hw01

Charles Valentine

October 7, 2016 6PM

Question #1

Let **A** be the $N \times N$ adjacency matrix of an undirected unweighted network, without self-loops, of size N. Let **1** be a column vector of N elements all equal to 1.

$$\mathbf{A} = \begin{bmatrix} x_{ij} & \dots & x_i \\ \vdots & \ddots & \vdots \\ x_{Nj} & \dots & x_{NN} \end{bmatrix} \text{ where } \operatorname{diag}(\mathbf{A}) = [0_{ij}, ..., 0_{NN}]$$
(1)

$$\mathbf{1} = \begin{bmatrix} 1_{ij} \\ \vdots \\ 1_{NN} \end{bmatrix} \tag{2}$$

a) The vector \vec{k} whose elements are the degrees k_i of the nodes i=1,2,...,N is defined as:

$$\vec{k} = \mathbf{1}^T \bullet \mathbf{A} \tag{3}$$

b) The total number of L links in the network is defined as:

$$L = \frac{\vec{k} \bullet \mathbf{1}}{2} \tag{4}$$

c) The matrix **N** whose elements \mathbf{N}_{ij} is equal to the number of common neighbors of nodes i and j is defined as:

$$\mathbf{N} = \mathbf{A} \bullet \mathbf{A} \tag{5}$$

d) The number of triangles T in the network is defined as:

$$T = \frac{\operatorname{trace}(\mathbf{A}^3)}{6} \tag{6}$$

e) If we square our adjacency matrix \mathbf{A} N times then any row i will tell us the nodes that are connected to that node i. If there exists a 0 in any row of \mathbf{A}^k where $k \geq N$ then the network is not connected. Formally, a network is connected if this condition is true:

$$\mathbf{A}_{i,j}^{k} \neq 0 \quad \text{for} \quad i = 1, ..., N \quad \text{and} \quad j = 1, ..., N \quad \text{where} \quad k \geq N \tag{7}$$

Question #2

In a random graph with N = 5000 nodes, the linking probability $p = 10^{-4}$.

a) The expected total number of links is defined as:

$$\langle L \rangle = p \frac{N(N-1)}{2} = 10^{-4} \frac{5000(5000-1)}{2} \approx 1250$$
 (8)

b) To categorize this network into the regimes of network evolution we must first define $\langle k \rangle$ as:

$$\langle k \rangle = \frac{2\langle L \rangle}{N} = p(N-1) \approx 0.5$$
 (9)

The average node degree $\langle k \rangle < 1$ so this network is in the subcritical regime. This network has no giant component and the clusters are represented as trees and branches.

c) We must solve for p_c in the following equation to find the linking probability p_c for a network with 5000 nodes at the critical point.

$$p_c(5000 - 1) = 1, \quad p_c \approx 2 \cdot 10^{-4}$$
 (10)

d) We must solve for N' in the following equation to find the minimum number of nodes N' that, with very high probability, a random network will have only one component. We will then choose a value for N' for subsequent calculation.

$$p(N'-1) > 1$$
 where $p = 10^{-4}$, $N' \ge 10,002$ let $N' = 70,000$ (11)

e) The average degree $\langle k' \rangle$ and average distance $\langle d \rangle$ of the network in 2d is defined as:

$$\langle k' \rangle = 10^{-4} (70,000 - 1) \approx 7$$
 (12)

$$\langle d \rangle \approx \frac{\ln(70,000)}{\ln(7)} \approx 5.73$$
 (13)

f) The formula for the degree distribution P(k) of this network is approximated using the Poisson distribution:

$$P(k) = e^{-70,000} \frac{70,000^k}{k!} \tag{14}$$

C. The network has five components. There sizes are:

Component;	- Vi	There are also 8 more
AA		components (not drawn) of
3	4	N=1 fora total of
C	3	
D	3	12 components
E	2	

A single giant component is defined under the evolution of a random network. A giant component generally emerges in a random network a <K>>1. We cannot, however claim to have a giant component in our network class graph because the process by which students in enroll in the rourse with their peers in is not a random process. We see evidence of this by having a <K>>>1 at <K>= 1.93 While observing many components of similar size that are NOT connected by definition.

Hotezi Shortest Distance (path length) from nocle to note.

	Z	7	8	10	12	19	21	24	. 25
Z	D	1	Z	7.	Z	(1		
7	l	0	Z	2.	Z		1	(
8	2	2	0	3	1	2	2	2	1
10	2	2	3	٥	3	2	1	2	Z
12	Z	Z	1	3	0	2	2	2	(
19	1	1	2	2	Z	0	1	1	1
ZI	l	١	2		2	١	0	1	1
24	1	-	2	2	2	١	1	0	
25	١	(i	Z	1	(1	1	0

Diameter is the largest stortest path at 3

Question #4

a) The component size distribution P(s) for a random network with average degree $\langle k \rangle_{int} < 1$ can be modeled using the Poisson distribution:

$$P(s) \approx e^{-\langle k \rangle_{int} s} \frac{(s\langle k \rangle_{int})^{s-1}}{s!}$$
(15)

b) To determine the minimal fraction of extroverts $f = N_{ext}/N$ needed to connect the network we must first consider what condition needs to be met for a network to be connected. If all nodes have an average degree greater than $\ln N$ then there is a high probability that all nodes are connected to a giant component. This condition marks the point in which a random network enters into a connected regime composed of only the the giant component $(N_G = N)$.

$$\langle k \rangle = \frac{2(L_{int} + L_{ext})}{N} > \ln N \quad \text{where} \quad L_{int} = \frac{N_{int}k_{int}}{2} \quad \text{and} \quad L_{ext} = \frac{N_{ext}k_{ext}}{2}$$
 (16)

$$\frac{2\left(\frac{N_{int}k_{int}}{2} + \frac{N_{ext}k_{ext}}{2}\right)}{N} = \frac{N_{int}k_{int} + N_{ext}k_{ext}}{N} > 1 \tag{17}$$

$$\frac{(N - N_{ext})k_{int} + N_{ext}k_{ext}}{N} > \ln N \quad \text{where} \quad N_{int} = N - N_{ext}$$
 (18)

$$\frac{Nk_{int} - N_{ext}k_{int} + N_{ext}k_{ext}}{N} > \ln N \tag{19}$$

$$k_{int} + f(k_{ext} - k_{int}) > \ln N \tag{20}$$

$$f > \frac{\ln N - k_{int}}{k_{ext} - k_{int}} \tag{21}$$

c) The distance between two introvert nodes $d_{i,i}$ can approximately be found by finding the diamater of the network as shown in equation (23). The average distance between an extrovert and an introvert node $d_{i,e}$ can be modeled by finding the average distance of the network as a whole as shown in equation (24). This network does show the Small World property as $\langle k \rangle > \ln N > 1$.

$$N(d_{max}) \approx \frac{\langle k \rangle^{d_{max}+1} - 1}{\langle k \rangle - 1} \approx N$$
 (22)

$$d_{max} \approx \frac{\ln N}{\ln \langle k \rangle} \approx d_{i,i} \quad \text{where} \quad \langle k \rangle >> 1$$
 (23)

$$\langle d \rangle = \frac{1}{N(N-1)} \times \sum_{\substack{i,j=1,N\\i\neq j}} d_{i,j}$$
 (24)

Question #5

In 2.12.5:

a) The adjacency matrix \mathbf{A} for Figure 2.21 is defined below. This matrix is in block-diagonal form because no node in set U can link with any other node in set U and likewise for set V. This corresponds with the definition of a bipartite graph with two projections.

b) The adjacency matrices \mathbf{A}_U and \mathbf{A}_V for the projects U and V are described as:

$$\mathbf{A}_{U} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$(26)$$

$$\mathbf{A}_{V} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (27)

- c) The average degree for the purple nodes $\langle k \rangle_{purple}$ in the bipartite network is 1. $\bar{6}$. The average degree for the green nodes in the bipartite network $\langle k \rangle_{green}$ is 2.
- d) The average degree for the projection $U \langle k \rangle_U$ is $2.\overline{3}$. The average degree for projection $V \langle k \rangle_V$ is 2. It is not surprising that these values are different than in 5c. To assert the average degree of a node in the bipartite graph claims nothing about it's average degree in it's own projection. An example of this can be seen where a node in one projection with a single link to a node in a second projection would have a degree of 1 whereas in the first node's own projection it could be connected to hundreds of other nodes.

In 2.12.6:

d) An expression connecting N_1 , N_2 and the average degrees for two sets in a bipartite network, $\langle k \rangle_1$, $\langle k \rangle_2$ is defined as:

$$\frac{L}{N_1} = \langle k \rangle_1 \quad \text{and} \quad \frac{L}{N_2} = \langle k \rangle_2 \quad \text{so} \quad N_1 \langle k \rangle_1 = N_2 \langle k \rangle_2$$
 (28)