

# **Predicting with trees**

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

# **Key ideas**

- · Iteratively split variables into groups
- · Split where maximally predictive
- Evaluate "homogeneity" within each branch
- Fitting multiple trees often works better (forests)

#### Pros:

- · Easy to implement
- Easy to interpret
- Better performance in nonlinear settings

#### Cons:

- Without pruning/cross-validation can lead to overfitting
- Harder to estimate uncertainty
- · Results may be variable

# **Example Tree**

#### Decision Tree: The Obama-Clinton Divide



http://graphics8.nytimes.com/images/2008/04/16/us/0416-nat-subOBAMA.jpg

### **Basic algorithm**

- 1. Start with all variables in one group
- 2. Find the variable/split that best separates the outcomes
- 3. Divide the data into two groups ("leaves") on that split ("node")
- 4. Within each split, find the best variable/split that separates the outcomes
- 5. Continue until the groups are too small or sufficiently "pure"

### Measures of impurity

$$\hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \text{ in Leaf } m} \mathbb{1}(y_i = k)$$

**Misclassification Error**:

$$1 - \hat{p}_{mk(m)}$$

Gini index:

$$\sum_{k \neq k'} \hat{p}_{mk} \times \hat{p}_{mk'} = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

**Cross-entropy or deviance:** 

$$-\sum_{k=1}^K \hat{p}_{mk} \ln \hat{p}_{mk}$$

### **Example: Iris Data**

```
data(iris)
names(iris)
```

```
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
```

```
table(iris$Species)
```

```
setosa versicolor virginica
50 50 50
```

### Iris petal widths/sepal width

```
plot(iris$Petal.Width,iris$Sepal.Width,pch=19,col=as.numeric(iris$Species))
legend(1,4.5,legend=unique(iris$Species),col=unique(as.numeric(iris$Species)),pch=19)
```



# Iris petal widths/sepal width

```
# An alternative is library(rpart)
library(tree)
tree1 <- tree(Species ~ Sepal.Width + Petal.Width,data=iris)
summary(tree1)</pre>
```

```
Classification tree:

tree(formula = Species ~ Sepal.Width + Petal.Width, data = iris)

Number of terminal nodes: 5

Residual mean deviance: 0.204 = 29.6 / 145

Misclassification error rate: 0.0333 = 5 / 150
```

#### Plot tree

```
plot(tree1)
text(tree1)
```



# Another way of looking at a CART model

```
plot(iris$Petal.Width,iris$Sepal.Width,pch=19,col=as.numeric(iris$Species))
partition.tree(tree1,label="Species",add=TRUE)
legend(1.75,4.5,legend=unique(iris$Species),col=unique(as.numeric(iris$Species)),pch=19)
```



Predicting with trees

### **Predicting new values**

```
set.seed(32313)
newdata <- data.frame(Petal.Width = runif(20,0,2.5), Sepal.Width = runif(20,2,4.5))
pred1 <- predict(tree1, newdata)
pred1</pre>
```

```
setosa versicolor virginica
             0.02174
        0
1
                        0.97826
2
             0.02174
                        0.97826
        0
3
             0.00000
                        0.00000
        1
             1.00000
                        0.00000
4
        0
             0.02174
5
        0
                        0.97826
             0.02174
6
        0
                        0.97826
7
        0
             0.02174
                        0.97826
             0.90476
                        0.09524
8
        0
9
             1.00000
                        0.00000
        0
10
        0
             0.02174
                        0.97826
11
        0
             1.00000
                        0.00000
12
        1
             0.00000
                        0.00000
             0.00000
                        0.00000
13
        1
14
             0.00000
                        0.00000
        1
             0.02174
15
        0
                        0.97826
16
             0.02174
                        0.97826
        0
                                                                                                   11/18
17
             1.00000
                        0.00000
        0
```

### Overlaying new values

```
pred1 <- predict(tree1,newdata,type="class")
plot(newdata$Petal.Width,newdata$Sepal.Width,col=as.numeric(pred1),pch=19)
partition.tree(tree1,"Species",add=TRUE)</pre>
```



# Pruning trees example: Cars

data(Cars93,package="MASS")
head(Cars93)

|                                                                                               | Manufacturer  | Model     | Type      | Min.Price  | Price Ma  | x.Price   | MPG.ci   | ty MPG.highw               | ay      | Aiı        | rBags |
|-----------------------------------------------------------------------------------------------|---------------|-----------|-----------|------------|-----------|-----------|----------|----------------------------|---------|------------|-------|
| 1                                                                                             | Acura         | Integra   | Small     | 12.9       | 15.9      | 18.8      |          | 25                         | 31      |            | None  |
| 2                                                                                             | Acura         | Legend    | Midsize   | 29.2       | 33.9      | 38.7      |          | 18                         | 25 Driv | er & Passe | enger |
| 3                                                                                             | Audi          | 90        | Compact   | 25.9       | 29.1      | 32.3      | 2        | 20                         | 26      | Driver     | only  |
| 4                                                                                             | Audi          | 100       | Midsize   | 30.8       | 37.7      | 44.6      | :        | 19                         | 26 Driv | er & Passe | enger |
| 5                                                                                             | BMW           | 535i      | Midsize   | 23.7       | 30.0      | 36.2      |          | 22                         | 30      | Driver     | only  |
| 6                                                                                             | Buick         | Century   | Midsize   | 14.2       | 15.7      | 17.3      |          | 22                         | 31      | Driver     | only  |
| DriveTrain Cylinders EngineSize Horsepower RPM Rev.per.mile Man.trans.avail Fuel.tank.capacit |               |           |           |            |           |           |          |                            |         |            |       |
| 1                                                                                             | Front         | 4         | 1         | . 8        | 140 6300  | )         | 2890     |                            | Yes     |            | 13.2  |
| 2                                                                                             | Front         | 6         | 3         | 3.2        | 200 5500  | )         | 2335     |                            | Yes     |            | 18.0  |
| 3                                                                                             | Front         | 6         | 2         | 2.8        | 172 5500  | )         | 2280     |                            | Yes     |            | 16.9  |
| 4                                                                                             | Front         | 6         | 2         | 2.8        | 172 5500  | )         | 2535     |                            | Yes     |            | 21.   |
| 5                                                                                             | Rear          | 4         | 3         | 8.5        | 208 5700  | )         | 2545     |                            | Yes     |            | 21.3  |
| 6                                                                                             | Front         | 4         | 2         | 2.2        | 110 5200  | )         | 2565     |                            | No      |            | 16.4  |
|                                                                                               | Passengers Le | ength Whe | eelbase W | didth Turn | .circle F | Rear.seat | t.room 1 | Luggage. <mark>room</mark> | Weight  | Origin     |       |
| 1                                                                                             | 5             | 177       | 102       | 68         | 37        |           | 26.5     | 11                         | 2705    | non-USA    |       |
| 2                                                                                             | 5             | 195       | 115       | 71         | 38        |           | 30.0     | 15                         | 3560    | non-USA    |       |
| 3                                                                                             | 5             | 180       | 102       | 67         | 37        |           | 28.0     | 14                         | 3375    | non-USA    |       |
| 4                                                                                             | 6             | 193       | 106       | 70         | 37        |           | 31.0     | 17                         | 3405    | non-USA    |       |
| 5                                                                                             | 4             | 186       | 109       | 69         | 39        |           | 27.0     | 13                         | 3640    | non-USA    | 13/18 |
|                                                                                               |               |           |           |            |           |           |          |                            |         |            |       |

#### **Build a tree**



#### **Plot errors**

```
par(mfrow=c(1,2))
plot(cv.tree(treeCars,FUN=prune.tree,method="misclass"))
plot(cv.tree(treeCars))
```





#### Prune the tree

```
pruneTree <- prune.tree(treeCars,best=4)
plot(pruneTree)
text(pruneTree)</pre>
```



#### **Show resubstitution error**\*

```
table(Cars93$DriveTrain,predict(pruneTree,type="class"))
table(Cars93$DriveTrain,predict(treeCars,type="class"))
```

```
4WD Front Rear

4WD 5 5 0

Front 2 61 4

Rear 0 3 13
```

· Note that cross validation error is a better measure of test set accuracy

#### Notes and further resources

- · Hector Corrada Bravo's Notes, code
- · Cosma Shalizi's notes
- Elements of Statistical Learning
- Classification and regression trees
- Random forests