Segmentation

October 5, 2015

Guillaume Lemaitre

Université de Bourgogne

1 Introduction

2 Region Based

3 Clustering Based

Image Segmentation

- ► Image segmentation is the partition of the image into non-overlapping regions, where their union is an entire image
- Purpose of segmentation: decompose an image into meaningful parts with respect to unique application
- Segmentation is based on the information taken from the image such as greylevel, texture, color and depth or motion

Image Segmentation

Applications ...

- Identifying objects in a scene for object-based measurements/recognition
- Identifying objects in a moving scene for object based video compression
- Identifying objects at different depths
- Its a necessary and fundamental step in a general frameworks of detection, tracking or classification

Introduction Region Based Clustering Based

Image Segmentation

Techniques

- Region-based
 - Region growing
 - Split and merge
- Edge-based
 - Contours/ boundary surface
 - Deformable wrapping
 - Deformable registration to atlases
- Clustering-based
 - Threshold
 - K-means
 - ► Hierarchical clustering, Graph cuts
- ► Texture-based

Image Segmentation

Region Growing

- ► Starting with some pixels (seeds) representing distinct image regions
- Grow the region of each seed, using connected pixels until they cover the entire image
- ► Two rules: growth mechanism and region homogeneity after each growth step
- ▶ Growth mechanism: for each stage k and each region $R_i(k)$, i = 1, ..., N, check if there are unclassified pixels in 8 neighborhood of each pixel in the region
- ▶ Region homogeneity: Pixel $P_{x,y}$ can join $R_i(k)$ if $|f(x,y) \mu_{R_i(k)}| \leq \Delta$

Region Growing

- ► Merging two region:
- ▶ Mean (μ) and standard deviation (σ) of each region (R_i) can be used to decide if two region can merge:

$$\mu_{R_i} = \frac{1}{n} \sum_{(r,c) \in R_i} I(r,c)$$

$$\sigma_{R_i} = \sqrt{\frac{1}{n} \sum_{(r,c) \in R_i} [I(r,c) - M_{R_i}]^2}$$

if $|M_{R_1-M_{R_2}}| < k\sigma_{R_i}$ for i=1,2 two region are merged

Image Segmentation Region Based Methods

Region Growing - Kind of unseeded RG

```
Using one seed only, the first pixel:
  for All the pixels n the image do
       if P_{x,y} \notin R_{1,2,\ldots,n} then
           P_{x,y} \in R_{n+1}
           for S: The 4 or 8 neighbors of x, y do
                if P_{x',v'} \notin R_{1,2,...,n} then
                     if |f(x', y') - \mu_{R_i}| \leq \Delta then
                         P_{\mathbf{x}',\mathbf{v}'} \in R_{n+1}
                         Search the neighbors of x', v'
                     else
                          P_{\mathbf{x}',\mathbf{v}'} \in R_{n+2}
                         Search the 4 or 8 neighbors of x', y'
                     end if
                end if
           end for
       end if
  end for
```

ntroduction Region Based Clustering Based

Region Based Segmentation

Fabrice example

troduction Region Based Clustering Based

Region Based Segmentation

Split Method

- ► Opposite of previous method
- Top to down approach
- ▶ Starts with the assumption that the whole image is a homogeneous region
- lacktriangle If this is not true, subdivides the image to smaller homogeneous regions
- ▶ If original Image $I_{N\times N}=I_{2^n\times 2^n}\to$ square produced regions $R^i_{M\times M}=R^i_{2^m\times 2^m}$
- ▶ Recursive procedure ⇒ Image representation can be modeled by a tree whose nodes have four sons each
- Quadtree
- Created regions might be adjacent and homogeneous but are not merged

Split Method

Criterion of Homogeneity: Variance

	ongman mage								split I							
	original image								3	3	5	5	0	7	7	
2	3	3	5	5	0	7	7	2	4	3	0	5	7	7	7	
2	4	3	0	5	7	7	7	1	1	2	2	3	7	7	7	
1	1	2	2	3	7	7	7	0	0	1	1	3	3	7	7	
0	0	1	1	3	3	7	7	4	4	2	2	7	7	7	7	
4	4	2	2	7	7	7	7	0	2	2	2	7	7	7	7	
0	2	2	2	7	7	7	7	1	0	2	2	7	7	7	7	
1	0	2	2	7	7	7	7	0	1	0	0	7	7	7	7	١,
0	1	0	0	7	7	7	7	_								

0	1	0	0	7	7	7	7		
1	0	2	2	7	7	7	7		
0	2	2	2	7	7	7	7		
4	4	2	2	7	7	7	7		
0	0	1	1	3	3	7	7		
1	1	2	2	3	7	7	7		
2	4	3	0	5	7	7	7		
2	3	3	5	5	0	7	7		
split 2									

0	1	0	0	7	7	7	7						
1	0	2	2	7	7	7	7						
0	2	2	2	7	7	7	7						
4	4	2	2	7	7	7	7						
0	0	1	1	3	3	7	7						
1	1	2	2	3	7	7	7						
2	4	3	0	5	7	7	7						
2	3	3	5	5	0	7	7						
split 3													

Split and Merge Method

- ► Iterative technique that included both splitting and merging at each iteration
- ▶ If R_i is inhomogeneous, split R_i into four sub-regions
- ▶ If two adjacent region R_i and R_j are homogeneous, merge them
- ▶ The algorithm stops when no more merge or split is possible
- Produce more compact regions than just splitting

Split and Merge Method - Data Structure

- Quadtree for splitting Top-down approach, regions are split but not merged
- ► RAG(region adjacency graph)
 Split and merge iteratively at each iteration of quadtree partitioning RAG has quadtree embedded that represent 4 relations
 4 adjacent relations(one per square side)

RAG with adjacency relations (in red) for big black region.

Region Growing

Split and Merge

Splitting

Split and Merge

Clustering

Image Clustering vs. Image Segmentation

- ▶ In clustering the grouping is done in measurement space
- ▶ In segmentation the grouping is done in spatial domain

Approaches

- Threshold
- ► K-means
- ► Hierarchical clustering, Graph cut, ...

Clustering

- ► Grouping of pixels considering 1 or more features
- ► Grouping similar features, feature selection
- Spatial distribution of the pixels is not considered
- Feature space is considered
- Clusters has compact shape, spherical, ellipsoidal, elongated, ...
- ► A pixel belongs to a cluster based on a proximity measure (distance)
- Result may be subjective
- Question, how to choose the number of clusters in the image ?
- ▶ How many times *N* points can be assigned to *N* clusters ?

$$S(N, m) = \frac{1}{m!} \sum_{i=0}^{m} (-1)^{m-1} {m \choose i} i^{N}$$

$$S(15,3) = 2,375,101, S(100,5) = 10^{68} !!$$

Clustering Techniques

Thresholding

lacktriangle Clustering in 1D ightarrow histogram analysis ightarrow thresholding

ightharpoonup Clustering in 2D, color image ightharpoonup color thresholding

Clustering Techniques

Thresholding

Fixed or Global threshold: Threshold value is fixed through the image

- ▶ Local or Adaptive threshold: Two or more threshold is used through the image
 - ▶ Local or Adaptive threshold: Local threshold for small patches, Patch size (7 × 7), $P_{T_1} = \mu$, $P_{T_2} = \mu 7$, $P_{T_3} = \mu 10$

Clustering Techniques

Optimal Thresholding

- ► Isodata, Peak and valley, Otsu, p-tile,...
- ▶ ISODATA (Iterative Self-Organising Data Analysis Technique Algorithm):
 - $ightharpoonup T_i = T_0$, median, maximum gray level, ...
 - Segmenting the histogram into two parts
 - lacktriangle Computing the mean value associated to each part (μ_1, μ_2)
 - New threshold, $T_{i+1} = (\mu_1 + \mu_2)/2$
 - Repeat until convergence, $T_i = T_{i-1}$