So far we have considered special types of surfaces: cylinders, quadric surfaces, graphs of functions of two variables, and level surfaces of functions of three variables. Here we use vector functions to describe more general surfaces, called parametric surfaces, and compute their areas. Then we take the general surface area formula and see how it applies to special surfaces.

PARAMETRIC SURFACES

In much the same way that we describe a space curve by a vector function $\mathbf{r}(t)$ of a single parameter t, we can describe a surface by a vector function $\mathbf{r}(u, v)$ of two parameters u and v. We suppose that

$$\mathbf{r}(u,v) = x(u,v)\,\mathbf{i} + y(u,v)\,\mathbf{j} + z(u,v)\,\mathbf{k}$$

is a vector-valued function defined on a region D in the uv-plane. So x, y, and z, the component functions of \mathbf{r} , are functions of the two variables u and v with domain D. The set of all points (x, y, z) in \mathbb{R}^3 such that

and (u, v) varies throughout D, is called a **parametric surface** S and Equations 2 are called parametric equations of S. Each choice of u and v gives a point on S; by making all choices, we get all of S. In other words, the surface S is traced out by the tip of the position vector $\mathbf{r}(u, v)$ as (u, v) moves throughout the region D. (See Figure 1.)

FIGURE I A parametric surface

EXAMPLE 1 Identify and sketch the surface with vector equation

$$\mathbf{r}(u, v) = 2\cos u \,\mathbf{i} + v \,\mathbf{j} + 2\sin u \,\mathbf{k}$$

SOLUTION The parametric equations for this surface are

$$x = 2\cos u$$
 $y = v$ $z = 2\sin u$

So for any point (x, y, z) on the surface, we have

$$x^2 + z^2 = 4\cos^2 u + 4\sin^2 u = 4$$

This means that vertical cross-sections parallel to the xz-plane (that is, with y constant) are all circles with radius 2. Since y = v and no restriction is placed on v, the surface is a circular cylinder with radius 2 whose axis is the y-axis. (See Figure 2.)

FIGURE 2

FIGURE 3

Visual 16.6 shows animated versions of Figures 4 and 5, with moving grid curves,

FIGURE 5

In Example 1 we placed no restrictions on the parameters u and v and so we obtained the entire cylinder. If, for instance, we restrict u and v by writing the parameter domain as

$$0 \le u \le \pi/2$$
 $0 \le v \le 3$

then $x \ge 0$, $z \ge 0$, $0 \le y \le 3$, and we get the quarter-cylinder with length 3 illustrated in Figure 3.

If a parametric surface S is given by a vector function $\mathbf{r}(u, v)$, then there are two useful families of curves that lie on S, one family with u constant and the other with v constant. These families correspond to vertical and horizontal lines in the uv-plane. If we keep u constant by putting $u = u_0$, then $\mathbf{r}(u_0, v)$ becomes a vector function of the single parameter v and defines a curve C_1 lying on S. (See Figure 4.)

Similarly, if we keep v constant by putting $v = v_0$, we get a curve C_2 given by $\mathbf{r}(u, v_0)$ that lies on S. We call these curves grid curves. (In Example 1, for instance, the grid curves obtained by letting u be constant are horizontal lines whereas the grid curves with v constant are circles.) In fact, when a computer graphs a parametric surface, it usually depicts the surface by plotting these grid curves, as we see in the following example.

EXAMPLE 2 Use a computer algebra system to graph the surface

$$\mathbf{r}(u, v) = \langle (2 + \sin v) \cos u, (2 + \sin v) \sin u, u + \cos v \rangle$$

Which grid curves have u constant? Which have v constant?

SOLUTION We graph the portion of the surface with parameter domain $0 \le u \le 4\pi$, $0 \le v \le 2\pi$ in Figure 5. It has the appearance of a spiral tube. To identify the grid curves, we write the corresponding parametric equations:

$$x = (2 + \sin v)\cos u$$
 $y = (2 + \sin v)\sin u$ $z = u + \cos v$

If v is constant, then $\sin v$ and $\cos v$ are constant, so the parametric equations resemble those of the helix in Example 4 in Section 13.1. So the grid curves with v constant are the spiral curves in Figure 5. We deduce that the grid curves with u constant must be the curves that look like circles in the figure. Further evidence for this assertion is that if u is kept constant, $u = u_0$, then the equation $z = u_0 + \cos v$ shows that the z-values vary from $u_0 - 1$ to $u_0 + 1$.

In Examples 1 and 2 we were given a vector equation and asked to graph the corresponding parametric surface. In the following examples, however, we are given the more challenging problem of finding a vector function to represent a given surface. In the rest of this chapter we will often need to do exactly that.

FIGURE 6

EXAMPLE 3 Find a vector function that represents the plane that passes through the point P_0 with position vector \mathbf{r}_0 and that contains two nonparallel vectors \mathbf{a} and \mathbf{b} .

SOLUTION If P is any point in the plane, we can get from P_0 to P by moving a certain distance in the direction of \mathbf{a} and another distance in the direction of \mathbf{b} . So there are scalars u and v such that $\overline{P_0P} = u\mathbf{a} + v\mathbf{b}$ (Figure 6 illustrates how this works, by means of the Parallelogram Law, for the case where u and v are positive. See also Exercise 40 in Section 12.2.) If \mathbf{r} is the position vector of P, then

$$\mathbf{r} = \overrightarrow{OP_0} + \overrightarrow{P_0P} = \mathbf{r}_0 + u\mathbf{a} + v\mathbf{b}$$

So the vector equation of the plane can be written as

$$\mathbf{r}(u,v) = \mathbf{r}_0 + u\mathbf{a} + v\mathbf{b}$$

where u and v are real numbers.

If we write $\mathbf{r} = \langle x, y, z \rangle$, $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$, $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then we can write the parametric equations of the plane through the point (x_0, y_0, z_0) as follows:

$$x = x_0 + ua_1 + vb_1$$
 $y = y_0 + ua_2 + vb_2$ $z = z_0 + ua_3 + vb_3$

▼ EXAMPLE 4 Find a parametric representation of the sphere

$$x^2 + y^2 + z^2 = a^2$$

SOLUTION The sphere has a simple representation $\rho = a$ in spherical coordinates, so let's choose the angles ϕ and θ in spherical coordinates as the parameters (see Section 15.8). Then, putting $\rho = a$ in the equations for conversion from spherical to rectangular coordinates (Equations 15.8.1), we obtain

$$x = a \sin \phi \cos \theta$$
 $y = a \sin \phi \sin \theta$ $z = a \cos \phi$

as the parametric equations of the sphere. The corresponding vector equation is

$$\mathbf{r}(\phi, \theta) = a \sin \phi \cos \theta \mathbf{i} + a \sin \phi \sin \theta \mathbf{j} + a \cos \phi \mathbf{k}$$

We have $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$, so the parameter domain is the rectangle $D = [0, \pi] \times [0, 2\pi]$. The grid curves with ϕ constant are the circles of constant latitude (including the equator). The grid curves with θ constant are the meridians (semi-circles), which connect the north and south poles.

FIGURE 7

FIGURE 8

1073

$$x^2 + y^2 = 4 \qquad 0 \le z \le 1$$

FOLUTION The cylinder has a simple representation r=2 in cylindrical coordinates, so we choose as parameters θ and z in cylindrical coordinates. Then the parametric equations of the cylinder are

$$x = 2\cos\theta$$
 $y = 2\sin\theta$ $z = z$

where $0 \le \theta \le 2\pi$ and $0 \le z \le 1$.

EXAMPLE 6 Find a vector function that represents the elliptic paraboloid $z=x^2+2y^2$. SOLUTION If we regard x and y as parameters, then the parametric equations are simply

$$x = x \qquad y = y \qquad z = x^2 + 2y^2$$

and the vector equation is

$$\mathbf{r}(x,y) = x\,\mathbf{i} + y\,\mathbf{j} + (x^2 + 2y^2)\,\mathbf{k}$$

In Module 16.6 you can investigate several families of parametric surfaces.

In general, a surface given as the graph of a function of x and y, that is, with an equation of the form z = f(x, y), can always be regarded as a parametric surface by taking x and y as parameters and writing the parametric equations as

$$x = x$$
 $y = y$ $z = f(x, y)$

Parametric representations (also called parametrizations) of surfaces are not unique. The next example shows two ways to parametrize a cone.

EXAMPLE 7 Find a parametric representation for the surface $z = 2\sqrt{x^2 + y^2}$, that is, the top half of the cone $z^2 = 4x^2 + 4y^2$.

SOLUTION 1 One possible representation is obtained by choosing x and y as parameters:

$$x = x \qquad y = y \qquad z = 2\sqrt{x^2 + y^2}$$

So the vector equation is

$$\mathbf{r}(x, y) = x \,\mathbf{i} + y \,\mathbf{j} + 2\sqrt{x^2 + y^2} \,\mathbf{k}$$

SOLUTION 2 Another representation results from choosing as parameters the polar coordinates r and θ . A point (x, y, z) on the cone satisfies $x = r \cos \theta$, $y = r \sin \theta$, and $z = 2\sqrt{x^2 + y^2} = 2r$. So a vector equation for the cone is

$$\mathbf{r}(r, \theta) = r \cos \theta \,\mathbf{i} + r \sin \theta \,\mathbf{j} + 2r \,\mathbf{k}$$

where
$$r \ge 0$$
 and $0 \le \theta \le 2\pi$.

change the parameter domain to $0 \leqslant r \leqslant \tfrac{1}{2} \qquad 0 \leqslant \theta \leqslant 2\pi$

For some purposes the parametric represen-

tations in Solutions 1 and 2 are equally good,

but Solution 2 might be preferable in certain

situations. If we are interested only in the part of the cone that lies below the plane z=1,

for instance, all we have to do in Solution 2 is

SURFACES OF REVOLUTION

Surfaces of revolution can be represented parametrically and thus graphed using a computer. For instance, let's consider the surface S obtained by rotating the curve y = f(x), $a \le x \le b$, about the x-axis, where $f(x) \ge 0$. Let θ be the angle of rotation as shown in

FIGURE 9

FIGURE 10

Figure 9. If (x, y, z) is a point on S, then

$$3$$
 $x = x$ $y = f(x) \cos \theta$ $z = f(x) \sin \theta$

Therefore we take x and θ as parameters and regard Equations 3 as parametric equations of S. The parameter domain is given by $a \le x \le b$, $0 \le \theta \le 2\pi$.

EXAMPLE 8 Find parametric equations for the surface generated by rotating the curve $y = \sin x$, $0 \le x \le 2\pi$, about the x-axis. Use these equations to graph the surface of revolution.

SOLUTION From Equations 3, the parametric equations are

$$x = x$$
 $y = \sin x \cos \theta$ $z = \sin x \sin \theta$

and the parameter domain is $0 \le x \le 2\pi$, $0 \le \theta \le 2\pi$. Using a computer to plot these equations and rotate the image, we obtain the graph in Figure 10.

We can adapt Equations 3 to represent a surface obtained through revolution about the y- or z-axis. (See Exercise 30.)

TANGENT PLANES

We now find the tangent plane to a parametric surface S traced out by a vector function

$$\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k}$$

at a point P_0 with position vector $\mathbf{r}(u_0, v_0)$. If we keep u constant by putting $u = u_0$, then $\mathbf{r}(u_0, v)$ becomes a vector function of the single parameter v and defines a grid curve C_1 lying on S. (See Figure 11.) The tangent vector to C_1 at P_0 is obtained by taking the partial derivative of \mathbf{r} with respect to v:

$$\mathbf{r}_{v} = \frac{\partial x}{\partial v} (u_0, v_0) \mathbf{i} + \frac{\partial y}{\partial v} (u_0, v_0) \mathbf{j} + \frac{\partial z}{\partial v} (u_0, v_0) \mathbf{k}$$

FIGURE 11

Similarly, if we keep v constant by putting $v = v_0$, we get a grid curve C_2 given by $\mathbf{r}(u, v_0)$ that lies on S, and its tangent vector at P_0 is

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u} (u_{0}, v_{0}) \mathbf{i} + \frac{\partial y}{\partial u} (u_{0}, v_{0}) \mathbf{j} + \frac{\partial z}{\partial u} (u_{0}, v_{0}) \mathbf{k}$$

If $\mathbf{r}_u \times \mathbf{r}_v$ is not 0, then the surface S is called **smooth** (it has no "corners"). For a smooth surface, the **tangent plane** is the plane that contains the tangent vectors \mathbf{r}_u and \mathbf{r}_v , and the vector $\mathbf{r}_u \times \mathbf{r}_v$ is a normal vector to the tangent plane.

M EXAMPLE 9 Find the tangent plane to the surface with parametric equations $x = u^2$, $y = v^2$, z = u + 2v at the point (1, 1, 3).

SOLUTION We first compute the tangent vectors:

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u} \mathbf{i} + \frac{\partial y}{\partial u} \mathbf{j} + \frac{\partial z}{\partial u} \mathbf{k} = 2u \mathbf{i} + \mathbf{k}$$

$$\mathbf{r}_{v} = \frac{\partial x}{\partial v} \mathbf{i} + \frac{\partial y}{\partial v} \mathbf{j} + \frac{\partial z}{\partial v} \mathbf{k} = 2v \mathbf{j} + 2 \mathbf{k}$$

Thus a normal vector to the tangent plane is

$$\mathbf{r}_{u} \times \mathbf{r}_{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2u & 0 & 1 \\ 0 & 2v & 2 \end{vmatrix} = -2v \,\mathbf{i} - 4u \,\mathbf{j} + 4uv \,\mathbf{k}$$

Notice that the point (1, 1, 3) corresponds to the parameter values u = 1 and v = 1, so the normal vector there is

$$-2i - 4j + 4k$$

Therefore an equation of the tangent plane at (1, 1, 3) is

$$-2(x-1) - 4(y-1) + 4(z-3) = 0$$
$$x + 2y - 2z + 3 = 0$$

FIGURE 12

SURFACE AREA

or

Now we define the surface area of a general parametric surface given by Equation 1. For simplicity we start by considering a surface whose parameter domain D is a rectangle, and we divide it into subrectangles R_{ij} . Let's choose (u_i^*, v_j^*) to be the lower left corner of R_{ij} . (See Figure 13.) The part S_{ij} of the surface S that corresponds to R_{ij} is called a *patch* and has the point P_{ij} with position vector $\mathbf{r}(u_i^*, v_j^*)$ as one of its corners. Let

$$\mathbf{r}_{u}^{*} = \mathbf{r}_{u}(u_{i}^{*}, v_{j}^{*})$$
 and $\mathbf{r}_{v}^{*} = \mathbf{r}_{v}(u_{i}^{*}, v_{j}^{*})$

be the tangent vectors at P_{ij} as given by Equations 5 and 4.

FIGURE 13

The image of the subrectangle R_{ij} is the patch S_{ij} .

Converting to polar coordinates, we obtain

$$A = \int_0^{2\pi} \int_0^3 \sqrt{1 + 4r^2} \, r \, dr \, d\theta = \int_0^{2\pi} d\theta \, \int_0^3 r \sqrt{1 + 4r^2} \, dr$$
$$= 2\pi \left(\frac{1}{8}\right)\frac{2}{3}(1 + 4r^2)^{3/2} \Big]_0^3 = \frac{\pi}{6} \left(37\sqrt{37} - 1\right)$$

The question remains whether our definition of surface area (6) is consistent with the surface area formula from single-variable calculus (8.2.4).

We consider the surface S obtained by rotating the curve y = f(x), $a \le x \le b$, about the x-axis, where $f(x) \ge 0$ and f' is continuous. From Equations 3 we know that parametric equations of S are

$$x = x$$
 $y = f(x)\cos\theta$ $z = f(x)\sin\theta$ $a \le x \le b$ $0 \le \theta \le 2\pi$

To compute the surface area of S we need the tangent vectors

$$\mathbf{r}_x = \mathbf{i} + f'(x)\cos\theta\,\mathbf{j} + f'(x)\sin\theta\,\mathbf{k}$$

$$\mathbf{r}_{\theta} = -f(x)\sin\theta\,\mathbf{j} + f(x)\cos\theta\,\mathbf{k}$$

Thus

$$\mathbf{r}_{x} \times \mathbf{r}_{\theta} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & f'(x)\cos\theta & f'(x)\sin\theta \\ 0 & -f(x)\sin\theta & f(x)\cos\theta \end{vmatrix}$$
$$= f(x)f'(x)\mathbf{i} - f(x)\cos\theta\mathbf{j} - f(x)\sin\theta\mathbf{k}$$

and so
$$|\mathbf{r}_{x} \times \mathbf{r}_{\theta}| = \sqrt{[f(x)]^{2}[f'(x)]^{2} + [f(x)]^{2}\cos^{2}\theta + [f(x)]^{2}\sin^{2}\theta}$$

 $= \sqrt{[f(x)]^{2}[1 + [f'(x)]^{2}]} = f(x)\sqrt{1 + [f'(x)]^{2}}$

because $f(x) \ge 0$. Therefore the area of S is

$$A = \iint\limits_{D} |\mathbf{r}_{x} \times \mathbf{r}_{\theta}| dA = \int_{0}^{2\pi} \int_{a}^{b} f(x) \sqrt{1 + [f'(x)]^{2}} dx d\theta$$
$$= 2\pi \int_{a}^{b} f(x) \sqrt{1 + [f'(x)]^{2}} dx$$

This is precisely the formula that was used to define the area of a surface of revolution in single-variable calculus (8.2.4).

16.6 EXERCISES

1–2 Determine whether the points P and Q lie on the given line.

I.
$$\mathbf{r}(u, v) = \langle 2u + 3v, 1 + 5u - v, 2 + u + v \rangle$$

 $P(7, 10, 4), \ Q(5, 22, 5)$

2.
$$\mathbf{r}(u, v) = \langle u + v, u^2 - v, u + v^2 \rangle$$

 $P(3, -1, 5), Q(-1, 3, 4)$

3-6 Identify the surface with the given vector equation.

[3.]
$$\mathbf{r}(u, v) = (u + v)\mathbf{i} + (3 - v)\mathbf{j} + (1 + 4u + 5v)\mathbf{k}$$

4.
$$\mathbf{r}(u, v) = 2 \sin u \mathbf{i} + 3 \cos u \mathbf{j} + v \mathbf{k}, \quad 0 \le v \le 2$$

5.
$$\mathbf{r}(s,t) = \langle s, t, t^2 - s^2 \rangle$$

6.
$$\mathbf{r}(s,t) = \langle s \sin 2t, s^2, s \cos 2t \rangle$$

7-12 Use a computer to graph the parametric surface. Get a printout and indicate on it which grid curves have *u* constant and which have *v* constant.

7.
$$\mathbf{r}(u, v) = \langle u^2 + 1, v^3 + 1, u + v \rangle, \quad -1 \le u \le 1, \ -1 \le v \le 1$$

8.
$$\mathbf{r}(u, v) = \langle u + v, u^2, v^2 \rangle, -1 \le u \le 1, -1 \le v \le 1$$

9.
$$\mathbf{r}(u, v) = \langle u \cos v, u \sin v, u^5 \rangle, -1 \le u \le 1, \ 0 \le v \le 2\pi$$

- 10. $\mathbf{r}(u, v) = \langle \cos u \sin v, \sin u \sin v, \cos v + \ln \tan(v/2) \rangle$, $0 \le u \le 2\pi$, $0.1 \le v \le 6.2$
- 11. $x = \sin v$, $y = \cos u \sin 4v$, $z = \sin 2u \sin 4v$, $0 \le u \le 2\pi$, $-\pi/2 \le v \le \pi/2$
- 12. $x = u \sin u \cos v$, $y = u \cos u \cos v$, $z = u \sin v$

13–18 Match the equations with the graphs labeled I–VI and give reasons for your answers. Determine which families of grid curves have u constant and which have v constant.

- $\boxed{13.} \mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}$
- 14. $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + \sin u \mathbf{k}, \quad -\pi \le u \le \pi$
- 15. $\mathbf{r}(u, v) = \sin v \mathbf{i} + \cos u \sin 2v \mathbf{j} + \sin u \sin 2v \mathbf{k}$
- 16. $x = (1 u)(3 + \cos v)\cos 4\pi u$
 - $y = (1 u)(3 + \cos v) \sin 4\pi u$
 - $z = 3u + (1 u)\sin v$
- 17. $x = \cos^3 u \cos^3 v$, $y = \sin^3 u \cos^3 v$, $z = \sin^3 v$
- **18.** $x = (1 |u|)\cos v$, $y = (1 |u|)\sin v$, z = u

- 19-26 Find a parametric representation for the surface.
- 19. The plane that passes through the point (1, 2, -3) and contains the vectors $\mathbf{i} + \mathbf{j} \mathbf{k}$ and $\mathbf{i} \mathbf{j} + \mathbf{k}$
- **20.** The lower half of the ellipsoid $2x^2 + 4y^2 + z^2 = 1$
- 21. The part of the hyperboloid $x^2 + y^2 z^2 = 1$ that lies to the right of the xz-plane
- 22. The part of the elliptic paraboloid $x + y^2 + 2z^2 = 4$ that lies in front of the plane x = 0
- 23. The part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$
- **24.** The part of the sphere $x^2 + y^2 + z^2 = 16$ that lies between the planes z = -2 and z = 2
- **25.** The part of the cylinder $y^2 + z^2 = 16$ that lies between the planes x = 0 and x = 5
- **26.** The part of the plane z = x + 3 that lies inside the cylinder $x^2 + y^2 = 1$
- [(AS] 27-28 Use a computer algebra system to produce a graph that looks like the given one.

- **29.** Find parametric equations for the surface obtained by rotating the curve $y = e^{-x}$, $0 \le x \le 3$, about the x-axis and use them to graph the surface.
- **30.** Find parametric equations for the surface obtained by rotating the curve $x = 4y^2 y^4$, $-2 \le y \le 2$, about the y-axis and use them to graph the surface.
- 31. (a) What happens to the spiral tube in Example 2 (see Figure 5) if we replace $\cos u$ by $\sin u$ and $\sin u$ by $\cos u$?
 - (b) What happens if we replace $\cos u$ by $\cos 2u$ and $\sin u$ by $\sin 2u$?
- 32. The surface with parametric equations

 $x = 2\cos\theta + r\cos(\theta/2)$

 $y = 2\sin\theta + r\cos(\theta/2)$

 $z = r \sin(\theta/2)$

where $-\frac{1}{2} \le r \le \frac{1}{2}$ and $0 \le \theta \le 2\pi$, is called a **Möbius strip**. Graph this surface with several viewpoints. What is unusual about it?

33–36 Find an equation of the tangent plane to the given parametric surface at the specified point. If you have software that graphs parametric surfaces, use a computer to graph the surface and the tangent plane.

33.
$$x = u + v$$
, $y = 3u^2$, $z = u - v$; (2, 3, 0)

34.
$$x = u^2$$
, $y = v^2$, $z = uv$; $u = 1, v = 1$

35.
$$\mathbf{r}(u, v) = u^2 \mathbf{i} + 2u \sin v \mathbf{j} + u \cos v \mathbf{k}; \quad u = 1, v = 0$$

36.
$$\mathbf{r}(u, v) = uv \mathbf{i} + u \sin v \mathbf{j} + v \cos u \mathbf{k}; \quad u = 0, v = \pi$$

37-47 Find the area of the surface.

37. The part of the plane 3x + 2y + z = 6 that lies in the first octant

38. The part of the plane 2x + 5y + z = 10 that lies inside the cylinder $x^2 + y^2 = 9$

39. The surface $z = \frac{2}{3}(x^{3/2} + y^{3/2}), \ 0 \le x \le 1, \ 0 \le y \le 1$

40. The part of the plane with vector equation $\mathbf{r}(u, v) = \langle 1 + v, u - 2v, 3 - 5u + v \rangle$ that is given by $0 \le u \le 1, 0 \le v \le 1$

41. The part of the surface z = xy that lies within the cylinder $x^2 + y^2 = 1$

42. The part of the surface $z = 1 + 3x + 2y^2$ that lies above the triangle with vertices (0, 0), (0, 1), and (2, 1)

43. The part of the hyperbolic paraboloid $z = y^2 - x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$

44. The part of the paraboloid $x = y^2 + z^2$ that lies inside the cylinder $y^2 + z^2 = 9$

45. The part of the surface $y = 4x + z^2$ that lies between the planes x = 0, x = 1, z = 0, and z = 1

46. The helicoid (or spiral ramp) with vector equation $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}, 0 \le u \le 1, 0 \le v \le \pi$

47. The surface with parametric equations $x = u^2$, y = uv, $z = \frac{1}{2}v^2$, $0 \le u \le 1$, $0 \le v \le 2$

48-49 Find the area of the surface correct to four decimal places by expressing the area in terms of a single integral and using your calculator to estimate the integral.

48. The part of the surface $z = \cos(x^2 + y^2)$ that lies inside the cylinder $x^2 + y^2 = 1$

49. The part of the surface $z = e^{-x^2 - y^2}$ that lies above the disk $x^2 + y^2 \le 4$

50. Find, to four decimal places, the area of the part of the surface $z = (1 + x^2)/(1 + y^2)$ that lies above the square $|x| + |y| \le 1$. Illustrate by graphing this part of the surface.

51. (a) Use the Midpoint Rule for double integrals (see Section 15.1) with six squares to estimate the area of the surface $z = 1/(1 + x^2 + y^2)$, $0 \le x \le 6$, $0 \le y \le 4$.

(b) Use a computer algebra system to approximate the surface area in part (a) to four decimal places. Compare with the answer to part (a).

CAS 52. Find the area of the surface with vector equation $\mathbf{r}(u,v) = \langle \cos^3 u \cos^3 v, \sin^3 u \cos^3 v, \sin^3 v \rangle, 0 \le u \le \pi, 0 \le v \le 2\pi$. State your answer correct to four decimal places.

53. Find the exact area of the surface $z = 1 + 2x + 3y + 4y^2$, $1 \le x \le 4$, $0 \le y \le 1$.

54. (a) Set up, but do not evaluate, a double integral for the area of the surface with parametric equations $x = au \cos v$, $y = bu \sin v$, $z = u^2$, $0 \le u \le 2$, $0 \le v \le 2\pi$.

(b) Eliminate the parameters to show that the surface is an elliptic paraboloid and set up another double integral for the surface area.

(c) Use the parametric equations in part (a) with a = 2 and b = 3 to graph the surface.

CAS

M

(d) For the case a = 2, b = 3, use a computer algebra system to find the surface area correct to four decimal places.

55. (a) Show that the parametric equations $x = a \sin u \cos v$, $y = b \sin u \sin v$, $z = c \cos u$, $0 \le u \le \pi$, $0 \le v \le 2\pi$, represent an ellipsoid.

(b) Use the parametric equations in part (a) to graph the ellipsoid for the case a = 1, b = 2, c = 3.

(c) Set up, but do not evaluate, a double integral for the surface area of the ellipsoid in part (b).

56. (a) Show that the parametric equations $x = a \cosh u \cos v$, $y = b \cosh u \sin v$, $z = c \sinh u$, represent a hyperboloid of one sheet.

(b) Use the parametric equations in part (a) to graph the hyperboloid for the case a = 1, b = 2, c = 3.

(c) Set up, but do not evaluate, a double integral for the surface area of the part of the hyperboloid in part (b) that lies between the planes z = -3 and z = 3.

57. Find the area of the part of the sphere $x^2 + y^2 + z^2 = 4z$ that lies inside the paraboloid $z = x^2 + y^2$.

58. The figure shows the surface created when the cylinder $y^2 + z^2 = 1$ intersects the cylinder $x^2 + z^2 = 1$. Find the area of this surface.

