SEARCH:	
	Submit Query

GO TO ADVANCED SEARCH LOGGED IN AS:

- Richard Rodriguez
- Logout
- HOME
- SEARCH PATENTS
- CHEMICAL SEARCH
- DATA SERVICES
- HELP
- My Account
- My Portfolios
- My Alerts
- My Saved Searches
- Invite a Friend

Portfolio:			
Add to portfolio	Choose 🛨	or add to a new portfolio, named	Go

Title:

HEARING AID USED IN EITHER EARHOLE OR POCKET

Document Type and Number: Japanese Patent JP2003309900 Kind Code:

A

Abstract:

PROBLEM TO BE SOLVED: To provide a cordless Inventors:

hearing aid that has more high performance and is less Arai, Seiji

expensive than the conventional one.

Application Number:

JP2003000072801

SOLUTION: In sounds of a microphone 1, sound quality and volume are adjusted manually to the

Publication Date: 10/31/2003

preference of a user by a signal processor 2 with noise Filing Date: suppressed in the system diagram of Figure 1. When 02/10/2003

the user goes out, a transmitter 4 emits an output of the signal processor by radio, and a receiver 8 in an Referenced by: View patents that cite this patent

earhole rings an earphone. When the user is at home, Export Citation:

a headphone is inserted into a plug 4, making a sound Click for automatic bibliography generation signal to be received by the headphone, and the power Assignee:

of the transmitter is turned off.

ARAI SEIJI

International Classes:

COPYRIGHT: (C)2004,JPO

(IPC1-7): H04R25/00; H04R1/10; H04R25/02

Invention Ideas Wanted
Let Us Help You License Your Invention Idea! Get Free Info Now. www.ldea4Invention.com Ads by Google

Copyright 2004-2009 FreePatentsOnline.com. All rights reserved. Privacy Policy & Terms of Use.

- Home
- Search Patents
- Data Services
- Help
- Contact us

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開發号 特開2003-309900 (P2003-309900A)

(43)公開日 平成15年10月31日(2003.10.31)

(51) Int.CL?		織別記号		FI			ラーマコード(参考)
H04R	25/00			H04R	25/00	R	5 D O O 5
						D	
						E	
	1/10	104			1/10	104E	
	25/02				25/02	C	
			家铺查審	水苗氽	請求項の数2	書面 公開書	旅 (全 4 頁)

(21) 出願番号 特願2003-72801(P2003-72801)

(22)出願日 平成15年2月10日(2003.2.10) (71) 出廢人 502392951

新非 清治

神奈川県横浜市南区東荷田町8-6

(72) 発明者 新丼 清治

神奈川県横浜市隋区東蒔田町8-6

Fターム(参考) 50005 BB11

(54) 【発明の名称】 耳孔、ポケット兼用型補糖器

(57)【要約】

【目的】 市販されている耳孔型縞聴器の体裁 は良いが、ハウリングが起こり、音質も悪く扱い難く、 高価である。ボケット型補糖器は、イヤホンコードが体 裁悪い。本発明は両型の欠点を循い、外出時はコードレ スのイヤホンに、在宅時は良音質で疲れないヘッドホン を使えるようにも、且つ、対象に応じ音量、音質を好み に合わせて簡単に変えられるようにした。外出時に受信 セットを2台。在宅時には両耳ヘッドホンを使えば、両 耳効果で更に良音質の消聴器となる。

【構成】

【図1】の系統図で、マイク1の音は信号処理器2で、 騒音は抑制され、音質、音量は好みに手動で合わせる。 外出時は、信号処理器出力を送信器4で電波発射し、耳 孔内の受信器8でイヤホンを鳴らす。在宅時はヘッドホ ン プラッグ4種入で、音信号はヘッドホンに入り、送 信器電源は切られる。

(2)

【特許請求の範囲】

【請求項1】 縞廐器を体は、マイクと一緒にボ ケット型に収納し、各種可変器により、音量、音質を自 己の好みに合うように変え、その出力を送信器で電波と して出し、耳孔に挿入された受信器で音を再生させる無 線系統と、送信器入力前でヘッドボン ブラッグ挿入に より信号を取り出し、より良好な音質を楽しめるような 有線系統の2系統が利用できる循聴器。

[請求項2] 受信器を2台使用し、或いは有線 系統に両耳ヘッドホンを使用すれば、更に鮮明な音質が 10 得られる両耳補糖器。

【発明の詳細な説明】

[0001]

【従来の技術】現在市販されている補籍器は、装着方法 から耳孔型とボケット型に大肌される。しかし、夫ャー 長一短がある。耳孔型縞廐器の長所は、

浦廰器が耳孔に埋没して外からは殆ど見えない 点。体裁が良い。

短所は

- ハウリングが起こり易い。
- 2 日鴬会話、TV、音楽、鷓鴣等、聞こうとする対 象に応じた音質調節が出来ない。
- 音質が余り良くない。
- 在宅時、イヤホンを使うのは音質も悪く疲れる。
- 部品が小さく、音量調節がし難い。
- 空気電池は封を切ったら、使わなくとも寿命が減 るのは不経済だ。
- 非常に高価である。

再孔型の短所は、小型にするために機能が犠牲にされた 為なのである。ポケット型の長所は

- 再孔型より音質が良い。 1
- 再孔型より安価である。
- 3 ハウリングが起きない。
- 音量、音質の調整がし易い。
- 電池の寿命が長く、値段も安い。

短所は、イヤホンコードがあり、体裁が悪い。ポケット 型は、本体を小さくしないで済むから、機能を良く出来 たのである。

[0002]

【発明が解決しようとしている課題】本発明の目標は、 コードレスで、従来品よりも高性能、安価な縞暁器を創 り、補聴器を毛嫌いしている人々に広く普及させること である。

[0003]

【課題を解決するための手段】本論に入る前に、現在の 縞暁器の問題点を考え直して見た。

- 1 現在の浦暁器は機能を1台にまとめ過ぎていない か。機能を分ける事により、後述する如く、縞糖器の活 動分野が拡がってくるのである。
- 2 もっと安く出来ないか。携帯電話は安く、普及して 50 る。さて、全系統に電源を入れ、イヤホンでマイク入力

いる。縞聴器も同じ程度の価格で、もっと普及しても良 い商品だと考えている。それには、現在のように多品種 少量生産でなく、製品規格を揃え少品種大量生産にする 必要がある。

3 もっと縞糖器の質を上げられないか。デジタル化の 研究は必要であるが、未だ製品化には早いと思う。長い **浦暁器の歴史で培われた立派なアナログ技術を駆使すれ** は、もっと質を上げることが出来る。この3つのチーマ を念頭に本発明の説明を述べる。

[0004]

【図1】は本発明の基本系統図である。マイク1はポケ ット型のケースに組み込まれている。それはそれで良い が、襟にクリップ止めする高音質マイクを使うため、マ イク ブラッグ挿入口12を1個付ける。信号処理器2 は前置増幅器、自動騒音抑制器、手動音質調節器、手動 音量調節器で構成される。前置増幅器は信号処理し易い レベルまで音信号を増幅するのが目的であるが、大きな 音が入ると信号に歪みが生じる。それを防ぐ為に、負帰 還NFBを掛ける。自動騒音抑制器は補聴器にとって必 20 要な機能である。これにより、聞きたい音の明瞭度が向 上し、S/N比が上がる。手動音質調節器の前半増幅器 で4 k 月 2 以上の高音部を上げ、音の明瞭感をだす。こ の部分で例え歪んで高調波が発生しても、難聴者には間 こえない音である。後半増帽器では、手動10で高音部 を下げ、ユーザーの好みの音質に調節する。季動音量調 節器の前半増幅器は自動音量調節器で、信号レベルをほ ぼ一定内に揃える機能を持たせる。その後で、手動音量 調節器で、ユーザーの好みに合わせて手動!」で音量調 節する。次に、ブラッグスイッチ3がある。これは4の 30 ヘッドホン(或いはイヤホン)のブラッグを挿入する と、信号処理器出力はヘッドホンに繋がり、抜くと送信 器5に繋がる。尚、ブラッグを挿入すると、送信器の電 源は切られる。ブラッグ挿入時は普通のボケット型縞聴 器の状態である。始めに、ヘッドホンを掛けて、音質、 音量を自分の好みに合わせる。これで、ポケット型消聴 器としての初期調整は終わる。ここの電源は、単3か単 4型電池である。尚季動11は電源スイッチを兼ねる。 【① 0 0 5 】次は、無線系統である。ヘッドホンープラ ッグ4を抜くと音信号は送信機5に繋がり、且つ送信器 40 の電源が入る。アンテナ6はボッケト型消聴器付属のフ ックを兼用する。再孔内の受信セットはアンテナ?、受 信器8、電池とイヤホン9で構成される。受信アンテナ 7は耳孔内の受信セットを取り出すためのつまみ締と兼 用する。このつまみ棒は、受信器部に押し込むと電源が 切れ、引き出すと電源が入るスイッチにも兼用してい る。受信器部の電池は空気電池でない方が良いと思う。 空気亀池はラベルを剥がする。使わなくても寿命が減 る。本発明の受信器部は体裁を感じる時だけ使うので、 従来の再孔型補糖器より使用時間は大幅に減るからであ

http://www4.ipdl.inpit.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401=/N...

の音を聞き、もう一度音質、音量の調節をする。有線と 無線では音質、音量共若干異なるからである。 ここで注 目して欲しいのは、受信セットには調節機能は何もな く、単純な受信器と電源スイッチのみである。これで、 再孔型消聴器の短所は無くなる。ただ1点、問題があ

3

る。それは、送、受信器の層波数同調がずれたときの対 黛である。これには3対策が考えられる。受信器に (1)自動周波数制御器AFCを付ける法しこれはコス トが掛かるが理想的解決法である(2)受信器の同調器 器との距離が2、30cmであるから、この方法はコス トが掛からず、現実的かもしれない(3)送信器の周波 数をずらす法・ポケット型のケースにつまみをつければ 出来る。この3対策の優劣は、製品の出来具合によるか ち、今は分らない。耳孔型補聴器では、マイクとイヤホ ンが1cm位の距離にある。中、高難聴度の人はイヤホ ンの音量を上げたくなるから、ハウリングを起こし易く なる。それでイヤホンと外耳間の隙間を減らすため、耳 型に合わせたイヤボンが必要になる。本発明ではマイク までの距離は2、30cmあり、ハウリングの心配はな 20 い。従って、イヤホンと外耳間は隙間が有っても支障は ない。イヤボンが抜け落ちるのを防ぐ為、間にスポンジ リングを挟める。これで耳に対する当たりが減り、長時 間装着しても耳の痛みや疲れは大幅に減る。

【0006】両耳聴覚の健全な人でも、集会である人の 話しを聞き分けるのは、難しい。まして、片耳ではS/ N比が5 d b 落ちて (これを両耳効果という。) 益々間 き分け難くなるのである。難聴の人が片耳の縞蜷器で集 会の会話に参加するのは大変困難なことで、消聴器が役 に立たないと不満の原因にもなっている。両耳用に2台 30 **浦峡器を買うのは余りにも高価なので、諦める。本発明** の受信器は、簡単な構造であるから、安価に買える。両 再で聞けば、5 d b 聞き分け聴力が上るのである。高齢 者は在宅時間が多くなる。在宅中は体裁を考える必要は なく、高音質で、疲れない補聴器が良い。それには本発 明のように高音質のマイクと有線の両耳ヘッドホンを使 用すれば、高音質が楽しめる。本緒聴器を購入する際 は、襟付け用高音質マイク1個、ポケット型本体1台、 再孔受信セット2台(外出時、両耳補暁用と予備機を兼 ねて)、イヤホン1個(外出時、体裁を考えない際使 用) 両耳ヘッドホン1個(在宅時用、音楽会用)を輸 える事をお勧めする。価格も、従来の耳孔型より安くな る筈である。

[0007]

【発明の効果】耳孔型補糖器は体裁を保ち、他人と話す 時に適している。ボケット型縞聴器はそれ以外に適して いる。しかし、1台で1日中使うには音質も不十分であ

り、疲れるので無理である。従来の製品は、1台に纏め ようとするため、どうしても色々な短所があり、それを 改善するため、多品種少量生産になり、コストが上が り、バソコンより高価な数十万円の製品する現れてい る。本発明の補糖器は機能を分けたため、短所は無さそ うである。従って、多品種にはならず、少品種大量生産 に乗り、携帯電話機並の安い製品が出ると期待される。 短所の少ない。安価な消聴器が市場に出回り、補聴器を 毛嫌いしている人々、TVの音を上げ過ぎて孫達に怒ら のQを下げて、少置のずれは感じないようにする一送信 10 れている高齢者達が、浦暁器を再認識される事を願って

【図面の簡単な説明】

【図1】は本発明の系統図である。外出時、音はマイク 1から信号処理器2で、騒音を抑制され、音費、音質は 使用者の好みに調節され、送信器5. アンテナ6より電 波発射される。2.30cm離れた受信アンテナ?、受 信器8で復調され、イヤホン9から音として出る。在宅 時. ヘッドボン プラグ4を挿入すると、プラッグスイ ッチ3により、信号処理器出力はヘッドホンに切り替わ り、送信器の電源は切られる。

【図2】はボケット型縞廐器の外観図で、上面にマイク 1. 電源スイッチ付手動音量調節つまみ11、手動音質 調節つまみ10がある。ポケットに掛けるフック6は、 送信アンテナ兼用である。12は高音質マイク用、4は ヘッドホン用ブラッグ挿入口である。

【図3】は再孔に入れる受信セットの外観図である。9 はイヤボン、受信器と電池は8に内臓される。耳孔から 受信セットを取り出すつまみ棒は、セットに押し込むと 電纜が切れ、引き出すと電纜が入るスイッチと、受信ア ンテナアを兼用している。

【符号の説明】

- マイケ
- 信号処理器 《前增幅器、自動騒音抑制器、手 動音質調節器、手動音量調節器と電源より構成され る。)
- 3 プラッグスイッチ(無線系統と、有線系統の切 替用)
- ヘッドホン ブラッグの挿入口
- 5 送信器
- 6 送信アンテナ (フックと兼用)
 - 7 受信アンテナ (電源スイッチ、取り出しつま み締と兼用》
 - 8 受信セット (受信器、電池内臓)
 - 9 イヤホン (周囲にスポンジリング付き)
 - 10 手動音質調整つまみ
 - 11 電源スイッチ付手動音量調節つまみ
 - 12 高音質マイク プラッグ挿入口

(4) 特闘2003-309900

