Two Experiments

Aharonov-Bohm interferometry and Wilson lines

Sun Ning

Institute for Advance Study, Tsinghua University

February 20, 2016

Outline

Aharonov-Bohm interferometry
Experimental setup and theoretical preparation
The experiment

Wilson lines

Experimental setup and theoretical preparation Measuring Wilson lines
Reconstructing band eigenstates
Determining Wilson line eigenvaluse
Accessing the dispersion relation

Outline

Aharonov-Bohm interferometry
Experimental setup and theoretical preparation
The experiment

Wilson lines

Experimental setup and theoretical preparation Measuring Wilson lines Reconstructing band eigenstates Determining Wilson line eigenvaluse Accessing the dispersion relation

An Aharonov-Bohm interferometer for determining Bloch band topology

An Aharonov-Bohm interferometer for determining Bloch band topology

Bloch state

Bloch state

$$\psi_{\mathbf{k}}^n(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}u_{\mathbf{k}}^n(\mathbf{r})$$

Bloch state

$$\psi_{\mathbf{k}}^n(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}u_{\mathbf{k}}^n(\mathbf{r})$$

Berry connection

Bloch state

$$\psi_{\mathbf{k}}^n(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}u_{\mathbf{k}}^n(\mathbf{r})$$

Berry connection

$$\mathbf{A}_n(\mathbf{k}) = \mathrm{i} \langle u_{\mathbf{k}}^n | \nabla_{\mathbf{k}} | u_{\mathbf{k}}^n \rangle$$

Bloch state

$$\psi_{\mathbf{k}}^n(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}} u_{\mathbf{k}}^n(\mathbf{r})$$

Berry connection

$$\mathbf{A}_n(\mathbf{k}) = \mathrm{i} \langle u_{\mathbf{k}}^n | \nabla_{\mathbf{k}} | u_{\mathbf{k}}^n \rangle$$

Berry curvature

Bloch state

$$\psi_{\mathbf{k}}^n(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}u_{\mathbf{k}}^n(\mathbf{r})$$

Berry connection

$$\mathbf{A}_n(\mathbf{k}) = \mathbf{i} \langle u_{\mathbf{k}}^n | \nabla_{\mathbf{k}} | u_{\mathbf{k}}^n \rangle$$

• Berry curvature

$$\Omega_n = \nabla_{\mathbf{k}} \times \mathbf{A}_n(\mathbf{k})$$

Bloch state

$$\psi_{\mathbf{k}}^n(\mathbf{r}) = e^{\mathrm{i}\mathbf{k}\mathbf{r}} u_{\mathbf{k}}^n(\mathbf{r})$$

Berry connection

$$\mathbf{A}_n(\mathbf{k}) = \mathrm{i} \langle u_{\mathbf{k}}^n | \nabla_{\mathbf{k}} | u_{\mathbf{k}}^n \rangle$$

• Berry curvature

$$\Omega_n = \nabla_{\mathbf{k}} \times \mathbf{A}_n(\mathbf{k})$$

Berry phase

Bloch state

$$\psi_{\mathbf{k}}^n(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}u_{\mathbf{k}}^n(\mathbf{r})$$

Berry connection

$$\mathbf{A}_n(\mathbf{k}) = \mathrm{i} \langle u_{\mathbf{k}}^n | \nabla_{\mathbf{k}} | u_{\mathbf{k}}^n \rangle$$

• Berry curvature

$$\Omega_n = \nabla_{\mathbf{k}} \times \mathbf{A}_n(\mathbf{k})$$

Berry phase

$$\phi_{\mathsf{Berry}} = \oint_C \mathbf{A}_n(\mathbf{k}) d\mathbf{k} = \int_{S_{\mathsf{CDA}}} \Omega_n(\mathbf{k}) d^2\mathbf{k}$$

Hexagonal lattice in real space

Hexagonal lattice in real space

Magnetic field $B = B_0 + \mathbf{r} \cdot \nabla B$ combined with an orthogonal acceleration $\mathbf{a} \perp \nabla B$ of the lattice:

The Hamiltonian is

$$H(t) = \frac{\mathbf{p}^2}{2m} + V[\mathbf{r} - \mathbf{R}]$$
$$-\mu \mathbf{r} \cdot \nabla B - \mu B_0$$

in co-moving frame

$$H(t) = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) - \mathcal{F}_{\mu} \cdot \mathbf{r} + \varepsilon_{\mu}(t)$$

The Hamiltonian in co-moving frame is

The Hamiltonian in co-moving frame is

$$H(t) = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) - \mathcal{F}_{\mu} \cdot \mathbf{r} + \varepsilon_{\mu}(t) \quad (+\frac{1}{2}m|\mathbf{a}t|^2)$$

The Hamiltonian in co-moving frame is

$$H(t) = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) - \mathcal{F}_{\mu} \cdot \mathbf{r} + \varepsilon_{\mu}(t) \quad (+\frac{1}{2}m|\mathbf{a}t|^2)$$

external force inducing moving in reciprocal space

The Hamiltonian in co-moving frame is

$$H(t) = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) - \mathcal{F}_{\mu} \cdot \mathbf{r} + \varepsilon_{\mu}(t) \quad (+\frac{1}{2}m|\mathbf{a}t|^2)$$

external force inducing moving in reciprocal space

$$\mathcal{F}_{\mu} = \mu \nabla B - m\mathbf{a}$$

The Hamiltonian in co-moving frame is

$$H(t) = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) - \mathcal{F}_{\mu} \cdot \mathbf{r} + \varepsilon_{\mu}(t) \quad (+\frac{1}{2}m|\mathbf{a}t|^2)$$

external force inducing moving in reciprocal space

$$\mathcal{F}_{\mu} = \mu \nabla B - m\mathbf{a}$$

Zeeman energy

The Hamiltonian in co-moving frame is

$$H(t) = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) - \mathcal{F}_{\mu} \cdot \mathbf{r} + \varepsilon_{\mu}(t) \quad (+\frac{1}{2}m|\mathbf{a}t|^2)$$

external force inducing moving in reciprocal space

$$\mathcal{F}_{\mu} = \mu \nabla B - m\mathbf{a}$$

Zeeman energy $\varepsilon_{\mu}(t) = -\mu[\mathbf{R}(t) \cdot \nabla B + B_0]$

The Hamiltonian in co-moving frame is

$$H(t) = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) - \mathcal{F}_{\mu} \cdot \mathbf{r} + \varepsilon_{\mu}(t) \quad (+\frac{1}{2}m|\mathbf{a}t|^2)$$

external force inducing moving in reciprocal space

$$\mathcal{F}_{\mu} = \mu \nabla B - m\mathbf{a}$$

Zeeman energy $\varepsilon_{\mu}(t) = -\mu[\mathbf{R}(t) \cdot \nabla B + B_0]$

$$\mathcal{F}_{\mu}$$
: $\mathbf{k} \rightarrow \mathbf{k} + \mathcal{F}_{\mu}t$

Hamiltonian

$$H = H_0 - \mathcal{F}_{\mu} \cdot \mathbf{r}$$

Hamiltonian

$$H = H_0 - \mathcal{F}_{\mu} \cdot \mathbf{r}$$

Bloch state

$$H_0 \psi_{\mathbf{k}}^n(\mathbf{r}) = E_n(\mathbf{k}) \psi_{\mathbf{k}}^n(\mathbf{r})$$
$$\psi_{\mathbf{k}}^n(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{\mathbf{k}}^n(\mathbf{r})$$

Hamiltonian

$$H = H_0 - \mathcal{F}_{\mu} \cdot \mathbf{r}$$

Bloch state

$$H_0 \psi_{\mathbf{k}}^n(\mathbf{r}) = E_n(\mathbf{k}) \psi_{\mathbf{k}}^n(\mathbf{r})$$

$$\psi_{\mathbf{k}}^n(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{\mathbf{k}}^n(\mathbf{r})$$

Ansatz

$$ilde{\Psi}(t) = e^{\mathrm{i}\eta(t)} \psi_{k_0 + \mathcal{F}_\mu t}^n \ \eta = \phi_\mathsf{dyn} + \phi_\mathsf{Berry}$$

Hamiltonian

$$H = H_0 - \mathcal{F}_u \cdot \mathbf{r}$$

Bloch state

$$H_0 \psi_{\mathbf{k}}^n(\mathbf{r}) = E_n(\mathbf{k}) \psi_{\mathbf{k}}^n(\mathbf{r})$$

$$\psi_{\mathbf{k}}^n(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{\mathbf{k}}^n(\mathbf{r})$$

Ansatz

$$ilde{\Psi}(t) = e^{\mathrm{i}\eta(t)} \psi_{k_0 + \mathcal{F}_{\mu}t}^n \ \eta = \phi_{\mathsf{dyn}} + \phi_{\mathsf{Berry}}$$

Phase

$$\phi_{ ext{dyn}} = \int_0^T [E_1(\mathbf{k} + \mathcal{F}_\mu t) + \varepsilon_\mu t] dt$$

$$\phi_{ ext{Berry}} = \mathrm{i} \int_C \langle u_\mathbf{k}^1 | \nabla_\mathbf{k} | u_\mathbf{k}^1
angle d\mathbf{k}$$

Experiment procedure

Experiment procedure

1. ^{87}Rb BEC initial state $|\uparrow\rangle = |F = 2, m_F = 1\rangle$; $\pi/2$ -microwave pulse;

- 1. ⁸⁷Rb BEC initial state $|\uparrow\rangle = |F = 2, m_F = 1\rangle$; $\pi/2$ -microwave pulse;
- 2. τ evolution;

- 1. ⁸⁷Rb BEC initial state $|\uparrow\rangle = |F = 2, m_F = 1\rangle$; $\pi/2$ -microwave pulse;
- 2. τ evolution;
- 3. microwave π pulse;

- 1. ⁸⁷Rb BEC initial state $|\uparrow\rangle = |F = 2, m_F = 1\rangle;$ $\pi/2$ -microwave pulse;
- 2. τ evolution;
- 3. microwave π pulse;
- 4. τ evolution;

- 1. ^{87}Rb BEC initial state $|\uparrow\rangle = |F=2, m_F=1\rangle;$ $\pi/2$ -microwave pulse;
- 2. τ evolution;
- 3. microwave π pulse;
- 4. τ evolution;
- 5. $\pi/2$ pulse;

- 1. ^{87}Rb BEC initial state $|\uparrow\rangle = |F=2, m_F=1\rangle;$ $\pi/2$ -microwave pulse;
- 2. τ evolution;
- 3. microwave π pulse;
- 4. τ evolution;
- 5. $\pi/2$ pulse;

zero-area reference: V-shape path.

- 1. ⁸⁷Rb BEC initial state $|\uparrow\rangle = |F = 2, m_F = 1\rangle;$ $\pi/2$ -microwave pulse;
- 2. τ evolution;
- 3. microwave π pulse;
- 4. τ evolution;
- 5. $\pi/2$ pulse;

zero-area reference:

V-shape path.

Reversing the lattice acceleration after π pulse.

- 1. ^{87}Rb BEC initial state $|\uparrow\rangle = |F=2, m_F=1\rangle;$ $\pi/2$ -microwave pulse;
- 2. τ evolution;
- 3. microwave π pulse;
- 4. τ evolution;
- 5. $\pi/2$ pulse;

zero-area reference:

V-shape path.

Reversing the lattice acceleration after π pulse.

$$n_{\uparrow,\downarrow} \propto 1 \pm \cos(\varphi + \varphi_{MW})$$

Broadening of the edges — caused by momentum spread.

- Broadening of the edges caused by momentum spread.
- Systematic errors.

Self-referenced interferometry at Dirac point

Self-referenced interferometry at Dirac point

Contrast: $(n_{\downarrow}^{\mathsf{max}} - n_{\downarrow}^{\mathsf{min}}) / (n_{\downarrow}^{\mathsf{max}} + n_{\downarrow}^{\mathsf{min}})$

- Contrast: $(n_{\downarrow}^{\mathsf{max}} n_{\downarrow}^{\mathsf{min}}) / (n_{\downarrow}^{\mathsf{max}} + n_{\downarrow}^{\mathsf{min}})$
- $\varphi = (\varphi_L + \varphi_R)/2 \varphi_B$

- Contrast: $(n_{\downarrow}^{\mathsf{max}} n_{\downarrow}^{\mathsf{min}}) / (n_{\downarrow}^{\mathsf{max}} + n_{\downarrow}^{\mathsf{min}})$
- $\varphi = (\varphi_L + \varphi_R)/2 \varphi_B = 0.95(10)\pi$

- Contrast: $(n_{\downarrow}^{\mathsf{max}} n_{\downarrow}^{\mathsf{min}}) / (n_{\downarrow}^{\mathsf{max}} + n_{\downarrow}^{\mathsf{min}})$
- $\varphi = (\varphi_L + \varphi_R)/2 \varphi_B = 0.95(10)\pi$
- Berry curvature localization

- Contrast: $(n_{\downarrow}^{\mathsf{max}} n_{\downarrow}^{\mathsf{min}}) / (n_{\downarrow}^{\mathsf{max}} + n_{\downarrow}^{\mathsf{min}})$
- $\varphi = (\varphi_L + \varphi_R)/2 \varphi_B = 0.95(10)\pi$
- Berry curvature localization $\delta k_w \simeq 10^{-4} k_L (\Delta \simeq h \times 3 \text{Hz})$

Imbalance lattice mapping

Imbalance lattice mapping

Imbalance lattice mapping Self-referenced phase

Imbalance lattice mapping Self-referenced phase

ab initio calculation of imbalanced lattice

ab initio calculation of imbalanced lattice

ab initio calculation of imbalanced lattice

Seeing Dirac points annihilating clear.

Outline

Aharonov-Bohm interferometry
Experimental setup and theoretical preparation
The experiment

Wilson lines

Experimental setup and theoretical preparation Measuring Wilson lines Reconstructing band eigenstates Determining Wilson line eigenvaluse Accessing the dispersion relation

Experimental reconstruction of Wilson lines in Bloch bands

Real space

Reciprocal space

b

 $\begin{array}{c|c} F_1 & K_0 & K' \\ \hline & \Gamma & M & \Gamma + \mathbf{G} \\ \hline & q_y & & & \Gamma \\ \end{array}$

Real space

Reciprocal space

• force **F** :
$$q(t) = q(0) + Ft$$

Real space

Reciprocal space

- force **F** : q(t) = q(0) + Ft
- unitary time-evolution operator (Wilson line matrix)

$$W_{\mathbf{q}(0)\to\mathbf{q}(t)} = \mathcal{P}\exp(i\int_C A_{\mathbf{q}}d\mathbf{q})$$

 A_q : Wilczek-Zee connection \mathcal{P} : Path-ordering (non-Abelian)

• $W_{\mathbf{q}(0)\to\mathbf{q}(t)} = \mathcal{P} \exp\left(i \int_{C} A_{\mathbf{q}} d\mathbf{q}\right)$

- $W_{\mathbf{q}(0)\to\mathbf{q}(t)} = \mathcal{P} \exp\left(i \int_{C} A_{\mathbf{q}} d\mathbf{q}\right)$
- Bloch state (presence of lattice)

- $W_{\mathbf{q}(0)\to\mathbf{q}(t)} = \mathcal{P} \exp\left(i \int_C A_{\mathbf{q}} d\mathbf{q}\right)$
- Bloch state (presence of lattice) $|\Phi^n_{f q}
 angle=e^{i{f q}\cdot{f r}}|u^n_{f q}
 angle$

- $W_{\mathbf{q}(0)\to\mathbf{q}(t)} = \mathcal{P} \exp\left(i \int_C A_{\mathbf{q}} d\mathbf{q}\right)$
- Bloch state (presence of lattice) $|\Phi^n_{f q}
 angle=e^{i{f q}\cdot{f r}}|u^n_{f q}
 angle$
- Wilczek-Zee connection

- $W_{\mathbf{q}(0)\to\mathbf{q}(t)} = \mathcal{P} \exp\left(i \int_C A_{\mathbf{q}} d\mathbf{q}\right)$
- Bloch state (presence of lattice) $|\Phi^n_{f q}
 angle=e^{{
 m i}{f q}\cdot{f r}}|u^n_{f q}
 angle$
- Wilczek-Zee connection $\mathbf{A}^{n,n'}_{\mathbf{q}} = \mathrm{i} \langle u^n_{\mathbf{q}} | \nabla_{\mathbf{q}} | u^{n'}_{\mathbf{q}} \rangle$

- $W_{\mathbf{q}(0)\to\mathbf{q}(t)} = \mathcal{P} \exp\left(i \int_C A_{\mathbf{q}} d\mathbf{q}\right)$
- Bloch state (presence of lattice) $|\Phi^n_{f q}
 angle=e^{{
 m i}{f q}\cdot{f r}}|u^n_{f q}
 angle$
- Wilczek-Zee connection $\mathbf{A}^{n,n'}_{\mathbf{q}} = \mathrm{i} \langle u^n_{\mathbf{q}} | \nabla_{\mathbf{q}} | u^{n'}_{\mathbf{q}} \rangle$
- n = n': Berry connections of individual Bloch bands

Wilson line

- $W_{\mathbf{q}(0)\to\mathbf{q}(t)} = \mathcal{P} \exp\left(i \int_C A_{\mathbf{q}} d\mathbf{q}\right)$
- Bloch state (presence of lattice) $|\Phi^n_{f q}
 angle=e^{i{f q}\cdot{f r}}|u^n_{f q}
 angle$
- Wilczek-Zee connection $\mathbf{A}^{n,n'}_{\mathbf{q}} = \mathrm{i} \langle u^n_{\mathbf{q}} | \nabla_{\mathbf{q}} | u^{n'}_{\mathbf{q}} \rangle$
- n = n': Berry connections of individual Bloch bands yields Berry phase along a closed path

Wilson line

- $W_{\mathbf{q}(0)\to\mathbf{q}(t)} = \mathcal{P} \exp\left(i \int_C A_{\mathbf{q}} d\mathbf{q}\right)$
- Bloch state (presence of lattice) $|\Phi^n_{f q}
 angle=e^{{
 m i}{f q}\cdot{f r}}|u^n_{f q}
 angle$
- Wilczek-Zee connection $\mathbf{A}^{n,n'}_{\mathbf{q}} = \mathrm{i} \langle u^n_{\mathbf{q}} | \nabla_{\mathbf{q}} | u^{n'}_{\mathbf{q}} \rangle$
- n = n': Berry connections of individual Bloch bands yields Berry phase along a closed path
- $n \neq n'$: inter-band Berry connections

Wilson line

- $W_{\mathbf{q}(0)\to\mathbf{q}(t)} = \mathcal{P} \exp\left(i \int_C A_{\mathbf{q}} d\mathbf{q}\right)$
- Bloch state (presence of lattice) $|\Phi^n_{f q}
 angle=e^{{
 m i}{f q}\cdot{f r}}|u^n_{f q}
 angle$
- Wilczek-Zee connection $\mathbf{A}^{n,n'}_{\mathbf{q}} = \mathrm{i} \langle u^n_{\mathbf{q}} | \nabla_{\mathbf{q}} | u^{n'}_{\mathbf{q}} \rangle$
- n = n': Berry connections of individual Bloch bands yields Berry phase along a closed path
- $n \neq n'$: inter-band Berry connections induce inter-band transition

total Hamiltonian:

• total Hamiltonian: $H = H_0 - \mathbf{F} \cdot \mathbf{r}$

- total Hamiltonian: $H = H_0 \mathbf{F} \cdot \mathbf{r}$
- lattice

- total Hamiltonian: $H = H_0 \mathbf{F} \cdot \mathbf{r}$
- lattice

$$H_0 = \sum_{\mathbf{q},n} E_{\mathbf{q}}^n |\Phi_{\mathbf{q}}^n\rangle \langle \Phi_{\mathbf{q}}^n |$$

- total Hamiltonian: $H = H_0 \mathbf{F} \cdot \mathbf{r}$
- lattice

$$H_0 = \sum_{\mathbf{q},n} E_{\mathbf{q}}^n |\Phi_{\mathbf{q}}^n\rangle \langle \Phi_{\mathbf{q}}^n |$$

constant force

- total Hamiltonian: $H = H_0 \mathbf{F} \cdot \mathbf{r}$
- lattice

$$H_0 = \sum_{\mathbf{q},n} E_{\mathbf{q}}^n |\Phi_{\mathbf{q}}^n\rangle \langle \Phi_{\mathbf{q}}^n |$$

constant force F

- total Hamiltonian: $H = H_0 \mathbf{F} \cdot \mathbf{r}$
- lattice

$$H_0 = \sum_{\mathbf{q},n} E_{\mathbf{q}}^n |\Phi_{\mathbf{q}}^n\rangle \langle \Phi_{\mathbf{q}}^n |$$

constant force F

initial state

- total Hamiltonian: $H = H_0 \mathbf{F} \cdot \mathbf{r}$
- lattice

$$H_0 = \sum_{\mathbf{q},n} E_{\mathbf{q}}^n |\Phi_{\mathbf{q}}^n\rangle \langle \Phi_{\mathbf{q}}^n |$$

constant force F

• initial state $|\psi(0)\rangle = \sum_n \alpha^n(0) |\Phi^n_{{f q}_0}\rangle$

- total Hamiltonian: $H = H_0 \mathbf{F} \cdot \mathbf{r}$
- lattice

$$H_0 = \sum_{\mathbf{q},n} E_{\mathbf{q}}^n |\Phi_{\mathbf{q}}^n\rangle \langle \Phi_{\mathbf{q}}^n |$$

constant force F

• initial state $|\psi(0)\rangle = \sum_n \alpha^n(0) |\Phi^n_{\mathbf{q}_0}\rangle$ $|\alpha^n(0)|^2$ gives the population in the n^{th} band at t=0

- total Hamiltonian: $H = H_0 \mathbf{F} \cdot \mathbf{r}$
- lattice

$$H_0 = \sum_{\mathbf{q},n} E_{\mathbf{q}}^n |\Phi_{\mathbf{q}}^n\rangle \langle \Phi_{\mathbf{q}}^n |$$

constant force F

- initial state $|\psi(0)\rangle = \sum_n \alpha^n(0) |\Phi_{\mathbf{q}_0}^n\rangle$ $|\alpha^n(0)|^2$ gives the population in the n^{th} band at t=0
- ansatz

- total Hamiltonian: $H = H_0 \mathbf{F} \cdot \mathbf{r}$
- lattice

$$H_0 = \sum_{\mathbf{q},n} E_{\mathbf{q}}^n |\Phi_{\mathbf{q}}^n\rangle \langle \Phi_{\mathbf{q}}^n |$$

constant force F

- initial state $|\psi(0)\rangle = \sum_n \alpha^n(0) |\Phi_{\mathbf{q}_0}^n\rangle$ $|\alpha^n(0)|^2$ gives the population in the n^{th} band at t=0
- ansatz

$$|\psi(t)\rangle = \sum_{n} \alpha^{n}(t) |\Phi_{\mathbf{q}(t)}^{n}\rangle$$

 $\mathbf{q}(t) = \mathbf{q}_{0} + \mathbf{F}t$

Wilson lines and Wilczek-Zee connections Example (two-band system)

Example (two-band system)

$$i\partial_t \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix} = \begin{pmatrix} E_{\mathbf{q}(t)}^1 - \xi_{\mathbf{q}(t)}^{1,1} & -\xi_{\mathbf{q}(t)}^{1,2} \\ -\xi_{\mathbf{q}(t)}^{2,1} & E_{\mathbf{q}(t)}^1 - \xi_{\mathbf{q}(t)}^{2,2} \end{pmatrix} \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix}$$

Example (two-band system)

$$i\partial_t \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix} = \begin{pmatrix} E_{\mathbf{q}(t)}^1 - \xi_{\mathbf{q}(t)}^{1,1} & -\xi_{\mathbf{q}(t)}^{1,2} \\ -\xi_{\mathbf{q}(t)}^{2,1} & E_{\mathbf{q}(t)}^1 - \xi_{\mathbf{q}(t)}^{2,2} \end{pmatrix} \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix}$$

where

Example (two-band system)

$$\mathbf{i}\partial_t \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix} = \begin{pmatrix} E^1_{\mathbf{q}(t)} - \xi^{1,1}_{\mathbf{q}(t)} & -\xi^{1,2}_{\mathbf{q}(t)} \\ -\xi^{2,1}_{\mathbf{q}(t)} & E^1_{\mathbf{q}(t)} - \xi^{2,2}_{\mathbf{q}(t)} \end{pmatrix} \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix}$$

where

$$\xi_{\mathbf{q}(t)}^{n,n'} = \mathbf{A}_{\mathbf{q}(t)}^{n,n'} \cdot \mathbf{F} = \mathbf{i} \langle u_{\mathbf{q}(t)}^n | \partial_t | u_{\mathbf{q}(t)}^{n'} \rangle$$

Example (two-band system)

$$i\partial_{t} \begin{pmatrix} \alpha^{1}(t) \\ \alpha^{2}(t) \end{pmatrix} = \begin{pmatrix} E_{\mathbf{q}(t)}^{1} - \xi_{\mathbf{q}(t)}^{1,1} & -\xi_{\mathbf{q}(t)}^{1,2} \\ -\xi_{\mathbf{q}(t)}^{2,1} & E_{\mathbf{q}(t)}^{1} - \xi_{\mathbf{q}(t)}^{2,2} \end{pmatrix} \begin{pmatrix} \alpha^{1}(t) \\ \alpha^{2}(t) \end{pmatrix}$$

where

$$\xi_{\mathbf{q}(t)}^{n,n'} = A_{\mathbf{q}(t)}^{n,n'} \cdot \mathbf{F} = i \langle u_{\mathbf{q}(t)}^n | \partial_t | u_{\mathbf{q}(t)}^{n'} \rangle$$

and thus

Example (two-band system)

$$i\partial_{t} \begin{pmatrix} \alpha^{1}(t) \\ \alpha^{2}(t) \end{pmatrix} = \begin{pmatrix} E_{\mathbf{q}(t)}^{1} - \xi_{\mathbf{q}(t)}^{1,1} & -\xi_{\mathbf{q}(t)}^{1,2} \\ -\xi_{\mathbf{q}(t)}^{2,1} & E_{\mathbf{q}(t)}^{1} - \xi_{\mathbf{q}(t)}^{2,2} \end{pmatrix} \begin{pmatrix} \alpha^{1}(t) \\ \alpha^{2}(t) \end{pmatrix}$$

where

$$\xi_{\mathbf{q}(t)}^{n,n'} = \mathbf{A}_{\mathbf{q}(t)}^{n,n'} \cdot \mathbf{F} = \mathrm{i} \langle u_{\mathbf{q}(t)}^n | \partial_t | u_{\mathbf{q}(t)}^{n'} \rangle$$

and thus

$$\mathbf{A}_{\mathbf{q}(t)}^{n,n'} = \mathbf{i} \langle u_{\mathbf{q}}^{n} | \nabla_{\mathbf{q}} | u_{\mathbf{q}}^{n'} \rangle \Big|_{\mathbf{q} = \mathbf{q}(t)}$$

$$\mathrm{i}\partial_t \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix} = \begin{pmatrix} -\xi_{\mathbf{q}(t)}^{1,1} & -\xi_{\mathbf{q}(t)}^{1,2} \\ -\xi_{\mathbf{q}(t)}^{2,1} & -\xi_{\mathbf{q}(t)}^{2,2} \end{pmatrix} \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix}$$

$$i\partial_t \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix} = \begin{pmatrix} -\xi_{\mathbf{q}(t)}^{1,1} & -\xi_{\mathbf{q}(t)}^{1,2} \\ -\xi_{\mathbf{q}(t)}^{2,1} & -\xi_{\mathbf{q}(t)}^{2,2} \end{pmatrix} \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix}$$

• Defining $\xi_{\mathbf{q}(t)}$ as the matrix with elements $\xi_{\mathbf{q}(t)}^{n,n'}$

$$i\partial_t \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix} = \begin{pmatrix} -\xi_{\mathbf{q}(t)}^{1,1} & -\xi_{\mathbf{q}(t)}^{1,2} \\ -\xi_{\mathbf{q}(t)}^{2,1} & -\xi_{\mathbf{q}(t)}^{2,2} \end{pmatrix} \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix}$$

- Defining $\xi_{\mathbf{q}(t)}$ as the matrix with elements $\xi_{\mathbf{q}(t)}^{n,n'}$
- state evolution

$$\mathrm{i}\partial_t \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix} = \begin{pmatrix} -\xi_{\mathbf{q}(t)}^{1,1} & -\xi_{\mathbf{q}(t)}^{1,2} \\ -\xi_{\mathbf{q}(t)}^{2,1} & -\xi_{\mathbf{q}(t)}^{2,2} \end{pmatrix} \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix}$$

- Defining $\xi_{\mathbf{q}(t)}$ as the matrix with elements $\xi_{\mathbf{q}(t)}^{n,n'}$
- state evolution

$$|\psi(t)\rangle = \mathcal{T} \exp(\mathrm{i} \int \xi_{\mathbf{q}(t)} dt) |\psi(0)\rangle \equiv \mathrm{W} |\psi(0)\rangle$$

$$\mathrm{i}\partial_t \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix} = \begin{pmatrix} -\xi_{\mathbf{q}(t)}^{1,1} & -\xi_{\mathbf{q}(t)}^{1,2} \\ -\xi_{\mathbf{q}(t)}^{2,1} & -\xi_{\mathbf{q}(t)}^{2,2} \end{pmatrix} \begin{pmatrix} \alpha^1(t) \\ \alpha^2(t) \end{pmatrix}$$

- Defining $\xi_{\mathbf{q}(t)}$ as the matrix with elements $\xi_{\mathbf{q}(t)}^{n,n'}$
- state evolution

$$|\psi(t)\rangle = \mathcal{T} \exp(\mathrm{i} \int \xi_{\mathbf{q}(t)} dt) |\psi(0)\rangle \equiv \mathrm{W} |\psi(0)\rangle$$

• thus $W_{\mathbf{q}(0)
ightarrow \mathbf{q}(t)} = \mathcal{P} \exp \left(\mathrm{i} \int_{C} \mathrm{A}_{\mathbf{q}} d\mathbf{q}
ight)$

Measuring Wilson lines

Matrix elements of Wilson line operator

Matrix elements of Wilson line operator

$$W_{\mathbf{Q} \to \mathbf{q}}^{m,n} = \langle \Phi_{\mathbf{q}}^m | e^{i(\mathbf{q} - \mathbf{Q}) \cdot \hat{\mathbf{r}}} | \Phi_{\mathbf{Q}}^n \rangle = \langle u_{\mathbf{q}}^m | u_{\mathbf{Q}}^n \rangle$$

Matrix elements of Wilson line operator

$$W_{\mathbf{Q}\to\mathbf{q}}^{m,n} = \langle \Phi_{\mathbf{q}}^m | e^{\mathrm{i}(\mathbf{q}-\mathbf{Q})\cdot\hat{\mathbf{r}}} | \Phi_{\mathbf{Q}}^n \rangle = \langle u_{\mathbf{q}}^m | u_{\mathbf{Q}}^n \rangle$$

• saturation value $W^{11}_{\Gamma \to \mathbf{q}} = \langle u^1_{\mathbf{q}} | u^1_{\Gamma} \rangle$ of population after transport measures overlap between $|u\rangle$

• cell-periodic Bloch state as pseudo-spin

- cell-periodic Bloch state as pseudo-spin
- \bullet cell-periodic Bloch functions at a fixed reference quasimomentum \boldsymbol{Q}

- cell-periodic Bloch state as pseudo-spin
- ullet cell-periodic Bloch functions at a fixed reference quasimomentum old Q

$$|1\rangle = |u_{\mathbf{Q}}^1\rangle \qquad |2\rangle = |u_{\mathbf{Q}}^2\rangle$$

Reconstructing band eigenstates

- cell-periodic Bloch state as pseudo-spin
- ullet cell-periodic Bloch functions at a fixed reference quasimomentum old Q

$$|1\rangle = |u_{\mathbf{Q}}^1\rangle \qquad |2\rangle = |u_{\mathbf{Q}}^2\rangle$$

• such that $|u_{\mathbf{q}}^1\rangle=\cos(\frac{\theta_{\mathbf{q}}}{2})|1\rangle+\sin(\frac{\theta_{\mathbf{q}}}{2})e^{\mathrm{i}\phi_{\mathbf{q}}}|2\rangle$

Reconstructing band eigenstates

- cell-periodic Bloch state as pseudo-spin
- ullet cell-periodic Bloch functions at a fixed reference quasimomentum old Q

$$|1\rangle = |u_{\mathbf{Q}}^1\rangle \qquad |2\rangle = |u_{\mathbf{Q}}^2\rangle$$

- such that $|u^1_{f q}
 angle=\cos(rac{ heta_{f q}}{2})|1
 angle+\sin(rac{ heta_{f q}}{2})e^{{
 m i}\phi_{f q}}|2
 angle$
- thus $(\theta_{\mathbf{q}}, \phi_{\mathbf{q}})$ characterize a state

Reconstructing band eigenstates

- cell-periodic Bloch state as pseudo-spin
- \bullet cell-periodic Bloch functions at a fixed reference quasimomentum \boldsymbol{Q}

$$|1\rangle = |u_{\mathbf{Q}}^1\rangle \qquad |2\rangle = |u_{\mathbf{Q}}^2\rangle$$

- such that $|u^1_{f q}
 angle=\cos(rac{ heta_{f q}}{2})|1
 angle+\sin(rac{ heta_{f q}}{2})e^{{
 m i}\phi_{f q}}|2
 angle$
- thus $(\theta_{\mathbf{q}}, \phi_{\mathbf{q}})$ characterize a state
- Throughout this work basis states are chosen at reference point $\mathbf{Q} = \Gamma$

Measuring mixing angle $\theta_{\mathbf{q}}$

Measuring mixing angle $\theta_{\mathbf{q}}$

Measuring mixing angle $\theta_{\mathbf{q}}$

Measuring relative phase $\phi_{\mathbf{q}}$

Measuring relative phase $\phi_{\mathbf{q}}$

Measuring relative phase $\phi_{\mathbf{q}}$

• AB-site degeneracy (blue) — π jump

- AB-site degeneracy (blue) π jump
- AB-site offset (red) by elliptically-polarized lattice beam
 continuous varying phase

- AB-site degeneracy (blue) π jump
- AB-site offset (red) by elliptically-polarized lattice beam
 continuous varying phase
- 3-fold symmetry of system (no matter whether offset)

Determining Wilson line eigenvaluse

 $W_{\boldsymbol{q} \rightarrow \boldsymbol{q} + \boldsymbol{G}}$

$$W_{\textbf{q} \rightarrow \textbf{q} + \textbf{G}}$$

• $\hat{A} \Longrightarrow \hat{A}_{U(1)} + \hat{A}_{SU(2)}$

$$W_{\textbf{q} \rightarrow \textbf{q} + \textbf{G}}$$

- $\hat{A} \Longrightarrow \hat{A}_{U(1)} + \hat{A}_{SU(2)}$
- the U(2) Wilson line $\Longrightarrow U(1)$ global phase multiplied by a SU(2) matrix.

$$W_{\textbf{q} \rightarrow \textbf{q} + \textbf{G}}$$

- $\hat{A} \Longrightarrow \hat{A}_{U(1)} + \hat{A}_{SU(2)}$
- the U(2) Wilson line $\Longrightarrow U(1)$ global phase multiplied by a SU(2) matrix.
- SU(2) matrix eigenvalues $e^{\pm \mathrm{i} \xi}$

$$W_{q \to q + G}$$

- $\hat{A} \Longrightarrow \hat{A}_{U(1)} + \hat{A}_{SU(2)}$
- the U(2) Wilson line $\Longrightarrow U(1)$ global phase multiplied by a SU(2) matrix.
- SU(2) matrix eigenvalues $e^{\pm \mathrm{i} \xi}$
- experimental data analysis gives: $\xi = 1.03(2)\pi/3$
- theoretical expected value: $\xi = \pi/3$

Mapping dispersion relation

Mapping dispersion relation

by varying the reference quasimomentum ${f Q}$

Reference

- Immanuel Bloch et al., An Aharonov-Bohm interferometer for determining Bloch band topology, Science **347**, 288-292 (2015).
- Immanuel Bloch et al., Experimental reconstruction of Wilson lines in Bloch bands, arXiv:1509.02185v2 [cond-mat.quant-gas].
- Immanuel Bloch *el al.*, *Many-body physics with ultracold gases*, Rev. Mod. Phys. **80**, 885-964 (2008).
- J. Zak, *Berrys phase for energy bands in solids*, Phys. Rev. Lett. **62**, 2747 (1989).

Thank you!