

- (a) Find the co-ords of the point P that divides the interval A(-3, 4) and B(2, -3) externally in the ratio 1:2.
- (b) Solve $\frac{4}{x-3} \angle 1$
- (c) Evaluate $\lim_{x\to 0} \frac{\sin 2x \cos 2x}{3x}$
- (d) A curve has parametric equations x = 2t 2, $y = t^2 + 1$. Find the cartesian equation for this curve.
- (e) Use the substitution u = 2 + x to evaluate $\int_{-2}^{2} x \sqrt{2+x} dx$.

QUESTION 2

- (a) Find (i) $\int \tan x \, dx$.
 - (ii) $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1 dx}{\sqrt{9 4x^2}}.$
- (b) Find the term independent of x in the binomial expansion $\left(x^2 + \frac{1}{x}\right)^{Q}$.
- (c) (i) Express $\sin 4t + \sqrt{3}\cos 4t$ in the form R $\sin (4t + \alpha)$, where α is in radians.
 - (ii) Hence solve $\sin 4t + \sqrt{3} \cos 4t = 0$ for $0 \le t \le TI$.

QUESTION 3

- (a) Prove by induction $9^{n+2} 4^n$ is divisible by 5 for $n \ge 1$.
- (b) Consider the function f(x) = 2 tan⁻¹x.
 - (i) State the range of the function y = f(x).
 - (ii) Sketch the graph of y = f(x).
 - (iii) Find the gradient of the tangent to the curve y = f(x) at $x = \frac{1}{\sqrt{3}}$.
- (e) (i) By equating the coefficients of sin x and cos x, or otherwise, find constants A and B satisfying the identity.

$$A(2 \sin x + \cos x) + B(2 \cos x - \sin x) = \sin x + 8 \cos x.$$

(ii) Hence evaluate
$$\int \frac{\sin x + 8\cos x}{2\sin x + \cos x} dx.$$

OUESTION 4

- (a) If $x^3 8x^2 + kx 12 = 0$ has one root equal to the sum of the other two; find k.
- (b) Taking x = 0.5 as the first approximation, use Newtons method to find a second approximation to the root of:

$$x - 3 + e^{2x} = 0.$$

Write your answer to 2 significant figures.

The second

QUESTION 4 (Continued)

(c)

Water is poured into a conical vessel at a rate of 30cm³/s.

- (i) What is the rate of increase of the radius of water when r = 5.
- (ii) Hence find the rate of increase of the area of the surface of the liquid when r = 5.
- (d) Using $\sin 3\theta = \sin (2\theta + \theta)$. Prove $\sin 3\theta = 3 \sin\theta 4 \sin^3\theta$.

QUESTION 5

- (a) A particle moves in a straight line such that its position x from a fixed point 0 at time 't' is given by $x = 5 + 8 \sin 2t + 6 \cos 2t$.
 - (f) Prove the motion is simple harmonic motion.
 - (ii) Find the period and amplitude of the motion.
 - (iii) Find the greatest speed of the particle.
- (b) State the largest positive domain for which $y = x^2 4x + 7$ has an inverse function.

(c)

(d) By using the expansion $(1+x)^n$. Prove $\sum_{k=0}^n 2^{3k} \binom{n}{k} = 3^{2n}$.

OUESTION 6

- (a) A particle is projected horizontally with velocity Vms⁻¹, from a point h metres above the ground. Take g ms⁻² as the acceleration due to gravity.
 - (i) Taking the origin as the point on the ground immediately below the projection point, find expressions for x and y, the horizontal and vertical displacements of the particle at time 't' secs.
 - (ii) Show the equation of the path is given by $y = \frac{2hV^2 gx^2}{2V^2}$.
 - (iii) Find the range of the particle.
- (b) Assume that the rate at which a body warms in air is proportional to the difference between its temperature T and the constant temperature A of the surrounding air. The rate can be expressed as:

$$\frac{dT}{dt} = K(T-A)$$
 where T is in minutes and K is constant.

- (i) Show $T = A + Ce^{i\alpha}$ where C is constant is a solution of the differential equation.
- (ii) A cooled body warms from 5°C to 10°C in 20 minutes. The air temperature is 20°C. Find the temperature of the body after a further 30 minutes have elapsed.
- (iii) Explain the behaviour of T as t becomes large.
- (c) Differentiate from 1^{rt} Principles $f(x) = x^2 2x + 1$.

OUESTION 7

- (a) The chord PQ joining the points $P(2p,p^2)$ and $Q(2q,q^2)$ on $x^2 = 4y$ always passes through the point A(2,0) when produced.
 - (1) Show (p+q) = pq.
 - (ii) Find the co-ordinates of M, the mid-point of PQ.
 - (iii) Find the equation of the locus of M as P and Q vary on the parabola.

QUESTION 7 (Continued)

- (b) Two circles C₁ and C₂ are members of a set of circles defined by the equation:
 x² + y² 6x + 2ky + 3k = 0 where k is real. The centre of C₁ lies on the line x 3y = 0 and C₂ touches the x axis. Find the equations of C₁ and C₂.
- (c) Use Simpson's Rule with 3 function values to approximate the volume when y = ln x is rotated about the x - axis between x = 1 and x = 3.

Answers

- (b) x < 3 or x77
- (C) 2/3
- (d) $y = \frac{x^2}{4} + x + 2$
- (e) 2=

(ii) T

(b) 84

(C)(1) 2sin (4t+T/3)

(11) 76,51/2, 27/3, 11/25

 $3(b)(1) - \pi < f(x) < \pi$

(i)
$$y=\pi$$

$$f(x) = 2+bx^{-1}$$

$$y=-\pi$$

间度

(C)(1) A=2, B=3

(i) 2x +3en (2sinx + coox) +C

4(9) 19

(b) 0.47

(9(1) 3 cm/s (11) 6 cm²/s

5(a) (ii) TTS, 10

(iii) 20ms

(b) x7/2

$$6(a)(i) x=Vt$$

$$y=-\frac{1}{2}gt^{2}+h$$

$$(iii) V\sqrt{\frac{2h}{3}} m$$

(b)(ii) 14.56°C (2dp, by usif e20K= 33)

(111) As t become large, the body warms up to the toup of the surrounding aris.

(c) 2x-2

7(9) (i) (ptg, ±(p+g))

(ii) $\chi^2 - 2\chi - 2y = 0$

(b) $C_1: x^2 + y^2 - 6x - 2y - 3 = 0$ $C_2: x^2 + y^2 - 6x + 6y + 9 = 0$

(1) 3,28 unit 3 (2dp)