1. Déterminer la nature de la série de terme général u_n dans les cas suivants :

i)
$$u_n = \sin\left(\frac{1}{n^2}\right) \sim \frac{1}{n^2}$$
 donc par comparaison, $\sum u_n$ converge.

ii)
$$u_n = \frac{1}{n} \operatorname{Arc} \tan \left(\frac{1}{n} \right) \sim \frac{1}{n^2}$$
 donc par comparaison, $\sum u_n$ converge.

iii)
$$u_n = e^{\cos(n)}$$
 $\sum u_n$ est grossièrement divergente, (u_n) n'ayant pas limite en $+\infty$.

iv)
$$u_n = \left(\frac{1+n}{1+n^2}\right)^n \sim \frac{e}{n^n}$$
 avec $0 < \frac{1}{n^n} \le \frac{1}{2^n}$ pour $2 \le n$, donc par comparaison à une série géométrique $\sum \frac{1}{n^n}$ converge et par suite $\sum u_n$ converge.

v)
$$u_n = \sqrt[n]{n+1} - \sqrt[n]{n} \approx \frac{1}{n^2}$$
 donc par comparaison, $\sum u_n$ converge.

vi)
$$u_n = e - \left(1 + \frac{1}{n}\right)^n \sim \frac{e}{2n}$$
 donc par comparaison, $\sum u_n$ diverge.

vii)
$$u_n = a^{\sqrt{n}}$$
 (en fonction du réel strictement positif a) si $1 \le a$, $\sum u_n$ diverge grossièrement; si $a < 1$, $\lim_{n \to +\infty} n^2 u_n = 0$, donc $\sum u_n$ converge.

viii)
$$u_n = n^{-\cos\frac{1}{n}} \ge \frac{1}{n}$$
 donc par comparaison, $\sum u_n$ diverge.

ix)
$$u_n = n^{-\left(1 + \frac{1}{n}\right)} \sim \frac{1}{n}$$
 donc par comparaison, $\sum u_n$ diverge.

x)
$$u_n = 1 - \sqrt[n]{\frac{n}{n+1}} \sim \frac{1}{n^2}$$
 donc par comparaison, $\sum u_n$ converge.

2. Soient $\sum u_n$ et $\sum v_n$ deux séries convergentes à termes strictement positifs.

Remarque : La convergence de ces séries assure la convergence de la série $\sum (u_{_{n}} + v_{_{n}})$.

Montrer que les séries suivantes sont également convergentes :

i)
$$\sum \max (u_n; v_n) \qquad 0 \leq \max (u_n, v_n) \leq u_n + v_n$$

ii)
$$\sum \sqrt{u_n v_n} \qquad 0 \le \sqrt{u_n v_n} \le \frac{1}{2} (u_n + v_n)$$

iii)
$$\sum \frac{u_n V_n}{u_n + v_n} \qquad 0 \le \frac{u_n V_n}{u_n + v_n} \le u_n$$