Lemma (Rango per riga e rango per colonna, SERNESI 5.1). Data una matrice $A \in \mathbb{K}^{m,n}$, siano $\mathbf{r_1}, \ldots, \mathbf{r_m}$ le righe di A e $\mathbf{c_1}, \ldots, \mathbf{c_n}$ le colonne di A. Allora, vale la relazione

$$\varrho(A) = \dim \mathcal{L}(\mathbf{c_1}, \dots, \mathbf{c_n}). \tag{1}$$

Promemoria. Essendo per definizione $\varrho(A) := \dim \mathcal{L}(\mathbf{r_1}, \dots, \mathbf{r_m})$, sarà sufficiente dimostrare che le dimensioni dello spazio delle righe e dello spazio delle colonne coincidono. Ricordiamo che con a_{ij} viene indicato l'elemento della matrice A sull'i-esima riga e la j-esima colonna; $\mathbf{r_{i_1}}, \dots, \mathbf{r_{i_k}}$, invece, denota un certo insieme di elementi dello spazio delle righe di A considerate a meno del loro effettivo ordine.

Dimostrazione. La dimensione di $\mathcal{L}(\mathbf{c_1},\ldots,\mathbf{c_n})$ è dipendente dalle relazioni di dipendenza lineare fra le colonne della matrice A. Tali relazioni sono determinate dalle soluzioni del sistema lineare omogeneo $A\mathbf{X} = \mathbf{0}$:

$$A\mathbf{X} = \mathbf{0} \implies \begin{cases} a_{11}\mathbf{x_1} + \dots + a_{1n}\mathbf{x_n} = 0 \\ \vdots \\ a_{m1}\mathbf{x_1} + \dots + a_{mn}\mathbf{x_n} = 0 \end{cases} \implies \mathbf{x_1}(a_{11} + \dots + a_{m1}) + \dots + \mathbf{x_n}(a_{1n} + \dots + a_{mn}) = 0.$$

Sapendo che $k := \varrho(A)$, si può affermare che esistono k righe di A, denotate con $\mathbf{r_{i_1}}, \ldots, \mathbf{r_{i_k}}$ linearmente indipendenti; le rimanenti m-k righe di A possono essere espresse come loro combinazione lineare. Si consideri quindi la matrice

$$A' = \begin{pmatrix} \mathbf{r_{i_1}} \\ \cdots \\ \mathbf{r_{i_k}} \end{pmatrix} \in \mathbb{K}^{k,n}$$

Osservazione. Le soluzioni di $A\mathbf{X} = \mathbf{0}$ e $A'\mathbf{X} = \mathbf{0}$ sono coincidenti. Infatti, presa un'n-upla che soddisfa $A\mathbf{X} = \mathbf{0}$, essa risulta essere soddisfacente $A'\mathbf{X} = \mathbf{0}$, essendo A composta dalle righe di A' e da altre righe esprimibili come combinazione lineare di $\mathbf{r_{i_1}}, \ldots, \mathbf{r_{i_k}}$.

Pertanto, la dimensione dello spazio delle colonne di A coincide con quella dello spazio delle colonne di A', che è debolmente minore di k in quanto le colonne di A' sono vettori di \mathbb{K}^k ; vale quindi la relazione dim $\mathcal{L}(\mathbf{c_1}, \dots, \mathbf{c_n}) \leq k$.

Si consideri la matrice A^t , trasposta di A. Applicando il ragionamento precedente su A^t , si evince che:

- La dimensione dello spazio delle colonne di A^t è debolmente minore di $\varrho(A^t)$, che per definizione coincide con la dimensione del suo spazio delle righe.
- Essendo A^t trasposta di A, la dimensione dello spazio delle righe di A^t coincide con la dimensione dello spazio delle colonne di A (rispettivamente, la dimensione dello spazio delle colonne di A^t coincide con la dimensione dello spazio delle righe di A).

Per cui, essendo
$$\dim \mathcal{L}(\mathbf{c_1}, \dots, \mathbf{c_n}) \leq k \, \mathrm{e} \, (k = \dim \mathcal{L}(\mathbf{r_1}, \dots, \mathbf{r_m}) \leq \dim \mathcal{L}(\mathbf{c_1}, \dots, \mathbf{c_n}),$$
 vale $\varrho(A) = \dim \mathcal{L}(\mathbf{r_1}, \dots, \mathbf{r_m}) = \dim \mathcal{L}(\mathbf{c_1}, \dots, \mathbf{c_n})$