Tema 4 Nicoleta Radu

Exe. 1/ Pag. 6 A d)

	-	-	-	
d) ·	$\begin{pmatrix} 2x_1 + 2x_2 + 2x_1 + 2x_1 + x_1 + 2x_1 \end{pmatrix}$	+ 4x ₃ + + 4x ₃ + - 4x ₂ + 2x ₂ +	$+ x_4 = $ $+ x_4 = $ $- 3x_3 = $ $2x_4 = $	7 7 9 5

	2	0	4	1	B= 7
	0	2	4	1	9
A =	2	4	3	0	5
	1	2	0	2	

2	0	4	1	7
0	2	4	1	7
2	4	3	0	9
1	2	0	2	5

l: <u>2</u>	1	0	2	1/2	7/2
_	0	2	4	1	7
-)	2	4	3	0	9
	1	2	0	2	5

1	0	2	1/2	7/2	
0	2	4	1	7	_\
0	4	-1	-1	2	
1	2	-2	3/2	3/2	

}	1	0	2	1/2	7/2
	0	1	2	1/2	7/2
	0	4	-1	-1	2
	0	2	-2	3/2	3/2

	1	0	2	1/2	7/2	:(-9)
_	0	1	2	1/2	7/2	_
- 2	0	0	-9	-3	-12	
	0	0	-6	0.5	-5.5	

1	0	2	1/2	7/2
0	1	2	1/2	7/2
0	0	1	1/3	4/3
0	0	-6	0.5	-5.5

1	0	0	-1/6	5/6	
0	1	0	-1/6	5/6	_
0	0	1	1/3	4/3	1:00
0	0	0	2.5	2.5	1 25

1	0	0	-1/6	5/6	_ ~
0	1	0	-1/6	5/6	
0	0	1	1/3	4/3	
0	0	0	1	1	

X1=5/6+1/6*1=1 -> x1=1 X2=5/6+1/6*1=1 -> x2=1 X3=4/3-1/3*1=1 -> x3=1 X1=1 -> x4=1 = \times \times

```
Exe. 1 / Pag. 6
C
```

```
function x = gaussTotal(a,b)
n = length(b);
[lin,col] = size(a);
if lin ~= col
    error('Matricea nu e patratica');
else
    if det(a) == 0
        error('Matricea este singulara, det(A) = 0');
    end
end
a = [a b]; % matricea extinsa
x = zeros(n,1);
tic % pornim cronometrul
for i = 1:n
    if ((a(i,i)~=0) || (max(abs(a(i:n,i:n)))) ~= 0 )
```

```
[m, k] = max(abs(a(i:n,i:n))); % retin cea mai mare valoare de pe
coloana i
       [max val, col index] = max(m);
       k = k(col index) + i - 1;
       % fixam linia k ca sa fie intotdeauna pt linii de sub pivot
       % schimbam linia i cu linia k pt toate coloanele
       a([i k],1:n+1)=a([k i],1:n+1);
       % o data fixat pivotul, putem imparti linia la pivot
       a(i,i:n+1) = a(i,i:n+1)/a(i,i);
       % aplicam regula de pivotare
       for j = i+1:n
           a(j,i+1:n+1) = a(j,i+1:n+1) - a(j,i)*a(i,i+1:n+1)/a(i,i);
       end
  else
       error('impartire la 0. Sistemul nu este compatibil determinat');
   end
toc % oprim cronometrul (afiseaza secundele)
for k = n:-1:1
   x(k) = a(k, n+1) - a(k, k+1:n) *x(k+1:n); % calcularea vectorului cu solutiile
fprintf('\nSolutiile sub forma de fractii:\n')
disp(rats(x')) % ne afiseaza valorile lui x sub forma de fractii (rats)
end
APEL DE FUNCTIE
c=[2, -5, 4; -3, 1, 1; 2, -1, 0], d=[7;-1;1], y=gaussTotal(c,d);
>> Tema4
c =
  2 -5 4
  -3 1 1
  2 -1 0
d =
  7
  -1
  1
```

Elapsed time is 0.001084 seconds.

Solutiile sub forma de fractii:

-1/2 -2 -1/2

>>