TP n°6 bis : Mouvement d'un électron dans le champ électrique uniforme

I. Contexte du sujet

La microscopie électronique à balayage (MEB ou SEM pour *Scanning Electron Microscopy* en anglais) est utilisée dans des domaines allant de la biologie à la science des matériaux. C'est une technique de microscopie électronique capable de produire des images en haute résolution de la surface d'un échantillon en utilisant le principe des interactions électrons-matière. Sur les appareils de série, on obtient des résolutions se situant entre 0,4 nanomètre et 20 nanomètres.

La MEB est basée sur l'utilisation d'un faisceau d'électrons, produit par un canon à électrons, balayant la surface de l'échantillon à analyser qui, en réponse, réémet certaines particules. Ces particules sont analysées par différents détecteurs qui permettent de reconstruire une image en trois dimensions de la surface.

« Comment retrouver la vitesse des électrons à la sortie d'un canon à électrons par l'étude de leur mouvement ? »

II. Documents à disposition.

 $\underline{\text{Doc } n^{\circ}1}$: Tube à électrons

Un tube à électrons comprend :

- Un canon à électrons qui accélère et focalise les électrons émis par un filament, afin d'obtenir un faisceau rectiligne d'électrons de même vitesse (tension U = 3000 V entre les plaques A et B);
- Deux plaques horizontales A' et B' séparées par une distance d=5,2 cm, entre lesquelles la même tension U permet de créer un champ électrique uniforme $\overrightarrow{E'}$. Le faisceau d'électrons qui pénètre au point O est dévié par ce champ $\overrightarrow{E'}$;
- Un écran gradué recouvert d'une substance fluorescente permet de matérialiser la trajectoire des électrons.

Les électrons sortent du canon à électrons et pénètrent dans le champ électrique uniforme entre les plaques A' et B' avec une vitesse $\overrightarrow{v_0}$ horizontale.

Doc n°2 : Champ électrique et force électrique.

- Un champ électrique crée entre 2 plaques de condensateur distante de d et soumises à une tension électrique U est uniforme. Il est perpendiculaire aux plaques et toujours dirigé de la plaque chargée positivement vers celle chargée négativement et à pour valeur $E = \frac{U}{d}$.
- Une particule (électron, proton) de charge q soumise à un champ électrique uniforme \vec{E} subit une force \vec{F} telle que $\vec{F}=q.\vec{E}$

Doc n°3: Caractéristiques d'un électron

Charge électrique :
$$q = -e = -1,6.10^{-19}$$
 C

masse : $m_e = 9, 1.10^{-31} \text{ kg}$

<u>Doc n°4</u>: Equation de la trajectoire de l'électron dans la situation du doc 1

$$y(x) = \frac{e.E}{2.m_e.v_0^2} x^2$$

III. Matériel à disposition

- Photographie de la trajectoire du faisceau d'électrons dans le champ \overrightarrow{E}

- Logiciel Latis-Pro

IV. Travail à effectuer.

S'APPROPRIER (15 min conseillées)

- Schématiser sur votre compte-rendu les plaques A' et B', ainsi que la trajectoire du faisceau d'électrons
- a-Représenter sur votre schéma, sans soucis d'échelle, les vecteurs $\vec{v_0}$, \vec{F} et \vec{E} en justifiant votre raisonnement.
- b- En déduire le signe des charges portées par les plaques A' et B'

Appel n°1

Appelez le professeur pour qu'il vérifie vos réponses.

Pour répondre à la problématique à l'aide du matériel à disposition, il faut réaliser un pointage de la trajectoire du faisceau à l'aide de Latis-Pro. ATTENTION, il s'agit d'un pointage sur une IMAGE, pas sur une vidéo, le temps n'intervient donc pas.

ANALYSER (20 min conseillées)

Proposer une méthode utilisant le pointage de l'image pour déterminer la vitesse v_0 avec laquelle les électrons pénètrent dans le champ \vec{E} .

Appel n°2

Appelez le professeur pour qu'il vérifie votre proposition.

REALISER (15 min conseillées)

- Ouvrir Latis-Pro et faire comme si on allait chercher une vidéo.
- Ouvrir l'image « tube électrons » qui se trouve dans votre dossier travail ou téléchargement.
- Répondre 1 à la question "indiquer le temps entre deux images (en ms)"
- Aller à l'image 1 à l'aide de la flèche de défilement.
- Sélection de l'origine : au point O (voir photo ci-dessus).
- <u>Sélection de l'étalon</u>: utiliser les deux plaques horizontales A' et B' (voir photo ci-dessus) et rentrer la valeur adaptée.
- Sens des axes :
- Cliquer sur *Sélection manuelle des points*.
- Pointer une <u>vingtaine de points régulièrement espacés entre le début et la fin</u> de la trajectoire puis fermer la fenêtre.
- Exprimer v₀ puis la calculer.

VALIDER (20 min conseillées)

L'application du théorème de l'énergie cinétique entre les plaques A et B montre que v₀ = 3,23×10⁷ m.s⁻¹.
Comparer à la valeur trouvée expérimentalement et proposer éventuellement une (des) explications à la différence.

Appel n°2

Appelez le professeur pour qu'il vérifie votre proposition.

Si vous avez le temps ...

- a-Faire un bilan des forces s'exerçant sur un électron du faisceau lorsqu'il rentre dans le champ \vec{E} .
- b- Comparer ces forces en calculant leur valeur. Conclure.
- c- En appliquant les différentes étapes vues en cours, retrouver par une étude théorique l'équation de la trajectoire données dans le doc n°4.