Linear Systems: Eigenvalues and Eigenvectors Assignment

1

- 1. Explain why an eigenvector cannot be associated with two eigenvalues.
- 2. What are the eigenspaces associated with the diagonal matrix $\mathbf{D} = \mathrm{diag}\,(d_1,d_2,\ldots d_n)$?
- 3. If a matrix ${\bf A}$ has zero as one of its eigenvalues, explain why ${\bf A}$ must be singular.
- 4. For a matrix \mathbf{A} with eigenvalues $\{\lambda_i\}_{i=1}^n$, verify for the following matrices that $\Pi_{i=1}^n \lambda_i = \det{(\mathbf{A})}$ and $\sum_{i=1}^n \lambda_i = trace(\mathbf{A})$.
 - (a) $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
 - (d) $\frac{1}{5} \begin{bmatrix} 1\\0\\2 \end{bmatrix} \begin{bmatrix} 1&0&2 \end{bmatrix}$
- 5. Let $\left\{\lambda_i, \mathbf{v}_i\right\}_{i=1}^n$ be the eigenpairs of a matrix \mathbf{A} . Then prove that,
 - (a) $\left\{\lambda_i^k, \mathbf{v}_i\right\}_{i=1}^n$ are the eigenpairs of \mathbf{A}^k .
 - (b) $\{p(\lambda_i), \mathbf{v}_i\}_{i=1}^n$ are the eigenpairs of $p(\mathbf{A})$, where $p(\mathbf{A}) = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{A} + \ldots + \alpha_k \mathbf{A}^k$.
- 6. Prove that if $\{\lambda_i, \mathbf{v}_i\}_{i=1}^n$ are the eigenpairs of a matrix \mathbf{A} , then the eigenpairs of \mathbf{A}^k are $\{\lambda_i^k, \mathbf{v}_i\}_{i=1}^n$.
- 7. Consider the matrices $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$. Are the eigenvalues of \mathbf{AB} equal the eigenvalues of \mathbf{BA} ?
- 8. Consider the matrices A and B. If v is an eigenvector B, underwhat condition will v also be the eignevector of AB. Under these conditions, what will be corresponding eigenvalue of v? How do your answers change in the case of BA?
- 9. Let $\{\lambda_i, \mathbf{v}_i\}_{i=1}^n$ are the eignepairs of a matrix \mathbf{A} . What are the eigenpairs of the following?
 - (a) $2\mathbf{A}$

- (b) A 2I
- (c) $\mathbf{I} \mathbf{A}$
- 10. Let ${\bf A}=\begin{bmatrix}0.6&0.2\\0.4&0.8\end{bmatrix}$. What is the value of: (a) A^2 (b) A^{100} (c) A^∞ ?
- 11. Show that $\mathbf{u} \in \mathbb{R}^2$ is an eigenvector of $\mathbf{A} = \mathbf{u}\mathbf{v}^T$. What are the two eigenvalues of \mathbf{A} ?
- 12. Consider two similar matrices $\bf A$ and $\bf B$. Prove that the eigenvalues of $\bf A$ and $\bf B$ are the same. How are the eigenvectors of $\bf A$ and $\bf B$ related to each of other for a given eigenvalue?
- 13. Find the eigenvectors of the following permutation ma-

$$\mathsf{trix} \ \mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- 14. **Left eigenvectors**: Consider a matrix \mathbf{A} with eigenpairs $\{\lambda_1, \mathbf{v}_i\}_{i=1}^n$. The left eigenvectors of the matrix \mathbf{A} are the vectors that satisfy the equation, $\mathbf{A}^T\mathbf{w} = \mu\mathbf{w}$ (or $\mathbf{w}^T\mathbf{A} = \mu\mathbf{w}^T$), and let $\{\mu_i, \mathbf{w}_i\}_{i=1}^n$ be the left eigenpairs of \mathbf{A} . Show the following,
 - (a) The eigenvalues of both A and A^T are the same.
 - (b) $\mathbf{v}_i^T \mathbf{w}_j = 0$. The eigenvector \mathbf{v}_i corresponding to the eigenvalue λ_i and the left eigenvector \mathbf{w}_j corresponding to the eigenvalue λ_j are orthogonal, when $\lambda_i \neq \lambda_j$.
 - (c) The matrix A can be expressed as a sum of rankone matrices,

$$\mathbf{A} = \lambda_1 \mathbf{v}_1 \mathbf{w}_1^T + \lambda_2 \mathbf{v}_2 \mathbf{w}_2^T + \ldots + \lambda_n \mathbf{v}_n \mathbf{w}_n^T$$

- 15. Prove that $\mathbf{A}\mathbf{A}^T$ has real and positive eigenvalues, and that the eigenvectors corresponding to distinct eigenvalues of $\mathbf{A}\mathbf{A}^T$ are orthogonal.
- 16. If $\{\lambda_i, \mathbf{v}_i\}_{i=1}^n$ are the eigenpairs of a non-singular matrix \mathbf{A} , the prove that $\{\lambda_i^{-1}, \mathbf{v}_i\}_{i=1}^n$ are the eigenpairs of \mathbf{A}^{-1} .
- 17. A matrix \mathbf{A} is called *nilpotent* if $\mathbf{A}^k = \mathbf{0}$ for some finite positive integer k. Prove that the $trace(\mathbf{A}) = 0$ for a nilpotent matrix \mathbf{A} . What are all the eigenvalues of such a matrix?