DATA MINING FINAL PROJECT

GROUP 2: CLAUDE SHANNON

AUTHORS

- Garri Romzova, Antonio
- Mayol Matos, Sergi
- Medina Perelló, Alejandro
- Palmer Perez, Ruben
- Rodríguez Arguimbau, Alejandro

INDEX

- 1. Dataset
- 2. Objective
- 3. Considerations left behind
- 4. Conclusions

DATASET

An exploratory introduction

CONTEXT

Medical data around the US regarding health metrics

OBSERVATIONS

Over 400k

counting duplicated data

VARIABLES

Most of them are categorical or *Boolean*, e.g.

- HadSkinCancer
- HadDepressiveDisorder
- SmokerStatus
- Etc

Only six variables are numeric:

- PhysicalHealthDays
- MentalHealthDays
- SleepHours
- HeightInMeters
- WeightInKilograms
- BMI

MISSING DAIA

OBJECTIVE

A common goal

PREDICTIVE MODEL

with HadHeartAttack as our target

PROBLEM

Large amount of variables

SOLUTION

DATA MODIFICATIONS

To use the least amount of variables

OBSERVATION REMOVAL LIMIT

15% of the original dataset

~ 66k

BMI

Remove Height and Weight variables and fill nonnumeric values on BMI applying

$$BMI=rac{Weight}{Height^2}$$

Classification	BMI Score
Underweight	< 18.5
Normal	18.5 - 24.9
Overweight	25.0 - 29.0
Obese	30.0 - 40.0
Extreme Obese	> 40.0

HOW TO FILL MISSING DATA

- Predictive models
- Median
- Mean
- Remove

OUTLIERS

IQR

$$X < (Q1 - 1.5 \times IQR)$$

Or

$$X>(Q3+1.5 imes IQR)$$

best for unknown or non-normal distributed data

Z-score

$$\left| rac{X - \operatorname{mean}(X)}{\operatorname{sd}(X)}
ight| > 3$$

best for normal distributed data

VARIABLE REDUCTION

- Random Forest
- XGBoost

at least explain 95% of the data

SIMPLE QUESTIONS

AGE DISTRIBUTION

BMI

HEART ATTACK PER STATE

CONCLUSIONS

