PHY2300 Physique médicale Hiver 2024 Examen de Pratique Intra

Mise en Contexte

Ceci est un examen formatif pour le cours PHY2300 : Physique Médicale, de l'Université de Montréal, pour l'hiver 2024.

Les questions de ce document permettront à l'étudiant de se préparer pour l'examen. Le format et la longueur seront similaires à l'examen lui-même.

1 Questions

1. Soit la fonction triangulaire simple :

$$t(x) = \begin{cases} \frac{2(x-a)}{(b-a)^2} & , \text{ si } x \in [a,b] \\ 0 & , \text{ sinon} \end{cases}$$
 (1)

(a) Confirmez que t(x) est une pdf.

(b) Trouvez la moyenne de t(x), i.e. calculez $\mathbb{E}[x]$.

2.	La transformée de Fourier de la fonction $f(x) = e^{-\pi x^2}$, où b est une constante réelle non-nulle, est					
	$F(k) = e^{-\pi k^2}. (2)$					
	En considérant cette information (ou pas, à votre guise), quelle est la transformée de Fourier					
	de $h(x,y) = e^{-\pi(3x^2 + 7y^2)}?$					
3.	En utilisant la loi de Beer-Lambert, déterminez une équation reliant le coefficient d'atténuation μ et l'épaisseur pour laquelle le faisceau ne gardera que la moitié de son intensité.					
4.	Soit le graphique de donnée XCOM suivant : En haut à gauche, vous remarquerez une ellipse					
	sur la courbe représentant le coefficient d'atténuation linéaire massique (μ/ρ) pour l'effet					

photoélectrique.

Expliquez brièvement la présence de la discontinuité.

FIGURE 1 – Données XCOM pour le phosphore

5. Le terme convolution est utilisé pour décrire l'opération suivante entre deux fonctions f(x) et g(x):

$$f(x) \star g(x) = \int_{-\infty}^{\infty} f(y)g(y-x)dy. \tag{3}$$

Donnez un exemple d'application de la convolution en physique médicale.

6.

Bonus:

Expliquez l'étymologie du terme «convolution».

- 7. Expliquez brièvement ce qui survient lorsqu'une image est convoluée avec un filtre passe-bas et un filtre passe-haut (indépendamment).
- 8. Décrivez brièvement le principe de rétro-projection (sans besoin d'équations).

- 9. Voici quelques fonctions dans l'espace spatial x, y et des transformées de Radon. Identifiez quel objet et quel sinogramme vont ensemble. Expliquez en quelques mots votre choix. N.B.: Le centre de référence (x,y), (0,0) est au centre de l'image, là où il y a une croix. Le 0 pour l'axe des ξ est sur la ligne dans les sinogrammes. La projection est faite sur l'axe des x (horizontal).
 - N.B.A. : La référence pour chaque petite image se trouve au-dessus.

Figure 2 – Quelques fonctions dans l'espace x, y

FIGURE 3 – Quelques sinogrammes dans l'espace ξ , θ

2 Équations Pertinentes

1.	Fonction de densité de probabilité (pdf)		$\int_{-\infty}^{\infty} f(x)dx = 1$
	-		$f_{-\infty}$ $f(x) \ge 0$
2.	Espérance Mathématique		$\mathbb{E}[g(x)] = \int_{-\infty}^{\infty} g(x)f(x)dx$
	•		$J-\infty$
3.	Moyenne		$ar{x} = \mathbb{E}[x]$
4.	Variance		$s^2 = \mathbb{E}\left[(x - \bar{x})^2\right]$
4.1.	Variance 2		$s^2 = \mathbb{E}[x^2] - \bar{x}^2$
5.	Loi d'atténuation		$N(x) = N_0 e^{-\mu x} = N_0 e^{-\frac{\mu}{\rho}\rho x}$
6.	Effet Photo-Électrique : Cinématique		$E_{e^-} = h\nu - \phi = E_{\gamma} - \phi$
7.	Diffusion Compton : Cinématique		$h\nu' = E_{\gamma'} = \frac{h\nu}{1 + \frac{h\nu}{2}(1 - \cos\theta)}$
			$\left[\begin{array}{c} \frac{h\nu}{m_{c}c^{2}}(1-\cos\theta) \end{array}\right]$
			$T_{e^-} = h\nu \left[\frac{1 + \frac{h\nu}{m_e c^2} (1 - \cos \theta)}{1 + \frac{h\nu}{m_e c^2} (1 - \cos \theta)} \right]$
			$\theta = \arccos \left[1 - m_e c^2 \left(\frac{h\nu - h\nu'}{h\nu h\nu'} \right) \right]$
			$E_{e^{-}} = h\nu - \phi = E_{\gamma} - \phi$ $h\nu' = E_{\gamma'} = \frac{h\nu}{1 + \frac{h\nu}{m_e c^2} (1 - \cos \theta)}$ $T_{e^{-}} = h\nu \left[\frac{\frac{h\nu}{m_e c^2} (1 - \cos \theta)}{1 + \frac{h\nu}{m_e c^2} (1 - \cos \theta)} \right]$ $\theta = \arccos \left[1 - m_e c^2 \left(\frac{h\nu - h\nu'}{h\nu h\nu'} \right) \right]$ $\cot \alpha = \left(1 + \frac{h\nu}{m_e c^2} \right) \tan(\theta/2)$
8.	Sections Efficaces	P-E	$\sigma_{a,PE}(E,Z) \approx f_{PE}(E)Z^m$
		P-E (Sauter)	$\sigma_{a,PE}(E,Z) \approx f_{PE}(E)Z^5$
		Rayleigh	$\sigma_{a,R}(E,Z) \approx f_{PE}(E)Z^2$
		Compton	$\sigma_{a,C}(E,Z) \approx f_{PE}(E)Z^1$
		PP	$\sigma_{a,PP}(E,Z) \approx f_{PE}(E)Z^2$
9.	Convolution		$f(x) \star g(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt$
10.	Transformée de Fourier 1D	Directe	$\mathcal{F}[f(x)]_k = \int_{-\infty}^{\infty} f(x)e^{-i2\pi kx} dx$
		Inverse	$\mathcal{F}^{-1}[F(k)]_x = \int_{-\infty}^{\infty} F(k)e^{i2\pi kx} dk$
11.	Théorème de Convolution		$\mathcal{F}[f(x) \star g(x)] = \mathcal{F}[f(x)] \cdot \mathcal{F}[g(x)]$
12.	Propriétés de la Transformée de Fourier	Linéarité	$\mathcal{F}\left[\alpha f(x) + \beta g(x)\right] = \alpha \mathcal{F}[f(x)] + \beta \mathcal{F}[g(x)]$
		Décalage	$\mathcal{F}[f(x-x_0)] = e^{-i2\pi kx_0} \mathcal{F}[f(x)]$
		Échelle	$\mathcal{F}\left[f(ax)\right] = \frac{1}{ a }F\left(\frac{k}{a}\right)$
		Dérivée	$\mathcal{F}\left[f^{(n)}(x)\right] = (i2\pi k)^n \mathcal{F}[f(x)]$
		Séparabilité	$\mathcal{F}\left[f(x)g(y)\right] = \mathcal{F}[f(x)]_{\nu}\mathcal{F}[g(y)]_{\mu}$
13.	Rotation d'axes	X	$x' = x\cos\theta + y\sin\theta$
		У	$y' = -x\sin\theta + y\cos\theta$
13.	Transformée de Radon	1 point	$\mathcal{R}f(\xi,\theta) = \delta\left(\xi - \left[x_0\cos\theta + y_0\sin\theta\right]\right)$
		Générale	$\mathcal{R}f(\xi,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)\delta\left(\xi - [x_0\cos\theta + y_0\sin\theta]\right) dxdy$
14.	Théorème de la Coupe Centrale		$\mathcal{R}f(\xi,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)\delta\left(\xi - [x_0\cos\theta + y_0\sin\theta]\right) dxdy$ $f(x,y) = \int_{0}^{\pi} \int_{-\infty}^{\infty} e^{i2\pi(kx\cos\theta + ky\sin\theta)} k \mathcal{F}\left[p_{\theta}(\xi)\right]_k dkd\theta$