Sardar Patel Institute of Technology

havan's Campus, Munshi Nagar, Andheri (W), Mumbai : 400058, India

(Autonomous College of Affiliated to University of Mumbai)

End Semester Examination

December 2022

Maxi Marks: 100

Duration: 3 hours

Class: FYMCASOLUTION

Semester: I

Course code: MA503

Branch: MCA

Name of the course: Probability and Statistics

Q.1 (A) Let the missing frequencies be f_1 and f_2 .

C.I	Frequency (f _i)	
0-10	14	
10-20	f_1	Pre-Modal class
20-30	27	Modal class
30-40	f_2	Post-Modal class
40-50	15	
Σ	56+f ₁ +f ₂	

Given total number of families=100

$$:.56+f_1+f_2=100$$

$$f_1+f_2=44$$

Also given mode=24

:. Modal class
$$((l_1 - l_2) = (20-30)$$

Frequency of modal class (f) = 27

$$d_1 = f - f = 27 - f_1$$

$$d_2=f-f_2=27-f_2$$

$$Mode = l_1 + \left(\frac{d_1}{d_1 + d_2}\right)(l_2 - l_1)$$

$$Mode = l_1 + \left(\frac{d_1}{d_1 + d_2}\right)(l_2 - l_1)$$
 $\therefore 24 = 20 + \left(\frac{27 - f_1}{54 - f_1 - f_2}\right)(30 - 20)$

$$\therefore 2f_1-3f_2=-27$$

Solving (1) and (2) we get $f_2 = 21$, $f_1 = 23$.

(B) We prepare the following table.

C.I	Frequency (f _i)	Cumulative Freq
00-10	5	5
10-20	7	12
20-30	20	32
30-40	12	44

40-50	6	50
Σ	50	

 $N=\Sigma f=50$

For the first quartile Q_1 $\frac{N}{4} = 12.5$

 $Q_1 \text{ class } ((l_1 - l_2) = (20-30)$

Frequency of the Q₁ class (f)= 20

Cumulative Frequency of the just previous to Q₁ class (F)=12

$$Q_1 = l_1 + \frac{(l_2 - l_1)}{f} \left(\frac{N}{4} - F \right) = 20 + \frac{(30 - 20)}{20} (12.5 - 12) = 20.25$$

For the second quartile Q_2 =Median $\frac{N}{2}$ = 25

Median class $((l_1 - l_2) = (20-30)$

Frequency of the median class (f)= 20

Cumulative Frequency of the just previous to median class (F)=12

Median
$$Q_2 = l_1 + \frac{(l_2 - l_1)}{f} \left(\frac{N}{2} - F \right) = 20 + \frac{(30 - 20)}{20} (25 - 12) = 26.5$$

For the third quartile Q_3 $\frac{3N}{4} = 37.5$

 Q_3 class $((l_1 - l_2) = (30-40)$

Frequency of the Q₃ class (f)= 12

Cumulative Frequency of the just previous to Q₃ class (F)= 32

$$Q_3 = l_1 + \frac{(l_2 - l_1)}{f} \left(\frac{3N}{4} - F \right) = 30 + \frac{(40 - 30)}{12} (37.5 - 32) = 34.58$$

Bowley's Coefficient of skewness= $\frac{(Q_3 + Q_1 - 2 \times Median)}{(Q_3 - Q_1)}$

$$=\frac{(34.58+20.25-2\times26.5)}{(34.58-20.25)}=0.1277$$

Q.2 (A) (i) Solve given equation we get

$$5y+3x=52$$

$$3x+5y=52$$

$$3x + 5y = 52$$

$$2x+y=30$$

$$2x + y = 30$$

$$(-)$$
 $10x+5y=150$

$$x=14, y=2$$

Hence a.m. of x=14 and a.m. of y=2

(ii) The regression line of y on x is 5y+3x=52. Hence $y=(-3/5)x+52/5b_{yx}=-3/5$

The regression line of x on y is 2x+y=30. Hence x=(-1/2)y+15 $b_{xy}=-1/2$

But
$$r^2 = b_{xy} \times b_{yx}$$
 Hence $r = -0.5477$

(iii) The most probable value of y when x=10. Use regression of y on x.

$$y=(-3/5)x+52/5 = (-3/5)\times10+52/5 = 22/5 = 4.4$$

(B)n=10

Height of father (x)	Height of son (y)	Rank of x (r ₁)	Rank of y (r ₂)	$d= r_1-r_2 $	d^2
68	62	4	5	1	1
64	58	6	7	1	1
75	68	2.5	3.5	1	1
50	45	9	10	1	1
64	81	6	1	5	25
80	60	1	6	5	25
75	68	2.5	3.5	1	1
40	48	10	9	1	1
55	50	8	8	0	0
64	70	6	2	4	16
Σ					72

Spearman's rank correlation coefficient (R or ρ) is given by

- (i) Rank 2.5 is repeated m=2 times. Hence the correction $\frac{m(m^2-1)}{12} = 0.5$
- (ii) Rank 3.5 is repeated m=2 times. Hence the correction $\frac{m(m^2-1)}{12} = 0.5$
- (iii) Rank 6 is repeated m=3 times. Hence the correction $\frac{m(m^2-1)}{12} = 2$

Corrected
$$\sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} d_i^2 + \text{correction factors} = 72 + 0.5 + 0.5 + 2 = 75$$

$$R = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)} = 1 - \frac{6 \times 75}{10(10^2 - 1)} = 0.5454$$

Q.3 (A) Computation for Chi-Square Test

Day	Oi	Ei	Oi-Ei	(Oi-Ei) ²	$(Oi-Ei)^2/E_i$
1	8	10	-2	4	0.4
2	8	10	-2	4	0.4
3	10	10	0	0	0.0
4	9	10	-1	1	0.1
5	12	10	2	4	0.4
6	8	10	-2	4	0.4
7	10	10	0	0	0.0
8	14	10	4	16	1.6
9	10	10	0	0	0.0
10	11	10	1	1	0.1
Total	100	100	0		3.4

Calculated
$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} = 3.4$$
, critical $\chi^2_{0.05,9} = 16.9$.

Since the calculated value The critical value, the hypothesis that numbers are uniformly distributed can be accepted.

(B) Given population mean (
$$\mu$$
) =60 kg,

Sample size
$$(n)=100$$
,

Sample mean
$$(\bar{x}) = 58 \text{ kg}$$
,

Sample s.d (s) =
$$4 \text{ kg}$$

$$z = \frac{\bar{x} - \mu}{\sqrt[8]{\sqrt{n}}} = \frac{58 - 60}{\sqrt[4]{\sqrt{100}}} = -5$$

Level of significance (α)=0.01

Critical Value $Z_a = 2.58$

Since $|Z| \le /Z_{\alpha}$, the null hypothesis is rejected.

Q.4 (A) Let E_1 , E_2 and E_3 denote the events that the box I, II and III is chosen, respectively and let A be the event that 'the first ball drawn is red and second is white'

Then $P(E_1)=P(E_2)=P(E_3)=1/3$

$$P(A|E_1) = \frac{2 \times 1}{{}^6C_2} = \frac{2}{15}$$
, $P(A|E_2) = \frac{3 \times 2}{{}^6C_2} = \frac{6}{15} = \frac{2}{5}$, $P(A|E_3) = \frac{1 \times 3}{{}^6C_2} = \frac{3}{15} = \frac{1}{5}$

To find P(E₂/A)
$$P(E_2 \mid A) = \frac{P(E_2) \times P(A \mid E_2)}{\sum_{i=1}^{3} P(E_i) P(A \mid E_i)} = \frac{6}{11}$$

(B) Let event A= the film gets award for its story.

event B= the film gets award for its music.

event $A \cap B$ = the film gets award for both.

(a)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.23 + 0.15 - 0.07 = 0.31$$

(b)
$$P(A \cap \overline{B})$$
 or $P(\overline{A} \cap B) = P(A \cap \overline{B}) + P(\overline{A} \cap B)$

=
$$P(A)$$
- $P(A \cap B)$ + $P(B)$ - $P(A \cap B)$ = 0.23-0.07+0.15-0.07 = 0.24

Q.5 (A)Let p= probability that a hen lays egg= $\frac{5}{7}$: $q = \frac{2}{7}$.

Then probability of getting at least 4 eggs with 5 hens = $P(X \ge 4)$

$$\therefore P(X=4) + P(X=5) = \sum_{x=4}^{5} {}^{5}C_{x}p^{x}q^{5-x} = 0.5578$$

Expectation = $Np = 100 \times 0.5578 = 55.78 = 56$

(B) Let
$$E(X_i) = \text{mean of } i^{\text{th}} \text{ battery } i=1,2$$

 $V(X_i) = \text{variance of } i^{\text{th}} \text{ battery } i=1,2$

:. For the total
$$X = X_1 + X_2$$

$$E(X) = E(X_1) + E(X_2) = 1.5 + 1.5 = 3.0 \text{ V}$$

and
$$V(X) = V(X_1) + V(X_2) = 0.045 + 0.045 = 0.09$$

$$\therefore \mu=3$$
 and $\sigma^2=0.09$

Total voltage $X \sim N(3,0.09)$.

The required probability is

$$P(2.7 \le X \le 3.30) = P(-1 \le Z \le 1)$$
 Where $Z = \frac{x - \mu}{\sigma} = \frac{x - 3}{0.3}$

$$P(2.7 \le X \le 3.30) = P(-1 \le Z \le 0) + P(0 \le Z \le 1) = 2 P(0 \le Z \le 1) = 2 \times 0.3413$$

Q.6 (A)(i) To Find k.

We know, total probability = 1

$$\therefore \int_{x=0}^{2} \int_{y=0}^{2} f(x,y) dx dy = 1$$

$$\therefore \int_{x=0}^{2} \int_{y=0}^{2} f(x,y) dx dy = 1 \qquad \therefore \int_{x=0}^{2} \int_{y=0}^{2} k(4-x-y) dy dx = 1$$

$$\therefore k \int_{x=0}^{2} \left[4y - xy - \frac{y^{2}}{2} \right]_{y=0}^{2} dx = 1 \qquad \therefore k \int_{x=0}^{2} \left[6 - 2x \right] dx = 1$$

$$\therefore k \int_{-\infty}^{2} [6-2x] dx = 1$$

$$\therefore k[6x-x^2]_0^2=1$$
 $\therefore k[12-4]=1$ $\therefore k=\frac{1}{6}$

$$\therefore k[12-4] =$$

$$\therefore k = \frac{1}{8}$$

(ii) To find the marginal probability of x, f(x)

$$f(x) = \int_{y=-\infty}^{\infty} f(x,y)dy \quad \therefore f(x) = \int_{y=0}^{2} k(4-x-y)dy$$

$$\therefore f(x) = \frac{1}{8} \int_{0}^{2} (4 - x - y) dy$$

$$\therefore f(x) = \frac{1}{8} \int_{y=0}^{2} (4 - x - y) dy \qquad \therefore f(x) = \frac{1}{8} \left[4y - xy - \frac{y^2}{2} \right]_{y=0}^{2}$$

$$\therefore f(x) = \frac{1}{8} [6 - 2x] \qquad \qquad \therefore f(x) = \frac{3 - x}{4}$$

$$\therefore f(x) = \frac{3-x}{4}$$

Similarly the marginal probability of y, f(y) is given by: $f(y) = \frac{3-y}{4}$

(B)Given E(X)=24, and V(X)=16

But
$$Var(X)=E(X^2)-[E(X)]^2$$

Now
$$Y=aX-b$$
 and $E(Y)=0$

$$E(aX-b)=0 aE(X)-b=0$$

$$a\times24-b=0$$

and
$$V(Y)=2$$

$$V(Y)=2$$
 : $V(aX-b)=2$

$$\therefore a^2 V(X) = 2 \quad \therefore a^2 \times 16 = 2 \qquad \therefore a = \pm \frac{1}{2\sqrt{2}}$$

From (1) and (2),
$$b = \pm 6\sqrt{2}$$

