SS17

Algorithmen und Datenstrukturen 4. Kapitel

Suchbäume

Martin Dietzfelbinger

April/Mai 2017

4.1 Binäre Suchbäume

Binäre Suchbäume

implementieren den Datentyp Wörterbuch

Schlüsselmenge (U,<) (total geordnet) und Wertemenge R

Wörterbuch: $f: S \to R$, wobei $S \subseteq U$ endlich.

- empty: leeres Wörterbuch erzeugen
- lookup: falls $x \in S$: f(x) ausgeben (sonst: ", undefined")
- insert: neue Paare (x, f(x)) einfügen (bzw. aktualisieren)
- delete: anhand von x Paar (x, f(x)) löschen (falls $x \in S$)

Beispiel: $U = \{A, B, C, ..., Z\}$ (Standardsortierung), $R = \mathbb{N}$. Ein binärer Suchbaum T:

Dargestellte Funktion $f = f_T$:

$$S = D(f) = \{B, D, E, G, I, K, M\}, f(B) = 9, f(D) = 2, usw.$$

Binärer Suchbaum

Knoteneinträge (hier in inneren Knoten):

key(v): Schlüssel (aus U)

data(v): Daten, Wert (aus R) (oft: Zeiger, Referenz)

Definition 4.1.1

Ein Binärbaum T mit Einträgen aus $U \times R$ heißt ein binärer Suchbaum*, falls für jeden Knoten v in T gilt:

Knoten w im **linken** Unterbaum von $T_v \Rightarrow key(w) < key(v)$

Knoten w im **rechten** Unterbaum von $T_v \Rightarrow key(v) < key(w)$

engl.: binary search tree. Abk.: (U,R)-BSB oder (U,R)-BST

Alternative Definition: Rekursive Auffassung.

- (i) \square ist (U,R)-BSB, mit Schlüsselmenge $S=\emptyset$.
- (ii) Wenn $x \in U$ und $r \in R$ und T_1, T_2 (U, R)-BSB mit Schlüsselmengen $S_1, S_2 \subseteq U$, und wenn $\forall y \in S_1 \colon y < x$ und $\forall z \in S_2 \colon x < z$, dann ist $(T_1, (x, r), T_2)$ ein (U, R)-BSB mit Schlüsselmenge $S_1 \cup \{x\} \cup S_2$.

Falls (ii): key(T) := x und data(T) := r.

Implementierung von binären Suchbäumen:

Verzeigerte Struktur.

Knoten hat Komponenten für Schlüssel, Daten und Zeiger/Referenzen auf linkes und rechtes Kind: T.key, T.data, T.left, T.right

Baum ist gegeben durch Zeiger/Referenz auf Wurzel.

Suchen, rekursiv

lookup(T, x), für BSB T, $x \in U$.

// Ergebnis: Zeiger auf Knoten mit x, falls vorhanden

1. Fall: $T = \square$. **return** "nicht gefunden"

Ab hier: $T \neq \square$, also $T = (T_1, (y, r), T_2)$.

2. Fall: x = y.

return (r, [Zeiger auf den Wurzelknoten von] <math>T).

3. Fall: x < y.

return lookup(T.left, x) // rekursiver Aufruf .

4. Fall: x > y.

return lookup(T.right, x) // rekursiver Aufruf .

Suche: $Q \in S$.

Suche: $S \in S$.

Suche: $R \notin S$.

Korrektheit folgt sofort aus der Struktur von BSB und der rekursiven Struktur des Algorithmus.

(Formal: Per Induktion über den Aufbau von Binärbäumen zeigt man: Ausgabe von $\mathbf{lookup}(T)$ ist korrekt.)

Zeitaufwand: Wenn x im Knoten v_x sitzt:

Für jeden Knoten v auf dem Weg von der Wurzel zu v_x entstehen Kosten O(1).

Es gibt $d(v_x) \leq d(T)$ solche Knoten.

Wenn x in T nicht vorhanden: Suche endet in einem externen Knoten l_x . Kosten O(1) für jeden Knoten auf dem Weg.

Es gibt $d(l_x) \leq d(T) + 1$ solche Knoten.

Übung: Suche iterativ programmieren.

Einfügen, rekursiv

 $\mathbf{insert}(T, x, r)$, für BSB T, $x \in U, r \in R$. // T: Zeiger

1. Fall: $T = \square$.

Erzeuge neuen (Wurzel-)Knoten v mit Eintrag (x, r).

 $T \leftarrow v$; return T.

Ab hier: $T = (T_1, (y, r'), T_2)$.

2. Fall: x = y.

 $T.data \leftarrow r$; return T. // Update-Situation!

3. Fall: x < y.

 $T.left \leftarrow \mathsf{insert}(T.left, x, r); return T.$

4. Fall: y < x.

 $T.right \leftarrow insert(T.right, x, r);$ return T.

Füge ein: $E \notin S$.

Füge ein: $E \notin S$.

Füge ein: $N \notin S$.

Füge ein: $N \notin S$.

Füge ein: $S \in S$.

Korrektheit:

Behauptung: Aufruf **insert**(T, x, r) erzeugt einen binären Suchbaum (der wieder T heißt),

der das modifizierte Wörterbuch $insert(f_T, x, r)$ darstellt.

Beweis: Induktion über den Aufbau von Binärbäumen.

Zeitaufwand: Wenn x im Knoten v_x schon vorhanden:

Kosten O(1) für jeden von $d(v_x) \leq d(T)$ Knoten auf dem Weg.

Wenn x in T nicht vorhanden:

Kosten O(1) für jeden Knoten auf dem Weg von Wurzel zu l_x . Es gibt $d(l_x) \leq d(T) + 1$ solche Knoten.

Übung: Einfügung iterativ programmieren.

Löschen, rekursiv

delete(T, x), für BSB T, $x \in U$.

1. Fall: $T = \square$. // Nichts zu tun. (x nicht vorhanden.)

Ab hier: $T \neq \square$, also $T = (T_1, (y, r), T_2)$.

2. Fall: x < y.

 $T.left \leftarrow \mathbf{delete}(T.left, x); return T;$

3. Fall: y < x.

 $T.right \leftarrow \mathbf{delete}(T.right, x); \mathbf{return} \ T;$

4. Fall: x = y.

// Lösche Wurzel! Unterfälle 4a–4c, s.u.

return T.

Fall 4a: $T.left = \square$. return T.right. (auch wenn $T.right = \square$ ist!)

Fall 4b: $T.right = \square$. return T.left.

Fall 4c: $T_1 \neq \square$ und $T_2 \neq \square$.

Suche in T_2 Eintrag (y, r') mit minimalem y, in Knoten u.

(Dies ist der Inorder-Nachfolger der Wurzel von T.)

 $T_2' \leftarrow T_2$ ohne u; T' besteht aus u als Wurzel, T_1 als linkem und T_2' als rechtem Unterbaum.

(Zeiger/Referenzen umhängen, nicht Daten/Schlüssel kopieren!)

Extrahieren des Minimums, rekursiv

Extrahieren des Knotens mit kleinstem Schlüssel aus einem nichtleeren BSB $T=(T_1,(z,r),T_2)$: extractMin(T).

Ebenfalls rekursiv zu realisieren.

Rückgabewerte: Veränderter Baum T' und ein separater Baumknoten (via Zeiger auf diesen Knoten).

- **1. Fall:** $T.left = \square$. Schlüssel z in der Wurzel ist minimal in T. $T' \leftarrow T.right$; $T.right \leftarrow \square$; return([Baum] T', [Knoten] T).
- 2. Fall: $T.left \neq \square$. $(T.left, u) \leftarrow \mathbf{extractMin}(T.left);$ $\mathbf{return}(T, u).$

Lösche: Q.

Lösche: Q.

Lösche: K.

Lösche: K.

Lösche: H.

Lösche: H.

Intuitive, iterative Beschreibung des Löschvorgangs:

- 1) Suche Schlüssel x in T.
- 2) Falls nicht gefunden, ist nichts zu tun.
- 3) Falls x in Knoten v, gibt es drei Fälle:
- 3a) v hat keinen linken Unterbaum.

"Biege Zeiger vom Vater von v zu v auf den rechten Unterbaum von v um."

Achtung! Der Fall, dass v Blatt ist, ist in 3a) inbegriffen.

3b) v hat keinen rechten Unterbaum.

"Biege Zeiger vom Vater von v zu v auf den linken Unterbaum von v um."

3c) v hat linken **und** rechten Unterbaum.

Suche Inorder-Nachfolger u von v, d.h. den Knoten mit kleinstem Schlüssel im rechten Unterbaum von v.

(Gehe zum rechten Kind von v und dann "immer links", bis Knoten u erreicht, der kein linkes Kind hat.)

Der linke Unterbaum von u ist immer leer!

Entferne u aus seinem Unterbaum durch "Umbiegen" des Zeigers vom Vater von u auf den rechten Unterbaum an u.

Ersetze in T den Knoten v durch u (Zeiger zu den Kindern kopieren, Zeiger auf v nach u umbiegen).

Knoten v ist jetzt "frei", kann gelöscht werden.

Übung: Löschung iterativ programmieren.

Korrektheit:

Behauptung: Aufruf delete(T, x) erzeugt einen binären Suchbaum (der wieder T heißt),

der das modifizierte Wörterbuch $delete(f_T, x)$ darstellt.

Beweis: Induktion über den Aufbau von Binärbäumen.

Dabei muss man gesondert beweisen, und dann benutzen, dass die Prozedur $\mathbf{extractMin}(T)$, angewendet auf einen nichtleeren BSB, das verlangte Resultat liefert.

Zeitaufwand:

- Wenn x im Knoten v_x vorhanden, Fälle 2 und 3: Kosten O(1) für jeden von $d(v_x) \leq d(T)$ Knoten auf dem Weg.
- Wenn x im Knoten v_x vorhanden, Fall 4: Kosten O(1) für jeden von $d(v_x^+) \leq d(T)$ Knoten auf dem Weg zum **Inorder-Nachfolger** v_x^+ von v_x .
- \bullet Wenn x im Baum T nicht vorhanden, Fall 1: Kosten O(1) für jeden der $d(l_x) \leq d(T) + 1$ Knoten auf dem Weg zu l_x .

4.2 Erwartete mittlere Tiefe in zufälligen BSBs

Schon gesehen:

Summe der Tiefen: $0 + 2 \cdot 1 + 3 \cdot 2 + 3 \cdot 3 = 17$

Totale innere Weglänge $\mathsf{TIPL}(T) := \sum_{v \in V} d(v)$

Mittlere innere Weglänge: $\frac{1}{n}$ TIPL(T).

Zufällig erzeugte binäre Suchbäume

T zufällig erzeugt: Starte mit leerem Baum, füge Schlüssel aus Menge $S = \{x_1, x_2, \dots, x_n\}$ ein.

Eingabereihenfolge der Schlüssel $x_1 < x_2 < \cdots < x_n$ ist "rein zufällig" – jede Reihenfolge hat Wahrscheinlichkeit 1/n!.

$$\boldsymbol{A(n)} := \mathbf{E}(\mathsf{TIPL}(T)).$$

Dann ist der **erwartete** (über **Eingabereihenfolge zufällig**) **mittlere** (**über** n **Schlüssel** $x \in S$ **gemittelte**) Aufwand für **lookup**(x): $O\left(1 + \frac{1}{n}A(n)\right).$

Was ist A(n)? A(0) = 0, A(1) = 0, A(2) = 1.

A(3) = ? - 6 Einfügereihenfolgen für $(x_1, x_2, x_3) = (1, 2, 3)$:

$$A(3) = \mathbf{E}(\text{TIPL}(T)) = \frac{1}{6}(3+3+3+3+2+2) = \frac{8}{3}.$$

Rekursionsformel

Wenn x_i der erste eingefügte Schlüssel ist, dann hat der linke Unterbaum i-1 Schlüssel, der rechte n-i.

Die Unterbäume sind selbst zufällig erzeugte binäre Suchbäume. Also: $\mathbf{E}(\mathsf{TIPL}(T) \mid \mathsf{falls}\ x_i \; \mathsf{erster}) = \dots$

$$\dots = ((i-1) + A(i-1)) + ((n-i) + A(n-i)).$$

Begründung: Der Weg in T zu jedem der n-1 Knoten in den Teilbäumen ist um 1 länger als der Weg im Teilbaum; daher die Summanden (i-1), (n-i).

Vereinfachung:

$$\mathsf{E}(\mathsf{TIPL}(T) \mid \mathsf{falls}\ x_i\ \mathsf{erster}) = (n-1) + A(i-1) + A(n-i).$$

Jeder der n Schlüssel x_1, \ldots, x_n hat dieselbe Wahrscheinlichkeit 1/n, als erster eingefügt zu werden und die Wurzel zu bilden.

Also Mittelung:

$$A(n) = \frac{1}{n} \sum_{1 \le i \le n} [(n-1) + A(i-1) + A(n-i)].$$

Das heißt:

$$A(n) = (n-1) + \frac{1}{n} \cdot \sum_{1 \le i \le n} (A(i-1) + A(n-i)).$$

Umgruppieren und Beachtung der Gleichung A(0) = 0 liefert:

$$A(n) = (n-1) + \frac{2}{n} \cdot \sum_{1 \le j \le n-1} A(j)$$

Damit:

$$A(1) = (1-1) + \frac{2}{1} \sum_{1 \le j \le 0} A(j) = 0;$$

$$A(2) = (2-1) + \frac{2}{2}(0) = 1;$$

$$A(3) = (3-1) + \frac{2}{3}(0+1) = \frac{8}{3};$$

$$A(4) = (4-1) + \frac{2}{4}(0+1+\frac{8}{3}) = \frac{29}{6};$$

$$A(5) = (5-1) + \frac{2}{5}(0+1+\frac{8}{3}+\frac{29}{6}) = \frac{37}{5};$$

Geschlossene Form?

$$A(n) = (n-1) + \frac{2}{n} \cdot \sum_{1 \le j \le n-1} A(j)$$

Multiplizieren mit n:

$$nA(n) = n(n-1) + 2 \cdot \sum_{1 \le j \le n-1} A(j)$$

Dasselbe für n-1:

$$(n-1)A(n-1) = (n-1)(n-2) + 2 \cdot \sum_{1 \le j \le n-2} A(j)$$

Subtrahieren:

$$nA(n) - (n-1)A(n-1) = n(n-1) - (n-1)(n-2) + 2A(n-1)$$
$$= 2(n-1) + 2A(n-1).$$

$$nA(n) - (n-1)A(n-1) = 2A(n-1) + 2(n-1).$$

D.h.:

$$nA(n) - (n+1)A(n-1) = 2(n-1).$$

Teile durch n(n+1):

$$\frac{A(n)}{n+1} - \frac{A(n-1)}{n} = \frac{2(n-1)}{n(n+1)}.$$

Abkürzung: Z(n) := A(n)/(n+1).

Damit: Z(0) = 0 und

$$Z(n) - Z(n-1) = \frac{2(n-1)}{n(n+1)}$$
 , für $n \ge 1$.

$$Z(0) = 0 \text{ und } Z(n) = Z(n-1) + \frac{2(n-1)}{n(n+1)} \text{ für } n \ge 1.$$

Also, für $n \geq 0$:

$$Z(n) = \sum_{1 < j < n} \frac{2(j-1)}{j(j+1)} = \sum_{1 < j < n} \left(\frac{2}{j} - \frac{4}{j(j+1)} \right).$$

Mit $H_n := 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n}$ (*n*-te harmonische Zahl) und

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n\cdot (n+1)} = (1-\frac{1}{2}) + (\frac{1}{2}-\frac{1}{3}) + \dots + (\frac{1}{n}-\frac{1}{n+1}) = 1 - \frac{1}{n+1}$$
 with documents

gibt das:

$$Z(n) = 2H_n - \frac{4n}{n+1}.$$

$$Z(n) = 2H_n - \frac{4n}{n+1}$$

 $Z(n) = 2H_n - \frac{4n}{n+1}$ Mit $A(n) = Z(n) \cdot (n+1)$ liefert dies die "geschlossene Form"

$$A(n) = 2(n+1)H_n - 4n.$$

Erwartete mittlere Knotentiefe

(Einfügereihenfolge **zufällig**; **Mittelung** über x_1, \ldots, x_n): Teile durch n.

$$\frac{1}{n}A(n) = 2H_n - 4 + O(\frac{H_n}{n}).$$

Was ist H_n ?

Für jedes $i \geq 2$:

$$\frac{1}{i} < \int_{i-1}^{i} \frac{dt}{t} .$$

Für jedes $i \geq 1$:

$$\int_{i}^{i+1} \frac{dt}{t} < \frac{1}{i} .$$

Daraus:

$$H_n - 1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} < \int_1^n \frac{dt}{t} = \ln n.$$

$$\ln n = \int_1^n \frac{dt}{t} \le 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n-1} < H_n.$$

Also: $\ln n < H_n < 1 + \ln n$, für $n \ge 2$.

Genauer (ohne Beweis): $(H_n - \ln n) \nearrow \gamma$, für $n \to \infty$, wobei $\gamma = 0.57721 \dots$ ("Euler-Konstante").

Hatten schon:

$$\frac{1}{n}A(n) = 2H_n - 4 + O(\frac{H_n}{n}).$$

Eben gesehen: $\gamma = \lim_{n\to\infty} (H_n - \ln n) = \gamma \approx 0.57721$.

Satz 4.2.1

$$\frac{1}{n}A(n) = 2\ln n - (4 - 2\gamma) + o(1)$$

Wenn man Zweierlogarithmen lieber mag:

$$\frac{1}{n}A(n) = (2 \ln 2) \log n - 2.846... + o(1).$$

Dabei: $2 \ln 2 = 1,386...$

Satz 4.2.1 (Kurzform)

In zufällig erzeugten "natürlichen" binären Suchbäumen ist die **erwartete mittlere** Knotentiefe $1,39 \log n + O(1)$.

Mitteilungen: Erwartete Baumtiefe ist ebenfalls $O(\log n)$, genauer: $\mathbf{E}(d(T)) \leq 3\log n + O(1/n)$.

Leider: Normalerweise Einfügereihenfolge nicht zufällig.

Ungünstige Reihenfolge: Daten partiell sortiert.

Zudem: Häufiges Löschen mit **extractMin** zerstört die Balance, mittlere Suchzeit wird $\Omega(\sqrt{n})$.

Abhilfe hierfür: Bei Löschungen von Knoten mit nichtleeren Unterbäumen abwechselnd kleinsten Schlüssel aus rechtem Unterbaum und größten Schlüssel aus linkem Unterbaum entnehmen.

4.3 Balancierte binäre Suchbäume

Idee:

- Lasse nur Bäume zu, die bestimmte Strukturbedingungen erfüllen.
- Strukturbedingungen erzwingen geringe Tiefe (z. B. $O(\log n)$ bei n Einträgen).
- Implementiere Wörterbuch-Operationen

insert und delete,

so dass sie die **Strukturbedingungen erhalten** und in Zeit O(Baumtiefe) durchführbar sind.

?? Attraktiv: Perfekte Balance.

D. h.: Alle Blätter auf zwei benachbarten Levels:

Tiefe d erfüllt $2^d-1 < n \le 2^{d+1}-1$, also $d < \log(n+1) \le d+1$, also $d = \lceil \log(n+1) \rceil -1$. (Dies ist auch $|\sin(n)|-1$.)

Attraktiv ??

Ungeeignet, da Einfüge- und Lösch-Operationen zu teuer.

Häufig benutzte Strukturbedingungen:

- AVL-Bäume
- Rot-Schwarz-Bäume [Cormen et al.], [Sedgewick]
- 2-3-Bäume
- 2-3-4-Bäume [Cormen et al.], [Sedgewick], [D./Mehlhorn/Sanders]
- B-Bäume [Cormen et al.]

4.3.1 AVL-Bäume

Höhenbalancierte binäre Suchbäume

[G. M. Adelson-Velski und J. M. Landis 1962]

$$|d_2 - d_1| \le 1$$

Definition 4.3.1

Ein Binärbaum T heißt höhenbalanciert, falls in jedem Knoten v in T für den Teilbaum $T_v = (T_{v,1}, v, T_{v,2})$ mit Wurzel v gilt:

$$\underbrace{d(T_{v,2}) - d(T_{v,1})}_{} \in \{-1, 0, 1\} .$$

"Balancefaktor bal in v"

Äquivalent ist die rekursive Charakterisierung:

- (i) Der leere Baum \square ist höhenbalancierter BB über U.
- (ii) Sind T_1 und T_2 höhenbalancierte BB, $x \in U$, und ist $bal = d(T_2) d(T_1) \in \{-1, 0, 1\}$, so ist (T_1, x, T_2) höhenbalancierter BB über U (mit Balancefaktor bal).

Beispiele:

höhenbalanciert:

Definition 4.3.2

Ein höhenbalancierter binärer Suchbaum heißt AVL-Baum.

Für die **Implementierung** von AVL-Bäumen muss man in jedem inneren Knoten v seinen Balancefaktor speichern.

Notation: bal(v) ist der Balancefaktor in Knoten v.

Hoffnung: AVL-Bäume sind nicht allzu tief.

Tatsächlich: ". . . logarithmisch tief".

Satz 4.3.3

Ist T ein höhenbalancierter Baum mit $n \geq 1$ Knoten, so gilt

$$d(T) \le 1{,}4405 \cdot \log_2 n.$$

D.h.: AVL-Bäume sind höchstens um den Faktor 1,4405 tiefer als vollständig balancierte binäre Suchbäume mit derselben Knotenzahl.

Beweisansatz: Wir zeigen, dass ein AVL-Baum mit Tiefe d exponentiell in d viele Knoten haben muss,

nämlich mindestens Φ^d viele für eine Konstante $\Phi>1$, mit $\log_\Phi 2 \le 1{,}4405$.

Beweis des Satzes:

Für $d=0,1,2,\ldots$ setze

N(d) := die **minimale Zahl innerer Knoten** in einem AVL-Baum T mit d(T) = d.

$$N(1) = 2$$
 2 Knoten oder

Behauptung 1:

$$N(d) = 1 + N(d-1) + N(d-2)$$
, für $d \ge 2$.

Beweis: Es ist klar, dass N(d) > N(d-1) für alle d.

Damit der höhenbalancierte Baum der Tiefe d minimale Knotenzahl hat, müssen die Unterbäume Tiefe d-1 und d-2 haben und selbst minimale Knotenzahl für diese Tiefe haben.

N(d) = 1 + N(d-1) + N(d-2), für $d \ge 2$. – N(d) für kleine d:

d	N(d)
0	1
1	2
2	4
3	7
4	12
5	20
6	33
7	54
8	88
9	143

Eindruck: exponentielles Wachstum.

Man kann zeigen: $N(d) = F_{d+3} - 1$, für **Fibonacci-Zahlen** F_0, F_1, F_2, \ldots

Behauptung 2:

$$N(d) \ge \Phi^d$$
 , für $d \ge 0$,

wo $\Phi = \frac{1}{2}(1+\sqrt{5}) \approx 1.618...$ ("goldener Schnitt").

(*) Φ ist Lösung der quadratischen Gleichung $x^2 = x + 1$.

Beweis von Beh. 2: Vollständige Induktion.

Für
$$d=0$$
: $N(0)=1=\Phi^0$; für $d=1$: $N(1)=2>\Phi$.

Sei nun $d \geq 2$.

$$N(d) \stackrel{\text{Beh. 1}}{=} 1 + N(d-1) + N(d-2)$$

I.V.
 $\triangleq \Phi^{d-1} + \Phi^{d-2} = \Phi^{d-2}(\Phi+1)$
 $\stackrel{(*)}{=} \Phi^{d-2} \cdot \Phi^2 = \Phi^d.$

Nun sei T ein höhenbalancierter Baum mit Höhe $d(T) \geq 0$ und n Knoten.

Nach Behauptung 2: $\Phi^{d(T)} \leq n$.

Durch **Logarithmieren**:

$$d(T) \leq \log_{\Phi}(n)$$
, d. h.

$$d(T) \le \log_{\Phi}(2) \cdot \log_2(n).$$

Es gilt: $\log_{\Phi}(2) = (\ln 2)/(\ln \Phi) = 1,440420... < 1,4405.$

Damit ist Satz 4.3.3 bewiesen.

AVL-Bäume: höhenbalancierte binäre Suchbäume.

Wissen: haben logarithmische Tiefe.

Müssen noch zeigen:

Man kann die Wörterbuchoperationen so implementieren, dass die AVL-Eigenschaft erhalten bleibt, und der Zeitbedarf proportional zur Tiefe ist.

Knotenformat:


```
x: key;

r: data;

bal: integer; // Legal: \{-1,0,1\}

left, right: AVL_Tree

// Zeiger auf Baumknoten
```

4.3.2 Implementierung der Operationen bei AVL-Bäumen

AVL_empty: Erzeuge *NULL*-Zeiger.

(Wie bei gewöhnlichem BSB.)

AVL_lookup: Wie bei gewöhnlichem BSB.

Brauchen nur: $AVL_insert(T, x, r)$ und $AVL_delete(T, x)$.

Grundansatz:

Führe Update-Operation aus wie bei gewöhnlichem BSB.

Eventuell wird dadurch Bedingung "Höhenbalancierung" verletzt.

"Reparatur": Rebalancierung, erfolgt rekursiv.

Rotationen: Hilfsoperationen

Rechtsrotation: "kippe 1 Kante nach rechts":

Rotationen: Hilfsoperationen

Rechtsrotation: Mit Unterbäumen:

Beobachte: Knotenmenge gleich $\wedge T'_u$ binärer Suchbaum.

Denn: Weil T_v binärer Suchbaum ist, gilt für v_1 in T_1 , v_2 in T_2 , v_3 in T_3 : $key(v_1) < x < key(v_2) < y < key(v_3)$. Also ist T_u' auch BSB.

Beim Umbau ändert sich nur: rechtes Kind von u und linkes Kind von v, sowie der Zeiger von außen (von v auf u umsetzen).

Rechtsrotation als Programm:

- (6) **return** u
- (7) // !! Balancefaktoren in u und v sind falsch!

Linksrotation: Umkehrung von Rechtsrotation, Implementierung analog.

Hier und in den folgenden *Beispielen*: Nummern bezeichnen Anschlussstellen für die Unterbäume.

Doppelrotationen: Links-Rechts, Rechts-Links

Beispiel: Links-Rechts-Doppelrotation

Anzuwenden auf Zick-Zack-Weg aus zwei Kanten, Form "links-rechts".

Effekt: Tiefster Knoten v wird Wurzel.

Links-Rechts-Doppelrotation: Mit Unterbäumen

Gesamteffekt: Der **unterste** Knoten v des Zick-Zack-Wegs ("links-rechts") wandert nach oben, wird **Wurzel**; die beiden anderen Knoten u und w werden linkes und rechtes Kind.

LR-Doppelrotation als Programm

```
Funktion rotateLR(w: AVL_Tree): AVL_Tree
    // Eingabe: w \neq \square mit
          // w.left \neq \square, w.left.right \neq \square
(2)
    u, v : AVL_Tree ;
(3)
(4) u \leftarrow w.left;
(5) v \leftarrow u.right;
(6) w.left \leftarrow v.right;
(7) u.right \leftarrow v.left;
(8) v.left \leftarrow u;
(9) v.right \leftarrow w;
(10) return v
(11) // !! Balancefaktoren in u, v, w sind falsch!
```

Rechts-Links-Doppelrotation:

Symmetrisch zu Links-Rechts-Doppelrotation

Implementierung: Analog zu Links-Rechts-Doppelrotation.

Beispiel:

$\mathbf{AVL_insert}(T, x, r)$

Gesamteffekt:

Füge ein wie bei gewöhnlichem BSB: erzeugt neuen Knoten.

Laufe dann **Einfügeweg von unten nach oben** ab, kontrolliere Balancebedingung.

Wenn Balancebedingung nirgendwo verletzt: fertig.

Sonst finde auf dem Weg vom neuen Knoten zur Wurzel den **tiefsten Knoten** \boldsymbol{v} , an dem die Balancebedingung nicht erfüllt ist.

An \boldsymbol{v} wird eine Einfach- oder Doppelrotation ausgeführt und dadurch die Balancebedingung wieder hergestellt.

Beispiel: Einfügen von 1, 3, 9, 11, 12, 10, 2, 6, 4, 7, 0 in anfangs leeren AVL-Baum. Wir zeichnen nur Situationen, in denen **Rotationen stattfinden**. Der tiefste Knoten, an dem die Balancebedingung verletzt ist, ist **rot** gezeichnet.

Etwas knifflig: Rekursive Programmierung des Ablaufs.

Kann/will nicht verwenden: "Globale Sicht", Vergleichen von Tiefen durch "Hinschauen".

Benutzt werden:

- Balancefaktoren T.bal in den Knoten,
- Flagbit "deeper", das als Resultat eines rekursiven Aufrufs mitteilt, ob der bearbeitete Unterbaum **tiefer** geworden ist.

Steuerung einer großen Fallunterscheidung durch alte Balancefaktoren und "deeper"-Meldungen aus rekursivem Aufruf.

```
Funktion AVL_insert(T,x,r): (AVL_Tree,boolean)
    // Eingabe: T: AVL_Tree, x: key, r: data
    // Ausgabe: T: AVL_Tree, deeper: boolean
    1. Fall: T = \square
(3)
       T: new AVL_Tree // Erzeuge neuen AVL-Baum-Knoten
(4)
(5)
       T.key \leftarrow x;
(6)
       T.data \leftarrow r;
       T.left \leftarrow NULL;
(7)
(8)
       T.right \leftarrow NULL;
(9)
       T.bal \leftarrow 0;
       return (T, true).
(10)
         // Baumhöhe hat sich von -1 auf 0 erhöht.
(11)
```

```
(12) 2. Fall: T \neq \square and T.key = x.
      // Update-Situation!
(13)
    T.data \leftarrow r;
(14)
(15) return (T, false).
         // Baumstruktur nicht verändert.
(16)
(17) 3. Fall: T \neq \square and x < T.key.
       (T.left, left\_deeper) \leftarrow AVL\_insert(T.left, x, r);
(18)
         // Rekursives Einfügen in linken Unterbaum
(19)
     (T, deeper) ← RebalanceInsLeft(T,left_deeper);
(20)
         // Rebalancierung in der Wurzel von T, s. unten
(21)
       return (T, deeper).
(22)
```

(23) 4. Fall: T ≠ □ and T.key < x.
(24) (T.right,right_deeper) ← AVL_insert(T.right,x,r);
(25) // Rekursives Einfügen in rechten Unterbaum
(26) (T,deeper) ← RebalanceInsRight(T,right_deeper);
(27) // Rebalancierung in der Wurzel von T,
symmetrisch zum 3. Fall.
(28) return (T,deeper).

Zeile (18): **AVL_insert** rekursiv auf T.left, x, r anwenden.

Ergebnis: Unterbaum T.left geändert,

Flagbit left_deeper bedeutet:

left_deeper = false: T.left hat gleiche Höhe wie vorher;

left_deeper = true: T.left ist um 1 Ebene tiefer geworden.

Invariante (Beweis durch Induktion über rekursive Aufrufe):

T.left ist AVL-Baum (mit korrekten Balancefaktoren).

Probleme: ? Balancebedingung in Wurzel von T erfüllt?

? Balancefaktor in Wurzel von T korrekt?

Zeile (20): RebalanceInsLeft prüft und korrigiert;

Ergebnis: Neuer Baum T und Flagbit deeper.

Fall RebIL-1

Aktion:

left_deeper = false


```
deeper ← false;
// T.bal stimmt noch
```

```
// Wenn dieser Fall einmal eingetreten ist,
// setzt er sich nach oben immer weiter
fort.
```

// D. h.: Rebalancierung abgeschlossen.

Fall RebIL-2

Aktion:

 $left_deeper = true \land$ T.bal = 0 // alter Wert!

deeper $\leftarrow true$; T.bal $\leftarrow -1$;

// Die Rebalancierungsaufgabe wird
// nach oben durchgereicht.

Fall RebIL-3

Aktion:

 $left_deeper = true \land$ T.bal = 1 // alter Wert!


```
deeper \leftarrow false; T.bal \leftarrow 0;
```

```
// Rebalancierung ist abgeschlossen,// ohne Strukturänderung.
```

Fall RebIL-4

Aktion:

left_deeper =
$$true \land$$

T.bal = -1 // alter Wert!

???

// Strukturänderung nötig.

Beobachte: Schon vor dem rekursiven Aufruf von **AVL_insert** war linker Unterbaum T_1 von T nicht leer.

Schon gesehen: RebIL-1, RebIL-3 (und RebIR-1, RebIR-3) liefern deeper = false.

Werden sehen: **RebIL-4**/**RebIR-4** liefern deeper = false.

⇒ beim rekursiven Aufruf der Rebalancierung für T.left ist Fall RebIL-2 oder RebIR-2 eingetreten

 \Rightarrow Balancefaktor T.left.bal in T_1 ist -1 oder 1.

Unterfall ReblL-4.1

T.left.bal = -1

Aktion: Rechtsrotation


```
T \leftarrow \mathbf{rotateR}(T);
deeper \leftarrow \mathit{false};
T.\mathsf{bal} \leftarrow 0;
T.\mathsf{right.bal} \leftarrow 0;
```

Unterfall RebIL-4.2

T.left.bal = 1

Aktion: Links-Rechts-Doppelrotation

 $T \leftarrow rotateLR(T)$; deeper $\leftarrow false$;

Neue bal-Werte: s. Tabelle.

Neue bal-Werte im Fall RebIL-4.2:

altes	neues		
T.bal	T.left.bal	T.right.bal	T.bal
$\overline{-1}$	0	1	0
0	0	0	0
1	-1	0	0

Die Zahl (altes) T.bal stand vor der LR-Rotation in T.left.right.bal, gab also den Balancefaktor des alten Unterbaums $T_{1,2}=\mathrm{T.left.right}$ an.

Überlege: Kann es überhaupt passieren, dass der alte Baum $T_{1,2}$ Balancefaktor 0 hat?

Antwort: Ja! Im rekursiven Aufruf **AVL_insert**(T.left,x,r) bestand T.left nur aus einem Knoten, $T_{1,2}$ ist der neu eingefügte Knoten; T', T'', $T_{1,1}$ und T_2 sind leer, haben also alle Tiefe -1.

Faustregel für RebalanceInsLeft und RebalanceInsRight:

Laufe von der Einfügestelle nach oben.

Wenn ein **äußerer** Teilbaum (links-links oder rechts-rechts) zu tief ist:

Eine einfache Rotation

hebt diesen Teilbaum ein Level höher.

Wenn ein mittlerer Teilbaum (links-rechts oder rechts-links) zu tief ist:

Eine Doppelrotation

hebt den mittleren Teilbaum ein Level höher.

Nach der ersten Rotation ist die Rebalancierung beendet.

Zum Ausprobieren:

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Proposition 4.3.4

Die rekursive Prozedur **AVL**_insert(T, x, r) führt die Wörterbuchoperation insert korrekt durch.

D. h.: Aus T entsteht ein AVL-Baum für $insert(f_T, x, r)$.

Die Prozedur hat Laufzeit $O(\log n)$ und führt höchstens eine Einfach- oder Doppelrotation durch.

4.3.5 Folgerung (aus Algorithmus AVL_insert):

Für jedes $n \geq 0$ gibt es einen höhenbalancierten Baum mit n Knoten.

Beweis: Man fügt $1, \ldots, n$ mittels **AVL_insert** in einen anfangs leeren AVL-Baum ein.

Gute Übung: Führe dies für n=16 (z. B.) von Hand aus.

Bemerkung: Wenn T ein beliebiger höhenbalancierter Baum mit n Knoten ist, dann gibt es eine Einfügereihenfolge für Schlüssel $1, \ldots, n$, die genau diesen Baum erzeugt – sogar ohne jede Rotation (Übung).

AVL_delete(T,x)

Lösche wie bei gewöhnlichem BSB: Fälle, ExtractMin

Effekt: Knoten u wird entfernt, dem mindestens ein Unterbaum fehlt. Dadurch rutscht der andere Unterbaum von u eine Ebene höher.

Laufe den Weg von der Stelle, wo u gelöscht wurde, zur Wurzel, teste an jedem Knoten die Balancebedingung, führe gegebenenfalls eine Einfach- oder eine Doppelrotation aus:

RebalanceDelLeft, **RebalanceDelRight**. Steuerung einer Fallunterscheidung durch shallower-Flagbit, das angibt, ob der betroffene Unterbaum "flacher" geworden ist.

Achtung: Möglicherweise auf mehreren Levels nacheinander Rotation nötig. *Beispiel*: "Fibonacci-Bäume" . . .

Fibonacci-Bäume der Tiefe -1,0,1,2,3

Fibonacci-Bäume der Tiefe 4,5

Rechtsrotation!

Fertig!

Programmierung von **AVL_delete**: siehe Druckfolien.

Nicht prüfungsrelevant!

In Übung: Ausführen der Löschung und Rebalancierung, analog zur Einfügung.

```
Funktion AVL_delete(T,x): (AVL_Tree,boolean)
    // Eingabe: T: AVL_Tree, x: key
    // Ausgabe: T: AVL_Tree, shallower: boolean
    1. Fall: T = \Box // x nicht da
(3)
      return (T, false).
(4)
         // Keine Rebalancierung nötig!
(5)
    2. Fall: T \neq \square and x < T.key.
(6)
       (T.left, left\_shallower) \leftarrow AVL\_delete(T.left, x);
(7)
         // Rekursives Löschen im linken Unterbaum
(8)
      (T, shallower) ← RebalanceDelLeft(T,left_shallower);
(9)
         // Rebalancierung in der Wurzel von T, s. unten
(10)
      return (T, shallower).
(11)
```

- (18) **4. Fall:** $T \neq \square$ and T.key = x.
- (19) // Entferne Wurzelknoten!
- (20) Fall 4a: T.left = \square

- (21) **return** (T.right, *true*).
- (22) // Baum ist <mark>flacher</mark> als vorher.
- (23) **Fall 4b:** T.right = \square
- (24) return (T.left, true).

(25) **Fall 4c:** $T \neq \Box$ **and** beide Unterbäume nicht leer

- (26) $(T.right, v, right_shallower) \leftarrow$
 - **AVL_extractMin**(T.right);
- (27) v.left \leftarrow T.left; v.right \leftarrow T.right;
- (28) v.bal \leftarrow T.bal;
- (29) $T \leftarrow v$; // v ersetzt die Wurzel von T
- (30) $(T, shallower) \leftarrow$

RebalanceDelRight(T,right_shallower);

(31) **return** (T, shallower).

```
Funktion AVL_extractMin(T): (AVL_Tree, boolean)
(1)  // Eingabe: T: AVL_Tree mit T ≠ □
(2)  // Ausgabe: T, v: AVL_Tree; shallower: boolean
(3)  // Knoten v mit minimalem Eintrag aus T ausgeklinkt
(4)  // shallower = true, falls T flacher geworden ist
```

In **AVL_extractMin**(T):

Fall "Schluss":

$$T.left = \square$$

Wurzel abhängen:

$$v \leftarrow T;$$
 $T \leftarrow T.right$

return (T, v, true).

In Prozedur AVL_extractMin(T): Fall "Rekursion":

 $\mathtt{T.left} \neq \square$

(T, v, left_shallower) ← AVL_extractMin(T.left);
(T, shallower) ← RebalanceDelLeft(T, left_shallower);
return(T, v, shallower).

RebalanceDelLeft(T,left_shallower)

// prüft Balancebedingung in der Wurzel von T, korrigiert

// (RebalanceDelRight: symmetrisch)

Situation:

durch rekursives Löschen in T_1 umgebaut zu

 $T_1 = \texttt{T.left}$ verändert; in "left_shallower" wird die Information geliefert, ob T_1 flacher geworden ist. T.bal: bislang unverändert.

Fall

Aktion

Fall RebDL-1:

left_shallower = false

 $shallower \leftarrow false;$

Fall RebDL-2:

 $left_shallower = true \land T.bal = -1$

geschrumpft

 $\texttt{shallower} \leftarrow \textit{true};$ $\texttt{T.bal} \leftarrow 0;$

Fall Aktion

Fall RebDL-3:

$$\label{eq:left_shallower} \begin{split} &\texttt{left_shallower} = \textit{true} \; \land \\ &\texttt{T.bal} = 0 \end{split}$$

 $shallower \leftarrow false;$ $T.bal \leftarrow 1;$

geschrumpft

Fall RebDL-4:

 $left_shallower = true \land$

T.bal = 1

geschrumpft

Unterfälle je nach Aussehen von T_2 .

 T_2 hat Tiefe mindestens 1, da aus T_1 ein Knoten entfernt werden konnte, also T_1 Tiefe mindestens 0 hatte.

Fall RebDL-4.1: T.right.bal = 0;

Linksrotation!

$$T \leftarrow rotateL(T);$$

$$T.left.bal \leftarrow 1;$$

T.bal
$$\leftarrow -1$$
;

$$shallower \leftarrow false;$$

// Rebalancierung beendet

Fall RebDL-4.2: T.right.bal = 1;

Linksrotation!

$$T \leftarrow rotateL(T);$$

$$T.left.bal \leftarrow 0;$$

T.bal
$$\leftarrow 0$$
;

$$shallower \leftarrow true;$$

Fall RebDL-4.3: T.right.bal = -1;

Fall RebDL-4.3: (Forts.)

Betrachte Teilbäume von $T_2 = T.right.left$.

Doppelrotation!

$$T \leftarrow rotateRL(T);$$
 shallower $\leftarrow true;$

Neue Werte der Balancefaktoren:

Neue Werte der Balancefaktoren:

altes	neues		
T.bal	T.left.bal	T.right.bal	T.bal
$\overline{-1}$	0	1	0
0	0	0	0
1	-1	0	0

(Das alte T.bal enthält (nach der Doppelrotation) den Balancefaktor, der ursprünglich in der Wurzel des "mittleren" Unterbaums T_2 stand.)

Ende des nicht prüfungsrelevanten Lösch-Programms.

Proposition 4.3.6

Die rekursive Prozedur AVL_delete(T,x) führt die Wörterbuchoperation delete korrekt durch.

D.h.: es entsteht ein AVL-Baum für delete(T, x).

Die Prozedur hat Laufzeit $O(\log n)$ und führt **an jedem** Knoten auf dem Weg vom gelöschten Knoten zur Wurzel höchstens eine Einfach- oder Doppelrotation durch.

Satz 4.3.7

In AVL-Bäumen kostet jede Wörterbuchoperation Zeit

$$O(\log n)$$
,

wenn n die Anzahl der Wörterbucheinträge ist.

4.4 Mehrweg-Such-Bäume

Bäume aus Knoten mit variablem Ausgrad.

Knoten mit mehreren Schlüsseln und mehr als zwei Unterbäumen:

$$x_1 < \cdots < x_l$$
.

Für y_i in T_i , $0 \le i \le l$:

$$y_0 < x_1 < y_1 < x_2 < \cdots < y_{l-1} < x_l < y_l$$

Beispiel eines N-MwSB:

• ohne Pfeil steht für einen Zeiger auf einen leeren Baum □.

Definition 4.4.1

Mehrweg-Suchbäume (MwSBe) über dem (angeordneten) Universum U sind wie folgt induktiv definiert:

- (0) Der leere Baum ist ein U-MwSB.
- (1) Ist $l \ge 1$ und sind $x_1 < x_2 < \cdots < x_l$ Schlüssel in U und sind T_0, T_1, \ldots, T_l U-MwSBe mit:

Für
$$y_i$$
 in T_i , $0 \le i \le l$:
 $y_0 < x_1 < y_1 < x_2 < \dots < y_{l-1} < x_l < y_l$

dann ist auch $(T_0, x_1, T_1, x_2, \dots, x_{l-1}, T_{l-1}, x_l, T_l)$ ein U-Mehrweg-Suchbaum.

Analog: (U, R)-Mehrweg-Suchbäume.

Implementierung eines Knotens in Mehrwegsuchbaum:

Variante 1: Jeder Knoten enthält 2 Arrays.

Implementierung eines Knotens in Mehrwegsuchbaum:

Variante 2: Schlüssel und Kinder als Listen.

Implementierung eines Knotens in Mehrwegsuchbaum:

Variante 3:

Ein MwSB-Knoten wird durch eine aufsteigend sortierte lineare Liste von **Binärbaumknoten** dargestellt.

Jeder Knoten hat Platz für:

Schlüssel, (Daten,) Zeiger auf Unterbaum, Zeiger auf nächsten in Liste.

Im Knoten muss als Boolescher Wert vermerkt sein, ob es sich um den Knoten am Listenende handelt. (Im Bild: "*".) Dieser Knoten hat zwei Zeiger auf Unterbäume.

Elegant: Für die Suche kann man die gewöhnliche Suchprozedur für binäre Suchbäume benutzen.

Spezialfall: 2-3-Bäume

Definition 4.4.2

Ein Mehrweg-Suchbaum T heißt ein 2-3-Baum, wenn gilt:

- (a) Jeder Knoten enthält 1 oder 2 Schlüssel
 (also hat jeder Knoten 2 oder 3 Unterbäume, was der Struktur den Namen gibt);
- (b) Für jeden Knoten v in T gilt: wenn v einen leeren Unterbaum hat, so sind **alle** Unterbäume unter v leer, d.h. v ist dann **Blatt**;
- (c) Alle Blätter von T haben dieselbe Tiefe.

Beispiele:

Leerer 2-3-Baum:

2-3-Baum mit 2 Ebenen:

NB: Die Ebenen werden von den Blättern her nummeriert.

Beispiele:

Kein 2-3-Baum (zu großer Grad).

Kein 2-3-Baum (Blätter in verschiedenen Tiefen).

Kein 2-3-Baum (Leerer Unterbaum in Nicht-Blatt).

Proposition 4.4.3

Die Tiefe eines 2-3-Baums mit n Einträgen ist mindestens $\lceil \log_3(n+1) \rceil - 1$ und höchstens $\lfloor \log(n+1) \rfloor - 1$. $\lceil \log_3 x \approx 0.63 \log_2 x \rceil$ Beweis: Übung.

Suche in 2-3-Bäumen

lookup(T, x), für 2-3-Baum T, $x \in U$.

- **1. Fall:** $T = \square$. **Ausgabe:** "nicht vorhanden".
- **2. Fall:** Die Wurzel von T enthält Schlüssel x_1 (und eventuell $x_2 > x_1$).
- **2a:** $x < x_1$: Rufe *lookup* für ersten Unterbaum T_0 auf.
- **2b:** $x = x_1$: "gefunden".
- **2c:** $x_1 < x \land (x_2 \text{ existiert nicht } \lor x < x_2)$: Rufe *lookup* für zweiten Unterbaum T_1 auf.
- **2d:** x_2 existiert $\land x = x_2$: "gefunden".
- **2e:** x_2 existiert $\land x_2 < x$: Rufe *lookup* für dritten Unterbaum T_2 auf.

Klar:

Zeitaufwand: Wenn x im Knoten v_x sitzt:

Für jeden Knoten v auf dem Weg von der Wurzel zu v_x entstehen Kosten O(1).

Zeit für Suche in 2-3-Bäumen ist $O(\log n)$.

Mitteilung 4.4.4

Einfügungen und Löschungen lassen sich in 2-3-Bäumen $\ddot{a}hn$ lich wie in AVL-Bäumen in Zeit $O(\log n)$ ausführen.

Die nötigen Strukturänderungen werden dabei entlang des Wegs von der geänderten Stelle aus nach oben zur Wurzel gehend durchgeführt.

2-3-4-Bäume

Ein 2-3-4-Baum ist ein **Mehrweg-Suchbaum** mit:

- (a) Jeder Knoten hat 2, 3 oder 4 Kinder (1, 2 oder 3 Schlüssel)
- (b) Für jeden Knoten v in T gilt: v hat **einen** leeren Unterbaum \Rightarrow **alle** Unterbäume unter v sind leer, d. h. v ist **Blatt**;
- (c) Alle Blätter von T haben dieselbe Tiefe.

Mitteilung

Die Wörterbuchoperationen können auch mit 2-3-4-Bäumen so implementiert werden, dass sie **logarithmische Zeit** benötigen. Die Rebalancierung lässt sich alternativ "top-down" implementieren, auf dem Weg zur Einfügestelle bzw. Löschstelle, ohne Zurücklaufen.

Lit.: [D./Mehlhorn/Sanders]. Dort: Einträge nur in Blättern.

Rot-Schwarz-Bäume

Rot-Schwarz-Bäume

Ein (linksgeneigter) Rot-Schwarz-Baum ist ein binärer Suchbaum mit:

- (a) Jede Kante hat eine Farbe rot oder schwarz (1 Flagbit!).
- (b) Kanten zu (leeren, externen!) Blättern sind schwarz.
- (c) Auf keinem Weg folgen zwei rote Kanten aufeinander.
- (d) Wenn ein Knoten nur eine rote Ausgangskante hat, so führt diese zum linken Kind.
- (e) Auf jedem Weg von der Wurzel zu einem Blatt liegen gleich viele schwarze Kanten.

Die **Schwarz-Tiefe** b(v) eines Knotens v ist die Anzahl der schwarzen Kanten auf einem Weg von v zu einem Blatt.

Die **Schwarz-Tiefe** b(T) des Rot-Schwarz-Baums T ist die Schwarz-Tiefe des Wurzelknotens von T.

Schwarz-Tiefe: 2.

Mitteilung

Die Wörterbuchoperationen können auch mit Rot-Schwarz-Bäumen so implementiert werden, dass sie **logarithmische Zeit** benötigen. Weiterführende Operationen (wie das Spalten von Bäumen oder die Vereinigung von Bäumen) lassen sich mit Rot-Schwarz-Bäumen gut implementieren.

Lit.: [Cormen, Leiserson, Rivest, Stein] und [Sedgewick].

Wenn man einen schwarzen Knoten mit seinen roten Kindern (0, 1 oder 2) zu einem "Super-Knoten" zusammenfasst, erhält man einen 2-3-4-Baum.

D. h.: Rot-Schwarz-Bäume sind spezielle Darstellungen von 2-3-4-Bäumen, die nur Binärbaumknoten benutzen.

B-Bäume

Ein B-Baum zum Parameter $t \geq 2$ ist ein Mehrweg-Suchbaum mit:

- (a) Jeder Knoten hat maximal 2t Kinder ($\leq 2t 1$ Schlüssel)
- (b) Jeder Knoten außer der Wurzel hat mindestens t Kinder $(\geq t-1 \text{ Schlüssel});$ die Wurzel hat mindestens 2 Kinder $(\geq 1 \text{ Schlüssel})$
- (c) Für jeden Knoten v in T gilt: v hat **einen** leeren Unterbaum \Rightarrow **alle** Unterbäume unter v sind leer, d. h. v ist **Blatt**;
- (d) Alle Blätter von T haben dieselbe Tiefe.

Mitteilung

Die Tiefe eines B-Baums mit Parameter t für n Einträge ist $\Theta(\log_t n) = \Theta((\log n)/(\log t))$, genauer

mindestens $(\log n)/\log(2t) - 1$, höchstens $(\log n)/\log t$.

Beispiel: t = 32. Tiefe: $\leq (\log n)/5$.

Jede Wörterbuchoperation betrifft höchstens zwei Knoten auf jedem Level, also höchstens $2(\log n)/\log t$ viele.

B-Bäume werden für die Implementierung von Wörterbüchern auf externen Speichermedien (Festplatte, SSD) benutzt, die eine höhere Latenzzeit haben und Lesen in größeren Blöcken erlauben.

Details: Vorlesungen zu Datenbanktechniken.