M110C Quiz#4 Spring 2022.

Rubric.

Show up to the meeting: 4pts

problems1,2,3: 1 pt, 2pts, 3pts respectively.

Total possible: 10 pts

1. Compute the limit, if possible. If it's not possible, explain why the limit doesn't exist.

a)
$$\lim_{(x,y)\to(5,1)} \frac{x-y-1}{\sqrt{x-y}-1}$$
 b) $\lim_{(x,y)\to(0,0)} \frac{4xy}{x^2+y^2}$

b)
$$\lim_{(x,y)\to(0,0)} \frac{4xy}{x^2 + y^2}$$

2.

$$f(x, y) = \cos(x)\cos(2y).$$

- a) Using the tabulated data to the right, approximate the partial derivatives $f_{v}(1,3)$ and $f_{v}(1,3)$.
- b) Compute those partial derivatives exactly.

f(x,y)=cos(x)cos(2y)	у							
x		0.7	0.8	0.9	1	1.1	1.2	1.3
	2.7	0.49	0.44	0.39	0.34	0.29	0.23	0.17
	2.8	0.59	0.54	0.48	0.42	0.35	0.28	0.21
	2.9	0.68	0.62	0.55	0.48	0.40	0.32	0.24
	3	0.73	0.67	0.60	0.52	0.44	0.35	0.26
	3.1	0.76	0.69	0.62	0.54	0.45	0.36	0.27
	3.2	0.76	0.69	0.62	0.54	0.45	0.36	0.27
	3.3	0.73	0.66	0.59	0.51	0.43	0.34	0.25

3.
$$f(x,y) = x^2y - xy^2$$
, $(a,b) = (1,3)$

- a) Compute the partial derivatives $f_x(x, y)$ and $f_y(x, y)$.
- b) Compute the gradient $\nabla f(a,b)$.
- c) Find the directional derivative of f at the point (a, b) in the direction of the vector

$$\mathbf{u} = < 3, 4 > .$$

- d) In which direction does the function increase the fastest at the point (a, b)?
- e) What is the magnitude of the largest rate of increase at the point (a, b)?
- f) What is the equation of the tangent plane to f at the point (a, b)?
- g) What is the equation of the 2nd order Taylor Polynomial approximation to f at (a, b)?

4. This problem is optional extra credit.

The blue graph on the right is a level surface of

$$w(x, y, z) = \sqrt{x} + \sqrt{y} + \sqrt{z}.$$

There is a tangent plane to this surface at the point A, which intersects the x,y and z axes at the points E,F and G, respectively.

Claim: The sum of the distances from the points E,F and G to the origin (i.e. the sum of their non-zero coordinates) is constant over all points A.

Prove this claim, and find that constant.

