



# Project "Diode Circuit and Design"

## Prepared by:

Alhussein Gamal Hussein Ali (1200399)

Aley Eldin Hisham Mohamed Mostafa (1200475)

**Program: CCEE** 

**Submitted to:** 

Dr. Ahmed Hussien

**Dr. Amal Samir** 

#### **Problem 1: Double Soft Sided Limiter**

#### **Schematic:**



#### **Transient Analysis:**



#### **Calculations**



# **Problem 2: Rectifier Circuits**

## Part 1: Half wave Rectifier

#### **Schematic:**



problem 2 : Rectifier Circuits. i- Half wave Rectifier Grantia) VDC = (VP-VDON) - Vr , 10 = Vp-0.7 - 3 Vp = 11.7 V, Vms = 11.7 = 8.273V b)  $V_r = V_{P} - V_{OON} = 7$  2 = 11.7 - 0.7 , C = 611.11 Mf. c) Max vererse voltage = - Up - (Vp-Vr) = -21.4 V. d) Avg Diode current = VDC (1+ IT V 2VP) = [0.783 mA e) Peak Diode Current = CWVPV 2Vr + VP = 11654 A-



**Diode Current** 



**Diode Voltage** 



**Load Voltage vs Secondary Voltage** 

# Part 2: Full Wave Rectifier



### **Calculations**

in - Full wave Rectifier.

a)  $V_{D} = (V_{P} - V_{DON}) - \frac{V_{P}}{2}$ ,  $10 = (V_{P} - 0.4) - \frac{2}{2}$   $V_{P} = 11.7 \text{ V}$ ,  $V_{Pms} = \frac{11.7}{V_{2}} = 8.273 \text{ V}$ b)  $V_{F} = \frac{V_{P} - V_{DON}}{2f Rc}$ ,  $2 = \frac{11.7 - 0.7}{2x60 \times 150 \times c}$ ,  $c = \frac{305.55 \text{ Mf}}{2500 \times c}$ Exc) Hax. Reverse voltage =  $-V_{P} - (V_{P} - V_{F}) = -21.4 \text{ V}$ d) Any Diode Current =  $\frac{V_{D}}{R} \left(1 + \frac{2V_{P}}{V_{F}}\right) = 0.783 \text{ mA}$ e) peak Diode Current =  $\frac{V_{D}}{R} \left(1 + \frac{2V_{P}}{V_{F}}\right) = 0.866 \text{ A}$ 



**Diode Currents** 



**Diode Voltages** 

Notice the overlap in the curve of diode voltages



## **LOAD VOLTAGE VS SECONDARY VOLTAGE**

# **Problem 3: Limiters Involve Zener**

#### Schematic:



**Calculations** 

| problem 3:                                                               |
|--------------------------------------------------------------------------|
| Limiters Involve Zener:                                                  |
| V2 = V20 + I2/2-                                                         |
| $7.5 = V + (15 \times 20) + V = 7.2V.$                                   |
| *OrVin < 0.85                                                            |
| D <sub>13</sub> is reverse = Vin = Vout.                                 |
| $ * 0.85 < V_{in} < (0.85 + 7.2) $ "8.05 = $V_{on} + V_{\overline{z}}$ " |
| _ Zener in reverse region _ D Vin = Vout                                 |
| * 8.9 = 2 Von + V2"                                                      |
| - D42 is reverse = Vin = Vout                                            |
| * Vin > 8.9                                                              |
| D <sub>13</sub> & D <sub>12</sub> 're ON                                 |
| Zener in Breakdown region                                                |
| Vout = 8.9 + IR , T = Vin - 8.9                                          |
| (1000 + 50 + 50 + 20)                                                    |
| Vout - 8.9 + (Vin-8.9) (120)<br>1120 \$ 50+50+20                         |
| 50+50+20<br>TD+TD+TZ                                                     |
| D D                                                                      |

\* -0.855 Vin <0 - Des is reverse = D Vout = Vin \* -8.9 < Vin 2 -0.85 \$ Zenes in reverse region Vont = Vin Vin < - 8.9 D23 & D42 he ON Zener in Breakdown Region. Vout = 8.9 - IR. T = 8.9 + Vin 1120 Vout = 8.9 - (8.9 + Vin ) (120).

#### **Transient Analysis:**



# **Problem 4: Clamping Circuit**

#### **Schematic:**







#### Notes and Observations:

- Initially, the capacitor can be assumed to be fully charged
- Values of Rload and C are chosen such that RC >> T.
- Since RC >> T, the capacitor takes a relatively large to time to discharge compared to T, so Vc is always approximately -10V.
- The resistance in in series with the diode is small, as is the case practically.

B) Most positive output level= 
$$Vin - Vc = 10 - (-10) = 20V$$

Most negative output level= Vin - Vc = -10 - (-10) = 0V

#### **Transient Analysis:**



Output Voltage vs Input Voltage