Лекция №2

Аппаратное и программное обеспечение АСНИ

1 Аппаратное обеспечение

1.1 История

Ловкость рук и никакого мошенства ☺

Аналоговые машины:

Автономные «стрелочные» и цифровые приборы общего назначения

Вар.	В	A	Ē	Ā	A∧B	Ā∧Ē	$Z_1 = (A \wedge B) \vee (\overline{A} \wedge \overline{B})$
1	0	0	1	1	0	1	1
2	0	1	1	0	0	0	0
3	1	0	0	1	0 1	0	0
4	1	1	0	0	1	0	1

Специализированные «черные ящики»

1.2 Приборы подключаются к компьютеру – интерфейсы

CAMAC, Serial (RS, USB), KOII (HP-IB, IEEE-488, M3K-625, GPIB)

1.3 Встраиваемые компьютерные платы

NI DAQ, Advantech, L-Card,...

1.4 Модули промышленной автоматики

Siemens, Schnider, Advantech,...

1.5 VXI

Плюсы и минусы обычных приборов

Плюсы и минусы магистрально-модульных вычислительных комплексов

Идея – удобство и метрология приборов + эффективность магистрально-модульных систем

Реализация VME+GPIB -> VXI

1.6 PXI

Развитие компьютерной техники ISA-EISA-PCI-PCIe-...

cPCI -> PXI

1.7 Встраиваемые контроллеры, cRIO, Микроконтроллеры **PC-104**,...

CompactRIO

Arduino, ESP, STM, Omega,...

1.8 Стандартизация и возможность интеграции различных элементов **VISA**

Необходимость открытых и универсальных программных средств

2 Программное обеспечение

2.1 Машинные коды, ассемблеры

2.2 Языки высокого уровня (FORTRAN, BASIC, Pascal, C, C++, Java, F#,...)

2.3 Проблемы взаимодействия инженер-программист

Инженер – постановка задачи, анализ результата

Программист – «переводчик» на язык компьютера

ЗАМЕЧАТЕЛЬНЫЙ ТЕСТ ДЛЯ ИНОСТРАНЦА НА ПЕРЕВОД С РУССКОГО:

«ЗА ПЕСЧАНОЙ КОСОЙ ЛОПОУХИЙ КОСОЙ ПАЛ ПОД ОСТРОЙ КОСОЙ БАБЫ С КОСОЙ».

2.4 Графические среды разработки

Средства АСУТП (TraceMode, InTouch, CITECT, FESTO, Lookout,...)

Средства АСНИ (VEE, LabVIEW)

2.5 LabVIEW

Концепция виртуального прибора

Из чего состоит обычный прибор?

- Лицевая панель
- Печатная плата
- Разъемы

• Лицевая панель

• Блок-диаграмма («печатная плата»)

• Коннектор – разъем подключения

Графическое программирование – блок-схема.

LabVIEW - Модульность

LabVIEW - Открытость

LabVIEW - Кроссплатформенность

LabVIEW - Эффективность

3 Примеры

3.1 Сколькими способами можно рассадить класс по стульям?

Интуиция, Факториал, результат

Виртуальный прибор Факториал: Факториал\factorial (разные способы).vi

3.2 Какая буква «самая частая»?

Интуиция, частотный анализ, русский/английский

Пример частотного анализа: Частотный анализ\Частотный анализ текста.vi

3.3 Как измерить температуру?

Пирометр, тепловизор

Изменение электрических свойств: электрическое сопротивление, полупроводниковый переход.

Термометр сопротивления

Термопара

3.4 Как измерить силу, давление?

Пьезодатчик

Индуктивный датчик

Емкостной датчик

Тензодатчик

3.5 Как определить скорость?

Что есть скорость?

Пропеллеры, Теорема Бернулли, Визуализация, Напорные мишени, Корреляционный метод

Мониторинг стереомикрофона: Корреляционный анализ\Sound Stereo Correlation.vi

3.6 Как определить поле скоростей?

Как померить скорость сразу «везде»?

Следим за малым количеством частиц или за картинкой целиком

Пример реализации PIV: Machine Vision\Optical Flow.vi

3.7 Как «измерить» показания стрелочного прибора?

Получение количественной информации с фото/видео

Пример реализации: Machine Vision\Meter Example_EVS.vi

3.8 Измерение NI DMM

Напряжение промышленной сети

Сигнал термопары

4 Заключение

Говорилка: Заключение\Заключение.vi