2012-2013 学年第一学期《大学物理Ⅱ》课内考试(A

卷)

授课班号 学号 年级专业 计信 11 级 姓名 总分 审核 颞号 1 2 3 题分 24 34 15 14 13 得分

相关常数: 1 大气压= 1.013×10^5 pa, $0^{\circ}C = 273.15K$,R = 8.31J / mol.K,

 $k = 1.38 \times 10^{-23} J/K$, $N_0 = 6.02 \times 10^{23}$

阅卷	得分

一:选择题(共24分,每题3分)

1、某质点作谐振动,周期为 T,它由平衡位置沿 X 轴<u>正</u>方向运动到离最大正位移 1/2 处所需要的最短时间为

B)

- (A)T/4
- (B) T/12
- (C) T/3
- (D)5T/12

2、 某平面简谐波在 t=0s 时波形如图所示,则该波的波函数为: (C)

- (A) $y = 0.5\cos[4\pi(t-x/8) \pi/2]$ (cm).
- $0.5 \xrightarrow{y(\text{cm})} u = 8 \text{cm/s} \qquad t = 0 \text{s}$ $0.5 \xrightarrow{y(\text{cm})} u = 8 \text{cm/s} \qquad t = 0 \text{s}$
- (B) $y = 0.5\cos[4\pi(t + x/8) + \pi/2]$ (cm).
- (C) $y = 0.5\cos[4\pi(t + x/8) \pi/2]$ (cm) . (D) $y = 0.5\cos[4\pi(t + x/8) + \pi]$ (cm)

3、波长 λ = 5500 Å 的单色光垂直照射到光栅常数 d= 2.5×10⁻⁴cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 (C)

- (A) 2.
- (B) 3.
- (C) 4.
- (D) 5.

4、薄膜两表面平行,单色平行光垂直入射,设入射光在 介质 1 中的波长为 λ_1 ,薄膜的厚度为 d,且 $n_1 < n_2 > n_3$

,则两束**透射光**的光程差为

(A)

第1页(共6页)

A.
$$2n_2d$$

B.
$$2n_2d - \frac{\lambda_1}{2n_1}$$

C.
$$2n_2d - \frac{n_1\lambda}{2}$$

A.
$$2n_2d$$
 B. $2n_2d - \frac{\lambda_1}{2n_1}$ C. $2n_2d - \frac{n_1\lambda_1}{2}$ D. $2n_2d - \frac{n_2\lambda_1}{2}$

- 5、一束振动方向与入射面成 // 4 角度的线偏振光,以起偏角入射到某介质上,则反 射光与折射光的情况是 (D)
 - (A) 反射光为垂直入射面振动的线偏光, 折射光为平行入射面振动的线偏光.
 - (B) 反射光与折射光都是振动与入射面成π/4 的线偏光.
 - (C) 看不见反射光,折射光振动方向与入射光振动方向相同.
- (D) 反射光为垂直入射面振动的线偏光,折射光也是线偏光,不过它的振动在平行入 射面上的投影大于在垂直入射面上的投影.
- 6、如图所示的三个过程中, $a \rightarrow c$ 为绝热过程, 则有 В

- (B) $a \rightarrow b$ 过程 Q > 0, $a \rightarrow d$ 过程 Q < 0.
- (C) $a \rightarrow b$ 过程 Q < 0, $a \rightarrow d$ 过程 Q > 0.
- (D) $a \rightarrow b$ 过程 Q > 0, $a \rightarrow d$ 过程 Q > 0.

7、设某种气体的分子速率分布密度函数为f(v),则速度在 v_1 - v_2 区间内的分子占 总分子的几率为(B)

$$(A) \int_{v_1}^{v_2} v f(v) dv$$

$$(B) \int_{v_1}^{v_2} f(v) dv$$

(C)
$$\int_{v_1}^{v_2} v f(v) dv / \int_{v_1}^{v_2} f(v) dv$$

(C)
$$\int_{v_1}^{v_2} v f(v) dv / \int_{v_1}^{v_2} f(v) dv$$
 (D) $\int_{v_1}^{v_2} f(v) / \int_{v_1}^{\infty} f(v) dv$

8、一定量理想气体经历的循环过程用 V-T 曲线表示如 图,在此循环过程中,气体从外界吸收的净热量为 Q,则(

(A) Q > 0.

(B) Q < 0.

(A) Q=0.

(D) 无法判定 O 的正负.

阅卷	得分

二、填空题(共34分,每空2分):

1、一根弹性系数为 k=200N/m 的轻弹簧下挂着一个质量为 0.5kg 的小球,初始时小球位于平衡位置下方 10cm 处开始振动。若取弹簧拉长方向为小球运动正方向,则该小球振动的周期为 0.1 π ,振动初相位为 0 ;

小球偏离平衡位置的位移与时间的关系函数为 x=0.1cos(20t) cm

2、一平面简谐波沿x轴正向传播, t=0时刻的波形如图所示,则:该平面 简谐波的波长为_____;该

平面简谐波的周期为<u>0.24s</u>; 坐标原点处质点振动的初相位为<u> $\pi/3$ </u>; 该 平面简谐波的波函数表达式为 $v = 0.1\cos[2\pi(t/0.24-x/2.4)+\pi/3]$ *cm*;

3、两平行放置的偏振化方向正交的偏振片 P_1 与 P_3 之间平行地加入一块偏振片 P_2 . P_2 以入射光线 为轴以角速度 ω 匀速转动,如图.光强为 I_0 的自然光垂 直入射到 P_1 上,t=0 时, P_2 与 P_3 的偏振化方向平行,则 t 时刻透过 P_1 的光强 $I_1=\underline{I_0/2}$,透过 P_2 的光强 $I_2=\underline{I_0\sin^2(\omega t)/2}$,透过 P_3 的光强 $I_3=\underline{I_0\sin^2(\omega t)/8}$

$$-\begin{pmatrix} \uparrow \\ P_1 \end{pmatrix} - \cdot - \cdot \begin{pmatrix} P_2 \\ P_2 \end{pmatrix} - \cdot - \begin{pmatrix} P_3 \\ P_3 \end{pmatrix} -$$

4、波长为 400nm~760nm 的可见光正射在一厚度为 200nm、折射率为 1.5 的玻璃片上,则在反射中得到加强的光的波长为<u>400nm</u>,在透射中得到加强的光的波长为<u>600nm</u>。

- 5、一气缸内储有 5mol 的双原子理想气体,在压缩过程中外界做功 300J,气体温度升高了 2K,则气体内能的增量 $\Delta E = _207.75$ J ,气体吸收热量 $Q = _-92.25$ J ,此过程摩尔热容 $C_m = _-18.45$ J/K*mol .
 - 6、若空气分子的平均分子量为30,有效直径为 3×10^{-10} m,试估算在标准状态

下(1 大气压,0℃)空气分子的平均速率 $\bar{v}=440$ m/s ; 平均自由程 $\bar{\lambda}=9.31\times10^{-8}$ m

三、计算题: (共42分)

阅卷	得分	1、(5+5+5分)	设入射平面波的波函数为
,,,	1424	$y_1 = A\cos\left[2\pi\left(\frac{t}{5} + \frac{x}{4}\right) + \frac{x}{4}\right]$	$+\pi$],在 $x = -20$ 的 P 点处发生

无损耗反射,反射点为一固定端。(1)写出反射波的波函数; (2)写出驻波的波函数; (3)求波节和波腹的坐标。

解: (1)
$$y_2 = A\cos\left[2\pi\left(\frac{t}{5} - \frac{x}{4}\right) - 18\pi\right]$$
 P O x

(3) 波节: x	c = 2k, (k = -1)	-10,-9,-8,	.);波腹:	x = 2k + 1, (k =	-10,-9,-8,
-----------	------------------	------------	--------	------------------	------------

阅卷	得分	2、(7+7分) 在杨氏双约	缝夫朗和费干涉实验中,若双
		缝与屏之间的距离为 D=1 m, 两	所缝的间距 d = 0.50mm,用波

长 λ =5.00×10⁻⁷ m 的单色光垂直照射双缝。

- (1) 求原点 O (零级明纹所在处)上方的第五级明条纹的坐标x;
- (2) 若缝的透光部分宽度为 b = 0.12 mm,则在单缝的中央包线内有多少条明条纹?

解: (1) 明纹条件:
$$d\sin\varphi = \pm k\lambda$$
, $\sin\varphi \approx \frac{x}{D}$, $x_5 = \frac{D}{d} \times 5\lambda = 5 \times 10^{-3} m$

(2) 明纹条件: $d\sin\varphi = k\lambda$, 包线范围: $-\lambda < b\sin\varphi < \lambda$

$$-\frac{d}{b} < k < \frac{d}{b}$$
, $\mathbb{P} - 4.17 < k < 4.17$, $k = 0, \pm 1, \pm 2, \pm 3, \pm 4$

第4页(共6页)

有9个取值,即有9条明纹

阅卷	得分

3、(13 分) 一定量的双原子理想气体经历如图所示的循环过程, $A \rightarrow B$ 和 $C \rightarrow D$ 是等压过程, $B \rightarrow C$ 和 $D \rightarrow A$ 是绝执过程 己知: $P_{-} = 105$ ng

 $P_B = 1.5 \times 10^5 \text{pa}$,试求此循环的效率.

CD 等压:
$$Q_{CD} = \gamma \cdot C_P (T_D - T_C) < 0$$
,放热

BC、DA 绝热:
$$Q_{BC} = Q_{DA} = 0$$

$$\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{|Q_{CD}|}{Q_{AB}} = 1 - \frac{T_C - T_D}{T_B - T_A}$$

BC 绝热:
$$P_{B}^{\frac{1-r}{r}}T_{B}=P_{C}^{\frac{1-r}{r}}T_{C}$$
 DA 绝热: $P_{A}^{\frac{1-r}{r}}T_{A}=P_{D}^{\frac{1-r}{r}}T_{D}$ $P_{A}=P_{B},P_{C}=P_{D}$

$$\frac{T_C - T_D}{T_B - T_A} = \left(\frac{P_C}{P_B}\right)^{\frac{r-1}{r}}$$

$$\eta = 1 - \left(\frac{P_C}{P_B}\right)^{\frac{r-1}{r}} = 1 - \left(\frac{1}{1.5}\right)^{\frac{2}{7}} = 10.9 \frac{0}{0}$$