PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-118333

(43) Date of publication of application: 23.04.2003

(51)Int.Cl.

B60C 23/02

G01L 17/00

(21)Application number: 2001-320157

(71)Applicant: TOKAI RIKA CO LTD

(22) Date of filing:

18.10.2001

(72)Inventor: YASUDA MASAKI

MIZUNO HIROMITSU

(54) TIRE PNEUMATIC PRESSURE MONITORING DEVICE FOR VEHICLE AND MONITOR DEVICE IN THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a tire pneumatic pressure monitoring device for a vehicle capable of easily and securely detecting an abnormal condition and an abnormal section of a tire for the vehicle.

SOLUTION: A microcomputer 17 switches a possibility and an impossibility for receiving a radio signal of reception antennas 13a to 13d when the reception antennas 13a to 13d receive the radio signal to monitor reception intensity of each reception antenna 13a to 13d. The microcomputer 17 specifies sensor devices 11a to 11d transmitting radio signals based on the reception intensity. Moreover, it judges an abnormality of tires 3a to 3d corresponding to the specified sensor devices 11a to 11d based on tire information included in the received radio signal. As a result, the microcomputer 17 displays that the tire

information in the radio signal indicates an abnormal condition in a display device 15 if the tire information indicates the abnormal condition and displays in which tire of 3a to 3d an abnormality occurs.

LEGAL STATUS

[Date of request for examination]

22.06.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

[Patent number]

3892271

[Date of registration]

15.12.2006

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]
* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] Two or more sensor equipments formed in two or more tires of a car according to the individual, respectively, In the tire-pressure supervisory equipment for cars which received the radio signal transmitted from these sensors equipment, and was equipped with each sensor equipment and the monitoring device of a corresponding tire which supervises pneumatic pressure at least based on the radio signal While said each sensor equipment detects the tire information on a corresponding tire which includes pneumatic pressure information at least It transmits a predetermined intermittent period by making the tire information into a radio signal. Said monitoring device Two or more receiving antennas which receive the radio signal which is prepared near said each sensor equipment, respectively, and is transmitted from corresponding sensor equipment, While judging the sensor equipment which switched the no of these receiving antennas ready for receiving, carried out the monitor of the receiving reinforcement of each receiving antenna, and has transmitted said radio signal based on this receiving reinforcement Tire-pressure supervisory equipment for cars characterized by having this sensor equipment, a judgment means to perform the abnormality judging of a corresponding tire, and an information means to report the abnormal condition of a tire to a passenger at least, based on said tire information included in the radio signal which received.

[Claim 2] Said judgment means is changed into the condition that said each receiving antennas of all are receivable, and the waiting receptacle of said radio signal is performed. At the time of reception of this radio signal The receiving antenna which switched one by one and has received this radio signal so that it may be in the condition that only one of said each receiving antennas is receivable, for every predetermined time is specified. Tire—pressure supervisory equipment for cars according to claim 1 with which the receiving antenna and corresponding sensor equipment are characterized by judging with what has transmitted this radio signal.

[Claim 3] The radio signal transmitted to two or more tires of a car from two or more sensor equipments formed according to the individual, respectively is received. It is based on the tire information which is included in the radio signal and which has the pneumatic pressure information on a tire at least. Two or more receiving antennas which receive the radio signal which is a monitoring device in the tire-pressure supervisory equipment for cars which supervises the pneumatic pressure of a tire at least, is prepared near said each sensor equipment, respectively, and is transmitted from corresponding sensor equipment, While judging the sensor equipment which switched the no of these receiving antennas ready for receiving, carried out the monitor of the receiving reinforcement of each receiving antenna, and has transmitted said radio signal based on this receiving reinforcement The monitoring device in the tire-pressure supervisory equipment for cars characterized by having this sensor equipment, a judgment means to perform the abnormality judging of a corresponding tire, and an information means to report the abnormal condition of a tire to a passenger at least, based on said tire information included in the radio signal which received.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to the tire-pressure supervisory equipment for cars of the tire for cars which supervises pneumatic pressure at least, and its monitoring device.

[0002]

[Description of the Prior Art] The tire-pressure supervisory equipment 51 for cars is equipped with the sensor equipments 54a-54d formed in the each tires [of a car 52 / 53a-53d] tire valve, respectively so that it may be shown in the former, for example, drawing 5. [0003] The sensor equipments 54a-54d detect tire information, such as tires [which correspond, respectively / 53a-53d] pneumatic pressure, and temperature, change the tire information into a radio signal, and transmit it outside. Receiving antennas 55a-55d are arranged in the each tires [53a-53d] neighborhood in the car 52, respectively. For this reason, the radio signal transmitted from the sensor equipments 54a-54d is received by the corresponding receiving antennas 55a-55d.

[0004] Moreover, in a car 53, the receiving set 58 which consists of a receiving circuit 56 and a microcomputer (microcomputer) 57 is arranged, and the radio signal received by receiving antennas 55a-55d is inputted into a receiving circuit 56. And it gets over to a pulse signal in a receiving circuit 56, and this radio signal is inputted into a microcomputer 57. A microcomputer 57 reads tire information based on the pulse signal. And when it judges that abnormalities have produced the microcomputer 57 from the tire information to Tires [53a-53d] pneumatic pressure, temperature, etc., the drop 59 formed in the instrument panel etc. is operated, and that is reported to a passenger.

[0005] For this reason, a passenger can recognize quickly and certainly that abnormalities have arisen into Tires 53a-53d. Therefore, while being able to prevent abnormality wear of Tires 53a-53d, the safety of a car 52 can be raised.
[0006]

[Problem(s) to be Solved by the Invention] However, since any of each antennas 55a-55d received the radio signal cannot distinguish a microcomputer 57, it cannot be judged by the arising [abnormalities]-into which tire of tiresa [53]-53d furnace.

[0007] Then, in order to cancel such un-arranging, while setting the ID code according to individual as each sensor equipments 54a-54d and including the ID code in a radio signal conventionally, registering these ID codes into a microcomputer 57 as tire positional information is proposed (it is an approximation technical indication to JP,2000-142044,A). Specifically, it registers with a microcomputer 57 by making into "front right" positional information the ID code of tire 53a with which the front right location was equipped. If it does in this way, based on the ID code contained in the radio signal, recognition of a Tires [53a-53d] location of a

microcomputer 57 will be attained at the time of reception of the radio signal from the sensor equipments 54a-54d.

[0008] However, when performing exchange of Tires 53a-53d, or to perform Tires [53a-53d] rotation, it is necessary to reregister the tire positional information based on an each tires [53a-53d] ID code into a microcomputer 57. When changing into a rear right location tire 53a with which was got blocked, for example, the front right location was equipped, it is necessary to reregister the ID code of this tire 53a into a microcomputer 57 as "rear right" positional information from "front right" positional information. For this reason, while exchange of each tires 53a-53d is complicated, when such registration is neglected, there is a possibility that the misregistration of an abnormality part may arise.

[0009] This invention is made in view of such the actual condition, and the purpose is in offering the monitoring device in the tire-pressure supervisory equipment for cars which can detect easily and certainly the abnormal condition and abnormality part of the tire for cars, and the tire-pressure supervisory equipment for cars.

[0010]

[Means for Solving the Problem] In order to solve the above-mentioned technical problem, in invention according to claim 1 Two or more sensor equipments formed in two or more tires of a car according to the individual, respectively, In the tire-pressure supervisory equipment for cars which received the radio signal transmitted from these sensors equipment, and was equipped with each sensor equipment and the monitoring device of a corresponding tire which supervises pneumatic pressure at least based on the radio signal While said each sensor equipment detects the tire information on a corresponding tire which includes pneumatic pressure information at least It transmits a predetermined intermittent period by making the tire information into a radio signal. Said monitoring device Two or more receiving antennas which receive the radio signal which is prepared near said each sensor equipment, respectively, and is transmitted from corresponding sensor equipment, While judging the sensor equipment which switched the no of these receiving antennas ready for receiving, carried out the monitor of the receiving reinforcement of each receiving antenna, and has transmitted said radio signal based on this receiving reinforcement Let it be a summary to have this sensor equipment, a judgment means to perform the abnormality judging of a corresponding tire, and an information means to report the abnormal condition of a tire to a passenger at least, based on said tire information included in the radio signal which received.

[0011] In invention according to claim 2, it sets to the tire-pressure supervisory equipment for cars according to claim 1. Said judgment means It changes into the condition that said each receiving antennas of all are receivable, and the waiting receptacle of said radio signal is performed. At the time of reception of this radio signal The receiving antenna which switched one by one and has received this radio signal is specified so that it may be in the condition that only one of said each receiving antennas is receivable, for every predetermined time, and the receiving antenna and corresponding sensor equipment make it a summary to judge with what has transmitted this radio signal.

[0012] The radio signal transmitted to two or more tires of a car in invention according to claim 3 from two or more sensor equipments formed according to the individual, respectively is received. It is based on the tire information which is included in the radio signal and which has the pneumatic pressure information on a tire at least. Two or more receiving antennas which receive the radio signal which is a monitoring device in the tire-pressure supervisory equipment for cars which supervises the pneumatic pressure of a tire at least, is prepared near said each sensor equipment, respectively, and is transmitted from corresponding sensor equipment, While judging the sensor equipment which switched the no of these receiving antennas ready for receiving, carried out the monitor of the receiving reinforcement of each receiving antenna, and has transmitted said radio signal based on this receiving reinforcement Let it be a summary to have this sensor equipment, a judgment means to perform the abnormality judging of a corresponding tire, and an information means to report the abnormal condition of a tire to a passenger at least, based on said tire information included in the radio signal which received. [0013] Hereafter, "an operation" of this invention is explained. According to invention according

to claim 1 to 3, the monitoring device switched the no of a receiving antenna ready for receiving, carried out the monitor of the receiving reinforcement of each receiving antenna, and is equipped with a judgment means to judge the sensor equipment which has transmitted said radio signal based on this receiving reinforcement. For this reason, by specifying the receiving antenna of the highest receiving reinforcement, a monitoring device can be specified, if the radio signal is transmitted from that receiving antenna and corresponding sensor equipment. Therefore, if the tire information on this radio signal shows an abnormal condition, a monitoring device can be judged to be what abnormalities have produced into the tire in which the sensor equipment was formed. So, the abnormal condition and abnormality part of a tire are certainly [easily and] detectable.

[0014] According to invention according to claim 2, a judgment means is changed into the condition that each receiving antennas of all are receivable, and performs the waiting receptacle of a radio signal. For this reason, when a radio signal is transmitted from sensor equipment, the abnormality judging of a tire is immediately started by this judgment means. So, when abnormalities arise into a tire, that is immediately reported to a passenger.

[0015]

[Embodiment of the Invention] Hereafter, 1 operation gestalt which materialized this invention is explained to a detail based on <u>drawing 1</u> – <u>drawing 4</u>. As shown in <u>drawing 1</u>, tire-pressure supervisory equipment 1 is equipped with an each tires [of a car 2 / 3a-3d] tire valve, each sensor equipments 11a-11d really formed, respectively, and the monitoring device 12 arranged in the car 2.

[0016] The sensor equipments 11a-11d detect tire information, such as tires [which correspond, respectively / 3a-3d] pneumatic pressure, and temperature, change the tire information into a radio signal, and transmit it outside. Moreover, as shown in drawing 3, these sensors equipments 11a-11d transmit a radio signal the predetermined intermittent period T1. In addition, the intermittent period T1 is set up in about 10 minutes in this operation gestalt. In detail, the intermittent period T1 is set as the random time amount around 10 minutes, and transmit timing of an each sensor equipments [11a-11d] radio signal cannot synchronize easily, and it becomes. And the air time T2 of a radio signal is set as about 300ms. Moreover, as shown in drawing 4, in this operation gestalt, the sensor equipments 11a-11d transmit a radio signal by two kinds of data transmission patterns. In detail, the sensor equipments 11a-11d transmit a radio signal by transmission-pattern A, when Tires [3a-3d] pneumatic pressure, temperature, etc. which were detected are normal values, and when pneumatic pressure, temperature, etc. are outlying observation, they transmit a radio signal by transmission-pattern B. In addition, transmission patterns A and B are constituted by the combination of 3 sorts of data frame Dalpha which contains a sensor equipments [11a-11d] ID code, respectively, Dbeta, and Dgamma. Incidentally, data frame Dalpha and Dgamma are constituted by an ID code and the simplified tire information, and data frame Dbeta is constituted by an ID code and detailed tire information.

[0017] The monitoring device 12 is equipped with the drop 15 as the receiving antennas 13a-13d, the receiving set 14, and information means of plurality (here four) so that it may combine also with <u>drawing 2</u> and may be shown.

[0018] Each receiving antennas 13a-13d are arranged in the each tires [in a car 2 / 3a-3d] neighborhood. That is, each receiving antennas 13a-13d are formed respectively corresponding to each sensor equipments 11a-11d. For this reason, the radio signal transmitted from the sensor equipments 11a-11d is received by the corresponding receiving antennas 13a-13d. [0019] The receiving set 14 is equipped with the microcomputer (microcomputer) 17 as a receiving circuit 16 and a judgment means. And each receiving antennas 13a-13d are connected to the receiving circuit 16. A receiving circuit 16 restores to the radio signal received by receiving antennas 13a-13d to a pulse signal, and outputs it to a microcomputer 17. Moreover, a RSSI (Received Signal Strength Indicator: receiving signal strength display) circuit is built in a receiving circuit 16, and this receiving circuit 16 outputs the receiving signal strength status signal (RSSI signal) of the radio signal by each receiving antennas 13a-13d to a microcomputer 17.

[0020] The microcomputer 17 is specifically constituted by the CPU unit which consists of CPU, ROM, and RAM which are not illustrated. Moreover, criteria data, such as Tires [3a-3d] pneumatic pressure and temperature, are beforehand recorded on the microcomputer 17. This criteria data is a value which shows normal values, such as Tires [3a-3d] pneumatic pressure and temperature, and is set up with the predetermined range.

[0021] A drop 15 is an indicator which displays that, when it is arranged in the interior of a room (for example, instrument panel etc.) of a car 2 and abnormalities arise into said tires 3a-3d. It connects with a microcomputer 17 and this drop 15 displays based on the active signal from this microcomputer 17.

[0022] Moreover, the detection sections 18a-18d are formed in the energization path of each receiving antennas 13a-13d and a receiving circuit 16, respectively. It connects with the microcomputer 17, respectively and these detection sections 18a-18d control receiving antennas [which correspond based on the active signal from a microcomputer 17 / 13a-13d] no ready for receiving. In detail, as shown in drawing 2, the detection sections 18a-18d are constituted by the diodes D1-D4 for detection, and resistance R1-R4. In more detail, 1st detection section 18a is constituted by the diode D1 for detection, and resistance R1, and the anode of diode D1 and the end of resistance R1 are connected to 1st receiving-antenna 13a. And the cathode of diode D1 is connected to a receiving circuit 16, and the other end of resistance R1 is connected to the microcomputer 17. Moreover, the end of Resistance R is connected to the energization path of diode D1 and a receiving circuit 16, and the other end of this resistance R is grounded. The diode D3 for detection and resistance R3, and the 18d of the 4th detection sections are constituted [2nd detection section 18b] for the diode D2 for detection and resistance R2, and 3rd detection section 18c by the diode D4 for detection, and resistance R4, respectively. These detection sections 18b-18d are constituted like 1st detection section 18a, it connects with the receiving antennas 13b-13d with which the anode of each diodes D2-D4 for detection corresponds, and the cathode is connected to the microcomputer 17, respectively. Moreover, it connects with the anode of the diodes D2-D4 with which the end of each resistance R2-R4 corresponds, and the other end is connected to the microcomputer 17 according to the individual, respectively.

[0023] Therefore, if the active signal of H level is outputted from a microcomputer 17 to each detection sections 18a-18d, an electrical potential difference will join the anode of each diodes D1-D4 for detection. When an electrical potential difference joins an anode, internal impedance becomes low, and as for each diodes D1-D4 for detection, internal impedance becomes high when the electrical potential difference has not joined an anode. For this reason, receiving sensibility becomes high and receiving antennas 13a-13d serve as ability ready for receiving suitably in said radio signal, when the active signal of H level is outputted from the microcomputer 17 to the detection sections 18a-18d. On the other hand, when the active signal of L level is outputted from the microcomputer 17 to the detection sections 18a-18d, receiving sensibility becomes low, and receiving antennas 13a-13d stop being able to receive said radio signal easily.

[0024] Then, the abnormality judging processing of Tires 3a–3d performed with a microcomputer 17 is explained. First, a microcomputer 17 performs reception judging processing of a radio signal. In this processing, a microcomputer 17 outputs the active signal of H level to each detection sections [18a–18d] all, as the point P1 shows to drawing 4. Namely, a microcomputer 17 makes each receiving antennas [13a–13d] all ability ready for receiving, and a radio signal awaits it, and it will be in a condition, this — if it awaits and receiving antennas 13a–13d receive a radio signal in a condition, the RSSI signal of a high value will be inputted into a microcomputer 17 from a receiving circuit 16. And when the RSSI signal of the high value is inputted into a microcomputer 17, as the points P1 and P2 show, a microcomputer 17 is maintained in the condition that each receiving antennas [13a–13d] all are receivable until predetermined time t1 passes. And a microcomputer 17 performs antenna specification processing in the place where predetermined time t1 passed. That is, a microcomputer 17 is judged to be what received the radio signal by receiving antennas [13a–13d] either based on the RSSI signal, and shifts to the continuing antenna specification processing. In addition, in this operation gestalt, predetermined

time t1 is set as about 30ms.

[0025] In antenna specification processing, a microcomputer 17 outputs the active signal of H level only to 1st receiving—antenna 13a first, as the point P2 shows to drawing 4. That is, a microcomputer 17 outputs the active signal of L level to other receiving antennas 13b—13d. And after progress of predetermined time t2, a microcomputer 17 switches the output of the active signal of H level to 2nd receiving—antenna 13b from 1st receiving—antenna 13a, as the point P3 shows. Subsequently, a microcomputer 17 switches the output of the active signal of H level to 3rd receiving—antenna 13c and the 13d of the 4th receiving antenna one by one, whenever predetermined time t2 passes, as the points P4 and P5 show.

[0026] For this reason, between the point P2 and the point P3, only 1st receiving-antenna 13a becomes ability ready for receiving, and only 2nd receiving-antenna 13b becomes ability ready for receiving between the point P3 and the point P4. Moreover, between the point P4 and the point P5, only 3rd receiving-antenna 13c becomes ability ready for receiving, and only the 13d of the 4th receiving antenna serves as ability ready for receiving from the point P5 till the time (point P6) of predetermined time t2 passing. Therefore, when the radio signal is transmitted, for example from 1st sensor equipment 11a and 1st receiving-antenna 13a is made into ability ready for receiving, the RSSI signal of a high value is inputted to a microcomputer 17. On the other hand, when other receiving antennas 13b-13d are made into ability ready for receiving, the value of a RSSI signal becomes low. For this reason, 1st sensor equipment 11a can specify a microcomputer 17 by carrying out the monitor of the value of a RSSI signal with what has transmitted the radio signal. In addition, in this operation gestalt, predetermined time t2 is set as about 25ms. Moreover, in this antenna specification processing, a microcomputer 17 performs reception judging processing again, when it judges with that to which two or more sensor equipments 11a-11d have transmitted the radio signal. On the other hand, a microcomputer 17 performs abnormality judging processing, when the single sensor equipments 11a-11d judge with what has transmitted the radio signal.

[0027] In abnormality judging processing, as the point P6 shows to drawing 4, a microcomputer 17 outputs the active signal of H level to each receiving antennas [13a-13d] all, and makes each receiving antennas 13a-13d ability ready for receiving. As shown in this drawing, the output time amount of the active signal of H level in this abnormality judging processing is set as predetermined time t3. And the total time amount sigmat from the time of initiation of said reception judging processing (point P1) to the time of termination of this predetermined time t3 (point P7) is set up so that it may become longer than the air time T2 of said radio signal. In addition, in this operation gestalt, predetermined time t3 is set as about 200ms. That is, the total time amount sigmat is set as about 330ms.

[0028] And it restores to the radio signal transmitted between this predetermined time t3 by the receiving circuit 16, and the tire information included in this signal is inputted into a microcomputer 17. A microcomputer 17 judges whether abnormalities have arisen in Tires [3a-3d] pneumatic pressure etc. based on this tire information. In detail, a microcomputer 17 reads two data frame Dbeta contained in said radio signal at least. And a microcomputer 17 compares the tire information on the data frame Dbeta with the criteria data beforehand set as self. This judges that the sensor equipments 11a-11d which transmitted the radio signal when the tire information on data frame Dbeta was within the limits of criteria data, and the corresponding tires 3a-3d of a microcomputer 17 are normal. Moreover, it is judged that abnormalities have produced the microcomputer 17 into the sensor equipments 11a-11d which transmitted the radio signal, and the corresponding tires 3a-3d when there is tire information on data frame Dbeta out of range [criteria data]. And when it is judged that abnormalities have produced the microcomputer 17 into Tires 3a-3d, while displaying the purport which outputted the active signal to the drop 15 and abnormalities have produced into these tires 3a-3d, it displays on which tires 3a-3d whether abnormalities have arisen. In addition, after it finishes this abnormality judging processing, a microcomputer 17 shifts to reception judging processing again, repeats a series of above-mentioned processings, and performs them.

[0029] Therefore, according to this operation gestalt, the following effectiveness can be acquired.

(1) If the radio signal transmitted from the sensor equipments 11a-11d is received by receiving antennas 13a-13d, a microcomputer 17 will switch each receiving antennas [13a-13d] no ready for receiving, and will carry out the monitor of the each receiving antennas [13a-13d] receiving reinforcement. For this reason, a microcomputer 17 can carry out the monitor of the each receiving antennas [13a-13d] receiving reinforcement according to an individual. Therefore, by specifying the receiving antennas 13a-13d of the highest receiving reinforcement, a microcomputer 17 can be specified, if the radio signal is transmitted from the receiving antennas 13a-13d and the corresponding sensor equipments 11a-11d. Moreover, a microcomputer 17 displays on which tires 3a-3d whether abnormalities have arisen while displaying that on a drop 15, when the tire information on this radio signal is what shows an abnormal condition. Therefore, Tires [3a-3d] an abnormal condition and an abnormality part are certainly [easily and] detectable. Moreover, Tires [3a-3d] an abnormal condition and an abnormality part can be made to recognize easily for a passenger, and certainly.

[0030] (2) Change a microcomputer 17 into the condition that each receiving antennas [13a-13d] all are receivable, and it performs the waiting receptacle of a radio signal (reception judging processing). And a microcomputer 17 starts antenna specification processing and abnormality judging processing immediately, when a radio signal is transmitted from the sensor equipments 11a-11d. For this reason, when abnormalities arise into Tires 3a-3d, that can be immediately reported to a passenger.

[0031] (3) A microcomputer 17 performs reception judging processing again, when it judges with that to which two or more sensor equipments 11a-11d have transmitted the radio signal in antenna specification processing. That is, a microcomputer 17 performs abnormality judging processing in this case. A microcomputer 17 cannot take correspondence with each tire information and the sensor equipments 11a-11d which are contained in these radio signals, when two or more radio signals are received to coincidence. For this reason, even if a microcomputer 17 performs abnormality judging processing in such a case and judges Tires [3a-3d] abnormalities, it cannot judge into which tires 3a-3d abnormalities have arisen. Therefore, only when Tires [3a-3d] an abnormal condition and an abnormality part have been recognized certainly, a passenger can be made to report that by omitting the abnormality judging processing in such a case. If it puts in another way, it can prevent reporting an ambiguous abnormality judging result to a passenger.

[0032] (4) In abnormality judging processing, a microcomputer 17 makes each receiving antennas [13a-13d] all ability ready for receiving. For this reason, a microcomputer 17 can shift to reception judging processing as it is, without switching the active signal over each receiving antennas 13a-13d, after finishing abnormality judging processing. Therefore, simplification of the control program of a microcomputer 17 can be attained.

[0033] In addition, the operation gestalt of this invention may be changed as follows.

- With said operation gestalt, the microcomputer 17 makes each receiving antennas [13a-13d] all ability ready for receiving in abnormality judging processing. However, it is good only also considering the receiving antennas 13a-13d specified when the microcomputer 17 had received the radio signal in this processing as ability ready for receiving. If it does in this way, the probability for a noise etc. to be intermingled in a radio signal can be made low, and, as for a microcomputer 17, tire information can be read more certainly.

[0034] – In said operation gestalt, a microcomputer 17 performs reception judging processing. However, a microcomputer 17 does not perform reception judging processing, but repeats antenna specification processing, performs it, and when the sensor equipments 11a–11d which have transmitted the radio signal are able to be specified, it shifts to abnormality judging processing. Even if such, a microcomputer 17 can perform reception judging and antenna specification to coincidence, when receiving antennas 13a–13d receive a radio signal by repeating antenna specification processing and performing it.

[0035] - A sensor equipments [11a-11d] number may be made to fluctuate according to a tires [of not only four but the car 2 / 3a-3d] number. Moreover, the sensor equipments 11a-11d need to be formed in no tires 3a-3d of a car 2. Namely, the sensor equipments 11a-11d should just be formed in at least two of Tires 3a-3d. In addition, receiving antennas 13a-13d may also

be fluctuated according to a sensor equipments [11a-11d] number.

[0036] – A drop 15 is operated only when abnormalities have produced the microcomputer 17 into Tires 3a–3d in said operation gestalt. However, also when abnormalities have not arisen into Tires 3a–3d, a microcomputer 17 operates a drop 15 and reports that to a passenger.

[0037] – With said operation gestalt, the drop 15 is used as an information means. However, an information means is constituted by the loudspeaker and reports a Tires [3a-3d] abnormal condition with voice.

[0038] Next, the technical thought grasped according to the operation gestalt mentioned above is enumerated below besides the technical thought indicated by the claim.

(1) In the tire-pressure supervisory equipment for cars according to claim 2, when said judgment means judges with the radio signal being transmitted from two or more sensor equipments at the time of the judgment of said sensor equipment, without performing the abnormality judging of a tire based on these radio signals, change it into the condition that said each receiving antennas of all are receivable again, and perform the waiting receptacle of said radio signal. According to invention given in this technical thought (1), it can prevent reporting an ambiguous abnormality judging result to a passenger.

[0039] (2) Two or more sensor equipments formed in two or more tires of a car according to the individual, respectively. In the pneumatic pressure monitor approach of the tire—pressure supervisory equipment for cars which received the radio signal transmitted from these sensors equipment, and was equipped with each sensor equipment and the monitoring device of a corresponding tire which supervises pneumatic pressure at least based on the radio signal Said monitoring device switches the no of the receiving antenna formed near said each sensor equipment, respectively ready for receiving, and carries out the monitor of the receiving reinforcement of each receiving antenna. While judging the sensor equipment which has transmitted said radio signal based on this receiving reinforcement Perform the abnormality judging of this sensor equipment and a corresponding tire based on said tire information included in the radio signal which received, and when you judge with the tire having produced abnormalities at least, report that to a passenger.

[Effect of the Invention] According to invention according to claim 1 to 3, the abnormal condition and abnormality part of a tire can be made to recognize easily for a passenger, and certainly, as explained in full detail above.

[0041] According to invention according to claim 2, when abnormalities arise into a tire, that can be immediately reported to a passenger.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] The outline top view of a car in which the tire-pressure supervisory equipment for cars of 1 operation gestalt of this invention was arranged.

[Drawing 2] The block diagram showing the outline configuration of the monitoring device of this operation gestalt.

[Drawing 3] The timing diagram which shows the transmit timing of the radio signal transmitted from each sensor equipment of this operation gestalt.

[Drawing 4] The timing diagram which shows the monitor mode of the monitoring device of this operation gestalt.

[Drawing 5] The outline top view of a car in which the conventional tire-pressure supervisory equipment for cars was arranged.

[Description of Notations]

1 [— Sensor equipment, 12 / — A monitoring device, 13a–13d / — A receiving antenna, 15 / — The drop as an information means, 17 / — The microcomputer (microcomputer) as a judgment means, 18a–18d / — Detection section.] — The tire-pressure supervisory equipment for cars, 2 — A car, 3a–3d — A tire, 11a–11d

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 5]

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-118333 (P2003-118333A)

(43)公開日 平成15年4月23日(2003.4.23)

(51) Int.Cl.7	酸別配号	F I	ケーマコート*(参考)
B60C 23/02		B 6 0 C 23/02	B 2F055
G01L 17/00		G 0 1 L 17/00	С
			C

審査請求 未請求 請求項の数3 OL (全 8 頁)

(21)出顧番号	特顧2001-320157(P2001-320157)	(71)出顧人 000003551
		株式会社東海理化電機製作所
(22) 出顧日	平成13年10月18日(2001.10.18)	愛知県丹羽郡大口町豊田三丁目260番地
		(72)発明者 安田 真己
		愛知県丹羽郡大口町豊田三丁目260番地
		株式会社東海理化電機製作所内
		(72) 発明者 水野 博光
		愛知県丹羽郡大口町豊田三丁目280番地
		株式会社東海理化電機製作所内
		(74)代理人 100068755
		弁理士 恩田 博官 (外1名)
		Fターム(参考) 2F055 AA12 BB19 CC80 DD20 EE40
		FF49 GG49

(54) 【発明の名称】 車両用タイヤ空気圧監視装置、及び車両用タイヤ空気圧監視装置におけるモニタ装置

(57)【要約】

【課題】車両用タイヤの異常状態及び異常箇所を容易且 つ確実に検出することができる車両用タイヤ空気圧監視 装置を提供することにある。

【解決手段】マイコン17は、受信アンテナ13a~13dが無線信号を受信すると、受信アンテナ13a~13dの受信可否を切り換えて、各受信アンテナ13a~13dの受信強度をモニタする。そして、マイコン17は、それらの受信強度に基づいて無線信号を送信しているセンサ装置11a~11dを特定する。また、受信した無線信号に含まれるタイヤ情報に基づき、特定したセンサ装置11a~11dと対応するタイヤ3a~3dの異常判定を行う。その結果、マイコン17は、該無線信号のタイヤ情報が異常状態を示すものである場合、表示器15にその旨を表示させるとともに、どのタイヤ3a~3dに異常が生じているかを表示させる。

【特許請求の範囲】

【請求項1】 車両の複数のタイヤにそれぞれ個別に設けられた複数のセンサ装置と、それらセンサ装置から送信される無線信号を受信し、その無線信号に基づいて各センサ装置と対応するタイヤの少なくとも空気圧を監視するモニタ装置とを備えた車両用タイヤ空気圧監視装置において、

前記各センサ装置は、対応するタイヤの少なくとも空気 圧情報を含むタイヤ情報を検出するとともに、そのタイ ヤ情報を無線信号として所定の間欠周期で送信し、

前記モニタ装置は、前記各センサ装置の近辺にそれぞれ 設けられ、対応するセンサ装置から送信される無線信号 を受信する複数の受信アンテナと、

それら受信アンテナの受信可否を切り換えて各受信アンテナの受信強度をモニタし、該受信強度に基づいて前記無線信号を送信しているセンサ装置を判定するとともに、受信した無線信号に含まれる前記タイヤ情報に基づいて該センサ装置と対応するタイヤの異常判定を行う判定手段と、

少なくともタイヤの異常状態を搭乗者に報知する報知手 段とを備えることを特徴とする車両用タイヤ空気圧監視 装置。

【請求項2】 前記判定手段は、前記各受信アンテナの全てを受信可能な状態にして前記無線信号の待ち受けを行い、該無線信号の受信時には、所定時間毎に前記各受信アンテナのうちの1つのみを受信可能な状態となるように順次切り換えて該無線信号を受信している受信アンテナを特定し、その受信アンテナと対応するセンサ装置が該無線信号を送信しているものと判定することを特徴とする請求項1に記載の車両用タイヤ空気圧監視装置。

【請求項3】 車両の複数のタイヤにそれぞれ個別に設けられた複数のセンサ装置から送信される無線信号を受信し、その無線信号に含まれる少なくともタイヤの空気圧情報を有するタイヤ情報に基づいて、少なくともタイヤの空気圧を監視する車両用タイヤ空気圧監視装置におけるモニタ装置であって、

前記各センサ装置の近辺にそれぞれ設けられ、対応する センサ装置から送信される無線信号を受信する複数の受 信アンテナと、

それら受信アンテナの受信可否を切り換えて各受信アンテナの受信強度をモニタし、該受信強度に基づいて前記無線信号を送信しているセンサ装置を判定するとともに、受信した無線信号に含まれる前記タイヤ情報に基づいて該センサ装置と対応するタイヤの異常判定を行う判定手段と、

少なくともタイヤの異常状態を搭乗者に報知する報知手段とを備えることを特徴とする車両用タイヤ空気圧監視装置におけるモニタ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両用タイヤの少なくとも空気圧を監視する車両用タイヤ空気圧監視装置 及びそのモニタ装置に関するものである。

[0002]

【従来の技術】従来、例えば図5に示すように、車両用タイヤ空気圧監視装置51は、車両52の各タイヤ53 a~53dのタイヤバルブにそれぞれ設けられたセンサ装置54a~54dを備えている。

【0003】センサ装置54a~54dは、それぞれ対応するタイヤ53a~53dの空気圧や温度等のタイヤ情報を検出し、そのタイヤ情報を無線信号に変換して外部に送信するようになっている。車両52内において各タイヤ53a~53dの近辺には、それぞれ受信アンテナ55a~55dが配設されている。このため、センサ装置54a~54dから送信された無線信号は、対応する受信アンテナ55a~55dによって受信される。

【0004】また、車両53内には受信回路56及びマイクロコンピュータ(マイコン)57からなる受信装置58が配設され、受信アンテナ55a~55dによって受信された無線信号は受信回路56に入力される。そして、該無線信号は受信回路56にてパルス信号に復調され、マイコン57に入力される。マイコン57は、そのパルス信号に基づき、タイヤ情報を読み込む。そして、マイコン57は、そのタイヤ情報を読み込む。そして、マイコン57は、そのタイヤ情報からタイヤ53a~53dの空気圧や温度等に異常が生じていると判断したときに、インストルメントパネル等に設けられた表示器59を作動させ、搭乗者にその旨を報知する。

【0005】このため、搭乗者はタイヤ53a~53dに異常が生じていることを迅速且つ確実に認識することができる。よって、タイヤ53a~53dの異常磨耗を防止することができるとともに、車両52の安全性を向上させることができる。

[0006]

【発明が解決しようとする課題】ところが、マイコン57は、各アンテナ55a~55dのうちのいずれによって無線信号を受信したかまでは判別できないため、タイヤ53a~53dのうちのどのタイヤに異常が生じているのかまでは判断することができない。

【0007】そこで、こうした不都合を解消するために、従来、各センサ装置54a~54dに個別のIDコードを設定して無線信号にそのIDコードを含ませるとともに、マイコン57にそれらIDコードをタイヤ位置情報として登録することが提案されている(特開2000-142044号公報に近似技術開示)。具体的には、フロント右位置に装着されたタイヤ53aのIDコードを「フロント右」位置情報としてマイコン57に登録する。このようにすれば、マイコン57は、センサ装置54a~54dからの無線信号の受信時に、その無線信号に含まれるIDコードに基づいてタイヤ53a~53dの位置を認識可能となる。

【0008】しかしながら、タイヤ53a~53dの交換を行う場合や、タイヤ53a~53dのローテーションを行う場合には、各タイヤ53a~53dのIDコードに基づくタイヤ位置情報をマイコン57に登録し直す必要がある。つまり、例えばフロント右位置に装着されたタイヤ53aをリヤ右位置に変更する場合、同タイヤ53aのIDコードを「フロント右」位置情報から「リヤ右」位置情報としてマイコン57に登録し直す必要がある。このため、各タイヤ53a~53dの交換作業が煩雑であるとともに、こうした登録作業を怠った場合には、異常箇所の誤表示が生じてしまうおそれがある。

【0009】本発明はこうした実情に鑑みてなされたものであり、その目的は、車両用タイヤの異常状態及び異常箇所を容易且つ確実に検出することができる車両用タイヤ空気圧監視装置、及び車両用タイヤ空気圧監視装置におけるモニタ装置を提供することにある。

[0010]

【課題を解決するための手段】上記の課題を解決するた めに、請求項1に記載の発明では、車両の複数のタイヤ にそれぞれ個別に設けられた複数のセンサ装置と、それ らセンサ装置から送信される無線信号を受信し、その無 線信号に基づいて各センサ装置と対応するタイヤの少な くとも空気圧を監視するモニタ装置とを備えた車両用タ イヤ空気圧監視装置において、前記各センサ装置は、対 応するタイヤの少なくとも空気圧情報を含むタイヤ情報 を検出するとともに、そのタイヤ情報を無線信号として 所定の間欠周期で送信し、前記モニタ装置は、前記各セ ンサ装置の近辺にそれぞれ設けられ、対応するセンサ装 置から送信される無線信号を受信する複数の受信アンテ ナと、それら受信アンテナの受信可否を切り換えて各受 信アンテナの受信強度をモニタし、該受信強度に基づい て前記無線信号を送信しているセンサ装置を判定すると ともに、受信した無線信号に含まれる前記タイヤ情報に 基づいて該センサ装置と対応するタイヤの異常判定を行 う判定手段と、少なくともタイヤの異常状態を搭乗者に 報知する報知手段とを備えることを要旨とする。

【0011】請求項2に記載の発明では、請求項1に記載の車両用タイヤ空気圧監視装置において、前記判定手段は、前記各受信アンテナの全てを受信可能な状態にして前記無線信号の待ち受けを行い、該無線信号の受信時には、所定時間毎に前記各受信アンテナのうちの1つのみを受信可能な状態となるように順次切り換えて該無線信号を受信している受信アンテナを特定し、その受信アンテナと対応するセンサ装置が該無線信号を送信しているものと判定することを要旨とする。

【0012】請求項3に記載の発明では、車両の複数のタイヤにそれぞれ個別に設けられた複数のセンサ装置から送信される無線信号を受信し、その無線信号に含まれる少なくともタイヤの空気圧情報を有するタイヤ情報に基づいて、少なくともタイヤの空気圧を監視する車両用

タイヤ空気圧監視装置におけるモニタ装置であって、前 記各センサ装置の近辺にそれぞれ設けられ、対応するセ ンサ装置から送信される無線信号を受信する複数の受信 アンテナと、それら受信アンテナの受信可否を切り換え て各受信アンテナの受信強度をモニタし、該受信強度に 基づいて前記無線信号を送信しているセンサ装置を判定 するとともに、受信した無線信号に含まれる前記タイヤ 情報に基づいて該センサ装置と対応するタイヤの異常判 定を行う判定手段と、少なくともタイヤの異常状態を搭 乗者に報知する報知手段とを備えることを要旨とする。 【0013】以下、本発明の「作用」について説明す る。請求項1~3に記載の発明によると、モニタ装置 は、受信アンテナの受信可否を切り換えて各受信アンテ ナの受信強度をモニタし、該受信強度に基づいて前記無 線信号を送信しているセンサ装置を判定する判定手段を 備えている。このため、モニタ装置は、最も高い受信強 度の受信アンテナを特定することにより、その受信アン テナと対応するセンサ装置から無線信号が送信されてい ると特定することができる。よって、該無線信号のタイ ヤ情報が異常状態を示すものであれば、モニタ装置は、 そのセンサ装置が設けられたタイヤに異常が生じている ものと判断することができる。それゆえ、タイヤの異常 状態及び異常箇所を容易且つ確実に検出することができ

【0014】請求項2に記載の発明によると、判定手段は各受信アンテナの全てを受信可能な状態にして無線信号の待ち受けを行う。このため、センサ装置から無線信号が送信されたときには、該判定手段によって即座にタイヤの異常判定が開始される。それゆえ、タイヤに異常が生じた際には、その旨が即座に搭乗者に報知される。【0015】

【発明の実施の形態】以下、本発明を具体化した一実施 形態を図1~図4に基づき詳細に説明する。図1に示す ように、タイヤ空気圧監視装置1は、車両2の各タイヤ 3a~3dのタイヤバルブとそれぞれ一体形成された各 センサ装置11a~11dと、車両2内に配設されたモ ニタ装置12とを備えている。

【0016】センサ装置11a~11dは、それぞれ対応するタイヤ3a~3dの空気圧や温度等のタイヤ情報を検出し、そのタイヤ情報を無線信号に変換して外部に送信するようになっている。また、図3に示すように、これらセンサ装置11a~11dは、所定の間欠周期T1で無線信号を送信するようになっている。なお、本実施形態において間欠周期T1は、約10分に設定されている。詳しくは、間欠周期T1は10分前後のランダムな時間に設定され、各センサ装置11a~11dの無線信号の送信タイミングが同期しにくくなるようになっている。そして、無線信号の送信時間T2は、約300msに設定されている。また、図4に示すように、本実施形態においてセンサ装置11a~11dは、2種類のデ

ータ送信パターンで無線信号を送信するようになっている。詳しくは、センサ装置 $11a\sim11$ dは、検出したタイヤ $3a\sim3$ dの空気圧や温度等が正常値である場合には送信パターンAで無線信号を送信し、空気圧や温度等が異常値である場合には送信パターンBで無線信号を送信する。なお、送信パターンA,Bは、それぞれセンサ装置 $11a\sim11$ dのI D 3 D 3 D 3 D 3 の組み合わせによって構成されている。ちなみに、データフレームD3 D 3 D 3 D 3 C T は 3 D 3 D 3 D 3 D 3 D 3 D 3 D 3 D 3 D 3 C T 情報によって構成され、データフレームD 3 は 3 D 3 D 3 D 3 D 3 C T 情報によって構成され、データフレームD 3 は 3 D 3 D 3 C T 情報によって構成されている。

【0017】図2にも併せ示すように、モニタ装置12は、複数(ここでは4つ)の受信アンテナ13a~13 d、受信装置14及び報知手段としての表示器15を備えている。

【0018】各受信アンテナ13a~13dは、車両2内における各タイヤ3a~3dの近辺に配設されている。すなわち、各受信アンテナ13a~13dは、各センサ装置11a~11dとそれぞれ対応して設けられている。このため、センサ装置11a~11dから送信された無線信号は、対応する受信アンテナ13a~13dによって受信される。

【0019】受信装置14は、受信回路16及び判定手段としてのマイクロコンピュータ(マイコン)17を備えている。そして、各受信アンテナ13a~13dは、受信回路16に接続されている。受信回路16は、受信アンテナ13a~13dによって受信された無線信号をパルス信号に復調してマイコン17に対して出力する。また、受信回路16にはRSSI(Received Signal Strength Indicator:受信信号強度表示)回路が内蔵され、同受信回路16は、各受信アンテナ13a~13dによる無線信号の受信信号強度表示信号(RSSI信号)をマイコン17に対して出力する。

【0020】マイコン17は、具体的には図示しないCPU、ROM、RAMからなるCPUユニットによって構成されている。また、マイコン17には、タイヤ3a~3dの空気圧や温度等の基準データが予め記録されている。この基準データは、タイヤ3a~3dの空気圧や温度等の正常値を示す値であり、所定の範囲をもって設定されている。

【0021】表示器15は、車両2の室内(例えばインストルメントパネル等)に配設されており、前記タイヤ3a~3dに異常が生じた際に、その旨を表示するインジケータである。この表示器15は、マイコン17に接続され、同マイコン17からの作動信号に基づいて表示を行うようになっている。

【0022】また、各受信アンテナ13a~13dと受信回路16との通電経路には、それぞれ検波部18a~18dが設けられている。これら検波部18a~18d

は、それぞれマイコン17に接続されており、マイコン 17からの作動信号に基づいて対応する受信アンテナ1 3a~13dの受信可否を制御するようになっている。 詳しくは、図2に示すように、検波部18a~18d は、検波用ダイオードD1~D4及び抵抗R1~R4に よって構成されている。より詳しくは、第1検波部18 aは、検波用ダイオードD1及び抵抗R1によって構成 され、ダイオードD1のアノード及び抵抗R1の一端が 第1受信アンテナ13aに接続されている。そして、ダ イオードD1のカソードが受信回路16に接続され、抵 抗R1の他端がマイコン17に接続されている。また、 ダイオードD1と受信回路16との通電経路には抵抗R の一端が接続され、同抵抗Rの他端は接地されている。 第2検波部18bは検波用ダイオードD2及び抵抗R 2、第3検波部18cは検波用ダイオードD3及び抵抗 R3、第4検波部18dは検波用ダイオードD4及び抵 抗R4によってそれぞれ構成されている。これら検波部 186~18dは第1検波部18aと同様に構成され、 各検波用ダイオードD2~D4のアノードが対応する受 信アンテナ13b~13dに接続され、カソードがそれ ぞれマイコン17に接続されている。また、各抵抗R2 ~R4の一端が対応するダイオードD2~D4のアノー ドに接続され、他端がそれぞれ個別にマイコン17に接 続されている。

【0023】よって、マイコン17から各検波部18a~18dに対してHレベルの作動信号が出力されると、各検波用ダイオードD1~D4のアノードに電圧が加わる。各検波用ダイオードD1~D4は、アノードに電圧が加わったときに内部インピーダンスが低くなり、アノードに電圧が加わっていないときには内部インピーダンスが高くなるようになっている。このため、受信アンテナ13a~13dは、マイコン17から検波部18a~18dに対してHレベルの作動信号が出力されているときに受信感度が高くなり、前記無線信号を好適に受信可能となる。これに対し、受信アンテナ13a~13dは、マイコン17から検波部18a~18dに対してレベルの作動信号が出力されているときに受信感度が低くなり、前記無線信号を受信しにくくなる。

【0024】続いて、マイコン17によって行われるタイヤ3a~3dの異常判定処理について説明する。まず、マイコン17は、無線信号の受信判定処理を行う。この処理においてマイコン17は、図4にポイントP1で示すように、各検波部18a~18dの全てに対してHレベルの作動信号を出力する。すなわち、マイコン17は、各受信アンテナ13a~13dの全てを受信可能にして無線信号の待ち受け状態となる。この待ち受け状態において受信アンテナ13a~13dが無線信号を受信すると、受信回路16から高い値のRSSI信号がマイコン17に入力される。そして、その高い値のRSSI信号がマイコン17に入力された場合、ポイントP

1, P2で示すように、マイコン17は、所定時間t1が経過するまで各受信アンテナ13a~13dの全てを受信可能な状態に維持する。そして、マイコン17は、所定時間t1が経過したところでアンテナ特定処理を行う。すなわち、マイコン17は、RSSI信号に基づいて受信アンテナ13a~13dのいずれかによって無線信号を受信したものと判断し、続くアンテナ特定処理へと移行する。なお、本実施形態において所定時間t1は、約30msに設定されている。

【0025】アンテナ特定処理においてマイコン17は、図4にポイントP2で示すように、まず第1受信アンテナ13aのみに対してHレベルの作動信号を出力する。すなわち、マイコン17は、他の受信アンテナ13b~13dに対してはLレベルの作動信号を出力する。そして、所定時間t2の経過後、マイコン17は、ポイントP3で示すようにHレベルの作動信号の出力を、第1受信アンテナ13aから第2受信アンテナ13bに切り換える。次いで、マイコン17は、ポイントP4,P5で示すように、所定時間t2が経過する毎に、Hレベルの作動信号の出力を第3受信アンテナ13c、第4受信アンテナ13dに順次切り換える。

【0026】このため、ポイントP2とポイントP3と の間では第1受信アンテナ13aのみが受信可能とな り、ポイントP3とポイントP4との間では第2受信ア ンテナ13bのみが受信可能となる。また、ポイントP 4とポイントP5との間では第3受信アンテナ13cの みが受信可能となり、ポイントP5から所定時間 t 2が 経過した時点(ポイントP6)までは第4受信アンテナ 13 dのみが受信可能となる。よって、例えば第1セン サ装置11aから無線信号が送信されている場合、第1 受信アンテナ13aを受信可能とした際に、マイコン1 7に対して高い値のRSSI信号が入力される。これに 対し、他の受信アンテナ13b~13dを受信可能とし た場合にはRSSI信号の値は低くなる。このため、マ イコン17は、RSSI信号の値をモニタすることによ り、第1センサ装置11aが無線信号を送信しているも のと特定することができる。なお、本実施形態において 所定時間 t 2は約25msに設定されている。また、こ のアンテナ特定処理において、マイコン17は、複数の センサ装置11a~11dが無線信号を送信しているも のと判定した場合には再び受信判定処理を行う。これに 対し、マイコン17は、単一のセンサ装置11a~11 dが無線信号を送信しているものと判定した場合には異 常判定処理を行う。

【0027】異常判定処理においてマイコン17は、図4にポイントP6で示すように、各受信アンテナ13a~13dの全てに対してHレベルの作動信号を出力し、各受信アンテナ13a~13dを受信可能にする。同図に示すように、この異常判定処理におけるHレベルの作動信号の出力時間は所定時間t3に設定されている。そ

して、前記受信判定処理の開始時(ポイントP1)から 該所定時間 t 3の終了時(ポイントP7)までの総時間 Σ t は、前記無線信号の送信時間 T 2よりも長くなるよ うに設定されている。なお、本実施形態において所定時間 t 3 は約 2 0 0 m s に設定されている。つまり、総時間 Σ t は、約 δ 3 0 m δ に設定されている。

【0028】そして、この所定時間 t 3の間に送信され た無線信号は受信回路16によって復調され、同信号に 含まれるタイヤ情報がマイコン17に入力される。マイ コン17は、このタイヤ情報に基づき、タイヤ3a~3 dの空気圧等に異常が生じているか否かを判断する。詳 しくは、マイコン17は、少なくとも前記無線信号に含 まれるデータフレー $\Delta D\beta$ を2つ読み込む。そして、マ イコン17は、そのデータフレームDβのタイヤ情報 と、自身に予め設定された基準データとを比較する。こ れにより、マイコン17は、データフレームDβのタイ ヤ情報が基準データの範囲内にあれば無線信号を送信し たセンサ装置11a~11dと対応するタイヤ3a~3 dが正常であると判断する。また、マイコン17は、デ ータフレームDβのタイヤ情報が基準データの範囲外に ある場合には、無線信号を送信したセンサ装置11a~ 11dと対応するタイヤ3a~3dに異常が生じている と判断する。そして、マイコン17は、タイヤ3a~3 dに異常が生じていると判断した場合、表示器15に対 して作動信号を出力し、該タイヤ3a~3dに異常が生 じている旨を表示させるとともに、どのタイヤ3a~3 dに異常が生じているかを表示させる。なお、マイコン 17は、この異常判定処理を終えた後、再び受信判定処 理へと移行し、上記一連の処理を繰り返し行う。

【0029】したがって、本実施形態によれば以下のような効果を得ることができる。

(1)マイコン17は、センサ装置11a~11dから 送信された無線信号が受信アンテナ13a~13dによ って受信されると、各受信アンテナ13a~13dの受 信可否を切り換えて各受信アンテナ13a~13dの受 信強度をモニタする。このため、マイコン17は、各受 信アンテナ13a~13dの受信強度を個別にモニタす ることができる。よって、マイコン17は、最も高い受 信強度の受信アンテナ13a~13dを特定することに より、その受信アンテナ13a~13dと対応するセン サ装置11a~11dから無線信号が送信されていると 特定することができる。また、マイコン17は、該無線 信号のタイヤ情報が異常状態を示すものである場合、表 示器15にその旨を表示させるとともに、どのタイヤ3 a~3dに異常が生じているかを表示させる。したがっ て、タイヤ3 a~3 dの異常状態及び異常箇所を容易且 つ確実に検出することができる。また、タイヤ3a~3 dの異常状態及び異常箇所を搭乗者に容易且つ確実に認 識させることができる。

【0030】(2)マイコン17は、各受信アンテナ1

 $3a\sim13$ dの全てを受信可能な状態にして無線信号の 待ち受けを行う(受信判定処理)。そして、マイコン1 7は、センサ装置 $11a\sim11$ dから無線信号が送信さ れたときには、即座にアンテナ特定処理及び異常判定処 理を開始する。このため、タイヤ $3a\sim3$ dに異常が生 じた際には、その旨を即座に搭乗者に報知することがで きる。

【0031】(3)マイコン17は、アンテナ特定処理 において複数のセンサ装置11a~11dが無線信号を 送信しているものと判定した場合には、再び受信判定処 理を行う。すなわち、この場合、マイコン17は異常判 定処理を行わないようになっている。マイコン17は、 複数の無線信号を同時に受信した場合、それら無線信号 に含まれる各タイヤ情報とセンサ装置11a~11dと の対応がとれない。このため、マイコン17は、こうし た場合に異常判定処理を行ってタイヤ3 a~3 dの異常 を判定したとしても、どのタイヤ3a~3dに異常が生 じているかを判定することができない。よって、こうし た場合での異常判定処理を省略することにより、タイヤ 3a~3dの異常状態及び異常箇所が確実に認識された 場合にのみその旨を搭乗者に報知させることができる。 換言すれば、曖昧な異常判定結果を搭乗者に報知してし まうのを防止することができる。

【0032】(4) 異常判定処理においてマイコン17は、各受信アンテナ13a~13dの全てを受信可能にする。このため、マイコン17は、異常判定処理を終えた後、各受信アンテナ13a~13dに対する作動信号の切り換えを行うことなく、そのまま受信判定処理へと移行することができる。よって、マイコン17の制御プログラムの簡略化を図ることができる。

【0033】なお、本発明の実施形態は以下のように変更してもよい。

・ 前記実施形態では、異常判定処理においてマイコン 17は、各受信アンテナ13a~13dの全てを受信可能にしている。しかし、この処理においてマイコン17は、無線信号を受信していると特定した受信アンテナ13a~13dのみを受信可能としてもよい。このようにすれば、無線信号にノイズ等が混在してしまう確率を低くすることができ、マイコン17は、タイヤ情報をより確実に読み取ることができるようになる。

【0034】・ 前記実施形態においてマイコン17は、受信判定処理を行うようになっている。しかし、マイコン17は、受信判定処理を行わず、アンテナ特定処理を繰り返し行い、無線信号を送信しているセンサ装置11a~11dを特定できたときに異常判定処理へと移行するようになっていてもよい。このようにしてもマイコン17は、アンテナ特定処理を繰り返し行うことにより、受信アンテナ13a~13dが無線信号を受信したときには、受信判定とアンテナ特定とを同時に行うことができる。

【0035】・ センサ装置 $11a\sim11$ dの数は4つに限らず、車両2のタイヤ $3a\sim3$ dの数に応じて増減させてもよい。また、センサ装置 $11a\sim11$ dは、車両2の全てのタイヤ $3a\sim3$ dに設けられていなくてもよい。すなわち、センサ装置 $11a\sim11$ dは、タイヤ $3a\sim3$ dのうちの少なくとも2つに設けられていればよい。なお、受信アンテナ $13a\sim13$ dも、センサ装置 $11a\sim11$ dの数に応じて増減してもよい。

【0036】 前記実施形態においてマイコン17は、タイヤ3a~3dに異常が生じているときにのみ表示器15を作動させるようになっている。しかし、マイコン17は、タイヤ3a~3dに異常が生じていない場合にも表示器15を作動させてその旨を搭乗者に報知するようになっていてもよい。

【0037】・ 前記実施形態では、報知手段として表示器15を用いている。しかし、報知手段は、スピーカによって構成され、タイヤ3a~3dの異常状態を音声によって報知するようになっていてもよい。

【0038】次に、特許請求の範囲に記載された技術的 思想のほかに、前述した実施形態によって把握される技 術的思想を以下に列挙する。

(1) 請求項2に記載の車両用タイヤ空気圧監視装置において、前記判定手段は、前記センサ装置の判定時に複数のセンサ装置から無線信号が送信されていると判定した際には、それら無線信号に基づくタイヤの異常判定を行わずに、再び前記各受信アンテナの全てを受信可能な状態にして前記無線信号の待ち受けを行うこと。この技術的思想(1)に記載の発明によれば、曖昧な異常判定結果を搭乗者に報知してしまうのを防止することができる。

【0039】(2) 車両の複数のタイヤにそれぞれ個別に設けられた複数のセンサ装置と、それらセンサ装置から送信される無線信号を受信し、その無線信号に基づいて各センサ装置と対応するタイヤの少なくとも空気圧を監視するモニタ装置とを備えた車両用タイヤ空気圧監視装置の空気圧監視方法において、前記モニタ装置は、前記各センサ装置の近辺にそれぞれ設けられた受信アンテナの受信可否を切り換えて各受信アンテナの受信強度をモニタし、該受信強度に基づいて前記無線信号を送信しているセンサ装置を判定するとともに、受信した無線信号に含まれる前記タイヤ情報に基づいて該センサ装置と対応するタイヤの異常判定を行い、少なくともタイヤが異常を生じていると判定したときに、その旨を搭乗者に報知すること。

[0040]

【発明の効果】以上詳述したように、請求項1~3に記載の発明によれば、タイヤの異常状態及び異常箇所を搭乗者に容易且つ確実に認識させることができる。

【0041】請求項2に記載の発明によれば、タイヤに 異常が生じた際には、その旨を即座に搭乗者に報知する ことができる。

【図面の簡単な説明】

【図1】本発明の一実施形態の車両用タイヤ空気圧監視 装置が配設された車両の概略平面図。

【図2】同実施形態のモニタ装置の概略構成を示すブロック図。

【図3】同実施形態の各センサ装置から送信される無線 信号の送信タイミングを示すタイムチャート。

【図4】同実施形態のモニタ装置の監視態様を示すタイ

ムチャート。

【図5】従来の車両用タイヤ空気圧監視装置が配設された車両の概略平面図。

【符号の説明】

1…車両用タイヤ空気圧監視装置、2…車両、3a~3 d…タイヤ、11a~11d…センサ装置、12…モニ タ装置、13a~13d…受信アンテナ、15…報知手 段としての表示器、17…判定手段としてのマイクロコ ンピュータ(マイコン)、18a~18d…検波部。

【図1】

【図2】

【図4】

【図5】

