Chapitre 12

Intégration sur un intevalle quelconque II. Les grands théorèmes

1. Convergence des intégrales d'une suite de fonctions

- 1.1. Sur un segment (rappel) : la convergence unfiforùm suffit
- 1.2. Sur un intervalle : le théorème de convergence dominée

- Démonstration admise ©
- 1.3. Exemples

2. <u>Intégration terme à terme d'une série de fonctions</u>

- 2.1. Deux situations intéressantes
 - a) Sur un segment : encore la convergence uniforme (rappel)
 - b) Une application intéressante du théorème de convergence dominée

```
\begin{array}{c} \underline{\text{Proposition}}: \mathbf{cas} \ \mathbf{où} \ \mathbf{le} \ \mathbf{terme} \ \mathbf{g\acute{e}n\acute{e}ral} \ \mathbf{est} \ \mathbf{\grave{a}} \ \mathbf{valeurs} \ \mathbf{dans} \ \mathbb{R}_{+} \\ \\ \text{Soit} \ \ f_{n} \ _{n \in \mathbb{N}} \in \mathcal{CM} \ I, \mathbb{R}_{+} \ ^{\mathbb{N}} \ . \\ \\ \text{Si la s\'{e}rie} \ \mathbf{de} \ \mathbf{fonctions} \ \sum f_{n} \ \mathbf{converge} \ \mathbf{simplement} \ \mathbf{sur} \ [a,b] \ (\mathbf{de} \ \mathbf{somme} \ S) \\ \\ \mathbf{et} \ \mathbf{si} \ \ S \in \mathcal{L}^{1} \ I, \mathbb{K} \ , \\ \\ \mathbf{alors} \ \mathbf{la} \ \mathbf{s\'{e}rie} \ \sum \int_{I} f_{n}(t) dt \ \mathbf{converge} \ \mathbf{et} \ \mathbf{a} \ \mathbf{pour} \ \mathbf{somme} \ \int_{I} S(t) dt \ . \end{array}
```

• Démonstration

2.2. Le théorème fondamental

Théorème 2 : intégration terme à terme d'une série de fonctions

Soit $f_{n} \in \mathcal{L}^1$ $I, \mathbb{K}^{\mathbb{N}}$.

Si * la série de fonctions $\sum f_n$ converge simplement sur I et a pour somme une fonction $S \in \mathcal{CM}\ I, \mathbb{K}$,

* la série des intégrales $\sum \int_I |f_n| dt$ converge

alors $S \in \mathcal{L}^1$ I, \mathbb{K} et la série $\sum \int_I f_n(t) dt$ converge et a pour somme $\int_I S$

- Démonstration admise 🙂
- Exemple

3. <u>Intégrales à paramètre</u>

3.1. Continuité

Théorème 3: "continuité sous le signe intégrale"

Soit $f: \begin{cases} A \times I \to \mathbb{K} \\ x, t \to f \ x, t \end{cases}$ où $\left| \begin{array}{c} A \subset F \ \text{avec } F \ \text{e.v.n.} \text{ de dimension finie} \\ I \ \text{est un intervalle de } \mathbb{R} \end{array} \right|$

Si \bigcirc f est continue par rapport à la première variable (C1)

i.e. $\forall t \in I : f ., t \in \mathcal{C} A, \mathbb{K}$

 $\ \ \,$ $\$

i.e. $\forall x \in A : f \ x, \in \mathcal{CM} \ I, \mathbb{K}$

alors la fonction $g: x \to \int_I f(x,t) dt$ est définie et continue sur A.

- Démonstration facultative.
- Exemples
- Divers prolongements, notamment:
 - \odot si A = J, intervalle de \mathbb{R} , il suffit que l'hypothèse de domination soit satisfaite sur tout segment inclus dans J; $\mathbb{Q}(\mathbf{D})$ s'écrit alors :

3.2. Dérivabilité

- a) Prérequis : dérivées partielles
- b) Le théorème pour la classe \mathcal{C}^{1}

Théorème 4 : "dérivabilité sous le signe intégrale"

Soit
$$f: \begin{cases} J \times I \to \mathbb{K} \\ x, t \to f \ x, t \end{cases}$$
 où J et I sont des intervalles de \mathbb{R} .

Si
$$\bigcirc$$
 $\forall x \in J : f x, \in \mathcal{L}^1 I, \mathbb{K}$

②
$$f$$
 admet sur $J \times I$ une dérivée partielle $\frac{\partial f}{\partial x}$ qui vérifie les hypothèses (C1), (CM2) et (D) du théorème de continuité sous le signe intégrale.

alors la fonction $g: x \to \int_I f \ x, t \ dt$ est de classe \mathcal{C}^1 sur J et vérifie :

$$\forall x \in J : g' x = \int_I \frac{\partial f}{\partial x} x, t dt .$$

- Démonstration admise.
- <u>Prolongement intéressant</u> (ici encore) :
 - \odot il suffit que l'hypothèse de domination soit satisfaite sur tout segment inclus dans J; $\odot(D)$ s'écrit alors :

3.3. Classe C^k d'une intégrale à paramètre

- a) Prérequis sur la classe \mathcal{C}^k pour les fonctions de deux variables (repris en Ch. 16)
- b) <u>Le théorème</u>

<u>Théorème 4-bis</u> : "dérivabilité k fois le signe intégrale"

Soit
$$f: \begin{cases} J \times I \to \mathbb{K} \\ x, t \to f \ x, t \end{cases}$$
 où J et I sont des intervalles de \mathbb{R} et $k \in \mathbb{N}^*$

Si f admet sur $J \times I$ une dérivée partielle $\frac{\partial^k f}{\partial x^k}$ de manière que :

② $\frac{\partial^k f}{\partial x^k}$ vérifie les hypothèses (C1), (CM2) et (D)* du théorème de continuité sous le signe intégrale.

alors la fonction $g: x \to \int_I f x, t dt$ est de classe \mathcal{C}^k sur J et vérifie :

$$\forall x \in J : g^k \quad x = \int_I \frac{\partial^k f}{\partial x^k} \ x, t \ dt .$$

- Démonstration admise.
- Exemple : voir ci-dessous \S 3.4.b la fonction $\Gamma.$

3.4. Exemples