Exercise 7. Use exercises 1-5 to prove the following:

Theorem. The axiom of choice is equivalent to the well-ordering theorem.

Proof. Let X be a set; let c be a fixed choice function for the nonempty subsets of X. If T is a subset of X and < is a relation on T, we say that (T,<) is a tower in X if < is a well-ordering of T and if for each $x \in T$,

$$x = c\left(X - S_x\left(T\right)\right)$$

where $S_x(T)$ is the section of T by x.

- (a) Left $(T_1, <_1)$ and $(T_2, <_2)$ be two towers on X. Show that either these two ordered sets are the same, or one equals a section of the other. (*Hint:* Switching indices if necessary, we can assume that $h: T_1 \to T_2$ is order-preserving and and $h(T_1)$ is either T_2 or a section of T_2 . Use Exercise 2 to show that h(x) = x for all x.)
- (b) If (T, <) is a tower in X and $T \neq X$, show that there is a tower in X of which (T, <) is a section.
- (c) Let $\{(T_k, <_k) \mid k \in K\}$ be the collection of all towers in X. Let

$$T = \bigcup_{k \in K} T_k$$
 and $\langle = \bigcup_{k \in K} (\langle k \rangle)$

Show that (T, <) is a tower in X. Conclude that T = X.

Proof.

First, if X is empty, it is vacuously well-ordered; and the choice function c is not defined since there are no nonempty subsets of X. Therefore we consider only nonempty sets.

(a) Since $(T_1, <_1)$ and $(T_2, <_2)$ are well-ordered sets, either they have the same order type, or one of them has the order type of a section of the other. Switching the roles of T_1 and T_2 if necessary, we can suppose that $(T_1, <_1)$ has the order type of $(T_2, <_2)$ or a section of $(T_2, <_2)$, so that there exists an order-preserving map $h: T_1 \to T_2$ whose image is $(T_2, <_2)$ or a section of $(T_2, <_2)$.

From exercise 2, we know that there is at most one such map, and that it satisfies the following properties for all $x \in T_1$:

$$h(x) = \min \{T_2 - h(S_x(T_1))\}\$$

$$h(S_x(T_1)) = S_{h(x)}(T_2)$$

Let $J = \{x \in T_1 \mid h(x) = x\}$, and suppose that $S_{\alpha}(T_1) \subset J$ for some $\alpha \in T_1$. For all $y \in J$, we have, since $h: T_1 \to h(T_1)$ is bijective:

$$x <_1 y \iff x = h(x) <_2 h(y) = y \tag{1}$$

for all $x \in J$, so that $S_y(T_1) = S_y(T_2)$. Two cases arise:

• If α has a direct predecessor $u \in T_1$, then $S_{\alpha}(T_1) = \{u\} \cup S_u(T_1)$, h(u) = u and

$$h(S_{\alpha}(T_1)) = h(\lbrace u \rbrace \cup S_u(T_1))$$

$$= h(\lbrace u \rbrace) \cup h(S_u(T_1))$$

$$= \lbrace u \rbrace \cup S_u(T_2)$$

$$= \lbrace u \rbrace \cup S_u(T_1)$$

$$= S_{\alpha}(T_1)$$

from which we deduce that $h(\alpha) = \alpha$, so that $\alpha \in J$.

• If α does not have a direct predecessor, then the section $S_{\alpha}(T_1)$ equals $\bigcup_{\beta<_1\alpha} S_{\beta}(T_1)$, and for all $\beta<_1\alpha$ we have $h(\beta)=\beta$. Therefore

$$h(S_{\alpha}(T_{1})) = h\left(\bigcup_{\beta <_{1}\alpha} S_{\beta}(T_{1})\right)$$

$$= \bigcup_{\beta <_{1}\alpha} h(S_{\beta}(T_{1}))$$

$$= \bigcup_{\beta <_{1}\alpha} S_{h(\beta)}(T_{2})$$

$$= \bigcup_{\beta <_{1}} S_{\beta}(T_{1})$$

$$= S_{\alpha}(T_{1})$$

and $h(\alpha) = \alpha$. Thus $\alpha \in J$.

From the above we conclude that $(J, <_1)$ is an inductive subset of $(T_1, <_1)$, and thus equals $(T_1, <_1)$. The equation (1) holds then for all $x, y \in (T_1, <_1)$. This implies that $(T_1, <_1)$ is equal to $(T_2, <_2)$ or a section of $(T_2, <_2)$.

(b) If (T, <) is a tower in X and $X - T \neq \emptyset$, then $c(X - T) = x_0 \in X - T$. Let $T_0 = T \cup \{x_0\}$ and let $<_0$ be the relation on T_0 defined by

for all
$$x, y \in T$$
, $x < y \iff x <_0 y$
for all $x \in T$, $x <_0 x_0$

With these definitions, $(T_0, <_0)$ is a tower in X, and

$$h_0 \colon T \to S_{x_0}(T_0)$$

 $x \mapsto x$

is an order-preserving bijection. Therefore $(T_0, <_0)$ is a tower in X of which (T, <) is a section.

- (c) For all $x \in T$, there exists $k \in K$ such that $x \in (T_k, <_k)$, and we have $x = c(X T_k)$. For all $l \in K$, we know from item (a) that one of the three following cases is true:
 - $(T_l, <_l) = (T_k, <_k)$, in which case $x = c(X T_k) = c(X T_l)$
 - $(T_l, <_l)$ is a section of $(T_k, <_k)$, in which case $x = c(X T_k)$ as an element of $(T_k, <_k)$, and $x = c(X T_l)$ as an element of $(T_l, <_l)$; so that we again have $c(X T_k) = c(X T_l)$.
 - $(T_k, <_k)$ is a section of $(T_l, <_l)$, in which case we exchange the roles of k and l in the above and arrive again at $c(X T_k) = c(X T_l) = x$.
- (d) First, let us show that < is a simple order on T. For all x, y different elements of T, there exist $j, k \in K$ such that $x \in (T_j, <_j)$ and $y \in (T_k, <_k)$. If $(T_j, <_j) = (T_k, <_k)$, then x and y are comparable by $<_j$, and thus by <. Otherwise, assume that $(T_j, <_j)$ is a section of $(T_k, <_k)$; then $x \in (T_k, <_k)$ and x, y are comparable as elements of $(T_k, <_k)$. They are therefore comparable by <. Otherwise, $(T_k, <_k)$ is a section of $(T_j, <_j)$, and the same reasoning leads to the comparability of x and y by <.

Furthermore, suppose that both x < y and y < x. Then there are $j, k \in K$ such that $x <_j y$ and $y <_k y$. The towers $(T_j, <_j)$ and $(T_k, <_k)$ are either equal, or one is a section of the other; this leads to either $x <_j y$ and $y <_j x$, or $x <_k y$ and $y <_k x$, which are both impossible. So exactly one of x < y or y < x is true.

Suppose that there exists $x \in (T, <)$ such that x < x. Then there exists $k \in K$ such that $x <_k x$. Since $<_k$ is defined on T_k , we have $x \in T_k$. And since $(T_k, <_k)$ is well-ordered, we cannot have $x <_k x$. From this we deduce that < is nonreflexive.

Let $x, y, z \in T$ such that x < y and y < z; there exist $j, k \in K$ such that $x <_j y$ and $y <_k z$. Thus $x, y \in T_j$ and $y, z \in T_k$. The towers $(T_j, <_j)$ and $(T_k, <_k)$ are either equal, or one is a section of the other; this leads to either $x <_j y <_j z$ or $x <_k y <_k z$, and, from the transitivity of $<_j$ and $<_k$, to $x <_j z$ or $x <_k z$, both implying x < z.

The relation < is a well-order on T. Let A be a nonempty subset of T, and let $x \in A$; there exists $k \in K$ such that $x \in T_k$. The set $T_k \cap A$ is nonempty and is well-ordered by $<_k$, so has a smallest element m. Then m is also the smallest element of A for <. Suppose instead that there exists $y \in A$ satisfying y < m; there exists $j \in K$ such that $y \in T_j$. If $(T_j, <_j) = (T_k, <_k)$, then y and m are comparable by $<_k$, so that $m <_k y$, which implies that we also have m < y. But this is impossible since < is a simple order on T.

Suppose then that $(T_j, <_j)$ is a section of $(T_k, <_k)$; then we have $y <_j m$, which implies $y <_k m$, and the latter is impossible. Otherwise $(T_k, <_k)$ is a section of $(T_j, <_j)$, so that $y <_j m$, and since $<_k$ and $<_j$ are equal on $(T_k, <_k)$, we find again that $y <_k m$, which is absurd.

Let us now show that for all $x \in T$ we have $x = c(X - S_x(T))$. Let $x \in T$, there exists $k \in K$ such that $k \in T$. For all $k \in T$, there exists $k \in K$ such that $k \in T$, we have then $k \in T$, then $k \in T$ is the $k \in T$, then $k \in T$ is the $k \in T$, then $k \in T$ is the $k \in T$.

From this we deduce that $S_x(T) = S_x(T_k)$ (the inclusion from right to left comes from $T_k \subset T$). Since $x = c(X - S_x(T_k))$, we find that $x = c(X - S_x(T))$.

All the above conditions make T a tower in X. If $T \neq X$, then there exists a tower (T', <') in X of which (T, <) is a section. Since T is the union of all towers in X, there exists some $n \in K$ such that $(T', <') = (T_n, <_n)$, and then we have $(T_n, <_n) \subset (T, <)$. (T, <) is thus a section of one of its subsets, which is impossible since it is nonempty (for example, $(\{c(X)\}, <)$ is a tower in X). Therefore T = X; X is then well-ordered by <, and thus the axiom of choice implies the well-ordering theorem.

Conversely, suppose that the well-ordering theorem holds, and let \mathscr{A} be a collection of disjoint nonempty sets. Let < be a well-ordering of the set $X = \bigcup_{A \in \mathscr{A}} A$, and let

$$c \colon \mathscr{A} \to X$$

 $A \mapsto \text{smallest element of } A \text{ for } <$

Since for all $A \in \mathcal{A}$, A is nonempty and well-ordered by < (as a subset of the well-ordered set (X,<)), c(A) exists. If A,B are distinct elements of \mathcal{A} , then $A \cap B = \emptyset$ and therefore $c(A) \neq c(B)$. c is then a choice function on \mathcal{A} , and the well-ordering theorem implies the axiom of choice.