LARGE LANGUAGE MODEL FOR CODE TRANSLATION

Manal, Raghad, Eman, Shahad

Introductin

• Manual code conversion between programming languages is timeconsuming, error-prone, and requires deep expertise due to differences in syntax, semantics, and language features.

• Automated code translation techniques, like transcompilers, reduce errors, improve efficiency, and enable seamless integration of code from different languages, enhancing codebases and promoting code interoperability

Literature Review

Large Language Model

- Definition: type of artificial intelligence (Deep Learning) that has the ability to imitate human intellect.
 - Applications: Text Generation Summarization Sentiment Analysis.
 - Limitations: require large computational capabilities.

Deep Learning

- Definition: a subfield of machine learning, relies on artificial neural networks(ANNs) as its foundation.
- • Applications: Supervised Unsupervised Reinforcement
- • Limitations: limited to knowledge from information in training data.

Literature Review

Code Translation

- Definition: embodied in the concept of a transcompiler or source-to-source translator.
 - Applications: Code reusability- software conversion to other language.
 - Limitations:Low-Resource Programming Languages- small change in tokens can drastically change its meaning.

Related Work

Problem

- The current LLMs for code translation did not achieve the required efficiency, in addition to the high rate of incorrect translation.
- There is no systematic classification and identification of roots causing translation error.
- The weakness in the current prompt techniques is considered one of the causes of translation errors.

Contribution

- Taxonomy of translation bugs.
- Improving the results of translation by offering suitable contexts.
- Develop an iterative prompt crafting.

Proposed solution

The proposed solution serves translation between five PLs(C, C++, Go, JAVA, Python). emprical study conducted and used three datasets, two real world projects, and seven LLMs.

outcome solution -Taxonomy o f 14 bugs categories.

-New iterative prompt is created.

Critical Review

- The evaluation of LLMs in this paper relies solely on compilation and execution, which provides a practical assessment. However, it is also essential to include static metrics to compare the performance of the models with related works.
- It couldn't take advantages from more case studies about bug taxonomy in other works.

Problem

- Challenge of code generation from natural language descriptions.
- The gap that exists between instructions that can be executed by machines and human languages.
- Vulnerabilities found in previous models that efficiently converts natural language descriptions into executable Python code.

Contribution

- Acknowledgment of limitations, specifically a lack of flexibility in language detection and translation restrictions to Python.
- Emphasis on the complexity involved in creating a model capable of accurately converting natural language into executable Python code.

Proposed solution

- Fine-tuning pre-trained language model (MarianMT) using two datasets.
- Development and implementation of MarianCG to solve the code generation problem.
- Three-step experimentation and development process to enhance model performance.
- Utilization of BLEU score and exact match accuracy as evaluation metrics.

Critical Review

- Risk of misinterpretation or misclassification of language constructs.
- MarianCG is confined to translating into Python, lacking support for other languages.
- Lack of flexibility in distinguishing programming from natural language.

problem

- Difficult to develop evaluation metrics that align with human judgment.
- The utilization of human-written test suites to evaluate functional correctness can be challenging in domains with low resources.

Contribution

propose a new evaluation framework based on the GPT-3.5 for code generation assessments.

Proposed solution

Evaluates the framework of four programming languages (Java, Python, C, C++, and JavaScript) from two aspects:

- Human-based usefulness.
- Execution-based functional correctness.

by comparing its performance with the state-of-the-art CodeBERTScore metric

Critical Review

it is still uncertain whether LLMs can be effectively employed to evaluate other tasks related to source code beyond code generation.

4.Code Translation and Multilingual Code Co-Evolution

Problem

• The main problem addressed in the paper is focuses on the task of automatically translating code changes from one programming language to another.

Contribution

The contribution is the introduction of the *Codeditor* model, which is designed to address the challenge of automatically translating code changes from one programming language to another.

4.Code Translation and Multilingual Code Co-Evolution

Proposed solution

4.Code Translation and Multilingual Code Co-Evolution

Critical Review

- Codeditor showcases promise in handling longer code, yet there's a need for a closer look at its efficacy with shorter snippets.
- Proposed integration with generation models boosts accuracy but warrants careful consideration due to potential complexities.

THANK YOU FOR LISTENING

