Nanyang Technological University

SPMS/DIVISION OF MATHEMATICAL SCIENCES

2015/16 Semester 1

MH1810 Mathematics I

Tutorial 12

1. Find the values of p for which the integral converges

(a)
$$\int_{1}^{2} \frac{1}{x (\ln x)^{p}} dx$$

(b)
$$\int_{2}^{\infty} \frac{1}{x (\ln x)^{p}} dx$$
Solution By letting $u = \ln x$, we have

$$\int \frac{1}{x(\ln x)^p} dx = \int \frac{1}{u^p} \frac{du}{dx} dx$$

$$= \int \frac{1}{u^p} du$$

$$= \begin{cases} \frac{u^{-p+1}}{1-p} & \text{if } p \neq 1\\ \ln|u| & \text{if } p = 1 \end{cases}$$

$$= \begin{cases} \frac{(\ln|x|)^{1-p}}{1-p} & \text{if } p \neq 1\\ \ln|\ln x| & \text{if } p = 1 \end{cases}.$$

(a)

$$\int_{1}^{2} \frac{1}{x (\ln x)^{p}} dx = \lim_{t \to 1^{-1}} \int_{t}^{2} \frac{1}{x (\ln x)^{p}} dx$$

$$= \lim_{t \to 1^{-1}} \begin{cases} \frac{(\ln 2)^{1-p}}{1-p} - \frac{(\ln t)^{1-p}}{1-p} & \text{if } p \neq 1 \\ \ln (\ln 2) - \ln |\ln t| & \text{if } p = 1 \end{cases}$$

$$= \lim_{t \to 1^{-1}} \begin{cases} \frac{(\ln 2)^{1-p}}{1-p} - \frac{(\ln t)^{1-p}}{1-p} & \text{if } p < 1 \\ \frac{(\ln 2)^{1-p}}{1-p} - \frac{(\ln t)^{1-p}}{1-p} & \text{if } p > 1 \\ \ln (\ln 2) - \ln |\ln t| & \text{if } p = 1 \end{cases}$$

$$= \lim_{t \to 1^{-1}} \begin{cases} \frac{(\ln 2)^{1-p}}{1-p} & \text{if } p < 1 \\ \text{diverge} & \text{if } p > 1 \\ \text{diverge} & \text{if } p > 1 \\ \text{diverge} & \text{if } p = 1 \end{cases}$$

The integral converges when p < 1 and diverges when $p \ge 1$.

$$\int_{2}^{\infty} \frac{1}{x (\ln x)^{p}} dx = \lim_{t \to \infty} \int_{2}^{t} \frac{1}{x (\ln x)^{p}} dx$$

$$= \lim_{t \to \infty} \begin{cases} \frac{(\ln t)^{1-p}}{1-p} - \frac{(\ln 2)^{1-p}}{1-p} & \text{if } p < 1 \\ \frac{(\ln t)^{1-p}}{1-p} - \frac{(\ln 2)^{1-p}}{1-p} & \text{if } p > 1 \\ \ln |\ln t| - \ln (\ln 2) & \text{if } p = 1 \end{cases}$$

$$= \lim_{t \to \infty} \begin{cases} \text{diverge} & \text{if } p < 1 \\ -\frac{(\ln 2)^{1-p}}{1-p} & \text{if } p > 1 \\ \text{diverge} & \text{if } p = 1 \end{cases}$$

The integral converges when p > 1 and diverges when $p \le 1$.

2. Estimate each of the following definite integrals using the Trapezoidal Rule with n=4.

(a)
$$\int_{1}^{2} x \ dx$$
 (b) $\int_{1}^{3} (2x - 1) \ dx$

Solution

Trapezoidal Rule with n = 4.

$$\int_{a}^{b} f(x) dx \approx T_4 = \frac{\Delta x}{2} (y_0 + 2y_1 + 2y_2 + 2y_3 + y_4).$$

(a)
$$[a,b] = [1,2]$$
, then $x_0 = 1, x_1 = 5/4, x_2 = 6/4, x_3 = 7/4, x_4 = 2$ and $\Delta x = \frac{1}{4}$.

n	x_n	y_n
0	1	1
1	1.25	1.25
2	1.5	1.5
3	1.75	1.75
4	2	2

Then

$$\int_{1}^{2} x \, dx \approx T_{4} = \frac{\Delta x}{2} \left(y_{0} + 2y_{1} + 2y_{2} + 2y_{3} + y_{4} \right)$$
$$= \frac{1/4}{2} \left(1 + 2 \left(1.25 \right) + 2 \left(1.5 \right) + 2 \left(1.75 \right) + 2 \right)$$
$$= \frac{1}{8} \left(1 + 2.5 + 3 + 3.5 + 2 \right) = \frac{12}{8} = \frac{3}{2}.$$

(b) [a,b] = [1,3], then $x_0 = 1, x_1 = 1.5, x_2 = 2, x_3 = 2.5, x_4 = 3$ and $\Delta x = \frac{1}{2}$.

n	x_n	y_n
0	1	1
1	1.5	2
2	2	3
3	2.5	4
4	3	5

Then

$$\int_{1}^{3} (2x - 1) dx \approx T_{4} = \frac{\Delta x}{2} (y_{0} + 2y_{1} + 2y_{2} + 2y_{3} + y_{4})$$
$$= \frac{1/2}{2} (1 + 2(2) + 2(3) + 2(4) + 5)$$
$$= \frac{1}{4} (1 + 4 + 6 + 8 + 5) = \frac{24}{4} = 6.$$

3. Estimate each of the following definite integrals using Simpson's Rule with n=4.

(a)
$$\int_{-1}^{1} (x^2 + 1) dx$$
 (b) $\int_{-2}^{0} (x^2 - 1) dx$

Solution

Simpson's Rule with n = 4.

$$S_4 = \frac{h}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + y_4).$$

(a)
$$[a, b] = [-1, 1]$$
, then $x_0 = -1, x_1 = -1/2, x_2 = 0, x_3 = 1/2, x_4 = 1$ and $h = \frac{1}{2}$.

\overline{n}	x_n	y_n
0	-1	2
1	-1/2	1.25
2	0	1
3	1/2	1.25
4	1	2

Then

$$\int_{-1}^{1} (x^2 + 1) dx \approx S_4 = \frac{h}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$$
$$= \frac{1/2}{3} (2 + 4(1.25) + 2(1) + 4(1.25) + 2)$$
$$= \frac{1}{6} (16) = \frac{8}{3}.$$

(b) [a,b] = [-2,0], then $x_0 = -2, x_1 = -1.5, x_2 = -1, x_3 = -0.5, x_4 = 0$ and $\Delta x = \frac{1}{2}$.

$$\begin{array}{c|cccc} n & x_n & y_n \\ \hline 0 & -2 & 3 \\ 1 & -1.5 & 1.25 \\ 2 & -1 & 0 \\ 3 & -0.5 & -0.75 \\ 4 & 0 & -1 \\ \hline \end{array}$$

$$\int_{-2}^{0} (x^{2} - 1) dx \approx S_{4} = \frac{h}{3} (y_{0} + 4y_{1} + 2y_{2} + 4y_{3} + y_{4})$$

$$= \frac{1/2}{3} (3 + 4(1.25) + 2(0) + 4(-0.75) + (-1))$$

$$= \frac{2}{3}.$$

4. Prove that the volume of the cone with height h and radius r is $\frac{1}{3}\pi r^2 h$.

Solution

Consider
$$\frac{y}{h} + \frac{x}{r} = 1$$
, i.e., $y = h\left(1 - \frac{x}{r}\right)$.

Then the solid formed by revolving the area bounded the line $y = h\left(1 - \frac{x}{r}\right)$ and the x and y axes is a cone height h and radius r.

Cylindrical Shell Method

Height of a typical shell = $h\left(1 - \frac{x}{r}\right)$,

Circumference of a typical shell = $2\pi x$

Volume of a typical shell = $2\pi x h \left(1 - \frac{x}{r}\right) \delta x$.

Therefore

$$V = \int_0^r 2\pi x h \left(1 - \frac{x}{r}\right) dx$$
$$= 2\pi h \int_0^r \left(x - \frac{x^2}{r}\right) dx$$
$$= 2\pi h \left[\frac{r^2}{2} - \frac{r^3}{3r}\right]$$
$$= \frac{1}{3}\pi r^2 h$$

- 5. (a) The equation of a circle with center at the origin and radius r is described by the equation $x^2 + y^2 = r^2$. Use integration to prove that the area of the circle is πr^2 .
 - (b) When the region bounded by the x-axis and the curve $y = \sqrt{r^2 x^2}$ for $-r \le x \le r$ is rotated about the x-axis, a sphere with radius r is obtained. Use integration to prove that the volume of the sphere is given by $\frac{4}{3}\pi r^3$.

Solution

(a) Equation of circle: $x^2 + y^2 = r^2$,

The circle is enclosed by $y = \sqrt{r^2 - x^2}$ and $y = -\sqrt{r^2 - x^2}$.

The area of a typical strip: $A(x) = \left[\sqrt{r^2 - x^2} - \left(-\sqrt{r^2 - x^2}\right)\right] \delta x = 2\sqrt{r^2 - x^2} \delta x$.

Therefore the area of the circle is

$$A = \int_{-r}^{r} 2\sqrt{r^2 - x^2} dx.$$

To evaluate $\int 2\sqrt{r^2-x^2}dx$, let $x=r\sin\theta$. Then $\frac{dx}{d\theta}=r\cos\theta$. So $1=r\cos\theta\frac{d\theta}{dx}$

$$\int 2\sqrt{r^2 - x^2} dx = \int 2\sqrt{r^2 - r^2 \sin^2 \theta} dx$$

$$= \int 2r\sqrt{1 - \sin^2 \theta} r \cos \theta \frac{d\theta}{dx} dx$$

$$= \int 2r^2 \cos^2 \theta d\theta$$

$$= 2r^2 \int \frac{\cos 2\theta + 1}{2} d\theta$$

$$= r^2 \left[\frac{\sin 2\theta}{2} + \theta \right]$$

When $x = r = r \sin \theta$, $\sin \theta = 1$ and thus $\theta = \frac{\pi}{2}$. When x = -r, $r \sin \theta = -r$, thus $\theta = -\frac{\pi}{2}$. Hence,

$$A = \int_{-r}^{r} 2\sqrt{r^2 - x^2} dx = r^2 \left[\frac{\sin 2\theta}{2} + \theta \right]_{-\pi/2}^{\pi/2} = \pi r^2.$$

(b) A typical cross section is a disc of radius $\sqrt{r^2 - x^2}$.

Therefore the volume of a typical cross section is $\pi \left(\sqrt{r^2-x^2}\right)^2 \delta x$.

Hence volume of the solid is

$$V = \int_{-r}^{r} \pi \left(\sqrt{r^2 - x^2}\right)^2 dx$$
$$= \pi \int_{-r}^{r} \left(r^2 - x^2\right) dx$$
$$= \pi \left[r^2 x - \frac{x^3}{3}\right]_{-r}^{r}$$
$$= \frac{4}{3} \pi r^3.$$

6. Use integration by substitution to prove the following.

(a)
$$\int \tan x dx = \ln|\sec x| + C$$

(b)
$$\int \sec x dx = \ln|\sec x + \tan x| + C$$

(c)
$$\int \sin^3 x \cos^8 x dx = -\frac{\cos^9 x}{9} + \frac{\cos^{11}}{11} + C$$

Solution

(a)
$$\int \tan x dx = \int \frac{\sin x}{\cos x} dx.$$

Let $u = \cos x$. Then $\frac{du}{dx} = -\sin x$. Therefore

$$\int \frac{\sin x}{\cos x} dx = \int \frac{-\frac{du}{dx}}{\cos x} dx$$

$$= \int -\frac{1}{u} du$$

$$= -\ln|u| + c$$

$$= -\ln|\cos x| + c$$

$$= \ln|\sec x| + c.$$

(b)

$$\int \sec x dx = \int \sec x \frac{\sec x + \tan x}{\sec x + \tan x} dx$$
$$= \int \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} dx.$$

Let $u = \sec x + \tan x$. The $\frac{du}{dx} = \sec x \tan x + \sec^2 x$. Therefore

$$\int \sec x dx = \int \frac{du/dx}{\sec x + \tan x} dx$$
$$= \int \frac{1}{u} du$$
$$= \ln|u| + C$$
$$= \ln|\sec x + \tan x| + C$$

(c)

$$\int \sin^3 x \cos^8 x dx = \int \sin x \sin^2 x \cos^8 x dx$$
$$= \int \sin x \left(1 - \cos^2 x\right) \cos^8 x dx.$$

Let $u = \cos x$. Then $\frac{du}{dx} = -\sin x$. Then

$$\int \sin^3 x \cos^8 x dx = \int \sin x (1 - \cos^2 x) \cos^8 x dx$$

$$= \int -\frac{du}{dx} (1 - u^2) u^8 dx$$

$$= -\int (u^8 - u^{10}) du$$

$$= -\frac{u^9}{8} + \frac{u^{11}}{11} + C$$

$$= -\frac{\cos^9 x}{9} + \frac{\cos^{11} x}{11} + C.$$