National Institute of Technology, Rourkela-08

End semester Examination-2008, Session: 2008-09, Autumn Semester Programme: B.Tech, Semester: 5th Group/ Dept. Code: ---EC-311

Course name: Communication System, Duration of Examination: 03:00 hrs

Question		Full
no.	Answer any five questions.	Mark:50
	Fig. at the right hand margin indicates the marks.	:
	All part of a question should be answered at a single place.	<u> </u>
1	(a) State and prove Parseval's theorem.	05
	(b) Find the Fourier transform of sinw ₀ t. Compare with the transform of cosw ₀ t.	05
2	(a) Find the distribution function $F(x)$, if the probability density function is defined as, $\begin{cases} xe^{-x^2/2} & x \ge 0 \end{cases}$	05
	$f(x) = \begin{cases} xe^{-x^2/2} & x \ge 0 \\ 0 & x < 0 \end{cases}$	
	(b)Explain the process of SSB generation with the help of a block diagram.	05
3	(a) Explain the indirect method of frequency modulation generation with the help of a diagram.	05
	(b) Compare the process of A.M with F.M.	05
4	(a)Explain the process of PCM and draw a PCM based communication system.	05
	(b) Derive an expression for quantization noise. Also derive the SNR of a PCM system.	05
5	(a) If the spectral range of a band pass signal is extends from 20 to 82kHz. Find the acceptable range of sampling frequency f_s .	05
	 (b) The signal v(t)=cosw₀t+cos8w₀t is sampled by using natural sampling, (i) determine the minimum sampling rate f_s. (ii) Sketch v_s(t)=S(t)v(t), if S(t) is a train of pulse having a unit height. 	05
6	Write short notes on the following	
	(i) Differential pulse code modulation	02
	- (ii)Noise figure	02
	(iii)Equivalent noise temperature of a two-port cascade system.	02
	(iv)BPSK System	02
	(v)Autocorrelation	02 .

Signature of the paper setter
Name: Prof. Prasant Kumar Sahu