

인공지능을 위한 알고리즘

휴식을 위하여

날씨 좋은 휴일,

인근 공원에서 독서를 하기로 했지만 공원에서는 공사가 진행되고 있었습니다.

공사 현장 근처는 소음이 크기 때문에 휴식과 독서에 적합하지 않습니다.

공사 현장은 공원에서 오직 한 군데이고, 그 위치를 (a, b)라고 합니다. 공사현장에서 R 만큼의 거리 미만은 소음이 크기 때문에 독서에 적합하지 않습니다.

또한 공원에는 휴식과 독서에 적합한 그늘이 N개 존재합니다. 각각의 그늘 위치는 (x_i, y_i) 입니다. (i번째)

이상의 정보에서 각 그늘이 독서에 적합한지 (공사 현장에서 R 이상 떨어진 그늘인지) 판별하는 코드를 작성하시오.

• 위치 (x, y)가 공사 현장에서 R 이상 떨어져있다는 조건

$$(x - a)^2 + (y - b)^2 \ge R^2$$

• 각 입력 값의 범위

$$0 \le a \le 100$$

$$0 \le b \le 100$$

$$1 \le R \le 100$$

$$1 \le N \le 1000$$

$$0 \le x_i \le 100$$

$$0 \le y_i \le 100$$

• 입력은 아래와 같은 형식으로 들어온다.

a b R # 공사 현장의 x 좌표 (a), y 좌표 (b), 공사장 소음 거리 R N # 그늘의 수

x_1 y_1 # 그늘 1의 x 좌표 (x_1), y 좌표 (y_1)

x_2 y_2 # 그늘 2의 x 좌표 (x_2), y 좌표 (y_2)

. . .

x_N y_N # 그늘 N의 x 좌표 (x_N), y 좌표 (y_N)

• 입력 예제 1	• 출력 예제 1	• 입력 예제 2	• 출력 예제 2
20 10 10	noisy	50 50 100	noisy
3	noisy	4	noisy
25 10	silent	00	noisy
20 15		0 100	noisy
70 70		1000	
		1000	

약수 구하기

• 입력받은 숫자 N의 모든 약수를 출력하시오.

• 입력 예제 1

• 출력 예제 1

100

1 2 4 5 10 20 25 50 100

죄대값, 최소값 구하기

- 입력받은 정수값들 중 최대값과 최소값 순서대로 출력하시오.
- 단, 파이썬 내장 함수 max, min 및 기타 numpy, pandas 등의 라이브러리는 쓸 수 없다.
- 입력 예제 1출력 예제 1
- 1 2 100 3 30 100 1