Project Joseph Hoane: A Robotic Chess Player By: SD02

Team members: Autrin Hakimi, Cal Hokanson-Fuchs, Junhyung Shim, Nhat Anh Bui, Thanh Mai

Client: Dr. Bowen Wang

Computer Science Department

Iowa State University

02/25/2025

Problem Statement

- Joseph Hoane is the man behind Deep Blue, a revolutionary AI that, in 1996, was the first ever to beat the reigning world chess champion.
- Al has surpassed humans in chess, but robotic intelligence lacks physical embodiment.
- Our goal is to enable a robotic manipulator to play chess in the real world.

Solution Overview

What our system does in a high-level manner:

- Uses a robotic arm to physically move chess pieces.
- Uses a camera and AprilTags for board and piece recognition.
- Uses a chess engine for move calculation.
- Bridges perception and action using ROS (Robot Operating System).

System Architecture

Hardware and Software Used

Hardware:

- UR10e robotic arm + gripper
- GoPro camera
- 3D-printed chess pieces

Software:

- Ubuntu 20.04
- ·(Ç)
- ROS (Robot Operating System)
- OpenCV (for image processing)
- Stockfish (chess engine)
- Python

Chess Engine Integration

- The camera captures the board.
- The board state is converted to a FEN string.
- Stockfish receives the FEN and calculates the best move.
- The best move is converted into a physical move for the robotic arm.

Input: position fen 6Q1/8/r4r1k/P4P2/5K2/7p/8/8 w - - 0 60 go depth 5

Output: bestmove g8h8

Board Detection Using AprilTags

- Three AprilTags on the chessboard allow precise board mapping.
- Camera detects and aligns the board coordinates.

Robotic Arm Control

- Uses Movelt in ROS for motion planning.
- Takes the best move from Stockfish and translates it into joint movements.
- Uses inverse kinematics to calculate joint position given coordinates.
- Handles precise pick-and-place actions.

Simulated Pick-and-Place Motion in ROS

Current Progress

- Installed Ubuntu 20.04 and ROS
- Integrated chess engine (Stockfish)
- Implemented AprilTag-based board recognition
- Converted board state into FEN string
- Stockfish can now calculate legal moves
- Basic robotic arm movements implemented

Challenges Faced

- Board Alignment Problems → Using AprilTags for precise mapping.
- Camera Calibration Issues → Adjusting contrast and gamma correction.

Next Steps & Timeline

What remains to be done?

- Fine-tune robotic arm movement for accurate pick-and-place.
- Improve chess piece detection using better image processing.
- Add a user interface for interaction.
- Perform extensive testing for real games.

