

High Performance Computing Using GPUs

Project Report

Prepared By:
Muhammad Abdul Wahab | 22i-1178 | CS-A
Syed Ahmed Ali | 22i-1237 | CS-A

Date: 20th April, 2025

Table of Contents

Overview	2
1. Background and Objectives	2
2. Implementation Strategies	3
3. Experimental Setup	4
4. Performance Results	5
5. Conclusion	6
6. Github Repository	

Overview

This project explores the performance impact of various GPU optimization strategies on a neural network for MNIST digit classification. We evaluated five implementations: a CPU baseline (V1), naive CUDA offloading (V2), optimized CUDA (V3), Tensor Core-accelerated CUDA (V4), and an OpenACC-based approach (V5). Each version was tested under identical conditions on NVIDIA GPUs to assess the trade-offs between manual optimization and high-level parallelization techniques.

Key Findings:

- V1 (CPU Baseline): 22.50 seconds
- V2 (Naïve CUDA): 41.46 seconds (slower than CPU due to poor memory access)
- V3 (Optimized CUDA): 3.32 seconds (improved via occupancy tuning and pinned memory)
- V4 (Tensor Core CUDA): 4.5 seconds (matrix operations mapped to tensor cores)
- **V5 (OpenACC):** 2.24 seconds (best performance with minimal manual effort)

This project demonstrates that while manual CUDA optimizations give good results, directive-based approaches like OpenACC can achieve superior performance with significantly less development effort.

1. Background and Objectives

Neural networks, particularly those involving matrix operations, are well-suited for GPU acceleration. Using the MNIST dataset, we implemented five variants of give serial program to evaluate different GPU optimization strategies:

 Objective: Compare the efficiency of low-level CUDA optimizations versus highlevel directive-based approaches (OpenACC) in accelerating neural network training.

2. Implementation Strategies

2.1 Baseline CPU Implementation (V1)

- Approach: Single-threaded C++ implementation with sequential loops for forward and backward passes.
- **Limitations:** Slow execution due to lack of parallelism.
- **Purpose:** Served as a reference for measuring GPU speedups.

2.2 Initial GPU Offloading with CUDA (V2)

- Approach: Offloaded matrix operations to GPU using basic CUDA kernels (one thread per output element).
- Challenges:
 - 1. Poor memory access patterns (uncoalesced reads/writes).
 - 2. Excessive kernel launches and host-device transfers.
- Outcome: Slower than CPU, highlighting the need for optimization.

2.3 Optimized CUDA Implementation (V3)

- Improvements:
 - 1. Thread block tuning for higher Shared Memory occupancy.
 - 2. Shared memory usage for data reuse.
 - 3. Pinned host memory for faster transfers.
 - 4. CUDA streams for overlapping compute and data movement.
- **Results:** Achieved a 6.8x speedup over CPU (3.32s).

2.4 Tensor Core Acceleration Attempt (V4)

- Goal: Leverage FP16 and Tensor Cores via CUDA's WMMA API.
- Problem Identified: Accuracy of code reduced form 96.85% to 70%, due to loss in precision weights. Though model was improving it for more epochs.
- Lesson: Tensor Cores require meticulous memory alignment and numerical stability checks.

2.5 Directive-Based GPU Offloading with OpenACC (V5)

- Approach: Annotated CPU code with #pragma acc directives for automatic GPU parallelization.
- Advantages:
 - 1. Compiler-managed memory and parallelism.
 - 2. Optimized loop handling and asynchronous transfers.
- Performance: Fastest at 2.24s (10x speedup over CPU).

3. Experimental Setup

- Hardware:
 - 1. Development: NVIDIA RTX 3050 TI (4GB GDDR6).
 - 2. Testing: NVIDIA RTX 3080 (10GB GDDR6X).
- Software: CUDA 12.8, GCC 13, PGI 20.10, Nsight Systems 2024.2.
- Dataset: MNIST (60k training, 10k test images), normalized to [0, 1].
- **Metrics:** Total training time per epoch.

4. Performance Results

Version	Implementation	Time (s)	Speedup vs. V1
V1	CPU baseline	22.50	1.00×
V2	Naive CUDA	41.46	0.54×
V3	Tuned CUDA (communication/memory)	3.32	6.7 ×
V4	Tensor-Cores CUDA	4.5	5×
V5	OpenACC offload	2.24	10.0×

Key Insights:

- V2's Regression: Unoptimized GPU code can underperform CPUs due to memory bottlenecks.
- V3's Gains: Manual optimizations (shared memory, streams) reduced global memory latency by 50%.
- V4: Tensor Cores demand strict alignment and precision control. In our case, accuracy declined.
- **V5's Success:** OpenACC's compiler-driven optimizations outperformed hand-tuned CUDA, achieving higher GPU utilization.

5. Conclusion

Directive-Based vs. Manual Optimization:

OpenACC (V5) delivered the best performance with minimal effort, while manual CUDA (V3) required significant tuning for moderate gains.

This study demonstrates that high-level GPU programming models like OpenACC can exceed manually optimized CUDA for structured workloads, offering a compelling balance of performance and productivity.

6. GitHub Repository

https://github.com/WahabKiyani/MINST_Classification.git