Introducción al Desarrollo de Software Cuántico

José Manuel García Alonso

UNIVERSIDAD DE EXTREMADURA

jgaralo@unex.es

PROGRAMA DEL CURSO

CONTENIDO	DÍA
Introducción a la Programación Cuántica	Martes
Primitivas Cuánticas: Estructura de un programa cuántico	Miércoles
Aplicaciones: Algunos Algoritmos	Jueves
Servicios Cuánticos	Viernes

Para la aprobación y/o certificado de asistencia al curso los asistentes deberán concurrir al 80% de las clases dictadas (4 clases).

Para la aprobación del curso se realizará un trabajo final de unas 15 hs. extras en tema a acordar con el docente durante la ELI, <u>a entregar en las 2 semanas posteriores al dictado del curso (propuesta para uniformizar las entregas).</u>

El mecanismo de entrega se informará más adelante.

Introducción al Desarrollo de Software Cuántico

José Manuel García Alonso

UNIVERSIDAD DE EXTREMADURA

igaralo@unex.es

Introducción a la programación cuántica

We are used to making software like driving a Ferrari...

...And this is the next generation Ferrari

- Principles of Quantum Computing
- 2. Quantum vs Classical Programming
- 3. Quantum Programming

PRINCIPLES OF QUANTUM COMPUTING

WHAT

Prnciples of Quantum Computing. WHAT

Taking advantage of quantum mechanics to do computation, that is, the physical properties of nature at the scale of atoms and subatomic particles

Principles of Quantum Computing. WHAT

In particular the following principles are used:

- Superposition: being in different states at the same time
- Entanglement: State of particles cannot be described independently of the state of the others
- **Collapse**: once observed or measured, the system will always be in one of it possible states

Principles of Quantum Computing. <u>HOW</u>

Using quantum information theory:

Using Qubit instead of bit.

Source: <u>Crash Course in Quantum Computing Using Very</u> Colorful Diagrams

Principles of Quantum Computing. <u>HOW</u>

Using Quantum Information Theory:

QUBIT

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$|\alpha|^2 + |\beta|^2 = 1$$

Phase $0 \le \varphi \le 2\pi$

$$\varphi = \pi$$

$$|0\rangle$$
 $\varphi = 0$

$$|1\rangle$$
 $\varphi = \pi$

QUBIT amplitude or phase cannot be observed because the system collapse

MULTI-QBIT REGISTER

12/42

Introduction to Quantum Computing. HOW

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$|\alpha|^{2} + |\beta|^{2} = 1$$

$$|\psi\rangle = (a_{\alpha} + b_{\alpha}i)|0\rangle + (a_{\beta} + b_{\beta}i)|1\rangle$$

$$|\psi\rangle = r_{\alpha}e^{i\varphi_{\alpha}}|0\rangle + r_{\beta}e^{i\varphi_{\beta}}|1\rangle$$

$$|r_{\alpha}|^{2} + |r_{\beta}|^{2} = 1$$

$$|\psi\rangle = e^{i\varphi_{\alpha}} \left(r_{\alpha}|0\rangle + r_{\beta}e^{i(\varphi_{\alpha}-\varphi_{\beta})}|1\rangle\right)$$

Introduction to Quantum Computing. HOW

This sphere is often called the Bloch sphere, and it provides a useful means to visualize the state of a single qubit

Source: Visualizing Single Qubit Quantum Logic Gates

$$|\psi\rangle = e^{i\varphi_{\alpha}} \left(r_{\alpha}|0\rangle + r_{\beta}e^{i(\varphi_{\alpha}-\varphi_{\beta})}|1\rangle\right)$$
 $|r_{\alpha}|^{2} + |r_{\beta}|^{2} = 1$
 ϕ

Irrelevant factor

$$r_{\beta}$$
 $r_{\alpha} = \cos \frac{\theta}{2}$
 $r_{\beta} = \sin \frac{\theta}{2}$
 $0 \le \theta \le \pi$
 $|\psi\rangle = \cos \frac{\theta}{2}|0\rangle + e^{i(\phi)}\sin \frac{\theta}{2}|1\rangle$
 $0 \le \varphi \le 2\pi$

Introduction to Quantum Computing. HOW

|
$$\psi$$
\rangle = $e^{iarphi_{lpha}}ig(r_{lpha}|0
angle + r_{eta}e^{i(arphi_{lpha}-arphi_{eta})}|1
angleig)$
| $r_{lpha}|^2 + ig|r_{eta}ig|^2 = 1$
 ϕ

$$r_{\alpha} = \cos \frac{\theta}{2}$$
 $r_{\beta} = \sin \frac{\theta}{2}$
 $|\psi\rangle = \cos \frac{\theta}{2} |0\rangle + e^{i(\phi)} \sin \frac{\theta}{2} |1\rangle$

Source; La ciencia de la mula Francis https://francis.naukas.com/2014/07/31/medida-de-la-trayectoria-en-la-esfera-de-bloch-de-un-cubit-superconductor/dibujo20140731-bloch-sphere-qubit-nature-com/

Introduction to Quantum Computing. HOW

A gentle viasualization of one qbit

https://javafxpert.github.io/grok-bloch/

Introduction to Quantum Computing. <u>HOW</u>

To run quantum programs we need:

A device implementing qubits with the ability of initializing them to a known value and manipulating their amplitudes and phases: **Quantum**

A language to communicate with the device and tell it the

manipulations that must be performed over the qubits:

Quantum Gates

Introduction to Quantum Computing. <u>HOW</u>

Limitations: QUANTUM DECOHERENCE

Lost of the phase relation between the states of a quantum computer due to external factors. It introduces errors in the results.

NISQ Era: Noisy Intermiediate-Scale Quantum

WHY

Introduction to Quantum Computing. WHY

Bounded-error Quantum Polynomial time (BQP) is the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of at most 1/3 for all instances

Source: Bounded-error Quantum Polynomial time

Introduction to Quantum Computing. WHY

The evidence is that we already know some algorithms:

Problems	Explication	Quantum Complexity	Classical Complexity
Factorization (Shor)	Decomposition of a number into a product of smaller integers	O(logN)	$\Theta\left(\exp\left(\left(\frac{32}{9}n\right)^{\frac{1}{3}}(\log n)^{\frac{2}{3}}\right)\right)$
Search (Grover)	Search in an unordered sequence of data	O(√n)	O(n)

Introduction to Quantum Computing. <u>WHY</u>

They compute faster because they compute different:

Quantum vs Classical Programming

Quantum vs Classical Programming. Difference 1: Strategies

CLASSICAL

DRODUCE Swedpoorgy - CifymontNewEppeary The Edit Egent Den Option Worker Life The Edit Egent Den Option Worker Life The Manager Inspect State State The Manager Inspect State The Manager

QUANTUM

24/42

Quantum vs Classical Programming. Difference 2: Physical things

CLASSICAL

QUANTUM

Quantum vs Classical Programming. Structure of a Quantum Program

A Quantum Program looks like:

Quantum vs Classical Programming. The real power of Quantum Comp

They compute faster because they compute different:

Quantum computing is much more powerful than parallel computing because the superposition states are manipulated as a single one....this "magic" happens when the properties of quantum mechanics are applied to the superposition states

WHEN

Introduction to Quantum Computing. WHEN

Introduction to Quantum Computing. WHEN

Expected Progress of Quantum Software Engineering

Quantum annealing (which also includes adiabatic quantum computation) is a quantum computing method used to find the optimal solution of problems involving many solutions

Universal quantum gate model is based on creating quantum structures using stable qubits and solving today's problems with **quantum circuits.** These circuits are based on the Turing machine model

Principal Gates

	Name	Gate in IBM Composer (Qiskit)	Equivalent in AWS Braket
	Pauli-X	X	X
Single -	Hadamard	h	h
Qubit	Phase	р	Phaseshift
	Controlled-X	CX	cnot
	Toffoli	ccx	ccnot
Multiple	CPhase	cu1	cphaseshift
Qubits	Swap	swap	swap
•	Measure	measure	-
	Barrier	barrier	

IBM QUANTUM COMPOSER https://quantum-computing.ibm.com/composer/files/new

Name	Gate in IBM Composer (Qiskit)	Equivalent in AWS Braket
Pauli-X	X	X

Composer Reference

Matrix

Reverse

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

itself

$$A |0\rangle + B |1\rangle - X - B |0\rangle + A |1\rangle$$

Equivalent Gate in IBM Name Composer (Qiskit) in AWS Braket Hadamard h h

Composer Reference

Matrix

Reverse

$$H=rac{1}{\sqrt{2}}egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix} \qquad H=rac{1}{\sqrt{2}}egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}$$

$$H=rac{1}{\sqrt{2}}igg(egin{matrix}1&1\1&-1\end{matrix}igg)$$

itself

$$|0\rangle$$
 — $\frac{1}{\sqrt{2}}$ $|0\rangle$ + $\frac{1}{\sqrt{2}}$ $|1\rangle$

$$|1\rangle$$
 — H — $\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$

Name	Gate in IBM Composer (Qiskit)	Equivalent in AWS Braket
Phase	р	phaseshift

Composer Reference

Matrix

Reverse

$$P(arphi) = \left[egin{matrix} 1 & 0 \ 0 & e^{iarphi} \end{array}
ight]$$

$$P(-\varphi) = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\varphi} \end{bmatrix}$$

	Name	Gate in IBM Composer (Qiskit)	Equivalent in AWS Braket	
	Controlled-X	сх	cnot	
S	er Reference	Matrix	Rev	erse

Composer Reference

$$ext{CNOT} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$ext{CNOT} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix} \quad ext{CNOT} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

Name	Gate in IBM Composer (Qiskit)	Equivalent in AWS Braket
Toffoli	ссх	ccnot

Matrix

Composer Reference

$$\text{CCNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \quad \text{CCNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

itself

Reverse

Equivalent Gate in IBM Name Composer (Qiskit) in AWS Braket cphaseshift **CPhase** cu1

Composer Reference

Matrix

Reverse

$$ext{CPHASE}(arphi) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & e^{iarphi} \end{bmatrix}$$

$$\mathbf{CPHASE}(\varphi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\varphi} \end{bmatrix} \quad CPHASE(-\varphi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{-i\varphi} \end{bmatrix}$$

Name	Gate in IBM Composer (Qiskit)	Equivalent in AWS Braket
Swap	swap	swap

Composer Reference

Matrix

Reverse

$$ext{SWAP} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

itself

THANK YOU VERY MUCH FOR YOUR ATTENTION