Первое домашнее задание

13 февраля 2021 г.

1 Сокращение вероятностного пространства

Пусть есть какое-то вероятностное пространство (Ω, Σ, \Pr) , и в нем есть событие $A \in \Sigma$, причем $\Pr(A) > 0$. Докажите, что на событии A можно построить новое вероятностное пространство $(\Omega_A = A, \Sigma_A, \Pr_A)$, такое, чтобы для любых двух событий $B, C \subset A$, являющихся элементами Σ , было верно $\Pr_A(B \mid C) = \Pr(B \mid C)$.

Определить верность утверждений:

- События $B, C \subset A$ независимы в пространстве A, тогда они независимы и в исходном пространстве.
- События $B, C \subset A$ независимы в исходном пространстве, тогда они независимы и в пространстве A.
- События $A, B, C \in \Sigma$ попарно независимы в исходном пространстве, тогда $A \cap B$ и $A \cap C$ независимы в пространстве A.

2 Разные кости

Будем обозначать игральюную кость с n гранями dn (например, d6, d12). У нас есть 6 различных костей: d2, d4, d6, d8, d12 и d20. Кто-то выбирает одну из этих костей равновероятно и бросает. Мы не знаем, какую выбрали кость, но нам сообщают результат этого броска. Какое для нас будет распределение втрого броска (сделанного той же костью, что и первый бросок)? Каково математическое ожидание результата второго броска?

3 Монетки и биномиальное распределение

Честную монету бросают 15 раз. Посчитайте вероятность того, что среди первых 10 бросков строго больше пяти орлов, если известно, что среди последних 10 бросков строго больше пяти орлов.

4 Парадокс двух конвертов без парадокса

Человек играет в следующую игру. Перед ним кладут два конверта и сообщают, что в одном чек на сумму 2^n септимов, а в другом — на сумму 2^{n+1} (где n — целое неотрицательное число), но неизвестно, в каком конверте какой чек. Один конверт вскрывается, и игроку становится известна сумма на чеке в этом конверте. Игроку предлага.т забрать один из конвертов. С точки зрения максимизации выигрыша стоит ему взять открытый конверт или запечатанный, если

- 1. Распределение пары конвертов $(2^n, 2^{n+1})$ следует геометрическому распределению с вероятностью успеха p, то есть $\Pr((2^n, 2^{n+1})) = p(1-p)^n$.
- 2. Распределение пары конвертов $(2^n,2^{n+1})$ следует степенному закону со степенью 2, то есть $\Pr((2^n,2^{n+1}))=\frac{6}{\pi^2(n+1)^2}$.