Betting on Sparsity with the Lasso. Part I: Linear Regression

Pierre-Alexandre Mattei

http://pamattei.github.io – @pamattei pierre-alexandre.mattei@inria.fr

MSc Data Science

Good old linear regression The sparse way

Good old linear regression The sparse way

Good old linear regression

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mu \mathbf{1}_n + \boldsymbol{\varepsilon}$$

 $\mathbf{Y} \in \mathbb{R}^n$ is a vector of n observed responses,

 $\mathbf{X} \in \mathcal{M}_{n,p}$ is the design matrix with p input variables,

 $arepsilon \in \mathbb{R}^n$ is a stochastic noise term with zero mean and finite variance,

 $\mu \in \mathbb{R}$ is the intercept,

Goal: Predicting the value of the response given some new data.

Good old linear regression

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mu \mathbf{1}_n + \boldsymbol{\varepsilon}$$

 $\mathbf{Y} \in \mathbb{R}^n$ is a vector of n observed responses,

 $\mathbf{X} \in \mathcal{M}_{n,p}$ is the design matrix with p input variables,

 $arepsilon \in \mathbb{R}^n$ is a stochastic noise term with zero mean and finite variance,

 $\mu \in \mathbb{R}$ is the intercept,

Goal: Predicting the value of the response given some new data.

Centering the data

We typically assume that the data have been centered, i.e. Y has zero mean. A nice thing about this is that it allows us to forget about the intercept (which can just be estimated by $\mu = 0$).

Of course, we can still "uncenter" our predictions at the end if we want (as long as we kept the original means). We can just estimate μ by the empirical mean of \mathbf{Y} and add that to our predictions.

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

If we have a new data point \mathbf{x}_{new} , how do we predict its response?

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

If we have a new data point \mathbf{x}_{new} , how do we predict its response? We can just use

$$\hat{\mathbf{y}}_{\text{new}} = \mathbb{E}[y|\mathbf{x}_{\text{new}}] = \mathbf{x}_{\text{new}}^T \boldsymbol{\beta}.$$

.

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

If we have a new data point \mathbf{x}_{new} , how do we predict its response? We can just use

$$\hat{\mathbf{y}}_{\text{new}} = \mathbb{E}[y|\mathbf{x}_{\text{new}}] = \mathbf{x}_{\text{new}}^T \boldsymbol{\beta}.$$

Note that, for this to be true, we don't need the noise to be Gaussian (we just needed it to have zero mean).

į

$$\mathbf{Y} = \mathbf{X}\boldsymbol{eta} + \boldsymbol{arepsilon}$$

If we have a new data point \mathbf{x}_{new} , how do we predict its response? We can just use

$$\hat{\mathbf{y}}_{\text{new}} = \mathbb{E}[y|\mathbf{x}_{\text{new}}] = \mathbf{x}_{\text{new}}^T \boldsymbol{\beta}.$$

Note that, for this to be true, we don't need the noise to be Gaussian (we just needed it to have zero mean).

Important consequence: If we mainly want to do prediction, we're mostly interested in estimating β (and the noise term is not too important to estimate).

Ę

OLS for linear regression

Since Legendre anbd Gauss (\approx 1805), the traditional approach to linear regression is through ordinary least squares

$$\boldsymbol{\hat{\beta}_{\mathsf{OLS}}} \in \mathsf{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2,$$

which may be interpreted as doing maximum likelihood under the assumption that the noise term is Gaussian.

OLS for linear regression

Since Legendre anbd Gauss (\approx 1805), the traditional approach to linear regression is through ordinary least squares

$$\boldsymbol{\hat{eta}}_{\mathsf{OLS}} \in \mathsf{argmin}_{oldsymbol{eta} \in \mathbb{R}^p} ||\mathbf{Y} - \mathbf{X}oldsymbol{eta}||_2^2,$$

which may be interpreted as doing maximum likelihood under the assumption that the noise term is Gaussian. If the matrix $\mathbf{X}^T\mathbf{X}$ is invertible, then the problem admits a unique solution:

$$\hat{\boldsymbol{\beta}}_{\mathsf{OLS}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y}.$$

OLS for linear regression

Since Legendre anbd Gauss (\approx 1805), the traditional approach to linear regression is through ordinary least squares

$$\boldsymbol{\hat{eta}}_{\mathsf{OLS}} \in \mathsf{argmin}_{oldsymbol{eta} \in \mathbb{R}^p} ||\mathbf{Y} - \mathbf{X}oldsymbol{eta}||_2^2,$$

which may be interpreted as doing maximum likelihood under the assumption that the noise term is Gaussian. If the matrix $\mathbf{X}^T\mathbf{X}$ is invertible, then the problem admits a unique solution:

$$\hat{\boldsymbol{\beta}}_{\mathsf{OLS}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y}.$$

In this course, we're concerned by cases where the number of features p is very large. Which leads $\mathbf{X}^T\mathbf{X}$ to be ill-conditioned or non-invertible. This renders OLS impractical.

•

We have $rank(\mathbf{X}^T\mathbf{X}) \leq n$, so if p > n, the matrix $\mathbf{X}^T\mathbf{X}$ is not invertible! There is an infinite number of minimisers of the squared error...

We have $\operatorname{rank}(\mathbf{X}^T\mathbf{X}) \leq n$, so if p > n, the matrix $\mathbf{X}^T\mathbf{X}$ is not invertible! There is an infinite number of minimisers of the squared error... Exercise: We saw last week two simple ways of doing that. What were they?

We have $\operatorname{rank}(\mathbf{X}^T\mathbf{X}) \leq n$, so if p > n, the matrix $\mathbf{X}^T\mathbf{X}$ is not invertible! There is an infinite number of minimisers of the squared error... Exercise: We saw last week two simple ways of doing that. What were they?

■ replacing $(\mathbf{X}^T\mathbf{X})^{-1}$ by the Moore-Penrose pseudoinverse $(\mathbf{X}^T\mathbf{X})^{\dagger}$ ("ridgeless regression" or "Moore-Penrose least squares")

We have $\operatorname{rank}(\mathbf{X}^T\mathbf{X}) \leq n$, so if p > n, the matrix $\mathbf{X}^T\mathbf{X}$ is not invertible! There is an infinite number of minimisers of the squared error... Exercise: We saw last week two simple ways of doing that. What were they?

- replacing $(\mathbf{X}^T\mathbf{X})^{-1}$ by the Moore-Penrose pseudoinverse $(\mathbf{X}^T\mathbf{X})^{\dagger}$ ("ridgeless regression" or "Moore-Penrose least squares")
- replacing $(\mathbf{X}^T\mathbf{X})^{-1}$ by $(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}_p)^{-1}$ with $\lambda > 0$ ("ridge regression", "Tikhonov regularisation", " ℓ_2 regularisation")

Exercise: What are the advantages/drawbacks of the two methods?

Betting on sparsity

A drawback of both Moore-Penrose and ridge is that they do not lead to a sparse solution. In other words, for them, all p variables are relevant. Exercise: Find some simple applied examples where it's clear that not using all variables would be better.

Betting on sparsity

A drawback of both Moore-Penrose and ridge is that they do not lead to a sparse solution. In other words, for them, all p variables are relevant. Exercise: Find some simple applied examples where it's clear that not using all variables would be better.

In genomics, when there's a causal link between a specific gene and a disease, we certainly won't need all the genome!

Betting on sparsity

all variables would be better.

A drawback of both Moore-Penrose and ridge is that they do not lead to a sparse solution. In other words, for them, all p variables are relevant. Exercise: Find some simple applied examples where it's clear that not using

In genomics, when there's a causal link between a specific gene and a disease, we certainly won't need all the genome!

When dealing with spectra, not all wavelengths are useful in general.

What does sparsity actually mean?

A sparse model is a model that willignfully ignores some of the features of the data at hand. For linear regression, this means that the parameter β will have some coefficients equal to zero.

What does sparsity actually mean?

A sparse model is a model that willignfully ignores some of the features of the data at hand. For linear regression, this means that the parameter β will have some coefficients equal to zero. It will be convient to use the ℓ_0 pseudo-norm of a vector $\beta \in \mathbb{R}^p$, defined as

$$||\beta||_0 = \#\{\beta_j \mid \beta_j \neq 0\} = \text{number of nonzero coefficients of } \beta.$$

•

What does sparsity actually mean?

A sparse model is a model that willignfully ignores some of the features of the data at hand. For linear regression, this means that the parameter β will have some coefficients equal to zero. It will be convient to use the ℓ_0 pseudo-norm of a vector $\beta \in \mathbb{R}^p$, defined as

$$||\beta||_0 = \#\{\beta_j \mid \beta_j \neq 0\} = \text{number of nonzero coefficients of } \beta.$$

We say that $\beta \in \mathbb{R}^p$ is k-sparse when it contains only k coefficients different from zero. In other words, $\beta \in \mathbb{R}^p$ is k-sparse when $||\beta||_0 = k$. Of course, we need to have $k \in \{0,...,p\}$. The sparsity pattern of β is the subset of $\{1,...,p\}$ corresponding to nonzero coefficients. Exercise: How many possible sparsity patterns are there?

ç

Sparsity through ℓ_0 penalisation

Since we have a measure of non-sparsity (the ℓ_0 pseudonorm), we could just use that to obtain sparse solutions!

$$\boldsymbol{\hat{\beta}}_{\ell_{\boldsymbol{0}},\lambda} \in \operatorname{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_0.$$

Sparsity through ℓ_0 penalisation

Since we have a measure of non-sparsity (the ℓ_0 pseudonorm), we could just use that to obtain sparse solutions!

$$\hat{\boldsymbol{\beta}}_{\ell_0,\lambda} \in \operatorname{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_0.$$

If we use a large enough λ , this will give us sparse solutions. Exercise: what would be the drawbacks of this approach?

Sparsity through ℓ_0 penalisation

Since we have a measure of non-sparsity (the ℓ_0 pseudonorm), we could just use that to obtain sparse solutions!

$$\boldsymbol{\hat{\beta}}_{\ell_0,\lambda} \in \operatorname{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_0.$$

If we use a large enough λ , this will give us sparse solutions. Exercise: what would be the drawbacks of this approach? The loss function is non-differentiable, if we wanted to solve the problem exactly, we would basically need to try all possible 2^p sparsity patterns and compute OLS on them. This is impossible when p becomes bigger than around 10...

Recall the definitions of AIC/BIC-type penalties

$$AIC = -2 \times likelihood + 2 \times nb.$$
 of free parameters

$$BIC = -2 \times likelihood + log(n) \times nb.$$
 of free parameters

Exercise: can we use this to choose λ in ℓ_0 -penalised linear regression?

Recall the definitions of AIC/BIC-type penalties

$$AIC = -2 \times likelihood + 2 \times nb.$$
 of free parameters

$$BIC = -2 \times likelihood + log(n) \times nb.$$
 of free parameters

Exercise: can we use this to choose λ in ℓ_0 -penalised linear regression?

Assuming that the noise is Gaussian with known variance σ^2 , the likelihood is, up to a constant, $-||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2/(2\sigma^2)$, therefore

$$-2 imes ext{likelihood} = rac{1}{\sigma^2} ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2,$$

which means that AIC will correspond to $\lambda = 2/\sigma^2$, and BIC to $\lambda = \log(n)/\sigma^2$.

Recall the definitions of AIC/BIC-type penalties

$$AIC = -2 \times likelihood + 2 \times nb.$$
 of free parameters

$$BIC = -2 \times likelihood + log(n) \times nb.$$
 of free parameters

Exercise: can we use this to choose λ in ℓ_0 -penalised linear regression?

Recall the definitions of AIC/BIC-type penalties

$$AIC = -2 \times likelihood + 2 \times nb.$$
 of free parameters

$$BIC = -2 \times likelihood + log(n) \times nb.$$
 of free parameters

Exercise: can we use this to choose λ in ℓ_0 -penalised linear regression?

Assuming that the noise is Gaussian with known variance σ^2 , the likelihood is, up to a constant, $-||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2/(2\sigma^2)$, therefore

$$-2 imes ext{likelihood} = rac{1}{\sigma^2} ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2,$$

which means that AIC will correspond to $\lambda = 2/\sigma^2$, and BIC to $\lambda = \log(n)/\sigma^2$.

Since we can't do ℓ_0 regularisation, what can we do?

Another way of seeing the ℓ_0 regularised problem is as an ℓ_0 constrained problem

$$\mathsf{argmin}_{oldsymbol{eta} \in \mathbb{R}^p, ||oldsymbol{eta}||_{oldsymbol{\mathsf{o}}} \leq k} ||\mathbf{Y} - \mathbf{X}oldsymbol{eta}||_2^2.$$

What does the ℓ_0 ball $\{\beta \in \mathbb{R}^p, \ ||\beta||_0 \le k\}$ look like? Exercise: draw it for

p = 2 and k = 1.

The ℓ_q pseudonorms

One neat way of gaining insight on the ℓ_0 ball is to see it as a limit of ℓ_q balls. For all q > 0, let us define

$$||\beta||_q = \left(\sum_{j=1}^p \beta_j^q\right)^{1/q}.$$

Note that this measure is not a proper norm unless $q \geq 1$. The ℓ_0 case corresponds to $q \to 0$. Here are various ℓ_q balls (figure from Hastie, Tibshirani & Wainwright, 2015).

$$q=4$$
 $q=2$ $q=1$ $q=1$

non-convex

The ℓ_a pseudonorms

One neat way of gaining insight on the ℓ_0 ball is to see it as a limit of ℓ_q balls. For all q>0, let us define

$$||oldsymbol{eta}||_q = \left(\sum_{j=1}^p eta_j^q
ight)^{1/q}.$$

Note that this measure is not a proper norm unless $q \geq 1$. The ℓ_0 case corresponds to $q \to 0$. Here are various ℓ_q balls (figure from Hastie, Tibshirani & Wainwright, 2015).

Key idea of the lasso: replace the discrete, non-differentiable, non-convex ℓ_0 ball by a more regular object, like an ℓ_q ball.

We already studied the ℓ_2 case, it's just ridge! But ridge does not give sparsity.... To get sparsity, we need sharp edges on the ball (figure from Hastie, Tibshirani & Wainwright, 2015).

All ℓ_q balls have sharp edges when q<1, and all of them would lead to sparse solutions.

All ℓ_q balls have sharp edges when q<1, and all of them would lead to sparse solutions. Keep in mind that we're doing this for computational

reasons: we want something fast and cheap.

This leads to the desideratum of having a convex optimisation problem. Of course, the squared error is convex in β . Exercise: What about the penalty?

All ℓ_q balls have sharp edges when q<1, and all of them would lead to sparse solutions. Keep in mind that we're doing this for computational

reasons: we want something fast and cheap.

This leads to the desideratum of having a convex optimisation problem. Of course, the squared error is convex in β . Exercise: What about the penalty?

The only convex ℓ_q is the ℓ_1 ball, which justifies the choice of q=1. This leads to the lasso estimate

$$\boldsymbol{\hat{\beta}}_{\mathsf{lasso},\lambda} \in \mathsf{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_1.$$

Some properties of the lasso

We'll give more details about some of these later in the course:

- convex problem, with very fast possible optimisation
- $\hat{\beta}_{\mathsf{lasso},\lambda}$ is sparse (the larger the λ , the sparser)
- $\hat{\beta}_{lasso,\lambda}$ will contain at most min(n,p) nonzero coefficients
- "easy" to generalise beyond linear regression