ЛЕКЦІЯ 9 5.4.Діаграма Вороного. Властивості.

Задача Б.8 (ОБЛАСТІ БЛИЬКОСТІ). На площині задана множина S, яка містить N точок. Необхідно для кожної точки p_i множини S визначити локус точок (x, y) на площині, для яких відстань до p_i менша, ніж до будь - якої іншої точки множини S.

Якщо є дві точки p_i та p_j , то множина точок, більш близьких до p_i ніж до p_j , є півплощина, що визначається прямою, яка перпендикулярна до відрізка p_ip_j та ділить його навпіл. Позначимо цю півплощину через $H(p_i, p_j)$. Множину точок, більш близьких до p_i ніж до довільної іншої точки, будемо позначати через V_i . Вона одержується в результаті перетину N-1 півплощин. Ця множина є опуклим многокутником, який має не більш ніж N-1 сторін.

$$V_{\it i} = \mathop{\cap}_{\it i\neq\it j} \, H(p_{\it i},\,p_{\it j})$$

Означення. Область V_i називається многокутником Вороного, яка відповідає точці p_i . Отримані таким чином N областей утворюють розбиття площини, яке називається діаграмою Вороного. Діаграму Вороного множини точок S будемо позначати через Vor(S).

Кожна з N вихідних точок множини належить лише одному многокутнику Вороного. Тому якщо $(x, y) \in V_i$, то $p_i \in H$ айближчим сусідом точки (x, y).

Властивості Діаграми Ворного

- **1. Припущення.** Жодні чотири точки вихідної множини S не лежать на одному колі.
- **2. Теорема 9.1.** Кожна вершина діаграми Вороного ϵ точкою перетину трьох ребер діаграми.

Мал. 9.2. Вершина діаграми Вороного з інциндентними їй вершинами.

Доведення. Нехай v ε точкою перетину ребер e_1 , e_2 , ..., e_k . Ребро e_i ε спільним для многокутників V(i-1) та V(i), i=2, ..., k, а ребро ε спільним для V(k) та V(1). Оскільки v належить ребру e_i , то вона однаково віддалена від точок p_{i-1} та p_i . Таким чином v рівновіддалена від точок p_1 , p_2 , ..., p_k . Це означа ε , що точки p_1 , p_2 , ..., p_k лежать на одному колі, що суперечить припущенню.

3. Вершини діаграми Вороного є центрами кіл, кожне з яких визначається трьома точками вихідної множини, а сама діаграма Вороного є регулярною (всі вершини мають однаковий ступінь) зі ступенем вершин, рівним трьом. Позначимо через C(v) коло, що відповідає вершині v.

Теорема 9.2. Для будь-якої вершини v діаграми Вороного множини S коло C(v) не містить жодних інших вершин множини S.

Мал. 9.3. Коло C(v) не містить жодної точки множини S.

Доведення. Нехай p_1 , p_2 , p_3 – три точки множини S, які визначають коло C(v). Якщо коло містить ще деяку точку p_4 множини S, то вершина v знаходиться ближче до p_4 ніж до

інших точок. Тоді вершина v повинна знаходитися у V(4), що суперечить тому що v належить одночасно V(1), V(2) та V(3).

Теорема 9.3. Кожний найближчий сусід точки p_i множини S визначає ребро у многокутнику Вороного Vi.

Мал. 9.4. Кожен найближчий сусід точки p_i визначає ребро многокутника V_i .

Доведення.Нехай p_i є найближчим сусідом p_j , а v – середина з'єднуючого їх відрізка. Припустимо, що v не лежить на границі V_i . Тоді відрізок перетинає деяке ребро многокутника V_i (наприклад рівновіддалене від p_i та p_k) в деякій точці u. Тоді $|p_iu| < |p_iv|$ і тому $|p_ip_k| \le 2 |p_iu| < 2 |p_iv| = |p_ip_j|$, звідки випливає що p_k ближче до p_i ніж p_j , що суперечить умові теореми.

Теорема 9.4. Многокутник V_i є необмеженим тоді і тільки тоді, коли точка p_i лежить на границі опуклої оболонки множини S.

Мал. 9.5. Прямолінійний граф, двоїстий діаграмі Воронного.

Теорема 9.5. Граф, двоїстий діаграмі Вороного, ϵ триангуляцією множини S.

Теорема 9.6. Діаграма Вороного множини з N точок має не більш 2N - 5 вершин та 3N - 6 ребер.

Доведення. Кожному ребру графа, двоїстого діаграмі Вороного, відповідає єдине ребро діаграми. Двоїстий граф є триангуляцією, а отже є планарним з N вершинами. За

формулою Ейлера він має не більш ніж 3N - 6 ребер та 2N - 4 граней. Лише обмежені грані (їх не більш ніж 2N - 5) відповідають вершинам діаграми Вороного при відображенні двоїстості.

5.5. ПОБУДОВА ДІАГРАМИ ВОРОНОГО

Діаграма Вороного планарний граф. Результат- РСПЗ.

Теорема 9.7. Для побудови діаграми Вороного множини N точок необхідно $\Omega(NlogN)$ операцій в гіршому випадку.

Вершини Діаграми Вороного в E^1 .

Наслідок. *СОРТУВАННЯ* \propto_N ДІАГРАМИ ВОРОНОГО

Діаграма Вороного(схема "розподіляй та володарюй").

- Крок I. Розділити множину S на дві приблизно рівні підмножини S_1 та S_2 .
- $\stackrel{\frown}{K}$ рок 2. Рекурсивно побудувати $Vor(\stackrel{\frown}{S_1})$ та $Vor(\stackrel{\frown}{S_2})$.
- $\mathit{Kpo\kappa}\ 3$. Об'єднати $\mathsf{Vor}(S_1)$ та $\mathsf{Vor}(S_2)$ і таким чином отримати $\mathsf{Vor}(S)$.

Означення. Нехай для заданого розбиття $\{S_1, S_2\}$ множини S $\sigma(S_1, S_2)$ означає множину ребер діаграми Вороного, спільних для пар многокутників V(i) та V(j) діаграми V(i), де $p_i \in S_1$ та $p_j \in S_2$.

Теорема 9.7. *Сукупніс*ть $\sigma(S_1, S_2)$ є множина ребер деякого під графа діаграми Vor(S) і має такі властивості:

- 1. $\sigma(S_1, S_2)$ складається із циклів та ланцюгів, що не мають спільних ребер. Якщо деякий ланцюг містить єдине ребро, то це ребро є прямою лінією; інакше два крайні ребра ланцюга є промінями.
- 2. Якщо множини S_1 та S_2 ϵ лінійно роздільними, то $\sigma(S_1, S_2)$ складається з єдиного монотонного ланцюга.

Доведення.

1.Якщо уявити, що кожний із многокутників $\{V(i): p_i \in S_1\}$ розфарбований у червоний колір, а кожний із многокутників $\{V(j): p_j \in S_2\}$ - у зелений колір, то Vor(S) перетвориться у двоколірну карту. Відомо, що границі між многокутниками різних кольорів представляють цикли та ланцюги, які не мають спільних ребер. Кожна компонента множини $\sigma(S_1, S_2)$ розбиває площину на дві частини. Таким чином, ланцюг містить єдине ребро, яке представляє пряму лінію, чи її перше та останнє ребра є промені.

2.Якщо множини S_1 і S_2 лінійно роздільні, то єдиний ланцюг, який міститься у $\sigma(S_1, S_2)$, позначатимемо σ . Якщо розділяючи пряма m вертикальна, то σ розділяє площину на ліву π_L та праву π_R частини.

Мал. 9.6(a). Монотонність $x(p_3) < x(p_1) < x(p_2), (p_3, p_2) \in S_1, p_1 \in S_2 \Rightarrow v_1$ не існує.

Мал. 9.6 (б) Монотонність: $x(p_1) < x(p_2) < x(p_3)$, $(p_3, p_1) \in S_1$, $p_2 \in S_2 \Rightarrow v_1$ протиріччя.

Теорема 9.8. Якщо множини S_1 і S_2 лінійно роздільні вертикальною прямою і при цьому S_1 міститься ліворуч від S_2 , то діаграма Вороного Vor(S) являє собою об'єднання $Vor(S_1) \cap \pi_L$ і $Vor(S_2) \cap \pi_R$.

procedure ДІАГРАМА ВОРОНОГО

- $Kpo\kappa\ I$. Розділити множину S на дві приблизно рівні підмножини S_1 та S_2 , використавши для цього медіану по х координаті.
- $\mathit{Kpo\kappa}\ 2$. Рекурсивно побудувати $\mathsf{Vor}(S_1)$ та $\mathsf{Vor}(S_2)$.
- $\mathit{Kpok}\ 3$ '. Побудувати ламану σ , що розділяє S_1 та S_2 .
- *Крок 3*". Вилучити усі ребра діаграми $Vor(S_2)$, розташовані зліва від σ та всі ребра $Vor(S_1)$, розташовані справа від σ . Отримаємо Vor(S) діаграму Вороного для всієї множини.

5.6.ПОБУДОВА РОЗДІЛЯЮЧОГО ЛАНЦЮГА.

Кожний промінь ланцюга σ перпендикулярний опорному відрізку до $CH(S_1)$ та $CH(S_2)$ і ділить його навпіл. Оскільки S_1 та S_2 за припущенням лінійно роздільні, то існує рівно два опорних відрізки до $CH(S_1)$ та $CH(S_2)$.

Знайдемо верхній та нижній опорні відрізки для точок діаграм $Vor(S_1)$ та $Vor(S_2)$, ({ P_3 , P_5 },{ P_4 , P_8 }, відповідно, мал.9.8). Побудуємо вхідний σ_{IN} та вихідний σ_{OUT} промені розділяючого ланцюгу σ (серединні перпендикуляри до вхідного та вихідного опорних відрізків).

Мал.9.7. Визначення променів ланцюгу σ.

Рухаємось по вхідному променю σ_{IN} доки не перетнемо ребро однієї із діаграм $\text{Vor}(S_1)$ чи $\text{Vor}(S_2)$. В залежності від того ребро якої діаграми перетнеться, із тієї множини зміниться точка в наступній парі до якої із точки перетину будується серединний перпендикуляр. Процес побудови ребер ланцюга σ продовжується до тих пір, доки буде досягнуто вихідного променя σ_{OUT} . Відсікаються зайві промені, після побудови розділяючого ланцюга.

Мал.. 9.8. Побудова розділяючого ланцюгу.

Мал.. 9.10. Перетин ланцюгу σ 3 V(i) у Vor(S₁).

Для визначення точок перетину ланцюгу σ з V(i) у $Vor(S_1)$ необхідно переглядати ребра за годинниковою стрілкою. Для σ з V(j) у $Vor(S_2)$ – навпаки.

Позначення: I(e, e') — перетин відрізків е і е', а I(e, e') = Λ означає, що е і е' не перетинаються; t_1 і t_2 - два опорних відрізки, при цьому t_1 = [p,q]. Розглянемо реалізацію кроку 3' процедури ДІАГРАМА ВОРОНОГО.

1. **begin** $p_L := p; p_R := q; e := e^*; v := v^*; e_L := перше ребро (відкритої) границі <math>V(p_L); e_R := перше ребро (відкритої) границі <math>V(p_R);$

- 2. repeat
- 3. **while**($I(e, e_L) = \Lambda$) **do** $e_L := H_1[e_L]$ (* подивитись границю $V(p_L)^*$);
- 4. **while**($I(e, e_R) = \Lambda$) **do** $e_R := H_2[e_R]$ (* подивитись границю $V(p_R)^*$);
- **5. if**(v ближче до $I(e, e_L)$, ніж до $I(e, e_R)$) **then**
- 6. **begin** $v := I(e, e_L);$
- 7. $p_L :=$ точка S, яка міститься по іншу сторону від e_L (сусід (p_L) ;
- 8. е: = пряма, перпендикулярна [p_L , p_R] і, яка ділить його навпіл;
- 9. e_L : = обернене до e_L (*нове e_L є ребром $V(p_L)$ *); end
- 10. **else begin** $v := I(e, e_R);$
- 11. $p_R :=$ точка S, яка міститься по іншу сторону від e_R (сусід (p_R) ;

12. е: = пряма, перпендикулярна $[p_L, p_R]$ і, яка ділить його навпіл;
13. е $_R$: = обернене до е $_R$ end
14. until $([p_L, p_R] = t_2)$ end

Після ініціалізації (рядок 1) відбувається рух по ланцюгу σ (2-14).

Теорема 9.9. Діаграму Вороного на множині із N точок площини можна побудувати з оптимальним часом $\theta(NlogN)$.

5.7. РОЗВ'ЯЗАННЯ ЗАДАЧ ПРО БЛИЗКІСТЬ ЗА ДОПОМОГОЮ ДІАГРАМИ ВОРОНОГО.

Мал. 9.11. Діаграма звідності задач близькості

Теорема 9.10. Задача УСІ НАЙБЛИЖЧІ СУСІДИ зводима за лінійний час до задачі ДІАГРАМА ВОРОНОГО і тому її можна розв'язати за оптимальний час θ (NlogN).

Доведення. Згідно теореми 9.3, кожний найближчий сусід точки p_i визначає ребро многокутника V(i). Щоб знайти найближчого сусіда точки p_i , достатньо переглянути кожне ребро многокутника V(i). Так, як кожне ребро належить двом многокутникам Вороного, ребра не переглядатимуться більше двох разів.

Теорема 9.11. Задача НАЙБЛИЖЧА ПАРА зводима за лінійний час до задачі ДІАГРАМА ВОРОНОГО і тому її можна розв'язати за оптимальний час $\theta(NlogN)$.

Доведення зводиться до використання зводимості задачі *НАЙБЛИЖЧА ПАРА* до задачі *УСІ НАЙБЛИЖЧІ СУСІДИ*.

Теорема 9.12. Пошук найближчого сусіда можна виконати за оптимальний час O(logN), використовуючи пам'ять об'ємом O(N) з витратами на попередню обробку O(NlogN).

Доведення: Побудова ДВ - O(NlogN), тоді застосовуються теореми про локалізацію точки .

Теорема 9.13. Тріангуляцію, я якій коло, описане навколо любого трикутника, не містить інших точок, можна побудувати за оптимальний час $\theta(NlogN)$.

Теорема 9.14. Якщо для множини т очок побудована ДВ то опуклу оболонку можна побудувати за лінійний час.