- 1. Banque CCINP 2024: 67
- 2. Banque CCINP 2024: 69
- 3. Banque CCINP 2024: 70
- 4. Banque CCINP 2024: 71
- 5. [CCINP] (pratique et calculs)

Soit $a \in \mathbb{C}$ et $M = \begin{pmatrix} 1+a & 1 & -1 \\ 2-a & 2 & -2 \\ -1 & -1 & 1 \end{pmatrix}$. Trouver une CNS pour que M soit diagonalisable.

- 6. [Centrale] On considère la matrice A de $\mathcal{M}_n(\mathbb{R})$ telle que la colonne j est composée de nombres tous égaux à j, sauf le coefficient sur la diagonale valant 0.
 - (a) Montrer que $\lambda \in \mathbb{R}$ est valeur propre de A si et seulement si $\sum_{k=1}^{n} \frac{k}{\lambda + k} = 1$.
 - (b) En déduire que la matrice A est diagonalisable et déterminer un équivalent de la plus grande valeur propre λ_n de A lorsque n tend vers $+\infty$.
- 7. [tous] Soit E un espace de dimension $n \ge 1$, $(u, v) \in \mathcal{M}(E)$, u avec n valeurs propres distinctes et $v \circ u = u \circ v$.
 - (a) Montrer que v est diagonalisable.
 - **(b)** Montrer que $v \in \text{Vect}(\text{id}_{E}, \mathbf{u}, \cdots, \mathbf{u}^{n-1})$.
 - (c) En déduire $\dim(C_u)$ où C_u est le commutant de $u: C_u = \{f \in \mathcal{M}(E) \mid f \circ u = u \circ f\}$.
- 8. [Mines] Soit une matrice $M \in \mathcal{M}_n(\mathbb{C})$ et son polynôme caractéristique $\chi_M(X) = \sum_{k=0}^n a_k X^k$.

Montrer que $\forall \lambda \in \operatorname{Sp}(M), \ |\lambda| \leqslant \sum_{k=0}^{n} |a_k|.$

- **9.** [Mines] Soit $n \in \mathbb{N}^*$ et $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$ tel que $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \emptyset$.
 - (a) Montrer que $\chi_A(B)$ est inversible.
 - **(b)** Montrer que $\forall Y \in \mathcal{M}_n(\mathbb{C}), \ \exists X \in \mathcal{M}_n(\mathbb{C}), \ AX XB = Y.$
- 10. [tous]

Soient $a \in \mathbb{C}^*$ et $M = (m_{i,j})_{1 \leq i,j,\leq n}$ où $\forall (i,j) \in \{1,\ldots,n\}^2, \ m_{i,j} = a^{i-j}$.

- (a) La matrice M est-elle diagonalisable?
- (b) Déterminer les sous-espaces propres de A.
- 11. [CCINP] diagonalisabilité d'une matrice compagne, diagonalisabilité d'une matrice de Frobenius Soient $P = a_0 + a_1X + \cdots + a_{n-1}X^{n-1} + X^n \in \mathbb{C}[X]$ et C_P la matrice compagnon :

$$C_P = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & & \vdots & -a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}.$$

- (a) Montrer que C_P est de rang n si $a_0 \neq 0$ et de rang n-1 si $a_0 = 0$.
- (b) Soit $\lambda \in \mathbb{C}$. Montrer que $\operatorname{rg}(C_P \lambda I_n) \geqslant n 1$. En déduire la dimension des sous-espaces propres de C_P .
- (c) Montrer que $\chi_{C_P} = P$. Donner une condition nécessaire et suffisante pour que C_P soit diagonalisable.
- (d) On suppose que $P \in \mathbb{Z}[X]$ et on écrit $P(X) = \prod_{k=1}^p (X \lambda_k)^{m_k}$ avec $(\lambda_1, \dots, \lambda_p) \in \mathbb{C}^p$. Si $q \in \mathbb{N}^*$, montrer que $\prod_{k=1}^p (X \lambda_k^q)^{m_k}$ est dans $\mathbb{Z}[X]$.