Discrete Random Variables A discrete random variable is used to model a "random experiment" with a finite or countable number of possible outcomes. For example, the toss of a coin, the roll of a die, or the count of the number of telephone calls during a given time, etc. The sample space S, of the experiment is the set of all possible outcomes and contains a finite or countable number of elements. Let $S = \zeta_1, \zeta_2, \cdots$. An event is a subset of S. Events consisting a single outcome are called *elementary* events. Discrete Random Variables 概率质量函数 Let X be a random variable with sample space S_X . A probability

mass function (pmf) for X is a mapping $p_X : S_X \to [0,1]$ from S_X to the closed unit interval [0, 1] satisfying

$$\sum_{x \in \mathcal{S}_X} p_X(x) = 1,\tag{4}$$

where the number $p_X(x)$ is the *probability* that the outcome of the given random experiment is x, i.e., $p_X(x) = \Pr[X = x]$.

Every event $A \in S$ has a probability $p(A) \in [0,1]$ satisfying the following:

- 1. $p(A) \ge 0$
- 2. p(S) = 1
- 3. for $A, B \in \mathcal{S}, p(A \cup B) = p(A) + p(B)$ if $A \cap B = \emptyset$

Discrete Random Variables

Example: A fair coin is tossed *N* times, and *A* is the event that an even number of heads occurs. What is Pr[A]?

$$\Pr[A] = \sum_{k=0, k \text{ even}}^{N} \Pr[\text{exactly } k \text{ heads occur}]$$

$$= \sum_{k=0, k \text{ even}}^{N} {N \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{N-k}$$

$$= \frac{1}{2^N} \sum_{k=0, k \text{ even}}^{N} {N \choose k}$$

$$= \frac{1}{2}.$$

Vector Random Variables

If the elements of S_X are vectors of real numbers, then X is a (real) vector random variable.

Suppose Z is a vector random variable with a sample space in

which each elements has two components (X, Y), i.e., $\mathcal{Z} = \{z_1, z_2, \cdots\} = \{(x_1, y_1), (x_2, y_2), \cdots\}.$

The projection of S_7 on its first coordinate is $S_X = \{x : \text{for some} y, (x, y) \in S_Z\}.$

 $S_X = S_Y = \{0, 1\}.$

Example: If Z = (X, Y) and $S_Z = \{(0, 0), (1, 0), (1, 1)\}$, then

Vector Random Variables										
The <i>pmf</i> of a vector random variable $Z = (X, Y)$ is also called the <i>joint pmf</i> of X and Y , and is denoted by										
$p_Z(x,y) = p_{X,Y}(x,y) = \Pr(X = x, Y = y),$										
where the comma in the last equation denotes a logical 'AND' operation.										
From $p_{X,Y}(x,y)$, we can find $p_X(x)$ as										
$p_X(x) \equiv p(x) = \sum_{y \in S_Y} p_{X,Y}(x,y);$										
and similarly,										
$p_Y(y) \equiv p(y) = \sum_{x \in S_X} p_{X,Y}(x,y);$ (5)										
• Let A and B be events, with $Pr[A] > 0$. The conditional probability of B given that A occurred is										
$\Pr[B A] = \frac{\Pr[A \cap B]}{\Pr[A]}$										
Thus, $\Pr[A A] = 1$, and $\Pr[B A] = 0$ if $A \cap B = \emptyset$.										
If $Z=(X,Y)$ and $p_X(x_k)>0$, then										
$p_{Y X}(y_j x_k) = \Pr[Y = y_j X = x_k]$ $\Pr[X = x_k, Y = y_k]$										
$= \frac{\Pr[X = x_k, Y = y_j]}{\Pr[X = x_k]}$										
$=\frac{p_{X,Y}(x_k,y_j)}{p_{X}(x_k)}.$										
• If $Z=(X,Y)$ and $p_X(x_k)>0$, then										
$p_{Y X}(y_j x_k) = \frac{p_{X,Y}(x_k,y_j)}{p_X(x_k)}.$										
Then random variables X and Y are independent if										
$\forall (x,y) \in \mathcal{S}_{X,Y}(p_{X,Y}(x,y) = p_X(x)p_Y(y)).$										
If X and Y are <i>independent</i> , then										
$p_{X Y}(x y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)} = \frac{p_{X}(x)p_{Y}(y)}{p_{Y}(y)} = p_{X}(x),$										
and										
$p_{Y X}(y x) = \frac{p_{X,Y}(x,y)}{p_{X}(x)} = \frac{p_{X}(x)p_{Y}(y)}{p_{X}(x)} = p_{Y}(y),$										
• If X is a random variable, the expected value (or mean) of X,										
denoted by $E[X]$, is										
$E[X] = \sum_{x \in \mathcal{S}_X} x p_X(x).$										
Then expected value of the random variable $f(X)$ is										
$E[f(X)] = \sum_{x \in \mathcal{S}_X} f(x) p_X(x).$										
In particular, $E[X^n]$ is the <i>n-th moment</i> of X . The <i>variance</i> of X is the second moment of $X - E[X]$, which can be computed as										
$VAR[X] = E[X^2] - E[X]^2.$										
VAI(N) - E[N] - E[N] .										