

818181181818

Profesores:

Tomás Lara Valdovinos – t.lara@uandresbello.edu Jessica Meza-Jaque – je.meza@uandresbello.edu

OBJETIVOS DE LA SESIÓN

- Desarrollar concepto Problema-Solución.
 - Identificar y reconocer los elementos de un Problema Computacional
- Ejemplificar
- Ejercitar

CONTENIDOS DE LA SESIÓN

- Problema-Solución
- Ejemplos
- Ejercicios

Frase Friki

"La curiosidad es un animal muy frágil que se va apagando.

Solamente acabamos por aprender y querer aprender las cosas que, de alguna forma, nos van a servir para algo.

Aprender por satisfacer la curiosidad hay que mantenerlo siempre"

Eduardo Saez – PhD Matemáticas

DISCUSIÓN CLASE PASADA

¿Es posible resolver todos los problemas usando un algoritmos?

Problema Computacional

• **Definición:** Relación entre un conjunto de instancias (Input) y un conjunto de Soluciones (Output)

 Una solución algorítmica a un problema consiste en mapear cada instancia a una posible solución a través de un procedimiento computacional.

Problemas computacionales (cont.)

 Computación es un procedimiento que transforma un entorno a través de la aplicación de reglas simples y predeterminadas.

Estamos en presencia de un Problema Computacional? Por qué?

Complete los elementos que permitan construir un Problema Computacional

Representación de instancias

- Cadenas
- Números
- Caracteres Especiales

Cadenas

• Secuencia finita de símbolos de un alfabeto Σ.

• Ejemplos:

- $\Sigma = \{ 0, 1 \}$
- { 0 , 1 }ⁿ representa todas las cadenas de largo n
- $\{0,1\}^*$ representa el conjunto de todas las cadenas en Σ
- Si $x \in \{0, 1\}^*$ entonces |x| es el largo de la cadena
 - $x \in \{0, 1\}^{|x|}$

Números

• Secuencia de elementos de un alfabeto con representación numérica

- Ejemplos:
 - Representación enteros binarios
 - 10001010 = 138
 - Coma flotante
 - IEEE 754

Símbolos especiales

• Valores con un significado distinto a los mencionados en el alfabeto

- Ejemplo
 - λ denota cadenas vacías
 - L denota una indicación de que algo malo ocurrió (p.e. El problema no tiene solución)
 - Ø denota un conjunto vacío

https://www.youtube.com/watch?v=D7iVR7_PGSc&t=1s

Tipos de problema

¿Cuáles tipos de problemas podemos encontrar en el mundo de la computación?

Tipos de problema

Problemas de Búsqueda

Problemas de Decisión

Problemas de Búsqueda

- Dada una instancia encontrar una solución correspondiente.
- También se puede determinar que no existe solución o ésta no está definida (devolver λ o \bot).
- Corresponde a la noción de "Resolver un problema" en la vida real.

¿Ejemplos?

Problemas de Búsqueda

Ejemplos:

- Encontrar la ruta más corta en un grafo
- Encontrar el promedio entre una secuencia de números
- Ordenar los valores en una secuencia
- Encontrar el factorial de un número entero positivo
- Obtener los pasos para resolver un cubo de Rubik aleatoriamente desordenado.

Problemas de Búsqueda

• Definición:

- Sea R C { 0 , 1 }* x { 0 , 1 }*
- R(x) = y, $(x, y) \in R$, como el conjunto de soluciones y para la instancia x
- Una función f: { 0 , 1 }* -> { 0 , 1 }* U {L} resuelve el problema de búsqueda de R si:
 - Para cada x se da que: $R(x) \neq \emptyset$ entonces $f(x) \in R(x)$
 - Y si R(x) = \emptyset entonces f(x) = \bot
- f indica cuando x tiene o no solución

Problemas de Decisión

• Dada una instancia, determinar si la instancia se encuentra en un grupo especificado (la instancia cumple una condición).

¿Ejemplos?

Problemas de Decisión

Ejemplos:

- Determinar si un número natural es primo (Si el número especificado se encuentra en el conjunto de los números primos).
- Determinar si un grafo está conectado.
- Determinar si un número entero es impar.
- Determinar si un RUT es válido.
- Determinar si una persona es alumno/a de la Unab.
- Determinar si una asignatura se dicta en horario vespertino.

Problema de decisión

• Definición:

- Sea S <u>c</u> { 0, 1 }*
- La función f: { 0, 1 }* -> { 0, 1 } resuelve el problema de decisión de S (o decide la membresía en S) si
 - para cada x, f(x) = 1 si y solo si $x \in S$
- La respuesta entregada por f es binaria y puede ser afirmativa (1) o negativa (0)

¿OTRO TIPO DE PROBLEMA?

Además podemos encontrar

Problemas de Optimización

Dada una instancia encontrar una solución correspondiente, esta solución es la mejor que se puede encontrar.

Ejemplo: Encontrar la mejor ruta de un punto "A" a otro punto "B".

Modelos de computación

• Sirven para representar procedimientos con los cuales mapeamos las instancias de un problema a su solución.

- Ejemplo:
 - Modelo de Turing
 - Modelo de RAM abstracta

Computación

Funciones no computables

Funciones que computan problemas indecidibles.

- Ejemplo
 - El problema de la parada (The Halting Problem)
 - Determinar si para cualquier algoritmo es posible determinar que tiene ejecución finita.

Máquina universal

- Permite computar otras máquinas
- Recibe la descripción y procedimiento y lo emula

En síntesis, estamos frente al concepto de COMPUTADOR

CHECK - OBJETIVOS DE LA SESIÓN

- Desarrollar concepto Problema-Solución.
 - Identificar y reconocer los elementos de un Problema Computacional
- Ejemplificar
- Ejercitar

CHECK

818181181818

Profesores:

Tomás Lara Valdovinos – t.lara@uandresbello.edu Jessica Meza-Jaque – je.meza@uandresbello.edu