Coursework II

CID number: You could never find it, ahhah

MATH40002: Analysis I

Imperial College London

July 30, 2023

Problem 1

- 1. This question is shamelessly stolen from Example 6.2.9(b) of "Introduction to Real Analysis" by R. Bartle and D. Sherbert.
 - (a) Prove that if $c \in (100, 105)$ then $10 < \sqrt{c} < 11$.
 - (b) Use the Mean Value Theorem to show that

$$\frac{5}{22} < \sqrt{105} - 10 < \frac{1}{4}$$

(c) Can you improve this estimate?

Solution.

that:

Proof. (a) Proof. We consider the function $f(x) = \sqrt{x}$ for $x \in \mathbb{R}^+$. We know that f(x) is differentiable for x > 0 from the lecture. The derivative of f(x) is $f'(x) = \frac{1}{2\sqrt{x}}$, which is positive for all $x \in \mathbb{R}^+$. Hence, f(x) is strictly monotone incresing for $x \in (99, 122)$. Therefore, for $c \in (100, 105)$, $\sqrt{100} < \sqrt{c} < \sqrt{105} < \sqrt{121}$, which shows that

$$10 < \sqrt{c} < 11$$

(b) We still consider the function $f(x) = \sqrt{x}$ for $x \in \mathbb{R}^+$. The Mean Value Theorem states

Let $f:[a,b]\mapsto\mathbb{R}$ be continous on [a,b] and differentiable on (a,b). Then, there is $c\in(a,b)$ such that $f'(c)=\frac{f(b)-f(a)}{b-a}$.

We apply the Mean Value Theorem with $f(x) = \sqrt{x}$ and set a = 100, b = 105. From the lectre, we know that f(x) is continous and differentiable for x > 0, f(x) is continous on [100, 105] and differentiable on (100, 105). The derivative of f(x) is $f'(x) = \frac{1}{2\sqrt{x}}$ for x > 0. Hence, by the Mean Value Theorem, we abtain that there exists a $c \in (100, 105)$ such that

$$\frac{1}{2\sqrt{c}} = \frac{\sqrt{105} - \sqrt{100}}{105 - 100}$$

$$\sqrt{105} - \sqrt{100} = \frac{5}{2\sqrt{c}}$$

$$\sqrt{105} - 10 = \frac{5}{2\sqrt{c}}$$

By (a), we know that $10 < \sqrt{c} < 11$, we can assert that

$$\frac{5}{2 \times 11} < \sqrt{105} - 10 < \frac{5}{2 \times 10}$$
$$\frac{5}{22} < \sqrt{105} - 10 < \frac{1}{4}$$

by the property of the inequality.

(c) We can improve the estimate by using our conclusiton of (b). As $\frac{5}{22} < \sqrt{105} - 10 < \frac{1}{4}$, it follows that $10.2272 < \sqrt{105} < 10.2500$. Since $c \in (100, 105)$, $\sqrt{c} < \sqrt{105} < 10.2500$. Thus, we can easylly get that

$$\sqrt{105} - 10 = \frac{5}{2\sqrt{c}} > \frac{5}{2 \times 10.2500} > 0.2439$$

by the property of the inequality.

The improved estimate is $0.2439 < \sqrt{105} - 10 < 0.2500$.