Catalytic radical acetylation of adamantanes with biacetyl by a cobalt salt under atmospheric dioxygen

Arata Kishi, Susumu Kato, Satoshi Sakaguchi and Yasutaka Ishii*

Department of Applied Chemistry, Faculty of Engineering and High Technology, Research Center, Kansai University, Suita, Osaka 564-8680, Japan. E-mail: ishii@ipcku.kansai-u.ac.jp

Received (in Cambridge, UK) 24th March 1999, Accepted 11th June 1999

Exposure of a mixture of adamantane and biacetyl under O_2 in the presence of $Co(OAc)_2$ (0.1 mol%) in AcOH led to 1-acetyladamantane (47%) and 1,3-diacetyladamantane (20%) as major products along with small amounts of adamantan-1-ol (4%) and adamantan-2-one (3%).

The introduction of an acyl group to alkanes is one of the most difficult transformations in organic synthesis. Until recently, there have been a few reports on the acetylation of cycloalkanes under irradiation of light or by using a radical initiator such as benzoyl peroxide. $^{1-4}$ Although the catalytic acetylation of alkanes is of interest and would be more useful in organic synthesis, such a method has not yet been developed. Here, we report the first successful catalytic radical acetylation of adamantanes using biacetyl as an acetylating agent by a cobalt salt under O_2 atmosphere [eqn. (1)].

Table 1 shows the results for the acetylation of adamantane 1 with biacetyl under various conditions.† The acetylation of 1 with biacetyl in the presence of $Co(OAc)_2$ (0.1 mol%) and O_2 (1 atm) in AcOH at 60 °C for 2 h gave 1-acetyladamantane 2 (47%), 1,3-diacetyladamantane 3 (20%) and 3-acetyladamantane

mantan-1-ol 4 (6%) along with several oxygenated products such as adamantan-1-ol 5 (4%) and adamantan-2-one 6 (3%) (run 1). Photoacetylation of **1** with biacetyl is reported to form 2 in 13.8% under N₂ and 40% under O₂, but no diacetyl compound 3 is formed.1 Therefore, our reaction provides an efficient catalytic method for the synthesis of acetyl derivatives of 1 which are technically interest compounds. When the acetylation was carried out for 4 h, 3 was obtained in preference to 2 (run 2). Among the solvents examined, AcOH was found to be the best solvent (runs 3 to 5). From the mechanistic point of view, it is important to note that no reaction takes place when a Co^{III} ion was employed in place of the Co^{II} ion (run 6). The reaction proceeded smoothly even in the presence of a very small amount (0.01 mol%) of Co(OAc)₂ or Co(acac)₂ at 80 °C to give 2 and 3 in satisfactory yields (runs 7 to 9). When the amount of biacetyl was reduced to half (3 equiv.) so that the concentration of biacetyl was halved with respect to O₂, the selectivity to 2 decreased and the amount of partly oxygenated 4 increased (run 10). In the absence of biacetyl, however, no reaction took place and the starting 1 was recovered unchanged (run 11). This fact shows that the aerobic oxidation of **1** is also induced by the presence of biacetyl. The reaction did not take place either in the presence of hydroquinone (0.1 mol%) or in the absence of O_2 (runs 12 and 13). These observations strongly suggest that a radical chain process is involved in the present acetylation, and that molecular oxygen is an essential component to promote the acetylation. Indeed, adamantyl radical, generated in situ from 1-bromoadamantane (3 mmol) by the action of Bu₃SnH (3.6 mmol) and AIBN (0.3 mmol) in AcOH (3 ml) reacted with biacetyl (18 mmol) and O₂ (1 atm) at 80 °C for 4 h to form 2 and 5 in 5 and 4% yields, respectively, although it abstracted more easily the hydrogen atom from the Bu₃SnH to give 1 (39%) as the major product. The reaction using benzil in place of biacetyl resulted in the recovery of the starting materials (run 14).‡

Table 1 Acetylation of 1 with biacetyl catalyzed by metal salts^a

					Yield (%)				
Run	Metal salt (mol%)	Solvent	t/h	Conversion (%)	2	3	4	5	6
1	Co(OAc) ₂ (0.1)	AcOH	2	94	47	20	6	4	3
2^b	$Co(OAc)_2$ (0.1)	AcOH	4	99	22	37	10	2	4
3	$Co(OAc)_2$ (0.5)	AcOH	2	>99	10	30	11	1	4
4	$Co(OAc)_2$ (0.5)	ClCH ₂ CH ₂ Cl	2	65	51	4	trace	2	3
5	$Co(OAc)_2$ (0.5)	MeCN	2	2	trace		_	1	trace
6	$Co(acac)_3$ (0.1)	AcOH	2	no reaction					
7^c	$Co(OAc)_2$ (0.01)	AcOH	4	98	21	35	9	2	5
8^c	$Co(acac)_2$ (0.01)	AcOH	4	92	49	28	4	2	5
9^c	$Co(OAc)_2$ (0.0025)	AcOH	4	77	51	14	1	2	3
10^{d}	$Co(OAc)_2 (0.5)$	AcOH	4	98	20	25	16	4	4
11^{e}	$Co(OAc)_2 (0.5)$	AcOH	2	no reaction					
12f	$Co(OAc)_2$ (0.5)	AcOH	2	no reaction					
13g	$Co(OAc)_2 (0.5)$	AcOH	2	no reaction					
14^{h}	$Co(OAc)_2$ (0.5)	AcOH	4	no reaction					

 ^a 1 (3 mmol) was allowed to react with biacetyl (6 equiv., 18 mmol) in the presence of a metal salt under O₂ (1 atm) in AcOH (3 ml) at 60 °C.
 ^b Polyfunctionalyzed products and adamantane-1,3-diol were also formed.
 ^c 80 °C ^d Biacetyl (3 equiv., 9 mmol) was used.
 ^e In the absence of biacetyl.
 ^f Hydroquinone (0.1 mol%) was added.
 ^g Under argon.
 ^h Benzil was used in place of biacetyl.

In order to gain insight into the role of cobalt salts in the present reaction, acetylations of 1 with biacetyl by Co^{II} and Co^{III} ions under O₂ (1 atm) at 75 and 80 °C were monitored by GC at appropriate time intervals (Fig. 1). The acetylation of ${\bf 1}$ was efficiently catalyzed by Co^{II} at 75 °C, while the reaction with Co^{III} did not take place at all at this temperature. However, when the reaction temperature was raised to 80 °C, the acetylation of 1 by CoIII was prompted after an induction period of about 1 h. It is well-known that CoIII ions are reduced to CoII ions by organic substrates such as toluene and cyclohexane via a one-electron transfer process.§ Therefore, the induction period of about 1 h observed at 80 °C would correspond to the time needed for the formation of CoII by the one-electron transfer to Co^{III} from biacetyl and/or 1. At 75 °C, however, owing to the difficulty of the electron transfer to Co^{III} from these substrates, no acetylation is induced. Therefore, if the reduction of Co^{III} to Co^{II} is performed by adding an additive like aldehyde, 1 was acetylated by Co^{III} even at 75 °C [eqn. (2)]. These findings indicate that the Co^{II} ion, which reacts easily with O₂ to generate labile dioxygen complexes such as a superoxocobalt(III) or μ-peroxocobalt(III) complex, plays an important role in the present acetylation [eqns. (3) and (4)].^{7,8}

PhCHO + Co^{III}
$$\longrightarrow$$
 PhCO• + Co^{III} + H+ (2)
 L_n Co^{III} + O₂ \longrightarrow L_n Co^{III}-O-O• (3)
superoxocobalt(III)
 L_n Co^{III}-O-O• + L_n Co^{III} \longrightarrow L_n Co^{III}-O-O-Co^{III}L_n (4)
 μ -peroxocobalt(III)

Although the mechanistic details are still obscure, the fact that the acetylation did not take place with Co^{II} in the absence of O₂ or with Co^{III} even in the presence of O₂ suggests that a cobalt(III)-oxygen complex is the key species in the present acetylation of 1 with biacetyl. The resulting cobalt(III)-oxygen complex reacts with biacetyl to generate an acetyl radical which is readily trapped by O₂ under the present conditions to form an acetyl peroxyl radical [eqns. (5) and (6)]. The formed acetyl peroxyl radical undergoes hydrogen abstraction from 1 to form an adamantyl radical 7 and peracetic acid [eqn. (7)]. The formed radical 7 would react with biacetyl to give 2 and an acetyl radical which serves as a chain carrier in the reaction [eqn. (8)]. In addition, 7 reacts with O₂ to produce oxygenated products 5 and 6 [eqn. (9)]. Under the present reaction conditions in which O₂ exists in the reaction system, the direct abstraction of the hydrogen from 1 by the acetyl radical may be disregarded, since the rate of hydrogen abstraction from an alkane by acetyl radical is much slower than that of the addition of O₂ to acetyl radical.¶ The acetyl peroxyl radical can also abstract the hydrogen from 1 to form 7 and peracetic acid. It is probable that peracetic acid formed in the reaction is easily subjected to redox decomposi-

Fig. 1 Time-dependence curves for the conversion of **1** with biacetyl catalyzed by $\text{Co}(\text{acac})_2$, $\text{Co}(\text{acac})_3$ and $\text{Co}(\text{acac})_3$ combined with benzaldehyde in AcOH at 75 or 80 °C. Conditions: **1** (3 mmol), biacetyl (18 mmol), AcOH (3 ml), cobalt salt (3.0 \times 10⁻⁴ mmol), benzaldehyde (1.5 \times 10⁻² mmol).

tion by Co ions to generate a radical species which acts as a radical carrier. In fact, the reaction of **1** (3 mmol) with biacetyl (18 mmol) under the influence of MCPBA (3.6 mmol) and Co^{III} (0.015 mmol) in acetic acid (3 ml) in an inert atmosphere at 60 °C for 1 h afforded **2** with 60% selectivity, although the conversion of **1** was low (5%) probably because of the rapid decomposition of MCPBA by Co ion.

In order to extend the present acetylation to substituted adamantanes, 1,3-dimethyladamantane 8 and 5 were allowed to react with biacetyl under the same reaction conditions as employed for 1 in Table 1, run 3. As expected, 8 was satisfactorily acetylated to the corresponding mono- and diacetyladamantanes in 54 and 21% yields, respectively. Similarly, 5 afforded 4 in 54% yield along with 3,5-diacetyladamantan-1-ol (7%). It is interesting to note that the reaction of 5 with biacetyl did not take place on the hydroxy function, which is different from the usual acetylation procedure using Ac₂O or AcCl, in which the hydroxy group is preferentially acetylated.

This work was partly supported by a Grant-in-Aid for Scientific Research (No.10450337) from Monbusho.

Notes and references

 \dagger Typical reaction: To a solution of adamantane 1 (3 mmol) and Co(OAc)₂ (0.1 mol%) in AcOH (3 ml) was added biacetyl (18 mmol), and the mixture was stirred under O₂ (1 atm) at 60 °C for 2 h. Products were isolated by column chromatography on silica gel with hexane–EtOAc.

 \ddagger Treatment of biacetyl with O_2 in the presence of Co^{II} under these conditions afforded AcOH in 192% (based on Co^{II}), however, benzil was recovered unchanged by the same treatment.

§ The reaction of a Co^{III} ion with cyclohexane (ref. 5) or alkylbenzenes (ref. 6) is known to involve one-electron transfer from the substrate to Co^{III}, yielding a Co^{II} ion and radical cation which readily liberates H⁺ to give an alkyl radical.

¶ The reaction of acetyl radical with O_2 is reported to occur very fast $[k = (1.8 \pm 0.5) \times 10^9 \, \mathrm{M}^{-1} \, \mathrm{s}^{-1}]$ compared with the hydrogen abstraction from n-hexane by acetyl radical $(k \le 5 \times 10^3 \, \mathrm{M}^{-1} \, \mathrm{s}^{-1})$ (ref. 9).

- 1 I. Tabushi, S. Kojo and Z. Yoshida, Tetrahedron Lett., 1973, 26, 2329.
- 2 I. Tabushi, S. Kojo and K. Fukunishi, *J. Org. Chem.*, 1978, **43**, 2370.
- 3 K. Fukunishi, A. Kohno and S. Kojo, *J. Org. Chem.*, 1988, **53**, 4369.
- 4 W. G. Bentrude and K. R. Darnall, J. Am. Chem. Soc., 1968, 90, 3588.
- 5 E. I. Heiba, R. M. Dessau and W. J. Koehl Jr., J. Am. Chem. Soc., 1969, 91, 6830.
- 6 A. Onopchenko and J. G. D. Shultz, J. Org. Chem., 1973, 38, 3729.
- 7 C. L. Wong, J. A. Switer, K. P. Balakrishnan and J. F. Endicott, J. Am. Chem. Soc., 1980, 102, 5511.
- 8 J. J. Bozell, B. R. Hames and D. R. Dimmel, J. Org. Chem., 1995, 60, 2398
- E. B. Carl, G. N. Anthony, M. R. David, U. I. Keith and L. Janusz, *Aust. J. Chem.*, 1995, 48, 363.

Communication 9/02384D