古典概型与等可能概型

古典概型

古典概率

样本空间 Ω 包含的样本点的个数 = $n(\Omega)$

事件 A 包含的样本点的个数 = n(A)

$$P(A) = \frac{A$$
中元素的个数 $= \frac{n(A)}{n(\Omega)}$

古典概率

例 设袋中有4只红球和6只黑球,我们采用下述抽样方式 从中摸球3次,求前2次摸到黑球,第3次摸到红球的概率

有 放 回 摸 球

 $\Omega = \{$ 有放回摸球3次出现的所有可能 $\}$ $n(\Omega) = 10 \times 10 \times 10$

 $A = \{ \text{出现前两次黑球,第3次红球的所有可能} \}$ $n(A) = 6 \times 6 \times 4 \}$

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{6 \times 6 \times 4}{10 \times 10 \times 10}$$

→ 第3次摸到红球

前2次摸到黑球

不放回摸球

 Ω = {不放回摸球3次出现的所有可能} $n(\Omega) = 10 \times 9 \times 8$

 $A = \{ 摸到前两次黑球,第3次红球的所有可能 \} n(A) = 6 \times 5 \times 4$

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{6 \times 5 \times 4}{10 \times 9 \times 8}$$

→ 第3次摸到红球

前2次摸到黑球

有放回抽样与不放回抽样

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{6 \times 6 \times 4}{10 \times 10 \times 10}$$

每次摸球后,球的分布不变

每次摸球后,球的分布改变

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{6 \times 5 \times 4}{10 \times 9 \times 8}$$

古典概率

例 设袋中有4只红球和6只黑球,我们采用下述抽样方式从中摸球3次,求2次摸到黑球,1次摸到红球的概率

有 放 回 摸 球

 $\Omega = \{ \text{有放回摸球3次出现的所有可能} \}$ $n(\Omega) = 10 \times 10 \times 10$

 $A = \{2次黑球, 1次红球的所有可能\}$ $n(A) = 6 \times 6 \times 4 \times C_3^2$

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{6 \times 6 \times 4 \times C_3^2}{10 \times 10 \times 10} = \frac{6 \times 6 \times 4 \times 3}{10 \times 10 \times 10}$$

→ 1次摸到红球

→2次摸到黑球

不 放 回 摸 球

 Ω = {不放回摸球3次出现的所有可能} $n(\Omega) = C_{10}^3$

 $A = \{2次黑球, 1次红球的所有可能\}$ $n(A) = C_6^2 C_4^1$

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{C_6^2 C_4^1}{C_{10}^3} = \frac{6 \times 5 \times 4 \times 3}{10 \times 9 \times 8}$$

→ 第3次摸到红球

前2次摸到黑球

有放回抽样与不放回抽样

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{6 \times 6 \times 4 \times C_3^2}{10 \times 10 \times 10}$$

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{C_6^2 C_4^1}{C_{10}^3}$$

A为 \mathbb{R}^n 的一个有界区域 \longrightarrow $0 < S(A) < \infty$

$$0 < S(A) < \infty$$

$$\Omega(\subset \mathbb{R}^n)$$
: 有界 $A(\subset \Omega)$: 具有测度 $S(A)$

试验结果落入A的概率与A的测度成正比

$$P(A) = k S(A)$$

$$P(\Omega) = 1$$

$$kS(\Omega) = 1$$

$$k(\Omega)$$

会面问题

甲、乙两人相约在6时到7时之间在某处会面.

并约定先到者等候另一人15分钟,过时即离去.

设每人在这段时间内各时刻到达该地是等可能的,

求甲、乙两人能会面的概率.

 \mathbf{M} : $A = \{ \Psi, \mathsf{Z}, \mathsf{A}, \mathsf{A}$

甲到达约会地点的时间 ====> x

乙到达约会地点的时间 \Longrightarrow y

两人会面 $> |x-y| \le 15$

$$S(\Omega)=60^2$$

$$S(A) = 60^2 - (60 - 15)^2 -$$

$$P(A) = \frac{S(A)}{S(\Omega)} = \frac{7}{16}$$

小 结

$$P(A) = \frac{A \text{中元素的个数}}{\Omega \text{中元素的个数}}$$

古典概率

几何概率

$$P(A) = \frac{A$$
的测度 Ω 的测度

试验结果有限

等可能发生

试验结果无穷多个