Домашняя работа №11 (Аверьянов Тимофей ПМ3-1) Макроэкономика

Задача №22. Для производственной функции экономики России получите правило расчёта MPK и вычислите значение MPK в 2012 году используя данные из таблицы, при:

$$E_t = 1$$
, $A = 0.58$, $\alpha = 0.57$, $\gamma = 0.24$

Решение:

Запишем производственную функцию экономике России:

$$Y_t = A \cdot K_t^{\alpha} \cdot (E_t \cdot L_t)^{1-\alpha} \cdot p_t^{\gamma}$$

Воспользуемся формулой для расчёта предельного продукта:

$$MPK \approx \frac{\partial F}{\partial K}$$

тогда для нашего случая:

$$\frac{\partial Y_t}{\partial K_t} = A \cdot K_t^{\alpha - 1} \cdot (E_t \cdot L_t)^{1 - \alpha} \cdot p_t^{\gamma} = A \cdot \left(\frac{E_t \cdot L_t}{K_t}\right)^{1 - \alpha} \cdot p_t^{\gamma}$$

Рассчитаем MPK_{2012} :

$$MPK_{2012} = A \cdot \left(\frac{E_t \cdot L_t}{K_t}\right)^{1-\alpha} \cdot p_t^{\gamma} = 0.58 \cdot \left(\frac{68}{1975}\right)^{1-0.57} \cdot 104.1^{0.24} = 0.415433...$$

Задача № 23. Используя собранные в следующей таблице статистические данные в виде уровней (Y_t, K_t, L_t, p_t) в экономике России, оцените среднее значение остатка Солоу для экономики России и вычислите оценку годового темпа прироста g эффективности E_t живого труда в России на временном интервале 1990-2012гг. Учтите, что производственная функция экономики России на временном интервале 1990-2012гг имеет уравнение $Y_t = 0.58 \cdot K_t^{0.57} \cdot L_t^{0.43} \cdot p_t^{0.24}$, где p_t — цена марки нефти Brent.

Рашаниа.

Для расчёта оценки темпа прироста g эффективности живого труда воспользуемся следующей формулой:

$$\frac{\triangle A_{E,t+1}}{A_{E,t}} = \frac{\triangle Y_{t+1}}{Y_t} - \left(\alpha \cdot \frac{\triangle K_{t+1}}{K_t} + (1 - \alpha) \cdot \frac{\triangle L_{t+1}}{L_t} + \gamma \cdot \frac{\triangle p_{t+1}}{p_t}\right) = (1 - \alpha) \cdot g$$

$$g = \frac{1}{1 - \alpha} \cdot \frac{\triangle A_{E,t+1}}{A_{E,t}}$$
(*)

Рассчитаем вклад в ВВП эффективности живого труда (научно-технологического) прогресса:

∆Yt+1/Yt	∆Kt+1/Kt	∆Yt+1/Yt	∆pt+1pt	△At+1/At (в %)
-0.050	0.045	-0.020	-0.146	-3.19%
-0.145	-0.250	-0.023	-0.057	2.09%
-0.086	0.024	-0.017	-0.147	-5.72%
-0.128	-0.182	-0.034	-0.041	0.03%
-0.041	-0.026	-0.031	-0.016	-0.89%
-0.035	-0.105	-0.006	0.231	-2.79%
0.013	-0.008	-0.021	-0.031	3.42%
-0.051	0.011	-0.015	-0.302	2.15%
0.062	0.128	0.006	0.426	-11.56%
0.102	0.070	0.008	0.606	-8.74%
0.051	0.052	0.008	-0.101	4.22%
0.046	0.024	0.009	0.034	2.00%
0.073	0.054	0.006	0.097	1.69%
0.072	0.027	0.006	0.246	-0.45%
0.064	0.044	0.006	0.377	-5.46%
0.082	0.048	0.006	0.171	1.12%
0.085	0.050	0.012	0.048	4.01%
0.052	-0.011	0.007	0.247	-0.37%
-0.079	-0.132	-0.015	-0.325	8.08%
0.045	0.136	0.001	0.242	-9.08%
0.043	0.114	0.001	0.279	-8.94%
0.034	0.048	0.004	0.023	-0.01%
0.010	0.007	-0.005	0.085	-1.29%

Далее воспользуемся формулой (*) и расчитаем оценку темпа прироста эффективности живого труда:

alpha	0.57	
gamma	0.24	
g	-0.030000272	

Проделав все шаги получаем $g \approx -0.03$.