Resumo Prova Organizações de Computadores:

Arquitetura de Von Neumann - Conceito

Permite que programas e dados sejam armazenados na mesma memória. Facilitou que uma mesma máquina execute diferentes programas.

Propôs que (PROGRAMA ARMAZENADO):

- As instruções (programas) são codificadas em binário (0 e 1) e armazenadas na memória, junto com os dados.
- Ao processarem o programa, o computador busca as instruções diretamente da memória.

MEMÓRIA: Armazena dados e programas, temporariamente ou permanentemente.

Unidade Lógica e Aritmética (ULA):

Executa operações matemáticas (soma, subtração) e lógicas (AND, OR, etc.).

Unidade de Controle (UC):

Controla todas as operações: qual dado será buscado, qual operação a ULA irá executar e quando interagir com dispositivos de entrada/saída.

Registrador:

Memória interna à CPU, onde os dados que foram buscados na memória são armazenados. Armazena resultados intermediários rapidamente.

Unidades de Entrada e Saída (E/S):

Permitem a comunicação do computador com o exterior.

Fluxo de Execução de um Programa

1. Busca da Instrução:

A Unidade de Controle (UC) solicita à memória a próxima instrução.

2. Decodificação:

A UC recebe e **decodifica** a instrução, identificando qual operação realizar.

3. Execução:

A UC envia a instrução para a **ULA** executar.

4. Busca de Dados:

Se necessário, a UC solicita dados à memória ou aos dispositivos de entrada.

5. **Saída:**

Caso necessário, a UC envia o resultado para um dispositivo de saída.

Gargalo de Von Neumann:

Diz respeito ao fato do acesso à memória ser o principal fator limitante no desempenho de um computador que segue a arquitetura de Von Neumann,pois os dados e instruções usam o mesmo barramento para se comunicar com a CPU.

Lei de Moore:

A velocidade de um chip de computador dobraria a cada 18 meses mantendo o mesmo custo.

Arquitetura de Harvard:

Há 2 memórias:

- Memória de Instruções: onde ficam os programas.
- Memória de Dados: onde ficam os dados manipulados.

Tem barramentos separados para dados e instruções

Unidade Central de Processamento (UCP):

A UCP, também conhecida como CPU, é o "cérebro" do computador.

Ciclo de Execução da CPU (Ciclo de Máquina):

- Busca (Fetch): A CPU busca a próxima instrução na memória.
- Decodificação (Decode): A CPU interpreta a instrução, identificando a operação a ser realizada.
- Execução (Execute): A CPU realiza a operação, que pode ser um cálculo, movimentação de dados, ou controle.

Principais Componentes da UCP e Funções:

- ULA (Unidade Lógica e Aritmética): Realiza operações matemáticas e lógicas.
- Unidade de Controle: Gerencia e coordena as operações da CPU e dos demais componentes.
- Registradores: Pequenas memórias internas usadas para armazenar dados temporários e resultados intermediários.
- **Barramentos:** Canais que fazem a comunicação entre CPU, memória e dispositivos.

Conjunto de Instruções: É o conjunto de comandos que o processador entende e executa, escritos em linguagem de máguina (binário).

Instrução de Máquina: é a unidade básica de instruções que um computador pode executar diretamente

Tipos de Registradores

- Acumulador: Armazena resultados temporários de operações.
- Registradores de Dados: Guardam dados usados nas operações.
- Registradores de Endereço: Guardam endereços da memória a serem acessados.

- Contador de Programa (PC): Guarda o endereço da próxima instrução a ser executada.
- Registrador de Instrução (IR): Guarda a instrução atual enquanto é decodificada e executada.
- **Registrador de Status (Flags):** Indica o estado da CPU (se houve erro, resultado zero, negativo, overflow, etc.).

Unidade de Controle : Microprogramada vs. Hardwired

Microprogramada:

Lógica feita em software (microcódigo), armazenada numa memória de controle. Baseada em uma memória de controle (ROM ou RAM) que contém microinstruções.

Mais flexível, fácil de atualizar, mas mais lenta.

Hardwired:

Lógica feita em hardware (circuitos físicos). Baseada em portas lógicas, flip-flops e outros componentes de hardware fixo.

Mais rápida, porém difícil de modificar.

Microprogramada:

Para arquiteturas **CISC**, com muitas instruções complexas.

Hardwired:

Para arquiteturas **RISC**, que priorizam velocidade.

UNIDADE DE CONTROLE: FUNCIONAMENTO BÁSICO:

- Recebe uma instrução em linguagem de máquina.
- Traduz essa instrução em microoperações.
- Gera os sinais de controle para execução.

CPU: Etapas principais do ciclo de instrução

- Busca de Instrução (BI)
- Decodificação da Instrução (DI)
- Cálculo de Operandos (CO)
- Busca de Operandos (BO)
- Execução da Instrução (EI)
- Escrita de Operando (EO)

Gerenciamento da CPU:

- A CPU gerencia o processamento, transferência, armazenamento e controle de dados e recursos do computador.
- O Sistema Operacional (SO) gerencia esses recursos.
- O SO gerencia os processos a serem executados e colabora no gerenciamento de energia da CPU.
- First Come First Served (FCFS): É um algoritmo de escalonamento de processos que prioriza a execução do primeiro processo que chegar;
- Shorter Job First (SJF): É um algoritmo de escalonamento de processos que prioriza o processo com o menor tempo de execução;
- Multiple Level Queue (MLQ): É um algoritmo de agendamento de CPU que organiza processos em diferentes níveis de prioridade.
- **Power-Saving State Control**: É o processo de gerenciar o consumo de energia de um sistema ou dispositivo, ativando o baixo consumo de energia quando não está sendo utilizado.
- Dynamic Voltage Scalling: É uma técnica de ajustar a voltagem fornecida a um processador de acordo com suas necessidades de processamento, buscando economizar energia.

Unidade Lógica e Aritmética:

A ULA (Unidade Lógica e Aritmética) é um circuito capaz de realizar operações.

A ULA realiza operações lógicas e aritméticas sobre valores inteiros. Por isso, também é conhecida como unidade de inteiros.

As operações executadas em uma ULA podem ser operações aritméticas e lógicas.

Os valores inteiros e reais representados nas máquinas atuais são em complemento 2.

Tamanho da palavra:

É o número de bits que um processador consegue manipular de uma vez só em uma operação.

Pipeline:

Pipeline é uma técnica usada em processadores para executar(sobrepor) várias instruções ao mesmo tempo, dividindo a execução em etapas.

RISC X CISC:

Linguagens de programação evoluíram, aumentando a complexidade das instruções e criando um "gap semântico" entre elas e o hardware.

GAP SEMÂNTICO: Refere-se à diferença ou distância entre as instruções usadas em linguagens de programação de alto nível e as instruções de máquina de baixo nível que o hardware do computador realmente entende.

CISC (Complex Instruction Set Computer) surgiu para reduzir esse gap com instruções mais complexas.

CISC mostrou-se ineficiente, pois a maioria dos comandos de baixo nível eram simples e compiladores não otimizavam instruções complexas.

RISC (Reduced Instruction Set Computer) prioriza simplicidade e velocidade com menos instruções e modos de endereçamento.

- **RISC** usa LOAD/STORE para acessar a memória, operando principalmente em registradores.
- **RISC** utiliza "pipelining" para processar instruções mais rápido, com atenção às dependências de dados.
- RISC tem unidade de controle por hardware para execução direta de instruções, aumentando a velocidade.
- **RISC** usa instruções de formato fixo e um conjunto reduzido de instruções e endereçamentos para simplificar o decodificador.
- **RISC** emprega múltiplos registradores para reduzir acessos à memória e requer compiladores complexos para otimizar o código.