Kapitola 3 Planimetrie

Axiomatický základ

Primitivní pojmy: bod, přímka, rovina, incidence, uspořádání, shodnost

Axiomy: 1) incidence (8)

Každými dvěma body prochází aspoň jedna přímka....

2) uspořádání (4)

Ze tří různých bodů ležících na přímce, leží nejvýše jeden mezi zbývajícími dvěma. ...

3) shodnosti (5)

Jestliže $(U \equiv V \land V \equiv W) \Rightarrow (U \equiv W)$, *kde* U, V, W *jsou buď úsečky nebo úhly.*

- 4) spojitosti (2) Archimédův a Cantorův
- 5) V.-tý Euklidův postulát

'Nechť je p libovolná přímka a bod P neleží na této přímce. Potom existuje nejvýše jedna přímka ležící v rovině určené přímkou a bodem, procházející bodem P, která nemá s přímkou p společný bod.'

Základní symbolika

$$\overrightarrow{AB}$$
 ... polopřímka $\overrightarrow{AB} = p$... přímka α, β, ρ ... roviny \overrightarrow{AB} ... polopřímka \overrightarrow{AB} ... úsečka $|AB|$... velikost úsečky

Úkol:

Definujte polopřímku, úsečku, polorovinu.

3.1 Planimetrie I – základní objekty a jejich vlastnosti

Úhel a jeho velikost

Definice 3.1.1

Dvě polopřímky se společným počátkem rozdělí rovinu na dvě části, které nazveme úhlem. Značíme $\prec AVB$

V planimetrii měříme úhel ve stupních, případně úhlových minutách nebo vteřinách.

$$| \prec AVB | = \alpha$$

Plný úhel měří 360°.

$$1^0 = 60'$$
 $1' = 60''$

Poznámka: Úhlové vteřiny se dělí již desetinně.

Nulový, ostrý, pravý, tupý, přímý, plný úhel

Dvojice úhlů

- vrcholové
- styčné
- vedlejší

Věta 3.1.1 Souhlasné a střídavé úhly při dvou rovnoběžkách jsou shodné.

Vzdálenost v E_1, E_2, E_3

Metrika, Euklidovská metrika

Okolí bodu

Okolím bodu M rozumíme všechny body, které mají od něj vzdálenost nejvýše rovnou danému kladnému číslu δ .

Vnitřní, vnější a hraniční body

Bod I nazveme vnitřním bodem objektu, existuje-li takové okolí bodu I, které je podmnožinou objektu.

 $Bod\ E$ nazveme vnějším bodem objektu, existuje-li takové okolí bodu E, které je podmnožinou doplňku objektu.

Bod H nazveme hraničním bodem objektu, pokud každé jeho okolí obsahuje vnitřní i vnější body objektu.

Konvexní a nekonvexní objekty

Opěrná přímka, průměr obrazce

Trojúhelník

Definice 3.1.2

Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin $\overrightarrow{ABC}, \overrightarrow{BCA}, \overrightarrow{CAB}$.

Definice - varianta

Uzavřená, jednoduchá (neprotínající sama sebe) lomená čára ze tří úseček ohraničuje část roviny, kterou nazveme trojúhelníkem.

Věta 3.1.2

Součet libovolných dvou stran je větší než strana třetí. (trojúhelníkové nerovnosti)

$$a+b>c \land a+c>b \land b+c>a$$

Součet vnitřních úhlů v trojúhelníku je 180°.

$$\alpha + \beta + \gamma = 180^{\circ}$$

Součet dvou vnitřních úhlů je roven vnějšímu úhlu u zbývajícího vrcholu trojúhelníku.

$$\alpha + \beta = \gamma' \wedge \alpha + \gamma = \beta' \wedge \beta + \gamma = \alpha'$$

Dělení trojúhelníků

- podle velikostí stan obecný, rovnoramenný, rovnostranný
- podle velikostí úhlů ostroúhlý, pravoúhlý, tupoúhlý

Kružnice trojúhelníku opsaná a vepsaná

Věta 3.1.3

Střed O kružnice trojúhelníku opsané se nalézá v průsečíku os stran.

Střed S kružnice trojúhelníku vepsané se nalézá v průsečíku os úhlů.

Poznámka: Kružnice trojúhelníku připsané

Střední příčky – spojnice středů stran trojúhelníku

Věta 3.1.4

Střední příčka je rovnoběžná s protější stranou trojúhelníku a má velikost její poloviny. Střední příčky dělí trojúhelník na čtyři stejné trojúhelníky stejného tvaru jako původní.

Výšky a ortocentrum trojúhelníka v_a, v_b, v_c, V

Věta 3.1.5

Výšky se v trojúhelníku protínají v jediném bodě, ortocentru trojúhelníku.

Těžnice a těžiště trojúhelníka t_a, t_b, t_c, T

Věta 3.1.6

Těžnice se v trojúhelníku protínají v jediném bodě, těžišti trojúhelníku, který dělí každou z nich v poměru 2:1, kdy větší díl přiléhá k příslušnému vrcholu.

Shodnost trojúhelníků – sss, sus, usu, Ssu

Věta 3.1.7

Dva trojúhelníky jsou shodné právě tehdy, když:

- a) se shodují ve všech třech stranách
- b) se shodují ve dvou stranách a úhlu jimi sevřeném
- c) se shodují ve straně a úhlech k ní přilehlých
- d) se shodují ve dvou stranách a úhlu proti větší z nich

Podobnost trojúhelníků - sss, sus,uu,Ssu

Úkol: Zformulujte věty o podobnosti trojúhelníků.

Pravoúhlý trojúhelník

Podobnost pravoúhlých trojúhelníků – goniometrické funkce ostrého úhlu **Věta 3.1.8**

Dva pravoúhlé trojúhelníky jsou sobě podobné pokud se rovnají poměry libovolných dvou stran.

Definice 3.1.3 Goniometrické funkce ostrého úhlu

V pravoúhlém trojúhelníku s pravým úhlem při vrcholu C nazýváme:

$$\sin \alpha = \frac{a}{c}, \cos \alpha = \frac{b}{c}, tg\alpha = \frac{a}{b}, ctg\alpha = \frac{b}{a}.$$

Euklidovy věty

Věta 3.1.9

V pravoúhlém trojúhelníku s pravým úhlem při vrcholu C, výškou v na přeponu a úseky c_a , c_b na něž přeponu dělí pata příslušné výšky platí:

- a) Euklidova věta o výšce $v^2 = c_a \cdot c_b$
- b) Euklidova věta o odvěsnách $a^2 = c \cdot c_a, b^2 = c \cdot c_b$

Pythagorova věta

Věta 3.1.10

Trojúhelník je pravoúhlý právě tehdy, když platí $a^2 + b^2 = c^2$.

AG nerovnost

Pro libovolná kladná reálná čísla a,b platí: $\frac{a+b}{2} \ge \sqrt{ab}$

Obecný trojúhelník

Sinová a kosinová věta

V libovolném trojúhelníku platí: a) $a:b:c=\sin\alpha:\sin\beta:\sin\gamma$

b)
$$c^2 = a^2 + b^2 - 2ab\cos\gamma\langle CZ\rangle$$

c)
$$S = \frac{1}{2}ab\sin\gamma\langle CZ\rangle$$

Obvod a obsah trojúhelníka

$$o = a + b + c$$

$$S = \frac{a \cdot v_a}{2} \langle CZ \rangle, S = \sqrt{s(s-a)(s-b)(s-c)}, \text{ kde } s = \frac{a+b+c}{2}$$

$$r = \frac{abc}{4S}, \rho = \frac{S}{s}$$

Eulerova přímka

V libovolném trojúhelníku leží střed kružnice opsané, ortocentrum a těžiště na jedné přímce (Eulerově přímce), nebo splývají.

Feuerbachova kružnice

V libovolném trojúhelníku leží na jedné kružnici středy stran, paty výšek a středy spojnic ortocentra s vrcholy trojúhelníku.

Úkol: Diskutujte vlastnosti rovnostranného, rovnoramenného a tupoúhlého trojúhelníku.

Poznámka: Menelaova věta, Cevova věta, Simsonova přímka, Nagelův bod, Lemoinův bod, Napoleonovy trojúhelníky

Kruh a kružnice

Definice 3.1.4

Kružnice je množina bodů v rovině, které mají od daného pevného bodu vzdálenost právě rovnou danému kladnému reálnému číslu. Symbolicky $k = \{X \in \rho : |X, S| = r\}$.

Kruh je množina bodů v rovině, které mají od daného pevného bodu vzdálenost nejvýše rovnou danému kladnému reálnému číslu. Symbolicky $K = \{X \in \rho : |X,S| \le r\}$.

Bod S nazýváme středem kružnice (resp. kruhu), číslo r poloměrem.

Vzájemná poloha přímky a kružnice

- sečna
- tečna
- vnější přímka

Vzájemná poloha přímky a kružnice se posuzuje podle společných bodů, nebo podle vzdálenosti středu kružnice a příslušné přímky.

Věta 3.1.11 Vedeme-li z vnějšího bodu M tečny k dané kružnici, jsou úsečky MT_1, MT_2 shodné.

Vzájemná poloha dvou kružnic

Vzájemná poloha dvou kružnic závisí na vztahu mezi vzdáleností středů daných kružnic (středná) a velikostmi poloměrů obou kružnic.

Kruhová výseč a úseč, kruhový oblouk, mezikruží

Úkol: Definujte příslušné objekty a určete vzorce pro jejich obvody a obsahy.

Obvod a obsah kruhu, délka kružnice

$$o = 2\pi \cdot r = \pi \cdot d$$

$$S = \pi \cdot r^2$$
, kde π je iracionální transcendentní číslo $\pi = 3.141592...$

Obvodové a středové úhly

Definice 3.1.5

Nechť je dána kružnice k(S, r) a dva její body A, B. Body A, B určují oblouk \widehat{AB} .

Necht' úhel $\prec ASB$ obsahuje oblouk \widehat{AB} .

Potom tento úhel nazveme středový úhel k oblouku \widehat{AB} .

Nechť úhel $\prec AXB$ obsahuje oblouk \overrightarrow{AB} , přičemž bod X náleží příslušné kružnici.

Potom tento úhel nazveme obvodovým úhlem příslušným k oblouku \widehat{AB} .

Věta 3.1.12

Označme velikosti úhlů takto: $| \langle ASB | = \omega \text{ a } | \langle AXB | = \varphi |$.

Potom pro obvodový a středový úhel k danému oblouku platí: $\omega = 2 \cdot \varphi$

Poznámka: Úsekový úhel

Thaletova věta

Věta 3.1.13

Množinou vrcholů pravých úhlů pravoúhlých trojúhelníků s přeponou AB, je kružnice sestrojená nad průměrem AB, kromě bodů A,B. (Speciální případ věty 3.1.12)

Mocnost bodu ke kružnici

Věta 3.1.14

Nechť je dána kružnice k(S, r) a bod M.

Jestliže bodem M vedeme libovolnou sečnu kružnice k s průsečíky X, Y, pak platí:

Sylabus Planimetrie

- a) $m = |PX| \cdot |PY|$, pokud bod M je vnějším bodem příslušného kruhu
- b) $m = -|PX| \cdot |PY|$, pokud bod M je vnitřním bodem kruhu

Poznámka:

Křivost kružnice $^{1}k = \frac{1}{x}$

Kružnice je křivka konstantní křivosti.

Kruh je obrazec konstantního průměru – vzdálenost mezi opěrnými přímkami. Releauxův trojúhelník

Čtyřúhelníky **Definice 3.1.6**

Uzavřená, jednoduchá, lomená čára ze čtyř úseček ohraničuje část roviny, kterou nazveme čtyřúhelník.

Definice – varianta

Čtyřúhelníkem nazveme sjednocení dvou trojúhelníků se společnou stranou, přičemž žádné ze zbývajících stran neleží v jedné přímce.

Obecný čtyřúhelník

Základní vlastnosti

$$\alpha + \beta + \gamma + \delta = 360^{\circ}$$

$$o = a + b + c + a$$

$$o = a + b + c + d S = S_{1\Delta} + S_{2\Delta}$$

Čtyřúhelníky mohou být nekonvexní.

Spojnici nesousedních vrcholů nazveme úhlopříčkou. Každý čtyřúhelník má dvě úhlopříčky. Obvykle značíme e = AC, f = BD.

Věta 3.1.15 Ptolemaiova věta

Ve čtyřúhelníku ABCD platí, že součet součinů protějších stran je větší nebo roven součinu úhlopříček, tj. $a \cdot c + b \cdot d \ge e \cdot f$

Rovnost nastává pro tětivový čtyřúhelník.

Lichoběžníky

Definice 3.1.7

Lichoběžníkem nazveme čtyřúhelník s právě jednou dvojicí rovnoběžných stran, které nazýváme základny. Zbývající dvojici stran pak ramena.

Základní vlastnosti

$$\alpha + \delta = \beta + \gamma = 180^{\circ}$$
 $o = a + b + c + d$

$$o = a + b + c + a$$

$$S = \frac{(a+c)v}{2}$$

Úkol: Uvažte vlastnosti pravoúhlého a rovnoramenného lichoběžníka

Střední příčka lichoběžníku

Spojnice středů ramen lichoběžníku je rovnoběžná se základnami a má velikost $\frac{a+c}{2}$.

Rovnoběžka se základnami procházející průsečíkem úhlopříček má velikost $\sqrt{a \cdot c}$.

Rovnoběžníky

Definice 3.1.8

Rovnoběžníkem nazveme čtyřúhelník se dvěma dvojicemi rovnoběžných stran.

Základní vlastnosti

$$\alpha + \beta = \alpha + \delta = 180^{\circ} \langle CZ \rangle$$
 $o = 2(a+b)$

$$S = \frac{a \cdot v_a}{2} = \frac{b \cdot v_b}{2}$$

Úhlopříčky rovnoběžníku se navzájem půlí.

Úkol: Diskutujte vlastnosti kosodélníku a kosočtverce.

Pravoúhelníky

Definice 3.1.9

Rovnoběžník s pravým úhlem nazveme pravoúhelníkem.

Základní vlastnosti

$$\alpha = \beta = \gamma = \delta = 90^{\circ}$$
 $o = 2(a+b)$

$$o = 2(a+b)$$

$$S = ab$$

Úkol: Diskutujte vlastnosti obdélníku a čtverce.

Tětivové a tečnové čtyřúhelníky

Definice 3.1.10

Tětivovému čtyřúhelníku lze opsat kružnici.

Tečnovému čtyřúhelníku lze vepsat kružnici.

Věta 3.1.16

V tětivovém čtyřúhelníku pro vnitřní úhly platí: $\alpha + \gamma = \beta + \delta = 180^{\circ}$

V tečnovém čtyřúhelníku pro strany platí: a+c=b+d

Úkol: Nalezněte tětivové a tečnové čtyřúhelníky.

Mnohoúhelníky

Definice 3.1.11

Uzavřená, jednoduchá, lomená čára z n- úseček ohraničuje část roviny, kterou nazveme n- úhelník (mnohoúhelník, polygon).

Mnohoúhelníky mohou být konvexní a nekonvexní obrazce.

Základní vlastnosti

$$\alpha = 360^{\circ} - \frac{360^{\circ}}{n}$$
 $\Sigma = (n-2) \cdot 180^{\circ}$ $o = \sum_{i=1}^{n} a_i$ $S = \sum_{j=1}^{n-2} S_{j\Delta}$

Počet úhlopříček

$$\frac{n(n-3)}{2}$$

Pravidelné mnohoúhelníky

Definice 3.1.12

Pravidelným mnohoúhelníkem nazveme mnohoúhelník, který má všechny strany stejně dlouhé a všechny vnitřní úhly stejně velké.

Věta 3.1.17

Pravidelné mnohoúhelníky jsou tětivové a tečnové zároveň.

Obvod a obsah

$$o = n \cdot a = n \cdot 2r \cdot \sin \frac{\pi}{n}$$
 $S = n \cdot S_{\Delta} = n \cdot \frac{1}{2}r^{2} \sin \frac{2\pi}{n}$

Konstrukce pravidelných n-úhelníků

Euklidovská konstrukce je možná pro 2^n -úhelníky, $3 \cdot 2^n$ -úhelníky a $5 \cdot 2^n$ -úhelníky, tj. úloha je řešitelná pro n = 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, ... a neřešitelná pro n = 7, 9, 11, 13, 14, 18, 19, ...

Poznámka

Pravidelné mnohoúhelníky v prostoru