Regular Expressions (RE)

Asai Asaithambi

Spring 2018

Topic Overview

What does this topic cover?

- Basics
 - Precedence of Operations
- Examples of REs
- Things to Remember
- REs ≡ Regular Languages
- Generalized Nondeterministic
 Finite Automata (GNFA)
- Converting DFAs to REs

Regular Expressions

Let $\Sigma = \{0,1\}$. We wish to combine elements of Σ using \cup , \circ and * .

- Consider $(0 \cup 1)0^*$.
- This represents the language consisting of all strings starting with a 0 or a 1 followed by any number of 0s.
- How do we know this?
 - 0 and 1 are shorthand for $\{0\}$ and $\{1\}$.
 - Thus, $0 \cup 1$ represents $\{0\} \cup \{1\} = \{0, 1\}$.
 - Also, 0^* represents $\{0\}^* = \{\varepsilon, 0, 00, 000, \cdots\}$
 - Finally, $(0 \cup 1)0^*$ is shorthand for $(0 \cup 1) \circ 0^*$
- As another example, consider $(0 \cup 1)^*$
 - This represents the language consisting of all possible strings of 0s and 1s
- With $\Sigma = \{0, 1\}$, we may write Σ in place of $0 \cup 1$.

Regular Expressions (cont.)

If Σ is any alphabet, then

- Σ describes the language consisting of all strings of length 1 over that alphabet
- Σ* describes the language consisting of all strings over that alphabet
- Σ^*1 describes the language consisting of all strings that end in a 1
- The language $(0\Sigma^*) \cup (\Sigma^*1)$ consists of all strings that start with a 0 or end in a 1

Operator Precedence:

- Star is done first;
- then concatenation; and
- then the union.

Regular Expressions: Formal Definition

Let Σ be the alphabet.

R is a Regular Expression (RE), if R is:

- \bullet ε
- ullet a, for some $a \in \Sigma$
- Ø
- $R_1 \cup R_2$, where R_1 and R_2 are REs
- $R_1 \circ R_2$, where R_1 and R_2 are REs
- (R_1^*) , where R_1 is a RE

Note:

- ε represents the language $\{\varepsilon\}$.
- $a \in \Sigma$ represents the language $\{a\}$.
- Ø represents the empty language.

Things to Remember

- ullet ε is the language containing one string, the empty string.
- ullet \emptyset is the language that contains no strings.
- R^k represents the concatenation of k R's.
- $R^+ = RR^* = R^k$ for $k \ge 1$. Also, $R^* = \varepsilon \cup R^+$.
- R is the RE; L(R) is the language represented by R.
- $R \circ \varepsilon = R$; $R \cup \varepsilon$ may not equal R.
- $R \cup \emptyset = R$; $R \circ \emptyset \neq R$

RE Examples with $\Sigma = \{0, 1\}$

- $0*10* = \{w \mid w \text{ contains a single } 1\}.$
- $\Sigma^* 1 \Sigma^* = \{ w \mid w \text{ has at least one } 1 \}.$
- $\Sigma^*001\Sigma^* = \{w \mid w \text{ contains } 001 \text{ as a substring}\}.$
- $1^*(01^+)^* = \{ w \mid \text{every 0 is followed by at least one 1} \}.$
- The length of a string is the number of symbols in it.
- $(\Sigma\Sigma)^* = \{w \mid w \text{ is a string of even length}\}.$
- $(\Sigma\Sigma\Sigma)^* = \{w \mid w \text{ the length of } w \text{ is a multiple of } 3\}.$
- $01 \cup 10 = \{01, 10\}.$
- $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w \mid w \text{ begins and ends with the same symbol}\}.$
- $\begin{array}{l} \bullet \ \ (0 \cup \varepsilon) 1^* = 01^* \cup 1^* \\ 0 \cup \varepsilon = \{0, \varepsilon\} \text{ puts 0 or } \varepsilon \text{ preceding } 1^*. \end{array}$
- $1^*\emptyset = \emptyset$ and $\emptyset^* = \varepsilon$

REs and NFAs

- A language is regular if and only if some RE describes it.
- Converting RE *R* to NFA:

•
$$R = a$$
 for $a \in \Sigma$

•
$$R = \varepsilon$$

• The NFAs for $R_1 \cup R_2$, $R_1 \circ R_2$ and R_1^* are constructed as was done previously using ε edges.

NFA for $(ab \cup a)$

a:

b:

ab:

$$\xrightarrow{a} \bigcirc \xrightarrow{\varepsilon} \bigcirc \xrightarrow{b} \bigcirc$$

 $\mathsf{ab} \, \cup \, \mathsf{a:}$

NFA for $(ab \cup a)^*$

 $(ab \cup a)^*$:

NFA for $(a \cup b)^*$

$$\xrightarrow{b} \bigcirc$$

 $(a \cup b)^*$:

NFA for $(a \cup b)^*$ aba

 $(a \cup b)^*aba$:

DFA to RE

- A regular language can be described by a RE.
- To see/show this, we need the idea of a GNFA.
- A GNFA is a NFA with the following properties:
 - o Has only one start state and only one accept state.
 - Transitions (arcs) are labeled with REs.
 - The single start state has:
 arcs going to every other state.
 no arcs coming into the start state.
 - The single accept state has:
 arcs coming from every state.
 no arcs going out from the accept state.
 - For all other states there is:
 an arc from every state to every other state.
 - There is a loop at every state, except the start and accept states.

Generalized Nondeterministic FA (GNFA)

Stages in the Conversion of DFA to RE

Reducing/Ripping One State from a GNFA

Converting DFA to RE: An Example

DFA to RE Example (cont.)

DFA to RE: Rip State 1 First

DFA to RE: Rip State 2 Second

DFA to RE: Rip State 2 First

DFA to RE: Rip State 1 Second

DFA to RE: A Second Example

DFA to RE: Second Example (cont.)

DFA to RE: Second Example (cont.)

DFA to RE: Second Example (final)

