

Figure 1a.



Figure 1b.



Figure 1c.



Figure 2a.



Figure 2b.



Figure 2c.



Figure 3.



Figure 4.



Figure 5. The first charge/discharge curves of Li(Ni $_{\alpha}$ Mn $_{\beta}$ Co $_{\gamma}$ )O $_{2\text{-z}}$ F $_{z}$ . (a)  $\alpha$ =0.5,  $\beta$ =0.5,  $\gamma$ =0, z=0; (b)  $\alpha$ =0.505,  $\beta$ =0.495,  $\gamma$ =0, z=0.01; (c)  $\alpha$ =0.51,  $\beta$ =0.49,  $\gamma$ =0, z=0.02; (d)  $\alpha$ =0.41,  $\beta$ =0.39,  $\gamma$ =0.2, z=0.02



Figure 6. Vairation of discharge capacity with cycling number of  ${\rm Li}({\rm Ni_{_{\alpha}}Mn_{_{\beta}}Co_{_{\gamma}}}){\rm O_{_{2-z}}F_{_z}}.$ 



Figure 7. Area specific impedance (ASI) as a function of state of charge (SOC) of  $Li(Ni_{\alpha}Mn_{\beta})O_{2-z}F_{z}$ .



Figure 8. Variation of ASI at 50% SOC of Li(Ni $_{\alpha}$ Mn $_{\beta}$ )O $_{2\text{-z}}$ F $_{z}$ .

- (a)  $\alpha$ =0.5,  $\beta$ =0.5, z=0; (b)  $\alpha$ =0.505,  $\beta$ =0.495, z=0.01
- (c)  $\alpha$ =0.51,  $\beta$ =0.49, z=0.02; (d)  $\alpha$ =0.525,  $\beta$ =0.475, z=0.05



Figure 9. Variation of discharge capacity with cycling of Li/ Li(Ni $_{\alpha}$ Mn $_{\beta}$ Co $_{\gamma}$ )O $_{2}$  cells at room temperature.

- (a)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, uncoated;
- (b)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, coated with 0.5wt% Al-isopropoxide;
- (c)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, coated with 1.0wt% Al-isopropoxide.



Figure 10. Variation of discharge capacity with cycling of Li/ Li(Ni $_{\alpha}$ Mn $_{\beta}$ Co $_{\gamma}$ )O $_{2}$  cells at 55°C.

- (a)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, uncoated;
- (b)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, coated with 0.5wt% Al-isopropoxide.



Figure 11. Variation of area specific impedance (ASI) with cycling measured with C/ Li(Ni $_{\alpha}$ Mn $_{\beta}$ Co $_{\gamma}$ )O $_{2}$  cells.

- (a)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, uncoated;
- (b)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, coated with 0.5wt% Al-isopropoxide;
- (c)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, coated with 1.0wt% Al-isopropoxide.



Figure 12. Variation of a.c. impedance with cycling measured with C/ Li(Ni $_{\alpha}$ Mn $_{\beta}$ Co $_{\gamma}$ )O $_{2}$  cells.

- (a)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, uncoated;
- (b)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, coated with 0.5wt% Al-isopropoxide;
- (c)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, coated with 1.0wt% Al-isopropoxide.



Figure 13. Variation of area specific impedance at 60% SOC with  $55^{\circ}$ C-storage time measured with C/ Li(Ni $_{\alpha}$ Mn $_{\beta}$ Co $_{\gamma}$ )O $_{2}$  cells.

- (a)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, uncoated;
- (b)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, coated with 0.5wt% Al-isopropoxide;
- (c)  $\alpha$ =0.4,  $\beta$ =0.4,  $\gamma$ =0.2, coated with 1.0wt% Al-isopropoxide.



Figure 14. The first charge/discharge curves (A) and cycling performance (B) of  $\text{Li/Li}_{1+x}(\text{Ni}_{\alpha}\text{Mn}_{\beta}\text{Co}_{\gamma})\text{O}_{2}$  cells.

- (a) x=0.2,  $\alpha=0.2$ ,  $\beta=0.6$ ,  $\gamma=0$ ;
- (b) x=0.2,  $\alpha=0.195$ ,  $\beta=0.595$ ,  $\gamma=0.01$ ;
- (c) x=0.2,  $\alpha$ =0.175,  $\beta$ =0.575,  $\gamma$ =0.05;
- (d) x=0.2,  $\alpha=0.15$ ,  $\beta=0.55$ ,  $\gamma=0.10$ .



Figure 15. The area specific impedance as a function of state of charge of  $C/Li_{1+x}(Ni_{\alpha}Mn_{\beta}Co_{\gamma})O_{2}$  cells.

- (a) x=0.2,  $\alpha$ =0.2,  $\beta$ =0.6,  $\gamma$ =0;
- (b) x=0.2,  $\alpha=0.195$ ,  $\beta=0.595$ ,  $\gamma=0.01$ ;
- (c) x=0.2,  $\alpha=0.175$ ,  $\beta=0.575$ ,  $\gamma=0.05$ ;
- (d) x=0.2,  $\alpha$ =0.15,  $\beta$ =0.55,  $\gamma$ =0.10.



Figure 16. Cycling performance of  $\text{Li/Li}_{1+x}(\text{Ni}_{\alpha}\text{Mn}_{\beta}\text{Co}_{\gamma})\text{O}_{2-z}\text{F}_{z}$  cells at room tempearture (A) and at 55°C (B).

- (a) ---- x=0.2,  $\alpha$ =0.15,  $\beta$ =0.55,  $\gamma$ =0.1, z=0;
- (b)  $\Box$  x=0.2,  $\alpha$ =0.16,  $\beta$ =0.54,  $\gamma$ =0.1, z=0.02;
- (c)  $\rightarrow$  x=0.2,  $\alpha$ =0.175,  $\beta$ =0.525,  $\gamma$ =0.1, z=0.05;
- (d)  $-\nabla$  x=0.2,  $\alpha$ =0.2,  $\beta$ =0.5,  $\gamma$ =0.1, z=0.1.



Figure 17. The area specific impedance of  $C/Li_{1+x}(Ni_{\alpha}Mn_{\beta}Co_{\gamma})O_{2-z}F_{z}$  cells as a function of SOC.  $-\infty$  x=0.2,  $\alpha$ =0.15,  $\beta$ =0.55,  $\gamma$ =0.1, z=0;

— $\Box$ — x=0.2, α=0.16, β=0.54, γ=0.1, z=0.02;

 $-\triangle$  x=0.2, α=0.175, β=0.525, γ=0.1, z=0.05.