FIGURE 2-4 The meter is the SI unit of length, but the centimeter is often used to measure smaller distances. What is the width in cm of the rectangular piece of aluminum foil shown?

is often used. From Table 2-2, you can see that one centimeter equals 1/100 of a meter. The width of this book is just over 20 cm.

Derived SI Units

Many SI units are combinations of the quantities shown in Table 2-1. *Combinations of SI base units form* **derived units.** Some derived units are shown in Table 2-3.

Derived units are produced by multiplying or dividing standard units. For example, area, a derived unit, is length times width. If both length and width are expressed in meters, the area unit equals meters times meters, or square meters, abbreviated m². The last column of

TABLE 2-3 Derived SI Units				
Quantity	Quantity symbol	Unit	Unit abbreviation	Derivation
Area	A	square meter	m^2	length × width
Volume	V	cubic meter	m^3	$length \times width \times height$
Density	D	kilograms per cubic meter	kg	mass
			$\frac{\mathrm{kg}}{\mathrm{m}^3}$	volume
Molar mass	M	kilograms per mole	kg	mass
			mol	amount of substance
Concentration	c	moles per liter	M	amount of substance
				volume
Molar volume	V_m	cubic meters per mole	m^3	volume
			mol	amount of substance
Energy	E	joule	J	force × length