

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-261427

(43)Date of publication of application: 22.09.2000

(51)Int.Cl.

H04L G06F 13/00 H04L 9/08 H04L 12/22

(21)Application number: 11-058592

(71)Applicant : TOSHIBA CORP

(22)Date of filing:

05.03.1999

(72)Inventor: TOCHIKUBO TAKAYA

ENDO NAOKI

(54) ENCRYPTION COMMUNICATION TERMINAL, ENCRYPTION COMMUNICATION CENTER EQUIPMENT, ENCRYPTION COMMUNICATION SYSTEM AND STORAGE MEDIUM

PROBLEM TO BE SOLVED: To provide an encryption communication system where an encryption algorithm is selected for encryption communication.

SOLUTION: An encryption communication terminal 2 acting like either of an information transmitter and receiver in encryption communication is provided with an encryption algorithm storage section 13 that stores one kind of encryption algorithm or over used for the encryption communication and outputs a designated encryption algorithm, a key information storage section 12 that stores a key for the encryption communication corresponding to the encryption algorithm and outputs a designated key, a control means 11 that designates which encryption algorithm and which key are to he used for the encryption communication to the encryption algorithm storage section 13 and the key information storage section 12 respectively, and an encryption decoding means 14 that decodes received encrypted information on encrypts information to he sent by using the encryption algorithm designated for the encryption algorithm storage section 13 and the key designated for the key information storage section 12.

IEGAL STATUS

[Date of request for examination]

11.03.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特期2000-261427 (P2000-261427A)

(43)公開日 平成12年9月22日(2000.9.22)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)
H04L 9/14		H04L 9/00	641 5B089
G06F 13/00	351	G06F 13/00	351Z 5J104
H04L 9/08		H04L 9/00	601B 5K030
12/22		11/26	9 A 0 0 1
•		審査請求 未請求 請求	R項の数17 OI. (全 15 頁)

(21)出願番号	特膜平11-58592	(71) 出願人 000003078
		株式会社東芝
(22)出顧日	平成11年3月5日(1999.3.5)	神奈川県川崎市幸区堀川町72番地
		(72)発明者 栃窪 孝也
		東京都府中市東芝町1番地 株式会社東芝
		府中工場内
		(72)発明者 遠藤 直樹
		東京都府中市東芝町1番地 株式会社東芝 府中工場内
		(74)代理人 100058479
	•	
•		弁理士 鈴江 武彦 (外6名)

最終頁に続く

(54) 【発明の名称】 暗号通信端末、暗号通信センター装置、暗号通信システム及び記憶媒体

(57)【要約】

【課題】 暗号アルゴリズムを選択的して暗号通信を行 うことができる。

【解決手段】 暗号通信での情報送受信の一方となる暗 号通信端末2において、暗号通信に用いる暗号アルゴリ ズムを1種類以上格納するとともに、指定された暗号ア ルゴリズムを出力する暗号アルゴリズム格納部13と、 暗号アルゴリズムに対応した暗号通信用の鍵を格納する とともに、指定された鍵を出力する鍵情報格納部12 と、暗号通信において何れの暗号アルゴリズム及び鍵を 使用するかを、暗号アルゴリズム格納部及び鍵情報格納 部に対してそれぞれ指定する制御手段11と、暗号アル ゴリズム格納部に対して指定された暗号アルゴリズム及 び鍵情報格納部に対して指定された鍵によって、受信し た暗号情報を復号化し、又は、送信する情報を暗号化す る暗号化・復号化手段14とを備えた暗号通信端末。

1

【特許請求の範囲】

【請求項1】 暗号通信における情報送受信の一方となる暗号通信端末において、

前記暗号通信に用いる暗号アルゴリズムを1種類以上格納するとともに、指定された暗号アルゴリズムを出力する暗号アルゴリズム格納部と.

前記暗号アルゴリズムに対応した暗号通信用の鍵を格納 するとともに、指定された鍵を出力する鍵情報格納部 と、

前記暗号通信において何れの暗号アルゴリズム及び鍵を 10 使用するかを、前記暗号アルゴリズム格納部及び前記鍵 情報格納部に対してそれぞれ指定する制御手段と、

前記暗号アルゴリズム格納部に対して指定された暗号アルゴリズム及び前記鍵情報格納部に対して指定された鍵によって、受信した暗号情報を復号化し、又は、送信する情報を暗号化する暗号化・復号化手段とを備えたことを特徴とする暗号通信端末。

【請求項2】 前記暗号アルゴリズム格納部は、暗号化された暗号アルゴリズムを格納するとともに、

前記暗号化された暗号アルゴリズムを復号化する暗号アルゴリズム復号化手段を備えたことを特徴とする請求項 1記載の暗号通信端末。

【請求項3】 前記鍵情報格納部は、前記暗号通信用の鍵の他、暗号化された暗号アルゴリズムを復号化する際に用いるアルゴリズム復号化鍵を格納することを特徴とする請求項2記載の暗号通信端末。

【請求項4】 前記鍵情報格納部は、暗号化された鍵を 格納するとともに、

前記暗号化された鍵を復号化する鍵情報復号化手段を備えたことを特徴とする請求項1乃至3のうち何れか一項 30 に記載の暗号通信端末。

【請求項5 】 前記制御手段は、前記暗号アルゴリズム格納部に格納する何れかの暗号アルゴリズムについての送信要求を受けた場合に、当該要求暗号アルゴリズムを出力するよう前記暗号アルゴリズム格納部に指令し、前記暗号化・復号化手段は、前記要求暗号アルゴリズムを前記送信する情報として暗号化することを特徴とする請求項1乃至4のうち何れか一項に記載の暗号通信端末。

【請求項6】 自己の通信相手が請求項5の暗号通信端末又は請求項1乃至6のうち何れか一項に記載の暗号通信端末を備える装置である場合に、当該通信相手に新たな暗号アルゴリズム及び又はこれに対応するアルゴリズム復号化鍵を要求し、その応答を暗号化・復号化手段にて復号化するとともに、

要求した暗号アルゴリズムを受け取った場合にはこれを前記暗号アルゴリズム格納部に格納し、要求したアルゴリズム復号鍵を受け取った場合にはこれを前記鍵情報格納部に格納することを特徴とする請求項1乃至5のうち何れか一項に記載の暗号通信端末。

【請求項7】 前記請求項1乃至6のうち何れか一項に 記載の暗号通信端末を備えるとともに、

通信相手から前記アルゴリズム復号化鍵を要求された場合には、該当するアルゴリズム復号化鍵を要求元への前記送信する情報として前記暗号化・復号化手段に入力することを特徴とする暗号通信センター装置。

【請求項8】 前記請求項5記載の暗号通信端末を備える場合に、

前記アルゴリズム復号化鍵にて暗号化された暗号アルゴ 0 リズムを複数種類格納する更新用暗号アルゴリズム格納 部を備え

前記制御手段は、前記暗号通信端末から暗号アルゴリズムを要求された場合には、前記暗号アルゴリズム格納部に代え、前記更新用暗号アルゴリズム格納部に対して前記要求暗号アルゴリズムを前記送信する情報として出力するよう指令することを特徴とする請求項7記載の暗号通信センター装置。

【請求項9】 前記暗号通信端末から前記アルゴリズム 復号化鍵を要求された場合に、送信すべきアルゴリズム 20 復号化鍵を暗号化し、この暗号化されたアルゴリズム復 号化鍵を前記送信する情報として前記暗号化・復号化手 段に入力する鍵暗号化手段を備えたことを特徴とする請 求項7又は8記載の暗号通信センター装置。

【請求項10】 前記鍵暗号化手段は、送信相手の暗号通信端末が固有に備える鍵により前記アルゴリズム復号 化鍵を暗号化することを特徴とする請求項7乃至9のうち何れか一項に記載の暗号通信センター装置。

【請求項11】 2以上の前記請求項1乃至6のうち何れか一項に記載の暗号通信端末が設けられた暗号通信システム。

【請求項12】 1以上の前記請求項1乃至6のうち何れか一項に記載の暗号通信端末と前記請求項7乃至10のうち何れか一項に記載の暗号通信センター装置とが設けられた暗号通信システム。

【請求項13】 暗号通信における情報送受信の一方となる暗号通信装置に用いられるプログラムであって、前記暗号通信に用いる暗号アルゴリズムを1種類以上格納させるとともに、指定された暗号アルゴリズムを出力させる暗号アルゴリズム格納手段と、

前記暗号アルゴリズムに対応した暗号通信用の鍵を格納 させるとともに、指定された鍵を出力させる鍵情報格納 手段と、

前記暗号通信において何れの暗号アルゴリズム及び鍵を 使用するかを、前記暗号アルゴリズム格納手段及び前記 鍵情報格納手段に対してそれぞれ指定させる制御手段 と、

前記暗号アルゴリズム格納手段に対して指定された暗号 アルゴリズム及び前記鍵情報格納手段に対して指定され た鍵によって、受信した暗号情報を復号化させ、又は、

50 送信する情報を暗号化させる暗号化・復号化手段とを有

002.gif

するプログラムを記憶したコンピュータ読み取り可能な 記憶媒体。

【請求項14】 前記暗号アルゴリズム格納手段は、暗 号化された暗号アルゴリズムを格納させるとともに、 前記暗号化された暗号アルゴリズムを、アルゴリズム復 号化鍵によって復号化させる暗号アルゴリズム復号化手 段を有するプログラムを記憶した請求項13記載の記憶 媒体。

【請求項15】 前記制御手段は、前記暗号アルゴリズ ム格納手段に格納させる何れかの暗号アルゴリズムにつ 10 いての送信要求を受けた場合に、当該要求暗号アルゴリ ズムを出力させるよう前記暗号アルゴリズム格納手段に 指令させ、

前記暗号化・復号化手段は、前記要求暗号アルゴリズム を前記送信する情報として暗号化させるプログラムを記 憶した請求項13又は14記載の記憶媒体。

【請求項16】 通信相手から前記アルゴリズム復号化 鍵を要求された場合には、該当するアルゴリズム復号化 鍵を要求元への前記送信する情報として前記暗号化・復 号化手段に入力させることプログラムを記憶した請求項 20 14又は15記載の記憶媒体。

【請求項17】 前記アルゴリズム復号化鍵にて暗号化 された暗号アルゴリズムを複数種類格納させる更新用暗 号アルゴリズム格納手段と、

通信相手から前記アルゴリズム復号化鍵を要求された場 合には、該当するアルゴリズム復号化鍵を要求元への前 記送信する情報として前記暗号化・復号化手段に入力さ せる手段とを有し、

前記制御手段は、前記暗号通信端末から暗号アルゴリズ ムを要求された場合には、前記更新用暗号アルゴリズム 30 格納手段に対して要求暗号アルゴリズムを前記送信する 情報として出力させるよう指令させるプログラムを記憶 した請求項14記載の暗号通信センター装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は暗号通信端末、暗 号通信センター装置、暗号通信システム及び記憶媒体、 更に詳しくは複数の暗号アルゴリズムが使用可能であ り、かつ新規暗号アルゴリズムを安全かつ効率よく登録 し使用可能である部分に特徴のある暗号通信端末、暗号 通信センター装置、暗号通信システム及び記憶媒体に関 する。

[0002]

【従来の技術】現在、ネットワークに接続された種々の 機器には機密保持のために暗号化技術が組み込まれてい る。この組み込まれた暗号化技術を用いることで、ネッ トワークを介する電子商取引やコンテンツ配信事業等が 盛んに行われようとしている。それらの業務は組み込ま れている暗号化技術の安全性のもとに成り立っているも

アルゴリズムの設計に関する研究が盛んに行われてい る.

【0003】しかしながら、暗号化技術を組み込んだ従 来のシステムでは、規格標準化等によりシステム仕様が 一度決まってしまうと、それと同時に、システムで使用 する暗号方式が固定されてしまう。したがって、システ ムのセキュリティレベルも固定されることになる。

【0004】一方、安全な暗号アルゴリズムの設計に関 する研究と同時に暗号アルゴリズムの安全性の評価のた めに暗号アルゴリズムの解読法の研究も盛んに行われて いる。したがって、システムで使用している暗号方式が 解読されるといったことも現実に起こりうることであ 3.

【0005】とのようにシステムで使用している暗号方 式が破られてしまった場合には、暗号方式を更新しない 限り、当該システムをそのまま使用することができなく なる。すなわち安全なネットワーク通信を継続するに は、システムの暗号方式を更新する必要が生じる。 [0006]

【発明が解決しようとする課題】しかしながら、ネット ワークを介しての暗号方式更新は、秘密情報の外部への 流出等の安全性の面で問題がある。一方、ネットワーク を介さない変更では、システムのすべての機器に一台づ つに暗号方式変更を加えなければならず、効率的な変更 が不可能である。

【0007】本発明は、このような実情を考慮してなさ れたもので、その第1の目的は、暗号アルゴリズムを選 択的して暗号通信を行うことができる暗号通信端末、暗 号通信センター装置、暗号通信システム及び記憶媒体を 提供することにある。

【0008】また、第2の目的は、新規暗号アルゴリズ ムをネットワークを介して安全かつ効率よく登録し、さ らに登録したアルゴリズムを使用状態とすることができ る暗号通信端末、暗号通信センター装置、暗号通信シス テム及び記憶媒体を提供することにある。

[0009]

【課題を解決するための手段】上記課題を解決するため に、請求項1に対応する発明は、暗号通信における情報 送受信の一方となる暗号通信端末において、暗号通信に 用いる暗号アルゴリズムを1種類以上格納するととも に、指定された暗号アルゴリズムを出力する暗号アルゴ リズム格納部と、暗号アルゴリズムに対応した暗号通信 用の鍵を格納するとともに、指定された鍵を出力する鍵 情報格納部と、暗号通信において何れの暗号アルゴリズ ム及び鍵を使用するかを、暗号アルゴリズム格納部及び 鍵情報格納部に対してそれぞれ指定する制御手段と、暗 号アルゴリズム格納部に対して指定された暗号アルゴリ ズム及び鍵情報格納部に対して指定された鍵によって、 受信した暗号情報を復号化し、又は、送信する情報を暗 のであり、このような背景から安全かつ効率の良い暗号 50 号化する暗号化・復号化手段とを備えた暗号通信端末で

5

ある。

【0010】本発明はこのような手段を設けたので、暗号アルゴリズムを選択的して暗号通信を行うことができる。これにより、より安全な暗号方式を選択して暗号通信を行うことができる。

【0011】次に、請求項2に対応する発明は、請求項1に対応する発明において、暗号アルゴリズム格納部は、暗号化された暗号アルゴリズムを格納するとともに、暗号化された暗号アルゴリズムを復号化する暗号アルゴリズム復号化手段を備えた暗号通信端末である。

【0012】本発明はこのような手段を設けたので、端末装置において暗号アルゴリズムの安全性を確保することができ、ひいては暗号通信の秘匿性を高めることができる。

【0013】次に、請求項3に対応する発明は、請求項2に対応する発明において、鍵情報格納部は、暗号通信用の鍵の他、暗号化された暗号アルゴリズムを復号化する際に用いるアルゴリズム復号化鍵を格納する暗号通信端末である。

【0014】本発明はこのような手段を設けたので、請 20 求項2に対応する発明と同様に暗号アルゴリズムを第三 者から守ることができる。

【0015】次に、請求項4に対応する発明は、請求項1~3に対応する発明において、鍵情報格納部は、暗号化された鍵を格納するとともに、暗号化された鍵を復号化する鍵情報復号化手段を備えた暗号通信端末である。

【0016】本発明はこのような手段を設けたので、暗号通信用の鍵やアルゴリズム復号化鍵を安全な状態で保持することができ、第三者に鍵を盗まれた場合でも、暗号アルゴリズム自体や通信鍵の安全性を確保することが 30でき、ひいては暗号通信の秘匿性を高めることができる。

【0017】次に、請求項5に対応する発明は、請求項1~4に対応する発明において、制御手段は、暗号アルゴリズム格納部に格納する何れかの暗号アルゴリズムについての送信要求を受けた場合に、当該要求暗号アルゴリズムを出力するよう暗号アルゴリズム格納部に指令し、暗号化・復号化手段は、要求暗号アルゴリズムを送信する情報として暗号化する暗号通信端末である。

【0018】本発明はこのような手段を設けたので、新規暗号アルゴリズムをネットワークを介して安全かつ効率よく登録することができる。

【0019】次に、請求項6に対応する発明は、請求項1~5に対応する発明において、自己の通信相手が請求項5の暗号通信端末又は請求項1乃至6のうち何れか一項に記載の暗号通信端末を備える装置である場合に、当該通信相手に新たな暗号アルゴリズム及び又はこれに対応するアルゴリズム復号化鍵を要求し、その応答を暗号化・復号化手段にて復号化するとともに、要求した暗号アルゴリズムを受け取った場合にはこれを暗号アルゴリ

ズム格納部に格納し、要求したアルゴリズム復号鍵を受け取った場合にはこれを前記鍵情報格納部に格納する暗 号通信端末である。

【0020】本発明はこのような手段を設けたので、新規暗号アルゴリズムをネットワークを介して安全かつ効率よく登録し、さらに登録したアルゴリズムを使用状態とすることができる。

【0021】次に、請求項7に対応する発明は、請求項1乃至6のうち何れか一項に記載の暗号通信端末を備えるとともに、通信相手からアルゴリズム復号化鍵を要求された場合には、該当するアルゴリズム復号化鍵を要求元への送信する情報として暗号化・復号化手段に入力する暗号通信センター装置である。

【0022】本発明はこのような手段を設けたので、アルゴリズム復号化鍵を集中的に管理し、端末からアルゴリズム復号化鍵の要求があったときにはこれを暗号通信でもって引き渡すことができる。

【0023】次に、請求項8に対応する発明は、請求項7に対応する発明において、請求項5記載の暗号通信端末を備える場合に、アルゴリズム復号化鍵にて暗号化された暗号アルゴリズムを複数種類格納する更新用暗号アルゴリズム格納部を備え、制御手段は、暗号通信端末から暗号アルゴリズムを要求された場合には、暗号アルゴリズム格納部に代え、更新用暗号アルゴリズム格納部に対して要求暗号アルゴリズムを送信する情報として出力するよう指令する暗号通信センター装置である。

【0024】本発明はこのような手段を設けたので、アルゴリズム復号鍵のみならず、暗号アルゴリズム自体も安全に要求端末に送信することができる。

0 【0025】次に、請求項9に対応する発明は、請求項7又は8に対応する発明において、暗号通信端末からアルゴリズム復号化鍵を要求された場合に、送信すべきアルゴリズム復号化鍵を暗号化し、この暗号化されたアルゴリズム復号化鍵を送信する情報として暗号化・復号化手段に入力する鍵暗号化手段を備えた暗号通信センター装置である。

【0026】本発明はこのような手段を設けたので、暗号通信における暗号化に加えて元々の鍵自体も暗号化されるのでより安全にアルゴリズム復号化鍵を引き渡すこ40 とができる。

【0027】次に、請求項10に対応する発明は、請求項7~9に対応する発明において、鍵暗号化手段は、送信相手の暗号通信端末が固有に備える鍵によりアルゴリズム復号化鍵を暗号化する暗号通信センター装置である。

【0028】本発明はとのような手段を設けたので、要求を発した端末のみに対応する形でアルゴリズム復号化鍵を暗号化でき、安全性をより一層高めることができる。

50 【0029】次に、請求項11に対応する発明は、2以

を表す。

上の前記請求項1乃至6のうち何れか一項に記載の暗号 通信端末が設けられた暗号通信システムである。

【0030】本発明はこのような手段を設けたので、暗 号アルゴリズムを選択的して暗号通信を行うことができ る暗号通信システムを構築することができる。

【0031】次に、請求項12に対応する発明は、1以 上の請求項1乃至6のうち何れか一項に記載の暗号通信 端末と請求項7乃至10のうち何れか一項に記載の暗号 通信センター装置とが設けられた暗号通信システムであ

【0032】本発明はこのような手段を設けたので、暗 号アルゴリズムを選択的して暗号通信を行うことができ るとともに、新規暗号アルゴリズムをネットワークを介 して安全かつ効率よく登録し、さらに登録したアルゴリ ズムを使用状態とすることができる暗号通信システムを 構築することができる。

【0033】次に、請求項13に対応する発明は、請求 項1に対応する発明をコンピュータに実現させるプログ ラムを記録した記憶媒体である。

【0034】との記憶媒体から読み出されたプログラム により制御されるコンピュータは、請求項1の暗号通信 端末として機能する。

【0035】次に、請求項14に対応する発明は、請求 項2に対応する発明をコンピュータに実現させるプログ ラムを記録した記憶媒体である。

【0036】との記憶媒体から読み出されたプログラム により制御されるコンピュータは、請求項2の暗号通信 端末として機能する。

【0037】次に、請求項15に対応する発明は、請求 ラムを記録した記憶媒体である。

【0038】との記憶媒体から読み出されたプログラム により制御されるコンピュータは、請求項5の暗号通信 端末として機能する。

【0039】次に、請求項16に対応する発明は、請求 項7に対応する発明をコンピュータに実現させるプログ ラムを記録した記憶媒体である。

【0040】との記憶媒体から読み出されたプログラム により制御されるコンピュータは、請求項7の暗号通信 センター装置として機能する。

【0041】次に、請求項17に対応する発明は、請求 項8に対応する発明をコンピュータに実現させるプログ ラムを記録した記憶媒体である。

【0042】この記憶媒体から読み出されたプログラム により制御されるコンピュータは、請求項8の暗号通信 センター装置として機能する。

[0043]

【発明の実施の形態】以下、本発明の実施の形態につい て説明する。

 $g \in El(x)[y], E2(x)[y], E(z,$ x) [y] 等と表す。ここで、xは暗号化に用いる鍵を 表し、yは暗号化対象のデータを表し、zは暗号化に用 いるアルゴリズムを表す。また、albはaとbの連接

【0045】(発明の第1の実施の形態)図1は本発明 の第1の実施の形態に係る暗号通信システムの一例を示 す構成図である。

【0046】同図に示す暗号通信システムは、インター 10 ネットやLAN等の種々のネットワーク1に暗号通信端 末2(以下、単に端末2ともいう)及び暗号通信センタ ー装置3(以下、単にセンター3ともいう)が接続され て構成されている。各端末2間、及び端末2~センター 3間ではネットワーク1を介して通信(あるいは暗号通 信)が実行可能に構成されている。

【0047】図2は暗号通信端末の構成例を示すブロッ ク図である。

【0048】暗号通信端末2は、制御部11、鍵情報格 納部12、暗号アルゴリズム格納部13、暗号化・復号 化部14、鍵情報復号化部15、暗号アルゴリズム復号 化部16及びID格納部17から構成されている。この 端末2は、CPUやメモリ等の計算機要素を備えた手段 であり、プログラムに制御されるCPUの動作により上 記各機能手段を実現している。また、ネットワーク通信 のために、図示しない通信装置を備えている。

【0049】一方、図3は暗号通信センター装置の構成 例を示すブロック図である。

【0050】暗号通信センター装置3は、制御部21、 鍵情報格納部22、暗号アルゴリズム格納部23、暗号 項5に対応する発明をコンピュータに実現させるプログ 30 化・復号化部24、端末鍵情報格納部25、アルゴリズ ム復号化鍵格納部26、鍵暗号化部27、更新用暗号ア ルゴリズム格納部28、端末権限管理部29及び I D格 納部30から構成されている。センター3は、端末2と 同様、CPUやメモリ等の計算機要素を備えた手段であ り、プログラムに制御されるCPUの動作により 上記各 機能手段を実現している。また、ネットワーク通信のた めに、図示しない通信装置を備えている。

> 【0051】ととでまず、暗号通信端末2の各構成要素 について説明する。

【0052】制御部11は、各部12~17を制御する ことでデータの流れを制御し、例えば識別情報 (ID) やメッセージ等を機能部12, 13, 14に与える。ま た、制御部11は、ID情報を指定することで暗号通信 の際に使用する秘密鍵や暗号アルゴリズムを選択するよ うになっている。

【0053】ID格納部17は、センター3及び端末2 のIDや、アルゴリズム(Al)のID、更には鍵のI D等、種々のIDを格納する。

【0054】鍵情報格納部12は、暗号化された鍵情報 【0044】なお、各実施形態では、暗号化されたデー 50 を格納しており、端末等の I D 及びアルゴリズム I D を

入力されると、これらに対応しかつ暗号化された鍵情報 を鍵情報復号化部15に出力する。

【0055】鍵情報復号化部15は、鍵情報格納部12 から引き渡された鍵情報を自己の固有の秘密鍵で復号化

【0056】暗号アルゴリズム格納部13は、暗号化さ れたアルゴリズムを格納しており、アルゴリズムIDを 入力されると、これに対応しかつ暗号化された暗号アル ゴリズムを暗号アルゴリズム復号化部16に出力する。 【0057】暗号アルゴリズム復号化部16は、鍵情報 10 する。 復号化部15から受け取った鍵を用いて暗号アルゴリズ ム格納部13から出力された暗号アルゴリズムを復号す る。

【0058】暗号化・復号化部14は、暗号アルゴリズ ム復号化部16により復号されたアルゴリズムを用い、 鍵情報復号化部15にて復号化された通信用の鍵によっ てメッセージMを暗号化する。

【0059】次に、暗号通信センター装置の各構成要素 について説明する。

【0060】制御部21は、各部22~30の動作を制 20 御して情報の流れを制御するとともに、ID等を対応す る機能部に与える。また、制御部12は、ID情報を指 定することで暗号通信の際に使用する秘密鍵や暗号アル ゴリズムを選択するとともに、端末2が更新要求する暗 号アルゴリズムやその復号化鍵を選択するようになって

【0061】鍵情報格納部22は、各端末2とセンター 3間で暗号通信するための秘密鍵を格納するとともに、 端末IDを受け取ると対応する秘密鍵を暗号化・復号化 部24に出力する。

【0062】暗号アルゴリズム格納部23は、種々の暗 号アルゴリズムを格納しており、アルゴリズムIDを受 け取ると、対応する暗号アルゴリズムを暗号化・復号化 部24に出力する。

【0063】端末鍵情報格納部25は、各端末の固有の 秘密鍵を格納しており、端末IDを受け取ると、対応す る端末の秘密鍵を鍵暗号化部27に出力する。

【0064】アルゴリズム復号化鍵格納部26は、暗号 化された各暗号アルゴリズムの復号化鍵を格納してお ゴリズムの復号化鍵を鍵暗号化部27に出力する。

【0065】鍵暗号化部27は、端末固有の秘密鍵によ って暗号アルゴリズムの復号化鍵を暗号化し暗号化・復 号化部24に出力する。

【0066】更新用暗号アルゴリズム格納部28は、端 末2に与えるべき新たな暗号アルゴリズムを格納してお り、アルゴリズムIDを受け取ると、これに対応しかつ 暗号化された暗号アルゴリズムを暗号化・復号化部24 に出力する。

から出力されたアルゴリズム復号化鍵及び又は更新用暗 号アルゴリズム格納部28から出力された暗号アルゴリ ズムを、暗号アルゴリズム格納部23からの暗号アルゴ リズムを用い、鍵情報格納部22から受け取った鍵によ り暗号化する。

【0068】端末権限管理部29は、更新用暗号アルゴ リズムやそのアルゴリズム復号化鍵を要求する端末が正 当権限を有するものであるかをチェックし、正当権限を 揺する場合のみ、上記各部21~28による処理を許可

【0069】ID格納部30は、端末や、アルゴリズ ム、アルゴリズム復号鍵等のIDを格納しており、何れ かの端末2から I D取得要求があったときには、その I Dを要求端末2に送信する。

【0070】次に、以上のように構成された本実施形態 における暗号通信システムの動作について説明する。

【0071】まず、端末間暗号通信について説明する。

【0072】図4は端末間で暗号通信が行われる様子を 示す図である。

【0073】同図では、端末2 j から端末2 j へメッセ ージMが暗号アルゴリズムA 1 で暗号化されて送信され る手順が示されている。

【0074】との場合まず、送信先の端末2jの名前や メールアドレス等のID情報IDjと暗号通信の際使用 する暗号アルゴリズムAlのID情報IDAlとが端末 2 i の制御部11によってID格納部17から取り出さ れる。また、メッセージMが制御部11に入力される。 すなわち制御部11は使用する暗号アルゴリズムの指定 手段としても機能している。なお、端末2 i 及び2 j

30 は、予め必要な I D情報をセンター3 に請求し、当該セ ンター3におけるID格納部30のID情報を取得して いる。

【0075】メッセージMは制御部11から暗号化・復 号化部14に出力される。同様に、IDA1は暗号アル ゴリズム格納部に出力され、IDj及びIDAIが鍵情 報格納部12に出力される。

【0076】ととで、鍵情報格納部12においては入力 されたID情報より、対応する鍵情報が取り出され、鍵 情報復号化部15に出力される。すなわち IDjにより り、アルゴリズム【Dを受け取ると、対応する暗号アル 40 暗号化された秘密鍵E1(Ki)【Kij】が出力さ れ、IDAIによりアルゴリズム復号化鍵E1 (Ki) [KAI] が出力される。ここで、Kijは端末2i. 2 j間で暗号通信を行うための鍵であって、例えばDE Sの共通鍵等が相当する。

【0077】との暗号化された鍵情報は、鍵情報復号化 部15においてパスワードや1Cカードに保存されてい る鍵などの端末固有の鍵情報Kiによって復号化され る。このうち、暗号化されたアルゴリズムAIの復号化 鍵であるKA1は暗号アルゴリズム復号化部16へ、K 【0067】暗号化・復号化部24は、鍵暗号化部27 50 ijは暗号化・復号化部14へそれぞれ出力される。

【0078】一方、暗号アルゴリズム格納部16からは、制御部11から入力されたID情報に基づいて暗号アルゴリズム復号化部16に対し暗号化された暗号アルゴリズムE2(KA1)[A1]が出力される。

【0079】この入力された暗号化された暗号アルゴリズムは、暗号アルゴリズム復号化部16においてアルゴリズム復号化鍵KA1によって復号化され、暗号化・復号化部14に対して暗号化アルゴリズムA1として出力される。

【0080】暗号化・復号化部14においては、入力さ 10 れたメッセージM、暗号アルゴリズムA1、秘密鍵Kijによって送信するメッセージMが暗号化される。

【0081】こうして作成された暗号文E(A1, Kij)[M]には、送信元端末を示すIDiと、この暗号通信で使用する暗号アルゴリズムのIDAIが添付され、図示しない送信装置によりネットワーク1を介して端末2jに送信される。

【0082】この暗号通信を受け取った端末2jにおいては、まず、制御部11からIDA1が暗号アルゴリズム格納部13に出力され、IDi及びIDA1が鍵情報 20格納部12に出力される。

【0083】このID情報が入力された情報格納部12より、鍵情報復号化部15に対して暗号化された秘密鍵E1(Kj)[Kij]及びアルゴリズム復号化鍵E1(Kj)[KA1]が出力される。

【0084】暗号化されたこれらの鍵情報はパスワードやICカードに保存されている鍵などの端末固有の鍵情報Kjによって鍵情報復号化部15において復号化され、このうちKAlは暗号アルゴリズム復号化部16へ、またKijは暗号化・復号化部14へそれぞれ出力30される。

【0085】一方、制御部11から暗号アルゴリズム格納部13に入力されたID情報に基づき、当該暗号アルゴリズム格納部13から暗号アルゴリズム復号化部16に対して暗号化された暗号アルゴリズムE2(KA1)[A1]が出力される。

【0086】暗号アルゴリズムE2(KA1)[A1]は、暗号アルゴリズム復号化部16においてアルゴリズム復号化鍵KA1により復号化され、暗号化・復号化部に対しアルゴリズムA1として出力される。

【0087】暗号化・復号化部14においては、端末2iから受け取った暗号文E(A1, Kij)[M]が暗号アルゴリズムA1及び秘密鍵Kijによって復号化され、メッセージMが出力される。

【0088】とのようにして、端末2iから端末2jへの暗号アルゴリズムAlによる暗号通信が実現されるととになる。とのとき、最初に与えるアルゴリズムIDは適宜変更可能であるので、端末2i,2jの双方が登録している暗号アルゴリズムであればこれを自在に変更できる。

.

【0089】次に、端末2が保持していない暗号アルゴリズムをセンター3から取得し、新たな暗号アルゴリズムを登録する登録(更新)手順について説明する。この更新手続きには暗号通信センター装置3から暗号アルゴリズム及びその復号鍵のすべてを取得する更新手順#1と、暗号アルゴリズムは他の暗号通信端末2から取得し、その復号鍵はセンター3から取得する更新手順#2とがある。ここでは、更新手順#1を説明し、第2の実施形態で更新手順#2を説明する。

0【0090】図5は暗号アルゴリズム及びその復号鍵のすべてを暗号通信センター装置3から取得する更新手順#1の処理を示す図である。

【0091】同図では端末2iがセンターに対し、新しい暗号アルゴリズムAl'及び暗号アルゴリズムAl'な対する暗号アルゴリズム復号化鍵KAl'を要求する場合を示している。

【0092】 このためにまず、端末2iからセンター3に、端末2iのID情報IDi、更新する暗号アルゴリズムのID情報IDAl、更新の際使用する暗号アルゴリズムのID情報IDAlが送信される。なお、ID情報IDAl、等は事前に端末2iにおいてセンター3から取得され、ID格納部17に格納されている。

【0093】各ID情報を受け取った暗号通信センター装置3においては、受信情報が制御部21に読み込まれる。さらに、制御部21から端末権限管理部29への間合せが行われて端末2iが暗号アルゴリズムを取得する権限を備えているかが確認される。必要な場合には、端末2iは自己を証明する暗証情報等を送信し、その暗証情報等が端末権限管理部29での権限確認に用いられる。なお、権限確認された後に、制御部21への読み込みが行われてもよい。

【0094】権限確認後、制御部21にて読み込まれた各IDについて、当該制御部21から暗号アルゴリズム格納部23に対してIDA1が出力され、また、鍵情報格納部22に対しIDiが出力される。さらに、端末鍵情報格納部25に対しIDiが出力され、アルゴリズム復号化鍵格納部26に対しIDA1′が出力され、更新用暗号アルゴリズム格納部28に対しIDA1′が出力される。

0 【0095】との制御部21からのID情報出力に対応し、まず、暗号アルゴリズム格納部23からは暗号化・復号化部24に対し暗号アルゴリズムAIが出力される。また、鍵情報格納部22からは暗号化・復号化部24に対し鍵Kciが出力される。とこで、鍵Kciは、端末2iとセンター3間で暗号通信を行うための共通秘密鍵(例えばDES用の鍵)である。

【0096】さらに、入力されたID情報各々に対応 し、端末鍵情報格納部25からは鍵暗号化部27に対し て端末2i固有の鍵Kiが出力され、アルゴリズム復号 50 化鍵格納部26からは鍵暗号化部27に対しアルゴリズ

ムKAI' 用の鍵KAI' が出力される。なお、暗号通 信センター装置3は、端末権限管理部29に登録された すべての暗号通信端末2の固有の鍵 (Ki, Kj等)を 保持している。

【0097】鍵暗号化部27においては、入力された端 末2 i 固有の鍵Kiとアルゴリズム復号化鍵KA1′よ って、鍵KA1′が鍵Kiで暗号化され、その暗号化結 果としてE1(Ki)[KA1′]が暗号化・復号化部 24に出力される。

【0098】一方、入力された I D情報に基づき、更新 10 用暗号アルゴリズム格納部28から暗号化・復号化部2 4に対しE2(KA1')[A1']が出力される。な お、E2(KA1') [A1'] は、端末2iから要求 された暗号アルゴリズムA 1′が鍵ΚΑ 1′によって暗 号化されたものである。

【0099】とうして暗号化・復号化部24に対して は、暗号アルゴリズムA1、秘密鍵Kci、更新情報E 1 (Ki) [KA1'] 及びE2 (KA1') [A 1']が入力される。更新情報 E1 (Ki) [KA 号化部24において暗号アルゴリズムA1に基づいて秘 密鍵Kciにより暗号化される。

【0100】 Cの作成された暗号文E(A1. Kci) [IDA1' | E1 (Ki) [KA1'] | E2 (KA 1') [A1']] と、I D c と、I D A 1 とがセンタ -3の通信装置によりネットワーク1を介して端末2 i に送信される。

【0101】との暗号通信を受信した端末2iにおいて は、その受信情報が制御部11に読み込まれ、暗号アル 格納部12に対し【Dc及び【DA】が出力される。

【0102】鍵情報格納部15からは、入力されたID 情報に基づき、鍵情報復号化部15に対し暗号化された 秘密鍵E1(Ki)[Kci]及びアルゴリズム復号化 鍵E1(Ki)[KA1]が出力される。

【0103】この各暗号化された鍵情報が入力された鍵 情報復号化部12においては、端末固有の鍵情報Kiに よってこれらが復号化される。ここで鍵KAlは暗号ア ルゴリズム復号化部16へ秘密鍵Kciは暗号化・復号 化部14へそれぞれ出力される。

【0104】一方、制御部11からIDA1を入力され た暗号アルゴリズム格納部13からは、暗号アルゴリズ ム復号化部16に対し暗号化された暗号アルゴリズムE 2(KAI)[AI]が出力される。これを受けた暗号 アルゴリズム復号化部16において、鍵情報復号化部1 5から入力されたアルゴリズム復号化鍵KAlにより暗 号化された暗号アルゴリズムE2(KA1)[A1]が 復号化され、暗号化・復号化部に対しA1が出力され

ら受け取った暗号文E(Al, Kci)[IDAl' | E1 (Ki) [KA1'] | E2 (KA1') [A 1′]]が、暗号アルゴリズムA1及び密鍵Kciによ って復号化される。この復号化が行われた結果、IDA l ′ と対応付けて鍵情報格納部12にE1 (Ki) [K A1']が出力され、暗号アルゴリズム復号化部13に E2(KA1')[A1']が出力される。

【0106】とうして、鍵情報格納部12及び暗号アル ゴリズム復号化部13に対し、暗号アルゴリズムA1' のID情報に対応して、暗号化された鍵情報及び暗号化 された暗号アルゴリズムが登録されることになる。した がって、以降、IDA1′を受けると、これらの各部1 2及び13はそれぞれIDA1′についての情報を出力 するようになる。

【0107】上述したように、本発明の実施の形態に係 る暗号通信端末は、制御部11にて使用すべき暗号アル ゴリズムを指定し、これに対応して暗号アルゴリズム格 納部13,鍵情報格納部12及び暗号化・復号化部14 を設けたので、複数の暗号アルゴリズムから通信毎にア $oxed{1'}$] 及び $oxed{E}$ $oxed{2}$ ($oxed{K}$ $oxed{A}$ $oxed{1'}$) $oxed{L}$ $oxed{M}$ $oxed{A}$ $oxed{1'}$) $oxed{L}$ $oxed{M}$ $oxed{M}$ oされる可能性が高くなったアルゴリズムを用いないよう にすることで通信の安全性を高めることができる。

【0108】また、本実施形態の暗号通信端末では、暗 号アルゴリズム自体を暗号化して暗号アルゴリズム格納 部13に格納しているので、万一暗号アルゴリズムが盗 まれた場合でも、そのアルゴリズムの解読や悪用を防止 することができる。

【0109】さらに、暗号通信用の鍵やアルゴリズム復 号化鍵自体も暗号化がなされているので、これらの鍵が ゴリズム格納部13に対しIDA1が出力され、鍵情報 30 盗まれた場合の悪用を防止することができる。例えば暗 号化されたアルゴリズム復号化鍵と暗号化された暗号ア ルゴリズムとが同時に盗まれても安全性は保持される。 【0110】さらに、本実施形態の暗号通信端末では、 新たな暗号アルゴリズム及びアルゴリズム復号化鍵を要 求した場合に、その応答を復号し、それぞれを暗号アル ゴリズム格納部13及び鍵情報格納部13に格納するよ うにしているので、新規暗号アルゴリズムをネットワー クを介して安全かつ効率よく登録することができる。さ らに一旦登録されると、次回からはアルゴリズム I Dを 40 指定するだけでその使用が可能になるため、取得したア ルゴリズムを容易に使用可能状態とすることができる。 【0111】また、本実施形態の暗号通信端末では、端 末固有の鍵Ki等の保管あるいは同鍵Ki等を扱う鍵情 報復号化部15に、ICカード等、内部構造を解析され にくい耐タンパー装置を用いるようにしたので、固有の 鍵を不正に取得しようとする行為に対して高い防御力を 発揮することができ、ひいては暗号アルゴリズムの不正 流出を防ぐことができる。

【0112】また、本実施形態の暗号通信センター装置 [0105] 暗号化・復号化部14では、センター3か 50 は、更新用暗号アルゴリズム格納部26と、鍵情報格納

部22を備え、要求された暗号アルゴリズム及びアルゴ リズム復号化鍵を暗号化して要求端末に送信するように したので、新規暗号アルゴリズムをネットワークを介し て安全かつ効率的に配布することができる。

【0113】したがって、現在使用している暗号方式が 破られてしまったような場合でも、すぐに新しい暗号方 式を更新することができ、安全なネットワーク通信の継 続を容易に実現することができる。

【0114】また、本実施形態の暗号通信センター装置 は、各端末2が有する端末固有の鍵によってアルゴリズ 10 ム復号化鍵を暗号化するようにしたので、万一配布した アルゴリズム復号鍵が盗まれた場合でも、効果的にアル ゴリズム復号化鍵の秘匿性を保持することができる。

【0115】なお、暗号通信端末同士からなる暗号通信 システム、あるいはこれに暗号通信センター装置を加え た暗号通信システムにおいても、上記と同様な効果を得 ることができる。

【0116】(発明の第2の実施の形態)本実施形態で は、第1の実施形態の暗号通信システムにおいて、端末 2が保持していない暗号アルゴリズムを取得する他の登 20 録(更新)手順について説明する。

【0117】本実施形態の暗号通信システムは、第1の 実施形態における暗号通信システムと同様に構成されて いる。相違点は、返される暗号アルゴリズム及びアルゴ リズム復号化鍵が異なる点である。とのために、制御部 11は、第1の実施形態と同様に構成される他、端末2 が更新要求する暗号アルゴリズムを選択するようになっ ている。これらは構成上の相違というよりは、端末2か ら送信する I D情報及び又は I D情報送信先によって変 わる動作上の相違である。なお、本実施形態では第1の 30 実施形態と同一部分には同一符号を付して詳細説明を省 略する。

【0118】以下、本実施形態の動作について説明する が、既に登録された暗号アルゴリズムによる暗号通信は 第1の実施形態と同様であるので省略し、新たに登録す べきアルゴリズムについて、第1の実施形態で説明した 更新手順#1と異なる更新手順#2について説明する。

【0119】図6は本発明の第2の実施の形態に係る暗 号通信システムにおいて暗号アルゴリズムのみを他の暗 ある。

【0120】ことでは更新手順#2における第1の手続 きとして、まず、暗号アルゴリズムのみを他の暗号通信 端末から取得する手続きについて説明する。

【0121】端末2jは更新手順#1若しくは#2によ って暗号アルゴリズムAl′を取得している。例えば端 末2 i が自己が保持しない暗号アルゴリズムA 1′によ って端末2 j と通信しようとするとき、その通信に先立 ち、まず、端末2 i から暗号アルゴリズムA l' 及びそ の復号化鍵の取得、登録が行われる。この登録処理は、

端末2 j 及びセンター3のそれぞれに並行して各情報の 取得要求がなされることで実現される。

【0122】このために端末2iが端末2jに対し新し い暗号アルゴリズムA1′を要求する場合、まず、端末 2 i から I D i 、更新する暗号アルゴリズムの I D情報 IDA1′及び更新の際使用する暗号アルゴリズムの [D情報 I DA 1 が端末2 j に対して送信される。

【0123】これらの情報を受け取った端末2jにおい ては、当該受信情報が制御部11に読み込まれ、制御部 11から暗号アルゴリズム格納部13にIDA1及びI DA1′が出力される。また、鍵情報格納部12に対し IDi及びIDAIが出力される。

【0124】 I D情報が入力された鍵情報格納部12か らは鍵情報復号化部 1 5 に対し暗号化された秘密鍵 E 1 (Kj) [Kij] 及びアルゴリズム復号化鍵E1(K j) [KA1] が出力される。さらに、鍵情報復号化部 15では暗号化された鍵情報がパスワードや I C カード に保存されている鍵などの端末固有の鍵情報Kjによっ て復号化され、鍵KAlが暗号アルゴリズム復号化部へ 鍵Kijが暗号化・復号化部へそれぞれ出力される。

【0125】一方、ID情報が入力された暗号アルゴリ ズム格納部13からは、暗号アルゴリズム復号化部16 に対し暗号通信用の暗号化された暗号アルゴリズムE2 (KA1) [A1] が出力される。さらに、暗号化・復 号化部14に対し、端末2iに送信すべき暗号化された 暗号アルゴリズムE2(ΚΑΙ') [ΑΙ'] が出力さ れる。

【0126】暗号アルゴリズム復号化部16では、入力 された暗号化された暗号アルゴリズムE2(ΚA1)

[A1]がアルゴリズム復号化鍵KA1によって復号化 され暗号アルゴリズムAlが取り出されて、暗号化・復 号化部14に出力される。

【0127】暗号化・復号化部14においては、入力さ れた暗号アルゴリズムA1、秘密鍵Kijによって更新 情報 E 2 (KA1') [A1'] が暗号化される。この 暗号文E(Al, Kij)[IDAl'|E2(KA I′) [AI′] とIDjとIDA1とが通信装置によ ってネットワーク1を介して端末2iに送信される。

【0128】この送信情報は端末2iにて受信され、当 号通信端末から取得する更新手順#2の処理を示す図で 40 該受信情報が制御部11に読み込まれ、暗号アルゴリズ ム格納部13に対しIDA1が出力される。また、制御 部11からは鍵情報格納部12に対しIDj及びIDA 1が出力される。

> 【0129】入力されたID情報に基づき、鍵情報格納 部12からは鍵情報復号化部15に対し、暗号化された 秘密鍵E1(Ki)[Kij]及びアルゴリズム復号化 鍵E1(Ki)[KA1]が出力される。

【0130】との入力された暗号化された鍵情報は、鍵 情報復号化部15においてパスワードやICカードに保 50 存されている鍵などの端末固有の鍵情報Kiによって復

号化される。この復号化された鍵のうち、鍵KAlは暗 号アルゴリズム復号化部16へ出力され、端末間暗号通 信用の鍵Kijは暗号化・復号化部14へそれぞれ出力 される。

【0131】一方、暗号アルゴリズム格納部13から は、入力されたID情報に基づいて暗号化された暗号ア ルゴリズムE2(KA1)[A1]が暗号アルゴリズム 復号化部16に対し出力される。暗号アルゴリズム復号 化部16 においては暗号化された暗号アルゴリズムE2 (KA1) [A1] がアルゴリズム復号化鍵KA1によ 10 って復号化され、その暗号アルゴリズムAlが暗号化・ 復号化部14に対し出力される。

【0132】暗号化・復号化部14においては、端末2 jから入力された暗号文E(Al, Kij)[IDA 1′ | E2 (KA1′) [A1′]]が、暗号アルゴリ ズムAl及び秘密鍵Kijによって復号化される。この 復号化された情報は、暗号化された暗号アルゴリズムE 2 (KAI') [AI'] であり、同情報は IDAI' と対応付けられて暗号アルゴリズム復号化部13に登録 される。

【0133】とのようにして、新たな暗号アルゴリズム A1′が端末2iに登録されるが、このアルゴリズムを 使用可能状態にするためには、当該情報E2(KA 1′) [A1′]を復号化してA1′を取り出すための 復号化鍵 ΚΑ1′を取得する必要がある。この復号化鍵 KA1′は各端末固有の秘密鍵により暗号化されている ため、他の端末2 j から取得することはできない。した がって、鍵の一括管理を行う暗号通信センター装置3に 自己の固有の秘密鍵で暗号化したものを発行してもらう 必要がある。

【0134】そこで、次に、更新手順#2における第2 の手続きとして、暗号アルゴリズム復号化鍵KA1′を 暗号通信センター装置3から取得する手続きについて説 明する。

【0135】図7は暗号アルゴリズム復号化鍵を暗号通 信センター装置から取得する更新手順#2の処理を示す 図である。

【0136】まず、端末2iからセンター3に対し、端 末2 iのID情報IDi、要求する暗号アルゴリズム復 号化鍵のID情報IDKA1′及びこの暗号通信で使用 40 される暗号アルゴリズムのID情報IDAlが送信され る。

【0137】この各ID情報を受信した暗号通信センタ ー装置3では、まず、受信情報が制御部21に読み込ま れた後、第1実施形態の更新手順#1と同様にして端末 権限管理部29により権限確認が行われる。なお、権限 確認された後に、制御部21への読み込みが行われても

【0138】読み込まれた各ID情報について、制御部 21から暗号アルゴリズム格納部23に対し「DAIが 50 【0146】暗号化・復号化部14においては、センタ

出力され、また、鍵情報格納部22に対しIDiが出力 される。また、端末鍵情報格納部25に対し IDiが出 力され、アルゴリズム復号化鍵格納部26に対しIDK A1′が出力される。

【0139】との入力ID情報に対応し、暗号アルゴリ ズム格納部23からは暗号化・復号化部24に対し暗号 アルゴリズムA1が出力される。また、鍵情報格納部2 2からは入力された I D情報より、暗号化・復号化部に 対し、端末~センター間での暗号通信用の鍵Kciが出 力される。端末鍵情報格納部25からは入力された1D 情報より、鍵暗号化部27に対し端末2i固有の鍵Ki が出力される。さらにアルゴリズム復号化鍵格納部26 からは入力された I D情報より、鍵暗号化部27 に対し 鍵KA1′が出力される。

【0140】鍵暗号化部27ではアルゴリズム復号化鍵 KA1′が入力された端末2i固有の鍵Kiにより暗号 化され、その暗号化結果であるE1(Ki)[KA 1′]が暗号化・復号化部24に出力される。との暗号 結果が端末2 i 専用に作成された暗号化されたアルゴリ 20 ズム復号化鍵情報である。

【0141】暗号化・復号化部24では、更新情報E1 (Ki) [KA1'] が暗号アルゴリズムA1及び秘密 鍵Kciによって暗号化される。その暗号結果である暗 号文E(AI, Kci)[IDKAl'|E1(Ki) [KAI']]とIDcとIDAIとが通信装置によっ てネットワーク1を介して端末2iに送信される。

【0142】との暗号通信は端末2iにて受信され、そ の受信情報が制御部11に読み込まれる。制御部11に 読み込まれた情報のうち、IDAIが暗号アルゴリズム 30 格納部13に出力され、また、鍵情報格納部12に対し IDc及びIDAIが出力される。

【0143】ID情報を入力された鍵情報格納部12か らは鍵情報復号化部15に対し、IDに対応して暗号化 された秘密鍵E1(Ki)[Kci]及びアルゴリズム 復号化鍵E1(Ki)[KAl]が出力される。これを 受けた鍵情報復号化部15においては、パスワードや [Cカードに保存されている鍵などの端末固有の鍵情報K iによって各鍵情報が復号化される。このうち、鍵KA 1 が暗号アルゴリズム復号化部 1 6 へ出力され、鍵K c i が暗号化・復号化部14へ出力される。

【0144】一方、暗号アルゴリズム格納部13から は、入力されたID情報より、暗号アルゴリズム復号化 部16に対し暗号化された暗号アルゴリズムE2(KA 1) [A1] が出力される。

【0145】との暗号化された暗号アルゴリズムE2 (KAI) [AI] は、暗号アルゴリズム復号化部16 においてアルゴリズム復号化鍵KA1により復号化さ れ、その復号結果である暗号アルゴリズムAlが暗号化 ・復号化部14に出力される。

-3から受信した暗号文E(Al. Kci)「IDKA 1′ | E 1 (K i) [KA 1′]]が、暗号アルゴリズ ムA1及び秘密鍵Kciによって復号化される。この復 号E1(Ki)[KA1']は、IDKA1'に対応付 けて鍵情報格納部12に登録される。

【0147】上述したように、本発明の実施の形態に係 る暗号通信システムは、第1の実施形態と同様な効果が 得られる他、第1の実施形態で説明した更新手順#1で は新しい暗号アルゴリズムと暗号アルゴリズムを復号化 するための鍵の両方ともをセンターに要求し、センター 10 は要求された2つを端末2に送っているのに対し、更新 手順#2では、他の端末に新しい暗号アルゴリズム、セ ンター3に対応するアルゴリズム復号化鍵を要求してお り、手順#2のほうがセンター3の負荷を減らすことが

【0148】また、更新手順#2の場合でも、暗号アル ゴリズム送信処理及びアルゴリズム復号鍵送信処理が、 端末及びセンターで並列して行われるので、手順#1の 場合と同様な時間でこれらを取得することができる。

【0149】なお、本発明は、上記各実施の形態に限定 20 されるものでなく、その要旨を逸脱しない範囲で種々に 変形することが可能である。

【0150】例えば各実施形態では、各端末2が保持 し、また、センター3が管理する全端末2の固有の鍵K i、Kj等をDES等で用いられる共通秘密鍵の場合で 説明した。しかし、本発明はこのような場合に限られる ものではない。例えばRSA等の公開鍵方式を用い、各 端末2が秘密鍵を保持し、センター3では公開鍵を保持 するようにしてもよい。例えばセンター側でのKiは公 開鍵となり、端末側のKiは秘密鍵となる。

【0151】また、各実施形態で説明したセンター3に おいては、暗号アルゴリズム復号化部16や鍵情報復号 化部15を備えていないが、これらをセンター3に備 え、また、通信に用いる暗号アルゴリズムや鍵も暗号化 して格納し、端末2と同一の暗号通信機能を持たせるよ うにしてもよい。つまり、センター3側の通信機能はそ の秘密保持力の強さや外部からのアクセス環境等の種々 の状況に応じて適宜な者とすることができる。

【0152】また、実施形態では、LANやWAN、あ るいはインターネット等を介して端末2間あるいはセン 40 ター3~端末2間で暗号通信する場合で説明したが、本 発明の適用範囲はこのような場合に限られるものではな

【0153】例えばLANやWANとして用いる場合で あっても、他人同士での通信ばかりでなく、同一企業内 の企業内情報管理システムに適用させることができる。 企業内といえでも権限無き者に対しては情報を公開すべ きでない場合も多いからである。また、メールシステム に本発明を適用させるのも効果的である。

【0154】さらに、実施形態における各端末2をファ 50 あってもよい。

ックス送受信装置とし、ファックス間で暗号通信を行う 場合に本発明を適用することができる。電話回線といえ ども盗聴されることがあるからこれに対応するものであ る。この場合、容易に暗号方式を変更でき、一旦構築さ れたファックス網を有効活用できる。さらに、携帯電話 やPHS等を本発明にいう端末2としてもよい。

【0155】また、ケーブルテレビや衛星テレビ、例え ばBS放送のスクランブルを暗号と考えたときに、この スクランブルが破られたときに、迅速かつ効果的に新た なスクランブルに変更することができる。このときに は、BSチューナが端末2に相当し、また、放送発信側 は端末2とセンター3を兼ねることになる。

【0156】同様に、「Tビジョンや双方向テレビ等に も適用可能である。このような場合にはセットトップボ ックスが端末2に相当し、放送側のシステムが端末2と センター3を兼ねる。

【0157】なお、上記の例でもわかるように、本発明 では、端末2間や端末2~センター3間におけるデータ 伝送回線は有線のものに限らず、無線でもよい。

【0158】さらに、本発明でいう端末は、いわゆる計 算機装置単体のみにその機能がすべて保持されている場 合に限定されるものではない。例えば実施形態で説明し た発明を構成する機能が、サーバ計算機やその他の計算 機に分散して設けられているような場合でも、単一の計 算機装置にとだわらずにとれらの機能を集めたものが本 発明でいう端末である。

【0159】なお、実施形態に説明した装置は、記憶媒 体に格納したプログラムをコンピュータに読み込ませる ことで実現させることができる。

【0160】とこで本発明における記憶媒体としては、 磁気ディスク、フロッピーディスク、ハードディスク、 光ディスク (CD-ROM、CD-R、DVD等)、光 磁気ディスク(MO等)、半導体メモリ等、プログラム を記憶でき、かつコンピュータが読み取り可能な記憶媒 体であれば、その記憶形式は何れの形態であってもよ

【0161】また、記憶媒体からコンピュータにインス トールされたプログラムの指示に基づきコンピュータト で稼働しているOS(オペレーティングシステム)や、 データベース管理ソフト、ネットワークソフト等のMW (ミドルウェア)等が本実施形態を実現するための各処 理の一部を実行してもよい。

【0162】さらに、本発明における記憶媒体は、コン ピュータと独立した媒体に限らず、LANやインターネ ット等により伝送されたプログラムをダウンロードして 記憶又は一時記憶した記憶媒体も含まれる。

【0163】また、記憶媒体は1つに限らず、複数の媒 体から本実施形態における処理が実行される場合も本発 明における記憶媒体に含まれ、媒体構成は何らの構成で

22

【0164】なお、本発明におけるコンピュータは、記憶媒体に記憶されたプログラムに基づき、本実施形態における各処理を実行するものであって、パソコン等の1つからなる装置、複数の装置がネットワーク接続されたシステム等の何れの構成であってもよい。

【0165】また、本発明におけるコンピュータとは、パソコンに限らず、情報処理機器に含まれる演算処理装置、マイコン等も含み、プログラムによって本発明の機能を実現することが可能な機器、装置を総称している。 【0166】

【発明の効果】以上詳記したように本発明によれば、暗号アルゴリズムを選択的して暗号通信を行うことができる暗号通信端末、暗号通信センター装置、暗号通信システム及び記憶媒体を提供することができる。

【0167】また、本発明によれば、新規暗号アルゴリズムをネットワークを介して安全かつ効率よく登録し、さらに登録したアルゴリズムを使用状態とすることができる暗号通信端末、暗号通信センター装置、暗号通信システム及び記憶媒体を提供することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態に係る暗号通信システムの一例を示す構成図。

【図2】暗号通信端末の構成例を示すブロック図。

【図3】暗号通信センター装置の構成例を示すブロック図。

【図4】端末間で暗号通信が行われる様子を示す図。

【図5】暗号アルゴリズム及びその復号鍵のすべてを暗 号通信センター装置3から取得する更新手順#1の処理* *を示す図。

【図6】本発明の第2の実施の形態に係る暗号通信システムにおいて暗号アルゴリズムのみを他の暗号通信端末から取得する更新手順#2の処理を示す図。

【図7】暗号アルゴリズム復号化鍵を暗号通信センター 装置から取得する更新手順#2の処理を示す図。

【符号の説明】

- 1…ネットワーク
- 2…暗号通信端末
- .0 3…暗号通信センター装置
 - 11…制御部
 - 12…鍵情報格納部
 - 13…暗号アルゴリズム格納部
 - 14…暗号化·復号化部
 - 15…鍵情報復号化部
 - 16…暗号アルゴリズム復号化部
 - 17…ID格納部
 - 21…制御部
 - 22…鍵情報格納部
- 20 23…暗号アルゴリズム格納部
 - 24…暗号化・復号化部
 - 25…端末鍵情報格納部
 - 26…アルゴリズム復号化鍵格納部
 - 27…鍵暗号化部
 - 28…更新用暗号アルゴリズム格納部
 - 29…端末権限管理部
 - 30…ID格納部

【図1】

【図2】

[図3]

【図4】

【図5】

【図6】

【図7】

フロントページの続き

F ターム(参考) 58089 GA01 GA21 JB23 KC21 KH30 5J104 AA01 AA16 AA34 EA17 NA02 NA05 PA07 5K030 GA15 JT02 KA04 KA08 LA07 LD19 9A001 CC07 EE02 EE03 FF01 KK56 LL03