

Residential Water Systems

Goulds Pumps

4" Submersible Pumps Installation and Operation Instructions

Goulds Pumps is a brand of ITT Corporation.

www.goulds.com

Engineered for life

Owner's Information

Pump Model #:
Pump Serial #:
Motor Model #:
Motor Serial #:
Dealer:
Dealer Telephone:
Purchase Date:
Installation Date:
Volts:
Amps:

Table of Contents

<u>SUBJECT</u>	<u>PAGE</u>
Safety Instructions	3 & 4
Pump Protection Devices	4
Installation Checklist	5
1.0 Typical Installations	6
2.0 Piping and Tank	7
3.0 Wire Sizing, Splicing and	
Power Supply	9
4.0 Wiring the Controls and	
Switch	9
5.0 Starting the Pump	12
6.0 Paperwork and IOM	12
CentriPro 4" 1 Ph Motor Data	13
Single Phase Wire Sizing Charts	s 14
PumpSaver Schematics	14
F.E. Single Phase Motor Data	15
Three Phase Motor Data	16
Resistance and Generator Data	18
Wiring Diagrams 19	& 20
Overload Relay Data	21
Troubleshooting	22
Declaration of Conformity	62
Limited Warranty	63

SAFETY INSTRUCTIONS

TO AVOID SERIOUS OR FATAL PERSONAL INJURY OR MAJOR PROPERTY DAMAGE, READ AND FOLLOW ALL SAFETY INSTRUCTIONS IN MANUAL AND ON PUMP.

THIS MANUAL IS INTENDED TO ASSIST IN THE INSTALLATION AND OPERATION OF THIS UNIT AND MUST BE KEPT WITH THE PUMP.

This is a **SAFETY ALERT SYMBOL**. When you see this symbol on the pump or in the manual, look for one of the following signal words and be alert to the potential for personal injury or property damage.

DANGER

Warns of hazards that WILL cause serious personal injury, death or major property damage.

▲ WARNING

Warns of hazards that CAN cause serious personal injury, death or major property damage.

▲ CAUTION

Warns of hazards that CAN cause personal injury or property damage.

NOTICE: INDICATES SPECIAL INSTRUCTIONS WHICH ARE VERY IMPORTANT AND MUST BE FOLLOWED.

THOROUGHLY REVIEW ALL INSTRUCTIONS AND WARNINGS PRIOR TO PERFORMING ANY WORK ON THIS PUMP.

MAINTAIN ALL SAFETY DECALS.

Important notice: Read safety instructions before proceeding with any wiring

All electrical work must be performed by a qualified technician. Always follow the National Electrical Code (NEC), or the Canadian Electrical Code, as well as all local, state and provincial codes. Code questions should be directed to your local electrical inspector. Failure to follow electrical codes and OSHA safety standards may result in personal injury or equipment damage. Failure to follow manufacturer's installation instructions may result in electrical shock, fire hazard, personal injury or death, damaged equipment, provide unsatisfactory performance, and may void manufacturer's warranty.

A WARNING Standard units are not designed for use in swimming pools, open bodies of water, hazardous liquids, or where flammable gases exist. Well must be vented per local codes. See specific pump catalog bulletins or pump nameplate for all agency Listings.

A WARNING Disconnect and lockout electrical power before installing or servicing any electrical equipment. Many pumps are equipped with automatic thermal overload protection which may allow an overheated pump to restart unexpectedly.

Never over pressurize the tank, piping or system to a pressure higher than the tank's maximum pressure rating. This will damage the tank, voids the warranty and may create a serious hazard.

Protect tanks from excessive moisture and spray as it will cause the tank to rust and may create a hazard. See tank warning labels and IOM for more information.

SAFETY INSTRUCTIONS (continued)

A WARNING Do not lift, carry or hang pump by the electrical cables. Damage to the electrical cables can cause shock, burns or death.

▲ WARNING

Use only stranded copper wire to pump/motor and ground. The ground wire must be at least as large as the power supply wires. Wires should be color coded for ease of maintenance and troubleshooting.

DANGER

Install wire and ground according to the National Electrical Code (NEC), or the Canadian Electrical Code, as well as all local, state and provincial codes.

▲ WARNING

Install an all leg disconnect switch where required by code.

▲ WARNING

The electrical supply voltage and phase must match all equipment requirements. Incorrect voltage or phase can cause fire, motor and control damage, and voids the warranty.

▲ WARNING

All splices must be waterproof. If using splice kits follow manufacturer's instructions.

▲ WARNING

Select the correct type and NEMA grade junction box for the application and location. The junction box must insure dry, safe wiring connections.

▲ CAUTION

All motors require a minimum 5' submergence for proper refill check valve operation.

▲ WARNING

Failure to permanently ground the pump, motor and controls before connecting to power can cause shock, burns or death.

A CAUTION

All three phase $(3\emptyset)$ controls for submersible pumps must provide Class 10, quick-trip, overload protection.

▲ WARNING

4" motors \geq 2 HP require a minimum flow rate of .25 ft/sec. or 7.62 cm/sec. past the motor for proper motor cooling. The following are the minimum flows in GPM per well diameter required for cooling: 1.2 GPM/4", 7 GPM/5", 13 GPM/6", 20 GPM/7", 30 GPM/8" or 50 GPM in a 10" well.

A CAUTION

Pumps ≥ 2 HP installed in large tanks should be installed in a flow inducer sleeve to create the needed cooling flow or velocity past the motor.

A CAUTION

This pump has been evaluated for use with Water Only.

PUMP PROTECTION

We recommend using SymCom's PumpSaver to protect the system from low water, rapid cycling, high/low voltage, dead heading/flow restriction and overcurrent. Franklin Electric's PumpTec will not work with CentriPro 2-wire PSC motors!

INSTALLATION CHECK LIST

- Enter the pump and motor information and other requested data on the front of this manual.
- Inspect all components for shipping damage, report damage to the distributor immediately.
- Verify that motor HP and pump HP match.
- Match power supply voltage and phase to motor and control specifications.
- Select a dry, shaded location in which to mount the controls.
- Make all underwater and underground splices with waterproof splice connections.
- Hold the pump at the discharge head when installing threaded pipe or an adapter fitting as most pumps have left hand threads which will be loosened if you hold the pump anyplace except the discharge head.
- Check all plumbing connections to insure they are tight and sealed with Teflon tape.
- Verify that the pipe pressure rating is higher than pump shut-off pressure.
- Install a pressure relief valve on any system capable of creating over 75 PSI. The system pressure cannot exceed the tank's maximum pressure rating.
- Locating the tank and controls in an area protected from rain, spray and other environmental factors may prolong their useful life. Especially in areas with acid rain and saline water.
- Locate the pressure switch within 4' of the pressure tank to prevent switch chatter.
- Adjust tank pre-charge to 2 PSI below the system cut-in pressure setting, ex. 28 on a 30/50 system.
- Set the pump 10' above the well bottom to keep above sediment and debris.
- Insure that main power is disconnected, turned OFF, before wiring any components.
- Wiring should be performed only by qualified technicians.
- Wiring and Grounding must be in compliance with national and local codes.
- Restrict the flow with a ball or globe valve, 1/3 open, before starting pump for first time.
- Open a faucet or discharge valve on start-up to keep dirty water from entering the tank.
- Turn main breaker or disconnect ON.
- Run through several on/off cycles to verify proper switch operation.
- Check amps and enter the data on the front of this manual.
- Leave the manual with the owner or at the job site.

1.0 TYPICAL INSTALLATIONS

CAPTIVE AIR TANK INSTALLATION

6

NOTICE: TANK PRE-CHARGE PRESSURE CHANGES MUST BE MADE USING THE AIR VALVE ON TOP OF THE TANK.

2.0 PIPING

Notice: Most 4" submersibles have left-hand discharge head threads, hold the pump <u>only</u> at the "discharge head" when installing fittings or threaded pipe.

2.1 General

The pump discharge piping should be sized for efficient pump operation. Use the Friction Loss Tables to calculate total

dynamic head using different pipe sizes. As a rule of thumb, use 1" for up to 10 gpm, 1½" for up to 30 gpm, 1½" for up to 45 gpm, and 2" for up to 80 gpm. In the case of long pipe runs it is best to increase pipe size.

Some pumps are capable of very high discharge pressures, please select pipe accordingly. Consult with your pipe supplier to determine the best type of pipe for each installation.

2.2 Pressure Tank, Pressure Switch and Pressure Relief Valve

Select a dry location in which the ambient temperature is always above 34° F (1° C) in which to install the tank, pressure switch,

and pressure relief valve. The tank should be located in an area where a leak will not damage property.

The pressure switch should be located at the tank cross tee and never more than 4' from the tank. Locating the switch more than 4' from the tank will cause switch chatter.

Do not install valves, filters, or high loss fittings between the switch and the tank(s) as switch chatter may result. As an example, a 1½" spring check valve has friction loss equal to 12' of pipe, placing the valve between

the pressure switch and the pressure tank is the same as moving the pressure switch 12' away from the tank. It will create switch chatter.

On multiple tank installations the switch should be as close to the center of the tanks as possible. Multiple tank installations should have a manifold pipe at least 1½ times the size of the supply pipe from the pump. This will reduce the Friction Head in the manifold and reduce the possibility of switch chatter.

Pressure relief valves are required on any system that is capable of producing 100 psi or 230' TDH. If blow-off may damage property, connect a drain line to the pressure relief valve and run it to a suitable drain.

2.3 Adjusting Tank Pre-Charge

Insure that the tank is empty of water. Use a high quality pressure gauge to check the tank pre-charge pressure. The pressure should be 2 psi below the pump cut-in pressure. As an example, a 30-50 psi system would use a tank pre-charge of 28 psi.

2.4 Discharge Pipe

Note: Most discharge heads are threaded into the casing with left-hand threads. Hold the pump only at the discharge head when installing fittings. Failure to hold the discharge head will loosen it and pump damage will result on start-up.

If your pipe requires an adapter we strongly recommend using stainless steel. Galvanized fittings or pipe should never be connected directly to a stainless steel discharge head as galvanic corrosion may occur. Plastic or brass pumps can use any material for this connection. Barb type connectors should always be double clamped.

The pump discharge head has a loop for attaching a safety cable. The use of a safety cable is recommended when using poly pipe as the pipe stretches when under pressure and filled with water.

2.5 Installing Pump in Well

If using a torque arrestor, install it per the manufacturer's installation instructions. Consult the seller for information on torque arrestors and for installation instructions.

Connect the discharge pipe to the discharge head or adapter. Barb style connectors should be double clamped. Install the pump into the well using a pitless adapter or similar device at the wellhead. Consult the fitting manufacturer or pitless supplier for specific installation instructions.

Using waterproof electrical tape, fasten the wires to the drop pipe at 10' intervals. Pump suppliers also sell clip-on style wire connectors that attach to the drop pipe.

2.6 Special Piping For Galvanized Tank Systems

When using a galvanized tank install an AV11 Drain & Y fitting in the well and a check valve with snifter valve at the tank. This will add air to the tank and prevent water logging the tank. Use an AA4 Air Escape on the tank to allow excess air to escape. The distance between the AV11 and check valve with snifter valve determines the amount of air introduced on each cycle. See the table for recommended settings. See Figure 2 in Sec 1.0.

Gaseous wells should use galvanized or glass lined steel tanks with AA4 air escapes to vent off excess air and prevent "spurting" at the faucets.

Methane and other explosive or dangerous gases require special water treatment for safe removal. Consult a water treatment specialist to address these issues.

Installations with top feeding wells should use flow sleeves on the pump.

2.7 Check Valves

Our pumps use four different styles of check valves. We recommend check valves as they prevent back-spinning the pump and motor which will cause premature bearing wear. Check valves also prevent water hammer and upthrust damage. Check valves should be installed every 200' in the vertical discharge pipe. See notes 1 & 2 on Figure 1 for other check valve placement recommendations.

If you wish to disable a check valve for a drain back system, you should use other means to prevent water hammer and upthrust damage:

- Built-in stainless steel valves have a flat which is easily drilled through using an electric drill and a 1/4" or 3/8" drill bit to disable the valve.
- Poppet style check valves which are threaded in from the top of the discharge head can be easily removed using a ½" nut driver or deep socket. The hex hub is visible and accessible from the top.
- Internal Flomatic[™] design plastic poppet style valves must be removed from inside which requires pump disassembly.
- Built-in plastic poppet style valves with a stem through the top may be removed from discharge head by pulling on the stem with pliers.

SPLICING and POWER SUPPLY

Always follow the National Electric Code (N.E.C.), Canadian Electrical Code, and any state, provincial, or local codes.

We suggest using only copper wire. Size wire from the charts found in the Technical Data section of this manual, MAID manual, or an N.E.C. (National Electric Code) code book. If discrepancies exist the N.E.C. book takes precedence over a manufacturer's recommendations.

3.1 Splicing Wire to Motor Leads

When the drop cable must be spliced or connected to the motor lead, it is necessary that the splice be watertight. The splice can be done with heat shrink kits or waterproof tape.

A. Heat Shrink Splice Instructions

To use a typical heat shrink kit: strip ½" from the motor wires and drop cable wires; it is best to stagger the splices. Place the heat shrink tubes on the wires. Place the crimps on the wires and crimp the ends. Slide the heat shrink tubes over the crimps and heat from the center outward. The sealant and adhesive will ooze out the ends when the tube shrinks. The tube, crimps, sealant, and adhesive create a very strong, watertight seal.

B. Taped Splice Instructions

A) Strip individual conductor of insulation only as far as necessary to provide room for a stake type connector. Tubular

- connectors of the staked type are preferred. If connector O.D. is not as large as cable insulation, build-up with rubber electrical tape.
- B) Tape individual joints with rubber electrical tape, using two layers; the first extending two inches beyond each end of the conductor insulation end, the second layer two inches beyond the ends of the first layer. Wrap tightly, eliminating air spaces as much as possible.
- C) Tape over the rubber electrical tape with #33 Scotch electrical tape, or equivalent, using two layers as in step "B" and making each layer overlap the end of the preceding layer by at least two inches.

In the case of a cable with three conductors encased in a single outer sheath, tape individual conductors as described, staggering joints.

Total thickness of tape should be no less than the thickness of the conductor insulation.

AWARNING 4.0 WIRING THE ROLS and

4.1 Mounting the Motor Control Box

Single phase 3-wire control boxes meet U.L. requirements for Type 3R enclosures. They are suitable for vertical mounting in indoor and outdoor locations. They will operate at temperatures between 14°F (-10°C) and 122°F (50°C). Select a shaded, dry place to mount the box. Insure that there is enough clearance for the cover to be removed.

4.2 Verify Voltage and Turn Supply Power Off

Insure that your motor voltage and power supply voltage are the same.

Place the circuit breaker or disconnect switch in the OFF position to prevent accidentally starting the pump before you are ready.

Three-phase starter coils are very voltage sensitive; always verify actual supply voltage with a voltmeter.

High or low voltage, greater than $\pm 10\%$, will damage motors and controls and is not covered under warranty.

4.3 Connecting Motor Leads to Motor Control Box, Pressure Switch or Starter

AWARNING Caution Do not power the unit or run the pump until all electrical and plumbing connections are completed. Verify that the disconnect or breaker is OFF before

connecting the pressure switch line leads to the power supply. Follow all local and national codes. Use a disconnect where required by code.

A. Three-Wire Single Phase Motor Connect the color coded motor leads to the motor control box terminals - Y (yellow), R (red), and B (black); and the Green or bare wire to the green ground screw.

Connect wires between the Load terminals on the pressure switch and control box terminals L1 and L2. Run a ground wire between the switch ground and the control box ground. See Figure 4 or 5.

B. Two-Wire Single Phase Motor Connect the black motor leads to the Load terminals on the pressure switch and the green or bare ground wire to the green ground screw. CentriPro 2-wire motors will not work with

Franklin Electric PumpTec. Use a PumpSaver. See Figure 3.

C. Three phase motors

Connect the motor leads to T1, T2, and T3 on the 3 phase starter. Connect the ground wire to the ground screw in the starter box. Follow starter manufacturers instructions for connecting pressure switch or see Figure 6.

4.4 Connect To **Power Supply**

AWARNING Complete the wiring by making the connection from the single phase pressure switch Line terminals to the circuit breaker panel or disconnect where used.

Three phase - make the connections between L1, L2, L3, and ground on the starter to the disconnect switch and then to the circuit breaker panel.

Three phase installations must be checked for motor rotation and phase unbalance. To reverse motor rotation, switch (reverse) any two leads. See the instructions for checking three phase unbalance in section 4.6. Failure to check phase unbalance can cause premature motor failure and nuisance overload tripping. If using a generator, see Technical Data for generators.

4.5 Three Phase Overload Protection

Use only Class 10, quick-trip overload protection on three-phase submersible motors. Furnas Class 14 NEMA starters with ESP100 overloads and Class 16 starters equipped with "K" overload heaters or ESP100 overloads will provide adequate protection. See Class 16 charts in this IOM.

Call the pump manufacturer's Customer Service group for selection assistance.

4.6 Three Phase Power Unbalance

A full three phase supply consisting of three individual transformers or one three phase transformer is recommended. "Open" delta or wye connections using only two transformers can be used, but are more likely to cause poor performance, overload tripping or early motor failure due to current unbalance.

Check the current in each of the three motor leads and calculate the current unbalance as explained below.

If the current unbalance is 2% or less, leave the leads as connected.

If the current unbalance is more than 2%, current readings should be checked on each leg using each of the three possible hook-ups. Roll the motor leads across the starter in the same direction to prevent motor reversal.

 $4 \div 50 = .08 \text{ or } 8\%$

To calculate percent of current unbalance:

- A. Add the three line amp values together.
- B. Divide the sum by three, yielding average current.
- C. Pick the amp value which is furthest from the average current (either high or low).
- D. Determine the difference between this amp value (furthest from average) and the average.
- E. Divide the difference by the average.

Multiply the result by 100 to determine percent of unbalance.

Current unbalance should not exceed 5%. If the unbalance cannot be corrected by rolling leads, the source of the unbalance must be located and corrected. If, on the three possible hookups, the leg farthest from the average stays on the same power lead, most of the unbalance is coming from the power source.

Contact your local power company to resolve the imbalance.

11--1----

 $1 \div 50 = .02 \text{ or } 2\%$

11--1----

	F	lookup	1	F	łookup i	2	ŀ	lookup :	3
Starter Terminals	L1	L2	L3	L1	L2	L3	L1	L2	L3
	\perp	\perp	\perp	1	\perp	\perp	\perp	\perp	1
	Τ	Τ	Τ	Т	Τ	Т	Τ	Τ	Т
Motor Leads	R	В	Υ	Υ	R	В	В	Υ	R
	T3	T1	T2	T2	T3	T1	T1	T2	T3
Example:									
T3-R = 51	amps		T2-Y =	50 am	ps	T	1-B = 5	50 amps	
T1-B = 46	amps		T3-R =	48 am	ps	1	$^{-}2-Y = 4$	49 amps	
T2-Y = 53	amps		T1-B =	52 am	ps .	T	3-R = !	51 amps	
Total = 150		1		150 am		To	tal = 1!	50 amps	
$\div 3 = \overline{50}$	amps .		÷ 3 =	50 am	ps .		\div 3 = $\overline{!}$	50 amps	
-46 = 4	amps		- 48	= 2 am	ps		-49 =	1 amps	

 $2 \div 50 = .04 \text{ or } 4\%$

11 - - 1 -- -- 4

5.0 STARTING THE PUMP

ACAUTION 5.1 Install a Valve and Run the Pump To Clear the Water

On a new well - Install a ause personal injury, aroperty damage or death. ball or globe valve on the pump discharge line and

with the valve ½ open, pump the well until the water begins to run clear. Open the valve slowly to check flow and when the water runs clear turn the pump Power Off.

Remove the ball or globe valve and connect the pump discharge to the house plumbing, pressure tank and switch. Turn Power On. Run a few cycles through the tank to rinse it out and to verify proper pump and switch operation. Use this time to check all fittings for leaks.

CAUTION: If the well has a high static level, please see next section for important pump protection information.

ACAUTION 5.2 Throttling A High Static Level Well To Prevent Upthrust

refour pressure can personal injury entry damage or death. Any well with a high static water level may allow the

pump to operate off the curve to the right or outside the "Recommended Range" shown on the pump curve. We recommend using a "Dole" flow restrictor or throttling with a ball valve to prevent upthrust damage to

the pump and motor. The maximum flow must be restricted to be within the pumps recommended operating range. If you use a ball valve, set it, remove the handle, tape the handle to the pipe, and tag the valve with a note saying, "Do not open this valve or pump may be damaged". The easiest way to "set" the flow is to fill a 5 gallon bucket and time how long it takes to produce 5 gallons. Calculate the flow in gpm based on this value. As the water level drops in the well the flow will be reduced due to increased head and the valve will not interfere with performance.

6.0 PAPERWORK and IOM

Please give this filled-in IOM and vour business card to the owner. A sticker with your name and phone number on the tank or control box is a great sales tool for future business!

We now provide an extra pump label which you can affix to the IOM, put on a 3-wire control box or locate near the tank and pressure switch for future pump identification.

CENTRIPRO 4", 1 PHASE MOTOR DATA

Туре	Order No.	НР	KW	Volts	SF	FL Amps	SF Amps	LR Amps	Time Delay Fuse	Std. Circuit Breaker	Code	Winding Res.
	M05421	0.5	0.37	115	1.6	7.4	9.5	36.4	20	25	K	1.4-1.7
2 14.5	M05422	0.5	0.37	230	1.6	3.7	4.7	19.5	10	15	K	4.6-5.6
2-Wire (PSC)	M07422	0.75	0.55	230	1.5	5.0	6.4	24.8	15	20	J	3.5-4.3
(1.50)	M10422	1.0	0.75	230	1.4	7.9	9.1	22.0	15	20	F	4.2-5.2
	M15422	1.5	1.1	230	1.3	9.2	11.0	42.0	20	30	Н	1.9-2.3

Туре	Order No.	HP	KW	Volts	SF	FL Amps	SF Amps	LR Amps		Std. Circuit Breaker	KVA Code	Main Res. (Bl-Yel)	Start Res. (Red-Yel)	Required Control Box
	M05411	0.5	0.37	115	1.6		Y-12.6 B-12.6 R-0	49.6	20	30	N	1.1-1.4	5.7-7.0	CB05411
3-Wire	M05412	0.5	0.37	230	1.6	Y-5.5 B-5.5 R-0	Y-6.3 B-6.3 R-0	22.3	10	15	М	4.0-4.9	16.3-19.9	CB05412
csir	M07412	0.75	0.55	230	1.5	Y-7.2 B-7.2 R-0	Y-8.3 B-8.3 R-0	32.0	15	20	L	2.7-3.3	11.1-13.6	CB07412
	M10412	1.0	0.75	230	1.4	Y-8.4 B-8.4 R-0	Y-9.7 B-9.7 R-0	41.2	20	25	L	2.5-3.1	10.6-13.0	CB10412
	M05412	0.5	0.37	230	1.6	Y-4.1 B-4.1 R-2.2	Y-4.9 B-4.4 R-2.1	22.3	10	15	М	4.0-4.9	16.3-19.9	CB05412CR
	M07412	0.75	0.55	230	1.5	Y-5.1 B-5.1 R-3.2	Y-6.3 B-6.6 R-3.1	32.0	15	20	ш	2.7-3.3	11.1-13.6	CB07412CR
3-Wire	M10412	1.0	0.75	230	1.4	Y-6.1 B-5.7 R-3.3	Y-7.2 B-6.3 R-3.3	41.2	20	25	L	2.5-3.1	10.6-13.0	CB10412CR
w/	M15412	1.5	1.1	230	1.3	Y-9.7 B-9.5 R-1.4	Y-11.1 B-11.0 R-1.3	47.8	20	30	J	1.9-2.4	7.4-9.1	CB15412CR
	M20412	2	1.5	230	1.25	Y-9.9 B-9.1 R-2.6	Y-12.2 B-11.7 R-2.6	49.4	20	25	G	1.6-2.2	10.8-12.0	CB20412CR
	M30412	3	2.2	230	1.15	Y-14.3 B-12.3 R-5.7	Y-16.5 B-13.1 R-5.7	76.4	10	25	G	1.1-1.4	2.0-2.5	CB30412CR
	M50412	5	3.7	230	1.15									CB50412CR

3-WIRE & 2-WIRE CENTRIPRO 1Ø MOTOR WIRE SIZING CHART

	Motor Lead Lengths - CentriPro 2-Wire Motors - Based on Service Factor Amps, 30° C Ambient and 5% Voltage Drop													
Motor Rating 60° C & 75° C Insulation - AWG Copper Wire Size														
Volts	HP	kW	SFA	14										
115	1/2	0.37	9.5	115	115 183 293 463 721 1150 1825 2902 3662 4623 5824									
230	1/2	0.37	4.7	466	742	1183	1874	2915	4648	7379	11733	14803	18688	23544
230	3/4	0.55	6.4	342	545	869	1376	2141	3413	5419	8617	10871	13724	17290
230	1	0.75	9.1	241	241 383 611 968 1506 2400 3811 6060 7646 9652 12160									
230	11/2	1.1	11.0	199	317	505	801	1246	1986	3153	5013	6325	7985	10060

Motor Lead Lengths - CentriPro 3-Wire Motors (CSIR) -Based on Service Factor Amps, 30° C Ambient and 5% Voltage Drop

	Motor	Rating			•	60° C &	75° C	Insulat	ion - A	WG Co	pper V	Vire Siz	e	
Volts	HP	kW	SFA	14	12	10	8	6	4	2	1/0	2/0	3/0	4/0
115	1/2	0.37	12.6	87	138	221	349	544	867	1376	2188	2761	3485	4391
230	1/2	0.37	6.3	348	553	883	1398	2175	3467	5505	8753	11044	13942	17564
230	3/4	0.55	8.3	264	420	670	1061	1651	2632	4178	6644	8383	10582	13332
230	1	0.75	9.7	226	359	573	908	1413	2252	3575	5685	7173	9055	11408
230	11/2	1.1	11.1	197	314	501	793	1234	1968	3124	4968	6268	7913	9969

Tables based on values from NEC, Tables 310.16 and 310.17 and NEC, Chapter 9, Table 8 Conductor Properties.

NOTE: Motors and control boxes are designed to operate on 230V systems. Systems with low line voltage, between 200 – 207 volts require the next larger cable size than shown in the 230V charts. If using a 3-wire motor with control box on a low voltage application switch to a 208V start relay. The 208V start relay order numbers are found on control box repair part charts in this manual.

Another option is to use a boost transformer to increase voltage.

The 2-wire sizing chart above is only for use with PSC type, 2-wire motors.

Temperature Conversions:

 $20^{\circ} \text{ C} = 68^{\circ} \text{ F}, 30^{\circ} \text{ C} = 86^{\circ} \text{ F}, 60^{\circ} \text{ C} = 140^{\circ} \text{ F}, 75^{\circ} \text{ C} = 167^{\circ} \text{ F}, 90^{\circ} \text{ C} = 194^{\circ} \text{ F}$

PUMPSAVER 235

PUMPSAVER 111 / 233

SINGLE PHASE – 60 HZ FRANKLIN ELECTRIC MOTOR SPECIFICATIONS

Туре	Goulds Motor #/ Control Box	Franklin Motor Model Prefix	НР	Volts	Hz	S.F.	Amps	S.F. Amps	Ohms M=Main S=Start	Inverse Time Breaker	Dual Ele. Time Del. Fuse
	S04932/ NR	2445040	1/2	115	60	1.60	10.0	12.0	1.0 – 1.3	30	20
	S04942/ NR	2445050	1/2	230	60	1.60	5.0	6.0	4.2 – 5.2	15	10
4" 2W	S05942/ NR	2445070	3/4	230	60	1.50	6.8	8.0	3.0 – 3.6	20	15
4	S06942/ NR	2445081	1	230	60	1.40	8.2	9.8	2.2 – 2.7	25	20
	S07942/ NR	2445091	11/2	230	60	1.30	10.6	13.1	1.5 – 1.9	30	20
	S04930/ CB05411	2145044	1/2	115	60	1.60	Y=10.0 B=10.0 R=0.0	Y=12.0 B=12.0 R=0.0	M = 1.0 - 1.3 S = 4.1 - 5.1	30	20
3W	S04940/ CB05422	2145054	1/2	230	60	1.60	Y=5.0 B=5.0 R=0.0	Y=6.0 B=6.0 R=0.0	M = 4.2 - 5.2 $S = 16.7 - 20.5$	15	10
4	S05940/ CB07422	2145074	3/4	230	60	1.50	Y=6.8 B=6.8 R=0.0	Y=8.0 B=8.0 R=0.0	M = 3.0 - 3.6 S = 10.7 - 13.1	20	15
	S06940/ CB10422	2145081	1	230	60	1.40	Y=8.2 B=8.2 R=0.0	Y=9.8 B=9.8 R=0.0	M = 2.2 - 2.7 S = 9.9 - 12.1	25	20
Сар	S07940/ CB05412CR	2243001	1½	230	60	1.30	Y=10.0 B=9.9 R=1.3	Y=11.5 B=11.0 R=1.3	M = 1.5 - 2.3 S = 8.0 - 9.7	30	20
h Run	S08940/ CB20412CR	2243011	2	230	60	1.25	Y=10.0 B=9.3 R=2.6	Y=13.2 B=11.9 R=2.6	M = 1.6 - 2.3 S = 5.8 - 7.2	25	20
3W with RunCap	S09940/ CB30412CR ①	2243027	3	230	60	1.15	Y=14.0 B=11.2 R=6.1	Y=17.0 B=12.6 R=6.0	M = 1.0 – 1.5 S = 4.0 – 4.9	40	30
4" 3	S10940/ CB50412CR ②	2243037	5	230	60	1.15	Y=23.0 B=15.9 R=11.0	Y=27.5 B=19.1 R=10.8	M = 0.68 - 1.0 $S = 1.8 - 2.2$	60	45

M = Main Winding - Black to Yellow, S = Start Winding - Red to Yellow

Y = Yellow lead - line amps, B = Black lead - main winding amps,

R = Red lead, start or auxiliary winding amps

① Control Boxes date coded 02C and older have 35MFD capacitors and the current values will be Y14.0 @ FL and Y17.0 @ SF Load.

B12.2 B14.5 R4.7 R4.5

② Control boxes date coded 01M and older have 60MFD run capacitors and the current values on a 4" motor will be Y23.0 @ FL and Y27.5 @ SF Load.

> B19.1 B23.2 R8.0 R7.8

THREE PHASE – 60 HZ FRANKLIN ELECTRIC MOTOR SPECIFICATIONS

Туре	Model	Franklin Motor Model					Rated	l Input	Maxi (S.F. I		Line to Line	Locked Rotor	KVA	Inverse Time	Time
	#	Prefix	HP	Volts	Hz	S.F.	Amps	Watts	Amps	Watts	Res.	Amps	Code	Breaker	Del. Fuse
	S04978	234501	1/2	200	60	1.6	2.8	585	3.4	860	6.6-8.4	17.5	N	15	5
	S04970	234511	1/2	230	60	1.6	2.4	585	2.9	860	9.5-10.9	15.2	N	15	5
	S04975	234521	1/2	460	60	1.6	1.2	585	1.5	860	38.4-44.1	7.6	N	15	3
	S05978	234502	3/4	200	60	1.5	3.6	810	4.4	1150	4.6-5.9	23.1	М	15	8
	S05970	234512	3/4	230	60	1.5	3.1	810	3.8	1150	6.8-7.8	20.1	М	15	6
	S05975	234522	3/4	460	60	1.5	1.6	810	1.9	1150	27.2-30.9	10.7	М	15	3
	S06978	234503	1	200	60	1.4	4.5	1070	5.4	1440	3.8-4.5	30.9	М	15	10
	S06970	234513	1	230	60	1.4	3.9	1070	4.7	1440	4.9-5.6	26.9	М	15	8
	S06975	234523	1	460	60	1.4	2.0	1070	2.4	1440	19.9-23.0	13.5	М	15	4
	S07978	234504	11/2	200	60	1.3	5.8	1460	6.8	1890	2.5-3.0	38.2	K	15	10
	S07970	234514	11/2	230	60	1.3	4.5	1460	5.9	1890	3.2-4.0	33.2	K	15	10
	S07975	234524	11/2	460	60	1.3	2.5	1460	3.1	1890	13.0-16.0	16.6	K	15	5
_	S07979	234534	11/2	575	60	1.3	2.0	1460	2.4	1890	20.3-25.0	13.3	K	15	4
RPM	S08978	234305	2	200	60	1.25	7.7	2150	9.3	2700	1.8-2.4	53.6	L	20	15
	S08970	234315	2	230	60	1.25	6.7	2150	8.1	2700	2.3-3.0	46.6	L	20	15
450	S08975	234325	2	460	60	1.25	3.4	2150	4.1	2700	9.2-12.0	23.3	L	15	8
34	S08979	234335	2	575	60	1.25	2.7	2150	3.2	2700	14.6-18.7	18.6	L	15	5
-4	S09978	234306	3	200	60	1.15	10.9	2980	12.5	3420	1.3-1.7	71.2	K	30	20
`	S09970	234316	3	230	60	1.15	9.5	2980	10.9	3420	1.8-2.2	61.9	K	25	20
	S09975	234326	3	460	60	1.15	4.8	2980	5.5	3420	7.2-8.8	31	K	15	10
	S09979	234336	3	575	60	1.15	3.8	2980	4.4	3420	11.4-13.9	25	K	15	8
	S10978	234307	5	200	60	1.15	18.3	5050	20.5	5810	.7491	122	K	50	35
	S10970	234317	5	230	60	1.15	15.9	5050	17.8	5810	1.0-1.2	106	K	40	30
	S10975	234327	5	460	60	1.15	8.0	5050	8.9	5810	4.0-4.7	53.2	K	20	15
	S10979	234337	5	575	60	1.15	6.4	5050	7.1	5810	6.4-7.8	42.6	K	20	15
	S119784	234308	71/2	200	60	1.15	26.5	7360	30.5	8450	.4657	188	K	70	50
			71/2	230	60	1.15	23.0	7360	26.4	8450	.6175	164	K	60	45
			71/2	460	60	1.15	11.5	7360	13.2	8450	2.5-3.1	81.9	K	30	25
	S119794		71/2	575	60	1.15	9.2	7360	10.6	8450	4.0-5.0	65.5	K	25	20
	S129724	234329	10	460	60	1.15	17.0	10,000	18.5	11400	1.8-2.3	116	L	45	30
	S119794	234339	10	575	60	1.15	13.6	10,000	14.8	11400	2.8-3.5	92.8	L	35	25

THREE PHASE MOTOR MAXIMUM CABLE LENGTH (motor to service entrance) (3)

Motor	Rating					Cop	er Wire	Size (1)				
Volts	HP	14	12	10	8	6	4	2	0	00	000	0000
	.5	710	1140	1800	2840	4420						
	.75	510	810	1280	2030	3160						
	1	430	690	1080	1710	2670	4140					
200 V	1.5	310	500	790	1260	1960	3050					
60 Hz	2	240	390	610	970	1520	2360	3610	5420			
	3	180	290	470	740	1160	1810	2760	4130			
	5	110*	170	280	440	690	1080	1660	2490	3050	3670	4440
	7.5	0	0	200	310	490	770	1180	1770	2170	2600	3150
	10	0	0	0	230*	370	570	880	1330	1640	1970	2390
	.5	930	1590	2350	3700	5760	8910					
	.75	670	1080	1700	2580	4190	6490	9860				
	1	560	910	1430	2260	3520	5460	8290				
230 V	1.5	420	670	1060	1670	2610	4050	6160	9170			
60 Hz	3	240	390	620	990	1540	2400	3660	5470	6690	8020	9680
	5	140*	230	370	590	920	1430	2190	3290	4030	4850	5870
	7.5	0	160*	260	420	650	1020	1560	2340	2870	3440	4160
	10	0	0	190*	310	490	760	1170	1760	2160	2610	3160
	.5	3770	6020	9460								
	.75	2730	4350	6850								
	1	2300	3670	5770	9070							
460 V	1.5	1700	2710	4270	6730							
60 Hz	2	1300	2070	3270	5150	8050						
	3	1000	1600	2520	3970	6200						
	5	590	950	1500	2360	3700	5750					
	7.5	420	680	1070	1690	2640	4100	6260				
	10	310	500	790	1250	1960	3050	4680	7050			
	.5	5900	9410									
	.75	4270	6810									
	1	3630	5800	9120								
575 V	1.5	2620	4180	6580								
60 Hz	2	2030	3250	5110	8060							
	3	1580	2530	3980	6270							
	5	920	1480	2330	3680	5750						
	7.5	660	1060	1680	2650	4150						
	10	490	780	1240	1950	3060	4770					

⁽³⁾ The portion of the total cable which is between the service entrance and a three phase motor starter should not exceed 25% of the total maximum length to assure reliable starter operation.

Lengths marked * meet the U.S. National Electrical Code ampacity only for individual conductor 75°C cable.

Only the lengths without * meet the code for jacketed 75°C cable. Local code requirements may vary.

MOTOR INSULATION RESISTANCE READINGS

Normal Ohm/Megohm readings, ALL motors, between all leads and ground

A CAUTION To perform insulation resistance test, open breaker and disconnect all leads from QD control box or pressure switch. Connect one ohmmeter lead to any motor lead and one to metal drop pipe or a good ground. R x 100K Scale

Condition of Motor and Leads	OHM Value	Megohm Value
New motor, without power cable	20,000,000 (or more)	20.0
Used motor, which can be reinstalled in well	10,000,000 (or more)	10.0
Motor in well – Readings a	are power cable plus motor	
New motor	2,000,000 (or more)	2.0
Motor in reasonably good condition	500,000 to 2,000,000	0.5 – 2.0
Motor which may be damaged or have damaged power cable Do not pull motor for these reasons	20,000 to 500,000	0.02 - 0.5
Motor definitely damaged or with damaged power cable Pull motor and repair	10,000 to 20,000	0.01 - 0.02
Failed motor or power cable Pull motor and repair	Less than 10,000	0 - 0.01

Generator Operation

AWARNING FAILURE TO USE A MANUAL OR AUTOMATIC TRANSFER SWITCH WHEN GENERATOR IS USED AS STANDBY OR BACKUP CAN CAUSE SHOCK, BURNS OR DEATH, FOLLOW THE GENERATOR MANUFACTURER'S INSTRUCTIONS CAREFULLY. TWO WIRE DATA IS ONLY FOR PSC TYPE MOTORS, SPLIT PHASE 2 WIRE SHOULD BE 50% LARGER THAN 3 WIRE GENERATOR RATING.

			Minimum Ger	Minimum Generator Rating									
		Externally	Regulated	Internally	Regulated								
Motor	HP	KW	KVA	KW	KVA								
	.5	2.5	3.1	1.8	2.2								
2 Wire	.75	3.5	4.4	2.5	3.1								
1Ø PSC Only	1	5	6.3	3.2	4								
1 Se omy	1.5	6	7.5	4	5								
	.5	2	2.5	1.5	1.9								
	.75	3	3.8	2	2.5								
	1	4	5	2.5	3.2								
3 Wire	1.5	5	6.3	3	3.8								
1Ø or 3Ø	2	7.5	9.4	4	5								
	3	10	12.5	5	6.3								
	5	15	18.8	7.5	9.4								
	7.5	20	25	10	12.5								
	10	30	37.5	15	18.8								

<u>Wiring Diagrams — Esquemas de conexión —</u> <u>Schémas de câblage</u>

- Suministro de entrada de la caja de fusibles o del cortacircuitos
- 2. Interruptor de desconexión
- 3. Línea
- 4. Carga
- 5. Interruptor por caída de presión
- 6. NOTA: PumpSaver
- 7. Caja de control trifilar
- 8. Rojo
- 9. Amarillo
- 10. Negro
- Courant d'entrée provenant de la boîte à fusibles ou du disjoncteur
- 2. Sectionneur
- 3. Ligne
- 4. Charge
- 5. Pressostat
- 6. Protection PumpSaver
- 7. Boîte de commande à trois fils
- 8. Rouge
- 9. Jaune
- 10. Noir

Figure (Figura) 4

<u>Wiring Diagrams — Esquemas de conexión — Schémas de câblage</u>

- Suministro de entrada de la caja de fusibles o del cortacircuitos
- 2. Interruptor de desconexión
- 3. Línea
- 4. Carga
- 5. Interruptor por caída de presión
- 6. Contactador magnético
- 7. Caja de control trifilar
- 8. Rojo
- 9. Amarillo
- 10. Negro
- 11. Calentadores
- Arrancador magnético con compensación ambiental con calentadores de disparo rápido
- Courant d'entrée provenant de la boîte à fusibles ou du disjoncteur
- 2. Sectionneur
- 3. Ligne
- 4. Charge
- 5. Pressostat
- 6. Contacteur magnétique
- 7. Boîte de commande à trois fils
- 8. Rouge
- 9. Jaune
- 10. Noir
- 11. Dispositifs de protection contre la surcharge (DPS)
- 12. Démarreur magnétique compensé (température ambiante) avec DPS à déclenchement rapide rapide ou limiteurs de surcharge ESP100 de classe 10

OVERLOAD RELAY HEATER SELECTION TABLES

Data Based on Furnas Tables 393 and 398 for Three-Phase Motors

Class 16	К	
Motor S	F Amps	Heater
16A, 16B, 16C	16D, 16E	No.
1.91	_	K21
2.08	_	K22
2.26	_	K23
2.44 2.7	_	K24 K26
2.98	_	K27
3.22	_	K28
3.61	_	K29
3.93	_	K31
4.23	-	K32
4.67	_	K33
5.02	_	K34
5.46 6.25	_	K36 K37
6.74	_	K39
7.25	_	K41
8.05	_	K42
8.55	_	K43
9.8	_	K49
10.3	_	K50
12.0	_	K52
12.5 13.6	_	K53 K54
14.7	_	K55
15.5	_	K56
16.9	_	K57
17.9	_	K58
19.1	_	K60
22.0	22.5	K61
23.6 25.2	24.1 25.7	K62 K63
25.2 27.0	25.7 28.0	K63 K64
30.0	31.1	K67
34.0	34.6	K69
37.1	37.8	K70
41.0	41.5	K72
46.0	50.0	K73
49.2	54.0	K74
56.0 —	57.0 60.0	K75 K76
_	66.0	K77
_	73.0	K77 K78
_	80.0	K79

inee-rilase iviolois										
Class 16	Class 16 DP Model									
Motor S	Motor SF Amps									
16F, 16G ①	16H, 16I	No.								
50.2	50.1	K72								
53.2	53.1	K73								
58.0	58.0	K74								
62.2	62.1	K75								
65.5	65.5	K76								
72.0	72.0	K77								
80.0	80.0	K78								
_	_	K79								
85.0	85.0	K83								
93.0	93.0	K85								
97.5	97.5	K86								
104	104	K87								
_	114	K88								
119	126	K89								
_	136	K90								
_	150	K92								
_	162	K93								
_	180	K94								
_	190	K96								
_	200	K97								

Selection tables are used with the motor service factor amps if known, otherwise use motor full load amps multiplied by a factor of 1.15. Select the heater closest to but higher than the SFA (motor trip amps).

NOTE: These charts are only for Class 16 Definite Purpose, Ambient Compensated Starters (identified by a green reset button) using Quick Trip (class 10) K heaters for Submersible Motors. Other Classes or Brands of Starters require different selection tables, consult the manufacturer for information specific to that brand/class.

Selection example: Motor service factor amps = 9. If using a 16AC starter, select a K49 heater since it is the next higher heater amp rating number above 9 amps.

① Our current 16F and 16G starters are equipped with ESP100 adjustable overloads and do not require heaters. Use this chart only for older starters requiring K heaters.

Starter Size /	Max. Amps
16A / 25	16F / 75
16B / 30	16G / 90
16C / 40	16H / 120
16D / 50	161 / 150
16E / 60	

AWARNING DISCONNECT AND LOCKOUT ELECTRICAL POWER BE-FORE ATTEMPTING ANY SERVICE. FAILURE TO DO SO CAN CAUSE SHOCK, BURNS OR DEATH.

Symptom	Probable Cause	Recommended Action
PUMP MOTOR NOT RUNNING	Motor thermal protector tripped a. Incorrect control box b. Incorrect or faulty electrical connections c. Faulty thermal protector d. Low voltage	Allow motor to cool, thermal protector will automatically reset a – e. Have a qualified electrician inspect and repair, as required
	e. Ambient temperature of control box/starter too high f. Pump bound by foreign matter g. Inadequate submergence	f. Pull pump, clean, adjust set depth as required g. Confirm adequate unit submergence in pumpage
	2. Open circuit breaker or blown fuse	2. Have a qualified electrician inspect and repair, as required
	3. Power source inadequate for load	3. Check supply or generator capacity
	4. Power cable insulation damage5. Faulty power cable splice	4 – 5. Have a qualified electrician inspect and repair, as required
LITTLE OR NO LIQUID	Faulty or incorrectly installed check valve	Inspect check valve, repair as required
DELIVERED BY PUMP	2. Pump air bound	2. Successively start and stop pump until flow is delivered
	3. Lift too high for pump	3. Review unit performance, check with dealer
	4. Pump bound by foreign matter	4. Pull pump, clean, adjust set depth as required
	5. Pump not fully submerged	5. Check well recovery, lower pump if possible
	6. Well contains excessive amounts of air or gases	6. If successive starts and stops does not remedy, well contains excessive air or gases
	7. Excessive pump wear	7. Pull pump and repair as required
	8. Incorrect motor rotation - three phase only.	8. Reverse any two motor electrical leads

Goulds Pumps

Bomba sumergible de 4 pulg.

Instrucciones de instalación y funcionamiento

Goulds Pumps es una marca de ITT Corporation www.goulds.com

Engineered for life

Información del propietario

Número de modelo de la bomba: ______ Número de serie de la bomba: ______ Número de modelo del motor: ______ Número de serie del motor: ______ Número de serie del motor: ______ Pagente: ______ No. telefónico del agente: ______ Fecha de compra: ______ Fecha de instalación: ______ Voltios: ______ Amperios: _____

Índice

<u>TEMA </u>	1
Instrucciones de seguridad 25 & 26	6
Dispositivos de protección de la	
bomba27	7
Lista de verificación	
de la instalación 27	7
1.0 Instalaciones típicas	3
2.0 Tuberías y tanque29	9
3.0 Tamaño y empalme de alambres y	,
fuente de alimentación	1
4.0 Cómo conectar los controles y	
el interruptor32	2
5.0 Cómo arrancar la bomba 35	5
6.0 Documentación y el manuel de	
instrucciones (IOM)	5
Datos del motor monofásico	
CentriPro de 4"36	6
Cuadros de tamaños de cable	
monofásico37	7
Diagrama del PumpSaver 37	7
Datos del motor monofásico F.E 38	3
Datos del motor trifásico 39	9
Datos de resistencia y generador 41	1
Diagramas de cableado19, 20, 40	
Datos Técnicos42	
Datos del relé de sobrecarga42	2
Identificación y resolución de	
problemas43	
Declaración de Conformidad 65	5
Garantía limitada66	6

INSTRUCCIONES DE SEGURIDAD

PARA EVITAR LESIONES PERSONALES GRAVES O AÚN FATALES Y SERIOS DAÑOS MATERIALES, LEA Y SIGA TODAS LAS INSTRUCCIONES DE SEGURIDAD EN EL MANUAL Y EN LA BOMBA.

ESTE MANUAL HA SIDO CREADO COMO UNA GUÍA PARA LA INSTA-LACIÓN Y OPERACIÓN DE ESTA UNIDAD Y SE DEBE CONSERVAR JUNTO A LA BOMBA.

Éste es un SÍMBOLO DE ALERTA DE SEGURIDAD. Cuando vea este símbolo en la bomba o en el manual, busque una de las siguientes palabras de señal y esté alerta a la probabilidad de lesiones personales o daños materiales.

A PELIGRO Advierte los peligros que CAUSARÁN graves lesiones personales, la muerte o daños materiales mayores.

Advierte los peligros que PUEDEN causar graves lesiones personales, la muerte o daños materiales mayores.

Advierte los peligros que PUEDEN causar lesiones personales o daños materiales.

AVISO:

INDICA INSTRUCCIONES ESPECIALES QUE SON MUY IMPORTANTES Y QUE SE DEBEN SEGUIR DE

RETROCESO DE DRENAJE; ESTOS SISTEMAS DEBEN UTILIZAR OTROS MEDIOS FRANKLIN ELECTRIC O EN UN MANUAL DEL CÓDIGO N.E.C. (CÓDIGO ELÉCTRICO NACIONAL DE LOS ESTADOS UNIDOS).

EXAMINE BIEN TODAS LAS INSTRUCCIONES Y ADVERTENCIAS ANTES DE REALIZAR CUALQUIER TRABAJO EN ESTA BOMBA. MANTENGA TODAS LAS CALCOMANÍAS DE SEGURIDAD.

Aviso importante: Lea las instrucciones de seguridad antes de proseguir con el cableado. ADVERTENCIA Todo el trabajo eléctrico debe ser realizado por un técnico calificado. Siempre siga el Código Eléctrico Nacional (NEC) o el Código Eléctrico Canadiense, además de todos los códigos locales, estatales y provinciales. Las preguntas acerca del código deben ser dirigidas al inspector eléctrico local. Si se hace caso omiso a los códigos eléctricos y normas de seguridad de OSHA, se pueden producir lesiones personales o daños al equipo. Si se hace caso omiso a las instrucciones de instalación del fabricante, se puede producir electrochoque, peligro de incendio, lesiones personales o incluso la muerte, daños al equipo, rendimiento insatisfactorio y podría anularse la garantía del fabricante.

AADVERTENCIA Las unidades estándar no fueron diseñadas para su uso en piscinas, cuerpos abiertos de agua, líquidos peligrosos o donde existan gases inflamables. El pozo debe contar con ventilación de acuerdo con los códigos locales. Vea los boletines de catálogos de bombas específicos o la placa de nombre de la bomba para todas las listas de agencias.

ADVERTENCIA Desconecte y bloquee la corriente eléctrica antes de instalar o dar servicio a cualquier equipo eléctrico. Muchas bombas están equipadas con protección automática contra la sobrecarga térmica, la cual podría permitir que una bomba demasiado caliente rearranque inesperadamente.

AADVERTENCIA

Nunca presurice demasiado el tanque, las tuberías o el sistema a una presión superior a la clasificación de presión máxima del tanque. El hacerlo dañará el tanque, anula la garantía y puede crear un peligro grave.

ADVERTENCIA

Proteja a los tanques contra humedad y pulverización excesivas, ya que oxidarán al tanque y pueden crear un peligro. Vea las etiquetas de advertencia o el manual del tanque para más información.

ADVERTENCIA

No levante ni transporte ni cuelgue la bomba de los cables eléctricos. El daño a los cables eléctricos puede producir electrochoque, quemaduras o aún la muerte.

ADVERTENCIA

Use únicamente alambre trenzado de cobre para la bomba/motor y la conexión a tierra. El alambre de conexión a tierra debe ser al menos del mismo tamaño que los alambres de la fuente de alimentación. Los alambres deben codificarse con colores para facilitar el mantenimiento y la identificación y resolución de problemas.

A PELIGRO

Instale los cables y la conexión a tierra de acuerdo con el Código Eléctrico Nacional de EE.UU. (NEC) o el Código Eléctrico Canadiense, además de los códigos locales, estatales y provinciales.

ADVERTENCIA

Instale un desconectador de todos los circuitos donde el código lo requiera.

ADVERTENCIA

La tensión y fase de la fuente de alimentación deben corresponder con todos los requerimientos del equipo. La tensión o fase incorrecta puede producir incendio, daño al motor o a los controles y anula la garantía.

ADVERTENCIA

Todos los empalmes deben ser impermeables. Si utiliza juegos de empalme, siga las instrucciones del fabricante.

ADVERTENCIA

Seleccione una caja de conexiones NEMA del tipo correcto para la aplicación y ubicación. La caja de conexiones debe garantizar conexiones de cableado seguras y secas.

A PRECAUCIÓN

Todos los motores requieren una sumersión de 5' para que la válvula de verificación de llenado funcione correctamente.

ADVERTENCIA

La falla de conectar a tierra permanentemente la bomba, el motor y los controles, antes de conectar la corriente eléctrica, puede causar electrochoque, quemaduras o la muerte.

A PRECAUCIÓN

Todos los controles trifásicos (3Ø) para bombas sumergibles deben incluir protección contra sobrecarga de Clase 10, de disparo rápido.

ADVERTENCIA

Los motores de 4 pulg. ≥ 2 caballos de fuerza requieren una velocidad de flujo mínima de 0.25 pies/seg o 7.62 cm/seg más allá del motor para producir un enfriamiento apropiado del mismo. Los flujos mínimos en GPM por diámetro de pozo requeridos para el enfriamiento son los siguientes: 1.2 GPM/4 pulg., 7 GPM/5 pulg., 13 GPM/6 pulg., 20 GPM/7 pulg., 30 GPM/8 pulg. o 50 GPM en un pozo de 10 pulg.

A PRECAUCIÓN

Las bombas ≥ 2 caballos de fuerza instaladas en tanques grandes se deben instalar en una camisa de inducción de flujo para crear el flujo de enfriamiento o la velocidad necesaria más allá del motor.

A PRECAUCIÓN Esta bomba se evaluó para uso con Agua Únicamente.

PROTECCIÓN DE LA BOMBA

Recomendamos el uso del PumpSaver de SymCom para proteger al sistema contra bajo nivel de agua, ciclaje rápido, voltaje alto/bajo, funcionamiento de la bomba sin succión/restricción de flujo y sobretensión. ¡El PumpTec de Franklin Electric no funcionará con motores PSC de 2 hilos CentriPro!

LISTA DE VERIFICACIÓN DE LA INSTALACIÓN

- Anote la información de la bomba y del motor y otros datos solicitados en la portada de este manual.
- Inspeccione todos los componentes para detectar daños de envío; notifique los daños de inmediato al distribuidor.
- Verifique la correspondencia de los caballos de fuerza del motor y de la bomba.
- Haga corresponder la tensión y fase de la fuente de alimentación con las especificaciones de control y del motor.
- Seleccione un lugar sombreado y seco en el cual montar los controles.
- Las conexiones de todos los empalmes sumergidos y subterráneos deben ser impermeables.
- Sujete la bomba en la cabeza de descarga cuando instale tubo roscado o un accesorio adaptador, ya que la mayoría de las bombas tienen roscas de mano izquierda que se aflojarán si sujeta la bomba de cualquier otra parte.
- Revise todas las conexiones de plomería para verificar que estén ajustadas y selladas con cinta de Teflon.
- Verifique que la clasificación de presión del tubo sea más alta que la presión de paro de la bomba.
- Instale una válvula de alivio de presión en todo sistema capaz de crear más de 75 PSI.
- Sitúe el interruptor por caída de presión a menos de 4 pies del tanque de presión para evitar el chasquido del interruptor.
- Ajuste la precarga del tanque 2 PSI por debajo de la presión de conexión del sistema, por ejemplo 28 en un sistema de 30/50.
- Instale la bomba 10 pies más arriba del fondo del pozo para mantenerla lejos de los sedimentos y residuos.
- Verifique que el suministro eléctrico principal esté desconectado y APAGADO antes de cablear los componentes.
- El cableado debe ser realizado por técnicos calificados únicamente.
- El cableado y la puesta a tierra deben cumplir con los códigos nacionales y locales.
- Restrinja el flujo con una válvula de bola o de globo, 1/3 abierta, antes de arrancar la bomba por primera vez.
- Abra un grifo o una válvula de descarga durante la puesta en marcha para evitar que entre agua sucia al tanque.
- ENCIENDA el cortacircuitos principal o el desconectador.
- Active/desactive varias veces para verificar el funcionamiento correcto del interruptor.
- Verifique los amperios y anote los datos en la portada de este manual.
- Entregue el manual al propietario en el sitio de la obra.

1.0 INSTALACIONES TÍPICAS

INSTALACIÓN DEL TANQUE CAPTIVE AIR

AVISO: LOS CAMBIOS DE PRESIÓN DE PRECARGA DEL TANQUE DEBEN HACERSE CON LA VÁLVULA NEUMÁTICA EN EL EXTREMO SUPERIOR DEL TANQUE.

2.0 TUBERÍA

Aviso: La mayoría de las bombas sumergibles de 4 pulg. tienen roscas de mano izquierda en la cabeza de descarga; sujete la bomba sólo en la "cabeza de descarga" con una llave cuando instale accesorios o tubo roscado.

2.1 Generalidades

La tubería de descarga de la bomba debe dimensionarse para producir un funcionamiento eficiente de la bomba. Utilice las

Tablas de pérdida por fricción para calcular la carga dinámica total empleando tubos de tamaños diferentes. Como regla práctica, utilice 1 pulg. para hasta 10 gpm, 1½ pulg. para hasta 30 gpm, 1½ pulg. para hasta 45 gpm y 2 pulg. para hasta 80 gpm. En el caso de secciones largas de tubería es mejor aumentar el tamaño de la tubería.

Algunas bombas son capaces de producir presiones de descarga muy altas; por lo tanto, seleccione el tubo que corresponda. Consulte con su proveedor de tubería para determinar el mejor tipo para cada instalación.

2.2 Tanque de presión, interruptor por caída de presión y válvula de alivio de presión

Elija una ubicación seca en la que la temperatura ambiente sea siempre superior

a 34° F (1° C) para instalar el tanque, el interruptor de presión y la válvula de alivio de presión. Se debe ubicar el tanque en un área en la que una pérdida no causaría daños a la propiedad.

El interruptor por caída de presión debe estar situado en la doble T del tanque y nunca a más de 4 pies del tanque. Si el interruptor se sitúa a

más de 4 pies del tanque, emitirá un chasquido.

No instale válvulas, filtros o conexiones de alta absorción entre el interruptor y el/los tanque(s), ya que puede provocar el fallo del interruptor. Como ejemplo, una válvula de verificación de resorte de 1½ tiene una pérdida de fricción equivalente a 12' de caño, colocar la válvula entre el interruptor de presión y el tanque de presión equivale a alejar al interruptor de presión 12' del tanque. Esto provocará un fallo en el interruptor.

En instalaciones de varios tanques, el interruptor debe situarse lo más cerca posible del centro del tanque. Las instalaciones de varios tanques deben tener un tubo de distribución cuyo tamaño sea al menos 1½ veces el tamaño del tubo de suministro de la bomba. Esto reducirá la carga por fricción en el tubo de distribución y disminuirá la posibilidad de chasquido del interruptor.

Se requieren válvulas de alivio de presión en cualquier sistema que sea capaz de producir 100 lbs./ pulg. cuadrada o 230 pies de carga dinámica total. Si ésta es una área donde una purga o fuga de agua podría dañar la propiedad, conecte una línea de drenaje a la válvula de alivio de presión. Tiéndala a un drenaje adecuado o a un área donde el agua no dañará la propiedad.

2.3 Cómo ajustar la precarga del tanque

Asegúrese de que no haya nada de agua en el tanque. Utilice un indicador de presión de alta calidad para medir la presión de precarga del tanque. La presión debe ser 2 lbs./ pulg. cuadrada menos que la presión de conexión de la bomba. Como ejemplo, un sistema de 30-50 lbs./ pulg. cuadrada utilizaría una precarga del tanque de 28 lbs./pulg. cuadrada.

2.4 Tubería de descarga y válvula de retención

Nota: La mayoría de las cabezas de descarga se atornillan en la carcasa con roscas de mano izquierda. Sólo sujete la bomba en la cabeza de descarga cuando instale los accesorios. Si no se sujeta la cabeza de descarga, ésta se aflojará y se dañará la bomba al ponerla en marcha.

Si la tubería necesita un adaptador, recomendamos enfáticamente utilizar acero inoxidable. Los accesorios o tuberías galvanizadas nunca deben conectarse directamente a una cabeza de descarga de acero inoxidable ya que podría producirse corrosión galvánica. Se puede utilizar cualquier material para esta conexión en el caso de bombas de plástico o de latón. Los conectores tipo arpón siempre deben sujetarse con doble abrazadera.

El cabezal de descarga de la bomba tiene un ojal para sujetar un cable de seguridad. Se recomienda el uso de un cable de seguridad al usar tuberías de poliuretano, ya que la tubería se estira cuando está bajo presión y llena de agua.

2.5 Cómo instalar la bomba en el pozo

Si está utilizando un mecanismo antitorsión, instálelo de acuerdo con las instrucciones de instalación del fabricante. Solicite información al proveedor sobre mecanismos antitorsión e instrucciones de instalación.

Conecte la tubería de descarga a la cabeza de descarga o al adaptador que instaló previamente. Los conectores tipo arpón siempre deben sujetarse con doble abrazadera. Instale la bomba en el interior del pozo utilizando un adaptador sin fosa o dispositivo similar en el cabezal del pozo. Consulte con el fabricante

del accesorio o con el proveedor del adaptador con respecto a instrucciones específicas de instalación.

Utilice cinta aislante impermeable para sujetar los alambres al tubo de bajada a intervalos de 10 pies. Asegúrese de que la cinta no se desprenda ya que bloqueará la succión de la bomba si cae dentro del pozo. Los proveedores de bombas también venden conectores de alambre estilo presilla para sujetar el alambre al tubo de bajada.

2.6 Tubería especial para sistemas de tanques galvanizados

Cuando utilice un tanque galvanizado, debe instalar un accesorio de drenaje e "Y" AV11 en el pozo y una válvula de retención con válvula de desahogo en el tanque. Esto introducirá aire al tanque con cada arranque de la bomba y evitará el estancamiento del agua en el tanque. Utilice un escape de aire AA4 en el tanque para permitir el escape del exceso de aire. La distancia entre AV11 y la válvula de desahogo determina la cantidad de aire que entra en cada ciclo. Consulte la tabla con respecto a los valores recomendados. Consulte la Fig. 2 en la Sección 1.0.

En el caso de pozos de gas, deben utilizarse tanques galvanizados con escapes de aire AA4 para ventear el exceso de aire y evitar la "salida de agua por chorros" en las llaves.

El metano y otros gases explosivos o peligrosos requieren un tratamiento especial del agua para extraerlos en forma segura. Consulte con un especialista de tratamiento de agua para considerar estos asuntos.

En las instalaciones con pozo de alimentación superior se deben usar camisas de flujo en la bomba.

2.7 Válvulas de retención

Nuestras bombas utilizan cuatro estilos distintos de válvulas de retención. Recomendamos el uso de válvulas de retención ya que evitan el giro inverso de la bomba y motor que producirá un desgaste prematuro de los cojinetes. Además, las válvulas de retención evitan que se produzca ariete hidráulico o daños por empuje hacia arriba. Las válvulas de retención se deben instalar cada 200 - 250 pies en la tubería de descarga vertical.

La siguiente información es para clientes que desean desactivar una válvula de retención para un sistema de retroceso de drenaje; estos sistemas deben utilizar otros medios para impedir el ariete hidráulico o los daños por empuje hacia arriba:

- Las válvulas de acero inoxidable incorporadas tienen un área plana que se puede perforar con facilidad con un taladro eléctrico y una broca de ¼ pulg. o ¾ pulg. para desactivar la válvula.
- Las válvulas de retención estilo aguja que están atornilladas desde arriba de la cabeza de descarga se pueden retirar con facilidad utilizando un entuercador de 12 pulg. o una boquilla profunda. El cubo hexagonal es visible y accesible desde arriba.
- Las válvulas internas estilo aguja de plástico de diseño Flomatic[™] se deben retirar desde adentro, para lo cual es necesario desarmar la bomba.
- Las válvulas estilo aguja de plástico incorporadas con un vástago a través del extremo superior se pueden retirar de la cabeza de descarga tirando el vástago con alicates.

3.0 TAMAÑO Y EMPALME DE ALAMBRES y FUENTE DE ALI-MENTACIÓN

Siempre siga el Código Eléctrico de los Estados Unidos (N.E.C.) el Código Eléctrico del Canadá y cualquier código estatal o local.

Sugerimos usar únicamente cable de cobre. Utilice el tamaño de cable que figura en la sección de Datos Técnicos de este manual, el manual MAID, o un manual de Código Eléctrico Nacional (N.E.C. – National Electric Code). En caso de discrepancias, el libro del N.E.C. prevalecerá con respecto a las recomendaciones de un fabricante.

3.1 Empalme de alambre a los conductores del motor

Cuando deba empalmarse o conectarse un cable de bajada al conductor del motor, es necesario que el empalme sea impermeable. El empalme puede realizarse con juegos de contracción por calor o cinta impermeable.

A. Instrucciones de empalme con juego de contracción por calor

Para utilizar un juego típico de contracción por calor: pele ½ pulgada de los alambres del motor y de los alambres del cable de bajada; es mejor escalonar los empalmes. Coloque los tubos de contracción por calor sobre los alambres. Coloque los plegadores sobre los alambres y pliegue los extremos. Deslice los tubos de contracción por calor sobre los plegadores y caliéntelos desde el centro hacia afuera. El sellador y el adhesivo saldrán por los extremos cuando el tubo se contrae. El tubo, los plegadores, el sellador y el adhesivo crearán un sello impermeable muy resistente.

B. Instrucciones de empalme con cinta

- A) Pele el aislamiento del conductor individual sólo lo necesario para dejar espacio para un conector tipo estaca. Se prefieren los conectores tubulares tipo estaca. Si el D.E. del conector no es tan grande como el aislamiento del cable, auméntelo con cinta aislante de caucho.
- B) Encinte las juntas individuales con cinta aislante de caucho, empleando dos capas; la primera extendiéndose dos pulgadas más allá de cada extremo de aislamiento del conductor, la segunda capa extendiéndose dos pulgadas más allá de la primera capa. Envuelva en forma apretada, eliminando los espacios de aire lo más posible.
- C) Aplique cinta aislante Scotch #33 o equivalente sobre la cinta aislante de caucho, empleando dos capas como en el paso "B" y haciendo que cada capa se superponga al menos dos pulgadas al extremo de la capa anterior.

En el caso de un cable con tres conductores recubiertos con un solo revestimiento exterior, encinte los conductores individuales en la forma descrita, alternando las juntas.

El espesor total de la cinta no debe ser inferior al espesor del aislamiento del conductor.

4.1 Cómo montar la caja de control del motor

Las cajas de control monofásicas trifilares cumplen con los requerimientos de U.L. para las cubiertas tipo 3R. Son adecuadas para montaje vertical en lugares interiores y exteriores. Funcionarán a temperaturas entre 14°F (-10°C) y 122°F (50°C). Seleccione un lugar sombreado y seco para montar la caja. Asegure que haya suficiente espacio para quitar la tapa.

4.2 Verifique la tensión y apague la fuente de alimentación

Asegure que la tensión del motor y la tensión de la fuente de alimentación sean iguales.

Coloque el cortacircuitos o interruptor de desconexión en la posición OFF (de apagado) para evitar arrancar la bomba accidentalmente antes de que esté listo.

Las bobinas de arrancadores trifásicos son muy sensibles a la tensión; siempre verifique la tensión de suministro real con un voltímetro.

La alta o baja tensión, de más de ±10%, dañará los motores y controles y eso no está cubierto por la garantía.

4.3 Cómo conectar los conductores del motor a la caja de control del motor, interruptor por caída de presión o arrancador

AADVERTENCIA Precaución No energice la unidad ni haga funcionar la bomba hasta que haya completado todas las conexiones eléctricas y de tuberías. Verifique que el desconector

o cortacircuitos esté APAGADO antes de conectar los conductores de la línea del interruptor por caída de presión a la fuente de alimentación. Siga todos los códigos locales y nacionales. Utilice un desconector cuando el código así lo requiera.

A. Motor monofásico trifilar

Conecte los conductores del motor codificados con colores a los terminales de la caja de control del motor -Y (amarillo), R (rojo) y B (negro) y el alambre verde o desnudo al tornillo verde de puesta a tierra.

Conecte los alambres entre los terminales de carga en el interruptor por caída de presión y los terminales L1 y L2 de la caja de control. Conecte un alambre de puesta a tierra entre la tierra del interruptor y la tierra de la caja de control. Consulte la Figura 4 ó 5

B. Motor monofásico bifilar

Conecte los conductores negros del motor a los terminales de carga en el interruptor por caída de presión y el alambre verde o desnudo de puesta a tierra al tornillo verde de puesta a tierra. El motor CentriPro de dos hilos no funcionará con un PumpTec de Franklin Electric. Use un PumpSaver. Consulte la Figura 3

C. Motores trifásicos

Conecte los conductores del motor a T1, T2 y T3 en el arrancador trifásico. Conecte el alambre de puesta a tierra al tornillo de puesta a tierra en la caja

del arrancador. Siga las instrucciones del fabricante del arrancador para conectar el interruptor por caída de presión o consulte la Figura 6.

4.4 Conexión a la fuente de alimentación

AADVERTENCIA Complete el cableado haciendo la conexión desde los terminales de línea del interruptor por caída de presión monofásico hasta el panel de cortacircuitos o el

desconector en caso que se utilice.

Instalaciones trifásicas – haga las conexiones entre L1, L2, L3 y tierra en el arrancador al desconector y luego al panel de cortacircuitos.

Deben verificarse las instalaciones trifásicas con respecto a la rotación del motor y al desbalance de fase. Para invertir la rotación del motor, cambie (invierta) dos conductores cualquiera. Consulte las instrucciones para identificar el desbalance trifásico en la Sección Técnica de este manual. Si no se revisa el desbalance de fase, se puede producir una falla prematura del motor o un disparo por sobrecarga falso. Si está utilizando un generador, consulte los Datos Técnicos para generadores.

4.5 Protección contra las sobrecargas en unidades trifásicas

Sólo use la protección de Clase 10, de disparo rápido contra las sobrecargas en los motores sumergibles trifásicos. Los arrancadores Furnas Clase 14 NEMA con sobrecargas ESP 100 y los arrancadores Clase 16 equipados con calentadores "K" o sobrecargas ESP 100 brindarán protección adecuada.

Llame al grupo de Servicio al Cliente del fabricante de la bomba para pedir asistencia para la selección.

4.6 Desbalance de potencia trifásica

Se recomienda un suministro trifásico completo, lo que incluye tres transformadores individuales o un transformador trifásico. Se pueden usar conexiones en estrella o en triángulo "abierto" empleando sólo dos transformadores, pero hay más posibilidad de que produzcan un rendimiento inadecuado, disparo por sobrecarga o falla prematura del motor debido al desbalance de corriente.

Mida la corriente en cada uno de los tres conductores del motor y calcule el desbalance de corriente en la forma que se explica abajo.

Si el desbalance de corriente es del 2% o menos, deje los conductores tal como están conectados.

Si el desbalance de corriente es de más del 2%, hay que verificar las lecturas de corriente en cada derivación empleando cada una de las tres conexiones posibles. Enrolle los conductores del motor en el arrancador en la misma dirección para evitar una inversión del motor.

Para calcular el porcentaje de desbalance de corriente:

- A. Sume los tres valores de corriente de línea.
- B. Divida la suma por tres, con lo cual se obtiene la corriente promedio.
- C. Seleccione el valor de corriente más alejado de la corriente promedio (ya sea alto o bajo).
- D. Determine la diferencia entre este valor de corriente (más alejado del promedio) y el promedio.
- E. Divida la diferencia por el promedio. Multiplique el resultado por 100 para determinar el porcentaje de desbalance.

El desbalance de corriente no debe exceder el 5% a la carga del factor de servicio o el 10% a la carga de entrada nominal. Si el desbalance no puede corregirse enrollando los conductores, la causa del desbalance debe determinarse y corregirse. Si, en las tres conexiones posibles, la derivación más alejada del promedio está en el mismo conductor de potencia, entonces la mayoría del desbalance proviene de la fuente de potencia.

Contacte a la compañía de electricidad local para solucionar el desbalance.

	C	onexión	1	C	onexión	2	Conexión 3			
Terminales del	L1	L2	L3	L1	L2	L3	L1	L2	L3	
arrancador	\perp	\perp	\perp							
	Т	Τ	Т	Т	Τ	Τ	Т	Т	Т	
Conductores	R	В	Υ	Υ	R	В	В	Υ	R	
del motor	T3	T1	T2	T2	T3	T1	T1	T2	T3	

Ejemplo:

T3-R = 51 amperios	T2-Y = 50 amperios	T1-B = 50 amperios
T1-B = 46 amps	T3-R = 48 amps	T2-Y = 49 amps
T2-Y = 53 amps	T1-B = 52 amps	T3-R = 51 amps
Total = 150 amperios	Total = 150 amperios	Total $= 150$ amperios
$\div \overline{3} = 50$ amps	$\div \overline{3} = 50$ amps	$\div \overline{3} = 50$ amps
-46 = 4 amps	48 = 2 amps	49 = 1 amps
$4 \div 50 = .08 \circ 8\%$	$2 \div 50 = .04 \text{ ó } 4\%$	$1 \div 50 = .02 \text{ ó } 2\%$

5.0 <u>CÓMO ARRANCAR</u> <u>LA BOMBA</u>

5.1 Instale una válvula y haga funcionar la bomba para limpiar el agua

En un pozo nuevo - Instale una válvula esférica o de globo en la línea de descarga de la bomba y con la válvula 1/2 abierta, bombee el pozo hasta que el agua salga limpia. Abra la válvula lentamente para verificar el flujo y, cuando el agua salga limpia, apague la bomba.

Retire la válvula esférica o de globo y conecte la descarga de la bomba a cañería de la casa, el tanque de presión y el interruptor. Encienda la bomba. Permita que la bomba funcione varios ciclos para que se enjuague y para verificar que la bomba y el interruptor funcionen correctamente. Aproveche este tiempo para fijarse si las conexiones presentan pérdidas.

CUIDADO: Si el pozo tiene un nivel estático alto, vea la próxima sección con información importante para la protección de la bomba.

5.2 Estrangulación de un pozo de alto nivel estático para evitar el empuje hacia arriba

Cualquier pozo con un alto nivel estático de agua podría permitir que la bomba funcione fuera de la curva a la derecha o fuera del "intervalo recomendado" mostrado en la curva de la bomba. Recomendamos utilizar un restrictor de flujo "Dole" o estrangular con una válvula de bola para evitar el daño por empuje hacia arriba a la bomba y al motor. Debe restringirse el flujo máximo para que esté dentro del intervalo de funcionamiento recomendado de la bomba. Si utiliza una válvula de bola,

ajústela, quite la manija, encinte la manija al tubo y etiquete la válvula con una nota que diga "No abra esta válvula o podría dañarse la bomba". La manera más fácil de "ajustar" el flujo es llenar un cubo de 5 galones y medir el tiempo que lleva producir 5 galones. Calcule el flujo en gpm de acuerdo con este valor. A medida que el nivel de agua disminuye en el pozo, se reducirá el flujo debido al aumento de la carga y la válvula no interferirá con el rendimiento.

6.0 DOCUMENTACIÓN y EL MANUAL DE INSTRUCCIONES (IOM)

Entregue este manual de instrucciones y su tarjeta al propietario. iUna etiqueta con su nombre y número de teléfono en el tanque o en la caja de control es una buena herramienta de venta para los negocios futuros!

Actualmente, proveemos una etiqueta adicional de bomba que usted puede fijar en el IOM, colocar en una caja de control de 3 hilos o ubicar cerca del tanque y del interruptor de presión para identificación futura de la bomba.

DATOS DEL MOTOR MONOFÁSICO CENTRIPRO DE 4"

Tipo	No. Pedido	HP	KW	Voltios	SF	Amps FL	Amps SF	Amps LR	Fusible con tem- porizador	Disyuntor estándar	Código KVA	Res. de bobinado
	M05421	0.5	0.37	115	1.6	7.4	9.5	36.4	20	25	K	1.4-1.7
9PSC	M05422	0.5	0.37	230	1.6	3.7	4.7	19.5	10	15	K	4.6-5.6
de 2 hilos)	M07422	0.75	0.55	230	1.5	5.0	6.4	24.8	15	20	J	3.5-4.3
IIIIOS)	M10422	1.0	0.75	230	1.4	7.9	9.1	22.0	15	20	F	4.2-5.2
	M15422	1.5	1.1	230	1.3	9.2	11.0	42.0	20	30	Н	1.9-2.3

Tipo	No. Pedido	НР	KW	Voltios	SF	Amps FL	Amps SF	Amps LR	Fusible con tem- porizador	Disyuntor estándar	Código KVA	Res. principal (Negro - Amar.)	Res. de arranque (Rojo - Amar.)	Caja de control requerida
	M05411	0.5	0.37	115	1.6	A-11.0 N-11.0 R-0	A-12.6 N-12.6 R-0	49.6	20	30	N	1.1-1.4	5.7-7.0	CB05411
3- Cables	M05412	0.5	0.37	230	1.6	A-5.5 N-5.5 R-0	A-6.3 N-6.3 R-0	22.3	10	15	М	4.0-4.9	16.3-19.9	CB05412
con CSIR	M07412	0.75	0.55	230	1.5	A-7.2 N-7.2 R-0	A-8.3 N-8.3 R-0	32.0	15	20	L	2.7-3.3	11.1-13.6	CB07412
	M10412	1.0	0.75	230	1.4	A-8.4 N-8.4 R-0	A-9.7 N-9.7 R-0	41.2	20	25	L	2.5-3.1	10.6-13.0	CB10412
	M05412	0.5	0.37	230	1.6	A-4.1 N-4.1 R-2.2	A-4.9 N-4.4 R-2.1	22.3	10	15	М	4.0-4.9	16.3-19.9	CB05412CR
	M07412	0.75	0.55	230	1.5	A-5.1 N-5.1 R-3.2	A-6.3 N-6.6 R-3.1	32.0	15	20	L	2.7-3.3	11.1-13.6	CB07412CR
3-	M10412	1.0	0.75	230	1.4	A-6.1 N-5.7 R-3.3	A-7.2 N-6.3 R-3.3	41.2	20	25	L	2.5-3.1	10.6-13.0	CB10412CR
Cables con CSCR	M15412	1.5	1.1	230	1.3		A-11.1 N-11.0 R-1.3	47.8	20	30	J	1.9-2.4	7.4-9.1	CB15412CR
CSCh	M20412	2	1.5	230	1.25		A-12.2 N-11.7 R-2.6	49.4	20	25	G	1.6-2.2	10.8-12.0	CB20412CR
	M30412	3	2.2	230	1.15	A-14.3 N-12.3 R-5.7		76.4	10	25	G	1.1-1.4	2.0-2.5	CB30412CR
	M50412	5	3.7	230	1.15									CB50412CR

CUADRO DE TAMAÑO DE CABLE DE MOTOR 1Ø CENTRIPRO DE 3 HILOS Y 2 HILOS

con	Largos de conductores del motor - Motores de 2 hilos CentriPro - con base en Amps de Factor de Servicio, temperatura ambiente 30°C y caída de voltaje del 5%													
Clasi	asificación de motor 60°C y 75° aislamiento - tamaño de cable de cobre A						AWG							
Voltios	HP	kW	SFA	14	12	10	8	6	4	2	1/0	2/0	3/0	4/0
115	1/2	0,37	9,5	115	183	293	463	721	1150	1825	2902	3662	4623	5824
230	1/2	0,37	4,7	466	742	1183	1874	2915	4648	7379	11733	14803	18688	23544
230	3/4	0,55	6,4	342	545	869	1376	2141	3413	5419	8617	10871	13724	17290
230	1	0,75	9,1	241	383	611	968	1506	2400	3811	6060	7646	9652	12160
230	1½	1,1	11,0	199	317	505	801	1246	1986	3153	5013	6325	7985	10060

Largos de conductores del motor - Motores de 3 hilos CentriPro (CSIR) - con base en Amps de Factor de Servicio, temperatura ambiente 30°C y caída de voltaje del 5%

Clasificación de motor				60°C y 75° aislamiento - tamaño de cable de cobre AWG										
Voltios	HP	kW	SFA	14	12	10	8	6	4	2	1/0	2/0	3/0	4/0
115	1/2	0,37	12,6	87	138	221	349	544	867	1376	2188	2761	3485	4391
230	1/2	0,37	6,3	348	553	883	1398	2175	3467	5505	8753	11044	13942	17564
230	3/4	0,55	8,3	264	420	670	1061	1651	2632	4178	6644	8383	10582	13332
230	1	0,75	9,7	226	359	573	908	1413	2252	3575	5685	7173	9055	11408
230	11/2	1,1	11,1	197	314	501	793	1234	1968	3124	4968	6268	7913	9969

Tablas basadas en valores del NEC, Tablas 310.16 y 310.17 y NEC, Capítulo 9, Tabla 8 Propiedades de Conductores.

NOTA: Los motores y las cajas de control fueron diseñados para funcionar en sistemas de 230V. Los sistemas con voltaje de línea bajo, entre 200 - 270 voltios, requieren el tamaño de cable inmediatamente superior indicado en los cuadros de 230V. Si se usa un motor de 3 hilos con caja de control en una aplicación de bajo voltaje, utilice un relé de arranque de 208V. Encontrará los números de pedido de relé de arranque de 208V en los cuadros de piezas para reparación de la caja de control en este manual.

Otra alternativa es utilizar un transformador elevador para aumentar el voltaje.

El cuadro de tamaños para 2 hilos arriba es solo para uso con motores de 2 hilos del tipo PSC. Conversiones de temperatura: 20° C $= 68^{\circ}$ F, 30° C $= 86^{\circ}$ F, 60° C $= 140^{\circ}$ F, 75° C $= 167^{\circ}$ F, 90° C $= 194^{\circ}$ F

PUMPSAVER 235

PUMPSAVER 111 / 233

ESPECIFICACIONES DE MOTOR DE 60 HZ, MONOFÁSICO

Tipo	Goulds #/ Caja de control	Prefijo de modelo del motor Franklin	НР	Voltios	Hz	S.F.	Am- perios	S.F. Am- perios	L ₁ -L ₂ Resistencia – M=Principal, S=Arranque	circuitos	Fusible de retardo
Si	S04932/ NR	2445040	1/2	115	60	1.60	10.0	12.0	1.0 – 1.3	30	20
dos alambres	S04942/ NR	2445050	1/2	230	60	1.60	5.0	6.0	4.2 – 5.2	15	10
los al	S05942/ NR	2445070	3/4	230	60	1.50	6.8	8.0	3.0 – 3.6	20	15
4" de c	S06942/ NR	2445081	1	230	60	1.40	8.2	9.8	2.2 – 2.7	25	20
'	S07942/ NR	2445091	11/2	230	60	1.30	10.6	13.1	1.5 – 1.9	30	20
res	S04930/ CB05411	2145044	1/2	115	60	1.60	Y=10.0 B=10.0 R=0.0	Y=12.0 B=12.0 R=0.0	M = 1.0 – 1.3 S = 4.1 – 5.1	30	20
de tres alambres	S04940/ CB05422	2145054	1/2	230	60	1.60	Y=5.0 B=5.0 R=0.0	Y=6.0 B=6.0 R=0.0	M = 4.2 - 5.2 $S = 16.7 - 20.5$	15	10
de tres	S05940/ CB07422	2145074	3/4	230	60	1.50	Y=6.8 B=6.8 R=0.0	Y=8.0 B=8.0 R=0.0	M = 3.0 - 3.6 S = 10.7 - 13.1	20	15
4	S06940/ CB10422	2145081	1	230	60	1.40	Y=8.2 B=8.2 R=0.0	Y=9.8 B=9.8 R=0.0	M = 2.2 - 2.7 S = 9.9 - 12.1	25	20
con	S07940/ CB15412CR	2243001	1½	230	60	1.30	Y=10.0 B=9.9 R=1.3	Y=11.5 B=11.0 R=1.3	M = 1.5 - 2.3 S = 8.0 - 9.7	30	20
4" de tres alambres con capacitor de funcionamiento	S08940/ CB20412CR	2243011	2	230	60	1.25	Y=10.0 B=9.3 R=2.6	Y=13.2 B=11.9 R=2.6	M = 1.6 - 2.3 $S = 5.8 - 7.2$	25	20
e tres al	S09940/ CB30412CR ①	2243027	3	230	60	1.15	Y=14.0 B=11.2 R=6.1	Y=17.0 B=12.6 R=6.0	M = 1.0 - 1.5 $S = 4.0 - 4.9$	40	30
4" de capacit	S10940/ CB50412CR ②	2243037	5	230	60	1.15	Y=23.0 B=15.9 R=11.0	Y=27.5 B=19.1 R=10.8	M = 0.68 - 1.0 $S = 1.8 - 2.2$	60	45

M=Devanado principal – Negro a amarillo; S=Devanado de arranque – Rojo a Amarillo Y=Conductor amarillo - amperios de línea. B=Conductor negro - amperios del devanado principal. R=Conductor rojo - amperios del devanado de arranque o auxiliar.

① Las Cajas de Control con código de fecha 02C y anteriores tienen capacitores 35MFD y los valores corrientes serán Am14.0 a FL y Am17.0 a Carga SF.

Az12.2 Az14.5 R4.7 R4.5

② Las Cajas de Control con código de fecha 01M y anteriores tienen capacitores 60MFD y los valores corrientes en un motor de 4" serán Am23.0 a carga FL y Am27.50 a Carga SF.

> Az19.1 Az23.2 R8.0 R7.8

ESPECIFICACIONES DE MOTOR DE 60 HZ, TRIFÁSICO

Tipo	#	Prefijo de modelo			nominal factor de servicio) a Línea frenado Circui		Corta- circuitos	Fusible de dos elementos							
'		del motor Franklin	HP	Volts	Hz	S.F.	Amps	Vatios	Amps	Vatios	Resistencia	Amps	Código	de tiempo inverso	con retardo de tiempo
	S04978	234501	1/2	200	60	1.6	2.8	585	3.4	860	6.6-8.4	17.5	N	15	5
	S04970	234511	1/2	230	60	1.6	2.4	585	2.9	860	9.5-10.9	15.2	N	15	5
	S04975	234521	1/2	460	60	1.6	1.2	585	1.5	860	38.4-44.1	7.6	N	15	3
	S05978	234502	3/4	200	60	1.5	3.6	810	4.4	1150	4.6-5.9	23.1	М	15	8
	S05970	234512	3/4	230	60	1.5	3.1	810	3.8	1150	6.8-7.8	20.1	М	15	6
	S05975	234522	3/4	460	60	1.5	1.6	810	1.9	1150	27.2-30.9	10.7	М	15	3
	S06978	234503	1	200	60	1.4	4.5	1070	5.4	1440	3.8-4.5	30.9	М	15	10
	S06970	234513	1	230	60	1.4	3.9	1070	4.7	1440	4.9-5.6	26.9	М	15	8
	S06975	234523	1	460	60	1.4	2.0	1070	2.4	1440	19.9-23.0	13.5	М	15	4
	S07978	234504	11/2	200	60	1.3	5.8	1460	6.8	1890	2.5-3.0	38.2	K	15	10
	S07970	234514	11/2	230	60	1.3	4.5	1460	5.9	1890	3.2-4.0	33.2	K	15	10
	S07975	234524	11/2	460	60	1.3	2.5	1460	3.1	1890	13.0-16.0	16.6	K	15	5
	S07979	234534	11/2	575	60	1.3	2.0	1460	2.4	1890	20.3-25.0	13.3	K	15	4
RPM	S08978	234305	2	200	60	1.25	7.7	2150	9.3	2700	1.8-2.4	53.6	L	20	15
	S08970	234315	2	230	60	1.25	6.7	2150	8.1	2700	2.3-3.0	46.6	L	20	15
00	S08975	234325	2	460	60	1.25	3.4	2150	4.1	2700	9.2-12.0	23.3	L	15	8
3450	S08979	234335	2	575	60	1.25	2.7	2150	3.2	2700	14.6-18.7	18.6	L	15	5
4	S09978	234306	3	200	60	1.15	10.9	2980	12.5	3420	1.3-1.7	71.2	K	30	20
7	S09970	234316	3	230	60	1.15	9.5	2980	10.9	3420	1.8-2.2	61.9	K	25	20
	S09975	234326	3	460	60	1.15	4.8	2980	5.5	3420	7.2-8.8	31	K	15	10
	S09979	234336	3	575	60	1.15	3.8	2980	4.4	3420	11.4-13.9	24.8	K	15	8
	S10978	234307	5	200	60	1.15	18.3	5050	20.5	5810	.7491	122	K	50	35
	S10970	234317	5	230	60	1.15	15.9	5050	17.8	5810	1.0-1.2	106	K	40	30
	S10975	234327	5	460	60	1.15	8.0	5050	8.9	5810	4.0-4.7	53.2	K	20	15
	S10979	234337	5	575	60	1.15	6.4	5050	7.1	5810	6.4-7.8	43	K	20	15
	S119784	234308	71/2	200	60	1.15	26.5	7360	30.5	8450	.4657	188	K	70	50
	S119704	234318	7 ½	230	60	1.15	23.0	7360	26.4	8450	.6175	164	K	60	45
	S119754	234328	7 ½	460	60	1.15	11.5	7360	13.2	8450	2.5-3.1	81.9	K	30	25
	S119794	234338	7 ½	575	60	1.15	9.2	7360	10.6	8450	4.0-5.0	65.5	K	25	20
	S129724	234329	10	460	60	1.15	17.0	10,000	18.5	11400	1.8-2.3	116	L	45	30
	S119794	234339	10	575	60	1.15	13.6	10,000	14.8	11400	2.8-3.5	92.8	L	35	25

LARGO MÁXIMO DEL CABLE DEL MOTOR TRIFÁSICO (del motor a la entrada de servicio (3)

	cación notor				Tam	año del	alambre	de cobr	e (1)			
Voltios	Caballos de fuerza	14	12	10	8	6	4	2	0	00	000	0000
	.5	710	1140	1800	2840	4420						
	.75	510	810	1280	2030	3160						
200 V	1	430	690	1080	1710	2670	4140					
60 Hz	1.5	310	500	790	1260	1960	3050					
	2	240	390	610	970	1520	2360	3610	5420			
	3	180	290	470	740	1160	1810	2760	4130			
	5	110*	170	280	440	690	1080	1660	2490	3050	3670	4440
	7.5	0	0	200	310	490	770	1180	1770	2170	2600	3150
	10	0	0	0	230*	370	570	880	1330	1640	1970	2390
	.5	930	1490	2350	3700	5760	8910					
	.75	670	1080	1700	2580	4190	6490	9860				
230 V	1	560	910	1430	2260	3520	5460	8290				
60 Hz	1.5	420	670	1060	1670	2610	4050	6160	9170			
	2	320	510	810	1280	2010	3130	4770	7170	8780		
	3	240	390	620	990	1540	2400	3660	5470	6690	8020	9680
	5	140*	230	370	590	920	1430	2190	3290	4030	4850	5870
	7.5	0	160*	260	420	650	1020	1560	2340	2870	3440	4160
	10	0	0	190*	310	490	760	1170	1760	2160	2610	3160
	.5	3770	6020	9460								
	.75	2730	4350	6850								
460 V	1	2300	3670	5770	9070							
60 Hz	1.5	1700	2710	4270	6730							
	2	1300	2070	3270	5150	8050						
	3	1000	1600	2520	3970	6200						
	5	590	950	1500	2360	3700	5750					
	7.5	420	680	1070	1690	2640	4100	6260				
	10	310	500	790	1250	1960	3050	4680	7050			
	.5	5900	9410									
	.75	4270	6810									
575 V	1	3630	5800	9120								
60 Hz	1.5	2620	4180	6580								
	2	2030	3250	5110	8060							
	3	1580	2530	3980	6270							
	5	920	1480	2330	3680	5750						
	7.5	660	1060	1680	2650	4150						
	10	490	780	1240	1950	3060	4770					
(2)	:4 -								L			

⁽³⁾ La sección del cable total entre la entrada de servicio y un arrancador de motor trifásico no debe exceder el 25% del largo máximo total para garantizar el funcionamiento confiable del arrancador.

Las secciones marcadas con * cumplen con la ampacidad indicada en el Código Eléctrico Nacional de EE.UU. sólo para cable con conductores individuales de 75°C.

Sólo las secciones sin * cumplen con el código para cable forrado de 75°C. Los requerimientos de los códigos locales pueden variar.

LECTURAS DE RESISTENCIA DEL AISLAMIENTO DEL MOTOR

Lecturas normales en ohmios/megaohmios, TODOS los motores, entre todos los conductores y tierra

PRECAUCIÓN

Para realizar la prueba de resistencia de aislamiento, abra el cortacircuitos y desconecte todos los conductores de la caja de control QD o del interruptor por caída de presión. Conecte un conductor del ohmímetro a cualquier conductor del motor y otro a un tubo de bajada de metal o a una tierra adecuada. Escala R x 100K

Condición del motor y los conductores	Valor en OHMIOS	Valor en Megaohmios
Motor nuevo, sin cable de alimentación	20,000,000 (o más)	20.0
Motor usado, el cual puede reinstalarse en el pozo	10,000,000 (o más)	10.0
Motor en el pozo – lecturas del cab	le de alimentación más el	motor
Motor nuevo	2,000,000 (o más)	2.0
El motor está en relativamente buenas condiciones	de 500,000 a 2,000,000	0.5 – 2.0
El motor podría estar dañado o con cable de alimentación dañado No retire el motor por estas razones	de 20,000 a 500,000	0.02 - 0.5
Motor definitivamente dañado o con cable de alimentación dañado Retire y repare el motor	de 10,000 a 20,000	0.01 - 0.02
Falla del motor o del cable de alimentación Retire y repare el motor	menos de 10,000	0 - 0.01

Operación del generador

SI NO SE USA UN INTERRUPTOR DE TRANSFERENCIA MANUAL O AUTOMÁTICO CUANDO EL GENERADOR SE UTILIZA COMO UNIDAD DE RESERVA, SE PUEDE PRODUCIR ELECTROCHOQUE, QUEMADURAS O LA MUERTE. LOS DATOS DE DOS HILOS SON SOLO PARA MOTORES DEL TIPO PSC; 2 CABLES CON FASE DIVIDIDA DEBEN SER UN 50% MÁS GRANDES QUE LA CLASIFICACIÓN DE GENERADOR DE 2 HILOS

3 H	ILOS.	(Clasificación míni	ma del generado	r
		Regulado ex	kternamente	Regulado in	ternamente
Motor	HP	KW	KVA	KW	KVA
	0,5	2,5	3,1	1,8	2,2
2 hilos	0,75	3,5	4,4	2,5	3,1
1Ø Solo PSC	1	5	6,3	3,2	4
3010 1 30	1,5	6	7,5	4	5
	0,5	2	2,5	1,5	1,9
	0,75	3	3,8	2	2,5
	1	4	5	2,5	3,2
3 hilos	1,5	5	6,3	3	3,8
1Ø o 3	2	7,5	9,4	4	5
	3	10	12,5	5	6,3
	5	15	18,8	7,5	9,4
	7,5	20	25	10	12,5
	10	30	37,5	15	18,8

TABLAS DE SELECCIÓN DE CALENTADOR DE RELÉ DE SOBRECARGA

Datos basados en Tablas Furnas 393 y 398 para motores trifásicos

Modelo D	P Clase 16	Calentador
Motor S		K
16A, 16B, 16C	16D, 16E	No.
1.91	_	K21
2.08	_	K22
2.26	_	K23
2.44	_	K24
2.7	_	K26
2.98	_	K27
3.22	_	K28
3.61	_	K29
3.93	_	K31
4.23		K32 K33
4.67 5.02	_	K33 K34
5.46	_	K36
6.25	_	K37
6.74	_	K39
7.25	_	K41
8.05	-	K42
8.55	_	K43
9.8	_	K49
10.3	_	K50
12.0	_	K52
12.5	_	K53
13.6	_	K54
14.7	_	K55
15.5	_	K56
16.9	_	K57
17.9	_	K58
19.1	_ 22.5	K60
22.0 23.6	24.1	K61 K62
25.2	25.7	K63
27.0	28.0	K64
30.0	31.1	K67
34.0	34.6	K69
37.1	37.8	K70
41.0	41.5	K72
46.0	50.0	K73
49.2	54.0	K74
56.0	57.0	K75
_	60.0	K76
_	66.0	K77
_	73.0	K78
_	80.0	K79

Tamaño de arranc	ador / Amps máx.
16A / 25	16F / 75
16B / 30	16G / 90
16C / 40	16H / 120
16D / 50	161 / 150
16E / 60	

Modelo DF	Clase 16	Calentador
Motor S	F Amps	K
16F, 16G ①	16H, 16I	No.
50.2	50.1	K72
53.2	53.1	K73
58.0	58.0	K74
62.2	62.1	K75
65.5	65.5	K76
72.0	72.0	K77
80.0	80.0	K78
-	_	K79
85.0	85.0	K83
93.0	93.0	K85
97.5	97.5	K86
104	104	K87
-	114	K88
119	126	K89
-	136	K90
_	150	K92
-	162	K93
-	180	K94
-	190	K96
-	200	K97

Las tablas de selección son utilizadas con amps de factor de servicio de motor, si se los conoce; de lo contrario, utilice amps de carga completa (FL) de motor multiplicados por un factor de 1.15. Seleccione el calentador más cercano al SFA (amps de disparo de motor), pero superior al mismo.

NOTA: Estos cuadros son solo para Fines Definidos de la Clase 16, arrancadores compensados de ambiente (identificados por un botón de reinicio verde), que utilicen calentadores K Quick Trip (clase 10) para motores sumergibles. Otras clases o marcas de arrancadores requieren tablas de selección distintas; consultar al fabricante sobre información específica para la marca/clase.

Ejemplo de selección: Factor de servicio (SF) del motor amps = 9. Si utiliza un arrancador 16AC, seleccione un calentador K49, ya que el número de clasificación de amp de calentador siguiente superior a 9 amps.

① Nuestros arrancadores actuales 16F y 16G están equipados con sobrecargas ajustables ESP100 y no requieren calentadores. Use este cuadro solo para arrancadores más antiguos que requieran calentadores K.

DESCONECTE Y BLOQUEE LA CORRIENTE ELÉCTRICA ANTES INTENTAR DAR SERVICIO. DE LO CONTRARIO, SE PUEDE PRODUCIR ELECTROCHOQUE, QUEMADURAS O LA MUERTE.

Síntoma	Causa probable	Acción recomendada
EL MOTOR DE LA BOMBA NO ESTÁ FUNCIONADO	Se disparó el protector térmico del motor a. Caja de control incorrecta b. Conexiones eléctricas incorrectas o defectuosas c. Protector térmico defectuoso d. Baja tensión e. La temperatura ambiente de la caja de control/arrancador es demasiado alta f. La bomba está atascada con materias extrañas g. Sumersión inadecuada	1. Deje que el motor se enfríe, el protector térmico se reposicionará automáticamente a – e. Solicite que un electricista calificado inspeccione y repare, según sea requerido. f. Retire la bomba, límpiela, ajústela, fije la profundidad según sea requerido g. Confirme la sumersión adecuada de la unidad en el agua bombeada
	Cortacircuitos abierto o fusible quemado	Solicite que un electricista calificado inspeccione y repare, según sea requerido.
	La fuente de energía es inadecuada para la carga	3. Verifique el suministro o la capacidad del generador
	Daño del aislamiento del cable de alimentación Empalme defectuoso del cable de alimentación	4 – 5. Solicite que un electricista calificado inspeccione y repare, según sea requerido.
LA BOMBA ENTREGA POCO	Válvula de retención defectuosa o instalada incorrectamente	1. Inspeccione la válvula de retención, repárela según sea necesario
O NADA DE LÍQUIDO	2. La bomba está atascada con aire	2. Arranque y detenga la bomba sucesivamente hasta que haya flujo
	3. Elevación demasiado alta para la bomba	3. Verifique el rendimiento de la unidad, consulte con agente
	4. La bomba está atascada con materias extrañas	4. Retire la bomba, límpiela ajústela, fije la profundidad según sea requerido
	5. La bomba no está completamente sumergida	5. Verifique la recuperación del pozo, baje la bomba si es posible
	6. El pozo contiene demasiado aire o gases	6. Si los arranques y paradas sucesivos no solucionan el problema, el pozo contiene demasiado aire o gases
	7. Desgaste excesivo de la bomba	7. Retire y repare la bomba, según sea necesario
	8. Rotación incorrecta del motor – uni- dades trifásicas únicamente.	8. Invierta dos conductores eléctricos cualesquiera del motor

Goulds Pumps

Pompes submersibles de 4 po

Directives d'installation et d'utilisation

Goulds Pumps est une marque d'ITT Corporation.

www.goulds.com

Engineered for life

Informations pour le propriétaire

Nº de modèle de la pompe:
Nº de série de la pompe:
Nº de modèle du moteur:
Nº de série du moteur:
Détaillant:
N° de téléphone du détaillant:
Date d'achat:
Date d'installation:
Tension (V):
Intensité (A):

Table des matières

SUJET PAGE
Consignes de sécurité46
Protection de la pome47
Préparatifs d'installation48
1. Installations types49
2. Tuyauterie et réservoir50
3. Alimentation électrique, câblage et jonction52
4. Connexion de la boîte de
commande et du pressostat53
5. Mise en service de la pompe 56
6. Documentation et manuel56
Données sur les moteurs CentriPro de 1Ø, de 4 po57
Calibres de fil des moteurs CentriPro de 1Ø, à 2 ou 3 fils 58
PumpSaver58
Schémas de câblage19, 20, 58
Données sur les moteurs F.E. de 10, 60 Hz59
Données sur les moteurs F.E. de 3 Ø, 60 Hz60
Longueur maximale des câbles de moteur de 3Ø61
Données techniques
Valeurs de résistance d'isolement du moteur
Utilisation d'une génératrice 62
Sélection — Protection contre la
surcharge et relais de démarrage 63
Diagnostic de anomalies64
Déclaration de conformité65
Garantie limitée66

CONSIGNES DE SÉCURITÉ

AFIN DE PRÉVENIR LES BLESSURES GRAVES OU MORTELLES ET LES DOMMAGES MATÉRIELS IMPORTANTS, SUIVRE CHAQUE CONSIGNE DE SÉCURITÉ FIGURANT DANS LE MANUEL ET SUR LA POMPE.

LE PRÉSENT MANUEL A POUR BUT DE FACILITER L'INSTALLATION ET L'UTILISATION DE LA POMPE ET DOIT ÊTRE CONSERVÉ PRÈS DE CELLE-CI.

Le symbole ci-contre est un SYMBOLE DE SÉCURITÉ employé pour signaler les mots-indicateurs dont on trouvera la description ci-dessous. Sa présence sert à attirer l'attention afin d'éviter les blessures et les dommages matériels.

Prévient des risques qui VONT causer des blessures graves, la mort ou des dommages matériels importants.

Prévient des risques qui PEUVENT causer des blessures graves, la mort ou des dommages matériels importants.

Prévient des risques qui PEUVENT causer des blessures ou des dommages matériels.

AVIS: SERT À ÉNONCER LES DIRECTIVES SPÉCIALES DE GRANDE IMPORTANCE QUE L'ON DOIT SUIVRE.

LIRE SOIGNEUSEMENT CHAQUE DIRECTIVE ET AVERTISSEMENT AVANT D'EFFECTUER TOUT TRAVAIL SUR LA POMPE.

N'ENLEVER AUCUNE DÉCALCOMANIE DE SÉCURITÉ.

Avis important : lire les consignes de sécurité avant de procéder au câblage.

L'installation électrique doit être entièrement effectuée par AVERTISSEMENT un technicien qualifié. Il faut toujours suivre les prescriptions du code provincial ou national de l'électricité pertinent et les règlements locaux. Adresser toute question relative au code à un inspecteur en électricité. Le non-respect du code et des politiques de santé et de sécurité au travail peut entraîner des blessures et des dommages matériels. L'inobservation des directives d'installation fournies par le fabricant peut se traduire par un choc électrique, un incendie, des blessures ou la mort, ainsi que par des dommages matériels, des performances non satisfaisantes et l'annulation de la garantie du fabricant.

Les pompes standard ne sont pas conçues pour les piscines, l'eau libre, les liquides dangereux ni les gaz inflammables.

Aérer le puits selon les codes locaux. La plaque signalétique de la pompe et les feuillets du catalogue de pompes listent les organismes de normalisation.

AVERTISSEMENT

Verrouiller la source de courant en position hors circuit avant l'installation ou l'entretien des dispositifs électriques.

Le protecteur thermique de certains moteurs coupe le courant lorsqu'il y a surcharge thermique et le rétablit automatiquement, redémarrant ainsi la pompe inopinément.

AVERTISSEMENT

Pour le système et le réservoir, ne jamais utiliser une pression excédant la pression nominale maximale de ce dernier, afin

de ne pas l'endommager, annuler la garantie ni constituer un grave danger.

Protéger le réservoir des éclaboussures et des excès d'humidité pour prévenir la corrosion et les risques. Lire les étiquettes du réservoir et le manuel pour plus de détails.

AVERTISSEMENT

Ne pas lever, transporter ni suspendre la pompe par le câble d'alimentation: l'endommagement du câble pourrait causer un choc électrique, des brûlures ou la mort.

N'utiliser que du fil de cuivre torsadé pour l'alimentation et la mise à la terre du moteur et de la pompe. Le calibre du fil de terre doit être au moins égal à celui des fils d'alimentation. Les fils devraient tous être chromocodés pour faciliter l'entretien et le diagnostic des anomalies.

DANGER Poser le fil de terre et les autres fils suivant les prescriptions du code provincial ou national de l'électricité pertinent et les règlements locaux.

AN AVERTISSEMENT Installer un sectionneur tout conducteur si le code l'exige.

Le nombre de phases et la tension d'alimentation doivent convenir à tout l'équipement. Un nombre de phases et une tension inappropriés annulent la garantie et peuvent causer un incendie et des dommages au moteur et aux commandes.

AVERTISSEMENT Chaque jonction de fils doit être étanche. Si l'on emploie un nécessaire de jonction («*kit* »), suivre les directives du fabricant.

Choisir la boîte de jonction du type et de la classe NEMA convenant au type et au lieu d'utilisation. La boîte doit assurer une jonction de fils sûre et étanche.

Pour que la pompe fonctionne correctement, en immerger le clapet de non-retour à une profondeur minimale de 5 pi.

Omettre la mise à la terre permanente de la pompe, du moteur et des commandes avant le branchement à la source de courant peut causer un choc électrique, des brûlures ou la mort.

ATTENTION Les commandes triphasées des pompes submersibles doivent assurer une protection rapide de classe 10 contre la surcharge.

Pour bien refroidir tout moteur de 4 po de 2 hp et plus, s'assurer que la vitesse d'écoulement minimale de l'eau autour du moteur est de 0,25 pi/s (7,62 cm/s). Donc, le débit minimal nécessaire au refroidissement du moteur en fonction du calibre du tubage devrait être: 1,2 gal US/min pour 4 po; 7 pour 5 po; 13 pour 6 po; 20 pour 7 po; 30 pour 8 po et 50 pour 10 po.

Si une pompe de 2 hp et plus est utilisée dans un grand réservoir, on devrait la placer dans un manchon d'accélération pour obtenir la vitesse d'écoulement ou le débit nécessaires au bon refroidissement du moteur.

ATTENTION La pompe submersible de 4 po a été évaluée pour le pompage de l'eau seulement.

PROTECTION DE LA POMPE — La protection PumpSaver de SymCom est recommandée contre les: bas niveau d'eau, fonctionnement cyclique rapide, débit restreint ou nul, surtension, sous-tension et surintensité. La PumpTec de F.E. ne peut servir avec les CentriPro à 2 fils, à condensateur auxiliaire permanent.

PRÉPARATIFS D'INSTALLATION

- Inscrire en deuxième page les informations pour le propriétaire au sujet de la pompe, du moteur, etc.
- Inspecter tous les composants pour s'assurer qu'ils n'ont pas été endommagés durant le transport. S'ils l'ont été, en aviser le distributeur immédiatement.
- Vérifier si la puissance du moteur (en hp) convient à la pompe.
- S'assurer que la tension d'alimentation et le nombre de phases sont appropriés au moteur et aux commandes.
- Installer les commandes dans un endroit sec et ombragé.
- Effectuer la jonction des fils immergés ou enfouis avec des connecteurs étanches.
- Étant donné que la tête de refoulement de la plupart des pompes est vissée à gauche, immobiliser la tête et non la pompe pour éviter de dévisser la tête au moment d'y fixer le tuyau ou le raccord-adaptateur.
- S'assurer que tous les raccords et accessoires de plomberie sont bien serrés et étanchés avec du ruban de Téflon.
- Vérifier si la pression nominale de la tuyauterie est supérieure à la pression d'arrêt de la pompe.
- Si la pression du système peut dépasser 75 lbf/po2, poser une soupape de décharge. La pression ne peut excéder la pression nominale max. du réservoir.
- L'emplacement du réservoir et de la commande en un lieu protégé des pluies acides, de l'air salin et des éclaboussures peut en augmenter la durée.
- Pour empêcher le cliquetis répétitif du pressostat, ne pas le poser à plus de 4 pi du réservoir à pression.
- Régler la pression de l'air précomprimé du réservoir à 2 lbf/po² de moins que la pression de démarrage de la pompe, soit à 28 lbf/po² pour une plage de pression de service de 30 à 50 lbf/po² par exemple.
- L'emplacement du réservoir et de la commande en un lieu protégé des pluies acides, de l'air salin et des éclaboussures peut en augmenter la durée.
- Placer la pompe à au moins 10 pi du fond du puits pour prévenir l'aspiration de sédiments et de débris.
- S'assurer que le disjoncteur principal ou le sectionneur sont HORS circuit avant de câbler les composants.
- Le câblage devrait être effectué uniquement par un technicien qualifié.
- Le câblage et la mise à la terre doivent être conformes au code provincial ou national pertinent et aux règlements locaux.
- Diminuer la section de passage du tuyau avec un robinet à tournant sphérique ou à soupape ouvert à peu près au tiers (1/3) avant de mettre la pompe en marche pour la première fois.
- Ouvrir un robinet de puisage ou de vidange au moment du démarrage de la pompe pour purger l'eau sale afin qu'elle ne puisse entrer dans le réservoir.
- Mettre le disjoncteur principal ou le sectionneur EN circuit.
- Faire fonctionner la pompe durant quelques cycles pour vérifier le fonctionnement du pressostat.
- Vérifier l'intensité (A) du courant et l'inscrire en deuxième page.
- Remettre le manuel au propriétaire ou le laisser près de la pompe.

1. INSTALLATIONS TYPES

INSTALLATION À RÉSERVOIR À AIR CAPTIF

AVIS: ON DOIT UTILISER LA VALVE À AIR COMPRIMÉ SITUÉE SUR LE DESSUS DU RÉSERVOIR POUR RÉGLER LA PRESSION D'AIR DE CELUI-CI.

INSTALLATION À RÉSERVOIR GALVANISÉ

Figure 2

159 L (42 gal US)

310 L (82 gal US)

454 L (120 gal US)

833 L (220 gal US)

1 192 L (315 gal US)

1 987 L (525 gal US)

2,1 m (7 pi)

3 m (10 pi)

4,6 m (15 pi)

4,6 m (15 pi)

6,1 m (20 pi)

6,1 m (20 pi)

2. Tuyauterie et réservoir

Avis: la tête de refoulement de la majorité des pompes submersibles de 4 po est vissée à gauche. Immobiliser la pompe <u>uniquement</u> par la «tête de refoulement» pour y fixer tout raccord ou tuyau fileté.

AATTENTION 2.1. Généralités

Le calibre de la tuyauterie de refoulement devrait être choisi pour permettre le rendement optimal de

la pompe. Calculer la hauteur manométrique totale en tenant compte des divers calibres de tuyau figurant dans les tables de perte de charge. En règle générale, on choisit le débit maximal selon le calibre: 10 gal US/min pour 1 po, 30 pour 1¹/₄ po, 45 pour 1¹/₂ po et 80 pour 2 po. Si la tuyauterie est longue, il vaut mieux accroître le calibre.

Étant donné que certaines pompes produisent une pression de refoulement très élevée, choisir le tuyau en conséquence. Consulter un fournisseur de tuyaux pour déterminer le meilleur type de tuyau pour chaque installation.

2.2. Réservoir à pression, pressostat et soupape de décharge

Pour l'installation du réservoir, du pressostat et de la soupape de décharge,

choisir un endroit sec où la température dépassera toujours 1°C (34°F) et où aucune fuite ne pourra causer de dommages matériels. Pour empêcher le cliquetis répétitif du pressostat, on devrait le poser près du té du réservoir, mais jamais à plus de 4 pi de celui-ci.

Ne poser entre le pressostat et le réservoir ni robinet, ni clapet de non-retour, ni filtre, ni raccord produisant une perte de charge (par frottement) élevée. Par exemple, la perte de charge d'un clapet à ressort de 1½ po équivaut à une longueur de tuyau additionnelle de 12 pi. Donc, placer le clapet entre un réservoir et un pressostat reviendrait à les écarter de 12 pi de plus et à causer le cliquetis répétitif de ce dernier.

Dans les installations à réservoirs multiples, on devrait poser le pressostat aussi près que possible du centre des réservoirs. Afin de réduire la hauteur équivalente de perte de charge (par frottement) dans le tuyau collecteur-répartiteur et d'empêcher le pressostat de cliqueter à répétition, on devrait employer un collecteur-répartiteur de calibre $1\frac{1}{2}$ fois supérieur à celui du tuyau de refoulement de la pompe.

Une soupape de décharge est requise dans tout système ayant une pression supérieure à 100 lbf/po² ou une HMT supérieure à 230 pi. Si l'éjection de fluide par la soupape peut causer des dommages, en relier la sortie à un tuyau d'évacuation approprié avec une conduite.

2.3. Réglage de la pression de l'air précomprimé du réservoir

S'assurer que le réservoir est vide. Utiliser un manomètre de haute qualité pour vérifier la pression de l'air précomprimé du réservoir. Celle-ci devrait être inférieure de 2 lbf/po² à la pression de démarrage de la pompe. Par exemple, elle serait de 28 lbf/po² dans un système dont la pression de service est de 30 à 50 lbf/po².

2.4. Tuyau de refoulement et clapet de non-retour

Nota: la plupart des têtes de refoulement sont vissées à gauche. Pour fixer un raccord ou un tuyau sur la pompe, n'immobiliser celle-ci que par la tête de refoulement pour ne pas desserrer la pompe et risquer de l'abîmer au démarrage.

Si le tuyau de refoulement requiert un adaptateur, il est fortement recommandé d'en poser un en inox. Pour prévenir la corrosion galvanique, on ne devrait jamais fixer de raccords, de tuyaux ni d'accessoires de tuyauterie galvanisés directement sur la tête de refoulement. À ce sujet, aucun matériau de fabrication n'est interdit pour les têtes de refoulement en plastique ou en laiton. Les raccords à barbillons devraient toujours être assujettis avec deux colliers de serrage.

La tête de refoulement possède un œil de fixation pour câble de sécurité. Le câble est recommandé quand on utilise un tuyau en polypropylène, qui s'allonge lorsqu'il est sous pression ou plein d'eau.

2.5. Mise en place de la pompe

Si l'on emploie un dispositif antitorsion, le poser selon les directives du fabricant du dispositif. Pour plus de détails, consulter le vendeur du dispositif.

Raccorder le tuyau de refoulement à l'adaptateur ou à la tête de refoulement de la pompe. Les raccords à barbillons devraient toujours être assujettis avec deux colliers de serrage. Poser un adaptateur de tête de puits ou autre dispositif du même type pour y raccorder le tuyau de refoulement de la pompe. S'adresser au fabricant ou au vendeur de l'adaptateur ou du dispositif en question pour obtenir les directives d'installation pertinentes.

Avec du ruban isolant (chatterton) étanche, fixer les fils d'alimentation au tuyau de refoulement à tous les 10 pi. Les fournisseurs de pompes vendent des attaches encliquetables à cette fin.

2.6. Accessoires de tuyauterie spéciaux pour systèmes à réservoir galvanisé

Lorsque l'on utilise un réservoir galvanisé, on devrait poser un raccord de vidange en Y AV11 dans le puits et un clapet de non-retour à reniflard au réservoir. On permettra ainsi l'entrée d'air dans le réservoir pour empêcher le réservoir de trop s'emplir d'eau. Poser une commande d'échappement d'air AA4 sur le réservoir pour en laisser sortir l'excès d'air. La distance entre l'AV11 et le clapet de non-retour à reniflard détermine la quantité d'air admise à chaque démarrage. Voir la distance recommandée dans la figure 2.

Si le puits dégage du gaz, il est préférable de munir le réservoir en acier vitrifié ou galvanisé d'une commande d'échappement d'air AA4 pour évacuer le surplus d'air et en prévenir le «jaillissement» du robinet.

On doit soumettre l'eau contenant du méthane ou tout gaz explosif ou dangereux à un traitement spécial permettant d'éliminer le gaz en question sans danger. À cet effet, consulter un spécialiste du traitement de l'eau.

Quant aux puits alimentés par le haut, il faudrait poser un manchon d'accélération de l'écoulement de l'eau autour de la pompe.

2.7 Clapets de non-retour

Quatre types de clapets de nonretour sont utilisés. Ces clapets sont recommandés pour empêcher le liquide de redescendre dans la pompe et de faire ainsi tourner le moteur et la pompe en sens inverse, ce qui en provoquerait l'usure prématurée des roulements et des coussinets. En outre, les clapets préviennent les dommages dus aux coups de bélier et aux poussées axiales. Un clapet de non-retour supplémentaire devrait être posé à tous les 200 pi sur le troncon vertical du tuyau de refoulement. Voir les textes 1 et 2 de la figure 1 pour les autres positions recommandées.

Si l'on veut mettre un clapet de nonretour hors service pour vidanger le système, on devrait employer un autre moyen, et ce, afin de prévenir les dommages dus aux coups de bélier et aux poussées axiales:

• Clapets de non-retour intégrés en inox — ils possèdent une surface plane que l'on peut facilement perforer avec une perceuse électrique et un foret de ¼ ou de ¾ po.

- Clapets de non-retour à ressort vissés sur la tête de refoulement
- leur obturateur peut s'enlever facilement de son moyeu à l'aide d'une douille ou d'un tournevis à douille de ½ po, que l'on introduit par le haut.
- Clapets de non-retour internes en plastique du type Flomatic^{MC} à ressort — ils doivent être enlevés et requièrent donc le démontage de la pompe.
- Clapets de non-retour intégrés en plastique à tige accessible par le haut de la tête de refoulement on peut les enlever en tirant sur leur tige avec une pince.

3. ALIMENTATION ÉLECTRIQUE, CÂBLAGE ET IONCTION

On doit toujours suivre les prescriptions du code provincial ou national de l'électricité pertinent et les règlements locaux.

Il est suggéré de n'utiliser que du fil de cuivre. En choisir le calibre à l'aide des tables appropriées ci-dessous, du manuel MAID (*Motor Application and Installation Data*) ou du code provincial ou national de l'électricité. En cas de divergence, le code de l'électricité pertinent prévaut.

3.1. Jonction du câble d'alimentation aux fils de moteur

Il est nécessaire que la jonction des fils de moteur au câble d'alimentation soit étanche. Le joint peut être effectué avec une gaine isolante thermorétrécissables ou du ruban isolant étanche.

A. Joints à gaine isolante thermorétrécissable

Pour employer le nécessaire de jonction type à gaines thermorétrécissables: dénuder les fils sur une longueur de ½ po (il vaut mieux échelonner les joints), y enfiler une gaine isolante (une par joint), joindre les fils de moteur aux fils de câble d'alimentation correspondants avec un raccord à sertir, sertir les extrémités de chaque raccord, puis recouvrir celui-ci avec la gaine et chauffer cette dernière à partir du centre. Les gaines contiennent un produit d'étanchéité et une colle dont l'excédent sortira par les extrémités de la gaine pendant son rétrécissement. L'ensemble forme un joint étanche, très résistant.

B. Joints à ruban isolant étanche

- a) Dénuder les fils sur une longueur suffisante pour y poser un raccord tubulaire (type préférable). Si le raccord est trop mince, l'épaissir en y enroulant du chatterton en caoutchouc jusqu'à ce qu'il ait le même diamètre que la gaine du fil.
- b) Enrouler chaque joint de deux couches de chatterton en caoutchouc: enrouler le ruban de façon aussi serrée que possible pour empêcher la formation de bulles d'air, la première couche dépassant de deux pouces chaque extrémité de la gaine isolante, et la seconde, de deux pouces chaque extrémité de la première couche de chatterton.
- c) Enrouler deux couches —
 comme à l'étape b) précédente —
 de chatterton Scotch n° 33 ou
 l'équivalent sur le chatterton en
 caoutchouc, chaque couche
 dépassant la précédente d'au
 moins deux pouces.

S'il s'agit d'un câble d'alimentation trifilaire (à 3 fils) à gaine unique,

séparer chaque fil de façon à échelonner les joints, puis isoler ceux-ci avec du ruban de la manière précitée.

L'épaisseur totale du ruban isolant ne devrait pas être inférieure à celle de la gaine du fil.

4. CONNEXION DE LA BOÎTE DE COMMANDE ET DU PRESSOSTAT

4.1. Pose de la boîte de commande

Les boîtes de commande trifilaires monophasées satisfont aux exigences UL relatives aux boîtiers du type 3R. Elles peuvent être montées à la verticale, à l'intérieur comme à l'extérieur, et fonctionnent entre –10 et 50 °C (14 et 122 °F). Choisir un endroit ombragé, sec et suffisamment dégagé pour permettre la dépose du couvercle.

4.2. Vérification de la tension et mise hors tension du système

S'assurer que la tension d'entrée du moteur et la tension d'alimentation sont identiques.

Mettre le disjoncteur ou le sectionneur HORS circuit pour prévenir le démarrage accidentel de la pompe avant qu'elle soit prête à mettre en service.

Les bobines de démarreur triphasé sont très sensibles à la tension. On doit donc toujours vérifier la tension d'alimentation réelle avec un voltmètre.

Une basse ou une haute tension de variation supérieure à $\pm 10\%$ endommagera le moteur et les commandes et n'est pas couverte par la garantie.

4.3. Connexion des fils de moteur à la boîte de commande, au pressostat ou au démarreur

Mise en garde: ne pas brancher l'appareil au secteur ni mettre la pompe en marche tant que les connexions électriques et hydrauliques n'ont pas

toutes été effectuées. S'assurer que le disjoncteur ou le sectionneur est HORS circuit avant de connecter les fils du pressostat à la source d'alimentation électrique. Suivre toutes les prescriptions du code provincial ou national de l'électricité pertinent. Employer un sectionneur quand le code l'exige.

A. Moteurs monophasés à trois fils

Brancher les fils de moteur chromocodés sur les bornes de la boîte de commande comme suit: le jaune sur Y, le rouge sur R, le noir sur B et le vert (ou le fil dénudé) sur la vis de terre (verte).

Connecter les fils reliant les bornes «Charge» du pressostat aux bornes L1 et L2 de la boîte de commande. Relier la borne de terre du pressostat à celle de la boîte de commande par un fil de terre. Voir la figure 4 ou 5.

B. Moteurs monophasés à deux fils

Connecter les fils de moteur noirs aux bornes «Charge» et le vert (ou le fil dénudé) à la vis de terre (verte) du pressostat. La PumpTec (F.E.) ne peut servir avec les CentriPro à 2 fils. Utiliser une PumpSaver. Voir la figure 3.

C. Moteurs triphasés

Brancher les fils de moteur sur les bornes T1, T2 et T3 du démarreur triphasé. Connecter le fil de terre à la borne de terre (dans le démarreur). Pour brancher le pressostat, suivre les directives du fabricant du démarreur ou voir la figure 6.

4.4. Connexion à la source d'alimentation électrique

AAVERTISSEMENT S'il s'agit d'une alimentation monophasée, finir le câblage en reliant les bornes «Ligne» du pressostat à celles du panneau de disjoncteurs ou du sectionneur, selon le cas.

Alimentation triphasée — relier les bornes L1, L2, L3 et de terre du démarreur à celles du sectionneur, puis au panneau de disjoncteurs.

Dans les installations à moteur triphasé, on doit vérifier si le moteur tourne dans le bon sens et s'il y a différence de phases. Pour inverser le sens de rotation, intervertir deux fils de moteur. Voir les directives de vérification du déséquilibre du courant triphasé à 4.6. La non-vérification de la différence de phases peut causer la défaillance prématurée du moteur et le déclenchement intempestif du limiteur de surcharge. Si l'on emploie une génératrice, voir les données techniques sur son utilisation.

4.5 Protection contre la surcharge en triphasé

Employer uniquement des protections contre la surcharge rapides de classe 10 avec les moteurs submersibles triphasés. Les démarreurs Furnas classés NEMA 14 à limiteurs de surcharge ESP100, ainsi que les démarreurs de classe 16 à dispositifs de protection contre la surcharge de série K ou à limiteurs de surcharge ESP100, offrent une protection adéquate. Voir les tables sur la classe 16.

Si l'on a besoin d'aide pour choisir la protection, s'adresser au fabricant de la pompe.

4.6. Déséquilibre du courant triphasé

Un circuit d'alimentation électrique entièrement triphasé est recommandé. Il peut être constitué de trois transformateurs distincts ou d'un transformateur triphasé. On peut aussi utiliser deux transformateurs montés en étoile ou en triangle «ouverts», mais il est possible qu'un tel montage crée un déséquilibre de courant se traduisant par des performances médiocres, le déclenchement intempestif du limiteur de surcharge et la défaillance prématurée du moteur.

Vérifier l'intensité du courant sur chacun des trois fils de moteur, puis calculer le déséquilibre du courant.

Si le déséquilibre est de 2% ou moins, ne pas changer la connexion des fils.

S'il dépasse 2%, on devrait vérifier l'intensité du courant sur chaque conducteur, dans les trois montages possibles ci-dessous. Afin de maintenir le sens de rotation du moteur, suivre l'ordre numérique indiqué dans chaque montage pour la connexion des fils de moteur.

Pour calculer le pourcentage de déséquilibre du courant:

- A. Faire l'addition des trois intensités mesurées sur les conducteurs.
- B. Diviser le total par 3 pour obtenir l'intensité moyenne.
- C. Prendre l'écart d'intensité le plus grand par rapport à la moyenne.
- D. Soustraire cet écart de la moyenne.
- E. Diviser la différence par la moyenne, puis multiplier le résultat par 100 pour obtenir le pourcentage de déséquilibre.

Le déséquilibre de courant ne devrait pas excéder 5 %. Si le déséquilibre persiste en connectant les fils de moteur dans l'ordre numérique indiqué, on doit en trouver la cause et l'éliminer. Si, dans les trois montages, l'écart d'intensité le plus grand par rapport à la moyenne est toujours mesuré sur le même conducteur, la cause du déséquilibre vient surtout de la source d'alimentation.

On s'adressera alors à la société d'électricité pour rectifier le déséquilibre de courant.

	1	er montage	į	2€	montag	ge	3 ^e montage			
Bornes de démarreur	L1 ⊥	L2 	L3 ⊥	L1 ⊥	L2 	L3 	L1 ⊥	L2 	L3 	
ed I .	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	
Fils de moteur	R	В	Υ	Υ	R	В	В	Υ	R	
	T3	T1	T2	T2	T3	T1	T1	T2	T3	
Exemples:										
•	T3-F	R = 51 A		T2	2-Y = 5	0 A		T1-B =	50 A	
	T1-E	8 = 46 A		T3	8-R = 4	8 A		T2-Y =	49 A	
	T2-\	' = 53 A		T1	-B = 5	2 A		T3-R =	51 A	
	Total	= <u>150 A</u>		Tota	al = 15	<u>0 A</u>	1	Total = j	<u>150 A</u>	
	÷3	B = 50 A		-	$\div 3 = 5$	0 A		÷3 =	50 A	
	- 46	A = 4 A		_ 4	= A 8	2 A		– 49 A :	= 1 A	
4 ÷50	= 0,0	8 ou 8%	2 -	$\div 50 = 0$,04 ou	4%	1 ÷50 =	= 0,02 o	u 2%	

5. MISE EN SERVICE DE LA POMPE

5.1 Pose d'un robinet et clarification de l'eau

Nouveau puits — Poser sur le tuyau de refoule-

ment un robinet à soupape ou à tournant sphérique, l'entrouvrir au tiers, pomper l'eau jusqu'à ce qu'elle devienne plus claire, ouvrir le robinet lentement pour vérifier le débit et, une fois l'eau devenue limpide, arrêter la pompe.

Déposer le robinet et raccorder le tuyau de refoulement à la tuyauterie de la maison, au réservoir à pression et au pressostat. Faire fonctionner la pompe durant quelques cycles pour rincer l'intérieur du réservoir, vérifier le bon fonctionnement de la pompe et du pressostat et s'assurer que tous les joints de la tuyauterie sont étanches.

MISE EN GARDE: si le niveau statique du puits est élevé, voir les informations sur la protection de la pompe à 5.2.

5.2. Étranglement prévenant les poussées axiales avec un niveau statique élevé

Tout puits ayant un niveau statique élevé peut entraîner le fonctionnement de la pompe en dehors de la «plage de performances recommandée». Il est donc suggéré d'employer un réducteur de débit Dole ou un robinet à tournant sphérique pour étrangler la section de passage du tuyau de refoulement et empêcher les dommages à la pompe et au moteur dus aux poussées axiales. On doit maintenir le débit maximal dans la plage de fonctionnement

recommandée de la pompe. Si l'on utilise un robinet à tournant sphérique, en régler l'ouverture, en enlever la poignée et l'attacher au tuyau avec du ruban adhésif, puis fixer au robinet une étiquette volante portant la mention: «Ne pas ouvrir ce robinet, car cela pourrait endommager la pompe.» La manière la plus simple de «régler» le débit est de remplir un contenant de 5 gallons US, de mesurer le temps nécessaire à son remplissage, puis de se baser sur ce temps pour calculer le débit (en gal US/min). À mesure que le niveau du puits baisse, la hauteur de charge augmente, réduisant le débit et neutralisant l'effet d'étranglement pouvant altérer les performances.

6. DOCUMENTATION ET MANUEL

Remplir la section «Informations pour le propriétaire » en deuxième page, puis remettre le présent manuel au propriétaire, ainsi qu'une carte d'affaires. La pose d'un autocollant portant le nom et le numéro de téléphone du détaillant sur le réservoir ou la boîte de commande est un excellent outil de promotion des affaires!

Une nouvelle étiquette fournit les informations sur la pompe. On peut l'apposer au manuel ou à une boîte de commande à 3 fils, ou bien la placer près du réservoir ou du pressostat.

DONNÉES SUR LES MOTEURS CENTRIPRO DE 100, DE 4 po

Туре	Nº de cata- logue	hp	kW	V	FS	A, à pleine charge	A avec FS	A avec rotor bloqué	Fusible tempo- risé	Disjonc- teur standard	Code kV·A	Enrou- lement (Ω)
	M05421	0,5	0,37	115	1,6	7,4	9,5	36,4	20	25	K	1,4 à 1,7
	M05422	0,5	0,37	230	1,6	3,7	4,7	19,5	10	15	K	4,6 à 5,6
2 fils,	M07422	0,75	0,55	230	1,5	5,0	6,4	24,8	15	20	J	3,5 à 4,3
CAP	M10422	1,0	0,75	230	1,4	7,9	9,1	22,0	15	20	F	4,2 à 5,2
	M15422	1,5	1,1	230	1,3	9,2	11,0	42,0	20	30	Н	1,9 à 2,3

Туре	Nº de cata- logue	hp	kW	v	FS	A, à pleine charge	avec		tempo-	Disjonc- teur standard	Code kV·A	Enroul. princ. N-J (Ω)	Enroul. démarr., R-J (Ω)	Boîte de comm. requise
	M05411	0,5	0,37	115	1,6	J (11,0) N (11,0) R (0)		49,6	20	30	N	1,1-1,4	5,7-7,0	CB05411
3 fils,	M05412	0,5	0,37	230	1,6	J (5,5) N (5,5) R (0)	J (6,3) N (6,3) R (0)	22,3	10	15	М	4,0-4,9	16,3-19,9	CB05412
ICD	M07412	0,75	0,55	230	1,5	J (7,2) N (7,2) R (0)	J (8,3) N (8,3) R (0)	32,0	15	20	L	2,7-3,3	11,1-13,6	CB07412
	M10412	1,0	0,75	230	1,4	J (8,4) N (8,4) R (0)	J (9,7) N (9,7) R (0)	41,2	20	25	L	2,5-3,1	10,6-13,0	CB10412
	M05412	0,5	0,37	230	1,6	J (4,1) N (4,1) R (2,2)	J (4,9) N (4,4) R (2,1)	22,3	10	15	М	4,0-4,9	16,3-19,9	CB05412CR
	M07412	0,75	0,55	230	1,5	J (5,1) N (5,1) R (3,2)	J (6,3) N (6,6) R (3,1)	32,0	15	20	L	2,7-3,3	11,1-13,6	CB07412CR
2 (1)	M10412	1,0	0,75	230	1,4	J (6,1) N (5,7) R (3,3)	J (7,2) N (6,3) R (3,3)	41,2	20	25	L	2,5-3,1	10,6-13,0	CB10412CR
3 fils, CDM	M15412	1,5	1,1	230	1,3	N (9,5)	J (11,1) N (11,0) R (1,3)	47,8	20	30	J	1,9-2,4	7,4-9,1	CB15412CR
	M20412	2	1,5	230	1,25	N (9,1)	J (12,2) N (11,7) R (2,6)	49,4	20	25	G	1,6-2,2	10,8-12,0	CB20412CR
	M30412	3	2,2	230	1,15	J (14,3) N (12,3) R (5,7)		76,4	10	25	G	1,1-1,4	2,0-2,5	CB30412CR
	M50412	5	3,7	230	1,15									CB50412CR

 $\begin{aligned} \mathsf{CAP} &= \grave{\mathsf{a}} \text{ condensateur auxiliaire permanent, CDM} = \grave{\mathsf{a}} \text{ condensateur de démarrage et de marche,} \\ \mathsf{ICD} &= \grave{\mathsf{a}} \text{ induction } \grave{\mathsf{a}} \text{ condensateur de démarrage, J} = \mathsf{fil} \text{ jaune, N} = \mathsf{fil} \text{ noir, R} = \mathsf{fil} \text{ rouge.} \end{aligned}$

CALIBRES DE FIL DES MOTEURS CENTRIPRO DE 1Ø, À 2 OU 3 FILS

	Longueur des fils de moteur CentriPro CAP à 2 fils, fondée sur : A avec facteur de surcharge, chute de tension de 5 % et température ambiante de 30 °C													
	Mot	teur			Cali	bre AV	/G, fils	en cuiv	re, iso	lation	pour 60)°C et	75°C	
٧	hp	kW	AFS	14	Calibre AWG, fils en cuivre, isolation pour 60 °C et 75 °C 4 12 10 8 6 4 2 0 00 000 0000								0000	
115	1/2	0,37	9,5	115	183	293	463	721	1150	1825	2902	3 662	4623	5824
230	1/2	0,37	4,7	466	742	1183	1874	2915	4648	7379	11733	14803	18688	23 544
230	3/4	0,55	6,4	342	545	869	1376	2141	3413	5419	8617	10871	13724	17 290
230	1	0,75	9,1	241	383	611	968	1506	2 400	3811	6060	7646	9652	12 160
230	11/2	1,1	11,0	199	9 317 505 801 1246 1986 3153 5013 6325 7985 10060									

Longueur des fils de moteur CentriPro ICD à 3 fils, fondée sur: A avec facteur de surcharge, chute de tension de 5 % et température ambiante de 30 °C

	Mot	teur			Calil	bre AW	/G, fils	en cuiv	re, iso	lation _l	oour 60	O°C et	75°C	
٧	hp	kW	AFS	14	12	10	8	6	4	2	0	00	000	0000
115	1/2	0,37	12,6	87	138	221	349	544	867	1376	2188	2761	3 4 8 5	4391
230	1/2	0,37	6,3	348	553	883	1398	2175	3467	5505	8753	11044	13942	17564
230	3/4	0,55	8,3	264	420	670	1061	1651	2632	4178	6644	8383	10582	13332
230	1	0,75	9,7	226	359	573	908	1413	2252	3575	5685	7173	9055	11408
230	11/2	1,1	11,1	197	314	501	793	1234	1968	3124	4968	6268	7913	9969

AFS = courant avec facteur de surcharge, $CAP = \grave{a}$ condensateur auxiliaire permanent, $ICD = \grave{a}$ induction \grave{a} condensateur de démarrage, J = fil jaune, N = fil noir, PR = pressostat, R = fil rouge, TC = transformateur de commande.

Tables établies selon les tables 8 (*Conductor Properties* [propriétés des conducteurs], chapitre 9), 310.16 et 310.17 du code national de l'électricité (NEC) des États-Unis.

NOTA: Moteurs et boîtes de commande sont conçus pour 230 V. Les systèmes à basse tension secteur (200 à 207 V) requièrent le calibre de fil supérieur au calibre indiqué pour 230 V dans les tables. Pour les moteurs à 3 fils et à boîte de commande basse tension, employer un relais de démarrage pour 208 V, dont le numéro de catalogue figure dans les tables de boîtes de commande du manuel.

On peut aussi utiliser un transformateur survolteur pour augmenter la tension.

Conversion de températures: $68^{\circ}F = 20^{\circ}C$, $86^{\circ}F = 30^{\circ}C$, $140^{\circ}F = 60^{\circ}C$, $167^{\circ}F = 75^{\circ}C$, $194^{\circ}F = 90^{\circ}C$.

PUMPSAVER 235

<u>PUMPSAVER 111 / 233</u>

DONNÉES SUR LES MOTEURS F.E. DE 1 Ø, 60 Hz

Туре	Moteur Goulds/BC	Préfixe de modèle de moteur Franklin	hp	V	Hz	FS	А	A avec FS	Ω	Disjonc- teur à re- tardement	Fusible double temporisé
	S04932/ NR	2445040	1/2	115	60	1,60	10,0	12,0	1,0 à 1,3	30	20
fils	S04942/ NR	2445050	1/2	230	60	1,60	5,0	6,0	4,2 à 5,2	15	10
po, 2 f	S05942/ NR	2445070	3/4	230	60	1,50	6,8	8,0	3,0 à 3,6	20	15
4 4	S06942/ NR	2445081	1	230	60	1,40	8,2	9,8	2,2 à 2,7	25	20
	S07942/ NR	2445091	11/2	230	60	1,30	10,6	13,1	1,5 à 1,9	30	20
	S04930/ CB05411	2145044	1/2	115	60	1,60	J (10,0) N (10,0) R (0,0)	J (12,0) N (12,0) R (0,0)	EP (1,0 à 1,3) ED (4,1 à 5,1)	30	20
3 fils	S04940/ CB05422	2145054	1/2	230	60	1,60	J (5,0) N (5,0) R (0,0)	J (6,0) N (6,0) R (0,0)	EP (4,2 à 5,2) ED (16,7 à 20,5)	15	10
4 po,	S05940/ CB07422	2145074	3/4	230	60	1,50	J (6,8) N (6,8) R (0,0)	J (8,0) N (8,0) R (0,0)	EP (3,0 à 3,6) ED (10,7 à 13,1)	20	15
	S06940/ CB10422	2145081	1	230	60	1,40	J (8,2) N (8,2) R (0,0)	J (9,8) N (9,8) R (0,0)	EP (2,2 à 2,7) ED (9,9 à 12,1)	25	20
sateur	S07940/ CB15412CR	2243001	1½	230	60	1,30	J (10,0) N (9,9) R (1,3)	J (11,5) N (11,0) R (1,3)	EP (1,5 à 2,3) ED (8,0 à 9,7)	30	20
fils et condensateur de marche	S08940/ CB20412CR	2243011	2	230	60	1,25	J (10,0) N (9,3) R (2,6)	J (13,2) N (11,9) R (2,6)	EP (1,6 à 2,3) ED (5,8 à 7,2)	25	20
	S09940/ CB30412CR ①	2243027	3	230	60	1,15	J (14,0) N (11,2) R (6,1)	J (17,0) N (12,6) R (6,0)	EP (1,0 à 1,5) ED (4,0 à 4,9)	40	30
4 po, 3	S10940/ CB50412CR ②	2243037	5	230	60	1,15	J (23,0) N (15,9) R (11,0)	J (27,5) N (19,1) R (10,8)	EP (0,68 à 1,0) ED (1,8 à 2,2)	60	45

AFS = courant avec facteur de surcharge, APC = courant à pleine charge, BC = boîte de commande, ED = enroulement de démarrage, EP = enroulement principal, FS = facteur de surcharge, J = fil jaune (ligne), N = fil noir (enroulement principal), NR = non requise, R = fil rouge (enroulement de démarrage ou auxiliaire).

① Les boîtes de commande à code dateur 02C ou antérieur sont caractérisées par des condensateurs de 35 μ F et les valeurs de courant suivantes:

APC AFS
J (14,0) J (17,0)
N (12,2) N (14,5)
R (4,7) R (4,5)

② Les boîtes de commande à code dateur 01M ou antérieur sont caractérisées par des condensateurs de marche de 60 μF et le courant suivant (moteurs de 4 po):

> APC AFS J (23,0) J (27,5) N (19,1) N (23,2) R (8,0) R (7,8)

DONNÉES SUR LES MOTEURS F.E. DE 3 Ø, 60 Hz

Туре	Nº de modèle	Préfixe de modèle de moteur						t puissance nominale		et puiss. avec FS)	Ligne à ligne	Rotor bloqué	kV∙A	Disjonc- teur à re-	Fusible double
	Goulds	Franklin	hp	٧	Hz	FS	Α	W	Α	W	Ω	Α	Code	tardement	temporisé
	S04978	234501	1/2	200	60	1,6	2,8	585	3,4	860	6,6 à 8,4	17,5	N	15	5
	S04970	234511	1/2	230	60	1,6	2,4	585	2,9	860	9,5 à 10,9	15,2	N	15	5
	S04975	234521	1/2	460	60	1,6	1,2	585	1,5	860	38,4 à 44,1	7,6	N	15	3
	S05978	234502	3/4	200	60	1,5	3,6	810	4,4	1150	4,6 à 5,9	23,1	М	15	8
	S05970	234512	3/4	230	60	1,5	3,1	810	3,8	1150	6,8 à 7,8	20,1	М	15	6
	S05975	234522	3/4	460	60	1,5	1,6	810	1,9	1150	27,2 à 30,9	10,7	М	15	3
	S06978	234503	1	200	60	1,4	4,5	1070	5,4	1440	3,8 à 4,5	30,9	М	15	10
	S06970	234513	1	230	60	1,4	3,9	1070	4,7	1 4 4 0	4,9 à 5,6	26,9	M	15	8
	S06975	234523	1	460	60	1,4	2,0	1070	2,4	1 4 4 0	19,9 à 23,0	13,5	М	15	4
	S07978	234504	11/2	200	60	1,3	5,8	1 460	6,8	1890	2,5 à 3,0	38,2	K	15	10
	S07970	234514	11/2	230	60	1,3	4,5	1 460	5,9	1890	3,2 à 4,0	33,2	K	15	10
_	S07975	234524	11/2	460	60	1,3	2,5	1460	3,1	1890	13,0 à 16,0	16,6	K	15	5
ŀĖ	S07979	234534	_	575	60	1,3	2,0	1 460	2,4	1890	20,3 à 25,0	13,3	K	15	4
r/min	S08978	234305	2	200	60	1,25	7,7	2150	9,3	2700	1,8 à 2,4	53,6	L	20	15
0	S08970	234315	2	230	60	1,25	6,7	2150	8,1	2700	2,3 à 3,0	46,6	L	20	15
450	S08975	234325	2	460	60	1,25	3,4	2150	4,1	2700	9,2 à 12,0	23,3	L	15	8
m	S08979	234335	2	575	60	1,25	2,7	2150	3,2	2700	14,6 à 18,7	18,6	L	15	5
po,	S09978	234306	3	200	60	1,15	10,9	2980	12,5	3 4 2 0	1,3 à 1,7	71,2	K	30	20
4	S09970	234316	3	230	60	1,15	9,5	2980	10,9	3 4 2 0	1,8 à 2,2	61,9	K	25	20
`	S09975	234326	3	460	60	1,15	4,8	2980	5,5	3 4 2 0	7,2 à 8,8	31	K	15	10
	S09979	234336	3	575	60	1,15	3,8	2980	4,4	3 4 2 0	11,4 à 13,9	24,8	K	15	8
	S10978	234307	5	200	60	1,15	18,3	5 0 5 0	20,5	5810	0,74 à 0,91	122	K	50	35
	S10970	234317	5	230	60	1,15	15,9	5 0 5 0	17,8	5810	1,0 à 1,2	106	K	40	30
	S10975	234327	5	460	60	1,15	8,0	5 0 5 0	8,9	5810	4,0 à 4,7	53,2	K	20	15
	S10979	234337	5	575	60	1,15	6,4	5 0 5 0	7,1	5810	6,4 à 7,8	42,6	K	20	15
	S119784	234308	71/2	200	60	1,15	26,5	7360	30,5	8450	0,46 à 0,57	188	K	70	50
	S119704	234318	71/2	230	60	1,15	23,0	7360	26,4	8450	0,61 à 0,75	164	K	60	45
	S119754	234328	71/2	460	60	1,15	11,5	7360	13,2	8450	2,5 à 3,1	81,9	K	30	25
	S119794	234338	71/2	575	60	1,15	9,2	7360	10,6	8450	4,0 à 5,0	65,5	K	25	20
	S129724	234329	10	460	60	1,15	17,0	10000	18,5	11400	1,8 à 2,3	116	L	45	30
	S119794	234339	10	575	60	1,15	13,6	10000	14,8	11 400	2,8 à 3,5	92,8	L	35	25

 $\mathsf{FS} = \mathsf{facteur} \ \mathsf{de} \ \mathsf{surcharge}$

LONGUEUR MAXIMALE DES CÂBLES DE MOTEUR DE 3Ø

(en pieds, de l'entrée de service au moteur)1

Mot	teur	Calibres des fils (en cuivre)												
V (Hz)	hp	14	12	10	8	6	4	2	0	00	000	0000		
	0,5	710	1140	1800	2840	4420								
	0,75	510	810	1280	2 0 3 0	3160								
	1	430	690	1 080	1710	2670	4140							
	1,5	310	500	790	1260	1960	3 0 5 0							
200	2	240	390	610	970	1520	2360	3610	5420					
(60)	3	180	290	470	740	1160	1810	2760	4130					
	5	110*	170	280	440	690	1 080	1660	2 490	3 0 5 0	3670	4440		
	7,5	0	0	200	310	490	770	1180	1770	2170	2 600	3150		
	10	0	0	0	230*	370	570	880	1330	1640	1970	2390		
	0,5	930	1 490	2350	3700	5760	8910							
	0,75	670	1 080	1700	2 580	4190	6490	9860						
	1	560	910	1430	2260	3520	5 4 6 0	8290						
220	1,5	420	670	1 060	1670	2610	4050	6160	9170					
230 (60)	2	320	510	810	1280	2010	3 1 3 0	4770	7170	8780				
(60)	3	240	390	620	990	1540	2 400	3 6 6 0	5 4 7 0	6690	8020	9680		
	5	140*	230	370	590	920	1430	2190	3 2 9 0	4030	4850	5870		
	7,5	0	160*	260	420	650	1020	1560	2340	2870	3 4 4 0	4160		
	10	0	0	190*	310	490	760	1170	1760	2160	2610	3160		
	0,5	3770	6020	9460										
	0,75	2730	4350	6850										
	1	2300	3 6 7 0	5770	9070									
	1,5	1700	2710	4270	6730									
460	2	1300	2 0 7 0	3270	5150	8050								
(60)	3	1 000	1 600	2520	3970	6200								
	5	590	950	1500	2360	3700	5 7 5 0							
	7,5	420	680	1070	1 690	2 640	4100	6260						
	10	310	500	790	1250	1960	3 0 5 0	4680	7050					
	0,5	5900	9410											
	0,75	4270	6810											
	1	3 6 3 0	5800	9120										
	1,5	2 6 2 0	4180	6580										
575	2	2 0 3 0	3 2 5 0	5110	8060									
(60)	3	1580	2530	3 980	6270									
	5	920	1 480	2330	3 680	5750								
	7,5	660	1 060	1 680	2650	4150								
	10	490	780	1240	1950	3 0 6 0	4770							

¹ Pour optimiser la fiabilité du démarreur, limiter la distance entre celui-ci et l'entrée de service à 25 % de la longueur maximale du câble.

^{*} Longueurs conformes au code NEC (É.-U.) quant au courant (A) admissible maximal, mais que pour les conducteurs séparés homologués pour 75 °C. Seules les autres longueurs satisfont aux prescriptions du NEC relatives aux câbles gainés homologués pour 75 °C. Les règlements locaux peuvent différer à ce sujet.

VALEURS DE RÉSISTANCE D'ISOLEMENT DU MOTEUR

Valeurs mesurées normalement en ohms et en mégohms entre chaque fil de moteur et le fil de terre, et ce, pour TOUS les moteurs.

ATTENTION Pour mesurer la résistance d'isolement, mettre le disjoncteur hors circuit et débrancher tous les fils du pressostat ou de la boîte de commande (à déconnexion rapide). Brancher un fil de l'ohmmètre à un fil de moteur et l'autre, au tuyau de refoulement en métal descendant dans le puits ou à une bonne prise de terre. Échelle «R x 100K»

État du moteur et des fils	Ohms	Mégohms
Moteur neuf, sans câble d'alimentation	20 000 000 (et plus)	20,0
Moteur usagé réutilisable (en puits)	10000000 (et plus)	10,0
Moteur en puits — valeurs mesurées	: câble d'alimentation plus 1	noteur
Moteur neuf	2000000 (et plus)	2,0
Moteur dans un état raisonnablement bon	500 000 à 2 000 000	0,5 à 2,0
Moteur ou câble d'aliment. peut-être endommagé Ne pas sortir la pompe du puits pour cela.	20 000 à 500 000	0,02 à 0,5
Moteur ou câble d'alimentation endommagé Sortir la pompe du puits et effectuer les réparations.	10000 à 20000	0,01 à 0,02
Moteur ou câble d'alimentation défectueux Sortir la pompe du puits et effectuer les réparations.	Moins de 10 000	0 à 0,01

Utilisation d'une génératrice

AVEC LES GÉNÉRATRICES DE SECOURS OU DE RÉSERVE. UTILISER UN COMMUTATEUR DE TRANSFERT MANUEL OU AUTOMATIQUE POUR PRÉVENIR LES CHOCS ÉLEC-TRIOUES, LES BRÛLURES ET LA MORT. SUIVRE LES DIREC-TIVES DU FABRICANT. LES DONNÉES «2 FILS...» VISENT LES MOTEURS À CAP. LES 2 FILS DE MOTEUR À ENROULE-

MENT AUXILIAIRE DE DÉMARRAGE DEVRAIENT ÊTRE 50% PLUS GROS QUE LE CALIBRE NOMINAL POUR LES «3 FILS...».

		Puissance nominale minimale de la génératrice								
		À régulation	on externe	À régulati	on interne					
Moteur	hp	kW	kV∙A	kW	kV∙A					
	0,5	2,5	3,1	1,8	2,2					
2 fils, 1 Ø, à CAP (condensat. auxi-	0,75	3,5	4,4	2,5	3,1					
	1	5	6,3	3,2	4					
liaire permanent)	1,5	6	7,5	4	5					
	0,5	2	2,5	1,5	1,9					
	0,75	3	3,8	2	2,5					
	1	4	5	2,5	3,2					
	1,5	5	6,3	3	3,8					
3 fils,	2	7,5	9,4	4	5					
1Ø ou 3Ø	3	10	12,5	5	6,3					
	5	15	18,8	7,5	9,4					
	7,5	20	25	10	12,5					
	10	30	37,5	15	18,8					

SÉLECTION — PROTECTION CONTRE LA SUR-CHARGE ET RELAIS DE DÉMARRAGE

Données venant des tables Furnas 393 et 398 sur les moteurs triphasés

Modèle de d		
Courant (A) av		DPS de
16A, 16B, 16C	16D, 16E	série K
1,91		K21
2,08		K22
2,26		K23
2,44		K24
2,7		K26
2,98		K27
3,22		K28
3,61		K29
3,93		K31
4,23		K32
4,67		K33
5,02		K34
5,46		K36
6,25		K37
6,74		K39
7,25		K41
8,05		K42
8,55		K43 K49
9,8 10,3		K50
12,0		K50
12,0		K52 K53
13,6		K54
14,7		K55
15,5		K56
16,9		K57
17,9		K58
19,1		K60
22,0	22,5	K61
23,6	24,1	K62
25,2	25,7	K63
27,0	28,0	K64
30,0	31,1	K67
34,0	34,6	K69
37,1	37,8	K70
41,0	41,5	K72
46,0	50,0	K73
49,2	54,0	K74
56,0	57,0	K75
	60,0	K76
	66,0	K77
	73,0	K78
	80,0	K79

Relais de démarrage / Courant (A) max.		
16A / 25	16F / 75	
16B / 30	16G / 90	
16C / 40	16H / 120	
16D / 50	161 / 150	
16E / 60		

•	sur ies moteurs tripinases				
	Modèle de d	_			
	Courant (A) avec FS (moteur)		DPS de		
	16F, 16G ①	16H, 16I	série K		
	50,2	50,1	K72		
	53,2	53,1	K73		
	58,0	58,0	K74		
	62,2	62,1	K75		
	65,5	65,5	K76		
	72,0	72,0	K77		
	80,0	80,0	K78		
			K79		
	85,0	85,0	K83		
	93,0	93,0	K85		
	97,5	97,5	K86		
	104	104	K87		
		114	K88		
	119	126	K89		
		136	K90		
		150	K92		
		162	K93		
		180	K94		
		190	K96		
		200	K97		

FS = facteur de surcharge, DP = à usage déterminé, DPS = dispositif de protection contre la surcharge.

Employer le courant (A) avec FS du moteur figurant dans les tables de sélection. S'il n'y est pas indiqué, utiliser le courant à pleine charge du moteur, multiplié par 1,15. Choisir le DPS correspondant au courant immédiatement supérieur à A avec FS (courant de déclenchement du moteur).

NOTA: les présentes tables visent uniquement les démarreurs de classe 16 DP (reconnaissables par leur bouton de réenclenchement vert), compensés en fonction de la température ambiante et munis de DPS de série K pour les moteurs submersibles. Les tables ne s'appliquent pas aux autres marques et types de démarreurs. On s'adressera au fabricant pour en connaître les détails.

Exemple pour la sélection : le courant (A) avec FS du moteur = 9. Pour les démarreurs 16A à 16C, choisir un DPS K49, car il correspond au courant immédiatement supérieur (9,8) à un courant avec FS de 9.

① Les démarreurs 16F et 16G actuels sont dotés de limiteurs de surcharge réglables ESP100 et ne nécessitent aucun DPS. Utiliser les données pertinentes seulement pour les démarreurs moins récents requérant des DPS de série K.

AAVERTISSEMENT OMETTRE LE VERROUILLAGE DU DISJONCTEUR DU CIR-CUIT ÉLECTRIQUE EN POSITION OUVERTE (HORS CIR-CUIT) AVANT D'EFFECTUER TOUT TRAVAIL D'ENTRETIEN SUR LA POMPE PEUT CAUSER UN CHOC ÉLECTRIQUE, DES BRÛLURES ET LA MORT.

Anomalies	Causes probables	Correctifs recommandés
NON- FONCTIONNEMENT DU MOTEUR DE LA POMPE	Protecteur thermique du moteur déclenché a) Boîte de commande inappropriée b) Connexions électriques défectueuses ou incorrectes c) Protecteur thermique défectueux d) Basse tension électrique e) Température ambiante trop élevée pour la boîte de commande ou le démarreur f) Pompe bloquée par un corps étranger g) Hauteur d'immersion inappropriée	
	2. Disjonsteur ouvert ou fusible sauté	2. Faire inspecter l'appareil par un électricien et effectuer les réparations requises.
	Alimentation électrique inappropriée à la charge	Vérifier la puissance électrique du circuit d'alimentation ou de la génératrice.
	Gaine du câble d'alimentation endommagée Jonction du câble d'alimentation défectueuse	4. et 5. Faire inspecter l'appareil par un électricien et effectuer les répararions requises.
DÉBIT DE REFOULEMENT	Clapet de non-retour défectueux ou mal posé	Inspecter le clapet de non-retour et le réparer au besoin.
FAIBLE OU NUL	2. Poche d'air dans la pompe	Démarrer et arrêter la pompe à répétition jusqu'à ce que son débit soit bon.
	Hauteur d'aspiration trop élevée pour la pompe	Vérifier les performances de l'appareil et consulter le détaillant.
	4. Pompe bloquée par un corps étranger	Sortir la pompe du puits, la nettoyer et la redescendre à la hauteur d'immersion requise.
	5. Pompe non entièrement immergée	Vérifier la remontée du niveau du puits et immerger la pompe davantage si c'est possible.
	6. Présence excessive d'air ou de gaz dans le puits	6. Si le démarrage et l'arrêt répétitifs de la pompe ne résolvent pas le problème, il y a trop d'air ou de gaz dans le puits.
	7. Usure excessive de la pompe	7. Retirer la pompe du puits et effectuer les réparations requises.
	8. Mauvais sens de rotation du moteur (en triphasé seulement)	8. Intervertir deux fils du moteur.

Declaration of Conformity

We at, Goulds Pumps/ITT Corporation 1 Goulds Drive Auburn, NY 13021

Declare that the following products: GS, GSZ, LS, LSZ, SB, SBZ Comply with Machine Directive 98/37/EC. This equipment is intended to be incorporated with machinery covered by this directive, but must not be put into service until the machinery into which it is to be incorporated has been declared in conformity with the actual provisions of the directive.

Declaración de conformidad

Nosotros en Goulds Pumps/ITT Corporation 1 Goulds Drive Auburn, NY 13021

Declaramos que los siguientes productos: GS, GSZ, LS, LSZ, SB, SBZ cumplen con las Directivas para Maquinarias 98/37/EC. Este equipo ha sido diseñado para ser incorporado a la maquinaria cubierta por esta directiva pero no debe ponerse en funcionamiento hasta que se declare que la maquinaria en la que será incorporado cumple con las disposiciones reales de la directiva.

Déclaration de conformité

Nous, à Goulds Pumps, ITT Corporation 1 Goulds Drive
Auburn, NY, U.S.A. 13021,
déclarons que les produits GS, GSZ, LS, LSZ, SB et SBZ
sont conformes à la directive 98/37/CE (législation relative aux machines).
Ils sont destinés à être intégrés dans la machinerie faisant l'objet de ladite directive, mais ne doivent pas être mis en service tant que la machinerie en question ne sera pas déclarée conforme aux stipulations de la directive.

Le directeur de l'ingénierie,

Manager of Engineering

GOULDS PUMPS LIMITED WARRANTY

This warranty applies to all water systems pumps manufactured by Goulds Pumps.

Any part or parts found to be defective within the warranty period shall be replaced at no charge to the dealer during the warranty period. The warranty period shall exist for a period of twelve (12) months from date of installation or eighteen (18) months from date of manufacture, whichever period is shorter.

A dealer who believes that a warranty claim exists must contact the authorized Goulds Pumps distributor from whom the pump was purchased and furnish complete details regarding the claim. The distributor is authorized to adjust any warranty claims utilizing the Goulds Pumps Customer Service Department.

The warranty excludes:

- (a) Labor, transportation and related costs incurred by the dealer;
- (c) Reinstallation costs of replacement equipment;
- (e) Reimbursement for loss caused by interruption of service.
- (b) Reinstallation costs of repaired equipment;
- (d) Consequential damages of any kind; and,
- For purposes of this warranty, the following terms have these definitions:
- (1) "Distributor" means any individual, partnership, corporation, association, or other legal relationship that stands between Goulds Pumps and the dealer in purchases, consignments or contracts for sale of the subject pumps.
- (2) "Dealer" means any individual, partnership, corporation, association, or other legal relationship which engages in the business of selling or leasing pumps to customers.
- (3) "Customer" means any entity who buys or leases the subject pumps from a dealer. The "customer" may mean an individual, partnership, corporation, limited liability company, association or other legal entity which may engage in any type of business.

THIS WARRANTY EXTENDS TO THE DEALER ONLY.

GARANTÍA LIMITADA DE GOULDS PUMPS

Esta garantía es aplicable a todas las bombas para sistemas de agua fabricadas por Goulds Pumps.

Toda parte o partes que resulten defectuosas dentro del período de garantía serán reemplazadas sin cargo para el comerciante durante dicho período de garantía. Tal período de garantía se extiende por doce (12) meses a partir de la fecha de instalación, o dieciocho (18) meses a partir de la fecha de fabricación, cualquiera se cumpla primero.

Todo comerciante que considere que existe lugar a un reclamo de garantía deberá ponerse en contacto con el distribuidor autorizado de Goulds Pumps del cual adquiriera la bomba, y ofrecer información detallada con respecto al reclamo. El distribuidor está autorizado a liquidar todos los reclamos por garantía a través del Departamento de Servicios a Clientes de Goulds Pumps.

La presente garantía excluye:

- (a) La mano de obra, el transporte y los costos relacionados en los que incurra el comerciante;
- (b) los costos de reinstalación del equipo reparado; (c) los costos de reinstalación del equipo reemplazado;
- (d) daños emergentes de cualquier naturaleza; y
- (e) el reembolso de cualquier pérdida causada por la interrupción del servicio.

A los fines de esta garantía, los términos "Distribuidor", "Comerciante" y "Cliente" se definen como sigue:

- (1) "Distribuidor" es aquel individuo, sociedad, corporación, asociación u otra entidad jurídica que opera entre Goulds Pumps y el comerciante para la compra, consignación o contratos de venta de las bombas en cuestión.
- (2) "Comerciante" es todo individuo, sociedad, corporación, asociación u otra entidad jurídica que realiza negocios de venta o alquiler-venta (leasing) de bombas a clientes.
- (3) "Cliente" es toda entidad que compra o que adquiere bajo la modalidad de leasing las bombas en cuestión de un comerciante. El término "cliente" puede significar un individuo, una sociedad, una corporación, una sociedad de responsabilidad limitada, una asociación o cualquier otra entidad jurídica con actividades en cualquier tipo de negocios.

LA PRESENTE GARANTÍA SE EXTIENDE AL COMERCIANTE ÚNICAMENTE

GARANTIE LIMITÉE DE GOULDS PUMPS

La présente garantie s'applique à chaque pompe de système d'alimentation en eau fabriquée par Goulds Pumps.

Toute pièce se révélant défectueuse sera remplacée sans frais pour le détaillant durant la période de garantie suivante expirant la première: douze (12) mois à compter de la date d'installation ou dix-huit (18) mois à partir de la date de fabrication.

Le détaillant qui, aux termes de la présente garantie, désire effectuer une demande de règlement doit s'adresser au

distributeur Goulds Pumps agréé chez lequel la pompe a été achetée et fournir tous les détails à l'appui de sa demande. Le distributeur est autorisé à régler toute demande par le biais du service à la clientèle de Goulds Pumps.

La garantie ne couvre pas:

- a) les frais de main-d'œuvre ou de transport ni les frais connexes encourus par le détaillant;
- b) les frais de réinstallation de l'équipement réparé; c) les frais de réinstallation de l'équipement de remplacement;
- d) les dommages indirects de quelque nature que ce soit; e) ni les pertes découlant de la panne.

Aux fins de la garantie, les termes ci-dessous sont définis comme suit :

- 1) «Distributeur » signifie une personne, une société de personnes, une société de capitaux, une association ou autre entité juridique servant d'intermédiaire entre Goulds Pumps et le détaillant pour les achats, les consignations ou les contrats de vente des pompes en question.
- 2) «Détaillant » veut dire une personne, une société de personnes, une société de capitaux, une association ou autre entité juridique dont les activités commerciales sont la vente ou la location de pompes à des clients.
- 3) «Client» signifie une entité qui achète ou loue les pompes en question chez un détaillant. Le «client» peut être une personne, une société de personnes, une société de capitaux, une société à responsabilité limitée, une association ou autre entité juridique se livrant à quelque activité que ce soit.

LA PRÉSENTE GARANTIE SE RAPPORTE AU DÉTAILLANT SEULEMENT.

Residential Water Systems Sistemas de Agua Residencial Systèmes d'alimentation en eau domestiques

Goulds Pumps and the ITT Engineered Blocks Symbol are registered trademarks and tradenames of ITT Corporation.

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Goulds Pumps y el símbolo ITT Engineered Blocks son marcas registradas y marcas comerciales de ITT Corporation.

LAS ESPECIFICACIONES ESTÁN SUJETAS A CAMBIO SIN PREVIO AVISO.

Goulds Pumps et le logo à blocs siglés ITT sont des marques déposées et de commerce d'ITT Corporation. LES CARACTÉRISTIQUES PEUVENT ÊTRE CHANGÉES SANS PRÉAVIS.

IM096 Revision 4 May • Mayo • Mai 2008 © 2008, ITT Corporation

Engineered for life