Linear Models for Regression

Notations and Overview

Input:

N observations $\{\mathbf{x}_n\}$, where $n=1,\ldots,N$

N Target values $\{t_n\}$

Aim:

Model the predictive distribution $p(t|\mathbf{x}) =>$ this expresses the uncertainty about the value of t for each value of \mathbf{x} .

Pros and Cons of linear models:

Linear models have problems involving input spaces of high dimensionality, but they have nice analytical properties.

Linear Basis Function Models

Linear means linear combination of the input variables.

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_D x_D$$

Where
$$\mathbf{x} = (x_1, \dots, x_D)^T$$

In the above equation, it is linear function of both w_i and x_i , this imposes signifiant limitations on the model, so we extend the class of models by considering linear combinations of fixed nonlinear functions of the input variables.

$$y(\mathbf{x},\mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

Where $\phi_j(x)$ are basis functions.

Define $\phi_0(\mathbf{x}) = 1$, so

$$y(\mathbf{x},\mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

Where
$$\mathbf{w} = (w_0, \dots w_{M-1})^T$$
 and $\phi = (\phi_0, \dots, \phi_{M-1})^T$.

We call it is linear because the function is linear in w

Choices of basis functions:

- Polynomial: $\phi_j(x) = x^j$
- Exponential: $\phi_j(x) = \exp\{-rac{(x-\mu_j)^2}{2s^2}\}$
- Sigmoid: $\phi_j(x) = \sigma(\frac{x-\mu_j}{s})$, where $\sigma(a) = \frac{1}{1+\exp{(-a)}}$
- $\tanh(a) = 2\sigma(a) 1$
- Fourier basis

Maximum Likelihood and Least Squares

Define target variable t is given:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$

Where ϵ is a zero mean Gaussian random variable with precision (inverse variance) β . (The Gaussian noise implies the conditional distribution of t given \mathbf{x} is unimodal.)

Now consider a data set of inputs $\mathbf{X} = \{\mathbf{x}_1 \dots, \mathbf{x}_N\}$ and we group target value $t_1, \dots t_N$ together into a column vector \mathbf{t} .

The likelihood function is:

$$p(\mathbf{t}|\mathbf{X},\mathbf{w},eta) = \prod_{n=1}^N \mathcal{N}(t_n|y(\mathbf{x},\mathbf{w},eta^{-1})) = \prod_{n=1}^N \mathcal{N}(t_n|\mathbf{w}^T\phi(\mathbf{x}_n),eta^{-1})$$

To keep the notation simple, we will drop ${\bf x}$ since it will always appear in the set of conditioning variables.

Then we take logarithm of the likelihood function:

$$egin{align} & \ln p(\mathbf{t}|\mathbf{w},eta) = \sum_{n=1}^N \ln \mathcal{N}(t_n|\mathbf{w}^T\phi(\mathbf{x}_n),eta^{-1}) \ & = -rac{eta}{2} \sum_{n=1}^N \{t_n - \mathbf{w}^T\phi(\mathbf{x}_n)\}^2 + rac{N}{2} \ln eta - rac{N}{2} \ln (2\pi) \ & = rac{N}{2} \ln eta - rac{N}{2} \ln (2\pi) - eta E_D(\mathbf{w}) \ \end{aligned}$$

Where $E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^N \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2$ is the sum-of-squares error function.

We can use maximum likelihood to determine \mathbf{w} and β .

• With respect to \mathbf{w} , Maximisation of the likelihood function under a conditional Gaussian noise distribution is equivalent to minimise the sum-of-squares error function given by $E_D(\mathbf{w})$

$$rac{\partial E_D(\mathbf{w})}{\partial \mathbf{w}} = \sum_{n=1}^N \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\} \phi(\mathbf{x}_n)^T$$

Setting the gradient to 0:

$$egin{aligned} 0 &= \sum_{n=1}^N t_n \phi(\mathbf{x}_n)^T - \mathbf{w}^T (\sum_{n=1}^N \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T) \ \mathbf{w}_{ML} &= (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t} \end{aligned}$$

 Φ is the design matrix (features) with dimension NxM, and:

$$\begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \dots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \dots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \dots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

• With respect to β , maximise the log-likelihood

$$egin{aligned} rac{\partial \mathrm{ln} p(\mathbf{t}|\mathbf{w},eta)}{\partial eta} &= rac{N}{2} rac{1}{eta} - E_D(\mathbf{w}) \ &= rac{N}{2} rac{1}{eta} - rac{1}{2} \sum_{n=1}^N \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2 \ 0 &= rac{N}{2} rac{1}{eta} - rac{1}{2} \sum_{n=1}^N \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2 \ &rac{1}{eta_{ML}} &= rac{1}{N} \sum_{n=1}^N \{t_n - \mathbf{w}_{ML}^T \phi(\mathbf{x}_n)\}^2 \end{aligned}$$

• We can gain some insight into the role of the bias w_0 by make w_0 explicit.

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - w_0 - \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}_n)\}^2$$

Setting the derivative with respect w_0 to 0 and get:

$$w_0 = ar{t} - \sum_{j=1}^{M-1} w_j ar{\phi_j}$$

Where
$$ar{t}=rac{1}{N}\sum_{n=1}^N t_n$$
 and $ar{\phi_j}=rac{1}{N}\sum_{n=1}^N \phi_j(\mathbf{x}_n)$

So, w_0 compensates for the difference between the averages (over the training set) of the target values and the weighted sum of the averages of the basis function values.

Regularised least squares

Adding a regularisation term to the error function in order to control over-fitting.

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Where
$$E_W(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

Then the error function becomes (linear ridged regression):

$$egin{aligned} &rac{1}{2}\sum_{n=1}^{N}\{t_n-\mathbf{w}^T\phi(\mathbf{x}_n)\}^2+rac{\lambda}{2}\mathbf{w}^T\mathbf{w}\ &=rac{1}{2}\sum_{n=1}^{N}\{t_n-\mathbf{w}^T\phi(\mathbf{x}_n)\}^2+rac{\lambda}{2}||\mathbf{w}||^2 \end{aligned}$$

If we now setting the gradient of the error function with respect to ${\bf w}$ to 0:

$$egin{aligned} rac{\partial (E_D(\mathbf{w}) + \lambda E_W(\mathbf{w}))}{\partial \mathbf{w}} &= \sum_{n=1}^N \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\} \phi(\mathbf{x}_n)^T + \lambda w \ 0 &= \sum_{n=1}^N \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\} \phi(\mathbf{x}_n)^T + \lambda w \ \mathbf{w}_{ML} &= (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^T \mathbf{t} \ \mathbf{w}_{ML} &= \mathbf{\Phi}^T (\mathbf{\Phi} \mathbf{\Phi}^T + \lambda \mathbf{I})^{-1} \mathbf{t} \ [*] \end{aligned}$$

*(Apply Woodbury push-through identity:

$$(\alpha \mathbf{I} + cUV)^{-1}U = U(\alpha \mathbf{I} + cVU)^{-1})$$

Prediction:

$$egin{aligned} t^* &= \mathbf{w}_{ML}^T \phi(\mathbf{x}^*) \ &= \mathbf{t}^T \mathbf{\Phi} (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I})^{-1} * \phi(\mathbf{x}^*) \ &= \mathbf{t}^T (\mathbf{\Phi} \mathbf{\Phi}^T + \lambda \mathbf{I})^{-1} \mathbf{\Phi} \phi(\mathbf{x}^*) \end{aligned}$$

$$\begin{bmatrix} \cdots & \phi(\mathbf{x}_1)^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & \phi(\mathbf{x}_n)^T & \cdots \end{bmatrix} \begin{bmatrix} \vdots \\ \phi(\mathbf{x}^*) \end{bmatrix} = \begin{bmatrix} \phi(\mathbf{x}_1)^T \phi(\mathbf{x}^*) \\ \vdots \\ \phi(\mathbf{x}_n)^T \phi(\mathbf{x}^*) \end{bmatrix} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}^*) \\ \vdots \\ k(\mathbf{x}_n, \mathbf{x}^*) \end{bmatrix}$$

$$\therefore t^* = \mathbf{t}^T (\mathbf{k} + \lambda \mathbf{I})^{-1} \mathbf{k} (\mathbf{x}^*)$$

Where
$$\mathbf{k}(\mathbf{x}^*) = egin{bmatrix} k(\mathbf{x}_1, \mathbf{x}^*) \ dots \ k(\mathbf{x}_n, \mathbf{x}^*) \end{bmatrix}$$

Overview of Linear Regression

	Parametric	Non-parametric
Non- Bayesian	Regularised linear regression (also called linear ridged regression)	Regularised kernel regression (also called kernel ridged regression)
Bayesian	Bayesian linear regression	Bayesian kernel regression (also called Gaussian Process regression)

3 Key components in machine learning:

Model

How data should behave

Train

How to find best model

• Predict

How to predict data from model

Practice

- 1. Explain why maximising the likelihood of logistic regression directly is a bad idea. What can be done to fix the problem?
- 2. Consider a linear model of the form

$$y(x,\mathbf{w}) = w_0 + \sum_{i=1}^D w_i x_i$$

And the sum-of-squares function:

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Now suppose the Gaussian noise $\epsilon_i \sim (0,\sigma^2)$ and is added independently to each of the input variables x_i . By making use of $E[\epsilon_i]=0$ and $E[\epsilon_i\epsilon_j]=\delta_{ij}\sigma^2$.

Show that minimising E_D averaged over the noise distribution is equivalent to minimising the sum-of-squares error for noise-free input variables with the addition of a weight-decay regularisation term, in which the bias parameter w_0 is omitted from the regulariser.