

Disentangling Writer and Character Styles for Handwriting Generation

Gang Dai*, Yifan Zhang*, Qingfeng Wang, Qing Du, Zhuliang Liu, Shuangping Huang Email: eedaigang@mail.scut.edu.cn Code: https://github.com/dailenson/SDT

HANDWRITING GENERATION

Online handwriting generation is to generate handwritten characters with controllable content and style, widely used in writing robot and font design

CHALLENGES

- It is non-trivial to obtain an exact writing style from a limited number of stylized samples
- It is hard to effectively integrate the extracted writing style with specific content for generation

MOTIVATIONS

Previous RNN-based methods perform poorly:

- Mainly focus on the overall writing style (*e.g.*, *glyph slant*), but neglect the detailed style inconsistencies (*e.g.*, *stroke curvature*) of characters
- Naively concatenate the content and style results in undesired artifacts, *e.g.*, *extra stroke paddings*To address these, we disentangle individual hand-

To address these, we disentangle individual handwritings into writer and character styles, and adaptively aggregate these styles with contents

METHOD OVERVIEW

SDT consists of a dual-head style encoder, a contend encoder, and a transformer decoder

- The dual-head style encoder seeks to disentangle writer-wise and character-wise style features via complementary contrastive objectives
- The transformer decoder effectively integrates the content and style information with **adaptive information fusion**

CHINESE SCRIPT GENERATION

• SDT yields high-quality Chinese handwrittings

Method	Style Score↑	Content Score ↑	$\mathbf{DTW} \!\!\downarrow$	User Prefer. (%)↑	
Drawing	35.83	78.15	1.1813	3.53	
FontRNN	46.14	92.18	1.0448	7.07	
DeepImitator	50.67	90.92	1.0622	7.99	
WriteLikeYou-v1	71.09	93.98	0.9832	11.67	
WriteLikeYou-v2	72.37	96.44	0.9289	13.07	
SDT(ours)	94.50	97.04	0.8789	56.67	
Source 墨班	橙秒脈	案半镑霸	簇翱敖	部滁创虫	
Drawing 星 诞生	楼的鬼	案半勝 霭	紫褐	到源包生	
WriteLi.	橙砂瓶	案半镑	族鄉教	郭滁创出	
Ours \(\frac{\frac{1}{2}}{2} \)	橙粉肪	寨半號 霸	簇翱毅	邹游、创出	
Target Z	橙粉脱	案半端舞	簇翱敖	辨游剑女	
				•	

DISENTANGLEMENT OF TWO STYLE REPRESENTATIONS

1 Writer-wise contrastive learning:

Align the style features from the same writer

② Character-wise contrastive learning:

Maximize the mutual information between **diverse views of a character**, thus enforcing learning the detailed style pattern

$$\min - \log \frac{\exp\left(\sin(o,o^+)/\tau\right)}{\exp\left(\sin(o,o^+)/\tau\right) + \sum_{j=1}^{B-1} \exp\left(\sin(o,o_j^-)/\tau\right)}$$

ADAPTIVE INFORMATION FUSION

- Combine content feature q with past generated points $[y_1, ..., y_{t-1}]$ into the content context at decoding step t
- The context serially attends to the writer-wise style ${\cal E}$ and character-wise ${\cal G}$

ANALYSIS

• Writer-wise style representations capture more low-frequency information, while character-wise ones capture more high-frequency information

• The writer head imitates the overall style (*e.g.*, *glyph slant*), while the glyph head captures the detailed style (*e.g.*, *stroke curvature*)

writer-wise	character-wise	Generated Samples			Style Score†	FID↓	DTW↓
		恢	备军	翻	85.52	27.75	0.8941
\checkmark		佩	角军	朝	91.38	26.38	0.8841
	\checkmark	颁	解	朝	90.31	26.89	0.8803
\checkmark	\checkmark	倾	解	朝	94.50	25.46	0.8789
Ground Truth		颁	解	朝			

APPLICATION TO OTHER SCRIPTS

• SDT can generate handwritten characters in different languages well

