Harmonic Analysis - B. Math. III Worksheet — 2nd Semester 2023-2024

1 Fourier Analysis

- 1. Let C_n be the cyclic group of order n.
 - (i) Prove that $\mathbb{C}[C_n]$ is isomorphic to the direct sum of n copies of the field \mathbb{C} .
 - (ii) Is the analogous assertion true for the field \mathbb{R} ?
- 2. Let G be a finite group and \mathbb{K} be a field. Suppose that the algebra $\mathbb{K}[G]$ is commutative. Does it follow that G is commutative?
- 3. Explicitly compute the convolution of the indicator functions $\chi_{[a,b]}$ and $\chi_{[c,d]}$ viewed as functions on \mathbb{R} .
- 4. Prove that the convolution of two bounded functions in $L^1(\mathbb{R}, dx)$ is a continuous function.
- 5. Compute the convolution $f_1 * f_2$ in $L^1(\mathbb{R}, dx)$ if:
 - (i) $f_1(x) = \frac{1}{x^2 + a^2}, f_2(x) = \frac{1}{x^2 + b^2};$
 - (ii) $f_1(x) = e^{-x^2/2a}, f_2(x) = e^{-x^2/2b}$
- 6. (i) Suppose that the function φ on \mathbb{R} coincides inside the interval [-N, N] with some polynomial and equals zero outside this ball, and that the function $\psi \in L^1(\mathbb{R}, dx)$ has support in the interval [-n, n] for n < N. Prove that the convolution $\varphi * \psi$ has support in [-N n, N + n] and coincides with some polynomial in the ball of radius [-(N n), N n].
 - (ii) (Weierstrass approximation theorem) Prove that every continuous function on \mathbb{R} can be approximated uniformly by polynomials on any compact set.
- 7. Find the explicit form of the characters on the cyclic group C_n of order n.
- 8. Prove that every finite abelian group is isomorphic (not canonically) to its dual group \hat{G} .
- 9. A generalized character on a group G is defined to be a continuous homomorphism of of G into the multiplicative group of \mathbb{C} (denoted by \mathbb{C}^{\times}).
 - (i) Prove that for a compact group G, the generalized characters are the usual unitary characters.
 - (ii) Find the generalized characters and unitary characters of \mathbb{Z}^n , \mathbb{R}^n , \mathbb{C}^n , \mathbb{R}^{\times} , \mathbb{C}^{\times} .

Distributions 2

- (i) Prove that there is no function δ in $C_c(\mathbb{R})$ such that $\delta * f = f$ for all $f \in C_c(\mathbb{R})$.
 - (ii) Prove that there is no function δ in $L^1(\mathbb{R})$ such that $\delta * f = f$ for all $f \in L^1(\mathbb{R})$.
- 11. Show that the following applications are distributions.
 - (i) $\varphi \in C_c^{\infty}(\mathbb{R})^{\#} \mapsto \lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{\varphi(x)}{x} dx$. (This distribution is called the principal value of $\frac{1}{x}$, and denoted by $pv(\frac{1}{x})$.)
 - (ii) $\varphi \in C_c^{\infty}(\mathbb{R})^{\#} \mapsto \lim_{\varepsilon \to 0} \left(\int_{|x| > \varepsilon} \frac{\varphi(x)}{x^2} dx \right) \frac{\varphi(0)}{\varepsilon} + \varphi'(0) \log \varepsilon.$
- 12. Let δ_0 be the Dirac delta distribution supported at $\{0\}$. Prove that

$$x^{m} \frac{d^{n} \delta_{0}}{dx^{n}} = \begin{cases} 0 & \text{if } m > n \\ \frac{(-1)^{m} n!}{(n-m)!} \frac{d^{n-m} \delta_{0}}{dx^{n-m}} & \text{if } m \leq n. \end{cases}$$

13. Prove that

$$\frac{d}{dx}\log|x| = pv(\frac{1}{x})$$

in the sense of distributions.

- 14. For $\varepsilon > 0$, set $T_{\varepsilon} = \frac{\varepsilon}{2}|x|^{\varepsilon-1}$. Prove that $\lim_{\varepsilon \to 0} T_{\varepsilon}$ exists in the sense of distributions. What is the limiting distribution?
- 15. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of complex numbers such that

$$|a_n| < Cn^p$$
, for some $p \in \mathbb{N}$.

- (i) Prove that the sequence $S_N = \sum_{n=-N}^N a_n e^{2\pi i nx}$ converges in the sense of distributions. We shall denote its limit by $S = \sum_{n \in \mathbb{Z}} a_n e^{2\pi i n x}$
- (ii) Prove that

Soumyashant Nayak: soumyashant@isibang.ac.in

$$\frac{dS}{dx} = \sum_{n \in \mathbb{Z}} (2\pi i n) a_n e^{2\pi i n x}$$

and that $\tau_1(S) = S$ where τ_1 denotes right-translation by 1. (Guess the definition of translations for a distribution first.)

- (iii) Prove that the Fourier transform of δ_n is the function $e^{-2\pi i n x}$.
- (iv) Let $T = \sum_{n \in \mathbb{Z}} e^{2\pi i n x}$. Prove that $(1 e^{2\pi i n x})T = 0$ and deduce that $T = \sum_{n \in \mathbb{Z}} \delta_n$. In other words,

$$\sum_{n \in \mathbb{Z}} e^{2\pi i n x} = \sum_{n \in \mathbb{Z}} \delta_n.$$

(This should remind you of the Poisson summation formula.)

3 Fourier Transform

- 16. Prove that the Fourier transform gives a homeomorphism of the Schwartz space, $\mathcal{S}(\mathbb{R})$.
- 17. Prove that the family of Schwartz functions $\{e^{-(x-a)^2}\}_{a\in\mathbb{R}}$ spans a dense subspace of $\mathcal{S}(\mathbb{R})$.
- 18. Let $D = \frac{d}{dx}$, and M denote the operator of multiplication by x. Define the operators A := D + M, $A^* := D M$ (the so-called *creation* and *annihiliation* operators in quantum field theory) acting on the Schwartz space, $\mathcal{S}(\mathbb{R})$.
 - (i) Prove that the equation Af = 0 has a one-dimensional space of solutions in $\mathcal{S}(\mathbb{R})$. (Hint: $e^{-x^2/2}$ is a solution.)
 - (ii) Let f_0 be a basis vector in the solution space of the system Af = 0 (the so-called *vacuum vector*). We assume $f_0 = e^{-x^2/2}$ for the rest of this exercise. Let $f_m = (A^*)^m f_0$. Using induction, show that $f_m = e^{x^2/2} D^m (e^{-x^2})$.
 - (iii) Use Taylor series expansion to show that

$$e^{-(x+a)^2} = e^{-x^2/2} \left(\sum_{m=0}^{\infty} \frac{a^m}{m!} f_m \right), \forall a \in \mathbb{R}.$$

- (iv) Prove that the system of functions $(f_m)_{m\in\mathbb{N}_0}$, spans a dense subset of $\mathcal{S}(\mathbb{R})$.
- (iv) Show that DM MD = I on $\mathcal{S}(\mathbb{R})$. Using this, note that $\frac{1}{2}(AA^* A^*A) = I$.
- (v) Let $N = \frac{1}{2}A^*A$ (so-called occupation number operator). Prove that the functions $f_m, m \in \mathbb{N}$, are eigenfunctions for the operator N, and compute the corresponding eigenvalues.
- (v) Prove that the mapping $\varphi \mapsto (\langle \varphi, f_m \rangle_2)_{m \in \mathbb{N}_0}$ gives a bijection between $\mathcal{S}(\mathbb{R})$ and the space of sequences $(c_m)_{m \in \mathbb{N}_0}$ with the property that $|c_m| = o(|m|^{-k})$ for all $k \in \mathbb{N}_0$.
- (vi) Compute the Fourier transforms of the functions, f_m .
- 19. Let P be a polynomial on \mathbb{R} of degree 2m without any real roots.
 - (i) Prove that the Fourier transform of the function $f(x) = \frac{1}{P(x)}$ is infinitely differentiable everywhere except at 0.
 - (ii) Prove that \hat{f} has one-sided derivatives of all orders at 0.
- 20. Suppose that $f \in \mathcal{S}(\mathbb{R})$ and $\int_{\mathbb{R}} x^n f(x) dx = 0$ for all $n \in \mathbb{N}$. Does it follow that $f \equiv 0$?