

Ejemplo: Ampliación instalación

Una empresa está considerando ampliar sus instalaciones para hacer frente a la demanda de sus productos. Las alternativas de que dispone la empresa son: construir una nueva fábrica, ampliar la fábrica actual, o no hacer nada. Existe un 30% de probabilidades de que la demanda prevista para los próximos años aumente, un 60% de probabilidades de que se mantenga igual, y un 10% de probabilidades de que entre en recesión. Determine la opción más rentable para la empresa, siendo los beneficios estimados los que muestra la tabla.

	Demanda			
	Aumenta	Estable	Disminuye	
Construir fábrica nueva	8.000.000	5.000.000	-5.000.000	
Ampliar fábrica actual	6.500.000	2.000.000	-3.000.000	
No hacer nada	2.000.000	1.000.000	-2.000.000	

Solución: Ampliación de instalación

Ejemplo: Aumento de visitas de turistas

¿Cómo aumentar el número de turistas que vienen a la ciudad?

Dos estrategias alternativas son consideradas. En primer lugar, el medio tradicional como la publicidad por panfletos puede ser usado y costaría 100.000 USD. La comunidad estima que esto aumentaría el número de turistas en un 5 % (200.000 USD el ingreso) con la probabilidad de un 80 % y en un 25 % (300.000 USD aumento en el ingreso) con probabilidad el 20 %. O bien, la comunidad puede solicitar ser la Capital de la Cultura; el costo de aplicación a este título es estimado en 250,000 USD. Las posibilidades de tener éxito son de un 40 %. Si esta postulación fallara, el número de turistas aumentará sólo en el 2 % (100.000 USD añaden. ingreso). En caso de que la postulación resulte exitosa, el número de turistas aumentará en el 30 % (300.000 USD añaden. el ingreso) con la probabilidad el 25 % o en el 60 % (1.000.000 de USD más de ingresos) con probabilidad el 75 %

Solución: Aumento de visitas de turistas

Construcción de un árbol de decisión

• A un fabricante se le presentó una propuesta para un producto nuevo y debe decidir si desarrollarlo o no. La probabilidad de éxito en caso de desarrollarlo es del 0.7. Si el desarrollo no tiene éxito se termina el proyecto con una pérdida de 200.000 \$us. Si tiene éxito, el fabricante debe entonces decidir si el nivel de producción ha de ser alto o bajo. Si la demanda es alta, la ganancia, dado el nivel elevado de producción es de 500.000 \$us y dado un nivel bajo es de 50.000 \$us. Si la demanda es baja, la pérdida, dado un nivel elevado de producción es de 100.000 \$us; dado un nivel bajo la ganancia es de 45.000\$us. Se estima que la probabilidad de una demanda elevada es de 0.40 y de demanda baja es del 0.60. Elaborar un árbol de decisiones; decidir si debe desarrollar o no le producto y en caso de desarrollarlo, si lo debe hacer a un nivel bajo o alto.

Árbol de decisión

UTILIDADES Y DECISIONES BAJO RIESGO

La utilidad es una manera alternativa de medir el aspecto atractivo de resultado de una decisión.

En otras palabras, es una manera alternativa de encontrar los valores a llenar en una tabla de retribuciones.

El análisis de decisiones maneja este comportamiento con una función que mide el "aspecto atractivo" del dinero. Esta función se llama función de utilidad donde, para efectos de este análisis, la palabra utilidad puede considerarse como una medida de "satisfacción"

Tres tipos de decisores

- Averso al riesgo –Prefiere ganancia segura a la posibilidad de tener la ganancia como valor esperado.
- **Propenso al riesgo** Prefiere una posibilidad de ganar a tener una ganancia segura teniendo el mismo valor esperado.
- Neutro al riesgo- Es indiferente entre la posibilidad de tener ganacia y la tener la ganancia segura.

41

Payoff

Qué valor hace que usted sea indiferente entre tener la lotería y tener la cantidad x con certeza?

$$u(500) = 0.5 * u(4000) + 0.5 * u(0)$$
$$= 0.5 * 1 + 0.5 * 0$$
$$u(500) = 0.5$$

Loteria para x=250

$$u(250) = 0.5 * u(500) + 0.5 * u(0)$$
$$= 0.5 * 0.5 + 0.5 * 0$$
$$u(250) = 0.25$$

Loteria para x=1500

$$u(1500) = 0.5 * u(4000) + 0.5 * u(500)$$
$$= 0.5 * 1 + 0.5 * 0.5$$
$$u(1500) = 0.75$$

Seguro	P(M)	М	U(M)	(1-P)	М	U(M)	E(U(M))
500	0.5	4000	1	0.5	0	0	0.5
250	0.5	500	0.5	0.5	0	0	0.25
1500	0.5	4000	1	0.5	500	0.5	0.75
3500	0.5	4000	1	0.5	1500	0.75	0.875
3800	0.5	4000	1	0.5	3500	0.875	0.9375
1000	0.5	1500	0.75	0.5	500	0.5	0.625
750	0.5	1000	0.625	0.5	500	0.5	0.5625

Tipos de funciones de utilidad

• Función de utilidad aversa al riesgo

Tipos de funciones de utilidad

• Función de utilidad propensa e indiferente al riesgo

Función de utilidad exponencial

Esta función tiene una forma predeterminada (es decir, es cóncava \rightarrow aversa al riesgo) y requiere la evaluación de un solo parámetro. Ha sido utilizada para analizar decisiones de inversiones financieras y para otras aplicaciones en los negocios. La función tiene la siguiente forma:

$$U(x) = 1 - e^{-x/r}$$

donde:

x = cantidad de dinero a convertir en utilidad

r = constante que mide el grado de aversión al riesgo

Función de utilidad Marshall y Oliver

Función Exponencial:
$$u(r) = \frac{\beta}{\beta - 1} \left(1 - \left(\frac{1}{\beta} \right)^{\left(\frac{r - r}{r} \right)} \right), \qquad \underline{r} \le r \le \overline{r}$$
Función Logarítmica:
$$u(r) = \frac{\ln \left(1 + (\beta - 1) \left(\frac{r - r}{r} \right) \right)}{\ln(\beta)}, \qquad \underline{r} \le r \le \overline{r}$$

Función Logarítmica:
$$u(r) = \frac{\ln\left(1 + (\beta - 1)\left(\frac{r - r}{\overline{r} - r}\right)\right)}{\ln(\beta)}, \quad \underline{r} \le r \le \overline{r}$$

Función de utilidad logarítmica

	Incremento de la demanda del		Demanda constante	Disminución de la demanda en
	30%	20%		5%
Brasil	1.000	900	600	400
China	1.300	1.100	700	300
España	1.200	1.400	600	-100
Alemania	1.000	900	700	700

0.804263	100	120	140	160	180	200	220	240	260	280
-100	0	0	0	0	0	0	0	0	0	0
0	0.440407	0.457398	0.471281	0.48294	0.492938	0.501655	0.509355	0.516233	0.522432	0.528064
100	0.576144	0.59015	0.601444	0.610835	0.618824	0.625745	0.631827	0.637236	0.642092	0.64649
200	0.659032	0.670673	0.680012	0.687746	0.694305	0.699974	0.704945	0.709357	0.713314	0.716892
300	0.718875	0.728648	0.736463	0.742922	0.748391	0.75311	0.757244	0.760911	0.764195	0.767164
400	0.765739	0.773977	0.780553	0.78598	0.79057	0.794527	0.797991	0.801061	0.80381	0.806294
500	0.804263	0.811202	0.816734	0.821295	0.825149	0.82847	0.831376	0.83395	0.836254	0.838335
600	0.836971	0.842786	0.847417	0.851232	0.854455	0.85723	0.859657	0.861806	0.86373	0.865467
700	0.865391	0.870215	0.874054	0.877215	0.879884	0.882181	0.884189	0.885968	0.887559	0.888995
800	0.890518	0.894457	0.89759	0.900167	0.902343	0.904215	0.905852	0.907301	0.908597	0.909766
900	0.913037	0.916176	0.918671	0.920723	0.922454	0.923944	0.925246	0.926398	0.927429	0.928359
1000	0.933439	0.935848	0.937761	0.939335	0.940663	0.941804	0.942802	0.943685	0.944475	0.945187
1100	0.952087	0.953825	0.955205	0.95634	0.957297	0.95812	0.958839	0.959475	0.960044	0.960557
1200	0.96926	0.970377	0.971264	0.971993	0.972608	0.973136	0.973598	0.974007	0.974372	0.974702
1300	0.985173	0.985713	0.986142	0.986494	0.986791	0.987046	0.987269	0.987466	0.987642	0.987801
1400	1	1	1	1	1	1	1	1	1	1

	个30%	个20%	→	↓ 5%
Brasil	0.933	0.913	0.837	0.766
China	0.985	0.952	0.865	0.712
España	0.962	1	0.837	0
Alemania	0.933	0.913	0.865	0.865

$$E(x) = 0.894$$

Teorema de Bayes

La información a priori puede estar basada en resultados de experimentos previos u opinión de expertos y puede ser expresada como probabilidades. Si es deseable mejorar el conocimiento, un estudio puede ser realizado. El teorema de Bayes es el mecanismo utilizado para actualizar el estado del conocimiento con los resultados del estudio brindando una distribución posterior.

5 CONTRACTOR OF THE PROPERTY O

Teoría del teorema de Bayes

Sea el experimento A y la predicción B. Se asume que ambos ocurrieron. La probabilidad de ambos A y B es P(A∩B), o simplemente P(AB). La ley de probabilidad condicional dice que la probabilidad resultante es el product de la probabilidad condicional de uno dado el otro multiplicado por la probabilidad del otro, así tenemos:

$$P(A|B) * P(B) = P(AB) = P(B|A) * P(A)$$

Despejando se tiene:

$$P(B|A) = P(A|B) * P(B) / P(A)$$

Este es el teorema de Bayes.

Ejemplo: Compañía Thompson Lumber

La compañía Thompson Lumber esta tratando de decidir si expandir su linea de productos, fabricando y promocionando un nuevo producto conocido como, "almacén portátil".

Los cursos de acción que pueden ser elegidos son:

- (1) Construir una planta grande para la fabricación del almacén portátil.
- (2) Construir una planta pequeña para fabricar el almacén portátil.
- (3) No construir ninguna planta.

Compañía Thompson Lumber

	STATE OF NATURE				
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)			
Construct a large plant	200,000	-180,000			
Construct a small plant	100.000	-20,000			
Do nothing	0	0			
Probabilidad	0.5	0.5			

	STATE	OF NATURE	
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	EMV COMPUTED (\$)
Construct a large plant	200,000	-180,000	(0.5)(200,000) + (0.5)(-180,000) = 10,000
Construct a small plant	100,000	-20,000	(0.5)(100,000) + (0.5)(-20,000) = 40,000
Do nothing	0	0	(0.5)(0) + (0.5)(0) = 0
Probabilities	0.50	0.50	Maximum —

EVwPI = (\$200,000)(0.50) + (\$0)(0.50) = \$100,000

EVPI = \$100,000 - \$40,000 = \$60,000.

Valor Esperado de la información de la muestra

A menudo, las empresas tienen la opción de realizar un estudio de mercado, por lo general en un precio determinado, que permite adquirir información adicional antes de la toma de decisiones.

Sin embargo, algunas preguntas interesantes tienen que ser contestadas antes de que esta decisión sea realizada:

¿Cómo serán combinados los resultados de prueba con la información previa?

¿Cuánto debería usted estar dispuesto a pagar para ese estudio? Las buenas noticias son que el Teorema de las Bayes, puede ser usado combinar la información, y podemos usar nuestro árbol de decisión para encontrar el Valor Esperado de Información De la muestra (EVSI). Para realizar estos cálculos, primero tenemos que saber cuan confiable la

prueba potencial puede ser.

Confiabilidad del Estudio de Mercado para predecir los estados de la naturaleza

	ACTUAL STATES OF NATURE			
RESULT OF SURVEY	FAVORABLE MARKET (FM)	UNFAVORABLE MARKET (UM)		
Positive (predicts favorable market for product)	$P(\text{survey positive} \mid \text{FM}) = 0.70$	P(survey positive UM) = 0.20		
Negative (predicts unfavorable market for product)	$P(\text{survey negative} \mid \text{FM}) = 0.30$	$P(\text{survey negative} \mid \text{UM}) = 0.80$		

P(FM survey positive)

$$= \frac{P(\text{survey positive} \mid \text{FM}) \cdot P(\text{FM})}{P(\text{survey positive} \mid \text{FM}) \cdot P(\text{FM}) + P(\text{survey positive} \mid \text{UM}) \cdot P(\text{UM})}$$

$$= \frac{(0.70)(0.50)}{(0.70)(0.50) + (0.20)(0.50)} = \frac{0.35}{0.45} = 0.78$$

$$P(\text{UM} \mid \text{survey positive})$$

$$P(\text{survey positive} \mid \text{UM}) \cdot P(\text{UM})$$

 $P(\text{survey positive } | \text{UM}) \cdot P(\text{UM}) + P(\text{survey positive } | \text{FM}) \cdot P(\text{FM})$

$$=\frac{(0.20)(0.50)}{(0.20)(0.50)+(0.70)(0.50)}=\frac{0.10}{0.45}=0.22$$

$P(FM \mid survey negative)$

$$= \frac{P(survey negative | FM) * P(FM)}{P(survey negative | FM) * P(FM) + P(survey negative | UM) * P(UM)}$$

$$= \frac{0.3*0.5}{0.3*0.5+0.8*0.5} = \frac{0.15}{0.15+0.4} = \frac{0.15}{0.55} = 0.27$$

 $= P(FM \mid survey negative)$

$$P(survey negative | UM) * P(UM)$$

 $P(survey\ negative\ |\ UM)*P(UM)+P(survey\ negative\ |\ FM)*P(FM)$

$$= \frac{0.8*0.5}{0.8*0.5+0.3*0.5} = \frac{0.4}{0.4+0.15} = \frac{0.15}{0.55} = 0.73$$

Árbol de Decision con información adicional

P(favorable market(FM)| survey results positive) = 0.78 P(unfavorable market(UM)| survey results positive) = 0.22 P(favorable market(FM)| survey results negative) = 0.27P(unfavorable market(UM)| survey results negative) = 0.73

Árbol de Decision con información adicional

Valor esperado de la información de la muestra (EVSI)

$$EVSI = \begin{pmatrix} Valor\,esperado\,de\,la\\ mejor\,decisi\'on\,con\\ informaci\'on\,de\,la\\ muestra\,sin\,asumir\\ costo\,sobre\,la\,misma \end{pmatrix} - \begin{pmatrix} Valor\,esperado\\ de\,la\,mejor\,decisi\'on\\ sin informaci\'on\\ de\,la\,misma \end{pmatrix}$$

EVPI calculado fue \$60,000, Thompson estaría dispuesto a pagar hasta \$9,200 por esta información de Mercado que tendría una eficiencia de (9200/60000)*100 = 15.3%