

STUDENT

StudentNo

Surname Given DOB

ProgCode ProgName

• Is this database structure OK?

SAMPLE DATA

	C-f C4 1:
100 Smith 165 200 Iatro 166 300 Rubble 165 400 Flint 167 500 Ng 166 600 Jones 168	Caf Studies Bludging Caf Studies Hard Work Bluging Cheating

PROBLEMS? ${\color{red} \circ}$ Anything wrong with the previous database structure? o All I want to do is keep track of student details, that's all. Nothing very complex, anyone should be able to set up such a simple little database. Takes half an hour in MS-Access. After all, there is only <u>one</u> table! PROBLEMS? ${\color{red} \circ}$ What happens if I have a new programme name to insert into my database? PROBLEMS? ${\color{red} \circ}$ What happens if I want to alter a programme name for a particular programme?

Problems?	
• What happens if all the students in a programme drop out?	-
Problems?	
• Are all copies of the same programme name the same ?	-
ANOMALIES	
o An Inconsistency	
 A database structure that will be prone to errors in the data. 	
 Not necessarily wrong, but will promote erroneous data rather than prevent it. 	
 Will usually also involve <u>more</u> effort in programs/users that maintain the file. 	
	<u> </u>

ANOMALIES

• INSERTION ANOMALY

- Can not insert a value when we want
- must wait for a un-related event to occur first
- need to insert new value more than once

ANOMALIES

• UPDATE ANOMALY

- $\bullet\,$ Change of value must be done multiple times to each copy of the value
- Multiple copies of the same value mean we do not know which is correct
- Duplication wastes resources

ANOMALIES

• DELETE ANOMALY

- A value is deleted "accidentally" due to an unrelated event occurring $% \left(1\right) =\left(1\right) \left(1\right) \left($
- $\bullet\,$ need to delete value more than once

DESIRED DATABASE STRUCTURE o INSERT • Insert when required, in one place, once. UPDATE • Update in one place, once. • Only one copy of each piece of data. o DELETE • Delete in one place, once. · Deletions not caused by unrelated events. DEPENDENCY o If field A is dependent on field B, A cannot exist until B exists. o Surname and Given depend on Student No STUDENT <u>StudentNo</u> • What does ProgName Surname depend on ???? Given ProgCode ProgName **DEPENDENCY** ${\color{blue} \bullet}$ The field Surname stores surnames. ${\color{blue} \circ}$ Every person in the street has a surname. Would you put all those surnames in your database? • We say that surname depends on student number, because a surname value would not exist unless a corresponding student number existed.

DEPENDENCY

"A FIELD MUST DEPEND ON THE KEY, THE WHOLE KEY, AND NOTHING BUT THE KEY, SO HELP ME CODD"

- Every field in a table should be dependent on the whole primary key
- If it is not, it should be in another table!
- If there is no other table to fit it, create a new table!

DATA DESIGN AIMS/STEPS

- o Identify Entities/Tables
- Put Fields where they belong where they depend on the whole primary key.
 - If a field cannot be placed, usually signifies a missing entity/table.
- ${\color{red} \circ}$ ELIMINATE ANOMALIES

SOLUTION ? STUDENT PROGRAMME StudentNo Surname Given DOB DOB ProgCode ProgName DeptName DeptName

DATABASE DESIGN PROCESS

- Like most design activities, data design is not an exact science. Performing it involves experience and there is no single answer for any problem.
- For small tasks, I encourage you to use an "intuitive", bit by bit approach.
 - May not work for large tasks!

DATABASE DESIGN PROCESS

- Go through the problem specification (if there is one), picking out any possible attribute/field etc. you think might be important. - Create a big list.
- Work on both an E-R model <u>and</u> a Relational model together, <u>at the same</u> <u>time!</u>
 - Make sure they always correspond.

DATABASE DESIGN PROCESS

- Start by identifying any "easy" entities.
 - People are usually easy (STAFF, STUDENT, CUSTOMER etc.)
- o Fill in the obvious attributes.
- Look for straightforward relationships, keeping both E-R model and relational model corresponding (relationships in E-R become foreign keys!)

DATABASE DESIGN PROCESS

- Continue an iterative process until you have filled in as much as required.
- Part of the design process is deciding what will <u>not</u> be stored. You have to define the scope of the database.
- Continually ensure fields are dependent on their keys and there are no anomalies.

DATABASE DESIGN PROCESS

- Ask yourself for each field you place in a table:
 - What happens if I insert?
 - What happens if I update?
 - What happens if I delete?
 - Does this field belong here?
 - Does this field depend on the whole key?

AN EXAMPLE

THE BIG PICTURE

- ${\color{blue} \bullet}$ A successful DB design is an integral component of the information system
- The information system (IS) is developed within a framework call SDLC
 - $\bullet~{\rm SDLC}$ manages changing needs of IS
 - DB is part of IS and thus, are subject to frequent changes

MANAGING CHANGES IN DB

- ${\color{red} \circ}$ DBLC is the management of change in DB
- What we want to know
 - How to conduct evaluation and revision
 - $\bullet~$ What are the strategies in DBLC

THE INFORMATION SYSTEM

- ${\color{red} \circ}$ A place for data collection, storage and retrieval
 - Consists of people, hardware, software, applications, DBMS and procedures
- Maintained via SDLC
 - System analysis and design (SAD, SIT201)
 - To support decision making

System development lifecycle

- ${\color{blue} \circ}$ The development and maintenance of IS
- ${\color{blue} \bullet}$ The bigger framework which DBLC exists
- ${\color{red} \circ}$ Divided into 5 phases
 - Planning
 - Analysis
 - Detailed systems design
 - $\bullet \ \ Implementation$
 - Maintenance

SDLC (CONT'D)

- Gets an overview of business
 - Assessment made from requirements obtained
 - Starting point for evaluating alternate solutions
 - Determines costs

SDLC (CONT'D)

- Examine the problem defined during planning
 - Includes audit of user requirements
 - Study existing hardware and software
- Understanding of the system's potential and problem

SDLC (CONT'D)

- ${\color{red} \circ}$ Logical system design
 - Conceptual data model, processes and output
 - DFD, ERD, UML
- ${\color{red} \circ}$ Detailed system design
 - Technical specifications
 - Planning of methodologies

SUMMARY

- Database design takes a disciplined approach
 Exists as part of the SDLC

 - DBLC manages the lifecycle of data evolution
- ${\color{red} \circ}$ Managing the DBLC is difficult
 - DBA takes years to master
 - Need to understand policies and the external environment of the organization