Q(θ; θⁱ) is a function of θ and θⁱ
E_{D_b}[ln p(D_g, D_b; θ)|D_g; θⁱ] is the expected value is over the missing features. The expected value hinges on θⁱ are the true parameters.
θⁱ is the current (best) estimate for the full distribution;

 $Q(\vec{\theta}; \vec{\theta}^i) = E_{D_t} [\ln p(D_a, D_b; \vec{\theta}) | D_a; \vec{\theta}^i]$

Thus one function to contemplate comes to the front:

• $\vec{\theta}$ is a candidate vector for an improved estimate

D_b gets marginalized with respect to θ̄ⁱ.
The goal of the EM algorithm is select from the candidate θ̄ from a set of θ̄s, and iterate it to θ̄ⁱ⁺¹ which yields the greatest Q(θ̄; θ̄ⁱ)