

DEEP LEARNING ONLINE BOOTCAMP

DETAILED SYLLABUS: INTERMEDIATE

August 20 - September 06

Overview

In our endeavour to build data culture and democratize Data Science learning, we are launching a deep learning bootcamp with the help of academia and industry experts. The online bootcamp will have a series of day-wise learning modules/challenges and live sessions by data science experts.

In this bootcamp, you'll be able to grasp the fundamentals of deep learning that will aid your Data Science journey and get you started with building the required industry skills.

This is a community initiative, driven by experts and mentors, and you have the opportunity to attend it for free.

Prerequisites

- Python
- Numpy
- Pandas
- Linear Algebra
- Jupyter Notebook/ Google Colab

Module 0: Data Science Fundamentals

Refresh your data science basics that will be useful across the whole Bootcamp.

Day 0		Numpy and Pandas fundamentalsLinear Algebra fundamentals
Aug. 19	Data Science Refresher	 Jupyter notebook/Anaconda/Google Colab Visualization fundamentals

Module 1: Deep Learning and Neural Networks Basics

Dive into the world of deep learning and understand what a Neural Network is

Day 1	Overview	 What is DL and why is it so popular? Comparison between ML and DL Real-life applications of DL Deep Learning Frameworks Refresher of Machine Learning Concepts
Day 2	Introduction to the Simplest Neural Network: Perceptron	 Neural Networks: The heart of DL What is NN? Neurons: The building block of NN Single and Multilayer Perceptrons (MLP) Similarity to the brain neurons
Day 3	Introduction to tf.Keras	 What is Keras? Keras vs tf.Keras How is Tensorflow relevant in the industry? How to Install TensorFlow? How to Confirm TensorFlow Is Installed? Tensors Playing around with some Tensor operations Basic Introduction to GPUs and CUDA

Module 2: **Neural networks for regression problems + Hyperparameter Tuning**

Get an overview of how a Regression model can be built with tf.Keras and learn to perform Hyperparameter Tuning

Overview •	Regression model with tf.Keras Epochs Learning Rate Batch Size Hyperparameter Tuning
------------	--

Module 3: **Neural networks for classification problems**

Build Classification Models on diverse datasets

Day 5	Multi-Layer Perceptron/ Deep NN	 Neural Network Architecture NN Working: Feedforward intuition Gradient Descent Backpropagation intuition The 5 step model life cycle
Day 6	MLP for Binary Classification	 Building a Deep Learning Model: The basic difference between Sequential and Functional Model API Building an MLP for binary classification using Sequential Model Compiling a model Loss Functions Optimizers Activation functions
Day 7	MLP for Multiclass Classification	 Building a Deep NN on MNIST Dataset Pre-processing techniques Deciding Loss and Optimization Functions Train, Validation and Test Set Training the model Hyperparameter Tuning Testing the model Saving and Loading Models

Module 4: Optimizing a Neural Network

Optimize the training of your Neural Network to create refined and accurate models

Day 8	Optimising the training of a NN - part 1	 Overfitting and Underfitting Early Stopping Regularization
Day 9	Optimising the training of a NN - part 1	 Dropout Local and Global Minima Introducing the final assignment
Day 10	Optimising the training of a NN - part 2	 Batch vs Stochastic Gradient Descent Random Initialization/Restart Vanishing Gradient Other Activation Functions

Module 5: **Applied Problem Solving + Convolutional Neural Networks (CNN)**

Learn the basics of Convolutional Neural Network and get your hands dirty with applied problem solving

LEARNING OUTCOMES

Day 11	Digital Image Processing	 How are images interpreted and modelled? What are pixels, spatial and intensity resolution, and image matrices? "Spatial image transformations and morphology Image rotation Subsampling techniques Oversampling techniques Image histogram Image comparison metrics (MSE) OpenCV Fundamentals
Day 12	Convolutional Neural Networks (CNN) - Part 1	 Applications of CNNs How CNNs solve the problem with MLP CNN Architecture Kernel Filters Convolution Layer Stride and Padding
Day 13	Convolutional Neural Networks (CNN) - Part 2	 Pooling Layer Fully Connected Layer Increasing Depth Implementing a CNN in Tensorflow Image Augmentation

Datathon: Get your hands dirty with applied problem solving