Методические указания к выполнению расчётно-графической работы по теме

«Интеграл функции одной переменной»

Описание работы

Расчетно-графические работы выполняются командами студентов (по 3-4 человека) и заключаются в выполнении заданий, оформлении отчета и его защите (порядок см. ниже). Сформированные команды сами выбирают себе номер от 1 до 8 так, чтобы у каждой команды он был уникальный.

Требования

К выполнению заданий – в работе должны быть:

- 1) поставлены требуемые задачи;
- 2) представлены в логической последовательности основные этапы исследования или решения;
- 3) указаны используемые теоретические положения и методы;
- 4) получены точные численные результаты и построены требуемые графические изображения.

К содержанию отчета — отчет выполняется в электронном виде (текстовый документ или презентация; для презентации в MS Power Point используется шаблон Университета ИТМО: ИСУ → полезные ссылки → корпоративная стилистика → презентации (внизу страницы)). должен содержать:

- 1) титульный лист/слайд (название дисциплины, учебный год, название РГР, номер варианта, ФИ исполнителей, номера групп и потоков, ФИ преподавателя, ФИ ментора (если у преподавателя есть ментор), дата, место выполнения);
- 2) условия всех заданий (условие каждого задания перед его решением);
- 3) основные этапы решения (исследования) каждой задачи, его теоретическое обоснование, численные результаты;
- 4) графики или рисунки, иллюстрирующие решение каждой задачи (выполненные в математическом редакторе Desmos: https://www.desmos.com/, Geogebra: https://www.geogebra.org/ или других);
- 5) выводы;
- 6) оценочный лист (вклад каждого исполнителя оценивается всей командой по шкале от 0 до 100% баллов).

К оформлению отчета:

- 1) Страницы и слайды следует пронумеровать (на титульной странице/слайде номер не ставится).
- 2) Текст представляется полностью в цифровом виде. Не допускается вставка фото или сканов текста, а также скриншотов электронного текста.
- 3) Все формулы набираются в редакторе формул. Не допускается набор формул текстом (например, $f(x)=3*x^2$), а также вставка фото или сканов формул, однако допускается вставка скриншотов электронных формул (если ни один редактор формул не доступен). Про редакторы формул:
 - а. в MS Office есть встроенный редактор формул;
 - b. в MS Office также есть скачиваемая надстройка MathType для набора формул;
 - с. Google-документы и Open Office имеют встроенные редакторы формул;
 - d. в LaTeX встроен набор формул;
 - е. можно воспользоваться бесплатным сервисом набора формул https://editor.codecogs.com/ и скачать формулу в виде изображения;
 - f. или воспользоваться математическим пакетом (MathCAD, Wolfram Mathematica и др.) или сайтом Wolfram Alpha и сделать оттуда скриншоты формул.

Защита работ

Порядок защиты РГР определяется преподавателем практики.

Задание 1. Интегральная сумма

Исследуйте интегральную сумму функции f(x), заданной на отрезке [a,b]:

№ команды	1	2	3	4	5	6	7	8
f(x)	gin v	_ X	3	3/	1/2	1	1	1
f(x)	sın x	e	x^3	VХ	$1/x^{2}$	$\frac{1}{1+x^2}$	$\frac{1}{\cos^2 x}$	$\sqrt{1-x^2}$
[a,b]	$[0; 3\pi/2]$	[-2; 2]	$\left[-1;1,5\right]$	$\left[-1;0,5\right]$	[0,5;2]	$\left[-1;\sqrt{3}\right]$	$\left[-\pi/4;\pi/4\right]$	$\left[-\sqrt{3}/2;\sqrt{3}/2\right]$

План

Интегральная сумма

- 1. Составьте и изобразите интегральную сумму функции на заданном отрезке в виде ступенчатой фигуры:
 - Изобразите график функции.
 - Изобразите криволинейную трапецию, ограниченную графиком функции, вертикальными прямыми, проходящими через концы отрезка, и осью Ox.
 - Разбейте отрезок на n элементарных отрезков, точками отметьте их концы на рисунке.
 - Выберите по одной точке внутри каждого элементарного отрезка, отметьте их на рисунке.
 - Вычислите значения функции в выбранных точках, отметьте их на рисунке.
 - Изобразите ступенчатую фигуру на основе выбранного разбиения и точек внутри элементарных отрезков.
- 2. Исследуйте ступенчатую фигуру. Для этого выберите количество ступеней n_1 (от 3 до 5) и посмотрите, как изменяется фигура при смещении точек внутри элементарных отрезков (рассмотрите три положения точек: крайнее левое, крайнее правое и промежуточное на выбор). Затем выберите другое количество ступеней n_2 (от 6 до 10), а затем n_3 (от 11 и больше) и повторите процедуру.
- 3. Сделайте заключение.

Пример графического исследования, выполненного в редакторе Desmos: https://www.desmos.com/calculator/xnmv3bzc3c

Последовательность интегральных сумм

- 4. Постройте интегральную сумму функции на заданном отрезке:
 - Разбейте отрезок на *п* элементарных отрезков.
 - Выберите по одной точке внутри каждого элементарного отрезка.
 - Запишите интегральную сумму.
- 5. Исследуйте её значение с ростом n при различных положениях точек внутри элементарных отрезков (рассмотрите три положения: крайнее левое, крайнее правое и промежуточное на выбор).
- 6. Вычислите интеграл от данной функции по отрезку <u>аналитически</u> и сравните значения интегральных сумм с его величиной.
- 7. Постройте последовательность интегральных сумм, изобразите её на графике. Изобразите точное значение интеграла горизонтальной прямой. Продемонстрируйте сходимость построенной последовательности к точному значению интеграла с ростом *п* при различных положениях точек внутри элементарных отрезков (три положения: крайнее левое, крайнее правое и промежуточное на выбор).
- 8. Сделайте заключение.

Пример графического исследования, выполненного в редакторе Desmos: https://www.desmos.com/calculator/wpygz4vral

Задание 2. Площадь плоской фигуры

Найдите площадь плоской фигуры, ограниченной:

№ команды	Кривые
1	кривыми $\rho = 6\sin 3\phi$ и $\rho = 3$ ($\rho \ge 3$)
2	кривой $x = \frac{t}{3}(3-t), y = \frac{t^2}{8}(3-t)$
3	кривой $\rho = 7 \sin 4\varphi$
4	верзьерой $x = t$, $y = \frac{8}{4 + t^2}$ и осью абсцисс
5	кривыми $\rho = 2\cos\varphi$ и $\rho = 2\sqrt{3}\sin\varphi$ ($0 \le \varphi \le \pi/2$)
6	кривой Лиссажу $x = 2\sin t$, $y = 2\sin 2t$
7	лемнискатой Бернулли $ ho^2 = 8\cos 2\phi$
8	петлёй кривой $x = \frac{t^2}{1+t^2}$, $y = \frac{t(1-t^2)}{1+t^2}$

- 1. Изобразите на графике кривую (-ые) и область, которую она (они) ограничивает.
- 2. Запишите формулу для нахождения площади при помощи определённого интеграла.
- 3. Вычислите интеграл и запишите ответ.
- 4. Оцените правдоподобность полученного ответа, приближая данную фигуру другими простыми фигурами с известными площадями (треугольники, прямоугольники, круги, ...).

Задание 3. Объём тела вращения

Найдите объём тела T, полученного вращением фигуры Φ вокруг указанной оси. Фигура Φ ограничена следующими кривыми:

№ команды	Φ
1	$y = 2 - \frac{x^2}{2}$, $x + y = 2$, ось $0y$
2	$y = x - x^2$, $y = 0$, ось Oy
3	$2y = x^2$, $2x + 2y - 3 = 0$, och $0x$
4	$y = 8 - x^2 , y = x^2 , \text{ось } Ox$
5	xy = 4, $2x + y - 6 = 0$, och $0x$
6	$x^3 = (y-1)^2$, $x = 0$, $y = 2$, och $0y$
7	$y = x^2$, $8x = y^2$, ось $0y$
8	$x = \sqrt{1 - y^2}$, $y = \sqrt{\frac{3}{2}}x$, $y = 0$, ось $0y$

- 1. Изобразите на графике фигуру Ф и тело вращения Т.
- 2. Запишите формулу для нахождения объёма тела вращения Т при помощи определённого интеграла.
- 3. Вычислите интеграл и запишите ответ.
- 4. Оцените правдоподобность полученного ответа, приближая тело вращения Т другими простыми телами с известными объёмами (шары, диски, кольца, ...).

Задание 4. Несобственный интеграл

Исследуйте несобственный интеграл на сходимость при всех значениях параметра α .

•	<u> </u>	-	<u> </u>	-
№ команды	1	2	3	4
Интеграл	$\int_{1}^{+\infty} \frac{\ln x}{x^{\alpha}} dx$	$\int_{3}^{+\infty} \frac{dx}{x^{\alpha} \ln x}$	$\int_{0}^{1} \frac{\ln x}{x^{\alpha}} dx$	$\int_{0}^{1/2} \frac{dx}{x^{\alpha} \ln\left(1/x\right)}$
№ команды	5	6	7	8
Интеграл	$\int_{1}^{+\infty} \frac{\arctan x}{x^{\alpha} + 1} dx$	$\int_{1}^{+\infty} \frac{dx}{\left(x^{\alpha}+1\right) \arctan x}$	$\int_{0}^{1} \frac{\operatorname{acrtg} x}{x^{\alpha}} dx$	$\int_0^1 \frac{dx}{x^\alpha \arctan x}$

- 1. Определите особую точку несобственного интеграла. Есть ли другие особые точки? К какому типу относится данный несобственный интеграл? Является ли подынтегральная функция неотрицательной на промежутке интегрирования?
- 2. Постройте графики подынтегральной функции *на промежутке интегрирования* при нескольких значениях параметра α .
- 3. Есть ли значение параметра α , при котором легко находится первообразная? Если есть, то найдите её и на основе неё сделайте вывод о сходимости интеграла для выбранного значения параметра α .
- 4. Сформулируйте признаки для определения сходимости несобственных интегралов (того рода, которым является исходный интеграл, и для соответствующего промежутка интегрирования):
 - о признак сравнения с неравенствами;
 - о предельный признак сравнения;
 - о абсолютный признак.
- 5. Исследуйте, при каких значениях параметра β эталонный несобственный интеграл $\int_{a}^{b} \frac{1}{x^{\beta}} dx$ сходится, а при каких расходится (промежуток от a до b подбирается в соответствии с исходным несобственным интегралом).
- 6. Оцените сверху и снизу трансцендентную функцию в исходном интеграле (логарифм или арктангенс) и сравните его с эталонным интегралом. Установите, при каких значениях параметра β это сравнение позволяет сделать вывод о сходимости исходного интеграла.
- 7. Также вспомните, как ведёт себя интеграл при значении параметра α , при котором легко находится первообразная (см. п. 3). Используйте этот интеграл как эталон для сравнения с интегралом при других значениях параметра α .
- 8. Запишите ответ промежутки значений параметра α , при которых исходный несобственный интеграл сходится и расходится.

Задание 5. Приложения определенного интеграла

Решите задачу.

№ команды	Задача
1	Найти силу давления воды на поверхность цилиндра диаметром 4 м и высотой 6 м, если его верхнее основание находится на уровне свободной поверхности воды.
2	Вычислить работу, необходимую для выкачивания бензина из вертикального цилиндрического резервуара высотой 6 м и радиусом основания 2 м. (Указание: величина работы, затрачиваемой на поднятие веса, равна произведению веса на высоту подъема).
3	В цилиндре диаметром 1 м и высотой 2 м и закрытом поршнем содержится газ при нормальном атмосферном давлении. Найти работу, которую необходимо затратить на изотермическое сжатие газа при перемещении поршня на 1,5 м внутрь цилиндра. (Указание: для расчета давления воспользоваться законом Бойля-Мариотта).
4	Прямой круглый конус с радиусом основания и высотой 1 м вертикально погружен в воду так, что его вершина находится на поверхности воды. Найти работу, необходимую для извлечения цилиндра из воды, если его удельный вес равен 3. (Указание: сила, совершающая работу по подъему тела, равна разности веса тела и веса воды, вытесняемой подводной частью тела).
5	Найти силу давления воды на вертикальную пластину в форме равнобедренной трапеции с основаниями 2 м и 6 м и высотой 3 м, погруженную так, что верхнее (большее) основание находится на 2 м ниже уровня поверхности воды.
6	Вычислить работу, необходимую для извлечения деревянной прямоугольной балки, плавающей в воде, если длина балки 5 м, ширина 40 см, высота 20 см, а ее удельный вес равен 0,8 (Указание: сила, совершающая работу по подъему балки, равна разности веса балки и веса воды, вытесняемой подводной частью балки).
7	Определить массу круглого конуса высотой 4 м и диаметром основания 6 м, если плотность конуса в каждой точке равна квадрату расстояния этой точки от плоскости, проходящей через вершину конуса параллельно его основанию.
8	Вычислить работу, необходимую для выкачивания масла из котла, имеющего форму полусферы радиуса 2 м. Удельный вес масла равен 0,9. (Указание: величина работы, затрачиваемой на поднятие веса, равна произведению веса на высоту подъема).

- 1. Запишите условие задачи.
- 2. Составьте математическую модель задачи, сделайте графическую иллюстрацию к условию.
- 3. Решите задачу, применяя схему для построения определённого интеграла:
 - а) Разбейте промежуток изменения аргумента на элементарные участки dx.
 - б) Изобразите на рисунке малое приращение искомой величины Q на элементарном участке dx. Вычислите его приближенно (приращение заменяется дифференциалом по известной формуле: $\Delta Q(x) \approx dQ$).
 - в) Получите интегральную сумму.
 - г) Получите определённый интеграл для вычисления искомой величины: $Q = \int_{x_1}^{x_2} dQ$.
 - д) Вычислите его при помощи поиска первообразной от подынтегральной функции и применения формулы Ньютона-Лейбница.
- 4. Запишите ответ.

Задание 1. Интегральная сумма

Исследуйте интегральную сумму функции x^3 , заданной на отрезке [-1;1,5]:

1.
$$f(x)=x^3$$
 $a=-1;b=1,5$

Возьмем n=5 - кол-во элементарных отрезков

$$\Delta x = \frac{b-a}{n} = \frac{1}{2}$$
 - шаг разбиения

2. Посмотрим, как изменяется фигура при смещении точек внутри элементарных отрезков в крайнее левое, крайнее правое и промежуточное положение.

при n=5:

при n=9:

при n=15:

3. Таким образом, можно заметить, что чем больше n, тем менее площадь покрытия ступенчатой фигурой графика зависит от выбора точек внутри элементарных отрезков, и при $n \to \infty$ эта разница исчезает.

4,5,7.
$$S_n = \sum_{i=1}^n \Delta S_i = \sum_{i=1}^n f(c_i) \Delta x_i$$

n=5:

точка в середине отрезка: $S_5 = 0.5 \left(\frac{-27}{64} - \frac{1}{64} + \frac{1}{64} + \frac{27}{64} + \frac{125}{64} \right) = \frac{125}{128} \approx 0,97656$

левая крайняя: $S_5 = 0.5 \left(-1 - \frac{1}{8} + 1 + \frac{1}{8}\right) = 0$

правая крайняя: $S_5 = 0.5 \left(\frac{-1}{8} + \frac{1}{8} + 1 + 1, 5^3 \right) = \frac{35}{16} = 2,1875$

n=9:

точка в середине отрезка: $S_9 = \frac{5}{18} (...) \approx 1,00357$

левая крайняя: S_9 ≈0,4321

правая крайняя: $S_9 \approx 1,6474$

n=15:

точка в середине отрезка: $S_{15} = \frac{1}{6} (...) \approx 1,0113$

левая крайняя: S_{15} ≈ 0,66

правая крайняя: $S_{15} \approx 1,389$

$$\int_{-1}^{1,5} x^3 = \frac{x^4}{4} \Big|_{1}^{1,5} = \frac{1,5^4}{4} - \frac{1}{4} = \frac{65}{64} = 1,015625$$

8. Таким образом, можно заметить, что чем ближе точка разбиения к середине элементарного отрезка, тем ближе значение интегральной суммы к значению интеграла. При этом, чем левее точка разбиения, тем меньше интегральная сумма, и чем правее, тем она больше значения интеграла. При этом, при п, стремящемся к бесконечности, эта разница исчезает (что логично, т.к. определенный интеграл - это предел от интегральной суммы).

Задание 2. Площадь плоской фигуры

Найдите площадь плоской фигуры, ограниченной кривой $ho=7\sin{(4\phi)}$

1. Изобразим кривую и ограниченную ей область на графике (угол ϕ возьмем от 0 до 2π)

2. Формула для нахождения площади этой фигуры:

$$S = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} \rho^2(\varphi) d\varphi$$

3. Вычислим значение этого интеграла. Из-за симметрии графика нам достаточно найти площадь одного лепестка и умножить ее на количество лепестков (в данном случае 8).

Когда кривая пересекает полюс $(p=0), \sin(4\phi)=0.$ Таким образом, $\phi=\frac{\pi}{4}k,$ где $k\in Z.$ В этом случае, $\phi_1=0$ и $\phi_2=\frac{\pi}{8}.$

Теперь вычислим интеграл:

$$S = \frac{1}{2} \int_0^{\frac{\pi}{8}} (7\sin(4\phi))^2 d\phi = \frac{49}{2} \int_0^{\frac{\pi}{8}} \sin^2(4\phi) d\phi$$

Используем тригонометрическое тождество $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$:

$$S = \frac{49}{2} \int_0^{\frac{\pi}{8}} \frac{1}{2} (1 - \cos(8\phi)) d\phi = \frac{49}{4} \int_0^{\frac{\pi}{8}} (1 - \cos(8\phi)) d\phi$$

Интегрируем каждый член отдельно:

$$S = \frac{49}{4} \left[\phi - \frac{1}{8} \sin(8\phi) \right]_0^{\frac{\pi}{8}} = \frac{49}{4} \left(\frac{\pi}{8} - \frac{1}{8} \sin(2\pi) - 0 - \frac{1}{8} \sin(0) \right) = \frac{49\pi}{32}$$

Таким образом, площадь одного лепестка равна:

$$S_{\text{лепестка}} = \frac{49\pi}{32}$$

Учитывая, что у нас есть 8 лепестков, общая площадь фигуры равна:

$$S_{\text{общая}} = 8 \times S_{\text{лепестка}} = 8 \times \frac{49\pi}{32} = \frac{49\pi}{4}$$

Для оценки полученного значения площади в задаче с полярной кривой $p = 7\sin(4\phi)$, можно сравнить полученную площадь с площадью круга.

Теперь найдем площадь круга с радиусом r = 7, так как это максимальное значение функции $p(\phi)$:

$$S_{\text{круга}} = \pi r^2 = \pi (7^2) = 49\pi$$

Поскольку $S_{\text{общая}} = \frac{49\pi}{4}$ меньше площади круга, $S_{\text{круга}} = 49\pi$, это значит, что фигура, ограниченная кривой, занимает меньше пространства, чем круг радиусом 7. Фактически, фигура занимает примерно $\frac{1}{4}$ площади круга с радиусом 7.

Задание №3. Объём тела вращения.

Найдите объём тела T, полученного вращением фигуры Φ вокруг указанной оси. Фигура Φ ограничена следующими кривыми:

$$2y = x^2$$
, $2x + 2y - 3 = 0$, ось Ox

Выполнение:

Синяя функция: 2x + 2y - 3 = 0

Красная функция: $2y = x^2$

Фигура вращения Ф:

Тело Т:

Формула для нахождения объема тела Т:

 $V = \pi \int_A^B y^2 dx$, где y — график функции. А и В — точки пересечения графиков.

Грубо оценим нашу функцию:

В нашем случае надо целесообразно воспользоваться методов разности объемов, т.е. из объема большего тела вычесть меньшее. (синее минус красное)

$$V_1 = \pi \int_{-3}^{1} (-x + 1.5)^2 dx = -\pi \int_{-3}^{1} (-x + 1.5)^2 d(-x + 1.5) = -\pi * \left(\frac{(-x+1.5)^3}{3} \Big|_{-3}^{1} \right) = -\pi * \left(\frac{1}{24} - \frac{729}{24} \right) = \frac{91\pi}{3}$$

$$V_2 = \pi \int_{-3}^{1} (x^2 \times 0.5)^2 dx = \pi * (\frac{x^5}{20} \Big|_{-3}^{1}) = \frac{61}{5} \pi$$

$$V_T = V_1 - V_2 = \frac{91\pi}{3} - \frac{61}{5}\pi = \frac{272\pi}{15}$$

Для оценки правдоподобности результата целесообразно найти площадь данной фигуры, ограниченной синей и оранжевыми линиями. В этой фигуре разность 1-го усечённого конуса и 2 обычных конусов.

Объем усечённого конуса будет равен $V_1 = \frac{91\pi}{3}$

Объём меньших конусов равен:

$$V_2 = \pi \int_0^1 (x \times 0.5)^2 dx = \pi * \left(\frac{x^3}{12}\right) \Big|_0^1 = \frac{1}{12}\pi$$

$$V_3 = \pi \int_{-3}^{0} (x \times -1.5)^2 dx = \pi * \left(\frac{3x^3}{4}\right) \Big|_{-3}^{0} = \frac{81}{4}\pi$$

Итоговый объём равен:

$$V_1 - V_2 - V_3 = \frac{91\pi}{3} - \frac{1}{12}\pi - \frac{81}{4}\pi = 10\pi$$

Получаются соотношения:

 $10\pi < \frac{272\pi}{15} < \frac{91\pi}{3}$, что соответствует действительности ведь, объем фигуры вращения пропорционально зависит от поперечного сечения данной фигуры. А их поперечные сечения, поделённые на 2 части можно увидеть на последнем графике.

Более точные вычисления:

Объем большего усечённого конуса будет равен $V_0 = \frac{91\pi}{3}$

Объём меньших конусов равен:

$$V_1 = V_2 = \pi \int_0^1 (-x \times 0.5)^2 dx = \pi * \left(\frac{x^3}{12}\right) \Big|_0^1 = \frac{1}{12} \pi$$

$$V_3 = \pi \int_{-2}^{-1} (x \times -1.5 - 1)^2 dx = \pi * \left(\frac{3x^3}{4} + \frac{3x^2}{2} + x\right) \Big|_{-2}^{-1} = \frac{7}{4} \pi$$

$$V_4 = \pi \int_{-3}^{-2} (x \times -2.5 - 3)^2 dx = \pi * \left(\frac{25x^3}{12} + \frac{15x^2}{2} + 9x \right) \Big|_{-3}^{-2} = \frac{133}{12} \pi$$

Итоговый объём равен:

$$V_0 - V_1 - V_2 - V_3 - V_4 = \frac{91\pi}{3} - \frac{1}{12}\pi - \frac{1}{12}\pi - \frac{7}{4}\pi - \frac{133}{12}\pi = \frac{52}{3}\pi$$

Получаются соотношения:

$$\frac{52}{3}\pi<\frac{272\pi}{15}<\frac{91\pi}{3}$$
, что соответствует действительности ведь, а $\frac{52}{3}\pi\sim\frac{272\pi}{15}$

(54.45427~56.96755 если взять приближённые значения)

Значит объём фигуры был найден верно.

Задание 4. Несобственный интеграл

Исследуйте несобственный интеграл на сходимость при всех значениях параметра a.

Интеграл:
$$\int_{0}^{1} \frac{\ln x}{x^{a}} dx$$

План

- 1. Определите особую точку несобственного интеграла. Есть ли другие особые точки? К какому типу относится данный несобственный интеграл? Является ли подынтегральная функция неотрицательной на промежутке интегрирования?
- 2. Постройте графики подынтегральной функции на промежутке интегрирования при нескольких значениях параметра а.
- 3. Есть ли значение параметра , при котором легко находится первообразная? Если есть, то найдите её и на основе неё сделайте вывод о сходимости интеграла для выбранного значения параметра а.
- 4. Сформулируйте признаки для определения сходимости несобственных интегралов (того рода, которым является исходный интеграл, и для соответствующего промежутка интегрирования):
 - признак сравнения с неравенствами;
 - предельный признак сравнения;
 - абсолютный признак.
- 5. Исследуйте, при каких значениях параметра β эталонный несобственный интеграл

$$\int_{a}^{b} \frac{1}{x^{\beta}} dx$$

сходится, а при каких – расходится (промежуток от а до b подбирается в соответствии с исходным несобственным интегралом).

- 6. Оцените сверху и снизу трансцендентную функцию в исходном интеграле (логарифм или арктангенс) и сравните его с эталонным интегралом. Установите, при каких значениях параметра β это сравнение позволяет сделать вывод о сходимости исходного интеграла.
- 7. Также вспомните, как ведёт себя интеграл при значении параметра а, при котором легко находится первообразная (см. п. 3). Используйте этот интеграл как эталон для сравнения с интегралом при других значениях параметра а.
- 8. Запишите ответ промежутки значений параметра а, при которых исходный несобственный интеграл сходится и расходится.

1

- 1. Особая точка несобственного интеграла здесь находится в x=0. Таким образом, интеграл является несобственным интегралом первого рода. На промежутке интегрирования (0,1) подынтегральная функция является неотрицательной.
- 2. Графики подынтегральной функции при разных значениях параметра a:

Рис. 1: Графики подынтегральной функции $\frac{\ln(x)}{x^a}$ при разных значениях параметра a.

3. Если a=1, то подынтегральная функция преобразуется в $\frac{\ln x}{x}$. В этом случае первообразная легко находится с помощью интегрирования по частям:

$$\int \frac{\ln x}{x} dx = \int \ln x \cdot \frac{1}{x} dx \tag{1}$$

Пусть $u=\ln x$ и $dv=\frac{1}{x}dx$. Тогда $du=\frac{1}{x}dx$ и $v=\ln x$. Теперь применяем формулу интегрирования по частям:

$$\int \frac{\ln x}{x} dx = uv - \int v \, du = \ln x \cdot \ln x - \int \ln x \cdot \frac{1}{x} dx \tag{2}$$

Теперь упростим выражение:

$$2 \cdot \int \frac{\ln x}{x} dx = \ln^2 x + C \iff \int \frac{\ln x}{x} dx = \frac{1}{2} \cdot \ln^2 x + C \tag{3}$$

Рассмотрим поведение первообразной функции при x стремящемся к 0 и 1.

При
$$x \to 0^+$$
:

 $\ln x$ стремится к $-\infty$ при $x \to 0^+$. Посколь- $\operatorname{ky} \ln^2 x$ является квадратом логарифма, его значение стремится к $+\infty$. Следовательно, первообразная функция стремится к $+\infty$.

При $x \to 1$:

Мы знаем, что логарифмическая функция Логарифмическая функция $\ln x$ стремится к 0 при $x \to 1$. Поскольку $\ln^2 x$ является квадратом логарифма, его значение стремится к 0. Таким образом, первообразная функция стремится к константе C.

Вывод:

Теперь, когда мы знаем поведение первообразной функции на границах промежутка интегрирования, мы можем сделать вывод о сходимости интеграла. Поскольку первообразная функция стремится к $+\infty$ при $x \to 0^+$ и стремится к константе C при $x \to 1$, интеграл сходится на данном промежутке интегрирования.

- 4. Признаки сходимости несобственных интегралов:
 - Признак сравнения с неравенствами: Если $0 \le f(x) \le g(x)$ на промежутке интегрирования и интеграл от g(x) сходится, то и интеграл от f(x) сходится. Если интеграл от f(x) расходится, то и интеграл от g(x) расходится.
 - Предельный признак сравнения: Если $\lim_{x\to c} \frac{f(x)}{g(x)} = L > 0$, где c особая точка, то оба интеграла сходятся или расходятся одновременно.
 - Абсолютный признак: Если интеграл от |f(x)| сходится, то и интеграл от f(x) сходится.
- 5. Рассмотрим эталонный несобственный интеграл и подберем промежуток интегрирования в соответствии с исходным интегралом:

$$\int_{0}^{1} \frac{1}{x^{\beta}} dx, \quad \text{где} \quad \beta - \text{произвольный параметр}$$
 (4)

Определим, при каких значениях параметра β интеграл сходится, а при каких расходится. Вычислим интеграл (4):

$$\int_{0}^{1} \frac{1}{x^{\beta}} dx = \lim_{a \to 0^{+}} \int_{a}^{1} \frac{1}{x^{\beta}} dx = \lim_{a \to 0^{+}} \left(\frac{x^{1-\beta}}{1-\beta} \right) \Big|_{a}^{1} = \lim_{a \to 0^{+}} \left(\frac{1-a^{1-\beta}}{1-\beta} \right)$$
 (5)

Если $\beta > 1$, то $(1 - \beta) < 0$, и $a^{1-\beta} \to +\infty$ при $a \to 0^+$. В этом случае интеграл расходится:

$$\int_{0}^{1} \frac{1}{x^{\beta}} dx = +\infty, \quad \text{если} \quad \beta > 1$$
 (6)

Если $\beta = 1$, то $(1 - \beta) = 0$, и $a^{1-\beta} = 1$ при $a \to 0^+$. В этом случае интеграл расходится:

$$\int_{0}^{1} \frac{1}{x^{\beta}} \mathrm{d}x = +\infty, \quad \text{если} \quad \beta = 1$$
 (7)

Если $\beta < 1$, то $(1 - \beta) > 0$, и $a^{1-\beta} \to 0^+$ при $a \to 0^+$. В этом случае интеграл сходится:

$$\int_{0}^{1} \frac{1}{x^{\beta}} dx = \frac{1 - a^{1 - \beta}}{1 - \beta}, \quad \text{если} \quad \beta < 1$$
 (8)

Итак, интеграл (4) рассходится при $\beta \geq 1$ и сходится при $\beta < 1$.

6. Теперь оценим сверху и снизу трансцендентную функцию $\ln x$ в исходном интеграле и сравним его с эталонным интегралом:

$$\int_{0}^{1} \frac{\ln x}{x^a}, dx \tag{9}$$

где a - произвольный параметр.

Для $0 < x \le 1$, справедливо неравенство

$$-\frac{1}{x} \le \ln x \le 0. \tag{10}$$

Используя неравенство (10), оценим интеграл (9) сверху и снизу:

$$-\int_{0}^{1} \frac{1}{x^{a+1}}, dx \le \int_{0}^{1} \frac{\ln x}{x^{a}}, dx \le 0.$$
 (11)

7. Исследование интеграла при разных значениях параметра a:

При a = 1, исходный интеграл становится:

$$\int_{0}^{1} \frac{\ln x}{x}, dx$$

Этот интеграл является известным и сходится. Значение интеграла равно -2.

При a=0:

$$\int_{0}^{1} \frac{\ln x}{x^{0}}, dx = \int_{0}^{1} \ln x, dx$$

Этот интеграл сходится, и его значение равно -1.

При 0 < a < 1:

Как было упомянуто ранее, интеграл сходится при 0 < a < 1. Это объясняется тем, что на промежутке (0,1) функция $\frac{\ln x}{x^a}$ является монотонно возрастающей, и её интеграл на (0,1) ограничен сверху интегралом $\int\limits_0^1 \frac{1}{x^a}, dx$, который сходится при 0 < a < 1.

При a>1, мы можем использовать интегральное сравнение, сравнивая исходный интеграл с интегралом $\int\limits_0^1 \frac{1}{x^a}, dx.$

Для $x\in(0,1)$ и a>1, имеем $\frac{\ln x}{x^a}\leq 0$. Теперь возьмем $x\in(\frac{1}{2},1)$, и заметим, что $\ln x\geq \ln(\frac{1}{2})=-\ln 2$. Следовательно, для $x\in(\frac{1}{2},1)$ и a>1, имеем:

$$-\frac{\ln 2}{x^a} \le \frac{\ln x}{x^a} \le 0$$

Теперь интегрируем по x на промежутке $(\frac{1}{2}, 1)$:

$$-\int_{\frac{1}{2}}^{1} \frac{\ln 2}{x^{a}}, dx \le \int_{\frac{1}{2}}^{1} \frac{\ln x}{x^{a}}, dx \le 0$$

Поскольку интеграл $\int\limits_{\frac{1}{2}}^{1} \frac{\ln 2}{x^a}, dx$ сходится при a>1 (так как это просто интеграл $\int\limits_{\frac{1}{2}}^{1} \frac{1}{x^a}, dx$ с константой $\ln 2$), то часть интеграла $\int\limits_{\frac{1}{2}}^{1} \frac{\ln x}{x^a}, dx$ сходится при a>1.

Теперь рассмотрим интеграл на промежутке $(0, \frac{1}{2})$:

$$\int_{0}^{\frac{1}{2}} \frac{\ln x}{x^a}, dx$$

Обратите внимание, что на промежутке $(0,\frac{1}{2}), \ln x \leq \ln(\frac{1}{2}) = -\ln 2$. Следовательно, для $x \in (0,\frac{1}{2})$ и a>1, имеем:

$$\frac{\ln x}{x^a} \le \frac{-\ln 2}{x^a}$$

Интегрируя по x на промежутке $(0, \frac{1}{2})$, получим:

$$\int_{0}^{\frac{1}{2}} \frac{\ln x}{x^{a}}, dx \le -\ln 2 \int_{0}^{\frac{1}{2}} \frac{1}{x^{a}}, dx$$

Интеграл $\int_0^{\frac{1}{2}} \frac{1}{x^a}, dx$ сходится при a>1, так как это просто интеграл $\int_0^1 \frac{1}{x^a}, dx$ с константой $-\ln 2$. Это означает, что часть интеграла $\int_0^{\frac{1}{2}} \frac{\ln x}{x^a}, dx$ сходится при a>1.

Таким образом, исходный интеграл сходится как на промежутке $(0, \frac{1}{2})$, так и на промежутке $(\frac{1}{2}, 1)$ при a > 1. Так как обе части сходятся, то и весь интеграл сходится при a > 1.

8. В итоге, исходный несобственный интеграл расходится при $a \geq 1$ и сходится при 0 < a < 1.

Задание 5.

Условие задачи:

В цилиндре диаметром 1 м и высотой 2 м и закрытом поршнем содержится газ при нормальном атмосферном давлении. Найти работу, которую необходимо затратить на изотермическое сжатие газа при перемещении поршня на 1,5 м внутрь цилиндра. (Указание: для расчета давления воспользоваться законом Бойля-Мариотта).

1)

Дано:

D = 1 M - диаметр цилиндра

H = 2 M - высота цилиндра

 $P = 10 \ 330 \ {\rm KF/M}^3 -$ нормальное атмосферное давление

T = const - температура

h = 1,5 м – расстояние, на которое перемещается поршень

Найти: Q - работа, необходимая для сжатия

Графическая иллюстрация:

 $S = \pi r^2 = \frac{\pi}{4}$ – площадь поперечного сечения цилиндра. V(x) = S*(H-x) – объем, занимаемый газом в зависимости от степени продвижения поршня, где x – расстояние, пройденное поршнем. $V_0 = S*H = \frac{\pi}{2}$ – объем всего цилиндра => объем, занимаемый газом в начальный момент.

Так как сжатие газа изотермическое, согласно закону Бойля-Мариотта, зависимость между давлением Р и объемом V выражается так:

PV = const

 $P(x)* V(x) = P_0 * V_0$

 $P(x) = \frac{P_0 * V_0}{V(x)}$ – давление газа в зависимости от перемещения поршня.

3.a)

Промежуток изменения аргумента – [0; 1,5]. Разобьём этот промежуток на элементарные участки dx длинной 0,5: [0; 0,5], [0,5;1] и [1;1,5].

Малое приращение искомой величины Q на элементарных участках dx:
$$\delta Q(x) \approx dQ = P(x) * Sdx = \frac{P_0 * V_0 * S}{S*(H-x)} dx = \frac{P_0 * V_0}{H-x} dx$$

Вычислим приближенное значение для точек 0; 0,5; 1 (границы элементарных участков) P(0) * Sdx = 8109,05

$$P(0,5) * Sdx = 10812,0(6)$$

$$P(1) * Sdx = 16218,1$$

3._B)

Вычислим интегральную сумму методом прямоугольников:

$$0.5(Q(0) + Q(0.5) + Q(1)) = 17569, 6$$

3.г и 3.д)

Получим определённый интеграл для вычисления искомой величины:

Ответ: 220 558,23 Дж.