

## GOAL

Implement and use a deep reinforcement learning technique to perform portfolio optimization and stock trading to maximize returns and profit.

### PROBLEM STATEMENT

- <u>Complex and huge</u>: The financial market is a complex system influenced by several factors like news, economy etc.
- Partial Observable Environment: Difficult to comprehend the full state at any time
- End Goal: Maximize returns based on estimates of potential return and risk.

This makes portfolio optimization and stock trading an effective application of Reinforcement Learning.

## TECHNICAL INDICATORS

- Sharpe Ratio
  - Measures the performance of an investment compared to a risk-free asset
  - Represents the additional amount of return that an investor receives per unit of increase in risk
  - Sharpe Ratio = (Return on Investment Risk-free return) / (standard deviation of investment)
- Dow Jones Industrial Average (DJIA)
  - Is a stock market index gauging the performance of the industrial sector
  - Include 30 companies and averaged their values by following a specific formula

# WHY DEEP REINFORCEMENT LEARNING (DRL)?

- <u>Modern Portfolio Theory (MPT) not enough</u>: calculated only based on stock returns and highly sensitive to outliers.
- Markov Decision Process: stock trading is a continuous process, can be modeled as MDP.
- Optimization Problem: DRL solves maximizing the expected total reward from future actions.
- Multidimensional & large dataset: DRL approximates the Q value with a neural network

## TRADING ENVIRONMENT

#### • States

- account balance money in the trading account
- Date, Open, High, Low, Close, Adjusted Close, Volume
- relevant stock technical data

#### Actions

- Buy Perform and record buy transactions
- Sell Perform and record sell transactions

#### Rewards

- Total asset gain/loss by the end of each day
- Episode
  - End of episode is defined when timestamp reaches last day in feature data
  - Reset environment after each episode

# DEEP DETERMINISTIC POLICY GRADIENT (DDPG)

- Actor-critic based algorithm
- Actor Proposes an action given a state, Critic predicts if action is good/bad
  given a state and an action
- Combines both Q-learning and policy gradient frameworks
- Uses neural networks as function approximators
- Learns directly from the observations through policy gradient

# DDPG ARCHITECTURE



# RESULT - DDPG VS MPT



## FUTURE WORK

- Comparing DDPG performance against the benchmark DJIA model
- Implementing a supervised deep learning approach using Recurrent Nural Network (RNN) and comparing it with DDPG result
- Trying our approach on different portfolios

# THANK YOU!