ASSIGNMENT 4: COMP2711H

FALL 2015

Q1 Assume that the equation

$$x^{\ell} - c_1 x^{\ell-1} - c_2 x^{\ell-2} - \dots - c_{\ell-1} x - c_{\ell} = 0$$

has distinct roots r_1, r_2, \ldots, r_ℓ , where all c_i are real numbers and $c_\ell \neq 0$.

Define a sequence $(s_i)_{i=0}^{\infty}$ by

$$s_i = \alpha_1 r_1^i + \alpha_2 r_2^i + \ldots + \alpha_\ell r_\ell^i$$
 for integers $i \ge 0$,

with initial conditions $s_0, s_1, \dots, s_{\ell-1}$, where $\alpha_1, \alpha_2, \dots, \alpha_\ell$ are constants.

Show that the sequence $(s_i)_{i=0}^{\infty}$ satisfies the following linear recurrence relation:

$$s_i = c_1 s_{i-1} + c_2 s_{i-2} + \dots + c_\ell s_{i-\ell}$$
 for all $i \ge \ell$.

(15 marks)

Q2 Solve the following linear recurrence relation

$$s_i = 6s_{i-1} - 11s_{i-2} + 6s_{i-3}$$
 for all $i \ge 3$

with initial conditions $s_0 = 2$, $s_1 = 5$ and $s_2 = 15$.

(15 marks)

Q3 Solve the following linear recurrence relation

$$s_i = 4s_{i-1} - 4s_{i-2}$$
 for all $i \ge 2$

with initial conditions $s_0 = -2$ and $s_1 = 2$.

(15 marks)

- Q4 Let $(s_i)_{i=0}^{\infty}$ be a sequence with least period ℓ .
 - (a) Show that the sequence has a linear homogeneous recurrence relation. (5 marks)
 - (b) Find a linear homogeneous recurrence relation of degree as small as possible for the sequence. (You need to write down the linear recurrence relation of the sequence explicitly.) (10 marks)
- Q5 Let $a_0, a_1, a_2, \ldots, a_n$ be real numbers and $a_n \neq 0$. Prove that

$$x^n$$
 is $O(a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0)$.

(15 marks)

Q6 Define a sequence $(s_i)_{i=1}^{\infty}$ recursively as follows:

$$s_i = 2s_{|i/2|} + i, i \ge 2$$

with the initial condition $s_1 = 0$. Use strong mathematical induction to prove that s_n is $O(n \log_2 n)$ (recall that sequences are in fact functions defined on the set of nonnegative integers). (15 marks)

Q7 Show that

$$f(n) := \frac{2n}{3} + \frac{2n}{3^2} + \frac{2n}{3^3} + \dots + \frac{2n}{3^n}$$

is $\Theta(n)$. (10 marks)