Please answer each of the following problems. You can discuss with your classmates, but make sure that you understand the solutions. Don't plagiarize! (可以使用中文回答问题。)

1. **COVID-19 Risk Detection.** (12 points) Each of n customers spends some time in a cafe shop. For each i = 1, ..., n, user i enters the shop at time a_i and leaves at time $b_i \ge a_i$. You are interested in the question: how many distinct pairs of customers are ever in the shop at the same time? (Here, the pair (i, j) is the same as the pair (j, i)).

Example: Suppose there are 5 customers with the following entering and leaving times:

Customer	Enter time	Leave time
1	1	4
2	2	5
3	7	8
4	9	10
5	6	10

Then, the number of distinct pairs of customers who are in the shop at the same time is three: these pairs are (1,2), (4,5), (3,5).

- (a) (3 pts) Suppose a customer c_i is reported as a suspected case, can you give an algorithm to retrieve all the potential inflicted customers in O(n)-time?
- (b) (4 pts) Given input $(a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n)$ as above, there is a straightforward algorithm that takes about n^2 time to compute the number of pairs of customers who are ever in the shop at the same time. Give this algorithm and explain why it takes time about n^2 .
- (c) (5 pts) Give an $O(n \log(n))$ -time algorithm to do the same task and analyze its running time. (**Hint:** consider sorting relevant events by time).
- 2. **Proof of correctness.** (6 points) Consider the following Selection Sort algorithm that is supposed to sort an array of integers. Provide a proof that this algorithm is correct. (**Hint**: you may need to use more than one loop invariant.)

```
# Sorts an array of integers.
Sort(array A):
    for i = 1 to A.length:
        minIndex = i
        for j = i + 1 to A.length:
```

¹Formally, "about" here means $\Theta(n^2)$, but you can be informal about this.

3. Needlessly complicating the issue. (12 points)

- (a) (3pts) Give a linear-time (that is, an O(n)-time) algorithm for finding the minimum of n values (which are not necessarily sorted).
- (b) (3pts) Argue that any algorithm that finds the minimum of n items must do at least n operations in the worst case.

Now consider the following recursive algorithm to find the minimum of a set of n items.

```
Algorithm 1: findMinimum
```

- (c) (3pts) Fill in the blank in the pseudo-code: what should the algorithm return in the base case? Briefly argue that the algorithm is correct with your choice.
- (d) (3pts) Analyze the running time of this recursive algorithm. How does it compare to your solution in part (a)?

4. Recursive local-minimum-finding. (12 points)

- (a) Suppose A is an array of n integers (for simplicity assume that all integers are distinct). A local minimum of A is an element that is smaller than all of its neighbors. For example, in the array A = [1, 2, 0, 3], the local minima are A[1] = 1 and A[3] = 0.
 - i. (2 points) Design a recursive algorithm to find a local minimum of A, which runs in time $O(\log(n))$.
 - ii. (2 points) Prove formally that your algorithm is correct.
 - iii. (2 points) Formally analyze the runtime of your algorithm.
- (b) Let G be a square $n \times n$ grid of integers. A *local minimum* of A is an element that is smaller than all of its neighbors (diagonals do not count). For example, in the grid

$$G = \begin{bmatrix} 5 & 6 & 3 \\ 6 & 1 & 4 \\ 3 & 2 & 3 \end{bmatrix}$$

some of the local minima are G[1][1]=5 G[2][2]=1.

- i. (2 points) Design a recursive algorithm to find a local minimum in O(n) time (you can assume that all integers are distinct).
- ii. (2 points) We are not looking for a formal correctness proof, but please explain why your algorithm is correct.
- iii. (2 points) Give a formal analysis of the running time of your algorithm.

5. Probability refresher (4 points)

- (a) (1 point) What is the cardinality of the set of all subsets of $\{1, 2, ..., n\}$? [We are expecting a mathematical expression along with one or two sentences explaining why it is correct.]
- (b) (1 point) Suppose we choose a subset of $\{1, ..., n\}$ uniformly at random: that is, every set has an equal probability of being chosen. Let X be a random variable denoting the cardinality (that is, the size) of a set randomly chosen in this way. Calculate the expected value of X and show your work. [We are expecting a mathematically rigorous argument establishing your answer. Your solution should not include summation signs.]
- (c) (2 points) Let rand(a, b) return an integer uniformly at random from the range [a, b]. Each call to rand(a, b) is independent. Consider the following function:

```
f(k,n):
    if k <= 1:
        return rand(1,n)
    return 2 * f(k/2, n)</pre>
```

What is the expected value and variance of f(k, n)? Assume that k is a power of 2. Please show your work. [In addition to your answer, we are expecting a mathematical derivation along with a brief (1-2 sentence) analysis of what the pseudocode above does in order to explain why your derivation is the right thing to do.]

- 6. Fun with Big-O notation. (6 points; 1 point each) Mark the following as True or False. Briefly but convincingly justify all of your answers, using the definitions of $O(\cdot)$, $\Theta(\cdot)$ and $\Omega(\cdot)$. [To see the level of detail we are expecting, the first question has been worked out for you.]
 - (x) $n = \Omega(n^2)$. This statement is False. To see this, we will use a proof by contradiction. Suppose that, as per the definition of $\Omega(\cdot)$, there is some n_0 and some c > 0 so that for all $n \geq n_0$, $n \geq c \cdot n^2$. Choose $n = \max\{1/c, n_0\} + 1$. Then $n \geq n_0$, but we have n > 1/c, which implies that $c \cdot n^2 > n$. This is a contradiction.
 - (a) $n = O(n \log(n))$.
 - (b) $n^{1/\log(n)} = \Theta(1)$.
 - (c) If

$$f(n) = \begin{cases} 5^n & \text{if } n < 2^{1000} \\ 2^{1000} n^2 & \text{if } n \ge 2^{1000} \end{cases}$$

and $g(n) = \frac{n^2}{2^{1000}}$, then f(n) = O(g(n)).

- (d) For all possible functions $f(n), g(n) \ge 0$, if f(n) = O(g(n)), then $2^{f(n)} = O(2^{g(n)})$.
- (e) $5^{\log \log(n)} = O(\log(n)^2)$
- (f) $n = \Theta\left(100^{\log(n)}\right)$
- 7. Fun with recurrences. (6 points; 1 point each)

Solve the following recurrence relations; i.e. express each one as T(n) = O(f(n)) for the tightest possible function f(n), and give a short justification. Be aware that some parts might be slightly more involved than others. Unless otherwise stated, assume T(1) = 1. [To see the level of detail expected, we have worked out the first one for you.]

- (x) T(n) = 6T(n/6) + 1. We apply the master theorem with a = b = 6 and with d = 0. We have $a > b^d$, and so the running time is $O(n^{\log_6(6)}) = O(n)$.
- (a) T(n) = 2T(n/2) + 3n
- (b) $T(n) = 3T(n/4) + \sqrt{n}$
- (c) $T(n) = 7T(n/2) + \Theta(n^3)$
- (d) $T(n) = 4T(n/2) + n^2 \log n$
- (e) $T(n) = 2T(n/3) + n^c$, where $c \ge 1$ is a constant (that is, it doesn't depend on n).
- (f) $T(n) = 2T(\sqrt{n}) + 1$, where T(2) = 1