Rendite

Esercizio 1

Oggi acquistate una moto. Il prezzo viene pagato in 5 anni attraverso rate annuali di \$ 1.700 ciascuna. Il tasso di interesse concordato è del 7% composto annuo. Calcolare il valore della moto, nei seguenti casi:

- A) i pagamenti sono effettuati alla fine di ogni anno;
- B) i pagamenti vengono effettuati all'inizio di ogni anno.

Esercizio 2

Volete accumulare un capitale di \$ 12.000 in 5 anni mediante versamenti trimestrali posticipati di importo costante su un conto bancario che remunera i depositi a un tasso composto annuo del 2,5%. Qual è l'importo di ogni rata?

Esercizio 3

Un giovane lavoratore decide di depositare su un conto corrente bancario un terzo del suo stipendio annuo alla fine di ogni anno. Il conto bancario paga interessi a un tasso annuo composto del 4,2%. Si supponga che lo stipendio rimanga costante e venga pagato attraverso 12 rate mensili, ciascuna di \$ 1.350.

- A) Determinare il risparmio accumulato dopo 11 anni di lavoro.
- B) Quale sarebbe il risparmio accumulato dopo 11 anni di lavoro se il lavoratore iniziasse a depositare un terzo dello stipendio dalla fine del terzo anno?

Esercizio 4

Calcolare il montante di una rendita composta da 18 rate annuali uguali di \$ 470 ciascuna. Il tasso tecnico della rendita è del 5%.

Esercizio 5

Un lavoratore decide di depositare su un conto bancario un importo di \$ 5.000 alla fine di ogni anno per 10 anni. Il primo deposito avverrà tra da due anni. Il tasso composto annuo è del 3%. Qual sarà il valore di questo deposito dopo 15 anni in assenza di prelievi?

Esercizio 6

Si supponga che il tasso di interesse annuo composto sia del 4%. Si calcolino il valore attuale e il valore futuro di una rendita che pagherà un flusso di cassa annuo di \$ 1.500 per 20 anni nei seguenti casi:

- A) pagamenti effettuati alla fine di ogni anno;
- B) pagamenti effettuati all'inizio di ogni anno.

Esercizio 7

Si supponga che il tasso di valutazione sia del 4% annuo. Calcolare il valore attuale di una rendita differita di 5 anni, con rata annua di \$ 1.500, e di 20 anni di durata nei seguenti casi:

- A) pagamenti effettuati alla fine di ogni anno;
- B) pagamenti effettuati all'inizio di ogni anno.

Esercizio 8

Si supponga che il tasso di valutazione sia del 4% annuo. Calcolare il valore attuale di una perpetuità differita di 5 anni, con rata annua di \$ 1.500, e 20 anni nei seguenti casi:

- A) pagamenti effettuati alla fine di ogni anno;
- B) pagamenti effettuati all'inizio di ogni anno.

Esercizio 9

La vostra società ha contratto un prestito di 100.000\$ da saldare pagando un totale di 40 rate semestrali. Il tasso applicato dalla banca è del 6% composto annuo. L'importo delle rate è costante e vengono corrisposte in via posticipata. Calcolare l'importo della rata semestrale.

Esercizio 10

L'azienda Zeta ha contratto un mutuo di 100.000\$ da saldare pagando 40 rate semestrali costanti con una dilazione temporale iniziale di due anni. Il tasso applicato dalla banca è del 6% annuo. Calcolare l'importo della rata semestrale nei seguenti casi:

- A) pagamenti effettuati alla fine di ogni semestre;
- B) pagamenti effettuati all'inizio di ogni semestre.

Esercizio 11

Avete contratto un mutuo di 100.000\$ da saldare pagando 40 rate semestrali. Il tasso applicato dalla banca è del 6% annuo. I pagamenti vengono effettuati in via posticipata. L'importo dei primi 39 versamenti è costante, mentre il 40° è composto da un importo maggiorato di 10.000 rispetto agli altri. Calcolare l'importo della rata semestrale.

Esercizio 12

Quante rate annue posticipate di \$ 1.500 sono necessarie per accumulare un capitale di \$ 17.195,82, sapendo che il tasso annuo riconosciuto è del 3%?

Esercizio 13

Hai prestato al tuo vicino 100 dollari. Il tuo vicino ti rimborserà mediante 10 rate mensili posticipate di \$ 10 ciascuna. Assumendo che il corretto tasso di attualizzazione composto sia dell'1% in base mensile. Calcola il valore attuale di questo prestito.

Esercizio 14

Siete titolari di una rendita che vi corrisponderà \$ 100 per 10 anni. Il primo pagamento è differito di 11 anni. Assumendo un tasso di interesse del 6% composto annuo, determinare il valore attuale della vostra rendita?

Esercizio 15

Una famiglia deve accantonare delle somme di denaro in modo di disporre di \$ 120.000 necessari per fornire un'istruzione universitaria al figlio appena nato. Ritenendo di poter guadagnare il 7% composto annuo in vari investimenti sino al compimento del diciottesimo anno del figlio, quanto deve accantonare ogni anno per disporre di quell'importo quando il figlio avrà 18 anni?

Esercizio 16

La società lota ha intrapreso un progetto di investimenti che genererà i seguenti flussi di cassa: \$ 100.000 tra 6 mesi, \$ 200.000 tra un anno, \$ 300.000 tra un anno e mezzo, \$ 200.000 tra 2 anni, \$ 100.000 tra 2 anni e mezzo, e a partire dalla fine del terzo anno \$ 20.000 in perpetuo ogni sei mesi. Supponendo che il corretto tasso di valutazione si del 12% composto annuo, determinare il valore attuale del progetto.

Esercizio 17

La società Zeta ha investito in una attività che produrrà in eterno un flusso costante di cassa semestrale posticipato di \$ 10.000. Sapendo che il prezzo di mercato dell'attività è \$ 150.000, determinare il tasso di rendimento effettivo annuo di questa attività.

Esercizio 18

La società Delta riceverà come risultato di un suo investimento \$ 25.000 alla fine di ogni anno per i prossimi 15 anni. Sapendo che i flussi di cassa

appena ricevuti, vengono investiti in un fondo che garantisce con certezza il 3% composto annuo. Determinare il valore del fondo dopo 15 anni.

ANNUITIES SOLUTIONS

Ex. 1

A)
$$|PV| = C \frac{1-(i+1)^{-N}}{i} = \frac{1-(1+0,07)^{-5}}{0,07} \cdot 1700 = 4,1002 \cdot (1700)} = 6.970,34$$

Ex.2

$$FV = C \left(\frac{1+i_4}{i_4}\right)^N - 1$$

$$C = \frac{i_4 FV}{(1+i_4)^N - 1}$$

$$\frac{C = 0,00619 \cdot 12.000}{(1+0,00613)^{20}-1} = \frac{565,47}{}$$

Ēx. 3

A)
$$FV = C \frac{(1+i)^{N}-1}{i} = \frac{12 \cdot 1350}{3} \frac{(1+0,042)^{11}-1}{0,042} = \frac{73585,85}{6}$$

B)
$$FV = C \left(\frac{1+i}{i}\right)^{N-2} - L = 5400 \left(\frac{1+0,042}{0,042}\right)^{9} - L = 57.617,54$$

$$\frac{F.V=C}{i} = \frac{(1+i)^{N}-1}{i} \cdot (1+i) = 470 \cdot \frac{(1+i)^{N}-1}{0.05} \cdot 1.05 = 13.883.33$$

$$\bar{t}_{x.5}$$

F.V. $_{15} = F.V._{11} (1+i)^4$

FV₁₁ = $c (1+i)^{10} - 1 = 5.000 (11,4639) = 57.319,40$

$$FV_{15} = 57.319,40 (1+0,03)^4 = 64.513,48$$

Ēx. 6

A) P. V. =
$$1.500 \cdot 1 - (1+0.04)^{-20} = 20.385,49$$

 $V = 1500 \cdot (1+0.04)^{20} - 1 = 44.667,12$
 $V = 1500 \cdot (1+0.04)^{20} - 1 = 44.667,12$
 $V = V \cdot (1+i)^{20} = 20.385 \cdot (1.04)^{20} = 44.667,12$

B)
$$PV = 1.500 \ 1 - (1+0.04)^{-20} \cdot (1.04) = 20.385,49 \cdot 1.04 = 21.200,91$$

$$FV = 1500 \left(\frac{(10,04)^{20}-4}{0,04}\right) = 44.667,12-1,04=46453,80$$

OR

A)
$$PV = C 1 - (1+i)^{-N} (1+i)^{-m} = 1500 \frac{1 - (1+0,04)^{-20}}{0,04} (1+0,04) = 16.755,38$$

Ex. 8

A)
$$PV = \frac{C}{i} (1+i)^{-m} = \frac{1500}{0.04} (1+0.04)^{-5} = 37.500 (1.04)^{-5} - 30.822.27$$

B)
$$PV = \frac{C}{i} (1+i)^{-m} (1+i) = 30.822,24 (1,04) = 32.055,26$$

Ēx. 9

$$C = \frac{i_2 PV}{1 - (1 + i_2)^{-N}} = \frac{100.000 (0,02956)}{1 - (1 + 0,02956)^{-40}} = 4.295,73$$

Ēx.10

A)
$$PV = C \frac{1 - (1 + iz)^{-40}}{iz} (1 + iz)^{-4}$$

$$C = \frac{i_2(1+i_2)^4 PV}{1 - (1+i_2)^{-40}} = 4.826,68$$

B)
$$PV = C \underbrace{1 - (1 + i_2)^{-40} (1 + i_2)^{-3}}_{i_2}$$

$$C = \frac{i_2 (1+i_2)^3 PV}{1 - (1+i_2)^{-40}} = 4.688,09$$

$$PV = C \frac{1 - (1 + i_2)^{-40}}{i^2} + K (1 + i_2)^{-40}$$
 $K = 10.000$

$$C = \left[PV - \kappa \left(1 + i_{1}\right)^{-40}\right] \cdot \frac{i_{2}}{1 - \left(1 + i_{1}\right)^{-40}} = 4.161,79$$

$$FV = C \frac{(1+i)^{N}-1}{c} - 1 + iFV = (1+i)^{N}$$

$$-M \ln(1+i) = \ln (1+iFV)$$

$$-N = \ln (1+iFV) = \ln (1+o_{,03}(17.195,82))$$

$$-\ln (1+i) = \frac{1500}{\ln (1+o_{,03})} = 10$$

$$N = 10$$

Ex. 13

$$PV = 10 \frac{1 - (1 + 0.01)^{10}}{0.01} = 94,71$$

NOTE: 100 - 94,71=5,29 -> YOU LOST \$5,29 IN CURRENT VALUE

$$PV = C \frac{1 - (1+i)^{-10}}{i} (1+i)^{-10} = 100 \frac{1 - (1,06)^{-10}}{0,06} \cdot \frac{1}{(1,06)^{10}} = 410,98$$

$$FV_{18} = C \left(\underbrace{1+i}^{18} - 1 \left(1+i \right) \right)$$

$$C = \frac{i FV_{18}}{(1+i)^{18}-1} \cdot \frac{1}{1+i} = \frac{0.07 \cdot (120.000)}{1.07^{18}-1} \cdot \frac{1}{1.07} = 3.298,61$$

JOK 76

$$VA = \frac{100.000}{(1+12\%)^{0.5}} + \frac{200.000}{1+12\%} + \frac{300.000}{(1+12\%)^{2}} + \frac{100.000}{(1+12\%)^{2}} + \frac{20.000}{(1+12\%)^{2}} + \frac{100.000}{(1+12\%)^{2}} + \frac{20.000}{(1+12\%)^{2}} + \frac{1}{(1+12\%)^{2}} = 1.034.402, 20$$

$$dove i_{2} = (1+12\%)^{\frac{1}{2}} - 1 = 5.83\%$$

Ex 17

$$VA = \frac{Rota}{iz}$$
 -> $iz = \frac{Rota}{VA} = \frac{10.000}{150.000} = 6,667\%$
 $i = (l+iz)^2 - 1 = (l+6,667\%)^2 - 1 = l3,778\%$

Ex 18

Moutaute = Rata
$$\left(\frac{(1+i)^{m}-1}{i}\right)$$

= 25.000 $\left[\frac{(1+3)^{m}-1}{3!}\right] = 464.972,85$ \$