Don't forget to write down clearly your **Name**:

1. Multir	ole choices	(10	points).	Mark tl	he box	in	front	of the	correct	answer

(1) Which of the following equals the integral $\int_0^2 \sqrt{4-x^2} dx$? $\Box \pi \Box 2\pi \Box 3\pi \Box 4\pi$

(2) Which of the following equals the integral $\int_{-\pi}^{\pi} \cos 2x dx$?

(3) Integration by parts is a consequence of the Fundamental Theorem of Calculus together and which of the following differentiation rule that is the most relevant?

(4) When integrating $\int \sqrt{a^2 - x^2} dx$ and we use the substitution rule $x = a \cos \theta$, which of the following could the range of θ be?

 $\Box \quad -\frac{\pi}{2} \le x \le \frac{\pi}{2} \qquad \qquad \Box \quad 0 \le x \le \pi$ $\Box \quad \frac{\pi}{2} \le x \le \frac{3\pi}{2} \qquad \qquad \Box \quad 0 \le x \le 2\pi$

(5) Perform long division for the rational expression $\frac{x^2-4x+4}{x-2}$. What should you get? $\Box x+2 \quad \Box x+4 \quad \Box x-4 \quad \Box x-2$

2. Use your favorite way to prove the following integration formula (5 points).

$$\int e^x \sin x dx = \frac{1}{2} e^x (\sin x - \cos x) + C$$

3. Prove the following statement (5 points). Let f(x) be a continuous function that only takes positive values. Assume that $\int_{-\infty}^{\infty} f(x) dx$ converges. Use the meaning of (improper) integration to show that, for any two real numbers $a,b\in\mathbb{R}$ and $a\neq b$, we have

$$\int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx = \int_{-\infty}^{b} f(x)dx + \int_{b}^{\infty} f(x)dx.$$