

Data Science in Media

Creating and assessing media article embeddings

Krum Arnaudov, Dec 2022

Agenda

- 1. Data Science at the FT and Project details
- 2. Theory overview
- 3. Setup and experiments
- 4. Summary of takeaways
- 5. Resources

Self-intro

- Joined FT as Data Scientist in 2021
- Past jobs as DS at Amplify Analytics, before that Account & Ops Management at HPI
- ML knowledge largely self-taught via free online content + the AI specialisation at the SoftUni.
- Main hobbies:

< Picture of two kids>

Data Science at the FT

- London (5) + Sofia (3) + 2 ML Engineers
 - Diverse team
 - Diverse ML projects
- Main stack:
 - R + Python
 - BigQuery (but moving towards AWS)
 - Rstudio Connect + some AWS
- Big fellow data teams:
 - BI + Analytics folks (quite experienced)
 - Data Platform folks (quite experienced)

Article Vectorisation - Project & Goals

Team:

- A Lead DS
- 3 DS
- 1 ML Engineer

- Collaboration between Data Science and Content Analytics
- Current methods Doc2Vec for DS and Transformer for CA.
- Current use cases:
 - Breadth of Reading metric measures how broadly a given user reads
 - Article Clustering model assigns newly published articles to a 'cluster' with articles of similar content
 - Article Recommendation model for a given user, suggests content in a 'nearby' cluster to what they usually read
 - Trending Topics uses cluster ids from the Article Clustering model
 - Classification predicts whether newly published articles are associated with a set of topics

Goal:

Unify and improve the existing vectorisation methods used by the respective teams. The resulting vectors need to be applicable for both clustering and classification, and potential further uses.

AV Project Progress

Phase 1

Setting up Docker and Visual Studio code

Phase 2

Research the top methods: TF-IDF, SentenceTransformers, Doc2Vec, spaCy etc.

Phase 3

Set up a training dataset of articles

Use different methods to evaluate the new vectors compared with the old vectors: similarity, clustering, classification

Phase 5

Phase 6

Choose winner -Congratulations all-MiniLM-L12-v2!!! 😄

Model Evaluation & API Testing

Setup & Model

Selection

Phase 7a

Deploy interim solution to the Content Analytics server, with DynamoDB storage

Phase 7b

Continue vector evaluation by plugging in new vectors into existing Data Science models

Downstream Tasks

Article Clustering

Article Recommendation

CA Classifier (

Breadth of Readership

Trending Topics

Final Model Deployment

Re-Deploy Models

Article Recommendation

Phase 4

Build Python APIs for each

method and produce vectors for

the training dataset

Article Clustering

Trending Topics

Breadth of Readership

CA Classifier

Long (ish) text vectorisation - key takeaways

- Plenty of great options to try:
 - SentenceTransformers (many, many submodels) https://www.sbert.net/docs/pretrained models.html
 - Doc2Vec https://radimrehurek.com/gensim/models/doc2vec.html
 - Pooled Word Embeddings
 - TF-IDF (seriously, oldie-but-goldie)
- ...But not all work well with long texts
- The text structure of FT articles makes this problem easier to solve
- No single model/solution that is best for all downstream tasks.
 - But SentenceTransformers are pretty good at all tasks
- Assess the options as you plan to use them.
- Follow the industry experts for the latest and greatest.
 - Nils Reimers for Sentence Transformers
 - <u>Vincent Warmerdam</u> for, well, everything practical with ML

Research time

Task - Find numerical representation of the FT articles such that semantically similar articles are close.

What does semantically similar mean?

• No *universal* numerical text representation

Semantically similar depends on the task!

What does semantically similar mean?

• FT context:

"UK talks with France fail to solve post-Brexit fishing dispute"

Map similar articles close together and pull dissimilar articles further apart.

Article vectorisation - NLP context

- Long texts vectorisation challenges:
 - Multiple topics per document
 - Transformers token restriction usually 512 tokens ca. 400 words in English
 - TF-IDF able to capture specifics, but vocabulary grows enormous
 - Doc2Vec worse, the longer the text
- FT articles making it easier:
 - One topic per article.
 - Nicely structured, no typos, in English
 - Descriptive title and subtitle.
 - Frequently using past tense same as much of the Transformers training data (think Wikipedia).
 - Usually, punchline at the beginning.

Article vectorisation - the contenders

- TF-IDF
- Pooled word embeddings
- Doc2vec (Paragraph-to-vector)
- SentenceTransformers (various options)

TF-IDF Intuition

Per document:

- Upscore words that are rather unique
- Discount words that appear in all other docs

TF

1	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

IDF

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

TF-IDF

As You Like It	Twelfth Night	Julius Caesar	Henry V
0.074	0	0.22	0.28
0	0	0	0
0.019	0.021	0.0036	0.0083
0.049	0.044	0.018	0.022
	0.074 0 0.019	0.074 0 0 0 0.019 0.021	0.074 0 0.22 0 0 0 0.019 0.021 0.0036

TF-IDF Outlook

PROs:

- Fast to train, fast inference
- Very interpretable
- Covers the whole document
- Order matters less with long documents

CONs:

- Requires a "vocabulary" of size (n_training docs, nr_tokens_retained) in memory e.g. (50 000, 100 000)
- Huge vectors tough for clustering tasks

(Pooled) Word Embeddings - Intuition

Deep Shallow Learning Network

"He was an old man who fished alone in a skiff in the Gulf Stream and he had gone eighty-four days now without taking a fish."

Не

was

old

man

0
..
0.8 an
..
0
0
0.03 the
...
0.01
..
..

(Pooled) Word Embeddings - Intuition

(Pooled) Word Embeddings - Intuition

- Creating a supervised method for an unsupervised learning algorithm.
 - You don't need labels
 - Guess the target word from the words before or after (CBOW) OR
 - Guess the words before and after based on the target word (Skip Gram)
- Think of the embedding layer as a dictionary the keys are the words, the values are learned in the process
- The goal is the dictionary, not the prediction accuracy

The pooling just means a function to summarise the word embeddings of a document and map it to the same dimensions. You can:

- Mean, Max, Min...
- Idea (not tried) Weight by some TF-IDFy weights per document

(Pooled) Word Embeddings - Outlook

PROs:

- Super fast
- Good baseline

CONs:

- Weak theory for long documents (but good one for title + summary).
- If you train yourself, too contextualised

Doc2vec - Intuition

Deep Shallow Learning Network

Doc2vec - Outlook

PROs:

- Relatively fast to train/transform
- Specific to the dataset
- Built for document embeddings
- Embedding size can be adjusted based on needs

CONs:

- Many parameters to tune
- The gensim implementation has a (non-insignificant) stochastic element to it >> different vectors for the same params
- Not transfer-learnable

Transformers

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu **Łukasz Kaiser***Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Transformers

Transformers

Transformers - Self-Attention

Transformers - Self-Attention


```
vectors = [vec1, vec2, vec3, vec4]
for query in vectors:
      # Similarity - dot product of query with the rest
      dot product scores = dot product(query, vectors)
      # Normalise the scores so that they sum to one
      normalised_scores = normalise(dot_product_scores)
      # Weight original vectors
      weighted_vectors = normalised_scores*vectors
     # Context vector for query word i
      # weighted average of the original vectors
      context_vec = sum(weighted_vectors)
```

Transformers - Self-Attention


```
vectors = [vec1, vec2, vec3, vec4] for query in vectors:
```

```
# 1xk vector times kxk matrix
updated query = query*query matrix
updated_keys= vectors*key_matrix
updated values = vectors*value matrix
# dot product of query with the rest
dot_product_scores = dot_product(updated_query, updated_keys)
# normalise the scores so that they sum to one
normalised scores = normalise(dot product scores)
# weight original vectors
weighted_vectors = normalised_scores*updated_values
# Context vector for query word i
```

weighted average of the original vectors context vec = sum(weighted vectors)

Transformers - Multi Head Attention

"I gave my dog Charlie some food."

- Have several attention layers
 - At the end, concat and pass through dense, so that the shape aligns with the shape of the input.
- Lets network learn multiple different semantic meanings of attention:
 - E.g. one for grammar, one for vocabulary, etc...

vectors = [vec1, vec2, vec3, vec4]
for query in vectors:

1xk vector times kxk matrix
 updated_query = query*query_matrix
 updated_keys = vectors*key_matrix
 updated_values= vectors*value_matrix

dot product of query with the rest
 dot_product_scores = dot_product(updated_query,
 updated_keys)

normalise the scores so that they sum to one
 normalised_scores = normalise(dot_product_scores)

weight original vectors
 weighted_vectors = normalised_scores*updated_values

Context vector for query word i

weighted average of the original vectors context_vec = sum(weighted_vectors)

Transformers - Encoder

Transformers - Positional encoding

- Set of vectors, encoding the position of each word in the input sentence.
- Same dimensions as the word vectors and are added element-wise to the word vectors to create the final input representation for each word.

Article vectorisation - Why not BERT?

- No concept of "document" embeddings, just better word embeddings:
 - Need to either pool all embeddings OR
 - Use the "CLS" (classification token)
 - Neither work well for clustering, semantic search, etc...
 - Although, they work well for classification!
- Very slow at inference time

Solution - Sentence Transformers

SentenceTransformers - Intuition

- Transformers built specifically for good text embeddings
- Siamese architecture originally training specifically for semantic similarity

SentenceTransformers - Loss Functions

- Specific loss functions:
 - Constrative loss pull together positive pairs in the vector space, push away negative pairs in the vector space.
- Triplet loss anchor, positive and negative (3 things).
 - Results in three spaces hard negatives, semi-hard negatives (within a margin) and easy negative.
 - Requires good triples (if trained on obvious easy negatives, not much learning is done).
- Multiple Negative Ranking Loss with hard negatives:
 - Train with tuples (a1, p1, n1) where n1 should be similar to p1 but not match a1
 - Then push the positive towards the anchor and push the negative and ALL the other positives away from the anchor.
 - a: How many people live in London?
 - p: Around 9 milion people live in London
 - n: Around 1 milion people live in Birmingham, second to London

SentenceTransformers - Loss Functions

Dataset structures to train your Sentence Transformers model

Datasetstructure	Example datasets(repo id in Hugging Face Hub)	Loss functions (imported from sentence_transformers)
Pair of sentences and a label indicating how similar they are	snli	ContrastiveLoss; SoftmaxLoss; CosineSimilarityLoss
Pair of positive (similar) sentences without a label	embedding-data/flickr30k_captions_quintets; embedding-data/coco_captions_quintets	MultipleNegativesRankingLoss; MegaBatchMarginLoss
Single sentence with an integer label	trec; yahoo_answers_topics	BatchHardTripletLoss; BatchAllTripletLoss; BatchHardSoftMarginTripletLoss; BatchSemiHardTripletLoss
Triplet (anchor, positive, negative) sentences	sembedding-data/QQP_triplets	TripletLoss

SentenceTransformers - Triplet loss example

```
{'set':
    {'query': 'What can I do to get better grades?',
    'pos':
    ['How do I improve my grades?'],
    'neg':
    ['Why do I get bad grades even though I study a lot?',
    'How can I get better grades in maths?',
    'How serious is forging high school grades?']
}}
```


SentenceTransformers - Choices

				All n	nodels 🖸
Model Name	Performance Sentence Embeddings (14 Datasets)	Performance Semantic Search (6 Datasets)	↑₹ Avg. Performance ①	Speed	Model Size 🕕
all-mpnet-base-v2 ①	69.57	57.02	63.30	2800	420 MB
multi-qa-mpnet-base-dot-v1	66.76	57.60	62.18	2800	420 MB
all-distilroberta-v1	68.73	50.94	59.84	4000	290 MB
all-MiniLM-L12-v2	68.70	50.82	59.76	7500	120 MB
multi-qa-distilbert-cos-v1 ①	65.98	52.83	59.41	4000	250 MB
all-MiniLM-L6-v2 🚯	68.06	49.54	58.80	14200	80 MB
multi-qa-MiniLM-L6-cos-v1	64.33	51.83	58.08	14200	80 MB
paraphrase-multilingual-mpnet-base-v2	65.83	41.68	53.75	2500	970 MB
paraphrase-albert-small-v2 ①	64.46	40.04	52.25	5000	43 MB
paraphrase-multilingual-MiniLM-L12-v2	64.25	39.19	51.72	7500	420 MB
paraphrase-MiniLM-L3-v2	62.29	39.19	50.74	19000	61 MB
distiluse-base-multilingual-cased-v1	61.30	29.87	45.59	4000	480 MB
distiluse-base-multilingual-cased-v2	60.18	27.35	43.77	4000	480 MB

Sentence Transformers Outlook

- PROs:
 - Built for the task
 - State-of-the-art, well-researched
 - Great transfer learning options per task
 - OK latency
- CONs:
 - Only up-to 512 tokens (400 words)
 - Slow-ish on CPU

Code Time

Project setup

Project setup

- VSCode + Remote Containers
- Data + Models + Experiments on AWS S3
 - Access via the pins package
- Different APIs
 - Every library, different input/output API, easy to get wrong
 - Solution: write sklearn API wrappers & build a package

Seriously, gensim?

```
X transformed = [
    gensim.models.doc2vec.TaggedDocument(
       gensim.utils.simple_preprocess(article), [i]
    for i, article in enumerate(X)
doc2vec model = gensim.models.doc2vec.Doc2Vec(
    vector_size=self.vector_size,
   min count=self.min count,
    epochs=self.epochs,
    dm=self.dm,
    **self.other_gensim_args
doc2vec_model.build_vocab(X_transformed)
doc2vec_model.train(
   X_transformed,
    total_examples=doc2vec_model.corpus_count,
    epochs=doc2vec model.epochs,
```

Code Time

Experiments and assessment

Candidates

- Baseline GloVe 840B 300 dimensions via the Sentence Transformers
- TF-IDF via scikit-learn:
 - o Try uni- vs. bigram
 - max_df
- Doc2Vec via gensim:
 - Embedding dimensions
 - Number of epochs
 - Min_count
- Sentence Transformers:
 - o all-MiniLM-L12-v2 fast, allrounder
 - o all-mpnet-base-v2 best in class, slower
 - o multi-qa-mpnet-base-dot-v1 semantic search expert, slower

Summary of evaluation tasks

Task	Metric	TF-IDF	Doc2Vec	all-mpnet-base-v 2	average_word_e mbeddings_glov e.840B.300d	multi-qa-mpnet- base-dot-v1	all-MiniLM-L12-v 2
Similarity dataset	Vector Creation Time	00:00:09	00:00:05	00:02:27	0:00:004	00:02:27	00:01:03
	No. of Rows Cosine(1a-1b) > Cosine(1a-2)	98 / 101	93 / 101	96 / 101	88 / 101	91 / 101	99 / 101
	% Rows Cosine(1a-1b) > Cosine(1a-2)	97.03	92.08	95.05	87.13	90.10	98.02
2012	Precision	0.95	0.94	0.95	0.95	0.95	0.94
(ESG) Classification	Recall	0.98	0.96	0.97	0.97	0.97	0.97
Ciassification	F1-score	0.96	0.95	0.96	0.96	0.96	0.96
	Precision	0.94	0.93	0.94	0.93	0.94	0.93
Sector classification	Recall	0.97	0.93	0.96	0.97	0.96	0.96
Classification	F1-score	0.95	0.93	0.95	0.95	0.95	0.95
Corporate	Precision	0.9	0.9	0.92	0.88	0.93	0.9
Event	Recall	0.91	0.89	0.9	0.88	0.92	0.89
classification	F1-score	0.9	0.9	0.91	0.88	0.92	0.9
Clustering &	Number of suggested clusters (bertopic)	NA	403	625	413	591	591
Topic	Number of outlier articles (bertopic)	NA	11295	9836	12892	10261	9753
modelling	Mean cluster size (bertopic)	NA	52	36	47	37	38
	silhouette score (kmeans)	NA	0.030	0.053	0.077	0.033	0.043
Similarity Search	Qualitative manual observations		Very good "closest article". Low spread of scores vs. the sentence transformers.	Best in the test "closest article". Great close articles, logical cosine similarity scores.			Very close to all-mpnet-base-v 2, more logical score distribution than Doc2Vec

Evaluation - getting the feel of the vectors

- Streamlit dashboards:
 - Similarity search
 - UMAP + Cluestar
 - BERTopic

Try to get a direct feel of method performance.

The results!

- All methods are reasonable.
- Sentence Transformers are jack of all trades, master of some.
- Doc2vec baby ST, good, but with some cons
- TF-IDF best for classification, but tough for clustering.

The winner:

Sentence Transformer(all-MiniLM-L12-v2)

• Faster and smaller than other STs, similar results

MTEB

Massive Text Embedding Benchmark (<u>MTEB</u>)

Lessons Learned

- Plenty of great options to try:
 - SentenceTransformers (many, many submodels) -https://www.sbert.net/docs/pretrained_models.html
 - Doc2Vec https://radimrehurek.com/gensim/models/doc2vec.html
 - Pooled Word Embeddings
 - TF-IDF (seriously, oldie-but-goldie)
- ...But not all work well with long texts
- The text structure of FT articles makes this problem easier to solve
- No single model/solution that is best for all downstream tasks.
 - But SentenceTransformers are pretty good at all tasks
- Assess the options as you plan to use them.
- Follow the industry experts for the latest and greatest.
 - Nils Reimers for Sentence Transformers
 - Vincent Warmerdam for, well, everything practical with ML

Key resources

- Vincent Warmerdam's Whiteboard
 - https://youtube.com/playlist?list=PL75e0qA87dlG-za8eLl6t0 Pbxafk-cxb
 - And a list of his projects https://github.com/koaning
 - Great short, calm courses https://calmcode.io/
- Great Free Stanford Textbook https://web.stanford.edu/~jurafsky/slp3/ed3book jan122022.pdf
 - With a course https://web.stanford.edu/class/cs224n/index.html#coursework
- Nils Reimers sites:
 - https://www.nils-reimers.de/ check the Talks section for video/slides
 - https://www.sbert.net/
- Huggingface blogs on Sentence Transformers:
 - https://huggingface.co/blog/how-to-train-sentence-transformers
 - https://huggingface.co/blog/playlist-generator
- If you'd like to play along:
 - Playground vectoriser package https://github.com/krumeto/articlevectorizer
 - Notebooks to play around https://github.com/krumeto/article-vectorisation-eda

Thank you!