Câu 2. Cho hàm số f(x) có bảng xét dấu đạo hàm như sau

x	$-\infty$		\bigcirc	0		3		+∞
y'		((()	0		\overline{C}	0	+	

Các mệnh đề sau đúng hay sai?

Mệnh đề				
a)	Hàm số đồng biến trên khoảng (-3;0).			
b)	Hàm số nghịch biến trên khoảng (0;3).	✓		
c)	Hàm số đồng biến trên khoảng $(-\infty;0)$.		V	
d)	Hàm số nghịch biến trên khoảng $(-\infty; -3)$.		V	

Câu 9. Cho hàm số $y = x^3 + 3x^2 - mx + 1$ (tham số m). Các mệnh đề sau đúng hay sai?

	Mệnh đề	Đúng	Sai
a)	$m=0$ thì hàm số đồng biến trên $(-\infty;+\infty)$		V
b)	Với $m = 0$ thì hàm số đồng biến trên $(a; +\infty)$, khi đó a là một nghiệm của phương	V	
	$trình 3x^2 + 6x = 0$		
c)	c) Để hàm số $y = x^3 + 3x^2 - mx + 1$ đồng biến trên khoảng $(-\infty; 0)$ thì giá trị lớn nhất		
	của m bằng 3		V
d)	Hàm số $y = x^3 + 3x^2 - mx + 1$ đồng biến trên khoảng $(-\infty; 0)$ khi $m \le b$, khi đó thể		
	tích khối lập phương có cạnh bằng $\left b\right $ là 9		

a,
$$3(3+3)x^{2}+1$$

 $y'=3(x^{2}+6)x=0 \rightarrow [3(x)=2]$
b, Bot $3(x^{2}+6)x=0 \rightarrow [3(x)=2]$
 $y'=3(x^{2}+6)x=0 \rightarrow [3(x)=2]$
 $x'=3(x^{2}+6)x=0 \rightarrow [3(x)=2]$
c, $y'=3(x^{2}+6)x=0 \rightarrow [3(x)=2]$

- **Câu 10.** Cho hàm số f(x) có đạo hàm $f''(x) = x(x-1)(x+2)^3$, $\forall x \in R$. Xác định số điểm cực trị của hàm số đã cho
- **Câu 11.** Cho hàm số y = f(x) có đạo hàm $f'(x) = (x-2)(x^2-3)(x^4-9)$. Xác định số điểm cực trị của hàm số y = f(x)

10.
$$f'(y) = 0 \rightarrow \begin{bmatrix} y = 0 \\ y = 1 \end{bmatrix} \rightarrow \begin{bmatrix} y = 0 \\ y = -1 \end{bmatrix} \rightarrow \begin{bmatrix} y = 0 \\ y =$$

Câu 19. (Sở Bình Phước 2019) Cho hàm số
$$f(x)$$
 có đạo hàm $f'(x) = (x-1)(x-2)^2 (x-3)^3 (x-4)^4$, $\forall x \in \mathbb{R}$. Số điểm cực trị của hàm số đã cho là

Câu 20. (**THPT Gia Lộc Hải Dương 2019**) Cho hàm số f(x) có đạo hàm $f'(x) = x(x-1)(x-2)^2$, $\forall x \in \mathbb{R}$. Số điểm cực trị của hàm số đã cho là

A. 5. (B. 2. C. 1. D. 3. Câu 21. (Chuyên Lam Sơn Thanh Hóa 2019) Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và

 $f'(x) = (x-1)(x-2)^2(x+3)$. Số điểm cực trị của hàm số đã cho là:

$$\frac{1}{1} (x) = \chi (x^{2} - 3x) (x^{2} - 9) (x + 3)^{2} (x - 4)^{3} (x^{2} - 4) = 0 \qquad x = 0 (2)$$

$$\frac{1}{1} (x) = \chi (x^{2} - 3x) (x^{2} - 9) (x + 3)^{2} (x - 4)^{3} (x^{2} - 4) = 0 \qquad x = 0 (2)$$

$$\frac{1}{1} (x) = \chi (x^{2} - 3x) (x^{2} - 9) (x + 3)^{2} (x - 4)^{3} (x^{2} - 4) = 0 \qquad x = 0 (2)$$

$$\frac{1}{1} (x) = \chi (x^{2} - 3x) (x^{2} - 4)^{3} (x^{2} - 4)$$

Câu 12. Tìm tất cả các giá trị của tham số m để hàm số $y = x^3 - 3x^2 + mx + 1$ đạt cực tiểu tại x = 2. **Câu 13.** (**THPT Đoàn Thượng - Hải Dương 2019**) Tìm các giá trị thực của tham số m để hàm số $y = \frac{1}{2}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực đại tại x = 3.

12,
$$y = x^3 - 3x^2 + mx + 1$$
 $\rightarrow y^1 = 3x^2 - 6x + m$
 $y \text{ stat CT toy}; x = 2 \rightarrow x = 2 \text{ locality}; \rightarrow x = 2 \text{ locality}; or and otag hain.}$

$$\Rightarrow y^1(2) = 0 \Rightarrow 12 - 12 + m = 0 \Rightarrow m = 0$$

13>
$$y = \frac{1}{3}x^{2} - mx^{2} + (m^{2} - 4)x + 3$$

-> $y = x^{2} - 2mx + m^{2} - 4$

> m=0 (t/m)

$$y'(3)=0 \rightarrow 9-6m+m^2-4=0 \rightarrow m^2-6m+5=0 \rightarrow [m=5]{m=1}$$

TH4:
$$m=5 \rightarrow g' = x^2 - \lambda 0x + 21 = 0 \rightarrow x=3$$

$$(x=7) \rightarrow m=5 (T/m)$$

THJ:
$$m=1$$
 $\rightarrow y=1$ $x^{2}-3x-3=0$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0$$

Câu 32. (Chuyên Hạ Long 2019) Tìm
$$m$$
 để hàm số $y = x^3 - 2mx^2 + mx + 1$ đạt cực tiểu tại $x = 1$

A. không tồn tại m.

B.
$$m = \pm 1$$
.

C m=1.

D.
$$m \in \{1, 2\}$$

Câu 33. (Chuyên QH Huế - Lần 2 - 2019) Xác định tham số m sao cho hàm số $y = x + m\sqrt{x}$ đạt cực tri tai x=1.

A.
$$m = -2$$
.

B.
$$m = 2$$
.

C.
$$m = -6$$
.

D.
$$m = 6$$
.

33,
$$\theta k + \theta$$
: χ), θ
 $y = 1 + m \cdot \frac{1}{2} - y'(1) = 0 - 1 + \frac{1}{2} \cdot m = 0 - m = -2$

$$(m \mathcal{G} x)^{\dagger} = m.(\mathcal{G} x)^{\dagger} = m. \underline{A}$$

$$(x^{n})^{1} = n \cdot x^{n-1}$$

$$(x^{n})' = n \cdot x^{n-1}$$

 $(m \cdot x)' = m \cdot 1$
 $(x^{n})' = n \cdot x^{n-1}$
 $(x^{n})' = 1 \cdot x^{\frac{1}{2}-1} = 1 \cdot x^{-\frac{1}{2}}$

$$x^{-n} = \frac{1}{x^n} = \frac{1}{x} \cdot \frac{1}{x^{\frac{1}{2}}} = \frac{1}{x^{\frac{1}{$$

(THPT Xuân Hòa-Vĩnh Phúc- 2018) Biết đồ thị hàm số $y = x^3 - 3x + 1$ có hai điểm cực trị A, 1-3+1=-1

B. Viết phương trình đường thẳng AB

$$y = 3x^{2} - 3 = 0 \rightarrow [x = 1 \rightarrow y(1) = -1 \rightarrow A(1, -1)]$$

 $x = -1 \rightarrow y(-1) = 3 \rightarrow B(-1, 3)$

Vi A, B € ofth y ->
$$\begin{cases} -1 = a.1 + b \\ 3 = a.(-1) + b \end{cases}$$
 $\Rightarrow \begin{cases} a = -2 \\ b = 1 \end{cases}$ $\Rightarrow y = -2x + 1$

Câu 43. Đồ thị của hàm số $y = x^3 - 3x^2 - 9x + 1$ có hai điểm cực trị A và B. Điểm nào dưới đây thuộc đường thẳng AB.

A.
$$P(1;0)$$
.

B.
$$M(0;-1)$$
.

$$N(1;-10)$$
. **D.** $Q(-1;10)$.

D.
$$Q(-1;10)$$