

B156

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12Q 1/68		(11) International Publication Number: WO 99/64630 (43) International Publication Date: 16 December 1999 (16.12.99)
(21) International Application Number: PCT/US99/13094 (22) International Filing Date: 9 June 1999 (09.06.99) (30) Priority Data: 60/088,710 10 June 1998 (10.06.98) US		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(71) Applicant: AXYS PHARMACEUTICALS, INC. [US/US]; 180 Kimball Way, South San Francisco, CA 94080 (US). (72) Inventors: GUIDA, Marco; 3899 Nobel Drive #1301, San Diego, CA 92122 (US). KURTH, Janice; 13044 Walking Path Place, San Diego, CA 92130 (US). (74) Agent: SHERWOOD, Pamela, J.; Bozicevic, Field & Francis LLP, Suite 200, 285 Hamilton Avenue, Palo Alto, CA 94301 (US).		
Published <i>With international search report.</i> <i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>		
(54) Title: GENOTYPING THE HUMAN PHENOL SULFOTRANSFERASE 2 GENE (STP2)		
(57) Abstract		
<p>Genetic polymorphisms are identified in the human STP2 gene that alter STP2-dependent drug metabolism. Nucleic acids comprising the polymorphic sequences are used to screen patients for altered metabolism for STP2 substrates, potential drug-drug interactions, and adverse/side effects, as well as diseases that result from environmental or occupational exposure to toxins. The nucleic acids are used to establish animal, cell and <i>in vitro</i> models for drug metabolism.</p>		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

GENOTYPING THE HUMAN PHENOL SULFOTRANSFERASE 2 GENE (STP2)**INTRODUCTION**

Sulfonation is an important pathway in the biotransformation of many drugs, 5 xenobiotics, neurotransmitters, and steroid hormones. Many of the sulfonation reactions for pharmacologic agents are performed by a group of enzymes known as phenol transferases. The phenol sulfotransferase gene family consists to three members located on chromosome 16. A single gene (STM) encodes the thermolabile monoamine-metabolizing form. Two thermostable phenol-metabolizing enzymes are encoded by STP1 and STP2. Substrates for 10 STP1 and STP2 include minoxidil, acetaminophen, and para-nitrophenol. Alterations in phenol sulfotransferase activity have been correlated with individual variation in sulfonation of acetaminophen (Reiter and Weinshilboum (1982) Clin. Pharm.) and predisposition to diet-induced migraine headaches.

The STP2 gene spans approximately 5.1 kb and contains nine exons that range in 15 length from 74 to 347 bp. Exons IA and IB are noncoding and represent two different cDNA 5'-untranslated region sequences. The two apparent 5'-flanking regions of the STP2 gene contain no canonical TATA boxes, but do contain CCAAT elements. STP2 has been localized to human chromosome 16.

Since rates of metabolism of drugs, toxins, etc. can depend on the amounts and kinds 20 of phenol sulfotransferase in tissues, variation in biological response may be determined by the profile of expression of phenol sulfotransferases in each person. Analysis of genetic polymorphisms that lead to altered expression and/or enzyme activity are therefore of interest.

SUMMARY OF THE INVENTION

25 Genetic sequence polymorphisms are identified in the STP2 gene. Nucleic acids comprising the polymorphic sequences are used in screening assays, and for genotyping individuals. The genotyping information is used to predict an individuals' rate of metabolism for STP2 substrates, potential drug-drug interactions, and adverse/side effects. Specific polynucleotides include the polymorphic STP2 sequences set forth in SEQ ID NOs:63-100.

30 The nucleic acid sequences of the invention may be provided as probes for detection of STP2 locus polymorphisms, where the probe comprises a polymorphic sequence of SEQ ID NOs:63-110. The sequences may further be utilized as an array of oligonucleotides comprising two or more probes for detection of STP2 locus polymorphisms.

Another aspect of the invention provides a method for detecting in an individual a 35 polymorphism in STP2 metabolism of a substrate, where the method comprises analyzing the genome of the individual for the presence of at least one STP2 polymorphism; wherein the

presence of the predisposing polymorphism is indicative of an alteration in STP2 expression or activity. The analyzing step of the method may be accomplished by detection of specific binding between the individual's genomic DNA with an array of oligonucleotides comprising STP2 locus polymorphic sequences. In other embodiments, the alteration in STP2 expression 5 or activity is tissue specific, or is in response to a STP2 modifier that induces or inhibits STP2 expression.

DATABASE REFERENCES FOR NUCLEOTIDE SEQUENCES

Genbank accession no. U34804 provides the sequence of the STP2 gene.

10

BRIEF DESCRIPTION OF THE SEQUENCE LISTING

STP2 Reference Sequences. SEQ ID NO: 1 lists the sequence of the reference STP2 gene. The exons are as follows: exon 1A (nt 2591-2664); exon 1B (nt 3180-3526); exon 2 (nt 3726-3877); exon 3 (nt 3985-4110); exon 4 (nt 4196-4293); exon 5 (nt 6088-6214); exon 6 15 (6310-6404); exon 7 (nt 7214-7394); exon 8 (nt 7517-7712). The mRNA sequence is set forth in SEQ ID NO:2, and the encoded amino acid sequence in SEQ ID NO:3.

Primers. The PCR primers for amplification of polymorphic sequences are set forth as SEQ ID NOs:4-17. The primers used in sequencing isolated polymorphic sequences are presented as SEQ ID NOs:18-46. The primers used in Taqman assays are listed as SEQ ID 20 NO:47-62.

Polymorphisms. Polymorphic sequences of STP2 are presented as SEQ ID NOs:63-110.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Pharmacogenetics is the linkage between an individual's genotype and that individual's 25 ability to metabolize or react to a therapeutic agent. Differences in metabolism or target sensitivity can lead to severe toxicity or therapeutic failure by altering the relation between bioactive dose and blood concentration of the drug. Relationships between polymorphisms in metabolic enzymes or drug targets and both response and toxicity can be used to optimize 30 therapeutic dose administration.

Genetic polymorphisms are identified in the STP2 gene. Nucleic acids comprising the polymorphic sequences are used to screen patients for altered metabolism for STP2 substrates, potential drug-drug interactions, and adverse/side effects, as well as diseases that result from environmental or occupational exposure to toxins. The nucleic acids are used to 35 establish animal, cell culture and *in vitro* cell-free models for drug metabolism.

Definitions

It is to be understood that this invention is not limited to the particular methodology, protocols, cell lines, animal species or genera, constructs, and reagents described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of 5 describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

As used herein the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a construct" includes a plurality of such constructs and reference to "the STP2 nucleic acid" includes reference to 10 one or more nucleic acids and equivalents thereof known to those skilled in the art, and so forth. All technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs unless clearly indicated otherwise.

15 *STP2 reference sequence.* The sequence of the STP2 gene may be accessed through Genbank as previously cited, and is provided in SEQ ID NO:1 and SEQ ID NO:2 (cDNA sequence). The amino acid sequence of STP2 is listed as SEQ ID NO:3. These sequences provide a reference for the polymorphisms of the invention. The nucleotide sequences provided herein differ from the published sequence at certain positions throughout the 20 sequence. Where there is a discrepancy the provided sequence is used as a reference.

The term "wild-type" may be used to refer to the reference coding sequences of STP2, and the term "variant", or "STP2^v" to refer to the provided variations in the STP2 sequence. Where there is no published form, such as in the intron sequences, the term wild-type may be used to refer to the most commonly found allele. It will be understood by one of skill in the art 25 that the designation as "wild-type" is merely a convenient label for a common allele, and should not be construed as conferring any particular property on that form of the sequence.

30 *STP2 polymorphic sequences.* It has been found that specific sites in the STP2 gene sequence are polymorphic, i.e. within a population, more than one nucleotide (G, A, T, C) is found at a specific position. Polymorphisms may provide functional differences in the genetic sequence, through changes in the encoded polypeptide, changes in mRNA stability, binding of transcriptional and translation factors to the DNA or RNA, and the like. The polymorphisms are also used as single nucleotide polymorphisms to detect association with, or genetic linkage to phenotypic variation in activity and expression of STP2.

SNPs are generally biallelic systems, that is, there are two alleles that an individual may have for any particular marker. SNPs, found approximately every kilobase, offer the potential for generating very high density genetic maps, which will be extremely useful for developing haplotyping systems for genes or regions of interest, and because of the nature of SNPs, they 5 may in fact be the polymorphisms associated with the disease phenotypes under study. The low mutation rate of SNPs also makes them excellent markers for studying complex genetic traits.

Single nucleotide polymorphisms are provided in the STP2 promoter, intron and exon sequences. Table 4 and the corresponding sequence listing provide both forms of each 10 polymorphic sequence. For example, SEQ ID NO:99 and 100 are the alternative forms of a single polymorphic site. The provided sequences also encompass the complementary sequence corresponding to any of the provided polymorphisms.

In order to provide an unambiguous identification of the specific site of a polymorphism, sequences flanking the polymorphic site are shown in Table 4, where the 5' and 3' flanking 15 sequence is non-polymorphic, and the central position, shown in bold, is variable. It will be understood that there is no special significance to the length of non-polymorphic flanking sequence that is included, except to aid in positioning the polymorphism in the genomic sequence. The STP2 exon sequences have been published, and therefore one of each pair of sequences in Table 4 is a publically known sequence.

As used herein, the term "STP2 gene" is intended to generically refer to both the wild-type and variant forms of the sequence, unless specifically denoted otherwise. As it is commonly used in the art, the term "gene" is intended to refer to the genomic region encompassing 5' UTR, exons, introns, and 3' UTR. Individual segments may be specifically referred to, e.g. exon 2, intron 5, etc. Combinations of such segments that provide for a 25 complete STP2 protein may be referred to generically as a protein coding sequence.

Nucleic acids of interest comprise the provided STP2^w nucleic acid sequence(s), as set forth in Table 4. Such nucleic acids include short hybridization probes, protein coding sequences, variant forms of STP2 cDNA, segments, e.g. exons, introns, etc., and the like. Methods of producing nucleic acids are well-known in the art, including chemical synthesis, 30 cDNA or genomic cloning, PCR amplification, etc.

For the most part, DNA fragments will be of at least 15 nt, usually at least 20 nt, often at least 50 nt. Such small DNA fragments are useful as primers for PCR, hybridization screening, etc. Larger DNA fragments, i.e. greater than 100 nt are useful for production of the encoded polypeptide, promoter motifs, etc. For use in amplification reactions, such as PCR, 35 a pair of primers will be used. The exact composition of primer sequences is not critical to the

invention, but for most applications the primers will hybridize to the subject sequence under stringent conditions, as known in the art.

The STP2 nucleic acid sequences are isolated and obtained in substantial purity, generally as other than an intact or naturally occurring mammalian chromosome. Usually, the 5 DNA will be obtained substantially free of other nucleic acid sequences that do not include a STP2 sequence or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically "recombinant", i.e. flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.

For screening purposes, hybridization probes of the polymorphic sequences may be 10 used where both forms are present, either in separate reactions, spatially separated on a solid phase matrix, or labeled such that they can be distinguished from each other. Assays may utilize nucleic acids that hybridize to one or more of the described polymorphisms.

An array may include all or a subset of the polymorphisms listed in Table 4. One or both polymorphic forms may be present in the array, for example the polymorphism of SEQ 15 ID NO:37 and 38 may be represented by either, or both, of the listed sequences. Usually such an array will include at least 2 different polymorphic sequences, i.e. polymorphisms located at unique positions within the locus, and may include as many all of the provided polymorphisms. Arrays of interest may further comprise sequences, including polymorphisms, of other genetic sequences, particularly other sequences of interest for pharmacogenetic screening, e.g. STP1; 20 UGT1, UGT2, cytochrome oxidases, etc. The oligonucleotide sequence on the array will usually be at least about 12 nt in length, may be the length of the provided polymorphic sequences, or may extend into the flanking regions to generate fragments of 100 to 200 nt in length. For examples of arrays, see Ramsay (1998) Nat. Biotech. 16:40-44; Hacia et al. (1996) Nature Genetics 14:441-447; Lockhart et al. (1996) Nature Biotechnol. 14:1675-1680; and De 25 Risi et al. (1996) Nature Genetics 14:457-460.

Nucleic acids may be naturally occurring, e.g. DNA or RNA, or may be synthetic analogs, as known in the art. Such analogs may be preferred for use as probes because of superior stability under assay conditions. Modifications in the native structure, including alterations in the backbone, sugars or heterocyclic bases, have been shown to increase 30 intracellular stability and binding affinity. Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3'-O'-5'-S-phosphorothioate, 3'-S-5'-O- phosphorothioate, 3'-CH₂-5'-O-phosphonate and 3'-NH-5'-O-phosphoroamide. Peptide nucleic acids replace 35 the entire ribose phosphodiester backbone with a peptide linkage.

Sugar modifications are also used to enhance stability and affinity. The α-anomer of deoxyribose may be used, where the base is inverted with respect to the natural β-anomer. The 2'-OH of the ribose sugar may be altered to form 2'-O- methyl or 2'-O-allyl sugars, which provides resistance to degradation without comprising affinity.

5 Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2'- deoxycytidine and 5-bromo-2'-deoxycytidine for deoxycytidine. 5- propynyl-2'- deoxyuridine and 5-propynyl-2'-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively.

10

STP2 polypeptides. A subset of the provided nucleic acid polymorphisms in STP2 exons confer a change in the corresponding amino acid sequence. Using the amino acid sequence provided in SEQ ID NO:3 as a reference, the amino acid polymorphisms of the invention include pro→leu, pos. 19; ala→val, pos. 136; asn→thr, pos. 235; glu→lys, pos 282; 15 and a truncated form resulting from a stop codon at exon 5, position 447. Polypeptides comprising at least one of the provided polymorphisms (STP2^v polypeptides) are of interest. The term "STP2^v polypeptides" as used herein includes complete STP2 protein forms, e.g. such splicing variants as known in the art, and fragments thereof, which fragments may comprise short polypeptides, epitopes, functional domains; binding sites; etc.; and including 20 fusions of the subject polypeptides to other proteins or parts thereof. Polypeptides will usually be at least about 8 amino acids in length, more usually at least about 12 amino acids in length, and may be 20 amino acids or longer, up to substantially the complete protein.

The STP2 genetic sequence, including polymorphisms, may be employed for polypeptide synthesis. For expression, an expression cassette may be employed, providing 25 for a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional and translational termination region. Various transcriptional initiation regions may be employed that are functional in the expression host. The polypeptides may be expressed in prokaryotes or eukaryotes in accordance with 30 conventional ways, depending upon the purpose for expression. Small peptides can also be synthesized in the laboratory.

Substrate. A substrate is a chemical entity that is modified by STP2, usually under normal physiological conditions. Although the duration of drug action tends to be shortened 35 by metabolic transformation, drug metabolism is not "detoxification". Frequently the metabolic

product has greater biologic activity than the drug itself. In some cases the desirable pharmacologic actions are entirely attributable to metabolites, the administered drugs themselves being inert. Likewise, the toxic side effects of some drugs may be due in whole or in part to metabolic products.

5 Substrates of interest may be drugs, xenobiotics, neurotransmitters, steroid hormones, etc. STP2 preferentially catalyzes the sulfonation of 'simple' planar phenols. Substrates include minoxidil, acetaminophen, para-nitrophenol, N-hydroxy 4-aminobiphenyl, etc.

Modifier. A modifier is a chemical agent that modulates the action of STP2, either
10 through altering its enzymatic activity (enzymatic modifier) or through modulation of expression (expression modifier, e.g., by affecting transcription or translation). In some cases the modifier may also be a substrate. Inhibitors include N-ethylmaleimide; phenylglyoxal; 2,6-dichloro-4-nitrophenol; p-nitrophenol; quercetin and other flavonoids, e.g. fisetin, galangin, myricetin, kaempferol, chrysin, apigenin; and phenols such as curcumin, genistein, ellagic acid. Steroids, 15 e.g. estradiol benzoate, testosterone propionate may affect activity and/or expression.

Pharmacokinetic parameters. Pharmacokinetic parameters provide fundamental data for designing safe and effective dosage regimens. A drug's volume of distribution, clearance, and the derived parameter, half-life, are particularly important, as they determine the degree
20 of fluctuation between a maximum and minimum plasma concentration during a dosage interval, the magnitude of steady state concentration and the time to reach steady state plasma concentration upon chronic dosing. Parameters derived from *in vivo* drug administration are useful in determining the clinical effect of a particular STP2 genotype.

25 Expression assay. An assay to determine the effect of a sequence polymorphism on STP2 expression. Expression assays may be performed in cell-free extracts, or by transforming cells with a suitable vector. Alterations in expression may occur in the basal level that is expressed in one or more cell types, or in the effect that an expression modifier has on the ability of the gene to be inhibited or induced. Expression levels of a variant alleles are compared by various methods known in the art. Methods for determining promoter or enhancer strength include quantitation of the expressed natural protein; insertion of the variant control element into a vector with a reporter gene such as β -galactosidase, luciferase, chloramphenicol acetyltransferase, etc. that provides for convenient quantitation; and the like.

30 Gel shift or electrophoretic mobility shift assay provides a simple and rapid method for detecting DNA-binding proteins (Ausubel, F.M. et al. (1989) In: Current Protocols in Molecular Biology, Vol. 2, John Wiley and Sons, New York). This method has been used widely in the

study of sequence-specific DNA-binding proteins, such as transcription factors. The assay is based on the observation that complexes of protein and DNA migrate through a nondenaturing polyacrylamide gel more slowly than free DNA fragments or double-stranded oligonucleotides. The gel shift assay is performed by incubating a purified protein, or a complex mixture of 5 proteins (such as nuclear or cell extract preparations), with an end-labeled DNA fragment containing the putative protein binding site. The reaction products are then analyzed on a nondenaturing polyacrylamide gel. The specificity of the DNA-binding protein for the putative binding site is established by competition experiments using DNA fragments or oligonucleotides containing a binding site for the protein of interest, or other unrelated DNA 10 sequences.

Expression assays can be used to detect differences in expression of polymorphisms with respect to tissue specificity, expression level, or expression in response to exposure to various substrates, and/or timing of expression during development. For example, since STP2 is expressed in liver, polymorphisms could be evaluated for expression in tissues other than 15 liver, or expression in liver tissue relative to a reference STP2 polypeptide.

Substrate screening assay. Substrate screening assays are used to determine the metabolic activity of a STP2 protein or peptide fragment on a substrate. Many suitable assays are known in the art, including the use of primary or cultured cells, genetically modified cells 20 (e.g., where DNA encoding the STP2 polymorphism to be studied is introduced into the cell within an artificial construct), cell-free systems, e.g. microsomal preparations or recombinantly produced enzymes in a suitable buffer, or in animals, including human clinical trials. Where genetically modified cells are used, since most cell lines do not express STP2 activity (liver cell lines being the exception), introduction of artificial construct for expression of the STP2 25 polymorphism into many human and non-human cell lines does not require additional modification of the host to inactivate endogenous STP2 expression/activity. Clinical trials may monitor serum, urine, etc. levels of the substrate or its metabolite(s).

Typically a candidate substrate is input into the assay system, and the oxidation to a metabolite is measured over time. The choice of detection system is determined by the 30 substrate and the specific assay parameters. Assays are conventionally run, and will include negative and positive controls, varying concentrations of substrate and enzyme, etc. Exemplary assays may be found in the literature, for examples see Chou *et al.* (1995) Carcinogenesis 16:413-417; Walle and Walle (1991) Drug Metab. Dispos. 19:448-453; and Falany *et al.* (1990) Arch. Biochem. Biophys. 278:312-318.

Genotyping: STP2 genotyping is performed by DNA or RNA sequence and/or hybridization analysis of any convenient sample from a patient, e.g. biopsy material, blood sample (serum, plasma, etc.), buccal cell sample, etc. A nucleic acid sample from an individual is analyzed for the presence of polymorphisms in STP2, particularly those that affect the 5 activity or expression of STP2. Specific sequences of interest include any polymorphism that leads to changes in basal expression in one or more tissues, to changes in the modulation of STP2 expression by modifiers, or alterations in STP2 substrate specificity and/or activity.

Linkage Analysis: Diagnostic screening may be performed for polymorphisms that are 10 genetically linked to a phenotypic variant in STP2 activity or expression, particularly through the use of microsatellite markers or single nucleotide polymorphisms (SNP). The microsatellite or SNP polymorphism itself may not phenotypically expressed, but is linked to sequences that result in altered activity or expression. Two polymorphic variants may be in linkage disequilibrium, i.e. where alleles show non-random associations between genes even though 15 individual loci are in Hardy-Weinberg equilibrium.

Linkage analysis may be performed alone, or in combination with direct detection of phenotypically evident polymorphisms. The use of microsatellite markers for genotyping is well documented. For examples, see Mansfield et al. (1994) Genomics 24:225-233; and Ziegler et al. (1992) Genomics 14:1026-1031. The use of SNPs for genotyping is illustrated in Underhill 20 et al. (1996) Proc Natl Acad Sci U S A 93:196-200.

Transgenic animals. The subject nucleic acids can be used to generate genetically modified non-human animals or site specific gene modifications in cell lines. The term "transgenic" is intended to encompass genetically modified animals having a deletion or other 25 knock-out of STP2 gene activity, having an exogenous STP2 gene that is stably transmitted in the host cells, or having an exogenous STP2 promoter operably linked to a reporter gene. Transgenic animals may be made through homologous recombination, where the STP2 locus is altered. Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, YACs, 30 and the like. Of interest are transgenic mammals, e.g. cows, pigs, goats, horses, etc., and particularly rodents, e.g. rats, mice, etc.

Genetically Modified Cells. Primary or cloned cells and cell lines are modified by the introduction of vectors comprising STP2 gene polymorphisms. The gene may comprise one 35 or more variant sequences, preferably a haplotype of commonly occurring combinations. In one embodiment of the invention, a panel of two or more genetically modified cell lines, each

cell line comprising a STP2 polymorphism, are provided for substrate and/or expression assays. The panel may further comprise cells genetically modified with other genetic sequences, including polymorphisms, particularly other sequences of interest for pharmacogenetic screening, e.g. STP1; UGT1, UGT2, cytochrome oxidases, etc.

5 Vectors useful for introduction of the gene include plasmids and viral vectors, e.g. retroviral-based vectors, adenovirus vectors, etc. that are maintained transiently or stably in mammalian cells. A wide variety of vectors can be employed for transfection and/or integration of the gene into the genome of the cells. Alternatively, micro-injection may be employed, fusion, or the like for introduction of genes into a suitable host cell.

10

Genotyping Methods

The effect of a polymorphism in the STP2 gene sequence on the response to a particular substrate or modifier of STP2 is determined by *in vitro* or *in vivo* assays. Such assays may include monitoring the metabolism of a substrate during clinical trials to determine 15 the STP2 enzymatic activity, specificity or expression level. Generally, *in vitro* assays are useful in determining the direct effect of a particular polymorphism, while clinical studies will also detect an enzyme phenotype that is genetically linked to a polymorphism.

20 The response of an individual to the substrate or modifier can then be predicted by determining the STP2 genotype, with respect to the polymorphism. Where there is a differential distribution of a polymorphism by racial background, guidelines for drug administration can be generally tailored to a particular ethnic group.

25 The basal expression level in different tissue may be determined by analysis of tissue samples from individuals typed for the presence or absence of a specific polymorphism. Any convenient method may be used, e.g. ELISA, RIA, etc. for protein quantitation, northern blot or other hybridization analysis, quantitative RT-PCR, etc. for mRNA quantitation. The tissue specific expression is correlated with the genotype.

30 The alteration of STP2 expression in response to a modifier is determined by administering or combining the candidate modifier with an expression system, e.g. animal, cell, *in vitro* transcription assay, etc. The effect of the modifier on STP2 transcription and/or steady state mRNA levels is determined. As with the basal expression levels, tissue specific interactions are of interest. Correlations are made between the ability of an expression modifier to affect STP2 activity, and the presence of the provided polymorphisms. A panel of different modifiers, cell types, etc. may be screened in order to determine the effect under a number of different conditions.

35 A STP2 polymorphism that results in altered enzyme activity or specificity is determined by a variety of assays known in the art. The enzyme may be tested for metabolism of a

substrate *in vitro*, for example in defined buffer, or in cell or subcellular lysates, where the ability of a substrate to be metabolized by STP2 under physiologic conditions is determined. Where there are not significant issues of toxicity from the substrate or metabolite(s), *in vivo* human trials may be utilized, as previously described.

5 The genotype of an individual is determined with respect to the provided STP2 gene polymorphisms. The genotype is useful for determining the presence of a phenotypically evident polymorphism, and for determining the linkage of a polymorphism to phenotypic change.

A number of methods are available for analyzing nucleic acids for the presence of a
10 specific sequence. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. The nucleic acid may be amplified by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis. The use of the polymerase chain reaction is described in Saiki et al. (1985) Science 230:1350-1354, and
15 a review of current techniques may be found in Sambrook et al. Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp.14.2-14.33. Amplification may be used to determine whether a polymorphism is present, by using a primer that is specific for the polymorphism. Alternatively, various methods are known in the art that utilize oligonucleotide ligation as a means of detecting polymorphisms, for examples see Riley et al. (1990) Nucleic Acids Res
20 18:2887-2890; and Delahunty et al. (1996) Am J Hum Genet 58:1239-1246.

A detectable label may be included in an amplification reaction. Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2',4',7',4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g. 32P, 35S, 3H; etc. The label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. The label may be conjugated to one or both of the primers.
25 Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.
30

The sample nucleic acid, e.g. amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid may be sequenced by dideoxy or other methods. Hybridization with the variant sequence may also be used to determine its presence,
35 by Southern blots, dot blots, etc. The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support, as described in U.S.

5,445,934, or in WO95/35505, may also be used as a means of detecting the presence of variant sequences. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), mismatch cleavage detection, and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation
5 as alterations in electrophoretic mobility. Alternatively, where a polymorphism creates or destroys a recognition site for a restriction endonuclease (restriction fragment length polymorphism, RFLP), the sample is digested with that endonuclease, and the products size fractionated to determine whether the fragment was digested. Fractionation is performed by gel or capillary electrophoresis, particularly acrylamide or agarose gels.

10 In one embodiment of the invention, an array of oligonucleotides are provided, where discrete positions on the array are complementary to one or more of the provided polymorphic sequences, e.g. oligonucleotides of at least 12 nt, frequently 20 nt, or larger, and including the sequence flanking the polymorphic position. Such an array may comprise a series of oligonucleotides, each of which can specifically hybridize to a different polymorphism. For
15 examples of arrays, see Hacia et al. (1996) Nat Genet 14:441-447 and DeRisi et al. (1996) Nat Genet 14:457-460.

20 The genotype information is used to predict the response of the individual to a particular STP2 substrate or modifier. Where an expression modifier inhibits STP2 expression, then drugs that are a STP2 substrate will be metabolized more slowly if the modifier is co-administered. Where an expression modifier induces STP2 expression, a co-administered substrate will typically be metabolized more rapidly. Similarly, changes in STP2 activity will affect the metabolism of an administered drug. The pharmacokinetic effect of the interaction will depend on the metabolite that is produced, e.g. a prodrug is metabolized to an active form, a drug is metabolized to an inactive form, an environmental compound is metabolized to a
25 toxin, etc. Consideration is given to the route of administration, drug-drug interactions, drug dosage, etc.

EXPERIMENTAL

30 The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the subject invention, and are not intended to limit the scope of what is regarded as the invention. Efforts have been made to ensure accuracy with respect to the numbers used (e.g. amounts, temperature, concentrations, etc.) but some experimental errors and deviations should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular
35 weight, temperature is in degrees centigrade; and pressure is at or near atmospheric.

MATERIALS AND METHODS

DNA samples. Blood specimens from approximately 300 individuals were collected after obtaining informed consent. All samples were stripped of personal identifiers to maintain confidentiality. The only data associated with a given blood sample was gender and self-reported major racial group designations in the United States (Caucasian, Hispanic, African American). Genomic DNA was isolated from these samples using standard techniques. gDNA was either stored as concentrated solutions or stored dried in microtiter plates for future use.

PCR amplifications. The primers used to amplify the coding regions and the promoter region of the STP2 gene from 200 ng of human gDNA are shown in Table 1. Primers were designed based upon publicly available genomic sequence provided by Her *et al.* (1996) *Genomics* 33:409-420. 100 ng of gDNA from 2 individuals was amplified with the Perkin Elmer GeneAmp PCR kit according to manufacturer's instructions in 100 μ l reactions with Taq Gold DNA polymerase, with two exceptions. Boehringer-Mannheim Expand High Fidelity PCR System kit was used to amplify the promoter region and exon 1A. Magnesium concentrations for each PCR reaction was optimized empirically, and are shown in Table 1.

Table 1. PCR primers and Mg⁺⁺ concentrations.

<u>Region</u>	<u>Forward/ Reverse</u>	<u>SEQ ID</u>	<u>Forward Primer (5' 3')</u>	<u>[Mg⁺⁺]</u>
Promoter	F	4.	CCCAAATACAGGTGTTCC	2mM
	R	5.	GGAGCAGAGCAAGGATC	
Exon 1A	F	6.	TTCTTCTAGGATCTTCTATCG	2mM
	R	7.	ACTCAGCAAAAGGAGGAT	
Exon 1B	F	8.	TTAGAGATGGGTCTTCC	2mM
	R	9.	GGGCGAGAGATGTCC	
Exon 2	F	10.	GGAGAGGAGCCTACTGG	2mM
	R	11.	AGTCTGAGGTGAGCAT	
Exons 3&4	F	12.	GCCTCAGTGACTTCCCT	3mM
	R	13.	TTTGGAAAGAGACTTATCTGG	
Exons 5&6	F	14.	GCAGGACTTGGCTTT	2mM
	R	15.	GACTCAGGCACAGGAG	
Exons 7&8	F	16.	GACCATCCCAGTCCTT	2mM
	R	17.	CCCCAACGACACAGG	

Thermal cycling was performed in a GeneAmp PCR System 9600 PCR machine (Perkin Elmer) with an initial denaturation step at 95°C for 10 min, followed by 35 cycles of denaturation at 95°C for 30 sec, primer annealing at 60°C for 45 sec, and primer extension at 72°C for 2 min, followed by final extension at 72°C for 5 min, with the following exceptions. 40 cycles were used to amplify exon 1B and to co-amplify exons 7 and 8. Cycling conditions for the promoter region and exon 1A were an initial denaturation at 95°C for 2 min, followed by 40

cycles of denaturation at 94°C for 30 sec, primer annealing at 60 °C for 45 sec, and primer extension at 68°C for 4 min, followed by a final extension at 68°C for 7 min.

DNA sequencing. PCR products from 32 individuals, approximately 1/3 from each of 5 the 3 major racial groups (see above), were spin column purified using Microcon-100 columns. Cycle sequencing was performed on the GeneAmp PCR System 9600 PCR machine (Perkin Elmer) using the ABI Prism dRhodamine Terminator Cycle Sequencing Ready Reaction Kit according to the manufacturer's directions. Oligonucleotide primers used for the sequencing reactions are listed in Table 2.

10

Table 2. Sequencing primers.

	<u>Region</u>	<u>Forward/ Reverse</u>	<u>SEQ ID</u>	<u>Forward Primer (5' 3')</u>
15	Promoter (1)	F	18.	TGGAGCCCGTCTTGG
		R	19.	CAGCAGTTCACTTGACC
20	Promoter (2)	F	20.	TGCCACCCCTGCT
		R	21.	AGGCTGCTCCCTG
25	Promoter (3)	F	22.	GGGCTCACGCAACC
		R	23.	GCAGGTACTTTCTTC
30	Exon 1A (1)	F	24.	TTCTTCTAGGATCTTCTATCG
		R	25.	TTTTGAGGTGTCAGTG
35	Exon 1A (2)	F	26.	CCACACAAACACCCAC
		R	27.	GCTTCTGGAATGTTGG
40	Exon 1A (3)	R	28.	CGGAAAAAAAAGGAAG
	Exon 1B (1)	F	29.	CAATGCTGCCAGA
		R	30.	GCTCCACTGAGGAACCT
	Exon 1B (2)	F	31.	GGAGAGGAGCCTACTGG
		R	32.	TACCACCATCACAAACAGC
45	Exon 2	F	33.	CTGAAAGCAAGAAATCCAC
		R	34.	AGGCTGAGGTGAGCAT
50	Exons 3&4	F	35.	GCGGTGACCTGGAA
		R	36.	TTTGGAAAGAGACTTATCTGG
55	Exons 5&6 (1)	F	37.	CTGACTTGCCCCCTACCT
		R	38.	TAGCCACCACCCCTTA
60	Exons 5&6 (2)	F	39.	CCAAAGTGTACCCCTCACC
		R	40.	AGCCTGCTGCCACA
65	Exons 7&8 (1)	F	41.	GACCATCCCAGTCCTT
		R	42.	CAAACCCCGTGCT
70	Exons 7&8 (2)	F	43.	CTGTGGACCTCTGGTTG
		R	44.	CACAAATCATACTTATTCTGG
75	Exons 7&8 (3)	F	45.	CGATGCGGACTATGC
		R	46.	CCCCAACGACACAGG

Eight μ l sequencing reactions were subjected to 30 cycles at 96°C for 20 sec, 50°C for 20 sec, and 60°C for 4 min, followed by ethanol precipitation. Samples were evaporated to dryness at 50°C for ~15 min and resuspended in 2 μ l of loading buffer (5:1 deionized formamide:50 mM EDTA pH 8.0), heated to 65°C for 5 min, and electrophoresed through 4% polyacrylamide/6M urea gels in an ABI 377 Nucleic Acid Analyzer according to the manufacturer's instructions for sequence determination. All sequences were determined from both the 5' and 3' (sense and antisense) direction. Each sequencing reaction was performed with 2 individuals' DNA pooled together. The 16 electropherograms were analyzed by comparing peak heights, looking for ~25% reduction in peak size and/or presence of extra peaks as an indication of heterozygosity. If polymorphisms were identified, pools were subsequently split and resequenced for confirmation.

Population genotyping. High-throughput genotyping using TaqMan technology (ABI) was performed using standard techniques (Livak et al. (1995) PCR Methods and Applications 4:357-362) on the samples described above for 3 STP2 polymorphisms. Oligonucleotide PCR primers and probes used for genotyping are shown in Table 3. Polymorphisms for which allele frequencies were determined are marked with an asterisk (*) in Table 4.

Table 3. TaqMan primers and probes.

SEQ ID	Description	Primers
47.	STP2-136A primer	GGTGCTGGGGTTGAGTCTTCTG
48.	STP2-136Ala probe	CAAAGGATGTGGCGGTTTCCTACTACC
49.	STP2-136B primer	ACACCTTCCCTCCTCCCATCAAG
50.	STP2-136Val probe	CGCAAAGGATGTGGTGGTTCTACTAC
51.	STP2-235A primer	GGAGACTGTGGACCTCATGGTTGA
52.	STP2-235Asn probe	TAGTTGGTCATAGGGTTCTTCTTCATCTCCTT
53.	STP2-235B primer	CCGGCACCTACCTTCTCAT
54.	STP2-235Thr probe	TAGTTGGTCATAGGGGTCTTCTTCATCTCC
55.	STP2-282A primer	AGCTTGGCTCCCTGCCCTCCT
56.	STP2-282Glu probe	CTGCCATCTCTCCGCATAGTCCG
57.	STP2-282B primer	GGAACCCCTCTCACAGCTCAGA
58.	STP2-282Lys probe	TGCCATCTCTCGCATAGTCCGC
59.	STP2-447A primer	GGTGCTGGGGTTGAGTCTTCTG
60.	STP2-DelA447 probe	ATGGCCAAAGTGTACCCCTCACCCCTG
61.	STP2-447B primer	ACACCTTCCCTCCCATCAAG
62.	STP2-InsA447 probe	CATGGCCAAAGTGTAAACCTCACCC

Assay name is given by locus and position. Primer names are abbreviated locus - position and letter designations representing forward (A) and reverse (B) primers. Probes are abbreviated locus-position and 3 letter nucleic acid designations representing the nucleic acid alteration in the coding strand of the genomic DNA. Positions at which probes detect nucleic acid variations are shown in bold.

RESULTS

Eight exons, the promoter region, 3' and 5' untranslated regions from the human STP2 gene were resequenced in 32 individuals representing three major ethnic groups (Caucasian, Hispanic, and African American). The polymorphisms are listed in Table 4.

5 Table 4. Newly identified STP2 gene polymorphisms.

	Location;	SEQ ID	Polymorphism Sequence	AA change
	3' end; 99	63.	CCAGCTCCT C AACTTGCCTG	
		64.	CCAGCTCCT T ACTTGCCCTG	
10	3' UTR; 7	65.	GTGAGAGGGGTTCCCTGGAGTC	
		66.	GTGAGAGGGG C TCCTGGAGTC	
	Promoter; -603	67.	CATGAAG C TGGGGCTGGCTCC	
		68.	CATGAAG C TGAGGCTGGCTCC	
15	Promoter; -833	69.	CTCGTGCC C AGCTTGACCTG	
		70.	CTCGTGCC A CTTGACCTG	
	Promoter; -1005	71.	GGGATTCC T CAGGGGCACAGA	
		72.	GGGATTCC T CCGGGGCACAGA	
	Promoter; -1306	73.	ACAGC G CCATATTGCTTCTGG	
		74.	ACAGC G CCATATTGCTTCTGG	
20	5' UTR - A; 36	75.	CAGCCACTGC G GGCGAGGAGG	
		76.	CAGCCACTGC A GGCGAGGAGG	
	5' UTR - A; 51	77.	AGGAGGG C AC A GGCCAGGTT	
		78.	AGGAGGG C AC G AGGCCAGGTT	
	5' UTR - B; 183	79.	GGGAA C ATCGGGGAGAGGAG	
		80.	GGGAA C AT C AGGGAGAGGAG	
25	Exon 5*; 447	81.	CCAAAGTGTACC T CAC C CT	INS STOP
		82.	CCAAAGTGT A CC T CAC C CT	INS STOP
	Exon 5*; 136 (nt 307)	83.	AAGGATGTGGCGGTT C TAC	ALA-VAL
		84.	AAGGATGTGGTGG T TC T AC	ALA-VAL
30	Exon 7*; 235 (nt 705)	85.	ATGAAGAAG A CC T ATGACC	ASN-THR
		86.	ATGAAGAAG A CC C TATGACC	ASN-THR
	Exon 8*; 282 (nt 845)	87.	GGACTATGC G GAGAAGAT GG C	GLU-LYS
35		88.	GGACTATGC G AAGAAGAT GG C	GLU-LYS
	Exon 2; 19 (nt 56)	89.	AAGGGGG T CCCG C T C ATCAAG	PRO-LEU
		90.	AAGGGGG T CC C T C ATCAAG	PRO-LEU
	Intron 1A; 88	91.	CTCTG C TAT C T C CC C T C T C	
40		92.	CTCTG C TAT C C C T C CC C T C	
	Intron 2; 34	93.	CTCTCCC A GG T GG C AG T CCCC	
		94.	CTCTCCC A GG C GG C AG T CCCC	
	Intron 4; -71	95.	CCTTTGCC A CCAAGAG A TG	DEL A
		96.	CCTTTGCC A CCAAGAG A TG	DEL A
45	Intron 5; -19	97.	GTGTGG C ACT C C C TGCC C G	

	98.	GTGTCGGCACCCCTGCCCGC
Intron 6; 93	99.	CCTCCCTGGCGGCCCTCCA
	100.	CCTCCCTGGGTGGCCCTCCA
5 Promoter; -547	101.	TTGTTCTATGGATCCATGCTC
	102.	TTGTTCTATGCATCCATGCTC
Promoter; -453	103.	CATGGGCTGCTGGAGGCCTGT
	104.	CATGGGCTGCCGGAGGCCTGT
Promoter; -425	105.	ACTGGGCCAGGACCCCTGGCA
	106.	ACTGGGCCAGAACCCCTGGCA
10 Promoter; -358	107.	CCTGCCTATCCCAGCTTCTC
	108.	CCTGCCTATCTCAGCTTCTC
Promoter; -355	109.	GCCTATCCCATCTTCTCCTC
	110.	GCCTATCCCAGCTTCTCCTC

15 Genotyping of 95 individuals from each of 3 broadly defined racial groups (African Americans, Hispanic Americans, and Caucasian Americans) for three polymorphisms produced the allele and genotype frequencies shown in Table 5.

20

25

30

35

Table 5. Allele and Genotyp Population frequencies. Polymorphism name includes gene abbreviation followed by nucleotide designation for allele 1, then nucleotide number, then nucleotide designation for allele 2. Population abbreviations are as follows: AfAm=African Americans; BAH=Caucasians from the United States; Cauc=Caucasians from California; Hisp=Hispanic from California. Allele name are designated by nucleotide and position. Genotypes are designated by position and 2 nucleotides representing each of the chromosomes in a given individual.

Locus	Calc Name	Start Position	Population	Allele Freq	Genotype Freq
STP2	STP2_Al136Val_AfAm	0	African Americans, California	STP2_Al136=0.997 STP2_Val136=0.003	STP2_136Ala/Ala=0.995 STP2_136Ala/Val=0.005 STP2_136Val/Val=0
STP2	STP2_Al136Val_Cauc2	0	Caucasian, USA	STP2_Al136=1 STP2_Val136=0	STP2_136Ala/Ala=1 STP2_136Ala/Val=0 STP2_136Val/Val=0
STP2	STP2_Al136Val_Cauc	0	Caucasians, California	STP2_Al136=1 STP2_Val136=0	STP2_136Ala/Ala=1 STP2_136Ala/Val=0 STP2_136Val/Val=0
STP2	STP2_Al136Val_Chin	0	Chinese, California	STP2_Al136=1 STP2_Val136=0	STP2_136Ala/Ala=1 STP2_136Ala/Val=0 STP2_136Val/Val=0
STP2	STP2_Al136Val_Hisp	0	Hispanics, California	STP2_Al136=1 STP2_Val136=0	STP2_136Ala/Ala=1 STP2_136Ala/Val=0 STP2_136Val/Val=0
STP2	STP2_Al136Val_Japn	0	Japanese, California	STP2_Al136=1 STP2_Val136=0	STP2_136Ala/Ala=1 STP2_136Ala/Val=0 STP2_136Val/Val=0

STP2	STP2_insA447_AfAm	0	African Americans, California	STP2_deIA447=0.981 STP2_insA447=0.019	STP2_447delA/delA=0.963 STP2_447delA/insA=0.037 STP2_447insA/insA=0
STP2	STP2_insA447_Cauc2	0	Caucasian, USA	STP2_deIA447=1 STP2_insA447=0	STP2_447delA/delA=1 STP2_447delA/insA=0 STP2_447insA/insA=0
STP2	STP2_insA447_Cauc	0	Caucasians, California	STP2_deIA447=1 STP2_insA447=0	STP2_447delA/delA=1 STP2_447delA/insA=0 STP2_447insA/insA=0
STP2	STP2_insA447_Chin	0	Chinese, California	STP2_deIA447=1 STP2_insA447=0	STP2_447delA/delA=1 STP2_447delA/insA=0 STP2_447insA/insA=0
STP2	STP2_insA447_Hisp	0	Hispanics, California	STP2_deIA447=0.995 STP2_insA447=0.005	STP2_447delA/delA=0.989 STP2_447delA/insA=0.011 STP2_447insA/insA=0
STP2	STP2_insA447_Japn	0	Japanese, California	STP2_deIA447=1 STP2_insA447=0	STP2_447delA/delA=1 STP2_447delA/insA=0 STP2_447insA/insA=0
STP2	STP2_Asn235Thr_AfAm	0	African Americans, California	STP2_Asn235=0.749 STP2_Thr235=0.251	STP2_235Asn/Asn=0.562 STP2_235Asn/Thr=0.373 STP2_235Thr/Thr=0.065
STP2	STP2_Asn235Thr_Cauc2	0	Caucasian, USA	STP2_Asn235=0.753 STP2_Thr235=0.247	STP2_235Asn/Asn=0.565 STP2_235Asn/Thr=0.376 STP2_235Thr/Thr=0.059

STP2	STP2_Asn235Thr_Cauc	0	Caucasians, California	STP2_Asn235=0.649 STP2_Thr235=0.351	STP2_235Asn/Asn=0.42 STP2_235Asn/Thr=0.458 STP2_235Thr/Thr=0.122
STP2	STP2_Asn235Thr_Chin	0	Chinese, California	STP2_Asn235=0.934 STP2_Thr235=0.066	STP2_235Asn/Asn=0.882 STP2_235Asn/Thr=0.105 STP2_235Thr/Thr=0.013
STP2	STP2_Asn235Hisp	0	Hispanics, California	STP2_Asn235=0.623 STP2_Thr235=0.377	STP2_235Asn/Asn=0.385 STP2_235Asn/Thr=0.476 STP2_235Thr/Thr=0.139
STP2	STP2_Asn235Jpn	0	Japanese, California	STP2_Asn235=0.855 STP2_Thr235=0.145	STP2_235Asn/Asn=0.75 STP2_235Asn/Thr=0.211 STP2_235Thr/Thr=0.039
STP2	STP2_Glu282Lys_AfAm	0	African Americans, California	STP2_Glu282=0.949 STP2_Lys282=0.051	STP2_282Glu/Glu=0.899 STP2_282Glu/Lys=0.101 STP2_282Lys/Lys=0
STP2	STP2_Glu282Lys_Cauc2	0	Caucasian, USA	STP2_Glu282=1 STP2_Lys282=0	STP2_282Glu/Glu=1 STP2_282Glu/Lys=0 STP2_282Lys/Lys=0
STP2	STP2_Glu282Lys_Cauc	0	Caucasians, California	STP2_Glu282=0.997 STP2_Lys282=0.003	STP2_282Glu/Glu=0.995 STP2_282Glu/Lys=0.005 STP2_282Lys/Lys=0
STP2	STP2_Glu282Lys_Chin	0	Chinese, California	STP2_Glu282=1 STP2_Lys282=0	STP2_282Glu/Glu=1 STP2_282Glu/Lys=0 STP2_282Lys/Lys=0

STP2	STP2_Glu282Lys_Hisp	0	Hispanics, California	STP2_Glu282=0.992 STP2_Lys282=0.008
STP2	STP2_Glu282Lys_Japn	0	Japanese, California	STP2_Glu282=1 STP2_Lys282=0
STP2	STP2_Glu282Lys_Hisp	0	Hispanics, California	STP2_Glu282=0.984 STP2_282Glu/Lys=0.016 STP2_282Lys/Lys=0

Each of the polymorphisms identified in this study are unique and newly described. Several of the nucleotide base changes result in amino acid changes that may alter enzyme activity by any of a number of possible mechanisms. The changes in the 5' and 3' UTRs may alter regulation of transcription or transcript stability. Promoter region alterations may result 5 in altered regulation or efficiency of transcription.

All of these polymorphisms have utility. As the human genome project progresses, polymorphisms within every human gene must be identified in order to perform whole genome association studies that will be necessary for identifying genetic etiologies of complex diseases. These polymorphisms are useful for association studies.

10

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present 15 invention is not entitled to antedate such publication by virtue of prior invention.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the 5 appended claims.

What is Claimed is:

1. An isolated nucleic acid molecule comprising a STP2 sequence polymorphism, as part of other than a naturally occurring chromosome.
- 5 2. A nucleic acid probe for detection of STP2 locus polymorphisms, comprising a polymorphic sequence listed in Table 4.
3. A nucleic acid probe according to Claim 2, wherein said probe is conjugated to a detectable marker.
- 10 4. An array of oligonucleotides comprising:
two or more probes for detection of STP2 locus polymorphisms, said probes comprising at least one form of a polymorphic sequence listed in Table 4.
- 15 5. A method for detecting in an individual a polymorphism in STP2 metabolism of a substrate, the method comprising:
analyzing the genome of said individual for the presence of at least one STP2 polymorphism listed in Table 4; wherein the presence of said predisposing polymorphism is indicative of an alteration in STP2 expression or activity.
- 20 6. A method according to Claim 5, wherein said analyzing step comprises detection of specific binding between the genomic DNA of said individual with an array of oligonucleotides comprising:
two or more probes for detection of STP2 locus polymorphisms, said probes comprising at least one form of a polymorphic sequence listed in Table 4.
- 25 7. A method according to Claim 5, wherein said alteration in STP2 expression is tissue specific.
- 30 8. A method according to Claim 5, wherein said alteration in STP2 expression is in response to a STP2 modifier.
9. A method according to Claim 8, wherein said modifier induces STP2 expression.
- 35 10. A method according to Claim 8, wherein said modifier inhibits STP2 expression.

SEQUENCE LISTING

<110> Guida, Marco
Kurth, Janice

<120> Genotyping Human Phenol Sulfotransferase
(STP2)

<130> SEQ-16P

<150> 60/088,710

<151> 1998-06-10

<160> 110

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 8396

<212> DNA

<213> H. sapiens

<400> 1

ctctccctcc ttgtctctta cctgcctgct gcctggaca ggatgaagcg gggcccttgt	60
gttggcccaa ccctggctgt tggctaagag cccacgtat ctgcctgtga gaggagtcc	120
tteccgaaaga accagggcag ctctgcgcc tagagggca atgccttagc tgagtgcagt	180
ccccccggccc cagcctggtc cagctttggg aagagggtgc ccagttgtgc aatccaggcc	240
ggggcagccg tgcctgtatc ttggatttca gggctgagcc tggagggggc ttgtatgcc	300
tgactctgtc tctctctctg gccccatgcc ttggtagctg tgaggcgatc ctgccttggg	360
tgacctgtatc tggctgtatc ggatgagcac gggggaaata gtggaaagact cgaaattaga	420
agacgtgatc gggctttggc cccagctcc ctaccccact ccctgtctg ggctgcctgt	480
gaccacaccc ttctctgtca gcacactgga tagccctgtc ggagctcagt gtccctaatac	540
ccctccagat actgggtggcc taggggaggt catcaaagac cagtggaca tcgacccatc	600
cctgtttcca cgtttttgt tttttttt ttttgttga gacagatgtt cactctgtt	660
gcccaggctg gagtgcataatc gctgtatctt ggctcaccgc aacctctgcc tcccggttc	720
aaggcatttc ctcgttccatc cctcccaatc agctggattt acaggcgatc gccaccaggc	780
ttgactaattt ttctatttt agtagagaca agttttctcc atgttgcata ggctggcttc	840
aaactcccgaa ctttcagggtga tctgcctgcc tcgcctccc aaagtgcgtt gattacagga	900
gtgagccacc gtgccaggcc ttctccaggc tcttggcacc tttagccagaa acaattaag	960
gacaagtgcacaa aagtcatgc acgttaggcatttccatgc aagtaaaggactcactgaa	1020
gaagaggaac gtgggggtcc tcaagagatgttcatgc ctacaagggtt tggggctgac	1080
ctttatgggc ttcttcaact aaagagggtt atattcatgc agagtccagg aaaaggtaaa	1140
gatttctcaa gaccgtgggtt ccacaatata caccaaaaatc caggtgttcc tggagccgtc	1200
ttggcactgg tgggtgtatc ttactgtattc tacagtgcata ttcttaggtga	1260
aacctacatc aaatacagcc ccatgttgc tctgggttgc cgcagccagc ttggcttca	1320
tcctatttt cagggactta ttggcccttg gcacatgcgc ctatccatgc ttcttcaat	1380
ctggcatgt gaaaactgtgt cctgggattt tctgtttgtct tgcttagact ctatcatc	1440
cacattctcg cctctttctt gtgccacccctt ctgtgttcc ggctgggtttt cactagatgt	1500
caatacataag tctcagtccaa gagggccctcc tgaagggtgc tgaggccagg ggtggagcta	1560
gtagccggag gacctgcacatc tcatggggat ttctcaggggc cacagaggag ggaggagggg	1620
cctgtggccc tagcaggggc gcagcccttc ctctgcctgg aaatcccatc cctcagttt	1680
ccccgcttgc ctctgagctc acgcaaccctt gggaggactca cctttactca	1740

gatggttgtt tacctgtctc gtgcccaagct tgaccctgga ctttaaatag tgaggacaaa 1800
 gaacgaggag ggtggggggta tgcactcctt ccacgggggc ctgtggcttc caagcctcaa 1860
 cctcctctgg tctctgtctg tggagcctcc ttcaaaaccca tggaaagaaaa agtacctgcc 1920
 aggggctgtg gttcttctag gatcttctat cgatgttctg tgagggtcccc agggagccat 1980
 gaagctgggg ctggctccca gggcaatggg actgcagtgt ctttgccttct tcttgcctca 2040
 tggatccatg ctctgcctca cccctggccc ttcaactctgc ccacacgcac cactccagac 2100
 tggcctgtg gtcagagect ggagtgcata ggcgtctgga ggcctgtggg ttgcactggg 2160
 ccaggacccc tggcaccttc aagactggcc tggagccagc aggttaggtga cctttccagg 2220
 gcctgcctat cccagcttcc ttctccaaatc cttccctctt cttgcctggg tcaattagag 2280
 aaagcttgctc ttttggagtt cagggccagg tcaggagccc agtgcacgct caaaaaaaaaa 2340
 aacccaaaaa aaaaacccca ccattggcc ctttccctt tcattcttct gttttctaca 2400
 cacccaaaccc agtcgtggct ttggagatca ctttaagctt gtctccagct ggcaaactaa 2460
 ggagggtaat agagaagctc ccccacccccc aaccctaccc cttccctccg gaagcaaatac 2520
 taagtcctcgc cccggctcca gatccctccc acactgaccc aagaaacccct cagcacagac 2580
 aacacccctg cattccccac acaacacccca cactcagcca ctgcgggcga ggagggcact 2640
 aggccaggtt cccaaagagct caggtgagtg acacacccgga atggcccagg acgccttcac 2700
 cctgcctcgc ttgtggctcc aacattccag aagccgaggc ctctgcatac tctgcctct 2760
 ccccatggat atcccatttc agacaacccca ggccggcctg aatcccccctt cttcccttt 2820
 ttttttccg gggaggccag gtcttgcgtt caccggggct ggagtgcgtt gggatccctgg 2880
 ccactgcgc cttgaattcc ttggctcaag tgattctctt gcctcgttag cttaggactac 2940
 agacccctac catcctgcctt ggtatgttt aaaaaatatt tttaaaagat ttttagagat 3000
 ggggtttcc aatgtgccc agattggctt ccaaattctg gcctcagccct ccctagggtc 3060
 tgggattaca ggtgggggcc accctgccc ggatccctt tttgctgagt catcacagtt 3120
 ttgctcatcc ccacatcagg ctctggcccc caataccagc tcagttgcctt aatggctgt 3180
 ttgtcttggg accccagatgg actgtggccg ggcagaatggta tcacaggccctt ggccagcc 3240
 ggagttgcca catgtgaggg gcccggggc tcaaggaggg gaacatcgaa gagaggagcc 3300
 tactgggtgg aggtgggggg tcccagcagg aaatgggttag acaaaggccg ctggctggca 3360
 ggaagacagc acaggaaggtt ccttagaggtt cctcgtgcgtca gctggactctt cctggagacc 3420
 ttcacacacc ctgacatctg ggcccccttc caccgggtt ctttacttgc tctgcaccat 3480
 ggcccaggcc ctgggatttt gaacagctcc gcaggtaat gaaagggttag gcccaggctgg 3540
 ggaaccacca cattagaacc cgcacccctt ttcaagccca gccccggccac tgactggcct 3600
 tgtgagtgcg ggcagaatgcac tcaacccctt taggccttag tgacttccctt gaaagcaaga 3660
 attccacttt ttgtgtttt tgatgggtt aagggaaacgg gcctggctt gggcccttgc 3720
 gcaggaaat ggagctgtac caggacatct ctgcggccgc actggagtagc gtgaaggggg 3780
 tcccgcctcat caagtacttt gcagaggccat tggggccctt gcagagcttc caggccccgc 3840
 ctgtacccctt gctcatcgc acctacccca agtccggtagt gtgaggaggg ccaccaccc 3900
 tctccctagg ggcagtcctt acettggccca gcgaggctat gcacccctca gcctgcctac 3960
 ctcccatctc cctccctctc caggcaccac ctgggtgagc cagattctgg acatgatcta 4020
 ccaggccgtt gacctggaaa agtgttccatc agtcccttgc ttcatgcggg tgcccttctt 4080
 tgagttcaaa gtccctagg tttttttttt tggtgtgtc ctgggtgcaaa ggggagtgga 4140
 ggaagacagg gctggggctt cagctccatc gaccccttgc gacccactgc tcagggttag 4200
 agactctgaa aaacacacca gccccacgc ttcaagac acacccctgc ctggctctgc 4260
 tccccccagac tctgtttggat cagaaggatc aggtgagact gggcacatgc gttcacaccc 4320
 gcaatctcgt tactttggga ggctggggat ggaagatccc ttgaagccag aagttccaga 4380
 taagtctctt caaaaaaaaa aacttagctg tgcatatgtt tggtgtccctg taataccagt 4440
 tactcaggag gttgagggtgg gaggatcata tgaccccttgc agttaaggt tacagcgac 4500
 tatgatcaca ccaggctggg tgacagagaa acactgttcc aaaaaacatgc 4560
 gaatagaaag agtgtccac cagtgcgggt gtcacacccctt gtaattccatc cacttgc 4620
 ggctgaggca ggtggatcac ctgagacttag ggttttggatc tcagccctggc caacatggca 4680
 aaaccccatc tctactaaaa atacaaaaaa attagccggg catgggtggca ggcacatgtt 4740
 atccctggctt cttggggagcc tgaaggcaggaa gaattgtttt aagctggggag gcagagggtt 4800
 tagtcaggcc agaccccttgc accctggggaa acaagagccaa aactctgttctt 4860
 caaaaaaaaaa agaaaaaaat aaaaaagccgg caggtggccag ggggctggcc ctgtttgtggc 4920

tcacgcctgt aataccagca ctttcggagg tcgaggtggg cagatcaccc aaggtagga	4980
gtttgagatc agtctggcca acatggagaa acccgcttc tactaaaaat acaaaaatta	5040
gccaggcggt ggggcaggcg ccagtaatcc cagctactcg ggaggcttag gaaggagaat	5100
agcttgcacc tgggaggcggt tggttgcagt gagccgagat tgtccactg tactccagcc	5160
tgggagacac aacgagacat tgtttcaaac aaaacaaata aatattttaa aaggtttgcc	5220
acctgggtgg ctacccgctg taatgccagc atttggag gccaagatgg gtggaccgct	5280
tgagctcagg agttccagac cagcccgaga aacatgggaa gactccatct ctataaaaaga	5340
tgcaaataat cagcaggcgca tggtggcata gcgtatagt cccagctact caaaagtcta	5400
aggttggagg attgcttgcag cctggggaggt caacgttgca gtgagctatt ctcactccag	5460
tgcactccaa cctgggcaac aggaaaaaaag aaagcccaag gtctttttc tcttttct	5520
ttttttttag acttagagtc cccccccca aaaaaaaaaa aaccacaaca aaaagaaaaa	5580
agcaaaggctc cagggtgggg gcatgtgaat ccagggagg aggcccccgc tcagccagc	5640
tttggcctg ttcttctggg agagtcgcct cacttcctcc agacttgc tcatttccac	5700
ggggggact gtctgcctt tgctctgtatg accaaaaaca tgagactctt ccgggttagac	5760
ctaagaaaagg tagaggggtgg gtccctcacag acccacaaaa ttgggtgggt gtgggaacat	5820
gcctgggtgg gcatgccttgc ctccagatcg gggtgtgacg cattgatgca gattatatta	5880
ctatagaata tcatggtctc agggaccagg caggactttg gcttttgagc agggttcaga	5940
tcctgacttgc cccttacctg tgccgtgaga tctccaaacaa gtcagccctt aagcctcagc	6000
ttcccttccctt gccaaacccaa gagatgagct ggcctggggc aggctgtgtg gtatgggtc	6060
tgggtttag tcttctgccc ctgcagggtgg tctatgttgc cgcacacgca aaggatgtgg	6120
cggtttccctt ctaccacttgc taccacatgg ccaaagtgtt ccctcaccc gggacctggg	6180
aaagcttccctt ggagaagttc atggctggag aaggctggct tgatggagg aaggaagggtg	6240
tggagctaag ggggtgggtgg tacaacgcac agcaacccctg tgcggcacc ccctgcccgc	6300
ttctccagtg tccatgtggg ctgggttacca gcacgtgcaaa gagttgggtgg agctgagccg	6360
caccacccctt gttctctacc ttttatgaa agacatgaag gaggttggagac cgcctttgtat	6420
gtttccctcc acgtgacacc tggggggcagg cacttcacag ggacctgcca aggccaccca	6480
gccacccctcc ctggggcggcc ctccagatcg gcccggattt cccatcttgc ctccctggcc	6540
caggccccac tgcaaaaaaaa tggggcagca ggcggggcacc agcttcate tccctgtgcct	6600
gagtcagctg cacgggtggc catggatcg ctactttttt tttttagaca aaagtcttgc	6660
tctgttgc tccatgtgggcat gcaatgggtgt gatctcagct cagtgtaacc cccccctccca	6720
ggttcaagtgttccatgtgggcat gcaatgggtgt gatctcagct cagtgtaacc cccccctccca	6780
catgcctggc taatttttgt gttgtgcatt gttggccagg ttggcttccaa tccctgtgagc	6840
tcaggtgtatc cgcctgcctc agccctccaa agtcttgggaa attacacgc tgaaccacgg	6900
cccccttgccttccatgtgggcat gcaatgggtgt gatctcagct cagtgtaacc cccccctccca	6960
ccagggccac aggcacggaa gaagaccat ccagtcctta cccataggag ccaagccag	7020
ctcatgtatgg gatcacaggg cagacagcaa ttcatttgc cccagggact ggggtcccag	7080
gggtcgagga gctggctcta tgggttttga agtggaaatgg gccagttccc ctctgagggtt	7140
agagaagttgg acccccttttta ttttctgttca tcagcaatcc aagccctccac tgaggagccc	7200
tctgttgc tccatgtgggcat gcaatgggtgt gatctcagct cagtgtaacc cccccctccca	7260
ctgcccaggagg agactgtggc tccatgtggt gggccat gatgttgc tccatgtggc tccatgtggc	7320
aaccctatgaa ccaactacac caccgttccgc cgggagttca tggaccacag catctcccc	7380
ttcatgtgggcat gcaatgggtgt gatctcagct cagtgtaacc cccccctccca	7440
tggggccat gcaatgggtgt gatctcagct cagtgtaacc cccccctccca	7500
cccttccctcc cccaggcatg gctggggact ggaagaccac cttcacccgt ggcgcagatg	7560
agcgcttcga tgcggactat gccggagaaga tggcaggctg cagccctcage ttccgtctg	7620
agctgtgaga ggggttccctg ggttccctg ggttccctg ggttccctg ggttccctg	7680
gaggctccag aataaaagtat gatgttgc tccatgtggc tccatgtggc tccatgtggc	7740
aaaccctgag ctgaaagatg gatcgccac tggggccaaa tacggccacc tcccccgttcc	7800
agctcttcaa ttggccctgt ttggagaggg gagagggtct ggagaagtaa aaccctgggg	7860
acgagtagatg ggggaatgtt tttatccca gcaatgggtgt gatctcagct cagtgtaacc	7920
ttggggggatg gcaatgggtgt gatctcagct cagtgtaacc cccccctccca	7980
acgtatcttca gggccat gggccat gatgttgc tccatgtggc tccatgtggc tccatgtggc	8040
aacaggaccg agtagtgc tccatgtggc tccatgtggc tccatgtggc tccatgtggc	8100

gacccccagg ccaggacagg cacccttc ccccagcta gaccacagga ggctctgggc	8160
cgtggactct cagccactcc taacatctt cactctgggg tcaagaagtc ttggcccaagt	8220
ccctgctct acagagctct ttctcagtg gctggagacc caaggcaggg aataggcagg	8280
gaggagtagg ggtgctgact cccttc tagtgggtcata gctggagggt ctgctgcctt	8340
tcaaggactc ttgttgcggaa ggactgaggg caacccagag ggtggcaggc agggat	8396

<210> 2
<211> 1396
<212> DNA
<213> H. sapiens

<220>
<221> CDS
<222> (426) ... (1308)

<400> 2	
gcattccccca cacaacaccc acactcagcc actgcggcg aggagggcac gaggccaggt	60
tcccaagagc tcagggttgc cctggAACCC agatggactg tggccgggca agtggatcac	120
aggcctggcc agccttaggg ttgccacatg tgagggggcc aggggctcaa ggaggggaac	180
atcggggaga ggagcctact ggggggggccc tgggggtccc agcaggaaat ggtgagacaa	240
aggggcgctgg ctggcaggaa gacagcacag gaaggtccta gagtttcctc agtgcagctg	300
gactcttcgtg gagaccttca cacacctga catctggcc ccgttccacg aggggtctt	360
cactggctcg caccatggcc cagggcctgg gatTTGAAC agtcccgacg gtgaatgaaa	420
ggaac atg gag ctg atc cag gac atc tct cgc ccg cca ctg gag tac gtg	470
Met Glu Leu Ile Gln Asp Ile Ser Arg Pro Pro Leu Glu Tyr Val	
1 5 10 15	

aag ggg gtc ccg ctc atc aag tac ttt gca gag gca ctg ggg ccc ctg	518
Lys Gly Val Pro Leu Ile Lys Tyr Phe Ala Glu Ala Leu Gly Pro Leu	
20 25 30	

cag agc ttc cag gcc cgg cct gat gac ctg ctc atc agc acc tac ccc	566
Gln Ser Phe Gln Ala Arg Pro Asp Asp Leu Leu Ile Ser Thr Tyr Pro	
35 40 45	

aag tcc ggc acc acc tgg gtg agc cag att ctg gac atg atc tac cag	614
Lys Ser Gly Thr Trp Val Ser Gln Ile Leu Asp Met Ile Tyr Gln	
50 55 60	

ggc ggt gac ctg gaa aag tgt cac cga gct ccc atc ttc atg cggttg	662
Gly Gly Asp Leu Glu Lys Cys His Arg Ala Pro Ile Phe Met Arg Val	
65 70 75	

ccc ttc ctt gag ttc aaa gtc cca ggg att ccc tca ggg atg gag act	710
Pro Phe Leu Glu Phe Lys Val Pro Gly Ile Pro Ser Gly Met Glu Thr	
80 85 90 95	

ctg aaa aac aca cca gcc cca cga ctc ctg aag aca cac ctg ccc ctg	758
Leu Lys Asn Thr Pro Ala Pro Arg Leu Leu Lys Thr His Leu Pro Leu	
100 105 110	

gct ctg ctc ccc cag act ctg ttg gat cag aag gtc aag gtg gtc tat Ala Leu Leu Pro Gln Thr Leu Leu Asp Gln Lys Val Lys Val Val Tyr 115 120 125	806
gtt gcc cgc aac gca aag gat gtg gcg gtt tcc tac tac cac ttc tac Val Ala Arg Asn Ala Lys Asp Val Ala Val Ser Tyr Tyr His Phe Tyr 130 135 140	854
cac atg gcc aaa gtg tac cct cac cct ggg acc tgg gaa agc ttc ctg His Met Ala Lys Val Tyr Pro His Pro Gly Thr Trp Glu Ser Phe Leu 145 150 155	902
gag aag ttc atg gct gga gaa gtg tcc tat ggg tcc tgg tac cag cac Glu Lys Phe Met Ala Gly Glu Val Ser Tyr Gly Ser Trp Tyr Gln His 160 165 170 175	950
gtg caa gag tgg tgg gag ctg agc cgc acc cac cct gtt ctc tac ctc Val Gln Glu Trp Trp Glu Leu Ser Arg Thr His Pro Val Leu Tyr Leu 180 185 190	998
tcc tat gaa gac atg aag gag aac ccc aaa agg gag att caa aag atc Phe Tyr Glu Asp Met Lys Glu Asn Pro Lys Arg Glu Ile Gln Lys Ile 195 200 205	1046
ctg gag ttt gtg ggg cgc tcc ctg cca gag gag act gtg gac ctc atg Leu Glu Phe Val Gly Arg Ser Leu Pro Glu Glu Thr Val Asp Leu Met 210 215 220	1094
gtt gag cac acg tcg ttc aag gag atg aag aag aac cct atg acc aac Val Glu His Thr Ser Phe Lys Glu Met Lys Lys Asn Pro Met Thr Asn 225 230 235	1142
tac acc acc gtc cgc cgg gag ttc atg gac cac agc atc tcc ccc ttc Tyr Thr Thr Val Arg Arg Glu Phe Met Asp His Ser Ile Ser Pro Phe 240 245 250 255	1190
atg agg aaa ggc atg gct ggg gac tgg aag acc acc ttc acc gtg gcg Met Arg Lys Gly Met Ala Gly Asp Trp Lys Thr Thr Phe Thr Val Ala 260 265 270	1238
cag aat gag cgc ttc gat gcg gac tat gcg gag aag atg gca ggc tgc Gln Asn Glu Arg Phe Asp Ala Asp Tyr Ala Glu Lys Met Ala Gly Cys 275 280 285	1286
agc ctc agc ttc cgc tct gag c tgtgagaggg gttcctggag tcactgcaga Ser Leu Ser Phe Arg Ser Glu 290	1338
gggagtgtgc gaatcaagcc tgacccaagag gctccagaat aaagtatgtat ttgtgttc	1396
<210> 3	
<211> 295	
<212> PRT	

<213> H. sapiens

<400> 3
 Met Glu Leu Ile Gln Asp Ile Ser Arg Pro Pro Leu Glu Tyr Val Lys
 1 5 10 15
 Gly Val Pro Leu Ile Lys Tyr Phe Ala Glu Ala Leu Gly Pro Leu Gln
 20 25 30
 Ser Phe Gln Ala Arg Pro Asp Asp Leu Leu Ile Ser Thr Tyr Pro Lys
 35 40 45
 Ser Gly Thr Thr Trp Val Ser Gln Ile Leu Asp Met Ile Tyr Gln Gly
 50 55 60
 Gly Asp Leu Glu Lys Cys His Arg Ala Pro Ile Phe Met Arg Val Pro
 65 70 75 80
 Phe Leu Glu Phe Lys Val Pro Gly Ile Pro Ser Gly Met Glu Thr Leu
 85 90 95
 Lys Asn Thr Pro Ala Pro Arg Leu Leu Lys Thr His Leu Pro Leu Ala
 100 105 110
 Leu Leu Pro Gln Thr Leu Leu Asp Gln Lys Val Lys Val Val Tyr Val
 115 120 125
 Ala Arg Asn Ala Lys Asp Val Ala Val Ser Tyr Tyr His Phe Tyr His
 130 135 140
 Met Ala Lys Val Tyr Pro His Pro Gly Thr Trp Glu Ser Phe Leu Glu
 145 150 155 160
 Lys Phe Met Ala Gly Glu Val Ser Tyr Gly Ser Trp Tyr Gln His Val
 165 170 175
 Gln Glu Trp Trp Glu Leu Ser Arg Thr His Pro Val Leu Tyr Leu Phe
 180 185 190
 Tyr Glu Asp Met Lys Glu Asn Pro Lys Arg Glu Ile Gln Lys Ile Leu
 195 200 205
 Glu Phe Val Gly Arg Ser Leu Pro Glu Glu Thr Val Asp Leu Met Val
 210 215 220
 Glu His Thr Ser Phe Lys Glu Met Lys Lys Asn Pro Met Thr Asn Tyr
 225 230 235 240
 Thr Thr Val Arg Arg Glu Phe Met Asp His Ser Ile Ser Pro Phe Met
 245 250 255
 Arg Lys Gly Met Ala Gly Asp Trp Lys Thr Thr Phe Thr Val Ala Gln
 260 265 270
 Asn Glu Arg Phe Asp Ala Asp Tyr Ala Glu Lys Met Ala Gly Cys Ser
 275 280 285
 Leu Ser Phe Arg Ser Glu Leu
 290 295

<210> 4

<211> 18

<212> DNA

<213> H. sapiens

<400> 4

cccaaataca ggtgttcc

18

<210> 5

<211> 17

<212> DNA

<213> H. sapiens

<400> 5
ggagcagagc aaggatc 17

<210> 6
<211> 21
<212> DNA
<213> H. sapiens

<400> 6
ttcttcttagg atcttctatc g 21

<210> 7
<211> 18
<212> DNA
<213> H. sapiens

<400> 7
actcagcaaa aggaggat 18

<210> 8
<211> 18
<212> DNA
<213> H. sapiens

<400> 8
ttagagatgg ggtcttcc 18

<210> 9
<211> 15
<212> DNA
<213> H. sapiens

<400> 9
gggcgagaga tgtcc 15

<210> 10
<211> 17
<212> DNA
<213> H. sapiens

<400> 10
ggagaggaggc ctactgg 17

<210> 11
<211> 16
<212> DNA
<213> H. sapiens

<400> 11
agtctgaggt gagcat 16

<210> 12
<211> 17
<212> DNA
<213> H. sapiens

<400> 12
gcctcagtga cttccct 17

<210> 13
<211> 20
<212> DNA
<213> H. sapiens

<400> 13
tttggaaagag acttatctgg 20

<210> 14
<211> 16
<212> DNA
<213> H. sapiens

<400> 14
gcaggacttt ggcttt 16

<210> 15
<211> 16
<212> DNA
<213> H. sapiens

<400> 15
gactcaggca caggag 16

<210> 16
<211> 16
<212> DNA
<213> H. sapiens

<400> 16
gaccatcccc gtcctt 16

<210> 17
<211> 15
<212> DNA
<213> H. sapiens

<400> 17
cccccaacgac acagg 15

<210> 18
<211> 15
<212> DNA
<213> H. sapiens

<400> 18
tggagcccg^t cttgg 15

<210> 19
<211> 18
<212> DNA
<213> H. sapiens

<400> 19
cagcagtttc acttgacc 18

<210> 20
<211> 14
<212> DNA
<213> H. sapiens

<400> 20
tgccacccccc tgct 14

<210> 21
<211> 14
<212> DNA
<213> H. sapiens

<400> 21
aggctgctcc cctg 14

<210> 22
<211> 14
<212> DNA
<213> H. sapiens

<400> 22
gggctcacgc aacc 14

<210> 23
<211> 19
<212> DNA
<213> H. sapiens

<400> 23
gcaggtactt ttctttcca 19

<210> 24
<211> 21
<212> DNA
<213> H. sapiens

<400> 24
ttcttctagg atcttctatc g 21

<210> 25
<211> 18

<212> DNA
<213> H. sapiens

<400> 25
tttttgaggt gtcactgg 18

<210> 26
<211> 16
<212> DNA
<213> H. sapiens

<400> 26
cccacacacaac acccac 16

<210> 27
<211> 16
<212> DNA
<213> H. sapiens

<400> 27
gcttctggaa tgttgg 16

<210> 28
<211> 19
<212> DNA
<213> H. sapiens

<400> 28
cgaaaaaaaaaaa aaaaggaaag 19

<210> 29
<211> 14
<212> DNA
<213> H. sapiens

<400> 29
caatgctgcc caga 14

<210> 30
<211> 17
<212> DNA
<213> H. sapiens

<400> 30
gctccactga ggaacct 17

<210> 31
<211> 17
<212> DNA
<213> H. sapiens

<400> 31
ggagaggagc ctactgg 17

<210> 32
<211> 18
<212> DNA
<213> H. sapiens

<400> 32
taccaccatc acaacagc 18

<210> 33
<211> 19
<212> DNA
<213> H. sapiens

<400> 33
ctgaaagcaa gaaaatccac 19

<210> 34
<211> 16
<212> DNA
<213> H. sapiens

<400> 34
aggctgaggt gagcat 16

<210> 35
<211> 14
<212> DNA
<213> H. sapiens

<400> 35
gcggtgacct ggaa 14

<210> 36
<211> 20
<212> DNA
<213> H. sapiens

<400> 36
tttggaaagag acttatctgg 20

<210> 37
<211> 17
<212> DNA
<213> H. sapiens

<400> 37
ctgacttgcc cctacct 17

<210> 38
<211> 16
<212> DNA
<213> H. sapiens

<400> 38	
tagccaccac ccctta	16
<210> 39	
<211> 18	
<212> DNA	
<213> H. sapiens	
<400> 39	
ccaaagtgtac ccctcacc	18
<210> 40	
<211> 14	
<212> DNA	
<213> H. sapiens	
<400> 40	
agcctgctgc caca	14
<210> 41	
<211> 16	
<212> DNA	
<213> H. sapiens	
<400> 41	
gaccatcccc gtcctt	16
<210> 42	
<211> 14	
<212> DNA	
<213> H. sapiens	
<400> 42	
caaaccggc tgct	14
<210> 43	
<211> 18	
<212> DNA	
<213> H. sapiens	
<400> 43	
ctgtggacct cttggttg	18
<210> 44	
<211> 22	
<212> DNA	
<213> H. sapiens	
<400> 44	
cacaatcat actttattct gg	22
<210> 45	

<211> 15
<212> DNA
<213> H. sapiens

<400> 45
cgatgcggac tatgc 15

<210> 46
<211> 15
<212> DNA
<213> H. sapiens

<400> 46
ccccaaacgac acagg 15

<210> 47
<211> 22
<212> DNA
<213> H. sapiens

<400> 47
ggtgctgggg ttgagtcgtc tg 22

<210> 48
<211> 27
<212> DNA
<213> H. sapiens

<400> 48
caaaggatgt ggcggtttcc tactacc 27

<210> 49
<211> 23
<212> DNA
<213> H. sapiens

<400> 49
acacaccttcct tcctcccatc aag 23

<210> 50
<211> 28
<212> DNA
<213> H. sapiens

<400> 50
cgcaaaggat gtgggtggttt cctactac 28

<210> 51
<211> 24
<212> DNA
<213> H. sapiens

<400> 51

ggagactgtg gacctcatgg ttga	24
<210> 52	
<211> 32	
<212> DNA	
<213> H. sapiens	
<400> 52	
tagttgtca tagggttctt cttcatctcc tt	32
<210> 53	
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 53	
ccggcaccta ccttcctca t	21
<210> 54	
<211> 30	
<212> DNA	
<213> H. sapiens	
<400> 54	
tagttgtca taggggtctt cttcatctcc	30
<210> 55	
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 55	
agctttgctc cctgccttcc t	21
<210> 56	
<211> 24	
<212> DNA	
<213> H. sapiens	
<400> 56	
ctgccatctt ctccgcatacg tccg	24
<210> 57	
<211> 22	
<212> DNA	
<213> H. sapiens	
<400> 57	
ggaacccctc tcacagctca ga	22
<210> 58	
<211> 24	
<212> DNA	

<213> H. sapiens

<400> 58
tgccatctc ttgcgtatgt ccgc 24

<210> 59
<211> 22
<212> DNA
<213> H. sapiens

<400> 59
ggtgctgggg ttgagtcttc tg 22

<210> 60
<211> 25
<212> DNA
<213> H. sapiens

<400> 60
atggccaaag tgtaccctca ccctg 25

<210> 61
<211> 23
<212> DNA
<213> H. sapiens

<400> 61
acacccccc tcctccatc aag 23

<210> 62
<211> 25
<212> DNA
<213> H. sapiens

<400> 62
catggccaaa gtgttaaccct caccc 25

<210> 63
<211> 21
<212> DNA
<213> H. sapiens

<400> 63
ccagctcctc aacttgcctt g 21

<210> 64
<211> 21
<212> DNA
<213> H. sapiens

<400> 64
ccagctcctc tacttgcctt g 21

<210> 65
<211> 21
<212> DNA
<213> H. sapiens

<400> 65
gtgagaggggg ttcctggagt c

21

<210> 66
<211> 21
<212> DNA
<213> H. sapiens

<400> 66
gtgagaggggg ctcctggagt c

21

<210> 67
<211> 21
<212> DNA
<213> H. sapiens

<400> 67
catgaagctg gggctggctc c

21

<210> 68
<211> 21
<212> DNA
<213> H. sapiens

<400> 68
catgaagctg aggctggctc c

21

<210> 69
<211> 21
<212> DNA
<213> H. sapiens

<400> 69
ctcgtgccca gcttgaccct g

21

<210> 70
<211> 21
<212> DNA
<213> H. sapiens

<400> 70
ctcgtgccca acttgaccct g

21

<210> 71
<211> 21
<212> DNA
<213> H. sapiens

<400> 71
gggatttcctc aggggcacag a 21

<210> 72
<211> 21
<212> DNA
<213> H. sapiens

<400> 72
gggatttcctc cggggcacag a 21

<210> 73
<211> 21
<212> DNA
<213> H. sapiens

<400> 73
acagcgccat gttgcttctg g 21

<210> 74
<211> 21
<212> DNA
<213> H. sapiens

<400> 74
acagcgccat attgcttctg g 21

<210> 75
<211> 21
<212> DNA
<213> H. sapiens

<400> 75
cagccactgc gggcgaggag g 21

<210> 76
<211> 21
<212> DNA
<213> H. sapiens

<400> 76
cagccactgc aggcgaggag g 21

<210> 77
<211> 21
<212> DNA
<213> H. sapiens

<400> 77
aggagggcac aaggccaggt t 21

<210> 78
<211> 21

<212> DNA
<213> H. sapiens

<400> 78
aggagggcac gaggccaggt t 21

<210> 79
<211> 21
<212> DNA
<213> H. sapiens

<400> 79
ggggAACATC ggggAGAGGA g 21

<210> 80
<211> 21
<212> DNA
<213> H. sapiens

<400> 80
ggggAACATC AGGGAGAGGA g 21

<210> 81
<211> 20
<212> DNA
<213> H. sapiens

<400> 81
ccaaAGTGTa CCCTCACCCt 20

<210> 82
<211> 21
<212> DNA
<213> H. sapiens

<400> 82
ccaaAGTGTa ACCCTCACCCt 21

<210> 83
<211> 20
<212> DNA
<213> H. sapiens

<400> 83
aaggatgtgg ggTTTcctac 20

<210> 84
<211> 20
<212> DNA
<213> H. sapiens

<400> 84
aaggatgtgg ggTTTcctac 20

<210> 85
<211> 20
<212> DNA
<213> H. sapiens

<400> 85
atgaagaaga cccttatgacc 20

<210> 86
<211> 20
<212> DNA
<213> H. sapiens

<400> 86
atgaagaaga cccttatgacc 20

<210> 87
<211> 20
<212> DNA
<213> H. sapiens

<400> 87
ggactatatgcg agaagatggc 20

<210> 88
<211> 20
<212> DNA
<213> H. sapiens

<400> 88
ggactatatgcg agaagatggc 20

<210> 89
<211> 21
<212> DNA
<213> H. sapiens

<400> 89
aagggggtcc cgctcatcaa g 21

<210> 90
<211> 21
<212> DNA
<213> H. sapiens

<400> 90
aagggggtcc tgctcatcaa g 21

<210> 91
<211> 21
<212> DNA
<213> H. sapiens

<400> 91
ctctgctatc tctgccctct c 21

<210> 92
<211> 21
<212> DNA
<213> H. sapiens

<400> 92
ctctgctatc cctgccctct c 21

<210> 93
<211> 21
<212> DNA
<213> H. sapiens

<400> 93
ctctcccagg tggcagtccc c 21

<210> 94
<211> 21
<212> DNA
<213> H. sapiens

<400> 94
ctctcccagg cggcagtccc c 21

<210> 95
<211> 20
<212> DNA
<213> H. sapiens

<400> 95
cctttgccaa ccaagagatg 20

<210> 96
<211> 19
<212> DNA
<213> H. sapiens

<400> 96
cctttgccac caagagatg 19

<210> 97
<211> 21
<212> DNA
<213> H. sapiens

<400> 97
gtgtcgccac tccctgcccc c 21

<210> 98

<211> 21
<212> DNA
<213> H. sapiens

<400> 98
gtgtcggcac cccctgccc c 21

<210> 99
<211> 21
<212> DNA
<213> H. sapiens

<400> 99
cctccctggg cggccccctcc a 21

<210> 100
<211> 21
<212> DNA
<213> H. sapiens

<400> 100
cctccctggg tggccccctcc a 21

<210> 101
<211> 21
<212> DNA
<213> H. sapiens

<400> 101
ttgttctatg gatccatgtc c 21

<210> 102
<211> 21
<212> DNA
<213> H. sapiens

<400> 102
ttgttctatg catccatgtc c 21

<210> 103
<211> 21
<212> DNA
<213> H. sapiens

<400> 103
catgggctgc tggaggcctg t 21

<210> 104
<211> 21
<212> DNA
<213> H. sapiens

<400> 104

catgggctgc cgaggaggcctg t

21

<210> 105
<211> 21
<212> DNA
<213> H. sapiens

<400> 105
actgggccag gacccttggc a

21

<210> 106
<211> 21
<212> DNA
<213> H. sapiens

<400> 106
actgggccag aacccttggc a

21

<210> 107
<211> 21
<212> DNA
<213> H. sapiens

<400> 107
cctgcctatac ccagctttct c

21

<210> 108
<211> 21
<212> DNA
<213> H. sapiens

<400> 108
cctgcctatac tcagctttct c

21

<210> 109
<211> 21
<212> DNA
<213> H. sapiens

<400> 109
gcctatccca tctttctcct c

21

<210> 110
<211> 21
<212> DNA
<213> H. sapiens

<400> 110
gcctatccca gctttctcct c

21

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 99/13094

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	HER C ET AL: "Human phenol sulfotransferase STP2 gene: molecular cloning, structural characterization, and chromosomal localization." GENOMICS, (1996 MAY 1) 33 (3) 409-20. , XP002117271 cited in the application the whole document ---	1-4
X	GAEDIGK: "Cloning structural organization, and chromosomal mapping of human phenol sulfotransferase STP2 gene" GENOMICS, vol. 40, 1997, pages 242-246, XP002117277 the whole document --- -/-	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

1 October 1999

Date of mailing of the international search report

15/10/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Reuter, U

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 99/13094

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DOOLEY T P ET AL: "Genomic organization and DNA sequences of two human phenol sulfotransferase genes (STP1 and STP2) on the short arm of chromosome 16." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, (1996 NOV 1) 228 (1) 134-40. , XP002117273 the whole document ----	1
A	WEINSHILBOUM R M ET AL: "Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes." FASEB JOURNAL, (1997 JAN) 11 (1) 3-14. REF: 99 , XP002117274 the whole document -----	1-10