Corso di Laboratorio di Ricerca Operativa

Prova scritta d'esame del..... (studenti che hanno seguito il corso A.A. 22/23)

Esercizio 1

La Bevitorella produce acqua minerale attingendo da 4 sorgenti S_i , $i=1,\ldots,4$, ciascuna delle quali è capace di erogare, giornalmente, d_i quintali di acqua $i=1,\ldots,4$. L'acqua viene quindi trasferita presso quattro impianti di imbottigliamento P_j , $j=1,\ldots,4$, ciascuno dei quali è capace di imbottigliare giornalmente r_j , $j=1,\ldots,4$ quintali di acqua. Trasportare un quintale di acqua dalla sorgente S_i all'impianto P_j costa all'azienda c_{ij} , $i,j=1,\ldots,4$. I valori di d_i , r_j , c_{ij} , $i,j=1,\ldots,4$ sono riassunti nella tabella seguente in cui nell'ultima riga sono riportati i valori di r_j , nell'ultima colonna quelli di d_i e tutti gli altri valori numerici sono i costi c_{ij} :

	P_1	P_2	P_3	P_4	d_i
$\overline{S_1}$	9	10	8	6	200
S_2	7	3	4	7	100
S_3	10	5	9	4	140
S_4	6	5	7	12	260
$\overline{r_j}$	120	170	210	200	

- 1. Formulare il corrispondente problema dei trasporti
- 2. Stabilire se il piano di trasporti definito da $x_{11} = 120$, $x_{12} = 80$, $x_{22} = 90$, $x_{23} = 10$, $x_{33} = 140$, $x_{43} = 60$, $x_{44} = 200$ è ammissibile. In caso di risposta positiva, calcolare il valore di funzione obiettivo e stabilire se esso corrisponde ad un vertice della regione ammissibile.

Esercizio 2

E' assegnato il seguente problema di Programmazione Lineare \mathcal{P} E' assegnato il seguente problema di Programmazione Lineare \mathcal{P}

- 1. Determinare quali tra i seguenti punti $x_A = (0, 0, 0, 3, 10)^{\top}, x_B = (1, 0, 0, 2, 5)^{\top}$ sono vertici della regione ammissibile del problema \mathcal{P} .
- 2. Calcolare il valore della funzione obiettivo in x_A , in x_B ed in un generico punto \bar{x} che sta sul segmento di estremi x_A ed x_B .
- 3. Determinare la soluzione ottima di \mathcal{P} .
- 4. Determinare la soluzione ottima del problema duale \mathcal{D} di \mathcal{P} , applicando la teoria della dualità.
- 5. Dopo aver riportato su di un piano cartesiano la regione ammissibile e la funzione obiettivo del problema duale, dimostrare che la variabile x_5 assume sempre valore nullo in qualsiasi soluzione ottima di P.

Esercizio 3

Il considri il problema di flusso di costo minimo definito dal grafo seguente.

1. Stabilire se il seguente insieme di archi $calT = \{(1,2), (1,3), (4,2), (4,5), (4,6), (7,4)\}$ corrisponde ad una soluzione ammissibile di MCF.

Figura 1: La rete di flusso dell'esercizio 3.

- 2. In caso di risposta positiva al punto precedente calcolare il valore di funzione obiettivo in corrispondenza della soluzione ammissibile di base determinata.
- 3. Considerato il seguente insieme di costi ridotti $\hat{c}_{36} = 4$, $\hat{c}_{41} = 1$, $\hat{c}_{43} = -2$, $\hat{c}_{65} = 7$, $\hat{c}_{72} = -1$, $\hat{c}_{75} = 1$ si esegua un'iterazione dell'Algoritmo del Simplesso su Rete e si calcoli il colsto della nuova soluzione.

Esercizio 4

Al problema di PLI \mathcal{P}

è stato parzialmente applicato l'algoritmo Branch-and-Bound, con visita in profondità, i cui risultati sono riportati nella figura seguente

Completare la risoluzione di \mathcal{P} procedendo sempre con la visita in profondità.