Numerical Solution with Spectral Method for Smoluchowski Equation on S^2

Bella My Phuong Quynh Duong

Heinrich-Heine University Düsseldorf

September 26, 2023

Table of Contents

- Introduction
 - Motivation
- Spectral method
- Numerical Results
 - Shear flow on S^2
 - Stability analysis
 - Elongational flow
 - Stability analysis

Overview

- Introduction
 - Motivation
- 2 Spectral method
- Numerical Results
 - Shear flow on S^2
 - Stability analysis
 - Elongational flow
 - Stability analysis

 Focus on a system of partial differential equations which couples a kinetic equation to a macroscopic flow equation. This system model (given by Helzel & Tzavaras) a sedimentation process in suspension of rigid rod-like particles.

General about the project

- Focus on a system of partial differential equations which couples a kinetic equation to a macroscopic flow equation. This system model (given by Helzel & Tzavaras) a sedimentation process in suspension of rigid rod-like particles.
- Study the coupled system on S^1

General about the project

- Focus on a system of partial differential equations which couples a kinetic equation to a macroscopic flow equation. This system model (given by Helzel & Tzavaras) a sedimentation process in suspension of rigid rod-like particles.
- Study the coupled system on S^1
- Construction a lower-dimensional model by using a hierarchy of moment equations

General about the project

- Focus on a system of partial differential equations which couples a kinetic equation to a macroscopic flow equation. This system model (given by Helzel & Tzavaras) a sedimentation process in suspension of rigid rod-like particles.
- Study the coupled system on S^1
- Construction a lower-dimensional model by using a hierarchy of moment equations
- The moment equations are a hyperbolic system with a source term

$$\partial_t Q(x,t) + A \partial_x Q(x,t) = \phi(Q(x,t))$$

The update of the source term is equivalent to a spectral method ([1]).

General about the project

- Focus on a system of partial differential equations which couples a kinetic equation to a macroscopic flow equation. This system model (given by Helzel & Tzavaras) a sedimentation process in suspension of rigid rod-like particles.
- Study the coupled system on S^1
- Construction a lower-dimensional model by using a hierarchy of moment equations
- The moment equations are a hyperbolic system with a source term

$$\partial_t Q(x,t) + A \partial_x Q(x,t) = \phi(Q(x,t))$$

The update of the source term is equivalent to a spectral method ([1]).

General about the project

ullet Study the coupled system on S^2 , which is a five dimensional problem (plus time)

- Focus on a system of partial differential equations which couples a kinetic equation to a macroscopic flow equation. This system model (given by Helzel & Tzavaras) a sedimentation process in suspension of rigid rod-like particles.
- Study the coupled system on S^1
- Construction a lower-dimensional model by using a hierarchy of moment equations
- The moment equations are a hyperbolic system with a source term

$$\partial_t Q(x,t) + A \partial_x Q(x,t) = \phi(Q(x,t))$$

The update of the source term is equivalent to a spectral method ([1]).

General about the project

- ullet Study the coupled system on S^2 , which is a five dimensional problem (plus time)
- Reduction of the higher-dimensional model by a three-dimensional system of partial differential equations

- Focus on a system of partial differential equations which couples a kinetic equation to a macroscopic flow equation. This system model (given by Helzel & Tzavaras) a sedimentation process in suspension of rigid rod-like particles.
- Study the coupled system on S^1
- Construction a lower-dimensional model by using a hierarchy of moment equations
- The moment equations are a hyperbolic system with a source term

$$\partial_t Q(x,t) + A \partial_x Q(x,t) = \phi(Q(x,t))$$

The update of the source term is equivalent to a spectral method ([1]).

General about the project

- ullet Study the coupled system on S^2 , which is a five dimensional problem (plus time)
- Reduction of the higher-dimensional model by a three-dimensional system of partial differential equations

First step

ullet Derive a spectral Method for the Smoluchowski Equation on S^2

- Focus on a system of partial differential equations which couples a kinetic equation to a macroscopic flow equation. This system model (given by Helzel & Tzavaras) a sedimentation process in suspension of rigid rod-like particles.
- Study the coupled system on S^1
- Construction a lower-dimensional model by using a hierarchy of moment equations
- The moment equations are a hyperbolic system with a source term

$$\partial_t Q(x,t) + A \partial_x Q(x,t) = \phi(Q(x,t))$$

The update of the source term is equivalent to a spectral method ([1]).

General about the project

- ullet Study the coupled system on S^2 , which is a five dimensional problem (plus time)
- Reduction of the higher-dimensional model by a three-dimensional system of partial differential equations

- Derive a spectral Method for the Smoluchowski Equation on S^2
- •

Overview

- Introduction
 - Motivation
- 2 Spectral method
- Numerical Results
 - Shear flow on S^2
 - Stability analysis
 - Elongational flow
 - Stability analysis

Mathematical Model for the Sedimentation of Rod-Like Particles [4]

Coupling of a Smoluchowski Equation and a Navier-Stokes Equation

$$\begin{split} \partial_t f + \nabla_x \cdot (\boldsymbol{u}f) + \nabla_{\boldsymbol{n}} \cdot (P_{\boldsymbol{n}^\perp} \nabla_x \boldsymbol{u} \boldsymbol{n} f) - \nabla_x \cdot ((I + \boldsymbol{n} \otimes \boldsymbol{n}) e_3 f) \\ &= D_r \Delta_n f + \gamma \nabla_x \cdot (I + \boldsymbol{n} \otimes \boldsymbol{n}) \nabla_x f, \\ \sigma &= \int_{S^{d-1}} (\mathsf{d} \ \boldsymbol{n} \otimes \boldsymbol{n} - I) f d\boldsymbol{n}, \end{split}$$

$$\mathsf{Re} \left(\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla_x) \, \boldsymbol{u} \right) = \Delta_x \boldsymbol{u} - \nabla_x p + \delta \gamma \nabla_x \cdot \sigma - \delta \int_{S^{d-1}} f d\boldsymbol{n} \, e_3, \\ \nabla_x \cdot \boldsymbol{u} &= 0. \end{split}$$

where $f = f(t; x; n), x \in \mathbb{R}^d, n \in S^{d-1}, t \in \mathbb{R}$ is a density distribution function of particle orientation. D_t, γ, δ and Re are non-dimensional values.

Consider

$$\frac{\partial_t f + \nabla_x \cdot (\mathbf{u}f) + \nabla_n \cdot (P_{\mathbf{n}^{\perp}} \nabla_x \mathbf{u} \mathbf{n}f) - \nabla_x \cdot ((I + \mathbf{n} \otimes \mathbf{n}) e_3 f)}{= D_r \Delta_n f + \gamma \nabla_x \cdot (I + \mathbf{n} \otimes \mathbf{n}) \nabla_x f}. \tag{1}$$

Rewrite the equation (1) in spherical coordinates ([2], [3]) and it follows

$$\sin\theta\partial_t f + \partial_\phi \left(a(\phi,\theta)f \right) + \partial_\theta \left(b(\phi,\theta)f \right) = D_r \left(\partial_\phi \left(\frac{1}{\sin\theta} \partial_\phi f \right) + \partial_\theta \left(\sin\theta \partial_\theta f \right) \right), \tag{2}$$

with $\phi \in [0,2\cdot\pi]$ and $\theta \in [0,\pi]$. Solving the Smoluchoswki equation (2) on S^2 by using a spectral method, which is based on the ansatz

$$f(\phi, \theta, t) = f_0(t) \cdot P_0^0 + \sum_{n=1}^{\infty} \sum_{i=-n}^{n} c_{2n}^i(t) \cdot P_{2n}^i(\phi, \theta), \tag{3}$$

where $P_{2n}^i(\phi,\theta)$ are harmonic polynomial basis functions.

Harmonic polynomial basis functions

Let $P_n^i(\phi,\theta)$ with $n=0,...,\infty$ and i=n,...,-n be the basis function

TODO

The scalar product of any two basis functions over sphere is defined as follows

$$< P_n^i, P_m^l>_{S^2} = \int_0^{2\pi} \int_0^{\pi} P_n^i(\phi, \theta) \cdot P_m^l(\phi, \theta) \cdot \sin(\theta) d\theta d\phi.$$

Properties of harmonic polynomial basis functions

Property 1

Let $P_n^i(\phi,\theta)$ and $P_m^l(\phi,\theta)$ are two different harmonic polynomial basis functions. Then

$$< P_n^i, P_m^l >_{S^2} = 0,$$

for $i \neq l$ or $n \neq m$.

Property 2

Let P_n^i be the normalized harmonic polynomial basis functions. Then

$$< P_n^i, P_n^i>_{S^2} = 1.$$

Property 3

The spherical harmonic function are the eigenfunctions of Laplace-Beltrami operator with the eigenvalues $(-n(n+1), n \in \mathbb{N}_0)$ (see [5])

$$\Delta_{S^2} P_n^i = -n(n+1)P_n^i.$$

Spectral method

Recall the Smochluchowski equation on S^2

$$\underbrace{\frac{\sin\theta\partial_{t}f}{(1)}}_{(1)} + \underbrace{\partial_{\phi}\left(a(\phi,\theta)f\right) + \partial_{\theta}\left(b(\phi,\theta)f\right)}_{(2)} = \underbrace{D_{r}\left(\partial_{\phi}\left(\frac{1}{\sin\theta}\partial_{\phi}f\right) + \partial_{\theta}\left(\sin\theta\partial_{\theta}f\right)\right)}_{(3)} \tag{4}$$

and the ansatz

$$f(\phi, \theta, t) = f_0(t) \cdot P_0^0 + \sum_{n=1}^{\infty} \sum_{i=-n}^{n} c_{2n}^i(t) \cdot P_{2n}^i(\phi, \theta).$$
 (5)

The Laplace Beltrami operator ([3]) on the unit sphere S^2 is given by

$$\Delta_{S^2} f = \frac{1}{\sin^2 \theta} \partial_{\phi\phi} f + \frac{1}{\sin \theta} \partial_{\theta} \left(\sin \theta \partial_{\theta} f \right). \tag{6}$$

From property 3 and the equation (6), it follows for the term (3)

$$\Delta_{S^2} P_{2n}^i = -n(n+1) P_{2n}^i.$$

For the term (1) and (2), we inserting (5) in (4), multiplying with each basis function and integrate it over S^2 . We derive a system of ODEs for the coefficients

$$\begin{pmatrix} f_0 \\ c_2^{-2} \\ \vdots \\ c_{2n}^{l} \end{pmatrix}' = A \begin{pmatrix} f_0 \\ c_2^{-2} \\ \vdots \\ c_{2n}^{l} \end{pmatrix}, \tag{7}$$

with $A \in \mathbb{R}^{cn \times cn}$

$$cn = \left\{ egin{array}{ll} {
m order} &= 2: & cn = 2 \cdot {
m order} + 2 \ {
m order} &= {
m even}: & c2 = 6 \ & cn = c2 \ & cn = c2 + \sum_{i=4}^{order} (2i+1) \end{array}
ight.$$

Example: Shear flow

Example: Shear flow

Consider the Smoluchowski equation (4) with the velocity gradient

$$\vec{u} = \left(\begin{array}{c} u(x,y,z) \\ v(x,y,z) \\ w(x,y,z) \end{array} \right), \nabla_x \vec{u}_{\text{ext}} = \left(\begin{array}{ccc} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{array} \right) = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right).$$

With the given velocity gradient it follows

$$\partial_{t} (\sin \theta f) + \partial_{\theta} (\sin \phi \cos \phi \sin^{2} \theta \cos \theta f) + \partial_{\phi} (-\sin \theta \sin^{2} \phi f)$$

$$= D_{r} \left(\partial_{\theta} (\sin \theta \partial_{\theta} f) + \partial_{\phi} \left(\frac{1}{\sin \theta} \partial_{\phi} f \right) \right). \tag{8}$$

Consider the ansatz with the zeroth order

$$f(\phi, \theta, t) = f_0(t) \cdot P_0^0. \tag{9}$$

Insert the ansatz (9) in (8)

$$\partial_t (f_0(t) \cdot P_0^0) + \frac{1}{\sin \theta} \left(\partial_\theta (\ldots) + \partial_\phi (\ldots) \right) = \frac{1}{\sin \theta} D_r (\ldots). \tag{10}$$

We know

$$\Delta_{S^2} P_0^0(\phi, \theta) = \frac{1}{\sin \theta} D_r(\ldots) = \lambda_{2n,i} \cdot P_0^0(\phi, \theta),$$

where $\lambda_{2n,i}$ is the corresponding eigenvalue.

Since $P_0^0(\phi, heta)=1$ does not depend on ϕ and heta, the partial derivatives will be zero

$$\Delta_{S^2} P_0^0(\phi, \theta) = 0. \tag{11}$$

Consider the rest of the equation (10)

$$\underbrace{\frac{\partial_t (f_0(t) \cdot P_0^0)}{(1)}}_{(1)} + \underbrace{\frac{1}{\sin \theta} \left(\partial_\theta (\sin \phi \cos \phi \sin^2 \theta \cos \theta \cdot f_0(t) \cdot P_0^0) + \partial_\phi (-\sin \theta \sin^2 \phi \cdot f_0(t) \cdot P_0^0) \right)}_{(2)}.$$

It is

$$\partial_t \left(f_0(t) \cdot P_0^0 \right) = f_0'(t).$$

Let $z(\phi, \theta) := (2)$

Project the solution $z(\phi,\theta)$ onto all polynomials to find out which polynomial are needed

$$\begin{split} & \int_0^{2\pi} \int_0^\pi z(\phi,\theta) \cdot P_2^{-2}(\phi,\theta) \sin\theta d\theta d\phi \stackrel{\textit{Maple}}{=} 0 \\ & \int_0^{2\pi} \int_0^\pi z(\phi,\theta) \cdot P_2^{-1}(\phi,\theta) \sin\theta d\theta d\phi \stackrel{\textit{Maple}}{=} 0 \\ & \int_0^{2\pi} \int_0^\pi z(\phi,\theta) \cdot P_2^{0}(\phi,\theta) \sin\theta d\theta d\phi \stackrel{\textit{Maple}}{=} 0 \\ & \int_0^{2\pi} \int_0^\pi z(\phi,\theta) \cdot P_2^{1}(\phi,\theta) \sin\theta d\theta d\phi \stackrel{\textit{Maple}}{=} 0 \\ & \int_0^{2\pi} \int_0^\pi z(\phi,\theta) \cdot P_2^{1}(\phi,\theta) \sin\theta d\theta d\phi \stackrel{\textit{Maple}}{=} 0 \\ & \int_0^{2\pi} \int_0^\pi z(\phi,\theta) \cdot P_2^{1}(\phi,\theta) \sin\theta d\theta d\phi \stackrel{\textit{Maple}}{=} 0 \end{split}$$

It follows

$$f_0(t) \cdot P_0^0 \cdot \frac{1}{\sin \theta} \left(\partial_\theta \left(\sin \phi \cos \phi \sin^2 \theta \cos \theta \right) + \partial_\phi \left(-\sin \theta \sin^2 \phi \right) \right) = f_0(t) \left[-\frac{\sqrt{15}}{2} P_2^2 \right]. \quad (12)$$

Together we have

$$f_0'(t) - \frac{\sqrt{15}}{2} f_0(t) P_2^2(\phi, \theta) = 0 \cdot P_0^0(\phi, \theta) D_r.$$

For the ansatzfunction with higher order, the calculation is done in the same way. As an example we obtain an ODE system with ansatzfunction of the 2nd. order

$$\begin{pmatrix} f'_0(t) \\ c_2^{-2} \\ c_2^{-1} \\ c_2^{0} \\ c_2^{1} \\ c_2^{2} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -6D_r & 0 & 0 & 0 & 1 \\ 0 & 0 & -6D_r & 0 & 5/7 & 0 \\ 0 & 0 & 0 & -6D_r & 0 & -\frac{\sqrt{3}}{7} \\ 0 & 0 & 0 & -2/7 & 0 & -6D_r & 0 \\ \frac{\sqrt{15}}{5} & 1 & 0 & -\frac{\sqrt{3}}{7} & 0 & -6D_r \end{pmatrix} \cdot \begin{pmatrix} f_0 \\ c_2^{-2} \\ c_2^{-1} \\ c_2^{0} \\ c_2^{1} \\ c_2^{2} \end{pmatrix}$$
(13)

Overview

- Introduction
 - Motivation
- 2 Spectral method
- Numerical Results
 - Shear flow on S^2
 - Stability analysis
 - Elongational flow
 - Stability analysis

Shear flow on S^2

Shear flow on \mathcal{S}^2

Consider the externally imposed shear flow

$$\mathbf{u} = \begin{pmatrix} u(y) \\ 0 \\ 0 \end{pmatrix}, \quad \nabla_{\mathbf{x}} \mathbf{u} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (14)

Figure 1: Steady state solution of the Smoluchowski equation approximated at T=10 using different values of D_r .

0.090

0.085

0.080

0.075

0.070

0.065

Shear flow: Stability analysis

Figure 2: Eigenvalue of matrix A with basis functions of 2nd. order

Proposition 1

Sprectal method for 2nd. order is stable with for both small and large D_r .

Shear flow: Stability analysis

Figure 3: Eigenvalue of matrix A with basis functions of 8th. order

Proposition 2

Sprectal method for 8th. order is stable with for both small and large D_r .

Elongational flow

Elongational flow

Consider the externally imposed velocity gradient

$$abla_{ec{x}}ec{u}_{ ext{ext}} = \left(egin{array}{ccc} 2 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & -1 \end{array}
ight).$$

The exact steady-state solution has the form

$$f_{\rm exact}(\phi,\theta) = C_1 \exp\left(-\frac{3}{2D_{\rm r}} \left(1 - \cos^2(\phi)\sin^2(\theta)\right)\right), \tag{15}$$

with the constants $C_1 = 2.30121384511755303190$ for $D_r = 0.1$.

Figure 4: Exact steady state solution with different D_r

Elongational flow

Figure 5: Numerical solution on S^2 with basis functions of 14th. order

Convergence Study

For the convergence study, the maximum norm error is used

$$E_{max} = max|U_{exact} - U_{approx}|.$$

Figure 6: Error with respect to basisfunction with different D_r

(a) Coefficients as function order

(b) Eigenwert of matrix A order

Figure 7: With 2nd. order and $D_r = 0.1$

(a) Coefficients as function order

Figure 8: With 2nd. order and $D_r = 1$

(a) Coefficients as function order

Figure 9: With 4th. order and $D_r = 0.1$

(a) Coefficients as function order

(b) Eigenwert of matrix A order

Figure 10: With 4th. order and $D_r = 1$

(a) Coefficients as function order

() 3

Figure 11: With 14th. order and $D_r = 0.1$

Conclusion

Finding

- ullet For small D_r we have seen that the error was relatively large.
- The eigenvalue of the matrix A of the 2nd. order ODE system for $D_r = 0.1$ has a positive real part \rightarrow the ansatzfunction with 2nd. order is unsuitable.
- The spectral method becomes stable when taking more approach functions for small D_r .

Thank you for listening!

Literatur |

Hyperbolic systems of moment equations describing sedimentation in suspensions of rod-like particles.

Multiscale Modeling & Simulation, 20(3):1002-1039, 2022.

Multiscale simulations for suspensions of rod-like molecules.

J. Comput. Phys., 216(1):52-75, 2006.

C. Helzel and M. Schneiders.

Numerical approximation of the Smoluchowski equation using radial basis functions.

J. Comput. Math., 38(1):176-194, 2020.

C. Helzel and A. E. Tzavaras.

A kinetic model for the sedimentation of rod-like particles.

Multiscale Model. Simul., 15(1):500-536, 2017.

Literatur II

M. Morimoto.

Analytic functionals on the sphere, volume 178 of Transl. Math. Monogr.

Providence, RI: American Mathematical Society, 1998.