Econ Topic 1 Utility Functions

Updated on July 8, 2024

© 2024 Nicky老师 nickycanhelp@qq.com

We make a bunch of decisions every single day: What should I eat for my lunch, 钵钵鸡 or 螺蛳粉; how should I allocate my lifetime consumption, and etc. The utility is a classical way to represent your preference or happiness. Mathematically, we use a utility function, u(x), to describe your degree of satisfaction on $x \in \mathbb{X}$. For example, x could be number of hamburgers you eat in which $\mathbb{X} = \mathbb{N}_+$. Generally we require that the function $u(\cdot)$ is increasing to indicate that the decision maker is non-satiated (多多益善!), namely,

$$u'(x) > 0, \ \forall x \in \mathbb{X}. \tag{1}$$

In many real-life applications, we face situations under uncertainty. Consider a random variable X, for instance $X \geq 0$ could represent your future wealth or $X \in \mathbb{R}$ could be your investment gain or loss, we measure your "satisfaction" through **expected utility** $\mathbb{E}[u(X)]$, and we have the following simple theorem to specify the preference order between two random outcomes.

Theorem 1 (Expected Utility Theorem). The decision maker with utility function $u(\cdot)$ prefers random outcomes X to \tilde{X} (we sometimes denote $X \succ \tilde{X}$) if and only if

$$\mathbb{E}[u(X)] > \mathbb{E}[u(\tilde{X})]. \tag{2}$$

As a consequence, the decision maker will choose actions that maximize her expected utility, which is in line with the rational individual assumption in economics.

Proposition 1. The utility function is unique up to affine transformation, namely, $u(\cdot)$ and $au(\cdot) + b$ with a > 0 and $b \in \mathbb{R}$ leads to the same preference.

Proof. We use the linearity property of expectation, namely, when $\mathbb{E}[u(X)] > \mathbb{E}[u(\tilde{X})]$, we have $\mathbb{E}[au(X)+b] = a\mathbb{E}[u(X)]+b > a\mathbb{E}[u(\tilde{X})]+b = \mathbb{E}[au(\tilde{X})+b]$ when a>0 and $b\in\mathbb{R}$. \square

Consider a fair game whose random outcome X satisfies $\mathbb{E}[X] = 0$. For instance, let us toss a fair coin and we earn \$1 if head shows while lose \$1 when tail appears, then this is a fair game with

$$X = \begin{cases} 1, & \text{w.p. } \frac{1}{2} \\ -1, & \text{w.p. } \frac{1}{2}. \end{cases}$$

By comparing a fair game X with no gain or no loss (i.e., 0), we can mathematically define three types of decision maker.

Definition 1. For a decision maker with utility function $u(\cdot)$ and a fair game with random outcome X, we say the decision maker is risk averse/risk neutral/risk seeking if

$$\mathbb{E}[u(0)] > \mathbb{E}[u(X)] / \mathbb{E}[u(0)] = \mathbb{E}[u(X)] / \mathbb{E}[u(0)] < \mathbb{E}[u(X)]. \tag{3}$$

© 2024 Nicky老师 - 1 -

◇翻译一下就是: even for a fair game, risk averse不愿意冒险, risk neutral都行无所谓, risk seeking认为搏一搏单车变摩托.

We do have a convenient method to tell the risk attitude of a decision maker with utility function $u(\cdot)$ without everytime comparing a fair game with doing nothing. We just state here without proof.¹

Proposition 2. The decision maker with utility function $u(\cdot)$ is risk averse/risk neutral/risk seeking if

$$u''(x) < 0 / u''(x) = 0 / u''(x) > 0, (4)$$

corresponding to saying the utility function is concave/linear/convex.

The example of risk-neutral utility function is u(x) = x for any $x \in \mathbb{R}$ while for the risk-seeking utility function we could have $u(x) = x^2$ for $x \ge 0$. Note that given the Proposition 1, there are in fact infinitely many such utility functions of any type. In economics, however, we are more interested in the risk-averse utility functions, as we often assume that a rational decision maker is risk-averse. Furthermore, among those risk-averse people, we distinguish their levels of risk aversion by two coefficients.

Definition 2. For a risk-averse utility function u(x), the coefficient of absolute risk aversion $\mathcal{A}(x)$ and the coefficient of relative risk aversion $\mathcal{R}(x)$ are defined respectively through

$$\mathcal{A}(x) = -\frac{u''(x)}{u'(x)}, \ \mathcal{R}(x) = -\frac{xu''(x)}{u'(x)} = x\mathcal{A}(x). \tag{5}$$

In the following, we discuss some commonly-used risk-averse utility functions. The power utility is often defined as, for any $\gamma > 0$, $\gamma \neq 1$,

$$u(x) = \frac{x^{1-\gamma}}{1-\gamma}, \ x > 0,$$
 (6)

where γ represents the degree of risk aversion and the larger the γ , the larger the risk aversion. And γ is also the relative risk aversion of the utility function. To see this, we compute

$$\mathcal{R}(x) = -\frac{xu''(x)}{u'(x)} = -\frac{x \cdot (-\gamma x^{-\gamma - 1})}{x^{-\gamma}} = \gamma. \tag{7}$$

Therefore, power utility is classified into the utility function with constant relative risk aversion (CRRA). Note that when $\gamma = 0$ in (6), we could get the linear utility. You may see other form of power utility like

$$u(x) = \frac{x^{\gamma}}{\gamma}, \ x > 0, \tag{8}$$

for any $\gamma < 1, \ \gamma \neq 0$. But pay attention that in this formulation γ does not denote the degree of risk aversion.

Exercise 1. Show that the square-root utility $u(x) = \sqrt{x}$, $x \ge 0$ is a special case of power utility.

© 2024 Nicky老师 - 2 -

¹The rigorous proof should link any random outcome X with a fair game and use Definition 1.

The logarithm utility function is simply given by $u(x) = \ln x$, x > 0, which in fact can be treated as a special case of power utility. To see this, we let $\gamma \to 1$ in the power utility of the form²

$$u(x) = \frac{x^{1-\gamma} - 1}{1 - \gamma}, \ x > 0, \tag{9}$$

and we get

$$\lim_{\gamma \to 1} \frac{x^{1-\gamma} - 1}{1 - \gamma} \stackrel{\text{L'Hôpital rule on } \gamma}{=} \lim_{\gamma \to 1} \frac{-x^{1-\gamma} \ln x}{-1} = \ln x. \tag{10}$$

Therefore, a more general power utility family is given by

$$u(x) = \begin{cases} \frac{x^{1-\gamma}-1}{1-\gamma} & \gamma > 0, \ \gamma \neq 1\\ \ln x & \gamma = 1 \end{cases}, \ x > 0.$$
 (11)

And the above form is sometimes called power-log utility. The exponential utility is defined as,³ for any $\lambda > 0$,

$$u(x) = -e^{-\lambda x}, \ x \in \mathbb{R},\tag{12}$$

where λ represents the degree of risk aversion and the larger the λ , the larger the risk aversion. And λ is also the absolute risk aversion of the exponential utility. To see this, we compute

$$\mathcal{A}(x) = -\frac{u''(x)}{u'(x)} = -\frac{-\lambda^2 e^{-\lambda x}}{\lambda e^{-\lambda x}} = \lambda. \tag{13}$$

Therefore, the exponential utility is classified into the utility function with constant absolute risk aversion (CARA). The shapes of different utility functions are illustrated in Figure 1 below. The choice of utility functions is based on your specific needs in the model. For example, for x > 0 and unbounded utility, we could choose power type; for $x \in \mathbb{R}$ and bounded utility, we could choose exponential type, and etc.

The above utility functions can all be contained in a more general class called hyperbolic absolute risk aversion (HARA) utility, which is mathematically convenient for economics modelling. The HARA utility is defined as the form, for $a>0,\ \gamma>0$ and x such that $\frac{ax}{\gamma}+b>0$,

$$u(x) = \frac{\gamma}{1 - \gamma} \left[\left(\frac{ax}{\gamma} + b \right)^{1 - \gamma} - 1 \right],\tag{14}$$

and it is easy to verify that the risk tolerance $\mathcal{T}(x)$, defined as the reciprocal of absolute risk aversion $\mathcal{A}(x)$, is an affine function of x.

Exercise 2. Show that the risk tolerance of HARA utility is given by

$$\mathcal{T}(x) = \frac{x}{\gamma} + \frac{b}{a}.\tag{15}$$

© 2024 Nicky老师 - 3 -

²Note that according to Proposition 1 the forms (6) and (9) are equivalent.

³The minus sign in the exponential utility is used to make the function increasing and concave.

Figure 1: Utility functions of different types.

Exercise 3. Show that in HARA utility,

- (i) when $a = \gamma$ and b = 0, it reduces to power utility;
- (ii) when $a = \gamma$, b = 0 and $\gamma \to 1$, it reduces to log utility;
- (iii) when $a = \lambda$, b = 1 and $\gamma \to +\infty$, it reduces to exponential utility.

End.

© 2024 Nicky老师 - 4-