Model selection

In this notebook we're going to analyse different techniques for model selection and afterwards we're going to discuss their shortcomings.

Selection criteria

First of all, we're going to look at different criteria to compare models based on their performance and

```
complexity.
require(ISLR)
## Loading required package: ISLR
## Warning: package 'ISLR' was built under R version 3.6.3
head(Hitters)
                     AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun
##
## -Andy Allanson
                       293
                                         30
                                             29
                                                   14
                                                               293
                                                                       66
                       315
                             81
                                    7
                                         24
                                            38
                                                   39
                                                              3449
                                                                     835
                                                                              69
## -Alan Ashby
                                                         14
## -Alvin Davis
                       479
                           130
                                   18
                                        66
                                            72
                                                   76
                                                          3
                                                               1624
                                                                     457
                                                                              63
                       496 141
                                   20
                                        65 78
                                                                             225
## -Andre Dawson
                                                   37
                                                         11
                                                              5628
                                                                     1575
## -Andres Galarraga
                       321
                             87
                                    10
                                         39
                                            42
                                                   30
                                                          2
                                                               396
                                                                     101
                                                                              12
## -Alfredo Griffin
                       594 169
                                    4
                                         74
                                            51
                                                   35
                                                              4408
                                                                    1133
                                                                              19
                                                         11
                     China Chat Chalka
```

##	CRuns	CKBI	Cwalks	League	DIVISION	Putuuts	ASSISTS	Errors	
## -Andy Allanson	30	29	14	A	E	446	33	20	
## -Alan Ashby	321	414	375	N	W	632	43	10	
## -Alvin Davis	224	266	263	Α	W	880	82	14	
## -Andre Dawson	828	838	354	N	Е	200	11	3	
## -Andres Galarraga	48	46	33	N	E	805	40	4	
## -Alfredo Griffin	501	336	194	Α	W	282	421	25	
##	Salary	NewI	League						

##	-Andy Allanson	NA	A
##	-Alan Ashby	475.0	N
##	-Alvin Davis	480.0	A
##	-Andre Dawson	500.0	N
##	-Andres Galarraga	91.5	N
##	-Alfredo Griffin	750.0	Α

summary(Hitters)

##	AtBat	Hits	HmRun	Runs
##	Min. : 16.0	Min. : 1	Min. : 0.00	Min. : 0.00
##	1st Qu.:255.2	1st Qu.: 64	1st Qu.: 4.00	1st Qu.: 30.25
##	Median :379.5	Median : 96	Median: 8.00	Median : 48.00
##	Mean :380.9	Mean :101	Mean :10.77	Mean : 50.91
##	3rd Qu.:512.0	3rd Qu.:137	3rd Qu.:16.00	3rd Qu.: 69.00
##	Max. :687.0	Max. :238	Max. :40.00	Max. :130.00
##				
##	RBI	Walks	Years	CAtBat

```
## Min. : 0.00
                     Min. : 0.00
                                     Min. : 1.000
                                                       Min. : 19.0
  1st Qu.: 28.00
                    1st Qu.: 22.00
##
                                     1st Qu.: 4.000
                                                       1st Qu.: 816.8
                                     Median : 6.000
  Median : 44.00
                    Median : 35.00
                                                       Median: 1928.0
         : 48.03
                          : 38.74
                                            : 7.444
                                                       Mean : 2648.7
##
  Mean
                    Mean
                                     Mean
                                      3rd Qu.:11.000
##
   3rd Qu.: 64.75
                     3rd Qu.: 53.00
                                                       3rd Qu.: 3924.2
##
  Max.
         :121.00
                    Max. :105.00
                                     Max.
                                             :24.000
                                                       Max. :14053.0
##
                                                            CRBI
##
       CHits
                         CHmRun
                                          CRuns
##
   Min.
              4.0
                    Min.
                           : 0.00
                                     Min.
                                            :
                                                       Min.
                                                              :
                                                                  0.00
                                                1.0
##
   1st Qu.: 209.0
                     1st Qu.: 14.00
                                      1st Qu.: 100.2
                                                       1st Qu.: 88.75
   Median : 508.0
                     Median : 37.50
                                     Median : 247.0
                                                       Median: 220.50
         : 717.6
##
   Mean
                     Mean
                           : 69.49
                                      Mean
                                            : 358.8
                                                       Mean
                                                              : 330.12
##
   3rd Qu.:1059.2
                     3rd Qu.: 90.00
                                      3rd Qu.: 526.2
                                                       3rd Qu.: 426.25
##
   Max. :4256.0
                     Max. :548.00
                                      Max.
                                            :2165.0
                                                       Max.
                                                            :1659.00
##
##
        CWalks
                     League Division
                                          PutOuts
                                                           Assists
                                       Min. : 0.0
##
         : 0.00
                     A:175
                              E:157
                                                       Min. : 0.0
   Min.
   1st Qu.: 67.25
                     N:147
                              W:165
                                       1st Qu.: 109.2
                                                       1st Qu.: 7.0
  Median: 170.50
                                       Median : 212.0
##
                                                       Median: 39.5
##
   Mean : 260.24
                                       Mean
                                             : 288.9
                                                        Mean :106.9
##
   3rd Qu.: 339.25
                                       3rd Qu.: 325.0
                                                        3rd Qu.:166.0
          :1566.00
                                       Max.
                                             :1378.0
##
   Max.
                                                        Max. :492.0
##
##
       Errors
                        Salary
                                     NewLeague
##
  \mathtt{Min}.
          : 0.00
                   Min.
                          : 67.5
                                     A:176
  1st Qu.: 3.00
                   1st Qu.: 190.0
                                     N:146
## Median : 6.00
                   Median: 425.0
         : 8.04
## Mean
                   Mean
                          : 535.9
##
   3rd Qu.:11.00
                    3rd Qu.: 750.0
## Max. :32.00
                   Max.
                          :2460.0
##
                    NA's
                           :59
# removing the NA
dim(Hitters)
## [1] 322 20
Hitters<- na.omit(Hitters)</pre>
dim(Hitters)
## [1] 263 20
We're going to use cross-validation to compare the results from different selection criteria.
nfolds <- 10
n <- dim(Hitters)[1]
folds <- cut(1:n, nfolds, labels = F)</pre>
# a bit of shuffling
indices <- sample(1:n, size=n, replace=F)</pre>
library(leaps)
## Warning: package 'leaps' was built under R version 3.6.3
get.bss.test.error<- function(train, test, cv.best){</pre>
  # estimates the error on the test dataset for the best model
  # according to each criteria
 all.best<- regsubsets(x=Salary~.,data=train,nbest=1,
```

```
nvmax=dim(train)[2]-1, # using all variables
                          method="forward" )
  s <- summary(all.best)</pre>
  r2 <- coef(all.best, id=which.max(s$rsq))
  adjr2 <- coef(all.best, id=which.max(s$adjr2))</pre>
  cp <- coef(all.best, id=which.min(s$cp))</pre>
  bic <- coef(all.best, id=which.min(s$bic))</pre>
  cv.coefs <- coef(all.best, id=cv.best)</pre>
  # test predictions
  r2.pred <- model.matrix(Salary~.,test)[,names(r2)]%*%r2
  adjr2.pred <- model.matrix(Salary~.,test)[,names(adjr2)]%*%adjr2
  cp.pred <- model.matrix(Salary~.,test)[,names(cp)]%*%cp</pre>
  bic.pred <- model.matrix(Salary~.,test)[,names(bic)]%*%bic
  cv.pred <- model.matrix(Salary~.,test)[,names(cv.coefs)]%*%cv.coefs
  # test errors
  errors <- mean((r2.pred - test$Salary)**2)</pre>
  errors <- c(errors,mean((adjr2.pred - test$Salary)**2))</pre>
  errors <- c(errors,mean((cp.pred - test$Salary)**2))</pre>
  errors <- c(errors,mean((bic.pred - test$Salary)**2))</pre>
  errors <- c(errors,mean((cv.pred - test$Salary)**2))</pre>
  return(errors)
get.cv.error <- function(ncv, nmodels, data){</pre>
  # evaluates the mean cross-validation error of the linear model
  # with the selected coefficients
  n.cv <- dim(data)[1]
  folds.cv <- cut(1:n.cv, ncv, labels=F)</pre>
  cv.errors <- matrix(nrow = ncv, ncol = nmodels)</pre>
  indices.cv <- 1:n.cv</pre>
  for(m in 1:nmodels){
    for(j in 1:ncv){
      test.indices.cv <- indices.cv[folds.cv==j]</pre>
      test.cv <- data[test.indices.cv,]</pre>
      train.cv <- data[-test.indices.cv,]</pre>
      cv.all.best<- regsubsets(x=Salary~.,data=train.cv,
                                 nbest=1,nvmax=nmodels, # using all variables
                                 method="forward" )
      cv.coefs <- coef(cv.all.best, id=m)</pre>
      cv.preds <- model.matrix(Salary~.,test)[,names(cv.coefs)]%*%cv.coefs
      # test errors
      cv.errors[j,m] <- mean((cv.preds - test$Salary)**2)</pre>
  }
  # selecting the model with the least mean error
  # expected test MSE estimated by CV for each model
  return(which.min(colMeans(cv.errors)))
}
test.errors <- matrix(nrow=nfolds, ncol=5)</pre>
for(i in 1:nfolds){
```

```
test.indices <- indices[folds==i]</pre>
  test <- Hitters[test.indices,]</pre>
  train <- Hitters[-test.indices,]</pre>
  # Now we'll use BSS on the train dataset
  # And we'll record the error on the test set
  # get best cv model
  cv.best <- get.cv.error(ncv=5, nmodels=(dim(Hitters)[2]-1),data = train)</pre>
  test.errors[i,] <- get.bss.test.error(train=train, test=test, cv.best=cv.best)
Let's look at the results.
test.errors <- data.frame(test.errors)</pre>
names(test.errors) <- c("r2", "adjr2", "cp", "bic", "cv")</pre>
test.errors
##
             r2
                    adjr2
                                          bic
                                 ср
## 1
      71560.04 70956.14 67531.03 68505.97 50789.23
## 2 54542.35 53841.13 60274.42 67532.46 54196.36
## 3 177976.55 170310.27 154657.06 148891.50 148891.50
## 4 164565.53 157115.47 151962.32 154818.18 147891.02
## 5 173013.67 165288.54 155974.41 136563.18 172702.85
## 6 87228.87 81371.23 81371.23 72738.66 74254.61
## 7 231359.27 238745.34 242912.60 242912.60 231915.57
     78148.94 78008.45 77441.34 82436.21 73195.58
## 9 137720.38 140130.85 114918.56 121679.32 116867.69
## 10 58077.59 53937.54 47937.25 45000.49 53937.54
plot(1:10, test.errors$r2, type="l", lty="dashed", col=2, ylab="test error", main="cv MSE estimate ", l
lines(1:10, test.errors$adjr2, type="1", lty="dashed", col=3, lwd=2)
lines(1:10, test.errors$cp, type="1", lty="dashed", col=4, lwd=2)
lines(1:10, test.errors$bic, type="l", lty="dashed", col=5, lwd=2)
```

legend("topright", legend = c("r2", "adjr2", "cp", "bic", "cv"), col=c(2,3,4,5,6), lty="dashed")

lines(1:10, test.errors\$cv, type="1", lty="dashed", col=6, lwd=2)

cv MSE estimate


```
colMeans(test.errors)

## r2 adjr2 cp bic cv
## 123419.3 120970.5 115498.0 114107.9 112464.2

which.min(colMeans(test.errors))

## cv
## 5
```

So the cross validation criteria seems to be the most reliable in model selection.