Then, we have

$$J(f)(r,\theta) = \begin{pmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{pmatrix}$$

and the Jacobian (determinant) has value $\det(J(f)(r,\theta)) = r$.

In the case where $E = \mathbb{R}$ (or $E = \mathbb{C}$), for any function $f: \mathbb{R} \to F$ (or $f: \mathbb{C} \to F$), the Jacobian matrix of $\mathrm{D}f(a)$ is a column vector. In fact, this column vector is just $\mathrm{D}_1f(a)$. Then, for every $\lambda \in \mathbb{R}$ (or $\lambda \in \mathbb{C}$),

$$Df(a)(\lambda) = \lambda D_1 f(a).$$

This case is sufficiently important to warrant a definition.

Definition 39.6. Given a function $f: \mathbb{R} \to F$ (or $f: \mathbb{C} \to F$), where F is a normed affine space, the vector

$$Df(a)(1) = D_1 f(a)$$

is called the vector derivative or velocity vector (in the real case) at a. We usually identify Df(a) with its Jacobian matrix $D_1f(a)$, which is the column vector corresponding to $D_1f(a)$. By abuse of notation, we also let Df(a) denote the vector $Df(a)(1) = D_1f(a)$.

When $E = \mathbb{R}$, the physical interpretation is that f defines a (parametric) curve that is the trajectory of some particle moving in \mathbb{R}^m as a function of time, and the vector $D_1 f(a)$ is the *velocity* of the moving particle f(t) at t = a.

It is often useful to consider functions $f:[a,b] \to F$ from a closed interval $[a,b] \subseteq \mathbb{R}$ to a normed affine space F, and its derivative $\mathrm{D}f(a)$ on [a,b], even though [a,b] is not open. In this case, as in the case of a real-valued function, we define the right derivative $\mathrm{D}_1f(a_+)$ at a, and the left derivative $\mathrm{D}_1f(b_-)$ at b, and we assume their existence.

Example 39.4.

1. When A = (0,1) and $F = \mathbb{R}^3$, a function $f: (0,1) \to \mathbb{R}^3$ defines a (parametric) curve in \mathbb{R}^3 . If $f = (f_1, f_2, f_3)$, its Jacobian matrix at $a \in \mathbb{R}$ is

$$J(f)(a) = \begin{pmatrix} \frac{\partial f_1}{\partial t}(a) \\ \frac{\partial f_2}{\partial t}(a) \\ \frac{\partial f_3}{\partial t}(a) \end{pmatrix}.$$

See Figure 39.4.

The velocity vectors $J(f)(a) = \begin{pmatrix} -\sin(t) \\ \cos(t) \\ 1 \end{pmatrix}$ are represented by the blue arrows.