Introduction to Manifold Theory

Homework 8

Nutan Nepal

November 6, 2022

1. Do Exercise 5.3 Let X and Y be smooth manifolds. Show that the identity map sending $f \mapsto f$ is a bijection from the set of smooth maps $f: X \to Y$ to the set of sections of the trivial bundle $(X \times Y, X, \operatorname{proj}_1, Y)$ with base X and fiber Y.(loosely: show that the definition of "section of a fiber bundle" can be viewed as a generalization of the definition of "smooth function between smooth manifolds").

Let \mathcal{A} be the set of all smooth maps from X to Y and \mathcal{B} be the set of all sections of the trivial bundle $(X \times Y, X, \operatorname{proj}_1, Y)$ with base X and fiber Y. We note that the set \mathcal{B} consists of the smooth functions $f: X \to X \times Y$ such that $\operatorname{proj}_1 \circ f = \operatorname{id}_B$. Since $\operatorname{proj}_1(x, y) = x$ for the points $(x, y) \in X \times Y$, every $f \in \mathcal{B}$ fixes all the points of $x \in X$ meaning that

$$f(x) = (x, f'(x))$$

for some $f': X \to Y$. Since, f is smooth, f' is a smooth map from X to Y. Then we can define the identity map id: $A \to B$ that takes each smooth function $f: X \to Y$ such that f(x) = y to the section $f: X \to X \times Y$ such that f(x) = (x, f'(x)). Clearly, this is an injective map since

$$\operatorname{id}(f)(x) = \operatorname{id}(g)(x) \implies (x, f'(x)) = (x, g'(x)) \implies f' = g' \implies f = g.$$

The map is also surjective since every $f \in \mathcal{B}$ fixes all the points of $x \in X$ and for $f \in \mathcal{B}$ such that f(x) = (x, f'(x)) we have $f \in \mathcal{A}$ such that f(x) = y. Thus this identity map is a bijection.