HUMAN PERCEPTION OF RANDOMNESS IN NUMBER GENERATION

IESM315 - Design and Analysis of Experiments American University of Armenia

A. Gumruyan | I. Torosyan

MOTIVATION

01	Understanding the nature of human-generated random sequences
02	Investigating influencing factors and identifying patterns
03	The potential of practical implications for decision-making

LITERATURE REVIEW

REFLECTING ON SURVEY COMMENTS

Perception of Randomness

"I think they are not that random because there is some kind of a reason why my brain thought of that exact numbers and not other ones."

"I recalled number bias and it would be interesting if a thing like that really is a thing"

How Were The Numbers Picked

"I used random num generator"

"Pen-and-paper method for generating random numbers by John von Neumann"

"I have been thinking about my fav numbers and it was not easy to let them go to be more "random"" Predictable cognitive biases influence our choices, and seemingly random decisions follow discernible patterns.

- Predictably Irrational

Dan Ariely

When faced with tasks involving randomness or uncertainty, people often rely on mental shortcuts, or heuristics, that lead to predictable decision-making patterns.

People tend to overweight the likelihood of rare events when judging them based on descriptions.

When overwhelmed with information, we resort to simpler heuristics.

— The Description-Experience Gap in Rare Events

METHODOLOGY

DATA COLLECTION

Method	Google Forms Survey
Questionnaire	Informed Consent
	Education
	1. Current/Most Recent Degree
	2. Statistics Background
	Random Number Sequence Generation
	1. Unrestricted
	2. Restricted: from 1 to 50
	3. Restricted: above 70
	Personal Perception
	1. Randomness Assessment
	2. Additional Comments
Status	Nov 10th to Nov 23rd, 2023
	Participants: 100

DATA MANIPULATION

Stage 1: Naked Eye Scanning **Identification and exclusion of the creative participant who provided numbers beyond representable integer limits** (e.g. 10^124, while the limit is 2*10^9)

Stage 2: Exploratory Data Analysis

Identification of major outlier occurrences and subsequent filtering following the Tukey Method of outlier labeling (keeping values in the range {Q1 – 1.5*IQR), Q3 + 1.5*IQR})

Figure 1: Distribution of random number sequences before outlier adjustment (order: No Restriction, Restricted from 1 to 50, Restricted above 70)

Figure 2: Distribution of random number sequences after outlier adjustment (order: No Restriction, Restricted from 1 to 50, Restricted above 70)

DATA ANALYSIS

Randomness

Runs Test to assess the randomness of each generated sequence.

Chi-Squared Test to compare the observed frequency of numbers to the expected frequency in a truly random sequence.

Density Distribution

Kolmogorov-Smirnov Test to determine if the generated sequences follow known distributions (Normal, Uniform, Poisson, or Exponential).

Kernel-smoothed Density Plots for the visual aspect of analysis.

Group Comparison

One-way ANOVA to examine if there are significant differences among the participant groups based on statistics background.

Ad hoc Tukey T-test to assess the significance of differences between all pairs of statistics background groups.

Correlation

Spearman's Rank Correlation Test to assess the monotonic relationship between participants' statistics background and randomness assessment in random number generation.

RANDOMNESS

Runs Test

Unrestricted Standardized Runs Statistic: -6.0473

P-value: 1.473e-09

Significant deviation from

randomness.

Restricted from 1 to 50

Standardized Runs Statistic: -1.7405

P-value: 0.08176

Participants performed reasonably well, achieving relative randomness.

Restricted above 70

Standardized Runs Statistic: -3.8732

P-value: 0.0001074

Significant deviation from

randomness.

Chi-Squared Test

Unrestricted Chi-Squared Statistic: 632.08

P-value: < 2.2e-16

Significant deviation from random

frequency distribution.

Restricted from 1 to 50

Chi-Squared Statistic: 235.8

P-value: < 2.2e-16

Significant deviation, yet a relatively

smaller chi-squared statistics.

Restricted above 70

Chi-Squared Statistic: 892.04

P-value: < 2.2e-16

Significant deviation from random

frequency distribution.

DENSITY DISTRIBUTION

Kolmogorov-Smirnov Test | Kernel-smoothed Density Plots

	Exponential	Uniform	Poisson	Normal	
Unrestricted	D = 0.15503 p-value = 6.078e-09	D = 1 p-value < 2.2e-16	D = 0.41062 p-value < 2.2e-16	D = 0.058148 p-value = 0.1267	
Restricted: 1 to 50	D = 0.15475 p-value = 1.012e-10	D = 1 p-value < 2.2e-16	D = 0.41758 p-value < 2.2e-16	D = 0.057982 p-value = 0.0717	
Restricted: above 70	D = 0.15499 p-value = 3.979e-09	D = 1 p-value < 2.2e-16	D = 0.41144 p-value < 2.2e-16	D = 0.058127 p-value = 0.1194	

GROUP COMPARISON

ANOVA Test

Unrestricted

F-value: 2.972

P-value: 0.0317

Difference of means in at least one

level of statistics background.

Restricted from 1 to 50

F-value: 1.664

P-value: 0.174

No difference in means across levels

of statistics background.

Restricted above 70

F-value: 2.575

P-value: 0.0535

Marginal difference in means, above the conventional significance level.

Ad Hoc Tukey T-test

Unrestricted

Significant difference between participants with No Background and Moderate Knowledge.

Restricted above 70

Marginal significance in the difference between participants with No Background and Experts, not reaching the conventional significance level.

CORRELATION

Spearman's Rank Correlation Test

Unrestricted	Weak negative monotonic correlation (-0.12).				
	P-value: 0.2547.				
	Not statistically significant. No strong correlation observed between statistics background and randomness				
	assessment.				
Restricted from 1 to 50	Weak negative monotonic correlation (-0.06).				
	P-value: 0.5466.				
	Not statistically significant. No strong correlation found between statistics background and randomness in the				
	specified range.				
Restricted above 70	Very weak positive monotonic correlation (0.02).				
	P-value: 0.8163.				
	Not statistically significant. No substantial correlation identified between statistics background and randomness assessment for sequences above the threshold.				

CONCLUSION

Statistical backgrounds play a role in random number generation but is not a decisive factor on its own.

THANK YOUR FOR YOUR ATTENTION!

Questions? Concerns?