DT05 Rec'd PCT/PT0 2 1 DEC 2004

SEQUENCE LISTING	
<110> NAGOYA INDUSTRIAL SCIENCE RESEARCH INSTITUTE GIFU INTERNATIONAL INSTITUTE OF BIOTECHNOLOGY YAMADA, YOShiji YOKOTA, Mitsuhiro	
<120> Method for diagnosing myocardial infarction risk	
<130> C0200201	
<150> JP P2002-181580 <151> 2002-06-21	
<160> 64	
<170> PatentIn version 3.1	
<210> 1 <211> 1601 <212> DNA <213> Homo sapiens	
<400> 1 ctccggccat cgtccccacc tccacctggg ccgcccgcga ggcagcggac ggaggccggg	60
agccatgggt gactggggct tcctggagaa gttgctggac caggtccagg agcactcgac	120
cgtggtgggt aagatctggc tgacggtgct cttcatcttc cgcatcctca tcctgggcct	180
ggccggcgag tcagtgtggg gtgacgagca gtcagatttc gagtgtaaca cggcccagcc	240
aggctgcacc aacgtctgct atgaccaggc cttccccatc tcccacatcc gctactgggt	300
gctgcagttc ctcttcgtca gcacacccac cctggtctac ctgggccatg tcatttacct	360
gtctcggcga gaagagcggc tgcggcagaa ggagggggag ctgcgggcac tgccggccaa	420
ggacccacag gtggagcggg cgctggcggc cgtagagcgt cagatggcca agatctcggt	480
ggcagaagat ggtcgcctgc gcatccgcgg agcactgatg ggcacctatg tcgccagtgt	540
gctctgcaag agtgtgctag aggcaggctt cctctatggc cagtggcgcc tgtacggctg	600
gaccatggag cccgtgtttg tgtgccagcg agcaccctgc ccctacctcg tggactgctt	660
tgtctctcgc cccacggaga agaccatctt catcatcttc atgttggtgg ttggactcat	720
ctccctggtg cttaacctgc tggagttggt gcacctgctg tgtcgctgcc tcagccgggg	780
gatgagggca cggcaaggcc aagacgcacc cccgacccag ggcacctcct cagaccctta	840
cacggaccag gtcttcttct acctccccgt gggccagggg ccctcatccc caccatgccc	900
cacctacaat gggctctcat ccagtgagca gaactgggcc aacctgacca cagaggagag	960
gctggcgtct tccaggcccc ctctcttcct ggacccaccc cctcagaatg gccaaaaacc	1020
cccaagtcgt cccagcagct ctgcttctaa gaagcagtat gtatagaggc ctgtggctta	1080

tgtcacccaa cagaggggtc ctgagaagtc tggctgcctg ggatgccccc tgcccctcc

tggaaggctc tgcagagatg actgggctgg ggaagcagat gcttgctggc catggagcct $$\operatorname{\textsc{Page}}\ 1$$

cattgcaagt	tgttcttgaa	cacctgaggc	cttcctgtgg	cccaccaggc	actacggctt	1260
cctctccaga	tgtgctttgc	ctgagcacag	acagtcagca	tggaatgctc	ttggccaagg	1320
gtactggggc	cctctggcct	tttgcagctg	atccagagga	acccagagcc	aacttacccc	1380
aacctcaccc	tatggaacag	tcacctgtgc	gcaggttgtc	ctcaaaccct	ctcctcacag	1440
gaaaaggcgg	attgaggctg	ctgggtcagc	cttgatcgca	cagacagagc	ttgtgccgga	1500
tttggccctg	tcaaggggac	tggtgccttg	ttttcatcac	tccttcctag	ttctactgtt	1560
caagcttctg	aaataaacag	gacttgatca	caaaaaaaa	a		1601

<210> 2 <211> 1178 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature <222> (881)..(881)

<223> n stands for any base

<400> 2 60 ggggaagcaa aggagaagct gagaagatga aggaaaagtc agggtctgga ggggcggggg 120 tcagggagct cctgggagat atggccacat gtagcggctc tgaggaatgg gttacaggag 180 acctctgggg agatgtgacc acagcaatgg gtaggagaat gtccagggct atggaagtcg 240 agtatcgggg acccccctt aacgaagaca gggccatgta gagggcccca gggagtgaaa 300 gagcctccag gacctccagg tatggaatac aggggacgtt taagaagata tggccacaca 360 ctggggccct gagaagtgag agcttcatga aaaaaatcag ggaccccaga gttccttgga 420 agccaagact gaaaccagca ttatgagtct ccgggtcaga atgaaagaag aaggcctgcc 480 ccagtggtct gtgaattccc gggggtgatt tcactccccg ggctgtccca ggcttgtccc tgctaccccc acccagcctt tcctgaggcc tcaagctgcc accaagcccc cagctccttc 540 600 tccccgcaga cccaaacaca ggcctcagga ctcaacacag cttttccctc caaccccgtt 660 ttctctccct caaggactca gctttctgaa gcccctccca gttctagttc tatctttttc 720 ctgcatcctg tctggaagtt agaaggaaac agaccacaga cctggtcccc aaaagaaatg 780 gaggcaatag gttttgaggg gcatgggggac ggggttcagc ctccagggtc ctacacacaa atcagtcagt ggcccagaag accccctcg gaatcggagc agggaggatg gggagtgtga 840 900 ggggtatcct tgatgcttgt gtgtccccaa ctttccaaat ncccgccccc gcgatggaga 960 agaaaccgag acagaaggtg cagggcccac taccgcttcc tccagatgag cttatgggtt tctccaccaa ggaagttttc cgctggttga atgattcttt ccccgccctc ctctcgcccc 1020 agggacatat aaaggcagtt gttggcacac ccagccagca gacgctccct cagcaaggac 1080 Page Ž

agcagaggac cagctaagag ggagagaagc aactgcagac ccccctgaa aacaaccctc	1140
agacgccaca tcccctgaca agctgccagg caggttct	1178
<210> 3 <211> 971 <212> DNA <213> Homo sapiens	
<400> 3 ccaggctgca gtgcagtggt gcagctgtga ctcatggcag cctccacctg gctcaggcca	60
ccctcttacc tcagcctctg gagtagctgg gaccacaggc acacaccact gcacctggct	120
tttaaatttt ttgtagagat gagggtctca ctatgttgcc caggctggtc tcaaactcct	180
gggctccagt gatcctcccg cctcagcctc ccaaaatgct gggattccag gcatgagcca	240
ccgtgctcgg gcccctctct gtgttgtctt cagtaaaggg agttccctgt ggcccctcag	300
gctgagctgg gctgttcctt aaccacatgg cttcagtgtg gcgggcgtgt ttgtgtgcct	360
gctggagtac ccccggggga agaggaagaa gggctccacc atggagcgct ggtgagtctc	420
ctcctgatct ggggtctctc cgggggctgc ggggcccagg cagggctcac agggttgggt	480
ggagcttggt ttctcacttg gaggctccgg aaccaaccct ttggtgcttg tgggtaaacc	540
aaggccggtg cctgcccggt gtgttttgtg ggaggaaaga ggcctgggtg ccctggggtg	600
gtcagcaggg cagcaaagga gtcccgagtg ggagaggccc agccgcgccg tctcgccttc	660
ctcctcccc caggggacag aagtacatga ccgccgtggt gaagctgttc gggcccttta	720
ccaggaatta ctatgttcgg gccgtcctgc atctcctgtg agtccccgtc ccgcaccccc	780
tctagggctc aggagggctt ggagccgacc ctccccactg tcccaccggc cgggctgcct	840
ggacaggagc cacccccact tacctcagtg tttttccaaa caaaaattcg ggtccctggc	900
tctggcaggg cctgtgtctg ctgtctagtg tgcaggattt gtaaggatcc actccaaatc	960
cgaggagctc g	971
<210> 4 <211> 1278 <212> DNA <213> Homo sapiens	
<400> 4 ccagacaagt gatttttgag gagtccctat ctataggaac aaagtaatta aaaaaatgta	60
tttcagaatt tacaggccca tgtgagatat gatttttta aatgaagatt tagagtaatg	120
ggtaaaaaag aggtatttgt gtgtttgttg attgttcagt cagtgaatgt acagcttctg	180
cctcatatcc aggcaccatc tcttcctgct ctttgttgtt aaatgttcca ttcctgggta	240
atttcatgtc tgccatcgtg gatatgccgt ggctccttga acctgcttgt gttgaagcag	300

040677 360 gatcttcctt cctgtccctt cagtgcccta ataccatgta tttaaggctg gacacatcac 420 cactcccaac ctgcctcacc cactgcgtca cttgtgatca ctggcttctg gcgactctca 480 ccaaggtctc tgtcatgccc tgttataacg actacaaaag caagtcttac ctataggaaa 540 ataagaatta taaccctttt actggtcatg tgaaacttac catttgcaat ttgtacagca taaacacaga acagcacatc tttcaatgcc tgcatcctga aggcattttg tttgtgtctt 600 660 tcaatctggc tgtgctattg ttggtgttta acagtctccc cagctacact ggaaacttcc agaaggcact tttcacttgc ttgtgtgttt tccccagtgt ctattagagg cctttgcaca 720 gggtaggctc tttggagcag ctgaaggtca cacatcccat gagcgggcag cagggtcaga 780 840 agtggccccc gtgttgccta agcaagactc tcccctgccc tctgccctct gcacctccgg 900 cctgcatgtc cctgtggcct cttgggggta catctcccgg ggctgggtca gaaggcctgg gtggttggcc tcaggctgtc acacacctag ggagatgctc ccgtttctgg gaaccttggc 960 1020 cccgactcct gcaaacttcg gtaaatgtgt aactcgaccc tgcaccggct cactctgttc 1080 agcagtgaaa ctctgcatcg atcactaaga cttcctggaa gaggtcccag cgtgagtgtc 1140 gcttctggca tctgtccttc tggccagcct gtggtctggc caagtgatgt aaccctcctc 1200 tccagcctgt gcacaggcag cctgggaaca gctccatccc cacccctcag ctataaatag ggcctcgtga cccggccagg ggaagaagct gccgttgttc tgggtactac agcagaaggt 1260 1278 aagccggggg ccccctca <210> 1426 <212> DNA <213> Homo sapiens <400> 60 caaggtcaca cagctggcaa ctggcagagc caggattcac gccctggcaa tttgactcca gaatcctaac cttaacccag aagcacggct tcaagcccct ggaaaccaca atacctgtgg 120 180 cagccagggg gaggtgctgg aatctcattt cacatgtggg gagggggctc ccctgtgctc 240 aaggtcacaa ccaaagagga agctgtgatt aaaacccagg tcccatttgc aaagcctcga cttttagcag gtgcatcata ctgttcccac ccctcccatc ccacttctgt ccagccgcct 300 360 agccccactt tcttttttt ctttttttga gacagtctcc ctcttgctga ggctggagtg 420 cagtggcgag atctcggctc actgtaacct ccgcctcccg ggttcaagcg attctcctgc 480 ctcagcctcc caagtagcta ggattacagg cgcccgccac cacgcctggc taacttttgt 540 atttttagta gagatggggt ttcaccatgt tggccaggct ggtctcaaac tcctgacctt 600 aagtgattcg cccactgtgg cctcccaaag tgctgggatt acaggcgtga gctaccgccc 660 ccagccctc ccatcccact tctgtccagc cccctagccc tactttcttt ctgggatcca

ggagtccaga	tccccagccc	cctctccaga	ttacattcat	ccaggcacag	gaaaggacag	720
ggtcaggaaa	ggaggactct	gggcggcagc	ctccacattc	cccttccacg	cttggccccc	780
agaatggagg	agggtgtctg	tattactggg	cgaggtgtcc	tcccttcctg	gggactgtgg	840
ggggtggtca	aaagacctct	atgccccacc	tccttcctcc	ctctgccctg	ctgtgcctgg	900
ggcaggggga	gaacagccca	cctcgtgact	gggggctggc	ccagcccgcc	ctatccctgg	960
gggagggggc	gggacagggg	gagccctata	attggacaag	tctgggatcc	ttgagtccta	1020
ctcagcccca	gcggaggtga	aggacgtcct	tccccaggag	ccggtgagaa	gcgcagtcgg	1080
gggcacgggg	atgagctcag	gggcctctag	aaagagctgg	gaccctggga	agccctggcc	1140
tccaggtagt	ctcaggagag	ctactcgggg	tcgggcttgg	ggagaggagg	agcgggggtg	1200
aggcaagcag	caggggactg	gacctgggaa	gggctgggca	gcagagacga	cccgacccgc	1260
tagaaggtgg	ggtggggaga	gcagctggac	tgggatgtaa	gccatagcag	gactccacga	1320
gttgtcacta	tcatttatcg	agcacctact	gggtgtcccc	agtgtcctca	gatctccata	1380
actggggagc	caggggcagc	gacacggtag	ctagccgtcg	attgga		1426

<210> 6 <211> 1505 <212> DNA

<213> Homo sapiens

<400> 60 qctqqtcqga ggctcqcagt gctgtcggcg agaagcagtc gggtttggag cgcttgggtc 120 gcgttggtgc gcggtggaac gcgcccaggg accccagttc ccgcgagcag ctccgcgccg 180 cgcctgagag actaagctga aactgctgct cagctcccaa gatggtgcca cccaaattgc 240 atgtgctttt ctgcctctgc ggctgcctgg ctgtggttta tccttttgac tggcaataca 300 taaatcctgt tgcccatatg aaatcatcag catgggtcaa caaaatacaa gtactgatgg 360 ctgctgcaag ctttggccaa actaaaatcc cccggggaaa tgggccttat tccgttggtt gtacagactt aatgtttgat cacactaata agggcacctt cttgcgttta tattatccat 420 480 cccaagataa tgatcgcctt gacacccttt ggatcccaaa taaagaatat ttttggggtc 540 ttagcaaatt tcttggaaca cactggctta tgggcaacat tttgaggtta ctctttggtt 600 caatgacaac tcctgcaaac tggaattccc ctctgaggcc tggtgaaaaa tatccacttg 660 ttgttttttc tcatggtctt ggggcattca ggacacttta ttctgctatt ggcattgacc tggcatctca tgggtttata gttgctgctg tagaacacag agatagatct gcatctgcaa 720 780 cttactattt caaggaccaa tctgctgcag aaatagggga caagtcttgg ctctacctta 840 gaaccctgaa acaagaggag gagacacata tacgaaatga gcaggtacgg caaagagcaa 900 aagaatgttc ccaagctctc agtctgattc ttgacattga tcatggaaag ccagtgaaga

040677	
atgcattaga tttaaagttt gatatggaac aactgaagga ctctattgat agggaaaaa	960
tagcagtaat tggacattct tttggtggag caacggttat tcagactctt agtgaagatc	1020
agagattcag atgtggtatt gccctggatg catggatgtt tccactgggt gatgaagtat	1080
attccagaat tcctcagccc ctcttttta tcaactctga atatttccaa tatcctgcta	1140
atatcataaa aatgaaaaaa tgctactcac ctgataaaga aagaaagatg attacaatca	1200
ggggttcagt ccaccagaat tttgctgact tcacttttgc aactggcaaa ataattggac	1260
acatgctcaa attaaaggga gacatagatt caaatgtagc tattgatctt agcaacaaag	1320
cttcattagc attcttacaa aagcatttag gacttcataa agattttgat cagtgggact	1380
gcttgattga aggagatgat gagaatctta ttccagggac caacattaac acaaccaatc	1440
aacacatcat gttacagaac tcttcaggaa tagagaaata caattaggat taaaataggt	1500
ttttt	1505
<210> 7 <211> 1419 <212> DNA <213> Homo sapiens	
<400> 7 gaattctgag ggcagagcgg gccactttct aggcctctga tttcatactg tggtgttagt	60
tacttctgag aggacagctt gctgccagag ctctattttt tatgttagag gctccttctg	120
cctgcagact ctgctgtctg ggaagggcac agcgttagga gggagaggga ggtgtgagtc	180
cctccgtgga cccgctgctt tgtacttctc tatctcattt ccttttcagc accactctgg	240
gaaatcagta ttccagcccc attttatcct cagaaaattg aggctctgag atgttatctc	300
tgtgacctgg gtcctattac gtgccaaagg catcatttaa gcctaagatg tcctggctcc	360
aaggtgtcag catctggaag acaggcgcct catcctgcca tccctgctgc ggcttcactg	420
tggcccaggg gacatctcag cccgagaagg tcagcggccc cctcctggac caccgactcc	480
ccgcagaact cctctgtgcc ctctcctcac cagaccttgt tcctcccagt tgctcccaca	540
gccagggggc agtgagggct gctcttcccc cagccccact gaggaaccca ggaaggtgaa	600
cgagagaatc agtcctggtg ggggctgggg agggccccag acatgagacc agctcctccc	660
ccaggggatg ttatcagtgg gtccagaggg caaaataggg agcctggtgg agggaggggc	720
aaaggcctcg ggctctgagc ggccttggcc ttctccacca acccctccct acactcaggg	780
ggaggcggcg gtggggcaca cagggtgggg ggcgggtggc gggctgctgg gtgagcagca	840
ctcgcctgcc tggattgaaa cccagagatg gaggtgctgg gaggggctgt gagagctcag	900
ccctgtaacc aggccttgcc ggagccactg atgcccggtc ttctgtgcct ttactccaaa	960
catccccag cccaagccac ccacttgttc tcaagtctga agaagaagtc cctcaccct	1020

040677	
ctactccagg ctgtgttcag ggcttggggc tggtggaggg aggggcctga aattccagtg	1080
tgaaaggctg agatgcccga gcccctggcc tatgtccaag ccatttcccc tctctcacca	1140
gcctctccct ggggagccag tcagctagga aggaatgagg gctccccagg cccacccca	1200
gttcctgagc tcatctgggc tgcagggctg gcgggacagc agcgtggact cagtctccta	1260
gggatttccc aactctcccg cccgcttgct gcatctggac accctgcctc aggccctcat	1320
ctccactggt cagcaggtga cctttgccca gcgccctggg tcctcagtgc ctgctgccct	1380
ggagatgata taaaacaggt cagaaccctc ctgcctgtc	1419
<210> 8 <211> 3074 <212> DNA <213> Homo sapiens	
<400> 8 gaattccggg gagcaggaag agccaacatg ctggccccgc gcggagccgc cgtcctcctg	60
ctgcacctgg tcctgcagcg gtggctagcg gcaggcgccc aggccacccc ccaggtcttt	120
gaccttctcc catcttccag tcagaggcta aacccaggcg ctctgctgcc agtcctgaca	180
gaccccgccc tgaatgatct ctatgtgatt tccaccttca agctgcagac taaaagttca	240
gccaccatct tcggtcttta ctcttcaact gacaacagta aatattttga atttactgtg	300
atgggacgct taagcaaagc catcctccgt tacctgaaga acgatgggaa ggtgcatttg	360
gtggttttca acaacctgca gctggcagac ggaaggcggc acaggatcct cctgaggctg	420
agcaatttgc agcgaggggc cggctcccta gagctctacc tggactgcat ccaggtggat	480
tccgttcaca atctccccag ggcctttgct ggcccctccc agaaacctga gaccattgaa	540
ttgaggactt tccagaggaa gccacaggac ttcttggaag agctgaagct ggtggtgaga	600
ggctcactgt tccaggtggc cagcctgcaa gactgcttcc tgcagcagag tgagccactg	660
gctgccacag gcacagggga ctttaaccgg cagttcttgg gtcaaatgac acaattaaac	720
caactcctgg gagaggtgaa ggaccttctg agacagcagg ttaaggaaac atcatttttg	780
cgaaacacca tagctgaatg ccaggcttgc ggtcctctca agtttcagtc tccgacccca	840
agcacggtgg tcgccccggc tccccctgca ccgccaacac gcccacctcg tcggtgtgac	900
tccaacccat gtttccgagg tgtccaatgt accgacagta gagatggctt ccagtgtggg	960
ccctgccccg agggctacac aggaaacggg atcacctgta ttgatgttga tgagtgcaaa	1020
taccatccct gctacccggg cgtgcactgc ataaatttgt ctcctggctt cagatgtgac	1080
gcctgcccag tgggcttcac agggcccatg gtgcagggtg ttgggatcag ttttgccaag	1140
tcaaacaagc aggtctgcac tgacattgat gagtgtcgaa atggagcgtg cgttcccaac	1200

tcgatctgcg ttaatacttt gggatcttac cgctgtgggc cttgtaagcc ggggtatact 1260

1320 ggtgatcaga taaggggatg caaagtggaa agaaactgca gaaacccaga gctgaaccct 1380 tgcagtgtga atgcccagtg cattgaagag aggcaggggg atgtgacatg tgtgtgtgga 1440 gtcggttggg ctggagatgg ctatatctgt ggaaaggatg tggacatcga cagttacccc 1500 gacgaagaac tgccatgctc tgccaggaac tgtaaaaagg acaactgcaa atatgtgcca 1560 aattctggcc aagaagatgc agacagagat ggcattggcg acgcttgtga cgaggatgct gacggagatg ggatcctgaa tgagcaggat aactgtgtcc tgattcataa tgtggaccaa 1620 1680 aggaacagcg ataaagatat ctttggggat gcctgtgata actgcctgag tgtcttaaat 1740 aacgaccaga aagacaccga tggggatgga agaggagatg cctgtgatga tgacatggat 1800 ggagatggaa taaaaaacat tctggacaac tgcccaaaat ttcccaatcg tgaccaacgg 1860 gacaaggatg gtgatggtgt gggggatgcc tgtgacagtt gtcctgatgt cagcaaccct 1920 aaccagtctg atgtggataa tgatctggtt ggggactcct gtgacaccaa tcaggacagt gatggagatg ggcaccagga cagcacagac aactgcccca ccgtcattaa cagtgcccag 1980 2040 ctggacaccg ataaggatgg aattggtgac gagtgtgatg atgatgatga caatgatggt 2100 2160 gaggatagca acagcgacgg agtgggagac atctgtgagt ctgactttga ccaggaccag 2220 gtcatcgatc ggatcgacgt ctgcccagag aacgcagagg tcaccctgac cgacttcagg 2280 gcttaccaga ccgtgggcct ggatcctgaa ggggatgccc agatcgatcc caactgggtg 2340 gtcctgaacc agggcatgga gattgtacag accatgaaca gtgatcctgg cctggcagtg 2400 gggtacacag cttttaatgg agttgacttc gaagggacct tccatgtgaa tacccagaca 2460 gatgatgact atgcaggctt tatctttggc taccaagata gctccagctt ctacgtggtc atgtggaagc agacggagca gacatattgg caagccaccc cattccgagc agttgcagaa 2520 2580 cctggcattc agctcaaggc tgtgaagtct aagacaggtc caggggagca tctccggaac 2640 tccctgtggc acacggggga caccagtgac caggtcaggc tgctgtggaa ggactccagg 2700 aatgtgggct ggaaggacaa ggtgtcctac cgctggttcc tacagcacag gccccaggtg 2760 ggctacatca gggtacgatt ttatgaaggc tctgagttgg tggctgactc tggcgtcacc 2820 atagacacca caatgcgtgg aggccgactt ggcgttttct gcttctctca agaaaacatc 2880 atctggtcca acctcaagta tcgctgcaat gacaccatcc ctgaggactt ccaagagttt 2940 caaacccaga atttcgaccg cttcgataat taaaccaagg aagcaatctg taactgcttt 3000 tcggaacact aaaaccatat atattttaac ttcaattttc tttagctttt accaacccaa 3060 atatatcaaa acgttttatg tgaatgtggc aataaaggag aagagatcat ttttaaaaaa 3074 aaaaaaaaa aaaa

<210> 9

<211> 1327 <212> DNA <213> Homo	sapiens					
<400> 9 gatccccaga	gactttccag	atatctgaag	aagtcctgat	gtcactgccc	cggtccttcc	60
ccaggtagag	caacactcct	cgtcgcaacc	caactggctc	cccttacctt	ctacacacac	120
acacacacac	acacacacac	acacacacac	acacacaaat	ccaagacaac	actactaagg	180
cttctttggg	agggggaagt	agggataggt	aagaggaaag	taagggacct	cctatccagc	240
ctccatggaa	tcctgacttc	ttttccttgt	tatttcaact	tcttccaccc	catcttttaa	300
actttagact	ccagccacag	aagcttacaa	ctaaaagaaa	ctctaaggcc	aatttaatcc	360
aaggtttcat	tctatgtgct	ggagatggtg	tacagtaggg	tgaggaaacc	aaattctcag	420
ttggcactgg	tgtacccttg	tacaggtgat	gtaacatctc	tgtgcctcag	tttgctcact	480
ataaaataga	gacggtaggg	gtcatggtga	gcactacctg	actagcatat	aagaagcttt	540
cagcaagtgc	agactactct	tacccacttc	ccccaagcac	agttggggtg	ggggacagct	600
gaagaggtgg	aaacatgtgc	ctgagaatcc	taatgaaatc	ggggtaaagg	agcctggaac	660
acatcctgtg	accccgcctg	tcctgtagga	agccagtctc	tggaaagtaa	aatggaaggg	720
ctgcttggga	actttgagga	tatttagccc	accccctcat	ttttacttgg	ggaaactaag	780
gcccagagac	ctaaggtgac	tgcctaagtt	agcaaggaga	agtcttgggt	attcatccca	840
ggttgggggg	acccaattat	ttctcaatcc	cattgtattc	tggaatgggc	aatttgtcca	900
cgtcactgtg	acctaggaac	acgcgaatga	gaacccacag	ctgagggcct	ctgcgcacag	960
aacagctgtt	ctccccagga	aatcaacttt	ttttaattga	gaagctaaaa	aattattcta	1020
agagaggtag	cccatcctaa	aaatagctgt	aatgcagaag	ttcatgttca	accaatcatt	1080
tttgcttacg	atgcaaaaat	tgaaaactaa	gtttattaga	gaggttagag	aaggaggagc	1140
tctaagcaga	aaaaatcctg	tgccgggaaa	ccttgattgt	ggctttttaa	tgaatgaaga	1200
ggcctccctg	agcttacaat	ataaaagggg	gacagagagg	tgaaggtcta	cacatcaggg	1260
gcttgctctt	gcaaaaccaa	accacaagac	agacttgcaa	aagaaggcat	gcacagctca	1320
gcactgc						1327
<210> 10 <211> 2376 <212> DNA <213> Home	5 o sapiens					
<400> 10 tctagaaatg	tctgcatgat	ttttggattt	tttgactttt	aatttacctg	tttgacattt	60
gctatgagcc	tttcactcat	aactaatata	ttatttagtt	ctctaagtaa	tttttggtta	120

180 cctactatat atcagatacc atgctaagta ctaggaatac agaatcaaat gaggcatggt 240 ccataccctc aagtagctta cattagaatg agagagacag ataaaccatt tcactacagt 300 tcagtgtgga aaatagagta gcagaggcag gtacaaggta ccattgaaca atgattaatg 360 actcttcctg ggacttggga aacatcttcc agggaagtcg tcgaagctgt tttaaaatat agcaaacttt tgtatttagt tcaggaacag catggcccat tttgccaatc acatcttaac 420 agttggaaaa gcaaacatat tatctatcag gctttcctct aaactttaaa tatgttttat 480 540 aagttataac tccagagaaa atttacaaag gataaacctt aatatagaag gaattagagc 600 tgccacagct tctacacttt taacctctca atattttatc tgttgggctc cactgtttct tcctggaatt cacatcactg ccaccactct gttctccttg tcctcatatc aatgtggcca 660 aatattttcc ctgtatttca atcaggacaa gacatggttt tttcccccca tcaaaggaat 720 780 ggagaaccat agaatactag ttttaaaatg tctttaggcc aggtgccgtg acccatgtct gtaatcctag cactttgaga ggttgaggca ggagaatcac ttgatcccag agctcgaaac 840 900 cagcctgggc aacatagtga aacctctgtc tctatttttt aaataaaatt tgaaaaagtc 960 tttagacata atctagtcta aaaatgaagg cttaaatgtg atgtatagcc ccctgccaag tggctatcac ctgtgtgggc atcttcagtc atagggatct tattgccaca gagaaatccc 1020 1080 tttaaactta ttgggtaaaa tctctccaat gtttattaag aaacacacaa aaaataaagc 1140 aaagaagaaa atgcaaaaga gttataaatg agaggaagca aaatgggcac ttattaaagg 1200 tctaataaat gcacatttgt atccatcatt ctactgagtt cttactccca agatgttctt 1260 ccctttagca aacaaataag caagtcagca aagaaagaaa gaacaaacaa aatgtggtga 1320 tcagggaagc attgaggaga tggatggtgg caggtggcaa gaggactata aaagttttac aaaatgtctt cctctgaata tgtttagagt cttgcattca agcatttatt atacaccaat 1380 1440 1500 agagcatgaa gagaaaattt aggatggatt ctgttcttca acttcaaagc atctgctaat ttgaatttag ggaggagggg aaaaggttga aagagaataa gacatgtgta gaagacaagg 1560 1620 acagagagaa tttcagtccg gtaagcaatg taattcattt caattctaca actatttatg 1680 gagcagctac gtgggcccat cacccattaa taaattggtt acagaattaa aaccaaccca 1740 aagggaatat acttccttct ttttcacaga ccctctttgt tctattctgc ccatgaggtt 1800 ttcctcctca agaaccagca aatccaacga cagtcaatag caggcattac aaatcagatt 1860 cagaaaaata aatcacccct tctaaatttc ttctagatat tatcttttat gttttgagta 1920 taattgtata tagtatagac tatagctatg tatgtacact ttccacttac atcttttatt 1980 tgcttttata atgtctttct taaaataaaa ctgcttttag aagttctgca caattctgat 2040 ttttaccaag tcaacctact tcttctctca aaaggacaaa cataaattgt ctagtgaatt Page 10

ccagtcaatt tttccagaag aaaaaaatg ctccagtttt ctcctctacc aagacaggaa	2100
gcacttcctg gagattaatc actgtgttgc cttgcaaaat tgggaaggtt gagagaaatt	2160
agtaaagtag gttgtatcat cctactttga atttggaatg tttggaaatg gtcctgctgc	2220
catttggatg aaagcaagga tgagtcaagc tgcgggtgat ccaaacaaac actgtcactc	2280
tttaaaagct gcgctcccga ggttggacct acaaggaggc aggcaagaca gcaaggcata	2340
gagacaacat agagctaagt aaagccagtg gaaatg	2376
<210> 11 <211> 959 <212> DNA <213> Homo sapiens	
<400> 11 aagcttttac catggtaacc cctggtcccg ttcagccacc accaccccac ccagcacacc	60
tccaacctca gccagacaag gttgttgaca caagagagcc ctcaggggca cagagagagt	120
ctggacacgt gggggagtca gccgtgtatc atcggaggcg gccgggcaca tggcagggat	180
gagggaaaga ccaagagtcc tctgttgggc ccaagtccta gacagacaaa acctagacaa	240
tcacgtggct ggctgcatgc cctgtggctg ttgggctggg cccaggagga gggaggggcg	300
ctctttcctg gaggtggtcc agagcaccgg gtggacagcc ctggggggaaa acttccacgt	360
tttgatggag gttatctttg ataactccac agtgacctgg ttcgccaaag gaaaagcagg	420
caaacgtgag ctgtttttt tttctccaag ctgaacacta ggggtcctag gctttttggg	480
tcacccggca tggcagacag tcaacctggc aggacatccg ggagagacag acacaggcag	540
agggcagaaa ggtcaaggga ggttctcagg ccaaggctat tggggtttgc tcaattgttc	600
ctgaatgctc ttacacacgt acacacag agcagcacac acacacacac acacatgcct	660
cagcaagtcc cagagaggga ggtgtcgagg gggacccgct ggctgttcag acggactccc	720
agagccagtg agtgggtggg gctggaacat gagttcatct atttcctgcc cacatctggt	780
ataaaaggag gcagtggccc acagaggagc acagctgtgt ttggctgcag ggccaagagc	840
gctgtcaaga agacccacac gccccctcc agcagctgaa ttcctgcagc tcagcagccg	900
ccgccagagc aggacgaacc gccaatcgca aggcacctct gagaacttca ggtaggaga	959
<210> 12 <211> 2480 <212> DNA <213> Homo sapiens	
<400> 12 gacgctctgt gccttcggag gtctttctgc ctgcctgtcc tcatgcctct cctcctcttg	60
ctgctcctgc tgccaagccc cttacacccc caccccatct gtgaggtctc caaagtggcc	120

180 agccacctag aagtgaactg tgacaagagg aatctgacag cgctgcctcc agacctgccg 240 aaagacacaa ccatcctcca cctgagtgag aacctcctgt acaccttctc cctggcaacc 300 ctgatgcctt acactcgcct cactcagctg aacctagata ggtgcgagct caccaagctc caggtcgatg ggacgctgcc agtgctgggg accctggatc tatcccacaa tcagctgcaa 360 420 agcctgccct tgctagggca gacactgcct gctctcaccg tcctggacgt ctccttcaac 480 eggetgaeet egetgeetet tggtgeeetg egtggtettg gegaaeteea agagetetae 540 ctgaaaggca atgagctgaa gaccctgccc ccagggctcc tgacgcccac acccaagctg 600 gagaagctca gtctggctaa caacaacttg actgagctcc ccgctgggct cctgaatggg 660 ctggagaatc tcgacaccct tctcctccaa gagaactcgc tgtatacaat accaaagggc 720 ttttttgggt cccacctcct gccttttgct tttctccacg ggaacccctg gttatgcaac 780 tgtgagatcc tctattttcg tcgctggctg caggacaatg ctgaaaatgt ctacgtatgg 840 aagcaaggtg tggacgtcaa ggccatgacc tctaacgtgg ccagtgtgca gtgtgacaat 900 tcagacaagt ttcccgtcta caaataccca ggaaaggggt gccccaccct tggtgatgaa 960 ggtgacacag acctatatga ttactaccca gaagaggaca ctgagggcga taaggtgcgt 1020 gccacaagga ctgtggtcaa gttccccacc aaagcccata caaccccctg gggtctattc 1080 tactcatggt ccactgcttc tctagacagc caaatgccct cctccttgca tccaacacaa 1140 gaatccacta aggagcagac cacattccca cctagatgga ccccaaattt cacacttcac 1200 atggaatcca tcacattctc caaaactcca aaatccacta ctgaaccaac cccaagcccg 1260 accacctcag agcccgtccc ggagcccgcc ccaaacatga ccaccctgga gcccactcca 1320 agcccgacca ccccagagcc cacctcagag cccgcccca gcccgaccac cccggagccc 1380 accccaatcc cgaccatcgc cacaagcccg accatcctgg tgtctgccac aagcctgatc actccaaaaa gcacattttt aactaccaca aaacccgtat cactcttaga atccaccaaa 1440 1500 aaaaccatcc ctgaacttga tcagccacca aagctccgtg gggtgctcca agggcatttg 1560 gagageteca gaaatgaeee ttttetecae eeegaetttt getgeeteet eeeetggge 1620 ttctatgtct tgggtctctt ctggctgctc tttgcctctg tggtcctcat cctgctgctg 1680 agctgggttg ggcatgtgaa accacaggcc ctggactctg gccaaggtgc tgctctgacc 1740 acagccacac aaaccacaca cctggagctg cagaggggac ggcaagtgac agtgccccgg 1800 gcctggctgc tcttccttcg aggttcgctt cccactttcc gctccagcct cttcctgtgg 1860 gtacggccta atggccgtgt ggggcctcta gtggcaggaa ggaggccctc agctctgagt 1920 cagggtcgtg gtcaggacct gctgagcaca gtgagcatta ggtactctgg ccacagcctc 1980 tgagggtggg aggtttgggg accttgagag aagagcctgt gggctctcct attggaatct 2040 agttgggggt tggaggggta aggaacacag ggtgataggg gaggggtctt agttcctttt Page 12

tctgtatcag aagccctgtc ttcacaacac aggcacacaa tttcagtccc agccaaagca	2100
gaaggggtaa tgacatggac ttggcggggg gacaagacaa	2160
gcgctgccag atctcacggt gaaccatttt ggcagaatac agcatggttc ccacatgcat	2220
ttatgcacag aagaaaatct ggaaagtgat ttatcaggat gtgagcactc gttgtgtctg	2280
gatgttacaa atatgggtgg ttttattttc tttttccctg tttagcattt tctagttttc	2340
ttatcaggat gtgagcactc gttgtgtctg gatgttacaa atatgggtgg ttttattttc	2400
tttttccctg tttagcattt tctagttttc cactattatt gtatattatc tgtataataa	2460
aaaataattt tagggttggg	2480
<210> 13 <211> 1337 <212> DNA <213> Homo sapiens	
<400> 13 cccccgacca tggcgaagct gattgcgctc accctcttgg ggatgggact ggcactcttc	60
aggaaccacc agtcttctta ccaaacacga cttaatgctc tccgagaggt acaacccgta	120
gaacttccta actgtaattt agttaaagga atcgaaactg gctctgaaga catggagata	180
ctgcctaatg gactggcttt cattagctct ggattaaagt atcctggaat aaagagcttc	240
aaccccaaca gtcctggaaa aatacttctg atggacctga atgaagaaga tccaacagtg	300
ttggaattgg ggatcactgg aagtaaattt gatgtatctt catttaaccc tcatgggatt	360
agcacattca cagatgaaga taatgccatg tacctcctgg tggtgaacca tccagatgcc	420
aagtccacag tggagttgtt taaatttcaa gaagaagaaa aatcgctttt gcatctaaaa	480
accatcagac ataaacttct gcctaatttg aatgatattg ttgctgtggg acctgagcac	540
ttttatggca caaatgatca ctattttctt gacccctact tacaatcctg ggagatgtat	600
ttgggtttag cgtggtcgta tgttgtctac tatagtccaa gtgaagttcg agtggtggca	660
gaaggatttg attttgctaa tggaatcaac atttcacccg atggcaagta tgtctatata	720
gctgagttgc tggctcataa gattcatgtg tatgaaaagc atgctaattg gactttaact	780
ccattgaagt cccttgactt taataccctc gtggataaca tatctgtgga tcctgagaca	840
ggagaccttt gggttggatg ccatcccaat ggcatgaaaa tcttcttcta tgactcagag	900
aatcctcctg catcagaggt gcttcgaatc cagaacattc taacagaaga acctaaagtg	960
acacaggttt atgcagaaaa tggcacagtg ttgcaaggca gtacagttgc ctctgtgtac	1020
aaagggaaac tgctgattgg cacagtgttt cacaaagctc tttactgtga gctctaacag	1080
accgatttgc acccatgcca tagaaactga ggccattatt tcaaccgctt gccatattcc	1140
gaggacccag tgttcttagc tgaacaatga atgctgaccc taaatgtgga catcatgaag Page 13	1200

catcaaagca ctgtttaact gg	ggagtgata	tgatgtgtag	ggctttttt	tgagaataca	1260
ctatcaaatc agtcttggaa ta	acttgaaaa	cctcatttac	cataaaaatc	cttctcacta	1320
aaatggataa atcagtt					1337
<210> 14 <211> 5515 <212> DNA <213> Homo sapiens					
<400> 14 ggaacttgat gctcagagag ga	acaagtcat	ttgcccaagg	tcacacagct	ggcaactggc	60
agacgagatt cacgccctgg ca	aatttgact	ccagaatcct	aaccttaacc	cagaagcacg	120
gcttcaagcc ctggaaacca ca	aatacctgt	ggcagccagg	gggaggtgct	ggaatctcat	180
ttcacatgtg gggagggggc to					240
aaaacccagg tcccatttgc aa	aagcctcga	cttttagcag	gtgcatcata	ctgttcccac	300
ccctcccatc ccacttctgt co	cagccgcct	agccccactt	tcttttttt	ctttttttga	360
gacagtctcc ctcttgctga go	gctggagtg	cagtggcgag	atctcggctc	actgtaacct	420
ccgcctcccg ggttcaagcg at	ttctcctgc	ctcagcctcc	caagtagcta	ggattacagg	480
cgcccgccac cacgcctggc ta	aacttttgt	atttttagta	gagatggggt	ttcaccatgt	540
tggccaggct ggtctcaaac to	cctgacctt	aagtgattcg	cccactgtgg	cctcccaaag	600
tgctgggatt acaggcgtga go	ctaccgccc	ccagcccctc	ccatcccact	tctgtccagc	660
cccctagccc tactttcttt ct	tgggatcca	ggagtccaga	tccccagccc	cctctccaga	720
ttacattcat ccaggcacag ga	aaaggacag	ggtcaggaaa	ggaggactct	gggcggcagc	780
ctccacattc cccttccacg ct	ttggccccc	agaatggagg	agggtgtctg	tattactggg	840
cgaggtgtcc tcccttcctg gg	ggactgtgg	ggggtggtca	aaagacctct	atgccccacc	900
tccttcctcc ctctgccctg ct	tgtgcctgg	ggcaggggga	gaacagccca	cctcgtgact	960
gggctgccca gcccgcccta to	ccctggggg	agggggcggg	acagggggag	ccctataatt	1020
ggacaagtct gggatccttg ag	gtcctactc	agccccagcg	gaggtgaagg	acgtccttcc	1080
ccaggagccg gtgagaagcg ca	agtcggggg	cacggggatg	agctcagggg	cctctagaaa	1140
gagctgggac cctgggaagc co	ctggcctcc	aggtagtctc	aggagagcta	ctcggggtcg	1200
ggcttgggga gaggaggagc gg	ggggtgagg	caagcagcag	gggactggac	ctgggaaggg	1260
ctgggcagca gagacgaccc ga	acccgctag	aaggtggggt	ggggagagca	gctggactgg	1320
gatgtaagcc atagcaggac to	ccacgagtt	gtcactatca	ttatcgagca	cctactgggt	1380
gtccccagtg tcctcagatc to	ccataactg	gggagccagg	ggcagcgaca	cggtagctag	1440
ccgtcgattg gagaacttta aa	aatgaggac	tgaattagct Page	cataaatgga 14	acacggcgct	1500

taactgtgag gttggagctt agaatgtgaa gggagaatga ggaatgcgag actgggactg 1560 1620 agatggaacc ggcggtgggg agggggtggg gggatggaat ttgaaccccg ggagaggaag 1680 atggaatttt ctatggaggc cgacctgggg atggggagat aagagaagac caggagggag 1740 ttaaataggg aatgggttgg gggcggcttg gtaaatgtgc tgggattagg ctgttgcaga 1800 taatgcaaca aggcttggaa ggctaacctg gggtgaggcc gggttggggg cgctgggggt 1860 gggaggagtc ctcactggcg gttgattgac agtttctcct tccccagact ggccaatcac 1920 aggcaggaag atgaaggttc tgtgggctgc gttgctggtc acattcctgg caggtatggg 1980 ggcggggctt gctcggttcc ccccgctcct ccccctctca tcctcacctc aacctcctgg 2040 ccccattcag acagaccctg ggccccctct tctgaggctt ctgtgctgct tcctggctct 2100 gaacagcgat ttgacgctct ctgggcctcg gtttccccca tccttgagat aggagttaga 2160 agttgttttg ttgttgttgt ttgttgttgt tgttttgttt ttttgagatg aagtctcgct 2220 ctgtcgccca ggctggagtg cagtggcggg atctcggctc actgcaagct ccgcctccca 2280 ggtccacgcc attctcctgc ctcagcctcc caagtagctg ggactacagg cacatgccac 2340 cacacccgac taacttttt gtattttcag tagagacggg gtttcaccat gttggccagg 2400 ctggtctgga actcctgacc tcaggtgatc tgcccgtttc gatctcccaa agtgctggga ttacaggcgt gagccaccgc acctggctgg gagttagagg tttctaatgc attgcaggca 2460 gatagtgaat accagacacg gggcagctgt gatctttatt ctccatcacc cccacacagc 2520 2580 cctgcctggg gcacacaagg acactcaata catgcttttc cgctgggccg gtggctcacc cctgtaatcc cagcactttg ggaggccaag gtgggaggat cacttgagcc caggagttca 2640 2700 acaccagcct gggcaacata gtgagaccct gtctctacta aaaatacaaa aattagccag 2760 gcatggtgcc acacacctgt gctctcagct actcaggagg ctgaggcagg aggatcgctt 2820 gagcccagaa ggtcaaggtt gcagtgaacc atgttcaggc cgctgcactc cagcctgggt 2880 gacagagcaa gaccctgttt ataaatacat aatgctttcc aagtgattaa accgactccc 2940 ccctcaccct gcccaccatg gctccaaaga agcatttgtg gagcaccttc tgtgtgcccc 3000 taggtagcta gatgcctgga cggggtcaga aggaccctga cccgaccttg aacttgttcc 3060 acacaggatg ccaggccaag gtggagcaag cggtggagac agagccggag cccgagctgc 3120 gccagcagac cgagtggcag agcggccagc gctgggaact ggcactgggt cgcttttggg 3180 attacctgcg ctgggtgcag acactgtctg agcaggtgca ggaggagctg ctcagctccc 3240 aggtcaccca ggaactgagg tgagtgtccc catcctggcc cttgaccctc ctggtgggcg 3300 gctatacctc cccaggtcca ggtttcattc tgcccctgtc gctaagtctt ggggggcctg ggtctctgct ggttctagct tcctcttccc atttctgact cctggcttta gctctctgga 3360

			04067	77		
attctctctc	tcagctttgt	ctctctct			cacactcgtc	3420
ctggctctgt	ctctgtcctt	ccctagctct	tttatataga	gacagagaga	tggggtctca	3480
ctgtgttgcc	caggctggtc	ttgaacttct	gggctcaagc	gatcctcccg	cctcggcctc	3540
ccaaagtgct	gggattagag	gcatgagcac	cttgcccggc	ctcctagctc	cttcttcgtc	3600
tctgcctctg	ccctctgcat	ctgctctctg	catctgtctc	tgtctccttc	tctcggcctc	3660
tgccccgttc	cttctctccc	tcttgggtct	ctctggctca	tccccatctc	gcccgcccca	3720
tcccagccct	tctccccgc	ctccccactg	tgcgacaccc	tcccgccctc	tcggccgcag	3780
ggcgctgatg	gacgagacca	tgaaggagtt	gaaggcctac	aaatcggaac	tggaggaaca	3840
actgaccccg	gtggcggagg	agacgcgggc	acggctgtcc	aaggagctgc	aggcggcgca	3900
ggcccggctg	ggcgcggaca	tggaggacgt	gcgcggccgc	ctggtgcagt	accgcggcga	3960
ggtgcaggcc	atgctcggcc	agagcaccga	ggagctgcgg	gtgcgcctcg	cctcccacct	4020
gcgcaagctg	cgtaagcggc	tcctccgcga	tgccgatgac	ctgcagaagc	gcctggcagt	4080
gtaccaggcc	ggggcccgcg	agggcgccga	gcgcggcctc	agcgccatcc	gcgagcgcct	4140
ggggcccctg	gtggaacagg	gccgcgtgcg	ggccgccact	gtgggctccc	tggccggcca	4200
gccgctacag	gagcgggccc	aggcctgggg	cgagcggctg	cgcgcgcgga	tggaggagat	4260
gggcagccgg	acccgcgacc	gcctggacga	ggtgaaggag	caggtggcgg	aggtgcgcgc	4320
caagctggag	gagcaggccc	agcagatacg	cctgcaggcc	gaggccttcc	aggcccgcct	4380
caagagctgg	ttcgagcccc	tggtggaaga	catgcagcgc	cagtgggccg	ggctggtgga	4440
gaaggtgcag	gctgccgtgg	gcaccagcgc	cgcccctgtg	cccagcgaca	atcactgaac	4500
gccgaagcct	gcagccatgc	gaccccacgc	caccccgtgc	ctcctgcctc	cgcgcagcct	4560
gcagcgggag	accctgtccc	cgccccagcc	gtcctcctgg	ggtggaccct	agtttaataa	4620
agattcacca	agtttcacgc	atctgctggc	ctcccctgt	gatttcctct	aagccccagc	4680
ctcagtttct	ctttctgccc	acatactgcc	acacaattct	cagccccctc	ctctccatct	4740
gtgtctgtgt	gtatctttct	ctctgccctt	tttttttt	tagacggagt	ctggctctgt	4800
cacccaggct	agagtgcagt	ggcacgatct	tggctcactg	caacctctgc	ctcttgggtt	4860
caagcgattc	tgctgcctca	gtagctggga	ttacaggctc	acaccaccac	acccggctaa	4920
tttttgtatt	tttagtagag	acgagctttc	accatgttgg	ccaggcaggt	ctcaaactcc	4980
tgaccaagtg	atccacccgc	cggcctccca	aagtgctgag	attacaggcc	tgagccacca	5040
tgcccggcct	ctgcccctct	ttctttttta	gggggcaggg	aaaggtctca	ccctgtcacc	5100
cgccatcaca	gctcactgca	gcctccacct	cctggactca	agtgataagt	gatcctcccg	5160
cctcagcctt	tccagtagct	gagactacag	gcgcatacca	ctaggattaa	tttggggggg	5220
ggtggtgtgt	gtggagatgg	ggtctggctt	tgttggccag Page	gctgatgtgg 16	aattcctggg	5280

ctcaage	cgat actcccacct tggcctcctg	agtagctgag	actactggct	agcaccacca	5340
caccca	yctt tttattatta tttgtagaga	caaggtctca	atatgttgcc	caggctagtc	5400
tcaaac	ccct ggctcaagag atcctccgcc	atcggcctcc	caaagtgctg	ggattccagg	5460
catggg	ctcc gagcggcctg cccaacttaa	taatattgtt	cctagagttg	cactc	5515
<211> <212>	15 19 DNA Artificial Sequence				
<220> <223>	Description of Artificial	Sequence: Pi	rimer		
<222>	misc_feature (17)(17) n stands for any base				
<400> ctcagaa	15 atgg ccaaaancc				19
	16 20 DNA Artificial Sequence				
<220> <223>	Description of Artificial	Sequence:P	rimer		
<222>	misc_feature (18)(18) n stands for any base				
<400> cctcag	16 aatg gccaaaantc				20
<212>	17 18 DNA Artificial Sequence				
<220> <223>	Description of Artificial	Sequence: P	rimer		
	17 ctgc tgggacga				18
<212>	18 20 DNA Artificial Seguence				

	040677	
<220> <223>	Description of Artificial Sequence:Primer	
<220> <221> <222> <223>	misc_feature (18)(18) n stands for any base	
<400> ggccct	18 gtct tcgttaangg	20
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence:Primer	
<220> <221> <222> <223>	misc_feature (20)(20) n stands for any base	
<400> atggcc	19 ctgt cttcgttaan tg	22
<210> <211> <212> <213>	24	
<220> <223>	Description of Artificial Sequence:Primer	
<400> ccaggg	20 ctat ggaagtcgag tatc	24
<210> <211> <212> <213>		
<220> <223>	Description of Artificial Sequence:Primer	
<222>	misc_feature (16)(16) n stands for any base	
	21 gcgg tcatgngc	18
<210> <211>	22 18	

```
040677
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<220>
<221>
<222>
      misc_feature
      (16)...(16)
      n stands for any base
<223>
<400> 22
                                                                        18
accacggcgg tcatgnac
<210>
<211>
      20
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<400>
      23
                                                                        20
gcagcaaagg agtcccgagt
<210>
      24
<211>
      18
<212>
      DNA
<213> Artificial Sequence
<220>
      Description of Artificial Sequence:Primer
<223>
<220>
<221>
      misc_feature
<222>
      (16)..(16)
<223> n stands for any base
<400> 24
                                                                        18
cggcagcttc ttcccncg
<210>
       25
<211>
      18
<212>
<213>
      Artificial Sequence
<220>
       Description of Artificial Sequence: Primer
<223>
<220>
<221>
      misc_feature
<222>
      (16)..(16)
<223> n stands for any base
<400> 25
                                                                        18
cggcagcttc ttcccntg
```

:	<212>	26 22 DNA Artificial Sequence	
	<220> <223>	Description of Artificial Sequence:Primer	
	<400> ccaccc	26 ctca gctataaata gg	22
	<211> <212>	27 21 DNA Artificial Sequence	
	<220> <223>	Description of Artificial Sequence:Primer	
,i	<222>	misc_feature (19)(19) n stands for any base	
	<400> gaatgg	27 agga gggtgtctng a	21
	<210> <211> <212> <213>	22	
	<220> <223>	Description of Artificial Sequence:Primer	
	<222>	misc_feature (20)(20) n stands for any base	
	<400> agaatg	28 gagg agggtgtctn ta	22
	<210> <211> <212> <213>	29 20 DNA Artificial Sequence	
	<220> <223>	Description of Artificial Sequence:Primer	
	<400> ccagga	29 aggg aggacacctc	20
	<210> <211>	30 21	

	040677	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence:Primer	
<222>	misc_feature (19)(19) n stands for any base	
<400> ttcttt	30 tggt ggagcaacng t	21
<210> <211> <212> <213>	22	,
<220> <223>	Description of Artificial Sequence:Primer	
<222>	misc_feature (20)(20) n stands for any base	
<400> attctt	31 ttgg tggagcaacn tt	22
<210> <211> <212> <213>	24	
<220> <223>	Description of Artificial Sequence:Primer	
<400> tcttac	32 ctga atctctgatc ttca	24
<210> <211> <212> <213>	18	
<220> <223>	Description of Artificial Sequence:Primer	
<222>	misc_feature (16)(16) n stands for any base	
<400> cggago	33 cact gatgcncg	18

```
i
<210>
     34
<211>
      18
<212>
      DNA
<213> Artificial Sequence
<220>
       Description of Artificial Sequence: Primer
<223>
<220>
      misc_feature (16)..(16)
<221>
<222>
<223> n stands for any base
<400> 34
                                                                         18
cggagccact gatgcntg
       35
22
<210>
<211>
<212>
       DNA
<213> Artificial Sequence
<220>
      Description of Artificial Sequence:Primer
<223>
<400> 35
                                                                         22
tgtttggagt aaaggcacag aa
<210>
       36
<211>
       19
<212>
       DNA
      Artificial Sequence
<213>
<220>
       Description of Artificial Sequence:Primer
<223>
<220>
<221>
       misc_feature
<222>
       (17)..(17)
       n stands for any base
<223>
<400> 36
                                                                         19
cgagttggga acgcacnct
<210>
       37
       19
<211>
<212>
      DNA
<213> Artificial Sequence
<220>
       Description of Artificial Sequence:Primer
<223>
<220>
<221>
       misc_feature
<222>
      (17)..(17)
<223> n stands for any base
```

<400> cgagtt	040677 37 ggga acgcacngt	19
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence:Primer	
<400> ggtctg	38 cact gacattgatg ag	22
<210> <211> <212> <213>	24	
<220> <223>	Description of Artificial Sequence:Primer	
<220> <221> <222> <223>	misc_feature (22)(22) n stands for any base	
<400> taccct	39 tgta caggtgatgt anta	24
<210> <211> <212> <213>	24	
<220> <223>	Description of Artificial Sequence:Primer	
<222>	misc_feature (22)(22) n stands for any base	
<400> taccct	40 tgta caggtgatgt anca	24
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence:Primer	
<400> atagtg	41 Jagca aactgaggca ca	22

```
<210> 42
      22
<211>
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<220>
<221>
      misc_feature
<222>
      (20)..(20)
<223> n stands for any base
<400> 42
                                                                       22
cagagactgg cttcctacan ga
<210> 43
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Primer
<220>
<221>
<222>
       misc_feature
       (21)..(21)
<223> n stands for any base
<400> 43
                                                                       23
ccagagactg gcttcctaca nta
<210> 44
<211>
      20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 44
                                                                       20
gcctggaaca catcctgtga
<210> 45
<211>
      19
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
       Description of Artificial Sequence:Primer
<220>
<221> misc_feature
<222>
      (17)..(17)
<223> n stands for any base
```

	040677	
<400> tttgat	45 gggg ggaaaanac	19
<210> <211> <212> <213>		
<220> <223>	Description of Artificial Sequence:Primer	
<222>	misc_feature (16)(16) n stands for any base	
<400> ttgatg	46 gggg gaaaancc	18
<210> <211> <212> <213>	20	
<220> <223>	Description of Artificial Sequence:Primer	
<400> cctcat	47 atca atgtggccaa	20
<210> <211> <212> <213>	DNA	
<220> <223>	Description of Artificial Sequence:Primer	
<400> ggcaca	48 gaga gagtctggac acg	23
<210> <211> <212> <213>	19 DNA	
<220> <223>	Description of Artificial Sequence:Primer	
<400> ggccgc	49 ctcc gatgataca	19
<210> <211> <212> <213>		

<220>		040677	
<223>	Description of Artificial	Sequence:Primer	
<222>	misc_feature (14)(14) n stands for any base		
\LLJ>	in Scands for any base		
<400> cccagg	50 gctc ctgncg		16
<210> <211>	51 17		
<212>	DNA Artificial Sequence		
<220> <223>	Description of Artificial	Sequence: Primer	
<220> <221>	misc_feature		
<222>	(15)(15) n stands for any base		
<400> ccccag	51 ggct cctgntg		17
<210>	52		
<211> <212>			
	Artificial Sequence		
<220> <223>	Description of Artificial	Sequence:Primer	
<400> tgagct	52 tctc cagcttgggt g		21
<210>	53		
<211>	24		
<212>	DNA		
	Artificial Sequence		
<220> <223>	Description of Artificial	Sequence:Primer	
<220>			
<221>	misc_feature		
<223>	(22)(22) n stands for any base		
<400>	53		
	atac atctcccagg ancg	,	24
<210>	54		
~210×	24		

	040677	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence:Primer	
<220> <221> <222> <223>	misc_feature (22)(22) n stands for any base	
<400> aaccca	54 aata catctcccag gnct	24
<210> <211> <212> <213>	23	
<220> <223>	Description of Artificial Sequence:Primer	
	55 tatt gttgctgtgg gac	23
<210> <211> <212> <213>	19	
<220> <223>	Description of Artificial Sequence:Primer	
<222>	misc_feature (17)(17) n stands for any base	
	56 acct gcagaancg	19
<210> <211> <212> <213>	20	
<220> <223>	Description of Artificial Sequence:Primer	
<222>	misc_feature (18)(18) n stands for any base	
	57 gacc tgcagaantg	20

```
040677
<210>
      58
      19
<211>
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Description of Artificial Sequence:Primer
<400> 58
                                                                      19
cggcctggta cactgccag
<210>
       59
<211>
      19
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223> Description of Artificial Sequence:Probe
<220>
<221> misc_feature
<222>
      (13)..(13)
<223> n stands for any base
<400> 59
agccactgat gcncggtct
                                                                      19
<210> 60
      19
<211>
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
      Description of Artificial Sequence: Probe
<220>
<221> misc_feature
<222>
      (13)..(13)
<223> n stands for any base
<400> 60
                                                                      19
agccactgat gcntggtct
<210> 61
<211>
      26
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
      Description of Artificial Sequence:Probe
<220>
<221> misc_feature
<222>
      (16)..(16)
<223> n stands for any base
```

<400> agtacag	0406// 61 ggtg atgtantatc tctgtg	26
<210> <211> <212> <213>	25	
<220> <223>	Description of Artificial Sequence:Probe	
<220> <221> <222> <223>	misc_feature (15)(15) n stands for any base	
	62 gtga tgtancatct ctgtg	25
<210> <211> <212> <213>	20	
<220> <223>	Description of Artificial Sequence:Probe	
	63 cgtg ggggagtcag	20
<210> <211> <212> <213>	20	
<220> <223>	Description of Artificial Sequence:Probe	
<400>	64 .	20