

CONTROLADOR PID

Licenciatura em Engenharia Electrotécnica e de Computadores (LEEC)

Departamento de Engenharia Electrotécnica e de Computadores (DEEC)

CONTROLO

3º ano - 1º semestre - 2003/2004

Transparências de apoio às aulas teóricas

Cap. 7 - Controlador P-I-D

Eduardo Morgado

Junho 2002 Revisto em Outubro 2003

Todos os direitos reservados

Estas notas não podem ser usadas para fins distintos daqueles para que foram elaboradas (leccionação no Instituto Superior Técnico) sem autorização do autor

Controlador Proporcional-Integral-Derivativo (PID)

UTILIDADE

- Controladores de uso frequente, pela sua simplicidade.
- Três Acções ajustáveis: Proporcional (P), Integral (I), Derivativa (D)
- Objectivos: i) melhorar o seguimento da referência e/ou a rejeição de perturbações
 - ii) melhorar a resposta transitória ou estabilidade relativa

DEFINIÇÃO

Equação integro-diferencial:

$$u(t) = K_P e(t) + K_I \int e(t)dt + K_D \frac{de(t)}{dt}$$

Ou:
$$u(t) = K_P \left[e(t) + \frac{1}{T_I} \int e(t)dt + T_D \frac{de(t)}{dt} \right]$$

Função de transferência:

$$C(s) = K_P + \frac{K_I}{s} + sK_D$$

Ou:
$$C(s) = K_P \left[1 + \frac{1}{sT_I} + sT_D \right]$$

Três parâmetros para ajustar

ANÁLISE DE CADA UMA DAS ACÇÕES apoiada no root-locus

Exemplo:

- ACÇÃO PROPORCIONAL (P)

$$u(t) = K_P e(t)$$

$$C(s) = K_P$$

é a lei de controlo mais simples → referência para os casos seguintes

Notas:

- Os diagramas *root-locus* apresentados representam o deslocamento dos polos da malha fechada quando se varia o ganho proporcional $K_P > 0$
- Os polos da malha fechada para os valores de parâmetros do PID indicados são representados por □
- Ver adiante \rightarrow a resposta y(t) a escalão unitário na referência r, e a escalão unitário na perturbação d

- ACÇÃO INTEGRAL (I)

$$u(t) = K_P \int e(t) dt$$

$$C(s) = \frac{K_P}{s}$$

introduz um polo na origem $\rightarrow tipo$ aumenta \rightarrow melhora o seguimento em regime permanente

mas ... (em geral) a estabilidade relativa piora

<u>no Exemplo</u> → os ramos do root-locus inflectem para o SPCD e para $K_p > 30$ o sistema é *instável*

associar à acção Proporcional →

- ACÇÃO PROPORCIONAL INTEGRAL (PI)

$$u(t) = K_P \left[e(t) + \frac{1}{T_I} \int e(t)dt \right]$$

$$C(s) = K_P \left[1 + \frac{1}{sT_I} \right] = K_P \frac{(s + \frac{1}{T_I})}{s}$$

 T_I : tempo integral (reset time)

polo na origem → diminui o erro de seguimento em regime permanente

zero em $s = -\frac{1}{T_I}$, geralmente colocado próximo do polo em s = 0 para não perturbar a dinâmica devida aos restantes polos e zeros

neste Exemplo,

- a substituição $P \rightarrow PI$ *melhorou o regime permanente*, (tipo $0 \rightarrow$ tipo 1), sem alterar significativamente os ramos principais do root-locus
- no ramo junto da origem: i) *polo adicional* da malha fechada associado a transitório lento (τ elevado)

ii) zero adicional da malha fechada em
$$s = -\frac{1}{T_I}$$

 $(\text{ver resposta y}(t) \rightarrow)$ $(\text{ver Anti-wind-up} \rightarrow)$

- ACÇÃO PROPORCIONAL DERIVATIVA (PD)

$$u(t) = K_P \left[e(t) + T_D \frac{de(t)}{dt} \right]$$
$$C(s) = K_P \left[1 + sT_D \right]$$

 T_D : tempo derivativo

o **zero** do controlador $s = -\frac{1}{T_D}$ "atrai" os ramos do root-locus afastandoos do SPCD \rightarrow aumenta x \rightarrow *melhoria da estabilidade relativa*

a acção derivativa $\frac{de(t)}{dt}$ introduz "antecipação" \rightarrow o sinal de controlo u(t) depende não só da intensidade do erro e(t) (acção P), mas também da sua rapidez de variação (acção D)

a acção Derivativa amplifica as componentes de alta frequência dos sinais (transições bruscas, ruído, ...)

Referência r(t) tipo escalão \Rightarrow sinal de controlo u(t) de grande amplitude \rightarrow esforços, regime de funcionamento não-linear

(ver configurações alternativas →)

 $(\text{ver resposta } y(t) \rightarrow)$

- ACÇÃO PROPORCIONAL-INTEGRAL-DERIVATIVA (PID)

$$u(t) = K_P \left[e(t) + \frac{1}{T_I} \int e(t)dt + T_D \frac{de(t)}{dt} \right]$$

$$C(s) = K_P \left[1 + \frac{1}{sT_I} + sT_D \right] = K_P \frac{(s^2 T_I T_D + sT_I + 1)}{sT_I}$$

reúne as acções anteriores

procura-se *melhorar simultâneamente o regime permanente e a dinâmica* os zeros do controlador podem ser reais ou complexos

 $(\text{ver resposta } y(t) \rightarrow)$

Resposta y(t) a um escalão unitário na referência r(t) (d = 0, n = 0)

Resposta y(t) a um escalão unitário na perturbação d(t) (r = 0, n = 0)

ANTI -WINDUP na acção Integral

Problema:

Saturação (não-linearidade) no actuador precedido de acção Integral (Ex: válvula, amplificador electrónico, ...)

P aumento do esforço de controlo $u_c(t) > u_{max}$ <u>não reduz</u> o erro e(t) através da retroacção negativa **P** saída do controlador $u_c(t)$ cresce até e(t) inverter a polaridade [$u_i(t) = K_I \int e(t) dt$] **P** y(t) com S% ↑ e t_s ↑

Soluções:

- i) desligar a acção Integral quando o actuador satura: "if $|u_c| > u_{max}$ then $K_I = 0$ "
- ii) não-linearidade "zona-morta" em retroacção em torno da acção integral
 (→ tendente a repor rapidamente a entrada do integrador em zero)

iii) outras soluções ...

OUTRAS CONFIGURAÇÕES

i) Configuração básica

Diferenciação aplicada ao sinal de erro:

 $r(t) = \text{função escalão } P \quad u(t) \text{ impulsivo } \text{(na prática, com elevada amplitude)}$

U(s)/R(s) é função de transferência não-própria (nº zeros > nº polos)

(determine essa f. t. no Exemplo anterior)

ii) Configuração alternativa : → a diferenciação é aplicada apenas ao sinal de retroacção

esta configuração ocorre na "retroacção de velocidade" com taquímetro ou encoder

Ambas as configurações têm a mesma função de transferência da malha aberta (loop gain) e a mesma f. t. Y(s)/D(s) (r=0, n=0)

(determine U(s)/R(s) e Y(s)/R(s))

iii) Introdução de um polo ajustável no bloco derivativo

Diminui amplitude do esforço de controlo u(t)

Diminui sensibilidade ao ruído n(t)

Mais realista (n° polos = n° zeros)

Na prática estão normalmente envolvidos mais polos (e/ou zeros) do que os incluídos nas funções de transferência dos **controladores ideais** atrás indicadas.

Contudo, desde que os polos e zeros das funções de transferência ideais sejam dominantes essa aproximação facilita a análise e o projecto.

AJUSTE DOS PARÂMETROS DO P-I-D:

- a) Regras de Ziegler-Nichols (ajuste empírico in loco)
- b) **Projecto apoiado no** *root-locus*

AJUSTE DOS PARÂMETROS DO P-I-D:

A) - **Regras de Ziegler-Nichols** (ajuste empírico *in loco*).

Baseiam-se num ensaio experimental e têm como objectivo uma resposta transitória *aceitável* de compromisso entre rapidez e estabilidade relativa.

Dois métodos:

I) Método da curva de reacção

Muitos sistemas (processos) apresentam uma resposta ao escalão da forma:

Corresponde aproximadamente a:
$$\frac{Y(s)}{U(s)} = \frac{Ae^{-st_d}}{st + 1}$$

Da curva experimental extraem-se: R e L

São sugeridos valores de parâmetros do PID que conduzem, aproximadamente, a uma resposta ao escalão da malha fechada cujo transitório decai 25% em amplitude ao longo de um período ($\xi = 0.21$).

Tipo de Controlador	Valores dos parâmetros
Proporcional	$K_p = 1/RL$
Proporcional-Integral	$\begin{aligned} K_p &= 0.9/RL \\ T_I &= L/0.3 \end{aligned}$
	$T_{\rm I} = L/0.3$
Proporcional-Integral-Derivativo	$K_p = 1,2/RL$
	$\begin{aligned} K_p &= 1,2/RL \\ T_I &= 2 L \end{aligned}$
	$T_{\rm D} = 0.5 \text{ L}$

II) Método da sensibilidade última (ou do ganho último)

O ensaio é realizado em malha fechada com o controlador em modo Proporcional. Varia-se o ganho K_p até alcançar o limiar da instabilidade quando se começam a observar oscilações de amplitude constante \rightarrow ganho último K_u

(são oscilações de ciclo limite, normalmente condicionadas pela saturação do actuador, pelo que devem medir-se as de menor amplitude)

Tipo de Controlador	Valores dos parâmetros
Proporcional	$K_p = 0.5 K_u$
Proporcional-Integral	$K_{p} = 0.45 K_{u}$
	$T_{\rm I} = T_{\rm u}/1,2$
Proporcional-Integral-Derivativo	$K_p = 0.6 K_u$
	$\begin{aligned} K_p &= 0.6 \ K_u \\ T_I &= T_u/2 \end{aligned}$
	$T_D = T_u/8$

EXEMPLO de aplicação dos métodos de Ziegler-Nichols

- Escolhendo o método do ganho último

$$G_p(s) = \frac{1}{(s+1)(s+2)(s+12)}$$

<u>Nota</u>: os métodos de Ziegler-Nichols são especialmente indicados quando não é conhecida a função de transferência do processo $G_p(s)$, caso em que $\mathbf{K}_{\mathbf{u}}$ e $\mathbf{T}_{\mathbf{u}}$ seriam obtidos experimentalmente.

Neste Exemplo vamos determinar aqueles parâmetros por cálculo

- pelo critério de Routh-Hurwitz: estável sse -24 < K < 546

Donde:
$$\mathbf{K_u} = \mathbf{546}$$
 \rightarrow polos da malha fechada: $s_1 = -15$ $s_{2,3} = \pm \mathrm{j} \ 6,16$ \rightarrow $\mathbf{T_u} = 2\pi/6,16 = \mathbf{1,02} \ \mathrm{seg}$

Valores de **parâmetros do PID aconselhados**:

$$K_p = 0.6 \ K_u = 328$$
 $T_I = T_u/2 = 0.51$ $T_D = T_u/8 = 0.128$

Estes valores numéricos correspondem a um PID com dois zeros complexos conjugados em: $s_{1,2} = -3.90 \pm j \ 0.25$.

$$C_{PID}(s) = \frac{42(s+3.90+j0.25)(s+3.90-j0.25)}{s}$$

f.t. malha aberta:
$$\frac{42(s+3,90+j0,25)(s+3,90-j0,25)}{s(s+1)(s+2)(s+12)} = \frac{42s^2+328s+643}{s^4+15s^3+38s^2+24s}$$

f.t. malha fechada Y(s)/R(s) :
$$\frac{42s^2 + 328s + 643}{s^4 + 15s^3 + 80s^2 + 352s + 643}$$

se o resultado não for *aceitável* \rightarrow variar parâmetros em torno dos valores aconselhados

EXEMPLO de *projecto* de controlador PID *apoiado no root-locus*

ESPECIFICAÇÕES da resposta ao escalão unitário:

- i) Sobreelevação = 20%
- ii) tempo de estabelecimento (5%) = 1 seg.
- ii) erro em regime permanente nulo

Pedido: Dimensionar um controlador PID

A partir das expressões simples que relacionam as características da resposta temporal com a localização de polos para sistemas de 2ª ordem sem zeros, deduzem-se os:

Polos desejados (supostos dominantes): \rightarrow - 3 ± j 6

- Controlador Proporcional-Derivativo

Com controlador PD tentemos primeiro satisfazer as especificações dinâmicas

$$C_{PD}(s) = K(s+a)$$

Posicionamento do zero do controlador:

Condição de argumento: $a_1 - a_2 - a_3 - a_4 = \pm (2k + 1)180^\circ$

$$\alpha_1 = 61.6^{\circ} \implies a = 6.2$$

Condição de módulo: \rightarrow **K** = **60**

Resultado: $C_{PD}(s) \approx 60.(s + 6.2)$

A simulação mostra: Sobreelevação » 30% > 20% (especificação)!

⇒ ajuste de parâmetros em simulação ⇒ deslocar o zero do controlador para a direita para "fechar" os ramos do root-locus ⇒ zero = -5 ⇒ simulação S% > 20%, $t_s(5\%) > 0.8$ seg

$$C_{PD}(s) = 60.(s+5)$$

f.t. da malha fechada Y(s)/R(s):
$$\frac{60(s+6,2)}{s^3+15s^2+98s+396} \rightarrow \frac{60(s+5)}{s^3+15s^2+98s+324}$$

f.t. da malha aberta:
$$\frac{60(s+6,2)}{(s+1)(s+2)(s+12)} \rightarrow \frac{60(s+5)}{(s+1)(s+2)(s+12)}$$

- Controlador Proporcional-Integral-Derivativo

Para anular o erro em regime permanente → acção PI

$$C_{PID}(s) = K \frac{(s+a)(s+b)}{s} = C_{PD}(s) \cdot \frac{(s+b)}{s}$$

Polo na origem: s = 0

Posicionamento do outro zero do PID: s = -b

O zero s = -b colocado na vizinhança do polo s = 0 para que o rootlocus anterior resultante da utilização do PD **não** seja significativamente perturbado (i.e., dinâmica obtida com o PD será conservada)

Seja:
$$C_{PI}(s) = \frac{s + 0.5}{s}$$

f.t. da malha aberta:
$$\frac{60(s+5)(s+0,5)}{s(s+1)(s+2)(s+12)}$$

f.t. da malha fechada Y(s)/R(s):
$$\frac{60(s+5)(s+0,5)}{s^4 + 15s^3 + 98s^2 + 354s + 150}$$

Da simulação: S% » 20 %, $t_s(5\%)$ » 1 seg \leftarrow satisfaz !

$$C_{PID}(s) = 60 \frac{(s+5)(s+0,5)}{s}$$

Na formulação clássica do PID:

$$C(s) = K_P \left[1 + \frac{1}{sT_I} + sT_D \right] = K_P \frac{(s^2 T_I T_D + sT_I + 1)}{sT_I}$$

aqueles valores de parâmetros correspondem a:

$$K_p = 330$$
 , $T_D = 0.182$, $T_I = 2.20$