Evaluacion final - Escenario 8

Fecha de entrega 18 de oct en 23:55

Puntos 150

Preguntas 10

Disponible 15 de oct en 0:00 - 18 de oct en 23:55

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE, quien con honestidad, usa su sabiduría para mejorar cada día.

Lee detenidamente las siguientes indicaciones y minimiza inconvenientes:

- Tienes dos intentos para desarrollar tu evaluación.
- 2. Si respondiste uno de los intentos sin ningún inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- 3. Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- **4.** Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- 5. Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- El tiempo máximo que tienes para resolver cada evaluación es de 90 minutos.

- 7. Solo puedes recurrir al segundo intento en caso de un problema tecnológico.
- 8. Si tu examen incluye preguntas con respuestas abiertas, estas no serán calificadas automáticamente, ya que requieren la revisión del tutor.
- 9. Si presentas inconvenientes con la presentación del examen, puedes crear un caso explicando la situación y adjuntando siempre imágenes de evidencia, con fecha y hora, para que Soporte Tecnológico pueda brindarte una respuesta lo antes posible.
- Podrás verificar la solución de tu examen únicamente durante las 24 horas siguientes al cierre.
- 11. Te recomendamos evitar el uso de teléfonos inteligentes o tabletas para la presentación de tus actividades evaluativas.
- **12.** Al terminar de responder el examen debes dar clic en el botón "Enviar todo y terminar" de otra forma el examen permanecerá abierto.

Confiamos en que sigas, paso a paso, en el camino hacia la excelencia académica! ¿Das tu palabra de que realizarás esta actividad asumiendo de corazón nuestro

Volver a realizar el examen

15 / 15 pts

Historial de intentos

	Intento	Hora	Puntaje
MÁS RECIENTE	Intento 1	80 minutos	127.5 de 150

Las respuestas correctas ya no están disponibles.

Puntaje para este intento: 127.5 de 150

Entregado el 17 de oct en 16:24

Este intento tuvo una duración de 80 minutos.

Pregunta 1	

La longitud de arco de la función $f(x) = \ln(\cos(x))$ en el intervalo $[-\frac{\pi}{3}, \frac{\pi}{3}]$, es:

$$^{\circ}$$
 2ln(2 + $\sqrt{3}$)

$$2 \ln(2 + \sqrt{2})$$

$$^{\circ}$$
 2ln(2 - $\sqrt{3}$)

$$-\ln(2+\sqrt{3})$$

Pregunta 2 15 / 15 pts

El volumen del sólido que se obtiene al girar la región limitada por $y = \sqrt[2]{x}, y = \frac{1}{2}x$ al rededor del $eje\ y$, como se muestra en la figura es:

1	7	1	O.	122	16:24
Ί	11	/1	U	122.	16:24

$lacksquare$ $rac{64}{15}\pi$			
$\bigcirc \ rac{15}{64}\pi$			
$\frac{\pi}{15}$			
$\bigcirc \ rac{4}{15}\pi$			

Pregunta 3

15 / 15 pts

La longitud de arco de la curva $y=rac{x}{a}+b$ en el intervalo [c,d] es: donde:

a=1

b=9

c=4

d=7

Nota: Exprese su respuesta de forma numérica, no agregue separador de miles, los decimales se expresan con punto "." Tenga en cuenta que puede usar en sus cálculos 3 cifras decimales.

4.242

Pregunta 4

15 / 15 pts

Dadas las series

$$1. \sum_{n=1}^{\alpha} \frac{n^2}{2^n}$$

2.
$$\sum_{n=1}^{\alpha} \frac{2^n}{n^3}$$

$$3. \sum_{n=1}^{\alpha} \left(\frac{1}{1+n} \right)^n$$

Se puede asegurar que:

- Las series 1 y 2 convergen
- Las series 2 y 3 convergen
- Las series 1 y 3 convergen
- Las series 2 y 3 divergen

Pregunta 5	15 / 15 pts
La serie $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)1}$ Diverge	
Verdadero	
○ Falso	

Incorrecto

Pregunta 6

0 / 15 pts

Dada la serie
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$
 se puede afirmar que

Converge condicionalmente

- Diverge
- Converge
- Converge absolutamente

Pregunta 7 15 / 15 pts

Al integrar $\int p^5 \ln p \ dp$ obtenemos:

$$06p^6 + C$$

$$\bigcirc \frac{p}{6} + \frac{\ln(p)}{36} + C$$

$$\bigcirc p^6 + rac{\ln(p)}{6} + C$$

$$=$$
 $rac{p^6}{6} \ln(p) - rac{p^6}{36} + C$

Pregunta 8 15 / 15 pts

Al calcular $\int \frac{4x^4 + 3x^3 - 2x}{x} dx$ se obtiene:

$$\bigcirc \frac{4x^5 + 3x^4 - 2x^2}{x^2} + C$$

$$\frac{x^4 + x^3 - 2x}{x^2} + C$$

$$\frac{x^4}{4} + \frac{x^3}{3} - 2x + C$$

$$x^4 + x^3 - 2x + C$$

Pregunta 9 15 / 15 pts

Teniendo en cuenta la siguiente imagen:

La integral que permite calcular el área No. 1 es:

$$\int_{-3}^{-1} ((-x-4)-(x+2))dx$$

$$\int_{-3}^{-1} ((-x-4)^2 - (x+2)^2) dx$$

Parcial

Pregunta 10

7.5 / 15 pts

Dadas las curvas $y = 5 - x^2$ y y = 3 - x.

- 1. Al plantear la integral del área entre las curvas, los límites de integración son:
- A. x = -1 y x = 2
- B. x = 3 y x = -5
- C. x = 0 y x = 2
- D. x = -2 y x = 1

el área encerrada entre las dos curvas es:

- A. $\frac{63}{6}U^2$ B. $\frac{7}{6}U^2$ C. $\frac{36}{6}U^2$
- D. $10\frac{1}{6}U^2$

La respuesta a la pregunta 1 es:

[Seleccionar]

La respuesta a la pregunta 2 es:

[Seleccionar]

Respuesta 1:

A.

Respuesta 2:

B.

Puntaje del examen: **127.5** de 150

×