

In the Specification:

On Page 1, please replace the first paragraph with the following paragraph:

This application is related to the following co-pending applications filed on December 30 1998 and commonly assigned to the assignee of this application: US Patent Application Number 09/224,256, entitled POSTAGE PRINTING SYSTEM HAVING SUBSIDIZED PRINTING OF THIRD PARTY MESSAGES (Attorney Docket No. E-796) now issued as US Patent No. 6,141,654); US Patent Application Number 09/223,504, entitled POSTAGE PRINTING SYSTEM HAVING VARIABLE SUBSIDIES FOR PRINTING OF THIRD PARTY MESSAGES (Attorney Docket No. E-803) now issued as US Patent No. 6,154,733 and US Patent Application Number 09/223,643, entitled PRODUCTION MAIL SYSTEM HAVING SUBSIDIES FOR PRINTING OF THIRD PARTY MESSAGES ON MAILPIECES (Attorney Docket No. E-806) now issued as US Patent No. 6,173,274, all of which are specifically incorporated herein by reference.

On Page 6, please replace the third paragraph with the following paragraph:

microprocessors, firmware and software. The micro control system 300 includes a motor controller 310 which is in operative communication with the motors 260 and 470, a printer controller 320 which is in operative communication with a printer module 100, a sensor controller 330 which is in operative communication with a sensor module 350 and a scanner module 550; an accounting module 340 for authorizing and accounting for the dispensing of postal funds; a microprocessor 360; and the user interface 380. The motor controller 310, the printer controller 320, the sensor controller 330, the accounting module 340 and other various components of the micro control system 300 are all in operative communication with each other over

The micro control system 300 may be of any suitable combination of

suitable communication lines. Generally, the microprocessor 360 coordinates the

operation and communications between the various modules of the postage printing system 10 and the components of the micro control system 300.

On Page 8, please replace the second paragraph with the following paragraph:

The postage printing system 10 further includes a sensor module 350 and a scanning module 550. The sensor module 350 is substantially in alignment with the nip of take-away rollers 450 for detecting the presence of the envelope 20. Preferably, the sensor module 350 is of any conventional optical type, which includes a light emitter 352 and a light detector 354. Generally, the light emitter 352 and the light detector 354 are located in an opposed relationship on opposite sides of the path of travel so that the envelope 20 passes therebetween. By measuring the amount of light that the light detector 354 receives, the presence or absence of the envelope 20 can be determined. Generally, by detecting the front running (furthest downstream) and lagging (furthest upstream) edges of the envelope 20, the sensor module 350 provides signals to the micro control system 300 which are used to determine the length of the envelope 20 and measure the gap between successive envelopes 20. Other purposes will be described in greater detail below.

On Page 12, please replace the first paragraph with the following paragraph:

Referring to Figs. 4A, 4B and 4C, an envelope 20 having an example of a postal indicia 30 printed thereon is shown. Items that are hidden from view are shown in phantom lines to facilitate understanding of the views. The envelope 20 includes a main body, having a front face 20F and a rear face 20R, and a flap 22. The postal indicia 30 is printed in the upper right hand corner of the envelope's front face 20F as required by most postal authorities. Furthermore, the envelope 20 has a plurality of edges, including a lead edge 20a, a top edge 20b, a trail edge 20c and a bottom edge 20d. In conventional fashion, the envelope 20 may include a sender or return address (not shown) in the upper left hand corner of the envelope's front face

20F and a recipient address (not shown) located somewhat centrally on the envelope's front face 20F.

On Page 13, please replace the second paragraph with the following paragraph:

With the structure of the postage printing system 10 described as above, the operational characteristics will now be described with respect to processing an envelope 20 where a postal indicia and an ad slogan 50% are printed thereon.

Referring primarily to Fig. 5 while referencing the structure of Figs. 1, 2, 3, 4A, 4B and 4C a flow chart of a control system algorithm 500 in accordance with the present invention is shown. The algorithm 50 may be executed by any suitable combination of software, firmware and hardware subsystems by the micro control system 300. At 502, the postage printing system 10 enters ad slogan printing mode in response to an appropriate input from the operator via the user interface 380. Next, at 504, the operator indicates a selected one of the plurality of print locations 40a-40f and 42a-42f for the ad slogan 50. This is most effectively accomplished by having the display 384 provide the operator with a graphical representation of the plurality of print locations 40a-40f and 42a-42f with respect to the postal indicia 30 and having the operator make a selection using the keypad 382.

On Page 13, please replace the third paragraph with the following paragraph:

Next, at 506, a determination is made if the selected print location is within the first set of front face print locations 40a-40c. If yes, then at 508, the postage printing system 10 informs the operator that only one pass through the postage printing system 10 is required and to commence feeding the envelope 20 when ready. Next, at 510, the envelope 20 is fed through the postage printing system 10 as described above. Next, at 512, the postal indicia 30 is printed on the envelope 20. Using the sensor module 350, the postage printing system 10 detects a front running edge (the edge further downstream in the path of travel) of the envelope 20. So as to print the

9

postal indicia 30, the front running edge is the lead edge 20a of the envelope 20. The postage printing system 10 via the micro control system 300 coordinates operation of the printer module 100 with the conveyor apparatus 200 so that the postal indicia 30 is properly printed in proximity to the lead edge 20a of the envelope 20. Next, at 514, the ad slogan 50 is printed on the envelope in the selected print location that is one of print locations 40a, 40b and 40c. For print location 40a, the postage printing system 10 commencing printing of the ad slogan 50 once printing of the postal indicia 30 is completed. For print locations 40b and 40c, the postage printing system 10 uses the sensor module 350 to detect the lead edge 20a (front running) and the trail edge 20c (lagging) of the envelope 20. From this information, the postage printing system 10 knows the length of the envelope 20 and can coordinate operation of the printer module 100 with the conveyor apparatus 200 accordingly so that the postal indicia 30 is properly printed in the selected location.

↑C On Page 14, please replace the first paragraph with the following paragraph:

Next, at 506, a determination is made if the selected print location is within the first set of front face print locations 40a-40c. If yes, then at 508, the postage printing system 10 informs the operator that only one pass through the postage printing system 10 is required and to commence feeding the envelope 20 when ready. Next, at 510, the envelope 20 is fed through the postage printing system 10 as described above. Next, at 512, the postal indicia 30 is printed on the envelope 20. Using the sensor module 350, the postage printing system 10 detects a front running edge (the edge further downstream in the path of travel) of the envelope 20. So as to print the postal indicia 30, the front running edge is the lead edge 20a of the envelope 20. The postage printing system 10 via the micro control system 300 coordinates operation of the printer module 100 with the conveyor apparatus 200 so that the postal indicia 30 is properly printed in proximity to the lead edge 20a of the envelope 20. Next, at 514, the ad slogan 50 is printed on the envelope in the selected print location that is one of print locations 40a, 40b and 40c. For print location 40a, the postage printing system 10 commencing printing of the ad slogan 50 once printing of

the postal indicia 30 is completed. For print locations 40b and 40c, the postage printing system 10 uses the sensor module 500 to detect the lead edge 20a (front running) and the trail edge 20c (lagging) of the envelope 20. From this information, the postage printing system 10 knows the length of the envelope 20 and can coordinate operation of the printer module 100 with the conveyor apparatus 200 accordingly so that the postal indicia 30 is properly printed in the selected location.

∬ €. On Page 1,8, please replace the first paragraph with the following paragraph:

On the other hand, if at 506 the answer is no, then at 520 the postage printing system 10 informs the operator via the user interface 380 that two (2) passes through the postage printing system 10 are required and that postage printing will occur first. Next, at 522, the operator feeds the envelope 20 through the postage printing system 10 as described above. Next, at 524, the postal indicia 30 is printed on the envelope 20 in proximity to the lead edge 20a of the envelope 20 as described above. Next, at 526, the postage printing system 10 prompts the operation via the user interface 380 to feed the envelope 20 one more time. Preferably, to assist in avoiding operator error, the display 384 provides the operator with a graphical representation of the orientation at which the envelope 20 should be fed so as to be able to comply with the printing the ad slogan 50 at the selected location. For example, the graphical representation may include the registration wall, an arrow indicating the direction of the path of travel, and an envelope having the postal indicia 30 shown thereon. If the front face 20F of the envelope 20 is to be fed facing up, then the flap 22 is not shown. On the other hand, if the rear face 20R of the envelope is to be fed facing up, then the flap 22 is shown and the postal indicia 30 may be shown in phantom or dim lines. Next, at 528, the envelope 20 is fed in the path of travel past the sensor module 350 and the scanner module 550. As describe above, the sensor module 350 detects the

front running edge (which may be either the lead edge 20a or the trail edge 20c depending upon the orientation at which the envelope 20 was fed) of the envelope 20. Next, at 530, the scanner module 550 activates the first scanner 552 and a second scanner 554 to detect the postal indicia 30. Next, at 532, the postage printing system 10 determines the feed orientation of the envelope 20. This is achieved by the following. Whether the postal indicia 30 is detected by the first scanner 552 or the second scanner 554 informs the postage printing system 10 whether the envelope 20 was fed with the front face 20F up or down. Also, using the detected position of the postal indicia 30 with respect to the front running edge of the envelope 20 informs the postage printing system 10 whether the lead edge 20a or the trail edge 20c is further down stream. Thus, the postage printing system 10 may determine the fed orientation of the envelope 20. Next, at 534, a determination is made whether or not the feed orientation corresponds to an anticipated orientation that is based upon the selected print location for the ad slogan. If yes, then at 536 the ad slogan 50 is printed on the envelope 20, using analogous techniques to those described above, in the selected print location that is one of print locations 40d, 40e, 40f, 42a, 42b, 42c, 42d, 42e and 42f based upon the input from the operation. For print locations 40d, 40e, 40f, 42d, 42e and 42f, the envelope 20 is fed so that the bottom edge 20d is aligned with the registration wall 12. As a result, the graphics associated with the ad slogan 50 will be printed upside down so that when the envelope 20 is viewed by the intended recipient, the ad slogan in these positions will appear right side up.