ME 202 S3 Tutorial 10 Thu 07 Apr 2022

Next page

- Consider a simply supported beam of length L and flexural rigidity El being buckled by an axial load P. Your goal is to double the first buckling load to $2\pi^2EI/L^2$ by introducing two rotational springs one at each end. Find the minimum value of the rotational spring stiffness to achieve the stated goal.
- Use the second order differential equation approach to solve this problem.
- B. Use the potential energy approach to solve this problem using a single DOF approximation for the deflected shape.

Consider a simply supported beam of length L and flexural rigidity EI
being buckled by an eccentrically applied axial load P. Use the second
order differential equation approach to show that as P approaches
the critical buckling load, the deflection of the beam becomes
uncontrollably large.

Consider the column of length L, L >> a, b of variable cross-section with b = a(3/2 - z/L). Use the potential energy method to calculate the approximate first buckling load of the column. Also comment on about which axis the column is likely to buckle first.

- A solid cylindrical tower AB of height H and diameter d (d << H) is shown. The properties of the material are: elastic modulus E, mass density rho. The gravitational acceleration g acts in the direction shown. A linearly distributed wind load per unit length with maximum intensity w_0 acts transversely as shown. Find the approximate maximum height H_max of the tower that can be built without causing the tower to buckle under its own weight i.e. find the height H_max for which the tower becomes unstable.
- Assume that the tower is fixed into the ground at A. Make and justify physically reasonable assumptions about the deflected shape of the tower. Note that the self-weight of the tower acts in a distributed manner throughout the axis of the tower as indicated by the black arrows.

٩

@

Ð

13

2

>

u'(0)	$=\frac{M_0}{\beta}$,	
	P	
В	$= -\frac{D46}{P} \left(\frac{1 - \cos \lambda L}{\sin \lambda L} \right)$) _ M6
	P sinhL	AB
Wa	$p = 2\pi^2 E I$	
	L ²	
	> 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	.4429
	BL = 3.3820	
	EI	
	B= 3.3820 ET	
	' L	
AIt,		
	-AlsinaL+ Bacos	AL = -Mo
		β
	$u'(L) = -\frac{Mo}{\beta}$	•

	Elastic Instability,
Energy approach,	L.S. Srinath Adv. Mech. of Solids
$\Pi = \int_{0}^{\infty} \left(\frac{EI}{2} u^{1}\right)^{2} - \frac{P}{2}$	u12) dz
	$\frac{1}{2}\beta(u'(0)) + \frac{1}{2}\beta(u'(L))$
Assume u = a sin IIz	
$\Pi(a) = \frac{a^2 \Pi^2}{4L^3} \left(-PL^2 + \frac{1}{4} \right)$	$EI\Pi^2$) + $\beta a^2 \Pi^2$ L^2
$\frac{d\Pi}{da} = 0, a \neq 0$	
$P = E \pi^2 + 4\beta$	L = 2N ² GI
$\beta = \frac{\mathbb{L}^2 E \mathbb{I}}{L^2}$	given L2
, L	
= 2.4674 EI	

3.
$$I = \frac{ba^3}{12} \quad case 1$$

$$I = \frac{a^4}{1^2} \left(\frac{3}{2} - \frac{z}{L} \right)$$

$$\Pi = \int_{L} \left(\frac{EI}{2} u^{11^2} - \frac{\rho}{2} u^{1^2} \right) dz$$

$$\begin{array}{c} O \quad Assume \quad u = Cz^2 \\ Eq^4 c^2 L - \frac{2}{3} Pc^2 L^3 = \Pi \\ \hline 6 & 3 \end{array}$$

$$\frac{d\Pi}{dc} = 0, \quad P_1^* = \frac{Ea^4}{4L^2}$$

$$Case \quad 2 \quad I = \frac{ab^3}{12} = \frac{a^4}{12} \left(\frac{3}{2} - \frac{z}{L} \right)$$

$$Assume \quad u = Cz^2$$

$$\frac{d\Pi}{dc} = 0 \quad \Rightarrow \quad P_2^* = \frac{5Ea^4}{16L^2} \quad a$$

$$P_1^* < P_2^*$$

4. H-7 H_{max},
$$u \rightarrow \infty$$
 asymmetric

H load

$$\Pi = \int_{0}^{\infty} \left(\frac{EI}{2} u^{\parallel^{2}} - wu \right) dz - \int_{0}^{\infty} \frac{1}{2} u^{\parallel^{2}} dz$$

$$O = \int_{0}^{\infty} A + \int_{0}^{\infty} \frac{1}{2} u^{\parallel^{2}} dz$$

$$O = \int_{0}^{\infty} A + \int_{0}^{\infty} \frac{1}{2} u^{\parallel^{2}} dz$$

$$O = \int_{0}^{\infty} A + \int_{0}^{\infty} \frac{1}{2} u^{\parallel^{2}} dz$$

$$\Pi = \int_{0}^{\infty} A + \int_{0}^{\infty} \frac{1}{2} u^{\parallel^{2}} dz$$

$$\Pi = \int_{0}^{\infty} A + \int_{0}^{\infty} \frac{1}{2} u^{\parallel^{2}} dz$$

$$\Pi = \int_{0}^{\infty} A + \int_{0}^{\infty}$$

0	Alt, "-wu)dz-	H Smg dz	$\int_{2}^{2} u^{2} dy$; , u=	cg²