A7: AUTOMATA AND COMPUTABILITY

"Ambiguity is something that I really respond to. I like the complexity of it." - Robert Redford

Course: CS 5006 Summer 2018

Due: 29 June 2018, 5pm

OBJECTIVES

RELEVANT READING

· Online reading

· Lecture notes

After you complete this assignment, you will be comfortable with:

- Deterministic Finite Automata
- Regular Expressions
- Regular Languages

EXERCISES

· Turing Machine computation

Problem 1: 1 (4 points)

For the finite automaton (DFA) below, answer the questions.

- (a) (1 point) What's the start state? q1
- (b) (1 point) What's the set of accept states? q2
- (c) (1 point) What sequence of states do the machine go through on input aabb. q1, q2, q3, q1, q1
- (d) (1 point) Does the machine accept aabb? no

Problem 2: 2 (7 points)

Give the formal description of the machine M in the previous problem.

$$Q = \{q1, q2, q3\} \\ \Sigma = \{a, b\} \\ \text{States} | a | b \\ \hline q1 | q2 | q1 \\ q2 | q3 | q3 \\ q3 | q2 | q1$$

q1 is the state state.

 $F = \{q2\}$ is the accept state.

Problem 3: 3 (5

The formal description of DFA M is $\{q_1, q_2, q_3, q_4, q_5\}$, $\{u, d\}$, δ , q_3 , $\{q_3\}$, where δ is specified below:

	ur	d	
$q_{\scriptscriptstyle m l}$	$q_{\scriptscriptstyle 1}$	q_2	
q_2	$q_{\scriptscriptstyle m l}$	q_3	
q_3	q_2	q_4	
q_{4}	q_3	q_5	
q_5	q_4	q_5	

Draw the state diagram for M.

Problem 4: 4 (6 points)

Give the state diagram of the DFA recognizing the following

languages. (a) (3 points) $\{w/w\}$ begins with a 1 and ends with a 0 $\}$

(b) (3 points) $\{w/w\}$ has length at least 3 and third symbol is a 0 $\}$

Problem 5: 5 (4		
Recall that a regular expression is defined thus: R is a regular expression if R is:		
• a for some a in the alphabet Σ		
• E (language containing a single empty string)		
• Ø (language that contains no strings)		
• $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions • $(R_1 \cup R_2) = \{x/x \in R_1 \text{ or } x \in R_2\}$		
• Union • $(R_1 \circ R_2)$ where R_1 and R_2 are regular expressions		
• Concatenation • $(R_1 \circ R_2) = \{xy x \in R_1 \text{ and } y \in R_2\}$		
• (R_f) where R_i is a regular expression • $(R_f) = \{x_1, x_2, \dots x_k k \ge 0 \text{ and each } x_i \in R_i \}$		
An example:		
$0*10* = \{w/w \text{ has exactly a single } 1\}$		
$\Sigma *1\Sigma * = \{w/w \text{ has at least one } 1\}$		
Give a regular expression generating the language below. The alphabet is $\Sigma = \{0, 1\}$		
(a) (2 points) $\{w/w\}$ begins with a 1 and ends with a 0}		
$1\Sigma^*0$		
(b) (2 points) {w/w has length at least 3 and third symbol is a 0}		
010*		

Problem 6: 6 (6 points)

For each of the following languages, give two strings that are members, and two strings that are not members-4 strings for each part. Assume the alphabet $\Sigma = \{a, b\}$ in all parts.

(a) (2 points) a*b*

aabb - member aaaabbb - member baabaa – not member aaaaaa – not member

(b) (2 points) a (ba) *b

ababababab - member ababab - member aa – not member ab – not member

(c) (2 points) (aaa) *

aaaaaaaaa - member aaa - member ababb – not member aabb – not member

Problem 7: 7 (5 points)

For the Turing Machine provided below, give the sequence of configurations that M_2 enters when started on the input string "oo".

$$X \to R$$
 When we see $0 \to U$, R on the

edge between q and q, that means when in state q and the head reads 0, the machine goes to state q2, writes U, and moves head to the right. That is, $\delta(q, 0) = (q, U, R)$.

SUBMISSION DETAILS

Things to submit:

- Submit your assignment in your Github repo.
 - The written parts of this assignment as a .pdf named "CS5006_[lastname]_A7.pdf". For example, my file would be named "CS5006_Slaughter_A6.pdf". (There should be no brackets around your name).
 - Make sure your name is in the document as well (e.g., written on the top of the first page).
 - Make sure your assignment is in the A5 folder in your Github repo.

HELPFUL HINTS

- Ask clarification questions on Piazza.
- Remember, your write-up should convince graders and instructors that you are providing your own work and should showcase your understanding.
- Use the resources page on the course website for supplemental materials.
- In general, problems will be graded both on whether you are taking the right approach and whether you got the right answer. So, show your work and explain your thinking.