

Overview

- 1. Covariance vs. piecewise SEM
- 2. Assessing Model Fit: Tests of directed separation
- 3. Introduction to piecewiseSEM
- 4. Further adventures into piecewiseSEM

Evaluating Covariance-Based Models

The log likelihood ratio, F_{ML} follows $\chi 2$ distribution such that

$$\chi^2 = (n-1)F_{ML}$$

- Note scaling by sample size
- Large χ^2 implies LACK of fit

Assumptions of Covariance Based Estimation

- Multivariate normality
 - Of residuals
 - Of data
- Linearity
- All correlations accounted for in model structure
- But... latent variables make magic possible

Variance-covariance Single (global) variance-covariance matrix estimated Simultaneous solution (computationally intensive) Fit to normal distribution Assumes independence Variance-covariance matrices estimated for each endogenous variable Multiple solutions (modularized) Incorporates various distributions (Poisson, Gamma, etc.) Can model non-independence (blocked, temporal, spatial, etc.)
Single (global) variance-covariance matrix estimated Simultaneous solution (computationally intensive) Fit to normal distribution Assumes independence Sinultaneous solution (multiple solutions (modularized) (modularized) Incorporates various distributions (Poisson, Gamma, etc.) Can model non-independence (blocked, temporal, spatial, etc.)
matrix estimated estimated for each endogenous variable Simultaneous solution (computationally intensive) Fit to normal distribution Incorporates various distributions (Poisson, Gamma, etc.) Assumes independence Can model non-independence (blocked, temporal, spatial, etc.)
(computationally intensive) Fit to normal distribution Incorporates various distributions (Poisson, Gamma, etc.) Assumes independence Can model non-independence (blocked, temporal, spatial, etc.)
(Poisson, Gamma, etc.) Assumes independence Can model non-independence (blocked, temporal, spatial, etc.)
(blocked, temporal, spatial, etc.)
Laterat O composite consistency Negletont or consistency sinkles
Latent & composite variables No latent or composite variables (yet*)
Non-recursive (cyclic) Only for recursive (acyclic)
Multi-group models

ACTIVITY

- Take your own causal diagram
- Break it up into the component models

Overview

- 1. Covariance vs. piecewise SEM
- 2. Assessing Model Fit: Tests of directed separation
- 3. Introduction to piecewiseSEM
- 4. Further adventures into *piecewiseSEM*

Directed Separation. Model fit

Does the model fit the data?

=

Does the model represent the data well?

=

Are we missing important information?

Directed Separation. Model fit

Did we get the topology right or are there unrecognized significant relationships?

Directed Separation. Independence claims

The <u>d-separation criterion</u> for <u>any pair of variables</u> involves:

- 1. Controlling for common ancestors that could generate correlations between the pair
- 2. Controlling for causal connections through multilink directed pathways via parents
- 3. Not controlling for common descendent variables.

Directed Separation. The Basis Set

Basis set = the smallest possible set of independence claims from a graph

1.
$$x \perp y_3 \mid (y_1, y_2)$$

2.
$$y_1 \perp y_2 \mid (x)$$

Directed Separation. Deriving the basis set

What is the basis set?

1. mass \perp dia | (canopy) 4. dia \perp # | (canopy)

2. mass <u>⊥</u> # | (canopy)

5. dia <u>⊥</u> % | (canopy)

3. mass \perp %| (canopy)

6. % ⊥ # | (canopy)

Directed Separation. Deriving the basis set

What is the basis set?

- dia ⊥ # | (canopy)
- 4. mass $\perp \# | (dia, canopy)$
- 2. dia ⊥ % | (canopy, #)
- 5. mass ⊥ % | (dia, #)
- 3. canopy⊥ mass | (dia)
- 6. canopy \pm % | (#)

Directed Separation. Deriving the basis set

What is the basis set?

- 1. Pesticide ⊥ epiphytes (macroalgae, eelgrass, caprellids, gammarids)
- 2. Caprellids ⊥ gammarids (macroalage, eelgrass, pesticide)

Directed Separation. Nonlinearities

• Basis set generally excludes non-linear components (polynomials)

1. $x \perp y_2 \mid (y_1)$

Directed Separation. Nonlinearities

• Why? Paths are not inherently linear

1. $x \perp y_2 \mid (y_1)$

Directed Separation. Nonlinearities

• Basis set generally excludes non-linear components (interactions)

- 1. $x_1 \perp y_2 \mid (y_1)$
- 2. $x_2 \perp y_2 \mid (y_1)$

ACTIVITY

- Take your causal diagram
- Derive the basis set
- Try it by hand before dagitty

Directed Separation. D-sep

<u>Test of directed separation:</u>

- Identify all independence claims
- 2. Evaluate each independence claim
- 3. Summarize information across all claims

Directed Separation. Fisher's C

• Summarize independence claims across basis set:

$$C = -2*\sum ln(p_i)$$

p_i = the *P*-values of all tests of conditional independence

- C has a χ^2 -square distribution with 2k degrees of freedom
- k = # of elements of the basis set

Directed Separation. Fisher's C

What is p < 0.05?

- You are likely missing some associations
- You *reject* this model
- The way forward: adding links or different model structure? (look at d-sep tests)
- To re-iterate, $\underline{p} \ge 0.05$ is GOOD

Directed Separation. Model selection

• Fisher's C can be used to construct model AIC:

$$AIC = C + 2K$$

- K = # of likelihood parameters estimated (not to be confused with k)
- Can be extended to small sample size:

$$AICc = C + 2K(n / (n - K - 1))$$

Directed Separation. Complexity and sample size

- The *t*-rule applies in generating model d.f. for the *C* statistic
- Shipley suggests need only enough individual d.f. to fit each component model
 - This is OK, until you try and do prediction
- Or, *d*-rule (Grace et al 2015):
 - d = # of samples / # of pathways
 - d ≥ 5

Directed Separation. Sample size

- More is always better...
 - Low sample size leads to non-significant d-sep tests
 - Low sample size also leads to non-significant path coefficients
 - End up with a 'good fitting' model that says nothing

Directed Separation. Saturated models

What is the basis set?

- There is no basis set for a saturated model (all paths are represented)
- No d-sep tests, so, AIC = 2K

Directed Separation. Saturated models

What is the basis set?

Options:

- 1. Remove the mediating variable y_2 and test submodel
- 2. Rely on other indicators of model fit (e.g., R^2)

A global test is not the be all-end all of models

Overview

- 1. Covariance vs. piecewise SEM
- 2. Assessing Model Fit: Tests of directed separation
- 3. Introduction to *piecewiseSEM*
- 4. Further adventures into piecewiseSEM

piecewiseSEM: Piecewise structural equation modeling
 in R for ecology, evolution, and systematics

install_packages("devtools")
library(devtools)
install_github("jslefche/piecewiseSEM@devel")
library(piecewiseSEM)

Realized Models with Data

within-plot


```
piecewiseSEM. Summary
# Get all summary information
summary(keeley.sem2)
Structural Equation Model of keeley.sem2
Call:
 abiotic ~ distance
 hetero ~ distance
 rich ~ abiotic + hetero + distance
25.352 52.85
Tests of directed separation:
          Independ.Claim Estimate Std.Error DF Crit.Value P.Value
 hetero ~ abiotic + ... 0.0022 0.0017 87 1.3296 0.1871
Global goodness-of-fit:
 Fisher's C = 3.352 with P-value = 0.187 and on 2 degrees of freedom
```

```
piecewiseSEM. Get coefficients
                              abiotic
              distance
                                                 rich
                              hetero
# Get R-squared
rsquared(keeley.sem2)
Response family link method R.squared
1 abiotic gaussian identity NA 0.2113455
2 hetero gaussian identity
                           NA 0.1197074
   rich gaussian identity
                           NA 0.4700472
```

```
piecewiseSEM. Summary
Coefficients:
 Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
                                                         0.4597 ***
  abiotic distance 0.3998 0.0823 88 8.8562 0.0000
                           0.0013 88
                                       3.4593 0.0008
                                                         0.3460 ***
   hetero distance 0.0045
    rich abiotic 0.5233 0.1756 86
                                      2.9793 0.0038
                                                         0.2660 **
    rich hetero 33.4010 11.1187 86 3.0040 0.0035
                                                         0.2539 **
    rich distance 0.6404 0.1565 86
                                      8.0933 0.0001
                                                         0.3743 ***
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
Individual R-squared:
 Response method R.squared
  abiotic NA
                  0.21
   hetero
           NA
                   0.12
    rich NA
                  0 47
```


Covariance vs. piecewise SEM Assessing Model Fit: Tests of directed separation Introduction to piecewiseSEM Further adventures into piecewiseSEM

piecewiseSEM. Understanding Relationships

<u>3 Ways to View the independent effect of distance on richness:</u>

- 1. Partial Regression Plots
 - residual of richness + distance effect ~ residual of distance after accounting for abiotic + hetero
 - · VERY VERY conservative, but, accurate
- 2. Component Residual Plots
 - residual of richness + distance effect ~ distance
- 3. Fit of richness ~ distance holding other variables at median
 - · Preferred, as in sensible units

Visualizing While Controlling Covariates

- Useful for displaying trends, particularly with complex models where bivariate correlations are messy
- Can be used for any multiple regression (single model or list)
- Not applicable to simple regression (Y ~ X)

