Determinisztikus idősorelemzés, dekompozíciós idősormodellek: trend, szezonalitás és ciklus

Ferenci Tamás tamas.ferenci@medstat.hu

Utoljára frissítve: 2023. május 9.

Tartalom

- Determinisztikus idősorelemzés
 - Alapgondolat
 - Determinisztikus idősormodellezés regresszióval
 - Trend és szezonalitás

A determinisztikus idősorelemzés

- Az idősor alakulása elvileg függvényszerűen felírható bizonyos tényezők alapján
- Csak azért nem tudjuk tökéletesen megtenni, mert nem ismerjük e tényezőket, nem tudjuk milyen függvényformával hatnak, nem tudjuk pontosan mérni stb. ezért fogunk hibázni
- De pont: a hibának csak ennyi szerepe van...
- ...beállítja az aktuális időszaki értéket, és kész

Dekompozíciós idősormodellek

- Minderre a legtipikusabb és egyben legklasszikusabb példát a dekompozíciós idősormodellek jelentik
- A legismertebb additív modell:

$$Y_t = R_t + C_t + S_t + u_t,$$

ahol R_t , C_t és S_t a trend, a ciklus és a szezonalitás t-edik időszakbeli értéke rendre, u_t pedig a már említett eltérésváltozó

Becslés?

Regresszió alkalmazása

- Az előbbi modell teliesen természetesen becsülhető regresszióval, ha R_t , C_t és S_t helvébe beírjuk a feltételezett – paraméteres – függvényformákat
- (Most tehát mindvégig paraméteres regressziót fogunk használni)
- Legegyszerűbb eset: $R_t = \alpha + \beta t$, $C_t = 0$ és $S_t = 0$ (egyszerű lineáris trend)
- Az így kapott modell OLS-sel becsülhető

Negyedéves GDP (éves) lineáris trenddel I.

Negyedéves GDP (éves) lineáris trenddel II.

Mi ezzel a baj? Hibatag jól specifikált? Aligha!

Negyedéves GDP (éves) lineáris trenddel és szezonalitással I.

	Coeffi	icient	Std. Error	<i>t</i> -ratio	p-value
const	-2,04	994e+008	1,06300e + 007	-19,2845	0,0000
EV	104985,		5301,64	19,8024	0,0000
DNEGYEDEV_1	-815807,		91469,3	-8,9189	0,0000
DNEGYEDEV_2	-375072		92487,9	-4,0554	0,0001
DNEGYEDEV_3	-203380,		92487,9	-2,1990	0,0308
Mean de	ependent var	5161052	S.D. dependent var	765270,3	
Sum squ	ared resid	7,19e + 12	S.E. of regression	299695,1	
R ²		0,853937	Adjusted R ²	0,846634	
F(4, 80)	116,9271	P-value(F)	1,34e-32	
Log-like	lihood	-1189,928	Akaike criterion	2389,855	
Schwarz	criterion	2402,068	Hannan-Quinn	2394,768	
$\hat{ ho}$		0,946516	Durbin-Watson	0,116617	

Negyedéves GDP (éves) lineáris trenddel és szezonalitással II.

A szezonalitás jónak tűnik, de az alaptrendet még mindig nem sikerült megragadni:

Negyedéves GDP (éves) kvadratikus trenddel és szezonalitással I.

	Coeffi	cient	Std. Error	t-ratio	p-value
const	-2,60	273e+010	2,61365e+009	-9,9582	0,0000
EV	2,58	613e + 007	2,60697e + 006	9,9201	0,0000
DNEGYEDEV_1	-792077		61608,7	-12,8566	0,0000
DNEGYEDEV_2	-375072		62247,4	-6.0255	0,0000
DNEGYEDEV_3	-203380,		62247,4	-3,2673	0,0016
sq_EV	-6422,59		650,072	-9,8798	0,0000
Mean de	pendent var	5161052	S.D. dependent var	765270,3	
Sum squ	ared resid	3,21e+12	S.E. of regression	201704,8	
R ²		0,934664	Adjusted R ²	0,930529	
F(5, 79)		226,0280	P-value(F)	$2.80e{-45}$	
Log-likel	ihood	-1155,736	Akaike criterion	2323,473	
Schwarz	criterion	2338,128	Hannan-Quinn	2329,368	
$\hat{ ho}$		0,889365	Durbin-Watson	0,173391	

Negyedéves GDP (éves) kvadratikus trenddel és szezonalitással II.

Reziduumok kicsit jobbak:

Mindezek limitációi

- Egyrészt el kell találni a függvényformát
- Persze modelldiagnosztika (az előbb látott grafikus módszerek és tesztek is) ott van
- (Ez igazából már keresztmetszetnél is így volt)
- Pl. a kvadratikus nvilván csak erre az időszakra jó, az általánosítóképessége botrányos lenne
- Másrészt a hibatag diagnosztikája bonyolultabbá válik, egy új szempont is megjelenik (autokorreláció) → később még nagyon sokat fogunk róla beszélni

A trend megadása

- Trend: "hosszú távú alapirányzat"
- A mostani trend (determinisztikus trend) bármi lehet, amit paraméteres függvényformában megadunk; például:
 - Lineáris trend: a + bt
 - Kvadratikus trend: $a + b_1 t + b_2 t^2$
 - Polinomiális trend: $a + b_1t + b_2t^2 + \ldots + b_kt^k$
 - Exponenciális trend: ae^{bt}
 - Aszimptotikus trend: $c + \frac{1}{a+bt}$
 - Logisztikus trend: $\frac{1}{c+e^{a+bt}}$
 - stb. stb.
- (Persze amelyik nem lineáris, ott vagy linearizálni kell vagy ha ez nem lehetséges akkor nem OLS-sel becsülni)
- Ezek mind paraméteres trendek voltak, elképzelhető nem-paraméteres trend is, a legismertebb a spline-ok használata (de ne feledjük, annak a becslése kevésbé hatásos, nem kapunk egyetlen vagy néhány számba sűrített – és jó esetben tárgyterületileg értelmezhető – eredményt, valamint az előrejelzés is problémásabb)

Szezonalitás megadása

- Szezonalitás: "éven belüli mintázat", exogén módon rögzített hosszúságú, periodikus (vs. ciklus: "éven túli", nem feltétlenül exogén módon adott, ismert hosszúságú)
- A szezonalitásnál viszont tipikusabb a nem-paraméteres megadás: minden negyedévnek (hónapnak, félévnek stb.) saját paramétere van
- (Dummy-kkal, ld. később, regressziós keretbe szintén szépen illeszkednek!)
- Persze itt is elképzelhető paraméteres megadás, a legismertebb a trigonometrikus (harmonikus) függvények használata

Dummy-kódolás szezonalitáshoz: referenciakódolás

• Az egyik szezon indikátorát elhagyjuk: referenciakódolás

	D_{Q1}	D_{Q2}	D_{Q3}
Q1	1	0	0
Q1 Q2 Q3	0	1	0
Q3	0	0	1
Q4	0	0	0

• Értelmezés: eltérés a referenciacsoporthoz képest (ami az elhagyott indikátorú csoport)

Dummy-kódolás szezonalitáshoz: kontrasztkódolás I.

- Egy másik népszerű megoldás a kontrasztkódolás: viszonyítsunk az átlaghoz!
- Ehhez hogyan kell kódolni...?

	C_{Q1}	C_{Q2}	C_{Q3}
Q1	1	0	0
Q2	0	1	0
Q3	0	0	1
Q4	-1	-1	-1

Dummy-kódolás szezonalitáshoz: kontrasztkódolás II.

Mert:

$$\alpha + \beta_{C_{O1}} + 0 + 0 = \overline{y}_{O1} \tag{1}$$

$$\alpha + 0 + \beta_{C_{Q2}} + 0 = \overline{y}_{Q2} \tag{2}$$

$$\alpha + 0 + 0 + \beta_{C_{O3}} = \overline{y}_{O3} \tag{3}$$

$$\alpha - \beta_{C_{Q1}} - \beta_{C_{Q2}} - \beta_{C_{Q3}} = \overline{y}_{Q4} \tag{4}$$

És így:

- $(1)+(2)+(3)+(4) \Rightarrow 4\alpha = \overline{y}_{Q1} + \overline{y}_{Q2} + \overline{y}_{Q3} + \overline{y}_{Q4} \Rightarrow \alpha$ tényleg a főátlag (mert azonosak voltak a csoportok elemszámai, különben ún. súlyozott kontraszt kellene)
- (2)+(3)+(4) \Rightarrow $3\alpha \beta_{C_{Q1}} = \overline{y}_{Q2} + \overline{y}_{Q3} + \overline{y}_{Q4} \Rightarrow \beta_{C_{Q1}} = 3\alpha (\overline{y}_{Q2} + \overline{y}_{Q3} + \overline{y}_{Q4}) = 3\alpha (4\alpha \overline{y}_{Q1}) \Rightarrow \beta_{C_{Q1}} = \overline{y}_{Q1} \alpha \Rightarrow$ tényleg az átlagtól való eltérés (és hasonlóan a másik kettő)

Dummy-kódolás szezonalitáshoz: egyebek

- Az angol irodalomban az általunk kontrasztkódolásnak nevezett módszert nagyon gyakran "effect coding"-nak nevezik...
- ... a kontraszt pedig az, amikor a csoportok tetszőleges általunk meghatározott lineáris kombinációját teszteljük