

♠ Domains

Contests

ank 🌪 Leaderboard

All Contests > Week of Code - 19 > Fix the Cycles

Fix the Cycles

Problem

Submissions

Leaderboard

Discussions

Your submission will run against only preliminary test cases. Full test cases will run at the end of the day.

You're given a directed weighted graph with 4 nodes (A, B, C, and D) and 6 edges, defined below:

- ullet D o A has weight a
- ullet A o B has weight b
- ullet B o C has weight c
- ullet C o D has weight d
- A o C has weight e
- ullet B o D has weight f

The *total weight* of a simple cycle is the sum of its edge weights (e.g.: $A \to C \to D \to A$ has a total weight of e+d+a). If the total weight is negative, it's called a *negative cycle*.

Given edge weights a, b, c, d, e, and f, find some minimum non-negative integer (p) that, when added to *one single* edge weight in the graph, will get rid of any negative cycles.

Input Format

A single line containing 6 space-separated integers: a, b, c, d, e, and f, respectively.

Constraints

• -20 < a, b, c, d, e, f < 20

Output Format

Print the minimum value of p; if no non-negative p will eliminate the negative cycle, print -1.

Sample Input

2 -5 0 1 1 1

Sample Output

2

Explanation

Adding 2 to b (the weight of edge A o B) will remove the negative cycle.

Submissions: 1549
Max Score: 30
Difficulty: Easy

♣ Download PDF

⑤ Suggest Edits

Collapse

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Privacy Policy | Request a Feature