

Impact of AI in Medicine

Artificial Intelligence is revolutionizing the field of medicine, with its potential to diagnose and treat diseases more accurately and efficiently than ever before.

Interpreting images

Artificial intelligence is changing the way medical images are analyzed and interpreted. Al algorithms can detect patterns in medical images that may be difficult for humans to recognize, allowing for more accurate diagnoses and treatments.

Setups beyond human versus Al

Benefits of collaboration between radiologists and Al

Al serves as a valuable tool to enhance the accuracy and efficiency of radiologists' diagnoses. By leveraging Al, radiologists can effectively prioritize cases, streamline workflow, and reduce diagnosis time, enabling them to dedicate more attention to complex cases and patient care.

Training loss Kernel sizes (2x2) (3x3) (4x4) (5x5) (6x6) (7x7) 015 010 05 epoch

CNNs

Convolutional Neural Networks can process large volumes of histopathology images quickly, enabling faster diagnosis and treatment planning.

In particular, the proposed model achieves a high accuracy rate of 99.29% in predicting IDC in histopathology images, with an AUROC score of 0.9996.

ResNet-50

To increase the robustness of the classifier, it is possible to employed the transfer learning of the ResNet-50 CNN pretrained on ImageNet, reaching an average accuracy of 99%.

					Res	Ne	t50) M	od	el A	٩rc	hit	ect	ture)				
Zero Padding	CONV Batch Norm	ReLu	Max Pool	Conv Block	ID Block		Conv Block	ID Block		Conv Block	ID Block		Conv Block	ID Block		Avg Pool	Flattening	5	Output
	Stage 1			Stag	ge 2		Stage 3 Stage 4					Stage 5							

Research	Method	Accuracy	
Gour et. al., 2020 [26]	Customized ResHist [152- Residual Learning-CNN]	84.34%	
	Hybrid CNN		
Gupta et. al., 2020 [27]	[Employed Several Pre-Trained CNNs)	93.27%	
Dabeer et. al.,	Customized	93.45%	
2019 [28]	LeNet-5 CNN	93.4370	
Sagar et. al.,	Pre-Trained	98.30%	
2019 [29]	DenseNet201CNN		
Kassani et. al.,	Pre-Trained Combined CNNs		
2019 [30]	[DenseNet201+ VGG19+ MobileNetV2]	98.13%	
Gandomkar et	Pre-Trained	98.77%	
al., 2018 [31]	ResNet-152 CNN		
Adeshina et. al.,	New Deep CNN/14 Layers	91.5%	
2018, [32]	(DCNN-14)		
Han et al.,	New Class Structure-Based	93.20%	
2017 [33]	Deep CNN (CSDCNN)	93.20%	
Sun, et. al,	Pre-Trained	95.00%	
2017 [34]	GoogLeNet CNN		
Spanhol et al.	Pre-Trained	84.60%	
2016 [35]	AlexNet CNN		
Proposed	Pre-Trained	99.10 %	
Method	ResNet-50 CNN		

Limitations and Future of CNNs for Breast Cancer Detection

- Data quality and representativeness
- Privacy and data sharing
- Prospective clinical studies
- Regulatory considerations
- Legal challenges

In the future, medical records should be transformed into intelligible processes, shared openly for point-of-care access, and integrated with "omics-based" data. Simplification, readability, and clinical applicability must be prioritized.

LINEMATATE THE TRANSPORT OF THE TRANSPOR COMPUTER VISION FOR ROBOTIC ASSISTED SURGERY ROBOTIC ASSISTED SURGERY COMPUTER-AIDED CLINICAL DECISION SUPPORT SYSTEMS ROBOT-ASSISTED AUTOMATION OF MEDICAL PROCEDURES -AIDED ROBOT-ASSISTED SURGERY SYSTEMS MEDICAL **AUTOMATION SYST** ROBOT-ASSISTED COMPUTER-AIDED DIAGNOSIS SYSTEMS