Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A	suction side, 696–698
Ackeret, Jacob, 730-731, 773	supersonic flow, 773
Acceleration	thin airfoil theory, 702
advective, 70-71	Zhukhovsky airfoil lift, 706–708
fluid particle, 70–71	Alternating tensor, 50–51
unsteady, 70–71	Analytic function, 216–217
Acoustics, 732–736	Anderson, John D., Jr., 701–702
Added or Apparent mass, 236–237	Angle of attack/incidence, 696, 712–713
Adiabatic density gradient, 596–597, 623	Angular momentum principle/theorem, for fixed
Adiabatic process, 17, 761, 763–764	volume, 125–127
Adiabatic temperature gradient, 19, 623	Antisymmetric tensors, 55–58
Advection, 176	Aorta, elasticity, 805–806
Advective derivative, 176	Apparent or Added mass, 233
Aerodynamics	Arterioles, 793–794
aircraft parts and controls, 692–693	resistance, 794–796
airfoil forces, 696–698, 697f	Aris, R., 112–113
airfoil geometry, 697f	Aspect ratio of wing, 692
conformal transformation, 702–705	Asymptotic expansion, 516–517
defined, 692	Atmosphere
finite wing span, 708–716	properties of standard, 855-856
gas, 692	scale height of, 21
generation of circulation, 698, 700, 701	Attractors, 526
incompressible, 692	aperiodic, 528–529
Kutta condition, 698–700	dissipative systems and, 526
lift and drag characteristics, 717–718	fixed point, 526
Prandtl and Lanchester lifting line theory, 716	limit cycle, 526
propulsive mechanisms of fish and birds,	strange, 529
719–721	Autocorrelation function, 550–551
sailing, 721–722	normalized, 550–551
Zhukhovsky airfoil lift, 706–708	of a stationary process, 551
Air, physical properties of, 731–732	Averages, 545–549
Aircraft, parts and controls, 692–696	Axisymmetric irrotational flow, 231–236
Airfoil(s)	
angle of attack/incidence, 696	В
camber line, 696	Babuska-Brezzi stability condition, 447-448
chord, 696	Baroclinic flow, 178–179
compression side, 696–698	Baroclinic instability, 678-679
conformal transformation, 702–705	Baroclinic/internal mode, 291–292
drag, induced/vortex, 709, 712f, 713, 714–715	Barotropic flow, 128-129, 176, 178-179
finite span, 708–716	Barotropic instability, 676–678
forces, 696–698, 697f	Barotropic/surface mode, 291–292, 647–648
geometry, 696f	Baseball dynamics, 399
lift and drag characteristics, 717–718	Batchelor, G. K., 142, 374-375, 560-561, 600-601,
stall, 707, 717	686, 871

Bayly, B. J., 475, 515, 521, 523	Bohlen, T., 377
Bearing number, 319–320	Bond number, 150
Becker, R., 753–755	Boundary conditions, 137–139, 681–682
Bergé, P., 525, 528f, 531	geophysical fluids, 646
Bénard, H., 491	at infinity, 202
convection, 484	kinematic, 257
thermal instability, 484–492 Bender, C. M., 362	on solid surface, 202
	Boundary layer
Bernoulli equations, 128–134	approximation, 368–369, 380, 401
applications of, 131–134	Blasius solution, 369–373
energy, 130	breakdown of laminar solution, 404
one-dimensional, 737–738	closed form solution, 367–369
steady flow, 128–129	concept, 362
unsteady irrotational flow, 143–169	displacement thickness, 367–369
β-plane model, 630	drag coefficient, 373
Bifurcation, 526	dynamics of sports balls, 395–396
Biofluid mechanics	effect of pressure gradient, 384-387, 517-520
flow in blood vessels, 796-843	Falkner-Skan solution, 373–375
human circulatory system, 780-796	flat plate and, 369–373
plants, 844-849	flow past a circular cylinder, 388–389
Biot and Savart, law of, 181–183	flow past a sphere, 395–396
Bird, R. B., 114, 149, 559	instability, 520–522
Birds, flight of, 719	Karman momentum integral, 375–377
Blasius solution, boundary layer, 369–373	momentum thickness, 369
Blasius theorem, 219–221	perturbation techniques, 475
Blast wave, 28f, 776–777	secondary flows, 407–408
Blocking, in stratified flow, 298–299	separation, 384–388
Blood	simplification of equations, 314
composition, 788–793	skin friction coefficient, 372–373
·	
coronary circulation, 782–784	technique, 2
Fahraeus-Lindqvist effect, 789, 792,	Thwaites method, 377–380
799–801	transition to turbulence, 382–383
flow, 796	two-dimensional jets, 399–407
flow in vessels, modelling of, 796–797	u = 0.99U thickness, 367
plasma, 788–792	Bound vortices, 710
pulmonary circulation, 782, 841–842	Boussinesq approximation, 125,
systemic circulation, 794–796	135–137
total peripheral resistance, 794–796	continuity equation and, 135
viscosity, 789–790	geophysical fluid and, 626
Blood vessels	heat equation and, 137
bifurcation, 820–822	momentum equation and, 136
Casson fluid flow in rigid tube, 839-841	Bradshaw, P., 597–598
composition of, 793	Brauer, H., 472
flow in, 796	Breach, D. R., 347
flow in collapsible tube, 831	Bridgeman, P. W., 37
flow in rigid walled curved tube, 825	Brooks, A. N., 439
Hagen-Poiseuille flow, 797	Brunt-Väisälä frequency, 294–295
nature, 793–796	Buckingham's pi theorem, 22
pulsatile flow, 805	Buffer layer, 586–587
Body forces, 102	Bulk strain rate, 78
Body of revolution	Bulk viscosity, coefficient of, 113–114
, and the second	Buoyancy frequency, 294–295, 625
flow around arbitrary, 236	
flow around streamlined, 235	Buoyant production, 565–566, 597

C	Compressible flow
Camber line, airfoil, 696	classification of, 731
Cantwell, B. J., 582	friction and heating effects, 761-765
Capillarity, 9	internal versus external, 730
Capillary number, 150	Mach cone, 765–766
Capillary waves, 269, 270–271	Mach number, 730, 731
Cardiac cycle, 782	one-dimensional, 736-738, 740-748
net work done by ventricle on blood in one, 787	shock waves, normal, 748-753
Cardiac output, 788	shock waves, oblique, 767-768, 767f
Cardiovascular system (human), functions, 780	speed of sound, 732–736
Carey, G. F., 447–448	stagnation and sonic properties, 738-740
Cascade, enstrophy, 687–688	supersonic, 773–775
Casson fluid, laminar flow in a rigid walled tube,	Compressible medium, static equilibrium of, 18, 18f
839-841	potential temperature and density, 19-21
Casson model, 790, 791f	scale height of atmosphere, 21
Casten, R. G., 419	Compression waves, 254, 280–282
Castillo, L., 589	Computational fluid dynamics (CFD)
Cauchy-Riemann conditions, 216–217	advantages of, 422-423
Cauchy's equation of motion, 111	conclusions, 470
Cavitation, 846	defined, 421–422
Central moments, 548–549	examples of, 449
Centrifugal force, effect of, 119–121	finite difference method, 423-428
Centrifugal instability (Taylor), 496-501	finite element method, 429-436
Chandrasekhar, S., 475, 498–499, 502	incompressible viscous fluid flow, 436-448
Chang, G. Z., 472	sources of error, 422
Chaos, deterministic, 524–540	Concentric cylinders, laminar flow between, 316-318
Characteristics, method of, 279	Conformal mapping, 222–225
Chester, W., 347	application to airfoil, 702–705
Chord, airfoil, 696	Conservation laws
Chorin, A. J., 439–440, 445	Bernoulli equation, 128-134
Chow, C. Y., 702	boundary conditions, 137–143
Circular Couette flow, 316–317	Boussinesq approximation, 135–137
Circular cylinder	differential form, 96
flow at various Re, 388–395	integral form, 96
flow past, boundary layer, 388–395	of mass, 96–99
flow past, with circulation, 210–211	mechanical energy equation, 123-124
flow past, without circulation, 208–209	of momentum, 101–111
Circular Poiseuille flow, 315–316	Navier-Stokes equation, 114-115
Circulation, 79–80	rotating frame, 116–121
Kelvin's theorem, 96–99	thermal energy equation, 123–124
Closure problem in turbulence, 560	time derivatives of volume integrals, 86–88
Cnoidal waves, 286	Conservative body forces, 102, 178-179
Coefficient of bulk viscosity, 113-114	Consistency, 426–428
Cohen, I. M., 753–755	Constitutive equation, for Newtonian fluid, 111–114
Coles, D., 500f, 588	Continuity equation, 98–99
Collapsible tubes	Boussinesq approximation and, 135
flow in, 831	one-dimensional, 736
one-dimensional steady flow in, 833	Continuum hypothesis, 5
Starling resistor experiment, 832	Control surfaces, 96–97
Comma notation, 55, 183	Control volume, 97–98
Complex potential, 216–219	Convection, 70–71
Complex variables, 216–219	-dominated problems, 437-439
Complex velocity, 217	forced, 598

Convection (Continued)	Derivatives
free, 598	advective, 176
sloping, 684–685	material, 176
Convergence, 426–428	particle, 176
Conversion factors, 853	substantial, 176
Corcos, G. M., 505–506	time derivatives of volume integrals,
Coriolis force, effect of, 118–119	86–88
Coriolis frequency, 629	Deviatoric stress tensor, 112
Coriolis parameter, 629	Diastole, 785–786
Coronary arteries, 782–784	
	Differential equations, nondimensional parameters
Coronary circulation, 782–784	determined from, 143–151
Correlation, auto- and cross-, 550–551	Diffusion of vorticity
Correlation coefficient, 550–551	Diffusion of vorticity
Couette flow	from impulsively started plate,
circular, 316–317	326–330
plane, 314, 517	from line vortex, 335
Courant, R., 778	from vortex sheet, 333
Cramer, M. S., 764–765	Diffusivity eddy, 594
Creeping flow, around a sphere, 340, 347	effective, 607
Creeping motions, 340	heat, 311
Cricket ball dynamics, 396–398	momentum, 311
Critical layers, 514	thermal, 137
Critical Re	vorticity, 178–179, 333
blood flow, 797	Dimensional analysis, 21–22
Critical Re for transition	Dimensional homogeneity, 21–22
over circular cylinder, 393–394	Dimensional matrix, 23–24
over flat plate, 395–396	Dipole. See Doublet
over sphere, 395–396	Dirichlet problem, 429
Cross-correlation function, 550–551	Discretization error, 422
Cross product, vector, 51–52	of transport equation, 425
Curl, vector, 54	Dispersion
Curtiss, C. F., 149	of particles, 602–603
Curvilinear coordinates, 866	relation, 259, 275, 668–670, 673–676
	Taylor's theory, 601–602
D	Dispersive wave, 273–278, 283
D'Alembert's paradox, 208–209,	Displacement thickness, 367–369
221–222	Dissipation
D'Alembert's solution, 734	of mean kinetic energy, 519
Davies, P., 525, 531–532	of temperature fluctuation, 600
Dead water phenomenon, 289, 290	of turbulent kinetic energy, 564–569,
Dean number, 828–829	595–600
Defect law, velocity, 584, 585	viscous, 137
Deflection angle, 767–768	Divergence
Deformation	flux, 98
of fluid elements, 123–124	tensor, 53
Rossby radius of, 657	
Degree of freedom, 525–526	theorem, 58, 98 vector, 52–53
Delta wings, 718	Doppler shift of frequency, 255–256
Denis, S. C. R., 830	
	Dot product, vector, 41–52 Double-diffusive instability, 492–496
Density	Doublet Doublet
adiabatic density gradient, 596, 623	
potential, 19–21	in axisymmetric flow, 205–206
stagnation, 738–739	in plane flow, 205–206

Downwash, 711–712	in internal gravity wave, 302-304
Drag	in surface gravity wave, 264–265
characteristics for airfoils, 717	Ensemble average, 545–546
on circular cylinder, 394–395	Enstrophy, 686
coefficient, 343, 373	Enstrophy cascade, 687–688
on flat plate, 373	Enthalpy
force, 696-698	defined, 14
form, 387–388, 718	stagnation, 738–739
induced/vortex, 712f, 713-715	Entrainment
pressure, 696–698, 718	in laminar jet, 399-400, 403
profile, 718	turbulent, 573
skin friction, 373, 696–698, 718	Entropy
on sphere, 395–396	defined, 15
wave, 713, 775	production, 215
Drazin, P. G., 475, 482f, 484, 491, 501, 514, 515	Epsilon delta relation, 51
Dussan, V., E. B., 168	Equations of motion
Dutton, J. A., 596, 597	averaged, 554–560
Dynamic pressure, 133, 145–146	Boussinesq, 135, 626
Dynamic similarity	Cauchy's, 111
nondimensional parameters and, 143–151	for Newtonian fluid, 111–115
Dynamic viscosity, 7–8	in rotating frame, 116–120
_ <i>y</i>	for stratified medium, 625–626
E	for thin layer on rotating sphere, 628–630
Eddy diffusivity, 594	Equations of state, 14–15
Eddy viscosity, 593–594	for perfect gas, 16–17
Effective gravity force, 119–121	Equipartition of energy, 264
Eigenvalues and eigenvectors of symmetric tensors,	Equivalent depth, 643
56–58	
	Eriksen, C. C., 505–506
Einstein summation convention, 41	Euler equation, 115, 128
Ekman layer	one-dimensional, 737—738
at free surface, 633–637	Euler momentum integral, 153
on rigid surface, 639–642	Eulerian description, 70
thickness, 639–640, 641	Eulerian specifications, 70
Ekman number, 632	Exchange of stabilities, principle of, 487
Ekman spiral, 635	Expansion coefficient, thermal, 16
Ekman transport at a free surface, 636	F
Element point of view, 434–436	
Elliptic circulation, 715–716	Fahraeus effect, 792
Elliptic cylinder, ideal flow, 224–225	Fahraeus-Lindqvist (FL) effect, 789, 792–793
Elliptic equation, 224–225	mathematical model, 796–797
End diastolic volume (EDV), 787–788	Falkner, V. W., 373–374
End systolic volume (ESV), 787–788	Falkner-Skan solution, 373–375
Energy	Far-field of a turbulent flow, 573t–574t
baroclinic instability, 684	Feigenbaum, M. J., 530–531
Bernoulli equation, 125–133, 153–167	Fermi, E., 140
spectrum, 553–554	Feynman, R. P., 605
Energy equation	Fick's law of mass diffusion, 6–7
integral form, 96	Finite difference method, 423, 425
mechanical, 123-124	Finite element method
one-dimensional, 736–738	element point of view, 434–436
thermal, 114–115	Galerkin's approximation, 430-431
Energy flux	matrix equations, 431–434
group velocity and, 273–278	weak or variational form, 429-430

First law of thermodynamics, 13–14	G
thermal energy equation and, 123-124	Galerkin least squares (GLS), 448
Fish, locomotion of, 719–721	Galerkin's approximation, 430–431
Fixed point, 526	Galilean Transformation, 75
Fixed volume	Gallo, W. F., 370
angular momentum principle for,	Gas constant
125-127	defined, 16–17
Fjortoft, R., 512, 686–687	universal, 16–17
Fjortoft's theorem, 512–513	Gas dynamics, 692
Flat plate, boundary layer and	See also Compressible flow
Blasius solution, 369–373	Gases, 3–5
closed form solution, 367–369	Gauge pressure, defined, 9–10
drag coefficient, 373	Gauss' theorem, 58–60, 98
Fletcher, C. A. J., 436, 439	Gaussian vortex, 17
Flow limitation, 832	Geophysical fluid dynamics
Fluid mechanics, applications, 2–3	approximate equations for thin layer on rotating
Fluid mechanics, visual resources, 873	sphere, 628–630
Fluid, definition, 3–4	background information, 622–623
Fluid particle, 13	baroclinic instability, 678–679
Fluid statics, 9–12	barotropic instability, 676–678
Flux divergence, 98	Ekman layer at free surface, 633–637
Flux of vorticity, 79–80	Ekman layer on rigid surface, 639–642
Force field, 102	equations of motion, 625–628
Force potential, 102	geostrophic flow, 630–632
Forces	gravity waves with rotation, 651–652
conservative body, 102, 178-179	Kelvin waves, 654–658
Coriolis, 118–119	normal modes in continuous stratified layer,
on a surface, 48–50	644–645
Forces in fluid	Rossby waves, 671
body, 102	shallow-water equations, 642–643, 649–651
line, 102	vertical variations of density, 623–625
surface, 102	vorticity conservation in shallow-water theory,
Form drag, 387–388, 718	658–662
Fourier's law of heat conduction, 7	George, W. K., 578, 582
<i>f</i> -plane model, 630	Geostrophic balance, 631
Franca, L. P., 439, 448	Geostrophic flow, 630–632
Frank, Otto, 805	Geostrophic turbulence, 685–688
Frequency, wave	Ghia, U., 449
circular or radian, 254	Ghia, K. N., 449
Doppler shifted, 255–256	Gill, A. E., 289, 298, 652, 674f, 675, 676
intrinsic, 255–256	Glauert, M. B., 404
observed, 255–256	Glowinski scheme, 446
Free turbulent shear flow, 571–581	Glowinski, R., 446, 448
Frey, S. L., 448	Gnos, A. V., 418
Friction drag, 373, 696–698, 718	Goldstein, S., 363, 502
Friction, effects in constant-area ducts,	Görtler vortices, 501
761–763	Gower, J. F. R., 392f
Friedrichs, K. O., 778	Grabowski, W. J., 522
Froude number, 146, 282, 836	Gradient operator, 52–54
internal, 147	Gravity force, effective, 119–121
Fry, R. N., 764	Gravity waves
Fully developed flow, 312	deep water, 265–269
Fuselage, 692	at density interface, 286–293

1:	II 1 1 1 (OF
dispersion, 267, 273–278, 299–300	Hodograph plot, 635
energy issues, 302–304	Holstein, H., 377
equation, 257—262	Holton, J. R., 671
finite amplitude, 279–280	Homogeneous isotropic turbulence, 560–563
group velocity and energy flux, 273–278	Hooke's law, blood vessels and, 804
hydraulic jump, 280–283	Hou, S., 452, 453f
infinite layer, 289, 290f	Houghton, J. T., 672f, 677f
internal, 296–299	Howard, L. N., 502, 507–508, 514
motion equations, 293–296	Howard's semicircle theorem, 507–508
nonlinear steepening, 280–282	Hughes, T. J. R., 436, 439, 466
parameters, 254–255	Hugoniot, Pierre Henry, 750–751
refraction, 267–268	Human body, biotransport and distribution processes,
with rotation, 651–652	780
shallow water, 265–269, 279–286, 292–293	Huppert, H. E., 492
standing, 271–273	Hydraulic jump, 280–282
Stokes' drift, 284f, 285–286	Hydrostatics, 11–12
in stratified fluid, 296–299	Hydrostatic waves, 267
surface, 254, 256–265	Hypersonic flow, 731
surface tension, 269–271	
Gresho, P. M., 437	I
Group velocity	Images, method of, 188-189, 213-214
concept, 273–278	Incompressible aerodynamics. See Aerodynamics
of deep water wave, 275	Incompressible fluids, 113–114, 115
energy flux and, 273–278	Incompressible viscous fluid flow, 436-448
Rossby waves, 671	convection-dominated problems, 437-439
wave dispersion and, 273–278	Glowinski scheme, 446
i ,	incompressibility condition, 439-440
Н	1
	MAC scheme, 442–446 mixed finite element, 447–448
Hagen-Poiseuille flow, 797	MAC scheme, 442–446 mixed finite element, 447–448
Hagen-Poiseuille flow, 797 application, 820	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311 Heat equation, 137	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422 Inlet (entrance) length, 801–802
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311 Heat equation, 137 Boussinesq equation and, 137	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422 Inlet (entrance) length, 801–802 Inner layer, law of the wall, 584–585
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311 Heat equation, 137 Boussinesq equation and, 137 Heat flux, turbulent, 565–566	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422 Inlet (entrance) length, 801–802 Inner layer, law of the wall, 584–585 Input data error, 422
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311 Heat equation, 137 Boussinesq equation and, 137 Heat flux, turbulent, 565–566 Heating, effects in constant-area ducts, 761–763	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422 Inlet (entrance) length, 801–802 Inner layer, law of the wall, 584–585 Input data error, 422 Instability
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311 Heat equation, 137 Boussinesq equation and, 137 Heat flux, turbulent, 565–566 Heating, effects in constant-area ducts, 761–763 Heisenberg, W., 516–517	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422 Inlet (entrance) length, 801–802 Inner layer, law of the wall, 584–585 Input data error, 422 Instability background information, 475
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311 Heat equation, 137 Boussinesq equation and, 137 Heat flux, turbulent, 565–566 Heating, effects in constant-area ducts, 761–763 Heisenberg, W., 516–517 Hele-Shaw, H. S., 322, 324, 357, 358, 359	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422 Inlet (entrance) length, 801–802 Inner layer, law of the wall, 584–585 Input data error, 422 Instability background information, 475 baroclinic, 678–685
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311 Heat equation, 137 Boussinesq equation and, 137 Heat flux, turbulent, 565–566 Heating, effects in constant-area ducts, 761–763 Heisenberg, W., 516–517 Hele-Shaw, H. S., 322, 324, 357, 358, 359 Hele-Shaw flow, 324, 357–358	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422 Inlet (entrance) length, 801–802 Inner layer, law of the wall, 584–585 Input data error, 422 Instability background information, 475 baroclinic, 678–685 barotropic, 676–678
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311 Heat equation, 137 Boussinesq equation and, 137 Heat flux, turbulent, 565–566 Heating, effects in constant-area ducts, 761–763 Heisenberg, W., 516–517 Hele-Shaw, H. S., 322, 324, 357, 358, 359 Hele-Shaw flow, 324, 357–358 Helmholtz vortex theorems, 179–180	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422 Inlet (entrance) length, 801–802 Inner layer, law of the wall, 584–585 Input data error, 422 Instability background information, 475 baroclinic, 678–685 barotropic, 676–678 boundary layer, 517–522
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311 Heat equation, 137 Boussinesq equation and, 137 Heat flux, turbulent, 565–566 Heating, effects in constant-area ducts, 761–763 Heisenberg, W., 516–517 Hele-Shaw, H. S., 322, 324, 357, 358, 359 Hele-Shaw flow, 324, 357–358 Helmholtz vortex theorems, 179–180 Hematocrit, 789–790	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422 Inlet (entrance) length, 801–802 Inner layer, law of the wall, 584–585 Input data error, 422 Instability background information, 475 baroclinic, 678–685 barotropic, 676–678 boundary layer, 517–522 centrifugal (Taylor), 496–501
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311 Heat equation, 137 Boussinesq equation and, 137 Heat flux, turbulent, 565–566 Heating, effects in constant-area ducts, 761–763 Heisenberg, W., 516–517 Hele-Shaw, H. S., 322, 324, 357, 358, 359 Hele-Shaw flow, 324, 357–358 Helmholtz vortex theorems, 179–180 Hematocrit, 789–790 plasma skimming, 792–793	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422 Inlet (entrance) length, 801–802 Inner layer, law of the wall, 584–585 Input data error, 422 Instability background information, 475 baroclinic, 678–685 barotropic, 676–678 boundary layer, 517–522 centrifugal (Taylor), 496–501 of continuously stratified parallel flows, 502–508
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311 Heat equation, 137 Boussinesq equation and, 137 Heat flux, turbulent, 565–566 Heating, effects in constant-area ducts, 761–763 Heisenberg, W., 516–517 Hele-Shaw, H. S., 322, 324, 357, 358, 359 Hele-Shaw flow, 324, 357–358 Helmholtz vortex theorems, 179–180 Hematocrit, 789–790 plasma skimming, 792–793 Herbert, T., 475, 515	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422 Inlet (entrance) length, 801–802 Inner layer, law of the wall, 584–585 Input data error, 422 Instability background information, 475 baroclinic, 678–685 barotropic, 676–678 boundary layer, 517–522 centrifugal (Taylor), 496–501 of continuously stratified parallel flows, 502–508 destabilizing effect of viscosity, 516–517
Hagen-Poiseuille flow, 797 application, 820 effect of developing flow, 801–803 effect of vessel wall elasticity, 801–803 Fahraeus-Lindqvist effect and, 796–797 Half-body, flow past a, 207–208 Harlow, F. H., 443 Harmonic function, 202 Hatsopoulos, G. N., 37 Hayes, W. D., 755 Heart, pumping action, 785–786 Heat diffusion, 311 Heat equation, 137 Boussinesq equation and, 137 Heat flux, turbulent, 565–566 Heating, effects in constant-area ducts, 761–763 Heisenberg, W., 516–517 Hele-Shaw, H. S., 322, 324, 357, 358, 359 Hele-Shaw flow, 324, 357–358 Helmholtz vortex theorems, 179–180 Hematocrit, 789–790 plasma skimming, 792–793	MAC scheme, 442–446 mixed finite element, 447–448 Induced/vortex drag, 712f, 713–715 coefficient, 717 Inertia forces, 338–339 Inertial circles, 653–654 Inertial motion, 653–654 Inertial period, 629, 653–654 Inertial sublayer, 584–585 Inertial subrange, 569–570 Inflection point criterion, Rayleigh, 511–512, 676 inf-sup condition, 447–448 Initial and boundary condition error, 422 Inlet (entrance) length, 801–802 Inner layer, law of the wall, 584–585 Input data error, 422 Instability background information, 475 baroclinic, 678–685 barotropic, 676–678 boundary layer, 517–522 centrifugal (Taylor), 496–501 of continuously stratified parallel flows, 502–508

Instability (Continued)	uniqueness of, 213
Kelvin-Helmholtz instability, 477–483	unsteady, 130
marginal versus neutral state, 476	velocity potential and Laplace equation, 191
method of normal modes, 475–476	at wall angle, 217–218
mixing layer, 515–516	Irrotational vector, 54
nonlinear effects, 522	Irrotational vortex, 84, 171–172, 218
Orr-Sommerfeld equation, 508–511	Isentropic flow, one-dimensional, 740–748
oscillatory mode, 476	Isentropic process, 17
pipe flow, 517	Isotropic tensors, 50–51, 111–113
plane Couette flow, 517	Isotropic turbulence, 560–563
plane Poiseuille flow, 516–517	Iteration method, 225–230
principle of exchange of stabilities, 487	ĭ
results of parallel viscous flows, 515–520	J
salt finger, 492, 494–496	Jets, two-dimensional laminar, 399–407
sausage instability, 538	K
secondary, 523	
sinuous mode, 537	Kaplun, S., 314
Squire's theorem, 508–511	Karamcheti, K., 728
thermal (Bénard), 484–492	Karman. See under von Karman
Integral time scale, 552–553	Keenan, J. H., 37
Interface, conditions at, 137–138	Keller, H. B., 472
Internal energy, 13, 124	Kelvin-Helmholtz instability, 477–483
Internal Froude number, 147	Kelvin's circulation theorem, 176–179
Internal gravity waves, 254	Kelvin waves
See also Gravity waves	external, 654–658
energy flux, 302–304	internal, 657–658
at interface, 287–288, 287f	Kinematics
in stratified fluid, 296–299 in stratified fluid with rotation, 662–671	defined, 65–66 Lagrangian and Eulerian specifications, 69–70
WKB solution, 664–666	linear strain rate, 76–77
Internal Rossby radius of deformation, 657–658	material derivative, 176
Intrinsic frequency, 255–256, 588	one-, two-, and three-dimensional flows, 66–67
Inversion, atmospheric, 17	parallel shear flows and, 82
Inviscid stability of parallel flows, 511–515	path lines, 72
Inviscid theory	polar coordinates, 66–67
application of complex variables, 216–219	reference frames and streamline pattern, 75
around body of revolution, 233	relative motion near a point, 76
axisymmetric, 231–236	shear strain rate, 82–83
blood flow, 806–809	streak lines, 72–73
conformal mapping, 222–225	stream function, 99–100
doublet/dipole, 205–206	streamlines, 71–72
forces on two-dimensional body, 219–222	viscosity, 8
images, method of, 188-189, 213-214	vortex flows and, 83–84
irrotational flow, 79	vorticity and circulation, 78-79
long wave length approximation, 822-825	Kinetic energy
numerical solution of plane, 225–230	of mean flow, 564–565
over elliptic cylinder, 224–225	of turbulent flow, 565–566
past circular cylinder with circulation, 210–211	Kinsman, B., 268f
past circular cylinder without circulation,	Klebanoff, P. S., 484, 523
208-209	Kline, S. J., 582
past half-body, 207–208	Kolmogorov, A. N., 544-545, 595
relevance of, 198–200	microscale, 568
sources and sinks, 201	spectral law, 569-570

Korotkoff sounds, 831-832	Lift force, airfoil, 696–698
Korteweg-deVries equation, 286	characteristics for airfoils, 717-718
Knudsen number, 5	Zhukhovsky, 706–708
Kronecker delta, 50-51	Lifting line theory
Krylov, V. S., 169	Prandtl and Lanchester, 716
Kuethe, A. M., 702	results for elliptic circulation, 715–716
Kundu, P. K., 638f	Lift theorem, Kutta-Zhukhovsky, 211–212, 221–222,
Kuo, H. L., 559, 676–677	698, 712–713
Kurtosis, 548–549	Light scattering , 30
Kutta condition, 698–699	Lighthill, M. J., 188–189, 278f–279f, 279, 283, 719
Kutta, Wilhelm, 211–212	Limit cycle, 526
Kutta-Zhukhovsky lift theorem, 211–212, 221–222,	Lin, CY., 391, 468–470
698	Linear strain rate, 76–77
	Line forces, 102
L	Line vortex, 171–172, 335f
Lagrangian description, 69–70	Liquids, 3–5
Lagrangian specifications, 69–70	Logarithmic law, 585–590
Lam, S. H., 595–596	Long-wave approximation. See Shallow-water
Lamb, H., 129, 139–140	approximation
Lamb surfaces, 129	Lorenz, E., 475–476, 526–529, 531
Laminar boundary layer equations, Falkner-Skan	model of thermal convection, 526–527
solution, 373–375	strange attractor, 529
Laminar flow	Lubrication theory, elementary, 318–326
creeping flow, around a sphere, 314–315	Lumley, J. L., 543, 585–586, 596
	Euritey, J. E., 545, 505 500, 570
defined, 310–311	M
diffusion of vortex sheet, 333f Hele-Shaw, 314	MacCormack, R. W., 440–442, 449, 452–453, 455,
	456–459
high and low Reynolds number flows, 338–347	
	McCreary, J. P., 675 Mach, Ernst, 730–731
oscillating plate, 337–338	
pressure change, 311	angle, 765–766
similarity solutions, 326–337	cone, 765–766
steady flow between concentric cylinders,	line, 765–766
316–318	number, 282, 692
steady flow between parallel plates,	MAC (marker-and-cell) scheme, 442–446
312–314	Magnus effect, 212–213
steady flow in a pipe, 315–316	Marchuk, G. I., 442–443
Laminar flow, of a Casson fluid in a rigid walled tube,	Marginal state, 476
839–841 Landing in the 200 407	Mass, conservation of, 96–99
Laminar jet, 399–407	Mass transport velocity, 285
Lanchester, Frederick, 701–702, 707, 716	Material derivative, 70
lifting line theory, 708–716	Material volume, 96–97
Landahl, M., 568	Matrices
Lanford, O. E., 525	dimensional, 23
Laplace equation, 191	multiplication of, 44–45
numerical solution, 225–230	rank of, 23–24
Law of the wall, 584–585	transpose of, 40–41
LeBlond, P. H., 283, 648	Matrix equations, 431–434
Lee wave, 670–671	Mean continuity equation, 555
Leibniz theorem, 85, 86	Mean heat equation, 558–559
Lesieur, M., 542	Mean momentum equation, 555–556
Levich, V. G., 139	Measurement, units of SI, 3
Liepmann, H. W., 279, 730	conversion factors, 853

Mechanical energy equation, 123-124	high and low Reynolds number flows, 338-347
Mehta, R., 396, 397f	Oseen's equation, 345–347
Miles, J. W., 502	region of, 339
Millikan, R. A., 314, 544	of Stokes' solution, 345
Milne-Thompson, L. M., 251	Normal modes
Mixed finite element, 447–448	in continuous stratified layer, 644-649
Mixing layer, 515–516	instability, 475–476
Mixing length, 544, 593–594	for uniform N, 646–649
Modeling error, 422	Normal shock waves, 748–755
Moens-Korteweg wave speed, 807–808	Normal strain rate, 76–77
Mollo-Christensen, E., 568	Normalized autocorrelation function, 550–551
Moments, 545–549, 560	No-slip condition, 177–178, 315, 362, 437, 486, 487, 510,
Momentum	519, 802, 826–827
conservation of, 101–111	Noye, J., 427–428
diffusivity, 311	Nozzle flow, compressible, 748–750
thickness, 369	Numerical solution
Momentum equation, Boussinesq equation and, 136	Laplace equation, 225–230
Momentum integral, von Karman, 375–377	of plane flow, 225–230
Momentum principle, for control volume, 737–738	
angular, 125–127	O
Monin, A. S., 543, 544	Oblique shock waves, 767–770
Monin-Obukhov length, 598-599	Observed frequency, 670–671
Moore, D. W., 118	Oden, J. T., 447–448
Moraff, C. A., 753–755	One-dimensional approximation, 66
Morton, K. W., 428	One-dimensional flow
Munk, W., 671	
Murray's Law, 821	area/velocity relations, 740–748
application, 820–822	equations for, 736–738
Mysak, L. A., 283, 648	One-dimensional flow, in a collapsible tube, 833–839
•	Ordinary differential equations (ODEs), 431–432
N	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134
•	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511
N	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596
N Narrow-gap approximation, 498–499	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347,	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476 Newman, J. N., 722	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585 Overlap layer, logarithmic law, 585–590
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476 Newman, J. N., 722 Newtonian fluid, 111–114	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585 Overlap layer, logarithmic law, 585–590 P Panofsky, H. A., 596, 597
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476 Newman, J. N., 722 Newtonian fluid, 111–114 non-, 114	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585 Overlap layer, logarithmic law, 585–590 P Panofsky, H. A., 596, 597 Parallel flows
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476 Newman, J. N., 722 Newtonian fluid, 111–114 non-, 114 Newton's law of friction, 7–8	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585 Overlap layer, logarithmic law, 585–590 P Panofsky, H. A., 596, 597 Parallel flows instability of continuously stratified, 502–508
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476 Newman, J. N., 722 Newtonian fluid, 111–114 non-, 114 Newton's law of friction, 7–8 Nondimensional parameters	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585 Overlap layer, logarithmic law, 585–590 P Panofsky, H. A., 596, 597 Parallel flows instability of continuously stratified, 502–508 inviscid stability of, 511–515
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476 Newman, J. N., 722 Newtonian fluid, 111–114 non-, 114 Newton's law of friction, 7–8 Nondimensional parameters determined from differential equations, 144	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585 Overlap layer, logarithmic law, 585–590 P Panofsky, H. A., 596, 597 Parallel flows instability of continuously stratified, 502–508 inviscid stability of, 511–515 results of viscous, 515–520
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476 Newman, J. N., 722 Newtonian fluid, 111–114 non-, 114 Newton's law of friction, 7–8 Nondimensional parameters determined from differential equations, 144 dynamic similarity and, 151	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585 Overlap layer, logarithmic law, 585–590 P Panofsky, H. A., 596, 597 Parallel flows instability of continuously stratified, 502–508 inviscid stability of, 511–515 results of viscous, 515–520 Parallel plates, steady flow between, 312–315
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476 Newman, J. N., 722 Newtonian fluid, 111–114 non-, 114 Newton's law of friction, 7–8 Nondimensional parameters determined from differential equations, 144 dynamic similarity and, 151 Non-Newtonian fluid, 114	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585 Overlap layer, logarithmic law, 585–590 P Panofsky, H. A., 596, 597 Parallel flows instability of continuously stratified, 502–508 inviscid stability of, 511–515 results of viscous, 515–520 Parallel plates, steady flow between, 312–315 Parallel shear flows, 82
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476 Newman, J. N., 722 Newtonian fluid, 111–114 non-, 114 Newton's law of friction, 7–8 Nondimensional parameters determined from differential equations, 144 dynamic similarity and, 151 Non-Newtonian fluid, 114 Nonrotating frame, vorticity equation in, 180–181	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585 Overlap layer, logarithmic law, 585–590 P Panofsky, H. A., 596, 597 Parallel flows instability of continuously stratified, 502–508 inviscid stability of, 511–515 results of viscous, 515–520 Parallel plates, steady flow between, 312–315 Parallel shear flows, 82 Particle derivative, 176
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476 Newman, J. N., 722 Newtonian fluid, 111–114 non-, 114 Newton's law of friction, 7–8 Nondimensional parameters determined from differential equations, 144 dynamic similarity and, 151 Non-Newtonian fluid, 114 Nonrotating frame, vorticity equation in, 180–181 Nonuniform expansion	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585 Overlap layer, logarithmic law, 585–590 P Panofsky, H. A., 596, 597 Parallel flows instability of continuously stratified, 502–508 inviscid stability of, 511–515 results of viscous, 515–520 Parallel plates, steady flow between, 312–315 Parallel shear flows, 82 Particle derivative, 176 Particle orbit, 652–653, 666–668
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476 Newman, J. N., 722 Newtonian fluid, 111–114 non-, 114 Newton's law of friction, 7–8 Nondimensional parameters determined from differential equations, 144 dynamic similarity and, 151 Non-Newtonian fluid, 114 Nonrotating frame, vorticity equation in, 180–181 Nonuniform expansion at low Reynolds number, 339, 345	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585 Overlap layer, logarithmic law, 585–590 P Panofsky, H. A., 596, 597 Parallel flows instability of continuously stratified, 502–508 inviscid stability of, 511–515 results of viscous, 515–520 Parallel plates, steady flow between, 312–315 Parallel shear flows, 82 Particle derivative, 176 Particle orbit, 652–653, 666–668 Pascal's law, 11
N Narrow-gap approximation, 498–499 National Committee for Fluid Mechanics Films (NCFMF), 873 Navier-Stokes equation, 114–115, 175–176, 310, 347, 383, 436–437, 439, 440, 441–442, 443, 447, 470, 501, 508–509, 748, 753–755 convection-dominated problems, 437–439 incompressibility condition, 439–440 Nayfeh, A. H., 362, 522 Neutral state, 476 Newman, J. N., 722 Newtonian fluid, 111–114 non-, 114 Newton's law of friction, 7–8 Nondimensional parameters determined from differential equations, 144 dynamic similarity and, 151 Non-Newtonian fluid, 114 Nonrotating frame, vorticity equation in, 180–181 Nonuniform expansion	Ordinary differential equations (ODEs), 431–432 Orifice flow, 133–134 Orr-Sommerfeld equation, 510–511 Orszag, S. A., 362, 475, 515, 595–596 Oscillating plate, flow due to, 337–338 Oscillatory mode, 476, 495 Oseen, C. W., 345–347, 389 Oseen's approximation, 345 Oseen's equation, 345 Outer layer, velocity defect law, 585 Overlap layer, logarithmic law, 585–590 P Panofsky, H. A., 596, 597 Parallel flows instability of continuously stratified, 502–508 inviscid stability of, 511–515 results of viscous, 515–520 Parallel plates, steady flow between, 312–315 Parallel shear flows, 82 Particle derivative, 176 Particle orbit, 652–653, 666–668

D I D A 247	D-1
Pearson, J. R. A., 347	Polar coordinates, 66–67
Pedlosky, J., 627, 637–639, 679, 686, 688	cylindrical, 839
Peletier, L. A., 370	Pomeau, Y., 525, 531
Perfect differential, 128	Potential, body force, 119–121
Perfect gas, 16–17	Potential, complex, 216—219
Peripheral resistance unit (PRU), 794–796	Potential density gradient, 17, 596
Permutation symbol, 50–51	Potential energy
Perturbation pressure, 260, 266–267	baroclinic instability, 678–685
Perturbation techniques, 475	mechanical energy equation and, 123-124
asymptotic expansion, 516–517	of surface gravity wave, 264
nonuniform expansion, 345	Potential flow. See Irrotational flow
regular, 515–516	Potential temperature and density, 19–21
singular, 516–517	Potential vorticity, 660
Perturbation vorticity equation, 679–681	Prager, W., 64
Petrov-Galerkin methods, 431	Prandtl, L., 40–41, 212, 362, 502, 528, 529–531,
Peyret, R., 445, 446	544-545, 595, 600-601, 622, 753-755,
Phase propagation, 675	869-870
Phase space, 525–526	mixing length, 544, 593-594
Phenomenological laws, 6–7	Prandtl and Lanchester lifting line theory, 716
Phillips, O. M., 274–275, 596, 671	Prandtl-Meyer expansion fan, 771–773
Phloem, 847–848	Prandtl number, 149, 486
flow, 848–850	turbulent, 597–598
Pipe flow, dimensional analysis	Pressure
instability and, 516	absolute, 9–10
Pipe, steady laminar flow in a, 315–316	coefficient, 147, 207–208
Pitch axis of aircraft, 692–693	defined, 5, 9–10
Pi theorem, Buckingham's, 22	drag, 696–698, 718
Pitot tube, 131–132	
Plane Couette flow, 314, 517	dynamic, 133, 145–146 gauge, 9–10
Plane irrotational flow, 200–203	9 9
	Laplace, 9
Plane jet	stagnation, 133
self-preservation, 571–573	waves, 258, 765–773
turbulent kinetic energy, 573	Pressure-drop limitation, 832
Plane Poiseuille flow, 314	Pressure gradient
instability of, 516–517	boundary layer and effect of, 384–387, 517
Planetary vorticity, 185–187, 629	constant, 312–314
Planetary waves. See Rossby waves	Pressure pulse, 785–786
Plants	Principal axes, 56, 80–81
fluid mechanics, 844–849	Principle of exchange of stabilities, 487
physiology, 844–845	Probstein, R. F., 139
Plasma, blood, 788–789	Profile drag, 718
skimming, 792–793	Proudman, I., 347, 633
viscosity, 789–790	Pulmonary circulation, 782, 841–842
Plastic state, 4	Pulsatile flow, 796, 805–806
Platelets (thrombocytes), 788–789	aorta elasticity and Windkessel theory, 805-806
Pohlhausen, K., 375–377	inviscid theory, 806-809
Poincaré, Pitot, Henri, 531	in rigid cylindrical tube, 809–814
Poincaré waves, 652, 656	tube material viscoelasticity, 819-820
Point of inflection criterion, 384–385	wall viscoelasticity, 814–819
Poiseuille flow	•
circular, 315	Q
instability of, 516-517	Quasi-geostrophic motion, 671–673
plane laminar, 314	Quasi-periodic regime, 529–531
· '	1

n.	Rotating cylinder
R	flow inside, 318
Random walk, 604–606	flow outside, 317–318
Rankine, W. J. M., 750–751	Rotating frame
vortex, 84–85	vorticity equation in, 183–187
Rankine-Hugoniot relations, 753–755	Rotation, gravity waves with, 651–654
RANS equations, 560	Rotation tensor, 76
Rayleigh	Rough surface turbulence, 590–591
equation, 511	Ruelle, D., 530–531
inflection point criterion, 511–512, 676	Runge-Kutta technique, 432–433
inviscid criterion, 497, 499f	0
number, 490–491	S
Rayleigh, Lord (J. W. Strutt), 142	Saad, Y., 448
Red blood cells, 789	Sailing, 721–728
Reduced gravity, 292	Salinity, 20
Refraction, shallow-water wave, 267–268	Salt finger instability, 492, 494–496
Regular perturbation, 515–516	Sargent, L. H., 523
Reid, W. H., 475, 482f, 484, 491, 501, 514, 515	Saric, W. S., 522
Relative vorticity, 659–661	Scalars, defined, 40
Relaxation time, molecular, 13 Renormalization group theories, 595–596	Scale height, atmosphere, 21
Reshotko, E., 522	Schlichting, H., 363, 520
Reversible processes, 14	Schlieren method, 730–731
Reynolds	Schwartz inequality, 550–551 Scotti, R. S., 505–506
analogy, 597–598	Secondary flows, 407–419, 522
averaging, 560	Secondary instability, 523
decomposition, 554–555	Second law of thermodynamics, 15
experiment on flows, 310–311	entropy production and, 125
similarity, 579–580	Second-order tensors, 45–47
stress, 556–557	Seiche, 271–273
transport theorem, 97	Self-preservation, turbulence and, 571–573
Reynolds, W. C., 542–543	Separation, 384–385, 388
Reynolds, O., 517, 544	Separated flow, 198–199
Reynolds number, 144-146, 198, 389	Serrin, J., 370
high and low flows, 338-347, 389-395	Shallow-water approximation, 292–293
Rhines, P. B., 688	Shallow-water equations, 642-643
Rhines length, 688	high and low frequencies, 649-651
Richardson, L. F., 502, 544–545, 567–568	Shallow-water theory, vorticity conservation in, 658-662
Richardson number, 147, 542–543, 597	Shames, I. H., 251
criterion, 502	Shapiro, A. H., 730, 833–838
flux, 597–598	Shear flow
gradient, 147, 504–505, 597–598	wall-bounded turbulent, 581–591
Richtmyer, R. D., 428	free turbulent, 571–581
Rigid lid approximation, 648, 649	Shear production of turbulence, 564–567, 597
Ripples, 270–271	Shear strain rate, 82–83
Roll axis of aircraft, 692–693	Shear stress, 7–8
Root-mean-square (rms), 544, 548–549	Shen, S. F., 516–517, 521
Roshko, A., 279, 730	Sherman, F. S., 318
Rossby number, 630 Rossby radius of deformation, 657,	Shin, C. T., 472 Sheek and 767, 768
682–684	Shock angle, 767–768 Shock atructure, 753–755
internal, 657–658	Shock structure, 753—755 Shock waves
Rossby waves, 671–676	normal, 748–755
10000 y Waves, 0/1 0/0	1101111d1, 740-733

oblique, 767–770	Oseen's approximation, 345
structure of, 753–755	Stokes' creeping flow around, 340, 347
SI (système international d'unités), units of	Spiegel, E. A., 135
measurement, 3	Sports balls, dynamics of, 395–399
conversion factors, 853	Squire's theorem, 502–503, 508–511
Similarity	Stability, 426–428
See also Dynamic similarity	See also Instability
geometric, 222	Stagnation density, 738–739
Similarity solution, 326	Stagnation flow, 217–218
for boundary layer, 369–373	Stagnation points, 698
decay of line vortex, 335f	Stagnation pressure, 133, 738–739
diffusion of vortex sheet, 333f	Stagnation properties, compressible flow, 738–740
for impulsively started plate, 326–337	Stagnation temperature, 738–739
for laminar jet, 399–407	Standard deviation, 548–549
Singly connected region, 213	Standing waves, 271–273
Singularities, 216–217	Starling resistor, flow in a collapsible tube, 832
Singular perturbation, 516–517	State functions, 14, 16
Sink, boundary layer, 412	surface tension, 8–9
Skan, S. W., 373–374, 377	Stationary turbulent flow, 546-547
Skewness, 548-549	Statistics of a variable, 545–546
Skin friction coefficient, 372–373	Steady flow
Sloping convection, 684–685	Bernoulli equation and, 128–129
Smith, L. M., 595–596	between concentric cylinders, 316–318
Smits, A. J., 582	between parallel plates, 312–314
Solenoidal vector, 54	in a pipe, 315–316
Solid-body rotation, 83-84, 83f, 171-172	Steady flow, in a collapsible tube, 833–839
Solids, 3–5	Stern, M. E., 492
Solitons, 286–287	Stokes' assumption, 113-114
Sommerfeld, A., 45-46, 179-180, 191, 544, 730-731	Stokes' creeping flow around spheres, 340, 347
Sonic conditions, 739–740	Stokes' drift, 284f, 285–286
Sonic properties, compressible flow, 738–740	Stokes' first problem, 326–327
Sound	Stokes' law of resistance, 342
speed of, 16, 17, 731–732	Stokes' second problem, 337–338
waves, 732–736	Stokes' stream function, 231
Source-sink	Stokes' theorem, 60-61, 79-80
axisymmetric, 233	Stokes' waves, 283
near a wall, 213	Stommel, H. M., 118, 492, 641–642
plane, 201	Strain rate
Spalding, D. B., 589	linear/normal, 76–77
Spatial distribution, 11	shear, 82–83
Specific heats, 14	tensor, 76
Specific impulse, 109	Strange attractors, 529
Spectrum	Stratified layer, normal modes in continuous, 644–649
energy, 553–554	Stratified turbulence, 545
as function of frequency, 553–554	Stratopause, 624
as function of wave number, 545	Stratosphere, 622, 624
in inertial subrange, 545, 569–570	Streak lines, 72–73
temperature fluctuations, 600–601	Stream function
Speziale, C. G., 591	in axisymmetric flow, 231–236
Sphere	generalized, 99–100
creeping flow around, 340, 347	in plane flow, 83–84
flow around, 233	Stokes, 231
flow at various Re, 395–399	Streamlines, 71–72

Stress, at a point, 111	theory of turbulent dispersion, 601-607
Stress tensor	vortices, 501
deviatoric, 112	Taylor-Goldstein equation, 503–504
normal or shear, 102	Taylor microscale, 552–553, 561–562, 569
Reynolds, 556	Taylor-Proudman theorem, 632–633
symmetric, 111	TdS relations, 16–17
Strouhal number, 391	Temam, R., 445
Sturm-Liouville form, 645	Temperature
Subcritical gravity flow, 282	adiabatic temperature gradient, 17, 623
Subharmonic cascade, 529–531	fluctuations, spectrum, 600–601
Sublayer	potential, 19–21
•	±
inertial, 569–570 streaks, 542–543	stagnation, 738–739 Tennekes, H., 543, 585–586, 596
	Tennis ball dynamics, 398–399
viscous, 584–585	Tensors, Cartesian
Subrange	
inertial, 545, 569–570	boldface versus indicial notation, 41–42
viscous convective, 600–601	comma notation, 62
Substantial derivative 176	contraction and multiplication, 47–48
Substantial derivative, 176	cross product, 51–52
Sucker, D., 472 Supercritical gravity flow, 282	dot product, 51–52
	eigenvalues and eigenvectors of symmetric, 56
Supersonic flow, 148–149, 731	force on a surface, 48–49
airfoil theory, 773–775	Gauss' theorem, 58–59
expansion and compression, 771	invariants of, 47
Surface forces, 102	isotropic, 50–51, 112–113
Surface gravity waves, 254	Kronecker delta and alternating, 50–51
See also Gravity waves	multiplication of matrices, 44–45
in deep water, 265–269	operator del, 52–53
features of, 256–269	rotation of axes, 42–43
in shallow water, 265–269	scalars and vectors, 39–41
Surface tension, 8–9	second-order, 45–47
Surface tension, generalized, 139	Stokes' theorem, 60–61
Sverdrup waves, 652	strain rate, 56
Sweepback angle, 718	symmetric and antisymmetric, 55–56
Symmetric tensors, 55–56	vector or dyadic notation, 41
eigenvalues and eigenvectors of, 56	Tezduyar, T. E., 448
Systemic circulation, 780–781	Theodorsen's method, 702
pressure throughout, 785–786	Thermal conductivity, 7
Systole, 785–786	Thermal convection, Lorenz model of, 526–527
systolic blood pressure, measurement,	Thermal diffusivity, 137
831-832	Thermal energy equation, 123–124
T	Boussinesq equation and, 135–137
	Thermal energy, 13
Takami, H., 472	Thermal expansion coefficient, 16
Takens, F., 529–531	Thermal instability (Bénard), 484–492
Taneda, S., 390f	Thermal wind, 632
Tannehill, J. C., 442	Thermocline, 625
Taylor, T. D., 445, 499–501, 544, 622	Thermodynamic pressure, 111–112
Taylor, G. I., 544, 593–594, 641	Thermodynamics
centrifugal instability, 496–501	entropy relations, 16–17
column, 633	equations of state, 14, 16
hypothesis, 554, 563	first law of, 13–14, 123–124
number, 498–501	second law of, 15, 125

integral time scale, 552–553
intensity variations, 578-579
isotropic, 560-563
in a jet, 571–575
kinetic energy of, 563
kinetic energy of mean flow, 563
law of the wall, 584–585
logarithmic law, 585-590
mean continuity equation, 555
mean heat equation, 558-559
mean momentum equation, 555-556
mixing length, 544, 593-594
Monin-Obukhov length, 598-599
research on, 545
Reynolds analogy, 597–598
Reynolds stress, 556–557
rough surface, 590-591
self-preservation, 571–573
shear production, 564–567
stationary, 546–547
stratified, 596–601
Taylor theory of, 601-607
temperature fluctuations, 600–601
transition to, 382–383, 523–524
velocity defect law, 585
viscous convective subrange,
600-601
viscous sublayer, 584–585
wall-bounded flow, 581-591
Turner, J. S., 283, 286, 298–299, 483f, 492, 597–599
Two-dimensional flows, 66, 219-222
Two-dimensional jets. See Jets, two-dimensional
laminar
U
Unbounded ocean, 654
Uniform flow, axisymmetric flow, 218, 221, 223, 232
Unsteady irrotational flow, 130
Upwelling, 658
V
Vallentine, H. R., 251
Van Dyke, M., 71, 362
Vapor trails, 709
Variables, random, 549–550
Variance, 548-549
Vascular system, plant, 845
phloem, 847-849
xylem, 845–847
Vector(s)
cross product, 51-52
curl of, 54
defined, 40-43, 45

Vector(s) (Continued)	Vortex flows
divergence of, 52–53	irrotational, 84
dot product, 51–52	Rankine, 84–85
operator del, 52–53	solid-body rotation, 83–84, 83f
Velocity defect law, 585	Vorticity, 78–79
Velocity gradient tensor, 76	absolute, 185, 660
Velocity potential, 130, 200–203	
	baroclinic flow and, 178–179
Ventricles, work done on blood, 785	diffusion, 178–179, 311, 333f
Veronis, G., 135	equation in nonrotating frame, 180–181
Vertical shear, 632	equation in rotating frame, 183–187
Vidal, C., 525, 531	flux of, 79–80
Viscoelastic, 4	Helmholtz vortex theorems, 179–180
Viscosity	Kelvin's circulation theorem, 96–99
coefficient of bulk, 113–114	perturbation vorticity equation, 679–681
destabilizing, 508–509	planetary, 185–187, 629
dynamic, 7–8	potential, 660
eddy, 592–594	quasi-geostrophic, 671–673
irrotational vortices and, 171–172	relative, 659–661
kinematic, 8	shallow-water theory, 658-662
net force, 174–176	
rotational vortices and, 173	W
Viscosity, blood, 789–790	Wake, 198–199
Viscous convective subrange, 600–601	Wall angle, flow at, 217–218
Viscous dissipation, 137	Wall-bounded turbulent shear flow, 581–591
Viscous fluid flow, incompressible, 436–448	Wall jet, 404–405
Viscous sublayer, 584–585	Wall, law of the, 584–585
Vogel, W. M., 618	Water, physical properties of, 854
Volumetric strain rate, 78	Wavelength, 255
von Karman, 701–702, 716	Wave number, 255
constant, 585–586	Waves
momentum integral, 375–377	See also Internal gravity waves;
vortex streets, 298, 389–392	Surface gravity waves
von Karman, T., 2, 375, 544, 585–586, 592, 716,	acoustic, 732–736
730–731, 870	amplitude of, 254
Vortex	÷
	angle, 767–768
bound, 710	capillary, 269
decay, 335f	cnoidal, 286
drag, 713	compression, 254
Görtler, 501	deep-water, 265–269
Helmholtz theorems, 179–180	at density interface, 286–293
interactions, 187–191	dispersive, 273–278, 299–300
irrotational, 218	drag, 713, 753
lines, 172, 314	energy flux, 264–265, 273–278
sheet, 191, 289, 480, 708–709	equation, 257–258
starting, 699–701	group speed, 264–265, 273
stretching, 186, 660, 685–686	hydrostatic, 267
Taylor, 499–501	Kelvin, 654–658
tilting, 186, 637–639, 660	lee, 670–671
tip, 709	packet, 274, 275f
trailing, 708–709, 711–712	parameters, 254–255
tubes, 172–173	particle path and streamline, 262, 263f
von Karman vortex streets, 298,	phase of, 255
389-392	phase speed of, 255