Operációs rendszerek BSc

11. Gyak.

2022. 04. 25.

Készítette:

Martinák Mátyás Bsc

Programtervező informatikus

KLNSPG

Miskolc, 2022

- 1. feladat Adott egy rendszer (foglalási stratégiák), melyben a következő
 - Szabad területek: 30k, 35k, 15k, 25k, 75k, 45k és
 - Foglalási igények: 39k, 40k, 33k, 20k, 21k állnak rendelkezésre.

A rendszerben a memória 4 kbyte-os blokkokban kerül nyilvántartásra, ennél kisebb méretű

töredék igény esetén a teljes blokk lefoglalásra kerül.

Határozza meg változó méretű partíció esetén a következő algoritmusok felhasználásával:

first fit, next fit, best fit, worst fit a foglalási igényeknek megfelelő helyfoglalást – táblázatos

Formában (az ea. Bemutatott mintafeladat alapján)!

Hasonlítsa össze, hogy a teljes szabad memóriaterület hány százaléka vész el átlagosan az

egyes algoritmusok esetén! A kapott eredményeket ábrázolja oszlop diagrammal!

Magyarázza a kapott eredményeket és hogyan lehet az eredményeket javítani!

First Fit	t I		Memó	ria terület - :	szahad te	rület		Next Fit		Memo	ória terület	szahad t	erület	
Foglalási ig	_	30		15	25	75	45	Foglalási igény	30		15		7	
O STUTOST IS	39	30	35	15		9, 36	45	39			15		39, 35	
-	40	30	35	15	25	75 40		40			15	25		
	33	30		15	25	75	45	33			15	25		
-		20, 10	35	15	25	75	45	20		,-		20, 5	7	
	21	30	35	15 21		75	45	21					39, 21, 1	
		30		13 1			1.3				13		33, 24, 4	
Best Fit		Memória terület - szabad terület						Worst Fit Me			nória terület - szabad terület			
Foglalási ig	gény	30	35	15	25	75	45	Foglalási igény	30	35	15	25	7	
	39	30	35	15	25	75 35	9, 6	39	30	35	15	25	39, 36	
	40	30	35	15	25 4	10, 35	45	40	30	35	15	25	7	
	33	30	33, 2	15	25	75	45	33	30	35	15	25	39, 33, 3	
	20	30	35	15 20	1,5	75	45	20	30	20, 15	15	25	7	
	21	21, 9	35	15	25	75	45	21	21, 9	35	15	25	7	

- 2. feladat Írjon C nyelvű programokat, ahol kreál/azonosít szemafor készletet, benne N szemafor-t.
 - A kezdő értéket 0-ra állítja semset.c,
 - kérdezze le és írja ki a pillanatnyi szemafor értéket semval.c
 - szüntesse meg a példácskák szemafor készletét semkill.c
 - sembuf.sem op=1 értékkel inkrementálja a szemafort semup.c

semset.c:

```
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#define SEMKEY 123456L
    int semid, nsems, semnum, rtn;
    int semflg;
    struct sembuf sembuf, *sop;
   union semun arg;
   int cmd;
int main()
   nsems = 1;
   semflg = 00666 | IPC_CREAT;
   semid = semget (SEMKEY, nsems, semflg);
   if (semid < 0 ) {perror(" semget hiba"); exit(0);}</pre>
   else printf("\n semid: %d ",semid);
   printf ("\n kerem a semval erteket ");
    semnum = 0;
    cmd = SETVAL;
    scanf("%d",&arg.val);
   rtn = semctl(semid,semnum, cmd, arg);
    printf("\n set rtn: %d ,semval: %d ",rtn,arg.val);
    printf("\n");
```

semval.c:

```
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#define SEMKEY 123456L
    int semid,nsems,rtn;
   int semflg;
   struct sembuf sembuf, *sop;
   union semun arg;
   int cmd;
int main()
   nsems = 1;
   semflg = 00666 | IPC_CREAT;
    semid = semget (SEMKEY, nsems, semflg);
   if (semid < 0 ) {[perror(" semget hiba"); exit(0); ]</pre>
   else printf("\n semid: %d ",semid);
    printf ("\n");
    cmd = GETVAL;
    rtn = semctl(semid,0, cmd, NULL);
    printf("\n semval: %d ",rtn);
    printf("\n");
```

semkill.c:

```
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#define SEMKEY 123456L
    int semid,nsems,rtn;
    int semflg;
    struct sembuf sembuf, *sop;
    union semun arg;
    int cmd;
int main()
{
    nsems = 1;
    semflg = 00666 | IPC_CREAT;
    semid = semget (SEMKEY, nsems, semflg);
    if (semid < 0 ) {perror(" semget hiba"); exit(0);}
else printf("\n semid: %d ",semid);</pre>
    printf ("\n");
    cmd = IPC_RMID;
    rtn = semctl(semid,0, cmd, arg);
    printf("\n kill rtn: %d ",rtn);
    printf("\n");
```

semup.c:

```
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#define SEMKEY 123456L
    int semid,nsems,rtn;
   unsigned nsops;
   int semflg;
    struct sembuf sembuf, *sop;
int main()
   nsems = 1;
   semflg = 00666 | IPC_CREAT;
   semid = semget (SEMKEY, nsems, semflg);
   if (semid < 0 ) {perror(" semget hiba"); exit(0);}</pre>
   else printf("\n semid: %d ",semid);
   printf ("\n");
   nsops = 1;
   sembuf.sem_num = 0;
   sembuf.sem_op = 1;
   sembuf.sem_flg = 0666;
   sop = &sembuf;
    rtn = semop(semid, sop, nsops);
    printf("\n up rtn: %d ",rtn);
    printf("\n");
```