## Selection of Techniques and Metrics

Tran, Van Hoai (hoai@hcmut.edu.vn)
Le, Hong Trang (Ihtrang@hcmut.edu.vn)

Faculty of Computer Science & Engineering HCMC University of Technology

2020-2021/Semester 1



## Outline

- 1 Technique selection
- 2 Metric selection
  - Case study
- 3 Common performace metrics
- 4 Utility classification of metrics

## Outline

- 1 Technique selection
- 2 Metric selection

   Case study
- 3 Common performace metrics
- 4 Utility classification of metrics

## Criteria in selection

| Criterion            | Analytical modeling | Simulation         | Measurement     |
|----------------------|---------------------|--------------------|-----------------|
| Stage                | Any                 | Any                | Postprototype   |
| Time required        | Small               | Medium             | Varies          |
| Tools                | Analysts            | Computer languages | Instrumentation |
| Accuracy             | Low                 | Moderate           | Varies          |
| Trade-off evaluation | Easy                | Moderate           | Difficult       |
| Cost                 | Small               | Medium             | High            |
| Saleability          | Low                 | Medium             | High            |

### Criteria in selection

| Criterion            | Analytical modeling | Simulation         | Measurement     |
|----------------------|---------------------|--------------------|-----------------|
| Stage                | Any                 | Any                | Postprototype   |
| Time required        | Small               | Medium             | Varies          |
| Tools                | Analysts            | Computer languages | Instrumentation |
| Accuracy             | Low                 | Moderate           | Varies          |
| Trade-off evaluation | Easy                | Moderate           | Difficult       |
| Cost                 | Small               | Medium             | High            |
| Saleability          | Low                 | Medium             | High            |

- Analytical modeling: to provide the best insight (effects of various parameters and their interactions).
- Simulation: to search the space of parameter values for the optimal combination.
- Measurement: to prove outcomes in practice and also to validate modeling and simulation.

### Rules of thumb

### Until validated, all evaluation results are suspect.

- A simulation model trusted if validated by analytical modeling, measurements
- An analytical model trusted if validated by simulation modeling, measurements
- A measurement trusted if validated by analytical modeling, simulation modeling

## Rules of thumb

### Until validated, all evaluation results are suspect.

- A simulation model trusted if validated by analytical modeling, measurements
- An analytical model trusted if validated by simulation modeling, measurements
- A measurement trusted if validated by analytical modeling, simulation modeling

### Techniques can be used sequentially.

- Simple analytical modeling to find range of system parameters
- 2 Simulation to study performance in that range ⇒ reducing number of simulations.

## Outline

- 1 Technique selection
- 2 Metric selection
  - Case study
- 3 Common performace metrics
- 4 Utility classification of metrics

## A systematic way to metrics

#### Path to metrics

List system's services  $\rightarrow$  list outcomes per service  $\rightarrow$  determine metrics per outcomes.



# Selecting metrics (1)

- Done correctly: Time-rate-resource = responsiveness-productivity-utilization
- Done incorrectly: rate, probability of errors
- Cannot do: time to failure and duration
- **■** (Computer network) Responsiveness ∋ response time
- (Operating system) Productivity ∋ throughput
- (System) Highest utilization ≡ bottleneck
- (Computer network) Timeout rate

## Selecting metrics (2)

| Correct service | Incorrect service | Not service  |
|-----------------|-------------------|--------------|
| Time            | Rate              | Resource     |
| Responsiveness  | Productivity      | Utilization  |
| Speed           | Reliability       | Availability |

## Aspects of a metric

- Mean and Variability: both need to be considered.
- Global and individual
  - Resource utilization, reliability, availability: global metrics.
  - Response time, throughput: individual and global metrics.
  - Only using system (global) or individual thoughtput ⇒ unfair situations.

# Congestion control algorithms A service and its outcomes

#### System definition

- A computer network consists of a number of end systems interconnected via a number of intermediate systems.
- Intermediate systems forward the packets along the right path.
- Congestions occur when
  - Number of packets waiting at intermediate systems > their buffer capacity.
  - Some packets have to be dropped.

# Congestion control algorithms A service and its outcomes

#### System definition

- A computer network consists of a number of end systems interconnected via a number of intermediate systems.
- Intermediate systems forward the packets along the right path.
- Congestions occur when
  - Number of packets waiting at intermediate systems > their buffer capacity.
  - Some packets have to be dropped.
- Service: Send packets from specified source to specified destination in order.
- Possible outcomes:
  - Some packets are delivered in order to the correct destination.
  - Some packets are delivered out-of-order to the destination.
  - Some packets are delivered more than once (duplicates).
  - Some packets are dropped on the way (lost packets).
    - ---



# Packet delivery service Done correctly: delivered in order

- Time-rate-resource
  - Response time to deliver the packets
  - Throughput: the number of packets per unit of time.
  - Processor time per packet on the source end system.
  - · ...
- $lue{}$  Variability of the response time ightarrow retransmissions
  - Response time: the delay inside the network.

- Out-of-order packets consume buffers → Probability of out-of-order arrivals.
- Duplicate packets consume the network resources → Probability of duplicate packets.
- Lost packets require retransmission → Probability of lost packets.
- Too much loss cause disconnection → Probability of disconnect.

- Given set of user throughputs:  $x_1, x_2, ..., x_n$ .
- Fairness metric (Jain's fairness index)

$$f(x_1, x_2, ..., x_n) = \frac{(\sum_{i=1}^n x_i)^2}{n \sum_{i=1}^n x_i^2} = \frac{\bar{\mathbf{x}}^2}{\mathbf{x}^2}.$$

- Fairness Index Properties
  - Always lies between 0 and 1.
  - Equal throughput ! Fairness = 1.
  - If k of n receive x and n-k users receive zero throughput: the fairness index is k/n.

## Outline

- 1 Technique selection
- Metric selectionCase study
- 3 Common performace metrics
- 4 Utility classification of metrics

## Response time, reaction time, turnaround time



■ Turnaround time: the time between the submission of a batch job and the completion of its output.

# Throughput Capacity vs. load (1)



- Jobs/requests per second
- Millions of Instructions Per Second (MIPS)
- Millions of Floating Point Operations Per Second (MFLOPS)
- Packets Per Second (PPS)
- Bits per second (bps)
- Transactions Per Second (TPS)



# Throughput Capacity vs. load (2)

- Nominal Capacity: Maximum achievable throughput under ideal workload conditions.
- Usable capacity: Maximum throughput achievable without exceeding a pre-specified response-time limit.
- Knee Capacity: Knee = Low response time and High throughput ⇒ optimal operating point

## Efficiency and Utilization

- Efficiency: ratio between usable capacity and nominal capacity
  - Example: maximum throughput of 100Mbps LAN = 85 Mbps  $\Rightarrow$  Efficiency = 85%.
  - (Multiprocessor system): Efficiency = ratio of the performance of an n-processor system to that of a one-processor system.



Utilization: fraction of time the resource is busy servicing requests.

## Reliability and Availability

- Reliability
  - Probability of errors.
  - Mean time between errors (error-free seconds).
- Availability
  - Mean Time to Failure (MTTF).
  - Mean Time to Repair (MTTR).
  - MTTF/(MTTF+MTTR).

## Outline

- 1 Technique selection
- 2 Metric selection

   Case study
- 3 Common performace metrics
- 4 Utility classification of metrics

# Utility classification Which values are better/worse?

- Higher is Better (HB): e.g., System throughput
- Lower is Better (LB): e.g., Response time
- Nominal is Best (NB)



## Setting performance requirements (1)

#### **SMART**

- *Non-Specific*: No clear numbers are specified.
- Non-Measurable: No way to measure/verify with requirements.
- Non-Acceptable: Low numerical values in order to be realistic ⇒ unacceptable.
- *Non-Realizable*: High performance  $\Rightarrow$  unrealizable.
- *Non-Thorough*: no all possible outcomes.

## Setting performance requirements (1)

#### **SMART**

- *Non-Specific*: No clear numbers are specified.
- Non-Measurable: No way to measure/verify with requirements.
- Non-Acceptable: Low numerical values in order to be realistic ⇒ unacceptable.
- *Non-Realizable*: High performance  $\Rightarrow$  unrealizable.
- *Non-Thorough*: no all possible outcomes.

### Are SMART requirements?

- The system should be both processing and memory efficient. It should not create excessive overhead.
- There should be an extremely low probability that the network will duplicate a packet, deliver a packet to the wrong destination, or change the data in a packet.

# Setting performance requirements (2) Case study

### Case stude 3.2 in textbook

A high-speed LAN system basically provides the service of transporting frames (or packets) to the specified destination station.

# Setting performance requirements (2) Case study

#### Case stude 3.2 in textbook

A high-speed LAN system basically provides the service of transporting frames (or packets) to the specified destination station.

### SMART requirements

#### Speed:

- (a) The access delay at any station should be less than 1 second.
- (b) Sustained throughput must be at least 80 Mbits/sec.

#### Reliability:

- (a) The probability of any bit being in error must be less than  $10^{-7}$ .
- (b) The probability of any frame being in error (with error indication set) must be less than 1%.

#### ■ Reliability:

- (a) The mean time to initialize the LAN must be less than 15 milliseconds.
- (b) The mean time between LAN initializations must be at least 1 minute.