

# Steel Structure Design Steel Bridge

# Submitted to

Construction Engineering & Management Department

Faculty Of Engineering Pharos University, Alexandria.

# Steel Structure Design Steel Bridge

# By:

Ahmed Yasser Eid Mahmoud Gamal Abd El-Nasser Mohamed Abdalla El-Tanany

# **Supervised By:**

Prof. Dr. / Mohammed EL-Ghandour

Eng. / Ahmed Abd El-Nasser

#### **ABSTRACT**

Steel bridges are an essential component of modern infrastructure, providing a safe and reliable way for people to cross over rivers, highways, and other obstacles. This thesis explores the construction of steel bridges at intersections between two main roads. It will examine the management of such projects from start to finish, discussing the public problems that can arise during construction and how they can be solved. The aim is to provide a safe building to pass vehicles over the intersection, by using Egyptian Code for practice and construction programs and these helped us achieving the required target.

## **ACKNOWLEDGEMENTS**

In the first place, we want to thank Allah, the Most Gracious, the Most Merciful and peace is upon His Prophet. And We owe a lot of thanks to all those who have helped us during this study Furthermore we are appreciating the time and effort they spent providing guidance and advice throughout the year. Great thanks also extend to Prof. Dr. Mohammed El- Ghandour for his help and his efforts with us in this project to product a great project and for his great help, encouragement throughout this work, valuable comments and sound guidance.

-Thank you-

# **Table of Contents**

| Chapter 1 (Introduction)1                       |    |
|-------------------------------------------------|----|
| 1-1General                                      | 1  |
| 1-2 Objective and Goals                         | 1  |
| 1-3 Literature Review                           | 1  |
| Chapter 2 (Architecture Model)2                 |    |
| 2-1 3D Site                                     | 2  |
| 2-2 Site Plan                                   | 3  |
| 2.3 First floor Plan                            | 4  |
| 2.4 Side View                                   | 5  |
| Chapter 3 (Structural Model)6                   |    |
| 3-1 Structural 3D                               | 6  |
| 3-2 Inclined Part                               | 7  |
|                                                 | 8  |
| 3-3Deck Part (First Trial)9                     | ı  |
| 3-4 Deck Part (Second Trial)                    | 11 |
| 3-5 Mezzanine Floor                             | 13 |
| Chapter 4 (Design of Inclined Part)14           |    |
| 4.1 Stringer                                    | 14 |
| Loading                                         | 14 |
| Design Values                                   | 15 |
| Checks                                          | 16 |
| 4.2Frame                                        | 17 |
| Loading                                         | 17 |
| SAP Analysis                                    | 19 |
| Checks                                          | 23 |
| Chapter 5 (Design of Deck Part (First Trial))26 |    |
| 5.1Main girder                                  | 26 |
| Loading                                         | 26 |
| Design Values                                   | 26 |
| Checks                                          | 27 |
| Design of End Bearing Stiffener                 | 28 |
| Design of Horizontal Stiffener                  | 29 |
| 5-2 Design of Stringer                          | 30 |

| Loading                                                                                           | 30           |
|---------------------------------------------------------------------------------------------------|--------------|
| Design Values                                                                                     | 31           |
| Choose section                                                                                    | 31           |
| Check                                                                                             | 31           |
| 5.3 Design of cross girder                                                                        | 32           |
| Loading                                                                                           | 32           |
| Design value                                                                                      | 32           |
| Checks                                                                                            | 33           |
| 5-4 Design of upper bracing systems                                                               | 34           |
| Chapter 6 Design of mezzanine                                                                     | 36`          |
| 6-1 Design of Secondary beam                                                                      | 36           |
| 6-2 Design of Main beam                                                                           | 38           |
| Load                                                                                              | 38           |
| SAP                                                                                               | 38           |
| Design main girder                                                                                | 40           |
| Design column                                                                                     | 42           |
| Chapter 7 (Design of Connections)                                                                 | 44           |
| 6-1 Design of Connection between Stringer and Cross Girder                                        | 44           |
| 6-2 Design of Connection Between Cross Girder and Main girder                                     | 45           |
| 6-3 Design of bolted field splices                                                                | 46           |
| 6-4 Corner connection for frame at 10 m                                                           | 48           |
| 6-5 Fixed Base of frame at 10m                                                                    | 51           |
| 6-6 Connection between Main Girder & Portal Frame                                                 | 53           |
| 6-7 Shear Flow Calculation (Inclined part: Frame @10m)                                            | 55           |
| Chapter 8 (Management)                                                                            | 56           |
| 7-1 Comparison between 4 MG System Resting on portal frame (System 1) & 4 portal frame (System 2) | <del>~</del> |
| 7-2Quantity survey of material:                                                                   | 58           |
| 7-3 Time Estimation:                                                                              | 58           |
| Chapter 9 (Conclusion)                                                                            | 61           |
| (Reference)                                                                                       |              |

# List of Figure

| Figure 2. 1 3D Site                                                       | 2  |
|---------------------------------------------------------------------------|----|
| Figure 2. 2 Site plan                                                     | 3  |
| Figure 2. 3 First floor Plan                                              | 4  |
| Figure 2. 4 Side View                                                     | 5  |
| Figure 3. 1 Structural 3D                                                 | 6  |
| Figure 3. 2 layout of inclined part plan& side view                       |    |
| Figure 3. 3 Layout of inclined part elevation                             |    |
| Figure 3. 4 Layout of deck part plan. side view & elevation (first trial) |    |
| Figure 3. 5 Elevation (first trial)                                       |    |
| Figure 3. 6 Lyout of deck part plan. side view & elevation (second trial) |    |
| Figure 3. 7 Elevation (second trial)                                      |    |
| Figure 3. 8 Layout of mezzanine part plan. side view & elevation          | 13 |
| figure 4. 1 Max moment of dead load                                       | 14 |
| figure 4. 2 Live load                                                     |    |
| figure 4. 3 Max moment of live load                                       |    |
| figure 4. 4 Max shear of live load                                        |    |
| figure 4. 5 Live load distribution                                        |    |
| figure 4. 6 Dead load                                                     | 18 |
| figure 4.7 Live loading of max moment case                                |    |
| figure 4. 8 Live loading of max shear case                                | 18 |
| figure 4. 9 Max moment on frame from loading of max moment                | 19 |
| figure 4. 10 Max shear on frame from loading of max moment                | 19 |
| figure 4. 11 Normal force on frame from loading of max moment             | 20 |
| figure 4. 12 Max shear on frame from loading of max shear                 | 21 |
| figure 4. 13 Max moment on frame from loading of max shear                | 21 |
| figure 4. 14 Normal force on frame from loading of max shear              | 22 |
| Figure 5. 1 live load of main girder                                      | 26 |
| Figure 5. 2 max moment live load of main girder                           |    |
| Figure 5. 3 max shear live load of main girder                            |    |
| Figure 5. 4 live load of stringer                                         |    |
| Figure 5. 5 max moment live load of stringer                              |    |
| Figure 5. 6 max shear live load of stringer                               |    |
| Figure 5. 7 live load of cross girder                                     |    |
| Figure 5. 8 live load of cross girder                                     |    |
| Figure 5. 9 max shear live load of cross girder                           |    |
|                                                                           |    |

| figure 6. 1 Load of main beam                               | 38 |
|-------------------------------------------------------------|----|
| figure 6. 1 Load of main beamfigure 6. 2 Axial Force        | 38 |
| figure 6. 3 Shear force                                     | 39 |
| figure 6. 4 Moment                                          | 39 |
| Figure 7. 1 Connection between Stringer and Cross Girder    | 44 |
| Figure 7, 2 Connection Between Cross Girder and Main girder | 45 |
| Figure 7. 3 Field splices                                   | 47 |
| Figure 7. 4 Corner connection                               | 51 |
| Figure 7. 5 Corner connection                               | 52 |
| Figure 7. 6 Connection between Main Girder & Portal Frame   | 54 |
| Figure8- 1 duration of project                              | 59 |
| Figure 8- 2 flow chart                                      | 60 |

# **Chapter 1 (Introduction)**

#### 1-1 General

Steel is one of the most advanced building materials available today composition can bring about important cost savings, as well as innovation in building. The advantages of steel as a light in weight and more durable material than concrete results in quicker and easier construction.

Steel can be recycled from job to job, meaning the amount of generated steel waste is small. Steel's sustainability also has a significant positive impact on the environment.

In this project, we will try to reduce the economic cost and try to reach the highest levels of safety and optimal use, also we Aim to Design a stunning bridge to match surrounding landscape.

#### 1-2 Objective and Goals

The basic target of this project is to design road way steel bridge to decrease traffic jam in the intersection of two main roadways. The associated objectives can be itemized as follows:

- 1- Review the previous projects.
- 2- Investigate the major factors affecting the design of road way steel bridge.
- 3- Study the effect of using empty space under the bridge as a commercial partition (cafes, shops...etc).
- 4- Investigate the cost and time of construction. Also, study the risks that affect every stage in construction process.

#### 1-3 Literature Review

Steel bridges have been widely used in transportation infrastructure due to their high strength-toweight ratio, durability, and ease of fabrication. Recent studies have focused on improving the design and construction of steel bridges to enhance their performance and reduce their environmental impact.

In summary, recent studies on steel bridges have focused on improving their performance, durability, and sustainability through the use of advanced materials, technologies, and design strategies. These advancements have the potential to improve the safety and longevity of bridges, while reducing their environmental impact and life cycle cost.



Figure 2. 1 3d site

# 2-2 Site Plan



Figure 2. 2 Site plan

# 2.3 First floor Plan



Figure 2. 3 First floor Plan



Figure 2. 4 Side View

# Chapter 3 (Structural Model)

# 3-1 Structural 3D



Figure 3. 1 Structural 3D

# 3-2 Inclined Part



Figure 3. 2 Layout of inclined part plan& side view



Figure 3. 3 Layout of inclined part elevation

## 3-3Deck Part (First Trial)



Figure 3. 4 Layout of deck part plan. side view & elevation (first trial)



Figure 3. 5 Elevation (first trial)

# 3-4 Deck Part (Second Trial)



Figure 3. 6 Layout of deck part plan. side view & elevation (second trial)



Figure 3. 7 Elevation (second trial)

## 3-5 Mezzanine Floor



Figure 3. 8 Layout of mezzanine part plan. side view & elevation

# Chapter 4 (Design of Inclined Part)

## 4.1 Stringer

# Loading Dead load

 $OW = 0.15 \text{ t/m}^2$ 

W flooring = 2.5\*0.21+2.2\*0.08=0.7 t/m^2 WDL = (0.15+0.7)\*2=1.55 t/m MDL =  $(1.55*6^2)/8=6.975$  t.m QDL = (1.55\*6)/2=4.65 t



Figure 4. 1 Max moment of dead load

#### Live load

 $R_{LL} = 15*1+10*0.5 = 20 \text{ t} \\ A_{900} = 0.5*4*1 - (0.5*0.75*1.5) = 1.44 \text{ m}^2 \\ A_{250} = 0.5*0.75*1.5 = 0.56 \text{ m}^2 \\ W_{LL} = (0.9*1.44) + (0.25*0.56) = 1.43 \text{ t/m}$ 



figure4. 2 Live load

#### Moment Live load

$$M \text{ LL} = 20*(1.485+0.945) + 1.43*(0.5*1.485*6) = 55 \text{ t.m}$$



figure4. 3 Max moment of live load

#### Shear live load

$$QLL = 20*(1+0.8) + 1.43*(0.5*1*6) = 40.5 t$$



figure4. 4 Max shear of live load

## Design Values

$$\begin{split} M \text{ LL} &= 55*0.9 = 49.5t.m \\ M \text{ min} &= 7*0.9 = 6.3t.m \\ M \text{ max} &= 49.5+6.3 = 55.8t.m \\ M \text{ max fatigue} &= \\ 6.3+0.6*49.5 = 36t.m \\ Q \text{ max} &= 40.5+4.65 = 45.15 \text{ t} \end{split}$$

[1]



16

#### 4.2Frame

#### Loading

#### Dead load

$$OW = 0.3 \text{ t/m}^2$$

$$W \ {\rm flooring} = 2.5*0.21 + 2.2*0.08 = 0.7 \ t/m^2$$

$$W_{DL} = (0.3+0.7) *6 = 4.5 t/m$$

#### Live load

$$\begin{aligned} &R_{LL\;(15)} = 15*(1+0.8) = 20 \; t \\ &R_{LL\;(10)} = 10*(1+0.8) = 18 \; t \\ &R_{LL\;(5)} = 5*(1+0.8) = 9 \; t \end{aligned}$$

$$W_{LL\;(900)} = 0.9*0.5*12*1 = 5.4 \; t/m$$
 
$$W_{LL\;(250)} = 0.25*0.5*12*1 = 1.5 \; t/m$$



figure 4. 5 Live load distribution [1]



figure4. 6 Dead load



figure4. 7 Live loading of max moment case



figure4. 8 Live loading of max shear case

# 1- At H frame = 10 m

| MAX moment at H=10m |         |            |           |           |          |
|---------------------|---------|------------|-----------|-----------|----------|
| Frame               | Station | OutputCase | N         | ď         | M        |
| Text                | m       | Text       | Tonf      | Tonf      | Tonf-m   |
| column L            | 10      | DL+LL      | -105.4476 | 39.7817   | 264.2801 |
| column L            | 10      | DL+LL      | -105.4476 | 39.7817   | -133.537 |
| coulmn R            | 0       | DL+LL      | -110.2524 | -39.7817  | -266.943 |
| coulmn R            | 10      | DL+LL      | -110.2524 | -39.7817  | 130.8739 |
| rafter              | 0       | DL+LL      | -39.7817  | -105.4476 | -264.28  |
| rafter              | 7.75    | DL+LL      | -39.7817  | -20.9976  | 300.264  |
| rafter              | 16      | DL+LL      | -39.7817  | 110.2524  | -266.943 |





figure4. 9 Max moment on frame from loading of max moment

Shear Force 2-2 Diagram (dI+II)



Ffigure 4. 10 Max shear on frame from loading of max moment



figure4. 11 Normal force on frame from loading of max moment

| MAX Shear at H=10m |         |            |           |           |            |
|--------------------|---------|------------|-----------|-----------|------------|
| Frame              | Station | OutputCase | N         | ď         | M          |
| Text               | m       | Text       | Tonf      | Tonf      | Tonf-m     |
| column L           | 0       | DL+LL      | -146.0915 | 27.9088   | 197.16574  |
| column L           | 10      | DL+LL      | -146.0915 | 27.9088   | -81.92243  |
| coulmn R           | 0       | DL+LL      | -67.6585  | -27.9088  | -175.51346 |
| coulmn R           | 10      | DL+LL      | -67.6585  | -27.9088  | 103.57471  |
| rafter             | 0       | DL+LL      | -27.9088  | -119.0915 | -197.16574 |
| rafter             | 7.75    | DL+LL      | -27.9088  | 7.6585    | 178.33338  |
| rafter             | 16      | DL+LL      | -27.9088  | 67.6585   | -175.51346 |



figure4. 12 Max shear on frame from loading of max sheer



figure4. 13 Max moment on frame from loading of max shear



figure4. 14 Normal force on frame from loading of max shear

## Checks

# Design column H frame = 10m

| COLUMN ID :-                             | (3C-1)             |            | -                 |                     |                   | -          |                   |
|------------------------------------------|--------------------|------------|-------------------|---------------------|-------------------|------------|-------------------|
| DESIGN CASE :-                           | (D.L+L.L)          | a          |                   | Sto                 | el grade St.52    |            |                   |
| DESIGN CASE .                            | (D.L.L.)           | a          |                   | J.E                 | F <sub>v</sub> =  | 3.60       | t/cm <sup>2</sup> |
| 1)- APPLIED FOR                          | CES:-              |            |                   |                     | F. =              | 5.20       | t/cm <sup>2</sup> |
| Mx <sub>1</sub>                          | =                  | 267.00     | mt                |                     |                   | 5.20       |                   |
| Mx <sub>2</sub>                          | =                  | -133.00    | mt                | if Mx2 at the o     | ther side put -ve | sign       |                   |
| M <sub>v</sub>                           | =                  | 0.00       | mt                | II-                 |                   |            |                   |
| n'                                       | =                  | 146.00     | t M               | N                   | And In            |            |                   |
|                                          |                    |            |                   | " <b>—</b> — : ii   |                   | 111        | #~# / /           |
| 2)-DIM. OF SECTION The section is Bul    |                    |            |                   |                     | M                 |            | M.,               |
| b <sub>FLU</sub>                         | it up section<br>= | 400.00     | mm                |                     |                   |            | !                 |
| t <sub>FLU</sub>                         | =                  | 24.00      | mm                | ⊢li                 |                   |            | - 1               |
| h <sub>WEB</sub>                         | =                  | 1500.00    | mm                | □il                 | -                 |            |                   |
| t <sub>WEB</sub>                         | =                  | 22.00      | mm                | ⊣il                 |                   |            |                   |
| b <sub>FLL</sub>                         | =                  | 400.00     | mm                | Ail                 |                   |            |                   |
| tel. L                                   | =                  | 24.00      | mm                | Ail                 |                   |            |                   |
|                                          |                    |            |                   | Mr.¶∐               |                   |            |                   |
|                                          |                    |            |                   | _                   | Lg                | /2         |                   |
| 3)-COLUMN DATA<br>Total length of column |                    | 10.00      | m                 |                     | Y ↑ Mb            | c          |                   |
| Lu act of comp. Flang                    |                    | 4.00       | m                 |                     | M T               |            |                   |
| Length subject to buck                   |                    | 6.00       | m                 |                     | + I+ Ybacu        | <b>→</b> I |                   |
| Length subject to buck                   |                    | 6.00       | m                 | t <sub>PL.U</sub> ∓ | <del>- iii</del>  | <u> </u>   |                   |
| Length of girder                         | =                  | 16.00      | m 4               |                     |                   |            | ~                 |
| Ix (rafter)                              | =                  | 1209990.00 | cm"               | h <sub>wes</sub>    |                   |            |                   |
| Base type                                | _                  | Fixed      |                   | · WEB               |                   |            | My                |
| 4)- PROPERTIES O                         | OF SECTION :-      |            |                   | . 1                 |                   | _          |                   |
|                                          |                    |            |                   | YLL -               | † <b>-</b>        | -          |                   |
| A<br>Y<br>X                              | =                  | 522.00     | cm <sup>2</sup>   |                     | N/C               |            |                   |
| Y                                        | =                  | 77.40      | cm                |                     |                   |            |                   |
| X                                        | =                  | 20.00      | cm                |                     | ь                 |            |                   |
| $I_x$                                    | =                  | 1733678.64 | cm <sup>4</sup>   |                     |                   |            |                   |
| I,                                       | =                  | 25733.10   | cm <sup>4</sup>   |                     |                   |            |                   |
| S <sub>x</sub>                           | =                  | 22398.95   | cm <sup>3</sup>   |                     |                   |            |                   |
| Sy                                       | =                  | 1286.66    | cm <sup>3</sup>   |                     |                   |            |                   |
| r <sub>x</sub>                           | =                  | 57.63      | cm                |                     |                   |            |                   |
| r <sub>y</sub>                           | =                  | 7.02       | cm                |                     |                   |            |                   |
|                                          |                    |            |                   |                     |                   |            |                   |
| 5)- CHECK COMP.                          |                    |            |                   |                     |                   |            |                   |
| d <sub>w</sub> /t <sub>w</sub>           | =                  | 68.182     |                   | Non compact         |                   |            |                   |
| C/t <sub>f</sub>                         | =<br>N             | 8.333      | Flange is         | Non compact         |                   |            |                   |
| The sec is                               | Non compact        |            |                   |                     |                   |            |                   |
| 6)- CHECK STRES                          | SES :-             |            |                   |                     |                   |            |                   |
| $f_{bex}$                                | =                  | 1.19       | t/cm <sup>2</sup> |                     |                   |            |                   |
| $f_{bey}$                                | =                  | 0.00       | t/cm <sup>2</sup> |                     |                   |            |                   |
| F <sub>bey</sub>                         | =                  | 2.59       | t/cm <sup>2</sup> |                     |                   |            |                   |
| f <sub>ca</sub>                          | =                  | 0.28       | t/cm <sup>2</sup> |                     |                   |            |                   |
| α                                        | =                  | -0.50      |                   |                     |                   |            |                   |
| _                                        |                    |            |                   |                     |                   |            |                   |

## APPLYING THE INTERACTION EQUATION:

$$(f_{ca}/F_{c}) + (f_{bex}/F_{bex}) A_{1} + (f_{bey}/F_{bey}) A_{2} = 0.822$$
 < 1.00 SAFE

[1]

#### Design rafter



# Chapter 5 (Design of Deck Part (First Trial))

#### 5.1Main girder

#### Loading

#### Dead load

W flooring =  $0.7 \text{ t/m}^2$ W sin= $150+4(33)+0.03(33)^2=314.88 \text{ kg/m}^2$ W dl = $0.7*3.75+0.314*3.75=39 \text{ t/m}^2$ M dl =  $3.9*33^2/8-2*(3.9*1.5^2/8)=526.5 \text{ t.m}$ Q dl = 64.4 t.m

#### Live load

$$RLL = 15*(0.667+0.933)+10*(0.533+0.2667) = 32 t$$

$$\begin{split} &A_{900} = 0.5*1*7.5\text{-}1.35 = 2.4 \text{ m}^2\\ &A_{250} = 0.2*0.6*4.5 = 1.35 \text{ m}^2\\ &W_{LL} = (0.9*2.4) + (0.25*1.35) = 2.5 \text{ t/m} \end{split}$$

# 60Ton 40Ton Stringer 250 250 250 250 36.0 114/15 2/3 3/5 8/15 4/15

Figure 5. 1 Live load of main girder

#### Moment Live load

$$M\ {\tt LL} = 32*(8.24+7.65) + 2.5*(0.5*33*8.24) = 848.38\ t.m$$



#### Shear live load

QR LL = 
$$32*(1+0.96)+2.5*0.5*1*33+0.5*0.045*1.5*25 = 104 \text{ t}$$

Figure 5. 2 Max moment live load of main girder

## Design Values

$$M_{\text{max}} = 526.5 + 848.38 = 1374.6 \text{ t.m}$$

$$Q_{max} = 104.4 + 64.4 = 168.4 t$$



[1]

Figure 5. 3 Max shear live load of main girder



Fatigue

 $F_{sr \ act} = (848.38*0.6*100)/68024 = 0.74 \ t/cm^2 < F_{sr \ all} = 1.68 \ t/cm^2$  safe

Deflection

 $\Delta = (5/384) * [(6.23*10^{-2}*3600^{4})/2100*8707150] = 5.2 < 3600/600 = 6 \text{ cm} \text{ safe}$ 

#### Design of End Bearing Stiffener

1) Length:

$$b_{st} \ge \frac{250}{30} + 5 = 13.3cm$$

$$b_{st} \le \frac{50-2.5}{2} = 23.75cm$$

2) Design as compression section:

$$F = Q_{design} = 168.4t$$
,  $L_b = 0.8*250 = 200cm$ 

Area = 
$$12tw^2 + bst^*t_{st}^*2$$

Stress:- 
$$A = \frac{Q}{Fall}$$
 12(2.5)<sup>2</sup>+23.75\* $t_{st}$ \*2= $\frac{168.4}{0.58*2.8}$  Take tst=1.8cm

3) Check of local Buckling:

$$\frac{23.75}{1.8} = 13.19cm < \frac{25}{\sqrt{2.8}} = 14.9 cm$$
 Safe

4) Stress: 
$$\lambda x = \frac{Lb}{ix}$$
,  $ix = \sqrt{\frac{Ix}{A}}$ 

$$Ix = \frac{(2*23.75+2.5)^3}{12} = 10416.67cm^4$$

$$ix = \sqrt{\frac{10416.67}{160.5}} = 8.1cm$$
,  $\lambda x = \frac{200}{8.1} = 24.8cm$ 

Fact=
$$\frac{168.4}{160.5} = 1.05 \frac{t}{cm^2} < 1.547 \frac{t}{cm^2}$$
 Safe

5) Design Weld:  $\frac{Qdesign}{4S*hw} < 0.2Fu$ 

$$\frac{168.4}{4S*250} = 0.2(4.4)$$
 Sw=0.2cm Take minimum =0.6cm

# Design of Horizontal Stiffener

1) 
$$d/5$$
: Iy >  $4hw*tw^3$ 

$$Iy = \frac{50^3 * 1.8}{12} = 18750cm^4 > 4(250)*2.5^3 = 15625 cm^4 Ok SAFE$$

2) 
$$d/2$$
: Iy > hw\*tw<sup>3</sup>

$$Iy = \frac{(16*2+2.5)^3*1.2}{12} = 4106.36 \ cm^4 > 3906.25 \ cm^4 \ OK \ SAFE$$

[1]

# 5-2 Design of Stringer

### Loading

#### Dead load

$$OW = 0.15 \text{ t/m}^2$$

$$W_{flooring} = 2.5*0.21+2.2*0.08 = 0.7 \text{ t/m}^2$$

$$W_{DL} = (0.15+0.7) *2.5 = 2.125 t/m$$

$$M_{DL} = (2.125*6^2)/8 = 9.56 \text{ t.m}$$

$$Q_{DL} = (2.125*6)/2 = 6.375 t$$

#### Live load

$$R_{LL} = 15*(1++0.2)+10*0.6 = 24 t$$

$$A_{2_{50}} = 0.5*2*0.8 = 0.8 \text{ m}^2$$

$$A_{900} = (0.5*5*1)-0.8 = 1.7 \text{ m}^2$$

$$W_{LL} = (0.9*1.7) + (0.25*0.8) = 1.73 \text{ t/m}$$



Figure 5. 4 live load of stringer

#### Moment Live load

Shear live load

$$M_{\text{ \tiny LL}} = 24*(1.485+0.945) + 1.73*(0.5*1.485*6) = \phantom{0}66 \ t.$$

# 24t 24t 1.73 t/m 2.7 0.945 (2.7\*3.3)/6=1.485

Figure 5. 5 Max moment live load of stringer





Figure 5. 6 Max shear live load of stringer

# Design Values

$$\begin{split} M \text{ LL} &= 66 + 0.9 = 59.4 \text{ t.m} \\ M \text{ min} &= 9.56 * 0.9 = 8.6 \text{ t.m} \\ M \text{ max} &= 59.4 + 8.6 = 68 \text{ t.m} \\ M \text{ max fatigue} &= 8.6 + 0.6 * 59.4 = 44.24 \text{ t.m} \\ Q \text{ max} &= 48.39 + 6.375 = 54.76 \text{ t} \end{split}$$

#### Choose section

Use HEA 550

**Properties** 

Zx =4150 cm<sup>3</sup>

Ix=111900 Cm^4

Section compact Fbc= 0.64Fy

Check

Stress

 $F_{act} = (68*100)/4150 = 1.63 \text{ t/cm}^2 < F_{ball} = 0.64*3.6 = 2.3 \text{ t/cm}^2$  safe

Shear

qact =  $54.7/43.8*1.25 = 0.99 \text{ t/cm}^2 < q_{all} = 0.35*3.6 = 1.26 \text{ safe}$ 

Fatigue

 $F_{sract} = (95.4*0.6*100)/4150 = 0.86 t/cm^2 < F_{srall} = 1.68 t/cm^2$  safe

Deflection

 $\Delta = (5/384) *[(13.2*10^{-2}*600^{4})/2100*111900] = 0.94 < 600/6=1 safe$ 

# 5.3 Design of cross girder

#### Loading

#### Dead load

$$OW = 0.3 \text{ t/m}^2$$

W flooring = 
$$2.5*0.21+2.2*0.08=0.7 \text{ t/m}^2$$

$$W_{DL} = (0.3+0.7) *6 = 4.5 \text{ t/m}$$
  
 $M_{DL} = (4.5*7.5^2) /8 = 31.6 \text{ t.m}$ 

$$Q_{DL} = (4.5*7.5)/2 = 16.8 t$$

#### Live load

RLL (15) = 
$$15*(1+0.8) = 27 \text{ t}$$
  
RLL (10) =  $10*(1+0.8) = 18 \text{ t}$ 

$$W_{\text{LL (900)}} = 0.9*0.5*12*1 = 5.4 \ t/m$$
 
$$W_{\text{LL (250)}} = 0.25*0.5*12*1 = 1.5 \ t/m$$

#### Moment Live load

$$M \text{ LL} = 27*1.85+27*0.74+18*1.4+18*0.51 +5.4*3.665+3.271*1.5= 129 \text{ t.m}$$

# 

60Ton 40Ton

Figure 5. 8 Live load of cross girder

1.5 t/m

# Sheer Live load

$$A_{1.5}$$
= 0.5\*0.6\*4.5=1.35M^2  
 $A_{5.4}$ = 0.5\*1\*7.5-1.35=2.4m^2  
 $Q_{1.L}$  = 27\*(1+0.733) +18(0.53+0.4) +5.4\*2.4+1.35\*1.5  
= 78.5 t.m

#### Design value

$$M_{\text{max}} = 129 + 31.6 = 160.6 \text{t.m}$$
  
 $Q_{\text{max}} = 16.8 + 78.5 = 95.3 \text{t.m}$ 



Figure 5. 9 Max shear live load of cross girder

#### Checks



# 5-4 Design of upper bracing systems

1) Case of unloaded bridge (without the live part):  $(q = 200 \text{ kg/m}^2)$ 

$$W_1 = 0.2 * [2.5+0.2+0.25] = 0.59 \text{ t/m}$$
  
 $R_1 = 0.59 * 36/2 = 10.62 \text{ t}$ 

$$F_1 = R_1 / \pm 2 \text{ sine}$$
  $F_1 = 10.62 / \pm 2 \cos(32) = 5.94 \text{ t}$ 

2) Case of loaded bridge (with live part): (q = 100 kg/m2)

$$W_2 = 0.1 * [2.5+0.2+0.25+3] = 0.59 \text{ t/m} = WI = 0.59 \text{ t/m}$$

$$R_2 = 0.59 * 36/2 = 10.62 t$$

$$F2 = RI/ \pm 2 \text{ sine}$$
  $F2 = 10.62/ \pm 2 \cos(32) = 5.94 \text{ t}$ 

3) Case of unloaded bridge during construction: (q = 200 kg/m2)

$$W3 = 0.2*0.7*2*[2.5] = 0.7 \text{ t/m}$$

$$R3 = 00.7 * 36/2 = 12.6 t$$

F3 = RI/ 
$$\pm 2$$
 sine F3 = 12.6/  $\pm 2$  cos (32) = 7.42 t

Note: In case of Deck Bridge, the case of during construction (case 3) usually gives the critical force in bracing members. But, as mentioned before, the allowable stress in this case will be increased by 25 %. So, the designed force can be obtained as follows:

$$F3 = 7.42 / 1.25 = 5.9 t$$

Design force F des. =  $\pm$  5.9 t (Case 1)

# Design as compression members:

L= 7 M Design force F 
$$des. = \pm 5.9 \text{ t}$$

$$L \text{ bin} = L = 7 \text{ M}$$
  $L \text{ out} = 1.2*7 = 8.4 \text{ M}$ 

Choose 2 angles 180 x 180 x 16

# 1) Check as compression member:

$$\lambda \ x = L_{bin} / r_{x} \qquad \lambda \ x = 700 / 5.51 = 127.27 \ > 140 \ ok$$
 
$$\lambda \ y = L_{out} / r_{u} \qquad \lambda \ x = (1.2 * 700) / 0.45 * 18 = 103 \ > 140 \ ok$$
 
$$F_{c} = (7500 / \lambda^{2}) * 0.85 = 0.39 \ t/cm2$$
 
$$F_{act} = 75.93 / 2 * 55.40 = 0.053 \ t/cm2 < F_{c} = 0.39 \ t/cm2 \ safe$$

- 2) Check as tension member
  - Check depth:

$$L/D = 700/18 = 38 < 40 \text{ ok}$$

• Check stresses: (Use M20 bearing type)

$$A_{net} = 2*[55.4 - 2*2.2*1.8] = 94.9 \ t/cm2$$

$$F_{act} = 5.93/94.9 = 0.062 \text{ t/cm} 2 < 0.85*1.6= 1.36 \text{ t/cm} 2 \text{ ok}$$

[1]

# Chapter 6 Design of mezzanine

# 6-1 Design of Secondary beam

1. Loading (first floor)

$$\begin{split} &T_{RC}\!=12\;CM\\ &W_{rc}\!=0.12\!*2500=\!300\;kg/m^2\\ &W_t\!=(w_{rc}\!+cover)\;*\;a+ow+LL\!*a+O.W\\ &W_t\!=(300\!+\!150)\!*3\;+\!50\!+\!400\!*3=2600\;kg/m \end{split}$$

2. design Values

$$M_X = 2.6*6.2^2 / 8 = 12.493 \text{ t.m}$$
  
 $Q_y = 2.6*6.2 / 2 = 8.06 \text{ t}$ 

3. Design



#### 1. Loading (second floor)

$$W_t = (300+150)*3 + 50+150*3 = 1850 \text{ kg/m}$$

# 2. Design Values

$$M_X = 1.85*6.2^2 / 8 = 8.89 \text{ t.m}$$
  
 $Q_y = 1.85*6.2 / 2 = 5.7 \text{ t}$ 

#### 3. Design



# 6-2 Design of Main beam

Load



figure 6. 1 Load of main beam

# SAP Axial force



figure 6. 2 Axial Force

# Shear force



figure 6. 3 Shear force

#### Moment



figure 6. 4 Moment

# Design main beam

First floor



### second floor



# Design column

#### First floor



### second floor



# Chapter 7 (Design of Connections)

# 6-1 Design of Connection between Stringer and Cross Girder

Continuous connection:-

$$M-ve = 0.75*75.56 = 56.67 \text{ t.m}$$

 $Q \max = 54.76 t$ 

Use High Strength Bolts M22 grade (10.9)

1) Bolts connecting the web of stringer to the framing angles:

$$N1 = Q \max / (2*Ps) = 54.76/2*4.77 = 5.7$$
 use 6 bolt

2) Bolts connecting the framing angles to the web of cross girder:

$$N2 = Q \max / (Ps) = 54.76 / 4.77 = 11.46$$
 use 12 bolt

3) Bolts in upper and lower tie plates (to transmit negative bending moment):

$$N3 = N4 = (C \text{ or } T) / (Ps) = 104.9/4.77 = 22$$
 use 22 bolt

4) check plate :-

Use T plate = 16mm

F=T/A net < 0.58 fy

A net = 
$$(62-2.4*2)*1.6 = 91.52 \text{ cm}^2$$

$$F = 104.9 / 91.52 = 1.146 < 0.58 * 3.6 = 2.088$$
 safe



Figure 7. 1 Connection between Stringer and Cross Girder

# 6-2 Design of Connection Between Cross Girder and Main girder simple connection

1) Bolts connecting the web of Cross Girder to the framing angles:

$$N1 = Q \max / 2Ps = 95.3/(2*4.77) = 9.9 \text{ bolt}$$
 use 10 bolt

2) Bolts connecting the framing angles to the web of Main girder:

$$N2 = Q \max / Ps = 95.3 / (4.77) = 19.9 \text{ bolt}$$
 use 20 bolt



Figure 7. 2 Connection Between Cross Girder and Main girder

# 6-3 Design of bolted field splices

Splice plate S1. 
$$bl = bf = 50 \text{ cm}$$
  $T1 = tf / 2 = 3/2 = 1.5 \text{ cm}$ 

Splice plate S2: take 
$$b2 = 22 \text{ cm}$$
  $T2 = tf /2 = 3/2 = 1.5 \text{ cm}$ 

Splice plate S3: 
$$b3 = 2.38cm$$
  $T3=2cm$ 

Splice of flange plate:

Force in flange plate:

$$C=T= 1356*100/250 = 542.4 \text{ ton}$$

N 
$$_1 = 542.4/2*4.77=56.8$$
 bolt

Use 60 bolt 
$$\phi$$
22 \* 6 rows

Splice of web plate:

Assume pitch P = 7 cm

No. of bolts per one row = b3/Pitch = 238/7 = 34 bolts

Take N = 34 M22per row

Get actual pitch: Pact = b3/N chosen = 238/26 = 9.15 cm

Take P =7cm and edge e= 3.3cm

$$y = 1.5 + 0.5 + 3.3 + 7/2 = 8.8cm$$

$$f1=((0.58*3.6)/(250/2+3))*250/2=2 t/cm^2$$

$$f2=((0.58*3.6)/(250/2+3))*(250/2-8.8)=1.89t/cm^{2}$$

$$F_h = (2+1.85/2) *8.8*3 = 50.82ton$$

The force on the first top bolt (critical) is therefore checked as follows:

$$H=50.82/No.$$
 of vertical rows  $6=8.4$ ton

$$V=85/6*34=0.41ton$$

$$R=8.41 \text{ ton} \le 2Ps = 2*4.77=9.54 \text{ safe}$$



Figure 7. 3 Field splices

#### 6-4 Corner connection for frame @10 m

1) Connection Dim:- (M20)(10.9)

$$B=40cm$$
  $H=310cm$ 

2) Get "X" Distance:-

$$\frac{1}{2} = 2As((y_1-x)+(y_2-x)+....)$$

$$\frac{40*X^2}{2} = 2(2.45)((297.6-x) + (281.6-x) + (265.6-x) + (249.6-x) + (233.6-x) + (217.6-x) + (201.6-x) + (185.6-x) + (169.6-x) + (145.8-x) + (129.8-x) + (113.8-x) + (97.8-x) + (81.8-x) + (65.8-x) + (49.8-x) + (33.8-x) + (17.8-x))$$
So,  $X = 24.25cm$ 

3) Get IV:-

$$\frac{B*X^3}{3} + 2\text{As}((y1-x)^2 + (y2-x)^2 + \dots)$$

$$\frac{40*24.25^3}{3} + 2(2.45)((297.6 - 24.25)^2 + (281.6 - 24.25)^2 + (265.6 - 24.25)^2 + (249.6 - 24.25)^2 + (233.6 - 24.25)^2 + (217.6 - 24.25)^2 + (201.6 - 24.25)^2 + (185.6 - 24.25)^2 + (169.6 - 24.25)^2 + (145.8 - 24.25)^2 + (129.8 - 24.25)^2 + (113.8 - 24.25)^2 + (97.8 - 24.25)^2 + (81.8 - 24.25)^2 + (65.8 - 24.25)^2 + (49.8 - 24.25)^2 + (33.8 - 24.25)^2 + (17.8 - 24.25)^2)$$
So, IV= 2419516.85 cm^4

4) Check of bolts :-

Text b1= 
$$\frac{267*100}{2419516.85}$$
 (297.6 - 24.25)(2.45) = 7.4t < 0.8(15.43) = 12.3t  
Text b2=  $\frac{267*100}{2419516.85}$  (281.6 - 24.25)(2.45) = 6.95t < 0.8(15.43) = 12.3t  
Text b3=  $\frac{267*100}{2419516.85}$  (265.6 - 24.25)(2.45) = 6.5t < 0.8(15.43) = 12.3t  
Text b4=  $\frac{267*100}{2419516.85}$  (249.6 - 24.25)(2.45) = 6.1t < 0.8(15.43) = 12.3t  
Text b5=  $\frac{267*100}{2419516.85}$  (233.6 - 24.25)(2.45) = 5.66t < 0.8(15.43) = 12.3t  
Text b6=  $\frac{267*100}{2419516.85}$  (217.6 - 24.25)(2.45) = 5.22t < 0.8(15.43) = 12.3t

Text b7= 
$$\frac{267*100}{2419516.85}$$
 (201.6 - 24.25)(2.45) = 4.8t < 0.8(15.43) = 12.3t  
Text b8=  $\frac{267*100}{2419516.85}$  (185.6 - 24.25)(2.45) = 4.36t < 0.8(15.43) = 12.3t

Text b9= 
$$\frac{267*100}{2419516.85}$$
 (169.6 - 24.25)(2.45) = 3.93t < 0.8(15.43) = 12.3t

Text b10= 
$$\frac{267*100}{2419516.85}$$
 (145.8 - 24.25)(2.45) = 3.3t < 0.8(15.43) = 12.3t

Text b11= 
$$\frac{267*100}{2419516.85}$$
 (129.8 - 24.25)(2.45) = 2.85t < 0.8(15.43) = 12.3t

Text b12= 
$$\frac{267*100}{2419516.85}$$
 (113.8 - 24.25)(2.45) = 2.42t < 0.8(15.43) = 12.3t

Text b13=
$$\frac{267*100}{2419516.85}$$
(97.8 - 24.25)(2.45) = 2t < 0.8(15.43) = 12.3t

Text b14= 
$$\frac{267*100}{2419516.85}$$
 (81.8 - 24.25)(2.45) = 1.55t < 0.8(15.43) = 12.3t

Text b15= 
$$\frac{267*100}{2419516.85}$$
 (65.8 - 24.25)(2.45) = 1.12t < 0.8(15.43) = 12.3t

Text b16= 
$$\frac{267*100}{2419516.85}$$
 (49.8 - 24.25)(2.45) = 0.69t < 0.8(15.43) = 12.3t

Text b17= 
$$\frac{267*100}{2419516.85}$$
 (33.8 - 24.25)(2.45) = 0.26t < 0.8(15.43) = 12.3t

Text b18= 
$$\frac{267*100}{2419516.85}$$
 (17.8 - 24.25)(2.45) = -0.17t < 0.8(15.43) = 12.3t

Text avg= 
$$\frac{7.4+6.95+6.5+6.1+5.66+5.22+4.8+4.36+3.93+3.3+2.85+2.42+2+1.55+1.12+0.69+0.26}{17} = 3.83t < 0.6(15.43) = 9.26t$$

5) Check of Shear:-

$$\frac{119}{36} = 3.3t < 4.82t \,(\text{Mps})$$

6) Check Fc:-

$$\frac{267*100}{2419516.85}(24.25) = 0.27 \frac{t}{cm^2} < 0.58(3.6) = 2.088 \frac{t}{cm^2}$$

7) Check of weld:-

$$sw=0.8cm$$

$$Av = 4(120*0.8) = 384 \text{ cm}^2$$

$$Ah=2(40*0.8) + 8(16*0.8) = 166.4 \text{ cm}^2$$

At=384+166.4=550.4 cm<sup>2</sup>

$$Ix=4\left(\frac{0.8*120^{3}}{12} + (0.8*120)\left(\frac{150.9}{2}\right)^{2}\right) + 8(0.4(40)*0.8*\left(\frac{150}{2} - 1.8 - \frac{0.8}{2}\right)^{2}) + 2(40*0.8*\left(150 + \frac{0.8}{2}\right)^{2}) = 4637191.62cm^{4}$$

8) Checks:-

$$\frac{267 * 100}{4637191.62} (150 + 0.8) = 0.87 \frac{t}{cm^2} < 0.2(5.2) = 1.04 \frac{t}{cm^2}$$

$$Q = \frac{119}{384} = 0.31 \frac{t}{cm^2} < 1.04 \frac{t}{cm^2}$$

$$Feq = \sqrt{(0.87)^2 + (0.31)^2} = 0.92 \frac{t}{cm^2} < 1.04 \text{ t/cm}^2$$

CONNECTION IS SAFE TO USE

[1]



#### 6-5 Fixed Base of frame at 10m

1) Assume Dimensions:-

$$L=154.8*1.5=235cm$$
,  $B=93cm$ 

2) Check of horizontal weld:- Assume sw= 0.8cm

$$\begin{split} & \text{A}_{t} = 2(235*0.8) + 4(75*0.8) = 616\text{cm}^{2} \\ & \text{I}_{y} = 2(\frac{0.8*235^{3}}{12}) + 4\left(\frac{0.8*75^{3}}{12} + (0.8*75)\left(\frac{235}{2} - \frac{75}{2}\right)^{2}\right) = 3378883 \ cm^{4} \\ & \text{F}_{1} = \frac{-146}{616} - \frac{134*100}{3378883}(\frac{235}{2}) = -0.7 \frac{t}{cm^{2}} < 0.2(5.2) = 1.04 \ t/cm^{2} \\ & \text{F}_{2} = \frac{-146}{616} + \frac{134*100}{3378883}(\frac{235}{2}) = 0.23 \frac{t}{cm^{2}} < 0.2(5.2) = 1.04 \ t/cm^{2} \\ & \text{Shear} = \frac{40}{616} = 0.065 \ t/cm^{2} < 1.04 \ t/cm^{2} \\ & \text{Feq} = \sqrt{0.7^{2} + (3*(0.065)^{2})} = 0.71 \frac{t}{cm^{2}} < 1.04 \frac{t}{cm^{2}} \end{split}$$

3) Check of vertical weld:-

$$C = \frac{-146}{2} - \frac{134*100}{154.8} = -159.6t * 0.6 = 95.76 t$$

$$T = \frac{-146}{2} + \frac{134*100}{154.8} = 13.6 t$$

$$Q_{act} = \frac{T \text{ or } 0.6C}{Lv*sw*n} \le 0.2(Fu)$$

$$L_v = \frac{95.76}{2*0.8*0.2*5.2} + 2(0.8) = 60cm$$

4) Check of Bearing Plate :-  $f_{1,2} = \frac{-N}{R*L} \pm \frac{6M}{R*L^2} \le f_{1,2} \le f_{2,2} \le f_{2,2}$ 

$$F_{1} = \frac{-146}{93*235} - \frac{6*134*100}{93*235^{2}} = -0.022 \frac{t}{cm^{2}} < \text{fconc.}$$

$$F_{2} = \frac{-146}{93*235} + \frac{6*134*100}{93*235^{2}} = 0.009 \frac{t}{cm^{2}} < \text{fconc.}$$

# 5) Check of Anchor Bolt:-

 $Q_{act} = \frac{T}{\frac{\pi}{4} * \emptyset^2 * 0.7 * n} \le 0.33 fub \qquad \qquad \frac{8}{\frac{\pi}{4} * \emptyset^2 * 0.7 * 4} = 0.33 * 0.85 * 5.2 \qquad \qquad \emptyset = 2cm$ 

Anchor bolt 020 L=1200 mm

V. Stiffser t=16mm

SECTION (7-7)

SECTION (2-2)

Figure 7. 5 Corner connection

[1]

# 6-6 Connection between Main Girder & Portal Frame

Qy from MG = 168 ton

1) Sole plate:



$$M = 84*0.9 = 75.6 \text{ t.cm}$$

$$t = \sqrt{\frac{6M}{b * fb}} = \sqrt{\frac{6 * 75.6}{60 * 1.8}} = 2.05cm$$

**Take:** t=2.2cm, b=60cm

2) Upper bearing Plate:



$$M = 168*23/4 = 966 \text{ t.cm}$$

$$t = \sqrt{\frac{6 * 966}{70 * 1.8}} = 6.78cm$$

**Take:** t=7cm, b=70cm

# 3) Lower Plate:



$$M1 = 4.15*8.7^2/2 = 157.9 \text{ t.cm}$$

$$M2 = 4.15*23^2/2 = 117.3 \text{ t.cm}$$

$$t = \sqrt{\frac{6 * 157.9}{70 * 1.8}} = 2.74cm$$

**Take:** t=3cm, b=70cm

[4]



Figure 7. 6 Connection between Main Girder & Portal Frame

# 6-7 Shear Flow Calculation (Inclined part: Frame @10m)

$$T = \frac{Qy}{Ix} * \frac{Sx}{b} = Sw * Lw * 0.2fu$$
$$Sx = Af * (0.5 * hw + 0.5 * tf)$$

1) Rafter

**Therefore: Use Minimum Sw = 6mm** 

2) Column

$$Q_y = 39.8 \text{ ton}$$
 (From Max Moment Case)  
 $I_x = 1733678 \text{ cm}4$   
 $S_x = 40*2.4*(0.5*150+0.5*2.4) = 7315.2 \text{ cm}3$   
 $\frac{39.8}{1733678} * \frac{7315.2}{1} = Sw * 1 * 0.2 * 5.2$  Sw= 0.16 cm

**Therefore: Use Minimum Sw = 6mm** 

[1]

# Chapter 8 (Management)

# 7-1 Comparison between 4 MG System Resting on portal frame (System 1) & 4 portal frames each acting as MG (System 2)

Steel unit Weight = 7.85 t/m3 Volume = Area\*Length Weight = Volume \* Unit Weight 4 MG System resting on portal frame.

MG:

1. before Curtailment

$$A = 0.105 \text{ m2}$$
,  $V = 0.105*15.2 = 1.6 \text{ m3}$ , Weight = 12.5 ton

2. after Curtailment

$$A = 0.0875 \text{ m2}$$
,  $V = 0.0875*7.4*2 = 1.295 \text{ m3}$ , Weight = 10.17 ton

3. Inclined Part

$$A = 0.07125 \text{ m}2$$
,  $V = 0.07125*1.5*2 = 0.21645 \text{ m}3$ , Weight = 1.7 ton

4. Depth decrease

$$A = 0.055 \text{ m2}$$
,  $V = 0.055*1.73*2 = 0.19 \text{ m3}$ , Weight = 1.5 ton

Total weight of 1 MG= 12.5+10.17+1.7+1.5 = 25.87 ton

Frame:

1. Rafter:

$$A = 0.0744 \text{ m2}$$
,  $V = 0.0744*14 = 1.0416 \text{ m3}$ , Weight = 8.18 ton

2. Hunch:

$$A = 0.0744 \text{ m2}$$
,  $V = 0.0744*2 = 0.1488 \text{ m3}$ , Weight = 1.17 ton

3. Column:

$$\label{eq:straight} \begin{array}{lll} \text{Straight part: A} = 0.072 \text{ m2} &, & V = 0.072*3.28 = 0.236 \text{ m3} &, & \text{Weight} = 1.85 \text{ ton} \\ \\ \text{Inclined part: A} = 0.0636 \text{ m2} &, & V = 0.0636*5.3 = 0.337 \text{ m3} &, & \text{Weight} = 2.65 \text{ ton} \\ \\ \text{Total weight of column} = (1.85+2.65)*2 = 9*2 = 18 \text{ ton} \\ \end{array}$$

**Total weight of 1 frame = 8.18+1.17+18 = 27.35 ton** 

Total weight of System = 2\*27.35 + 4\*25.87 = 158.2 ton

#### 4 portal frames each acting as MG

Rafter:

$$A = 0.113 \text{ m2}$$
 ,  $V = 0.113*33.4 = 3.7742 \text{ m3}$  , Weight = 29.63 ton

Hunch:

$$A = 0.113 \text{ m2}$$
 ,  $V = 0.113*3.2 = 0.3616 \text{ m3}$  , Weight = 2.84 ton

Column:

$$A = 0.121 \text{ m2}$$
,  $V = 0.121*10 = 1.21 \text{ m3}$ , Weight =  $9.5 * 2 = 19 \text{ ton}$ 

Total weight of 1 frame = 29.63+2.84+19 = 51.47

Total weight of System = 41.97 \*4 = 205.9 ton

Therefore, we get that It's better to Use 1st Option
(4 MG System resting on portal frame)

# 7-2 Quantity survey of material:

|                | Type of member                    | No.of Member | B flange (mm) | T flange(mm) | h web(mm) | T web(mm) | Area (mm^2) | Length(m) | Volume (m^3) | Weight (ton) |
|----------------|-----------------------------------|--------------|---------------|--------------|-----------|-----------|-------------|-----------|--------------|--------------|
|                | Cross girder of deck part         | 14           | 200           | 30           | 1000      | 20        | 32000       | 6         | 2.688        | 21.1008      |
|                | Main girder of deck part b4 Car   | 4            | 500           | 30           | 2500      | 30        | 105000      | 15.2      | 6.384        | 50.1144      |
| 멑              | Main girder of deck part car part | 4            | 500           | 25           | 2500      | 25        | 87500       | 14.8      | 5.18         | 40.663       |
| Ра             | Main girder after depth decrease  | 4            | 500           | 25           | 1200      | 25        | 55000       | 3.46      | 0.7612       | 5.97542      |
| <del>-</del> - | Main girder Inclined Part         | 4            |               |              |           |           | 71250       | 3         | 0.855        | 6.71175      |
| O              | Rafter of frame of deck part      | 2            | 400           | 30           | 1800      | 28        | 74400       | 14        | 2.0832       | 16.35312     |
| De             | Column Straight part              | 4            | 500           | 30           | 1500      | 28        | 72000       | 3.28      | 0.94464      | 7.415424     |
|                | Column cart part (deck part)      | 4            |               |              |           |           | 63600       | 5.3       | 1.34832      | 10.584312    |
|                | Hunch                             | 2            | 400           | 30           | 1800      | 28        | 74400       | 2         | 0.2976       | 2.33616      |
|                | (Rafter) frame of Inclined Part   | 24           | 380           | 18           | 1500      | 15        | 36180       | 14.5      | 12.59064     | 98.836524    |
|                | (column) frame of Inclined Part   | 4            | 400           | 24           | 1500      | 22        | 52200       | 10        | 2.088        | 16.3908      |
|                | (column) frame of Inclined Part   | 4            | 400           | 24           | 1500      | 22        | 52200       | 9.4       | 1.96272      | 15.407352    |
|                | (column) frame of Inclined Part   | 4            | 400           | 24           | 1500      | 22        | 52200       | 8.8       | 1.83744      | 14.423904    |
| part           | (column) frame of Inclined Part   | 4            | 400           | 24           | 1500      | 22        | 52200       | 8.2       | 1.71216      | 13.440456    |
| g              | (column) frame of Inclined Part   | 4            | 400           | 24           | 1500      | 22        | 52200       | 7.6       | 1.58688      | 12.457008    |
| <del>p</del>   | (column) frame of Inclined Part   | 4            | 400           | 24           | 1500      | 22        | 52200       | 7         | 1.4616       | 11.47356     |
|                | (column) frame of Inclined Part   | 4            | 400           | 24           | 1500      | 22        | 52200       | 6.4       | 1.33632      | 10.490112    |
| Ž              | (column) frame of Inclined Part   | 4            | 400           | 24           | 1500      | 22        | 52200       | 5.8       | 1.21104      | 9.506664     |
| ncline         | (column) frame of Inclined Part   | 4            | 400           | 24           | 1500      | 22        | 52200       | 5.2       | 1.08576      | 8.523216     |
| 2              | (column) frame of Inclined Part   | 4            | 400           | 24           | 1500      | 22        | 52200       | 4.6       | 0.96048      | 7.539768     |
| _              | (column) frame of Inclined Part   | 4            | 400           | 24           | 1500      | 22        | 52200       | 4         | 0.8352       | 6.55632      |
|                | (column) frame of Inclined Part   | 4            | 400           | 24           | 1500      | 22        | 52200       | 3.4       | 0.70992      | 5.572872     |
|                | Hunch                             | 24           | 380           | 18           | 1500      | 15        | 36180       | 2         | 1.73664      | 13.632624    |
|                |                                   |              |               |              |           |           |             | T         | otal weight  | 391.872942   |

| Type of plate               | No.of plate | T (mm) | B (mm) | Area(mm^2) | H (m)        | Volume (m^3) | Weight (ton) |
|-----------------------------|-------------|--------|--------|------------|--------------|--------------|--------------|
| Fixed pase of Inclined Part | 48          | 50     | 930    | 46500      | 2.35         | 5.2452       | 41.17482     |
| corner plate inclined part  | 48          | 24     | 400    | 9600       | 3.1          | 1.42848      | 11.213568    |
| Fixed pase of deck Part     | 4           | 30     | 900    | 27000      | 1.8          | 0.1944       | 1.52604      |
| corner plate dec part       | 4           | 30     | 500    | 15000      | 3.37         | 0.2022       | 1.58727      |
| splice plate                | 16          | 20     | 860    | 17200      | 2.38         | 0.654976     | 5.1415616    |
|                             |             |        |        |            | Total weight |              | 55.501698    |

|                             |               | quantity of st | ringer        |            |                    |
|-----------------------------|---------------|----------------|---------------|------------|--------------------|
| Type of member              | Type Section  | No.of Member   | Weight (kg/m) | Length (m) | Total weight (ton) |
| Stringr of inclined part    | IPE600        | 198            | 122           | 6          | 144.93             |
| Stringr of deck part        | HEA550        | 24             | 168           | 6          | 24.192             |
|                             |               |                | Total we      | eight      | 169.128            |
|                             |               | Mezzanine I    | Floor         |            |                    |
| Type of member              | Type Section  | No.of Members  | weight (kg/m) | Length (m) | Total weight (ton) |
| Column first floor          | IPE600        | 9              | 122           | 2          | 2.196              |
| Column socend floor         | IPE500        | 9              | 90.7          | 4          | 3.2652             |
| Main Beam First floor       | IPE500        | 6              | 90.7          | 9          | 4.8978             |
| Main Beam Socend floor      | IPE450        | 6              | 77.6          | 9          | 4.1904             |
| Secondary beam First floor  | IPE360        | 14             | 57.1          | 6.2        | 4.95628            |
| Secondary beam socend floor | IPE300        | 14             | 42.2          | 6.2        | 3.66296            |
|                             |               |                | Total we      | eight      | 23.16864           |
|                             |               |                |               |            |                    |
| Upper Bracing System        | 2L 100*100*10 | 24             | 30.2          | 6.32       | 4.580736           |
| Site gerts                  | IPE600        | 20             | 122           | 6          | 14.64              |
|                             | _             |                | Total we      | eight      | 19.220736          |

Total weight of project 658.892016

# 7-3 Time Estimation:

| 9                    | Activity Name                                  | Duration | Start                | Finish                 |
|----------------------|------------------------------------------------|----------|----------------------|------------------------|
| tool Bridge          |                                                |          | 01-Aug-23            | 07-Mar-24              |
| teel Bridge          |                                                |          | 01-Aug-2             | 13-Nov-23              |
| Preliminar<br>8.100  | Surveying Works                                |          | 01-Aug-i             | 09-Aug-23              |
| B.110                | Site Offices                                   |          | 10-Aug-2             | 14-Aug-23              |
| B.630                | Production of Members                          |          | 01-Aug-s             | 13-Nov-23              |
| Inclined P           | art (1)                                        | 100      | 01-Aug-S             | 18-Dec-23              |
| Earth Worl           |                                                |          | O1-Aug-S             | 13-Sep-23              |
| B.120                | Excavation                                     |          | 15-Aug-2             | 23-Aug-23              |
| B.130                | Replacement                                    | 3        | 01-Aug-2             | 03-Aug-23              |
| B.140                | Insulation                                     |          | 25-Aug-2             | 31-Aug-23              |
| B.150<br>B.160       | Backfiling<br>Backfiling For Ramp              |          | 01-Sep-2<br>05-Sep-2 | 05-Sep-23<br>13-Sep-23 |
| Concrete V           |                                                |          | 04-Aug-S             | 18-Dec-23              |
| B.170                | P.C Footings                                   |          | 04-Aug-2             | 10-Aug-23              |
| B.180                | R.C Footings                                   | 10       | 11-Aug-2             | 24-Aug-23              |
| B.190                | Retaining Wall                                 |          | 25-Aug-2             | 04-Sep-23              |
| B.200                | Inclined Slap                                  |          | 08-Dec-2             | 18-Dec-23              |
| Steel Insta<br>B.210 | Iling Works<br>Installing Columns              |          | 14-Nov-2             | 07-Dec-23<br>20-Nov-23 |
| B.220                | Installing Rafter                              |          | 21-Nov-2             | 27-Nov-23              |
| B.230                | Installing stringer                            |          | 28-Nov-2             | 07-Dec-23              |
| Deck Part            |                                                | 141      | 24-Aug-5             | 07-Mar-24              |
| Earth Worl           |                                                |          | 24-Aug-3             | 23-Jan-24              |
| B.240                | Excavation<br>Replacement                      |          | 24-Aug-2             | 01-Sep-23<br>21-Dec-23 |
| B.250<br>B.260       | Insulation                                     |          | 19-Dec-2<br>12-Jan-2 | 21-Dec-23<br>18-Jan-24 |
| B.270                | Backfiling                                     |          | 19-Jan-2             | 23-Jan-24              |
| Concrete V           |                                                |          | 22-Dec-2             | 07-Mar-24              |
| B.280                | P.C Footings                                   |          | 22-Dec-2             | 28-Dec-23              |
| B.290                | R.C Footings                                   |          | 29-Dec-2             | 11-Jan-24              |
| B.300                | Deck Slap                                      |          | 28-Feb-2<br>24-Jan-2 | 07-Mar-24<br>27-Feb-24 |
| B.310                | Iling Works<br>Installing Columns              |          | 24-Jan-2             | 27-Feb-24<br>25-Jan-24 |
| B.320                | Installing Rafter                              |          | 26-Jan-2             | 29-Jan-24              |
| B.330                | Installing Main girder                         |          | 30-Jan-2             | 08-Feb-24              |
| B.340                | Installing cross girder                        |          | 07-Feb-2             | 14-Feb-24              |
| B.350<br>B.360       | Bracing<br>bests line et inner                 |          | 15-Feb-2<br>20-Feb-2 | 19-Feb-24<br>27-Feb-24 |
|                      | Installing stringer                            |          | 04-Sep-2             | 18-Dec-23              |
| Inclined P           |                                                |          | 04-Sep-3             | 23-Od-23               |
| Earth Worl           | Excavation                                     |          | 04-Sep-2             | 12-Sep-23              |
| B.380                | Replacement                                    |          | 13-Sep-2             | 15-Sep-23              |
| B.390                | Insulation                                     | 5        | 09-Oct-23            | 13-Oct-23              |
| B.400                | Backfilling                                    |          | 16-Oct-23            | 18-Oct-23              |
| B.610                | Backfilling for ramp                           |          | 17-Oct-23            |                        |
| B.410                | P.C Footings                                   |          | 18-Sep-2             | 18-Dec-23<br>22-Sep-23 |
| B.420                | R.C Footings                                   |          | 25-Sep-2             | 06-Oct-23              |
| B.430                | Retaining Wall                                 |          | 09-Oct-23            |                        |
| B.440                | Indined Slap                                   |          | 08-Dec-2             | 18-Dec-23              |
|                      | lling Works                                    |          | 14-Nov-2             | 07-Dec-23              |
| B.450<br>B.460       | Installing Columns<br>Installing Rafter        |          | 14-Nov-2<br>21-Nov-2 | 20-Nov-23<br>27-Nov-23 |
| B.470                | Installing stringer                            |          | 28-Nov-2             | 07-Dec-23              |
| Mezzanine            |                                                |          | 13-Sep-2             | 13-Feb-24              |
| Earth Wor            |                                                |          | 13-Sep-5             | 18-Jen-24              |
| B.480                | Excavation                                     |          | 13-Sep-2             | 15-Sep-23              |
| B.490                | Replacement                                    |          | 19-Dec-2             | 20-Dec-23              |
| B.500                | Insulation                                     |          | 11-Jan-2-            | 15-Jan-24              |
| B.510<br>Concrete V  | Backfilling                                    |          | 16-Jan-2<br>21-Dec-2 | 18-Jan-24<br>13-Feb-24 |
| B.520                | P.C Footings                                   |          | 21-Dec-2             | 27-Dec-23              |
| B.530                | R.C Footings                                   |          | 28-Dec-2             | 10-Jan-24              |
| B.540                | Slap                                           |          | 07-Feb-2             | 13-Feb-24              |
|                      | lling Works                                    |          | 19-Jan-2             | 08-Feb-24              |
| B.550<br>B.560       | Installing Columns<br>Installing Main Beam     |          | 19-Jan-2<br>25-Jan-2 | 24-Jan-24<br>29-Jan-24 |
| B.570                | Instaling Main Beam<br>Instaling Secondry Beam |          | 30-Jan-2             | 06-Feb-24              |
|                      |                                                |          | 19-Dec-2             | 20-Feb-24              |
| Finishing<br>8.580   | Asphalt Works                                  |          | 28-Dec-2             | 24-Jan-24              |
| B.590                | Installing Rail                                |          | 19-Dec-2             | 27-Dec-23              |
| B.600                | Installing Lambposts                           |          | 25-Jan-2             | 06-Feb-24              |
|                      |                                                |          |                      |                        |

Figure 8. 1 Duration of project



Figure8. 2 Flow chart

# Chapter 9 (Conclusion)

This thesis explores the construction of a steel bridge at the intersection of two main roads, with a focus on the management and design aspects. The research has shown that this type of construction can solve public problems and offer significant benefits to those living and working in the area. It is clear that careful planning, design, and management are essential for any successful roadway steel bridge project. Through this thesis, we have gained an understanding of how these factors interact to create a successful outcome. As such, we can confidently conclude that roadway steel bridges can be beneficial for those living in their vicinity.

# (Reference)

- EGYPTIAN CODE OF PRACTICE FOR STEEL CONSTRUCTION AND BRIDGES
   (ALLOWABLE STRESS DESIGN ASD) Code No. (205) Ministerial Decree No 279 –
   2001
- 2. Johnson, R. P. (2014). Steel Bridges: Conceptual and Structural Design of Steel and Steel-Concrete Composite Bridges. Wiley.
- 3. Chen, W. F., & Duan, L. (2013). Handbook of International Bridge Engineering. CRC Press.
- 4. Ahmed Hassan A.H. (2021). Design of Steel Bridge (Lecture Notes)(Part 1), Ain Shams University
- 5. ministerial decree (2007). Egyptian Code of practice for steel construction (LOAD AND RESESTANCE FACTOR DESIGN -LRFD) (Code no. 205)