

TECH STAR SUMMIT 2024

Name: B. Hemanth Chowdary Register Number: 192211206 Guided by Dr. Nelson Kennedy Babu C

Insurance Cold Calling Optimization Using Random Forest Regression Compared With

Decision Tree Regression For Improved Accuracy

INTRODUCTION

- > The primary aim of this research is to optimize the cold-calling process for insurance companies, focusing on improving efficiency, reducing resource consumption, and enhancing overall productivity. By refining cold-calling strategies, insurance companies can more effectively attract new customers and maximize profits
- > To identify factors like call timing, audience demographics, and communication skills that affect cold-calling success and to evaluate the effectiveness of various machine learning techniques, such as Random Forest Regression and Decision tree regression, in streamlining marketing and sales initiatives for insurance companies
- > Use machine learning algorithms, such as Random Forest Regression and Decision tree regression, to analyze and optimize cold-calling strategies
- > Enhanced sales outcomes for insurance companies, with higher conversion rates and increased customer satisfaction, resulting from more targeted and data-driven cold-calling methods

When is the best time to cold call? # of cold calling attempts per prospect # pm - 5 pm This is 70% effective in booking meetings than calling between 11 am and 12 pm # of cold calling attempts needed to reach one prospect # of cold calling attempts per prospect # of cold call the prospect per prospect # of cold cal

Fig 1. Important metrics for Cold Calling

MATERIALS AND METHODS

Process of evaluating and optimizing Insurance Cold Calls

- > The Data was collected from Kaggle.
- ➤ The data has been preprocessed and performed various techniques like Data cleaning
- The data has been split into two different datasets (i.e. Training set -75% and Testing set -25%)
- ➤ Then, performed model evaluation and model validation using Random Forest regression and Decision Tree regression

RESULTS

Fig 2. The Mean Accuracy Graph

Table 1. The Mean Accuracy of the Random Forest Regression algorithm and the Decision Tree Regression

	Group	N	mean	Std. Deviation	Std Error mean
	Random Forest Regression	10	85.4000	3.74166	1.18322
Accuracy	Decision Tree Regression	10	77.2000	2.98329	0.94340

➤ The figure shows the mean accuracy of the Random forest regression which is greater than the Decision Trees algorithm. X axis is Random forest regression vs Decision Trees, Y axis is Mean Accuracy. Error bar is +/-2 SD

DISCUSSION AND CONCLUSION

- > Random Forest Regression outperformed Decision Tree Regression in predicting insurance cold-call outcomes, achieving an average accuracy of 85.4% compared to 77.2%.
- > Statistical analysis revealed higher standard deviation and mean standard error for Random Forest Regression compared to Decision Tree Regression, indicating greater variability in predictions.
- > Independent variable analysis showed a significant difference in accuracy rates between Random Forest Regression and Decision Tree Regression, with a mean difference of 8.2%.
- > The study suggests potential for insurance firms to enhance customer acquisition and profitability through optimized cold-calling techniques and data-driven insights.
- > Random Forest Regression's alignment with the procedural nature of cold calling enhances its effectiveness, while Decision Tree Regression's interpretability may be advantageous in certain scenarios.

BIBLIOGRAPHY

- > Gearheart, James. 2020. End-to-End Data Science with SAS: A Hands-On Programming Guide. SAS Institute. DOI: 10.1111/insr.12423.
- > Larose, Daniel T. 2005. Discovering Knowledge in Data: An Introduction to Data Mining. John Wiley & Sons. DOI: 10.1002/9781118874059.
- > León, Raúl, María Jesús Muñoz-Torres, and Jose M. Moneva. 2016. Modeling and Simulation in Engineering, Economics and Management: International Conference, MS 2016, Teruel, Spain, July 4-5, 2016, Proceedings. Springer. DOI: 10.1007/978-3-319-40506-3.
- > Nicosia, Giuseppe, Panos Pardalos, Renato Umeton, Giovanni Giuffrida, and Vincenzo Sciacca. 2020. Machine Learning, Optimization, and Data Science: 5th International Conference, LOD 2019, Siena, Italy, September 10–13, 2019, Proceedings. Springer Nature. DOI: 10.1007/978-3-030-37599-7.
- > Denuit, Michel, Donatien Hainaut, and Julien Trufin. 2019. Effective Statistical Learning Methods for Actuaries I: GLMs and Extensions. Springer Nature. DOI: 10.1007/978-3-030-25827-6.