CS2601 Linear and Convex Optimization Homework 2

Due: 2021.10.9

- 1. Let f(x) = Ax + b be an affine function from \mathbb{R}^n to \mathbb{R}^m , where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Show that if $C \subset \mathbb{R}^m$ is convex, so is its inverse image $f^{-1}(C) \triangleq \{x : f(x) \in C\}$.
- **2.** Suppose C_1, C_2 are two nonempty convex sets with $C_1 \cap C_2 = \emptyset$. Show $C = C_1 C_2 = \{x_1 x_2 : x_1 \in C_1, x_2 \in C_2\}$ is a nonempty convex set and $\mathbf{0} \notin C$.
- **3.** Suppose C is a convex set.
- (a). Show that its interior int C is convex.
- (b). Show that its closure \bar{C} is convex.
- 4. Prove the convex hull conv S of S is the set of all convex combinations of points in S by completing the following steps.
- (a). Let

$$C = \left\{ \sum_{i=1}^{m} \theta_i \boldsymbol{x}_i : m \in \mathbb{N}; \boldsymbol{x}_i \in S, \theta_i \ge 0, i = 1, \dots, m; \sum_{i=1}^{m} \theta_i = 1 \right\}$$

Show that C is convex.

- (b). Show that $C \subset \text{conv } S$ and conclude C = conv S.
- 5. Let $x_0, ..., x_K$ be distinct points in \mathbb{R}^n . Let V be the set of points that are closer in Euclidean distance to x_0 than $x_1, ..., x_K$, called the **Vonoroi region** around x_0 with respect to $x_1, ..., x_K$, i.e.

$$V = \{ \boldsymbol{x} \in \mathbb{R}^n : \|\boldsymbol{x} - \boldsymbol{x}_0\|_2 \le \|\boldsymbol{x} - \boldsymbol{x}_i\|_2, i = 1, 2, \dots, K \}.$$

Show that V is a polyhedron by identifying \mathbf{A} and \mathbf{b} such that $V = \{\mathbf{x} : \mathbf{A}\mathbf{x} \leq \mathbf{b}\}$. (You don't have to draw it in the submission, but try to visualize V for \mathbb{R}^2 .)