

Week 2: Compartmental Models & Expanded

Dr. Rachel Sippy University of Cambridge

Week 2 Overview

- Monday, August 2:
 - Relating SIR models to epidemic parameters
 - Estimating parameters in R
- Tuesday, August 3:
 - Guest lecture by Caroline Trotter
 - Modeling meningitis
 - Guided practice in R
- Thursday, August 5:
 - Using serological data for modeling
 - Guided practice in R

Objectives

- Learn how to include births and deaths in an SIR model
- Modify model structure to create an SEIR model

Post Questions in the Chat!

(or ask over microphone)

Workshop Schedule

Time	Topics
2:00-2:10 pm	Greetings
2:10-2:50 pm	Other Compartmental Models
2:50-3:00 pm	Break
3:00-3:50 pm	Guest Lecture: Modeling meningitis
3:50-4:00 pm	Break
4:00-5:00 pm	R Session

- this is a closed model
 - B is a transmission coefficient
 - γ is the recovery rate

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t)$$

SIR Model Output

 Having an open population can greatly impact the epidemic dynamics!

• µ is our birth/death rate

What are our assumptions?

- μ is our birth/death rate
- births are all susceptible
- anyone can die

- for an open model:
 - μ is our birth/death rate
 - births are all susceptible but anyone can give birth
 - anyone can die

$$\frac{dS(t)}{dt} = \mu(S(t) + I(t) + R(t)) - \mu S(t) - \beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t) - \mu I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t) - \mu R(t)$$

- for an open model:
 - µ is our birth/death rate
 - births are all susceptible but anyone can give birth
 - anyone can die

$$\frac{dS(t)}{dt} = \mu(S(t) + I(t) + R(t)) - \mu S(t) - \beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t) - \mu I(t)$$

$$\frac{dR(t)}{dt} = \underline{\gamma I(t)} - \mu R(t)$$

 we still have the same parts from the closed model

- for an open model:
 - μ is our birth/death rate
 - births are all susceptible but anyone can give birth
 - anyone can die

$$\frac{dS(t)}{dt} = \mu(S(t) + I(t) + R(t)) - \mu S(t) - \beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t) - \mu I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t) - \mu R(t)$$

- µ is our birth/death rate
- births are all susceptible but anyone can give birth
- anyone can die

$$\frac{dS(t)}{dt} = \mu(S(t) + I(t) + R(t)) - \mu S(t) - \beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t) - \mu I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t) - \mu R(t)$$

R₀ & Model Structure

- The calculation of R0 depends on the structure of the model being used
- for our closed SIR model:
 - $R_0 = \frac{\beta}{\gamma}$

• for an open SIR model:

•
$$R_0 = \frac{\beta}{\gamma + \mu}$$

R₀ & Model Structure

- The calculation of R0 depends on the structure of the model being used
- for our closed SIR model:

•
$$R_0 = \frac{\beta}{\gamma}$$

- for duration of infection:
 - $\frac{1}{\gamma}$

• for an open SIR model:

•
$$R_0 = \frac{\beta}{\gamma + \mu}$$

• for duration of infection:

•
$$\frac{1}{\gamma + \mu}$$

R₀ & Model Structure

- The calculation of R0 depends on the structure of the model being used
- for our closed SIR model:

•
$$R_0 = \frac{\beta}{\gamma}$$

- for duration of infection:
 - $\frac{1}{\gamma}$
- But usually $\gamma \gg \mu$ so:

•
$$R_0 = \frac{\beta}{\gamma} \approx R_0 = \frac{\beta}{\gamma + \mu}$$

• for an open SIR model:

•
$$R_0 = \frac{\beta}{\gamma + \mu}$$

for duration of infection:

•
$$\frac{1}{\gamma + \mu}$$

- for an SEIR model:
 - σ is the rate at which people change from exposed to infectious
 - 1/σ is the latent period

- for an SEIR model:
 - o is the rate at which people change from exposed to infectious
 - 1/σ is the latent period

$$\frac{dS(t)}{dt} = -\beta S(t)I(t) \longleftarrow \bullet$$

 the first equation is exactly the same

- for an SEIR model:
 - o is the rate at which people change from exposed to infectious
 - 1/σ is the latent period

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dE(t)}{dt} = \beta S(t)I(t) - \sigma E(t)$$

- for an SEIR model:
 - o is the rate at which people change from exposed to infectious
 - 1/σ is the latent period

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dE(t)}{dt} = \beta S(t)I(t) - \sigma E(t)$$

$$\frac{dI(t)}{dt} = \sigma E(t) - \gamma I(t)$$

- for an SEIR model:
 - σ is the rate at which people change from exposed to infectious
 - 1/σ is the latent period

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dE(t)}{dt} = \beta S(t)I(t) - \sigma E(t)$$

$$\frac{dI(t)}{dt} = \sigma E(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t)$$
• the last equation is exactly the same

- We could also make the SEIR (or a model with any other structure) be open (include birth/death/migration)
 - we can also make different death rates for each compartment
 - models are extremely flexible!

Questions?

10 minute break

Workshop Schedule

Time	Topics
2:00-2:10 pm	Greetings
2:10-2:50 pm	Other Compartmental Models
2:50-3:00 pm	Break
3:00-3:50 pm	Guest Lecture: Modeling meningitis
3:50-4:00 pm	Break
4:00-5:00 pm	R Session