Токмаков Александр, группа БПМИ165 Домашнее задание 6

№1

а)
$$\forall x \ P(x)$$
 из $\{\forall x \ Q(x), \ \forall x \ (Q(x) \to P(x))\}$

Покажем, что при добавлении к формулам теории отрицания формулы $\forall x \ P(x)$ получается несовместное множество формул, это будет означать, что формула $\forall x \ P(x)$ следует из теории:

Покажем, что при добавлении к формулам теории отрицания формулы $\exists x \ P(x)$ получается несовместное множество формул, это будет означать, что формула $\exists x \ P(x)$ следует из теории:

Если формула следует из теории, то она общезначима, т.е. истинна в любой модели. Выберем модель с носителем $2\mathbb{Z}$ и интерпретацией предикатов P(x) – быть нечётным числом и Q(x) – быть чётным числом. В этой модели формула $\exists x \ P(x)$ не верна (все числа чётные), значит она не общезначима, значит она не следует из теории.

d)
$$\forall x \ P(x)$$
 из $\{\forall x \ Q(x), \ \forall x \ (P(x) \to Q(x))\}$

Аналогично пункту c (можно выбрать такую же модель) формула не следует из теории.

№2

а)
$$x < y$$
 из $(\mathbb{Z}, 2x = y)$

Не выразим. Рассмотрим автоморфизм $\alpha(x)=-x$ (это биекция, $2x=y \quad \Leftrightarrow \quad -2x=-y$):

$$x < y$$
 \Leftrightarrow $-x < -y$, но это не верно

a)
$$x + y = \text{M3} (\mathbb{Q}, x < y)$$

Не выразим. Рассмотрим автоморфизм $\alpha(x) = x+1$ (это биекция, $x < y \quad \Leftrightarrow \quad x+1 < y+1$):

$$x+y=z$$
 \Leftrightarrow $(x+1)+(y+1)=(z+1)$, но это не верно

$N_{\overline{2}}3$

a)
$$(\mathbb{Z}, x+y=z)$$

Пусть α – автоморфизм модели, тогда $x+y=z \Leftrightarrow \alpha(x)+\alpha(y)=\alpha(z)$ т.е. α должен быть гомоморфизмом группы ($\mathbb{Z},+$). Как известно из алгебры, все гомоморфизмы этой группы имеют вид $\alpha(x)=k\cdot x,\ k\in\mathbb{Z}$. Из них только 2 являются биекциями: $\alpha(x)=1\cdot x$ и $\alpha(x)=-1\cdot x$

b)
$$(\mathbb{Z}, x - y = 2)$$

Пусть α — автоморфизм модели, тогда $x-y=2 \Leftrightarrow \alpha(x)-\alpha(y)=2$, тогда $\alpha(x)-\alpha(y)=x-y$ при x-y=2, тогда $\alpha(x)-x=\alpha(y)-y$ при x-y=2 (для чисел одинаковой чётности). Это возможно только при $\alpha(x)=x+n$ для чётных x и $\alpha(x)=x+k$ для нечётных x, $n,k\in\mathbb{Z}$. Но для того, чтобы отображение было биекцией, n и k должны иметь одинаковую чётность.

№4

а)
$$(\mathbb{N},\cdot,=)$$
 и $(\mathbb{Z},\cdot,=)$

Модели не изоморфны. Выразим в обеих моделях предикат быть единицей: $x=1=\forall a\ a\cdot x=a$. Заметим, что в первой модели истинна формула $\forall x\ ((x\cdot x)=1)\to (x=1)$ (единица – единственное натуральное число, квадрат которого равен единице). Во второй модели эта формула не верна, т.к. $(-1)\cdot (-1)=1$, но $(-1)\neq 1$.

b)
$$(\mathbb{Z}_5, x-y=2)$$
 и $(\mathbb{Z}_5, x-y=1)$

Модели изоморфны. Рассмотрим последовательность, в которой каждый следующий элемент получается прибавлением двойки к предыдущему: ..., $0, 2, 4, 1, 3, 0, 2, \ldots$ Предикат x-y=2 истинен тогда и только тогда, когда x следует за y в этой последовательности т.е. n(x)-n(y)=1, где n(x) — номер x в этой последовательности. Легко видеть, что $n(x) \mod 5$ будет изоморфизмом.

c)
$$(\mathbb{Z}_6, x-y=2)$$
 и $(\mathbb{Z}_6, x-y=1)$

Модели не изоморфны. Заметим, что элементы в первой модели образуют два цикла длины 3: ..., $0, 2, 4, 0, \ldots$ и ..., $1, 3, 5, 1, \ldots$, т.е. $\forall x \forall y \forall z \; (((x-y=2) \land (y-z=2)) \rightarrow (z-x=2))$. Если модели изоморфны, то должна существовать биекция α , для которой $\forall x \forall y \forall z \; (((\alpha(x) - \alpha(y) = 1) \land (\alpha(y) - \alpha(z) = 1)) \rightarrow (\alpha(z) - \alpha(x) = 1))$, но такого в \mathbb{Z}_6 не бывает (каким бы ни было α).