Sample size calculation for RCT

$$n_1 = \left(Z_{1-\alpha/2} + Z_{1-\beta}\right)^2 \frac{p_1(1-p_1) + p_2(1-p_2)}{(p_1 - p_2)^2}$$

Difference % point=p₁-p₂

Where,

P1 = Proportion of outcome from group-1

p₂ = Proportion of outcome from group-2

 α =Level of significance

1-β =Power of test

 $Z_{1-\alpha/2}$ = Z value corresponding level of significance

 $Z_{1-\beta}$ = Z value corresponding level of power

 n_1 = Sample size for one group

SBP as a continuous outcome

Box 1

Simplest formula for a continuous outcome and equal sample sizes in both groups, assuming: alpha = 0.05 and power = 0.80 (beta = 0.20) [1].

n = the sample size in each of the groups $\mu_1 =$ population mean in treatment Group 1 $\mu_2 =$ population mean in treatment Group 2 $\mu_1 - \mu_2 =$ the difference the investigator wishes to detect $\sigma^2 =$ population variance (SD) a = conventional multiplier for alpha = 0.05 b = conventional multiplier for power = 0.80

$$\frac{n = 2 \left[(a+b)^2 \sigma^2 \right]}{(\mu_1 - \mu_2)^2}$$