Algoritmi i strukture podataka - međuispit

26. travnja 2016.

Nije dopušteno korištenje globalnih i statičkih varijabli te naredbe goto. Ispit donosi maksimalno 30 bodova. Ovaj primjerak ispita trebate predati s upisanim imenom i prezimenom te JMBAG-om.

Zadatak 1. (6 bodova)

Napišite rekurzivnu funkciju prototipa:

int PascalovTrokut (int redak, int stupac);

koja određuje i vraća cijeli broj koji se nalazi u retku **redak** i stupcu **stupac** u Pascalovom trokutu. Prikaz Pascalovog trokuta u obliku matrice:

	0	1	2	2	3	4	Primjeri:
0	1						 za poziv PascalovTrokut(0, 0), funkcija treba vratiti 1
1	1	1					 za poziv PascalovTrokut(1, 1), funkcija treba vratiti 1
2	1	2	:	L			 za poziv PascalovTrokut(2, 1), funkcija treba vratiti 2
3	1	(3	X	3)	1		 za poziv PascalovTrokut(4, 2), funkcija treba vratiti 6 (primjer sa slike)
4	1	4		5)	4	1	
itd.							6 = 3 + 3

Napomena: nerekurzivno rješenje se neće priznati.

Zadatak 2. (6 bodova)

Odredite vrijeme izvođenja u O, Ω i, ako je moguće, Θ notaciji za programski odsječak u a) dijelu zadatka i za funkciju **rekurzija** u b) dijelu zadatka. Ako se vrijeme izvođenja u Θ notaciji ne može odrediti, navedite tako u rješenju. Rješenja upišite u tablice pored zadatka.

```
a)
 /* A je polje n cijelih brojeva */
if (n <= 10) {
   g(n); /* obavlja se u \Theta(n) vremenu */
                                                  0
 }
 else {
                                                 Ω
   for (i = n - 1; i > 0; i--) {
     if (A[i] > A[i - 1]) {
                                                  Θ
       g(i);
     }
   }
 }
b)
 void rekurzija(int n) {
   int i;
                                                  0
   if (n == 0) {
     return;
                                                  Ω
   for (i = 0; i < n; i++) {
                                                  Θ
     rekurzija(i);
 }
```

Zadatak 3. (6 bodova)

Za zadani program prikažite sadržaj sistemskog stoga **počevši s pozivom funkcije f1** iz glavnog programa (linija 20) te sve do neposredno prije izvođenja naredbe **return 0**; u funkciji **f2** (linija 8). Uz svaku stavku napišite broj okteta (*byte*-ova) koje stavka zauzima na stogu.

Sadržaj stoga te broj okteta koje zauzima svaka stavka prikažite u pravokutniku desno od zadanog programa.

```
1
   #include <stdio.h>
2
   int f2(int *a, int *b) {
     if (*a > *b) {
3
4
        --(*a);
5
       f2(a, b);
6
     }
7
     else {
8
        return 0;
9
     }
10 }
11
12 void f1(int *a, int *b) {
     int *c = a, *d = b, t;
13
     printf("%d %d", *c, *d);
14
15
     t = f2(a, b);
16 }
17
18 int main(void) {
19
     int A[] = \{4, 3, 2, 1\};
20
     f1(&A[0], &A[1]);
21
     return 0;
22 }
```

Sadržaj stoga:

Zadatak 4. (6 bodova)

Zadano je polje brojeva s elementima: **8**, **7**, **2**, **1**, **4**, **6**, **8**, **1**. Ilustrirajte uzlazno sortiranje zadanog niza brojeva (ispišite polje nakon svake promjene i podcrtajte sve brojeve relevantne za sljedeći korak) algoritmom *shellsort* uz korake **k** = **{4**, **3**, **1}**.

Zadatak 5. (6 bodova)

Napišite funkciju stvori_matricu koja stvara odredišnu cjelobrojnu matricu veličine n x n temeljem ulaznog polja cijelih brojeva veličine n. Svaki redak odredišne matrice jednak je ulaznom polju, uz iznimku da elementi dijagonale matrice trebaju biti 0.

Potrebno je napisati i glavni program koji stvara polje od 4 elementa s vrijednostima {1, 5, 3, 7} te poziva funkciju stvori matricu. Nakon poziva funkcije potrebno je ispisati dobivenu matricu.

Funkcija treba imati prototip:

```
int *stvori_matricu(int *ulaz, int n);
```

Primjer rezultata rada funkcije za ulazno polje [1, 5, 3, 7]:

```
0537
```

1037

1507

1530

Rješenja:

1. zadatak

```
int PascalovTrokut(int redak, int stupac) {
  int clan;
  if (stupac == 0 || redak == stupac) {
    clan = 1;
  }
  //else if (stupac == 1 || (stupac + 1) == redak) {
    // clan = redak;
  //}
  else {
    clan = PascalovTrokut(redak - 1, stupac - 1) +
        PascalovTrokut(redak - 1, stupac);
  }
  return clan;
}
```

2. zadatak

- a) $O(n^2)$, $\Omega(n)$ (najbolji slučaj: silazno sortirano polje; najgori slučaj: uzlazno sortirano polje)
- b) $O(2^n)$, $\Omega(2^n)$, $\Theta(2^n)$

3. zadatak

42	Povr. adresa f2			
poziv f2	а	4		
ğ	b	4		
f2	Povr. adresa f2	4		
poziv f2	а	4		
od	b	4		
	t	4		
	d	4		
	С	4		
7	Povr. adresa f1	4		
poziv f1	&A[0]	4		
bo	&A[1]	4		
		_		

4. zadatak

hk=4	<u>8</u>	7	2	1	<u>4</u>	6	8	1
	4	<u>7</u>	2	1	8	<u>6</u>	8	1
	<u>4</u>	6	2	1	8	7	8	1
hk=3	1	6	2	4	<u>8</u>	7	8	<u>1</u>
	1	<u>6</u>	2	4	8	7	8	8
	1	1	2	4	6	7	8	8
hk=1	Nema promjena							

5. zadatak

```
int *stvori_matricu(int* ulaz, int n){
      int *rez;
      if (i!=j)
                          rez[i * n + j] = ulaz[j];
                    else
                          rez[i * n + j] = 0;
             }
      return rez;
}
int main(){
      int ulaz[] = {1, 5, 3, 7};
      int *rez;
      int i; int j;
      rez = stvori_matricu(ulaz, 4);
      for (i = 0; i < 4; i++){
             for (j = 0; j < 4; j++){
    printf("%d ", rez[i * 4 + j]);</pre>
             }
             printf("\n");
      }
      free(rez);
      return 0;
}
```