D} + \overline{C} = 1$$

4. 若一个 10 位二进制 D/A 转换器的满刻度输出电压为 10.23V, 当输入为(11000000010)2时, 输出电 压为<u>C</u>。 $(2^9+2^8+2)/(2^{10}-1)\times 10.23\overline{V}=7.$ **70**V

A. 2.56 B. 5.12 C. 7.7 D. 8.58

5. 在 A/D 转换器中,已知 Δ 是量化单位,若采用"四舍五入"方法划分量化电平,则最大量化误差 为_B Δ。

A. 1/4 B. 1/2 C. 1 D. 2

.6d 信息可随时读出或写入,断电后信息立即全部消失的存储器是<u>B</u>。

B. RAM C. PROM D. Flash Memory

- 7. 已知某存储器芯片有地址线 12 条,数据线 8 条,则该存储器的存储容量是 D 位。 A.1024 \times 8 B.4096 \times 4 C.2048 \times 8 D.4096 \times 8/
- 8. 岩用 ROM 实现"两个气位二进制数相乘的乘法器",则 ROM 的容量至少应为 384 $(i \not \in 2^6 \times 6)$ 9. PAL 器件在结构上的特点是: 与阵列 可騙程 、或阵列 固定 。
- 10. GAL16V8 的与阵列总共可实现 64(域8 × 8) 个乘积项。
- 二. 用卡诺图法化简 $F(A,B,C,D)=\sum_{m}(0,1,4,7,9,10,13)+\sum_{\theta}(2,5,8,12,15)$ 为最简与或表达式。

$$F = \overline{C} + BD + \overline{BD}$$

三、设 $A=A_3$ A_2 A_1 A_0 , $B=B_3$ B_2 B_1 B_0 是两个 4 位二进制数。试用一片 7485 和一片 74157(四二选一 MUX)构成一个比较电路并能将其中大数输出,试画出逻辑图。(不允许附加其他器件)

Ao. 14 24 3 O. 1D. 2D. 3 1 1D. 2D.;

答案三:

答案四:

五. 已知多输出组合电路的输出函数表达式如下:

 $F_1(A,B,C,D) = \sum m(2,5,6,7,8,10,12,13,14,15)$ $F_2(A,B,C,D) = \sum m(2,6,7,9,11,13,15)$ 若用 PLA 实现该电路,且要求电路最简,请写出设计过程并将图 4 中 PLA 的阵列结构图画完整。

PLA 电路 4 分, 即 F1、F2 各 2 分。若熔接点位置正确, 但不是用"×", 扣 1 分。

AD+BCD+ACD

六. 分析图 5 所示电路,试画出状态转移图,并说明能否自启动(设初态为 Q_3 Q_2 Q_1 $Q_0=1111)$

- ①作该原始状态转移表的状态化简隐含表:
- ②在该原始状态转移表的状态中共有__1__个等价对,它们分别是__DE___。
- ③在该原始状态转移表的状态中有 4 个最大等价类,它们分别是 A. B. C. DE 。

表 1

S(t)	N(t)/Z(t)			
3(1)	<i>X</i> =1	X=0		
A	<i>B</i> /1	E/0		
B	C/1	E/0		
C	C/1	<i>B</i> /0		
D	D/1	<i>B</i> /1		
<u>E</u> .	D/1	<i>B</i> /1 .		

A. B. C. DE.

	· · · · · · · · · · · · · · · · · · ·	
八. 试用 74194 设计一个产生序列	码为 110100 , 0 0 码为 0 0 0 码为 0 0 0 0 0 0 0 0 0 0	发生器,要求:填写
卡面的综合表,并导出 74194 的 I	D _{SL} 的最简与或表达式。	Oponos Doc
Q_1 Q_2 Q_3 D_{SL}	综合表,有效循环有六个状态,	110 1
1 1 0	*	101 0
1 0 1		010 0
0 1 0 0 0		100
0 0 1 51		001
0 1 1 0		011 0
	$D_{SL} = \overline{Q_1 Q_2} + Q_1 \overline{Q_3} $ 或者 $\overline{Q_1^n Q_2^n} + Q_1^n \overline{Q_3^n}$	000
1 1 0 1 0 0 1 1 0		Mo M; O
1 1 0 1		
1 0 1 0	0,0,1	
<u>0 1 0</u> 0	7 N ZI =	11 io
1 0 0 1	0 0	
0 1 1 0		
D _{SL} 左移: Q ₃ →Q ₂ →Q ₁		An.
D _{SL} 的卡诺图		
Q_1 Q_2 Q_3 Q_4 Q_5 Q_5 Q_5	10	· · · · · · · · · · · · · · · · · · ·
		, , , , , , , , , , , , , , , , , , ,
	QQ+ 04	'Oly'

九. 已知 DFF 及 PLA 组成的电路如图 5 所示,作全状态转移图,分析逻辑功能。

电路的逻辑功能: 模 6 加法计数器

$$Q_2^{n+1} \! = \! Q_0^n Q_1^n + \! \overline{Q_0^n} Q_2^n \; , \quad Q_1^{n+1} \! = \! Q_0^n \, \overline{Q_1^n} \, \overline{Q_2^n} + \! \overline{Q_0^n} Q_1^n \, \overline{Q_2^n} \; , \; \left< Q_0^{n+1} \! = \! \overline{Q_0^n} \, \overline{Q_1^n} + \! \overline{Q_0^n} \, \overline{Q_2^n} \right. \; .$$

Q_2^{n}	Q ₁ ^a	Q_0^{-n}	Q:"	Q.	Q.
0	0	0	0	0	
0	0	1	{}	÷	Ú.
0	1	0	()		1
0	1	1	Ì	0	()
1	0	0	Y	0	i
1	0	1	()	()	()
1	1	0	l	0	0
1	ſ	1	1	0	0

$$Q_0 = [D_0] (\overline{Q_0Q_1} + \overline{Q_0Q_2}) CPT$$
 $Q_1 = [D_1] = (Q_0Q_1 + \overline{Q_0Q_1Q_2}) CPT$
 $Q_2 = [P_2] = (Q_0Q_1 + \overline{Q_0Q_2}) CPT$

十. 试用整体预置零法在图 4 增加适当的连线,构成同步二十四进制计数器(注:图中与非门的输入端数视需要而定)。

(24)10 = (18)16 M-1=174

	741	61(2)				,	741	61(1)
CP	Q_A	Q_{B}	Q _C (Q_{D}		Q_{CC}	Q_A	Q_B	Q_{C}	Q_{D}
†	0	0	0	0		С	0	0	0	0
†	0	0	0	0	٠.	0	0	0	0	1
†	0	0	0	0		0	0	0	1	0
Î	0	0	0 -	0		0	0	0	I	1
t	0	0	0	0		0	0	1	0	0
-	0	0	0	0		0	1	1	1	0
1	0	0	0	0	16	0	1	1	1	1
t	0	0	0	1	•	1	0	0	0	0
		•••								
†	0	0	0 -	1	7	1	C	1	1	I

74LS161 是异步清"0"。 用整体预置零法,同步置数(同步并入)。

十一. 某汽车驾驶员培训班进行结业考试,有三名评判员,其中A为主评判员,B和C为副评判员。在评判时按照少数服从多数原则通过,但只要主评判员认为合格就算通过,在双轨输入条件下用最少与非门实现该电路。

填写真值表、卡诺图、画卡诺圈,写表达式,画电路图。

AC+BC+ABC.

1 A < 4 編出A. A> 4 輸出A.

- 十四. 已知两级门电路如图 2 所示。
- 2、 试用增加多余项法消除该电路的逻辑冒险 (须在电路图上增加逻辑门)。
- 3、试用脉冲取样法避免冒险(须在电路图上标出取样脉冲所加的位置和极性)。

CD + BD + AC

AD +BC

十五. 由与非门构成的基本 SR 触发器的逻辑符号、输入波形如图 3 所示,根据 S_D 、 R_D 输入波形画出 Q 、Q 的波形。设触发器的初态为 0。

第五章 测试卷

1、选择题

- (1) 触发器 没有空额 (没有空翻,有空翻); 触发器可用于 设计计数器和移位寄存器 (锁存数据,设计计数器和移位寄存器); 触发器的触发方式 建设额发 (边沿触发,电平触发)。
- (2)锁存器<u>有空刷</u>(没有空翻,有空翻);锁存器可用于<u>纵布数据</u>(锁存数据,设计计数器和移位寄存器);锁存器的触发方式<u>中率加发</u>(边沿触发,电平触发)。

2、基本触发器的逻辑符号与输入波形如图 所示。试作出 Q、 \overline{Q} 的波形。

3、基本触发器的逻辑符号与输入波形如图 所示。试作出 Q、Q 的波形。

$$\begin{cases} Q^{n+1} = SD + RDQ^{n} \\ -SD \cdot RD = 0 \end{cases} = \begin{cases} SD - S \\ RD - R \end{cases} = Q$$

4、已知触发器电路及其输入波形如下图所示,作Q端的波形。

5、电路及其输入波形见下图,作 Q1、Q2 端的波形。

6、电路如下,数据 D 和 CP 波形见下图,试作 Q1、Q2 端的波形。

7、用 JKFF 和异或门构成的异步可逆计数器。

8、用 DFF 和异或门构成的异步可逆计数器。

9、将 JKFF 转换成 DFF, 试用列综合表法导出转换函数的最简与或

10、NM 触发器和 XY 触发器的功能如下表所示, 若将 NM 触发器转换成 XY 触发器, 试用列综合表法导出转换函数的最简与或表达式。

NM	0^{n+1}
0 0	On
0 1	Ō
1 0	transol
11	$\overline{\mathbb{Q}}^n$

	<u></u>	
Χ	Y	0n+1
0	0	Qn
0	America	Qn
promis	0	Qn
formsk	Americanist (Qn

第六章 测试卷1

1、填空题和选择题

- (1) 通过级联方法,把两片 4 位二进制计数器 7416l 连接成为 8 位二进制计数器后,其最大模值是 25 b。
- (2) 对 MSI 计数器、若 $\overline{CR} = 0$,无论 CP 信号处于何状态,计数器立即清零,该清零方式称为 $\overline{0}$ 0 法: MSI 计数器 74163 的清零方式为 $\overline{0}$ 0 法
- (3)分析时序电路时所列的四组方程包括时钟方程、冷与方线、水方程及电路输出方程。
- (4) 设计模为 12 的二进制计数器,如使用 74163 利用 CK 端以复 0 法则其反馈态 $Q_3Q_2Q_1Q_0$ 为 1011 ,如使用 74161 利用 L_D 端以置最小数法设计,则所置数为(0100)。
- (57) 74LS161, 74LS160 和 74LS163 均为常用的加法计数器。与 74LS161 之功能相比,不同之处在于 74LS160 为 核心计数 74LS163 为 同方清。
- (6) 若将一片模值为 10 的 74160 芯片和一片模值为 16 的 74161 芯片同步级联,则级联后的模值为 160。
- (8) 一个 10 位的二进制数最大可表示的十进制数是 1023 6
- 2、分析图 4 所示电路,并填写下表(设初态为 Q₃Q₂Q₁Q₀=0000)。

3、试只用一片 74161 和一片 74138 设计一个低电平有效的八输出节拍分配器。并在原图基础上,不添加任何其他器件,使其成为一个输出没有冒险现象的八输出脉冲分配器。(10 分)

4、两片74160组成的电路如图 1 所示,计数器是采用了**夏**夏·麦(置数法、复 0 法),级联的方式是**1**0 生 级联,实现的模长为**4**274160(1)、74160(2)的反馈状态分别为(0 100),和(20 (20))。。

5、分析图 5 所示电路, 试填写有效循环的状态转移表, 并说明有无自启动性。(设初态为

6、试用 4 个 DFF 设计异步二进制减法计数器 (完成图中连线)

7、用 D 触发器设计一个按自然态序进行计数的同步加法计数器。要求当控制信号 M=0 时为 5 进制,M=1 时为 7 进制(要求有设计过程)。

8、试用脉冲反馈法将 4 个 JK 触发器连接成模长为 12 的计数器,要求能够可靠复位(可以根据需要附加门电路)。

9. 异步清零法将 74161 连接成 8421 编码的模长为 6 的计数器,要求能够可靠复位(可以根据需要附加门电路,见图 2)。

10、如图所示电路是序列信号发生器,试写出输出序列信号。

11、试用整体预置零法在图 5 增加适当的连线,构成同步二十四进制计数器,(注:图中与非

- 12、电路如图所示。
- (1) 列出状态转移表;
- (2)写出输出z的序列。

•

第六章 测试卷 2

1、已知由 74161 组成的电路如图 3 所示,列出状态转移表,计算计数器模长 M 。

- 2、试根据表 1 所示原始状态转移表完成以下要求
- ①作该原始状态转移表的状态化简隐含表;
- ②在该原始状态转移表的状态中共有_1个等价对,它们分别是[1][2]

-	1	
-	===	- 1
~	v	

S(t)	N(t)/Z(t)			
5(6)	X=1	X=0		
A	<i>B</i> /1	E/0		
В	C/1	E/0		
C	C/1	<i>B</i> /0		
D	<i>D</i> /1	<i>B</i> /1		
E	D/1	<i>B</i> /1		

3、分析图 4 所示电路,并填写下表(设初态为 $Q_3Q_2Q_1Q_0$ =0000)。

4、 分析图 6 电路, 试填写全状态转移表(设初态为 Q₃ Q₂ Q₁ Q₀=1111)

CP! 个效	20	Q_{ij}	Q_{2}	23 F
0	О	0	C	0 1
-1	4	(2	$\vec{\Omega}$	0
2	\mathcal{O}	I	0	0 1
3		0		D I
4		ı	Ċ	1 1
5	1			0 0
6	n	1	(ī
7″	Ĭ	0	1	10
8		ľ	0	10
9	<u>n</u>	Ď		7 1
10		Ø	Ö	
11	4	(0	(2.0
12	0	1		n o
13	0	0	- i	
14	0	0	6	11-

6、试用 74194 设计产生序列码为 101100,……且能自启动的移存型序列码发生器,要求:填写下面的综合表、卡诺图并导出 74194 的 $D_{\rm SL}$ 的最简与或表达式(没有导出过程不给分)。(10 分)

7、由 D 触发器构成的四级扭环形计数器的状态转移图如下为使该计数器能自启动,现规定在原状态转移的基础上,只有当计数器处于 0100 状态和 0110 状态时,次态才能进入有效循环,试填写第一级触发器激励 D_1 的卡诺图,并化简为最简与或式。

- 9、试分析图 4 电路,完成要求(1)和要求(2)。
- (1)、74194 的状态转移表为:
- (2)、F端输出的序列信号为:

10、试作出 101 序列检测器的状态图,该同步电路由一根输入线 X,一根输出线 Z,对应与输入序列的 101 的最后一个 "1",输出 Z=1。其余情况下输出为 "0"。101 序列不可以重叠,如:X: 0101011010 Z: 0001000010。

11、试设计一电动机控制电路。要求该电路有两个控制输入端 X_1 和 X_2 ,只有在连续两个或两个以上的时钟脉冲作用期间,两个输入都一致时,电动机才转动。画出状态转移图。

D3' D2' D1 D6 0 1 1 1

第八章 测试卷

一、选择题和填空题
1、在 A/D 转换器中, 区知 Δ 是量化单位, 若采用"四舍五入"方法划分量化电平, 则最大
量化误差为,是人。
A. 1/4 B. 1/2 C. 1 D. 2 7/8 7/8 T 网络约 10 位 D/A 标格 器 约是 小松 以
2、一个倒 T 网络的 10 位 D/A 转换器的最小输出电压为 0.01V,则当输入为(11,000001,00) ₂ 7/2 时,对应的输出电压为
A. 7.72 B. 8,56 C. 9.64 D. 10.25
3、在转换器中,已知△是量化单位,若采用"舍尾"方法划分量化电平,则最大量化误差
为 <u>C</u> A。 A. 7/4 B. 1/2 C. 1 D. 2
A. 7/4 B. 1/2 C. 1 D. 2 4、若一个 10 位二进制 D/A 转换器的满刻度输出电压为 10.23V, 当输入为(11,00000010) ₂ 时,
输出电压 为 【 】 /
A. 2.56 B. 5.12 C. 7.7 D. 8.58
5、己知 T_{CP} 是8位逐次渐近型 A/D 转换器的输入时钟周期,则完成一次转换需要的时间是
B_{CP} .
A.8 B.9 C.10 D.11
6. 若一个 10 位二进制 D/A 转换界的港刻度绘出中压力 10 22 V - V (**) 为 (**) 2 (**)
6、若一个 10 位二进制 D/A 转换器的满刻度输出电压为 10.23 V,当输入为(1100000010) $_2$ 时,输出电压为 O V。
A. 2.56 B. 5.12 C. 7.7 D. 8.58
7、已知 4 位倒 T 型 DAC,输入数字量为 0110,u _{REF} = -16V,R _F =R,则输出模拟量 u _O =
8、8 位 D/A 转换器当输入数字量 10000000 为 5v。若输入数字量只有最低位为 1, 则输出电
压为
9、将模拟信号转换为数字信号,需要经过 4/4 / 18.14、 图 1
4篇68四个过程。
10、已知 4 位倒 T 型 DAC,输入数字量为 1010, u _{REF} =−8V, R _/ =R,则输出模拟量 u ₀ = 5 V,
该 DAC 的分辨率为 V V V R'= VREF × I
12、若输入模拟信号的频率为 1000Hz, 则取样保持电路的取样频率 f 应满足以下条件:
12 2000 HZ
13、某 ADC 电路, $u_{lmax}=10V, n=4$,若 $u_{PEF}=4$. $7V$,则采用舍尾量化的量化单位 $\Delta=\frac{5}{8}$
转换后的数字量为 <u>0111</u> ;采用四舍五入量化方式的量化单位 Δ= 対 0 20 1
转换后的数字量为 <u>0111</u> :采用四舍五入量化方式的量化单位Δ= <u>3</u> 0.31.14、有一个DAC电路,n=8,其分辨率是 <u>186</u> 。
$u_{\text{Im}\alpha x}=10V, n=4$,分别求出采用舍尾量化和四舍五入量化方式时的量化
单位。并分别求 $u_I = 6.28V$ 时,两种量化方法转化后的数字量 1010 和 1010 。
6、ADC和DAC的主要技术指标有是企业发和一个享持了。

第九章 测试卷

二、用图 5 中给出的三个触发器设计一个三位二进制异步加法计数器,时钟 CP 接入 DFF1,直接在电路图上连线;设实现后的计数器与 PROM 的输入端连线如图示,要求在 PROM 或

三、由 PROM 和 DFF 构成的电路如图所示,设 Q1Q2Q3 的初态为 000。

F= 1 1011100

- 1) 试填写 Q1Q2Q3 的状态转移表。(10 分)
- 2) 试写出序列码 F 码型。

四、根据 ROM 存储矩阵连线图写出输出逻辑表达式,能化简则化简至最简与或式。指出逻辑功能。

五、8选1数据选择器 74151 构成图 1 所示电路,写出 F(A,B,C,D) 最小项和形式的表达

七、ROM 的阵列如图 4 所示, 试列出真值表, 并说明其功能。(10 分) ①该阵列的真值表为:

,				
A	В	C	F ₁	F ₂
0	0	0	0	0
0	0	1	1	0
0.	1	0	1	0
0	1	1	0	
1	0	0	1	0
1	0	1	10	1
1	1	0	0	
1	1	1	1	
			<u> </u>	

第十二章 测试卷

一、选择题和填空题

2. 数据处理器的具体操作过程可用处理器明细表来说明,它包括**扩**化表和北方次是大两个子表。

3. 控制器的结构由 组合逻辑电路 存储电路组成。

4. ASM 图由 3 个基本符号组成,它们分别是 状态,推 、 条件 框 和 半路 框 。

5. A←B 这条语句是属于 **传送语句** (传送语句、运算语句、逻辑运算语句、移位语句、条件语句)。

A $b \rightarrow a \rightarrow c$ B $a \rightarrow b \rightarrow c$ C $c \rightarrow b \rightarrow a$ D $b \rightarrow c \rightarrow a$

- 7. 控制器的描述方法和设计依据是刘大志转移表业友报移图
- A 传输框 B 状态框 C 条件框 D 判断框

二、某数字系统的 ASM 图如图 1 所示。试用每态一个触发器(DFF)的方法实现系统控制器(不用画电路图)。

三、根据题图 2 所示 ASM 图,写出控制器状态转移图。

四、图 3 为某系统的 ASM 图,若采用每态一个触发器(用 DFF)的方法设计控制器,试写出控制器中输出控制信号 CLR、ADD、SHIFT 的逻辑表达式。

五、(1) 图 4 为某数字系统的 ASM 图,其中 START 和 A>100 分别为处理器发出的状态信号 S_1 和 S_2 。试画出该系统控制器的状态转移图,状态转移图中箭头上的标注为 S_1S_2/CLR SHIFT OUT。

(2)对于图 4 的 ASM 图,若用每态一个触发器 (DFF) 的方法实现该系统的控制器,试写出控制器输出的控制信号的逻辑表达式,和控制器中 D 触发器激励函数的逻辑表达式,若 X 为 8 位并行数据输入端,输出 Z 取自寄存器 Y,试描述该系统实现的功能。

六、已知一个数字系统,它有三个寄存器 X、Y、Z,它的算法流程图如图 5 所示,请导出状

七、设 A,B,C 为四位寄存器,MUX 为 4 二选一数据选择器,已知以下三条 RTL 语句: $T_1:C \leftarrow A; \quad T_2:C \leftarrow B; \quad T_3:C \leftarrow C+1$

其中, T_1 、 T_2 、 T_3 三个控制命令在同一时刻只允许一个有效。这三条语句对应的部分硬件方 框图如图 6 所示,请完成 A_0 、 L_D 、INC 三个函数的设计, L_D 、INC 均为高电平有效。

- 1. 填写表 2 所示的真值表;
- 2. 将图 6 方框图电路补充完整,要求用最少的与非门实现。(10 分)

八、下图为某系统的 ASM 图,若用每态一个触发器(DFF)的方法实现该系统的控制器, 试写出控制器输出的控制信号的逻辑表达式,和控制器中D触发器激励函数的逻辑表达式。

九、控制器的状态转移图如下图所示,它有四个状态和两个输入端。请画出等效的 ASM 图。

十、已知一个数字系统,它的 ASM 图如下图所示,请导出控制器的状态转移图。 S_1S_2/C_1G_3 (4(5-

十一、已知一个数字系统,它有三个寄存器 CNT、A、Z,它的算法流程图如下图所示,其中,X为外部输入,请导出状态数最少的 ASM 图。

- in