一、填空题(每	空 1 分, 共15分)		
		用是通过与反馈 的前馈复合控制和按_	
3、两个传递函	i数分别为 $G_1(s)$ 与 $G_2(s)$ 的	的环节,以并联方式连接,其等	E效传递函数为 $G(s)$,则 $G(s)$
为(用 G ₁ (s)与 G ₂ (s) 表示)。		
4、典型二阶	系统极点分布如图 1 月	f 示,则无阻尼自然频率 $\omega_{ ext{ iny n}}$	=,阻尼比
$\xi = $,	该系统的特征方程为		,该系统的单位阶跃响应
曲线为	o		
5、若某系:	统 的 単 位 脉 冲 响 应 シ	为 $g(t) = 10e^{-0.2t} + 5e^{-0.5t}$,则 i	亥 系 统 的 传 递 函 数 <i>G(s)</i>
为			
		,终止于	0
		$p(\omega) = tg^{-1}(\tau\omega) - 90^{0} - tg^{-1}(T\omega)$	
为	o		
		表达式是	,
其相应的传递函性能。	数为	,由于积分环节的	的引入,可以改善系统的
	题 2 分, 共 20 分)		
A、一定能使闭 C、一定能使干	代连接后,则() 用环系统稳定; 一扰引起的误差逐渐减小 系统的结构参数,才能改		会提高;
2、下列哪种措施对 A、增加开环机 C、增加开环零		效果 ()。 B、在积分环节外加单位 D、引入串联超前校正装	
	•	5=0,则系统 $($ $)$.且。
A、稳定; C、临界稳定;	1	B、单位阶跃响应曲线为单调打 、右半平面闭环极点数 Z = 2。	
$4、系统在 r(t) = t^2$	作用下的稳态误差 $e_{ss}=$ 。		
A、 型別v<2 C、 输入幅值		B、系统不稳定; D、闭环传递函数中有一个积分	分环节。
5、对于以下情况应	应绘制 0°根轨迹的是()	
A、主反馈口符	符号为"−"; B、除 K	7,外的其他参数变化时;	
C、非单位反馈	贵系统;	\mathbf{B} 轨迹方程(标准形式)为 $\mathbf{G}(\mathbf{A})$	S(s)H(s) = +1

- 6、开环频域性能指标中的相角裕度γ对应时域性能指标(
- A、超调 σ %
- B、稳态误差 e_{cc} C、调整时间 t_{c}
- D、峰值时间 t_n
- 7、已知开环幅频特性如图 2 所示,则图中不稳定的系统是()。

系统①

图 2

- A、系统①
- B、系统②
- C、系统③
- D、都不稳定
- 8、若某最小相位系统的相角裕度 $\gamma > 0^{\circ}$,则下列说法正确的是(
 - A、不稳定;

B、只有当幅值裕度 $k_g > 1$ 时才稳定;

C、稳定;

- D、不能判用相角裕度判断系统的稳定性。
- 9、若某串联校正装置的传递函数为 $\frac{10s+1}{100s+1}$,则该校正装置属于(
 - A、超前校正
- B、滞后校正
- C、滞后-超前校正 D、不能判断
- 10、下列串联校正装置的传递函数中,能在 $\omega_c = 1$ 处提供最大相位超前角的是:

A,
$$\frac{10s+1}{s+1}$$
 B, $\frac{10s+1}{0.1s+1}$ C, $\frac{2s+1}{0.5s+1}$

B,
$$\frac{10s+1}{0.1s+1}$$

$$C = \frac{2s+1}{0.5s+1}$$

D,
$$\frac{0.1s+1}{10s+1}$$

三、(8分)试建立如图 3 所示电路的动态微分方程,并求传递函数。

四、(共20分)系统结构图如图4所示:

- 1、写出闭环传递函数 $\Phi(s) = \frac{C(s)}{R(s)}$ 表达式; (4分)
- 2、要使系统满足条件: $\xi = 0.707$, $\omega_n = 2$, 试确定相应的参数 K 和 β ; (4分)
- 3、求此时系统的动态性能指标 σ %, t_s ; (4分)
- 4、r(t) = 2t时,求系统由r(t)产生的稳态误差 e_{ss} ;(4分)
- 5、确定 $G_n(s)$, 使干扰n(t)对系统输出c(t)无影响。(4分)

五、(共 15 分)已知某单位反馈系统的开环传递函数为 $G(s) = \frac{K_r}{s(s+3)^2}$:

- 1、绘制该系统以根轨迹增益 Kr 为变量的根轨迹 (求出:渐近线、分离点、与虚轴的交点等); (8 分)
 - 2、确定使系统满足 $0 < \xi < 1$ 的开环增益K的取值范围。(7分)

六、(共 22 分) 某最小相位系统的开环对数幅频特性曲线 $L_0(\omega)$ 如图 5 所示:

图3 对数幅频特性曲线

- 1、写出该系统的开环传递函数 $G_0(s)$;(8分)
- 2、写出该系统的开环频率特性、开环幅频特性及开环相频特性。(3分)
- 3、求系统的相角裕度 γ 。(7分)

试题二

一、填空题(每空 1 分, 共 15 分)	
1、在水箱水温控制系统中,受控对象为,被控量为。	
2、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反顺	句联系
时,称为	
为	
	刂该系
统。判断一个闭环线性控制系统是否稳定,在时域分析中采用;	在频
域分析中采用。	
4、传递函数是指在初始条件下、线性定常控制系统的	
与之比。	
5 、设系统的开环传递函数为 $\frac{K(au s+1)}{s^2(Ts+1)}$,则其开环幅频特性为,相频	页特性
为。	
6 、频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅值穿越频率 ω_c δ	付应时
域性能指标,它们反映了系统动态过程的。	
二、选择题(每题 2 分, 共 20 分)	
1、关于传递函数,错误的说法是()	
A 传递函数只适用于线性定常系统;	
B 传递函数不仅取决于系统的结构参数,给定输入和扰动对传递函数也有影响;	
C 传递函数一般是为复变量 s 的真分式;	
D 闭环传递函数的极点决定了系统的稳定性。	
2、下列哪种措施对改善系统的精度没有效果()。	
A、增加积分环节 B、提高系统的开环增益 K	
C、增加微分环节 D、引入扰动补偿 3、高阶系统的主导闭环极点越靠近虚轴,则系统的()。	
C、响应速度越快 D、响应速度越慢	
4、已知系统的开环传递函数为 $\frac{50}{(2s+1)(s+5)}$,则该系统的开环增益为 ()。	
A, 50 B, 25 C, 10 D, 5	
5、若某系统的根轨迹有两个起点位于原点,则说明该系统()。	
A、含两个理想微分环节 B、含两个积分环节 D、连席出来系数计 O	
C、位置误差系数为 0 D、速度误差系数为 0	
6 、开环频域性能指标中的相角裕度 γ 对应时域性能指标()。	

D、峰值时间 t_p

B、稳态误差 e_{ss} C、调整时间 t_s

A、超调 σ %

7、已知某些系统的开环传递函数如下,属于最小相位系统的是(

A,
$$\frac{K(2-s)}{s(s+1)}$$

B
$$\sqrt{-\frac{K(s+1)}{s(s+5)}}$$

A,
$$\frac{K(2-s)}{s(s+1)}$$
 B, $-\frac{K(s+1)}{s(s+5)}$ C, $\frac{K}{s(s^2-s+1)}$ D, $\frac{K(1-s)}{s(2-s)}$

D,
$$\frac{K(1-s)}{s(2-s)}$$

8、若系统增加合适的开环零点,则下列说法不正确的是()。

A、可改善系统的快速性及平稳性;

- B、会增加系统的信噪比;
- C、会使系统的根轨迹向 s 平面的左方弯曲或移动;
- D、可增加系统的稳定裕度。
- 9、开环对数幅频特性的低频段决定了系统的(
 - A、稳态精度
- B、稳定裕度 C、抗干扰性能
- D、快速性

10、下列系统中属于不稳定的系统是()。

- A、闭环极点为 $s_{1,2} = -1 \pm j2$ 的系统 B、闭环特征方程为 $s^2 + 2s + 1 = 0$ 的系统
- C、阶跃响应为 $c(t) = 20(1 + e^{-0.4t})$ 的系统 D、脉冲响应为 $h(t) = 8e^{0.4t}$ 的系统
- 三、(8分)写出下图所示系统的传递函数 $\frac{C(s)}{R(s)}$ (结构图化简,梅逊公式均可)。

四、(共 20 分) 设系统闭环传递函数 $\Phi(s) = \frac{C(s)}{R(s)} = \frac{1}{T^2 s^2 + 2\mathcal{E}T s + 1}$, 试求:

1、 $\xi=0.2$; T=0.08s; $\xi=0.8$; T=0.08s时单位阶跃响应的超调量 σ %、调节时间 t_s 及峰值 时间 t_p 。(7分)

2、 $\xi=0.4$; T=0.04s 和 $\xi=0.4$; T=0.16s 时单位阶跃响应的超调量 σ % 、调节时间 t_s 和峰值时 间 t_p 。(7分)

3、根据计算结果,讨论参数 ξ 、T对阶跃响应的影响。(6分)

五、(共 15 分)已知某单位反馈系统的开环传递函数为 $G(S)H(S) = \frac{K_r(s+1)}{s(s-3)}$, 试:

- 1、绘制该系统以根轨迹增益 K_r 为变量的根轨迹(求出:分离点、与虚轴的交点等);(8分)
- 2、求系统稳定且为欠阻尼状态时开环增益 K 的取值范围。(7分)

六、(共 22 分) 已知反馈系统的开环传递函数为 $G(s)H(s) = \frac{K}{s(s+1)}$, 试:

- 1、用奈奎斯特判据判断系统的稳定性;(10分)
- 2、若给定输入 r(t) = 2t + 2 时,要求系统的稳态误差为 0.25,问开环增益 K 应取何值。 (7分)
 - 3、求系统满足上面要求的相角裕度 γ 。(5分)

试题三

一、填空题(每空 1 分, 共 20 分)	
1、对自动控制系统的基本要求可以概括为三个方面,即:、快速性和。 2、控制系统的	
7、在二阶系统的单位阶跃响应图中, t_s 定义为。 σ % 是。	
8、PI 控制规律的时域表达式是。PID 控制规律的传递函数表达式是。	
9、设系统的开环传递函数为	产性
B、 稳态误差计算的通用公式是 $e_{ss} = \lim_{s \to 0} \frac{s^2 R(s)}{1 + G(s)H(s)}$;	
C、 增大系统开环增益 K 可以减小稳态误差; D、 增加积分环节可以消除稳态误差,而且不会影响系统稳定性。 2、适合应用传递函数描述的系统是 ()。 A、单输入,单输出的线性定常系统; B、单输入,单输出的线性时变系统; C、单输入,单输出的定常系统; D、非线性系统。	
3、若某负反馈控制系统的开环传递函数为 $\dfrac{5}{s(s+1)}$,则该系统的闭环特征方程为 ()。	
A, $s(s+1) = 0$ B, $s(s+1) + 5 = 0$	

4、非单位负反馈系统,其前向通道传递函数为 G(S),反馈通道传递函数为 H(S),当输入信号为 R(S),则从输入端

D、与是否为单位反馈系统有关

 $C \cdot s(s+1)+1=0$

定义的误差 E(S)为 ()

A,
$$E(S) = R(S) \cdot G(S)$$

$$B \setminus E(S) = R(S) \cdot G(S) \cdot H(S)$$

$$C \setminus E(S) = R(S) \cdot G(S) - H(S)$$
 $D \setminus E(S) = R(S) - G(S)H(S)$

D,
$$E(S) = R(S) - G(S)H(S)$$

5、已知下列负反馈系统的开环传递函数,应画零度根轨迹的是(

$$A = \frac{K^*(2-s)}{s(s+1)}$$

$$B \sim \frac{K^*}{s(s-1)(s+5)}$$

A,
$$\frac{K^*(2-s)}{s(s+1)}$$
 B, $\frac{K^*}{s(s-1)(s+5)}$ C, $\frac{K^*}{s(s^2-3s+1)}$ D, $\frac{K^*(1-s)}{s(2-s)}$

$$D, \frac{K^*(1-s)}{s(2-s)}$$

6、闭环系统的动态性能主要取决于开环对数幅频特性的:

7、已知单位反馈系统的开环传递函数为 $G(s) = \frac{10(2s+1)}{s^2(s^2+6s+100)}$, 当输入信号是 $r(t) = 2 + 2t + t^2$ 时,系统的稳态

误差是()

B,
$$\infty$$
; C, 10; D,

8、关于系统零极点位置对系统性能的影响,下列观点中正确的是(

A 、 如果闭环极点全部位于 S 左半平面,则系统一定是稳定的。稳定性与闭环零点位置无关;

如果闭环系统无零点,且闭环极点均为负实数极点,则时间响应一定是衰减振荡的;

C 、 超调量仅取决于闭环复数主导极点的衰减率,与其它零极点位置无关;

如果系统有开环极点处于 S 右半平面,则系统不稳定。

三、(16 分)已知系统的结构如图 1 所示,其中 $G(s) = \frac{k(0.5s+1)}{s(s+1)(2s+1)}$,输入信号为单位斜坡函数,求系

统的稳态误差 $(8\,\%)$ 。分析能否通过调节增益 k ,使稳态误差小于 (0.2)0.2

四、 $(16 \, \%)$ 设负反馈系统如图 2 ,前向通道传递函数为 $G(s) = \frac{10}{s(s+2)}$,若采用测速负反馈 $H(s) = 1 + k_s s$,

试画出以k。为参变量的根轨迹(10分),并讨论k。大小对系统性能的影响(6分)。

五、已知系统开环传递函数为 $G(s)H(s)=rac{k(1- au s)}{s(Ts+1)},k, au,T$ 均大于0,试用奈奎斯特稳定判据判断系统稳定性。 (16分) [第五题、第六题可任选其一]

六、已知最小相位系统的对数幅频特性如图 3 所示。试求系统的开环传递函数。(16 分)

七、设控制系统如图 4,要求校正后系统在输入信号是单位斜坡时的稳态误差不大于 0.05,相角裕度不小于 40°, 幅值裕度不小于 10 dB, 试设计串联校正网络。(16分)

试题四

和,
o
空制理论中系统数
,相频特性
相应的传递函数

- - B、 F(s)的极点就是开环传递函数的极点
 - C、 F(s)的零点数与极点数相同
 - F(s)的零点就是闭环传递函数的极点
- 2、已知负反馈系统的开环传递函数为 $G(s) = \frac{2s+1}{s^2+6s+100}$,则该系统的闭环特征方程为(

A,
$$s^2 + 6s + 100 = 0$$

B,
$$(s^2 + 6s + 100) + (2s + 1) = 0$$

$$C_{5}$$
 $s^{2} + 6s + 100 + 1 = 0$

D、与是否为单位反馈系统有关

3、一阶系统的闭环极点越靠近S平面原点,则()。

A、准确度越高

- B、准确度越低 C、响应速度越快 D、响应速度越慢
- 4、已知系统的开环传递函数为 $\frac{100}{(0.1s+1)(s+5)}$,则该系统的开环增益为 ()。

A, 100

B、1000 C、20 D、不能确定

5、若两个系统的根轨迹相同,则有相同的:

A、闭环零点和极点

B、开环零点

C、闭环极点 D、阶跃响应

6、下列串联校正装置的传递函数中,能在 $\omega_c = 1$ 处提供最大相位超前角的是()。

A, $\frac{10s+1}{s+1}$ B, $\frac{10s+1}{0.1s+1}$ C, $\frac{2s+1}{0.5s+1}$ D, $\frac{0.1s+1}{10s+1}$

- 7、关于 P I 控制器作用,下列观点正确的有()
 - A、 可使系统开环传函的型别提高,消除或减小稳态误差;
 - B、 积分部分主要是用来改善系统动态性能的;
 - C、 比例系数无论正负、大小如何变化,都不会影响系统稳定性;
 - D、 只要应用 P I 控制规律,系统的稳态误差就为零。
- 8、关于线性系统稳定性的判定,下列观点正确的是()。
 - 线性系统稳定的充分必要条件是:系统闭环特征方程的各项系数都为正数:
 - 无论是开环极点或是闭环极点处于右半 S 平面, 系统不稳定; В、
 - 如果系统闭环系统特征方程某项系数为负数,系统不稳定;
 - 当系统的相角裕度大于零,幅值裕度大于1时,系统不稳定。
- 9、关于系统频域校正,下列观点错误的是()
 - A、 一个设计良好的系统,相角裕度应为 45 度左右;
 - 开环频率特性,在中频段对数幅频特性斜率应为-20dB/dec; В
 - C、 低频段,系统的开环增益主要由系统动态性能要求决定:

- D、 利用超前网络进行串联校正,是利用超前网络的相角超前特性。
- 10、已知单位反馈系统的开环传递函数为 $G(s) = \frac{10(2s+1)}{s^2(s^2+6s+100)}$, 当输入信号是 $r(t) = 2+2t+t^2$ 时,系统的稳

态误差是()

A, 0

C, 10

三、写出下图所示系统的传递函数 $\frac{C(s)}{R(s)}$ (结构图化简,梅逊公式均可)。

四、(共15分)已知某单位反馈系统的闭环根轨迹图如下图所示

- 1、写出该系统以根轨迹增益 K*为变量的开环传递函数; (7分)
- 2、求出分离点坐标,并写出该系统临界阻尼时的闭环传递函数。(8分)

五、系统结构如下图所示,求系统的超调量 σ % 和调节时间 t_s 。(12 分)

六、已知最小相位系统的开环对数幅频特性 $L_o(\omega)$ 和串联校正装置的对数幅频特性 $L_o(\omega)$ 如下图所示,原系统的幅值穿越频率为 $\omega_c=24.3 rad/s$:(共 30 分)

- 1、 写出原系统的开环传递函数 $G_0(s)$,并求其相角裕度 γ_0 ,判断系统的稳定性;(10分)
- 2、 写出校正装置的传递函数 $G_c(s)$;(5分)
- 3、写出校正后的开环传递函数 $G_0(s)G_c(s)$,画出校正后系统的开环对数幅频特性 $L_{GC}(\omega)$,并用劳斯 判据判断系统的稳定性。(15 分)

