CHAPTER - 12 LIMITS OF REAL FUNCTIONS

LIMIT OF A FUNCTION

Consider the function f(x). As $x \to a$, if $f(x) \to l$ we say that $\underset{x \to a}{Lt} f(x) = \ell$

Left Limit

The left hand limit of f at x = a is defined as $\underset{x \to a^{-}}{Lt} f(x) = \underset{h \to 0}{Lt} f(a - h)$, h > 0

Right limit

The right limit of f at x = a is defined as $\underset{x\to a^{+}}{Lt} f(x) = \underset{h\to 0}{Lt} f(a+h)$, h>0

Note

If $\underset{x\to a^{-}}{Lt} f(x) = \underset{x\to a^{+}}{Lt} f(x)$ then we say that $\underset{x\to a}{Lt} f(x)$ exists

Algebra of Limits

- a) $\underset{x\to a}{\text{Lt }} K = K$ where K, is a real number
- b) $\underset{x\to a}{\text{Lt}}(f(x)\pm g(x)) = \underset{x\to a}{\text{Lt}}f(x)\pm \underset{x\to a}{\text{Lt}}g(x)$
- c) $\underset{x\to a}{\text{Lt}}(f(x).g(x)) = \underset{x\to a}{\text{Lt}}f(x).\underset{x\to a}{\text{Lt}}g(x)$
- d) $\underset{x \to a}{\text{Lt}} \frac{f(x)}{g(x)} = \frac{\underset{x \to a}{\text{Lt}} f(x)}{\underset{x \to a}{\text{Lt}} g(x)}, \underset{x \to a}{\text{Lt}} g(x) \neq 0$
- e) $\underset{x\to a}{\text{Lt}} (f(x))^n = (\underset{x\to a}{\text{Lt}} f(x))^n$
- f) Lt |f(x)| = |Lt f(x)|

Sandwich theorem or Squeeze principle

If f,g,h are functions such that $f(x) \le g(x) \le h(x)$ for all x in some neighbourhood of a and if

$$\operatorname{Lt}_{x \to a} f(x) = \operatorname{Lt}_{x \to a} h(x) = \ell \text{ then } \operatorname{Lt}_{x \to a} g(x) = \ell$$

Some important expansions

a)
$$(1+x)^n = 1 + nc_1x + nc_2x^2 + \dots |x| < 1$$

b)
$$(x + a)^n = x^n + nc_1 x^{n-1}a + nc_2 x^{n-2}a^2 + \dots nc_n a^n$$
, neN

c)
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

d)
$$a^x = 1 + \frac{x \log a}{1!} + \frac{(x \log a)^2}{2!} + \frac{(x \log a)^3}{3!} + \dots |x| < 1$$

e)
$$\log(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots |x| < 1$$

f)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots |x| < 1$$

g) cos x =
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots |x| < 1$$

h)
$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots$$

Theorems on limits

a) Lt
$$\frac{x^{n} - a^{n}}{x - a} = na^{n-1}$$

b) Lt
$$\frac{\sin \theta}{\theta} = 1$$

c) If
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
, then $\lim_{x \to a} (1 + f(x))^{1/g(x)} = e^{\lim_{x \to a} \frac{f(x)}{g(x)}}$

Particular Cases

a)
$$\lim_{x\to 0} (1+x)^{1/x} = e$$

b)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

c)
$$\lim_{x \to 0} (1 + \lambda x)^{1/x} = e^{\lambda}$$

d)
$$\lim_{x\to\infty} \left(1+\frac{\lambda}{x}\right)^x = e^{\lambda}$$

DE' L' Hospitals Rule

It f (x) and g (x) be two functions of x such that

(i)
$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$$
 or ∞

(ii) both are continous and differentiable at x = a

(iii) f'(x) and g'(x) are continous at x = a

$$\lim_{x\to a} \frac{f\left(x\right)}{g\left(x\right)} = \lim_{x\to a} \frac{f'\left(x\right)}{g'\left(x\right)}, \ g'\left(a\right) \neq 0$$

Newton -Leibnitz formula

$$\frac{d}{dx} \left(\int_{h(x)}^{g(x)} f(t) dt \right) = f(g(x))g'(x) - f(h(x))h'(x)$$

SECTION - I - Straight objective type questions

- 1. If a > 1 then Lt $a^x \sin \frac{b}{a^x} =$

- 1) a 2) b 3) $\frac{a}{b}$ 4) $\frac{b}{a}$
- 2. Lt $\frac{x \cot 4x}{\sin^2 x \cot^2 2x}$
 - 1) 0

- 2) 1 3) -1 4) $\frac{1}{2}$
- 3. The value of $\lim_{x\to 0} \left(\frac{x}{\sqrt[8]{1-\sin x} \sqrt[8]{1+\sin x}} \right)$ is equal to
 - 1) 0
- 2)4
- 3) –4
- 4) 1

- 4. $Lt \frac{\sum_{k=1}^{100} x^k 100}{x 1} =$
 - 1)0
- 2) 5050
- 3) 4550 4) -5050
- 5. Lt $\frac{3^x + 3^{3-x} 12}{\frac{-x}{3^{\frac{2}{x}} 3^{1-x}}} =$
 - 1) $\frac{1}{12}$
- 2) 12
- 3)36
- 4) $\frac{1}{36}$

- 6. $L_{x \to 0} \frac{e^{2|\sin x|} 2|\sin x| 1}{x^2}$
 - 1)0
- 2) 1
- 3)2
- 4) 2

- 7. $\lim_{x\to 0} \frac{\sin^2(\pi\cos^4 x)}{x^4}$ is equal to

 - 1) π^2 2) $2\pi^2$ 3) $4\pi^2$
- 4) 4π

- 8. $Lt \frac{a^{\cot x} a^{\cos x}}{\cot x \cos x} =$
 - 1) log a 2) log 2
- 3) a
- 4) log x
- 9. The value of $\lim_{n\to\infty} \frac{x}{2} \cdot \cos \frac{x}{4} \cdot \cos \frac{x}{8} \cdot \dots \cdot \cos \frac{x}{2^n} =$
- 1) 1 2) 0 3) $\frac{\sin x}{x}$ 4) $\cos x$
- 10. Let $f: R \to R$ such that f(1) = 4 and f'(1) = 2. Then $\underset{x \to 1}{Lt} \int_{4}^{f(x)} \frac{2t}{(x-1)} dt =$
 - 1) 16
- 2)8
- 3)4
- 4)2

- 11. Lt $\sqrt{x + \sqrt{x + \sqrt{x}}} \sqrt{x}$ =
 - 1)0
- 2) 1
- 3) -1
- 4) 1/2

- 12. $Lt_{x\to 0} \left[\frac{a^x + b^x + c^x}{3} \right]^{1/x} =$
 - 1) abc
- 2) log abc 3) $\frac{\log abc}{3}$ 4) $(abc)^{1/3}$

- 13. If $\lim_{x\to 0} \left[1+x\ln(1+b^2)\right]^{\frac{1}{x}} = 2b\sin^2\theta$, b>0 and $\theta\in(-\pi,\pi)$, then the value of θ is

 - 1) $\pm \frac{\pi}{4}$ 2) $\pm \frac{\pi}{3}$ 3) $-\frac{\pi}{2}$ 4) $\frac{\pi}{2}$
- 14. Statement 1: Lt $\frac{[x]^2 9}{x^2 9} = 0$ where stands for greatest integer value

Statement 2: [x] = 3 when $3 \le x < 4$ where [.] stands for GIV function

- 1) Statement I is true, statement II is true, statement II is a correct explanation for statement I
- 2) Statement I is true, statement II is true, statement II is not a correct explanation for statement I
- 3) Statement I is true, statement II is false
- 4) Statement I is false, statement II is true

15. Lt
$$\frac{m(1+2^2+3^2+....+m^2)}{1+2^3+3^3+....+m^3}$$
 =

- 4) 1

16.
$$f(x) = x^2 e^{2x-2} \text{ when } 0 \le x \le 1$$
$$= a \operatorname{sig}(x+1) \cos(2x-2) + bx^2 \text{ when } 1 < x \le 2$$

Lt
$$f(x)$$
 exists. Then $a+b=1$

3) -1

4) 2

17.
$$\lim_{x \to 0} \frac{\left(4^x - 1\right)^3}{\sin\left(\frac{x}{p}\right) \ln\left(1 + \frac{x^2}{3}\right)}$$
 is equal to

- 1) $9p(\ell n4)$ 2) $3p(\ell n4)^3$ 3) $12p(\ell n4)^3$ 4) $27p(\ell n4)^2$

18.
$$\underset{x\to 0^{-}}{Lt} \frac{x([x]+|x|)\sin[x]}{|x|}$$

where [.] stands for GIV function is

- 1) sin 1
- 2) -sin 1
- 3) cos 1
 - 4) -cos 1

19.
$$\operatorname{Lt}_{x\to 0} \frac{1}{x} \log \left(\frac{1+3x}{1-2x} \right) =$$

- 1) 1
- 2) –2 3) –1
- 4) 5

20.
$$Lt \left(\frac{1}{1^{\sin^2 t}} + \frac{1}{2^{\sin^2 t}} + \frac{1}{3^{\sin^2 t}} + \dots + \frac{1}{n^{\sin^2 t}} \right)^{\sin^2 t} =$$

- 1) $n^2 + n$ 2) n 3) $\frac{n(n+1)}{2}$ 4) n^2

SECTION - II

Numerical Type Questions

- 21. If the value of $\lim_{x\to 0} \left(2-\cos x\sqrt{\cos 2x}\right)^{\left(\frac{x+2}{x^2}\right)}$ is equal to e^a , then a is equal to
- 22. If $\lim_{x\to 0} \frac{\alpha x e^x \beta \log_e(1+x) + \gamma x^2 e^{-x}}{x \sin^2 x} = 10, \alpha, \beta, \gamma \in R$, then the value of $\alpha + \beta + \gamma$ is
- 23. Let $f(x) = x^6 + 2x^4 + x^3 + 2x + 3, x \in \mathbb{R}$. Then the natural number n for which $\lim_{x \to 1} \frac{x^n f(1) f(x)}{x 1} = 44$
- 24. $\lim_{x \to a} \frac{\log(x-a)}{\log(e^x e^a)} =$

25.
$$Lt \left(\frac{x^a - ax + a - 1}{(x - 1)^2} \right) = f(a)$$
 Then $\frac{f(4)}{5}$

PART - II (JEE ADVANCED)

SECTION - III (Only one option correct type)

26.
$$Lt \left(\frac{1}{h\sqrt[3]{8+h}} - \frac{1}{2h} \right)$$

- A) $\frac{1}{48}$ B) $-\frac{1}{48}$
- C) 48
- D) 48

- 27. The value of Lt $\frac{e (1+x)^{\frac{1}{x}}}{ton x}$
 - A) 1
- B) -e
- C) $\frac{e}{2}$

28. Lt $\frac{ae^{x^2} + b\cos x}{x^2} = \frac{1}{2}$

Then a + b =

- A) $\frac{1}{3}$ B) $-\frac{1}{3}$
- C) 0

- D) $\frac{1}{2}$
- 29. The value of $\lim_{x\to 0} \frac{8}{x^8} \left(1 \cos \frac{x^2}{2} \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right)$
 - 1)0
- 2) 1
- 3) $\frac{1}{32}$ 4) Does not exist
- 30. If α, β are the distinct roots of $x^2 + bx + c = 0$, then $\lim_{x \to \beta} \frac{e^{2\left(x^2 + bx + c\right)} 1 2\left(x^2 + bx + c\right)}{\left(x \beta\right)^2}$ is equal to

 - 1) $b^2 + 4c$ 2) $2(b^2 + 4c)$ 3) $2(b^2 4c)$ 4) $b^2 4c$
- 31. $f(x) = \frac{\sin[x]}{[x]} \text{ when } [x] \neq 0$ = 0 when [x] = 0 when [x]= 0 when [x] = 0 where [.] is GIV of x

Then $\underset{x\to 0}{Lt} f(x) =$

B) 0

C)-1

D) Does not exist

SECTION - IV (More than one correct answer)

32. If $\alpha = Lt \frac{\tan^3 x - \tan x}{\cos\left(x + \frac{\pi}{4}\right)}$ and $\beta = Lt \cos\left(\cos x\right)^{\cot x}$ are the roots of the equation $ax^2 + bx - 4 = 0$ then

which of the following are true

A)
$$a = 1$$

B)
$$b = 3$$

C)
$$a+b=5$$

D)
$$a - b = 7$$

- Let α, β be the roots of $ax^2 + bx + c = 0$, where $1 < \alpha < \beta$ and $\lim_{x \to x_0} \frac{|ax^2 + bx + c|}{ax^2 + bx + c} = 1$, then
 - A) a > 0 and $x_0 < 1$

B) a > 0 and $x_0 > \beta$

C) a < 0 and α < x_0 < β

D) a < 0 and $x_0 < 1$

34. Let
$$L = \lim_{x \to 0} \frac{a - \sqrt{a^2 - x^2} - \frac{x^2}{4}}{x^4}$$
, $a > 0$. If L is finite, then

- A) a = 2
- B) a = 1
- C) $L = \frac{1}{64}$ D) $L = \frac{1}{32}$

35. Consider
$$f(x) = \frac{\sin x + ae^x + be^{-x} + c \ln(1+x)}{x^3}$$
 where a,b,c are real numbers

A) If
$$\lim_{x\to 0^+} f(x)$$
 is finite, then the value of $a+b+c$ is O

B) If
$$\lim_{x\to 0} f(x) = \ell(\text{finite})$$
, then the value of ℓ is $-\frac{1}{3}$

C) The value of
$$a = 0$$
 $b = \frac{1}{3}$ and $c = -\frac{1}{3}$

D) The value of
$$a = -\frac{1}{3}b = 0$$
 and $c = \frac{1}{3}$

SECTION - V (Numerical Type)

Let and n be two positive integers greater than 1. If $\lim_{\alpha \to 0} \left(\frac{e^{\cos(a^n)} - e}{\alpha^m} \right) = -\left(\frac{e}{2} \right)$ then the value of $\frac{m}{n}$ is 36.

37.
$$f(x) = \frac{1-\cos\left(1-\cos\frac{x}{2}\right)}{2^m x^n}$$
. Given $\lim_{x\to 0} f(x) = 1$. Where m and n are positive integers. Then n-m=

Question stem

A tangent line is drawn to a circle of radius unity at point A and a segment AB is laid off whose length is equal to that of arc AC. A straight line BC is drawn to intersect the extension of radius AO at point P as shown fig.

Based on the stem answer the following

- $\lim_{\theta \to 0} PA$ is equal to 38.
 - A) 6

B) 2

C) 3

D) 4

39.
$$Lt_{\theta \to 0} \theta^2 \frac{PC}{BC} =$$

A)6

B) 2

C) 3

D) 4

SECTION VI - (Matrix match type)

 $\lim_{x\to 0} f(x)$, where f(x) is as in column –1, is 40.

	Column I		Column II
A)	$f(x) = \frac{\tan[e^2]x^2 - \tan[-e^2]x^2}{\sin x}$ where [.] integer function	p)	$\frac{\sqrt{2}}{8}$
B)	$f(x) = \left[\left(\min \left(t^2 + 4t + 6 \right) \right) \frac{\sin x}{x} \right]$	q)	15
C)	$f(x) = \frac{\sqrt[3]{1+x^2} - \sqrt[4]{1-2x}}{x+x}$	r)	1
D)	$f(x) = \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$	s)	1/2

A) Aq, Br, Cs, DP B) Ar, Bq, Cs, Dp

C) Aq, Br, Cp, Ds D) Ar, Bp, Cs, Dq