MATHEMATICS-I

Anushaya Mohapatra

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

August 29, 2024

Lecture 10

Infinite series

Theorem 0.1 (Limit Comparison Test).

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ for some $N \in \mathbb{N}$.

- If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or diverge.
- 2 If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges then $\sum a_n$ converges.
- If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges then $\sum a_n$ diverges.

Theorem 0.1 (Limit Comparison Test).

Suppose that $a_n > 0$ and $b_n > 0$ for all n > N for some $N \in \mathbb{N}$.

- If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or diverge.
- If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges then $\sum a_n$ converges.
- If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges then $\sum a_n$ diverges.

Examples: Test the convergence of the following:

(a).
$$\sum_{n=1}^{\infty} \frac{100}{10n+1}$$
, (b). $\sum_{n=1}^{\infty} \frac{1}{2^n+10}$., (c). $\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$.

(d).
$$\sum_{n=1}^{\infty} \frac{1}{n^2 \ln(n)}.$$
Anushaya Mohapatra (Dept. of Maths)

Theorem 0.2 (The Ratio Test).

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho.$$

Theorem 0.2 (The Ratio Test).

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho.$$

Then;

- the series converges if $\rho < 1$,
- **2** the series diverges if $\rho > 1$
- the test is inconclusive if $\rho = 1$.

Test the convergence of the following:

(a).
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$
, (b). $\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$, (c). $\sum_{n=1}^{\infty} \frac{1}{n^2}$

←□ ト ←□ ト ← □ ト ← □ ト ← □ ・ り へ ○ ○

Theorem 0.3 (The root test).

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\sqrt[n]{a_n}=\rho.$$

Theorem 0.3 (The root test).

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\sqrt[n]{a_n}=\rho.$$

Then;

- the series converges if $\rho < 1$,
- the series diverges if $\rho > 1$
- the test is inconclusive if $\rho = 1$.

Discuss the convergence of the following:

(a).
$$\sum_{n=1}^{\infty} \frac{1-n}{3n-n^2}$$
, (b). $\sum_{n=1}^{\infty} \frac{3^n}{n^{10}}$, (c). $\sum_{n=1}^{\infty} \left(\frac{n}{n+2}\right)^{n^2}$.

Alternating series

Alternating series:

 A series in which the terms are alternatively positive and negative is called alternating series.

Alternating series

Alternating series:

- A series in which the terms are alternatively positive and negative is called alternating series.
- Any series of the form:

$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 or $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ where $a_n \geq 0$

is an alternating series.

Alternating series

Alternating series:

- A series in which the terms are alternatively positive and negative is called alternating series.
- Any series of the form:

$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 or $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ where $a_n \geq 0$

is an alternating series.

• Examples: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, $\sum_{n=1}^{\infty} (-4/3)^n$, $\sum_{n=1}^{\infty} (-1)^n \sqrt{n}$.

The series:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots$$

converges, if all three of the following conditions are satisfied:

The series:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots$$

converges, if all three of the following conditions are satisfied:

• The a_n 's are positive.

The series:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots$$

converges, if all three of the following conditions are satisfied:

- The a_n 's are positive.
- The positive a_n 's are (eventually) non-increasing: $a_n \ge a_{n+1}$ for all $n \ge N$, for some integer N.

The series:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots$$

converges, if all three of the following conditions are satisfied:

- The a_n 's are positive.
- The positive a_n 's are (eventually) non-increasing: $a_n \ge a_{n+1}$ for all $n \ge N$, for some integer N.
- $a_n \to 0$ as $n \to \infty$.

Examples:

• If p > 0, then the alternating p-series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^p} = 1 - \frac{1}{2^p} + \frac{1}{3^p} - \cdots$$

converges.

Examples:

• If p > 0, then the alternating p-series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^p} = 1 - \frac{1}{2^p} + \frac{1}{3^p} - \cdots$$

converges.

What can you say about the converges of

$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{2+n}{8n} \right) ?$$

Thank you