[Linux] Chapter 11, 15

[GBC20190027] Linux(+USP)

27기 최하영

Agenda

Chapter 11. 네트워크 설정

Chapter 15. 리눅스 보안의 기초

11. 네트워크 설정

[GBC20190027] Linux(+USP)

1. TCP/IP프로토콜

-프로토콜: 컴퓨터와 컴퓨터 사이에서 데이터를 어떻게 주고받을 것인지를 정의한 통신규약 (같은 프로토콜을 사용하는 기기 간에는 통신이 가능함)

- 인터넷 네트워크 → TCP/IP
- 다섯 계층으로 구성됨
- 각 계층별로 다양한 서비스 제공
- 전송 계층의 TCP와 네트워크 계층의 IP로 전체 프로토콜을 대표하여 TCP/IP 프로토콜이라 부름

1. TCP/IP프로토콜

응용 계층(application layer)

전송 계층(transport layer)

네트워크 계층(network layer)

링크 계층(link layer)

물리 계층(physical layer)

계층	기능	프로토콜	전송 단위
응용 계층	서비스 제공 응용 프로그램	DNS, FTP, SSH, HTTP, Telnet	메시지
전송 계층	응용 프로그램으로 데이터를 전달, 데이터 흐름 제어 및 전송 신뢰성 담당	TCP, UDP	세그먼트
네트워크 계층	주소 관리 및 경로 탐색	IP, ICMP	패킷
링크 계층	네트워크 장치 드라이버	ARP	프레임
물리 계층	케이블 등 전송 매체	구리선, 광케이블, 무선	비트

2. 주소

- 일반 사용자들이 유선이나 무선 네트워크에서 사용하는 인터페이스 → 이더넷 방식 사용
- 1) MAC 주소 (Media Access Control)
- MAC 주소는 하드웨어를 위한 주소
- 이더넷 주소, 하드웨어 주소, 물리 주소라고 함
- 네트워크 인터페이스 카드(랜 카드)에 저장된 주소
- 네트워크 인터페이스 카드가 만들어질 때 부여되며, 원칙적으로 수정 X, but, 일부 네트워크 인터페이스 카드의 경우 사용자가 MAC주소 수정 허용
- MAC 주소 -→ 각 하드웨어를 구별하는 역할 수행
- 쌍점(:)이나 붙임표(-)로 구분되는 여섯 개의 16진수로 구성됨, 총 48비트

00:50:56:3e:3c:fe

제조사 번호 일련번호

(IEEE에서 지정) (제조사에서 지정)

2) IP주소 (Internet protocol)

- 인터넷으로 연결된 네트워크에서 각 컴퓨터를 구분하기 위해 사용됨
- IP주소는 1바이트 크기의 네 자리 숫자로 구성되므로 총 4바이트 (32bit)
- IP주소는 네트워크를 구분하는 네트워크 주소, 해당 네트워크 안에서 특정 컴퓨터를 식별하는 호스트 주소로 나뉨
 - 총 32비트 중 몇 비트를 네트워크 부분을 사용하고, 나머지 몇 비트를 호스트 부분으로 사용하는지에 따라 A, B, C 클래스로 구분함

3) 넷마스크와 브로드캐스트 주소

- 넷마스크 : IP주소와 AND연산을 수행하여 네트워크 부분만 남기는 역할
- 브로드캐스트 주소 : 같은 네트워크에 있는 모든 컴퓨터에 메시지를 보낼 때 사용하는 것으로 호스트 부분을 모두 1로 설정함 (ex. 192.168.100.255)

4) 호스트 이름

- 호스트 이름도 IP주소처럼 네트워크/호스트 부분으로 구분됨 ex) www.naver.com //www→ 네트워크, naver.com → 호스트

5) 포트 번호

- 각 서비스를 구분하는 번호
- 사용자가 네트워크 서비스를 이용할 때 사용자의 패킷은 IP 주소를 보고 해당 서버 컴퓨터를 찾아감 ☞ 서버 컴퓨터에 도착한 사용자의 패킷은 어떤 서비스를 요청한 것인지 확인한 다음 해당 데몬에 패킷 전달 → 사용자가 어떤 서비스를 요청 했는지 구분해 주는 것이 '포트 번호'임.
 - 전송 계층에서 사용하는 번호
 - /etc/services : 각 서비스별로 포트 번호가 무엇인지 정의

0. 네트워크 사용하기 위해 설정해야 할 것

- IP 주소
- 넷마스크와 브로드캐스트 주소
- 게이트웨이 (라우터) 주소
- DNS 주소

1. 호스트 이름 설정하기

- 호스트 이름은 해당 기관의 도메인 이름에 서버에서 제공하는 대표적인 서비스 이름을 붙이는 것이 편리함
 - ex) 도메인 이름이 han.server 이고 주로 메일을 서비스하는 서버라면 mail.han.server라고 하는 것
 - 붙인 이름은 호스트 이름 설정 파일에 저장 + DNS에 등록해야만
 - → 서비스를 제공할 수 있음

* 호스트 이름 확인하기 : uname -n, hostname

\$ uname: 시스템 정보 출력

-n 옵션: 호스트 이름을 출력함

-a 옵션: 호스트 이름 포함하여 시스템 관련 정보 출력

\$ hostname : 호스트 이름을 출력 + 설정 hostname [new hostname] : 호스트 이름을 변경할 수 있음

* 호스트 이름 설정 파일

→ /etc/hostname : 단순히 도메인 이름을 포함한 호스트 이름만 저장하고 있음 이 파일의 내용을 수정하면 재시작해도 호스트 이름을 유지할 수 있음 [!] 호스트 이름을 새로 정의할 때, 한 네트워크에서 같은 이름을 사용하는 다른 호스트가 있으면 안된다

2. 네트워크 인터페이스 설정하기

- 리눅스 시스템을 네트워크에 연결하려면 → IP 주소를 할당 받아야 함
- 같은 네트워크 내에서 동일한 IP주소를 가지고 있는 시스템이 있으면 안됨!
- 네트워크 인터페이스 설정 시 → IP주소, 넷마스크, 브로드캐스트 주소 함께 설정
- * 현재 설치된 네트워크 인터페이스 설정 확인하기: ifconfig
- 보통 시스템에 네트워크 인터페이스는 하나지만 경우에 따라 두 개 이상 장착할 수도 있음
 - * 특정 네트워크 인터페이스 설정 확인하기
 - \$ ifconfig eth0
 - * 네트워크 인터페이스 사용 해제하기: down 옵션
 - \$ sudo ifconfig eth0 down
 - * 네트워크 인터페이스 활성화하기 : up 옵션
 - * /etc/network/interface 파일에 IP주소와 넷마스크를 지정해야, 부팅할 때 네트워크가 설정됨

3. 게이트웨이 설정하기

- 인터넷 : 네트워크와 네트워크를 연결한 것
- 게이트웨이 : 네트워크를 다른 네트워크와 연결할 때 연결점이 되는 장치
- 게이트웨이도 하나의 컴퓨터 -> 보통 라우터라고 부름
- 게이트웨이는 패킷을 보고 같은 네트워크로 보내는 것이 아니면 외부로 전송함
- 게이트웨이 주소가 설정되어 있지 않으면, 같은 네트워크가 아닌 컴퓨터와는 접속이 불가능함
- 게이트웨이의 설정과 확인 → route (라우팅 테이블 편집하는 명령)
- * 라우팅 테이블 보기: route
- * 기본 게이트웨이 삭제하기 : route del
- * 기본 게이트웨이 설정: route add
- * 라우팅: 어떤 네트워크 안에서 통신 데이터를 보낼 경로를 선택하는 과정
- * 라우팅 테이블: 패킷이 목적지까지 가는 거리와 가는 방법 등을 명시하고 있음

4. DNS 설정하기

- DNS(Domain Name Service)는 호스트 이름을 IP주소로 바꾸는 역할을 수행함
- DNS가 설정되어 있지 않을 경우 → 직접 IP주소를 사용해야 접속 가능
- * DNS 서버 지정하기
 - 리눅스는 DNS 서버의 주소를 /etc/resolv.conf 파일에 저장함
- * DNS 서버에 질의하기
 - \$ nslookup : DNS 서버와 대화식으로 질의하고 응답을 받는다 nslookup [도메인명]

0. 네트워크의 상태 확인

- 외부와 통신이 잘되는지 확인하는 명령
- 라우팅 및 열려 있는 포트 확인하는 명령
- 네트워크의 이상 유무를 점검하기 위해 패킷을 캡처하는 명령

1. 통신 확인하기

- 네트워크에서 통신이 가능한지 확인하는 명령 : ping
- ping은 해당 시스템이 외부와 통신되는지 + 외부 서버가 동작하는지 확인
- -c 옵션: 보낼 패킷 수를 지정할 수 있음
- -q 옵션: 아무 메시지도 출력되지 않다가 ctrl + c로 종료하면 통계 정보만 출력
- 도메인 이름을 사용하는 경우 : ping + [도메인 이름]

2. 통신 경로 확인하기

- \$ traceroute : 목적지 시스템까지의 네트워크 경로 추적 (= 목적지까지 패킷이 거치는 경로 출력)
- 정상적으로 경로가 확인되는 경우
- 정상적으로 경로가 확인되지 않는 경우 → * 출력

3. 네트워크 상태 정보 출력하기

- \$ netstat : 네트워크 연결 상태, 라우팅 테이블, 인터페이스 관련 통계 출력 현재 시스템에 열려 있는 포트도 확인 가능
- 라우팅 테이블 확인하기 : -r 옵션
- 현재 열려 있는 포트 확인하기 : netstat -an | grep LISTEN
- 현재 열려 있는 포트를 사용 중인 프로세스 확인하기: -p 옵션
- 인터페이스별 네트워크 통계 정보 확인하기: -i 옵션
- 프로토콜별 네트워크 통계 정보 확인하기: -s 옵션

```
choehayeong-ui-MacBookPro:~ hayeong$ netstat -r
Routing tables
Internet:
Destination
                    Gateway
                                        Flags
                                                      Refs
                                                                Use
                                                                      Netif Expire
default
                    172.17.220.1
                                        UGSc
                                                        69
                                                                 40
                                                                         en0
127
                    localhost
                                        UCS
                                                                         100
                                                         0
localhost
                   localhost
                                        UH
                                                         2
                                                             397368
                                                                         100
169.254
                   link#6
                                        UCS
                                                         2
                                                                         en0
169.254.11.188
                    c8:ff:28:26:da:f1 UHLSW
                                                         0
                                                                         en0
```

```
[choehayeong-ui-MacBookPro:~ hayeong$ netstat -an | grep LISTEN
tcp4 0 0 127.0.0.1.59354 *.* LISTEN
```

4. MAC 주소와 IP 주소 확인하기

- \$ arp : 같은 네트워크에 연결된 시스템들의 MAC 주소와 IP 주소 확인하기 (address resolution protocol)
 ARP 캐시 정보를 관리함
- 현재 같은 네트워크에 연결되어 있는 시스템의 맥 주소와 IP 주소를 출력함

hayeong@hayeong-VirtualBox:~\$ arp					
Address	HWtype	HWaddress	Flags Mask	Ifac	
e gateway	ether	52:54:00:12:35:02	С	enp0	
s3					

5. 패킷 캡처하기

- \$ tcpdump : 네트워크의 상태를 확인하기 위해 패킷을 캡처하여 분석할 때 사용 (= 네트워크상의 트래픽을 덤프한다)
- 옵션 X : 현재 시스템에서 주고받는 모든 패킷을 캡처하여 패킷의 헤더 부분 정보 를 출력함

```
[choehayeong-ui-MacBookPro:~ hayeong$ sudo tcpdump
Password:
tcpdump: data link type PKTAP
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on pktap, link-type PKTAP (Apple DLT_PKTAP), capture size 262144 bytes
18:12:32.809885 IP 52.109.76.36.https > 172.17.220.149.60307: Flags [P.], seg 54
3869793:543869900, ack 4102209349, win 122, options [nop,nop,TS val 1378401292 e
cr 1148396226], length 107
18:12:32.809934 IP 172.17.220.149.60307 > 52.109.76.36.https: Flags [.], ack 107
, win 2046, options [nop,nop,TS val 1148396521 ecr 1378401292], length 0
18:12:32.810334 IP 172.17.220.149.60307 > 52.109.76.36.https: Flags [P.], seq 1:
374, ack 107, win 2048, options [nop,nop,TS val 1148396521 ecr 1378401292], leng
th 373
18:12:32.810472 IP 172.17.220.149.60307 > 52.109.76
                                                    36 packets captured
4:1067, ack 107, win 2048, options [nop,nop,TS val
                                                    137 packets received by filter
ength 693
                                                    0 packets dropped by keinel
```

- 캡처할 패킷 개수 지정하기 : -c 옵션
- 캡처한 패킷 정보를 파일로 저장하기: -w 옵션
- 캡처한 패킷 파일 읽기: -r 옵션
- 특정 포트로 송수신되는 패킷 캡처하기: tcp port 옵션
- 캡처한 내용을 ASCII로 보기: -X 옵션

명령어	설명	
ping	통신 가능 여부	
traceroute	통신 경로 확인	
netstat	네트워크 상태 확인	
arp	MAC주소와 IP주소 확인	
tcpdump	패킷 캡처	

15. 리눅스 보안의 기초

[GBC20190027] Linux(+USP)

15-1. 정보 보안의 기초

1. 정보 보안의 정의

- 정보 자산을 여러 가지 위협으로부터 보호하여 기밀성, 무결성, 가용성을 유지
- 1) 기밀성 (Confidentiality)
- 허가 받은 사용자만이 해당 정보에 접근할 수 있도록 하는 것
- 사용자를 인증하는 것과, 접근 권한 제어, 데이터 암호화 등
- 2) 무결성 (Integrity)
- 정보가 무단으로 변조되지 않았음을 의미함
- 해당 정보가 완전하며 정확하다는 것을 보장
- 정보가 원본과 동일하다는 것을 보증하는 전자 서명 기법을 활용함
- 3) 가용성 (Availability)
- 필요할 때 인가 받은 사용자가 정보나 서비스에 접근할 수 있는 것을 말함
- 디도스 공격 → 가용성을 제공하지 못하도록 하는 공격

15-1. 정보 보안의 기초

2. 보안 기본 조치

- 1) 불필요한 서비스 통제하기
- 보안 위협은 네트워크를 통해 발생하므로, 꼭 필요하지 않은 서비스 포트는 모 두 막는 것이 좋음 -> 일반적으로 모든 포트 막고, 서비스 제공하려는 포트만 열어주 는 것이 좋음
 - 서비스 통제 → 불필요한 서비스 자체를 제거하는 방법 + 방화벽에서 패킷을 필터링하는 방법 함께 사용
 - 2) 소프트웨어 패치 설치하기
 - 3) 주기적으로 점검하기
 - 4) 백업하기
 - 5) 공부하는 시스템 관리자

15-2. 시스템 로그

0. 로그

- 커널과 리눅스 시스템이 제공하는 여러 서비스와 응용 프로그램이 발생시키는 메 시지를 뜻함
 - 로그 파일 : 로그를 저장하고 있는 파일 (> 시스템의 상태 확인할 수 있음)

1. 주요 로그 파일

- 대부분의 로그 파일이 /var/log 디렉터리에 있다
- 공통적인 로그를 기록 : /var/log/syslog

2. 로그 관리 데몬

- rsyslog 서비스를 제공하는 데몬 → rsyslogd
- rsylog 서비스를 설정하는 파일 → /etc/rsylog.d 디렉터리에 있는 *.conf

15-3. 방화벽 관리

1. 방화벽 동작 확인하기

- 방화벽의 서비스 이름 : ufw
- 방화벽 시작 : sudo ufw enable
- 방화벽 종료 : sudo ufw disable

2. GUI 도구로 방화벽 설정하기

-gufw 이용

3. 방화벽 관리 명령

- 방화벽 설정 : ufw
- 방화벽의 상태보기 : ufw status
- 규칙 추가하기 / 특정 IP접속 설정 : ufw allow [서비스명/IP]
- 서비스 거부하기 : ufw deny [서비스명]
- 규칙 삭제하기 : ufw delete [서비스명]
- 포트 추가하기 : ufs allow [포트 번호]

15-4. 보안 관리 도구

- 1. NMap : 포트 스캔 도구
 - 자신의 서버나 원격의 서버가 사용 중인 포트, 운영체제 등을 스캔하여 출력함
 - 네트워크 관리용 / 취약한 포트가 사용 중인지 확인하기 위한 보안용
 - 스캔하는 것만으로도 보안 침입을 위한 준비과정으로 간주됨
 - \$ nmap : 네트워크를 탐색하고 보안을 점검함
 - 지정한 호스트에서 현재 열려 있는 포트를 요약해서 출력 해줌
 - 특정 서버 스캔하기 : -O 옵션 (root 권한 필요)
 - → 시스템 동작 여부, 운영체제, TCP 포트 번호 알 수 있음
 - UDP 포트 스캔하기 : -sU 옵션
 - 특정 네트워크 대상으로 포트 스캔 : 네트워크 주소 지정

15-4. 보안 관리 도구

2. PAM

- PAM (Pluggable authentication modules): 삽입형 인증 모듈
- 각 서비스 별로 인증 파일 (PAM 파일)을 설정함
- PAM 설정 파일 위치 : /etc/pam.d 디렉터리에 설정 파일을 가지고 있음
- PAM 설정 파일 형식 : <모듈 종류> <제어 플래그> <모듈 이름> <모듈 인자>
- 모듈 인터페이스
 - 1) auth : 사용자 인증 + 그룹 지정에 사용
 - 2) account : 접근이 허용되는지 여부 확인
 - 3) password : 사용자 계정의 암호 변경
 - 4) session: 사용자의 세션을 설정하고 관리 + 접근 허용 부가 작업 수행
- 제어 플래그 : 특정 모듈의 성공과 실패를 어떻게 처리할 것인지를 알려줌
- 모듈 이름 : 삽입 가능한 모듈의 이름 지정
- 모듈 인자 : 인증 과정에서 정보가 필요한 일부 모듈에 정보 전달