Particle spectrograph

Wave operator and propagator

cdp		
		-
$0 = +^{0}$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$+2ik \sigma_{1}^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	е
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	ĸ
$^3 + ik \ \sigma_1^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} +$	Э
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\sigma_{2}^{\#1}\alpha\beta\chi==0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{eta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial^\alpha \sigma^{\delta\epsilon}{}_\delta +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta\delta\epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\epsilon} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta\epsilon}_{\ \ \delta} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \sigma^{\alpha \delta \epsilon} +$	
	$3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\beta \delta}{}_{\delta}$	
$\tau_{2^+}^{\#1}\alpha\beta==0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} +$	
	$3\partial_{\delta}\partial_{\lambda}\partial_{\lambda}\partial^{\beta}\tau^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\lambda}\partial^{\beta}\tau^{\chi\alpha} +$	
	$2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \iota^{\chi}_{\chi}$	
$\sigma_2^{\#1}\alpha\beta == 0$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} +$	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi\delta} +$	
	$3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha} \right)$	
Total constraints/gauge generators:	ge generators:	26

	$S == \iiint (\frac{1}{6} \left(-4 t_3 \omega^{\alpha_{\prime}}_{\alpha} \omega^{\prime \kappa}_{\prime \kappa} + 6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} + 8 t_3 \omega^{\kappa}_{\alpha \kappa} \partial_{\prime} f^{\alpha \prime} - \right)$	$8t_3\;\omega_{_{_{}}}^{_{_{K}}}\;\partial'f^{lpha}_{}+4t_3\partial_if^{^{_{K}}}\partial'f^{lpha}_{}+4t_2\;\omega_{_{_{}}arthetalpha}}\partial^{ heta}f^{lpha\prime}+$	$2t_2 \partial_{\alpha} f_{\ \ \beta} \partial^{\theta} f^{lpha\prime} - t_2 \partial_{lpha} f_{\ eta\prime} - t_2 \partial_{ec{f}} f^{lpha\prime} - t_2 \partial_{ec{f}} f_{lpha eta} \partial^{\theta} f^{lpha\prime} +$	$t_2 \partial_{\theta} f_{\alpha\prime} \partial^{\theta} f^{\alpha\prime} - t_2 \partial_{\theta} f_{\prime\alpha} \partial^{\theta} f^{\alpha\prime} - 4 t_2 \omega_{\alpha\theta\prime} (\omega^{\alpha\prime\theta} + \partial^{\theta} f^{\alpha\prime}) +$	$2t_2 \ \omega_{\alpha i \theta} \ (\ \omega^{\alpha i \theta} + 2\ \partial^{\theta} f^{\alpha i}) + 8 r_2 \ \partial_{\beta} \omega_{\alpha i \theta} \ \partial^{\theta} \omega^{\alpha \beta i}$ -	$4r_2\partial_eta\omega_{lpha heta_I}\partial^ heta\omega^{lphaeta_I}+4r_2\partial_eta\omega_{I hetalpha}\partial^ heta\omega_{lphaeta}$ -	$2 r_2 \partial_i \omega_{\alpha \beta \theta} \partial^{\theta} \omega^{\alpha \beta i} + 2 r_2 \partial_{\theta} \omega_{\alpha \beta i} \partial^{\theta} \omega^{\alpha \beta i} - 4 r_2 \partial_{\theta} \omega_{\alpha i \beta}$	$\partial^{\theta}\omega^{lphaeta\prime}+6r_{5}\partial_{\prime}\omega^{\kappa}_{0$	$4t_3\partial_i f^{lpha_i}\partial_\kappa f_lpha^{\kappa} - 8t_3\partial^i f^lpha^{}\partial_\kappa f_lpha^{\kappa} - 6r_5\partial_lpha\omega^{lpha_i heta}\partial_\kappa\omega_{i\ heta}^{\kappa} +$	$12 r_5 \partial^{\theta} \omega^{\alpha_{\prime}} \partial_{\kappa} \omega_{\prime}^{\ \kappa} \partial_{\mu} + 6 r_5 \partial_{\alpha} \omega^{\alpha \prime \theta} \partial_{\kappa} \omega_{\theta}^{\ \kappa} \partial_{\mu} -$	$12r_5\partial^{ heta}\omega^{lpha_\prime}_{}\partial_{\kappa}\omega^{\prime}_{\prime}))[t,lpha,eta,z]d\!\!/zd\!\!/yd\!\!/xd\!\!/t$	74.7 74.1 74.5 74.1
Quadratic (free) action	$\iiint \left(\frac{1}{6} \left(-4 t_3 \ \omega^{lpha_{\prime}} \ \omega_{\prime}^{\ \kappa} + 6 \ f ight) \right)$	$8t_3 \omega_{K}^{K}$	$2t_2 \partial_{\alpha} f_{I \theta}$	$t_2 \partial_{ heta} f_{lpha_I} \partial^{eta}$	$2t_2 \omega_{lpha i eta}$	$4 r_2 \partial_{eta} \omega_{lpha \ell}$	$2 r_2 \partial_i \omega_{\alpha\beta}$	$\partial^{ heta}\omega^{lphaeta_{I}}$	$4t_3\partial_i f^{\alpha i}$	$12 r_5 \partial^{\theta} \omega^{\circ}$	$12r_5 \partial^{\theta} \omega'$	7#1
Quad	S== 5											

0

0

0

0

 $\sigma_{1}^{#1} + ^{\alpha}$ $\sigma_{1}^{#2} + ^{\alpha}$ $\tau_{1}^{#1} + ^{\alpha}$ $\tau_{1}^{#2} + ^{\alpha}$

0

0

0

$\sigma_{0}^{\#_1}$	0	0	0	$\frac{1}{k^2r_2+t_2}$	$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 + t_2$	$\alpha \beta t_2^{\#1}$	0	0	0				
$\tau_0^{"}$ ‡	0	0	0	0	$f_{0}^{#2}$	0	0	0		\mathcal{L}	0	0	0				
$t_0^{"\ddagger}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	$f_{0}^{\#1} = f_{0}^{3}$	$-i \sqrt{2} k t_3$ ($2k^2t_3$ (0	0		$\sigma_{2}^{\#1} + \alpha \beta$		$\sigma_{2}^{\sharp} + \alpha \beta \chi$		。ω ₂	1	
$\sigma_0^{"\dot{+}}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0	$\omega_0^{\#1}$	t_3	$i \sqrt{2} kt_3$	0	$f_{2}^{\#}$		$\omega_{2}^{#1} + \alpha^{\beta}$ $f_{2}^{#1} + \alpha^{\beta}$		αρ	0 0	$\begin{array}{c c} & \omega_2^{\#1}_{\alpha\beta\chi} \\ & 0 \\ & 0 \end{array}$		
-	$\sigma_{0}^{\#1}$ †	$r_{0}^{\#1} + r_{0}^{\#2} + r_{0}^{\#2} + \sigma_{0}^{\#1} + r_{0}^{\#1}$			$\omega_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1} + f_{0}^{#2} + f_{$			$\omega_{0}^{\#1}$ \dagger	$\omega_2^{#1}$	$\dagger^{\alpha\beta\chi}$	0		0	0			
	_	$\omega_{1^{+}\alpha\beta}^{\sharp 1}$ α			$f_{1}^{#2} \alpha \beta \qquad f_{1}^{#1} \alpha \beta$			$\omega_{1^{-}\alpha}^{\sharp 1}$		$\omega_{1^{-}\alpha}^{\#2}$		f	*#1 1 α	f_1^{\sharp}	‡2 - α		
$\omega_{1}^{\#1}\dagger^{\alpha\beta}$		$k^2 r_5$	$+\frac{2t_2}{3}$	<u>√</u> :	$\frac{\sqrt{2} t_2}{3}$		$\frac{1}{3}\bar{i}\sqrt{2}kt_2$		0			0		0	(0	
$\omega_{1}^{\#2} \dagger^{lphaeta}$		$\frac{\sqrt{2} t_2}{3}$		_	. <u>2</u> 3	<u>i kt2</u> 3			0		0			0		0	
$f_{1}^{\#1} + \alpha \beta - \frac{1}{3}$		$-\frac{1}{3}\bar{l}\sqrt{{3}}}$	$-\frac{1}{3}i\sqrt{2}kt_2$		$-\frac{1}{3}\bar{l}kt_2$		$\frac{k^2t_2}{3}$		0		0			0	0		
$\omega_1^{\sharp 1} \dagger^{\alpha}$ 0)		0		0		$k^2 r_5 + \frac{2t_3}{3}$		$-\frac{\sqrt{2} t_3}{3}$			0	$-\frac{2}{3}i$	ikt3		
α	$\omega_{1}^{\#2}\uparrow^{\alpha}$ 0			0		0		$-\frac{\sqrt{2} t_3}{3}$		<u>t</u>			0	$\frac{1}{3} i \sqrt{2} ki$		3	
f	$\frac{1}{1}$ $+^{\alpha}$	ο 0			0 0		0		0		0			0	0		
f	$f_{1}^{#2} + \alpha$)		0		0		2 i kt ₃ 3		$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$		t_3	0	$\frac{2k^2t_3}{3}$		
	•																

0 0 0

Massive and massless spectra

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$