

WILLETTON SENIOR HIGH SCHOOL

MATHEMATICS METHODS – UNIT TWO
TEST FOUR 2021
SECTION ONE: Calculator Free

STUDENT NAME:	••••••
TOTAL MARKS:	/ 37
TIME ALLOWED:	20 mins

CIRCLE YOUR TEACHER'S NAME:

Mrs Scoles Mrs Kalotay Ms Leow Mr Riemer

Ms Thompson Mr Whiteley Ms Tsen

- Formulae sheet supplied.
- No calculators allowed.
- If a question is worth more than 2 marks, sufficient working must be shown to justify your answer, in order to receive full marks.

- 1. Consider the sequence: 15 , _____ , 405 , ...
 - a. Given that these terms follow an arithmetic sequence, determine the value of T₂. [3]

b. Given that these terms follow a geometric sequence, determine the value of T₃. [3]

2. Determine all the possible values of x given that 4, x, $(x^2 - 3)$ are consecutive terms of a geometric sequence. [4]

3. Determine the derivative of the following functions.

a.
$$f(x) = 3x^4 - 5$$
 [1]

b.
$$f(x) = 4\pi^2 - \sqrt{x}$$
 [2]

c.
$$f(x) = \frac{5x^2 - 4}{x^3}$$
 [2]

4. Determine the derivative of $y = x^3 - 12x + 3$ using first principles.

[4]

5. Find the equation of the tangent to the curve $y = x^2 + 4x - 1$ at the point where x = 1. [4]

6. Determine the anti-derivative for each of the following functions.
 a.
$$3x^4-6$$
 [1]

b.
$$2x(3x-1)^2$$
 [2]

7. A function is defined by $f(x) = x^4 - 8x^2 + 7$. After factorisation, $f(x) = (x^2 - 7)(x^2 - 1)$.

a. Given that $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ are the coordinates of the x-intercepts of f(x), determine the coordinates of the remaining x-intercepts. [2]

b. Use calculus techniques to determine the nature and location of any stationary points. [6]

c. In the space below, draw a sketch of the function, including the location of any intercepts, stationary points and indicate the behaviour as $x \to \pm \infty$. [3]

WILLETTON SENIOR HIGH SCHOOL

MATHEMATICS METHODS – UNIT TWO

TEST FOUR 2021

SECTION TWO: Calculator Assumed

STUDENT NAME	:						
TOTAL MARKS:		/ 25					
TIME ALLOWED:	20 mins						
CIRCLE YOUR TEACHER'S NAME:							
Mrs Kalotay	Ms Leow	Mr Riemer	Mrs Scoles				
Ms Thompson	Ms Tsen	Mr Whiteley					

- Formulae sheet supplied.
- One page of A4 notes allowed.
- Classpads and scientific calculators are allowed.
- If a question is worth more than 2 marks, sufficient working must be shown to justify your answer, in order to receive full marks.

8.	A fatal disease is caused by a particular bacteria increasing in such a way that the nur bacteria present after t hours is given by $N(t) = 5t^3 + 4t^2 + 300$. Determine:	number of	
	a. The number of bacteria present initially.	[1]	
	b. The average rate of increase of bacteria in the first 10 hours.	[2]	
	c. The expression for the instantaneous rate of change of bacteria.	[1]	
	d. The rate of change of the number of bacteria at:		
	i. $t=150$ minutes.	[1]	
	ii. $t=1$ day.	[1]	
9.	A geometric sequence with $T_2=43.75\mathrm{has}$ a sum to infinity of 400. Determine all po T_1 for this sequence.	ssible values of [3]	

- 10. A sequence is defined by $T_{n+1}=T_n-3.55,\ T_1=835.$
 - a. Determine T_{150} . [1]
 - b. Determine the sum of the first 35 terms, S_{35} . [1]
 - c. Determine the value of n that will maximise S_n and state the corresponding value of S_n . Explain why this value of S_n is the maximum. [3]

11. The gradient of the tangent of a graph is given by $m=x^2+x+k$, where k is a constant. Given that f(0)=-2 and f(-1)=0, determine the equation of the graph. [3]

12. The perimeter of a sector of a circle, of radius r cm and angle θ radians, is 60 cm.

a. Show that $\theta = \frac{60}{r} - 2$.

[2]

b. Hence, show that the area of the sector is given by $30r - r^2$.

[2]

c. Use calculus to determine the maximum area of the sector and state the corresponding values of r and θ . [4]