DAC INTERFACING

Digital-to-analog(DAC) converter

- Used to convert digital pulses to analog signals
- Agenda Interfacing DAC with 8051 microcontroller
- Resolution function of no. of binary inputs
 - ➤ Common ones 8, 10 and 12 bits
 - More the bits, more the precision
- MC 1408 DAC used

MC 1408

Figure 13-18. 8051 Connection to DAC808

Converting I_{out} to voltage in DAC

- Ideally I_{out} connected directly to resistor
- Real life situations input resistance of the load affects output voltage
- Avoided by isolating I_{ref} by connecting it to an op-amp such as 741(8-pin dual in-line) with $R_f = 5 \ k\Omega$ for the feedback resistor.

Features

- 8-bit input DAC
- Total current I_{out} is a function of inputs D₇
 through D₀
- $I_{\text{out}} = I_{\text{ref}} \left(\frac{D7}{2} + \frac{D6}{4} + \frac{D5}{8} + ... + \frac{D0}{256} \right)$
- I_{ref} = 2mA → Maximum output current is
 1.99mA

INTERFACING..

Saw tooth Wave Form

MOV DPTR, #FFC8

MOV A,#00

LOOP: MOVX @DPTR,A

INC A

SJMP LOOP

Triangular Wave Form

MOV DPTR, #FFC8

START: MOV A, #00

LOOP1: MOV @DPTR,A

INC A

JNZ LOOP1

MOV A, #FF

LOOP2: MOVX @DPTR,A

DEC A

JNZ LOOP2

LJMP START

Square Wave

START: MOV DPTR,#FFC8

MOV A,#00

MOVX @DPTR,A

LCALL DELAY

MOV A,#FF

MOVX @DPTR,A

LCALL DELAY

LJMP START

DELAY MOV R1, #05

LOOP MOV R2, #FF

HERE: DJNZ R2, HERE

DJNZ R1, LOOP

RET

Staircase Wave Form

MOV DPTR, #FFC8

START: MOV A, #00

MOV @DPTR,A

ACALL DELAY

RPT: ADD A,#33 ; H

; Hex for 255/5 ~ 51

MOV @DPTR,A

ACALL DELAY

CJNE A, #FE, RPT

SJMP START

Sinusoidal Wave Form

- Perfect sinusoidal wave not possible in DAC
- Can produce a pseudo-sine wave similar to PCM codes
- $V_{out} = 5V + (5 \times \sin \theta)$
- Range 0 to 10 V (Full scale output of DAC ~ 10V)
- V_{out} for various angles (in intervals of 30) are calculated and noted down in a lookup table.

Lookup Table

Angle θ (in degrees)	sin θ	V _{out} (Voltage Magnitude) 5V + (5 x sinθ)	Values sent to DAC (decimal) (Voltage Mag. x 25.6)
0	0	5	128
30	0.5	7.5	192
60	0.866	9.33	238
90	1.0	10	255
120	0.866	9.33	238
150	0.5	7.5	192
180	0	5	128
210	-0.5	2.5	64
240	-0.866	0.669	17
270	-1.0	0	0
300	-0.866	0.669	17
330	-0.5	2.5	64
360	0	5	128

Code for Sine Wave

Start: MOV DPTR,#4500

MOV R0,#04H

JO: MOVX A,@DPTR

PUSH DPH PUSH DPL

MOV DPTR,#FFC8

MOV R2,#04

MOV R1,#0F

DLY1: MOV R3,#0F DLY: DJNZ R3,DLY

DJNZ R1,DLY1

DJNZ R2,DLY1

MOVX @DPTR,A

POP DPL
POP DPH
INC DPTR
DJNZ R0,JO
SJMP START

Lookup table values:

4500: Hexadecimal values (in order)

for the values calculated in the lookup

table

Output Waveform

SENSOR INTERFACING AND SIGNAL CONDITIONING

Temperature Sensors

- Transducers convert physical data such as temperature, light intensity, flow and speed to electrical signals.
- Output voltage, current, resistance or capacitance
- LM 34 series & LM 35 series

Temperature(C)	T _f (K ohms)	
0	29.490	
25	10.000	
50	3.893	
75	1.700	
100	0.817	

Signal Conditioning

- Signal conditioning is a widely used term in the world of data acquisition.
 - It is the conversion of the signals (voltage, current, charge, capacitance, and resistance) produced by transducers to voltage, which is sent to the input of an A to D converter
- Signal conditioning can be a current-to voltage conversion or a signal amplification.
 - ❖ The thermistor changes resistance with temperature, while the change of resistance must be translated into voltage in order to be of any use to an ADC

- •8 bit resolution
- •10mV for every degree of temp. change
- •V_{out} for full scale output is 2.56V
- $V_{ref} = 2.56V$

8051 Connection to ADC804 and Temperature Sensor

Figure 13-21. 8051 Connection to ADC0848 and Temperature Sensor

EBook Preview

