Raiz quadrada

Uma das operações matemáticas que conhecemos é a raiz quadrada. A raiz quadrada, definida para um número positivo x, é tal que se $\sqrt{x} = y$ então $y^2 = x$.

Sempre que precisamos calcular a raiz quadrada de x fazemos uso de uma calculadora ou saímos chutando números cujo quadrado mais se aproxima de x. Um dos algoritmos mais conhecidos para cálculo da raiz quadrada baseia-se justamente nesta segunda abordagem. Esse algoritmo é um caso particular do $m\acute{e}todo\ da\ bisecção$, que é um algoritmo iterativo originalmente proposto para encontrar zeros de funções. De fato, encontrar a raiz quadrada de um número equivale a encontrar zero de uma função, mas aí já é outra conversa.

O método da bisecção para o cálculo da raiz quadrada baseia-se no seguinte teorema:

Se $x = a \times b$, então \sqrt{x} está entre $a \in b$.

Neste sentido, para calcular a raiz quadrada de um número positivo x, a ideia do algoritmo da bisecção é a seguinte:

- 1. Encontre dois números consecutivos a_0 e b_0 tais que $a_0^2 < x$ e $b_0^2 > x$.
- 2. Tome $a_1 = a_0$. O objetivo é encontrar b_1 tal que $x = a_1 \times b_1$. Logo,

$$b_1 = \frac{x}{a_1}.$$

3. A ideia seguinte é fazer com que a_i diminua e aproxime-se cada vez mais de b_i , para $i=2,3,\ldots$ Por isso, calcule

 $a_i = \frac{a_{i-1} + b_{i-1}}{2}$ $b_i = \frac{x}{a_i}.$

e

O passo acima é repetido até que $|a_i - b_i| \le \epsilon$, sendo ϵ um número positivo bem pequeno.

Deste modo, como vale que $x = a_i \times b_i$, para todo i = 1, 2, ..., quando a_i estiver suficientemente próximo de b_i (suficientemente próximo quer dizer que o valor absoluto da diferença entre eles é menor ou igual a ϵ), então os dois vão ser suficientemente iguais e representarão a raiz quadrada de x.

Por exemplo, apliquemos o algoritmo para calcular $\sqrt{130}$ com precisão 10^{-12} .

- Os dois inteiros $a_0 = 11$ e $b_0 = 12$ são tais que o seus quadrados são, respectivamente, menor e maior que 130: $11 \times 11 = 121 < 130 < 144 = 12 \times 12$. Logo, é possível afirmar que a raiz de 130 é um número real maior que 11 e menor que 12. Passemos ao refinamento das casas decimais.
- Tomemos $a_1=a_0=11$. Queremos b_1 tal que $a_1\times b_1=130$. Logo,

$$b_1 = \frac{130}{a_1} = 11.818181\dots$$

• Daí, seguimos um processo iterativo.

2.
$$a_2 = \frac{a_1 + b_1}{2} = 11.409090909090909$$
 e $b_2 = \frac{130}{a_2} = 11.394422310757$, $|a_2 - b_2| \approx 0.01467$.

3.
$$a_3 = \frac{a_2 + b_2}{2} = 11.4017566099239 \text{ e } b_3 = \frac{130}{a_3} = 11.4017518920593, |a_3 - b_3| \approx 4.71786 \times 10^{-6}.$$

$$4. \ \ a_4 = \frac{a_3 + b_3}{2} = 11.4017542509916 \ \ e \ b_4 = \frac{130}{a_4} = 11.4017542509911, \ |a_4 - b_4| \approx 4.84945 \times 10^{-13}.$$

Como a diferença entre a_4 e b_4 é inferior a 10^{-12} , paramos e assumimos que a raiz quadrada de 130 é a_4 (ou b_4).

Tarefa

Sua tarefa é implementar o método da bisecção para calcular a raiz quadrada de um número inteiro x > 1. Seu método da bisecção deve iterar até que o valor absoluto da diferença entre a_i e b_i seja menor ou igual a $\epsilon = 10^{-E}$ ou até que exceda-se um máximo de 100 iterações.

Entrada

A entrada é composta por dois números inteiros positivos x > 1 e $1 \le E \le 16$.

Saída

Caso x ou E não atendam aos limites estipulados, deve-se exibir a mensagem:

Entradas invalidas.

Caso o método da bisecção exceder o limite de 100 iterações, deve-se exibir a mensagem:

Nao foi possivel calcular sqrt(x).

substituindo x pelo número lido.

Caso o método da bisecção convirja e consiga calcular a_i e b_i que atendam o critério proposto, deve-se exibir a mensagem

A raiz quadrada de x eh y, calculada em i iteracoes.

substituindo x pelo primeiro número lido, y pelo a_i (ou b_i) calculado pelo método da bisecção e i pela quantidade de iterações.

Exemplo de Entrada

78

6

Exemplo de Saída

A raiz quadrada de 78 eh 8.8317608669559462, calculada em 4 iteracoes.

Observação: Note que nesse exemplo, a precisão pedida é 10^{-6} . Portanto, o módulo da diferença entre o seu resultado e o resultado deste exemplo deve ser, no máximo, 10^{-6} .

Exemplo de Entrada

1 5

Exemplo de Saída

Entradas invalidas.

Exemplo de Entrada

16

5

Exemplo de Saída

A raiz quadrada de 16 eh 4.0000013877324454, calculada em 4 iteracoes.

Veja a observação do primeiro exemplo!

Exemplo de Entrada

100

-2

Exemplo de Saída

Entradas invalidas.

Author: Tiago Alves, mojificação por John Gardenghi