### Optimization

#### Heuristic optimization lab

Samir Kanaan-Izquierdo



Course 2019/20

#### Guidelines

You have several optimization exercises to choose from, according to your interests and preferences.

- Work in groups of 2, one delivery per group (with the names of all participants)
- You have to solve and deliver **exactly** 2 exercises
- Note that each exercise has a maximum mark, depending on its difficulty level
- Deliver one Jupyter notebook per exercise
- Explain your approaches, analyze the results, explore different options, compare them. All of this will improve your mark
- Of course you are welcome to try all the exercises just for learning+fun!

## Ex1 (3p). Local vs global

The following function has several local minima and one global minimum.

$$0.2 \cdot (1.5 + \sin(x+5)) \cdot (x-3)^2$$

#### Tasks:

- Find out (analitically) the global minimum (x and y)
- Write and program the gradient of this function
- Use gradient descent to find the minima. Try different starting points, analyze the results

# Ex1 (cont)



### Ex2 (4p). The signal

You receive the following signal (file signal2.csv) from a distant galaxy. Think of a mathematical function that can approximate the signal and apply gradient descent to find the parameters of the function that minimize the approximation error.



# Ex3 (3p). The signal again

The same as before but using genetic algorithms.



### Ex4 (4p). Parashooting

You want to launch a ball to a distance exactly 100 meters away from its starting position. You need to adjust two parameters: initial speed  $(v_0)$  and angle  $(\theta)$ . Find an optimal combination of  $v_0$  and  $\theta$  using gradient descent.



$$d = \frac{v_0^2 sin(2\theta)}{g}$$

# Ex5 (5p). Gift card

You have a gift card worth 100€ that is about to expire. There are several items in the catalog and you can pick any combination of items, even repeat some, with two conditions:

- You cannot spend more than 100€
- You should spend as much of your money as possible (ideally 100€)

Please follow these steps to solve the exercise:

- 1 Choose a format for the solutions
- Design and program the objective function
- 3 Use DEAP to solve this problem (genetic algorithm)
- 4 Explore different hyperparameters: population size, generations, mutation rates... (at will)

# Ex5 (cont)

| Item             | Price (€) |
|------------------|-----------|
| SD Card          | 14.55     |
| Pen              | 0.68      |
| Sunglasses       | 35.27     |
| Watch            | 49.60     |
| Headphones       | 27.85     |
| Charger          | 8.75      |
| Screen protector | 1.44      |
| Phone case       | 14.89     |
| Wireless charger | 40.55     |
| USB-C cable      | 4.30      |
| Tablet           | 95.79     |



# Ex6 (5p). Containers

We have to fill four shipping containers (load capacity 240 kg) with packages that weigh: 25, 46, 25, 11, 34, 48, 85, 120, 111, 70, 87, 35, 61, 102, 94, 131, 73, 9, 142

The goal is to pick a combination of packages to maximize the overall load of the containers using GAs. There is just one package of each type.



## Ex7 (5p). Taxis

You manage a fleet of t taxis and receive calls from c clients. The GPS system tells you the ETA (expected time to arrive) of each taxi to each client, as in this table:

| Taxi/Client | <b>C</b> 1 | C2 | <b>C</b> 3 | C4 | C5 |
|-------------|------------|----|------------|----|----|
| T1          | 5          | 7  | 3          | 5  | 8  |
| T2          | 3          | 2  | 1          | 4  | 6  |
| T3          | 2          | 10 | 8          | 6  | 7  |
| T4          | 4          | 6  | 4          | 5  | 9  |
| T5          | 5          | 8  | 2          | 8  | 8  |

Your goal is to assign one taxi to each client so that the average waiting time of the clients is as low as possible.

# Ex7 (cont)



# Ex8 (4p). Propose an optimization problem

Describe an optimization problem that you can think of from your own academic/professional experience. You do not have to solve it, just propose the problem.



- 1 Describe the problem with enough detail
- 2 Propose a format to encode solutions for this problem
- 3 List the constraints that apply
- 4 Propose an objective function (not necessary to program it, you can simply describe it)

Please do not pick problems from the Internet!!!