3

AMENDMENT TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

- 1. 8. (Canceled).
- 9. (Currently Amended) A polycrystalline silicon film on a buffer layer that is on a substrate, the polycrystalline film containing nickel metal of which density ranges 2×10^{17} to 5×10^{19} atoms/cm3, and an electrical conductivity activation energy between 0.53 eV and 0.71 eV, the polycrystalline silicon film comprising a plurality of needle-shaped silicon crystallites;

metal electrodes on opposite sides of the polycrystalline silicon film; and
an electric field substantially across the polycrystalline silicon between the metal
electrodes,

wherein the polycrystalline silicon film is formed by crystallizing an amorphous silicon film containing nickel metal by a thermal treatment carried in a temperature of 400 to 500 °C and due to the applying an electric field with metal electrodes, and

wherein the needle-shaped silicon crystallites are formed by movement of a silicide of the metal.

- 10. (Previously Presented) The polycrystalline silicon film according to claim 9, wherein the polycrystalline film includes one of gold(Au) and cobalt(Co) instead of nickel metal.
- 11. (Previously Presented) The polycrystalline silicon film according to claim 9, wherein the nickel metal works as a catalyst during the crystallization.

ì

12. - 19. (Canceled)

20. (New) A polycrystalline silicon film on a buffer layer that is on a substrate, the polycrystalline film containing nickel metal of which density ranges 2×10^{17} to 5×10^{19} atoms/cm3, and an electrical conductivity activation energy between 0.53 eV and 0.71 eV, the polycrystalline silicon film comprising a plurality of needle-shaped silicon crystallites;

metal electrodes on opposite sides of the polycrystalline silicon film;

an electric field substantially across the polycrystalline silicon between the metal electrodes; and

a heating element that heats the polycyrstaline silicon film,

wherein the polycrystalline silicon film is formed by crystallizing an amorphous silicon film containing nickel metal by heating the polycrystalline film to a temperature of 400 to 500 °C and due to the electric field, and

wherein the needle-shaped silicon crystallites are formed by movement of a silicide of the metal.