Національний університет "Львівська політехніка" Кафедра "Автоматизовані системи управління"

Лабораторна робота № 4 з дисципліни «Теорія прийняття рішень» на тему:

«Теорія ігор і прийняття рішень в умовах невизначеності»

Виконав:

студент групи КН-312

Крохмалюк Богдан

Викладач:

Хавалко В.М.

Мета: Придбати навички пошуку раціональних рішень в умовах невизначеності викликаної конфліктом інтересів.

Завдання 1.	Задача	5.
-------------	--------	----

	B1	B2	В3	B4
A1	0,8	0,6	0,2	-0,8
A2	-0,8	0,9	-0,4	0,5
A3	1,7	0,5	0,3	0,6

Завдання 2. Задача 5.

Сільськогосподарське підприємство виробляє картоплю. Площа посіву картоплі становить 100 га. Господарство має договір з магазином, який гарантовано закупить всю вирощену картоплю за ціною 4 у.о. за 1 кг. При вирощуванні картоплі господарство може прийняти одне з трьох рішень, які відрізняються за сумою затрат на виробництво продукції:

- А1. Провести комплексну обробку рослин для запобігання ураження бур'янами, шкідниками та хворобами (витрати 6 млн. у.о.).
 - А2. Провести часткову обробку рослин (витрати 4 млн. у.о.).
 - АЗ. Не проводити обробку рослин (витрати 2.5 млн. у.о.).

Залежно від погодних умов, наявності та розвитку бур'янів, шкідників і хвороб можливі такі ситуації:

- S1. Умови для розвитку бур'янів, шкідників і хвороб несприятливі.
- S2. Умови для розвитку бур'янів, шкідників і хвороб звичайні.
- S3. Умови для розвитку бур'янів, шкідників і хвороб сприятливі.

Значення врожайності картоплі (ц/га) залежно від рішень сільськогосподарського підприємства та розвитку бур'янів, шкідників і хвороб подано в таблиці

Стратегії	Розвиток бур'янів, шкідників і хвороб							
господарства								
	S 1	S2	S 3					
A1	260	260	260					
A2	255	200	1450					
A3	250	100	40					

Визначте найбільш оптимальну стратегію підприємства і ціну гри. Дайте економічну інтерпретацію результатів рішення задачі.

Завдання 1.

Матриця платежів (гри)

	b1	b2	b3	b4	α
a1	0,8	0,6	0,2	-0,8	-0,8
a2	-0,8	0,9	-0,4	0,5	-0,8
a3	1,7	0,5	0,3	0,6	0,3
β	1,7	0,9	0,3	0,6	

Перетворення у задачу ЛП.

Розв'язок засобами MS Excel для гравця A:

Для цього гравця у змішаній стратегії оптимальний план є вибір 3 стратегії, що і показувала сідлова точка, а ціна гри відповідно рівна 0,3.

Розв'язок засобами MS Excel для гравця В:

	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р
1									Для гра	вця В						
2	Коефіціен	ти цільов	ої функції				Оптималь	ний план			Значення		Ціна		Ціна гри	
3	c1	c2	c3	c4		x1	x2	х3	x4		цільової (ункції	гри		з врахуван	німε мкн
4	1	1	1	1		0	0	0,909091	0		0,909091		1,1		0,3	
5																
6																
7	Коефіціен	ти в обме	женнях		Ліва межа	3	Права ме	ка								
8	1,6	1,4	1	0	0,909091	<=	1					Оптималь	на страте	гія		
9	0	1,7	0,4	1,3	0,363636	<=	1				x1	x2	х3	x4		
10	2,5	1,3	1,1	1,4	1	<=	1				0	0	1	0		

Для цього гравця у змішаній стратегії оптимальний план є вибір 3 стратегії, що і показувала сідлова точка, а ціна гри відповідно рівна 0,3.

Завдання 2.

4	Α		
1	Площа (га)	Ціна (у.о/кг)	
2	100	4	
3			
4			
5	A1	-6000000	
6	A2	-4000000	
7	A3	-2500000	
Q			

Матриця платежів

Врожайність							Чис	та прибутког	вість	
	S1	S2	S3	min			S1	S2	S 3	min
A1	260	260	260	260		A1	4400000	4400000	4400000	4400000
A2	255	200	145	145	>	A2	6200000	4000000	1800000	1800000
A3	250	100	40	40		A3	7500000	1500000	-900000	-900000
max	260	260	260			max	7500000	4400000	4400000	

Находимо гарантований виграш, що визначачаєтьсянижньою ціною гри a=max(ai)=4400000, яка вказує на максимально чисту стратегію A1.Верхня ціна гри b=min(bj)=4400000. Сідлова точка (1,2) вказує на рішення A1. Ціна гри рівна 4400000

Висновок:

Під час виконання лабораторної роботи я отримав навички пошуку раціональних рішень в умовах невизначеності викликаної конфліктом інтересів та здійснив перетворення матрицей платежів до задач лінійного програмування і знайшов відповідні оптимальні змішані стратегії.