Теоретические основы булевой алгебры

Булева алгебра — раздел математической логики, в которой все переменные принимают только два значения 0 или 1, а функция, построенная на их основе, также принимает значения 0 (ложь) или 1 (истина) и называется **булевой функцией**. Название этого раздела математической логики получило по имени ее основоположника Джорджа Буля (1815-1864гг.). Основные операции, которые можно выполнять над булевыми переменными, представлены ниже: отрицание, логическое сложение (дизъюнкция) и логическое умножение (конъюнкция).

а	0	1	
$\neg a$	1	0	

V	0	1
0	0	1
1	1	1

٨	0	1	
0	0	0	
1	0	1	

Отрицание (¬)

Дизъюнкция (∨)

Конъюнкция (^)

Приоритеты операций в выражениях следующие: вначале выполняются слева направо одноместные операции отрицания, затем — двуместные операции умножения, а затем — сложения. Порядок выполнения операций можно изменить с помощью скобок.

Основные аксиомы (законы) булевой алгебры (здесь a,b,c - булевы переменные):

- 1. Коммутативность: $a \lor b = b \lor a$, $a \land b = b \land a$.
- 2. Ассоциативность: $a \lor (b \lor c) = (a \lor b) \lor c$, $a \land (b \land c) = (a \land b) \land c$.
- 3. Дистрибутивность: $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$, $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$.
- 4. Тождества: $a \lor 0 = a$, $a \land 1 = a$.
- 5. Дополнения: $a \lor \neg a = 1$, $a \land \neg a = 0$.

Для произвольных булевых переменных a,b верны следующие соотношения:

- 1. Законы идемпотентности: $a \lor a = a$, $a \land a = a$.
- 2. Свойства констант: $a \lor 1 = 1$, $a \land 0 = 0$.
- 3. Законы поглощения: $a \lor (a \land b) = a$, $a \land (a \lor b) = a$.
- 4. Закон двойного отрицания (закон инволюции): $\neg(\neg a) = a$.
- 5. Законы де Моргана: $\neg(a \lor b) = \neg a \land \neg b$, $\neg(a \land b) = \neg a \lor \neg b$.

Всякую булеву функцию от n переменных можно задать таблицей из 2^n строк, в каждой строке которой записываются различные значения переменных.

Дизьюнктивной нормальной формой (ДНФ) называется булева функция, представляющая собой дизьюнкцию элементарных коньюнкций (логической суммой, в которой каждое слагаемое представляет собой умножение булевых переменных и (или) их отрицаний). Аналогично коньюнктивная нормальная форма (КНФ) — это коньюнкция элементарных дизьюнкций (логическое произведение, в котором каждый множитель является суммой булевых переменных и (или) их отрицаний. Совершенная ДНФ (СДНФ) — это формула булевой функции, в которой все дизьюнктивные члены попарно различны.

Пример 1. Построить таблицу истинности для следующей булевой функции $f(a,b,c) = a \wedge b \wedge c \vee a \wedge \neg b \wedge \neg c \vee \neg a \wedge b \wedge c \vee \neg a \wedge \neg b \wedge c$

Решение

Т.к. задана функция от трех переменных, то количество строк в таблице равно $2^3 = 8$. Функция записана в ДНФ, в которой имеется сумма 4-х элементарных коньюнкций.

№	a	b	С	$a \wedge b \wedge c$	$a \land \neg b \land \neg c$	$\neg a \land b \land c$	$\neg a \land \neg b \land c$	f(a,b,c)
1	1	1	1	1	0	0	0	1
2	1	1	0	0	0	0	0	0
3	1	0	1	0	0	0	0	0
4	1	0	0	0	1	0	0	1
5	0	1	1	0	0	1	0	1
6	0	1	0	0	0	0	0	0
7	0	0	1	0	0	0	1	1
8	0	0	0	0	0	0	0	0

Пример 2. Привести в СДНФ следующую булеву функцию $f(a,b,c,d,e) = (a \lor c) \land (a \lor d) \land (b \lor c) \land (b \lor d) \land (c \lor d) \land (c \lor e)$

Решение.

- 1). Воспользуемся законом дистрибутивности $(a \lor b) \land (a \lor c) = a \lor (b \land c)$ и приведем формулу к следующему виду: $f(a,b,c,d,e) = (c \lor a \land b \land d \land e) \land (d \lor a \land b)$.
- 2). Раскроем скобки: $f(a,b,c,d,e) = c \wedge d \vee a \wedge b \wedge c \vee a \wedge b \wedge d \wedge e \vee a \wedge b \wedge d \wedge e$.
- 3). Сократим последний член: $f(a,b,c,d,e) = c \land d \lor a \land b \land c \lor a \land b \land d \land e$.

Otbet: $f(a,b,c,d,e) = c \wedge d \vee a \wedge b \wedge c \vee a \wedge b \wedge d \wedge e$

Запишем ответ в форме электронного стенда: c*d+a*b*c+a*b*d*e