LOGICAL AND THEORETICAL FOUNDATIONS OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

Language - Syntax

PREDICATE LOGIC AS A FORMAL

 \odot set of constants \mathscr{C} : Andy, KielUniversity, Room3

- set of constants %: Andy, KielUniversity, Room3
- \bigcirc set of variables \mathcal{V} : x, y, z, x_1 , x_2 , ...

- set of constants %: Andy, KielUniversity, Room3
- \bigcirc set of variables \mathcal{V} : x, y, z, x_1 , x_2 , . . .
- \bigcirc set of function symbols \mathcal{F} : f, g, h, ... with their arity

- set of constants ℰ: Andy, KielUniversity, Room3
- \bigcirc set of variables \mathcal{V} : x, y, z, x_1 , x_2 , ...
- \bigcirc set of function symbols \mathcal{F} : f, g, h, ... with their arity
- \bigcirc set of predicate symbols \mathcal{P} : P, R, S, . . .

- set of constants ℰ: Andy, KielUniversity, Room3
- \bigcirc set of variables \mathcal{V} : x, y, z, x_1 , x_2 , ...
- \bigcirc set of function symbols \mathcal{F} : f, g, h, ... with their arity
- \bigcirc set of predicate symbols \mathcal{P} : P, R, S, . . .

Notice: constants are o-arity (nullary) functions (no argument, no output)

Definition

The set of terms $\mathcal T$ is inductively defined over $(\mathscr C, \mathscr V, \mathscr F)$ by

1. each $x \in \mathcal{V}$ is a term

Definition

The set of terms $\mathcal T$ is inductively defined over $(\mathscr C, \mathscr V, \mathcal F)$ by

- 1. each $x \in \mathcal{V}$ is a term
- **2.** each $c \in \mathcal{C}$ is a term

Definition

The set of terms $\mathcal T$ is inductively defined over $(\mathscr C, \mathscr V, \mathscr F)$ by

- 1. each $x \in \mathcal{V}$ is a term
- **2.** each $c \in \mathcal{C}$ is a term
- 3. for terms $t_1, \ldots, t_n, n \in \mathbb{N}$, a function symbol $f \in \mathcal{F}$ with arity n

$$f(t_1,\ldots,t_n)$$
 is a term

Definition

The set of terms \mathcal{T} is inductively defined over $(\mathcal{C}, \mathcal{V}, \mathcal{F})$ by

- 1. each $x \in \mathcal{V}$ is a term
- 2. each $c \in \mathcal{C}$ is a term
- 3. for terms $t_1, \ldots, t_n, n \in \mathbb{N}$, a function symbol $f \in \mathcal{F}$ with arity n

$$f(t_1,\ldots,t_n)$$
 is a term

4. nothing else is a term

Andy

- Andy
- \circ y

- Andy
- \circ y
- owner(car with plate KI KI 1234)

- Andy
- y
- owner(car with plate KI KI 1234)
- grade(Cindy, LiCS)

- Andy
- \circ y
- owner(car with plate KI KI 1234)
- grade(Cindy, LiCS)
- \bigcirc sum(1, x, 2, y) if sum is 4-ary

Definition

The set of first order predicate logic formulae Φ_{FO} is inductively defined over $(\mathcal{T}, \mathcal{F})$ by

$$P(t_1, \ldots, t_n) \in \Phi_{FO}$$
 is an atomic formula

Definition

The set of first order predicate logic formulae Φ_{FO} is inductively defined over $(\mathcal{T}, \mathcal{F})$ by

1. for terms $t_1, \dots, t_n \in \mathcal{T}$ and an n-ary predicate symbol $P \in \mathcal{P}, n \in \mathbb{N}$

$$P(t_1, \ldots, t_n) \in \Phi_{FO}$$
 is an atomic formula

2. if $\varphi \in \Phi_{FO}$ then $\neg \varphi \in \Phi_{FO}$

Definition

The set of first order predicate logic formulae Φ_{FO} is inductively defined over $(\mathcal{T}, \mathcal{F})$ by

$$P(t_1, \ldots, t_n) \in \Phi_{FO}$$
 is an atomic formula

- 2. if $\varphi \in \Phi_{FO}$ then $\neg \varphi \in \Phi_{FO}$
- 3. if $\varphi, \psi \in \Phi_{FO}$ then $(\varphi \land \psi), (\varphi \lor \psi), (\varphi \to \psi) \in \Phi_{FO}$

Definition

The set of first order predicate logic formulae Φ_{FO} is inductively defined over $(\mathcal{T}, \mathcal{F})$ by

$$P(t_1, \ldots, t_n) \in \Phi_{FO}$$
 is an atomic formula

- 2. if $\varphi \in \Phi_{FO}$ then $\neg \varphi \in \Phi_{FO}$
- 3. if $\varphi, \psi \in \Phi_{FO}$ then $(\varphi \land \psi), (\varphi \lor \psi), (\varphi \to \psi) \in \Phi_{FO}$
- 4. if $\varphi \in \Phi_{FO}$ and $x \in \mathcal{V}$ then $(\forall x \varphi)$, $(\exists x \varphi) \in \Phi_{FO}$

Definition

The set of first order predicate logic formulae Φ_{FO} is inductively defined over $(\mathcal{T}, \mathcal{F})$ by

$$P(t_1, \ldots, t_n) \in \Phi_{FO}$$
 is an atomic formula

- 2. if $\varphi \in \Phi_{FO}$ then $\neg \varphi \in \Phi_{FO}$
- 3. if $\varphi, \psi \in \Phi_{FO}$ then $(\varphi \land \psi), (\varphi \lor \psi), (\varphi \to \psi) \in \Phi_{FO}$
- 4. if $\varphi \in \Phi_{FO}$ and $x \in \mathcal{V}$ then $(\forall x \varphi)$, $(\exists x \varphi) \in \Phi_{FO}$
- 5. nothing else is a formula

Binding Priorities

- $\bigcirc \neg$, \forall , \exists bind most tightly
- \bigcirc \land , \lor are next in the hierarchy
- \bigcirc \rightarrow has loosest connectivity and is right-associative

We want to express:

Every sister of my mother is my aunt.

We want to express:

Every sister of my mother is my aunt.

 \bigcirc constants: *I* for the person

We want to express:

Every sister of my mother is my aunt.

- \bigcirc constants: *I* for the person
- \bigcirc functions: mother(x) (mother of x)

We want to express:

Every sister of my mother is my aunt.

- \bigcirc constants: *I* for the person
- \bigcirc functions: mother(x) (mother of x)
- \bigcirc relations: Sister(x, y), Aunt(x, y) (x is sister/aunt of y)

We want to express:

Every sister of my mother is my aunt.

- \bigcirc constants: *I* for the person
- \bigcirc functions: mother(x) (mother of x)
- \bigcirc relations: Sister(x, y), Aunt(x, y) (x is sister/aunt of y)

 $(\forall z \operatorname{Sister}(z, \operatorname{mother}(I)) \rightarrow \operatorname{Aunt}(z, I))$

We want to express:

Every sister of my mother is my aunt.

- \bigcirc constants: *I* for the person
- \bigcirc functions: mother(x) (mother of x)
- \bigcirc relations: Sister(x, y), Aunt(x, y) (x is sister/aunt of y)

$$(\forall z \operatorname{Sister}(z, \operatorname{mother}(I)) \to \operatorname{Aunt}(z, I))$$

Is my mother now my aunt?

Parse Tree of Predicate Logic Formulae

Definition

The parse tree of $\varphi \in \Phi_{FO}$ is build according to the rules for propositional logic formulae with three additional rules

- $\bigcirc \varphi = (\forall x \psi(x))$: $\forall x$ is a node with child $\psi(x)$
- $\bigcirc \varphi = (\exists x \psi(x))$: $\exists x$ is a node with child $\psi(x)$
- $\bigcirc \varphi = P(t_1, \dots, t_n)$: *P* is a node with children t_1, \dots, t_n

Definition

 $\varphi \in \Phi_{FO}$

 \bigcirc *x* in φ free iff *x* is leaf in the parse tree and on the path to the root there is no occurrence of $\forall x$ or $\exists x$

Definition

 $\varphi \in \Phi_{FO}$

- \bigcirc *x* in φ free iff *x* is leaf in the parse tree and on the path to the root there is no occurrence of $\forall x$ or $\exists x$
- \bigcirc *x* in φ bound iff *x* is a leaf in the parse tree and *x* is not free

Definition

 $\varphi \in \Phi_{FO}$

- \bigcirc *x* in φ free iff *x* is leaf in the parse tree and on the path to the root there is no occurrence of $\forall x$ or $\exists x$
- \bigcirc *x* in φ bound iff *x* is a leaf in the parse tree and *x* is not free
- \bigcirc if φ does not contain free variables it is called closed

Definition

- $\varphi \in \Phi_{FO}$
- \bigcirc *x* in φ free iff *x* is leaf in the parse tree and on the path to the root there is no occurrence of $\forall x$ or $\exists x$
- \bigcirc *x* in φ bound iff *x* is a leaf in the parse tree and *x* is not free
- \odot if φ does not contain free variables it is called closed

Definition

A variable $x \in \mathcal{V}$ is bound

Definition

- $\varphi \in \Phi_{FO}$
- \bigcirc *x* in φ free iff *x* is leaf in the parse tree and on the path to the root there is no occurrence of $\forall x$ or $\exists x$
- \bigcirc *x* in φ bound iff *x* is a leaf in the parse tree and *x* is not free
- \odot if φ does not contain free variables it is called closed

Definition

A variable $x \in \mathcal{V}$ is bound

 \bigcirc universally if x occurs as $(\forall x \psi)$

Definition

- $\varphi \in \Phi_{FO}$
- \bigcirc *x* in φ free iff *x* is leaf in the parse tree and on the path to the root there is no occurrence of $\forall x$ or $\exists x$
- \bigcirc *x* in φ bound iff *x* is a leaf in the parse tree and *x* is not free
- \odot if φ does not contain free variables it is called closed

Definition

A variable $x \in \mathcal{V}$ is bound

- \bigcirc universally if *x* occurs as $(\forall x \psi)$
- \bigcirc existentially if *x* occurs as $(\exists x \psi)$

Definition

- $\varphi\in\Phi_{FO}$
- \bigcirc *x* in φ free iff *x* is leaf in the parse tree and on the path to the root there is no occurrence of $\forall x$ or $\exists x$
- $\bigcirc x$ in φ bound iff x is a leaf in the parse tree and x is not free
- \bigcirc if φ does not contain free variables it is called closed

Definition

A variable $x \in \mathcal{V}$ is bound

- \bigcirc universally if x occurs as $(\forall x \psi)$
- \bigcirc existentially if *x* occurs as $(\exists x \psi)$
- ψ is called the scope of x

Universal and Existential Closure

Definition

$$\varphi \in \Phi_{FO}$$

 \bigcirc The set of all free variables of φ is denoted by Free(φ).

Universal and Existential Closure

Definition

$$\varphi \in \Phi_{FO}$$

- \bigcirc The set of all free variables of φ is denoted by Free(φ).
- If $\{x_1, ..., x_n\}$ = Free (φ) then $\forall x_1 ... \forall x_n(\varphi)$ is the universal closure of φ .

Universal and Existential Closure

Definition

$$\varphi \in \Phi_{FO}$$

- \bigcirc The set of all free variables of φ is denoted by Free(φ).
- If $\{x_1, ..., x_n\}$ = Free (φ) then $\forall x_1 ... \forall x_n(\varphi)$ is the universal closure of φ .
- If $\{x_1, ..., x_n\}$ = Free (φ) then $\exists x_1 ... \exists x_n(\varphi)$ is the existential closure of φ .

$$(\forall x(\exists y P_1(x,y) \to \forall z P_2(x,z)) \lor (\exists y P_2(y,z)))$$

$$(\forall x(\exists y P_1(x,y) \to \forall z P_2(x,z)) \lor (\exists y P_2(y,z)))$$

$$(\forall x(\exists y P_1(x,y) \to \forall z P_2(x,z)) \lor (\exists y P_2(y,z)))$$

$$(\forall x(\exists y P_1(x,y) \to \forall z P_2(x,z)) \lor (\exists y P_2(y,z)))$$

$$(\forall x(\exists y P_1(x,y) \to \forall z P_2(x,z)) \lor (\exists y P_2(y,z)))$$

$$(\forall x(\exists y P_1(x,y) \to \forall z P_2(x,z)) \lor (\exists y P_2(y,z)))$$

$$(\forall x(\exists y P_1(x,y) \to \forall z P_2(x,z)) \lor (\exists y P_2(y,z)))$$

