الجمهورية الجزانرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي دورة: جوان 2012

الشعبة : علوم تجريبية

اختيار في مادة: الرياضيات ونصف

على المترشح أن يختار أحد الموضوعين التانيين: الموضوع الأول

التمرين الأوك: (05 نقاط)

 $u_{n+1} = \sqrt{2u_n + 3}: n$ نعتبر المتنالبة العددية $u_n = 1$ المعرقة بحدّها الأولى ا $u_n = 1$ و من أجل كل عدد طبيعي المعرقة بحدّها الأولى ا

نذكن h الدالة المعرفة على المجال $-\frac{3}{2}$: $+\infty$ كما يلي: $-\frac{3}{2}$

 (Δ) و (C) تمثیلها البیانی و $h(x) = \sqrt{2x + 3}$ المستقیم ذو معادله y = x فی المستوی المنسوب إلی معلم متعامد و متجانس (انظر الشکل المقابل).

أً) – أعد رسم الشكل المقابل على ورقة الإجابة ثم مثل على ــ

 u_1 عدور الفواصل الحدود u_1 ، u_2

(دون حسابها و موضحا خطوط الإنشاء).

ب) - ضع تخمينا حول انجاه تعيّر (الله و تقاربها.

 $0 < u_{\pi} < 3 : n$ بر هن بالثر اجع أنّه من أجل كل عدد طبيعي $n = 0 < u_{\pi}$

 (u_{σ}) أًى – لارس اتجاه تغيّر المنتالية (1)

، $\lim_{n \to +\infty} u_n$ بستنج أن المنتائية (u_n) منقاربة، ثم الحسب - (ب

الثمرين الثاني: (04 نقاط)

$$z=rac{3i(z+2i)}{z-2+3i}$$
 : نعتبر في مجموعة الأعداد المركبة $\mathbb C$ المعادلة ذات المجهول z التالية: $(1$

 $\{z \neq 2 - 3i\}$

- حل في 🖰 هذه المعانلة.

ينسب المستوي العركب إلى المعلم المتعامد و المتجانس O(n,v) ، $A \in B$ نقطنان لاحقتاهما على A = A + C

 $z_B=1-i\sqrt{5}$ و $z_A=1+i\sqrt{5}$: حيث $z_B=1-i\sqrt{5}$ و $z_A=1+i\sqrt{5}$

مُحقَقَ أَنْ A_{-2} B_{-3} مُتنتميان إلى دائرة مركزها O يطلب تعيين نصف قطرها.

 $z'=rac{3i(z+2i)}{z-2+3i}$ حيث Z'=2 النقطة M' النقطة M' النقطة M' النقطة M' من المستري الحقتها Z'=2+3i

. [CD] محور القطعة (Δ) محور (Δ) محور القطعة (Δ) محور القطعة (Δ) محور القطعة (Δ) محور القطعة (Δ)

-DM , CM عبّر عن المسافة OM' بدلالة المسافتين CM , CM

ب استنتج أنّه من أجل كل نقطة M من (A) فإنّ النقطة M تنتمي إلى دائرة (γ) بطلب نعبين مركزها و نصف قطرها. تحقق أن E بتنمي إلى (γ) .

التمرين الثالث: (04 نقاط)

الفضاء منسوب إلى المعلم المتعلمة و المتجانس $\left(D\,;\overline{t}\,,\overline{f}\,,\overline{k}\,
ight)$ نعتبر المستوي $B\left(2;2;-1
ight)$ ذا المعادلة: $C\left(-1;3;1
ight)$ ، $B\left(2;2;-1
ight)$ ، $A\left(1;-2;5
ight)$ ، و النقط $C\left(-1;3;1
ight)$ ، $C\left(2;2;-1
ight)$

أ - تحقق أنّ النقط A ، B و C ليست في استقامية . $^{\circ}$

(P) بين أنّ المستوي (ABC) هو

(AB) جد تمثيلا وسيطيا للمستقيم ((AB)

AB] أ - اكتب معادلة ديكارتية للمستوي المحوري (Q) الفطعة [AB].

$$D\left(-1;-2;rac{1}{4}
ight)$$
 ب $-$ تحقق أنّ النقطة $D\left(-1;-2;rac{1}{4}
ight)$ تتتمي إلى المستوي

AB , المسافة بين النقطة D و المستقيم +

التمرين الرابع: (07 نقاط)

 $-f(x)=x+5+6\ln\left(rac{x}{x-1}
ight)$: كما يلي: $f(x)=x+5+6\ln\left(rac{x}{x-1}
ight)$ كما يلي: $f(x)=x+5+6\ln\left(rac{x}{x-1}
ight)$ كما يلين أن المعلم المتعامد والمتجانس $f(x)=x+5+6\ln\left(rac{x}{x-1}
ight)$ كمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $f(x)=x+5+6\ln\left(rac{x}{x-1}
ight)$

ا احسب النتيجة هندسيا. ا $\lim_{x \longrightarrow 0} f(x)$ انتيجة هندسيا.

 $\lim_{x \to +\infty} f(x) \quad +\infty = -4$

$$f'(x) = \frac{x^2 - x - 6}{x(x - 1)}$$
:] $\infty; 0$ من آجل کل عدد حقیقی x من x من آجل کل عدد حقیقی (2

استنتج اتجاه تغير الدالة أل : ثم شكّل جنول تغير اتها.

. y=x+5 بجرار (C_f) الذي معادلة له: y=x+5 هو مستقيم مقارب مائل للمنحنى (Δ) بجرار (3) بجرار (Δ) بالنسبة للمستقيم (Δ) .

-1بيّن أنَ المعادلة $f\left(x
ight)=0$ تقبل حلّين lpha و eta حيث eta حيث $f\left(x
ight)=0$ و -3 المعادلة (4

ر (Λ) أنشئ المنحنى (C_f) و المستقيم (Λ) .

$$A = 2\frac{5}{2} + 6\ln\left(\frac{3}{4}\right)$$
 و $A = 1\frac{5}{4} + 6\ln\left(\frac{3}{4}\right)$ و الفطنتين الفطنتين $A = 1\frac{3}{4} + 6\ln\left(\frac{3}{4}\right)$

 $y = \frac{1}{2}x + \frac{7}{2} + 6\ln\frac{3}{4}$ بيّن أن $y = \frac{1}{2}$ بيّن أن $y = \frac{1}{2}$ بيّن أن بيّن أن يكار نية المستقيم

ب بيّن أنّ المستقيم (AB) يمس المنحنى (C_f) في نقطة M_0 بطلب تعيين إحداثيتيها،

$$g\left(x
ight)=rac{x^{2}}{2}+5x+6x\ln\!\left(rac{x}{x-1}
ight)=6\ln\left(1-x
ight)$$
لنكن g الدالة المعرقة على $g\left(x
ight)=c;0$ كما يلي: $g\left(x
ight)=c;0$ كما يلي: أن g دالة أصلية للدالة f على المجال $g\left(x
ight)=c;0$.

الموضوع الثاتي

التمرين الأول: (04.5 نقاط)

$$u_{n+1}=3-\sqrt{u_n-3}$$
 : n و من أجل كل عدد طبيعي $u_0=\frac{13}{4}$ و من أجل كل عدد طبيعي المثنائية العددية المعرّفة بحذها الأول $u_0=\frac{13}{4}$

 $3 < u_n < 4$: n ير هن بالتراجع أنَّه من أجلُ كل عدد طبيعي n: 1

. استنتج أن
$$(u_n)$$
 متزايدة تماما. $u_{n+1} = u_n = \dfrac{-u_n^2 - 7u_n - 12}{\sqrt{u_n^2 - 3} + u_n^2 - 3}$ متزايدة تماما. (2) بين أنه من أجل كل عدد طبيعي

برزر لماذا $\left(u_{_{B}}
ight)$ متقاربة. $\left(3\right)$

$$v_n=\ln (u_n-3)$$
 :ب \mathbb{N} بالمنتالية المعرقة على الم (v_n) (4

) بر هن أنّ
$$(v_n)$$
 منتالية هندسية أساسها $rac{1}{2}$ ، ثم احسب حدّها الأول.

ب) اکتب کلاً من
$$v_n$$
 و u_n بدلالة n ثم احسب v_n من کلاً من v_n

$$P_n = (u_0 + 3)(u_1 + 3)(u_2 + 3) imes \dots imes (u_n + 3): n$$
 نضيع من أجل كل عدد طبيعي $n = (u_0 + 3)(u_1 + 3)(u_2 + 3) imes (v_0 + 3)$

$$\lim_{n \to +\infty} P_n = \frac{1}{16}$$
 اکتب P_n بدلاله n هم یک بین آن P_n بند

التمرين الثاني: (04 نقاط)

، $A\left(-1;0;1
ight)$ في الفضاء المنسوب إلى المعلم المتعامد و المتجانس $\left(O\,;\overline{i}\,,\overline{f}\,,\overline{k}\,
ight)$ ، نعتبر النقط

 $.C\left(1;-1;0\right)\ni B\left(2;1;0\right)$

بيّن أنْ النقط A ، B ، A أَعَيْن مستوياً. (1

ABC) بيّن أنّ 0 - 3 - 3 + 5z - 3 هي معادلة ديكاريتية للمستوري (2x-y+5z-3)

$$H\left(rac{13}{15}; -rac{13}{30}; rac{1}{6}
ight)$$
 و $D\left(2; -1; 3
ight)$ عضاء حيث: $D\left(3; -1; 3
ight)$ و $D\left(3; -1; 3
ight)$

-(ABC) أ- تحقّق أنّ النقطة D لا تنتمي إلى المستوي (ABC).

ABC) بيّن أنّ النقطة H هي المسقط العمودي للنقطة D على المستوي

-= استنتج أن المستويين (ADH) و (ABC) متعامدان، ثم جد تمثيلا وسيطبا لتقاطعهما.

التمرين الثائث: (04,5 نقاط)

$$P(z) = z^3 - 12z^2 + 48z - 72$$
: حيث: $P(z)$ المدود المتغير المركب عبر حيث: $P(z)$

أ تحقّق أنّ 6 هو جنر لكثير الحدود (P(z).

 $P(z)=(z-6)\Big(z^2+\alpha z+\beta\Big)$ ت حد العددين الحقيقيين lpha و eta بحيث من أجل كل عدد مركب z=-1 المعادلة P(z)=0 .

2) المستوي المركب منسوب إلى المعلم المتعامد و المتجانس (0:u,v) . C:B:A . (0:u,v) المستوي المركب لواحقها على النرتيب $z_a=6$. $z_A=3+i\sqrt{3}$. $z_A=6$. المستوي المركب لواحقها على النرتيب $z_A=6$. و المتعامد من المتحدد من المتحدد المتحدد

ب اكتب العدد المركب $\frac{z_A-z_B}{2}$ على الشكل الجبري، ثم على الشكل الأسي. z_A-z_C جــاستنج طبيعة المثلث ABC.

 $\frac{\pi}{2}$ ليكن S التشابه المباشر الذي مركزه C ، نسبته $\sqrt{3}$ و زاوينه $\sqrt{3}$. أ حد الكتابة المركبة للنشابه $\sqrt{3}$.

ب عين z_A لاحقة النقطة Δ صنورة النقطة Δ بالتشاب z_A

ج. بين أن النقط A '. B . A في استقامية.

التمرين الرابع: (07 نقاط)

- $\cdot g\left(x^{\cdot}
 ight)$ ائكن g الدالة المعرقة على $\mathbb R$ كما بلي: g الدالة المعرقة على g
 - $\lim_{x \to \infty} g(x)$ و $\lim_{x \to \infty} g(x)$ احسب (1
 - ادرس انجاه نغير الدالة ج، ثم شكل جدول نغير انها.
- $a=1;+\infty$ المعادلة $a=1;+\infty$ تقبل حلاً وحبدا a=1 على المجال $a=1;+\infty$. $a=1;+\infty$ بين أن المعادلة $a=1;+\infty$ المرة $a=1;+\infty$ على المرة $a=1;+\infty$ على المرة $a=1;+\infty$
- $-f\left(x^{-1}\right)=(x-1)e^{x}-x-1$: يعتبر الدالة f المعرفة على المجال $f\left(x^{-1}\right)=0$ كما يلي: $f\left(x^{-1}\right)=0$ المتعانى أن المعترفي المنسوب إلى المعلم المتعامد و المتعانس $f\left(C_{f}\right)=0$.
 - $\lim_{x \to \infty} f(x)$ حصب (1
- f'(x) = -g(x) فَكُن f' مَشْنَقَةَ الدَّالَةَ f بِيِّن أَنَّهُ مِن أَجِلُ كُل عَدَدَ حَفَيْقِي f مِن f'(x) = -g(x) فإن f'(x) = -g(x) استنتج إشارة f'(x) على المجال f'(x) = -g(x) ثم شكُل جدول تغيّرات الدالة f'(x).
 - . $(10^{-2}$ بين أن $f(\alpha) = -\left(\frac{\alpha^2+1}{\alpha}\right)$ ، ثم استنتج حصر النعدد $f(\alpha) = -\left(\frac{\alpha^2+1}{\alpha}\right)$ نام النتائج إلى $f(\alpha) = -\left(\frac{\alpha^2+1}{\alpha}\right)$
- $-\infty$ بيئن أنّ المستقيم (Δ) ذا المعادلة y=-x-1 هو مستقيم مقارب مائل للمنحنى (Δ) بجوار -1 +1 بيئ أنّ المستقيم المنحنى (C_f) بالنسبة إلى (Δ) .
 - $x_1,5< x_2<1,6$ و $x_1<-1,5< x_2$ و x_1 ميث أنْ المعابلة $f\left(x
 ight)=0$ تقبل حلُين x_1 و x_2 ميث x_1 ميث أنْ المعابلة $f\left(C_f
 ight)$ و $\left(C_f
 ight)$ و $\left(C_f
 ight)$
 - $h(x) (ax + b)e^x$ كنكن h الدالة المعرفة على $\mathbb R$ كما بلي: $h(x) (ax + b)e^x$ كما بلي: h(x) a عين العددين الحقيقيين h و h بحيث تكون h دالة أصلية للدالة h على h على h . h المنتتج دالة أصلية للدالة h على h .