PCR
Alan Silva
Aula 11

Polymerase Chain Reaction (PCR)

- Técnica mais utilizada em Biologia Molecular
- Simulação in vitro da duplicação de DNA nas células
- Componentes:
 - Água
 - Tampão de reação
 - Cofator Mg²⁺
 - dNTPs
 - Iniciadores (primers)
 - DNA/RNA alvo
 - Enzima polimerase

94°C 55–65°C 72°C

Fonte: ThermoFisher

Tipos de PCR

- Por objetivo:
 - Multiplex
 - Competitiva
 - RT (reverse transcription)
 - Nested
 - Touch down
 - Quantitativa
 - Multiple displacement (MDA)
- Por enzima:
 - High fidelity
 - Hot start
 - Long range
 - Phi29

- Qual enzima utilizar?
 - Taq: aplicações gerais
 - Taq especial: fragmentos longos
 - Phusion/Fusion: alta fidelidade e velocidade

A-overhang ou blunt-end?

Fonte: Goldbio

Como montar uma reação

Primers Novos

fabricante

10X DreamTaq Buffer*	5 μL		
dNTP Mix, 2 mM each (#R0241)	5 μL (0.2 mM of each)		
Forward primer	0.1-1.0 µM		
Reverse primer	0.1-1.0 µM		
Template DNA	10 pg - 1 μg		
DreamTaq DNA Polymerase	1.25 U		
Water, nuclease-free (#R0581)	to 50 µL		
Total volume	50 μL		

Fonte: ThermoFisher

Primers descritos

publicação

Ex:

as amplificações foram conduzidas com a Taq DNA Polymerase (Marca) em volume total de 12,5 μ L, contendo 2 mM de MgCl₂, 200 μ M de cada dNTP, 0,2 μ M de cada primer, 50 ng de DNA e 1 U de Taq polimerase

Reagentes	Estoque	Final	Volume
Tampão	10 x	1 x	1,25 μL
MgCl2	20 mM	2 mM	1,25 μL
dNTP	10 mM	200 μΜ	0,25 μL
Primer 1	10 μΜ	0,2 μΜ	0,25 μL
Primer 2	10 μΜ	0,2 μΜ	0,25 μL
DNA	50 ng/μL	50 ng	1 μL
Taq	5 U/μL	1 U	0,2 μL
Água			8,05 μL
		TOTAL	12,5 μL

Questões Gerais:

- Quanto de DNA?
 - Plasmídeo: 10pg a 10ng
 - gDNA: 10ng a 100ng

Organism	genome size (bp)	genome mass (pg)	GOI	copies/genome	pg/1 copy	ng sample	copies
human	3000000000	3,288	gene 1	1	3,288	1	304,136253
Cg	51600000	0,0565536	gene 2	1	0,0565536	1	17682,34029
Plasmídeo	10000	0,00001096	gene 3	1	0,00001096	1	91240875,91

- Quanto de enzima?
 - 0,5U: fragmentos pequenos, poucos ciclos, pequeno volume
 - 1U: fragmentos grandes, muitos ciclos, muito volume

- Qual volume final?
 - 10/12,5 μL: verificar amplificação
 - 25/50 μL: uso posterior

Gel de Eletroforese

- Análise qualitativa prática e barata
- Separação por tamanho de DNA
- Tampões de corrida:
 - TAE:
 - prático, econômico e versátil
 - Estoque 50X, corrida até 10V/cm
 - TBE:
 - tradicional, menos econômico
 - Estoque 5X, corrida até 10V/cm
 - NaBo
 - ↓ sais, ↓ aquecimento, efeito bactericida, ↑ precipitação
 - Estoque 50X, corrida até 35V/cm

Tampão	Estoque (L)
TAE	50X
	242g Tris Base
	57,1 mL Ácido Acético Glacial
	100 mL EDTA 0,5M pH 8.0
TBE	5X
	54 g Tris Base
	27,5 g Ácido Bórico
	20 mL EDTA 0,5M pH 8.0
NaBo	50X
	20 g NaOH
	~ 120 g Ácido Bórico até pH 8.0

Gel de Eletroforese

- Tampão de Amostra:
 - Corante de alto peso molecular
 - Corante de baixo peso molecular
 - Substância para aumento de densidade
- Exemplo: 1% agarose em TBE 1X
 - Xileno cianol: ~ 3500 pb
 - Azul de bromofenol: ~ 300 pb
 - Orange G (extra): ~ 40 pb

BUFFER TYPE	6× BUFFER	STORAGE		
I 0.25% bromophenol blue 0.25% xylene cyanol FF 40% (w/v) sucrose in H ₂ O		4°C		
11	0.25% bromophenol blue0.25% xylene cyanol FF15% Ficoll (Type 400;Pharmacia) in H₂O	room temperature		
III	0.25% bromophenol blue 0.25% xylene cyanol FF 30% glycerol in H ₂ O	4°C		
IV	0.25% bromophenol blue 40% (w/v) sucrose in H ₂ O	4°C		

Fonte: Sambrook & Russel, 2000.

Gel de Eletroforese

- Marcador Molecular
 - régua" contendo fragmentos de tamanho conhecido
 - Cada banda tem tamanho e peso molecular conhecidos
- Como estimar a concentração?
 - Exemplo ao lado
 - 6 μL: 1 μL ladder + 1 μL tampão + 4 μL água
 - Mix = $100 \mu L + 100 \mu L + 400 \mu L = 600 \mu L$ total
 - Ex.: usando 5 μL
 - Banda de 3000 pb = 12% = 50 ng
 - Banda de 1500 pb: 13,3 ng

Fonte: Thermo Scientific

Questões Gerais:

- Concentração do Gel?
 - 1%: versátil, todas finalidades
 - 0,7%: separação de fragmentos grandes; purificação do gel
 - 1,5%: bandas menores mais nítidas
 - 2%: ssDNA, RNA ou bandas muito pequenas
- Detecção no gel de agarose?
 - EtBr: tradicional, barato; tóxico
 - GelRed, SybrSafe: seguro; mais caro

Questões Gerais:

- Em que momento fazer a marcação do DNA?
 - Depois da corrida (ideal)
 - Mergulhando o gel em solução de EtBr (0,5 μg/mL) ou GelRed/SybrSafe
 - Visualizar as bandas em UV (302 ou 312 nm)
 - Bandas de tamanho exato esperado
 - Marcação do gel:
 - Preparar o gel com o marcador e as amostras coram ao correr
 - Contaminação de todos utensílios
 - Marcação do DNA
 - Mistura o marcador ao DNA, que já corre marcado
 - Mais prático e eficiente, menos uso de marcador
 - Amostras podem sofrer pequena alteração de tamanho (devido ao peso molecular especialmente do GelRed).

Como correr um gel padrão de DNA em agarose?

- 1) Prepare 1x de Tampão de corrida TAE diluindo 20 mL do estoque 50x em 980 mL de água destilada. Encha a cuba até um volume que cubra o gel completamente
- 2) Prepare Agarose 1% em TAE 1x (ex.: 1g de agarose em 100 mL de TAE 1x frio, então derretendo no micro-ondas evitando que o líquido ferva e esperando esfriar até ~60 °C) e aplique na cama com o pente desejado para atingir uma espessura de 0,3-0,5cm (ou mais grosso, suficiente para caber o volume de amostra). A agarose não utilizada pode ser bem tampada e guardada líquida em estufa 60 °C por alguns dias.
- 3) Aguarde 20-30 min até o gel solidificar completamente, coloque a cama com o gel na cuba, verificando se o tampão cobriu o gel totalmente, então retire o pente puxando para cima por ambos os lados.
- 4) Misture 2 μ L de DNA genômico, produto de PCR ou plasmídeo com 1 μ L de tampão de corrida (6X) em um pedaço de parafilme, então aplique em um dos poços do gel. Aplique 3-5 μ L de Marcador Ladder no primeiro poço
- 5) Conecte a tampa e observe os cabos, o cabo do lado onde o DNA está aplicado vai no polo negativo e o lado para onde o DNA irá correr vai no polo positivo.
- 6) Aplique a voltagem desejada (100V para um gel médio 10 cm² em TAE) com amperagem e frequência máximas (elas serão controladas com base na voltagem fixa) e 1h de corrida. Ao iniciar a corrida, verifique se o arame metálico na parte de baixo da cuba está borbulhando, com o lado negativo mais intenso que o positivo (sinal de corrente elétrica passando corretamente).
- 7) Ao terminar, mergulhe o gel numa solução de EtBr em água destilada a 0.5 μg/mL (exemplo: 30 μL EtBr estoque 10 mg/mL em 600 mL água) por 15-20 minutos e então registre o gel em fotodocumentador UV 302/312 nm.

Regras gerais para desenho de primers

1) *Tamanho*: 18-23 bp.

Primers menores: anelam mais rápido no alvo, com mais chance de anelamento inespecífico.

Primers maiores: mais específicos mas aumentam as chances de estruturas secundárias.

2) Temperatura de melting (Tm):

Regra genérica para *Taq*: 2 °C x A/T + 4 °C x C/G, Tm da reação 5 °C a menos que a menor Tm.

Cálculos variam com enzima e marca (usar calculadora) Diferença de Tm entre os primers: ≤ 5 °C

Tms muito baixas aumentam as chances de anelamento inespecífico e Tms muito altas, de não amplificação.

3) **Conteúdo CG**: entre 40 e 60% do primer. A ponta 3' é mais crítica, pois é onde o primer inicia o anelamento, então o último nucleotídeo deve ser C ou G e não mais que 3 CGs entre os últimos 5 nts.

4) *Repetições*: evitar repetições de 4+ bases (ex.: AAAA) ou dinucleotídeos (ex.: TATATATA).

5) *Tamanho do amplicon*: objetivo x flexibilidade 300-700 pb: simples detecção, identificação de linhagens;

200-300 bp: material raro, de difícil extração ou degradado:

90-150 pb: qPCR e RT-qPCR

Evitar: amplicons muito pequenos, por confundir com dímero de primers no gel de agarose.

- 6) Outros fatores a evitar: hairpins, homodimers e heterodimers (≤ 4 nts, $\Delta G \geq -9$ kcal/mole, porta-3')
- 7) Observações:
- primers com caudas: calcular Tm apenas da região anelada, mas verificar estruturas secundárias do primer inteiro
- primers sempre 5'-3': ao desenhar o primer reverso, lembrar de fazer reverso-complemento da sequência

Primers para amplificação e detecção simples

- Detecção de integração de cassete de transformação
 - Linhagens foram transformadas com eGFP+npt
 - Preciso fazer uma pré-seleção de mutantes
- Origem dos gene: cassete montado em um plasmídeo

Primers para amplificação e detecção simples

- Passo a passo
 - Escolher o alvo
 - Qualquer um dos genes exógeno ao organismo (eGFP ou npt)

- Escolher o tamanho do fragmento
 - Simples detecção: flexibilidade de região e tamanho
- Copiar a região desejada para uma ferramenta de design
 - Primer 3 Plus: http://primer3plus.cgi
 - NCBI Primer-Blast: http://ncbi.nlm.nih.gov/tools/primer-blast
- Validar os primers para estruturas primárias e secundárias
 - Oligoanalyzer: http://www.idtdna.com/pages/tools/oligoanalyzer
 - \leq 4 nts; evitar estruturas na ponta 3'; $\Delta G > -9$ kcal/mole

Primers espécie-específicos

- Identificação de uma espécie entre várias
 - Diferentes espécies isoladas do mesmo hospedeiro
 - Espécies identificadas por sequenciamento
 - Desenhar primers para uma identificação mais rápida de uma das espécies.
- Passo a passo:
 - Dentre as regiões genômicas usadas para sequenciamento e identificação, escolher aquela com certa variabilidade
 - Desenhar os primers nas regiões específicas da espécie-alvo

