PPS Progress Report

31.07.2025-25.08.2025

Grzegorz Jędrzejowski

25.08.2025

University of Warsaw Faculty of Physics

Objectives

- Develop and implement analysis modules to apply physics and calibration cuts to the CTPPS Monte Carlo generated data.
- Create dedicated plotters to visualize the effects of these cuts and present key distributions.

Grzegorz Jędrzejowski PPS, CERN 25.08.2025 2/16

What's Been Done?

- The 2018 analysis was performed using the modified configuration file Validation/CTPPS/test/simu/simu_2018_cfg.py.
- And the 2025 using the file: Validation/CTPPS/test/simu/test_2025_man_cfg.py

Core Components

- Producer: CTPPSGregDucer.cc
- Analyzer: CTPPSGregPlotter.cc

Plotting Scripts

- plotGreg.py
- plotProtons.py
- plotTracks.py

Grzegorz Jędrzejowski PPS, CERN 25.08.2025 3/16

Producer: Core Functionality

- Developed based on the existing framework:
 SimPPS/DirectSimProducer/plugins/PPSDirectProtonSimulation.cc.
- Its primary function is to apply a cut to the input data (HepMC).
- The cut parameters are defined in a separate files (calibration and physics), provided by Mario Deile, with the following convention:
 - 1. The first line specifies the number of ϕ steps, followed by their values (doubled per step).
 - 2. Subsequent lines define the cut specifics, starting with a ξ value, then θ_{min} and θ_{max} for each ϕ step.
- The process pipeline involves three key steps:
 - The 'getCut()' method reads the cut file.
 - The 'produce()' method processes the data and interpolates it to match the cut using 'interpolate()' and 'interpolate_step()'.
 - The 'applyCut()' method filters the data and returns the modified output.

Grzegorz Jędrzejowski PPS, CERN 25.08.2025 4/16

Analyzer: Histograms and Data Flow

- Developed based on the existing framework:
 Validation/CTPPS/plugins/CTPPSProtonReconstructionPlotter.cc.
- The analyzer is executed twice in the workflow: once before applying the cut and again after.
- The 'analyze()' method is responsible for filling a variety of histograms:
 - 1D Histograms: ϕ , energy, p_T , and ξ .
 - **3D Histograms**: p_T - ξ - ϕ and θ - ξ - ϕ .
- ullet These 3D histograms are later projected to create 2D histograms, which can be adjusted according to different ϕ slices.
- The analyzer saves the data in the .root file.

Grzegorz Jędrzejowski PPS, CERN 25.08.2025 5/16

Plotting Scripts: 'plotGreg.py'

- The 'plotGreg.py' script is designed to plot and compare three datasets:
 - **Unfiltered data**: Initial data saved by the analyzer.
 - Calibrated data: Data processed by the producer using a calibration file and saved using the analyzer.
 - **Physics data**: Data processed by the producer using a physics file and saved using the analyzer.

• 1D Histograms:

- Plots three histograms (one for each dataset) side-by-side on a single canvas.
- These are then merged into a single histogram for better visualization and comparison.

• 3D Histograms:

- ullet 2D projections are created for all ϕ and plotted side-by-side.
- ullet For ϕ slices, 12 separate histograms are displayed on a single canvas.
- All plots are saved in '.png' format within a dedicated output directory.

Grzegorz Jedrzejowski PPS, CERN 25.08.2025

6/16

Example Plots: 'plotGreg.py'

Grzegorz Jędrzejowski PPS, CERN 25.08.2025 7/16

Example Plots: 'plotGreg.py'

Grzegorz Jędrzejowski PPS, CERN 25.08.2025 9/16

- The 'plotProtons.py' script is designed to access and plot data generated by 'Validation/CTPPS/plugins/CTPPSProtonReconstructionPlotter.cc'.
- It processes data from individual Roman Pot (RP) units:
 - It accesses RPs 3, 23, 103, and 123.
 - It plots the "h_xi" and "h2_th_y_vs_xi" histograms for each of these RPs.
- It also handles multi-RP data from both arms (Arm 0 and Arm 1), and for each arm, it draws the combined "h_xi" histogram.
- All plots are saved to a dedicated output directory in '.png' format.

Grzegorz Jędrzejowski PPS, CERN 25.08.2025 10/16

Example Plots: 'plotProtons.py'

Grzegorz Jędrzejowski PPS, CERN 25.08.2025 11/16

Plotting Scripts: 'plotTracks.py'

- The 'plotProtons.py' script is designed to access and plot data generated by 'Validation/CTPPS/plugins/CTPPSTrackDistributionPlotter.cc'.
- It processes data from individual Roman Pot (RP) units:
 - It accesses RPs 3, 23, 103, and 123.
 - It plots the "h2_y_vs_x" histogram for each of these RPs.
- All plots are saved to a dedicated output directory in '.png' format.

Grzegorz Jędrzejowski PPS, CERN 25.08.2025 12/16

Compilation and Execution Procedure: 2018

- 1. Download CMSSW e.g.: CMSSW_15_0_11; and in src run cmsenv.
- 2. From Greg_Jed branch download the following packages:
 - Validation/CTPPS
 - SimPPS/DirectSimProducer
 - FWCore/AbstractServices
- 3. Build the Project
- 4. Run the Analysis
 - Navigate to the simulation directory: cd Validation/CTPPS/test/simu/.
 - Set up the cmsenv: cmsenv and run the simulation: cmsRun simu_2018_cfg.py.
 - Plot the results using the provided Python scripts, ensuring your environment can use python.

Grzegorz Jędrzejowski PPS, CERN 25.08.2025 14/16

Compilation and Execution Procedure: 2025

- 1. Set up the 2018 compilation and execution procedure.
- 2. In src download packages and files:
 - Geometry/VeryForwardGeometry
 - Geometry/VeryForwardData
 - Root Files
- 3. Run the simulation:
 - Go to the CMSSW_/src directory and use the command cmsRun ./Validation/CTPPS/test/simu/test_2025_man_cfg.py.
- 4. Plot histograms:
 - \bullet In the CMSSW_/src directory, run the Python script:
 - ./Validation/CTPPS/test/simu/plotGreg.py

Grzegorz Jędrzejowski PPS, CERN 25.08.2025 15/16

Questions?

If you have any questions, feel free to contact me:

g.jedrzejows@student.uw.edu.pl

Grzegorz Jędrzejowski PPS, CERN 25.08.2025 16/16