BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI HYDERABAD CAMPUS

INSTRUCTION DIVISION

FIRST SEMESTER 2016 – 2017

Course Handout Part II

Date: Mon 1st Aug 2016

In addition to part - I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : EEE / ECE / INSTR F214
Course Title : ELECTRONIC DEVICES
Instructor-in-Charge : Dr. Surya Shankar Dan
Lecture Instructor : Dr. Surya Shankar Dan

Tutorial Instructors : Dr. Surya Shankar Dan & Prof. Sanket Goel

1. Scope and Learning Outcome:

- i. Understanding the relationship between atomic structure and physical properties of semiconductors with semiconductor devices of modern VLSI technology.
- ii. Interpreting electronic band structure using quantum mechanics.
- iii. Identifying the semiconductor properties that determine the performance of electronic devices.
- iv. Calculating the carrier concentrations and conductivity of a semiconductor using given doping concentrations.
- v. Understanding the basic physics of charge carriers in solids and carrier transport in semiconductors.
- vi. Deriving equations of charge transport in semiconductors under normal operating conditions.
- vii. Applying the charge diffusion equation to electronic devices and deriving their I-V characteristics.
- viii. Utilizing defect densities and carrier recombination processes to calculate generation and recombination rates in semiconductor devices.
- ix. Understanding the basics of optoelectronic devices.

2. Text Book:

B. G. Streetman & S. Banerjee, "Solid State Electronic Devices", 6th Ed., PHI, 2006

3. Reference Book:

D. A. Neamen & D. Biswas, "Semiconductor Physics and Devices", 4th Ed., MGH, 2013

4. Course Plan:

Lect. #	Topic	Learning Objectives	Text Ref.
1	Introduction to the subject and course details		
2-4	Crystal Structure	Cubic Lattices, Planes & Directions	1.2.1 – 1.2.3
5-8	Review of semiconductor fundamentals.	Fundamentals of quantum physics, Schrödinger wave equation, tunneling, uncertainty principle	3.1.3, 3.1.4, 3.2
9-11	Charge carriers in semiconductors,	Fermi level, equilibrium carrier concentrations, temperature dependence, space charge neutrality	3.3

12-14	Effect of electric and magnetic fields on drift of carriers	Conductivity and mobility, Hall effect	3.4-3.5
15-19	Excess carriers in semiconductors	Interaction of photons with semiconductors, generation and recombination mechanisms of excess carriers, quasi-fermi levels in non-equilibrium	4.1 – 4.4
20-27	Junctions	PN junctions, I-V characteristics, biasing, breakdown diodes, Metal semiconductor junctions, Tunnel Diode, Varactor diode	5.2 – 5.7, 10.1
28-32	Field Effect Transistors	To understand the structure and working of JFET, MOSFET, I-V characteristics and secondary effects	6.2,6.3.1,6.3.3, 6.4.1-6.4.5, 6.5.1- 6.5.4, 6.5.6,6.5.8
33-38	Bipolar Junction Transistors	BJT operations, amplifications, carrier distribution, I-V characteristics etc. and secondary effects,	7.1, 7.3 –7.7, 7.9
39-42	Optoelectronic devices	Photoelectric effect, Solar cells, Photodiodes, Light Emitting Diodes(LED), Lasers and Semiconductor Lasers	2.2.1, 8.1–8.4

5. Evaluation Scheme:

Component	Evaluation	Duration	Marks (% out of 300)	Date & Time
Test I	Closed Book	60 min	90 (30%)	9/9 & 4:00-5:00 PM
Test II	Open Book	60 min	90 (30%)	24/10 & 4:00-5:00 PM
Comprehensive	Closed Book	180 min	120 (40%)	10/12 & 2:00-5:00 PM

- **6. Chamber consultation hours**: To be announced in the class.
- **7. Notices & Announcements**: All notices for the course will be **announced in the class** and displayed on the **CMS ONLY**

8. Make-up Examination:

Requests for make-up examination will be entertained ONLY for extremely serious cases where:

- (i) Parents of the concerned student have to request the course IC for the makeup for their ward
- (ii) Written & signed documentary evidence needs to be provided from the Hostel Warden confirming the reason for absence from scheduled examination.
- (iii) In case of medical emergencies students must produce a documentary evidence from the surgeon.

Instructor-in-Charge EEE / ECE / INSTR F214