Bachelorarbeit

mein thema

vorgelegt von

Maximilian Huber

am

Institut für Mathematik der

Universität Augsburg

betreut durch

Prof. Dr. Marco Hien

abgegeben am

noch nicht

stand: 20. Dezember 2012

Inhaltsverzeichnis

Eiı	Einleitung				
ı	Theorie				
1	Mathematische Grundlagen	2			
	1.1 Einige Ergebnise aus der Kommutativen Algebra	. 2			
	1.2 Weyl-Algebra und der Ring $\mathcal D$. 3			
	1.2.1 Weyl Algebra als Graduierter Ring	. 5			
	1.3 Struktur von Links-Idealen auf $\mathcal D$. 6			
	1.4 Lokalisierung eines $\mathbb{C}\{x\}$ -Moduls	. 6			
	1.5 Lokalisierung eines holonomen \mathcal{D} -Moduls	. 6			
2	Der Meromorpher Zusammenhang				
	2.1 Definition	. 7			
	2.2 Eigenschaften	. 7			
	2.3 pull-back und push-forward	. 9			
	2.4 Formale Meromorphe Zusammenhänge	. 9			
	2.5 Elementare Meromorphe Zusammenhänge	. 10			
	2.6 Newton Polygon	. 10			
3	Levelt-Turittin-Theorem				
II	I Beispiele				
4	Beispiele/Anwendung	17			
	4.1 Einfache Beispiele	. 17			

A Aufteilung von				
Anhang				
	4.2.2	Beispiel ohne namen	19	
	4.2.1	beispiel von sabbah	18	
4.2	4.2 Meromorpher Zusammenhang der formal, aber nicht Konvergent, zuerfällt			

Einleitung

Teil I

Theorie

1 Mathematische Grundlagen

Hier werde ich mich auf [5] und [2] beziehen.

1.1 Einige Ergebnise aus der Kommutativen Algebra

In dieser Arbeit spielen die folgenden Ringe eine Große Rolle:

- $\mathbb{C}[x] := \{ \sum_{i=1}^{N} a_i x^i | N \in \mathbb{N} \}$
- $\mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i | \text{pos. Konvergenz radius} \}$
- $\mathbb{C}[x] := \{\sum_{i=1}^{\infty} a_i x^i\}$
- $K := \mathbb{C}(\lbrace x \rbrace) := \mathbb{C}\{x\}[x^{-1}]$
- $\bullet \ \hat{K}:=\mathbb{C}((x)):=\mathbb{C}[\![x]\!][x^{-1}]$

wobei offensichtlich gilt $\mathbb{C}[x] \subset \mathbb{C}\{x\} \subset \mathbb{C}[x]$.

Lemma 1.1 (Seite 2). ein paar eigenschaften

1. $\mathbb{C}[x]$ ist ein graduierter Ring, durch die Grad der Polynome. Diese graduierung induziert eine aufsteigende Filtrierung.

alle Ideale haben die form (x - a) mit $a \in \mathbb{C}$

2. wenn \mathfrak{m} das maximale Ideal von $\mathbb{C}[x]$ (erzeugt von x ist), so ist

$$\mathbb{C}[[x]] = \varprojlim_{k} \mathbb{C}[X] \backslash \mathfrak{m}^{k}$$

The ring $\mathbb{C}[[x]]$ ist ein nöterscher lokaler Ring: jede Potenzreihe mit konstantem term $\neq 0$ ist invertierbar.

Der ring ist ebenfalls ein diskreter ??? Ring (discrete valuation ring)

Die Filtrierung nach grad des Maximalen Ideals, genannt \mathfrak{m} -adische Fitration, ist die Filtrierung $\mathfrak{m}^k = \{f \in \mathbb{C}[[x]] | v(f) \geq k\}$

und es gilt $gr_{\mathfrak{m}}(\mathbb{C}[[x]]) = \mathbb{C}[x]$

3. $\mathbb{C}\{x\}\subset\mathbb{C}[[x]]$ ist ein Untering der Potenzreihen, wobei der Konvergenzradius echt positiv ist.

ist ähnlich zu $\mathbb{C}[[x]]$

1.2 Weyl-Algebra und der Ring \mathcal{D}

Ich werde hier die Weyl Algebra, wie in [5, Chapter 1], in einer Veränderlichen einführen. Sei $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in \mathbb{C}[x]$ (bzw. $\mathbb{C}[x]$ bzw. $\mathbb{C}[x]$). Man hat die folgende Kommutations-Relation zwischen dem Ableitungsoperator und dem Multiplikations Operator f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{1.1}$$

wobei die Rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$ darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat man:

$$\left[\frac{\partial}{\partial x}, f\right] \cdot g = \frac{\partial fg}{\partial x} - f\frac{\partial g}{\partial x} = \frac{\partial f}{\partial x} \cdot g$$

Definition 1.2 (Weyl Algebra). Definiere nun die Weyl Algebra $A_1(\mathbb{C})$ (bzw. die Algebra \mathcal{D} von linearen Operatoren mit Koeffizienten in $\mathbb{C}\{x\}$ bzw. die Algebra $\hat{\mathcal{D}}$ (Koeffizienten in $\mathbb{C}[x]$)) als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (1.1).

Wir werden die Notation $A_1(\mathbb{C}) := \mathbb{C}[x] < \partial_x > \text{(bzw. } \mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{bzw. } \hat{\mathcal{D}} := \mathbb{C}[x] < \partial_x > \text{)}$ verwenden.

Lemma 1.3. Sei A einder der 3 soeben eingeführten Objekten, die Addition

$$+: A \times A \rightarrow A$$

 $und\ die\ Multiplikation$

$$\cdot: A \times A \to A$$

definieren auf A eine Ringstruktur $(A, +, \cdot)$.

Beweis. [1, Kapittel 2 Section 1]

Bemerkung 1.4. $A_1(\mathbb{C})$, \mathcal{D} und $\hat{\mathcal{D}}$ sind nicht kommutative Algebren.

Definition 1.5 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a, b] = a \cdot b - b \cdot a$$

der Kommutator von a und b genannt.

Proposition 1.6. 1. Es qilt

$$[\partial_x, x] = \partial_x x - x \partial_x = 1$$

2. Sei $f \in \mathbb{C}[x]$, so gilt:

$$[\partial_x, f] = \frac{\partial_x f}{\partial x}$$
.

Denn für $g \in \mathbb{C}[x]$ ist

$$[\partial_x, f] \cdot g = \partial_x (fg) - f \partial_x g = (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{=0} = (\partial_x f)g$$

3. Es gelten die Formeln

$$\begin{split} [\partial_x, x^k] &= kx^{k-1} \\ [\partial_x^j, x] &= j\partial_x^{j-1} \\ [\partial_x^j, x^k] &= \sum_{i \geq 1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i} \end{split}$$

Beweis. Zula Barbara

Proposition 1.7. Jedes Element in $A_1(\mathbb{C})$ (bzw. \mathcal{D} oder $\hat{\mathcal{D}}$) kann auf eindeutige weiße als $P = \sum_{i=0}^n a_i(x) \partial_x^i$, mit $a_i(x) \in A_1(\mathbb{C})$ (bzw. \mathcal{D} oder $\hat{\mathcal{D}}$), geschrieben werden.

Beweis. [5, Proposition 1.2.3]

ein teil des Beweises ist "left as an exersice"

Definition 1.8. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$ gegeben, so definiere

$$\deg P := \max\{i | a_i \neq 0\}$$

In natürlicher Weise erhält man $F_N \mathcal{D} := \{ P \in \mathcal{D} | \deg P \leq N \}$ sowie die entsprechende aufsteigende Filtrierung

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte $gr_k^F \mathcal{D} \stackrel{=}{\text{def}} F_N \mathcal{D} / F_{N-1} \mathcal{D} = \{ P \in \mathcal{D} | \deg P = N \} \cong \mathbb{C}\{x\}.$

Beweis. Sei $P \in F_N \mathcal{D}$ so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Proposition 1.9. Es gilt:

$$gr^F \mathcal{D} := \bigoplus_{\mathbb{N} \in \mathbb{Z}} gr_N^F \mathcal{D} = \bigoplus_{\mathbb{N} \in \mathbb{N}_0} gr_N^F \mathcal{D} \cong \bigoplus_{\mathbb{N} \in \mathbb{N}_0} \mathbb{C}\{x\} \cong \mathbb{C}\{x\}[\xi] = \bigoplus_{\mathbb{N} \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$

$$isomorph \ als \ grad. \ Ringen$$

1.2.1 Weyl Algebra als Graduierter Ring

Sei A nun einer der drei Koeffizienten Ringe, welche zuvor behandelt wurden. Der Ring $A < \partial_x >$ kommt zusammen mit einer aufsteigenden Filtrierung, welche wir mit $F(A < \partial_x)$ bezeichen werden. Sei P ein bzgl. 1.7 minimal geschriebener Operator, so ist P in F_k falls der maximale Grad von ∂_x in P kleiner oder gleich k. So definiere den Grad degP von P als die Eindeutige ganze Zahl k mit $P \in F_k A < \partial_x > /F_{k-1} < \partial_x >$

Unabhängigkeit von Schreibung wird in Sabbah Script behauptet

1.3 Struktur von Links-Idealen auf $\mathcal D$

1.4 Lokalisierung eines $\mathbb{C}\{x\}$ -Moduls

Definition 1.10. Sei M ein $\mathbb{C}\{x\}$ -Modul und $K=\mathbb{C}\{x\}[x^{-1}]$, dann ist die Lokalisierung $M[x^{-1}]:=M\otimes_{\mathbb{C}\{x\}}K\,.$

1.5 Lokalisierung eines holonomen $\mathcal{D} ext{-Moduls}$

2 Der Meromorpher Zusammenhang

Quelle ist [5]

2.1 Definition

Definition 2.1 (Meromorpher Zusammenhang). Ein (Keim eines) Meromorpher Zusammenhang (an x = 0) (\mathcal{M}_K, ∂) besteht aus folgenden Daten:

- \mathcal{M}_K , ein endlich dimensionaler K-Vr
- einer C-linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt *Derivation*, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die *Leibnitzregel*

$$\partial(fu) = f'u + f\partial u \tag{2.1}$$

erfüllen soll.

Bemerkung 2.2. Später wird man auf die Angabe von ∂ verichten und einfach \mathcal{M}_K als den Meromorphen Zusammenhang bezeichnen.

2.2 Eigenschaften

Hier nun einige Eigenschaften Meromorpher Zusammenhänge.

Lemma 2.3. Sei \mathcal{M}_K ein Meromorpher Zusammenhang, dann existiert ein $P \in ??$ so dass $\mathcal{M}_K \cong \mathcal{D}/\mathcal{D} \cdot P$.

Lemma 2.4. Sei $(\mathcal{M}_K, \partial)$ ein gegebener Meromorpher Zusammenhang, und φ ein Basisisomorphismus von K^r nach \mathcal{M}_K , also in der Situation

$$\mathcal{M}_{K} \xrightarrow{\partial} \mathcal{M}_{K}
\uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

gilt: $(K^r, \varphi^{-1}\partial\varphi)$ ist ebenfalls ein Meromorpher Zusammenhang.

Beweis. TODO, (3. Treffen)
$$\Box$$

Sind ∂_1 und ∂_2 zwei Meromorphe Zusammenhänge auf $\mathcal{M}_K \cong K^r$. So betrachte $\partial_1 - \partial_2 : \mathcal{M} \to \mathcal{M}$ für alle $f \in K$ und $u \in \mathcal{M}_K$:

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$
$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$
$$= f \cdot (\partial_1 - \partial_2)(u)$$

Lemma 2.5. Da $\partial_1 - \partial_2$ \mathbb{C} -linear und, wie eben gezeigt, $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u)$ allgemein gilt: Die differenz zweier Meromorpher Zusammenhäge ist K-linear.

Insbesondere ist $\frac{d}{dz} - \partial : K^r \to K^r$ K-linear, also es existiert eine Matrix $A \in M(r \times r, K)$ mit $\frac{d}{dz} - \partial = A$, also ist $\partial = \frac{d}{dz} - A$.

Definition 2.6 (Transformationsformel). In der Situation

mit φ, ψ und T K-Linear und $\partial, (\frac{d}{dz} + A)$ und $(\frac{d}{dz} + B)$ \mathbb{C} -Linear, gilt: Der Merom. Zush. $\frac{d}{dz} + A$ auf K^r wird durch Basiswechsel $T \in GL(r, K)$ zu

$$\frac{d}{dz} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dz} + B$$

Definition 2.7. $A \sim B$ differenziell Äquivalent : $\Leftrightarrow \exists T \in GL(r,K)$ mit $B = T^{-1} \cdot T' + T^{-1}AT$

$$1 = TT^{-1} \rightsquigarrow T'T^{-1} + T(T^{-1})' = 0$$

$$1 = T^{-1}T \rightsquigarrow (T^{-1})'T + T^{-1}T' = 0$$

2.3 pull-back und push-forward

nach [6, 1.a]

Definition 2.8 (pull-back). Der pull-back $\rho^+\mathcal{M}$ ist der Vektorraum $\rho^*\mathcal{M} = \mathbb{C}((u)) \otimes_{\mathbb{C}((u))} \mathcal{M}$ mit dem pull-back Zusammenhang $\rho^*\nabla$ definiert durch $\partial_u(1 \otimes m) := \rho'(u) \otimes \partial_t m$

sei nun \mathcal{N} ein weiterer $\mathbb{C}((u))$ -VR mit Verknüpfung

Definition 2.9 (push-forward). Der push-forward $\rho_+\mathcal{N}$ ist definiert durch:

- der $\mathbb{C}((t))$ -VR $\rho_*\mathcal{N}$ ist der \mathbb{C} -VR \mathcal{N} mit der $\mathbb{C}((t))$ Struktur durch $f(t) \cdot m := f(\rho(t))m$
- die wirkung von ∂_t ist die von $\rho'(u)^{-1}\partial_u$

Satz 2.10. es gilt dir Projektionsformel

$$\rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} \rho^{+} \mathcal{M}) \cong \rho_{+} \mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M}$$
(2.2)

2.4 Formale Meromorphe Zusammenhänge

Definition 2.11 (Formaler Meromorpher Zusammenhang). Ein Formaler Meromorpher zusammenhang $(\mathcal{M}_{\hat{K}}, \partial)$ besteht aus folgenden Daten:

- $\mathcal{M}_{\hat{K}}$, ein endlich dimensionaler \hat{K} -Vr
- eine Derivation ∂ , für die die Leibnitzregel (2.1), für alle $f \in \hat{K}$ und $u \in \mathcal{M}_{\hat{K}}$, erfüllt sein soll.

Oder einfach ein Meromorpher Zshg. über anderes K also \hat{K}

Bemerkung 2.12. alle bisher gegebenen Definitionen und Lemmata gelten für formale Meromorphe Zusammenhänge analog wie für konvergente Meromorphe Zusammenhänge.

2.5 Elementare Meromorphe Zusammenhänge

Definition 2.13 (Elementarer formaler Zusammenhang). Zu einem gegebenen $\rho \in u\mathbb{C}[\![u]\!], \varphi \in \mathbb{C}((u))$ und einem endlich dimensionalen $\mathbb{C}((u))$ -Vektorraum R mit regulärem Zusammenhang ∇ , definieren wir den assoziierten Elementaren endlich dimensionalen $\mathbb{C}((t))$ -Vektorraum mit Zusammenhang, durch:

$$El(\rho, \varphi, R) = \rho_{+}(\mathscr{E} \otimes R)$$

2.6 Newton Polygon

Jedes $P \in \mathcal{D}$ lässt sich eindeutig schreiben als

$$P = \sum_{k=0}^{n} \sum_{l=-N}^{\infty} \alpha_{kl} t^{l} \partial_{t}^{k}$$

mit $\alpha_{kl} \in \mathbb{C}$ schreiben und betrachte das dazugehörige

$$H := \bigcup_{k,l \text{ mit } \alpha_{kl} \neq 0} \{ (k, l - k) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \} \subset \mathbb{R}^2.$$

bei sabbah: $H \subset \mathbb{N} \times \mathbb{Z}$ und dann konvexe hülle davon in \mathbb{R}^2

Definition 2.14. Das Randpolygon von conv(H) heißt das Newton Polygon von P und wird geschrieben als N(P).

Definition 2.15. Die *Steigungen (engl. slopes)* sind die nicht-vertikalen Steigungen von N(P), die sich echt rechts von $\{0\} \times \mathbb{R}$ befinden.

• P heißt regulär singulär : \Leftrightarrow slopes $P = \{0\}$, sonst irregulär singulär.

alternativ: \Leftrightarrow wenn conv(H) ein Quadrant ist

- Schreibe $\mathcal{P}(\mathcal{M}_K)$ für die Menge der zu \mathcal{M}_K gehörigen slopes
- Ein meromorpher Zusammenhang \mathcal{M}_K heißt regulär singulär, falls $\mathcal{M}_K \cong \mathcal{D}/\mathcal{D} \cdot P$ mit P regulär singulär, sonst irregulär singulär

alternativ : $\Leftrightarrow \mathcal{P}(\mathcal{M}_K) = \{0\}$

3 Levelt-Turittin-Theorem

sabbah_cimpba90 seite 28 / 30

Sei $M_{\hat{K}} = \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P$ und nehme an, dass N(P) zumindes 2 nichttriviale Steigungen hat. Spalte $N(P) = N_1 \dot{\cup} N_2$ in 2 Teile. Dann gilt:

Lemma 3.1. Es existiert eine Aufteilung $P = P_1P_2$ mit:

- $N(P_1) \subset N_1 \ und \ N(P_2) \subset N_2$
- A ist eine kante von ...

sabbah_Fourier-local.pdf lemma 2.4 [6]

Lemma 3.2. $\rho: u \mapsto u^p, \ \mu_{\xi}: u \mapsto \xi u, \ \text{für alle } \varphi \in \mathbb{C}((u)) \ \text{gilt}$

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}}$$

Beweis. Wir wählen eine $\mathbb{C}((u))$ Basis $\{e\}$ von \mathscr{E}^{φ} und zur vereinfachung nehmen wir an, dass $\varphi \in u^{-1}\mathbb{C}[u^{-1}]^{[1]}$.

Dann ist die Familie $e, ue, ..., u^{p-1}e$ eine $\mathbb{C}((t))$ -Basis von $\rho_+\mathscr{E}^{\varphi}$.

Setze $e_k = u^{-k} \otimes_{\mathbb{C}((t))} u^k e$. Dann ist die Familie $\mathbf{e} = (e_0, ..., e_{p-1})$ eine $\mathbb{C}((u))$ -Basis von $\rho^+ \rho_+ \mathscr{E}^{\varphi}$. Zerlege nun $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p) \in u^{-2}\mathbb{C}[u^{-1}]$ mit $\psi_j \in \mathbb{C}[t^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[u^{-1}]$ (siehe: Anhang A).

 $[\]overline{^{[1]}\mathscr{E}^{\varphi}=\mathscr{E}^{\psi}\Leftrightarrow\varphi\equiv\psi\ \mathrm{mod}\ \mathbb{C}[[u]]}$

Sei P die Permutationsmatrix, definiert durch $\mathbf{e} \cdot P = (e_1, ..., e_{p-1}, e_0)^{[2]}$. Es gilt:

$$u\partial_u e_k = \sum_{i=0}^{p-1-k} u^i \psi_i(u^p) e_{k+1} + \sum_{i=p-k}^{p-1} u^i \psi_i(u^p) e_{k+i-p}$$

denn:

$$u\partial_{u}e_{k} = u\partial_{u}(u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e)$$

$$= u(-ku^{-k-1} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k} \otimes_{\mathbb{C}((t))} \partial_{t}(\underbrace{u^{k}e}_{e^{-p}}))$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k+1} \otimes_{\mathbb{C}((t))} (pu^{p-1})^{-1}(ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + u^{-k+1} \otimes_{\mathbb{C}((t))} (ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= \underbrace{-ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + u^{-k+1} \otimes_{\mathbb{C}((t))} ku^{k-1}e}_{=0} + u^{-k+1} \otimes_{\mathbb{C}((t))} u^{k}\varphi'(u)e$$

$$= \underbrace{u^{-k} \otimes_{\mathbb{C}((t))} u^{k}u^{i}\psi_{i}(u^{p})e}_{\in\mathbb{C}((t))}$$

$$= \sum_{i=0}^{p-1} u^{-k} \otimes_{\mathbb{C}((t))} u^{k}u^{i}\psi_{i}(u^{p})e$$

$$= \sum_{i=0}^{p-1} u^{i}\psi_{i}(u^{p})(u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e)$$

$$= \sum_{i=0}^{p-1-k} u^{i}\psi_{i}(u^{p})e_{k+1} + \sum_{i=p-k}^{p-1} u^{i}\psi_{i}(u^{p})e_{k+i-p}$$

so dass gilt:

$$u\partial_u \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} u^j \psi_j P^j \right]$$

denn:

$$u\partial_u \mathbf{e} = (u\partial_u e_0, ..., u\partial_u e_{p-1})$$

$${}^{[2]}P = \begin{pmatrix} 0 & & & 1 \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix}$$

$$= \left(\sum_{i=0}^{p-1-k} u^i \psi_i(u^p) e_{k+1} + \sum_{i=p-k}^{p-1} u^i \psi_i(u^p) e_{k+i-p}\right)_{k \in \{0, \dots, p-1\}}$$

$$= \mathbf{e} \begin{pmatrix} u^{p-1} \psi_{p-1}(u^p) & \cdots & u^3 \psi_3(u^p) & u^2 \psi_2(u^p) & u^1 \psi_1(u^p) \\ u^1 \psi_1(u^p) & u^{p-1} \psi_{p-1}(u^p) & & \ddots & u^2 \psi_2(u^p) \\ u^2 \psi_2(u^p) & u^1 \psi_1(u^p) & \ddots & & u^3 \psi_3(u^p) \\ u^3 \psi_3(u^p) & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & u^1 \psi_1(u^p) & u^{p-1} \psi_{p-1}(u^p) \\ u^{p-2} \psi_{p-2}(u^p) & \cdots & u^3 \psi_3(u^p) & u^2 \psi_2(u^p) & u^1 \psi_1(u^p) & u^{p-1} \psi_{p-1}(u^p) \end{pmatrix}$$

$$= \mathbf{e} [\sum_{j=0}^{p-1} u^j \psi_j(u^p) P^j]$$

Die Wirkung von ∂_u auf die Basis von $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ ist also Beschrieben durch:

$$\partial_u \mathbf{e} = \mathbf{e} [\sum_{j=0}^{p-1} u^{j-1} \psi_j P^j]$$

Diagonalisiere nun
$$TPT^{-1}=D=\begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix}^{[3]}, \text{ mit } \xi^p=1 \text{ und } T\in Gl_p(\mathbb{C}).$$

So dass gilt:

$$T[\sum_{j=0}^{p-1} u^{j-1} \psi_j(u^p) P^j] T^{-1} = [\sum_{j=0}^{p-1} u^{j-1} \psi_j(u^p) (TPT^{-1})^j]$$

$$= [\sum_{j=0}^{p-1} u^{j-1} \psi_j(u^p) D^j]$$

$$= \begin{pmatrix} \sum_{j=0}^{p-1} u^{j-1} \psi_j \\ & \sum_{j=0}^{p-1} u^{j-1} \psi_j (\xi^1)^j \\ & & \ddots \\ & & \sum_{j=0}^{p-1} u^{j-1} \psi_j (\xi^{p-1})^j \end{pmatrix}$$

^[3] Klar, da mipo $X^p - 1$

$$= \begin{pmatrix} \sum_{j=0}^{p-1} u^{j-1} \psi_{j} & & & \\ & \sum_{j=0}^{p-1} (u\xi^{1})^{j-1} \psi_{j} \xi^{1} & & & \\ & & \ddots & & \\ & & & \sum_{j=0}^{p-1} (u\xi^{p-1})^{j-1} \psi_{j} \xi^{p-1} \end{pmatrix}$$

$$= \begin{pmatrix} \varphi'(u) & & & & \\ & & \ddots & & \\ & & \varphi'(\xi^{p-1}u) \xi^{p-1} \end{pmatrix}$$

$$= \begin{pmatrix} \varphi'(u) & & & & \\ & & \varphi'(\xi^{p-1}u) \xi^{p-1} \end{pmatrix}$$

Wie sieht denn die Wirkung auf die Basis von $\bigoplus_{\xi^p=1} \mathscr{E}^{\varphi\circ\mu_\xi} \stackrel{\Phi}{\cong} \mathbb{C}((u))^p$ aus?

$$\partial_{u} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\partial_{u} \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 0 \\ \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \xrightarrow{\Phi} \begin{pmatrix} 0 \\ \varphi'(u)\xi \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Also kommutiert das Diagram:

Und deshalb ist klar ersichtlich das auf $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ und $\sum_{j=0}^{p-1}u^{j-1}\psi_jD^j$ ein Äquivalenter Meromorpher Zusammenhang definiert ist.

Teil II

Beispiele

4 Beispiele/Anwendung

4.1 Einfache Beispiele

Hier soll ein einfaches Beispiel hergeleitet werden, an dem die Zerlegung nach dem Levelt-Turittin-Theorem einmal explizit ausformuliert werden soll.

Beginne mit

$$t^4(t+1)\partial_t^4 + t\partial_t^2 + \frac{1}{t}\partial_t + 1$$

(von ZulaBarbara Seite 47) und ignoriere zuerst die Terme, die zum Newton Polygon keinen Beitrag leisten

$$t^4 \partial_t^4 + \frac{1}{t} \partial_t$$

multipliziere dieses mit t und ändere aber dadurch den assoziierten Meromorphen Zusammenhang nicht [5, Chapter 5.1]

$$P := t^5 \partial_t^4 + \partial_t$$

und es gilt slopes $(P)=\{0,\frac{2}{3}\}$. Eliminiere als nächstes nun die Brüche in den Slopes mittels einem geeignetem Pullback. Da hier der Hauptnenner 3 ist bietet sich $\rho:t\mapsto u^3$ für den Pullback an.

Dieser Pullback Multipliziert (indirekt) die Slopes mit 3, **Quelle?** aber wie wendet man ihn (explizit) an?

$$\rho^{+}P = ???$$

welches die Slopes slopes $(\rho^+P) = \{0,2\} \subset \mathbb{Z}$ hat. Schreibe nun dieses $\rho^+P = Q \cdot R$ mit $P,Q \in \mathbb{C}[\![u]\!]$ wobei gilt slopes $(Q) = \{0\}$ und slopes $(R) = \{2\}$.

Also gilt:

$$\hat{\mathcal{D}}/(\hat{\mathcal{D}} \cdot \rho^+ P) \cong \hat{\mathcal{D}}/(\hat{\mathcal{D}} \cdot Q) \oplus \hat{\mathcal{D}}/(\hat{\mathcal{D}} \cdot R)$$

4.2 Meromorpher Zusammenhang der formal, aber nicht Konvergent, zuerfällt

4.2.1 beispiel von sabbah

Sei
$$P = t(t\partial_t)^2 + t\partial_t + \frac{1}{2}$$

- 1. zeige $\mathcal{D}/\mathcal{D} \cdot P$ ist ein Meromorpher Zusammenhang.
- 2. Zeichne das Newton Polygon von P und finde eine formale Aufteilung von $\mathcal{M}_{\hat{K}}$.
- 3. Zeige \mathcal{M} kann nicht in eine direkte Summe von zwei \mathcal{D} modulen zerlegt werden, dazu:
 - a) Zeige das die Produktzerlegung

$$P = (t(t\partial_t) + v(t)) \cdot (t\partial_t + u(t)),$$

mit $u, v \in \mathbb{C}[\![u]\!]$, existiert.

- b) Berechne durch induktion die koeffizienten von u.
- c) Zeige dass $u \notin \mathbb{C}((u))$.

Schritt 1

Zeige das $\mathcal{D}/\mathcal{D}\cdot P$ einen Meromorphen Zusammenhag Definiert.

Schritt 2

Also mit slopes $P = \{0, 1\}$

Schritt 3 a)

Schritt 3 b)

Schritt 3 c)

4.2.2 Beispiel ohne namen

Beginne mit

$$\tilde{P} = \tau \partial_{\tau}^2 + 2\partial_{\tau} - 1$$

und gehe von τ über zu t via $\tau \to \frac{1}{t}$:

• was passiert mit der Ableitung ∂_{τ} ? Es gilt:

$$\partial_{\tau}(f(\frac{1}{\tau})) = \partial_{t}(f) \cdot (-\frac{1}{\tau^{2}}) = -\partial_{t}(f) \cdot t^{2} = -t^{2} \cdot \partial_{t}(f)$$

also:

$$\partial_{\tau} = -t^2 \partial_t$$

• was ist $\partial_t(t^2\partial_t)$?

$$\partial_t t^2 \partial_t = (\partial_t t) t \partial_t$$

$$= (t \partial_t - 1) t \partial_t$$

$$= t (\partial_t t) \partial_t - t \partial_t$$

$$= t (t \partial_t - 1) \partial_t - t \partial_t$$

$$= t^2 \partial_t^2 - 2t \partial_t$$

• was passiert mit $\tilde{P} = \tau \partial_{\tau}^2 + 2\partial_{\tau} - 1$?

$$\tilde{P} = \tau \partial_{\tau}^{2} + 2\partial_{\tau} - 1$$

$$\stackrel{\tau \to \frac{1}{t}}{\to} \frac{1}{t} (-t^{2}\partial_{t})^{2} + 2(-t^{2}\partial_{t}) - 1$$

$$= \frac{1}{t} t^{2} (\partial_{t}(t^{2}\partial_{t})) - 2t^{2}\partial_{t} - 1$$

$$= t(\partial_{t}(t^{2}\partial_{t})) - 2t^{2}\partial_{t} - 1$$

$$= t(t^{2}\partial_{t}^{2} - 2t\partial_{t}) - 2t^{2}\partial_{t} - 1$$

$$= t^{3}\partial_{t}^{2} - 4t^{2}\partial_{t} - 1 =: P$$

Wir wollen nun den zum folgendem ${\cal P}$ assoziierten Meromorphen Zusammenhang betrachten:

$$P = t^3 \partial_t^2 - 4t^2 \partial_t - 1$$

Es ist offensichtlich, dass slopes(P) = $\{\frac{1}{2}\}$.

A Aufteilung von ...

Sei $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$, so ist $\varphi' =: \sum_{i=2}^N a_{-i}u^{-i} \in u^{-2}\mathbb{C}[u^{-1}]$ also $u\varphi'(u) = \sum_{i=1}^N a_{-i-1}u^{-i} \in u^{-1}\mathbb{C}[u^{-1}]$, welches wir zerlegen wollen. Zerlege also $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p)$ mit $\psi_j \in \mathbb{C}[t^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[t^{-1}]$:

also:

$$\psi_0(u^p) = a_{-(p+1)}u^{-p} + a_{-(2p+1)}u^{-2p} + \dots$$

$$\psi_1(u^p) = a_{-p}u^{-p} + a_{-2p}u^{2p} + \dots$$

$$\vdots$$

$$\psi_{p-1}(u^p) = a_{-2}u^p + a_{-(p+2)}u^{2p} + \dots$$

Literaturverzeichnis

- [1] F. Alkofer, B. und Vogl. Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [2] S.C. Coutinho. A Primer of Algebraic D-Modules. London Mathematical Society Student Texts. Cambridge University Press, 1995.
- [3] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1977.
- [4] H. Matsumura and M. Reid. Commutative Ring Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1989.
- [5] C. Sabbah. Introduction to algebraic theory of linear systems of differential equations. Vorlesungsskript.
- [6] C. Sabbah. An explicit stationary phase formula for the local formal Fourier-Laplace transform, June 2007.