Image Formation

Dr. Ayatullah Faruk Mollah

Department of Computer Science & Engineering, Aliah University

Introduction

Digital Image

is a two-dimensional function

where x and y are spatial coordinates, and

amplitude of f is called intensity or gray level at the point (x, y)

Light and EM Spectrum

Light and EM Spectrum

The colors that humans perceive in an object are determined by the nature of the light reflected from the object.

e.g. green objects reflect light with wavelengths primarily in the 500 to 570 nm range while absorbing most of the energy at other wavelength

..Light and EM Spectrum

- Monochromatic light: void of color
 Intensity is the only attribute, from black to white
 Monochromatic images are referred to as gray-scale images
- Chromatic light bands: 0.43 to 0.79 μm

The quality of a chromatic light source:

Radiance: total amount of energy

Luminance (Im): the amount of energy an observer perceives from a light source

Brightness: a subjective descriptor of light perception that is impossible to measure. It embodies the achromatic notion of intensity and one of the key factors in describing color sensation.

Image Acquisition

a b

FIGURE 2.12

- (a) Single imaging sensor.
- (b) Line sensor.
- (c) Array sensor.

Transform illumination energy into digital images

Image Acquisition Using a Single Sensor

Image Acquisition Using Sensor Strips

FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.

Image Acquisition Process

a c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Sensor Array

CMOS sensor

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

A Simple Image Formation Model

$$f(x,y) = i(x,y)*r(x,y)$$

 $f(x,y)$: intensity at the point (x,y)
 $i(x,y)$: illumination at the point (x,y)
(the amount of source illumination incident on the scene)
 $r(x,y)$: reflectance/transmissivity at the point (x,y)
(the amount of illumination reflected/transmitted by the object)
where $0 < i(x,y) < \infty$ and $0 < r(x,y) < 1$

Some Typical Ranges of illumination

Illumination

Lumen — A unit of light flow or luminous flux

Lumen per square meter (lm/m²) — The metric unit of measure for illuminance of a surface

- On a clear day, the sun may produce in excess of 90,000 lm/m² of illumination on the surface of the Earth
- On a cloudy day, the sun may produce less than 10,000 lm/m² of illumination on the surface of the Earth
- On a clear evening, the moon yields about 0.1 lm/m² of illumination
- The typical illumination level in a commercial office is about 1000 lm/m²

Some Typical Ranges of Reflectance

Reflectance

- 0.01 for black velvet
- 0.65 for stainless steel
- 0.80 for flat-white wall paint
- 0.90 for silver-plated metal
- 0.93 for snow

Image Sampling and Quantization

Image Sampling and Quantization

a b

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.

FIGURE 2.18

- (a) Image plotted as a surface.
- (b) Image displayed as a visual intensity array.
- (c) Image shown as a 2-D numerical array (0, .5, and 1 represent black, gray, and white, respectively).

The representation of an M×N numerical array as

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \dots & f(0,N-1) \\ f(1,0) & f(1,1) & \dots & f(1,N-1) \\ \dots & \dots & \dots & \dots \\ f(M-1,0) & f(M-1,1) & \dots & f(M-1,N-1) \end{bmatrix}$$

The representation of an M×N numerical array as

$$A = \begin{bmatrix} a_{0,0} & a_{0,1} & \dots & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \dots & a_{1,N-1} \\ \dots & \dots & \dots & \dots \\ a_{M-1,0} & a_{M-1,1} & \dots & a_{M-1,N-1} \end{bmatrix}$$

The representation of an M×N numerical array in MATLAB

$$f(x,y) = \begin{bmatrix} f(1,1) & f(1,2) & \dots & f(1,N) \\ f(2,1) & f(2,2) & \dots & f(2,N) \\ \dots & \dots & \dots & \dots \\ f(M,1) & f(M,2) & \dots & f(M,N) \end{bmatrix}$$

Discrete intensity interval [0, L-1], L=2^k

The number b of bits required to store a M × N digitized image

$$b = M \times N \times k$$

TABLE 2.1 Number of storage bits for various values of N and k.

N/k	1(L=2)	2(L=4)	3(L = 8)	4(L = 16)	5(L=32)	6(L = 64)	7(L = 128)	8 (L = 256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

Spatial resolution

- A measure of the smallest discernible detail in an image
- stated with line pairs per unit distance, dots (pixels) per unit distance, dots per inch (dpi)

Intensity resolution

- The smallest discernible change in intensity level
- stated with 8 bits, 12 bits, 16 bits, etc.

FIGURE 2.20 Typical effects of reducing spatial resolution. Images shown at: (a) 1250 dpi, (b) 300 dpi, (c) 150 dpi, and (d) 72 dpi. The thin black borders were added for clarity. They are not part of the data.

a b c d

FIGURE 2.21 (a) 452 × 374, 256-level image. (b)–(d) Image displayed in 128, 64, and 32 gray levels, while keeping the spatial resolution constant.

e f g h

FIGURE 2.21 (Continued) (e)–(h) Image displayed in 16, 8, 4, and 2 gray levels. (Original courtesy of Dr. David R. Pickens, Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center.)

The Eye

- The human eye is a camera!
 - Iris colored annulus with radial muscles
 - Pupil the hole (aperture) whose size is controlled by the iris
 - What's the "film"? photoreceptor cells (rods and cones) in the retina

Retina up-close

Two types of light-sensitive receptors

Cones

- cone-shaped
- less sensitive
- operate in high light color vision

Rods

- rod-shaped
- highly sensitive
- operate at night
- gray-scale vision
- slower to respond

Color Image

Thank You