Práctica 1

Evelyn G. Coronel Redes Neuronales - Instituto Balseiro

(18 de febrero de 2020)

Soluciones a los ejercicios de la práctica 1 de la materia de Redes neuronales

I. EJERCICIO 1

Considerando la ecuación de Nerst dada por la Ec. 1 y que $^{KT}\!/e\approx 60\,\mathrm{mV}$, con los datos de la Tabla I

$$V = \frac{KT}{e} \ln \left(\frac{[A]_{out}}{[A]_{in}} \right) \tag{1}$$

Elemento	Interior [mM]	Exterior [mM]	V [mV]
K^{+}	430	20	-184.1
Na^{+}	50	440	130.5
Cl^-	65	550	128.1

Tabla I: Resultados

II. EJERCICIO 2

La ecuación de Goldmann es la Ec. 2

$$j_{A} = \rho_{A} \frac{q_{A}V}{KT} \left(\frac{[A]_{o} - [A]_{i} e^{q_{A}V/KT}}{1 - e^{q_{A}V/KT}} \right)$$
 (2)

Renombremos la variable $\frac{eV}{KT}$ como $\frac{eV}{KT}=\alpha,$ y la ecuación queda como

$$j_A = \rho_A \, n_A \alpha \left(\frac{[A]_o - [A]_i e^{n_A \alpha}}{1 - e^{n_A \alpha}} \right) \tag{3}$$

Para los valores de la tabla I, considerando las valencias n_A de los elementos, se obtiene las curvas de la Fig.1. Es esta figura se observa que si la energía térmica es 5 veces mayor o menor que la energía qv, la curva puede aproximarse a una recta.

Fig. 1: Curvas del valor de j_A/ρ_A en función del parámetro

Considerando que Q = CV, entonces

$$\begin{split} Q = &CV \\ \Delta Q = &(1^{\mu F}/mm^2 * 4\pi * (15\mu m)^2) \times \Delta V \\ \Delta Q = &(1^{\mu F}/mm^2 * 4\pi * (15\mu m)^2) \times (100mV) \\ \Delta Q = &(1 \times 10^{-6} F/10^6 \mu m^2 * 4\pi * (15\mu m)^2) \times (100mV) \\ \Delta Q = &(10^{-13} * 4\pi * 15^2)C) \\ \Delta Q = &0.283 \times 10^{-9}C \end{split}$$

Esa es la carga: la cantidad de moles de Na son: $0.283 \times 10^{-14} \mathrm{mol}.$

IV. EJERCICIO 4