Travaux Dirigés en électronique Des Composants Série III: Transistors bipolaires

EXERCIE N°1:

Q.1. Soit le circuit représenté par la <u>figure 1</u> où le transistor est caractérisé par β =350 et V_{BE} =0,7V, Déterminer le point de fonctionnement du transistor.

- Q.2. Le transistor de la <u>figure 2</u> est caractérisé par β =250 et V_{BE} =0,7V, Déterminer le point de polarisation du circuit.
- Q.3. Le transistor de la <u>figure 3</u> est polarisé au milieu de la droite de charge statique et il est caractérisé par β =300 et V_{BE} =0,7V. On donne E=15V, R_{C} =2.7 $K\Omega$ et R_{E} =300 Ω .
 - a. Calculer : I_C , I_B ainsi que les potentiel V_E , V_C et V_B .
 - b. On impose $I_0=10mA$, calculer R_1 et R_2 .
- Q.4. Dans le montage représenter par la <u>figure 3</u>, calculer les valeurs des quatre résistances de sortie pour que l'on obtienne un point de polarisation caractérisé les tensions $V_E=2V$, $V_C=6V$ et un courant de base $I_B=100\mu A$. On donne E=10V, $V_{BE}=0.7V$, $R_1//R_2=10K\Omega$ et $\beta=150$.

EXERCIE N°2:

Soit le montage de la figure 4 où le transistor est caractérisé par β=100 et V_{BE}=0,7V

* A et B ouverts

- Q.1. Calculer le courants I_B.
- Q.2. Quel est l'état de transistor. Conclure.
- **Q.3.** Calculer la tension V_P au point commun des diodes D_1 , D_2 et D_3 .

* A ferme et B ouvert

- **Q.4.** Calculer la tension V_P et le courant I_B . Quel est l'état du transistor T?
- Q.5. Calculer le courant I qui circule dans R_1 . Quel est l'état de la LED D_4 ?
- Q.6. Calculer la tension V_{CE}.
- Q.7. Compléter le tableau suivant :

Α	В	Т	D_4
Ouvert	Ouvert		
Ouvert	Fermé		
Fermé	Ouvert		
Fermé	Fermé		

Q.8. Quelle est la fonction réalisée ?

On donne:

- **O** $R_1 = 470\Omega$, $R_2 = 1 k\Omega$ et $R_3 = 220 \Omega$.
- $V_{D4} = 1,4V \text{ et } V_{CESAT} = 0V.$
- $V_{D1} = V_{D2} = V_{D3} = 0.6V$
- E=12V

Fig.4

EXERCIE N°3:

On considère le montage schématisé par la figure 5 ou les deux transistors **T**₁ et **T**₂ sont identiques.

On donne:

O E=12V.

o V_{BE} **=**0.7V.

O $\beta_1 = \beta_2 = \beta$.

Q.1. Exprimer I_{C2} en fonction de courant I_{C1}.

Q.2. Que devient I_{C2} si $\beta >>1$.

Q.3. Déterminer la valeur de **R** pour que le courant I_{C2} dans la charge soit de **1.5mA**.

EXERCIE N°4:

A) Etude en régime statique:

Soit le montage de la <u>figure3</u> (exercice1). Le transistor de type **NPN** dont le réseau des différentes caractéristiques est donné sur la figure ci-dessous.

Fig.5

On néglige le courant de base devant le courant de pont $I_p(I_p >> I_B)$.

On donne E=10V, β =100, R_E = R_C =1K Ω , R_2 =250k Ω et R_1 =60K Ω .

- Q.1. Déterminer l'équation de la droite de charge et d'attaque et les tracer.
- Q.2. Déterminer les coordonnées du point de fonctionnement.
- Q.3. On remplace R_E par un court-circuit. Le point de fonctionnement changera t-il de position?

B) Etude en régime dynamique:

Sur la <u>figure 3</u> (exercice 1), on envoie sur la base un signal sinusoïdal de faible amplitude de f.e.m E_{α} et de résistance R_{α} et de charge R_{L} comme l'indique la <u>figure 7</u>.

On suppose que toutes les capacités de liaison ont une impédance négligeable en régime des petits signaux. Le transistor est caractérisé par ses paramètres hybrides tel que h_{11} =107 $K\Omega$, h_{21} = β =100 et h_{12} = h_{22} =0

L'interrupteur K étant fermé

- Q.1. Donner le schéma équivalent en alternatif du montage
- Q.2. Calculer le gain en tension $A_v=V_s/V_e$ à charge.
- **Q.3.** Calculer les impédances d'entrée Z_e et de sortie Z_s .

L'interrupteur K étant ouvert

- **Q.4.** Donner le nouveau schéma équivalent du montage
- **Q.5.** Déterminer le nouveau gain en tension A_{v1} à charge.

On désigne par **Z** l'impédance complexe équivalente à **R**_E et **C**_E en parallèle

- **Q.8.** Quelle est l'expression de l'amplification complexe $A(j\omega)$ en fonction de A_v , beta, h_{11} et Z.
- Q.9. Montrer que $A(j\omega)=A_0\cdot((1+j\tau_2\omega)/(1+j\tau_1\omega))$ où τ_1 et τ_2 désignent deux constantes de temps dont on demande les expressions.
- **Q.10.** Tracer le diagramme asymptotique du module $A(j\omega)$ en fonction de la fréquence .

EXERCIE N°5:

Sur la <u>figure 3</u> (exercice 1), on place une capacité C_c en parallèle avec R_c . L'entrée du montage est attaquée par un générateur de tension $e(t)=V_m.sin(\omega t)$ et on charge l'émetteur avec R_c et C_c comme l'indique la figure 8.

- Q.1. En régime statique y'a-t-il un changement à signaler
- **Q.2.** Dessiner le schéma équivalent aux petites variations et aux fréquences moyennes du montage complet sachant que toutes les capacités ont alors une impédance faible.
- **Q.3.** Déterminer le gain en tension A_v .
- Q.4. Déterminer les impédances d'entrée Z_e et de sortie Z_s.

