The Pinsky-Rinzel Model and Optimal Control

Cade Ballew and Ricky Morse

Department of Computational and Applied Mathematics Rice University, Houston, Texas

June&July, 2019

REU Summer 2019

Outline

The One Compartment Model

Results

Introduction to Pyome

The Pinsky-Rinzel Model

What is it?

- A system of differential equations
- Models behavior of CA3 neurons in the hippocampus
- Modeled in one or two compartments and extrapolated to larger neurons

Only consider one compartment (circled part of model)

The One-Compartment Model

$$C_m \frac{d}{dt} \mathbf{V}_s(t) = -I_{leak}(t) - I_{Na}(t) - I_{K-DR}(t) + \frac{I_s}{p}$$

$$\frac{d}{dt} \mathbf{h}(t) = \alpha_h(t)(1 - \mathbf{h}(t)) - \beta_h(t)\mathbf{h}(t)$$

$$\frac{d}{dt} \mathbf{n}(t) = \alpha_n(t)(1 - \mathbf{n}(t)) - \beta_n(t)\mathbf{n}(t)$$

$$I_{Na} = g_{Na} m_{\infty}^{2}(t) \mathbf{h}(t) (\mathbf{V}_{s}(t) - V_{Na}) \qquad I_{Leak} = g_{L}(\mathbf{V}_{s}(t) - V_{L})$$

$$I_{K-DR} = g_{K-DR} \mathbf{n}(t) (\mathbf{V}_{s}(t) - V_{K}) \qquad m_{\infty}(t) = \frac{\alpha_{m}(t)}{\alpha_{m}(t) + \beta_{m}(t)}$$

- ▶ Want to solve system for $V_S(t)$, h(t), n(t)
- lacktriangleright α s and β s functions in V_s and t; exact definitions omitted
- ▶ Conductances g_{Na} , g_L , g_{K-DR} may be unknown

What do we know?

Assume constants:

- $V_{Na} = 120, V_K = -15, V_L = 0$
- $p = 0.5, C_m = 3, I_s = 0.25$

Other 'constants' are uncertain:

- We think $g_L = 0.1$, $g_{Na} = 30$, $g_{K-DR} = 15$
- ▶ But only know that $0.01 \le g_L \le 2$, $1 \le g_{Na}, g_{K-DR} \le 50$

Also have bounds on functions to be solved for:

- ▶ We guess that $V_s(t) = -4.6$, h(t) = 0, n(t) = 0
- ▶ And know for certain that $-15 \le V_s(t) \le 120$, $0 \le h(t), n(t) \le 1$

Solving the Model

Recall that

$$\begin{split} C_m \frac{d}{dt} \mathbf{V}_s(t) &= -I_{leak}(t) - I_{Na}(t) - I_{K-DR}(t) + \frac{I_s}{p} \\ \frac{d}{dt} \mathbf{h}(t) &= \alpha_h(t)(1 - \mathbf{h}(t)) - \beta_h(t)\mathbf{h}(t) \\ \frac{d}{dt} \mathbf{n}(t) &= \alpha_n(t)(1 - \mathbf{n}(t)) - \beta_n(t)\mathbf{n}(t) \end{split}$$

- ▶ If we set $x(t) = (V_s(t), h(t), n(t))^T$ then $\dot{x}(t) = f(x(t), p)$ where $p = (g_{Na}, g_{K-DR}, g_L)^T$.
- ▶ Given m measured values of V_s at various times, $t_1, ..., t_m$, yielding measurements $V_s^{meas}(t_1), ..., V_s^{meas}(t_m)$.
- Problem can be restated as

$$\min_{p} \sum_{i=1}^{m} (V_s^{meas}(t_i) - V_s^{est}(t_i))^2$$

Difficulties

- ▶ Spiking behaviour makes modeling with polynomials difficult
- Easy to get stuck in a local minimum where only some spikes are modeled

Difficulty Analysis

 Many local minimum while global minimum is much lower than anything else

Cade Ballew and Ricky Morse June&July, 2019

Sensitivity Analysis

Can compute sensitivities for V_S , h, and n as follows:

- First recall problem structure $\dot{x}(t) = f(x(t), p)$
- lacktriangle Compute parital Jacobians $rac{\partial f}{\partial x}$ and $rac{\partial f}{\partial p}$
- ▶ Set $\frac{d}{dt}W = \frac{\partial f}{\partial x}W + \frac{\partial f}{\partial p}$
- ▶ Reshape equation as vector, append to original problem, and solve

Sensitivity Analysis (cont.)

► Small changes in constants create large errors

Backward/Implicit Euler Discretization

- Need to choose proper discretization to circumvent difficulties
- lackbox Want to transform state x(t) and ODE $\dot{x}(t)$ from continuous to discrete

Given n discrete times, $t_1, t_2..., t_n$, approximate a continuous function y(t) by a discrete set $y_1, ..., y_n$ as:

$$y_j = y_{j-1} + h * f(t_j, y_j),$$

where h is step size and $f(t_j,y_j)$ is the derivative (or an approximation of it) at $y(t_j)$.

- $lackbox{ODE}$ redefined as $\dot{x}_j = rac{x_j x_{j-1}}{t_j t_{i-j}}$
- ► Relatively simple discretization, but works better for this problem as complex polynomials can hurt when modeling spiking behavior

Solving the Model Revisited

Recall error problem

$$\min_{p} \sum_{i=1}^{m} (V_s^{meas}(t_i) - V_s^{est}(t_i))^2$$

Applying backward Euler to estimate V_s , problem becomes

$$\min_{p} \sum_{i=1}^{m} (V_s^{meas}(t_i) - (e_i^T x_j)_1)^2$$

$$s.t.$$
 $x_j = x_{j-1} + h * f(t_j, y_j), \quad j = 1, ..., n$

▶ It is also helpful if we minimize over x_j in addition to the parameters, giving us more degrees of freedom, problem becomes

$$\min_{x_j,p} \sum_{i=1}^{m} (V_s^{meas}(t_i) - (e_i^T x_j)_1)^2$$

▶ The ODE is still constraining x_i

Initializing the Model (Warm Start)

► Can deal with the difficulties of solving this model by initializing the voltages to be close to true values.

Given m measured values of the voltage at times $vt_1, ..., vt_m$, and n time steps $t_1, ..., t_n$ initialize $V_{s1}^{est}, ..., V_{sn}^{est}$ following:

- ightharpoonup for $t_i, ..., t_n$
- Mhenever we have a measured voltage at our current time, initialize V_s^{est} to be that measured voltage
- \blacktriangleright Otherwise initialize V_s^{est} to be on the line connecting the two closest $V_s^{meas}.$

 V_{s}^{meas} every 4 seconds

Outline

The One Compartment Mode

Results

Introduction to Pyomo

▶ We fix n=2001, $g_L=0.1$, and $g_{KDR}=15$ and solve for g_{Na} varying m each time. The "true" data we are modeling has a time step of 0.05 ms for 200 ms making 4001 times and 4001 measured voltages.

Info: Time Steps = 2001, Measured Voltages = 2001

Results: gNa = 28.143, gKDR = 15.0, gL = 0.1 Absolute Error = 9586.836, Relative Error = 4.791 Info: Time Steps = 2001, Measured Voltages = 1001

Results: gNa = 27.735, gKDR = 15.0, gL = 0.1 Absolute Error = 4462.891, Relative Error = 4.458 Runtime = 15.454 s

Info: Time Steps = 2001, Measured Voltages = 401
Results: gNa = 28.033, gKDR = 15.0, gL = 0.1
Absolute Error = 1603.461, Relative Error = 3.999
Runtime = 15.797 s

Info: Time Steps = 2001, Measured Voltages = 201
Results: gNa = 27.508, gKDR = 15.0, gL = 0.1
Absolute Error = 1237.714, Relative Error = 6.158
Runtime = 20.831 s

Info: Time Steps = 2001, Measured Voltages = 101

Results: gNa = 3.305, gKDR = 15.0, gL = 0.1

Absolute Error = 30942.137, Relative Error = 306.358

Runtime = 205.359 s

Info: Time Steps = 2001, Measured Voltages = 51
Results: gNa = 6.274, gKDR = 15.0, gL = 0.1
Absolute Error = 4518.712, Relative Error = 88.602
Runtime = 33.559 s

▶ Initializing q_{Na} to be 30.0 to see if that improves results.

Info: Time Steps = 2001, Measured Voltages = 101
Results: gNa = 27.688, gKDR = 15.0, gL = 0.1
Absolute Error = 3717.657, Relative Error = 36.808
Runtime = 60.294 s

Info: Time Steps = 2001, Measured Voltages = 51
Results: gNa = 6.236, gKDR = 15.0, gL = 0.1
Absolute Error = 8870.891, Relative Error = 173.939
Runtime = 101.68 s

$n = 2001$, g_L	=0.1, and	$g_{KDR} = 15$.
--------------------	-----------	------------------

	, 55	JHDIC	
m	g_{Na}	Relative Error	Runtime
2001	28.143	4.791	13.928
1001	27.735	4.458	15.454
401	28.033	3.999	15.797
201	27.508	6.158	20.831
101	3.305	306.4	205.359
51	6.274	88.6	33.56
101 (init)	27.688	36.8	60.294
51 (init)	6.236	173.9	101.68

Further Research

- ▶ How does varying *n* effect results?
- ▶ What happens when we vary other parameters (or all 3)?
- ▶ How does initializing the different parameters effect results?
- ► How does enforcing initial conditions / enforcing ODE's at boundaries effect results?
- ► How many measurements do we need and how many do we need to precisely initialize?
- ► Two Compartment Model.

Outline

The One Compartment Mode

Results

Introduction to Pyomo

What is Pyomo?

- ▶ A way to model optimization problems in Python
- Simple code structure similar to standard problem

$$\min_{x} f(x)$$
s.t. $g(x) \le 0$

$$h(x) = 0$$

- User can optimize directly from Python code
- ► Program does all necessary Lagrangians, Hessians, Jabocbians, etc. implicitly with chosen solver

Installation

▶ Anaconda Python distribution recommended for easier installation Using Conda, execute these commands in a shell:

```
conda install -c conda-forge pyomo
conda install -c conda-forge pyomo.extras
```

Also need to install a solver

For linear problems glpk works well

conda install -c conda-forge glpk

For differential equations need to use nonlinear solver

conda install -c conda-forge ipopt

Creating a Model Object

Begin by creating a .py file and importing the Pyomo package

from pyomo.environ import *

Two types of models:

▶ Concrete: values for all parameters given as constants

model = ConcreteModel()

 Abstract: parameters may be represented with Param structure instead of constants but must be defined in separate file; not typically used with DAE extension

model = AbstractModel()

A Simple Example of a Concrete Model

Consider this model problem

$$\min_{(x_1, x_2)} f(x) = 2x_1 + x_2$$
s.t. $g(x) = -x_1 - x_2 \le 0$

$$h(x) = x_1^2 + x_2^2 - 25 = 0$$

For notation, say $x \in \mathbb{R}^k$ (k=2) and let M be the set of indices for x (i.e. $\{1,2\}$) Code these as

```
\begin{array}{lll} model.\,k = 2 \ \#x \ in \ R^{\hat{}}k \\ model.\,M = RangeSet(1, model.k) \ \#set \ \{1,2\} \\ model.\,x = Var(model.M) \end{array}
```

Objective and Constraints

```
Create a Python function for the objective (f(x))
def f_(model):
    return 2*model.x[1] + model.x[2]
model.cost = Objective(rule = f_{-})
Create functions for the constraints (g(x)) and h(x) as well
def g_(model):
    return -sum(model.x[i] for i in model.M) <= 0</pre>
model.inequality = Constraint(rule = g_-)
def h_(model):
    return (model.x[1])**2 + (model.x[2])**2 - 25 == 0
model.equality = Constraint(rule = h_-)
```

lacktriangle Structure of function g in more general form ideal for more abstract problems

Solving the Simple Model

model's needs

Solve model by

```
solver = SolverFactory('ipopt') #chosen solver here
solver.solve(model)
results = solver.solve(model,tee=True)
#tee set to true for detailed solver info
Can print the solution with the lines
print(results)
print(value(model.x[1]))
print(value(model.x[2]))
Which yields x = (-3.5355, 3.5355)
To add a requirement that x \ge 0, change model.x to
model.x = Var(model.M, within = NonNegativeReals)
which gives x = (0, 5)
 ► Can add similar conditions such as PositiveIntegers and Binary to fit
```

Cade Ballew and Ricky Morse June&July, 2019 27

Differences with Abstract Models

Set: used to initialize abstract sets; e.g. a list of meal options as model.F = Set()

Param: for parameters assigned outside the model e.g. list of prices for i goods as model.p = Param(model.i, within = PositiveReals)

► Have to give data for Sets and Params in a separate .dat file and solve by running command

pyomo solve --solver=ipopt file_name.py file_name.dat

Cade Ballew and Ricky Morse June&July, 2019 28

The DAE Extension

DAE: Differential Algebraic Equations; can find optimal functions instead of just vectors

Adds three new structures

- ► ContinuousSet: an interval between two bounds
 - ▶ Typically used to represent time
 - Requires a discretization for the model to be solved
- DerivativeVar: declares a derivative of some variable (Var) w.r.t. a ContinuousSet
- ► Integral: declares an integral; should not be used unless absolutely necessary due to working issues

A DAE Test Problem

Want to determine the minimum force required to move a cart 100 meters in 10 seconds; results in this problem:

$$min \int_0^{10} u^2(t) dt$$
s.t.
$$\frac{d}{dt} f_1(t) = f_2(t), t \in [0, 10]$$

$$\frac{d}{dt} f_2(t) = \frac{u(t)}{M}, t \in [0, 10]$$

$$f_1(0) = 0, f_2(0) = 0$$

$$f_1(10) = 100$$

where unknowns are f_1, f_2 (states), and u (control)

Modeling the Cart Problem

Begin by importing packages from pyomo.environ import * from pyomo.dae import * Use ConcreteModel for DAE problems model = ConcreteModel()Set time as ContinuousSet model.t = ContinuousSet(bounds=(0,10))Take mass to be 1 model.M = 1And set unknowns as functions of t model.u = Var(model.t, initialize = 0)model.f1 = Var(model.t)model.f2 = Var(model.t)

Initialize u to compensate for its lack of boundary conditions

Modeling the Cart Problem (cont.)

To avoid Integral object, define function

$$model.myobj = Var(model.t)$$

where
$$myobj(t) = \int_0^t \! u^2(\tau) \, \mathrm{d}\tau$$
 so objective is

$$minimize \ myobj(10)$$

and

$$\frac{d}{dt}myobj(t) = u^2(t)$$

Define derivatives

32

Modeling the Cart Problem (cont.)

```
Define the objective
model.obj = Objective(expr = model.myobi[10])
Add original constraints ignoring initial conditions
def velo(model, t):
    if t = 0:
         return Constraint. Skip
    return model.df1dt[t] == model.f2[t]
model.consb = Constraint(model.t, rule = velo)
def accel(model, t):
    if t = 0:
         return Constraint. Skip
    return model.df2dt[t] == model.u[t] / model.M
model.consc = Constraint(model.t, rule = accel)
```

Modeling the Cart Problem (cont.)

```
Add new constraint on myobi
def objcond(model, t):
    if t = 0:
        return Constraint. Skip
    return model.dmyobjdt[t] == (model.u[t])**2
model.objcons = Constraint(model.t, rule = objcond)
Use ConstraintList object to add boundary conditions
def initcond1 (model):
    yield model. f1[0] = 0
    yield model. f2[0] = 0
    yield model.f1[10] = 100
    yield model.myobj[0] == 0
    #clear from definition of myobi
    vield ConstraintList.End
model.consd1 = ConstraintList(rule = initcond1)
```

Discretizing and Solving

```
Need to choose a discretization scheme and apply to the model (using Lagrange-Radau Collocation here) discretizer = TransformationFactory ('dae.collocation') discretizer.apply_to (model, nfe=20, ncp=3, scheme='LAGRANGE-RADAU') And solving works the same as before solver=SolverFactory ('ipopt') results = solver.solve (model, tee=True) print (results)
```

Plotting Results

If we want to plot solutions, can use this method:

```
f1 = []
f2 = []
u = []
t = []
for i in sorted(model.t):
    t.append(i)
    f1.append(value(model.f1[i]))
    f2.append(value(model.f2[i]))
    u.append(value(model.u[i]))
import matplotlib.pyplot as plt
plt.plot(t,u) #can also plot f1, f2 here
plt.xlabel('time')
plt.ylabel('force')
plt.title('Smallest_Necessary_Force')
plt.show()
```

Cade Ballew and Ricky Morse June&July, 2019 36

Problem Solution

37

Pinsky Rinzel in Pyomo

 $\label{lem:reference_power} Reference\ Pinksy-Rinzel-Final\ in\ PR\ Pyomo\ folder\ of\ dropbox.$