# Homework 4: Calculating the Period of a Nonlinear Oscillator

Daniel Bristow

February 25, 2021

#### Introduction

The period T of a nonlinear oscillator (no damping nor driving) is computed for various angles  $\theta$  (12 found in code). For simplicity,  $\sqrt{l/g} = 1$ , where g is gravitational acceleration and l is the length of the pendulum.

#### Method

The trapezoidal method is compared to Simpson's rule. The latter is derived from the former via Richardson extrapolation.

### Verification of program

In the code, the loop used to compute the trapezoidal method is compared to the respective built-in function. For all angles  $\theta$ , the same results are found. Meanwhile, Simpson's method behaves as expected.

# Data



Figure 1: N = 10 intervals of x.



Figure 2: N = 100 intervals of x.



Figure 3: N = 1000 intervals of x.

### Analysis

Simpson's rule is found to be an improvement of the trapezoidal method, especially as seen in smaller numbers N of x intervals. For  $\theta=0$ , both methods produce  $T=2\pi$ . While the trapezoidal method is somewhat variable between different values of N, the curve for Simpson's method stays relatively the same.

## Critique

Simpson's rule is an improvement of the trapezoidal rule because is merely what follows after trapezoidal in Richardson extrapolation, trapezoidal being the first order of the extrapolation.