Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática – ICEI Arquitetura de Computadores I

ARQ1 _ Aula_07

Tema: Introdução à linguagem Verilog e simulação em Logisim

Preparação

Vídeos recomendados

https://www.youtube.com/watch?v=_Wta-It79RU https://www.youtube.com/watch?v=o8aHEaAsLw8 https://www.youtube.com/watch?v=bh1c5pv56IY

Orientação geral:

Apresentar soluções em formato texto (.txt).

Programas em Verilog deverão ser entregues em formato (.v) com previsão de testes.

Os arquivos para simulação em Logisim (.circ) deverão ser identificados internamente e entregues, acompanhados (ou não) de figuras equivalentes exportadas pela ferramenta.

Separar as versões completas (a) das simplificadas (b).

Atividade: Projeto de unidade lógica e aritmética

Para os exercícios a seguir, considerar o exemplo abaixo em Verilog.

// -----// Exemplo_0701 - GATES
// Nome: xxx yyy zzz
// Matricula: 999999
// -----// f7_gate
// ----module f7 (output s, input a, input b);
// descrever por portas

endmodule // f7

```
// -----
// multiplexer
// -----
module mux ( output s,
             input a,
             input b,
             input select);
// definir dados locais
 wire not_select;
 wire sa;
 wire sb;
// descrever por portas
 not NOT1 ( not_select, select );
 and AND1 (sa, a, not_select);
 and AND2 (sb, b, select);
 or OR1 (s, sa, sb);
endmodule // mux
module test_f7;
             ----- definir dados
    reg x;
    reg y;
   reg s;
    wire w;
    wire z;
   f7 modulo (w, x, y);
   mux MUX1 ( z, x, y, s );
// ----- parte principal
 initial
 begin : main
     $display("Exemplo_0701 - xxx yyy zzz - 999999");
     $display("Test LU's module");
     display(" x y s z");
      x = 1'b0; y = 1'b1; s = 1'b0;
   // projetar testes do modulo
 #1 $monitor("%4b %4b %4b %4b", x, y, s, z);
 #1 s = 1'b1;
 end
endmodule // test_f7
```

01.) Projetar e descrever em Verilog, usando portas nativas,

uma unidade lógica (LU) com operações AND e NAND,

com duas saídas simultâneas (paralelas, 2 respostas), para variáveis de entrada 01 com bit cada.

O nome do arquivo deverá ser Exemplo_0701.v,

e poderá seguir o modelo descrito abaixo.

Incluir previsão de testes.

Simular o módulo no Logisim e apresentar *layout* do circuito e subcircuitos.

02.) Projetar e descrever em Verilog, usando portas nativas,

uma unidade lógica (LU) com operações OR e NOR,

com uma saída selecionável (1 resposta), para variáveis de entrada com 01 bit cada.

O nome do arquivo deverá ser Exemplo_0702.v.

Incluir previsão de testes.

Simular o módulo no Logisim e apresentar layout do circuito e subcircuitos.

DICA: Usar para o sinal extra para a seleção (0-OR;1-AND).

03.) Projetar e descrever em Verilog, usando portas nativas,

uma unidade lógica (LU) com o acréscimo das operações

AND e NAND, com uma saída só para ambas, para variáveis de entrada com 01 bit cada, além de OR e NOR na mesma situação. Os resultados de cada grupo serão selecionados por uma primeira chave (2x1); para selecionar uma porta em cada grupo, e outra chave (2x1) que selecionará entre o grupo (AND, NAND) ou o grupo (OR, NOR). O nome do arquivo deverá ser Exemplo_0703.v.

Incluir previsão de testes.

Simular o módulo no Logisim e apresentar layout do circuito e subcircuitos.

DICA: Usar para o primeiro sinal para a seleção (0-AND/NAND:1-OR/NOR).

Usar para o segundo sinal para a seleção (0-grupo AND/NAND;1-OR/NOR).

04.) Projetar e descrever em Verilog, usando portas nativas,

uma unidade lógica (LU) com o acréscimo das operações

XOR e XNOR, , com uma saída só para ambas, para variáveis de entrada com 01 bit cada, além de OR E NOR; na mesma situação. Os resultados de cada grupo serão selecionáveis entre o grupo (XOR, XNOR) ou o grupo (OR, NOR), seleção (4x1).

O nome do arquivo deverá ser Exemplo_0704.v.

Incluir previsão de testes.

Simular o módulo no Logisim e apresentar layout do circuito e subcircuitos.

DICA: Usar para o sinal extra de 2 bits para a seleção (00-OR; 01-NOR;10-XOR; 11-XNOR).

05.) Projetar e descrever em Verilog, usando portas nativas,

uma unidade lógica (LU) com o acréscimo das operações

NOT, OR, NOR, AND, NAND, XOR, XNOR, simultâneas, com apenas 1 saída, selecionável (7x1).

O nome do arquivo deverá ser Exemplo_0705.v.

Incluir previsão de testes.

Simular o módulo no Logisim e apresentar layout do circuito e subcircuitos.

DICA: Usar um sinal extra de 3 bits para a seleção.

Extras

- 06.) Projetar e descrever em Verilog, usando portas nativas, uma unidade lógica (LU) com um comparador de bits usando portas XOR e XNOR para calcular a igualdade ou desigualdade, para variáveis com 2 bits cada, selecionável (0-igual; 1-diferente).

 O nome do arquivo deverá ser Exemplo_0706.v. Incluir previsão de testes.
 Simular o módulo no Logisim e apresentar *layout* do circuito e subcircuitos.
 DICA: Montar a tabela-verdade e identificar os mintermos.
- 07.) Projetar e descrever em Verilog, usando portas nativas, uma unidade lógica (LU) com um comparador de bits usando apenas portas básicas (NOT, AND, OR) para calcular a magnitute (se maior ou menor), para variáveis com 2 bits cada, selecionável (0-menor; 1-maior).
 O nome do arquivo deverá ser Exemplo_0707.v. Incluir previsão de testes.
 Simular o módulo no Logisim e apresentar *layout* do circuito e subcircuitos.
 DICA: Montar a tabela-verdade e identificar os mintermos.