Unsupervised Learning-based Registration

Adrian V. Dalca

Hands-on Session:

https://www.kaggle.com/adalca/learn2reg

https://github.com/learn2reg/tutorials2019/

Code and slides based on voxelmorph.mit.edu

Registration

moving scan m

fixed scan \boldsymbol{f}

Pairwise optimization

Pairwise optimization

- significant development
- slow for two images

• Supervised (have example triplets $\{m, f, \phi\}$)

- Supervised (have example triplets $\{m, f, \phi\}$)
 - $oldsymbol{\phi}$ from classical methods as 'ground truth'
 - External data (segmentations, landmarks, etc)

- Supervised (have example triplets $\{m, f, \phi\}$)
- Unsupervised (only have images $\{m, f\}$)
 - fast for new image pair

Network architecture?

Moving image (**m**)

Fixed image (\mathbf{f})

Network: full volume (e.g. 256x256x256x2) to full volume (256x256x256x3) FCNN, UNet, etc.

Moving image (m)

Fixed image (\boldsymbol{f})

Moving image (m)

Fixed image (\mathbf{f})

parameters heta

Unsupervised: There is no ground truth for you. So, you evaluate your result in comparison with fixed image.

Unsupervised:

$$\mathcal{L} = ||m \circ \phi - f|| + \lambda \operatorname{Reg}(\phi)$$

Moving image (**m**)

Fixed image (\mathbf{f})

$$\mathcal{L} = \sum_{i,j} \|m_i \circ \phi_{ij} - f_{ij}\| + \lambda \operatorname{Reg}(\phi_{ij})$$

Moving image (m)

Fixed image (\boldsymbol{f})

$$\mathcal{L}(\theta; \text{data}) = \sum_{i,j} \|m_i \circ g_{\theta}(m_i, f_i) - f_{ij}\| + \lambda \operatorname{Reg}(g_{\theta}(m_i, f_i))$$

$$\phi_{ij} \qquad \phi_{ij}$$

Moving image (m)

Fixed image (\boldsymbol{f})

$$\mathcal{L}(\theta; \text{data}) = \sum_{i,j} \|m_i \circ g_{\theta}(m_i, f_i) - f_{ij}\| + \lambda \operatorname{Reg}(g_{\theta}(m_i, f_i))$$

$$\phi_{ij}$$

Training

Moving image (m)

Fixed image (f)

- SGD based techniques
- Each image pair contributes **slightly** to θ Classical optimization: slightly update ϕ for an image pair

Registration

Moving image (**m**)

Fixed image (\mathbf{f})

Amortized Inference

Classical Methods
Pair-specific optimization

$$\widehat{\phi}_{m,f} = argmin_{\phi} \mathcal{L}(\phi; m, f)$$

Learning-based
One-time unsupervised
network training

$$\widehat{\boldsymbol{\theta}} = argmin_{\boldsymbol{\theta}} \sum_{m,f} \mathcal{L}(g_{\boldsymbol{\theta}}(m,f); m, f)$$

Pair-specific function evaluation $\hat{\phi}_{m,f} = g_{\widehat{\boldsymbol{\theta}}}(m,f)$

Experiments

Using VoxelMorph implementation

Data: 7000 training volumes, 250 validate, 250 test

Baseline: ANTs, Niftireg

Train time

3D volumes

Hours to 1-2 days on single GPU

2D images/slices

Minutes to hours

Runtime for a new 3D image pair

Anatomical volume overlap

^{*}algorithms only see images, no segmentation maps

Accuracy via volume overlap (Dice)

Properties and Limitations

Analysis from

TMI: https://arxiv.org/abs/1809.05231

MedIA: https://arxiv.org/abs/1903.03545

Training with limited data

Registering out of training sample

- Unexpected behavior
- Might work (!)
- Might fail completely
- >> hands-on session!

Regularization Analysis

Promises

- Fast
 - Easy to iterate research!
 - Easy to build more powerful models!
- Supervise with external data (next talk)
- Automatic atlas-building
- Easy to incorporate other constraints
 - e.g. Diffeomorphisms
- Getting out of local minima

Template Construction

NeurIPS2019: https://arxiv.org/abs/1908.02738

Jupyter notebook: hands-on session

Core concepts with MNIST

We will first learn to deal with data, building a model, training, registration and generalization

More realistic complexity: Brain MRI (2D slices)

We will then show how these models work for 2d slices of brain scans, presenting a more complex scenario

Realistic 3D Brain MRI

We will illustrate full 3D registration

Code heavily based on voxelmorph.mit.edu

Hands-on Session:

https://www.kaggle.com/adalca/learn2reg

https://github.com/learn2reg/tutorials2019/