

## Subsamling (pooling)







input: 4x4

pool (2,2) out: 2x2

## Fully Connected (Inner product)



input: 3

fc (6)

out: 6

## Визуализация свёрточных слоев



### Типовая архитектура



# Современные сети (Inception architecture)



### Укрупненные строительные блоки



Figure 4. The schema for  $35 \times 35$  grid modules of the pure Inception-v4 network. This is the Inception-A block of Figure  $\boxed{9}$ 



Figure 5. The schema for  $17\times17$  grid modules of the pure Inception-v4 network. This is the Inception-B block of Figure [9]



Figure 6. The schema for  $8\times 8$  grid modules of the pure Inception-v4 network. This is the Inception-C block of Figure [9]



Figure 7. The schema for  $35 \times 35$  to  $17 \times 17$  reduction module. Different variants of this blocks (with various number of filters) are used in Figure 9, and 15 in each of the new Inception(-v4, -ResNet-v1, -ResNet-v2) variants presented in this paper. The k, l, m, n numbers represent filter bank sizes which can be looked up in Table 11



Figure 8. The schema for  $17\times17$  to  $8\times8$  grid-reduction module. This is the reduction module used by the pure Inception-v4 network in Figure 9

### Autoencoder

input layer

output layer

output layer

(reconstruction of input layer)

all layers are fully connected but not drawn

### Clustering with autoencoder



# Fully Convolutional Network



### Siamese Network





#### SSD и YOLO network







- (a) Image with GT boxes (b)  $8 \times 8$  feature map
- (c)  $4 \times 4$  feature map

#### SSD и YOLO Network





# Фреймворки для СНС

Theano

Torch

Caffe

Pylearn2

Tensorflow

**MXNet** 

Lasagne

Keras

Chainer

 ${\bf Deep Learn Tool box}$ 

Cuda-Convnet

**RNNLM** 

... (over 9000)



#### Caffe

- C++, Python
- Структура сети в текстовом файле
- cuDNN, (a еще CL, MKL)
- nVIdia DIGITS



| Maximally accurate | Maximally specific |       |
|--------------------|--------------------|-------|
| espresso           | (2.                | 23192 |
| coffee             | (2.                | 19914 |
| beverage           | 1                  | 93214 |
| liquid             | 1                  | 89367 |
| fluid              | 1.                 | 85519 |

### Tensorflow





#### MNIST dataset

# Сравнение классификаторов на MNIST

| Туре                         | Classifier                                           | Distortion          | Preprocessing        | Error rate (%) |
|------------------------------|------------------------------------------------------|---------------------|----------------------|----------------|
| K-Nearest Neighbors          | K-NN with non-linear deformation (P2DHMDM)           | None                | Shiftable edges      | 0.52[14]       |
| <b>Boosted Stumps</b>        | Product of stumps<br>on <u>Haar features</u>         | None                | Haar features        | 0.87[15]       |
| Non-Linear Classifier        | 40 PCA + quadratic classifier                        | None                | None                 | 3.3191         |
| Support vector machine       | Virtual <u>SVM</u> , deg-9<br>poly, 2-pixel jittered | None                | Deskewing            | 0.56[16]       |
| Neural network               | 2-layer 784-800-10                                   | None                | None                 | 1.6[17]        |
| <b>Neural network</b>        | 2-layer 784-800-10                                   | elastic distortions | None                 | 0.7[17]        |
| Deep <u>neural network</u>   | 6-layer 784-2500-<br>2000-1500-1000-500-<br>10       | elastic distortions | None                 | 0.35[18]       |
| Convolutional neural network | Committee of 35 conv. net, 1-20-P-40-P-150-10        | elastic distortions | Width normalizations | 0.23           |

#### CIFAR 10 Dataset



32x32 color images 10 classes 60000 images 50000 training, 10000 testing

<sup>\*</sup>Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009

#### Архитектура сети



data: input: feature 1: feature 2: feature 3: inner: out:

operation: conv 5x5x32 conv 5x5x32 conv 5x5x64 fc 64 fc 10

pool 2x2 pool 2x2 softmax