Химия.9 класс

meklomanik(Михаил Колесников)

Лето-Осень 2021

Содержание

1	Общая характеристика химических элементов и химических реакций	3
2	Металлы	3
	2.1 Металлические века	3
	2.2 Положение металлов в П.ССтроение их атомов	3
	2.3 Физические свойства металлов	3
	2.4 Сплавы	4
	2.5 Химические свойства металлов	4
	2.6 Получение металлов	4
	2.7 Коррозия металлов	4
	2.8 Щелочные металлы	4
	2.9 Be, Mg и щёлочноземельные металлы	
	2.10 Алюминий	4
	2.11 Железо	4
	2.11 /10/10/30	1
3	Определения	4
4	Законы	6

1 Общая характеристика химических элементов и химических реакций

Таблица 1: Формы существования химического элемента и их свойства

Хим. эл.		Изменения свойств		
XIIII. 9JI.		в главных подгруппах	в периодах	
	заряд ядра	\uparrow	\uparrow	
	свободные энерг. уровней	\uparrow	const	
	электроны на внешнем уровне	const	\uparrow	
Атомы	радиус атома	\uparrow	\	
ATOMBI	восстановительные свойства	\uparrow	\	
	окислительные свойства	\downarrow	\uparrow	
	высшая степень окисления	const	\uparrow	
	низшая степень окисления	const	\uparrow	
Простые	металические свойства	\uparrow	\	
вещества	неметалические свойства	\	\uparrow	
Соединения	характер химических свойств	усиление основных	усиление кислотных	
химических	высшего оксида и	свойств и ослабление	свойств и ослабление	
элементов	высшего гидроскида	кислотных свойств	основных свойств	

Таблица 2: Металические и неметаллические свойства атомов в пределах группы и периода

Свойства	В пределах группы:	В пределах периода:
Мет. свойства	↑	↓
Немет. свойства	\	↑
заряды атомных ядер	↑	<u> </u>
число электронов на внешнем уровне	const	↑
число энергетических уровней	†	const
радиус атома	<u></u>	↓

2 Металлы

2.1 Металлические века

2.2 Положение металлов в П.С..Строение их атомов

Разделение химических элементов на металлы и неметаллы условно. Металлы как вещества могут быть только восстановителями. Исключая амфотерные вещества (условную границу между металлами и неметаллами В — Si-As-Te-At): Металлы I-ой группы — щелочные металлы. Металлы II-ой группы — щелочноземельные металлы.

2.3 Физические свойства металлов

Метталическая связь обуславливает все физические свойства металлов:

- металический блеск
- твёрдость
- плотность
- t плавления

Таблица 3: Характеристика сложных химических элементов

Таблица 4: Характеристика простых химических элементов

Кислоты				
I - основные	II - основ	ные	III - основные	
Раствори	Растворимые		ерастворимые	
Кислород-сод	ержащие	Безкислородные		
Летуч	ие	Нелетучие		
Сильн	ые		Слабые	
Стабиль	ные	Н	естабильные	
Основания				
Раствори	Растворимые		Нерастворимые	
Сильн	Сильные		Слабые	
I - кисло	I - кислотные		- кислотные	
	Сол	И		
Кислые	Средні	1 е	Основные	
Растворимые		He	ерастворимые	
Оксиды				
Основные	Амфотерные		Кислотные	
Раствори	створимые		ерастворимые	

Металлы & Неметаллы		
• порядковый номер		
• номер группы, вид группы		
• номер периода, вид периода		
• вид простого химического элемента		
• соседи по группе		
• развитие мет./немет. свойств		
• соседи по периоду		
• развитие мет./немет. свойств		
• оксид хим.эл., его тип		
• гидроксид хим.эл., его тип		
 * высшее летучее соединение с водородом 		

Таблица 5: Признаки веществ

Элемент	Катализатор	Признак
Aq^+	Cl^-	белый осадок
Cu^{2+}	OH^-	голубой осадок
Cu^{2+}	S^{2-}	чёрный осадок
Fe^{2+}	OH^-	зеленоватый, буреющий осадок
Fe^{3+}	OH-	бурый осадок
Zn^{2+}	OH^-	белый осадок, ОН-растворим.
Al^{3+}	OH^-	белый гелеобразный осадок, ОН-растворим
NH_4^+	OH-	запах аммиака
Ba^{2+}	SO_4^{2-}	белый осадок
Ba^{2+}	Δ	жёлто-зелёное пламя
Ca^{2+}	SO_4^{2-}	белый осадок
Ca^{2+}	Δ	кирпично-красное пламя
Na^+	Δ	жёлтое пламя
K^+	Δ	фиолетовое пламя
Cl^-	Ag^+	белый осадок
$Br^{(-)}$	Ag^+	желтоватый осадок
I^-	Ag^+	жёлтый осадок
SO_3^{2-}	H^+	$SO_2\uparrow$
CO_3^{2-}	H^+	$CO_2 \uparrow$
NO_3	$H_2SO_4 + Cu$	бурый газ
SO_3^{2-} CO_3^{2-} NO_3 SO_4^{2-}	Ba^{2+}	белый осадок
PO_4^{3-}	Ag^+	жёлтый осадок

3 Определения

Химия — наука о веществах, их свойствах и превращениях.

Свойства веществ — признаки отличия веществ.

Химический элемент — совокупность атомов с одинаковым зарядом ядер.

Таблица 6: Генетические ряды

	тастина от тести реда			
	Металл			
$($ простое $\rightarrow $ основный оксид $\rightarrow $ основа			→ соль	
Неметалл				
(простое вещество)	ightarrow кислотный оксид	→кислота	\rightarrow соль	

Таблица 7: Оксиды и гидроксиды амфотерных веществ на примере Cr

Cr			
$Cr^{+2}O$	$Cr_2^{+3}O_3$	$Cr^{+6}O_3$	
— основный оксид хрома(II)	— амфотерный оксид хрома(III)	— кислотный оксид хрома(IV)	
$Cr(OH)_2$	$Cr(OH)_3$ или $HCrO_2$	H_2Cr0_4 или $H_2Cr_2O_7$	
— основание	— амфотерный гидроксид	— кислоты	

Переходные элементы, переходные металлы — элементы побочной полгруппы Π .с. образующие амфотерные оксиды и гидроксиды.

 ${
m Meta}_{
m Jh}$ — химические элементы, атомы которых стремятся отдать электроны с внешнего электронного уровня.

 ${
m Hemetaллы}-{
m xumuчeckue}$ элементы, атомы которых стремятся принять электроны с внешнего электронного уровня.

Оксиды — сложные вещества, состоящие из химических элементов один из которых O^{-2} .

Несолеобразующие оксиды – оксиды, которые образуют кислоты и щёлочи, не образуют соли.

Основные оскиды — оксиды, которые соответствуют (образуют) основания.

Кислотные оксиды — оксиды, которые соответствуют кислотам.

Амфотерные оксиды — оксиды, которые соответствуют кислотам и основаниям.

Аллотропия — способность атомов образовывать несколько простых веществ.

Химическое уравнение — условная запись химической реакции с помощью химических формул и математических знаков.

Гомогенный — одного типа, вида, рода.

Гетерогенный – разного типа, вида, рода.

Катализаторы — не участвующие в реакции вещества, но ускоряющие её или изменяющие пути её течения.

Ферменты — биологические катализаторы белковой природы.

Катализ — процесс изменения скорости химической реакции, или пути её течения.

Качественные реакции — р-ии с определением вещества.

Горения реакции — р-ии, протекающие с выделением телпа и света.

Экзотермические реакции — р-ии с выделением тепла.

Эндотермические реакции — р-ии с поглощением тепла.

Разложения реакции — р-ии со сложным веществом разлагающимся на несколько простых веществ.

Соединения реакции — с двумя сложными веществами образующими два новых сложных вещества.

Замещения реакции — реакции с замещением атомов простого на атомы сложного вещества.

Обмена реакции — реакции с взаимо-замещением атомов двух сложных веществ.

Ионная связь — связь между ионами.

Атомная связь — связь в результате образования электронной пары.

Метталическая связь — связь между атом-ионами в металлах и сплавах за счёт обобществлённых электронов.

Окисление — процесс отдачи электронов.

Восстановление — процесс принятия электронов.

Окислитель — частица, принимающая электроны.

Восстановитель — частица, отдающая электроны.

Пирометалургия — восстановление металлов с помощью реакций, возникающих при высоких температурах.

Молярная масса — отношение массы вещества к количеству.

Концентрация — отношение количества вещества к занимаемому объёму.

Насыщенный раствор — вещество больше не растворяется.

Ненасыщенный раствор — вещество растворилось, остался раствор

Пересыщенный раствор — вещество растворилось, осталось вещество.

Электролиты — проводящие электрический ток вещества.

Неэлектролиты — не проводящие электрический ток вещества.

Электролитическая диссоциация (Э.Д.) — процесс распада электролита на ионы.

Степень диссоциация — отношение количества электролита распавшегося на ионы, к общему количеству.

Скорость химической реакции — изменение концентрации реагирующих веществ в единицу времени: $V_p = C_1 - C_2/t$.

4 Законы

 $\mathbf{\Pi}$ ериодический закон — свойства химических элементов и образованных ими веществ находятся в периодической зависимости от зарядов их ядер.