# ТЕОРИЯ ГРАФОВ

# ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ ТЕОРИИ ГРАФОВ.

#### ГРАФЫ И БИНАРНЫЕ ОТНОШЕНИЯ

Будем рассматривать конечные графы.

**Определение 1.** Ориентированным графом  $G = \langle V, \Gamma \rangle$  называется упорядоченная пара, где  $V = \{v_1, \dots, v_n\}$  — конечное непустое множество вершин графа, множество  $\Gamma = \{x_1, \dots x_m\}$  — множество дуг графа.

Каждая дуга  $x_k$  – упорядоченная пара вершин  $x_k = \langle v_i, v_j \rangle$ ;  $v_i$  – начало дуги,  $v_j$  – конец дуги  $\langle v_i, v_j \rangle$ . Дуга  $x_k$  исходит из  $v_i$ , заходит в  $v_j$ . Вершины  $v_i, v_j$  смежны. Дуга  $x_k$  инцидентна вершинам  $v_i$  и  $v_j$ , а вершины инцидентны дуге. Вершина, которая не имеет инцидентных ей дуг – изолированная. Дуга  $\langle v_i, v_i \rangle$  – петля.



Определение 2. Последовательность дуг графа, такая что начало следующей дуги совпадает с концом предыдущей является путем. Контур – путь, у которого начало первой дуги совпадает с концом последней (замкнутый путь).

 $v_1 \to v_4$  — путь; через дуги:  $\{x_5, x_3, x_2\}$ , через вершины:  $\{v_1, v_2, v_3, v_4\}$ .  $v_1 \to v_1$  — контур; через дуги:  $\{x_5, x_3, x_2, x_1\}$ , через вершины:  $\{v_1, v_2, v_3, v_4, v_1\}$ .

Путь (контур) – простой, если все его дуги различны. Путь (контур) – элементарный, если все его вершины различны (в контуре – кроме первой и последней).

Путь  $v_1$ ,  $v_2$ ,  $v_1$ ,  $v_2$  — не является ни простым, ни элементарным.

**Определение 3.** Неориентированным графом  $G = \langle V, Q \rangle$  называется упорядоченная пара, где  $V = \{v_1, \dots, v_n\}$  – конечное непустое множество вершин графа,  $Q = \{q_1, \dots q_m\}$  множество ребер графа.

Каждое ребро  $q_k = (v_i, v_i) = \{v_i, v_i\}.$ 



**Определение 4.** Цепь (маршрут) — последовательность ребер, которую заданием ориентации можно превратить в путь. Цикл — замкнутая цепь (введением ориентации можно превратить в контур).

Цепи и циклы аналогично бывают простые и элементарные.

| Орграф | Неориентированный |
|--------|-------------------|
|        | граф              |
| дуга   | ребро             |
| путь   | цепь (маршрут)    |
| контур | цикл              |

**Граф** – **иллюстрация бинарных отношений на конечных множествах.** Множество дуг орграфа соответствует бинарному отношению на множестве вершин. Если граф неориентированный, то это симметричное отношение. Каждому графу соответствует отношение, а каждому отношению соответствует граф.

#### Матричное задание графов

Способы матричного задания графов:

- 1. Матрица смежности.
- 2. Матрица инцидентности.

**Определение 1.** Матрица смежности ориентированного графа — квадратная матрица порядка n (n — число вершин графа)  $A = ||a_{ij}||$  с элементами:

$$a_{ij} =$$
  $\begin{cases} 1, \text{ если } \exists < v_i, v_j > \in X \\ 0 \text{ в противном случае} \end{cases}$ 

**Определение 2.** Матрица смежности неориентированного графа — квадратная матрица порядка n:  $A = ||a_{ij}||$  с элементами

$$a_{ij} = \begin{cases} 1, & \text{если } (v_i, v_j) \in Q \\ 0 & \text{в противном случае} \end{cases}$$

# Пример 1.



### Пример 2.

$$v_{4}$$

$$v_{5}$$

$$v_{3}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

Матрица смежности неориентированного графа симметрическая.

**Определение 3.** Матрица инцидентности ориентированного графа — матрица порядка  $n \times m$  (n — число вершин графа; m — число дуг) :  $B_{n \times m} = \|b_{ij}\|$  с элементами

$$b_{ij} = egin{cases} -1 ext{, если дуга } x_j \ ext{исходит из } v_i ext{,} \ 1 ext{, если дуга } x_j ext{ заходит в } v_i ext{,} \ 0 ext{, если дуга } x_j ext{ не инцидентна } v_i. \end{cases}$$

**Определение 4.** Матрица инцидентности неориентированного графа — матрица порядка  $n \times m$ :  $B_{n \times m} = \left| \left| b_{ij} \right| \right|$  с элементами

$$b_{ij} = egin{cases} 1$$
, если ребро  $q_j$  инцидентно  $v_i$ ,  $0$ , если ребро  $q_j$  не инцидентно  $v_i$ .

#### Пример 3.



$$B = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ v_1 & -1 & 0 & 0 & 0 & 1 \\ v_2 & 1 & -1 & 1 & 0 & 0 \\ v_3 & 0 & 1 & 0 & 1 & 0 \\ v_4 & 0 & 0 & -1 & -1 & -1 \end{pmatrix}$$

Свойство: сумма строк матрицы инцидентности орграфа равна нулевой строке. Доказано, что

$$rg B = n - 1.$$

# Пример 4.



$$B = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

# Связность в графе

**Определение 1.** Неориентированный граф G = < V, Q > - связный, если любые его вершины  $v_i, v_i$  соединены цепью.

**Определение 2.** Компонента связности графа — максимальный связный подграф, т.е. не является подграфом никакого другого связного подграфа.

**Определение 3.** Матрица связности неориентированного графа — квадратная матрица порядка n:  $S = ||s_{ij}||$  с элементами

$$s_{ij} = egin{cases} 1$$
, если существует цепь из  $v_i$  в  $v_j$  о в противном случае

**Определение 4.** Ориентированный граф  $G = \langle V, \Gamma \rangle$  односторонне (слабо) связный, если для любой пары вершин  $v_i, v_i (i \neq j)$  существует путь из  $v_i$  в  $v_i$  или из  $v_j$  в  $v_i$ .

**Определение 5.** Ориентированный граф  $G = \langle V, \Gamma \rangle -$  сильно связный, если для любой пары вершин  $v_i, v_j (i \neq j)$  существуют путь и из  $v_i$  в  $v_j$  и из  $v_j$  в  $v_i$ .

Аналогично определяются компоненты односторонней и сильной связности.

**Определение 6.** Матрица односторонней связности орграфа — квадратная матрица порядка n:  $T = ||t_{ij}||$  с элементами

$$t_{ij} = egin{cases} 1 ext{, если существует путь из } v_i ext{ в } v_j \ 0 ext{ в противном случае} \end{cases}$$

**Определение 7.** Матрица сильной связности орграфа — квадратная матрица порядка  $n: \bar{S} = ||\bar{s}_{ij}||$  с элементами

$$ar{s}_{ij} = egin{cases} 1$$
, если существует путь из  $v_i$  в  $v_j$  и из  $v_j$  в  $v_i$  0 в противном случае

# Алгоритм нахождения числа путей длины k в орграфе

**Утверждение 1.** Число путей (цепей, далее везде) длины k из вершины  $v_i$  в  $v_j$  орграфа  $G = \langle V, \Gamma \rangle$  с матрицей смежности  $A = \left| |a_{ij}| \right|$  определяет элемент  $a_{ij}^k$  матрицы  $A^k = ||a_{ij}^k||$ . (Умножение матриц определяется обычным образом)

#### Докажем индукцией по k.

- 1. Для k = 1 получаем просто матрицу смежности  $A = ||a_{ij}||$ .
- 2. Предположим, что справедливо: элемент  $a_{ij}^k$  матрицы  $A^k = ||a_{ij}^k||$  определяет число путей длины k из вершины  $v_i$  в  $v_i$  (обозначим # $P(v_i, v_i, k)$ ).
- 3. Докажем справедливость утверждения для k + 1.

$$#P(v_i, v_j, k+1) = #P(v_i, v_1, k)) \cdot #P(v_1, v_j, 1) + #P(v_i, v_2, k)) \cdot #P(v_2, v_j, 1) + ...$$
 
$$+ #P(v_i, v_n, k)) \cdot #P(v_n, v_j, 1)$$

По индуктивному предположению число путей длины k из вершины  $v_i$  в вершину  $v_t$  равно  $a_{it}^{\rm k},\ t=1,2,...,n,$  т.е.  $\#P(v_i,v_t,k)=a_{it}^{\rm k},$  а по определению матрицы смежности  $\#P(v_t,v_j,1)=a_{tj}^1.$  Следовательно,

$$\#P(v_i, v_j, k+1) = a_{i1}^k \cdot a_{1j}^1 + a_{i2}^k \cdot a_{2j}^1 + \dots + a_{in}^k \cdot a_{nj}^1 = a_{ij}^{k+1}.$$

#### Пример 1.



$$A \cdot A^2 = A^3 = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 3 \\ 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Существуют три пути из  $v_1$  в  $v_4$ , содержащие по 3 дуги (длины 3).

# Алгоритмы Уоршалла нахождения матрицы S связности неориентированного графа по матрице смежности A (матрицы односторонней связности T орграфа)

Так как матрицы булевы, введем операции:

$$C \vee D = ||c_{ij} \vee d_{ij}||, \quad C\&D = ||c_{ij}\&d_{ij}||, \quad C*D = ||q_{ij}||: \quad q_{ij} = \bigvee_{k=1}^{n} (c_{ik}\&d_{kj}).$$

#### Первый алгоритм Уоршалла

$$S = E \vee A \vee A^2 \vee ... \vee A^{n-1}$$

 $A^k = \underbrace{A*A*...*A}_k$ ;  $A^k$  содержит дуги, соединяющие путь (цепь) из k дуг.

Для матрицы односторонней связности T аналогично:  $T = E \lor A \lor A^2 \lor \dots \lor A^{n-1}$ .

Множество дуг — это фактически упорядоченные пары, входящие в отношение  $\rho$ :  $\Gamma = \rho$ . Отношение можно задавать матрицей смежности соответствующего графа.

### Tr ho – транзитивное замыкание отношения ho

– наименьшее транзитивное отношение, содержащее  $\rho$ :

$$Tr\rho = \rho \cup \rho^2 \cup ... \cup \rho^{n-1}.$$

Если матрица A задает отношение, то по формуле Уоршалла (без единичной матрицы) можно найти матрицу транзитивного замыкания этого отношения.

Пример 2. Рассмотрим граф отношения  $\rho$ .



$$TrA = A \lor A^2 \lor A^3$$

$$TrA = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

# Пример 3.

Рассмотрим орграф на рис.1.



Матрица смежности орграфа  $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ .

Вычислим матрицу односторонней связности.

$$T = E \lor A \lor A^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \lor \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lor \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Матрица транзитивного замыкания соответствующего отношения

$$TrA = A \lor A^2 = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lor \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$



Рассмотрим ещё один алгоритм Уоршалла, который используется при написании программ. Второй алгоритм имеет вычислительную сложность  $O(n^3)$ , что соответствует возведению матрицы в квадрат. Алгоритм также позволяет найти матрицу связности S неориентированного графа и односторонней связности T орграфа, а также матрицу смежности транзитивного замыкания отношения (матрица E в нулевой итерации отсутствует).

# Второй алгоритм Уоршалла (итерационный)

**Утверждение 2.** Пусть  $G = \langle V, Q \rangle$  — неориентированный граф с множеством вершин  $V = \{v_1, \dots, v_n\}$  и матрицей смежности A, и пусть  $S^{(0)}, S^{(1)}, \dots, S^{(n)}$  — последовательность матриц порядка n, элементы которых вычисляются по следующей итерационной формуле:

$$S^{(0)} = E \vee A$$
;

где E — единичная матрица порядка n;

$$S^{(k)} = ||s_{ij}^{(k)}||, \quad s_{ij}^{(k)} = s_{ij}^{(k-1)} \vee (s_{ik}^{(k-1)} \& s_{kj}^{(k-1)}), \quad k = 1, 2, \dots, n.$$

Тогда  $S^{(n)} = S$ .

Доказательство (Обоснование алгоритма).

Достаточно доказать, что элемент  $s_{ij}^{(k)}=1$  тогда и только тогда, когда существует цепь (путь) из  $v_i$  в  $v_j$ , промежуточные вершины которой могут быть только из множества  $\{v_1,\ldots,v_k\}$ .

Покажем, что если  $s_{ij}^{(k)}=1$ , то существует цепь (путь) из  $v_i$  в  $v_j$ , проходящая через вершины  $\{v_1,\ldots,v_k\}$ .

Метод индукции по номеру итерации:

- 1)  $S^{(0)} = A \lor E$  нулевая индукция справедлива, т.к. нет промежуточных вершин.
- 2) Пусть из  $s_{ij}^{k-1}=1\Rightarrow$  существует цепь из  $v_i$  в  $v_j$ , проходящая через вершины  $\{v_1,\dots,v_{k-1}\}$  выполняется.
- 3) Докажем, что  $s_{ij}^{(\mathbf{k})}=1\Rightarrow\,$  существует цепь из  $v_i$  в  $v_j$ , проходящая через  $\{v_1,\dots,v_k\}.$

$$s_{ij}^{(k)} = s_{ij}^{(k-1)} \vee (s_{ik}^{(k-1)} \& s_{kj}^{(k-1)}) = 1$$

1.  $s_{ij}^{(k-1)}=1\Rightarrow$  по предположению индукции существует цепь из  $v_i$  в  $v_j$ , проходящая через вершины  $\{v_1,\dots,v_{k-1}\}$ , а значит и через  $\{v_1,\dots,v_k\}$ .

$$2. \, s_{ik}^{(k-1)} \& s_{kj}^{(k-1)} = 1 \Rightarrow s_{ik}^{(k-1)} = 1$$
 и  $s_{kj}^{(k-1)} = 1$ .

 $s_{ik}^{(k-1)}=1\Rightarrow$   $\exists$  путь  $v_i o v_k$ :  $\underbrace{v_i,v_{i_1},\ldots,v_{i_p}}_{\text{через }(v_1,\ldots,v_{k-1})}$ ,  $v_k$  — по предположению индукции

$$s_{kj}^{(k-1)}=1\Rightarrow$$
  $\exists$  путь  $v_k\to v_j$ :  $v_k$ ,  $\underbrace{v_{j_1},...,v_{j_r},v_j}_{\text{через }(v_1,...,v_{k-1})}$ 

Соединим две цепи:  $v_i, v_{i_1}, \dots, v_{i_p}, v_k, v_{j_1}, \dots v_{j_r}, v_j$  — цепь из  $v_i$  в  $v_j$ , проходящая через вершины  $\{v_1, \dots, v_{k-1}, v_k\}$ .

Аналогично доказывается обратное утверждение. Если существует путь из  $v_i$  в  $v_j$ , проходящий через вершины  $\{v_1,\dots,v_{k-1},v_k\}$ , то  $s_{ij}^{(k)}=1$  (самостоятельно).

#### Пример 4.

Рассмотрим орграф из примера 3. Найдем матрицу односторонней связности вторым алгоритмом.



Матрица смежности орграфа  $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ .

Найдем  $T^{(0)}$ ,  $T^{(1)}$ ,  $T^{(2)}$ ,  $T^{(3)} = T$ 

$$0. \quad T^{(0)} = E \lor A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \lor \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Для нахождения k-й итерации будем использовать формулу

$$T^{(k)} = \left| \left| t_{ij}^{(k)} \right| \right|, \quad t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee \left( t_{ik}^{(k-1)} \& t_{kj}^{(k-1)} \right).$$

1. k=1,  $t_{ij}^{(1)}=t_{ij}^{(0)} \lor \left(t_{i1}^{(0)}\&t_{1j}^{(0)}\right)$ . Формула сохраняет единицы предыдущей итерации, поэтому вычисляем только элементы, где были нули предыдущей итерации

$$T^{(0)} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Вычислим

$$t_{23}^{(1)} = 0 \ V\left(t_{21}^{(0)} \& t_{13}^{(0)}\right) = 1\&1 = 1$$

$$t_{31}^{(1)} = {0 \choose 31} \lor \left(t_{31}^{(0)} \& t_{11}^{(0)}\right) = 0 \& 1 = 0$$

$$t_{32}^{(1)} = {0 \choose 31} (t_{31}^{(0)} (t_{12}^{(0)}) = 0$$
  $= 0$ 

Следовательно, 
$$T^{(1)} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

2. 
$$k = 2, t_{ij}^{(2)} = t_{ij}^{(1)} \vee (t_{i2}^{(1)} \& t_{2j}^{(1)}). T^{(1)} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$t_{31}^{(2)} = 0 \ V \left( t_{32}^{(1)} \& t_{21}^{(1)} \right) = 0 \& 1 = 0$$

$$t_{32}^{(2)} = 0 \ V\left(t_{32}^{(1)} & t_{22}^{(1)}\right) = 0 & 1 = 0$$

Следовательно, 
$$T^{(2)} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

3. 
$$k = 3$$
,  $t_{ij}^{(3)} = t_{ij}^{(2)} \vee (t_{i3}^{(2)} \& t_{3j}^{(2)})$ .  $T^{(2)} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ .

$$t_{31}^{(2)} = 0 \ V \left( t_{33}^{(2)} \& t_{31}^{(2)} \right) = 1 \& 0 = 0$$

$$t_{32}^{(2)} = 0 \ V\left(t_{33}^{(2)} & t_{32}^{(2)}\right) = 1&0 = 0$$

Следовательно, 
$$T^{(3)} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = T.$$

 $\overline{S} = \left| \left| \overline{s}_{ij} \right| \right|$  — матрица сильной связности орграфа вычисляется через матрицу односторонней связности Т по формуле:

$$\bar{S} = T \& T^T$$

Очевидно, что  $\bar{S}$  симметрична.

Все дуги контуров графа определяются по формуле

$$K = \bar{S} \& A$$
.

#### Пример 4.

Матрица сильной связности для примера 3:

$$\bar{S} = T \& T^T = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \& \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Матрица контуров для примера 2:



$$K = \bar{S} \& A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \& \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

# Алгоритм нахождения компонент связности неориентированного графа по матрице связности S (компонент сильной связности орграфа по матрице $\overline{S}$ )

- 1. Соответствующие единицам первой строки номера вершин принадлежат первой компоненте связности, k=1. В матрице S обнуляем столбцы (строки), соответствующие номерам вершин первой компоненты связности. Получаем матрицу  $S_1$ .
- 2. Если  $S_1 \not\equiv (0)$ , то k = k + 1. Находим ненулевую строку  $S_1$ . Пусть ее номер  $i_1$ . Соответствующие единицам  $i_1$ -й строки номера вершин принадлежат второй компоненте связности. В матрице  $S_1$  обнуляем столбцы (строки), соответствующие номерам вершин второй компоненты связности. Получаем матрицу  $S_2$ .

Ит.д.

Процесс заканчивается, когда на -м шаге будет выполнено: матрица  $S_t = (0)$ . В этом случае все вершины графа уже будут принадлежать какой-нибудь компоненте связности.

Пример 5. Найдем компоненты связности неориентированного графа с матрицей связности

$$S = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

1. В первой строке две единицы: первая и пятая.  $k=1;\ \{v_1,v_5\}$  — первая компонента связности. Обнуляем первый и пятый столбцы S получаем матрицу

$$S_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

2. В матрице  $S_1$ вторая строка не нулевая, в ней четыре единицы: 2-я, 4-я, 6-я и 9-я. k=2;  $\{v_2,v_4,v_6,v_9\}$  – вторая компонента связности. Обнуляем 2-й, 4-й, 6-й и 9-й столбцы  $S_1$  получаем матрицу

3. В матрице  $S_2$  третья строка не нулевая, в ней три единицы: 3-я, 7-я и 8-я. k=3;  $\{v_3,v_7,v_8\}$  — третья компонента связности. Обнуляем 3-й, 7-й и 8-й столбцы  $S_2$  получаем матрицу

4. Так как матрица  $S_3 = (0)$ , алгоритм заканчивает свою работу.

Компоненты связности и сам граф представлены на рисунке.



**Замечание.** Если пронумеровать вершины из одной компоненты связности последовательными номерами, то матрица связности будет состоять из блоков единиц.

