In [1]: **import** matplotlib.pyplot **as** plt **import** pandas **as** pd **import** numpy **as** np **import** seaborn **as** sns

Read the dataset

In [2]: df = pd.read_csv("DoctorVisits.csv")

n [4]:

df.head(15)

Out[4]:														
Out[1].	Unname	ed: 0 vis	sits gende	r age	income	illness	reduced	health	private	freepoor	freerepat	nchronic	Ichronic	
(01	1	female	0.19	0.55	1	4	1		yes	no	no	no	no
:	1 2	1	female	0.19	0.45	1	2	1		yes	no	no	no	no
:	2 3	1	male	0.19	0.90	3	0	0		no	no	no	no	no
:	34	1	male	0.19	0.15	1	0	0		no	no	no	no	no
	4 5	1	male	0.19	0.45	2	5	1		no	no	no	yes	no
!	5 6	1	female	0.19	0.35	5	1	9		no	no	no	yes	no
	67	1	female	0.19	0.55	4	0	2		no	no	no	no	no
:	7 8	1	female	0.19	0.15	3	0	6		no	no	no	no	no
:	8 9	1	female	0.19	0.65	2	0	5		yes	no	no	no	no
!	9 10	1	male	0.19	0.15	1	0	0		yes	no	no	no	no
:	10	11 1	male	0.19	0.45	1	0	0		no	no	no	no	no
:	11	12 1	male	0.19	0.25	2	0	2		no	no	yes	no	no
:	12	13 2	male	0.19	0.55	3	13	1		no	no	no	yes	no
:	13	14 1	male	0.19	0.45	4	7	6		no	no	no	yes	no
:	14	15 1	male	0.19	0.25	3	1	0		yes	no	no	yes	no

Display complete information about the columns of the dataset such as column name, count, Data type and overoll memory usage

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5190 entries, 0 to 5189 Data

columns (total 13 columns):

Column Non-Null Count Dtype

0 Unnamed: 0 5190 non-null int64
1 visits 5190 non-null int64
2 gender 5190 non-null object
3 age 5190 non-null float64
4 income 5190 non-null int64
5 illness 5190 non-null int64
6 reduced 5190 non-null int64
7 health 5190 non-null int64
8 private 5190 non-null object
9 freepoor 5190 non-null object
10 freerepat 5190 non-null object

11 nchronic 5190 non-null object 12 lchronic 5190 non-null object dtypes: float64(2), int64(5), object(6) memory usage: 527.2+ KB

Find out the total no: of people based on their count of illeness

In [6]: df["illness"].value_counts()

Out[6]:1 1638

0 1554

2 946

3 5424 274

5 236

Name: illness, dtype: int64

ln [7]:

df["gender"].value_counts()

Out[7]:female 2702 male

2488

Name: gender, dtype: int64

visualize and analyse the maximum, minimum and medium income

Find out the no of days of reduced activity of male and female seperately due to illness

In [10]:

df.groupby(['gender', 'reduced']).mean()

C:\Users\user\AppData\Local\Temp\ipykernel_1312\1847069239.py:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy.mean is dep recated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

		Unnamed: 0	visits	age	income	illness	health
gender	reduced						
female	0	2524.038512	0.229322	0.465755	0.482735	1.462144	1.115098
	1	1985.768421	0.400000	0.325684	0.542105	2.242105	1.610526
	2	1622.618182	0.672727	0.391455	0.560182	2.236364	1.781818
	3	997.311111	1.333333	0.403111	0.516000	2.733333	1.733333
	4	1237.740741	0.851852	0.458889	0.466667	2.222222	2.074074
	5	1169.055556	1.444444	0.401667	0.614444	2.222222	2.500000
	6	1382.545455	1.363636	0.426364	0.622727	2.363636	1.363636
	7	1034.846154	1.384615	0.436154	0.473462	2.653846	2.230769
	8	1883.090909	1.090909	0.471818	0.404545	2.181818	4.000000
	9	1349.000000	0.500000	0.570000	0.825000	3.000000	1.000000

10	1099.428571	2.142857	0.512857	0.421429	2.571429	2.000000
12	1661.000000	2.000000	0.720000	0.250000	3.500000	5.500000
13	906.000000	4.000000	0.720000	0.300000	4.500000	3.500000
14	1392.112069	1.543103	0.551724	0.427586	2.534483	4.112069
0	3008.911019	0.136007	0.344703	0.694398	1.099585	0.924850
1	2485.158537	0.304878	0.286220	0.676341	1.743902	1.256098
2	2007.679245	0.471698	0.343585	0.653019	2.358491	1.547170
3	1909.068966	0.724138	0.334138	0.741379	2.137931	1.689655
4	1424.000000	0.722222	0.309444	0.869444	2.055556	2.000000
5	1437.272727	1.136364	0.331818	0.570455	2.272727	2.818182
6	562.000000	0.833333	0.340000	0.591667	2.500000	2.000000
7	1716.750000	0.750000	0.314167	0.655000	2.583333	4.333333
8	680.666667	1.333333	0.365000	0.833333	2.666667	2.000000
9	1375.400000	2.200000	0.310000	0.392000	2.400000	2.000000
10	1543.200000	1.800000	0.480000	0.590000	2.600000	4.600000
11	355.500000	5.000000	0.320000	1.000000	1.500000	0.500000
12	781.500000	2.000000	0.370000	0.515000	1.500000	1.000000
13	508.666667	4.000000	0.510000	0.350000	3.333333	2.333333
14	1236.069444	1.555556	0.476806	0.598611	2.375000	3.527778

 ${\tt df.groupby(['gender', 'reduced']).mean()} \ {\tt Out[10]:}$

male

visualize is their is any missing values in the dataset based on a heat map

In [11]:

#missing values sns.heatmap(df.isnull(),cbar=False,cmap='viridis')
Out[11]:<Axes: >

0 -

Find out the correlation between variables in the given dataset correlation between different variables

In [12]:
 plt.figure(figsize=(10,10))
 sns.heatmap(df.corr(),cbar=**True**,annot=**True**,cmap='Blues')

Analyse how the income of a patient affects the no of visits to the hospital

In [13]:

#relation between income and visits

plt.figure(figsize=(10,10))

plt.scatter(x='income',y='visits',data=df)

plt.xlabel('income') plt.ylabel('visits')

Out[13]:Text(0, 0.5, 'visits')

count and visualize the number of males and females affected by illness

n [14]:

sns.histplot(df.gender,bins=2)

Out[14]:<Axes: xlabel='gender', ylabel='Count'>

visualize the percentage of people getting govt health insurance due to low income, due to old age and also the percentage of the people having private health insurance

In [15]:

#% of people getting Insurance due to low income label=['yes','no']

Y = df[df['freepoor'] == 'yes'] N = df[df['freepoor'] == 'no'] x =

[Y.shape[0], N.shape[0]] plt.figure(figsize=(5,5)) plt.pie(x,labels=label)

plt.title("% of people getting govt health Insurance due to low income ") plt.show()

#% of people having private Insurance

Y = df[df['private']=='yes'] N = df[df['private']=='no'] x =

[Y.shape[0], N.shape[0]] plt.figure(figsize=(5,5))

plt.pie(x,labels=label) plt.title("% of people having private

health Insurance ") plt.show()

 ${\it \#\,\%\,of\,people\,getting\,govt\,Insurance\,due\,to\,old\,age,} disability\,or\,veteran\,status$

Y = df[df['freerepat']=='yes'] N = df[df['freerepat']=='no'] x = [Y.shape[0], N.shape[0]]

plt.figure(figsize=(5,5)) plt.pie(x,labels=label) plt.title("% of people getting govt health Insurance due to old age, disability or veteran status ") plt.show()

% of people getting govt health Insurance due to low income

% of people having private health Insurance

% of people getting govt health Insurance due to old age, disability or veteran status

Plot a horizantal bar chart to analyse the reduced days of activity due to illness based on gender

In [18]:db= df.groupby('gender')['reduced'].sum().to_frame().reset_index()
#creating the bar chart plt.barh(db['gender'],db['reduced'],color =
['cornflowerblue','lightseagreen'])
#Adding the aesthetics
plt.title('Bar Chart')
plt.xlabel('reduced activity')
plt.ylabel('gender') #Show
the plot plt.show()

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js