

Umělá inteligence pro hry

Jiří Bittner

Obsah přednášky

■ Úvod AIG 1.1 – 1.		,		
- UV00 AlG 1.1 — 1.		اء میں		4 0
			Δ I($=$ 1 1 $=$ 2	1 3
	_	Ovu	AIG I.I —	

	Rozhodování	(decision making)	AIG 5.1 – 5.4
--	-------------	-------------------	---------------

	Plánování cest	AIG 4.1 -	-4.3
--	----------------	-----------	-------------

–			4
Rizani /	(steering)	AIG 3.2 – 3.4	
INIZCIII	(Steeling)	AIG 3.2 — 3.4	r,
	(

AIG: I. Millington, J. Funge. Artificial Intelligence for Games 2nd ed., CRC Press 2009

Co je umělá inteligence (AI)?

"Výpočetní systémy, které vykazují inteligenci"

 "Stroje napodobující kognitivní schopnosti lidí (řešení problémů, učení, …)"

 Game theory, computer vision, pattern recognition, deep learning, ...

Al ve hrách

- Simulace chování NPC (non-player character)
 - Soupeři
 - Spoluhráči
 - Pomocné a autonomní postavy

Chování NPC

- Reaguje na aktuální stav hry
- Chování NPC není přímou akcí hráče
- Není výsledkem fyzikální simulace
- NPC "z pohledu hráče dělá to co by dělal člověk nebo jiná bytost"
 - Al si všimneme hlavně když selže
- Další role Al
 - Nápověda, instrukce, komentáře, ovládání kamery

Požadavky na Al systém

- Chytrý (ale ne moc)
 - NPC nepodvádí (většinou), př. NPC nemá vidět skrz zeď
- Konzistentní
 - Predikovatelné chování
- Efektivní
 - Velké množství NPC
- Přizpůsobivý
 - Skriptování, změny chování

Chování NPC - Al smyčka

NPC jako agent

- Agent (pojem z oboru AI)
 - Reflexivní agent (if XX then YY)
 - Model-based agent (vniřní stav FSM)
 - Goal-based (vzdálený cílový stav)
 - Utility-based (využitelnost různých cílových stavů)
 - Učící se agent

ZUI, 4. semestr

Obsah přednášky

- Úvod AIG 1.1 1.3
- Rozhodování (decision making)
 AIG <u>5.1 5.4</u>
- Plánování cest
 AIG 4.1 4.3
- Řízení (steering) AIG 3.2 3.4

Rozhodování

Rozhodování – Decision Making

- Plánování vysokoúrovňových akcí NPC
- Rozhodování může být naprogramováno (LUA, C#)
 - Nepřehledné a těžko přenositelné know-how
 - Nemá vizuální podobu
- Metody
 - Rozhodovací strom (decision tree)
 - Konečný automat (FSM)
 - Strom chování (behavior tree)
 - Fuzzy sets
 - Fuzzy state machines
 - Rule based systems
 - Blackboards

Rozhodovací strom

Decision tree

Rozhodovací strom - randomizace

- Náhodná rozhodnutí
 - Zvyšuje variabilitu chování
 - Definice pravděpodobností

Rozhodovací strom

- Problém: nemá konzistentní vnitřní stav
- Použití na jednoduché modely chování

Konečný automat (FSM)

- Konečný počet stavů NPC (stav ~ vykonávání akcí)
- NPC má aktuální stav
- Přechod mezi stavy řízen vyhodnocením podmínek a událostí

Konečný automat

Hierarchický FSM

- Seskupení logicky souvisejících stavů do bloků
- Přechod mezi bloky stavů

Behavior Trees (Stromy chování)

Jednotné rozhraní akcí, dotazů, skupin akcí

(Halo 2, Bioshock, Spore)

- Hierarchické uspořádání
- Snadné využití komponent
- Vnitřní uzly mají vlastní logiku
 - Implementují způsob vyhodnocení podstromu (chování)

Behavior Trees

- Listy
 - Podmínky nebo Akce
- Vnitřní uzly
 - Způsob interpretace podstromu (sekvence, selektor, decorator)
- Strom procházen periodicky (např. každých 100ms)
 - Listy vrací jeden ze stavů: SUCCESS, FAIL, RUNNING
 - Stav je propagován nahoru ve stromu

Success Fail Running

Behavior Trees – Selector (Fallback)

- Najdi první úspěšnou akci (success / running)
 - Nutí vývojáře přemýšlet o úspěchu / neúspěchu !

Success Fail Running

```
for i ← 1 to N do

childStatus ← Tick(child(i))

if childStatus == RUNNING then

return RUNNING

else if childStatus == SUCCESS then

return SUCCESS

return FAIL
```

Behavior Trees - Sequence

Vyhodnocuj dokud běží nebo neselže (running / fail)


```
for i ← 1 to N do

childStatus ← Tick(child(i))

if childStatus == RUNNING then

return RUNNING

else if childStatus == FAIL then

return FAIL

return SUCCESS
```

Behavior Trees - Listy

Podmínky nebo Akce

If-then-else?

if A then B else C

Příklad - Přechod do sousední místnosti

BT - Příklad (Pac-Man)

BT – Příklad (Zloděj)

BT – Příklad (Zloděj: Enter House)

BT – Příklad (Zloděj: Escape/Fight)

Behavior Trees – Dekorátory

- Pomocné uzly s dodatečnou logikou
 - Parallel sequence
 - Ordered sequence
 - Repeat Nx
 - Until fail
 - Guarding
 - Nedeterministické selektory a sekvence

Behavior Trees – Parallel Sequence

Vyhodnocuj paralelně dokud neuspěje M uzlů (M <= N)


```
for i \leftarrow 1 to N do childStatus(i) \leftarrow Tick(child(i)) if \sum_{i:childStatus(i)==SUCCESS} \geq M then return SUCCESS else if \sum_{i:childStatus(i)==SUCCESS} > N-M then return FAIL return RUNNING
```

Behavior Trees - Shrnutí

- Komplexní reaktivní chování reagující na aktuální stav světa
- Využívání předpřipravených modelů
- Skládání komponent

- I. Millington: Artificial Intelligence for Games, kap. 5.4
- Colledanchise, Ogren: Behavior Trees in Robotics and Al https://arxiv.org/pdf/1709.00084.pdf

Obsah přednášky

- Úvod AIG 1.1 1.3
- Rozhodování (decision making)
 AIG 5.1 5.4
- Plánování cest
 AIG 4.1 4.3
- Řízení (steering)AIG 3.2 3.4

Plánování cest

Oblasti využití

- Podpora pro Al rozhodování (target reachable?)
- Realizace akce / navádění NPC (steering)

Navigační graf

- Orientovaný ohodnocený graf
- Uzly odpovídají místům v prostoru
- Hrany ohodnoceny vzdáleností, případně náročností přechodu z A do B

Konstrukce navigačních grafů

- Tiling
 - Uzly pravidelné mřížky
 - Quadtree/Octree
- Body viditelnosti (např. středy místností)
- Expandovaná geometrie
- Navigation Mesh
 - Uzly grafu vrcholy pol. sítě (NavMesh Unity)
 - Polygony ohodnoceny vahou (>=1)
 - Off-mesh links (propojení, skoky)

Navigation Mesh - Example

Hledání nejkratší cesty

Dijkstrův algoritmus

- Strom nejmenších vzdáleností z počátečního uzlu s
- Nezáporné ohodnocení hran
- Prohledávání do šířky s prioritní frontou
- O(|e| + |v| log |v|)

A*

- Heuristický odhad vzdálenosti k cíli h(v)
 - Priorita výběru: d(v) + h(v)
- h(v) podhodnocuje vzdálenost přesný výsledek
 - Nejčastěji: Euklidovská vzdálenost od cíle
- Zaměří hledání do smysluplné oblasti
- Většinou výrazně rychlejší než Dijsktrův alg.

- DEMO Dijkstra & A*
 - Mat Buckland. Programming Game AI by Example. Binaries+Sources: https://www.jblearning.com/catalog/productdetails/9781556220784

DEMO

- DEMO Dijkstra & A*
 - Mat Buckland. Programming Game AI by Example. Binaries+Sources: https://www.jblearning.com/catalog/productdetails/9781556220784
- Ohodnoceni hran
 - standardní 26, diagonální 35
 - bahno (x2), voda (x3)

Obsah přednášky

- Úvod AIG 1.1 1.3
- Rozhodování (decision making)
 AIG 5.1 5.4
- Plánování cest
 AIG 4.1 4.3
- Řízení (steering) AIG 3.2 3.4

Řízení (Steering)

Steering

- Podle zvolené strategie chování určit
 - Směr pohybu
 - Rychlost pohybu
- Steering: výpočet řídícího vektoru síly (steering force)
- Locomotion: aplikace steering force
 - Fyzikální simulace / Animace
 - Mapování na steering force skalární signály (např. řízené auto, NPC)

Steering Behaviors – Locomotion

Jednoduchý locomotion model (vozidla / NPC)

```
float mass

Vector3 position

Vector3 orientation[3] // basis vectors (forward, up, side)

Vector3 velocity

float maxForce

float maxSpeed
```

Locomotion

```
steeringForce = truncate(steeringForce, maxForce)
acceleration = steeringForce / mass
velocity = truncate(velocity + acceleration, maxSpeed)
position = position + velocity
If (alignOrientation)
Update orientation basis using velocity as forward vector
```

Hledání a útěk

Hledání (Seek)

desiredVelocity = normalize(target – position)*maxSpeed
steeringForce = desiredVelocity - velocity

- Útěk (Flee)
 - Opačný steering vektor

DEMO

Mat Buckland. Programming Game AI by example. Binaries+Sources: https://www.jblearning.com/catalog/productdetails/9781556220784

Dojíždění

- Dojíždění (Arrive)
- Jako seek, ale zpomaluje

```
targetOffset = target - position
distance = length(targetOffset)
speed = min(maxSpeed*(distance/slowingDistance),
maxSpeed)
desiredVelocity = speed/distance * targetOffset
steeringForce = desiredVelocity - velocity
```

- Skrývání (Hide)
 - Místo za překážkou + arrive
- DEMO

Pronásledování a vyhýbání

- Pronásledování (Pursuit)
 - Seek na predikovanou pozici
- Vyhýbání (Evade)
 - Flee před predikovanou pozicí

- Mezipozice (Interpose)
 - Centroid dvou pozic pronásledovaných + seek
- DEMO

Následování

 Následování vůdce (Leader following / Offset pursuit)

Sledování cesty

- Sledování cesty (Path following)
- Seek na predikovanou pozici na cestě

DEMO

Vyhýbání se kolizi

- Vyhýbání se kolizi (Collision avoidance)
 - Zeď
 - Překážka
- Steering force podle nejbližšího kolidujícího objektu

DEMO

Bloumání

Bloumání (Wander)

- Náhodný inkrement úhlu na kružnici před NPC
- DEMO

Oddělení (Separation)

Zarovnání (Alignment)

Soudržnost (Cohesion)

- Houfování (Flocking)
 - Vážený součet separation, alignment, cohesion
- DEMO

Obsah přednášky

<i>'</i>		
Uvod	AIG 1.1 – 1.	3

Rozhodování (decision making)AIG 5.1 – 5.4

Plánování cest
 AIG 4.1 – 4.3

Řízení (steering)
AIG 3.2 – 3.4

Literatura:

I. Millington, J. Funge. Artificial Intelligence for Games

Mat Buckland. Programming Game AI by Example

D. Mark. Behavioral Mathematics for Game Al

David Mount. Game Programming course notes.

Otázky?