Comprehensive Study Guide for Advanced Machine Learning

Eshaan Arora

Contents

1	Ove	erview and Recap			
	1.1	Data Science Lifecycle			
	1.2	Predictive Analytics			
2	Advanced Multivariate Regression				
	2.1	Basis Function Expansion			
	2.2	Regularization Techniques			
	2.3	Bias-Variance Tradeoff			
	2.4	Polynomial Regression			
3	Neural Networks for Regression				
	3.1	Activation Functions			
	3.2	Stochastic Gradient Descent (SGD)			
	3.3	Backpropagation			
	3.4	Multi-Layer Perceptrons (MLPs)			
	3.5	Transfer Learning			
	3.6	Multi-task Learning			
4	Data Pre-Processing				
	4.1	Data Transformations			
	4.2	Imputation			
	4.3	Dimensionality Reduction			
	4.4	Handling Outliers			
5	Classification Theory and Methods				
	5.1	Decision Theory			
	5.2	Bayesian Classifier			
	5.3	Probabilistic Generative Models			
	5.4	Performance Metrics			

6	Ensemble Methods			
	6.1	Bagging and Boosting	Ĝ	
	6.2	Random Forests	Ĝ	
	6.3	Mixture of Experts (MoE)	Ĝ	
	6.4	Stacking Ensembles	Ĝ	
7	Deep Learning and Transformers			
	7.1	Convolutional Neural Networks (CNNs)	10	
	7.2	Transformers	10	

1 Overview and Recap

1.1 Data Science Lifecycle

- The lifecycle involves iterative steps: Problem Definition → Data Collection → Preprocessing → Exploratory Data Analysis → Model Building → Evaluation → Deployment.
- Emphasis on feedback loops for continuous model improvement.
- Maximum Likelihood (ML) Principle:

$$\hat{\theta} = \arg \max_{\theta} L(\theta|X) = \arg \max_{\theta} \prod_{i=1}^{N} P(x_i|\theta),$$

where $L(\theta|X)$ is the likelihood function for parameter θ given data X.

• No Free Lunch Theorem: There is no universally best model; tradeoffs must be understood.

1.2 Predictive Analytics

- Descriptive Analytics: Summarizes past data to find patterns and insights.
- **Predictive Analytics:** Models like regression and classification to predict unknown or future data points.
- Prescriptive Analytics: Suggests actions, often involving reinforcement learning.

2 Advanced Multivariate Regression

2.1 Basis Function Expansion

- Allows for non-linear relationships by transforming input features.
- Common examples:

$$\phi_1(x) = x, \ \phi_2(x) = x^2, \ \phi_3(x) = \sin(x).$$

2.2 Regularization Techniques

• Ridge Regression:

$$\min_{w} \left\{ \sum_{i=1}^{N} (y_i - w^T x_i)^2 + \lambda ||w||_2^2 \right\}.$$

• Lasso Regression:

$$\min_{w} \left\{ \sum_{i=1}^{N} (y_i - w^T x_i)^2 + \lambda ||w||_1 \right\}.$$

• Elastic Net Regularization: Combines Ridge and Lasso penalties to balance feature selection and coefficient shrinkage.

2.3 Bias-Variance Tradeoff

 $Error = Bias^2 + Variance + Irreducible Error.$

- High bias: Underfitting.
- High variance: Overfitting.
- Learning curves can help detect high bias (both training and validation errors are high) or high variance (training error is low, but validation error is high).

2.4 Polynomial Regression

• Fits data using polynomial terms (e.g., x, x^2 , x^3) to capture non-linear relationships.

3 Neural Networks for Regression

3.1 Activation Functions

- Rectified Linear Unit (ReLU): Efficient, but prone to the dying ReLU problem.
- Leaky ReLU: Addresses dying ReLU by allowing a small slope for negative inputs.
- Sigmoid and Tanh: Useful for smooth outputs but suffer from vanishing gradients.

3.2 Stochastic Gradient Descent (SGD)

- Iterative method to minimize loss functions.
- Weight update:

$$w_{t+1} = w_t - \eta \frac{\partial L(w_t)}{\partial w},$$

where η is the learning rate.

• Momentum-based SGD accelerates convergence by incorporating previous updates.

3.3 Backpropagation

- Efficiently computes gradients for multi-layer networks using the chain rule.
- Modular view using Jacobian matrices for error propagation through layers.
- Steps:
 - 1. Forward pass to compute predictions.
 - 2. Compute the error at the output.
 - 3. Propagate the error backward to update weights.

3.4 Multi-Layer Perceptrons (MLPs)

- Universal approximators capable of modeling any continuous function with sufficient complexity.
- Use non-linear activation functions in hidden layers for expressiveness.
- Softmax function in output layers ensures probabilities sum to 1 in classification tasks.

3.5 Transfer Learning

- \bullet Involves reusing a pre-trained model on a new, related task.
- Steps:
 - Pre-training: Train on a large dataset for a general task.
 - Fine-tuning: Adjust model weights for the specific task using a smaller dataset.

3.6 Multi-task Learning

- Simultaneously learns multiple related tasks, sharing knowledge across tasks.
- Shared layers capture general features, while task-specific layers refine predictions.

4 Data Pre-Processing

4.1 Data Transformations

• Logarithmic, scaling, and normalization transformations for improving model performance.

4.2 Imputation

- \bullet Strategies include mean, median, or mode imputation and more advanced techniques like k-Nearest Neighbors imputation.
- Missingness patterns (MCAR, MAR, MNAR) must be analyzed to decide imputation strategies.

4.3 Dimensionality Reduction

- Principal Component Analysis (PCA): Minimizes mean squared error (MSE) while retaining maximum variance.
- t-SNE: Projects high-dimensional data into 2D or 3D for visualization; preserves local structure.

4.4 Handling Outliers

- Probability-based methods (e.g., Parzen windows).
- Rule-based thresholds (e.g., 3 standard deviations from the mean).
- Distance-based methods (e.g., k-Nearest Neighbors).

5 Classification Theory and Methods

5.1 Decision Theory

• Bayes Decision Rule:

Classify x as
$$C_i$$
 if $P(C_i|x) > P(C_i|x), \forall j \neq i$.

ullet Reject Option: Classify x as unknown if posterior probabilities are too close to minimize expected loss.

5.2 Bayesian Classifier

- Relies on prior probabilities P(C) and likelihood P(x|C) to compute posterior probabilities using Bayes Rule.
- Optimal classifier minimizes expected error.

5.3 Probabilistic Generative Models

- Naive Bayes: Assumes feature independence for simplicity.
- LDA/QDA: Assumes Gaussian distributions for each class.

5.4 Performance Metrics

- Accuracy: $\frac{TP+TN}{Total}$.
- Precision: $\frac{TP}{TP+FP}$.
- Recall: $\frac{TP}{TP+FN}$.
- F1-Score: Harmonic mean of precision and recall.
- ROC and AUC: Trade-off between true positive and false positive rates.
- Calibration: Measures whether predicted probabilities match actual frequencies.

6 Ensemble Methods

6.1 Bagging and Boosting

- Bagging: Reduces variance through model averaging; deeper trees reduce correlation.
- Boosting: Sequentially builds models focusing on prior errors; aggressively reduces bias and variance.
- AdaBoost: Adjusts weights iteratively to focus on harder examples.
- Gradient Boosted Decision Trees (GBDT): Reduces both bias and variance.

6.2 Random Forests

- Combines decision trees with random feature selection at each split.
- Evaluates feature importance and uses out-of-bag error for validation.

6.3 Mixture of Experts (MoE)

• Uses gating networks to assign data points to specific expert models.

6.4 Stacking Ensembles

- Uses meta-learners to combine base learners by training a second model on base predictions.
- Combines diverse models for improved generalization.

7 Deep Learning and Transformers

7.1 Convolutional Neural Networks (CNNs)

• Convolution operation:

$$(f * g)(x) = \int_{-\infty}^{\infty} f(t)g(x - t) dt.$$

• Pooling operations reduce spatial dimensions.

7.2 Transformers

• Attention mechanism:

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V.$$