2020 Spring MAS 365: Midterm Exam

Write the following Honor Pledge and sign your name under it.

"I have neither given nor received aid on this examination, nor have I concealed a violation of the Honor Code."

- 1. [20 (10+10) points]
 - (a) Perform two iterations of the Bisection method (that outputs p_2) to find an approximation to $\sqrt{11}$ in [3, 3.7], using two-digit rounding arithmetic.
 - (b) Determine the rate of convergence of the function $\frac{\sin h}{h}$ as $h \to 0$, where $\lim_{h\to 0} \frac{\sin h}{h} = 1$, using a form $O(h^p)$.
- 2. [20 (5+5+5+5) points] State whether the iterations $\{p_n\}_{n=0}^{\infty}$ converge to p=1 for an initial approximation $p_0 \in [p-\delta, p+\delta]$, where $0 < \delta < 0.5$ is sufficiently small. If it converges, find the order of convergence. Justify your answer.
 - (a) $p_{k+1} = -1 + 2p_k + p_k^2$
 - (b) Newton's method for $f(x) = (x-1)^2$
 - (c) $p_{k+1} = -1 + p_k^2 + \frac{1}{p_k^2}$
 - (d) Newton's method for $f(x) = \ln x$
- 3. [30 (10+10+10) points]

$$\begin{array}{c|cc}
x & f(x) \\
\hline
0 & -5 \\
0.5 & -2 \\
1 & 13
\end{array}$$

- (a) Use the Newton backward-difference formula to construct interpolating polynomial for the above data.
- (b) Construct the clamped cubic spline for the above data with additional information f'(0) = 6 and f'(1) = 74.
- (c) Use O(h) and $O(h^2)$ formulas to approximate f'(0).
- 4. [15 points] For every $n \ge 2$, there is a C_n such that $n! = C_n n^{n+\frac{1}{2}} e^{-n}$. Use the composite trapezoidal rule for $\int_1^n \ln x dx = n \ln n n + 1$ to approximate $\ln(n!)$ with error term. Find an upper bound on C_n .
- 5. [30 (10+10+10) points]
 - (a) Use the Hermite interpolating polynomial of f at distinct nodes x_0, \ldots, x_n to approximate the integral $\int_{-1}^{1} f(x) dx$.

(b) Based on (a), thus using the Hermite interpolating polynomial, describe how to choose the coefficients c_0, \ldots, c_n and the nodes x_0, \ldots, x_n in the approximation

$$\int_{-1}^{1} f(x)dx \approx \sum_{j=0}^{n} c_j f(x_j),$$

- so that it is exact for any f that is a polynomial of degree less than 2n + 1.
- (c) Use the quadrature in (b) with n=1 to approximate $\int_{-0.5}^{0.5} x^2 \cos(4\sqrt{3}\pi x) dx$.