

Produktionsmanagement

Univ.-Prof. Dr. Michael Manitz

Tel.: (0203) 379 - 1443

E-Mail: michael.manitz@uni-due.de

Universität Duisburg/Essen
Fakultät für Betriebswirtschaftslehre
(Mercator School of Management)
Lehrstuhl für Betriebswirtschaftslehre, insbesondere
Produktionswirtschaft und Supply Chain Management
Lotharstr. 65
47057 Duisburg

http://www.msm.uni-due.de/pui

Günther, H.-O., und H. **Tempelmeier**, *Produktion und Logistik* — *Sup-ply Chain & Operations Management* (12. Aufl.), Norderstedt (Books on Demand), 2016

Günther, H.-O., und H. **Tempelmeier**, Übungsbuch Produktion und Logistik (8. Aufl.), Norderstedt (Books on Demand), 2013

Helber, S., *Operations Management Tutorial*, Hildesheim (Stefan Helber), 2014

Kummer, S., O. **Grün** und W. **Jammernegg**, *Grundzüge der Beschaf-fung, Produktion und Logistik* (2. Aufl.), München (Pearson Studium), 2009

Thonemann, U. W., *Operations Management* — *Konzepte, Methoden, Anwendungen* (2. Aufl.), München (Pearson Studium), 2010

Weitere Informationen und Literaturhinweise im Internet unter: www.produktion-und-logistik.de

www.operations-management-online.de

(vgl. Günther/Tempelmeier (2012))

Produktion ist ein Gütertransformationsprozess, bei dem durch den Einsatz und die Kombination von Inputgütern (Produktionsfaktoren) i. d. R. höherwertige Outputgüter entstehen (= Wertschöpfung).

Funktionsprinzip

Gruppierung und Anordnung der Arbeitssysteme nach ihrer speziellen Funktion

Zusammenfassung von Ressourcen mit gleicher Funktion

Werkstattproduktion

vernetzter Materialfluss in Abhängigkeit von den Arbeitsplänen der verschiedenen Erzeugnisse und vom Auftragseingang

Objektprinzip

Gruppierung der Arbeitsobjekte (Erzeugnisse) und Zuordnung der Arbeitssysteme zu den jeweils zu bearbeitenden Erzeugnissen

Zusammenfassung von Produkten mit gleichem Ressourcenbedarf

Fließproduktion

einheitlicher Materialfluss bei Ausrichtung auf nur ein Erzeugnis, evtl. Varianten dieses Grundprodukts, und Massenproduktion

Zentrenproduktion

dezentraler ("schlanker") Materialfluss nur innerhalb der teilautonomen Produktionsinseln

Die jeweils einem bestimmten Organisationstyp der Produktion zugeordneten Subsysteme des Produktionsbereichs ("Produktionssegmente") weisen segmentspezifische Planungsprobleme auf.

Entscheidungsebenen im Management

(Günther/Tempelmeier (2012))

Entscheidungsebenen im Produktionsmanagement

▶ Strategisches Produktionsmanagement

Sicherung des langfristigen Unternehmenserfolgs, d.h. der Wettbewerbsfähigkeit

- ▷ z. B. Standortplanung (Network Design)
- ▷ beschaffungspolitische Entscheidungen

► Taktisches Produktionsmanagement

Schaffung der Erfolgsvoraussetzungen, Lieferantenauswahl, Aufbau der Produktionskapazitäten (Node Design)

- ▷ Segmentierung
- Dimensionierung

▶ Operatives Produktionsmanagement

optimale Nutzung der Produktionskapazitäten, dispositive Entscheidungen

Gliederung: Produktionsmanagement

- Strategisches Produktionsmanagement
- ► Infrastrukturplanung für Produktionssysteme

 - Materialflüsse (Fabrikplanung)
 - * Layoutplanung (innerbetriebliche Standortplanung)
 - * Konfigurationsplanung (Kapazitätsplanung, "Prozess-Design")
- ▶ Qualitätsmanagement, insb. Statistische Qualitätskontrolle
- ► Operative Produktionsplanung und -steuerung
 - ▶ Produktionsprogrammplanung

 - Ressourceneinsatzplanung
 - Reihenfolgeplanung
- Konzepte zur Produktionsplanung und -steuerung

Strategisches Produktionsmanagement

Strategische Entwicklungsplanung in Unternehmen

Erfolgspotentiale und Wettbewerbsvorteile

Erfolgspotential

Fähigkeit eines Unternehmens, wettbewerbsfähig zu bleiben bzw. Wettbewerbsvorteile zu erzielen

Wettbewerbsvorteil

eine im Vergleich zum Wettbewerb überlegene Leistung, die

- dem Kunden wichtig
- vom Kunden wahrnehmbar
- ▶ gegenüber der Konkurrenz dauerhaft

ist

(Simon (1988))

Erfolgspotentiale und Wettbewerbsvorteile

Triebkräfte des Branchenwettbewerbs

(Wettbewerbsmodell nach *Porter*)

(Günther/Tempelmeier (2012), Porter (1999))

Strategieinhalte

Strategie

Gesamtheit aller Maßnahmen, die einen wesentlichen Einfluss auf den Ausgang des Wettbewerbs haben

- auf die Schaffung und Nutzung möglichst dauerhafter Wettbewerbsvorteile ausgerichtet
- ► Einbeziehung aller Unternehmensbereiche
- ► langfristige und hochaggregierte Betrachtung

Kennzeichnung der Strategieinhalte durch

- ▶ die bedienten Produkt-/Markt-Segmente

 - ▷ Synergien
- die damit verbundene Investitionspolitik
- die entsprechende funktionale Orientierung/Schwerpunktsetzung
- ▶ die vorhandenen Unternehmensstärken

(Günther/Tempelmeier (2012), Aaker (2001))

TOWS-Analyse/SWOT-Analyse

Leistungsbeurteilung zur Strategiefindung

interne Faktoren

externe Faktoren

Chancen/Opportunities

(z. B. neue Märkte, neue Technologien, Wegfall von Handelsbeschränkungen, Marktwachstum)

Bedrohungen/Threats

(z. B. Konjunkturkrise, Auftauchen ausländischer Billiganbieter, Wechselkursschwankungen)

Stärken/Strengths

(z. B. Kapitalausstattung, Kundenstamm, technisches Know-how) (z. B. veraltete Maschinen, überalterte Produkte, schlechtes Vertriebsnetz)

Schwächen/Weaknesses

SO (Idealfall!)

ST

vorhandene Stärken einsetzen, aktuelle Position sichern und sich bietende neue Chancen nutzen

Qualitäts- und Flexibilitätsvorteile einsetzen, um kundengerechter und mit kürzerer Lieferzeit zu produzieren und damit Marktrisiken verringern

WO

Technologie entwickeln und investieren, vorhandene Schwächen abbauen und Chancen nutzen

WT

Schwächen versuchen abzubauen, Defensivstrategien entwickeln und — bei Überwiegen — Bedrohungen bzw. Risiken ausweichen

(Günther/Tempelmeier (2012), Weihrich/Koontz (1993))

Marktanteils-/Marktwachstumsportfolio ("BCG-Matrix")

(Günther/Tempelmeier (2012), Homburg (2000))

Standardstrategieempfehlung: *Melkkühe* ausmelken, die hieraus gewonnenen Investitionsmittel zum Ausbau der *Sterne* und zur Belebung der *Fragezeichen* verwenden, die *armen Hunde* jedoch aufgeben!

Funktionalstrategien als Teil der Unternehmensstrategie

(Günther/Tempelmeier (2012), Hayes/Wheelwright (1984))

Integration von Markt- und Produktionsstrategie

Integration von Markt- und Produktionsstrategien

Unterneh-	Markt-	Produkt-	Prozess-	Infra-
mensziele	strategien	politik	wahl	struktur
 Gewinn Wachstum Unabhängig-keit Kapitalrentabilität Wertzuwachs soziale Ziele ökologische Ziele ziele 	 Markt-segmente Produkt-palette technologischer Innovationsgrad Standardisierung versus kundenlindividuelle Gestaltung Absatzvolumen 	 Preis Qualität Lieferservice Design Image Funktionalität Langlebigkeit Recyclingfähigkeit 	sierung Produktions- organisation	 Produktions-standorte Kapazität Produktions-layout Qualitäts-sicherung Material-versorgung Personal-entwicklung

(Günther/Tempelmeier (2012), Hill (2000))

(Günther/Tempelmeier (2012))

Logistikstruktur aus Sicht eines Produkts

(Quelle: Günther/Tempelmeier (2012))

Supply Chain Management

Wettbewerbsfähigkeit manifestiert sich in einem wettbewerbsfähigen (End-)Produkt gegenüber dem (End-)Kunden.

- ⇒ Logistische Netzwerke ("Supply Chains"), nicht einzelne Unternehmen, konkurrieren miteinander.
- ▶ Die Wettbewerbsposition ist häufig nicht mehr (nur) auf das einzelne Unternehmen bezogen.
- ► Produktions-/Wertschöpfungsmanagement ist von nun an nicht nur für einzelne Unternehmen, sondern auch für bzw. in bezug auf ganze Wertschöpfungsnetzwerke erforderlich.
- ▶ Dies erfordert die **Koordination** von unternehmensspezifischen (intraorganisationalen) und unternehmensübergreifenden (interorganisationalen) Netzwerken bzw. die **Integration** von Mitgliedern eines Wertschöpfungsnetzwerks.

Supply Chain Management

Die **Supply Chain** (Versorgungskette) beinhaltet alle Beschaffungs-, Produktions-, Lager- und Transportaktivitäten vom Zulieferer der Rohmaterialien bis zum (End-)Kunden.

Das **Supply Chain Management** umfasst die *Integration* aller organisatorischen Einheiten, die innerhalb einer Supply Chain an der Entstehung eines (End-)Produkts beteiligt sind, sowie die *Koordination* der Material-, Informations- und Geldströme zur Erfüllung der Kundennachfrage mit dem Ziel, die Wettbewerbsfähigkeit der gesamten Supply Chain zu erhöhen.

Supply Chain Management

"The House of SCM"

Wettbewerbsfähigkeit der gesamten Supply Chain

(Kundenservice, Kostenkontrolle, Risikomanagement, Talent)

Integration

Wahl der Partner

Zusammenarbeit (Netzwerkorganisation, interorganisationale Kollaboration)

Führung

Koordination

Nutzung von Informations- und Kommunikationstechnologie

Prozessorientierung

"Advanced Planning"

Fundament

Produktion, Logistik, Operations Research (OR), Wirtschaftsinformatik, Marketing, Organisation, Controlling, ...

(Supply Chain Council (http://supply-chain.org))

Infrastrukturplanung für Produktionssysteme

Logistikstruktur einer Supply Chain

regionale Auslieferungslager bei

- ▶ regelmäßigem Bedarf
- ► hohen Lieferserviceanforderungen
- aufwendiger Auslieferung

Zentrallager bei

- sporadischem Bedarf
- ▶ Transportbündelung

Beschaffungsseite: Trend zur produktionssynchronen Beschaffung

- "modular sourcing"
- Just-in-Time-Belieferung
- ► Outsourcing, Lieferantenzentren

Standortentscheidungen: Planung der Lieferstandorte

Standortplanung

Anlässe

- ► Kapazitätsbedarf
- ► Verlagerung der Nachfrageschwerpunkte
- ► Zusammenlegung von Produktionsstätten
- ► Just-in-Time-Prinzip
- Kostenanstieg
- ► Handelsbeschränkungen

Standortfaktorenkatalog nach Behrens

- ► Beschaffungsseite

 - ▷ Beschaffungskosten
 - * Transportkosten
 - * Reisekosten zu Bezugsorten
 - * Kostenteilung
 - ▷ Beschaffungszeit
 - * Verderblichkeit
 - * Anforderungen der JIT-Produktion
 - * Transportzeit
- ► Transformationsprozess
 - \triangleright ...
- Absatzseite
 - \triangleright . .

Standortfaktoren

= Kriterien, nach denen die potentiellen Standorte bewertet werden

Schwierigkeiten:

- ► Mehrdeutigkeit: Vielzahl unterschiedlicher Standortfaktoren
- ► Nicht-Quantifizierbarkeit einzelner Standortfaktoren

Nutzwertanalyse

additive Bewertungsfunktion für potentielle Standorte mit Gewichten für die einzelnen Standortfaktoren

Standortfaktoren

= Kriterien, nach denen die potentiellen Standorte bewertet werden

Schwierigkeiten:

- ► Mehrdeutigkeit: Vielzahl unterschiedlicher Standortfaktoren
- ► Nicht-Quantifizierbarkeit einzelner Standortfaktoren
- verschiedene Entscheidungsebenen
 - ▶ Wirtschaftsraum
 - ▶ Region
 - ▶ Gemeinde
 - ▶ Bauplatz

Standortplanungsmodelle

- ► kontinuierliche Standortplanung (Steiner-Weber-Problem)
- diskrete Standortplanung

Ein Optimierungsmodell zur Standortplanung bei bekannten potentiellen Standorten

Modell zur Standortplanung

Modell STANDORT

Was muss festgelegt werden:

... Welche Standorte errichten bzw. auswählen?

... Welche Mengen transportieren?

Modell STANDORT

Was muss festgelegt werden — Entscheidungsvariable:

$$\gamma_i \in \{0, 1\} \dots$$

Binärvariable zur Kennzeichnung der Standortwahl

$$\gamma_i = \left\{ \begin{array}{l} 1 \text{ , wenn am Standort } i \text{ eine Produktions-} \\ \text{stätte errichtet wird} \\ 0 \text{ sonst} \end{array} \right.$$

$$x_{ij} \ge 0$$
 ...

Transportmengen von i nach j

Modell STANDORT

Gegeben — Indexmengen:

 \mathcal{I} ... Menge der potentiellen Standorte, $\mathcal{I} = \{1, 2, \dots, I\}$

 \mathcal{J} ... Menge der Abnehmerzentren, $\mathcal{J} = \{1, 2, \dots, J\}$

Gegeben — Daten:

 b_i ... Kapazität des Standorts i

 c_{ij} ... Kosten pro Mengeneinheit für einen Transport von i nach j

 d_j ... Bedarf im Abnehmerzentrum j

 f_i ... Fixkosten des Standorts i

Modell zur Standortplanung

Modell STANDORT

$$\text{Minimiere } Z = \sum_{i=1}^{I} f_i \cdot \gamma_i + \sum_{i=1}^{I} \sum_{j=1}^{J} c_{ij} \cdot x_{ij}$$

u. B. d. R.

Bedarf des Abnehmerzentrums j:

$$\sum_{i=1}^{I} x_{ij} \ge d_j$$

(für alle Abnehmerzentren $j = 1, 2, \dots, J$)

Kapazität der Produktionsstätte i:

$$\sum_{j=1}^{J} x_{ij} \le b_i \cdot \gamma_i$$

(für alle Produktionsstätten $i=1,2,\ldots,I$)

Beispiel Standortplanung bei gegebenen potentiellen Standorten

Transportkostensätze c_{ij} [GE/ME], sonstige Daten

Abnehmer	H	В	М	K	F	Kapazität	Fixkosten
Standorte						b_i	f_i
DO	342	500	612	94	219	250	50000
HB	119	390	745	324	467	350	50000
KA	631	687	277	313	145	350	50000
PA	827	639	195	630	443	250	50000
Bedarfsmengen d_j	100	90	110	120	50		

Beispiel Standortplanung in der Halbleiterindustrie

vgl. Fallstudie von:

Heinrich Kuhn (2000).

Transportplanung in der Halbleiterindustrie.

WiSt — Wirtschaftswissenschaftliches Studium 29(12),

S. 717-720.

Beispiel Standortplanung in der Halbleiterindustrie

Beispiel Standortplanung in der Halbleiterindustrie

Frontend-Werke

- ► Villach
- ► München
- Newcastle
- ▶ Duisburg?

Backend-Werke

- Regensburg
- Dresden
- ► Grenoble
- Mailand

Beispiel Standortplanung in der Halbleiterindustrie

Transportkostensätze c_{ij} [\in /Mio. Chips], Bedarfe d_j [Mio. Chips]

Backend-Werke	Regensburg	Dresden	Grenoble	Mailand
Frontend-Werke				
Villach	360	650	820	480
München	200	470	690	440
Newcastle	990	950	1480	1520
Duisburg	300	600	900	850
Bedarf	210	390	180	210

Standortdaten (auf einen Monat bezogen)

Frontend-Werke	Kapazität b_j [Mio. Chips]	Fixkosten $f_i \in$
Villach	480	200000
München	240	200000
Newcastle	270	200000
Duisburg	200	200000

(Lösungsansicht Produktionsmanagement-Trainer, POM Prof. Tempelmeier GmbH)

(Lösungsansicht Produktionsmanagement-Trainer, POM Prof. Tempelmeier GmbH)

Heuristische Lösungsverfahren zur Standortplanung

Greedy-Heuristiken zur Standortplanung

Add-Heuristik

- ▶ Beginne mit einem zentralen Standort, bei dem die Summe aus fixen und Transportkosten minimal ist!
- ► Ergänze die Standortliste, solange der Anstieg an Fixkosten durch die mögliche Reduktion bei den Transportkosten überkompensiert wird!
- ► Abbruch, wenn keine Kostensenkung in Sicht ist!

Drop-Heuristik

- ► Beginne mit allen Standorten!
- ► Reduziere die Standortliste, solange die mögliche Einsparung an Fixkosten den Anstieg bei den erwarteten Transportkosten überkompensiert!
- ► Abbruch, wenn keine Kostensenkung in Sicht ist!

Beispiel Standortplanung in der Halbleiterindustrie

Transportkostensätze c_{ij} [\in /Mio. Chips], Bedarfe d_j [Mio. Chips]

Backend-Werke	Regensburg	Dresden	Grenoble	Mailand
Frontend-Werke				
Villach	360	650	820	480
München	200	470	690	440
Newcastle	990	950	1480	1520
Duisburg	300	600	900	850
Bedarf	210	390	180	210

Standortdaten (auf einen Monat bezogen)

Frontend-Werke	Kapazität b_j [Mio. Chips]	Fixkosten $f_i \in$
Villach	480	200000
München	240	200000
Newcastle	270	200000
Duisburg	200	200000

Beispiel Standortplanung in der Halbleiterindustrie

Add-Heuristik

▶ Beginne mit einem zentralen Standort, bei dem die Summe aus fixen und Transportkosten der vollständigen Belieferung aller Abnehmer minimal ist!

Standort	Kosten [GE]
Villach	$200000 + 210 \cdot 360 + 390 \cdot 650 + 180 \cdot 820 + 210 \cdot 480 = 777500$
München	$200000 + 210 \cdot 200 + 390 \cdot 470 + 180 \cdot 690 + 210 \cdot 440 = 641900$
Newcastle	$200000 + 210 \cdot 990 + 390 \cdot 950 + 180 \cdot 1480 + 210 \cdot 1520 = 1364000$
Duisburg	$200000 + 210 \cdot 300 + 390 \cdot 600 + 180 \cdot 900 + 210 \cdot 850 = 837500$

Beispiel Standortplanung in der Halbleiterindustrie

Add-Heuristik

▶ Beginne mit einem zentralen Standort, bei dem die Summe aus fixen und Transportkosten der vollständigen Belieferung aller Abnehmer minimal ist!

Standort	Kosten [GE]
München	$200000 + 210 \cdot 200 + 390 \cdot 470 + 180 \cdot 690 + 210 \cdot 440 = 641900$

► Berechne die möglichen Transportkosteneinsparungen bei einem zusätzlichen Standort!

Backend-Werke	Regensburg	Dresden	Grenoble	Mailand
Frontend-Werke				
Villach	0	0	0	0
Newcastle	0	0	0	0
Duisburg	0	0	0	0

▶ Ist die Vorteilhaftigkeit nach Vergleich mit dem Anstieg der Fixkosten noch gegeben?

⇒ Hier nirgendwo!

Beispiel Standortplanung bei gegebenen potentiellen Standorten

Transportkostensätze c_{ij} [GE/ME], sonstige Daten

Abnehmer	НН	В	М	K	F	Kapazität	Fixkosten
Standorte						b_i	f_i
DO	342	500	612	94	219	250	50000
HB	119	390	745	324	467	350	50000
KA	631	687	277	313	145	350	50000
PA	827	639	195	630	443	250	50000
Bedarfsmengen d_j	100	90	110	120	50		

Beispiel Standortplanung bei gegebenen potentiellen Standorten

Add-Heuristik

▶ Beginne mit einem zentralen Standort, bei dem die Summe aus fixen und Transportkosten der vollständigen Belieferung aller Abnehmer minimal ist!

Standort	Kosten [GE]							
DO	$50000 + 342 \cdot 100 + 500 \cdot 90 + 612 \cdot 110 + 94 \cdot 120 + 219 \cdot 50 = 218750$							
HB	$50000 + 119 \cdot 100 + 390 \cdot 90 + 745 \cdot 110 + 324 \cdot 120 + 467 \cdot 50 = 241180$							
KA	$50000 + 631 \cdot 100 + 687 \cdot 90 + 277 \cdot 110 + 313 \cdot 120 + 145 \cdot 50 = 250210$							
PA	$50000 + 827 \cdot 100 + 639 \cdot 90 + 195 \cdot 110 + 635 \cdot 120 + 443 \cdot 50 = 309410$							

Beispiel Standortplanung bei gegebenen potentiellen Standorten

Add-Heuristik

▶ Beginne mit einem zentralen Standort, bei dem die Summe aus fixen und Transportkosten der vollständigen Belieferung aller Abnehmer minimal ist!

Standort	Kosten [GE]
DO	$50000 + 342 \cdot 100 + 500 \cdot 90 + 612 \cdot 110 + 94 \cdot 120 + 219 \cdot 50 = 218750$

► Berechne die möglichen Transportkosteneinsparungen bei einem zusätzlichen Standort!

Abnehmer	НН	В	М	K	F
Standorte					
НВ	22 300	9 900	0	0	0
KA	0	0	36 850	0	3 700
PA	0	0	45 870	0	0

Ist die Vorteilhaftigkeit nach Vergleich mit dem Anstieg der Fixkosten noch gegeben? \Longrightarrow Nein, da jede Zeilensumme der Transportkosteneinsparungen $\le 50\,000$ [GE]!