Tesis

Empleados promedio mensuales en Argentina, rubro: Enseñanza

(Personas con empleo asalariado registrado en el sector privado, según rama de actividad de la ocupación principal. Con estacionalidad. Total país. En miles. INDEC)

fecha	empleados		
0 2009-01-01	309.7		
1 2009-02-01	309.7		
2 2009-03-01	316.6	fecha	empleados
185 2024-06-0	1 426.2		
186 2024-07-0	1 424.4		
187 2024-08-0	1 427.0		

Empleados promedio en Rosario en la industria de enseñanza en el sector privado (en miles)

Tiene estacionalidad y tendencia

Hay para muchos mas rubros

Solo tengo datos hasta agosto

Inicialmente habia tomado datos solo hasta febrero para pronosticar 6 meses, pero al tener solo 2 observaciones en 2024 afectaba mucho la variancia de este año. Además, la serie es muy larga, asi que voy a trabajar con 6 años nomás (2018-2023)

No parece haber necesidad de transformar la variable

Text(2020-03-01 00:00:00, 3.1988977331307737e+19, 'Párametro de\n Box y Cox: 8.02')

Párametro de Box y Cox: 8.02

Finalmnente decido no usar la transformacion

Diferencio estacionalmente la serie:

diferencio la serie en la parte estacionaria

Parece ser estacionaria pero con grandes outlayers

La serie parece tener una componente MA tanto en la parte estacional como en la estacionaria

Seleccion manual

Dep. V Model: Date: Time: Sample		empleados ARIMA(0, 1, 1)x(0, 1, 1, 12) Mon, 06 Jan 2025 10:58:45 0 - 72		12) Log AIC BIC	No. Observations: Log Likelihood AIC BIC HQIC			
Covaria	ance Type:		opg					
		\mathbf{coef}	std err	${f z}$	$\mathbf{P} \! > \mathbf{z} $	[0.025]	0.975]	_
	ma.L1	0.3880	0.133	2.926	0.003	0.128	0.648	_
	ma.S.L12	-0.9983	49.836	-0.020	0.984	-98.676	96.679	
	$\mathbf{sigma2}$	2.6811	133.424	0.020	0.984	-258.826	264.188	
	Ljung-Bo	x (L1) (Q): ().32 J	arque-Be	era (JB):	20.26	_
	Prob(Q):		().57 P	Prob(JB)	:	0.00	
	Heteroskedasticity (H):		y (H): ().34 S	kew:		-0.61	
	Prob(H)	(two-side	ed): ().02 K	Kurtosis:		5.60	
	Prob(H)	(two-side	ed): ().02 K	Curtosis:		5.60	

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Seleccion automatica

Dep. Var	riable:	CADIMAS	y 7(1 1 0)	/o. 1 [1]		o. Obser		72
Model:		SARIMAX			*	g Likelil	nood	-118.318
Date:		Mo	on, 06 Jan	2025	\mathbf{A}	[C		248.636
Time:			10:59:0	1	Bl	\mathbf{C}		261.101
Sample:			0		$\mathbf{H}^{\mathbf{c}}$	QIC		253.502
_			- 72			-		
Covarian	ce Type:		opg					
		coef	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]	
	ar.L1	0.2680	0.148	1.807	0.071	-0.023	0.559	
	ar.S.L12	-0.9769	0.141	-6.945	0.000	-1.253	-0.701	
	ar.S.L24	-0.8867	0.103	-8.603	0.000	-1.089	-0.685	
	ar.S.L36	-0.8524	0.075	-11.433	0.000	-0.999	-0.706	
	ma.S.L12	0.4374	0.441	0.993	0.321	-0.426	1.301	
	sigma2	1.4344	0.573	2.505	0.012	0.312	2.557	
	Ljung-B	ox (L1) (0	Q): (0.00 Ja r	que-Ber	a (JB):	4.20	
	$\operatorname{Prob}(\operatorname{Q})$:	().99 Pro	ob(JB):		0.12	
	Heterosl	kedasticity	y (H):).82 Sk e	ew:		-0.06	

Kurtosis:

4.30

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

0.66

Modelos seleccionados:

• $SARIMA(0,1,1)(0,1,1)_{12}$

Con
$$q = 0.3888$$
 y $Q = -0.9983$ | $AIC = 253.003$

Prob(H) (two-sided):

Es admisible

• $SARIMA(1,1,0)(3,1,1)_{12}$

Con
$$p=0.268,\,P_1=-0.9769,\,P_2=-0.8867,\,P_3=-0.8524,\,Q=-0.4374\mid AIC=248.636$$

No es admisible

Probamos el modelo $SARIMA(1,1,0)(2,1,1)_{12}$

Dep. Var	riable:		empleade	os	No	o. Observa	ations:	72
Model:		ARIMA(1, 1, 0)x(2, 1, [1], 12)		12) Lo	g Likeliho	-120.004		
Date:		Mo	on, 06 Jan	2025	\mathbf{AI}	\mathbf{C}	250.009	
Time:			10:59:03	3	$_{ m BI}$	\mathbf{C}		260.397
Sample:			0		HO	QIC		254.064
			- 72					
Covarian	ce Type:		opg					
		\mathbf{coef}	std err	Z	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]	
-	ar.L1	0.4025	0.136	2.966	0.003	0.137	0.668	
ä	ar.S.L12	-0.1533	0.306	-0.501	0.617	-0.753	0.447	
ä	ar.S.L24	-0.3886	0.219	-1.771	0.077	-0.819	0.041	
]	ma.S.L12	-0.9970	76.572	-0.013	0.990	-151.076	149.082	
\$	$\mathbf{sigma2}$	1.9548	148.980	0.013	0.990	-290.041	293.951	
	Ljung-Box (L1) (Q):		Q):	0.01 Jarque-Bera (JB):			9.18	_
	$\operatorname{Prob}(\mathbf{Q})$	Q):		0.94 Prob(JB) :		:	0.01	
	Heterosk	skedasticity (H):		0.51 Skew:		-0.35		
	Prob(H)	(two-sid	ed):	0.14 K	Curtosis:		4.80	

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
 - $SARIMA(1,1,0)(2,1,1)_{12}$

Con
$$p=0.4025,\,P_1=-0.1533,\,P_2=-0.3886,\,Q=-0.997$$
 | $AIC=250$

Es admisible

Tambien voy a probar el mismo modelo anterior, pero con la componente ma en lugar de ar en la parte estacionaria, ya que es lo que se ve en los graficos de autocorrelacion

Dep. Variable:	empleados	No. Observations:	72
Model:	ARIMA(0, 1, 1)x(2, 1, 1, 12)	Log Likelihood	-120.204
Date:	Mon,06Jan2025	\mathbf{AIC}	250.407
Time:	10:59:04	BIC	260.795
Sample:	0	HQIC	254.462
	- 72		
Covariance Type:	opg		

	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]
ma.L1	0.3989	0.148	2.697	0.007	0.109	0.689
ar.S.L12	-0.1333	0.273	-0.489	0.625	-0.668	0.401
ar.S.L24	-0.4221	0.195	-2.162	0.031	-0.805	-0.040
ma.S.L12	-0.9970	73.656	-0.014	0.989	-145.360	143.366
$\mathbf{sigma2}$	1.9402	142.297	0.014	0.989	-276.956	280.836
Ljung-Bo	x (L1) (Q): (0.04 J a	arque-B	era (JB):	9.92
Prob(Q):		(0.84 P	rob(JB)	:	0.01
Heterosk	edasticit	y (H): (0.47 S	kew:		-0.43
$\operatorname{Prob}(H)$	(two-sid	ed): (0.10 K	urtosis:		4.81

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

•
$$SARIMA(0,1,1)(2,1,1)_{12}$$

Con
$$q=0.3989,\,P_1=-0.1333,\,P_2=-0.4221,\,Q=-0.997\mid AIC=250.4$$

Es admisible

Comprobacion de supuestos

Hago la comprobacion de supuestos unicamente con los modelos admisibles

$$SARIMA(0,1,1)(0,1,1)_{12}$$

Text(0.5, 1.0, '')

 $SARIMA(1,1,0)(2,1,1)_{12} \\$

Text(0.5, 1.0, '')


```
SARIMA(0,1,1)(2,1,1)_{12}
```

Text(0.5, 1.0, '')

Comentarios en general:

Para todos los modelos se rechaza la normalidad de los residuos incluso sacando los 2 outlayers. La independencia de los residuos tambien se cumple para todos los modelos.

Pronosticos

```
# Pronostico Time gpt
pro_timeGPT = nixtla_client.forecast(
    df = empleo, h = 8,time_col= "fecha",
    target_col= "empleados",
    level=[90], finetune_steps=40, finetune_loss= "mape")
```

	fecha	${ t TimeGPT}$	TimeGPT-hi-90	TimeGPT-lo-90			
0	2024-01-01	401.02795	405.66992	396.38600			
1	2024-02-01	401.19037	405.07877	397.30197			
2	2024-03-01	416.33817	422.32013	410.35620	fecha	TimeGPT	TimeGPT-hi-90
5	2024-06-01	412.63390	430.57077	394.69705			
6	2024-07-01	419.42688	430.42750	408.42627			

Leyenda:

- $SARIMA(0,1,1)(0,1,1)_{12}$: Rojo
- $SARIMA(1,1,0)(2,1,1)_{12}$: Azul
- $SARIMA(0,1,1)(2,1,1)_{12}$: Violeta
- TimeGPT: Verde

El area marcada denota el intervalo de confianza del 90%

	Modelo	MAPE
0	\$SARIMA(0,1,1)(0,1,1)_{12}\$	0.637710
1	$SARIMA(1,1,0)(2,1,1)_{12}$	0.520113
2	$SARIMA(0,1,1)(2,1,1)_{12}$	0.516931
3	Time GPT	1.322634

Dado que los pronosticos con time gpt fueron muy malos voy a tratar con distintos parametros. Muy seguramente falla mucho por el sobreajuste, ya quue se hicieron 40 pasos de tuneo de parametros.

Distintos pronosticos con time gpt

```
# Pruebo las opciones por defecto
time_gpt1 = nixtla_client.forecast(
    df = empleo, h = 8,time_col= "fecha",
   target_col= "empleados",
   freq = 'M',
   level=[90])
# Pruebo usar 5 pasos de ajuste
time_gpt2 = nixtla_client.forecast(
    df = empleo, h = 8,time_col= "fecha",
   target_col= "empleados",
   level=[90], finetune_steps=5)
# Pruebo usar la funcion de perdida mape
time_gpt3 = nixtla_client.forecast(
    df = empleo, h = 8,time_col= "fecha",
   target_col= "empleados",
   level=[90], finetune_loss= "mape")
# Pruebo usar la funcion de perdida mape con 5 pasos de ajuste
time_gpt4 = nixtla_client.forecast(
    df = empleo, h = 8,time_col= "fecha",
   target_col= "empleados",
    level=[90], finetune_loss= "mape", finetune_steps=10)
```


	Modelo	MAPE
0	Time GPT conf 1	0.922305
1	Time GPT conf 2	1.195043
2	Time GPT conf 3	0.922305
3	Time GPT conf 4	0.895898

Los pronosticos mejoraron considerablemente pero siguen siendo peores que los metodos clasicos por ahora, hay que seguir viendo que problemas pueden tener y como solucionarlo.