

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМ. ІГОРЯ СІКОРСЬКОГО»

Методичні вказівки до виконання курсової роботи (проекту)

для студентів напряму підготовки
121 «Програмна інженерія», 123 «Комп'ютерна інженерія»
з дисциплін «Паралельні та розподілені обчислення»
«Паралельне програмування»

Розробник: доцент, канд. техн. наук, доцент Корочкін О.В. (посада, вчена ступінь та звання П.І.Б.)

3a ^r	гверджено на	засіданні кафедри
Протокол №	_ від «»	2016 p.
	Zania	цувач кафедри OT
	Завід	цувач кафедри ОТ Луцький Г.М.
(підпис)		(прізвище, ініціали)

Київ НТУУ «КПІ» 2017 р.

ЗАВДАННЯ НА КУРСОВУ РОБОТУ (ПРОЕКТ)

Курсова робота (КР) по дисципліні «Паралельні та розподілені обчислення» (ПРО) та курсовий проект (КП) включає дві частини.

Перша частина – виконання аналітичного огляду апаратних засобів сучасних паралельних комп'ютерних систем (ПКС) и програмних засобів, пов'язаних з організацією паралельних обчислень.

Друга частина – розробка двох програм (ПРГ1 та ПРГ2) для рішення заданої математичної задачі для паралельної комп'ютерної системи з загальною пам'яттю (ПКС ОП) та для паралельної комп'ютерної системи з локальною пам'яттю (ПКС ЛП).

Варіант завдання на КР (КП) включає

- завдання до виконання аналітичного огляду;
- математичну задачу (векторна-матричну операцію),
- структуру ПКС ОП;
- структуру ПКС ЛП;
- засоби для програмування процесів та організації їх взаємодії в ПРГ1;
- засоби для програмування процесів та організації їх взаємодії в ПРГ2.

СТРУКТУРА КУРСОВОЇ РАБОТИ (ПРОЕКТУ)

Обсяг КР 40 – 50 сторінок основного тексту без Додатків. Структура роботи, яка відображена в ЗМІСТ, представлена в Додатку А.

Зміст Розділу 1 визначається завданням на КР і відрізняється для кожного студента. Структура інших розділів буде ідентичною.

КР ϵ документом, який ϵ звітом з науково-дослідної роботи і оформлюється згідно державного стандарту ДСТУ 3008-95.

ВИКОНАННЯ КУРСОВОЇ РОБОТИ (ПРОЕКТУ)

Розділ 1 (15 - 20 страніц).

На підставі літературних та Інтернет джерел виконується огляд програмного або апаратного забезпечення ПКС. При цьому в тексті розділу 1 обов'язкові посилання на використані джерела, яки вказані у розділі СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ. Стиль викладання — діловий з використанням дієслів «показано», «запропоновано», «розроблено», «виконано» без слів «я, ми».

Літературні джерела (особливо це стосується Інтернет), як правило, не відповідають ДОСТ, тому їх треба спочатку відредактувати , а не вставляти цілком у КР.

Висновки до розділу (3-4 висновки) оформлюються, наприклад, наступним чином :

- 1. Выполнен анализ средств организации процессов в языке Ада. Показано, что они базируются на использовании специального программного модуля task, который позволяет описать задачу или группу задач (задачный тип), установить имя процесса, его приоритет, описать средства взаимодействия с другими процессами.....
- 2. Выполнен анализ средств организации взаимодействия процессов в языке Ада через общие переменные, который показал, что......
- 3. Выполнен анализ средств организации взаимодействия процессов в языке Ада через посылку сообщений, который показал, что......
- 4. На основании анализа, выполненного в разделе 1 можно сделать вывод, что язык Ада имеет развитые средства для

Розділи 2 і 3 (10 - 15 сторінок на кожен розділ).

На початку розділу наводиться структура ПКС (СП для Розділу 2 та ЛП для Розділу 3) з зазначенням процесорів, присторів введеннявиведення.

Виконується аналіз паралелізму заданої математичної задачі в рамках концепції необмеженого паралелізму, тобто визначається мінімальний час рішення задачі для необмеженої кількості процесорів.

Виконується розробка програм ПРГ1 для ПКС СП (Розділ 2) і ПРГ2 ЛП (Розділ 3). В підрозділах описуються *всі кроки розробки програм* аналогічно тому, як це виконувалось в лабораторних роботах:

- розробка паралельного математичного алгоритму;
- розробка алгоритмів потоків;
- розробка схеми взаємодії потоків
- розробка програми.

Схема взаємодії потоків виконується у вигляді рисунка на 1-2 сторінки. Наводиться її опис. Наприклад, структура захищеного модуля (монітору) відображається на рисунку (*Puc. 2.1 Структурна схема взаємодії процесів для ПРГ1*) або (*Puc. 3.1 Структурна схема взаємодії процесів для ПРГ2*), наводиться опис структури монітору с зазначенням кожного захищеного елемента і операції.

Лістинг програми розміщується в Додатку, а в підрозділах 2.4 (и 3.4) виконується опис програми: кількість та призначення кожного модулю (класу), їх структуру, призначення основних змінних і процедур і т.д. Лістинги програми вміщують «шапки», а також коментарі основних частин програми.

У підрозділах 2.5 (3.5) виконується опис результатів *тестування* програм ПРГ1 (ПРГ2). Тестування пов'язано з визначенням часу виконання програми у реальної ПКС с 6—і або 4-х ядерним процесором:

Т1 – час виконання програми в ПКС з одним ядром,

T2 – з двома,

T3 – з трьома і т. д,

Т6 – с шістьма.

Обираються три значення розміру векторів або матриць (N) і програми виконуються в ПКС с різними значеннями кількості ядер Р (от 1 до 4 або 6), для цього відключаються через Task Manager Windows ядра в процесорах. Вимір час виконання програми здійснюється *програмно*, за допомогою необхідних засобів роботі з часом (в мові Ада наприклад це — функція Clock), яка дозволяє зафіксувати текуче значення часу і через них - початок (Тпоч) і кінець роботи програми (Тзав) і потім розрахувати час виконання як Тзав — Т поч.

Результатаи виміру часу відображаються у таблицях 2.1 і 3.1.

Таблиця 2.1 Час виконання програми для ПРГ1

N	T1	T2	Т3	T4
900	536	322	243	199
1800	•••	•••	•••	•••
2400	•••	•••	•••	•••

На основі даних з таблиць 2.1. і 3.1 виконуються обчислення значень коефіцієнтів прискорення (Ky = T1/T2, Ky= T1/T3, Ky = T1/T4), для таблиць 2.2 і 3.2.

Таблиця 2.2 Значення Кп для ПРГ1

N	Кількість процесорів (Р)			
	1	2	3	4
900	1	1,8	2,7	3,6
1800	•••	•••	•••	•••
2400	•••	•••	•••	•••

На основі даних з таблиць 2.2. і 3.2 виконуються обчислення значень коефіцієнтів ефективності (Ke= Ky/2 * 100%, Ke= Ky/3* 100%, , Ke = Ky/4* 100%), для таблиць 2.3 і 3.3.

Таблиця 2.3

Значення Ке для ПРГ1

	Кількість процесорів (Р)			
N	1	2	3	4
900	88	91	93	96
1800		•••	•••	•••
2400	•••	•••	•••	•••

На підставі таблиць 2.2 і 2.3 (3.2 і 3.3) будуються графіки поведінки Ку і Ке в залежності від N і Р для ПРГ1 і ПРГ2.

Рис. 2.4 Програма ПРГ1. Графік зміни коефіцієнту прискорення Кп в залежності від кількості ядер. Операція MA = MB*MC + MD*ME.

N = 2400

В підрозділах 2.6 и 3.6 надаються висновки по результатам досліджень об ефективності виконання програм в ПКС. Наприклад:

2.6 Висновки до розділу 1

Виконано розробку програми ПРГ1 для ПКС ОП з використанням мови Ада і засобів синхронізації з бібліотеки Win32. Тестування програми показало наступне:

- використання багатоядерної ПКС та програми ПРГ1 забезпечує скорочення часу обчислення заданої математичної задачі. Значення Кп лежать в межах.....;
- максимальне значення Kn забезпечу ε ΠKC з P=... $ma\ N=...$;
- мінімальне значення Кп...
- *з ростом N зміна Ку*......
-
-

В розділі ОСНОВНІ РЕЗУЛЬТАТИ І ВИСНОВКИ ДО РОБОТИ надаються загальні висновки: по одному на кожний розділ (4-5), а також висновок що до порівняння ефективності програм ПРГ1 і ПРГ2.

В розділі СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ наводиться в алфавитному порядку список джерел (літературних і з Інтернету)(10- 15 джерел!). Джерела оформлюються згідно ДОСТ! (http://yak.vlynko.com/wp-content/uploads/2013/01/diplom_mag.pdf)

В розділі ДОДАТКИ наводяться згідно ДОСТ и ЄСПД (http://library.tneu.edu.ua/files/EVD/m_okl_algmet.pdf) схеми алгоритмів і структури ПКС (графічний матеріал):

1. Схеми алгоритмів кожного потоку для ПРГ1, ПРГ2 (4-6 по кількості процесорів)

- 2. Схеми алгоритмів головної програми з виказанням паралельних ділянок для ПРГ1 і ПРГ2
 - 5. Структурна схема ПКС СП
 - 6. Структурна схема ПКС ЛП

ОФОРМЛЕННЯ КУРСОВОЇ РОБОТИ

KP оформлюється згідно ДОСТ. Шрифт Times New Roman 14, інтервал полуторний.

Розділи курсової роботи (проекту)

Титульний лист

Лист технічного завдання

Зміст

Розділ 1

Розділ 2

Розділ 3

Висновки по роботі

Список джерел

Додатки

Схеми взаємодії потоків для ПРГ1 і ПРГ2 не є документами ДОСТ, тому вони оформляються як малюнки в пояснювальної записки КР.

ВАРІАНТИ ЗАВДАНЬ НА КР

Варіанти завдань для розділу 1

Варіант	Задание	
1	Огляд засобів роботи з потоками в мові Ада	
2	Огляд засобів роботи з потоками в мові Java	
3	Огляд засобів роботи з потоками в мові С#	
4	Огляд засобів роботи з потоками в бібліотеці Win32	
5	Огляд засобів роботи з потоками в бібліотеці МРІ	
6	Огляд засобів роботи з потоками в бібліотеці ОрепМР	
7	Огляд засобів роботи з потоками в мові Python	
8	Огляд засобів роботи з потоками в бібліотеці POSIX	
9	Порівняння реалізації механізму семафорів секції в мовах і	
	бібліотеках паралельного програмування	
10	Порівняння реалізації механізму моніторів секції в мовах і	
	бібліотеках паралельного програмування	
11	Порівняння реалізації механізму атомік - змінних секції в	
	мовах і бібліотеках паралельного програмування	
12	Огляд шести ядерних процесорів компанії АМД	
13	Огляд чотирьох ядерних процесорів компанії АМД	
14	Огляд чотирьох ядерних процесорів компанії Intel	
15	Огляд засобів роботи з потоками в бібліотеках Ада и Java	
16	Огляд дванадцяти ядерних процесорів компанії АМД	
17	Огляд восьми ядерних процесорів компанії Intel	
18	Огляд засобів роботи з потоками в бібліотеках WinAPI і С#	
19	Огляд засобів роботи з потоками в бібліотеці PVM	
20	Трансп'ютери. Огляд засобів роботи з потоками в мові	
	Оккам	
21	Потоки в сучасних мовах паралельного програмування	
22	Потоки в сучасних бібліотеках паралельного програмування Огляд засобів роботи з потоками в бібліотеках WinAPI і	
23	Огляд засобів роботи з потоками в бібліотеках WinAPI і POSIX	
24	Огляд засобів роботи з потоками в бібліотеках PVM и MPI	
25	Порівняння реалізації механізму «критичні секції в мовах і	
	бібліотеках паралельного програмування	
26	Огляд трьох ядерних процесорів компанії АМД	
27	Огляд і порівняння чотирьох ядерних процесорів компаній АМД і Intel	
28	Огляд і порівняння шести ядерних процесорів компаній АМД та Intel	