

WHAT WE CLAIMED ARE:

1. A power MOSFET device with reduced snap-back and being capable of increasing avalanche-breakdown current endurance, which has sequentially a drain with N⁺ silicon substrate, an N⁻ epitaxial layer formed on said N⁺ silicon substrate, a source contact region formed of N⁺ doped well and P⁺ doped well implanted after etching in a P⁻ well formed on said N⁻ epitaxial layer, and a gate electrode with deposition of polysilicon above a channel region between said N⁻ epitaxial layer and N⁺ source contact region, said device is characterized in that: Said source contact region is formed by etching into said P⁻ well first and implanting P⁺ dopant to the interface between said N⁻ epitaxial layer and P⁻ well, and the source contact region of said N⁺ well and that of said P⁺ well are not at the same level, by which it is possible to increase the avalanche-breakdown current durable capability of the power MOSFET device.

2. A method of manufacturing a power MOSFET device with reduced snap-back and being capable increasing avalanche-breakdown current endurance, comprising the following steps:

1. An N⁻ epitaxial layer is epitaxially grown on a N⁺ silicon substrate;
2. A field oxide is grown on said N⁻ epitaxial layer;
3. Etching said field oxide and growing a gate oxide layer;
4. Depositing a polysilicon layer;

5. Performing photo masking and etching said polysilicon layer to form a polysilicon gate, and implanting and driving-in P⁻ dopant to form a P⁻ well;
6. Applying photo mask of N⁺ dopant and implanting N⁺ dopant to form a N⁺ source;
7. Producing a photoresist, and after the source region is etched, implanting P⁺ dopant to form a P⁺ well, and subsequently removing the photoresist;
8. Depositing BPSG (Boro-Phospho Silicate Glass); and
9. Performing a metalization of said source contact and processing the back contact of wafer to form a drain contact.