

Reviewed by:

Report No.: EED32L00068901 Page 1 of 70

TEST REPORT

Product WiFi module **Trade mark** wireless-tag

Model/Type reference WT-01F

Serial Number N/A

Report Number : EED32L00068901 FCC ID : 2AFOS-WT-01F

Date of Issue : May 14, 2019

Test Standards 47 CFR Part 15Subpart C

Test result PASS

Prepared for:

Wireless-tag Technology Co., LTD Room 115-118, Building A, ChengshishanhaiCenter, No.11, Zhongxing Road, Bantian Sub-district, Longgang District, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By: Jay Zheng Compiled by: pproved by

Mare Xin

Kevin yang

Date: May 14, 2019 Check No.:3757542804

Page 2 of 70

2 Version

Version No.	Date	Description
00	May 14, 2019	Original

Page 3 of 70

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

4 Content

1 COVER PAGI							
2 VERSION	•••••		•••••		••••••		2
3 TEST SUMM	ARY		•••••	•••••		••••••	3
4 CONTENT		•••••	•••••	••••••	•••••	•••••	4
5 TEST REQUI	REMENT		•••••	•••••		•••••	5
5.1.1 For 0 5.1.2 For F 5.1.3 For 0 5.2 TEST ENV	JP Conducted test Radiated Emiss Conducted Emi IRONMENT	setupsions test setu ssions test se	ptup.				5 6 6
6 GENERAL IN	FORMATION	(6)	•••••				8
6.2 GENERAL 6.3 PRODUCT 6.4 DESCRIPT 6.5 TEST LOC 6.6 DEVIATION 6.7 ABNORMA 6.8 OTHER IN	FORMATION DESCRIPTION COME SPECIFICATION OF SUPPOR ATION	SUBJECTIVE TO SUBJECTIVE TO SUBJECTIVE TO SUBJECTIVE TO SUBJECTIVE TO SUBJECT SUBJECTIVE TO SUBJECT SUBJECTIVE	O THIS STANDA	RD			
7 EQUIPMENT	MENT UNCERTA						
8 RADIO TECH							
Appendix I Appendix I Appendix I Appendix I Appendix I Appendix I Appendix I	A): Conducted B): 6dB Occupi C): Band-edge D): RF Conduc E): Power Spec F): Antenna Re G): AC Power I H): Restricted b): Radiated Sp	ed Bandwidth for RF Conduted Spurious ctral Densityequirementine Conducted ands around	ed Emission fundamental fons	s requency (Ra	adiated)		17 21 31 35 36
PHOTOGRAPH							
PHOTOGRAPH	S OF EUT CO	NSTRUCTIO	NAL DETAILS		••••••	•••••	67

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

It amakes

It all follows:

| Contractor | C

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		(25)		(28)
Temperature:	25°C			(6)
Humidity:	52% RH			
Atmospheric Pressure:	101kPa		489	-0.00

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel				
rest wode	IX/NX	Low(L)	Middle(M)	High(H)		
000 44h /~/~/UIT00)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11		
802.11b/g/n(HT20)		2412MHz	2437MHz	2462MHz		
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.					

Page 7 of 70

Test mode:

Pre-scan under all rate at lowest channel 1

Mode Data Rate			8	02.11b		- ((6)	
		1Mbp	s 2Mbp	s 5.5MI	ops	11Mbp	s			
Power(dBm)		17.15	17.22	2 17.3	31	17.37				
Mode						80:	2.11g			
Data Rate		6Mbp	s 9Mbp	s 12Mb	ps	18Mbps	24Mbps	s 36Mbps	48Mbps	54Mbps
Power(dBm)	16.44	16.3	3 16.2	21	16.15	16.09	16.01	15.92	15.86
Mode				•		802.11n	(HT20)			
Data Rate	6.5	Mbps	13Mbps	19.5Mbp	os 2	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	1	5.54	15.47	15.42		15.33	15.27	15.21	15.17	15.10

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);.

Page 8 of 70

6 General Information

6.1 Client Information

Applicant:	Wireless-tag Technology Co., LTD				
Address of Applicant:	Room 115-118, Building A, ChengshishanhaiCenter, No.11, Zhongxing Road, Bantian Sub-district, Longgang District, Shenzhen Wireless-tag Technology Co., LTD				
Manufacturer:					
Address of Manufacturer:	Room 115-118, Building A, ChengshishanhaiCenter, No.11, Zhongxing Road, Bantian Sub-district, Longgang District, Shenzhen				
Factory:	Wireless-tag Technology Co., LTD				
Address of Factory:	Room 115-118, Building A, ChengshishanhaiCenter, No.11, Zhongxing Road, Bantian Sub-district, Longgang District, Shenzhen				

6.2 General Description of EUT

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1, 278, 71	
Product Name:	WiFi module	6.
Model No.(EUT):	WT-01E	
Trade Mark:	wireless-tag	
EUT Supports Radios application:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz	(41)
Power Supply:	DC 3.3V	
Sample Received Date:	Mar. 29, 2019	
Sample tested Date:	Apr. 04, 2019 to May 07, 2019	-05

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz	
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels	
Channel Separation:	5MHz	100
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM, QPSK,BPSK)	6
Test Power Grade:	N/A	
Test Software of EUT:	ESP Series Modules FCC & CE Test Tool V2.2.3.exe (manufacturer declare)	
Antenna Type and Gain:	Antenna Type: Spring Antenna, Antenna Gain: 2.5dBi	
Test Voltage:	DC 3.3V	

Operation Frequency each of channel(802.11b/g/n HT20)									
)	Channel Frequency Channel Frequency Channel Fr						Channel	Frequency	
	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
	3	2422MHz	6	2437MHz	9	2452MHz	(20)	ν.	

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
2	Kr power, conducted	0.55dB (1GHz-18GHz)
3	Radiated Courieus amission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

F 20 75. 3		RF test sy	vstem		F - 10 - 70 - 1
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(4	01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

	Cond	ducted disturba	nce Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Temperature/ Humidity Indicator	Defu	TH128		07-02-2018	07-01-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020

01-08-2020

01-09-2019

Report No.: EED32L00068901

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

FL5CX02CA0

3CL12-0394-

001

Sinoscite

band rejection filter

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

esi kesulis List.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Appendix A): Conducted Peak Output Power

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	17.37	PASS
11B	MCH	18.57	PASS
11B	HCH	18.52	PASS
11G	LCH	16.44	PASS
11G	MCH	16.98	PASS
11G	HCH	17.44	PASS
11N20SISO	LCH	15.54	PASS
11N20SISO	MCH	15.98	PASS
11N20SISO	НСН	16.42	PASS

Test Graph

Page 15 of 70

Page 16 of 70

Page 17 of 70

Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	8.080	10.664	PASS
11B	MCH	8.545	11.749	PASS
11B	нсн	8.062	11.908	PASS
11G	LCH	15.68	16.208	PASS
11G	MCH	15.68	16.207	PASS
11G	НСН	15.68	16.206	PASS
11N20SISO	LCH	15.39	17.056	PASS
11N20SISO	MCH	15.41	17.059	PASS
11N20SISO	НСН	15.39	17.043	PASS

Test Graph

Page 19 of 70

Page 21 of 70

Appendix C): Band-edge for RF Conducted Emissions Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	6.204	-48.978	-23.8	PASS
11B	НСН	6.926	-45.091	-23.07	PASS
11G	LCH	-2.227	-49.618	-32.23	PASS
11G	НСН	-1.267	-48.412	-31.27	PASS
11N20SISO	LCH	-3.173	-48.416	-33.17	PASS
11N20SISO	НСН	-2.102	-49.001	-32.1	PASS

Test Graph

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	5.876	<limit< td=""><td>PASS</td></limit<>	PASS
11B	МСН	7.098	<limit< td=""><td>PASS</td></limit<>	PASS
11B	HCH	7.01	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-2.331	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-1.876	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	-1.277	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-3.188	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-2.647	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	нсн	-2.165	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

Page 31 of 70

Appendix E): Power Spectral Density

Result Table

		100 /	
Mode	Channel	Power Spectral Density [dBm]	Verdict
11B	LCH	-8.818	PASS
11B	MCH	-6.992	PASS
11B	HCH	-7.368	PASS
11G	LCH	-16.657	PASS
11G	MCH	-16.607	PASS
11G	HCH	-16.107	PASS
11N20SISO	LCH	-18.240	PASS
11N20SISO	MCH	-17.650	PASS
11N20SISO	НСН	-16.744	PASS

Test Graph

Page 33 of 70

Page 34 of 70

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Spring Antenna and no consideration of replacement. The best case gain of the antenna is 2.5dBi.

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-1)The mains terminal disturban		conducted in a shielde	ad room
	 2) The EUT was connected to Stabilization Network) which power cables of all other which was bonded to the graph the unit being measured. A power cables to a single LIS exceeded. 3)The tabletop EUT was place reference plane. And for flace horizontal ground reference. 4) The test was performed with shall be 0.4 m from the reference plane was bonded was placed 0.8 m from the 	o AC power source to he provides a 50Ω/5 units of the EUT were round reference plane multiple socket outle SN provided the rating ced upon a non-meta cor-standing arrange e plane, in a vertical ground refered to the horizontal groundary of the unit	through a LISN 1 (Line) (DμH + 5Ω linear impression in the same way as at strip was used to concern the LISN was not sallic table 0.8m abovement, the EUT was afterence plane. The represence plane. The variound reference plane under test and bonder test	ne Impedance pedance. The econd LISN 2, the LISN 1 for onnect multiple we the ground placed on the ear of the EUT ertical ground e. The LISN 1
	distance was between the of the EUT and associated 5) In order to find the maximum	closest points of the I equipment was at lea n emission, the relativ	st 0.8 m from the LIS re positions of equipr	All other units N 2. ment and all of
	distance was between the of the EUT and associated	closest points of the I equipment was at lea n emission, the relativ	LISN 1 and the EUT. st 0.8 m from the LIS ve positions of equipr	All other units N 2. ment and all of
Limit:	distance was between the of the EUT and associated 5) In order to find the maximum the interface cables must	closest points of the I equipment was at lea n emission, the relativ be changed accordi	LISN 1 and the EUT. est 0.8 m from the LIS e positions of equipr ng to ANSI C63.10	All other units N 2. ment and all of
Limit:	distance was between the of the EUT and associated 5) In order to find the maximum the interface cables must measurement.	closest points of the I equipment was at lea n emission, the relativ	LISN 1 and the EUT. est 0.8 m from the LIS e positions of equipr ng to ANSI C63.10	All other units N 2. ment and all of
Limit:	distance was between the of the EUT and associated 5) In order to find the maximum the interface cables must	closest points of the I equipment was at lea n emission, the relativ be changed accordi	LISN 1 and the EUT. est 0.8 m from the LIS e positions of equipr ng to ANSI C63.10	All other units N 2. ment and all of
Limit:	distance was between the of the EUT and associated 5) In order to find the maximum the interface cables must measurement.	closest points of the I equipment was at lea n emission, the relativ be changed accordi	LISN 1 and the EUT. st 0.8 m from the LIS ve positions of equipr ng to ANSI C63.10	All other units N 2. ment and all of
Limit:	distance was between the of the EUT and associated 5) In order to find the maximum the interface cables must measurement. Frequency range (MHz)	closest points of the I equipment was at lea n emission, the relativ be changed accordi Limit (c	LISN 1 and the EUT. est 0.8 m from the LIS ve positions of equipr ng to ANSI C63.10 dBµV) Average	All other units N 2. ment and all of
Limit:	distance was between the of the EUT and associated 5) In order to find the maximum the interface cables must measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30	closest points of the I equipment was at lea n emission, the relativ be changed accordi Limit (c) Quasi-peak 66 to 56* 56 60	LISN 1 and the EUT. 1st 0.8 m from the LIS 1/e positions of equipring to ANSI C63.10 DBHV) Average 56 to 46* 46 50	All other units N 2. ment and all of on conducted
Limit:	distance was between the of the EUT and associated 5) In order to find the maximum the interface cables must measurement. Frequency range (MHz) 0.15-0.5 0.5-5	closest points of the I equipment was at lea n emission, the relative be changed according Limit (continue) Quasi-peak 66 to 56* 56 60 with the logarithm of the I equipment was at lea not lead to the I equipment of I e	LISN 1 and the EUT. Ist 0.8 m from the LIS Ive positions of equipring to ANSI C63.10 dBµV) Average 56 to 46* 46 50 The frequency in the rains of the second secon	All other units N 2. ment and all of on conducted

Page 37 of 70

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 38 of 70

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dB			rgin iB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1539	33.34	30.45	-2.15	9.91	43.25	40.36	7.76	65.78	55.78	-25.42	-48.02	Р	
2	0.2260	33.18	30.75	-3.21	9.93	43.11	40.68	6.72	62.59	52.59	-21.91	-45.87	Ρ	
3	0.2860	32.01	29.63	-2.21	9.99	42.00	39.62	7.78	60.64	50.64	-21.02	-42.86	Ρ	
4	0.4780	25.05	22.74	-8.36	9.89	34.94	32.63	1.53	56.37	46.37	-23.74	-44.84	Ρ	
5	0.5780	21.55	18.69	-8.72	10.02	31.57	28.71	1.30	56.00	46.00	-27.29	-44.70	Ρ	
6	26.3980	8.75	3.20	-4.52	9.94	18.69	13.14	5.42	60.00	50.00	-46.86	-44.58	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

(Radiated)	(2)	/3			-:5	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	-0-
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aner determine the position. b. The EUT was set 3 me was mounted on the to. c. The antenna height is determine the maximular polarizations of the and. d. For each suspected enthe antenna was tuned was turned from 0 deg. e. The test-receiver system Bandwidth with Maximular f. Place a marker at the frequency to show combands. Save the spect for lowest and highest. Above 1GHz test proced. g. Different between about of fully Anechoic Chaman 18GHz the distance is h. Test the EUT in the load. The radiation measure Transmitting mode, and j. Repeat above procedure.	on the top of a rochoic camber. The of the highest raters away from op of a variable-houried from one on value of the fittenna are set to mission, the EUT of to heights from the fittenna are set to mission, the EUT of the heights from the fittenna are set to mission, the EUT of the heights from the fittenna are set to mission, the EUT of the heights from the fittenna are set to Personal Mode. The heights from the restrict of the restrict of the test site of the heights are performed to the fittenna are performed found the X axis are suntil all frequence.	ne table was adiation. The interfer neight ante meter to found the interfer make the reason and the interfer to rees to find the interfer to reason and the	rence-receinna tower. Four meters h. Both hor measurement ged to its to 4 meters the maxin Function a closest to the closest to the meter to 1 eter). channel Y, Z axis p ing which i	above the grant above the grant and vent. worst case are and the rotate and reading. In the restrict ower and modern and modern and modern and specified and specified are transmit as in the restrict ower and modern and	, which bund to ertical ad then able cted dulation amber ove
Little.	Frequency	Limit (dBµV/	\		mark	
	30MHz-88MHz	40.0	/		eak Value	
	88MHz-216MHz	43.5		•	eak Value	
	216MHz-960MHz	46.0		·	eak Value	
	960MHz-1GHz	54.0			eak Value	
	Above 1GHz	54.0	16	-	ge Value	
1		74.0) //		Value	(A)
Temperature:	25℃	Humidity:		52%		

Page 40 of 70

Test plot as follows:

	Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
1	Remark:	PK	70	

Test Graph

Ant Cable Pream Freq. Reading Level Limit Margin NO Factor loss Result **Polarity** gain [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 2390.0000 32.25 13.37 -42.44 53.50 20.50 50.32 74.00 **Pass** Horizontal 1 2 2413.1977 32.28 13.36 -42.43 96.78 99.99 74.00 -25.99 **Pass** Horizontal

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	PK	2.4	

Test Graph

PK Detector

· AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.88	54.06	74.00	19.94	Pass	Vertical
2	2413.1977	32.28	13.36	-42.43	95.46	98.67	74.00	-24.67	Pass	Vertical

Page 41 of 70

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	39.54	42.72	54.00	11.28	Pass	Horizontal
2	2412.4781	32.28	13.36	-42.43	92.63	95.84	54.00	-41.84	Pass	Horizontal

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

4	PK Detector	 AV Det 	actor
_	Ant	Cable	Pre

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2388.8736	32.24	13.38	-42.43	39.16	42.35	54.00	11.65	Pass	Vertical
2	2390.0000	32.25	13.37	-42.44	39.07	42.25	54.00	11.75	Pass	Vertical
3	2412.4781	32.28	13.36	-42.43	90.36	93.57	54.00	-39.57	Pass	Vertical

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	PK	30	

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.7835	32.35	13.48	-42.41	97.28	100.70	74.00	-26.70	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.96	53.32	74.00	20.68	Pass	Horizontal

Mode: 802.11 b(11Mbps) Transmitting Channel: 2462

Remark: PK

Test Graph

PK Detector

· AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.0013	32.35	13.48	-42.41	96.88	100.30	74.00	-26.30	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	50.36	53.72	74.00	20.28	Pass	Vertical

Page 43 of 70

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.2190	32.35	13.48	-42.41	92.08	95.50	54.00	-41.50	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	41.49	44.85	54.00	9.15	Pass	Horizontal

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.2190	32.35	13.48	-42.41	90.93	94.35	54.00	-40.35	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	41.17	44.53	54.00	9.47	Pass	Vertical

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK	20	

Ant Cable Pream Freq. Reading Level Limit Margin NO Factor loss Result **Polarity** gain [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 2390.0000 32.25 -42.44 54.19 74.00 13.37 51.01 19.81 **Pass** 1 Horizontal 2 2417.6596 32.28 13.38 -42.42 97.28 100.52 74.00 -26.52 **Pass** Horizontal

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

PK Detector

· AV Detector

N	Ю	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	50.73	53.91	74.00	20.09	Pass	Vertical
-	2	2/1// //031	32.28	13 37	-12 13	06.23	99.45	74.00	-25.45	Page	Vertical

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	40.33	43.51	54.00	10.49	Pass	Horizontal
2	2412.1902	32.28	13.36	-42.44	86.88	90.08	54.00	-36.08	Pass	Horizontal

802.11 g(6Mbps) Transmitting 2412 Mode: Channel: Remark: ΑV **Test Graph** FCC PART 15C 100 90 60 40 30 20 10 2.31G 2.3675G 2.379G 2.3905G 2.425G Frequency[Hz] - PK Limit - AV Limit - Vertical PK # PK Detector # AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	39.52	42.70	54.00	11.30	Pass	Vertical
2	2412.1902	32.28	13.36	-42.44	84.58	87.78	54.00	-33.78	Pass	Vertical

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2467.7522	32.35	13.45	-42.40	97.53	100.93	74.00	-26.93	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	52.35	55.71	74.00	18.29	Pass	Horizontal

	Mode:	802.1	802.11 g(6Mbps) Transmitting					Channel: 2			2462		
	Remark:	PK			2			12					
st G	raph	1		12			1	4/1					
	120	-		i e	FCC PAR	T 15C	- 1			1	-		
	110			ļ									
	100												
	90		-)										
	80			\									
E	70												
STA	Section of the sectio			Low									
Level[dBµV/m]	60				No. of Contract	-							
5	50			1			1			Ì			
	40			†									
	30			<u> </u>						<u> </u>			
	20			<u> </u>				-					
	10			1									
	2.452G	2.46	58G 24	716G 2	4774G	2.4832G	2.489G	2.49480	2.50	006G	2.500	64G	
		0.000.000			Frequenc								

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2456.6458	32.34	13.50	-42.41	97.69	101.12	74.00	-27.12	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	53.33	56.69	74.00	17.31	Pass	Vertical

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.3805	32.35	13.47	-42.41	85.84	89.25	54.00	-35.25	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	41.83	45.19	54.00	8.81	Pass	Horizontal

	Mode:	802.11 (g(6Mbps	s) Trans	mitting		Channel:	2462	
	Remark:	AV		10			100		
Test C	Graph	1		124	21		(28)	0)	- /
	120		-		FCC PART	15C			
	110								
	100								
	90	- +							
E,	80		1	(0.10.10.10.10.10.10.10.10.10.10.10.10.10					
Leve[dBµV/m]	70		1	WWW.WWW					
	60		1	V.					
Leye	50					m ²			
	40								
	30		-			-			
	20								
	10								
	0								
	2.452G	2.46580	2.471	6G 2.47			2.489G 2.49	48G 2.5006G	2.5064G
					Frequency	[Hz]			
		AV Limit	- Ver	tical PK					
	# PK Detector	 AV Detector 	OL.						

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.3079	32.35	13.47	-42.41	85.33	88.74	54.00	-34.74	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	42.03	45.39	54.00	8.61	Pass	Vertical

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.73	53.91	74.00	20.09	Pass	Horizontal
2	2414.6370	32.28	13.37	-42.43	95.22	98.44	74.00	-24.44	Pass	Horizontal

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.53	53.71	74.00	20.29	Pass	Vertical
2	2414.4931	32.28	13.37	-42.43	93.25	96.47	74.00	-22.47	Pass	Vertical

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	39.95	43.13	54.00	10.87	Pass	Horizontal
2	2412.1902	32.28	13.36	-42.44	83.62	86.82	54.00	-32.82	Pass	Horizontal

	Mode:	802.11	n(HT2	0) (6.5N	1bps) T	ransm	nitting		Chanı	nel:	2412		
	Remark:	AV							- 3	1			
est C	Graph	(3)			12	601			- (1			
	120	-	100	-		FCC PA	RT 15C	-	-		-	-	
	110												
	100												
	90												
	80												
[mg	70										/		
Level[dBµV/m]	60										1		
evel	50										4		-
-1	40		-	_					es 1		4		
	30												
	20												
	10		-										
	0										1		
	2.31G 2.	3215G 2	333G	2.3445G	2.356G	Frequer	75G	2.379G	2.3905)G 2	.402G	2.4135	G 2.42

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	39.20	42.38	54.00	11.62	Pass	Vertical
2	2412.0463	32.28	13.36	-42.44	80.75	83.95	54.00	-29.95	Pass	Vertical

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2464.6308	32.35	13.46	-42.40	95.27	98.68	74.00	-24.68	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	50.71	54.07	74.00	19.93	Pass	Horizontal

Remark: raph	PK		10		•		•		
120				2		(20)	1		
		_		FCC PART 15	ic			_	-
110									
		-							
- V									
			1						
			1						1
			7		2				
50		<u> </u>				†			1
40						tt			-
30		+				 			
20						 			
10						-			-
0	21	L) 2021 1200					
2.452G	2.4	658G 2.47	16G 2.47			189G 2.4941	8G 2.50	106G 2.5	064G
PK Lir	mit — AV Li	mit — V	ertical PK	Frequency[H:	z]				
	90 90 80 70 60 50 40 30 20 10 0 2.452G	90 90 80 70 60 50 40 30 20 10 0 2.452G 2.4	90 90 80 70 60 50 40 30 20 10 0 2.452G 2.4658G 2.47 — PK Limit — AV Limit — Ve	90 80 70 60 50 40 30 20 10 0 0 2.452G 2.4658G 2.4716G 2.47	90 90 80 70 60 50 40 30 20 10 0 2.452G 2.4658G 2.4716G 2.4774G 2.48 Frequency(H:	000 90 80 70 60 50 40 30 20 10 0 0 2.452G 2.4658G 2.4716G 2.4774G 2.4832G 2.4 Frequency[Hz] — PK Limit — AV Limit — Vertical PK	90 80 70 60 50 40 30 20 10 0 0 2.452G 2.4658G 2.4716G 2.4774G 2.4832G 2.489G 2.494 Frequency[Hz] — PK Limit — AV Limit — Vertical PK	90 80 70 60 50 40 30 20 10 00 2.452G 2.4658G 2.4716G 2.4774G 2.4832G 2.489G 2.4948G 2.50 Frequency[Hz] — PK Limit — AV Limit — Vertical PK	90 80 70 60 50 40 30 20 10 0 0 2.452G 2.4658G 2.4716G 2.4774G 2.4832G 2.489G 2.4948G 2.5006G 2.50 Frequency[Hz] — PK Limit — AV Limit — Vertical PK

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2458.0976	32.34	13.49	-42.40	93.07	96.50	74.00	-22.50	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	50.61	53.97	74.00	20.03	Pass	Vertical

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.2353	32.35	13.47	-42.41	83.39	86.80	54.00	-32.80	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	41.64	45.00	54.00	9.00	Pass	Horizontal

Mode: 802.11 n(HT20) (6.5Mbps) Transmitting Channel: 2462 Remark: ΑV Test Graph FCC PART 150 110 100 90 80 70 60 50 40 30 10 2.452G 2.4716G 2.4832G Frequency[Hz] - PK Limit AV Limit Vertical PK

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.1627	32.35	13.47	-42.41	81.13	84.54	54.00	-30.54	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	41.35	44.71	54.00	9.29	Pass	Vertical

· AV Detector

PK Detector

Page 52 of 70

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver	Setu	p:
----------	------	----

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Ab ave 4015	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)..
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

. Repeat above procedures until all frequencies measured was complete

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	/°5	30
	1.705MHz-30MHz	30	-	(35)	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Temperature: 25°C | Humidity: 52%

Page 54 of 70

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:			

Sus	pected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	37.5668	11.52	0.69	-32.12	37.34	17.43	40.00	22.57	Pass	Horizonta
2	159.9930	7.90	1.47	-31.98	52.92	30.31	43.50	13.19	Pass	Horizonta
3	192.0062	10.14	1.62	-31.96	51.22	31.02	43.50	12.48	Pass	Horizonta
4	320.0590	13.64	2.12	-31.83	49.48	33.41	46.00	12.59	Pass	Horizonta
5	408.0468	15.53	2.41	-31.82	49.95	36.07	46.00	9.93	Pass	Horizonta
6	456.0666	16.30	2.54	-31.86	49.21	36.19	46.00	9.81	Pass	Horizonta

Mode:	(0)	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:				

Susp	ected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	55.3195	12.35	0.84	-32.07	39.79	20.91	40.00	19.09	Pass	Vertical
2	208.8859	11.13	1.71	-31.94	46.33	27.23	43.50	16.27	Pass	Vertical
3	320.0590	13.64	2.12	-31.83	44.88	28.81	46.00	17.19	Pass	Vertical
4	407.9498	15.53	2.41	-31.82	41.90	28.02	46.00	17.98	Pass	Vertical
5	600.0290	19.00	2.96	-31.99	41.52	31.49	46.00	14.51	Pass	Vertical
6	995.2465	22.67	3.79	-30.73	37.39	33.12	54.00	20.88	Pass	Vertical

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2437	
Remark:				

Susp	pected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	159.9930	7.90	1.47	-31.98	52.47	29.86	43.50	13.64	Pass	Horizonta
2	192.0062	10.14	1.62	-31.96	51.57	31.37	43.50	12.13	Pass	Horizonta
3	320.0590	13.64	2.12	-31.83	50.06	33.99	46.00	12.01	Pass	Horizonta
4	456.0666	16.30	2.54	-31.86	48.23	35.21	46.00	10.79	Pass	Horizonta
5	600.0290	19.00	2.96	-31.99	42.67	32.64	46.00	13.36	Pass	Horizonta
6	908.0348	22.15	3.60	-31.50	41.55	35.80	46.00	10.20	Pass	Horizonta

Page 55 of 70

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2437
Remark:		(20)	•

	Susp	pected List									
2	ОИ	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
3	1	55.2225	12.36	0.84	-32.07	38.29	19.42	40.00	20.58	Pass	Vertical
	2	67.7368	9.59	0.94	-32.05	40.09	18.57	40.00	21.43	Pass	Vertical
	3	208.8859	11.13	1.71	-31.94	46.18	27.08	43.50	16.42	Pass	Vertical
	4	320.0590	13.64	2.12	-31.83	44.13	28.06	46.00	17.94	Pass	Vertical
	5	408.0468	15.53	2.41	-31.82	41.72	27.84	46.00	18.16	Pass	Vertical
	6	974.9715	22.55	3.75	-30.95	37.79	33.14	54.00	20.86	Pass	Vertical

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:			

ected List									
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
37.6638	11.55	0.69	-32.11	37.05	17.18	40.00	22.82	Pass	Horizonta
159.9930	7.90	1.47	-31.98	53.15	30.54	43.50	12.96	Pass	Horizonta
192.0062	10.14	1.62	-31.96	51.59	31.39	43.50	12.11	Pass	Horizonta
320.0590	13.64	2.12	-31.83	50.34	34.27	46.00	11.73	Pass	Horizonta
480.0280	16.68	2.61	-31.90	48.66	36.05	46.00	9.95	Pass	Horizonta
974.9715	22.55	3.75	-30.95	39.22	34.57	54.00	19.43	Pass	Horizonta
	Freq. [MHz] 37.6638 159.9930 192.0062 320.0590 480.0280	Freq. [MHz] Ant Factor [dB] 37.6638 11.55 159.9930 7.90 192.0062 10.14 320.0590 13.64 480.0280 16.68	Freq. [MHz] Ant Factor [dB] Cable loss [dB] 37.6638 11.55 0.69 159.9930 7.90 1.47 192.0062 10.14 1.62 320.0590 13.64 2.12 480.0280 16.68 2.61	Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] 37.6638 11.55 0.69 -32.11 159.9930 7.90 1.47 -31.98 192.0062 10.14 1.62 -31.96 320.0590 13.64 2.12 -31.83 480.0280 16.68 2.61 -31.90	Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV] 37.6638 11.55 0.69 -32.11 37.05 159.9930 7.90 1.47 -31.98 53.15 192.0062 10.14 1.62 -31.96 51.59 320.0590 13.64 2.12 -31.83 50.34 480.0280 16.68 2.61 -31.90 48.66	Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV] Level [dBμV/m] 37.6638 11.55 0.69 -32.11 37.05 17.18 159.9930 7.90 1.47 -31.98 53.15 30.54 192.0062 10.14 1.62 -31.96 51.59 31.39 320.0590 13.64 2.12 -31.83 50.34 34.27 480.0280 16.68 2.61 -31.90 48.66 36.05	Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] 37.6638 11.55 0.69 -32.11 37.05 17.18 40.00 159.9930 7.90 1.47 -31.98 53.15 30.54 43.50 192.0062 10.14 1.62 -31.96 51.59 31.39 43.50 320.0590 13.64 2.12 -31.83 50.34 34.27 46.00 480.0280 16.68 2.61 -31.90 48.66 36.05 46.00	Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Magin [dB] 37.6638 11.55 0.69 -32.11 37.05 17.18 40.00 22.82 159.9930 7.90 1.47 -31.98 53.15 30.54 43.50 12.96 192.0062 10.14 1.62 -31.96 51.59 31.39 43.50 12.11 320.0590 13.64 2.12 -31.83 50.34 34.27 46.00 11.73 480.0280 16.68 2.61 -31.90 48.66 36.05 46.00 9.95	Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Magin [dB] Result 37.6638 11.55 0.69 -32.11 37.05 17.18 40.00 22.82 Pass 159.9930 7.90 1.47 -31.98 53.15 30.54 43.50 12.96 Pass 192.0062 10.14 1.62 -31.96 51.59 31.39 43.50 12.11 Pass 320.0590 13.64 2.12 -31.83 50.34 34.27 46.00 11.73 Pass 480.0280 16.68 2.61 -31.90 48.66 36.05 46.00 9.95 Pass

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462	
Remark:		(.4)	1	

Sus	pected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	54.5435	12.47	0.84	-32.08	38.42	19.65	40.00	20.35	Pass	Vertical
2	208.8859	11.13	1.71	-31.94	46.71	27.61	43.50	15.89	Pass	Vertical
3	320.0590	13.64	2.12	-31.83	44.11	28.04	46.00	17.96	Pass	Vertical
4	480.0280	16.68	2.61	-31.90	41.95	29.34	46.00	16.66	Pass	Vertical
5	974.9715	22.55	3.75	-30.95	39.20	34.55	54.00	19.45	Pass	Vertical

Page 56 of 70

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:)

Sı	spected List									
N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	159.9930	7.90	1.47	-31.98	52.73	30.12	43.50	13.38	Pass	Horizonta
2	192.0062	10.14	1.62	-31.96	51.40	31.20	43.50	12.30	Pass	Horizonta
3	320.0590	13.64	2.12	-31.83	49.89	33.82	46.00	12.18	Pass	Horizonta
4	408.0468	15.53	2.41	-31.82	49.90	36.02	46.00	9.98	Pass	Horizonta
5	480.0280	16.68	2.61	-31.90	48.09	35.48	46.00	10.52	Pass	Horizonta
6	974.9715	22.55	3.75	-30.95	38.20	33.55	54.00	20.45	Pass	Horizonta

Mode:	215	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:				

Susp	pected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	57.1627	12.05	0.87	-32.06	41.44	22.30	40.00	17.70	Pass	Vertical
2	120.0250	9.20	1.30	-32.07	41.69	20.12	43.50	23.38	Pass	Vertical
3	208.8859	11.13	1.71	-31.94	46.46	27.36	43.50	16.14	Pass	Vertical
4	320.0590	13.64	2.12	-31.83	44.85	28.78	46.00	17.22	Pass	Vertical
5	408.0468	15.53	2.41	-31.82	42.76	28.88	46.00	17.12	Pass	Vertical
6	600.0290	19.00	2.96	-31.99	41.72	31.69	46.00	14.31	Pass	Vertical

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2437
Remark:			

S	usp	ected List									
N	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	96.0636	10.37	1.13	-32.07	41.03	20.46	43.50	23.04	Pass	Horizonta
	2	159.9930	7.90	1.47	-31.98	52.71	30.10	43.50	13.40	Pass	Horizonta
	3	192.0062	10.14	1.62	-31.96	51.57	31.37	43.50	12.13	Pass	Horizonta
	4	320.0590	13.64	2.12	-31.83	50.51	34.44	46.00	11.56	Pass	Horizonta
	5	456.0666	16.30	2.54	-31.86	48.09	35.07	46.00	10.93	Pass	Horizonta
	6	600.0290	19.00	2.96	-31.99	43.14	33.11	46.00	12.89	Pass	Horizonta

Page 57 of 70

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2437
Remark:)

	Susp	ected List									
276	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
5	1	57.1627	12.05	0.87	-32.06	42.33	23.19	40.00	16.81	Pass	Vertical
	2	208.8859	11.13	1.71	-31.94	46.92	27.82	43.50	15.68	Pass	Vertical
	3	320.0590	13.64	2.12	-31.83	44.31	28.24	46.00	17.76	Pass	Vertical
	4	456.0666	16.30	2.54	-31.86	41.56	28.54	46.00	17.46	Pass	Vertical
	5	600.0290	19.00	2.96	-31.99	41.74	31.71	46.00	14.29	Pass	Vertical
	6	974.9715	22.55	3.75	-30.95	38.73	34.08	54.00	19.92	Pass	Vertical

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:		(3/1)	

Susp	ected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	159.9930	7.90	1.47	-31.98	52.53	29.92	43.50	13.58	Pass	Horizonta
2	192.0062	10.14	1.62	-31.96	51.65	31.45	43.50	12.05	Pass	Horizonta
3	320.0590	13.64	2.12	-31.83	49.79	33.72	46.00	12.28	Pass	Horizonta
4	408.0468	15.53	2.41	-31.82	48.44	34.56	46.00	11.44	Pass	Horizonta
5	480.0280	16.68	2.61	-31.90	47.73	35.12	46.00	10.88	Pass	Horizonta
6	974.9715	22.55	3.75	-30.95	38.18	33.53	54.00	20.47	Pass	Horizonta

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:		(4)	

S	Susp	ected List									
١	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	57.2597	12.04	0.87	-32.07	42.32	23.16	40.00	16.84	Pass	Vertical
	2	208.8859	11.13	1.71	-31.94	47.06	27.96	43.50	15.54	Pass	Vertical
	3	319.9620	13.64	2.12	-31.83	44.68	28.61	46.00	17.39	Pass	Vertical
	4	480.0280	16.68	2.61	-31.90	40.25	27.64	46.00	18.36	Pass	Vertical
	5	600.0290	19.00	2.96	-31.99	41.78	31.75	46.00	14.25	Pass	Vertical
	6	974.9715	22.55	3.75	-30.95	38.37	33.72	54.00	20.28	Pass	Vertical

Page 58 of 70

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	(25)		

Su	spected List									
NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	96.0636	10.37	1.13	-32.07	41.14	20.57	43.50	22.93	Pass	Horizonta
2	159.9930	7.90	1.47	-31.98	52.63	30.02	43.50	13.48	Pass	Horizonta
3	192.0062	10.14	1.62	-31.96	52.11	31.91	43.50	11.59	Pass	Horizonta
4	320.0590	13.64	2.12	-31.83	50.25	34.18	46.00	11.82	Pass	Horizonta
5	456.0666	16.30	2.54	-31.86	47.95	34.93	46.00	11.07	Pass	Horizonta
6	600.1260	19.00	2.96	-31.99	41.13	31.10	46.00	14.90	Pass	Horizonta

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:			

Susp	pected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	57.1627	12.05	0.87	-32.06	41.24	22.10	40.00	17.90	Pass	Vertical
2	208.8859	11.13	1.71	-31.94	46.92	27.82	43.50	15.68	Pass	Vertical
3	320.0590	13.64	2.12	-31.83	43.94	27.87	46.00	18.13	Pass	Vertical
4	408.0468	15.53	2.41	-31.82	43.87	29.99	46.00	16.01	Pass	Vertical
5	480.0280	16.68	2.61	-31.90	41.61	29.00	46.00	17.00	Pass	Vertical
6	974.9715	22.55	3.75	-30.95	38.09	33.44	54.00	20.56	Pass	Vertical

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2437
Remark:		(30)	

Su	spected List									
NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	96.0636	10.37	1.13	-32.07	41.36	20.79	43.50	22.71	Pass	Horizonta
2	126.0396	8.29	1.32	-32.04	47.66	25.23	43.50	18.27	Pass	Horizonta
3	159.9930	7.90	1.47	-31.98	52.45	29.84	43.50	13.66	Pass	Horizonta
4	192.0062	10.14	1.62	-31.96	51.44	31.24	43.50	12.26	Pass	Horizonta
5	320.0590	13.64	2.12	-31.83	49.85	33.78	46.00	12.22	Pass	Horizonta
6	456.0666	16.30	2.54	-31.86	48.96	35.94	46.00	10.06	Pass	Horizonta

Page 59 of 70

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2437
Remark:)

Sus	pected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	55.0285	12.40	0.84	-32.08	38.75	19.91	40.00	20.09	Pass	Vertical
2	67.3487	9.69	0.93	-32.04	40.43	19.01	40.00	20.99	Pass	Vertical
3	208.8859	11.13	1.71	-31.94	46.58	27.48	43.50	16.02	Pass	Vertical
4	320.0590	13.64	2.12	-31.83	43.98	27.91	46.00	18.09	Pass	Vertical
5	408.0468	15.53	2.41	-31.82	41.70	27.82	46.00	18.18	Pass	Vertical
6	974.9715	22.55	3.75	-30.95	38.65	34.00	54.00	20.00	Pass	Vertical

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:			

Susp	pected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	96.0636	10.37	1.13	-32.07	41.25	20.68	43.50	22.82	Pass	Horizonta
2	159.9930	7.90	1.47	-31.98	52.51	29.90	43.50	13.60	Pass	Horizonta
3	192.0062	10.14	1.62	-31.96	51.96	31.76	43.50	11.74	Pass	Horizonta
4	240.0260	11.94	1.84	-31.90	46.85	28.73	46.00	17.27	Pass	Horizonta
5	320.0590	13.64	2.12	-31.83	50.02	33.95	46.00	12.05	Pass	Horizonta
6	504.0864	17.08	2.68	-31.92	46.17	34.01	46.00	11.99	Pass	Horizonta

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:		(30)	

S	Susp	ected List									
١	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	55.6106	12.30	0.85	-32.08	39.23	20.30	40.00	19.70	Pass	Vertical
	2	120.0250	9.20	1.30	-32.07	41.28	19.71	43.50	23.79	Pass	Vertical
	3	208.8859	11.13	1.71	-31.94	46.27	27.17	43.50	16.33	Pass	Vertical
	4	320.0590	13.64	2.12	-31.83	45.47	29.40	46.00	16.60	Pass	Vertical
	5	408.0468	15.53	2.41	-31.82	42.03	28.15	46.00	17.85	Pass	Vertical
	6	974.9715	22.55	3.75	-30.95	37.43	32.78	54.00	21.22	Pass	Vertical

Page 60 of 70

Transmitter Emission above 1GHz

Mode	e:		802.11	b(11Mbps	s) Transmitt	ting	Channel: 2412				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
1	1793.6794	30.34	3.31	-42.71	59.75	50.69	74.00	23.31	Pass	Н	PK
2	1999.0999	31.69	3.47	-42.61	57.12	49.67	74.00	24.33	Pass	Н	PK
3	2996.1996	33.19	4.54	-42.12	53.10	48.71	74.00	25.29	Pass	Н	PK
4	4824.0000	34.50	4.61	-40.65	59.35	57.81	74.00	16.19	Pass	Н	PK
5	7236.0000	36.34	5.79	-40.99	45.03	46.17	74.00	27.83	Pass	Н	PK
6	9648.0000	37.66	6.72	-40.73	44.89	48.54	74.00	25.46	Pass	Н	PK
7	4823.5599	34.50	4.61	-40.64	53.52	51.99	54.00	2.01	Pass	Н	AV
8	1293.4293	28.19	2.74	-42.79	59.48	47.62	74.00	26.38	Pass	V	PK
9	1593.6594	29.02	3.06	-42.88	58.83	48.03	74.00	25.97	Pass	V	PK
10	2200.3200	31.98	3.65	-42.52	57.06	50.17	74.00	23.83	Pass	V	PK
11	4824.0000	34.50	4.61	-40.65	56.57	55.03	74.00	18.97	Pass	V	PK
12	7236.0000	36.34	5.79	-40.99	44.68	45.82	74.00	28.18	Pass	V	PK
13	9648.0000	37.66	6.72	-40.73	44.44	48.09	74.00	25.91	Pass	V	PK
14	4823.5499	34.50	4.61	-40.64	51.41	49.88	54.00	4.12	Pass	V	AV

Mode	e:		802.11	b(11Mbps	s) Transmit	ting	Channel:	2437	7		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
1	1397.2397	28.30	2.90	-42.69	52.63	41.14	74.00	32.86	Pass	Н	PK
2	1795.4795	30.35	3.31	-42.71	57.42	48.37	74.00	25.63	Pass	Н	PK
3	2932.5933	33.09	4.39	-42.15	50.91	46.24	74.00	27.76	Pass	Н	PK
4	4874.0000	34.50	4.78	-40.61	60.52	59.19	74.00	14.81	Pass	Н	PK
5	7311.0000	36.41	5.85	-40.93	44.99	46.32	74.00	27.68	Pass	Н	PK
6	9748.0000	37.70	6.77	-40.63	44.45	48.29	74.00	25.71	Pass	Н	PK
7	4873.6859	34.50	4.77	-40.60	54.45	53.12	54.00	0.88	Pass	Н	AV
8	1594.8595	29.03	3.07	-42.90	59.70	48.90	74.00	25.10	Pass	V	PK
9	1816.4816	30.49	3.34	-42.70	58.45	49.58	74.00	24.42	Pass	V	PK
10	3248.9666	33.30	4.45	-41.97	50.77	46.55	74.00	27.45	Pass	V	PK
11	4874.0000	34.50	4.78	-40.61	59.31	57.98	74.00	16.02	Pass	V	PK
12	7311.0000	36.41	5.85	-40.93	44.58	45.91	74.00	28.09	Pass	V	PK
13	9748.0000	37.70	6.77	-40.63	44.25	48.09	74.00	25.91	Pass	V	PK
14	4873.5899	34.50	4.77	-40.60	53.40	52.07	54.00	1.93	Pass	V	AV

Mode	ə:		802.11	b(11Mbp	s) Transmit	ting	Channel: 2462				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
1	1593.6594	29.02	3.06	-42.88	54.53	43.73	74.00	30.27	Pass	Н	PK
2	1797.6798	30.36	3.32	-42.71	57.37	48.34	74.00	25.66	Pass	Н	PK
3	2969.5970	33.15	4.46	-42.14	50.70	46.17	74.00	27.83	Pass	Н	PK
4	4924.1283	34.50	4.85	-40.56	62.09	60.88	74.00	13.12	Pass	Н	PK
5	7386.0000	36.49	5.85	-40.87	45.03	46.50	74.00	27.50	Pass	Н	PK
6	9848.0000	37.74	6.83	-40.54	43.36	47.39	74.00	26.61	Pass	Н	PK
7	4923.5793	34.50	4.85	-40.56	54.62	53.41	54.00	0.59	Pass	Н	AV
8	1597.0597	29.04	3.07	-42.89	57.79	47.01	74.00	26.99	Pass	V	PK
9	1919.4919	31.17	3.42	-42.65	57.05	48.99	74.00	25.01	Pass	V	PK
10	2199.1199	31.98	3.65	-42.52	56.84	49.95	74.00	24.05	Pass	V	PK
11	4924.0000	34.50	4.85	-40.56	60.45	59.24	74.00	14.76	Pass	V	PK
12	7386.0000	36.49	5.85	-40.87	44.67	46.14	74.00	27.86	Pass	V	PK
13	9848.0000	37.74	6.83	-40.54	44.77	48.80	74.00	25.20	Pass	V	PK
14	4923.5399	34.50	4.85	-40.56	53.69	52.48	54.00	1.52	Pass	V	AV

Mode	e:		802.11	g(6Mbps)	Transmittir	ng	Channel:	2412	2		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
1	1799.2799	30.38	3.32	-42.72	57.64	48.62	74.00	25.38	Pass	Н	PK
2	1992.2992	31.65	3.46	-42.61	57.48	49.98	74.00	24.02	Pass	Н	PK
3	3078.0052	33.23	4.77	-42.07	50.55	46.48	74.00	27.52	Pass	Н	PK
4	4824.0000	34.50	4.61	-40.65	57.09	55.55	74.00	18.45	Pass	Н	PK
5	7236.0000	36.34	5.79	-40.99	44.88	46.02	74.00	27.98	Pass	Н	PK
6	9648.0000	37.66	6.72	-40.73	44.01	47.66	74.00	26.34	Pass	Н	PK
7	4823.6979	34.50	4.61	-40.64	42.73	41.20	54.00	12.80	Pass	Н	AV
8	1594.6595	29.02	3.07	-42.89	59.07	48.27	74.00	25.73	Pass	V	PK
9	2193.9194	31.97	3.65	-42.52	56.52	49.62	74.00	24.38	Pass	V	PK
10	3195.0130	33.28	4.64	-42.00	51.48	47.40	74.00	26.60	Pass	V	PK
11	4824.0000	34.50	4.61	-40.65	53.26	51.72	74.00	22.28	Pass	V	PK
12	7236.0000	36.34	5.79	-40.99	44.57	45.71	74.00	28.29	Pass	V	PK
13	9648.0000	37.66	6.72	-40.73	45.19	48.84	74.00	25.16	Pass	V	PK

Page 62 of 70

Mode	e:		802.11	g(6Mbps)	Transmittir	ng	Channel: 2437				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
1	1000.0000	27.90	2.40	-42.57	50.01	37.74	74.00	36.26	Pass	Н	PK
2	1597.0597	29.04	3.07	-42.89	53.90	43.12	74.00	30.88	Pass	Н	PK
3	1796.8797	30.36	3.31	-42.70	56.08	47.05	74.00	26.95	Pass	Н	PK
4	3006.5004	33.20	4.92	-42.12	50.18	46.18	74.00	27.82	Pass	Н	PK
5	4870.0000	34.50	4.76	-40.61	58.37	57.02	74.00	16.98	Pass	Н	PK
6	7311.0000	36.41	5.85	-40.93	44.36	45.69	74.00	28.31	Pass	Н	PK
7	9748.0000	37.70	6.77	-40.63	44.21	48.05	74.00	25.95	Pass	Н	PK
8	4873.5813	34.50	4.77	-40.60	44.13	42.80	54.00	11.20	Pass	Н	AV
9	4873.5526	34.50	4.77	-40.60	42.02	40.69	54.00	13.31	Pass	V	PK
10	4873.5526	34.50	4.77	-40.60	42.02	40.69	54.00	13.31	Pass	V	PK
11	4873.5526	34.50	4.77	-40.60	42.02	40.69	54.00	13.31	Pass	V	PK
12	4873.5526	34.50	4.77	-40.60	42.02	40.69	54.00	13.31	Pass	V	PK
13	4873.5526	34.50	4.77	-40.60	42.02	40.69	54.00	13.31	Pass	V	PK
14	4873.5526	34.50	4.77	-40.60	42.02	40.69	54.00	13.31	Pass	V	PK
15	4873.5526	34.50	4.77	-40.60	42.02	40.69	54.00	13.31	Pass	V	AV

	23%		J150. J1				3.5%	-10%			
Mode	e:		802.11 g(6Mbps) Transmitting				Channel: 2462				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
1	1383.2383	28.28	2.87	-42.69	54.06	42.52	74.00	31.48	Pass	Н	PK
2	1794.6795	30.34	3.31	-42.70	57.57	48.52	74.00	25.48	Pass	Н	PK
3	3043.5529	33.22	4.84	-42.09	50.15	46.12	74.00	27.88	Pass	Н	PK
4	4926.0784	34.50	4.85	-40.56	57.48	56.27	74.00	17.73	Pass	Н	PK
5	7386.0000	36.49	5.85	-40.87	46.47	47.94	74.00	26.06	Pass	Н	PK
6	9848.0000	37.74	6.83	-40.54	44.06	48.09	74.00	25.91	Pass	Н	PK
7	4923.6619	34.50	4.85	-40.56	44.44	43.23	54.00	10.77	Pass	Н	AV
8	1593.2593	29.02	3.06	-42.88	57.78	46.98	74.00	27.02	Pass	V	PK
9	1812.2812	30.46	3.33	-42.70	56.21	47.30	74.00	26.70	Pass	V	PK
10	2193.7194	31.97	3.65	-42.52	56.17	49.27	74.00	24.73	Pass	V	PK
11	4924.7783	34.50	4.85	-40.56	55.76	54.55	74.00	19.45	Pass	V	PK
12	7386.0000	36.49	5.85	-40.87	43.81	45.28	74.00	28.72	Pass	V	PK
13	9848.0000	37.74	6.83	-40.54	43.08	47.11	74.00	26.89	Pass	V	PK
14	4924	33.08	4.39	-42.16	49.21	44.52	54.00	9.48	Pass	V	AV

Page 63 of 70

Mode	Mode:		802.11 n(HT20) (6.5Mbps) Transmitting					Channel: 2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
1	1592.8593	29.01	3.06	-42.88	55.01	44.20	74.00	29.80	Pass	Н	PK
2	1793.0793	30.33	3.31	-42.70	56.84	47.78	74.00	26.22	Pass	Н	PK
3	3574.6383	33.46	4.39	-41.66	49.39	45.58	74.00	28.42	Pass	Н	PK
4	4827.9219	34.50	4.62	-40.64	59.08	57.56	74.00	16.44	Pass	Н	PK
5	7236.0000	36.34	5.79	-40.99	45.77	46.91	74.00	27.09	Pass	Н	PK
6	9648.0000	37.66	6.72	-40.73	44.08	47.73	74.00	26.27	Pass	Н	PK
7	4825.1494	34.50	4.61	-40.64	44.54	43.01	54.00	10.99	Pass	Н	AV
8	1309.0309	28.21	2.76	-42.77	59.31	47.51	74.00	26.49	Pass	V	PK
9	1595.0595	29.03	3.07	-42.90	57.58	46.78	74.00	27.22	Pass	V	PK
10	2840.3840	32.94	4.23	-42.20	53.30	48.27	74.00	25.73	Pass	V	PK
11	4820.1213	34.50	4.60	-40.65	59.34	57.79	74.00	16.21	Pass	V	PK
12	7236.0000	36.34	5.79	-40.99	45.97	47.11	74.00	26.89	Pass	V	PK
13	9648.0000	37.66	6.72	-40.73	44.52	48.17	74.00	25.83	Pass	V	PK
14	4825.0826	34.50	4.61	-40.64	45.24	43.71	54.00	10.29	Pass	V	AV

Mode	Mode:		n(HT20)	(6.5Mbps) Transmitti	ng	Channel: 2437				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
1	1595.8596	29.03	3.07	-42.89	53.74	42.95	74.00	31.05	Pass	Н	PK
2	1795.6796	30.35	3.31	-42.70	57.39	48.35	74.00	25.65	Pass	Н	PK
3	2838.1838	32.94	4.23	-42.20	53.62	48.59	74.00	25.41	Pass	Н	PK
4	4870.8247	34.50	4.76	-40.60	56.11	54.77	74.00	19.23	Pass	Н	PK
5	7311.0000	36.41	5.85	-40.93	45.19	46.52	74.00	27.48	Pass	Н	PK
6	9748.0000	37.70	6.77	-40.63	44.28	48.12	74.00	25.88	Pass	Н	PK
7	4870	34.50	4.76	-40.61	52.51	51.16	54.00	2.84	Pass	Н	AV
8	1597.4597	29.04	3.07	-42.89	57.60	46.82	74.00	27.18	Pass	V	PK
9	1881.0881	30.92	3.40	-42.67	54.92	46.57	74.00	27.43	Pass	V	PK
10	2981.1981	33.17	4.49	-42.13	51.50	47.03	74.00	26.97	Pass	V	PK
11	4876.0251	34.50	4.78	-40.60	55.27	53.95	74.00	20.05	Pass	V	PK
12	7311.0000	36.41	5.85	-40.93	44.75	46.08	74.00	27.92	Pass	V	PK
13	9748.0000	37.70	6.77	-40.63	43.28	47.12	74.00	26.88	Pass	V	PK
14	4870	34.50	4.76	-40.61	51.82	50.47	54.00	3.53	Pass	V	AV

Mode	Mode:		n(HT20)	(6.5Mbps) Transmitti	ing	Channel: 2462				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
1	1599.4599	29.06	3.07	-42.90	52.98	42.21	74.00	31.79	Pass	Н	PK
2	1791.0791	30.32	3.30	-42.70	56.46	47.38	74.00	26.62	Pass	Н	PK
3	2845.5846	32.95	4.23	-42.20	53.33	48.31	74.00	25.69	Pass	Н	PK
4	4927.3785	34.50	4.85	-40.56	54.30	53.09	74.00	20.91	Pass	Н	PK
5	7386.0000	36.49	5.85	-40.87	43.93	45.40	74.00	28.60	Pass	Н	PK
6	9848.0000	37.74	6.83	-40.54	43.53	47.56	74.00	26.44	Pass	Н	PK
7	4927.3785	34.50	4.85	-40.56	51.51	50.30	54.00	3.70	Pass	Н	AV
8	1594.8595	29.03	3.07	-42.90	58.74	47.94	74.00	26.06	Pass	V	PK
9	1893.2893	31.00	3.41	-42.66	56.58	48.33	74.00	25.67	Pass	V	PK
10	3187.8625	33.28	4.63	-42.01	52.51	48.41	74.00	25.59	Pass	V	PK
11	4930.6287	34.50	4.84	-40.55	52.50	51.29	74.00	22.71	Pass	V	PK
12	7386.0000	36.49	5.85	-40.87	44.56	46.03	74.00	27.97	Pass	V	PK
13	9848.0000	37.74	6.83	-40.54	43.11	47.14	74.00	26.86	Pass	V	PK
14	4930.6287	34.50	4.84	-40.55	51.65	50.44	54.00	3.56	Pass	V	AV

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test Model No.: WT-01F

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

PHOTOGRAPHS OF EUT Constructional Details

View of Product-1

View of Product-2

View of Product-7

View of Product-8

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.