UNCLASSIFIED

AD NUMBER

AD047493

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Specific Authority; 26 Oct 1954. Other requests shall be referred to Naval Research Lab., Washington, DC.

AUTHORITY

U.S. Naval Research Lab., Technical Library notice, dtd June 15, 2000.

UNCLASSIFIED

AD NUMBER
AD047493
CLASSIFICATION CHANGES
TO
unclassified
FROM
confidential
AUTHORITY
U.S. Naval Research Lab., ltr., No. 60, dtd June 30, 1960.

THIS PAGE IS UNCLASSIFIED

UNGLASSIFIED AD

Reproduced

Armed Services Technical Information Agency

ARLINGTON HALL STATION; ARLINGTON 12 VIRGINIA

DECLASSIFIED PER AUTHORITY
TAB

UNGLASSIFIED

BEST

COPY

CONTENTS

Abstract	111.
Problem Status	111
Authorization	iii
INTRODUCTION	. 1
APPARATUS AND INSTRUMENTATION	2
Hoppers	2
Absorbents	3
Instruments	. 3
DETERMINATION OF SHIP'S FLOODABLE VOLUME	5
CARBON DIOXIDE REMOVAL	8
Hopper Operation	. 6
Spread LiOH	11
Clearing the Boat on Surfacing	11
CO _z Evolution	17
OXYGEN SUPPLY	17
Oxygen Concentrations	17
Oxygen Consumption	18
hydrogen evolution	23
CARBON MONOXIDE EVOLUTION	23
STIBINE EVOLUTION	23
FREON GAS	23
DISCUSSION	24
Hopper Operation	24
Spread LiOH	26
Gas Purging on Surfacing	27
CO, Evolution	27
Ship's Volume Determinations	27
Oxygen Supply and Consumption	27
Hydrogen Eliminator Operation	20
Performance of Ship's Eastruments	29
CONCLUSIONS AND RECOMMENDATIONS	30
CO, Removal System	36
Oxygen Supply	50
CO Evolution	33
Hydrogen Evolution	33
Performance of Ship's Instruments	33

Confidential

54AA 75248

COMPIDENT

ACENOWLEDGMENTS	
Application of the Control of the Co	
BEFERENCES	•
APPENDIX & - Auxiliary Equipment Operated During the First saw Second Dives	34 25
APPENDIX B - Summary of Electrical and Battery Logs	36
APPENDIX C - Analytical Procedures for Determining Absorbent Performance	37
APPENDIX D - Oxygen Concentrations	38
APPENDIX 2 - Oxygen Bleed-L	411
APPENDIX F - CO, Concentrations	45
RPPENDIX G - Hydrogen Readings	42

CONFIDENTIAL

というないないのでは、

Fig. 1 - Chart of course

ATMOSPHERIC CONTROL ON TWO EXTENDED DIVES ON THE USE TROUT (\$6564)

LATRODUCTION

The Fast-Attack-Type submarines (863 Class) were designed to be able to remain submarged a total of about 10 days based on the amount of breathing oxygen carried in outboard high per more hanks. Since it is necessary to control the CO₂ consentration during this period a cruise was made at the request of the Bureau of Ships (Code 848) to evaluate jointly the unbasergence capabilities of this class submarine and to evaluate a hopper system of CO₂ removal using policited lithium hydroxide (LiOH) and 6-16 merh high-materiars sods-lime. The USS TROUT (19864) under the camerand of LiOH T. Turner, USI, was assigned to this cruise and the Haval Bossarch Laboratory handled the technical details for Builbigs.

Several preliminary meetings in Washington and New London (1) resulted in an operational schedule calling for a cruise from New London in a southeasterly direction into relatively warm water. Two extended dives (Fig. 1) were to be made to the Smit of battery capacity with the operational objective of the first being to cover the maximum distance and of the second to remain submerged but off the bettern for an long as possible. Appendix A lists the auxiliary load and Appendix B indicates the battery performance during both dives.

A proposed agends for hopper operation and instrumentation (2) was submitted to the Bureau of Skipe and was inscrporated in an official eruise agends. This agends was modified during the cruise as was felt desirable.

The cruise ended with the first dive (2) lasting 30-1/2 hours and covering 177 miles and the second dive lasting 52-1/2 hours. These are believed to be records for distance traveled while submerged and total time continuously submerged. See vater temperatures varied between 52° and 75°F during the first dive and between 50° and 50°F during the second dive.

The personnel on board for the cruise totaled 76 including seven not regularly assigned to the abig. Alone neven were:

Hame	CONGAMBATION	Dutes
Cdr Joseph Vogel, MC, USM	Staff, Cdr Sub. Squad. 10	Observer to sagure ageity of personnal
A. S. Gates, Jr.	Code 540, Bulbles	Massana
J. M. Davidson	Code 540, Buildips }	Observers

CONFIDENTIAL

1

ABSTRACT

During two dives which lasted 39-1/2 and 82-1/2 hours in deep, moderately warm waters, pollatized lithium hydroxide (LiOH) and 6-16 meeh soda-lime were used in a hopper system to maintain the atmospheric CO₂ consentration at 1.5% on the USS TRCUT (2006), a Fast-Attack-Type submarine. Results showed the system to be workalle, and the amount of LiOH which can be carried readily (2006 ib) would be adequate for a total submerged time of at least 10-days, the period becoming longer as the dives become shorter. Settery exhaustion terminated both dives of this cruice after two performance records had apparently been set. Soda-lime was found to offer advantages over LiOH in operating convenience and in being much less expensive, but it required 25% more volume and 140% more weight for stowage.

In addition to studying hopper operating variables the concentrations of Q_p , CO_p , CO_p , E_p , and hydrocarbons were measured the oughout both dives. The CO concentration reached 150 parts per million on the first dive; however, on the second dive, probably income of limited exaking and use of the hydrogen eliminator, it reached only 75 parts per million. The Q_p was consumed and CO_p was evolved at about 0.82 and 0.79 on it (ETP) for mea-hour respectively. Looks from the air backs were found to be a major source of Q_p only when the best pressure was allowed to rise steadily.

Stibine (Shill₂) concentrations were essentially zero at the start and fixion of the second dive but averaged 0.63 part per million in the engine room over a 1-3/4 hour period of charging butteries at the finishing rate.

Frees 13 (dichlorodiffnorcomethene) was found in the ship's atmosphere during both dives at a concentration of approximately 2000 parts per million each.

PROBLEM STATUS

This is a final report on this phase of the problem; work is continuing on the project.

AUTHORIZATION

MR7_ Problem No. C08-05 Project NR 608-050 Bureau SW 01401

Especial submitted August 23, 1954

组

CONFERNIAL

F. S. Thomas	Code 6160, NRL)	Instrument mainte-
A. J. Andreatch	Code 6169, NRL	nance and calibration
W. N. Crottord	Code 61 30, XI LL }	Air purification
W. R. McConnepshey*	Code 6120, NET.	

Routine activities which were compatible with normal watch standing or which would be required to operate the hoppers and supply oxygen during any extended dive were conducted by the ship's personnel during both dives. Civilian activities included the establishment of hopper operating schedules, instrument calibration and maintenance, absorbent mixing and sampling, and the carrying out of several nonroutine tests and determinations.

APPARATUS AND INSTRUMENTATION

Hoppers

The four hoppers (Fig. 2) are based on a unit developed at NRL (4) and were built under Bulhips contract according to Specification Mil-F-17180(Ships) dated 30 April 1862. These units hold 3/4 on ft of gresular absorbent meterial and have a self-contained fine and motor to draw air through the absorbent bed. Fresh absorbent is poured in through a filling chuis (A) at the top and after use is emptied through a door (B) in the bottom. A filter (C) is provided on the air outlet to catch absorbent fines during the filling operation but a by-pass (D) is provided for normal running. Thermometers are provided to measure inlet and outlet air temperatures. The fan is powered by a 1/3-hp 118-volt ac motor which draws about 175 waits in operation.

Fig. 2 - Hopper

Principal author of this report

Absorbents

LiOH – The lithium hydroxide used was made for the Bureau of Ships under contract with the Maywood Chemical Company, Maywood, New Jersey. This material is a pelletized form (4-14 mesh, H. S.) of the powdered material currently carried for emergency use on submarines. It conforms to military specification Mil-L-20213A(Ships) dated 17 April 1952 as amended by speedletter NObs-61655(549A), ser 549-8345 dated 20 October 1953, and speedletter NObs-61655(549A), ser 549-9557 dated 17 December 1953. The material was packed in cans containing an average of 7.5 lb of LiOH. A total of 2000 lb of LiOH was carried on the cruise and 454 lb were used.

The reaction between LiOH and CO2 is as follows:

From this it can be calculated that 0.41 pound of water is produced for every pound of CO₂ absorbed with less than 0.5% water being present in the original material.

Sod2-lime — The sod2-lime used was Wilson Sod2-Lime, 8-15 mesh (U.S.), high moisture, indicator-type sold in 5-gallon buckets as "Sod2sorb" by the Devy and Almy/ Chemical Company, Cambridge, Massachusetts. This material consists of 1 part sodium hydroxide to 21 parts calcium hydroxide and has a water content of 14 to 19%. The reactions with CO₂ are as follows:

2 NaOH +
$$CO_3$$
—Na₂ CO_3 + H_3O_3
Ca(OH)₂ + CO_3 —CaCO₃ + H_3O_3

As with LiOH, 0.41 pound of water is produced per pound of CO, absorbed. Work at NRL (5,6) has shown the 8-16 mesh material to have a much higher absorption rate in hoppers than 4-8 mesh. The total 1252 ib of soda-lime carried on the cruise was completely expended.

Instruments

Physiological and absorptive effects are related to partial pressures of gases and not to their percentage concentrations at boat pressures other than one atmosphere (29.9 in. Hg). Thus gas concentrations in this report are given in terms of partial pressure or percent effective except for hydrogen where true percentage concentration is the factor involved in flammable limits. The term "percent effective" is sometimes used in deep sea diving work and is the true percent concentration at any pressure corrected to one atmosphere. On this cruise the Dwyer CO₂ Analyzers were the only gas analysis instruments other than the hydrogen analyzers that read true percentages so only their readings needed pressure corrections. For example, if a Dwyer reading of 1.5% was obtained at a boat pressure of 36.0 in. Hg the effective concentration is

$$\frac{36.0}{20.0} \times 1.5 = 1.8\%$$
 effective.

The gas analyses and pressure measurements made in each compartment during both dives are indicated in Fig. 3.

CONFIDENTIAL

3

THE PROPERTY OF SECURITY OF THE PARTY OF THE

Fig. 3 . Locations of instruments used to make gas measurements during both dives

CO, Analyzers — The instruments used in the forward torpedo room and the control room were the infrared absorption type developed for use on the troop carrying submarines. PERCH and SEA LION (ASSP\$13 and ASSP\$15). They are continuously indicating instruments made by the Liston-Becker Instrument Company, Stamford, Connecticut as model No. 23.

The instruments used in the forward and after battery rooms and the maneuvering room are regular submarine issue reading from 0 to 5% true. They are manufactured by the F. W. Dwyer Manufacturing Company, Chicago, Illinois stock no. 57-1-432; order no. N140s-70841A. The operating principle is one of volumetric change similar to the Orsat analyzer and analyses are batchwise.

 Ω_2 Analyzer — The instruments used in the forward torpedo room and the forward battery room are standard Navy issue, the latter instrument belonging to the ship. They are made by Arnold O. Beckman, Pasadena, California and may be identified as model N-1 (contract NObs 23193). The principle of operation is one of paramagnetism and the instruments are continuously indicating.

NRL Composite Gas Analyzer — Concentrations of CO₁, oxygen, hydrogen, carbon monoxide, and mathane as well as boat pressure were measured in the stern room by Model 1 Serial 1 of the NRL Composite Gas Analyzer, which was developed by NRL for use on the USS NAUTILUS (SSN571). The principles of operation are infrared absorption for CO, CO₂, and methane measurements, thermal conductivity for hydrogen, and paramagnetism for oxygen. Pressure measurements are based on the aneroid principle but for this cruise had a maximum reading of 32 in. Hg. All gas and pressure measurements are automatically recorded on a Brown recording potentiometer in addition to being continuously indicated on panel meters.

Hydrogen Eliminator — This unit is standard Navy issue and was ac powered. The operating principle is one of catalytically oxidizing hydrogen to water.

DETERMINATION OF SHIP'S FLOODABLE VOLUME

Calculations on CO₂ evolution and O₂ consumption require that the volume of air in the boat (floodable volume) be known. Although a figure of 35,850 cu ft is available from the ship's moment diagram its accuracy is open to question for the conditions of these tests. With the ship alongside the tender after returning to New London but still in approximately the same condition as in both dives an attempt was made to measure this volume. A water manometer was connected between the inside of the boat and the open atmosphere by means of a drain connection from the torpedo room escape trunk. The outer hatch was left open; on closing the inner hatch and sealing the boat, the steady pressure rise due to leaks was measured by means of the manometer exactly 5 minutes. Then the boat pressure was equalized with atmospheric pressure by opening the inner hatch. After again sealing the boat, two weighed 200 cu ft cylinders of nitrogen were released into the inside atmosphere and manometer readings were taken after 3, 4, and 5 minutes. The following data was obtained:

Initial combined weight of No cylinders = 288-1/2 lb

Final combined weight of N. cylinders = 281-3/4 to

Pressure rise due to leaks in 5 minutes = 8 mm H_eO

Pressure rise after 3 minutes of N₂ release period = 104 mm H₂O

Pressure rise after 4 minutes-of N, release period = 106 mm H,O

Pressure rise after 5 minutes of N, release period = 168 mm H.O.

With the above data and by assuming the Gas Law and Dalton's Law to hold and the system to be isothermal, the volume of the boat can be calculated as follows:

V₃ = stmospheric pressure × vol. of N₂ released at 760 mm Hg and 70°F boat pressure produced by released N₂

 $= \frac{760 \times 369}{7.28} = 38,500 \text{ cu ft of floodable volume.}$

The pressure correction due to leaks was obtained by averaging the result of the first 5-minute period with that resulting from an extrapolation of the straight portion of the pressure curve for the second 5-minute period.

Another basis for calculating this volume is the change in average CO₂ concentration produced at the beginning of the second dive (from 1200 to 1415 on 12/3) by releasing CO₂ from a cylinder. In this case 42 lb of CO₂ were released in 2-1/4 hr, and combined with the evolved respiratory CO₂ produced a change in effective concentration of 1.2%. This permits the following calculation:

Total CO, released = CO, from cylinder + CO, from respiration

$$=\frac{42+2.25\times0.085\times75}{0.1147}=\frac{42+14}{0.1147}=490 \text{ cu ft}$$

boat volume = $\frac{490}{0.012}$ = 41,000 cu ft.

CARBON DIOXIDE REMOVAL

Hoppers were used during both dives to control the CO₃ concentration and the rate of clearing the boat was determined after surfacing (Table 1).

Hopper Operation

General — Hoppers were operated to maintain the average effective CO₂ concentration at about 1.5% during both dives except near the end of the second dive when the object was to lower the concentration as rapidly as possible. Performance of the absorbents was determined by chemically analyzing representative samples (Appendix C) in addition to weighing the hopper contents before and after use on spring scales located by each hopper.

Operating Procedures — For the first dive (Fig. 4), after a normal CO₂ buildup period of about 10 hours, three hoppers were operated with soda-lime chargings staggered at intervals of about 6 hours between rechargings for each hopper (procedure A). The hoppers were spread over the ship with number 1 being in the forward torpedo room, number 2 in the control room, and number 3 in the stern room. For the second dive (Fig. 5) all

hoppers were operated in the torpedo room with numbers 1 and 2 being near the torpedo tubes, number 3 by the crew's washstand, and number 4 in the crew's shower with the door open and a bracket fan providing ventilation. The initial delay required for the CO₂ concentration to reach 1.5% was reduced to 3-1/4 hours by releasing CO₂ from a cylinder.

During the second dive (from 1415 on 12/3 to 1120 on 12/4) two hoppers were recharged alternately with LiOH at intervals of about 5 hours for each hopper (procedure B). From 1120 on 12/4 to 1200 on 12/5 four hoppers were recharged alternately in pairs with sodalime at intervals of about 8 hours for each pair (procedure C). All hopper fans were off for 45 minutes of this period (1900 to 1945 on 17/4) due to a power failure. From 1299 to 2400 on 12/5 two hoppers were recharged alternately with sodalime at intervals of 4 hours for each hopper (procedure D). From 2400 on 12/5 to 1000 on 12/6 three hoppers were recharged in sequence with LiOH at intervals of 9 hours for each hopper (procedure E). However, only one hopper, number 1, operated for the full period. From 0900 to 1530 on 12/6 three hoppers were recharged in sequence with LiOH at intervals of about 1-1/2 hours for each hopper (procedure F). There was some overlap initially with the previous procedure.

TABLE 1
Summary of CO, Removal Procedure

Dive	Time Submerged (hr)	Procedure
1	0 - 10	Allow CO ₂ concentration to build up at normal rate to 1.5%
•	10 - 39.5	Operate 3 hoppers with soda-lime at 1.5% CO ₂ . Spread 1 car (about 7.5 lb) of LiOH for 3 hours. Determine how rapidly boat can be cleared after surfacing.
2	0 - 3	Release bottled CO, to accelerate wild-up of CO,
	3 - 24	Cperate 2 hoppers with LiOH at 1.5% CO.
	24 - 49	Operate 4 hoppers with sods-lime at 1.5% CO ₃
	49 - 61	Operate 2 hoppers with soda-lime at 1.5% CO ₂ . Spread 1 ca (about 7.5 lb) of LiOH for 4 hours.
	61 - 70	Operate 3 hoppers with LiOH at 1.5% CO
	70 - 77	Operate 3 hoppers with LiOH to reduce CO concentration
	77 - 82.5	Stand by for surfacing. Determine how rapidly boat can be cleared after surfacing.

Fig. 5 - CO concentrations and hopper speration on second dive

CONFIDENTIAL

The absorbent performances as determined from subsequent chemical analyses are given in Table 2. The saturations are based on the theoretical capacity of 0.92 pound of CO₂ per pound of LiOH and the experimentally determined value of 0.38 pound of CO₂ per pound of soda-lime. The values in excess of 100% for soda-lime are not significant except as an indication of the over-all accuracy of the data. Figure 6, based on Table 2, shows the relation between exposure time and saturation for soda-lime and LiOH in hoppers operating in an atmosphere containing between 1.1 and 1.9% CO₂ effective. Table 3, also based on Table 2, gives the results in terms of pounds and cubic feet of absorbent required per man-hour protection at approximately 1.5% CO₂ effective. The man-hour equivalent of CO₂ involved in this method of calculation is discussed on page 17.

While operating under the final procedure where the object was to reduce the effective CO₂ concentration as rapidly as possible, 216 lb of LiOH were used to lower the average concentration in the boat from 1.9 to 0.7%. This required 7 hours and the average saturation of the spent LiOH was 38%.

Only one hopper filter, which had been used during 12 fillings with soda-lime and five with LiOH, was changed during both dives. Although the replacement had lower flow resistance, no significant operating advantage was noted. To investigate the feasibility of cleaning used filters, the used unit was returned to NRL and installed in a similar hopper filled with soda-lime. The flow and resistance data in Table 4 was obtained using various cleaning techniques; in all cases the by-pass was closed.

Spread LiOH

During each dive one can (approximately 7.5 lb) of LiOH was spread on a bunk in the torpedo room. The method of spreading was to put a sheet directly on the springs of a bunk and carefully pour the LiOH to a uniform depth of about 1/2 inch. The material was located on the lower, aft, portside bunk and no special ventilation was used. The exposure time was 3 hours (from 0955 to 1300 on 12/2) on the first dive and 4 hours (from 1335 to 1735 on 12/5) on the second dive but, as shown in Table 2, the saturations obtained were essentially the same, 22 and 23%. The small amount of CO₂ removed by the spread material had no effect on hopper operation.

Clearing the Boat on Surfacing

To determine the rate at which CO₂ could be cleared from the ship's atmosphere after switching to outboard ventilation, readings of effective CO₂ concentration were made in the torpedo room and control room at short intervals during and after surfacing from both dives using infrared analyzers. These data plus that automatically recorded in the stern room permit determination of the time required to clear the boat under two different ventilation conditions. Air intake (Fig. 7) after surfacing from the first dive was through the snorkel head valve and after the second dive it was through the bridge access trunk. Figures 8 and 9 show the CO₂ concentrations at various intervals after the first and second dives respectively. Figures 10 and 11 show the concentrations of O₂,H₂, and CO, as well as CO₂ during those periods.

TABLE 2

Absorbera Performance												
- Precedure	Abasrbout	Length of Exporture (hr)	Initial Weight (1b)	Final Working (Ib)	CO, Taleup (% CO, per % Absorbest)	Total CO, Absorbed (Ib)	Absorbent Saturation (%)	Solck No.	Dire No.	Happer He.	Time	Date
	Seda - Nime	4.8 5.2 8.8 6.9	37 37 38 34	39.5 38 46 37	0,306 0,266 0,371 0,337	11.3 10.6 13.2 11.8	81 75 84			1 2 3 1	0010 0066 1113 1300	经经
		6.0 6.0 6.0	36 37.5 34 36	34 35 39	0,266 0,719 0,300 0,311	16.7 12.6 13.3 11.3	76 84 97 83		1 1 1	3	1500 1700 1900 1148	经经
		6.0 6.0 6.0	37 38 38 38,6	42 44	6,316 6,356 6,311 6,311	11.8 12.8 11.9 12.6	61 64 83		1	1 1 3	2300 0100 0500 0600	12 12 12 12 12 12 12 12 12 12 12 12 12 1
,		6,0 4,5 2,9 0,5	X 17 22 22 22 22 22 22 22 22 22 22 22 22 22	36 36 38	9,292 9,296 9,336	11.3 12.9 0.0	97 76 63		1	1 2 2	0700 0800 1100 1306	\$555
1	Laces (opens)	3.0	i con (m/7, 5)		0.100	ar. 5	1 22	ł	1	1	0006	12/2
	LAGEE	4.8	19.5 20 10.57	20.1 31 20	0,762 0,660 0,764	14.7 12.6 14.5	83 75 64	i	1	1	3473 3443 1300	13/2 15/2 15/2 15/2 15/2 15/2 15/2 15/2 15
		4:	**	31 30 30	6, TSA 9, TSA 8, TSA	15.9 15.0 34.9	87 83	:	:	1	3 MS 3400 0230	12/3 13/3 12/4
	<u> </u>	3.9 3.3 1.3	30 30 10.	30 30 34	0,706 0,730 0,300	15.4 14.6 7.6	79	1:	1	1	0\$40 0745 1600	談
C	Made-Ness	7.7	34	**	9.372 9.373	15.4	*		1:	1	1120	以
		4.5	33 34	# #	6.348 6.342	13.2	#		1:	1	1435	器
]	}	1.20	35.5 37	39.5	0.370	13.5 13.7	**		:	1	1900	
		1.0	**	41	0,354 0,342	13.5 13.6	**		3	1:	2400 2400	12/4
		6.0 6.0 4.0	36.5 36.5 36 37.5	41.1 41.1	0,383 0,797 0,298 0,231	19.6 14.1 11.1 8.7	301 308 77 61		***	1	0400 0400 0600	17.0 17.0 17.0 17.0
•	Sada - Mari	4.0	36.5 36.5 35.5	41.72	9, 367 9, 266 9, 367 9, 310	8.6 11.7 10.0 12.1	70 70 61 84		1212	1	1306 1400 1804 1806	114
	LiON (oprosi	4.0	36 37 1 cm 27.3	::	0,302 0,230 6,311	10.5 7.8 N1.6	36 36 38		2 2 2	1	3904 3306 1335	12/5
E .	LACHE	9.0 7.0 9.0	19 21 30	21 23 31	0.900 9.917 8.818	36.8 17.8 16.6	97 86 78	1 1 2	3 2	117	3400 9390 9636	12/5 12/6 12/6
•	LION	2,5 2,0 1,6 1,5	30 30 30 31	****	0,545 0,462 0,146 0,366	18.3 8.0 7.4 6.4	**	1 2 2	2 2 2	1	1000 1000 1000 1130	11/4
		1.6 1.5 1.5 1.5	31 17 30	21.1 28.1 26.1	0,230 0,304 0,296 0,307	4.4 6.2 5.0 6.6	31 31 32	. 3	2 2 2	1 1 2	1304 1234 1304 1334	
		4.9 1.5 5.0	91.0 30 31	38 38 30	0,606 0,666 0,593	14.7 12.6 13.2	75 73 63	1 1] 3	1	1404 1434 1506	12/6 12/6 12/6

"Reclusive of 45 minutes when power was off.]New filter installed.

TABLE 3
Man-Hour Requirements for Sods-Lime and LIGH

Preceders	_	Almorhood	Mopper	No. of Completely	Total Weight Absorber*	Total Exposure		CO _B reorbed	Average CO ₂		icrioni Factors
			Ma.	Expensel Charges	Used (lb)	Time (br)	(16)	men-br Equivalent	(% effective)	Weight† (B/man-hr)	Volume†2 (cu ft/men-hr)
A	1	neds-Mate	1	4	130	×	44.4	580	LG ·	0.340	0.0063
i			2	3	130	18	23.0	443	1.6	0.274	6,0056
			3	•	351	23.8	47.7	570	L6	0.365	0,0053
	•				1				·	0.36 avg	0.0054 avg
В	3	LION	1	4	79	30.5	50.6	TOS	L4	0.113	0,0043
	1		3	•	•	M.S	4.0	538	L.	0, 154	0.0043
			<u> </u>							0.11 avg	0.0043 avg
C	2	sals-lime	1,2	3	217.5	24.1	93. 1	967	1.4	0, 225	0.0066
	1	l	2,4	•	153	17.5	52.7	630	1.4	0.365	0, sots
	1	1	1	ļ	1	į .	1			0.34 exg	0.004Y avg
D	1	seds-lime	1	3	107.5	12	31.4	270	. 1.5	0, 290	0.0061
ŀ	1	1	2	2	77.5	•	23.6	200	1.5	9, 217	0, 0064
		·		1	1]	0.38 avg	9.0068 avg
E	3	LION	1	1	18	•	16,1	196	1.7	0, 10	0.0038

[&]quot;Fased on 8.084 and 8.065 pound of CO, per man-hour for the first and second direc, respective

TABLE 4
Hopper Filter Flow Resistances

Filter	Airflow Through Filter (cfm)	Pressure Drop Across Filter (in. H ₂ O)	Method of Cleaning
None	48	0, 48	No filter None None Knock on cement floor Air blast (100 psig) Sook in dibute acetic acid, rinse in water, dry with air blast, and dry overnight.
New	42	0, 61	
Jack	20	1, 37	
Used	25	0, 97	
Used	30	0, 88	
Used	25	0, 95	

[&]quot;Saned on antire heat for first dive and on turpedo room only for second dive.

Chiculated on the basis of hopper charges receiving complete expenses.

[|]Calculated on the basis of hoppers holding 0.75 on A of absorbant.

Fig. 6 - Effect of exposure time on saturation of soda-lime and LiOH in hoppers

\$ - ruen sattemen x\$ - 10 sattemen

Fig. 7 - Diagram of skip's ventileties under various conditions

Fig. 8 - Rate of elimination of CO₂ after surfacing from first dive

Fig. 9 - Rate of elimination of CO₂ after surfacing from second dive

Fig. 10 - Effect of surfacing on stern room gas concentrations after first dive

Fig. 11 - Effect of surfacing on stern room gas concentrations after second diva

CO, Evolution

The total amount of CO, produced during each dive is equal to the amount taken up by the absorbents plus the amount added to the atmosphere by respiration. The amounts absorbed during each dive are listed in Table 2 and the initial and final concentrations in the atmosphere can be obtained from Figs. 4 and 5. In the following calculations a floodable volume of 38,500 cu ft and a temperature of 70°F are used.

For the first dive the calculation is as follows:

total CO₂ evolved = total CO₂ absorbed + Δ CO₂ conc. \times boat vol. \times CO₂ density at 70°F

 $= 175 + (0.017-0.000) \times 38,500 \times 0.1147$

= 175 + 75 = 250 lb/39.5 hr

total CO CO, evolution rate = no. of men x time 75 x 39.5

= 0.084 lb CO₂/man-hr (0.68 cu it (STP)/man-hr).

For the second dive the calculation is as follows:

total CO, evolved = total CO, absorbed + \triangle CO, conc. × boat vol. × CO, density at $70^{\circ}F$ - CO, from cylinder

+ CO, removed by pumpdowns

 $=488 + [(0.014-0.001) \times 38,500 \times 0.1147] - 42 + 21$

=488 + 57 - 42 + 21 = 524 lb/82.5 hr

CO, evolution rate = $\frac{524}{75 \times 82.5}$ = 0.085 lb CO₂/man-hr (0.69 cu ft (STP)/man-hr).

Another determination was made at the start of the first dive when the concentration was allowed to build up at a normal rate with no removal by absorption or pumpdowas. The calculation for this is as follows:

CO2 evolution rate ~ ACO2 cone, × boat vol. × density of CO2 no, of men x time

> $= (0.015-0.000) \times 38,500 \times 0.1147$ 75 × 10

= 0.088 lb CO_/man-hr (0.71 cu ft (STP)/man-hr).

OXYGEN SUPPLY

Oxygen Concentrations

A plot of oxygen partial pressure throughout the first and second dives is shown in Figs. 13 and 13. Although this represents readings from only one instrument the average for the three instruments is not appreciably different (Appendix D). The intention in both

dives was to maintain the oxygen partial pressure around the normal atmospheric level of 100 mm Hz but this was complicated by air leakage and pumpdowns.

Oxygen Consumption

All oxygen bled into the ship's atmosphere from the outboard high pressure banks was metered through a dry-test gas meter under conditions of known pressure and temperature. A laboratory-type flowrator was connected in series with the gas meter-to facilitate setting the bleed-in rate as determined by the average O₂ partial pressure. Hourly readings of the gas meter and the flowing gas temperature plus the barometric pressure permit calculation of the mass flow of oxygen throughout both dives. These data and calculations are summarized in Appendix E.

For the first dive oxygen consumption calculations are complicated by the normal leakage of high pressure air into the boat and the change in the average O₂ partial pressure existing at the end of the dive (Appendix D). By assuming the Gas Law and Dalton's Law to hold, the temperature and water vapor pressure to be constant (the former at 70°F), all leakage to be air containing 21% oxygen, and a negligible effect from the small pumpdowa (at 0500 on 12/2) it is possible to calculate the oxygen consumption rate for the first dive as follows:

total O_n consumed = O_n from leakage + O_n bled in + ΔO_n content of atmosphere

$$= 148 + 125 + \frac{(160-171)}{760} \times 38,500 \times 0.0829$$

$$O_s$$
 consumption rate = $\frac{227}{75 \times 39}$ = 0.078 lb O_s /man-hr (0.87 cu ft (STP)/man-hr).

For the second dive there are some additional complications in that O_2 is removed during pumpdowns and is consumed by the hydrogen eliminator. If the same assumptions are made as for the first dive except that pumpdown effects are not negligible but that leakage rate and gas concentrations (% true) are constant during pumpdowns, it is possible to calculate the O_3 consumption rate for the second dive as follows (refer to Fig. 13 and Appendixes D and E):

total O₂ consumed = O₂ from leakage + O₂ bled in - AO₂ content of atmosphere
- O₂ removed by pumpdowns - O₂ used by the burner

$$O_2$$
 consumption rate = $\frac{396}{75 \times 83}$ = 0.065 lb O_2 /man-hr (0.73 cu ft (STP)/man-hr) -

The after main oxygen bank having a nominal internal volume of 50 cm ft was used for both dives. A rough check on its volume was made using data from the first dive. Hourly bank pressure and sea water temperature readings (Appendix E) were taken and for the first dive the initial values were 2725 psig and 62°F. The final values were 2340 psig and 73°F at which time 1400 cm ft (STP) of oxygen (as measured with the gas meter) had been removed. From this information the bank volume can be calculated as 50.7 cm ft.

Fig. 13 - Stern room gas concentrations and pressure during second dive

HYDROGEN EVOLUTION

The hydrogen concentration (Figs. 12 and 13) throughout the first and second dives was measured by the NRL Composite Gas Analyzer. There was a normal buildup of hydrogen during the first dive with the concentration at this battery discharge rate leveling off at about 0.9%. During the second dive there was a normal buildup until the hydrogen eliminator started operating at about 1500 on 12/5. The concentration had leveled off to approximately 1.75% at this point which is higher than the previous dive because of the lower battery discharge rate. Operation of the eliminator reduced the concentration to 1.1% where the eliminator operated at reduced efficiency due to the low concentration of hydrogen resulting from decreased gassing of the batteries.

CARBON MONOXIDE EVOLUTION

During the first dive there was a steady increase in the effective CO concentration, reaching a maximum of about 150 parts per million (0.015%) at the end (Fig. 12). Unrestricted smoking was permitted during this dive and no known CO removal system was operating.

There was a slower buildup of the CO concentration during the second dive (Fig. 13) and after the hydrogen eliminator was started it remained essentially constant at 75 parts per million (0.0075%).

During this dive smoking was nominally restricted to one cigarette every 2 hours or its equivalent in cigars or pipes. There were frequent violations of this restriction but it is quite certain that the amount of smoking on the second dive was considerably less than on the first dive.

The first dive was characterized by a high incidence of headaches near the end of the dive which varied from mild to severe. A possibly related fact was that high incidence of seasickness was experienced on surfacing in a rough sea. Headaches were fewer and milder on the second dive and seasickness was not evident on surfacing in a somewhat less rough sea.

STIBINE EVOLUTION

The stibine (SbH₂) concentration was determined in the stern room near the start of the second dive (2030 on 12/3) and again near the end (1242 on 12/6) by drawing a known quantity of air through silver nitrate impregnated silica gel and subsequently analyzing it at NRL by the rhodsmine B method. Then again at New London additional determinations were made in the engine room while the batteries were being charged at the finishing rate. The results (Table 5) show that essentially no stibine was present during the second dive but significant amounts were present near the end of battery charging after the second dive.

FREON GAS

Samples of the ship's atmosphere were collected in evacuated bottles near the end of both dives (1015 on 12/2 and 0915 on 12/6) and were subsequently analyzed by an infrared spectrophotometer at NRL. The only different atmospheric ingredient revealed by these analyses was Freon 12 (dichlorodifluoromethane) gas in concentrations of approximately 2000 parts per million (0.2%).

TABLE 5
Stibine (SbH₃) Concentrations

Time	Place	ShH _s Concentration (parts per Lillion			
2030 on 12/3	Stern room-2nd dive	0.00			
1242 on 12/6	Stern room—2nd dive	0.00			
2312 on 12/7 to 0055 on 12/8	Engine room—batteries on finishing rate	0. 62 0. 57 0. 76 0. 55 0. 66 = 0. 63 avg			

TABLE 6
Summary of Absorbent Performances

Location of Test		NY	Absorbent Use Factors				
	Absorbent	No. of Hoppers	Weight lb/man-br	Volume cu ft/man-hr	Cost \$/min-hr		
NRL*	LIOH	2	0. 31	0,0042	0.53		
	Soda-lime	3	0.27	0.0056	0. 10		
	Soda -lime/LiOH	-	2.5	1.33	0. 19		
USS TROUT	LiOH	2	0.11	0.0043	-		
	LIOH	3	0.10	0.0038	-		
	Soda-lime	2	0.28	0.0058	-		
	Soda-lime	3	0,26	0.0054	-		
	Soda-lime	4	0.24	0.0047	_		

^{*}Reference 2

DISCUSSION

Hopper Operation

The hoppers performed very much as expected although it was not anticipated that the CO₂ concentration would remain as constant as it did. A comparison (Table 6) of the results obtained from the two dives with the anticipated performances based on Laboratory experiments (2) shows that the results obtained with LiOH used in two hoppers are in good

agreement. The performances of soda-lime used in three hoppers also compare favorably. The effect of the amount of material exposed at one time on the efficiency of absorbent utilization can be seen by comparing the three shipboard tests for soda-lime and the two shipboard tests for LiOH. From Table 6 it is evident that only 86% as much soda-lime is required if four hoppers are used, instead of two. For LiOH, 91% as much absorbent is required when three hoppers are used instead of two.

As to the relative merits of soda-lime and LiOH the ratios given in Table 6 remain essentially unchanged by data from the two dives which are slightly more favorable for soda-lime. Thus, if in the interest of economy soda-lime is used instead of LiOH the weight requirements will be 140% greater while the volume requirements will be only 25% greater. Two factors in favor of soda-lime are: (1) it does not have the highly irritating dust that LiOH does and (2) it may be discarded after use unlike LiOH which must be saved because of its high recovery value. A disadvantage (7) is that soda-lime is ineffective at low temperatures, i.e., of the order of 45 to 50°F; therefore, LiOH would still be necessary for salvage conditions.

Filter performance appeared to be satisfactory although some irritating dust was evident when the by-pass was opened on a hopper freshly filled with LiOH. A possible solution may be to leave the by-pass closed until the small particles of LiOH remaining in the bed have converted to the much less irritating Li₂CO₂. Most of the discomfort in using LiOH resulted from emptying hoppers containing a high percentage of unused material as during the period of the second dive when the object was to reduce the CO₂ concentration as rapidly as possible. The mixing and sampling produced considerable dust but this is normal operating procedure. Filter cleanings by tapping, air blasting, and soaking in dilute acid all proved ineffective. However, the filter used was clogged largely with soda-lime and previous experience has indicated that tapping and/or air blasting is effective on a filter which has been used with LiOH.

The location of the hoppers on the ship appeared to have no significant effect on their performance or the CO₂ concentrations in various compartments. Thus, the control room concentration was consistently higher than the forward torpedo and stern rooms whother a hopper was located in each of these compartments as in the first dive or whether all hoppers were in the forward torpedo room as in the second dive.

The data obtained from reading hopper thermometers, and hopper inlet and outlet CQ₂ concentrations during the two dives are not adequate to decide on the practicability of determining absorbent saturation by temperature difference. This apparently is due primarily to the inaccuracy of the thermometers. However, since the CQ₂ concentration remained fairly constant at 1.5%, laboratory data of the type shown in Fig. 14 will give the desired information if the airflow rate and inlet CQ₂ concentration are specified.

Although the original intention was to operate at 3% for part of the time, the effect of CO₂ concentration was not investigated during either dive because after finding that the concentration remained essentially constant it was felt that the time could be better speak investigating other operating variables which are not so readily studied in the laboratory. For a given absorbent and hopper model a family of curves relating saturation with exposure time in various CO₂ concentrations (Fig. 6) would permit selection of a hopper system for any given situation.

As with any other type of shipboard CO, removal system, a rapid decrease in concentration is not easy to achieve. From the standpoint of making escapes from a sunken submarine this ability is highly desirable since in any flooding-up type escape the CO, would rapidly become dangerous if it started at 1-1/2% at one atmosphere. Thus, if it is

Fig. 14 - NRL hopper test of 8-16 mesh soda-lime

necessary to equalize the submarine's aimosphere with sea pressure at 100 feet under these conditions, the resulting effective concentration will be 6.0% and at 200 feet it will be 10.5%. The fact that 7 hours was required at the end of the second dive to reduce the concentration from 1.9 to 0.7% is undesirable but this was for the entire submarine where the total quantity of CO₂ in the atmosphere at 1.9% is considerable (about 73 lb). It would thus be more desirable — and more likely — for activities to be confined to a single compartment. It should be noted that equalizing pressure in a compartment is not normal escape procedure on this ship but it is on others and the possibility of unavoidable pressure buildup should not be neglected. Two other factors should be noted in this use of LiOH: (1) frequent hopper chargings where only slightly used material 's removed is a rather dusty, unpleasant job, and (2) no spread material was used to augment the hoppers in this test.

Spread LiOH

The 22 and 23% saturation rate for CO₂, obtained when pelletized LiOH was spread on bunks for 3- and 4-hour exposures, is considerably below the 80 to 85% saturation reported(7) for fine granular LiOH which is still carried on submatines for emergency use. However,

the exposure was much shorter for the pelletized material and it is reasonable to assume equivalent saturation in a comparable time. A higher CO₂ concentration would also result in a greater saturation rate. As to the relative merits of pelletized and granular LiOH as absorbents when spread, Reference 8 showed them to be equivalent.

Gas Purging on Surfacing

The results as shown in Figs. 8, 9, 10, and 11 show only a short time on the surface was required to clear the air sufficiently for another dive. Thus, after surfacing for 30 minutes with air intake through the bridge access trunk the average CO₂ concentration was down to 0.2% (Fig. 8) which at the rate of buildup obtained during the first dive would have allowed another 8-hour submergence before reaching 1.5%. Figure 10 shows that the CO and R₂ concentrations were sufficiently lowered to prevent their being the limiting factors.

CO, Evolution

The results of three calculations of the CO₂ evolution rate agree quite well and their average of 0.086 lb/man-hr (0.70 cu ft (STP)/man-hr) may be compared with the following: 0.74 cu ft from the SAILFISH test (9), 0.72 cu ft from a comparable period in Operation Hideout (10), 0.70 to 0.82 from scrubber tests on the PERCH (11), 0.86 cu ft from an R boat dive in 1932 (7). The differences are easily accounted for by variations in crew activity; the level of activity during the experimental dives was no doubt lower than during a war patrol.

Ship's Volume Determinations

The figure of 38,500 cu ft which was obtained by releasing a known amount of bottled nitrogen into the scaled boat is believed to be the most accurate value and was used in all calculations. The floodable volume given on the ship's moment diagram is somewhat lower at 35,850 cu ft and, while given to four places, is not believed to be as accurate for the purposes of this report as the above value. The calculated volume of 41,000 cu ft obtained from the change in CO₂ concentration produced by releasing a known amount of CO₃ in a known time is believed to be the least accurate of the three figures because of its dependence on extreme accuracy in determining the average CO₂ concentration and the CO₃ evolution rate over a short period of time.

Oxygen Supply and Consumption

It is of interest to note that when the boat press. was allowed to build up with no large pumpdowns during the first dive over half (54%) of the oxygen supplied came from the air leaks into the boat. On the other hand, when there were regular pumpdowns to prevent a steady pressure buildup during the second dive essentially all of the oxygen for breathing, smoking, etc., came from the oxygen banks. Thus, from the standpoint of oxyger stowage, it is better not to pumpdown during an extended dive. However, it is disalventageous because the excess pressure complicates the surfacing operation and, if the O₂ partial pressure is maintained at a normal level of about 160 mm Hg, the pressure drop on surfacing may be dangerous. Therefore, if the pressure were allowed to reach 42 in. Hg (36.3 in. was reached in 39-1/2 hours during the first dive) the oxygen concentration would be down to 15% at 160 mm Hg partial pressure which is below the normal limit of safety when the total pressure drops to atmospheric.

Ng. 15 - Comparison of Dwyer and infrared CQ, determinations for first dive

Thus the estimate of 20 to 30 days oxygen supply for the TROUT given in Reference 3 must be accepted with reservation as it is true only when the boat pressure is allowed to steadily increase; the maximum allowable pressure would then limit the duration of the dive, e. g., about 76 hours, with a pressure increase rate equivalent to that of the first dive of this crease.

Hydrogen Eliminator Operation

The hydrogen eliminator performed two functions on the second dive. The first was to lower the H₂ concentration in the boat from 1.75% to 1.1% although use of the eliminator for this purpose was probably not essential since the concentration had practically leveled off by the starting time due to the decreased gassing rate of the batteries. The second function, which was unintentional, was to remove CO and cause its concentration to level off.

The climinator did not function when it was first started because the catalyst had not been heated to a sufficiently high temperature. After this had been remedied the unit operated effectively as a hydrogen climinator considering that its performance improves as the hydrogen concentration increases. Since it was determined that the climinator outlet concentration was about half that of the inlet this may provide a means of controlling CO on a submarine. However, it is not an ideal solution as the climinator consumes from 1-1/2 to 2 kw of electrical power.

Performance of Ship's Instruments

CO₂ concentrations determined with Dwyer analyzers are compared in Figs. 15 and 16 and Appendix F with those obtained with infrared analyzers. The Dwyer readings have been corrected for pressure to read percent effective as the infrared analyzers do and all values have been rounded off to the nearest 0.1%. As shown in Fig. 3 each type instrument was used in three different compartments with no compartment having both types. The average of the infrared values is believed to represent best the average CO₂ concentration in the boat but it can be seen that there is generally good agreement between the averages obtained throughout both dives with both instruments. Thus the Dwyer analyzer appears to be satisfactory for its intended use under the following conditions: (1) several instruments should be used and readings should be taken in several compartments, and (2) the instruments should be properly operated and maintained. The need for the first condition is shown by the series of low readings obtained with one instrument between the 28th and 32nd hours of the second dive:

The hydrogen concentration as automatically recorded by the NRL Composite Gas. Analyzer has been taken as the best value for the ship's atmosphere. However, for comparative purposes Appendix G tabulates the readings taken routinely on the ship's hydrogen indicators as well as the corresponding values from the Composite Analyzer. From these data it can be seen that the after battery indicator became highly inaccurate during both dives. The forward battery indicator agreed very well with the Composite Analyzer during the first dive but read considerably lower during most of the second dive. This appears to indicate that neither of the ship's hydrogen indicators is reliable.

Hourly oxygen partial pressure readings for both dives are tabulated in Appendix D. The ship's instrument appears to be at least the equal of the test instruments in accuracy of calibration because the initial readings (at 2300 on 11/30) of 165 and 166 mm Hg during the first dive apparently indicate a high calibration for the test instruments since this is above normal atmospheric pressure and the oxygen bleed—in had not yet started. It was

quite difficult to read the type instrument supplied to the skip due to poor illumination with or without a flashlight.

The ship's barometer, located on the port side in the contrôl room, was calibrated at NRL after the experimental dives and was found to be accurate to ±0.05 in. Hg over the range of 30.0 to 37.0 in. Hg. This should be highly satisfactory for its normal use and the practice of reading to the nearest 0.01 in. Hg appears to be unnecessary.

CONCLUSIONS AND RECOMMENDATIONS

CO, Removal System

The hopper system of using LiOM or soda-lime appears to be practical for medium submergence submarines such as the 563 class. The maximum amount of LiOH that the TROUT can conveniently carry is 2009 lb (3) which with a 2-hopper system would permit a 10-day continuous submergence for 75 to 80 men at a CO₂ concentration of 1.5%. Battery capacity would prevent a single dive of this length and the total submerged time for a series of shorter dives would be greater because of the 8 to 10 hours available before the CO₂ reaches 1.5% at the start of each dive. Another means of extending the total submerged time is to purge the boat whenever possible by surfacing or anorthing for short periods, i. e., 30 minutes or lean.

The use of sods-lime in place of LiOH is of interest because of its relatively low cost, ease of handling, and expendibility. However, if three hoppers are used, it would require 25% more volume and 140% more weight for showage than LiOH with the same method of packing and would not be satisfactory for emergency use.

It appears from these tests that hoppers are somewhat inconvenient to install and operate and it is recommended that work be done to improve the system. A manifold system baving a self-contained blower and motor with a filter and using inexpensive expendable cannisters (possibly fiber) with screens at both ends and filled with 8-16 mesh high-moisture soda-lime appears worthy of investigation. According to Reference 3 use of sosmetallic containers would greatly increase the available stowage space.

The use of LiOH in three hoppers does not appear satisfactory as a means of rapidly lowering the CO₂ concentration although it is considerably more efficient than spreading the same amount of material for the same time. The saturation of spread pelletized LiOH is relatively slow but is equivalent to the fine granular material now curried.

Oxygen Supply

The normal air leaks inside the ship are an important source of oxygen under certain conditions. For dives not exceeding 75 hours where a final boat pressure of 42 in. Hg is acceptable, less than half of the oxygen consumed will need to be bled from the oxygen banks. However, where the pressure is pumped down periodically, essentially all of the oxygen consumed will be drawn from the oxygen banks. In both cases it is assumed that the oxygen partial pressure will be maintained at about 160 mm Hg (normal atmospheric pressure).

.

2.2 - ANGLINE OF THE STEEL CONTROL OF THE LATTEN.

AFTER MATERIAL FOR THE STEEL CONTROL

AFTER MATERIAL FOR

Fig. 16 - Competious of Doyer and Infrared CO₂ determinations for second dive

BATTOKATAL

DENTIAL.

The second of the second of the second

•

Charges lidered elleren sitterian an Aire en

The average O_2 consumption rate for the two dives was about 0.82 cu ft (STP)/manhour which considering the average CO_2 evolution rate of about 0.70 cu ft (STP)/manhour gives a respiratory quotient of about 0.87. The design value of 1.0 cu ft (STP) of O_2 /manhour still appears to be correct as the level of activity was probably lower than normal on these dives.

CÓ Evolutios

The problem of CO is the ship's atmosphere during extended dives will probably become increasingly important since it appears to be related directly to smoking. The second dive suggests two methods of control -- restricted smoking and operation of the hydrogen eliminator. The former is undesirable psychologically and the latter from the standpoint of power consumption. No ideal solution can be suggested at the present time.

Hydrogen Evolution

The hydrogen eliminator performed satisfactorily after an initial mechanical fault was remedied. The decreasing gassing rate characteristic of batteries should be well understood to eliminate over emphasis of the need for hydrogen eliminators.

Performance of Ship's Instruments

The ship's CO_2 analysers, oxygen analyser, and barometer appear to be quite satisfactory for their intended use. The ship's hydrogen indicators did not perform satisfactority during these tests.

ACKNOW LZDGMENTS

The authors wish to acknowledge the wholehearted cooperation of the officers and men of the USS TROUT in making these tests. In addition, the advice and help of Mr. A. S. Gates, Jr.(BuShips Code 549) in all phases of the work contributed greatly to the success of the cruise and is much appreciated. Also, the authors are grateful for the assistance of Mr. J. M. Davidson (BuShips Code 588) in conducting tests related to submarine escape techniques.

REFERENCES

- Conference in Washington, D. C. between BuShips and NRL personnel on 5 Oct 1953. Conference at Naval Submarine Base, New London between SubLant, TROUT, and NRL personnel on 8 Oct 1953. Conference at Submarine Base, New London between SubLant, Sub Ron 10, TROUT, BuShips, and NRL personnel on 23 Nov 1953.
- McConnaughey, W. E., "NRL Suggested Agenda for Tests on Board 88566, 30 Nov to 13
 Dec 1953 in Connection with NRL Prob. No. 32C04-30 (Buships SRD 913/47)," NRL
 Letter Report R-3230-186A/53, Confidential 4 Nov 1953; "Long Submergence Dives
 by USS TROUT (SS566) During Period of 30 Nov to 13 Dec 1953; NRL suggested Agenda
 for, Brief of Modifications to" NRL Letter to Buships, 3230-202/53 dtd 20 Nov 1953
- CO, TROUT, "Epecial Air Revitalization Tests; Final Report of," Confidential Letter 88565/833 Ser 012 did 9 Feb 1954
- McConnaughey, W. E., and Woods, F. J., "A Pelletized Lithium Hydroxide Hopper to Remove Carbon Dioxide from Submarine Atmospheres," NRL Report 3868, 12 Oct 1951
- McConnaughey, W. E., "Carbon Dioxide Absorption: A study of Baralyme and Sodalime in the Lithium Hydroxide Hopper," NRL Memo Report 88, 18 Nov 1952
- McConnaughey, W. E., "Submarine CO, Removal Method; Research and Development On," NRL Letter Report to BuShips, C-3230-165/53, Confidential, 24 Sept 1953
- Borgstrom, Parry, "Submarine Air Purification," NRL Report on Problem P-14 did 31 Jan 1933
- "Rates of Carbon Dioxide Absorption by Fine Granular and Coarse Granular Lithium Hydroxide" NRL Letter Report to BuShips, 3230-106/50 dtd 31 July 1958
- White, J. C., Musick, J. K., Boyer, M. H., Hartman, R. S., Schecter, W. H., and Miller, R. R., "Oxygen Source Materials XVIII, Experimental Control of CO₂ and Oxygen Concentrations Aboard the USS SAILFISH," NRL Report P-2665, Oct 1945
- "Operation Hideout Report," Northwestern Technological Institute Report under contract No. N6ort 158-03, 36 Sapt 1953
- Dykhuizen, R., "Some Medical Aspects of Controlled Submarine Atmospheric Conditions Including a Method of Determining the Metabolic Requirements of Submarine Personnel," Medical Research Laboratory Naval Submarine Base (New London) Report No. 220, Confidential, 10 Feb 1953

CONFIDENTIAL

APPENDIX A Auxiliary Equipment Operated During the First and Second Divese

FORWARD TORPEDO ROOM

1 air blower 1 hot water heater lighting

FORWARD BATTERY ROOM

1 air blower
4 battery-well circulating fans
1 battery exhaust blower
1 agitation blower
1 TBL transmitter
1 LM oscillator heater
1 AN/EQR-3 Sonar Receiving Set
forward gyro compass
lighting

CONTROL ROOM

No. 1 and No. 2 75-kva generators
No. 2 400-cycle generator
No. 1 IMO pump
2 air blowers
No. 2 air conditioning unit
1 hot water pump
2 circulating water pumps
2 gyro compass synchro amplifiers
1 dead reckoning computer
miscellaneous IC circuits
lighting

AFTER BATTERY ROOM

1 exhaust blower
1 agitation blower
1 battery exhaust blower
1 hot water heater
1 hot water heater booster
1 galley range and oven
1 coffee ura
1 refrigeration unit
1 circulating water pump
1 circulating blower
lighting

ENGINE AND MANEUVERING ROOMS

1 circulating pump
1 circulating blower
after gyro compass
1 air booster blower
1 precipitron blower
1 precipitron booster blower
1 lub oil pump
miscellaneous IC circuits

STERN ROOM

1 circulating blower
1 hot water heater
1 IMO pump (steering)
lighting

*On the second dive, steering was by hand and the pit log and dead reckoning computer were secured.

APPENDIX B Summary of Electrical and Battery Logs

The electrical and bettery logs for the first and second divez may be summarized as follows:

- 1. Average armature current for each of the 4 motors was 153 amp during the first dive, and 25 amp for 25 hours and 225 amp for 1 hour during the second dive.
- Average range of field current for each of the 4 motors ranged from 14 to 9.5 amp during the first dive, and was 36 amp for 25 hours and 17 amp for 1 hour during the second dive.
- Average auxiliary load was 101 amp for the first dive and 78.5 amp for the second dive.
- 4. Batteries were operated in parallel and ranged from 530 to 475 volts for the first dive and 530 to 485 volts for the second dive. Table 131 gives itemized information for both the forward and after batteries.

TABLE B1 Summary of Battery Log

THE REPORT OF THE PROPERTY OF

			Pilo	Cell		
Dive	Battery	Avg Temp		Avg Specific Gravity at	Average Ventilation (cfm)	Total Charge Used (amp-hr)
		Start	End	Start		
1	Forward	101	91	1.261	700	6650
	After	98	86	1. 258	1450	6750
2	Forward	24	79	1, 263	12:00	6900
	After	98	77	1, 268	1200	7100

CONFIDENTIAL

APPENDIX C Analysical Procedures for Determining Absorbent Paformance •

ANALYSIS OF LIDE

- 1. Unused LiOH was assumed to contain no carbonate.
- Samples of spect LiOH were obtained during the cruise by mixing the entire hopper charge in a commercial-type tumbler mixer and drawing a 4-ounce sample.
- 3. The samples were returned to NRL where a portion of each was providered with a mortar and postle. To determine the total LiOH and Mi₂CO₃ content approximately 1-gram samples were weighed, dissolved in water, and titrated with 1 N EC1 to a methyl orange emploint. To determine the LiOH content alone, approximately 1-gram samples were again weighed and dissolved to water, 30 mi of 1 N BoCl₃ solution was added to each sample to precipitate the corbonate, and the mixture was ritrated with 1 N EC1 to a phenolphibit endpoint. From these two determinations the carbonate content can be obtained by difference.
- 4. Weights of hopper charges before and after use wore determined during the cruise. From the above analyses the CO₂ absorption in terms of used material is ubtalved. Multiplying this value by the ratio of final to initial weights of absorbent given the sesired result of pounds of CO₂ absorbed par pound of unused LiOH.

ANALYSIS OF SODA -LIME

- 1. Approximately one third of the unused soda-lime was sampled during hopper fillings by taking 4-cause samples. Used soda-lime was sampled during the craise by mixing the lattre hopper charge in a commercial-type tumbler mixer and taking 4-cause samples.
- 2. These samples were ground at NEL in the same manner as was the LiOH samples. Then approximately 4-grain samples were weighed and analysed gasometrically by adding the minimum amount of 3 N EC1 required to disselve the material.
- 3. Initial and final hopper charge weights were determined during the cruise as for LIOE. The results obtained for used soda-lime by the above analysis were put in terms of weight of CO₂ per pound of initial material which was then corrected for initial CO₂ content by subtracting the average of the initial soda-lime analysis results.

*Derformed by C. H. Elachly of the Analytical Section Chemistry Divisies

APPENDIX D Oxygen Concentrations

Oxygen Concentrations* on First Dive

Date	Time	Fwd. Torp. Ria.	Fwd. Bat. Rm.	Stern Rm.†	Avg	Date	Time	Fwd. Torp. Rm.	Fwd. Bai. Rm.	Stern Rm.†	Ave
11/30	2200 2300 2400	165 165	158 151	166 168	160‡ 163 164	12/1	1800 1900 2000	171 172 173	169 169 169	170 170 170	170 170 170
12/1	0100 0200 0300	167 163 169	161 181 164	168 170 172	165 166 171		2100 2200 2300 3400	173 173 173 174	169 169 169 169	171 172 170 172	171 171 171 171
	0406 0500 0600 0768	160 170 170 171	185 185 167 167	172 172 172 172	168 169 169 170	12/2	0100 ()200 0300	174 174 174	169 169 169	170 170 170	171 171 171
 	0800 0500 1000 1100	172 173 173 173	167 168 168 168	172 173 173 172	170 171 171 171		0400 0500 0300 0700	173 174 172 172	170 170 189 169	170 170 168 170	171 171 169 173
	1200 1300 1400 1500	173 173 173 173	168 168 168 168	174 174 172 172	171 171 171 171		0900 1000 1100	173 174 173 173	159 170 170 170	169 169 169 168	170 171 170 170
Ì	1000 1700	171	168 159	170 170	189 170		1200 1300	174 175	170 170	170 170	171

^{*}Partial pressure in mm Hg

ffront hourly panel meter resulings Estimated from shape of stars room record

Oxygen Concentrations on Second Dive

			Oxyge	en Con	centrat	ions on	secona	DIAG			
Date	Time	Fwd. Torp. Rm.	Fwd. Bat. Rm.	Stern Rm.†	Avg	Date	Time	Fwd. Torp. Rm.	Fwd. Bat. Rm.	Stern Rm.†	Avg
12/3	1100	158	153	154	155	12/5	0400	154	150	150	151
	1200	157	153	154	154	**/ *	0500	156	152	150	153
	1300	157	152	154	154	11 1	0600	158	155	154	155
i	1400	158	152	152	154	!	0700	160	156	156	157
	1500	156	152	152	154	11 1	0800	162	154	156	157
	1600	154	152	150	152]]	0900	164	157	160	160
	1700	154	152	150	152	-	1000	159	154	152	155
	1890	154	152	150	152	11 1	1100	145	141	142	143
	1900	154	152	250	150	11	1200	145	142	140	142
	2000	156	152	150	152	!	1300	146	142	140	142
,	2100	156	152	150	152	11	1400	147	142	142	144
	2200	156	150	150	151	11	1500	149	143	142	145
i i	2300	158	150	148	152	!	1600	146	143	142	144
	2400	154	152	150	152	il	1700	147	143	142	144
	2300	1	1	1 200	1.77	41	1800	145	145	142	145
12/4	0100	158	152	148	152	11	1900	149	145	144	146
14/4	0200	156	152	150	153	11	2000	152	145	144	147
	0300	156	152	150	153	11	2100	152	147	144	148
İ				150	153	11	2200	153	148	146	149
	0400. 0500	157	152 152	150	152	11	2300	153	148	146	149
			152	150	152	ll .	2400	154	149	148	150
	0600	155	152	150	153	11	4400	104	1.30	1	1.00
l	0700	156	152	1 150	153	12/6	0100	155	149	148	151
1	0800	158				1120	0200	155	151	150	152
ļ	0900	157	153	150	153 155	11	0300	157	151	150	153
	1000	158	154	152		11	0400	156	153	150	153
1	1100	144	144	142	143	11		157	153	152	154
1	1200	141	136	134	137	11	0500		155	152	155
1	1300	141	136	134	137	11			155	154	156
l	1400	140	137	134		11.	0700		156	155	155
•	1500	141	137	134		11	0800		156	158	159
1	1600	140	137	134		11 .	0900				
1	1700		137	136		11	1000	162	156	155	157
1	1800		138	136		11	1100		147	144	147
ł	1900		138	156		11	1200		147	146	149
1	2000		139	136		11	1300		147	146	149
i	2100		139	138		11	1400		149	148	150
1	2200		141			11	1500		150	148	151
ł	2300		141	142		11	1600	154	150	150	151
l l	2400	143	143	142	144	11	1700		152	150	153
-	1	- -		1		71	1800		153	150	153
12/5	0100		146	14-1		11	1900		153	152	154
1	0200		147	146			2000		154	153	155
ŧ	0300	154	149	148	150	11	2100	161	156	154	157

^{*}Partial pressure in mm Hg. †From hourly panel meter readings

CONFIDENTIAL

APPENDIX E Oxygen Bleed-In

Oxygen Bleed-In During First Dive

		·		Oxygen D						
Date	Time	Gasmeter Reading (liters)	Gas Temp (°F)	Barometer Reading (in. Hg)	Sea Water Temp (°F)	O, Bank Pressure (paig)	O Added in 1 hr (liters, ambient)	Trmp Corr*	Pres Corr	O, Added in 1 hr, Corrected (liters. STP)
11/30	2300 2400	0650 2 541	78 80	30.8 31.1	62	2725 2710	650 1891		1.032 1.040	613 1795
12/1	0100 0200 0300 0400 0500 0700 0800 0900 1100 1200 1400 1400 1500 1600 1700 1800 2000 2100	4309 6191 7786 9339 0611 2173 2407 4583 5515 6477 7495 8417 9225 0113 0980 1867 2634 4514 5364 6105	80 80 79 79 79 79 78 78 77 76 78 78 78 78	31.3 31.6 31.8 32.0 32.4 32.6 32.7 33.0 33.2 33.4 33.6 33.7 33.8 33.9 34.2 34.3	63 62 62 62 62 62 63 64 64 65 64 64 64 64	2700 2700 2880 2650 2840 2825 2800 2575 2540 2540 2540 2550 2540 2550 2490 2490 2450 2440	1768 1882 1595 1553 1472 1362 1234 1176 932 962 1018 922 808 888 867 887 767 890 1090 750 741	0. 907 (min)	1. 045 1. 055 1. 062 1. 070 1. 075 1. 082 1. 090 1. 1092 1. 112 1. 120 1. 130 1. 131 1. 134 1. 134 1. 147	1515 1452 1345 1226 1170 932 970 1032 938 623 905 883 914 791 920 1140 784
12/2	2200 2300 2400 0100 0200 6370 0500 0500 0706 0800 1000 1100 1300	6533 7804 8705 9576 0284 1087 1870 2649 3448 4256 5015 5708 6504 7293 8656 8608	77 79 78 78 79 80 79 80 80 82 81 81	34.6 34.7 34.8 34.9 35.1 35.3 35.5 35.6 35.2 35.4 35.6 35.8 35.9 36.0	74 75 75 74 74 74 74 74 74 74 74 74 74	2440 2440 2450 2450 2475 2470 2470 2490 2390 2390 2375 2368 2350 2340	828 871 901 871 708 803 783 779 819 788 759 759 779 789 789	0, 918 (mzz)	1. 159 1. 167 1. 174 1. 188 1. 191 1. 173 1. 188 1. 191 1. 191	972 916 959 930 758 857 950 845 880 854 854 822 756 270 868 834
		<u></u>	<u> </u>	- 11111				<u>L</u>	<u>l </u>	39, 644 tota

MANAGER Wood was 6 612

The second of th

Oxygen Bleed-In During Second Dive

	Oxygen Bleen-In During Second Dive									
Date	Time.	Gasmeter Reading (liters x10)	Gas Temp (°F)	Barometer Reading (in. Hg)	Sea Water Temp (°F)	O, Bank Pressure (psig)	O Added in 1 hr (literaxto, ambient)	Temp Corr*	Pres Corr	O _z Added in 1 hr, Corrected (litera, STP)
12/3	1100	14505	80	29. 1	63	2225				•
12/3	1200	18635	80	29.3	63	2225	4130	1	0.98	3720
	1300	25875	81	39.7	63	2200	7240	0. 910	0, 99	6590
•	1400	33406	i ii	29.9	ä	2200	7531	(alea)	1.00	6920
	1500	40832	80	30.1	63	2200	7526	,	1.01	6990
	1600	48475	1 79	30.2	63	2200	7543	1	1.01	7000
	1700	56428	79	30.3	64	2200	7953	1	1.01	7390
1	1800	62089	79	30.4	64	2175	6661	l	1.02	6250
į	1900	71625	80	30.6	65	2160	8536	1	1.02	9000
1	2000	79222	79	30.8	65	2150	7597	1	1.03	7190
ł	2100	86481	78	30.9	66	2150	7259	ł	1.03	6880
1	2200	95449	79	31.0	65	2125	8968	1	1.04	8580
1	2300	.04496	79	31, 1	66	2110	9049	i	1.04	8650
1	2400	13560	79	31.2	63	3110	9071	ł	1.04	8680
12/4	0100	22520	78	31.3	63	2100	8951	1	1.05	2660
1/-	0200	31369	79	31.4	63	2100	8849	1	1.05	8560
ł	0300	40180	78	31.6	64	2075	6811	1	1.06	8600
1	0400	48910	78	31.7	63	2075	8730	į.	1.06	8510
1	0500	58278	78	31.8	62	2050	9368	1	1.06	9140
l	0600	66506	76	31.9	61	2025	\$228	Į.	1.07	8200
1	0700	75674	76	32.0	60	2010	9068	Ι.	1.07	8940
,	0800	84465	76	32.1	60	2000	8791		1.07	9650
1	€900	93427	76	32.2	60	1975	9062	1	1.08	9000
l	1000	02472	77	32.5	60	1960	9045	(1.09	
1	1100	11935	76	30.6	60	1950	9463	1	1.09	
I	1200	22373	76	29.0	60	1950	10438	1	0.97	
I	1300	31729	74	29. 1	60	1940	935 6 9574	1	0.98	
I	1400	41303	74	29.2	58	1940 1925	10660	1	0.98	
(1500	51963	74	29.3	61	1910	14687	1	0.98	
i	1600	66650	73	29.4 29.5	61	1900	14817	1	0.99	
1	1700	81467 97361	12	29.5	61	1080	15894	1	0.99	
	1800	15700	72	29.8	62	1760	18339	İ	1.00	
1	2000	31919	1 71	29.9	62	1825	16219	1	1.00	14930
ł	2100	45458	74	30.0	62	1800	13539	ı	1.00	12480
1	2200	87524	74	30.2	62	1760	42068	1	1.0	
ł	2300	20340	74	30.4	62	1720	32816	1	1.0	
1	2400	51670	74	30.6	62	1700	31330	1 .	LO	29400
1			1	1	62	1675	33154	I	1.00	31400
12/5	0100	34824	72	30.7	62	1650	28419	1	i.œ	
1	02/00	13243	72	30.9	62	1600	29769	l	1.0	
1	Oğes	43012	71	31.0	61	1550	29048	1	1.0	
1	570	72060	1 71	31.3	1	1			<u> </u>	

Myerage used was 0.926

Oxygen Bleed-In During Second Dive (cont'd)

Date	Time	Gazmeter Reading (liters x10)	Gas Temp (°F)	Barometer Reading (in. Hg)	Sen Water Temp (°F)	O, Bank Pressure (paig)	Q. Added in 1 hr (liters x10, ambient)	Temp Corr	Pres Corr	Os Added in 1 br Corrected (liters, STP)
12/5	0500	00175	71	31,4	62	1550	28415		1.05	27500
	0600	28223	71	31,6	62	1510	27748		1.00	27050
	0700	36305	71	31.7	62	1480	28182	i	1.06	27450
	6000	81173	71	31,9	62	1425	2486B	{	1.07	24500
1	0900	97252	70	32.4	61	1410	16079	0.930	1.08	15980
	1000	14502	71	31.9	62	1400	17250	(max)	1.07	16990
	1100	33129	71	28.5	61	1360	18637		0.95	16290
	1200	50591	72	28.6	61	1375	17462	ł	0.96	15400
	1300	67326	74	28.8	. 61	1250	16729	1	0.96	14780
	1400	83655	74	28.9	61	1325	. 16335	ł	0.97	14590
	1500	01050	74	29.3	52	1300	17395	Ι.	0.98	15690
	1600	17443	76	29.3	62	1300	16413	•	0.98	14800
i	1700	30075	75	29.4	. 62	1275	20613	ł	0.98	18600 .
	1800	58140	72	29.5	62	1250	20065	ì.	0.99	18250
	1900	78780	74	29.7	62	1225	20640	•	. U 99	18800
	2000	98658	72	29, 6	62	1200	19878	i	7	18280
	2100	19505	73	30.0	62	1160	20847	ł	,	19200
	2200 2300	40205	73	30.2	62	1140	20700	į.	1 1. 01	19230
1		80594	73	30.1	61	1120	20389	1	1.01	18920
1	2400	81258	72	30.4	62	1100	20684	1	1,02	19400
12/6	0100	01700	71	30.5	62	1080	20442	1	1.03	
	0260	22187	71	30.6	61	1050	20487	i	1.02	19229
	0300	41920	73	30, 8	é8	1030	19733	Į	1.03	18700
	0400	63450	75	31.0	62	1019	21530	ł	1.04	20600
	0500	84200	75	31.1	62	975	20750	1	1.04	19850
	0800	02041	75	31.2	62	960	17841	1	1.04	17060
	0700	22264	75	31.4	62	950	20223	i	1.05	
	0800	42782	75	31.5	- 62	900	20518	ł	1.05	50
	0900	64825	75	31.7	62	875	22043	Ï	1.06	31500
i	1000	81071	76	31.6	61	850	16346	1	1.06	13850
- 1	1100	06432	75	29.1	63	840	25361	t	0.97	
į	1200	28650	76	29, 2	62	825	32428	l	0.98	
	1300	51917	76	29.3	62	800	23257	Į.	0.98	
	1400	75753	76	29.5	19	775	23836	l	0.99	
	1500 1600	97641	75	29.6	61	750	21986	į	0.99	
		20552	75	29.7	62	710	22911	į.	0.99	
	1700	42578	75	29.9	62 61	700	31830	1	1.00	
1	1900	45100 89575	76	30.1	61	650	22728	1	1.00	
	2000	97150				630	24675	1	L 01	
	7100	36455	74	30.4	61 61	620 575	7575 33365	1	1.03	
-	~~~		i "]	"		*****	ł	1.02	31250
		<u> </u>	<u>L</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		1	1,337,245 tota

*Average used was 0.920

APPENDIX F
CO₂ Concentrations

CO, Concentrations During First Dive

-								` 			-	_
		· Tel	ZA bener	alyzer				Dwyer	Anel	lyser		
Date	Time	Fwd. Torp.	Control	Stern Rm.	AVE	Put.		Aft But.		Man.	Rm.	AVE
		Rm.				% True	% En.	g True	PIL.	% True	Fil.	
11/30	2300	-	-	0, 2	0.07	-	-	•	•	•	-	
	2300	0.3	0.2	0.5	0.3	0.3	0.2	0.2	0.2	0.3	0.3	
	2400	0.4	0.5	9.5	2.5	0.3	0.3	0.2	0.2	0.4	0.0	0.3
12/1	0100	0.6	0.6	0.8	0.7	0.4	0.4	0.3	0.3	0.6		0.4
	0200	0.7	0.8	1.0	0.8	0.7		0.4	0.4	0.6		0.8
	0300	0.8	1.0	1.1	1.0	0.7	0.7	0.5	0,5 0,8	0.8		0.8
1	0500	Lo	1.3	1	1.27		1.0	as	2.9	1.0		1.0
	0600	ī.i	1.3		1.27		i.i	0.9	1.0			1.1
	0300	1,2	1.5	-	1.47	1.2		0.9	1.0			1.3
	6363	1.4	1,6	1.5	Lis	1.3	1.4	1.1	1.2			1.3
•	0300 1000	1.3	1.7	1.6	1.5 1.6	1.2	1.3	1.0	1.1	1.3		1.3 1.3
	1100	Li	1.7	l i.s	1.5	1.3	1.4	1.3	1.3	1,4		1.4
	120G	1.4	1.7	1.4	1.5	114	1.6	1.3	1.5	1.4		1.6
	1300	1.5	1.7	1.5	1.5	1.5	1.7	1.2	1.3			1.6
	1400	1.4	1.7	1.5	1.5	1.5		111	1.3			1.5
	1500	1.5	1.8	1.5 1.5	1.6	1.5	1.7	1.3	1.5 1.6			1.6 1.7
	1700	1.6	1.7	1.5	ī	l i.4	1.6	1 1.4	1.6	i.i		lii
	1500	1.7	1,8	1.5	1.7	1.6	1.1	1.5	1.7	L.A		17
	1200	1.7	1.8	1.5	LT	1.5	1.7	LI	1.3	1.6		1.6
	2000	1.6	1.8	1.6	1.7	1.5		1.3	1.5	1.3		1.6
	2100	1.6	1.9 1.8	1.6	1.7	1.4		1.3 1.4	1.5 L6	1.5		1.5
		lii	1.8	1.6	1.7	Li		174	1.6	lii		1.7
	3400	ī.ī	1.9	ī.	Li	Lo	ı.	Į į į	ī.	1.4		Ĺi
12/2	0100	1.7	1.8	1.6	1.7	1.7		1.4	1.6	1.6		1.8
	6200	1.5	1.9	1.6	1.7	1.7		1.5	1.8		1	1.9
	0530	1.6	1.0	1.5	1.7	1.7		1.5	1.8			120
	0400	1.6		1.6 1.6	1.7	1.5 1.4		1.5 1.4	1.8 1.7			1.0
	0600	i.	Le	1.5	1.6	14		l î i	1.7			i
·	62.00	1.5	1.3	1.5	1.6	1.5		Lo	1.2			1.6
	0600	1.4	1.8	1.5	1.6	1.4		1.2	1.4			1:7
	0533	1.5	1.1	1.5	1.6	1.4		1.4	1.7			1.7
	1100	1.6	1.7	1.6	1.9	1.5		1.3	1.6 1.7			1.8
1	1200	1.6	ii	1.5	16	1.5		13	16			li
	1300	1.6	1.9	1.5	1.7	1.5		Li	L'e			î.
لسسا		<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u></u>	<u>. </u>			

THE REPORT OF THE PROPERTY OF THE PARTY OF T

CO, Concentrations on Second Dive

1					. 1		1	Dwyer	Ann h	730F		
		lef	rared An	eliper		7		Att				
Date	Time	Pud.	Control	S-673	AVE	Bet.		Bet.		Mas.	Rm.	
		Torp. Rm.	Rain.	Pan.		% True	KM.	% True	M.	Se True	K.	yag
12/3	1100 1200 1300	0.1 0.3 0.8	0.0 0.2 1.0	0.1 0.4 1.0	0.1 0.5 0.9	0.0 0.2 0.4	0.9 0.2 0.4	0.1 0.4 0.6	0.0 0.4 0.6	0.3 0.5 1.0	0.5	0.1 0.4 0.7
	1400 1500 1600	1.5 1.1 1.6	1.6 1.7 1.8	1.3 1.3	1.5 1.4 1.5	1.4 1.5 1.5	1.5 1.5	1.4 1.4 1.6	1.4 1.4 1.6	1.3 1.3 1.2	1.3 1.3	1.4 1.4
	1700 1900 1900 2000	1.3 1.3 1.3 1.3	1.7 1.7 1.7	1.4 1.4 1.4	1.4 1.4 1.5 1.5	1.6 1.8 1.8	1.6 1.8 1.8	1.6 1.5 1.5	1.6 1.5 1.8 1.6	1.4 1.4 1.5	1.4	1.5 1.5 1.6 1.7
	3100 3300 2300	1.8 1.4 1.4	1.8 1.7 1.7	14 14 14	1.6 1.5	1.7 1.7 1.5	1.8 1.3 1.6	1.7 1.7 1.4	1.8 1.8 1.5	1.7 1.5 1.8	1.6 1.0	1.8 1.7 1.7
12/4	9400 9100 9200	1.5 1.4 1.5	1.7	14	1.5	1.7 1.3 1.5	1.4 1.4	1.3 1.3	1.4	1.6 1.6	1.6 1.6	1.5
	0300 0400 0500 0600	1.4 1.5 1.4	1.7	14 14 14 14	1.5 1.5 1.5 1.5	1.5 1.8 1.5 1.4	1.6 1.6 1.6	1.3 1.6 1.5 1.4	14 17 16 15	1.4 1.5 1.4 1.4	1.5 1.6 1.5	1.6
	0700 0600 0900 1000	1.4 1.4 1.4	1.7 1.7 1.7	1.4 1.4 1.4	1.5 1.5 1.5	1.4 1.4 1.5 1.8	1.5 1.5 1.6 1.4	1.3 1.2 1.2 1.3	1.4 1.3 1.3 1.4	1.3 1.3 1.6 1.4	1.4 1.4 1.7	1.4
	1100 1200 1300	1.8	1,6 1,5 1,5	1.4 1.3 1.3	1.4 1.4 1.3	1.3 1.3 1.3	1.4 1.3 1.3	1.0 1.0 1.4	1.1 1.0 1.4	1.3 1.0 1.1	1.0 1.0	1.3 1.1 1.3
	1400 1500 1500 1700	1.3 1.2 1.1 1.3	1.5 1.5 1.5 1.5	1.3 1.3 1.2 1.2	1.4 1.3 1.3	1.3 1.4 1.3	1.3 1.3 1.4 1.3	1.3 1.4 1.4	1.3 1.4 1.4	1.0 0.7 0.7		1.1 1.8 1.8
	1800 1800 2000 3100	1.3 1.5 1.6 1.5	1.5 1.6 1.2 1.9	13	1.4 1.5 1.6	1.3 1.3 1.8 1.4	L3 L5	1.0 1.0 1.5	1.5 1.4	0.7 6.9 1.3 1.1	Q.	1.0
	2300 2300 3400	1.5 1.0 1.7	1.7 1.7 1.9	14 14 15	1.5	1.3 1.5 1.3	12 15	1.4 1.9 1.2	14 18 12	1.3	L	L.1 L.4 L.3
12/8	0100 0200 0500	1.5 1.5 1.6	1.8 1.8 1.8	1.5 1.5 1.4	1.6 1.6	1.5 1.4 1.9	1.4	1.0 1.2 1.0	1.0 1.2 1.0	LI		1.3

COMPIDENTIAL

CO, Concentrations on Second Dive (cont'd)

		344	Infrared Applysor				ĭ	MASI	Analy	101	_	
Date	Time	Fwd. Torp.	Control Rm.		Ave	Pu Bat,		Af Bet.		Mar.	Rm.	
		Ren.				True	Eii.	True	% Eii.	% True	ZII.	AAR
12/6	0400 0500 0600 0700 0800 0990 1100 1200 1300 1406 1503 1600 1700 1200 2200 2200 2200 2200 2400 0100 0300 0400 0500 0500 0700 0800 0900 1200 1200 1200 1200 1200 1200 12	1.6 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.6 1.7 1.9 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1.8 1.8 1.7 1.8 1.7 1.8 1.9 1.9 2.0 2.1 2.2 2.2 2.3 2.1 2.3 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	1.4 1.4 1.4 1.3 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.6 1.5 1.5 1.5 1.5 1.5 1.3 1.4 1.5 1.5 1.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.7 1.7 1.5 1.4 1.5 1.5 1.5 1.6 1.5 1.6 1.5 1.7 1.6 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.6 1.7 1.6 1.6 1.2 1.2 1.3 1.4 1.5 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	1.1 1.5 1.0 1.0 1.1 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.4 1.3 1.6 1.6 1.7 1.6 1.7 1.8 1.6 1.7 1.8 1.6 1.7 1.8 1.6 1.7 1.8 1.6 1.7 1.8 1.6 1.7 1.8 1.6 1.7 1.8 1.6 1.7 1.8 1.6 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	LISEGERISES BERNELLE LERREN BERNELLELLE
	1700 1800 1900 2000 2100	0.6 0.9 0.9 1.0 1.2	1.4 1.4 1.5 1.7	1.2 1.2 1.2 1.3 1.3	1.1 1.2 1.2 1.3 1.4	1.6		1.5	1.5	0.6 0.6 0.5 0.7	000	0.01

COMPROMITIAL

APPENDIX G Hydrogen Readings

Hydrogen Readings During First Dive

		Hydrogen Concentration (% true)							
Date	Time	Forward Battery Room*	After Battery Room*	Stern Room†					
11/30	2300 2300	0	00	0.2					
12/1	0300 0700 1100 1545 1900 2300	0.3 0.43 0.6 0.7 0.75 0.8	0. 1 0. 15 0. 175 0. 5 0. 48 0. 4	0,3 0.5 0.6 0.75 0.8 0.8					
12/2	0460 0700 1300	0.81 0.81 0.83	0.3 0.2 0.95	0.8 0.9 0.9					

*From sMp's hydrogen indicators †From NRL Composite Cas Analyzer

Hydrogen Readings During Second Dive

		Hydrogen Concentration (% true)					
Date	Time	Forward Battery Room*	After Battery Rooms	Stern Room†			
12/3	1100 1500 1900 2400	0, 2 0, 4 0, 7 0, 85	0.2 0.3 0.6 0.75	0.0 0.25 0.8 0.9			
12/4	0330 9700 1100 1530 1700 2300	1.2	0.8 0.6 0.5 0.25 0.05	1.0 1.25 1.4 1.5 1.6 1.6			
12/5	0330 0700 1200 1600 1900 2300	1.1 1.1 0.9	0.05 0 0.2 0.5 1.0 2.0	1.6 1.7 1.75 1.7 1.5 1.3			
12/8	0400 0700 1100 1600	0.8	1.41	1.1 1.1 1.1			

*From skip's hydrogen indicators †From NRL Composite Gas Analyses †From skip's pertable meter

1. Submarines — Yentistics Carbon doxids — S. Lithium Bydroads — Applications I. McConnauphy W. E. II. Crofford, W. N III. Thomas, F. E. IV. Andrestch, A. Z.	Submarines — Ventilation Carbos dioxide — Absorvation Lithium Rydroxide — Application M.E. Conflord, W.H. E. Tromas, F.E. T. Andreatib, A. S.
CONTIDENTAL NAVE FREEZE LEDORAGET. REPORT 4430. ATECORRERIC CONTROL. ON TWO EXTREDED DAYES ON THE UES TROUT (SSEG.), by W. E. McConnaugher, W. M. Crofford, F. S. Thombs, and F. Andresteley, W. M. Grofford, F. S. Thombs, Laring two fires which hasted 39-1/2 and 43-1/3 hours in deep, moderately warm waters, pelletized Hib- tun Mythroughe (LAGE) and 8-18 mean soda-line were used is a hopper system to maintain the atmospheric CO, concentration at 1.5% on the UES TROUT (SSEGS), a II. Fast-Atack-Type submarine. Results aboved the system tem to be workable, and the amount of 1.00H which car be IV. earried results (2000 IN) would be adequate for a total sedmassiged time of at least 10 days, the speriod becoming longer as the dives become sharter. Battery staken- tion for a total sedmassiged them of all fast 10 days, the speriod becoming longer as the dives become sharter. Battery staken- tion for a total covery?	Naval Research Laboratory. Report 4430. ATARCETERIC CONTROL ON TWO EXTENDED ENVES ON THE USS THOUT (ESSES), by W. E. MCCHARAGET, W. N. Grodford, F. S. Thoras, and A. F. Andrestch, 49 pp. M. Grodford, F. S. Thoras, buring two dives which harted 39-1/8 and 42-1/8 hours in deep, moderately warm waters, pelistical kills into hyporal prices to mainfain the almospheric CO, concentration to mainfain the almospheric CO, concentration at 1.5% on the UTS TNOUT (SSESS), a H. Past, Altach-Type submariue. Reseats aboured the sys- them to be worthald, and the amount of LOSE which can be 17th enriched tradity (200 EN would be adequate for a total ademarged time of at least to days, the pariod becoming langer as the Great bacters aborter. Reliefy exhaus- time terralizated both dres of this erules after two
1. Submarina — Ventitation 2. Cyrton double — 3. Absorption 2. Lithius 2. Submarina 3. Submarina 4. Lithius 5. Conflortion 7. E. Creford, W. N. 11. Thomas, F. S. 17. Andreadel, A. F.	1. Submarines — Yentilation 2. Curbos Stadis 3. Lithium 2. Lithium Eydreside — Application 1. KcCossupps; W. E. II. Crefford, W. H. III. Thorass; P. E. III. Thorass; P. E. III. Thorass; P. E. III. Thorass; P. E.
KEAL RESCUED LOW TWO EXTENDED INVESTIGATION CONTROL ON TWO EXTENDED INVESTIGATION ON THE EXTENDED INVESTIGATION ON THE EXTENDED INVESTIGATION ON THE EXTENDED W. E. McCommarks, 40 pp. 6 figs., Oction 26, 1964. During two dress which lasted 19-1/2 and 43-1/3 hours in deep, moder suity warm veters, pulletised lith- tran hydrodic (1406) and 8-16 mean and and and 4-1/3 was in deep, moder suity warm veters, pulletised lith- tran hydrodic (1406) and 8-16 mean action of the ward was in a hopper system to maintain the atmospheric CO, concentration at 1.5% on the UES TROUT (5356), a Fractional results (1000 h) would be adequate for a fold and action the system and the dress of at least 10 days, the period becoming langue as the Gree become shorter. Enthery exhaus- than terminated both dress of this crutes after two	Note:

The second of the second

teredespendentel. Depression betracks attachedants of the second of the second second as the second

advantages over LOSE in operating convenience and is being much has expensive, but it required 25% now veloce and 46% more weight for stowing.

In addition to studying hoper operating variables the constraines of the CO, CO, E, and byfocus over exemised throughout both dives. The CO concentration of 18% over the second first, probably because of insities on the first diverse; an the second first, probably because of insities and the of the hydrogen convents of the probably because of insities, The O, was consumed and CO, was revived at about 0.2% and 0.7% or million, The O, was consumed and Laba from the air banks were found to be a major sewere of the hydrogen boat pressure was allowed to rise retailly.

Withius (EMs.) concentrations were essentially sere at the start and finish of 1-4% bare period of charging batteries at the finishing rate.

From 18 (declared flowers the substrates at the finishing rate.

From 18 (declared flowers the substrates at the finishing rate.

From 18 (declared flowers of a septential in the sale's atmosphere familes best fives at a concentration of approximately 2000 parts per million.

CONTENTAL

CONFIDENTIAL

performance records had apparently been set. Soda-line was found to offer advances over 12.0% is operating convenience and is being much less expensative, but it required 20% nore velocity for stowage. It addition to strothing larger operating variables the concentrations of Co., CO., CO., E., and hydrocarbox wave measured throughout both dives. The Co. Co., CO., E., and hydrocarbox wave measured throughout both dives. The Co., CO., CO., E., and hydrocarbox wave negatives the concentrations set had hydrocarbox wave negatives and first dives, browner, on the second dive, probably because of limited anneling and use of the hydrogen oils limber, it reached only Tepris per million, The O, was concurred and Co., was evelved at short for the allowed to rise at least first from the allowed to rise at least and in the less in the second dive but averaged 0.6% and live (6.0%, concentrations wave essentially serve at the start and finish at a second dive but averaged 0.6% part per million is the engine room over from 18 (dicharocalbase) was found in the ship's atmosphere each dive with divers at a concentration of approximately 2000 parts per million as the catalogue.

CONTIDENTIAL

Advantages over 110E is operating convenience and in being much less expensive, but it geomerad 196, more volume and 1462. records had apparently been set. Sods-lime

atve, but it required 25% more volume and 140% more weight for storage. In addition is studying hoper volume and 140% more weight for storage. In addition is studying hoper operating variables the concentrations of O₁, CO₂, CO₃, CO₃, and hydrocarbons were measured throughout both dives. The CO concentration scaled 150 parts per million on the first dive; however, on the second dive, probably because of imitted smothing and use of the hydrogen contration scaled only 75 parts per million, The O₂ was consumed and Latis from the air banks were found to be a major source of O₂ easy when the book pressure was allowed to rise stearistly.

Bubins (Edg.) concentrations were essentially zero at the start and flades of 134 discherositions were essentially zero at the start and flades at 134 days both was recommended to the major port of the second dive but averaged 0.63 part per million in the engine room over \$7.00 to 12 (dicherofilmoremethras) was found in the ship's atmosphere daring both gives at a concentration of approximately 2000 parts per million each.

CONTIDENTIAL

performance records had apparently been set. Sode-lime was found to offer

Advantages over 1108 in operating convenience and its being much less enginessive, but it required 25% more volume and 40% more weight for atoway. In addition to studying hoper operating variables the concentration. 50, CO, CO, E., and hydrocarbons were measured throughout both divers. 10, CO concentration reached 180 Raris per million on the first diver, 40, the accountation reached 180 Raris per million, 71se O, was consumed and the self-should self-should be as consumed and both beats from the air banks were found to be a major source of O₂ only when the both persoure was allowed to rise standity.

Bibbs (53H₂) concentrations were essentially sero at the start and finish of the second dive but averaged 0.63 part per million is the engine ruom cree a 1-2/4 hour period of charging batteries at the finishing rate.

From 12 (dichlorodificaromethane) was found in the ship's atmosphere during both dives at a concentration of approximately 2000 parts per

Naval Research Laboratory Technical Library Research Reports Section

15 June, 2000 Mary Templeman, Code 5227
Mary Templeman, Code 5227
Code 6100 Dr Murday
Tina Smallwood, Code 1221.1 / 7/27/10
Review of NRL Reports
am:
iew NRL Reports 4430, 5022, 6206 for: mR-/234
Possible Distribution Statement
Possible Change in Classification
Jonysland man 5 v.nrl.navy.mil
bject report can be:
Changed to Distribution A (Unlimited) Changed to Classification Other: Date Date