JOHNS HOPKINS

WHITING SCHOOL of ENGINEERING

Applied and Computational Mathematics

Data Mining 625.740

Regression

Mike Weisman

email: data.mining.625.740@gmail.com

Regression

We wish to predict the response Y to a single predictor variable X and believe the relationship is linear: $Y \approx \beta_0 + \beta_1 X$

For example, X may be rainfall in inches, and Y the average weight of watermelons in our crop. To find estimates of our parameters $\hat{\beta}_0$ and $\hat{\beta}_1$ we fit our sample $\{(x_1, y_1), \cdots, (x_n, y_n)\}$ to a line.

Simple Linear Regression

Letting $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction of Y based on x_i , the i^{th} value of X, then $\varepsilon_i = y_i - \hat{y}_i$ is the i^{th} residual:

$$\varepsilon_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

We define the residual-sum-of-squares to be

$$R = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

We seek β_0 and β_1 to minimize R. Taking partial derivatives:

$$-\frac{1}{2}\frac{\partial R}{\partial \beta_0} = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)$$
$$-\frac{1}{2}\frac{\partial R}{\partial \beta_1} = \sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i)$$

Setting the partial derivatives equal to zero, yields two equations in the two unknown parameters.

$$\frac{\partial R}{\partial \beta_0} = 0
\frac{\partial R}{\partial \beta_1} = 0
\Rightarrow n\beta_0 + \beta_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i
\beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i$$

$$n\beta_0 + \beta_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$
$$\beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i$$

Applying Cramer's rule:

$$\hat{\beta}_{0} = \frac{\begin{vmatrix} \sum_{i=1}^{n} y_{i} & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{vmatrix}}{\begin{vmatrix} n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i} \end{vmatrix}}, \quad \hat{\beta}_{1} = \frac{\begin{vmatrix} n & \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i} y_{i} \end{vmatrix}}{\begin{vmatrix} n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{vmatrix}}$$

The sample means are defined as $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

Similarly
$$\overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$
 and $\overline{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2$

Then,

$$\hat{\beta}_0 = \frac{\overline{y} \cdot \overline{x^2} - \overline{x} \cdot \overline{xy}}{\overline{x^2} - (\overline{x})^2}, \quad \hat{\beta}_1 = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2}$$

Notice that

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2x_i \overline{x} + (\overline{x})^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2\overline{x} \cdot \frac{1}{n} \sum_{i=1}^{n} x_i + (\overline{x})^2 = \overline{x^2} - 2(\overline{x})^2 + (\overline{x})^2$$

$$= \overline{x^2} - (\overline{x})^2$$

and

$$\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\overline{x})(y_{i}-\overline{y})=\frac{1}{n}\sum_{i=1}^{n}(x_{i}y_{i}-\overline{x}y_{i}-\overline{y}x_{i}+\overline{x}\overline{y})=\frac{1}{n}\sum_{i=1}^{n}x_{i}y_{i}-2\overline{x}\overline{y}+\overline{x}\overline{y}$$
$$=\overline{x}\overline{y}-\overline{x}\cdot\overline{y}$$

We can thus express the parameters $\hat{\beta}_0$ and $\hat{\beta}_1$ as

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

8 / 17

An Example

Fitting this data, the coefficients are $\hat{\beta}_0 = 7.03$ and $\hat{\beta}_1 = 0.0475$. Thus, by spending \$1000 on television advertising, we can expect to sell an additional 47.5 units of the product (assuming the trend continues!).

Figure: Sales vs. TV advertising, from An Introduction to Statistical Learning,p. 62.

$$\hat{Y} = \hat{eta}_0 + \hat{eta}_1 X$$

M. Weisman (JHU EP ACM) Data Mining 9 / 17

Multiple Regression

With multiple inputs, $X^T = (X_1, X_2, \dots, X_p)$, the linear regression model is

$$Y pprox eta_0 + \sum_{j=1}^{
ho} X_j eta_j$$

The $\hat{\beta}_i$'s are unknown parameters and the input variables X_i can come from different sources.*

- Quantitative inputs
- Transformations of quantitative inputs (e.g. log, square-root, ···)
- Basis expansions (e.g. $X_2 = X_1^2$, $X_3 = X_1^3$) leading to a polynomial representation
- Numeric coding of levels of quantitative inputs
- Interactions between variables (e.g. $X_3 = X_1 \cdot X_2$)

^{*}The Elements of Statistical Learning, Second Edition, p. 44.

Multiple Regression*

FIGURE 3.1. Linear least squares fitting with $X \in \mathbb{R}^2$. We seek the linear function of X that minimizes the sum of squared residuals from Y.

^{*}The Elements of Statistical Learning, Second Edition, p. 45.

Multiple Regression

Again, we apply the method of <u>least squares</u> by choosing β_1, \dots, β_p to minimize the residual-sum-of-squares:

$$R(\beta) = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

Defining the $n \times (p+1)$ matrix **X** to be the input data with each row an input vector with 1 in the first position, and **y** the *n*-vector of outputs in the training data, we can write

$$R(\beta) = (\mathbf{y} - X\beta)^T (\mathbf{y} - X\beta)$$

Proceeding as before,

$$-\frac{1}{2}\frac{\partial R}{\partial \beta} = \boldsymbol{X}^{T}(\boldsymbol{y} - \boldsymbol{X}\beta)$$
$$\frac{1}{2}\frac{\partial^{2}R}{\partial \beta \partial \beta^{T}} = \boldsymbol{X}^{T}\boldsymbol{X}$$

Multiple Regression

Assuming that **X** has full column rank, and thus $\mathbf{X}^T\mathbf{X}$ is positive definite, setting $\frac{\partial R}{\partial \beta} = 0$:

$$\boldsymbol{X}^{T}(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta})=0$$

yields the unique solution for the β 's

$$\hat{oldsymbol{eta}} = \left(oldsymbol{X}^{\mathsf{T}} oldsymbol{X}
ight)^{-1} oldsymbol{X}^{\mathsf{T}} oldsymbol{y}$$

The predicted values at an input vector are given by $(1, x_1, x_2, ..., x_p)^T \hat{\beta}$ and the fitted values at the training inputs are

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{\beta}} = \mathbf{X} \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Geometrical Representation of Least Squares*

Figure: The vector \hat{y} is the projection of y onto the column space of X.

Denote the column vectors of \mathbf{X} by $\{\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_p\}$ where $\mathbf{x}_0 = \mathbf{1}$, a column of ones. These vectors span the column space of \mathbf{X} , a subspace of \mathcal{R}^n . We minimize $||\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}||^2$ by choosing $\hat{\boldsymbol{\beta}}$ so that the residual vector $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to this subspace. The vector $\hat{\mathbf{y}}$ is the orthogonal projection of y onto this subspace.

*The Elements of Statistical Learning, Second Edition, p. 46.

M. Weisman (JHU EP ACM) Data Mining 14 / 17

Polynomial Regression

Polynomial regression is a special case of multiple regression. Recall that with $X^T = (1, X_1, X_2, \dots, X_p)$ [we've included the input $X_0 = 1$], the linear regression model is

$$Y pprox eta_0 + \sum_{j=1}^{p} X_j eta_j$$

Now let $X^T = (1, X, X^2, \dots, X^p)$, then

$$Y pprox eta_0 + \sum_{j=1}^{
ho} X^j eta_j$$

Polynomial Curve Fitting

$$Y \sim \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3$$

JOHNS HOPKINS

WHITING SCHOOL of ENGINEERING

Applied and Computational Mathematics

Data Mining 625.740

Regression

