Определение.

- (1) 0 и предметная переменная есть термы.
- (2) Если r и s термы, то r', (r+s) и $(r\cdot s)$ mepмы.
- (3) Других термов нет.

Например, в языке Ar являются термами слова: $0, x_1, 0', (0' + x_2)$.

Определение. Если r и s — термы, то r = s — amoмapнas формула в языке Ar.

Понятие " ϕ ормула в языке Ar" определяется индуктивно, аналогично понятию "формула" в формальном языке первого порядка.

Примерами формул в языке Ar могут служить следующие слова:

$$(x_1 = x_2 \rightarrow (x_1 = x_3 \rightarrow x_2 = x_3)); (x_1 + x_2') = (x_1 + x_2)'; (x_1 = x_2 \rightarrow x_1' = x_2'); (x_1 \cdot 0) = 0; \neg (0 = x_1'); (x_1 \cdot x_2') = ((x_1 \cdot x_2) + x_1).$$

Cтандартной моделью языка Ar) является система неотрицательных целых чисел. При этом ' интерпретируется как операция нахождения следующего числа, + — как сложение, \cdot — как умножение, = — как равенство.

Понятие многосортного языка. Некоторые математические структуры таковы, что их задают не на одном, а на нескольких множествах. Например, математическая структура геометрии Евклида включает в себя множество точек, множество прямых и множество плоскостей пространства. Два множества (поле и множество векторов) необходимы для задания линейного пространства.

Для изучения таких (многоосновных) математических структур иногда используют многосортные языки — языки, у которых множества индивидных символов алфавита (переменных и констант) разбиты на непересекающиеся классы подмножеств, называемые сортами. Предикатные и функциональные символы многосортного языка таковы, что каждый из них предназначен для применения к наборам переменных определенных заранее сортов. Любой "обычный" язык первого порядка (из тех, которые изучались до сих пор) можно считать частным видом многосортного языка первого порядка — языком, у которого один сорт предметных переменных.

Язык Vect

Язык LangVect. Рассмотрим двухсортный язык Vect (по [Колмогоров, Драгалин, 1982, с. 81]), который используется для описания свойств векторных пространств.

Определение. В алфавит языка Vect входят:

- (1) индивидные константы: 0_s и 0_v (нуль-скаляр и нуль-вектор соответственно);
- (2) функциональные константы: одноместные: $-_s$ и $-_v$; двухместные: $+_s$, \cdot_s , $+_v$, \cdot ;
 - (3) предикатная константа: = ;
 - (4) предметные переменные для скаляров: $\lambda_0, \lambda_1, \lambda_2, \ldots$;
 - (5) предметные переменные для векторов: $u_0, u_1, u_2, \ldots;$
- (6) логические символы и вспомогательные символы такие же, как в стандартном языке первого порядка.

Определение (cкалярного терма или s-терма).

- (1) 0_s есть s-терм;
- (2) предметная переменная для скаляров есть s-терм;
- (3) если t_1 и t_2 есть s-термы, то $-_st_1$, $(t_1+_st_2)$, $t_1\cdot_st_2$ есть s-термы.

Определение (векторного терма или v-терма).

- (1) 0_v есть v-терм;
- (2) предметная переменная для векторов есть v-терм;
- (3) если w_1 и w_2 есть v-термы, то $-_v w_1, \ (w_1 +_v w_2)$ есть v-терм;
- (4) если t есть s-терм, а w есть v-терм, то $t \cdot w$ есть v-терм;

Определение (атомарной формулы).

Если t_1 и t_2 есть *s*-термы, а w_1 и w_2 есть *v*-термы, то $t_1 = t_2$ и $w_1 = w_2$ есть *атомарные формулы*.

Понятие формула в языке **Vect** определяется индуктивно, аналогично понятию "формула" в стандартном языке первого порядка.

Стандартной моделью языка **Vect** называется тройка $\langle P, V, \mathcal{I} \rangle$, где P — поле, V — векторное (линейное) пространство над полем P, \mathcal{I} — интерпретация сигнатуры языка такая, что $\mathcal{I}(0_s)$ есть нуль поля, $\mathcal{I}(0_v)$ есть нуль пространства, $\mathcal{I}(-_s)$, $\mathcal{I}(-_v)$ есть операция взятия противоположного элемента в поле и в пространстве соответственно, $\mathcal{I}(+_s)$, $\mathcal{I}(\cdot_s)$ — операция сложении и умножения в поле, $\mathcal{I}(+_v)$, $\mathcal{I}(\cdot)$ — операции сложения в пространстве и умножения элемента поля на элемент пространства соответственно.

Упражения для самостоятельного решения

1. Для каждого из следующих условий напишите на языке *Ord* формулу, истинную на алгебраической системе $\langle M, \{=, \leqslant\} \rangle$ сигнатуры языка LangOrd, если и только если:

- (a) $\langle M, \{=, \leqslant\} \rangle$ упорядоченное множество;
- (б) $\langle M, \{=, \leqslant\} \rangle$ линейно упорядоченное множество.

2. Пусть $\langle M, \{=, \leqslant\} \rangle$ — алгебраическая система, в сигнатуру которой входят двухместные предикатные символы $=, \leqslant$. Пусть $\langle M, \{=, \leqslant\} \rangle$ — упорядоченное множество относительно предиката с именем \leqslant . Налишите замкнутую формулу языка Ord, которая была бы истинна на алгебраической системе $\langle M, \{=, \leqslant\} \rangle$, если и только если:

- (a) в $\langle M, \{=, \leq\} \rangle$ имеется наименьший элемент;
- (б) в $\langle M, \{=, \leqslant\} \rangle$ нет наибольшего элемента;
- (в) для каждых двух элементов в $\langle M, \{=, \leqslant\} \rangle$ имеется их точная нижняя граница.

3. Рассмотрим упорядоченные множества натуральных чисел с обычной упорядоченностью \leq . Приведите пример замкнутой формулы языка Ord, которая истинна на упорядоченном множестве $\{0,1\}$ и ложна на упорядоченном множестве $\{0,1,2\}$.

4. Рассмотрим упорядоченные по делимости множества натуральных чисел $O_1 = \{1, 2, 3, 4\}$ и $O_2 = \{1, 2, 3, 6\}$ (считается, что $x \leqslant y$, если и только если y : x). Приведите пример замкнутой формулы языка Ord, которая истинна на одном из упорядоченных множеств O_1 , O_2 и не является истинной на другом.

Определение.

Алгебраические системы $\langle M_1, \sigma \rangle$, $\langle M_2, \sigma \rangle$, фиксированной сигнатуры σ называются элементарно эквивалентными, если каждая замкнутая формула сигнатуры σ , истинна на одной из данных систем тогда и только тогда, когда она истинна на другой.

5. Рассмотрим упорядоченные по делимости множества натуральных чисел O_1 и O_2 . Докажите, что O_1 и O_2 не являются элементарно эквивалентными, если:

- (a) $O_1 = \{1, 2, 4, 6, 12\}, O_2 = \{1, 2, 3, 4, 12\};$
- (6) $O_1 = \{1, 2, 3, 4, 12\}, O_2 = \{1, 2, 3, 5, 30\};$
- (B) $O_1 = \{1, 2, 4, 6, 12\}, O_2 = \{1, 2, 3, 5, 30\}.$

6. Рассмотрим упорядоченное множество натуральных чисел O_1 и упорядоченное множество O_2 , носителем которого служит множество \mathbb{N} . Первое упорядочено обычным отношением "меньше или равно" (\leqslant), второе — по делимости натуральных чисел. Докажите, что O_1 и O_2 не элементарно эквивалентны.

7. Покажите, что упорядоченные множества \mathbb{Z} и \mathbb{N} с их обычными упорядоченностями \leq , не элементарно эквивалентны.

8*. Покажите, что упорядоченные множества \mathbb{Z} и \mathbb{Q} с их обычными упорядоченностями \leqslant не элементарно эквивалентны.

9. Напишите формулу A языка Ar с одной свободной переменной x_0 , в которую не входят константы и функциональные символы, кроме ', и принимающую значение H в стандартной модели в том и только том случае, если значение переменной x_0

- (а) есть 0; (б) есть 1; (в) есть 2;
- (г) принадлежит множеству $\{0,1\}$; (д) не превосходит числа 2.

10. Верно ли, что формула $\forall \lambda_0 \, \forall x_0 (\lambda_0 \cdot x_0 = 0_v \to (\lambda_0 = 0_s \lor x_0 = 0_v))$ истинна на всякой стандартной модели языка языка **Vect**?

11. На всякой ли стандартной модели языка **Vect** выполнима формула $\forall \lambda_1 \, \forall \lambda_2 \, \forall \lambda_3 \, (((\lambda_1 \cdot u_1 +_v \lambda_2 \cdot u_2) +_v \lambda_3 \cdot u_3) = 0_v \to ((\lambda_1 = 0_s \& \lambda_2 = 0_s)\&\lambda_3 = 0_s))?$

12. Напишите формулу языка Vect со свободными индивидными векторными переменными u_1, u_2, u_3 которая принимала бы значение II в стандартной интепретации этого языка, если и только если вектор, являющийся значением переменной u_1 линейно выражается через значения переменных u_2 и u_3 .

13. Напишите формулу языка **Vect** со свободными индивидными векторными переменными u_1, u_2, u_3 которая принимала бы значение H в стандартной интепретации этого языка, если и только если значения переменных u_1, u_2, u_3 линейно зависимы.

14. Рассмотрим алфавит двухсортного языка Plan первого порядка, сигнатура которого состоит из двухместных предикатных констант \in и = . Язык Plan имеет два сорта предметных переменных, а именно: A, B, C, A_0 ... и a, b, c, a_0 ... Первое вхождение переменной в атомную формулу с предикатной константой \in должно быть вхождением переменной первого сорта, а второе — переменной второго сорта. Каждая атомарная формула с предикатной константой = ("равно") содержит переменные только одного сорта. Сформулируйте определение формулы этого языка.