Iterative Projection Methods

for noisy and corrupted systems of linear equations

Jamie Haddock

February 1, 2018

Graduate Group in Applied Mathematics UC Davis

Setup

We are interested in solving highly overdetermined systems of equations, $A\mathbf{x} = \mathbf{b}$, where $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$ and m >> n. Rows are denoted \mathbf{a}_i^T .

2

Projection Methods

If $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b}\}$ is nonempty, these methods construct an approximation to an element:

- 1. Randomized Kaczmarz Method
- 2. Motzkin's Method(s)
- 3. Sampling Kaczmarz-Motzkin Methods (SKM)

Randomized Kaczmarz Method

Given $\mathbf{x}_0 \in \mathbb{R}^n$:

- 1. Choose $i_k \in [m]$ with probability $\frac{\|\mathbf{a}_{i_k}\|^2}{\|A\|_F^2}$.
- 2. Define $\mathbf{x}_k := \mathbf{x}_{k-1} + \frac{b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_{k-1}}{||\mathbf{a}_{i_k}||^2} \mathbf{a}_{i_k}$.
- 3. Repeat.

Theorem (Strohmer - Vershynin 2009)

Let \mathbf{x} be the solution to the consistent system of linear equations $A\mathbf{x} = \mathbf{b}$. Then the Random Kaczmarz method converges to \mathbf{x} linearly in expectation:

$$|\mathbb{E}||\mathbf{x}_k - \mathbf{x}||_2^2 \le \left(1 - \frac{1}{||A||_F^2 ||A^{-1}||_2^2}\right)^k ||\mathbf{x}_0 - \mathbf{x}||_2^2.$$

Motzkin's Relaxation Method(s)

Given $\mathbf{x}_0 \in \mathbb{R}^n$:

- 1. If \mathbf{x}_k is feasible, stop.
- 2. Choose $i_k \in [m]$ as $i_k := \underset{i \in [m]}{\operatorname{argmax}} |\mathbf{a}_i^T \mathbf{x}_{k-1} b_i|$.
- 3. Define $\mathbf{x}_k := \mathbf{x}_{k-1} + \frac{b_{i_k} \mathbf{a}_{i_k}^\mathsf{T} \mathbf{x}_{k-1}}{||\mathbf{a}_{i_k}||^2} \mathbf{a}_{i_k}$.
- 4. Repeat.

Motzkin's Method

Motzkin's Method

Motzkin's Method

Theorem (Agmon 1954)

For a consistent, normalized system, $\|\mathbf{a}_i\|=1$ for all i=1,...,m, Motzkin's method converges linearly to the solution \mathbf{x} :

$$\|\mathbf{x}_k - \mathbf{x}\|^2 \le \left(1 - \frac{1}{m\|A^{-1}\|^2}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|^2.$$

9

Our Hybrid Method (SKM)

Given $\mathbf{x}_0 \in \mathbb{R}^n$:

- 1. Choose $\tau_k \subset [m]$ to be a sample of size β constraints chosen uniformly at random from among the rows of A.
- 2. From among these β rows, choose $i_k := \underset{i \in \tau_k}{\operatorname{argmax}} |\mathbf{a}_i^T \mathbf{x}_{k-1} b_i|$.
- 3. Define $\mathbf{x}_k := \mathbf{x}_{k-1} + \frac{b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_{k-1}}{||\mathbf{a}_{i_k}||^2} \mathbf{a}_{i_k}$.
- 4. Repeat.

SKM Method Convergence Rate

Theorem (De Loera - H. - Needell 2017)

For a consistent, normalized system the SKM method with samples of size β converges to the solution x at least linearly in expectation: If s_{k-1} is the number of constraints satisfied by x_{k-1} and

$$V_{k-1} = \max\{m - s_{k-1}, m - \beta + 1\}$$
 then

$$\begin{split} \mathbb{E}\|\mathbf{x}_{k} - \mathbf{x}\|^{2} &\leq \left(1 - \frac{1}{V_{k-1}\|A^{-1}\|^{2}}\right) \|\mathbf{x}_{0} - \mathbf{x}\|^{2} \\ &\leq \left(1 - \frac{1}{m\|A^{-1}\|^{2}}\right)^{k} \|\mathbf{x}_{0} - \mathbf{x}\|^{2}. \end{split}$$

Convergence

$$\label{eq:resolvent} \ \ \ \ \mathsf{RK} \colon \mathbb{E}||\mathbf{x}_k - \mathbf{x}||_2^2 \leq \left(1 - \frac{1}{||A||_F^2 ||A^{-1}||_2^2}\right)^k ||\mathbf{x}_0 - \mathbf{x}||_2^2.$$

$$ho \ \mathsf{RK} \colon \mathbb{E}||\mathbf{x}_k - \mathbf{x}||_2^2 \le \left(1 - \frac{1}{||A||_F^2 ||A^{-1}||_2^2}\right)^k ||\mathbf{x}_0 - \mathbf{x}||_2^2.$$

$$ho \ \mathsf{MM} \colon \|\mathbf{x}_k - \mathbf{x}\|^2 \le \left(1 - \frac{1}{m\|A^{-1}\|^2}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|^2.$$

$$ho \ \mathsf{RK} \colon \mathbb{E}||\mathbf{x}_k - \mathbf{x}||_2^2 \le \left(1 - \frac{1}{||A||_F^2 ||A^{-1}||_2^2}\right)^k ||\mathbf{x}_0 - \mathbf{x}||_2^2.$$

$$ho \ \mathsf{MM} \colon \|\mathbf{x}_k - \mathbf{x}\|^2 \le \left(1 - \frac{1}{m\|A^{-1}\|^2}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|^2.$$

$$ho$$
 SKM: $\mathbb{E}\|\mathbf{x}_k - \mathbf{x}\|^2 \le \left(1 - \frac{1}{m\|A^{-1}\|^2}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|^2$.

$$\begin{aligned} & \triangleright \ \mathsf{RK} \colon \mathbb{E} ||\mathbf{x}_k - \mathbf{x}||_2^2 \leq \left(1 - \frac{1}{||A||_F^2 ||A^{-1}||_2^2}\right)^k ||\mathbf{x}_0 - \mathbf{x}||_2^2. \\ & \triangleright \ \mathsf{MM} \colon \|\mathbf{x}_k - \mathbf{x}\|^2 \leq \left(1 - \frac{1}{m||A^{-1}||^2}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|^2. \\ & \triangleright \ \mathsf{SKM} \colon \mathbb{E} \|\mathbf{x}_k - \mathbf{x}\|^2 \leq \left(1 - \frac{1}{m||A^{-1}||^2}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|^2. \end{aligned}$$

▶ Why are these all the same?

An Accelerated Convergence Rate

Theorem (H. - Needell 2018+)

Let \mathbf{x} denote the solution of the consistent, normalized system $A\mathbf{x} = \mathbf{b}$. Motzkin's method exhibits the (possibly highly accelerated) convergence rate:

$$\|\mathbf{x}_{T} - \mathbf{x}\|^{2} \leq \prod_{k=0}^{T-1} \left(1 - \frac{1}{4\gamma_{k} \|A^{-1}\|^{2}}\right) \cdot \|\mathbf{x}_{0} - \mathbf{x}\|^{2}$$

Here γ_k bounds the dynamic range of the kth residual, $\gamma_k := \frac{\|A\mathbf{x}_k - A\mathbf{x}\|^2}{\|A\mathbf{x}_k - A\mathbf{x}\|_{\infty}^2}$.

 \triangleright improvement over previous result when $4\gamma_k < m$

γ_k : Gaussian systems

γ_k : Gaussian systems

$$\gamma_k \lesssim \frac{m}{\log m}$$

Gaussian Convergence

Is this the right problem?

 $\, \rhd \, \, \mathsf{noisy} \,$

Is this the right problem?

⊳ noisy

 \triangleright corrupted

Noisy Convergence Results

Theorem (Needell 2010)

Let A have full column rank, denote the desired solution to the system $A\mathbf{x} = \mathbf{b}$ by \mathbf{x} , and define the error term $\mathbf{e} = A\mathbf{x} - \mathbf{b}$. Then RK iterates satisfy

$$\mathbb{E}\|\mathbf{x}_{k} - \mathbf{x}\|^{2} \leq \left(1 - \frac{1}{\|A\|_{F}^{2} \|A^{-1}\|^{2}}\right)^{k} \|\mathbf{x}_{0} - \mathbf{x}\|^{2} + \|A\|_{F}^{2} \|A^{-1}\|^{2} \|\mathbf{e}\|_{\infty}^{2}$$

Noisy Convergence Results

Theorem (Needell 2010)

Let A have full column rank, denote the desired solution to the system $A\mathbf{x} = \mathbf{b}$ by \mathbf{x} , and define the error term $\mathbf{e} = A\mathbf{x} - \mathbf{b}$. Then RK iterates satisfy

$$\mathbb{E}\|\mathbf{x}_{k} - \mathbf{x}\|^{2} \leq \left(1 - \frac{1}{\|A\|_{F}^{2} \|A^{-1}\|^{2}}\right)^{k} \|\mathbf{x}_{0} - \mathbf{x}\|^{2} + \|A\|_{F}^{2} \|A^{-1}\|^{2} \|\mathbf{e}\|_{\infty}^{2}$$

Theorem (H. - Needell 2018+)

Let \mathbf{x} denote the desired solution of the system $A\mathbf{x} = \mathbf{b}$ and define the error term $\mathbf{e} = \mathbf{b} - A\mathbf{x}$. If Motzkin's method is run with stopping criterion $\|A\mathbf{x}_k - \mathbf{b}\|_{\infty} \le 4\|\mathbf{e}\|_{\infty}$, then the iterates satisfy

$$\|\mathbf{x}_T - \mathbf{x}\|^2 \le \prod_{k=0}^{T-1} \left(1 - \frac{1}{4\gamma_k \|A^{-1}\|^2}\right) \cdot \|\mathbf{x}_0 - \mathbf{x}\|^2 + 2m\|A^{-1}\|^2 \|\mathbf{e}\|_{\infty}^2$$

Noisy Convergence

What about corruption?

Problem

(Corrupted) Problem: Ax = b + e (Corrupted) Error (e): sparse, arbitrarily large entries Solution (x*): $x^* \in \{x : Ax = b\}$

Problem

Problem: Ax = b + e

(Corrupted) Error (e): sparse, arbitrarily large entries

Solution (x*): $x^* \in \{x : Ax = b\}$

Applications: logic programming, error correction in telecommunications

Problem

Problem:
$$Ax = b + e$$

Solution (x*):
$$x^* \in \{x : Ax = b\}$$

Applications: logic programming, error correction in telecommunications

Problem:
$$Ax = b + e$$

Solution
$$(x_{LS})$$
: $x_{LS} \in \operatorname{argmin} ||Ax - b - e||^2$

Why not least-squares?

MAX-FS

 ${\tt MAX-FS: \ Given \ } \textit{A} \textbf{x} = \textbf{b}, \ {\tt determine \ the \ largest \ feasible \ subsystem}.$

MAX-FS

MAX-FS: Given $A\mathbf{x} = \mathbf{b}$, determine the largest feasible subsystem.

 $\,\vartriangleright\,$ MAX–FS is NP-hard even when restricted to homogenous systems with coefficients in $\{-1,0,1\}$ (Amaldi - Kann 1995)

MAX-FS

MAX-FS: Given $A\mathbf{x} = \mathbf{b}$, determine the largest feasible subsystem.

- $\,\vartriangleright\,$ MAX-FS is NP-hard even when restricted to homogenous systems with coefficients in $\{-1,0,1\}$ (Amaldi Kann 1995)
- \triangleright no PTAS unless P = NP

Goal: Use RK to detect the corrupted equations with high probability.

Goal: Use RK to detect the corrupted equations with high probability.

Lemma

Let $\epsilon^* = \min_{i \in supp(\mathbf{e})} |A\mathbf{x}^* - \mathbf{b}|_i = |\mathbf{e}_i|$ and suppose $|supp(\mathbf{e})| = s$. If $||\mathbf{a}_i|| = 1$ for $i \in [m]$ and $||\mathbf{x} - \mathbf{x}^*|| < \frac{1}{2}\epsilon^*$ we have that the $d \leq s$ indices of largest magnitude residual entries are contained in $supp(\mathbf{e})$. That is, we have $D \subset supp(\mathbf{e})$, where

$$D = \underset{D \subset [A], |D| = d}{\operatorname{argmax}} \sum_{i \in D} |A\mathbf{x} - \mathbf{b}|_{i}.$$

Goal: Use RK to detect the corrupted equations with high probability.

Goal: Use RK to detect the corrupted equations with high probability.

We call $\epsilon^*/2$ the detection horizon.

Method 1 Windowed Kaczmarz

```
1: procedure WK(A, \mathbf{b}, k, W, d)
2: S = \emptyset
3: for i = 1, 2, ... W do
4: \mathbf{x}_{k}^{i} = kth iterate produced by RK with \mathbf{x}_{0} = \mathbf{0}, A, \mathbf{b}.
5: D = d indices of the largest entries of the residual, |A\mathbf{x}_{k}^{i} - \mathbf{b}|.
6: S = S \cup D
7: return \mathbf{x}, where A_{SC}\mathbf{x} = \mathbf{b}_{SC}
```


Solve $A_{S^c}\mathbf{x} = \mathbf{b}_{S^c}$.

Theoretical Guarantees

Lemma

Let $\epsilon^* = \min_{i \in supp(\mathbf{e})} |A\mathbf{x}^* - \mathbf{b}|_i = |e_i|$ and suppose $|supp(\mathbf{e})| = s$. Assume that $||\mathbf{a}_i|| = 1$ for all $i \in [m]$ and let $0 < \delta < 1$. Define

$$k^* = \left\lceil \frac{\log\left(\frac{\delta(\epsilon^*)^2}{4||\mathbf{x}^*||^2}\right)}{\log\left(1 - \frac{\sigma_{\min}^2(A_{supp(\mathbf{e})}^c)}{m-s}\right)} \right\rceil.$$

Then in window i of the Windowed Kaczmarz method, the iterate produced by the RK iterations, $\mathbf{x}_{k^*}^i$ satisfies

$$\mathbb{P}\Big[||\mathbf{x}_{k^*}^i - \mathbf{x}^*|| \leq \frac{1}{2}\epsilon^*\Big] \geq p := (1 - \delta)\Big(\frac{m - s}{m}\Big)^{k^*}.$$

Theoretical Guarantees

Theorem (H. - Needell 2018+)

Assume that $\|\mathbf{a}_i\| = 1$ for all $i \in [m]$ and let $0 < \delta < 1$. Suppose $d \ge s = |supp(\mathbf{e})|$, $W \le \lfloor \frac{m-n}{d} \rfloor$ and k^* is as given in the previous lemma. Then the Windowed Kaczmarz method on A, \mathbf{b} will detect the corrupted equations ($supp(\mathbf{e}) \subset S$) and the remaining equations given by $A_{[m]-S}$, $\mathbf{b}_{[m]-S}$ will have solution \mathbf{x}^* with probability at least

$$ho_W := 1 - \left[1 - (1-\delta)\left(rac{m-s}{m}
ight)^{k^*}
ight]^W.$$

Theoretical Guarantee Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)

Experimental Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)

Experimental Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)

Experimental Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)

Experimental Values (Gaussian $A \in \mathbb{R}^{\overline{50000} \times 100}$)

Conclusions and Future Work

- Motzkin's method is accelerated even in the presence of noise
- RK methods may be used to detect corruption
- identify useful bounds on γ_k for other useful systems
- reduce dependence on artificial parameters in corruption detection bounds