Activité 3.2 – Spectres d'émission

Objectifs:

- ▶ Comprendre la notion de spectre d'émission.
- Analyser le spectre d'émission d'une lampe.

Contexte : Il existe différentes sources lumineuse, comme le Soleil, les lampadaires, les néons, les écrans de téléphones, etc.

→ Comment caractériser la lumière émise par une source?

Comp.	Items	D	\mathbf{C}	В	A
VAL	Comparer des spectres avec des valeurs de références.				

Document 1 - Spectre d'émission

La lumière est une onde électromagnétique, qui peut avoir plusieurs longueurs d'ondes. Nos yeux captent certaines longueurs d'ondes et y associent une couleur : c'est le domaine visible.

La donnée de toutes les longueurs d'ondes présentes dans une source lumineuse s'appelle le **spectre d'émission**. Le spectre dans le domaine visible est représenté de la manière suivante :

Les spectre d'émissions continus

Document 2 - Spectre continu

Un spectre d'émission continu présente une suite de raies colorées. Un spectre continu prend la forme d'une bande colorée unique.

Document 3 – Lampe à incandescence

Une lampe à incandescence est composé d'un petit filament chauffé par le passage d'un courant électrique. En augmentant la tension d'alimentation d'une lampe à incandescence, on augmente la température du filament.

1	 6	≀u∈	Н€	es (a 11	пе	re	nc	ces	5 1	eı	ma	ar	d.	u€	Z-	-V	ου	1S	q	uа	an	a	l	a.	la:	m:	ре	е	st	a	11:	m	en	te	ee	eı	1 () (et	е	n	1	2	V	:					
	 • •		• •	• •	• •	• •		• •	• •		•	• •	• •	٠		٠.	•	• •		• •	•	• •	• •	•	• •		٠.		•		• •	٠.		•		• •	• •	٠.	•	• •			• •		•	• •	• •	• •	•	٠.	

classe contiennent de l'hydrogène, du néon ou du mercure.