INTERROGATION 2

Physique 3. Groupe

Nom:		 	 	 	 	 	
Prénon	ı:	 	 	 	 	 	

Questions

Le système ci-contre peut tourner librement autour du point O. ($\theta \ll 1$.)

La boule est supposée ponctuelle et la tige sans masse. $(\sin \theta \approx \theta. \cos \theta \approx 1 - \frac{\theta^2}{2}.)$

- 1. Trouver l'énergie cinétique T, l'énergie potentielle U, et l'énergie totale E.
- 2. Trouver l'équation du mouvement à l'aide de l'équation de conservation.
- **3.** Trouver la pulsation propre ω_0 sachant que m=1kg, L=2m, k=2N/m, g=10m/s².

Le système précédent est modifié comme le montre la figure ci-contre.

Le système est soumis à présent à un frottement de coefficient α . $(\theta \ll 1.)$

- 1. Trouver l'énergie cinétique T, l'énergie potentielle U, et le Lagrangien \mathcal{L} .
- 2. Trouver la fonction de dissipation \mathcal{D} puis l'équation du mouvement en utilisant \mathcal{L} .
- **3.** Trouver la nature du mouvement sachant que $\alpha = 2N.s/m$.
- **4.** Trouver le temps τ au bout duquel l'amplitude est divisée par **3** si α =**1**N.s/m.

Réponses

1.
$$T = \frac{1}{2}m(L\dot{\theta})^2$$
. (0.25)

$$U = U_{ressort} + U_m \approx \frac{1}{2}k(L\sin\theta)^2 + mg(L - L\cos\theta) \stackrel{\text{(0.25)}}{=} \approx \frac{1}{2}k(L\theta)^2 + \frac{1}{2}mgL\theta^2. \stackrel{\text{(0.25)}}{=} E = T + U = \frac{1}{2}mL^2 \stackrel{\text{(2.5)}}{\theta} + \frac{1}{2}(kL^2 + mgL)\theta^2 \stackrel{\text{(0.25)}}{=}$$

$$E = T + U = \frac{1}{2}mL^2 \stackrel{.2}{\theta}^2 + \frac{1}{2}(kL^2 + mgL)\theta^2$$
 (0.25)

2. L'équation de conservation
$$\frac{dE}{dt} = 0$$
 (0.25) nous donne $mL^2\theta\theta + (kL^2 + mgL)\theta\theta = 0 \Rightarrow \theta + \frac{kL + mg}{mL}\theta = 0$. (0.5)

3. La pulsation propre est donc $\omega_0 = \sqrt{\frac{kL + mg}{mL}}$ (0.25). A.N: $\omega_0 = \sqrt{7} \text{rad/s}$. (2)

3. La pulsation propre est donc
$$\omega_0 = \sqrt{\frac{kL+mg}{mL}}$$
 (0.25). A.N: $\omega_0 = \sqrt{7} \text{rad/s}$.

1.
$$T = \frac{1}{2}m(2L\theta)^2$$
. 0.25

$$U = U_{ressort} + U_m \approx \frac{1}{2}k(L\sin\theta)^2 + mg(2L - 2L\cos\theta) \stackrel{\text{(0.25)}}{=} \approx \frac{1}{2}k(L\theta)^2 + mgL\theta^2. \stackrel{\text{(0.25)}}{=}$$

$$\mathcal{L} = T - U = 2mL^2 \stackrel{\text{(i)}}{\theta}^2 - \frac{1}{2}(kL^2 + 2mgL)\theta^2 \stackrel{\text{(0.25)}}{=}$$

$$\mathcal{L} = T - U = 2mL^2 \stackrel{\cdot}{\theta}^2 - \frac{1}{2}(kL^2 + 2mgL)\theta^2$$
 (0.25)

2.
$$\mathcal{D} = \frac{1}{2}\alpha v^2 = \frac{1}{2}\alpha(2L\dot{\theta})^2$$
 (0.25). L'équation du mouvement est $\frac{\mathrm{d}}{\mathrm{dt}}(\frac{\partial \mathcal{L}}{\partial \dot{\theta}}) - \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = -\frac{\partial \mathcal{D}}{\partial \dot{\theta}} \Rightarrow \ddot{\theta} + \frac{\alpha}{m}\dot{\theta} + \frac{kL + 2mg}{4mL}\dot{\theta} = 0$. (0.5)

3. La nature du mouvement est donnée par le signe de
$$\lambda^2 - \omega_0^2$$
. (0,25)

$$\lambda = \frac{\alpha}{2m}$$
 (95), $\omega_0 = \sqrt{\frac{kL + 2mg}{4mL}}$ (95). A.N: $\lambda^2 - \omega_0^2 = 1 - 3 < 0$. (95) \Rightarrow Le mouvement est pseudo-périodique. (95)

4. Le temps nécessaire est
$$\tau$$
 tel que $Ae^{-\lambda(t+\tau)} = \frac{1}{3}Ae^{-\lambda t} \Rightarrow \tau = \frac{\ln 3}{\lambda}$. (05) A.N: $\tau = \frac{\ln 3}{0.5} \approx 2.2s$.