Algoritmos e Estruturas de Dados I Vetor

Prof. Ivre Marjorie

Introdução

- Suponhamos que é necessário armazenar um conjunto de elementos semelhantes numa estrutura de dados.
- Por exemplo, é necessário armazenar a altura de um certo número de pessoas a fim de calcular a sua média.
- È possível armazenar essas alturas em diversas variáveis, ou em um vetor.
- Ou então é possível armazenar essas alturas em um vetor.
- Um <u>array</u> é um vetor ou uma matriz que permite guardar um certo conjunto de variáveis, todas com o mesmo tipo.

Introdução

▶ Um vetor é uma variável, composta, homogênea,

unidimensional

Sua representação é feita em apenas uma dimensão: uma linha ou uma coluna

Armazena mais de um valor em uma mesma variável

Os valores devem ser de um mesmo tipo, por exemplo, int, float, double ou char

Relembrando...

Variável espaço na memória capaz de armazenar um valor

Relembrando...

Variável espaço na memória capaz de armazenar um valor

Vetor

- Esse é o objetivo do vetor
 - conseguir armazenar mais de um valor em um espaço na memória
- Podemos fazer uma analogia com as divisórias que colocamos em uma gaveta para organizá-la

Vetor - Representação

Considere que o vetor abaixo possui quatro posições e seu nome é nota:

Vetor - Representação

Vetor - Exemplo

int nota[4];

Vetor de inteiros nota[0], nota[1], nota[2], nota[3]

Obs.: tamanho m => indice 0 a (m-1)

Vetor - Declaração em C

Declarando uma variável do tipo vetor

Tipo de Dados nome[tamanho_do_vetor];

- ▶ Tipo de Dados: indica do tipo de cada elemento do vetor
- nome: indica o nome da coleção de variáveis (seguir mesmas regras para um nome de variável qualquer)
- tamanho_do_vetor: indica o tamanho do vetor de elementos, onde o menor valor é 1.

Vetor - Declaração em C

Tipo de Dados nome[tamanho_do_vetor];

Exemplos:

```
int idade[20];
double peso[10];
char nome[80];
```


Vetor - Índices

- É necessário conseguir acessar cada uma das posições do vetor, para isso, são usados os índices
 - Começam sempre em ZERO e terminam em tamanho do vetor menos UM

Vetor - Acesso a valores

Para acessar os elementos do vetor, deve utilizar o valor do índice desejado, juntamente com o nome da variável, por exemplo, peso[2] está associado ao terceiro elemento do vetor pois o primeiro elemento está relacionado ao índice **0**

Vetor - Atribuição de valores

- Atribui o valor 3 ao primeiro elemento do vetor => vet[0] = 3;
- Inicializando um vetor na declaração int valores[10]= { 20, 12, 2, 3, 6, 1, 0, 4, 7, 15 };

Vetor - Preenchendo

- Preencher ou carregar um vetor, significa armazenar um valor em <u>todas</u> as posições do vetor
- Para isso, é necessário usar uma estrutura de repetição
 - Para percorrer todo o vetor
 - e a mais simples e indicada, é a estrutura for

```
for (i = 0; i < tamanho do vetor; i++)
{
    scanf("% tipo de dados", &nome_vetor[ i ]);
}</pre>
```


Vetor - Preenchendo

A variável i começa com **ZERO**, pois o índice do vetor começa com zero

```
for (i = 0; i < tamanho do vetor; i++)
{
    scanf("% tipo de dados", &nome_vetor[ i ]);
}</pre>
```

A variável **i** é usada para identificar o índice do vetor

Vetor - Mostrando

- Mostrar um vetor, significa mostrar na tela <u>todas</u> as posições do vetor
- Para isso, é necessário usar uma estrutura de repetição
 - Para percorrer todo o vetor
 - e a mais simples e indicada, é a estrutura **for**

```
for (i = 0; i < tamanho do vetor; i++)
{
    printf ("% tipo de dados", nome_vetor[ i ]+" | ");
}</pre>
```


Vetor - Mostrando

A variável i começa com **ZERO**, pois o índice do vetor começa com zero

```
for (i = 0; i < tamanho do vetor; i++)
{
    printf ("% tipo de dados", nome_vetor[ i ]+ " | ");
}</pre>
```

A variável **i** é usada para identificar o índice do vetor

Exemplo

Faça um programa em C para calcular a média aritmética das notas das provas de 5 alunos. Use vetor.

Obs.: o índice do vetor vai de ZERO até 4 (tamanho -1) O índice representa a posição no qual será armazenado o valor

início Fluxograma i = 1 notas[i] false true i <= 5 soma = soma + media = soma/5 notas[i] media fim

```
Código - C
int main()
   double notas[5], soma = 0, media;
   int i;
   for(i=0; i<5; i++)
      printf("Digite a nota do aluno %d ", (i+1));
      scanf("%lf", &notas[i]);
      soma = soma + notas[i];
   system("cls");
   printf("\n As notas dos alunos sao:");
   for(i=0; i<5; i++)
      printf("\n Aluno %d: %.2lf", (i+1), notas[i]);
   media=soma/5;
   printf("\n\nA media das notas e: %.2lf", media);
   return 0;
```


Exemplo (Resultado – Tela)

```
As notas dos alunos sao:
Aluno 1: 2.00
Aluno 2: 5.00
Aluno 3: 6.00
Aluno 4: 3.00
Aluno 5: 4.00

A media das notas e: 4.00
Process returned 0 (0x0) execution time : 4.136 s
Press any key to continue.
```


Exercício 1

Exercício I - Faça um programa que leia um vetor de 100 posições de números inteiros e, em seguida, mostre somente os números positivos.

- Exercício 2 Em uma cidade, sabe-se que, de janeiro a fevereiro de 2012, não ocorreu temperatura inferior a 15°C, nem superior a 40°C. Faça um programa que armazene as temperaturas de cada dia em um vetor (de 30 posições), calcule e imprima:
 - A menor e a maior temperatura ocorrida
 - A temperatura média
 - O número de dias nos quais a temperatura foi inferior a temperatura média

Referência Bibliográfica

 ASCENCIO, Ana Fernanda Gomes e CAMPOS, Edilene A. Veneruchi. Fundamentos da Programação de Computadores: algoritmos, Pascal, C/C++ e Java - 3ª edição. São Paulo: Pearson Prentice Hall, 2012. Capítulo 6.

