A Brief Introduction for the Course Project

2024/09/09

Interactive Robotic Bin Picking

--- Cognition & Execution for Trans-Modality Media

Interactive Robotic Bin Picking

- Stage 1 Trans-Modality Media
 - --- Natural Language meets Visual Perception

M. Li, et al., "CLIP-Event: Connecting Text and Images with Event Structures," in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022 pp. 16399-16408.

Objective for Stage 1

- To find out the exact object according to a prompt.
 - E.g., Prompts 1:
 - Pass me the pancake!

- E.g., Prompts 2:
- Show me the blue pack!

Drew. A. et. al, "GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering". https://arxiv.org/pdf/1902.09506.pdf also be a dataset candidate for your own algorithm training.

Potential Road-map for Stage 1

 Jointly train an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training **Examples.**Radford, Alec, et al. "Learning transferable visual models from natural language supervision."

International conference on machine learning. PMLR, 2021.

Evaluation Datasets & Deliverables

• Input: 'all the containers' + image

 Input: 'all green blocks' + image

- ~20 examples will be available for algorithm testing
- Models will be evaluated with similar cases (not public accessible)

Interactive Robotic Bin Picking

- Stage 2 Cognition-Based Execution
 - --- Maneuvering Intelligent Robots upon Questioning

Variant kinds of Robotic Arms

Objective for Stage 2

- → Deploy a RGB camera for scene acquisition;
- > Form a complete robotic arm system;

→ Objects sorting upon request (open vocabulary, color,

• E.g., Input prompts:

Put the lower red block to the center!

Detail of the Robotic Arm (which will be used)

Desktop robotic arm

• 4 degrees of freedom

Axis	Range	Max Speed (250g workload)
Joint 1 base	-120° ~+120°	320°/s
Joint 2 rear arm	-5° ~+90°	320°/s
Joint 3 forearm	-15° ~+90°	320°/s
Joint 4 rotation servo • Developm	- 140° ∘~+140 nent Platform :	480°/s Python、C++

Operations Required for Stage 2

Localize objects using RGB images & prompts in the real world.

- 1. RGB images: perception of the real scenario.
- 2. Prompts: locate the exact position of the target object.

Control the robotic arm to sort the target objects.

- 1. Control the robotic arm to reach the correct position.
- 2. Catch the object to the specified target location.

* Evaluation metrics

Accuracy (prompts understanding), efficiency (speed), robustness(extreme cases), etc.

Grading Criteria *

- Stage 1: Trans-Modality Media: 50% in total
- 1. Accuracy:
 - 1. Object detection (bounding boxes): 20%
 - 2. Prompts translation & understanding: 20%
- 2. Coding accessibility: 5%
- 3. Bonus: 5% (algorithm novelty, efficiency, ...)
- Stage 2: Cognition-Based Execution: 50% in total
- 1. System design: 5%
- 2. Accuracy and efficiency:
 - 1. Recognition: 10%
 - 2. Localization: 10%
 - 3. Operation: 10%
- 3. Coding accessibility: 5%
- 4. Bonus: 10% (extreme cases, occlusion, interruption, ...)

Work in teams of 3 to 4 students. End-of-term presentations and assessments.

^{*} Note: This criteria may vary according to your practice.

Contact Us

- FIT building 4-405
- 19:00 22:00 every Tuesday, Thursday, Saturday
- Please fill the table for team registrations & appointment

群聊: Media & Cognition 2024-2025

Good luck on the grand tour!

• Q & A

2024-2025媒体与认知分组

使用 金山文档 查看文档

群聊: Media & Cognition 2024-2025

金山文档ⅠWPS云文档