EEE41L/ETE141L Updated By: Maria Moosa

Lab 2: KCL, Current Divider Rule with Parallel and Ladder Circuit.

Objectives

- Learn how to connect a parallel circuit on a breadboard.
- Validate the current divider rules.
- Verify Kirchhoff's current law.
- Verify KCL and KVL in ladder circuit.

List of Components:

- I. Trainer board
- II. Resistors (1K, 3.3 K Ω , 4.7 K Ω , 5.6K, 10K)
- III. Digital Multimeter (DMM)
- IV. Connecting Wire

Circuit Diagram:

Procedure:

- 1. Identify all the given resistors using color coding and fill in the required columns in Table 1.
- 2. Measure the resistances of the resistors using the DMM and fill in the required column in Table 1.
- 3. Calculate the percentage error of the resistance values.

Percentage Error = |(Practical value – Theoretical value)| / Theoretical value

- 1. Build the circuit 1
- 2. Using the DMM, measure the currents I_s , I_1 , I_2 , and I_3 . Record the readings in Table 2.
- 3. Fill in Table 3.
- 4. Now, disconnect the voltage source from the circuit and measure the total load resistance, Req of the circuit using DMM. Note down values in Table 4.
- 5. Construct Circuit 2.
- 6. Using a DMM, measure the potential differences across all the resistors in circuit 2. Record all the readings in Table 5

EEE41L/ETE141L Updated By: Maria Moosa

7. Using a DMM, measure the current through all the resistors and record in Table 5.

Table 1:

Resistance using colour coding					
Band 2	Band 3	Band 4	Resistance ± tol	Resistance using DMM	% Error
				Resistance ±	Resistance ± Resistance

Table 2:

Experimental readings		Theoretical values					
Is	I_{R1}	I_{R2}	I_{R3}	Is	I_{R1}	I_{R2}	I_{R3}
	% Error						
	Is	I_{R1}		I_{R2}		I_{R3}	

Table 3:

Is	Is	Total Current equal to sum individual current?
Sum of individual Current $(I_{R1} + I_{R1} + I_{R3})$		

Table 4:

Experimental Req	Theoretical Req	% Error

Table 5:

Component	Voltage	Current
E		
R1		

EEE41L/ETE141L Updated By: Maria Moosa

R2	
R3	
R4	
R5	
R6	

Report

- 1. State the current division rule.
- 2. State the Kirchhoff's current law (KCL)
- 3. Showing all steps, calculate the theoretical values in Table 2. Compare theoretical values to your experimental values and explain whether your circuit follows KCL or not.
- 4. Does your circuit follow current division rule?
- 5. Showing all the steps, theoretically calculate Req. Compare with the experimental value.
- 6. Calculate all the theoretical values for Table 5. Show all steps.
- 7. Verify Kirchhoff's voltage law within each independent closed loop of the circuit from the experimental data
- 8. Verify Kirchhoff's current law at nodes a and b of the circuit from the experimental data.

Useful Formula:

Current Divider Rule : $I_X = I_S R_T / R_X$

% Error = (Theoretical value – Experimental Value) / Theoretical Value