Warehouse Automation System

Warehouse Automation Algorithm

- 1. Start the system (activate robot arm, AGV, sensors).
- 2. Move the robot arm to its home position.
- 3. Is there a package?
 - o No: wait a few seconds, then check again.
 - Yes: go to next step.
- 4. Move the arm to the package location.
- 5. Pick up the package using a gripper or suction cup.
 - o If successful: continue.
 - o If failed: retry up to 3 times. If still failed, skip.
- 6. Move the package to the bin and drop it in.
- 7. Is the bin full?
 - o No: go back to step 3.
 - o Yes: send AGV to pick up the bin.
- 8. AGV moves the bin to the delivery point.
- 9. AGV returns, and the process restarts.

Mechanical Components

- Robotic Arm (5 or 6 DOF)
- Gripper or Suction Cup
- Bin/Container
- AGV (Autonomous Ground Vehicle)
- Frame/Structure for mounting

Electronic Components

- Arduino or Raspberry Pi
- Servo Motors (for the robotic arm)
- DC Motors with Encoders (for AGV)
- IR Sensor or Camera
- Load Cell (for grip/bin weight detection)
- Rotary Encoders
- Battery or Power Supply

Control System

- Use Arduino for basic control.
- Use Raspberry Pi + Python for camera/vision systems.
- Optional: Wi-Fi or Bluetooth module for wireless control.

Workspace Planning

- Operating Area: Full working zone of the system.
- Arm Envelope: Reachable area of the robotic arm.
- Dead Zone: Areas that the arm or AGV cannot reach.

Detailed Workspace Layout

1. Operating Zones

The workspace is divided into several functional zones:

- Input Zone: This is the area where food packages first arrive from the supply chain or loading dock. It should be spacious enough to temporarily store packages before processing (around 1 meter by 1 meter).
- Pick-up Zone: This is where the packages are placed in a fixed location that the robotic arm can access easily. It should be well-aligned with the arm's reach (approximately $0.8m \times 0.8m$).
- Processing Zone: This area includes the robotic arm's working space, where it moves packages from the pick-up point to the bin. The zone should be clear of obstacles and have enough clearance for smooth arm motion (about 1.2m × 1.2m).
- Bin Zone: This is where a collection bin is placed to receive the packages. The robotic arm must be able to release packages into the bin accurately (roughly $0.5m \times 0.5m$).
- Delivery Zone: The final location where the AGV (autonomous vehicle) drops off or picks up the bin for delivery. It should be easily accessible and aligned with AGV path planning (around 1m × 1m).
- AGV Docking Zone: A standby area where the AGV can wait when not active. This zone must be out of the robotic arm's way but within easy driving distance to the delivery zone.

2. Arm Envelope Area

- Type: 5-DOF Robotic Arm (e.g., OWI or uArm)
- Maximum Reach Radius: 40-50 cm from base

- Shape: Semi-circle or full circle depending on design
- Must Cover:
 - o Package position
 - o Bin location
 - o Nearby shelf or workspace boundaries

3. Dead Zones

- Behind the robotic arm base (limited reach)
- Corners of the floor space (AGV cannot turn easily)
- Under tables or shelves (blocked for both robot and AGV)
- Near walls or tightly enclosed spaces