

F. 1. Qualified requestors may chitain Documentation Center. All oth Technical information Service.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFGL-TR-78-0311	3. PECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitio) STUDIES OF STRATOSPHERIC EDDY TRANSPORT	5. TYPE OF REPORT & PERIOD COVERED Final Report 2 May 1977 - 30 Sept 1978 6. PERFORMING ORG. REPORT NUMBER
R. W. Wilcox G. D. Nastrom D. E. Brown	NAS 2-9578
Control Data Corporation 2800 East Old Shakopee Road, Box 1249 Minneapolis, Minnesota 55440	10. PROGRAM FLEMENT, PROJECT, TASK ANCA A WORK UNIT NUMBERS
11. controlling office name and address Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731	30 September 1978
Monitor/R. E. Good/LKD 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	91 15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	
18. SUPPLEMENTARY NOTES	(X max max max max)
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Ozonesonde Ozone flux Eddy diffusion coefficients Circulation statistics Winds 20. ABSTRACT (Continue on Everse side if necessary and identify by block number)	
In Part I, ozonesonde data have been match rawinsonde data to provide a direct determination by the transient eddies. Data are from about 25 s	of meridional flux of ozone stations in the four regions:
eastern and western North America, western Eur generally confirm the existence of significant nor winter/spring; as shown by previous investigator significant equatorward flux have been found at his	thward flux, 10-18 km, in

Japan in spring. Fluxes are typically small in summer, as well as throughout the troposphere, and throughout most of the middle stratosphere. Additional, qualitative, statements are made concerning the relative importance of mean meridional and standing eddy fluxes.

Rocketsonde data, 30-60 km, 1961-1976, are the data base used for the three components of the eddy diffusion matrix and circulation statistics. presented in Part II. Horizontal diffusivities. Kyy, are obtained from the variance of the meridional wind and the meridional wind's integral time scale. The present results are generally smaller than past estimates, presumably because temporal variations longer than a month have been filtered out in this work. Estimates of K_{yz} are based on the tentative assumption that the diffusivity is proportional to the slope of the isentropic surfaces. Vertical diffusivities, K_{zz} , are based on a method proposed by Hines, and the present results agree well with past work. For the first time, means, variances, and covariances of wind and temperature have been prepared using the same data handling and analysis methods and the same data base for all components.

1473B

NTIS	M	nite Sa	ction	X
DDC	Bu	ff Sec	tion	
UNANNOUN	CED			
JUSTIFICATI	ON			
				••••
BY				
DISTRIBUTE	N/AVA	LABILITY	CODE	S
Dist.	a:	id/cr	S: C	IAL
		250		

TABLE OF CONTENTS

I.	THE	OBSERVED OZONE FLUX BY THE TRANSIENT EDDIES, 0-30 KM
	A.	Introduction
	В.	Data and Computational Method
		1. Data
		2. Flux Computation
		3. Standard Errors
	c.	Analysis and Results
		1. Eastern North America
		2. Western North America
	D.	Discussion
		1. Comparison with Previous Observational Results I-14
		2. Qualitative Remarks on the Ozone Flux Budget I-18
		References
		Tables 1-5
II.	EDD	Y DIFFUSION COEFFICIENTS AND WIND STATISTICS, 30-60 KM
	Α.	Introduction
	в.	Diffusion Coefficients
	۵.	
		yy
		yż
	c.	zz
	C.	Circulation Statistics
		1. Seasonal Means and Variances
		2. Seasonal Covariances
	D.	Summary
		erences
		les 1-12
	Fig	ures 1-14 II-37

THE OBSERVED OZONE FLUX BY TRANSIENT EDDIES, SURFACE TO 30 KM

A. INTRODUCTION

Although constituting less than one-millionth part of the atmosphere by volume, ozone is of vital importance to the biosphere through its absorption of certain harmful ultraviolet wavelengths and its regulation of the thermal structure of the stratosphere. It has long been known that photochemical theory, by itself, fails to account for the observed ozone distribution, and atmospheric motions are largely responsible for the distribution in the lower and middle stratosphere. A basic disagreement, however, concerns the relative importance of mean motions and turbulent motions (the "eddies") in accomplishing this distribution. It has been maintained by some (e.g., Brewer, 1949; Dobson, 1973) that a mean meridional circulation transports ozone-rich air directly from the tropical middle stratosphere to the high latitude lower stratosphere. The other school of thought is that the eddies are primarily responsible for the poleward flux of ozone, at least in middle latitudes, and this view is much more dynamically reasonable. That eddies play an important role in the poleward ozone flux has been argued by Martin (1956), Godson (1960), and Newell (1961, 1964), among others.

If X represents the instantaneous concentration of ozone and v represents the instantaneous northward wind, then the total northward flux of X past any particular point is given by

$$\overline{vX} = \overline{v} \overline{X} + \overline{v'X'}. \tag{1}$$

Here the overbar signifies a time average and a prime the deviation therefrom. The first term on the right of (1) is the flux due to the mean northward wind past a single point and is thus composed of a contribution by a) the zonally averaged, time averaged, northward wind (the "mean meridional circulation") and b) the deviation from the mean meridional circulation of $\overline{\mathbf{v}}$ at the point (the "standing eddies"). With the present network of ozone and rawin stations, it is not possible to distinguish between contributions a) and b) at single stations. The second term on the right of (1) is the flux due to the "transient eddies", and this term we are able to evaluate at stations where both \mathbf{v} and \mathbf{x} are observed.

It should be emphasized that, in addition to the horizontal mean and eddy fluxes, there are eddy and mean vertical fluxes which are certainly an important part of the global flux picture. Since vertical wind is not measured, it is not possible to directly compute vertical fluxes, even if one had much better station coverage.

Several investigators have carried out the transient eddy flux computation for ozonesondes at individual stations: Hering (1966) for Seattle, Fort Collins, and Bedford; Pittock (1968) for Aspendale, Australia; Dutsch and Favarger (1969) for Boulder; Hutchings and Farkas (1971) for Christchurch, New Zealand; and DeMuer (1976) for Uccle. Although these results varied from station to station, they generally showed a large horizontal transient eddy flux of ozone at about 12-16 km over mid-latitudes in winter and spring, with small, or even negative, fluxes in other seasons and at other heights. All these studies were for mid-latitude stations.

The present study uses similar methods as the previous studies, but encompasses more stations and regions. Specifically, these regions are Japan (3 stations), western North America (6 stations), eastern North America (12 stations), and western Europe (6 stations). Presented are seasonal height-latitude tables and cross sections for each region.

B. DATA AND COMPUTATIONAL METHOD

1. Data

The data used in this study are described in Table 1 and in Figures 1-3. The North American ozone data were primarily from the Air Force Cambridge Research Laboratories' (AFCRL) 1963-1965 sounding network (and the extension until 1969 at a few stations). These data were obtained from World Data Center-A (Asheville). Most of the remaining data were obtained through the World Data Center for Ozone, Downsview, Ontario, Canada. Data for Boulder and Thalwil were extracted from Dütsch (1966) and Dütsch, et al. (1970).

Nastrom (1978) has shown that ozone and northward wind are nearly 90° out of phase in the extratropical lower stratosphere, with the v maximum lying to the east of the ozone maximum. Typical X, v correlations are quite small,

FIGURE 1. North American ozonesonde stations. 100°W divides "western" and "eastern" North America.

AND THE ROOM OF THE REAL PROPERTY.

TABLE 1. Ozone and wind data.

Station Lat. Lo							The state of the s	The same of the sa
EASTERN NORTH AME	Lat.	Long.	Source ²	Station	Lat. Long.	Distance from ozone station	Period of record	No. of independent 3 pairs at 200 mb
	ERICAN STAT	SNOI						
Canal Zone	NO.9	M9.67	A		Same		1/63 - 5/69	81
Grand Turk	21.5	71.1	A		Same		12/63 - 5/69	89
Cape Kennedy	28.4	80.5	Ą		Same		2/66 - 5/69	85
Tallahassee	30.4	84.3	A	Valparaiso	30.5N 86.5W	211 km	1/63 - 12/65 4/68 - 5/68	09
(Wallops Is.	37.8	75.5	Ą		Same		2/67 - 5/69	
Wallops Is.			F				(5/70 - 4/75)	195
Sterling	39.0	77.5	Ħ					143
Bedford	42.5	71.3	A	Portland	43.7 70.3	156	69/63 - 5/69	
Bedford			Т				6/69 - 3/71	321
Madison	43.1	4.68	Ą	Green Bay	44.5 88.1	187	1/63 - 12/65	63
Goose Bay	53.3	7.09	T				(1/63 - 12/63)	
Goose Bay			А		Same		1/64 - 5/69	204
Churchill	58.8	94.1	A		Same		1/63 - 12/65	
Churchill			T				10/73 - 12/76	194
Resolute	74.7	95.0	T				1/66 - 12/76	476
Thule	76.5	8.89	A		Same		1/63 - 1/66	89
JAPANESE STATIONS								
Kagoshima	31.6N	130.6E	T		Same		12/68 - 12/75	178
Tateno	36.1	141.3	T		Same		3/68 - 12/75	178
Sapporo	43.0	140.1	H		Same		12/68 - 12/75	205

	136	342	160	78	247	8	3		80	206	909	3	175	88	617	ĵ
	1/63 - 12/65	8/63 - 1/66	1/63 - 6/67	1/63 - 12/65	10/70 - 9/77	9/63 - 9/64	11/64 - 12/65		6/73 - 12/75	7/68 - 7/70 $1/73 - 8/76$	8/68 - 6/72	89/1 - 99/6	3/65 - 12/76	12/65 - 8/67	11/66 - 1/73	1/75 - 12/76
		44 km	92	283								132				
	Same	39.8N 104.9W	39.8 104.9	44.9 123.0		Same					Same	N 6.9E				
	Š	39.81	39.8	6.44		Š					Š	46.8N				
		Denver	Denver	Salem ⁵								Payerne				
	A	D1, D2	A	A	ı	A	T		П	1	H	D2	F	I	T	н
TIONS	106.6W	105.2	105.1	122.3	114.1	147.9			9.2W	9.0E	6.9	8.6	11.0	4.3	13.4	14.1
RICAN STA	35.0N	0.04	9.07	47.4	53.6	8.49		STATIONS	38.8N	39.2	8.97	47.3	47.8	50.8	52.5	52.2
WESTERN NORTH AMERICAN STATIONS	Albuquerque	Boulder 4	Fort Collins	Seattle	Edmonton	Fairbanks	Fairbanks	WESTERN EUROPEAN STATIONS	Lisbon	Cagliari	(Payerne 4,7	Thalwil	Hohenpeis- senberg	Uccle	(Berlin ⁷	Lindenberg

NOTES

- If all columns under this heading are blank, wind and ozone are from the same sounding. If the word "Same" appears, soundings are at the same station but at different hours.
 - World Data Center-A, Asheville, NC; T = World Data Center for Ozone, Downsview, Ontario; A D1 = Dütsch (1966); D2 = Dütsch, et al. (1970). Sources:
 - Observations are judged independent if they are separated by at least 42 hours. See text.
- These ozonesonde data were not accompanied by temperature, so concentrations have been calculated using temperature data at the wind station.
- 5 For the period 9/63 12/63 Olympia (47.0N, 122.9W) wind data was used.
- 6 The observations were actually moved to Green Bay in October 1964.
- Thalwil and Payerne have been merged into single time series for this report, as have Berlin and Lindenberg.

FIGURE 2. Japanese ozonesonde stations.

FIGURE 3. Western European ozonesonde stations.

and sensitive to space and time lags of the individual observations. It is therefore unfortunate that wind data accompanying the AFCRL soundings were discarded (Hering, personal communication, 1977) and that, at a few other stations, wind data were not routinely reported. When concomitant wind was not available, data within ± 8 hours from a nearby rawin station were used. Such rawinsonde data were obtained from World Data Center-A. For the few ozone stations which did not report temperature (needed for determination of concentration), temperature was also taken from this rawinsonde report.

The choosing of a rawin station to pair with an ozone station was usually based simply on separation distance, but consideration was also given to the fact that v is about twice as highly autocorrelated in the north-south direction as in the east-west direction in the upper troposphere (Buell, 1973), and probably in the lower stratosphere as well. Therefore, Seattle is paired with Salem (283 km south) rather than with Tatoosh Is. (210 km west).

All wind data were objectively checked using a vertical wind shear criterion proposed by Essenwanger (1967). Temperature was also required to pass certain vertical consistency checks (details available on request). The computation of flux was carried out for the levels 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10, and 7 mb. Values at 2.5 km height increments were subsequently read off the analyses, according to seasonal mean height-pressure relationships in the standard atmospheres of various latitudes (U.S. Standard Atmosphere Supplements, 1966).

There have been occasional periods at a few ozone stations when ascents were made only a few hours apart. This often led to the pairing of two or even three ozonesondes with a single rawinsonde. When this happened, the ozone data were averaged and henceforth treated as one observation.

2. Flux Computation

In computing seasonal mean fluxes, care was taken not to give undue weight to observation series whose temporal density indicated the individual observations were not independent in the statistical sense. Wilcox (1978) determined that total ozone observations (at middle latitudes) may be considered independent.

dent if they are four days apart. Comparing Nastrom (1977, Figure 2), it seems that local ozone is even more highly variable. Here we have arbitrarily set 42 hours as the threshold beyond which independence is assumed, and averages are taken over any group of observations which are less than 42 hours apart. This average is used, but weighted by the square root of the number of such observations in the group, in the computation of mean flux over a single season. \overline{F}_j , the flux for individual season j (j=1,...,J, where J is the number of years used) is

$$\overline{F}_{j} = \left[\frac{1}{\sum_{i=1}^{I} \sqrt{n_{i}}} \sum_{i=1}^{I} v_{i} \chi_{i} \sqrt{n_{i}}\right]_{j} - \left[\frac{1}{\sum_{i=1}^{I} \sqrt{n_{i}}} \sum_{i=1}^{I} v_{i} \sqrt{n_{i}}\right]_{j} \cdot \left[\frac{1}{\sum_{i=1}^{I} \sqrt{n_{i}}} \sum_{i=1}^{I} \chi_{i} \sqrt{n_{i}}\right]_{j}$$
(2)

in which n_i is the number of observations in the ith observation group, and I is the number of groups in the season. Usually, there was only one observation per group, in which case, $n_i = \sqrt{n_i} = 1$. But, as described above, when observations within a group were not thought to be independent, n_i is equal to the number of observations whose average was used for X_i and v_i .

Note that (2) is term-for-term analagous, except for the weighting, with the more concise notation

$$\overline{F}_{\dagger} = \overline{vX} - \overline{v} \ \overline{X}. \tag{2a}$$

In forming the long-term seasonal flux, \overline{F} , the \overline{F}_j s were weighted by the square root of N_j , where $N_j = \sum_{i=1}^{J} \sqrt{n_{ij}}$, i.e.,

$$\overline{F} = \frac{1}{\sum_{j=1}^{J} \sqrt{N_{j}}} \sum_{j=1}^{J} \overline{F}_{j} \sqrt{N_{j}}$$
(3)

It will be noted that this computational method does not take into account the positive correlation of seasonal changes in X and v in the mid-latitude lower stratosphere. This correlation, when positive, makes an algebraically positive contribution to the flux (see Nastrom, 1977). However, the effect is not thought to be serious over the three-month averaging periods, and efforts to account for the variability would, in any case, be inaccurate due to dearth of data.

Standard Errors

Standard errors, $\sigma_{\overline{F}}$, of the long-term seasonal mean fluxes, were estimated by

$$\sigma_{\overline{F}} = \frac{\sigma_{\chi} \sigma_{v}}{\left[\left(\sum_{j=1}^{J} N_{j}\right) - 4\right]^{\frac{1}{2}}}$$
(4)

where σ_{χ} and σ_{v} are the standard deviations of ozone and northward wind, respectively (Panofsky and Brier, 1958, p.93). Standard errors helped to guide the analysis in areas where individual fluxes were spatially inconsistent.

C. ANALYSIS AND RESULTS

Fluxes were statistically insignificant, typically, over most of the altitude range considered. Usually, it is only just above the tropopause that the magnitudes of individual fluxes surpass twice the standard error (i.e., 95% confidence in the sign). These regions, usually in mid-latitudes, from 10 to 18 km, show significant winter and spring fluxes which are generally poleward, except equatorward over Japan and at high mid-latitudes over North America. Above and below these regions, and at all altitudes of low latitudes, the fluxes are generally small, but usually, through consideration of fluxes at several levels and/or stations, a good guess at the proper sign can be made.

1. Eastern North America (Figure 4 and Table 2)

During winter and spring, there is a region of very significant northward (positive) flux near 40N from about 10 to 16 km. This is in qualitative and

Northward ozone flux by the transient eddies over eastern North America. Units are 10^{18} molecules m⁻² sec⁻¹. Letters at the top refer to stations (Table 1). Southward regions shaded. FIGURE 4.

FIGURE 4. (Continued).

reasonable quantitative agreement with the countergradient fluxes found in previous studies (Hering, 1966; Dütsch and Favarger, 1969). However, the present analysis shows negative (downgradient) fluxes at Goose Bay in winter and at Churchill and Goose Bay in spring above about 8 km. Such negative fluxes have been found in individual seasons, at other locations, by Newell (1964), Pittock (1968), and Nastrom (1977).

During summer, computed fluxes tend to have modest negative values in the mid-latitude low stratosphere, returning to positive values by autumn. In the tropics, as well as throughout the troposphere and the subpolar middle stratosphere, the computed ozone flux is small in magnitude and uncertain in sign.

At high latitudes over eastern North America (shown mainly by Resolute), the flux is fairly large southward in all seasons but summer. However, a longitudinally uniform southward flux of such a magnitude would imply an unreasonably large compensating downward flux through the 30 km level over polar regions. Such a downward flux would have to be at least an order of magnitude larger than what is predicted by K-theory using diffusion coefficients from Part II of this work, or from other investigations (see CIAP, 1975). We conclude that there is either a large longitudinal variability in the transient eddy flux at high latitudes, or else standing eddy fluxes compensate. In this connection, it should also be mentioned that observations were not sorted according to whether there was a "sudden stratospheric warming" occurring Such warming periods are thought to be a primary mechanism through which ozone is advected from middle to polar latitudes (Godson, 1960; Clark, 1970). Since the flux would therefore be of different character during these periods, a statistically unrepresentative sampling of the arctic winter stratosphere would have a profound affect on computed fluxes. Extreme caution should accompany any use of these high latitude results.

2. Western North America (Figure 5 and Table 3)

Western North America again shows significant northward flux near 40N, 8-16 km, except in summer. There is a tendency, as over eastern North America, for high mid-latitude stations to evidence equatorward flux. This is particularly true at Seattle, which has relatively few observations and whose "concomitant" winds came from a fairly distant station, but the more reliable Edmonton data suggests negative fluxes also.

Northward ozone flux by the transient eddies over western North America. Units are 10^{18} molecules m⁻²sec⁻¹. Letters at top refer to stations (Table 1). Southward regions shaded. FIGURE 5.

North of 60N, an area represented solely by the scanty data of Fairbanks, large positive fluxes above 16 km in the winter are replaced by negative fluxes in the spring, while very large positive fluxes are seen in spring just above the tropopause, 8-11 km. Fairbanks values should be taken as suggestive only. South of 60N and above 18 km fluxes are small throughout the year, as they also are in the troposphere.

D. Western Europe (Figure 6 and Table 4)

Sizeable northward fluxes exist over western Europe in winter between 40 and 50N, 10-14 km. In spring the main center of northward flux seems to have moved farther northward. Interestingly, although the farthest north station, Berlin/Lindenberg, approaches the latitudes of Goose Bay and Edmonton, it does not show the negative winter and spring fluxes that exist at the latter stations.

Flux remains positive at 10-14 km for most stations in summer but is only less than half as large as during winter. During autumn, small positive fluxes exist at almost all levels above the tropopause.

4. Japan (Figure 7 and Table 5)

In winter, the Japanese data paint a picture of negative fluxes 16-22 km over Kagoshima (32N) and below 14 km over Sapporo (43N), and generally positive fluxes elsewhere. At their largest values (~1.5 x 10¹⁸ molecules m⁻²sec⁻¹, hereafter called "units") at around 14-16 km, these positive fluxes are significantly smaller than the positive wintertime fluxes seen in the other regions.

In spring, significant negative fluxes occur at all three stations from about 10-16 km, especially at Sapporo where the 150 mb flux is 5.8 ± 2.5 units (95% confidence limits). At Sapporo, the flux becomes strongly northward in summer and autumn just above the tropopause, while at the other stations the pattern is nondescript, but with a tendency toward small negative values.

D. DISCUSSION

1. Comparison with Previous Observational Results

It is worthwhile to compare the present results with previous investigations of the transient eddy ozone flux made at individual stations, or at

FIGURE 6. Northward ozone flux by the transient eddies over western Europe. Units are 10¹⁸ molecules m⁻²sec⁻¹. Letters at the top refer to stations (Table 1). Southward regions shaded.

FIGURE 7. Northward ozone flux by the transient eddies over Japan. Units are 10^{18} molecules m⁻²sec⁻¹. Letters at the top refer to stations. Southward regions shaded.

groups of a few stations (as in the case of Hering, 1966). However, although the present study includes the stations used in several of these previous investigations, differences in period of record, availability of wind data, and computational technique make differences in results inevitable.

All previous investigations of the ozone flux which used ozonesondes have been for mid-latitude stations. They have all shown positive winter and spring fluxes from about 10-18 km, with maxima at about 12 km. Dütsch and Favarger (1969) have computed this maximum to be 3.8 units in winter and 2.7 units in spring for two years at Boulder, while Hering puts it at 5.0 units for an average of two years' December-May fluxes at Seattle, Fort Collins and Bedford. (It is not clear whether or not Hering removed the flux due to the correlations between the annual waves of v and X. While we did not remove this correlation either (see Section B), Hering's longer averaging period (six months) would have more serious consequences (Nastrom, 1977).)

At Aspendale, Pittock (1968) found 200 mb poleward fluxes of 2.6 units in some winters or springs, but equatorward fluxes (of up to 4.0 units) in others. Hutchings and Farkas (1971), from a very small data sample at Christchurch, determined an annual average flux at the 12 km level of about 3.1 units. Not included in the present report are several recent years of soundings at Uccle, from which DeMuer (1976) has computed fluxes. His annual mean value at 200 mb is 1.5 units which compares well with our annual mean at nearby (in latitude) Berlin (1.4 units).

Nastrom (1977) has computed fluxes between 11 and 12 km, 10-60N, from one year of simultaneous wind and ozone measurements aboard commercial aircraft. Again, his fluxes are in reasonable agreement with the present values, especially considering the very different sampling characteristics.

Of course, comparisons of results could be made for every level and season, but the main point can now be stated very simply: The present results are consistent, in the main, with previous results, despite differences in data and computational method. This fact should lend confidence to the new results presented here, most notably the negative fluxes over Japan and North America, and, in general, the large latitudinal variability of the fluxes. It is also

clear from the regional differences in the present results that there is a large longitudinal and/or interannual variability in the transient eddy flux of ozone. This comes as no surprise, as Nastrom (1977) has also provided such a picture at 11-12 km, 40-50N. In particular, for one March in the longitude sector 120E-180 (i.e., mostly north and east of Japan), Nastrom found a negative flux of 6 units, while most other longitude sectors showed positive fluxes of varying magnitudes. The negative spring Japan flux agrees well with the values deduced from ozonesondes. It is also evident from the aircraft data that equatorward fluxes occur in other longitude sectors, sometimes at latitudes as far south as 40N, but that there is considerable interannual variability in this latitude, as can also be inferred from the results of Newell (1964) and Pittock (1968). Interestingly, spring is the only season in which Newell (1964), in his correlations of v with total ozone, did not infer a negative transient eddy flux in the lower stratosphere over Japan. It is for these reasons of significant longitudinal and interannual variability that we have chosen not to try to combine our regional fluxes.

2. Qualitative Remarks on the Ozone Flux Budget

Similarities between patterns of the zonal mean observed isentropes and ozone concentrations imply that the countergradient ozone flux is effected by the same process that effects the countergradient heat flux. The spatial relationship of temperature and height fields in the mid-latitude lower stratosphere indicates the subsidence of air in the troughs and the ascent of air in the ridges. Wallace (1978) has explained that air must move through a lower stratospheric trough at a subgeostrophic speed and that, conversely, air moving through a ridge must do so at a supergeostrophic speed; that is, there is a poleward acceleration in the troughs and an equatorward acceleration in the ridges. Combined with the fact that potential temperature increases with height, this process leads to the observed downward, poleward (countergradient) heat flux. Ozone, since its concentration also increases with height, is transported downward and poleward by the same process.

This explanation predicts only poleward flux throughout mid-latitudes, as is observed in the case of both standing and transient eddy heat flux (Oort and Rasmusson, 1971, pp.286-289). However, the present results for ozone

indicate an equatorward transient eddy flux in winter and especially spring at high mid-latitudes. Newell (1964) has suggested that the negative fluxes he found over Japan may be associated with stratosphere-troposphere exchange processes. This association is appealing, since the large convergence of ozone between the positive and negative fluxes would have to be in large part balanced by downward removal into the troposphere. However, association does not necessarily imply cause, and we cannot at present offer a dynamical explanation of the high mid-latitude equatorward fluxes. We can, however, note a strong association with the mean potential temperature field. Climatology (Labitzke, 1972; U.S. Weather Bureau, 1966) shows that areas near Japan and eastern North America have 200 mb potential temperature maxima which are both relatively stronger and located more equatorward than those over western North America and, especially, Europe. These features correlate well with our analyzed patterns of the locations and strengths of the equatorward ozone flux.

It is desirable to make some qualitative assessment of the relative importance of standing and transient eddy ozone fluxes, and we do this via comparison of the present transient eddy results with a three-dimensional model's predictions of total eddy fluxes (steady plus transient). Prinn, et al. (1978), have shown total eddy fluxes, integrated throughout the depth of the model atmosphere, for an annual cycle of their three-dimensional dynamical-chemical model. To compare our results, we have also integrated from the surface to 30 km for the eastern North America sector only (Figure 8). The model's total eddy flux at its wintertime maximum (50N) is one and a half times as large as our transient eddy flux at our maximum location of 37N. The model's winter eddy flux decreases rapidly toward pole and equator, but does not become negative, as ours does from 45-55N and again poleward of 65N. However, even if its transient and standing eddy fluxes were shown separately, it is likely that the model would fail to portray the southward transient eddy flux in winter north of 50N. As indicated previously, this feature can be associated with the existence of a potential temperature maximum at mid-latitudes, which this model fails to predict (Cunnold, et al., 1975; Prinn, et al., 1978).

There are clearly large differences between this model's (and other models') results and the present observational results which cannot be dismissed simply by noting that the models fail to reproduce the mid-latitude temperature

Northward transient eddy ozone flux, integrated from the surface to 30 km and around the latitude circle, using eastern North American fluxes only. FIGURE 8.

maximum. A major difference must be in the model's inclusion of standing eddies, which must make a large contribution to the total eddy ozone flux poleward of about 45N in all seasons except summer, when our results agree with the model's results fairly well. Since transient eddies are damped in the stratosphere, only the ultra-long, quasi-stationary waves are evident in the middle stratosphere, and those only in non-summer months. It is therefore reasonable to surmise that the standing eddy ozone flux is much larger than the transient eddy ozone flux above 18 km or so, and that it is basically the standing eddy flux which accounts for the rapid buildup of ozone near the level of the maximum concentration (about 20 km) at high latitudes in winter and early spring (see, e.g., Wilcox, et al., 1977). This suggestion has also been made by Dütsch and Favarger (1969). It might also be noted that the standing eddy heat flux (Oort and Rasmusson, 1971, pp.288-289) is comparable to the transient eddy heat flux (pp.286-287) in the mid-latitude lower stratosphere. We are led to infer that the standing eddy and transient eddy ozone fluxes are probably of comparable magnitude even in the lower stratosphere (i.e., tropopause to about 18 km).

The tropical mean meridional circulation (Hadley Cell) appears capable of transporting large amounts of ozone from its primary source region in the tropical middle stratosphere downward and poleward to the sub-tropics, and it is probably the major mechanism in so doing (Hunt and Manabe, 1968; Cunnold, et al., 1975). The mean meridional flux in mid-latitudes is almost certainly equatorward, but its magnitude is relatively uncertain. Model results range from portraying it as a minor effect (Cunnold, et al., 1975; Prinn, et al., 1978) to almost balancing the eddy flux (Hunt and Manabe, 1968; Mahlman and Moxim, 1978).

In conclusion, both the direct computations reported here and the results of other investigations imply that the transient eddy flux of ozone appears to be of at least equal importance to the standing eddy and mean meridional fluxes in the mid- and high-latitude lower stratosphere. Above about 18 km, the standing eddy flux is probably more important, and, in the tropics, the mean meridional flux is the primary agent of transport. Direct quantitative estimates of these horizontal fluxes, as well as indirect estimates of vertical fluxes, must necessarily await more spatially extensive observations.

REFERENCES

- Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere.

 Quart. J. Roy. Met. Soc., 75, 351-363.
- Buell, C. E., 1973: Correlation functions for wind and geopotential on isobaric surfaces. J. Appl. Meteor., 11, 51-59.
- CIAP, 1975: The natural stratosphere of 1974, CIAP Monograph 1, DOT-TST-75-51.
- Clark, J. H., 1970: A quasi-geostrophic model of the winter stratospheric circulation. Mon. Wea. Rev., 98, 443-461.
- Cunnold, D., F. Alyea, N. Phillips, and R. Prinn, 1975: A three-dimensional dynamical-chemical model of atmospheric ozone. <u>J. Atmos. Sci.</u>, 32, 170-194.
- DeMuer, D., 1977: The vertical ozone distribution over Uccle (Belgium) in relation to simultaneous observations of wind and temperature. Proceedings of the Joint Symposium on Atmospheric Ozone, Dresden, 9-17 August 1976, Volume I, 261-276.
- Dobson, G. M. B., 1973: Atmospheric ozone and the movement of air in the stratosphere. Pure and Appl. Geophys., 106-108, 1520-1530.
- Dütsch, H. U., 1966: Two years of regular ozone soundings over Boulder, Colorado. NCAR Technical Note 10, Boulder, 441pp.
- Dütsch, H., and D. Favarger, 1969: Meridional ozone transport by transient eddies over Boulder, Colorado. Ann. Geophys., 25, 279-281.
- Dütsch, H. U., W. Züllig, and Ch. Ling, 1970: Regular ozone observation at Thalwil, Switzerland, and at Boulder, Colorado. LAPETH-1, Zurich, 279pp.
- Essenwanger, 0., 1967: Comments on "Mesoscale structure of 11-20 km winds".

 J. Appl. Meteor., 6, 591-592.
- Godson, W. L., 1960: Total ozone and the middle stratosphere over arctic and sub-arctic areas in winter and spring. Quart. J. Roy. Met. Soc., 86, 301-317.
- Hering, W. S., 1966: Ozone and atmospheric transport processes. <u>Tellus</u>, 18, 329-336.
- Hunt, B., and S. Manabe, 1968: Experiments with a stratospheric general circulation model. II. Large-scale diffusion of tracers in the stratosphere. Mon. Wea. Rev., 96, 503-539.

- Hutchings, J. W., and E. Farkas, 1971: The vertical distribution of atmospheric ozone over Christchurch, New Zealand. Quart. J. Roy. Met. Soc., 97, 249-254.
- Labitzke, K., and collaborators, 1972: Climatology of the stratosphere in the Northern Hemisphere, Part I, Meteorologische Abhandlungen, 100, 4.

 Institute for Meteorology, Free University of Berlin.
- Mahlman, J., and W. Moxim, 1978: Tracer simulation using a global general circulation model: Results from a midlatitude instantaneous source experiment. <u>J. Atmos. Sci.</u>, 35, 1340-1374.
- Martin, D. W., 1956: Contributions to the study of atmospheric ozone.

 Scientific Rpt. No. 6, General Circulation Project, Department of Meteorology, Massachusetts Institute of Technology.
- Nastrom, G. D., 1977: Vertical and horizontal fluxes of ozone at the tropopause from the first year of GASP data. J. Appl. Meteor., 16, 740-744.
- Nastrom, G. D., 1978: Variability of ozone near the tropopause from GASP data. Research Report No. 1, Contract NAS3-20618, Control Data Corporation, Minneapolis.
- Newell, R. E., 1964: Further ozone transport calculations and the spring maximum in ozone amount. <u>Pure and Appl. Geophys.</u>, 59, 191-206.
- Newell, R. E., 1961: The transport of trace substances in the atmosphere and their implications for the general circulation of the stratosphere. Pure and Appl. Geophys., 49, 137-158.
- Oort, A. H., and E. M. Rasmusson, 1971: Atmospheric Circulation Statistics. NOAA Prof. Paper No. 5, U.S. Department of Commerce.
- Panofsky, H., and G. Brier, 1958: <u>Some Applications of Statistics to Meteorology</u>, University Park: Mineral Industries Extension Services, The Pennsylvania State University, 224pp.
- Prinn, R. G., F. N. Alyea, and D. M. Cunnold, 1978: Photochemistry and dynamics of the ozone layer. Ann. Rev. Earth and Planetary Sci., 1978.6, 43-74.
- Pittock, A. B., 1968: Seasonal and year-to-year ozone variations from soundings over south eastern Australia. Quart. J. Roy. Met. Soc., 94, 563-575.
- U. S. Standard Atmosphere Supplements, 1966. ESSA, NASA, USAF; Washington DC, 289pp.

- U. S. Weather Bureau, 1966: Selected Level Temperatures and Dew Points for the Northern Hemisphere. NAVAIR 50-1C-52, U.S. Government Printing Office.
- Wallace, J. M., 1978: Trajectory slopes, countergradient heat fluxes and mixing by lower stratospheric waves. <u>J. Atmos. Sci.</u>, 35, 554-558.
- Wilcox, R. W., 1978: Total ozone trend significance from space and time variability of daily Dobson data. <u>J. Appl. Meteor.</u>, 17, 405-409.
- Wilcox, R. W., G. D. Nastrom, and A. D. Belmont, 1977: Periodic analysis of total ozone and of its vertical distribution. <u>J. Appl. Meteor.</u>, 16, 290-298.

TABLE 2. Transient eddy ozone flux over eastern North America. Positive denotes northward. Units: 10^{18} molecules m $^{-2}$ sec $^{-1}$.

SEASON:	December	-	February
---------	----------	---	----------

km	30N	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5
30.0	-1.6	-1.4	-1.2	-1.0	4	.5	.8	. 2	7	7	4	.1	.3	.0	6	7
27.5	-1.4	-1.2	6	.0	1.0	.8	.3	2	6	5	.0	.2	. 2	.0	3	5
25.0	-1.2	6	1	.5	1.2	.5	. 2	.0	5	4	.0	. 2	. 2	.1	.0	.0
22.5	5	3	.0	.4	1.0	.7	.4	. 2	2	4	3	1	.1	. 2	.4	.4
20.0	1	.0	.1	.1	.0	.5	.7	.6	.6	.0	3	3	1	.1	.3	.4
17.5	.0	.0	.1	.1	-1.0	-2.0	-1.0	. 5	.8	.8	.0	2	2	.0	.2	.3
15.0	6	5	.0	.1	.1	-2.0	-2.5	-1.0	2.0	2.4	.5	.0	.0	.1	. 2	. 2
12.5	7	6	5	5	3.0	-1.0	-3.0	-1.0	3.0	3.4	.8	. 2	.1	. 2	.2	.3
10.0	7	6	5	.0	1.8	-1.0	-2.0	.5	2.2	2.4	.8	.3	.2	.3	.3	.3
7.5	3	3	3	2	1	2	.0	.6	1.2	1.2	.4	. 2	.1	.1	.1	.1
5.0	1	1	2	2	2	.0	. 2	. 2	. 2	.4	.1	.0	.0	.0	.0	.0
2.5	.0	.0	1	2	2	.0	.2	.3	. 2	. 2	2	2	1	.0	.0	.0

SEASON: March - May

km	80N	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5
30.0	-1.6	-1.6	-1.4	-1.2	-1.2	.3	.7	.4	.1	.0	1	1	1	1	2	3
27.5	-2.2	-1.8	-1.6	-1.4	-1.2	.0	.6	.5	.1	1	1	1	1	1.	1	2
25.0	-2.8	-2.6	-1.8	-1.6	-1.2	. 2	.5	.4	.0	1	1	1	1	1	1	1
22.0	-2.8	-2.6	-2.0	-1.6	-1.2	6	.0	.1	.1	.1	.1	.1	.0	.0	1	1
20.0	-1.8	-1.8	-1.6	-1.4	-1.2	8	3	1	.1	.4	.4	.3	. 2	.1	.0	.0
17.5	8	-1.0	-1.2	-1.6	-1.8	-1.0	2	.3	.5	5	.4	.4	.3	. 2	.1	.1
15.0	3	5	6	-1.0	-3.5	-1.6	.0	1.0	2.4	1.0	.4	.2	.2	. 2	. 2	. 2
12.5	.5	.3	.2	5	-3.0	-2.4	.1	.8	3.4	1.4	.4	. 2	. 2	. 2	. 2	. 2
10.0	.7	.6	.4	.0	-2.0	-1.2	.5	1.4	2.0	.8	.0	. 2	. 2	. 2	. 2	. 2
7.5	.5	.5	.4	.1	6	2	.6	.6	.3	1	4	1	. 2	. 2	.1	.1
5.0	.3	.3	.3	. 2	.0	. 2	.2	1	4	5	3	2	.1	.1	.1	.1
2.5	.2	.2	.2	2	.2	.1	.1	.1	1	2	3	2	1	.0	.0	.0

SEASON: June - August

0. 0. 0 1. 1. 1 2. 2. 2 1. 1. 1	0. 1.		ı. ı. ı.	1. 1.	2. I. I.	0. 1.	I I I.	1	ı ı	0. I I.	1. 0. 1.	1. 0. 1.	ı. ı. ı.	I. I. I.	í. í.	30.0 27.5 25.0 25.0
1. 1. 1 2. 2. 2 2. 2. 2 1. 1. 1 1. 1. 1 1. 1. 1 1. 1. 1	1.	•	1.	1.	τ.	ι.	ι.	τ.	ι.	τ.	τ.	ι.	ı.	ι.	τ.	0.25
1. 1. 1 2. 2. 2 1. 1. 1 1. 1. 1 0. 1. 1 1 1 1										No.						
z. z. z z. z. z i. i. i o. i. i i i i	1.	•	1.	1.	1.	s.	2.	2.	2.	2.	2.	2.	2.	2.	2.	22.5
z. z. z i. i. i o. i. i i i i i i i																
1. 1. 1 0. 1. 1 1 1 1 1 1 1	2.		2.	z.	τ.	ı.	τ.	τ.	1.	T.	τ.	2.	2.	2.	2.	0.02
0. I. I I I I	z.	. :	2.	1.	0"	€	7	4	7	2	ι	0.	0.	ι.	2.	5.71
1 1 1	τ.	•	τ.	t.	٤	8	8	0.2-	0.1-	4	0.	1	2	2	2	12.0
1 1 1	τ.	•	ι.	2	r	٤	0.	0.2-	0.2-	¿	9.	2.	0.	1	1	15.5
	1	•-	1	4	8	4	ς.	7.1	0.2-	8.	ς.	ς.	7.	ε.	2.	0.01
0 1 - 1	1	•-	ι	2	7	2	ε.	9.	0.	4	2.	2.	2.	τ.	0.	2.7
	1	•-	1	1	1	1	1.	ε.	ε.	ε.	2.	ī.	1.	2	2	0.2
0. 0. 0	0.		1	1	1	1	0.	ε.	ε.	2.	0.	1	T	1	1	5.5

SEASON: September - November

5	10	SI	50	52	30	32	07	57	05	SS	09	59	04	SL	N08	km
4.	4.	ε.	ı.	1	2	2	2	2	2	ε	ζ	7.1-	0.2-	4.2-	9.2-	0.08
ε.	ζ.	2.	0.	1	1	ι	1	2	€	9	8	2.1-	2.2-	4.2-	9.2-	2.72
0.	0.	0.	0.	1	1	1	1	2	4	9	9	0.1-	0.2-	4.5-	9.2-	0.25
4	4	€	1	1	5	2	2	2	٤	٤	9	8	9.1-	2.2-	4.2-	22.5
2	2	1	1	1	1	1	1	1	2	€	4	T	4.1-	8.1-	0.2-	0.05
1.	1.	1.	ı.	1.	1.	2.	2.	1.	1.	1.	0.	4	6	4.1-	9.1-	5.71
ı.	1.	1.	1.	1.	7.	7.	8,1	0.1	ς.	7.	ε.	1.	4	0.1-	7.1-	0.21
ı.	1.	1.	1.	1.	7.	۲.	0.2	1.2	7.1	0.1	1.	2.	2	9	0.1-	12.5
ı.	1.	ı.	1.	1.	1.	ε.	9.1	7.	9.1	8.1	0.1	2.	2	9	8	0.01
0.	0.	0.	1	1	1	1.	7.	7.	ς.	9.	ε.	2	7	9	r	5.1
0.	0,	1	1	5	1	1.	€.	2.	1.	0.	1	2	ε	7	٤	0.2
0.	0.	1	2	2	2	1.	2.	ι.	0.	1	2	2	2	€	€	2.5

TABLE 2. (Continued).

SEASON: June - August

km	80N	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5
30.0	.1	.1	.1	.1	.1	.0	1	1	1	.0	. 2	.1	.1	.0	.0	1
27.5	.1	.1	.1	.0	.0	1	1	1	1	.0	.1	.1	.1	.0	.0	.0
25.0	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1
22.5	. 2	. 2	. 2	.2	. 2	. 2	. 2	. 2	. 2	. 2	.1	.1	.1	.1	.1	.1
20.0	. 2	. 2	.2	. 2	.1	.1	.1	.1	.1	.1	.1	.2	.2	.2	. 2	.2
17.5	. 2	.1	.0	.0	1	2	4	4	4	3	.0	.1	. 2	.2	. 2	. 2
15.0	2	2	2	1	.0	4	-1.0	-2.0	8	8	5	.1	.1	.1	.1	.1
12.5	1	1	.0	. 2	.6	5	-2.0	-2.0	.0	5	7	2	.1	.1	.1	.0
10.0	. 2	.3	.4	.5	.5	.8	-2.0	1.4	.5	4	8	4	1	1	1	1
7.5	.0	.1	. 2	. 2	. 2	4	.0	.6	.3	2	4	2	1	1	1	1
5.0	2	2	.1	.1	. 2	.3	.3	.3	.1	1	1	1	1	1	1	.0
2.5	1	1	1	1	.0	. 2	.3	.3	.0	1	1	1	1	.0	.0	.0

SEASON: September - November

km	80N	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5
30.0	-2.6	-2.4	-2.0	-1.4	5	3	2	2	2	2	2	1	.1	.3	.4	.4
27.5	-2.6	-2.4	-2.2	-1.2	8	6	3	2	1	1	1	1	.0	. 2	. 2	.3
25.0	-2.6	-2.4	-2.0	-1.0	6	6	4	2	1	1	1	1	.0	.0	.0	.0
22.5	-2.4	-2.2	-1.6	8	6	5	3	2	2	2	2	1	1	3	4	4
20.0	-2.0	-1.8	-1.4	7	4	3	2	1	1	1	1	1	1	1	2	2
17.5	-1.6	-1.4	9	4	.0	.1	.1	.1	. 2	. 2	.1	.1	.1.	.1	.1	.1
15.0	-1.4	-1.0	4	.1	.3	.4	.5	1.0	1.8	.7	.4	.1	.1	.1	.1	.1
12.5	-1.0	6	2	.2	.7	1.0	1.4	1.2	2.0	.7	.4	.1	.1	.1	.1	.1
10.0	8	6	2	.2	1.0	1.8	1.6	.4	1.6	.3	.1	.1	.1	.1	.1	.1
7.5	7	6	4	2	.3	.6	.5	.4	.4	.1	1	1	1	.0	.0	.0
5.0	5	4	3	2	1	.0	.1	.2	.3	.1	1	2	1	1	.0	.0
2.5	3	3	2	2	2	1	.0	.1	. 2	.1	2	2	2	1	.0	.0

TABLE 3. Transient eddy ozone flux over western North America. Positive denotes northward. Units: 10^{18} molecules m $^{-2}$ sec $^{-1}$.

	SEASO	ON:	Decen	nber -	Febr	uary					SEASO	ON: N	March	- May	y
km	65N	60	55	50	45	40	35	km	651	60	55	50	45	40	35
30.0	4.5	2.0	5	5	2	1	1	30.0	-1.7	-1.0	2	.3	1.0	.5	5
27.5	4.5	1.6	6	5	2	1	1	27.5	-2.0	-1.1	5	.1	.8	1.1	1
25.0	4.8	2.2	5	5	3	2	2	25.0	-2.0	-1.4	8	3	.4	1.0	. 2
22.5	4.5	2.2	.0	3	3	2	3	22.5	-2.3	-1.8	-1.2	7	1	.4	. 2
20.0	4.0	2.2	.0	5	4	. 2	5	20.0	-2.8	-2.2	-1.6	9	4	.0	.0
17.5	3.5	2.2	1	-1.0	8	1.2	5	17.5	-3.2	-2.7	-2.2	-1.5	-1.2	-1.2	-1.0
15.0	3.1	2.1	.0	6	. 2	2.2	.7	15.0	-3.2	-2.7	-2.0	-1.2	3	-1.0	-1.3
12.5	2.3	1.8	1.0	.1	.9	4.1	.8	12.5	-1.0	-1.1	-1.3	.4	1.4	1.9	.0
10.0	1.3	1.1	. 2	8	.8	3.0	4	10.0	4.2	2.3	4	-2.1	7	3.0	.8
7.5	.1	2	2	7	2	.8	8	7.5	1.3	.8	.3	. 2	. 2	. 2	. 2
5.0	4	3	2	2	2	.0	1	5.0	.3	.3	.3	.4	.3	1	.1
2.5	1	1	1	1	1	1	1	2.5	.1	.1	.1	.1	.0	1	.0

SEASON: June - August								SEASON: September - November							
km	65N	60	55	50	45	40	35	km	65N	60	55	50	45	40	35
30.0	.4	.3	.2	. 2	. 2	.1	.1	30.0	2	1	1	.0	.0	. 1	.1
27.5	.4	.3	. 2	.2	2	.1	.1	27.5	1	2	3	3	.0	.1	. 2
25.0	.3	.3	.3	.2	.1	.1	.0	25.0	.0	2	3	5	5	.1	. 4
22.5	.3	.3	.3	.2	.1	.0	1	22.5	.0	1	2	3	3	2	.3
20.0	. 2	.3	.3	. 2	.0	1	.0	20.0	.1	.0	3	.0	.0	1	.1
17.5	. 2	. 2	.1	1	2	4	.2	17.5	.4	.0	7	.0	.0	.0	. 2
15.0	.3	.1	2	4	4	.0	2.0	15.0	.8	. 2	-1.0	-1.0	2	1.2	2
12.5	.7	. 2	2	-1.0	8	1.8	1.0	12.5	1.8	.7	.1	-1.2	5	2.1	2
10.0	1.2	.7	2	-1.1	-1.0	.0	.0	10.0	1.1	.8	.4	2	2	2.1	.2
7.5	.4	.3	.1	6	-1.2	4	2	7.5	.0	. 2	. 2	2	2	.5	.3
5.0	. 2	. 2	.1	2	5	4	0	5.0	3	2	2	2	2	2	1
2.5	.1	.1	.1	.0	1	.0	.1	2.5	3	2	1	3	3	1	1

TABLE 4. Transient eddy ozone flux over western Europe. Positive denotes northward. Units: 10^{18} molecules m⁻²sec⁻¹.

SEAS	SON:	Decem	ber -	Febr	uary		SEASO	ON: N	March	- May	7
km	55N	50	45	40	35	km	551	N 50	45	40	
30.0	4	3	2	2	.0	30.0	.4	.3	. 2	.2	
27.5	3	2	1	. 2	.5	27.5	. 2	. 2	. 2	. 2	
25.0	1	.0	. 2	.5	.4	25.0	.0	.0	.0	1	
22.5	1.0	1.0	.5	.3	.3	22.5	4	4	4	3	
20.0	1.2	1.2	1.1	.7	.3	20.0	-1.0	-1.2	-1.3	5	
17.5	1.2	1.2	1.2	1.2	.8	17.5	-1.2	-1.1	8	3	
15.0	1.3	1.3	1.4	1.6	1.5	15.0	2	. 2	. 2	2	
12.5	1.9	2.2	3.0	2.8	2.0	12.5	1.6	1.2	.3	2	
10.0	.5	2.0	2.2	1.7	.9	10.0	1.6	1.6	.4	3	
7.5	2	.0	.2	. 2	1	7.5	.8	.7	. 2		
5.0	5	.0	.1	.0	2	5.0	.3	.3		2	
2.5	3	.0	.1	.0	2	2.5	.1	.1	.1		
2.5	3	.0	.1	.0	2	2.5	.1	.1	.1		1

S	EASON	: Ju	ne -	Augus	t	SEAS	SON:	Septe	mber	- Nov	ember
km	55N	50	45	40	35	km	55N	50	45	40	35
30.0	.1	.1	.1	.1	.1	30.0	.3	.3	.2	.1	.1
27.5	.2	.2	.1	.1	.1	27.5	1	.1	. 2	.4	.7
25.0	.3	. 2	.1	.1	.1	25.0	4	2	. 2	.5	.7
22.5	.2	.1	.1	.0	.0	22.5	1	.0	.2	.5	.7
20.0	.0	1	2	2	2	20.0	.2	. 2	.3	.5	.6
17.5	2	3	6	7	4	17.5	.4	.3	.3	.4	.5
15.0	.1	.1	1	2	3	15.0	1.0	.5	.3	.3	.3
12.5	1.0	1.2	1.0	.2	.0	12.5	1.2	1.0	.8	.4	.3
10.0	1.8	1.3	.8	.0	3	10.0	1.2	.9	.8	.3	.0
7.5	.5	.5	.1	3	4	7.5	.5	.2	1	2	2
5.0	1	1	1	3	3	5.0	. 2	.0	1	2	2
2.5	1	1	1	2	2	2.5	.1	.1	.1	.0	.0

TABLE 5. Transient eddy ozone flux over Japan. Positive denotes northward. Units: 10^{18} molecules ${\rm m}^{-2}{\rm sec}^{-1}$.

SEASO	N: D	ecemb	er -	Februar	ry	SI	EASON	Ma	rch -	May
km	45N	40	35	30		km	451	1 40	35	30
30.0	.0	2	4	4		30.0	. 2	. 2	.1	.1
27.5	.1	.0	3	3		27.5	. 2	. 2	.2	.1
25.0	. 2	.0	2	3		25.0	. 2	.2	. 2	.1
22.5	. 2	.0	3	7		22.5	.1	.1	.1	.0
20.0	. 2	.0		-1.6		20.0	.0	.0	.0	2
17.5	.6	.3	5	-2.0		17.5	-1.4	-1.3	7	2
15.0	.7	1.5	.5	4		15.0	-3.2	-1.8	9	5
12.5	2	.4	.7	5		12.5	-4.0	-2.8	-2.2	-1.8
10.0	-1.0	2	.4	7			-1.0			
7.5	5	.0	. 2	5		7.5	4	4	1	.1
5.0	2	.0	. 2	2		5.0	1	1	.2	1
	-	-								

SEA	SON:	June	- August		
km	45N	40	35	30	
30.0	.1	.1	.1	.1	
27.5	.1	.1	. 1.	.1	
25.0	. 2	.1	1	1	
22.5	.1	.1	.0	1	
20.0	.1	.3	.3	3	
17.5	.3	.3	. 2	3	
15.0	1.6	1.0	.3	.0	
12.5	3.6	2.2	.3	.3	
10.0	1.8	.8	.2	.0	
7.5	.5	.3	.0	1	
5.0	.3	.1	2	2	
2.5	.2	.1	3	3	

2.5 -.2 .0 .2 -.2

SEASON:	Sep	temb	November	
km	45N	40	35	30
30.0	.3	. 2	.0	8
27.5	.3	.1	3	8
25.0	. 2	1	3	5
22.5	.0	1	2	1
20.0	.3	.0	4	4
17.5	.3	. 2	2	3
25.0	.3	. 2	1	3
12.5	1.2	.5	2	3
10.0	3.0	1.2	2	1
7.5	.7	.3	2	1
5.0	. 2	.0	1	1
2.5	.0	.0	.0	2

2.5 -.1 -.1 -.1 -.2

PART II

EDDY DIFFUSION COEFFICIENTS AND WIND STATISTICS, 30-60 KM

A. INTRODUCTION

The transport of trace substances in the atmosphere is effected by motion systems of widely varying space and time scales. In two-dimensional (height and latitude) atmospheric models, the transport by zonal mean meridional circulations is explicitly computed, while the transport by all other scales of motion is parameterized by eddy diffusion coefficients. Also, all models are calibrated and verified by comparing their output statistics with the observed atmospheric statistics. As models become more complex, statistics other than just the mean fields will be used for this purpose. For example, Cunnold, et al. (1975), found it useful to discuss the standard deviation of total ozone values, and future model results might be compared with other circulation statistics. The purpose of this report is to present seasonal estimates of all three components of the eddy diffusion matrix (Kyy, Kyz, Kzz) and of the means, variances, and covariances of wind and temperature at 30 to 60 km by latitude.

Previous efforts to estimate the individual components of the eddy diffusion matrix or the circulation statistics will be discussed as each set of results is presented. It will be noted here only that data above 30 km are limited to rocketsonde wind and temperature measurements and, recently, satellite measurements of radiance. Although the radiance data are useful for qualitative purposes, they cannot be directly interpreted as temperature measurements, and there are serious theoretical and practical problems in retrieving temperature profiles from them. Some authors (e.g., Hartman, 1977) have attempted to find temperature and wind fields from a relatively short period of radiance data, but there seems to be no widely accepted climatology of such data at this time. Thus, the rocket data are presently the only suitable base for estimating diffusion coefficients or circulation statistics above 30 km. Table 1 lists the rocket stations used in this study. Although the complete period of record used here was 1961-1976, the maximum number of years of suitable data for a given season at any station was 14 years and a typical number of years was about 11. These results are thus based on at least twice as many years of data as those of Kao, et al. (1978) (six years), Louis (1974) (four years), or Justus (1973) (six years).

Circulation statistics such as means and variances have been presented by many authors in the past. However, those results are scattered among different publications, have differing methods of data treatment and analysis, or use differing stations and periods of record. The circulation statistics presented here are the first results for both wind and temperature based on the same period of record and analyzed with the same technique for all results.

All rocketsonde data were obtained from WDC-A, Asheville, except for the stations near 70E during 1972-1976. The latter data were extracted from tabulations of rocket soundings along the Eastern Meridian Network obtained from NASA Wallops Space Flight Center. Throughout this report, three month seasons will be used with winter defined as December, January, and February.

B. DIFFUSION COEFFICIENTS

1. Kyy

a. Method

From G. I. Taylor's theorem, the diffusion coefficient is equal to the product of the wind variance and the integral time scale. Murgatroyd (1969) used this theorem to obtain the meridional diffusion coefficient K_{yy} by modeling the autocorrelation function as an exponentially damped cosine function of the time lag τ . The model is given by

$$R(\tau) = e^{-\sqrt{\tau}} \cos \omega \tau, \qquad (1)$$

with the parameters v and w obtained from wind trajectory data. The method of this report uses Murgatroyd's model with the parameters obtained by a least-squares fit to the calculated autocorrelation function for the meridional wind.

For each station and for each two kilometers from 30 km to 60 km, the sequence of daily wind values was high-pass filtered to remove seasonal trends and other very long-period variations associated with scales of motion not of interest. A 61 point Gaussian filter with a 50% response point at 28 days was used. The wind data are intermittent, and therefore to obtain an effective filter at least five points were required to be under the filter and the sum of filter weights was required to be at least .15. The filtered wind values

were then divided into individual seasons for which the autocorrelation function was calculated out to a lag of 21 days. For larger lags, noise and insufficient data render meaningless the calculation of an autocorrelation function.

From the derived parameters, the Eulerian integral time scales were obtained and transformed to Lagrangian values by multiplying by .64, the value given by Murgatroyd for a height of 30 mb. The resulting integral time scales were multiplied by the meridional wind variances to give the meridional diffusion coefficients for each individual season. Finally, for each station and height, the values were averaged over all years to produce mean seasonal diffusion coefficients, K_{yy} . A standard error of estimate was calculated for each K_{yy} .

Because of the essential non-linearity of the model and the poor time distribution of some of the data, the least-squares routine failed to find parameter values for some of the individual seasons. This problem was very severe for stations along the Eastern Meridian Network. For these stations, observations are often taken only once a week making the calculation of an autocorrelation coefficient impossible. Only at Heiss Island during winter was the data sufficient to calculate K_{yy} values.

b. Errors

An estimate of the relative error in Kyy is given by the ratio of the standard error of K_{yy} to its mean value. This ratio varied considerably with station, season, and height, e.g., at Thule in winter from .5 at 30 km to 4.8 at 60 km, and at White Sands in winter from .4 at 30 km to .5 at 60 km. In summer, the corresponding ratios were .8 and 2.8 for Thule, and .4 and .5 for White Sands. In general, the relative error in K_{yy} was about 50% at low and middle latitudes and about 100% at high latitudes.

c. Results

An example of an autocorrelation function is given in Figure 1. The exponential damping is clearly present. However, a number of autocorrelation functions show an increase for lags of 10 to 15 days before damping toward zero, so in all cases the fitting was done only to lag 10.

The K_{yy} values are given in Figure 2 and Table 2 for cross sections along 80W, 150W, and the average of the two meridians. Stations along 150W are more limited in latitudinal distribution than those stations along 80W. As a result, the mean cross section at very high and low latitudes is not an average but a repetition of the 80W K_{yy} values for those latitudes. Figure 3 compares the winter K_{yy} profile for Thule with that for Heiss Island. Though K_{yy} values at Heiss Island are larger than those at Thule, the similarity of the profiles is obvious.

In winter, K_{yy} values increase with latitude and generally with height (Figure 2). Largest values of K_{yy} are found above 50 km along both 80W and 150W. Along 80W, a secondary maximum is located at about 35 km and 65N. A ridge of large values projects from high to middle latitudes with its axis between 50 and 52.5 km. During spring, K_{yy} again generally increases with height and latitude. However, along 80W, a region of large values occurs over the equator at 60 km. K_{yy} decreases in middle latitudes but increases again at high latitudes. The pattern of values tends to be more horizontal in summer. Along 80W, a wave-like pattern is present in the values with ridges around 15N and 45N. These ridges extend from 30 km to 60 km. However, they are not present in the 150W cross section. The autumn K_{yy} pattern is similar to the spring pattern. Higher values of K_{yy} occur at high latitudes and above 50 km, while a secondary maximum is present at 60 km over the equator.

d. Discussion

Previous work on diffusion coefficients by Murgatroyd (1969) and others is nearly all limited to levels below 30 km and is not comparable to results in this report. However, Kao, et al., (1978) and Louis (1974) computed diffusion coefficients for a comparable region of the atmosphere. Though Kao, et al., did remove means and linear trends from the winds, neither they nor Louis removed seasonal and other long-period wind variations such as were removed by our high-pass filter. The emphasis in this study on the smaller scale diffusion process may account for much of the difference between present results and early work. Furthermore, because the wind variance in Kao, et al., is similar to our values, differences in Ky between the results of Kao, et al., and this report may be due to differences in the integral time scales.

In winter, the K values of Kao, et al., agree well with our values at low latitudes, but they are larger at high latitudes. Their maximum occurs at 45N near 30 km where it exceeds our value by about an order of magnitude. They do not show the maximum near 60 km where our values are larger by a factor of 4. On the other hand, Louis finds the maximum K_{yy} at high latitudes near 50 km and low values near 30 km at all latitudes which agrees well with our results. In spring, our K pattern and that of Kao, et al., agree at low latitudes and heights. The values of Louis are much smaller and his results do not show a maximum at high latitudes. The summer wave-like pattern in K values is present in both our results and those of Kao, et al. However, our values near 55 km are about one-half of those of Kao. Louis does not show the wave-like pattern and his summer values are smaller by a factor of 3. The autumn pattern of K differs the most among the three results. We find maxima near 60 km at high latitudes and over the equator. Kao, et al., find no maxima in these regions but rather near 60N at 30-35 km. Louis' pattern consists of a horizontal band of large values stretching from the equator to the pole at 50 km. His K_{yy} values are smaller than our results by a factor of 5.

2. Kyz

a. Method

The method employed to calculate K $_{yz}$ is based on that of Reed and German (1965). The diffusion coefficient K $_{yz}$ is set proportional to the meridional diffusion coefficient K $_{yy}$, and the proportionality factor, α , is the slope of the mixing path. In the middle troposphere, α is about one-half of the slope, β , of the isentropic surfaces. Wilcox (1976) computed the seasonal values of α and β for tropospheric levels using heat flux data. Because the relationship between α and β is not known for stratospheric levels, the method of this report uses the ratio of α to β as computed by Wilcox for the approximately 26 km level at all levels.

The vertical and northward gradients of the isentropic surfaces were computed on a seasonal basis for each longitude. From these results, the ratio of the horizontal to the vertical potential temperature gradient was computed for each station, level, and season. The negative of this ratio was set equal to β ,

which was then multiplied by the ratio of α/β , given by Wilcox, to give α . The resulting α values were multiplied by the corresponding K_{yy} values to give K_{yz} .

b. Errors

Because K_{yz} depends directly upon K_{yy} , errors in K_{yy} generate errors in K_{yz} . In addition, the ratio of α/β given by Wilcox was derived for conditions at about 26 km, but the ratio is used for all heights from 30 km to 60 km. Therefore, considerable uncertainty, especially with regard to the sign of K_{yz} , is introduced at high altitudes. As a result, the error in K_{yz} is at least as great as the error in K_{yy} , and could be larger.

c. Results

The values of K_{yz} for 80W, 150W, and mean cross sections are given in Figure 4 and Table 3. As a reminder, the 150W cross section is limited in latitude and the mean cross section at high and low latitudes is not an average but a repetition of the 80W cross section. Also, no K_{yz} are available for the Eastern Meridian Network because the data there were inadequate.

The K $_{yz}$ pattern for winter shows the largest positive values at 55 km and 40N with the largest negative values below and slightly poleward. This pattern of large positive values over large negative values is present at both 80W and 150W. In addition, there are a number of vertical bands of K $_{yz}$ alternating in sign which are located at lower latitudes. These vertical bands are probably due to the use of a constant α/β ratio at all heights. The largest values of K $_{yz}$ in these bands tend to be located near 60 km.

For the spring pattern, a large negative center is located near 60 km at 60N. This negative center projects downward and toward middle latitudes. In the lower latitudes, the alternating vertical bands of K_{yz} are again present on the 80W and mean cross sections. For the 150W cross section, negative values dominate the middle and low latitudes. In summer, the pattern is simplified as poleward of 40N there are negative values at all heights, while equatorward the values are positive, except for a band of negative K_{yz} values at 20N. The K_{yz}

pattern in autumn shows large positive values above 50 km at high latitudes and between 5N and 10N. Negative values are located at low levels in middle latitudes, at all heights south of the equator and above 45 km at 20N.

d. Discussion

Previous estimates of K_{yz} above 30 km have been given by Louis, but extended to only 50 km. In winter, there is good agreement at high latitudes between our results and those of Louis. At middle and low latitudes, Louis found a larger area of weak positive values of K_{yz} , while our results produce a more detailed K_{yz} structure with a large negative center at 50N and 50 km and negative regions scattered throughout the tropics.

In spring, there is good agreement between our results and those of Louis, except near 20N where we have a large negative area from 30 km to 60 km and Louis has weak positive values. At high and middle latitudes, we have a band of positive values extending from 45 km at 75N to 30 km at 50N, while Louis has weak negative values throughout the region. The summer patterns are very similar except at 20N where we have negative K_{yz} values compared to Louis' positive values. Our autumn pattern is very dissimilar to that of Louis. We find large positive values above 50 km at high latitudes and sharply alternating regions above 45 km at low latitudes. In contrast, Louis has weak and uniform negative values at high latitudes and weak negative values at low latitudes.

General features for all seasons are the negative values at high latitudes and a region of large K_{yz} values of contrasting sign from 15-20N at heights above 50 km. If the sign changes of K_{yz} are real in this second region, these changes would indicate that significant eddy diffusion is occurring in this subtropical area.

3. <u>Vertical Eddy Diffusion Coefficients</u> (K_{zz})

In the stratosphere, the vertical dispersion of material proceeds much slower than does the horizontal dispersion, and this will be reflected in the relative smallness of the K_{zz} values presented below compared with the K_{yy} or K_{yz} values. Due to the high static stability of the stratosphere, convective

overturning is suppressed and mechanical turbulence is confined to regions of very high wind shear. The shears associated with planetary scale waves or the mean circulation are not large enough to produce local instabilities. However, the relatively short vertical wavelengths of gravity waves can lead to unstable shears when the amplitude of the wave is sufficiently great. Hines (1970, 1974) has argued that the normal growth of wave amplitude with height arising from decreasing density will be offset by energy lost to turbulence, so the wave amplitude is constant with altitude. Based on this premise, Hines has developed a formalism to compute vertical diffusion coefficients.

According to Hines (1970), the vertical eddy diffusion coefficient is given by

$$K_D = 0.014 \tau_g^{-1} H^{-1} \lambda_x^4 \lambda_z^4 (\lambda_x^2 + \lambda_z^2)^{-5/2}$$
 (2)

where τ_g is the Brunt-Vaisala period, H is the atmospheric density scale height, and λ_x and λ_z are the horizontal and vertical wavelengths of upward propograting gravity waves. In the case $\lambda_z \ll \lambda_x$ then equation (2) can be simplified (Justus, 1973) as

$$K_{D} = 0.014 \lambda_{z}^{4} (\tau_{g} H \lambda_{x})^{-1}$$
 (3)

Zimmerman (1974) has argued that no amplitude growth is a poor approximation in the lower atmosphere. By balancing the vertical gradient of the specific wave energy with an effective turbulent viscosity he derived an alternate expression for the vertical component of K, which will be called K_{ZZ} here:

$$K_{zz} = (\lambda_z^3/4\pi^2T) \{1/H - 1/Z \ln v^2/v_0^2\}$$
 (4)

where T is the period of the gravity wave, V_{O} is the perturbation velocity at the reference level, and V is that at level Z.

If the kinetic energy of the gravity wave is decreasing according to

$$E = E_0 \exp (-Z/h)$$
 (5)

then it can easily be shown that (4) is a modification to (3) as follows:

$$K_{zz} = (H/h)K_{D}$$
 (6)

aside from the constant numerical factor. But Hines (1970) states that his numerical factor (0.014) was designed to give a predetermined result. Thus, the difference between 0.014 and the numerical factor in (4) $(1/4\pi^2 = 0.025)$ is probably not important. In deriving (6) from (4), use is made of equation (34) of Hines (1974, paper 7), and the relations $E = 1/2 \, \rho U^2$ and $\rho = \rho_0 \, \exp \left(-Z/H\right)$.

In the case of no amplitude growth with height, then (6) shows that $K_{zz} = K_D$ because then H = h. In general, however, $K_{zz} < K_D$ because there is some aplitude growth with height. This is illustrated in Figure 5, where the growth of v^2 below 50 km causes the kinetic energy to fall off less rapidly than density (H<h), while above 50 km there is no amplitude growth so H = h.

Estimates of K_{ZZ} given below were made using (4) after applying equation (34) of Hines (1974, paper 7). All available temperature and density data at each station were used to estimate τ_g and H for each season at 5 km height intervals. Estimates of λ_z were made using the daily difference method described below. The ratios of λ_z to λ_z from the data given by Justus (1973) were used at all stations (Table 1) because the present data did not permit new estimates of λ_z . The error introduced by using constant values of λ_z/λ_z should be very small, however, as K_{ZZ} varies with the fourth power of λ_z but only inversely with λ_z .

In the daily difference method, zonal and meridional wind data for soundings separated by 24 hours (\pm 15 minutes) in time are differenced on a level-by-level basis to resolve the gravity wave component of the data. As detailed in Justus and Woodrum (1972), this approach eliminates the seasonal, synoptic period, and tidal components of the winds. The vertical structure function, D(Z), of the differenced values was made for each sounding pair through 12 km intervals in height, centered 5 km apart, from 26 to 61 km. In each layer, a sounding pair was used only if all levels were present in the layer. The number of profiles (sounding pairs) available at 36-48 km is given in Table 1. Ideally, D(Z) should resemble a cycloid with wavelength λ_z . In practice, small-scale

noise and a mixing of wavelengths combine to permit detection of only the average first maximum in D(Z), as illustrated in Figure 5. The half-wavelength was estimated from D(Z) by the location of the minimum of the second derivative with height.

Values of K_{ZZ} for the stations along 80W, along about 150W, and for their mean are given in Figure 6 and Table 4. In general, K_{ZZ} increases steadily from 30 km to the upper stratosphere, and usually increases very rapidly in the lower mesosphere, (note that the contours in Figure 6 are at non-uniform intervals). Although there are differences between the 80W and 150W sections, some persistent features emerge in the mean sections. For example, the trough of relatively small values with latitude near 25N in the upper stratosphere during winter is found near 60N in spring, 40N in summer, and 40N in autumn. In the mean sections, largest values are found in the tropical mesosphere during all seasons, and exceed 200 m² s⁻¹ during winter and summer.

Statistical errors of K_{ZZ} range from 15 to 55%, and average about 30% of the value of K_{ZZ} . Errors were estimated by a Monte Carlo simulation of D(Z), randomly allowing each point along D(Z) to be anywhere within one standard error of the mean value of D(Z). For each simulation a λ_Z was computed, and the standard error of the mean of the sample of λ_Z 's was used in the differential form of equation (4) to estimate the error in K_{ZZ} .

At 55 km the present results are about three-fourths as large as the seasonal-latitudinal average value given by Justus (1973). His data are from all seasons and apparently represent the average of Ascension Island, Cape Kennedy, and Fort Greely for the period 1964-1969 (Justus and Woodrum, 1972). At 35 km the seasonal-latitudinal average of the present results is about 4 m² sec⁻¹ while Justus gives about 20 m² sec⁻¹. The present results are smaller than those of Justus because the adjustment factor presented in equation 6 is less than one at all levels on the average, and is smaller at 35 than at 55 km.

A new feature of the present results is the very rapid increase of K_{zz} above the stratopause. Past workers have suggested a sudden decrease of K_{zz} at the

tropopause followed by a steady increase up to the mesopause. It now appears that there is a sudden increase at the stratopause.

C. CIRCULATION STATISTICS

All mean values presented here were computed by arithmetically averaging all available observations for a given season and level at each station. Variances and covariances were computed using data high-pass filtered with the filter described in Section B.

1. Seasonal Means and Variances

a. Temperature

Temperature data for all stations listed in Table 1 were used to prepare the results presented in Figures 7-8 and Tables 5-6. Data at stations near 60E were ignored above 50 km because they are not compatible with other data at high altitudes (Finger, et al., 1975). Corrections for solar radiation errors were applied to observations flagged as not already corrected, as described in Nastrom and Belmont (1974).

During all seasons, the mean stratopause slopes upward toward the pole (Figure 7), but has mean temperatures above 270K at all latitudes only during spring. Variance of temperature (Figure 8) is largest during winter near 60N. During spring, largest variances are found at highest latitudes below 45 km, while during autumn the maximum variance is near 60 km at 60N. Largest variance during summer occurs in the lower mesosphere near 30N.

b. Zonal wind speed

The winter jet in mean zonal wind speed (Figure 9 and Table 7) is found above 55 km near 40N, in agreement with past results (Belmont, et al., 1975; Taresenko, et al., 1976). Other features of the mean zonal flow are also well-known and serve to verify past results. One interesting feature which cannot be shown in seasonal mean sections is the quasi-biennial oscillation (QBO), which is largest below about 30 km equatorward of about 20° latitude (Belmont, et al., 1975). Due to the QBO, mean values in the tropical mid-stratosphere depend strongly on the period of record chosen for averaging. Finally, it

should be noted that no attempt has been made to reconcile the mean zonal winds and the mean temperatures via the thermal wind relation. The available stations (Table 1) do not permit making true zonal means, and even along given longitudes the stations do not lie along a straight north-south line and only approximate a meridional section. Also, stations don't all take their observations at the same time. Station distribution, observational incongruities, and other sampling problems can lead to model dynamic instability, such as found by Schoeberl and Zalesak (1976) for the CIRA (1972) zonal wind model despite the care taken to make it obey the thermal wind relation.

The variances of zonal wind speed (Figure 10 and Table 8) generally follow the same pattern as the variances of temperature. It should be noted that the present results represent wind variability due only to high frequency variations and do not include interannual or other long-period changes.

c. Meridional wind speed along 80W

The seasonal mean values of meridional wind speed given in Figure 11 and Table 9 verify the patterns previously published for mid-seasonal months (Nastrom, et al., 1975). As stressed in the latter paper, the mean meridional winds at a given location are largely due to standing planetary waves. Thus, the mean value is a strong function of longitude so that a dense network of stations would be required to resolve the zonal mean value.

The variances of meridional wind speed, which were used in Section B for estimating K are given in Figure 12 and Table 10. Largest variances are found near the polar stratopause during all seasons except summer, when the largest values are in the tropical mesosphere. These results should not be compared with previous values (e.g., Newell, et al., 1966) which failed to remove the interannual component of the variance. As shown in Nastrom, et al. (1975, Table 2), the variance due to interannual variations is about the same magnitude as the high-frequency component presented here.

2. Seasonal Covariances

The covariances of the (high-pass filtered) meridional wind with zonal wind and temperature are presented in Figure 13 and 14 and Tables 11 and 12.

These represent the poleward fluxes of westerly momentum and temperature (sensible heat) by the transient eddies. In preparing these results, data for all stations were plotted, but stations nearest 80W were favored during the analysis if longitudinal differences were found. For example, during winter at 40 km the covariance of wind and temperature at Heiss is large positive while at Thule it is large negative, and so the final analysis shows negative values. Also, these results do not represent the fluxes by standing waves. Although there have been efforts (e.g., Stanford and Dunkerton, 1978) to estimate winds and temperatures from satellite data on a global basis, a useful climatology of such data is not yet available to compute standing eddy fluxes. Thus, there is no way to measure the relative importance of transient and standing eddy fluxes.

D. SUMMARY

In view of the differing analysis techniques or differing data samples, the eddy diffusivities presented here agree remarkably well with past estimates. However, in the application of K-values to two-dimensional models the actual magnitude of the diffusivities is no more important than their spatial patterns, i.e., their gradients with height and latitude. As the present patterns are often much different from those of past results (and from each other, depending on longitude), these diffusivities are expected to influence future model results.

The circulation statistics presented here confirm and expand on the numerous past results given, usually, for each parameter separately or for a relatively short period of record. It seems that these covariances of meridional wind with temperature and zonal wind are the first complete set of such results to be presented.

REFERENCES

- Belmont, A. D., D. G. Dartt, and G. D. Nastrom, 1975: Variations of stratespheric zonal winds, 20-65 km, 1961-1971. J. Appl. Meteor., 14, 585-594.
- Cunnold, D., F. Alyea, N. Phillips, and R. Prinn, 1975: A three-dimensional dynamical-chemical model of atmospheric ozone. <u>J. Atmos. Sci.</u>, 32, 170-194.
- Finger, F. G., M. E. Gelman, F. J. Schmidlin, R. Leviton, and B. Kennedy, 1975: Compatibility of meteorological rocketsonde data as indicated by international comparison tests. <u>J. Atmos. Sci.</u>, 32, 1710-1714.
- Hartman, D. L., 1977: Stationary planetary waves in the Southern Hemisphere.

 <u>J. Geophys. Res.</u>, 82, 4930-4934.
- Hines, C. O., 1970: Eddy diffusion coefficients due to instabilities in internal gravity waves. J. Geophys. Res., 75, 3937-3939.
- Hines, C. O., 1974: The Upper Atmosphere in Motion, American Geophysical Union, Washington, Paper 12.
- Justus, C. G., and A. Woodrum, 1972: Atmospheric pressure, density, temperature and wind variations between 50 and 200 km. NASA-CR-2062, 77pp.
- Justus, C. G., 1973: Upper atmospheric mixing by gravity waves. Presented at Conference on Environmental Impact of Aerospace Operations in the High Atmosphere, June, 1973, Denver.
- Kao, S. K., R. J. Okrasinski, and N. J. Lordi, 1978: Horizontal eddy diffusivities in the Northern Hemispheric stratosphere and lower mesosphere. NASA-CR-3006, 75pp.
- Louis, J., 1974: A two-dimensional transport model of the atmosphere. Ph.D. Thesis, University of Colorado, 150pp.
- Murgatroyd, R. J., 1969: Estimations from geostrophic trajectories of horizontal diffusivity in the mid-latitude troposphere and lower stratosphere.

 Quart. J. Roy. Met. Soc., 95, 40-62.
- Nastrom, G. D., and A. D. Belmont, 1975: Periodic variations in stratospheric-mesospheric temperature from 20-60 km at 80°N to 30°S. <u>J. Atmos. Sci.</u>, 32, 1715-1722.
- Nastrom, G. D., A. D. Belmont, and D. G. Dartt, 1975: Periodic variations in stratospheric meridional wind from 20 to 65 km: 80°N to 70°S. Quart.

 J. Roy. Met. Soc., 101, 583-596.

- Newell, R. E., J. M. Wallace, and J. R. Mahoney, 1966: The general circulation of the atmosphere and its effect on the movement of trace substances, Part 2. Tellus, 18, 363-380.
- Reed, R. J., and K. E. German, 1965: A contribution to the problem of stratospheric diffusion by large-scale mixing. Mon. Wea. Rev., 93, 313-321.
- Schoeberl, M. R., and S. T. Zalesak, 1976: A critical analysis of climatological wind data used in the forecast of radioactive debris cloud movement. NRL-Memo-Rpt 3366, 13pp.
- Stanford, J. L., and T. J. Dunkerton, 1978: The character of ultra-long stratospheric temperature waves during the 1973 austral winter.

 Beitr. Phys. Atmos., 51, 174-188.
- Tarasenko, D. A., I. A. Scherba, and R. A. Britvina, 1976: Periodic temperature and wind fluctuations in the stratosphere and mesosphere. Metro. Gidro., 25-30.
- Wilcox, R. W., 1976: Ten-year set of K_{yy} and K_{yz} . Letter report to NASA-Ames Research Center; Control Data Corporation, Minneapolis.
- Zimmerman, S. P., 1974: The effective vertical turbulent viscosity as measured from radio meteor trails. <u>J. Geophys Res.</u>, 79, 1095-1098.

TABLE 1. Rocketsonde data used, 1961-1976 (at 50 km).

				pair	s at	of da	ero	of s	Numi	ng pa	irs
				(10	r K	& K	z)		(for	K_{zz}	
	Station	LAT	LON	SPR	SUM	AUT	WIN	SPR	SUM	AUT	WIN
a.	Stations, near	80°W	(Atlantic	zone)							
	Thule	77	69	137	188	122	61	21	30	25	17
	Churchill	59	94	316	235	229	357	43	17	74	113
	Wallops	38	. 75	399	460	277	301	27	29	40	33
	White Sands	32	106	748	672	574	598	97	72	91	118
	Canavera1	28	81	518	623	478	438	141	102	93	160
	Antigua	17	62	183	92	124	160	2	3	2	5
	Sherman	8	80	276	271	201	207	51	37	25	36
	Ascension	-8	14	437	438	477	283	72	51	35	57
ь.	Stations near	150 ⁰ w	(Pacific	zone)							
	Poker Flats	64	146	147	202	158	144	72	78	54	59
	Primrose	55	110	172	58	194	94	6	4	8	10
	Point Mugu	34	119	593	542	548	557	61	52	62	59
	Barking Sands	22	160	557	445	441	355	141	131	112	102
	Kwajalein	9	-168	161	175	150	230	5	6	6	7
c.	Stations near	60°E									
	Heiss Island	81	-58	7	23	0	58	6	11	1	9
	Volgograd	49	-44	6	0	8	11	3	1	0	1
	Thumba	8	-77	20	0	0	0	0	0	0	0

TABLE 2. Seasonal values of K_{yy} (10⁴ m²sec⁻¹).

SEASON: WINTER		но	HIZONT	L DIF	FUSION	COEFF	ICIENTS	(1	K-YY)	IN 10 ⁴	ETE	as s u u	AHED P	ER SEC	UND		
LATITUDE	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5
LONGITUDE: BOW																	
											100000						
60.0 KM	759	741	592	430	259	119	121	123	258	168	120	127	114	103	100	105	115
55.0		681	592	460	344	219	183	183	269	166	116	117	97	106	116	117	112
	634	655	593	531	429	320	244	243	581	163	113	108	81	109	131	129	110
52.5	365	515	514	480	405	316	24A	236	253	141	90	91	83	93	101	98	89
47.5			436	430	381	312	252	229	224	120	68	75	86	78	70	68	68
45.0	312 258	360	391	368	344	278	555	205	210	119	57	49	63	61	56	54	54
42.5	360	310	346	347	306	244	192	161	195	118	46	23	41	44	41	40	41
40.0	462	487	420	407	350	271	198	160	156	109	62	37	35	36	36	35	33
37.5	415	475	509	467	395	297	203	138	117	101	78	50	29	58	30	59	52
35.0	367	462		493	412	295	180	107	92	77	53	35	32	29	56	53	50
32.5	258		524	520	430	293	157	75	66	54	29	19	35	30	55	17	15
30.0	149	346 230	408	415	352	247	138	65	30	45	31	21	58	50	13	10	10
30.0	144	230	291	310	273	201	119	55	30	37	33	24	20	10	•	2	5
LONGITUDE: 150																	
60.0 KM			541	461	386	322	267	223	166	162	145	135	133	135			
57.5			533	494	447	386	319	255	204	174	159	153	149	146			
55.0			524	527	507	450	370	286	219	185	174	171	165	156			
52.5			513	546	547	494	403	300	213	161	139	136	141	149			
50.0			502	566	588	538	436	315	206	137	104	101	116	143			
47.5			516	504	475	416	337	254	183	135	108	96	95	99			
45.0			531	443	362	294	239	194	159	133	111	92	74	56			
42.5			519	409	311	237	184	147	122	104	90	77	61	44			
40.0			507	374	260	179	128	99	84	76	70	62	49	33			
37.5			429	313	214	144	101	77	64	57	52	46	38	28			
35.0			352	252	167	109	74	55	45	39	34	30	27	23			
32.5			270	183	111	66	44	36	34	31	27	24	21	20			
30.0			188	113	54	55	13	17	55	23	50	17	16	17			
LONGITUDE: MEA	IN																
60.0 KM	884	741	566	445	327	550	194	173	223	165	132	131	123	119	100	105	215
57.5	759	681	562	487	395	302	251	219	236	170	137	135	123	126	116	117	115
55.0	634	622	558	529	468	385	307	264	250	174	143	139	123	132	131	129	110
52.5	500	515	513	513	476	405	325	268	533	151	114	113	112	151	101	98	89
50.0	365	409	469	498	484	425	344	272	215	154	86	88	101	110	70	68	68
47.5	312	360	453	446	409	347	279	554	196	127	82	72	79	AO	56	54	54
45.0	258	310	438	395	334	269	215	187	177	125	78	57	57	50	41	40	41
42.5	360	399	469	408	330	254	191	153	139	106	76	57	48	40	36	35	33
40.0	462	487	500	420	327	238	165	118	100	88	74	56	39	30	30	24	25
37.5	415	475	469	403	313	219	140	92	78	67	52	40	35	58	56	53	50
35.0	367	462	438	386	298	501	115	65	55	46	31	24	31	56	55	17	15
32.5	258	346	339	299	231	156	91	50	41	3A	59	55	24	50	13	10	10
30.0	149	530	239	511	163	111	66	36	56	30	56	50	18	13	•	5	5

THIS PAGE IS BEST QUALITY PRACTICABLE

TABLE 2. Seasonal values of K_{yy} (10⁴ m²sec⁻¹).

SEASON: SPRING		но	RIZONT	AL DIF	FUSION	COFFE	ICIENTS		K-YY)	IN 104	METER	5 5411	ARFO P	ER SEC	OND		
														300	ONO		
LATITUDE	75	70	65	60	55	50	•5	+0	35	30	25	20	15	10	5	0	-5
LONGITUDE: BOW																	
60.0 KM	270	223	175	125	74	36	27	63	113	54	53	89	107	151	174	167	140
57.5	296	231	168	113	69	42	38	65	97	52	40	66	95	112	115	106	91
55.0	322	238	162	102	64	47	49	66	81	50	27	42	83	73	56	46	42
52.5	235	199	163	128	96	69	55	58	70	49	38	45	59	58	52	46	41
50.0	148	160	164	155	127	91	61	51	59	49	49	48	35	42	48	47	41
47.5	131	135	134	124	101	74	53	48	57	50	52	51	35	37	41	40	36
45.0	113	110	104	93	76	58	45	46	55	50	55	54	34	31	33	33	31
42.5	109	103	96	84	67	50	39	38	46	46	52	49	27	24	26	26	25
40.0	104	96	87	75	59	43	32	30	36	41	48	43	20	17	19	20	20
37.5	100	95	87	76	61	44	31	26	30	35	32	28	19	50	55	15	19
35.0	96	93	87	77	95	44	30	55	53	24	16	12	18	24	25	23	19
32.5	72	81	86	85	67	46	47	18	19	18	15	13	13	18	50	19	16
30.0	48	70	85	87	72	48	25	13	15	12	13	14	8	12	15	15	15
LONGITUDE: 150																	
60.0 KM			243	194	158	143	143	147	144	127	105	91	93	104			
57.5			190	169	150	136	125	115	106	45	85	77	74	74			
55.0			137	144	143	129	107	84	67	63	64	64	56	44			
52.5			126	113	99	86	73	63	56	57	58	58	53	46			
50.0			115	82	56	42	39	43	48	51	52	52	50	48			
47.5			130	93	64	49	45	47	51	51	48	45	42	39			
45.0			144	104	72	56	51	52	53	50	44	. 37	33	30			
42.5			116	86	62	48	42	41	42	42	40	36	31	26			
40.0			89	69	52	40	33	31	31	34	36	35	30	55			
37.5			72	58	46	37	31	58	26	27	27	27	53	17			
35.0			55	48	41	35	29	24	51	50	19	18	16	13			
32.5			55	46	39	31	25	50	17	15	15	14	13	11			
30.0			54	45	36	58	21	16	13	11	11	10	10	•			
LONGITUDE: MEA	N																
60.0 KM	270	223	209	159	116	89	85	105	128	90	79	90	100	127	174	167	140
57.5	296	231	179	141	109	89	81	90	101	73	62	71	84	93	115	106	91
55.0	322	238	149	123	103	88	78	75	74	56	45	53	69	50	56	46	42
52.5	235	199	144	120	97	77	04	60	64	53	48	51	56	52	52	46	41
50.0	148	160	139	118	91	66	50	47	53	50	50	50	42	45	48	47	41
47.5	131	135	132	109	82	61	49	47	54	50	50	40	38	36	41	40	36
45.0	113	110	124	98	74	57	48	49	54	50	49	45	33	30	33	33	31
42.5	109	103	106	85	64	49	40	19	44	44	46	42	29	25	26	26	25
40.0	104	96	88	72	55	41	32	30	33	37	42	39	25	19	19	50	50
37.5	100	95	74	67	53	40	31	27	28	29	29	27	21	18	55	51	19
35.0	96	93	71	62	51	19	29	23	55	55	17	15	17	18	25	23	10
32.5	72	81	70	64	53	38	56	19	18	16	15	13	13	14	20	19	16
30.0	48	70	69	66	54	38	23	14	1+	11	12	12	•	10	15	15	15

TABLE 2. Seasonal values of $K_{yy} (10^4 \text{ m}^2 \text{sec}^{-1})$.

SEASON: SUMMER		нон	RIZONTAL	DIFFL	JSION	COEFF	ICIENTS	(K-YY)	IN 10 ⁴	~ETE	95 SQU	AHEU P	ER SEC	OND			
LATITUDE	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5	
LONGITUDE: BOW																		
60.0 KM	193	137	91	64	61	75	94	105	103	106	120	129	140	21.0				
57.5	118	93	72	57	51	54	65	83	99	93	93	91	91	138	246	232	185	
55.0	43	49	53	50	40	32	35	60	95	80	65	54	43	67	165	160	133	
52.5	35	40	43	42	36	30	32	47	70	62	51	44	45	64	85 76	88	70	
50.0	26	30	33	33	31	28	28	35	45	44	36	35	47	62	68	66	59	
47.5	22	24	26	26	23	20	20	25	36	42	37	32	38	48	53	54	52	
45.0	18	19	19	18	15	12	12	26	27	40	38	30	28	33	39	42	44	
42.5	15	16	16	14	10	7	7	13	25	31	31	27	55	27	33	37	39	
40.0	12	13	12	10	5	1	2	10	23	23	24	24	16	51	28	32	34	
37.5	12	13	12	10	6	i	i	A	19	18	19	18	14	20	26	28	28	
35.0	12	13	12	10	6	2	ó	5	14	14	13	13	12	19	23	24	21	
32.5	11	10	10	8	5	2	i		11	11	12	12	10	17	55	22	50	
30.0	9	8	7	5	3	1	i	3	8	9	12	11	7	14	20	51	10	
LONGITUDE: 150																		
60.0 KM			67	59	57	66	81	94	97	87	72	61	65	77				
57.5			59	62	67	73	79	83	81	73	63	57	58	65				
55.0			50	66	77	80	78	72	65	59	54	52	52	53				
52.5			40	50	58	60	5A	54	49	46	44	43	42	42				
50.0			29	35	39	40	39	36	34	34	24	34	32	30				
47.5			23	27	29	30	30	29	29	31	33	35	36	36				
45.0			17	10	19	20	21	55	25	28	32	36	39	42				
42.5			13	15	17	18	19	19	20	55	24	26	27	28				
40.0			8	12	15	16	16	16	15	16	17	17	16	14				
37.5			7	11	14	15	14	13	12	12	12	12	12	12				
35.0			6	10	12	13	12	10	8	7	7	8	9	10				
32.5			5	7	8	8	8	8	7	6	6	6	7	8				
30.0			5	•	3	3	•	5	6	6	5	5	5	5				
LONGITUDE: MEAN																		
60.0 KM	193	137	79	61	59	70	87	99	100	96	96	95	102	143	246	232	185	
57.5	118	93	65	59	59	63	72	63	90	83	78	74	74	101	165	160	133	
55.0	43	49	51	58	58	56	56	66	80	69	59	53	47	60	85	88	81	
52.5	35	40	41	46	47	45	45	50	59	54	47	43	43	53	76	77	70	
50.0	26	30	31	34	35	34	33	35	39	39	35	34	39	46	68	66	59	
47.5	22	24	24	26	26	25	25	27	32	36	35	33	37	42	53	54	52	
45.0	18	19	18	18	17	16	16	19	26	34	35	33	33	37	39	42	44	
42.5	15	16	14	14	13	12	13	16	22	26	27	26	24	27	33	37	39	
40.0	12	13	10	11	10		9	13	19	19	20	20	16	17	28	32	34	
37.5	15	13	9	10	10	8	,	10	15	15	15	15	13	16	26	28	28	
35.0	12	13	9	10	9	7	6	7	11	10	10	10	10	14	23	24	51	
32.5	11	10	7	7	6	5	4	6	9	8	9	9	8	12	55	55	50	
30.0	9	8	6		3	5	5	4	7	7	8	. 8	6	9	50	51	18	

TABLE 2. Seasonal values of $K_{yy} (10^4 \text{ m}^2 \text{sec}^{-1})$.

SEASON: AUTUM		но	HIZONT	AL DIF	FUSION	COLFF	ICIENTS	(1	K-YY)	IN 10 ⁴	METE	es suu	AHED P	ER SEC	OND		
LATITUDE	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5
LONGITUDE: 80																	
60.0 KM	792	628	472	333	221	145	116	144	199	160	144	127	111	269	359	332	229
57.5	635	528	423	323	231	161	126	139	177	137	125	125	115	186	222	202	144
55.0	479	428	374	312	242	177	135	133	154	113	106	123	119	103	86	71	58
52.5	393	374	344	290	210	130	84	104	166	109	86	96	88	68	54	46	44
50.0	307	320	313	269	179	63	32	76	177	104	65	69	57	33	21	21	30
47.5	300	293	275	238	176	111	71	83	131	94	62	51	44	32	25	25	29
45.0	292	265	238	207	173	140	111	91	84	63	59	33	30	30	29	28	28
42.5	258	252	239	215	175	130	91	71	74	74	55	34	27	26	25	25	25
40.0	224	236	241	222	177	121	72	51	63	64	52	35	24	21	21	22	55
37.5	196	217	226	211	167	110	61	41	53	47	39	30	20	18	19	19	19
35.0	168	195	210	200	157	100	50	31	44	29	25	25	15	15	17	16	15
32.5	140	162	174	166	132	86	45	27	33	25	20	18	12	12	13	14	14
30.0	iii	128	137	131	107	72	40	55	23	51	15	10	•	10	10	ii	15
LONGITUDE: 150	w																
60.0 KM			530	335	183	104	83	94	110	110	98	80	64	50			
57.5			462	307	185	121	103	109	118	112	96	77	62	49			
55.0			394	278	187	139	124	125	126	114	94	74	60	49			
52.5			366	262	179	134	118	117	115	103	83	63	48	37			
50.0			338	245	171	129	113	109	105	91	72	52	37	25			
47.5			320	235	165	123	103	96	92	85	73	59	43	27			
45.0			302	225	160	117	93	82	79	78	74	66	50	29			
42.5			249	183	128	91	12	63	61	59	56	49	38	25			
40.0			195	141	95	66	51	44	42	40	37	33	27	20			
37.5			184	156	78	49	36	33	33	31	20	23	19	15			
35.0			173	111	61	32	22	21	23	22	18	14	ii				
32.5			148	96	53	28	10	17	10	17	15	12	10	,			
30.0			124	80	45	24	19	13	13	13	ii	9	9	•			
LONGITUDE: ME	AN																
60.0 KM	792	628	501	334	202	124	99	119	154	135	121	103	87	159	359	332	229
57.5	635	528	442	315	208	141	114	124	147	124	110	101	88	117	222	202	144
55.0	479	428	384	295	214	158	129	129	140	113	100	98		76	86	71	58
52.5	393	374	355	276	194	132	101	110	140	106	84	79	68	52	54	46	44
50.0	307	320	325	257	175	106	72	92	141	97	68	60	47	29	21	51	30
47.5	300	293	297	236	170	117	87	89	iii	89	67	55	43	29	25	25	29
45.0	292	265	270	216	166	128	102	86		80	46	49	40	29	29	28	28
42.5	258	252	244	199	151	110	81	67	67	66	55	41	32	25	25	25	25
40.0	224	238	218	181	136	93	•1	47	52	52	44	34	25	20	21	55	55
37.5	196	217	205	168	122	79	46	37	43	39	33	26	19	16	19	19	19
35.0	168	195	191	155	109	66	36	26	33	25	21	19	13	12	17	16	15
32.5	140	162	161	131	92	57	31	22	25	21	17	15	ii	10	13	14	14
30.0	111	128	130	105	76	48	27	17	10	17	13	13		1	10	11	12
30.0	111	159	130	105	10	**		.,	10	11	13	,	,	,	10	11	12

TABLE 3. Seasonal values of K_{yz} (10¹ m²sec⁻¹).

SEASON: WINTER		но	RIZONT	L DIF	FUSION	COEFF	ICIENTS	5 (K-YZ)	IN 10	METERS	SQUA	HED PE	H SECO	ND			
LATITUDE	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5	
 LONGITUDE: 80W																		
60.0 KM	-188	-165	-135	-53	273	307	12	261	398	-30A	-1.26	624	281	-211	- 1			
57.5	-225	-188	-135	-49	26A	391	18	518	427	-314	-432	406	189	-154	-31	3	-32	
55.0	-261	-211	-134	-46	262	475	605	775	456	-320	-338	188	97	-116	-17	:	-23	
52.5	-218	-181	-112	-35	193	344	443	563	386	-211	-238	131	74	-85	-10	3	-17	
50.0	-174	-152	-89	-25	123	214	280	351	320	-101	-137	7-	52	-54	-4	2	-12	
47.5	-168	-145	-76	-15	43	56	107	260	225	-83	-71	48	37	-31	-3	0	-6	
45.0	-162	-139	-63	-5	-36	-101	-66	169	130	-65	-4	23	55	-8	-5	0	-0	
42.5	-239	-193	-79	-4	-69	-160	-112	117	106	-55	-52	26	16	-6	-1	0	0	
40.0	-317	-246	-96	-2	-101	-219	-159	65	82	-45	-41	29	11	-4	0	ő	0	
37.5	-259	-215	-86	0	-103	-203	-127	54	51	-3A	-23	18	6	-5	ŏ	ő	0	
35.0	-201	-184	-76	o	-104	-187	-95	42	20	-30	-4	7	ő	-5	ŏ	0	0	
32.5	-129	-125	-54	o	-75	-133	-59	49	3	-40	-3	2	2	0	Ö	ő	0	
30.0	-56	-66	-31	ō	-46	-78	-22	56	-13	-50	-1	-5	•	3	ò	ő	ő	
LONGITUDE: 150																		
60.0 KM			18	-1	103	372	621	687	365	130	50	66	84	67				
57.5			24	ō	101	403	683	726	346	90	•	19	46	39				
55.0			30	2	98	433	745	764	326	49	-41	-26	8	10				
52.5			48	10	32	283	551	593	264	55	-17	-23	-12	-10				
50.0			66	19	-34	134	35A	422	202	60	5	-20	-32	-32				
47.5			77	20	-65	-7	100	151	84	37	17	3	-8	-12				
45.0			88	22	-97	-149	-157	-118	-33	14	30	26	15	6				
42.5			83	19	-84	-129	-136	-108	-39	1	17	18	11	5				
40.0			78	17	-71	-108	-115	-98	-46	-11	5	10	7					
37.5			44	10	-50	-83	-91	-77	-34	-6	4	5	3	1				
35.0			11	3	-28	-57	-66	-56	-55	-2	3	1	-1	-1				
32.5			0	0	-13	-30	-35	-33	-17	-6	-1	0	0	0				
30.0			-12	-1	1	-5	-4	-10	-13	-11	-6	-1	1	1				
LONGITUDE: MEA	IN																	
60.0 KM	-188	-165	-58	-27	188	340	317	474	361	-88	-238	345	182	-71	-31	3	-32	
57.5	-225	-188	-55	-24	184	397	351	622	386	-112	-214	213	117	-62	-24	1	-2H	
55.0	-261	-211	-52	-21	180	454	675	770	391	-135	-189	80	52	-52	-17		-23	
52.5	-218	-181	-31	-12	112	314	497	578	326	-7A	-128	54	31	-48	-10	3	-17	
50.0	-174	-152	-11	-3	44	174	319	386	261	-50	-66	27	9	-43	-4	5	-12	
47.5	-168	-145	0	2	-11	24	103	506	154	-22	-26	26	14	-51	-3	ò	-6	
45.0	-162	~139	12	8	-67	-125	-111	25	48	-25	15	24	18	0	-2	ō	0	
42.5	-239	-193	ī	7	-76	-144	-124	4	33	-27	-2	22	14	o	-1	ō	0	
40.0	-317	-246	-9	7	-86	-164	-137	-16	18	-2A	-17	20	9	ő	o	ŏ	o	
37.5	-259	-215	-21	4	-76	-143	-109	-11	8	-52	-9	12		-1	0	ō	0	
35.0	-201	-184	-32	2	-66	-122	-61	-7	-1	-16	0		0	-3	o	o	0	
32.5	-129	-125	-27	0	-44	-81	-47	7	-7	-53	-5	i	1	0	o	ŏ	o	
30.0	-56	-66	-22	0	-55	-40	-13	22	-13	-30	-3	-i	2	2	0	ŏ	0	
			-				3 X 10 10 10 10 10 10 10 10 10 10 10 10 10			-0		1674		THE PARTY		•		

TABLE 3. Seasonal values of K_{yz} (10¹ m²sec⁻¹).

SEASON: SPRIN	G	но	HIZONT	AL DIF	FUSTON	COLFF	ICLENT	rs	K-YZ)	IN 10	METER	as Squ	AKED PE	R SECO	NO		
LATITUDE	75	70	65	60	55	50	45	•0	35	30	25	20	15	10	5	0	-5
LONGITUDE: 80																	
60.0 KM	67	-1	-208	-479	-375	-162	-124	-48	-135	243	382	-1172	-1008	1249	350	-103	-230
57.5	-97	-136	-244	-379	-277	-137	-131	-137	-151	213	283	-755	-723	776	196	-70	-144
55.0	-262	-272	-280	-278	-178	-112	-139	-176	-167	162	165	-337	-438	303	43	-36	-57
52.5	-139	-153	-186	-237	-186	-120	-125	-137	-143	134	194	-253	-271	198	30	-30	-46
50.0	-16	-35	-93	-196	-193	-128	-110	-49	-118	85	202	-170	-103	93	18	-23	-34
47.5	8	0	-35	-104	-113	-79	-72	-70	-116	42	179	-125	-64	79	18	-15	-25
45.0	32	36	55	-12	-33	-10	-34	-41	-114	0	157	-80	-26	64	18	-7	-16
42.5	-12	-10	-1	11	10	0	-11	-35	-90	5	129	-61	-13	49	15	-4	-11
40.0	-57	-57	-26	34	54	31	11	-28	-66	11	101	-42	-1	33	12	-1	-6
37.5	-98	-105	-68	17	61	40	51	-15	-44	22	73	-36	-14	36	11	-2	-6
35.0	-139	-154	-110	0	67	50	31	-5	-55	33	45	-29	-28	36	11	-3	-6
32.5	-114	-155	-140	-36	51	**	26	0	-6	28	34	-23	-22	16	5	0	-1
30.0	-89	-155	-169	-72	35	37	21	5		24	53	-18	-16	-5	0	3	3
LONGITUDE: 15	0																
60.0 KM			220	134	-35	-123	-247	-362	-415	-365	-260	-148	-64	-40			
57.5			114	51	-84	-150	-235	-294	-273	-221	-154	-89	-41	-25			
55.0			9	-31	-133	-176	-223	-207	-130	-77	-47	-30	-17	-10			
52.5			11	-17	-80	-105	-137	-139	-101	-66	-39	-14	3				
50.0			14	-3	-27	-34	-52	-12	-71	-56	-31	1	24	26			
47.5			62	36	-6	-23	-42	-63	-66	-51	-23	15	34	34			
45.0			109	77	14	-13	-13	-55	-60	-47	-15	24	**	41			
42.5			103	78	23	-5	-18	-34	-42	-36	-9	32	52	42			
40.0			96	79	35	8	-5	-13	-53	-25	-3	40	60	43			
37.5			52	45	25	12	8	1	-8	-15	-3	19	30	55			
35.0				15	17	17	20	10	7	0	-5	-1	0	0			
32.5			-5	-1	8	11	14	14	4	5	1	0	-5	-5			
30.1			-19	-14	-1	•	•	12	11	10		•	-5	-5			
LONGITUDE: ME	AN																
60.0 KM	67	-1	5	-172	-205	-143	-185	-240	-275	-61	60	-660	-536	604	350	-103	-230
57.5	-97	-136	-64	-163	-180	-143	-103	-215	-212	-4	64	-422	-362	375	196	-70	-144
55.0	-565	-272	-135	-155	-156	-144	-101	-141	-148	52	68	-184	-558	146	43	-36	-57
52.5	-139	-153	-67	-127	-133	-115	-131	-138	-122	33	77	-134	-133	103	30	-30	-46
50.0	-16	-35	-39	-99	-110	-61	-61	-65	-95	14	85	-84	-39	60	18	-53	-34
47.5 45.0			13	-33	-60	-51	-57	-66	-91	-4	78	-56	-15	50	18	-15	-25
42.5	-12	36	66	32	-9	-51	-34	-48	-67	-53	70	-50		53	10	-7	-16
40.0	-57	-10 -57	50	56	17		-14	-34	-66	-15	59	-14	10	45	15	-	-11
37.5	-98	-105	-0	31	43	19		-51	-45	-6	48		50	38	12	-1	-6
35.0	-139	-154	-50	31	42	33	15	-7	-26		35	-0		59	11	-5	-6
32.5	-114	-155	-72	-18	29	27	25	,	-1	16	51	-15	-13	19	11	-3	-6
30.0	-89	-155	-94	-43	16	21	15	;	10	17	15	-15	-11	-5		;	-1

TABLE 3. Seasonal values of K_{yz} (10¹ m²sec⁻¹).

SEASUN: SUMMER		нон	IZONTAL	DIFF	USION	COEFF	ICIENTS	(K-YZ)	IN 10	MFTERS	SQUA	HED PER	SECON	,		
LATITUDE	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5
LONGITUDE: BOW																	
60.0 KM	0	0	-7	-50	-34	-45	-14	84	80	14		-66	224	312	27	17	137
57.5	0	0		-16	-24	-28	-9	51	46	24	43	-46	122	189	17	10	88
55.0	0	0	-5	-12	-14	-11	-4	10	11	33	78	-27	21	67		4	39
52.5	0	0	-3	-7	-8	-6	-2	8	0	25	62	-31	10	63	8	2	29
50.0	0	0	-2	-3	-2	-2	-1	0	-13	18	47	-36	0	59	8	1	19
47.5	0	0	-1	-1	-1	-1	0	0	-13	12	47	-31	-1	44	6	i	15
45.0	0	0	0	0	0	0	0	0	-12	5	47	-25	-4	28	4	0	11
42.5	0	0	0	0	0	0	0	0	-7	3	27	-14	-1	17	2	0	6
40.0	0	0	0	0	0	0	0	0	-2	1	7	-2	1	5	1	0	2
37.5	0	0	0	0	0	0	0	0	-1	2	5	-2	0	3	0	0	ō
35.0	0	0	0	0	0	0	0	0	0	3	3	-1	-1	1	0	0	-1
32.5	0	0	0	0	0	0	. 0	0	0	2	5	-1	-1	1	0	0	0
30.0	0	0	0	0	0	0	0	0	0	1	7	-1	-1	1	0	0	0
LONGITUDE: 150W																	
60.0 KM			0	0	-1	-4	-5	-2	6	15	15	9	3	1			
57.5			ŏ	-1	-4	-8	-9	-4	4	13	14	11	5	3			
55.0			o	-2	-7	-12	-12	-7	i	10	14	13	7				
52.5			o	-2		-7	-7	-4	ò	4	9	13	11	7			
50.0			0	-1	-1	-2	-2	-2	-2	-1	3	13	16	11			
47.5			o	-i	-i	-1	-1	-1	-1	0	3	12	15	11			
45.0			0	o	o	0	ò	ò	o	0	3	11	15	12			
42.5			0	o	0	ō	ő	ő	ő	0	2	7	9	7			
40.0			0	ō	ő	0	-1	-1	-1	o	i		4	2			
37.5			0	. 0	0	0	ò	ò	0	o	ō	2	2	i			
35.0			0	o	ŏ	0	ő	o	0	0	0	0	ō	ó			
32.5			0	0 .	o	0	ō	0	0	0	0	0	o	o			
30.0			0	o	c	0	Ö	0	ō	ő	ō	o	ō	o			
LONGITUDE: MEAN																	
60.0 KM	0	0	-3	-10	-18	-24	-0	41	43	15	11	-28	114	156	27	17	137
57.5	. 0	ŏ	-3	-8	-14	-18	-0	23	25	18	29	-17	64	96	17	10	88
55.0	o	ő	-3	-7	-10	-11	-8	5	6	22	46	-6	14	36	8	10	39
52.5	0	o	-2	-4	-6	-6	-5	5	0	15	36	-9	11	35	8	2	29
50.0	o	o	-1	-2	-5	-2	-1	-1	-7	8	25	-11	8	35	8	1	19
47.5	0	ō	ò	-1	-1	-1	ò	ó	-7	5	25	-9	6	2;	6	î	15
45.0	0	0	0	ò	0	ō	Ö	0	-6	5	25	-6	. 5	20		ò	11
42.5	0	0	o	o	o	o	o	ő		i	14	-3		12	2	0	6
40.0 .	0	0	0	o	ő	0	0	0 .	-1	ó		0	3	4	1	0	5
37.5	0	0	0	o	0	0	Ö	0	-1	0	5	a	1	2	o	0	0
35.0	0	0	0	ō	ő	0	o	o	ò	i	1	o	ò	0	o	o	-1
32.5	0	0	0	0	0	0	0	0	0	i	5	0	0	0	Ö	o	o
30.0	0	0	0	ō	ŏ	0	ő	ō	0	ò	3	-1	o	o	ŏ	o	0
					V.						- 700		10.15			100	

TABLE 3. Seasonal values of K_{yz} (10¹ m²sec⁻¹).

SEASON: AUTUMN		но	RIZONT	AL DIF	FUSION	COLFF	ICIENTS	(K-YZ) 1	IN 10	METER	S SQUA	HED PER	SECO	NO.		
LATITUDE	75	7-0	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5
LONGITUDE: 80m																	
60.0 KM	10	296	517	440	314	223	142	138	106	-1	88	-154	-233	596	186	-351	-641
57.5		245	463	459	289	199	124	117	17	ò	64	-119	-167	356	100	-207	-377
55.0	5	194	409	428	265	176	107	95	49	0	39	-84	-100	115	13	-64	-114
52.5		140	305	315	178	104	59	61	37	ő	22	-53	-53	70		-36	-71
50.0	2	86	200	202	92	33	10	26	24	0	4	-21	-7	25		-8	-29
47.5	1	61	132	115	33	-1	2	23	14	0	5	-15	-1	31	•	-10	-32
45.0	i	36	63	28	-26	-36	-4	18	5	0	6	-9		38	13	-12	-35
42.5	ò	30	51	10	-43	-46	-0	11	2	0	6	-2	5	24	9	-6	-20
40.0	0	23	38	-6	-60	-56	-13	5	ō	0	5	3	6	10	5	0	-4
37.5	0	19	33	-4	-51	-48	-12	2	-1	0		i		11	5	0	-6
35.0	0	16	28	-2	-41	-41	-12	ō	-2	0		-1	5	11	5	-2	-8
32.5	o	10	18	-1	-28	-30	-11	-2	-2	ő	2	o	i		3	-1	-6
30.0	ō	•		ó	-14	-20	-ii	-4	-5	ŏ	ī	ŏ	i	*	ĩ	ò	-3
LONGITUDE: 150W																	
60.0 KM			-117	-68	51	102	82	61	29	0	-15	-26	-36	-40			
57.5			-80	-44	54	109	89	59	25	0	-10	-19	-28	-32			
55.0			-44	-20	57	116	95	58	20	ő	-5	-11	-20	-25			
52.5			-37	-20	40	86	71	42	14	0	-2	-6	-12	-15			
50.0			-30	-20	22	56	46	26	7	0	0	-1	-5	-6			
41.5			-26	-55	4	24	21	15	2	ő	i	i	-1	-2			
45.0			-22	-24	-14	-6	-;	-2	-2	ő	3		ż	1			
42.5			-13	-15	-13	-10	-6	-3	-2	0	5	5	7				
40.0			-3	-7	-12	-15	-9	-5	-1	0	2	7	13	14			
37.5			3	o	-8	-12	-7	-4	-1	0	i	5	8	10			
35.0			10	6	-5	-9	-5	-3	-1	. 0	i	2		5			
32.5			10	7	-2	-6	-4	-2	-1	ő	ŏ	ī	2	3			
30.0			10		•	-3	-5	-1	-i	ŏ	ŏ	i	ī	i			
LONGITUDE: MEAN																	
60.0 KM	10	296	200	210	182	162	112	99	67	0	36	-90	-135	278	186	-351	-641
57.5		245	191	207	172	154	106	88	51	0	26	-69	-97	161	100	-207	-377
55.0	5	194	182	204	161	146	101	76	35	ő	17	-48	-60	45	13	-64	-114
52.5		140	133	147	109	95	65	52	25	0	•	-29	-33	27		-36	-71
50.0	2	86	85	91	57	44	24	27	16	0	5	-11				-0	-29
47.5	ī	61	52	46	10	11	12	17		ő	3	-7	-1	14		-10	-32
45.0	i	36	20	1	-20	-21	-3		i		5	-2	3	19	13	-12	-35
42.5		30	18	-2	-29	-28	-7		i	0		ī		10	13	-6	-20
40.0	ŏ	23	17	-7	-36	-35	-11	ō	.0	ő	3	5		12	5	0	-4
37.5		19	10	-2	-29	-30	-10	-1	-1	0	3	3		10	5	0	-6
35.0	0	16	19	1	-23	-25	-8	-2	-i	0	5	o	3	8	5	-2	-6
32.5	ő	10	14	2	-15	-18	-7	-2	-i	0	i	0	2	5	3	-1	-6
30.0	0			3	-7	-11	-6	-3	-i	0		0	1	2	1	-	-3
			6														-3

TABLE 4. Seasonal values of $K_{zz} (10^3 cm^2 sec^{-1})$.

SE	ASON: WINTE	o	ve	ENTICAL	DIFF	USION	OFFF1	CIENTS	(x-27)	IN CM	SOUN	ED PER	SECO	40 TIM	5 1 n ³			
L	A11TUDE	75	70	65	60	55	50	45	40	35	30	25	. 20	15	10	5	0	-4
LONG	SITUDE: 80																	
	60.0 KM	1050	1000	1000	1150	1200	1300	1350	1250	1150	1100	1050	1200	1600	2000			
	57.5	P00	760	770	875	975	1115	1185	1125	1025	950	900	975	1500	2000	2100	2300	2450
	55.0	550	520	540	600	750	930	1020	1000	900	800	750	750	800	980	1050	1750	1875
	52.5	450	415	420	500	600	715	775	750	655	585	585	605	615	710	755	850	130n 95n
	50.0	350	310	300	400	450	500	530	500	410	370	420	460	430	440	460	500	
	47.5	310	280	275	330	345	375	390	355	280	270	115	350	345	355	375	390	600
	45.0	270	250	250	260	240	250	250	210	150	170	210	240	560	270	290	340	250
	42.5	210	190	180	180	165	160	150	125	90	100	140	175	195	195	195		
	40.0	150	130	110	100	90	70	50	40	30	30	70	110	130	120	100	145	165
	37.5	110	96	80	71	61	49	36	CH	23	24	47	70	81	75	65	60	57
	35.0	70	62	50	41	31	28	55	16	15	14	23	30	31	24	30	30	
	32.5	51	45	37	31	24	55	IR	14	14	18	20	21	51	19	20	35	33
	30.0	35	58	53	50	17	15	13	15	13	17	16	15	ii		10	14	14
LONG	ITUDF: 15	NW																
	60.0			2100	2000	2000	1800	1600	1500	1150	1100	1050	1050	1150	1250			
	57.5			1800	1750	1450	1550	1375	1275	1075	1000	025	950	1050	1125			
	55.0			1500	1500	1700	1300	1150	1050	1000	900	200	850	950	1000			
	52.5			1000	1025	1150	975	875	795	760	700	425	625	710	765			
	50.0			500	550	600	650	600	540	520	500	450	400	470	530			
	47.5			350	425	475	520	455	410	370	340	315	305	345	390			
	45.0			500	30.0	350	390	310	280	550	500	100	210	220	250			
	42.5			115	530	285	590	510	175	135	130	130	150	155	165			
	40.0			30	160	550	190	110	70	50	60	80	90	90	AO			
	37.5			18	95	146	118	68	45	30	38	54	63	81	A3			
	35.0			6	30	71	45	25	50	10	15	54	36	71	86			
	32.5			14	25	44	30	19	19	16	14	55	26	50	61			
	30.0			51	19	17	14	12	18	51	50	15	16	28	36			
MEAN																		
	60.0	1050	1000	1419	1575	1600	1550	1475	1375	1150	1100	1050	1125	1375	1681	2100	2300	2450
	57.5	400	760	1161	1313	1413	1333	1280	1200	1050	975	413	963	1125	1329	1575	1750	1875
	55.0	550	520	903	1050	1225	1115	1085	1025	950	A50	775	800	875	976	1050	1500	1300
	52.5	450	415	650	763	A75	845	825	773	708	643	605	615	663	724	755	850	950
	50.0	350	310	346	475	525	5/5	565	520	465	4 75	4.35	430	450	470	460	500	600
	47.5	310	580	321	378	410	448	423	383	325	310	115	328	345	367	375	390	425
	45.0	270	250	245	SHO	295	320	280	245	145	145	195	225	240	263	290	240	250
	42.5	510	190	173	204	225	. 225	180	150	113	115	1.35	163	175	183	195	185	165
	40.0	150	130	100	130	155	130	80	55	40	45	75	100	110	103	100	90	40
	37.5	110	96	69	H3	104	84	52	31	27	31	61	67	81	76	65	50	57
	35.0	70	65	39	36	51	37	24	14	13	17	26	33	51	49	30	30	33
	32.5	51	45	31	24	34	56	19	17	15	19	21	24	36	74	20	55	54
	30.0	32	2A	23	20	17	15	13	15	17	19	16	14	50	14		14	1#

TABLE 4. Seasonal values of K_{zz} ($10^3 \text{cm}^2 \text{sec}^{-1}$).

s	EASUN: SPHIN	G	ve	HTICAL	DIFFE	ISTON (OFFFIC	IENIC	(K-27)	IN CM	SQUA	ED PER	SECON	11#	S 1n ³			
	LATITUOF	75	70	65	69	55	50	44	+0	35	nF	25	50	15	10	,	0	
LO	NGITUDE: HO																	
	60.0 KM	550	600	600	550	530	550	700	A50	1000	1100							
	57.5	550	485	450	405	405	450	575	700	850	950	1000 +75	900 750	750	600	700	900	1050
	55.0	450	370	300	260	240	350	450	550	700	400	750	600		510	SAS	750	950
	52.5	380	125	285	255	270	315	370	435	560	650	-05	485	425	420	470	600	950
	50.0	310	240	270	250	260	240	290	320	420	500	460	370	350	410	450	540	685
	47.5	285	255	230	210	210	225	240	265	340	340	370	305	305	345	4.30	440	520
	45.0	260	230	190	170	160	170	190	210	260	240	280	240	260	290	365	385	410
	42.5	500	180	160	145	140	145	150	160	180	185	200	185	185	160	165	500	300
	40.0	140	130	130	120	120	120	110	110	100	70	120	130	110	30		185	205
	37.5	91	87	88	83	87	40	83	74	65	61	AB	96	70	25	30 25	80	110
	35.0	41	43	45	46	51	60	56	38	30	32	56	65	30	50	20	51	30
	32.5	31	30	30	24	34	38	35	24	19	55	39	42	25	20	50	100 000	
	30.0	50	17	15	15	14	15	13	10		12	21	21	50	50	19	51	25 25
LO	NGITUDE: 150) w																
	60.0			230	240	250	270	290										
	57.5			210	230	255	275	310	310	400	530	1000	1050	800	500			
	55.0			190	220	260	280	330	400	450	565	910	900	675	510			
	52.5			140	210	240	280	340	400	445	540	970	750	550	470			
	50.0			170	200	550	580	350	400	440	460	-60	600	450	360			
	47.5			160	140	200	240	300	350	375	395		450	350	300			
	45.0			150	160	180	200	250	300	310	310	400	360 270	275	245			
	42.5			135	135	140	150	180	510	225	225	300			190			
	40.0			120	110	100	100	110	140	140	140	150	205	170	160			
	37.5			97	70	55	60	68	75	86	90	98	94	95	130			
	35.0			74	30	10	19	26	29	32	40	45	48	50	91			
	32.5			56	21	A	12	17	63	24	34	36	37	37	52			
	30.0			37	12	4.	5	7	16	50	27	27	25	23	36			
ME A	N																	
	60.0	650	600	456	395	390	410	495	500	700							-	
	57.5	550	485	366	31A	330	363	441	548	638	815	1000	975	775	644	700	900	1050
	55.0	450	370	275	240	270	315	390	475	575	75A	193 785	825	650	564	585	750	950
	52.5	380	325	256	233	255	248	355	418	503	595		543	525	459	470	600	850
	50.0	310	280	236	225	240	580	320		430		433			415	450	540	685
	47.5	285	255	210	195	205	233	270	300 308	358	343	480	410	350	370	430	440	520
	45.0	260	230	184	165	170	185	220	255	265	295	385	333	290	311	145	345	410
	42.5	200	180	154	140	140	148	165	185	203	205	290	255	230	253	300	240	300
	40.0	140	130	124	115	110	110	110	115	120	115	213	195	178	166	145	185	205
	37.5	91	87	88	77	71	75	76	75	76	76	135	135	125	79	30	HO	110
	35.0	41	43	50	38	32	40	•1	34	31		93	95	83	56	25	51	70
	32.5	31	30	35	25	21	25	26	24	24	16	51	55		13	50	55	30
	10.0	50	17	20	12	10	10	in	13	17	75	3A 24	23	31	27	70	51	5H

TABLE 4. Seasonal values of K_{zz} ($10^3 \text{cm}^2 \text{sec}^{-1}$).

LANTITUDE: 80W	SEASON: SLIMMER		VŁ	-TICAL	DIFFU	SION C	OFFFIC	LENTS	(×-27)	IN CA	500AL	EU PER	SECON	(I) TIME	5 1n ³			
60.0 KM 550 480 410 450 455 430 480 550 1050 1800 2150 2250 2000 1450 1300 2000 2150 275.5 485 440 440 440 441 373 375 340 420 690 1150 1-75 1700 1500 1000 975 1550 1475 55.5 476 406 410 430 380 382 300 220 330 370 800 725 480 470 475 800 1150 1400 475 55.6 476 470 475 800 1150 1400 475 475 800 1150 1400 475 476 476 475 800 1150 1400 475 476 476 475 800 1150 1400 475 476 476 475 800 1150 1400 475 476 476 475 800 1150 1400 476 476 476 475 800 1150 1400 476 476 477 800 1150 1400 476 476 477 800 1150 1400 476 476 477 800 1150 1400 476 476 477 800 1150 1400 476 476 477 800 1150 1400 476 476 477 800 1150 1400 476 476 477 800 1150 1400 476 476 477 800 1150 1400 476 476 477 800 1150 1400 476 476 477 800 1150 1400 476 476 477 800 1150 1400 476 476 477 800 1150 1400 476 476 476 476 476 476 476 476 476 476	LATITUNE	75	70	65	50	55	50	45	40	35	10	25	20	15	10	5	0	-4,
57.5	LONGITUUF: 80																	
57.5																		
55.0																		
52.5 385 365 370 370 330 320 260 260 260 260 270 375 860 125 420 475 870 1150 500 400 47.5 285 295 300 280 240 220 200 260 270 420 300 475 870 200 47.5 285 295 300 280 240 240 120 100 200 335 426 45.0 220 260 270 250 260 110 200 110 310 110 350 42.5 160 190 195 180 150 110 190 100 150 175 185 185 80 65 75 125 225 40.0 110 120 120 110 100 80 60 70 100 110 110 80 50 40 50 80 100 200 335 426 40.0 110 120 120 110 100 80 60 70 100 110 110 80 50 40 50 80 100 37.5 71 78 79 75 76 71 60 62 72 84 71 53 36 31 37 54 67 33.0 13 35 38 40 51 62 60 54 43 38 31 26 22 21 24 48 33 32.5 25 28 30 28 33 37 35 31 29 28 48 33 32.5 25 28 30 28 33 37 35 31 29 28 28 28 28 28 28 28 28 28 28 28 28 28					-					7500				0.00000				
50.0 350 330 330 310 240 226 220 230 250 250 250 270 450 570 450 290 300 500 900 47.5 285 295 300 240 245 200 170 180 230 276 460 430 280 190 200 333 428 45.0 220 260 270 260 270 260 270 170 180 230 270 260 270 460 290 110 90 100 170 350 42.5 105 190 199 180 150 170 190 190 150 170 185 185 80 65 75 125 225 40.0 110 120 120 110 100 80 60 70 100 150 170 185 80 65 75 125 225 40.0 110 120 120 110 100 80 60 70 100 150 170 180 80 60 50 80 100 37.5 170 178 77 76 71 60 62 72 84 71 53 36 31 37 4 67 35.0 31 35 38 40 51 62 60 54 43 34 31 26 22 21 24 24 33 32.5 25 28 30 28 33 37 35 31 29 27 26 24 23 23 23 23 23 23 30.0 19 20 21 16 15 12 10 8 14 14 14 20 22 23 25 21 17 11 11 100 190 190 190 190 190 190 190 1									0.00									
47.5																		
45.0 220 260 270 270 270 270 140 120 130 200 270 270 270 110 100 150 150 170 350 42.5 165 160 195 180 150 110 90 100 150 175 185 185 80 65 75 125 225 40.0 110 120 120 110 100 180 60 70 100 110 10 10 80 60 70 100 130 110 80 50 40 50 80 100 37.5 71 78 77 77 77 77 77 71 60 62 72 84 71 53 36 31 37 54 67 35.0 31 35 38 40 51 62 60 54 43 38 31 26 22 71 24 28 33 32.5 25 28 30 28 33 37 35 31 29 28 28 28 29 29 24 28 23 23 23 23 23 30.0 19 20 21 16 15 12 10 8 14 14 18 20 22 23 25 23 25 21 17 11 11 11 11 11 11 11 11 11 11 11 11					-		100											
42.5																		
40.0 110 120 120 110 100 100 60 70 100 110 110 10 60 50 40 50 100 100 100 100 100 100 100 100 100							-							-				Control of the contro
37.5											0.000	* III - TO	7.00	7000				
35.0 31 35 38 40 51 62 60 54 43 34 31 20 22 21 24 24 33 33 30.0 19 20 21 16 15 12 10 H 14 14 20 22 23 23 23 23 23 23 23 23 23 23 23 23																		
32.5 . 25 28 30 24 33 37 35 31 29 24 26 23 23 23 23 23 23 23 23 23																		
10.0 19 20 21 16 15 12 10 H 14 14 1H 20 22 23 25 21 17 17 11 10 10 10 10 10 10 10 10 10 10 10 10																		-
60.0 350 400 500 600 480 360 320 440 460 800 1000 1100 57.5 265 350 440 445 390 310 285 360 445 640 825 1050 55.0 180 300 380 380 370 370 300 260 250 260 330 480 650 1000 552.5 145 250 270 330 380 515 720 50.0 110 200 270 260 200 120 190 260 270 300 380 440 47.5 100 150 230 210 135 15 15 15 15 15 15 15 15 15 15 15 15 15																		
57.5 55.0 180 300 380 370 300 260 250 280 380 480 650 1000 52.5 185 260 170 300 380 370 300 260 250 280 380 480 650 1000 52.5 185 260 170 200 270 280 280 190 280 270 300 380 440 47.5 180 100 150 230 210 135 75 135 215 240 250 370 45.0 90 100 190 160 70 30 80 190 240 270 280 300 45.5 80 90 100 190 160 70 30 80 190 210 280 300 42.5 80 90 100 190 160 70 30 80 190 160 165 150 185 220 40.0 70 80 90 70 30 80 130 110 160 70 150 80 190 270 300 380 440 37.5 60 70 70 70 30 80 130 110 160 70 150 80 190 210 280 300 42.5 80 90 100 190 160 70 30 80 190 190 160 165 150 185 220 40.0 70 80 90 70 30 80 130 110 160 90 110 160 200 37.5 60 70 70 70 30 80 130 110 160 70 150 80 110 160 200 37.5 60 70 70 70 30 80 130 110 160 70 150 80 110 160 200 37.5 60 70 70 70 30 80 130 110 160 70 150 80 110 160 200 37.5 60 70 70 70 30 80 130 110 160 70 150 80 110 160 100 100 100 100 100 100 100 10	LONGITUDE: 150																	
57.5 55.0 180 300 380 370 300 260 250 280 380 480 650 1000 52.5 185 260 170 300 380 370 300 260 250 280 380 480 650 1000 52.5 185 260 170 200 270 280 280 190 280 270 300 380 440 47.5 180 100 150 230 210 135 75 135 215 240 250 370 45.0 90 100 190 160 70 30 80 190 240 270 280 300 45.5 80 90 100 190 160 70 30 80 190 210 280 300 42.5 80 90 100 190 160 70 30 80 190 160 165 150 185 220 40.0 70 80 90 70 30 80 130 110 160 70 150 80 190 270 300 380 440 37.5 60 70 70 70 30 80 130 110 160 70 150 80 190 210 280 300 42.5 80 90 100 190 160 70 30 80 190 190 160 165 150 185 220 40.0 70 80 90 70 30 80 130 110 160 90 110 160 200 37.5 60 70 70 70 30 80 130 110 160 70 150 80 110 160 200 37.5 60 70 70 70 30 80 130 110 160 70 150 80 110 160 200 37.5 60 70 70 70 30 80 130 110 160 70 150 80 110 160 200 37.5 60 70 70 70 30 80 130 110 160 70 150 80 110 160 100 100 100 100 100 100 100 10	60.0			350	400	500	600	480	360	320	440	560	800	1000	1100			
55.0 180 300 380 370 370 300 260 250 280 330 480 650 1000 52.5 185 250 325 315 250 190 220 260 300 300 315 720 50.0 110 200 270 260 200 120 190 240 270 300 380 440 47.5 100 150 230 210 135 75 135 215 240 255 320 370 45.0 90 100 190 160 70 30 80 190 190 200 300 42.5 80 90 140 115 50 55 105 150 150 150 185 220 40.0 70 80 90 70 30 80 130 110 160 370 35.0 50 60 70 73 50 28 60 84 70 63 60 78 100 35.0 50 60 60 55 30 25 40 38 30 26 29 45 60 32.5 38.4 30.0 80 40 431 425 475 515 480 455 685 1120 1330 1525 1500 1338 1300 2000 2150 57.5 485 440 385 395 428 430 390 365 488 765 1010 1170 1183 1047 975 1550 1975 55.0 470 400 339 365 380 390 365 380 300 275 290 390 890 110 110 110 110 110 110 110 110 110 1																		
52.5 145 250 327 315 250 190 220 260 300 390 515 720 50.0 110 200 270 260 200 120 190 240 770 300 380 440 41.5 100 150 230 210 135 75 135 215 240 255 320 370 45.0 90 100 190 160 70 30 80 190 210 210 260 300 42.5 40.0 70 80 90 70 30 80 190 210 210 260 300 40.0 70 80 90 70 30 80 190 155 150 185 220 40.0 70 80 90 70 30 80 130 110 100 90 110 140 37.5 60 70 71 73 50 24 60 84 70 63 60 78 100 32.5 38 45 43 25 19 29 32 26 23 26 35 44 30.0 25 29 30 20 12 18 26 21 20 23 25 28 MEAN																		
50.0										-	- Comment							
47.5 45.0 90 100 190 160 70 30 80 190 210 210 260 300 42.5 80 90 100 190 160 70 30 80 190 210 210 260 300 42.5 80 90 100 190 165 50 55 105 150 155 150 185 220 40.0 70 80 90 70 30 80 130 130 130 130 140 140 37.5 60 70 73 50 28 60 84 70 63 60 79 100 35.0 35.0 50 60 60 55 30 25 40 38 30 26 29 45 60 32.5 38 45 43 25 19 29 32 26 23 26 35 44 30.0 MEAN MEAN	50.0																	
45.0	47.5																	
42.5	45.0			90	100	190	160	70	30	AU	140	210	210	260				
40.0 70 80 90 70 30 80 130 110 100 90 110 140 300 37.5 60 70 70 70 70 30 80 130 110 100 90 110 140 35.0 35.0 50 60 75 30 25 40 38 30 .26 29 45 60 32.5 38 45 43 25 19 29 32 26 23 26 35 44 30.0 25 29 30 20 12 18 20 21 20 23 25 28 35 44 30.0 25 29 30 20 12 18 20 21 20 23 25 28 35 44 30.0 25 29 30 20 12 18 20 21 20 23 25 28 35 44 30.0 25 29 30 20 12 18 20 21 20 23 25 28 35 34 35 34 35 39 365 395 428 430 390 365 888 755 1010 1170 1163 1047 975 1550 1975 55.0 480 400 339 365 380 390 390 390 390 390 490 115 112 112 112 112 112 112 112 112 112	42.5			80	90	140	115	50	55	105	150			185				
37.5 35.0 50 60 55 30 25 40 38 30 26 29 45 60 32.5 38.45 47 25 19 29 32 26 27 26 35 44 30.0 MEAN MEAN 60.0 550 480 431 425 475 515 480 455 685 1120 1230 1525 1500 1338 1300 2000 2150 57.5 485 440 385 395 428 430 390 365 888 765 1010 1170 1163 1047 975 1550 1975 55.0 470 400 339 365 380 385 390 275 290 390 690 815 825 766 650 1100 1800 52.5 385 365 298 310 330 330 255 225 258 328 518 625 650 475 800 1338 1300 2000 2150 58.0 58.0 58.0 58.0 58.0 58.0 58.0 58	40.0			70	HO	90	70	30	80	130	110	100		110				
32.5 30.0 38				60	70	73	50	29	60	84	70	63	60	79				
30.0 25 29 30 20 12 18 26 21 20 23 25 28 MEAN 60.0 550 480 431 425 475 515 480 455 685 1120 1330 1525 1500 1338 1300 2000 2150 57.5 485 440 385 395 428 430 390 365 888 765 1010 1170 1163 1047 975 1550 1975 55.0 420 400 339 365 380 345 390 375 275 290 390 890 890 815 825 756 650 1100 1800 52.5 385 385 385 298 310 330 303 255 225 258 328 518 625 520 475 800 1350 50.0 350 330 256 255 280 260 210 175 225 265 387 545 415 361 300 500 900 447.5 285 295 228 215 238 205 153 128 183 235 290 343 300 265 200 335 625 450 200 200 199 175 195 150 180 180 235 250 185 169 100 170 350 450 200 200 199 175 195 150 190 150 140 205 235 250 185 169 100 170 350 400 110 120 101 95 95 75 45 75 115 120 105 85 80 78 75 125 225 40.0 110 120 101 95 95 75 45 75 115 120 105 85 80 78 75 17 77 77 54 67 350 31 35 43 50 53 45 50 53 46 43 47 41 38 29 28 38 35 54 28 35	35.0			50	60	55	30	25	40	38	30	26	24	45				
MEAN 60.0 550 480 431 425 475 515 480 455 685 1120 1x30 1525 1500 1338 1300 2000 2150 57.5 485 440 3365 395 428 430 390 365 888 765 1010 1170 1163 1047 975 1550 1975 55.0 420 400 339 365 180 35 300 275 290 390 490 H15 825 756 650 1100 1800 52.5 365 298 310 330 303 255 252 258 328 418 625 620 559 475 800 1350 50.0 350 350 275 290 390 490 H15 825 756 650 1100 1800 50.0 400 350 350 350 255 280 260 210 175 225 268 328 415 361 300 500 400 475 800 1350 475 800 475 800 1350 475 800 1350 475 800 1350 475 800 1350 475 800 1350 475 800 1350 475 800 1350 475 800 1350 475 800 1350 475 800 1350 475 800 1350 475 800 1350 475 800 1350 475 800 1350 475 800 1350 475 800 475 800 1350 475 800 475 800 1350 475 800 475 800 1350 475 800				34	. 45	41	25	19	29	32	24	23	26	35	44			
60.0 550 480 431 425 475 515 480 455 685 1120 1330 1525 1500 1338 1300 2000 2150 57.5 485 440 385 395 428 430 390 365 488 755 1010 1170 1163 1047 975 1550 1975 55.0 420 400 339 365 180 345 300 275 290 390 490 415 825 756 650 1100 1800 52.5 385 365 298 310 330 303 255 225 258 328 418 625 620 559 475 800 1350 50.0 350 330 256 255 280 260 210 115 225 285 384 45 415 381 300 500 900 47.5 285 295 228 214 238 205 153 124 183 235 240 343 300 285 200 335 625 450 220 260 199 175 195 150 95 80 140 205 235 250 185 169 100 170 350 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40	30.0			25	50	30	50	15	IA	26	21	20	23	25	28			
57.5 485 440 385 395 428 430 390 365 888 765 10.0 1170 1163 1047 975 1550 1975 1550 420 400 339 365 180 345 300 275 290 390 490 415 825 756 650 11100 1800 52.5 385 365 298 310 330 303 255 225 258 328 418 625 620 559 457 800 1350 50.0 400 457 52.5 258 328 415 361 300 500 400 457.5 285 295 228 215 238 205 153 128 183 235 240 343 300 285 200 335 625 457 620 4	MEAN																	
57.5 485 440 385 395 428 430 390 365 888 765 10.0 1170 1163 1047 975 1550 1975 1550 420 400 339 365 180 345 300 275 290 390 490 415 825 756 650 11100 1800 52.5 385 365 298 310 330 303 255 225 258 328 418 625 620 559 457 800 1350 50.0 400 457 52.5 258 328 415 361 300 500 400 457.5 285 295 228 215 238 205 153 128 183 235 240 343 300 285 200 335 625 457 620 4	60.0	550	480	431	425	475	515	480	455	685	1120	1230	1525	1500	1338	1300	2000	2150
55.0 420 400 339 365 38n 345 30n 275 290 39n 49n 415 825 756 650 1100 180n 52.5 385 365 298 310 330 3255 225 225 328 418 625 620 559 475 800 1350 50.0 350 330 256 255 28n 260 21n 115 225 28h 415 415 415 38h 380 500 90n 47.5 285 295 228 214 238 205 153 124 183 235 240 343 300 285 200 335 625 45.0 220 260 199 175 195 150 95 80 140 205 235 250 185 189 100 170 350 40.0 100 100 100 100 100 100 100 100 100																		
52.5 385 365 298 310 330 303 255 225 258 328 418 625 620 559 475 800 1350 50.0 350 330 256 255 280 260 210 175 225 255 145 435 415 361 300 500 900 447.5 285 295 228 215 238 205 153 124 183 235 290 343 300 265 200 335 625 45.0 220 260 199 175 195 150 90 140 205 235 250 185 169 100 170 350 442.5 165 190 150 135 145 113 70 78 128 163 170 164 133 124 75 125 225 40.0 110 120 101 95 95 75 45 75 115 120 105 85 80 78 50 80 180 170 170 37.5 71 78 73 73 75 61 44 61 78 77 67 57 57 57 57 57 57 57 57 57 57 57 57 57								100000000000000000000000000000000000000							- C.S. C.S. C.			
50.0 350 330 256 255 280 260 210 175 225 265 145 415 361 300 500 900 47.5 285 295 228 715 238 205 153 128 183 235 290 343 300 265 200 335 625 45.0 220 260 149 175 150 95 80 140 205 235 250 185 169 100 170 350 42.5 165 190 150 135 145 113 70 78 128 163 170 168 133 128 75 125 225 40.0 110 120 101 45 95 75 45 75 115 120 105 85 80 78 40 80 100 37.5 71 78 73 73 73 75 61 44 61 78 77 67 57 57 57 37 54 67 35.0 31 35 43 50 53 46 43 47 41 38 29 28 38 35 28 28 35					- 2000													
47.5 285 295 228 215 238 205 153 124 183 235 240 343 300 265 200 335 625 45.0 220 260 199 175 195 150 95 80 140 265 235 250 185 169 100 170 350 42.5 165 190 150 135 145 113 70 78 128 153 170 164 133 124 75 125 225 40.0 110 120 101 45 95 75 45 75 115 120 105 85 80 78 50 80 100 37.5 71 78 73 73 75 61 44 61 78 77 67 57 57 57 57 37 54 67 35.0 31 35 43 50 53 46 43 47 41 36 29 28 34 35 24 28 33		350	330	256														
45.0 220 260 199 175 195 150 95 80 140 205 235 250 185 169 100 170 350 42.5 165 190 150 135 145 113 70 78 128 163 170 168 133 124 75 125 225 40.0 110 120 101 45 95 75 45 75 115 120 105 85 80 78 50 80 100 37.5 71 78 73 73 75 61 44 61 78 77 67 57 57 57 37 54 67 35.0 31 35 43 50 53 46 43 47 41 34 24 28 34 35 24 28 33		285	295	228	715	23A	205		124									
42.5 165 190 150 135 145 113 70 78 128 163 170 166 133 126 75 125 225 40.0 110 120 101 45 95 75 45 75 115 120 105 85 80 78 40 80 100 37.5 71 78 73 73 75 61 44 61 78 77 67 57 57 57 37 54 67 35.0 31 35 43 50 53 46 43 47 41 36 24 28 34 35 26 28 37	45.0	220	260	199	175	195										5 (5.5)		
40.0 110 120 101 45 95 75 45 75 115 120 105 85 80 74 50 80 100 100 37.5 71 78 73 73 75 51 44 51 78 17 67 57 57 57 77 75 66 735.0 31 35 43 50 53 46 43 47 41 34 24 28 34 35 24 28 37	42.5	165	190	150	135	145	113	70	78	158	163	110			4.77	14 (16) 4		
37.5 71 78 73 73 75 61 44 61 78 77 67 57 57 37 54 67 35.0 31 35 43 50 53 46 43 47 41 34 24 28 34 35 24 28 33		110	120	101	45	95												
35.0 31 35 43 50 53 46 43 47 41 34 74 78 34 35 76 78 37		71		73	73	75	51	44	61	78	17		57	57				
					50	53	46	43	47	41	34	74	28	34	35	26	24	
	32.5	25	28	33				27				25				23		
30.0 19 20 22 21 23 16 11 13 20 20 20 23 24 25 21 17 11	30.0	19	50	22	21	53	16	11	13	50	20	20	23	24	25	21	17	

TABLE 4. Seasonal values of $K_{zz} (10^3 cm^2 sec^{-1})$.

SEASON: AUTUMN		ve	HTICAL	DIFFU	SION C	nt FF 1 C	LENTS	(x-27)	IN CM	Sacra	EU PFE	SECON	10 TIME	s 103			
LATITUNE	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-4
LONGITUDE: BOW																	
60.0 KM	570	590	640	620	580	530	520	600	750	1000	1-00	2000	2200	2300	2100	1800	1450
57.5	535	540	555	540	510	475	470	515	615	H25	1 125	1725	2000	2100	1900	1650	1250
55.0	500	440	470	460	440	420	420	4.10	480	650	1050	1450	1800	1900	1700	1500	1050
52.5	410	410	410	430	425	415	420	425	435	525	775	1150	1425	1500	1350	1175	825
50.0	120	130	350	400	410	410	420	420	390	400	-00	850	1050	1100	1000	850	600
47.5	250	265	295	335	350	360	380	375	330	330	390	590	765	A05	750	645	465
45.0	180	200	240	270	290	310	340	330	270	240	280	330	480	510	500	440	330
42.5	150	160	175	190	205	225	260	250	200	140	210	255	350	375	350	300	230
40.0	120	120	110	110	120	140	180	170	130	120	140	180	220	240	200	160	130
37.5	105	95	85	19	90	103	120	110	86	78	98	130	153	150	132	107	88
35.0	90	70	60	52	60	65	60	50	41	35	55	80	85	75	-		45
32.5	58	47	40	34	38	40	38	34	30	24	40	55	58	54	64	53 3H	31
	25	24	20		15	15	16	17	19	21		29	30				
30.0	"	-	20	16	17	13		.,	17		24		30	32	24	55	17
LONGITUDE: 150																	
60.0			1500	1600	1500	1300	1150	1050	1100	1150	1150	1050	400	300			
57.5			1350	1350	1250	1125	975	800	775	825	450	875	385	315			
55.0			1200	1100	1000	950	800	550	450	500	750	700	370	330			
52.5			925	825	750	725	600	450	410	450	405	600	395	335			
50.0			650	550	500	500	400	350	370	400	460	500	420	340			
47.5			385	320	290	300	280	275	300	335	380	410	375	320			
45.0			120	90	80	100	100	200	230	270	300	320	330	300			
42.5			95	65	50	65	120	150	170	190	>10	230	240	235			
40.0			70	40	20	30	80	100	110				150	170			
37.5			61	34	25	28		73	86	110	150	140	98				
35.0			52	27	23	26	31	45	62	52	43	90	45	115			
			44								10000000						
32.5			35	52	50	16	25	23	26	39	35	17	19	21			
MEAN																	
		-															
60.0	570	590	960	1110	1040	915	835	A25	925	1075	1 175	1525	1300	1500	2170	1800	1450
57.5	535	540	848	945	980	800	723	658	645	825	1138	1300	1193	1377	1900	1650	1250
55.0	500	490	735	780	720	695	610	490	465	575	000	1075	1085	1254	1700	1500	1050
52.5	410	410	594	62A	SAA	570	510	43A	423	488	490	875	910	1024	1350	1175	825
50.0	320	330	451	475	455	455	410	385	380	400	480	675	735	794	1000	850	600
47.5	250	265	310	328	320	330	330	325	315	333	185	500	570	612	750	645	465
45.0	100	200	185	140	185	205	250	265	250	265	290	325	405	429	500	440	330
42.5	150	160	140	120	128	145	190	200	185	190	210	243	295	314	350	300	230
40.0	120	120	94	75	70	85	130	135	120	115	130	160	185	199	200	160	130
37.5	105	95	75	58	54	66	88	92	86	MA	90	110	126	133	132	107	88
35.0	90	70	56	40	42	46	46	48	52	44	49	60	65	66	64	53	45
32.5	50	47	40	30	30	31	32	34	37	34		45	45				
30.0	25	24	25	19	19	16	17	20	23	23	36	23	25	27	26	36	31
					-100			7					11100				

TABLE 5. Seasonal mean temperatures (OK).

SEASON: WINTER			MEA	N T													
LATITUDE	75	70	65	60	55	50	45	40	35	10	25	20	15	10	5	0	-5
60.0 KM	258	258	259	260	260	259	257	255	256	256	258	259	260	260	261	261	260
57.5	257	258	254	260	261	261	260	258	258	258	261	264	265	265	266	266	265
55.0	256	257	258	260	261	262	595	261	260	260	264	268	270	270	270	270	270
52.5	254	254	254	257	260	262	262	263	263	264	267	270	271	272	272	271	271
50.0	251	250	250	253	25A	261	262	264	266	268	269	271	272	273	273	272	272
47.5	248	246	246	249	254	259	192	263	266	264	270	271	271	271	271	271	271
45.0	244	242	241	244	250	526	260	262	265	270	270	270	269	269	269	270	270
42.5	238	237	236	239	245	253	256	257	260	263	263	264	263	263	263	264	264
40.0	232	231	530	233	240	250	252	555	254	255	756	257	257	257	257	257	257
37.5	228	227	227	554	235	245	247	2+7	247	248	248	249	249	249	249	249	249
35.0 32.5	223	223	223	225	559	239	241	241	240	240	240	241	241	240	240	240	241
30.0	216	220	218	219	555	226	226	234	235	235	235	235	235	235	235	235	236
30.0	210	211	210	217	***	220	220	221	221	230	230	227	224	***	224	230	231
SEASON: SPRING																	
60.0 KM	268	266	265	264	262	260	259	257	257	25A	257	256	257	257	258	258	259
57.5	270	269	268	267	266	264	263	261	261	262	261	260	261	261	262	262	263
55.0	271	271	270	270	270	268	266	205	265	265	265	264	265	265	265	266	266
52.5	271	272	271	271	271	270	269	268	268	268	268	268	269	266	268	269	264
50.0	271	272	272	272	271	271	271	271	271	210	271	271	272	271	271	271	270
47.5	268	268	269	569	270	270	270	271	270	269	270	270	271	271	271	271	271
45.0	264	264	265	265	268	269	269	270	269	266	268	269	270	270	271	271	271
42.5	258	258	258	258	500	295	263	264	264	263	263	264	265	265	260	266	266
40.0	251	251	250	250	252	255	256	257	258	258	258	259	260	260	260	260	201
37.5	246	246	245	245	246	249	250	251	252	252	252	252	253	252	252	252	253
35.0	240	240	239	239	240	243	244	245	245	245	245	245	245	244	244	244	244
32.5	236	235	235	234	235	237	237	239	239	239	239	239	239	239	239	239	239
30.0	231	230	230	529	559	230	230	232	535	233	233	233	232	233	233	233	233
SEASON: SUMMER																	
60.0 KM	276	274	271	268	262	259	257	253	253	253	253	254	256	256	256	255	255
57.5	279	277	275	272	267	264	262	25A	258	258	257	258	260	590	260	590	260
55.0	281	280	278	275	271	269	206	263	262	505	261	262	264	264	264	264	265
52.5	283	201	279	277	273	271	269	207	266	206	264	264	265	266	266	267	264
50.0	284	282	280	278	275	272	271	271	270	209	267	266	266	267	268	269	270
47.5	281	280	278	276	274	272	271	271	209	264	266	265	266	266	267	268	268
45.0	277	277	275	274	273	272	271	270	268	206	264	264	265	265	265	266	266
42.5	271	271	564	267	267	566	265	264	595	261	260	260	260	560	560	561	261
40.0	265	264	595	540	560	560	259	257	256	256	255	255	254	254	255	256	256
37.5	259	257	256	255	255	254	253	525	251	250	249	249	248	248	248	249	250
35.0	246	250	250	244	249	248	247	246	239	243	243	242	241	241	241	242	243
30.0	240	239	239	238	237	235	233	232	232	231	237	231	230	230	230	230	230
SEASON: AUTUMN																	
60.0 KM	261	261	261	260	260	260	259	257	257	256	256	256	. 256	257	257	257	256
57.5	261	262	595	261	261	262	261	260	260	260	561	261	261	261	261	261	261
55.0	261	595	262	262	265	263	203	263	263	264	265	265	265	265	265	265	265
52.5	259	260	261	261	261	262	563	264	265	266 268	267	268	271	268	271	272	272
47.5	251	253	255	256	257	259	262	264	266	267	268	269	270	271	271	271	272
45.0	245	244	250	252	254	257	260	263	264	205	266	268	269	270	270	270	271
42.5	238	241	243	246	248	251	254	256	257	259	260	262	263	264	265	265	206
40.0	231	233	236	239	241	244	247	244	250	252	254	256	257	258	259	259	260
37.5	227	229	231	234	236	239	242	244	245	246	247	249	250	251	252	252	253
35.0	525	224	556	559	230	233	236	238	239	240	240	241	242	243	244	245	246
32.5	219	125	223	225	227	229	232	234	235	235	236	236	237	538	238	238	239
30.0	216	218	220	551	553	225	228	229	230	230	231	231	232	232	231	531	535

TABLE 6. Variance of temperature (°K2).

SEASON: WINTER			VAR	1													
LATITUDE	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5
60.0 KM	72	74	76	73	70	54	35	27	31	33	26	17	14	14	13	14	15
57.5	64	74	74	73	68	25	33	26	29	30	24	17	14	13	13	14	15
55.0	64	73	72	72	66	50	30	25	26	26	55	16	14	15	12	13	15
52.5	68	73	74	73	66	51	31	25	25	24	20	16	14	15	12	13	15
50.0	72	73	75	73	66	52	31	25	24	21	14	15	14	12	12	13	14
47.5	71	74	78	78	71	59	41	33	28	25	19	15	13	13	13	13	1.3
45.0	70	75	80	6.6	76	65	50	40	32	28	50	15	15	13	13	15	11
42.5	58	71	79	82	67	56	48	42	35	29	19	15	15	13	13	13	13
47.5 45.0 42.5 40.0 37.5	58	57	66	61	58	50	45	43	37	30	18	14	11	12	12	13	14 12 10 9
37.5	49	46	54	50	38	29	36	24	31	25	15	12	11	11	10	10	10
32.5	37	41	42	34	31	25	22	20	19	16	13	11	10	9		9	10
30.0	34	33	30	28	23	20	17	15	14	11	10			6	6	,	
30.0	34	33	30	20	.,		.,		•			,			•		
SEASON: SPRING																	
60.0 KM	10	16	15	17	17	14	13	15	16	17	13	11	12	12	13	14	14
57.5 55.0	20	17	15	16	16	14	13	14	16	16	13	10	12	12	13	14	13
55.0	21	17	14	15	14	13	12	15	15	15	12	9	11	12	12	13	15
52.5	55	19	15	15	14	13	13	13	14	14	12	9	11	12	13	13	12
52.5 50.0 47.5 45.0	22 22 24 26 28 30	20	16	14	13	13	13	13	12	12	11	9	10	12	13	12	11
47.5	24	20	17	15	14	14	13	13	12	12	11	9	10	13	14 15 15	13	11
45.0	56	20	17	16	14	14	13	13	12	12	11	9	9	13	15	14	11
*2.5	28	20	18	16	14 15 15	14	13	13	13	13	11	9	9	12	15	15	14
*0.0	30	20	18	16	15	13	13	12	14	14	10	9	•	11	15	16	16
37.5	30	20	17	15	15	13	13	12	13	12	10	9	9	11	13	1.	14
42.5 40.0 37.5 35.0 32.5	30	19	15	14	14	13	11	11	11	10		6 7	9	10	11	11	12
30.0	27	14	13	12	11	10	9		7	7	6	6	6	5	6	,	8
****	•	••			••												٠
SEASON: SUMMER																	
SEASON! SUMMER																	
60.0 KM	11	9			•	9	13	17	55	53	55	55	21	19	17	15	15
57.5	10		8	7	7		15	13	19	55	55	16	18	16	15	12	13
62.6	10	9	8	7	7		10	13	17	21	17	10	17	12	12	12	12
50.0	11			7	7		10	15	10	19	13	- 11	ii	12	12	ii	11
47.5	10 11 14 17	10	10		7		10	12	14	17	13	14 11 13	13	12 12 12 12 11	12 12	11	10
45.0	17	13	11	9	7	8 7	9	11	13	15	13	15	15	11	11	10	9
42.5	17	14	11	9	7	7		10	12	15	15 '	14	14	11	10	9	
60.0 KM 57.5 55.0 52.5 50.0 47.5 45.0 42.5 40.0 37.5 35.0	16	14	11		7	7	7		11	14	15,	13	14 13 11 13 15 14 13 10	10	10 9 8 7	8	11 10 9 8 8
37.5	15	15	12	*	7	7	7	7	4	11	10	11	10	7		8	8
35.0	13	14	12	8		•	6	6	7		8	8	7			8 8 7	8
32.5	12	15	9	•	6	5		6	7	7			6	6	6		7
30.0	11	10	6	•	•	•	•	,	•		6	•	5	5	5	6	6
SEASON: AUTUMN																	
60.0 KM	33	34	36	41	30	26	22	19	19	30	21	16	16	15	15	15	14
57.5	33	34	38	40	30	26	21	19	19	26	19	16	15	14	14	14	13
55.0	35	34	37		30	25	20	18	10	55	17	14	13	13	15	15	11 10
52.5	34	35 35 35 35 31 26	37	36 32 32 31 25	30	25	20	18	10	19	16	13	12	13	15	15	10
50.0	35	35	36	35	30	24 23 19 14	20	17	17	16	14	11	11	15	15	11	. 9
47.5	35	35	35	35	59	24	20	18	17	16	14	15	15	15	12	11	10
45.0	35	35	33	31	27	23	19	10	16	16 17 17	14	13	13	15	15	11	10
40.5	30	31	24	25	17	14		13	15	17	15	13	13		1.	13	11
17.6	20	21	20	17	16	11	14	11	14	16	15	12	13	10	13	12	**
35.0	14	16	14	14	15	ii	12		10	15	14	16 14 13 11 12 13 13 12 12 12	11	10	10	10	11
60.0 KM 57.5 55.0 52.5 50.0 47.5 45.0 42.5 40.0 37.5 35.0 32.5	33 32 34 35 35 35 36 25 20 14	16	36 35 33 29 24 20 16	12	ii	iò	10	9	10	ii	19 17 16 14 14 15 15 15 16	10	10		14 12 12 12 12 12 14 16 13	10	10 10 11 11 11 11
30.0	10	ii	12	10	.,		,	,	,	10	10	10	13 12 11 12 13 13 13 12 11	14 13 13 12 12 12 14 16 13 10 9	•		
				••											10 E		

TABLE 7. Seasonal mean zonal wind speed $(10^1 \text{ m sec}^{-1})$.

CATITUDE	SEASON: WINTER			MEA	N U													
57.5 113 150 150 425 475 535 605 713 653 526 410 325 215 140 103 755 -39 55.4 75 125 150 426 470 530 605 710 805 470 330 250 130 770 5 -50 -160 56.0 73 128 110 410 466 535 606 80 306 470 300 250 130 770 5 -50 -160 56.0 73 128 110 410 466 535 606 80 306 470 300 250 130 770 5 -50 -160 47.5 65 140 205 336 433 515 500 626 80 300 250 130 70 70 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	LATITUDE	75	70	65	60	55	50	45	+0	35	30	25	20	15	10	5	0	-5
57.5 113 150 150 425 475 535 605 713 653 526 410 325 215 140 103 755 -39 55.4 75 125 150 426 470 530 605 710 805 470 330 250 130 770 5 -50 -160 56.0 73 128 110 410 466 535 606 80 306 470 300 250 130 770 5 -50 -160 56.0 73 128 110 410 466 535 606 80 306 470 300 250 130 770 5 -50 -160 47.5 65 140 205 336 433 515 500 626 80 300 250 130 70 70 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	60.0 KM	150	175	190	430	480	540	600	715	700	580	470	400	300	210	200	160	40
95.6 75 125 190 420 470 530 610 710 605 4/0 350 295 130 70 5 -50 -160 52.5 73 128 195 410 485 235 805 605 605 718 435 720 175 720 175 30 -10 -13 -72 -13 -72 0 175 175 175 175 175 175 175 175 175 175	57.5		150	190	425	475	535	605	713	653	525			215				
\$2.5. 73 128 145 410 465 525 605 660 578 435 320 179 30 -14 -R2 -134 -729 50. \$50.0 70 110 200 400 500 600 500 550 400 -90 100 -70 -100 -170 -200 -300 40. \$40.0 60 1140 200 350 433 515 500 668 318 390 750 488 -71 -120 110 -170 -200 -300 40. \$42.5 60 1140 200 350 433 515 500 668 318 390 750 488 -71 -120 110 -170 -200 -300 40. \$42.5 60 1150 215 300 378 445 500 518 428 330 750 120 120 110 200 -200 -150 40. \$42.5 60 1150 215 300 378 445 500 518 428 330 725 -120 -120 -110 -100 -200 -200 -350 40. \$42.5 60 1150 220 270 350 400 420 430 370 740 200 -200 -200 -101 200 -200 -350 37. \$37.5 88 155 220 255 310 330 330 370 340 335 200 1155 -9 -44 -117 -147 -249 -324 324 325 110 100 220 220 220 225 215 200 350 350 300 233 110 0 -30 -120 -175 -224 -350 300 322. \$32.5 110 110 20 20 20 20 220 225 215 200 195 140 90 5 -20 -40 -110 -100 -215 SEASON:SPRING SEASON:S	55.0	75	125	190	420	470	530	610	710	605	470	350	250	130				
50.0 70 130 200 400 400 500 050 550 400 700 70 100 70 -100 -170 -220 -300 47.5 65 140 205 363 433 515 500 66 518 390 750 48 75 -124 -144 -262 -350 45.0 60 150 210 330 440 580 015 445 31-1 210 -5 -15 -15 -15 -200 -305 -420 40.0 75 150 220 270 350 400 420 430 370 740 700 -20 -20 -00 -100 -200 -300 -420 40.0 75 150 220 270 350 400 420 430 370 740 700 -20 -20 -00 -110 -200 -200 -320 37.5 88 155 220 265 310 340 370 340 370 740 700 -20 -20 -00 -100 -200 -350 37.5 88 155 220 265 310 340 370 320 330 300 230 170 0 -30 -125 -175 -220 -300 32.5 110 165 215 240 275 220 220 225 215 240 195 140 90 5 -20 -40 -110 -200 -200 32.5 110 165 215 240 220 220 225 215 240 195 140 90 5 -20 -40 -110 -100 -215 -175 -220 -300 32.5 110 165 215 240 220 220 225 215 240 195 140 90 5 -20 -40 -110 -100 -215 -175 -220 -300 57.5 -5 -5 -4 -4 -12 20 40 58 65 63 45 45 63 83 103 128 160 220 225 55.0 -60 -35 -15 30 60 75 68 60 103 103 76 70 65 53 58 80 120 110 20 55 55.0 -60 -35 -15 30 60 75 68 60 103 103 76 70 65 53 58 80 120 110 20 55 55.0 -50 -34 -14 -12 20 55 68 103 103 76 70 65 53 58 80 120 110 20 320 52.5 -50 -30 -30 -10 20 60 105 110 150 110 80 15 -30 -25 10 40 70 95 42.5 -42 -24 -14 10 53 160 125 140 100 130 76 70 65 53 58 80 120 110 20 30 52.5 -50 -30 -30 -10 20 60 105 110 150 110 80 15 -30 -25 10 40 70 95 42.5 -42 -24 -14 10 53 160 125 140 100 130 100 133 45.0 -50 -30 -30 -10 20 60 105 110 150 110 80 15 -30 -25 10 40 70 95 42.5 -42 -24 -14 10 53 160 125 140 100 100 100 100 100 100 100 100 100	52.5	73	128	195	410	465	535	605	680	578	435	320	175	30	-14	-82		
47.5 65 140 205 365 433 515 500 668 518 390 250 48 -72 -124 -194 -262 -350 45.0 60 130 210 313 405 405 580 015 465 3h0 710 -70 1 -70 -70 -70 -70 -70 -70 -70 -70 -70 -70		70	130	200	400	460	540	600	650	550	400	790	100	-70	-100	-170		-300
42.5 68 150 215 300 378 445 500 518 4c2 335 265 -12 -67 -129 -199 -292 -398 40.0 75 150 220 270 350 400 4c2 430 370 470 200 -20 -60 -110 -200 -200 -200 -350 317.5 88 155 220 255 310 30 30 370 370 370 335 260 185 -70 -44 -117 -187 -240 -324 325 325 325 325 325 325 325 325 325 325		65	140	205	365	433	515	540	628	518	390	250	48	-72	-124	-184	-262	-359
40.0 75 150 220 270 350 400 420 430 370 740 720 720 -60 -110 -220 -60 -350 37.5 88 155 220 255 310 30 30 370 740 720 185 -97 -44 -117 -147 7249 -320 35.0 110 160 220 260 270 260 320 320 350 300 230 170 0 -30 -125 -175 -220 -300 32.5 110 165 215 220 220 220 225 215 240 195 140 90 5 -24 -82 -117 -220 -320 32.5 110 165 215 220 220 225 215 240 195 140 90 5 -24 -82 -117 -120 -217 38.0 120 170 210 220 220 225 215 240 195 140 90 5 -24 -82 -110 -100 -215 38.0 120 170 210 220 220 225 215 240 195 140 90 5 -24 -82 -110 -100 -215 38.0 120 170 210 220 220 225 215 240 195 140 90 5 -24 -82 -110 -100 -215 38.0 120 170 210 220 220 225 215 240 195 140 90 5 -24 -82 -110 -100 -215 38.0 120 180 220 220 55.0 -60 -35 -15 30 60 75 85 80 60 60 60 60 65 70 85 105 140 190 230 52.5 -44 -37 -17 25 55 88 103 103 76 70 60 53 88 31 20 160 220 55 5.0 -60 -35 -15 30 60 75 85 80 103 103 76 70 60 53 88 31 20 160 220 55 100 100 120 120 120 120 120 120 120 120		60	150	210	330	405	440	500	605	485	340	210	-5	-75	-150	-200	-305	-420
37.5 88 155 220 265 310 340 370 390 335 260 185 -V -44 -117 -187 -224 -324 325 350 100 100 220 260 270 280 320 330 300 210 170 0 -30 -125 -175 -220 -300 32.5 110 165 215 240 245 233 268 275 246 185 130 3 -24 -82 -142 -199 -257 30.0 120 170 210 220 220 225 225 215 200 195 140 90 5 -20 -40 -110 -180 -215 30.0 120 170 210 220 220 225 225 215 200 195 140 90 5 -20 -40 -110 -180 -215 30.0 120 170 -180 -180 -180 -180 -180 -180 -180 -18	42.5		150	215	300	37A		500	518	428	335	205	-12	-67	-129	-199	-292	-384
35.0 100 160 220 220 220 270 200 320 300 230 170 0 -30 -125 -175 -220 -300 32.0 330.0 120 170 0 -30 -125 -175 -220 -300 32.0 330.0 120 170 210 220 220 220 225 215 200 195 140 90 5 -20 -40 -110 -180 -215 210 210 170 210 220 220 225 215 200 195 140 90 5 -20 -40 -110 -180 -215 210 210 170 210 220 220 225 215 200 195 140 90 5 -20 -40 -110 -180 -215 210 210 210 210 220 220 225 215 200 195 140 90 5 -20 -40 -110 -180 -215 210 210 210 210 210 210 210 210 210 210	40.0	75	150	550	270	350	400	420	430	370	240	200	-20	-60	-110	-200	-280	-350
32.5 110 165 215 240 220 220 225 215 200 195 140 90 5 -20 -40 -110 -180 -215 SEASONISPRING SEA			155	550	265	310	340	370	340		500		-4		-117	-187	-249	-324
SEASONISUMER 60.0 KM				550		270	580	320		300	230		0		-125	-175	-550	-300
SEASON:SPRING 600.0 KM																-142	-149	-257
60.0 KM -50 -35 -10 10 20 40 45 45 30 30 60 95 120 150 180 250 300 57.5 -54 -34 -12 20 40 58 65 03 45 45 63 83 103 128 160 220 265 55.0 -60 -35 -15 30 60 75 85 80 00 60 60 65 70 85 105 110 170 230 52.5 -40 -70 -70 20 50 100 110 120 120 120 150 180 220 265 25.5 -40 -70 -70 20 50 100 110 120 120 120 120 120 120 120 12	30.0	120	170	210	550	550	225	215	500	195	140	90	5	-20	-40	-110	-180	-215
57.5	SEASON: SPRING																	
57.5	40 0 00		- 25	-10							20		•	120			25.5	
55.0																		
\$2.5						- 0												
50.0																		
#7.5																		
45.0																		
## ## ## ## ## ## ## ## ## ## ## ## ##													-30	-25				
40.0						53						8						
35.0												0		-120				
32.5	37.5	-27	-24	-19	-2	33	85	113	148	133	90	0	-102	-124	-137	-114	-89	-87
SEASON: SUMMER 60.0 KM	35.0	-20	-20	-20	-5	20	70	105	140	125	40	0	-105	-130	-175	-160	-150	-150
60.0 KM	32.5	-14	-14	-14	-7	A	18	73	105	88	60	-9	-92	-127	-162	-154	-154	-159
60.0 KM	30.0	-10	-10	-10	-10	-5	5	•0	70	50	30	-50	-60	-125	-150	-150	-160	-170
57.5 -207 -239 -279 -314 -347 -342 -434 -467 -484 -619 -749 -224 -142 -86 -54 -24 3 55.0 -185 -210 -250 -290 -320 -380 -410 -430 -470 -440 -400 -280 -190 -110 -80 -50 -20 52.5 -172 -192 -224 -257 -297 -342 -384 -414 -444 -432 -404 -314 -232 -162 -124 -84 -59 50.0 -160 -175 -200 -225 -275 -305 -360 -400 -420 -425 -410 -350 -275 -215 -170 -120 -100 47.5 -144 -157 -179 -202 -237 -277 -329 -346 -394 -412 -409 -362 -292 -234 -184 -139 -104 45.0 -130 -140 -160 -180 -200 -250 -300 -330 -370 -400 -410 -375 -310 -255 -200 -160 -110 42.5 -109 -119 -137 -157 -177 -219 -252 -289 -324 -349 -346 -352 -312 -262 -204 -159 -104 40.0 -90 -100 -115 -135 -155 -190 -205 -250 -280 -300 -330 -370 -300 -330 -315 -270 -210 -160 -110 37.5 -74 -87 -104 -119 -137 -167 -187 -219 -242 -262 -289 -309 -304 -262 -209 -159 -102 33.0 -60 -75 -95 -05 -120 -145 -170 -190 -205 -255 -260 -290 -295 -255 -210 -160 -105 32.5 -57 -69 -82 -92 -104 -122 -142 -102 -187 -207 -239 -274 -274 -242 -204 -159 -109 30.0 -55 -65 -70 -80 -90 -100 -115 -135 -170 -190 -205 -255 -200 -260 -295 -255 -210 -160 -105 55.0 210 245 280 323 358 390 448 498 440 393 340 295 193 173 158 140 120 55.0 210 245 280 325 365 400 475 495 410 375 330 300 190 165 140 115 95 52.5 153 185 233 328 358 390 440 498 440 393 340 295 193 173 158 140 120 55.0 95 125 185 330 380 380 380 380 370 380 370 380 380 290 195 180 158 133 108 83 50.0 95 125 185 330 328 338 389 390 440 498 440 393 340 295 193 173 158 140 120 47.5 135 178 230 275 310 325 330 330 315 290 290 195 180 158 133 108 83 50.0 95 125 185 330 328 338 389 389 443 450 390 370 300 370 190 165 140 115 95 545.0 175 175 230 275 288 295 290 275 245 210 170 130 75 48 35 13 5 540.0 175 175 230 275 288 295 290 275 245 210 170 130 75 48 35 13 5 540.0 155 195 220 240 250 250 250 255 200 170 130 75 10 -10 -20 -25 -20 37.5 148 178 200 213 218 225 215 203 170 140 90 30 -34 -554 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 90 30 -34 -554 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 100 50 -15 80 -100 -95 -80 -60 32.5 135 148 100 158	SEASON: SUMMER																	
57.5 -207 -239 -279 -314 -347 -342 -434 -467 -484 -619 -749 -224 -142 -86 -54 -24 3 55.0 -185 -210 -250 -290 -320 -380 -410 -430 -470 -440 -400 -280 -190 -110 -80 -50 -20 52.5 -172 -192 -224 -257 -297 -342 -384 -414 -444 -432 -404 -314 -232 -162 -124 -84 -59 50.0 -160 -175 -200 -225 -275 -305 -360 -400 -420 -425 -410 -350 -275 -215 -170 -120 -100 47.5 -144 -157 -179 -202 -237 -277 -329 -346 -394 -412 -409 -362 -292 -234 -184 -139 -104 45.0 -130 -140 -160 -180 -200 -250 -300 -330 -370 -400 -410 -375 -310 -255 -200 -160 -110 42.5 -109 -119 -137 -157 -177 -219 -252 -289 -324 -349 -346 -352 -312 -262 -204 -159 -104 40.0 -90 -100 -115 -135 -155 -190 -205 -250 -280 -300 -330 -370 -300 -330 -315 -270 -210 -160 -110 37.5 -74 -87 -104 -119 -137 -167 -187 -219 -242 -262 -289 -309 -304 -262 -209 -159 -102 33.0 -60 -75 -95 -05 -120 -145 -170 -190 -205 -255 -260 -290 -295 -255 -210 -160 -105 32.5 -57 -69 -82 -92 -104 -122 -142 -102 -187 -207 -239 -274 -274 -242 -204 -159 -109 30.0 -55 -65 -70 -80 -90 -100 -115 -135 -170 -190 -205 -255 -200 -260 -295 -255 -210 -160 -105 55.0 210 245 280 323 358 390 448 498 440 393 340 295 193 173 158 140 120 55.0 210 245 280 325 365 400 475 495 410 375 330 300 190 165 140 115 95 52.5 153 185 233 328 358 390 440 498 440 393 340 295 193 173 158 140 120 55.0 95 125 185 330 380 380 380 380 370 380 370 380 380 290 195 180 158 133 108 83 50.0 95 125 185 330 328 338 389 390 440 498 440 393 340 295 193 173 158 140 120 47.5 135 178 230 275 310 325 330 330 315 290 290 195 180 158 133 108 83 50.0 95 125 185 330 328 338 389 389 443 450 390 370 300 370 190 165 140 115 95 545.0 175 175 230 275 288 295 290 275 245 210 170 130 75 48 35 13 5 540.0 175 175 230 275 288 295 290 275 245 210 170 130 75 48 35 13 5 540.0 155 195 220 240 250 250 250 255 200 170 130 75 10 -10 -20 -25 -20 37.5 148 178 200 213 218 225 215 203 170 140 90 30 -34 -554 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 90 30 -34 -554 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 100 50 -15 80 -100 -95 -80 -60 32.5 135 148 100 158																		
55.0																		
52.5	57.5				-314													
50.0																		
47.5 -144 -157 -179 -202 -237 -277 -329 -304 -394 -412 -409 -302 -224 -184 -139 -104 +5.0 -130 -140 -160 -180 -200 -250 -300 -330 -370 -400 -410 -375 -310 -255 -200 -160 -110 42.5 -109 -119 -137 -157 -177 -219 -252 -289 -324 -349 -304 -352 -312 -262 -204 -159 -104 +0.0 -90 -100 -115 -135 -155 -190 -205 -250 -260 -300 -320 -330 -315 -270 -210 -160 -100 37.5 -74 -87 -104 -119 -137 -167 -187 -219 -242 -262 -289 -309 -304 -262 -209 -159 -102 35.0 -60 -75 -95 -105 -120 -165 -170 -190 -205 -255 -260 -290 -295 -255 -210 -160 -105 32.5 -57 -69 -82 -92 -104 -122 -142 -102 -187 -207 -239 -274 -274 -242 -204 -159 -109 30.0 -55 -65 -70 -80 -90 -100 -115 -135 -170 -190 -205 -225 -260 -290 -295 -255 -210 -160 -105 57.5 215 248 280 323 358 390 448 498 440 393 340 295 193 173 158 140 120 55.0 210 245 280 325 365 400 475 495 410 375 330 300 190 165 140 115 95 52.5 153 185 233 328 358 390 448 498 440 393 340 295 193 173 158 140 120 55.0 153 185 233 328 358 390 448 498 440 393 340 295 193 173 158 140 120 55.0 153 185 233 328 358 390 448 498 440 393 340 295 193 173 158 140 120 55.0 153 185 233 328 358 390 448 498 440 393 340 295 193 173 158 140 120 55.0 153 185 233 328 358 390 448 498 390 353 315 260 180 158 133 108 83 50.0 95 125 185 330 350 390 410 405 370 330 3300 220 170 150 125 100 70 47.5 135 178 230 275 310 325 330 330 310 290 755 203 155 128 108 75 447.5 135 178 230 275 310 325 330 330 315 290 255 203 155 128 108 75 447.5 135 178 230 275 310 325 330 330 315 290 250 210 185 140 105 90 50 30 42.5 165 213 248 275 288 295 290 275 245 210 170 130 75 48 33 5 35 40.0 155 195 220 240 250 250 255 255 200 170 130 75 48 33 5 35 35 128 100 75 42.5 148 178 200 213 218 225 215 203 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 185 190 170 140 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 185 190 175 140 125 95 63 5 -59 -99 -119 -117 -104 -84															-215			
49.0 -130 -140 -160 -180 -200 -250 -300 -370 -400 -410 -375 -310 -255 -200 -160 -110 42.5 -109 -119 -137 -157 -177 -219 -229 -289 -324 -349 -344 -352 -312 -262 -204 -159 -104 40.0 -90 -100 -115 -135 -155 -190 -205 -250 -280 -300 -320 -330 -315 -270 -210 -160 -100 37.5 -74 -87 -104 -119 -137 -167 -187 -219 -242 -262 -289 -309 -304 -262 -209 -159 -102 35.0 -60 -75 -95 -105 -120 -145 -170 -190 -205 -225 -260 -290 -295 -255 -210 -160 -105 32.5 -57 -69 -82 -92 -104 -122 -12 -102 -102 -107 -207 -239 -274 -274 -242 -204 -159 -109 30.0 -55 -65 -70 -80 -90 -100 -115 -135 -170 -190 -220 -260 -255 -230 -200 -160 -115 SEASON:AUTUMN 60.0 KM																		
# 42.5																		
40.0																		
37.5																		
35.0 -60 -75 -95 -105 -120 -145 -170 -190 -205 -225 -260 -290 -295 -255 -210 -160 -105 32.5 -57 -69 -82 -92 -104 -122 -142 -162 -187 -207 -239 -274 -274 -242 -204 -159 -109 30.0 -55 -65 -70 -80 -90 -100 -115 -135 -170 -190 -220 -260 -255 -230 -200 -160 -115 SEASON: AUTUMN 60.0 KM 220 250 280 320 350 380 420 500 470 410 350 290 195 180 175 165 145 57.5 215 248 280 323 358 390 448 498 440 393 340 295 193 173 158 140 120 55.0 210 245 280 325 365 400 475 495 410 375 330 300 190 165 140 115 95 52.5 153 185 233 328 358 390 443 450 390 353 315 260 180 158 133 108 83 56.0 95 125 185 330 350 390 410 405 370 330 330 220 170 150 125 100 70 47.5 135 178 230 320 338 360 370 360 330 290 75 203 155 128 108 75 45.0 175 230 275 310 325 330 330 315 290 255 203 155 128 108 75 45.0 175 230 275 310 325 330 330 315 290 250 210 185 140 105 90 50 30 42.5 165 213 248 275 288 295 290 275 245 210 170 130 75 48 35 13 5 40.0 155 195 220 240 250 240 250 240 275 245 210 170 130 75 48 35 13 5 40.0 155 195 220 240 250 250 255 250 170 130 75 48 35 13 5 40.0 155 195 220 240 250 250 255 250 170 130 75 48 35 13 5 40.0 155 195 220 240 250 250 255 250 170 130 75 48 35 13 5 40.0 155 195 220 240 250 250 255 250 170 130 75 48 35 13 5 40.0 155 195 220 240 250 240 250 240 170 130 75 48 35 13 5 40.0 155 195 220 240 250 240 250 240 170 130 75 48 35 13 5 40.0 155 195 220 240 250 240 250 240 250 240 170 130 75 48 35 13 5 20 37.5 148 178 200 213 218 225 215 203 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 180 180 180 180 170 140 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 180 180 180 180 170 140 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 180 180 180 180 170 140 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 180 180 180 180 180 170 140 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 180 180 180 180 170 140 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 180 180 180 180 170 140 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 180 180 180 180 180 170														-304				
30.0 -55 -65 -70 -80 -90 -100 -115 -135 -170 -190 -720 -260 -255 -230 -2C0 -160 -115 SEASON:AUTUMN 60.0 KM 220 250 280 320 350 380 420 500 470 410 350 290 195 180 175 165 145 57.5 215 248 280 323 358 390 448 498 440 393 340 295 193 173 158 140 120 55.0 210 245 280 325 365 400 475 495 410 375 330 300 190 165 140 115 95 52.5 153 185 233 328 358 390 443 450 390 353 315 260 180 158 133 108 83 50.0 95 125 185 330 350 390 410 405 370 330 300 220 170 150 125 100 70 47.5 135 178 230 320 338 360 370 360 330 290 755 203 155 128 108 75 404 47.5 135 178 230 320 338 360 370 360 330 290 755 203 155 128 108 75 40.0 175 230 275 310 325 330 330 315 290 250 210 185 140 105 90 50 30 42.5 165 213 248 275 288 295 290 275 245 210 170 130 75 48 35 13 5 40.0 155 195 220 240 250 260 250 245 245 200 170 130 75 48 35 13 5 40.0 155 195 220 240 250 260 250 245 245 200 170 130 75 48 35 13 5 37.5 148 178 200 213 218 225 215 203 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 10 50 -15 -80 -100 -95 -80 -60 32.5 135 148 160 158 150 145 134 125 95 63 5 -59 -99 -119 -117 -104 -84	35.0	-60	-75			-120		-170	-190	-205	-225	-260	-290	-295	-255	-210	-160	-105
SEASON:AUTUMN 60.0 KM	32.5	-57	-69	-82	-92	-104	-122	-142	-102	-187	-207	-239	-274	-274	-242	-204	-159	-109
60.0 KM 220 250 280 320 350 380 420 500 470 410 350 290 195 180 175 165 145 57.5 215 248 280 323 358 390 448 498 440 393 340 295 193 173 158 140 120 55.0 210 245 280 325 365 400 475 495 410 375 330 300 190 165 140 115 95 52.5 153 185 233 328 358 395 443 450 390 353 315 260 180 158 133 108 83 50.0 95 125 185 330 350 390 410 405 370 330 300 220 170 150 125 100 70 47.5 135 178 230 320 338 360 370 380 330 290 275 203 155 128 108 75 50 45.0 175 230 275 310 325 330 330 315 290 255 203 155 128 108 75 50 45.0 175 230 275 288 295 290 275 245 210 170 130 75 48 35 13 5 40.0 155 195 220 240 250 260 250 250 250 210 170 130 75 48 35 13 5 40.0 155 195 220 240 250 250 250 250 250 170 130 75 10 -10 -20 -25 -20 37.5 148 178 200 213 218 225 215 203 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 110 50 -15 -80 -100 -95 -80 -60 32.5 135 148 160 158 150 145 134 125 95 63 5 -59 -99 -119 -117 -104 -84	30.0	-55	-65	-70	-80	-90	-100	-115	-135	-170	-190		-560	-255	-530	-500	-160	-115
57.5 215 248 280 323 358 390 448 448 440 343 340 295 193 173 158 140 120 55.0 210 245 280 325 365 400 475 475 410 375 330 300 190 165 140 115 95 52.5 153 185 233 328 358 395 443 450 370 353 315 260 180 158 133 108 83 50.0 95 125 185 330 350 390 410 405 370 330 300 220 170 150 125 100 70 47.5 135 178 230 320 338 360 370 360 370 320 220 170 150 125 100 70 45.0 175 230 275 310 325 330 330 315 290 255 203 155 128 108 75 50 45.0 165 213 248 275 288 295 290 275 245 210 170 130 75 48 35 13 5 40.0 155 195 220 240 250 260 250 245 245 245 245 245 245 245 245 245 245	SEASON: AUTUMN																	
57.5 215 248 280 323 358 390 448 448 440 343 340 295 193 173 158 140 120 55.0 210 245 280 325 365 400 475 475 410 375 330 300 190 165 140 115 95 52.5 153 185 233 328 358 395 443 450 370 353 315 260 180 158 133 108 83 50.0 95 125 185 330 350 390 410 405 370 330 300 220 170 150 125 100 70 47.5 135 178 230 320 338 360 370 360 370 320 220 170 150 125 100 70 45.0 175 230 275 310 325 330 330 315 290 255 203 155 128 108 75 50 45.0 165 213 248 275 288 295 290 275 245 210 170 130 75 48 35 13 5 40.0 155 195 220 240 250 260 250 245 245 245 245 245 245 245 245 245 245	60-0 KM	220	250	280	320	350	340	420	500	470	410	750	200	195	180	175	145	145
55.0 210 245 280 325 365 400 475 495 410 375 330 300 190 165 140 115 95 52.5 153 185 233 328 356 395 443 450 390 353 315 260 180 158 133 108 83 56.0 95 125 185 330 350 390 410 405 370 330 300 220 170 150 125 100 70 47.5 135 178 230 320 336 360 370 30 30 290 755 203 155 128 108 75 50 45.0 175 230 275 310 325 330 330 315 290 250 210 185 140 105 90 50 30 42.5 165 213 248 275 288 295 290 275 245 210 170 130 75 48 35 13 5 40.0 155 195 220 240 250 250 235 250 170 130 75 48 35 13 5 128 178 290 213 218 225 215 203 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 180 180 185 185 190 180 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 180 180 185 185 190 180 170 140 110 50 -15 -80 -100 -95 -80 -60 32.5 135 148 160 158 150 145 134 125 95 63 5 -59 -99 -119 -117 -104 -84	57.5													193				
52.5	55.0			280				475									100000000000000000000000000000000000000	
50.0 95 125 185 330 350 390 410 405 370 330 300 220 170 150 125 100 70 47.5 135 178 230 320 33A 360 370 360 330 240 255 203 155 128 108 75 50 45.0 175 230 275 310 325 330 330 315 240 250 210 185 140 105 90 50 30 42.5 165 213 248 275 28A 245 240 275 245 210 170 130 75 48 35 13 5 40.0 155 195 220 240 250 260 250 235 200 170 130 75 48 35 13 5 37.5 148 178 200 213 218 225 215 203 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 110 50 -15 -80 -100 -95 -80 -60 32.5 135 148 160 158 150 145 134 125 95 63 5 -59 -99 -119 -117 -104 -84															158			
47.5 135 178 230 320 33A 360 370 360 330 290 255 203 155 128 108 75 50 45.0 175 230 275 310 325 330 336 315 290 250 210 185 140 105 90 50 30 42.5 165 213 248 275 28A 295 290 275 245 210 170 130 75 48 35 13 5 40.0 155 195 220 240 250 260 250 235 200 170 130 75 10 -10 -20 -25 -20 37.5 148 178 200 213 21A 225 215 203 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 110 50 -15 -80 -100 -95 -80 -60 32.5 135 148 160 158 150 145 13H 125 95 63 5 -59 -99 -119 -117 -104 -84	50.0									370								
45.0 175 230 275 310 325 330 330 315 240 250 210 185 140 105 90 50 30 42.5 165 213 248 275 288 245 245 275 245 210 170 130 75 48 35 13 5 40.0 155 195 220 240 250 260 250 235 200 170 130 75 10 -10 -20 -25 -20 37.5 148 178 200 213 218 225 215 203 170 140 90 30 -34 -54 -57 -52 -37 35.0 140 160 180 185 185 190 180 170 140 110 50 -15 -80 -100 -95 -80 -60 32.5 135 148 160 158 150 145 134 125 95 63 5 -59 -99 -119 -117 -104 -84	47.5	135					360									108	75	50
42.5 165 213 248 275 288 249 240 275 245 210 170 130 75 48 35 13 5 40.0 155 195 220 240 250 250 250 255 20 170 130 75 10 -10 -20 -25 -20 37.5 148 178 200 213 218 225 215 203 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 185 190 180 170 140 110 50 -15 -80 -100 -95 -80 -60 32.5 135 148 160 158 150 145 134 125 95 63 5 -59 -99 -119 -117 -104 -84	45.0		230	275		325									105		50	30
40.0 155 195 220 240 250 260 250 235 200 170 130 75 10 -10 -20 -25 -20 37.5 148 178 200 213 218 225 215 203 170 140 90 30 -34 -54 -57 -52 -39 35.0 140 160 180 185 187 190 180 170 140 110 50 -15 -80 -100 -95 -80 -60 32.5 135 148 160 158 150 145 134 125 95 63 5 -59 -99 -119 -117 -104 -84					275							170						-
35.0 140 160 180 185 185 190 180 170 140 110 50 -15 -80 -100 -95 -80 -60 32.5 135 148 160 158 150 145 134 125 95 63 5 -59 -99 -119 -117 -104 -84	40.0		195	220	240		260	250	2.15	200	170	130	75	10	-10	-50	-25	-50
35.0 140 160 180 185 185 190 180 170 140 110 50 -15 -80 -100 -95 -80 -60 32.5 135 148 160 158 150 145 134 125 95 63 5 -59 -99 -119 -117 -104 -84	** *																	
		148	178	200	213	218	225	215	203	170	140	90						
30.0 130 135 140 130 115 100 95 80 50 15 -40 -105 -120 -140 -140 -130 -110	35.0	148	178	200	213	218	225	215	203	170	140	90 50	-15	-80	-100	-95	-80	-60
	35.0 32.5	148 140 135	178 160 148	200 180 160	213 185 158	218 185 150	190 145	215 180 13H	203 170 125	170 140 95	140 110 63	90 50 5	-15 -59	-80	-100 -119	-95 -117	-80 -104	-60 -84

TABLE 8. Variance of zonal wind speed (m²sec⁻²).

SEASON: WINTER			VAR	U													
LATITUDE	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5
60.0 KM	630	600	560	520	495	340	300	280	310	315	275	250	220	140	170	160	150
57.5	650	555	530	535	563	443	340	310	336	320	273	240	205	175	160	150	140
55.0	610	510	500	550	630	445	380	340	365	375	270	230	190	160	150	140	130
52.5	510	445	440	515	615	548	403	345	398	323	265	220	180	155	145	138	133
50.0	+10	380	380	480	600	600	445	350	430	320	260	210	170	150	140	135	135
47.5	355	328	333	413	510	550	413	340	413	310	243	195	150	125	118	113	110
45.0	300	275	285	345	420	500	400	3.10	395	300	225	180	130	100	95	90	85
42.5	260	258	253	280	328	373	340	305	330	250	183	130	105	88	A3	76	. 70
40.0	260	240	550	215	235	245	280	280	265	200	140	95	80	75	70	62	55
37.5	245	218	183	183	195	145	228	248	238	178	118	83	65	62	59	54	50
35.0	230	195	145	150	155	145	1/5	215	210	155	95	70	50	48	48	46	45
32.5	210	178	140	140	143	135	145	160	153	115	73	55	40	38	37	36	35
30.0	190	160	135	130	130	125	115	105	95	75	50	40	30	28	56	25	24
SEASON: SPRING																	
60.0 KM	180	175	160	155	155	160	140	125	120	115	120	120	120	125	120	110	105
57.5	160	150	135	130	135	145	130	118	110	105	106	108	110	115	109	100	92
55.0	140	125	110	105	115	130	120	110	100	95	92	95	100	105	96	90	78
52.5	135	113	100	98	110	153	110	100	83	80	79	BU	88	90	84	80	74
50.0	130	100	90	90	105	115	100	90	65	65	65	65	75	75	70	70	70
47.5	150	98	90	88	103	110	95	8A	65	65	63	65	68	65	63	64	65
45.0	110	95	90	85	100	105	90	85	65	65	60	65	60	55	55	58	00
42.5	108	63	73	70	80	85	75	73	60	59	55	57	53	50	51	52	53
40.0	105	70	55	55	60	65	60	0.0	55	53	50	48	45	45	46	46	45
37.5	95	58	48	50	55	58	55	55	50	47	41	40	39	38	38	39	34
35.0	68	45	35	45	50	50	41	40	36	32	32 27	35	32	25	25	32	27
30.0	50	35	30	35	35	32	32	10	26	23	21	50	20	20	20	20	20
SEASON: SUMMER																	
60.0 KM	60	60	55	55	60	70	90	110	160	170	175	180	190	210	215	200	180
57.5	53	50	45	48	54	65	7.9	90	116	135	138	143	150	168	178	170	150
55.0	45	40	35	40	55	60	65	70	75	100	100	105	110	125	140	140	120
52.5	36	33	29	33	48	58	60	63	65	78	. 77	80	90	100	113	118	111
50.0	30	26	55	25	40	55	55	55	55	55	53	55	70	75	85	95	102
47.5	28	23	21	53	34	**	47		48	44	49	52	61	69	77	85	91
45.0	25	20	50	51	24	32	34	•0	40	42	44	48	52	65	68	75	80
42.5	12	16	15	15	21	29	32	31	30	36	40	42	46	56	65	66	71
40.0	16	12	10		14	25	25	55	20	30	35	35	40	50	55	57	65
37.5	14	11	9	8	2.2	10	18	17	17	24	27	26	30	40	48	50	55
35.0	15	10				10	10	15	14	18	18	16	50	30	40	43	48
32.5	11	7	. 7	7	7	i	7	10	12	15	15	11	10	28	27	35	36
SEASUN: AUTUMN																	
							220		190	1.44			140		125	100	
60.0 KM	360	330	305	200	260	240	198	173	165	163	170	150	140	130	125	105	95
57.5	325	285	255	243	243	200	170	150	140	140	150	135	110	100	95	90	85
55.0	290	240	205	205	183	155	133	120	116	153	110	103	98	90		83	80
50.0	500	170	160	175	140	110	45	90	95	105	90	65	85	80	80	75	75
47.5	165	130	128	145	110	100	90	85	83	85	78	73	70	68	70	68	68
45.0	130	105	95	115	95	90	65	60	70	65	65	60	55	55	60	60	60
42.5	105	83	73	93	80	78	78	75	68	60	57	51	49	48	50	51	52
40.0	00	60	50	70	65	65	70	70	65	55	48	42	42	40	40	42	44
37.5	65	50	45	64	60	60	••	04	59	51	43	37	36	34	34	37	41
35.0	50	40	40	57	55	55	57	58	53	•7	37	35	30	28	28	32	38
32.5	44	35	35	49	45	45	46	49	44	39	30	25	24	24	25	28	31
30.0	36	30	30	40	35	35	35	40	35	30	23	18	18	20	55	24	54
30.0	30	-								-	-					-	

TABLE 9. Seasonal mean meridional wind speed (10^1 m sec^{-1}) along 80^0W .

SEASON: WINTER			MEA	N V													
LATITUDE	75	70	65	60	55	50	45	+0	35	30	25	20	15	10	,	0	-5
60.0 KM	-40	-30	-50	-8	5	45	85	125	135	150	90	65	25	-5	-15	-25	-35
57.5	-74	-52	-32	-18	-4	33	90	140	145	120	90	68	39	13	-6	-19	-34
55.0	-110	-75	-45	-30	-15	20		155	155	120	90	70	53	30	1	-15	-35
52.5	-139	-107	-72	-42	-27	9	98	158	155	115	65	68	52	30	8	-7	-37
50.0	-170	-140	-100	-55 -79	-40	-3	100	100	155	110	A0	65	50 45	30	15	0	-40
47.5	-172	-149	-124	-105	-47	-		155	145	100	68	55	40	30	18	5	-24
45.0	-175 -189	-160 -174	-150	-129	-55 -74	-15	39	150	135	68	55	30	25	30	50	10	-10
42.5	-205	-190	-162	-155	-95	-32	25	65	60	45	30	15	10	23	50	13	-2
37.5	-505	-199	-189	-164	-109	-52	15	50	48	33	18	5	0	13	12	15	7
35.0	-200	-210	-205	-175	-125	-55	5	15	35	20	5	-12	-10	-5	3	H	8
32.5	-179	-189	-192	-169	-127	-54	3	25	58	50	10	-3	-5	0	U	3	3
30.0	-160	-170	-180	-165	-130	-55	o	15	20	50	15	5	5	0	-3	-3	-2
SEASUN: SPRING																	
60.0 KM	30	45	50	60	70	65	65	65	65	70	78	74	45	30	20	15	5
57.5	10	28	35	48	60	63	08	70	68	64	72	72	50	35	25	13	0
55.0	-10	10	20	35	50	60	70	15	70	65	65	70	55	40	30	10	-5
52.5	-19	-4	8	20	38	51	61	e B	68	63	60	60	50	40	25	8	-9
50.0	-30	-50	-5	5	25	42	52	60	65	60	55	50	45	40	20	5	-15
47.5	-39	-29	-14	-4	10	24	39	51	57	53	48	43	36	30	18	8	-4
45.0	-50	-40	-25	-15	-5	5	25	42	49	45	40	35	30	50	15	10	5
42.5	-62	-50	-37	-22	-12	0	17	29	32	SH	25	55	21	18	15	11	10
40.0	-75	-62	-50	-30	-20	-5	8	15	15	10	10	8	12	15	14	15	15
37.5	-77	-65	-52	-32	-55	-7	4	10	13	10	11	10	10	12	10	10	13
35.0	-80	-70	-55	-35	-25	-10	0	5	10	10	12	12	8	8	6	8	10
32.5	-72	-59	-47	-32	-55	-9	0	8	10	11	12	12	9	8	7	7	7
30.0	-65	-50	-40	-30	-20	-10	0	10	10	15	15	12	10	8	8	6	•
SEASON: SUMMER																	
60.0 KM	53	55	50	45	40	35	35	30	35	40	43	50	48	45	38	32	25
57.5	48	52	52	50	46	42	41	38	41	46	52	60	57	53	44	19	A
55.0	42	48	53	55	52	49	47	45	46	52	60	70	65	60	50	5	-10
52.5	39	42	47	52	53	52	51	50	51	56	58	65	59	56	50	18	-9
50.0	35	35	40	44	53	55	55	55	55	40	55	53	52	51	50	30	-10
47.5	30	29	30	34	34	41	45	50	48	50	44	39	38	38	39	30	8
45.0	25	55	20	20	23	26	35	45	40	40	33	25	23	25	28	30	
42.5	18	20	18	18	19	18	25	12	10	23	19	13	-1	15	50	23	18
37.5	17	17	16	17	16	16	13	11	9	7	5	3	0	ō	4	8	9
35.0	16	16	18	16	16	14	11	9	7	7	6	6	o	-4		-1	0
32.5	13	13	14	13	1.2	ii	10	9	8	A	8	7	5	0	-1	Ü	-1
30.0	10	10	9	7	7		A	8	y	9	9	7		5	0	-1	-3
SEASON: AUTUMN																	
60.0 KM	-65	-60	-60	-55	-50	-15	20	55	60	60	55	53	50	25	15		-8
57.5	-72	-64	-62	-52	-39	-4	35	68	70	69	63	52	45	58	18	2	-13
55.0	-80	-70	-65	-50	-30	5	50	80	80	78	70	50	40	30	50	ō	-20
52.5	-42	-82	-69	-49	-27	13	58	85	85	82	68	46	37	29	18	3	-14
50.0	-105	-95	-75	-50	-25	20	65	90	90	45	65	42	33	28	15	5	-10
47.5	-114	-99	-82	-52	-29	10	53	80	85	78	55	36	29	55	15	6	-5
45.0	-125	-105	-90	-55	-35	0	40	70	80	70	45	30	25	15	15	10	5
42.5	-124	-102	-84	-57	-39	-5	30	50	55	45	30	23	18	12	12	9	6
40.0	-125	-100	-80	-60	-45	-5	20	30	30	50	15	15	10	8	8	7	7
37.5	-117	-94	-72	-57	-44	-7	15	25	27	19	14	11	5		5	6	7
35.0	-110	-90	-65	-55	-45	-10	10	20	23	17	15	7	0	0	2	4	6
32.5	-89	-72	-54	-47	-37	-9		16	19	17	13	7	1	0	0	0	-1
30.0	-70	-55	-45	-40	-30	-10	5	15	14	16	14	7	2	0	-3	-6	-9

TABLE 10. Variance of meridional wind speed (m²sec⁻²).

SEASON:WINTER			VAH	٧													
LATITUDE	75	70	65	60	55	50	45	+0	35	30	25	20	15	10	5		-5
60.0 KM	650	600	475	410	360	240	200	105	200	200	170	160	130	125	115	110	105
57.5	750	640	525	435	384	288	190	105	205	168	165	145	123	115	100	100	90
55.0	850	680	575	460	415	285	100	105	210	175	160	1 30	115	105	100	90	75
52.5	800	680	568	445	420	343	215	108	205	16A	143	115	105	93	85	75	65
50.0	750	680	560	+30	425	400	250	210	200	160	125	100	95	AU	70	60	55
47.5	675	608	500	405	443	455	275	203	175	133	108	88	76	65	58	50	46
45.0	600	535	440	360	460	510	300	195	150	105	90	75	60	50	.5	40	40
42.5	515	450	380	345	383	360	238	158	153	88	73	60	48	40	38	38	35
40.0	430	365	350	310	305	250	175	120	95	70	55	45	35	30	30	35	35
37.5 35.0	378	353	265	275	253	145	135	75	75	55	44	36	. 29	25	56	54	31
32.5	362	233	205	195	150	110	78	62	55	33	32	51	17	20	21	55	26
30.0	205	185	160	150	100	80	60	48	36	25	20	15	12	10	16	19	23
												•		•••			
SEASON: SPRING																	
60.0 KM	150	135	130	120	125	130	120	100	105	100		100	105				
57.5	155	138	125	105	105	115	100	88	. 65	75	105	73	77	105	100	74	90
55.0	160	140	120	90	85	100	95	75	65	50	45	45	48	55	60	52	47
52.5	138	125	110	88	75	83	75	63	57	48	40	40	44	49	51	45	41
50.0	115	110	100	85	65	65	55	50	46	45	35	35	40	43	42	37	35
47.5	115	103	93	76	65	61	53	44	44	43	34	31	33	35	35	32	31
45.0	115	95	85	70	65	57	50	38	40	40	32	27	. 26	24	27	27	26
42.5	98	83	75	68	63	55	45	37	35	35	29	24	23	23	24	24	23
40.0	78	70	65	65	60	52	40	35	30	30	25	21	20	50	21	21	20
37.5 35.0	75	70	64	59	55	39	32	20	25	56	55	18	18	18	16	17	16
32.5	70	60	63 52	42	35	20	19	16	16	17	18	12	15	15	15	11	11
30.0	65	50	40	30	20	15	15	12	12	12	9	9	10	10	.,	9	9
SEASON I SUMMER																	
40 0 00												100					
60.0 KM	38	52	55 43	46	60	65 53	64	100	110	120	125	130	130	125	110	115	105
55.0	25	26	30	32	35	40	43	47	50	65	75	80	85	95	95	65	60
52.5	20	21	25	29	32	35	36	40	44	55	65	65	68	72	70	63	49
50.0	15	16	20	26	24	30	32	35	31	44	48	50	50	48	45	41	38
47.5	14	15	18	22	25	27	28	24	31	38	39	39	40	42	34	37	35
45.0	12	14	16	18	21	24	24	24	25	31	30	28	30	35	32	32	31
42.5	11	12	15	13	14	17	18	50	22	26	27	26	26	29	28	58	27
40.0 37.5	9	9	8	7	10	10	12	16	13	51	23	23	19	55	23	23	19
35.0	7	7	6	6	6	6	7			16	14	10	16	16	20	15	15
32.5	7	7	6	6	6	,	6	6	7		ii	12	13	13	13	15	15
30.0	6	6	5	5	5	٠	٠	٠	5	7	,	7	9	9	4	8	
SEASON: AUTUMN																	
					190	150	130	115	115	105	95	60	75	65	65	62	62
60.0 KM	330	320	305	225	190	135	110	98	98	95	88	73	70	63	60	56	54
57.5	315	308	288	228	180	120	90	80	80	45	60	65	65	60	55	50	45
55.0	245	245	233	208	153	108	80	68	68	75	65	53	50	46	43	40	40
50.0	190	195	195	185	125	95	70	55	55	65	50	40	35	35	30	30	35
47.5	160	165	163	145	105	78	59	50	51	56	44	37	34	35	30	29	25
45.0	130	135	130	105	85	60	**	45	47	47	37	33	32	35	25	25	24
42.5	110	113	110	90	70	53	42	36	40	42	33	24	21	19	20	21	22
40.0	90	90	40	75	55	45	35	30	33	36	53	21	19	18	19	21	52
37.5	66	88	83	66	49	38	30	25	20	55	18	17	16	16	10	20	51
35.0	85	85	75	57	43	31	23	19	18	19	15	13	13	13	15	16	18
32.5	75 65	73	52	52	37	25	21	18	15	15	12	9	9	10	11	12	14
30.0		60	26	••	•				-								

TABLE 11. Covariance of zonal and meridional wind speed ($10^1 \text{ m}^2 \text{sec}^{-2}$).

SEASUN: WINTER			cov	u-v													
LATITUDE	75	70	65	60	55	50	45	•0	35	10	25	20	15	10	5	0	-5
60.0 KM	-35	-20	-10	10	15	20	20	e0	15	10	5	5		3	1	-2	-5
57.5	808	203	208	205	195	173	165	175	333	285	203	123	-12	-33	-9	4	10
55.0	450	425	425	400	375	325	310	330	650	560	400	240	-30	-70	-20	10	25
52.5	1100	1013	913	775	63H	413	355	403	700	510	125	170	-37	-74	-44	-2	18
50.0	1750	1600	1400	1150	900	500	400	475	750	460	750	100	-45	-80	-70	-15	10
47.5	1925	1875	1650	1355	1090	750	475	538	675	455	7:15	105	5	-54	-64	-39	-17
45.0	5100	2150	1900	1560	1540	1000	550	600	1000	450	140	110	55	-30	-60	-65	-45
42.5	1390	1575	1625	1430	1265	1100	825	825	1025	475	190	135	83	16	-32	-49	-57
40.0	680	1000	1350	1300	1250	1200	1100	1050	1050	500	.00	160	110	65	-5	-35	-70
37.5 35.0	315 -50	550 100	425	900	1185	1200	1150	1025	650	350	205	155	125	78	8	-24	-64
32.5	-174	-59	143	600	810	925	950	820	560	300	203	145	118	65	20	-15	-65
30.0	-300	-550	-140	300	500	650	700	640	470	250	195	140	95	40	10	-10	-65
30.0	-300		-140	300	.,00	0,50		340		230		140	,,	7.0		0	-03
SEASON: SPRING																	
60.0 KM	-560	-260	-175	-60	110	320	400	350	250	170	80	. 25	25	50	5	-30	-80
57.5	-204	-207	-149	-92	50	550	285	540	275	133	65	18	3	-59	-27	-34	-52
55.0	-150	-155	-125	-105	-10	120	170	230	300	45	50	10	-20	-A0	-60	-40	-25
52.5	-179 -210	-172 -190	-129 -135	-77 -50	53	130	160	1/3	195	10	48	18		-54 -30	-54 -50	-34 -30	-27
47.5	-192	-152	-67	45	115	150	135	105	83	68	53	43	23	-9	-32	-27	-29
45.0	-175	-115	0	140	170	160	140	75	75	65	60	60	40	10	-15	-25	-30
42.5	-82	23	103	190	190	168	130	100	85	54	60	58	43	15	-5	-12	-17
40.0	. 10	160	205	240	210	175	140	105	95	50	60	-55	45	50	10	0	-5
37.5	143	210	210	208	168	140	125	108	90	45	53	45	38	20	13	6	3
35.0	275	260	215	175	125	105	110	110	85	40	45	35	30	20	15	15	10
32.5	238	215	165	83	48	33	5A	75	76	45	43	35	30	1 #	15	13	
30.0	200	170	115	-10	-30	-40	5	40	70	50	40	. 35	30	15	15	10	5
SEASON: SUMMER																	
3243011130111211																	
60.0 KM	150	40	-20	-25	-25	-50	-5	20	35	35	25	. 20	-22	15	10	5	-7
57.5 55.0	75 30	23	-12	-55	-29	-29	-24	-17	-14	-17 -70	-24	-24	-60	-17 -50	-14	-12	-20
52.5	28	8	-3	-14	-29	-34	-39	-47	-47	-44	-47	-49	-39	-32	-22	-14	0
50.0	25	10	-2	-10	-25	-30	-35	-40	-30	-20	-20	-30	-20	-15	-5	0	20
47.5	23	13	5	-4	-13	-17	-19	-20	-13	-7	-9	-19	-14	-19	-6	3	25
45.0	20	15	5	0	-3	-5	-5	-1	5	4	0	-10	-50	-25	-8	5	30
42.5	20	18	10	5	1	0	5	10	11	10	1	-8	-17	-27	-18	-4	10
40.0	20	20	15	10	5	5	15	20	20	15	2	-8	-15	-30	-30	-15	-10
37.5 35.0	13	14	13	10	7	5	A	-5	13	13	5	-10	-17	-15	-22	-12	-+
32.5	5	6	10	10	8	0	-3	-5		6	•	-6	-12	-7	-13	1	10
30.0	1	3	5	. 5	ō	-5	-8	-7	2	6	3	-3	-5	-1	3	12	50
SEASON: AUTUMN																	
60.0 KM	-7	-5	-3	-7	-8	-4	. 2	8	15	15	5	. 5	10	15	15	5	-0
57.5	172	168	156	142	136	128	114	109	98	18	-7	-17	-34	-37 -90	-32	-22	-50
55.0	350	340	315	290	280	260	225 238	210	190	20	-20	-40	-04	-74	-80	-39	-17
52.5	333	333	318	300	285	265	250	230	200	140	30	-30	-50	-60	-50	-30	-15
47.5	288	303	310	308	295	273	245	223	188	133	48	-19	-37	-42	-34	-24	-19
45.0	260	280	300	305	300	275	240	215	175	125	65	-10	-25	-25	-20	-50	-25
42.5	225	240	263	273	270	248	223	193	135	40	43	-7	-19	-55	-55	-55	-27
40.0	190	200	225	240	240	550	205	170	95	55	50	-5	-15	-50	-25	-25	-30
37.5	158	170	188	203	500	170	153	135	103	45	5	-14	-19	-19	-17	-15	-14
35.0	125	140	150	165	160	120	100	100	110	35	-10	-25	-25	-50	-10	0	0
32.5	103	115	125	134	135	105	85	93	108	50	-12	-55	-22	-14		15	15
30.0	80	90	100	110	110	90	70	05	105	50	-15	-20	-20	-10	,	.,	30

THIS PAGE IS BEST QUALITY PRACTICABLE

TABLE 12. Covariance of temperature and meridional wind speed (10 1 m $^{\circ}$ K sec $^{-1}$).

SEASON: WINTER			cov	V-T													
LATITUDE	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5
60.0 KM	70	60	70	75	80	70	60	65	70	50	10	-5	-10				24
57.5	-49	-49	-29	-17	-9	10	25	83	95	50	10	-12	-24	-17	5	10	25
55.0	-170	-160	-130	-110	-100	-50	-10	100	120	50	-10	-20	-40	-30	-12	-7	-5
52.5	-142	-129	-84	-42	0	30	60	115	100	55	20	-9	-27		-30	-25	-30
50.0	-115	-100	-40	25	100	110	130	130	80	60		0		-55	-24	-55	-55
47.5	45	53	80	103	138	145	155	140	65	25	50	20	-15	-15	-50	-50	-15
45.0	205	205	200	180	175	180	100	150	50	-10	30 10	40	30	20	-5	-4	-9
42.5	178	210	215	210	213	220	220	195	88	-10	-5	13	13		15	10	-5
40.0	150	215	230	240	250	260	260	240	125	-10		-15	-5	10	8	0	-9
37.5	25	143	175	195	208	230	283	278	110		-15	-7	0	0	0	-10	-15
35.0	-100	70	120	150	165	200	305	315	95	-4	-12	-0	5	5	5	-4	-7
32.5	-49	50	90	110	130	150	205	203	78	5	-12	-4	5	8	8	3	0
30.0	0	30	60	70	95	100	105	90	60	10	-15	-10	5	10	10	5	5
••••					,,				•••		-13	-10		10	10	,	•
SEASON: SPRING																	
60.0 KM	60	50	45	45	50	40	40	35	20	5	-5	-5	-3	2		5	5
57.5	53	45	40	40	40	35	38	40	48	30	-2	-12	-1	2	-2	-7	-12
55.0	45	40	35	35	30	30	35	45	75	55 .	ō	-20	0	2	-10	-20	-30
52.5	65	58	48	46	43	40	3A	40	60	53	0	-2	10	11	-2	-12	-22
50.0	85	75	60	60	55	50	40	35	45	50	0	15	20	20	5	-5	-15
47.5	130	100	80	70	63	60	50	43	45	45	13	16	20	20	10	0	-9
45.0	175	125	100	80	70	70	60	50	45	40	25	20	20	20	15	5	-5
42.5	168	140	115	98	85	75	60	51	45	40	23	20	18	18	14	6	-1
40.0	160	155	130	115	100	80	60	52	45	40	20	20	15	15	12	7	. 5
37.5	80	103	100	105	95	73	56	49	35	30	13	13	13	13			1
35.0	0	50	70	95	90	65	52	45	25	20	5	5	10	10	4	1	-1
32.5	-17	25	53	75	75	57	46	35	20	18	3	1	7	7	5	. 0	-1
30.0	-35	0	35	55	60	48	40	25	15	15	a	-3	3	•	0	-1	-5
SEASUNISUMMER																	
60.0 KM	-40	-15	5	15	15	15	10	7	7	5	5	2	-2	-2	0	1	1
57.5	18	25	33	35	35	39	43	44	51	53	33	21	4	0	0	-6	-14
55.0	75	65	60	55	55	65	75	40	95	100	60	40	10	0	0	-15	-30
52.5	58	48	43	40	45	55	63	68	78	63	23	0	-12	0	3	-4	-14
50.0	40	30	25	25	35	45	50	55	60	25	-15	-40	-35	0	5	5	0
47.5 45.0	33	28	23	23	28	35	43	48	53	25	-7	-55	-19	-5	-5	-4	-9
42.5	25	25	20	20	50	25	35	40	35	25	0	-5	-5	-5	-10	-15	-50
40.0	15	15	15	18	18	23	50	33 25	25	30	15	10	8	. 5	-5	-7	-14
37.5	13	13	13	13	13	16	17	20	21	58	25	25	17	15	5	0	-10
35.0	10	10	10	10	ii	12	13	14	10	20	20	18	14	10	5	3	-3
32.5	9	9			9	10	ii	12	14	16	16	14	ii	9	6	5	5
30.0	.1	7	6	6	i	7	R	9	ii	11	15	10		8	6	6	5
SEASONIAUTUMN																	
60.0 KM	-52	-57	-47	- 6	6	6	6	6	7		6	3	.0	-5	0	. 1	5
55.0	-110	-120	-67	-76	-61 -130	-36	10	18	5	:	•	-10	-14	-15	-14	-16	-16
52.5	-87	-84	-89	-134	-122	-69	15	33	16	0	1	-25	-30	-30	-30	-35	-35
50.0	-65	-50	-40	-110	-115	-60	20	35	30	-2	1	10	-11	-12	-16	-51	-53
47.5	-49	-24	20	-54	-109	-64	18	28	33	-3	-2	10	3	2	-3	-8	-13
45.0	-35	0	80	0	-105	-70	15	20	35	-2	-5	-2	-1		-1	-3	-5
42.5	-49	10	83	33	-59	-37	13	18	28	-1	2	3	-1	-2	-3	-4	
40.0	-65	20	85	65	-15	-5	10	15	20	-2			-1	-5	-6	-6	
37.5	-42	5	68	55	15	18	20	18	10	-10	0	2	Ö	-1	-0	-0	0
35.0	-20	-10	50	45	45	40	30	20	0	-20	-8	-5	o	i		5	
32.5	-24	-14	25	30	33	33	25	18		-10	0		7	A		4	5
30.0	-30	-20	0	15	20	25	20	15	15	-2	8	12	14	14		3	-1
			0.11														

FIGURE 1. Time-lagged autocorrelation function at 30 km at White Sands (32N, 106W) during autumn, 1972.

FIGURE 2. Seasonal values of Kyy (104 m2sec-1). Top: 80°W, Center: 150°W, Bottom: mean.

FIGURE 2. Continued.

FIGURE 2. Continued.

FIGURE 2. Continued.

FIGURE 3. Comparison of K (10⁴ m²sec⁻¹) during winter at Thule (77N, 69W, solid line) and Heiss (91N, 58E, dotted line).

FIGURE 4. Seasonal values of K_{yz} (10¹ m²sec⁻¹). Top: 80°W, Center: 150°W, Bottom: mean.

FIGURE 4. Continued.

FIGURE 4. Continued.

FIGURE 4. Continued.

FIGURE 5. Examples of data used for estimating K_{ZZ}. (a) Vertical profiles of specific kinetic energy, density, and the square of the perturbation wind speed at Point Mugu during winter. (b) Magnitude of the vertical structure function (D(Z)) as a function of separation distance for the altitude range 52-64 km at Canaveral during autumn.

Seasonal values of K_{ZZ} (m²sec⁻¹). Top: 80°W, Center: 150°W,

FIGURE 6. Continued.

FIGURE 6. Continued.

FIGURE 6. Continued.

STATE OF THE PERSON OF

FIGURE 7. Seasonal mean temperatures (OK).

II.53

II-54

FIGURE 10. Variance of zonal wind speed (m² sec⁻²).

FIGURE 11. Seasonal mean meridional wind speed (m sec-1) along 80°w.

II.-57

FIGURE 13. Covariance of zonal and meridional wind speed $(\mathfrak{m}^2~\text{sec}^{-2}).$

FIGURE 14. Covariance of temperature and meridional wind speed (m K sec 1).