计算物理学作业3

许嘉琪 1500011417

January 1, 2018

1 QR分解

1.1 计算次数

1.1.1 Householder

首先说明我的Householder方法的流程:

- 1. 对于矩阵A每列的对角线及以下的部分,将这一部分作为一个列矢量x,计算其模长norm,令矢量y为经过反射变换希望得到的矢量,其形式为 $(norm,0,0,...,0)^T$ 。计算一个单位矢量 $u=\frac{x-y}{||x-y||_2}$,它的方向为x-y的方向。(这一步的 Q_i 可以由这个u算出: $Q_i=I-uu^T)$ 。考虑到norm已经计算出来了在计算||x-y||的时候可以使用 $||x-y||=\sqrt{2norm*(norm-a_{ii})}$,利用norm简化计算。
- 2. 用此时得到的 Q_i 作用在A上,记 $Q_i A = Q_i [C_1, C_2, ..., C_n]$ 更新后面几列的值。然而经过推导,将其用u来表示: $Q_i C_j = C_j 2uu^T C_j = C_j 2 < C_j, u > u$ 。
- 3. 重复这个步骤,进行第i列的时候,u的长度就会减短为n-i。

考虑到以上的情况,对于一个大小为N×N的矩阵,当我们进行第 i 列的操作时(i=0,1,...,N-1),上述中的第 1 步,需要计算长度为N- i 的矢量模长,计算量约为 2×(N-i)。上述中的第 2 步,需要计算 $C_j-2 < C_j, u > u$ (j=i,i+1,...,N-1)。计算量为 $(N-i)^2$,这里产生的就是领头项了。因此,领头项应该为 $\sum_{i=0}^{N-2} (N-i)^2 = \frac{2N^3}{3}$ 当然,这里并没有把计算Q的步骤: $Q_i = I - uu^T$, $Q = Q_0Q_1...Q_{N-2}$ 的计算量计入。

1.1.2 Givens

Givens转动的步骤更加明确,每次计算一个 2 * 2 矩阵的转动,领头项由矩阵矩阵乘法 R_iA 中给出,计算次数为 $float(GT,R) = \sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1} \sum_{k=i}^{N-1} 6 = 2N^3 - 2N$ 综上:

1.2 Householder 变换实现QR分解

按照1.1.1中给出的步骤, 我写了如下几个函数:

method	Householder	Givens		
Complexity	$\frac{2}{3}N^3$	$2N^3$		

Table 1: Complexity of QR

- 1. take_out_col(int c,int u) 它从A中将第 c 列从 u 第个之下的元素提取出来,返回用他们组成的列矢量
- 2. householer() 它计算一个列矢量所对应的u,并返回它。
- 3. update(matrix u) 它利用参数 u,来更新原矩阵A。效果等同于用Q作用上去
- 4. getQ(matrix *u) 利用 $Q_i = I uu^T$ 计算Q
- 5. QS_h(string s) 最终的QS分解函数, s传入"householder"即代表使用的方法。函数流程如下:

1.3 Givens变换实现QR分解

我下了对应的几个函数:

- 1. getG(int n, int i, int j, mytype a, mytype b) 它计算将矢量(a,b)旋转至(r,0)应该使用的旋转矩阵 $G_{i,j,\theta}$,需要注意的是,G的两个元素需要总是处于对角线上的,而且,在计算 $sin\theta$ 是需要手动根据a,b来调整正负号。
- 2. QS_h(string s) 最终的QS分解函数, s传入"givens"即代表使用的方法。函数流程如下:

```
 \begin{array}{lll} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &
```

```
* this=(G^(* this));
//this->print();
}
}
```

1.4 实际测试

1.4.1 运行结果展示

随机产生矩阵。这里使用的就是我写的matrix类。首先介绍一下matrix类所提供的构造方式和运算。一共有4个常用的构造方式:

- 1. matrix(int n,int m) 随机生产n*m的矩阵,其元素值为-1到1间。
- 2. matrix(int n,int m,mytype k) 生成n*m的矩阵, 其元素值为 k 间。
- 3. matrix(int n,int m, string s) 若s传入"identity",则生成单位矩阵。若传入"string"则生成下一题中需要求解的矩阵A。
- 4. matrix(int n, int m, mytype *e) 按照数组 e 中的数值生成矩阵, e 中按行依次排列。

我们用第一种构造方式生成6 * 6 的随机矩阵, 喂给上面的程序。分解结果如下:

Figure 1: A and the resulting R

$t_{Householder}/ms$	0.225
t_{Givens}^{-}/ms	0.247

Table 2: Average time cost

1.4.2 时间比较

在 c ++中使用clock_t clock()计时,可以获得精确到1/CLOCKS_PER_SEC的时间。结果见Table 2。可以看到两者的差距不大,Householder方法稍快。

2 幂次法求最大本征值

2.1 本征方程

将解的形式 $x = xe^{-i\omega t}$ 代入,可以得出: $\ddot{x}_i = x_{i-1} + x_{i+1} - 2x_i$ 。因此, x 满足的本征方程为:

$$(\delta_{i-1,j} + \delta_{i+1,j} - 2\delta_{i,j})x = -\omega^2 x$$

2.2 幂次法

2.2.1 证明: 幂次法迭代最终会获得相应的本征值和本征矢

假设A有n个线性无关的特征向量,对应的特征值按照模的大小排列为: $\lambda_1,\lambda_2,...,\lambda_n$ 相应的单位特征向量为: $v_1,v_2,...,v_n$ 。这样考虑上述的迭代: $x^k=Ax^{k-1}=A^2x_{k-2}=A^kx_0$ 。由于本征矢量构成了完备的基,将向量 x 按本征矢量展开, $x_0=a_1v_1+a_2v_2+...+a_nv_n$,其中一定有 $a_1\neq 0$ 。于是,将这个式子带入迭代式可以得到: $x_k=a_1A^kv_1+a_2A^kv_2+...+a_nA^kv_n=a_1r_1^kv_1+a_2r_2^kv_2+...+a_nr_n^kv_n$ 。可以进一步改写为:

$$x_k = r_1^k (a_1 v_1 + a_2 (\frac{r_2}{r_1})^k v_2 + \dots + a_n (\frac{r_n}{r_1}) v_n)$$

可以看出,经过迭代, x_k 的方向将逐渐变得与 v_1 一致。而迭代稳定的条件正是: $\lim_{k\to\infty}x_k=v_1$

2.2.2 实现

我写了getEigenvalue()函数来实现获取本征值和对应本征矢量的功能。按照题中给出的方法,迭代40次之后,特征值就已经趋于稳定 $\omega^2=4.0$,本征矢量如下图所示(下页):

3 拟合与数据分析

3.1 对称化

对于这个问题,我主要是在dataloader.h头文件之中处理的。首先将所有的64*200个实部读进来,每64个对称的两两平均,得到 $\bar{C}(t)$ 。而这个量的误差利用 $\Delta C(t) = \sqrt{\frac{1}{N(N-1)}\sum_{i=1}^{N}(C^{(i)}(t)-\overline{C}(t))^2}$ 来计算。结果如下:

Figure 2: eigenvalue and it's eigenvector

t	0	1	2	3	4	5	6	7	8
\overline{C}	-15.4715	-1.98713	-0.392	-0.090	-0.0232	-0.0063	-0.0018	-0.00053	-0.00016
$\Delta \overline{C}/\overline{C}/\%$	0.111	0.167	0.398	0.587	0.733	0.842	0.927	0.995	1.050
t	9	10	11	12	13	14	15	16	17
\overline{C}	-4.983e-05	-1.533e-05	-4.733e-06	-1.468e-06	-4.58e-07	-1.431e-07	-4.478e-08	-1.405e-08	-4.409e-09
$\Delta \overline{C}/\overline{C}/\%$	1.075	1.088	1.132	1.171	1.213	1.258	1.293	1.335	1.374
t	18	19	20	21	22	23	24	25	26
\overline{C}	-1.385e-09	-4.344e-10	-1.363e-10	-4.282e-11	-1.345e-11	-4.232e-12	-1.332e-12	-4.188e-13	-1.316e-13
$\Delta \overline{C}/\overline{C}/\%$	1.405	1.421	1.435	1.454	1.488	1.524	1.562	1.585	1.603
t	27	28	29	30	31	32			
\overline{C}	-4.137e-14	-1.301e-14	-4.096e-15	-1.301e-15	-4.458e-16	-2.556e-16			
$\Delta \overline{C}/\overline{C}/\%$	1.619	1.638	1.660	1.676	1.709	1.731			

Table 3: Relative error of $\overline{C}(t)$

t	0	1	2	3	4	5	6	7	8
m	2.052	1.622	1.463	1.365	1.296	1.249	1.217	1.198	1.184
$\delta \mathrm{m}$	0.0017	0.0027	0.0026	0.0024	0.0021	0.0022	0.0021	0.0018	0.0016
t	9	10	11	12	13	14	15	16	17
m	1.179	1.175	1.171	1.165	1.163	1.162	1.16	1.159	1.158
$\delta \mathrm{m}$	0.0016	0.0017	0.0016	0.0015	0.0015	0.0014	0.0014	0.0014	0.0013
t	18	19	20	21	22	23	24	25	26
m	1.159	1.159	1.158	1.158	1.157	1.156	1.157	1.157	1.157
$\delta \mathrm{m}$	0.0013	0.0012	0.0012	0.0012	0.0012	0.0012	0.0011	0.001	0.0011
t	27	28	29	30	31				
m	1.157	1.156	1.147	1.071	0.5561				
$\delta \mathrm{m}$	0.0011	0.0011	0.0011	0.0012	0				

Table 4: using Jackknife to calculate m and its error

3.2 粲偶素的质量m及其误差

首先利用题目给出的公式计算出m(t)的值,之后,对于有200个块的数据进行jackknife操作, 图像见下:

Figure 3: m and its errors

3.3 χ^2 拟合

鉴于 χ^2 的表达式对于变量m来讲是一个二次多项式,我拿出第二次作业(interpolation)时写好的poly(多项式)类。先累加计算出 χ^2 的形式,再对m求导,得到极小值点。对于所有的长度大于 4 的区间进行扫描,找到使得单位自由度上的 χ^2 最小的位置。结果如输出: 其中,m的拟合值的误差按照 $\Delta m = \sqrt{\frac{1}{\sum_{i=begin}^{end} \frac{1}{\Delta m_i}}}$ 计算,其值为:0.00053。因此最后的结果为 $m=1.5712\pm0.0005$ 直接用数值积分软件积分,得出: p=0.0459388

fit result m= 1.1571227 the minimum chi-squre value = 0.110394 And the coresponded interval is [24, 27] delta_m=0.000531472 Press <RETURN> to close this window...

Figure 4: best interval

3.4 新的ratio操作

只需利用新的函数形式重新操作,结果如输出: 其中,m的拟合值的误差按照 $\Delta m = \sqrt{\frac{1}{\sum_{i=begin}^{end}\frac{1}{\Delta m_i}}}$ 计

fit result m= 1.1570929 the minimum chi-squre value = 7.67786e-06 And the coresponded interval is [25, 29] Press <RETURN> to close this window...

Figure 5: best interval

算,其值为:0.00053。因此最后的结果为 $m = 1.1571 \pm 0.0005$ 可以看到m的拟合值有明显的下降,然而其误差没有变化。直接用数值积分软件积分,得出:p = 0.0143187

3.5 相关系数矩阵

我写了一个函数:rho(mytype *in,int a,int b)。传入200*32的数据,指明需要计算的下表值a,b。函数中先产生1000个0到200的随机数,作为bootstrap抽样的代号,函数返回计算出的 $\rho_{a,b}$ 。结果如下: 误差

rho(3,4)= 0.960691 rho(3,5)= 0.90806 Press <RETURN> to close this window...

Figure 6: best interval

可以使用公式法解出: $\delta \rho = \sqrt{\frac{1}{N_B - 1} \sum_{i=1}^{N_B} (\rho_i^* - \rho_0)^2}$ 最后的结果为:

$$\rho_{3.4} = 0.961 \pm 0.005$$

$$\rho_{3.5} = 0.908 \pm 0.015$$

从结果可以看出:3,4时间片之间的关联强于3,5之间的。