빠르게 해보는 Word Embedding

- word2vec, doc2vec with gensim

Word Embedding의 개념 Word Embedding의 역사 및 주요 방법 Word Embedding으로 풀 수 있는 문제의 유형 주요 방법들의 동작원리와 이론 적용 가능한 API 등 소개 실제 예제적용 및 결과

•

•

15분

모든 것을 할 수는 없다.

한번쯤 거쳐가는 방법 보면서 쉽게 이해할 수 있는 주제 쉽고 빠른 구현이 가능한 API 존재

방법 - word2vec, doc2vec

예시 - 문서분류(Document Classification)

Syntactic Similarity

밥을 먹었다.

밥이 먹고 싶다.

밥에 콩을 넣었다.

"구문"의 차이

Semantic Similarity

성질이 많이 죽었다.

솜이불 숨이 죽었다.

기르던 화초가 죽었다.

"의미"의 차이

오늘은 집에서 식사를 했다.

Skip-gram

__ 집에서 __ __

CBOW

오늘 ___ 식사를 했다.

중심단어

주변단어

오늘은 집에서 식사를 했다.

window size =1,

오늘은 → 집에서

집에서 → 오늘은

집에서 → 식사를

식사를 → 집에서

식사를 → 했다.

주변단어 <mark>중심단어</mark> 주변단어

오늘은 집에서 식사를 했다.

window size =1,

오늘은 → 집에서

집에서 → 오늘은

집에서 → 식사를

식사를 → 집에서

식사를 → 했다.

주변단어

중심단어

주변단어

오늘은 집에서 식사를 했다.

window size =1,

오늘은 → 집에서

집에서 → 오늘은

집에서 → 식사를

식사를 → 집에서

식사를 → 했다.

주변단어 중심단어

오늘은 집에서 식사를 했다.

window size =1,

오늘은 → 집에서

집에서 → 오늘은

집에서 → 식사를

식사를 → 집에서

식사를 → 했다.

Rong, Xin. "word2vec parameter learning explained." arXiv preprint arXiv:1411.2738 (2014).

Word2Vec: Skip-Gram

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|_2 \|\mathbf{B}\|_2}$$

Cosine similarity From Wikipedia

maximize ν (중심단어) x ν (주변단어) minimize $\Sigma \nu$ (중심단어) x ν (모든단어)

Input layer x_k $w_{V \times N}$ h_i $v_{N \times V}$ $v_{N \times V}$

Rong, Xin. "word2vec parameter learning explained." *arXiv preprint arXiv:1411.2738* (2014).

Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." *Advances in neural information processing systems*. 2013.

Doc2Vec: DBOW

Le, Quoc, and Tomas Mikolov. "Distributed representations of sentences and documents." *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*. 2014.

Gensim

threading

(intel CPU는 cores/2)

Learning rate decay Initial Learning rate the end point Learning rate 문서 및 말뭉치 규모에 따라 가변적 embedding dimension (3~10)문서 길이에 따라 가변적

class gensim.models.word2vec.Word2Vec(sentences=None, size=100, alpha=0.025, window=5, min_count=5, max_vocab_size=None, sample=0.001, seed=1, workers=3, min_alpha=0.0001, sg=0, hs=0, negative=5, cbow_mean=1, hashfxn=<built-in function hash>, iter=5, null word=0, trim rule=None, sorted vocab=1, batch words=10000, compute loss=False)

Gensim Word2vec API, https://radimrehurek.com/gensim/models/word2vec.html

고빈도 단어를 학습에서 확률적으로 제외 $(0 \sim 0.00001)$

Skip-gram 사용여부 (1 = 사용)

대상 단어빈도 전체 단어 수

Hierarchical softmax 사용여부 (0 = 미사용)

 $(100 \sim 300, 500)$

Negative sampling 사용여부 (5^2)

window에 없는 단어

$$P(w_i) = rac{f(w_i)^{3/4}}{\sum_{j=0}^n \left(f(w_j)^{3/4}
ight)}$$
모든 단어

Q&A

E.O.D