Variable list of the paper

Symbolic Verification of Current-state Opacity of Discrete Event Systems Using Petri Nets

 $({\it Paper~ID: SMCA-21-05-0955})$

Yifan Dong, Zhiwu Li, and Naiqi Wu

N	A Petri net, $N = (P, T, Pre, Post)$
P	The set of places of a Petri net
T	The set of transitions of a Petri net
\mathbb{N}	The set of non-negative integers
Pre	The pre-incidence function of a Petri net
Post	The post-incidence function of a Petri net
C	The incidence matrix of a Petri net
M	A marking of a Petri net
$\langle N, M_0 \rangle$	A Petri net system
σ	A sequence of transitions
$R(N, M_0)$	The reachability set of a Petri net system $\langle N, M_0 \rangle$
G	A labeled Petri net, $G = (N, M_0, \Sigma, l)$
\sum	An alphabet
l	A labeling function assigning to each transition with a symbol
	or the empty word ε
$\mathcal{L}(N,M)$	The language generated from M of a labeled Petri net
w	An observation
$\mathcal{C}(w)$	The set of markings consistent with w
\hat{T}	A subset of T
${\mathcal N}$	A next-state function
$\mathcal M$	A set of markings
Z	A directed acyclic graph, $Z = (Q, E)$
Q	A set of vertexes
E	A set of edges
q^{\bullet}	The postset of a vertex q
ullet q	The preset of a vertex q
F	A multi-valued decision diagram, $F = (Q, E, D, \delta, q_0, q_t)$
D	The set of labels in a multi-valued decision diagram
δ	A labeling function associating an edge with a label from D
q_0	The root vertex of a multi-valued decision diagram
q_t	The terminal vertex of a multi-valued decision diagram
$q[\omega]$	The child vertex of q with respect to a label ω
ζ	A path in a multi-valued decision diagram
ζ_{tb}	A top-bottom path in a multi-valued decision diagram

- ϱ The label sequence of a path in a multi-valued decision diagram
- $\mathcal{K}(F)$ The set of the label sequences of all top-bottom paths in F
 - H A matrix diagram, $H = (Q, E, \mathcal{D}, \delta, q_0, q_t)$
 - \mathcal{D} A set of label pairs in a matrix diagram
 - η A path in a matrix diagram
 - η_{tb} A top-bottom path in a matrix diagram
 - au The label sequence of a path in a matrix diagram
- $\mathcal{K}(H)$ The set of the label sequences of all top-bottom paths in H
 - $\bar{\mathcal{N}}$ The matrix diagram with respect to a next-state function \mathcal{N}
 - S A secret
- ex(S) The set of exposable markings.
 - F_o An MDD-based observer
- $\mathcal{N}(\mathcal{M})$ The unobservable reach of a set of markings \mathcal{M}
- $\mathcal{N}(\mathcal{M}, \alpha)$ The α -reach of a set of markings \mathcal{M}
 - $\hat{\mathcal{M}}$ A multi-valued decision diagram that represents a set of markings \mathcal{M}
 - $\bar{\mathcal{N}}_{\varepsilon}$ The matrix diagram decided by unobservable transitions.
 - $\bar{\mathcal{N}}_{\alpha}$ The matrix diagram decided by the observable transitions labeled with α .
 - F_e An exposable marking constructor
 - F_v An MDD-based verifier