Foundations of Calculus

Ikhan Choi

May 21, 2022

Contents

Ι	Coı	nvergence	3
1	Sequ	uences	4
	1.1	Control of the error	4
	1.2	Approximate sequences	4
	1.3	Bounded sequences	4
	1.4	Recursive sequences	4
2	Seri	es	5
	2.1	Absolute convergence	5
	2.2	Convergence tests	5
3	Met	rics and norms	7
	3.1	Metric spaces	7
	3.2	Normed spaces	8
	3.3	Open sets and closed sets	8
	3.4	Compact sets	8
	3.5	Connected sets	8
II	Re	eal functions	9
4	Con	tinuous functions	10
	4.1	Intermediate and extreme value theorems	10
	4.2	Uniform convergence	10
	4.3		10
5	Diffe	erentiable functions	11
	5.1	Monotonicty and convexity	11
	5.2	Mean value theorem	11
	5.3	Taylor's theorem	11
	5.4	Differentiable class	11
6	Ana	lytic functions	12
	6.1	Power series	12
	6.2	Complex analytic functions	12
	6.3	Special functions	12

III	Integration	13
7		
	7.1 Riemann integral	14
	7.2 Henstock-Kurzweil intergral	14
	7.3 Improper integral	14
	7.4 Fundamental theorem of calculus for continuous functions	14
8	Integrable functions	15
	8.1	15
9		16
IV	Multivariable Calculus	17
10	Frechet derivatives	18
	10.1 Tangent space	18
11	Inverse function theorem	19
	11.1 Banach fixed point theorem	19
	11.2 Variations of the inverse function theorem	
12	Differential forms	20

Part I Convergence

Sequences

1.1 Control of the error

preserving inequalities limsup and liminf

1.2 Approximate sequences

1.3 Bounded sequences

monotone convergence Bolzano-Weierstrass

1.4 Recursive sequences

?

Exercises

1.1. Every real sequence $(a_n)_{n=1}^{\infty}$ has a monotonic subsequence $(a_{n_k})_{k=1}^{\infty}$ such that $\lim_{k\to\infty}a_{n_k}=\limsup_{n\to\infty}a_n$.

Series

2.1 Absolute convergence

2.1 (Unconditional convergence).

2.2 Convergence tests

comparison limit comparison cauchy condensation integral.... ratio root

2.2 (Abel transform).

$$A_k(B_k - B_{k-1}) + (A_k - A_{k-1})B_{k-1} = A_k B_k - A_{k-1}B_{k-1}$$

$$\sum_{m < k \le n} A_k b_k = A_n B_n - A_m B_m - \sum_{m < k \le n} a_k B_{k-1}.$$

abel test

2.3 (Dirichlet test).

2.4 (Mertens' theorem). If $\sum_{k=0}^{\infty} a_k$ converges to A absolutely and $\sum_{k=0}^{\infty} b_k$ converges to B, then their Cauchy product $\sum_{k=0}^{\infty} c_k$ with $c_k := \sum_{l=0}^{k} a_l b_{k-l}$ converges to AB.

Proof. Let

$$A_n := \sum_{k=0}^n a_k$$
, $B_n := \sum_{k=0}^n b_k$, and $C_n := \sum_{k=0}^n c_k$.

Consider the regions

$$T_n := \{(k,l) \in \mathbb{Z}^2_{\geq 0} : k+l \leq n\}, \qquad R_m : \{(k,l) \in \mathbb{Z}^2_{\geq 0} : k \leq m\}.$$

Write

$$AB - C_n = \sum_{k \le m} \sum_{l > n-k} a_k b_l + \sum_{k > m} \sum_{l \ge 0} a_k b_l - \sum_{m < k \le n} \sum_{l \le n-k} a_k b_l$$

= $\sum_{k < m} a_k (B - B_{n-k}) + \sum_{k > m} a_k B - \sum_{m < k \le n} a_k B_{n-k}.$

The first term

$$|\sum_{k \le m} a_k (B - B_{n-k})| \le (\max_k |a_k|) (\sum_{l \ge n-m} |B - B_l|)$$

converges to zero as $n \to \infty$ for fixed m, the second term

$$|\sum_{k>m} a_k B| \le |A - A_m| |B|$$

converges to zero as $m \to \infty$ for any n, and finally the third term

$$\left|\sum_{m < k \le n} a_k B_{n-k}\right| \le \left(\sum_{k > m} |a_k|\right) \left(\max_{l} |B_l|\right)$$

converges to zero as $m \to \infty$ for any n.

Fix *m* such that the second and third terms are bounded by arbitrary $\frac{\varepsilon}{2} > 0$ so that

$$|C_n - AB| \le |\sum_{k < m} a_k (B - B_{n-k})| + \frac{\varepsilon}{2} + \frac{\varepsilon}{2}.$$

Then, by taking $n \to \infty$, we obtain

$$\limsup_{n\to\infty} |C_n - AB| \le \varepsilon.$$

Since ε is arbitrary, we have

$$\lim_{n\to\infty} C_n = AB.$$

2.5. If
$$a_n \to 0$$
, then $\frac{1}{n} \sum_{k=1}^n a_k \to 0$.

2.6. If
$$a_n \ge 0$$
 and $\sum a_n$ diverges, then $\sum \frac{a_n}{1+a_n}$ also diverges.

2.7. If
$$a_n \downarrow 0$$
 and $S_n \leq 1 + na_n$, then $S_n \leq 1$.

Metrics and norms

3.1 Metric spaces

3.1 (Definition of metric spaces). Let X be a set. A *metric* is a function $d: X \times X \to \mathbb{R}_{\geq 0}$ such that

(i) d(x, y) = 0 if and only if x = y,

(nondegeneracy)

(ii) d(x, y) = d(y, x) for all $x, y \in X$,

(symmetry)

(iii) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

(triangle inequality)

A pair (X, d) of a set X and a metric on X is called a *metric space*. We often write it simply X.

- (a) A normed space *X* is a metric space with a metric defined by d(x, y) := ||x y||.
- (b) A subset of a metric space is a metric space with a metric given by restriction.
- **3.2** (System of open balls). A metric is often misunderstood as something that measures a distance between two points and belongs to the study of geoemtry. The main function of a metric is to make a system of small balls, sets of points whose distance from specified center points is less than fixed numbers. The balls centered at each point provide a concrete images of "system of neighborhoods at a point" in a more intuitive sense. In this viewpoint, a metric can be considered as a structure that lets someone accept the notion of neighborhoods more friendly.

Note that taking either ε or δ in analysis really means taking a ball of the very radius. Investigation of the distribution of open balls centered at a point is now an important problem.

Let X be a metric space. A set of the form

$$\{y \in X : d(x,y) < \varepsilon\}$$

for $x \in X$ and $\varepsilon > 0$ is called an *open ball centered at x with radius* ε and denoted by $B(x, \varepsilon)$ or $B_{\varepsilon}(x)$.

3.3 (Convergence and continuity in metric spaces). Let $\{x_n\}_n$ be a sequence of points on a metric space (X,d). We say that a point x is a *limit* of the sequence or the sequence *converges to* x if for arbitrarily small ball $B(x,\varepsilon)$, we can find n_0 such that $x_n \in B(x,\varepsilon)$ for all $n > n_0$. If it is satisfied, then we write

$$\lim_{n\to\infty}x_n=x,$$

or simply $x_n \to x$ as $n \to \infty$. We say a sequence is *convergent* if it converges to a point. If it does not converge to any points, then we say the sequence *diverges*.

A function $f: X \to Y$ between metric spaces is called *continuous at* $x \in X$ if for any ball $B(f(x), \varepsilon) \subset Y$, there is a ball $B(x, \delta) \subset X$ such that $f(B(x, \delta)) \subset B(f(x), \varepsilon)$. The function f is called *continuous* if it is continuous at every point on X.

- (a) A sequence x_n in a metric space X converges to $x \in X$ if and only if $d(x_n, x)$ converges to zero.
- (b) Let $f: X \to Y$ be a function between two metric spaces. If there is a constant C such that $d(x,y) \le Cd(f(x),f(y))$ for all x and y in X, then f is continuous. In this case, f is particularly called *Lipschitz continuous* with the *Lipschitz constant* C.

3.2 Normed spaces

banach space

3.3 Open sets and closed sets

convergence, limit point

3.4 Compact sets

3.5 Connected sets

Part II Real functions

Continuous functions

- 4.1 Intermediate and extreme value theorems
- 4.2 Uniform convergence
- 4.3

- **4.1.** The set of local minima of a convex real function is connected.
- **4.2.** Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. The equation f(x) = c cannot have exactly two solutions for every constant $c \in \mathbb{R}$.
- **4.3.** A continuous function that takes on no value more than twice takes on some value exactly once.
- **4.4.** Let f be a function that has the intermediate value property. If the preimage of every singleton is closed, then f is continuous.
- **4.5.** * If a sequence of real functions $f_n: [0,1] \to [0,1]$ satisfies $|f(x)-f(y)| \le |x-y|$ whenever $|x-y| \ge \frac{1}{n}$, then the sequence has a uniformly convergent subsequence.

Differentiable functions

5.1 Monotonicty and convexity

5.2 Mean value theorem

Darboux

5.3 Taylor's theorem

5.4 Differentiable class

completeness

- **5.1.** If $\lim_{x\to\infty} f(x) = a$ and $\lim_{x\to\infty} f'(x) = b$, then a = 0.
- **5.2.** Let f be a real C^2 function with f(0) = 0 and $f''(0) \neq 0$. Defined a function ξ such that $f(x) = xf'(\xi(x))$ with $|\xi| \leq |x|$, we have $\xi'(0) = 1/2$.
- **5.3.** Let *f* be a C^2 function such that f(0) = f(1) = 0. We have $||f|| \le \frac{1}{8} ||f''||$.
- **5.4.** A smooth function such that for each *x* there is *n* having the *n*th derivative vanish is a polynomial.
- **5.5.** If a real C^1 function f satisfies $f(x) \neq 0$ for x such that f'(x) = 0, then in a bounded set there are only finite points at which f vanishes.
- **5.6.** Let a real function f be differentiable. For a < a' < b < b' there exist a < c < b and a' < c' < b' such that f(b) f(a) = f'(c)(b a) and f(b') f(a') = f'(c')(b' a').
- **5.7.** Let f be a differentiable function on the unit closed interval. If f(0) = 0 there is c such that cf'(c) = f(c). (Flett)
- **5.8.** Let f be a differentiable function on the unit closed interval. If f(0) = 0 there is c such that cf(c) = (1-c)f'(c).

Analytic functions

6.1 Power series

uniform convergence and absolute convergence, abel theorem? differentiation convergence of radius sum, product, composition, reciprocal? closed under uniform convergence

6.2 Complex analytic functions

complex domain (real analytic iff its domain contains real line) convergence of radius, revisited identity theorem

6.3 Special functions

hypergeometric, bessel, gamma, zeta

Part III Integration

Riemann integral

7.1 Riemann integral

tagged partition

7.2 Henstock-Kurzweil intergral

bounded compact support <-> lebesgue

7.3 Improper integral

7.4 Fundamental theorem of calculus for continuous functions

- **7.1.** Find the value of $\lim_{n\to\infty} \frac{1}{n} \left(\sum_{k=1}^n \frac{1}{n} f\left(\frac{k}{n}\right) \int_0^1 f(x) dx \right)$.
- **7.2.** If xf'(x) is bounded and $x^{-1} \int_0^x f \to L$ then $f(x) \to L$ as $x \to \infty$.

Integrable functions

8.1

Part IV Multivariable Calculus

Frechet derivatives

10.1 Tangent space

Inverse function theorem

- 11.1 Banach fixed point theorem
- 11.2 Variations of the inverse function theorem

Differential forms