Quarta Lista de Exercícios Algoritmos Gulosos e de Divisão e Conquista

Norton Trevisan Roman

25 de setembro de 2018

- 1. Sejam P_1, P_2, \ldots, P_n n programas a serem armazenados em disco. Cada programa P_i necessita de s_i kilobytes para ser completamente armazenado, e a capacidade do disco corresponde a D kilobytes, onde $D < \sum_{i=1}^{n} s_i$
 - (a) Crie um algoritmo guloso que maximize o número de programas armazenados em disco
 - (b) Crie um algoritmo guloso que use a maior capacidade possível do disco
- 2. Considere o seguinte problema: Dado um conjunto S de $n \ge 1$ números reais, determine a somatória dos elementos desse conjunto.
 - (a) Implemente um algoritmo (utilizando o paradigma incremental) para esse problema. Qual seria o caso base ? Qual seria o passo de indução ? Apresente a equação de recorrência desse algoritmo. Prove, através da resolução de recorrência, que esse algoritmo é $\Theta(n)$
 - (b) Implemente um algoritmo (utilizando o paradigma divisão e conquista) para esse problema. Apresente a equação de recorrência desse algoritmo. Prove, utilizando o teorema mestre, que o seu algoritmo é $\Theta(n)$ (considere na prova que n é potência de 2).
- 3. Use o Teorema Mestre para encontrar solução para as seguintes recorrências (é possível que ele não se aplique a algum desses):
 - (a) T(n) = 4T(n/2) + nlog(n)
 - (b) T(n) = 2T(n/2) + n
 - (c) T(n) = T(n/2) + nlog(n)
 - (d) $T(n) = T(n/2) + \Theta(1)$
 - (e) T(n) = 4T(n/2) + n
 - (f) $T(n) = 4T(n/2) + n^2$
 - (g) $T(n) = 4T(n/2) + n^3$
 - (h) $T(n) = 4T(n/2) + n^2 \log(n)$
- 4. Considere a função de recorrência a seguir:

$$T(n) = \begin{cases} 10 & \text{se } n = 1\\ 3T(n/3) + n & \text{para } n \ge 2 \end{cases}$$

- (a) Calcule a complexidade assintótica (|Theta|) da função de recorrência sem usar o teorema mestre
- (b) Repita o cálculo usando o teorema mestre