ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПРОМЫШЛЕННОЙ СОБСТВЕННОСТИ

Бережковская наб., 30, корп. 1, Москва, Г-59, ГСП-5, 123995 Телефон 240 60 15. Телекс 114818 ПДЧ. Факс 243 33 37

Ham № 20/12-791

"7" декабря 2004 г.

СПРАВКА

Федеральный институт промышленной собственности (далее – Институт) настоящим удостоверяет, что приложенные материалы являются точным воспроизведением первоначального описания, формулы, реферата и чертежей (если имеются) заявки № 2003131978 на выдачу патента на изобретение, поданной в Институт в октябре месяце 31 дня 2003 года (31.10.2003).

Название изобретения:

Способ геометрической гармонической

модуляции сигнала

Заявитель:

Общество с ограниченной ответственностью

«ДиС ПЛЮС»

Действительные авторы:

СОКОЛОВ Юрий Борисович

САХАРОВ Валерий Викторович

Заведующий отделом 20

А.Л.Журавлев

СПОСОБ ГЕОМЕТРИЧЕСКОЙ ГАРМОНИЧЕСКОЙ МОДУЛЯЦИИ СИГНАЛА

Изобретение относится к технике сбора данных и сигнализации по распределительным электросетям переменного тока и может быть использовано для низкоскоростного сбора данных с удалённых датчиков охранной и пожарной сигнализации, со счетчиков электроэнергии, расхода тепла, воды, газа и т.п..

Известна система связи по распределительной электросети переменного (патент США № 5844949, кл. НО4В 001/10; НО4L 025/08; НО3D 001/04 от 01.12.1998г.) состоящая из передатчика, излучающего сигнал с геометрической гармонической модуляцией и приёмника для его приёма и декодирования. Основной недостаток данной системы связи заключается в том, что для кодирования передаваемого сигнала в ней используется относительная фазовая модуляция (ОФМ) на каждой из излучаемых гармоник. Это обстоятельство не позволяет энергетически эффективно передавать информацию небольшими порциями, например, по одному биту или по одному символу за раз, т.к. при использовании ОФМ для передачи одного бита или символа необходимо излучить как минимум два сигнала, опорный и информационный.

Известна также система связи по электросети переменного тока (патент США № 6329905, кл. НО4М 011/04 от 23.03.2000г.) передатчик которой излучает сигнал, состоящий из двух гармоник с относительной фазовой модуляцией между ними, причем частоты указанных гармоник кратны половине основной частоты сетевого напряжения. Основным недостатком данной системы является её заведомо низкая помехоустойчивость, связанная с тем, что для передачи данных в ней используется сигнал, энергия которого сосредоточена всего в двух узких областях, так что наличие периодической помехи, частота которой случайно

совпадёт с одной из частот передачи, сделает такую систему связи полностью неработоспособной. Кроме того, поскольку частоты указанных гармоник довольно сильно отличаются друг от друга (в разы), то и их относительные фазы в точке приема будут сильно и случайным образом флуктуировать друг относительно друга одновременно с флуктуациями частотно-фазовой характеристики среды распространения сигнала, что сделает невозможным декодирование сигнала в точке приёма.

V

Задача изобретения состоит в создании способа модуляции сигнала, ориентированного на передачу данных небольшими порциями (например, по одному биту) через большие интервалы времени, энергетически более эффективного чем ныне известные, который позволил бы в самой неблагоприятной помеховой обстановке и при наличии сильного затухания сигналов собирать данные от большого количества подключенных к электросети переменного тока низкоскоростных датчиков, таких как, например, датчики охранной и пожарной сигнализации.

Технический результат – уменьшение энергопотребления передатчиками подчиненных узлов системы и увеличение дальности ее действия. Указанный технический результат при осуществлении данного изобретения достигается тем, что в отличие от известных способов, в качестве объекта модуляции используются разности фаз соседних гармонических составляющих сигнала, что, по сравнению с традиционной ОФМ позволяет вдвое сократить длительность информационного сигнала при ПОЛНОМ сохранении характеристик его помехоустойчивости. Отметим, что указанный выигрыш будет иметь место исключительно при передаче небольших порций данных, таких как один бит, или в более широкой трактовке – один символ. Во многих практических случаях этого оказывается вполне достаточно, например, в случае срабатывания датчика

пожарной сигнализации, достаточно передать на пульт тревожного предупреждения всего лишь один символ, однозначно идентифицирующий местоположение сработавшего датчика (как правило, таким символом является условный номер или адрес, заранее присвоенный данному датчику).

Проведённый заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации с целью выявления источников, содержащих сведения об аналогах заявленного изобретения, позволяет установить, что заявителем не обнаружен аналог, характеризующийся признаками, идентичными признакам заявленного изобретения, и определение из перечня выявленных аналогов прототипа как наиболее близкого по совокупности признаков аналога, позволило выявить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном объекте, изложенных в формуле изобретения. Для проверки соответствия заявленного изобретения требованию изобретательского уровня был проведен дополнительный поиск известных признаков, совпадающих с отличительными от прототипа заявленного изобретения, результаты которого показывают, что заявленное изобретение не следует для специалиста явным образом из известного уровня техники, так как не известны технические решения в которых для модуляции сигналов используются разности фаз большого количества соседних гармонических составляющих сигнала.

Заявляемый способ геометрической гармонической модуляции сигнала модуляции сигнала поясняется чертежами.

На фиг.1 изображена блок-схема системы сбора данных по электросети переменного тока от большого количества датчиков пожарной сигнализации, в которой используется предлагаемый способ модуляции.

На фиг.2 изображена диаграмма, иллюстрирующая принцип формирования временных меток первичной (битовой) синхронизации.

Осуществление изобретения будет продемонстрировано на примере системы сбора данных от датчиков пожарной сигнализации (Фиг.1),которая состоит из одног главного узла 1 и нескольких подчинённых узлов 2. Все узлы системы подключены электрически к одному и тому же сегменту силовой сети 3. Внутреннее устройство главного и подчинённых узлов очень похоже и включает в себя следующие элементы: блок защиты и сопряжения сигналов 4, полосовые фильтры 5 и 6, аналого-цифровой преобразователь 7, цифро-аналоговый преобразователь 8, компаратор с гистерезисом 9, вход прерывания 10. Отличие заключается в том, что главный узел системы выполнен на базе мощного процессора цифровой обработки сигналов 11 и фазовых таблиц 12, причем процессор цифровой обработки сигналов имеет канал связи с внешним миром 13, а более простой и дешёвый подчинённый узел целиком выполнен на универсальном микроконтроллере 14 и сигнальной таблице 15, причем к микроконтроллеру 14 через линию связи 16 подключен первичный датчик пожарной сигнализации 17, например детектор задымлённости. Рабочий диапазон частот системы – 20...95 кГц. Сигнал от подчинённого узла передаётся в этом диапазоне на 96 гармониках, отстоящих друг от друга ровно на 781,25 Гц.

Сисема сбора данных работает следующим образом (фиг.1,2). Компараторы 9 выделяют моменты, когда сетевое напряжение 18 становится равным нулю 19, формируя, таким образом, практически синхронную для всей системы последовательность меток времени 20, которая служит для целей первичной (символьной) синхронизации процесса передачи данных от подчинённых узлов к главному.

При срабатывании первичного датчика 17 микроконтроллер 14 начинает периодически "воспроизводить" через ЦАП 8 свою, сохраняемую в постоянной памяти и уникальную для кеждого подчинённого узла 2, сигнальную таблицу. Длительность "воспроизведения" сигнальной таблицы в точности равна одному полупериоду сетевого напряжения, а начало "воспроизведения" определяется моментом срабатывания компаратора 9, которое происходит в момент равенства нулю сетевого напряжения на линии 3. Сигнал с выхода ЦАП 8 далее отфильтровывается полосовым фильтром 6 для устранения из него внеполосных составляющих и через блок защиты и сопряжения 4 подаётся в сетевую линию 3. Сигнальная таблица 15 является уникальной для кеждого из подчинённых узлов 2. Множество сигнальных таблиц синтезируется ещё до развертывания сети сбора данных с использованием следующего метода. С помощью генератора случайных или псевдослучайных чисел генерируется множество-кандидат из 96 чисел ϕ_k принадлежащих интервалу $[0...2\pi]$. Далее это множество используется для синтеза сигнала вида

V

$$s(t) = \sum sin(2\pi \cdot f_m \cdot t + \varphi_m)$$
, где

m=0...95, а f_m — 96 равноотстоящих друг от друга гармоник, расположенных с шагом 781,25 Гц в полосе рабочих частот системы (20...95 кГц). Сигналы s(t) с хорошим значением пик-фактора и наборы фаз для них сохраняются в виде таблиц для дальнейшего использования. Как показывает практика, вероятность того, что по данному случайному множеству из 96 разностей фаз будет синтезирован сигнал с пик-фактором, который будет проигрывать пик-фактору чистого синуса всего на 4 дБ, достаточно высока. При развертывании системы отобранные вышеописанным способом различные сигнальные таблицы записываются в каждый из подчинённых узлов 2. Сигнал передатчика

подчинённого узла проходит по сегменту силовой сети 3, где складывается с шумами, ослабляется, подвергается различным видам линейных и нелинейных искажений, и поступает в главный узел сети 1, где проходит через устройство сопряжения 4, полосовой фильтр 5 и оцифровывается в АЦП 6. Цифровой сигнальный процессор 13 сохраняет все выборки АЦП, принадлежащие данному битовому интервалу и производит над ними операцию быстрого преобразования фурье (БПФ). Результатом этой операции является множество комплексных фурье-коэффициентов из которого для осуществления последующих действий используются только те 96 коэффициентов, частоты которых совпадают с частотами, на которых подчинённый узел передаёт свои данные, обозначим их далее как Ст, где тео...95. На следующей стадии вычисляются произведения

$$D_k = \tilde{C}_k \cdot (\tilde{C}_{k-1})^* \cdot \exp(-j \cdot \Delta \phi_k)$$
, где

 $\Delta \phi_k = \phi_k - \phi_{k-1}$, $\phi_m - c$ оответствующий набор фаз, взятый из фазовых таблиц 12, который был использован для формирования сигнальной таблицы данного подчинённого узла, k=1...95, m=0...95, а звездочка означает комплексное сопряжение. Далее для каждого подчинённого узла вычисляется оценка в виде суммы:

$$S = \sum sign \{ Re(D_k) \}.$$

 $C_{k} \cdot (C_{k-1})$ действий заключается в том, что произведения Смысл XNTE представляют собой комплексные векторы, углы поворота которых равны разностям фаз соседних гармоник в принятом сигнале, а величины D_k – те же векторы, только "довернутые" по направлению к действительной оси на угол, в точности противоположный тому, который был использован для модуляции этих гармоник в передатчике подчинённого узла. Таким образом, при наличии в данном подчинённого узла, "правильного" OT сигнала битовом интервале

вдоль направления действительной оси, и сумма S покажет большое положительное отклонение. Если же в данном битовом интервале полезного сигнала от подчинённого узла нет, то, как легко видеть, величина S будет представлять собой нормально распределённую случайную величину с нулевым средним и среднеквадратическим отклонением около 10 единиц. Обнаружение сигнала от данного подчинённого узла завершается сравнением суммы S с некоторым заранее выбранным достаточно большим порогом.

По сравнению с известными способами геометрической гармонической модуляции вышеописанный сигнал имеет в два раза меньшую эффективную длительность, что позволяет во столько же раз понизить энергопотребление подчинённого узла с одновременным сохранением всех характеристик помехоустойчивости системы.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного изобретения следующей совокупности условий:

- средство, воплощающее заявленное изобретение при его осуществлении, предназначено для использования в области электросетевой связи, а именно в системах сбора данных от удалённых датчиков;
- для заявленного изобретения в том виде, как оно охарактеризовано в независимых пунктах формулы изобретения, подтверждена возможность его осуществления с помощью вышеизложенных в заявке или известных до даты приоритета средств и методов;
- средство, воплощающее заявленное изобретение при его осуществлении, способно обеспечить достижение усматриваемого заявителем технического результата.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ геометрической гармонической модуляции сигнала, состоящего из множества равноотстоящих друг от друга по частоте гармоник в системе сбора данных по электросети переменного тока, отличающийся тем, что для кодирования каждого символа передаваемых данных используют уникальное случайное или псевдослучайное множество разностей начальных фаз ближайших пар вышеуказанных гармоник, при этом указанные множества разностей начальных фаз выбирают таким образом, чтобы минимизировать пик-фактор суммарного сигнала.

9,

Способ геометрической гармонической модуляции сигнала

Фиг.2

ΡΕΦΕΡΑΤ

быть Изобретение относится к технике электросетевой связи и может использовано в системах автоматического сбора данных с датчиков охранной и пожарной сигнализации, со счетчиков электроэнергии, расхода тепла, воды, газа и Техническим машин. контрольно-кассовых фискальной памяти данных энергопотребления уменьшение значительное является результатом передатчиками подчиненных узлов системы и/или увеличение дальности её действия. Для кодирования каждого символа передаваемых данных используется уникальное случайное или псевдослучайное множество разностей начальных пар ближайших пар гармоник, при этом указанные множества разностей начальных фаз выбираются таким образом, чтобы минимизировать пик-фактор суммарного сигнала. В случае срабатывания датчика пожарной сигнализации, достаточно передать на пульт тревожного предупреждения всего лишь один символ, однозначно идентифицирующий местоположение сработавшего датчика, как таким символом является условный номер или адрес, присвоенный датчику.

1 н.п., 2 фиг.

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/RU04/000390

International filing date: 07 October 2004 (07.10.2004)

Document type: Certified copy of priority document

Document details:

Country/Office: RU

Number:

2003131978

Filing date: 31 October 2003 (31.10.2003)

Date of receipt at the International Bureau: 27 January 2005 (27.01.2005)

Priority document submitted or transmitted to the International Bureau in Remark:

compliance with Rule 17.1(a) or (b)

