The cylinder at spatial infinity and asymptotic charges

Rafael Pinto

Instituto Superior Técnico

Advisors: Dr. Edgar Gasperín and Dr. Alex Vañó Viñuales

centra

Table of Contents

- 1 Newman-Penrose constants
- 2 Cylinder at i^0
- 3 Spin-0 fields close to i^0 and \mathscr{I}
- 4 Results
- 5 Conclusion
- 6 References

Introduction

- The Newman-Penrose (NP) constants serve as conserved quantities at null infinity in asymptotically flat gravitational fields.
- These constants present a comprehensive conservation system for various spins: spin-1 fields and spin-2 fields, with our research focusing on spin-0 fields linked to wave equation solutions.
- In the detailed context, while an infinite series of conserved quantities is identified in the linear theory, the non-linear General Relativity theory conserves only ten.

Conservation laws

Newman-Penrose constants

■ These charges are computed as 2-surface integrals at cuts $C \approx \mathbb{S}^2$ of null infinity \mathscr{I} .

Figure: Visual representation of the behavior of the Newman-Penrose constants at null infinity.

Spin-1 (EM) Field

Newman-Penrose constants

A complex tetrad can be selected as follows:

$$I^{\mu} = \delta_{1}^{\mu}, \quad n^{\mu} = \delta_{0}^{\mu} - \delta_{1}^{\mu}, m^{\mu} = \frac{1}{\tau} \left(\delta_{2}^{\mu} + \frac{1}{\sin \theta} \ \delta_{3}^{\mu} \right), \qquad \overline{m}^{\mu} = \frac{1}{\tau} \left(\delta_{2}^{\mu} - \frac{1}{\sin \theta} \ \delta_{3}^{\mu} \right). \tag{1}$$

■ To describe the electromagnetic (EM) field, we make use of three complex tetrad components of the Maxwell field tensor denoted as F_{uv} :

$$\Phi_0 = F_{\mu\nu} I^{\mu} n^{\nu},$$

$$\Phi_1 = \frac{1}{2} F_{\mu\nu} (I^{\mu} n^{\nu} + \overline{m}^{\mu} m^{\nu}),$$

$$\Phi_2 = F_{\mu\nu} \overline{m}^{\mu} n^{\nu}.$$
(2)

Newman-Penrose constants

■ The NP constants are calculated using the following formula:

$$F_m^{n,k} = \int {}_1\overline{Y}_{n-k+1,m}\Phi_0^{n+1}d\omega. \tag{3}$$

■ The interpretation of charges, such as the Newman-Penrose constants, remains an open debate, yet their conservation is evident in general asymptotically flat spacetimes, even in events like black hole collisions.

The i^0 cylinder representation in Minkowski spacetime

- Consider spherical polar coordinates $(\tilde{t}, \tilde{\rho}, \vartheta^A)$ with A = 1, 2.
- The metric of physical Minkowski spacetime in this coordinate system is given by $\tilde{\eta}$:

$$\tilde{\boldsymbol{\eta}} = -\mathbf{d}\tilde{t} \otimes \mathbf{d}\tilde{t} + \mathbf{d}\tilde{\rho} \otimes \mathbf{d}\tilde{\rho} + \tilde{\rho}^2 \sigma. \tag{4}$$

■ Introduce unphysical spherical polar coordinates (t, ρ, ϑ^A) as an intermediate step:

$$t = \frac{\tilde{t}}{\tilde{\rho}^2 - \tilde{t}^2}, \quad \rho = \frac{\tilde{\rho}}{\tilde{\rho}^2 - \tilde{t}^2}.$$
 (5)

■ The conformal metric in unphysical coordinates, $\eta = \Xi^2 \tilde{\eta}$:

$$\eta = -\frac{1}{\tilde{\rho}^2 - \tilde{t}^2} (-\mathbf{d}\tilde{t} \otimes \mathbf{d}\tilde{t} + \mathbf{d}\tilde{\rho} \otimes \mathbf{d}\tilde{\rho} + \tilde{\rho}^2 \sigma). \tag{6}$$

<ロ > ← □

Newman-Penrose constants

i⁰ Representation in Unphysical Coordinates

- In this conformal representation $(t \in (-\infty, \infty), \rho \in [0, \infty))$, spatial infinity and the origin interchange.
- i^0 is represented by the point $(t=0, \rho=0)$ in (\mathbb{R}^4, η) .
- Introduce coordinates $(\tau, \rho, \vartheta^A)$ with $t = \rho \tau$.
- Consider the conformal metric $\mathbf{g} = \rho^{-2} \boldsymbol{\eta}$.
- Express the unphysical metric **g** in *F*-coordinates:

$$\mathbf{g} = -\mathbf{d}\tau \otimes \mathbf{d}\tau + \frac{1 - \tau^2}{\rho^2} \mathbf{d}\rho \otimes \mathbf{d}\rho - \frac{\tau}{\rho} \left(\mathbf{d}\rho \otimes \mathbf{d}\tau + \mathbf{d}\rho \otimes \mathbf{d}\tau \right) + \sigma.$$
(7)

Newman-Penrose constants

■ The conformal factor Θ in F-coordinates and physical coordinates:

$$\Theta := \rho(1 - \tau^2) = \frac{1}{\tilde{\rho}}.\tag{8}$$

■ The boost parameter κ :

$$\kappa := \frac{1+\tau}{1-\tau} = -\frac{\tilde{v}}{\tilde{u}}.\tag{9}$$

The Lorentz transformation that connects the NP and F-frames:

$$(\Lambda_{+})^{2} := \Theta^{-1} \kappa^{-1}, \quad (\Lambda_{-})^{2} := \Theta^{-1} \kappa.$$
 (10)

Cylinder and Null Frames

Identify future and past null infinity in the conformal representation:

$$\mathscr{I}^{+} \equiv \{ p \in \mathcal{M} \mid \tau(p) = 1 \},$$
$$\mathscr{I}^{-} \equiv \{ p \in \mathcal{M} \mid \tau(p) = -1 \}.$$

■ The i^0 -cylinder represents spatial infinity as an extended set $I \approx \mathbb{R} \times \mathbb{S}^2$

$$I \equiv \{ p \in \mathcal{M} \mid |\tau(p)| \ 1, \ \rho(p) = 0 \},$$
$$I^0 \equiv \{ p \in \mathcal{M} \mid \tau(p) = 0, \ \rho(p) = 0 \}.$$

F-Frame and Null Frames

Introduce the F-frame:

$$\mathbf{e} = (1+\tau)\partial_{\tau} - \rho\partial_{\rho}, \quad \underline{\mathbf{e}} = (1-\tau)\partial_{\tau} + \rho\partial_{\rho}, \quad \mathbf{e}_{\mathbf{A}} \quad \text{with}$$

$$\mathbf{A} = \{\uparrow, \downarrow\}. \tag{11}$$

■ The NP-frame hinged at \mathscr{I}^{\pm} :

NP hinged at
$$\mathscr{I}^+$$
: $e^+, \underline{e}^+, e_A^+$,
NP hinged at \mathscr{I}^- : e^-, e_A^- .

Transformation between NP and F-frames:

NP hinged at
$$\mathscr{I}^+$$
: $\mathbf{e}^+ = \Theta^{-2}L$, $\underline{\mathbf{e}}^+ = \underline{L}$, $\mathbf{e}_A^+ = \mathbf{e}_A = \Theta^{-1}\tilde{\mathbf{e}}_A$
NP hinged at \mathscr{I}^- : $\mathbf{e}^- = L$, $\underline{\mathbf{e}}^- = \Theta^{-2}\underline{L}$, $\mathbf{e}_A^- = \mathbf{e}_A = \Theta^{-1}\tilde{\mathbf{e}}_A$.

Spin-0 fields close to i^0 and \mathcal{I}

Results

Rafael Pinto

Conclusion

References

Thank You