CS & IT ENGINEERING

LOGIC

Lecture No: 10

Satish Sir

Indicate which of the following well-formed formulae (GATE - 90)are valid:

$$(p\rightarrow a)\wedge(a\rightarrow r))\rightarrow(p\rightarrow r)$$

$$\frac{T}{(P \rightarrow a)} \rightarrow \frac{F}{(P \rightarrow a)} \qquad p = F$$

B.
$$(P \Rightarrow Q) \Rightarrow (\sim P \Rightarrow Q) (\text{mobid}) (R)$$

C.
$$(P \wedge (\sim P \vee \sim Q)) \Rightarrow Q(|h \vee oh|d)(3)$$

false

D. $((P \Rightarrow R) \vee (Q \Rightarrow R)) \Rightarrow ((P \vee Q) \Rightarrow R)(h \vee oh|d)(3)$

Indicate which of the following well-formed formulae are valid: (GATE - 90)

- (P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)
- B. $(P\Rightarrow Q)\Rightarrow (\sim P\Rightarrow Q)$ (makid)
- (P Λ (~PV~Q)) \Rightarrow Q(Invalia
- $(P \Rightarrow R) \lor (Q \Rightarrow R)) \Rightarrow ((P \lor Q) \Rightarrow R) \left(h \lor h \lor h \right) \left(\frac{1}{2} \right)$

Which of the following is/are tautology?

(GATE-92)

$$(a \lor b) \rightarrow (b \land c)$$

$$\begin{cases} b = 7 & (\lor T) \rightarrow (T \land f) \\ c = f & (\lor T) \rightarrow (T \land f) \end{cases}$$

$$(a \lor b) \rightarrow (b \land c)$$

$$(a \lor b) \rightarrow (b \lor c)$$

$$(a \land b) \rightarrow (b \lor c)$$

$$(a \lor b) \rightarrow (b \rightarrow c)$$

$$(a \lor b) \rightarrow (b \lor c)$$

$$(a \lor c) \rightarrow (b \lor c)$$

$$(a \lor c)$$

 $(aVb)\rightarrow (b\rightarrow c)(|nvalid)$

 $(a\rightarrow b)\rightarrow (b\rightarrow c)(hvalid)$

Which of the following is/are tautology?

(GATE-92)

$$(avb)\rightarrow(bvc) (volid) \xrightarrow{f} b=7 c=f$$

$$(avb)\rightarrow(bvc) (volid) \xrightarrow{T} f$$

$$(avb)\rightarrow(bvc) (volid) \xrightarrow{T} f$$

$$(avb)\rightarrow(bvc) (volid) \xrightarrow{T} f$$

Q.3 The proposition $p\Lambda(\sim pVq)$ is

(GATE - 93)

B.
$$\Leftrightarrow (p \land q) \checkmark$$

a tautology

$$\Leftrightarrow$$
 (pVq)

$$P \wedge (\neg P \vee q) = (P \wedge q)$$

$$P \wedge (\neg P \vee q)$$

$$(P \wedge (P \rightarrow q)) \longrightarrow q$$

What is the converse of the following assertion? [Stay only if you go (GATE - 98)

if P. a = Pra aif P

- A. I stay if you go = 90 -> stay
- B. If I stay then you go= Stay -) 96
- If you do not go then I do not stay $\equiv \gamma q_0 \rightarrow \gamma s t_{\text{am}}$
- D. If I do not stay then you go 75 to 700

"If X then Y unless Z" is represented by which of the following formulas in propositional logic? (" \sim " is negation, " \wedge " is conjunction, and " \rightarrow " is implication)

P -> 9 = 9 mless 7P

B.
$$(X \wedge Y) \rightarrow \sim Z$$

$$C. X \to (Y \land \sim Z)$$

D.
$$(X \rightarrow Y) \land (Z)$$

$$72 \rightarrow (n \rightarrow y)$$

 $2 \vee (n \rightarrow y) = 2 \vee n \vee y$

The following propositional statement is $(P\rightarrow (Q\lor R))\rightarrow ((P\land Q)\rightarrow R)$

& contingency (T >T)

(GATE - 04)

$$\begin{array}{c}
(\overline{p} \rightarrow (\overline{ave})) \\
\overline{p} \rightarrow (\overline{ave})
\end{array}$$

$$\begin{array}{c}
P = T \\
Q = F
\end{array}$$

$$\frac{T}{(P \rightarrow (O \vee R))} \rightarrow ((P \wedge Q) \rightarrow R) \qquad P = T \qquad Q = T \\
T \rightarrow (T \vee F)$$

- B. Valid
- c. A contradiction
- D. None of the above

Let p,q,r and s be four primitive statements. Consider the following arguments: (GATE - 04)

P: $[(\sim pVq)\Lambda(r\rightarrow s)\Lambda(pVr)]\rightarrow(\sim s\rightarrow q)$

Q: $[(\sim p \land q) \land [q \rightarrow (p \rightarrow r)] \rightarrow \sim r (n \lor alid)$

R: $[[(q \land r) \rightarrow p] \land (\sim q \lor p)] \rightarrow r$

 $S:[p\Lambda(p\rightarrow r)\Lambda(qV\sim r)]\rightarrow q(valid)$

TRVS/PV2/avs.

Which of the above arguments are valid?

C. P and S only

D.

P, Q, R and S

Let p,q,r and s be four primitive statements. Consider the following arguments: (GATE - 04)

P: $[(\sim p \lor q) \land (r \to s) \land (p \lor r)] \to (\sim s \to q)$ Q: $[(\sim p \land q) \land [q \to (p \to r)] \to \sim r$ R: $[[(q \land r) \to p] \land (\sim q \lor p)] \to r$

 $S:[p\Lambda(p\rightarrow r)\Lambda(qV\sim r)]\rightarrow q$ Which of the above around to a point of

Which of the above arguments are valid?

- A. P and Q only
- B. P and R only
- C. P and S only
- D. P, Q, R and S

 $(a \wedge R) \rightarrow P = \gamma (a \wedge R) \vee P$

Tavp = Tavrrvp.

A logical binary relation ⊙, is defined as follows: Let ~ be the unary negation (NOT) operator, with higher precedence then ⊙. Which one of the following

is equivalent to AAB?
(GATE - 06)

	A	0	٦	B)

$$T(T) = f$$

				A	5
A	В	A ⊙ B	AAB	TAOB	7(0.73)
True	True	True			
True	False	True	Ŧ		
False .	True	False	F		
False	False	True	F		

$$\gamma(F) = T$$

A logical binary relation ⊙, is defined as follows: Let ~ be the unary negation (NOT) operator, with higher precedence then ⊙. Which one of the following

is equivalent to AAB?

(GATE - 06)

			AAB	P	6	C	D
Α	В	A ⊙ B					
True	True	True					
True	False	True	Ŧ				
False	True	False	£				
False	False	True	F				

$(\sim A \odot B) =$	F
----------------------	---

A logical binary relation ⊙, is defined as follows: Let ~ be the unary negation (NOT) operator, with higher precedence then ⊙. Which one of the following

is equivalent to AAB?
(GATE - 06)

A	В	A ⊙ B
True	True	/True
True	False	True
False <	True	False
False	False	True

A.	(~A	(OB)
		- /

P and Q are two propositions. Which of the following logical expressions are equivalent? (GATE - 08)

(Tupe-2)

II.
$$\sim (\sim P \wedge Q)$$

III.
$$(P \wedge Q) \vee (P \wedge \sim Q) \vee (\sim P \wedge \sim Q)$$

IV.
$$(P \wedge Q) \vee (P \wedge \sim Q) \vee (\sim P \wedge Q)$$

- A. Only I and II
- B. Only I, II and III
- c. Only I, II and IV
- D. All of I, II, III and IV

Consider the following two statements.

S₁: If a candidate is known to be corrupt, then he will not be CHIE = EMAC

 S_2 : If a candidate is kind, he will be elected $\langle - \rangle$ Which one of the following statements follows from S1 and S2 as per sound inference rules of logic? (GATE - 15 - set 2)

e ->7K

- CAKX If a person is known to be corrupt, he is kind
- コーラコト If a person is not known to be corrupt, he is not kind
- If a person is kind, he is not known to be corrupt
- If a person is not kind, he is not known to be corrupt

Let p,q,r,s represent the following propositions.

p: x∈{8,9,10,11,12}

q:x is a composite number

r. x is a perfect square

s:x is a prime number

The integer x≥2 which satisfies

$$\sim ((p \Rightarrow q) \land (\sim r \lor \sim s))$$
 is

(GATE - 16 - set 1)

Let p,q and r be propositions and the expression $(p\rightarrow q)\rightarrow r$ be a contradiction. Then, the expression $(r\rightarrow p)\rightarrow q$ is

(GATE-17-Set 1)

- A. a tautology
- B. a contradiction
- always TRUE when p is FALSE
- D. always TRUE when q is TRUE

- A. $(\sim p \wedge r) \wedge (\sim r \rightarrow (p \wedge q))$
- B. $(\sim p \wedge r) \wedge ((p \wedge q) \rightarrow \sim r)$
- (~p Λ r) $V((p\Lambda q)\rightarrow \sim 1)$
- D. $(\sim p \wedge r) \vee (r \rightarrow (p \wedge q))$

nts

Determine whether each of the following statements is true or false. If false, provide a counterexample.

The universe comprises all integers.

a)
$$\forall x \exists y \exists z (x = 7y + 5z)$$

b)
$$\forall x \exists y \exists z (x = 4y + 6z)$$

Which of the following predicate calculus statements is/are valid? (GATE - 92)

- A. $((\forall x)P(x)V(\forall x)Q(x))\rightarrow (\forall x)\{P(x)VQ(x)\}$
- B. $\{(\exists x)P(x)\Lambda(\exists x)Q(x)\}\rightarrow(\exists x)\{P(x)\Lambda Q(x)\}$
- ($\forall x$){P(x)VQ(x)} \rightarrow { $(\forall x)P(x)V(\forall x)Q(x)$ }
- D. $(\exists x)\{P(x)VQ(x)\}\rightarrow \sim \{(\forall x)P(x)V(\exists x)Q(x)\}$

Identify the correct translation into logical notation of the following assertion.

Some boys in the class are taller than all the girls Note: taller (x, y) is true if x is taller than y.

(GATE - 04)

- A. $(\exists x)(boy(x)\rightarrow(\forall y)(girl(y)\land taller(x, y)))$
- B. $(\exists x)(boy(x) \land (\forall y)(girl(y) \land taller(x, y)))$
- (3x)(boy(x) \rightarrow (\forall y)(girl(y) \rightarrow taller(x, y)))
- D. $(\exists x)(boy(x) \land (\forall y)(girl(y) \rightarrow taller(x, y)))$

Let a(x,y), b(x,y) and c(x,y) be three statements with variables x and y chosen from some universe. Consider the following statement

 $(\exists x)(\forall y)[(a(x,y)\land b(x,y))\land \sim c(x,y)]$ Which one of the following is its equivalent?

(GATE - 04)

- A. $(\forall x)(\exists y)[(a(x,y)\lor b(x,y))\rightarrow c(x,y)]$
- B. $(\exists x)(\forall y)[(a(x,y)\lor b(x,y))\land \sim c(x,y)]$
- \sim [(∀x)(∃y)[(a(x,y)∧b(x,y))→c(x,y)]
- D. $\sim [(\forall x)(\exists y)[(a(x,y)\lor b(x,y))\rightarrow c(x,y)]$

Which one of the following is the most appropriate logical formula to represent the statement:

"Gold and silver ornaments are precious"
The following notations are used:

G(x):x is a gold ornament.

S(x):x is a silver ornament.

P(x):x is precious.

(GATE - 09)

- A. (a) $\forall x(P(x) \rightarrow (G(x) \land S(x)))$
- B. (b) $\forall x((G(x)\land S(x))\rightarrow P(x))$
- (c) $\exists x((G(x)\land S(x))\rightarrow P(x))$
- D. (d) $\forall x((G(x)VS(x))\rightarrow P(x))$

Consider the following well-formed formulae:

I.
$$\sim \forall x(P(x))$$

II.
$$\sim \exists x(P(x))$$

III.
$$\sim \exists x (\sim P(x))$$

IV.
$$\exists x (\sim P(x))$$

Which of the above are equivalent?

(GATE - 09)

- A. I and II
- B. II and III
- c. I and IV
- D. II and IV

(GATE - 11)

- A. P(x) being true means that x is a prime number
- B. P(x) being true means that x is a number other than 1
- P(x) is always true irrespective of the value of x
- D. P(x) being true means that x has exactly two factors other than 1 and x

Consider the statement:

"Not all that glitters is gold"

Predicate glitters (v) is true if v glitters and pred

Predicate glitters (x) is true if x glitters and predicate gold(x) is true if x is gold.

Which one of the following logical formulae represents the above statement?

(GATE-14-Set1)

- A. $\forall x : glitters(x) \Rightarrow \sim gold(x)$
- B. $\forall x : gold(x) \Rightarrow glitters(x)$
- $\exists x: gold(x) \land \sim glitters(x)$
- D. $\exists x : glitters(x) \land \sim gold(x)$

Which one of the following well-formed formulae in predicate calculus is NOT valid?

(GATE-16-Set 2)

- ((x)p xx y (x) \Rightarrow (x
- (B.) $(\exists x p(x) \lor \exists x q(x)) \Rightarrow \exists x (p(x) \lor q(x))$
- (x) $p(x) \land p(x) \Rightarrow (\exists x p(x) \land \exists x q(x))$
- D. $\forall x(p(x) \lor q(x)) \Rightarrow (\forall x p(x) \lor \forall x q(x))$

Consider the first-order logic sentence $F: \forall x(\exists y R(x, y))$. Assuming non-empty logical domain, which of

the sentences below are implied by F?

I. $\exists y(\exists xR(x,y))$

II. $\exists y(\forall xR(x,y))$

III. $\forall y(\exists xR(x,y))$

IV. $\sim x(\forall y \sim R(x,y))$

(GATE-17-Set1)

A. IV only

B. I and IV only

c. II only

D. II and III only

Consider the first order predicate formula ϕ :

$$(\forall x[(\forall z z | x \Rightarrow ((z=x) \lor (z=1))))$$

$$\Rightarrow \exists w(w>x) \land (\forall z \ z|w \Rightarrow ((w=z) \lor (z=1)))))$$

Here 'a|b' denotes that 'a divides b', where a and b are integers.

Consider the following sets:

S2. Set of all positive integers

S3. Set of all integers

Which of the above sets satisfy φ?

- A. (a) S2 and S3
- B. (b) S1, S2 and S3
- (c) S1 and S2
- D. (d) S1 and S3

(GATE-19)

