CS306: Introduction to IT Security Assignment Project Exam Help

https://powcoder.com Lecture 6: MACs & Hashing

Add We Chat powcoder instructor: Nikos Triandopoulos

October 6, 2020

Assignment Project Exam Help

https://powcoder.com
6.0 Announcements
Add WeChat powcoder

CS306: Other announcements

- HW2 to come by Friday this week
- Road ahead
 - no lecture or Assignment Perpiest Eximum Helphday schedule)
 - regular lecture on October 20/ https://powcoder.com
 midterm exam on October 27 (in whatever format)

Add WeChat powcoder

CS306: Tentative Syllabus

Week	Date	Topics	Reading	Assignment
1	Sep 1	Introduction Project Exercises	Lecture 1	-
2	ASSIGII Sep 8	ment Project Exam	Lecture 2	Lab 1
3	Sep 15 htt	ps://powcoder.com	Lecture 3	Lab 2, HW 1
4	Sep 22	Ciphers in practice I	Lecture 4	Lab 3, HW 1
5	Sep 29 A (dd Wechatepowcod	er ecture 5	Lab 4
6	Oct 6	MACs & hashing		
-	Oct 13	No class (Monday schedule)		
7	Oct 20	Public-key cryptography		

CS306: Tentative Syllabus

(continued)

Week	Date	Topics	Reading	Assignment
8	Oct 27 Assign	ment Project Exam	All materials	
9	Nov 3	Network/Web security	•	
10	Nov 10 htt	ps:df/po/wooderucon	1	
11	Nov 17	Cloud security	1	
12	Nov 24	dd WeChat powcoc	ier	
13	Dec 1	Economics		
14	Dec 8	Legal & ethical issues		
15	Dec 10 (or later)	Final (closed "books")	All materials covered*	

Last week

- Ciphers in practice
 - Revision
 - the big picture, significant Petric Stellar and Hesp tream ciphers, PRGs
 - Block ciphers, pseudorandom functions https://powcoder.com
 - Modes of operations
 - DES, AES Add WeChat powcoder
- Demo
 - The Caesar and Vigenère ciphers and their cryptanalysis (Afternoon)
 - Pseudo-randomness in practice (Evening)

Today

- Message authentication
 - MACs
 - Replay attack Assignment Project Exam Help
 - Constructionshttps://powcoder.com
- Cryptographic hashing
 - Hash functions Add WeChat powcoder
 - Constructions
- Demo
 - Hash functions in practice

Assignment Project Exam Help

https://powcodericomessage
Add WeChat powcoder

Recall: Integrity

Fundamental security property

- an asset is modified only by authorized parties
- "I" in the CIA triad Assignment Project Exam Help

"computer security seeks to prevent unauthorized viewing (confidentiality) or modification (https://www.person.org/person

Alteration

- main threat against integrity of in-transit data
- e.g., MITM attack

Security problems studied by modern cryptography

- ◆ Classical cryptography: message encryption
 - early crypto schemes tried to provide secrecy / confidentiality
 Assignment Project Exam Help
- Modern cryptography: hotography: hotography: lighth-vector security problems
 - today we need to study a large set of security properties beyond secrecy
 Add WeChat powcoder
- ◆ The sibling of message encryption: message authentication
 - another cornerstone of any secure system aiming to provide authenticity & integrity

Message authentication: Motivation

Information has value, but only when it is correct

- random, incorrect, inaccurate or maliciously altered data is useless or harmful
 - message authansignments ageoriegetty Examentile p
 - while in transit (or at rest), no message should be modified by an outsider https://powcoder.com
 no outsider can impersonate the stated message sender (or owner)

Add WeChat powcoder

- it is often necessary / worth to protect critical / valuable data
 - message encryption
 - while in transit (or at rest), no message should be leaked to an outsider

Example 1

Secure electronic banking

- a bank receives an electronic request to transfer \$1,000 from Alice to Bob
 Concerns

 Assignment Project Exam Help
- who ordered the transfart thise prottecked the go Bob)?
- is the amount the intended one or was maliciously modified while in transit?
 - adversarial Vs. random message-transmission errors
 - standard error-correction is <u>not sufficient</u> to address this concern

Example 2

Web browser cookies

- a user is performing an online purchase at Amazon
- a "cookie" contains seignmented Projectien Exercity Paffic is stateless
 - stored at the client, included in messages sent to server https://powcoder.com
 contains client-specific info that affects the transaction
 - - e.g., the user's shapping with a with a discount fue to a coupon

Concern

was such state maliciously altered by the client (possibly harming the server)?

Integrity of communications / computations

Highly important

- any unprotected system cannot be assumed to be trustworthy w.r.t.
 - origin/source of stigmant of the training of the control of the
 - contents of information (due to man-in-the-middle attacks, email spam, etc.)
 https://powcoder.com

 overall system functionality

Prevention Vs. detection Add WeChat powcoder

- unless system is "closed," adversarial tampering with its integrity cannot be avoided!
- goal: identify system components that are not trustworthy
 - detect tampering or prevent undetected tampering
 - e.g., avoid "consuming" falsified information

Encryption does not imply authentication

A common misconception

"since ciphertext c hides message m, Mallory cannot meaningfully modify m via c" Why is this incorrect ssignment Project Exam Help

- all encryption schemes (seen so far) are based on one-time pad, i.e., masking via XOR
 consider flipping a single bit of ciphertext c; what happens to plaintext m?
- - such property of one-And-dal doc introproducted secrecy definitions

Generally, secrecy and integrity are distinct properties

encrypted traffic generally provides **no integrity** guarantees

Assignment Project Exam Help

https://powcoder.com/ssage authentication codes Add WeChat powcoser

Problem setting: Reliable communication

Two parties wish to communicate over a channel

- Alice (sender/source) wants to send a message m to Bob (recipient/destination)
 Underlying channel ssignmentd Project Exam Help
- e.g., message transmission via a compromised router

Add WeChat powcoder

Solution concept: Symmetric-key message authentication

Main idea

- secretly annotate or "sign" message so that it is unforgeable while in transit
 - Alice tags he mesige mountaground i Example with plaintext m
 - Bob verifies authenticity of received message using tag t https://powcoder.com
 Mallory can manipulate m, t but "cannot forge" a fake verifiable pair m', t'

 - Alice and Bob share Adde Wee Cthat is produced the poperations

Security tool: Symmetric Message Authentication Code

Abstract cryptographic primitive, a.k.a. MAC, defined by

- a message space \mathcal{M} ; and
- a triplet of algorithms: Gen Macry Project Exam Help

 ◆ Gen, Mac are probabilistic algorithms, whereas Vrf is deterministic

 - Gen outputs a uniformly rand and key & from some key space K)

Desired properties for MACs

By design, any MAC should satisfy the following

efficiency: key generation & message transformations "are fast"

• correctness: Assignmenth Protecte For amac Holpacept

Main application areas

Secure communication

- verify authenticity of messages sent among parties signment Projecture of the proj
- assumption
 - ◆ Alice and Bob securely petroset/powcod tice comprely generates and stores distribute and store shared key k key k

Secure storage

assumption

• attacker does not learn key k WeChat pettacker does not learn key k

Conventions

Random key selection

typically, Gen selects key k uniformly at random from the key space ${\mathcal K}$ Canonical verifications signment Project Exam Help

- when Mac is deterministic, Vrf typically amounts to re-computing the tag t
 https://powcoder.com

 Vrf_k(m, t): 1. t' := Mac_k(m) 2. if t = t', output ACCEPT else output REJECT
- but conceptually the folding westibratare distinct der
 - authenticating m (i.e., running Mac) Vs. verifying authenticity of m (i.e., running Vrf)

MAC security

The MAC scheme is **secure** if any PPT ${\mathcal A}$ wins the game only negligibly often.

Assignment Project Exam Help

https://powcoder.com 6.3 Replay attacks Add WeChat powcoder

Recall: MAC

Abstract cryptographic primitive, a.k.a. MAC, defined by

- ◆ a message space M; and
- a triplet of algorithms (Gen Mart Project Exam Help

Recall: MAC security

The MAC scheme is **secure** if any PPT ${\mathcal A}$ wins the game only negligibly often.

Real-life attacker

In practice, an attacker may

- observe a traffic of authenticated (and successfully verified) messages
- manipulate (or chessignment infriesetteriam Help
 - aims at inserting an invalid but verifiable message m*, t* into the traffic https://powcoder.com
 interesting case: forged message is a new (unseen) one

 - trivial case: forged message is a previous typobserved one, a.k.a. a replay attack
- launch a **brute-force attack** (given that $Mac_k(m) \rightarrow t$ is publicly known)
 - given any observed pair m, t, exhaustively search key space to find the used key k

Threat model

In the security game, Mallory is an adversary $\mathcal A$ who is

- "active" (on the wire)
 - we allow A the sign and manipolite set of the same Help
- "well-informed"
 - we allow A to request the key tage of the choice
- "replay-attack safe"
 - we restrict A to forge only new messages
- "PPT"
 - \bullet we restrict \mathcal{A} to be computationally bounded
 - new messages may be forged undetectably only negligibly often

Notes on security definition

Is it a rather strong security definition?

- ullet we allow \mathcal{A} to query MAC tags for any message
 - but real-worldsendernwillenthenticate on Financial pessages
- we allow \mathcal{A} to break the scheme by forging any new message
 - but real-world attackettps://forcevivordeaniogouthmessages

Yes, it is the right approach...

Add WeChat powcoder

→ message "meaningfulness" depends on higher-level application

- - text messaging apps require authentication of English-text messages
 - other apps may require authentication of binary files
 - security definition should better be **agnostic** of the specific higher application

Notes on security definition (II)

Are replay attacks important in practice?

- absolutely yes: a very realistic & serious threat!
 - e.g., what if a Arosignament Perojecto a Text am Help

Yet, a "replay-attack safe" security definition is preferable https://powcoder.com • again, whether replayed messages are valid depends on higher-lever app

- better to delegate to this and the specification of such details
 - e.g., semantics on traffic or validity checks on messages before they're "consumed"

Eliminating replay attacks

- use of counters (i.e., common shared state) between sender & receiver
- use of timestamps along with a (relaxed) authentication window for validation

Assignment Project Exam Help

https://powcoder.com
6.4 MAC constructions
Add WeChat powcoder

Three generic MAC constructions

- fixed-length MAC
 - direct application of a PRF for tagging
 - limited application in the limited application
- domain extension for MACs https://powcoder.com
 - straightforward secure extension of fix-length MAC
 - inefficient

Add WeChat powcoder

- CBC-MAC
 - resembles CBC-mode encryption
 - efficient

1. Fixed-length MAC

- based on use of a PRF
 - employ a PRF F_k in the obvious way
 to compute a desiration to represent the end of t
 - set tag t to be the pseudorandom string derived by evaluating the season oder.com

 $Mac_k(m)$: set t = $F_k(m)$

 $Vrfy_k(m,t)$: return 1 iff $t = F_k(m)$

2. Domain extension for MACs (I)

- suppose we have the previous fix-length MAC scheme
- how can we authenticate a message m of arbitrary length?
- naïve approach Assignment Project Exam Help m₂
 pad m and view it as d blocks m₁, m₂, ..., m_d
 separately apply MAC to block m_i
 Add WeChat powcoder

 $t = t_1 = F_k(m_1)$ $t_2 = F_k(m_2)$

 $t_d = F_k(m_d)$

- security issues
 - reordering attack; verify block index, t = F_k(m_i | |i)
 - truncation attack; verify message length $\delta = |m|$, $t = F_k(m_i||i||\delta)$
 - mix-and-match attack; randomize tags (using message-specific fresh nonce)

2. Domain extension for MACs (II)

Final scheme

- assumes a secure MAC scheme for messages of size n
- set tag of message m of size o at most 2 as follows
 - choose fresh random nonse //of size n/4 each
 - ullet separately apply MAC on each block, authenticating also its index, δ and nonce r

3. CBC-MAC

Idea

• employ a PRF in a manner similar to CBC-madesing propried to Project Exam Help

Security

extension is secure, if

https://powcoder.com

• F_k is a secure PRF; and dd WeChat powcoder

 m_{1}

 m_{\circ}

 $m_{\scriptscriptstyle 3}$

 F_k

- only fixed-length messages are authenticated
- messages of length equal to any multiple of n can be authenticated
 - but this length need be fixed in advance
 - insecure, otherwise

3. CBC-MAC Vs. previous schemes

 can authenticate longer messages than basic PRF-based scheme (1)

 more efficient than domain-extension MAC scheme (2)

m

3. CBC-MAC Vs. CBC-mode encryption

- crucially for their security
 - CBC-MAC uses no IV (or uses an IV set to 0) and only the last PRF output
 - CBC-mode en ary stigning representant on its entollar that put by the contract of the contra
 - "simple", innocent modification can be catastrophic...

CBC-MAChttps://powcoder.com

Assignment Project Exam Help

https://powcoder.com
6.5 Hash functions
Add WeChat powcoder

Cryptographic hash functions

Basic cryptographic primitive

- maps "objects" to a fixed-length binary strings
- · core security property in the core security property in the core security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security property is a security property in the core security in the core security is a security property in the core security in the core security is a security property in the core security in the core security is a security property in the core security in the core security is a security of the core security in the core security is a security of the core security in the core security is a security of the core security in the core security is a security of the core security in the core security is a security of the core security in the core security is a security of the core security in the core security is a security of the core security in the core security is a security of the core security in the core security is a security of the core security of the core security is a security of the core security of the core security is a security of the core secur

Н

output short digest, fingerprint, "secure" description

- collision: distinct objects $(x \neq y)$ are mapped to the same hash value (H(x) = H(y)) nttps://powcoder.com
- although collisions <u>necessarily exist</u>, they are <u>infeasible to find</u>

Important role in moder Adjutter Shiphat powcoder

- lie between symmetric- and asymmetric-key cryptography
- capture different security properties of "idealized random functions"
- qualitative stronger assumption than PRF

Hash & compression functions

Map messages to short digests

- a general hash fassignment Project Exam Help
 - a message of an <u>arbitrary length</u> to a <u>l(n)-bit</u> string <u>https://powcoder.com</u>

arbitrarily long string

H output /(n)-bit string

Add WeChat powcoder

- a compression (hash) function h() maps
 - a <u>long</u> binary string to a <u>shorter</u> binary string
 - an <u>l'(n)-bit string</u> to a <u>l(n)-bit</u> string, with <u>l'(n) > l(n)</u>

input l'(n)-bit string

Collision resistance (CR)

Attacker wins the game if $x \neq x' \& H(x) = H(x')$

H is collision-resistant if any PPT ${\mathcal A}$ wins the game only negligibly often.

Weaker security notions

Given a hash function H: $X \rightarrow Y$, then we say that H is

- preimage resistant (or one-way)
 - if given $y \in Y$, finding value $x \in Project$, Example Project
- 2-nd preimage resistant/ (qr weak collision resistant)
 - if given a <u>uniform</u> $x \in X$, finding a value $x' \in X$, s.t. $x' \neq x$ and H(x') = H(x) happens negligibly of the WeChat powcoder
- cf. collision resistant (or strong collision resistant)
 - if finding two distinct values x', $x \in X$, s.t. H(x') = H(x) happens negligibly often

Assignment Project Exam Help

https://powcoder.com 6.6 Design framework Add WeChat powcoder

Domain extension via the Merkle-Damgård transform

General design pattern for cryptographic hash functions

reduces CR of general hash functions to CR of compression functions

- thus, in practice, it suffices to realize a collision-resistant compression function h
- compressing by 1 single bit is a least as hard as compressing by any number of bits!

Merkle-Damgård transform: Design

Suppose that h: $\{0,1\}^{2n} \rightarrow \{0,1\}^n$ is a collision-resistant compression function

Consider the general hash function H: $\mathcal{M} = \{x : |x| < 2^n\} \rightarrow \{0,1\}^n$, defined as Assignment Project Exam Help

- pad x to define a number, say B, message blocks $x_1, ..., x_B$, with $|x_i| = n$
- ◆ set extra, final, message block x_{B+1} as an n-bit encoding L of |x|
- starting by initial digest $z_0 = IV = 0^n$, output $H(x) = z_{B+1}$, where $z_i = h^s(z_{i-1} | x_i)$

Merkle-Damgård transform: Security

If the compression function h is CR, then the derived hash function H is also CR!

Compression function design: The Davies-Meyer scheme

Employs PRF w/ key length m & block length n

Well known hash functions

- MD5 (designed in 1991)
 - output 128 bits, collision resistance completely broken by researchers in 2004
- today (controlled) collisions can be found in less than a minute on a desktop PC
 SHA1 the Secure Hash Algorithm (series of algorithms standardized by NIST)
- - output 160 bits, consittent in secure for chilision registance
 - broken in 2017 by researchers at CWI
- SHA2 (SHA-224, SHA-A5ttdSNW-864hSHA-2519)coder
 - outputs 224, 256, 384, and 512 bits, respectively, no real security concerns yet
 - based on Merkle-Damgård + Davies-Meyer generic transforms
- SHA3 (Kessac)
 - completely new philosophy (sponge construction + unkeyed permutations)

SHA-2-512 overview

Current hash standards

Algorithm	Maximum Messagesiiiie (bits)	nt Project Ex	Rounds Kam Help	Message Digest Size (bits)
MD5	2^{64}	512	64	128
SHA-1	2 ⁶⁴ https:	//poweoder.c	OM 80	160
SHA-2-224	2^{64}	512	64	224
SHA-2-256	$^{2^{64}}$ Add	WeChat pow	coder ⁶⁴	256
SHA-2-384	2^{128}	1024	80	384
SHA-2-512	2^{128}	1024	80	512
SHA-3-256	unlimited	1088	24	256
SHA-3-512	unlimited	576	24	512