Algoritmo 1: Co-Training
Input: Conjunto de datos etiquetados L , no etiquetados U ,
clasificadores \boldsymbol{H}_1 y \boldsymbol{H}_2 , p (positivos), n (negativos), u (número
de datos iniciales), k (iteraciones)
Output: Clasificadores entrenados
ı Crear un subconjunto U' seleccionando u instancias aleatorias de U
2 for k iteraciones
3 Entrenar \boldsymbol{H}_1 con \boldsymbol{L} solo considerando un subconjunto (\boldsymbol{x}_1) de las
características de cada instancia (x)
Entrenar \boldsymbol{H}_2 con \boldsymbol{L} solo considerando el otro subconjunto (\boldsymbol{x}_2) de
las características de cada instancia (x)
5 Hacer que H_1 prediga p instancias positivas y n negativas de U' que
tengan la mayor confianza
6 Hacer que H_2 prediga p instancias positivas y n negativas de U' que
tengan la mayor confianza
7 Añadir estas instancias seleccionadas a $m{L}$
8 Reponer U' añadiendo $2p + 2n$ instancias de U
9 endfor
10 return $m{H}_1, m{H}_2$