

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΑΙΣΘΗΤΗΡΙΩΝ http://sensors.ece.ntua.gr

Διακρίβωση μαγνητικού αισθητήρα Hall

Σπυρίδων Αγγελόπουλος

Διακρίβωση μαγνητομέτρων

- Συσχέτιση τιμής τάσης εξόδου του αισθητήρα με γνωστό μαγνητικό πεδίο.
- Απαραίτητη διαδικασία για τα υφιστάμενα και τα νέα μαγνητόμετρα.

- Χρήση ειδικών χώρων (παθητική μαγνητική θωράκιση)
- Χρήση κατάλληλων διατάξεων (ενεργητική αντιστάθμιση πεδίου).

Σωληνοειδές

- Δημιουργία γνωστού μαγνητικού πεδίου, μέσω της παροχής τάσης στα άκρα του.
- Γενικός τύπος (αν R<<L):

$$B = \frac{\mu NI}{2L}$$

Αν R, L συγκρίσιμα:

$$B = \frac{\mu NI}{2\sqrt{\left(\frac{L}{2}\right)^2 + R^2}}$$

όπου:

- μ: μαγνητική διαπερατότητα
- Ν: αριθμός σπειρών
- Ι: ένταση ρεύματος τροφοδοσίας
- L: **μήκος** σωληνοειδούς
- R: ακτίνα σωληνοειδούς

Αισθητήρες Hall

- Δυνατότητα ανίχνευσης και μέτρησης μαγνητικού πεδίου.
- Προσφέρουν μεγάλο εύρος μέτρησης.
- Χρησιμοποιούνται σε πολλές καταναλωτικές συσκευές.
- Κατηγορίες:
 - **Latch**: **Εντοπισμός** πεδίου
 - Linear Unipolar: Τιμή πεδίου
 - Linear Bipolar: Τιμή & Φορά πεδίου

Φαινόμενο Hall

Όταν ένα **ρεύμα** διαρρέει έναν **αγωγό** ή **ημιαγωγό** και ταυτοχρόνως στο υλικό εφαρμόζεται και ένα **μαγνητικό πεδίο κάθετο** στη διεύθυνση του ρεύματος, τότε κατά μήκος του υλικού **εμφανίζεται μια τάση**, η οποία είναι **κάθετη** τόσο **στο ρεύμα**, όσο και **στο μαγνητικό πεδίο**. Η τάση αυτή ονομάζεται **τάση Hall (V_H)**.

$$V_H = \frac{R_H \cdot I_{\chi} \cdot B_z}{t}$$

R_H	συντελεστής Hall
I_x	ένταση του ρεύματος κατά τη διεύθυνση του άξονα x
B_z	μαγνητικό πεδίο κατά τη διεύθυνση του άξονα z
t	πάχος του ημιαγωγού

Αισθητήρας Hall άσκησης

- Αισθητήρας άσκησης: **SS49E** (linear bipolar)
- Τάση τροφοδοσίας: V_{cc} = 2.7-6.5 V
- Τυπική έξοδος: 1.4 mV/Gauss (1 G = 10⁻⁴ T)
- Τυπικό εύρος μέτρησης: ±1000 G (±100 mT)

• Έξοδος για μηδενικό πεδίο: $\frac{V_{cc}}{2}$

Ηλεκτρονικό κύκλωμα Hall

Διάταξη διακρίβωσης

Διάμετρος σύρματος	Ακτίνα σωληνοειδούς	Μήκος σωληνοειδούς
d (mm)	r (mm)	L (mm)
0.4	22	38

Διαδικασία μέτρησης

Προσοχή!!

Αρνητική τροφοδοσία ή αύξηση τάσης του αισθητήρα Hall οδηγεί στην καταστροφή του!

Διαδικασία μέτρησης

- 1. Μέτρηση **αντίστασης** σωληνοειδούς
- 2. Σύνδεση τροφοδοσίας Hall με τροφοδοτικό (>7 V_{DC})
- 3. Σύνδεση εξόδου **Hall** με **πολύμετρο**
- 4. Επαλήθευση ένδειξης τάσης εξόδου Hall ~2.5 V
- 5. Σύνδεση **σωληνοειδούς** με το **τροφοδοτικό**
 - Τροφοδοσία **του σωληνοειδούς** με **2.6 A 0 A**, με βήμα **0.2 A**

Τροφοδοσία σωληνοειδούς

- Καταγραφή **ένδειξης πολυμέτρου**
- 6. Αντιστροφή της πολικότητας τροφοδοσίας του σωληνοειδούς
 - Τροφοδοσία με 0.2 A 2.6 A, με βήμα 0.2 A
 - Καταγραφή **ένδειξης πολυμέτρου**

ρύθμιση είτε της τάσης,

είτε της έντασης

ρεύματος.

Ρύθμιση εξόδων (Ανεξάρτητες, σε σειρά, παράλληλες)

Προσοχή!! Ισχύει ο νόμος του Ohm, $I = \frac{V}{R}$. Συνεπώς, είναι δυνατή η ρύθμιση <u>είτε</u> της τάσης, <u>είτε</u> της έντασης

ρεύματος.

Ενεργοποίηση εξόδων

> Ρύθμιση εξόδων (Ανεξάρτητες, σε σειρά, παράλληλες)

CURRENT

OVER

Κόκκινο LED: Ένδειξη
Βραχυκυκλώματος
(CC-Constant current)

νοιτασε

Ο μασ Ο μεριτ DC Power Supply 382270

888 - 888

(CH1)

Ρύθμιση ανώτατου ορίου έντασης ρεύματος (CH1)

Ρύθμιση τάσης (CH3)

Ρύθμιση τάσης

Έξοδοι μεταβλητής Έξοδος τάσης (V-, GND, V+) σταθερής τάσης

- CH3 +

Έξοδος Επιλογή εμφάνισης αθερής τάσης τάσης και έντασης (V-, V+) του CH1 ή CH3

Ένδειξη Βραχυκυκλώματος (CC-Constant current)

<u>Προσοχή!!</u> Ισχύει ο νόμος του Ohm,

 $I=\frac{V}{R}$.

Συνεπώς, είναι δυνατή η ρύθμιση <u>είτε</u> της τάσης, <u>είτε</u> της έντασης ρεύματος.

Ενεργοποίηση εξόδου

Έξοδοι μεταβλητής Έξ τάσης (V-, GND, V+)

Έξοδοι σταθερής τάσης (V-, V+) Ρύθμιση τάσης

Ρύθμιση ανώτατου ορίου έντασης ρεύματος

Ένδειξη βραχυκυκλώματος (CC-Constant current)

Προσοχή!!
Ισχύει ο νόμος του Ohm, $I = \frac{V}{R} .$ Συνεπώς, είναι δυνατή η ρύθμιση είτε της τάσης, είνασης, ρεύματος.

Ρύθμιση τάσης

Ρύθμιση ανώτατου ορίου έντασης ρεύματος

Έξοδοι σταθερής τάσης (V-, V+)

Έξοδοι μεταβλητής τάσης (V-, V+)

Ενδείξεις Βραχυκυκλώματος (CC-Constant current) Ρύθμιση τάσης

Προσοχή!! Ισχύει ο νόμος του Ohm, $I = \frac{V}{R}$. Συνεπώς, είναι δυνατή η ρύθμιση <u>είτε</u> της τάσης, <u>είτε</u> της έντασης

ρεύματος.

Ρύθμιση αναλογίας θετικής και αρνητικής τάσης (για ταυτόχρονη ρύθμιση)

Επιλογή τάσης για εμφάνιση στην οθόνη

Έξοδοι μεταβλητής τάσης (COM, GND, +6V ή +20V ή -20V)

Πολύμετρο

Επιλογή	Μέτρηση
V _{AC}	Εναλλασσόμενη τάση (RMS)
V_{DC}	Συνεχής τάση ^{50% duty cycle}
Hz %	Συχνότητα Duty cycle 25% duty cycle
°F °C	Θερμοκρασία σε °C
D Ω ·)) CAP	Πτώση τάσης διόδου Αντίσταση Έλεγχος συνέχειας Χωρητικότητα πυκνωτή
μA	Ένταση ρεύματος έως μΑ
mA	Ένταση ρεύματος έως 400 mA)
10A	Ένταση ρεύματος (>400mA έως 10A)

Υποδοχή για μέτρηση ρεύματος >400 mA έως 10 A

Υποδοχή COM (-)

Σχετική μέτρηση

Επιλογή λειτουργίας

Διατήρηση τελευταίας ένδειξης

Χειροκίνητη επιλογή κλίμακας

Μέγιστες επίτρεπόμενες τάσεις και εντάσεις εισόδων

Υποδοχή για τις υπόλοιπες μετρήσεις

Πολύμετρο

Επιλογή	Μέτρηση
Ω	Αντίσταση
V~	Εναλλασσόμενη τάση (RMS)
V	Συνεχής τάση
A~	Ένταση εναλλασσόμενου ρεύματος
A	Ένταση συνεχούς ρεύματος
Fcx	Χωρητικότητα πυκνωτή
°C	Θερμοκρασία σε °C
٥F	Θερμοκρασία σε °F
•))	Πτώση τάσης διόδου Έλεγχος συνέχειας

Υποδοχή για μέτρηση ρεύματος >200 mA έως 10 A

Διατήρηση τελευταίας ένδειξης

Για μέτρηση αγνώστων μεγεθών, ξεκινάμε από τη <u>μεγαλύτερη</u> κλίμακα και μετακινούμαστε προς τη μικρότερη

Υποδοχή COM (-)

Μέγιστες επιτρεπόμενες τάσεις και εντάσεις εισόδων

Υποδοχή για μέτρηση ρεύματος έως 200 mA και °C/°F

Υποδοχή για μετρήσεις V, Ω, → , •)