Markov chain!

Peter Lukianchenko

10 September 2022

Syllabus

```
Module
       Class 1 Intro + Statistics + Markov chain
                  2 Markov Chain + Convergency
                  3 Convergency + MGF
                  4 Markov Chain
                  5 Conditional Expectation
                  6Sigma Algebra
                  7 Basics of Stochastics
Module
        Class
                  1 Martingales
                  2 Martingales
                  3 Brownian Motion
                  4 Ito Lemma
                  5 Black Scholes Model
                  6 Black Scholes Model
                  7BS Model + Coding
                  8BS Model + Coding
Module
        Class
                   1Course Overview and Recall all we did
                  2 Stationary Time Series
                  3ETS
                  4ETS
                  5ARMA
                  6ARIMA + test
                  7Arch-Garch
                  8 Point Estimators
                  9 Fisher Information
                 10LR LM WALD
                 11Sufficient Estimator
Module
        Class
                  1UoL
                  2 UoL
                  3 UoL
                  4UoL
```

Markov Chain

Definition 44

The process $\{X_n\}$ is a *Markov chain* if it satisfies the Markov property:

$$\mathbb{P}(X_n = j | X_0 = X_0, ..., X_{n-1} = i) = \mathbb{P}(X_n = j | X_{n-1} = i)$$

for all $i, j, x_0, ... < x_{n-2} \in S$ and for all n = 1, 2, 3, ...

• The Markov property implies that:

$$\mathbb{P}(X_{n_k} = j | X_{n_0} = x_0, ..., X_{n_{k-1}} = i) = \mathbb{P}(X_{n_k} = j | X_{n_{k-1}} = i)$$

for all $k, n, all \ n_0 \le n_1 \le \dots \le n_{k-1} \le n_k$ and all $i, j, x_0, \dots, x_{n_{k-1}}$

Also

$$\mathbb{P}(X_{n+m} = j | X_0 = x_0, ..., X_m = i) = \mathbb{P}(X_{n+m} = j | X_m = i)$$

Homogeneous Chain

• The evolution of a markov chain is defined by its transition probability, defined by $\mathbb{P}(X_{n+1} = j | X_n = i)$ (where without loss of generality we may assume that S is an integer set.

Definition 45

• The chain $\{X_n\}$ is called *homogeneous* if its transition probabilities do not depend on the time, i.e.,

$$\mathbb{P}(X_{n+1} = j | X_n = i) = \mathbb{P}(X_1 = j | X_0 = i)$$

for all n, i, j. The *transition probability matrix* $P = [p_{i,j}]$ *is the* $|S| \times |S|$ matrix of the transition probabilities, such that $p_{i,j} = \mathbb{P}(X_{n+1} = j | X_n = i)$

Transition Matrix

Theorem

The transition matrix **P** of a Markov chain is a *stochastic matrix*, that is, it has non-negative elements such that

$$\sum_{i \in S} p_{i,j} = 1$$

(sum of the elements on each row yields 1)

• In order to characterize the probability for n steps transitions, we introduce the n-step transition probability matrix with elements

$$p_{i,j}(m, m + n) = \mathbb{P}(X_{m+n} = j | X_m = i)$$

- By homogeneity, we have that P(m, m + 1) = P.
- Furthermore, $P(m, m + n) \triangleq P^{(n)}$ does not depend on m.

Transition Matrix

Theorem

$$P(1, 3) \in P(1, 141) \cdot P(141, 142)$$
 $p_{i,j}(m, m+n+r) = \sum_{k} p_{i,k}(m, m+n) p_{k,j}(m+n, m+n+r)$

Therefore, P(m, m + n + r) = P(m, m + n)P(m + n, m + n + r). It follows that for homogeneous Markov chains, $P(m, m + n) = P^n$, i.e., $P^{(n)} = P^n$

Initial State pmf

• We let u(n) denote the pmf of X_n , that is, for each n we have that u(n) is a vector with |S| non-negative components that sum to 1.

Lemma

 $u(m+n) = u(m)\mathbf{P}^n$, and hence $u(n) = u(0)\mathbf{P}^n$. This describes the pmf of X_n in terms of the initial state pmf u(0).

Example

Let $S = \{1, 2, 3, 4, 5, 6\}$ and consider the transition matrix

$$\mathbf{P} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Stationary Distribution

Definition

The vector π is called a *stationary distribution* of the chain if it has entries $\{\pi_j: j \in S\}$ such that:

- a) $\pi_j \ge 0$ for all j, and $\sum_{i \in S} \pi_i = 1$.
- b) it satisfies $\pi = \pi P$, that is, $\pi_j = \sum_i \pi_i p_{i,j}$ for all $j \in S$.
- This is called "stationary distribution" since if X_0 is distributed with $u(0) = \pi$, then all X_n will have the same distribution, in fact

$$\mathbf{u}(n) = \mathbf{u}(0)\mathbf{P}^n = \boldsymbol{\pi}\mathbf{P}^n = \boldsymbol{\pi}\mathbf{P}\mathbf{P}^{n-1} = \boldsymbol{\pi}\mathbf{P}^{n-1} = \cdots = \boldsymbol{\pi}$$

• Given the classification of chains and the decomposition theorem, we shall assume that the chain is *irreducible*, that is, its state space is formed by a single equivalence class of intercommunicating (persistent) states *C* or by the class of transient states *T*.

Stationary Distribution

Theorem

A irreducible chain has a stationary distribution π if and only if all states are *non-null* persistent. In this case, π is unique and satisfies $\pi_j = \frac{1}{\mu_j}$, where is the mean recurrence time of state j.

Let $S = \{1, 2\}$ and consider the transition matrix

$$\mathbf{P} = \left[\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{array} \right]$$

Definition Let $\{x_n, n \geq 1\}$ be a real-valued sequence, i.e., a map from \mathbb{N} to \mathbb{R} . We say that the sequence $\{x_n\}$ converges to some $x \in \mathbb{R}$ if there exists an $n_0 \in \mathbb{N}$ such that for all $\epsilon > 0$,

$$|x_n - x| < \epsilon, \ \forall \ n \ge n_0.$$

We say that the sequence $\{x_n\}$ converges to $+\infty$ if for any M > 0, there exists an $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $x_n > M$.

We say that the sequence $\{x_n\}$ converges to $-\infty$ if for any M > 0, there exists an $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $x_n < -M$.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of real-valued random variables defined on this probability space.

Definition [Definition 0 (Point-wise convergence or sure convergence)]

A sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ is said to converge point-wise or surely to X if

Definition 1 (Almost sure convergence or convergence with probability 1)] A sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ is said to converge almost surely or with probability 1 (denoted by a.s. or w.p. 1) to X if

$$\mathbb{P}\left(\left\{\omega|X_n(\omega)\to X(\omega)\right\}\right)=1.$$

Definition [Definition 2 (convergence in probability)]

A sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ is said to converge in probability (denoted by i.p.) to X if

$$\lim_{n\to\infty} \mathbb{P}\left(|X_n - X| > \epsilon\right) = 0, \quad \forall \ \epsilon > 0.$$

Definition [Definition 3 (convergence in r^{th} mean)]

A sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ is said to converge in r^{th} mean to X if

$$\lim_{n\to\infty}\mathbb{E}\left[|X_n-X|^r\right]=0.$$

Definition [Definition 4 (convergence in distribution or weak convergence)]

A sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ is said to converge in distribution to X if

 $\lim_{n\to\infty}F_{X_n}(x)=F_X(x),\quad\forall\ x\in\mathbb{R}\ \ \text{where}\ F_X(\cdot)\ \ \text{is continuous}.$

- (1) Point-wise Convergence: $X_n \xrightarrow{\text{p.w.}} X$.
- (2) Almost sure Convergence: $X_n \xrightarrow{\text{a.s.}} X$ or $X_n \xrightarrow{\text{w.p.}} {}^1 X$.
- (3) Convergence in probability: $X_n \xrightarrow{\text{i.p.}} X$.
- (4) Convergence in r^{th} mean: $X_n \xrightarrow{r} X$. When r = 2, $X_n \xrightarrow{\text{m.s.}} X$.
- (5) Convergence in Distribution: $X_n \stackrel{\mathrm{D}}{\longrightarrow} X$.

Example: Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \lambda)$ and a sequence of random variables $\{X_n, n \geq 1\}$ defined by

$$X_n(\omega) = \begin{cases} n, & \text{if } \omega \in \left[0, \frac{1}{n}\right], \\ 0, & \text{otherwise.} \end{cases}$$

$$X_n = \begin{cases} n, & \text{with probability } \frac{1}{n}, \\ 0, & \text{with probability } 1 - \frac{1}{n}. \end{cases}$$

Clearly, when $\omega \neq 0$, $\lim_{n\to\infty} X_n(\omega) = 0$ but it diverges for $\omega = 0$. This suggests that the limiting random variable must be the constant random variable 0. Hence, except at $\omega = 0$, the sequence of random variables converges to the constant random variable 0. Therefore, this sequence does not converge surely, but converges almost surely.

For some $\epsilon > 0$, consider

$$\lim_{n \to \infty} \mathbb{P}\left(|X_n| > \epsilon\right) = \lim_{n \to \infty} \mathbb{P}\left(X_n = n\right),$$

$$= \lim_{n \to \infty} \left(\frac{1}{n}\right),$$

$$= 0.$$

Hence, the sequence converges in probability.

Consider the following two expressions:

$$\lim_{n \to \infty} \mathbb{E}\left[|X_n|^2\right] = \lim_{n \to \infty} \left(n^2 \times \frac{1}{n} + 0\right),$$

= ∞ .

$$\lim_{n \to \infty} \mathbb{E}\left[|X_n|\right] = \lim_{n \to \infty} \left(n \times \frac{1}{n} + 0\right),$$

$$= 1.$$

X, (0): 22222 10 22222 10 22222

Convergence

Theorem
$$X_n \xrightarrow{r} X \implies X_n \xrightarrow{\text{i.p.}} X, \quad \forall \ r \geq 1.$$

Proof: Consider the quantity $\lim_{n\to\infty} \mathbb{P}(|X_n-X|>\epsilon)$. Applying Markov's inequality, we get

$$\lim_{n \to \infty} \mathbb{P}\left(|X_n - X| > \epsilon\right) \leq \lim_{n \to \infty} \frac{\mathbb{E}\left[|X_n - X|^r\right]}{\epsilon^r}, \ \forall \epsilon > 0,$$

$$\stackrel{(a)}{=} 0,$$

where (a) follows since $X_n \xrightarrow{r} X$. Hence proved.

Theorem

$$X_n \xrightarrow{\text{i.p.}} X \implies X_n \xrightarrow{\text{D}} X.$$

Proof: Fix an $\epsilon > 0$.

$$F_{X_n}(x) = \mathbb{P}(X_n \le x),$$

$$= \mathbb{P}(X_n \le x, X \le x + \epsilon) + \mathbb{P}(X_n \le x, X > x + \epsilon),$$

$$\le F_X(x + \epsilon) + \mathbb{P}(|X_n - X| > \epsilon).$$

Similarly,

$$F_X(x - \epsilon) = \mathbb{P}(X \le x - \epsilon),$$

$$= \mathbb{P}(X \le x - \epsilon, X_n \le x) + \mathbb{P}(X \le x - \epsilon, X_n > x),$$

$$\le F_{X_n}(x) + \mathbb{P}(|X_n - X| > \epsilon).$$

Thus,

$$F_X(x-\epsilon) - \mathbb{P}(|X_n - X| > \epsilon) \le F_{X_n}(x) \le F_X(x+\epsilon) + \mathbb{P}(|X_n - X| > \epsilon).$$

As $n \to \infty$, since $X_n \xrightarrow{\text{i.p.}} X$, $\mathbb{P}(|X_n - X| > \epsilon) \to 0$. Therefore,

$$F_X(x-\epsilon) \le \liminf_{n \to \infty} F_{X_n}(x) \le \limsup_{n \to \infty} F_{X_n}(x) \le F_X(x+\epsilon), \ \forall \epsilon > 0.$$

If F is continuous at x, then $F_X(x-\epsilon) \uparrow F_X(x)$ and $F_X(x+\epsilon) \downarrow F_X(x)$ as $\epsilon \downarrow 0$. Hence proved.

Theorem
$$X_n \xrightarrow{r} X \implies X_n \xrightarrow{s} X, \text{ if } r > s \ge 1.$$

$$(\mathbb{E}[|X_n - X|^s])^{1/s} \le (\mathbb{E}[|X_n - X|^r])^{1/r},$$

$$(\mathbb{E}(\mathbb{A}^s))^{\gamma_s} \le (\mathbb{E}(\mathbb{A}^p))^{\gamma_R}$$

$$\le \ell \mathbb{E}(\mathbb{A}^s)^{\gamma_R}$$

Theorem

$$X_n \xrightarrow{\text{i.p.}} X \implies X_n \xrightarrow{\text{r}} X \text{ in general.}$$

Proof: Proof by counter-example:

Let X_n be an independent sequence of random variables defined as

$$X_n = \begin{cases} n^3, & \text{w.p. } \frac{1}{n^2}, \\ 0, & \text{w.p. } 1 - \frac{1}{n^2}. \end{cases}$$

Then, $\mathbb{P}(|X_n| > \epsilon) = \frac{1}{n^2}$ for large enough n, and hence $X_n \xrightarrow{\text{i.p.}} 0$. On the other hand, $\mathbb{E}[|X_n|] = n$, which diverges to infinity as n grows unbounded.

$$X_n \xrightarrow{\mathrm{D}} X \not\Longrightarrow X_n \xrightarrow{\mathrm{i.p.}} X$$
 in general.

Proof: Proof by counter-example:

Let X be a Bernoulli random variable with parameter 0.5, and define a sequence such that $X_i = X \, \forall i$. Let Y = 1 - X. Clearly, $X_i \xrightarrow{D} Y$. But, $|X_i - Y| = 1$, $\forall i$. Hence, X_i does not converge to Y in probability.

Theorem

$$X_n \xrightarrow{\text{i.p.}} X \Rightarrow X_n \xrightarrow{\text{a.s.}} X \text{ in general.}$$

counter-example:

Proof: Proof by counter-example:

Let $\{X_n\}$ be a sequence of independent random variables defined as

$$X_n = \left\{ \begin{array}{ccc} 1, & \text{w.p.} & \frac{1}{n}, \\ 0, & \text{w.p.} & 1 - \frac{1}{n}. \end{array} \right.$$

$$\lim_{n\to\infty} \mathbb{P}(|X_n| > \epsilon) = \lim_{n\to\infty} \mathbb{P}(X_n = 1) = \lim_{n\to\infty} \frac{1}{n} = 0. \text{ So, } X_n \xrightarrow{\text{i.p.}} 0.$$

Let A_n be the event that $\{X_n=1\}$. Then, A_n 's are independent and $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$. By Borel-Cantelli Lemma 2, w.p. 1 infinitely many A_n 's will occur, i.e., $\{X_n = 1\}$ i.o.. So, X_n does not converge to 0 almost surely.

Theorem

$$X_n \stackrel{s}{\longrightarrow} X \implies X_n \stackrel{r}{\longrightarrow} X \text{ if } r > s \ge 1 \text{ in general.}$$

Proof: Proof by counter-example:

Let $\{X_n\}$ be a sequence of independent random variables defined as

$$X_n = \begin{cases} n, & \text{w.p. } \frac{1}{\frac{r+s}{2}}, \\ 0, & \text{w.p. } 1 - \frac{1}{\frac{r+s}{2}}. \end{cases}$$

Hence,
$$\mathbb{E}[|X_n^s|] = n^{\frac{s-r}{2}} \to 0$$
. But, $\mathbb{E}[|X_n^r|] = n^{\frac{r-s}{2}} \to \infty$.

Theorem

$$X_n \xrightarrow{\text{m.s.}} X \implies X_n \xrightarrow{\text{a.s.}} X \text{ in general.}$$

Proof: Proof by counter-example:

Let $\{X_n\}$ be a sequence of independent random variables defined as

$$X_n = \begin{cases} 1, & \text{w.p. } \frac{1}{n}, \\ 0, & \text{w.p. } 1 - \frac{1}{n}. \end{cases}$$

$$\mathbb{E}[X_n^2] = \frac{1}{n}$$
. So, $X_n \stackrel{\text{m.s.}}{\longrightarrow} 0$.

 $\mathbb{E}[X_n^2] = \frac{1}{n}$. So, $X_n \stackrel{\text{m.s.}}{\longrightarrow} 0$. X_n does not converge to 0 almost surely.

Theorem

$$X_n \xrightarrow{\text{a.s.}} X \implies X_n \xrightarrow{\text{m.s.}} X \text{ in general.}$$

Proof: Proof by counter-example:

Let $\{X_n\}$ be a sequence of independent of random variables defined as

$$X_n(\omega) = \begin{cases} n, & \omega \in (0, \frac{1}{n}), \\ 0, & \text{otherwise.} \end{cases}$$

We know that X_n converges to 0 almost surely. $\mathbb{E}[X_n^2]=n\longrightarrow\infty$. So, X_n does not converge to 0 in the mean-squared sense.

Before proving the implication $X_n \xrightarrow{\text{a.s.}} X \implies X_n \xrightarrow{\text{i.p.}} X$, we derive a sufficient condition followed by a necessary and sufficient condition for almost sure convergence.

Theorem 28.20 [Skorokhod's Representation Theorem]

Let $\{X_n, n \geq 1\}$ and X be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that X_n converges to X in distribution. Then, there exists a probability space $(\Omega', \mathcal{F}', \mathbb{P}')$, and random variables $\{Y_n, n \geq 1\}$ and Y on $(\Omega', \mathcal{F}', \mathbb{P}')$ such that,

- a) $\{Y_n, n \geq 1\}$ and Y have the same distributions as $\{X_n, n \geq 1\}$ and X respectively.
- b) $Y_n \stackrel{a.s.}{\to} Y$ as $n \to \infty$.

Theorem 28.21 [Continuous Mapping Theorem]

If $X_n \stackrel{D}{\to} X$, and $g : \mathbb{R} \longrightarrow \mathbb{R}$ is continuous, then $g(X_n) \stackrel{D}{\to} g(X)$.

Proof: By Skorokhod's Representation Theorem, there exists a probability space $(\Omega', \mathcal{F}', \mathbb{P}')$, and $\{Y_n, n \geq 1\}$, Y on $(\Omega', \mathcal{F}', \mathbb{P}')$ such that, $Y_n \overset{a.s.}{\to} Y$. Further, from continuity of g, $\{\omega \in \Omega' \mid g(Y_n(\omega)) \to g(Y(\omega))\} \supseteq \{\omega \in \Omega' \mid Y_n(\omega) \to Y(\omega)\},$ $\Rightarrow \mathbb{P}(\{\omega \in \Omega' \mid g(Y_n(\omega)) \to g(Y(\omega))\}) \ge \mathbb{P}(\{\omega \in \Omega' \mid Y_n(\omega) \to Y(\omega)\}),$

 $\Rightarrow \mathbb{P}(\{\omega \in \Omega' \mid g(Y_n(\omega)) \to g(Y(\omega))\}) \ge 1,$ \Rightarrow g(Y_n) \infty \delta g(Y),

 $\Rightarrow g(Y_n) \xrightarrow{D} g(Y),$

 $\Rightarrow g(Y_n) \stackrel{D}{\to} g(Y).$

This completes the proof since, $g(Y_n)$ has the same distribution as $g(X_n)$, and g(Y) has the same distribution as g(X).

Theorem 28.23 If $X_n \xrightarrow{D} X$, then $C_{X_n}(t) \longrightarrow C_X(t)$, $\forall t$.

Proof: If $X_n \xrightarrow{D} X$, from Skorokhod's Representation Theorem, there exist random variables $\{Y_n\}$ and Y such that $Y_n \xrightarrow{a.s.} Y$.

$$cos(Y_n t) \longrightarrow cos(Y t), cos(X_n t) \longrightarrow cos(X t), \forall t.$$

As $\cos(\cdot)$ and $\sin(\cdot)$ are bounded functions,

$$\mathbb{E}[\cos(Y_n t)] + i\mathbb{E}[\sin(Y_n t)] \longrightarrow \mathbb{E}[\cos(Y t)] + i\mathbb{E}[\sin(Y t)], \quad \forall t.$$

$$\Rightarrow C_{Y_n}(t) \longrightarrow C_Y(t), \quad \forall t.$$

We get,

$$C_{X_n}(t) \longrightarrow C_X(t), \ \forall t,$$

since distributions of $\{X_n\}$ and X are same as those of $\{Y_n\}$ and Y respectively, from Skorokhod's Representation Theorem.

Example 1: Let the random variable U be uniformly distributed on [0, 1]. Consider the sequence defined as:

$$X(n) = \frac{(-1)^n U}{n}.$$

1. Almost sure convergence: Suppose

$$U = a$$
.

The sequence becomes

$$X_1 = -a,$$

 $X_2 = \frac{a}{2},$
 $X_3 = -\frac{a}{3},$
 $X_4 = \frac{a}{4},$
 \vdots

In fact, for any $a \in [0, 1]$

$$\lim_{n\to\infty} X_n = 0,$$

therefore, $X_n \xrightarrow{a.s.} 0$.

Convergence in mean square sense:

In order to answer this question, we need to prove that

$$\lim_{n\to\infty} E\left[|X_n - 0|^2\right] = 0.$$

We know that,

$$\lim_{n \to \infty} E[|X_n - 0|^2] = \lim_{n \to \infty} E[X_n^2],$$

$$= \lim_{n \to \infty} E\left[\frac{U^2}{n^2}\right],$$

$$= \lim_{n \to \infty} \frac{1}{n^2} E[U^2],$$

$$= \lim_{n \to \infty} \frac{1}{n^2} \int_0^1 u^2 du,$$

$$= \lim_{n \to \infty} \frac{1}{n^2} \frac{u^3}{3} \Big]_0^1,$$

$$= \lim_{n \to \infty} \frac{1}{3n^2},$$

$$= 0.$$

