P525/1	
S.6 Chemistry weekly test 1	
•	
Name	Signature
	8

KORO SECONDARY SCHOOL

GROUP TWO ELEMENTS AND THERMOCHEMISTRY

TIME: 2:45 minutes

INSTRUCTIONS:

- Attempt all questions in section A and B

ECTION A (GROUP (II) ELEMENTS) a) Explain what is meant by the term diagonal relationship	(01 mark)
(b) State three reasons why beryllium and aluminum exhibit diagonal relationship.	(1½mark)
(c) Using equations explain four properties to show diagonal relationship exhibited I and aluminium.	oy beryllium (04marks)

(d)	Using equations explain four properties to show diagonal relationship exhibited by lithium and magnesium. (04marks)
(e)	Using equations explain four properties to show diagonal relationship exhibited by boron and silicon. (04marks

2. The first ionization energy of some elements are as shown below.

Elements	1 st ionization	2 nd ionization	3 rd ionization	4 th ionization
	energy	energy	energy	energy
A	500	4600	9600	9500
В	740	1500	7700	10500
С	630	1600	3000	4800
D	900	1800	14800	21000
Е	580	1800	2700	11600

	a) What is meant by the term ionization energy?	(01 marks)
	b) (i) State the elements that are most likely to form an ion with a unit positive of	=
	reasons for your answer.	(02 marks)
	(ii). Identify two elements that are in the same group of the periodic table.	(01 marks)
		• • • • • • • • • • • • • • • • • • • •
3.	(a) Compare the following properties of group (II) and group (I) elements. In each reason for your answer.	ch case, give a
	(i) First ionization energy	
	(ii) Melting point	

Do Xcal

	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
The decomposition	temperatures o	of the carbonates of	f group (II) elemen	ts are given below
Carbonate Decomposition	MgCO ₃ 404	CaCO ₃ 826	SrCO ₃ 1098	BaCO ₃ 1370
temperature °C				
State how the deco	omposition temp	peratures vary		(01 mark
Explain your answ	ver in (b) (i)			(3 ½ marks)
The diagram below	shows successi	ive ionisation ener	gies for an element	X, showing removal
The diagram below of all electrons.	r shows successi	ive ionisation ener		X, showing removal
	Log (energy)		10	•
of all electrons. (a) Giving reasons s	Log (energy)		10	X, showing removal

Identify element X	(01mark)
Explain the sudden increase in the energy required to removed electron E	(2marks)
Explain how the size of X will change as electrons are removed	(01mark)
(i) explain what would be the sign of change if an electron was added to X to gi (01 mark)	ve X ⁻
(ii) How would you expect it to affect the size if X	(01mark)
plain giving reasons whether you would expect X to form compound in the +1 ox te	
plain what is meant by the term <i>electronegativity</i> .	(01mark)
State the factors that affect determine the value of electronegativity of an element	
Explain how the following factors affect the value of electronegativity of the element tomic radius	nent (2marks)
Nuclear charge	(2marks)
	Explain the sudden increase in the energy required to removed electron E Explain how the size of X will change as electrons are removed (i) explain what would be the sign of change if an electron was added to X to gi (01 mark) (ii) How would you expect it to affect the size if X clain giving reasons whether you would expect X to form compound in the +1 ox te clain what is meant by the term <i>electronegativity</i> .

6 Page	Э	X (С	а	
-----------------	---	-----	---	---	--

(i	ii) The screening effect of the	ne inner elect	rons		(02marks)
(d	l) Explain the difference bet	ween <i>electroi</i>	negativity and e	lectron affinity	(02marks)
6.	(a) Explain what is meant	by the term f	irst election aff	inity	(01mark)
0.	(a) Explain what is meant	by the term i	iist election arr	mity.	(Offilark)
	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		
		• • • • • • • • • • • • • • • • • • • •	•••••		•••••
(b)	State three factors that can	affect electro	n affinity		(01 ½marks)
(~)			•		, ,
		• • • • • • • • • • • • • • • • • • • •	••••••		•••••
			••••••	• • • • • • • • • • • • • • • • • • • •	•••••
(c) The first electron affinities	of some eler	nents of period	- 3 are given in the f	able below
	Element	Al	Si	P	S
	First electron affinity (KJmol ⁻¹)	- 44	- 134	-71.7	- 200
(i) State the trend in variation	of electron a	affinities		(0 ½ mark)
(ii`	Explain your answer in c (i	i) above			
(11)	(02 marks)	1) 40010			
					• • • • • • • • • • • • • • • • • • • •

7.	(a)Explain the following observations
	i) Group (II) metal carbonates decompose on heating but group (I) metal carbonates are resistant to decomposition by heat.
i	Group (II) metal sulphates are more soluble in water than group (I) metal sulphates. (03 marks)
i	ii) The decomposition temperature of group (II) metal carbonates increases down the group. (03 marks)
	iv) Lithium compounds are mainly covalent while the compounds of other group (I) elements are mainly ionic. (03 marks)

v)	The solubility of group (II) metal hydroxides increases down the group.	(03 marls)
		•••••
vi)	The solubility of sulphates of group (II) metals decreases down the group.	(03 marks)
		••••••
	CTION B THERMOCHEMSTRY a)States the laws of thermochemistry	(04 marks)
(b) Explain the factors that affect enthalpy of reaction	(05 marks)
		•••••

(0) Define standard enthalpy of form	ation	(02 marks)
			•••••
	•••••		• • • • • • • • • • • • • • • • • • • •
(0		on of methane given that the enthalpy of cor	
		hydrogen is $-286 \ kJmol^{-1}$ and enthalpy of co	
	methane is $-890 \ kJmol^{-1}$.		(04 marks)
9. (a) Define standard enthalpy of ator	nization	(02 marks)
			•••••
(ł	o) Calculate the C-C bond energy in	ethane given that;	(04 marks)
	$C(s) \to C(g);$	$+713 \ kJmol-1 \dots \dots (i)$	
	$H_2(g) \rightarrow 2H(g)$	$+436 \ kJmol^{-1} \dots \dots (ii)$	
	$2C(s) + 3H2(g) \rightarrow C2H6(g);$	−84 kJmol−1 (iii)	

	$C2H6 + H2(g) \rightarrow$	2 <i>CH</i> 4 (<i>g</i>)					(04)	4 marks)
		•••••					• • • • • • • • • • • • • • • • • • • •		
							• • • • • • • • • • • • • • • • • • • •		
		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •		•••••
		•••••				•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••
							• • • • • • • • • • • • • • • • • • • •		
11.	Some bond energie				T				
	Bond	C – H	$\boldsymbol{C} = \boldsymbol{O}$	O – H	0 = 0	<i>C</i> – <i>O</i>	<i>C</i> ≡ <i>C</i>	<i>C</i> – <i>C</i>	H-H
		410	002	160	106	226	813	346	436
	BE $(kJmol^{-1})$	412	803	463	496	326	613	340	430
	$BE (k mol^{-1})$ Use the bond energy					320	813	340	430
(i)		 rgies give	n above t	 o calculat	e;	320	613		3 marks)
(i)	Use the bond ener	 rgies give	n above t	 o calculat	e;	320	613		
(i)	Use the bond ener	 rgies give	n above t	 o calculat	e;		613		
(i)	Use the bond ener	 rgies give	n above t	 o calculat	e;				
(i)	Use the bond ener	 rgies give	n above t	 o calculat	e;		013		
(i)	Use the bond ener	 rgies give	n above t	 o calculat	e;				
(i)	Use the bond ener	 rgies give	n above t	 o calculat	e;				
(ii)	Use the bond energy of hy	rgies give	mbustion	o calculat	e; nol. 			(0	3 marks)
(ii)	Use the bond ener	rgies give	mbustion	o calculat	e; nol. 			(0	3 marks)
(ii)	Use the bond energy of hy	rgies give	mbustion	o calculat	e; nol. 			(0	3 marks)
(ii)	Use the bond energy of hy	rgies give	mbustion	o calculat	e; nol. 			(0	3 marks)
(ii)	Use the bond energy of hy	rgies give	mbustion	o calculat	e; nol. 			(0	3 marks)

(b) Descri	ibe the energy changed that takes p	place in a born Haber cycle	(04 marks)
			•••••
•••••			
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••			
•••••			•••••••
•••••			• • • • • • • • • • • • • • • • • • • •
(c) Standa	ard enthalpy changes for some reac	tions are given below;	
	$Ca_{(S)} \rightarrow Ca_{(G)}$	$+\ 193\ kJmol^{-1}$	
	1 _ $F2(g) \rightarrow F(g)$	+ 79 <i>kJmol</i> –1	
	2		
	$F_{(g)} + e \rightarrow F_{(g)}$	$-348 \ kJmol^{-1}$	
	$Ca_{(s)} + F_{2(g)} \rightarrow CaF_{2(S)}$		
	$Ca_{(g)} \rightarrow Ca_{(g)}^+ + e$	$+ 590 \ kJmol^{-1}$	
	$Ca_{(g)}^+ \rightarrow Ca_{(g)}^2 + e$	$+ 1150 kJmol^{-1}$	
(i) Constr	uct a Born-Haber cycle for the form	nation of calcium fluoride.	(8 marks)
•••••			
•••••			
•••••			•••••
•••••			
•••••			•••••

· Ose the cy	ycle you have constructed in (i) to c	carculate the lattice chergy of care.	(02 ma
•••••			••••••
Given the fo	ollowing thermochemical data,		
	$Ca_{(S)} \rightarrow Ca_{(G)}$	$+ 193 \ kJmol^{-1}$	
	1 _ $F2(g) \rightarrow F(g)$	+ 79 <i>kJmol</i> -1	
	2	,	
	$F(g) + e \rightarrow F(g)$	$-348 \ kJmol^{-1}$	
	$Ca(s) + F_2(g) \rightarrow CaF_2(S)$	$-1214 \ kJmol^{-1}$	
	$Ca_{(g)} \rightarrow Ca^{+}(g) + e$	$+ 590 \ k J mol^{-1}$	
	$\mathcal{L}(\mathcal{G})$	1 2 3 3 10 11000	
		$+ 1150 \ kImol^{-1}$	
Construc	$Ca (^+g) \rightarrow Ca^2 (^+g) + e$ et an energy level diagram for the fo	+ 1150 <i>kJmol</i> ⁻¹ ormation of calcium fluoride.	(02m
Construc	$Ca (^+g) \rightarrow Ca^2 (^+g) + e$ et an energy level diagram for the fo		
Construc	$Ca (^+g) \rightarrow Ca^2 (^+g) + e$ et an energy level diagram for the fo	ormation of calcium fluoride.	
Construc	$Ca (^+g) \rightarrow Ca^2 (^+g) + e$ et an energy level diagram for the fo	ormation of calcium fluoride.	
Construc	$Ca (^+g) \rightarrow Ca^2 (^+g) + e$ et an energy level diagram for the fo	ormation of calcium fluoride.	
Construc	$Ca (^+g) \rightarrow Ca^2 (^+g) + e$ et an energy level diagram for the fo	ormation of calcium fluoride.	
Construc	$Ca (^+g) \rightarrow Ca^2 (^+g) + e$ et an energy level diagram for the fo	ormation of calcium fluoride.	
	$Ca (^+g) \rightarrow Ca^2 (^+g) + e$ et an energy level diagram for the fo	ormation of calcium fluoride.	
	$Ca (^+g) \rightarrow Ca^2 (^+g) + e$ et an energy level diagram for the fo	ormation of calcium fluoride.	
	$Ca (^+g) \rightarrow Ca^2 (^+g) + e$ et an energy level diagram for the fo	ormation of calcium fluoride.	
	$Ca (^+g) \rightarrow Ca^2 (^+g) + e$ et an energy level diagram for the formula $a = a + b$ energy level diagram you have constant.	ormation of calcium fluoride.	

14. (a) Define the terms				
(i) Lattice energy			((02 marks)
		• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
(ii) Solvation energy			((02 marks)
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
CUNE and reliance of a reliant in the				
(iii)Enthalpy of solution				(02 marks)
(b) State two factors that can affect hydration energy.				2 marks)
(b) State the factors that the different injuration energy.			(0	2 mans)
	• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
(c) The table below shows the enthalpies of hydration of the periodic table.	f cations o	f group (II) elemen	ts of
Cation	<i>Mg</i> 2+	<i>Ca</i> 2+	Sr2+	Ва2+
Enthalpy of hydration $(kJmol^{-1})$	-1920	-1640	-1480	-1360
(i) State how hydration energy of the ions vary.			((01 marks)
(ii) Explain your answer in b(i) above.			((03 marks)
(iii) Explain why the values of hydration energy are neg				marks)
			• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •

(c) The values for some energy changes are	given below.	
Lattice energy of $CaCl_2(s)$	$-2230 \ kJmol^{-1}$	
Enthalpy of hydration of $Cl^{-}(g)$	$-343 \ kJmol^{-1}$	
(i) Calculate the enthalpy of solution of cal	cium chloride.	(02 marks)
(ii) State how the solubility of calcium chlor		-
increased. Give a reason for your answe	r.	(04 marks)
		• • • • • • • • • • • • • • • • • • • •
3. (a)Define enthalpy of neutralisaton.		(02 marks)
3. (a)Bernic charactery of neutransation.		(02 marks)
(a) Briefly explain why the enthalpy of neurons is -55.8 kJmol ⁻¹ while the enthalpy of neurons.		
hydroxide is -57.3 kJmol ⁻¹	duransation of hydrochione	(03 marks)

(b	b) Explain why the enthalpy of neutralisation of sodium hydroxide by nitric acid is $kJmol^{-1}$ whereas the enthalpy of neutralisation of sodium hydroxide by hydrox $12.0 \ kJmol^{-1}$.	
		• • • • • • • • • • • • • • • • • • • •
_	-) 250 2 CO 5M WOLL 412 C	
(c	c) 250cm3 of 0.5M KOH at 12oC were mixed in a plastic beaker of negligible he with an equal volume of 0.5M HCl at the same temperature. The final temperature 15.4oC. Calculate the enthalpy of neutralisation assuming that the specific heat the solution is $4.2Jg-1K-1$.	ture was
(c	with an equal volume of 0.5M HCl at the same temperature. The final temperature 15.4oC. Calculate the enthalpy of neutralisation assuming that the specific heat the solution is $4.2Jg-1K-1$.	ture was t capacity of (06 marks)
(c	with an equal volume of 0.5M HCl at the same temperature. The final temperature 15.4oC. Calculate the enthalpy of neutralisation assuming that the specific heat the solution is $4.2Jg-1K-1$.	ture was t capacity of (06 marks)
(c	with an equal volume of 0.5M HCl at the same temperature. The final temperature 15.4oC. Calculate the enthalpy of neutralisation assuming that the specific heat the solution is $4.2Jg-1K-1$.	ture was t capacity of (06 marks)
(c	with an equal volume of 0.5M HCl at the same temperature. The final temperature 15.4oC. Calculate the enthalpy of neutralisation assuming that the specific heat the solution is $4.2Jg-1K-1$.	ture was t capacity of (06 marks)
(c	with an equal volume of 0.5M HCl at the same temperature. The final temperature 15.4oC. Calculate the enthalpy of neutralisation assuming that the specific heat the solution is $4.2Jg-1K-1$.	ture was t capacity of (06 marks)
(c	with an equal volume of 0.5M HCl at the same temperature. The final temperature 15.4oC. Calculate the enthalpy of neutralisation assuming that the specific heat the solution is $4.2Jg-1K-1$.	ture was t capacity of (06 marks)
(c	with an equal volume of 0.5M HCl at the same temperature. The final temperature 15.4oC. Calculate the enthalpy of neutralisation assuming that the specific heat the solution is $4.2Jg-1K-1$.	ture was t capacity of (06 marks)
(c	with an equal volume of 0.5M HCl at the same temperature. The final temperature 15.4oC. Calculate the enthalpy of neutralisation assuming that the specific heat the solution is $4.2Jg-1K-1$.	ture was t capacity of (06 marks)