Precept 5: Regularization in linear models and Hyperparameter tuning using cross-validation

COS424/524/SML302 Spring 2021

Xiaoyan Li, Yaniv Ovadia

Topics:

- Regularization in linear regression and logistic regression
 - (1) Ridge (L2 penalty)
 - (2) Lasso (L1 penalty)
 - (3) Elastic Net (A combination of L1 and L2 penalty)
- Hyperparameter tuning using cross-validation
- Missing data
- Paper for COS524

Ridge Regression

- Minimization objective:
 - Sum of squared residuals + α *(sum of square of coefficients):

$$||Y - X\beta||_2^2 + \alpha ||\beta||_2^2$$

- L2 regularization:
 - α is a regularization/shrinkage parameter, controls the size of the coefficient, the strength of regularization

6rg max
$$P(R|0) = arg max log P(R|0) lest the stand production of the stand production of the standard production of the standar$$

Ridge regression for 10 different values of α ranging from 1e-15 to 20.

	rss	intercept	coef_x_1	co	ef_x_3	2	coef_x_3	coef_x_4	coef_x_5	coef_x_6	coef_x_7	coef_x_8	¢	oef_x_9	coef_x_10	coef_x_11	co
alpha_1e-15	0.87	95	-3e+02	3.8	Be+02		-2.4e+02	66	0.96	-4.8	0.64	0.15	4	0.026	-0.0054	0.00086	0.0
alpha_1e-10	0.92	11	-29	31			-15	2.9	0.17	-0.091	-0.011	0.002	0	.00064	2.4e-05	-2e-05	-4.
alpha_1e-08	0.95	1.3	-1.5	ť	7	h	-0.68	0.039	0.016	0.00016	-0.00036	-5.4e-05 4	Ŕ	-40-ee.s	1.1e-06	1.9e-07	20
elpha_0.0001	0.96	0.56	0.55	-0	13		-0.026	-0.0028	-0.00011	4.1e-05	1.5e-05	3.7e-06	7	4e-07	1.3e-07	1.9e-08	1.9
alpha_0.001	1	0.82	0.31	0	087		-0.02	-0.0028	-0.00022	1.8e-05	1.2e-05	3.4e-06	7	3e-07	1.3e-07	1.9e-08	1.7
alpha_0.01	1.4	1.3	-0.088	-0	052		-0.01	-0.0014	-0.00013	7.2e-07	4.1e-06	1.3e-06	3	e-07	5.6e-08	9e-09	1.1
alpha_1	5.6	0.97	-0.14	-0	019		-0.003	-0.00047	-7e-05	-9.9e-06	-1.3e-06	-1.4e-07	4	9.3e-09	1.3e-09	7.8e-10	2.4
alpha_5	14	0.55	-0.059	0	0085		-0.0014	-0.00024	-4.1e-05	-6.9e-06	-1.1e-06	-1.9e-07	-	3.1e-08	-5.1e-09	-8.24-10	-1.
alpha_10	18	0.4	-0.037	-0	0055		-0.00095	-0.00017	-3e-05	-5.2e-06	-9.2e-07	-1.6e-07	4	2.9e-08	-5.1e-09	-9.1e-10	-1,
alpha_20	23	0.28	-0.022	-0	0034	"	-0.0008	-0.00011	-2e-05	-3.6e-06	-6.6e-07	-1.2e-07	5	2,2÷-08	-te-09	-7.5e-10	-1/

Linear Regression:

Q: What observations do you have based on this table?

Ridge regression for 10 different values of α ranging from 1e-15 to 20.

alpha_1e-15 0.87 95 alpha_1e-10 0.92 11 alpha_1e-08 0.95 1.3 alpha_0.0001 0.96 0.56 alpha_0.001 1 0.82 alpha_0.01 1.4 1.3		31	_	-2.4e+02 -15 -0.68 -0.026	66 2.9 0.039	0.96 0.17 0.016	-4.8 -0.091 0.00016	-0.011	0.15 0.002	-0.026 0.00064	-0.0054 2.4e-05	0.00086 -2e-05	0.0 -4.3
alpha_1e-08 0.95 1.3 alpha_0.0001 0.96 0.56 alpha_0.001 1 0.82	-1.5 0.55	4. 0		-0.68	_					0.00064	2.4e-05	-2e-05	-4.
alpha_0.0001 0.96 0.56 alpha_0.001 1 0.82	0.55	-0	_	_	0.039	0.016	0.00016	0.00000					
alpha_0.001 1 0.82		н	13	-0.006	-			-0.00036	-5.4e-05 4	-2.96-07-	1.1e-06	1.9e-07	20
	0.31			-0.026	-0.0028	-0.00011	4.1e-05	1.5e-05	3.7e-06	7.4e-07	1.3e-07	1.9e-08	1.9
Noba 0.01 1.4 13		1.9	087	-0.02	-0.0028	-0.00022	1.8e-05	1.2e-05	3.4e-06	7.3e-07	1.3e-07	1.9e-08	1.7
aspira_0.01 1.9 1.0	-0.088	-0	052	-0.01	-0.0014	-0.00013	7.2e-07	4.1e-06	1.3e-06	3e-07	5.6e-08	9e-09	1.1
alpha_1 5.6 0.97	-0.14	-0	019	-0.003	-0.00047	-7e-05	-9.9e-06	-1.3e-06	-1.4e-07	-9.3e-09	1.3e-09	7.8e-10	2.4
alpha_5 14 0.55	-0.059	-0	0085	-0.0014	-0.00024	-4.1e-05	-6.9e-06	-1.1e-06	-1.9e-07	-3.1e-06	-5.1e-09	-8.20-10	-1.
alpha_10 18 0.4	-0.037	-0.	0055	-0.00095	-0.00017	-3e-05	-5.2e-06	-9.2e-07	-1.6e-07	-2.9e-08	-5.1e-09	-9.1e-10	-1.
alpha_20 23 0.28	-0.022	-0.	0034	-0.0006	-0.00011	-2e-05	-3.6e-06	-6.6e-07	-1.2e-07	-2.2e-08	-6e-09	-7.5e-10	-1/

A: observations:

- RSS increases as alpha increases;
- High alpha values can lead to underfitting
- Even the smallest alpha gives us significant reduction in magnitude of coefficients;
- Though the coefficients are very small, they are NOT zero.

Topics:

- Regularization in linear regression and logistic regression
 - (1) Ridge (L2 penalty)
 - (2) Lasso (L1 penalty)
 - (3) Elastic Net (A combination of L1 and L2 penalty)
- Hyperparameter tuning using cross-validation
- Missing data
- Paper for COS524

Lasso Regression

Minimization objective:

- Sum of squared residuals + α *(sum of absolute value of coefficients):

$$||Y - X\beta||_2^2 + \alpha ||\beta||_1$$

- L1 regularization:
 - α is a regularization/shrinkage parameter, controls the sparsity of the parameters, the strength of regularization
 - Can be derived as a MAP estimate with Laplace distribution prior

Intuition for Sparsity of L1-Regularization

Lasso regression for 10 different values of α ranging from 1e-15 to 10.

	rss	intercept	coef_x_1	coef_x_2	coef_x_3	coef_x_4	coef_x_5	coef_x_6	coef_x_7	coef_x_8	coef_x_9	coef_x_10	coef_x_11	COE
alpha_1e-15	0.96	0.22	1.1	-0.37	0.00089	0.0016	-0.00012	-6.4e-05	-6.3e-06	1.4e-06	7.8e-07	2.1e-07	4e-08	5.4
alpha_1e-10	0.96	0.22	1.1	-0.37	0.00088	0.0016	-0.00012	-6.4e-05	-6.3e-06	1.4e-06	7.8e-07	2.1e-07	4e-08	5.4
alpha_1e-08	0.96	0.22	1.1	-0.37	0.00077	0.0016	-0.00011	-6.4e-05	-6.3e-06	1.4e-06	7.8e-07	2.1e-07	4e-08	5.3
alpha_1e-05	0.96	0.5	0.6	-0.13	-0.038	-0	0	0	0	7.7e-06	1e-06	7.7e-08	0	0
alpha_0.0001	1	0.9	0.17	-0	-0.048	-0	-0	0	0	9.5e-06	5.1e-07	0	0	0
alpha_0.001	1.7	1.3	-0	-0.13	-0	-0	-0	0	0	0	0	0	1.5e-08	7.5
alpha_0.01	3.6	1.8	-0.55	-0.00056	-0	-0	HIGH S	PARSITY	,-0	-0	-0	0	0	0
alpha_1	37	0.038	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
alpha_5	37	0.038	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
alpha_10	37	0.038	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Q: What observations do you have based on this table?

Lasso regression for 10 different values of α ranging from 1e-15 to 10.

	rss	intercept	coef_x_1	coef_x_2	coef_x_3	coef_x_4	coef_x_5	coef_x_6	coef_x_7	coef_x_8	coef_x_9	coef_x_10	coef_x_11	CO
alpha_1e-15	0.96	0.22	1.1	-0.37	0.00089	0.0016	-0.00012	-6.4e-05	-6.3e-06	1.4e-06	7.8e-07	2.1e-07	4e-08	5.4
alpha_1e-10	0.96	0.22	1.1	-0.37	0.00088	0.0016	-0.00012	-6.4e-05	-6.3e-06	1.4e-06	7.8e-07	2.1e-07	4e-08	5.4
alpha_1e-08	0.96	0.22	1.1	-0.37	0.00077	0.0016	-0.00011	-6.4e-05	-6.3e-06	1.4e-06	7.8e-07	2.1e-07	4e-08	5.3
alpha_1e-05	0.96	0.5	0.6	-0.13	-0.038	-0	0	0	0	7.7e-06	1e-06	7.7e-08	0	0
alpha_0.0001	1	0.9	0.17	-0	-0.048	-0	-0	0	0	9.5e-06	5.1e-07	0	0	0
alpha_0.001	1.7	1.3	-0	-0.13	-0	-0	-0	0	0	0	0	0	1.5e-08	7.5
alpha_0.01	3.6	1.8	-0.55	-0.00056	-0	-0	-BIGH S	PARSITY	-0	-0	-0	0	0	0
alpha_1	37	0.038	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
alpha_5	37	0.038	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
alpha_10	37	0.038	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

A: observations:

- RSS increases as alpha increases;
- Many of the coefficients are zero even for vey small values of alpha.

Limitations of Lasso Regression

- 1. Number of samples (N) < number of features (P):
 - Lasso selects at most N features.
- 2. Highly correlated features
 - Lasso tends to select one and ignore the others
 - Not necessarily consistent between fits

Topics:

- Regularization in linear regression and logistic regression
 - (1) Ridge (L2 penalty)
 - (2) Lasso (L1 penalty)
 - (3) Elastic Net (A combination of L1 and L2 penalty)
- Hyperparameter tuning using cross-validation
- Missing data
- Paper for COS524

Elastic Net Regression

Objective:

- NLL + $\lambda_1 ||\beta||_1 + \lambda_2 ||\beta||_2^2$
- A combination of L1 and L2 regularization:
 - Add 2 penalty terms:
 - $\lambda 1$ and λ_2 are regularization/shrinkage parameters, controls the strength of regularization
 - pre-chosen hyperparameters for the model
 - Ridge and Lasso regressions are special cases of it.
 - λ 1 and λ 2 can be controlled together or separtely.
 - Eg. alpha=1.0, l1_ratio=0.5 in sklearn.linear_model.ElasticNet

Regularized Logistic Regression

- Can perform regularization on Logistic regression, similar to regularized linear regression (They are all in the generalized linear model framework; Logistic regression is a classifier.)
- Add penalty term to object function
 - L1-penalty
 - L2-penalty
 - Elastic net penalty

Topics:

- Regularization in linear regression and logistic regression
 - (1) Ridge (L2 penalty)
 - (2) Lasso (L1 penalty)
 - (3) Elastic Net (A combination of L1 and L2 penalty)
- Hyperparameter tuning using cross-validation
- Missing data
- Paper for COS524

What are hyperparameters?

- Pre-selected values for some model parameters before fitting the model on the training data
- Examples:
 - $-\alpha$ in Ridge and Lasso Regression
 - $-\lambda 1$ and λ_2 in Elastic Net Regression
 - K in K-nearest neighbors classifier
 - Kernel parameter and penalty parameter in SVM

— ...

Hyperparameter Tuning using Cross-Validation

- (1) Set K=k for K-fold cross-validation
- (2) Random split training data set D into k folds: S₁, S₂, ..., S_k
- (3) For C in {C₁ C₂, ..., C_m}, assume C is the hyperparameter
 - For i = 1, 2, ..., k
 - Let fold i (S_i) be the test(held out) fold.
 - Fit the model on the other k-1 folds.
 - Predict on the test fold S_i.
 - Compute generalization error (E_r) from one prediction for each sample
- (4) $C^* = \operatorname{argminEc}$
- (5) retrain your model on the training data set D with C*
- Q1: Can step 2 be moved inside the for-loop?
- Q2: How do you choose {C₁ C₂, ..., C_m}?
- Q3: Can you use the test data to set your hyperparameters?
- Q4: Can we run either of these loops in parallel?

Hyperparameter Tuning using Cross-Validation

- (1) Set K=k for K-fold cross-validation
- (2) Random split training data set D into k folds: S₁, S₂, ..., S_k
- (3) For C in {C₁ C₂, ..., C_m}, assume C is the hyperparameter
 - For i = 1, 2, ..., k
 - Let fold i (S_i) be the test(held out) fold.
 - Fit the model on the other k-1 folds.
 - Predict on the test fold S_i.
 - Compute generalization error (E_c) from one prediction for each sample
- (4) C* = argminEc
- Q1: Can step 2 be moved inside the for-loop?
 - A: No. should keep the same folds.
- Q2: how do you choose {C₁ C₂, ..., C_m}?
 - A: grid search, or random selection in the parameter space, others...
- Q3: Can you use the leader board to set your hyperparameters?
 - NO
- Q4: Can we run either of these loops in parallel?
 - A: Yes, both!

Some Classes in sklearn for regularization and hyperparameter tuning

- sklearn.linear_model.Ridge
- sklearn.linear_model.RidgeCV
- sklearn.linear_model.Lasso
- sklearn.linear_model.LassoCV
- sklearn.linear_model.ElasticNet
- sklearn.linear_model.ElasticNetCV
- sklearn.linear_model.SGDClassifier
- sklearn.linear_model.SGDRegressor
- sklearn.linear model.LogisticRegression
- sklearn.linear_model.LogisticRegressionCV
 - SGD training with stochastic gradient decent
 - CV- with built-in cross-validation

Paper:

- Group discussion for COS524 in breakout rooms (~15 minutes)
- Share your opinions in the shared google docs:
 - Will send you the links in chat
 - Go to the link for your breakout room
 - You can focus on one of the questions
- Come back for precept wrap up

Paper:

- 1.
- 2
- 3

Wrap up for Precept 3

regularization in linear regression and logistic regression

- (1) Ridge (L2 penalty)
- (2) Lasso (L1 penalty)
- (3) Elastic Net (A combination of L1 and L2 penalty)
- Missing data
- Paper for COS524

Resources: (many graphs and texts are taken from the following resources.)

 "A Complete Tutorial on Ridge and Lasso Regression in Python" by Aarshay Jain https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-ridge-lasso-regression-python/

- "Missing data" by Iris Eekhout
 - https://www.iriseekhout.com/missing-data/