Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Lista M 6 6 listopada 2014 r.

M 6.1. 1 punkt Niech dla $n \in \mathbb{N}$ dane będą punkty $x_0 < x_1 < \ldots < x_{n+1}$ oraz taka funkcja f, że pochodna $f^{(n+1)}$ jest ciągła i ma stały znak w przedziale $[x_0, x_{n+1}]$. Niech L i M będą takimi wielomianami stopnia $\leq n$, że

$$L(x_i) = f(x_i)$$
 $(i = 0, 1, ..., n),$
 $M(x_j) = f(x_j)$ $(j = 1, 2, ..., n + 1).$

Wykazać, że dla dowolnego $x \in [x_0, x_{n+1}]$ wartość f(x) leży pomiędzy L(x) i M(x).

- **M 6.2.** 1 punkt Niech L oznacza wielomian interpolujący funkcję $f(x) = \ln x 2(x-1)/x$ w punktach $x_0 = 1, x_1 = 2, x_2 = 4, x_3 = 7, x_4 = 8, x_5 = 10$. Obliczyć wartości L(2.9) oraz L(5.25). Porównać rzeczywiste błędy tych wartości z ich oszacowaniami.
- **M 6.3.** 1 punkt Niech L_n oznacza wielomian interpolujący funkcję $f(x) = \sin 2x$ w punktach $x_i = \frac{i}{n}$ (i = 0, 1, ..., n). Jaka wartość n gwarantuje, że w każdym punkcie x przedziału [0, 1] zachodzi nierówność

$$|f(x) - L_n(x)| \le 10^{-4}$$
?

M 6.4. I punkt Niech L_n będzie wielomianem interpolującym funkcję $f(x) = \exp x$ w zerach wielomianu Czebyszewa T_{n+1} . Jaka wartość n gwarantuje, że zachodzi nierówność

$$\max_{-1 \le x \le 1} |f(x) - L_n(x)| \le 10^{-5} ?$$

M 6.5. 2 punkty Wykazać, że wielomian $I_n \in \Pi_n$ interpolujący funkcję f w węzłach

$$t_k \equiv t_{n+1,k} = \cos \frac{2k+1}{2n+2}\pi$$
 $(k = 0, 1, \dots, n)$

(zerach wielomianu T_{n+1}) można zapisać w postaci

$$I_n(x) = \sum_{i=0}^n \alpha_i T_i(x),$$

gdzie

$$\alpha_i := \frac{2}{n+1} \sum_{j=0}^{n} f(t_j) T_i(t_j) \qquad (i = 0, 1, \dots, n).$$

M 6.6. 1 punkt Określmy wielomian $H_{2n+1} \in \Pi_n$ za pomocą wzoru

$$H_{2n+1}(x) = \sum_{k=0}^{n} f(x_k) h_k(x) + \sum_{k=0}^{n} f'(x_k) \bar{h}_k(x),$$

gdzie węzły x_0, \ldots, x_n są parami różne, ponadto

$$h_k(x) := [1 - 2(x - x_k)\lambda'_k(x_k)]\lambda_k^2(x),$$

$$\bar{h}_k(x) := (x - x_k)\lambda_k^2(x),$$

$$\lambda_k(x) := \frac{p_{n+1}(x)}{(x - x_k)p'_{n+1}(x_k)},$$

$$(0 \le k \le n)$$

oraz $p_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$. Wykazać, że H_{2n+1} spełnia warunki

(1)
$$H_{2n+1}(x_i) = f(x_i), \quad H'_{2n+1}(x_i) = f'(x_i) \quad (0 \le i \le n).$$

M 6.7. 2 punkty Niech będzie $f \in C^{2n+2}[a,b]$ i niech wielomian $H_{2n+1}(x) \in \Pi_{2n+1}$ spełnia warunki

(2)
$$H_{2n+1}(x_i) = f(x_i), \quad H'_{2n+1}(x_i) = f'(x_i) \quad (0 \le i \le n).$$

dla parami różnych węzłów $x_0, \ldots, x_n \in [a, b]$. Udowodnić, że dla każdego $x \in [a, b]$ istnieje taki punkt $\xi \in (a, b)$, że

$$f(x) - H_{2n+1}(x) = \frac{1}{(2n+2)!} f^{(2n+2)}(\xi) p_{n+1}^2(x).$$

M 6.8. 1 punkt Wyznaczyć wielomian $H_5 \in \Pi_5$, spełniający warunki $H_5(x_i) = y_i$, $H'_5(x_i) = y'_i$ (i = 0, 1, 2), gdzie x_i , y_i , y'_i mają następujące wartości:

i	x_i	y_i	y_i'
0	-1	7	-1
1	0	6	0
2	2	22	56

M 6.9. 1 punkt Niech będzie $f(x) = \ln x$ i niech wielomian $H_7 \in \Pi_7$ spełnia warunki $H_7(x_i) = f(x_i)$, $H'_7(x_i) = f'(x_i)$ (i = 0, 1, 2, 3), gdzie $x_0 = 0.4$, $x_1 = 0.5$, $x_2 = 0.7$ i $x_3 = 0.8$. Podać oszacowanie z góry wielkości $|f(0.6) - H_7(0, 6)|$.