Math 4110/6110

Problem Set 3: Measures

- 1. (a) Prove that the intersection of any two σ -algebras itself forms a σ -algebra.
 - (b) Let X be an uncountable set and $\mathcal{A} = \{E \subseteq X : E \text{ is countable or } E^c \text{ is countable}\}.$
 - i. Verify that A is a σ -algebra, called the σ -algebra of countable or co-countable sets.
 - ii. Verify that the function μ on \mathcal{M} defined by $\mu(E) = 0$ if E is countable and $\mu(E) = 1$ if E^c is countable is a measure on \mathcal{A} .
 - (c) Let X be an infinite set. Defined $\mu(E) = 0$ if E is finite and $\mu(E) = \infty$ if E is infinite. Verify that μ is a finitely additive measure on $\mathcal{P}(X)$, but not a measure.
 - (d) Let (X, \mathcal{M}) be a measurable space endowed with a measure μ and $E \in \mathcal{M}$. Define $\mu_E(F) = \mu(E \cap F)$ for all $F \in \mathcal{M}$. Prove that μ_E defines a measure on \mathcal{M} .
- 2. Prove that if μ is a measure on a σ -algebra \mathcal{M} , then

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$$

for any two sets $A, B \in \mathcal{M}$.

- 3. Suppose that $A \subseteq E \subseteq B$, where A and B are Lebesgue measurable subsets on \mathbb{R}^n .
 - (a) Prove that if $m(A) = m(B) < \infty$, then E is Lebesgue measurable.
 - (b) Give an example showing that the same conclusion does not hold if A and B have infinite measure.
- 4. Suppose A and B are a pair of compact subsets of \mathbb{R}^n with $A \subseteq B$, and let a = m(A) and b = m(B). Prove that for any c with a < c < b, there is a compact set E with $A \subseteq E \subseteq B$ and m(E) = c.

 Hint: If n = 1 and E is a measurable subset of [0, 1], consider $m(E \cap [0, t])$ as a function of t.
- 5. If I is a bounded interval and $\alpha \in (0,1)$, let us call the open interval with the same midpoint as I and length equal to α times the length of I the "open middle α th" of I. If $\{\alpha_j\}_{j=1}^{\infty}$ is any sequence of numbers in (0,1), then, we can define a decreasing sequence $\{K_j\}$ of closed sets as follows: $K_0 = [0,1]$, and K_j is obtained by removing the the open middle α_j th from each of the intervals that make up K_{j-1} . The resulting limiting set $K = \bigcap_{j=1}^{\infty} K_j$ is called a **generalized Cantor set**.
 - (a) Suppose $\{\alpha_j\}_{j=1}^{\infty}$ is any sequence of numbers in (0,1).
 - i. Prove that $\prod_{j=1}^{\infty} (1 \alpha_j) > 0$ if and only if $\sum_{j=1}^{\infty} \alpha_j < \infty$.
 - ii. Given $\beta \in (0,1)$, exhibit a sequence $\{\alpha_j\}$ such that $\prod_{j=1}^{\infty} (1-\alpha_j) = \beta$.
 - (b) Given $\beta \in (0,1)$, construct an open set G in [0,1] whose boundary has Lebesgue measure β . Hint: Every closed nowhere dense set is the boundary of an open set.