Badanie temperaturowej zależności współczynnika lepkości cieczy metodą wiskozymetru Höpplera

Informatyka – profil praktyczny, semestr II Wydział Matematyki Stosowanej Politechnika Śląska

> Sekcja 5 Piotr Skowroński Kwiecień 2022

1 Wstęp teoretyczny.

Każde ciało poruszające się w cieczy czy gazie doznaje siłę oporu, z powodu tego, że warstwy cieczy przylegającej do ciała będącego w ruchu pociągają za sobą coraz dalsze warstwy sąsiednie. Mamy tu do czynienia z przesuwaniem się jednych warstw cieczy względem drugich, co powoduje tarcie wewnętrzne, które spowalnia ruch cząstek i ciała. Ta siła oporu zależna jest od lepkości cieczy, a lepkość cieczy zależna jest od rodzaju cieczy, a co ważniejsze, od temperatury. Ruchy termiczne cząsteczek mają wpływ na siły oddziaływania międzycząsteczkowego. W cieczach wzrost prędkości ruchów termicznych siły te osłabia (lepkość maleje), w gazach sytuacja jest odwrotna.

Współczynnik lepkości cieczy można wyznaczyć przez wyznaczenie średniego czasu spadania kulki w cieczy.

Celem wykonywanego ćwiczenia jest wyznaczenie zależności współczynnika lepkości cieczy od temperatury metodą wiskozymetru Höpplera. Doświadczenie polega na mierzeniu czasu opadania kulki dla zmieniających się temperatur cieczy.

2 Pomiary

Podczas wykonywania doświadczenia w pracowni pomiary zapisywałem ręcznie na kartce. Następnie przepisałem wyniki moich pomiarow do pliku CSV, by umożliwić ich wykorzystanie w programie.

Użyłem języka Python w środowisku Jupyter Notebook. Wykorzystałem biblioteki numpy oraz matplotlib.

3 Obliczenia i wykresy

Obliczenie niepewności typu a (statystycznych) średnich czasów spadania $u_a(t_{sr})$.

Aby policzyć niepewności typu a skorzystamy ze wzoru:

$$u_a(t_{sr}) = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - t_{sr})^2} \cdot t_{\alpha,N}.$$

Gdzie:

 $t_{\alpha,N}$ - Współczynnik Studenta Fishera, gdzie za α przyjmujemy 0.6828, a za Nliczbę pomiarów w serii, czyli w naszym przypadku 2.

$$t_{\alpha=0.6828,N=5} = 1.141.$$

Tabelka niepewności statystycznych:

Lp.	t_{sr} , s	$u_a(t_{sr})$, s
1.	171.0	2.5
2.	133.0	2.4
3.	102.0	2.9
4.	87.9	2.5
5.	77.2	2.2
6.	63.7	2.4

Obliczenie całkowitej niepewności czasów $u(t_{sr})$.

Aby policzyć niepewności całkowite czasów spadania $u(t_{sr})$ skorzystamy ze wzoru:

$$u(t_{sr}) = \sqrt{u_a^2(t_{sr}) + u_b^2(t_{sr})}.$$

Gdzie za $u_b(t_{sr})$ przyjmuje niepewność czasu reakcji człowieka $u_b(t_{sr})=0.3$ s

Obliczenie współczynnika lepkości oleju parafinowego η dla każdej temperatury T.

Do policzenia współczynnika lepkości η skorzystam ze wzoru:

$$\eta = K(\rho_k - \rho)t.$$

Gdzie:

 $K=1.2018\cdot 10^{-6}\frac{m^2}{s^2}$ - stała aparaturowa.

 $\rho_k = 8150 \frac{kg}{m^3}$ - gęstość stalowej kulki.

 ρ - gęstość oleju parafinowego w różnych temperaturach.

Obliczenie niepewności współczynnika lepkości η korzystając z prawa przenoszenia niepewności.

Wzór na prawo przenoszenia niepewności ma postać:

$$u(y) = \sqrt{\sum_{i=1}^{k} \left[\frac{\partial y}{\partial x_i} u(x_i)\right]^2}$$

Zatem prawo przenoszenia niepewności dla η ma postać:

$$u(\eta) = \sqrt{[K(\rho_k - \rho)u(t)]^2} = K(\rho_k - \rho)u(t).$$

Tabelka z danymi:

Lp.	T, °C	t_{sr} , s	$u(t_{sr})$, s	η, Pa·s	$u(\eta)$, Pa·s
1.	21.0	171.0	2.5	1.500	0.022
2.	26.5	133.0	2.4	1.160	0.021
3.	31.0	103.0	2.9	0.897	0.026
4.	34.0	87.9	2.5	0.769	0.022
5.	36.0	77.2	2.2	0.676	0.019
6.	40.5	63.7	2.5	0.557	0.022

Wykres zależności współczynnika lepkości η od temperatury T i wykres zależności logarytmu naturalnego współczynnika lepkości $\ln(\eta)$ od odwrotności temperatury $\frac{1}{T}$.

Za niepewność temperatury u(T) przyjmujemy $0.5^{\circ}C$ związane z niedokładnym odczytem temperatury na termometrze.

Wykresy na następnych stronach:

Wykres zależności logarytmu naturalnego współczynnika lepkości η od odwrotności temperatury $\frac{1}{T}$

Wyznaczenie metodą regresji liniowej współczynników funkcji $\eta(T)$ wraz z niepewnościami.

Aby policzyć współczynniki kierunkowe prostych i wyrazy wolne skorzystamy ze wzorów:

$$a = \frac{nS_{xy} - S_x S_y}{nS_{xx} - S_x^2}, b = \frac{S_{xx} S_y - S_x S_{xy}}{nS_{xx} - S_x^2}$$

Gdzie:

$$S_x = \sum_{i=1}^n x_i, \ S_y = \sum_{i=1}^n y_i, \ S_{xx} = \sum_{i=1}^n x_i^2, \ S_{xy} = \sum_{i=1}^n x_i \cdot y_i$$

Do obliczenia niepewności skorzystamy ze wzorów:

$$u(a) = \sqrt{\frac{n}{n-2} \cdot \frac{S_{\epsilon\epsilon}}{nS_{xx} - S_x^2}}, \ u(b) = \sqrt{\frac{1}{n-2} \cdot \frac{S_{xx}S_{\epsilon\epsilon}}{nS_{xx} - S_x^2}}$$

Gdzie:

$$S_{\epsilon\epsilon} = \sum_{i=1}^{n} \epsilon_i^2$$
, dla $\epsilon_i = y_i - ax_i - b$

Po obliczeniach wartości współczynników są równe:

$$a = -0.0494 \frac{Pa \cdot s}{\circ C}$$

$$b = 2.48 \text{ Pa·s}.$$

Wartości niepewności współczynników prostej:

$$u(a) = 0.0037 \frac{Pa \cdot s}{\circ C},$$

$$u(b) = 0.12 \text{ Pa·s}.$$

Postać końcowa:

$$a = -0.0494(37) \frac{Pa \cdot s}{{}^{\circ}C}$$

$$b = 2.48(12) \text{ Pa·s.}$$

Obliczenie współczynników regresji $b = \ln(A)$ i a = W/k (wraz z niepewnościami) zależności opisującej temperaturową zależność współczynnika lepkości.

Temperaturowa zależność współczynnika lepkości:

$$\eta(T) = Ae^{\frac{W}{kT}}$$

Gdzie:

 $k=1.38\cdot 10^{-23}\frac{J}{K}$ - stała Boltzmanna.

W - energia aktywacji przepływu lepkiego.

Po przekształceniach otrzymujemy:

$$\ln(\eta(T)) = \ln(A) + \frac{W}{kT}$$
$$\ln(\eta(T)) = \frac{a}{T} + b$$
$$\ln(\eta(\frac{1}{T})) = aT + b$$

Teraz możemy obliczyć współczynniki regresji funkcji $f(\frac{1}{T}) = \ln(\eta)$, aby wyliczyć a i b.

$$a = 4790 \text{ K} \cdot \ln(\text{Pa} \cdot \text{s}),$$

$$b = -15.80 \ln(\text{Pa} \cdot \text{s}).$$

Niepewności:

$$u(a) = 120 \text{ K} \cdot \ln(\text{Pa} \cdot \text{s}),$$

$$u(b) = 0.40 \ln(\text{Pa} \cdot \text{s}).$$

Postać końcowa:

$$a = 4790(120) \text{ K} \cdot \ln(\text{Pa} \cdot \text{s}),$$

$$b = -15.80(40) \ln(\text{Pa} \cdot \text{s}).$$

Obliczenie energi aktywacji przepływu lepkiego W.

Aby policzyć energie aktywacji przepływu lepkiego, skorzystamy ze wzoru:

$$W = a \cdot k$$

Po wstawieniu danych:

$$W = 4790 \cdot 1.38 \cdot 10^{-23} = 6.61 \cdot 10^{-20} \frac{J}{mol}.$$

Przeliczniki:

$$1\frac{J}{mol} = 1.66 \cdot 10^{-24} \text{ J.}$$

 $1 \text{ J} = 6.24 \cdot 10^{18} \text{ eV.}$

Zapisanie wyniku w odpowiednich jednostkach:

$$W = 6.61 \cdot 10^{-20} \frac{J}{mol} = 1.10 \cdot 10^{-43} \text{ J}.$$

$$W = 1.10 \cdot 10^{-43} \text{ J} = 6.84 \cdot 10^{-25} \text{ eV}.$$

Obliczenie niepewności energi aktywacji przepływu lepkiego W korzystając z prawa przenoszenia niepewności.

Prawo przenoszenia niepewności dla W ma postać:

$$u(W) = \sqrt{[k \cdot u(a)]^2} = k \cdot u(a).$$

Po obliczeniach:

$$u(W) = 1.70 \cdot 10^{-21} \frac{J}{mol} = 2.8 \cdot 10^{-45} \text{ J.}$$

 $u(W) = 2.82 \cdot 10^{-45} \text{ J} = 1.8 \cdot 10^{-26} \text{ eV.}$

Zapisanie wyniku i niepewności w stosownym formacie w J i eV.

Końcowa postać dla W w J i eV:

$$W = 1.100(28) \cdot 10^{-43} \text{ J.}$$

 $W = 6.84(18) \cdot 10^{-25} \text{ eV.}$

Wnioski.

Na podstawie wykonanych obliczeń i wykresów, widać, że współczynnik lepkości cieczy η zależy od temperatury cieczy; im większa temperatura, tym współczynnik lepkości jest mniejszy, co za tym idzie, kulka opada szybciej.

Niepewności pomiarowe wynikają z niedokładnego odczytu temperatury na termometrze, niedokładnego zmierzenia czasu spowodowanego opóźnieniem w czasie reakcji człowieka.