Obramba pred tujki

Patogeni mikroorganizmi

- Vsak <u>večji organizem</u> je <u>idealno okolje</u>, v katerem je dovolj hrane in možnosti <u>za razvoj</u> in <u>razmnoževanje</u> <u>manjših organizmov</u>.
- Tem organizmom pravimo patogeni mikroorganizmi ali na kratko patogeni.

(zastrupitev s hrano – vročina, bruhanje, vnetje prebavil)

(infekcija sečil, peritonitis, menigitis,...)

(artritis, meningitis)

(gnojne razjede na koži in sluznicah, bolezni dihal, plučnica, ...)

Imunost

- Imunost je lastnost organizma, da postane odporen proti tujku.
- Poznamo <u>dva tipa imunosti</u>:
 - Prirojeno
 - Imunost, ki jo podedujemo
 - Pridobljeno
 - Imunost, ki jo pridobimo, ko pridemo v stik z določenim patogenom.

Zunanja nespecifična obramba

- Mesta, kjer se bije boj proti tujkom na prvi obrambni črti, so koža in sluznice dihal, prebavil in spolnih organov.
 - Koža s svojo zgradbo preprečuje fizičen vstop patogenov v telo.
 - Pri tem ne razlikuje med različnimi patogeni, zato pravimo, da izvaja nespecifično obrambo.
 - Žleze lojnice izločajo maščobne kisline in mlečno kislino, ki zakisajo kožo, kar predstavlja neugodno okolje za razvoj mikroorganizmov.
 - Sluzne žleze izločajo sluz, na katero se lepijo tujki, ki jih s sluzjo vred migetalčne celice odstranijo.

Zunanja nespecifična obramba

- Dlačice v nosnicah omejujejo vstop bakterij.
- Migetalke v nosni sluznici porivajo proti zunanjosti sluz in ujete mikroorganizme.
- Solze vsebujejo lisozim, ki uničuje bakterije.
- Želodčna kislina uničuje patogene organizme v želodcu.
- Kisli vaginalni izločki omejujejo rast glivic in bakterij

Koža in sluznice – prva obramba pred tujki

Notranja nespecifična obramba - vnetje

- Koža in sluznice so dokaj zanesljiv obrambni sistem.
- Če pa nastane v njih <u>rana</u>, vdrejo vanjo bakterije in drugi mikroorganizmi.
- Mastociti (ameboidne celice, ki so prisotne v vezivnih tkivih in posebno v bližini kapilar) sprostijo histamin (=vnetna snov), ki širi pore v stenah kapilar.
- Iz kapilar <u>se začne cediti krvna plazma</u>, v tkivo prilezejo <u>obrambne</u> beljakovine <u>komplementnega sistema</u>, ki privlačujejo tudi <u>bele krvne celice</u> (<u>celice požiralke</u> ali <u>fagocite</u>).
- Beljakovine komplementnega sistema uničijo bakterije.
- Celice požiralke se nato lotijo bakterij, ne glede na njihovo vrsto.
- Zato imenujemo to obrambo notranja nespecifična obramba.
- Vnetno stanje traja toliko časa, dokler so v rani patogeni.

Notranja nespecifična obramba – delovanje komplementnega sistema

- **Komplementni sistem** je skupina obrambnih beljakovin, ki <u>nastaja v</u> jetrih in <u>kroži po krvi</u>.
- S krvno plazmo <u>prispejo beljakovine do okuženega mesta</u>, kjer se <u>prva</u> izmed njih <u>aktivira</u>, ko pride <u>v stik z bakterijo</u>.
- Potem <u>se aktivirajo po vrsti še druge</u> in se <u>vgradijo v membrano</u> <u>bakterije</u>, tako da v njej <u>nastane luknja</u>.
- <u>Skozi luknjo</u> začne v bakterijo <u>vdirati voda</u>, iz nje pa <u>vhajati vsebina</u> celice.
- Nazadnje <u>bakterija</u> popolnoma <u>propade</u>, ostanke <u>požrejo fagociti</u>.

Notranja nespecifična obramba - fagociti

- Med <u>fagocite</u> spadajo <u>nevtrofilci</u> in <u>monociti</u>, ki se razvijejo v <u>velike</u> <u>celice požiralke</u>, <u>makrofage</u>.
- <u>Učinkovitost</u> notranje nespecifične obrambe je <u>odvisna</u> predvsem od <u>dednih lastnosti</u>, zato spada k **prirojeni imunosti**.

Notranja specifična obramba – delovanje komplementnega sistema

Notranja nespecifična obramba - fagociti

Vnetni proces

Receptorji za spoznavanje tujk

- Kako obrambne celice (fagociti) prepoznajo tujke?
- <u>Tujki</u> imajo <u>na membrani</u> posebne <u>molekule</u>, ki jim pravimo označevalci.
- Obrambne celice imajo receptorje, ki se ujemajo z označevalci.
- Receptorji niso zbirčni, temveč se lahko vežejo z zelo raznoliko vrsto označevalcev.
- Zato spada delo fagocitov k <u>nespecifični obrambi</u>.

Membrana tujka z označevalcem

Povezava med označevalcem in receptorjem

Specifična obramba

- Specifična obramba močno poveča učinkovitost obrambnega sistema.
- Celice specifične obrambe delimo v dve veliki podskupini.
- Prvo sestavljajo limfociti T, drugo pa limfociti B.
- Limfociti B nastanejo in dokončno dozorijo v kostnem mozgu.
- Limfociti T nastanejo v kostnem mozgu in dokončno dozorijo v priželjcu.
- Kostni mozeg in priželjc sta dva glavna organa v imunskem sistemu.
- <u>Iz teh organov potujejo limfociti</u> v <u>sekundarne limfatične organe</u> (bezgavke, vranico in limfna tkiva ob sluznicah), kjer srečajo antigen in se aktivirajo.
- Antigen je tujek z označevalcem.

Aktivacija limfocitov T

- Ko se v telesu pojavi tujek, ga najprej požrejo požiralke.
- Posebne požiralke so makrofagi, ki so specifične za predstavljanje antigenov.
- <u>Ko makrofagi požrejo tujke</u> (antigene) in jih <u>delno razgradijo</u>, spravijo koščke antigenov, ki so pomembni za prepoznavanje, na svojo površino.
- Predstavijo jih dvema podvrstama limfocitov T.
- Limfociti T se nanje povežejo z receptorji in se aktivirajo:

Aktivacija limfocitov T

- Ena podvrsta se pretvori v :
 - celice T ubijalke (T_{κ}) , ki se namnožijo in uničijo tujke.
- Druga podvrsta se pretvori v:
 - celice T pomagalke (T_H), ki prevzamejo vlogo kurirja in obvestijo limfocite B.
 - spominske celice T (T_M).

Aktivacija limfocitov B

- Tudi Limfociti B požrejo antigene in jih izpostavijo na svoji površini, toda brez dodatne aktivacije s strani celic T pomagalk, še ne začnejo s specifično obrambo.
- Po aktivaciji s strani celic T_H se limfociti B zelo namnožijo in povečajo.
- Spremenijo se v:
 - Plazmatke (imajo povečan endoplazmatski retikel in izdelujejo veliko količino protiteles)
 - Spominske celice B

Plazmatke

- Plazmatke so tovarna protiteles, ki se povežejo z antigeni in jih uničijo.
- Kmalu po uničenju antigenov <u>plazmatke odmrejo</u>, saj proizvajanje protiteles ni več potrebno.
- Odvečna protitelesa encimi razgradijo.

Spominske celice

- Spominske celice si zapomnijo tip antigena, proti kateremu je treba proizvajati protitelesa.
- Ko pride antigen drugič v telo, ni potrebna ponovna aktivacija limfocitov.
- Spominske celice se z receptorji povežejo na antigen in posledično:
 - Spominske celice B začnejo proizvajati protitelesa proti antigenu.
 - Spominske celice T neposredno uničijo antigen.
- To pomeni, da <u>postanemo proti temu antigenu</u> lahko <u>imuni</u> tudi za <u>vse življenje</u> (za boleznijo, ki jo ta antigen povzroča, ne zbolimo več).

Protitelesa

- Protitelesa so beljakovine, ki jim pravimo tudi imunoglobulini.
- Sestavljena so iz 4 polipeptidnih verig, dveh težjih in dveh lažjih.
- En del protitelesa je nespremenljiv, drugi pa spremenljiv.
- Spremenljivi del ima vezavno mesto za antigen, tako da ga lahko <u>nevtralizira</u>.

Različne vrste protiteles

- Poznamo več vrst težjih verig, ki jih poimenujemo z grškimi črkami α , δ , ϵ , γ in μ .
- Glede na zgradbo težje verige razlikujemo 5 vrst protiteles, ki jih poimenujemo z odgovarjajočimi <u>črkami latinske abecede</u>: IgA, IgD, IgE, IgG in IgM (nekatere vrste se še naknadno delijo na podvrste).
- <u>Različna zgradba težje verige</u> omogoča vezavo <u>različnih spremenljivih</u> <u>predelov</u> in posledično <u>različnih funkcij</u>.

Vrsta protitelesa	Težja veriga (podvrsta)	Razpolovna doba (dnevi)	Koncentracija v serumu (mg/ml)	Oblika, v kateri se izloča	Prisotnost	Funkcije	Drugo
Ig A	α (IgA ₁ in IgA ₂)	6	3,5	Monomerična, dimerična, trimerična	Sluznice (predvsem), kri, materino mleko	Zaščita sluznic, opsonizacija (=vezava na mikrobe in njihovo uničenje), aktivacija komplementa	
IgD	δ	3	V sledovih	Nobena (se ne izloča)	Kri	Receptor na membrani celic B	
IgE	ε	2	0,05	Monomerična 💜	Kri, tkiva	Alergija	
IgG	γ (IgG ₁ , IgG ₂ , IgG ₃ in IgG ₄)	23	13,5	Monomerična	Kri, tkiva, posteljica	Opsonizacija, aktivacija komplementa, imunost dojenčka	Najbolj številna protitelesa v serumu
IgM	μ	5	1,5	Pentamerična	Kri	Aglutinacija antigenov, aktivacija komplementa, receptor na membrani celic B	V prvem tednu po infekciji je teh protiteles največ

Primarni in sekundarni odgovor

- Ko pride organizem prvič v stik z antigenom, se <u>najprej</u> sintetizirajo protitelesa IgM, <u>potem</u> pa IgG.
- Ko pride organizem drugič v stik z antigenom, se aktivira sekundarni odgovor, ki je veliko hitrejši od primarnega in predvideva večjo produkcijo protiteles IgG.

Imunost lahko umetno izboljšamo z aktivno imunizacijo (= cepljenjem)

- V preteklosti so <u>ljudje umirali</u> predvsem zaradi <u>kužnih bolezni</u> (nekatere bolezni namreč povzročajo človeku <u>hude stranske učinke</u>, ki lahko tudi privedejo do <u>smrti</u>).
- Ob koncu 18. stol. so odkrili **cepljenje**, s katerim se v telo vbrizga <u>inaktivirane</u>, <u>oslabljene patogene</u> ali samo njihove <u>antigene</u>.
- <u>Telo</u> jih prepozna in proti njim <u>izdela</u> <u>imunski odgovor</u> (ustrezna protitelesa in spominske celice).
- Ob pojavu pravega patogena telo nanj učinkoviteje reagira, saj ima proti njemu že pripravljenih dovolj spominskih celic.
- Imunosti, ki jo izzovemo s cepljenjem, pravimo aktivna imunost.

Cepljenje – da ali ne?

- Dandanes se <u>na spletu</u> pojavlja <u>polno člankov</u>, ki zagotavljajo, da je cepljenje škodljivo, ker povzroča resne zaplete in številne smrti dojenčkov.
- Nekaj zagotovo drži, saj je <u>cepljenje zelo resen poseg</u> v notranje okolje.
- <u>Pri ljudeh</u>, ki imajo težave z imunskim sistemom, so resni <u>zapleti zelo</u> verjetni.
 - Zato se morajo <u>zdravniki</u> <u>pred cepljenjem</u> otroka obvezno <u>posvetovati</u> z njegovima <u>staršema</u> in preveriti, ali je imel kateri izmed njiju <u>zaradi</u> <u>cepljenja kakšne težave</u> (veliko <u>bolezni imunskega sistema</u> je namreč <u>dednih</u>).
- <u>Do zapletov</u> lahko pride tudi, če je otrok med cepljenjem bolan.
 - Zato se mora <u>zdravnik</u> <u>obvezno</u> predhodno <u>pozanimati</u> o njegovem zdravstvenem stanju.

Cepljenje – da ali ne?

- Z uvedbo množičnega cepljenja prebivalstva so tako rekoč <u>popolnoma</u> <u>izginile nekatere bolezni</u>, kot so npr. črne koze, ki so nekdaj <u>umorile vsakega</u> <u>sedmega otroka v Evropi</u>.
- Obvezno cepljenje je <u>skorajda izkoreninilo</u> otroško paralizo in <u>drastično</u> omejilo bakterijski meningitis.
- Tudi rdečk je po uvedbi cepljenja občutno manj.
 - Bolezen za otroka sicer ni nevarna, saj jo prebolijo že v nekaj dneh, utegne pa biti <u>nevarna za noseče ženske</u>, saj lahko <u>v prvih 20 tednih</u> <u>nosečnosti</u> zelo <u>prizadene plod</u>.
- Nasprotniki cepljenja menijo, da bi bolezni izginile same po sebi, tudi če se ne bi množično cepili.
- Vsekakor pa velja dejstvo, da je cepljenje pripomoglo k večjemu preživetju ljudi.

Obvezna cepljenja v Italiji

- Bakterija *Corynebacterium diphtheriae* difteritis (vnetje srčne mišice, paraliza možganskih in perifernih živcev).
- Bakterija *Clostridium tetani* tetanus (omejitev izločanja zaviralnih nevrotransmiterjev (glicin, GABA) in posledično krčenje vseh mišic; če krčenje zajame tudi dihalne mišice, pride do smrti).
- *Poliovirus* poliomielitis (omrtvelost-pareza ali ohromitev-paraliza zaradi okvar v prednjih rogovih hrbtenjače.
- Virus HBV hepatitis tipa B (vnetje jeter)

Obvezna cepljenja v Italiji

- Bakterija Bordetella pertussis oslovski kašelj
- Virus Haemophilus influentiae B meningitis
- Paramyxovirus ošpice (morbillo)
- Rubulavirus parotitis (mumps)
- Rubivirus rdečke (rosolia)
- Virus Varicella zoster norice

Neobvezna cepljenja v Italiji

- Bakterija Streptococcus pneumoniae (Pnumococcus) pljučnica
- Bakterija *Meningococcus B* in *C* meningitis
- Papilloma virus rak materničnega vratu
- Virus Haemophilus influentiae gripa

Pasivna imunizacija

- Pasivna imunizacija je <u>vbrizganje</u> že izdelanih protiteles.
- Sprejeta protitelesa zatrejo dejavnost patogenov ali <u>škodljivih snovi</u> (npr. <u>kačjega strupa</u>).
- <u>Pomanjkljivost</u> pasivne imunizacije je njena <u>kratkoživost</u>: protitelesa so <u>beljakovine</u> in kot take se v telesu ves čas <u>razgrajujejo</u> (telo varujejo <u>le nekaj tednov</u>).
- Pasivna imunizacija lahko poteka tudi naravno:
 - Plod v maternici dobiva protitelesa prek posteljice.
 - Dojenček dobiva dodatna protitelesa prek materinega mleka.

Motnje imunskega sistema

- Obstajajo <u>tri vrste motenj</u> imunskega sistema:
 - Alergije
 - Avtoimunske bolezni
 - Imunska pomanjkljivost

Alergije

- Imunski sistem <u>deluje zelo izbirno</u> in išče le tiste antigene, ki bi lahko resnično škodovali organizmu.
- <u>Zgodi</u> pa <u>se</u> tudi, da ne izbira več tako skrbno in <u>se začne odzivati tudi</u> <u>na</u> tiste tuje <u>snovi</u>, <u>ki</u> sicer v nobenem primeru <u>niso nevarne</u> (hrana, pelod, prah, pršice,...) in <u>začne</u> proti njim <u>tvoriti protitelesa</u>.
- Ljudje, ki so <u>podedovali nagnjenost</u> k alergičnim reakcijam, <u>postanejo</u> <u>za te snovi občutljivi</u>.
- Alergija je torej preobčutljivostna reakcija na snovi, ki običajno niso nevarne.

Beljakovine, ki odletavajo z ogrodja pršice

Pršica v hišnem prahu

Zaporedje alergične reakcije

- Cvetni prah, ki deluje kot alergen, se ob prvem vstopu v sluznico poveže z receptorji na celici B.
- Celica B se aktivira in iz nje nastane plazmatka.
- Plazmatka začne proizvajati protitelesa IgE.
- Protitelesa IgE se pritrdijo na mastocite (obrambne celice v sluznicah) in jih sensibilizirajo.
- Mastocite postanejo občutljive na cvetni prah.
- Ko se cvetni prah drugič pojavi v sluznici, se pritrdi na sensibilizirane mastocite, ki začnejo posledično sproščati vnetne snovi (histamin).
- Histamin izzove nabrekanje tkiva, izcejanje iz nosa, kihanje, solzenje, oteženo dihanje, srbečico, vnetje, ...

Prvo srečanje z alergenom

Prikaz zaporedja alergične reakcije

Anafilaktični šok

- Anafilaktični šok je najhujša oblika alergijske reakcije.
- Alergen povzroči burno reakcijo v več organskih sistemih, kar se lahko konča tudi s smrtjo.
- Najpogosteje se pojavi po piku žuželk ali po zavžitju nekaterih zdravil oziroma določene hrane.
- Bolniku je treba takoj pomagati z adrenalinom.
- Potem mora bolnik <u>čimprej</u> dobiti **antihistaminik** in **kortikosteroide**, ki delujejo <u>protivnetno</u>.

Intoleranca

- Intoleranca se pojavi, če v organizmu <u>primanjkuje encim</u>, ki je potreben <u>za prebavo določene hrane</u>.
- Primer je **intoleranca na laktozo**: organizem ne producira encima laktaze, ki <u>razcepi laktozo</u> na <u>glukozo</u> in <u>galaktozo</u>.
- Kopičenje laktoze v črevesju povzroča prebavne motnje: drisko, krče, napenjanje.

Intoleranca na laktozo

- Intoleranca na laktozo je genetskega izvora.
- Pri <u>različnih narodih</u> se pojavlja v <u>različnih odstotkih</u>, v veliko večji meri je prisotna na jugu kot na severu.
- V državah Severne Evrope je incidenca 2 10 %.
- V državah Srednje Evrope je incidenca 15 20 %.
- V Sredozemlju je incidenca 25 50 %.
- V severni polovici Afrike je incidenca 65 75 %.
- V Vzhodni Aziji je incidenca približno 90 %.

Razširjenost intolerance na laktozo

Avtoimunske bolezni

- Avtoimunske bolezni nastanejo zaradi čezmernega delovanja imunskega sistema.
- Obrambne celice <u>prepoznajo označevalce</u> na celicah <u>lastnega telesa</u>, kot da bi bili tuji (antigeni) in <u>jih napadejo</u>.
 - Primer:
 - Sladkorna bolezen tipa 1: <u>plazmatke</u> izdelujejo protitelesa proti celicam β v trebušni slinavki, ki izdelujejo insulin.
 - Zato celice β počasi propadajo.

Slika 17.15: Obrambne celice T lahko napadejo celice beta, ki v trebušni slinavki izdelujejo insulin. Tako se razvije avtoimunska sladkorna bolezen.

Imunska pomanjkljivost

- Imunska pomanjkljivost se pojavi takrat, ko v imunskem sistemu izpade eden izmed njegovih sestavnih delov.
- Imunsko pomanjkljivost lahko:
 - Podedujemo:
 - prizadete celice B→ni možna tvorba protiteles
 - slabo razvit ali manjkajoči priželjc → pomanjkanje celic T
 - Pridobimo kasneje v življenju:
 - okužba s patogeni (virus HIV)
 - stranski učinek zdravljenja s kemoterapiki
 - stranski učinek preprečevalcev zavrnitve presadkov.

Začasna imunska pomanjkljivost

- Začasno se pojavi imunska pomanjkljivost tudi pri:
 - običajnih virusnih obolenjih (gripa, ošpice,...)
 - transfuzijah krvi
 - slabi prehrani
 - kirurških posegih
 - kajenju
 - stresu.

Imunska pomanjkljivost, ki jo povzroča virus HIV

- Bolezen, ki jo povzroča virus HIV imenujemo AIDS (Acquired Immunodeficiency Syndrom - Sindrom pridobljene imunske pomanjkljivosti).
- Virus HIV napada predvsem celice T pomagalke.
- Okužba z virusom je običajno asimptomatična.
- Le včasih se pokaže kot nekakšna gripa, ki jo spremlja zmanjšanje števila limfocitov T.

Zgradba virusa HIV

- Virus vsebuje 2 molekuli RNA, okoli katerih je več ovojnic:
 - jedrna beljakovinska ovojnica ali kapsida,
 - beljakovinska membrana,
 - lipidna membrana z glikoproteini na zunanji strani.

Virus HIV zlahka uide obrambnim celicam

- Izražanje genov za glikoproteine se hitro spreminja, zato se spreminjajo tudi glikoproteini na lipidni membrani.
- Protitelesa, ki jih telo proizvaja, se ne ujemajo z antigeni (glikoproteini), ki so sprožili obrambno reakcijo.

Virus HIV je primer retrovirusa

Virus l'HIV uporablja reverzno transkriptazo za kopiranje lastne RNA v DNA, ki se bo vključila v genom gostiteljske celice.

Razmnoževanje virusa HIV

- Po pritrditvi na gostiteljsko celico spusti virus HIV vanjo svoj genetski material.
- S pomočjo reverzne transkriptaze tvori na modelu svoje RNA dvojno vijačnico DNA.
- Ta DNA se združi z gostiteljevo DNA.
- Med prepisovanjem se virusna DNA pretvori v m-RNA, ki se nato združi z ribosomi gostiteljske celice.
- Na ribosomih in v endoplazmatskem retiklu se sintetizirajo vse virusne sestavine.
- Virusne sestavine se združijo v nov virus, ki z eksocitozo zapusti celico.

Prenos virusa HIV

- Za svoje delovanje in razmnoževanje mora virus uporabljati celični metabolni sistem (izven celic virus kmalu propade).
- Zato se večinoma prenaša le z zelo tesnimi stiki sluznic, do katerih pride pri nezaščitenih spolnih odnosih.
- Redkeje se virus prenaša pri transfuziji krvi.
- Velika verjetnost je tudi, da se okužijo zasvojenci z drogami, ki uporabljajo isto brizgalko.
- Pri običajnih družabnih stikih med ljudmi se ne prenaša (uživanje hrane ali vode s souporabo skodelic in kozarcev).
- Prav tako se ne okužimo prek kašljanja ali kihanja, pri rokovanju, med plavanjem v javnih bazenih ali pri uporabi stranišč.

Tudi rdeča krvna telesca so nosilci antigenov

		The state of the s		
	Α	В	AB	0
rdeče krvno telesce z antigeni				
protitelo v plazmi	proti B	小 proti A	ni protiteles	Proti A in B
antigen	• antigen A	† antigen B	🌳 🕈 antigen A in B	brez antigenov

Slika 17.18: Krvne skupine in protitelesa pri človeku. Za krvno skupino 0 je značilno, da njene rdeče krvničke nimajo na površini antigenov, zato nastanejo že zgodaj v razvoju protitelesa proti obema tipoma antigenov. Rdeče krvničke krvne skupine A imajo antigene A, zato proizvaja imunski sistem protitelesa proti antigenom B. Podobno ustvarja imunski sistem protitelesa A v človeku s krvno skupino B. Rdeče krvničke krvne skupine AB imajo oba tipa antigenov, zato imunski sistem proti nobenemu ne ustvarja protiteles. Zaradi tega lahko sprejme kri od kateregakoli krvodajalca.

Možnosti sprejemanja krvi

Neustrezna transfuzija povzroča aglutinacijo rdečih krvničk

 Če oseba skupine A daruje kri osebi skupine O, protitelesa anti A, ki jih proizvaja oseba O, aglutinirajo krvničke A.

Sistem rhesus ali Rh

- Poleg sistema ABO poznamo še en sistem razvrščanja krvnih skupin.
- To je sistem rhesus ali okrajšano Rh.
- Ime rhesus prihaja od vrste opic <u>Macacus rhesus</u>, pri katerih so sistem rhesus odkrili.
- Če pri <u>transfuziji</u> faktorja Rh <u>ne upoštevamo</u>, so <u>posledice</u> prav tako <u>usodne</u>, kot so napake pri sistemu ABO.
- Sistem rhesus zaobjema alele C, D in E, od katerih je antigen D imunološko najaktivnejši.
- Človek, ki ima antigen D je Rh pozitiven (Rh+).
- Človek, ki nima antigena D je Rh negativen (Rh-).

Faktor Rh med nosečnostjo

- Če Rh⁻ ženska zanosi z Rh⁺ moškim, lahko plod podeduje od očeta alel Rh⁺.
- Med porodom pride do krvavenja in lahko preide nekaj otrokove krvi v materin krvni obtok.
- Antigen D na otrokovih krvničkah izzove v materinem obrambnem sistemu nastanek protiteles anti-D.
- V nasprotju z rdečimi krvničkami, prehajajo protitelesa prosto skozi posteljico.

Faktor Rh med nosečnostjo

- Ker je potrebno nekaj časa, da se tvorijo protitelesa, ta ponavadi ne utegnejo prodreti v kri prvega otroka, veliko možnosti pa je, da protitelesa prodrejo v krvni obtok drugega otroka.
- Otrok bo zbolel za fetalno eritroblastozo (razkroj krvničk, poškodbe ledvic, možna smrt).
- Danes lahko te težave preprečimo z injekcijo učinkovine Rho-GAM, ki jo vbrizgamo materi po porodu prvega Rh pozitivnega otroka.
- Učinkovina preprečuje tvorbo protiteles anti-D v materi, s čimer zaščitimo naslednji Rh pozitivni plod.

Ob porodu pride nekaj otrokovih eritrocitov v materin krvni obtok. Protitelesa prehajajo skozi posteljico. Ob naslednji nosečnosti uničujejo otrokove Rh⁺ eritrocite.

V materinem telesu nastajajo protitelesa proti Rh+ krvi.

Zakaj ne velja isto pravilo za sistem ABO?

- Medtem ko nastanejo protitelesa anti-D samo po mešanju nesorodne krvi, so protitelesa anti-A in anti-B v telesu naravno prisotna in niso vezana na mešanje krvi (nastanejo po stiku s hrano, v kateri so antigeni A in B, ki zaidejo v kri).
- Mati krvne skupine 0 ima zato v krvi protitelesa anti-A in anti-B, ki prehajajo skozi posteljico, vendar ne povzročijo fetalne eritroblastoze, ker se v plodovih krvničkah antigeni A in B zelo slabo izražajo.