

UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

Ecuaciones Diferenciales IITAREA 1

Autor Daniela Lefimil José Irribarra Docente Freddy Paiva

Problema 1.

Resuelva la siguiente EDP, vía método de integrales primeras, verificando las condiciones necesarias para poder definir las solucions implícitas, además resolver mediante cambio de variable y compare ambos resultados.

Hallar $u \in C(\Omega)$, donde Ω será un abierto a definir en la resolución del ejercicio, tal que:

$$au_x + bu_y + c = 0 (1)$$

Luego se define a=3,b=4,c=5, aplique la condicion de frontera y muestra la grafica de la función resultante.

$$u(x,0) = (16x^2 - 5)e^{(\frac{2x}{5})} \tag{2}$$

Solucion:

Sea $\Omega\subseteq\mathbb{R}^2$ un conjunto abierto por definir, donde la solución estará bien definida y sea de clase $\mathcal{C}^1(\Omega)$

Método de Integrales Primeras:

Definimos el sistema caracteristico:

$$\frac{dx}{a} = \frac{dy}{b} = -\frac{du}{c} \qquad a, b, c \neq 0 \tag{3}$$

Donde una primera integral primera resulta de resolver:

$$\frac{dx}{a} = \frac{dy}{b}$$

$$\Leftrightarrow bdx - ady = 0$$

$$\Leftrightarrow \varphi(x, y, u) = bx - ay = c_1$$
(4)

De la misma forma, una segunda integral primera resulta de:

$$\frac{dy}{b} = -\frac{du}{c}$$

$$\Leftrightarrow \psi(x, y, u) = cy + bu = c_2$$
(5)

Verficamos dependencia funcional:

$$\nabla \varphi \times \nabla \psi = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ b & -a & 0 \\ 0 & c & b \end{vmatrix} = \hat{i}(-ab) - \hat{j}(b^2) + \hat{k}(bc) \neq \theta$$

Pues a, b, $c \neq 0$

Luego existe F de clase $\mathcal{C}^1(\Omega)$ tal que la solución general tiene la forma:

$$cy + bu = F(bx - ay)$$

$$\Leftrightarrow u(x,y) = -\left(\frac{c}{b}\right)y + \frac{F(bx - ay)}{b}$$
(6)

Dado que no existe alguna restricción al obtener la solucion u(x,y) podemos concluir que:

$$\Omega = \mathbb{R}^2$$

Método Cambio de Variable:

De (4) definimos el cambio de variable

$$\begin{cases} s = bx - ay \\ t = ay \end{cases}$$
 Para luego resolver $v(s,t) = u(x,y)$ (7)

Verifiquemos que el cambio realizado esté bien definido, para ello verificamos:

$$\left|\frac{\partial(s,t)}{\partial(x,y)}\right| = \begin{vmatrix} b & -a \\ 0 & a \end{vmatrix} = ab \neq 0$$

Por regla de la cadena obtenemos:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} + \frac{\partial v}{\partial s} \frac{\partial s}{\partial x}
\frac{\partial u}{\partial x} = b \left(\frac{\partial v}{\partial s} \right)
\frac{\partial u}{\partial y} = \frac{\partial v}{\partial t} \frac{\partial t}{\partial y} + \frac{\partial v}{\partial s} \frac{\partial s}{\partial y}
\frac{\partial u}{\partial y} = a \left(\frac{\partial v}{\partial t} \right) - a \left(\frac{\partial v}{\partial s} \right)$$
(8)

Reemplazando (8) y (9) en la EDP:

$$abv_s + abv_t - abv_s + c = 0$$

$$\Leftrightarrow ab\left(\frac{\partial v}{\partial t}\right) = -c$$

$$\Leftrightarrow b\left(\frac{\partial v}{\partial t}\right) = -\frac{c}{a} / \int ()dt$$

$$\Rightarrow bv(s,t) = -\left(\frac{c}{a}\right)t + F(s)$$

$$v(s,t) = -\left(\frac{c}{ab}\right)t + \frac{F(s)}{b}$$
(10)

Volviendo a la variable original:

$$u(x,y) = -\left(\frac{c}{\not ab}\right)(\not ay) + \frac{F(bx - ay)}{b}$$

$$u(x,y) = -\left(\frac{c}{b}\right)y + \frac{F(bx - ay)}{b} \tag{11}$$

(Misma solución obtenida por Método de Integrales primeras)

Cuando a=3,b=4,c=5 y de la Condición de Frontera podemos obtener:

$$u(x,0) = \frac{F(4x)}{4} = (16x^2 - 5)e^{(\frac{2x}{5})}$$

Hacemos el cambio $\theta = 4x$:

$$\Rightarrow u(\frac{1}{4}\theta,0) = \frac{F(\theta)}{4} = \left(\theta^2 - 5\right)e^{\left(\frac{\theta}{10}\right)}$$

$$\Rightarrow F(\theta) = 4\left(\theta^2 - 5\right)e^{\frac{\theta}{10}}$$

$$\Rightarrow F(4x - 3y) = 4\left((4x - 3y)^2 - 5\right)e^{\left(\frac{4x - 3y}{10}\right)}$$

Finalmente la solución está dado por:

$$u(x,y) = -\left(\frac{5}{4}\right)y + \left(\left(4x - 3y\right)^2 - 5\right)e^{\left(\frac{4x - 3y}{10}\right)} \qquad x, y \in \mathbb{R}$$

Graficamente:

Figura 1: Gráfica Solución de la EDP