7630 – Autonomous Robotics Introduction to Mapping

Cédric Pradalier

March 18th, 2013

Objectives

Mapping

- ► Occupancy grids
- ► Relative mapping
- Kalman-Filter-based mapping

Later lecture: SLAM

- ► SLAM = Simultaneous Localisation and Mapping
- ► EKF-SLAM
- ► FastSLAM: Particle filter for SLAM
- ► MonoSLAM: SLAM with a single camera

Outline

Bayesian Fusion

Mapping

Mapping using Occupancy Grids Mapping using Feature Maps Mapping using Kalman Filters

Examples

Bayesian Fusion

Assumptions

- ► A variable X is being estimated
- ▶ A set of observations $\{Z_i\}$ correlated with X are being made.

$$P(X Z_1 ... Z_n) = P(X) \prod_{i=1}^n P(Z_i|X)$$
 (1)

$$P(X|Z_1 \ldots Z_n) \propto P(X) \prod_{i=1}^n P(Z_i|X)$$
 (2)

Bayesian Fusion: Gaussians

Assumptions

▶ All distributions are Gaussian: $P(X) \to \mathcal{N}(\mu_0, \Sigma_0)$, $P(Z_i|X) \to \mathcal{N}(\nu_i, \sigma_i)$.

$$P(X|Z_1 \ldots Z_n) \propto P(X) \prod_{i=1}^n P(Z_i|X)$$
 (3)

▶ Hence $P(X|Z_1...Z_n)$ is Gaussian $\mathcal{N}(\mu_n, \Sigma_n)$.

$$\log P(X|Z_1 \dots Z_n) = \log P(X) + \sum_{i=1}^n \log P(Z_i|X) + Cst$$

Bayesian Fusion: Gaussians

Assumptions

$$\blacktriangleright \ P(X) \to \mathcal{N}(\mu_0, \Sigma_0), \ P(Z_i|X) \to \mathcal{N}(\nu_i = h(x), \sigma_i).$$

$$\log P(X|Z_1 \dots Z_n) = \log P(X) + \sum_{i=1}^n \log P(Z_i|X) + Cst$$

$$(\mu_n - x)^T \Sigma_n^{-1} (\mu_n - x) = (\mu_0 - x)^T \Sigma_0^{-1} (\mu_0 - x)$$

$$+ \sum_{i=1}^n (\nu_i - h(x))^T \sigma_i^{-1} (\nu_i - h(x)) + Cst$$

$$h(x) = x$$
 and $n = 1$

$$(\mu_{1} - x)^{T} \Sigma_{1}^{-1} (\mu_{1} - x)$$

$$= (\mu_{0} - x)^{T} \Sigma_{0}^{-1} (\mu_{0} - x) + (\nu_{1} - x)^{T} \sigma_{1}^{-1} (\nu_{1} - x) + Cst$$

$$\mu_{1}^{T} \Sigma_{1}^{-1} \mu_{1} + 2\mu_{1}^{T} \Sigma_{1}^{-1} x + x^{T} \Sigma_{1}^{-1} x$$

$$= \mu_{0}^{T} \Sigma_{0}^{-1} \mu_{0} + 2\mu_{0}^{T} \Sigma_{0}^{-1} x + x^{T} \Sigma_{0}^{-1} x$$

$$+ \nu_{1}^{T} \sigma_{1}^{-1} \nu_{1} + 2\nu_{1}^{T} \sigma_{1}^{-1} x + x^{T} \sigma_{1}^{-1} x + Cste$$

Hence

$$\begin{array}{rcl} \Sigma_1^{-1} & = & \Sigma_0^{-1} + \sigma_1^{-1} \\ \mu_1 & = & \Sigma_1 \left(\Sigma_0^{-1} \mu_0 + \sigma_1^{-1} \nu_1 \right) \end{array}$$

$$h(x) = x$$
 and $n = 1$

$$\begin{array}{rcl} \Sigma_1^{-1} & = & \Sigma_0^{-1} + \sigma_1^{-1} \\ \mu_1 & = & \Sigma_1 \left(\Sigma_0^{-1} \mu_0 + \sigma_1^{-1} \nu_1 \right) \end{array}$$

Can be rewritten as:

$$K = \Sigma_0 (\Sigma_0 + \sigma_1)^{-1}$$

$$\Sigma_1 = (I - K)\Sigma_0$$

$$\mu_1 = \mu_0 + K (\nu_1 - \mu_0)$$

$$h(x) = Hx$$
 and $n = 1$

$$K = \Sigma_0 H^T (H \Sigma_0 H^T + \sigma_1)$$

$$\Sigma_1 = (I - KH) \Sigma_0$$

$$\mu_1 = \mu_0 + K (\nu_1 - H \mu_0)$$

$$h(x)$$
 non linear and $n=1$
$$H = \frac{\partial h}{\partial x} \longrightarrow \text{Jacobian}$$

$$K = \Sigma_0 H^T \left(H \Sigma_0 H^T + \sigma_1 \right)^{-1}$$

$$\Sigma_1 = (I - KH) \Sigma_0$$

$$\mu_1 = \mu_0 + K \left(\nu_1 - H \mu_0 \right)$$

Maximum A Posteriori (MAP)

▶ We are just interested in the maximum of $P(X|Z_1...X_n)$, i.e. μ_n .

$$\arg \max_{X} P(X|Z_{1} \dots Z_{n}) = \arg \min_{X} \log P(X|Z_{1} \dots Z_{n})$$

$$= \arg \min_{X} (\mu_{0} - x)^{T} \Sigma_{0}^{-1} (\mu_{0} - x)$$

$$+ \sum_{i=1}^{n} (\nu_{i} - h(x))^{T} \sigma_{i}^{-1} (\nu_{i} - h(x))$$

▶ Weighted least-square minimisation (or regression), non-linear if h is non-linear.

Recursive Bayesian Fusion

Assumptions

- ► A variable *X* is being estimated
- ▶ A set of observations $\{Z_i\}$ correlated with X are being made over time.
- ▶ We denote $Bel_k(X) = P(X|Z_1 ... Z_k)$.

$$Bel_k(X) = P(X|Z_1 ... Z_k) \propto P(X) \prod_{i=1}^k P(Z_i|X)$$
$$= \left[P(X) \prod_{i=1}^{k-1} P(Z_i|X)\right] P(Z_k|X)$$
$$= P(Z_k|X) \cdot Bel_{k-1}(X)$$

Recursive Bayesian Fusion, with Gaussian Assumption

Assumptions

$$Bel_k(X) = P(Z_k|X) \cdot Bel_{k-1}(X)$$

- ▶ Bel_k is Gaussian $\to \mathcal{N}(x_k, P_k)$
- ▶ $P(Z_k|X)$ is Gaussian $\to \mathcal{N}(h(X),R)$

This is Gaussian Bayesian fusion with n = 1:

$$H = \frac{\partial h}{\partial x} \longrightarrow \text{Jacobian}$$

$$K = P_{k-1}H^T (HP_{k-1}H^T + R)^{-1}$$

$$P_k = (I - KH)P_{k-1}$$

$$x_k = x_{k-1} + K(z_k - Hx_{k-1})$$

Exercise

Problem

Measure the position of a WiFi router (2D) from range measurement z_i taken from a set of positions p_i . The WiFi range measurements are expected to have a 10m precision.

Questions

- ▶ What is the estimated state?
- Using a Gaussian assumption, what are the update equations?
- ▶ What is the precision?
- ► How is the precision of the belief evolving with the number of observations? Can in worsen?

Outline

Bayesian Fusion

Mapping

Mapping using Occupancy Grids Mapping using Feature Maps Mapping using Kalman Filters

Examples

Outline

Bayesian Fusion

Mapping

Mapping using Occupancy Grids

Mapping using Feature Maps Mapping using Kalman Filters

Examples

Mapping using Occupancy Grids

Principle

- ▶ Discrete representation of the map as an array of cell.
- ▶ In each cell, compute the likelihood of occupancy.
- ▶ Requires localisation, but no data association.
- ► Well suited for time-of-flight range sensors, as they give information about occupied and free space.

Mapping using Occupancy Grids

Let's work on the following paper:

► Efficient GPU-based Construction of Occupancy Grids Using several Laser Range-finders M. Yguel, O. Aycard, C. Laugier. Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems (2006)

Also...

- ▶ http://hal.inria.fr/docs/00/18/20/08/PDF/egcog.pdf
- ► And many others...

Occupancy Grids

Questions:

- ► What is the update law?
- ▶ What are log quotients and how do they help?
- ▶ Why do we need ray-tracing algorithms?

Outline

Bayesian Fusion

Mapping

Mapping using Occupancy Grids
Mapping using Feature Maps
Mapping using Kalman Filters

Examples

Mapping using Relative Maps

Principle

- ▶ Observe and estimate parameters independent of the robot pose.
- ► For ground robots: distances and angles
- ► The theory of invariants predict the number and dimensionality of observable given an observation process.
- ▶ Does not require localisation, but helps for data association.

Mapping using Relative Maps

Papers:

New approach to map building using relative position estimates. Michael Csorba; Hugh F. Durrant-Whyte Proc. SPIE 3087, Navigation and Control Technologies for Unmanned Systems II, 115 (June 26, 1997)

Also in the article package:

- ▶ Invariant filtering for simultaneous localization and mapping. Deans, Matthew C.; Hebert, Martial H. IEEE International Conference on Robotics and Automation, 2000.
- ► Simultaneous localization and mapping using the geometric projection filter and correspondence graph matching. C. Pradalier, S. Sekhavat, Advanced Robotics, 17 (7), 675-690, 2003

Relative Maps: Challenges

Questions:

- ▶ Initialization?
- Building a cartesian representation?

Outline

Bayesian Fusion

Mapping

Mapping using Occupancy Grids Mapping using Feature Maps Mapping using Kalman Filters

Examples

Mapping using Kalman Filters

Map representation

- ▶ List of objects described by parameters.
- ▶ Examples: point landmark (x, y) or (x, y, z), lines, planes, ...

Kalman filtering: hypothesis

- ► Known robot/sensor position
- ▶ Gaussian noise
- No prediction step (or no uncertainty in the prediction step)
- ▶ Only perception step: P(Z|LX)

Observation model

Conditional Independence

► Assuming data association:

$$P(Z_1 ... Z_p | L_1 ... L_n X) = \prod_{i=1}^p P(Z_i | L_{k(i)} X)$$
 (4)

▶ leads to *n* kalman filter, one for each landmark.

Homework: Step 3

Objectives:

- ► Same environment than for the (future) localisation homework.
- Assuming the robot position is known (TF), build a map of the landmarks.

Challenges:

- ► Initialization.
- ▶ Is it a false observation or a new landmark?
- ► Has this landmark disappeared?
- ▶ Data association (in general).

Homework: Step 1 & 2

Objectives:

- ► Experiment with out-of-the-box mapping solutions
- Actually running SLAM (but in simulation you can check the difference between Mapping and SLAM).
- ► Test on TurtleBots

Challenges:

► Integration of existing blocks...

Recursive Bayesian Fusion

Assumptions

- ► A variable *X* is being estimated
- A set of observations {Z_i} correlated with X are being made over time.
- ▶ We denote $Bel_k(X) = P(X|Z_1 ... Z_k)$.

$$Bel_k(X) = P(X|Z_1 ... Z_k) \propto P(X) \prod_{i=1}^k P(Z_i|X)$$
$$= \left[P(X) \prod_{i=1}^{k-1} P(Z_i|X)\right] P(Z_k|X)$$
$$= P(Z_k|X) \cdot Bel_{k-1}(X)$$

Recursive Bayesian Fusion, Gaussian Assumption

Assumptions

$$Bel_k(X) = P(Z_k|X) \cdot Bel_{k-1}(X)$$

- ▶ Bel_k is Gaussian $\rightarrow \mathcal{N}(x_k, P_k)$
- ▶ $P(Z_k|X)$ is Gaussian $\to \mathcal{N}(h(X),R)$

This is Gaussian Bayesian fusion with n = 1:

$$H = \frac{\partial h}{\partial x} \longrightarrow \text{Jacobian}$$

$$K = P_{k-1}H^T (HP_{k-1}H^T + R)^{-1}$$

$$P_k = (I - KH)P_{k-1}$$

$$x_k = x_{k-1} + K(z_k - Hx_{k-1})$$

The update stage of the Kalman filter (more later)

Recursive Bayesian Filter

Assumptions

- \blacktriangleright A variable X_k is being estimated at time k
- A set of observations {Z_i} correlated with X are being made over time.
- ▶ A model of changes of X_k is available as $P(X_k|X_{k-1}, U_{k-1})$.
- ▶ We denote $Bel_k(X_k) = P(X_k|Z_1 \ldots Z_k, U_1 \ldots U_k) = P(X_k|\mathcal{Z}_k, \mathcal{U}_k)$.

Recursive Bayesian Filter

Bayesian inference:

$$Bel_{k}(X_{k}) = P(X_{k}|\mathcal{Z}_{k}, \mathcal{U}_{k}) \propto P(Z_{k}|X_{k}\mathcal{U}_{k}, \mathcal{Z}_{k-1})P(X_{k}|\mathcal{U}_{k}, \mathcal{Z}_{k-1})$$

$$= P(Z_{k}|X_{k})P(X_{k}|\mathcal{U}_{k}, \mathcal{Z}_{k-1})$$

$$= P(Z_{k}|X_{k}) \int_{X_{k-1}} P(X_{k}|\mathcal{U}_{k}, \mathcal{Z}_{k-1}, X_{k-1})P(X_{k-1}|\mathcal{U}_{k}, \mathcal{Z}_{k-1})$$

$$= P(Z_{k}|X_{k}) \int_{X_{k-1}} P(X_{k}|\mathcal{U}_{k-1}, X_{k-1})P(X_{k-1}|\mathcal{U}_{k-1}, \mathcal{Z}_{k-1})$$

$$= P(Z_{k}|X_{k}) \int_{X_{k-1}} P(X_{k}|\mathcal{U}_{k-1}, X_{k-1})Bel_{k-1}(X_{k-1})$$

Important: know how to derive that.

Recursive Bayesian Filter: Kalman Filter

Assumptions

$$Bel_{k-1}(X_k) = \int_{X_{k-1}} P(X_k|X_{k-1})Bel_{k-1}(X_{k-1})$$

 $Bel_k(X_k) = P(Z_k|X) \cdot Bel_{k-1}(X_k)$

- ▶ Bel_k is Gaussian $\rightarrow \mathcal{N}(x_k, P_k)$
- ▶ $P(X_k|X_{k-1})$ is Gaussian $\to \mathcal{N}(f(X), Q)$
- ▶ $P(Z_k|X_k)$ is Gaussian $\to \mathcal{N}(h(X), R)$

Kalman Filter: Prediction Stage

Assumptions

$$Bel_{k-1}(X_k) = \int_{X_{k-1}} P(X_k|X_{k-1})Bel_{k-1}(X_{k-1} o \mathcal{N}(\bar{x}_k, \bar{P}_k)$$

▶ $P(X_k|X_{k-1})$ is Gaussian $\to \mathcal{N}(f(X_{k-1}, U_{k-1}), Q)$

$$A = \frac{\partial f}{\partial x} \longrightarrow \text{Jacobian}$$

$$B = \frac{\partial f}{\partial u} \longrightarrow \text{Jacobian}$$

$$\bar{x}_k = f(x_{k-1}, u_{k-1})$$

$$\bar{P}_k = AP_{k-1}A^T + (BQ_uB^T) + Q$$

Kalman Filter, Observation stage

Assumptions

$$Bel_k(X_k) = P(Z_k|X_k) \cdot Bel_{k-1}(X_k)$$

- ▶ $Bel_{k-1}(X_k)$ is Gaussian $\to \mathcal{N}(\bar{x}_k, \bar{P}_k)$
- ▶ $Bel_k(X_k)$ is Gaussian $\to \mathcal{N}(x_k, P_k)$
- ▶ $P(Z_k|X)$ is Gaussian $\to \mathcal{N}(h(X),R)$

This is Gaussian Bayesian fusion:

$$H = \frac{\partial h}{\partial x} \longrightarrow \text{Jacobian}$$

$$K = \bar{P}_k H^T (H \bar{P}_k H^T + R)^{-1}$$

$$P_k = (I - KH) \bar{P}_k$$

$$x_k = \bar{x}_{k-1} + K(z_k - H \bar{x}_{k-1})$$

Outline

Bayesian Fusion

Mapping

Mapping using Occupancy Grids Mapping using Feature Maps Mapping using Kalman Filters

Examples

Objectives

Kalman Filter

- ▶ Understand the important matrices
- ▶ Design your own filter
- ► Use cases for robotics

Batch Estimation

- ► Link with filtering
- ► Design your own estimator
- ▶ Use cases

System 1: Argos Float

Description

- ► Float buoy
- ► GPS measurement every second

Objective

System 2: GPS Navigation system

Description

- ► GPS Navigation system in a car
- ► GPS measurement every second

Objective

System 3: Integrated GPS Navigation system

Description

- ► GPS Navigation system in a car
- ► Rear wheel displacement measure (e.g. differential)

$$\begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{bmatrix} = \begin{bmatrix} \frac{\Delta s_L + \Delta s_R}{2} \\ 0 \\ \frac{\Delta s_R - \Delta s_L}{e} \end{bmatrix}$$
 (5)

► GPS measurement every second

Objective

System 4: Integrated GPS Navigation system

Description

- ► GPS Navigation system in a car
- ► Speed and steering measurement

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} v \cos(\theta) \\ v \sin(\theta) \\ \frac{v \tan(\beta)}{L} \end{bmatrix}$$
 (6)

► GPS measurement every second

Objective

System 5: Indoor Navigation system

Description

- ► Indoor robot (e.g. Roomba)
- Differential wheel measurement
- ► Known feature observation with orientation, in body frame

$$Z_i = \left[\begin{array}{c} x_i \\ y_i \\ \theta_i \end{array} \right] \tag{7}$$

Objective

System 6: Indoor Navigation system

Description

- ► Indoor robot (e.g. Roomba)
- Differential wheel measurement
- ► Known feature observation: position only in body frame

$$Z_i = \left[\begin{array}{c} x_i \\ y_i \end{array} \right] \tag{8}$$

Objective

System 6b: Indoor Navigation system

Description

- ► Indoor robot (e.g. Roomba)
- Differential wheel measurement
- ► Known feature observation: range and bearing in body frame

$$Z_i = \left[\begin{array}{c} \rho_i \\ \beta_i \end{array} \right] \tag{9}$$

Objective

System 7: Indoor Navigation system

Description

- ► Indoor robot (e.g. Roomba)
- ▶ Differential wheel measurement
- ► Known feature observation, bearing only in body frame

$$Z_i = \left[\begin{array}{c} \beta_i \end{array} \right] \tag{10}$$

Objective

System 8: Indoor Navigation system

Description

- ► Indoor robot (e.g. Roomba)
- Differential wheel measurement
- ► Known feature observation, range only in body frame

$$Z_i = \left[\begin{array}{c} \rho_i \end{array} \right] \tag{11}$$

Objective

System 9: Underwater system

Description

- ► Torpedo-shaped robot
- ► Lift-drag based motion model
- ► Known feature observation, range only (e.g. sonar pinger)

$$Z_i = \left[\begin{array}{c} \rho_i \end{array} \right] \tag{12}$$

Objective

System 10: Feature mapper

Description

- ▶ Indoor robot
- ► Known localisation
- ▶ Observation of *n* features with known lds.
- ▶ Observation type: range, bearing, position, pose...

Objective

► Map estimation

System 11: Feature-based SLAM

Description

- ▶ Indoor robot
- ► Unknown localisation
- ▶ Observation of *k* features with known lds.
- ▶ Observation type: range, bearing, position, pose...

Objective

► Localisation and Map estimation

System 12: Extrinsic calibration

Description

- ▶ Indoor robot with k sensors.
- ▶ Known localisation
- ▶ Joint observation of one feature with *k* sensors.
- ▶ Observation type: range, bearing, position, pose...

Objective

- ► Sensor position with respect to reference frame (e.g. sensor 1)
- Detection of loose sensors.

System 13: auto-calibration

Description

- ▶ Indoor robot with 1 sensor.
- Differential motion model integrating wheel diameter

$$\begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{bmatrix} = \begin{bmatrix} \frac{r_L \Delta \theta_L + r_R \Delta \theta_R}{2} \\ 0 \\ \frac{r_R \Delta s_R - r_L \Delta s_L}{e} \end{bmatrix}$$
 (13)

► Observation type: range, bearing, position, pose... with respect to known map.

Objective

- \blacktriangleright Auto-estimate wheel diameter r_L and r_R and inter-wheel spacing e
- ▶ Puncture detection.