

COMP38210 Workshop 4: Improved indexing

John McNaught &

Sandra Sampaio

Overview

- Ranked retrieval
- Term frequency
- Zipf's law, Luhn
- Document frequency
- Inverse document frequency
- Collection frequency
- tf-idf
- Vector space

Ranked retrieval

- Boolean model
 - Documents match or don't match
- Results are unranked
 - Maybe by most-recent-date order, though
- Web search → many results
 - Need some means of ranking
 - Typically aim to get top *n* (10?) ones correct
 - As user will likely not look much further

Ranked retrieval

- Attempt more than matching query with documents
- Score each document to say how well it matches query
 - Assign real number score in range 0..1
- Then rank according to scores

Points to consider

- Intuitive: if query term occurs many times in document, document more relevant?
- But: rare terms more informative than frequent terms
- Documents have different lengths
 - Will clearly affect counts

Term-document count matrices

Each document is a count vector in Nº: a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Term frequency (tf)

- Term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- Want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - Document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term
 - But not 10 times more relevant
- Relevance does not increase proportionally with term frequency

NB: frequency = count in IR

Zipf and Luhn

http://www.dcs.gla.ac.uk/Keith/pdf/Chapter2.pdf

Zipf's Law: Frequency * rank ≃constant

Document frequency (df)

- Rare terms more informative than frequent terms
 - Recall stop words
- Consider term in query that is rare in collection (e.g., arachnocentric)
- A document containing this term very likely to be relevant to query arachnocentric
- → Want a high weight for rare terms like arachnocentric.

Document frequency, continued

- Frequent terms less informative than rare terms
- Consider query term that is frequent in collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance
- → For frequent terms, want high positive weights for words like high, increase, and line
- But lower weights than for rare terms
- Use document frequency (df) to capture this

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - $-df_t \leq N$
- We define the idf (inverse document frequency)
 of t by

$$idf_t = log_{10} (N/df_t)$$

– We use $\log (N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

Smoothing effect of log

- $5 * \log(1000/1) = 5 * 3.00 = 15.0$
- $5 * \log(1000/2) = 5 * 2.70 = 13.5$
- $5 * \log(1000/3) = 5 * 2.52 = 12.6$
- $5 * \log(1000/10) = 5 * 2.00 = 10.0$
- $5 * \log(1000/11) = 5 * 1.96 = 9.8$
- $5 * \log(1000/100) = 5 * 1.00 = 5.0$
- Want to distinguish
 - Term occurs in 1 or 2 documents
 - Term occurs in many documents
 - Term occurs in great many documents
- Typically do not care if term occurs in (say) 60 or 61 documents: too fine grained for weighting purposes

The University of Manchester idf example, suppose N = 1 million

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = log_{10} (N/df_t)$$

There is one idf value for each term t in a collection

Effect of idf on ranking

- Does idf have an effect on ranking for oneterm queries? E.g.
 - iPhone
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person

Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

 Which word is a better search term (and should get a higher weight)?

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight

$$\mathbf{w}_{t,d} = (1 + \log t \mathbf{f}_{t,d}) \times \log_{10}(N/d\mathbf{f}_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Final ranking of documents for a query

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

- Score of a document d is sum over all query terms of number of times each query term occurs in document d
- Refine: add up tf-idf weight of each query term found in d

Binary → count → weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Resources

- Chapter 6, section 6.2 of Manning et al., Introduction to Information Retrieval (online, free)
- Zipf's law illustrated
 - http://www.wordcount.org/main.php(an award-winning "artistic experiment")
- The idf page
 - http://staff.city.ac.uk/~sb317/idf.html