Homogeneity in donkey sentences

Handout with key formulae

Lucas Champollion, champollion@nyu.edu
SALT 26, May 12-15, 2016

Full slide set available at champollion.com/2016_salt_presentation.pdf

Pragmatics

The Current Issue (\approx QUD): a salient question that gives rise to an equivalence relation " \approx " on worlds. w \approx w' means that w and w' agree on the current issue.

Sentence S is judged true at w₀ iff it is "true enough":

- that is, if S is True (at w₀), or
- if S is Neither at w_0 , True at some $w \approx w_0$, and not False at any $w' \approx w_0$

Otherwise, S is judged false.

Semantics

- 1. farmer $\rightarrow \lambda v$. $\lambda I \lambda O$. I=O $\land \forall i \in I$. farmer(i(v)) Shorthand: λv . [farmer{v}]
- 2. beats $\rightarrow \lambda \nu \lambda \nu'$. $\lambda I \lambda O$. I=O $\land \forall i \in I$. beats(i(v),i(v')) Shorthand: $\lambda \nu \lambda \nu'$. [beats{v,v'}]
- 3. A condition is a test on an input state: λI ...
 - A. Atomic predicates: $R\{u\} =_{def} \lambda I. \forall i \in I. R(i(u))$
- 4. A DRS relates input to output states: λI λO ...
 - A. Lifting a condition C into a DRS: $[C] =_{def} \lambda I \lambda O. C(I) \wedge I=O$
 - B. Random and targeted assignments of discourse referents: $[u] =_{def} \lambda I \lambda O. \ \forall i \in I \ \exists o \in O. \ i[u]o \ \land \ \forall o \in O \ \exists i \in I. \ i[u]o$ $u:=x =_{def} \lambda I \ \lambda O. \ [u](I)(O) \ \land \ \forall o \in O. \ o(u)=x$
- 5. succeeds(D,I) =_{def} $\exists O \neq \epsilon$. D(I)(O)

 D transitions to some non-error state

- 6. $fails(D,I) =_{def} \neg \exists O. D(I)(O)$ D does not transition to any output state
- 7. error(D,I) =_{def} \exists O. D(I)(O) \land \forall O. (D(I)(O) \rightarrow O= ϵ) D only transitions to error states
- 8. DRS negation checks that a DRS fails on any nonempty substate of the input state:

$$\sim$$
D =_{def} λ I. \forall H≠ε. H⊆I \rightarrow fails(D,H)

9. DRS disjunction checks that at least one of the disjuncts succeeds:

$$D \mid D' =_{def} \lambda I$$
. succeeds(D,I) \vee succeeds(D',I)

10. DRS conjunction: apply the two DRSs in sequence

D; D' =_{def}
$$\lambda I \lambda O$$
. $\exists H$. $D(I)(H) \wedge D'(H)(O)$

11. Maximalization: store as many different entities under column *u* as possible as long as D returns an output

$$\max_{u}(D) =_{def} \lambda I \lambda O.$$
 $(I=O=\epsilon) \vee ([u] ; D)(I)(O) \wedge \forall K.$ $([u] ; D)(I)(K) \rightarrow uK \subseteq uJ$ where $uK =_{def} \{ x : there is an i in K such that $x=i(u) \}$$

- 12. uniformTest(D) = $def \lambda I$. (D | [~D])
- 13. uniform(D) =_{def} $\lambda I \lambda O$. (uniformTest(D)(I) \wedge I=O) \vee (¬uniformTest(D)(I) \wedge O= ϵ)
- 14. it_{u2} $\rightarrow \lambda P$. uniform(P(u₂)); P(u₂)
- 15. brays $\rightarrow \lambda v$. brays{v}
- 16. Lift(it_{u2}) $\rightarrow \lambda R \lambda v$. uniform(R(u₂)(v)); R(u₂)(v)
- 17. beats $\rightarrow \lambda v' \lambda v$. beats{v,v'}
- 18. every_u =_{def} $\lambda D \lambda D' \lambda I \lambda O$.

```
( O=I \land \forall x. (succeeds(u:=x; D)(I) \rightarrow succeeds(u:=x; D; D')(I)) ) \lor ( O=\epsilon \land \neg \forall x. (succeeds(u:=x; D)(I) \rightarrow succeeds(u:=x; D; D')(I)) \land \exists x. (succeeds(u:=x; D)(I) \land fails(u:=x; D; D')(I))
```