${\bf Package\ 'bayes Cure Rate Model'}$

September 14, 2024

compute_fdr_tpr	7
cure_rate_MC3	
cure_rate_mcmc	12
log_dagum	15
log_gamma	16
log_gamma_mixture	17
log_gompertz	18
log_logLogistic	19
log_lomax	20
log_user_mixture	21
log_weibull	22
marriage_dataset	23
plot.bayesCureModel	23
predict.bayesCureModel	25
print.bayesCureModel	28
residuals.bayesCureModel	29
sim_mix_data	30
summary.bayesCureModel	30
Index	34

bayesCureRateModel-package

Bayesian Cure Rate Modeling for Time-to-Event Data

Description

A fully Bayesian approach in order to estimate a general family of cure rate models under the presence of covariates, see Papastamoulis and Milienos (2024) <doi:10.1007/s11749-024-00942-w>. The promotion time can be modelled (a) parametrically using typical distributional assumptions for time to event data (including the Weibull, Exponential, Gompertz, log-Logistic distributions), or (b) semiparametrically using finite mixtures of distributions. In both cases, user-defined families of distributions are allowed under some specific requirements. Posterior inference is carried out by constructing a Metropolis-coupled Markov chain Monte Carlo (MCMC) sampler, which combines Gibbs sampling for the latent cure indicators and Metropolis-Hastings steps with Langevin diffusion dynamics for parameter updates. The main MCMC algorithm is embedded within a parallel tempering scheme by considering heated versions of the target posterior distribution.

The main function of the package is cure_rate_MC3. See details for a brief description of the model.

Details

Let $y = (y_1, \dots, y_n)$ denote the observed data, which correspond to time-to-event data or censoring times. Let also $x_i = (x_{i1}, \dots, x_{x_{ip}})'$ denote the covariates for subject $i, i = 1, \dots, n$.

Assuming that the n observations are independent, the observed likelihood is defined as

$$L = L(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{x}) = \prod_{i=1}^{n} f_{P}(y_{i}; \boldsymbol{\theta}, \boldsymbol{x}_{i})^{\delta_{i}} S_{P}(y_{i}; \boldsymbol{\theta}, \boldsymbol{x}_{i})^{1-\delta_{i}},$$

where $\delta_i = 1$ if the *i*-th observation corresponds to time-to-event while $\delta_i = 0$ indicates censoring time. The parameter vector $\boldsymbol{\theta}$ is decomposed as

$$\theta = (\alpha', \beta', \gamma, \lambda)$$

where

- $\alpha = (\alpha_1, \dots, \alpha_d)' \in \mathcal{A}$ are the parameters of the promotion time distribution whose cumulative distribution and density functions are denoted as $F(\cdot, \alpha)$ and $f(\cdot, \alpha)$, respectively.
- • B ∈ R^k are the regression coefficients with k denoting the number of columns in the design matrix (it may include a constant term or not).
- $\gamma \in \mathbf{R}$
- $\lambda > 0$.

The population survival and density functions are defined as

$$S_P(y; \boldsymbol{\theta}) = \left(1 + \gamma \exp\{\boldsymbol{x}_i \boldsymbol{\beta}'\} c^{\gamma \exp\{\boldsymbol{x}_i \boldsymbol{\beta}'\}} F(y; \boldsymbol{\alpha})^{\lambda}\right)^{-1/\gamma}$$

whereas,

$$f_P(y; \boldsymbol{\theta}) = -\frac{\partial S_P(y; \boldsymbol{\theta})}{\partial y}.$$

Finally, the cure rate is affected through covariates and parameters as follows

$$p_0(\boldsymbol{x}_i; \boldsymbol{\theta}) = \left(1 + \gamma \exp\{\boldsymbol{x}_i \boldsymbol{\beta}'\} c^{\gamma \exp\{\boldsymbol{x}_i \boldsymbol{\beta}'\}}\right)^{-1/\gamma}$$

where $c = e^{e^{-1}}$.

The promotion time distribution can be a member of standard families (currently available are the following: Exponential, Weibull, Gamma, Lomax, Gompertz, log-Logistic) and in this case $\alpha = (\alpha_1, \alpha_2) \in (0, \infty)^2$. Also considered is the Dagum distribution, which has three parameters $(\alpha_1, \alpha_2, \alpha_3) \in (0, \infty)^3$. In case that the previous parametric assumptions are not justified, the promotion time can belong to the more flexible family of finite mixtures of Gamma distributions. For example, assume a mixture of two Gamma distributions of the form

$$f(y; \boldsymbol{\alpha}) = \alpha_5 f_{\mathcal{G}}(y; \alpha_1, \alpha_3) + (1 - \alpha_5) f_{\mathcal{G}}(y; \alpha_2, \alpha_4),$$

where

$$f_{\mathcal{G}}(y; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} \exp\{-\beta y\}, y > 0$$

denotes the density of the Gamma distribution with parameters $\alpha>0$ (shape) and $\beta>0$ (rate). For the previous model, the parameter vector is

$$\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)' \in \mathcal{A}$$

where
$$A = (0, \infty)^4 \times (0, 1)$$
.

More generally, one can fit a mixture of K>2 Gamma distributions. The appropriate model can be selected according to information criteria such as the BIC.

The binary vector $I = (I_1, ..., I_n)$ contains the (latent) cure indicators, that is, $I_i = 1$ if the *i*-th subject is susceptible and $I_i = 0$ if the *i*-th subject is cured. Δ_0 denotes the subset of $\{1, ..., n\}$

containing the censored subjects, whereas $\Delta_1 = \Delta_0^c$ is the (complementary) subset of uncensored subjects. The complete likelihood of the model is

$$L_c(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{I}) = \prod_{i \in \Delta_1} (1 - p_0(\boldsymbol{x}_i, \boldsymbol{\theta})) f_U(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) \prod_{i \in \Delta_0} p_0(\boldsymbol{x}_i, \boldsymbol{\theta})^{1 - I_i} \{ (1 - p_0(\boldsymbol{x}_i, \boldsymbol{\theta})) S_U(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) \}^{I_i}.$$

 f_U and S_U denote the probability density and survival function of the susceptibles, respectively, that is

$$S_U(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) = \frac{S_P(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) - p_0(\boldsymbol{x}_i; \boldsymbol{\theta})}{1 - p_0(\boldsymbol{x}_i; \boldsymbol{\theta})}, f_U(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) = \frac{f_P(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i)}{1 - p_0(\boldsymbol{x}_i; \boldsymbol{\theta})}.$$

Index of help topics:

bayesCureRateModel-package

Bayesian Cure Rate Modeling for Time-to-Event

Data

complete_log_likelihood_general

Logarithm of the complete log-likelihood for

the general cure rate model.

compute_fdr_tpr Compute the achieved FDR and TPR cure_rate_MC3 Main function of the package

log_dagumPDF and CDF of the Dagum distributionlog_gammaPDF and CDF of the Gamma distributionlog_gamma_mixturePDF and CDF of a Gamma mixture distributionlog_gompertzPDF and CDF of the Gompertz distributionlog_logLogisticPDF and CDF of the log-Logistic distribution.

log_lomax PDF and CDF of the Lomax distribution

log_user_mixture
Define a finite mixture of a given family of

distributions.

log_weibull PDF and CDF of the Weibull distribution

marriage_dataset Marriage data plot.bayesCureModel Plot method

predict.bayesCureModel

Predict method.

print.bayesCureModel Print method

residuals.bayesCureModel

Computation of residuals.

sim_mix_data Simulated dataset

summary.bayesCureModel

Summary method.

Author(s)

Panagiotis Papastamoulis and Fotios S. Milienos

Maintainer: Panagiotis Papastamoulis <papapast@yahoo.gr>

References

Papastamoulis and Milienos (2024). Bayesian inference and cure rate modeling for event history data. TEST doi: 10.1007/s11749-024-00942-w.

See Also

```
cure_rate_MC3
```

Examples

```
# TOY EXAMPLE (very small numbers... only for CRAN check purposes)
# simulate toy data
set.seed(10)
        n = 4
        # censoring indicators
        stat = rbinom(n, size = 1, prob = 0.5)
        # covariates
        x \leftarrow matrix(rnorm(2*n), n, 2)
        # observed response variable
        y \leftarrow rexp(n)
# define a data frame with the response and the covariates
        my_data_frame \leftarrow data.frame(y, stat, x1 = x[,1], x2 = x[,2])
# run a weibull model with default prior setup
# considering 2 heated chains
fit1 <- cure_rate_MC3(survival::Surv(y, stat) ~ x1 + x2,
 data = my_data_frame,
 promotion_time = list(distribution = 'weibull'),
 nChains = 2,
 nCores = 1,
 mcmc_cycles = 3, sweep=2)
# print method
fit1
# summary method
summary1 <- summary(fit1)</pre>
# WARNING: the following parameters
  mcmc_cycles, nChains
         should take _larger_ values. E.g. a typical implementation consists of:
#
         mcmc_cycles = 15000, nChains = 12
#
\# run a Gamma mixture model with K = 2 components and default prior setup
fit2 <- cure_rate_MC3(survival::Surv(y, stat) ~ x1 + x2, data = my_data_frame,</pre>
 promotion_time = list(
  distribution = 'gamma_mixture',
          K = 2),
 nChains = 8, nCores = 2,
 mcmc\_cycles = 10)
 summary2 <- summary(fit2)</pre>
```

complete_log_likelihood_general

Logarithm of the complete log-likelihood for the general cure rate model.

Description

Compute the logarithm of the complete likelihood, given a realization of the latent binary vector of cure indicators I_sim and current values of the model parameters g, lambda, b and promotion time parameters (α) which yield log-density values (one per observation) stored to the vector log_f and log-cdf values stored to the vector log_F.

Usage

```
complete_log_likelihood_general(y, X, Censoring_status,
   g, lambda, log_f, log_F, b, I_sim, alpha)
```

Arguments

y observed data (time-to-event or censored time)

X design matrix. Should contain a column of 1's if the model has a constant term.

Censoring_status

binary variables corresponding to time-to-event and censoring.

g The γ parameter of the model (real).

lambda The λ parameter of the model (positive).

log_f A vector containing the natural logarithm of the density function of the pro-

motion time distribution per observation, for the current set of parameters. Its

length should be equal to the sample size.

log_F A vector containing the natural logarithm of the cumulative density function of

the promotion time distribution per observation, for the current set of parame-

ters. Its length should be equal to the sample size.

b Vector of regression coefficients. Its length should be equal to the number of

columns of the design matrix.

I_sim Binary vector of the current value of the latent cured status per observation. Its

length should be equal to the sample size. A time-to-event cannot be cured.

alpha A parameter between 0 and 1, corresponding to the temperature of the complete

posterior distribution.

Details

The complete likelihood of the model is

$$L_c(\boldsymbol{\theta};\boldsymbol{y},\boldsymbol{I}) = \prod_{i \in \Delta_1} (1 - p_0(\boldsymbol{x}_i,\boldsymbol{\theta})) f_U(y_i;\boldsymbol{\theta},\boldsymbol{x}_i) \prod_{i \in \Delta_0} p_0(\boldsymbol{x}_i,\boldsymbol{\theta})^{1 - I_i} \{ (1 - p_0(\boldsymbol{x}_i,\boldsymbol{\theta})) S_U(y_i;\boldsymbol{\theta},\boldsymbol{x}_i) \}^{I_i}.$$

 f_U and S_U denote the probability density and survival function of the susceptibles, respectively, that is

$$S_U(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) = \frac{S_P(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) - p_0(\boldsymbol{x}_i; \boldsymbol{\theta})}{1 - p_0(\boldsymbol{x}_i; \boldsymbol{\theta})}, f_U(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) = \frac{f_P(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i)}{1 - p_0(\boldsymbol{x}_i; \boldsymbol{\theta})}.$$

compute_fdr_tpr 7

Value

A list with the following entries

the complete log-likelihood for the current parameter values.

logS Vector of logS values (one for each observation).

logP0 Vector of logP0 values (one for each observation).

Author(s)

Panagiotis Papastamoulis

References

Papastamoulis and Milienos (2023). Bayesian inference and cure rate modeling for event history data. arXiv:2310.06926.

Examples

```
# simulate toy data
set.seed(1)
n = 4
stat = rbinom(n, size = 1, prob = 0.5)
x <- cbind(1, matrix(rnorm(n), n, 1))
y <- rexp(n)
lw <- log_weibull(y, a1 = 1, a2 = 1, c_under = 1e-9)
# compute complete log-likelihood
complete_log_likelihood_general(y = y, X = x,
Censoring_status = stat,
g = 1, lambda = 1,
log_f = lw$log_f, log_F = lw$log_F,
b = c(-0.5,0.5),
I_sim = stat, alpha = 1)</pre>
```

compute_fdr_tpr

Compute the achieved FDR and TPR

Description

This help function computes the achieved False Discovery Rate (FDR) and True Positive Rate (TPR). Useful for simulation studies where the ground truth classification of subjects in susceptibles and cured items is known.

Usage

```
compute_fdr_tpr(true_latent_status, posterior_probs,
myCut = c(0.01, 0.05, 0.1, 0.15))
```

Arguments

```
true_latent_status

a binary vector containing the true latent status: 1 should correspond to the positive instances ("cured") and 0 to the negative ("susceptibles").

posterior_probs

a numeric vector with entries between 0 and 1 containing the scores (posterior probabilities) of being positive ("cured") for each item.

myCut

Vector containing the desired nominal FDR levels.
```

Value

This function will return for every nominal FDR level the following quantities:

```
achieved_fdr the achieved false discovery rate.

tpr the true positive rate.

nominal_fdr the nominal FDR level.
```

Author(s)

Panagiotis Papastamoulis

Examples

```
set.seed(1)
v1 <- sample(0:1, size = 100, replace=TRUE, prob=c(0.8,0.2) )
v2 <- runif(100)
compute_fdr_tpr(true_latent_status = v1, posterior_probs = v2)</pre>
```

cure_rate_MC3

Main function of the package

Description

Runs a Metropolis Coupled MCMC (MC³) sampler in order to estimate the joint posterior distribution of the model.

Usage

```
cure_rate_MC3(formula, data, nChains = 12, mcmc_cycles = 15000,
    alpha = NULL,nCores = 1, sweep = 5, mu_g = 1, s2_g = 1,
    a_l = 2.1, b_l = 1.1, mu_b = NULL,
    Sigma = NULL, g_prop_sd = 0.045,
    lambda_prop_scale = 0.03, b_prop_sd = NULL,
    initialValues = NULL, plot = TRUE, adjust_scales = FALSE,
    verbose = FALSE, tau_mala = 1.5e-05, mala = 0.15,
    promotion_time = list(distribution = "weibull",
    prior_parameters = matrix(rep(c(2.1, 1.1), 2), byrow = TRUE, 2, 2),
    prop_scale = c(0.1, 0.2)), single_MH_in_f = 0.2, c_under = 1e-9)
```

Arguments

formula an object of class formula: a symbolic description of the model to be fitted. The left-hand side should be a Surv object, a class inherited from the survival package. The binary censoring indicators are interpreted as a time-to-event (1) or as a censoring time (0). a data frame containing all variable names included in formula. data Positive integer corresponding to the number of heated chains in the MC³ scheme. nChains Length of the generated MCMC sample. Default value: 15000. Note that each mcmc_cycles MCMC cycle consists of sweep (see below) usual MCMC iterations. alpha A decreasing sequence in [1,0) of nChains temperatures (or heat values). The first value should always be equal to 1, which corresponds to the target posterior distribution (that is, the first chain). nCores The number of cores used for parallel processing. In case where nCores > 1, the nChains will be processed in parallel using nCores cores. This may speed up significantly the run-time of the algorithm in Linux or macOS, but it is not suggested in Windows. The number of usual MCMC iterations per MCMC cycle. Default value: 10. sweep Parameter a_{γ} of the prior distribution of γ . mu_g s2_g Parameter b_{γ} of the prior distribution of γ . a_1 Shape parameter a_{λ} of the Inverse Gamma prior distribution of λ . b_1 Scale parameter b_{λ} of the Inverse Gamma prior distribution of λ . Mean (μ) of the multivariate normal prior distribution of regression coefficients. mu b Should be a vector whose length is equal to k, i.e. the number of columns of the design matrix X. Default value: rep(0, k). Sigma Covariance matrix of the multivariate normal prior distribution of regression coefficients. g_prop_sd The scale of the proposal distribution for single-site updates of the γ parameter. lambda_prop_scale The scale of the proposal distribution for single-site updates of the λ parameter. b_prop_sd The scale of the proposal distribution for the update of the β parameter (regression coefficients). initialValues A list of initial values for each parameter (optional). Plot MCMC sample on the run. Default: TRUE. plot adjust_scales Boolean. If TRUE the MCMC sampler runs an initial phase of a small number of iterations in order to tune the scale of the proposal distributions in the Metropolis-Hastings steps. Print progress on the terminal if TRUE. verbose tau_mala Scale of the Metropolis adjusted Langevin diffussion proposal distribution. mala A number between [0, 1] indicating the proportion of times the sampler attempts a MALA proposal. Thus, the probability of attempting a typical Metropolis-Hastings move is equal to 1 - mala.

promotion_time A list with details indicating the parametric family of distribution describing the promotion time and corresponding prior distributions. See 'details'.

single_MH_in_f The probability for attempting a series of single site updates in the typical Metropolis-

Hastings move. Otherwise, with probability 1 - single_MH_in_f a Metropolis-Hastings move will attempt to update all continuous parameters simultaneously.

It only makes sense when mala < 1.

c_under A small positive number (much smaller than 1) which is used as a threshold in

the CDF of the promotion time for avoiding underflows in the computation of

the log-likelihood function. Default value: 1e-9.

Details

It is advised to scale all continuous explanatory variables in the design matrix, so their sample mean and standard deviations are equal to 0 and 1, respectively. The promotion_time argument should be a list containing the following entries

distribution Character string specifying the family of distributions $\{F(\cdot; \alpha); \alpha \in A\}$ describing the promotion time.

prior_parameters Values of hyper-parameters in the prior distribution of the parameters α .

prop_scale The scale of the proposal distributions for each parameter in α .

K Optional. The number of mixture components in case where a mixture model is fitted, that is, when setting distribution to either 'gamma_mixture' or 'user_mixture'.

dirichlet_concentration_parameter Optional. Relevant only in the case of the 'gamma_mixture' or 'user_mixture'. Positive scalar (typically, set to 1) determining the (common) concentration parameter of the Dirichlet prior distribution of mixing proportions.

The distribution specifies the distributional family of promotion time and corresponds to a character string with available choices: 'exponential', 'weibull', 'gamma', 'logLogistic', 'gompertz', 'lomax', 'dagum', 'gamma_mixture'. User defined promotion time distributions and finite mixtures of them can be also fitted using the options 'user' and 'user_mixture', respectively. In this case, the user should specify the distributional family in a separate argument named define which is passed as an additional entry in the promotion_time. This function should accept two input arguments y and a corresponding to the observed data (vector of positive numbers) and the parameters of the distribution (vector of positives). Pay attention to the positivity requirement of the parameters: if this is not the case, the user should suitably reparameterize the distribution in terms of positive parameters.

The joint prior distribution of $\alpha=(\alpha_1,\ldots,\alpha_d)$ factorizes into products of inverse Gamma distributions for all (positive) parameters of F. Moreover, in the case of 'gamma_mixture', the joint prior also consists of another term to the Dirichlet prior distribution on the mixing proportions.

The prop_scale argument should be a vector with length equal to the length of vector d (number of elements in α), containing (positive) numbers which correspond to the scale of the proposal distribution. Note that these scale parameters are used only as initial values in case where adjust_scales = TRUE.

Value

An object of class bayesCureModel, i.e. a list with the following entries

mcmc_sample

Object of class mcmc (see the **coda** package), containing the generated MCMC sample for the target chain. The column names correspond to

g_mcmc Sampled values for parameter γ

lambda_mcmc Sampled values for parameter λ

alpha1_mcmc... Sampled values for parameter α_1 ... of the promotion time distribution $F(\cdot; \alpha_1, \ldots, \alpha_d)$. The subsequent d-1 columns contain the sampled values for all remaining parameters, $\alpha_2, \ldots, \alpha_d$, where d depens on the family used in promotion_time.

b0_mcmc Sampled values for the constant term of the regression (present only in the case where the design matrix X contains a column of 1s).

b1_mcmc... Sampled values for the regression coefficient for the first explanatory variable, and similar for all subsequent columns.

latent_status_censored

A data frame with the simulated binary latent status for each censored item.

complete_log_likelihood

The complete log-likelihood for the target chain.

swap_accept_rate

the acceptance rate of proposed swappings between adjacent MCMC chains.

all_cll_values

The complete log-likelihood for all chains.

input_data_and_model_prior

the input data, model specification and selected prior parameters values.

log_posterior the logarithm of the (non-augmented) posterior distribution (after integrating the

latent cured-status parameters out), up to a normalizing constant.

map_estimate The Maximum A Posterior estimate of parameters.

BIC Bayesian Information Criterion of the fitted model.

AIC Akaike Information Criterion of the fitted model.

residuals The Cox-Snell residuals of the fitted model.

Note

The core function is cure_rate_mcmc.

Author(s)

Panagiotis Papastamoulis

References

Papastamoulis and Milienos (2024). Bayesian inference and cure rate modeling for event history data. TEST doi: 10.1007/s11749-024-00942-w.

Plummer M, Best N, Cowles K, Vines K (2006). "CODA: Convergence Diagnosis and Output Analysis for MCMC." R News, 6(1), 7-11.

Therneau T (2024). A Package for Survival Analysis in R. R package version 3.7-0, https://CRAN.R-project.org/package=survival.

12 cure_rate_mcmc

See Also

```
cure_rate_mcmc
```

Examples

```
# simulate toy data just for cran-check purposes
set.seed(10)
        n = 4
        # censoring indicators
        stat = rbinom(n, size = 1, prob = 0.5)
        # covariates
        x \leftarrow matrix(rnorm(2*n), n, 2)
        # observed response variable
        v \leftarrow rexp(n)
# define a data frame with the response and the covariates
        my_data_frame \leftarrow data.frame(y, stat, x1 = x[,1], x2 = x[,2])
fit1 <- cure_rate_MC3(survival::Surv(y, stat) ~ x1 + x2,
 data = my_data_frame,
 promotion_time = list(distribution = 'weibull'),
 nChains = 2, nCores = 1,
 mcmc\_cycles = 3, sweep = 2)
```

cure_rate_mcmc

The basic MCMC scheme.

Description

This is core MCMC function. The continuous parameters of the model are updated using (a) single-site Metropolis-Hastings steps and (b) a Metropolis adjusted Langevin diffusion step. The binary latent variables of the model (cured status per censored observation) are updated according to a Gibbs step. This function is embedded to the main function of the package cure_rate_MC3 which runs parallel tempered MCMC chains.

Usage

```
cure_rate_mcmc(y, X, Censoring_status, m, alpha = 1, mu_g = 1, s2_g = 1, a_l = 2.1, b_l = 1.1, promotion_time = list(distribution = "weibull", prior_parameters = matrix(rep(c(2.1, 1.1), 2), byrow = TRUE, 2, 2), prop_scale = c(0.2, 0.03)), mu_b = NULL, Sigma = NULL, g_prop_sd = 0.045, lambda_prop_scale = 0.03, b_prop_sd = NULL, initialValues = NULL, plot = FALSE, verbose = FALSE, tau_mala = 1.5e-05, mala = 0.15, single_MH_in_f = 0.5, c_under = 1e-9)
```

Arguments

```
y observed data (time-to-event or censored time)
```

X design matrix. Should contain a column of 1's if the model has a constant term.

cure_rate_mcmc 13

Censoring_status

binary variables corresponding to time-to-event and censoring.

m number of MCMC iterations.

alpha A value between 0 and 1, corresponding to the temperature of the complete

posterior distribution. The target posterior distribution corresponds to alpha =

1.

mu_g Parameter a_{γ} of the prior distribution of γ . s2_g Parameter b_{γ} of the prior distribution of γ .

a_1 Shape parameter a_{λ} of the Inverse Gamma prior distribution of λ . b_1 Scale parameter b_{λ} of the Inverse Gamma prior distribution of λ .

promotion_time A list containing the specification of the promotion time distribution. See 'de-

tails'.

mu_b Mean μ of the multivariate normal prior distribution of regression coefficients.

Should be a vector whose length is equal to the number of columns of the design

matrix X.

Sigma Covariance matrix of the multivariate normal prior distribution of regression

coefficients.

g_prop_sd The scale of the proposal distribution for single-site updates of the γ parameter.

lambda_prop_scale

The scale of the proposal distribution for single-site updates of the λ parameter.

b_prop_sd The scale of the proposal distribution for the update of the β parameter (regres-

sion coefficients).

initialValues A list of initial values for each parameter (optional).

plot Boolean for plotting on the run.

verbose Boolean for printing progress on the run.

tau_mala scale of the MALA proposal.

mala Propability of attempting a MALA step. Otherwise, a simple MH move is at-

tempted.

single_MH_in_f Probability of attempting a single-site MH move in the basic Metropolis-Hastings

step. Otherwise, a joint update is attempted.

c_under A small positive number (much smaller than 1) which is used as a threshold in

the CDF of the promotion time for avoiding underflows in the computation of

the log-likelihood function. Default value: 1e-9.

Value

A list containing the following entries

mcmc_sample The sampled MCMC values per parameter. See 'note'.

complete_log_likelihood

Logarithm of the complete likelihood per MCMC iteration.

acceptance_rates

The acceptance rate per move.

14 cure_rate_mcmc

latent_status_censored

The MCMC sample of the latent status per censored observation.

log_prior_density

Logarithm of the prior density per MCMC iteration.

Note

In the case where the promotion time distribution is a mixture model, the mixing proportions w_1, \ldots, w_K are reparameterized according to the following transformation

$$w_j = \frac{\rho_j}{\sum_{i=1}^K \rho_i}, j = 1, \dots, K$$

where $\rho_i > 0$ for i = 1, ..., K-1 and $\rho_K = 1$. The sampler returns the parameters $\rho_1, ..., \rho_{K-1}$, not the mixing proportions.

Author(s)

Panagiotis Papastamoulis

References

Papastamoulis and Milienos (2024). Bayesian inference and cure rate modeling for event history data. TEST doi: 10.1007/s11749-024-00942-w.

See Also

```
cure_rate_MC3
```

```
# simulate toy data just for cran-check purposes
        set.seed(1)
        n = 10
        stat = rbinom(n, size = 1, prob = 0.5)
        x \leftarrow cbind(1, matrix(rnorm(2*n), n, 2))
        y < - rexp(n)
# run a weibull model (including const. term)
\# for m = 10 mcmc iterations
        fit1 <- cure_rate_mcmc(y = y, X = x, Censoring_status = stat,</pre>
               plot = FALSE,
                promotion_time = list(distribution = 'weibull',
                         prior_parameters = matrix(rep(c(2.1, 1.1), 2),
                                                  byrow = TRUE, 2, 2),
                        prop_scale = c(0.1, 0.1)
                ),
                m = 10)
# the generated mcmc sampled values
fit1$mcmc_sample
```

log_dagum 15

log_dagum PDF and CDF of the Dagum distribution	
---	--

Description

The Dagum distribution as evaluated at the VGAM package.

Usage

```
log_dagum(y, a1, a2, a3, c_under = 1e-09)
```

Arguments

У	observed data
a1	scale parameter
a2	shape1.a parameter
a3	shape2.p parameter
c_under	A small positive value corresponding to the underflow threshold, e.g. c_under = 1e-9.

Details

The Dagum distribution is a special case of the 4-parameter generalized beta II distribution.

Value

A list containing the following entries

```
log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.
```

Author(s)

Panagiotis Papastamoulis

References

Thomas W. Yee (2015). Vector Generalized Linear and Additive Models: With an Implementation in R. New York, USA: Springer.

See Also

ddagum

```
log_dagum(y = 1:10, a1 = 1, a2 = 1, a3 = 1, c_under = 1e-9)
```

log_gamma

-	
Inc	_gamma
TOE	gaillilla

PDF and CDF of the Gamma distribution

Description

Computes the pdf and cdf of the Gamma distribution.

Usage

```
log_gamma(y, a1, a2, c_under = 1e-09)
```

Arguments

У	observed data
a1	shape parameter
a2	rate parameter
c_under	A small positive value corresponding to the underflow threshold, e.g. c_under = 1e-9.

Value

A list containing the following entries

```
log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.
```

Author(s)

Panagiotis Papastamoulis

See Also

dgamma

```
log_gamma(y = 1:10, a1 = 1, a2 = 1, c_under = 1e-9)
```

log_gamma_mixture 17

 $log_gamma_mixture$

PDF and CDF of a Gamma mixture distribution

Description

Computes the logarithm of the probability density function and cumulative density function per observation for each observation under a Gamma mixture model.

Usage

```
log_gamma_mixture(y, a1, a2, p, c_under = 1e-09)
```

Arguments

У	observed data
a1	vector containing the shape parameters of each Gamma mixture component
a2	vector containing the rate parameters of each Gamma mixture component
p	vector of mixing proportions
c_under	threshold for underflows.

Value

A list containing the following entries

```
log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.
```

Author(s)

Panagiotis Papastamoulis

```
y <- runif(10)
a1 <- c(1,2)
a2 <- c(1,1)
p <- c(0.9,0.1)
log_gamma_mixture(y, a1, a2, p)</pre>
```

18 log_gompertz

log	gompertz
±05-	_gomper cz

PDF and CDF of the Gompertz distribution

Description

The Gompertz distribution as evaluated at the **flexsurv** package.

Usage

```
log_gompertz(y, a1, a2, c_under = 1e-09)
```

Arguments

У	observed data
a1	shape parameter
a2	rate parameter
c_under	A small positive value corresponding to the underflow tl

A small positive value corresponding to the underflow threshold, e.g. c_under =

1e-9.

Value

A list containing the following entries

log_f natural logarithm of the pdf, evaluated at each datapoint. natural logarithm of the CDF, evaluated at each datapoint. log_F

Author(s)

Panagiotis Papastamoulis

References

Christopher Jackson (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8), 1-33. doi:10.18637/jss.v070.i08

See Also

```
dgompertz
```

```
log_gompertz(y = 1:10, a1 = 1, a2 = 1, c_under = 1e-9)
```

log_logLogistic 19

-			
log	logi	Ogi	stic

PDF and CDF of the log-Logistic distribution.

Description

The log-Logistic distribution as evaluated at the **flexsurv** package.

Usage

```
log_logLogistic(y, a1, a2, c_under = 1e-09)
```

Arguments

У	observed data
a1	shape parameter
a2	scale parameter
c_under	A small positive value corresponding to the underflow threshold, e.g. c_under = 1e-9.

Details

The log-logistic distribution is the probability distribution of a random variable whose logarithm has a logistic distribution.

Value

A list containing the following entries

```
log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.
```

Author(s)

Panagiotis Papastamoulis

References

Christopher Jackson (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8), 1-33. doi:10.18637/jss.v070.i08

See Also

```
dllogis
```

```
log_logLogistic(y = 1:10, a1 = 1, a2 = 1, c_under = 1e-9)
```

20 log_lomax

1 ~ ~	1
Tog	Lomax

PDF and CDF of the Lomax distribution

Description

The Lomax distribution as evaluated at the **VGAM** package.

Usage

```
log_lomax(y, a1, a2, c_under = 1e-09)
```

Arguments

У	observed data
a1	scale parameter
a2	shape parameter

c_under A small positive value corresponding to the underflow threshold, e.g. c_under =

1e-9.

Details

The Lomax distribution is a special case of the 4-parameter generalized beta II distribution.

Value

A list containing the following entries

log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.

Author(s)

Panagiotis Papastamoulis

References

Thomas W. Yee (2015). Vector Generalized Linear and Additive Models: With an Implementation in R. New York, USA: Springer.

See Also

dlomax

```
log_lomax(y = 1:10, a1 = 1, a2 = 1, c_under = 1e-9)
```

log_user_mixture 21

log_user_mixture

Define a finite mixture of a given family of distributions.

Description

This function computes the logarithm of the probability density function and cumulative density function per observation for each observation under a user-defined mixture of a given family of distributions. The parameters of the given family of distributions should belong to (0, inf).

Usage

```
log_user_mixture(user_f, y, a, p, c_under = 1e-09)
```

Arguments

user_f	a user defined function that returns the logarithm of a given probability density and the corresponding logarithm of the cumulative distribution function. These arguments should be returned in the form of a list with two entries: log_f and log_F, containing the logarithm of the pdf and cdf values of y, respectively, for a given set of parameter values.
у	observed data
a	a matrix where each column corresponds to component specific parameters and the columns to different components. All parameters should be positive. The number of columns should be the same with the number of mixture components.
р	vector of mixing proportions
c_under	threshold for underflows.

Value

A list containing the following entries

log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.

Author(s)

Panagiotis Papastamoulis

```
# We will define a mixture of 2 exponentials distributions.
# First we pass the exponential distribution at user_f
user_f <- function(y, a){
  log_f <- dexp(y, rate = a, log = TRUE)
  log_F <- pexp(y, rate = a, log.p = TRUE)
  result <- vector('list', length = 2)
  names(result) <- c('log_f', 'log_F')</pre>
```

22 log_weibull

```
result[["log_f"]] = log_f
result[["log_F"]] = log_F
return(result)
}
# simulate some date
y <- runif(10)
# Now compute the log of pdf and cdf for a mixture of K=2 exponentials
p <- c(0.9,0.1)
a <- matrix(c(0.1, 1.5), nrow = 1, ncol = 2)
log_user_mixture(user_f = user_f, y = y, a = a, p = p)</pre>
```

log_weibull

PDF and CDF of the Weibull distribution

Description

Computes the log pdf and cdf of the weibull distribution.

Usage

```
log_weibull(y, a1, a2, c_under)
```

Arguments

У	observed data
a1	shape parameter
a2	rate parameter
c_under	A small positive value corresponding to the underflow threshold, e.g. c_under = 1e-9.

Value

A list containing the following entries

```
log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.
```

Author(s)

Panagiotis Papastamoulis

```
log_weibull(y = 1:10, a1 = 1, a2 = 1, c_under = 1e-9)
```

marriage_dataset 23

marriage_dataset

Marriage data

Description

The variable of interest (time) corresponds to the duration (in years) of first marriage for 1500 individuals. The available covariates are:

age age of respondent (in years) at the time of first marriage. The values are standardized (sample mean and variance equal to 0 and 1, respectively).

kids factor: whether there were kids during the first marriage ("yes") or not ("no").

race race of respondent with levels: "black", "hispanic" and "other".

Among the 1500 observations, there are 1018 censoring times (censoring = 0) and 482 divorces (censoring = 1). Source: National Longitudinal Survey of Youth 1997 (NLSY97).

Usage

```
data(marriage_dataset)
```

Format

Time-to-event data.

References

Bureau of Labor Statistics, U.S. Department of Labor. National Longitudinal Survey of Youth 1997 cohort, 1997-2022 (rounds 1-20). Produced and distributed by the Center for Human Resource Research (CHRR), The Ohio State University. Columbus, OH: 2023.

plot.bayesCureModel

Plot method

Description

Plots and computes HDIs.

Usage

```
## S3 method for class 'bayesCureModel'
plot(x, burn = NULL, alpha = 0.05, gamma_mix = TRUE,
   K_gamma = 5, plot_graphs = TRUE, bw = "nrd0", what = NULL, predict_output = NULL,
   index_of_main_mode = NULL, draw_legend = TRUE,...)
```

Arguments

x An object of class bayesCureModel

burn Number of iterations to discard as burn-in period.

alpha A value between 0 and 1 in order to compute the $1-\alpha$ Highest Posterior Density

regions.

gamma_mix Boolean. If TRUE, the density of the marginal posterior distribution of the γ pa-

rameter is estimated from the sampled MCMC values by fitting a normal mixture

model.

K_gamma Used only when gamma_mix = TRUE and corresponds to the number of normal

mixture components used to estimate the marginal posterior density of the γ

parameter.

plot_graphs Boolean, if FALSE only HDIs are computed.

bw bandwidth

what Integer or a character string with possible values equal to 'cured_prob', 'survival'

or 'residuals'. An integer entry indicates which parameter should be plotted. If set to NULL (default), all parameters are plotted one by one. If set to 'cured_prob' or 'survival' the estimated cured probability or survival function is plotted, conditional on a set of covariates defined in the p_cured_output argument. In case where what = 'residuals' the residuals of the fitted model are plotted versus the quantity -log(S) where S denotes the estimated survival function arising from the Kaplan-Meier estimate based on the residuals and the

censoring times.

predict_output Optional argument which is required only when what = 'cured_prob' or what

= 'survival'. It is returned by a call to the predict.bayesCureModel func-

tion.

index_of_main_mode

If NULL (default), the whole MCMC output is used for plotting. Otherwise, it is a subset of the retained MCMC iterations in order to identify the main mode of the posterior distribution, as returned by the index_of_main_mode value of

 $the \ summary. \ bayes Cure Rate Model \ function.$

draw_legend Boolean. If TRUE (default), a legend is plotted in the case where what = 'survival'

or what = 'cured_prob'.

... arguments passed by other methods.

Value

The function plots graphic output on the plot device if plot_graphs = TRUE. Furthermore, a list of $100(1-\alpha)\%$ Highest Density Intervals per parameter is returned.

Author(s)

Panagiotis Papastamoulis

Examples

```
# simulate toy data just for cran-check purposes
set.seed(10)
        n = 4
        # censoring indicators
        stat = rbinom(n, size = 1, prob = 0.5)
        # covariates
        x <- matrix(rnorm(2*n), n, 2)</pre>
        # observed response variable
        y \leftarrow rexp(n)
# define a data frame with the response and the covariates
        my_data_frame \leftarrow data.frame(y, stat, x1 = x[,1], x2 = x[,2])
# run a weibull model with default prior setup
# considering 2 heated chains
fit1 <- cure_rate_MC3(survival::Surv(y, stat) ~ x1 + x2, data = my_data_frame,</pre>
 promotion_time = list(distribution = 'exponential'),
 nChains = 2,
 nCores = 1,
 mcmc_cycles = 3, sweep=2)
mySummary <- summary(fit1, burn = 0)</pre>
# plot the marginal posterior distribution of the first parameter in returned mcmc output
plot(fit1, what = 1, burn = 0)
# using 'cured_prob'
#compute predictions for two individuals with
\# x1 = 0.2 \text{ and } x2 = -1
# and
\# x1 = -1 \text{ and } x2 = 0
covariate_levels1 <- data.frame(x1 = c(0.2,-1), x2 = c(-1,0))
predictions <- predict(fit1, newdata = covariate_levels1, burn = 0)</pre>
# plot cured probabilities based on the previous output
plot(fit1, what='cured_prob', predict_output = predictions,
  ylim = c(0,1))
```

predict.bayesCureModel

Predict method.

Description

Returns MAP estimates of the survival function and the conditional cured probability for a given set of covariates.

Usage

```
## S3 method for class 'bayesCureModel'
predict(object, newdata, tau_values = NULL, burn = NULL,
   K_max = 3, alpha = 0.1, nDigits = 3, verbose = TRUE, ...)
```

Arguments

object	An object of class bayesCureModel
newdata	A data.frame with new data for the covariates. The column names as well as the class of each column (variable) should match with the input data.
tau_values	A vector of values for the response variable (time) for returning predictions for each row in the newdata.
burn	Positive integer corresponding to the number of mcmc iterations to discard as burn-in period
K_max	Maximum number of components in order to cluster the (univariate) values of the joint posterior distribution across the MCMC run. Used to identify the main mode of the posterior distribution.
alpha	Scalar between 0 and 1 corresponding to 1 - confidence level for computing Highest Density Intervals. If set to NULL, the confidence intervals are not computed.
nDigits	A positive integer for printing the output, after rounding to the corresponding number of digits. Default: nDigits = 3.
verbose	Boolean. If set to TRUE (default) the function prints a summary of the predictions.
	ignored.

Details

The values of the posterior draws are clustered according to a (univariate) normal mixture model, and the main mode corresponds to the cluster with the largest mean. The maximum number of mixture components corresponds to the K_max argument. The **mclust** library is used for this purpose. The inference for the latent cure status of each (censored) observation is based on the MCMC draws corresponding to the main mode of the posterior distribution. The FDR is controlled according to the technique proposed in Papastamoulis and Rattray (2018).

In case where covariate_levels is set to TRUE, the summary function also returns a list named p_cured_output with the following entries

mcmc It is returned only in the case where the argument covariate_values is not NULL. A vector of posterior cured probabilities for the given values in covariate_values, per retained MCMC draw.

map It is returned only in the case where the argument covariate_values is not NULL. The cured probabilities computed at the MAP estimate of the parameters, for the given values covariate_values.

tau_values tau values

covariate_levels covariate levels

index_of_main_mode the subset of MCMC draws allocated to the main mode of the posterior distribution.

Value

```
A list with the following entries
```

map_estimate Maximum A Posteriori (MAP) estimate of the parameters of the model. highest_density_intervals

Highest Density Interval per parameter

latent_cured_status

Estimated posterior probabilities of the latent cure status per censored subject.

cured_at_given_FDR

Classification as cured or not, at given FDR level.

p_cured_output It is returned only in the case where the argument covariate_values is not NULL. See details.

main_mode_index

The retained MCMC iterations which correspond to the main mode of the posterior distribution.

Author(s)

Panagiotis Papastamoulis

References

Papastamoulis and Milienos (2024). Bayesian inference and cure rate modeling for event history data. TEST doi: 10.1007/s11749-024-00942-w.

Papastamoulis and Rattray (2018). A Bayesian Model Selection Approach for Identifying Differentially Expressed Transcripts from RNA Sequencing Data, Journal of the Royal Statistical Society Series C: Applied Statistics, Volume 67, Issue 1.

Scrucca L, Fraley C, Murphy TB, Raftery AE (2023). Model-Based Clustering, Classification, and Density Estimation Using mclust in R. Chapman and Hall/CRC. ISBN 978-1032234953

See Also

```
cure_rate_MC3
```

```
# simulate toy data just for cran-check purposes
set.seed(10)
    n = 4
    # censoring indicators
    stat = rbinom(n, size = 1, prob = 0.5)
    # covariates
    x <- matrix(rnorm(2*n), n, 2)
    # observed response variable
    y <- rexp(n)
# define a data frame with the response and the covariates
        my_data_frame <- data.frame(y, stat, x1 = x[,1], x2 = x[,2])
# run a weibull model with default prior setup
# considering 2 heated chains</pre>
```

28 print.bayesCureModel

```
fit1 <- cure_rate_MC3(survival::Surv(y, stat) ~ x1 + x2, data = my_data_frame, promotion_time = list(distribution = 'exponential'), nChains = 2, nCores = 1, mcmc_cycles = 3, sweep=2) newdata <- data.frame(x1 = c(0.2,-1), x2 = c(-1,0)) # return predicted values at tau = c(0.5, 1) my_prediction <- predict(fit1, newdata = newdata, burn = 0, tau_values = c(0.5, 1))
```

```
print.bayesCureModel Print method
```

Description

This function prints a summary of objects returned by the cure_rate_MC3 function.

Usage

```
## S3 method for class 'bayesCureModel'
print(x, ...)
```

Arguments

x An object of class bayesCureModel, which is returned by the cure_rate_MC3 function.ignored.

Details

The function prints some basic information for a cure_rate_MC3, such as the MAP estimate of model parameters and the value of Bayesian information criterion.

Value

No return value, called for side effects.

Author(s)

Panagiotis Papastamoulis

residuals.bayesCureModel

Computation of residuals.

Description

Methods for computing residuals for an object of class bayesCureModel. The Cox-Snell residuals are available for now.

Usage

```
## S3 method for class 'bayesCureModel'
residuals(object, type = "cox-snell",...)
```

Arguments

object An object of class bayesCureModel type The type of residuals to be computed. ... ignored.

Value

A vector of residuals.

Author(s)

Panagiotis Papastamoulis

References

Papastamoulis and Milienos (2024). Bayesian inference and cure rate modeling for event history data. TEST doi: 10.1007/s11749-024-00942-w.

See Also

```
cure_rate_MC3
```

```
# simulate toy data just for cran-check purposes
set.seed(10)
    n = 4
    # censoring indicators
    stat = rbinom(n, size = 1, prob = 0.5)
    # covariates
    x <- matrix(rnorm(2*n), n, 2)
    # observed response variable
    y <- rexp(n)</pre>
```

sim_mix_data

Simulated dataset

Description

A synthetic dataset generated from a bimodal promotion time distribution. The available covariates are:

x1 continuous.

x2 factor with three levels.

Among the 500 observations, there are 123 censoring times (censoring = 0) and 377 "events" (censoring = 1). The true status (cured or susceptible) is contained in the column true_status and contains 59 cured and 441 susceptible subjects.

Usage

```
data(sim_mix_data)
```

Format

Time-to-event data.

summary.bayesCureModel

Summary method.

Description

This function produces all summaries after fitting a cure rate model.

Usage

```
## S3 method for class 'bayesCureModel'
summary(object, burn = NULL, gamma_mix = TRUE,
   K_gamma = 3,   K_max = 3,   fdr = 0.1,   covariate_levels = NULL,
   yRange = NULL,   alpha = 0.1,   quantiles = c(0.05, 0.5, 0.95),
   verbose = TRUE, ...)
```

Arguments

object An object of class bayesCureModel

burn Positive integer corresponding to the number of mcmc iterations to discard as

burn-in period

gamma_mix Boolean. If TRUE, the density of the marginal posterior distribution of the γ pa-

rameter is estimated from the sampled MCMC values by fitting a normal mixture

model.

K_gamma Used only when gamma_mix = TRUE and corresponds to the number of normal

mixture components used to estimate the marginal posterior density of the γ

parameter.

K_max Maximum number of components in order to cluster the (univariate) values of

the joint posterior distribution across the MCMC run. Used to identify the main

mode of the posterior distribution. See details.

fdr The target value for controlling the False Discovery Rate when classifying sub-

jects as cured or not.

covariate_levels

Optional data. frame with new data for the covariates. It is only required when the user wishes to obtain a vector with the estimated posterior cured probabilities for a given combination of covariates. The column names should be exactly the

same with the ones used in the input data.

yRange Optional range (a vector of two non-negative values) for computing the sequence

of posterior probabilities for the given values in covariate_levels.

alpha Scalar between 0 and 1 corresponding to 1 - confidencel level for computing

Highest Density Intervals. If set to NULL, the confidence intervals are not com-

puted.

quantiles A vector of quantiles to evaluate for each variable.

verbose Boolean: if TRUE the function prints the summary.

... ignored.

Details

The values of the posterior draws are clustered according to a (univariate) normal mixture model, and the main mode corresponds to the cluster with the largest mean. The maximum number of mixture components corresponds to the K_max argument. The **mclust** library is used for this purpose. The inference for the latent cure status of each (censored) observation is based on the MCMC draws corresponding to the main mode of the posterior distribution. The FDR is controlled according to the technique proposed in Papastamoulis and Rattray (2018).

In case where covariate_levels is set to TRUE, the summary function also returns a list named p_cured_output with the following entries

mcmc It is returned only in the case where the argument covariate_values is not NULL. A vector of posterior cured probabilities for the given values in covariate_values, per retained MCMC draw.

map It is returned only in the case where the argument covariate_values is not NULL. The cured probabilities computed at the MAP estimate of the parameters, for the given values covariate_values.

tau_values tau values

covariate_levels covariate levels

index_of_main_mode the subset of MCMC draws allocated to the main mode of the posterior distribution.

Value

A list with the following entries

map_estimate Maximum A Posteriori (MAP) estimate of the parameters of the model.

highest_density_intervals

Highest Density Interval per parameter

latent_cured_status

Estimated posterior probabilities of the latent cure status per censored subject.

cured_at_given_FDR

Classification as cured or not, at given FDR level.

p_cured_output It is returned only in the case where the argument covariate_values is not NULL. See details.

main_mode_index

The retained MCMC iterations which correspond to the main mode of the posterior distribution.

Author(s)

Panagiotis Papastamoulis

References

Papastamoulis and Milienos (2024). Bayesian inference and cure rate modeling for event history data. TEST doi: 10.1007/s11749-024-00942-w.

Papastamoulis and Rattray (2018). A Bayesian Model Selection Approach for Identifying Differentially Expressed Transcripts from RNA Sequencing Data, Journal of the Royal Statistical Society Series C: Applied Statistics, Volume 67, Issue 1.

Scrucca L, Fraley C, Murphy TB, Raftery AE (2023). Model-Based Clustering, Classification, and Density Estimation Using mclust in R. Chapman and Hall/CRC. ISBN 978-1032234953

See Also

cure_rate_MC3

```
# simulate toy data just for cran-check purposes
set.seed(10)
        n = 4
        # censoring indicators
        stat = rbinom(n, size = 1, prob = 0.5)
        # covariates
        x <- matrix(rnorm(2*n), n, 2)</pre>
        # observed response variable
        y \leftarrow rexp(n)
# define a data frame with the response and the covariates
        my_data_frame \leftarrow data.frame(y, stat, x1 = x[,1], x2 = x[,2])
# run a weibull model with default prior setup
# considering 2 heated chains
fit1 <- cure_rate_MC3(survival::Surv(y, stat) ~ x1 + x2,</pre>
 data = my_data_frame,
 promotion_time = list(distribution = 'exponential'),
 nChains = 2,
 nCores = 1,
 mcmc_cycles = 3, sweep=2)
mySummary <- summary(fit1, burn = 0)</pre>
```

Index

```
* datasets
    marriage_dataset, 23
    sim_mix_data, 30
* package
    bayesCureRateModel-package, 2
bayesCureRateModel
        (bayesCureRateModel-package), 2
bayesCureRateModel-package, 2
complete_log_likelihood_general, 5
compute_fdr_tpr, 7
cure_rate_MC3, 2, 5, 8, 12, 14, 27, 29, 32
cure_rate_mcmc, 11, 12, 12
ddagum, 15
dgamma, 16
dgompertz, 18
dllogis, 19
dlomax, 20
log_dagum, 15
log_gamma, 16
log_gamma_mixture, 17
log_gompertz, 18
log_logLogistic, 19
log_lomax, 20
log\_user\_mixture, 21
log\_weibull, 22
{\tt marriage\_dataset}, {\tt 23}
plot.bayesCureModel, 23
predict.bayesCureModel, 25
print.bayesCureModel, 28
residuals.bayesCureModel, 29
sim_mix_data, 30
summary.bayesCureModel, 30
```