

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Christian Szegedy, Sergey Ioffe and Vincent Vanhoucke

Presented by: Iman Nematollahi

FREIBURG

Outline

- Introduction
- Previous architectures:
 - Inception-v1: Going deeper with convolutions
 - Inception-v2: Batch Normalization
 - Inception-v3: Rethinking the Inception architecture
 - Deep Residual Learning for Image Recognition
- Inception-v4
- Inception-ResNet

Introduction

GT: horse cart

1: horse cart

- 2: minibus
- 3: oxcart
- 4: stretcher
- 5: half track

GT: birdhouse

1: birdhouse

- 2: sliding door
- 3: window screen
- 4: mailbox
- 5: pot

GT: forklift

1: forklift

- 2: garbage truck
- 3: tow truck
- 4: trailer truck
- 5: go-kart

GT: coucal

1: coucal

- 2: indigo bunting
- 3: lorikeet
- 4: walking stick
- 5: custard apple

GT: komondor

- 1: komondor
- 2: patio
- 3: Ilama
- 4: mobile home
- 5: Old English sheepdog

GT: yellow lady's slipper

1: yellow lady's slipper

- 2: slug
- 3: hen-of-the-woods
- 4: stinkhorn
- 5: coral fungus

http://www.iamwire.com/2015/02/microsoft-researchers-claim-deep-learning-system-beat-humans/109897

Background

ReLU activation function

Alex-net architecture

Two Powerful Networks

Inception Network

Inception module

Deep Residual Network

Drawbacks of going deeper:

- 1. Overfitting
- 2. Increased use of computational resources

Proposed solution:

- Moving from fully connected to sparsely connected architectures
- Clustering sparse matrices into relatively dense

Inception module

GoogLeNet

Convolution Pooling Softmax Other

Inception-v2: Batch Normalization

Problem of internal covariate shift

- Introducing Batch Normalization:
 - Faster learning
 - Higher overall accuracy

Debiprasad Ghosh, PhD, Uses AI in Mechanics

https://www.quora.com/Why-does-batchnormalization-help

Inception-v2: Batch Normalization

Model	Steps to 72.2%	Max accuracy
Inception	$31.0 \cdot 10^{6}$	72.2%
BN-Baseline	$13.3 \cdot 10^{6}$	72.7%
BN-x5	$2.1 \cdot 10^{6}$	73.0%
BN-x30	$2.7 \cdot 10^{6}$	74.8%
BN-x5-Sigmoid		69.8%

Inception-v3: Rethinking the Inception

Idea: Scale up the network by factorzing the convolutions

Replacing 5*5 Convolution by two 3*3 convolutions

Inception-v3: Rethinking the Inception

Idea: Scale up the network by factorzing the

convolutions

Replacing the 3×3 convolutions. The lower layer of this network consists of a 3×1 convolution with 3 output units.

Inception modules after the factorization of the $n \times n$ convolutions. In Inception-v3: n

= 7

Two Powerful Networks

Inception Network

Deep Residual Network

Deep Residual Learning for Image

Degradation Problem

Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error.

Deep Residual Learning for Image

Extremely Deep Network:

152 layer

- Easier to optimize
- More accurate

REIBURG

New architectures

- Investigating an updated verion of Inception network with and without residual connections:
 - Inception-v4
 - Inception-ResNet-v1
 - Inception-ResNet-v2

Results in:

- Accerelation of training speed
- Improvement in accuracy

- Uniform simplified architecture
- More Inception modules
- DistBelief replaced by TensorFlow

Stem of Inceptionv4

Reduction-A K=192, I=224, m=256, n=384

Reduction-B

Computational cost:

UNI FREIBURG

Inception-ResNet-v1 ≈ Inception-v3

Inception-ResNet-v2 ≈ Inception-v4

Filter concat 35x35x384 3x3 Conv MaxPool (stride=2 V) (192 V) Filter concat 71x71x192 3x3 Conv (96 V) 1x7 Conv (64)3x3 Conv (96 V) 7x1 Conv (64)1x1 Conv (64)1x1 Conv (64)Filter concat 73x73x160 3x3 MaxPool 3x3 Conv (96 stride 2 V) (stride 2 V) 3x3 Conv 147x147x64 (64)3x3 Conv 147x147x32 (32 V)3x3 Conv 149x149x32 (32 stride 2 V) Input Inception-ResNet-v299x299x3) 299x299x3

Stem of

Stem of Inception-ResNet-

Relu activation 1x1 Conv (384 Linear) 3x3 Conv (64)1x1 Conv (32)3x3 Conv 3x3 Conv (32)(48)1x1 Conv 1x1 Conv (32)(32)Relu activation

Inception-ResNet-A in v1

Inception-ResNet-A in v2

Inception-ResNet-B in v1

Inception-ResNet-B in v2

Inception-ResNet-C in v1

Inception-ResNet-C in v2

Reduction-A v1 K=192, I=192, m=256, n=384 Reduction-A v2 K=256, I=256, m=384, n=384

"If the number of filters exceeded 1000, the residual variants started to exhibit instabilities"

• TensorFlow Training Methodology

 20 replicas running each on a NVidia Kepler GPU

• RMSProp with decay of 0.9 and $\varepsilon = 1.0$

 learning rate of 0.045, decayed every two epochs using an exponential rate of 0.94

Network	Top-1 Error	Top-5 Error	
BN-Inception [6]	25.2%	7.8%	
Inception-v3 [15]	21.2%	5.6%	
Inception-ResNet-v1	21.3%	5.5%	
Inception-v4	20.0%	5.0%	
Inception-ResNet-v2	19.9%	4.9%	

Single crop - single model experimental results. Reported on the non-blacklisted subset of the validation set of ILSVRC 2012.

Top-1 error evolution during training of pure Inception-v3 Vs Inception-resnet-v1. The evaluation is measured on a single crop on the non-blacklist images of the ILSVRC-2012 validation set.

Top-5 error evolution during training of pure Inception-v3 Vs Inception-resnet-v1. The evaluation is measured on a single crop on the non-blacklist images of the ILSVRC-2012 validation set.

Top-1 error evolution during training of pure Inception-v4 Vs Inception-resnet-v2. The evaluation is measured on a single crop on the non-blacklist images of the ILSVRC-2012 validation set.

Top-5 error evolution during training of pure Inception-v4 Vs Inception-resnet-v2. The evaluation is measured on a single crop on the non-blacklist images of the ILSVRC-2012 validation set.

Top-5 error evolution of all four models (single model, single crop)

Top-1 error evolution of all four models (single model, single crop)

Multi crops evaluations - single model experimental results

Network	Crops	Top-1 Error	Top-5 Error
ResNet-151 [5]	10	21.4%	5.7%
Inception-v3 [15]	12	19.8%	4.6%
Inception-ResNet-v1	12	19.8%	4.6%
Inception-v4	12	18.7%	4.2%
Inception-ResNet-v2	12	18.7%	4.1%

Network	Crops	Top-1 Error	Top-5 Error
ResNet-151 [5]	dense	19.4%	4.5%
Inception-v3 [15]	144	18.9%	4.3%
Inception-ResNet-v1	144	18.8%	4.3%
Inception-v4	144	17.7%	3.8%
Inception-ResNet-v2	144	17.8%	3.7%

Exceeds state-of-the-art single frame performance on the ImageNet validation dataset

Network	Models	Top-1 Error	Top-5 Error
ResNet-151 [5]	6	_	3.6%
Inception-v3 [15]	4	17.3%	3.6%
Inception-v4 +	1	16.5%	3.1%
3× Inception-ResNet-v2	4	10.5%	5.170

Ensemble results with 144 crops/dense evaluation. Reported on the all 50000 images of the validation set of ILSVRC 2012.

FREIBURG

Concolution

- Three new architectures:
- Inception-resnet-v1
- Inception-resnet-v2
- Inception-v4

 Introduction of residual connections leads to dramatically improved training speed for the Inception architecture.

References

- A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1-9, 2015.
- S. loffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of The 32nd International Conference on Machine Learning, pages 448-456, 2015.
- C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.
- K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning Iman Nematollahi

Thank you