

### 實習二

利用 GISTools 建立繪製地圖的函數 <u>Pollution\_Map (arg1)</u> 引數arg1 是可自行設定的超越機率 (e.g. 0.3)

- 1. 該函數會回傳該超越機率所對應的PSI值。
- 2. 以此數值為臨界值,繪製空氣汙染地圖,超過該數值的測站,表示紅色,其餘為藍色。
- 3. 針對超過該數值的測站,按照測站類別(SiteType), 針對「<u>一般測站、工業測站、交通測站</u>」,以box plot呈現PSI分布。



執行:Pollution\_Map(0.3)Pollution\_Map(0.5)

來檢核結果

# 檢討上週 隨堂小考

建立執行平方和的函數:ssum(arg1, arg2, arg3)

注意:<u>函數名稱請使用ssum</u>

, 2. 防呆除錯

1. 函數

• 輸入錯誤格式(arg1, arg2須為整數;arg3須為正整數), 則中止程式,並顯示 "wrong inputs"

• arg1:起始值, arg2:最終值, arg3:數字間隔

3.如何計算平方和

| <br> 引數→<br> 格式→ | ----<br>arg <b>1</b><br>整數 | <br>arg2<br>整數 | ----<br>arg3<br>正整數 |                                     | ]<br> <br>     |
|------------------|----------------------------|----------------|---------------------|-------------------------------------|----------------|
| <br> <br>        | 2                          | 5              | 1                   | $2^2+3^2+4^2+5^2=54$                |                |
|                  | 2                          | 5              | 2                   | $2^2+4^2=20$                        |                |
| <br> <br> <br>   | 6                          | 3              | 1                   | $6^2+5^2+4^2+3^2=86$                |                |
|                  | 6                          | 3              | 2                   | 6 <sup>2</sup> +4 <sup>2</sup> = 52 | <br> <br> <br> |

| 分數 | 人數 |
|----|----|
| 20 | 2  |
| 18 | 1  |
| 15 | 4  |
| 10 | 10 |
| 5  | 11 |
| 3  | 9  |
| 0  | 5  |

#### 1. 函數

```
ssum=function(x,y,z){
```

```
any( c(x,y,z)\%1!=0 )
```

2. 防呆除錯

```
判斷是否為整數
```

```
x\%1==0 \Rightarrow round(x)==x
```

(X) is.integer()→檢查型別

```
if(x\%1!=0||y\%1!=0||z\%1!=0||z<0) { print("wrong inputs"); return()}
```

#### 3.計算平方和

#### seq

```
if(x>y) z=-z
sum=sum(seq(x,y,z)^2)
return(sum)
```

※ 不能交換from-to的順序

#### while 常用於迴圈次數未確定時

```
sum=0; t=x;
if(x<=y) {
    while(t<=y){
        sum=sum+t^2
        t=t+z }
}else{
    while(t>=y){
        sum=sum+t^2
        t=t-z }
}
```

return(sum)

## for 常用於迴圈次數已確定時

```
sum=0
n=abs(x-y)/z+1

for(i in 1:n){
   sum=sum+x^2
   x=x+sign(y-x)*z
}

return(sum)
```

#### R資料處理

- 選取:
  - 1. 邏輯判斷
  - 2. which
  - 3. 直接使用欄位對位選取
  - 4. subset(data,判斷式)

> fast

mic kfc

2

1

1

```
    選取出密度大於10的圖徵:
        index = TPE$dens > 10
        high = TPE[index,]
        low = TPE[!index,]
    high = subset(TPE, index)
```

## xtabs函數 樞紐分析表

xdata=xtabs(~TOWN+STORE,data=data) ———→ xdata=data.frame(xdata)

|      | STORE |     |  |
|------|-------|-----|--|
| TOWN | KFC   | MIC |  |
| 士林區  | 2     | 8   |  |
| 大同區  | 1     | 3   |  |
| 大安區  | 2     | 11  |  |
| 中山區  | 4     | 9   |  |
| 中正區  | 2     | 8   |  |

→資料型別是xtabs(table) 格式也無法使用



→ggplot可以 用的資料格式

## reshape2 **套件**

Q. 本來資料就是data.frame了?

```
科系 性別
                                               人數
                                      1 地理
                                           男生
                                                13
 科系 男生 女生
                       melt()
                                                 21
      13
          14
1 地理
                                      3 地質
                                           男生
2 大氣
      21
           6
                                      4 地理 女生
                                                14
3 地質
           13
                      dcast()
                                      5 大氣 女生
                                                 6
                                      6 地質 女生
                                                13
```

```
melt(data,
id.vars = "科系",
variable.name = "性別",
value.name = "人數")
dcast(data,
formula = 科系~性別,
value.var = "人數")
```

ggplot

## 請搭配ggplot2-cheatsheet.zip

ggplot(data, aes(x=..., y=...))+ #放在也geom中可以 geom\_xxx( ) + scale xxx xxx( ) + labs()+ #座標軸 theme() #主題







scale

scale\_color\_manual("速食店", values=c("red","blue"), labels = c("j德基", "麥當勞"))



※調整顏色、樣式、分類、圖例名稱……

#### **Scales** map data values to the visual values of an aesthetic. To change a mapping, add a new scale. $(n <- d + geom_bar(aes(fill = fl)))$ aesthetic prepackaged scale specific scale to use n + scale fill manual( values = c("skyblue", "royalblue", "blue", "navy"), limits = c("d", "e", "p", "r"), breaks =c("d", "e", "p", "r"), name = "fuel", labels = c("D", "E", "P", "R"))

range of values to title to use in labels to use in breaks to use in

**Scales** 





s + geom\_bar(position = "fill") Stack elements on top of one another, normalize height e + geom\_point(position = "jitter") Add random noise to X and Y position of each element to avoid overplotting e + geom\_label(position = "nudge") Nudge labels away from points s + geom\_bar(position = "stack")

s + geom\_bar(position = "dodge")

Arrange elements side by side

Stack elements on top of one another

## factor排序

## data\$STORE=ordered(data\$STORE, levels=c("MIC", "KFC"))

- > xdata\$STORE
- > xdata\$STORE=ordered(xdata\$STORE,levels=c("MIC","KFC"))
- > xdata\$STORE





# 實習一 barplot寬度

#### ggplot(data, aes(x=TOWN, fill=STORE))+ geom\_bar(position="dodge")

台北市各行政區麥當勞與肯德基家數



## 原因

|     |             | TOWN   | STORE | Freq |   |
|-----|-------------|--------|-------|------|---|
| 9   | 松           | 副山公    | KFC   | 2    |   |
| 1.0 | <b>)</b> /⊒ | - 羊田   | VEC   | 1    |   |
| Τ.  |             | 1我吧    | KI C  |      | П |
| 11  | L 🛱         | 7港區    | KFC   | 0    |   |
| 4.5 |             | なまなです。 | VEC   | 2    |   |
| 14  | - 13        | 9半四    | KFC   | 2    |   |
| 13  | 3 ±         | :林區    | MIC   | 8    |   |

## 解決方法

KFC

MIC

```
xdata=xtabs(~TOWN+STORE,data=data)
xdata=data.frame(xdata)
```

```
ggplot(xdata,aes(x=TOWN,y=Freq,fill=STORE))+
 geom_bar(stat='identity',position ="dodge")
```

#### xtabs整理後的資料

```
實習一
參考
```

## mac使用ggplot 如何顯示中文

- + theme(text=element\_text(family="Microsoft JhengHei"))
- + theme(text=element\_text(family="黑體-繁 中黑"))



※ 更改字形就OK了!

Windows 要先宣告:windowsFonts(JH=windowsFont("微軟正黑體"))
+ theme(text=element text("JH"))



## R 處理 GIS資料

```
setwd("D:/1072SA/Data") #設定路徑
TPE=readOGR(dsn = ".", layer = "Vill", encoding="utf8", verbose=F)
"./" 當前資料夾
                         setwd("D:/1072SA")
"../" 當前資料夾的上層
                        | TPE=readOGR(dsn = "Data", layer = "Vill)
 TPE@data or data(TPE)
  屬性工作表(格式data.frame)
  可用$呼叫欄位:TPE@data$ID(直接 TPE$ID 也可以)
  TPE@proj4string or proj4string(TPE)
  CRS arguments:
  +proj=tmerc +lat 0=0 +lon 0=121 +k=0.9999 +x 0=250000 +y 0=0 +ellps=GRS80 +units=m +no defs

    FastFood@cords

  點資料的x,y座標
 poly.areas(TPE)
  面資料的面積
                               spTransform(FastFood, TPE@proj4string)
 spTransform(圖資, 座標格式)
  投影座標轉換
                                 → 把FastFood換成TPE的投影座標格式
```

## 用ggplot畫 GIS多邊形

### 面量圖

- 問距 auto.shading(value, n=5, cols=brewer.pal(n,"Reds"), cutter=quantileCuts)
- 繪製面量圖 choropleth( polygon, value, shading )
- 地圖要素:

```
圖名 title()
圖例 choro.legend()
比例尺 map.scale()
指北針 north.arrow()
```