

Quality assurance/quality control (QA/QC) of the health data

Presenter: Dr. Ming-Chien Mark Tsou
Research Center for Environmental Changes
Academia Sinica

Outline

Part 1:
Introduction
of datasets

Part 2: Introduction of RStudio Part 3: QA/QC of heart rate variability (HRV) data

Part 1: Introduction of dataset

Datasets

Part 2: Introduction of RStudio

RStudio environments

 RStudio allows the user to run R in a more userfriendly environm ent.

1. R script(s) and data view (upper left window)

2. Console

```
Console
        Terminal ×
                  Jobs ×
                                                                     To type commands and
D:/HiASAP/HRV/output/ A
                                                                       show the outputs
          ASLUNGLS<- ASLUNGLZ
      ASLUNGt3 <- merge(ASLUNGt3, sort_out_time, by="date")
> View(ASLUNGt3)
> (substr(ASLUNGt2$date[1],1,16))!=(substr(Date_AL2[1],1,16))
[1] TRUE
> substr(ASLUNGt2$date[1],1,16)
[1] "2018-10-08 13:04"
> substr(Date_AL2[1],1,16)
[1] "2018-10-08 13:11"
> View(ASLUNGt2)
> Date_AL<-seq.POSIXt(ASLUNGt3$date[1], ASLUNGt3$date[dim(ASLUNGt3)[1]], by = "1
5 secs",tz="Asia/Taipei")
      Data AL 22-C(ACLUMC+3¢data)
```

3. Workspace

4. Files, plots, packages and help- Files tab

- Plots tab To export the graphs Help Files **Plots Packages** Viewer To display the graphs Export 7 0 7 7 ကု 10 20 30 40 50

- Packages tab

- Packages tab

- Packages tab

4. Files, plots, packages and help- Help tab

You can search the documents of R packages

15

2020/10/5 HiASAP-2020 AI

To set the CRAN mirror to download/update the R packages

To set the CRAN mirror to download/update

the R packages

TO choose the CRAN mirror nearest to you to minimize network load

Part 3: QA/QC of HRV data

Notices

- All text after the pound sign "#" within the same line in R code
 - To be considered a comment
 - To be not run by R

- In this presentation, the R codes in the red box can be modify according your requirements (mostly the path of data file)
 - For example, you can modify the path of output file by yourself

```
# To set the output file
cmd1 <- paste0("setwd('",location, "HiASAP/PM/output')") 
eval(parse(text=cmd1))</pre>
```

Notices

- To use quotes (") to tell R to interpret something as a string.
 - For example,

```
location <- "D:/" → D:/
```

- The uppercase letters (strings) are different from the lowercase letters (strings)
 - For example,
 - A ≠ a
 - Apple ≠ apple

What kind of data we can get from Rooti

- Standard deviation of all normal to normal intervals (SDNN)
- Square root of the mean of the sum of the squares of differences between adjacent NN intervals (RMSSD)
- LF (low frequency power)
- HF (high frequency power)
- VLF (very low frequency power)
- TP (total power)
- HF/LF ratio
- HR (heart rate)
- Activity data
- Sleep index

RootiRx sensor
Source: https://www.rootilabs.com/ 21

Moving all data files to its own file for every subject


```
# To remove previous memory in R.
                                           1. To remove all objects
   rm(list=ls())
                                           from current workspace
   # To update the R packages
   update.packages("lubridate")
   update.packages("plyr")
   update.packages("tidyverse")
                                               2. To update the R packages
  update.packages("jsonlite")
   update.packages("data.table")
10
   # To load the R packages -
   library(lubridate)
  library(plyr)
14 library(tidyverse)
                                                3. To load the R packages
  library(jsonlite)
   library(data.table)
```


You can modify by yourself

7. To read the results of HRV monitoring for getting the start time

```
29 - for (i in 1) {
            # To read the "result.json" file for getting the start time of Rooti (heart rate variability monitoring)
30
31
            Rooti_online_result<-list()
32
            Rooti_online_result[[i]]<- fromJSON(paste0(way, subject[i], "/OUTPUT/result.json"))</pre>
33
            start_time<-list()
34
            start_time[[i]]<-Rooti_online_result[[i]]$activity$startTime
            start_time[[i]]<-as.POSIXct(start_time[[i]], origin="1970-01-01",tz="Asia/Taipei"
       ✓ ■ DATA (D:)
                                    The time is present as how many

✓ I HiASAP

                                 seconds has passed since Jan 1, 1970
                                                                                                                     The code of time zone
              Exposure Factor
                                                                            Q Rooti_online_result ×
                                                                                           2020_Trainging_Questionnaire_TAD.
                                            R property2010
              GAMM
                                                                                              Type
                                                                                                                   More detailed information
                                                                            Rooti online result
                                                                                              list [1]

✓ I HRV

                                            R_property2250
                                                                                                                   about the code of time
                                                                             0 [[1]]
                                                                                              list [7]
             output
                                            R_property2490
                                                                                                                   zone can be found in the
                                                                                mode
                                                                                              integer [1]
                                                                               Q factor
                                                                                              list [1 x 4] (S3: data.frame)
                Raw Data
                                            R property2730
                                                                                                                   following website:
                                                                                              character [1]
           LA001_1
                                                                                                                   https://data.iana.org/time
                                             result.json
                                                                                              list [1 x 25] (S3: data.frame)
                                                                               af
                ECG
                                                                                                                   -zones/theory.html
                                                                               hrv
                                                                                              list [2 x 12] (S3: data.frame)
                                                                                              list [1 x 3] (S3: data.frame)
                                                                               activity
                fe9f4023-2a52-4
                                                                                              integer [1]
                                                                                 startTime
                GSENSOR
                                            SDNN 5
                                                                                              character [1]
                  OUTPUT
                                                                                  endTime
                                                                                              integer [1]
                                             SDNN1
                                                                                              list [2 x 12] (S3: data.frame)
         2020/10/5 TEMP
                                                                    HiASAP-2020
                                                                                                                                         25
                                            CDMMD
```

Extracting the HRV data

OUTPUT

TEMP

From line 37 to 211, we extract the results of each HRV indices with the almost same procedure

8. To read the results of 5-min SDNN

26

```
37
          # To get the 5-min SDNN data
38
           aa <- read.table(paste0(way, subject[i], "/OUTPUT/SDNN_5.txt"))</pre>
39
           test<-substr(subject[i],1,5)
                                                                 To add the variable of subjects' ID
           Rooti_SDNN5<-data.frame(test.aa)</pre>
40
          colnames(Rooti_SDNN5) [names(Rooti_SDNN5) == "V1"]<-"SDNN5"</pre>
                                                          9. To create the variable of data time
43
          total_time<-minutes(dim(Rooti_SDNN5)[1]*5)
          Datatime<-seq.POSIXt(start_time[[i]][1],start_time[[i]][1]+total_time , by =("5 mins")
44
          Datatime<-Datatime[1:(length(Datatime)-1)]
45
46
47
          Rooti_SDNN5<-data.frame(Datatime, subset(Rooti_SDNN5,select=c(test,SDNN5)))</pre>

✓ I LA001 1
                                                          10. To combine data time with SDNN
                                  SDNN_5
            ECG
                                  SDNN1
                                                                             data
            fe9f4023-2a52-4fc
                                  SDNN2
            GSENSOR
```

HIASAP-2020 AL

Extracting the HRV data

```
# To get the 5-min RMSSD data
50
          aa <- read.table(paste0(way, subject[i], "/OUTPUT/RMSSD_5.txt"))</pre>
51
          test<-substr(subject[i],1,5)</pre>
52
          Rooti_RMSSD5<-data.frame(test,aa)</pre>
53
          colnames(Rooti_RMSSD5)[names(Rooti_RMSSD5) == "V1"]<-"RMSSD5"</pre>
55
          Rooti_RMSSD5<-data.frame(Datatime, subset(Rooti_RMSSD5,select=c(test,RMSSD5)))</pre>
56
57
          # To get the 5-min LF/HF data
          aa 69
                         # To get the 5-min HF data
          te 70
                         aa <- read.table(paste0(way, subject[i], "/OUTPUT/hf_5.txt"))</pre>
          Ro 71
                         test<-substr(subject[i],1,5)
          co 72
                         Rooti_hf5<-data.frame(test,aa)</pre>
             73
                         colnames(Rooti_hf5)[names(Rooti_hf5) == "V1"]<-"HF5"</pre>
              74
          aa
             75
                         # To get the 5-min VLF data
          te
             76
                         aa <- read.table(paste0(way, subject[i], "/OUTPUT/vlf_5.txt"))</pre>
                         test<-substr(subject[i],1,5)</pre>
             77
                         Rooti_vlf5<-data.frame(test,aa)</pre>
              78
              79
                         colnames(Rooti_vlf5)[names(Rooti_vlf5) == "V1"]<-"VLF5"</pre>
              80
             81
                         # To get the 5-min TP data
             82
                         aa <- read.table(paste0(way, subject[i], "/OUTPUT/tp_5.txt"))</pre>
             83
                         test<-substr(subject[i],1,5)
              84
                         Rooti_tp5<-data.frame(test,aa)</pre>
             85
                         colnames(Rooti_tp5)[names(Rooti_tp5) == "V1"]<-"TP5"</pre>
```

11. To extract the 5-min RMSSD, LF/HF ratio, LF, HF, VLF and TP data

- From Line 49 to 85
- The sameprocedure as SDNN

Extracting the heart rate (HR) data

87 88

89 90

91 92

93

94

95

96

97 98

99

100

101

102

103

104

12. To read the 1-min HR data

```
# To get the 1-min HR data
aa <- read.table(paste0(way, subject[i], "/OUTPUT/HR_full.txt"))</pre>
test<-substr(subject[i],1,5)</pre>
Rooti_HR<-data.frame(test.aa)</pre>
colnames(Rooti_HR) [names(Rooti_HR) == "V1"]<-"HR"</pre>
                                                     13. To create the variable of data time
# To calculate the 5-min HR dat
total_HR_time<-minutes(dim(Rooti_HR)[1]*1)
Datatime_HR<-seq.POSIXt(start_time[[i]][1],start_time[[i]][1]+total_HR_time , by =("1 mins"
Datatime_HR<-Datatime_HR[1:(length(Datatime_HR)-1)]
Rooti_HR<-data.frame(Datatime_HR, Rooti_HR)
Rooti_HR<-Rooti_HR %>%
  group_by(Datatime = cut(Datatime_HR, breaks="300 secs")) %>%
  summarize(
   HRsum5 = sum(HR).
   \mathsf{HRmean5} = \mathsf{floor}(\mathsf{mean}(\mathsf{HR}))
Rooti_HR$Datatime <-ymd_hms(Rooti_HR$Datatime,tz="Asia/Taipei"
```

14. To calculate the sum and mean of HR data for 5-min intervals

→ You can modify by yourself Extracting activity data (variations for threeaxis)

- Activity data
 - Variations for X-, Y- and Z- axis
 - Accelerations for X-, Y- and Z- axis

```
106
           # To get the activity data form G-sensor
           # To get the 1-min data of variations for three-axis
107
           aa <- read.table(paste0(way, subject[i], "/OUTPUT/Avg_XYZsum.txt"))</pre>
108
           test<-substr(subject[i],1,5)</pre>
109
110
           Rooti_gsensor<-data.frame(test.aa)</pre>
           colnames(Rooti_gsensor) [names(Rooti_gsensor) == "V1"]<-"Gsensor"</pre>
111
112
                                                                                        as HR
           # To calculate the 5-min data of variations for three-axis
113
           total_gsensor_time<-minutes(dim(Rooti_gsensor)[1]*1)
114
115
           Datatime_gsensor<-seq.POSIXt(start_time[[i]][1],start_time[[i]][1]+total_gsensor_time , by = "1 mins")
116
           Datatime_gsensor<-Datatime_gsensor[1:(length(Datatime_gsensor)-1)]
117
           Rooti_gsensor<-data.frame(Datatime_gsensor, Rooti_gsensor)</pre>
118
           Rooti_gsensor<-Rooti_gsensor %>%
119
             group_by(Datatime = cut(Datatime_gsensor, breaks="300 secs")) %>%
120
             summarize(Gsensor5 = sum(Gsensor))
121
           Rooti_gsensor$Datatime <-ymd_hms(Rooti_gsensor$Datatime,tz="Asia/Taipei
122
```

15. To extract the 1-min activity data of variations for three-axis, and then calculate to 5-min average data

- From Line 106 to 122
- The same procedure

30

Extracting activity data (accelerations for three-axis)

```
# To get the 1-min data of accelerations for three-axis
124
                                                                                            16. To extract the 1-min
125
           aa <- list.files(paste0(way, subject[i], "/GSENSOR/"))</pre>
           bb <- read.table(paste0(way, subject[i], "/GSENSOR/",aa[1]),sep=",")</pre>
126
                                                                                                  activity data of
127
           cc <- bb
128 -
           for(j in 2:length(aa)){
                                                                                          accelerations for three-axis
129
               bb <- read.table(paste0(way, subject[i], "/GSENSOR/",aa[j]),sep=",")</pre>
130
               cc <- rbind(cc,bb)</pre>
131 -
132
           test<-substr(subject[i],1,5)
133
           Rooti_gsensor_raw_data<-data.frame(test,subset(cc,select=c(V1:V5)))</pre>
           colnames(Rooti_gsensor_raw_data)<-c("S_no","Datatime","secondpoint", "X", "Y", "Z")</pre>
134
           Rooti_gsensor_raw_data$Datatime<-as.POSIXct(Rooti_gsensor_raw_data$Datatime, origin="1970-01-01",tz="Asia/Taipei")
135
137
           # To get the 5-min data of accelerations for three-axis
138
           Rooti_gsensor_raw_data<-Rooti_gsensor_raw_data %>%
139
             group_by(Datatime = cut(Datatime, breaks="300 secs")) %>%
                                                                                17. To calculate the mean and
140
             summarize(meanX5 = round(mean(X), 4),
141
                        meanY5 = round(mean(Y), 4),
                                                                                maximum of accelerations for
142
                        meanZ5 = round(mean(Z), 4),
143
                        \max X5 = \operatorname{round}(\max(X), 4),
                                                                                three-axis for 5-min intervals
144
                        maxY5 = round(max(Y), 4),
145
                        \max Z5 = \operatorname{round}(\max(Z), 4)
146
                        ) %>%
```

2020 multate (Datatime = ymd_hms (Datatime, tz="'Asia/Taj.poejo

147

Extracting activity data (accelerations for three-axis)

149

150

151

153

154

156

157 158 ^Δ

155

152 -

 Because the start time may be different between G-sensor and HRV monitoring ("result.json" file), the difference between two files should be less than 3 seconds.

18. To determine the difference of start time between G-sensor and "result.json" file

```
# To check whether the time of G-sensor is correct
  gap_of_time<-seconds(Rooti_SDNN5$Datatime[1]-Rooti_gsensor_raw_data$Datatime[1]</pre>
  <del>_if(abs(gap_of_time)<=3){</del>
                                                                 If the difference is less than 3 seconds,
  Rooti_gsensor_raw_data<-Rooti_gsensor_raw_data %>%
    mutate(Datatime = Datatime +gap_of_time)
                                                                 the time will be corrected
    start_time_error_gsensor<-"Please check the start time of gsensor in GSENSOR folder and start time of activity in result.json."
    write.csv(start_time_error_gsensor,paste0("Start_time_error_in ",subject[i],"_gsensor.csv"),row.names = F)
                                                                                           Mal COCO Hallilli Conise 2
                                                                ➤ DATA (D:)
                                                                   HiASAP
                                                                                           Error result
    If the difference is more than 3 seconds,
                                                                 ✔ ■ HRV
                                                                                           🛕 HRV_LA001_1
the process will be terminated
                                                                       output
                                                    HIASAP-2020 A
                                                                                                                 31
```

▼ ■ Raw Data


```
# To get the sleeping index
160
             sleep_start_time<-list()</pre>
161
                                                               19. To get the start time of sleeping time
162
             in_bed_time<-list()</pre>
             sleep_idx<-list()</pre>
163
             Datatime_sleep<-data.frame()</pre>
164
             sleep_start_time[[i]]<-Rooti_online_result[[i]]$sleep$sleepStartTime</pre>
165
                              If subjects do not have sleeping data, it will not run
                              the following code of sleeping index
166 -
             if(!is.null(Rooti_online_result[[i]]$sleep$sleepStartTime)){
             sleep_start_time[[i]]<-as.POSIXct(sleep_start_time[[i]], origin="1970-01-01",tz="Asia/Taipei
167
             in_bed_time[[i]]<-Rooti_online_result[[i]] $sleep$inBedTime</pre>
168
             sleep_idx[[i]]<-Rooti_online_result[[i]]&sleep$slp_idx</pre>
169
                                                                                        Type
                                                                                                               Value
     20. To get the time and sleeping index
                                                                  Rooti_online_result
                                                                                        list [7]
                                                                                                              List of length
                                                                                        list [2 x 12] (S3: data.frame)
                                                                                                              A data.frame
                                                                    🔾 sleep
             during the sleeping period
                                                                       sleepStartTime
                                                                                        integer [2]
                                                                                                              1539007015 1
                                                                       WASO
                                                                                                              80 26
                                                                                        integer [2]
                                                                       SOL
                                                                                        integer [2]
                                                                                                               38 58
                                                                       inBedTime
                                                                                        integer [2]
                                                                                                              601 633
                                                                                                              List of length
                                                                     slp idx
                                                                                        list [2]
       2020/10/5
                                                          HIASAP-2020 AL
```

21. To calculated the data time of the sleeping time

22. To combine the sleeping index with data time

```
Datatime_sleep_m<-Datatime_sleep_m[(2:nrow(Datatime_sleep_m)),]

sleep_idx[[i]][[s]]<-sleep_idx[[i]][[s]][(1:length(Datatime_sleep_m))]

Datatime_sleep_m<-data.frame(Datatime =Datatime_sleep_m,sleep_idx=sleep_idx[[i]][[s]])

Datatime_sleep<-rbind(Datatime_sleep_m,Datatime_sleep)

Datatime_sleep$Datatime<-as.POSIXct(Datatime_sleep$Datatime, origin="1970-01-01",tz="Asia/Taipei")

}
```

 Because the start time may be also different between sleeping data and G-sensor data, the difference between two files should be less than 3 seconds.

22. To determine the difference of start time between sleeping data and G-sensor data

```
# To check whether the time of sleeping is correct
  179
  180
             Datatime_gsensor<-data.frame(Datatime = Datatime_gsensor)</pre>
             Datatime_gsensor$Datatime<-as.POSIXct(Datatime_gsensor$Datatime, origin="1970-01-01",tz="Asia/Taipei")
  181
             if(second(Datatime_gsensor$Datatime[1]) == 0&second(Datatime_sleep$Datatime[1]) > 55) {
  182 -
  183
               gap_of_time_sleep<-60-second(Datatime_sleep$Datatime[1])</pre>
             }else if(second(Datatime_gsensor$Datatime[1])==1&second(Datatime_sleep$Datatime[1])>55){
  184 -
               gap_of_time_sleep<-61-second(Datatime_sleep$Datatime[1])</pre>
  185
             }else if(second(Datatime_gsensor$Datatime[1])==2&second(Datatime_sleep$Datatime[1])>55){
  186 -
  187
               gap_of_time_sleep<-62-second(Datatime_sleep$Datatime[1])</pre>
             }else if(second(Datatime_gsensor$Datatime[1])>55&second(Datatime_sleep$Datatime[1])==0){
  188 -
               gap_of_time_sleep<-second(Datatime_gsensor$Datatime[1])-60</pre>
  189
             }else if(second(Datatime_gsensor$Datatime[1])>55&second(Datatime_sleep$Datatime[1])==1){
  190 -
               gap_of_time_sleep<-second(Datatime_gsensor$Datatime[1])-61</pre>
  191
             }else if(second(Datatime_gsensor$Datatime[1])>55&second(Datatime_sleep$Datatime[1])==2){
  192 -
  193
               gap_of_time_sleep<-second(Datatime_gsensor$Datatime[1])-62</pre>
  194 -
             }else{
             gap_of_time_sleep<-second(Datatime_gsensor$Datatime@ARF20-20econd(Datatime_sleep$Datatime[1])
2020/510/5
  196 -
```

```
198 -
           if(abs(gap_of_time_sleep)<=3){</pre>
199
           Datatime_sleep<-Datatime_sleep %>%
200
             mutate(Datatime = Datatime +gap_of_time_sleep) %>%
                                                                          the time will be corrected
             full_ioin(Datatime_gsensor.by = "Datatime")
201
           Datatime_sleep<-Datatime_sleep %>%
202
203
             group_by(Datatime = cut(Datatime, breaks="300 secs")) %>%
204
             summarize(sleep_idx5 = max(sleep_idx,na.rm=F)
205
             ) %>%
             mutate(Datatime = ymd_hms(Datatime,tz="Asia/Taipei"
206
207 -
           }else{
             start_time_error_sleep<-"Please check the start time of Sleep and start time of activity in result.json."
208
             write.csv(start_time_error_sleep,paste0("Start_time_error_in ",subject[i],"_sleep.csv"),row.names = F)
209
210 -
211 -
               If the difference is more than 3 seconds,
                                                                  ✓ _ DATA (D:)
```

If the difference is less than 3 seconds,

23. To determine the sleeping index in the 5-min interval

✓ I HiASAP the process will be terminated

Ma, ZUZU Haililliu CUUISE J Error_result ✔ ■ HRV A HRV LA001 1 output d ⊔DV I A001 2 ▼ Naw_Data

35

Data combination for each subject

24. To merge all HRV data

```
# To combine all Rooti data for each subject
Rooti_SDNN5<-Rooti_SDNN5 %>%
  select(test, Datatime, SDNN5)
Rooti_total<-data.frame(Rooti_SDNN5,Rooti_RMSSD5$RMSSD5,Rooti_lfhf5$LFHF5,Rooti_lf5$LF5,Rooti_hf5$HF5,Rooti_vlf5$VLF5,Rooti_tp5$TP5)
colnames(Rooti_total) [names(Rooti_total) == "Rooti_RMSSD5.RMSSD5"]<-"RMSSD5"</pre>
colnames(Rooti_total)[names(Rooti_total) == "Rooti_1fhf5.LFHF5"]<-"LFHF5"</pre>
colnames(Rooti_total)[names(Rooti_total) == "Rooti_lf5.LF5"]<-"LF5"</pre>
colnames(Rooti_total)[names(Rooti_total) == "Rooti_hf5.HF5"]<-"HF5"</pre>
colnames(Rooti_total)[names(Rooti_total) == "Rooti_vlf5.VLF5"]<-"VLF5"</pre>
colnames(Rooti_total)[names(Rooti_total) == "Rooti_tp5.TP5"]<-"TP5"
Rooti_total<-Rooti_total %>%
  full_join(Rooti_gsensor,by = "Datatime")
                                                                  25. To combine activity data with HRV data
Rooti_total<-Rooti_total %>%
  full_join(Rooti_gsensor_raw_data,by = "Datatime")
if(!is.null(Rooti_online_result[[i]]$sleep$sleepStartTime)){
Rooti_total<-Rooti_total %>%
  full_join(Datatime_sleep,by = "Datatime")
                                                                    26. To combine sleeping index with
}else{
                                   No sleeping data
  Rooti_total$sleep_idx5<-NA
                                                                                       HRV data
                                   -> Awake
Rooti_total<-Rooti_total %>%
  full_join(Rooti_HR,by = "Datatime")
```

27. To combine activity data with HRV data

213

214

215

216

217 218

219 220

221 222

223

224

225

226

228

229 230 -

231

233

234

232 -

227 -

Data combination for each subject

Sleeping **Sleeping status** 28. To re-code the "NA" as "4" for sleeping index index Deep sleep Rooti_total\$sleep_idx5[is.na(Rooti_total\$sleep_idx5)] <- 4</pre> 2 Light sleep Rapid Eye Movement 29. To exclude the time without HRV data (REM) Awake 4 Rooti_total<-Rooti_total %>% filter(!(is.na(test))) 30. To add the variable of S_no<-substr(subject[i],1,5)</pre> Rooti_total<-data.frame(S_no.Rooti_total) subjects' ID to the HRV data

```
244
245
```

236

238239

240

241

242

Rooti_total<-Rooti_total %>% select(S_no,Datatime,HRsum5,HRmean5,SDNN5,RMSSD5,LFHF5,LF5,HF5,VLF5,TP5,Gsensor5,meanX5,meanY5,maxX5,maxY5,maxZ5,sleep_idx5)

31. To select variables which will use in the following analysis

Excluding the ineffective time (bad time)

32. To read the bad time of HRV monitoring

```
247
           # To exclude data of ineffective time (bad time) and extreme data
            badtime_path <- list.files(paste0(way, subject[i], "/OUTPUT/bad_time.txt"))</pre>
248
249
250
           bad_time<-list()
251 -
            if(length(badtime_path)==0){
                bad_time[[i]]<-Rooti_online_result[[i]]$Q_factor$bad_min
252
253 -
           }else{
                bad_time <- read.table(paste0(way, subject[i], "/OUTPUT/bad_time.txt"))</pre>
254
255 -
                for (j in 1:nrow(bad_time[[i]])) {
                    bad_time[[i]][j]<-start_time[[i]][1]+minutes(bad_time[[i]][j])</pre>
256
257 -
                                                                         Type
                                                       Name
258
```

To automatically select the bad time from "bad_time.txt" file or "result.json" file

mode integer [1]

Q_factor list [1 x 4] (S3: data.frame)

total_length integer [1]

bad_min list [1]

good_percentage double [1]

bad_length integer [1]

list [7]

Rooti online result

Excluding the ineffective time (bad time)

```
bad_time[[i]]<-data.frame(V1 = bad_time[[i]][[1]])
bad_time[[i]]$V1<-as.POSIXct(bad_time[[i]]$V1, origin="1970-01-01",tz="Asia/Taipei")

33. To combine bad
time to HRV data
```

```
263
                                      Rooti_total$bad_time<-0
264 -
                                     for (q in 1:(nrow(bad_time[[i]]))) {
265 -
                                       for (k in 1:(nrow(Rooti_total)-1)) {
266 -
                                             if(!(Rooti_total\$Datatime[k] \le bad_time[[i]]\$V1[q])\&!(bad_time[[i]]\$V1[q] \le Rooti_total\$Datatime[k+1])\&(Rooti_total\$bad_time[k] == 0)){
267
                                                     Rooti_total$bad_time[k]<-0
268 -
                                             }else if(!(Rooti_total$Datatime[k]<=bad_time[[i]]$V1[q])&!(bad_time[[i]]$V1[q]<Rooti_total$Datatime[k+1])&(Rooti_total$bad_time[k]==1)){</pre>
                                                     Rooti_total$bad_time[k]<-1
269
270 -
                                             else if((Rooti_total\$Datatime[k] <= bad_time[[i]]\$V1[q])\&(bad_time[[i]]\$V1[q] <= bad_time[k+1])\&(Rooti_total\$Datatime[k+1])\&(Rooti_total\$bad_time[k] == 1)){
271
                                                     Rooti_total$bad_time[k]<-1
                                             ellow{$} else if((Rooti_total_{Datatime}[k] <= bad_time[[i]]_$V1[q])&(bad_time[[i]]_$V1[q] <= bad_time[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{Datatime}[k+1])&(Rooti_total_{D
272 -
273
                                                     Rooti_total$bad_time[k]<-1
```

34. To determine whether the data time is bad time in minute

2020/10/5 HiASAP-2020 AI 39

Excluding the ineffective time (bad time) and

35. To determine whether the data time is bad time in 5-min interval

```
277 + 278 + 279 + 280 281 + 282 283 + 284 285 + 286 287 *
```

```
for (q in 1:nrow(bad_time[[i]])) {
   for (k in nrow(Rooti_total)) {
     if(!(Rooti_total$Datatime[k]<=bad_time[[i]]$V1[q])&!(bad_time[[i]]$V1[q]<=(Rooti_total$Datatime[k]+minutes(4)))&(Rooti_total$bad_time[k]
     Rooti_total$Datatime[k]<-0
   }else if(!(Rooti_total$Datatime[k]<=bad_time[[i]]$V1[q])&!(bad_time[[i]]$V1[q]<=(Rooti_total$Datatime[k]+minutes(4)))&(Rooti_total$bad_Rooti_total$bad_time[k]<-1
   }else if((Rooti_total$Datatime[k]<=bad_time[[i]]$V1[q])&(bad_time[[i]]$V1[q]<=(Rooti_total$Datatime[k]+minutes(4)))&(Rooti_total$bad_time[k]+Rooti_total$bad_time[k]<-1
   }else if((Rooti_total$Datatime[k]<=bad_time[[i]]$V1[q])&(bad_time[[i]]$V1[q]<=(Rooti_total$Datatime[k]+minutes(4)))&(Rooti_total$bad_time[k]+Rooti_total$bad_time[k]<-1
   }else if((Rooti_total$Datatime[k]<-1
}</pre>
```

36. To exclude the 5-min intervals contained bad time and the data with abnormal signals

```
290
291
292
293
294
295
```

Data combination for all subjects

37. To combine HRV data for all subjects

```
# To combine HRV data for all subjects
     way2 <- paste0(location, "HiASAP/HRV/output")</pre>
300
     aa1 <- list.files(way2,pattern="HRV")</pre>
301
302
303
     HRV <- data.frame()
     filename <- paste0(way2,"/",aa1[1])
     cc <- read.csv(filename)</pre>
305
306
     HRV <- cc
307 - for(k in 2:length(aa1)){
308
         filename <- paste0(way2,"/",aa1[k])</pre>
         cc <- read.csv(filename)</pre>
309
         HRV <- rbind(HRV,cc)</pre>
310
311 - }
```



```
313 # To create the time variables (year, month, day, hour and minute) for the following data matching
    library(lubridate)
    yy<-c()
                                                          38. To create the time-related variables
315
    mm<-c()
316
                                                          for data combination
     dd<-c()
317
318
    hh<-c()
319
     mn<-c()
                                                                    To avoid the formats of date may be
320 - for(1 in 1: dim(HRV)[1]){
321 -
         if(nchar(as.character(HRV$Datatime[1]))==14){
                                                                    different
             yy[1] <- as.numeric(substr(HRV$Datatime[1],1,4))</pre>
322
                                                                    Ex: 2020-03-03 / 2020-3-10 / 2020-3-1 ....
             mm[1] <- as.numeric(substr(HRV$Datatime[1],6,6))</pre>
323
             dd[1] <- as.numeric(substr(HRV$Datatime[1],8,8))</pre>
324
             hh[l] <- as.numeric(substr(HRV$Datatime[l],10,11))</pre>
325
             mn[1] <- as.numeric(substr(HRV$Datatime[1],13,14))</pre>
326
327 -
         }else{
             it(nchar(as.character(HRV$Datatime[1]))==15)}
328 -
                 yy[1] <- as.numeric(substr(HRV$Datatime[1],1,4))
329
                 mm[1] <- as.numeric(substr(HRV$Datatime[1],6,6))</pre>
330
331
                 dd[1] <- as.numeric(substr(HRV$Datatime[1],8,9))</pre>
332
                 hh[1] <- as.numeric(substr(HRV$Datatime[1],11,12))</pre>
                 mn[1] <- as.numeric(substr(HRV$Datatime[1],14,15))</pre>
333
334 -
         }else{
                 yy[1] <- as.numeric(substr(HRV$Datatime[1],1,4)) ---->
335
                                                                            Year
336
                 mm[1] <- as.numeric(substr(HRV$Datatime[1],6,7)) -----
                                                                            Month
                 dd[1] <- as.numeric(substr(HRV$Datatime[1],9,10)) -----</pre>
337
                                                                            Day
                 hh[l] <- as.numeric(substr(HRV$Datatime[l],12,13)) ----
338
                                                                             Hour
339
                 mn[1] <- as.numeric(substr(HRV$Datatime[1],15,16))</pre>
                                                                            Minute
340 4
```

HiASAP-2020 AI

42

2020/10/5

39. To create a variable of 30-minute interval of each hour for merging data with TAD

```
343 mn_30 <- c()
344 for (l in 1:length(mn)) {
345 if(mn[l] < 30) {
346 mn_30[l] <- 1
347 }else{
348 mn_30[l] <- 2
349 }
350 }
```

		Minute_30	Minute	Hour	Day	Month	Year
Time between 30	—	2 2	46 51	13 13	8		2018 2018
to 59 minutes -> 2		2	56	13	8	10	2018
Time between 0 to		1	1	14	8		2018
29 minutes -> 1		1	11	14	8	10	2018 2018

351 date_1 <- c(ymd_hm(paste0(yy,"-",mm,"-",dd," ",hh,":",mn)))

40. To format the date variable

Ex: 2020-01-01 14:11

```
HRVfinal <- data.frame()</pre>
352
353 - for(j in 1:dim(HRV)[1]){
354
          HRVfinal[j,1]<-date_1[j]</pre>
355
          HRVfinal[j,2]<-yy[j]</pre>
356
          HRVfinal[j,3]<-mm[j]</pre>
357
          HRVfinal[j,4]<-dd[j]</pre>
          HRVfinal[j,5]<-hh[j]
358
          HRVfinal[j,6]<-mn[j]</pre>
359
360
          HRVfinal[j,7]<-mn_30[j]
          HRVfinal[j,8] < -HRV[j,1]
361
          HRVfinal[j,9]<-HRV[j,3]</pre>
362
363
          HRVfinal[j,10] < -HRV[j,4]
          HRVfinal[j,11] < -HRV[j,5]
364
365
          HRVfinal[j,12] < -HRV[j,6]
          HRVfinal[j,13] < -HRV[j,7]
366
367
          HRVfinal[j,14] < -HRV[j,8]
          HRVfinal[j,15] < -HRV[j,9]
368
369
          HRVfinal[j,16] < -HRV[j,10]
370
          HRVfinal[j,17] < -HRV[j,11]
371
          HRVfinal[j,18] < -HRV[j,12]
372
          HRVfinal[j,19]<-HRV[j,13]
373
          HRVfinal[j,20] < -HRV[j,14]
374
          HRVfinal[j,21] < -HRV[j,15]
375
          HRVfinal[j.22]<-HRV[j.16]
376
          HRVfinal[j,23]<-HRV[j,17]
          HRVfinal[j,24] < -HRV[j,18]
377
          HRVfinal[j,25]<-HRV[j,19]</pre>
```

41. To combine time-related variables with HRV data

HiASAP-2020 AI 44

Data export

42. To export the final dataset of HRV data for all subject

colnames(HRVfinal)<-c("Date","Year","Month","Day","Hour","Minute","Minute_30","S_no","HRsum5","HRmean5","RMSSD5","SDNN5","LFHF5","LF5","HF5","VLF5 outputname<-"HRV_5 minute_All.csv"

382 write.csv(HRVfinal,outputname,row.names=FALSE,na="")

	А	В	С	D	Е	F	G	Н	I	J	K	L	М	N	Ο	Р	Q	R	5 🔺
1	Date	Year	Month	Day	Hour	Minute	Minute_	3(S_no	HRsum5	HRmean5	RMSSD5	SDNN5	LFHF5	LF5	HF5	VLF5	TP5	Gsensor5	Mear
2	2019/3/8 20:44	2019	3	8	20	44		2 LA001	395	79	55	32	2.11388	2724.052	1288.647	1042.454	5280.367	225213	-91.
3	2019/3/8 20:49	2019	3	8	20	49		2 LA001	381	76	21	11	5.30485	148.0447	27.90743	369.4822	559.5795	236084	-83.
4	2019/3/8 20:54	2019	3	8	20	54		2 LA001	378	75	22	. 13	2.02665	165.0012	81.41592	308.2564	572.0915	237179	-112
5	2019/3/8 20:59	2019	3	8	20	59		2 LA001	385	77	25	11	7.63461	249.6129	32.69492	493.2865	785.7868	253149	-99.
6	2019/3/8 21:04	2019	3	8	21	4		1 LA001	401	80	50	10	8.13229	324.7405	39.93225	2188.406	2562.708	275926	-58.
7	2019/3/8 21:09	2019	3	8	21	9		1 LA001	393	78	46	12	5.59928	343.4503	61.33825	1564.531	1983.003	342981	-76.
8	2019/3/8 21:19	2019	3	8	21	19		1 LA001	405	81	24	13	3.47165	226.2616	65.17399	432.4855	740.236	242236	-104
9	2019/3/8 21:24	2019	3	8	21	24		1 LA001	375	75	21	11	2.13299	98.88472	46.35963	307.0851	460.9489	176192	-4.
10	2019/3/8 21:29	2019	3	8	21	29		1 LA001	373	74	22	. 11	2.37502	104.9368	44.18362	366.4598	521.509	136830	-74.
11	2019/3/8 21:34	2019	3	8	21	34		2 LA001	375	75	25	10	2.12332	96.44783	45.42303	615.4884	761.8169	133101	-74.
10	2010/2/0 21.20	2010	2	0	21	20		2 T A 001	277	75	22	1/	2 00021	1/12/2002	16 00000	261 1125	A50 7175	126072	50

2020/10/5 HiASAP-2020 AI 45

Thank you for your attention