Model_Setup-v0

```
# SOLUTION# We added some parameters to accelerate the traini
model = PPO(
    policy="MlpPolicy",
    env=env,
    n_steps=1024,
    batch_size=64,
    n_epochs=4,
    gamma=0.999,
    gae_lambda=0.98,
    ent_coef=0.01,
    verbose=1,
)
```

Model_Setup-v1

```
model = PPO(
policy = 'MlpPolicy',
env = env,
n_steps = 2048,
batch_size = 64,
n_epochs = 8,
gamma = 0.999,
gae_lambda = 0.999,
ent_coef = 0.01,
verbose=1
```

Output:

```
| rollout/ | |
```

```
ep_len_mean
                           918
   ep_rew_mean
                           107
time/
                          733
   fps
   iterations
                           28
   time_elapsed
                          1251
   total_timesteps
                           917504
train/
   approx_kl
                          0.0049350252
   clip_fraction
                          0.0291
                         0.2
   clip_range
   entropy_loss
                         l -1.23
   explained_variance
                         0.907
   learning_rate
                         0.0003
                           78
   loss
   n updates
                           216
   policy_gradient_loss | -0.00066
   value_loss
                          126
rollout/
   ep_len_mean
                          935
                           113
   ep_rew_mean
time/
   fps
                           727
   iterations
                          29
   time_elapsed
                         | 1306
   total_timesteps
                           950272
train/
   approx_kl
                           0.006356347
   clip_fraction
                         0.039
   clip_range
                         0.2
   entropy_loss
                         -1.22
   explained_variance
                         0.977
   learning_rate
                          0.0003
                         5.19
   loss
   n updates
                         224
   policy_gradient_loss | -0.00218
```

value_loss	27.1
 rollout/	 I
ep_len_mean	940
ep_rew_mean	123
time/	I
fps	721
iterations	30
time_elapsed	1361
total_timesteps	983040
train/	
approx_kl	0.0070096166
clip_fraction	0.0421
clip_range	0.2
entropy_loss	-1.2
explained_variance	0.964
learning_rate	0.0003
loss	27.9
n_updates	232
policy_gradient_loss	-0.000613
value_loss	49.2
rollout/	
ep_len_mean	। 932
ep_rew_mean	127
time/	12 <i>1</i>
fps	ı 717
iterations	31
time_elapsed	1416
total_timesteps	1015808
train/	1
approx_kl	ı 0.0032689536
clip_fraction	0.0446
clip_range	0.2
entropy_loss	-1.2
explained_variance	0.986
onprariiou_vai raiioo	, 0.000

Model_Setup-v2

```
model = PPO(
policy = 'MlpPolicy',
env = env,
n_steps = 4096,
batch_size = 128,
n_epochs = 4,
gamma = 0.99999,
gae_lambda = 0.95,
ent_coef = 0.02,
verbose=1)
```

Output-v2:

```
rollout/
   ep_len_mean
                        813
                        1 96.6
   ep_rew_mean
time/
   fps
                        1194
                        | 14
   iterations
                       | 768
   time_elapsed
                       | 917504
   total_timesteps
train/
   approx_kl
                        0.0064315805
   clip_fraction
                        0.045
   clip_range
                        0.2
```

1	entropy_loss		-1.18	- [
1	explained_variance		0.984	- [
I	learning_rate		0.0003	
I	loss		6.23	
I	n_updates		52	
1	policy_gradient_loss		-0.00356	-
	value_loss		11	
	 Llout/	 ı		 ı
1 101		1	001	1
1	ep_len_mean	1	801	
	ep_rew_mean		106	
C1N	ne/	1	1156	
l	fps		1156	
	iterations		15	
	time_elapsed		849	
	total_timesteps	1	983040	
tra	ain/			
	approx_kl	I	0.0052980306	
	clip_fraction		0.0496	
	clip_range		0.2	
	entropy_loss	I	-1.15	
	_		0.989	
	learning_rate		0.0003	
	loss		3.26	
	n_updates		56	
	policy_gradient_loss		-0.00271	
	value_loss	1	8.28	-
	 Llout/	 I		 I
I 101		 	803	I
	ep_len_mean	1	803	1
 #4	ep_rew_mean	1	115	
ClN	ne/		4404	
	fps		1134	
	iterations	1	16	
	time_elapsed	1	924	
	total_timesteps	1	1048576	

```
| train/
                        0.0044425875 |
    approx_kl
                       0.0385
    clip_fraction
    clip_range
                       0.2
    entropy_loss
                       | -1.14
    explained_variance | 0.993
                       0.0003
    learning_rate
                        1 1.72
    loss
    n_updates
                        I 60
    policy_gradient_loss | -0.00304
    value_loss
                        | 5.16
```

Evaluation-v2:

```
mean_reward=232.83 +/- 80.28094849842792
```

Model_Setup-v3.1

```
# Create the environment
env = make_vec_env('LunarLander-v2', n_envs=3)

model = PPO(
policy = 'MlpPolicy',
env = env,
n_steps = 4,
batch_size = 32,
n_epochs = 5,
gamma = 0.99999,
gae_lambda = 0.95,
```

```
ent_coef = 0.02,
verbose=1)

# SOLUTION
# Train it for 10,000 timesteps
model.learn(total_timesteps=10000)
# Save the model
model_name = "ppo-LunarLander-v2"
model.save(model_name)
```

```
rollout/
   ep_len_mean
                       206
                       1 -225
   ep_rew_mean
time/
                        246
   fps
   iterations
                       | 834
   time_elapsed
                       | 40
                      10008
   total_timesteps
train/
   approx_kl
                       0.00016328196
   clip_fraction
                       | 0
   clip_range
                       0.2
                       | -0.668
   entropy_loss
                       0.999
   explained_variance
   learning_rate
                       0.0003
   loss
                       1 1.7
   n updates
                       | 4165
   policy_gradient_loss | -0.00233
   value_loss
                        1 3.51
```

mean reward=-249.60 +/- 286.71541213927793

Model_Setup-v3.2

```
# Create the environment
env = make_vec_env('LunarLander-v2', n_envs=1)
# TODO: Define a PPO MlpPolicy architecture
# We use MultiLayerPerceptron (MLPPolicy) because the input i
# if we had frames as input we would use CnnPolicy
n_{steps} = 4
batch size = 32
n = 5
model = PPO(
    policy = 'MlpPolicy',
    env = env,
    n_{steps} = n_{steps}
    batch_size = batch_size,
    n_{epochs} = n_{epochs}
    gamma = 0.99999,
    gae_lambda = 0.95,
    ent\_coef = 0.02,
    verbose=1)
# SOLUTION
# Train it for 10,000 timesteps
model.learn(total_timesteps=10000)
# Save the model
model_name = "ppo-LunarLander-v2"
model.save(model_name)
```

Output:

mean reward=-141.05 +/- 354.6015460046699

Model_Setup-v4.1

```
# Create the environment
env = make_vec_env('LunarLander-v2', n_envs=32)
# TODO: Define a PPO MlpPolicy architecture
# We use MultiLayerPerceptron (MLPPolicy) because the input i
# if we had frames as input we would use CnnPolicy
n_{steps} = 4096
batch_size = 128
n = 8
model = PPO(
    policy = 'MlpPolicy',
    env = env,
    n_{steps} = n_{steps}
    batch_size = batch_size,
    n_{epochs} = n_{epochs}
    gamma = 0.99999,
    gae lambda = 0.95,
    ent\_coef = 0.02,
    verbose=1)
# SOLUTION
# Train it for 10,000,000 timesteps
model.learn(total_timesteps=10000000)
# Save the model
model_name = "ppo-LunarLander-v2"
model.save(model_name)
```

Output:

	fps	1056
	iterations	64
	time_elapsed	7941
	total_timesteps	8388608
	train/	l
	approx_kl	0.0026513708
	clip_fraction	0.0317
	clip_range	0.2
-	entropy_loss	-0.53
-	explained_variance	1
-	learning_rate	0.0003
-	loss	0.197
-	n_updates	504
- [policy_gradient_loss	-0.000409
-	value_loss	0.449
-		
-	11/	
	rollout/	
	ep_len_mean	316
	ep_rew_mean	285
	time/	1 1000
	fps	1060
	iterations	65
	time_elapsed	8036
	total_timesteps	8519680
	train/	
	approx_kl	0.0029160783
	clip_fraction	0.0372
	clip_range	0.2
ı	entropy_loss	-0.545
I	explained_variance	0.999
I	learning_rate	0.0003
I	loss	0.211
ı	n_updates	512
I	policy_gradient_loss	
	value_loss	4.04

rollout/	
ep_len_mean	328
ep_rew_mean	284
time/	
fps	1064
iterations	66
time_elapsed	8129
total_timesteps	8650752
train/	1
approx_kl	0.0028840213
clip_fraction	0.0313
clip_range	0.2
entropy_loss	-0.537
explained_variance	0.998
learning_rate	0.0003
loss	0.246
n_updates	520
policy_gradient_loss	0.000147
value_loss	8.43
rollout/	
ep_len_mean	300
ep_rew_mean	289
time/	
fps	1068
iterations	67
time_elapsed	8217
total_timesteps	8781824
train/	
approx_kl	0.0029235762
clip_fraction	0.0327
clip_range	0.2
entropy_loss	-0.526
explained_variance	0.996
learning_rate	0.0003
loss	16
n_updates	528

```
policy_gradient_loss | 0.000349
   value loss
                       1 23.5
rollout/
                       324
   ep_len_mean
   ep_rew_mean
                       287
time/
   fps
                       | 1072
   iterations
                      | 68
   time_elapsed
                      | 8310
   total_timesteps
                      8912896
train/
                      0.0039145024
   approx_kl
   clip_fraction
                   0.0581
   clip range
                      0.2
   entropy_loss
                      | -0.563
   explained_variance | 0.999
                       0.0003
   learning_rate
                       1 9.74
   loss
   n updates
                       l 536
   policy_gradient_loss | 0.00022
   value loss
                       5.69
```

Model_Setup-v4.2

```
# Create the environment
env = make_vec_env('LunarLander-v2', n_envs=32)

# TODO: Define a PPO MlpPolicy architecture
# We use MultiLayerPerceptron (MLPPolicy) because the input i
# if we had frames as input we would use CnnPolicy
```

```
n_steps = 4096
batch_size = 128
n_epochs = 8
model = PPO(
    policy = 'MlpPolicy',
    env = env,
    n_steps = n_steps,
    batch_size = batch_size,
    n_epochs = n_epochs,
    gamma = 0.99999,
    gae_lambda = 0.95,
    ent_coef = 0.02,
    verbose=1)
```

```
# SOLUTION
# Train it for 1,000,000 timesteps
model.learn(total_timesteps=1000000)
# Save the model
model_name = "ppo-LunarLander-v2"
model.save(model_name)
```

```
| rollout/
                         859
    ep_len_mean
    ep_rew_mean
                         24.4
time/
                         | 1069
    fps
    iterations
                         8
    time_elapsed
                         1 980
    total_timesteps
                         1 1048576
train/
                        | 0.013855488 |
    approx_kl
    clip_fraction
                        | 0.145
                         1 0.2
    clip_range
    entropy_loss
                         | -1.18
    explained_variance
                        0.771
```

mean reward=-69.86 +/- 25.926564519913544

Trail Graph Evaluation:

Model_Setup-v4.3

```
# Create the environment
env = make_vec_env('LunarLander-v2', n_envs=32)

# TODO: Define a PPO MlpPolicy architecture
# We use MultiLayerPerceptron (MLPPolicy) because the input i
# if we had frames as input we would use CnnPolicy
```

```
n_steps = 4096
batch_size = 128
n_epochs = 8
model = PPO(
    policy = 'MlpPolicy',
    env = env,
    n_steps = n_steps,
    batch_size = batch_size,
    n_epochs = n_epochs,
    gamma = 0.99999,
    gae_lambda = 0.95,
    ent_coef = 0.02,
    verbose=1)
```

```
# SOLUTION
# Train it for 1,000,000 timesteps
model.learn(total_timesteps=1000000)
# Save the model
model_name = "ppo-LunarLander-v2"
model.save(model_name)
```

mean reward=166.26 +/- 83.73979501428518

Model_Setup-v4.4

```
# Create the environment
env = make_vec_env('LunarLander-v2', n_envs=32)

# TODO: Define a PPO MlpPolicy architecture
# We use MultiLayerPerceptron (MLPPolicy) because the input i
# if we had frames as input we would use CnnPolicy
n_steps = 4096
```

```
batch\_size = 128
n_{epochs} = 8
model = PPO(
    policy = 'MlpPolicy',
    env = env,
    n_steps = n_steps,
    batch_size = batch_size,
    n_{epochs} = n_{epochs}
    gamma = 0.99999,
    gae_lambda = 0.95,
    ent\_coef = 0.02,
    verbose=1)
# SOLUTION
# Train it for 5,000,000 timesteps
model.learn(total_timesteps=5000000)
# Save the model
model_name = "ppo-LunarLander-v2"
model.save(model_name)
```

```
| rollout/
    ep_len_mean
                        283
                        274
    ep_rew_mean
time/
    fps
                        | 2289
    iterations
                        1 34
    time_elapsed
                       l 1946
    total_timesteps
                       4456448
train/
    approx_kl
                        0.01099251
                        0.0518
    clip_fraction
    clip_range
                        0.2
```

```
entropy_loss
                       | -0.726
   explained_variance
                       0.893
   learning_rate
                       0.0003
   loss
                       9.18
   n updates
                       264
   policy_gradient_loss | -0.00126
   value loss
                       1 49
rollout/
   ep_len_mean
                       906
                       l 188
   ep_rew_mean
time/
   fps
                       | 2281
   iterations
                       | 35
   time_elapsed
                      | 2010
   total_timesteps
                       | 4587520
train/
   approx_kl
                       0.047576703
   clip_fraction
                      0.0848
                      0.2
   clip_range
   entropy_loss
                       | -0.802
                      0.928
   explained_variance
   learning_rate
                       0.0003
  loss
                       1 5.02
   n_updates
                       272
   policy_gradient_loss | -0.000671
   value loss
                       1 46.3
```

mean reward=282.14 +/- 22.101280660194046

Graph Evaluation:

mean reward=290.44 +/- 13.0963390313979

