§10.3. The Cross Product in 3-Space

In this section we will see another kind of product of two vectors in 3-space which is called a **cross product** or **vector product**.

Definition. For any vectors \overrightarrow{u} and \overrightarrow{v} in \mathbb{R}^3 , the cross product $\overrightarrow{u} \times \overrightarrow{u}$ is the unique vector satisfying the following three conditions:

i.
$$(\overrightarrow{u} \times \overrightarrow{v}) \bullet \overrightarrow{u} = 0$$
 and $(\overrightarrow{u} \times \overrightarrow{v}) \bullet \overrightarrow{v} = 0$,

ii. $|(\overrightarrow{u} \times \overrightarrow{v})| = |\overrightarrow{u}||\overrightarrow{v}|\sin\theta$, where θ is the angle between \overrightarrow{u} and \overrightarrow{v} .

iii. \overrightarrow{u} , \overrightarrow{v} and $\overrightarrow{u} \times \overrightarrow{v}$ form a right-handed triad.

From the definition one may say $\overrightarrow{u} \times \overrightarrow{v}$ is perpendicular to both \overrightarrow{u} and \overrightarrow{v} and has length equal to the area of the following shaded parallelogram.

The parallelogram determined by \mathbf{u} and \mathbf{v} .

If \overrightarrow{u} and \overrightarrow{v} have their tails at the point P, then $\overrightarrow{u} \times \overrightarrow{v}$ is normal (i.e., perpendicular) to the plane through P in which \overrightarrow{u} and \overrightarrow{v} lie. These properties make the cross product very useful for description of tangent planes and normal lines in \mathbb{R}^3 .

Theorem 1. If $\overrightarrow{u} = u_1 \overrightarrow{i} + u_2 \overrightarrow{j} + u_3 \overrightarrow{k}$ and $\overrightarrow{v} = v_1 \overrightarrow{i} + v_2 \overrightarrow{j} + v_3 \overrightarrow{k}$, then

$$\overrightarrow{u} \times \overrightarrow{v} = (u_2v_3 - u_3v_2)\overrightarrow{i} + (u_3v_1 - u_1v_3)\overrightarrow{j} + (u_1v_2 - u_2v_1)\overrightarrow{k}.$$

The formula for the cross product in terms of components may seem awkward and asymmetric however it can be written more easily in terms of a determinant.

Example 1. (Calculating cross products)

(a)
$$\overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{0}$$
, $\overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{0}$ and $\overrightarrow{k} \times \overrightarrow{k} = \overrightarrow{0}$.

(b)
$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$$
, $\overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}$ and $\overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}$.

(c)
$$\overrightarrow{j} \times \overrightarrow{i} = \overrightarrow{-k}$$
, $\overrightarrow{k} \times \overrightarrow{j} = \overrightarrow{-i}$ and $\overrightarrow{i} \times \overrightarrow{k} = \overrightarrow{-j}$.

Some properties of cross product

If \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} are any vectors in \mathbb{R}^3 , and t in a real number (a scalar), then

(i)
$$\overrightarrow{u} \times \overrightarrow{u} = \overrightarrow{0}$$
,

(ii)
$$\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{-v} \times \overrightarrow{u}$$
, (The cross product is **anticommutative**.)

(iii)
$$(\overrightarrow{u} + \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{w} + \overrightarrow{v} \times \overrightarrow{w},$$

(iv)
$$\overrightarrow{u} \times (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} \times \overrightarrow{w}$$
,

$$(\mathbf{v})\ (t\,\overrightarrow{u})\times\overrightarrow{v}=\overrightarrow{u}\times(t\,\overrightarrow{v})=t(\overrightarrow{u}\times\overrightarrow{v}),$$

(vi)
$$\overrightarrow{u} \bullet (\overrightarrow{u} \times \overrightarrow{v}) = \overrightarrow{v} \bullet (\overrightarrow{u} \times \overrightarrow{v}) = 0.$$

Note that the cross product is **not associative**. In general, $\overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w}) \neq (\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{w}$.

Determinants:

In this part we will introduce 2×2 and 3×3 determinants. A determinant is an expression that involves the elements of a square array (matrix) of numbers. The determinant of the 2×2 array of numbers is (about the first row),

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = (-1)^{1+1}ad + (-1)^{1+2}bc = ad - bc.$$

Similarly, the determinant of a 3×3 array of numbers is (about the first row) defined by,

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = (-1)^{1+1} a(ei - hf) + (-1)^{1+2} b(di - gf) + (-1)^{1+3} c(dh - eg)$$

$$= aei + bfg + cdh - gec - hfa - idb.$$

Properties of Determinants:

(i) If two rows of a determinant are interchanged, then the determinant changes sign:

$$\begin{vmatrix} d & e & f \\ a & b & c \\ g & h & i \end{vmatrix} = - \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}.$$

(ii) If two rows of the determinant are equal, the determinant has value 0:

$$\begin{vmatrix} a & b & c \\ a & b & c \\ g & h & i \end{vmatrix} = 0.$$

(iii) If the multiple of one row of the determinant is added to another row, the values of the determinant remains unchanged:

$$\begin{vmatrix} a & b & c \\ d+ta & e+tb & f+tc \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}.$$

The Cross Product as a Determinant:

The formula for the cross product of $\overrightarrow{u} = u_1 \overrightarrow{i} + u_2 \overrightarrow{j} + u_3 \overrightarrow{k}$ and $\overrightarrow{v} = v_1 \overrightarrow{i} + v_2 \overrightarrow{j} + v_3 \overrightarrow{k}$ presented in the above theorem can be expressed symbolically as a determinant (about the first row) with basis vectors as the elements of the first row:

$$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \overrightarrow{k}.$$

Example 2. Find the area of the triangle with vertices at three points P = (1, -1, 0), R = (-1, 1, 2) and Q = (2, 1, -1).

The vector $\overrightarrow{PQ} \times \overrightarrow{PR}$ is perpendicular to the plane of triangle PQR (Example 2). The area of triangle PQR is half of $|\overrightarrow{PQ} \times \overrightarrow{PR}|$

Two sides if the triangle as in the figure are given by the vectors:

$$\overrightarrow{PQ} = <1, 2, -1> \text{ and } \overrightarrow{PR} = <-2, 2, 2>.$$

$$\frac{1}{2}|\overrightarrow{PQ} \times \overrightarrow{PR}| = \frac{1}{2} \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = \frac{1}{2}| < 6, 0, 6 > | = \frac{1}{2}\sqrt{36 + 36} =$$

 $3\sqrt{2}$ square units.

Definition. The quantity $\overrightarrow{u} \bullet (\overrightarrow{v} \times \overrightarrow{w})$ is called **the scalar triple product** of the vectors \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} .

The volume of the parallelepiped spanned by the vectors \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} can be find as in the following figure.

The number $|(u\times v)\cdot w|$ is the volume of a parallelepiped.