Homework11

Friday, December 1, 2023 3:28 PM

Tony Samour APPM 4600

1. Assume the error in an integration formula has the asymptotic expansion

$$I - I_n = \frac{C_1}{n\sqrt{n}} + \frac{C_2}{n^2} + \frac{C_3}{n^2\sqrt{n}} + \frac{C_4}{n^3} + \cdots$$

Generalize the Richardson extrapolation process to obtain an estimate of I with an error of order $\frac{1}{n^2\sqrt{n}}$. Assume that three values I_n , $I_{n/2}$ and $I_{n/4}$ have been computed.

$$0 T = I_n + \frac{C_1}{n \sqrt{n}} + \frac{C_2}{n^2} + \frac{C_3}{n^2 \sqrt{n}} + \frac{C_4}{n^3} + \dots$$

$$= I_{Nz} + \frac{252C_1}{n\sqrt{n}} + \frac{4C_2}{n^2} + \frac{452C_3}{n^2\sqrt{n}} + \frac{8C_4}{n^3} + \cdots$$

$$T = \frac{T_{N/2} - 752I_n + \frac{C_2}{n^2} + \frac{C_3}{n^25n} + \frac{C_4}{n^3} + \dots}{1 - 252}$$

(3)
$$T = \frac{T_{n/q} - 2\sqrt{2} T_{n/z}}{1 - 2\sqrt{2}} + \frac{C_2}{(\frac{n}{2})^2} + \frac{C_3}{(\frac{n}{2})^2} + \frac{C_4}{(\frac{n}{2})^3} + \cdots$$

$$I - 4I = I_{n/4} - 25z I_{n/2} - 4(I_{n/2} - 25z I_n) + C_3 + C_4 + \cdots$$

$$I - 25z - I_{n/2} - 25z I_{n/2} - 4(I_{n/2} - 25z I_n) + C_3 + C_4 + \cdots$$

$$T = 852 T_n - (252 - 4) T_{n/2} + T_{n/4} + \frac{C_3}{n^2 \sqrt{n}} + \frac{C_4}{n^3}$$

2. Use the transformation $t = x^{-1}$ and Composite Simpson's rule with 5 nodes to approximate

$$\int_{1}^{\infty} \frac{\cos(x)}{x^3} dx.$$

$$t = x^{-1} \qquad x = \infty \Rightarrow t = 0$$

$$dt = -x^{-2} dx \qquad x = 1 \Rightarrow t = 1$$

$dt = -x^{-2} dx$ $T = \int_{1}^{\infty} \frac{\cos(\frac{1}{t})}{x^{3}}$	$x = 1 \Rightarrow t = 1$ $- \cdot - x^{2} dt = \int_{0}^{1} \frac{dt}{dt}$	$\frac{os(\frac{1}{t})}{(\frac{1}{t})} dt = \int_{0}^{t} t$	cos(=)dt	
Using Composite Sim	peon's Power W 5	nodes:		
y:23: IntegrationWarning: The maximum ved. If increasing the limit yields no i the integrand in order to determine local difficulty can be determined probably gain from splitting up the on the subranges. Perhaps a specia Ieval = quad(f, a, b)	our_APPM4600\Homework\Homework11\Problem2., number of subdivisions (50) has been achie mprovement it is advised to analyze the difficulties. If the position of a (singularity, discontinuity) one will interval and calling the integrator l-purpose integrator should be used.			
Simpsons Error: [0.01642898 0.001687 Built-In Quadrature: (0.018117478270	25022, 7.80629135889484e-07)	error du to tu	$Cos(\frac{1}{2})$ $Touth$	ld not
	nto a divide by O by to rewrite this, so and cannot be used)=10 nodes.			
4. Given the linear system	$2x_1 - 6\alpha x_2 = 3$ $3\alpha x_1 - x_2 = \frac{3}{2}$			
(b) Find the value(s) for α for	which the system has no solutions. which the system has an infinite number of a exists for a given α , find the solution.	solutions.		
(a) $\begin{bmatrix} 2 - 6\alpha \\ 3\alpha - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	- \[\frac{3}{2} \]			
$\begin{bmatrix} 7 & -6\alpha & 3 \\ 3\alpha & -1 & \frac{3}{2} \end{bmatrix} R/2$	$\rightarrow \begin{bmatrix} 1 - 3\alpha & \frac{3}{7} \\ 3\alpha & -1 & \frac{3}{2} \end{bmatrix} R_2 - 3\alpha$	$\begin{array}{c c} & -3x & \frac{3}{2} \\ & 0 - +9x^2 & \frac{3}{2} \end{array}$	94	
Mere are no s	olutions when $-1+9\alpha$ $= 9\alpha^2 = 1$ $\alpha = -\frac{1}{3}$]		
$ \begin{array}{c c} (b) \\ \hline $	$\begin{array}{c c} 3 & 3 & \frac{3}{2} \\ 3 & -1 & \frac{3}{2} \end{array}$	Here 13 no solu	ution solution whe	0

	$A_{x} = 1$											
d	let(A) =	-2-	(-18a7	2) = -	2 + 18	χ²						
	2-1-	1		1		يھ_	<u>~</u> 7	[2]	Tv7			
	A-1 =	A(A)	-1 60	x = 1	18a - (-3a	18α² _3	-2 -	3	Y2			
		⇒	γ, =	$\frac{3}{ 3\alpha^2 ^2}$ $\frac{9\alpha}{ 3\alpha^2 ^2}$	9 x							
			Α.	a .,	100)	Х.	$-\frac{9\alpha}{2}$	± 0			
			/z =	- TX 182-2	18 x2-	ì		18a	- 2			