We can separate \tilde{X} to the part in the span of X (A) and the part orthogonal to X (B). Let's denote them $\tilde{X} = A + B$

Now we want that
$$X^T \tilde{X} = \Sigma - S \Rightarrow X^T (A + B) = \Sigma - S$$

 $\Rightarrow X^T A + X^T B = \Sigma - S \Rightarrow X^T A = \Sigma - S$
Since B is orthogonal to X.
 $X^T A = \Sigma (I - \Sigma^{-1} S) = X^T X (I - \Sigma^{-1} S)$
 $\Rightarrow A = X (I - \Sigma^{-1} S)$

We also want that $\tilde{X}^T \tilde{X} = \Sigma$

$$(A + B)^{T}(A + B) = A^{T}A + A^{T}B + B^{T}A + B^{T}B = \Sigma$$

$$\Rightarrow (X^{T}X - X^{T}X\Sigma^{-1}S + X^{T}B - S\Sigma^{-1}X^{T}X + S\Sigma^{-1}X^{T}X\Sigma^{-1}S - S\Sigma^{-1}X^{T}B + B^{T}X - B^{T}X\Sigma^{-1}S + B^{T}B) = \Sigma$$

Everything that has X^TB in it must be 0, since B is orthogonal to X. We get that $B^TB = 2S - S\Sigma^{-1}S$

But this doesn't gurantee that $B^TX = 0$, for this we need to set $B = \widetilde{U}C$ Where $C^TC = 2S - S\Sigma^{-1}S$.