\sim	A 1	A	
\sim	Δdv	Aftemi	pt review
\circ	Ziuv.	7 1110111	DUICAICAA

Starte	•
	tate Finished
	d on Monday, 27 October 2025, 1:25 PM
	aken 7 mins 26 secs
	arks 8.00/10.00
G	rade 80.00 out of 100.00
Question 1 Complete Mark 1.00 out of 1.00	
A page fault oc	curs, and the OS finds that the required page is already in memory but not mapped in the page table. This situation is known as:
a. Transla	tion fault
Ob. Hard fa	ault
C. Double	e page fault
d. Minor	(soft) page fault
Question 2	
Complete	
Mark 1.00 out of 1.00	
Consider two the performance?	nreads performing frequent read/write operations on a shared buffer protected by a mutex. Which condition most affects
a. Lock co	ontention
○ b. Contex	rt leakage
C. Deadlo	
Od. Thread	starvation
J. Timedo	
Question 3	
Complete	
Mark 1.00 out of 1.00	
During process	context switching, why must the OS flush the TLB on some architectures?
a. To load	d disk pages faster.
	r stale virtual-to-physical mappings from the previous process.
	Chronize threads sharing memory.
	the TLB entries are stored in the PCB.
G. Becaus	הבי בנה פונוופט מוכ סנטופט ווו נווכ דכט.

1 of 3

OS Adv: Attempt review	
------------------------	--

Complete
Mark 0.00 out of 1.00
In Linux, when a file is read, data is often copied multiple times between components. Which step introduces the most expensive copy
operation?
a. From CPU cache to register
b. From kernel buffer to user-space buffer
c. From disk to kernel buffer
d. From disk controller to DMA buffer
.
Question 5
Complete Mark 1.00 out of 1.00
Mark 1.00 out of 1.00
When a context switch occurs due to an interrupt, which part of the CPU state is not typically saved in the Process Control Block (PCB)?
a. Translation Lookaside Buffer (TLB) entries
b. General-purpose registers
○ c. Stack pointer
○ d. Program counter
Question 6
Complete
Complete
Complete
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state?
Complete Mark 0.00 out of 1.00
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state?
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes.
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault.
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault. c. The process receives a SIGCHLD signal.
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault. c. The process receives a SIGCHLD signal. d. The scheduler's time quantum expires.
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault. c. The process receives a SIGCHLD signal. d. The scheduler's time quantum expires.
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault. c. The process receives a SIGCHLD signal. d. The scheduler's time quantum expires.
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault. c. The process receives a SIGCHLD signal. d. The scheduler's time quantum expires.
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault. c. The process receives a SIGCHLD signal. d. The scheduler's time quantum expires.
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault. c. The process receives a SIGCHLD signal. d. The scheduler's time quantum expires.
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault. c. The process receives a SIGCHLD signal. d. The scheduler's time quantum expires. Question 7 Complete Mark 1.00 out of 1.00 Which of the following best explains why a multithreaded program might perform worse than a single-threaded version on a multicore CPU?
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault. c. The process receives a SIGCHLD signal. d. The scheduler's time quantum expires. Question 7 Complete Mark 1.00 out of 1.00 Which of the following best explains why a multithreaded program might perform worse than a single-threaded version on a multicore CPU? a. Page table thrashing
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault. c. The process receives a SIGCHLD signal. d. The scheduler's time quantum expires. Question 7 Complete Mark 1.00 out of 1.00 Which of the following best explains why a multithreaded program might perform worse than a single-threaded version on a multicore CPU? a. Page table thrashing b. The OS limits all threads to one core
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault. c. The process receives a SIGCHLD signal. d. The scheduler's time quantum expires. Question 7 Complete Mark 1.00 out of 1.00 Which of the following best explains why a multithreaded program might perform worse than a single-threaded version on a multicore CPU? a. Page table thrashing b. The OS limits all threads to one core c. Cache coherence overhead and false sharing
Complete Mark 0.00 out of 1.00 When a process performs a blocking disk read, which event transitions it back to the ready state? a. The disk controller sends an interrupt after the DMA transfer completes. b. The OS detects a soft page fault. c. The process receives a SIGCHLD signal. d. The scheduler's time quantum expires. Question 7 Complete Mark 1.00 out of 1.00 Which of the following best explains why a multithreaded program might perform worse than a single-threaded version on a multicore CPU? a. Page table thrashing b. The OS limits all threads to one core

2 of 3 27-10-2025, 13:26

\sim	A 1	A		
\sim	Δdv	Aftemi	nt	review
\circ	Ziuv.	7 1110111	Pι	10 110 11

Question 8			
Complete			
Mark 1.00 out of 1.00			
Which of the following correctly describes a potential race condition between threads sharing a file descriptor?			
a. Each thread maintains a separate file offset, preventing interference.			
○ b. Race conditions cannot occur in file I/O.			
 c. Two threads writing simultaneously can cause interleaved, inconsistent file data. 			
d. Threads always serialize writes automatically.			
Question 9			
Complete			
Mark 1.00 out of 1.00			
Which statement accurately describes file system metadata caching?			
a. Only file data blocks are cached; metadata always resides on disk.			
 b. Metadata (like inodes and directory entries) is cached in kernel memory for faster lookup. 			
c. Metadata is never cached due to consistency constraints.			
d. Metadata is cached in user-space libraries.			
Question 10			
Complete			
Mark 1.00 out of 1.00			
Which synchronization mechanism would you choose for a high-frequency producer-consumer queue in shared memory where busy-waiting is acceptable?			
○ a. Barrier			
○ b. Condition variable			
○ c. Counting semaphore			
d. Spinlock			

3 of 3