import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.linear_model import LinearRegression

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor

 ${\tt from \ sklearn.tree \ import \ DecisionTreeRegressor}$

from sklearn.metrics import mean_squared_error, r2_score

df=pd.read_csv('/content/data (1).csv')
df

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_base
0	2014- 05-02 00:00:00	3.130000e+05	3.0	1.50	1340	7912	1.5	0	0	3	1340	
1	2014- 05-02 00:00:00	2.384000e+06	5.0	2.50	3650	9050	2.0	0	4	5	3370	
2	2014- 05-02 00:00:00	3.420000e+05	3.0	2.00	1930	11947	1.0	0	0	4	1930	
3	2014- 05-02 00:00:00	4.200000e+05	3.0	2.25	2000	8030	1.0	0	0	4	1000	
4	2014- 05-02 00:00:00	5.500000e+05	4.0	2.50	1940	10500	1.0	0	0	4	1140	
4595	2014- 07-09 00:00:00	3.081667e+05	3.0	1.75	1510	6360	1.0	0	0	4	1510	
4596	2014- 07-09 00:00:00	5.343333e+05	3.0	2.50	1460	7573	2.0	0	0	3	1460	
4597	2014- 07-09 00:00:00	4.169042e+05	3.0	2.50	3010	7014	2.0	0	0	3	3010	
4598	2014- 07-10 00:00:00	2.034000e+05	4.0	2.00	2090	6630	1.0	0	0	3	1070	
4599	2014- 07-10 00:00:00	2.206000e+05	3.0	2.50	1490	8102	2.0	0	0	4	1490	

df.dtypes

-	date	object
	price	float64
	bedrooms	float64
	bathrooms	float64
	sqft_living	int64
	sqft_lot	int64
	floors	float64
	waterfront	int64
	view	int64
	condition	int64
	sqft_above	int64
	sqft_basement	int64
	yr_built	int64
	yr_renovated	int64
	street	object
	city	object
	statezip	object
	country	object
	dtype: object	

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
lst =['date','street','city','statezip','country']
for i in 1st:
    if df[i].apply(type).nunique() > 1:
        print(f"Column '{i}' contains mixed types. Handling required.")
        df[i] = df[i].astype(str)
    df[i] = le.fit_transform(df[i])
df.dtypes
→ date
                      int64
    price
                    float64
    bedrooms
                    float64
    bathrooms
                    float64
    sqft_living
                      int64
    sqft_lot
                      int64
                    float64
    floors
    waterfront
                      int64
                      int64
    view
    condition
                      int64
    sqft_above
                      int64
    sqft_basement
                      int64
    yr_built
                      int64
                      int64
    yr_renovated
    street
                      int64
    city
                      int64
                      int64
    statezip
    country
                      int64
    dtype: object
X = df.drop(columns=['price'])
y = df['price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
models = {
    'Linear Regression': LinearRegression(),
    'Random Forest': RandomForestRegressor(),
    'Gradient Boosting': GradientBoostingRegressor(),
    'Decision Tree': DecisionTreeRegressor()
}
for name, model in models.items():
    model.fit(X_train, y_train)
    predictions = model.predict(X_test)
    mse = mean_squared_error(y_test, predictions)
    r2 = r2_score(y_test, predictions)
    print(f"{name}:")
    print(f" Mean Squared Error: {mse}")
    print(f" R^2 Score: {r2}")
    print()
→ Linear Regression:
      Mean Squared Error: 986145473005.4001
      R^2 Score: 0.0330450439020854
    Random Forest:
      Mean Squared Error: 977117444900.4146
      R^2 Score: 0.04189738542660937
    Gradient Boosting:
      Mean Squared Error: 967564600405.6816
      R^2 Score: 0.05126433034687883
    Decision Tree:
      Mean Squared Error: 1019526247692.7129
      R^2 Score: 0.0003138633553505521
```