

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-310910

(43)Date of publication of application: 04.11.2004

(51)Int.CI.

G11B 5/66 G11B 5/64 G11B 5/738 G11B 5/84 G11B 5/851

H01F 10/16

EST AVAI

(21)Application number: 2003-103454

(71)Applicant: SHOWA DENKO KK

TOSHIBA CORP

(22)Date of filing:

07.04.2003

(72)Inventor: SAKAWAKI AKIRA

SHIMIZU KENJI KOBAYASHI KAZUO

SAKAI HIROSHI OIKAWA SOICHI IWASAKI TAKAYUKI MAEDA TOMOYUKI NAKAMURA FUTOSHI MLABLE COPY

(54) MAGNETIC RECORDING MEDIUM, ITS MANUFACTURING METHOD, AND MAGNETIC RECORDING AND REPRODUCING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To enhance recording and reproducing characteristics and thermal fluctuation characteristics and to perform high density information recording and reproduction, in a magnetic recording medium.

SOLUTION: The magnetic recording medium wherein at least a orientation controlling layer 3 controlling orientation properties of a directly upper layer, a vertical magnetic layer 4 whose easily magnetized axis is oriented principally vertically to a non-magnetic substrate 1 and a protective layer 5 are provided on the non-magnetic substrate 1 is characterized in that the vertical magnetic layer 4 consists of two or more magnetic layers and at least one layer of the magnetic layers consists of a layer 4a consisting essentially of Co and containing Pt and an oxide and at least one another layer consists of a layer 4b consisting essentially of Co, containing Cr and containing no oxide.

LEGAL STATUS

[Date of request for examination]

20.01.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application

ci_verted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision

of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許厅(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特**昭2004-310910** (P2004-310910A)

(43) 公開日 平成16年11月4日(2004.11.4)

(51) Int.Cl. ⁷		F I		テーマコード(参考)
G11B	5/66	G11B	5/66	5D006
G11B	5/64	G11B	5/64	5D112
G11B	5/738	G11B	5/ <i>7</i> 38	5EO49
G11B	5/84	G11B	5/84	Z
G11B	5/851	G11B	5/851	
		審査請求	有 請求項	の数 26 OL (全 76 頁) 最終頁に続く
(21) 出願番号		特顏2003-103454 (P2003-103454)	(71) 出願人	000002004
(22) 出願日		平成15年4月7日 (2003.4.7)		昭和電工株式会社
				東京都港区芝大門1丁目13番9号
		ψ.	(71) 出題人	000003078
				株式会社東芝
				東京都港区芝浦一丁目1番1号
			(74) 代理人	100082669
		•	.	弁理士 福田 賢三
			(74) 代理人	100095337
				弁理士 福田 伸一
			(74)代理人	100061642
				弁理士 福田 武通
			(72) 発明者	坂脇 彰
		•		千葉県市原市八幡海岸通5番の1 昭和電
				エエイチ・ディー株式会社内
		· ·		最終頁に続く

(54) [発明の名称] 磁気記録媒体、その製造方法および磁気記録再生装置

(57)【要約】

【課題】記録再生特性、熱揺らぎ特性を向上させ、高密 度の情報記録再生を行えるようにする。

【解決手段】この発明の磁気記録媒体は、非磁性基板上1に少なくとも、直上の層の配向性を制御する配向制御層3と、磁化容易軸が非磁性基板1に対し主に垂直に配向した垂直磁性層4と、保護層5とが設けられた磁気記録媒体において、垂直磁性層4は、2層以上の磁性層からなり、少なくとも1層がCoを主成分とするとともにPtを含み、酸化物を含んだ層4aであり、他の少なくとも1層がCoを主成分とするとともにCrを含み、酸化物を含まない層4bからなることを特徴としている。【選択図】 図1

【特許請求の範囲】

【請求項1】

非磁性基板上に少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が非磁性基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられた磁気記録媒体において、

前記垂直磁性層は、2層以上の磁性層からなり、少なくとも1層がCoを主成分とするとともにPtを含み、酸化物を含んだ層であり、他の少なくとも1層がCoを主成分とするとともにCrを含み、酸化物を含まない層からなることを特徴とする磁気記録媒体。

【請求項2】

前記酸化物を含んだ磁性層は、その層中に磁性を有した結晶粒子が分散しており、該結晶 10 粒子はその層を柱状に貫いている、ことを特徴とする請求項1に記載の磁気記録媒体。

【請求項3】

前記酸化物が、Cr、Si、Ta、Al、Tiの中から選ばれる1種類以上の非磁性金属の酸化物であることを特徴とする請求項1または2のいずれか1項に記載の磁気記録媒体

【請求項4】

前記酸化物が、Cr₂O₃、SiO₂のいずれかからなることを特徴とする請求項1ないし3のいずれか1項に記載の磁気記録媒体。

【請求項5】

前記酸化物を含んだ磁性層における酸化物の含有量が、3mol%以上12mol%以下 20 であることを特徴とする請求項1ないし4のいずれか1項に記載の磁気記録媒体。

【請求項6】

前記酸化物を含む磁性層は、Coを主成分とし、Cr含有量が0at%以上16at%以下、Pt含有量が10at%以上25at%以下であることを特徴とする請求項1ないし5のいずれか1項に記載の磁気記録媒体。

【請求項7】

前記酸化物を含む磁性層が、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reのうち選ばれた1種類以上の元素を含み、その合計の含有量が8at%以下であることを特徴とする請求項1ないし6のいずれか1項に記載の磁気記録媒体。

【請求項8】

前記酸化物を含まない磁性層が、Coを主成分とし、Cr含有量が14at%以上30at%以下であることを特徴とする請求項1ないし7のいずれか1項に記載の磁気記録媒体

【請求項9】

前記酸化物を含まない磁性層が、Coを主成分とし、Cr含有量が14at%以上30at%以下、Pt含有量が8at%以上20at%以下であることを特徴とする請求項1ないし8のいずれか1項に記載の磁気記録媒体。

【請求項10】

前記酸化物を含まない磁性層が、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reのうち選ばれた1種類以上の元素を含み、その合計の含有量が8at%以下で 40あることを特徴とする請求項1ないし9のいずれか1項に記載の磁気記録媒体。

【請求項11】

前記垂直磁性層は、酸化物を含む磁性層の上に酸化物を含まない磁性層が設けられていることを特徴とする請求項1ないし10のいずれか1項に記載の磁気記録媒体。

【請求項12】

前記垂直磁性層が、酸化物を含む層を2層以上含んでいることを特徴とする請求項1ない し11のいずれか1項に記載の磁気記録媒体。

【請求項13】

前記垂直磁性層は、酸化物を含まない層を2層以上含んでいることを特徴とする請求項1 ないし12のいずれか1項に記載の磁気記録媒体。

【請求項14】

前記垂直磁性層は、磁性層と磁性層との間に非磁性層を有していることを特徴とする請求項1ないし13のいずれか1項に記載の磁気記録媒体。

【請求項15】

前記垂直磁性層は、酸化物を含む磁性層の結晶粒子と酸化物を含まない磁性層の結晶粒子とが、1対1、1対複数、あるいは複数対1で対応するように存在し、上層に設けられた磁性層の結晶粒子は下層に設けられた磁性層の結晶粒子からエピタキシャル成長していることを特徴とする請求項1ないし14のいずれか1項に記載の磁気記録媒体。

【請求項16】

非磁性基板上に少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が非 10 磁性基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられた磁気記録媒体の製造方法において、

前記垂直磁性層を2層以上の磁性層で形成し、少なくとも1層をCoを主成分とするとともにPtを含み、酸化物を含んだ層とし、他の少なくとも1層をCoを主成分とするとともにCrを含み、酸化物を含まない層とすることを特徴とする磁気記録媒体の製造方法。 【請求項17】

前記酸化物を含んだ磁性層は、その層中に磁性を有した結晶粒子が分散しており、該結晶 粒子はその層を柱状に貫いていることを特徴とする請求項16に記載の磁気記録媒体の製 造方法。

【請求項18】

前記垂直磁性層は、酸化物を含む磁性層の上に酸化物を含まない磁性層が設けられている ことを特徴とする請求項16または17のいずれか1項に記載の磁気記録媒体の製造方法

【請求項19】

前記垂直磁性層は、酸化物を含む層を2層以上含んでいることを特徴とする請求項16ないし18のいずれか1項に記載の磁気記録媒体の製造方法。

【請求項20】

前記垂直磁性層は、酸化物を含まない層を2層以上含んでいることを特徴とする請求項16ないし19のいずれか1項に記載の磁気記録媒体の製造方法。

【請求項21】

前記垂直磁性層は、磁性層と磁性層との間に非磁性層を有していることを特徴とする請求 項16ないし20のいずれか1項に記載の磁気記録媒体の製造方法。

【請求項22】

前記垂直磁性層が、酸化物を含む磁性層の結晶粒子と酸化物を含まない磁性層の結晶粒子とが、1対1、1対複数、あるいは複数対1で対応するように存在し、上層に設けられた磁性層の結晶粒子は下層に設けられた磁性層の結晶粒子からエピタキシャル成長していることを特徴とする請求項16ないし21のいずれか1項に記載の磁気記録媒体の製造方法

【請求項23】

前記垂直磁性層を形成する際、成膜ガスに酸素ガスを添加することを特徴とする請求項1 46ないし22のいずれか1項に記載の磁気記録媒体の製造方法。

【請求項24】

磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁気記録再 生装置であって、磁気記録媒体が請求項1ないし15のいずれか1項に記載の磁気記録媒 体であることを特徴とする磁気記録再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、非磁性基板上に少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が非磁性基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられた磁気 50

20

記録媒体、その製造方法および磁気記録再生装置に関するものである。

[0002]

【従来の技術】

磁気記録再生装置の一種であるハードディスク装置(HDD)は、現在その記録密度が年率60%以上で増えており今後もその傾向は続くと言われている。そのために高記録密度に適した磁気記録用ヘッドの開発、磁気記録媒体の開発が進められている。

[0003]

現在、市販されている磁気記録再生装置に搭載されている磁気記録媒体は、主に、磁性膜内の磁化容易軸が基板に対して水平に配向した面内磁気記録媒体である。ここで磁化容易軸とは、磁化の向き易い軸のことであり、Co基合金の場合、Coのhcp構造のc軸の 10 ことである。

[0004]

このような面内磁気記録媒体では、高記録密度化すると記録ビットの1ビットあたりの磁性層の体積が小さくなりすぎ、熱揺らぎ効果により記録再生特性が悪化する可能性がある。また、高記録密度化した際に、記録ビット間の境界領域で発生する反磁界の影響により 媒体ノイズが増加する傾向がある。

[0005]

これに対し、磁性膜内の磁化容易軸が主に垂直に配向した、いわゆる垂直磁気記録媒体は、高記録密度化した際にも、記録ビット間の境界領域における反磁界の影響が小さく、鮮明なビット境界が形成されるため、ノイズの増加が抑えられる。しかも、高記録密度化に 20 伴う記録ビット体積の減少が少なくてすむため、熱揺らぎ効果にも強い。そこで、近年大きな注目を集めており、垂直磁気記録に適した媒体の構造が提案されている。

[0006]

近年では、磁気記録媒体の更なる高記録密度化という要望に応えるべく、垂直磁性層に対する書きこみ能力に優れている単磁極ヘッドを用いることが検討されている。そのような単磁極ヘッドに対応するために、記録層である垂直磁性層と基板との間に、裏打ち層と称される軟磁性材料からなる層を設けることにより、単磁極ヘッドと、磁気記録媒体の間の磁束の出入りの効率を向上させた磁気記録媒体が提案されている。

[0007]

【発明が解決しようとする課題】

しかしながら、上記のように単に裏打ち層を設けた磁気記録媒体を用いた場合では、記録 再生時の記録再生特性や、熱揺らぎ耐性、記録分解能において満足できるものではなく、 これら特性に優れる磁気記録媒体が要望されていた。

[0008]

とりわけ記録再生特性として重要な再生時における信号とノイズの比(S/N比)を大きくする高S/N化と、熱揺らぎ耐性の向上の両立は、これからの高記録密度化においては必須事項である。しかし、この2項目は相反する関係を有し、一方を向上させれば、一方が不充分になり、高レベルでの両立は重要な課題となっている。

[0009]

垂直磁気記録媒体の問題の一つとして、記録再生を行う磁性層に一般的なCoCrPt系 40 の磁性層を用いると、Crの偏析が不十分であり、磁性粒子の物理的な分離、微細化および磁気的な孤立化が不十分となるため、良好な記録再生特性が得られにくい、ということがあげられる。

[0010]

一方で、面内磁気記録媒体の磁性層で CoCrPt に酸化物を含んだ材料を利用することが提案されている(例えば、特許文献 1 参照)。

[0011]

【特許文献1】

特開2000-276729公報

[0012]

50

このような磁性層は、Cr偏析による代りに酸化物を使うことで、垂直磁気記録媒体でもある程度十分な粒分離が可能である。

[0 0 1 3]

しかし、上記のような媒体では、材料中のCr添加量を減らし、代りに酸化物を添加した材料を用いるが、Cr添加量が少ないため磁性層中の磁性粒子中のPt比率が多くなり、磁性粒子の磁気異方性定数Kuが大きくなるため、磁性層の保磁力が大きくなりすぎ、ヘッドによるデータの記録が十分行えない、といった問題がある。

[0014]

そこで、磁性層の厚さを薄くする、Cr添加量を増加させる、といった手法により、磁性層の保磁力を下げ、十分な記録をおこなう方法をとる必要がある。一方で、磁性層の薄膜 10 化やCr含有量の増加による磁性粒子の磁気異方性定数Ku低下さらには保磁力、逆磁区核形成磁界を低下させるということは、熱揺らぎ特性の劣化を招く。さらには、データを再生する際の出力が小さくなるため、記録再生システム固有のシステムノイズとの比が小さくなり、十分な再生特性が得られなくなるおそれがある。その結果、高密度記録に適さない特性となってしまう。

[0015]

よって、熱揺らぎ特性の向上と、高密度記録に十分な記録再生特性、特に良好なデータの記録特性と高い再生時における信号とノイズの比(S/N比)をもった磁気記録媒体が望まれている。

[0016]

本発明は、上記事情に鑑みてなされたものであり、記録再生特性、熱揺らぎ特性を向上させ、高密度の情報記録再生が可能な磁気記録媒体、その製造方法および磁気記録再生装置を提供することを目的とする。

[0017]

【課題を解決するための手段】

上記の目的を達成するために、本発明は以下の構成を採用した。

[0018]

(1) 非磁性基板上に少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が非磁性基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられた磁気記録媒体において、前記垂直磁性層は、2層以上の磁性層からなり、少なくとも1層がCoを主成分とするとともにPtを含み、酸化物を含んだ層であり、他の少なくとも1層がCoを主成分とするとともにCrを含み、酸化物を含まない層からなることを特徴としている

[0019]

(2) (1) に記載の磁気記録媒体において、前記酸化物を含んだ磁性層は、その層中に 磁性を有した結晶粒子が分散しており、該結晶粒子はその層を柱状に貫いている、ことを 特徴としている。

[0020]

(3) (1) または (2) のいずれか 1 項に記載の磁気記録媒体において、前記酸化物が、Cr、Si、Ta、Al、Tiの中から選ばれる 1 種類以上の非磁性金属の酸化物であ 40 ることを特徴としている。

 $[0 \ 0 \ 2 \ 1]$

(4) (1) 乃至 (3) のいずれか 1 項に記載の磁気記録媒体において、前記酸化物が、 Cr_2O_3 、 SiO_2 のいずれかからなることを特徴としている。

[0022]

(5) (1)乃至(4)のいずれか1項に記載の磁気記録媒体において、前記酸化物を含んだ磁性層における酸化物の含有量が、3mol%以上12mol%以下であることを特徴としている。

[0023]

(6) (1) 乃至 (5) のいずれか1項に記載の磁気記録媒体において、前記酸化物を含 50

む磁性層は、Coを主成分とし、Cr含有量がOat%以上16at%以下、Pt含有量が10at%以上25at%以下であることを特徴としている。

[0024]

(7) (1) 乃至 (6) のいずれか1項に記載の磁気記録媒体において、前記酸化物を含む磁性層が、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reのうち選ばれた1種類以上の元素を含み、その合計の含有量が8at%以下であることを特徴としている。

[0025]

(8) (1) 乃至 (7) のいずれか1項に記載の磁気記録媒体において、前記酸化物を含まない磁性層が、Coを主成分とし、Cr含有量が14at%以上30at%以下である 10ことを特徴としている。

[0026]

(9) (1) 乃至 (8) のいずれか 1 項に記載の磁気記録媒体において、前記酸化物を含まない磁性層が、C 0 を主成分とし、C r 含有量が 1 4 a t %以上 3 0 a t %以下であることを特徴としている。

[0027]

(10) (1) 乃至 (9) のいずれか 1 項に記載の磁気記録媒体において、前記酸化物を含まない磁性層が、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re のうち選ばれた 1 種類以上の元素を含み、その合計の含有量が 8at %以下であることを特徴としている。

[0028]

(11) (1) 乃至(10) のいずれか1項に記載の磁気記録媒体において、前記垂直磁性層は、酸化物を含む磁性層の上に酸化物を含まない磁性層が設けられていることを特徴としている。

[0029]

(12) (1) 乃至 (11) のいずれか1項に記載の磁気記録媒体において、前記垂直磁性層が、酸化物を含む層を2層以上含んでいることを特徴としている。

[0030]

(13) (1) 乃至 (12) のいずれか1項に記載の磁気記録媒体において、前記垂直磁性層は、酸化物を含まない層を2層以上含んでいることを特徴としている。

[0031]

(14) (1) 乃至 (13) のいずれか1項に記載の磁気記録媒体において、前記垂直磁性層は、磁性層と磁性層との間に非磁性層を有していることを特徴としている。

[0032]

(15) (1) 乃至(14) のいずれか1項に記載の磁気記録媒体において、前記垂直磁性層は、酸化物を含む磁性層の結晶粒子と酸化物を含まない磁性層の結晶粒子とが、1対1、1対複数、あるいは複数対1で対応するように存在し、上層に設けられた磁性層の結晶粒子は下層に設けられた磁性層の結晶粒子からエピタキシャル成長していることを特徴としている。

[0033]

(16) 非磁性基板上に少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が非磁性基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられた磁気記録媒体の製造方法において、前記垂直磁性層を2層以上の磁性層で形成し、少なくとも1層をCoを主成分とするとともにPtを含み、酸化物を含んだ層とし、他の少なくとも1層をCoを主成分とするとともにCrを含み、酸化物を含まない層とすることを特徴としている。

[0034]

(17) (16) に記載の磁気記録媒体において、前記酸化物を含んだ磁性層は、その層中に磁性を有した結晶粒子が分散しており、該結晶粒子はその層を柱状に貫いていることを特徴としている。

20

[0035]

(18) (16) または (17) のいずれか1項に記載の磁気記録媒体において、前記垂 直磁性層は、酸化物を含む磁性層の上に酸化物を含まない磁性層が設けられていることを 特徴としている。

[0036]

(19) (16) 乃至 (18) のいずれか1項に記載の磁気記録媒体において、前記垂直 磁性層は、酸化物を含む層を2層以上含んでいることを特徴としている。

(20) (16) 乃至 (19) のいずれか1項に記載の磁気記録媒体において、前記垂直 磁性層は、酸化物を含まない層を2層以上含んでいることを特徴としている。

(21) (16) 乃至(20) のいずれか1項に記載の磁気記録媒体において、前記垂直 磁性層は、磁性層と磁性層との間に非磁性層を有していることを特徴としている。

[0039]

(22) (16) 乃至 (21) のいずれか1項に記載の磁気記録媒体において、前記垂直 磁性層が、酸化物を含む磁性層の結晶粒子と酸化物を含まない磁性層の結晶粒子とが、1 対1、1対複数、あるいは複数対1で対応するように存在し、上層に設けられた磁性層の 結晶粒子は下層に設けられた磁性層の結晶粒子からエピタキシャル成長していることを特 徴としている。

[0040]

20

(23) (16) 乃至 (22) のいずれか1項に記載の磁気記録媒体において、前記垂直 磁性層を形成する際、成膜ガスに酸素ガスを添加することを特徴としている。

[0041]

(24) 磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁 気記録再生装置であって、磁気記録媒体が(1)乃至(15)のいずれか1項に記載の磁 気記録媒体であることを特徴としている。

[0042]

【発明の実施の形態】

図1は本発明における磁気記録媒体の一例の構造を示す縦断面図である。ここに示す磁気 記録媒体は、非磁性基板1上に、軟磁性下地層2と、配向制御層3と、垂直磁性層4と、 保護層5と、潤滑層6とが順次形成されている。。軟磁性下地層2と、配向制御層3とが 下地層を構成している。また、垂直磁性層4は磁性層4aと磁性層4bよりなる。

[0043]

非磁性基板1としては、アルミニウム、アルミニウム合金等の金属材料からなる金属基板 を用いてもよいし、ガラス、セラミック、シリコン、シリコンカーバイド、カーボンなど の非金属材料からなる非金属基板を用いてもよい。

[0044]

ガラス基板としては、アモルファスガラス、結晶化ガラスがあり、アモルファスガラスと しては汎用のソーダライムガラス、アルミノシリケートガラスを使用できる。また、結晶 化ガラスとしては、リチウム系結晶化ガラスを用いることができる。セラミック基板とし 40 ては、汎用の酸化アルミニウム、窒化アルミニウム、窒化珪素などを主成分とする焼結体 や、これらの繊維強化物などが使用可能である。

[0045]

非磁性基板 1 としては、上記金属基板、非金属基板の表面にメッキ法やスパッタ法を用い てNiP層またはNiP合金層が形成されたものを用いることもできる。

[0046]

非磁性基板 1 は、平均表面粗さRaが2nm(20A)以下、好ましくは1nm以下であ るとことがヘッドを低浮上させた高記録密度記録に適している点から望ましい。

[0047]

また、表面の微小うねり(Wa)が0.3nm以下(より好ましくは0.25nm以下)

であるのがヘッドを低浮上させた高記録密度記録に適している点から好ましい。端面のチャンファー部の面取り部、側面部の少なくとも一方のいずれの表面平均粗さRaが10nm以下(より好ましくは9.5 nm以下)のものを用いることが磁気ヘッドの飛行安定性にとって好ましい。微少うねり(Wa)は、例えば、表面荒粗さ測定装置P-12(KLM-Tencor社製)を用い、測定範囲80μmでの表面平均粗さとして測定することができる。

[0048]

軟磁性下地層 2 は、磁気ヘッドから発生する磁束の基板に対する垂直方向成分を大きくするために、また情報が記録される垂直磁性層 4 の磁化の方向をより強固に非磁性基板 1 と垂直な方向に固定するために設けられているものである。この作用は特に記録再生用の磁 10 気ヘッドとして垂直記録用の単磁極ヘッドを用いる場合に、より顕著なものとなるので好ましい。

[0049]

上記軟磁性下地層 2 は、軟磁性材料からなるもので、この材料としては、Fe、Ni、Coを含む材料を用いることができる。

[0050]

[0051]

またFeを60at%以上含有するFeAlO、FeMgO、FeTaN、FeZrN等の微結晶構造、あるいは微細な結晶粒子がマトリクス中に分散されたグラニュラー構造を有する材料を用いてもよい。

[0052]

軟磁性下地層 2の材料としては、上記のほか、C o を 8 O a t %以上含有し、Z r 、N b 、T a 、C r 、M o 等のうち少なくとも 1 種を含有し、アモルファス構造を有する C o 合 30 金を用いることができる。

[0053]

この材料としては、CoZrNb、CoZrTa、CoZrCr、CoZrM o系合金などを好適なものとして挙げることができる。

[0054]

軟磁性下地層2の保磁力Hcは200(〇e)以下(好ましくは50(〇e)以下)とするのが好ましい。

[0055]

この保磁力 H c が上記範囲を超えると、軟磁気特性が不十分となり、再生波形がいわゆる 矩形波から歪みをもった波形になるため好ましくない。

[0056]

軟磁性下地層2の飽和磁束密度Bsは、0.6 T以上(好ましくは1 T以上)とするのが好ましい。このBsが上記範囲未満であると、再生波形がいわゆる矩形波から歪みをもった波形になるため好ましくない。

[0057]

また、軟磁性下地層 2 の飽和磁束密度 B s (T) と軟磁性下地層 2 の層厚 t (nm) との 積 B s・t (T・nm) が 2 0 (T・nm) 以上 (好ましくは 4 0 (T・nm) 以上) であること好ましい。この B s・t が上記範囲未満であると、再生波形が歪みをもつようになったり、OW (O v e r W r i t e) 特性 (記録特性) が悪化するため好ましくない。 【0 0 5 8】

軟磁性下地層 2 の最表面(配向制御層 3 側の面)は、軟磁性下地層 2 を構成する材料が、 部分的あるいは完全に酸化されて構成されていることが好ましい。例えば、軟磁性下地層 2の表面(配向制御層3側の面)およびその近傍に、軟磁性下地層2を構成する材料が部 分的に酸化されるか、もしくは前記材料の酸化物を形成して配されていることが好ましい

[0059]

これにより、軟磁性下地層2の表面の磁気的な揺らぎを抑えることができるので、この磁 気的な揺らぎに起因するノイズを低減して、磁気記録媒体の記録再生特性を改善すること ができる。

[0060]

また、軟磁性下地層2上に形成される配向制御層3の結晶粒の微細化して、記録再生特性 を改善することができる。

[0 0 6 1]

この軟磁性下地層2の表面の酸化された部分は、例えば軟磁性下地層2を形成した後、酸 素を含む雰囲気に曝す方法や、軟磁性下地層2の表面に近い部分を成膜する際のプロセス 中に酸素を導入する方法により形成することができる。具体的には、軟磁性下地層2の表 面を酸素に曝す場合には、酸素単体、あるいは酸素をアルゴンや窒素などのガスで希釈し たガス雰囲気中に0.3~20秒程度保持しておけばよい。また、大気中に曝すこともで きる。特に酸素をアルゴンや窒素などのガスで希釈したガスを用いる場合には、軟磁性下 地層 2 表面の酸化の度合いの調節が容易になるので、安定した製造を行うことができる。 また、軟磁性下地層2の成膜用のガスに酸素を導入する場合には、例えば成膜法としてス パッタ法を用いるならば、成膜時間の1部のみに酸素を導入したプロセスガスを用いてス パッタを行えばよい。このプロセスガスとしては、例えばアルゴンに酸素を体積率で0. 05%~50% (好ましくは0.1~20%) 程度混合したガスが好適に用いられる。

[0062]

配向制御層3は、直上に設けられた垂直磁性層4の配向性や粒径を制御するものである。 [0063]

この材料としては、特に限定されるものではないが、hcp構造、fcc構造、アモルフ ァス構造を有するものが好ましい。特に、Ru系合金、Ni系合金、Co系合金、Pt系 合金が特に好ましい。

[0064]

例として、Ni系合金であれば、Niを33~80at%含む、NiTa合金、NiNb 合金、NiTi合金、NiZr合金から選ばれた少なくとも1種類の材料からなることが 好ましい。また、Niを33~80at%含み、Sc、Y、Ti、Zr、Hf、Nb、T a、Cのうち1種または2種以上を含む非磁性材料であっても良い。この場合、配向制御 層としての効果を維持し、磁性を持たない範囲ということで、Niの含有量は33at% ~80at%の範囲であることが好ましい。

[0065]

このため、本実施形態の磁気記録媒体では、配向制御層3の厚さを0.5~40nm(好 ましくは1~20 nm) とするのが好ましい。配向制御層3の厚さが0.5~40 nm (40 好ましくは1~20 nm)の範囲であるとき、垂直磁性層4の垂直配向性が特に高くなり 、かつ記録時における磁気ヘッドと軟磁性下地層2との距離を小さくすることができるの で、再生信号の分解能を低下させることなく記録再生特性を高めることができる。

[0066]

この厚さが上記範囲未満であると、垂直磁性層4における垂直配向性が低下し、記録再生 特性および熱揺らぎ耐性が劣化する。

[0067]

また、この厚さが上記範囲を超えると、垂直磁性層4の磁性粒子径が大きくなり、ノイズ 特性が劣化するおそれがあるため好ましくない。また記録時における磁気ヘッドと軟磁性 下地層2との距離が大きくなるため、再生信号の分解能や再生出力の低下するため好まし 50

くない。

[0068]

配向制御層3の表面形状は、垂直磁性層4、保護層5の表面形状に影響を与えるため、磁 気記録媒体の表面凹凸を小さくして、記録再生時における磁気ヘッド浮上高さを低くする には、配向制御層3の表面平均粗さRaを2nm以下とするのが好ましい。

[0069]

この表面平均粗さRaを2nm以下とすることによって、磁気記録媒体の表面凹凸を小さ くし、記録再生時における磁気ヘッド浮上高さを十分に低くし、記録密度を高めることが できる。

[0070]

10

配向制御層3の成膜用のガスに酸素や窒素を導入してもよい。例えば、成膜法としてスパ ッタ法を用いるならば、プロセスガスとしては、アルゴンに酸素を体積率で0.05~5. 0%(好ましくは0.1~20%)程度混合したガス、アルゴンに窒素を体積率で0.0 1~20% (好ましくは0.02~10%) 程度混合したガスが好適に用いられる。

[0071]

また、配向制御層3が酸化物、金属窒化物、金属炭化物中に金属粒子が分散した構造とな っていてもかまわない。このような構造とするには、酸化物、金属窒化物、金属炭化物を 含んだ合金材料を使用することで可能となる。酸化物としては、SiO2、Al2O3、 Ta2Os、Cr2Os、MgO、Y2Os、TiO2などが、金属窒化物としては、A IN、Si₃ N₄、TaN、CrNなどが、金属炭化物としては、TaC、BC、SiC ²⁰ などが利用可能である。例えば、NiTa-SiO2、RuCo-Ta2O5、Ru-S iO2、Pt-Si3N4、Pd-TaCなどをあげることができる。

[0072]

配向制御層 3 中の酸化物、金属窒化物、金属炭化物の含有量としては、合金に対して、4 mol%以上12mol%以下であることが好ましい。配向制御層3中の酸化物、金属窒 化物、金属炭化物の含有量が上記範囲を超える場合、金属粒子中に酸化物、金属窒化物、 金属炭化物が残留し、金属粒子の結晶性、配向性を損ねるほか、配向制御層3の上に形成 された磁性層の結晶性、配向性を損ねるおそれがあるため好ましくない。また、配向制御 層3中の酸化物、金属窒化物、金属炭化物の含有量が上記範囲未満である場合、酸化物、 金属窒化物、金属炭化物の添加による効果が得られないため、好ましくない。

図2は垂直磁性層の構成を示す縦断面図である。垂直磁性層4は、その磁化容易軸が非磁 性基板に対して垂直方向に向いたものであり、Coを主成分とするとともに少なくともP t を含み、酸化物 4 1 を含んだ磁性層 4 a と、C o を主成分とするとともに少なくとも C rを含み、酸化物を含まない磁性層4bとからなる。

[0074]

磁性層4aは、Coを主成分とするとともに少なくともPtを含み、さらに酸化物41を 含んだ材料からなり、この酸化物41としては、Cr、Si、Ta、Al、Ti、Mgの 酸化物であることが好ましい。特にCr20₃、Si02が好適である。また、この実施 形態の磁性層4aはPtを含んでいる。

[0075]

磁性層4aは、層中に磁性粒子(磁性を有した結晶粒子)42が分散していることが好ま しい。この磁性粒子42は、図2に示すように、磁性層4aを上下に貫いた柱状構造であ ることが好ましい。このような構造を形成することにより、磁性層4aの磁性粒子42の 配向および結晶性を良好なものとし、結果として高密度記録に適した信号/ノイズ比(S /N比)が得ることができる。

[0076]

このような構造を得るためには、含有させる酸化物41の量が重要となる。

酸化物41の含有量は、Co、Cr、Ptの総量に対して、3mol%以上12mol% 50

以下であることが好ましい。さらに好ましくは5mol%以上10mol%以下である。 【0078】

磁性層4 a 中の酸化物の含有量として上記範囲が好ましいのは、層を形成した際、磁性粒子の周りに酸化物が析出し、磁性粒子4 2 の孤立化、微細化をすることができるためである(図2)。酸化物の含有量が上記範囲を超えた場合、酸化物が磁性粒子中に残留し、磁性粒子の配向性、結晶性を損ね、さらには図3に示すように、磁性粒子4 2 の上下に酸化物4 1 が析出し、結果として磁性粒子4 2 が磁性層4 a を上下に貫いた柱状構造が形成されなくなるため好ましくない。また、酸化物の含有量が上記範囲未満である場合、磁性粒子の分離、微細化が不十分となり、結果として記録再生時におけるノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。

[0079]

磁性層4aのCrの含有量は、6at%以上16at%以下(さらに好ましくは10at%以上14at%以下)であることが好ましい。Cr含有量が上記範囲であるのは、磁性粒子の磁気異方性定数Kuを下げすぎず、また、高い磁化を維持し、結果として高密度記録に適した記録再生特性と十分な熱揺らぎ特性が得られるために好適だからである。

[0 0 8 0 0]

Cr含有量が上記範囲を超えた場合、磁性粒子の磁気異方性定数Kuが小さくなるため熱 揺らぎ特性が悪化し、また、磁性粒子の結晶性、配向性が悪化することで、結果として記 録再生特性が悪くなるため好ましくない。また、Cr含有量が上記範囲未満である場合、 磁性粒子の磁気異方性定数Kuが高いため、垂直保磁力が高くなりすぎ、データを記録す 20 る際、ヘッドで十分に書き込むことができず、結果として高密度記録に適さない記録特性 (OW)となるため好ましくない。

[0081]

磁性層4aのPtの含有量は、10at%以上20at%以下であることが好ましい。Pt含有量が上記範囲であるのは、垂直磁性層に必要な磁気異方性定数Kuを得、さらに磁性粒子の結晶性、配向性が良好であり、結果として高密度記録に適した熱揺らぎ特性、記録再生特性が得られるため、好適だからである。

[0082]

Pt含有量が上記範囲を超えた場合、磁性粒子中にfcc構造の層が形成され、結晶性、配向性が損なわれるおそれがあるため好ましくない。また、Pt含有量が上記範囲未満で 30 ある場合、高密度記録に適した熱揺らぎ特性を得るための磁気異方性定数Kuが得られないため好ましくない。

[0083]

磁性層4aは、Co、Cr、Pt、酸化物のほかに、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru 、Re から選ばれる 1 種類以上の元素を含むことができる。上記元素を含む事により、磁性粒子の微細化を促進、あるいは結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性、熱揺らぎ特性を得ることができる。

[0084]

上記元素の合計の含有量は、8 a t %以下であることが好ましい。8 a t %を超えた場合、磁性粒子中に h c p 相以外の相が形成されるため、磁性粒子の結晶性、配向性が乱れ、結果として高密度記録に適した記録再生特性、熱揺らぎ特性が得られないため好ましくない。

[0085]

磁性層4aに適した材料としては、例えば、(Col4Crl8Pt)90-(SiO2)10 {Cr含有量14at%、Pt含有量18at%、残部Coからなる金属組成が90mol%、SiO2からなる酸化物組成が10mol% 、(Col0Crl6Pt)92-(SiO2)8 {Cr含有量10at%、Pt含有量16at%、残部Coからなる金属組成が92mol%、SiO2からなる酸化物組成が8mol% 、(Co8Crl4Pt4Nb)94-(Cr2O3)6 {Cr含有量8at%、Pt含有量14at%、Nb含有量4at%、残部Coからなる金属組成が94mol%、Cr2O3からなる

酸化物組成が6mol% 、の他、(CoCrPt) - (Ta2O5)、(CoCrPt Mo) - (TiO)、(CoCrPtW) - (TiO2)、(CoCrPtB) - (Al2O3)、(CoCrPtTaNd) - (MgO)、(CoCrPtBCu) - (Y2O3)、(CoCrPtRe) - (SiO2)などをあげることができる。【0086】

磁性層4 b は、C o を主成分とするとともに少なくともC r を含んだ材料からなり、図2に示すように、層中の磁性粒子4 3が磁性層4 a 中の磁性粒子4 2 からエピタキシャル成長している構造であることが好ましい。この場合、磁性層4 b の磁性粒子4 2 と磁性層4 a の磁性粒子4 3 が 1 対 1 、複数個対 1、1 対複数個、いずれかで対応していてもかまわない。

[0087]

磁性層4bの磁性粒子43が磁性層4a中の磁性粒子42からエピタキシャル成長していることで、磁性層4bの磁性粒子43が微細化され、さらに結晶性、配向性がより向上するため好適である。

[0088]

磁性層4bのCrの含有量は、14at%以上26at%以下であることが好ましい。Cr含有量を上記範囲とすると、データの再生時における出力が十分確保でき、さらに良好な熱揺らぎ特性が得られるため、好適である。

[0089]

Cr含有量が上記範囲を超える場合、磁性層 4 b の磁化が小さくなりすぎるため好ましく 20 ない。また、Cr含有量が上記範囲未満である場合、磁性粒子の分離、微細化が十分生じず、記録再生時のノイズが増大し、高密度記録に適した信号/ノイズ比 (S/N比) が得られなくなるため好ましくない。

[0090]

また、磁性層4bは、Co、Crの他に、Ptを含んだ材料であっても構わない。磁性層4bのPtの含有量は8at%以上20at%以下であることが好ましい。Pt含有量が上記範囲であるのは、高記録密度に適した十分な保磁力を得、さらに記録再生時における高い再生出力を維持し、結果として高密度記録に適した記録再生特性および熱揺らぎ特性を得るためである。

[0091]

Pt の含有量が上記範囲を超えた場合、磁性層中に fc c 構造の相が形成され、結晶性、配向性が損なわれるおそれがあるため好ましくない。また、 Pt 含有量が上記範囲未満である場合、高密度記録に適した熱揺らぎ特性を得るための磁気異方性定数 Ku が得られないため好ましくない。

[0092]

磁性層 4 bは、C o、C r、P t、酸化物のほかに、B、T a、M o、C u、N d、W、N b、S m、T b、R u、R e から選ばれる 1 種類以上の元素を含むことができる。上記元素を含む事により、磁性粒子の微細化を促進、あるいは結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性、熱揺らぎ特性を得ることができる。

【0093】 上記元素の合計の含有量は、8at%以下であることが好ましい。8at%を超えた場合、磁性粒子中にhcp相以外の相が形成されるため、磁性粒子の結晶性、配向性が乱れ、結果として高密度記録に適した記録再生特性、熱揺らぎ特性が得られないため好ましくな

[0094]

磁性層4bに適した材料としては、例えば、CoCr系では、Col6~28Cr {Cr 含有量16~28at%、残部Co}、CoCrTa系では、Col4~30Crl~4Ta | Cr含有量14~30at%、Ta含有量1~4at%、残部Co}、CoCrTaB系では、Col4~26Crl~5Tal~4B | Cr含有量14~26at%、Ta含有量1~5at%、B含有量1~4at%、残部Co}、CoCrBNd系では、C 50

014~30Cr1~5B1~4Nd | Cr含有量14~30at%、B含有量1~5at%、Nd含有量1~4at%、残部Co|、CoCrPtB系では、Co16~24Cr10~18Pt1~6B | Cr含有量16~24at%、Pt含有量10~18at%、B含有量1~6at%、残部Co|、CoCrPtCu系では、Co16~24Cr10~20Pt1~7Cu | Cr含有量16~24at%、Pt含有量10~20at%、Cu含有量1~7at%、残部Co|、CoCrPtTaNd系では、Co16~26Cr10~20Pt1~4Ta1~4Nd | Cr含有量16~26at%、Pt含有量10~20at%、Ta含有量1~4at%、Nd含有量1~4at%|、CoCrPtNb系では、Co16~26Cr8~18Pt1~6Nb | Cr含有量16~26at%、Pt含有量10~20at%、Nb含有量1~4at%、Nd含有量1~4at%|、CoCrPtNb系では、Co16~26Cr8~18Pt1~6Nb | Cr含有量16~26at%、Pt合有量8~18at%、Nb含有量1~6at%、残部Co| の他、CoCrPtBN 10d、CoCrPtBW、CoCrPtMo、CoCrPtCuRu、CoCrPtReなどの材料をあげることができる。

[0095]

垂直磁性層4の垂直保磁力(Hc)は、2500 [Oe] 以上とすることが好ましい。保磁力が2500 [Oe] 未満である場合は、記録再生特性、特に周数特性が不良であり、また、熱揺らぎ特性も悪いため、高密度記録媒体として好ましくない。

[0096]

垂直磁性層4の逆磁区核形成磁界(- H n)は、1000 [Oe] 以上であることが好ましい。逆磁区核形成磁界(- H n)が1000 [Oe] 未満である場合、熱揺らぎ耐性におとるため好ましくない。

[0097]

逆磁区核形成磁界(- H n)は、図4に示すように、VSMなどにより求めたMH曲線において、磁化が飽和した状態から外部磁界を減少させる過程で外部磁界が0となる点a、MH曲線の磁化が0である点bでのMH曲線の接線を延長した線と飽和磁化との交点を点cとすると、M軸から点cまでの距離 [Oe]で表すことができる。

[0098]

なお、逆磁区核形成磁界(- H n)は、点 c が外部磁界が負である領域にある場合に正の値をとり(図 4 参照)、逆に、点 c が外部磁界が正である領域にある場合に負の値をとる(図 5 参照)。

[0099]

垂直磁性層4は、磁性粒子の平均粒径が5~15 nmであることが好ましい。この平均粒径は、例えば垂直磁性層4をTEM(透過型電子顕微鏡)で観察し、観察像を画像処理することにより求めることができる。

[0100]

垂直磁性層4の厚さは5~40nmとするのが好ましい。垂直磁性層4の厚さが上記未満であると、十分な再生出力が得られず、熱揺らぎ特性も低下する。また、垂直磁性層4の厚さが上記範囲を超えた場合、垂直磁性層4中の磁性粒子の肥大化が生じ、記録再生時におけるノイズが増大し、信号/ノイズ比(S/N比)や記録特性(OW)に代表される記録再生特性が悪化するため好ましくない。

[0101]

保護層 5 は垂直磁性層 4 の腐食を防ぐとともに、磁気ヘッドが媒体に接触したときに媒体表面の損傷を防ぐためのもので、従来公知の材料を使用でき、例えばC、S i O 2 、Z r O 2 を含むものが使用可能である。

[0102]

保護層5の厚さは、1~10nmとするのがヘッドと媒体の距離を小さくできるので高記録密度の点から望ましい。

[0103]

潤滑層 6 には、パーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などの潤滑剤を用いるのが好ましい。

[0104]

50

20

30

本発明の磁気記録媒体は、非磁性基板1上に少なくとも、直上の層の配向性を制御する配向制御層3と、磁化容易軸が非磁性基板1に対し主に垂直に配向した垂直磁性層4と、保護層5とが設けられた磁気記録媒体において、垂直磁性層4が2層以上の磁性層からなり、少なくとも1層がCoを主成分とするとともにCrを含み、酸化物を含んだ磁性層4aであり、他の磁性層がCoを主成分とするとともにCrを含み、酸化物を含まない磁性層4bからなることを特徴とし、これにより磁性粒子の微細化と磁気的な孤立化が促進され再生時における信号/ノイズ比(S/N)を大幅に向上することができ、また逆磁区核形成磁界(-Hn)を向上させることで熱揺らぎ特性も向上させることができ、さらに優れた記録特性(OW)を有した媒体を得ることができる。

[0105]

本発明における他の形態として、垂直磁性層 4 を図 6 に示したように酸化物を含まない磁性層 4 b を形成し、その上に酸化物を含む磁性層 4 a を設けた構成としてもかまわない。【0 1 0 6】

本発明では、垂直磁性層 4 を 3 層以上の磁性層で構成することも可能である。例えば、図7にしめすように酸化物を含む磁性層 4 a の上に酸化物を含まない磁性層 4 b - 1、 4 b - 2を設けることもできる。一方で、図8にしめすように酸化物を含む磁性層 4 a - 1、 4 a - 2の上に酸化物を含まない磁性層 4 b を形成する構成を取ることもできる。さらには、図9に示すように、酸化物を含まない磁性層 4 b - 1、 4 b - 2、 4 b - 3の各層間に、酸化物を含む磁性層 4 a - 1、 4 a - 2を形成する構造としてもかまわない。特に、各磁性材料の組み合わせにより、熱揺らぎ特性、記録特性(OW)、信号/ノイズ比(S 20/N)等の各特性の制御、調整が容易であることから、垂直磁性層 4 を 3 層以上で構成することは、より好ましい。

[0.107]

本発明では、垂直磁性層 4 を構成する磁性層間に非磁性層を設けることも可能である。これにより、磁性粒子の肥大化を防止し、粒径を制御できるため、信号/ノイズ比(S/N) をより向上させることが可能である。例えば、図10に示したように、酸化物を含まない磁性層 4 b-1、4 b-2 の間に非磁性層 9 1 e、その上に設けた酸化物を含む磁性層 4 a-1、4 a-2 の間に非磁性層 9 2 e 設けることもできる。

[0108]

垂直磁性層4を構成する磁性層間に設ける非磁性層9としては、hcp構造を有する材料 ³⁰ を用いるのが好ましい。例えば、CoCr合金やCoCrX1合金(X1:Pt、Ta、Zr、Re, Ru、Cu、Nb、Ni、Mn、Ge、Si、O、N、W、Mo、Ti、V、Zr、Bから選ばれる1種または2種以上)を用いるのが好適である。

[0109]

垂直磁性層4を構成する磁性層間に設ける非磁性層9のCo含有量は30~70at%の 範囲であることが好ましい。この範囲であれば、非磁性であるからである。

 $[0\ 1\ 1\ 0]$

また、垂直磁性層 4 を構成する磁性層間に設ける非磁性層 9 として、 h c p 構造を有する合金として、例えば R u 、 R e 、 T i 、 Y 、 H f 、 Z n などの合金も使うことができる。

[0111]

また、垂直磁性層4を構成する磁性層間に設ける非磁性層9として、その上下の磁性層の結晶性、配向性を損ねない範囲で、他の構造をとる金属、合金を使用することもできる。例えば、Pd、Pt、Cu、Ag、Au、Ir、Mo、W、Ta、Nb、V、Bi、Sn、Si、Al、C、B、Crなどの元素あるいは合金である。特に、Cr合金としては、CrX2(X2:Ti、W、Mo、Nb、Ta、Si、Al、B、C、Zrから選ばれる1種または2種以上)を用いるのが好適である。この場合のCr含有量は60at%以上が好ましい。

[0112]

また、垂直磁性層4を構成する磁性層間に設ける非磁性層9として、上記合金の金属粒子が酸化物、金属窒化物、金属炭化物中に分散し構造としても良い。さらに該金属粒子が非 50

磁性層9を上下に貫いた柱状構造を有していればより好適である。このような構造とする には、酸化物を含んだ合金材料を使用することで可能となる。酸化物としては、Si〇。 、Al, O, 、Ta, O, 、Cr, O, 、MgO、Y, O, 、TiO, などが、金属窒化 物としては、AIN、Si, N, 、TaN、CrNなどが、金属炭化物としては、TaC 、BC、SiCなどが利用可能である。例えば、CoCr-SiO2、CoCrPt-T a,O,、Ru-SiO,、Ru-Si, N,、Pd-TaCなどをあげることができる

[0113]

垂直磁性層 4 を構成する磁性層間に設ける非磁性層 9 中の酸化物、金属窒化物、金属炭化 物の含有量としては、合金に対して、4mol%以上12mol%以下であることが好ま しい。該非磁性層 9 中の酸化物、金属窒化物、金属炭化物の含有量が上記範囲を超える場 合、金属粒子中に酸化物、金属窒化物、金属炭化物が残留し、金属粒子の結晶性、配向性 を損ねるほか、金属粒子の上下にも酸化物、金属窒化物、金属炭化物が析出してしまい、 金属粒子が該非磁性層 9 を上下に貫く柱状構造となりにくくなり、該非磁性層 9 の上に形 成された磁性層の結晶性、配向性を損ねるおそれがあるため好ましくない。また、該非磁 性層 9 中の酸化物、金属窒化物、金属炭化物の含有量が上記範囲未満である場合、酸化物 、金属窒化物、金属炭化物の添加による効果が得られないため、好ましくない。

[0114]

非磁性層 9 の厚さは、垂直磁性層 4 における磁性粒子の肥大化による再生時の信号/ノイ ズ比 (S/N) の悪化や磁気ヘッドと軟磁性下地層 2 との距離が大きくなることによる記 20 録特性(OW)や分解能の低下を起こさないようにするために、10nm以下(より好ま しくは5 n m以下)とするのが好ましい。

[0115]

本発明における他の形態として、図11に示すように配向制御層3と垂直磁性層4との間 に、垂直磁性層4の結晶性、配向性を向上させるため、中間層8を設けることもできる。

[0116]

中間層8は、hcp構造を有する材料が好ましい。中間層8には、CoCr合金やCoC r X 1合金 (X 1: Pt、Ta、Zr、Re, Ru、Cu、Nb、Ni、Mn、Ge、S i、O、N、W、Mo、Ti、V、Zr、Bから選ばれる1種または2種以上)を用いる のが好適である。

[0117]

中間層8のCo含有量は30~70at%であることが好ましい。この範囲であれば、非 磁性だからである。

[0118]

また、中間層8には、上記合金の金属粒子が酸化物、金属窒化物、金属炭化物中に分散し 構造としても良い。さらに該金属粒子が中間層8を上下に貫いた柱状構造を有していれば より好適である。このような構造とするには、酸化物を含んだ合金材料を使用することで 可能となる。酸化物としては、SiO2、Al2O3、Ta2O5、Cr2O3、MgO 、Y2O3、TiO2などが、金属窒化物としては、AlN、Si3N4、TaN、Cr Nなどが、金属炭化物としては、TaC、BC、SiCなどが利用可能である。例えば、 CoCr-SiO₂, CoCrPt-Ta₂O₅, CoCrRu-SiO₂, CoCrR u-Si, N.、CoCrPt-TaCなどをあげることができる。

[0119]

中間層 8 中の酸化物、金属窒化物、金属炭化物の含有量としては、合金に対して、 4 m o 1%以上12mol%以下であることが好ましい。該中間層 8中の酸化物、金属窒化物、 金属炭化物の含有量が上記範囲を超える場合、金属粒子中に酸化物、金属窒化物、金属炭 化物が残留し、金属粒子の結晶性、配向性を損ねるほか、金属粒子の上下にも酸化物、金 属窒化物、金属炭化物が析出してしまい、金属粒子が該中間層8を上下に貫く柱状構造と なりにくくなり、該中間層8の上に形成された磁性層の結晶性、配向性を損ねるおそれが あるため好ましくない。また、該中間層8中の酸化物、金属窒化物、金属炭化物の含有量 50

が上記範囲未満である場合、酸化物、金属窒化物、金属炭化物の添加による効果が得られ ないため、好ましくない。

[0120]

中間層8の厚さは、垂直磁性層4における磁性粒子の肥大化による再生時の信号/ノイズ 比 (S/N) の悪化や磁気ヘッドと軟磁性下地層 2 との距離が大きくなることによる記録 特性 (OW) や分解能の低下を起こさないようにするために、20nm以下(より好まし くは10 n m以下) とするのが好ましい。

[0 1 2 1]

次に上記構成の磁気記録媒体を製造する方法の一例(図1の形態)について説明する。

[0122]

上記構成の磁気記録媒体を製造するには、非磁性基板1上に、軟磁性下地層2、配向制御 層3、垂直磁性層4を順次、スパッタ法、真空蒸着法、イオンプレーティング法などによ り形成する。次いで保護層 5 を、好ましくはプラズマCVD法、イオンビーム法、スパッ

[0123]

夕法により形成する。

また、垂直磁性層4を形成する際、酸化物を含む磁性層4 a を形成後、加熱処理を行い、 続けて酸化物を含まない磁性層 4 bを形成してもかまわない。また、磁性粒子の結晶性を 向上させる目的で、垂直磁性層4を形成後、アニール処理をしてもかまわない。

非磁性基板 1 としては、アルミニウム、アルミニウム合金等の金属材料からなる金属基板 20 を用いてもよいし、ガラス、セラミック、シリコン、シリコンカーバイド、カーボンなど の非金属材料からなる非金属基板を用いてもよい。

[0125]

ガラス基板としては、アモルファスガラス、結晶化ガラスがあり、アモルファスガラスと しては汎用のソーダライムガラス、アルミノケートガラス、アルミノシリケートガラスを 使用できる。また、結晶化ガラスとしては、リチウム系結晶化ガラスを用いることができ る。セラミック基板としては、汎用の酸化アルミニウム、窒化アルミニウム、窒化珪素な どを主成分とする焼結体や、これらの繊維強化物などが使用可能である。

[0 1 2 6]

非磁性基板1としては、上記金属基板、非金属基板の表面にメッキ法やスパッタ法を用い 30 てNiP層が形成されたものを用いることもできる。

[0 1 2 7]

非磁性基板は、平均表面粗さRaが2nm(20A)以下、好ましくは1nm以下である とことがヘッドを低浮上させた高記録密度記録に適している点から望ましい。

[0 1 2 8]

また、表面の微小うねり (Wa) が0.3 nm以下 (より好ましくは0.25 nm以下) であるのがヘッドを低浮上させた高記録密度記録に適している点から好ましい。端面のチ ャンファー部の面取り部、側面部の少なくとも一方のいずれの表面平均粗さRaが10n m以下 (より好ましくは 9. 5 n m以下) のものを用いることが磁気ヘッドの飛行安定性 にとって好ましい。微少うねり(Wa)は、例えば、表面荒粗さ測定装置P-12(KL M-Tencor社製)を用い、測定範囲80μmでの表面平均粗さとして測定すること ができる。

[0129]

必要に応じて非磁性基板1を洗浄して、その非磁性基板1を成膜装置のチャンバ内に設置 する。

[0 1 3 0]

非磁性基板1上に、軟磁性下地層2と、配向制御層3と、垂直磁性層4を各層の材料と同 じ組成の材料を原料とするスパッタターゲットを用いてDC或いはRFマグネトロンスパ ッタ法により形成する。膜を形成するためのスパッタの条件は例えば次のようにする。形 成に用いるチャンバ内は真空度が10⁻⁴~10⁻⁷ Paとなるまで排気する。チャンバ 50

30

内に非磁性基板を収容して、スパッタガスとして、たとえばArガスを導入して放電させ てスパッタ成膜をおこなう。このとき、供給するパワーは 0.1~2kWとし、放電時間 と供給するパワーを調節することによって、所望の膜厚を得ることができる。

[0131]

軟磁性下地層2を放電時間と供給するパワーを調節することによって50~400 nmの 膜厚で形成するのが好ましい。

[0 1 3 2]

軟磁性下地層2を形成する際には、軟磁性材料からなるスパッタターゲットを用いるのが 軟磁性下地層を容易に形成できるので好ましい。軟磁性材料としては、FeCo系合金(FeCo、FeCoVなど)、FeNi系合金(FeNi、FeNiMo、FeNiCr 10 、FeNiSiなど)、FeAI系合金(FeAl、FeAISi、FeAISiCr、 FeAlSiTiRu、FeAlOなど)、FeCr系合金(FeCr、FeCrTi、 FeCrCuなど)、FeTa系合金(FeTa、FeTaC、FeTaNなど)、Fe Mg系合金(FeMgOなど)、FeZr系合金(FeZrNなど)、FeC系合金、F eN系合金、FeSi系合金、FeP系合金、FeNb系合金、FeHf系合金、FeB 系合金、Feを60at%以上含有するFeAlO、FeMgO、FeTaN、FeZr Nを挙げることができる。さらに、Coを80at%以上含有し、Zr、Nb、Ta、C r、Mo等のうち少なくとも1種を含有し、アモルファス構造を有している、CoZr、 CoZrNb、CoZrTa、CoZrCr、CoZrMo系合金を好適なものとして挙 げることができる。

[0133]

上記のターゲットは溶製法による合金ターゲットまたは焼結合金ターゲットである。

[0134]

軟磁性下地層 2 を形成後、放電時間と供給するパワーを調節することによって配向制御層 3を0.5~40nm(好ましくは1~20nm)の膜厚で形成する。配向制御層 3の形 成に用いるスパッタ用ターゲットの材料としてはRu系合金、Ni系合金、Co系合金を 挙げることができる。

[0135]

次に垂直磁性層4を形成する。

[0136]

まず、酸化物を含む磁性層4aをスパッタターゲットを用いて同様にスパッタ法により形 成する。スパッタターゲットとしては、(Col4Crl8Pt)90-(SiO2)1 0 | Cr含有量14 a t %、P t 含有量18 a t %、残部Coからなる金属組成が90 m o 1%、SiO₂ からなる酸化物組成が10mo 1%{、(Co10Cr16Pt) 92 - (SiO,) 8 | Cr含有量10at%、Pt含有量16at%、残部Coからなる金 属組成が92mol%、SiO₂ からなる酸化物組成が8mol%l 、(Co8Cr14 Pt4Nb) 94-(Cr2O3) 6 {Cr含有量8at%、Pt含有量14at%、N b含有量4at%、残部Coからなる金属組成が94mol%、Cr₂O₃からなる酸化 物組成が6mol% 、の他、(CoCrPt) - (Ta2O5)、(CoCrPtMo) - (TiO), $(CoCrPtW) - (TiO_2)$, $(CoCrPtB) - (Al_2O^{40})$ $_{3}$) $(CoCrPtTaNd) - (MgO) \cdot (CoCrPtBCu) - (Y_{2}O_{3})$ 、(CoCrPtRe)-(SiO₂) などをあげることができる。

[0137]

酸化物の含有量は、Co、Cr、Ptの総量に対して、3mol%以上12mol%以下 であることが好ましい。さらに好ましくは5mol%以上10mol%以下である。

[0138]

磁性層4a中の酸化物の含有量が上記範囲が好ましいのは、層を形成したさい、磁性粒子 の周りに酸化物が析出し、磁性粒子の孤立化、微細化をすることができるためである。酸 化物の含有量が上記範囲を超えた場合、酸化物が磁性粒子中に残留し、磁性粒子の配向性 、結晶性を損ね、さらには図3に示すように、磁性粒子42の上下に酸化物41が析出し 50 、結果として磁性粒子42が磁性層4aを上下に貫いた柱状構造(図2の構造)が形成されなくなるため好ましくない。また、酸化物の含有量が上記範囲未満である場合、磁性粒子の分離、微細化が不十分となり、結果として記録再生時におけるノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。

[0139]

磁性層4 a は、図2に示すように、層中に磁性粒子4 2が分散していることが好ましい。 また、該磁性粒子4 2が磁性層4 a を上下に貫いた柱状構造(図2の構造)であることが 好ましい。このような構造を形成するには、上記のようなターゲット材料を使うほかに、 次にような条件を必要とする。

[0140]

Co を主成分とするとともに少なくともCr を含み、酸化物を含んだ材料からなるターゲットを使用し、形成に用いるチャンバ内は真空度が $10^{-4} \sim 10^{-7}$ Paとなるまで排気した状態で、スパッタガスとしてAr ガスを導入してスパッタ成膜を行う。このとき、供給するパワーは $0.1kW\sim 2kW$ とし、放電時間と供給するパワーを調節することにより、所望の膜厚を得る。

[0141]

この際、スパッタガスの圧力は3Pa以上20Pa以下とするのが好適である。また、放電パワーはできるだけ低く設定し、プロセス上許される範囲で成膜時間を長くとるほうが好ましい。これらの条件により、酸化物中に磁性粒子が分散し、また、該磁性粒子が磁性層4aを上下に貫いた柱状構造を得やすいためである。

[0142]

また、酸化物を含む磁性層4aを形成する際、スパッタガスとしてアルゴンを使用するが、必要に応じて窒素あるいは酸素ガス、もしくは両方を添加してもかまわない。

[0 1 4 3]

窒素あるいは酸素もしくは両方の添加は、それらとアルゴンの混合ガスを用いても良いし、それぞれのガスを別々に導入し、チャンバ内で混合してもかまわない。

[0144]

窒素あるいは酸素もしくは両方の添加量としては、アルゴンに対して 20 vol %以下(より好ましくは 10 vol %以下)であることが好ましい。窒素あるいは酸素の添加量が上記範囲を超えた場合、磁性粒子の結晶性、配向性を損ね、結果として記録再生特性を劣 30 化させるおそれがあるため好ましくない。

[0145]

例えば、磁性層4aとして(Co14Cr18Pt)90-(SiO2)10 {Cr含有量14at%、Pt含有量18at%、残部Coからなる金属組成が90mol%、SiO2からなる酸化物組成が10mol%}の材料を用いる場合の条件として、スパッタ放電パワーは0.4kW、圧力は6~8Pa、酸素添加量1~2vol%であることが好ましい。

[0146]

また、磁性層4 a を成膜する際、非磁性基板1に負の電圧(基板Bias)を印加することもできる。これにより、磁性粒子と酸化物の分離が促進し、磁性粒子がより微細化、孤 4 立化し、より高密度記録に適した記録再生特性が得られる。

[0147]

基板Biasは-100V~-600Vの範囲で印加するのが好ましい。上記範囲を超える場合、磁性粒子の結晶性、配向性を損ねるおそれがあるため好ましくない。また、上記範囲未満である場合、効果が得られないため好ましくない。

[0148]

次に、酸化物を含まない磁性層 4 bをスパッタターゲットを用いて同様にスパッタ法により形成する。磁性層 4 bに適した材料としては、例えば、CoCr系では、Co16~28 C r | C r 含有量 1 6~28 a t %、残部Сο | 、СoCrTa系では、Co14~30 C r 1~4 T a | C r 含有量 1 4~30 a t %、T a 含有量 1~4 a t %、残部Со |

10

、CoCrTaB系では、Col4~26Crl~5Tal~4B | Cr含有量14~2 6 a t %、T a 含有量 1 ~ 5 a t %、B含有量 1 ~ 4 a t %、残部C o ┤、C o C r B N d系では、Col4~30Crl~5Bl~4Nd | Cr含有量14~30at%、B含 有量1~5 a t %、N d 含有量1~4 a t %、残部C o l 、C o C r P t B系では、C o 16~24Cr10~18Pt1~6B {Cr含有量16~24at%、Pt含有量10 ~18at%、B含有量1~6at%、残部Col、CoCrPtCu系では、Co16 ~24Cr10~20Pt1~7Cu {Cr含有量16~24at%、Pt含有量10~ 20at%、Cu含有量1~7at%、残部Col、CoCrPtTaNd系では、Co 16~26Cr10~20Pt1~4Ta1~4Nd | Cr含有量16~26at%、P CrPtNb系では、Co16~26Cr8~18Pt1~6Nb | Cr含有量16~2 6 a t %、P t 含有量 8~18 a t %、N b 含有量 1~6 a t %、残部 C o ℓ の他、C o CrPtBNd、CoCrPtBW、CoCrPtMo、CoCrPtCuRu、CoC rPtReなどの材料をあげることができる。

[0 1 4 9]

磁性層4bを形成する条件は、例えば次のようにする。

[0150]

Coを主成分とするとともに少なくともCrを含み酸化物を含まない材料からなるターゲ ットを使用し、形成に用いるチャンバ内は真空度が10~ ~ 10~ ~ Paとなるまで排 気した状態で、スパッタガスとしてArガスを導入してスパッタ成膜を行う。このとき、 供給するパワーは0.1kW~2kWとし、放電時間と供給するパワーを調節することに より、所望の膜厚を得る。

[0151]

この際、スパッタガスの圧力は20Pa以下であることが好ましい。

[0152].

また、酸化物を含む磁性層4bを形成する際、スパッタガスとしてアルゴンを使用するが 、必要に応じて窒素あるいは酸素ガス、もしくは両方を添加してもかまわない。

[0153]

窒素あるいは酸素もしくは両方の添加は、それらとアルゴンの混合ガスを用いても良いし 、それぞれのガスを別々に導入し、チャンバ内で混合してもかまわない。

[0154]

窒素あるいは酸素もしくは両方の添加量としては、アルゴンに対して20vol%以下(より好ましくは10vol%以下)であることが好ましい。窒素あるいは酸素の添加量が 上記範囲を超えた場合、磁性粒子の結晶性、配向性を損ね、結果として記録再生特性を劣 化させるおそれがあるため好ましくない。

[0155]

また、磁性層4bを形成する前に、加熱を行ってもかまわない。加熱は、真空中で行う。 [0156]

加熱の温度は、特に規定するものではないが、非磁性基板1の形状が変化しない範囲で行 うことが好ましい。例えば、アモルファスガラスを用いた場合は、300℃以下であるこ 40 とが好ましい。

[0157]

加熱した状態で磁性層 4 bを形成することで、磁性層 4 bのCr偏析が進行し、より磁性 粒子の微細化、孤立化が促進され、結果として記録再生特性の向上が得られるため、必要 に応じて実施するのが好ましい。

[0158]

例えば、磁性層 4 b として、Co16Cr12Pt4B 🕯 C r 含有量 1 6at%、Pt含 有量12at%、B含有量4at%、残部Colの材料を用いる場合の条件は、加熱温度 約180℃~220℃、スパッタ放電パワー1kW以下、圧力2~5Pa、ガス添加な し、であることが好ましい。

[0159]

また、磁性層 4 b を成膜する際、非磁性基板 1 に負の電圧(基板 B i a s) を印加することもできる。これにより、磁性粒子がより微細化、孤立化し、より高密度記録に適した記録再生特性が得られる。

[0 1 6 0]

基板Biasは-100V~-600Vの範囲で印加するのが好ましい。上記範囲を超える場合、磁性粒子の結晶性、配向性を損ねるおそれがあるため好ましくない。また、上記範囲未満であるばあい、効果が得られないため好ましくない。

[0 1 6 1]

垂直磁性層 4 を形成した後、公知の方法、例えばスパッタ法、プラズマ C V D 法またはそ 10 れらの組み合わせを用いて保護層 5 、たとえばカーポンを主成分とする保護層 5 を形成する。

[0162]

さらに、保護層5上には必要に応じパーフルオロポリエーテルのフッ素系潤滑剤をディップ法、スピンコート法などを用いて途布し、潤滑層6を形成する。

[0 1 6 3]

本発明に従って製造した磁気記録媒体は、非磁性基板 1 上に少なくとも、直上の層の配向性を制御する配向制御層 3 と、磁化容易軸が非磁性基板 1 に対し主に垂直に配向した垂直磁性層 4 と、保護層 5 とが設けられた磁気記録媒体において、垂直磁性層 4 を 2 層以上の磁性層で形成し、少なくとも 1 層を C o を主成分とするとともに P t を含み、さらに酸化物を含んだ磁性層 4 a とし、他の磁性層を C o を主成分として C r を含み、酸化物を含まない磁性層 4 b とすることを特徴とし、これにより磁性粒子の微細化と磁気的な孤立化が促進され再生時における信号/ノイズ比(S/N)を大幅に向上することができ、また逆磁区核形成磁界(-Hn)を向上させることで熱揺らぎ特性も向上させることができ、ちに優れた記録特性(OW)を有した媒体を得ることができる。

[0164]

図12は本発明の磁気記録再生装置の一例を示す概略図であり、(a)は全体構成を示し、(b)は磁気へッドを示す。ここに示す磁気記録再生装置は、図1に示す構成を有する磁気記録媒体10と、磁気記録媒体10を回転駆動させる媒体駆動部11と、磁気記録媒体10に情報を記録再生する磁気ヘッド12と、この磁気ヘッド12を磁気記録媒体10に対して相対運動させるヘッド駆動部13と、記録再生信号処理系14とを備えている。記録再生信号処理系14は、外部から入力されたデータを処理して記録信号を磁気ヘッド12に送ったり、磁気ヘッド12からの再生信号を処理してデータを外部に送ることができるようになっている。本発明の磁気記録再生装置に用いる磁気ヘッド12には、再生素子として巨大磁気抵抗効果(GMR)を利用したGMR素子などを有した、より高記録密度に適したヘッドを用いることができる。

[0165]

上記磁気記録再生装置によれば、磁気記録媒体10に本発明の磁気記録媒体を用いるので、磁性粒子の微細化と磁気的な孤立化が促進され再生時における信号/ノイズ比(S/N)を大幅に向上することができ、また逆磁区核形成磁界(-Hn)を向上させることで熱 40 揺らぎ特性も向上させることができ、さらに優れた記録特性(OW)を有した媒体を得ることができ、このため高密度記録に適した優れた磁気記録再生装置とすることができる。

[0166]

【実施例】

洗浄済みのガラス基板(オハラ社製、外形 2.5インチ)をDCマグネトロンスパッタ装置(アネルバ社製C-3010)の成膜チャンバ内に収容して、到達真空度 1×10⁻⁵ Paとなるまで成膜チャンバ内を排気した後、このガラス基板上にCoー4 Zr-7Nb {Zr含有量4at%、Nb含有量7at%、残部Сo} のターゲットを用いて100℃以下の基板温度で100nmの軟磁性下地層2をスパッタリングにより成膜した。この膜の飽和磁束密度 Bs(T)と膜厚t(nm)の積Bs·t(T·nm)が120(T·n 50

m) であることを振動式磁気特性測定装置 (VSM) で確認した。

[0167]

上記軟磁性下地層 2 の上に N i 4 0 T a | T a 含有量 4 0 a t %、残部 N i | ターゲット、R u ターゲットを用いて、それぞれ 5 n m、 2 0 n m の厚さで順に成膜し、配向制御層 3 とした。

[0168]

配向制御層3の上に、(Con, Crn, Pt)90-(SiO2)10 | Cr含有量14at%、Pt含有量18at%、残部Coの合金組成を90mol%、SiO2からなる酸化物を10mol%|からなるターゲットを用い、スパッタ圧力を0.7Paとして磁性層4aを10nmの厚さで形成した。

[0169]

次に、Col6Crl2Pt4B | Cr含有量16at%、Pt含有量12at%、B含有量4at%、残部Colからなるターゲットを用いて、スパッタ圧力を3Paとして磁性層4bを10nmの厚さ形成した。

[0170]

ついでCVD法により膜厚5nmの保護層5を形成した。次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑層6を形成し、磁気記録媒体を得た。

[0171]

得られた磁気記録媒体の磁気特性を評価した。静磁気特性の評価は、Kerr効果測定器を用いて、保磁力(Hc)、逆磁区核形成磁界(-Hn)を測定した。

[0172]

また、記録再生特性の評価は、米国GUZIK社製リードライトアナライザRWA1632、およびスピンスタンドS1701MPを用いて測定した。ヘッドは、書き込みをシングルポール磁極、再生部にGMR素子を用いたヘッドを使用した。

[0173]

信号/ノイズ比(S/N)は、記録密度700kFCIとして測定した。

[0174]

記録特性(OW)は、まず、700kFCIの信号を書き込み、次いで116kFCIの信号を上書し、周波数フィルターにより高周波成分をとりだし、その残留割合によりデータの書き込み能力を評価した。

[0175]

熱揺らぎ特性の評価は、70℃の条件下で記録密度50kFCIにて書き込みを行ったあと、書き込み後1秒後の再生出力に対する出力の減衰率を(So-S)×100/(So×3)に基いて算出した。この式においてSoは書き込み後、1秒経過時の再生出力を示し、Sは1000秒後の再生出力を示す。結果を表1の実施例1の欄に示した。

[0176]

【表1】

10

	時件層4						A SECTION				
	· · · · · · · · · · · · · · · · · · ·			搭作 用 45			即磁気特性		記録再生特性		原語らぎ特性
	相段 [(at%)mo!%]	原	成膜压力	相成(44%)	原改	成限压力	保班力	-Hn	wo	8/8	[%decade]
東施列 1	(Co14Cr18Pt)90 - (SiO2)10	10[mm]	0.7[Pa]	<u>m</u>	10[m]	3[Pa]	3400[0e]	1800[Oe]	48.5[4B]	19.8[dB]	0.10
東施例 2	(Co14Cr18Pt)90 - (SiO2)10	2	2	Co16Cr12Pt4B	9	-	3500	1800	48.0	20.3	0.09
東施例 3	(Co14Cr18Pt)90 - (SiO2)10	2	4	Col6Cr12Pt4B	2	c	3700	1850	46.5	20.8	60.0
夹插例 4	(Co14Cr18Pt)90 - (SiO2)10	10	9	Col6Cr12Pt4B	9	c	3800	1850	46.0	21.4	0.09
東施例 5	(Co14Cr18Pt)90 - (SiO2)10	10	&	Col6Cr12PtdB	2	0	4100	1900	46.0	22.0	90.08
実施例 6	(Co14Cr18Pt)90 - (SiO2)10	10	11	Col6Cr12PtdB	2		3900	1750	48.5	21.12	0.00
東施例 7	(Co14Cr18Pt)90 - (SiO2)10	10	œ	Co16Cr12PtdB	2	9.0	4000	1750	47.0	21.3	0.09
英雄例 8	(Co14Cr18Pt)90 - (SiO2)10	10	80	Col6Cr12PtdB	10	3	1950	1800	43.5	21.5	0.09
実施例 9	(Co14Cr18Pt)98 (SiO2)2	10	80	Co16Cr12PtdB	10	C	3300	1000	\$2.0	16.3	0.24
英語例 10	(Co14Cr18Pt)97 - (SiO2)3	10	80	Col6Cr12Pt4B	2		3400	1350	54.5	17.8	0.13
東临例 11	(Co14Cr18Pt)93 - (SiO2)7	10	8	Col6Cr12Pt4B	2		3850	1550	52.0	19.1	0.11
実施例 12	(Co14Cr18Pt)88-(SiO2)12	10	œ	Col6Cr12P44B	10	3	3750	1600	53.5	18.8	0.11
東施例 13	(Co14Cr18Pt)85 - (SiO2)15	10	8	Col6Cr12PtdB	2		3600	1200	52.0	17.5	0.16
東施例 14	(Co4Cr18Pt)90 - (SiO2)10	10	8	Col6Cr12Pt4B	2		4500	2200	42.5	20.8	0.03
東插例 15	(Co6Cr18Pt)90 - (SiO2)10	10	®	Col6Cr12PtdB	10	9	4300	2100	44.0	20.9	90.0
東備例 16	(Co16Cr18Pt)90 - (SiO2)10	10	80	Col6Cr12Pt4B	2		3500	1400	53.0	7.02	0.11
英施例 17	(Co20Cr18Pt)90-(SiO2)10	10	∞	Col6Cr12PtdB	2	-	3300	1100	54.0	g	0.14
英插例 18	(Co14Cr8Pt)90 (SiO2)10	20	80	Col6Crl2PtdB	2	0	3400	1000	96.0	19.6	0.19
東施例 19	(Co14Cr10Pt)90 - (SiO2)10	10	80	Co16Cr12Pt4B	20		3600	1200	54.0	19.9	0.16
東海例 20	(Co14Cr22Pt)90-(SiO2)10	10	8	Co16Cr12Pt4B	10	3	4500	1600	49.0	19.3	0.12
北較別 -	(Co14Cr18Pt)90 - (SiO2)10	10	80	J	J	1	4650	008	34.5	16.5	0.45
比較例 2	(Co14Cr18Pt)90 - (SiO2)10	82		J	ı	!	2700	8	21.5	123	0.40
比較例 3	Co14Cr18Pt	10	0.7	Col6Cr12PtdB	의	-	2600	700	51.0	12.2	0.47
比較別 4		1	J	Col6Cr12PtdB	2	-	2750	100	57.0	13.4	0.70
比较例 5	ı		1	Col6Cr12PwB	g	-	2800	100	57.0	11.2	0.63
比较例 6	(Co14Cr18Pt)90 - (SiO2)10	10	- &	Col4Pt	10	0.7	2500	300	42.5	12.9	0.45
比較例 7	(Co14Cr18Pt)90 - (SiO2)10	2	•	Col2Cr	2	6.7	2200	٥	43.2	11.3	0.67
比較例 8	(Co14Cr18Pt)90 - (SiO2)10	2		FeSOP	2	0.7	1800	-200	47.0	5,7	1.12
比较例 9	(Co14Cr18Pt)90 - (SiO2)10	2		Co(0.2mm)Pd(0.5cm)]10	7	-	3700	900	34.0	14.6	0.38
比較例 10	(Co14Cr18Pt)90 - (SiO2)10	10	8	(Co(0.2nm)/Pd(0.5cm)]2d	14	3	4300	1000	29.0	11.2	0.33

20 -

30

[0177]

(実施例2~20) 磁性層4aおよび磁性層4bを、表1の実施例2~20の欄に示した組成、条件に変えたほかは、実施例1に準じて磁気記録媒体を作成した。これら磁気記録媒体の評価結果を表1に示した。

[0178]

(比較例1~7) 磁性層4a、磁性層4bを、表1の比較例1~7の欄に示した組成の 40 材料で形成した他は、実施例1に準じて磁気記録媒体を作成した。これら磁気記録媒体の評価結果を表1に示した。

[0179]

[0180]

上記軟磁性下地層 2 の上に N i 4 0 T a | T a 含有量 4 0 a t %、残部 N i | ターゲット、R u ターゲットを用いて、それぞれ 5 n m、 2 0 n m の厚さで順に成膜し、配向制御層 3 とした。

[0181]

配向制御層3の上に、(Con, Crn, Pt)90-(SiO2)10 | Cr含有量14at%、Pt含有量18at%、残部Coの合金組成を90mol%、SiO2からなる酸化物を10mol%|からなるターゲットを用い、スパッタ圧力を8Paとして磁性層4aを10nmの厚さで形成した。

[0 1 8 2]

次に、磁性層4 bとして、CoとPdのそれぞれのターゲットを用い、CoO. 2 nm、PdO. 5 nmで交互に成膜することで、[Co/Pd] の積層膜を形成した。積層数は10とした。また、スパッタ圧力を3 Paとした。

[0183]

ついでCVD法により膜厚5nmの保護層5を形成した。次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑層6を形成し、磁気記録媒体を作製した。

[0184]

(比較例9、比較例10) 磁性層4bの積層数を20としたほかは、比較例8に準じて磁気記録媒体を作製した。比較例8,9,10の磁気記録媒体の評価結果を表1に示している。

[0185]

(実施例21~39) 磁性層4aおよび磁性層4bを、表2に示した組成、条件に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例21~39の磁気記録媒体の評価結果を表2に示した。

[0186]

【表 2】

	3 3 3						24.44				
	抵性增4		-		•		田河泊江				
	磁性層48			磁性層4b	•		静磁気特性		記録再生特性		整曲のが移在
	組成 [(at%)mol%]	草さ	成膜圧力	粗成 [44%]	軍	成膜压力	保磁力	٦H	MO	S/N	[%decade]
実施例21	(Co12Cr16Pt)93-(SiO2)7	[mu]01	8[Pa]	Co12Cr16Pt	10[nm]	3[Pa]	3300[Oe]	1800[Oe]	[क्क]ऽ:१ऽ	19.3[dB]	0.11
卖施例22	(Co12Cr16Pt)93-(SiO2)7	10	8	Co14Cr16Pt	10	3	3700	1800	0.02	19.7	0.11
爽施例23	(C012Cr16Pt)93-(SiO2)7	10	. 8	Co19Cr16Pt	10	3	4000	1800	49.0	. 20.8	0.12
実施例24	(Co12Cr16Pt)93-(SiO2)7	10	8	Co26Cr16Pt	10	3	4600	1700	\$0.5	20.1	0.14
実施例25	(Co12Cr16Pt)93-(SiO2)7	10	8	Co28Cr16Pt	2	3	4550	1100	51.0	18.5	61.0
棄施例26	(Co10Cr15Pt2Cu)92-(SiO2)8	91	8	Co19Cr8Pt	2		3400	1300	53.0	18.9	0.23
卖施例27	(Co10Cr15Pt2Cu)92-(SiO2)8	10		Co19Cr10Pt	01	3	3550	1400	52.0	19.2	0.20
实施例28	(Co10Cr15Pt2Cu)92-(SiO2)8	10	8	Co19Cr16Pt	10	3	4150	1750	48.5	21.1	0.11
案施例29	(Co10Cr15Pt2Cu)92-(SiO2)8	10	80	Co19Cr20Pt	2	3	4600	1900	45.5	20.8	0.10
実施例30	(Co10Cr13Pt2Cu)92-(SiO2)8	10	8	Co19Cr24Pt	10	3	4300	1750	48.0	20.1	0.10
東施例31	(Co10Cr14Pt4Mo)92-(SiO2)8	01	8	Co19Cr16Pt	2	3	3950	1750	49.0	20.9	0.10
实施例32	(Co10Cr14Pt4Nb)92-(SiO2)8	91	8	Co19Cr16Pt	2	3	4050	1850	48.5	20.4	0.10
東施例33	(Co10Cr14Pt3Ta)92-(SiO2)8	01	æ	Co19Cr16Pt2Nd	01	3	4100	1900	51.0	21.6	0.08
実施例34	(Co10Cr14Pr4Ta6W)92-(Cr2O3)8	10	8	Col9Crl@B3B	10	3	3500	1200	54.0	19.4	0.20
実施例35	(Co10Cr14Pt4Ts4W)92-(Cr2O3)8	10	8	Co19Cr16PUB	10	3	3950	1650	52.0	19.9	0.16
実施例36	(Co10Cr14Pt2Ru)94-(Ta2O5)6	15	9	Col6Cr18Pt4Re2Tb	10	3	3750	1600	51.0	19.1	0.17
実施例37	(Co10Cr14Pt)90-(TiO2)10	9	3	Co19Cr16Pt2B2Cu	24	0.7	3950	1800	49.0	19.3	0.15
実施例38	(Co10Cr14Pt)90-(SiO2)4-(Al2O3)6	25	15	Co19Cr16Pt2Ta2Nd	15	2	3850	1600	54.0	18.7	0.22
実施例39	実施例39 (Co10Cr18Pt5Cu)88-(MgO)8-(Y2O3)4	18	12	Co23Cr16Pt1Cu1B	. 12	7	4100	1650	52.0	19.3	0.16
40		30			20				10		

[0187]

(実施例40,41) 垂直磁性層4の構成を表3に示した成膜順(磁性層4b、磁性層4a)とし、また組成を表3の組成に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例40,41の磁気記録媒体の評価結果を表3に示した。

[0188]

【表3】

	磁性層4		_				磁気特性	- -		-	
	磁性層45	4		磁性層4a	-		静磁気特性		記錄再生特性		数価らぎ特性
	組成 [at%]	厚さ	成膜压力	組成 [(at%)mol%]	厚さ	成膜压力	保磁力	-Hn	wo	S/N	OW S/N [%decade]
実施例40	Col2Cr16Pt	10[nm]	2[Pa]	(Co12Cr16Pt)93-(SiO2)7 10[nm] 6[Pa] 3650[Oe]	10[nm]	6[Pa]	3650[Oe]	1550[Oe]	S3[dB] 18.5[dB]	18.5[dB]	0.12
実施例41	Co20Cr12Pt3Sm	9	0.7	0.7 (Co10Cr14Pt)94-(SiO2)6	16	4	3700	1650	52.0	18.6	0.12

20

30

40

[0189]

(実施例 $42 \sim 44$) 垂直磁性層 4 の構成を表 4 に示した成膜順(磁性層 4a、磁性層 4b-1、磁性層 4b-2)とし、また組成を表 4 の組成に変えた他は、実施例 1 に準じて磁気記録媒体を作製した。この実施例 $42 \sim 44$ の磁気記録媒体の評価結果を表 4 に示した。

【0190】 【表4】

	磁性盾4			_		•				磁気特性	•			0
	磁性層48		_	磁性層4b-1	-		磁性層46-2	-		静磁気特性		記錄再生特性		数描心的特性
	#B成 [at%]	ĄĀ	成膜压力	厚さ 成膜圧力 組成 [(at%)mol%6 厚さ 成膜圧力組成 [(at%)mol%6 厚さ 成膜圧力	F)	成膜压力	阻成 [(at%)mol%]	厚さ	屯膜压力	保磁力	Ę	OW S/N [%decade]	S/N	[%decade]
実施例42	実施例42 (Co8Cr12Pt)94-(SiO2)6	14[m]	14[mm] 5[Pa]	Co23Cr14Pt	6[mm]	0.7[Pa]	Co23Cr14Pt 6[mm] 0.7[Pa] Co18Cr12Pt2Nd 4[nm] 3[Pa] 4000[Oe] 1900[Oe] 49[dB] 20.9[dB]	f[mm]	3[Pa]	4000[Oe]	1900[Oe]	49[dB]	20.9[個]	0.11
実施例43	実施例43 (Co8Cr12Pt)94-(SiO2)6	7	٠	Co23Cr14Pt	9	0.7	Co23Cr14Pt 6 0.7 Co14Cr18Pt2Cu 6	۰	2	4150	1750	53	21.1	0.12
寅茄例44	実施例44 (Co10Cr16Pt)94-(Cr2O3)6	12	6	Co16Cr12Pt2B	7	3	3 Co22Cr16Pt1W 8 0.7 4200 1850	∞	0.7	4200	1850	51	21.2	0.11

20

30

40

[0191]

(実施例46,47) 垂直磁性層4の構成を表5に示した成膜順(磁性層4b-1、磁性層4a-1、磁性層4b-2、磁性層4a-2、磁性層4b-3)とし、また組成を次表5の組成に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例46,47の磁気記録媒体の評価結果を表6に示した。

[0192]

20

30

40

【表 5】

7回 参数													Г
1177	-		班存回48—1			班 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	磁性層48-2		概性層4b-3		
[948] [8486]	¥	成曜圧力	第日式。[(at96)mol96]	原	成階圧力		原文版	成曜圧力	- 5	厚き 成績圧力		厚さ 成階圧力	E7
実施例46 Co20Cr14Pt2B 4 [nm]	B 4 [nm]	0.7 [Pa]	(Co14Cr18Pt)95 - (SiO2)5		6 [Pe]	_		0.7 [Pa]	2	4 [mn] 6 [Pa]	Co20Cr14P2B	4 [nm] 0.7 [Pa]	Pal
実施例47 Co20Cr14Pt2B	18	0.7	(Co14Cr18Pt)95 - (SiO2)5	4	•	Co14Cr16Pt2Cu	_ °	7	(Co14Cr18P1)95 - (Cr203)5	9	C020Cr14Pt2B	1 4 0.7	7
				-									
							•						
			•										
					•			٠.					
			٠										
			-										

【0193】 【表6】

	磁気特性			_	
	静磁気特性		記録再生特性	1	熱揺らぎ特性
	保磁力 [Oe]	−Hn [Oe]	OW [dB]	S/N [dB]	[%decade]
実施例46	3950	1550	49.0	22.5	0.11
実施例47	4150	1600	49.0	22.7	0.10

[0194]

(実施例48) 垂直磁性層4の構成を表6に示した成膜順(磁性層4a、磁性層4b-1、非磁性層9、磁性層4b-2)とし、また組成を表7の組成に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例48の磁気記録媒体の評価結果を表7に示した。

【0195】 【表7】

	斑性層4			_		_		-				田気本存			-	
	磁性層46	-		磁性層461			非磁性層9		磁性層45-2	-		的田気特性		記錄再生特性	-	年語らず特性
	1 <u>8</u> [(at%)moP%]	呼き	成膜圧力	粗成 [(4196)]	J.	成膜圧力	1112 [(4496)]	Į,	成膜圧力 組成 [(456)] 厚き 相成 [(4196)]		原之 成膜圧力	保磁力	- H	ΜO	S/N	[96decade]
在例48	夹施例48 (Co12Cr17Pt1W)95-(Al2O3)5 10[nm]	10[nm]	6[Pa]	Co24Cr16Pt 5[mm]		3[Pa]	ColsCr	2[mm]	Co35Cr 2[mm] Co19Cr12Pt3Re 6[mm] 2[Pa]	6[mm]		3830[Oe] 1700[Oe]	1700[Oe]	48[dB]	22.9[個]	0.13
					ē											

20

30

40

[0196]

(実施例49) 垂直磁性層4の構成を表7に示した成膜順(磁性層4a-1、非磁性層9、磁性層4a-2、磁性層4b)とし、また組成を表8の組成に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例49の磁気記録媒体の評価結果を表8に示した。

【0197】 【表8】

	磁性層4					!						田気特性	_		-	
	磁性層48-1			非磁性層9		磁性層4a-2			磁性層45	-		静磁気特性		記錄再生特性		母担心がお右
	18 57 [(et%)mol%]	¥2	战降压力	# 成 [(et%)]	E Y	成降圧力 報成[(et%)] 厚冬 組成 [(et%)] 厚冬 成際圧力 組成 [(et%)] 厚冬 成膜圧力 保助力	JE.	成隈圧力	相成 [(et%)]	ž	或膜压力	保斑力	F	wo	S/N	S/N [96decade]
英施例49	(Co10Cr11Pt)92-(MgO)8	12[mm]	4Pa	Ru	1[nm]	Ru 1fmm] C023C714P4B 4fmm] 3[Pa] C019C711P3B 4fmm] 3[Pa] 3750[Oe] 1600[Oe]	4[mm]	3[Pe]	Co19Cr11PISB	4 [mm]	3[Pa]	3750[Oe]	600 600 600	49(母) 21.5(母)	21.5[dB]	0.11

10 ·

20 -

30

40

[0198]

(実施例50~53) 垂直磁性層4の構成を表7に示した成膜順(磁性層4a-1、非磁性層9、磁性層4a-2、磁性層4b)とし、また組成を表9の組成に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例50~53の磁気記録媒体の評価結 50

果を表9に示した。 【0199】 【表9】

磁性層4						磁気特性	+ 44			
	非磁性層9	磁性層4a-2	-	田村画も	-	即磁気特性	#	記錄再生特性		発描心が年行
厚き 成膜圧	成膜压力 組成 [(at80)mol93] 厚之	さ 親成 [(at&)mol%]	原を「成勝圧力	和成 [(se6)] 月	厚さ 成膜圧力	Eカ 保職力	- H2	WO	S	[%decade]
	(Co50Ru)93-(SiO2)72[mm]	Col	S[mm] S[Pa]	Col9Cr11Pt3B 4[nm]	nm] 3[Pa]	a] 3900[Oe]	e) 1700[Oc]	50[4B]	21.1[dB]	0.13
学作例51 (Co12Cr13Pt30-(Y2O3)10 8 3	(Co50Ru)93-(TiN)7 1.5	5 (Co12Cr11Pt)90-(Y203)10	8	Col9Cr11PdB		3800	1650	20	21.5	0.13
	Ru92-(ThC)8 2.5	-	8	Col9Cr11Pt3B	-3	3950	170	. 21	20.8	0.13
	Cr20W 0.5		8	Col9Cr11PdB	3	3400	1450	53	19.4	0.15
		·								
					•					
		192	٠.							
					ī					
					•		-			
	•									
40		30		20				10		
)		ı						

【0200】 (実施例54) 洗浄済みのガラス基板 (オハラ社製、外形2.5インチ)をDCマグネ ⁵⁰ トロンスパッタ装置(アネルバ社製C-3010)の成膜チャンバ内に収容して、到達真空度 1×10^{-5} Paとなるまで成膜チャンバ内を排気した後、このガラス基板上にCo-42r-7Nb $\{2 \text{ r} \land 5 \text{ r} \land 6 \text$

[0 2 0 1]

上記軟磁性下地層2の上にRuターゲットを用いて、20 nmの厚さで成膜し、配向制御 層3とした。

[0202]

配向制御層3の上に、(Col2Cr20Pt)90-(SiO2)10 | Cr含有量12at%、Pt含有量20at%、残部Coの合金組成を90mol%、SiO2からなる酸化物を10mol%| からなるターゲットを用い、スパッタ圧力を0.7Paとして磁性層4aを10nmの厚さで形成した。

[0203]

次に、Co20Cr13Pt3B | Cr含有量20at%、Pt含有量13at%、B含有量3at%、残部Co| からなるターゲットを用いて、スパッタ圧力を3Paとして磁性層4bを10nmの厚さ形成した。

[0204]

ついでCVD法により膜厚5nmの保護層5を形成した。次いで、ディッピング法により 20パーフルオロポリエーテルからなる潤滑層6を形成し、磁気記録媒体を得た。この実施例 54の磁気記録媒体の評価結果を表10に示した。

[0205]

【表10】

Τſ

	配向制御閥3		中間圏8		磁気特性				
	智改	車さ		再み	都磁気体柱		記録再生特性		歌描らが称析
	[(at%)mol%]	[mm]	[(at%)mol%]	[nm]	保磁力 [Oe]	-Hn [0e]	OW [dB]	S/N [dB]	[%decade]
実施例 54	Ru	20	1	ı	4200	1600	90	20.9	0.13
実施例 55	Pq	15	_	1	4300	1550	15	20.5	0.14
张粨囱 26	꿆	15	1	١	4500	1800	49	21.5	0.11
実施例 57	(Ru)90-(SiO2)10	25	_	_	009€	1400	54	20.8	0.15
実施例 58	(Ni40Ta)95-(TiO2)5	25	1	1	3400	1100	55	19.6	0.21
実施例 59	(Pt)94-(TaC)6	30		_	3500	1250	54	20.4	0.19
実施例 60	(Pt)94-(Si3N4)6	20		١	009€	1100	54	19.4	0.17
実施例 61	Ru	20	Co35Cr	2	4500	1750	90	21.5	0.11
実施例 62	Ru	20	C40Cr8Pt3Ta	3	4450	1800	49	21.8	0.11
実施例 63	Ru	20	(Co30Cr5Pt)94-(Cr2O3)6	5	006€	1550	20	21.1	0.14
実施例 64	l Ru	20	(Co38Cr4Pt6B)92-(AIN)8	5	. 008€	1600	90	20.4	0.16
実施例 65	Ru	20	(Co38Cr4Pt6B)92-(BC)8	5	3400	1200	51	19.3	0.19
実施例 66	S Ru	20	(Co38Cr4Pt4B)92-(Al2O3)8	8	3600	1350	51	19.5	0.17

20

30

40

[0206]

(実施例55~60) 配向制御層3の材料を表10に示した材料に変えた他は、実施例54に準じて磁気記録媒体を作製した。この実施例55~60の磁気記録媒体の評価結果を表10に示した。

[0207]

(実施例 6 1) 洗浄済みのガラス基板 (オハラ社製、外形 2.5インチ)をDCマグネトロンスパッタ装置 (アネルバ社製C-3010) の成膜チャンバ内に収容して、到達真 50

20 -

空度 1×10^{-5} Paとなるまで成膜チャンバ内を排気した後、このガラス基板上にCo-42r-7Nb $\{Zr$ 合有量 4at%、Nb含有量 7at%、残部Co $\}$ のターゲットを用いて 100 %以下の基板温度で 100 nmの軟磁性下地層 2 をスパッタリングにより成膜した。この膜の飽和磁束密度 Bs (T) と膜厚 t (nm) の積 Bs·t (T·nm) が 120 (T·nm) であることを振動式磁気特性測定装置 (VSM) で確認した。

[0208]

上記軟磁性下地層2の上にRuターゲットを用いて、20nmの厚さで成膜し、配向制御層3とした。

[0209]

配向制御層3の上に、中間層8としてCo35Cr | C r 含有量35at%、残部Co トロターゲットを用いて、2nmの厚さを形成した。

[0210]

中間層 8 の上に(Co₁ 2 Cr₂ 。 Pt) 9 0 - (SiO₂) 10 | Cr含有量 1 2 at %、Pt含有量 2 0 at %、残部 Coの合金組成を 9 0 mol%、SiO₂ からなる酸化物を 10 mol%| からなるターゲットを用い、スパッタ圧力を 0.7 Paとして磁性層 4 aを 10 nmの厚さで形成した。

[0211]

次に、Co20Cr13Pt3B | Cr含有量20at%、Pt含有量13at%、B含有量3at%、残部Co| からなるターゲットを用いて、スパッタ圧力を3Paとして磁性層4bを10nmの厚さ形成した。

[0212]

ついでCVD法により膜厚5nmの保護層5を形成した。次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑層6を形成し、磁気記録媒体を得た。この実施例61の磁気記録媒体の評価結果を表10に示した。

[0213].

(実施例62~66) 中間層8を表8に示した材料に変えた他は、実施例61に準じて 磁気記録媒体を作製した。この実施例62~66の磁気記録媒体の評価結果を表10に示 した。

[0214]

(実施例67~78) 垂直磁性層4の材料、添加ガス、基板Bias等の条件を、表9 3 に示した条件に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例67~78の磁気記録媒体の評価結果を表11に示した。

[0215]

【表11】

	田性语4				'		İ				田気特性	-			
	磁性層46					磁性層45	-	-	-		野田気特性		R級再生特性		気描らぎ特性
	組成	真さ	成膜圧力	添加ガス	基板Bias	相成	₩.	厚き 成膜圧力	添加ガス	恭板Bias	保磁力	Ŧ	š	S/N	[%decade]
	[(ar%)mol%]	[mm]	[Pa]			[at%]	I	E.			[06]	[06]	[4 B]	9	
実施例 67	実施例 67 (Co10Cr16Pt)92-(SiO2)8	6	9	1	,	Co23Cr16Pt1Cu1B	٥	0.7	1	1	4300	2000	51.5	21.5	0.09
実施例 68	実施例 68 (Co10Cr16Pt)92-(SiO2)8	6	9	O2 0.3vol%	j	Co23Cr16Pt1Cu1B	٥	0.7	J	ı	4450	2000	50.5	21.9	0.09
実施例 69	実施例 69 (Co10Cr16Pt)92-(SiO2)8	6	6	O2 0.6voP%	ı	Co23Cr16Pt1Cu1B	٥	0.7	J	ı	4600	2000	49	22.5	0.09
実施例 70	実施例 70 (Co10Cr16Pt)92-(SiO2)8	6	9	O2 1.2vol%	J	Co23Cr16Pt1Cu1B	٥	0.7	ı	ı	4550	2000	49	22.4	0.00
実施例 71	実施例 71 (Co10Cr16Pt)92-(SiO2)8	٥	9	O2 2vol%	1	Co23Cr16Pt1Cu1B	٥	0.7	ı	ı	4300	1950	20	22.1	0.09
実施例 72	実施例 72 (Co10Cr16Pt)92-(SiO2)8	0,	9	O2 4vol%	J	Co23Cr16Pt1Cu1B	٥	.0.7	J	j	4200	1600	53	19.7	0.13
実施例 73	実施例 73 (Co10Cr16Pt)92-(SiO2)8	6	9	N2 0.5vof%	'	Co23Cr16Pt1Cu1B	٥	0.7	J	J	4300	1850	52	21.8	0.09
実施例 74	実施例 74 (Co10Cr16Pt)92-(SiO2)8	6	9	02 0.6val%	ı	Co23Cr16Pr1Cu1B	٥	0.7	O2 0.3vol%	J	4400	1900	51.5	22.9	0.09
実施例 75	実施例 75 (Co10Cr16Pt)92-(SiO2)8	٥	6	O2 0.6vol96		-150 V Co23Cr16Pt1Cu1B	۵	0.7	J	ı	4700	2050	49	22.6	0.09
実施例 76	実施例 76 (Co10Cr16Pt)92-(SiO2)8	0	6	O2 0.6vol%		-300 V Co23Cr16Pt1Cu1B	~	0.7	ı	J	4700	2000	49	22.8	0.09
実施例 77	実施例 77 (Co10Cr16Pt)92-(SiO2)8	6	6	O2 0.6vol%		-600 V Co23Cr16Pt1Cu1B	٥	0.7	ı	J	4650	2000	49	22.5	0.09
東施例 78	実施例 78 (Co10Cr16Pt)92-(SiO2)8	٥	9	O2 0.6vol%	-	Co23Cr16Pt1Cu1B	6	0.7	1	-200 V	4750	2000	48	23.5	0.09
		4 °.	1												
			٠												
								•							

20

10

30

40

[0216]

[0217]

特に、実施例5と比較例6、7、8、9から、本発明においては、磁性層4bとしてCoを主成分とするとともに少なくともCrを含んでいることが重要であることが解る。

[0218]

実施例1と比較例3の比較から、垂直磁性層4を形成するにあたり、少なくとも1層は酸化物を含んだ磁性層が必要であることが分かる。

[0219]

実施例5、9~13の比較から、酸化物を含む磁性層4aの酸化物の含有量は、3mol%以上12mol%以下が好ましいことが解る。

[0220]

+ % 1/1

実施例5、14~17の比較から、酸化物を含む磁性層4aのCr含有量は、6at%以上16at%以下が好ましいことが解る。

[0221]

実施例5、18~20の比較から、酸化物を含む磁性層4aのPt含有量は、10at%以上20at%以下が好ましいことが解る。

[0222]

次に表2において、実施例21~25の比較から、酸化物を含まない磁性層4bのCr含有量は、14at%以上30at%以下の範囲が好ましいことが解る。

[0 2 2 3]

実施例26~30の比較から、酸化物を含まない磁性層4bのPt含有量は、8at%以 20 上20at%以下の範囲が好ましいことが解る。

[0224]

また、表2より、酸化物を含む磁性層4aの酸化物は、Cr2O3、SiO2、Ta2O。などが好ましいことが解る。また、複数種の酸化物を含む材料でもかまわないことが解る。

[0225]

垂直磁性層4に使われる材料として、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reのうち選ばれた1種以上の元素が含まれていてもかまわないことが解る。

[0226]

30

表3から、垂直磁性層4の構成を、酸化物を含まない磁性層4b、酸化物を含む磁性層4aの順としてもかまわないことが解る。

[0227]

表4、表5、表6から、垂直磁性層4の構成を3種類の磁性層から形成してもかまわない ことが解る。

[0228]

表7、表8および表9から、垂直磁性層4の任意の磁性層の間に、非磁性層9を形成する こともできることが解る。

[0229]

また、垂直磁性層 4 の構成として、酸化物を含む磁性層を複数層形成することができるこ ⁴⁰とが解る。

[0230]

表10からは、配向制御層3として、Ru、Pt、Pdのhcp構造をとる金属材料の他に、酸化物、金属窒化物、金属炭化物を含んだ材料も使うことができることが解る。

[0231]

また、配向制御層3と垂直磁性層4の間に、中間層8を設けることができることが解る。 【0232】

表11からは、垂直磁性層4を形成する際のガス添加および基板Biasにより、特性が向上していることが解る。

[0233]

50

【発明の効果】

以上説明したように、本発明の磁気記録媒体は、非磁性基板上に少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が非磁性基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられた垂直磁気記録媒体において、垂直磁性層が2層以上の磁性層からなり、少なくとも1層がCoを主成分とするとともにPtを含み、酸化物を含んだ磁性層であり、他の少なくとも1層がCoを主成分とするとともにCrを含み、酸化物を含まない磁性層からなることを特徴とし、これにより磁性粒子の微細化と磁気的な孤立化が促進され再生時における信号/ノイズ比(S/N)を大幅に向上することができ、また逆磁区核形成磁界(-Hn)を向上させることで熱揺らぎ特性も向上し、さらに優れた記録特性(OW)を有した媒体を得ることができる。

【図面の簡単な説明】

- 【図1】本発明における磁気記録媒体の一例の構造を示す縦断面図である。
- 【図2】垂直磁性層の構成を示す縦断面図である。
- 【図3】磁性層において磁性粒子が柱状構造とならない場合を示す図である。
- 【図4】MH曲線の1例を示す図である。
- 【図5】MH曲線の他の例を示す図である。
- 【図6】本発明における磁気記録媒体の他の例の構造を示す縦断面図である。
- 【図7】本発明における磁気記録媒体の他の例の構造を示す縦断面図である。
- 【図8】本発明における磁気記録媒体の他の例の構造を示す縦断面図である。
- 【図9】本発明における磁気記録媒体の他の例の構造を示す縦断面図である。
- 【図10】本発明における磁気記録媒体の他の例の構造を示す縦断面図である。
- 【図11】本発明における磁気記録媒体の他の例の構造を示す縦断面図である。
- 【図12】本発明の磁気記録再生装置の一例を示す概略図であり、(a)は全体構成を示し、(b)は磁気ヘッドを示す。

【符号の説明】

- 1 非磁性基板
- 2 軟磁性下地層
- 3 配向制御層
- 4 垂直磁性層
- 4 a , 4 a 1 , 4 a 2 酸化物を含んだ磁性層
- 4 b. 4 b 1, 4 b 2, 4 b 3 酸化物を含まない磁性層
- 5 保護層
- 6 潤滑層
- 8 中間層
- 9,91,92 非磁性層
- 10 磁気記録媒体
- 11 媒体駆動部
- 12 磁気ヘッド
- 13 ヘッド駆動部
- 14 記録再生信号処理系
- 4 1 酸化物
- 42,43 磁性粒子

TO

20

30

40

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

下地局

軟磁性下地層 2

【手続補正書】

【提出日】平成16年4月8日(2004.4.8)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】非磁性基板上に少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が非磁性基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられた磁気記録媒体において、

前記垂直磁性層は、2層以上の磁性層からなり、少なくとも1層がCoを主成分とするとともにPtを含み、酸化物を含んだ層であり、他の少なくとも1層がCoを主成分とするとともにCrを含み、酸化物を含まない層からなることを特徴とする磁気記録媒体。

【請求項2】前記酸化物を含んだ磁性層は、その層中に磁性を有した結晶粒子が分散しており、該結晶粒子はその層を柱状に貫いている、ことを特徴とする請求項1に記載の磁気記録媒体。

【請求項3】前記酸化物が、Cr、Si、Ta、Al、Tiの中から選ばれる1種類以上の非磁性金属の酸化物であることを特徴とする請求項1または2のいずれか1項に記載の磁気記録媒体。

【請求項4】前記酸化物が、Cr2O3、SiO2のいずれかからなることを特徴とする請求項1ないし3のいずれか1項に記載の磁気記録媒体。

【請求項5】前記酸化物を含んだ磁性層における酸化物の含有量が、3mol%以上12mol%以下であることを特徴とする請求項1ないし4のいずれか1項に記載の磁気記録媒体。

【請求項6】前記酸化物を含む磁性層は、Coを主成分とし、Cr含有量が0at%以上16at%以下、Pt含有量が10at%以上25at%以下であることを特徴とする請求項1ないし5のいずれか1項に記載の磁気記録媒体。

【請求項7】前記酸化物を含む磁性層が、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reのうち選ばれた1種類以上の元素を含み、その合計の含有量が8at%以下であることを特徴とする請求項1ないし6のいずれか1項に記載の磁気記録媒体。

【請求項8】前記酸化物を含まない磁性層が、Coを主成分とし、Cr含有量が14at%以上30at%以下であることを特徴とする請求項1ないし7のいずれか1項に記載の磁気記録媒体。

【請求項9】前記酸化物を含まない磁性層が、Coを主成分とし、Cr含有量が14at%以上30at%以下、Pt含有量が8at%以上20at%以下であることを特徴とする請求項1ないし8のいずれか1項に記載の磁気記録媒体。

【請求項10】前記酸化物を含まない磁性層が、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reのうち選ばれた1種類以上の元素を含み、その合計の含有量が8at%以下であることを特徴とする請求項1ないし9のいずれか1項に記載の磁気記録媒体。

【請求項11】前記垂直磁性層は、酸化物を含む磁性層の上に酸化物を含まない磁性層が設けられていることを特徴とする請求項1ないし10のいずれか1項に記載の磁気記録媒体。

【請求項12】前記垂直磁性層が、酸化物を含む層を2層以上含んでいることを特徴とする請求項1ないし11のいずれか1項に記載の磁気記録媒体。

【請求項13】前記垂直磁性層は、酸化物を含まない層を2層以上含んでいることを特徴とする請求項1ないし12のいずれか1項に記載の磁気記録媒体。

【請求項14】前記垂直磁性層は、磁性層と磁性層との間に非磁性層を有していることを 特徴とする請求項1ないし13のいずれか1項に記載の磁気記録媒体。 【請求項15】前記垂直磁性層は複数の磁性層から構成され、下層にある1つの結晶粒子の上に上層の1つの結晶粒子が成長して1対1に対応し、または下層にある1つの結晶粒子の上に上層の複数の結晶粒子が成長して1対複数で対応し、または下層にある複数の結晶粒子の上に上層の1つの結晶粒子が成長して複数対1で対応して存在していることを特徴とする請求項1ないし14のいずれか1項に記載の磁気記録媒体。

【請求項16】<u>前記上層と下層とは、一方が酸化物を含む磁性層のとき他方は酸化物を含まない磁性層であることを特徴とする請求項15に記載の磁気記録媒体。</u>

【請求項17】非磁性基板上に少なくとも、直上の層の配向性を制御する配向制御層と、 磁化容易軸が非磁性基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられた 磁気記録媒体の製造方法において、

前記垂直磁性層を2層以上の磁性層で形成し、少なくとも1層をCoを主成分とするとともにPtを含み、酸化物を含んだ層とし、他の少なくとも1層をCoを主成分とするとともにCrを含み、酸化物を含まない層とすることを特徴とする磁気記録媒体の製造方法。

【請求項18】前記酸化物を含んだ磁性層は、その層中に磁性を有した結晶粒子が分散しており、該結晶粒子はその層を柱状に貫いていることを特徴とする請求項17に記載の磁気記録媒体の製造方法。

【請求項19】前記垂直磁性層は、酸化物を含む磁性層の上に酸化物を含まない磁性層が 設けられていることを特徴とする請求項17または18のいずれか1項に記載の磁気記録 媒体の製造方法。

【請求項20】前記垂直磁性層は、酸化物を含む層を2層以上含んでいることを特徴とする請求項17ないし19のいずれか1項に記載の磁気記録媒体の製造方法。

【請求項21】前記垂直磁性層は、酸化物を含まない層を2層以上含んでいることを特徴とする請求項17ないし20のいずれか1項に記載の磁気記録媒体の製造方法。

【請求項22】前記垂直磁性層は、磁性層と磁性層との間に非磁性層を有していることを 特徴とする請求項17ないし21のいずれか1項に記載の磁気記録媒体の製造方法。

【請求項23】前記垂直磁性層<u>は複数の磁性層から構成され、下層にある1つの結晶粒子の上に上層の1つの結晶粒子が成長して1対1に対応し、または下層にある1つの結晶粒子の上に上層の複数の結晶粒子が成長して1対複数で対応し、または下層にある複数の結晶粒子の上に上層の1つの結晶粒子が成長して複数対1で対応して存在</u>していることを特徴とする請求項17ないし22のいずれか1項に記載の磁気記録媒体の製造方法。

【請求項24】<u>前記上層と下層とは、一方が酸化物を含む磁性層のとき他方は酸化物を含まない磁性層であることを特徴とする請求項23に記載の磁気記録媒体。</u>

【請求項25】前記垂直磁性層を形成する際、成膜ガスに酸素ガスを添加することを特徴とする請求項17ないし24のいずれか1項に記載の磁気記録媒体の製造方法。

【請求項26】磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁気記録再生装置であって、磁気記録媒体が請求項1ないし16のいずれか1項に記載の磁気記録媒体であることを特徴とする磁気記録再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、非磁性基板上に少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が非磁性基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられた磁気記録媒体、その製造方法および磁気記録再生装置に関するものである。

[0002]

【従来の技術】

磁気記録再生装置の一種であるハードディスク装置(HDD)は、現在その記録密度が年率60%以上で増えており今後もその傾向は続くと言われている。そのために高記録密度に適した磁気記録用ヘッドの開発、磁気記録媒体の開発が進められている。

[0003]

現在、市販されている磁気記録再生装置に搭載されている磁気記録媒体は、主に、磁性膜

内の磁化容易軸が基板に対して水平に配向した面内磁気記録媒体である。ここで磁化容易軸とは、磁化の向き易い軸のことであり、Co基合金の場合、Coのhcp構造のc軸のことである。

[0004]

このような面内磁気記録媒体では、高記録密度化すると記録ビットの1ビットあたりの磁性層の体積が小さくなりすぎ、熱揺らぎ効果により記録再生特性が悪化する可能性がある。また、高記録密度化した際に、記録ビット間の境界領域で発生する反磁界の影響により媒体ノイズが増加する傾向がある。

[0005]

これに対し、磁性膜内の磁化容易軸が主に垂直に配向した、いわゆる垂直磁気記録媒体は、高記録密度化した際にも、記録ビット間の境界領域における反磁界の影響が小さく、鮮明なビット境界が形成されるため、ノイズの増加が抑えられる。しかも、高記録密度化に伴う記録ビット体積の減少が少なくてすむため、熱揺らぎ効果にも強い。そこで、近年大きな注目を集めており、垂直磁気記録に適した媒体の構造が提案されている。

[0006]

近年では、磁気記録媒体の更なる高記録密度化という要望に応えるべく、垂直磁性層に対する書きこみ能力に優れている単磁極ヘッドを用いることが検討されている。そのような単磁極ヘッドに対応するために、記録層である垂直磁性層と基板との間に、裏打ち層と称される軟磁性材料からなる層を設けることにより、単磁極ヘッドと、磁気記録媒体の間の磁束の出入りの効率を向上させた磁気記録媒体が提案されている。

[0007]

【発明が解決しようとする課題】

しかしながら、上記のように単に裏打ち層を設けた磁気記録媒体を用いた場合では、記録 再生時の記録再生特性や、熱揺らぎ耐性、記録分解能において満足できるものではなく、 これら特性に優れる磁気記録媒体が要望されていた。

[0008]

とりわけ記録再生特性として重要な再生時における信号とノイズの比(S/N比)を大きくする高S/N化と、熱揺らぎ耐性の向上の両立は、これからの高記録密度化においては必須事項である。しかし、この2項目は相反する関係を有し、一方を向上させれば、一方が不充分になり、高レベルでの両立は重要な課題となっている。

[0009]

垂直磁気記録媒体の問題の一つとして、記録再生を行う磁性層に一般的なCoCrPt系の磁性層を用いると、Crの偏析が不十分であり、磁性粒子の物理的な分離、微細化および磁気的な孤立化が不十分となるため、良好な記録再生特性が得られにくい、ということがあげられる。

[0010]

一方で、面内磁気記録媒体の磁性層でCoCrPtに酸化物を含んだ材料を利用することが提案されている(例えば、特許文献1参照)。

[0011]

【特許文献1】

特開2000-276729公報

[0012]

このような磁性層は、Cr偏析による代りに酸化物を使うことで、垂直磁気記録媒体でもある程度十分な粒分離が可能である。

[0013]

しかし、上記のような媒体では、材料中のCr添加量を減らし、代りに酸化物を添加した材料を用いるが、Cr添加量が少ないため磁性層中の磁性粒子中のPt比率が多くなり、磁性粒子の磁気異方性定数Kuが大きくなるため、磁性層の保磁力が大きくなりすぎ、ヘッドによるデータの記録が十分行えない、といった問題がある。

[0014]

そこで、磁性層の厚さを薄くする、Cr添加量を増加させる、といった手法により、磁性層の保磁力を下げ、十分な記録をおこなう方法をとる必要がある。一方で、磁性層の薄膜化やCr含有量の増加による磁性粒子の磁気異方性定数Ku低下さらには保磁力、逆磁区核形成磁界を低下させるということは、熱揺らぎ特性の劣化を招く。さらには、データを再生する際の出力が小さくなるため、記録再生システム固有のシステムノイズとの比が小さくなり、十分な再生特性が得られなくなるおそれがある。その結果、高密度記録に適さない特性となってしまう。

[0015]

よって、熱揺らぎ特性の向上と、高密度記録に十分な記録再生特性、特に良好なデータの記録特性と高い再生時における信号とノイズの比 (S/N比)をもった磁気記録媒体が望まれている。

[0 0 1 6]

本発明は、上記事情に鑑みてなされたものであり、記録再生特性、熱揺らぎ特性を向上させ、高密度の情報記録再生が可能な磁気記録媒体、その製造方法および磁気記録再生装置を提供することを目的とする。

[0017]

【課題を解決するための手段】

上記の目的を達成するために、本発明は以下の構成を採用した。

[0018]

(1) 非磁性基板上に少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が非磁性基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられた磁気記録媒体において、前記垂直磁性層は、2層以上の磁性層からなり、少なくとも1層がCoを主成分とするとともにPtを含み、酸化物を含んだ層であり、他の少なくとも1層がCoを主成分とするとともにCrを含み、酸化物を含まない層からなることを特徴としている

[0019]

(2) (1) に記載の磁気記録媒体において、前記酸化物を含んだ磁性層は、その層中に磁性を有した結晶粒子が分散しており、該結晶粒子はその層を柱状に貫いている、ことを特徴としている。

[0020]

(3)(1)または(2)のいずれか1項に記載の磁気記録媒体において、前記酸化物が、Cr、Si、Ta、Al、Ti の中から選ばれる1種類以上の非磁性金属の酸化物であることを特徴としている。

[0021]

(4) (1) 乃至 (3) のいずれか1項に記載の磁気記録媒体において、前記酸化物が、 Cr₂O₃、SiO₂のいずれかからなることを特徴としている。

[0022]

(5) (1) 乃至(4) のいずれか1項に記載の磁気記録媒体において、前記酸化物を含んだ磁性層における酸化物の含有量が、3mol%以上12mol%以下であることを特徴としている。

[0023]

(6) (1) 乃至(5) のいずれか1項に記載の磁気記録媒体において、前記酸化物を含む磁性層は、Coを主成分とし、Cr含有量が0at%以上16at%以下、Pt含有量が10at%以上25at%以下であることを特徴としている。

[0024]

(7) (1) 乃至(6) のいずれか1項に記載の磁気記録媒体において、前記酸化物を含む磁性層が、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reのうち選ばれた1種類以上の元素を含み、その合計の含有量が8at%以下であることを特徴としている。

[0025]

(8) (1) 乃至(7) のいずれか1項に記載の磁気記録媒体において、前記酸化物を含まない磁性層が、Coを主成分とし、Cr含有量が14at%以上30at%以下であることを特徴としている。

[0026]

(9) (1) 乃至(8) のいずれか1項に記載の磁気記録媒体において、前記酸化物を含まない磁性層が、Coを主成分とし、Cr含有量が14at%以上30at%以下、Pt含有量が8at%以上20at%以下であることを特徴としている。

[0027]

(10)(1)乃至(9)のいずれか1項に記載の磁気記録媒体において、前記酸化物を含まない磁性層が、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re のうち選ばれた1種類以上の元素を含み、その合計の含有量が8at%以下であることを特徴としている。

[0028]

(11) (1) 乃至(10) のいずれか1項に記載の磁気記録媒体において、前記垂直磁性層は、酸化物を含む磁性層の上に酸化物を含まない磁性層が設けられていることを特徴としている。

[0029]

(12) (1) 乃至 (11) のいずれか1頃に記載の磁気記録媒体において、前記垂直磁性層が、酸化物を含む層を2層以上含んでいることを特徴としている。

[0030]

(13) (1) 乃至 (12) のいずれか1項に記載の磁気記録媒体において、前記垂直磁性層は、酸化物を含まない層を2層以上含んでいることを特徴としている。

[0031]

(14) (1)乃至(13)のいずれか1項に記載の磁気記録媒体において、前記垂直磁性層は、磁性層と磁性層との間に非磁性層を有していることを特徴としている。

[0032]

(15) (1) 乃至(14) のいずれか1項に記載の磁気記録媒体において、前記垂直磁性層は複数の磁性層から構成され、下層にある1つの結晶粒子の上に上層の1つの結晶粒子が成長して1対1に対応し、または下層にある1つの結晶粒子の上に上層の複数の結晶粒子が成長して1対複数で対応し、または下層にある複数の結晶粒子の上に上層の1つの結晶粒子が成長して複数対1で対応して存在していることを特徴としている。

[0033]

(16)<u>(15)に記載の磁気記録媒体において、前記上層と下層とは、一方が酸化物を含む磁性層のとき他方は酸化物を含まない磁性層であることを特徴とする。</u>

[0034]

(17) 非磁性基板上に少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が非磁性基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられた磁気記録媒体の製造方法において、前記垂直磁性層を2層以上の磁性層で形成し、少なくとも1層をCoを主成分とするとともにPtを含み、酸化物を含んだ層とし、他の少なくとも1層をCoを主成分とするとともにCrを含み、酸化物を含まない層とすることを特徴としている。

[0035]

(18) (17) に記載の磁気記録媒体の製造方法において、前記酸化物を含んだ磁性層は、その層中に磁性を有した結晶粒子が分散しており、該結晶粒子はその層を柱状に貫いていることを特徴としている。

[0036]

(19) (17) または (18) のいずれか1項に記載の磁気記録媒体の製造方法において、前記垂直磁性層は、酸化物を含む磁性層の上に酸化物を含まない磁性層が設けられていることを特徴としている。

[0037]

- (20)(17)乃至(19)のいずれか1項に記載の磁気記録媒体の製造方法において、前記垂直磁性層は、酸化物を含む層を2層以上含んでいることを特徴としている。 【0038】
- (21) (17)乃至(20)のいずれか1項に記載の磁気記録媒体の製造方法において、前記垂直磁性層は、酸化物を含まない層を2層以上含んでいることを特徴としている。 【0039】
- (22) (17)乃至(21)のいずれか1項に記載の磁気記録媒体の製造方法において、前記垂直磁性層は、磁性層と磁性層との間に非磁性層を有していることを特徴としている。

[0040]

(23) (17) 乃至(22) のいずれか1項に記載の磁気記録媒体<u>の製造方法</u>において、前記垂直磁性層<u>は複数の磁性層から構成され、下層にある1つの結晶粒子の上に上層の1つの結晶粒子が成長して1対1に対応し、または下層にある1つの結晶粒子の上に上層の複数の結晶粒子が成長して1対複数で対応し、または下層にある複数の結晶粒子の上に上層の1つの結晶粒子が成長して複数対1で対応して存在</u>していることを特徴としている

[0041]

(24) <u>(23) に記載の磁気記録媒体の製造方法において、前記上層と下層とは、一方</u>が酸化物を含む磁性層のとき他方は酸化物を含まない磁性層であることを特徴としている

[0042]

- (25) (17)乃至(24)のいずれか1項に記載の磁気記録媒体の製造方法において、前記垂直磁性層を形成する際、成膜ガスに酸素ガスを添加することを特徴としている。 【0043】
- (26)磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁気記録再生装置であって、磁気記録媒体が(1)乃至(16)のいずれか1項に記載の磁気記録媒体であることを特徴としている。

[0044]

【発明の実施の形態】

図1は本発明における磁気記録媒体の一例の構造を示す縦断面図である。ここに示す磁気 記録媒体は、非磁性基板1上に、軟磁性下地層2と、配向制御層3と、垂直磁性層4と、 保護層5と、潤滑層6とが順次形成されている。。軟磁性下地層2と、配向制御層3とが 下地層を構成している。また、垂直磁性層4は磁性層4aと磁性層4bよりなる。

[0045]

非磁性基板1としては、アルミニウム、アルミニウム合金等の金属材料からなる金属基板を用いてもよいし、ガラス、セラミック、シリコン、シリコンカーバイド、カーボンなどの非金属材料からなる非金属基板を用いてもよい。

[0046]

ガラス基板としては、アモルファスガラス、結晶化ガラスがあり、アモルファスガラスとしては汎用のソーダライムガラス、アルミノシリケートガラスを使用できる。また、結晶化ガラスとしては、リチウム系結晶化ガラスを用いることができる。セラミック基板としては、汎用の酸化アルミニウム、窒化アルミニウム、窒化珪素などを主成分とする焼結体や、これらの繊維強化物などが使用可能である。

[0047]

非磁性基板1としては、上記金属基板、非金属基板の表面にメッキ法やスパッタ法を用いてNiP層またはNiP合金層が形成されたものを用いることもできる。

[0048]

非磁性基板1は、平均表面粗さRaが2nm(20A)以下、好ましくは1nm以下であるとことがヘッドを低浮上させた高記録密度記録に適している点から望ましい。

[0049]

また、表面の微小うねり(Wa)が0.3 nm以下(より好ましくは0.25 nm以下)であるのがヘッドを低浮上させた高記録密度記録に適している点から好ましい。端面のチャンファー部の面取り部、側面部の少なくとも一方のいずれの表面平均粗さ Raが10 nm以下(より好ましくは9.5 nm以下)のものを用いることが磁気ヘッドの飛行安定性にとって好ましい。微少うねり(Wa)は、例えば、表面荒粗さ測定装置 P-12 (KLM-Tencor社製)を用い、測定範囲 80μmでの表面平均粗さとして測定することができる。

[0050]

軟磁性下地層 2 は、磁気ヘッドから発生する磁束の基板に対する垂直方向成分を大きくするために、また情報が記録される垂直磁性層 4 の磁化の方向をより強固に非磁性基板 1 と垂直な方向に固定するために設けられているものである。この作用は特に記録再生用の磁気ヘッドとして垂直記録用の単磁極ヘッドを用いる場合に、より顕著なものとなるので好ましい。

[0051]

上記軟磁性下地層2は、軟磁性材料からなるもので、この材料としては、Fe、Ni、Coを含む材料を用いることができる。

[0052]

[0053].

またFeを60at%以上含有するFeAlO、FeMgO、FeTaN、FeZrN等の微結晶構造、あるいは微細な結晶粒子がマトリクス中に分散されたグラニュラー構造を有する材料を用いてもよい。

[0054]

軟磁性下地層2の材料としては、上記のほか、Coを80at%以上含有し、Zr、Nb、Ta、Cr、Mo等のうち少なくとも1種を含有し、アモルファス構造を有するCo合金を用いることができる。

[0055]

この材料としては、CoZr、CoZrNb、CoZrTa、CoZrCr、CoZrMo系合金などを好適なものとして挙げることができる。

[0056]

軟磁性下地層2の保磁力Hcは200(〇e)以下(好ましくは50(〇e)以下)とするのが好ましい。

[0057]

この保磁力 H c が上記範囲を超えると、軟磁気特性が不十分となり、再生波形がいわゆる 矩形波から歪みをもった波形になるため好ましくない。

[0058]

軟磁性下地層2の飽和磁東密度Bsは、0.6T以上(好ましくは1T以上)とするのが好ましい。このBsが上記範囲未満であると、再生波形がいわゆる矩形波から歪みをもった波形になるため好ましくない。

[0059]

また、軟磁性下地層2の飽和磁束密度Bs(T)と軟磁性下地層2の層厚t(nm)との 積Bs・t(T・nm)が20(T・nm)以上(好ましくは40(T・nm)以上)で あること好ましい。このBs・tが上記範囲未満であると、再生波形が歪みをもつように なったり、OW(OverWrite)特性(記録特性)が悪化するため好ましくない。 [0060]

軟磁性下地層 2 の最表面(配向制御層 3 側の面)は、軟磁性下地層 2 を構成する材料が、部分的あるいは完全に酸化されて構成されていることが好ましい。例えば、軟磁性下地層 2 の表面(配向制御層 3 側の面)およびその近傍に、軟磁性下地層 2 を構成する材料が部分的に酸化されるか、もしくは前記材料の酸化物を形成して配されていることが好ましい

[0061]

これにより、軟磁性下地層2の表面の磁気的な揺らぎを抑えることができるので、この磁気的な揺らぎに起因するノイズを低減して、磁気記録媒体の記録再生特性を改善することができる。

[0062]

また、軟磁性下地層 2 上に形成される配向制御層 3 の結晶粒の微細化して、記録再生特性を改善することができる。

[0063]

この軟磁性下地層2の表面の酸化された部分は、例えば軟磁性下地層2を形成した後、酸素を含む雰囲気に曝す方法や、軟磁性下地層2の表面に近い部分を成膜する際のプロセス中に酸素を導入する方法により形成することができる。具体的には、軟磁性下地層2の表面を酸素に曝す場合には、酸素単体、あるいは酸素をアルゴンや窒素などのガスで希釈したガス雰囲気中に0.3~20秒程度保持しておけばよい。また、大気中に曝すこともたガス雰囲気中に0.3~20秒程度保持しておけばよい。また、大気中に曝すこともできる。特に酸素をアルゴンや窒素などのガスで希釈したガスを用いる場合には、軟磁性下地層2表面の酸化の度合いの調節が容易になるので、安定した製造を行うことができる。また、軟磁性下地層2の成膜用のガスに酸素を導入する場合には、例えば成膜法としてスパッタ法を用いるならば、成膜時間の1部のみに酸素を導入したプロセスガスを用いてスパッタを行えばよい。このプロセスガスとしては、例えばアルゴンに酸素を体積率で0.05%~50%(好ましくは0.1~20%)程度混合したガスが好適に用いられる。

[0064]

配向制御層3は、直上に設けられた垂直磁性層4の配向性や粒径を制御するものである。 【0065】

この材料としては、特に限定されるものではないが、hcp構造、fcc構造、アモルファス構造を有するものが好ましい。特に、Ru系合金、Ni系合金、Co系合金、Pt系合金が特に好ましい。

[0066]

例として、Ni系合金であれば、Niを33~80at%含む、NiTa合金、NiNb合金、NiTi合金、NiZr合金から選ばれた少なくとも1種類の材料からなることが好ましい。また、Niを33~80at%含み、Sc、Y、Ti、Zr、Hf、Nb、Ta、Cのうち1種または2種以上を含む非磁性材料であっても良い。この場合、配向制御層としての効果を維持し、磁性を持たない範囲ということで、Niの含有量は33at%~80at%の範囲であることが好ましい。

[0067]

このため、本実施形態の磁気記録媒体では、配向制御層3の厚さを $0.5 \sim 40$ nm (好ましくは $1 \sim 20$ nm) とするのが好ましい。配向制御層3の厚さが $0.5 \sim 40$ nm (好ましくは $1 \sim 20$ nm) の範囲であるとき、垂直磁性層4の垂直配向性が特に高くなり、かつ記録時における磁気ヘッドと軟磁性下地層2との距離を小さくすることができるので、再生信号の分解能を低下させることなく記録再生特性を高めることができる。

[0068]

この厚さが上記範囲未満であると、垂直磁性層 4 における垂直配向性が低下し、記録再生特性および熱揺らぎ耐性が劣化する。

[0069]

また、この厚さが上記範囲を超えると、垂直磁性層 4 の磁性粒子径が大きくなり、ノイズ 特性が劣化するおそれがあるため好ましくない。また記録時における磁気ヘッドと軟磁性 下地層 2 との距離が大きくなるため、再生信号の分解能や再生出力の低下するため好ましくない。

[0070]

配向制御層3の表面形状は、垂直磁性層4、保護層5の表面形状に影響を与えるため、磁気記録媒体の表面凹凸を小さくして、記録再生時における磁気ヘッド浮上高さを低くするには、配向制御層3の表面平均粗さRaを2nm以下とするのが好ましい。

[0071]

この表面平均粗さR a を 2 n m以下とすることによって、磁気記録媒体の表面凹凸を小さくし、記録再生時における磁気ヘッド浮上高さを十分に低くし、記録密度を高めることができる。

[0072]

配向制御層3の成膜用のガスに酸素や窒素を導入してもよい。例えば、成膜法としてスパッタ法を用いるならば、プロセスガスとしては、アルゴンに酸素を体積率で0.05~50%(好ましくは0.1~20%)程度混合したガス、アルゴンに窒素を体積率で0.01~20%(好ましくは0.02~10%)程度混合したガスが好適に用いられる。

[0073]

また、配向制御層 3 が酸化物、金属窒化物、金属炭化物中に金属粒子が分散した構造となっていてもかまわない。このような構造とするには、酸化物、金属窒化物、金属炭化物を含んだ合金材料を使用することで可能となる。酸化物としては、 SiO_2 、 Al_2O_3 、 Ta_2O_5 、 Cr_2O_3 、MgO、 Y_2O_3 、 TiO_2 などが、金属窒化物としては、AlN、 Si_3N_4 、TaN、CrNなどが、金属炭化物としては、TaC、BC、SiCなどが利用可能である。例えば、 $NiTa-SiO_2$ 、 $RuCo-Ta_2O_5$ 、 $Ru-SiO_2$ 、 $Pt-Si_3N_4$ 、Pd-TaCなどをあげることができる。

[0074]

配向制御層 3 中の酸化物、金属窒化物、金属炭化物の含有量としては、合金に対して、4 mol%以上12 mol%以下であることが好ましい。配向制御層 3 中の酸化物、金属窒化物、金属炭化物の含有量が上記範囲を超える場合、金属粒子中に酸化物、金属窒化物、金属炭化物が残留し、金属粒子の結晶性、配向性を損ねるほか、配向制御層 3 の上に形成された磁性層の結晶性、配向性を損ねるおそれがあるため好ましくない。また、配向制御層 3 中の酸化物、金属窒化物、金属炭化物の含有量が上記範囲未満である場合、酸化物、金属窒化物、金属炭化物の添加による効果が得られないため、好ましくない。

[0075]

図2は垂直磁性層の構成を示す縦断面図である。垂直磁性層4は、その磁化容易軸が非磁性基板に対して垂直方向に向いたものであり、Coを主成分とするとともに少なくともPtを含み、酸化物41を含んだ磁性層4aと、Coを主成分とするとともに少なくともCrを含み、酸化物を含まない磁性層4bとからなる。

[0076]

磁性層 4 a は、C o を主成分とするとともに少なくとも P t を含み、さらに酸化物 4 1 を含んだ材料からなり、この酸化物 4 1 としては、C r、S i、T a、A l、T i、M g の酸化物であることが好ましい。特にC r $_2$ O $_3$ 、S i O $_2$ が好適である。また、この実施形態の磁性層 4 a は P t を含んでいる。

[0077]

磁性層4aは、層中に磁性粒子(磁性を有した結晶粒子)42が分散していることが好ましい。この磁性粒子42は、図2に示すように、磁性層4aを上下に貫いた柱状構造であることが好ましい。このような構造を形成することにより、磁性層4aの磁性粒子42の配向および結晶性を良好なものとし、結果として高密度記録に適した信号/ノイズ比(S/N比)が得ることができる。

[0078]

このような構造を得るためには、含有させる酸化物41の量が重要となる。

[0079]

酸化物41の含有量は、Co、Cr、Ptの総量に対して、3mol%以上12mol%以下であることが好ましい。さらに好ましくは5mol%以上10mol%以下である。 【0080】

磁性層4 a 中の酸化物の含有量として上記範囲が好ましいのは、層を形成した際、磁性粒子の周りに酸化物が析出し、磁性粒子4 2 の孤立化、微細化をすることができるためである(図2)。酸化物の含有量が上記範囲を超えた場合、酸化物が磁性粒子中に残留し、磁性粒子の配向性、結晶性を損ね、さらには図3に示すように、磁性粒子4 2 の上下に酸化物4 1 が析出し、結果として磁性粒子4 2 が磁性層4 a を上下に貫いた柱状構造が形成されなくなるため好ましくない。また、酸化物の含有量が上記範囲未満である場合、磁性粒子の分離、微細化が不十分となり、結果として記録再生時におけるノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。

[0081]

磁性層4aのCrの含有量は、6at%以上16at%以下(さらに好ましくは10at%以上14at%以下)であることが好ましい。Cr含有量が上記範囲であるのは、磁性粒子の磁気異方性定数Kuを下げすぎず、また、高い磁化を維持し、結果として高密度記録に適した記録再生特性と十分な熱揺らぎ特性が得られるために好適だからである。

[0082]

Cr含有量が上記範囲を超えた場合、磁性粒子の磁気異方性定数Kuが小さくなるため熱揺らぎ特性が悪化し、また、磁性粒子の結晶性、配向性が悪化することで、結果として記録再生特性が悪くなるため好ましくない。また、Cr含有量が上記範囲未満である場合、磁性粒子の磁気異方性定数Kuが高いため、垂直保磁力が高くなりすぎ、データを記録する際、ヘッドで十分に書き込むことができず、結果として高密度記録に適さない記録特性(OW)となるため好ましくない。

[0083]

磁性層4aのPtの含有量は、10at%以上20at%以下であることが好ましい。Pt含有量が上記範囲であるのは、垂直磁性層に必要な磁気異方性定数Kuを得、さらに磁性粒子の結晶性、配向性が良好であり、結果として高密度記録に適した熱揺らぎ特性、記録再生特性が得られるため、好適だからである。

[0084]

P t 含有量が上記範囲を超えた場合、磁性粒子中に f c c 構造の層が形成され、結晶性、配向性が損なわれるおそれがあるため好ましくない。また、 P t 含有量が上記範囲未満である場合、高密度記録に適した熱揺らぎ特性を得るための磁気異方性定数 K u が得られないため好ましくない。

[0085]

磁性層4 a は、C o、C r、P t、酸化物のほかに、B 、T a、M o、C u、N d、W 、N b、S m、T b、R u、R e から選ばれる 1 種類以上の元素を含むことができる。上記元素を含む事により、磁性粒子の微細化を促進、あるいは結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性、熱揺らぎ特性を得ることができる。

[0086]

上記元素の合計の含有量は、8at%以下であることが好ましい。8at%を超えた場合、磁性粒子中にhcp相以外の相が形成されるため、磁性粒子の結晶性、配向性が乱れ、結果として高密度記録に適した記録再生特性、熱揺らぎ特性が得られないため好ましくない。

[0087]

磁性層4aに適した材料としては、例えば、(Col4Crl8Pt)90-(SiO2)10 | Cr含有量14at%、Pt含有量18at%、残部Coからなる金属組成が90mol%、SiO2からなる酸化物組成が10mol% 、 (Col0Crl6Pt)92-(SiO2)8 | Cr含有量10at%、Pt含有量16at%、残部Coからなる金属組成が92mol%、SiO2からなる酸化物組成が8mol% 、 (Co8Crl4Pt4Nb)94-(Cr2O3)6 | Cr含有量8at%、Pt含有量14at%、

Nb含有量4at%、残部Coからなる金属組成が94mol%、Cr₂O₃からなる酸化物組成が6mol% 、の他、(CoCrPt) - (Ta₂O₅)、(CoCrPtMo) - (TiO)、(CoCrPtW) - (TiO₂)、(CoCrPtB) - (Al₂O₃)、(CoCrPtTaNd) - (MgO)、(CoCrPtBCu) - (Y₂O₃)、(CoCrPtRe) - (SiO₂)などをあげることができる。

[0088]

磁性層4bは、Coを主成分とするとともに少なくともCrを含んだ材料からなり、図2に示すように、層中の磁性粒子43が磁性層4a中の磁性粒子42からエピタキシャル成長している構造であることが好ましい。この場合、磁性層4bの磁性粒子42と磁性層4aの磁性粒子43が1対1、複数個対1、1対複数個、いずれかで対応していてもかまわない。

[0089]

磁性層4bの磁性粒子43が磁性層4a中の磁性粒子42からエピタキシャル成長していることで、磁性層4bの磁性粒子43が微細化され、さらに結晶性、配向性がより向上するため好適である。

[0090]

磁性層4bのCrの含有量は、14at%以上26at%以下であることが好ましい。Cr含有量を上記範囲とすると、データの再生時における出力が十分確保でき、さらに良好な熱揺らぎ特性が得られるため、好適である。

[0091]

Cr含有量が上記範囲を超える場合、磁性層 4 bの磁化が小さくなりすぎるため好ましくない。また、Cr含有量が上記範囲未満である場合、磁性粒子の分離、微細化が十分生じず、記録再生時のノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。

[0092]

また、磁性層4bは、Co、Crの他に、Ptを含んだ材料であっても構わない。磁性層4bのPtの含有量は8at%以上20at%以下であることが好ましい。Pt含有量が上記範囲であるのは、高記録密度に適した十分な保磁力を得、さらに記録再生時における高い再生出力を維持し、結果として高密度記録に適した記録再生特性および熱揺らぎ特性を得るためである。

[0093]

Ptの含有量が上記範囲を超えた場合、磁性層中にfcc構造の相が形成され、結晶性、配向性が損なわれるおそれがあるため好ましくない。また、Pt含有量が上記範囲未満である場合、高密度記録に適した熱揺らぎ特性を得るための磁気異方性定数Kuが得られないため好ましくない。

[0094]

磁性層4bは、Co、Cr、Pt、酸化物のほかに、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reから選ばれる1種類以上の元素を含むことができる。上記元素を含む事により、磁性粒子の微細化を促進、あるいは結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性、熱揺らぎ特性を得ることができる。

[0095]

上記元素の合計の含有量は、8 a t %以下であることが好ましい。8 a t %を超えた場合、磁性粒子中に h c p 相以外の相が形成されるため、磁性粒子の結晶性、配向性が乱れ、結果として高密度記録に適した記録再生特性、熱揺らぎ特性が得られないため好ましくない。

[0096]

磁性層4bに適した材料としては、例えば、CoCr系では、Col6~28Cr {Cr合有量16~28at%、残部Co}、CoCrTa系では、Col4~30Crl~4Ta {Cr含有量14~30at%、Ta含有量1~4at%、残部Co}、CoCrTaB系では、Col4~26Crl~5Tal~4B {Cr含有量14~26at%、T

a含有量1~5 a t %、B含有量1~4 a t %、残部Col、CoCrBNd系では、Col4~30Crl~5Bl~4Nd {Cr含有量14~30at%、B含有量1~5 a t %、Nd含有量1~4 a t %、残部Col、CoCrPtB系では、Col6~24Crl0~18Ptl~6B {Cr含有量16~24at%、Pt含有量10~18 a t %、B含有量1~6 a t %、残部Col、CoCrPtCu系では、Col6~24Crl0~20Ptl~7Cu {Cr含有量16~24 a t %、Pt含有量10~20 a t %、Cu含有量1~7 a t %、残部Col、CoCrPtTaNd系では、Col6~26Crl0~20Ptl~4Tal~4Nd {Cr含有量16~26 a t %、Pt含有量10~26 a t %、Pt含有量10~20 a t %、Ta含有量1~4 a t %、Nd含有量1~4 a t % {CoCrPtNb系では、Col6~26Cr8~18Ptl~6Nb {Cr含有量16~26 a t %、Pt含有量16~26 a t %、Pt含有量8~18 a t %、Nb含有量1~6 a t %、残部Colの他、CoCrPtBNd、CoCrPtBW、CoCrPtMo、CoCrPtCuRu、CoCrPtReなどの材料をあげることができる。

[0097]

垂直磁性層 4 の垂直保磁力 (H c) は、2500 [O e] 以上とすることが好ましい。保磁力が2500 [O e] 未満である場合は、記録再生特性、特に周数特性が不良であり、また、熱揺らぎ特性も悪いため、高密度記録媒体として好ましくない。

[0098]

垂直磁性層4の逆磁区核形成磁界(- H n)は、1000 [Oe] 以上であることが好ましい。逆磁区核形成磁界(- H n)が1000 [Oe] 未満である場合、熱揺らぎ耐性におとるため好ましくない。

[0099]

逆磁区核形成磁界(- H n)は、図4に示すように、VSMなどにより求めたMH曲線において、磁化が飽和した状態から外部磁界を減少させる過程で外部磁界が0となる点a、MH曲線の磁化が0である点bでのMH曲線の接線を延長した線と飽和磁化との交点を点cとすると、M軸から点cまでの距離 [Oe]で表すことができる。

[0100]

なお、逆磁区核形成磁界(- H n)は、点cが外部磁界が負である領域にある場合に正の値をとり(図4参照)、逆に、点cが外部磁界が正である領域にある場合に負の値をとる(図5参照)。

[0101]

垂直磁性層 4 は、磁性粒子の平均粒径が 5 ~ 1 5 n m であることが好ましい。この平均粒径は、例えば垂直磁性層 4 を T E M (透過型電子顕微鏡) で観察し、観察像を画像処理することにより求めることができる。

[0 1 0 2]

垂直磁性層4の厚さは5~40nmとするのが好ましい。垂直磁性層4の厚さが上記未満であると、十分な再生出力が得られず、熱揺らぎ特性も低下する。また、垂直磁性層4の厚さが上記範囲を超えた場合、垂直磁性層4中の磁性粒子の肥大化が生じ、記録再生時におけるノイズが増大し、信号/ノイズ比(S/N比)や記録特性(OW)に代表される記録再生特性が悪化するため好ましくない。

[0103]

保護層 5 は垂直磁性層 4 の腐食を防ぐとともに、磁気ヘッドが媒体に接触したときに媒体表面の損傷を防ぐためのもので、従来公知の材料を使用でき、例えばC、S i O₂、Z r O₂を含むものが使用可能である。

[0104]

保護層 5 の厚さは、 $1\sim1$ 0 n mとするのがヘッドと媒体の距離を小さくできるので高記録密度の点から望ましい。

[0105]

潤滑層 6 には、パーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などの潤滑剤を用いるのが好ましい。

[0106]

本発明の磁気記録媒体は、非磁性基板1上に少なくとも、直上の層の配向性を制御する配向制御層3と、磁化容易軸が非磁性基板1に対し主に垂直に配向した垂直磁性層4と、保護層5とが設けられた磁気記録媒体において、垂直磁性層4が2層以上の磁性層からなり、少なくとも1層がCoを主成分とするとともにCrを含み、酸化物を含んだ磁性層4aであり、他の磁性層がCoを主成分とするとともにCrを含み、酸化物を含まない磁性層4bからなることを特徴とし、これにより磁性粒子の微細化と磁気的な孤立化が促進され再生時における信号/ノイズ比(S/N)を大幅に向上することができ、また逆磁区核形成磁界(- H n)を向上させることで熱揺らぎ特性も向上させることができ、さらに優れた記録特性(OW)を有した媒体を得ることができる。

[0107]

本発明における他の形態として、垂直磁性層 4 を図 6 に示したように酸化物を含まない磁性層 4 b を形成し、その上に酸化物を含む磁性層 4 a を設けた構成としてもかまわない。 【0 1 0 8】

[0109]

本発明では、垂直磁性層 4 を構成する磁性層間に非磁性層を設けることも可能である。これにより、磁性粒子の肥大化を防止し、粒径を制御できるため、信号/ノイズ比(S/N)をより向上させることが可能である。例えば、図10に示したように、酸化物を含まない磁性層 4 b-1、4 b-2 の間に非磁性層 9 1 e を、その上に設けた酸化物を含む磁性層 4 a-1、4 a-2 の間に非磁性層 9 e 2 を設けることもできる。

[0110]

垂直磁性層4を構成する磁性層間に設ける非磁性層9としては、hcp構造を有する材料を用いるのが好ましい。例えば、CoCr合金やCoCrX1合金(X1:Pt、Ta、Zr、Re,Ru、Cu、Nb、Ni、Mn、Ge、Si、O、N、W、Mo、Ti、V、Zr、Bから選ばれる1種または2種以上)を用いるのが好適である。

[0111]

垂直磁性層 4 を構成する磁性層間に設ける非磁性層 9 の C o 含有量は 3 0 ~ 7 0 a t % の 範囲であることが好ましい。この範囲であれば、非磁性であるからである。

[0112]

また、垂直磁性層4を構成する磁性層間に設ける非磁性層9として、hcp構造を有する合金として、例えばRu、Re、Ti、Y、Hf、Znなどの合金も使うことができる。 【0113】

また、垂直磁性層4を構成する磁性層間に設ける非磁性層9として、その上下の磁性層の結晶性、配向性を損ねない範囲で、他の構造をとる金属、合金を使用することもできる。例えば、Pd、Pt、Cu、Ag、Au、Ir、Mo、W、Ta、Nb、V、Bi、Sn、Si、Al、C、B、Crなどの元素あるいは合金である。特に、Cr合金としては、CrX2(X2:Ti、W、Mo、Nb、Ta、Si、Al、B、C、Zrから選ばれる1種または2種以上)を用いるのが好適である。この場合のCr含有量は60at%以上が好ましい。

[0114]

また、垂直磁性層4を構成する磁性層間に設ける非磁性層9として、上記合金の金属粒子

[0115]

垂直磁性層 4 を構成する磁性層間に設ける非磁性層 9 中の酸化物、金属窒化物、金属炭化物の含有量としては、合金に対して、4 m o 1 %以上 1 2 m o 1 %以下であることが好ましい。該非磁性層 9 中の酸化物、金属窒化物、金属炭化物の含有量が上記範囲を超える場合、金属粒子中に酸化物、金属窒化物、金属炭化物が残留し、金属粒子の結晶性、配向性を損ねるほか、金属粒子の上下にも酸化物、金属窒化物、金属炭化物が析出してしまい、金属粒子が該非磁性層 9 を上下に貫く柱状構造となりにくくなり、該非磁性層 9 の上に形成された磁性層の結晶性、配向性を損ねるおそれがあるため好ましくない。また、該非磁性層 9 中の酸化物、金属窒化物、金属炭化物の含有量が上記範囲未満である場合、酸化物、金属窒化物、金属炭化物の添加による効果が得られないため、好ましくない。

[0 1 1 6]

非磁性層 9 の厚さは、垂直磁性層 4 における磁性粒子の肥大化による再生時の信号/ノイズ比 (S/N) の悪化や磁気ヘッドと軟磁性下地層 2 との距離が大きくなることによる記録特性 (OW) や分解能の低下を起こさないようにするために、1 0 n m以下(より好ましくは 5 n m以下)とするのが好ましい。

[0117]

本発明における他の形態として、図11に示すように配向制御層3と垂直磁性層4との間に、垂直磁性層4の結晶性、配向性を向上させるため、中間層8を設けることもできる。

[0118]

中間層 8 は、h c p 構造を有する材料が好ましい。中間層 8 には、C o C r 合金やC o C r X 1 合金 (X 1: P t、T a、Z r、R e, R u、C u、N b、N i、M n、G e、S i、O、N、W、M o、T i、V、Z r、B から選ばれる 1 種または 2 種以上)を用いるのが好適である。

[0 1 1 9]

中間層 8 OC o 含有量は $3 \text{ O} \sim 7 \text{ O}$ a t % であることが好ましい。この範囲であれば、非磁性だからである。

[0120]

また、中間層 8 には、上記合金の金属粒子が酸化物、金属窒化物、金属炭化物中に分散し構造としても良い。さらに該金属粒子が中間層 8 を上下に貫いた柱状構造を有していればより好適である。このような構造とするには、酸化物を含んだ合金材料を使用することで可能となる。酸化物としては、 SiO_2 、 Al_2O_3 、 Ta_2O_5 、 Cr_2O_3 、MgO、 Y_2O_3 、 TiO_2 などが、金属窒化物としては、AlN、 Si_3N_4 、TaN、CrNなどが、金属炭化物としては、TaC、BC、SiCなどが利用可能である。例えば、 $CoCr-SiO_2$ 、 $CoCrPt-Ta_2O_5$ 、 $CoCrRu-SiO_2$ 、 $CoCrRu-Si_3N_4$ 、CoCrPt-TaCなどをあげることができる。

[0121]

中間層 8 中の酸化物、金属窒化物、金属炭化物の含有量としては、合金に対して、4 m o 1%以上 12 m o 1%以下であることが好ましい。該中間層 8 中の酸化物、金属窒化物、金属炭化物の含有量が上記範囲を超える場合、金属粒子中に酸化物、金属窒化物、金属粒子の結晶性、配向性を損ねるほか、金属粒子の上下にも酸化物、金属窒化物、金属炭化物が析出してしまい、金属粒子が該中間層 8 を上下に貫く柱状構造となりにくくなり、該中間層 8 の上に形成された磁性層の結晶性、配向性を損ねるおそれがあるため好ましくない。また、該中間層 8 中の酸化物、金属窒化物、金属炭化物の含有量

が上記範囲未満である場合、酸化物、金属窒化物、金属炭化物の添加による効果が得られないため、好ましくない。

[0122]

中間層 8 の厚さは、垂直磁性層 4 における磁性粒子の肥大化による再生時の信号/ノイズ比(S/N)の悪化や磁気ヘッドと軟磁性下地層 2 との距離が大きくなることによる記録特性 (OW) や分解能の低下を起こさないようにするために、2 0 n m以下(より好ましくは 1 0 n m以下)とするのが好ましい。

[0123]

次に上記構成の磁気記録媒体を製造する方法の一例(図1の形態)について説明する。

[0124]

上記構成の磁気記録媒体を製造するには、非磁性基板1上に、軟磁性下地層2、配向制御層3、垂直磁性層4を順次、スパッタ法、真空蒸着法、イオンプレーティング法などにより形成する。次いで保護層5を、好ましくはプラズマCVD法、イオンビーム法、スパッタ法により形成する。

[0125]

また、垂直磁性層4を形成する際、酸化物を含む磁性層4 a を形成後、加熱処理を行い、 続けて酸化物を含まない磁性層4 b を形成してもかまわない。また、磁性粒子の結晶性を 向上させる目的で、垂直磁性層4 を形成後、アニール処理をしてもかまわない。

[0126]

非磁性基板 1 としては、アルミニウム、アルミニウム合金等の金属材料からなる金属基板を用いてもよいし、ガラス、セラミック、シリコン、シリコンカーバイド、カーボンなどの非金属材料からなる非金属基板を用いてもよい。

[0 1 2 7]

ガラス基板としては、アモルファスガラス、結晶化ガラスがあり、アモルファスガラスとしては汎用のソーダライムガラス、アルミノシリケートガラスを使用できる。また、結晶化ガラスとしては、リチウム系結晶化ガラスを用いることができる。セラミック基板としては、汎用の酸化アルミニウム、窒化アルミニウム、窒化珪素などを主成分とする焼結体や、これらの繊維強化物などが使用可能である。

[0 1 2 8]

非磁性基板1としては、上記金属基板、非金属基板の表面にメッキ法やスパッタ法を用いてNiP層が形成されたものを用いることもできる。

[0.129]

非磁性基板は、平均表面粗さRaが2nm (20Å) 以下、好ましくは1nm以下であるとことがヘッドを低浮上させた高記録密度記録に適している点から望ましい。

[0130]

また、表面の微小うねり(Wa)が0.3 nm以下(より好ましくは0.25 nm以下)であるのがヘッドを低浮上させた高記録密度記録に適している点から好ましい。端面のチャンファー部の面取り部、側面部の少なくとも一<u>方の</u>表面平均粗さRaが10 nm以下(より好ましくは9.5 nm以下)のものを用いることが磁気ヘッドの飛行安定性にとって好ましい。微少うねり(Wa)は、例えば、表面荒粗さ測定装置P-12(KLM-Tencor社製)を用い、測定範囲80μmでの表面平均粗さとして測定することができる

[0131]

必要に応じて非磁性基板 1 を洗浄して、その非磁性基板 1 を成膜装置のチャンバ内に設置する。

[0132]

非磁性基板 1 上に、軟磁性下地層 2 と、配向制御層 3 と、垂直磁性層 4 を各層の材料と同じ組成の材料を原料とするスパッタターゲットを用いて D C 或いは R F マグネトロンスパッタ法により形成する。膜を形成するためのスパッタの条件は例えば次のようにする。形成に用いるチャンバ内は真空度が 1 0⁻⁴~ 1 0⁻⁷ P a となるまで排気する。チャンバ内に

非磁性基板を収容して、スパッタガスとして、たとえばArガスを導入して放電させてスパッタ成膜をおこなう。このとき、供給するパワーは0.1~2kWとし、放電時間と供給するパワーを調節することによって、所望の膜厚を得ることができる。

[0133]

軟磁性下地層2を放電時間と供給するパワーを調節することによって50~400nmの 膜厚で形成するのが好ましい。

[0 1 3 4]

軟磁性下地層2を形成する際には、軟磁性材料からなるスパッタターゲットを用いるのが 軟磁性下地層を容易に形成できるので好ましい。軟磁性材料としては、FeCo系合金(FeCo、FeCoVなど)、FeNi系合金(FeNi、FeNiMo、FeNiCr、 FeNiSiなど)、FeAl系合金(FeAl、FeAlSi、FeAlSiCr、 FeAlSiTiRu、FeAlOなど)、FeCr系合金(FeCr、FeCrTi、 FeCrCuなど)、FeTa系合金(FeTa、FeTaC、FeTaNなど)、Fe Mg系合金(FeMgOなど)、FeZr系合金(FeZrNなど)、FeC系合金、FeN系合金、FeSi系合金、FeP系合金、FeNb系合金、FeHf系合金、FeB 系合金、Feを60at%以上含有するFeAlO、FeMgO、FeTaN、FeZr Nを挙げることができる。さらに、Coを80at%以上含有し、Zr、Nb、Ta、Cr、Mo等のうち少なくとも1種を含有し、アモルファス構造を有している、CoZr、 CoZrNb、CoZrTa、CoZrCr、CoZrMo系合金を好適なものとして挙 げることができる。

[0135]

上記のターゲットは溶製法による合金ターゲットまたは焼結合金ターゲットである。

[0136]

軟磁性下地層 2 を形成後、放電時間と供給するパワーを調節することによって配向制御層 3 を 0 . 5 ~ 4 0 n m (好ましくは 1 ~ 2 0 n m) の膜厚で形成する。配向制御層 3 の形成に用いるスパッタ用ターゲットの材料としては R u 系合金、N i 系合金、C o 系合金を挙げることができる。

[0137]

次に垂直磁性層 4 を形成する。

[0138]

[0139]

酸化物の含有量は、Co、Cr、Ptの総量に対して、3mol%以上12mol%以下 であることが好ましい。さらに好ましくは5mol%以上10mol%以下である。

[0140]

磁性層4a中の酸化物の含有量が上記範囲が好ましいのは、層を形成したさい、磁性粒子の周りに酸化物が析出し、磁性粒子の孤立化、微細化をすることができるためである。酸化物の含有量が上記範囲を超えた場合、酸化物が磁性粒子中に残留し、磁性粒子の配向性、結晶性を損ね、さらには図3に示すように、磁性粒子42の上下に酸化物41が析出し

、結果として磁性粒子42が磁性層4aを上下に貫いた柱状構造(図2の構造)が形成されなくなるため好ましくない。また、酸化物の含有量が上記範囲未満である場合、磁性粒子の分離、微細化が不十分となり、結果として記録再生時におけるノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。

[0141]

磁性層4aは、図2に示すように、層中に磁性粒子42が分散していることが好ましい。 また、該磁性粒子42が磁性層4aを上下に貫いた柱状構造(図2の構造)であることが 好ましい。このような構造を形成するには、上記のようなターゲット材料を使うほかに、 次にような条件を必要とする。

[0 1 4 2]

Co を主成分とするとともに少なくともCr を含み、酸化物を含んだ材料からなるターゲットを使用し、形成に用いるチャンバ内は真空度が $10^{-4}\sim10^{-7}$ Paとなるまで排気した状態で、スパッタガスとしてAr ガスを導入してスパッタ成膜を行う。このとき、供給するパワーは $0.1kW\sim2kW$ とし、放電時間と供給するパワーを調節することにより、所望の膜厚を得る。

[0143]

この際、スパッタガスの圧力は3Pa以上20Pa以下とするのが好適である。また、放電パワーはできるだけ低く設定し、プロセス上許される範囲で成膜時間を長くとるほうが好ましい。これらの条件により、酸化物中に磁性粒子が分散し、また、該磁性粒子が磁性層4aを上下に貫いた柱状構造を得やすいためである。

[0144]

また、酸化物を含む磁性層 4 a を形成する際、スパッタガスとしてアルゴンを使用するが、必要に応じて窒素あるいは酸素ガス、もしくは両方を添加してもかまわない。

[0145]

窒素あるいは酸素もしくは両方の添加は、それらとアルゴンの混合ガスを用いても良いし、それぞれのガスを別々に導入し、チャンバ内で混合してもかまわない。

[0146]

窒素あるいは酸素もしくは両方の添加量としては、アルゴンに対して20vol%以下(より好ましくは10vol%以下)であることが好ましい。窒素あるいは酸素の添加量が上記範囲を超えた場合、磁性粒子の結晶性、配向性を損ね、結果として記録再生特性を劣化させるおそれがあるため好ましくない。

[0.147]

例えば、磁性層 4a として(Co 14 Cr 18 Pt) 90 - (Si O_2) 10 $\{Cr$ 含有量 14a t %、Pt 含有量 18a t %、残部 Co からなる金属組成が 90 mo 1 %、Si O_2 からなる酸化物組成が 10 mo 1 % $\}$ の材料を用いる場合の条件として、スパッタ放電パワーは 0. 4k W、圧力は $6\sim8$ Pa、酸素添加量 $1\sim2$ vo 1 % であることが好ましい。

[0148]

また、磁性層4 a を成膜する際、非磁性基板1に負の電圧(基板Bias)を印加することもできる。これにより、磁性粒子と酸化物の分離が促進し、磁性粒子がより微細化、孤立化し、より高密度記録に適した記録再生特性が得られる。

[0 1 4 9]

基板Biasは $-100V\sim-600V$ の範囲で印加するのが好ましい。上記範囲を超える場合、磁性粒子の結晶性、配向性を損ねるおそれがあるため好ましくない。また、上記範囲未満である場合、効果が得られないため好ましくない。

[0150]

次に、酸化物を含まない磁性層 4 bをスパッタターゲットを用いて同様にスパッタ法により形成する。磁性層 4 bに適した材料としては、例えば、CoCr系では、Co16~28 C r {Cr含有量 16~28 a t%、残部Сο}、СоСrТа系では、Со14~30 Cr1~4Ta {Cr含有量 14~30 a t%、Ta含有量 1~4 a t%、残部Со}

、CoCrTaB系では、Col4~26Crl~5Tal~4B 【Cr含有量14~26at%、Ta含有量1~5at%、B含有量1~4at%、残部Col、CoCrBNd系では、Col4~30Crl~5Bl~4Nd【Cr含有量14~30at%、B含有量1~5at%、Nd含有量1~4at%、残部Col、CoCrPtB系では、Col6~24Crl0~18Ptl~6B【Cr含有量16~24at%、Pt含有量10~18at%、B含有量1~6at%、残部Col、CoCrPtCu系では、Col6~24Crl0~20Ptl~7Cu【Cr含有量16~24at%、Pt含有量10~20at%、Cu含有量1~7at%、残部Col、CoCrPtTaNd系では、Col6~26Crl0~20Ptl~4Tal~4Nd【Cr含有量16~26at%、Pt含有量10~20at%、Ta含有量1~4at%、Nd含有量1~4at%、CoCrPtNb系では、Col6~26Cr8~18Ptl~6Nb【Cr含有量16~26at%、CoCrPtNb系では、Col6~26Cr8~18Ptl~6Nb【Cr含有量16~26at%、CoCrPtBNd、CoCrPtBW、CoCrPtMo、CoCrPtCuRu、CoCrPtReなどの材料をあげることができる。

[0 1 5 1]

磁性層4bを形成する条件は、例えば次のようにする。

[0152]

Coを主成分とするとともに少なくともCrを含み酸化物を含まない材料からなるターゲットを使用し、形成に用いるチャンバ内は真空度が10⁻⁴~10⁻⁷ Paとなるまで排気した状態で、スパッタガスとしてArガスを導入してスパッタ成膜を行う。このとき、供給するパワーは0.1kW~2kWとし、放電時間と供給するパワーを調節することにより、所望の膜厚を得る。

[0.153]

この際、スパッタガスの圧力は20Pa以下であることが好ましい。

[0154]

また、酸化物を含<u>まない</u>磁性層 4 bを形成する際、スパッタガスとしてアルゴンを使用するが、必要に応じて窒素あるいは酸素ガス、もしくは両方を添加してもかまわない。

[0155]

窒素あるいは酸素もしくは両方の添加は、それらとアルゴンの混合ガスを用いても良いし、それぞれのガスを別々に導入し、チャンバ内で混合してもかまわない。

[0156]

窒素あるいは酸素もしくは両方の添加量としては、アルゴンに対して20vol%以下(より好ましくは10vol%以下)であることが好ましい。窒素あるいは酸素の添加量が上記範囲を超えた場合、磁性粒子の結晶性、配向性を損ね、結果として記録再生特性を劣化させるおそれがあるため好ましくない。

[0157]

また、磁性層4 bを形成する前に、加熱を行ってもかまわない。加熱は、真空中で行う。 【0158】

加熱の温度は、特に規定するものではないが、非磁性基板1の形状が変化しない範囲で行うことが好ましい。例えば、アモルファスガラスを用いた場合は、300℃以下であることが好ましい。

[0159]

加熱した状態で磁性層4bを形成することで、磁性層4bのCr偏析が進行し、より磁性 粒子の微細化、孤立化が促進され、結果として記録再生特性の向上が得られるため、必要 に応じて実施するのが好ましい。

[0160]

例えば、磁性層 4 b として、C o 1 6 C r 1 2 P t 4 B | C r 含有量 1 6 a t %、 P t 含有量 1 2 a t %、 B 含有量 4 a t %、残部 C o | の材料を用いる場合の条件は、加熱温度 約 1 8 0 ℃~ 2 2 0 ℃、スパッタ放電パワー 1 k W 以下、圧力 2 ~ 5 P a 、ガス添加なし、であることが好ましい。

[0161]

また、磁性層 4 b を成膜する際、非磁性基板 1 に負の電圧(基板 B i a s) を印加することもできる。これにより、磁性粒子がより微細化、孤立化し、より高密度記録に適した記録再生特性が得られる。

[0 1 6 2]

基板Biasは-100V~-600Vの範囲で印加するのが好ましい。上記範囲を超える場合、磁性粒子の結晶性、配向性を損ねるおそれがあるため好ましくない。また、上記範囲未満であるばあい、効果が得られないため好ましくない。

[0 1 6 3]

垂直磁性層 4 を形成した後、公知の方法、例えばスパッタ法、プラズマCVD法またはそれらの組み合わせを用いて保護層 5 、たとえばカーボンを主成分とする保護層 5 を形成する。

[0 1 6 4]

さらに、保護層5上には必要に応じパーフルオロポリエーテルのフッ素系潤滑剤をディップ法、スピンコート法などを用いて塗布し、潤滑層6を形成する。

[0 1 6 5]

本発明に従って製造した磁気記録媒体は、非磁性基板1上に少なくとも、直上の層の配向性を制御する配向制御層3と、磁化容易軸が非磁性基板1に対し主に垂直に配向した垂直磁性層4と、保護層5とが設けられた磁気記録媒体において、垂直磁性層4を2層以上の磁性層で形成し、少なくとも1層をCoを主成分とするとともにPtを含み、さらに酸化物を含んだ磁性層4aとし、他の磁性層をCoを主成分としてCrを含み、酸化物を含まない磁性層4bとすることを特徴とし、これにより磁性粒子の微細化と磁気的な孤立化が促進され再生時における信号/ノイズ比(S/N)を大幅に向上することができ、また逆磁区核形成磁界(-Hn)を向上させることで熱揺らぎ特性も向上させることができ、さらに優れた記録特性(OW)を有した媒体を得ることができる。

[0166]

図12は本発明の磁気記録再生装置の一例を示す概略図であり、(a)は全体構成を示し、(b)は磁気へッドを示す。ここに示す磁気記録再生装置は、図1に示す構成を有する磁気記録媒体10と、磁気記録媒体10を回転駆動させる媒体駆動部11と、磁気記録媒体10に情報を記録再生する磁気ヘッド12と、この磁気ヘッド12を磁気記録媒体10に対して相対運動させるヘッド駆動部13と、記録再生信号処理系14とを備えている。記録再生信号処理系14は、外部から入力されたデータを処理して記録信号を磁気ヘッド12に送ったり、磁気ヘッド12からの再生信号を処理してデータを外部に送ることができるようになっている。本発明の磁気記録再生装置に用いる磁気ヘッド12には、再生素子として巨大磁気抵抗効果(GMR)を利用したGMR素子などを有した、より高記録密度に適したヘッドを用いることができる。

[0167]

上記磁気記録再生装置によれば、磁気記録媒体10に本発明の磁気記録媒体を用いるので、磁性粒子の微細化と磁気的な孤立化が促進され再生時における信号/ノイズ比(S/N)を大幅に向上することができ、また逆磁区核形成磁界(-Hn)を向上させることで熱揺らぎ特性も向上させることができ、さらに優れた記録特性(OW)を有した媒体を得ることができ、このため高密度記録に適した優れた磁気記録再生装置とすることができる。

[0168]

【実施例】

洗浄済みのガラス基板(オハラ社製、外形 2. 5インチ)をDCマグネトロンスパッタ装置(アネルバ社製C-3010)の成膜チャンバ内に収容して、到達真空度 1×10⁻⁵ Paとなるまで成膜チャンバ内を排気した後、このガラス基板上にCo-42r-7Nb~2r含有量 4 a t %、Nb含有量 7 a t %、残部Сo~のターゲットを用いて100℃以下の基板温度で100 nmの軟磁性下地層 2をスパッタリングにより成膜した。この膜の飽和磁束密度Bs(T)と膜厚t(nm)の積Bs・t(T・nm)が120(T・nm

) であることを振動式磁気特性測定装置 (VSM) で確認した。

[0169]

上記軟磁性下地層2の上にNi40Ta | Ta含有量40at%、残部Ni | ターゲット、Ruターゲットを用いて、それぞれ5nm、20nmの厚さで順に成膜し、配向制御層3とした。

[0170]

配向制御層3の上に、(Co<u>14</u>Cr<u>18</u>Pt)90-(SiO₂)10 | Cr含有量14at%、Pt含有量18at%、残部Coの合金組成を90mol%、SiO₂からなる酸化物を10mol%|からなるターゲットを用い、スパッタ圧力を0.7Paとして磁性層4aを10nmの厚さで形成した。

[0171]

次に、Col6Crl2Pt4B (Cr含有量16at%、Pt含有量12at%、B含有量4at%、残部Colからなるターゲットを用いて、スパッタ圧力を3Paとして磁性層4bを10nmの厚さ形成した。

[0172]

ついでCVD法により膜厚5nmの保護層5を形成した。次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑層6を形成し、磁気記録媒体を得た。

[0173]

得られた磁気記録媒体の磁気特性を評価した。静磁気特性の評価は、Kerr効果測定器を用いて、保磁力(Hc)、逆磁区核形成磁界(-Hn)を測定した。

[0174]

また、記録再生特性の評価は、米国GUZIK社製リードライトアナライザRWA1632、およびスピンスタンドS1701MPを用いて測定した。ヘッドは、書き込みをシングルポール磁極、再生部にGMR素子を用いたヘッドを使用した。

[0175]

信号/ノイズ比(S/N)は、記録密度700kFCIとして測定した。

[0176]

記録特性 (OW) は、まず、700kFCIの信号を書き込み、次いで116kFCIの信号を上書し、周波数フィルターにより高周波成分をとりだし、その残留割合によりデータの書き込み能力を評価した。

[0177]

熱揺らぎ特性の評価は、70℃の条件下で記録密度50kFCIにて書き込みを行ったあと、書き込み後1秒後の再生出力に対する出力の減衰率を(So-S)×100/(So×3)に基いて算出した。この式においてSoは書き込み後、1秒経過時の再生出力を示し、Sは1000秒後の再生出力を示す。結果を表1の実施例1の欄に示した。

[0178]

【表 1】

	田位100						4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
	磁性潜4章			田性優46			等班的特殊		記錄再生特性		数領のぎね件
	租机 [(21%)330196]	原之	成团压力	18 ft [21%]	と	成即压力	保田力	-H	š	s/N	[%decade]
米格金 1	(Co14Cr18Pt)90-(SiO2)10	10[mm]	0.7[Pa]	Co16Cr12Pt4B	10[nm]	3[Pa]	3400[Oe]	1800[Oe]	48.5[dB]	[BP]8.61	0.10
東南 2	(Co14Cr18Pt)90-(SiO2)10	2	2	Co16Cr12Pt4B	10	3	3500	1800	48.0	20.3	0.09
東海 3	(Co14Cr18Pt)90-(SiO2)10	2	4	Col6Cr12Pt4B	10	3	3700	1850	46.5	20.8	0.09
水石金金	(Co14Cr18Pl)90-(SiO2)10	٥	9	Col6Cr12P14B	10	3	3800	1850	46.0	21.4	0.09
※金銭	(Co14Cr18Pt)90-(SiO2)10	2	80	Col6Cr12Pt4B	10	3	4100	1900	46.0	22.0	80.0
凝糖質 6	(Co14Cr18Pt)90-(SiO2)10	2	11	Col6Cr12Pl4B	10	3	3900	1750	48.5	21.1	60.0
東施例 7	(Co14Cr18Pt)90 - (SiO2)10	10	8	Col6Cr12Pt4B	10	9.0	4000	1750	47.0	21.3	0.09
東南海 8	(Co14Cr18Pt)90-(SiO2)10	2	8	Co16Cr12Pt4B	01	S	3950	1800	45.5	21.5	0.09
聚糖氨 9	(Co14Cr18Pt)98-(SiO2)2	10	∞	Co16Cr12Pt4B	10	3	3300	1000	52.0	16.5	0.24
東衛衛 10	(Co14Cr18Pt)97—(SiO2)3	2	∞	Co16Cr12Pt4B	10	3	3400	1350	54.5	17.8	0,13
米格金 11	(Col 4Cr18Pl)93 - (SiO2)7	2	œ	Col6Cr12Pt4B	10	3	3850	1550	52.0	19.1	0.11
東施例 12	(Co14Cr18Pt)88 - (SiO2)12	2	∞	Co16Cr12Pr4B	10	3	3750	1600	53.5	18.8	0.11
東語 13	(Co14Cr18Pt)85 - (SiO2)15	2	∞	Col6Cr12Pr4B	10	3	3600	1200	52.0	17.5	91.0
X指金 14	(Co4Cr18Pt)90 - (SiO2)10	9	8	Co16Cy12Pt4B	10	3	4500	2200	42.5	20.8	0.08
米格金 15	(Co6Cr18Pt)90-(SiO2)10	2	00	Co16Cr12Pt4B	10	3	4300	2100	44.0	20.9	90.0
	(Co16Cr18Pt)90-(SiO2)10	2	«	Co16Cr12Pt4B	10	3	3500	1400	53.0	20.7	0.11
	(Co20Cr18Pt)90—(SiO2)10	2	8	Col6Cr12Pt4B	10	3	3300	1100	.54.0	20.1	0.14
米格金 18	(Co14Cr8Pt)90-(SiO2)10	2	∞	Col6Cr12Pt4B	10	3	3400	0001	\$6.0	19.6	0.19
米路室 19	(Co14Cr10Pt)90-(SiO2)10	2	8	Col6Cr12Pt4B	10	3	3600	1200	54.0	19.9	91.0
東福宏 20	(Co14Cr22Pt)90 - (SiO2)10	2	- ≈	Co16Cr12Pt4B	10	3	4500	1600	49.0	19.3	0.12
五数室 -	(Col 4Cr18Pt)90-(SiO2)10	2	∞	1	_	-	4650	008	34.5	16.5	0.45
比較倒 2	(Co14Cr18Pt)90-(SiO2)10	8	00	-	١	i	3700	006	21.5	12.3	0.40
花数金 3	Co14Cr18Pt	2	0.7	Col6Cr12Pt4B	10	3	2600	002	\$1.0	12.2	0.47
光数室 4	i	1	1	Co16Cr12Pt4B	10	3	2750	001	57.0	13.4	0.70
比较倒。	1	1	'	Col6Cr12Pt4B	20	3	2800	001	57.0	11.2	0.63
比较多 6	(Co14Cr18Pt)90 (SiO2)10	2	∞	Col 4Pt	10	0.7	2500	00€	42.5	12.9	0.45
九数堡 7	(Co14Cr18Pt)90-(SiO2)10	2	80	Col2Gr	91	0.7	2200	0	43.2	11.3	19.0
光数空 8	(Co14Cr18Pt)90 - (SiO2)10	=	80	Fe50Pt	2	0.7	1800	-200	47.0	5.7	1.12
	(Co14Cr18Pt)90 - (SiO2)10	2	∞	20(0 2mm)/Pd(0.5mm)]1	7	3	3700	900	34.0	14.6	0.38
比較多 10	(Co14Cr18Pt)90-(SiO2)10	2	~	Co(0.2nm)/Pd(0.5nm)]2	14	3	4300	.0001	29.0	11.2	0.33

[0179]

(実施例 $2\sim20$) 磁性層 4a および磁性層 4b を、表 1 の実施例 $2\sim20$ の欄に示した組成、条件に変えたほかは、実施例 1 に準じて磁気記録媒体を作成した。これら磁気記録媒体の評価結果を表 1 に示した。

[0180]

(比較例1~7) 磁性層4a、磁性層4bを、表1の比較例1~7の欄に示した組成の材料で形成した他は、実施例1に準じて磁気記録媒体を作成した。これら磁気記録媒体の評価結果を表1に示した。

[0181]

[0182]

上記軟磁性下地層2の上にNi40Ta |Ta含有量40at%、残部Ni| ターゲット、Ruターゲットを用いて、それぞれ5nm、20nmの厚さで順に成膜し、配向制御層3とした。

[0183]

配向制御層3の上に、(Co₁₄Cr₁₈Pt)90-(SiO₂)10 {Cr含有量14at%、Pt含有量18at%、残部Coの合金組成を90mol%、SiO₂からなる酸化物を10mol% からなるターゲットを用い、スパッタ圧力を8Paとして磁性層4aを10nmの厚さで形成した。

[0184]

次に、磁性層 4 bとして、CoとPdのそれぞれのターゲットを用い、Co0.2nm、 Pd0.5nmで交互に成膜することで、[Co/Pd]の積層膜を形成した。積層数は 10とした。また、スパッタ圧力を3Paとした。

[0185]

ついでCVD法により膜厚5nmの保護層5を形成した。次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑層6を形成し、磁気記録媒体を作製した。

[0186]

(比較例9、比較例10) 磁性層4bの積層数を20としたほかは、比較例8に準じて磁気記録媒体を作製した。比較例8,9,10の磁気記録媒体の評価結果を表1に示している。

[0187]

(実施例21~39) 磁性層4aおよび磁性層4bを、表2に示した組成、条件に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例21~39の磁気記録媒体の評価結果を表2に示した。

[0188]

【表 2】

	が開本は						merchie				
			•				HANNE				
	磁性層48			磁性層46			奉研究特性		配量再生特性		数描らぎ存在
	相成 [(at%)mol%]	原さ	成膜圧力	相成 [at%]	厚さ	成膜圧力	保磁力	-Hn	OW	S/N	[%decade]
実施例21	(Co12Cr16Pt)93-(SiO2)7	10[nm]	8[Pa]	Co12Cr16Pt	10[nm]	3[Pa]	3300[0e]	1800[Oe]	\$1.5[dB]	19.3[dB]	0.11
実施例22	(Co12Cr16Pt)93-(SiO2)7	10	8	Co14Cr16Pt	10	3	3700	1800	20.0	19.7	0.11
実施例23	(Co12Cr16Pt)93-(SiO2)7	10	8	F619Cr16Pt	10	3	4000	1800	49.0	20.8	0.12
実施例24	(Co12Cr16Pt)93-(SiO2)7	10	8	W5172502	10	3	4600	1700	\$0.5	20.1	0.14
実施例25	(Co12Cr16Pt)93-(SiO2)7	10	8	Co28Cr16Pt	10	3	4550	1100	51.0	18.5	0.19
実施例26	(Co10Cr15Pr2Cu)92-(SiO2)8	10	8	นขวรเจว	10	3	3400	1300	53.0	18.9	0.23
実施例27	(Co10Cr15Pt2Cu)92-(SiO2)8	10	8	F019Cr10Pt	10	3	3550	1400	52.0	19.2	0.20
実施例28	(Co10Cr15Pt2Cu)92-(SiO2)8	10	8	1491726162	10	3	4150	1750	48.5	21.1	0.11
実施例29	(Co10Cr15Pt2Cu)92-(SiO2)8	10	8	1402-2016	10	3	4600	1900	45.5	20.8	0.10
実施例30	(Co10Cr15Pt2Cu)92-(SiO2)8	10	8	Co19Cr24Pt	10	-3	4300	1750	48.0	20.1	0.10
実施例31	(Co10Cr14Pr4Mo)92-(SiO2)8	10	8	M31726182	10	3	3950	1750	49.0	20.9	0.10
実施例32	(Co10Cr14Pr4Nb)92-(8iO2)8	10	80	M31-D610D	01	3	4050	1850	48.5	20.4	0.10
実施例33	(Co10Cr14Pt3Ta)92-(SiO2)8	10	8	Col9Cr16PR2Nd	10	3	4100	1900	0.12	21.6	80'0
実施例34	(Co10Cr14Pr4Ta6W)92-(Cr203)8	01	8	Ecristicos	10	3	3500	1200	54.0	19.4	0.20
実施例35	(Co10Cr14Pt4Ta4W)92-(Cr2O3)8	10	8	G019Cr16P0B	10	3	3950	1650	52.0	19.9	0.16
実施例36	(Co10Cr14Pt2Ru)94-(Ta2O5)6	15	9	Col6Cr18Pr4Re2Tb	10	3	3750	1600	51.0	19.1	0.17
実施例37	(Co10Cr14Pt)90-(TiO2)10	9	3	Co19Cr16Pt2B2Cu	24	0.7	3950	1800	49.0	19.3	0.15
実施例38	(Co10Cr14Pt)90-(SiO2)4-(Al2O3)6	25	15	Col9Cr16Pt2Ta2Nd	15	2	3850	1600	54.0	18.7	0.22
実施例39	実施例39 (Co10Cr18Pt5Cu)88-(MgO)8-(Y2O3)4	18	12	Co23Cr16Pt1Cu1B	12	7	4100	1650	52.0	19.3	0.16

[0189]

(実施例40,41) 垂直磁性層4の構成を表3に示した成膜順(磁性層4b、磁性層4a)とし、また組成を表3の組成に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例40,41の磁気記録媒体の評価結果を表3に示した。

【0190】 【表3】

	磁性層4		*				磁気存住	•			
-	磁性層46	•		磁性層48	•		李田気存住		記録再生特性		数価らぎ特性
	相成 [at%]	東さ	厚さ 成膜圧力	組成 [(at%)mol%]	事	成膜压力	厚さ 成膜圧力 保磁力	두		N N	OW S/N [%decade]
実施例40	Co12Cr16Pt	10[nm]	2[Pa]	実施例40 Col2Cr16Pt [10[nm] 2[Pa] (Col2Cr16Pt)93-(SiO2)7 [10[nm] 6[Pa] 3650[Oe] [1550[Oe]	10[nm]	6[Pa]	3650[0e]	1550[Oe]	S3[dB] 18.5[dB]	18.5[dB]	0.12
夹施例41	実施例41 Co20Cr12Pt3Sm	9	0.7	0.7 (Co10Cr14Pt)94-(SiO2)6 16	16	4	3700	1650	52.0	18.6	0.12

[0191]

(実施例42~44) 垂直磁性層4の構成を表4に示した成膜順(磁性層4a、磁性層4b-1、磁性層4b-2)とし、また組成を表4の組成に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例42~44の磁気記録媒体の評価結果を表4に示した。

【0192】 【表4】

	磁性層4									田名存在	•			
	磁性層48		*	田佐藤4b-1			供在層4b-2	. •		静田気存住		配錄再生特性		整額の影像在
	相成 [at%]	中	成膜压力	原之 成膜圧力組成 [(at%)mol%] 厚さ 成膜圧力組成 [(at%)mol%] 厚さ 成膜圧力 保磁力	厚さ	成膜压力	图成 [(at%)mol%]	見さ	 机阻压力		-F	OW S/N [%decade]	S/N	[%decado]
実施例42	(Co8Cr12P)94(SiO2)6	[4[rm]	S[Pa]	[4[mm] 5[Pa] Co23Cr14Pr [6[mm] 0.7[Pa] Co18Cr12P2Nd [4[mm] 3[Pa] 4000[Oe] 1900[Oe] 49[dB] [20.9[dB] 0.11	6[mm]	0.7[Pa]	Co18Cr12P/2Nd	fmm)	3[Pa]	4000[Oe]	1900[Oe]	49[dB]	20.9[dB]	0.11
来施例43	(Co8Cr12Pt)94(SiO2)6	14	. \$	Co23Cr14Pt 6 0.7 Co14Cr18Pt2Cu 6 2 4150	9	0.7	Col4Cr18Pr2Cu	9	2	4150	1750	53	21.1	0.12
東拖倒4	1844 (Colocier)94(C203)6	12	6	Co16Cr12Pt2B 7	7	3	3 Co22Cr16Pt1W 8 0.7 4200	00	0.7	4200	1850	51	21.2	0.11

【0193】 (実施例46,47) 垂直磁性層4の構成を表5に示した成膜順(磁性層4b-1、磁 性層 4a-1、磁性層 4b-2、磁性層 4a-2、磁性層 4b-3)とし、また組成を次表 5 の組成に変えた他は、実施例 1 に準じて磁気記録媒体を作製した。この実施例 46 , 47 の磁気記録媒体の評価結果を表 6 に示した。

【0194】 【表5】

	7個有册																Γ
	田柱第46-1			磁性層4e-1	Ţ.			品性層46-2	7	(,	単位を	磁性層4s-2			数件编48-03		
	相成 [at%]	日	成脈圧力	#1.00 (cets)	()mol%]	Mt L	T	相成 [(ars	E	\$ 成果E.	7 #B# [(et	(%)mol%]	빝	成職压力	能成(e154) 限之 原理医力 組成 [(e154) 加 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	₩	建 属压力
東施例46	Co20Cr14Pr2B	4 [mm]	0.7 [Pa]	(Co14Cr18Pt)9.	5-(8:02)\$	[100]	[E4] 9	Co20CH 4P	(2B 4 (n	m] 0.7 [Pa]	(Co14Cr18Pt)	2(zois)—56	4 [mm]	<u>[</u>]	賽幣 例6[Co20Ch14PCB] 4[cm] 0.7 [Pa] (Co14Ch18Ph95-(StO2) 4 [cm] 6 [Pa] Co20Ch14PCB 4 [cm] 0.7 [Pa] (Co14Ch18Ph95-(StO2) 4 [cm] 6 [Pa] Co20Ch14PCB 4 [cm] 0.7 [Pa]	[III]	0.7 [Pa]
安施例47	実施例47 Co20Cr14Pt2B	.4	0.7	0.7 (Co14Ch18Pt)95-(Si02)5 4	5-(SiO2)5	*	9	6 Col4CrisPrzCu 6	2 <u>0</u>	7	(Co14CH8Pt)5	95-(07203)5	۰	-	2 (Co14CH8Py95-(C/203)5 6 3 Co20CH4PyB 4	4	0,
																١	

【0195】 【表6】

	科 灵挺	锥	- -							\Box
	静磁気	特性			記録再	生特性			熟揺らぎ特	性
	保磁力	[Oe]	-Hn	[Oe]	ow	[dB]	S/N	[dB]	[%decade]
実施例46	395	0	155	50	49	.0	22.:	5	0.11	
実施例47	415	0	160	00	49	0.0	22.	7	0.10	

[0196]

(実施例48) 垂直磁性層4の構成を表了に示した成膜順(磁性層4a、磁性層4b-1、非磁性層9、磁性層4b-2)とし、また組成を表7の組成に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例48の磁気記録媒体の評価結果を表7に示した。

【0197】 【表7】

	磁性層4						•						胡気箱体				
	磁性層46	_		蛋性層46-1	ī	•		华展作用9		磁性層4b−2			李祖东帝位		記錄再生物性	_	製造らぎ存在
	图度 [(45%)mol%]	直み	成果圧力	新成 [(ex	W)] II	では	M压力	程度 [(44%)] 原 含	忠原圧力 組成 [(st/k)] 厚き 成陽圧力 組成 [(st/k)] 厚き 組成 [(st/k)] 厚き 成氰圧力 保磁力 →Hn	선	成氰压力	保証力		OW S/N [%decade]	S/N	(%decade)
実施例48	(Co12Ct17Pt1W)95-(A12O3)5	10 ^[nm]	6[Pa]	Co24Cr16	F.	Tage	3[Pa]	Coaso	2(mm)	6[Pa] CO24CA16Pr 5[mm] 3[Pa] CO35Cr 2[mm] CO19CA12PGRe 6[mm] 2[Pa] 3850[Ce] 1700[Ce] 48[dB] 22.9[dB] 0.13	, 6(nm)	2(Pa)	3850[0e]	1700[0e]	48(dB)	22.9(dB)	0.13

[0198]

(実施例49) 垂直磁性層4の構成を表8に示した成膜順(磁性層4a-1、非磁性層9、磁性層4a-2、磁性層4b)とし、また組成を表8の組成に変えた他は、実施例1

に準じて磁気記録媒体を作製した。この実施例49の磁気記録媒体の評価結果を表8に示した。

【0199】 【表8】

6世紀日本 1—19世紀日本 1年末日本 1年末日末日本 1年末日末日末日末日末日末日末日末日末日末日末日末日末日末日末日末日末日末日末日	₩4e-1		-	-							自然等件			-	
					企作 44-2		,	操作用45	•		事政策等性		D服再生物性		影響らかな性
組成 ((ect)mong) 「東京 技具圧力 (組成 ((ect)) 「東京 組成 ((ect)) 「東京 (以東上力 (相談 ((ect)) 「東京 (以東上力) 「中京 (以東上力) 「中方) 「中方 (以東上力) 「中方) 「中方) 「中方 (以東上力) 「中方) 「中方 」 「中方) 「中方 」 「中方) 「中方 」 「中方 」 「中方) 「中方 」 」 「中方 」 」 「中方 」 」 「中方 」 「中	[(ett)moff] IFE	我既任力	Mat ((aex))	日本	#ER [(=45)]	や量	成即压力	相成 [(ecs)]		如耳	保証力	-H	M o	S/N	[%docade]
実施例48 (Co10Cr11PU82-(MrO)8 12[mm] 4[Pa] Ru 1[mm]	P082-(MrO)8 12[nm	4[Pa]	2	E E	1 (mm) Co.25C714P4B 4(mm) 3(Pe) Co.19C711P0B 4(mm)	4(nm)	3[Pe]	Co19Cr11PGE	4 (mm)	3[8]	3[Pa] 3750[Oa] [600[Oa]	1600[Oe]	49[dB]	ाज्यका २१.५५का	0.11

[0200]

(実施例 $50\sim53$) 垂直磁性層4の構成を表9に示した成膜順(磁性層4a-1、非磁性層9、磁性層4a-2、磁性層4b)とし、また組成を表9の組成に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例 $50\sim53$ の磁気記録媒体の評価結果を表9に示した。

[0201]

【表 9】

	田林園4		,		•			. •				数年等位	-		•	
	₩休服4a-1			6度が使休		在性格48-2	_		報作品45	•	_	多品质物性		2000年10日		影響の野野様
	組成 [(ett)moft]	F C	成圖压力	組成 [(ettOmotic)	F .8	組織 [(43)] 原忠 成態圧力組成 ((44)2008] 解合 組成 ((44)2008] 「原忠 成態圧力 組成 ((443)] 原忠 成態圧力 保健力 一41n OW S-/N (9460246)		式属压 力	HAR ((act.))	1	成既任力	保護力	-H	W	S/N	[%decade]
東施例50	1 (Co120-13PUSD-(Y203) 10	8[mm]	S(Pa)	CoSGE#)93-(SiO2)7.	2(mm)	美能別50 (この15045年2010年10日8月10日8月10日 (2010年11月10日 (2010年11月10日 (2010年11月10日 (2010日 11月1日日 (2010日 11月1日 (2010日 11月1日日 (2010日 11月1日日 11日日 11日日 11日日 11日日 11日日 11日	Que y	S(Pe)	ColsCriptoB	(m)	3[P _B]	3900[Oe]	1700[Oe]	S0[4B]	[@][[Z	0.13
東施例51	実施領51 (Ce12C+15P4)90-(Y203)10 8	8	3	(Co508a)99-(TEN)7	1.5	5 (COMMENDE CONTOUR 1.5 (CONTOUR PROPERTY 203) 10 8 8 CONSOURCE 4 3	00	8	Colocylipide	7	,	3800 1650	0591	50 21.5 013	21.5	0.13
来施例52	実施例52(Co12Cr15Pc)90-(Y203)10 8	80	3	Red-(TaC)s	2.5	5 REDACTRICTS 2.5 (CO.12CT.11PV)90-(Y2O3) 10 8 8 CO.19CT.1PPBB 4	00	80	ColsCrippe	-	,	3950	1700	3950 1700 31 20.8	20.8	0.13
実施例53	実施領53 (Co11C-15円)80-(7703)10 8	8	5	WOCK	0.5	CXDW 0.5 (Co12C11P)90-(Y2C0) 10 8 8 Co19C011PGB 4 3 3400 1450 53 19.4 0 15	80	80	Colocatipas	-	٠	3400	1450	53	19.4	0 15

[0202]

(実施例 5 4) 洗浄済みのガラス基板(オハラ社製、外形 2. 5インチ)をDCマグネトロンスパッタ装置(アネルバ社製 C − 3 0 1 0)の成膜チャンバ内に収容して、到達真空度 1 × 1 0 ° P a となるまで成膜チャンバ内を排気した後、このガラス基板上に C o − 4 Z r − 7 N b | Z r 含有量 4 a t %、N b 含有量 7 a t %、残部 C o | のターゲットを用いて 1 0 0 ℃以下の基板温度で 1 0 0 n m の軟磁性下地層 2 をスパッタリングにより成膜した。この膜の飽和磁東密度 B s (T) と膜厚 t (n m) の積 B s · t (T · n m) が 1 2 0 (T · n m) であることを振動式磁気特性測定装置 (V S M) で確認した。

[0203]

上記軟磁性下地層2の上にRuターゲットを用いて、20nmの厚さで成膜し、配向制御層3とした。

[0204]

配向制御層3の上に、(Col2Cr20Pt)90-(SiO₂)10 {Cr含有量12at%、Pt含有量20at%、残部Coの合金組成を90mol%、SiO₂からなる酸化物を10mol% からなるターゲットを用い、スパッタ圧力を0.7Paとして磁性層4aを10nmの厚さで形成した。

[0205]

次に、Co20Cr13Pt3B {Cr含有量20at%、Pt含有量13at%、B含有量3at%、残部Co} からなるターゲットを用いて、スパッタ圧力を3Paとして磁性層4bを10nmの厚さ形成した。

[0206]

ついでCVD法により膜厚5 nmの保護層5を形成した。次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑層6を形成し、磁気記録媒体を得た。この実施例54の磁気記録媒体の評価結果を表10に示した。

[0207]

【表10】

	昭向室笛扇3		中間層8		磁気特性				
	和灰	とと		では	新田気特性		記録再生特性		整語の多な和
	[(at%)mol%]	[nm]	[(at%)mol%]	[nm]	保磁力 [Oe]	-Hn [0e]	OW [dB]	S/N [dB]	[%decade]
実施例 54	Ru	70	1	ī	4200	1600	20	20.9	0.13
爽施例 55	Pd	15	!	ī	4300	1550	51	20.5	0.14
実施例 56	ፚ	15	I	Ī	4500	1800	49	21.5	0.11
実施例 57	(Ru)90-(SiO2)10	25	1	ī	3600	1400	54	20.8	0.15
実施例 58	(Ni40Ta)95-(TiO2)5	25		ı	3400	1100	55	19.6	0.21
実施例 59	(Pt)94-(TaC)6	30		ī	3500	1250	\$	20.4	0.19
実施例 60	(Pt)94-(Si3N4)6	20	-	I	3600	1100	\$	19.4	0.17
実施例 61	Ru	70	Co35Cr	2	4500	1750	20	21.5	0.11
実施例 62	Ru	20	C40Cr8Pt3Ta	3	4450	1800	49	21.8	0.11
実施例 63	Ru	20	(Co30Cr5Pt)94-(Cr2O3)6	\$	3900	1550	0\$	21.1	0.14
実施例の	Ru	20	(Co38Cr4Pt6B)92-(AIN)8	2	3800	1600	90	20.4	0.16
実施例 65	Ru .	70	(Co38Cr4Pt6B)92-(BC)8	2	3400	1200	15	19.3	0.19
実施例 66	Ru	70	(Co38Cr4Pt4B)92-(AI2O3)8	œ	3600	1350	15	19.5	0.17
									ı

[0208]

(実施例55~60) 配向制御層3の材料を表10に示した材料に変えた他は、実施例54に準じて磁気記録媒体を作製した。この実施例55~60の磁気記録媒体の評価結果を表10に示した。

[0209]

(実施例61) 洗浄済みのガラス基板(オハラ社製、外形2.5インチ)をDCマグネトロンスパッタ装置(アネルバ社製C-3010)の成膜チャンバ内に収容して、到達真空度1×10⁻⁵Paとなるまで成膜チャンバ内を排気した後、このガラス基板上にCo-4Zr-7Nb {Zr含有量4at%、Nb含有量7at%、残部Colのターゲットを

用いて100℃以下の基板温度で100nmの軟磁性下地層2をスパッタリングにより成膜した。この膜の飽和磁束密度Bs(T)と膜厚t(nm)の積Bs・t(T・nm)が120(T・nm)であることを振動式磁気特性測定装置(VSM)で確認した。

[0210]

上記軟磁性下地層2の上にRuターゲットを用いて、20nmの厚さで成膜し、配向制御層3とした。

[0211]

配向制御層3の上に、中間層8としてCo35Cr 【Cr含有量35at%、残部Co】のターゲットを用いて、2nmの厚さを形成した。

$[0\ 2\cdot 1\ 2]$

中間層 8 の上に(C o <u>1 2</u> C r <u>2 0</u> P t) 9 0 - (S i O₂) 10 | C r 含有量 1 2 a t %、P t 含有量 2 0 a t %、残部 C o の合金組成を 9 0 m o 1 %、S i O₂ からなる酸化物を 1 0 m o 1 % | からなるターゲットを用い、スパッタ圧力を 0.7 P a として磁性層 4 a を 1 0 n m の厚さで形成した。

[0213]

次に、Co20Cr13Pt3B {Cr含有量20at%、Pt含有量13at%、B含有量3at%、残部Co} からなるターゲットを用いて、スパッタ圧力を3Paとして磁性層4bを10nmの厚さ形成した。

[0214]

ついでCVD法により膜厚5nmの保護層5を形成した。次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑層6を形成し、磁気記録媒体を得た。この実施例61の磁気記録媒体の評価結果を表10に示した。

[0215]

(実施例 $62 \sim 66$) 中間層 8 を表 10 に示した材料に変えた他は、実施例 61 に準じて磁気記録媒体を作製した。この実施例 $62 \sim 66$ の磁気記録媒体の評価結果を表 10 に示した。

[0216]

(実施例67~78) 垂直磁性層4の材料、添加ガス、基板Bias等の条件を、表<u>1</u>1に示した条件に変えた他は、実施例1に準じて磁気記録媒体を作製した。この実施例67~78の磁気記録媒体の評価結果を表11に示した。

[0217]

【表11】

	福性層4										型物物語				
	磁性層48					磁性層46					静磁気特性		配錄再生特性		無細らぎ特性
	相成	世	成膜压力	発加ガス	##Bire	智斯	₹	原き 成態圧力	抵加ガス	基板Bias	保留力	Į	MO	S	[%docado]
	[(at%)mol%]	[nm]	(Pa)			[at%]		[Pa]			[%]	8	[4B]	[dB]	
夹施例 67	実施例 67 (Co10Cr16Pt)92-(SiO2)8	6	9	1	-	Co23Cr16Pr1Cu1B	6	0.7	1	_	4300	2000	51.5	21.5	0.09
東施側 68	東施例 68 (Co10Cr16Pt)92-(SiO2)8	٥	9	O2 0.3vol%	ı	Co23Cr16Pt1Cu1B	6	0.7	l	ı	4450	2000	50.5	21.9	0.09
東施僧 69	69 (Co10Cr16Pt)92-(SiO2)8	٥	9	O2 0.6vol%	ı	Collericul	6	0.7	1	-	4600	2000	49	22.5	0.09
夹施例 70	実施例 70 (Co10Cr16Pt)92-(SiO2)8	۵	9	02 1.2vol%	1	Co23Cr16Pr1Cu1B	6	0.7		ı	4550	2000	49	22.4	0.09
英施佣 71	実施例 71 (Col0Cr16Pt/92-(SiO2)8	٥	9	02_2val%	ı	Co23Cr16Pt1Cu1B	9	0.7	1	-	4500	1950	50	22.1	0.09
実施例 72	实施例 72 (Co10Cr16Pt)92-(SiO2)8	٩	٥	02 4vol%	1	Co23Cr16PtICu1B	6	0.7	ı	ı	4200	1600	53	19.7	0.13
実施保 73	異施例 73 (ColoCr16Pt)92-(SiO2)8	٥	9	N2 0.5vol96	ı	Co23Cr16Pr1Cu1B	6	0.7	ı	ı	4300	1850	52	21.8	0.09
東施佩 74	安海例 74 (Co10Cr16Pt)92-(SiO2)8	٥	9	O2 0.6vol%	ı	Co23Cr16Pt1Cu1B	9	0.7	02 0.3vol%	1	4400	0061	\$1.5	22.9	0.09
東施伊 75	実施例 75 (Co10Cr16Pt)92-(SiO2)8	٥	9	02 0.6vol%	-150 V	-150 V Co23Cr16Pr1Cn1B	9	0.7	ì	ı	4700	2050	49	22.6	0.09
実施例 76	実施例 76 (Co10Cr16Pt)92-(SiO2)8	٥	9	02 0.6vol%	-300 V	-300 V Co23Cr16Pt1Cn1B	ô	0.7	I	ı	4700	2000	49	22.8	0.09
実施例 77	奥施例 77 (Co10Cr16Pt)92-(SiO2)8	۵	9	O2 0.6vol%	V 009-	-600 V Co23Cr16Pr1Cu1B	٥	0.7	1	-	4650	2000	49	22.5	0.09
実施例 78	実施例 78 (Co10Cr16Pt)92-{SiO2)8	٥	٥	O2 0.6vol%	-	Co23Cr16Pt1Cu1B	9	0.7	1	-200 V	4750	2000	48	23.5	0.09

[0218]

表1において、実施例5と比較例1、2、4、5、6、8、9、10との比較から、本発明における垂直磁性層4を形成するにあたり、この垂直磁性層4を、Coを主成分とするとともにPtを含みかつ酸化物を含む磁性層と、Coを主成分とするとともにCrを含みかつ酸化物を含まない磁性層とで構成することの効果が分かる。本発明の実施例5の方が、酸化物を含んだ磁性層のみの比較例1、2に比べて、逆磁区核形成磁界(-Hn)が大

きく向上し、熱揺らぎ特性および記録再生特性(S/N比、記録特性)において優れていることが解る。

[0219]

特に、実施例5と比較例6、7、8、9から、本発明においては、磁性層4bとしてCo を主成分とするとともに少なくともCrを含んでいることが重要であることが解る。

[0220]

実施例1と比較例3の比較から、垂直磁性層4を形成するにあたり、少なくとも1層は酸化物を含んだ磁性層が必要であることが分かる。

[0221]

実施例5、9~13の比較から、酸化物を含む磁性層4aの酸化物の含有量は、3mol%以上12mol%以下が好ましいことが解る。

[0222]

実施例5、14~17の比較から、酸化物を含む磁性層4aのCr含有量は、6at%以上16at%以下が好ましいことが解る。

[0223]

実施例5、18~20の比較から、酸化物を含む磁性層4aのPt含有量は、10at%以上20at%以下が好ましいことが解る。

[0224]

次に表2において、実施例21~25の比較から、酸化物を含まない磁性層4bのCr含有量は、14at%以上30at%以下の範囲が好ましいことが解る。

[0225]

実施例26~30の比較から、酸化物を含まない磁性層4bのPt含有量は、8at%以上20at%以下の範囲が好ましいことが解る。

[0226]

また、表 2 より、酸化物を含む磁性層 4 a の酸化物は、 Cr_2O_3 、 SiO_2 、 Ta_2O_5 などが好ましいことが解る。また、複数種の酸化物を含む材料でもかまわないことが解る。【0227】

垂直磁性層4に使われる材料として、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reのうち選ばれた1種以上の元素が含まれていてもかまわないことが解る。

[0228]

表3から、垂直磁性層4の構成を、酸化物を含まない磁性層4b、酸化物を含む磁性層4 aの順としてもかまわないことが解る。

[0229]

表4、表5、表6から、垂直磁性層4の構成を3種類の磁性層から形成してもかまわない ことが解る。

[0230]

表7、表8および表9から、垂直磁性層4の任意の磁性層の間に、非磁性層9を形成することもできることが解る。

[0231]

また、垂直磁性層 4 の構成として、酸化物を含む磁性層を複数層形成することができることが解る。

[0232]

表10からは、配向制御層3として、Ru、Pt、Pdのhcp構造をとる金属材料の他に、酸化物、金属窒化物、金属炭化物を含んだ材料も使うことができることが解る。

[0233]

また、配向制御層3と垂直磁性層4の間に、中間層8を設けることができることが解る。 【0234】

表11からは、垂直磁性層4を形成する際のガス添加および基板Biasにより、特性が 向上していることが解る。

[0235]

【発明の効果】

以上説明したように、本発明の磁気記録媒体は、非磁性基板上に少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が非磁性基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられた垂直磁気記録媒体において、垂直磁性層が2層以上の磁性層からなり、少なくとも1層がCoを主成分とするとともにPtを含み、酸化物を含んだ磁性層であり、他の少なくとも1層がCoを主成分とするとともにCrを含み、酸化物を含まない磁性層からなることを特徴とし、これにより磁性粒子の微細化と磁気的な孤立化が促進され再生時における信号/ノイズ比(S/N)を大幅に向上することができ、また逆磁区核形成磁界(-Hn)を向上させることで熱揺らぎ特性も向上し、さらに優れた記録特性(OW)を有した媒体を得ることができる。

【図面の簡単な説明】

- 【図1】本発明における磁気記録媒体の一例の構造を示す縦断面図である。
 - 【図2】垂直磁性層の構成を示す縦断面図である。
- 【図3】磁性層において磁性粒子が柱状構造とならない場合を示す図である。
- 【図4】MH曲線の1例を示す図である。
- 【図5】MH曲線の他の例を示す図である。
- 【図6】本発明における磁気記録媒体の他の例の構造を示す縦断面図である。
- 【図7】本発明における磁気記録媒体の他の例の構造を示す縦断面図である。
- 【図8】本発明における磁気記録媒体の他の例の構造を示す縦断面図である。
- 【図9】本発明における磁気記録媒体の他の例の構造を示す縦断面図である。
- 【図10】本発明における磁気記録媒体の他の例の構造を示す縦断面図である。
- 【図11】本発明における磁気記録媒体の他の例の構造を示す縦断面図である。
- 【図12】本発明の磁気記録再生装置の一例を示す概略図であり、(a)は全体構成を示し、(b)は磁気ヘッドを示す。

【符号の説明】

- 1 非磁性基板
- 2 軟磁性下地層
- 3 配向制御層
- 4 垂直磁性層
- 4 a , 4 a 1 , 4 a 2 酸化物を含んだ磁性層
- 4 b. 4 b-1, 4 b-2, 4 b-3 酸化物を含まない磁性層
- 5 保護層
- 6 潤滑層
- 8 中間層
- 9,91,92 非磁性層
- 10 磁気記録媒体
- 11 媒体駆動部
- 12 磁気ヘッド
- 13 ヘッド駆動部
- 14 記録再生信号処理系
- 4 1 酸化物
- 42,43 磁性粒子

フロントページの続き

(51) Int.Cl.'

FΙ

テーマコード (参考)

HO1F 10/16

H01F 10/16

(72)発明者 清水 謙治

千葉県市原市八幡海岸通5番の1 昭和電工エイチ・ディー株式会社内

(72)発明者 小林 一雄

千葉県市原市八幡海岸通5番の1 昭和電工エイチ・ディー株式会社内

(72)発明者 酒井 浩志

千葉県市原市八幡海岸通5番の1 昭和電工エイチ・ディー株式会社内

(72)発明者 及川 壮一

東京都青梅市末広町2丁目9番地 株式会社東芝青梅工場内

(72)発明者 岩崎 剛之

東京都青梅市末広町2丁目9番地 株式会社東芝青梅工場内

(72)発明者 前田 知幸

東京都青梅市末広町2丁目9番地 株式会社東芝青梅工場内

(72)発明者 中村 太

東京都青梅市末広町2丁目9番地 株式会社東芝青梅工場内

Fターム(参考) 50006 BB01 BB02 BB06 BB07 BB08 BB09 CA03 CA04 DA03 DA08

EA03 FA00 FA09

5D112 AA03 AA04 AA05 AA06 AA24 BB01 BB05 BD03 BD05 BD07

FA04 FB02 FB08

5E049 AA04 AC05 BA08

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☑ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY