Random Forest for Classification Problems

Raphael, Arek and Burak

Uni Bonn

January 13, 2020

Overview

- Intro
- 2 Decision Tree
- Bias Variance
- 4 Bagging
- Random Forest
- 6 Bias Variance
- Simulation Study
- Real Data
- Onclusion
- 10 References

Intro

Sed iaculis dapibus gravida. Morbi sed tortor erat, nec interdum arcu. Sed id lorem lectus. Quisque viverra augue id sem ornare non aliquam nibh tristique. Aenean in ligula nisl. Nulla sed tellus ipsum. Donec vestibulum ligula non lorem vulputate fermentum accumsan neque mollis.

Sed diam enim, sagittis nec condimentum sit amet, ullamcorper sit amet libero. Aliquam vel dui orci, a porta odio. Nullam id suscipit ipsum. Aenean lobortis commodo sem, ut commodo leo gravida vitae. Pellentesque vehicula ante iaculis arcu pretium rutrum eget sit amet purus. Integer ornare nulla quis neque ultrices lobortis. Vestibulum ultrices tincidunt libero, quis commodo erat ullamcorper id.

Decision Tree: Example

Decision Tree: Tree Building Process

A tree is grown starting from the root node by repeatedly using the following steps on each node (also called binary splitting):

- (i) Find best split s for each feature X_m: For each feature X_m, there exist K − 1-many potiential splits whereas K is the number of different values for the respective feature. Evaluate each value X_{m,i} at the current node t as a candidate split point (for x ∈ X_m, if x ≤ X_{m,i} = s, then x goes to left child node t_L else to right child node t_R). The best split point is the one that maximize the splitting criterion Δi(s, t) the most when the node is split according to it. The different splitting criteria will be covered in the next chapter.
- (ii) Find the node's best split: Among the best splits for each feature from Step (i) find the one s^* , which maximizes the splitting criterion $\Delta i(s,t)$.
- (iii) **Satisfy stopping criterion:** Split the node *t* using best node split *s** from Step (ii) and repeat from Step (i) until stopping criterion is satisfied.

Decision Tree: Purity Measures

Gini Measure

$$i(t) = \sum_{c \in C} p(c|t)(1 - p(c|t)) = 1 - \sum_{c \in C} p_c^2$$
 (1)

Information Entropy

$$i(t) = \sum_{c \in C} p(c|t) log(p(c|t))$$
 (2)

Bias Variance

Heading

- Statement
- 2 Explanation
- Second Example
 Second Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Bagging

Heading

- Statement
- 2 Explanation
- Second Example
 Second Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Random Forest

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Bias Variance

Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Simulation Study: Linear DGP

The linear DGP generates the data tuples (y, x_1, x_2, x_3) as follows:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon, \tag{3}$$

whereas $(\beta_0, \beta_1, \beta_2, \beta_3) = (0.3, 5, 10, 15)$, $x_1, x_2, x_3 \sim \mathcal{N}(0, 3)$, and $\epsilon \sim \mathcal{N}(0, 1)$.

Decision Tree: Linear DGP Results

Simulation Study: Non-Linear DGP

The non-linear DGP generates the data tuples (y, x_1, x_2) as follows:

$$y = \beta_0 + \beta_1 \mathbb{1}(x_1 \ge 0, x_2 \ge 0) + \beta_2 \mathbb{1}(x_1 \ge 0, x_2 < 0) + \beta_3 \mathbb{1}(x_1 < 0) + \epsilon,$$
 (4)

whereas $(\beta_0, \beta_1, \beta_2, \beta_3)$, x_1, x_2 and ϵ are the same as in the previous DGP.

Simulation Study: Non-Linear DGP Results

Real Data

An example of the \cite command to cite within the presentation:

This statement requires citation [1].

Conclusion

The End

References

L. Breiman et al. *Classification and Regression Trees*. The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis, 1984. ISBN: 9780412048418. URL: https://books.google.de/books?id=JwQx-W0mSyQC.