INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE

CAMPUS NATAL-CENTRAL

DIRETORIA ACADÊMICA DE GESTÃO E TECNOLOGIA DA INFORMAÇÃO

TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

Sistemas Corporativos Visão Geral e Arquitetura

Prof. Fellipe Aleixo (fellipe.aleixo@ifrn.edu.br)

O que são Sistemas Corporativos

- Sistemas Corporativos (ou *Enterprise Systems*) são sistemas utilizados em empresas, geralmente com foco bastante diferente das aplicações voltadas para usuários finais
- São criadas para necessidades tipicamente empresariais, tais como folha de pagamento, catálogo de produtos, sistemas de cobrança, sistemas de segurança, etc.
- Segundo Martin Fowler:
 - "Enterprise applications are about the display, manipulation, and storage of large amounts of often complex data and the support or automation of business processes with that data"

Exemplo de Sistemas Corporativos

SISTEMAS DE INFORMAÇÃO CORPORATIVOS DO ESTADO DE MINAS GERAIS

Visão Geral

- São os grandes sistemas para a gestão do Governo do Estado de Minas Gerais
- São sistemas do tipo SIT (Sistema de Informação Transacional) e fornecem dados para utilização em *Data Warehouse* (armazém de informações)
- São utilizados por usuários dos diversos órgãos do governo, espalhados geograficamente em todo o
- Possuem uma integração que permite a troca de informações entre eles

Os Principais Sistemas

- SIAFI Sistema Integrado de Administração Financeira
- <u>SISAP</u> Sistema de Administração de Pessoal
- <u>SISAD</u> Sistema de Avaliação de Desempenho
- <u>SIPRO</u> Sistema Integrado de Protocolo
- SigPlan Sistema de Informações Gerenciais e Planejamento
- Orçamento Sistema para elaboração do orçamento anual
- <u>SIAD</u> Sistema de Administração de Materiais

SIAFI – Sistema Integrado de Administração Financeira

- Objetivo: Administração financeira do Governo do Estado de Minas Gerais
- Órgão Gestor: SEF
- Volume:
 - 1.345 Unidades Executoras
 - · 3.000 Pontos de Acesso
 - 12.000 Usuários
 - 560.000 Empenhos/Ano
 - 750.000 Liquidações/Ano
 - · 850.000 Pagamentos/Ano
 - 20 Milhões Lançamentos Contábeis/Ano
 - 800 Mil Transações com Bancos/Ano
 - 54 Milhões Operações/Ano (Acessos)

SIAFI – Sistema Integrado de Administração Financeira

Módulos

- Rotina Administrativa:
 - · Reconciliação de Conta Arrecadadora
 - Especificação de Compra/serviço
 - · Contrato/Convênio
- Rotina Anual:
 - · Apropriação Orçamento Anual
 - · Restos a Pagar
 - · Encerramento Contábil do Exercício
 - DIRF
 - · Anulação saldo de Empenho
 - · Transferência Saldo Contábil
 - · Balanço Anual
- · Movimentação Orçamentária
- Movimentação da Receita
- Movimentação da Despesa
- Movimentação Financeira Escritural
- · Movimentação Financeira Bancária
- Movimentação Contábil
- Consultas e Relatórios
- Tabelas

SISAP - Sistema de Administração de Pessoal

- Objetivo: Administração de pessoal do Governo do Estado de Minas Gerais
- Órgão Gestor: SEPLAG
- Principais Funções
 - Ingresso/Desligamento;
 - Movimentações Funcionais;
 - Eventos Funcionais;
 - Pagamento de Pessoal;
 - · Agenda Médica;
 - Nomeação;
 - Informações Curriculares;
 - · Quadro de Vagas;
 - · Contagem de Tempo.

SIPRO – Sistema Integrado de Protocolo

- Objetivo: Gerenciamento do tramite de documentos no governo
- Órgão Gestor: SEPLAG
- Volume:
 - 34 Órgãos utilizam o SIPRO
 - · Média de 2.250 Processos cadastrados / dia
 - Média de 6.200. Tramitações / dia
 - 7 milhões de Processos cadastrados
 - 20 Milhões de Tramitações cadastradas

SIPRO – Sistema Integrado de Protocolo

- Principais funções
 - Relativas a Processos:
 - Cadastramento de Processos,
 - Cadastramento de Solicitante
 - Arquivamento/Desarquivamento de Processo
 - Auditoria de Processo
 - · Recibo de Protocolo
 - · Relativas à Tramitação:
 - · Inclusão/Alteração
 - Recebimento
 - Emissão de Guia
 - Consultas/Relatórios

SigPlan - Sistema de Informações Gerenciais e de Planejamento

- Objetivo: Criação e acompanhamento do Plano Plurianual do Governo do Estado de Minas Gerais -PPAG.
- Órgão Gestor: SEPLAG
- Volume:
 - 126 unidades de Planejamento Cadastradas
 - 278 Usuários ativos cadastrados
- Principais Funções:
 - Cadastramento, Gerenciamento, Monitoramento e Avaliação das informações relativas aos Programas de Governo, suas ações e Locais de Execução

Orçamento - Sistema para elaboração do orçamento anual

- Objetivo: Elaboração e registro das informações relativas à Proposta Orçamentária Anual dos órgãos que compõem o Governo do Estado de Minas Gerais conforme legislação estabelecida.
- Órgão Gestor: SEPLAG
- Volume:
 - 126 Unidades Orçamentárias cadastradas
 - 238 Usuários ativos cadastrados

Orçamento - Sistema para elaboração do orçamento anual

- Principais Funções:
 - · Permite o Registro e o tratamento de :
 - Orçamento da Receita
 - Metas e Programas de Trabalho
 - Orçamento da Despesa
 - Detalhamento das Obras
 - Obras Por Município
 - Gastos com Pessoal
 - Repasse de Recursos

SIAD - Sistema de Administração de Materiais

- Objetivo: Gerenciamento de todo ciclo de materiais e serviços (requisição, aquisição, utilização e encerramento)
- Órgão Gestor: SEPLAG

SIAD - Sistema de Administração de Materiais

Principais Funções:

- Compras
- Cotação Eletrônica
- Contrato
- · Material de Consumo
- Material Permanente
- · Bolsa de Materiais
- Patrimônio
- Estoque
- · Frota de veículos
- Alienação
- Órgãos e entidades
- Fornecedores
- Licitanet
- Registro de Preços

Integração dos Sistemas Corporativos

Plataforma Java EE

JAVA ENTERPRISE EDITION

O Padrão JEE

- Para suportar a criação de aplicações Java Corporativas, foi criado o *Java Enterprise Edition* (JEE)
- O padrão JEE acrescenta várias APIs ao SDK do Java, que incorporam funcionalidades de
 - tolerância a falhas,
 - aplicações distribuídas,
 - aplicações multicamadas,
 - · entre outras, a serem executadas em um servidor de aplicação
- O padrão JEE é uma especificação, ou seja, somente determina o que deve ser feito. O como fica a cargo do implementador

O Padrão JEE

- Na especificação JEE, as extensões ao Java padrão ficam todas no pacote "javax", são elas:
 - faces → construção de interfaces componentizadas
 - servlet → lida com requisições HTTP
 - enterprise → lida com injeção de dependência
 - ejb → acesso a objetos
 - validațion → validação de objetos
 - transaction → controle de transações
 - jms → comunicação assíncrona
 - resource \rightarrow conectores para integração entre sistemas

Aplicação Distribuída e Multicamadas

Definição de EJB

"A arquitetura Enterprise JavaBeans – EJB – é uma arquitetura para o desenvolvimento e a implantação de aplicativos de negócio distribuídos baseados em componentes. Aplicativos escritos utilizando a arquitetura EJB são escalonáveis, transacionais e seguros com multiusuários. Esses aplicativos podem ser escritos uma vez e então implantados em qualquer plataforma de servidor que suporta a especificação EJB"

Sun Microsystems

O Padrão JEE

- Além destes, tem-se pacotes relativos à:
 - · manipulação de XML,
 - e-mail,
 - além de especificações que se aplicam aos componentes JEE, como Conectores, Portlets, JavaBeans, etc.
- Sendo uma especificação, cada fornecedor cria a implementação do jeito que melhor convier
 - · Assim, devemos ter em mente que não devemos esperar que duas implementações sejam iguais, somente que ambas façam a mesma coisa

 Para utilizarmos as funcionalidades JEE, precisamos de um Servidor de Aplicações

- Um *Application Server* (AS) é um servidor capaz de prover implementações das funcionalidades JEE
 - Um servidor que tenha implementações para toda especificação JEE é chamado de *Full Compliant*
- Exemplos destes servidores: JBoss, Oracle Glassfish, IBM WebSphere e Oracle Weblogic

- Alguns servidores JEE, no entanto, provém implementações somente para a parte Web, chamados de *Web Profile Compliant*
- Um AS que seja *Web Compliant* permite o *deploy* de aplicações Web; porém, o suporte a funcionalidades extras depende de cada servidor.
 - Por exemplo, o JBoss é um servidor *Web Compliant* porque não provê funcionalidade JMS total
 - Alguns exemplos de servidores Web Compliant: JBoss, Glassfish Web Profile, Caucho Resin e Apache TomEE

- Alguns servidores provêm a funcionalidade de *servlet containers*: é possível realizar o *deploy* de aplicações Web, mas somente gerenciam este aspecto das aplicações
- Com isso, podemos criar aplicações que respondem à requisições Web, mas nada além disso!
 - Por exemplo, não podemos fazer comunicação JMS com um servidor deste tipo
- Estes servidores não são Application Servers!
 - · Como exemplo, temos o Jetty e o Tomcat.

- Um servidor de aplicação é composto por vários contêineres – manipulação dos tipos específicos de componentes
 - Contêiner Web
 - Contêiner EJB
 - (Contêiner JPA)
 - (Contêiner JMS)

- Um contêiner EJB gerencia os recursos utilizados pelos EJBs
 - · Como utilizam a memória
 - Threads
 - Conexões de banco de dados
 - Poder de processamento
 - Entre outros...

- Serviços primários suportados pelo contêiner:
 - (1) Concorrência
 - (2) Gerenciamento de transação
 - · (3) Persistência
 - (4) Distribuição de objetos
 - (5) Atribuição de nomes
 - (6) Segurança
- Serviços adicionais suportados: (i) sistema de mensagens assíncronas e (ii) serviço e temporização

- Idéia de escala:
 - Sistema corporativo ≅ milhares ou mesmo milhões de objetos em uso simultaneamente
- Mecanismos para gerenciar beans em execução:
 - Pool de instâncias instâncias carregadas na memória, prontas para serem compartilhadas
 - · Ativação conservação de instâncias com estado
- Gerência de conexões Java EE Connector Architecture

- Estados de um bean de sessão sem informações de estado:
 - · <u>Sem estado</u> ainda não foi instanciada
 - <u>Pooled</u> foi instanciada pelo contêiner mas ainda não foi associada a uma solicitação EJB
 - <u>Ready</u> (pronto) foi associada a uma solicitação EJB e está pronta para responder a invocações
- Como não guardam informações de estado podem ser compartilhados

- MDBs e Pool de instâncias:
 - Não guardam estado para uma solicitação específica, como os beans de sessão sem informação de estado
 - Na maioria dos contêiners, cada tipo de bean baseado em mensagem tem o seu próprio pool de instâncias
 - JMS-MDBs se inscrevem em um destino específico
 - Um destino equivale a um endereço utilizado para enviar e receber mensagens
 - · Ao receber uma mensagem para um destino o contêiner EJB determina que JMS-MDB, que está no pool relativo aquele destino, irá tratar a mensagem

- Mecanismo de ativação:
 - Aplicado a beans de sessão com informações de estado
 manutenção do estado conversacional
 - Se um bean de sessão com informações de estado for retirado da memória, o estado do mesmo é serializado e armazenado em disco – passivação
 - O cliente não tem a informação da passivação
 - Ativar um bean é o ato da restauração do estado de uma instância de um bean que sofreu a passivação

Java EE Connector Architecture

- Define uma interface entre Enterprise Information Systems (EISs) e contêiners Java EE
- EIS: termo genérico para qualquer sistema de informações
 - · Sistemas de gerenciamento de banco de dados
 - Sistema de mensagens assíncronas
 - CORBA
 - Sistemas de ERP
 - Sistemas legados (p.ex.: IMS e CICS)

Java EE Connector Architecture

- Java EE define algumas APIs corporativas padronizadas, independentes de fornecedor, para a conexão com sistemas de informações
 - JDBC gerenciadores de banco de dados relacional
 - JMS middleware orientado a mensagens
 - JNDI serviços de diretórios e atribuição de nomes
 - Java IDL CORBA
 - JavaMail sistemas de correio eletrônico

Java EE Connector Architecture

- Quando um EJB utiliza tais APIs é de responsabilidade do contêiner funções como:
 - Colocar no pool e manter conexões EISs
 - Registrar o EIS nas transações
 - Propagar as credenciais de segurança
- Tais interações exigem um nível de iteração não coberto pelas APIs padronizadas

Serviços Primários

- Principais serviços gerenciados pelo contêiner:
 - (1) Concorrência
 - (2) Transações
 - · (3) Persistência
 - (4) Objetos distribuídos
 - (5) Sistema de mensagens assíncronas
 - (6) EJB Timer Service
 - (7) Atribuição de nomes
 - (8) Segurança

Concorrência

- Aspectos da especificação EJB:
 - Como os servidores EJB tratam a concorrência, os métodos de um bean não precisam ser thread-safe
 - · Proíbe o uso da palavra-chave syncronized
 - · Proíbe que os beans criem seus próprios threads
- Os beans de sessão não suportam acesso concorrente

Concorrência

- Concorrência com *beans* de entidade
 - · Representam dados que são compartilhados
 - Para tornar possível o acesso concorrente o provedor de persistência precisa bloquear os dados
 - Na especificação JPA é criada uma cópia da instância do bean por transação
- Concorrência com *beans* de mensagens
 - Processamento de mais de uma mensagem por vez diferentes instâncias do MDB podem trabalhar simultaneamente

Transações

- Conjunto atômico (indivisível) de tarefas
 - Exemplo anterior: (a) criação de uma locação e (b) realização do pagamento da referida locação
- Gerenciadas automaticamente pelo contêiner, sem a necessidade de programação nenhuma
 - Nos beans pode haver a declaração de atributos transacionais, usados em tempo de implantação
- O EJB provê também um mecanismo para o gerenciamento explícito de transações

Persistência

- Beans de entidade:
 - São implementados como POJOs
 - Tem o seu estado salvo em um banco de dados
 - Podem ser criados fora do contêiner
 - Gerenciados pelo EntityMananer
 - Podem estar acoplados ao gerenciamento do contêiner ou desacoplados
 - Uma vez desacoplados, podem ser reacoplados através do método merge – alterações sincronizadas com o banco

Persistência

- Nas versões mais recentes a persistência deixou de fazer parte da plataforma, passando a ser especificada a parte – Java Persistence API – JPA
- JPA é uma abstração superior à API JDBC
 - Os objetos são mapeados em tabelas de banco dados, de modo que possam ser consultados, carregados, atualizados ou removidos sem que necessário utilizar a APLJDBC
 - Mapeia classes simples (com gets e sets) Beans de Entidade

Objetos Distribuídos

- O cliente tem acesso a um EJB através da interface remota ou interface *endpoint*
 - Os demais elementos são abstraídos, inclusive o mecanismo de suporte a objetos distribuídos
- Na especificação EJB, os beans de sessão podem ser acessados através de RMI-IIOP
- Também é requerido o suporte ao SOAP 1.2 pela API JAX-RPC

Objetos Distribuídos

- Tendência na computação distribuída
- "Aplicativos modulares auto descritos e autocontidos que podem ser publicados, localizados e invocados pela Web"
 - · Independentes de plataforma
 - SOAP gramática XML para protocolo de aplicativo
 - WSDL gramática XML para definição de interface
- O EJB permite o desenvolvimento de Serviços Web através da API JAX-WS

Sistema de Mensagens Assíncronas

- Além do suporte a objetos distribuídos baseados em RMI, o EJB suporta também um sistema de mensagens assíncronas
 - Uma mensagem é um pacote autocontido de dados do negócio e cabeçalhos de roteamento de rede
 - Mensagens assíncronas podem ser transmitidas entre um aplicativo e outro em uma rede, utilizando o Message-Oriented Middleware – MOM
 - O MOM assegura tolerância a falhas, escalabilidade, balanceamento de carga e suporte a transações

Sistema de Mensagens Assíncronas

- O contêiner EJB roteia confiavelmente mensagens de clientes JMS para JMS-MDBs
- Mensagens corporativas podem ser serializadas e armazenadas em disco ao em banco de dados até que possam ser adequadamente entregues
 - O armazenamento secundário das mensagens permite a tolerância a falhas, em caso de travamento do servidor EJB
- O sistema de mensagens assíncronas é transacional

EJB Timer Service

- Utilizado para agendar notificações a serem enviadas a beans
- Serviços de temporização são úteis em vários domínios de problemas: (a) vencimento de prestações, (b) expiração de cadastros de usuários e etc.
- Temporizadores podem ser configurados em todo o tipo de EJB, exceto beans de sessão com informação de estado

Atribuição de Nomes

- Fornece aos clientes um mecanismo para localizar recursos ou objetos distribuídos
- Serviços fornecidos:
 - Vinculação de objeto
 - Associação de um objeto distribuídos a um identificador
 - API de pesquisa
 - Fornece ao cliente uma interface para o sistema de atribuição de nomes
 - No EJB é obrigatório o uso da JNDI suporta qualquer tipo de serviços de diretórios e de atribuição de nomes

Atribuição de Nomes

• Exemplo de utilização da API JNDI:

Segurança

- Os servidores Enterprise JavaBeans suportam três tipos de segurança:
 - Autenticação
 - · Validar a identidade do usuário
 - Suporte a várias mecanismos (tela de login, cartões de identificação digital, certificados de segurança, etc.)
 - Autorização
 - · Diretivas definem o que os usuários podem, ou não, fazer
 - Comunicação segura
 - Definição de um canal de comunicação seguro