

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Electron emissive ferroelectric cathode for an electron tube, flat display screen or particle accelerator has supplementary ferroelectric, anti-ferroelectric or dielectric layer covering electrode portion edges

BX

Patent number: FR2789221
Publication date: 2000-08-04
Inventor: LE BIHAN RAYMOND
Applicant: UNIV NANTES (FR)
Classification:
- **international:** H01J1/316
- **european:** H01J1/30
Application number: FR19990001009 19990129
Priority number(s): FR19990001009 19990129

Abstract of FR2789221

An electron emissive cathode body (1) has a supplementary ferroelectric, anti-ferroelectric or dielectric layer (8) covering electrode portion edges (6). An electron emissive cathode body (1) comprises a main ferroelectric layer (2) of ferroelectric or anti-ferroelectric material and electrodes (3, 4) which generate a variable electric field for exciting the ferroelectric layer, one of the electrodes partially covering the emissive side surface of the layer to form electrode portions (4) and free zones (5) through which electrons are emitted. Each electrode portion edge (6), between an electrode portion (4) and a free zone (5), is covered with a supplementary layer (8) based on a ferroelectric, anti-ferroelectric or dielectric material, to avoid electrode edge effects and to increase emission output.

Data supplied from the **esp@cenet** database - Worldwide

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication :
(à n'utiliser que pour les
commandes de reproduction)

2 789 221

(21) N° d'enregistrement national :

99 01009

(51) Int Cl⁷ : H 01 J 1/316

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 29.01.99.

(30) Priorité :

(43) Date de mise à la disposition du public de la demande : 04.08.00 Bulletin 00/31.

(56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule

(60) Références à d'autres documents nationaux apparentés :

(71) Demandeur(s) : UNIVERSITE DE NANTES — FR.

(72) Inventeur(s) : LE BIHAN RAYMOND.

(73) Titulaire(s) :

(74) Mandataire(s) : CABINET DAWIDOWICZ.

(54) CORPS DE CATHODE POUR L'EMISSION D'ELECTRONS.

(57) L'invention concerne un corps (1) de cathode ferroélectrique du type constitué d'une couche mince (2) ferroélectrique principale et d'au moins deux électrodes (3, 4) d'excitation de la couche (2) ferroélectrique, au moins l'une (4) desdites électrodes (3, 4) recouvrant partiellement la surface côté émetteur de la couche (2) ferroélectrique de manière à former des portions d'électrodes (4) et des zones libres (5).

Ce corps de cathode est caractérisé en ce qu'au moins chaque bord (6) de portion d'électrode (4) disposé entre une portion d'électrode et une zone libre (5) est recouvert d'une couche (8) supplémentaire à base d'au moins un matériau ferroélectrique ou antiferroélectrique ou isolant, pour éviter les effets dits de bord des électrodes.

Application: écran plat - tube à rayons cathodiques - source d'électrons pour tubes à vide, tube à rayons X...

FR 2 789 221 - A1

15 Corps de cathode pour l'émission d'électrons

La présente invention concerne un corps de cathode pour l'émission d'électrons.

20 Elle concerne plus particulièrement un corps de cathode ferroélectrique, du type constitué d'une couche ferroélectrique dite principale formée à partir d'au moins un matériau ferroélectrique ou antiferroélectrique et d'au moins deux électrodes alimentées de manière à générer un
25 champ électrique variable pour exciter la couche ferroélectrique, au moins l'une desdites électrodes recouvrant partiellement la surface côté émetteur de la couche ferroélectrique de manière à former des portions d'électrodes et des zones libres à travers lesquelles les
30 électrons produits par la couche ferroélectrique principale sont émis.

L'émission d'électrons à partir de la surface de cristaux ou de céramiques ferroélectriques soumis à des excitations répétitives avec des impulsions de tension est un phénomène connu. Sur la base de ce principe, des cathodes ferroélectriques ont été développées. Des exemples de ces cathodes ferroélectriques sont fournis notamment dans les

cathodes ferroélectriques sont fournis notamment dans les documents FR-A-2.718.567 et FR-A-2.744.564. A ce jour, les corps de cathode sont tous conçus sur le même principe. En effet, ces corps de cathode comportent un substrat, une 5 couche d'électrode inférieure formée sur ledit substrat, une couche d'un matériau ferroélectrique ou antiferroélectrique formée sur ladite couche d'électrode inférieure et une couche discontinue d'électrode supérieure formée sur ladite couche de matériau ferroélectrique, les 10 vides de cette couche discontinue d'électrode supérieure constituant des passages des électrons émis par le matériau ferroélectrique. Le principe de cette émission est lié au fait que, lorsqu'une impulsion de tension élevée est appliquée entre les électrodes supérieure et inférieure, 15 une polarisation spontanée est inversée sur la surface et à l'intérieur du matériau ferroélectrique et des électrons sont donc émis. De telles cathodes présentent un grand nombre d'avantages, à savoir notamment un rendement élevé d'électrons et un maniement simple lié à leur robustesse et 20 au fait qu'elles peuvent en particulier fonctionner à la température ambiante. Du fait de ces avantages, les cathodes ferroélectriques sont aujourd'hui utilisées dans de nombreux domaines d'application. Elles sont en particulier utiles pour la réalisation de canons à 25 électrons, de tubes à rayon cathodique, etc.

La définition des corps de cathode fournie ci-dessus correspond au corps de cathode représenté à la figure 1. L'inventeur de la présente invention a toutefois constaté 30 que de telles constructions gênaient une perte importante des électrons émis. En effet, une partie de ces électrons sont attirés par l'électrode 3' et se dirigent directement vers cette dernière. Il en résulte que le collecteur positionné en face des électrodes ne collecte pas la 35 totalité des électrons émis. L'inventeur de la présente invention a également constaté que des décharges pouvaient se produire au niveau des électrodes.

Le but de la présente invention est donc de proposer un corps de cathode ferroélectrique dont la conception permet d'augmenter le rendement d'émission d'électrons et de réduire les décharges entre bord d'électrode.

Un autre but de la présente invention est de proposer un corps de cathode ferroélectrique dont la conception permet une réduction de l'épaisseur de la couche ferroélectrique.

- 10 A cet effet, l'invention a pour objet un corps de cathode ferroélectrique pour l'émission d'électrons, du type constitué d'une couche ferroélectrique dite principale formée à partir d'au moins un matériau ferroélectrique ou antiferroélectrique et d'au moins deux électrodes
- 15 alimentées de manière à générer un champ électrique variable pour exciter la couche ferroélectrique, au moins l'une desdites électrodes recouvrant partiellement la surface côté émetteur de la couche ferroélectrique de manière à former des portions d'électrodes et des zones libres à travers lesquelles les électrons produits par la couche ferroélectrique principale sont émis, caractérisé en ce que, côté émetteur de la couche ferroélectrique, au moins chaque bord de portion d'électrode disposé entre une portion d'électrode et une zone libre est recouvert d'une
- 25 couche supplémentaire à base d'au moins un matériau ferroélectrique ou antiferroélectrique ou diélectrique, pour d'une part éviter les effets dits de bord des électrodes, d'autre part augmenter le rendement d'émission.
- 30 Grâce à la présence de cette couche supplémentaire en matériau ferroélectrique ou antiferroélectrique ou diélectrique, les lignes du champ électrique sont modifiées et le rendement d'émission d'électrons est augmenté, les électrons n'étant plus attirés par lesdites électrodes.

Selon une forme de réalisation préférée de l'invention, la totalité de la surface, constituée de portions d'électrode et de zones libres, est revêtue d'une couche supplémentaire

4

à base d'au moins un matériau ferroélectrique ou antiferroélectrique, ladite couche épousant les irrégularités de la surface.

5 Ce mode de réalisation simplifie l'application de la couche supplémentaire.

L'invention sera bien comprise à la lecture de la description suivante d'exemples de réalisation, en 10 référence aux dessins annexés dans lesquels :

la figure 1 représente une vue schématique en coupe d'un corps de cathode conforme à l'état de la technique ;

15 la figure 2 représente une vue schématique en coupe d'un corps de cathode conforme à l'invention et

20 la figure 3 représente une vue schématique de dessus d'un autre mode de réalisation d'un corps de cathode conforme à l'invention.

Comme le montre la figure 1, un corps de cathode, conforme à l'état de la technique, est généralement constitué d'une 25 électrode inférieure représentée en 1' à la figure 1, d'une couche en matériau ferroélectrique représentée en 2' et d'une électrode supérieure représentée en 3', l'ensemble étant disposé à l'état superposé comme le montre la figure 1 de telle sorte qu'un grand nombre d'électrons émis à 30 partir de la surface de la couche à base d'un matériau ferroélectrique sont attirés par l'électrode supérieure.

Le corps 1 de cathode ferroélectrique, objet de l'invention, est constitué d'une couche 2 ferroélectrique, 35 dite principale, cette couche 2 étant formée à partir d'au moins un matériau ferroélectrique ou antiferroélectrique de manière en soi connue. Le corps 1 de cathode comporte encore au moins deux électrodes 3, 4 alimentées de manière

à générer un champ électrique variable pour exciter la couche 2 ferroélectrique. Au moins l'une des électrodes 3 et 4, en l'occurrence l'électrode 4 dans la figure 2, recouvre partiellement la surface côté émetteur de la 5 couche 2 ferroélectrique, dite principale, de manière à former des portions d'électrodes 4 et des zones libres 5 à travers lesquelles les électrons produits par la couche ferroélectrique 2 principale sont émis.

- 10 De manière caractéristique à l'invention, chaque bord 6 de portion d'électrode 4 disposé entre une portion d'électrode et une zone libre 5 est recouvert d'une couche mince 8 supplémentaire à base d'au moins un matériau ferroélectrique ou antiferroélectrique ou diélectrique, 15 pour d'une part éviter les effets dits de bord des électrodes, d'autre part augmenter le rendement d'émission. Dans l'exemple représenté à la figure 2, la totalité de la surface, constituée de portions d'électrode 4 et de zones libres 5, est revêtue d'une couche supplémentaire 8 à base 20 d'au moins un matériau ferroélectrique ou antiferroélectrique, ladite couche supplémentaire 8 épousant les irrégularités de la surface.

Dans l'exemple représenté à la figure 2, les électrodes 3, 25 4, dites respectivement inférieure et supérieure, sont disposées de part et d'autre de la couche ferroélectrique 2 dite principale, la couche 8 supplémentaire recouvrant partiellement ou totalement au moins l'électrode supérieure 4. Dans ce cas, le corps de cathode est constitué d'au 30 moins une couche d'électrode inférieure 3, d'une couche ferroélectrique principale 2 constituée d'au moins un matériau ferroélectrique ou antiferroélectrique et formée sur ladite couche d'électrode inférieure, d'une électrode supérieure 4 recouvrant partiellement la couche 35 ferroélectrique principale 2 pour former des portions d'électrodes 4 et des zones libres 5 et d'au moins une couche mince supplémentaire 8 à base d'au moins un matériau ferroélectrique ou antiferroélectrique ou diélectrique,

ladite couche supplémentaire 8 recouvrant au moins chaque bord 6 de portion d'électrode 4 disposé entre une portion d'électrode 4 et une zone libre 5. Il est à noter que cette couche d'électrode inférieure 3 peut elle-même reposer sur un substrat isolant ou conducteur non représenté à la figure 2. Le dépôt de la couche ferroélectrique principale 2 sur la couche d'électrode inférieure 3 s'effectue de manière classique par des techniques bien connues à ceux versés dans cet art. Ainsi, l'application de cette couche ferroélectrique peut s'effectuer par laminage mécanique ou par enduction avec une épaisseur définie comme le décrit le document FR-A-2.718.567. Il peut être également utilisé des procédés d'impression pour le dépôt de cette couche en matériau ferroélectrique ou antiferroélectrique. Une méthode intéressante est la méthode sol gel avec dépôt d'une couche par centrifugation (spin-coating) à la tournette.

Des méthodes généralement plus coûteuses que les procédés de couches minces classiques peuvent également être utilisées. Il s'agit en particulier de la vaporisation ou de l'application par pulvérisation ou par CVD (dépôt en phase gazeuse par procédé chimique). L'application de la couche ferroélectrique peut encore s'effectuer par immersion de la couche d'électrode inférieure 3 dans un mélange ferroélectrique liquide. La fixation de la couche de l'électrode supérieure 4 sur la couche ferroélectrique 2 peut s'effectuer à nouveau par vaporisation à travers des masques adaptés à la forme de l'électrode. L'avantage de cette mise en œuvre consiste dans les faibles sollicitations mécaniques et thermiques de la couche ferroélectrique.

La fixation de l'électrode peut encore s'effectuer par sérigraphie ou par photolithographie, technique utilisée en particulier en micro-électronique. Une fois cette électrode supérieure réalisée et fixée à la couche ferroélectrique dite principale 2, une couche supplémentaire 8 à base d'au

moins un matériau de préférence ferroélectrique ou antiferroélectrique peut être appliquée sur l'électrode supérieure 4. Le dépôt de cette couche supplémentaire fait appel aux mêmes techniques que celles utilisées pour le 5 dépôt ou l'application de la couche ferroélectrique principale 2.

Dans une autre variante de la réalisation, l'électrode pleine 3 est remplacée par une électrode ajourée déposée 10 sur un substrat isolant. Dans ce cas, la couche ferroélectrique ou antiferroélectrique principale 2 est déposée sur l'électrode 3 et le substrat isolant. Un exemple de réalisation consiste à réaliser cette électrode 15 3 en bandes parallèles ou perpendiculaires à celle de l'électrode supérieure 4. Ce dernier cas correspond à une possibilité de réaliser des écrans plats de visualisation.

Dans un autre mode de réalisation de l'invention, conforme 20 à la figure 3, les électrodes 3 et 4 écartées l'une de l'autre sont positionnées dans ou sur la couche 2 ferroélectrique dite principale de sorte que la composante principale des lignes du champ électrique généré par 25 lesdites électrodes 3 et 4 s'étend sensiblement parallèlement à la surface 5 émettrice d'électrons de ladite couche 2 ferroélectrique. Ainsi, dans cette figure 3, les électrodes ne prennent plus en sandwich la couche ferroélectrique dite principale comme le montre la figure 2 mais sont au contraire positionnées du même côté de cette 30 couche ferroélectrique dite principale 2. Dans ce cas et à titre d'exemple, le corps de cathode peut être constitué d'au moins un substrat isolant 7 réalisé en un matériau diélectrique, d'une couche 2 ferroélectrique, dite principale, formée sur ledit substrat 7, d'un arrangement 35 d'électrodes 3, 4 disposées sur ladite couche 2 ferroélectrique, dite principale, pour former des portions d'électrodes et des zones libres et d'une couche supplémentaire 8 à base d'au moins un matériau de préférence ferroélectrique ou antiferroélectrique ou

diélectrique, ladite couche supplémentaire 8 recouvrant au moins chaque bord 6 de portion d'électrode 3, 4 disposé entre une portion d'électrode 3, 4 et une zone libre 5.

- 5 Les dépôts de la couche ferroélectrique principale 2 sur le substrat et des électrodes sur ladite couche ferroélectrique 2 peuvent s'effectuer au moyen de techniques identiques à celles décrites ci-dessus dans le cadre de la réalisation conforme à celle de la figure 2.
- 10 L'intérêt de la construction conforme à la figure 3 est qu'elle permet de réduire l'épaisseur de la couche ferroélectrique 2 sans nuire au rendement d'émission de l'ensemble. Il est à noter que les couches ferroélectriques, dites principale et supplémentaire, sont
- 15 constituées de préférence d'au moins un matériau choisi dans le groupe des composés, dopés ou non dopés, constitué par le titanate de plomb, le PLZT (titanate de plomb-lanthane-zirconium), le PZT (titanate de plomb-zirconium), le BaTiO₃ (titanate de baryum), le TGS (triglycine sulfate), le LiNbO₃.

Ces couches ferroélectriques ou antiferroélectriques, dites principale 2 et supplémentaire 8, sont de préférence de composition identique. Toutefois, elles peuvent également être de compositions différentes. L'épaisseur de la couche supplémentaire 8, recouvrant les portions d'électrode 4 est généralement comprise dans la plage [5 nm - 10 µm].

Le substrat isolant 7, dans le cas de la figure 3, peut quant à lui être constitué d'un matériau choisi dans le groupe de composés formé par MgO, SiO₂, Si₃N₄, le verre, les polymères, etc.

Les électrodes sont quant à elles réalisées en matériaux conducteurs tels que l'aluminium, l'or, le platine, etc. ou en des matériaux non métalliques, par exemple des oxydes.

9

Il est à noter que les électrodes peuvent affecter un grand nombre de formes. Ces électrodes peuvent être réalisées sous forme d'éléments pleins ou ajourés. Ainsi, dans l'exemple représenté à la figure 3, les électrodes 3, 4 5 sont des électrodes dites interdigitales. Ces électrodes affectent la forme de doigts, des doigts de l'une des électrodes s'étendant dans l'espace interdigital de l'autre électrode. Cette réalisation des électrodes 3, 4 se caractérise par son faible encombrement.

10

Généralement, le corps de cathode coopère avec un collecteur d'électrons. Ce collecteur d'électrons peut être constitué par une électrode dite de réception telle qu'une anode. Ce collecteur d'électrons est généralement disposé 15 face à la surface émettrice 5 de la couche ferroélectrique 2, c'est-à-dire face à l'électrode supérieure 4. Grâce à la présence de cette électrode de réception, le circuit émetteur est fermé électriquement. Cette électrode de réception est séparée de l'électrode 4 ou des électrodes 3 20 et 4 par un volume dans lequel la cathode émet des électrons. Ce volume peut avantageusement contenir un vide poussé, du gaz ou un plasma. Cette électrode de réception peut également venir en contact avec la couche 8 recouvrant l'électrode 4. Ceci est une réalisation possible par 25 exemple dans le cas de la réalisation d'un écran plat de visualisation où le matériau de la couche supplémentaire 8 est choisi en outre dans le groupe des matériaux luminescents sous l'impact des électrons.

30 De manière générale, le corps de cathode coopère avec un collecteur d'électrons, tel qu'une électrode dite de réception, pour former un écran plat ou avec un dispositif d'optique électronique pour former un canon à électrons applicable dans la réalisation de tubes électroniques ou 35 d'écrans plats ou d'accélérateurs de particules.

Le ou les signaux électriques alimentant les électrodes 3, 4 peuvent affecter un grand nombre de formes. Quand des

10

puissances d'impulsion d'excitation très élevées doivent être fournies, il peut être préférable de monter les générateurs d'impulsion en parallèle, chaque générateur ayant une impédance basse. De tels montages sont toutefois bien connus à ceux versés dans cet art.

5 Bien évidemment, les applications citées ci-dessus ne constituent en aucun cas une limitation de l'invention.

10 Il est à noter par ailleurs que le terme "ferroélectrique" employé pour désigner la cathode doit être entendu dans son sens le plus général et inclut aussi bien les cathodes en matériau ferroélectrique que les cathodes en matériau antiferroélectrique, ces matériaux étant ou non dopés.

15 Enfin, dans certaines applications, des micro-sources d'électrons peuvent être intégrées dans une seule cathode, chacune fonctionnant de façon autonome ou non.

REVENDICATIONS

1. Corps (1) de cathode ferroélectrique pour l'émission d'électrons, du type constitué d'une couche (2) ferroélectrique, dite principale, formée à partir d'au moins un matériau ferroélectrique ou antiferroélectrique et d'au moins deux électrodes (3, 4) alimentées de manière à générer un champ électrique variable pour exciter la couche (2) ferroélectrique, au moins l'une (4) desdites électrodes 10 (3, 4) recouvrant partiellement la surface côté émetteur de la couche (2) ferroélectrique de manière à former des portions d'électrodes (4) et des zones libres (5) à travers lesquelles les électrons produits par la couche ferroélectrique (2) principale sont émis,

15 caractérisé en ce que, côté émetteur, au moins chaque bord (6) de portion d'électrode (4) disposé entre une portion d'électrode et une zone libre (5) est recouvert d'une couche (8) supplémentaire à base d'au moins un matériau ferroélectrique ou antiferroélectrique ou diélectrique, 20 pour d'une part éviter les effets dits de bord des électrodes, d'autre part augmenter le rendement d'émission.

2. Corps de cathode selon la revendication 1, caractérisé en ce que la totalité de la surface, constituée 25 de portions d'électrode (4) et de zones libres (5), est revêtue d'une couche (8) supplémentaire à base d'au moins un matériau ferroélectrique ou antiferroélectrique, ladite couche épousant les irrégularités de la surface.

30 3. Corps de cathode selon l'une des revendications 1 et 2, caractérisé en ce que les électrodes (3, 4), dites respectivement inférieure et supérieure, sont disposées de part et d'autre de la couche ferroélectrique (2) dite principale, la couche (8) supplémentaire recouvrant 35 partiellement ou totalement au moins l'électrode supérieure (4).

4. Corps de cathode selon la revendication 3,

12

caractérisé en ce qu'il est constitué d'au moins une couche d'électrode inférieure (3), d'une couche ferroélectrique (2) principale constituée d'au moins un matériau ferroélectrique ou antiferroélectrique et formée sur ladite 5 couche d'électrode inférieure, d'une électrode supérieure (4) recouvrant partiellement la couche ferroélectrique (2) principale pour former des portions d'électrode (4) et des zones libres (5) et d'au moins une couche mince supplémentaire (8) à base d'au moins un matériau 10 ferroélectrique ou antiferroélectrique ou diélectrique, ladite couche supplémentaire (8) recouvrant au moins chaque bord (6) de portion d'électrode (4) disposé entre une portion d'électrode (4) et une zone libre (5).

15 5. Corps de cathode selon l'une des revendications 1 et 2, caractérisé en ce que les électrodes (3, 4) écartées l'une de l'autre sont positionnées dans ou sur la couche (2) ferroélectrique dite principale de sorte que la composante principale des lignes du champ électrique généré par 20 lesdites électrodes (3, 4) s'étend sensiblement parallèlement à la surface (5) émettrice d'électrons de ladite couche (2) ferroélectrique.

6. Corps (1) de cathode selon la revendication 5, 25 caractérisé en ce qu'il est constitué d'un substrat isolant (7) réalisé en un matériau diélectrique, d'une couche (2) ferroélectrique, dite principale, formée sur ledit substrat (7), d'un arrangement d'électrodes (3, 4) disposées sur ladite couche (2) ferroélectrique, dite principale, pour 30 former des portions d'électrodes et des zones libres et d'une couche supplémentaire (8) à base d'au moins un matériau ferroélectrique ou antiferroélectrique ou diélectrique, ladite couche supplémentaire (8) recouvrant au moins chaque bord (6) de portion d'électrode (3, 4) 35 disposé entre une portion d'électrode (3, 4) et une zone libre (5).

7. Corps de cathode selon l'une des revendications 1 à 6,

13

caractérisé en ce que les couches ferroélectriques dites principale (2) et supplémentaire (8) sont constituées d'au moins un matériau choisi dans le groupe des composés, dopés ou non dopés, constitué par le titanate de plomb, le PLZT 5 (titanate de plomb-lanthane-zirconium), le PZT (titanate de plomb-zirconium), le BaTiO₃ (titanate de baryum), le TGS (triglycine sulfate), le LiNbO₃.

8. Corps de cathode selon l'une des revendications 1 à 7,
10 caractérisé en ce que les couches ferroélectriques ou antiferroélectriques, dites principale (2) et supplémentaire (8), ont des compositions identiques.

9. Corps de cathode selon l'une des revendications 1 à 8,
15 caractérisé en ce que l'épaisseur de la couche supplémentaire (8) recouvrant les portions d'électrode (4) est comprise dans la plage [5 nm - 10 µm].

10. Corps de cathode selon l'une des revendications 1 à 9,
20 caractérisé en ce qu'il coopère avec un collecteur d'électrons, tel qu'une électrode dite de réception, pour former un écran plat ou avec un dispositif d'optique électronique pour former un canon à électrons applicable dans la réalisation de tubes électroniques ou d'écrans 25 plats ou d'accélérateurs de particules.

2789221

1/3

FIGURE 1

2789221

2/3

FIGURE 2

2789221

3/3

FIGURE 3

REPUBLIQUE FRANÇAISE

2789221

INSTITUT NATIONAL
de la
PROPRIETE INDUSTRIELLE

RAPPORT DE RECHERCHE
PRELIMINAIRE

établi sur la base des dernières revendications
déposées avant le commencement de la recherche

N° d'enregistrement

national

FA 575533
FR 9901009

DOCUMENTS CONSIDERES COMME PERTINENTS		Revendications concernées de la demande examinée
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	
A	US 5 453 661 A (MCGUIRE GARY E ET AL) 26 septembre 1995 (1995-09-26) * colonne 9, ligne 29 - colonne 10, ligne 27; revendications 1-31; figure 5 *	1, 5, 7, 10
A	FR 2 718 567 A (RIEGE HANS KARL OTTO) 13 octobre 1995 (1995-10-13) * revendication 10 *	1
A	DE 196 51 552 A (PATRA PATENT TREUHAND) 18 juin 1998 (1998-06-18) * revendications 1-8 *	1, 7
A	EP 0 428 853 A (RIEGE HANS) 29 mai 1991 (1991-05-29) * revendication 1 *	1
A	PATENT ABSTRACTS OF JAPAN vol. 1997, no. 03, 31 mars 1997 (1997-03-31) & JP 08 293272 A (MITSUBISHI ELECTRIC CORP), 5 novembre 1996 (1996-11-05) * abrégé *	1
A	PATENT ABSTRACTS OF JAPAN vol. 1998, no. 05, 30 avril 1998 (1998-04-30) & JP 10 027539 A (SHARP CORP), 27 janvier 1998 (1998-01-27) * abrégé *	1
		DOMAINES TECHNIQUES RECHERCHES (Int.CL.6)
		H01J
1	Date d'achèvement de la recherche 19 octobre 1999	Examinateur Van den Bulcke, E
CATEGORIE DES DOCUMENTS CITES X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : pertinent à l'encontre d'au moins une revendication ou arrière-plan technologique général O : divulgation non écrite P : document intercalaire		
T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant		