Predicting Clinical Trial Outcomes

Exploration of publicly available data

Nicholas McBride, PhD May, 2024

Making medicine is expensive (in the US)

- Clinical trials for Investigational New Drugs (IND) are a significant driver of healthcare costs
- A single study costs \$19M and up to \$255M for pivotal Phase III trials
- Multiple clinical trials and phases required put the cost of marketing a new drug at \$2.6B

ClinicalTrials.gov

- Database of all clinical trials and results became publicly available in 2008
- API provides access to 568 fields of data
- 495,650 indexed studies as of 10:26 pm last night

Project Goals

- Identify data features within ClinicalTrials.gov that may predict clinical trial outcomes
 - Features of study design and protocol prior to initiation
 - Features that may be monitored as clinical trials progress
- Develop a predictive model for clinical trial completion vs. suspension, termination, withdrawal, or abandonment
 - a. Achieve predictive results better than the baseline mean

Data Cleaning

Challenges

- Selection of fields:
 - 115 out of 568 fields selected for initial download and exploratory analysis
 - Field definitions vague and unreliable
- New version of API debuted in March, 2024
- Fields contain multiple, nested entries
- Many fields contain free-text data with 100,000s of unique values
- 69 fields selected for encoding and analysis

Study Overall Status

- Target class is unbalanced
- 'Approved for marketing' is an infrequent class
- Expanded Access records have different characteristics

Simplified Model

Binary classification

- Expanded access records excluded
- Develop a model to predict status 'Completed'
- Combine 'Suspended', 'Terminated', 'Withdrawn', and 'Unknown' (abandoned) statuses as 'Not Complete'

Model Results

Model	Accuracy	Balanced Accuracy	Train Time
Baseline	70.7%		
Logistic Regression	90.9%	84.8%	50s
Logistic Regression with SMOTE	89.5%	85.7%	381s
Basic Neural Network	91.2%	86.0%	21s
Complex Sequential Neural Network	91.4%	86.0%	187s

Logistic Regression Coefficients

•					
Top 10			Bottom 10		
Feature	Coef		Feature	Coef	
CompletionDateType_ACTUAL	2.385820		Phase_No_data	-0.161504	
LocationStatus_No_data	1.711084		LocationCountry_No_data	-0.217455	
CentralContactRole_No_data	1.225026		OrgClass_NIH	-0.219640	
PrimaryCompletionDateType_ACTUAL	1.168753		PrimaryCompletionDate	-0.226498	
CompletionDateType_No_data	1.091474		ReferenceType_No_data	-0.321632	
StudyFirstSubmitDate	0.498214		LocationStatus_RECRUITING	-0.423382	
PrimaryCompletionDateType_No_data	0.388943		CentralContactRole_CONTACT	-0.702567	
ReferenceType_DERIVED	0.382309		StartDateType_ESTIMATED	-1.489931	
CompletionDate	0.328414		PrimaryCompletionDateType_ESTIMATED	-1.509925	
StartDateType_No_data	0.310194		CompletionDateType_ESTIMATED	-3.270344	

Conclusions

- Data in ClinicalTrials.gov holds valuable insight to conducting successful clinical trials
- Snapshotting data to multiple time points in clinical trial design and progress would enable the best benefits of predictive modelling
- Detailed protocol design and study results data is ripe for detailed NLP analysis

Thank you!

All data sourced from ClinicalTrials.gov

 Comprehensive API documentation on ClinicalTrials.gov

Research

- Data Science by Nicholas McBride, PhD
- Supported by Adobe Digital Academy

