Facultatea de Inginerie Industriala si Robotica — U.P.B. Specializarea IAII

PROIECT

Prelucrări prin așchiere

Numele și prenumele:

ANIȚEI EMANUELA

Grupa: 631AD

Îndrumător: Marius Lazăr

CUPRINS

1.	Cap. 1: Date initiale pentru proiectarea procesului si sistemului tehnologic3
	2. Cap. 2: Analiza constructiv functionala si tehnologica6
	3. Cap. 3: Semifabricare si prelucrari16
	4. Cap. 6: Structura detaliata a procesului tehnologic

Cap. 1: Date initiale pentru proiectarea procesului si sistemului tehnologic

1.1 Produsul si desenul de executie

Produsul pentru care se realizează tehnologia fabricării este "plăcuța de bază".

Se poate spune că "plăcuța de bază" are mai multe roluri funcționale, însă principalul rol este cel de fixare, care asigură articulația și poziționarea precisă a brațului robotic în ansamblu. Aceasta contribuie la stabilitatea și rigiditatea sistemului, permițând în același timp mișcarea controlată a brațului robotic în jurul axelor specificate, esențială pentru funcționarea corectă a mecanismului de mișcare.

Desenul original primit în cadrul proiectului se regăsește în figura 1.1, iar desenul de execuție al reperului este reprezentat in figura 1.2.

Fig.1.1

Fig. 1.2

1.2 Desenul de ansamblu

Produsul pentru care se realizează tehnologia face parte din ansamblul "Ansamblu plăcuță de bază pentru braţ robotic".

1.3 Volumul de producție

Conform cerințelor de proiectare, volumul de producție este de 10.000 buc/an.

1.4 Condiții de livrare, fondul de timp

Fondul de timp este de 2008 ore, anul 2024 având 251 zile lucrătoare. Piesele se vor livra către beneficiar trimestrial.

1.5 Date referitoare la unitatea de producție

1.5.1 Denumirea unității de producție

Unitatea de producție unde este realizat reperul atașat se numește S.C. MechAutomat S.R.L., Cluj-Napoca.

1.5.2 Dotare tehnică

Aceasta unitate dispune atat de masini cu comanda numerica, cat si de matrite, strunguri normale, freze universale, masini de gaurit si rectificat.

1.5.3 Gradul de calificare al operatorilor

În firma care urmează să realizeze piesele sunt operatori cu calificare înaltă, specializați în utilizarea mașinilor CNC și a echipamentelor automatizate, dar și operatori juniori aflați în proces de instruire.

1.5.4 Regimul de utilizare al resurselor umane

Regimul de lucru se desfășoară în 3 schimburi/zi în decursul a 8 ore/5 zile pe săptămână.

1.6 Cerințe tehnico-economice

Procesul tehnologic trebuie realizat astfel încât costul de fabricare să fie optimizat și eficiența productivității maximă, păstrând standardele de calitate cerute.

1.7 Objective principale

Dezvoltarea și implementarea unor noi tehnologii pentru fabricarea plăcuței de bază, cu accent pe automatizare și precizie crescută.

Cap. 2: Analiza constructiv functionala si tehnologica

2.1 Analiza desenului de execuție al reperului

Desenul primit a fost analizat, iar în urma verificării s-au realizat următoarele actualizări:

- Toleranțe generale: Au fost adăugate și ajustate toleranțele dimensionale și geometrice pentru a respecta cerințele actuale de fabricație.
- Standardizare STAS: STAS-ul inițial a fost înlocuit cu standardul SR EN 1706:2010, care este un standard actualizat pentru aliajele de aluminiu turnate.
- Indicatori standardizați: Indicatorii de control și simbolurile tehnologice au fost înlocuite cu simboluri standardizate, conform normelor actuale de desen tehnic.
- Rugozități: Rugozitățile prescrise în desen au fost ajustate pentru a corespunde rolului funcțional al suprafețelor și cerințelor tehnologice.

2.2 Analiza caracteristicilor constructive prescrise piesei din aluminiu

Materialul selectat pentru piesa proiectată este un aliaj de aluminiu turnat conform standardului EN AC-43000 (EN AC-AlSi10Mg), conform SR EN 1706:2010.

Aluminiul EN AC-43000 (AlSi10Mg) este o alegere potrivită pentru piese turnate datorită:

- Bunei rezistențe la coroziune.
- Proprietăților mecanice favorabile.
- Capacității de a fi tratat termic pentru creșterea rezistenței.

2.2.1 Caracteristici prescrise materialului piesei din aluminiu EN AC-43000

a) Simbolul

Materialul ales este simbolizat conform standardului cu EN AC-43000 (AlSi10Mg), indicând un aliaj de aluminiu cu un conținut ridicat de siliciu și magneziu, utilizat frecvent în aplicații structurale datorită bunei rezistențe mecanice și la coroziune.

b) Compoziția chimică

Tabelul 2.1.b prezintă compoziția chimică a aliajului de aluminiu EN AC-43000:

Element	Conținut (%)
Si	9.0 - 11.0
Fe	<=0.55
Mn	<= 0.45
Mg	0.20 - 0.45

Ti	<=0.15
Zn	<= 0.10
Ni	<= 0.05
Cu	<=0.05
Pb	<=0.05
Sn	<=0.05
Al	restul

c) Proprietăți fizico-mecanice

Tabelul 2.2.1.c prezintă principalele proprietăți mecanice ale materialului EN AC-43000:

Proprietate	Valoare
Rezistența la tracțiune (Rm) [N/mm²]	180 - 270
Limita de curgere convențională (Rp0.2) [N/mm²]	97 - 230
Elongația (A%)	1.1 - 2.5
Duritatea Brinell (HBW)	60 - 94
Densitate (g/cm³)	2.60

d) Tratamente termice posibile

Aliajele de tip AlSi10Mg sunt tratabile termic pentru îmbunătățirea proprietăților mecanice. Pentru materialul din aluminiu EN AC-43000 (AlSi10Mg), tratamentele termice posibile sunt:

- 1. Stabilizare (T5): Încălzire moderată și răcire pentru a reduce tensiunile interne și a crește durabilitatea.
 - 2. Îmbătrânire naturală (T6): Solubilizare, răcire rapidă și îmbătrânire la temperatura camerei pentru a maximiza rezistența mecanică.
 - 3. Îmbătrânire artificială (T7): Îmbătrânire la temperaturi mai mari pentru a întări materialul și a îmbunătăți rezistența la coroziune.
- 4. Recoptire (O): Încălzire și răcire lentă pentru a crește ductilitatea și a reduce duritatea.
 - 5. Solubilizare (T4): Încălzire și răcire rapidă, urmată de îmbătrânire naturală pentru îmbunătățirea rezistenței.

Aceste tratamente permite obținerea unei rezistențe mai mari la tracțiune și duritate mai ridicată.

e) Modul de livrare

Aluminiul este livrat în general sub formă de piese turnate, fie în stare brută de turnare, fie tratat termic în starea T6 pentru a obține proprietăți mecanice superioare. Aceasta face aliajul ideal pentru componente structurale și aplicații în construcții de mașini.

2.2.2 Caracteristici prescrise suprafetelor

In figurile 2.2.2 sunt prezentate principalele suprafete ce urmeaza a fi prelucrate prin aschiere.

Fig.2.2.2.

Caracteristicile prescrise suprafețelor se prezintă în tabelul 2.2.2 :

Sk	Forma nominala a suprafetelor	Precizia dimensionala	Precizia de forma	Rugozitate a Ra [μm]	Precizia de pozitie relativa
S1	Plana exterioara	$\left(\frac{24\pm0.2}{m}\right)$	<u>□ 0.1</u> <u>K</u>	Ra6.3 N9	C-baza de referinta in analiza piesei
S2	Plana exterioara	$\left(\frac{3\pm0.1}{m}\right)$	<u>□ 0.05</u> <u>K</u>	Ra6.3 N9	<u> </u>
S3	Plana interioara	$\frac{4_{+0.000}^{+0.012}}{H7}$	<u>□ 0.05</u> <u>K</u>	Ra1.6 N7	A-baza de referinta in analiza piesei
S4	Plana interioara	$\frac{8 \pm 0.2}{m}$	<u>□ 0.05</u> <u>K</u>	$\frac{Ra1.6}{N7}$	<u> </u>
S5	Plana exterioara	$\left(\frac{13\pm0.2}{m}\right)$	<u></u> □ 0.05 <u>K</u>	Ra6.3 N9	B-baza de referinta in analiza piesei
S6	Cilindrica interioara (alezaj)	$\frac{\emptyset 4_{-0.016}^{-0.006}}{P7}$	<u>○ 0,05</u> <u>K</u>	Ra1.6 N7	$\frac{\bigoplus 0,020 C A B}{VII}$

2.2.3 Masa piesei

Masa corpului este de 3.22 Kg si este determinata cu ajutorul programului de proiectare SolidWorks2023, conform figurii 2.2.3.a si b.

```
Mass properties of Piesa3
   Configuration: Default
   Coordinate system: -- default --
Density = 2700.00 kilograms per cubic meter
Mass = 3.22 kilograms
Volume = 0.00 cubic meters
Surface area = 107697.39 square millimeters
Center of mass: ( millimeters )
    X = 65.51
    Y = 19.05
   Z = 0.00
Principal axes of inertia and principal moments of inertia: ( kilograms * square millimeters )
Taken at the center of mass.
                                Px = 7085.18
    Ix = (1.00, 0.00, 0.00)
    ly = (0.00, 0.00, -1.00)
                                Py = 15418.54
    Iz = (0.00, 1.00, 0.00)
                                Pz = 21725.14
Moments of inertia: ( kilograms * square millimeters )
Taken at the center of mass and aligned with the output coordinate system. (Using positive tensor notation.)
                                                       Lxz = 0.00
    Lxx = 7085.18
                             Lxy = 0.00
    Lyx = 0.00
                                Lyy = 21725.14
                                                             Lyz = 0.00
                                Lzy = 0.00
    Lzx = 0.00
                                                             Lzz = 15418.54
Moments of inertia: ( kilograms * square millimeters )
Taken at the output coordinate system. (Using positive tensor notation.)
    1xx = 8253.06
                                lxy = 4016.03
                                                            1xz = 0.00
    lyx = 4016.03
                                lyy = 35535.25
                                                             lvz = 0.00
    Izx = 0.00
                                Izy = 0.00
```

Fig. 2.2.3.a

Property	Value	Units
Elastic Modulus	6.9e+10	N/m^2
Poisson's Ratio	0.33	N/A
Shear Modulus	2.7e+10	N/m^2
Mass Density	2700	kg/m^3
Tensile Strength	68935600	N/m^2
Compressive Strength		N/m^2
Yield Strength	27574200	N/m^2
Thermal Expansion Coefficient	2.4e-05	/K
Thermal Conductivity	200	W/(m·K)
Specific Heat	900	J/(kg·K)
Material Damping Ratio		N/A

Fig.2.2.3.b

2.2.4. Clasa piesei

Conform desenului de execuție și caracteristicilor piesei, aceasta face parte din clasa pieselor de tip plăcuțe de bază. O plăcuță de bază este un element component esențial într-un ansamblu mecanic, utilizat pentru susținerea altor componente și asigurarea stabilității și preciziei de montaj. În cazul acestui proiect, plăcuța de bază este realizată din aliaj de aluminiu turnat, EN AC-43000 (AlSi10Mg), material ales pentru a combina rezistența mecanică și la coroziune cu o

greutate redusă. Piesa asigură poziționarea corectă a brațului robotic în ansamblul în care este integrată, preluând și distribuind solicitările mecanice și vibrațiile în timpul funcționării.

2.3 Analiza caracteristicilor funcționale ale piesei

2.3.1 Rolul funcțional al piesei

Plăcuța de bază din aliaj de aluminiu EN AC-43000 are un rol esențial în ansamblul brațului robotic. Principalul său rol funcțional este de a oferi suport structural și stabilitate componentelor montate pe ea, asigurând astfel funcționarea precisă și eficientă a brațului robotic. De asemenea, piesa contribuie la fixarea și alinierea corectă a altor elemente din ansamblu, menținând integritatea mecanică a întregului sistem. În plus, plăcuța trebuie să preia și să redistribuie forțele și vibrațiile generate în timpul mișcărilor și operațiunilor efectuate de brațul robotic, fără a compromite rezistența sau funcționalitatea acestuia.

2.3.2 Rolul functional al suprafetelor piesei si ajustaje prescrise

a) Rolul functional al suprafetelor piesei

In general, rolul functional al piesei este dat de rolul functional al tuturor suprafetelor acesteia(fig.2.3.1), asadar acestea se prezinta in tabelul 2.3.2.

Fig.2.3.1

Tab. 2.3.2 Rolul functional

Nr. suprafata	Forma suprafetei	Rolul functional
S1,S2,S5	Plana exterioara	Asigură ghidarea și fixarea radială. De asemenea, contribuie la delimitarea piesei și poate oferi stabilitate structurală.
S3,S4	Plana interioara	Asigura ghidarea și rotația piesei în cadrul articulației. Acestea trebuie prelucrate cu toleranțe strânse pentru a asigura o rotație precisă și fluidă, fără jocuri nedorite. De asemenea, acestea contribuie la preluarea și distribuția forțelor aplicate asupra brațului robotic.
S6	Cilindrica interioara	Contribuie la fixarea ansamblului, asigurând contactul corect cu alte componente mecanice.

b) Ajustaje prescrise

Reperul nu are ajustaje prescrise.

2.3.3 Concordanta dintre caracteristicile prescrise si cele impuse de rolul functional

In urma analizei desenului de executie s-a constatat ca anumite caracteristici prescrise pe acesta nu sunt in concordanta cu rolul functional impus de suprafetele respective, dupa cum urmaza in tabelul 2.3.3.

Nr. Suprafață	Precizia prescrisă inițial în desen	Propunere modificare	Justificare
\$3	Nu avea precizie in desenul initial	$\frac{4_{+0.000}^{+0.012}}{H7}$	Ghidajul interior joacă un rol crucial în asigurarea rotației corecte a componentelor
		Ra=1.6µm	brațului robotic. O toleranță mai strânsă ar reduce jocurile nedorite și ar îmbunătăți precizia mișcării.
S6	Nu avea precizie in desenul initial	$\frac{\emptyset 4_{-0.016}^{-0.006}}{P7}$	Suprafața cilindrica interioara are un rol de fixare a piesei în ansamblu. O toleranță mai strânsă asigură o poziționare
		Ra=1.6μm	stabilă și previne mișcările nedorite în timpul operării brațului robotic.

Tabelul 2.3.3

2.4 Analiza caracteristicilor tehnologice ale piesei

2.4.1 Prelucrabilitatea materialului

Materialul ales are o prelucrabilitate foarte bună, fiind frecvent folosit în aplicații care necesită piese turnate cu toleranțe stricte și o rezistență mecanică ridicată.

2.4.2 Forma constructivă a piesei

Forma constructivă a piesei este simplă și bine adaptată pentru prelucrare. Suprafațele esențiale pentru funcționalitatea piesei sunt fie plane (S3, S4), fie cilindrice (S6), ceea ce face ca prelucrarea lor să nu implice procese tehnologice complicate.

2.4.3 Posibilitatea folosirii unor suprafețe ale piesei ca bază de referință sau orientare și fixare

În procesul de prelucrare, bazarea și fixarea piesei se vor realiza inițial pe suprafețele rezultate din turnare. Ulterior, după primele operații, pentru a obține o precizie optimă, se vor utiliza suprafețele prelucrate anterior ca baze pentru fixare și referință(S1, S2, S5).

2.4.4 Analiza prescrierii raționale a toleranțelor

Analiza desenului de execuție indică faptul că toleranțele prescrise sunt raționale și adecvate rolului funcțional al piesei. De exemplu:

- Toleranțele pentru suprafețele cilindrice (ex. Ф4Р7) sunt strânse pentru a asigura montajul precis și ghidarea corectă a componentelor din ansamblu, permiţând mişcarea fluidă a articulaţiei braţului robotic.
- Toleranțele suprafețelor plane și rugozitatea de Ra 1.6 sunt suficiente pentru a asigura o etanșare și fixare eficientă, fără a fi nevoie de costuri suplimentare pentru finisări inutile.

2.4.5 Gradul de unificare al caracteristicilor constructive

Gradul de unificare este un indicator de tehnologicitate absolut, care măsoară cât de standardizate sau similare sunt elementele constructive ale piesei. Formula generală pentru gradul de unificare λ este:

$$\lambda = \frac{l_t - l_d}{l_t} \times 100 \, [\%]$$

unde: It -numarul total de elemente constructive de tipul respectiv; Id -numarul de

elemente diferite

Găuri:

$$\lambda_{gauri} = \frac{1-0}{1} * 100 = 100\%$$

Deoarece fiecare alezaj (gaură) are un rol diferit în funcționarea corectă a piesei, acestea nu pot fi modificate pentru a obține un grad de unificare mai bun.

Alte elemente:

$$\lambda_{elem} = \frac{13-2}{13}*100 = 84.62\%$$

Gradul de unificare mediu:

$$\lambda_m = \frac{\lambda_{gauri} + \lambda_{elem}}{2} * 100 = \frac{100 + 84.62}{2} * 100 = 92.30\%$$

În urma analizei gradului de unificare mediu se poate spune faptul că acesta este unul mediu, având valoarea λm =92.30% .

2.4.6 Concordanța dintre caracteristicile prescrise și condițiile de tehnologicitate

Semifabricatul piesei este obținut prin turnare, iar pentru acest proces trebuie respectate anumite condiții pentru a preveni defectele. Mai jos se prezintă un tabel(tabel 2.4.6) care detaliază principalele condiții de turnare și prelucrare prin așchiere, împreună cu o evaluare a gradului de satisfacție al acestor condiții pentru plăcuța de bază a articulației brațului robotic.

Nr. Crt.	Condiție	Grad de satisfacție	Justificare
1.	Forma piesei turnate să prezinte axe sau plane de simetrie care vor determina plane de separație utile pentru o execuție ușoară a formelor	DA	Piesa prezintă o axă de simetrie suficientă, ceea ce facilitează execuția ușoară a matrițelor și turnarea corectă.
2.	Axele găurilor să fie perpendiculare pe suprafețele frontale; suprafețele să fie plane	DA	Axele găurilor sunt perpendiculare pe suprafețele respective, lucru necesar pentru asamblarea corectă a brațului robotic.
3.	Limitarea prelucrărilor prin așchiere la minimum necesar	DA	Numărul de operațiuni de prelucrare prin așchiere este minim, doar suprafețele esențiale necesită prelucrare pentru asigurarea funcționalității.
4.	Forma sau poziția unor suprafețe să fie astfel încât să prezinte "înclinări" în raport cu planul de separație a semimatrițelor	NU	Înclinările necesare pentru separația semimatrițelor nu sunt prezente, ceea ce ar putea îngreuna procesul de turnare în anumite cazuri.

5.	Forma și poziția suprafețelor să fie	DA	Forma piesei este relativ simplă și
	astfel încât să permită prinderi		permite prinderi ușoare și sigure în
	simple și sigure în cadrul operațiilor		timpul procesului de prelucrare.
6.	Să se prevadă trecerea lină, cu raze	NU	Piesa nu necesită racordări complexe,
	de racordare între pereții cu		deoarece nu este supusă unor forțe
	secțiuni diferite pentru a se evita		mari, iar riscul de fisuri este scăzut.
	apariția retragerilor și fisurărilor		
7.	Forma piesei trebuie să permită	DA	Forma piesei permite accesul sculei
	accesul sculei așchietoare în zona de		așchietoare în toate zonele necesare
	prelucrare, având degajările		fără dificultăți, facilitând prelucrarea
	necesare pentru ca scula să		completă a suprafețelor.
	prelucreze întreaga suprafață fără		
	inconveniente		

Tab. 2.4.6. Conditii de turnare

Cap. 3: Semifabricare si prelucrari

3.1 Projectarea semifabricatului

a) Date initiale

-Materialul piesei: Aluminiu EN AC-43000 (EN AC-AlSi10Mg), conform SR EN 1706:2010.

- Seria de fabricatie: 10.000 buc/an.

- Caracteristicile piesei sunt conform tabelului 2.2.2.

b) Metoda de semifabricare: Turnare

Având în vedere materialul specific, Aluminiu EN AC-43000, metoda de semifabricare prin turnare este cea mai potrivită. Turnarea este procedeul prin care piesa semifabricată este obținută prin solidificarea unei cantități de metal lichid turnată într-o cavitate cu forma corespunzătoare piesei finale.

c) Procedeul:

Procedeele de turnare se clasifică în funcție de numărul de piese produse și de natura semifabricatului. În cazul de fată, având în vedere volumul anual de piese (zeci de mii de

bucăți), metoda de turnare în forme permanente este cea mai potrivită. Această metodă asigură repetabilitate, eficiență în producție și costuri minime pe termen lung.

Pe aceasta baza a fost luata in cauza o varianta tehnic acceptabila care se prezinta in tabelul 3.1.a.

Varianta	Tip semifabricat	Metoda de	Procedeu de
		semifabricare	semifabricare
1	Cu adaos mic	Turnare	Turnare in forme
			permanente

Tab. 3.1.a Metoda si procedeul de semifabricare

Valorile corespund clasei de adaos de prelucrare E, fapt intarit de tabelul 3.1.1.

Metoda	Clase de adaosuri de prelucrare precizate								
		Metale și aliaje turnate							
	Oțel	Fontă cenușie	Fontă cu Grafit nodular	Fontă maleabil ă	Aliaje de cupru	Aliaje de zinc	Aliaje de Metale ușoare	Aliaje pe bază de nichel	Aliaje pe bază de cobalt
Formare în amestec clasic și manual	GK	FH	FH	FH	FH	FH	FH	GK	GK
Formare în amestec clasic, mecanizată și forme coji	FH	EG	EG	EG	V	EG	EG	FH	FH
Forme metalice permanente (turnare gravitațională și la joasă presiune)	-	DF	DF	DF	DF	DF	DF	-	-
Turnare sub presiune	-	-	-	-	BD	BD	BD	-	-
Formare de precizie	E	Е	E	-	Е	-	E	E	E

Tab. 3.1.1 Clase tipice de adaosuri de prelucrare

Suprafata	Dimensiunea prescrisa piesei [mm]	Adaosul de prelucrare total [mm]	Dimensiunea prescrisa semifabricatului [mm]
S1	3 ± 0.1	0.4x2	3.80 ± 0.50
S2	24 ± 0.2	0.4	24.40 ± 0.60
S3	8 ± 0.2	-	-
S4	4 ^{+0.012} _{+0.000}	-	-
S5	12 ± 0.2	0.4x2	12.8 ± 0.55
S6	$\emptyset4^{-0.006}_{-0.016}$	-	-

Tab. 3.1.b Caracteristicile semifabricatului cu adaos mic

Avand in vedere nevoia de o prelucrabilitate cat mai rapida si eficienta, se ia in considerare semifabricatul cu valori mici ale adaosurilor si va anexa desenul acestuia de executie.

In figura 3.1 este reprezentat desenul piesei brut turnate, pe etape:

Fig. 3.1 Întocmirea desenului piesei brut turnate

Precizia turnarii este: CT8 ISO 8062

3.2 Prelucrari

a) Date initiale:

-Tipul si caracteristicile suprafetelor din tabelul 2.2.2

-Precizia prescrisa fiecarei suprafete: desen de executie, tabelul 2.2.2

-Materialul: Aluminiu EN AC-43000 (EN AC-AlSi10Mg), conform SR EN 1706:2010.

- Programa de productie: 10000 buc/an

- Semifabricat: Conform cap. 3.1

- Recomandari

In tabelul 3.2.b sunt prezentate prelucrarile necesare pentru indeplinirea caracteristicilor suprafetelor piesei ce urmeaza a fi prelucrata.

Nr. Supr.	Forma	Var.	Prelucrari/Ra [μm]		
			Prel. 1	Prel. 2	Prel. 3
S1	Plana exterioara	ı	Frezare de degroșare, IT12; Ra = 6.3µm	-	-

S2	Plana	I	Frezare de	-	-
	exterioara		degroșare,		
			IT12; Ra =		
			6.3µm		
S3	Plana	I	Frezare de	Frezare de	Frezare de
	interioara		degroșare,	semifinisare	finisare
			IT12; Ra = 6.3	IT11; Ra=3.2	IT10; Ra=1.6
			μm	μm	μm
S4	Plana	l I	Frezare de	Frezare de	Frezare de
	interioara		degroșare,	semifinisare	finisare
			IT12; Ra = 6.3	IT11; Ra=3.2	IT10; Ra=1.6
			μm	μm	μm
S5	Plana	I	Frezare de	-	-
	exterioara		degroșare,		
			IT12; Ra =		
			6.3µm		
S6	Cilindrica	I	Centruire	Gaurire	Alezare de
	interioara				finisare
					IT10; Ra=1.6
					μm

Tabel 3.2.b

Procesul tehnologic este definit ca fiind "totalitatea operatiilor care comporta prelucrari mecanice sau chimice, tratamente termice, impregnari, montaje etc. si prin care materiile prime sau semifabricatele sunt transformate in produse finite.

In subcapitolul 2.2.4 Clasa piesei, s-a stabilit familia piesei din care face parte reperul studiat si anume clasa placutelor de baza.

Cap. 6: Structura detaliata a procesului tehnologic

Nr. de ordine si denumirea operatiei preliminare	Schita preliminara a operatiei	Utilaj, scule, dispozitive, SDV-uri
0.Turnare		U: Instalatie de turnare D/S: Forma de turnare V: Subler
1.a.Prindere semifabricat 1.Frezare frontala 3mm 1.b.Desprindere si depozitare reper	SECTION A-A	U: Masina de gaurit si frezat Cormak S: Freză frontală D: special V: șubler, etalon de rugozitate

2.a.Prindere U: Masina semifabricat de gaurit si frezat Cormak 2.Frezare S: Freză frontala la 24 2.b.Desprindere frontală si depozitare D: special V: şubler, reper etalon de rugozitate 6.3

Tab. 6.1

6.2 Utilaje si SDV-uri, metodele si procedeele de reglare la dimensiune 6.2.1. Utilaje

Avand in vedere capitolele anterioare si procesele tehnnologice detaliate din tabelele 6.1, din cadrul primului proces si al doilea, in tabelul 6.2.1a se detaliaza utilajele folosite in functie de fiecare operatie in parte.

Nr. și denumirea operației	Tip utilaj	Marca utilaj	Caracteristici tehnice
0.Turnare	Rame de turnare/forme semipermanente	-	-
1.Frezare frontala 2.Frezare frontala 3.Frezare de degrosare, de semifinisare, de finisare 4.Frezare frontala 5.Centruire, Gaurire, Alezare de finisare	Masina de gaurit si frezat Cormak ZX7032G		Dimensiuni masa: 700 x 190 mm Cursa pe axa X: 460 mm Cursa pe axa Y 225 mm Cursa pinolei: 75mm Turatii ax: 95 / 180 / 270 / 500 / 930 / 1420 rpm Distanta ax - masa (max.): 460 mm Numar trepte de turatie: 6 trepte Inclinare cap de actionare: -45° la +45° Greutate aproximativa: 185 kg Putere motor vertical: 0.9 KW 1.2 CP

6.Inspectie finala	Banc de lucru modular 990MA6, 1155x1500x750 mm, Unior4	2 BYTH	Material: tablă premium PLUS; Sistem de închidere centralizată cu încuietoare și cheie rabatabilă; 5 sertare: (3x L 560 x L 570 x H 70mm, 2x L 560 x L 605 x H150mm); capacitate sertar: 45 kg Blat de lucru: din lemn cu 30 de cârlige - Capacitate de încărcare statică: 2300 kg
-----------------------	--	--------	--

Tab. 6.2.1.a. Utilaje

6.2.2. Dispozitive port-piesa (DPP)

Conform reperului, in tabelul 6.2.2 se stabilesc dispozitivele de prindere ale piesei, tinand cont de masina unealta aleasa, de fiecare operatie in parte cu schemele caracteristice.

Tab. 6.2.2. Dispozitive

Nr. Op.	Dispozitiv port-piesa
1,2,3,4,5,6	Mandrina cu bucsa elastica
7,8,9	Portscula Weldon

6.2.3. Scule si dispozitive port-scula (SDPS)

Pentru fiecare operatie in parte s-au determinat, in functie de prelucrare, de fazele acesteia, de masina unealta, sculele necesare si dispozitivele port-scula ale acestora, detaliate in tabelul 6.2.3, corespunzator fiecarui proces tehnologic in parte.

Tab. 6.2.3. Scule

Operatii	Scule	Tip	Nume
0.Turnare	Rame de turnare/ forme permanente	-	-
1.Frezare frontala de degrosare la 3 mm		Cutit freza frontala	415-20EH16- 05H
2.Frezare frontala la 24 mm		Cutit freza frontala	A415- 013O13-05H
3.1 Frezare de degrosare		Freza cilindro- frontala Ø=3mm	2S342-0318- 038-PA P2BM

	_		
3.2. Frezare de semifinisare		Freza cilindro- frontala Ø=4mm	2S342-0400- 050-PA P2BM
3.3. Frezare de finisare		Freza cilindro- frontala Ø=4mm	2P342-0400- PA P2BM
4.Frezare frontala la 12 mm		Freza frontala	A415- 013013-05H
5.1.Centruire		Burghiu de centruire Ø3	860.1-0300- 009A1-NM H10F

5.2.Gaurire	Burghiu de gaurire Ø3.8	460.1-0390- 012A1-XM GC34
5.3.Alezare	Burghiu de finisare Ø4	435.B-0400- A1-XF H10F

6.2.4. Verificatoare

In tabelul 6.2.4 sunt stabilite verificatoarele necesare pentru controlul corespunzator a tuturor operatiilor din cadrul procesului tehnologic, avand in vedere tipul suprafetelor, al semifabricatului si a preciziei finale a reperului.

Tab. 6.2.4. Verificatoare

Operația	Verificat	Verificator			
	Tip	Dimensiuni care se pot măsura	Valoa rea divizi unii	Domeniu I de măsurare	
0.Turnare	1	Exterior Interior Adâncimi	0.02	0150m m	
	Şubler Digital ABS Caliper CoolantProof IP67 0-150mm, Blade 500-706-20 ^[13]				

1.Frezare frontala		Exterior Interior Adâncimi	0.02	0150m m
2.Frezare frontala	Şubler Digital ABS Caliper CoolantProof IP67 0-150mm, Blade 500-706-20 ^[13]			
3. Frezari de degrosare, semifinisare, finisare	Etalon de rugozitate			
4.Frezare frontala	Plăcuțe etalon pentru rugozitate 6 piese, 0.4-12.5 µm NF E 05-501, ISO/R 468 si ISO 2632 ^[14]	Rugozitati	-	0.412.5 μm
5.1.Centruire	Calibru tampon trece/nu trece	Interior	-	4mm P7
5.2.Gaurire				
	Etalon de rugozitate Ra 0,05 - 12,5 CEP 498861-1 ISO 4287			
5.3.Alezare	The state of the s	Rugozități	-	0,0512, 5 μm