Lab3

CNN & RNN

Seoul National University

Human Interface Laboratory

Contents

Image Classification

- Image Classification Using Fully Connected (FC) Layers
- Softmax
- Cross Entropy Loss
- Mini-batch Training

Convolutional Neural Network (CNN)

- Motivation
- Convolutional Layer
- Pooling

Recurrent Neural Network (RNN)

- Sequence Data
- Plain RNN
- Long Short-Term Memory (LSTM)
- Gated Recurrent Unit (GRU)

Fully Connected Layer 복습

Deep Neural Network

Fully Connected Layer

$$y_m = \sum_n w_{mn} \cdot x_n + b_m$$

$$Y = W \cdot X + B$$

 \triangleright 학습할 parameter $\theta = [W, B]$

Image Classification

$$N.N.$$
의 출력 $\hat{y} = f_{\theta}($ $) = \begin{bmatrix} \hat{p}(x = 3 \text{ 아시}) \\ \hat{p}(x = 2 \text{ 양이}) \\ \vdots \\ \hat{p}(x = \text{ 자동차}) \end{bmatrix}$

원하는 출력
$$y = \begin{bmatrix} p(x = 3 \circ N) \\ p(x = 3 \circ N) \\ \vdots \\ p(x = 3 \circ N) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

 $\triangleright \hat{y} \approx y$ 되도록 (Loss 작아지도록) Neural Network의 parameter θ 학습

Image Classification Using FC Layers

C: Channels (RGB 3 channels)

H: HeightW: Width

Softmax

- 모델의 출력이 $\hat{y}_n = \hat{p}(x = n)$ 확률을 모델링 하기 위한 조건
 - 1. $\sum_{n} \hat{y}_{n} = 1$
 - 2. $\hat{y}_n \geq 0$
- 두조건 모두 만족하는 activation function이 Softmax

N.N. Output Softmax Probability
$$h = \begin{bmatrix} 1.3 \\ 2.1 \\ -1.2 \\ 0.7 \end{bmatrix} \Longrightarrow \hat{y}_n = \frac{e^{h_n}}{\sum_m e^{h_m}} \Longrightarrow \hat{y} = \begin{bmatrix} 0.26 \\ 0.58 \\ 0.02 \\ 0.14 \end{bmatrix}$$

Image Classification Using FC Layers

C: Channels (RGB 3 channels)

H: Height W: Width

Cross Entropy Loss

$$\mathcal{L}(p,q) = -\frac{1}{N} \sum_{n=1}^{N} p(x=n) \cdot \log q(x=n)$$

- 두 확률분포 간의 차이를 측정 (정보이론)
- 작을수록 두 확률분포가 비슷함을 의미
- 클수록 두 확률분포가 많이 다름을 의미

Mini-batch Training

- 오른쪽과 같은 손글씨 인식 Task에서
- 전체 학습 데이터 개수: 20000개 라면
- 전체 데이터(20000개)를 한 번 학습하는 것을 one epoch.

- 이미지 하나하나마다 \mathcal{L} 를 구해서 θ 를 학습하는 것이 아니라 (20000 iteration / 1 epoch)
- 200개의 이미지에 대해 \mathcal{L} 를 구해서 평균값으로 θ 를 학습 (100 iteration / 1 epoch)

실습 (Image Classification Using FC Layers)

- Lab3-1.Image Classification Using FC Layers
- ➤ Image에서 Fully Connected Layer가 최선일까?

Convolutional Layer

$$y[m,n] = \sum_{s,t} w[s,t] \cdot x[m+s,n+t] + b$$

$$Y = W * X + b$$

 \triangleright 학습할 parameter $\theta = [W, b]$

Motivation

Convolutional Layer

X의 shape: $H_i \times W_i$ W의 shape: $K_h \times K_w$

B의 shape: 1

Y ≤ shape: $H_o \times W_o$

$$y[m,n] = \sum_{s,t} w[s,t] \cdot x[m+s,n+t] + b$$

Convolutional Layer ($C_{in} > 1$)

X ≤ shape: $C_i \times H_i \times W_i$ W ≤ shape: $C_i \times K_h \times K_w$

B의 shape: 1

Y ≤ shape: $H_o \times W_o$

$$y[m,n] = \sum_{c_i,s,t} w[c_i,s,t] \cdot x[c_i,m+s,n+t] + b$$

Convolutional Layer ($C_{out} > 1$)

$$X \supseteq |$$
 shape: $C_i \times H_i \times W_i$

$$W \supseteq |$$
 shape: $C_o \times C_i \times K_h \times K_w$

$$B \cong |$$
 shape: C_0

$$Y \supseteq |$$
 shape: $C_o \times H_o \times W_o$

$$X * W[c_o] = Y[c_o]$$

$$y[c_o, m, n] = \sum_{c_i, s, t} w[c_o, c_i, s, t] \cdot x[c_i, m + s, n + t] + b[c_o]$$

Padding

Stride, Dilation, Transposed

Convolutional Neural Network (CNN)

• Convolutional Layers로 구성된 Neural Network

Pooling

실습 (Image Classification Using CNN)

Lab3-2.Image Classification Using CNN

Sequence Data

Text Classification

$$p(x = 3 = 3) = 0.9$$

 $p(x = 4 = 3) = 0.1$
 f_{θ}
"꿀잼. 넘 재밌다."

Text-to-Speech

ChatGPT

- $y = f_{\theta}(x_1, x_2, \cdots)$
- $y_1, y_2, ... = f_{\theta}(x)$
- $y_1, y_2, ... = f_{\theta}(x_1, x_2, ...)$

FC for Sequence Data?

▶ 입력 길이가 달라지면?

CNN for Sequence Data?

 $> y_t$ 생성할 때 x_1 은 못보는데?

Recurrent Neural Network (RNN)

$$h_t = f_{\theta}(x_t, h_{t-1})$$

- ▶ 입력 길이가 일정하지 않아도 OK
- $\triangleright y_t$ 생성할 때 $x_1 \sim x_t$ 정보 모두 담고 있음

Plain RNN

$$h_t = \sigma(\mathbf{w_x} x_t + \mathbf{w_h} h_{t-1} + \mathbf{b})$$

- \triangleright 학습할 parameter $\theta = [w_x, w_h, b]$
- ▶ 성능이 별로 좋지 못함

LSTM

학습할 parameter heta

$$f_{t} = \sigma(w_{xf}x_{t} + w_{hf}h_{t-1} + b_{f})$$

$$i_{t} = \sigma(w_{xi}x_{t} + w_{hi}h_{t-1} + b_{i})$$

$$\tilde{c}_{t} = \tanh(w_{xc}x_{t} + w_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma(w_{xo}x_{t} + w_{ho}h_{t-1} + b_{o})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot \tilde{c}_{t}$$

$$h_{t} = o_{t} \odot \tanh(c_{t})$$

 σ : sigmoid

tanh: hyperbolic tangent

①: element-wise multiplication

GRU

$$r_{t} = \sigma(w_{xr}x_{t} + w_{hr}h_{t-1} + b_{r})$$

$$z_{t} = \sigma(w_{xz}x_{t} + w_{hz}h_{t-1} + b_{z})$$

$$h_{t}^{\sim} = \tanh\left(w_{xh}x_{t} + b_{h_{1}} + r_{t} \odot (w_{hh}h_{t-1} + b_{h_{2}})\right)$$

$$h_{t} = (1 - z_{t}) \odot h_{t}^{\sim} + z_{t} \odot h_{t-1}$$

Text Classification Using RNN

Bi-directional RNN

실습 Speech Command Classification)

Lab3-3. Speech Command Classification Using RNN