

Mathematical Tools

Muhammad Shuaib

Department of Mathematics, City University of Science & Information Technology Peshawar, Pakistan

Prerequisites

- Matrix Algebra
- Basic use of computer

Marks Distribution

- Mid term = 15 Marks
- Presentation = 10 Marks
- Quiz = 10 Marks
- Assignments = 10 Marks
- Class Activities = 5 Marks

Open MATLAB

Programs>Math and Simulation Software>MATLAB>R2008b>MATLAB R2008b

Menu Bar

Contains the commands you can use to perform certain tasks

Current Directory

Shows the active directory

Command Window

This is where the variables, and MATLAB commands are entered

Workspace

Creates, imports, displays the name, value, min, and max size of the variables

Command History Window

Shows the time/date at which commands were issued

To get started, type one of these commands: helpwin, helpdesk or demo

The various form of help available are

helpwin Opens a MATLAB help GUI

helpdesk Opens a hypertext help browser

demo Starts the MATLAB demonstration

The complete demonstration of MATLAB can be accessed from the hypertext helpdesk. For example, clicking the link <u>Full Documentation</u>

Basics of MATLAB

```
To get MATLAB to work out 1+1, type the following at the prompt:
1 + 1
MATLAB responds with
ans=
2
The answer to typed command is given the name ans. In fact ans is
now a variable that you can use again. For example you can type
ans*ans
To check that 2 \times 2 = 4:
ans*ans
ans=4
```

Variable Declaration

Variables in MATLAB are named objects that are assigned using the equal sign =. They are limited to 31 characters and can contains upper and lower cases letters, any number of '-' characters and numerals. MATLAB is case sensitive: A and a are different variables. The following are the valid variables

a=1 speed=1500 BeanFormeroutputType = V * Q * V name='Johan Smith' These are invalid assignments 2for1='yes' first one=1

Colon Operator

To generate a vector of equally spaced elements MATLAB provides the Colon operator. Try the following commands:

1:5

0:2:10

0:.1:2*pi

The syntax x:y means roughly "generate the order set of numbers from x to y with increment 1 between them". The syntax x:d:y means roughly "generate the ordered set of numbers from x to y with increment d between them".

Using MATLAB as a calculator

let's suppose you want to calculate the expression, 1 + 2 * 3. You type it at the prompt command (>>) as follows,

$$>> 1 + 2 * 3$$

ans =

7

Using MATLAB as a calculator

SYMBOL	OPERATIONS	EXAMPLE
+	Addition	3+2
-	Subtration	50-30
*	Multiplication	8*9
/	Division	2/3

Overwriting variable

Once a variable has been created, it can be reassigned. In addition, if you do not wish to see the intermediate results, you can suppress the numerical output by putting a semicolon (;) at the end of the line. Then the sequence of commands looks like this:

$$>> t = 5;$$

>> $t = t + 1$
 $t = 6$

Error messages

If we enter an expression incorrectly, MATLAB will return an error message. For example, in the following, we left out the multiplication sign, *, in the following expression:

```
>> x = 10;
>> 5x
??? 5x
```

Error: Unexpected MATLAB expression.

Making corrections

To make corrections, we can, of course retype the expressions. But if the expression is lengthy, we make more mistakes by typing a second time. A previously typed command can be recalled with the up-arrow key \uparrow . When the command is displayed at the command prompt, it can be modified if needed and executed.

Controlling the hierarchy of operations or precedence

Let's consider the previous arithmetic operation, but now we will include parentheses. For example, $1+2\times 3$ will become $(1+2)\times 3$ >> (1+2)*3 ans = 9

Controlling the hierarchy of operations or precedence

Precedence	Mathematical operations The contents of all parentheses are evaluated first, starting from the innermost parentheses and working outward		
First			
Second	All exponential are evaluated, working from left to right		
Third	All multiplications and divisions are evaluated, working from left to right		
Fourth	All additions and subtractions are evaluated, starting from left to right		

Controlling the hierarchy of operations or precedence

For operators of equal precedence, evaluation is from left to right. Now, consider another example:

$$\frac{1}{2+3^2} + \frac{4}{5} \times \frac{6}{7}$$

In MATLAB, it becomes

$$>> 1/(2+3^2)+4/5*6/7$$

ans = 0.7766

or, if parentheses are missing,

$$>> 1/2 + 3^2 + 4/5 * 6/7$$

ans = 10.1857

Therefore, we want to emphasize the importance of precedence rule in order to avoid ambiguity.

Questions

