Processus discrets

TD2. Martingales, strategies et arrêt optionnel.

Exercice 1. Soit $(\mathcal{F}_n)_{n\geqslant 0}$ une filtration.

- a) Soient S, T des temps d'arrêt, montrer que $T \wedge S$ et $T \vee S$ sont des temps d'arrêt.
- b) Soit $(X_n)_{n\geq 0}$ un processus adapté et B un Borélien, montrer que le temps d'atteinte de B

$$T = \inf \{ n \geqslant 0 \colon X_n \in B \}$$

est un temps d'arrêt.

Exercice 2. Soit $(Y_n)_{n\geqslant 1}$ une suite de v.a. i.i.d. avec $\mathbb{P}(Y_i=1)=p=1-P$ $(Y_i=-1)$. Soit $S_n=\sum_{i=1}^n Y_i$ (et $S_0=0$). Montrer que les processus $(W_n)_{n\geqslant 0}$ et $(M_n)_{n\geqslant 0}$ définis par

$$W_n = S_n - (2 p - 1) n$$
,

et

$$M_n = \left(\frac{1-p}{p}\right)^{S_n},$$

sont des martingales par rapport à la filtration naturelle des Y_n : $\mathcal{F}_n = \sigma(Y_1, ..., Y_n)$ pour $n \ge 1$ et $\mathcal{F}_0 = \{\emptyset, \Omega\}$.

Exercice 3. Soient $(X_n)_{n\geqslant 0}$ et $(Y_n)_{n\geqslant 0}$ deux sur-martingales et T un temps d'arrêt tels que $T<+\infty$ implique $X_T\geqslant Y_T$. Montrer que le processus $(Z_n)_{n\geqslant 0}$ défini par

$$Z_n = X_n \, \mathbb{I}_{T>n} + Y_n \, \mathbb{I}_{T\leqslant n}$$

est une sur-martingale.

Exercice 4. Soit $(M_n)_{n\geqslant 0}$ une martingale par rapport à une filtration $(\mathcal{F}_n)_{n\geqslant 0}$, telle que $\mathbb{E}(M_n^2) < +\infty$ pour tout $n\geqslant 0$. Soit

$$A_n = \sum_{i=1}^n \mathbb{E}([\Delta M_i]^2 | \mathcal{F}_{i-1}) \tag{1}$$

Montrer que $M_n^2 - A_n$ est une $(\mathcal{F}_n)_{n \geqslant 0}$ -martingale $(\Delta M_i = M_i - M_{i-1})$.

Exercice 5. Soit $(M_n)_{n\geqslant 0}$ un processus adapté à la filtration $(\mathcal{F}_n)_{n\geqslant 0}$ et tel que $M_n\in L^1$ pour tout $n\geqslant 0$. Montrer que les propriété suivantes sont équivalentes:

- a) $(M_n)_{n\geqslant 0}$ est une martingale.
- b) $\mathbb{E}[M_T] = \mathbb{E}[M_0]$ pour tout temps d'arrêt borné T.

Indication pour $b \Rightarrow a$: commencer par montrer que pour tous $n \geqslant 0$ et $A \in \mathcal{F}_n$ la variable $T_{n,A} = (n+1) \mathbb{I}_A + n \mathbb{I}_{A^c}$ est un temps d'arrêt.

Exercice 6. Soit G une v.a. géométrique de paramètre $p \in]0, 1[$ (c-à-d $\mathbb{P}(G = k) = p^k (1 - p), k \in \mathbb{N})$. Soit pour tout $n \geq 0$, $\mathcal{F}_n = \sigma(G \wedge (n+1))$.

a) Montrer que $\mathcal{F}_n = \sigma(\{\{G=0\}, \{G=1\}, ..., \{G=n\}, \{G>n\}\}).$

b) Montrer que $M_n = \mathbb{I}_{G \leq n} - (1-p) (G \wedge n)$ et $Y_n = M_n^2 - p (1-p) (G \wedge n)$, $n \geq 0$ sont deux martingales pour la filtration $(\mathcal{F}_n)_{n \geq 0}$.

Exercice 7. Soit $(X_n)_{n\geqslant 1}$ une suite i.i.d. avec $\mathbb{P}(X_n=\pm 1)=1/2$. Dans la suite on considère la filtration naturelle des X_i comme filtration de référence. On pose

$$Y_0 = 0,$$
 $Y_n = \sum_{k=1}^{n} 2^{k-1} X_k$ $n \ge 1.$

C'est le gain dans un jeu de pile ou face où l'on double la mise à chaque coup. On souhaite s'arrêter dès qu'on gagne pour la première fois. On pose donc

$$T = \inf \{ n \ge 1 : X_n = 1 \}.$$

- a) Montrer que $(Y_{n \wedge T})_{n \in \mathbb{N}}$ est une martingale, en déduire la valeur de $\mathbb{E}[Y_{n \wedge T}]$ pour tout $n \geqslant 0$.
- b) Montrer $T < +\infty$ p.s. et montrer que $Y_T = 1$ p.s. Commenter.
- c) Soit $D = |G_{T-1}|$. Montrer que $\mathbb{E}[D] = +\infty$. Interpréter ce résultat.

Exercice 8. (LA RUINE DU JOUEUR) Soit $(X_n)_{n\geqslant 1}$ une suite i.i.d. avec $\mathbb{P}(X_n=+1)=p\in]0,1[$, $\mathbb{P}(X_n=-1)=q=1-p$ et $(\mathcal{F}_n)_{n\geqslant 0}$ la filtration naturelle des X. On fixe un entier $N\geq 2$. Soit $x\in \{0,1,...,N\}$, on pose $S_n=x+\sum_{k=1}^n X_k$ pour $n\geqslant 1$ et $T=\inf\{n\geqslant 0: S_n=0 \text{ ou} S_n=N\}$.

- a) Montrer que T est un temps d'arrêt pour $(\mathcal{F}_n)_{n\geqslant 0}$.
- b) Soit $n \ge 0$, montrer que si n < T et $X_{n+1} = X_{n+2} = \cdots = X_{n+N-1} = 1$, alors T < n + N.
- c) En déduire que $\mathbb{P}(n+N-1 < T) \le (1-p^{N-1}) \mathbb{P}(n < T)$, puis que $T < +\infty$ p.s.
- d) On suppose dans les deux questions suivantes que p = q = 1/2. Montrer que $(S_n)_{n \ge 0}$ est une martingale.
- e) En appliquant le théorème d'arrêt, déterminer $\mathbb{P}(S_T = 0)$.
- f) On suppose désormais $p \neq q$. On pose $M_n = (q/p)^{S_n}$ pour tout $n \geq 0$. Montrer que $(M_n)_{n\geq 0}$ est une martingale.
- g) Déterminer $\mathbb{P}(S_T = 0)$.

Exercice 9. Soit $(X_n)_{n\geqslant 1}$ une suite i.i.d. telle que X_n est une v.a. choisie uniformément dans l'alphabet $\mathcal{A}=\{A,B,...,Z\}$ ($\#\mathcal{A}=26$). Soit $(\mathcal{F}_n)_{n\geqslant 1}$ la filtration naturelle des X ($\mathcal{F}_0=\{\emptyset,\Omega\}$). On considère la suite comme une chaîne de symboles. Soit T_{AB} le premier instant où on voit apparaître la chaîne "AB" dans la suite $X_1\,X_2\cdots X_n\cdots$ (formellement $T_{AB}=\inf\{n\geqslant 2\colon X_n=B,X_{n-1}=A\}$). On veut calculer le temps moyen $\mathbb{E}[T_{AB}]$ d'apparition du mot "AB".

- a) Soit $Y_n = \sum_{k=2}^n 26^2 \mathbb{I}_{X_k = B, X_{k-1} = A} + 26 \mathbb{I}_{X_n = A}$. Montrer que $M_n = Y_n n$ est une martingale.
- b) Montrer qu'il existe une constante 0 < c < 1 telle que $\mathbb{P}(T_{AB} > n) \leq c^n$. En déduire que $\mathbb{E}[T_{AB}] < +\infty$ et $\mathbb{P}(T_{AB} < +\infty) = 1$.
- c) Montrer que $\mathbb{E}[T_{AB}] = \mathbb{E}[Y_{T_{AB}}] = 26^2$
- d) Soit $T_{BB} = \inf \{ n \ge 2 : X_n = B, X_{n-1} = B \}$. Montrer que $\mathbb{E}[T_{BB}] = 26^2 + 26$.
- e) Soit $T_{\rm ABRACADABRA}$ le premier instant où on voit apparaitre la chaîne "ABRACADABRA". Montrer que $\mathbb{E}[T_{\rm ABRACADABRA}] = 26^{11} + 26^4 + 26$.