

NHD-0420DZ-NSW-BBW

Character Liquid Crystal Display Module

NHD- Newhaven Display 0420- 4 lines x 20 characters

DZ- Model

N- Transmissive

SW- Side White LED Backlight

B- STN- Blue (-) B- 6:00 view

W- Wide Temperature (-20°C ~+70°C)

RoHS Compliant

Newhaven Display International, Inc.

2511 Technology Drive, Suite 101

Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com

nhtech@newhavendisplay.com nhsales@newhavendisplay.com

Document Revision History

Revision	Date	Description	Changed by
0	10/21/2008	Initial Release	-
1	1/21/2010	User Guide Reformat	MC
2	2/25/2010	Updated Mechanical Drawing	MC
3	3/19/2010	Updated Mechanical Drawing	BE
4	1/6/2011	Updated Controller Information	JT
5	5/6/2011	Electrical characteristics updated	AK
6	12/5/2011	Mechanical drawing updated	AK

Functions and Features

- 4 lines x 20 characters
- Built-in controllers (ST7066U)
- +5.0V Power Supply
- 1/16 duty, 1/5 bias
- RoHS compliant

Mechanical Drawing

Pin Description and Wiring Diagram

Pin No.	Symbol	External	Function Description
		Connection	
1	Vss	Power Supply	Ground
2	VDD	Power Supply	Supply voltage for logic (+5.0V)
3	V0	Power Supply	Power supply for contrast (approx. 0.5V)
4	RS	MPU	Register select signal. RS=0: Command, RS=1: Data
5	R/W	MPU	Read/Write select signal, R/W=1: Read R/W:=0: Write
6	E	MPU	Operation enable signal. Falling edge triggered.
7-10	DB0-DB3	MPU	Four low order bi-directional three-state data bus lines. These four
			are not used during 4-bit operation.
11-14	DB4-DB7	MPU	Four high order bi-directional three-state data bus lines.
15	LED+	Power Supply	Power supply for LED Backlight (+5.0V via on-board resistor)
16	LED-	Power Supply	Ground for backlight

Recommended LCD connector: 2.54mm pitch pins **Backlight connector:** --- **Mates with:** ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-20	•	+70	°C
Storage Temperature Range	Tst	Absolute Max	-30	-	+80	°C
Supply Voltage	VDD		4.5	5.0	5.5	V
Supply Current	IDD	Ta=25°C, VDD=5.0V	-	3.5	5.0	mA
Supply for LCD (contrast)	VDD-V0	Ta=25°C	-	4.5	-	V
"H" Level input	Vih		0.7 VDD	-	VDD	V
"L" Level input	Vil		0	-	0.6	V
"H" Level output	Voh		3.9	-	-	V
"L" Level output	Vol		-	-	0.4	V
Backlight Supply Voltage	Vled	-	-	5.0	-	V
Backlight Supply Current	lled	Vled=5.0V	-	20	30	mA

Optical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Viewing Angle – Vertical (top)	AV	Cr ≥ 2	-	25	-	0
Viewing Angle – Vertical (bottom)	AV	Cr ≥ 2	-	70	-	0
Viewing Angle – Horizontal (left)	AH	Cr ≥ 2	-	30	-	0
Viewing Angle – Horizontal (right)	AH	Cr ≥ 2	-	30	-	0
Contrast Ratio	Cr		-	2	-	-
Response Time (rise)	Tr	-	-	120	150	ms
Response Time (fall)	Tf	-	-	120	150	ms

Controller Information

Built-in ST7066U. Download specification at http://www.newhavendisplay.com/app notes/ST7066U.pdf

Display character address code

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53
14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	20	21	22	24	25	26	26	27
54	55	56	57	58	59	5A	5B	5C	5D	5E	5F	60	61	62	63	64	65	66	67

Command Table

50 T.E.J. T.E.W. U.T.S.		55 8	3.	Inst	ructi	on (Code				CAST TO FOREST BUILDING	Description	
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time (270KHz)	
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.52 ms	
Return Home	0	0	0	0	0	0	0	0	1	x	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52 ms	
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	s	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 us	
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	37 us	
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	x	x	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	37 us	
Function Set	0	0	0	0	1	DL	N	F	x	x	DL:interface data is 8/4 bits N:number of line is 2/1 F:font size is 5x11/5x8	37 us	
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37 us	
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	37 us	
Read Busy flag and address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 us	
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	37 us	
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	37 us	

Built-in Font Table

Upper 4					T											
Lower Bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)			0	a	P	`	P				-	9	Ę	œ	þ
xxxx0001	(2)		!	1	A	Q	а	9			0	7	手	4	ä	q
xxxx0010	(3)		Ш	2	В	R	b	r			Г	1	ij	×	F	0
xxxx0011	(4)		#	3	C	S	C	s			L	Ċ	Ŧ	ŧ	ω	60
xxxx0100	(5)		\$	4	D	T	d	t			ν.	I	ŀ	þ	Н	υ
xxxx0101	(6)		%	5	E	U	e	u			•	7		ュ	G	ü
xxxx0110	(7)		&	6	F	Ų	f	V			7	Ħ	_	3	ρ	Σ
xxxx0111	(8)		7	7	G	W	9	W			7	#	Z	ラ	9	π
xxxx1000	(1)		(8	H	X	h	X			4	7	末	IJ	Ţ	\overline{x}
xxxx1001	(2))	9	Ι	Υ	i	y			Ċ	ጛ	J	ιb	-1	y
xxxx1010	(3)		*		J	Z	j	Z			I		ń	V	j	¥
xxxx1011	(4)		+	;	K		k	{			7	Ħ	L		*	F
xxxx1100	(5)		,	<	L	¥	1				t	5)	7	7	4	Ħ
xxxx1101	(6)			=	М]	M	}			ュ	Z	^	<u>ر</u>	Ł	÷
xxxx1110	(7)			>	И	^	n	+			3	t	.	**	ħ	
xxxx1111	(8)		•	?	0		0	+			'n	y	7		Ö	

Example Initialization Program

```
8-bit Initialization:
void command(char i)
   P1 = i;
                     //put data on output Port
   D_I = 0;
                     //D/I=LOW : send instruction
   R_W = 0;
                     //R/W=LOW : Write
   E = 1;
   Delay(1);
                     //enable pulse width >= 300ns
                     //Clock enable: falling edge
    E = 0;
void write(char i)
   P1 = i;
                     //put data on output Port
   DI = 1;
                     //D/I=LOW : send data
                     //R/W=LOW : Write
   R_W = 0;
   E = 1;
   Delay(1);
                     //enable pulse width >= 300ns
                     //Clock enable: falling edge
void init()
   E = 0;
   command(0x06);
                     //Entry mode set
 ******************
```

```
4-bit Initialization:
void command(char i)
     P1 = i;
                              //put data on output Port
     D_I =0;
                               //D/I=LOW : send instruction
                               //R/W=LOW : Write
     R_W = 0;
                             //Send lower 4 bits
//Shift over by 4 bits
     Nybble();
     i = i << 4;
     P1 = i;
                              //put data on output Port
     Nybble();
                              //Send upper 4 bits
void write(char i)
     P1 = i;
                              //put data on output Port
     D I = 1;
                              //D/I=HIGH : send data
    RW=0;
                              //R/W=LOW : Write
    Nybble();
                              //Clock lower 4 bits
     i = i << 4;
                              //Shift over by 4 bits
     P1 = i;
                               //put data on output Port
    Nybble();
                               //Clock upper 4 bits
void Nybble()
     E = 1;
                               //enable pulse width >= 300ns
     Delay(1);
     E = 0;
                               //Clock enable: falling edge
void init()
     P1 = 0;
     P3 = 0;
     Delay(100);
                               //Wait >15 msec after power is applied
     P1 = 0x30;
                               //put 0x30 on the output port
     Delay(30);
                               //must wait 5ms, busy flag not available
     Nybble();
                               //command 0x30 = Wake up
     Delay(10);
                               //must wait 160us, busy flag not available
                               //command 0x30 = Wake up #2
     Nybble();
     Delay(10);
                               //must wait 160us, busy flag not available
     Nybble();
                              //command 0x30 = Wake up #3
                             //can check busy flag now instea
//put 0x20 on the output port
//Function set: 4-bit interface
//Function set: 4-bit/2-line
                              //can check busy flag now instead of delay
     Delay(10);
     P1 = 0x20;
     Nybble();
                              //Function set: 4-bit/2-line
     command(0x28);
     command(0x10);
                               //Set cursor
                              //Display ON; Blinking cursor
     command(0x0F);
     command(0x06);
                               //Entry Mode set
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	+80°C , 48hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C , 48hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+70°C 48hrs	2
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-20°C , 48hrs	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+40°C, 90% RH, 48hrs	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	0°C,30min -> 25°C,5min -> 50°C,30min = 1 cycle 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	10-55Hz , 15mm amplitude. 60 sec in each of 3 directions X,Y,Z For 15 minutes	3
Static electricity test	Endurance test applying electric static discharge.	VS=800V, RS=1.5k Ω , CS=100pF One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Newhaven Display: NHD-0420DZ-NSW-BBW