第7章 多项式环

7.1 一元多项式环的概念及其通用性质

多项式定义: 表达式 $f(x) = \sum_{i=0}^{n} a_i x^i$, $a_i \in F, 0 \le n \in Z$, 称为数域 F上的多项式;

其中 aixⁱ称为 f(x)的 i 次项。

若 a_i=0,表达式 f (x)中可以去掉 a_ixⁱ;若 a_i=1,1xⁱ可以简写为 xⁱ。

同样我们可以在表达式中增加系数为0的项。

若 $a_n \neq 0$,称 $a_n x^n$ 为 f(x)的首项; a_n 称为首项系数; n 称为 f(x)的次数,记为 deg f(x)=n。

若 $a_n=1$,称 f(x)为首一多项式。

若 n=0, $f(x)=a_0\neq 0$, 即 F 中的非零常数 a 是 0 次多项式。

若 f (x)表达式中 $a_i=0$ ($i=0,1,\dots,n$),记 f (x)=0,称为 0 多项式,其次数定义为 deg $0=-\infty$ 。

记 $F[x] = \left\{ \sum_{i=0}^{n} a_i x^i \mid a_i \in F, 0 \le n \in Z \right\}$ 表示属于 F 上的以 x 为未定元的多项式集合。

简称多项式集合 F[x]。

给定
$$f(x) = \sum_{i=0}^{m} a_i x^i$$
, $g(x) = \sum_{i=0}^{n} b_i x^i \in F[x]$;

Define 加法:
$$f(x) + g(x) = \sum_{i=0}^{\max\{m,n\}} (a_i + b_i) x^i$$
; 乘法: $f(x)g(x) = \sum_{k=0}^{m+n} (\sum_{i+j=k} a_i b_j) x^k$ 。

运算性质: 1°交换律: f+g=g+f, fg=gf;

- 2°结合律: (f+g)+h=f+(g+h), (fg)h=f(gh);
- 3° 零元存在: ∀f, ∃0, s.t. f+0=f;
- 4° 负元存在: ∀f, ∃g, s.t. f+g=0; 简记 g= -f, 称 g 为 f 的负多项式;
- 5°分配律: (f+g)h=fh+gh, h(f+g)=hf+hg;
- 6°单位元存在: ∀f,∃1, s.t. f1=1f=f。

多项式环定义:集合 F[x],加法运算、乘法运算以及它们满足的运算律,统称为多项式环 F[x],简称为多项式环 F[x]。

如果一个环的子集(对于原环的加法和乘法)也构成一个环,则称之为该环的子环。

次数与运算: f,g∈F[x],则 deg(f+g)≤max{deg f,deg g} and deg(fg)=deg f+deg g。

*称非空集合 R 为环,如果 R 上有两个运算:

加法 "+" RxR→R and 乘法 "•" RxR→R

满足如下性质: 1°a+b=b+a; 2°(a+b)+c=a+(b+c); 3°零元存在;

4°负元存在; 5°(ab)c=a(bc); 6°(a+b)c=ac+bc, c(a+b)=ca+cb。

乘法满足交换律的环是交换环;单位元存在的环是有"1"的环。

多项式环的通用性:对于环R,未定元x,我们有R[x],我们有

$$\mathsf{R}[\mathsf{x}] = \left\{ \sum_{i=0}^n a_i x^i \mid a_i \in R, 0 \le n \in Z \right\}$$
,称为 R 上的多项式环,环 R \subseteq 环 $\mathsf{R}[\mathsf{x}]$ 。

定理:设 F 是一个数域,S 是一个有单位元的交换环,F 到 S 的一个子环有一个环同构映射。则对 \forall b \in S, 有自然映射 φ_a : $F[x] \to S$, $f(x) \mapsto \varphi_a(f(x)) = f(a)$ 满足:

 $1^{\circ} \varphi_a(f(x)+g(x)) = f(a)+g(a); 2^{\circ} \varphi_a(f(x)g(x)) = f(a)g(a)$

且
$$\varphi_a$$
的像为 $F[a] = \left\{ \sum_{i=0}^n a_i a^i \mid a_i \in F, 0 \le n \in Z \right\}$ 。

7.2 整除性, 带余除法

多项式整除定义: \forall f(x),g(x)∈F[x],g(x)≠0,称 g(x)整除 f(x),如果存在 h(x)∈F[x] 使得 f(x)=g(x)h(x)。记为 g(x)|f(x),也称 g(x)是 f(x)的因式。

注:给定 $f(x) \in F[x]$,非零常数都是 f(x)的因式;把非零因式称为平凡因式。

性质 1: 设 $f(x),g(x),h(x) \in F[x]$, $g(x)h(x) \neq 0$ 。若 h(x)|g(x),g(x)|f(x),那么 h(x)|f(x)。相伴: $f(x),g(x) \in F[x]$,称 f(x)与 g(x)相伴,如果存在非零常数 $c \in F$,使得 f(x)=cg(x)。两个多项式相伴 $\Leftrightarrow f(x)|g(x)$,g(x)|f(x)。

推论: 若 f(x)g(x)是首一多项式,则 $f(x)=g(x) \Leftrightarrow f(x)|g(x),g(x)|f(x)$ 。

性质 2: 设 $f(x),g(x),h(x) \in F[x]$,若 h(x)|f(x),h(x)|g(x),那么 h(x)|u(x)f(x)+v(x)g(x), $\forall u(x),v(x) \in F[x]$ 。

带余除法: \forall f(x),g(x) \in F[x],g(x) \neq 0,存在唯一的一组多项式 q(x),r(x) \in F[x] 使得 f(x)=g(x)q(x)+r(x); 其中 deg r < deg g。

推论: f(x)=(x-a)q(x)+f(a)($a \in F$)。(该式看上去很奇怪,可以理解为拿 x-a 去除 f(x),余数一定是 0 次或- ∞ 次的某个常数)

推论: $(x-a)|f(x)\Leftrightarrow f(a)=0$, $a\in F$, $f(x)\in F[x]$ 。

命题: 设 F ⊂ K 是数域,给定 $f(x),g(x) \in F[x]$, $g(x) \neq 0$,同样对于 $f(x),g(x) \in K[x]$;若在 K[x]中,g(x)|f(x),那么在 F[x]中也有 g(x)|f(x)。(做带余除法证之)

同余: 在 F[x]中,给定 $g(x) \neq 0$,称两个多项式 $f_1(x), f_2(x)$ 模 g(x)同余,如果 $g(x)|f_1(x)-f_2(x)$ 。记 $F[x]/g(x)F[x] = \{f(x)|f(x)\in F[x]\}$,其中 $\overline{f(x)}=f(x)+g(x)F[X]=$

 $f(x)+g(x)h(x)|h(x)\in F[x]$ 。这也是一个环。(类比 mod N 同余类构成的一个有限

计算两个多项式的带余除法: 辗转相除法。

7.3 最大公因式

环)

公因式:设 $f(x),g(x) \in F[x]$, $h(x) \in F[x]$ 且 $\neq 0$,称 h(x)是 f(x),g(x)的公因式,如果 h(x)|f(x),h(x)|g(x)。特别地,任意非零常数 $\in F$,c是 f(x),g(x)的公因式。

最大公因式: 设 $f(x),g(x) \in F[x]$,d(x)称为 f(x),g(x)的最大公因式,如果(1) d(x)|f(x),d(x)|g(x);(2) \forall h(x)|f(x),h(x)|g(x),则 h(x)|d(x)。

命题: d(x)在相伴意义下唯一。记(f,g)=d,表示 f = g 的首"1"最大公因式。

定理: f(x)与 g(x)的最大公因式 d(x)存在,且存在 u(x),v(x)使得 fu+gv=d。

补充: 若存在 u(x),v(x)使得 fu+gv=d, 且 d|f and d|g,则 d 是 f,g 的最大公因式。

互素:设 $f(x),g(x) \in F[x]$,称 f(x)与 g(x)互素,如果(f(x),g(x))=1。

定理: f(x)与 g(x)互素的充要条件是存在 u(x),v(x)使得 fu+gd=1。

性质 1: $f(x),g(x),h(x) \in F[x]$, $h(x) \neq 0$,if $h \mid fg$ with (h,f)=1,then $h \mid g$ 。

性质 2: $f(x),g(x),h(x) \in F[x]$, $fg \neq 0$, if f[h] and g[h] with (f,g)=1, then fg[h].

性质 3: $f(x),g(x),h(x) \in F[x]$, if (f,h)=1 and (g,h)=1, then (fg,h)=1.

推广: S 是正整数, $f_i \in F[x](i=1,2,\dots,S)$, 称 h 是 f_i 的因式, 如果 h $|f_i$ 。

定义:设 S 是正整数。称 d 是 f_i 的最大公因式,如果(1) $d|f_i$; (2) \forall $h(x)|f_i(x)$,都有 h|d。

命题: d(x)在相伴意义下唯一。记 $(f_1,\dots,f_5)=d$,表示 f_1,\dots,f_5 的首"1"最大公因式。

命题: (f₁,···,f_S)=((f₁,···,f_{S-1}),f_S)。

定理: $f_1(x), \dots, f_s(x)$ 的最大公因式 d(x)存在,且存在 $u_1(x), \dots, u_s(x)$ 使得 $\Sigma u_i f_i = d$ 。

互素: 设 $f_1(x), \dots, f_s(x) \in F[x]$, 称 $f_1(x), \dots, f_s(x)$ 互素, 如果 $(f_1(x), \dots, f_s(x))=1$ 。

定理: $f_1(x), \dots, f_s(x)$ 互素的充要条件是存在 $u_1(x), \dots, u_s(x)$ 使得 $\Sigma u_i f_i=1$ 。

区别: $f_1(x), \dots, f_s(x)$ 两两互素条件比 $f_1(x), \dots, f_s(x)$ 互素条件强得多!

定理: 数域的扩大不改变最大公因式; 从而不改变互素性。

7.4 不可约多项式,唯一因式分解定理

不可约多项式: 称 $p(x) \in F[x]$ 是 F[x] 中的不可约多项式, 如果 p(x) 只有平凡的因式。 (如果 h(x)|p(x), 则 h(x)=c 或者 $h(x)^{p}(x)$)

多项式因式分解的存在唯一性定理: 设 $f(x) \in F[x]$, 那么存在不可约多项式 $p_1(x)$, …, $p_s(x)$ 使得 $f(x) = p_1(x)$ … $p_s(x)$; 若还有不可约多项式 $q_1(x)$ …, $q_t(x)$ 使得 $f(x) = q_1(x)$ … $q_s(x)$,那么 s=t,在不记因子的顺序条件下有 $p_i(x)$ 与 $q_i(x)$ 相伴。

命题: p(x)是 F[x]中的不可约多项式,f(x)∈ F[x],那么则 p(x)|f(x)或者(p,f)=1。

命题: p(x)是不可约多项式, f(x),g(x)∈F[X], 若 p|fg,则 p|f or p|g。

唯一分解: $f(x) = cp_1(x)^{l_1} p_2(x)^{l_2} \cdots p_s(x)^{l_s}$ 。其中 $p_i(x)$ 是互不相同的不可约首"1"多项式,c 是 f(x)的首项系数。

定义: 设 $p(x) \in F[x]$, 称 p(x)是 F[x]中的素元, 如果 p(x)满足性质: 对任意 $f,g \in F[x]$, 若 p|fg,那么 p|f or p|g。

命题:在多项式环中,不可约多项式⇔素元。

7.5 重因式

多项式的重因式: 设 f(x),p(x) ∈ F[x], p(x) 是 F[x]的不可约多项式, k 是一个正整数,称 p(x) 是 f(x)的 k 重因式, 如果 $p^k(x)||f(x)$ 。当 k=1 时,称 p(x) 是 f(x)的单因式。

多项式的导数: 设
$$f(x) = \sum_{i=0}^{n} a_i x^i$$
, $f(x)$ 的导数定义为 $f'(x) = \sum_{i=1}^{n-1} i a_i x^{i-1}$ 。

导数运算满足: 1°(f+g)'=f'+g',(fg)'=f'g+fg'; 2°(af+bg)'=af'+bg'。

求导运算是映射: $F[x] \rightarrow F[x]$, $f(x) \mapsto f'(x)$ 。

定理: p(x)是 f(x)的 k 重因式, 那么 p(x)是 f'(x)的 k-1 重因式。若 k=1,则 p(x)与 f'(x) 万素。

推论: p(x)是 f(x)的(k)重因式(k \geq 2)的充要条件是 p(x) (f(x), f'(x))。

推论: p(x)是 f(x)的单因式 \Rightarrow (p(x),f'(x))=1。

推论: f(x)没有重因式 ⇔ (f(x),f'(x))=1。

定理: 设 $f(x) = cp_1^{m_1} \cdots p_s^{m_s}$, $f'(x) = p_1^{m_1-1} \cdots p_s^{m_s-1} h(x)$ 。其中(h,p_i)=1, \forall i=1,···,s。

则(f,f')= $p_1^{m_1-1}\cdots p_s^{m_s-1}$,且 f=cp₁…p_s(f,f')。

给定一个多项式,对它进行因式分解的步骤:

1° 计算 f'(x); 2° 计算(f',f)=d; 3° 若 d(x)=1, 寻找 f(x)的不可约因子; 若 $d(x)\neq 1$,

计算 f/(f,f'); 4° f←f/(f,f')。

一般地,称映射 D:F[x]→F[x]为导子,如果(1)D(af+bg)=aD(f)+bD(g); (2)D(fg)=D(f)g+D(g)f。

定理: 重因式的有无不随数域扩大而改变。

7.6 多项式的根,复数域上的不可约多项式

多项式函数:设 F 是数域,映射 ϕ :F→F 称为多项式函数,如果存在 $f(x) \in F[x]$ 使得 $\phi(a)=f(a)$ 。记 F 上的多项式函数集合为 F_{poly} 。

定义 F_{poly} 中的代数运算:和:(P+Q)(a)=P(a)+Q(a);积:(P · Q)(a)=P(a)Q(a)。

命题: 多项式函数的和、积仍是多项式函数。

定理: 多项式函数也是一个环。

命题: F[x]中的 n 次多项式至多有 n 个根(n \geq 0)。

命题:设 f,g \in F[x]是 n 次多项式,若有不同的 a₁,…a_{n+1} 使得 f(a_i)=g(a_i),则 f=g。 令映射 Φ : F[x] \rightarrow F_{poly},f \mapsto Φ (f),且 Φ (f)(a)=f(a), \forall a \in F。则 Φ 是环同构映射(单

射、满射,保持加法、乘法运算)。 Gauss 定理: 对 \forall f(x) \in C[x],存在 a \in C 使得 f(a)=0。

推论(唯一因式分解定理): 在复数域上,对 $\forall f(x) \in C[x]$,存在唯一的一组数

$$a_1, \dots, a_s$$
, 使得 $f(x) = c(x - a_1)^{l_1} \dots (x - a_s)^{l_s}$ 。

命题: 在 C[x]中 f(x)没有重因式 ⇔ f(x)=c(x-a)^m。

Vieta 定理: 设 $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=(x-c_1)\cdots(x-c_n)$,则 $a_{n-1}=-(c_1+\cdots+c_n)$,

$$a_{n-k} = (-1)^k \sum_{1 \leq i_1 < \dots < i_k \leq n} c_{i_1} \cdots c_{i_k} \text{ , } \mathsf{a_0} = (-1)^n \mathsf{c_1} \cdots \mathsf{c_n} \circ$$

总结: 复数域上的不可约多项式只有一次多项式。

tips:检验 a 是一个多项式的根,可以利用(x-a)的带余除法。

7.7 实数域上的不可约多项式

实数域上的多项式: (1)ax+b∈R[x]不可约; (2)ax²+bx+bc∈R[x]不可约 \Leftrightarrow b²-4ac \leq 0; (3)在数学分析学过,奇次多项式一定有实根。

命题: $f(x) \in R[x]$, $c \in C$, 若 f(c)=0, 则 f(c)=0。即实多项式的非实根成对出现。

推论: $f(x) \in R[x]$, f(x)的非实根个数是偶数个。

定理: 对 n 次多项式 $f(x) \in R[x]$, 设 r_1, r_2, \dots, r_s 是 f(x)的全部实根, c_1, c_1, \dots, c_t 是 f(x)

的全部复根,则
$$f(x) = \prod_{i=1}^{s} (x-r_i) \prod_{i=1}^{t} (x-c_i) (x-\overline{c_i}) = \prod_{i=1}^{s} (x-r_i) \prod_{i=1}^{t} (x^2-(c_i+\overline{c_i})x+c_i\overline{c_i})$$
。

容易证明: $x^2 - (c_i + \overline{c_i})x + c_i \overline{c_i} \in R[x]$ 。(该分解也是唯一的)

定理: 实多项式 p(x)不可约 \Leftrightarrow p(x)是一次多项式或者二次多项式 ax^2+bx+c ,其中 $b^2-4ac < 0$ 。

总结: 实数域上的不可约多项式只有一次多项式和判别式<0的二次多项式。

7.8 有理数域上的不可约多项式

命题: 任意 $f(x) \in Q[x]$, 存在 $g(x) \in Z[x]$ 使得 f(x) 与 g(x)相伴。

本原多项式: $g(x)=a_nx^n+\cdots+a_1x+a_0\in Z[x]$,且 $(a_0,a_1,\cdots,a_n)=1$ 。

定理:两个本原多项式 g(x),h(x)在 Q[x]中相伴当且仅当 $g(x)=\pm h(x)$ 。

Gauss 引理:本原多项式的乘积仍然是本原多项式。

推论: 若 $f(x),g(x) \in Z[x]$ 是本原多项式,且在 Q[x]中 g(x)|f(x),则 f(x)=g(x)h(x),则 h(x)是本原多项式。

定义:设 $p(x) \in Z[x]$,称 p(x)是不可约本原多项式,如果(1) p(x)是本原多项式; (2) p(x)在 Q[x]上不可约。

定理:任一本原多项式都可以唯一的分解为不可约本原多项式的乘积。(在相伴意义下)

定理:整系数多项式如果在Q上可约,则可分解为整系数多项式乘积。

定理:设 $f(x)=a_nx^n+\cdots+a_1x+a_0\in Z[x]$ 。如果 $x=\frac{s}{r}$ (既约)是 f(x)的根,则 $s|a_0$, $r|a_n$ 。

Eisenstein 判别法:设 $f(x)=a_nx^n+\cdots+a_1x+a_0$ 是一个次数 n 大于零的整系数多项式,

如果存在一个素数 p,使得 1° p|a_i,i=0,1,···,n-1; 2° p∤a_n; 3° p²∤a₀。则 f(x)

在 Q[x]上不可约。

命题:对于 f(x) ∈ F[x], f(x)不可约 ⇔ f(x+a)不可约。

tips:关于整系数多项式可约性质的一些做法与注意事项。

- 1. 有有理根 c, 从而推出 x-c | f(x), 可约;
- 2. 无有理根, 并不能导出不可约: (这是因为因式不一定是一次的)
- 3. 直接或移位 Eisenstein 判别法导出不可约;
- 4. 整系数多项式在 **Q**[**x**]可约,就能分解成两个整系数多项式的乘积; (但这并不意味着一定有有理数根,因为因式完全有可能是高次幂的)
- 5. 利用 a_n,a₀判别法判断是否有有理数根;有,则可约;无,则未必不可约。tips:本原多项式的判别及用途。
- 1. 首项系数为"1"的整系数多项式一定是本原多项式;
- 2. 若某首 "1" 多项式有有理数根,由 an, an 判别法知其必为整数根;
- 3. 设该整数根为 c,则 f(x)=(x-c)h(x),则 h(x)也是首"1"的本原多项式。

7.9 多元多项式环

设
$$t_1,t_2,\cdots,t_n$$
 是未知变元: $\sigma_1(t_1,\cdots,t_n) = \sum_{i=1}^n t_i, \sigma_i = \sum_{1 \leq k_1 < \cdots < k_i \leq n} t_{k_1} t_{k_2} \cdots t_{k_i}, \sigma_n = t_1 t_2 \cdots t_n$;

$$r(t_1, \dots, t_n) = \prod_{1 \leq i < j \leq n} (t_i - t_j)^2$$
。且所有函数与 t_1, \dots, t_n 的排列顺序无关。

给定域 F, x₁,x₂,…,x_n是独立的未知变元。

定义: F[x₁,x₂,····,x_n]=F[x₁][x₂]···[x_n]。

一般地,设 R 是整环, R[x]也是整环。推论:环 $F[x_1,x_2,\cdots,x_n]$ 是整环。

$$F[x_1, \dots, x_n]$$
的元素 $f(x_1, \dots, x_n) = \sum_{i_1, \dots, i_n} a_{i_1, \dots, i_n} x_1^{i_1} \dots x_n^{i_n}$ 有限和, i_1, \dots, i_n 是非负整数。

称 $a_{i_1,\cdots,i_n}x_1^{i_1}\cdots x_n^{i_n}$ 是 $F[x_1,\cdots,x_n]$ 中的单项式。

全次数: 单项式 $a_{i_1\cdots i_n}x_1^{i_1}\cdots x_n^{i_n}$ 的全次数定义为 $i_1+i_2+\cdots+i_n$;

多项式
$$f(x_1,\cdots,x_n)=\sum_{i_1,\cdots i_n}a_{i_1,\cdots,i_n}x_1^{i_1}\cdots x_n^{i_n}$$
的全次数 deg f = max{i₁+i₂+···+i_n|a≠0}.

全次数是0的项只有常数项。

齐次多项式: 对自然数 m,称 $f(x_1, \dots, x_n)$ 为 m 次齐次多项式, 如果 a=0,当 $i_1+i_2+\dots$ +i_n≠m 时。

对 $f \in F[x_1,x_2,\cdots,x_n]$,则存在 m 次齐次多项式 f_m 使得 $f=f_0+f_1+\cdots+f_n$ 。

性质: $\deg f \pm g \leq \max\{\deg f, \deg g\}$, $\deg fg = \deg f + \deg g$.

字典顺序: (i1,···,in)>(j1,···,in): 存在 s 使得 i1=j1,···,is=js,且 is+1>js+1。

首项:字典顺序最大的那项。

命题: $f,g \in F[x_1,\dots,x_n]$,则首项(fg)=首项(f)*首项(g)。

给定 $f \in F[x_1, \dots, x_n]$,定义函数: φ_f : $F^n \to F$, $(a_1, \dots, a_n) \to f(a_1, \dots, a_n)$ 称为 F^n 上对应于 F的多项式函数。

定理: 设 F 是数域,对任意 $f_1, f_2 \in F[x_1, \dots, x_n]$,若 $\varphi_{f_1} = \varphi_{f_2}$,则 $f_1 = f_2$ 。

推广: 当 F 是无限域时, 多项式环和多项式函数环同构。

7.10 对称多项式

设 F 是域,F[x1,x2,…,xn]是 F 上的以 x1,x2,…,xn 为未定元的多项式环。定义:设 $f(x_1, \dots, x_n) \in F[x_1, \dots, x_n]$ 是对称多项式,如果 $f(x_1, \dots, x_n) = f(x_{i_1}, \dots, x_{i_n})$,对于(1,2,…,n) 的任一排列 (i_1, \cdots, i_n) 。

注: 1° 常值多项式是对称多项式;

$$2^{\circ}$$
 $\sigma_1(x_1, \dots, x_n) = \sum_{i=1}^n x_i$; $\sigma_i(x_1, \dots, x_n) = \sum_{1 \le k_1 < \dots < k_i \le n} x_{k_i} \cdots x_{k_i}$; $\sigma_n(x_1, \dots, x_n) = x_1 \cdots x_n$; 称为基本

对称多项式:

令 S 是 $F[x_1, \dots, x_n]$ 中的对称多项式的集合,容易验证 S 是 $F[x_1, \dots, x_n]$ 的子环。

推论: 设 $g(x_1, \dots, x_n) \in F[x_1, \dots, x_n]$,若 $f_1, \dots, f_n \in S$,则 $g(f_1, \dots, f_n) \in S$ 。

命题:设 S_n 表示 $F[x_1, \dots, x_n]$ 对称多项式构成的子环, S_{n-1} 表示 $F[x_1, \dots, x_{n-1}]$ 构成的 子环。对任意 $f(x_1, \dots, x_n) \in S_n$,则 $f(x_1, \dots, x_{n-1}) \in S_{n-1}$ 。

特别地,对于基本多项式,有 $\sigma_i(x_1, \dots, x_{n-1}, 0) = \sigma_i(x_1, \dots, x_{n-1})$ 。

定理:设 $f(x_1, \dots, x_n) \in S_n$,那么唯一存在 $g(x_1, \dots, x_n) \in F[x_1, \dots, x_n]$,使得 $f(x_1, \dots, x_n) = S_n$

 $g(\sigma_1, \dots, \sigma_n)$ 。
Newton 公式:记 $s_i = x_1^i + \dots + x_n^i$ 。有递推公式: $1 \le k \le n$ 时: $s_k - \sigma_1 s_{k-1} + \dots + (-1)^{k-1} \sigma_{k-1} s_1 + (-1)^k k \sigma_k = 0$; k > n 时: $s_k - \sigma_1 s_{k-1} + \dots + (-1)^{k-1} \sigma_{n-1} s_{k-n+1} + (-1)^k \sigma_n s_{k-n} = 0$ 。 判断一个方程在复数域上有没有重根: $\prod_{1 \le i < j \le n} (c_i - c_j)^2 =$ 上式记为某个方程的判别式 D(f)

上式记为某个方程的判别式 D(f)。

在上述讨论中,f(x)首项系数为 1。如果 f(x)首项系数为 a_n ,先算出 a_n - ${}^1f(x)$ 的判别 式, 然后规定 f(x)的判别式为 a_n²ⁿ⁻²D(a_n⁻¹f)。

7.11 模 m 剩余类环,域,域的特征

设 Z 是整数环, N 是正整数, 称 a.b ∈ Z 是模 N 同余的, 如果 M la-b。模 N 同余 是 Z中的等价关系。记 a'表示模 N 与 a 的全体整数的等价类。

令 Z/NZ={a'|a ∈ Z}={0',1',···,(N-1)'}。规定加法运算: a'+b'=(a+b)'; 乘法运算: a' • b'=(ab)'。

当 N 是合数时, Z/NZ 有零因子。

令(Z/NZ)*={a'|(a,N)=1}。1°乘法封闭;2°满足结合律;3°单位元1'存在;4° 任意 $a' \in (Z/NZ)^x$,存在逆元 $b' \in Z/NZ$ 使得 a'b'=1'。 $\therefore (Z/NZ)^x$ 构成一个群。

当 N 是素数 p 时,(Z/pZ)* 所有非零元都是可逆元。

定义:设F是非空集合,有加法运算和乘法运算,称F是域,如果F是有单位元1的交换环,并且每个非零元都是可逆元。(域一定无零因子)

定义: F 中有单位元 1,若任意 $n \in Z$, $n \cdot 1 \neq 0$,则称 F 是特征 0 域;若存在 $m \in Z$, $m \cdot 1 = 0$,则称 F 是有限特征 域。

命题:若 F 是有限特征域,那么存在唯一的素数 p 使得 pa=0,对任意 $a \in F$ 。

定义: 若 F 是域,存在素数 $p \in Z$,使得 pa=0,任意 $a \in F$ 。则称 F 是特征 p 的域。

推论:任意的域,它们的特征要么是0,要么是p。

tips:两个元素相乘=0,那么他们一定都不可逆。

在Z。上不可约的整系数多项式在Q上也不可约。

第8章 线性空间

8.1 线性空间的结构

设 F 是域, F^n 有两个运算: $F^n \times F^n \to F^n$,(α , β) $\to \alpha + \beta$ 称为向量加法; $F \times F^n \to F^n$,(α , α) $\to \alpha$ α称为数量乘法。满足 8 个性质:

1°加法交换律; 2°加法结合律; 3°零元存在; 4°负元存在; 5°单位元存在; 6°数乘结合律; 7°数乘左分配律; 8°数乘右分配律

定义:设 F 是域, V 是非空集合。有两个运算,一个加法运算($V \times V \to V$),一个数乘运算($F \times V \to V$),满足以上 8 个性质。称(V,F,+,•)是一个线性空间,简称 V 是 F-线性空间。

例: 数域、特征 p 域、F[x]、C 是 R-线性空间, F[x]/f(x)F[x]是 F-线性空间。

设 V 是 F-线性空间: 1° 零元唯一; 2° 负元唯一; 3° 0α =0; 4° $-\alpha$ =(-1) α ; 5° k0=0; 6° 若 $k\alpha$ =0,则 k=0 或 α =0

3*设 $\{a_i\}(i \in I)$ 是 V 的向量组,称这个向量组线性相关,存在 I 的有限子集 I_A 使得 $\{a_i\}(i \in I_A)$ 是线性相关的。

4*称向量组线性无关,如果对 I 的任意有限子集 I_A 都有 $\{a_i\}$ ($i ∈ I_A$)线性无关。例:在线性空间 F[x]中,**1**, x, \cdots, x^n 是 F-线性无关的。

命题: 向量组 $\{a_i\}(i \in I)$ 是线性相关的 \Leftrightarrow 存在 $i_0 \in I$,使得 a_{i0} 可由 $\{a_i\}(i \in I \setminus \{i_0\})$ 线性表示。

定义: 设{a_i}(i ∈ I)是 V 的向量组,J 是 I 的子集,称向量组{a_i}(i ∈ J)是{a_i}(i ∈ I)的极大无关组,如果{a_i}(i ∈ J)线性无关,且对任意 i ∈ I,则 a_i 均可由{a_i}(i ∈ J)线性表示。定义: 设{a_i}(i ∈ I),{ β _i}(i ∈ J)是 V 的两个向量组,称它们等价,如果{a_i}可由{ β _i}线性表示。等价的向量组的极大线性无关组向量个数相同。

定义:设 $\{a_i\}(i \in I)$ 是 V 的向量组,向量组的秩是极大线性无关组的向量个数。

定义:设 α_1 ,…, $\alpha_n \in V$,则集合 $V=V_1\{\sum k_i a_i | k_i \in F\}$ 是一个 F-线性空间。由 α_1 ,…, α_n 生成的 F-线性空间记为< α_1 ,…, α_n >。

定义:设 V 是 F-线性空间,I 是一个集合, $\alpha_i \in V$, $i \in I$ 。称 $\{a_i\}(i \in I)$ 是 V 的一组基,如果 $\mathbf{1}^{\circ}$ $\{a_i\}(i \in I)$ 是线性无关的; $\mathbf{2}^{\circ}$ 任意 $\beta \in V$, β 可由 $\{a_i\}(i \in I)$ 线性表示。如果 I 是有限,称 V 是有限维线性空间;如果 I 是无限的,就称为无限维线性空间。

例: F^n 是 n 维 F-线性空间; $M_{m\times n}(F)$ 是 $m\times n$ 维线性空间; C 是 Q-无限维空间; R 是无限维 Q-线性空间

定理: 设 α_1 ,…, α_n 是 V 的一组基,那么映射 θ :V \rightarrow Fⁿ, $\alpha \rightarrow (a_1,a_2,…,a_n)$ (坐标),则 θ 是一个双射,保加法,保数乘。

过渡矩阵: $\alpha_1, \dots, \alpha_n$ 和 β_1, \dots, β_n 是 V 的两组基,则(β_1, \dots, β_n)=($\alpha_1, \dots, \alpha_n$)A,其中 A 是 可逆矩阵。

可以定义映射 ϕ 把 $\{\beta_1, \dots, \beta_n | \beta_1, \dots, \beta_n \neq V$ 的基}映射成 $A \in GLn(F)(n$ 阶可逆矩阵群) $A \in GLn(F) \Leftrightarrow A$ 的列(行)向量是 F^n 的基。

坐标变换公式: 设 α_1 ,…, α_n 和 β_1 ,…, β_n 是 V 的两组基,对 $\alpha \in V = \sum_{i=1}^n a_i \alpha_i = \sum_{i=1}^n b_i \beta_i$,

令 $(\beta_1,\dots,\beta_n)=(\alpha_1,\dots,\alpha_n)$ T 的过渡矩阵,则有 $(a_1,\dots,a_n)^T=T(b_1,\dots,b_n)^T$ 。

tips:一个线性空间的基可以是无限多个,但是所有元素都必须使用**有限**个基表出。

8.2 子空间及其交与和,子空间的直和

定义:设 $V \in F$ -线性空间,V 的非空子集 V_0 称为 V 的子空间,如果 V_0 在 V 的加法和数乘下仍然是一个线性空间。

命题: 线性空间 V 的非空子集 V_0 是 V 的子空间的充分必要条件是 V_0 对于 V 的加法和数乘封闭。

命题: 若 V 是 n 维 F-线性空间, U 是 V 的子空间, M dimU≤n.

命题: 设 U₁,U₂ 是 V 的子空间,若 U₁⊆U₂,dimU₁=dimU₂,则 U₁=U₂。

命题: 若 dimV=n,则 V 中任意 n+1 个向量线性相关。

子空间运算: 设 V_1 和 V_2 是 V 的子空间: $V_1 \cap V_2$ 是 V 的子空间。 V_1+V_2 是 V 的子空间。($V_1+V_2=\{\alpha+\beta\mid\alpha\in V_1,\beta\in V_2\}$)

定理: 设 V_1,V_2 是 V 的一个子空间,则 $dim(V_1 \cap V_2)+dim(V_1+V_2)=dimV_1+dimV_2$ 。

子空间的直和: 设 V_1,V_2 是 V 的子空间,称 V 是 V_1 和 V_2 的直和,如果对任意的 α \in V ,都存在唯一的一组向量 $\alpha_1 \in V_1, \alpha_2 \in V_2$ 使得 $\alpha = \alpha_1 + \alpha_2$ 。(记为 $V = V_1 \oplus V_2$)

命题: 设 V_1,V_2 是 V 的子空间, 下列条件是等价的:

1° V 是 V₁和 V₂的直和; 2° V 中的零元素表示唯一; 3° V=V₁+V₂,V₁∩V₂=0; 4° dimV=dimV₁+dimV₂

推广:设 V_i是 V 的子空间,若 V=ΣV_i,称 V 是 V_i 的直和,如果对任意的 $\alpha \in V$,存在唯一一组 $\alpha_i \in V_i$ 使得 $\alpha = \Sigma \alpha_i$,记为 V= \oplus V_i。

8.3 线性空间的同构

定义:设 V_1,V_2 是两个 F-线性空间,映射 $\phi:V_1 \rightarrow V_2$ 称为 F-线性同构,如果 $\mathbf{1}^\circ$ ϕ 是双射; $\mathbf{2}^\circ$ ϕ 保运算: $\phi(\alpha+\beta)=\phi(\alpha)+\phi(\beta)$, $\phi(a\alpha)=a\phi(\alpha)$ 。

同构映射的性质: 1° $\varphi(0)=0$; 2° α_1,\dots,α_s 线性相关 $\Leftrightarrow \varphi(\alpha_1),\dots,\varphi(\alpha_n)$ 线性相关。

推论: V₁与 V₂ 同构的充要条件是 dimV₁=dimV₂。

推论: 任意 n 维 F-线性空间同构于 F^n , F-空间的线性同构构成它的一个等价关系。 命题: 设 V_1 , V_2 是 V 的子空间, $V=V_1 \oplus V_2$ 的充要条件是 V 同构于 $V_1 \times V_2$ 。

命题:设 $V \in F$ -线性空间, $V_1 \in V$ 的子空间,则存在 $V_2 \in V$ 的子空间,使得 $V=V_1 \oplus V_2$ 。(注:这样的 V_2 并不唯一,这是因为**基的扩充方式有很多**)

(理解: R^2 为 V_1 =xy 平面,想要扩充成 R^3 ,可以补充 V_2 =Z 轴,也可以补充 V_2 =任 意一条不在 xy 平面上的直线)

若 $V=V_1 \oplus V_2$,对任意 $\alpha \in V$,存在唯一的 $\alpha_1 \in V_1, \alpha_2 \in V_2$ 使得 $\alpha=\alpha_1+\alpha_2$,则令映射 π_i : $V \to V_i$, $\alpha \mapsto \alpha_i$ 是满射,保持线性运算,这类映射称为 V 沿直和分解的投影。

8.4 商空间

设 F 是域,V 是 F-线性空间, V_1 是 V 的子空间,称 V 的元素 α_1,α_2 关于 V_1 是等价的,如果 $\alpha_1-\alpha_2 \in V_1$ 。

命题: V 中元素关于 V₁ 的等价是 V 的等价关系。

记 V 关于 V_1 等价为 $\tilde{V_1}$, $\mathbf{x_1}$ 与 $\mathbf{x_2}$ 关于 V_1 等价,记为 $\mathbf{x_1} \sim \mathbf{x_2}$ 。

定义 V 对于子空间 V_1 的商集 $V/V_1 = \{v = v + V_1 \mid v \in V\}$

在集合 V/V₁中定义运算: 对任意α,β \in V,规定: $\alpha + \beta = \alpha + \beta$; $k\alpha = k\alpha$ 。

 V/V_1 是 F-线性空间, 称为 V 关于子空间 V_1 的商空间。

定理: 设 V 是 n 维向量空间, V_1 是 V 的 k 维子空间, 则 V/V_1 是 n-k 维空间。

定理:设 V_1 是V的子空间, α_1 ,…, α_k 是 V_1 的一组基, α_1 ,…, α_k , α_{k+1} ,…, α_n 是V的一

组基,则 $\overline{\alpha_{k+1}}, \cdots \overline{\alpha_n}$ 是 V/V₁的基。

定理: 若 $V=V_1 \oplus V_2$,则 $V/V_1=\{\overline{\alpha} \mid \alpha \in V_2\}$.

第9章 线性映射

9.1 线性映射及其运算

设 V_1,V_2 是 F-线性空间, 映射φ: $V_1 \rightarrow V_2$ 称为 F-线性映射, 如果 1° φ(α+β)=φ(α)+φ(β); 2° φ(aα)=aφ(α), a ∈ F, α,β ∈ V_1 。(即: φ(aα+bβ)=aφ(α)+bφ(β))

命题: $φ:V_1 \rightarrow V_2$ 是 F-线性的, 那么φ(0)=0; 把线性组合映成线性组合。

设 F 是域,m,n 是正整数,A \in M_{m×n}(F),那么映射φ_A:Fⁿ \rightarrow F^m,α \rightarrow Aα,则φ_A是 F-线性的。

命题: 设 $\varphi:V_1 \to V_2$, $\psi:V_2 \to V_3$, 那么 $\psi\circ \varphi$ 也是 F-线性的。

记 $Hom_F(V_1,V_2)$ 表示从 V_1 到 V_2 的 F-线性映射组成的集合。

若 $\varphi_1, \varphi_2 \in Hom_F(V_1, V_2)$,定义: $(\varphi_1 + \varphi_2)(\alpha) = \varphi_1(\alpha) + \varphi_2(\alpha)$, $(a\varphi)(\alpha) = a\varphi(\alpha)$, $\alpha \in V_1$, $\alpha \in F$ 。定理: $Hom_F(V_1, V_2)$ 在加法和数量乘法下是 F-线性空间。

当 $V_1=V_2=V$ 时, $Hom_F(V,V)$ 记为 $End_F(V)$,它的元素称为 V 的线性变换。

End_F(V)在 "+" 和 "。" 是一个环。

映射 ϕ :V \rightarrow V, α \rightarrow a α 是线性变换,称为纯量线性变换,记为 al $_{V}$,其中 I_{V} 是恒等线性变换。

定义映射φ:F→End_F(V), a→al_V是单射,把 F 与 Fl_V等同起来,F⊂End_F(V)。

由多项式环的通用性,对任意 $\varphi \in \operatorname{End}_F(V)$, $F[\varphi] = \{f(\varphi) | f(x) \in F[x]\}$ 是 $\operatorname{End}_F(V)$ 的子环,其中 $\varphi^0 = I_V$, $f(\varphi) = a_0I_V + a_1\varphi + \cdots + a_n\varphi^n$ 。

9.2 线性映射的核与象

定义:设 φ :V₁→V₂是 F-线性空间的线性映射,称 φ -¹(0)为 φ 的核。记为 Ker(φ)。 称映射 φ 的象为线性映射 φ 的象,记为 Im(φ)。

命题: 线性映射 ϕ 的核 Ker ϕ 是 V_1 的子空间、象 Im ϕ 是 V_2 的子空间。

定理: 设 φ :V₁→V₂是 F-线性映射,那么 dim(Ker(φ))+dim(Im(φ))=n。

定理: 设φ是线性映射, 称象空间的维数为映射φ的秩。

推论 1: 设 ϕ :V₁ \rightarrow V₂ 是 F-线性映射,那么映射 ϕ ':V₁/Ker(ϕ) \rightarrow Im(ϕ), α +Ker(ϕ) \rightarrow ϕ (α) 是 F-线性空间同构。

推论 2: 任意 $\beta \in Im(\phi)$, $\phi^{-1}(\beta) = \{\alpha \in V_1 | \phi(\alpha) = \beta\}$; 若 $\alpha_0 \in \phi^{-1}(\beta)$, 则 $\phi^{-1}(\beta) = \alpha_0 + Ker(\phi)$ 。 **9.3 线性映射的矩阵表示**

定理:设 V_1,V_2 是有限维的 F-线性空间, α_1,\cdots,α_n 是 V_1 的基, β_1,\cdots,β_m 是 V_2 的基,则映射 Φ :Hom_F(V_1,V_2) \rightarrow M_{m×n}(F), ϕ \rightarrow A,满足($\phi(\alpha_1),\cdots,\phi(\alpha_n)$)=(β_1,\cdots,β_m)A 是 F-线性空间同构的。

定理: 设 V_1,V_2 是有限维F-线性空间, $dimV_1=dimV_2$, $φ:V_1 \rightarrow V_2$ 是F-线性映射,则 φ是单射的充要条件是φ是满射。

引理:设 V_1,V_2 是F-线性空间, α_1,\cdots,α_n 是 V_1 的基,对任意 $\beta_1,\cdots,\beta_n \in V_2$,都存在唯一的线性映射 $\phi:V_1 \rightarrow V_2$ 使得 $\phi(\alpha_i)=\beta_i$ 。

定理: 设 V 是 n 维 F-线性空间, α_1 ,…, α_n 是 V 的一组基,则映射 Φ : $\varphi \in End_F(V) \rightarrow A$ $\in M_n(F)$ 是环同构,其中($\varphi(\alpha_1)$,…, $\varphi(\alpha_n)$)=(α_1 ,…, α_n)A。

在同构Φ下,n 阶可逆矩阵的集合 $GL_n(F)$ 的原象记为 $Aut(V)=\{\varphi\in End_F(V)|\varphi$ 是同构}。定理: 设 V 是 n 维 F-线性空间, α_1,\cdots,α_n 和 β_1,\cdots,β_n 是 V 的两组基,设 $\varphi\in End_F(V)$, $\varphi(\alpha_1,\cdots,\alpha_n)=(\alpha_1,\cdots,\alpha_n)A$, $\varphi(\beta_1,\cdots,\beta_n)=(\beta_1,\cdots,\beta_n)B$,设 $(\beta_1,\cdots,\beta_n)=(\alpha_1,\cdots,\alpha_n)T$, $T\in GL_n(F)$,则 $B=T^{-1}AT$ 。

定理: 设 $\phi:V_1 \rightarrow V_2$ 是 F-线性空间同构, ϕ^{-1} 是 ϕ 的逆映射, 则 ϕ^{-1} 是线性同构。

9.4 线性变换的特征值与特征向量,线性变换可对角化的条件

定义: 设 $\phi \in End_F(V)$, 设 $\lambda \in F$, 称 λ 是 ϕ 的特征值, 如果存在 $\alpha \in V(\alpha \neq 0)$, 使得 $\phi(\alpha) = \lambda \alpha$, 称 α 是属于 ϕ 的特征向量。记 $V_{\lambda} = \{\alpha \in V \mid \phi(\alpha) = \lambda \alpha\}$, 当 λ 是 ϕ 的特征值时, $V_{\lambda} \neq 0$ 。 命题: V_{λ} 是 V 的子空间。

定义:设 $\phi \in End_F(V)$, α_1 ,…, α_n 是 V 的基, $\phi(\alpha_1$,…, α_n)= $(\alpha_1$,…, α_n)A,定义 ϕ 的特征多项式为 $f_{\varphi}(\lambda)=f_{A}(\lambda)$ 。

定理: 设 $\phi \in End_F(V)$, α_1 ,…, α_n 是 V 的基, $\phi(\alpha_1$,…, α_n)=(α_1 ,…, α_n)A,那么:

1° λ是φ的特征值 \Leftrightarrow λ是 A 的特征值; 2° 映射α $\in V_{\lambda} \rightarrow (F^{n})_{\lambda}(\varphi_{A})$ 是同构。

定义: 称线性变换 φ 是可对角化的,如果存在 V的一组基 α_1 ,···, α_n 使得 $\varphi(\alpha_i)=\lambda_i\alpha_i$ 。

定理:设 $\varphi \in End_F(V)$, α_1 ,…, α_n 是 V 的基, $\varphi(\alpha_1$,…, α_n)= $(\alpha_1$,…, α_n)A,则 φ 可对角化的充要条件是 A 可对角化。

定理: 设 $\varphi \in End_F(V)$, 下列条件等价:

1° φ可对角化; 2°
$$\mathbf{f}_{\varphi}(\lambda) = \prod_{i=1}^{s} (\lambda - \lambda_{i})^{m_{i}}$$
, $\dim V_{\lambda_{i}} = m_{i}$; 3° $V = \bigoplus_{i=1}^{s} V_{\lambda_{i}}$.

命题:属于不同特征子空间的向量线性无关。

9.5 线性变换的不变子空间

定义: 设 $\varphi \in End_F(V)$, $V_1 \neq V$ 的子空间,称 $V_1 \neq \varphi$ 的不变子空间,如果对 $\forall \alpha \in V_1$ 都有 $\varphi(\alpha) \in V_1$ 。

命题: 设 $\phi \in End_F(V)$,则 1° $Ker(\phi) \setminus Im(\phi)$; 2° $\forall f(x) \in F[x]$, $Ker(f(\phi)) \setminus Im(f(\phi))$ 是 ϕ -不变子空间。

定义: 设 $\phi \in End_F(V)$, V_1 是 ϕ -不变子空间,映射 $\phi | V_1: V_1 \rightarrow V_1$,定义为对 $\forall \alpha \in V_1$, $\phi | V_1(\alpha) = \phi(\alpha)$,称映射 $\phi | V_1$ 是 ϕ 在 V_1 上的限制, $\phi | V_1 \in End(V_1)$ 。

命题:设 ϕ ∈ End_F(V), V₁是 ϕ -不变子空间,则映射 ϕ ':V/V₁→V/V₁, α +V₁→ ϕ (α)+V₁是线性变换。称 ϕ '是 ϕ 在商空间 V/V₁上的诱导线性变换。

定理: 设 φ ∈ End_F(V), V₁ 是 φ -不变子空间, φ ₁= φ |V₁, φ '是 φ 的诱导线性变换,则

$$f_{\varphi}(\lambda) = f_{\varphi_1}(\lambda) f_{\varphi'}(\lambda)$$
。 (化归基-矩阵证明之)

定理: 设 $V=V_1 \oplus V_2$, $\varphi \in End_F(V)$, V_i 是 φ -不变子空间, α_1 ,..., α_r 是 V_1 的基, α_{r+1} ,..., α_n 是 V_2 的基, $\varphi(\alpha_1,...,\alpha_r)=(\alpha_1,...,\alpha_r)A_1$, $\varphi(\alpha_{r+1},...,\alpha_n)=(\alpha_{r+1},...,\alpha_n)A_2$, 这里 $A_1 \in M_r(F)$,

$$A_2 \in M_{n-r}(F)$$
,则 $\phi(\alpha_1, \cdots, \alpha_n) = (\alpha_1, \cdots, \alpha_n) \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$ 。

定理: 设 $\phi \in End_F(V)$, $f(\lambda)=g(\lambda)h(\lambda) \in F[\lambda]$, 若 $(g(\lambda),h(\lambda))=1$, 则 $Ker(f(\phi))=Ker(g(\phi)) \oplus Ker(h(\phi))$ 。

推论: 设 $f(\lambda) \in F[\lambda]$, $f_i(\lambda) \in F[\lambda]$, 且 $f(\lambda) = \prod_{i=1}^s f_i(\lambda)$,且 $\{f_i\}$ 是两两互素的,那么对任意 $\phi \in End_F(V)$,则 $Kerf(\phi) = \bigoplus_{i=1}^s Ker(f_i(\phi))$ 。

推论:设 $A \in M_n(F)$, $f(\lambda) = \prod_{i=1}^s (\lambda - \lambda_i)^{m_i}$ 是 A 的特征多项式,则 Ker f(A)=

 $\bigoplus_{i=1}^{s} \text{Ker} (\lambda_i I - A)^{m_i})_{\circ}$

定义: 对于φ∈End_F(V), A∈M_n(F), 若多项式 f(x)∈F[x]使得 f(φ)=0(f(A)=0), 称 f(x) 是φ(A)的零化多项式。

9.6 Hamilton-Cayley 定理

定理:设 $A \in M_n(F)$, $f(\lambda)$ 是 A 的特征多项式,则 f(A)=0。

注: 此定理的结果依赖于: 1° $\mathsf{M}_\mathsf{n}(\mathsf{F}[\mathsf{x}])$; 2° $(\lambda I - A)^*(\lambda I - A) = f(\lambda)I_n$ 。

推论: 矩阵 A 或线性变换φ的特征多项式是它的零化多项式。

例:单位矩阵的零化多项式是λ-1。

分块对角矩阵的零化多项式是 $f(\lambda) = \prod_{i=1}^{s} (\lambda - \lambda_i)^{m_i}$ 或 $d(\lambda) = \prod_{i=1}^{s} (\lambda - \lambda_i)$ 。

9.7 线性变换的最小多项式

定义:设 A∈M_n(F),φ∈End_F(V),称 A(φ)的零化多项式 d(λ)为 A 的极小多项式, 如果 1°d(A)=0,2°任意 f∈F[λ],若 f(A)=0,则有 d(λ)|f(λ),3°是首一的。

定理: A 可对角化的充要条件是 $d_A(\lambda)$ 没有重根。

定理: 矩阵 $A \in M_n(F)$ 的 $f_A(\lambda), d_A(\lambda)$ 不随域的扩张而改变。若 F 是数域, $A \in M_n(F)$, $B \in M_n(F)$,若 $A \subseteq B$ 相似,则 $d_A(\lambda) = d_B(\lambda)$ 。

定理: 设 $A \in M_n(F)$,则 $c \in d_A(\lambda)$ 的充分必要条件是 $c \in f_A(\lambda)$ 的根($c \in C$)。

推论:设 $A \in M_n(F)$, $f_A(\lambda) = \prod_{i=1}^s (\lambda - \lambda_i)^{m_i}$, 其中 $\lambda_1, \dots, \lambda_s$ 是 $f_A(\lambda)$ 的不同特征值,

 m_i 是正整数,那么 $d_A(\lambda) = \prod_{i=1}^s (\lambda - \lambda_i)^{e_i}$,其中 1 \leq e_i \leq m_i。

推论:设 $A \in M_n(F)$, $f_A(\lambda) = \prod_{i=1}^s P_i(\lambda)^{m_i}$ 是 $f_A(\lambda)$ 在 $F[\lambda]$ 的不可约因式分解,则

$$d_A(\lambda) = \prod_{i=1}^s P_i(\lambda)^{e_i}$$
,其中 1 \leq e_i \leq m_i \circ

定理: 设
$$\phi$$
 \in End $_{F}(V)$, $f_{\varphi}(\lambda) = \prod_{i=1}^{s} P_{i}(\lambda)^{m_{i}}$, $d_{\varphi}(\lambda) = \prod_{i=1}^{s} P_{i}(\lambda)^{e_{i}}$, $1 \leq e_{i} \leq m_{i}$,

则
$$V = \bigoplus_{i=1}^{s} Ker(P_i(\phi))^{m_i} = \bigoplus_{i=1}^{s} Ker(P_i(\phi))^{e_i}$$
.

定理: 设 $V= \bigoplus_{i=1}^{S} V_i$, $\varphi \in End_F(V)$, V_i 是 φ -不变子空间, $\varphi_i = \varphi \mid V$, 则:

$$\mathbf{1}^{\circ} \ f_{\varphi}(\lambda) = \prod_{i=1}^{s} f_{\varphi_{i}}(\lambda) \ ; \ \mathbf{2}^{\circ} \ d_{\varphi}(\lambda) = [d_{\varphi_{1}}(\lambda), \cdots, d_{\varphi_{s}}(\lambda)] \ .$$

定理: 设 $\varphi \in End_F(V)$, $f_{\varphi}(\lambda) = d_{\varphi}(\lambda) = (\lambda - \lambda_0)^n$, 则存在 V 的一组基 $(\varphi - \lambda_0 I)^{n-1}\alpha$, $(\varphi - \lambda_0 I)^{n-2}\alpha$, …, $(\varphi - \lambda_0 I)\alpha$, α 使得 φ 在这组基下的矩阵是 $J_n(\lambda_0)$ 。

推论:设 $A \in M_n(F)$,若 $f_A(\lambda) = d_A(\lambda) = (\lambda - \lambda_0)^n$,则 A 相似于 $J_n(\lambda_0)$ 。

9.8 幂零变换的结构

定义: 设 V 是 n 为 F-线性空间, $\varphi \in End_F(V)$,称 φ 是幂零线性变换,存在正整数 n_0 使得 $\varphi^{n_0}=0$ 。

命题: φ是幂零线性变换,则φ的特征值为0。

定义: 幂零线性变换φ的最小多项式的次数称为φ的幂零指数。

定义:设 $\varphi \in End_F(V)$ 是幂零线性变换,对向量 $\alpha \in V$,若 $\alpha, \varphi(\alpha), \cdots, \varphi^{l-1}(\alpha)$ 线性无关,且 $\varphi^l(\alpha) = 0$,记为 $Z(\alpha, \varphi) = <\alpha, \varphi(\alpha), \cdots, \varphi^{l-1}(\alpha) > E\varphi$ -不变子空间,称为 φ -强循环子空间。定理: $\varphi_{\varphi} \mid Z(\alpha, \varphi) = \varphi_{\varphi}$,则 $Z(\alpha, \varphi)$ 不能写成两个 φ -不变子空间的直和。

定理: 设 $\phi \in End_F(V)$, e 是 ϕ 的幂零指数, 那么存在 $\alpha_1,\alpha_2,\cdots,\alpha_s \in V$ 使得 $V= \oplus_{i=1} {}^sZ(\alpha_i,\phi)$ 。 更确切地,存在 V 的一组基 $\alpha_1,\phi(\alpha_1),\cdots,\phi^{|_1-1}(\alpha_1);\cdots;\alpha_s,\phi(\alpha_s),\cdots,\phi^{|_s-1}(\alpha_s)$ 使 ϕ 在这组基下的矩阵为 Jordan 形矩阵。

定理: 设 $\phi \in End_F(V)$, $\phi^n=0$,则存在 $\alpha_i \in V$,使得 $V= \oplus_{i=1} {}^sZ(\alpha_i, \phi)$ 。记 dim $Z(\alpha_i, \phi)=t_i$,则(t_1, t_2, \cdots, t_s)是由 ϕ 唯一决定的(不考虑顺序)。

定理: A∈M_n(F), A^l=0, 那么 A 相似于 Jordan 形矩阵, 在不考虑 Jordan 小块的顺序下唯一。

定理: 记 N_i 是 i 阶 Jordan 小块的个数,则 rank(A^k)=N_{k+1}+2N_{k+2}+…+(n-k)N_n; N_k=rank(A^{k-1})+rank(A^{k+1})-2rank(A^k)。

9.9 线性变换的 Jordan 标准形

定理:设 $A \in M_n(F)$, $f_A(\lambda) = \prod_{i=1}^s (\lambda - \lambda_i)^{m_i}$,那么 A 相似于一个分块 Jordan 矩阵。

更确切地,存在 Jordan 矩阵 $J_{n_{11}}(\lambda_{\!\scriptscriptstyle 1}),\cdots,J_{n_{\!\scriptscriptstyle 11}}(\lambda_{\!\scriptscriptstyle 1}),\cdots,J_{n_{\!\scriptscriptstyle s_1}}(\lambda_{\!\scriptscriptstyle s}),\cdots,J_{n_{\!\scriptscriptstyle s_t}}(\lambda_{\!\scriptscriptstyle s})$ 使得 A 相似

于
$$\operatorname{diag}(J_{n_{11}}(\lambda_1),\cdots,J_{n_{l_1}}(\lambda_1),\cdots,J_{n_{s_1}}(\lambda_s),\cdots,J_{n_{s_{t_s}}}(\lambda_s))$$
,其中 $\sum_{j=1}^{t_i}J_{n_{ij}}=m_i$ \circ

主对角元为λi 的 Jordan 块总数 Ni=dimV-rank(A-λil),

t 级 Jordan 块 J_t(λ_i)的个数 N_i(t)=rank(A- λ_i I)^{t+1}+rank(A- λ_i I)^{t-1}-2rank(A- λ_i I)^t。

在不考虑 Jordan 块的顺序下 Jordan 标准型唯一。

在复数域上,任何一个矩阵都相似于它的 Jordan 标准型。

补: 多项式环上的矩阵

 $M_n(F[\lambda])=M_n(F)[\lambda]$

用 $A(\lambda)$ 表示 $M_n(F[\lambda])$ 中的元素。

称 $A(\lambda)$ 是可逆矩阵,如果存在 $B(\lambda)$ 使得 $A(\lambda)B(\lambda)=B(\lambda)A(\lambda)=I_n$ 。

若 A(λ)是可逆矩阵,则|A(λ)| \in F^x=F\{0}。

初等行列变换:交换行/列,把某一行/列乘上 F,把某一行/列的 F[λ]倍加到另一行/列。

初等矩阵: 1° 交换单位矩阵的行列; 2° 单位矩阵某一行/列数乘 F; 3° 单位矩阵某一行/列的 $F[\lambda]$ 倍加到另一行/列。

整数环类似: 1°同理; 2°数乘±1; 3°整数倍。

定理:对 $A \in M_n(F[\lambda])$,存在首一多项式 $d_1(\lambda)$,…, $d_r(\lambda)$ 使得 A 经过若干次行初等变换和列初等变换化为 $diag\{d_1(\lambda),…,d_r(\lambda),0,…,0\}$,且 $d_1(\lambda)|d_2(\lambda)|…|d_r(\lambda)$ 。

定义 rank(A)=max{i|A有i阶非零子式}。初等行列变换不改变矩阵的秩。

注:满秩矩阵不一定可逆。rank(λl-A)=n,但λl-A 不可逆; rank(diag{1,2})=2,但 diag{1,2}不可逆。

推论: $A(\lambda)$ 是可逆矩阵,则 $A(\lambda)$ 经行列初等变换后化为单位矩阵,从而有: $A(\lambda) \in M_n(F[\lambda])$ 可逆 $\Leftrightarrow |A(\lambda)| \in F^*=F\setminus\{0\}$ 。

定义: 称 $A(\lambda),B(\lambda)$ 相抵,如果存在可逆矩阵 $P(\lambda),Q(\lambda)$ 使得 $P(\lambda)A(\lambda)Q(\lambda)=B(\lambda)$ 。任何可逆矩阵都是初等矩阵的乘积。

定义:多项式矩阵的行列式因子:设 $A(\lambda) \in M_n(F[\lambda])$,若 $rank(A(\lambda))=r$,对任意非负整数 $i \in \{1,2,\cdots,r\}$,定义 $D_i(\lambda)$ 是 $A(\lambda)$ 的所有 i 次子式的首一最大公因式。

 $D_1(\lambda), \dots, D_r(\lambda) \in F[\lambda]$ 称为 $A(\lambda)$ 的行列式因子组,由 $A(\lambda)$ 唯一确定; $D_i(\lambda)$ 称为 $A(\lambda)$ 的 i 阶行列式因子。

命题:设 $A(\lambda),B(\lambda) \in M_n(F[\lambda])$,假定 $B(\lambda)$ 是由 $A(\lambda)$ 经过一次初等行变换后得到的矩阵,则 $D_i(A(\lambda))=D_i(B(\lambda))$ 。

推论: 若 $A(\lambda)$ 与 $B(\lambda)$ 相抵,则 $D(A(\lambda))=D(B(\lambda))$ 。

进而有
$$D_i(\lambda) = \prod_{k=1}^i d_k(\lambda), d_i(\lambda) = D_i(\lambda) / D_{i-1}(\lambda)$$
 由 A(\lambda)唯一决定,称 d₁(\lambda),…,d_r(\lambda)

是 $A(\lambda)$ 的不变因子组,称 diag{d₁(λ),···,d_r(λ),0,···,0}是 $A(\lambda)$ 的相抵标准型(Smith 标准型)。

定义: 若 A ∈ M_n(F),λI-A 的 Smith 标准型为 diag{1,1,···,1,d₁(λ),···,d_s(λ)}。它的不变因子组为 1,1,···,1,d₁(λ),···,d_s(λ),行列式因子组为 1,1,···,1,d₁(λ),···,d_s(λ),行列式等于不变因子的乘积。且 Σ (deg d_i -1)=n-s 是 1 的个数,通常简称 d₁(λ),···,d_s(λ) 是 A 的不变因子组。

定理:设 $A \in M_n(F)$, $d_1(\lambda)$,…, $d_s(\lambda)$ 是 $A(\lambda)$ 的不变因子组,则 λ I-A 与矩阵 $diag\{1,1,…,d_1(\lambda),1,1,…,d_2(\lambda),…,1,1,…,d_s(\lambda)\}$ 相抵。

定理:设 F 是域,A,B \in M_n(F),那么 A 与 B 相似的充要条件是 λ I-A 与 λ I-B 相抵。

命题: 矩阵 $J_n(a)$ 的不变因子组为 $1,1,\dots,1,(\lambda-a)^n$ 。

定理: 若 A 的不变因子组为 $d_1(\lambda), \cdots, d_s(\lambda)$, 则 $d_s(\lambda)$ 是 A 的最小多项式。

定义:对 $f(\lambda)=\lambda^n+a_1\lambda^{n-1}+\cdots+a_{n-1}\lambda+a_n$,定义矩阵 $A_{f(\lambda)}$ 称为 $f(\lambda)$ 的相伴矩阵。

其中
$$A_{f(\lambda)} = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_n \\ 1 & 0 & 0 & \cdots & 0 & -a_{n-1} \\ 0 & 1 & 0 & \cdots & 0 & -a_{n-2} \\ & & & \cdots & & \cdots \\ 0 & 0 & 0 & \cdots & 0 & -a_2 \\ 0 & 0 & 0 & \cdots & 1 & -a_1 \end{pmatrix}$$
 。

定义: 设 $A \in M_n(F)$, 不变因子组为 $d_1(\lambda)$, …, $d_s(\lambda)$, 设 $d_j(\lambda) = \prod_{i=1}^k (\lambda - \lambda_i)^{n_{ij}}$, $j=1,2,\dots,s$,

则称 $\{(\lambda - \lambda_i)^{n_i} \mid i=1,2,\cdots,k,j=1,2,\cdots,s\}$ 构成的有重类称为 A 的初等因子组。

定理: 设
$$A \in M_n(F)$$
,若 $f_A(\lambda) = d_A(\lambda) = \prod_{i=1}^k (\lambda - \lambda_i)^{m_i}$,则 A 的 Jordan 标准型为

 $diag{J_{m1}(\lambda_1),J_{m2}(\lambda_2)\cdots,J_{mk}(\lambda_k)}$.

即:如果特征多项式是最小多项式, Jordan 各块只有一块。

推论: $A,B \in M_n(F)$,则下列条件等价: 1° A,B 相似; 2° A 与 B 有相同的不变因子组; 3° A 与 B 有相同的行列式因子组; 4° A 与 B 有相同的初等因子组。

定理: 设 A
$$\in$$
 M_n(F),f_A(λ)= $\prod_{i=1}^k (\lambda - \lambda_i)^{m_i}$,若 $d_j(\lambda) = \prod_{i=1}^k (\lambda - \lambda_i)^{n_{ij}}$,j=1,2,····,s,则 A

相似于 diag{ $J_{m:1}(\lambda_1), \dots, J_{m:k}(\lambda_k), \dots, J_{m:1}(\lambda_1), \dots, J_{m:k}(\lambda_k)$ }

计算: (1)λI-A 的 Smith 标准型; (2)把不变因子组分解一次因式的乘积,写出相应的 Jordan 块,把它们对角地拼在一起,就构成 A 的 Smith 标准型。

这个算法给出了: (1)相似的判别法; (2)Jordan 标准型的算法; (3)最小多项式不随数域扩大而改变。

9.10 线性函数与对偶空间

一般地, R^n 上的线性函数空间是 $Hom_R(R^n,R)$,这是线性空间 R^n 到 R^1 的线性映射构成的向量空间。

命题: 设 V 是 F-线性空间, α_1 , …, α_n , β_1 , …, β_n 是 V 的两组基, 设(β_1 , …, β_n)=(α_1 , …, α_n)T, 那么(β_1 *, …, β_n *)=(α_1 *, …, α_n *)(T[†])-1。

定理:设 V_1,V_2 是F-线性空间,则存在映射 $\phi \in Hom_F(V_1,V_2) \rightarrow \phi^* \in Hom_F(V_2^*,V_1^*)$ 是F-线性空间同构,其中对 $f \in V_2^*$, $\phi^*(f) = f \circ \phi$ 。

定理: 若 $V_1=V_2=V$,则 $\phi,\psi\in End_F(V)$,则 $(\phi\circ\psi)^*=\psi^*\circ\phi^*$ 。

定理: 给定 V 的一组基 α_1 ,…, α_n , $\phi(\alpha_1,\alpha_2,…,\alpha_n)=(\alpha_1,\alpha_2,…,\alpha_n)A$,则 $\phi^*(\alpha_1^*,\alpha_2^*,…,\alpha_n^*)=(\alpha_1^*,\alpha_2^*,…,\alpha_n^*)A^t$ 。

定理: 设 V 是 F-线性空间,存在 F-线性单射 I:V→V**,v→I(v), I(v)∈Hom_F(V*,F) 定义为 f∈V*, I(v)(f)=f(v)。

第10章 具有度量的线性空间

10.1 双线性函数

定义:对一般的域 F,一般 F-线性空间 V,V 上的双线性函数是一个映射,f: $V \times V$ $\rightarrow F$,满足: $\forall \alpha_1,\alpha_2,\beta_1,\beta_2,\alpha,\beta \in V$, $k_1,k_2 \in F$,

1° $f(k_1\alpha_1+k_2\alpha_2,\beta)=k_1f(\alpha_1,\beta)+k_2f(\alpha_2,\beta);$ 2° $f(\alpha,k_1\beta_1+k_2\beta_2)=k_1f(\alpha,\beta_1)+k_2f(\alpha,\beta_2).$

一般地,对 F-线性空间 V,记 BL(V)表示 V 上的 F-双线性函数的集合。

 $0 \in BL(V)$, $\forall f_1, f_2 \in V$, 定义 f_1+f_2 为 $(f_1+f_2)(\alpha,\beta)=f_1(\alpha,\beta)+f_2(\alpha,\beta)$, 从而 $f_1+f_2 \in BL(V)$ 。 $\forall f \in V$, $a \in F$, 定义 af 为 $(af)(\alpha,\beta)=af(\alpha,\beta)$,从而 $af \in BL(V)$ 。

在上面的定义下,BL(V)是一个F-线性空间。

定理:设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是V的一组基,那么映射A:BL(V)→M_n(F),f→(f(α_i,α_j))_{n×n}是F-线性空间同构,且f(α,β)=X^TA(f)Y,这里 X,Y 表示 α,β 在基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的坐标。

定理: 设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 V 的一组基,则对 \forall $f \in BL(V)$,都有 $f(\alpha,\beta)=X^T(f(\alpha_i,\alpha_j))Y$,其中 X,Y 是 α,β 在基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的坐标。

定义: 设 $f \in BL(V)$, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 V 的一组基, 称矩阵 $A(f)=(f(\alpha_i,\alpha_j))$ 关于基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 的度量矩阵。

定理:设 $f \in BL(V)$, $\alpha_1,\alpha_2,\cdots,\alpha_n,\beta_1,\beta_2,\cdots,\beta_n$ 是 V 的两组基,A(f),B(f)分别是 f 关于基 $\alpha_1,\alpha_2,\cdots,\alpha_n,\beta_1,\beta_2,\cdots,\beta_n$ 的度量矩阵, $P \in GL_n(F)$ 是从基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 到 $\beta_1,\beta_2,\cdots,\beta_n$ 的过度矩阵,则 $B(f)=P^TA(f)P$ 。

定理: 双线性函数在不同基的度量矩阵合同。

定义:设 BL(V),f的秩是它的度量矩阵的秩,记为 r(f)。

在合同关系下,矩阵有标准型。对给定的双线性函数,合同标准型对应的基是值得研究的。

定义: $L_f:V \to V^*, \alpha \to f(\alpha, \bullet)$, $R_f:V \to V^*, \alpha \to f(\bullet, \alpha)$ 。这两个映射是线性的。

定理: 设 f∈BL(V),则 r(f)=r(L_f)=r(R_f)。

推论: 若 $f \in BL(V)$, r(f)=n, 则 $L_f, R_f: V \to V*$ 都是同构。

反对称矩阵的秩是偶数,反对称矩阵合同于 $\operatorname{diag}\{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, 0, \cdots, 0\}$ 。

定义: 称双线性函数 f 是对称的, 如果 $f(\alpha,\beta)=f(\beta,\alpha)$; 称双线性函数 f 是反对称的, 如果 $f(\alpha,\beta)=-f(\beta,\alpha)$ 。

定理: 双线性函数 f 的对称性与度量矩阵对称性相同。

定理:设 $f \in BL(V)$,f 是对称的双线性函数,则存在 V 的一组基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 使得 $(f(\alpha_i,\alpha_i))=diag\{c_1,c_2,\cdots,c_f,0,0\}$,其中 $c_i\neq 0$,r=r(f)。

10.2 欧几里得空间

定义: 设 V 是 R-线性空间, $f:V \times V \to R$ 是对称双线性函数,且 $f(\alpha,\alpha) \ge 0$,取等号 $\Leftrightarrow \alpha = 0$ 。

定理:任何有限 n 维欧式空间都同构于 $R^n \Leftrightarrow n$ 维欧式空间一定存在一组基 $\epsilon_1, \dots, \epsilon_n$ 使得它的度量矩阵是单位矩阵。

定义:设 V 是 n 维欧式空间, ε_1 ,···, ε_n 称为 V 的标准正交基,如果(ε_i , ε_i)= δ_{ii} 。

定理:对任意 $\alpha,\beta \in V$, V 是欧式空间,则 $(\alpha,\beta)^2 \leq (\alpha,\alpha)(\beta,\beta)$ 。

定理: 正交的向量组线性无关。

定义: $\varepsilon_1, \dots, \varepsilon_n \in V$ 的标准正交基,则 $\alpha = \sum_{i=1}^n (\alpha, \varepsilon_i) \varepsilon_i$ 称为 α 的傅里叶展开。

10.3 正交补,正交投影

定义:设 V 是欧式空间,W 是 V 的子空间, ϵ_1 ,…, ϵ_r 是 W 的标准正交基,称映射

$$P_W:V \to W$$
, $\alpha \to P_W(\alpha) = \sum_{i=1}^r (\alpha, \varepsilon_i) \varepsilon_i$ 是 V 到 W 的正交投影。

定理:设 A 的列向量为 $\alpha_1,\alpha_2,\cdots,\alpha_n$,令 W=< $\alpha_1,\alpha_2,\cdots,\alpha_n$ >,则||AX- β ||取最小值当且仅当 AX= $P_W(\beta)$ \Leftrightarrow β -AX \perp W \Leftrightarrow X 是方程组 A^TAX=A^T β 的解。

10.4 正交变换与对称变换

定义:设 V 是欧式空间,设 φ :V \rightarrow V 是线性变换,称 φ 是正交变换,如果($\varphi(\alpha)$, $\varphi(\beta)$)=(α , β)。它是欧式空间的等距变换。

命题: 设 $\varphi \in O(V)$, 其中 V 是 n 维欧式空间, ϵ_1 ,…, ϵ_n 是 V 的标准正交基。设 A_{φ} 是 φ 在基 ϵ_1 ,…, ϵ_n 下的矩阵,即是 $\varphi(\epsilon_1$,…, ϵ_n)=(ϵ_1 ,…, ϵ_n)A $_{\varphi}$,则 A_{φ} 是正交矩阵。

定理: $\varphi \in O(V) \Leftrightarrow A_{\varphi}$ 是正交矩阵。

命题:正交矩阵的实特征值只能是±1。

定理:设A是n阶正交矩阵,则A的特征多项式

$$f_A(\lambda) = (\lambda - 1)^s (\lambda + 1)^t \prod_{i=1}^v (\lambda^2 - 2\cos\theta_i\lambda + 1)^{P_i}$$
,且 A 相似于 $diag\{I_s, -I_t, \begin{pmatrix} \cos\theta_i & \sin\theta_i \\ -\sin\theta_i & \cos\theta_i \end{pmatrix}\}$ 。

命题:设 V 是欧式空间, φ ∈ O(V), W 是φ-不变子空间,则 W $^{\bot}$ 也是φ-不变子空间。 命题:设 V 是实线性空间,φ:V $^{→}$ V 是 R-线性变换,如果φ没有实特征值,则存在 2 维φ-不变子空间。

Riesz 表示定理: 设 V 是数域 F 上的有限维非退化的正交空间,那么对 \forall f \in V*,存在 α \in V,使得 $f(\beta)$ =L(α)(β)=(β , α)。称线性函数 f 可由 α 表示。

定理:设 V 是有限维欧式空间, $\varphi \in End_R(V)$,那么存在唯一的 $\varphi^* \in End_R(V)$,使得对任意 $\alpha, \beta \in V$,都有($\varphi(\alpha), \beta$)=($\alpha, \varphi^*(\beta)$),这里的 φ^* 称为 φ 的伴随。

定义:设 V 是有限维欧式空间, $\varphi \in End_R(V)$,称 φ 是对称变换,如果 $\varphi^* = \varphi$ 。即对任意 $\alpha, \beta \in V$,都有($\varphi(\alpha), \beta$)=($\alpha, \varphi(\beta)$)。

定理: φ是对称变换的充要条件是它的变换矩阵 Α₀是对称矩阵。

定理:对称线性变换可正交对角化。

命题: 设 V 是欧式空间,φ是对称线性变换, V_1 是φ-不变子空间,则 V_1 也是φ-不变的。

10.6 正交空间与辛空间

定义:设 $V \neq F$ -线性空间, $f \in BL(V)$,称(V,f)是度量空间。当 f 是对称时,称(V,f)是正交空间;当 f 是反对称时,称(V,f)是辛空间;对一般的 f,称(V,f)是度量空间。记 V 上的对称双线性函数空间为 SBL(V),反对称双线性函数空间为 ASBL(V)。

命题:设F是域,charF≠2,则BL(V)=SBL(V)⊕ASBL(V)。

定理:设(V,f)是正交空间,r(f)=r,那么存在 V 的一组基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 使得 f 在这组基下的度量矩阵为 diag $\{c_1,\cdots,c_r,0,\cdots,0\}$, $c_i\neq 0\in F$ 。

定义: 设(V,f)是正交空间, $\alpha,\beta\neq 0\in V$,称 α 与 β 正交,如果 $f(\alpha,\beta)=0$ 。

推广:设 α_1 ,…, α_s 是(V,f)中的非零向量组,若 $f(\alpha_i,\alpha_j)=0$, $i\neq j$,称 α_1 ,…, α_s 是 V 中的正交向量组。

定义: 设(V,f)是正交空间, α_1 ,···, α_n 是 V 的一组基,且 α_1 ,···, α_n 是正交的,那么称 α_1 ,···, α_n 是(V,f)的正交基。

定理: 正交空间(V,f)有一组正交基。

定理: 设(V,f)是正交空间, α_1,\dots,α_n 是 V 的正交基, 它的度量矩阵为

diag{ c_1 , \cdots , c_r , 0, \cdots , 0},那么 $V=<\alpha_1$, \cdots , $\alpha_r>\oplus <\alpha_{r+1}$, \cdots , $\alpha_n>\otimes$

定义: 设(V,f)是正交空间,W 是 V 的子空间,令 $f|W:W\times W\to F$, $(\alpha,\beta)\to f(\alpha,\beta)$ 是 $W\times W$ 上的双线性函数,且是对称的。

命题:设(V,f)是正交空间,W 是 V 的子空间,那么(W,f|W)也是正交空间。

定理: 设(V,f)是正交空间, α_1 ,···, α_n 是 V 的正交基,且 f 关于 α_1 ,···, α_n 的度量矩阵为 diag{ c_1 ,···, c_r ,0,···,0},那么 Ker L_f = Ker R_f = $<\alpha_{r+1}$,···, α_n > = Rad_f(V)。

定理:设(V,f)是正交空间,存在 V 的子空间 V_1 ,使得 $V=V_1 \oplus Rad_f(V)$,且 $f|V_1$ 是非退化的, $f|Rad_f(V)=0$ 。

定义:设(V,f)是正交空间, V_1,V_2 是 V 的子空间,称 V 是 V_1 与 V_2 的正交直和,如果 $V=V_1 \oplus V_2$,且任意 $\alpha \in V_1,\beta \in V_2$ 都有 $f(\alpha,\beta)=0$,记为 $V=V_1 \perp V_2$ 。

定义:设(V,f)是正交空间, V_1 是 V 的子空间,令 $V_1^{\perp}=\{\alpha\in V\mid f(\alpha,\beta)=0, \forall \beta\in V_1\}$ 是 V 的子空间,称为 V_1 在 V 中的正交补。

命题:设(V,f)是正交空间,那么 V^{\perp} =Rad_f(V)。

定理: 设(V,f)是正交空间,r(f)=r,则存在 V 的子空间 V_1 使得 $V_1 \perp V^{\perp}$,且 $f|V_1$ 是 非退化的, $r(f|V_1)=r$ 。

命题: 设(V,f)是正交空间, V_1,V_2 是 V 的子空间, $V_1\subseteq V_2$, 则 $V_2^{\perp}\subseteq V_1^{\perp}$ 。

引理:设(V,f)是正交空间, V_1 是 V 的非退化子空间,则 $V=V_1 \perp V_1^{\perp}$ 。(对偶空间+维数证明)

定理: 设(V,f)是正交空间,r(f)=r,则存在 V 的一组正交基 α_1 ,…, α_n 使得 f 在 α_1 ,…, α_n 下的度量矩阵为 diag{ c_1 ,…, c_r ,0,…,0}。

当 F=R 时,设(V,f)是实数域 R 上的非退化正交空间,那么存在正交基使得 f 的度量矩阵为 $diag\{I_0,-I_0\}$ 。

补:双曲空间与 Witt 定理

定义: 设(V,f)是正交空间, $\alpha \neq 0 \in V$, 若 $f(\alpha,\alpha)=0$, 则称 α 是迷向向量。

V 中的迷向向量构成的集合 m(V)不是 V 的子空间,但若 $\alpha \in m(V)$, $k\alpha \in V$,从而迷向向量是 V 的锥。

定义: 称(V,f)是非退化的双曲空间,存在 V 的一组基 $\alpha_1,\alpha_2,\cdots,\alpha_p,\alpha_{-1},\alpha_{-2},\cdots,\alpha_p$ 使得

f 在这组基下的度量矩阵为
$$\begin{pmatrix} 0 & I_p \\ I_p & 0 \end{pmatrix}$$
。当 p=1 时称为双曲平面。

定义: 设(V,f)是正交空间, 称(V,f)是反迷向(定性)的, 如果对 $\forall \alpha \in V$, $f(\alpha,\alpha)=0 \Rightarrow \alpha=0$ 。容易知道,任意的非退化双曲空间都是偶数维的。

命题:任意双曲空间都有双曲平面的正交直和。

命题 1: 1 维非退化正交空间一定是反迷向的。

命题 2: 2 维非退化正交空间要么是反迷向的,要么是双曲平面。即是: 非退化二维正交空间有迷向向量一定是双曲平面。

设(V,f)是非退化正交空间, $dimV \ge 2$,若 α , $\beta \in V$,满足 $f(\alpha,\alpha)f(\beta,\beta)=0$,但 $f(\alpha,\beta)\neq 0$,那么 $<\alpha,\beta>是 V$ 的双曲平面。

Witt 分解定理:设(V,f)是非退化正交空间,则存在 V 的双曲子空间 H_s 与反迷向子空间 D,使得 $V=H_s \perp D$,且 S 是由 f 唯一决定的。

此即:
$$A=diag\{\begin{pmatrix} 0 & I_s \\ I_s & 0 \end{pmatrix}, c_1, c_2, \dots, c_{n-2s}\}$$

定义: 是个(V₁,f₁),(V₂,f₂)是域 F 上的正交空间,一个映射 φ :(V₁,f₁)→(V₂,f₂)称为等距/保距同构,如果 1° φ是线性同构;2° 对 $\forall \alpha,\beta \in V_1$, $f_1(\alpha,\beta)=f_2(\varphi(\alpha),\varphi(\beta))$ 。

当 V₁=V₂, f₁=f₂时,等距同构也称为等距变换。

1°等距变换的复合是等距变换; 2°单位映射是等距变换; 3°等距变换的逆也是等距变换。

从而(V,f)的等距变换在映射的复合下构成一个群,记为 O(V,f)⊆GL(V)。

定理: 维数相同的非退化双曲空间等距同构。

唯一性定理叙述为: 设(V₁,f₁),(V₂,f₂)是两个非退化的正交空间, 如果 φ :(V₁,f₁) \rightarrow (V₂,f₂) 是等距同构, V₁=H₅₁ \perp D₁, V₂=H₅₂ \perp D₂, 那么 S₁=S₂。

特殊情形:设(V,f)是非退化的正交空间,若 $V=H_{s1}\perp D_1=H_{s2}\perp D_2$,则 $S_1=S_2$ 。

Witt 消去定理: 设(V₁,f₁),(V₂,f₂)是两个非退化正交空间, φ :(V₁,f₁)→(V₂,f₂)是等距同构,且 V₁=U₁ \bot W₁,V₂=U₂ \bot W₂, $f|V_i,f|W_i$ 是非退化的,若 φ ₁:(U₁, $f|U_1$)→(U₂, $f|U_2$)是等距同构,则存在 φ ₂:(W₁, $f|W_1$)→(W₂, $f|W_2$)是等距同构。

设 charF≠2,假定(V,f)是非退化的正交空间镜面对称映射,设η是(V,f)的非迷向向

量,则 V=<
$$\eta$$
> \bot < η > $^{\bot}$ 。考虑映射: M_{η} : $V \to V$, $\alpha \to M_{\eta}(\alpha)$ = α - $2\frac{f(\alpha,\eta)}{f(\eta,\eta)}\eta$ 。

命题: 映射 M_n∈O(V,f)。

Witt 扩充定理: 设(V,f)是有限维非退化正交空间, W 是 V 的子空间, φ_1 :W \rightarrow V 是 等距单射,则存在 φ \in O(V,f),使得 φ |W= φ_1 。

双曲扩张定理: n 维双曲空间的任意 r 维全迷向子空间都可以扩充成为 2r 维双曲空间。