

ABSTRACT

White noise & Stationarity check, data transformation, model identification, model selection, residual diagnosis, parameter estimation, and forecasting is done on real-estate Loans data from commercial banks.

Author: Swapnil Sharma M10743959

Table of Contents

Data Set:	2
Chapter1: White Noise check for original data	3
Chapter2: Stationarity check for original data	3
Chapter 3: Transformation and stationarity check	4
Chapter 4: Second order Transformation and ADF test	5
Chapter 5: Model Identification	6
Chapter 6: Parameter Estimates and Residual Diagnosis	7
Residual Diagnosis:	8
Chapter 7: Forecasting	9
Result:	10
FIGURE 1 LOAN ACROSS TIME	2
FIGURE 2 CHECK FOR WHITE NOISE: ORIGINAL DATA	3
FIGURE 3 ADF TEST ON ORIGINAL DATA	4
FIGURE 4 ACF VS LAG PLOT FOR ORIGINAL DATA	4
FIGURE 5 ADF TEST OUTPUT FOR FIRST ORDER DIFFERENCE	5
FIGURE 6 FIRST ORDER DIFFERENCE: TIME SERIES AND ACF VS LAG PLOT	5
FIGURE 7 ADF TEST OUTPUT FOR SECOND ORDER DIFFERENCE	6
FIGURE 8 SECOND ORDER DIFFERENCE: TIME SERIES DATA AND ACF VS LAG PLOT	6
FIGURE 9 MINIC OUTPUT	7
FIGURE 10 SCAN & ESACF OUTPUT	7
FIGURE 11 MEAN ESTIMATE IS ZERO	8
FIGURE 12 WHITE NOISE HYPOTHESIS TESTING OF RESIDUALS	8
FIGURE 13 NORMAL DISTRIBUTION OF RESIDUALS	8
FIGURE 14 2 YEAR FORECAST	9
FIGURE 15 FORECAST WITH 95% CONFIDENCE LEVEL	9

Data Set:

The monthly volume of commercial bank real-estate loans, in billions of dollars, from January 1973 to October 1978, a total of 70 observations. The data is derived from the reports to the Federal Reserve System from large commercial banks.

Code:

```
DATA CASE:
  DO YEAR=73 TO 78;
    DO MONTH=1 TO 12;
     DATE=MDY(MONTH,1,YEAR);
                one=1;
     INPUT LOAN @@;
                Output;
    END;
  END;
KEEP DATE LOAN one;
FORMAT DATE MONYY5.;
Title 'COMMERCIAL BANK REAL-ESTATE LOANS';
CARDS:
46.5 47 47.5 48.3 49.1 50.1 51.1 52 53.2 53.9 54.5 55.2 55.6 55.7 56.1
56.8 57.5 58.3 58.9 59.4 59.8 60 60 60.3 60.1 59.7 59.5 59.4 59.3 59.2
59.1 59 59.3 59.5 59.5 59.5 59.7 59.7 60.5 60.7 61.3 61.4 61.8
62.4 62.4 62.9 63.2 63.4 63.9 64.5 65 65.4 66.3 67.7 69 70 71.4
72.5 73.4 74.6 75.2 75.9 76.8 77.9 79.2 80.5 82.6 84.4 85.9 87.6
PROC PRINT;
RUN;
```


We see increasing loan amount given across the years as per above figure.

Chapter1: White Noise check for original data

White Noise: We desire our original data to not follow white noise characteristics so that time series analysis can be done.

Code:

```
/* Null Hypothesis of white noise for original data testing*/
proc arima data=case;
identify var=LOAN;
run;
```

Null Hypothesis: Time series is White Noise

Result: We reject the null hypothesis as P-value is insignificant which can be seen in the figure below

Autocorrelation Check for White Noise									
To Lag Chi-Square DF Pr > ChiSq Autocorrelations									
6	262.43	6	<.0001	0.926	0.853	0.782	0.715	0.653	0.595
12	352.58	12	<.0001	0.540	0.489	0.441	0.394	0.347	0.303

Figure 2 Check for White Noise: Original data

Chapter2: Stationarity check for original data

Stationarity is required condition for time series analysis. Either original data should be stationary or it should be transformed by various methods and then analyze. Stationarity conditions imply constant mean, constant and constant variance. We can check for stationarity by looking at the ACF plot as well as do ADF test. IF the ACF is slowly decreasing then time series can be called non-stationary.

Code:

```
/* ADF test for stationarity */
proc arima data=case;
identify VAR=LOAN STATIONARITY=(ADF);
RUN;
```

ADF-Test

Null Hypothesis: Time series data is homogenous non-stationary (have unit root)

Result: We cannot reject the null hypothesis for ADF test as we have significant P-value. This indicates that our data is homogeneous non-stationary and we need to transform it to make stationary.

Augmented Dickey-Fuller Unit Root Tests									
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F		
Zero Mean	0	0.6891	0.8479	10.68	0.9999				
	1	0.7757	0.8667	2.13	0.9916				
	2	0.8937	0.8898	1.48	0.9647				
Single Mean	0	2.1198	0.9978	5.06	0.9999	72.19	0.0010		
	1	2.4930	0.9988	1.65	0.9995	3.08	0.2947		
	2	2.9240	0.9994	1.26	0.9983	1.60	0.6678		
Trend	0	4.1693	0.9999	3.63	0.9999	15.14	0.0010		
	1	1.3936	0.9992	0.33	0.9984	1.39	0.8972		
	2	-3.5464	0.9069	-0.42	0.9848	1.26	0.9233		

Figure 3 ADF Test on original data

As we do not have zero or constant mean but increasing trend in the data we consider highlighted P-value to take decision

Figure 4 ACF vs Lag Plot for original data

Chapter 3: Transformation and stationarity check

Now we take first order difference of the time series and again do the ADF test to check stationarity of transformed data.

Code:

/*First order Transformation and stationarity test*/
proc arima data=case;
identify VAR=LOAN(1) STATIONARITY=(ADF);
RUN;

Augmented Dickey-Fuller Unit Root Tests									
Type	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F		
Zero Mean	0	-3.1259	0.2215	-0.96	0.2987				
	1	-0.4866	0.5701	-0.21	0.6086				
	2	0.0691	0.6955	0.03	0.6903				
Single Mean	0	-9.7719	0.1280	-2.02	0.2796	2.15	0.5295		
	1	-4.0606	0.5217	-1.09	0.7149	0.81	0.8649		
	2	-2.4250	0.7211	-0.71	0.8355	0.46	0.9591		
Trend	0	-13.1094	0.2264	-2.52	0.3168	3.44	0.4966		
	1	-6.5596	0.6829	-1.62	0.7745	1.79	0.8191		
	2	-4.9427	0.8156	-1.36	0.8625	1.92	0.7952		

Figure 5 ADF Test Output for First Order Difference

I have used only ADF test to make my decision about stationarity. As all the P-values are significant we can conclude the data is not stationary. This can be also seen from ACF plot as below.

Figure 6 First Order Difference: Time series and ACF vs Lag plot

Chapter 4: Second order Transformation and ADF test

As we didn't get stationary time series data after first order transformation we take second order transformation and check. We might try log transformation and square root transformation if we do not get stationary data after this Chapter.

Code:

/*second order Transformation and stationarity test*/
proc arima data=case;
identify VAR=LOAN(1,1) STATIONARITY=(ADF);
RUN;

Augmented Dickey-Fuller Unit Root Tests									
Type	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F		
Zero Mean	0	-91.0946	<.0001	-11.79	<.0001				
	1	-121.181	0.0001	-7.71	<.0001				
	2	-81.3701	<.0001	-4.88	<.0001				
Single Mean	0	-91.3412	0.0008	-11.76	0.0001	69.17	0.0010		
	1	-123.199	0.0001	-7.70	0.0001	29.66	0.0010		
	2	-84.4053	0.0008	-4.86	0.0002	11.86	0.0010		
Trend	0	-91.8831	0.0002	-11.80	<.0001	69.57	0.0010		
	1	-130.308	0.0001	-7.88	<.0001	31.07	0.0010		
	2	-102.283	0.0001	-5.08	0.0005	12.93	0.0010		

Figure 7 ADF Test Output for Second Order Difference

As the P-values are insignificant we reject the null hypothesis of homogeneous non-stationarity and conclude the second order difference is stationary for the time series. The plot of second order time-series data and ACF vs Lag data can be seen below.

Figure 8 Second Order Difference: Time series data and ACF vs Lag plot

Chapter 5: Model Identification

We have finally transformed original non-stationary data to stationary data and now we need to determine model. We use MINIC, ESACF and SCAN outputs to determine our model.

Code:

/*Model identification*/
proc arima data=case;
identify VAR=LOAN(1,1) MINIC ESACF SCAN;
RUN;

Figure 9 MINIC Output

Here least BIC value suggests the model to be MA(1). This can also be checked from the outputs of SCAN and ESACF. The highlighted cell shows the model to be selected in the figure below.

Figure 10 SCAN & ESACF Output

The highlighted cell suggests that MA (1) model should be tried for second order difference.

Chapter 6: Parameter Estimates and Residual Diagnosis

We consider our model to follow MA(1) and estimate the parameter. Residual diagnosis is also done and we want our residuals to follow white noise and they should be normally distributed for our model to be valid.

We find the estimate of mean to be zero as p value is significant for the hypothesis that mu is zero and hence remove same from the model and rerun the code.

Conditional Least Squares Estimation								
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag			
MU	0.01690	0.02161	0.78	0.4371	0			
MA1,1	0.38532	0.11356	3.39	0.0012	1			

Figure 11 Mean Estimate is zero

Code:

/* Without mu parameter estimate*/
proc arima data=case;
identify VAR=LOAN(1,1);
estimate q=1 noconstant;
RUN;

Residual Diagnosis:

The autocorrelation check is done for residuals and the null hypothesis is that the residuals are white noise. We get significant p-value and hence cannot reject the null hypothesis of white noise. Moreover, they are normally distributed.

Autocorrelation Check of Residuals										
To Lag	Chi-Square	DF	Pr	Pr > Chi Sq Autocorrelations						
6	4.70	5		0.4541	-0.024	0.033	0.131	-0.081	-0.039	-0.188
12	10.30	-11		0.5037	-0.031	-0.141	-0.083	0.165	0.116	0.019
18	13.29	17		0.7164	0.146	0.072	0.001	0.063	0.005	-0.058
24	18.45	23		0.7327	-0.092	-0.074	0.138	-0.111	0.018	0.072

Figure 12 White Noise Hypothesis Testing of Residuals

Figure 13 Normal distribution of Residuals

Chapter 7: Forecasting

The model is validated as residuals show white noise behavior and hence can be used for forecasting.

	Forecasts for variable LOAN							
Obs	Forecast	Std Error	95% Confid	ence Limits				
71	89.2664	0.2867	88.7045	89.8282				
72	90.9327	0.5470	89.8606	92.0048				
73	92.5991	0.8458	90.9414	94.2567				
74	94.2654	1.1810	91.9508	96.5801				
75	95.9318	1.5497	92.8945	98.9691				
76	97.5982	1.9494	93.7775	101.4189				
77	99.2645	2.3779	94.6039	103.9252				
78	100.9309	2.8336	95.3772	106.4846				
79	102.5972	3.3148	96.1003	109.0942				
80	104.2636	3.8204	96.7757	111.7515				
81	105.9300	4.3492	97.4056	114.4543				
82	107.5963	4.9003	97.9919	117.2007				
83	109.2627	5.4728	98.5362	119.9891				
84	110.9290	6.0659	99.0401	122.8180				
85	112.5954	6.6790	99.5048	125.6859				
86	114.2618	7.3114	99.9318	128.5918				
87	115.9281	7.9625	100.3219	131.5343				
88	117.5945	8.6319	100.6763	134.5126				
89	119.2608	9.3190	100.9960	137.5257				
90	120.9272	10.0234	101.2818	140.5726				
91	122.5936	10.7447	101.5344	143.6527				
92	124.2599	11.4824	101.7548	146.7651				
93	125.9263	12.2364	101.9434	149.9091				
94	127.5926	13.0061	102.1012	153.0841				

Figure 14 2 Year Forecast

Figure 15 Forecast with 95% confidence level

Result:

ARIMA (0,2,1) fits the data and forecasts is done for 2 years. Though the forecasting is done for 2 years the interval becomes too wide and hence model will compromise on accuracy if used for predicting long term future.