$12n_{0831} \ (K12n_{0831})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -396999u^{17} - 586653u^{16} + \dots + 343642b - 1550584, \\ &- 523933u^{17} - 696379u^{16} + \dots + 343642a - 2066672, \ u^{18} + u^{17} + \dots + 6u - 1 \rangle \\ I_2^u &= \langle -3.98523 \times 10^{90}u^{43} + 1.45733 \times 10^{90}u^{42} + \dots + 3.76570 \times 10^{90}b + 3.66878 \times 10^{91}, \\ &3.76232 \times 10^{91}u^{43} - 6.44638 \times 10^{90}u^{42} + \dots + 5.27198 \times 10^{90}a - 6.67170 \times 10^{92}, \\ &2u^{44} - 29u^{42} + \dots - 88u - 7 \rangle \\ I_3^u &= \langle -u^5 + u^4 + 2u^3 - 3u^2 + 2b - 4u + 4, \ -u^5 + 2u^4 + u^3 - 3u^2 + 2a - 3u + 6, \\ &u^6 - 2u^5 - u^4 + 4u^3 + 2u^2 - 6u + 1 \rangle \\ I_4^u &= \langle b - 1, \ a + 4u - 6, \ 2u^2 - 4u + 1 \rangle \\ I_5^u &= \langle b - 1, \ a^2 - 2, \ u + 1 \rangle \\ I_6^u &= \langle b - a + 2, \ 2a^2 - 4a + 1, \ u + 1 \rangle \\ I_7^u &= \langle b - 1, \ a, \ u - 1 \rangle \end{split}$$

* 7 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 75 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -3.97 \times 10^5 u^{17} - 5.87 \times 10^5 u^{16} + \dots + 3.44 \times 10^5 b - 1.55 \times 10^6, \ -5.24 \times 10^5 u^{17} - 6.96 \times 10^5 u^{16} + \dots + 3.44 \times 10^5 a - 2.07 \times 10^6, \ u^{18} + u^{17} + \dots + 6u - 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.52465u^{17} + 2.02647u^{16} + \dots - 13.8141u + 6.01403 \\ 1.15527u^{17} + 1.70716u^{16} + \dots - 12.3278u + 4.51221 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.325219u^{17} + 0.133368u^{16} + \dots - 5.76386u + 3.29663 \\ -1.39846u^{17} - 1.87149u^{16} + \dots + 11.1270u - 3.17599 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1.52465u^{17} + 2.02647u^{16} + \dots - 13.8141u + 6.01403 \\ 1.15527u^{17} + 1.70716u^{16} + \dots - 12.3278u + 4.51221 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2.67992u^{17} + 3.73363u^{16} + \dots - 26.1419u + 10.5262 \\ 1.15527u^{17} + 1.70716u^{16} + \dots - 12.3278u + 4.51221 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.29270u^{17} + 1.81223u^{16} + \dots - 10.6425u + 2.91863 \\ 1.04950u^{17} + 1.81223u^{16} + \dots - 11.8434u + 3.25485 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1.29270u^{17} + 1.81223u^{16} + \dots - 10.6425u + 2.91863 \\ 0.901071u^{17} + 1.31644u^{16} + \dots - 10.0189u + 2.73532 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.44262u^{17} - 1.82416u^{16} + \dots + 15.3771u - 4.47443 \\ -1.41888u^{17} - 1.96720u^{16} + \dots + 13.3296u - 3.75667 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.501819u^{17} - 0.871197u^{16} + \dots + 2.13386u - 1.52465 \\ -0.551894u^{17} - 0.465700u^{16} + \dots + 1.41941u - 1.15527 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{2646884}{171821}u^{17} - \frac{7468939}{343642}u^{16} + \dots + \frac{54604739}{343642}u - \frac{10027319}{171821}u^{16} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$u^{18} - 11u^{17} + \dots + 160u - 32$
c_2, c_3, c_5 c_{11}	$u^{18} - u^{17} + \dots - 3u^3 + 1$
c_4, c_7, c_8 c_{12}	$u^{18} - u^{17} + \dots - 6u - 1$
c_6, c_9, c_{10}	$u^{18} + 10u^{17} + \dots - 16u + 16$

Crossings	Riley Polynomials at each crossing
c_1	$y^{18} - 7y^{17} + \dots + 3584y + 1024$
c_2, c_3, c_5 c_{11}	$y^{18} - 3y^{17} + \dots - 14y^2 + 1$
c_4, c_7, c_8 c_{12}	$y^{18} - 17y^{17} + \dots - 28y + 1$
c_6, c_9, c_{10}	$y^{18} - 8y^{17} + \dots - 10880y + 256$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.191738 + 1.076920I		
a = 0.164769 - 0.216172I	-2.66808 - 4.00314I	-9.75217 + 7.89932I
b = -0.739470 - 0.526977I		
u = 0.191738 - 1.076920I		
a = 0.164769 + 0.216172I	-2.66808 + 4.00314I	-9.75217 - 7.89932I
b = -0.739470 + 0.526977I		
u = 0.856890		
a = 1.85099	-3.70252	0.540670
b = -0.508119		
u = -1.268520 + 0.068652I		
a = -0.20738 + 1.47520I	6.81521 - 6.56774I	-2.02682 + 4.35412I
b = -1.13159 - 0.92777I		
u = -1.268520 - 0.068652I		
a = -0.20738 - 1.47520I	6.81521 + 6.56774I	-2.02682 - 4.35412I
b = -1.13159 + 0.92777I		
u = 0.099241 + 0.636465I		
a = 0.938741 + 0.442143I	-0.56691 - 1.59781I	-4.88738 + 2.87220I
b = 0.365623 + 0.498306I		
u = 0.099241 - 0.636465I		
a = 0.938741 - 0.442143I	-0.56691 + 1.59781I	-4.88738 - 2.87220I
b = 0.365623 - 0.498306I		
u = 1.384510 + 0.061181I		
a = -0.025694 + 1.290750I	9.74101 + 0.20067I	0.876554 + 0.056243I
b = -0.757872 - 1.174240I		
u = 1.384510 - 0.061181I	0 = 44.04 0 0 0 0 0 0 = 7	
a = -0.025694 - 1.290750I	9.74101 - 0.20067I	0.876554 - 0.056243I
b = -0.757872 + 1.174240I		
u = -0.598117	0.04940	17 0000
a = 2.91842	-6.04349	-17.8030
b = 0.874375		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.36280 + 0.56912I		
a = 0.123467 - 0.674233I	2.28034 - 2.61810I	-1.94443 - 3.90509I
b = -0.019982 + 0.551107I		
u = -1.36280 - 0.56912I		
a = 0.123467 + 0.674233I	2.28034 + 2.61810I	-1.94443 + 3.90509I
b = -0.019982 - 0.551107I		
u = -1.53449 + 0.53389I		
a = -0.200699 - 1.249540I	6.5797 - 16.1278I	-3.35911 + 8.29974I
b = 1.26204 + 1.00770I		
u = -1.53449 - 0.53389I		
a = -0.200699 + 1.249540I	6.5797 + 16.1278I	-3.35911 - 8.29974I
b = 1.26204 - 1.00770I		
u = 1.56750 + 0.44100I		
a = -0.207302 + 1.123790I	9.08495 + 8.48084I	-0.38289 - 5.34256I
b = 0.815416 - 1.132280I		
u = 1.56750 - 0.44100I		
a = -0.207302 - 1.123790I	9.08495 - 8.48084I	-0.38289 + 5.34256I
b = 0.815416 + 1.132280I		
u = 0.348681		
a = -0.719922	-10.4921	19.6160
b = -1.63240		
u = 0.238190		
a = 1.77872	-1.17090	-9.40150
b = 0.677803		

II.
$$I_2^u = \langle -3.99 \times 10^{90} u^{43} + 1.46 \times 10^{90} u^{42} + \dots + 3.77 \times 10^{90} b + 3.67 \times 10^{91}, \ 3.76 \times 10^{91} u^{43} - 6.45 \times 10^{90} u^{42} + \dots + 5.27 \times 10^{90} a - 6.67 \times 10^{92}, \ 2u^{44} - 29u^{42} + \dots - 88u - 7 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -7.13643u^{43} + 1.22276u^{42} + \dots + 1065.91u + 126.550 \\ 1.05830u^{43} - 0.387000u^{42} + \dots - 112.988u - 9.74262 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.806957u^{43} - 0.114485u^{42} + \dots - 142.855u - 24.2057 \\ -0.107399u^{43} - 0.0284322u^{42} + \dots + 28.3132u + 2.84251 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 1.23457u^{43} - 0.400196u^{42} + \dots + 1029.07u + 121.406 \\ 1.23457u^{43} - 0.400196u^{42} + \dots - 145.917u - 14.5004 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -6.07814u^{43} + 0.835762u^{42} + \dots + 952.920u + 116.808 \\ 1.05830u^{43} - 0.387000u^{42} + \dots - 112.988u - 9.74262 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.21508u^{43} + 0.317864u^{42} + \dots + 169.292u + 27.9292 \\ 0.208421u^{43} - 0.0153784u^{42} + \dots - 37.9937u - 4.00886 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.21508u^{43} + 0.317864u^{42} + \dots + 169.292u + 27.9292 \\ 0.326622u^{43} - 0.0913778u^{42} + \dots - 47.7269u - 5.12139 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.738865u^{43} - 0.0945014u^{42} + \dots - 100.491u - 22.2900 \\ -0.0713589u^{43} - 0.0325985u^{42} + \dots + 7.91982u + 0.387737 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.57557u^{43} + 0.540452u^{42} + \dots + 85.6799u + 8.24586 \\ 0.457009u^{43} - 0.0873987u^{42} + \dots - 54.0595u - 7.38741 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-1.66800u^{43} + 0.434075u^{42} + \cdots + 217.610u + 37.4599$

Crossings	u-Polynomials at each crossing
c_1	$(u^{22} + 7u^{21} + \dots - 6u - 2)^2$
c_2, c_3, c_5 c_{11}	$2(2u^{44} - u^{42} + \dots - 24u + 1)$
c_4, c_7, c_8 c_{12}	$2(2u^{44} - 29u^{42} + \dots + 88u - 7)$
c_6, c_9, c_{10}	$(u^{22} - 4u^{21} + \dots + 2u - 2)^2$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{22} + y^{21} + \dots + 48y + 4)^2$
c_2, c_3, c_5 c_{11}	$4(4y^{44} - 4y^{43} + \dots - 214y + 1)$
c_4, c_7, c_8 c_{12}	$4(4y^{44} - 116y^{43} + \dots - 4454y + 49)$
c_6, c_9, c_{10}	$(y^{22} - 8y^{21} + \dots - 40y + 4)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00768		
a = 0.540189	-3.29588	-2.01200
b = 1.30858		
u = -0.959621 + 0.038327I		
a = 0.51386 + 2.68354I	0.186770 + 0.086750I	-6.26765 + 6.36021I
b = -0.56442 - 2.02765I		
u = -0.959621 - 0.038327I		
a = 0.51386 - 2.68354I	0.186770 - 0.086750I	-6.26765 - 6.36021I
b = -0.56442 + 2.02765I		
u = 0.188755 + 0.896184I		
a = 0.385957 - 0.105829I	-1.36349 - 1.79115I	-8.68124 + 6.28577I
b = 0.738143 + 0.476023I		
u = 0.188755 - 0.896184I		
a = 0.385957 + 0.105829I	-1.36349 + 1.79115I	-8.68124 - 6.28577I
b = 0.738143 - 0.476023I		
u = 1.091200 + 0.395456I		
a = 0.347759 + 0.568798I	-0.580514 + 1.104780I	-4.00000 - 5.65044I
b = 0.993160 - 0.453337I		
u = 1.091200 - 0.395456I		
a = 0.347759 - 0.568798I	-0.580514 - 1.104780I	-4.00000 + 5.65044I
b = 0.993160 + 0.453337I		
u = -1.065490 + 0.625029I		
a = -0.376962 + 1.132670I	2.05974 - 7.04859I	0
b = -0.503539 - 0.055689I		
u = -1.065490 - 0.625029I		
a = -0.376962 - 1.132670I	2.05974 + 7.04859I	0
b = -0.503539 + 0.055689I		
u = -1.262810 + 0.021566I		
a = -0.086610 + 1.327570I	7.73724 - 0.72368I	0
b = 1.26751 - 0.99085I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.262810 - 0.021566I		
a = -0.086610 - 1.327570I	7.73724 + 0.72368I	0
b = 1.26751 + 0.99085I		
u = 0.693940 + 0.232041I		
a = 0.33396 - 1.93120I	-1.36349 + 1.79115I	-8.68124 - 6.28577I
b = -0.287053 + 0.030616I		
u = 0.693940 - 0.232041I		
a = 0.33396 + 1.93120I	-1.36349 - 1.79115I	-8.68124 + 6.28577I
b = -0.287053 - 0.030616I		
u = -1.32704		
a = 1.09776	-3.29588	0
b = -0.0760743		
u = 1.221150 + 0.530023I		
a = 0.017428 + 1.394390I	0.55910 + 9.58499I	0
b = 1.08731 - 1.10905I		
u = 1.221150 - 0.530023I		
a = 0.017428 - 1.394390I	0.55910 - 9.58499I	0
b = 1.08731 + 1.10905I		
u = -1.212660 + 0.590602I		
a = 0.240876 - 0.883836I	1.85821 - 2.76391I	0
b = 0.312263 + 0.853014I		
u = -1.212660 - 0.590602I		
a = 0.240876 + 0.883836I	1.85821 + 2.76391I	0
b = 0.312263 - 0.853014I		
u = 1.343550 + 0.163045I		
a = -0.18872 - 1.40724I	8.21251 + 7.73197I	0
b = 0.75925 + 1.39471I		
u = 1.343550 - 0.163045I		
a = -0.18872 + 1.40724I	8.21251 - 7.73197I	0
b = 0.75925 - 1.39471I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.884535 + 1.031500I		
a = 0.227336 - 0.088919I	1.85821 - 2.76391I	0
b = -0.457268 - 0.093641I		
u = -0.884535 - 1.031500I		
a = 0.227336 + 0.088919I	1.85821 + 2.76391I	0
b = -0.457268 + 0.093641I		
u = 1.271690 + 0.520977I		
a = -0.16546 - 1.41673I	2.05974 + 7.04859I	0
b = -0.930159 + 0.836061I		
u = 1.271690 - 0.520977I		
a = -0.16546 + 1.41673I	2.05974 - 7.04859I	0
b = -0.930159 - 0.836061I		
u = -0.613961 + 0.057476I		
a = -0.959684 + 0.038453I	-0.580514 - 1.104780I	-5.89293 + 5.65044I
b = 1.217830 - 0.517219I		
u = -0.613961 - 0.057476I		
a = -0.959684 - 0.038453I	-0.580514 + 1.104780I	-5.89293 - 5.65044I
b = 1.217830 + 0.517219I		
u = 1.346020 + 0.430624I		
a = -0.093856 - 1.127210I	3.25581 + 6.25880I	0
b = -1.105420 + 0.843659I		
u = 1.346020 - 0.430624I		
a = -0.093856 + 1.127210I	3.25581 - 6.25880I	0
b = -1.105420 - 0.843659I		
u = 0.45146 + 1.34717I		
a = -0.0697853 - 0.0952976I	0.55910 + 9.58499I	0
b = -0.924940 + 0.532455I		
u = 0.45146 - 1.34717I		
a = -0.0697853 + 0.0952976I	0.55910 - 9.58499I	0
b = -0.924940 - 0.532455I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.42044 + 0.15034I		
a = 0.185356 + 0.976083I	4.35834 - 0.41728I	0
b = -0.751350 - 0.962354I		
u = -1.42044 - 0.15034I		
a = 0.185356 - 0.976083I	4.35834 + 0.41728I	0
b = -0.751350 + 0.962354I		
u = 1.46909		
a = -0.934519	-6.50325	0
b = 0.929346		
u = 1.62269 + 0.27689I		
a = 0.443344 - 1.014190I	7.73724 + 0.72368I	0
b = -0.843009 + 1.064050I		
u = 1.62269 - 0.27689I		
a = 0.443344 + 1.014190I	7.73724 - 0.72368I	0
b = -0.843009 - 1.064050I		
u = -1.61575 + 0.49113I		
a = 0.250844 + 1.051830I	8.21251 - 7.73197I	0
b = -1.22355 - 0.90329I		
u = -1.61575 - 0.49113I		
a = 0.250844 - 1.051830I	8.21251 + 7.73197I	0
b = -1.22355 + 0.90329I		
u = -0.223680 + 0.077265I		
a = 5.50128 + 1.65439I	4.35834 + 0.41728I	1.220508 + 0.567857I
b = -0.264264 - 0.788553I		
u = -0.223680 - 0.077265I		
a = 5.50128 - 1.65439I	4.35834 - 0.41728I	1.220508 - 0.567857I
b = -0.264264 + 0.788553I		
u = 0.224841		
a = 5.44634	-6.50325	-14.7860
b = -1.36290		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.179416 + 0.100194I		
a = -6.69182 - 0.26567I	3.25581 - 6.25880I	-1.71216 + 4.44144I
b = 0.206450 + 0.863665I		
u = -0.179416 - 0.100194I		
a = -6.69182 + 0.26567I	3.25581 + 6.25880I	-1.71216 - 4.44144I
b = 0.206450 - 0.863665I		
u = -0.47940 + 2.17394I		
a = 0.181439 + 0.022852I	0.186770 - 0.086750I	0
b = 0.873580 + 0.079126I		
u = -0.47940 - 2.17394I		
a = 0.181439 - 0.022852I	0.186770 + 0.086750I	0
b = 0.873580 - 0.079126I		

III.
$$I_3^u = \langle -u^5 + u^4 + 2u^3 - 3u^2 + 2b - 4u + 4, \ -u^5 + 2u^4 + u^3 - 3u^2 + 2a - 3u + 6, \ u^6 - 2u^5 - u^4 + 4u^3 + 2u^2 - 6u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{5} - u^{4} + \dots + \frac{3}{2}u - 3 \\ \frac{1}{2}u^{5} - \frac{1}{2}u^{4} - u^{3} + \frac{3}{2}u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} + 2u^{4} + u^{3} - 4u^{2} - 2u + 6 \\ -\frac{1}{2}u^{5} + u^{4} + \dots - \frac{3}{2}u + 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{5} - u^{4} + \dots + \frac{3}{2}u - 3 \\ \frac{1}{2}u^{5} - \frac{3}{2}u^{4} - u^{3} + \frac{5}{2}u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - \frac{3}{2}u^{4} - \frac{3}{2}u^{3} + 3u^{2} + \frac{7}{2}u - 5 \\ \frac{1}{2}u^{5} - \frac{1}{2}u^{4} - u^{3} + \frac{3}{2}u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{5} - 2u^{4} - \frac{3}{2}u^{3} + \frac{9}{2}u^{2} + 3u - \frac{13}{2} \\ -\frac{1}{2}u^{4} + \frac{3}{2}u^{2} - \frac{1}{2}u - \frac{5}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} - 2u^{4} - \frac{3}{2}u^{3} + \frac{9}{2}u^{2} + 3u - \frac{13}{2} \\ \frac{1}{2}u^{5} - u^{4} - u^{3} + 2u^{2} + \frac{1}{2}u - \frac{5}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{3}{2}u^{5} + \frac{5}{2}u^{4} + 2u^{3} - \frac{9}{2}u^{2} - 4u + 7 \\ -\frac{1}{2}u^{3} - \frac{1}{2}u^{2} + u + \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{3} - \frac{1}{2}u^{2} + u + \frac{1}{2} \\ \frac{1}{2}u^{5} + \frac{1}{2}u^{4} - \frac{3}{2}u^{3} - u^{2} + \frac{1}{2} \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{17}{2}u^5 - 16u^4 - 12u^3 + 27u^2 + \frac{55}{2}u - \frac{81}{2}$$

Crossings	u-Polynomials at each crossing
c_1	$u^6 - u^5 + 3u^3 - 5u^2 + 4u - 1$
c_2, c_{11}	$u^6 + 2u^5 - 3u^3 - 4u^2 - 2u - 1$
c_3,c_5	$u^6 - 2u^5 + 3u^3 - 4u^2 + 2u - 1$
c_4, c_7	$u^6 + 2u^5 - u^4 - 4u^3 + 2u^2 + 6u + 1$
c_6	$u^6 + 3u^5 + 3u^4 - 2u^3 - 5u^2 - 2u + 1$
c_8, c_{12}	$u^6 - 2u^5 - u^4 + 4u^3 + 2u^2 - 6u + 1$
c_9,c_{10}	$u^6 - 3u^5 + 3u^4 + 2u^3 - 5u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^6 - y^5 - 4y^4 - 3y^3 + y^2 - 6y + 1$
c_2, c_3, c_5 c_{11}	$y^6 - 4y^5 + 4y^4 - 3y^3 + 4y^2 + 4y + 1$
c_4, c_7, c_8 c_{12}	$y^6 - 6y^5 + 21y^4 - 42y^3 + 50y^2 - 32y + 1$
c_6, c_9, c_{10}	$y^6 - 3y^5 + 11y^4 - 20y^3 + 23y^2 - 14y + 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.123340 + 0.626153I		
a = -0.656989 + 1.205750I	2.95967 - 8.51727I	-2.49626 + 9.75541I
b = -0.781728 - 0.767267I		
u = -1.123340 - 0.626153I		
a = -0.656989 - 1.205750I	2.95967 + 8.51727I	-2.49626 - 9.75541I
b = -0.781728 + 0.767267I		
u = 1.31922		
a = -0.589573	-0.237758	0.719370
b = 1.43649		
u = 1.37304 + 0.80106I		
a = -0.206939 - 0.540853I	2.47933 + 2.98689I	8.4923 - 12.8795I
b = -0.139351 + 0.586947I		
u = 1.37304 - 0.80106I		
a = -0.206939 + 0.540853I	2.47933 - 2.98689I	8.4923 + 12.8795I
b = -0.139351 - 0.586947I		
u = 0.181369		
a = -2.68257	-10.6403	-34.7110
b = -1.59433		

IV.
$$I_4^u = \langle b-1, a+4u-6, 2u^2-4u+1 \rangle$$

a) Arc colorings
$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -2u + \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -4u + 6 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -4u + 9 \\ -4u + \frac{5}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{5}{2}u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -5u + 6 \\ \frac{5}{2}u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -4u + 7 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 4u - 6 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 4u - 6 \\ -2u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -4u + 8 \\ -3u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -4u + 6 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing
c_1, c_6, c_9 c_{10}	u^2-2
c_2, c_7	$2(2u^2 + 4u + 1)$
c_3, c_8	$(u+1)^2$
c_4, c_{11}	$(u-1)^2$
c_5, c_{12}	$2(2u^2 - 4u + 1)$

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_9 c_{10}	$(y-2)^2$
c_2, c_5, c_7 c_{12}	$4(4y^2 - 12y + 1)$
c_3, c_4, c_8 c_{11}	$(y-1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.292893		
a = 4.82843	-4.93480	-8.00000
b = 1.00000		
u = 1.70711		
a = -0.828427	-4.93480	-8.00000
b = 1.00000		

V.
$$I_5^u = \langle b-1, \ a^2-2, \ u+1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a+3 \\ a \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a+1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a+1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -a \\ -1 \end{pmatrix}$$

- $a_{10} = \begin{pmatrix} -a \\ a-1 \end{pmatrix}$
- $a_6 = \begin{pmatrix} -2 \\ -a+1 \end{pmatrix}$
- $a_9 = \begin{pmatrix} a \\ 1 \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing
c_1	$u^2 - 2u - 1$
c_2, c_4, c_7 c_{11}	$(u-1)^2$
c_3, c_5, c_8 c_{12}	$(u+1)^2$
c_6, c_9, c_{10}	u^2-2

Crossings	Riley Polynomials at each crossing
c_1	$y^2 - 6y + 1$
$c_2, c_3, c_4 \\ c_5, c_7, c_8 \\ c_{11}, c_{12}$	$(y-1)^2$
c_6, c_9, c_{10}	$(y-2)^2$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.41421	-4.93480	-8.00000
b = 1.00000		
u = -1.00000		
a = -1.41421	-4.93480	-8.00000
b = 1.00000		

VI.
$$I_6^u = \langle b - a + 2, \ 2a^2 - 4a + 1, \ u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ a - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2a \\ -2a + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2a - 2 \\ a - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2a - 2 \\ a - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2a - 2 \\ 2a - \frac{7}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2a - 2 \\ -1.5 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2a + 2 \\ -2a + \frac{7}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2a + 2 \\ -2a + \frac{7}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing
c_1, c_6, c_9 c_{10}	u^2-2
c_2, c_7	$(u-1)^2$
c_3, c_8	$2(2u^2 - 4u + 1)$
c_4, c_{11}	$2(2u^2 + 4u + 1)$
c_5, c_{12}	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_9 c_{10}	$(y-2)^2$
c_2, c_5, c_7 c_{12}	$(y-1)^2$
c_3, c_4, c_8 c_{11}	$4(4y^2 - 12y + 1)$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.292893	-4.93480	-8.00000
b = -1.70711		
u = -1.00000		
a = 1.70711	-4.93480	-8.00000
b = -0.292893		

VII.
$$I_7^u = \langle b-1,\ a,\ u-1 \rangle$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_8 \\ c_{11}, c_{12}$	u-1
c_3, c_4, c_5 c_7	u+1
c_6, c_9, c_{10}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_7 c_8, c_{11}, c_{12}	y-1
c_6, c_9, c_{10}	y

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	0	0
b = 1.00000		

VIII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u-1)(u^{2}-2)^{2}(u^{2}-2u-1)(u^{6}-u^{5}+3u^{3}-5u^{2}+4u-1) $ $ \cdot (u^{18}-11u^{17}+\cdots+160u-32)(u^{22}+7u^{21}+\cdots-6u-2)^{2} $
c_2, c_{11}	$4(u-1)^{5}(2u^{2}+4u+1)(u^{6}+2u^{5}-3u^{3}-4u^{2}-2u-1)$ $\cdot (u^{18}-u^{17}+\cdots-3u^{3}+1)(2u^{44}-u^{42}+\cdots-24u+1)$
c_3,c_5	$4(u+1)^{5}(2u^{2}-4u+1)(u^{6}-2u^{5}+3u^{3}-4u^{2}+2u-1)$ $\cdot (u^{18}-u^{17}+\cdots-3u^{3}+1)(2u^{44}-u^{42}+\cdots-24u+1)$
c_4, c_7	$4(u-1)^{4}(u+1)(2u^{2}+4u+1)(u^{6}+2u^{5}+\cdots+6u+1)$ $\cdot (u^{18}-u^{17}+\cdots-6u-1)(2u^{44}-29u^{42}+\cdots+88u-7)$
c_6	$u(u^{2}-2)^{3}(u^{6}+3u^{5}+3u^{4}-2u^{3}-5u^{2}-2u+1)$ $\cdot (u^{18}+10u^{17}+\cdots-16u+16)(u^{22}-4u^{21}+\cdots+2u-2)^{2}$
c_8, c_{12}	$4(u-1)(u+1)^{4}(2u^{2}-4u+1)(u^{6}-2u^{5}+\cdots-6u+1)$ $\cdot (u^{18}-u^{17}+\cdots-6u-1)(2u^{44}-29u^{42}+\cdots+88u-7)$
c_9, c_{10}	$u(u^{2}-2)^{3}(u^{6}-3u^{5}+3u^{4}+2u^{3}-5u^{2}+2u+1)$ $\cdot (u^{18}+10u^{17}+\cdots-16u+16)(u^{22}-4u^{21}+\cdots+2u-2)^{2}$

IX. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-2)^{4}(y-1)(y^{2}-6y+1)(y^{6}-y^{5}-4y^{4}-3y^{3}+y^{2}-6y+1)$ $\cdot (y^{18}-7y^{17}+\cdots+3584y+1024)(y^{22}+y^{21}+\cdots+48y+4)^{2}$
c_2, c_3, c_5 c_{11}	$16(y-1)^{5}(4y^{2}-12y+1)(y^{6}-4y^{5}+4y^{4}-3y^{3}+4y^{2}+4y+1)$ $\cdot (y^{18}-3y^{17}+\cdots -14y^{2}+1)(4y^{44}-4y^{43}+\cdots -214y+1)$
c_4, c_7, c_8 c_{12}	$16(y-1)^{5}(4y^{2}-12y+1)(y^{6}-6y^{5}+\cdots-32y+1)$ $\cdot (y^{18}-17y^{17}+\cdots-28y+1)(4y^{44}-116y^{43}+\cdots-4454y+49)$
c_6, c_9, c_{10}	$y(y-2)^{6}(y^{6}-3y^{5}+11y^{4}-20y^{3}+23y^{2}-14y+1)$ $\cdot (y^{18}-8y^{17}+\cdots-10880y+256)(y^{22}-8y^{21}+\cdots-40y+4)^{2}$