TRIGONOMETRY

Chapter 03

SECTOR CIRCULAR

HELICO - MOTIVACIÓN

No tienes que ser un genio, un visionario o graduado para tener éxito. Todo lo que necesitas es perspectiva y un sueño

MICHAEL DELL

SECTOR CIRCULAR - LONGITUD DE ARCO

Fórmula: $L = \theta . R$ Sector Circular AOB (< AOB): Es la región circular limitada por dos radios y el arco correspondiente.

Elementos:

R: Longitud del radio

L: Longitud del arco AB

θ: Número de radianes de la medida del ángulo central.

 $0 < \theta \le 2\pi$

PROPIEDADES

FACTORES DE CONVERSIÓN:

TRIGONOMETRÍA SACO OLIVEROS

1) En un sector circular, el ángulo central mide 30° y su radio mide 18 m.- Calcule su longitud de arco.

RESOLUCIÓN

Datos:

$$R = 18 \text{ m}$$

$$\theta$$
 rad = $30^{\circ} < > 30^{\circ} \left(\frac{\pi \text{ rad}}{180^{\circ}}\right) = \frac{\pi}{6}$ rad

$$L = \theta R$$

$$L = \frac{\pi}{6} (18 \text{ m})$$

$$\therefore$$
 L = 3π m

2) En un sector circular, su radio mide 24 m y su longitud de arco mide $8\pi\,m$.- Determine la medida de su ángulo central.

RESOLUCIÓN

Datos:

$$R = 24 \text{ m}$$

$$L = 8\pi m$$

$$\theta R = L$$

$$\theta(24 \text{ pr}) = 8\pi \text{ pr}$$

$$\theta = \frac{8\pi}{24}$$

$$\therefore$$
 m $\not = \theta$ rad = $\frac{\pi}{3}$ rad

3) Del gráfico, calcule el valor de L.

RESOLUCIÓN

Se observa que:

$$L_1 = 4 \ m \; ; \; L_2 = L \ R_1 = 2 \ m \; ; \; R_2 = 7 \ m$$

Propiedad:
$$\frac{L_1}{L_2} = \frac{R_1}{R_2}$$

$$\frac{4 \text{ m}}{L} = \frac{2 \text{ m}}{7 \text{ m}}$$

4) Del gráfico, calcule el valor de Θ.

RESOLUCIÓN

Se observa que:

$$L_1 = 4\pi \ m \; ; \; L_2 = 8\pi \ m \\ h = 12 \ m$$

Propiedad:

$$\theta = \frac{L_2 - L_1}{h}$$

$$\theta = \frac{8\pi \text{ m} - 4\pi \text{ m}}{12 \text{ m}} = \frac{4\pi \text{ m}}{12 \text{ m}}$$

$$\theta = \frac{\pi}{3}$$

5) Del gráfico, reduzca M =
$$\frac{2L_2 + 3L_1}{L_3}$$

RESOLUCIÓN

Propiedad:

$$L_2 = 2L$$

$$L_3 = 3L$$

Reemplazando en M:

$$M = \frac{2(2L) + 3(L)}{3L} = \frac{7L}{3L}$$

$$\therefore \mathbf{M} = \frac{7}{3}$$

6) El péndulo de un reloj tiene 20 cm de longitud y recorre un arco de 25^g por segundo. - ¿Cuántos centímetros recorre la punta del péndulo en un segundo?

RESOLUCIÓN

Se observa que: r = 12 cm

$$\theta \operatorname{rad} <> 25^{\text{g}} \left(\frac{\pi \operatorname{rad}}{200^{\text{g}}}\right) = \frac{\pi}{8} \operatorname{rad}$$

Usamos: $\ell = \theta r$

$$\ell = \theta r$$

$$\ell = \left(\frac{\pi}{8}\right) \left(\frac{5}{20} \text{ cm}\right)$$

$$\ell = \frac{5\pi}{2} \text{ cm}$$

7) En el gráfico se muestra un auto desplazándose del punto A al punto B.- Halle la longitud de la trayectoria recorrida por dicho auto.

RESOLUCIÓN

Se observa que: R = 20 m

$$\theta \text{ rad} <> 120^g \left(\frac{\pi \text{ rad}}{200^g}\right) = \frac{3\pi}{5} \text{ rad}$$

Usamos:
$$\widehat{AB} = L = \theta R$$

$$\widehat{AB} = \left(\frac{3\pi}{5}\right) \begin{pmatrix} \frac{4}{20} \text{ m} \end{pmatrix}$$

$$\widehat{AB} = 12\pi \text{ m}$$

