ADA 07 - 9am Tue 27 Sep 2022

Maximum Likelihood Estimation Error bars are Model parameters Fitting Poisson Data Noise Model Parameters

Conditional Probabilities
Bayes Theorem
Bayesian Inference

Example: Correct the Bias in (S²)^{1/2}

 σ^2

 S^2

Define $y(x) = x^b$,

Derivatives: $y'(x) = b x^{b-1}$, $y''(x) = b(b-1)x^{b-2}$

Evaluate the bias:

$$\left\langle \left(S^{2}\right)^{b}\right\rangle = y\left(\left\langle S^{2}\right\rangle\right) + \frac{y''\left(\left\langle S^{2}\right\rangle\right)}{2} \operatorname{Var}\left(S^{2}\right) + \dots$$

$$= y\left(\sigma^{2}\right) + \frac{y''\left(\sigma^{2}\right)}{2} \frac{2\sigma^{4}}{N-1} + \dots$$

$$= \sigma^{2b} + \frac{b(b-1)\sigma^{2(b-2)}}{2} \frac{2\sigma^{4}}{N-1} + \dots = \sigma^{2b} \left(1 + \frac{b(b-1)}{N-1} + \dots\right)$$

$$\left\langle \left(S^{2}\right)^{p/2}\right\rangle = \sigma^{p} \left(1 + \frac{p(p-2)}{4(N-1)} + \dots\right)$$

Bias-corrected:
$$\overline{S} = \frac{\sqrt{S^2}}{\left(1 + \frac{p(p-2)}{4(N-1)}\right)^{1/p}} \qquad \left\langle \overline{S}^p \right\rangle = \sigma^p$$

Error Bars live with the Model

Not with the Data

Usually the distinction is unimportant.

But sometimes *it is important*.

Error bars live with the model, not the data!

Example: Poisson data:

$$\operatorname{Prob}(x = n \mid \lambda) = \frac{\lambda^n e^{-\lambda}}{n!} \quad n = 0, 1, 2, \dots$$
$$\langle X_i \rangle = \lambda, \qquad \sigma^2(X_i) = \lambda$$

How to attach error bars to the data points?

The wrong way: If $\sigma(X_i) = \sqrt{X_i}$, then $1/\sigma^2 = \infty$ when $X_i = 0$

and
$$\hat{X} = \frac{\sum_{i} X_{i} / \sigma_{i}^{2}}{\sum_{i} 1 / \sigma_{i}^{2}} = \frac{0 \cdot \infty}{\infty} = 0$$
, clearly wrong!

Assigning $\sigma(X_i) = \sqrt{X_i}$ gives a **downward bias**. Points lower than average by chance are given smaller error bars, and hence more weight than they deserve.

The **right way**:

Assign $\sigma = \sqrt{\lambda}$, where $\lambda =$ mean count rate **predicted by the model.**

Maximum Likelihood (ML) Estimation

Likelihood of parameters α for a given dataset:

$$L(\alpha) = P(X \mid \alpha) = P(X_1 \mid \alpha) \times P(X_2 \mid \alpha) \times ... \times P(X_N \mid \alpha)$$

$$= \prod_{i=1}^{N} P(X_i \mid \alpha)$$
Maximum Li

Example: Gaussian errors:

Example: Gaussian errors:
$$P(X_{i} \mid \alpha) = \frac{1}{\sqrt{2\pi} \sigma_{i}} \exp \left\{ -\frac{1}{2} \left(\frac{X_{i} - \mu_{i}(\alpha)}{\sigma_{i}} \right)^{2} \right\}$$

$$L(\alpha) = \frac{\exp \left\{ -\chi^{2}/2 \right\}}{Z_{D}}, \quad Z_{D} = (2\pi)^{N/2} \prod_{i=1}^{N} \sigma_{i}$$

$$\text{BoF} = -2 \ln L = \chi^{2} + \sum \ln \sigma_{i}^{2} + N \ln (2\pi)$$

$$\text{Generalises } \chi^{2} \text{ fitting}$$

To maximise $L(\alpha)$, minimise $\chi^2 + \sum \ln \sigma_i^2$

Maximum Likelihood **Parameters**

$$\alpha_{\rm ML}$$
 satisfies $0 = \frac{\partial}{\partial \alpha} [-2 \ln L(\alpha)],$

$$\operatorname{Var}[\alpha_{\rm ML}] \approx \frac{2}{\left(\frac{\partial^2}{\partial \alpha^2} [-2 \ln L(\alpha)]\right)_{\alpha = \alpha_{ML}}}$$

Generalises χ^2 fitting.

- 1. For parameters that affect σ
- 2. For non-Gaussian errors

Need ML when Parameters alter Error Bars

• Data points X_i with no error bars:

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{X_i - \mu}{\sigma} \right)^2$$

- To find μ , minimise χ^2 .
- To find σ , minimising χ^2 fails!

$$\chi^2 \to 0$$
 as $\sigma \to \infty$

ML method minimises

$$-2\ln L = \chi^2 + N \ln \sigma^2$$

Need ML to fit low-count Poisson Data

Example: Poisson data:

$$P(X = n \mid \lambda) = \frac{e^{-\lambda} \lambda^n}{n!} \quad n = 0, 1, ... \infty$$

Likelihood for N Poisson data points:

$$L(\lambda) = \prod_{i=1}^{N} P(X_i \mid \lambda) = \prod_{i=1}^{N} \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$$

$$\ln L = \sum_{i} \left(-\lambda + X_{i} \ln \lambda - \ln X_{i}! \right)$$

Maximum likelihood estimator of λ :

$$\frac{\partial \ln L}{\partial \lambda} = -N + \frac{1}{\lambda} \sum_{i} X_{i} = 0 \quad \text{at} \quad \lambda = \lambda_{ML}$$

$$\therefore \quad \lambda_{ML} = \frac{1}{N} \sum_{i} X_{i}.$$

Conditional Probabilities

P(X,Y) =**joint probability density** of X and Y P(X) =projection of P(X,Y) onto X axis.

$$P(X) = \int P(X,Y) \, \mathrm{d}Y$$

Conditional Probability:

P(X|Y) = "probability of X given Y" = "normalised slice" of P(X,Y)at a **fixed value** of Y.

$$P(X | Y) = \frac{P(X,Y)}{P(Y)} = \frac{P(X,Y)}{\int P(X,Y) dX}$$

Test Understanding

$$Y = 3 X$$

X = Gaussian

$$P(YIX=2)=?$$

$$P(Y | X > 2) = ?$$

Test Understanding

$$Y = 3 X$$

X = Gaussian

$$P(Y | X = 2) = ?$$

$$P(Y | X > 2) = ?$$

Test Understanding

$$Y = 3 X$$

$$P(YIX=2)=?$$

$$P(Y | X > 2) = ?$$

Conditional Probabilities

P(X) = projection onto X axis.

P(Y) = projection onto Y axis.

$$P(X) = \int P(X,Y) \, dY$$
$$P(Y) = \int P(X,Y) \, dX$$

$$P(Y) = \int P(X,Y) \, \mathrm{d}X$$

Conditional Probability:

P(X|Y) = normalised slice at fixed Y

P(Y|X) = normalised slice at fixed X

$$P(X,Y) = P(X \mid Y) P(Y)$$
$$= P(Y \mid X) P(X)$$

Bayes' Theorem and Bayesian Inference

Bayes' Theorem:
$$P(X | Y) = \frac{P(Y | X) P(X)}{P(Y)}$$

Since
$$P(X,Y) = P(X|Y) P(Y) = P(Y|X) P(X)$$

then $P(X|Y) = \frac{P(Y|X) P(X)}{P(Y)} = \frac{P(Y|X) P(X)}{\int P(Y|X) P(X) dX}$

Bayesian Inference:

$$P(\text{model} | \text{data}) = \frac{P(\text{data} | \text{model}) P(\text{model})}{P(\text{data})}$$

Shows us *how to change* our probability distribution P(model) => P(model | data)

over various models in light of new data.

Inferences depend on Prior, not just Data

Bayesian inference: (M = model, D = data)

Posterior Probability = (Likelihood × Prior Probability) / Evidence

$$P(M | D) = \frac{P(D | M) P(M)}{P(D)} = \frac{P(D | M) P(M)}{\int P(D | M) P(M) dM}$$

Relative probability of two models M_1 and M_2 :

$$\frac{P(M_1 \mid D)}{P(M_2 \mid D)} = \frac{P(D \mid M_1)}{P(D \mid M_2)} \times \frac{P(M_1)}{P(M_2)} \approx \exp\left(\frac{-\Delta \chi^2}{2}\right) \times \frac{P(M_1)}{P(M_2)}$$

- The *Likelihood*, P(data I model), is quantified by a "badness-of-fit" statistic. e.g. P(data I model) $\sim \exp(-\chi^2/2)$
- The *Prior*, P(model) expresses your *prejudice* (prior knowledge).
- The *Posterior*, P(model I data), gives your *inference*, the relative probabilities of different models (parameters), in light of the data.

No absolute inferences! New data updates your prior expectations, but your conclusions depend also on your prior.

Choice of Prior

- A model for a set of data X depends on model parameters α , and gives the Likelihood $L(\alpha) \equiv P(X \mid \alpha)$
- Knowledge of α before measuring X is quantified by the **prior** $P(\alpha)$.
- Choice of prior $P(\alpha)$ is arbitrary, subject to common sense!
- After measuring X,
 Bayes theorem gives posterior:

$$P(\alpha | X) \propto P(X | \alpha) P(\alpha)$$

$$= L(\alpha) P(\alpha)$$

• Different priors $P(\alpha)$ lead to different **inferences**:

Max Likelihood and Bayesian Inference

N=1 Gaussian Datum with Uniform Prior

Data : $X \pm \sigma$ Model parameter : μ

Likelihood function:

$$L(\mu) = P(X \mid \mu) = \frac{e^{-\frac{1}{2} \left(\frac{X-\mu}{\sigma}\right)^2}}{\sqrt{2\pi} \sigma}$$

 $\mu_{ML} = X$ maximises $L(\mu)$.

Posterior probability:

$$P(\mu \mid X) = \frac{P(X \mid \mu) P(\mu)}{P(X)}$$

$$P(X) = \int P(X \mid \mu) P(\mu) d\mu$$

Uniform prior:

$$P(\mu) = \text{constant}$$

Maximum Likelihood implicitly assumes a Uniform Prior

N=1 Gaussian Datum with Gaussian Prior

Gaussian Data: $X \pm \sigma$

Likelihood:
$$L(\mu) = P(X \mid \mu) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2} \left(\frac{X-\mu}{\sigma}\right)^2}$$

Prior:

$$P(\mu) = \frac{1}{\sqrt{2\pi} \sigma_0} e^{-\frac{1}{2} \left(\frac{\mu - \mu_0}{\sigma_0}\right)^2}$$

Posterior : $P(\mu \mid X) \propto$ Likelihood x Prior

$$L(\mu) P(\mu) \propto e^{-\frac{1}{2} \left(\frac{X-\mu}{\sigma}\right)^2} e^{-\frac{1}{2} \left(\frac{\mu-\mu_0}{\sigma_0}\right)^2} \propto \exp\left\{-\frac{1}{2} \left(\frac{\mu-\mu_{MAP}}{\sigma(\mu_{MAP})}\right)^2\right\}$$

Maximum Posterior (MAP) estimate:

$$\mu_{MAP} = \frac{\frac{\mu_0}{\sigma_0^2} + \frac{X}{\sigma^2}}{\frac{1}{\sigma_0^2} + \frac{1}{\sigma^2}}, \quad \text{Var}(\mu_{MAP}) = \frac{1}{\frac{1}{\sigma_0^2} + \frac{1}{\sigma^2}}.$$
 Same as Optimal Average!

Gaussian prior acts like 1 more data point of the prior, and vice-versa.

 $P(X \mid \mu)$ μ

Likelihood x Prior:

Same as Optimal Average!

Gaussian prior acts like 1 more data point.

prior, and vice-versa.

Verify this result.

N Gaussian Data with Gaussian Prior

Likelihood:
$$L(\mu) = P(X \mid \mu) = \prod_{i=1}^{N} P(X_i \mid \mu) = \frac{\exp\left\{-\frac{1}{2}\chi^2\right\}}{\left(2\pi\right)^{N/2} \prod_{i} \sigma_i}$$

Prior:
$$P(\mu) = \frac{1}{\sqrt{2\pi} \sigma_0} \exp\left\{-\frac{1}{2} \left(\frac{\mu - \mu_0}{\sigma_0}\right)^2\right\}$$

Posterior : $P(\mu \mid X) \propto \text{Likelihood x Prior}$

$$L(\mu) P(\mu) \propto \exp\left\{-\frac{\chi^2}{2} - \frac{1}{2} \left(\frac{\mu - \mu_0}{\sigma_0}\right)^2\right\} \propto \exp\left\{-\frac{1}{2} \left(\frac{\mu - \mu_{MAP}}{\sigma(\mu_{MAP})}\right)^2\right\}$$

Maximum Posterior (MAP) estimate:

$$\mu_{MAP} = \frac{\frac{\mu_0}{\sigma_0^2} + \sum_{i=1}^{N} \frac{X_i}{\sigma_i^2}}{\frac{1}{\sigma_0^2} + \sum_{i=1}^{N} \frac{1}{\sigma_i^2}}, \quad \sigma^2(\mu_{MAP}) = \frac{1}{\frac{1}{\sigma_0^2} + \sum_{i=1}^{N} \frac{1}{\sigma_i^2}}.$$

Likelihood x Prior:

Same as Optimal Average!

Gaussian prior acts like 1 more data point.

Summary:

- 1. Error bars live with the Model, not with the Data.
- 2. Bayes Theorem (**Bayesian Inference**)

$$P(\text{Model | Data}) = \frac{P(\text{Data | Model}) P(\text{Model})}{P(\text{Data})}$$

3. Maximum Likelihood, L(Model) = P(Data | Model) e.g. for Gaussian Data:

or Gaussian Data:

$$BoF = -2 \ln L = \chi^2 + \sum_{i=1}^{N} \ln \sigma_i^2 + const$$

- 4. Minimise χ^2 if Gaussian errors with known σ_i .
- 5. or Maximise likelihood (e.g. minimise $BoF = -2 \ln L$), if error bars unknown, or low-count Poisson data.
- 6. or full **Bayesian analysis**, including the prior: e.g. for Gaussian Data:

$$BoF = -2 \ln P(\text{Model } | \text{Data}) = \chi^2 + \sum_{i=1}^{N} \ln \sigma_i^2 - 2 \ln P(\text{Model}) + const$$

Fini -- ADA 07