

Algoritmica grafurilor V. Arbori si paduri

Mihai Suciu

Facultatea de Matematică și Informatică (UBB) Departamentul de Înformatică

Martie, 24, 2022

1 / 47

Continut

- Arbori si paduri
 - Definitii
 - Arbori de acoperire
 - Algoritmul lui Kruskal
 - algoritmul lui Prim
 - Prufer
 - codare Huffman

/ 47

Arbori si padu

Arbori și păduri

• un arbore

3/4

Arbori si padu

Arbori și păduri (II)

• o pădure

4 /

rbori si paduri

Arbori și păduri

• un graf care nu este arbore sau pădure

Arbori si pad

Definitii

Arbori și păduri - definiții

Definiti

Un arbore este un graf simplu care nu are cicluri.

O **pădure** este un graf G = (V, E) simplu în care fiecare componentă este un arbore.

5 / 47

6 / 47

Arbori și păduri - definiții (II)

Definiție

un vârf u al unui graf simplu G = (V, E) se numește **frunză** dacă $d_G(u) = 1$. Un vârf care nu este frunză se numește vârf intern.

Multe proprietăți asociate arborilor pot fi derivate din următoarea teoremă

Teorema 4.2

fiecare arbore cu minim două vârfuri are cel puțin două

Arbori și păduri - definiții (III)

Demonstrație.

- fie T un arbore cu $n \ge 2$, fie p lanțul de lungime maximă din T și u, v vârfurile lui p
- se arată că u și v sunt frunze, d(u) = d(v) = 1, este suficient să se demonstreze pentru un singur vârf
- dacă $d(u) \ge 2 \Rightarrow \exists e \in E, e \notin p$, având vârfurile $u, w \in V$
- avem două cazuri:
 - $w \notin p \Rightarrow \text{lanțul compus } p' = (w, e, u)p \text{ este un lanț din}$ T având lungimea lanțului p plus $1 \longrightarrow$ contradicție (planțul de lungime maximă)
 - $v \in p$, dacă p'' este lanțul de la u la v atunci avem un vciclu c=(w,e,u)p'' de lungime cel puțin 3 în $T\longrightarrow T$ nu este arbore
- $\bullet \Rightarrow d(u) = 1$

Arbori și păduri - definiții (IV)

Fie G = (V, E) un graf de ordin $n \ge 2$, afirmațiile următoare sunt echivalente și caracterizează un arbore:

- G este un arbore
- ② G este fără cicluri și are n-1 muchii
- G este conex și are n-1 muchii
- G este conex și suprimând o muchie nu mai este
- între oricare două vârfuri ale grafului există un singur lant
- G este fără cicluri și prin adăugarea unei muchii între două vârfuri neadiacente se formează un singur ciclu

Arbori și păduri - definiții (V)

Teorema Erdős-Szekeres

dacă $(x_1, x_2, ..., x_{hk+1})$ este o secvență de numere reale distincte, atunci există o subsecvență crescătoare de h+1 elemente sau o subsecvență descrescătoare de k+1 elemente.

Corolar

fiecare secventă de numere reale distincte de lungime n contine o subsecventă de lungime $\lceil \sqrt{n} \rceil$ strict crescătoare sau strict descrescătoare.

Arbori și păduri - definiții (VI

Centrul unui arbore

fie G = (V, E) un graf și $u \in V$

ullet excentricitatea $\epsilon_G(u)$ a lui u în G este distanța de la u la vârful cel mai îndepărtat de u din G,

$$\epsilon_G(u) = \max(\delta_G(u, v)|v \in V)$$

• centrul lui G este vârful pentru care

 $\min_{u\in V}(\epsilon_G(u))$

Arbori și păduri - definiții (VII)

Rădăcina unui arbore

fie T un arbore și $r \in V(T)$. Un arbore cu rădăcină este perechea ordonată (T, r), vârful r se numește rădăcina arborelui.

Arbori și păduri - definiții (VIII)

Arbore binar

un arbore binar este un arbore ce are o rădăcină, este ordonat și în care fiecare vârf are cel mult doi succesori. Succesorii fiecărui vârf sunt ordonați, fiul stâng și fiul

Arbori de acoperire (spanning trees)

Ex. realizarea unui circuit electronic

- terminalele mai multor componente electronice trebuie interconectate
- pentru a conecta n terminale e nevoie de n-1conexiuni, fiecare conectând două terminale
- dintre toate aranjamentele cel mai dezirabil este cel care folosește cât mai puțin cupru pentru a conecta terminalele

Arbori de acoperire (II)

problema poate fi rezolvată cu ajutorul unui graf

Definire problemă

fie un graf G = (V, E) simplu neorientat unde V este setul terminalelor și E este setul conexiunilor posibile între terminalele componentelor. Pentru fiecare muchie $(u, v) \in E$ avem o pondere w(u, v) ce specifică costul legăturii (ex. cantitatea de cupru folosită). Vrem să găsim un subset aciclic $T \subseteq E$ care leagă toate vârfurile având costul total

$$w(t) = \sum_{(u,v)\in T} w(u,v)$$

minim.

Arbori de acoperire (III)

- deoarece T este aciclic si leagă toate vârfurile, T este un arbore numit arbore de acoperire
- problema cere determinarea arborelui minim de acoperire

Arbori de acoperire (IV)

Un arbore de acoperire $\mathcal T$ are următoarele proprietăți

- T este conex
- T este aciclic
- T are n vârfuri
- T are n-1 muchii

Dacă un subgraf T al unui graf G = (V, E) are oricare trei astfel de proprietăți atunci T este un arbore de acoperire.

Cayley

fie un graf complet K_n , numărul arborilor etichetați este

Arbore de acoperire minimă - metoda generică

Fie un graf simplu neorientat G = (V, E) cu funcția de

pondere $w: E \to \mathbb{R}$ și vrem să găsim arborele minim de acoperire a lui G.

 generic, abordarea folosită este surprinsă de procedura

generic_mst(G)

- 1: $A = \emptyset$
- 2: while A nu este un arbore minim de acoperire do
- 3: găsește o muchie (u, v) sigură pentru A
- $A = A \cup \{(u,v)\}$
- 5: return A
- arborele minim de acoperire crește muchie cu muchie

Arbore de acoperire minimă - metoda generică (II)

- arbore minim de acoperire
 în fiecare pas se găsește o muchie care împreună cu
- A formează un subset al unui arbore minim de acoperire (muchie *sigură*)
- partea dificilă: găsirea muchiei (u, v) astfel încât $A \subseteq T$
- o tăietură (S, V S) a unui graf neorientat G = (V, E) este o partiție a lui V

20 / 47

Arbori si paduri

Arbori de acoperi

Arbore de acoperire minimă - metoda generică (III)

Teorema

fie G=(V,E) un graf simplu neorientat ponderat cu funcția de pondere $w:E\to\mathbb{R}$. Fie A un subset al lui E inclus într-un arbore minim de acoperire al lui G, fie (S,V-S) o tăietură a lui G ce respectă A și (u,v) muchia de pondere minimă ce traversează tăietura (S,V-S). În acest caz, muchia (u,v) este sigură pentru A.

Corolar

G=(V,E) un graf simplu neorientat ponderat cu funcția de pondere $w:E\to\mathbb{R}$. Fie A un subset al lui E inclus într-un arbore minim de acoperire al lui G, fie $C=(V_C,E_C)$ o componentă conexă (arbore) în pădurea $G_A=(V,A)$. Dacă (u,v) este o muchie de pondere minimă ce leagă componenta C de o altă componentă din G_A , atunci (u,v) este sigură pentru A.

bori si paduri

lgoritmul lui Krusl

Algoritmul lui Kruskal - exemplu

. 12

Algoritmul lui Kruskal

8

Algoritmul lui Kruskal

mst_kruskal(G,w)

1: $A = \emptyset$

2: for $v \in V$ do

3: make_set(v)

4: sortare muchii crescător după ponderea w

5: **for** $(u, v) \in E$ luate crescător după w **do**

6: **if** find_set(u) \neq find_set(v) **then**

7: $A = A \cup (u, v)$

8: union(u,v)

9: return A

• implementarea folosește o structură de date de tipul disjoint-set (union-find, merge-find)

Arbori si padu

lgoritmul lui Krusk

Algoritmul lui Kruskal - exemplu (II)

Algoritmul lui Kruskal - exemplu (II)

9 15 8 11

25 / 47

Algoritmul lui Kruskal - exemplu (II)

Algoritmul lui Kruskal - exemplu (II)

11

Algoritmul lui Kruskal - exemplu (II)

27 / 47

Algoritmul lui Kruskal - exemplu (II)

9 15 11

31 / 47

Algoritmul lui Kruskal - exemplu (II)

9 15

Algoritmul lui Prim

mst_prin(G,w,r)

5: Q = V

6: while $Q \neq \varnothing$ do

 $u = extract_min(Q)$ 7:

for $v \in Adj[u]$ do 8:

if $v \in Q$ și w(u, v) < v.key then 9:

 $v.\pi = u$ 10:

v.key = w(u, v)11:

Algoritmul lui Prim - exemplu

Algoritmul lui Prim - exemplu (II)

38 / 47

Algoritmul lui Prim - exemplu (II)

5 8 8 C d 9 15 6 8 11 g

Algoritmul lui Prim - exemplu (II)

Algoritmul lui Prim - exemplu (II)

1/47

Algoritmul lui Prim - exemplu (II)

43 / 47

Codare Prüfer

CODARE_PRUFER(F)

- $K = \emptyset$ 1.
- 2. while T conține și alte vârfuri decât rădăcina do
- fie v frunza minimă din T3.
- 4. $K \leftarrow \operatorname{predecesor}(v)$
- 5. $T = T \setminus \{v\}$
- 6. return K

exemplu:

Decodare Prüfer

DECODARE_PRUFER(K, n)

- 1. $T = \emptyset$
- for i = 1, 2, ..., n 1 do 2.
- 3. x primul element din K
- 4. y cel mai mic număr natural care nu se găsește în K
- 5. $(x,y) \in E(T)$, x părintele lui y în T
- sterg x din K, adaugă y în K6.
- $\mathbf{return} \ \overline{T}$ 7.

Decodare Prüfer - exemplu

Codare Huffman

45 / 47

HUFFMAN(*C***)**

- 1: n = |C|
- 2: Q = C
- for $1 \le i \le n-1$ do
- alocă un nou vârf z 4:
- $z.stang = x = EXTRACT_MIN(Q)$ 5:
- $z.drept = y = EXTRACT_MIN(Q)$ 6:
- z.fr = x.fr + y.fr7:
- INSERT(Q, z)
- 9: return EXTRACT_MIN(Q)