

Mathématiques

Classe: BAC

Chapitre: Nombres complexes

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

© 20 min

4 pts

- 1) On considère dans C l'équation (E): $z^2-2iz-ie^{2i\theta}=0$; $\theta\in[0,\pi]$.
 - a) Déterminer la valeur de θ pour que zéro soit une solution de (E).
 - b) Résoudre dans C l'équation (E).
- 2) Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

 On désigne par I, A, B et C les points d'affixes respectives $i, 2i, i + e^{i(\theta + \pi/4)}$ et $i e^{i(\theta + \pi/4)}$.
 - a) Montrer que [BC] est un diamètre du cercle C de centre I et de rayon 1.
 - b) Montrer que lorsque $\theta \neq \frac{\pi}{4}$, *OBAC* est un rectangle.
 - c) Déterminer θ pour que OBAC est un carré.

Exercice 2

(5) 25 min

5 pts

1)

- a) Résoudre dans \mathbb{C} l'équation $(E): z^2 z + 1 = 0$.
- b) Mettre les solutions de (E) sous forme exponentielle.
- c) En déduire les solutions de l'équation (E'): $z^4 z^2 + 1 = 0$.
- 2) Mettre le polynôme $P(z) = z^4 z^2 + 1$ sous forme d'un produit de deux polynôme du second degré à coefficient réels.
- 3) Le plan est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) . On désigne par A, B, C et D les images des solutions de l'équation (E') telles que $\operatorname{Re}(z_A) > 0$, $\operatorname{Im}(z_A) > 0$; $\operatorname{Re}(z_B) > 0$ et $\operatorname{Im}(z_D) > 0$.
 - a) Placer les points A, B, C et D.
 - b) Déterminer la nature du quadrilatère ABCD.

Exercice 3

5 pts

Le plan étant rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

- 1) Résoudre dans \mathbb{C} l'équation : (E): $z^2 (3+i)z + 2(1+i) = 0$.
- 2) Soit l'équation $(E_{\theta}): z^2 (3+i)e^{i\theta}z + 2(1+i)e^{2i\theta} = 0$ où $\theta \in \left[0, \frac{\pi}{2}\right]$.
 - a) Montrer que z est une solution de (E_{θ}) si et seulement si $(ze^{-i\theta})$ est une solution de (E).
 - b) Résoudre dans $\mathbb C$, l'équation $\left(E_{\scriptscriptstyle{ heta}}\right)$.
- 3) On considère les points A,B et C d'affixes respectives $a=2e^{i\theta}$; $b=\left(1+i\right)e^{i\theta}$ et $c=ie^{i\theta}$.
 - a) Donner la forme exponentielle de b et c.
 - b) Montrer que : $(OA) \perp (OC)$ et $(OB) \perp (AB)$.
 - c) Construire les points $A, B \ et \ C$ pour $\theta = \frac{\pi}{3}$.

4)

- a) Montrer que OABC est un trapèze pour tout $\theta \in \left[0, \frac{\pi}{2}\right]$.
- b) Vérifier que l'aire de ce trapèze est constante pour tout $\theta \in \left[0, \frac{\pi}{2}\right]$.

Exercice 4

(5) 25 min

5 pts

- 1°) Résoudre dans \mathbb{C} , l'équation $z^2-2(1+i)z-1+2i=0$
- **2°)** On considère dans \mathbb{C} , l'équation (E_{θ}) : $z^2-2(i+e^{i\theta})z-1+2ie^{i\theta}=0$ avec $\theta\in IR$. Vérifier que i est une solution de l'équation (E_{θ}) et en déduire l'autre solution.
- **3°)** Pour tout $z \in \mathbb{C}$, on pose $P(z) = z^3 (3+2i)z^2 + (1+4i)z + 1-2i$.
 - a) Vérifier que l'équation P(z)=0 admet une solution réelle que l'on précisera.
 - **b)** Déterminer deux nombre complexes b et c tels que $P(z) = (z-1)(z^2+bz+c)$.

- **c)** En déduire les solutions de l'équation : P(z)=0.
- **4°)** Dans le plan complexe rapporté à un repère orthonormé $(O, \overrightarrow{OA}, \overrightarrow{OB})$.

On donne le point M d'affixe $i+2e^{i\theta}$ avec $\theta \in]-\pi,\pi]$.

- a) Vérifier que pour $\theta = 0$, ABM est un triangle rectangle isocèle en A.
- **b)** Montrer que lorsque θ varie, le point M varie sur un cercle C qu'on précisera le centre et le rayon.
 - **c)** Montrer que $OM^2 = 5 + 4 \sin \theta$.
 - **d)** En déduire la valeur de θ , pour laquelle la distance OM est maximale.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000