Vectors

In physics and engineering applications we use two kinds of quantities, scalars and vectors.

A scalar is a quantity having magnitude but no direction, for example mass, length, temperature and any real number.

A vector is a quantity having both magnitude and direction, for instance force, velocity and acceleration etc.

A vector denotes the line having the arrow as shown in Figure 1.

In Figure 1. The tail end O of the arrow is called the <u>origin</u> or <u>initial point</u> and the head P is called the <u>terminal</u> <u>point or terminus</u>.

Notation

A vector is represented by a letter with an arrow over it, as $\vec{A}, \vec{B}, \vec{a}, \vec{b}, \vec{u}, \vec{v}, etc$,

- A vector whose initial point is \overrightarrow{A} and whose terminal point is \overrightarrow{B} is written as \overrightarrow{AB}
- The magnitude of a vector is written as $\|\vec{A}\|$ or $\|\overrightarrow{AB}\|$

1. Two vectors \vec{A} and \vec{B} are equal if they have the same magnitude and direction. Thus in Figure 2,we have

$$\vec{A} = \vec{B}$$
.

Figure 2

2. Zero vector, denoted by $\vec{0}$, has zero magnitude and no specific direction.

3. The negative of a vector \vec{A} written $-\vec{A}$ is a vector that has the same magnitude as \vec{A} but is opposite in direction as show in Figure 3.

Figure 3

4. Vectors are said to be <u>free</u>, which means that a vector can be moved from one position to another provided its magnitude and direction are not changed as in Figure 4.

Figure 4

5. Two vectors \hat{A} and \hat{B} are <u>parallel</u> if and only if they are nonzero scalar, k, multiples of each other, that is

$$\vec{A} = k\vec{B}$$

5.1 If k > 0, then $k\vec{A}$ has the same direction as \vec{A} , see Figure 5(a).

- 5.2 If k < 0, then $k \vec{A}$ has the direction opposite that of \vec{A} , see Figure 5(b).
 - 5.3 If k = 0, then $k\vec{A} = \vec{0}$ is a zero vector, see Figure 5(c).

Figure 5

6. The sum of vectors \vec{A} and \vec{B} is a vector \vec{C} formed by placing the initial point of $ec{B}$ on the terminal point of $ec{A}$ and then joining the initial point of $\stackrel{
ightharpoone}{A}$ to the terminal point of $ec{B}$.

$$\vec{C} = \vec{A} + \vec{B}$$

Note that vecter \vec{C} has the initial point at the initial point of \vec{A} and the terminal point at the terminal point of \vec{B}

7. The difference of two vectors \vec{A} and

 $ec{B}$ is denoted by

$$\vec{C} = \vec{A} - \vec{B} = \vec{A} + (-\vec{B})$$

See Figure 7.

Figure 7

Vector in a Coordinate Plane

In two dimension or 2 – space

• The set of all vectors in the plane is denoted by R², see Figure 8(b).

- Every point in the plane (see Figure 8(a))
 can be represented by the vectors and it
 is called the position vector of the point
 P,Q and R.
- The <u>position vector</u> of the point P is written by

$$\overrightarrow{OP} = \langle x_1, y_1 \rangle$$

The numbers x_1 , y_1 are called the <u>components</u> of the vector $\overrightarrow{OP} = \overrightarrow{P}$.

Example Sketch the position vectors for

$$\vec{a} = \langle -3, 2 \rangle, \quad \vec{b} = \langle 0, -2 \rangle$$

In three dimension or 3-space

- The set of all vectors in 3-space is denoted by \mathbb{R}^3 .
- The <u>position vector</u> of the point P is written by $\overrightarrow{OP} = \langle x_1, y_1, z_1 \rangle$

The numbers x_1, y_1, z_1 are called the <u>components</u> of the vector $\overrightarrow{OP} = \overrightarrow{P}$.

Example Sketch the position vectors for

$$\vec{A} = \langle -3, 2, 2 \rangle, \vec{B} = \langle 0, -2, 3 \rangle$$

Vectors with initial point not at the origin

The vector from P to Q is

$$\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1 \rangle$$

(2-space)

$$\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

(3-space)

Example Given the points P(-2, 3) and Q(4, 5), find vectors \vec{a} and \vec{b} in R² that correspond to \overrightarrow{PQ} and \overrightarrow{QP}

Example Given the points P(-2, 3,4) and Q(4, 5,-2), find vectors \vec{a} and \vec{b} in R^3 that correspond to \overrightarrow{PQ} and \overrightarrow{QP} .

Definition

Let
$$\vec{A} = \langle a_1, a_2 \rangle$$
 and $\vec{B} = \langle b_1, b_2 \rangle$ be vector in \mathbb{R}^2 .

- 1) Addition: $\vec{A} + \vec{B} = \langle a_1 + b_1, a_2 + b_2 \rangle$
- 2) Scalar multiplication: $\vec{kA} = \langle ka_1, ka_2 \rangle$
- 3) Equality: $\vec{A} = \vec{B} \Leftrightarrow a_1 = b_1$ and $a_2 = b_2$
- 4) Zero vector: $\vec{0} = \langle 0, 0 \rangle$

Example If
$$\vec{a} = \langle 1, 4 \rangle$$
 and $\vec{b} = \langle -6, 3 \rangle$, find (a) $\vec{a} + \vec{b}$ (b) $\vec{a} - \vec{b}$ and (c) $2\vec{a} + 3\vec{b}$

Solution

/ectors

Definition

Let $\vec{A} = \langle a_1, a_2, a_3 \rangle$ and $\vec{B} = \langle b_1, b_2, b_3 \rangle$ be vectors in \mathbb{R}^3 .

(i) Addition:
$$\vec{A} + \vec{B} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$$

(ii) Scalar multiplication:
$$k\vec{A} = \langle ka_1, ka_2, ka_3 \rangle$$

(iii) Equality:
$$\vec{A} = \vec{B} \Leftrightarrow a_1 = b_1$$
, $a_2 = b_2$ and $a_3 = b_3$

(iv) Zero vector:
$$\vec{0} = \langle 0, 0, 0 \rangle$$

Magnitude of a Vector

Definition The magnitude, length or norm of a vector \vec{A} is the distance between its initial and terminal points and is denote by $||\vec{A}||$.

Figure 10(a)

If
$$\vec{A} = \langle a_1, a_2 \rangle$$
 , then the length of \vec{A} is given by

$$||\vec{A}|| = \sqrt{a_1^2 + a_2^2}$$

Figure 10(b)

The length of a vector

$$\vec{A} = \langle a_1, a_2, a_3 \rangle$$
 is given by

$$\|\vec{A}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Note that

1. If
$$\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$
, then
$$\| \overrightarrow{PQ} \| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$2. ||k\vec{v}|| = |k| ||\vec{v}||$$

The \vec{i} , \vec{j} , \vec{k} vectors

In 2-space, the unit vectors along the x and y- axis are

$$\vec{i} = \langle 1, 0 \rangle, \ \vec{j} = \langle 0, 1 \rangle$$

In 3-space, the unit vectors

$$\vec{i} = \langle 1, 0, 0 \rangle, \ \vec{j} = \langle 0, 1, 0 \rangle$$

$$\vec{k} = \langle 0, 0, 1 \rangle$$

Remark The vector $\vec{i}, \vec{j}, \vec{k}$ are called the standard unit vector since $\|\vec{i}\| = \|\vec{j}\| = \|\vec{k}\| = 1$

(2) The unit vector $\vec{i} = \langle 1, 0 \rangle$ and $\vec{j} = \langle 0, 1 \rangle$ are a basis for the system of vectors in 2-space.

Similarly the unite vectors $\vec{i} = \langle 1, 0, 0 \rangle$,

 $\vec{j} = \langle 0,1,0 \rangle$ and $\vec{k} = \langle 0,0,1 \rangle$ are a basis for the system of vector in 3-space.

(3) Every vectors in 2-space or 3-space can be written as a linear combination of the standard unit vectors. For example,

$$\vec{v} = \langle v_1, v_2, v_3 \rangle$$

$$= v_1 \langle 1, 0, 0 \rangle + v_2 \langle 0, 1, 0 \rangle + v_3 \langle 0, 0, 1 \rangle$$

$$= v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$$

Example
$$\langle 2, -3, 4 \rangle = 2\vec{i} - 3\vec{j} + 4\vec{k}$$

 $\langle 0, 3, 0 \rangle = 3\vec{j}$

Unit vector

A unit vector is a vector having unit magnitude. If \vec{A} is a vector with magnitude $\|\vec{A}\|$, then $\vec{A}/\|\vec{A}\|$ is a unit vector having the same direction as \vec{A} .

Example Find the unit vector in the same

direction of $3\vec{w} - \vec{v}$ if

$$\vec{w} = 2\vec{i} - \vec{j} + 2\vec{k}$$
 and $\vec{v} = 3\vec{i} + 4\vec{j} - 5\vec{k}$

Solution
$$3\vec{w} - \vec{v} = 3\vec{i} - 7\vec{j} + 11\vec{k}$$

$$||3\vec{w} - \vec{v}|| = \sqrt{(3)^2 - (7)^2 + (11)^2} = \sqrt{179}$$

Hence, the unit vector in the same

direction of $3\vec{w} - \vec{v}$ is

$$\vec{\boldsymbol{U}} = \frac{1}{\sqrt{179}} \left(3\vec{\boldsymbol{i}} - 7\vec{\boldsymbol{j}} + 11\vec{\boldsymbol{k}} \right)$$

Basic Properties

For any vectors \vec{u}, \vec{v} and \vec{w} and scalar k the following relationships hold:

1.
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

2.
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

3.
$$\vec{u} + \vec{0} = \vec{0} + \vec{u}$$

$$5. k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$$

4.
$$\vec{u} + (-\vec{u}) = \vec{0}$$

6.
$$1\vec{u} = \vec{u}$$

The Dot Product or Inner Product

The dot product, inner product, or scalar product, yields a <u>scalar</u>.

Definition (Dot Product of Two Vectors)

The dot product of two vectors \vec{a} and \vec{b} is a scalar

$$|\vec{a} \cdot \vec{b}| = ||\vec{a}|| ||\vec{b}|| \cos \theta| \dots (1)$$

where $0 \le \theta \le \pi$ is the angle between \vec{a} and \vec{b}

/ectors

From (1) we obtain the angle between two

nonzero vectors \vec{a} and \vec{b}

$$\theta = \cos^{-1} \left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} \right) \dots (2)$$

$$\vec{a} \cdot \vec{b} > 0$$

 θ is acute

$$\vec{a} \cdot \vec{b} = 0$$

$$\vec{\boldsymbol{a}} \cdot \vec{\boldsymbol{b}} = 0$$

$$\theta$$
 is $\pi/2$

Figure 11

$$\vec{a} \cdot \vec{b} < 0$$

θ is obtuse

Theorem If a and b are nonzero vectors in 2-space or 3-space, and if θ is the angle between them, then

 θ is acute $\Leftrightarrow \vec{a} \cdot \vec{b} > 0$

 θ is obtuse $\Leftrightarrow \vec{a} \cdot \vec{b} < 0$

$$\theta = \frac{\pi}{2} \iff \vec{a} \cdot \vec{b} = 0$$

Figure 12

Orthogonal Vectors

Nonzero vectors \vec{a} and \vec{b} are

orthogonal if and only if

$$\vec{a} \cdot \vec{b} = 0 \qquad \dots (3)$$

Note that

- The zero vector is orthogonal to every vectors.
- Length in terms of inner product

$$|\vec{a} \cdot \vec{a}| = ||\vec{a}||^2 \text{ or } ||\vec{a}|| = \sqrt{\vec{a} \cdot \vec{a}} \qquad \dots (4)$$

Component Form of the Dot Product

If $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ and $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$, then component form of the dot product is given by

$$|\vec{a} \cdot \vec{b}| = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 ... (5)

Note that Equation(5) shows that the dot product of two vector is the sum of the products of their corresponding components.

Example If
$$\vec{a}=\langle 1,-2,3\rangle,\ \vec{b}=\langle 1,-2,3\rangle$$
 and $\vec{c}=\langle 1,-2,3\rangle$ then

$$\vec{a} \cdot \vec{b} = 1(-3) + (-2)(4) + 3(2) = -5$$

$$\vec{b} \cdot \vec{c} = (-3)(3) + (4)(6) + 2(3) = 21$$

$$\vec{a} \cdot \vec{c} = 1(3) + (-2)(6) + 3(3) = 0$$

/ectors

It is found that

$$\vec{a} \cdot \vec{b} = -5 < 0$$

 \vec{a} and \vec{b} make an obtuse angle,

$$\vec{a} \cdot \vec{c} = 21 > 0$$

 \vec{b} and \vec{c} make an acute angle,

$$\vec{a} \cdot \vec{c} = 0$$

 \bar{a} and \bar{c} are perpendicular.

Example Find the inner product and the length of $\vec{a} = \langle 1, 2, 0 \rangle$ and $\vec{b} = \langle 3, -2, 1 \rangle$ as well as the angle between these vectors.

Solution
$$\vec{a} \cdot \vec{b} = -1$$

$$\|\vec{a}\| = \sqrt{(1)^2 + (2)^2 + (0)^2} = \sqrt{5}$$

$$\|\vec{b}\| = \sqrt{(3)^2 + (-2)^2 + (1)^2} = \sqrt{14}$$

Hence the angle between \vec{a} and \vec{b} is

$$\theta = \cos^{-1} \left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} \right) = \cos^{-1} \left(-\frac{1}{\sqrt{70}} \right)$$

Properties of Dot Product

For any vectors $\vec{a}, \vec{b}, \vec{c}$ and k is a scalar.

1.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
 (Commutative law)

2.
$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$
 (Distributive law)

3.
$$\vec{a} \cdot \vec{a} \ge 0$$
 and $\vec{a} \cdot \vec{a} = ||\vec{a}||^2$

4.
$$k(\vec{a} \cdot \vec{b}) = (k\vec{a}) \cdot \vec{b} = \vec{a} \cdot (k\vec{b})$$

Properties of Dot Product

- 5. $|\vec{a} \cdot \vec{b}| \leq ||\vec{a}|| ||\vec{b}||$ (Schwarz inequality)
- 6. For \vec{i} , \vec{j} and \vec{k} are unit vectors, we have

$$||\vec{i}||^2 = \vec{i} \cdot \vec{i} = 1,$$

$$||\vec{j}||^2 = \vec{j} \cdot \vec{j} = 1,$$

$$||\vec{k}||^2 = \vec{k} \cdot \vec{k} = 1,$$
and
$$\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i} = 0$$

Definition The scalar component of \vec{a} along \vec{b} equals the dot product of \vec{a} with the unit vector that has the same direction as \vec{b} , denoted by

$$\operatorname{comp}_{\vec{\mathbf{b}}}\vec{a} = \vec{a} \cdot \frac{\vec{b}}{\parallel \vec{b} \parallel}$$

Remark the component of \vec{a} along \vec{b} means that finding the component of \vec{a} in direction of \vec{b}

/ectors

Figure 14

Let
$$\vec{a} = \overrightarrow{PQ}$$
 and $\vec{b} = \overrightarrow{PR}$, then
$$\operatorname{comp}_{\vec{b}} \vec{a} = \vec{a} \cdot \frac{\vec{b}}{\|\vec{b}\|} = \frac{1}{\|\vec{b}\|} (\vec{a} \cdot \vec{b})$$

$$= \frac{\|\vec{a}\| \|\vec{b}\|}{\|\vec{b}\|} \cos \theta = \|\vec{a}\| \cos \theta$$

Figure 14

Note that

- The scalar $|\overrightarrow{PQ}| \cos \theta$ is positive if $0 \le \theta < \pi/2$,
- The scalar $\|\overrightarrow{PQ}\|\cos\theta$ is negative if $\pi/2 < \theta \le \pi$,
- The scalar $\|\overrightarrow{PQ}\|\cos\theta$ is zero if $\theta = \pi/2$.

Example Find the scalar component of

the vector $\vec{F} = \langle 2, -1, 3 \rangle$ in the direction of the following vectors:

- a) \vec{i} ,
- b) $\vec{a} = \left\langle \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \right\rangle$, and
- c) $\vec{b} = \langle 4,2,-1 \rangle$.

Solution

a) Since $\vec{i} = \langle 1,0,0 \rangle$ is unit vector so the scalar component of \vec{F} in the direction of \vec{i} is

$$comp_{\vec{i}}\vec{F} = \vec{F} \cdot \vec{i} = \langle 2, -1, 3 \rangle \cdot \langle 1, 0, 0 \rangle = 2$$

Solution

b) Since $||\vec{a}|| = \sqrt{\frac{1}{9} + \frac{4}{9} + \frac{4}{9}} = 1$, then the vector \vec{a} is a unit vector. Thus the scalar component of \vec{F} in the direction of \vec{a} is

$$\operatorname{comp}_{\vec{a}}\vec{F} = \vec{F} \cdot \vec{a}$$

$$=\langle 2,-1,3\rangle.\left\langle \frac{1}{3},\frac{2}{3},\frac{2}{3}\right\rangle =2$$

Solution

c) Since $\|\vec{b}\| = \sqrt{21}$ indicate that \vec{b} is not unit vector then the component of \vec{F} in the direction of $\vec{b} = \langle 4,2,-1 \rangle$ is

$$comp_{\vec{b}}\vec{F} = \vec{F} \cdot \frac{\vec{b}}{\|\vec{b}\|}$$

$$= \langle 2, -1, 3 \rangle \cdot \frac{\langle 4, 2, -1 \rangle}{\sqrt{21}}$$

$$= \frac{1}{\sqrt{21}} \langle 8 - 2 - 3 \rangle = \frac{3}{\sqrt{21}}$$

Example If
$$\vec{a} = 4\vec{i} - \vec{j} + 5\vec{k}$$
 and $\vec{b} = 6\vec{i} + 3\vec{j} - 2\vec{k}$, find $\operatorname{comp}_{\vec{a}} \vec{b}$ and $\operatorname{comp}_{\vec{a}+2\vec{b}} \vec{a}$.

solution
$$\|\vec{a}\| = \sqrt{16 + 1 + 25} = \sqrt{42}$$

Thus, comp_{$$\vec{a}$$} $\vec{b} = \vec{b} \cdot \frac{\vec{a}}{\|\vec{a}\|}$
$$= \frac{1}{\sqrt{42}} (24 - 3 - 10)$$
$$= \frac{11}{\sqrt{42}}$$

$$\vec{a} + 2\vec{b} = 16\vec{i} + 5\vec{j} + \vec{k}$$

$$\|\vec{a} + 2\vec{b}\| = \sqrt{256 + 25 + 1} = \sqrt{282}$$

Thus
$$\operatorname{comp}_{\vec{a}+2\vec{b}} \vec{a} = \vec{a} \cdot \frac{(\vec{a}+2\vec{b})}{\left\|\vec{a}+2\vec{b}\right\|}$$

$$=\frac{1}{\sqrt{282}}(64-5+5)$$

$$=\frac{64}{\sqrt{282}}\approx 3.81$$

Projection Vectors

The projection vector of $\vec{a} = \overrightarrow{PQ}$ along a nonzero vector $\vec{b} = \overrightarrow{PR}$ is the vector determine by dropping a perpendicular from Q to the line PS. The notation for this vector is $\text{proj}_{\vec{b}}\vec{a}$

Theorem If \vec{a} and \vec{b} are vector in 2-space or 3-space and if $\vec{a} \neq \vec{0}$ then the <u>projection vector</u> of \vec{a} along \vec{b} is a vector

$$\operatorname{proj}_{\vec{b}}\vec{a} = \left(\operatorname{comp}_{\vec{b}}\vec{a}\right) \frac{\vec{b}}{\|\vec{b}\|}$$
$$= \left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|^2}\right) \vec{b}$$

Example Let $\vec{u} = \langle 2, -1, 3 \rangle$ and $\vec{a} = \langle 4, -1, 2 \rangle$ Find the projection vector of \vec{u} along \vec{a} .

Solution

$$\vec{u} \cdot \vec{a} = 2(4) + (-1)(-1) + 3(2) = 15$$

and
$$\|\vec{a}\| = \sqrt{4^2 + (-1)^2 + 2^2} = \sqrt{21}$$

The projection vector of \vec{u} along \vec{a} is

$$\operatorname{proj}_{\vec{a}}\vec{u} = \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2}\vec{a} = \frac{15}{21}\langle 4, -1, 2 \rangle = \left\langle \frac{20}{7}, \frac{-5}{7}, \frac{10}{7} \right\rangle$$

Application: Work done by a Force

Consider an object moving while constant force is applied. The object moves along some axis through a displacement of magnitude d

Work done by a force is $W = \operatorname{comp} \vec{F} d$

where $comp \vec{F}$ is the component of \vec{F} in the direction of displacement.

If the force is measured in Newtons, distance is measured in metres, then work is measured in Newton-metres = Joules

Example Calculate the work done by a 10 N force \vec{F} in moving a particle from A(2,1) to B(8,5), when the force acts at an angle of 45 degrees to \overrightarrow{AB} and the distance is measured in meters.

55

Vector Product or Cross Product

Definition (Cross Product)

The cross product of two vectors \vec{a} and \vec{b} is the vector

$$\vec{a} \times \vec{b} = (||\vec{a}|| ||\vec{b}|| \sin \theta)\vec{n}$$

where θ is the angle between the vectors such that $0 \le \theta \le \pi$ and \vec{n} is a unit vector perpendicular to the plane of \vec{a} and \vec{b} with direction given by the right-hand rule.

Note that

 \cdot $\vec{a} imes \vec{b}$ is perpendicular to the plane containing \vec{a} and \vec{b} .

• $\vec{a} \times \vec{b}$ is orthogonal to \vec{a} and • $\vec{a} \times \vec{b}$ is orthogonal to \vec{b} .

Alternative Definition of the Cross

Product

Definition

If
$$\vec{a}=\langle a_1,a_2,a_2\rangle$$
 and $\vec{b}=\langle b_1,b_2,b_3\rangle$ are vector in 3-space, then the cross Product $\vec{a}\times\vec{b}$ is the vector defined by

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Example Let $\vec{a} = \langle 4, 0, -1 \rangle$ and $\vec{b} = \langle -2, 1, 3 \rangle$ Find $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$

Solution

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & 0 & -1 \\ -2 & 1 & 3 \end{vmatrix} = \vec{i} \cdot (0+1) - \vec{j} \cdot (12-2) + \vec{k} \cdot (4-0)$$

and
$$\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})$$

= $-\vec{i} + 10\vec{j} + 4\vec{k}$

Remarks

- The cross product is defined only for vector in 3-space, whereas the dot product is defined for vector in 2-space or 3-space.
- The cross product of two vector is <u>a</u>
 vector, whereas the dot product of two vector is <u>a scalar</u>.

Algebraic Properties of Cross Product

If $ar{a}$, $ar{b}$ and $ar{c}$ are vectors in 3-space, then

1.
$$\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})$$

2.
$$\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})$$

3.
$$(\vec{a} + \vec{b}) \times \vec{c} = (\vec{a} \times \vec{c}) + (\vec{b} \times \vec{c})$$

4.
$$k(\vec{a} \times \vec{b}) = (k\vec{a}) \times \vec{b} = \vec{a} \times (k\vec{b})$$

for every scalar k .

5.
$$\vec{a} \times \vec{0} = \vec{0} \times \vec{a} = \vec{0}$$

6.
$$\vec{a} \times \vec{a} = \vec{0}$$

7.
$$\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$$

/ectors

Example From the property (6), we

have
$$\vec{i} \times \vec{i} = \vec{0}$$
, $\vec{j} \times \vec{j} = \vec{0}$, $\vec{k} \times \vec{k} = \vec{0}$

Theorem 3 Parallel Vectors

Two vectors \vec{a} and \vec{b} are parallel if and only if $\vec{a} \times \vec{b} = \vec{0}$

/ectors

Example If $\vec{a} = 2\vec{i} + \vec{j} - \vec{k}$ and $\vec{b} = 6\vec{i} + 3\vec{j} - 3\vec{k}$ then we obtain $\vec{a} \times \vec{b} = \vec{0}$. Hence, \vec{a} and \vec{b} are parallel vectors.

Vectors

64

Example The cross products of any pair of vectors in the set $\vec{i}, \vec{j}, \vec{k}$ can be obtained by the diagram in Figure 17.

Figure 17

$$\vec{i} \times \vec{j} = \vec{k}$$

$$\vec{j} \times \vec{k} = \vec{i}$$

$$\vec{k} \times \vec{i} = \vec{j}$$

$$\vec{k} \times \vec{j} = -\vec{i}$$

$$\vec{i} imes \vec{k} = -\vec{j}$$

$$\vec{j} \times \vec{i} = -\vec{k}$$

Theorem If \vec{a} and \vec{b} are vectors in

3-space, then:

a)
$$\vec{a} \cdot (\vec{a} \times \vec{b}) = 0$$
 ($\vec{a} \times \vec{b}$ is orthogonal to \vec{a})

b)
$$\vec{b} \cdot (\vec{a} \times \vec{b}) = 0$$
 ($\vec{a} \times \vec{b}$ is orthogonal to \vec{b})

$$\mathbf{c})\left\|\vec{a}\times\vec{b}\right\|^{2}=\left\|\vec{a}\right\|^{2}\left\|\vec{b}\right\|^{2}-\left(\vec{a}\cdot\vec{b}\right)^{2}$$

(Lagrange's identity)

Areas and Volume

Two nonzero and nonparallel vectors \vec{a} and \vec{b} can be considered to be the sides of a parallelogram.

The area A of a parallelogram is given by

$$A = \|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \sin \theta$$

The area of a triangle with sides \vec{a} and \vec{b} is

$$A = \frac{1}{2} \|\vec{a} \times \vec{b}\| = \frac{1}{2} \|\vec{a}\| \|\vec{b}\| \sin \theta$$

<u>Figure 18</u>

Example Find the area of the parallelogram with two adjacent sides determined by

$$\vec{a} = \langle -6, 4 \rangle$$
 and $\vec{b} = \langle 1, 3 \rangle$.

Solution Let A be the area of a parallelogram. since

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -6 & 4 & 0 \\ 1 & 3 & 0 \end{vmatrix} = \vec{i}(0) - \vec{j}(0) + \vec{k}(-18 - 4)$$

$$= -22\vec{k}$$

then

$$A = \left\| \vec{a} \times \vec{b} \right\| = 22 \quad \text{unit}^2$$

Example Find the area of the parallelogram with two adjacent sides determined by

$$\vec{a} = \langle 3, 2, -1 \rangle$$
 and $\vec{b} = \langle 1, 4, 2 \rangle$.

Solution Since

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 2 & -1 \\ 1 & 4 & 2 \end{vmatrix} = \vec{i} (4+4) - \vec{j} (6+1) + \vec{k} (12-2)$$
$$= 8\vec{i} - 7\vec{j} + 10\vec{k}$$

then
$$A = \|\vec{a} \times \vec{b}\| = \sqrt{213} \approx 14.59 \text{ unit}^2$$

/ectors

Example Find the area of the triangle

having vertices at points $P_1(1, 1, 1)$,

$$P_2(2, 3, 4), P_3(3, 0, -1)$$

Solution since
$$\overrightarrow{P_1P_2} = \langle 1,2,3 \rangle$$
 and $\overrightarrow{P_2P_3} = \langle 1,-3,-5 \rangle$

We have
$$\overrightarrow{P_1P_2} \times \overrightarrow{P_2P_3} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 3 \\ 1 & -3 & -5 \end{vmatrix} = -\vec{i} + 8\vec{j} - 5\vec{k}$$

Hence, the area is

$$A = \frac{1}{2} \| \overrightarrow{P_1 P_2} \times \overrightarrow{P_2 P_3} \| = \frac{1}{2} (1 + 64 + 25) = 45 \text{ unit}^2$$

The Scalar Triple Product or Box Product

Definition If \vec{a}, \vec{b} and \vec{c} are vectors in 3-space, then $\vec{a} \cdot (\vec{b} \times \vec{c})$ is called the scalar triple product of \vec{a}, \vec{b} and \vec{c} .

Let
$$\vec{a} = \langle \vec{a}_1, \vec{a}_2, \vec{a}_3 \rangle, \vec{b} = \langle \vec{b}_1, \vec{b}_2, \vec{b}_3 \rangle$$

and
$$\vec{c} = \langle \vec{c}_1, \vec{c}_2, \vec{c}_3 \rangle$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Example Calculate the scalar triple product of the vectors

$$\vec{a} = 3\vec{i} - 2\vec{j} - 5\vec{k}, \ \vec{b} = \vec{i} + 4\vec{j} - 4\vec{k}, \ \vec{c} = 3\vec{j} + 2\vec{k}$$

Solution

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 3 & -2 & -5 \\ 1 & 4 & -4 \\ 0 & 3 & 2 \end{vmatrix}$$

$$= 3 \begin{vmatrix} 4 & -4 \\ 3 & 2 \end{vmatrix} - (-2) \begin{vmatrix} 1 & -4 \\ 0 & 2 \end{vmatrix} - 5 \begin{vmatrix} 1 & 4 \\ 0 & 3 \end{vmatrix}$$

$$=3(20)+2(2)-5(3)=49$$

Geometric Properties of the Scalar Triple Product

Volume of the parallelepiped

Figure 19

If \vec{a} , \vec{b} and \vec{c} do not lie in the same plane, then the volume of the parallelepiped with edges \vec{a} , \vec{b} and \vec{c} shown in Figure 19 is

 $V = |\vec{a} \cdot (\vec{b} \times \vec{c})|$

Example Find the volume of the parallelepiped with sides \vec{a}, \vec{b} and \vec{c} where

$$\vec{a} = \langle 3,1,2 \rangle, \ \vec{b} = \langle 4,5,1 \rangle, \ \vec{c} = \langle 1,2,4 \rangle$$

Solution Let V be the volume of the parallelepiped.

$$\vec{b} \times \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & 5 & 1 \\ 1 & 2 & 4 \end{vmatrix} = 18\vec{i} - 15\vec{j} + 3\vec{k}$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \langle 3,1,2 \rangle \cdot \langle 18,-15,3 \rangle$$

Therefore the volume is

$$V = |\vec{a} \cdot (\vec{b} \times \vec{c})| = 45 \text{ unit}^3$$

Coplanar Vectors

Vectors that lie in the same plane are said to be <u>coplanar</u>.

Theorem If the vector $\vec{a} = \langle \vec{a}_1, \vec{a}_2, \vec{a}_3 \rangle$,

 $\vec{b}=\langle \vec{b}_1,\vec{b}_2,\vec{b}_3 \rangle$ and $\vec{c}=\langle \vec{c}_1,\vec{c}_2,\vec{c}_3 \rangle$ have the

same initial point, then they lie in the same

plane if and only if $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$.

Vectors

Example If \vec{a} , \vec{b} and \vec{c} have the same initial points, determine whether $\vec{a} = \langle 4, -8, 1 \rangle$, $\vec{b} = \langle 2, 1, -2 \rangle$ and $\vec{c} = \langle 3, -4, 12 \rangle$ lie in the same plane.

Solution

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 4 & -8 & 1 \\ 2 & 1 & -2 \\ 3 & -4 & 1 \end{vmatrix} = 4 \begin{vmatrix} 1 & -2 \\ -4 & 12 \end{vmatrix} - 2 \begin{vmatrix} -8 & 1 \\ -4 & 12 \end{vmatrix} + 3 \begin{vmatrix} -8 & 1 \\ 1 & -2 \end{vmatrix}$$

$$= 4(4) - 2(-92) + 3(15) = 245$$

Since $\vec{a} \cdot (\vec{b} \times \vec{c}) \neq 0$ then

 \vec{a} , \vec{b} and \vec{c} do not lie in the same plane.

Example If \vec{a} , \vec{b} and \vec{c} have the same initial points, determine whether $\vec{a} = \langle 1, -2, 3 \rangle$, $\vec{b} = \langle 2, -4, 6 \rangle$ and $\vec{c} = \langle 5, -8, 1 \rangle$ lie in the same plane.

ectors

The triple Vector Product

The triple vector product of three vectors \vec{a} , \vec{b} and \vec{c} is

$$\vec{a} \times (\vec{b} \times \vec{c})$$

Remarks

1)
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{b})\vec{c} - (\vec{a} \cdot \vec{b})\vec{c}$$

2)
$$(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a}$$

Lines and Planes

A line in 2-space and 3-space can be determined by specifying a point on the line and a nonzero vector parallel to the line see Figure 20.

Figure 20

Figure 20 shows a unique line L passes through P_0 and the vector \vec{v} is parallel to L.

Vectors

80

Vector equation for the line

Let P(x, y) is any point on the line L, we have

$$\overrightarrow{P_0P} = \langle x - x_0, y - y_0 \rangle$$

$$= \langle x, y \rangle - \langle x_0, y_0 \rangle$$

$$= \overrightarrow{P} - \overrightarrow{P_0}$$

and $\overrightarrow{P} - \overrightarrow{P_0} / / \overrightarrow{v}$ so that $\overrightarrow{P} - \overrightarrow{P_0} = t\overrightarrow{v}$

Then, the $\underline{vector\ equation}$ for the line L

$$\overrightarrow{P} = \overrightarrow{P_0} + t\overrightarrow{v}$$

Example The vector equation

$$\langle x, y \rangle = \langle -3, 2 \rangle + t \langle 1, 1 \rangle$$

represents a segment of the line in 2-space that passes through the point (-3,2) and is parallel to the vector (1,1).

/ectors

Similarly, the line in 3-space

Let P(x, y, z) is any point on the line L, we have

$$\overrightarrow{P_0P} = \langle x - x_0, y - y_0, z - z_0 \rangle$$

$$= \langle x, y, z \rangle - \langle x_0, y_0, z_0 \rangle$$

$$= \overrightarrow{P} - \overrightarrow{P_0}$$

and $\overrightarrow{P} - \overrightarrow{P_0} / / \overrightarrow{v}$ so that $\overrightarrow{P} - \overrightarrow{P_0} = t\overrightarrow{v}$

Then, the $\underline{vector\ equation}$ for the line L

$$\overrightarrow{P} = \overrightarrow{P_0} + t\overrightarrow{v}$$

Example Find a vector equation of the line in 3–space that passes through the point $P_1(2, 4, -1)$ and $P_2(5, 0, 7)$.

Solution The vector $\overrightarrow{P_1P_2} = \langle 3,-4,8 \rangle$ is parallel to the given line. Thus, a vector equation of the line through the points P_1 and P_2 is

$$\langle x,y,z\rangle = \langle 2,4,-1\rangle + t\langle 3,-4,8\rangle.$$

Vectors

Parametric Equations of The Line

The vector equation

for the line L is

$$\overrightarrow{P} = \overrightarrow{P_0} + t\overrightarrow{v}$$

$$\langle x, y \rangle = \langle x_0, y_0 \rangle + t \langle a, b \rangle$$

$$= \langle x_0 + ta, y_0 + tb \rangle$$

Equating components, we obtain the parametric equations to the line through

$$x = x_0 + ta, y = y_0 + tb$$

Similarly, in 3-space

Equating components, we obtain the <u>parametric equations</u> to the line through

 P_0 as

$$x = x_0 + ta, y = y_0 + tb, z = z_0 + tc$$

Vectors

symmetric equation for the line

From the parametric equations for the line in 2-space or 3-space we can clear the parameter by writing

In 2-space,
$$x = x_0 + ta$$
, $y = y_0 + tb$

$$t = \frac{x - x_0}{a} = \frac{y - y_0}{b}$$
 ... (1)

In 3-space, $x = x_0 + ta$, $y = y_0 + tb$, $z = z_0 + tc$

$$t = \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \qquad \cdots (2)$$
Equations (1) and (2) are called

symmetric equation for the line.

Example Write vector, parametric and symmetric equations for the line through (4,6,-3) and parallel to $\vec{v}=5\vec{i}-10\vec{j}+2\vec{k}$.

Solution

Vector equation:
$$\langle x, y, z \rangle = \langle 4, 6, -3 \rangle + t \langle 5, -10, 2 \rangle$$

parametric equation: x=4+5t,y=6-10t,z=-3+2t

symmetric equation: $\frac{x-4}{5} = \frac{y-6}{-10} = \frac{z+3}{2}$

/ectors

Example Find the parametric equations of the line

a) passing through (4,2) and parallel to $\vec{v} = \langle 1, -5 \rangle$,

- b) passing through (1,2,–3) and parallel to $\vec{v} = \langle 4,5,7 \rangle$,
- c) passing through the origin in 3-space and parallel to $\vec{v} = \langle 1,1,1 \rangle$.

Vectors 90

Vectors 91

Distance between point and line

Assume that L passes through a point P(x,y,z) and is parallel with a vector \vec{v} .

The distance between point a and line L

Example: A sphere has a tangent line: x = 1+3t, y = 6-2t, z = 4t.

If Q(2,3,-4) is the center of this sphere, then find the radius of this sphere.

Plane in 3-space

Figure 25

Vector Equation of the Plane

Figure 26

A plane in 3-space is uniquely determined by specifying a point P₀ in the plane and a nonzero vector \(\vec{n}\) perpendicular to the plane (see Figure 26).

This vector \vec{n} is called a normal vector.

Figure 27

Let P(x,y,z) is any point on the plane M. The vector equation of the plane is

$$\vec{n} \cdot \overrightarrow{P_0 P} = 0 \qquad \dots (1)$$

Since $\overrightarrow{P_0P} = \langle x-x_0, y-y_0, z-z_0 \rangle$ and let $\overrightarrow{n} = \langle a,b,c \rangle$, then (1) yields a Cartesian equation of the plane containing $P_0(x_0,y_0,z_0)$:

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$
 ... (2)

Vectors

Example Find the equation of the plane passing through point (-3,-1,7) and perpendicular to the vector $\vec{n} = \langle 4,2,-5 \rangle$

Solution From (2), we have

$$4(x-3)+2(y+1)-5(z-7)=0$$

Thus, equation of the plane is

$$4x + 2y - 5z + 25 = 0$$

Theorem The graph of any linear equation ax + by + cz + d = 0, a, b, c not all zero, is a plane having the vector

$$\vec{n} = \langle a,b,c \rangle$$
 as a normal vector.

Figure 28

There are infinitely many planes containing P and parallel to \vec{v}

There is a unique plane through P that is parallel to both \vec{v} and \vec{w} There is a unique plane through three noncollinear points.

Example Find an equation of the plane through the points $P_1(1,2,-1)$, $P_2(2,3,1)$ and $P_3(3,-1,2)$.

Solution

Definition Orthogonal and parallel planes

Let \vec{n}_1 be a normal vector to plane M_1 and \vec{n}_2 be a normal vector to plane M_2 . Then

- (i) M_1 and M_2 are orthogonal if $\vec{n}_1 \cdot \vec{n}_2 = 0$.
- (ii) M_1 and M_2 are parallel if $\vec{n}_1 = k\vec{n}_2$ for some non scalar k.

/ectors

Example Determine whether the planes

3x-4y+5z=0 and -6x+8y-10z-4=0are parallel.

Solution Let
$$M1: 3x-4y+5z=0$$

$$M2: -6x+8y-10z-4=0$$

So, we have
$$\vec{n}_1 = 3\vec{i} - 4\vec{j} + 5\vec{k} \perp \mathbf{M}_1$$

$$\vec{n}_2 = -6\vec{i} + 8\vec{j} - 10\vec{k} \quad \perp \quad \mathbf{M_2}$$

since $\vec{n}_1 = -2\vec{n}_2$, then the plane M₁ is parallel to the plane M_2 .

Example Determine whether the line x =

3+8t, y = 4+5t, z = -3-t is parallel to the plane x-3y+5z = 12.

Solution Let L be the line x = 3+8t,

$$y = 4+5t, z = -3-t$$

M be the plane x-3y+5z = 12.

It is seen that

 $\vec{v} = \langle 8, 5, -1 \rangle$ is parallel to L and

$$\vec{n} = \langle 1, -3, 5 \rangle$$
 is normal to M .

In order for the line and plane to be parallel, the vector \vec{v} and \vec{n} must be perpendicular.

$$\vec{v} \cdot \vec{n} = 8(1) + 5(-3) + (-1)(5) = -12 \neq 0$$

Thus, the line and plane are not parallel.

ectors

Angle and Trace between Planes

• Angle between Planes is the angle between normal vectors of the two planes.

ht N, and N, be normal vectors of planes A and B, respectively.

but o be the angle between these two planes.

Then $\cos \theta = \frac{1}{||\vec{N}_1|| ||\vec{N}_2||}$

Trace of two planes

If two planes A and B are non-parallely then A and B will intersect.

The trace between A and B is a line in 3D-space. The vector $N_1 \times N_2$ is parallel to the trace.

Example: Consider the planes

T1: 2x-4+2-10 = 0

 $T_2: x + y + 2 - 5 = 0$

- 1) Find the angle between T, and Tz.
- a) Find the parametric equation of the line passing through (1,2,3) and parallel to the trace of T, and T,

Example: Find the parametric equation of the trace between planes 3x-6y-2z=15 and 2x+y-2z=5

Distance between point and plane

$$d = \|\overrightarrow{PQ}\| \cos \theta$$

$$= \left| \frac{\overrightarrow{PQ} \cdot \overrightarrow{N}}{\|\overrightarrow{N}\|} \right|$$

Example: Find the distance between Q(2,-3,4) and the plane x+ay+a=13

Example: Find the distance between planes 4x - 3y + 2 = 7 and 6x - 9y + 32 = 9