Lecture 16 - FO Completeness

Vaishnavi Sundararajan

COL703/COL7203 - Logic for Computer Science

Recap: FO Resolution

- **Substitution Lemma**: Given an interpretation $\mathcal{F} = ((M, \iota), \sigma)$, an expression $\varphi \in \mathsf{FO}_\Sigma$, and a substitution $\{u/x\}$ such that $u^{\mathcal{F}} = m \in M$, $\mathcal{F} \models \varphi\{u/x\}$ iff $\mathcal{F}[x \mapsto m] \models \varphi$.
- Let δ_1, δ_2 be clauses s.t. $fv(\delta_1) \cap fv(\delta_2) = \emptyset$
- Let $P \in \mathcal{P}$ be a k-ary predicate symbol
- Let $L_1 = \{ P(u_1, ..., u_k) \in \delta_1 \mid u_1, ..., u_k \in T(\Sigma) \}$ such that $\delta_1 = \delta_1' \cup L_1$
- Let $L_2 = \{ \neg P(\nu_1, \dots, \nu_k) \in \delta_2 \mid \nu_1, \dots, \nu_k \in T(\Sigma) \}$ such that $\delta_2 = \delta_2' \cup L_2$
- Denote by \overline{L}_2 the set $\{P(\nu_1, ..., \nu_k) \in \delta_2 \mid \nu_1, ..., \nu_k \in T(\Sigma)\}$
- Let $L_1 \cup \overline{L}_2$ be unifiable, with θ an mgu

$$\frac{\delta_1' \cup L_1 \qquad \delta_2' \cup L_2}{\theta(\delta_1' \cup \delta_2')} \, \theta$$

Towards a proof system

- The resolution procedure (linking unsatisfiability to the derivation of an empty clause) is sound and complete
- However, this rule does not provide a complete proof system for first-order logic
- Move to a less minimal proof system (which might be complete)
- $\{\neg, \supset, \forall\}$ is a functionally complete set of operators for FOL
- Can extend ⊢_ℋ to get ⊢_ℋ for FOL
- All FO expression instances of PL tautologies are valid
- A **generalization** of an expression φ is any $\forall x_1 \dots x_n$. φ , where $n \ge 0$.

FO syntax:
$$\varphi, \psi, \chi := t_1 \equiv t_2 \mid P(t_1, ..., t_n) \mid \neg \psi \mid \psi \supset \chi \mid \forall x. [\psi]$$

System \vdash_{HK} **for FO**

All generalizations of the following, along with MP.

(H1a)
$$\varphi \supset (\psi \supset \varphi)$$

(H1b) $(\varphi \supset (\psi \supset \chi)) \supset ((\varphi \supset \psi) \supset (\varphi \supset \chi))$
(H1c) $(\neg \varphi \supset \neg \psi) \supset ((\neg \varphi \supset \psi) \supset \varphi)$
(H2a) $x \equiv x$
(H2b) $x \equiv y \supset ((\varphi(x) \supset \varphi(y)) \land (\varphi(y) \supset \varphi(x)))$
(H3a) $\forall x. \ [\varphi \supset \psi] \supset (\forall x. \ [\varphi] \supset \forall x. \ [\psi])$
(H3b) $\varphi \supset \forall x. \ [\varphi]$ where x does not appear free in φ
(H3c) $\forall x. \ [\varphi] \supset \varphi\{t/x\}$ for any term t
 $y \supset \psi \qquad \varphi$

We denote provability in this system with the symbol \vdash_{HK} .

Soundness of \vdash_{HK}

- **Theorem (Soundness)**: If $\vdash_{HK} \varphi$, then $\models \varphi$
- Show that axioms are valid, and that MP preserves validity
- Might need the following lemma: For every φ , every $x \in \mathcal{V}$, and every $y \notin \text{vars}(\forall x. [\varphi])$, $\models (\forall x. [\varphi] \supset \forall y. [\varphi\{y/x\}]) \land (\forall y. [\varphi\{y/x\}] \supset \forall x. [\varphi])$.
- For all Γ , α , β , we have the following
- **Deduction Theorem**: Γ , $\alpha \vdash_{HK} \beta$ iff $\Gamma \vdash_{HK} \alpha \supset \beta$.
- **Cut** is admissible: If $\Gamma \vdash \alpha$ and Γ , $\alpha \vdash \beta$, then $\Gamma \vdash \beta$.
- Lemma (Replacement by new variables): Suppose $\Gamma \vdash_{HK} \varphi$, and $y \in \mathcal{V} \setminus (\text{vars}(\Gamma) \cup \text{vars}(\varphi))$. Then, $\Gamma\{y/x\} \vdash_{HK} \varphi\{y/x\}$.
- **Exercise**: Prove all these statements.

Substituting bound variables: Equivalence

```
Lemma: For every \varphi, every x \in \mathcal{V}, and every y \notin \text{vars}(\forall x. [\varphi]), \vdash_{\text{HK}} (\forall x. [\varphi] \supset \forall y. [\varphi\{y/x\}]) \land (\forall y. [\varphi\{y/x\}] \supset \forall x. [\varphi]). Proof: Enough to show (\Rightarrow), i.e. \vdash_{\text{HK}} \forall x. [\varphi] \supset \forall y. [\varphi\{y/x\}]. (\Leftarrow) follows since x \notin \text{vars}(\forall y. [\varphi\{y/x\}]), and \varphi\{y/x\}\{x/y\} = \varphi.
```

$$\frac{\exists x. \ [\phi] \supset \forall y. \ [\forall x. \ [\phi]]}{\forall x. \ [\phi] \supset \forall y. \ [\phi x. \ [\phi]] \supset \forall y. \ [\phi y/x]} Cut$$

$$\frac{\exists x. \ [\phi] \supset \forall y. \ [\phi x. \ [\phi]] \supset \forall y. \ [\phi y/x]}{\forall x. \ [\phi] \supset \forall y. \ [\phi y/x]}$$

Universal generalization lemma

Lemma (Universal generalization): Suppose $\Gamma \vdash_{HK} \phi\{y/x\}$, where $y \notin \mathsf{fv}(\Gamma) \cup \mathsf{fv}(\phi)$. Then, $\Gamma \vdash_{HK} \forall x$. $[\phi]$.

Proof: Suppose $\Gamma \vdash_{HK} \phi\{y/x\}$ via a proof π . We first show the following:

For any sequent $\Gamma \vdash_{HK} \alpha_i$ appearing in the proof π , $\Gamma \vdash_{HK} \forall y$. $[\alpha_i]$.

(Then, $\Gamma \vdash_{HK} \forall y$. $[\varphi\{y/x\}]$, and by the previous lemma, $\Gamma \vdash_{HK} \forall x$. $[\varphi]$.) The proof is by induction on the structure of π .

Base case(s): Suppose α_i is an instance of an axiom. Then, $\forall x$. $[\alpha_i]$ is a generalization of an axiom, and hence, also an axiom. Otherwise, suppose $\alpha_i \in \Gamma$. Then, $y \notin \mathsf{fv}(\alpha_i)$. Thus, **(H3b)** gives us $\alpha_i \supset \forall y$. $[\alpha_i]$.

$$\frac{\Gamma \vdash \alpha_{i} \supset \forall y. \ [\alpha_{i}]}{\Gamma \vdash \forall y. \ [\alpha_{i}]} \xrightarrow{\text{H3b}} \frac{\Gamma \vdash \alpha_{i}}{\Gamma \vdash \alpha_{i}} \text{MP}$$

Universal generalization lemma: Proof

Induction case: α_i is obtained by applying MP to some $\alpha_j \supset \alpha_i$ and α_j , both appearing in shorter subtrees. By IH, $\Gamma \vdash \forall y$. $[\alpha_i \supset \alpha_i]$ and $\Gamma \vdash \forall y$. $[\alpha_j]$.

$$\frac{\prod_{\Gamma \vdash \forall y. \ [\alpha_{j} \supset \alpha_{i}] \supset (\forall y. \ [\alpha_{j}] \supset \forall y. \ [\alpha_{i}])} H_{3a} \qquad \vdots \qquad \qquad IH \\
\Gamma \vdash \forall y. \ [\alpha_{j} \supset \alpha_{i}] \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\
\underline{\Gamma \vdash \forall y. \ [\alpha_{j}] \supset \forall y. \ [\alpha_{i}]} \qquad \qquad \Gamma \vdash \forall y. \ [\alpha_{j}] \qquad \qquad \Gamma \vdash \forall y. \ [\alpha_{j}]$$

Completeness of \vdash_{HK}

- Gödel's Completeness Theorem (1929): If $\Gamma \models \varphi$, then $\Gamma \vdash_{HK} \varphi$
- Want a slightly different, equivalent formulation of this statement
- Introduce a notion of **consistency**
- An expression φ is said to be **consistent** if $\forall_{HK} \neg \varphi$
- A finite set $\{\varphi_1, ..., \varphi_n\}$ is consistent if $\bigwedge_{1 \le i \le n} \varphi_i$ is consistent
- An arbitrary set Γ is consistent if each of its finite subsets is consistent.
- Equivalent statement: Any consistent set of expressions is satisfiable
- **Exercise**: Show that this is equivalent to the Completeness statement.

Completeness of \vdash_{HK}

- Suppose we start out with a consistent set of expressions Γ
- The proof becomes easier if we can assume $\mathcal{V} \setminus \text{vars}(\Gamma)$ to be infinite.
- We achieve this as follows. Let $\mathcal{V} = \{x_0, x_1, x_2, ...\}$
- Partition this set into $\mathcal{V}_e = \{x_0, x_2, x_4, ...\}$ and $\mathcal{V}_o = \{x_1, x_3, x_5, ...\}$
- Given a Γ, form Δ by systematically replacing each occurrence (free or bound) of x_i in Γ by x_{2i} for all i ≥ 0.
- $\operatorname{vars}(\Delta) \subseteq \mathcal{V}_e$, so $\mathcal{V} \setminus \operatorname{vars}(\Delta)$ is infinite.
- We now need to prove the following:
 - If Γ is consistent, then Δ is consistent
 - If Δ is satisfiable, then Γ is satisfiable
- Once we prove these, we can assume $\mathcal{V} \setminus \text{vars}(\Gamma)$ to be infinite in the rest of the presentation.

Γ consistent $\Rightarrow \Delta$ consistent

- Proof by contradiction. Suppose Δ is inconsistent.
- Then, there is a $\{\delta_1, ..., \delta_k\} \subseteq_{\text{fin}} \Delta$ such that $\vdash_{HK} \neg (\delta_1 \land ... \land \delta_k)$
- Let *n* be such that i < 2n for every *i* where $x_i \in \text{fv}(\bigcup_{1 \le i \le k} \delta_i)$.
- Replace every $x_{2j} \in \text{vars}(\bigcup_{1 \le j \le k} \delta_j)$ by x_{2n+j} to get $\{\rho_1, ..., \rho_k\}$
- **Claim**: $\vdash_{HK} \neg (\rho_1 \land ... \land \rho_k)$ **Exercise**: Prove this claim.
- Replace every x_{2n+j} by x_i to get $\{\gamma_1, ..., \gamma_k\} \subseteq_{\text{fin}} \Gamma$
- $\vdash_{\mathit{HK}} \neg (\gamma_1 \land ... \land \gamma_k)$
- Thus, Γ is inconsistent.

Δ satisfiable $\Rightarrow \Gamma$ satisfiable

- Suppose $(\mathcal{M}, \sigma) \models \Delta$.
- Only variables from \mathcal{V}_e appear in Δ
- We replace every occurrence of x_{2i} by x_i to get Γ
- $(\mathcal{M}, \sigma') \models \Gamma$, where $\sigma'(x_i) = \sigma(x_{2i})$
- Thus, if Δ is satisfiable, then so is Γ

Lindenbaum's Lemma

- A set Γ is maximally consistent if Γ is consistent, and Γ ∪ {φ} is inconsistent for any FO expression φ ∉ Γ.
- A set Γ is said to be \exists -fulfilled iff for every expression of the form $\neg \forall x$. $[\alpha] \in \Gamma$, there exists some term t such that $\neg \alpha \{t/x\} \in \Gamma$.
- **Lindenbaum's Lemma**: Every consistent set can be extended to an \exists -fulfilled MCS.
- Given a consistent Γ , we build an \exists -fulfilled MCS which extends Γ .
- As earlier, fix an enumeration of expressions, and examine each.

- Fix an enumeration $\varphi_0, \varphi_1, \varphi_2, ...$ of the expressions in FO_{Σ}
- Also fix an enumeration $x_0, x_1, x_2, ...$ of the variables in \mathcal{V}
- Now, we build the following sequence Γ_0 , Γ_1 , ... of sets of formulas.
- $\Gamma_0 := \Gamma$, and for every $i \ge 0$,

$$\Gamma_{i+1} \coloneqq \begin{cases} \Gamma_i' & \text{if } \Gamma_i' \text{ consistent and } \varphi_i \text{ not of the form } \neg \forall x. \ [\alpha] \\ \Gamma_i' \cup \{\neg \alpha \{y/x\}\} & \text{if } \Gamma_i' \text{ consistent, } \varphi_i = \neg \forall x. \ [\alpha], \text{ and} \\ & y \text{ the first variable not in } \mathsf{fv}(\Gamma_i) \cup \mathsf{vars}(\varphi_i)^1 \\ \Gamma_i & \text{if } \Gamma_i' \text{ not consistent} \end{cases}$$

where
$$\Gamma_i' = \Gamma_i \cup \{\varphi_i\}$$

 $\begin{aligned} &\text{where } \Gamma_i' = \Gamma_i \cup \{\phi_i\}. \\ &\bullet &\text{ Finally, } \Gamma_{ext} \coloneqq \bigcup \Gamma_i \end{aligned}$

¹We can get away with only requiring that y is the first variable not in $fv(\Gamma_i) \cup fv(\alpha)$ as long as we somehow ensure that $y \notin bv(\alpha)$

- **Claim**: Γ_{ext} is maximally consistent and \exists -fulfilled.
- We first show that each Γ_i is consistent (by induction on i)
- **Base case**: $\Gamma_0 = \Gamma$, consistent by assumption.
- **Induction step**: Suppose Γ_i is consistent. Two cases arise: Either $\Gamma'_i = \Gamma_i \cup \{\varphi_i\}$ is consistent or not.
- In the latter case, $\Gamma_{i+1} = \Gamma_i$, and Γ_{i+1} is also consistent.
- If $\Gamma_i' = \Gamma_i \cup \{\varphi_i\}$ is consistent, and if φ_i is not of the form $\neg \forall x$. $[\alpha]$, then $\Gamma_{i+1} = \Gamma_i'$, so consistent by construction.

- If $\varphi_i = \neg \forall x$. [α] for some α , and $\Gamma_i \cup \{\neg \forall x$. [α]} is consistent, we set $\Gamma_{i+1} = \Gamma_i \cup \{\neg \forall x$. [α], $\neg \alpha \{y/x\}\}$, where y is the first variable not in $\mathsf{fv}(\Gamma_i) \cup \mathsf{vars}(\varphi_i)$
- Suppose towards a contradiction that Γ_{i+1} is not consistent
- There is $\{\gamma_1, ..., \gamma_k\} \subseteq_{\text{fin}} \Gamma_i$ such that $\neg \forall x$. $[\alpha], \gamma_1, ..., \gamma_k \vdash \alpha \{y/x\}$. Why?
- Since $y \notin fv(\Gamma_i) \cup vars(\phi_i)$, we can use Universal Generalization to get $\neg \forall x$. $[\alpha], \gamma_1, ..., \gamma_k \vdash \forall x$. $[\alpha]$.
- One can avoid using $\neg \varphi$ as an assumption to prove φ for any φ . So $\gamma_1, ..., \gamma_k \vdash \forall x$. $[\alpha]$
- But this contradicts the fact that $\Gamma_i \cup \{\neg \forall x. [\alpha]\}$ is consistent!
- So Γ_{i+1} is consistent for every i.

- Γ_{ext} is consistent, since each finite subset of Γ_{ext} is also a finite subset of Γ_i for some i ≥ 0. Exercise: Why only one Γ_i and not multiple?
- For every φ_{ℓ} such that $\Gamma_{\text{ext}} \cup \{\varphi_{\ell}\}$ is consistent, $\Gamma_{\ell} \cup \varphi_{\ell}$ is also consistent (reasoning as above), so $\varphi_{\ell} \in \Gamma_{\ell+1} \subseteq \Gamma_{\text{ext}}$. Therefore, Γ_{ext} is maximally consistent.
- Consider φ_ℓ = ¬∀x. [α] ∈ Γ_{ext}. Note that Γ_ℓ ∪ {φ_ℓ} is consistent (as above). So ¬α{y/x} ∈ Γ_{ℓ+1} ⊆ Γ_{ext} for some y, by construction.
 Therefore, Γ_{ext} is also ∃-fulfilled.
- Thus, we have shown that every consistent set Γ can be extended to an
 ∃-fulfilled MCS Γ_{ext}.