Tareas 4 EL7008 – Primavera 2015 Detección de piel usando modelo MoG

El objetivo de esta tarea es la programación, calibración y validación de un detector de piel que use modelos MoG (Mixture of Gaussians), basándose en el sistema propuesto por Jones&Regh en 2002. Básicamente, el sistema utiliza un clasificador de Bayes para determinar en forma probabilística si un píxel pertenece a la clase piel (skin) o no piel (non-skin). La regla de decisión del mencionado clasificador está dada por:

$$\frac{P(rgb|skin)}{P(rgb|\neg skin)} \ge \Theta$$

donde el umbral Θ depende los costos asociados a cada decisión (c_p y c_n) y de las probabilidades a priori:

$$\Theta = \frac{c_p P(\neg skin)}{c_n P(skin)}$$

En el caso concreto del sistema propuesto por Jones&Regh en 2002, las distribuciones de probabilidad de las clases piel y no piel están dadas por un modelo MoG, que permite modelar distribuciones de datos multimodales:

$$P(\mathbf{x}) = \sum_{i=1}^{N} w_i \frac{1}{(2\pi)^{\frac{3}{2}} |\Sigma_i|^{\frac{1}{2}}} e^{-\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i)}$$

El sistema de detección de piel a ser construido debe seguir el modelo propuesto por Jones&Regh. Debido a que encontrar los parámetros adecuados de los modelos MoG para las clases piel y no piel puede ser una tarea ardua (marcar cientos de miles de imágenes), en esta tarea se permite utilizar los parámetros reportados por Jones&Regh (ver Figura 1). A pesar de lo anterior aún se debe resolver como ajustar el parámetro de decisión Θ . Para esto no se debe asumir valores de los costos asociados a cada decisión o de las probabilidades a priori, sino que el valor de Θ se debe ajustar "a mano", analizando distintos tipos de imágenes que contengan piel.

Se pide:

- 1. Programar el sistema de detección de piel descrito anteriormente en C++.
- 2. Se seleccionaron 45 imágenes de una base de datos que se entregan junto al enunciado. Las imágenes tienen alta variabilidad y contiene un archivo .bmp con el "*ground truth*". Se debe ajustar Θ de tal forma de obtener los mejores resultados posibles. Piense en tener una alta tasa de detección y una baja tasa de falsos positivos.
- 3. Entregar un informe donde aparezca:
 - (a) Las partes importantes del código implementado con comentarios.
 - (b) Ejemplos de al menos 10 imágenes en que se haya detectado piel.
 - (c) Análisis del ajuste del parámetro de decisión Θ .
 - (d) Análisis y comentarios de los resultados obtenidos y del método utilizado. (Estime la tasa de detección y la de falsos positivos y construya una curva ROC de su sistema final).

Los informes deben ser entregados en forma impresa el día martes 24 de noviembre a las 15:00. Los informes, los códigos deben ser subidos a U-Cursos hasta las 15:00 del mismo día. Importante: La

evaluación de esta tarea considerará el correcto funcionamiento del código, la calidad de los experimentos realizados y de su análisis, las conclusiones, así como la prolijidad y calidad del informe entregado.

Kernel	Mean	Covariance	Weight
-	Mixture of Gau	ssian skin color model	
1	(73.53, 29.94, 17.76)	(765.40, 121.44, 112.80)	0.0294
2	(249.71, 233.94, 217.49)	(39.94, 154.44, 396.05)	0.0331
3	(161.68, 116.25, 96.95)	(291.03, 60.48, 162.85)	0.0654
4	(186.07, 136.62, 114.40)	(274.95, 64.60, 198.27)	0.0756
5	(189.26, 98.37, 51.18)	(633.18, 222.40, 250.69)	0.0554
6	(247.00, 152.20, 90.84)	(65.23, 691.53, 609.92)	0.0314
7	(150.10, 72.66, 37.76)	(408.63, 200.77, 257.57)	0.0454
8	(206.85, 171.09, 156.34)	(530.08, 155.08, 572.79)	0.0469
9	(212.78, 152.82, 120.04)	(160.57, 84.52, 243.90)	0.0956
10	(234.87, 175.43, 138.94)	(163.80, 121.57, 279.22)	0.0763
11	(151.19, 97.74, 74.59)	(425.40, 73.56, 175.11)	0.1100
12	(120.52, 77.55, 59.82)	(330.45, 70.34, 151.82)	0.0676
13	(192.20, 119.62, 82.32)	(152.76, 92.14, 259.15)	0.0755
14	(214.29, 136.08, 87.24)	(204.90, 140.17, 270.19)	0.0500
15	(99.57, 54.33, 38.06)	(448.13, 90.18, 151.29)	0.0667
16	(238.88, 203.08, 176.91)	(178.38, 156.27, 404.99)	0.0749
	Mixture of Gaussi	an non-skin color model	
1	(254.37, 254.41, 253.82)	(2.77, 2.81, 5.46)	0.0637
2	(9.39, 8.09, 8.52)	(46.84, 33.59, 32.48)	0.0516
3	(96.57, 96.95, 91.53)	(280.69, 156.79, 436.58)	0.0864
4	(160.44, 162.49, 159.06)	(355.98, 115.89, 591.24)	0.0636
5	(74.98, 63.23, 46.33)	(414.84, 245.95, 361.27)	0.0747
6	(121.83, 60.88, 18.31)	(2502.24, 1383.53, 237.18)	0.0365
7	(202.18, 154.88, 91.04)	(957.42, 1766.94, 1582.52)	0.0349
8	(193.06, 201.93, 206.55)	(562.88, 190.23, 447.28)	0.0649
9	(51.88, 57.14, 61.55)	(344.11, 191.77, 433.40)	0.0656
10	(30.88, 26.84, 25.32)	(222.07, 118.65, 182.41)	0.1189
11	(44.97, 85.96, 131.95)	(651.32, 840.52, 963.67)	0.0362
12	(236.02, 236.27, 230.70)	(225.03, 117.29, 331.95)	0.0849
13	(207.86, 191.20, 164.12)	(494.04, 237.69, 533.52)	0.0368
14	(99.83, 148.11, 188.17)	(955.88, 654.95, 916.70)	0.0389
15	(135.06, 131.92, 123.10)	(350.35, 130.30, 388.43)	0.0943
16	(135.96, 103.89, 66.88)	(806.44, 642.20, 350.36)	0.0477

Figura 1. Parámetros de modelos MoG de piel y no piel reportados por Jones&Reg.