Lecture 3

Residual Analysis + Generalized Linear Models

Colin Rundel 1/23/2017

Residual Analysis

Atmospheric CO₂ (ppm) from Mauna Loa

Where to start?

Well, it looks like stuff is going up on average \dots

Where to start?

Well, it looks like stuff is going up on average ...

and then?

Well there is some periodicity lets add the month \dots

and then?

Well there is some periodicity lets add the month ...

and then and then?

Maybe there is some different effect by year \dots

and then and then?

Maybe there is some different effect by year \dots

Too much

```
(lm = lm(co2~date + month + as.factor(year), data=co2 df))
##
## Call:
  lm(formula = co2 ~ date + month + as.factor(year), data = co2 df)
##
   Coefficients:
##
           (Intercept)
                                        date
                                                          monthAug
##
            -2.645e+03
                                   1.508e+00
                                                        -4.177e+00
##
              monthDec
                                    monthFeb
                                                          monthJan
##
##
            -3,612e+00
                                  -2.008e+00
                                                        -2,705e+00
              monthJul
##
                                    monthJun
                                                          monthMar
##
            -2.035e+00
                                  -3.251e-01
                                                        -1.227e+00
##
              monthMav
                                    monthNov
                                                          monthOct
##
             4.821e-01
                                  -4.838e+00
                                                        -6.135e+00
##
              monthSep
                         as.factor(year)1986
                                              as.factor(year)1987
                                  -2.585e-01
                                                         9.722e-03
##
            -6.064e+00
   as.factor(year)1988
                         as.factor(year)1989 as.factor(year)1990
##
             1,065e+00
                                   9.978e-01
                                                         7.726e-01
   as.factor(year)1991
                         as.factor(year)1992
                                              as.factor(year)1993
##
             7.067e - 01
                                   1.236e-02
                                                        -7.911e-01
   as.factor(year)1994
                         as.factor(year)1995 as.factor(year)1996
##
            -4.146e-01
                                   1.119e-01
                                                         3.768e-01
   as.factor(year)1997
##
##
                     NA
```


Generalized Linear Models

Background

A generalized linear model has three key components:

- 1. a probability distribution (from the exponential family) that describes your response variable
- 2. a linear predictor $\eta = X\beta$,
- 3. and a link function g such that $g(E(Y|X)) = \mu = \eta$.

Poisson Regression

Model Specification

A generalized linear model for count data where we assume the outcome variable follows a poisson distribution (mean = variance).

$$\mathbf{Y}_i \sim \mathsf{Poisson}(\lambda_i)$$
 $\log E(\mathbf{Y}|\mathbf{X}) = \log oldsymbol{\lambda} = \mathbf{X}oldsymbol{eta}$

Example - AIDS in Belgium

Frequentist glm fit

```
g = glm(cases~year, data=aids, family=poisson)
pred = data_frame(year=seq(1981,1993,by=0.1))
pred$cases = predict(g, newdata=pred, type = "response")
```


Residuals

Standard residuals:

$$r_i = Y_i - \hat{Y}_i = Y_i - \hat{\lambda}_i$$

Pearson residuals:

$$r_i = \frac{Y_i - E(Y_i|X)}{\sqrt{Var(Y_i|X)}} = \frac{Y_i - \hat{\lambda}_i}{\sqrt{\hat{\lambda}_i}}$$

Deviance residuals:

$$d_i = sign(y_i - \lambda_i)\sqrt{2(y_i \log(y_i/\hat{\lambda}_i) - (y_i - \hat{\lambda}_i))}$$

Deviance and deviance residuals

Deviance can be interpreted as the difference between your model's fit and the fit of an ideal model (where $E(\hat{Y}_i) = Y_i$).

$$D = 2(\mathcal{L}(Y|\theta_{best}) - \mathcal{L}(Y|\hat{\theta})) = \sum_{i=1}^{n} d_i^2$$

Deviance is a measure of goodness of fit in a similar way to the residual sum of squares (which is just the sum of squared standard residuals).

Deviance residuals derivation

Residual plots

print(aids_fit)

Quadratic fit

```
g2 = glm(cases~year+I(year^2), data=aids, family=poisson)
pred2 = data_frame(year=seq(1981,1993,by=0.1))
pred2$cases = predict(g2, newdata=pred, type = "response")
```


Quadratic fit - residuals


```
## model{
     # Likelihood
##
     for(i in 1:length(Y)){
##
       Y[i] ~ dpois(lambda[i])
##
       log(lambda[i]) <- beta[1] + beta[2]*X[i]</pre>
##
##
##
       # In-sample prediction
       Y hat[i] ~ dpois(lambda[i])
##
##
##
##
     # Prior for beta
     for(j in 1:2){
##
       beta[j] \sim dnorm(0,1/100)
##
##
## }
```

```
m = jags.model(
  textConnection(poisson_model1), quiet = TRUE,
  data = list(Y=aids$cases, X=aids$year)
)
update(m, n.iter=1000, progress.bar="none")
samp = coda.samples(
  m, variable.names=c("beta","lambda","Y_hat"),
  n.iter=5000, progress.bar="none"
)
```

MCMC Diagnostics

Model fit?

What went wrong?

What went wrong?

```
summary(g)
##
## Call:
## glm(formula = cases ~ year, family = poisson, data = aids)
##
## Deviance Residuals:
      Min 10 Median 30 Max
##
## -4.6784 -1.5013 -0.2636 2.1760 2.7306
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -3.971e+02 1.546e+01 -25.68 <2e-16 ***
## vear
        2.021e-01 7.771e-03 26.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
##
      Null deviance: 872.206 on 12 degrees of freedom
## Residual deviance: 80.686 on 11 degrees of freedom
## ATC: 166.37
##
## Number of Fisher Scoring iterations: 4
```

```
summary(glm(cases~I(year-1981), data=aids, family=poisson))
##
## Call:
## glm(formula = cases ~ I(year - 1981), family = poisson, data = aids)
##
## Deviance Residuals:
##
      Min
               10 Median
                                 30
                                        Max
## -4.6784 -1.5013 -0.2636 2.1760
                                     2.7306
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 3.342711 0.070920 47.13 <2e-16 ***
## I(vear - 1981) 0.202121 0.007771 26.01 <2e-16 ***
## ---
  Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 872.206 on 12 degrees of freedom
##
## Residual deviance: 80.686 on 11 degrees of freedom
## AIC: 166.37
##
## Number of Fisher Scoring iterations: 4
```

```
## model{
     # Likelihood
##
     for(i in 1:length(Y)){
##
       Y[i] ~ dpois(lambda[i])
##
       log(lambda[i]) \leftarrow beta[1] + beta[2]*(X[i] - 1981)
##
##
##
       # In-sample prediction
       Y hat[i] ~ dpois(lambda[i])
##
     }
##
##
##
     # Prior for beta
     for(j in 1:2){
##
       beta[j] \sim dnorm(0,1/100)
##
##
## }
```

MCMC Diagnostics

Model fit

Bayesian Residual Plots

Model fit

Bayesian Residual Plots

Negative Binomial Regression

Overdispersion

One of the properties of the Poisson distribution is that if $X \sim \text{Pois}(\lambda)$ then $E(X) = Var(X) = \lambda$.

If we are constructing a model where we claim that our response variable Y follows a Poisson distribution then we are making a very strong assumption which has implactions for both inference and prediction.

Overdispersion

One of the properties of the Poisson distribution is that if $X \sim \text{Pois}(\lambda)$ then $E(X) = Var(X) = \lambda$.

If we are constructing a model where we claim that our response variable Y follows a Poisson distribution then we are making a very strong assumption which has implactions for both inference and prediction.

```
mean(aids$cases)
## [1] 124.7692
var(aids$cases)
## [1] 8124.526
```

Negative binomial regession

If we define

$$Y_i|Z_i \sim Pois(\lambda_i | Z_i)$$

 $Z_i \sim Gamma(\theta_i, |\theta_i)$

then the marginal distribution of Y_i will be negative binomial with,

$$E(Y_i) = \lambda_i$$
 $Var(Y_i) = \lambda_i + \lambda_i^2/\theta_i$

```
## model{
##
     for(i in 1:length(Y))
##
       Z[i] \sim dgamma(theta, theta)
##
       log(lambda[i]) \leftarrow beta[1] + beta[2]*(X[i] - 1981) + beta[3]*(X[i] - 1981)
##
##
##
       lambda Z[i] <- Z[i]*lambda[i]</pre>
##
##
       Y[i] ~ dpois(lambda Z[i])
       Y hat[i] ~ dpois(lambda Z[i])
##
     }
##
##
##
     for(j in 1:3){
##
       beta[j] \sim dnorm(0, 1/100)
##
     }
##
     log\_theta \sim dnorm(0, 1/100)
##
     theta <- exp(log theta)
##
## }
```

Negative Binomial Model fit

Bayesian Residual Plots

