

RECOMMENDED VALUES OF STANDARD FREQUENCIES FOR APPLICATIONS INCLUDING THE PRACTICAL REALIZATION OF THE METRE AND SECONDARY REPRESENTATIONS OF THE DEFINITION OF THE SECOND

HYDROGEN ¹H ATOM ($f \approx 1233$ THz)

¹H neutral atom, 1S – 2S unperturbed optical transition

1. Recommended value [1] of the frequency:

 $f(^{1}\text{H}) = 1233030706593514 \text{ Hz}$ equivalent to $\lambda(^{1}\text{H}) = 243134624.626044 \text{ fm},$

with an estimated relative standard uncertainty of 9×10^{-15} .

Note: The 1S - 2S transition is excited by two photons of the frequency 1 233 THz

2. Source data

Adopted value

$$f(^{1}\text{H}) = 1\ 233\ 030\ 706\ 593\ 514\ \text{Hz}$$

$$u_c/y = 9 \times 10^{-15}$$

calculated from

$2 \times f(^{1}H) / Hz$	<i>u</i> / Hz	source data
2 466 061 413 187 035	10	[2]
2 466 061 413 187 018	11	[3]

as a weighted mean of the above values divided by two.

Given the noticeable drift of the values of the past measurements [3] and the fact that the values come from a single laboratory the CCTF considered it prudent to attribute an increased standard uncertainty by a factor of three.

3. References

[1] CIPM Recommendation 2 (CI-2015): Updates to the list of standard frequencies http://www.bipm.org/jsp/en/CIPMRecommendations.jsp

[2] C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, and T. W. Hänsch: Improved Measurement of the Hydrogen 1S–2S Transition Frequency, *Phys. Rev. Lett.* **107**, 203001 (2011).

[3] A. Matveev, Ch. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, Th. Legero, H. Schnatz, S. Weyers, B. Altschul, Th. W. Hänsch: Precision Measurement of the Hydrogen 1S-2S Frequency via a 920-km Fiber Link, *Phys. Rev. Lett.* **110**, 230801 (2