Jaehyeok Bae^{1,2} Jae-Han Lee¹ Seyun Kim¹ ¹Gauss Labs Inc. ²Seoul National University

wogur110@snu.ac.kr, {jaehan.lee, seyun.kim}@gausslabs.ai

Upgraded PNI.

SOTA at mvtec_ad:

99.56% and 98.98% AUROC scores in anomaly detection and localization, respectively. (PatchCore 99.1%, 98.1%)

Overview

Figure 2: Overview of PNI algorithm. At train time, normal samples are converted to feature map Φ_i using ImageNet pre-trained model ϕ . Aggregated patch-level features are subsampled to generate embedding coreset $C_{\rm emb}$ and distribution coreset $C_{\rm dist}$ using the greedy subsampling method. After storing the coresets, normal feature distribution given neighborhood and position information is trained with MLP and histogram respectively. A pixel-wise refinement network is trained separately using synthetic defect images. At inference time, anomaly score for local test feature is evaluated using the trained normal feature models. At last, the refinement step is performed to improve the anomaly map considering the input image.

Part 1. Modeling Normal Feature Distribution

The anomaly score of the patch-level feature $S(\mathbf{x})$ is estimated as the negative log-likelihood of $p(\Phi_i(\mathbf{x}))$ where Φ_i is the patch level feature.

$$S(\mathbf{x}) = -\log p(\Phi_i(\mathbf{x}))$$

This paper add position and neighboring feature Ω , so the score would be:

$$S(\mathbf{x}) = -\log p(\Phi_i(\mathbf{x})|\Omega)$$

To model the probability from training features, this paper used embedding coreset C_{emb} (the memory bank), so the normal probability of a patch $p(\Phi_i(\mathbf{x})|\Omega)$ can be expresses as:

$$p(\Phi_i(\mathbf{x})|\Omega) = \sum_{c \in C_{emb}} p(\Phi_i(\mathbf{x}|c,\Omega)) p(c|\Omega)$$

Since the $p(c|\Omega)$ is a sparse distribution, to simplify:

$$p(\Phi_i(\mathbf{x})|\Omega) = \max_{c \in C_{emb}} p(\Phi_i(\mathbf{x}|c,\Omega)) T_ au(p(c|\Omega))$$

where $T_{ au}(x)$ is defined as:

$$T_{ au}(x) = egin{cases} 1, & x > au \ 0, & otherwise. \end{cases}$$

au lower than $1/|C_{emb}|$ guarantees at least one of c in C_{emb} be a normal feature. In this paper, we set $au=1/(2|C_{emb}|)$ without optimizing.

Approximate $p(c|\Omega)$:

$$p(c|\Omega)pprox rac{p(c|N_p(x))+p(c|x)}{2}$$

where $p(c|N_p(x))$ is the normal feature in **neighborhood information** and modeled using **MLP**.

To simplify computation, author use distribution coreset C_{dist} to represent C_{emb} .

The neighborhood information is defined as a set of features that are within a $p \times p$ patch, excluding \mathbf{x} itself:

$$N_p(\mathbf{x}) = \{\Phi_i(m,n)||m-h| \leq p/2, \ |n-w| \leq p/2, (m,n)
eq (h,w)\}$$

To train the MLP, the input is a 1-dimensional vector obtained by concatenating all features in $N_p(\mathbf{x})$, output has $|C_{dist}|$ nodes. The ground truth used for training is a one-hot vector, where the distribution coreset index closest to the true center feature vector is one, and the cross-entropy loss is calculated with the MLP output.

 $p(c|\mathbf{x})$ i.e. $p(c_{dist}|\mathbf{x})$ is the **position information**, the $p(c_{dist}|\mathbf{x})$ is generated by accumulating the indices of D_{dist} for each position \mathbf{x} in all training images using algorithm 1 as follow:

Algorithm 1 Calculation of $p(c_{\text{dist}}|\mathbf{x})$

```
1: Initialize \operatorname{hist}(\cdot|\mathbf{x}) as a zero vector of \mathbb{R}^{|c_{\operatorname{dist}}|} for all \mathbf{x}

2: for all training images x_i do

3: for all coordinates \mathbf{x} do

4: \operatorname{idx} \leftarrow \operatorname{find} an index of nearest c_{\operatorname{dist}} to \Phi_i(\mathbf{x})

5: \operatorname{hist}(\operatorname{idx}|\mathbf{x}) \leftarrow \operatorname{hist}(\operatorname{idx}|\mathbf{x}) + 1

6: end for

7: end for

8: p(c_{\operatorname{dist}}|\mathbf{x}) \leftarrow \operatorname{normalize}(\operatorname{hist}(\cdot|\mathbf{x}))
```

(? 不太懂)

Then $p(\Phi_i(x)|c_{emb})$ is expressed in terms of an exponent of the distance between $\Phi_i(\mathbf{x})$ and c_{emb} as in most existing methods:

$$p(\Phi_i(x)|c_{emb},\Omega)pprox p(\Phi_i(\mathbf{x})|x_{emb})pprox e^{-\lambda||\Phi_i(x)-c_{emb}||_2}$$

Part 2. Pixel-wise Refinement

Author trained a supervised refinement network using artificial defect image.

The optimization goal:

$$heta^* = argmin_{ heta} \sum_{(I,\hat{A},A) \in D} \ell(f(I,\hat{A}; heta),A)$$

where I is an artificially generated anomaly image, and A represents the ground-truth anomaly map of I as a binary map, \hat{A} is an anomaly map estimated from proposed algorithm.

Author used modified DenseNet161 as backbone, and encoder-decoder architecture for f. The input is 4-channel RGB image and an anomaly map

The architecture as followed:

Figure 4: Schematic structure of the refinement network.

Loss function:

$$\ell = (\ell_{reg} + \ell_{grad})/2$$
 $\ell_{reg} = rac{||\hat{A} - A||_2}{HW},$ $\ell_{grad} = rac{||igtriangledown_h ilde{A} - igtriangledown_h A||_2 + ||igtriangledown_w ilde{A} - igtriangledown_w A||_2}{2HW}$

where the H and W are the width and height of A, ∇_h and ∇_w are partial derivative operations.

 ℓ_{grad} improves the refinement results by making the network's training more concentrated near the edges of the defect region.

FYI, author compared four method to generate synthetic data, CutPaste, CutPaste (scar), DREAM and mannual drawing, the conclusion as quote:

"As pointed out in CutPaste, training with defects of varying sizes and shapes together prevents the network from optimizing in a naive direction and enables better generalization performance. This is a significant advantage in cases where real abnormal data is unknown. Figure 3 shows the defect image examples generated by 4 methods from normal MVTec AD training data. Defects generated by each method have distinct characteristics. CutPaste creates rectangular defects in larger areas, while CutPaste (scar) produces more detailed and thinner defects. DRÆM and manual methods generate a more complex variety defect patterns. "

Figure 3:

Figure 3: Examples of defect images generated by (a) Cut-Paste, (b) CutPaste (scar), (c) DRÆM, and (d) manual drawing. The area corresponding to the defects are highlighted.

Experimental Results

Table 1: Anomaly detection and localization AUROC scores on MVTec AD []] are presented. The first and second numbers indicate I-AUROC (image-level detection score) and P-AUROC (pixel-level localization score), respectively. Sub-total averages are provided for object and texture categories. For each category, the best result is **boldfaced**.

		RIAD 33	InTra 20	CutPaste 17	FastFlow 30	Tsai et al. 24	CFLOW-AD [9]	PatchCore 21	PNI
Object	Bottle	99.9 98.4	100 97.1	98.3 97.6	100 97.7	100 98.6	100 98.76	100 98.6	100 98.87
	Cable	81.9 84.2	70.3 91.0	80.6 90.0	100 98.4	98.8 98.2	97.59 97.64	99.5 98.4	99.76 99.10
	Capsule	88.4 92.8	86.5 97.7	96.2 97.4	100 99.1	97.2 97.9	97.68 98.98	98.1 98.8	99.72 99.34
	Hazelnut	83.3 96.1	95.7 98.3	97.3 97.3	100 99.1	99.6 97.8	99.98 98.82	100 98.7	100 99.37
	Metal nut	88.5 92.5	96.9 93.3	99.3 93.1	100 98.5	97.8 99.1	99.26 98.56	100 98.4	100 99.29
	Pill	83.8 95.7	90.2 98.3	92.4 95.7	99.4 99.2	97.7 98.8	96.82 98.95	96.6 97.4	96.89 99.03
	Screw	84.5 98.8	95.7 99.5	86.3 96.7	97.8 99.4	94.1 98.5	91.89 98.10	98.1 99.4	99.51 99.60
	Toothbrush	100 98.9	100 98.9	98.3 98.1	94.4 98.9	100 99.0	99.65 98.56	100 98.7	99.72 99.09
	Transistor	90.9 87.7	95.8 96.1	95.5 93.0	99.8 97.3	98.9 97.7	95.21 93.28	100 96.3	100 98.04
	Zipper	98.1 97.8	99.4 99.2	99.4 99.3	99.5 98.7	99.5 98.6	98.48 98.41	99.4 98.8	99.87 99.43
	Average	89.9 94.3	93.0 96.9	94.3 95.8	99.1 98.6	98.4 98.4	97.66 98.01	99.2 98.4	99.55 99.12
Texture	Carpet	84.2 96.3	98.8 99.2	93.1 98.3	100 99.4	93.4 98.4	98.73 99.23	98.7 99.0	100 99.40
	Grid	99.6 98.8	100 98.8	99.9 97.5	99.7 98.3	100 98.5	99.60 96.89	98.2 98.7	98.41 99.20
	Leather	100 99.4	100 99.5	100 99.5	100 99.5	99.3 99.1	100 99.61	100 99.3	100 99.56
	Tile	98.7 89.1	98.2 94.4	93.4 90.5	100 96.3	96.2 94.4	99.88 97.71	98.7 95.6	100 98.40
	Wood	93.0 85.8	97.5 88.7	98.6 95.5	100 97.0	99.7 97.5	99.12 94.49	99.2 95.0	99.56 97.04
	Average	95.1 93.9	98.9 96.1	97.0 96.3	99.9 98.1	97.7 97.6	99.47 97.59	99.0 97.5	99.59 98.72
Average		91.7 94.2	95.0 96.6	95.2 96.0	99.4 98.5	98.1 98.1	98.26 97.87	99.1 98.1	99.56 98.98

Table 2: Comparison of anomaly detection and localization results on MVTec AD [1]. The proposed PNI is compared to recent algorithms in terms of I-AUROC, P-AUROC, and AUPRO. For AUPRO, sub-total averages are provided for both object and texture subcategories additionally.

	AUF	ROC	AUPRO			
	Image	Pixel	Object	Texture	Average	
Patch SVDD [29]	92.1	95.7	-	-	-	
SPADE 5	85.5	96.0	93.4	88.4	91.7	
PaDiM 6	95.3	97.5	91.6	93.1	92.1	
RIAD 33	91.7	94.2	-	-	-	
CutPaste 17	95.2	96.0	-	-	-	
DRÆM 32	98.0	97.3	-	-	-	
FastFlow 30	99.4	98.5	-	-	-	
SOMAD 18	97.9	97.8	94.1	91.6	93.3	
InTra 20	95.0	96.6	-	-	-	
MB-PFM 26	97.5	97.3	92.3	94.6	93.0	
NSA [22]	97.2	96.3	90.4	92.2	91.0	
IKD [3]	-	97.81	93.30	91.05	92.55	
PatchCore 21	99.1	98.1	93.3	93.6	93.4	
Reverse Distillation [7]	98.5	97.8	93.4	95.0	93.9	
Tsai <i>et al</i> . 24	98.1	98.1	95.7	95.0	95.5	
PEFM 25	-	98.30	95.30	95.95	95.52	
CDO 4	-	98.22	94.57	94.90	94.68	
PNI	99.56	98.98	96.34	95.47	96.05	
Uniformed Students 2	-	-	90.8	92.7	91.4	
CutPaste (ensemble) [17]	96.1	-	-	-	-	
PatchCore (ensemble) [21]	99.6	98.2	-	-	94.9	
CFLOW-AD 9	98.26	98.62	93.58	96.65	94.60	
PNI (Ensemble)	99.63	99.06	96.83	96.00	96.55	