Math Camp: PS 1 Logic and Sets

Casey O'Hara

2017-09-04

1. Using truth tables, prove both of DeMorgan's Laws for logical connectives.

(a) $\neg (P \land Q)$ is logically equivalent to $\neg P \lor \neg Q$

P	Q	$\neg P$	$\neg Q$	$\neg (P \land Q)$	$\neg P \vee \neg Q$
Т	Τ	F	F	\mathbf{F}	\mathbf{F}
${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	${f T}$	${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$
\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	${f T}$	${f T}$

The bolded columns are identical, thus $\neg (P \land Q)$ is logically equivalent to $\neg P \lor \neg Q$.

(b) $\neg (P \lor Q)$ is logically equivalent to $\neg P \land \neg Q$

I) (Q	$\neg P$	$\neg Q$	$\neg(P\vee Q)$	$\neg P \wedge \neg Q$
П		Γ	F	F	${f F}$	${f F}$
Г	.]	F	\mathbf{F}	${ m T}$	${f F}$	${f F}$
F	ָר ק	Γ	\mathbf{F}	\mathbf{F}	${f F}$	${f F}$
F	[יי	F	\mathbf{F}	${ m T}$	${f T}$	${f T}$

The bolded columns are identical, thus $\neg (P \lor Q)$ is logically equivalent to $\neg P \land \neg Q$.

- 2. Find the contrapositive and converse of each of the following statements:
 - (a) "If squares have four sides, then triangles have four sides."
 - Contrapositive: "If triangles do not have four sides, then squares do not have four sides."
 - Converse: "If triangles have four sides, then squares have four sides."
 - (b) "A sequence a is bounded whenever a is convergent."
 - Rewritten in $p \Rightarrow q$ form: "If a sequence a is convergent, then a is bounded."
 - Contrapositive: "If sequence a is not bounded, then a is not convergent."
 - Converse: "If sequence a is bounded, then a is convergent."
 - (c) "The differentiability of a function f is sufficient for f to be continuous."
 - Rewritten in $p \Rightarrow q$ form: "If function f is differentiable, then f is continuous."
 - Contrapositive: "If function f is not continuous, then f is not differentiable."
 - Converse: "If function f is continuous, then f is differentiable."
- 3. Let x and y be integers. Prove that if x and y are even, then x+y is even. To show: x+y is even.

Proof:

Let
$$x$$
 and y be even integers. (by hypothesis)
 $\Rightarrow \exists i, j \in \mathbb{Z} \ni x = 2i \land y = 2j$ (by definition of even)
 $\Rightarrow x + y = 2i + 2j$ (substitution)
 $\Rightarrow x + y = 2(i + j)$ (distributivity)
 $\Rightarrow \exists k \in \mathbb{Z} \ni k = i + j$ (closure of integer addition)
 $\Rightarrow x + y = 2k$ (substitution)
 $\Rightarrow x + y$ is even \blacksquare (by definition of even)

4. Let A and B be sets. Prove that $A \subset B$ if and only if $A - B = \emptyset$. By contrapositive, $A - B \neq \emptyset \iff A \not\subset B$

Proof by contraposition, to show: $A \not\subset B$, and then back to $A - B \neq \emptyset$. **Proof:**

Let
$$A$$
 and B be sets such that $A - B \neq \emptyset$ (toward contrapositive)
 $\iff \exists C \neq \emptyset \ni A - B = C$ (definition of not empty set)
 $\iff \exists x \in C \ni x \in A \land x \notin B$ (definition of set subtraction)
 $\iff A \not\subset B \blacksquare$ (by definition of subset)

While I believe each of these steps should be biconditional, it seems like by creating a set C to contain an element x (on the way toward $A \not\subset B$) may not be so reversible, since moving upward I would invoke $\exists x \in C$ before $\exists C$. Maybe I can skip invoking set C entirely? Looking forward to the answer key!