信息

量子信息

© LePtC (萌狸)

笔记项目主页: http://leptc.github.io/lenote

精

(同〈量子〉)

Nielsen & Chuang. Quantum Computation and Quantum Information. Cambridge □中译: 赵千川. 量子计算和量子信息(一:量子计算部分,二:量子信息部分). 清华大学出版社

Preskill@Caltech 讲义

Merli

thought experiment wave particle duality

电子通过双缝有干涉条纹 (梅利 1976 电子双棱镜, 此前一直是思想实验) \rightarrow **波粒二象性** [发生干涉时, 粒子性 $|c_1|^2 + |c_2|^2$, 波动性 $|c_1 + c_2|^2 = |c_1|^2 + |c_2|^2 + 2|c_1||c_2|\cos\theta$, 即多了条纹] Zeilinger Tonomura

累积实验 每次只发射一个粒子, 统计打在接收屏上的位置, 有条纹 (蔡林格 1982 中子, 殿村 1989 电子) complementarity principle

互补原理 / 并协原理 (玻尔 1927) 微观物体的波动性与粒子性互补

Pritchard

哪条路实验 监测每个粒子通过了哪条缝,监测手段提取信息能力越强,条纹衬比度越低 (皮查德 1995,用共振光照原子) 退相干的直接原因,不是光子散射带来动量干扰,而是提取信息后带来随机相移 micromaser

(斯卡利 1991, 激发态原子通过微波激射腔, 可从哪个腔中有光子判断哪条路) 退相干与 $\Delta x \Delta p$ 无关退相干源于原子态和腔态的纠缠, 若又擦除纠缠信息 (对腔态偏迹), 则相干恢复 quantum eraser

量子擦除实验 (乔瑞宇 1992) 正交偏振的光无条纹, 再做同向检偏可恢复条纹 (但记录粒子数减半)

delayed choice

Wheeler

Hellmuth

延迟选择实验 (惠勒 1978) (赫尔穆特 1987 实验)

无 BS_2 时, D_1 D_2 各 50%, 有 BS_2 时, 光程差可调, 一个 0% 另一个 100% 延迟选择: 在光脉冲通过 BS_1 后再决定是否放入 BS_2

结论: 和非延迟的实验结果相同

-SG 实验-

Stern-Gerlach experiment

施特恩 – 格拉赫实验 (1922 银原子 ($4d^{10}5s^1$ 核 $\frac{1}{2}$), 1927 氢原子) 加热射出一束中性原子, 沿 y 方向通过 z 方向有梯度的磁场, 原子束分裂成分立的两束 \rightarrow 电子除轨道角动量外还有内部转动自由度〈电子自旋〉(如果用自由电子束, 自旋和轨道磁矩带来的分裂相当)

sequential Stern-Gerlach experiment

可用经典的偏振光类比: S_z^\pm 是 0°,90° 线偏, S_x^\pm 是 45°,135° 线偏, S_y^\pm 是 L,R 圆偏

注 如果测量的可观测量仅参照一个基底,量子实验的确允许经典解释

Bell state / EPR pair

贝尔态 / EPR **对** 2 量子比特,关联 $\frac{1}{\sqrt{2}}(|00\rangle\pm|11\rangle)$,反关联 $\frac{1}{\sqrt{2}}(|01\rangle\pm|10\rangle)$ \rightarrow 此 4 态称为 **贝尔基** Einstein-Podolsky-Rosen paradox space-like separated

贝尔态

EPR **佯谬** (爱因斯坦 1935) 即使是类空分隔的纠缠对, 测量其中一个也会立刻导致另一个坍缩

- ① 量子力学认为未被观察的粒子尚不具有物理性质的测量值 → 导致存在超距作用 hidden variable
- ② 本来是有确定值的,量子力学理论不完备,引入某个隐藏物理量 $\begin{bmatrix} \mathbf{隐变量} \end{bmatrix}$ 可使测量值能准确预测 Alice 和 Bob 分别持 EPR 对中的一个,分别沿 \overrightarrow{a} , \overrightarrow{b} 方向测自旋,得结果 ±1 (实验的话存在丢失还有 0) spin correlation

两人结果相乘, 重复多次实验求平均, 定义 **自旋关联** $\langle \vec{a}, \vec{b} \rangle \equiv \langle \psi | \hat{\sigma}_a \hat{\sigma}_b | \psi \rangle$ **=** $\frac{\mathbb{E}^{3/2}}{\text{local hidden variable theory}} - \cos(\vec{a} \wedge \vec{b}) \langle \vec{a} \rangle \otimes \vec{b} \rangle$

CHSH 不等式 Alice 沿 a_1, a_2 方向测, Bob 沿 b_1, b_2 测, 可证明任何 **局域隐变量理论** 会得 $|\langle \vec{a}_1, \vec{b}_1 \rangle + \langle \vec{a}_2, \vec{b}_1 \rangle + \langle \vec{a}_2, \vec{b}_2 \rangle - \langle \vec{a}_1, \vec{b}_2 \rangle| \leq 2$

既然实验结果预先确定,则可以被列举,设系统处于测得 $(\alpha_1,\alpha_2,\beta_1,\beta_2)$ 态的概率为 p, 计算: $a_1b_1+a_2b_1+a_2b_2-a_1b_2=(a_1+a_2)b_1+(a_2-a_1)b_2=\pm 1$ (因为要么 $a_1=a_2$ 或 $a_1=-a_2$,必有一项为零) 另可以证明 $\langle \alpha_1\beta_1+\alpha_2\beta_1+\alpha_2\beta_2-\alpha_1\beta_2\rangle=\langle \alpha_1\beta_1\rangle+\langle \alpha_2\beta_1\rangle+\langle \alpha_2\beta_2\rangle-\langle \alpha_1\beta_2\rangle$,故测量结果平均值

 $\langle \alpha_1 \beta_1 + \alpha_2 \beta_1 + \alpha_2 \beta_2 - \alpha_1 \beta_2 \rangle \equiv \sum_{\alpha_1 \alpha_2 \beta_1 \beta_2} p(\alpha_1, \alpha_2, \beta_1, \beta_2) (\alpha_1 \beta_1 + \alpha_2 \beta_1 + \alpha_2 \beta_2 - \alpha_1 \beta_2)$ $\leq \sum_{\alpha_1 \alpha_2 \beta_1 \beta_2} p(\alpha_1, \alpha_2, \beta_1, \beta_2) \times 2 = 2$

$$\leq \sum_{\alpha_1 \alpha_2 \beta_1 \beta_2} p(\alpha_1, \alpha_2, \beta_1, \beta_2) \times 2 = 2$$

 \overrightarrow{b}_1

对于量子力学, 沿如图方向可得 $|\langle \vec{a}_1, \vec{b}_1 \rangle + \langle \vec{a}_2, \vec{b}_1 \rangle + \langle \vec{a}_2, \vec{b}_2 \rangle - \langle \vec{a}_1, \vec{b}_2 \rangle| =$

 $\cos\frac{\pi}{4} + \cos\frac{\pi}{4} + \cos\frac{\pi}{4} - \cos\frac{3\pi}{4} = 2\sqrt{2}$ 注 CHSH 不等式的代数上限是 4 (Popescu 1994)

non-signalling box quantum Popescu-Rohrlich box information causality

(对于非信令盒子模型, 数学上还存在比量子还强的关联 (如 PR 盒), 但都违背 信息因果律)

(CHSH 1969 等) 实验验证贝尔不等式被破坏, 可能要放弃定域性或实在性 reality

|定域性| 物体只能被其紧接的周围所直接影响 |实在性| 物理性质独立于观测行为而存在

GHZ 态

Greenberger-Horne-Zeilinger state

GHZ 态 (1990) 3 量子比特纠缠态, z 基换到 x 基下:

 $\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)=(|x_{+}x_{+}x_{+}\rangle+|x_{+}x_{-}x_{-}\rangle+|x_{-}x_{+}x_{-}\rangle+|x_{-}x_{-}x_{+}\rangle)$ ($\frac{1}{\sqrt{2}}(|000\rangle-|111\rangle)$ 则是所有位取反) vi 特点: 任意 2 位已知后, 可确定第 3 位的态 → (量子秘密共享)

 $\lceil \ \ \tfrac{1}{\sqrt{2}} (|000\rangle - |111\rangle) = \underbrace{\tfrac{1}{2\sqrt{2}}} \left[(|y_{+}\rangle + |y_{-}\rangle)^{\otimes 2} (|x_{+}\rangle + |x_{-}\rangle) - \tfrac{1}{\mathbf{i}^{2}} (|y_{+}\rangle - |y_{-}\rangle)^{\otimes 2} (|x_{+}\rangle - |x_{-}\rangle) \right] = |y_{+}y_{+}x_{+}\rangle + \dots \ \ \rfloor$ Alice, Bob, Charlie 各自沿x或y测自旋,现实验发现,当两人测Y一人测X时,结果之积总为+1

结果预先确定, 照旧列举, 在"任意
$$2Y1X$$
 得 $+1$ " 的限制下只有 8 种可能的状态组合:
$$\begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}$$
 都 $=1$,
$$\begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \end{bmatrix}$$
 等 3 种,
$$\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$
 等 3 种,
$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix}$$

因此当三人都测 x 时结果为 +1, 然而量子力学预测结果为 -1 (用的是 $|GHZ_-\rangle$ 态)

GHZ 定理 三粒子纠缠态, 存在一组对易可观测量, 直接确定地(而非统计地) 给出与经典不相容的结果

(潘建伟 1999 实验实现) 用光的两偏振态 $|H\rangle$, $|V\rangle$

用一束紫外脉冲产生两对(4个) 纠缠光子, 一个作触发, 脉冲 (200 fs) 远小于相干时间 (500 fs) 以保证纠缠

T, $D_{1\sim3}$ 同时触发时, T 必然记录 $|H\rangle$, 其伴侣必为 $|V\rangle$ 沿 b, 另 一对光子 a 束为 $|V\rangle$, 在 PBS₁ 全反射后变叠加态, b 束为 $|H\rangle$, 有两种可能:

- ① 伴侣到 D_3 , a 束 50% 的 $|H\rangle$ 进 D_2 , b 束进 D_1 , 得 $|HHV\rangle$
- ② 伴侣到 D_2 , a 束 50% 的 $|V\rangle$ 进 D_1 , b 束进 D_3 , 得 $|VVH\rangle$ 最终产生 $\frac{1}{\sqrt{2}}(|HHV\rangle + |VVH\rangle)$ [加号另证]

quantum computation QCP

① 量子计算 通用量子计算,量子模拟计算 QKD

communication cryptography

QSS

QSDC

- ② 量子通信 ① 量子密码学: 量子密钥分发, 量子秘密共享, 量子安全直接通讯, 量子振幅放大 teleportation dense coding steering
 - ② 量子通讯: 超空间传态, 密集编码, 量子导向, 量子成像

metrology

③ 量子计量 量子钟

量子比特

qubit

任何双态量子体系都可称为一个 **量子比特**, 状态记为 $|\psi\rangle = a|0\rangle + b|1\rangle = \frac{|y-y|}{|y-y|} \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$ (注: 量子信息的习惯是 $|0\rangle$ 代表 $|z_{+}\rangle$, $|1\rangle$ 代表 $|z_{-}\rangle$, 这样矩阵就左边从 $|00...\rangle$ 编码开始)

等效内存 n 量子比特的状态含 2^n 个复振幅 (不进行测量, 则隐含大量信息, 且随比特数指数上升)

(注: 用三级量子系统的任何差别理论上来看都可忽略)

 $|\psi\rangle$ 可看作二维复向量空间中单位向量 \rightarrow | **布洛赫球**| 面 任意混合态量子比特的密度矩阵可写为 $\hat{\rho} = \frac{1}{2}(I + \overrightarrow{r} \cdot \overrightarrow{\sigma}), |r| \leq 1$

极化矢量 $\vec{r} = |r|(\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta) = \langle\psi|\hat{\vec{\sigma}}|\psi\rangle =$ $\begin{bmatrix} a^* & b^* \end{bmatrix} \begin{pmatrix} \hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z \end{pmatrix} \begin{vmatrix} a \\ b \end{vmatrix} = \begin{pmatrix} a^*b + b^*a, & \mathbf{i}(b^*a - a^*b), & a^*a - b^*b \end{pmatrix}$

 $\operatorname{tr}(\hat{\rho}^2) = \frac{1}{2}(1+|r|^2)$,当 $a^2+b^2=1$ 时 |r|=1 表示 **纯态**

|r|=0 时 $\hat{\rho}=\frac{I}{2}$ 表示 完全混合态 (不仅指 $|0\rangle$, $|1\rangle$ 出现概率相等,而且所有相对相角 ϕ 都有可能出现) $\hat{\rho} = \frac{4 \times \delta}{4 \times \delta} \begin{bmatrix} a^* a & b^* a \\ a^* b & b^* b \end{bmatrix} = \frac{-\Re}{2} \begin{bmatrix} 1 + r_z & r_x - \mathbf{i} r_y \\ r_x + \mathbf{i} r_y & 1 - r_z \end{bmatrix} \mathbf{G} |z_+\rangle : \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad |z_-\rangle : \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad |x_+\rangle : \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad |x_-\rangle : \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

定理 任意保迹量子运算的图像是布洛赫球到自身的仿射映射, 幺正变换对应布洛赫球面的旋转

测量

量子测量由一组测量算符 $\{\hat{X}_x\}$ 描述, 这些算符作用在态矢上以概率 $p_x = \langle \psi | \hat{X}_x^{\dagger} \hat{X}_x | \psi \rangle$ 得实验结果 x, 测 量后体系的状态变成 $\frac{1}{\sqrt{p_x}}\hat{X}_x|\psi\rangle$ (要求测量算符完备 $\sum \hat{X}_x^{\dagger}\hat{X}_x = I$, 从而概率和 $\sum p_x = 1$)

推论 先测 X_i 再测 X_j 等价于单次测量 $X_k \equiv X_j X_i$ Positive Operator-Valued Measure

POVM 测量 可知 $\hat{E}_x \equiv X_x^{\dagger} \hat{X}_x$ 是半正定算符,满足完备性(不要求正交) 的 $\{\hat{E}_x\}$ 称为一个 POVM(不考虑测量后处于什么状态, 不必具有可重复性, 适用于如光子被测量后被吸收了的情况)

projective measurement

 $[\hat{E}_x]$ 构成正交投影算符 $] \rightarrow$ **投影测量** 厄米算符 \hat{X} 有谱分解 $\hat{X} = \sum x \hat{P}_x$, 投影算符 $\hat{P}_x = |x\rangle\langle x|$,

则测得 x 的概率为 $p_x = \langle \psi | \hat{P}_x | \psi \rangle$, 测量后状态坍缩到本征态 $\frac{1}{\sqrt{p_x}} \hat{P}_x | \psi \rangle$

投影测量有 可重复性 坍缩后重复测量,每次都得 x,不改变状态

定理 非正交的量子态不能可靠区分 (以概率 1 得不同结果) (否则就可以利用纠缠对超光速通讯了) 「设存在测量 E_i , i=1,2 使 $\langle \psi_i | E_i | \psi_i \rangle = 1$, 由测量算符完备, 有 $\sum_i \langle \psi_1 | E_i | \psi_1 \rangle = 1$, 从而 $\langle \psi_1 | E_2 | \psi_1 \rangle = 1 - 1 = 0$ 然而 $|\psi_1\rangle$, $|\psi_2\rangle$ 并非正交, 与 $\langle\psi_2|E_2|\psi_2\rangle=1$ 矛盾 |

囫 要区分 $|\psi_1\rangle = |0\rangle$, $|\psi_2\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$, 靠投影测量有概率误判, 用 POVM 测量可不误判 (代价是有概

率不能区分):
$$E_1 = \frac{\sqrt{2}}{1+\sqrt{2}} |1\rangle\langle 1|, E_2 = \frac{\sqrt{2}}{1+\sqrt{2}} \frac{1}{2} (|0\rangle - |1\rangle) (\langle 0| - \langle 1|), E_3 = I - E_1 - E_2$$

测得 1 必为 ψ_2 , 测得 2 必为 ψ_1 , 测得 3 无法区分 quantum money

|**量子钞**| 银行在发行的钞票上印上经典序列号和非正交量子比特序列, 只有银行保存这两者匹配的列表, (可信赖的) 商家想验证真伪时, 把经典序列号告诉银行, 银行指示商家按哪种基来测量子比特

quantum gate

|**量子门**| 幺正性是唯一的要求 (故总可逆)

泡利门 $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (量子非门, 交换幅度), $Y = \begin{bmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{bmatrix}$, $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

| **哈达玛门**| $H = \frac{X + Z}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$,即 $|0\rangle \rightarrow |x_{+}\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$, $H^{2} = I$ (先绕 y 转 90°,再绕 x 转 180°)

相位门
$$S = \begin{bmatrix} 1 & 0 \\ 0 & \mathbf{i} \end{bmatrix}$$
 $(Z \ \)$ 的根号) $\begin{bmatrix} \frac{\pi}{8} \ \ \ \end{bmatrix}$ $T = \begin{bmatrix} 1 & 0 \\ 0 & \mathbf{e}^{\mathbf{i}\pi/4} \end{bmatrix} \propto \hat{R}_z(\frac{\pi}{4})$ $(S \ \)$ 的根号) $\begin{bmatrix} \mathbf{e}^{\mathbf{i}\hat{\sigma}_n\theta} = I\cos\theta + \mathbf{i}\hat{\sigma}_n\sin\theta \end{bmatrix}$ $\hat{R}_z(\theta) = \begin{bmatrix} \mathbf{e}^{-\mathbf{i}\theta/2} & 0 \\ 0 & \mathbf{e}^{\mathbf{i}\theta/2} \end{bmatrix}$, $\hat{R}_x(\theta) = \begin{bmatrix} \cos\theta/2 & -\mathbf{i}\sin\theta/2 \\ -\mathbf{i}\sin\theta/2 & \cos\theta/2 \end{bmatrix}$, $\hat{R}_y(\theta) = \begin{bmatrix} \cos\theta/2 & -\sin\theta/2 \\ \sin\theta/2 & \cos\theta/2 \end{bmatrix}$

定理 任意单量子比特门 (2×2) 幺正矩阵) 可分解为 $U = e^{i\alpha} \hat{R}_n(\theta) = e^{i\alpha} \hat{R}_z(\beta) \hat{R}_y(\gamma) \hat{R}_z(\delta) \rightarrow e^{i\alpha} AXBXC$

常用 线路恒等式 XYX=-Y, $X\hat{R}_y(\theta)X=\hat{R}_y(-\theta)$, HXH=Z, HYH=-Y, HZH=X, $HTH=\hat{R}_x(\frac{\pi}{4})$

——多比特—

Controlled NOT

受控非门 |控制c,目标t $\rangle \rightarrow |c,t \oplus c\rangle$ (控制比特为 0 则目标比特不变, 为 1 则翻转)

$$U_{\text{CN}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} U_{\text{SW}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} H^{\otimes 2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{1} & -\frac{1}{1} & 1 & -1 \\ \frac{1}{1} & -\frac{1}{1} & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix} \quad \begin{vmatrix} |A\rangle & & |A\rangle \\ |B\rangle & & |B \oplus A\rangle \end{bmatrix} \equiv \begin{bmatrix} 1 & 1 & 1 & 1 \\ |B\rangle & & |B\rangle & |$$

对换 3 个 CNOT, 中间的反放 $\lceil |a,b\rangle \rightarrow |a,a\oplus b\rangle \rightarrow |a\oplus (a\oplus b),a\oplus b\rangle = |b,a\oplus b\rangle \rightarrow |b,a\rangle$

n 量子比特上的 H 变换: $H^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{a,b} (-1)^{ab} |a\rangle\langle b|$

 $a \longrightarrow a$ $b \longrightarrow b$

 $c \oplus ab$

Toffoli / CCNOT

|控控非门 $C^{2}(X)$, 可逆, 逆是自身, 可实现与 c=0, 非 a=b=1, 与非 c=1

→ 故量子机可以做经典计算 (量子机原则上不需要经典部分, 但有的话会更方便)

一般的 $\overline{\mathbf{GP}}$ U $\overline{\mathbf{O}}$ 实心点表示 1 时起作用, 空心圈表示 0 时起作用

用 Toffoli 门可构造出经典的可逆电路 (完成计算之后把逻辑门逆序再操作一遍) 计算过程不消耗能量**通用门** 最早确认的一组是受控非门 (CNOT) 加两个非平行的单量子比特门 (如 H 门加 $\frac{\pi}{8}$ 门),可以任意精度近似任意酉运算,后 (Yaoyun Shi 2002) 证明只用 Toffoli 门加上单比特的 H 门就可实现任意量子线路 (量子计算不过就是经典计算多个 H 门)

量子线路

initialization operation

rotation superposition

entanglement detection

① 初始化 ② 操作 (经典: 单:NOT, 双:NAND, 量子: 单:旋转 \rightarrow 叠加, 双:CNOT \rightarrow 纠缠) ③ 探测 acyclic

无环 量子线路不允许回路 (即无反馈) 线路不允许汇合,禁止扇入扇出 (因为不可逆) measurement

测量 把单量子比特状态变成 (依概率的) 经典比特状态, 经典线路用双线表示

principle of deferred measurement

推迟测量原理 总可以把测量从量子线路的中间步骤移到 线路末端 (如果中间需用到测量结果,可用量子运算代替)

principle of implicit measurement

隐含测量原理 量子线路中任何未终结的量子连线 (未被测量量子比特) 总可视作被测量 「第一量子比特的约化密度矩阵不受第二量子比特上测量的影响」

结论 要使测量可逆, 它必须不揭示被测量子态的任何信息

no-cloning theorem

不可克隆定理 不可能制作未知量子态的拷贝「量子理论是线性的」 (可以有以概率成功克隆的方法) [若 $\exists U$ 能 $|00\rangle \stackrel{U}{\rightarrow} |00\rangle$, $|10\rangle \stackrel{U}{\rightarrow} |11\rangle$, 则对于叠加态 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ 有 $|\psi0\rangle \stackrel{U}{\rightarrow} (\alpha |00\rangle + \beta |11\rangle) \neq |\psi\rangle \otimes |\psi\rangle$] ($U_{\rm CN}$ 可以拷贝经典态)

tomography

量子态层析 通过反复制备相同量子态,以不同方式测量,建立量子态的完整描述 guantum repeater

量子中继器 不能直接放大或测量, 把距离切成很多段, 接连做量子传态 entanglement distillation

跑一段距离后纯度会降低 → 纠缠纯化

——贝尔态应用—

4 种贝尔态可由 H 门后 CNOT 制备, 顺序反过来即为 贝尔基测量

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{\frac{1}{\sqrt{2}}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} |00\rangle \\ |01\rangle \\ |10\rangle \\ |11\rangle \end{bmatrix} = \xrightarrow{\frac{1}{\sqrt{2}}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} |00\rangle \\ |01\rangle \\ |10\rangle \\ |11\rangle \end{bmatrix}$$

superdense coding

超密编码 (Bennett 1992) Alice 和 Bob 分别持 EPR 对中的一个, Alice 想把 2 比特信息传给 Bob, 她只需: 若 $|00\rangle$ 不动, 若 $|01\rangle$ 做 X 门, 若 $|10\rangle$ 做 Z 门, 若 $|11\rangle$ 做 ZX = iY

然后她把手中的量子比特传给 Bob, Bob 做贝尔基测量即可quantum teleportation

量子传态 (Bennett 1993, 潘建伟 1997) 无需量子通信信道就可转移量子态 (需经典通讯, 故未超光速) [以 EPR 对 $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ 为例, Alice 持有左边那个, Bob 持右边那个, Alice 想把 $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ 传给 Bob, 她把 $|\psi\rangle$ 和粒子放一起做贝尔基测量(上方 2 根线), 然后通过经典通讯告诉 Bob 结果(双线), Bob 根据结果做相应操作可恢复 $|\psi\rangle$:若 $|00\rangle$ 不动, 若 $|01\rangle$ 做 X 门, 若 $|10\rangle$ 做 Z 门, 若 $|11\rangle$ 做 ZX

$$\begin{split} |\psi_0\rangle &= \frac{1}{\sqrt{2}} \left(\alpha |0\rangle + \beta |1\rangle\right) \left(|00\rangle + |11\rangle\right) \\ |\psi_1\rangle &= \frac{1}{\sqrt{2}} \left(\alpha |0\rangle \left(|00\rangle + |11\rangle\right) + \beta |1\rangle \left(|10\rangle + |01\rangle\right) \right) \\ |\psi_2\rangle &= \frac{1}{2} \left(\alpha (|0\rangle + |1\rangle) \left(|00\rangle + |11\rangle\right) + \beta (|0\rangle - |1\rangle) \left(|10\rangle + |01\rangle\right) \right) \\ \rightarrow 测量导致坍缩, 按前 2位重新分组 → \end{split}$$

 $|\psi_{3}\rangle = \frac{1}{2} (|00\rangle (\alpha |0\rangle + \beta |1\rangle) + |01\rangle (\alpha |1\rangle + \beta |0\rangle) + |10\rangle (\alpha |0\rangle - \beta |1\rangle) + |11\rangle (\alpha |1\rangle - \beta |0\rangle))$

结论 纠缠对是一种静态资源, 消耗一个 EPR 对加 2 经典比特通讯可实现 1 量子比特的传送

 \overline{E} 当 Alice 测量后, 未传经典消息前, Bob 端是 4 种量子态经典叠加, 可算得其 $\hat{\rho} = \frac{I}{2}$, 故不含任何信息 Quantum Secret Sharing

量子秘密共享 (Hillery 1999) ① Alice, Bob, Charlie 各持 GHZ 纠缠态的一个粒子 ② 三方随机选择在x或y方向做测量,三方公布测量基 (B,C 先告诉 A, A 再公布所有) ③ Bob, Charlie 必须把它们的信息联合起来才能还原 Alice 的信息,粒子利用效率为 $\frac{1}{2}$ (例如 A,B 测了 x, C 有 $\frac{1}{2}$ 概率也测了 x, 则 C 知 A B 同或反, B C 一起才能推出 A)

量子计算

目前只有 3 类已知优于经典算法的量子算法:

hidden subgroup discrete logarithm factoring

- ① **量子傅氏变换** 隐含子群问题, 离散对数, 求阶→ 求因子 (肖氏算法 1994) → 攻破 RSA (指数加速) unsorted database search quadratic
- ② **量子搜索** 无序数据库搜索 (葛氏算法 1996) (仅为根号加速, 但应用比肖氏广泛) simulation
- ③ **量子模拟** (费曼 1982) 所需资源随问题规模线性增加 (量子搜索可视为一种量子模拟问题的解) counting

量子计数 结合了 ① ② 两者

——量子并行

n 个 H 门同时作用的效果是 <mark>均衡叠加</mark> $|0^n\rangle \xrightarrow{H^{\otimes n}} \frac{1}{\sqrt{2^n}} \sum_{x}^{2^n} |x\rangle$ 设存在 U_f 作用是 $|x,y\rangle \xrightarrow{U_f} |y \oplus f(x)\rangle$,

对前 n 比特做 H 变换, 然后连接第 n+1 比特做 U_f , 可同时计算出所有函数值

 $|0^n\rangle|0\rangle \xrightarrow{H^{\otimes n}, U_f} \frac{1}{\sqrt{2^n}} \sum_{x}^{2^n} |x\rangle|f(x)\rangle$ (此并行性不能直接利用, 因为一次测量只能坍出一个 x)

离散傅氏变换是 $N=2^n$ 个复数集合 $\{x_j\}$ 到 $\{y_k\}$ 的变换 $y_k = \frac{1}{\sqrt{N}} \sum_{i=1}^{N-1} \mathbf{e}^{2\pi \mathbf{i} j k/N} x_j$

设有幺正变换 $|j\rangle \xrightarrow{U} \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i j k/N} |k\rangle$, 则 $\sum_{j=0}^{N-1} x_j |j\rangle \xrightarrow{U} \sum_{k=0}^{N-1} y_k |k\rangle$

把 j 写成二进制 $j=j_n.j_{n-1}...j_1$, 有量子傅氏变换的直积形式: (格里菲斯 1996) $|j\rangle\rightarrow2^{-n/2}\left(\left.|0\rangle+\mathbf{e}^{2\pi\mathrm{i}0.j_{n}}\left.|1\rangle\right.\right)\left(\left.|0\rangle+\mathbf{e}^{2\pi\mathrm{i}0.j_{n-1}j_{n}}\left.|1\rangle\right.\right)\ldots\left(\left.|0\rangle+\mathbf{e}^{2\pi\mathrm{i}0.j_{1}j_{2}...j_{n}}\left.|1\rangle\right.\right)$

经典的 FFT 花 $N \stackrel{\text{lb}}{\text{lb}}(N) = n2^n$ 步, 量子傅氏变换用 $(\stackrel{\text{lb}}{\text{lb}}N)^2 = n^2$ 步, 指数加速, 但计算结果不能直接利用 phase estimation

相位估计 设幺正算符 U 有一本征值为 $e^{2\pi i \varphi}$ 的本征矢 $|u\rangle$, 假定可以制备 $|u\rangle$, 要估计 φ Shor's algorithm

|肖氏算法| 解决的是求素因子问题: 给出合数 N, 求其非平凡的素因子 $p \neq 1, N$, 算法包括两部分:

- ① 传统部分 (以下记 (a,b) 为最大公约数)
- ① 任选数字 a < N, 用经典算法 (如辗转相除法) 算 (a, N), 若 $\neq 1$ 则已找到素因子 a
- ② 否则 $a \ni N$ 互素, 问题化为求函数 $f(x)=a^x \mod N$ 的周期 r (即 f(x+r)=f(x))
- ③ 若 r 是奇数, 换个 a 重来, 若 $a^{r/2} \equiv -1 \mod N$ 也要重来, 否则, $(a^{r/2} \pm 1, N)$ 就是 N 的素因子
- 例 分解 N=14, 取 a=3, 可验证 $3^0 \mod 14=1,\ldots,3^6 \mod 14=1$, 故周期 r=6, 是偶数, $3^3+1=28$, $3^3-1=26$, (28,14)=7, (26,14)=2, 故得 $N=7\times 2$
- ② 量子部分

传统部分把问题化为了求周期 $f(x+r)=f(x),0< r< 2^L$,可用量子傅立叶变换实现加速:

- ① 需用到 1 个寄存器, 初态为 $|0\rangle$, 和 O(L) 个量子比特的存储器, 初始化为 $|0\rangle$
- ② 对第一个寄存器应用 H 门等, 产生叠加态 $\frac{1}{\sqrt{2^t}}\sum_{x=0}^{2^t-1}|x\rangle|0\rangle$

③ 需用到一个执行运算 $U|x\rangle|y\rangle=|x\rangle|y\oplus f(x)\rangle$ 的**黑箱** $U,\ (\oplus$ 表示模 2 加法) 应用 U 得到态 $\frac{1}{\sqrt{2t}}\sum_{x=0}^{2^t-1}|x\rangle|f(x)\rangle\approx\frac{1}{\sqrt{r2t}}\sum_{l=0}^{r-1}\sum_{x=0}^{2^t-1}\mathbf{e}^{2\pi\mathbf{i}lx/r}|x\rangle|F(l)\rangle$,其中 $|F(l)\rangle$ 是 $|f(x)\rangle$ 的傅立叶变换

$$|F(l)\rangle = \frac{1}{\sqrt{r}} \sum_{x=1}^{r-1} e^{-2\pi \mathrm{i} lx/r} |f(x)\rangle \quad \text{④ 对第一个寄存器进行逆傅里叶变换} \ \frac{1}{\sqrt{r}} \sum_{l=0}^{r-1} |\widetilde{l/r}\rangle |F(l)\rangle$$

- ⑤ 测量第一个寄存器得到相位 l/r 的一个估计 $\widehat{l/r}$ (l 是随机选取的) ⑥ 用连分式算法得到 r
- **例** 还以 N=14 为例, $N^2=196$, 需 L=8, $2^L=256$

由于 f(x) 以 6 为周期, 傅变后很多项近似相消, 留下 $[m\frac{2^8}{6}]$, m=0,1,...,5 这些项概率幅明显不为零 $\frac{2^8}{6}\!pprox\!42.67$,故实验会得 $43,86,\dots$ 等结果中的一个,用连分式可还原出所渐进的分数 $\frac{256}{43}\!pprox\!5.95\!pprox\!6$

Grover

葛氏算法 是一种无序数据库搜索算法,通过一系列酉操作,使要查找的态的振幅逐步放大到 1 设初态是 $|\beta\rangle$ (可推广到 M 个) 和其它各态 $|\alpha\rangle$ ((N-M) 个) 的均衡叠加态 $|\psi\rangle = \frac{1}{\sqrt{N}} \sum |k\rangle$

$$|\psi\rangle\!=\!\frac{1}{\sqrt{N}}\sum_{i\notin\beta}^{N-M}|i\rangle+\sqrt{\frac{M}{N}}\,|\beta\rangle\!\equiv\!\sqrt{\frac{N-M}{N}}\,|\alpha\rangle+\sqrt{\frac{M}{N}}\,|\beta\rangle\!\equiv\!\cos\frac{\theta}{2}\,|\alpha\rangle+\sin\frac{\theta}{2}\,|\beta\rangle$$

均值反演运算 $\hat{O}=2|\psi\rangle\langle\psi|-I$ 「因为 $\hat{O}(\sum c_k|k\rangle)=\sum (2\langle c\rangle-c_k)|k\rangle$, 其中 $\langle c\rangle=\frac{1}{N}\sum c_k$ 」

oracle

设有一|**黑箱**|的作用是对要查找的态 $|\beta\rangle$ 的振幅取反 $2|\beta\rangle\langle\beta|-I$

(物理上不知道 $|\beta\rangle$ 在哪, 但数据库中可对其操作) 记 n=lbN

一次 Grover 迭代包括: ① $|\beta\rangle$ 态振幅取反 (相当于把 $|\psi\rangle$ 先对 $|\alpha\rangle$ 反射)

② 应用 H 变换 $H^{\otimes n}$ ③ $|0\rangle$ 态振幅取反 ④ 应用 H 变换 $H^{\otimes n}$

 $H^{\otimes n}(2|0)\langle 0|-I\rangle H^{\otimes n}=2|\psi\rangle\langle\psi|-I$ (相当于再对 $|\psi\rangle$ 反射), 最终转过了 θ 角

 $\arccos \sqrt{M/N}$ 次可使 $|\psi\rangle$ 最接

 $(经典要 \frac{N}{2} 次)$ 近 $|\beta\rangle$, 但最后不一定能和 $|\beta\rangle$ 完全重合

phase matching

若修改第 ① ③ 步的取反为其它角度 φ, ϕ, ω 须 $\varphi = \phi$ 才可能成功, 即 相位匹配 条件 (龙桂鲁 1999) 恰当地选择略小于 π 的角度可使最后结果刚好与 $|\beta\rangle$ 重合

量子通讯

Quantum Key Distribution

|**量子密钥分发**| 是一种用量子比特传输密钥的方案, 如果中间人想截获信息必然会引入干扰而被发现, 从 而通讯双方可丢弃已被窃听的密钥重新传送

Bennett Brassard 1984

|BB84 **协议** $| \bigcirc$ 随机生成 $(4+\delta)n$ 比特数据用于密钥备选 ① Alice 随机使用 $z \pm (|0\rangle, |1\rangle)$ 或 $x \pm (|+\rangle, |-\rangle)$ 编码该比特串, 把量子比特发给 Bob (选基随机, \pm 按①) ② Bob 随机使用 z 基或 x 基测量收到的量子 比特, 记录本征态 ③ 双方公布用过的测量基, 丢弃所有测量基不一样的 $(至少要剩下 2n \land ...$ 否则重来) ④ 从 2n 中挑出 n 个做窃听检测, 公布挑了哪几个 \rightarrow 如果双方测量结果全一致, 则存在窃听的概率为 $(\frac{3}{4})^n$, 剩下的 n 比特可作密钥

Bennett 1992

|B92 **协议** $| \bigcirc$ Alice 随机生成的比特数据 a, Bob 随机生成 b \bigcirc Alice 按 a 发送两种不正交的态(如光子 偏振 $90^{\circ}, 45^{\circ}$) 序列的量子比特 ② Bob 按 b 在这两个态的垂直方向上 $(0^{\circ}, -45^{\circ})$ 选基进行测量 ③ Bob 公布测量结果 c (而非测量基 b), 双方保留 c=1 的测量结果 ④ 同理利用经典信道对比一部分结果来进 行窃听检测 $\rightarrow a$ 作 Alice 的密钥 = (1-b) 作 Bob 的密钥

(B92 的只使用 2 个状态, 但效率只有 ¼, 省探测器费时间)

Ekert 1991

E91 **协议** ① 纠缠源发出 EPR 对分别被 Alice 和 Bob 接收 ① Alice 随机选用 0°,45°,90° 角度的基测 量, Bob 随机选用 45°,90°,135° ② 双方公布测量基, 并公布用了不同测量基的测量结果(相同基的保密) ③ 用 CHSH 不等式做窃听检测 (Alice 取方向 0°,90°, Bob 取方向 45°,135°) → 窃听检测通过后, 相 同基的测量结果可作密钥

QKD 的缺点在于只能发现窃听而不能避免窃听 →

Quantum Secure Direct Communication

量子安全直接通信 (龙桂鲁 2003) 是可以安全地直接传输讯息的方案

① Alice 制备 m+n 个 EPR 对, 都处于相同态, Alice 从每对中选一个粒子发给 Bob ② Bob 从他收到的 m+n 个粒子序列中随机选出 n 个, 随机用 z 基或 x 基测量, 公布其选了哪些、测量基和结果 ③ Alice 测自己手中对应的 n 个粒子, 如果结果完全关联则剩下 m 个是安全的, (即使发现被窃听, 此时还没有 传信息) ④ Alice 按密集编码的方法把要传递的信息 (加入适量用于安全检测的随机编码) 编在 m 个 量子比特中发给 Bob ⑤ Bob 对手中 m 对粒子做贝尔基测量读出信息, 此时 Alice 再告诉 Bob 哪些是 安全检测编码 (第一次安全检测已保证 Eve 无法获得信息, 第二次是为了判断是否信息被 Eve 破坏)

量子纠错

(历史上, 机械计算机困难的关键问题就在于出错〈信息学〉量子机同理, 纠错码相当于垒鸡蛋的架子)

repetition code

问题 ① 不可克隆, 回答: 实现|**重复码**|并非直积态 (实际上是纠缠态)

majority voting

囫 $|0\rangle \rightarrow |000\rangle$, $|1\rangle \rightarrow |111\rangle$, 然后用 |**多数判决**| 解码

问题 ② 测量会破坏量子信息, 回答: 差错监测 只指示

出现了什么差错,不揭示任何关于振幅 a,b 的信息

囫 辅助位联合测量 可纠 1 个比特翻转错误

问题 ③ 差错是连续的, 无穷精度的, 回答:

Shor 码 (1995) 实现了 9 量子比特纠 1 量子比特任意错误

$$|0\rangle \rightarrow |x_{+}\rangle^{\otimes 3} \rightarrow |\mathrm{GHZ}_{+}\rangle^{\otimes 3}, |1\rangle \rightarrow |x_{-}\rangle^{\otimes 3} \rightarrow |\mathrm{GHZ}_{-}\rangle^{\otimes 3}$$

(第一步纠相位翻转,第二步纠比特翻转)

quantum Hamming bound

量子給明界 $2(1+3n) \leqslant 2^n \to n \geqslant 5$,对抗单量子比特任意差错至少需 5 比特编码 (但 7 比特更常用) generator matrix

|消息| $\vec{\alpha} = \alpha_{1 \sim k}$, 记 $v(\alpha_{1 \sim k}) = \sum_i \alpha_i v_i$, **生成矩阵** $G = (v_{1 \sim k})^T$, 要求列线性无关 $\rightarrow v(\vec{\alpha}) = \vec{\alpha}G$

经典线性码 记用 n 比特来编码 k 个比特信息的为 [n,k,t] 码, 最多能纠正 t 比特反转错误 x 为普通二进制序列的 k 行 1 列向量, G 为 n 行 k 列, 记 $G(x)=(Gx) \mod 2$

parity check matrix

宇称校验矩阵 Hv=0, 要求行线性无关 $\to HG^T=0$, 记出错为 e, 有 H(v+e)=He

定理 H 的标准型为 $[A|I_{n-k}]$,相应 G 的标准型为 $\left|\frac{I_k}{-A}\right|$ (对于 \mathbb{Z}_2 域 -A=A)

效果: $\forall y \equiv (Gx) \bmod 2$, 使 $(Hy) \bmod 2 = 0$ (即元 error)

Calderbank-Shor-Steane

 $CSS(C_1,C_2)$ 称为 $[[n,k_1-k_2,t]]$ 量子纠错码, 如 Steane 码是 [[7,1,3]], 纠正 1 量子比特的任何错误

$$H_2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} = G_1^T$$

stabilizer code

稳定子码 用生成元组来描述更方便

7 比特 Steane 码有 6 个生成元 (各列为不同比特上的操作, 张量积)

(要求: 含偶数个 1, 且满足 $H \cdot v =$

[用生成元推: 从 $|0000000\rangle$ 开始, 测 g_4 , 则有可能得 $|0001111\rangle$ |

Ι $X \quad X \quad X$ g_1 Ι XXXX g_2 XZZZZZ q_5 Z

 $|0\rangle = \frac{1}{\sqrt{8}}(|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle + |0001111\rangle + |1011010\rangle + |10111100\rangle + |1101001\rangle)$ (逻辑 |1) 态是对逻辑 |0) 态的每个比特取反)

threshold theorem

國值定理 如果量子噪声可降到某阈值以下,则量子纠错码可继续使它无限下降 (代价是仅增加一点计 算复杂度)