Zadanie Numeryczne 6

Joanna Szewczyk

3.12.2024r

Treść zadania

Dane jest macierz:

$$M = \begin{pmatrix} 9 & 2 & 0 & 0 \\ 2 & 4 & 1 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

- (a) Stosując metodę potęgową, znajdź największą (co do modułu) wartość własną macierzy M oraz odpowiadający jej wektor własny. Na wykresie w skali logarytmicznej zilustruj zbieżność metody w funkcji liczby wykonanych iteracji.
- (b) Stosując algorytm QR bez przesunięć (opisany w zadaniu nr 6), znajdź wszystkie wartości
 - własne macierzy \mathbf{M} . Sprawdź, czy macierze A_i w kolejnych iteracjach upodabniają się do macierzy trójkątnej górnej. Przeanalizuj i przedstaw na odpowiednim wykresie, jak elementy diagonalne macierzy A_i ewoluują w funkcji indeksu i.
- (c) Zastanów się, czy zbieżność algorytmów z pkt. (a) i (b) jest zadowalająca. Jak można usprawnić te algorytmy?

Wyniki sprawdź używając wybranego pakietu algebry komputerowej lub biblioteki numerycznej.

Wstęp

Algorytm QR - to numeryczna metoda służąca do znajdowania wartości własnych macierzy. Opiera się na dekompozycji macierzy A na iloczyn dwóch macierzy: ortogonalnej Q i górnotrójkątnej R. Algorytm iteracyjnie poprawia przybliżenie wartości własnych przez przemnażanie R i Q, aż do uzyskania satysfakcjonującej dokładności wartości własnych, będących elementami diagonalnymi macierzy A_k

Kroki algorytmu:

Dekompozycja QR: Dla macierzy A_1 znajdujemy macierze Q_1 i R_1 , takie że:

$$A_1 = Q_1 R_1$$

gdzie Q jest macierzą ortogonalną ($Q^TQ=I$), a R jest macierzą górnotrójkątną.

Tworzymy nową macierz $A_{(k+1)}$ jako iloczyn R_k i Q_k :

$$A_{(k+1)} = R_k Q_k$$

Powtarzamy kroki, aż macierz A_k stanie się prawie diagonalna. Elementy na przekątnej będą zbiegać do wartości własnych macierzy.

Metoda potęgowa - to iteracyjna technika znajdowania największej (co do modułu) wartości własnej macierzy oraz odpowiadającego jej wektora własnego. Wykorzystuje fakt, że wielokrotne mnożenie macierzy $\bf A$ przez losowy wektor $\bf v$ zbiega do wektora własnego odpowiadającego największej wartości własnej.

Kroki metody:

Wybieramy losowy wektor początkowy v_0 i normalizujemy go:

$$\boldsymbol{v_0} = \frac{\boldsymbol{v_0}}{\parallel \boldsymbol{v_0} \parallel}$$

Iteracyjnie mnożymy i normalizujemy v_{k+1} , aby zapobiec wzrostowi wartości:

Wartość własną obliczamy jako:

$$\lambda_k = \frac{v_k^T A v_k}{v_k^T v_k}$$

Powtarzamy, aż różnica między kolejnymi wartościami własnymi będzie mniejsza niż zadana tolerancja ϵ :

$$|\lambda_{k+1} - \lambda_k| < \epsilon$$

Wyniki

Metoda potęgowa:

Największa wartość własna: 9.718548254100863

Odpowiadający wektor własny: [0.939847099686275, 0.33766403452546456, 0.0512478280189772, 0.006639964052657631]

Algorytm QR:

Wartości własne: [9.718548254119625, 4.301704905012373, 2.740194113151942, 1.2395527277160612]

Porównanie wyników z funkcją wbudowaną (scipy.linalg.eig):

Wartości własne: [9.718548254119634, 4.301704905012374, 2.740194113151944, 1.239552727716061]

20

Podsumowanie

10

Metoda potęgowa zastosowana do naszej macierzy, jak możemy zauważyć na wykresach pozwala na uzyskanie dokładności na tym samym poziomie przy mniejszej ilości iteracji w porównaniu do algorytmu QR. Wadą metody potęgowej jest fakt iż działa ona tylko dla macierzy symetrycznych oraz fakt iż dla większych macierzy i konieczności znalezienia większej ilości wektorów własnych jej działanie stawałoby się bardziej kosztowne. Dla metody potęgowej istotnym usprawnieniem mogłoby być zastosowanie wersji odwrotnej lub przesuniętej, które poprawiają zbieżność w przypadku blisko położonych wartości własnych. W celu usprawnienia działania można zastosować znormalizowaną wersję metody potęgowej, by uniknąć problemów z precyzją.

Liczba iteracji

40

50

Algorytm QR jest efektywną metodą znajdowania wartości własnych macierzy poprzez iteracyjne dekompozycje i przemnażanie macierzy, co prowadzi do uzyskania dokładnych wyników. Aby jeszcze bardziej usprawnić jego działanie możemy wykorzystać jedną z jego istotnych zalet, którą jest fakt, iż zachowuje on symetrię oraz strukturę trójdiagonalną i postać Hessenberga macierzy. Można by także zastosować przesunięcia spektralne (np. metodą Rayleigha) by przyspieszyć zbieżność.

Porównując nasze rozwiązanie z rozwiązaniem z biblioteki numerycznej możemy zauważyć różnicę dopiero na 14 miejscu po przecinku. Jeśli chcielibyśmy aby nasze wyniki były dokładniejsze należałoby zwiększyć liczbę iteracji w algorytmie lub zastosować bardziej precyzyjne typy danych, takie jak liczby zmiennoprzecinkowe o podwójnej lub rozszerzonej precyzji. Jednak zwiększenie dokładności numerycznej wiąże się również ze wzrostem czasu obliczeń i większym zużyciem pamięci, co należy uwzględnić w praktycznych zastosowaniach.