EE101 Tutorial 3

Q1. Determine V_o for network of Figure 1 for the input shown.

Q2. Determine Vo for network of Figure.2 for the input shown.

Q3. Sketch Vo for network of Figure.3 for the input shown.

Q4. Sketch *Vo* for network of Figure.4 for the input shown. Would it be a good approximation to consider the Diode to be ideal for configuration? Why?

- Q5. In the circuit shown in the Figure 5, $I_{SI} = I_{S2} = 3 \times 10^{-16} A$.
 - a) Calculate V_B such that $I_X = 1$ mA.
 - b) With the value of V_B found in (a), choose I_{S3} such that $I_Y = 2.5 mA$.

- Q6. In the circuit shown in the Figure.6.
 - a) If $I_{SI} = 2I_{S2} = 5 \times 10^{-16} A$, Determine V_B such that $I_X = 1.2 \text{ mA}$.
 - b) What value of R_C places the transistors at the edge of the active mode?

Q7. Calculate V_X in Figure.7 if $I_S = 6 \times 10^{-16} A$.

Q8. Consider the circuit shown in Figure.8, assuming $\beta = 100$ and $I_S = 7 \times 10^{-16} A$. If $RI = 10 \text{ k}\Omega$, Determine V_B such that $I_C = 1 \text{ m}A$.

Q9. In the circuit of Figure.9, $I_{S1} = 3 \times 10^{-16} A$, $I_{S2} = 5 \times 10^{-16} A$, $\beta_1 = \beta_2 = 100$, $R1 = 5 k\Omega$, and $V_B = 800 \text{ mV}$. Calculate I_X and I_Y .

- Q10. Most applications require that the transconductance of a transistor remain relatively constant as the signal level varies. Of course, since the signal changes the collector current, $gm = I_C/V_T$ does vary. Nonetheless, proper design ensures negligible variation, e.g., $\pm 10\%$. If a bipolar device is biased at $I_C = 1$ mA, what is the largest change in V_{BE} that guarantees only $\pm 10\%$ variation in g_m ?
- Q11. Assume $I_S = 2 \times 10^{-17} A$, $VA = \infty$, and $\beta = 100$ in Figure 10. What is the maximum value of R_C if the collector-base must experience a forward bias of less than 200 mV?

