CS188 Fall 2017 Section 12: Perceptrons / Neural Networks

1 Perceptron

We would like to use a perceptron to train a classifier with 2 features per point and labels +1 or -1. Consider the following labeled training data:

Features	Label
(x_1, x_2)	y^*
(-1,2)	1
(3, -1)	-1
(1,2)	-1
(3,1)	1

- 1. Our two perceptron weights have been initialized to $w_1 = 2$ and $w_2 = -2$. After processing the first point with the perceptron algorithm, what will be the updated values for these weights?
- 2. After how many steps will the perceptron algorithm converge? Write "never" if it will never converge.

 Note: one step means processing one point. Points are processed in order and then repeated, until convergence.

$Perceptron \rightarrow Neural Nets$

Instead of the standard perceptron algorithm, we decide to treat the perceptron as a single node neural network and update the weights using gradient descent on the loss function.

The loss function for one data point is $Loss(y, y^*) = \frac{1}{2}(y - y^*)^2$, where y^* is the training label for a given point and y is the output of our single node network for that point. We will compute a score $z = w_1x_1 + w_2x_2$, and then predict the output using an activation function g: y = g(z).

1. Given a general activation function g(z) and its derivative g'(z), what is the derivative of the loss function with respect to w_1 in terms of $g, g', y^*, x_1, x_2, w_1$, and w_2 ?

$$\frac{\partial Loss}{\partial w_1} =$$

2. For this question, the specific activation function that we will use is

$$q(z) = 1 \text{ if } z > 0 \text{ , or } -1 \text{ if } z < 0$$

Given the gradient descent equation $w_i \leftarrow w_i - \alpha \frac{\partial Loss}{\partial w_1}$, update the weights for a single data point. With initial weights of $w_1 = 2$ and $w_2 = -2$, what are the updated weights after processing the first point?

1

3. What is the most critical problem with this gradient descent training process with that activation function?

2 Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here x is a single real-valued input feature with an associated class y^* (0 or 1). There are two weight parameters w_1 and w_2 , and non-linearity functions g_1 and g_2 (to be defined later, below). The network will output a value a_2 between 0 and 1, representing the probability of being in class 1. We will be using a loss function Loss (to be defined later, below), to compare the prediction a_2 with the true class y^* .

1. Perform the forward pass on this network, writing the output values for each node z_1, a_1, z_2 and a_2 in terms of the node's input values:

- 2. Compute the loss $Loss(a_2, y^*)$ in terms of the input x, weights w_i , and activation functions g_i :
- 3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive $\frac{\partial Loss}{\partial w_2}$. Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the node's output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)

4.	Suppose the loss function is quadratic, $Loss(a_2, y^*) = \frac{1}{2}(a_2 - y^*)^2$, and g_1 and g_2 are both sigmoid functions
	$g(z) = \frac{1}{1+e^{-z}}$ (note: it's typically better to use a different type of loss, cross-entropy, for classification
	problems, but we'll use this to make the math easier).

Using the chain rule from Part 3, and the fact that $\frac{\partial g(z)}{\partial z} = g(z)(1 - g(z))$ for the sigmoid function, write $\frac{\partial Loss}{\partial w_2}$ in terms of the values from the forward pass, y^* , a_1 , and a_2 :

- 5. Now use the chain rule to derive $\frac{\partial Loss}{\partial w_1}$ as a product of partial derivatives at each node used in the chain rule:
- 6. Finally, write $\frac{\partial Loss}{\partial w_1}$ in terms of x,y^*,w_i,a_i,z_i :

7. What is the gradient descent update for w_1 with step-size α in terms of the values computed above?

3 Vectorized Gradients

Let's compute the backward step for a node that computes x^TAx , where x is a vector with m values, and A is a matrix with shape $m \times m$. Thus, $c = \sum_{i=1}^m x_i \sum_{j=1}^m A_{ij}x_j = \sum_{i=1}^m \sum_{j=1}^m A_{ij}x_ix_j = \sum_{j=1}^m x_j \sum_{i=1}^m A_{ij}x_i$.

- 1. What is $\frac{\partial f}{\partial A_{ij}}$?
- 2. What is $\frac{\partial f}{\partial A}$?
- 3. What is $\frac{\partial f}{\partial x_k}$?

4. What is $\frac{\partial f}{\partial x}$?