

§ 2.3 谓词演算的推理规则

重点: 全称指定规则(US)(Universal Specification)

存在指定规则(ES)(Existential Specification)

全称推广规则(UG)(Universal Generalization)

存在推广规则(EG)(Existential Specification)

了解: 推理规则在推理中的正确使用。

1、全称指定规则(US)

$$\forall x A(x) \Rightarrow A(y)$$

要求: (1)y是个体常项,或者是个体变项且 在公式A(x)中,x不出现在量词 $\forall y$ 或 $\exists y$ 的辖域内。

(2) *A*(*y*)中约束变元个数与*A*(*x*)中约束变元个数相同。

说明: 若个体域中所有个体都满足谓词A,则任一个体y也满足谓词A。

意义:全称量词可以删除。

2、存在指定规则(ES)

$$\exists x A(x) \Rightarrow A(c)$$

要求: (1) c 是使 A 为真的特定的个体常项,而不是个体变元。

(2)通常使用这一规则时,选用前面推导步骤中未使用过的字母作为公式中的c。

说明: 若个体域中存在 某些个体满足谓词A,那么一定有某个确定的个体c满足谓词A。

3、全称推广规则(UG)

$$A(y) \Longrightarrow \forall x A(x)$$

要求: (1) y是个体域中任一个体,且都有A(y)为真。

4、存在推广规则(EG)

$$A(y) \Longrightarrow \exists x A(x)$$

要求: (1) y是个体常元或变元,

(2)在公式A(y)中,y不出现在量词 $\forall x$ 或∃x的辖域内。

注:考察以下推理过程

①
$$\forall x \exists y P(x, y)$$
 P前提引入
② $\exists y P(c, y)$ T,1, US
③ $P(c, d)$ T,2, ES
④ $\forall x P(x, d)$ T,3,UG

第④步是错误的,因为由ES引入的变元d不能理解成在P中自由出现,公式P不是对d的一切值都可证明的,所以在这种情况下,就不能使用UG规则。

例1: 证明苏格拉底三段论: "凡人都是要死的, 苏格拉底是人, 所以苏格拉底是要死的。"

解: 设F(x): x是人; G(x): x是要死的; a: 苏格拉底

前提: $\forall x (F(x) \rightarrow G(x)), F(a)$

结论: G(a)

证明: ① $\forall x (F(x) \rightarrow G(x))$ P前提引入

- $\bigcirc F(a) \rightarrow G(a)$
- $\Im F(a)$

T,1, US

P前提引入

T,2,3,假言推理

例2、指出下列推理中的错误,并加以改正。

(1) ① $\forall x P(x) \rightarrow Q(x)$ P前提引入

解:在第一步中,全称量词的辖域为 P(x),而非 $P(x) \rightarrow Q(x)$,所以不能直接使用**US**规则。

- ① $\forall x P(x) \rightarrow Q(x)$ P前提引入
- ② $\forall y P(y) \rightarrow Q(x)$ T,1, E
- $\exists y (P(y) \rightarrow Q(x))$ T,2, E
- $(4) P(c) \rightarrow Q(x) T,3,ES$

例2、指出下列推理中的错误,并加以改正。

- (2) ① $\forall x(P(x) \rightarrow Q(x))$ P前提引入
 - ② $P(a) \rightarrow Q(b)$ T,1, US

解:在第一步中,P(x)和Q(x)均受同一个量词的限制,所以使用**US**规则时,替代x的变元符号必须一致。

- ① $\forall x(P(x) \rightarrow Q(x))$ P前提引入
- ② $P(t) \rightarrow Q(t)$ T,1, US

例2、指	旨出下列推理中	的错误,	并加以改正。
------	---------	------	--------

(3) ①

 $\exists x P(x)$

P前提引入

2

P(c)

T,1, ES

3

 $\exists x Q(x)$

P前提引用

4

Q(c)

T,3,ES

解:在第3步中,由于量词是存在量词,所选用的替代x的常量符必须是前面推导中没有出现过的。

 \bigcirc

 $\exists x P(x)$

P前提引入

(2)

P(c)

T,1, ES

(3)

 $\exists x Q(x)$

P前提引用

4

Q(a)

T,3,ES

例2、指出下列推理中的错误,并加以改正。

- (4) ① $P(a) \rightarrow \exists x Q(x)$ P前提引入
 - ② $P(a) \rightarrow Q(a)$ T,1, ES

解:在第1步中,所给公式并非是存在量词在最前面,故不能直接使用ES规则。另外a是前面出现过的常量符,不能用来替代x。

- ① $P(a) \rightarrow \exists x Q(x)$ P前提引入
- ② $\exists x(P(a) \rightarrow Q(x))$ T,1, E
- \Im $P(a) \rightarrow Q(c)$ T,2, ES

例3、构造下面的推论的证明:

前提: $\exists x F(x) \land \forall x G(x)$

结论: $\exists x \big(F(x) \land G(x) \big)$

证明: ① $\exists x F(x) \land \forall x G(x)$

 $\exists x F(x)$

(3) F(c)T,2,ES

④ $\forall xG(x)$ T,1,化简

G(c) T,4,US

⑥ $F(c) \land G(c)$ T,3,5,合取式

P前提引入

T,1,化简

 例4、构造下面的推论的证明:

前提: $\neg \exists x \big(F(x) \land H(x) \big), \forall x \big(G(x) \rightarrow H(x) \big)$

结论: $\forall x (G(x) \rightarrow \neg F(x))$

证明: ① $\neg \exists x \big(F(x) \land H(x) \big)$ P前提引入

② $\forall x (\neg F(x) \lor \neg H(x))$ T,1,E

 $\stackrel{\text{\tiny }}{4} H(y) \rightarrow \neg F(y)$

⑤ $\forall x (G(x) \rightarrow H(x))$ P前提引入

(7) $G(y) \rightarrow \neg F(y)$ T,4,6,前提三段论

 $\otimes \forall x (G(x) \rightarrow \neg F(x))$

T,7,UG

T,3,US

例5、构造下面的推论的证明:

前提: $\forall x (F(x) \vee G(x))$

结论: $\forall x F(x) \lor \exists x G(x)$

证明: ① $\neg \forall x F(x)$

$$\bigcirc$$
 $\exists x \neg F(x)$

 \Im $\neg F(a)$

 \bigcirc $F(a) \vee G(a)$

 \bigcirc G(a)

 $\Leftrightarrow \neg \forall x F(x) \rightarrow \exists x G(x)$ 可用附加前提法

附加前提引入

T,1,E

T,2,ES

P前提引入

T,4,US

T,3,5,析取三段论

T,6,EG

CP规则

例6、在一阶逻辑中构造下面推理的证明:

有理数都是实数,有的有理数是整数。因此有的实数是整数。

解:

设P(x): x是有理数; Q(x): x是实数; R(x): x是整数。

前提: $\forall x (P(x) \to Q(x)), \exists x (P(x) \land R(x))$

结论: $\exists x (Q(x) \land R(x))$

前提: $\forall x (P(x) \rightarrow Q(x)), \exists x (P(x) \land R(x))$

结论: $\exists x (Q(x) \land R(x))$

证明: ① $\exists x (P(x) \land R(x))$ P前提引入

②
$$P(a) \wedge R(a)$$
 T,1,ES

③
$$P(a)$$
 T,2,化简

④
$$\forall x (P(x) \rightarrow Q(x))$$
 P前提引入

⑥
$$Q(a)$$
 T,3,5,假言推理

⑧
$$Q(a) \land R(a)$$
 T,6,7,合取式

小结与例题

- 一、谓词演算公式及解释。
 - 1、基本概念。

谓词公式;辖域,约束变项,自由变项;

代换实例; 重言式,

矛盾式,可满足式。

- 2、应用。
 - (1) 求某些公式在给定解释下的真值。
 - (2) 判断某些简单公式的类型。

二、含有量词的永真公式。

基本概念。

等值式,常用等值式,永真蕴含式(及相应规则);

三、谓词演算的推理理论。

全称量词消去规则(US) 全称量词引入规则(UG) 存在量词消去规则(ES) 存在量词引入规则(EG)

- 例1、在一阶逻辑中将下列命题符号化。
 - (1)每一个有理数都是实数。

 \pmb{R} : Q(x): x 是有理数,R(x): x是实数, $\forall x (Q(x) \rightarrow R(x))$

(2) 并非每一个实数都是有理数。

解: R(x): x 是实数,Q(x): x是有理数, $\neg \forall x \big(R(x) \rightarrow Q(x) \big)$

(3) 任何金属均可溶解于某种液体中。

解: P(x): x是液体,

G(x): x是金属,

R(x,y): x溶解 y,

$$\forall x (G(x) \rightarrow \exists y (p(y) \land R(y,x)))$$

- **例2、**将下列命题译成自然语言,并确定其真值。 (个体域为 Z^{+})
 - (1) $\forall x \exists y G(x, y)$, $\sharp + G(x, y) : xy = y$
- 解:对任意正整数 x,存在正整数 y,使得 xy = y。 真值0。
 - (2) $\exists x \forall y F(x, y)$, 其中F(x, y): x + y = y
- **解:** 存在正整数 x,使得对任意的正整数 y,满足 x+y=y。 真值0。

- **例2、**将下列命题译成自然语言,并确定其真值。 (个体域为 Z^{+})
 - (3) $\forall x \exists y M(x, y)$, 其中M(x, y) : xy = 1
- 解:对任意正整数 x,存在正整数 y,使得 xy=1。 真值0。
 - (4) $\forall x \exists y N(x, y)$, 其中N(x, y): y = 2x
- 解:对任意正整数 x,存在正整数 y,使得 y = 2x。真值1。

- **例3、**指出下列量词的辖域,并指出各式中的自由变元和约束变元。
- (1) $\forall x (P(x) \leftrightarrow Q(x)) \land \exists x R(x) \lor S(x)$

解: $\forall x$ 的辖域为 $(P(x) \leftrightarrow Q(x))$,

P(x), Q(x) 中的 x 是约束变元;

 $\exists x$ 的辖域为R(x),

R(x)中的 x是约束变元;

S(x)中的x是自由变元。

- **例4、**指出下列量词的辖域,并指出各式中的自由变元和约束变元。
- (2) $\forall x (F(x) \land G(x, y)) \rightarrow \forall y F(y) \land R(x, y, z)$

解: $\forall x$ 的辖域为 $(F(x) \land G(x,y))$,

F(x), G(x, y) 中的 x 是约束变元,

G(x,y)中的 y是自由变元;

 $\forall y$ 的辖域是F(y),

F(y) 中的y 是约束变元;

R(x, y, z) 中的 x, y, z 都是自由变元。

- **例5、**设个体域为 $A = \{a,b,c\}$ 将下面谓词公式中的量词消除,写出与之等值的命题公式。
- (1) $\forall x P(x) \land \exists x R(x)$

解 $\forall x P(x) \land \exists x R(x)$

$$\Leftrightarrow$$
 $(P(a) \land P(b) \land P(c)) \land (R(a) \lor R(b) \lor R(c))$

- **例5、**设个体域为 $A = \{a,b,c\}$ 将下面谓词公式中的量词消除,写出与之等值的命题公式。
- $(2) \ \forall x (P(x) \to Q(x))$

解
$$\forall x(P(x) \rightarrow Q(x))$$

$$\Leftrightarrow$$
 $(P(a) \to Q(a)) \land (P(b) \to Q(b)) \land (P(c) \to Q(c))$

例5、设个体域为 $A = \{a,b,c\}$ 将下面谓词公式中的量词消除,写出与之等值的命题公式。

(3) $\forall x \exists y P(x, y)$

解
$$\forall x \exists y P(x, y) \Leftrightarrow (P(a, a) \lor P(a, b) \lor P(a, c)) \land$$

$$(P(b, a) \lor P(b, b) \lor P(b, c))$$

$$\land (P(c, a) \lor P(c, b) \lor P(c, c))$$

例6、构造下面推理的证明

前提
$$\forall x(\neg P(x) \rightarrow Q(x)), \forall x \neg Q(x)$$

结论 $\forall x P(x)$

- 证明: ① $\forall x (\neg P(x) \rightarrow Q(x))$
- P前提引入
- $\neg P(y) \rightarrow Q(y)$
- T,1, US

P前提引入

 $\neg Q(y)$

T,3,US

P(y)

T,2,4,拒取式

 $\forall x P(x)$

T,5,UG

谢谢