Midterm Practice

- Outside scratch paper, formula sheets, and calculators are not allowed.
- Write your answers in the spaces following each question. If you need more room, use the reverse side of the page and check the box indicating I should look at the back.
- Circle or box important parts of your work and cross out portions you do not want evaluated.
- You may ask me questions, but unless there is an error on the exam I will probably refuse to answer.
- Unless told otherwise, show all your work.

Question:	1	2	3	4	5	Total
Points:	5	5	5	5	5	25
Score:						

Work	on	reverse	

- 1. (5 points) True/false, multiple choice, and short answer. No justification required. Read the statements carefully. Each is worth $\frac{1}{2}$ point; the total will be rounded (up) to an integer.
 - (a) True or false: The subset $A = \{(x,y) \in \mathbb{R}^2 : |xy| \leq 1\}$ of \mathbb{R}^2 with the standard metric is compact.
 - (b) True or false: If $E \subset K \subset X$ is an infinite subset of the compact set K then E has at least one limit point in K.
 - (c) True of false: Every metric space (X, d) has at least two clopen (closed and open) sets, namely X, \emptyset .
 - (d) True of false: If a closed subset K of a metric space (X, d) is covered by finitely many open sets, then K is compact.
 - (e) True of false: If K is a closed subset of (\mathbb{R}^k, d) , where d is the standard metric, such that the set

$$\{d(y,0): y \in K\}$$

is bounded, then K is compact.

- (f) True or false: There is a countable subset of \mathbb{R}^2 that is dense in \mathbb{R}^2 .
- (g) True or false: Given a subset E of a metric space (X,d), \overline{E} is the intersection of all closed sets that contain E.
- (h) True or false: The set of complex numbers of the form $\{z = bi : 0 < b < 1\}$ is an open subset of \mathbb{C} . Note: You can identify \mathbb{C} with \mathbb{R}^2 and the metric on \mathbb{C} will be given by the standard metric in \mathbb{R}^2 .
- (i) True or false: If K is a compact subset of a metric space (X, d), then for any $\epsilon > 0$ there are finitely many neighborhoods of radius ϵ whose union contains K.
- (j) True or false: Any subset of the rational numbers is at most countable.

- 2. (5 points) Calculate the supremum and infimum of the following subsets of \mathbb{R} :
 - (a) $A = \{1/n : n \in \mathbb{N}\}$
 - (b) $B = \bigcap_{x \in (0,1)} [-1, x)$

M	Vork	on	reverse	\Box
v	vun n	()	16,46196	1 1

3. (5 points) Suppose A is a non-empty set of positive real numbers that is bounded away from 0. That means, there exists $\delta>0$ such that $a\geq \delta$ for all $a\in A$. Let $B=\{1/a\mid a\in A\}$. Show that $\sup B=1/\inf A$

- 4. (5 points) Let (X, d) be a metric space.
 - (a) Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (b) Show that $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Do we have equality? Prove or give a counterexample.

5. (5 points) Let (X, d) be a metric space. A family $(E_{\lambda})_{{\lambda} \in {\Lambda}}$ of subsets of X is said to have the finite intersection property (FIP) if

$$\bigcap_{\lambda \in F} E_{\lambda} \neq \emptyset \ \text{ for all finite } F \subset \Lambda$$

Prove that X is compact if and only if every family $(E_{\lambda})_{\lambda \in \Lambda}$ of closed subsets with the finite intersection propert satisfies

$$\bigcap_{\lambda \in \Lambda} E_{\lambda} \neq \emptyset$$

Extra sheet