Lernziele Thermodynamik

Begriff	Lernziele
Temperatur	Begriff "thermisches Gleichgewicht" mit einem Diagramm erklären Beispiele für temperaturabhängige Materialeigenschaften kennen Definition der Celsiusskala (Fixpunkte, Einteilung) erklären zwischen Celsius- und Kelvintemperaturen umrechnen
Längenausdehnung	Längenausdehnung für einen festen Körper berechnen realisieren, dass lineare Ausdehnung nur innerhalb eines bestimmten Temperaturbereichs gute Näherung ist Funktionsweise und Anwendungen von Bimetallen erklären
Volumenausdehnung	Volumenausdehnung von Flüssigkeiten und festen Körpern mit Hilfe der Werte aus der FoTa berechnen Dichteänderung von Flüssigkeiten und festen Körpern berechnen Anomalie des Wassers um 4°C beschreiben und ihre Bedeutung für die Natur realisieren
Zustand und Prozess	Unterschied zwischen Zustand und Prozess erklären Zustandsgrössen (Druck, Volumen, Temperatur, Stoffmenge) mit Grundeinheiten Molmasse aus Periodensystem ablesen Teilchenzahl in einer Gasmenge berechnen (Avogadrozahl N_A auswendig kennen) spezielle Prozesse (isobar, isochor, isotherm); Darstellung in Zustandsdiagrammen
ideales Gas	Bedingungen für ein ideales Gas beschreiben Beziehungen zwischen den Zustandsgrössen bei speziellen Prozessen (Boyle-Mariotte, Gay-Lussac, Amontons) Berechnungen mit der Zustandsgleichung für ideale Gase
innere Energie und Wärme	
spezifische Wärme	Wärmezufuhr mit Hilfe des spezifischen Heizwertes berechnen Eine Möglichkeit zur Bestimmung der zugeführten Wärmemenge beschreiben zugeführte bzw. abgegebene Wärmemenge aus Temperaturänderung berechnen Mischrechnungen systematisch lösen
Phasenübergänge	Temperaturverlauf bei Phasenübergang skizzieren Übergangswärmen berechnen erklären, was gesättigter Dampf ist Zusammenhang zwischen Siedepunkt und Dampfdruckkurve kennen Phasendiagramm qualitativ skizzieren
Wärmemaschinen	zwei Beispiele für reale Wärmekraftmaschinen (z.B. Viertaktmotor, Dampfmaschine, Gasturbine) beschreiben und deren Wirkungsgrade kennen Zweite Hauptsatz der Thermodynamik qualitativ
Wärmetransportarten	Zwei Beispiele für Konvektion beschreiben Zeitlichen Temperaturverlauf bei Wärmeleitung beschreiben Je zwei Beispiele für gute und schlechte Wärmeleiter kennen (mit Anwendungen) Strahlungsgesetze auf einfache Beispiele anwenden

Grösse	Wert
absoluter Nullpunkt	0 K = -273.15 °C
Normaldruck	$p_0 = 101'325 \text{ Pa}$
Längenausdehnungskoeffizient (Metalle)	typisch $10 - 30 \cdot 10^{-6} \mathrm{K}^{-1}$
Volumenausdehnung (Flüssigkeiten)	typisch $2 - 20 \cdot 10^{-4} \mathrm{K}^{-1}$
Molmassen	$M_{\rm H} = 1 \text{ g/mol}$ (Wasserstoffgas: H ₂)
	$M_{\rm C} = 12 \text{ g/mol}$ $M_{\rm C} = 14 \text{ g/mol}$ (Sticketoffers) N
	$M_{\rm N} = 14 \text{ g/mol}$ (Stickstoffgas: N ₂) $M_{\rm O} = 16 \text{ g/mol}$ (Sauerstoffgas: O ₂)
A dul-1	$N_A = 6.022 \cdot 10^{23} \text{ mol}^{-1}$
Avogadrozahl	
universelle Gaskonstante	$R = 8.3145 \text{ J/(mol} \cdot \text{K)}$
Boltzmannkonstante	$k = R/N_A = 1.38 \cdot 10^{-23} \text{ J/K}$
spezifische Wärme von Wasser	$c = 4.182 kJ/(kg \cdot K)$
Verdampfungswärme von Wasser	Lv = 2.26 MJ/kg
Schmelzwärme von Wasser	Lf = 334 kJ/kg
Stefan-Boltzmann-Konstante	$\sigma = 5.67 \cdot 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$
Solarkonstante	$S = 1'380 \text{ W/m}^2$

Daten im FoTa: Physik 9.2 (Dichte), 9.3 (Thermische Daten fester Stoffe, Flüssigkeiten und Gasen), Heizwert Chemie: Eigenschaften der elementaren Stoffe (s. 241-242)

Duden Physik: Kapitel 3 Thermodynamik

- 3.2: Temperatur, Wärme, Innere Energie, spezifische Wàrmeenergie, Mischungsregel, Kalorimeter, Ausdehnung, Aggregatzustände, Gasgesetze
- 3.3 Kinetische Theorie der Wärme
- 3.5: Wärmetransport (Wärmetrahlung)