COMP396

SMILES string molecular descriptors (continued..)

Summary

- 1. Recall
- 2. Description
- 3. ChemVAE
- 4. Training visualizations
- 5. MORE DATA?
- 6. Comparisons
- 7. Questions
- 5. Next steps?

Recall:

- During our last meeting, I presented my SMILES + CNN and LSTM findings/results and they were below par.
 - $\underline{https://docs.google.com/document/d/1k9qPo0a1o25bREa8aOYaFWFB1Wk_QleEVd6wr7w}\\ \underline{Mnzc/edit?usp=sharing}$
- You advised me to:
- 1) double-check my training results
- 2) use visualization dashboard (Comet.ml or Tensorboard) to attempt to debug the issue in the training.
- 3) Focus on the SMILES + LSTM before moving to DGI

Description of SMILES String:

SMILES (Simplified molecular-input line-entry system) strings are a compact way of representing molecules. In this project, we use SMILES strings in order to predict target properties from the QM9 benchmark and the Zinc dataset. The SMILES that are retrieved from the XYZ files are canonicalized and thus have a unique representation.

The main advantage of using SMILES string-based molecular descriptors is that they are less sophisticated then graph neural networks and perform relatively well.

SMILES representations can also be modified to include chiral indications. However, we only consider non-isomeric molecules from the QM9 dataset in this milestone.

We experiment with two different ways of building a molecular descriptor with the SMILES strings.

With Pytorch, we used an embedding layer that maps that integer indices to dense vectors.

ChemVae

Smiles String-based molecular descriptor Inspiration from -> Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules https://arxiv.org/pdf/1610.02415.pdf

It is a method to convert discrete representations of molecules to and from a multidimensional continuous representation for efficient molecule generation. The VAE autoencoder may also be jointly trained with property prediction to help shape the latent space.

The search space of molecular data is usually large, discrete, and unstructured.

Important points:

<u>1st experiment :</u> Constrained optimization-autoencoder + MLP jointly on a property prediction task with smiles

- Authors also tested Inchi(International Chemical Identifier), however, the generalization ability was worse due to the complexity of the syntax.

<u>2nd experiment:</u> Unconstrained optimization-VAE autoencoder used (for latent space to correspond to valid decoding) + RNN(GRU) & CNN.

- Comparison of the validity of generated molecules with a genetic algorithm

<u>3rd experiment:</u> property prediction task - see table on comparison section.

Benchmarks:

QM9: Already covered.

ZINC: The zinc 250k dataset is retrieved from the zinc database which is a free public resource for ligand discovery. The database contains over twenty million commercially available molecules in biologically relevant representations that may be downloaded in popular ready-to-dock formats and subsets https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658288/.

The smiles string are mapped to the following target properties

- 1) Water-octanol partition coefficient (logP)(also known as lipophilicity)
- 2) Synthetic accessibility score (SAS)
- 3) Qualitative Estimate of Drug-likeness (QED)

Training visualization:

Dataset: QM9

Loss: Mean squared error (MSE)

Error: Mean absolute error (MAE)

Stochastic optimization: Adam + Ir scheduler on plateau by a factor of 2

Starting learning rate: 0.001

Training, validation and testing size: 11000, 1000,1000

More details later on...

SMILES + LSTM on target mu

https://www.comet.ml/bmbodj/smiles-descriptor/view/nAnxJP9sQAPQEbZ2j8Ub5Xyst

Name	Tags	Server ↑	Duration	train_lo	hidden	train_c	num_cl	sequen	test_er	Batch	learnin	num_e
mu	mu	2/9/20 06:0	00:17:37	0.1917638	64	20460	1	25	0.6568424	64	0.001	120
homo	homo	2/9/20 06:3	00:10:58	0.1167926	64	20460	1	25	0.0100424	64	0.001	120
lumo	lumo	2/9/20 06:4	00:09:36	0.0241778	64	20460	1	25	0.0103132	64	0.001	120
gap	gap	2/9/20 06:5	00:10:22	0.0336005	64	20460	1	25	0.0130798	64	0.001	120
R2	R2	2/9/20 07:2	00:32:57	0.1253733	64	20460	1	25	78.851861	64	0.001	120
zvpe	zpve	2/9/20 07:5	00:25:17	0.0008285	64	20460	1	25	0.0008520	64	0.001	120
gap	u0	2/9/20 08:2	00:12:10	0.0003496	64	20460	1	25	0.7060622	64	0.001	120
h	h	2/9/20 09:0	00:04:30	0.0030353	64	20460	1	25	0.6116014	64	0.001	120
g	g	2/9/20 09:1	00:08:30	0.0001425	64	20460	1	25	0.8240498	64	0.001	120
alpha	alpha	2/9/20 09:1	00:09:53	0.0630368	64	20460	1	25	1.2022591	64	0.001	120
cv	cv	2/9/20 09:2	00:10:31	0.0285819	64	20460	1	25	0.6499725	64	0.001	120
u	u	2/9/20 09:3	00:12:23	0.0004261	64	20460	1	25	0.6376352	64	0.001	120

More Data? (30k)

N	lame	Tags	Server	Duration	test_er	File na	hidden	train_c	train_lo	sequen	Batch	learnin	num_e
m	าน	mu	2/10/20 12:	00:07:30	0.8441497	Jupyter inte	64	46520	0.1435420	25	64	0.001	120
al	lpha	alpha	2/10/20 01:	00:08:43	1.6165398	Jupyter inte	64	46520	0.0077846	25	64	0.001	120
■ ho	omo	homo	2/10/20 01:	00:09:39	0.0095503	Jupyter inte	64	46520	0.0675823	25	64	0.001	120
■ lu	ımo	lumo	2/10/20 01:	00:15:06	0.0125222	Jupyter inte	64	46520	0.0378192	25	64	0.001	120
g	ар	gap	2/10/20 01:	00:06:41	0.0178943	Jupyter inte	64	46520	0.0639942	25	64	0.001	120
R:	2	r2	2/10/20 01:	00:30:12	56.913784	Jupyter inte	64	46520	0.0161372	25	64	0.001	120
Z	vpe	zvpe	2/10/20 02:	01:05:58	0.0007383	Jupyter inte	64	46520	0.0008609	25	64	0.001	120
u(0	u0	2/10/20 12:	00:56:58	0.5685452	Jupyter inte	64	31280	0.0001128	25	64	0.001	120

6

Zinc dataset logP-13k and logp250k (up and down respectively)

Visualizations:

QM9-13k:https://www.comet.ml/bmbodj/smiles-descriptor/view/nAnxJP9sQAPQEbZ2j8Ub5Xyst

QM9-30k:<u>https://www.comet.ml/bmbodj/smiles-descriptor30000/view/Rtk0EXIEQwCS</u>sZd0z0Hs47lzE

Zinc-13k&250k:https://www.comet.ml/bmbodj/smiles-descriptor-zinc/view/new

Sample Pytorch Implementation:

https://colab.research.google.com/drive/1H6p3xSwi6B-22PIKradOH3Scj8d9wml-

Size of largest molecule: 110 zinc, 26 QM9

Comparisons

Our results:

Target	Mu	Alpha	НОМО	LUMO	gap	R2	ZPVE	U0	U	Н	G	cv
LSTM	0.65684	1.202	0.0100	0.01031	0.0131	78.8518	0.0008	0.70606	0.6116	0.82404	0.6499	0.6373

Baseline results:

Target	BOB	CM	GG-NN	MPNN
mu	0.6724	0.8078	0.7639	0.1523
alpha	0.7782	1.4809	0.9228	0.3847
номо	0.0074	0.017	0.0081	0.0034
LUMO	0.0106	0.0171	0.0111	0.0037
gap	0.0122	0.0196	0.0118	0.0065
R2	22.2674	37.7441	76.7278	2.5781
ZPVE	0.0007	0.0010	0.0007	0.0004
UO	0.7360	3.4899	0.3955	0.5545
U	0.7360	3.4895	0.2621	0.5218
Н	0.7360	3.4898	0.3899	0.3991
G	0.7360	3.4901	0.4603	0.4632
CV	0.4156	0.6600	0.5121	0.1516

ChemVAE results:

Database/Property	$Mean^a$	ECFP^b	CM^b	GC^b	1-hot SMILES c	$\mathrm{Encoder}^d$	VAE^e
ZINC250k/logP	1.14	0.38		0.05	0.16	0.13	0.15
ZINC250k/QED	0.112	0.045	-	0.017	0.041	0.037	0.054
QM9/HOMO, eV	0.44	0.20	0.16	0.12	0.12	0.13	0.16
QM9/LUMO, eV	1.05	0.20	0.16	0.15	0.11	0.14	0.16
QM9/Gap, eV	1.07	0.30	0.24	0.18	0.16	0.18	0.21

Our results:

Size/property	LogP	QED		
ZINC-13K	0.28793	0.067213		
ZINC-250K	0.158749	0.0439576		

Questions/ (continued)

-https://github.com/bmbodj/COMP396/blob/master/Fall_2019/COMP396_report.pdf

- Is the edge network/ or any graph model that handles edge attributes a must for efficient quantum property prediction tasks on molecules? (OR) Would it depend on the task (node, graph or edge, level)?
- -Which graph model would you consider as the state of the art for quantum property predictions?

I found a paper that uses DGI to maximize information between edge states and transform parameters.-> Utilizing Edge Features in Graph Neural Networks

via Variational Information Maximization https://arxiv.org/pdf/1906.05488.pdf

Next Steps?

- You tell me:)
- read the paper on the semi-supervised application of DGI https://arxiv.org/pdf/1908.01000.pdf
- get an in-depth understanding of DGI
- Think about how to implement DGI to match LSTM and GNN molecular representations