Корпускулярно-волновой дуализм

1.1 Гипотеза М. Планка о квантах

- Гипотеза: Энергия электромагнитного излучения поглощается и испускается порциями (квантами).
- Квант энергии (E):

$$E = h \cdot \nu$$

где:

- h постоянная Планка (приблизительно $6.626 \cdot 10^{-34}$ Дж·с).
- ν частота излучения.

1.2 Фотоэффект

Фотоэффект:

Явление испускания электронов веществом под действием света.

Виды:

- Внешний (электроны покидают поверхность металла).
- Внутренний (электроны возбуждаются внутри вещества).
- Вентильный (возникновение тока при освещении полупроводниковых контактов).

Красная граница фотоэффекта:

Минимальная частота или максимальная длина волны, при которых еще возможен фотоэффект.

1.3 Опыты А.Г. Столетова

Установка:

Опыты по изучению фотоэффекта с применением вакуумного фотоэлемента.

Результаты:

- Сила фототока прямо пропорциональна интенсивности света.
- Максимальная кинетическая энергия фотоэлектронов зависит от частоты света и не зависит от интенсивности.
- Существует красная граница фотоэффекта.

1.4 Уравнение Эйнштейна для фотоэффекта

Формула:

$$h\nu = A_{\text{\tiny BMX}} + E_{k_{\text{\tiny MAKC}}}$$

где:

- $h\nu$ энергия фотона.
- $A_{\text{вых}}$ работа выхода электрона из металла.
- $E_{k_{\text{make}}}$ максимальная кинетическая энергия фотоэлектрона.

Пояснение:

Уравнение устанавливает связь между энергией фотона, работой выхода и кинетической энергией фотоэлектронов.

1.5 Фотоны

Фотон:

Квант электромагнитного излучения.

Свойства:

- Движется со скоростью света.
- Обладает энергией и импульсом.
- Электрически нейтрален.

1.6 Энергия фотона

Формула:

$$E_{\phi} = h\nu = \frac{hc}{\lambda}$$

где:

- E_{ϕ} энергия фотона.
- h постоянная Планка.
- ν частота излучения.
- c скорость света.
- λ длина волны излучения.

1.7 Импульс фотона

Формула:

$$p_{\phi} = \frac{E_{\phi}}{c} = \frac{h}{\lambda}$$

где:

- p_{ϕ} импульс фотона.
- E_{ϕ} энергия фотона.
- c скорость света.
- h постоянная Планка.
- λ длина волны излучения.

1.8 Гипотеза де Бройля о волновых свойствах частиц. Корпускулярн волновой дуализм

Гипотеза:

Любая частица материи обладает волновыми свойствами, а любой волне соответствуют корпускулярные свойства.

Длина волны де Бройля:

$$\lambda = \frac{h}{p}$$

где:

- λ длина волны де Бройля.
- h постоянная Планка.
- р импульс частицы.

Корпускулярно-волновой дуализм:

Явление, при котором материальные объекты проявляют свойства и частиц, и волн.

1.9 Дифракция электронов

Эксперименты:

Наблюдение дифракции электронов при прохождении через кристаллическую решетку, подтверждают волновые свойства электронов.