الصفحة 1 5

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2019 - الموضوع ـ

6 (لويكنية O33هاه ١٩٥٥ ا +0ماله-1 المفتر المقتلاء ٢٠١٤ م	المملكة ال رق التربية تكوين العالمي وا	وزل ولا
---	---	------------

++

****** NS24

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الانجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية: (أ) و (ب)	الشعبة أو المسلك

- مدة إنجاز الموضوع هي أربع ساعات. - يتكون الموضوع من أربعة تمارين مستقلة فيما بينها. - يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.

لا يسمح باستعمال الآلة الحاسبة كيفما كان نوعها لا يسمح باستعمال اللون الأحمر بورقة التحرير

الصفحة	
2	NS

NS24

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و(ب)

التمرين 1: (3.5 نقطة)

$$O\!=\!egin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$$
نذكر أن $(\mathbb{C},+, imes)$ جسم تبادلي وأن $(M_2ig(\mathbb{R}),+, imes)$ حلقة واحدية، صفر ها المصفوفة المنعدمة

و وحدتها المصفوفة
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 . ليكن $*$ قانون التركيب الداخلي المعرف في T بما يلي:

$$(\forall (x,y) \in \mathbb{R}^2) (\forall (a,b) \in \mathbb{R}^2)$$
; $(x+yi)*(a+bi) = xa + (x^2b + a^2y)i$

* مماثلا له بالنسبة للقانون
$$x+yi$$
 يقبل العدد العقدي $(x,y) \in \mathbb{R}^* \times \mathbb{R}$ مماثلا له بالنسبة للقانون $(x,y) \in \mathbb{R}^* \times \mathbb{R}$

$$E = \{x + yi \, / \, x \in \mathbb{R}^*_+ \; ; \; y \in \mathbb{R}\}$$
: نعتبر المجموعة الجزئية $E = \{x + yi \, / \, x \in \mathbb{R}^*_+ \; ; \; y \in \mathbb{R}\}$: نعتبر المجموعة الجزئية المجموعة المجموعة المجموعة عنائلة المجموعة ا

$$\mathbb{C}$$
 أ) بين أن E مستقر بالنسبة للقانون E أ

بين أن
$$(E,*)$$
 زمرة تبادلية.

0.5

0.5

0.5

$$G = \{1 + yi \, / \, y \in \mathbb{R}\}$$
: المعرفة بما يلي والمجموعة G المجموعة الجزئية المجموعة المج

$$(E,*)$$
بین أن G زمرة جزئیة للزمرة

$$F = \left\{ M(x,y) = \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} / x \in \mathbb{R}_+^* \; ; \; y \in \mathbb{R} \right\}$$
 عثير المجموعة -4

$$M_2(\mathbb{R})$$
 أي بين أن F مستقر بالنسبة للقانون أ

ج) استنتج أن
$$(F,\times)$$
 زمرة تبادلية.

التمرين 2: (3.5 نقطة)

$$(m\in\mathbb{C}-\mathbb{R}$$
) ليكن معددا عقديا غير حقيقي m

$$(E)$$
 : $z^2 - (1+i)(1+m)z + 2im = 0$: المعرفة بما يلي: $z^2 - (1+i)(1+m)z + 2im = 0$: المعرفة بما يلي: $z^2 - (1+i)(1+m)z + 2im = 0$

منین أن ممیز المعادلة
$$(E)$$
 غیر منعدم.

NS24

الامتحان الوطنى الموحد للبكالوريا - الدورة العادية 2019 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و(ب)

$$\left(E
ight)$$
 ب) حدد z_{1} و z_{2} ، حلي المعادلة

$$0 < heta < \pi$$
 حيث $m = e^{i heta}$ حيث عذا السؤال أن -2

$$z_1 + z_2$$
 أ) حدد معيار و عمدة للعدد 0.5

$$z_1+z_2=2i$$
 فإن $z_1z_2\in\mathbb{R}$ بين أنه إذا كان (0.25 بين أنه إذا كان

$$\left(O; \overrightarrow{u}, \overrightarrow{v}\right)$$
 المستوى العقدي منسوب إلى معلم متعامد ممنظم مباشر العقدي المستوى العقدي المستوى

نعتبر النقط التالية:

0.5

،
$$c=1-i$$
 النقطة ذات اللحق C ، $b=(1+i)m$ النقطة ذات اللحق B ، $a=1+i$ النقطة ذات اللحق A

.
$$[CD]$$
 منتصف القطعة Ω و زاويته $\frac{\pi}{2}$ و Ω منتصف القطعة D

$$\omega = \frac{(1-i)(1-m)}{2}$$
 هو Ω النقطة Ω هو Ω بين أن لحق النقطة Ω

$$\frac{b-a}{\omega}$$
 ب (ب 0.25

0.5

0.25

0.5

0.5

0.5

$$AB=2O\Omega$$
 ج) استنتج أن $\left(O\Omega
ight)oldsymbol{\perp}\left(AB
ight)$ و أن

$$h$$
 في النقطة H ذات اللحق (AB) في النقطة اللحق ($O\Omega$) دات اللحق المستقيم

. عدد تخیلي صرف في ابین أن
$$\frac{h-a}{h-a}$$
 عدد حقیقي وأن $\frac{h}{h-a}$ عدد تخیلي صرف (0.5

$$m$$
 بدلالة h بدلالة

التمرين 3: (3 نقط)

نقبل أن 2969 (السنة الأمازيغية الحالية)عدد أولى.

$$n^8 + m^8 \equiv 0$$
 [2969] نیکن مو سعدین صحیحین طبیعیین بحیث:

1- نفترض في هذا السؤال أن 2969 لا يقسم n

$$(\exists u \in \mathbb{Z}); \ u \times n \equiv 1 \ [2969]$$
، بين أن: BEZOUT) أ) باستعمال مبر هنة بوزو

$$(2968 = 8 \times 371 : (u \times m)^{2968} \equiv -1 \quad [2969]$$
 و أن: $(u \times m)^8 \equiv -1 \quad [2969]$ (الحظ أن: 2968 $= 8 \times 371$) و أن: $(u \times m)^8 \equiv -1 \quad [2969]$

$$u \times m$$
 ج) بين أن 2969 لا يقسم

$$(u \times m)^{2968} \equiv 1$$
 [2969] د) استنتج أنه لدينا أيضا:

$$n$$
 يقسم 2969 يقسم النتائج السابقة، بين أن 2969 يقسم 0.5

$$n^8 + m^8 \equiv 0$$
 [2969] $\Leftrightarrow n \equiv 0$ [2969] و $m \equiv 0$ [2969] بين أن:

الصفحة	
4	NS24

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و(ب)

التمرين 4 :(10 نقط)

$$f(x) = 4x \left(e^{-x} + \frac{1}{2}x - 1\right)$$
: نعتبر الدالة f المعرفة على \mathbb{R} بما يلي: $f(x) = 4x \left(e^{-x} + \frac{1}{2}x - 1\right)$

 $\left(O; \vec{i}, \vec{j}\right)$ المنحنى الممثل للدالة f في معلم متعامد و ممنظم المنحنى الممثل الدالة

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) -1 \quad 0.5$$

$$(\forall x \in \mathbb{R})$$
 ; $f'(x) = 4(e^{-x}-1)(1-x)$ ، و أن: \mathbb{R} ، و أن: $f'(x) = 4(e^{-x}-1)(1-x)$ ، و أن:

ب) ادرس تغیرات الدالة
$$f$$
 على \mathbb{R} ، ثم ضع جدول تغیراتها .

$$(e^{\frac{3}{2}}=4.5:3)$$
 بين أنه يوجد عدد حقيقي وحيد α في المجال $(e^{\frac{3}{2}}=4.5:3)$ (ناخذ: $(e^{\frac{3}{2}}=4.5:3)$ عند عدد حقيقي وحيد α

$$e^{-\alpha} = 1 - \frac{\alpha}{2}$$
 (2) د) تحقق أن: 0.25

$$f''(x_0) = 0$$
 : بين أنه يوجد عدد حقيقي x_0 من المجال]0,1 بطبيق مبر هنة رول على الدالة $f''(x_0) = 0$ ، بين أنه يوجد عدد حقيقي x_0 من المجال]0,1 بطبيق مبر هنة رول على الدالة $f''(x_0) = 0$

$$x_0$$
 بتطبیق مبر هنة التز ایدات المنتهیة علی الدالة " x_0 ، بین أنه، لكل عدد حقیقی x_0 من المجال x_0 0.5

$$\frac{f''(x)}{x-x_0} > 0 \qquad \text{الدينا:} \qquad$$

$$(C)$$
 هي نقطة انعطاف المنحنى $I(x_0,f(x_0))$ هي نقطة انعطاف المنحنى (C)

$$(C)$$
 ادرس الفروع اللانهائية للمنحنى (C)

0.5

$$(O; \vec{i}, \vec{j})$$
 مثل مبيانيا المنحنى (C) في المعلم مثل مبيانيا

(
$$I$$
 و غير مطلوب إنشاء النقطة $f(1) = -0.5$ و $\|\vec{i}\| = \|\vec{j}\| = 1cm$: ناخذ

$$(\forall x \in]-\infty,\alpha]$$
 ; $f(x) \le 0$ نحقق أن: $(5-5)$

$$\frac{3}{2} < \alpha \le \sqrt{3}$$
 : ثم استنتج أن:
$$\int_{0}^{\alpha} f(x) dx = \frac{2\alpha(\alpha^{2} - 3)}{3}$$
 : نب بين أن: 0.75

ج) أحسب، بدلالة
$$\alpha$$
 و بوحدة cm^2 ، مساحة الحيز المستوي المحصور بين المنحنى α و المستقيمات التي

$$x = \alpha$$
 و $x = 0$ و $y = 0$ معادلاتها على التوالى:

$$(\forall n \in \mathbb{N})$$
 ; $u_{n+1} = f(u_n) + u_n$ $u_0 < \alpha$

الصفحة 5 NS24	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 – الموضوع - مادة: الرياضيات – شعبة العلوم الرياضية (أ) و (ب)	
	$(I$ من الجزء $(d_n\in\mathbb{N})$ استعمل السؤال 5-أ) من الجزء $(d_n\in\mathbb{N})$	0.5
	بين أن المتتالية $\left(u_{n}\right)_{n\in\mathbb{N}}$ تناقصية.	0.25
	$(\forall x \in \mathbb{R})$; $g(x) = e^{-x} + \frac{1}{2}x - \frac{3}{4}$: $0 \le u_0$ و نضع $0 \le u_0$	
	$(\ln 2 = 0.69$ (ناخذ: $g(x) > 0$) (ناخذ: $g(x) > 0$) (ناخذ: $g(x) > 0$	0.5
	$(\forall n \in \mathbb{N})$; $0 \le u_n$ نتيجة السؤال السابق، بين أن:	
	(f(x)+x=4xg(x)) (الاحظ أن:	0.5
	بين أن المتتالية $\left(u_{n}\right)_{n\in\mathbb{N}}$ متقاربة.	0.25
	$\lim_{n\to+\infty}u_n$ (2)	0.5
	$u_0 < 0$ افترض أن $a_0 < 0$	
	$ig(orall n \in \mathbb{N} ig) \;\;\; ; \;\;\; u_{n+1} - u_n \leq f ig(u_0 ig) \;\;\;\;\; ig)$ بين أن:	0.5
	$(\forall x \in \mathbb{N})$	0.5

 $\lim_{n\to +\infty} u_n$ جنانتج (ح.25)

انتهى