#### **INDIAN INSTITUTE OF TECHNOLOGY ROORKEE**



#### **EEN-206: Power Transmission and Distribution**

#### **Lecture -05**

#### **Chapter 2: Overhead Transmission Lines**



# Syllabus (Autumn 2020-21)



- 1. Subject Code: EEN-206 Course Title: Power Transmission & Distribution 2. Contact Hours: P: 0 T: 1 3. Examination Duration (Hrs.): Theory:3 Practical:0 4. Relative Weight: CWS: 50 PRS:00 PRE:00 MTE: 0 ETE:50 5. Credits: 4 6. Semester: Spring 7. Subject Area: DCC
- 1. Introduction (Power Transmission and Distribution Systems)
- 2. Overhead Transmission Lines
- 3. Underground Cables
- 4. Line Parameters and Performance of Transmission Lines
- 5. HVDC Transmission Systems
- 6. Tariff
- 7. Surge Performance and Travelling Waves

#### **Reference Books**



- B. M. Weedy, B. J. Cory, N. Jenkins, Janaka B. Ekanayake, and Goran Strbac, "Electric Power Systems",
   4<sup>th</sup> Ed., John Wiley and Sons, 2012
- Grainger J. J. and Stevenson W.D., Elements of Power System Analysis", Tata McGraw-Hill Publishing Company Limited, 2008.
- Gonen T., Electric Power Transmission System Engineering: Analysis and Design", John Wiley and Sons, 1990.
- Nagrath I. J. and Kothari D. P., "Power System Engineering", 3rd Ed., Tata McGraw-Hill Publishing Company Limited, 2008
- Roy S., "Electrical Power System- Concepts, Theory and Practices". Prentice Hall of India Private Limited, 2007
- C. L. Wadhwa, Electrical Power System, New Age Techno Press, New Delhi, 2010.
  - S. N. Singh, Electric Power Generation, Transmission and Distribution, Second Edition, PHI, New Delhi, 2011.



#### **Chapter 2: Overhead Transmission Lines**

Mechanical and electrical design and operational aspects of overhead transmission lines

#### **Main Components of Overhead Line**



- Support Structure (Towers): Cost, voltage level, conductor size, conductor spacing (cross-arm length), etc.
  - Galvanized steel (for high voltage)
  - Wood, concrete, steel poles (for low voltage)
- **Insulators**: Voltage level
  - Porcelain
  - Glass
  - Polymeric insulation
- **Conductors:** Thermal limit, weight, conductivity, mechanical strength, regulation, etc.







#### **Tower Structures (High Voltage Transmission)**





Single-Circuit



**Double-Circuit** 



Double-Circuit V String



**Self-supporting towers** 

## **Tower Structures (Guyed Wire)**











**Guyed wire towers** 

#### **Tower Structures (Low Voltage Distribution)**







#### **Types of Conductor**



- Copper: Good conductor, durable, high scrap value, tensile strength, but cost is high.
- Aluminum:
  - Cheaper,
  - lighter,
  - but less conductive (requires large cross section for same resistance)
  - less tensile strength than copper
- Types of Aluminum conductors
  - AAC (All Aluminum Conductor)
  - AAAC (All Aluminum Alloy Conductor)
  - ACSR (Aluminum Conductor Steel Reinforced)
  - ACAR (Aluminum Conductor Alloy Reinforced)
  - Expanded ACSR



#### **ACSR Conductor**







- Internal steel strands increase the tensile strength
- Outer aluminum strands carry the current
- Stranded conductor with twisted wires for strength and flexibility of mechanical handling.
- Twisting is done in opposite direction to avoid unwinding

## **ACSR Conductor Data Sheets**



| CODE NAME | NOMINAL<br>ALUMINIUM<br>AREA | EQUIVALENT<br>COPPER<br>AREA | CONDUCTOR<br>CONSTRUCTION |        | APPROX.<br>OVERALL<br>DIAMETER | CALCULATED<br>AREA | APPROX.<br>WEIGHT | NOMINAL<br>BREAKING<br>LOAD | MAX. DC<br>RESISTANCE<br>AT 20°C | CURRENT<br>RATING |
|-----------|------------------------------|------------------------------|---------------------------|--------|--------------------------------|--------------------|-------------------|-----------------------------|----------------------------------|-------------------|
|           |                              |                              | ALUMINIUM                 | STEEL  |                                |                    |                   |                             |                                  |                   |
|           | mm <sup>2</sup>              | mm²                          | No./mm                    |        | mm                             | mm²                | kg/km             | N                           | Ω/km                             | Amp               |
| GOPHER    | 25                           | 16.1                         | 6/2.36                    | 1/2.36 | 7.08                           | 30.62              | 106               | 9600                        | 1.093                            | 77                |
| WEASEL    | 30                           | 19.4                         | 6/2.59                    | 1/2.59 | 7.77                           | 36.88              | 128               | 11400                       | 0.9077                           | 84                |
| FERRET    | 40                           | 25.8                         | 6/3.00                    | 1/3.00 | 9.00                           | 49.48              | 172               | 15200                       | 0.6766                           | 98                |
| RABBIT    | 50                           | 32.3                         | 6/3.35                    | 1/3.35 | 10.05                          | 61.70              | 214               | 18400                       | 0.5426                           |                   |
| HORSE     | 70                           | 45.2                         | 12/2.59                   | 7y2.79 | 13.95                          | 116.2              | 538               | 61200                       | 0.3936                           | 148               |
| DOG       | 100                          | 64.5                         | 6/4.72                    | 7/1.57 | 14.15                          | 118.5              | 394               | 32700                       | 0.2733                           | 153               |
| WOLF      | 150                          | 96.8                         | 30/2.59                   | 7/2.59 | 18.13                          | 194.9              | 726               | 69200                       | 0.1828                           | 162               |
| DINGO     | 150                          | 97.9                         | 18/3.35                   | 1/3.35 | 16.75                          | 167.5              | 506               | 35700                       | 0.1815                           | 179               |
| LYNX      | 175                          | 113.0                        | 30/2.79                   | 7/2.79 | 19.53                          | 226.2              | 842               | 79800                       | 0.1576                           | 178               |
| CARACAL   | 175                          | 113.7                        | 18/3.61                   | 1/3.61 | 18.05                          | 194.5              | 587               | 41000                       | 0.1563                           | 205               |
| PANTHER   | 200                          | 129                          | 30/3.00                   | 7/3.00 | 21.00                          | 261.5              | 974               | 92200                       | 0.1363                           | 191               |
| BISON     | -                            | 226                          | 54/3.00                   | 7/3.00 | 27.00                          | 431.3              | 1444              | 120900                      | 0.07571                          | 208               |
| JAGUAR    | 200                          | 130                          | 18/3.86                   | 1/3.86 | 19.30                          | 222.3              | 671               | 46600                       | 0.13670                          | 197               |
| ZEBRA     | 400                          | 258                          | 54/3.18                   | 7/3.18 | 28.62                          | 484.5              | 1621              | 131900                      | 0.06740                          | 202               |



## **Bundled Conductors**



IIT ROORKEE



#### **Bundles Conductors**









#### Sag and Tension:





220 kV line GC 7.0 m SL 380 CC 5.1 m 400 kV line GC 8.8 m SL 400 CC 7.0 m

- **Sag (d)** is defined as vertical distance between the point where the line is joined to the tower to the lowest point on the line.
- Sag depends on the tension (T) with which conductors are pulled.
- Span Length (SL) is horizontal distance between two towers.
- Vertical distance between lowest point on line to the ground plane is called ground clearance (GC).
- Values of sag and tension at winter and summer condition and at various loading conditions must be known.
- Tension in conductors contributes to the mechanical load on structures.
  - Sag should be minimum to avoid extra pole height and spacing between the conductors.
  - Sag and tensions depends on initial tension when are clamped in place.
  - Stress in the conductor is function of sag.

#### **Transmission Line Mechanical Design**



#### Mechanical Design Main Factors

- Conductor load per unit length
- Tower spacing, span length
- Temperature
- Conductor tension

#### Mechanical loadings

- Weight of conductor itself
- Weight of ice or snow clinging to wire
- Wind blowing against wire





## **Calculation of Sag and Tension**







Towers at same height

Towers at different height

- $\triangleright$  w = weight per unit length
- $\rightarrow$  H = tension at point O
- ightharpoonup T = tension at point P

- $\gt$  2*l* = Span length
- ➤ *O* is the lowest point on the wire

# **Calculation of Sag and Tension**





## **Calculation of Sag and Tension**



$$dx = \frac{ds}{\sqrt{1 + w^2 s^2 / H^2}}$$
Integrating

Integrating

$$\int \mathrm{d}x = \int \frac{\mathrm{d}s}{\sqrt{1 + w^2 s^2 / H^2}}$$

Thus

$$x + c_1 = \left(\frac{H}{w} \sinh^{-1}\left(\frac{ws}{H}\right)\right)$$

At x=0, s=0, therefore  $c_1=0$ 

$$x = \frac{H}{w} \sinh^{-1} \left( \frac{ws}{H} \right)$$



$$S = \frac{H}{w} \sinh \frac{wx}{H}$$



# Mank Moul