Computational Decision Making for Regular People

04: Modeling Techniques

November 5, 2024

Nathan Davis Barrett

Today's Outline

- 1. Refresher on Math Modeling (Route Planning Problem)
- 2. Handling Multiple Sets At Once
- Handling Multiple Time Periods (Talk about which set of parameters to use prior or latter)
- 4. Example: Multiple Time Periods
- 5. Handling Uncertainty
- 6. Example: Multiple Scenarios
- 7. Linearization
 - ▶ Binary Activation ("Big M")
 - "If" statements
 - "Max" statements
 - "Min" statements

This image was created with the assistance of DALL-E 3

A Note on Today's Class

Today we're going to cover a lot of material to set us up for next week when we have to tools to address real-life problems.

We'll cover a variety of individual "tools" that are somewhat disconnected from each other.

If you're feeling lost, that's okay. Go back and reference specific sections of these slides / Google Colab notebooks to refresh your mind on how to use each tool if and when you need to use it.

Refresher on Math Modeling

$$---$$
 FULL FORMULATION $-- \displaystyle \min_{X_r, Y_p} \sum_{r \in \mathbf{R}} \delta_r X_r$ $s.t.$ $\displaystyle \sum_{r \in \mathbf{R}_p} X_r = 2Y_p \quad \forall p \in \mathbf{P}^{NON-TERM}$ $\displaystyle \sum_{r \in \mathbf{R}_p} X_r = Y_p \quad \forall p \in \mathbf{P}^{TERM}$ $\displaystyle Y_p = 1 \quad \forall p \in \mathbf{P}^{TERM}$ $\displaystyle X_r, Y_p \in \{0,1\}$

Handling Multiple Sets

Single Set:

$$X_r \quad \forall r \in \mathbf{R}$$

$$Y_p = 1 \quad \forall p \in \mathbf{P}^{INIT}$$

Multiple Sets:

$$X_{r,t} \quad \forall r \in \mathbf{R}, t \in \mathbf{T}$$

$$Y_{p,t} = 1 \quad orall p \in \mathbf{P}^{\mathit{INIT}}, t \in \mathbf{T}$$

- Index each variable by multiple indices
- Iterate constraints and/or definitions over multiple sets
- An individual variable, constraint, or definition will be made for every combination of elements between the sets.
- In your code, you'll use the multiplication operator (*) to create these combinations of sets:

$$\mathbf{R} = \{A, B\}$$
 $\mathbf{T} = \{0, 1, 2\}$ $\mathbf{R} * \mathbf{T} = \{(A, 0), (A, 1), (A, 2), (B, 0), (B, 1), (B, 2)\}$

Handling Multiple Time Periods

- ► Start by defining a new set (**T**) of each of the time periods you'd like to consider
- It's good to fill T with integers so that you can keep track of which time period is before/after which other time period.
- ► For each parameter, variable, and constraint that changes with time, expand it to also iterate over this new time set.
- Give special consideration/reformulation to the initial and final time point. The constraints for these time points are likely to be different.
 TRIM

Example: Multiple Time Periods

To keep things simple, let's assume that instead of time, $\delta_{r,t}$ how represents a toll amount.

r	t=0	t=1	t = 2	t = 3
AB	\$15	\$10	\$8	\$8
AC	\$5	\$5	\$9	\$10
BC	\$4	\$10	\$13	\$13
BD	\$2	\$2	\$6	\$5
CD	\$10	\$15	\$4	\$7

Try on your own (on paper or your computer) to come up with how this problem should be re-formulated.

(5 minutes)

Example: Multiple Time Periods

$$\min_{X_{r,t}, Y_{r,t}} \sum_{r \in \mathbf{R}} \sum_{t \in \mathbf{T}} \delta_{r,t} X_{r,t}$$

$$s.t. \quad Y_{p,t+1} - Y_{p,t} = \sum_{r \in \mathbf{R}_p^+} X_{r,t} - \sum_{r \in \mathbf{R}_p^-} X_{r,t}$$

$$\forall p \in \mathbf{P}, t \in \mathbf{T} \neq 3$$

$$\sum_{r \in \mathbf{R}} X_{r,t} \le 1 \quad \forall t \in \mathbf{T}$$

$$\sum_{p \in \mathbf{P}} Y_{p,t} = 1 \quad \forall t \in \mathbf{T}$$

$$Y_{A,0} = 1$$

 $Y_{2,D} = 1$ $X_{r,t}, Y_{p,t} \in \{0,1\}$

The code and solution for this problem can be found in the Google Colab notebook for this week.

Handling Uncertainty

- ➤ This is an active field of research. If you're interested in learning more, the words to look up are "Stochastic Programming".
- ▶ Scenarios ($s \in S$)
 - ► An enumeration of all possible outcomes
 - Each path should have an associated probability π_s
 - ► All probabilities should sum to 1 (100%)
- Coming up with these is one of the hardest parts
 - Virtually impossible to enumerate all outcomes.
 - Very hard to estimate the probability of each outcome.

Handling Uncertainty

- ► Some variables are shared by all scenarios
 - Decisions that need to be made here and now that impact all scenarios moving forward.
- Some variables can be made in the future (and are thus specific to each scenario)
 - ► Each scenario get's a unique copy of that variable (e.g. iterate over **S**)
 - But at certain points in time, certain scenarios are not yet distinguishable. In order to prevent the solution from "anticipating" future changes that are not yet clear, we need "non-anticipativity constraints"
 - For each box, select on representative scenario (s1), all other scenarios (s2) should equal that scenario
 - lacksquare $X_{s_1,t} = X_{s_2,t} \quad \forall s_2 \in \mathbf{S}^{BOX}, t \in \mathbf{T}^{BOX}$

Example: Handling Uncertainty

- ► Toll rates **right now** are known.
- ► Toll rates in 1 hour (the next time period) are unknown
 - \triangleright Congested Scenario (s_1)
 - ► Clear roads Scenario (s₂)

		δ_{r,t,s_1}		
r	t=0	t = 1	t=2	t = 3
AB	\$5	\$10	\$12	\$9
AC	\$30	\$10	\$12	\$ 13
BC	\$4	\$5	\$6	\$7
BD	\$2	\$25	\$50	\$2
CD	\$10	\$12	\$13	\$15

		δ_{r,t,s_2}		
r	t = 0	t = 1	t = 2	t=3
AB	\$5	\$8	\$10	\$7
AC	\$30	\$5	\$9	\$10
BC	\$4	\$10	\$13	\$13
BD	\$2	\$2	\$6	\$6
CD	\$10	\$15	\$4	\$10

S	π_s	
1	0.75	
2	0.25	

Try on your own (on paper or your computer) to come up with how this problem should be re-formulated. (5 minutes)

Example: Handling Uncertainty

$$\min_{X_{r,t,s},Y_{r,t,s}} \sum_{s \in \mathbf{S}} \pi_s \left(\sum_{r \in \mathbf{R}} \sum_{t \in \mathbf{T}} \delta_{r,t,s} X_{r,t,s} \right)$$

$$s.t. \quad Y_{p,t+1,s} - Y_{p,t,s} = \sum_{r \in \mathbf{R}_p^+} X_{r,t,s} - \sum_{r \in \mathbf{R}_p^-} X_{r,t,s} \quad \forall p \in \mathbf{P}, t \in \mathbf{T} \neq 3, s \in \mathbf{S}$$

$$\sum_{r \in \mathbf{R}} X_{r,t,s} \leq 1 \quad \forall t \in \mathbf{T}, s \in \mathbf{S}$$

$$\sum_{p \in \mathbf{P}} Y_{p,t,s} = 1 \quad \forall t \in \mathbf{T}, s \in \mathbf{S}$$

$$Y_{A,0,s} = 1 \quad \forall s \in \mathbf{S}$$

$$Y_{3,D,s} = 1 \quad \forall s \in \mathbf{S}$$

$$X_{r,0,s_1} = X_{r,0,s} \quad \forall r \in \mathbf{R}, s \in \mathbf{S} \neq s_1$$

$$Y_{p,0,s_1} = Y_{p,0,s} \quad \forall p \in \mathbf{P}, s \in \mathbf{S} \neq s_1$$

$$X_{r,t,s}, Y_{p,t,s} \in \{0,1\}$$

Linearization

Math Modeling only has basic algebra operators:

$$+, -, \times, \div, \sum, e^x, \log x, \sin x, etc.$$

- Math Modeling does **not** directly support more advanced operators in the body of a model: if, then, else, min(a, b), max(a, b)
- Remember, problems will solve MUCH faster if we can keep problems as linear as possible.
- We can apply some clever tricks to still model these behaviors.
- ► Thought exercise: How can we model the feasible region shown on the right?

"Big M" Constraints

- ▶ Main Idea: Include an extra term in any constraints that you want to de-activate when a binary variable is 1 (or 0). This extra term should make the constraint so loose that it'll never be binding.
- ► In general, you should just add a binary variable times some <u>large</u> parameter M
- Example:

$$Y \leq 1$$

$$Y \leq 1 + \mathcal{M}X$$

- lackbox NOTE OF CAUTION: Choosing a good ${\mathcal M}$ value is the name of the game here:
 - ▶ Too small: You'll be chopping off parts of the true feasible region. You're problem is likely to become infeasible.
 - ► Too big: The solver can get lost and can slow way down.
 - ▶ Too too big: Your computer can't handle huge numbers and (comparatively) tiny numbers at the same time. You're likely to encounter weird errors.

Example: Big M Constraints

- ► Let's return to the Route Planning Problem (with Multiple Time Periods, but not Uncertainty)
- ► Let's say there was also an E-Z pass you could purchase for \$12 that gave you a special discount on some, but not all, of the roads in the model.
- With the E-Z pass, here would be your δ_{r+}^{EZ} values:

r	t = 0	t=1	t=2	t=3
AB	\$0	\$0	\$0	\$0
AC	\$5	\$5	\$9	\$10
ВС	\$4	\$10	\$13	\$13
BD	\$2	\$2	\$6	\$5
CD	\$0	\$0	\$0	\$0

- ► Should you buy the E-Z pass?
- ► How can you use Big M constraints to capture this decision?
 - Hint: Represent cost of traversing each path as it's own variable. Use two "if" statements and an intermediate variable to form this definition.

(Spend 5 minutes trying to figure it out)

"If" Statements

▶ Normal "if" statements look like this:

$$A = \begin{cases} B & \text{if } X \\ C & \text{else} \end{cases}$$

We can reformulate this like this:

$$A = A^{B} + A^{C}$$

$$A^{B} = \begin{cases} B & \text{if } X \\ 0 & \text{else} \end{cases} = BX$$

$$A^{C} = \begin{cases} C & \text{if } (1 - X) \\ 0 & \text{else} \end{cases} = C(1 - X)$$

- ► But remember! We want things to be linear!
- ► We can reformulate *A* = *BX* using a series of Big M Constraints:

$$A \leq eta^{ extit{MAX}} X$$
 $A \leq B + eta^{ extit{MIN}} (X-1)$ $A \geq eta^{ extit{MIN}} X$ $A \geq B + eta^{ extit{MAX}} (X-1)$

- Here, β^{MAX} and β^{MIN} are the maximum and minimum values that B is capable of being. (Big Ms)
- If C is not 0, repeat this process for C replacing X with 1 − X.

"If" Statement Caveats

Explanation of how to come up with the linearization of A = BX:

$$A \le \beta^{MAX} X \qquad A \ge \beta^{MIN} X A \le B + \beta^{MIN} (X - 1) \qquad A \ge B + \beta^{MAX} (X - 1)$$

- Sometimes the objective you define indicates that A will always be maximized or minimized.
- If you're certain that A will ONLY ever be either maximized or minimized, you can drop two of the constraints.
 - Maximize A, drop "Greater Than" Constraints
 - Minimize A, drop "Less Than" Constraints
- Dropping unnecessary constraints means there are less things for the solver to consider: The solver will go faster.

"Max" Statements

IMPORTANT CONSIDERATION: Maximizing or Minimizing A

If you will allways be minimizing A = max(B, C),

Model this as two individual inequalities (no binary variable needed!):

$$A \geq C$$

If you'll be maximizing A = max(B, C)or you're not sure,

You'll need to use a binary variable with and the Big M constraints shown on the right.

$$B-C \leq \mathcal{M}Y$$
 $C-B \leq \mathcal{M}(1-Y)$
 $A \geq B$
 $A \geq C$
 $A \leq B + \mathcal{M}(1-Y)$
 $A \leq C + \mathcal{M}Y$

Here, \mathcal{M} is the maximum possible difference between B and $C(\max |B-C|)$ and Y is a new binary variable.

"Min" Statements

IMPORTANT CONSIDERATION: Maximizing or Minimizing A

If you will allways be maximizing A = min(B, C),

► Model this as two individual inequalities (no binary variable needed!):

$$A \leq C$$

If you'll be minimizing A = max(B, C)or you're not sure,

You'll need to use a binary variable with and the Big M constraints shown on the right.

$$C-B \le \mathcal{M}Y$$
 $B-C \le \mathcal{M}(1-Y)$
 $A \le B$
 $A \le C$
 $A \ge B - \mathcal{M}(1-Y)$
 $A \ge C - \mathcal{M}Y$

Here, \mathcal{M} is the maximum possible difference between B and $C(\max |B-C|)$ and Y is a new binary variable.

Next Class: Real life Problems

- Now that we have some powerful tools to capture real-world behaviors, we can jump into some real-world problems.
- ▶ I'd love to go over some problems you might be thinking of.
 - Do you have any requests?
- Problems I've already considered are:
 - ► How can I most effectively schedule tasks in my daily schedule?
 - How can I make a good choice about which insurance plan to select?
 - ▶ What's the most efficient way to transfer money between my bank accounts to pay my bills?