

簡報大綱

重要特徵分析 動機與背景介紹 與模型預測 結論 資料簡介 討論 資料前處理

01 動機與背景介紹

研究動機

- 宜蘭縣南方澳大橋意外斷裂事故引起民眾對「人為檢測與監 測」與「橋樑安全」的思考
- 橋樑作為毎日通勤、生活必要元素,如何維持「安全穩定」

研究背景

- 北區共 883 座橋樑, 具人口密度高且氣候潮濕、轄區橋樑承 受交通量最大、雨天數最多等特色, 使北區橋樑相比中、南區 需更頻繁調動資源進行橋樑劣化之平時與特別檢測
- 目前皆憑藉橋樑檢測商與北分局同仁之「經驗」與「感覺」,決定哪座橋樑應「優先」檢修、檢修哪修構件。即使擁有資料庫,也僅僅停留在「紀錄」之功能,而未充分利用資料所能帶來的分析與預測效益

與交通部高速公路局—北區養護工程分局合作,運用該局內部資料庫協助優化 橋樑檢測作業期程與流程,給予檢修人員除了經驗法則外的科學依據

01 問題定義

橋樑劣化重要因子分析

- OLS
- Random Forest
- Elastic Net

預測橋樑快速劣化與否

- SMOTE 平衡資料集
- Logitstic Regression
- Random Forest
- XGBoost, etc.

網頁查詢介面

供北分局&檢測商參考

- 橋樑劣化重要因子
- 各橋樑劣化預測結果
- 視覺化橋樑基本資料

02 資料簡介

資料來源

交通部高速公路局北區養護工程分局授權之國道橋樑管理系統

seway REAU O T C ● **橋樑基本**) 分局

- 橋樑基本資料 (883 rows, 105 columns, 每一列資料為一座橋樑)
- 2018 2023 年橋樑維修情況資料 (30000+ rows, 含檢測類別、DERU 值、損壞位置、維修構件等 欄位)

11/14 與北分局、橋樑檢測商開會,瞭解橋樑檢測領域知識並共識可驗證的重要變數

35 個獨立變數(X)+橋樑急迫性 U 值作為相依變數(Y)進行分析

											檢測維修資料			
檢測日期	檢測類別	檢測單位	D	E F	R U	劣化類型	狀態	建議維修工法	數量	單位	損壞位置	维修紀錄ID	維修構件	维修工法
2020/6/10	定期檢測	拓緯工程顧問有限公司	2	1	2 2	混凝土剝落、破碎、鋼筋外露、銹蝕	未維修	混凝土剝落鋼筋鏽蝕修復	30	處	15k+330_ii		橋護欄	
2020/6/10	定期檢測	拓緯工程顧問有限公司	2	1	2 2	滲水、白華	未維修	白華處理 (平方公尺)	0.1	平方公尺	PW106-1_B		橋墩/帽梁	
2020/6/10	定期檢測	拓緯工程顧問有限公司	2	1	2 2	滲水、白華	未維修	白華處理(平方公尺)	0.05	平方公尺	PW106-2_F		橋墩/帽梁	
2020/6/10	定期檢測	拓緯工程顧問有限公司	2	1		混凝土剝落、破碎、鋼筋、鋼腱或錨碇外 露、銹蝕	未維修	混凝土修復 (0.4*0.4*0.05m)	0.03	平方公尺	S106G3		主梁	
2020/6/10	定期檢測	拓緯工程顧問有限公司	2	1		混凝土剝落、破碎、鋼筋、鋼腱或錨碇外 露、銹蝕	未維修	混凝土修復 (<0.4*0.4*0.05m)	0.08	平方公尺	S108G3		主梁	
2020/6/10	定期檢測	拓線工程顧問有限公司	2	1		混凝土剝落、破碎、鋼筋、鋼雕或錨碇外 露、銹蝕	未維修	混凝土修復 (<0.4*0.4*0.05m)	0.02	平方公尺	S115G3		主梁	
2020/6/10	定期檢測	拓線工程顧問有限公司	2	1	1 1	混凝土剝落、破碎、鋼筋外露、銹蝕	未維修	鋼筋除鏽及混凝土修復<0.4*0.4*0.05m)	0.02	平方公尺	S106D2-2_F		横隔梁	

數值型態變數X

03 資料前處理

Independent Variable

- 氣候資料取自中央氣象署每 年每月北區測站資料
- 金屬腐蝕資料使用交通部運研所開放資料,取北部地區 測站對應該橋樑所在之行政區
- 車流量資料使用高公局之開 放資料「電子收費通行量統 計」,比對交流道與橋樑位置
- 缺值以**眾數**處理

類別型態變數X

03 資料前處理

Independent Variable

- 否:0;是:1
- 土壤液化潛勢查詢系統,高:3:中:2:低:1:無資料:0
- 主樑材質分為混凝土、鋼構造等,利用 One-Hot Encoding 處理(否:0;是:1)
- 設計活載重 HS20-44+10%、 HS20-44+15%, 其中HS20-44 至 HS20-44+34% 資料數超過 90% , 因故以HS20-44 為 1, HS20-44+10%為 1.1、 HS20-44+15% 為 1.15, 依序照 比例進行數值編碼;其餘小於 20 km 等 9 個變數則以以上 13 個活 載重數值之**眾數**進行填補

Independent Variable

03

資料前處理

Independent Variable

相關係數矩陣 🔷

資料前處理

Independent Variable

Independent Variable

平均總日照時數

平均月相對溼度

年平均交通量分布圖

月均溫度分布圖

03 資料前處理 Independent Variable

Independent Variable-PCA

這14個特徵可以解釋80%的變異:月均溫度、平均月相對濕度、平均總日照時數、平均鋅年腐蝕速率、平均碳鋼年腐蝕速率、年 平均每日交通量、是否為跨水橋、土壤液化潛勢、橋梁總長 (M)、最大淨寬、最小淨寬、總車道數、主線車道數、橋下有無 租用

Dependent Variable

03

資料前處理

Dependent Variable

資料前處理

Dependent Variable

Dependent Variable

D、E、R 綜合評估後給予橋樑每個 構件一個分數(U值)

	0	1	2	3	4
程度(D)	無此項目	良好	尚可	差	嚴重損害
範圍(E)	無法檢測	< 10%	% < 30%	< 60% <	
影響度(R)	無法判定影響度	微	小	中	大
急迫性(U)	無法判定急迫性	例行維護	3年內	1年內	緊急處理維修

用 IQR*1.5 刪掉下界 outliers, 因為不可能劣化速度是負的

樣本數:836

每座橋梁我們根據每個構件的 U 值, 進行加權後算出「橋梁分數」

項次	構件	權重	項次	構 件	權重
1	引道路堤	3	12	橋墩保護設施	6
2	引道護欄	2	13	橋墩基礎	8
3	河道或土壤	4	14	橋墩墩體	7
4	引道路堤-保護設施	3	15	支承	5
5	橋台基礎	7	16	防落設施	5
6	橋台	6	17	伸縮縫	6
7	翼牆/擋土牆	5	18	主要構件	8
8	摩擦層	3	19	次要構件	6
9	排水設施	4	20	橋面版	7
10	緣石及人行道	2	21	其他"1	
11	橋護欄	3			

重要特徵分析 與模型預測

影響橋梁劣化速度 之重要因子

Feature	P-value	Coef	Insight
月均溫度	0.002	+	月均溫度越高, 劣化速度越快
平均總日照時數	0.043	-	日照越多, 劣化速度越慢(北部)
平均月相對濕度	0.035	+	濕度越高,劣化速度越快 (符合預期,東北季風)
年平均毎日交通量	0.044	-	交通量越多, 劣化速度越慢(不符合預期, 可能和橋梁本身設計有關)
橋下有無租用	0.001	+	有租用, 劣化速度越快(人為因素)
是否屬監控橋梁	0.004	+	屬於監控橋梁,劣化速度越快
平均年降雨量(公厘)	4.64e-06	-	降雨越多, 劣化速度越慢(不符合預期)
設計垂直地表加速度(G)	0.023	+	百大乳乳的类取用 弗大木乳乳子系数
設計水平地震力係數	0.014	+	原本設計的越堅固, 或本來設計承受較 大的係數, 劣化速度越快(可能真的也
設計垂直地震力係數	0.011	+	會承受更大的外部因素)

重要特徵分析 與模型預測

影響橋梁劣化速度 之重要因子

Elastic Net

- 橋下有無租用
- 橋梁最接近斷層距離
- ➡斷層或許跟地震時受到的搖晃有關
- 月均溫度
- 設計垂直地震力係數
- 主樑材質 預力混凝土, 鋼筋混凝土
- ⇒跟材質有關
- 平均總日照時數
- 平均鋅年腐蝕速度
- 年平均每日交通量
- 平均總日照時數
- 最小淨寬

Random Forest

- 橋梁最接近斷層距離
- 離海岸距離
- 橋梁總長
- 設計垂直地震力係數
- 年平均每日交通量
- 最大淨寬
- 橋下有無租用
- 最小淨寬
- 主樑材質 鋼筋混凝土
- 設計活載重
- ⇒ 設計橋樑可以承受的重量

重要特徵分析 與模型預測

貼標籤

定義"快速劣化"

- ▶ 劣化快速門檻 =median(U_change_ave) + 2σ(U_change_ave)
- 我們建立這個模型來幫助北分局分類可能需要更定期檢測的橋樑
- 貼標後資料分布極度不均

▶ 所以,我們使用 SMOTE 來平均兩個標籤的數量

Random Forest + 相關性分析

- 使用 Random Forest 選出最重要的 10 個變數
- 並刪掉相關性較高 (coef. = 0.81) 的平均碳鋼年腐蝕速率(μm/yr)
- 所以剩下 9 個 Feature

04

重要特徵分析 與模型預測

Feature Selection

重要特徵分析 與模型預測

訓練模型與預測結果

預測結果

Model	Recall*0.5	Accuracy*0.5	加權後分數
Logistic Regression	0.75	0.809524	0.779
Random Forest	0.875	0.880952	0.878
XGBoost	0.75	0.863095	0.807
SVM	0.625	0.803571	0.714
LSTM	0.75	0.5298	0.64

因為橋梁檢修是安全性問題, 所以我們認為減少漏判的 recall 是相對重要的

結論

- · 訪問時,專業人士覺得的重要因子
 - 平均年降雨量(東北季風、北部)
 - **年平均日交通量**(越大越容易劣化)
 - **主樑材質_鋼筋混凝土**(比較容易劣化)
- 我們研究後,橋梁劣化重要因子
 - 橋下有無租用
 - 設計垂直地震力係數
 - 年平均日交通量
 - 月均溫度
 - 平均總日照時數
 - 主樑材質 鋼筋混凝土

- Random Forest 在預測方面無論是 recall 或 accuracy 的分數皆較高
- 預測結果 VS 重點監控橋梁
 - 圓山橋1票
 - 五楊高架北上 0 票
 - 五楊高架南下 0 票
 - 南崁溪橋0票
- ➡重點橋梁,專業人士判斷 (domain knowledge) 的依據並不涵蓋在我們 資料內

06 討論

- 橋梁 U 值沒修理但卻突然變好, 猜測因為不同廠商檢測的標準有所不同。
- U 的權重使用目前已不被採納的權重,不過我們認為相對於 直接對所有構件平均,加權平均應該更有說服力。
- 如果使用全台橋梁的數據,或許可以有更準確的預測結果。

介面設計

介面設計

重要特徵分析與模型預測 架構

- 1. 分析影響橋梁劣化速度的重要因子講解分析結果與insight
- 2. 貼標(median(U_change_ave) + 2σ(U_change_ave))
- 3. 資料集切分
- 4. SMOTE + Feature selection
- 5. 模型訓練與預測

重要因子分析

Important features from OLS set p-value < 0.05

Feature	P-value	Coef	Insight	
月均溫度	0.002	+		No. Ob
平均總日照時數	0.043	-		
平均月相對濕度	0.035	+		
年平均每日交通量	0.044	-		
橋下有無租用	0.001	+		
是否屬監控橋梁	0.004	+		主
年平均年降雨量(公厘)	4.64e-06	-		主梁村
設計垂直地表加速度	0.023	+		
設計水平地震力係數	0.014	+		
設計垂直地震力係數	0.011	+		

OLS Regr

U_chane

Least So

Dep. Variable:

Model:

Method:

Date: Wed, 13 De

Date: \

Time:

No. Observations:

Of Residuals:

Df Model:

1944年IT(区は1918/月月7日 是否屬監控橋梁 離海岸距離(公尺)

年平均年降雨量(公厘) 精梁最接近斷層距離

主梁材質_預力混凝土,預力混凝土

主梁材質_預力混凝土,鋼筋混凝土 主梁材質_預力混凝土,鋼構+預力混凝土

主梁材質_預力混凝土,鋼構造 Q材質_預力混凝土,鋼構造,鋼筋混凝土

主梁材質_銅易鋼筋混凝土 主梁材質 鋼筋混凝土

主梁材質_鋼構造 設計展度

設計活動重

設計水平地表加速度(G) 設計垂直地表加速度(G) 最大考量地表加速度

設計水平地震力係數設計垂直地震力係數

Data Visualization

14 Features can explain 80% of the variance using PCA

月均溫度','平均月相對濕度','平均總日照時數',' 平均鋅年腐蝕速率','平均碳鋼年腐蝕速率','年平均每 日交通量','是否為跨水橋','土壤液化潛勢','橋梁 總長(M)','最大淨寬','最小淨寬','總車道數','主 線車道數','橋下有無租用'

重要因子分析

Important features from Elastic Net

重要因子分析

Top 10 Important features from Random Forest

Model Tranining and Prediction - Labeling

劣化快速 = median(U_change_ave) + 2σ(U_change_ave)

我們建立這個模型來幫助公路局分類可能需要更定期去檢測的橋樑

由於劣化快速的label較稀少,我們使用SMOTE來平均兩個標籤的數量

EDA - Dependant Variable

We use IQR*1.5 to drop the lower bound outliers, since deteriation may differ by different inspection standards and declining deterioration is merely possible.

n_row: 856 -> 836

Model Tranining and Prediction - Feature selection

Random Forest + Correlation analysis

使用RF選出最重要的十個變數並刪掉相關性較高的平均碳鋼年20% Testing
腐蝕速率(µm/yr)->因該資料直接受濕度影響

Model Tranining and Prediction

Using 6 features from feature selection 16% Validation 20% Testing

Model	Recall*0.5	Accuracy*0.5	加權
Logistic Regression	0.75	0.809524	
Random Forest	0.875	0.880952	
XGBoost	0.75	0.863095	
SVM	0.625	0.803571	
LSTM	0.75	0.5298	

介面設計:

輸入九個變數並用XGBoost來預測結果(奕霆)

透過下拉式選單查詢各個橋樑的基本資料以及劣化程度

- -> 可以加當日氣溫、平均濕度?
- -> 連到高速公路 1968 的流量監測去看交通?

即時透過迴歸分析、RF、Elastic Net 輸出重要變數的圖表,以供公路局的員工檢視造成強梁劣化之原因

Model Tranining and Prediction

Using 14 features from PCA

which is better

'月均溫度','平均月相對濕度','平均總日照時數','平均鋅年腐蝕速率(μm/yr)','平均碳鋼年腐蝕速率(μm/yr)','年平均每日交通量','是否為跨水橋','土壤液化潛勢(1~3)','橋梁總長(M)','最大淨寬(M)','最小淨寬(M)','總車道數','主線車道數','橋下有無租用'

Model	Recall*0.5 Accuracy*0.5 加權
Logistic Regression	Usual Control of the
Random Forest	0 SMOTE Oversampling 0.875 0.122807 0.215385 0.696429
XGBoost	Method Recall Precision F1 Score Accuracy 0 XGBoost with PCA and SMOTE 1.0 0.216216 0.355556 0.827381
SVM	Method Recall Precision F1 Score Accuracy 0 SVM with PCA and SMOTE 1.0 0.142857 0.25 0.714286
LSTM	0.7500 0.5298

Feature selection

- 1. Using OLS to select the features that have p-value lower than 0.05.
- 2. Use correlation analysis to drop the highly correlated features

To avoid the multi-colinearity we conducted corr correlated features (>80%) with lower p-value.

We dropped 年平均降雨量

- D0.4

- □0.6