Lab 6: Floating-Point Binary Representation

1. For each of the following binary floating-point numbers, supply the equivalent value as a base 10 fraction, and then as a base 10 decimal. The first problem has been done for you:

Binary Floating-Point	Base 10 Fraction	Base 10 Decimal
1.101 <i>(sample)</i>	1 5/8	1.625
11.11	3 3/4	3.75
1.1	1 1/2	1.5
101.001	5 1/8	5.125
1101.0101	13 5/16	13.3125
1110.00111	14 7/32	14.21875
10000.101011	32 43/64	32.671875
111.0000011	7 3/128	7.0234375
11.000101	3 5/64	3.078125

2. For each of the following exponent values, shown here in decimal, supply the actual binary bits that would be used for an 8-bit exponent in the

IEEE Short Real format. The first answer has been supplied for you:

Exponent (E)	Binary Representation	
2 (sample)	10000001	
5	10000100	
0	0111111	
-10	01110101	
128	11111111	
-1	01111110	

3. For each of the following floating-point binary numbers, supply the normalized value and the resulting exponent. The first answer has been

supplied for you:

10000.11 (sample)	1.000011	4
1101.101	1.101101	3
.00101	1.01	-3
1.0001	1.0001	1
10000011.0	1.0000011	7
.0000011001	1.1001	-6

4. For each of the following floating-point binary examples, supply the complete binary representation of the number in IEEE Short Real format. The

first answer has been supplied for you:

Binary Value	Sign, Exponent, Mantissa
-1.11 (sample)	1 01111111
	11000000000000000000000
+1101.101	0 10000010 101101000000000000000000
00101	1 01111100 0100000000000000000000000
+100111.0	0 10000100 001110000000000000000000
+.0000001101011	0 01111000 101011000000000000000000