Informatyczne wspomaganie eksploatacji

Wykład 6

 struktura systemów wspomagania

Model warstwowy systemów

- Automatyka procesowa (warstwa danych)
- Warstwa sterowania
 - Układy regulacji podstawowe (Base Control)
 - Układy sterowania zaawansowanego (Advanced Control)
- Warstwa aplikacyjna
 - Integracja
 - Obliczenia
- Warstwa biznesowa
 - Aplikacje zarządzania przedsiębiorstwem
 - Sprzedaż (Rynek energii)

Jak systemy DCS komunikują się ze światem zewnętrznym

- Komunikacja od dołu "pobieranie danych"
 - Sygnały prądowe (analogowe) 4-20 mA trasami kablowymi do modułów I/O
 - Nowoczesne protokoły (magistrale obiektowe) cyfrowe Fieldbus, Profibus
 - Inne protokoły (połączenia szeregowe)
- Komunikacja do góry "połączenie z systemami informatycznymi MIS, LAN) warstwa fizyczna Ethernet
 - Protokoły komunikacyjne danego producenta (API application protocol interface)
 - Standardowe protokoły informatyczne
 - OLE
 - OPC
 - Biblioteki komunikacyjne
 - Zapytania bazodanowe SQL, ODBC
 - Protokoły specjalizowane (do specjalnych WAN)
 - ICCP (TASE 2)
 - DNP 3 (Harris)
 - XML z wykorzystaniem IPSec
- Komunikacja pozioma "połączenie z innymi systemami)
 - Tzw. "hard wired" sygnał prądowy do modułów i/O innego systemu
 - Połączenia szeregowe (MODBUS, DNP 3)
 - TCP /IP po Ethernecie

Protokoły / Komunikacja

OLE

 Object Linking and Embeding – technika osadzania obiektów z różnych programów w jednym dokumencie (Microsoft)

OPC

 OLE for Process Control – standard programowy (biblioteki komunikacyjne w różnych systemach) dające możliwość wymiany informacji

ODBC

 Open DataBase Connectivity – "otwarte łącze danych" – biblioteka Microsoft dostępowa do baz danych

SQL

- Structured Query Language standardowy język zapytań do baz danych (praktycznie wszystkich)
- Specjalizowane dla energetyki (komunikacja z Centrum)
- "historyczny" UTJ jednokierunkowy polski protokół przesyłania sygnału z KDM do elektrowni (50-200 bodów)
- ICCP (Tase 2) (Telecontrol Application Service Element no 2) –
 nowoczesny dwukierunkowy protokół (warstwa aplikacji 7 modelu OSI) –
 dla przesyłania informacji KDM (OSP Operator Systemu Przesyłowego) –
 elektrownia i zwrotnie informacji o jego wykonaniu

Warstwa sterowania podstawowego – regulacje

- Regulator turbiny (regulacje pętla zamknięta)
 - Obroty turbiny
 - Ciśnienie wysoko i średnioprężne
 - Ograniczenia ciśnienia (zasilania) w kole turbinowym
- Regulator turbiny (sterowanie i zabezpieczenia)
 - Zabezpieczenia (wytrzask obroty)
 - Ciśnienie w kondensatorze, odprowadzenie skroplin i pary z uszczelnień
- Sekwencje rozruchowe

- Obciążenie (paliwo (i układy młynowe), powietrze pierwotne, powietrze wtórne do palników)
- Paliwo (Boiler Fuel) (podajniki, układy młynowe, Burner Management System (BMS) – układ regulacji i sterowania palnikami)
- Spalanie (Boiler Air) (powietrze wtórne dodatkowe, ciśnienie w kotle, wentylatory powietrza i spalin)
- Temperatura (Boiler Temperature Control)
- Zasilanie (Boiler Feedwater Control)
- Urządzenia dodatkowe

	obciążenie	paliwo	powietrze	temperatura	zasilanie	p. kond.
turbina	a	młyny	wentylatory			woda uzup.
		palniki (BMS)	klapy			p.w.chł.

Feedback Control

Feed-forward Control

Automatyka zaawansowana

Sygnał zwrotny (feedback)

Regulacja predykcyjna - MPC

Unit 1 - Conventional Control Structure

Unit 2 - Model Predictive Control Structure

Warstwa automatyki zaawansowanej - generalnie

Układ optymalizacji automatyki zaawansowanej (optymalizacja spalania)

Power Plant Combustion - Boiler Optimization Key Variables

Układ optymalizacji automatyki zaawansowanej (optymalizacja spalania)

Obecne na rynku układy automatyki zaawansowanej

- Informacja "wyżej" niż bezpośredni operatorzy procesu
- Informacje na monitorach sieci LAN / WAN (również zdalny dostęp)
- Obliczenia
 - Wykorzystywane bezpośrednio przez operatorów (np. straty eksploatacji)
 - Inne działu (remontowy)

Integracja

- Zadania systemu ograniczone:
 - Wizualizacja
 - Archiwizacja (Plant Historian Archiwa zakładowe)
 - Raportowanie
 - Przesyłanie alarmów
 - Brak możliwości sterowania i ingerencji w proces
- Cechy systemu
 - Duża ilość osób korzystających do 200-300
 - Zwykle całodobowy podgląd procesu
 - Dane z całego zakładu (wielu systemów)
- Często wykorzystywany także jako serwer do obliczeń

Systemy dla Koncernów integracja i tzw.,Portale Energetyczne"

HURTOWNIA DANYCH

INTEGRACJA DANYCH

- Komunikacja z systemami źródła danych
- Ujednolicenie formularzy danych
- Wstępne przetwarzanie danych
- Standaryzacja procedur obliczeniowych

Internet jako obecny trend w integracji

- Procesy prezentowane w stronach webowych (język html)
- Dostęp z dowolnego komputera połączonego do Internetu
- Połączenia bezpieczne (VPN)

Funkcjonalność systemów integracji danych

- Baza danych (wiele DCS)
- Wizualizacja (z różnych bloków)
- Archiwizacja (krótko i długoterminowa)
- Trendy
- Raporty
- Alarmowanie
- Obliczenia

Producenci (integracja; energetyka)

- PI Oils System PI
- Intellution (Foxboro)
- Intouch Wonderware
-

- ASIX (Astor)
- Wizkon
- ESS II (TT)
- TelSter
- WASCO
-

- Obliczenia eksploatacyjne (sprawność procesu)
- Bezpieczeństwo i diagnostyka
- Ochrona środowiska

- Obliczenia eksploatacyjne (sprawność procesu) TKE
 - Analiza eksploatacji normalna praca
 - sprawność bloku (jednostkowe zużycie ciepła)
 - sprawność kotła i turbiny
 - urządzenia blokowe wymienniki, pompy, itp.
 - Straty kontrolowane (mierzalne) metodyka TKE (Techniczno-Ekonomiczna Kontrola Eksploatacji)
 - Rozruch
 - Straty rozruchowe

TKE – Techniczno Ekonomiczna Kontrola Eksploatacji

- Podstawowa kontrola eksploatacji bloku energetycznego
 - Pomiary on-line (na bieżąco) głównych parametrów eksploatacyjnych
 - Jednostkowe zużycie ciepła bloku = sprawność procesu = zużycie paliwa
 - Sprawność kotła
 - Sprawność turbozespołu
 - Kontrola operatorów tzw. straty (odchyłki) mierzalne różnica między nominalnym jednostkowym zużyciem ciepła (kosztem paliwa) a aktualnym obserwując odchylenia głównych parametrów procesu (ciśnienie, temperatura)

Systemy integracji danych

- Pobierają dane z DCS
- Składują w lokalnych bazach danych lub hurtowniach
- Zapewniają dostęp do danych przez inżynierów i personel elektrowni
 - Wizualizacja
 - Raporty
 - Trendy
- Obecnie jako portale korporacyjne
- Oprogramowanie
 - PI OSI Soft
 - ESS (TT)
 - Intouch, Wonderware (bardziej SCADA wizualizacja i sterowanie)

Systemy dla Koncernów integracja i tzw.,Portale Energetyczne"

HURTOWNIA DANYCH

INTEGRACJA DANYCH

- Komunikacja z systemami źródła danych
- Ujednolicenie formularzy danych
- Wstępne przetwarzanie danych
- Standaryzacja procedur obliczeniowych

Systemy Obliczeniowe

- Obliczenia eksploatacyjne
 - Metoda TKE
 - Sprawność kotła i turbiny

TKE – jak policzyć zużycie paliwa i koszty na bieżąco ?

- Pomiar ilości paliwa
 - Niedokładny w kotłach węglowych (pomiar obrotów podajników, ostatnio wprowadzane wagi węglowe)
 - W praktyce określany metodą pośrednią wyliczenie sprawności wytwarzania i "do tyłu" zużytego węgla
- Droga do obliczenia sprawności (jednostkowego zużycia paliwa i problemy)
 - Jednostkowe zużycie ciepła bloku = f(ηk * ηr * ηt * ηg)
 - Sprawność kotła metoda pośrednia (strat) ηk = 100 S
 - Strata wylotowa (kominowa) dominująca (5-10 %) krytyczna rola pomiaru tlenu
 - Problem pomiarów analitycznych węgla skład, wartość opałowa oraz części palnych w odpadach (żużel, lotny popiół)
 - Sprawność turbozespołu
 - Bilans turbozespołu (na podstawie aktualnych pomiarów) krytyczna rola pomiaru przepływu pary
 - Tzw. "krzywe korekcyjne" korygowanie parametrów na podstawie danych producenta (czasami dane sprzed 20 lat)

TKE – kontrola operatorów straty (odchyłki) ?

- Kontrola operatorów
 - Utrzymywanie wielkości nominalnych (optymalnych)
 - W wysoko zautomatyzowanych blokach energetycznych powinno to odbywać się automatycznie (ideał) (na razie faza przejściowa). Programy optymalizacyjne wyręczają operatora w automatycznym działaniu w kierunku jak najwyższej osiąganej sprawności
 - Jeśli blok jest dobrze zautomatyzowany to niedotrzymanie parametrów wynika z przyczyn konstrukcyjnych
 - W praktyce wciąż duże różnice między "dobrze" a "źle" prowadzony blok
 - Monitorowanie odchyłek, podgląd procesu (w całej elektrowni), zliczanie wyłączeń – naturalnie poprawia eksploatację 0.5 – 1 %
- Odchyłki mierzalne problemy
 - Wielkości nominalne
 - Czasami niedotrzymanie spowodowane parametrami konstrukcyjnymi
 - W zależności od rodzaju paliwa różne warunki spalania
 - Niektóre parametry zależne od war. pogodowych (ciśnienie kondensator)
 - Krzywe korekcyjne stare dane dla zmodernizowanych elektrowni

Oprogramowanie aplikacyjne (optymalizacja)

- Optymalizacja spalania w kotle
 - Układy automatyki zaawansowanej (MPC)
 - Obniżenie NOx, podwyższenie sprawności poprzez optymalną dystrybucję powietrza w kotle
- Optymalizacja (poprawa) regulacji temperatury pary
 - Nowoczesne struktury regulacji
 - Lepsza jakość regulacji, zmniejszenie przeregulowań podczas zakłóceń (np. przełączanie zespołów młynowych)
- Optymalizacja układów zdmuchiwaczy sadzy (sootblowers)
 - Włączanie zdmuchiwaczy wg optymalnego programu
- Optymalny rozdział obciążeń na bloki energetyczne (zespoły kolektorowe, elektrownia) (Economic Dispatch)
 - Optymalizacja statyczna
 - Ograniczenia w warunkach polskich z uwagi na zasady rynku energii i sterowania z OSP

- Monitorowanie naprężeń termicznych (Thermal Stress)
 - Wielkości maksymalne podczas rozruchów i odstawień
 - Zmniejszenie żywotności elementów w czasie eksploatacji
- Obliczenia bilansowe instalacji
 - Pakiety symulacji pracy w warunkach statycznych (what if)
 - GE Enter
 - Emerson Economic Optimizer
- Systemy Diagnostyczne
 - Diagnostyka pomiarów (detekcja wadliwych pomiarów (Walidacja) i generowanie wielkości zastępczych
 - Diagnostyka możliwych uszkodzeń urządzeń (AMODIS ALSTOM)

Warstwa biznesowa

Warstwa biznesowa

- Oprogramowanie wspomagające pracę przedsiębiorstwa (różne nazwy, różne systemy)
- W zależności od typu przedsiębiorstwa mix systemów z naciskiem na różne elementy pracy

Zarządzanie

strategiczne

operacyjne

ERP (Enterprice Resource Planning)

(Planowanie Zasobów Przedsiębiorstwa)

ERP II (technologie web i mobilne)

Logistyka

Planowanie produkcji

Produkcja

MRP II (Manufacturing Resource Planning)

 SCM (Supply Chain Management); SRM (Supplier Management System)

•CAD/CAM (Computer Aided Design/Manufacturing); FMS (Flexible Manufacturing Systems)

•PLM (Product Lifecycle Management)

Marketing

Sprzedaż

SOP (Sales Oparation Planning)

CRM (Customer Relation Management)

"front office"

HR

Finanse

Systemy Zarządzania Personelem

Systemy Finansowo - księgowe

Typowy ERP

- ERP Eneterprice Resource Planning
 - Finansowo Księgowe (Rachunkowość)
 - Personalne (HR)
 - Logistyka (Zaopatrzenie)
 - Sprzedaż
 - Marketing
 - Dystrybucja
- Bardzo różnie rozumiane przez różne firmy
 - Różny zakres
 - Różne oczekiwania
 - Duży stopień komplikacji wdrożenia

Typowy ERP producenci

IFS (www.ifs.com.pl)

SAP (R/3, MySAP) (www.sap.pl)

- mySAP Busines Suite
 - mySAP ERP
 - mySAP Financials
 - mySAP Human Capital Management
 - mySAP Customer Relations Management
 - mySAP Supply Chain Managemnet
 - mySAP Supply Relationship Management
 - mySAP Product Lifecycle Management

- mySAP Busines Suite
 - mySAP ERP
 - Wartością dodaną pierwszej generacji rozwiązań ERP była integracja i przetwarzanie danych w czasie rzeczywistym. Druga generacja pozwoliła ustandaryzować procesy, poprzez wykorzystanie środowiska klient-serwer.
 - Kolejna, oparta o mySAP ERP przynosi korzyści poprzez obniżenie kosztów eksploatacji, rozszerzenie możliwości pracy w środowisku heterogenicznym, oraz włączenie w procesy ERP każdego pracownika firmy
 - mySAP ERP Financials (mySAP Financials)
 - Rozliczenia finansowo-księgowe
 - Alokacja kosztów na dowolny dział / produkt /osobę
 - mySAP ERP Human Capital Management Management (mySAP HR)
 - Płace (payroll)
 - Urlopy i inne sprawy kadrowe
 - Rekrutacja pracowników
 - Ocena pracowników

mySAP Busines Suite

- mySAP Customer Relations Management
 - mySAP CRM dostarcza unikalny zestaw aplikacji, które wspierają firmę w efektywnych działaniach zorientowanych na jej klientów. Zasadniczym celem jest długofalowe utrzymanie kontaktów z klientami
 - **Aplikacje operacyjnego CRM** wspierają transakcyjne, zorientowane na klienta działania w ramach sprzedaży, serwisu i marketingu. Pozwalają na bezproblemową integrację w czasie rzeczywistym działań front-office i back-office wraz z synchronizacją oddziaływania na klienta poprzez wszystkie kanały komunikacji.

mySAP Supply Chain Managemnet

- Jak reagować na zmiany popytu bez utrzymywania nadmiernego zapasu?
- Jak współpracować z dostawcami, gdy nasze plany mogą zmieniać się szybko?
- Jak utrzymać dotychczasowy poziom obsługi klientów przy mniejszych zapasach, zaangażowanym kapitale i środkach trwałych?
- Jak sprawnie wprowadzać nowe produkty na rynek i odpowiadać na rosnący na nie popyt?

- mySAP Supply Relationship Management
- mySAP SRM obejmuje pełen cykl dostaw począwszy od strategicznego ustalania źródła dostaw po operacyjne zaopatrzenie oraz włączenie do współpracy dostawców - zapewniając zalety wynikające z wykorzystania skonsolidowanej zawartości oraz danych podstawowych. Dzięki mySAP SRM możliwa jest współpraca z każdym z dostawców - obejmująca wszystkie nabywane towary i usługi. Zagwarantowana jest również stała optymalizacja wyboru dostawców, a także skrócenie czasu trwania cyklów dostaw. Korzyści przynosi także koncentracja ustalania źródeł dostaw oraz strategii zaopatrzenia.

mySAP Product Lifecycle Management

- mySAP PLM integruje wszystkich uczestników procesu rozwoju produktu: projektantów, dostawców, producentów i klientów. Projektowanie nie jest już linearnym łańcuchem wartości, lecz wielopłaszczyznową, kooperacyjną społecznością skoncentrowaną na realizacji wspólnego celu.
- Rozwiązanie to jest idealne dla każdej firmy wymagającej aktywnego zarządzania
 jakością w celu zwiększenia efektywności urządzeń i optymalizacji pracy całego
 zakładu. Jest ono również niezbędne w każdej branży, w której koszty związane z
 gospodarką remontową oraz niezawodność sprzętu bezpośrednio wpływają na
 rentowność. Nie dziwi więc fakt, że ponad 2800 doskonale prosperujących na całym
 świecie firm wybrało mySAP PLM

PLM

- Product Lifecycle Management
 - Zintegrowane projektowanie i nadzorowanie projektu
 - Nadzór nad produktem
 - Praca grupowa z wielodostępem
 - Katia (Dessaut / IBM)
 - PTC (ProEngineer Windchill)

Podział wg metodologii IFS

S C R M

- Finanse (FK)
- Sprzedaż i Serwis (FK, SRM)
- eBusiness
- Projektowanie (PLM)
- Produkcja (MRP)
- Dystrybucja (SRM)
- Remonty
- Zasoby Ludzkie (HR)

Zarzadzanie

strategiczne

operacyjne

ERP (Enterprice Resource Planning)

(Planowanie Zasobów Przedsiębiorstwa)

ERP II (technologie web i mobilne)

Logistyka

Planowanie produkcji

Produkcja

MRP II (Manufacturing Resource Planning)

 SCM (Supply Chain Management); SRM (Supplier Management System)

•CAD/CAM (Computer Aided Design/Manufacturing); FMS (Flexible Manufacturing Systems)

Marketing

Sprzedaż

SOP (Sales Oparation Planning)

CRM (Customer Relation Management)

"front office"

eBussiness (platformy internetowe)

HR

Finanse

Systemy Zarządzania Personelem

Systemy Finansowo - księgowe

ERP w energetyce

- Poza bazowymi modułami (Rachunkowość, HR) duża specyfika działania
 - Specyficzna sprzedaż (rozliczenia specjalizowane z koniecznością tworzenia systemów handlowych)
 - Inny rodzaj klientów
 - Bardzo specyficzne rozliczenia (energia, jakość pracy (dotrzymanie warunków), płatności systemowe)
 - Specyficzni dostawcy (głownie paliwo długi horyzont kontraktów)
- Duża rola danych procesowych integracja z DCS Collaborative Control (Management) Systems
 - Systemy remontowe
 - Handel energią
 - Handel emisjami
 - Zakupy paliwa

ERP w polskiej energetyce

- ERP w PL
 - IFS PKE, Kozienice
 - Systemy FK
 - Systemy Remontowe (ale bez powiązania z DCS)
 - SAP PAK, Rybnik
 - J.w.
 - Koniecznośc przygotowania "wsadu" danych sprzedażowych i kosztowych przetworzonych wstepnie z innych systemów