

Licence 1ère année, 2016, MATHÉMATIQUES ET CALCUL 1 (MC1)

Feuille de TD 5: Fonctions usuelles et développements limités

Exercice 1. Calculer

(1)
$$a) \operatorname{Arccos}\left(\frac{1}{2}\right)$$
 $b) \operatorname{Arcsin}\left(\frac{-\sqrt{3}}{2}\right)$ $c) \operatorname{Arctan}\left(\sqrt{3}\right)$ (2) $a) \operatorname{Arccos}\left(\cos\frac{2\pi}{3}\right)$ $b) \operatorname{Arccos}\left(\cos\left(\frac{-2\pi}{3}\right)\right)$ $c) \operatorname{Arccos}\left(\cos\frac{4\pi}{3}\right)$

 $c)\cos(\operatorname{Arctan} x)$

d) tan(Arcsin x)

Écrire sous forme d'expression algébrique Exercice 2. $a) \sin(\operatorname{Arccos} x)$

Résoudre les équations suivantes
$$(E_1) \qquad \sin x = \frac{1}{3}$$

$$(E_2) \qquad \operatorname{Arcsin} x = \operatorname{Arcsin} \frac{2}{5} + \operatorname{Arcsin} \frac{3}{5}$$

b) $\cos(Arc\sin x)$

La notation sgn(x) désigne 1 si x > 0 et -1 si x < 0. Montrer que

(1)
$$\forall x \in [-1, 1], \quad \operatorname{Arcsin} x + \operatorname{Arccos} x = \frac{\pi}{2}$$

(2) $\forall x \in \mathbb{R}^*, \quad \operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x} = \operatorname{sgn}(x) \frac{\pi}{2}$

Démontrer les inégalités suivantes Exercice 5.

(1)
$$\forall a \in]-1, 1[\setminus \{0\}, \quad |\operatorname{Arcsin} a| < \frac{|a|}{\sqrt{1-a^2}}$$

(2) $\forall a > 0, \quad \operatorname{Arctan} a > \frac{a}{1+a^2}$

Exercice 6.

Exercice 3.

On considère la fonction f définie par $f(x) = 3 \operatorname{Arcsin}\left(\frac{x}{2}\right) + \frac{x^2}{3} + 2$.

- (1) Donner le domaine de définition de la fonction f et montrer qu'elle est continue sur ce domaine.
- (2) Calculer $f\left(-\sqrt{3}\right)$ et $f\left(\sqrt{3}\right)$.
- (3) En déduire que f s'annule sur l'intervalle $\left]-\sqrt{3},\sqrt{3}\right[$.
- (4) La fonction f s'annule-t-elle sur l'intervalle $[0, \sqrt{3}]$?

Exercice 7. Calculer les limites suivantes si elles existent

(1)
$$\lim_{x \to +\infty} e^{-x} (\operatorname{ch}^3 x - \operatorname{sh}^3 x)$$
 (2)
$$\lim_{x \to +\infty} (x - \ln(\operatorname{ch} x))$$

Exercice 8.

(1) Montrer que pour tout
$$x \neq 0$$
, th $x = \frac{2}{\tan 2x} - \frac{1}{\tan x}$.

(2) Soit
$$x \in \mathbb{R}$$
. Calculer pour tout $n \in \mathbb{N}$ la somme $S_n = \sum_{k=0}^n 2^k \operatorname{th}(2^k x)$. Étudier la limite de (S_n) .

Exercice 9.

(1) Montrer que

$$\forall x \in [0,1], \quad \operatorname{Arcsin} \sqrt{x} = \frac{\pi}{4} + \frac{1}{2} \operatorname{Arcsin}(2x - 1).$$

(2) Montrer que

$$\forall x \geqslant 0, \quad \operatorname{Arctan}(\operatorname{sh} x) = \operatorname{Arccos} \frac{1}{\operatorname{ch} x}.$$

Exercice 10.

- (1) Montrer que pour tout $x \ge 0$, $sh(x) \ge x$.
- (2) Montrer que pour tout $x \ge 0$, $\operatorname{ch}(x) \ge 1 + \frac{x^2}{2}$.
- (3) Montrer que pour tout $x \ge 0$, $\operatorname{sh}(x) \ge x + \frac{x^3}{6}$.

Exercice 11. Résoudre dans \mathbb{R} les équations suivantes

- (E_1) $\operatorname{sh} x = 2$
- (E_2) th x = 3
- (E_3) $\operatorname{ch} x = 1$

Exercice 12. Démontrer que pour tout $x \in \mathbb{R}$ et tout $n \geqslant 1$, on a

$$\left(\frac{1+\operatorname{th}(x)}{1-\operatorname{th}(x)}\right)^n = \frac{1+\operatorname{th}(nx)}{1-\operatorname{th}(nx)} \ .$$

Exercice 13.

Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}^*$. Montrer que

$$\sum_{k=0}^{n} \operatorname{ch}(kx) = \frac{\operatorname{ch}\left(\frac{nx}{2}\right) \operatorname{sh}\left(\frac{(n+1)x}{2}\right)}{\operatorname{sh}\left(\frac{x}{2}\right)}.$$

Exercice 14.

- (1) Montrer que pour tout $x \in \mathbb{R}$, $\arctan x + 2 \arctan \left(\sqrt{1 + x^2} x \right) = \frac{\pi}{2}$.
- (2) Calculer, pour tous $x, y \in \mathbb{R}$ tels que $y \neq \frac{1}{x}$,

$$\operatorname{Arctan}\left(\frac{x+y}{1-xy}\right) - \operatorname{Arctan} x - \operatorname{Arctan} y .$$

Exercice 15.

- (1) Soit la fonction f définie sur \mathbb{R}_+ par $f(x) = \cos(x) 1 + \frac{x^2}{2}$. Étudier les variations de f sur \mathbb{R}_+ .
- (2) Soit la fonction g définie sur \mathbb{R}_+ par $g(x) = \cos(x) 1 + \frac{x^2}{2} \frac{x^4}{24}$. Étudier les variations de g sur \mathbb{R}_+ (on pourra calculer g'').
- $(3) \ \ \text{En d\'eduire que pour tout} \ \ x \in \mathbb{R}, \quad 1 \frac{x^2}{2} \leqslant \cos x \leqslant 1 \frac{x^2}{2} + \frac{x^4}{24} \ .$

Exercice 16.

- 1) Retrouver l'expression de la dérivée de Arcsin.
- 2) En utilisant la formule de Taylor, calculer le développement limité de Arcsin à l'ordre 2 en 0.

Exercice 17.

- 1) A partir de la dérivée de sin et cos, retrouver l'expression de la dérivée de tan.
- 2) En déduire la dérivée de Arctan.
- 3) Calculer le développement limité à l'ordre 3 de Arctan au voisinage de 0.

Exercice 18.

- 1) Soit f et g deux fonctions dont les développements limités en 0 sont donnés par $f(x) = 1 + x^2 + x^3 + o(x^3)$ et $g(x) = 1 + 2x + 4x^2 + o(x^3)$. Donner un développement limité à l'ordre 3 en 0 de $f \times g$.
- 2) Soit f et g deux fonctions dont les développements limités en 0 sont donnés par $f(x) = x + 2x^2 + x^3 + o(x^3)$ et $g(x) = 1 x + 3x^2 + o(x^2)$. Donner un développement limité à l'ordre 3 en 0 de $f \times g$.

Exercice 19.

Soit f et g deux fonctions dont les développements limités en 0 sont donnés par $f(x) = x + 2x^2 + o(x^2)$ et $g(x) = 1 + x + 3x^2 + o(x^2)$. Donner un développement limité à l'ordre 2 en 0 de $g \circ f(x) = g(f(x))$.

Exercice 20.

Soit f et g deux fonctions dont les développements limités en 0 sont donnés par $f(x) = 1 + x + 2x^2 + o(x^2)$ et $g(x) = 1 + 3x^2 + o(x^2)$. Donner les développements limités à l'ordre 2 en 0 de $\frac{1}{t}$ et $\frac{1}{a}$

Exercice 21.

- 1) Rappeler le développement limité de ln(1+x) au voisinage de 0, à l'ordre 4, et le développement limité de cos xau voisinage de 0, à l'ordre 4.
 - 2) En déduire le développement limité de $\ln(\cos x)$ au voisinage de 0 à l'ordre 4.

Exercice 22.

Soit $\alpha \in \mathbb{R}$ et soit la fonction f définie sur $]-1,+\infty[$ par $f(x)=(1+x)^{\alpha}$.

1) Montrer que pour tout $n \ge 1$, la dérivée n-ième de f a pour formule

$$f^{(n)}(x) = \alpha(\alpha - 1) \dots (\alpha - n + 1) \cdot (1 + x)^{\alpha - n}$$

- 2) Soit $n\in\mathbb{N}.$ Donner le développement limité d'ordre n de f en 0.
- 3) En déduire, pour tout $n \in \mathbb{N}$, le développement limité d'ordre n au voisinage de 0 de $\frac{1}{(1+x)^2}$.
- 4) Donner le développement limité d'ordre 2 en 0 de $\frac{1}{\sqrt{1+y}}$. En déduire le développement limité d'ordre 4 en 0 de $\frac{1}{\sqrt{1-x^2}}$ puis le développement limité d'ordre 5 en 0 de Arcsin x.

Exercice 23. Donner le développement limité au voisinage de 0 de

- 1) $\frac{1}{1-x} e^x$ à l'ordre 3.
- 2) $\ln(1 + x(x-1))$ à l'ordre 3.
- 3) $\frac{\sin x}{1+3x}$ à l'ordre 3.
- 4) $\sin x \cos(2x)$ à l'ordre 6.
- 5) $\frac{\sin^2 x}{1-x^2}$ à l'ordre 4.
- 6) $\frac{(1-\cos x)^2}{x^2}$ à l'ordre 5.
- 7) $\operatorname{sh}(x^2)\operatorname{ch}(x)$ à l'ordre 3.

Exercice 24. Calculer le développement limité au voisinage de 0 de 1) $\frac{3x^2 + 3x + 2}{1 + x^2}$ à l'ordre 4. 2) $\frac{3x + 1}{2 + 3x + x^2}$ à l'ordre 2.

1)
$$\frac{3x^2 + 3x + 2}{1 + x^2}$$
 à l'ordre 4

2)
$$\frac{3x+1}{2+2x+x^2}$$
 à l'ordre 2.

Exercice 25.

- 1) Calculer le développement limité au voisinage de 0 de à l'ordre 4 de $\frac{\ln(1+x)}{1-x^2+x^4}$.
- 2) En déduire le développement limité au voisinage de 0 à l'ordre 4 de $(1+x)^{\frac{1}{1-x^2+x^4}}$

Exercice 26. Calculer les développements limités de

- 1) $\ln(\frac{1}{1+x})$ en 0, à l'ordre 3.
- 2) $\exp(\sin x)$ en 0, à l'ordre 4.
- 3) $\ln(4 8x + x^2)$ en 0, à l'ordre 4.

Exercice 27. Vrai ou faux?

- 1) Si f admet un développement limité d'ordre k au voisinage de 0, alors f' admet un développement limité d'ordre (k-1) au voisinage de 0.
 - 2) Si $f_1 \sim g_1$ et $f_2 \sim g_2$ alors $f_1 f_2 \sim g_1 g_2$.
 - 3) Si $f_1 \sim g_1$ et $f_2 \sim g_2$ alors $f_1 f_2 \sim g_1 g_2$.
- 4) Si f possède un développement limité au voisinage de a à l'ordre n, alors f possède un développement limité au voisinage de a à l'ordre k pour tout $k \leq n$.
 - 5) Si $f \in \mathcal{C}^n([-1,1])$, alors quand $x \to 0$, on a

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2}f^{(2)}(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + o(x^n).$$

- 6) f est dérivable en 0 si et seulement si f admet un développement limité à l'ordre 1 en 0.
- 7) f est deux fois dérivable en 0 si et seulement si f admet un développement limité à l'ordre 2 en 0.

Exercice 28.

Déterminer les limites suivantes si elles existent.

1)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x}$$
 2) $\lim_{x \to 0} \frac{e^x - \sin x - 1}{\sin x - \operatorname{Arcsin} x}$ 3) $\lim_{x \to \frac{1}{2}} (2x^2 - 3x + 1) \tan(\pi x)$ 4) $\lim_{x \to +\infty} \left(\cos \frac{1}{x}\right)^{x \ln x}$ 5) $\lim_{x \to 0} \frac{\cos x - 1 - \ln\left(1 - \frac{x^2}{2}\right)}{x^4}$ 6) $\lim_{x \to 0} \frac{(e^{x^2} - 1 + \sin^2 x)}{x^2}$

Exercice 29.

- 1) Calculer le développement limité de $e^{\frac{x \sin x}{2}} e^{1-\cos x}$ à l'ordre 4, au voisinage de 0.
- 2) En calculant le développement limité de $\frac{x \sin x}{2} (1 \cos x)$ au voisinage de 0 à un ordre suffisant, déterminer la limite en 0 de

$$\frac{e^{\frac{x\sin x}{2}} - e^{1-\cos x}}{\frac{x\sin x}{2} - (1-\cos x)}.$$

Exercice 30.

Soit f la fonction définie sur $\mathbb R$ par

$$f(x) = \ln(x^2 + 2x + 2) .$$

- 1) Effectuer un développement limité de f en 0, à l'ordre 3.
- 2) En déduire l'équation de la tangente au graphe de f au point de coordonnées (0, f(0)).
- 3) Étudier la position relative de la courbe et de la tangente au voisinage de ce point. Que peut-on dire du point de coordonnées (0, f(0))?

Exercice 31. Soit la fonction

$$f: x \mapsto \frac{1 - \frac{\sin x}{x}}{1 - \cos x} \ .$$

- 1) Quel est le domaine de définition de f?
- 2) Donner le développement limité de f en 0, à l'ordre 2.
- 3) Calculer la limite de f en 0. En déduire que f est prolongeable par continuité en 0.

Exercice 32.

Si une fonction est n fois dérivable en 0, alors elle admet un développement limité à l'ordre n en 0. Nous allons montrer que la réciproque est fausse. Soit f la fonction définie sur $\mathbb R$ par

$$\begin{cases} f(0) = 0\\ f(x) = x^3 \sin(\frac{1}{x^2}), & \forall x \neq 0. \end{cases}$$

- 1) Montrer que f est dérivable sur $\mathbb R$ et calculer sa dérivée.
- 2) Montrer que f n'est pas deux fois dérivable sur \mathbb{R} .
- 3) En utilisant $|f(x)| \leq |x|^3$, montrer que f admet un développement limité à l'ordre 2 en 0.

Exercice 33

On considère la fonction f définie par $f(t) = t \operatorname{Arcsin}(t) + \sqrt{1 - t^2} - 1$.

- (1) Donner le domaine de définition de f. Calculer f(0), $f\left(\frac{\sqrt{2}}{2}\right)$, et f(1).
- (2) Étudier la parité de f.
- (3) Justifier que f est dérivable sur]-1,1[et calculer sa dérivée.
- (4) Étudier les variations de f.
- (5) L'équation (E): $t \operatorname{Arcsin} t + \sqrt{1-t^2} = \frac{3}{2}$ admet-elle des solutions? Si oui, combien?
- (6) Donner le développement limité à l'ordre 2 de f au voisinage de 0.