ASSIGNMENT – 2 Python Programming

Assignment Date	24-09-2022
Student Name	Preethika R
Student Roll Number	923319104040
Maximum Marks	2 Mark

Question-1:

1. Importing Required Package

Solution:

```
import pandas as pd
import seaborn as sns
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
```

Question-2:

2. Loading the Dataset

Solution:

```
df = pd.read_csv("/content/Churn_Modelling.csv")
df
```

uı														
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	0
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	1
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	0
10000 r	rows × 14 colu	umns												

3. Visualizations

Question-3:

3.1 Univariate Analysis

Solution:

sns.displot(df.Tenure)

Output:

3.2 Bi-Variate Analysis

Solution:

df.plot.line()

3.3 Multi - Variate Analysis

Solution:

```
sns.lmplot("Age", "NumOfProducts", df, hue="NumOfProducts", fit reg=False);
```

Output:

4. Perform descriptive statistics on the dataset.

Question-4:

Solution:

df.describe()

5. Handle the Missing values.

Question-5:

Solution:

```
data = pd.read_csv("Churn_Modelling.csv")
pd.isnull(data["Gender"])
```

Output:

```
| To | False |
```

Question-6:

6. Find the outliers and replace the outliers.

Solution:

```
df["Tenure"] = np.where(df["Tenure"] >10, np.median,df["Tenure"])
df["Tenure"]
```

```
E+ 0 2
1 1
2 8
3 1
4 2
...
9995 5
9996 10
9997 7
9998 3
9999 4
Name: Tenure, Length: 10000, dtype: object
```

Question-7:

7. Check for Categorical columns and perform encoding.

Solution:

```
pd.get_dummies(df, columns=["Gender", "Age"], prefix=["Age", "Gender"]
).head()
```

Output:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember		Gender_78
0	1	15634602	Hargrave	619	France	2	0.00	1	1	1	***	0
1	2	15647311	Hill	608	Spain	1	83807.86	1	0	1		0
2	3	15619304	Onio	502	France	8	159660.80	3	1	0		0
3	4	15701354	Boni	699	France	1	0.00	2	0	0		0
4	5	15737888	Mitchell	850	Spain	2	125510.82	1	1	1		0

Output:

Question-8:

- 8. Split the data into dependent and independent variables
- 8.1 Split the data into Independent variables.

Solution:

```
X = df.iloc[:, :-2].values
print(X)
```

Output:

```
[1 15634602 'Hargrave' ... 1 1 1]
[2 15647311 'Hill' ... 1 0 1]
[3 15619304 'Onio' ... 3 1 0]
...
[9998 15584532 'Liu' ... 1 0 1]
[9999 15682355 'Sabbatini' ... 2 1 0]
[10000 15628319 'Walker' ... 1 1 0]]
```

8.2 Split the data into Dependent variables.

Solution:

```
Y = df.iloc[:, -1].values
print(Y)
```

Output:

```
[+ [1 0 1 ... 1 1 0]
```

Question-9:

9. Scale the independent variables

Solution:

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["RowNumber"]] = scaler.fit_transform(df[["RowNumber"]])
print(df)
```

Output:

Question-10:

10. Split the data into training and testing

Solution:

```
from sklearn.model_selection import train_test_split
train_size=0.8
X = df.drop(columns = ['Tenure']).copy()
y = df['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
```

```
C* (8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
(1000,)
(None, None)
```