IMAGE FORMING DEVICE Patent Number: JP10322555 Publication date: 1998-12-04 Inventor(s): TSUJI KATSUHISA Applicant(s): RICOH CO LTD Requested Patent: ☐ JP10322555 Application Number: JP19970147154 19970520 Priority Number(s): IPC Classification: H04N1/407; G03G15/00; G03G15/01; G06T1/00; H04N1/00; H04N1/60; H04N1/46 EC Classification: Equivalents: Abstract PROBLEM TO BE SOLVED: To provide an image forming device which can satisfactorily and automatically adjust gradation characteristics. SOLUTION: In the example for the optical system of image input device having a function for detecting an optical diffused and reflected component and a regularly reflected optical component, the surface of the original is irradiated with an illumination lamp in the direction of -45 deg., and the diffused and reflected optical component detects its light intensity through a sensor 1 by passing the reflected optical component almost in the direction of 0 deg. through 1st-3rd mirrors and lenses. The sensor 1 is a linear imaging device such as a CCD, is used for ordinary image read as well and has the resolution of about 400 dpi at the time of nonmagnified reading. A sensor 2 detects the intensity of reflected light in the direction of 45 deg. including the regularly reflected optical component. Since the purpose of this sensor is to read a test pattern in a certain size (area), the high resolution like the sensor 1 is not required and magnified (enlarged or reduced) reading is not required, either. The size of patch consisting of the test pattern is 1 pixel/mm=25 dpi enough in the case of 5 mm × 5 mm. Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公閱番号

特開平10-322555

(43)公開日 平成10年(1998)12月4日

(51) Int.Cl. ・ 機別記号 F I H 0 4 N 1/407	最終頁に続く
G03G 15/00 303 G03G 15/00 303 15/01 113 I5/01 113A I5/01 113A I5/01 113A I5/01 113A I5/01 113A I6 G06T 1/00 I06 G06F 15/64 400A 審査請求 未請求 請求項の数7 FD (全30頁) (21)出願番号 特願平9-147154 (71)出願人 000006747	最終頁に続く
15/01	最終頁に続く
G06T 1/00 H04N 1/00 H04N 1/00 106C G06F 15/64 400A 審査請求 未請求 請求項の数7 FD (全30頁) (21)出願番号 特願平9-147154 (71)出願人 000006747	最終頁に続く
H 0 4 N 1/00 1 0 6 G 0 6 F 15/64 4 0 0 A 審査請求 未請求 請求項の数7 F D (全 30 頁) (21)出願番号 特願平9-147154 (71)出願人 000006747	最終頁に続く
審査請求 未請求 請求項の数7 FD (全 30 頁) (21)出願番号 特願平9-147154 (71)出願人 000006747	最終頁に続く
(21)出願番号 特願平9-147154 (71)出願人 000006747	最終頁に続く
, , , , , , , , , , , , , , , , , , ,	
(22)出願日 平成9年(1997) 5月20日 東京都大田区中馬込1丁目 (72)発明者 辻 勝久 東京都大田区中馬込1丁目 会社リコー内	

(54) 【発明の名称】 画像形成装置

(57)【要約】

【課題】 階調特性を良好に自動調整できる画像形成装置を提供すること。

【解決手段】 図45は拡散反射光成分と正反射光成分を検知する機能を有する画像入力装置の光学系の例である。照明ランプは、原稿面に対して−45°方向に照射し、拡散反射光成分は、概ね0°方向の反射光成分を第1~3ミラー、レンズを通ってセンサ1でその光強度を検知する。センサ1はCCD等のライン型の撮像素子であり、通常の画像読み取りにも用い、等倍読み取り時で400 dpi程度の解像度を有する。センサ2は、正反射光成分を含む45°方向の反射光の強度を検知する。このセンサの目的は、ある程度の大きさ(面積)のテストパターンの読み取ることにあるので、センサ1のように高解像度である必要はないし、変倍(拡大や縮小)読み取りをする必要もない。テストパターンを構成するパッチの大きさが、5mm×5mmであれば1画素/mm≒25dpiもあればよい。

【特許請求の範囲】

【請求項1】 原稿画像を照明する手段と、この照明手段により照明された原稿からの反射光を検知する複数の検知装置から構成される画像読取手段と、

所定のテストパターンデータを発生するテストパターン データ発生手段と、

前記画像読取手段または前記テストパターンデータ発生 手段から入力される画像データに基づいて記録部材に可 視画像を形成する作像手段と、

画像読取手段で読み取った画像データを記憶する画像データ記憶手段と、

処理する条件を変更可能な画像処理手段と、

画像データ記憶手段に記憶された画像データを解析する解析手段と、

この解析手段によるテストパターンの読み取りデータの解析結果に応じて、前記画像処理手段の処理条件を調整する調整手段とを具備したことを特徴とする画像形成装置。

【請求項2】 前記調整手段により調整する画像処理条件がγ補正データであり、

前記解析手段は、複数の検知装置によるテストパターン の画像読取値から、解析対象のテストパターンを形成す る色材料を定量することを特徴とする請求項1記載の画 像形成装置。

【請求項3】 前記調整手段により調整する画像処理条件がγ補正データであり、

前記解析手段は、複数の検知装置によるテストパターンの画像読取値から、ア補正の調整目標値を可変とすることを特徴とする請求項1記載の画像形成装置。

【請求項4】 前記画像読取手段の複数の反射光の検知 装置は2つであり、主として原稿からの正反射光を検知 する装置と、原稿から概ね垂直方向に反射する拡散反射 光を検知する装置とから構成されることを特徴とする請 求項1、請求項2または請求項3記載の画像形成装置。

【請求項5】 前記正反射光の検知装置は、概ね垂直方向の検知手段より低解像度あることを特徴とする請求項 4記載の画像形成装置。

【請求項6】 前記正反射光の検知装置は、等倍光学系 であることを特徴とする請求項4または請求項5記載の 画像形成装置。

【請求項7】 前記正反射光の検知装置は、単色用のセンサであることを特徴とする請求項4、請求項5または請求項6記載の画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ディジタル複写機、FAX等の画像形成装置に関するものであり、特に電子写真プロセス方式を用いたカラー画像形成装置のように、中程度の光沢を有する画像を形成する装置に用いられるものである。

[0002]

【従来の技術】ディジタル複写機などの画像形成装置では、原稿等の画像をCCD(電荷結合素子)等のイメージセンサを用いて走査して読み取る入力装置により電気信号に変換して処理し、レーザープリンタ、インクジェットプリンタ、熱転写プリンタ等の出力装置を用いて印字記録し、複写画像を得る。このとき、読み取り画像に忠実な画像を複製する必要がある。しかし、特に出力装置においては、その記録特性がロットや環境によって異なり、また経時によっても変動するため、原稿画像に対して複写画像の忠実性が損なわれる。この忠実性は、写真画像のような階調性が要求される画像においては特に厳しく、更にカラー画像を形成する場合にはモノクロ画像より格段の品質が要求される。

【0003】このため、画像形成装置の画像処理条件を調整し、忠実に再現ができるようにする作業が必要である。この調整作業は、条件を修正して複写画像を形成して画像の忠実性を確認する作業を、満足いくまで繰り返すため時間がかかる上、作業者によって調整結果が異なり、作業には熟練を要するものであった。そこで、この作業を自動化すべく、出力装置から所定のテストパターンを出力し、そのテストパターン画像を入力装置によって読み取らせることによって、出力装置の記録特性を検知し、最適の処理条件を自動的に設定する方法が提案されている。

【0004】例えば、図22~図26に記載されたテストパターンを出力し、そのテストパターン画像を入力装置によって読み取らせ、出力装置の階調特性を検知して、所定の階調特性に補正するためのィ補正データを算出し、7変換回路に設定する技術が用いられている。出力装置としては、前述のようにレーザープリンタ、インクジェットプリンタ、熱転写プリンタ等種々の方式があるが、電子写真プロセス方式を用いたレーザープリンタは、高速性、高解像度性、普通紙が使えること等の利点があり、ハイエンドの複写機あるいはプリンタに採用されている。

[0005]

【発明が解決しようとする課題】また、フルカラー機では、出力画像に深みや高級感を出すために、適度な光沢を持たせるように設計される。この光沢度は、トナーの材質や融点、定着ローラの材質および温度等で決定されるが、環境の温度・湿度、記録紙の紙厚・表面性、トナーの付着量、定着ローラのニップ幅調整のバラツキ等の変動要因によって、大きく変化してしまい、例えば、光沢度30%に設計しても、上下に20%近くも変動することがある。この程度の変動でも、同一画像内で光沢が均一であれば、画像としては、必ずしも高級感を損なうものではないが、前述の出力装置の記録特性の検知には支障をきたすことがある。

【0006】図42は等量の色材を用い、表面の光沢度

のみ異なる画像サンプルを幾何条件0/45°の濃度計で測定した濃度値と光沢度の関係を示したものである。0/45°の幾何条件では、表面光沢が高く、正反射光成分が増えるほど拡散光成分が減るために、反射率は低くなる。即ち、濃度は高く測定されることになる。ここで、画像入力装置の光学系の幾何条件は図43に示すように概ね45°方向から照明し、0°方向からの拡散光を検知する。従って、幾何条件は45/0°である。先の0/45°とは、照明と検知方向の関係が逆であるが、この両者は等価であるから、テストパターンを読み取りパターンの濃度を検知すべき画像入力装置も光沢の影響を受けることになる。

【0007】図42によれば、標準光沢度を仮に30% としたとき、その時の濃度は2.4であるが、光沢度が ±20%振れたとき、即ち、光沢度10%および50% のときの濃度は、それぞれ1.7、2.8であり、標準 時から0.7もの差があることが分かる。画像出力装置 の特性の調整目標値は、標準光沢時を仮定して設計する ものであるから、テストパターン出力時に低光沢であっ た場合には、トナー付着量が標準時よりも低めに検知さ れるため、この検知結果を基に調整すると狙いよりトナ 一付着量が多くなるように調整され、特に光沢の変動を 受け易い高濃度部の階調は潰れてしまうことになる。逆 にテストパターン出力時に高光沢であった場合には、ト ナー付着量が狙いより少なく調整され、特に高濃度部が 薄くなってしまう。光沢を一定に保つには、使用環境や 使用する記録紙の種類を厳しく制約する必要があり、使 い勝手の悪い画像形成装置となってしまう。また定着条 件を安定させるために定着ローラの熱容量を大きくする 方法も考えられるが、装置の大型化やコストアップつな がり好ましくない。

【0008】そこで、本発明の第1の目的は、光沢度の不安定な画像出力装置であっても、その階調特性を自動的に良好に調整することのできる画像形成装置を提供することである。また、本発明の第2の目的は、色材の付着量からみた階調特性を良好に調整することのできる画像形成装置を提供することである。本発明の第3の目的は、光沢度を高精度に検知し、階調特性をより良好に調整することのできる画像形成装置を提供することである。本発明の第4の目的は、低コストな光沢度検知装置を具備した画像形成装置を提供することである。

【課題を解決するための手段】請求項1記載の発明では、画像形成装置が、原稿画像を照明する手段と、この照明手段により照明された原稿からの反射光を検知する複数の検知装置から構成される画像読取手段と、所定のテストパターンデータを発生するテストパターンデータ発生手段と、前記画像読取手段または前記テストパターンデータ発生手段から入力される画像データに基づいて記録部材に可視画像を形成する作像手段と、画像読取手

[0009]

段で読み取った画像データを記憶する画像データ記憶手段と、処理する条件を変更可能な画像処理手段と、画像データ記憶手段に記憶された画像データを解析する解析手段と、この解析手段によるテストパターンの読み取りデータの解析結果に応じて、前記画像処理手段の処理条件を調整する調整手段とを具備したことにより前記第1の目的を達成する。

【0010】請求項2記載の発明では、請求項1記載の画像形成装置において、前記調整手段により調整する画像処理条件がで補正データであり、前記解析手段は、複数の検知装置によるテストパターンの画像読取値から、解析対象のテストパターンを形成する色材料を定量することにより前記第2の目的を達成する。請求項3記載の発明では、請求項1記載の画像形成装置において、前記調整手段により調整する画像処理条件がで補正データであり、前記解析手段は、複数の検知装置によるテストパターンの画像読取値から、で補正の調整目標値を可変とすることにより前記第2の目的を達成する。

【0011】請求項4記載の発明では、請求項1、請求 項2または請求項3記載の画像形成装置において、前記 画像読取手段の複数の反射光の検知装置は2つであり、 主として原稿からの正反射光を検知する装置と、原稿か ら概ね垂直方向に反射する拡散反射光を検知する装置と から構成されることにより前記第3の目的を達成する。 【0012】請求項5記載の発明では、請求項4記載の 画像形成装置において、前記正反射光の検知装置は、概 ね垂直方向の検知手段より低解像度あることにより前記 第4の目的を達成する。請求項6記載の発明では、請求 項4または請求項5記載の画像形成装置において、前記 正反射光の検知装置は、等倍光学系であることにより前 記第4の目的を達成する。請求項7記載の発明では、請 求項4、請求項5または請求項6記載の画像形成装置に おいて、前記正反射光の検知装置は、単色用のセンサで あることにより前記第4の目的を達成する。

[0013]

【発明の実施の形態】以下、本発明の好適な実施の形態を、図1ないし図51を参照して詳細に説明する。本発明の実施の形態に係る画像形成装置の基本構成と動作の説明をする。このの画像形成装置は、電子写真方式の作像手段を用いたカラーデジタル複写機である。この装置ではスキャナモジュール200、プリンタモジュール400、システム制御モジュール600の3つのモジュールを基本構成要素として用いる。図1は、3種のモジュールを組み合わせた装置構成例を示す図である。同図において4角形は機能ブロック、HOSTは外部のコンピュータ機器、その間の太い線200S、400Sはモジュール間を結ぶ制御信号と画像信号の伝送線、具体的にはSCSIケーブルを表わしている。図1(1)はいわゆるスキャナ装置、(2)はプリンタ装置としてシステム構成した例である。

【0014】図1(3)は、一般的な複写機としての構 成例であり、それぞれ1個のスキャナモジュール20 0、プリンタモジュール400、システム制御モジュー ル600を連結することで達成可能である。 ここでシス テム制御モジュール600には上記2モジュールを統合 的に制御して複写機能を達成するための複写処理手段6 50CPが組み込まれる。図1(4)は、3連読み取り 複写機で、それそれ第1のスキャナモジュール200-1、第2のスキャナモジュール200-2、第3のスキ ャナモジュール200-3、プリンタモジュール400 およびシステム制御モジュール600とを連結する。こ こでたとえば200-1は一般的なA3版程度のスキャ ナモジュール、200-2をA1判など大きなサイズの スキャナモジュール、200-3をカラースキャナモジ ュールとしておけば、それぞれ専用の複写機を設置する のに比べ種々の利点を生む。また、利用頻度に応じてこ れらの組み合わせと個数とを任意に可変できる。

【0015】ここでシステム制御モジュール600には上記4モジュールを統合的に制御して複写機能を達成するための重連読み取り複写処理手段650CP2が組み込まれる。なお図示しないがプリンタモジュールを複数で構成することも可能である。このときはシステム制御モジュール600には他のモジュールを統合的に制御して複写機能を達成するための重連記録複写処理手段650CP3が組み込まれる。また、本重連システムではスキャナモジュールとプリンタモジュールを合わせて6台まで連結可能である。

【0016】図1(5)は、スキャナモジュール20 0、プリンタモジュール400、システム制御モジュー ル600から成るファクシミリおよびプリンタ機能付き 複写機である。システム制御モジュール600にはホス トコンピュータ680PCに接続するための第4の通信 手段680Pと該第4の通信手段から受信したページ記 述言語形式などのプリントデータをラスタデータに変換 するプリンタ処理手段650PR、および、公衆回線6 80FCに接続するための第5の通信手段680Fと該 第5の通信手段から受信した所定の圧縮形式のデータ伸 張とスキャナモジュール200が読み取った原画像デー タを前記所定形式に圧縮するカラーファクシミリ処理手 段650FXが組み込まれる。これら3モジュールの内 部の構成とともに、ファクシミリおよびプリンタ機能付 き複写稜としてシステム構成した場合のモジュール接続 を含め、さらに追加モジュールである自動原稿送り装置 280、フィルムプロジェクタ290、多段給紙装置4 80およびソータ490を加えた具体例として図2およ び図3に示してある。

【0017】スキャナモジュール200には少なくとも原画像を画素に分解して読み取る画像読み取り部200 rdとスキャナ制御手段230、第1通信制御手段23 0SCSI、第1電力受容もしくは供給手段201とを 含み、基本画像処理手段300、拡張画像処理手段350が必要に応じて付加される。ここで、画像読み取り部200rdとは、カラー撮像デバイス207、アナログ/ディジタル変換器(以下A/D変換器)252等の複数手段の集合体を指している。

【0018】プリンタモジュール400は、記録媒体190上に永久可視像として形成し、出力する画像形成部400imgと第2の通信制御手段430SCSI、第1電力供給手段401とから成る。ここで画像形成部400imgとは、複数手段の集合体に付した名称であって、電子写真感光体414、帯電手段419、レーザ露光手段441、現像手段420、第1転写手段414、中間転写体415、第2転写手段427などいわゆる画像形成諸要素が含まれる。システム制御モジュール600には第3の通信制御手段630SCSIおよびスキャナモジュール200を画像読み取り付勢制御するか、プリンタモジユール400を画像形成付勢制御するか少なくとも一万の機能を果たすシステム制御手段630とを有する。

【0019】前記のこれら3モジュールは、図3に示す ように、機構的に互いに分離して配置してもシステムの 機能を満足することができる構造としてある。例えば、 複写装置構成においては運搬単位重量削減とシステム組 み立ての簡便さを両立させるために、スキャナモジュー ルはこれ単位に梱包し、一方プリンタモジュール側はそ の上部にシステム制御モジュールを固定的にマウントし た一体構成とし、1つの箱に梱包し工場出荷する方式を 用いている。さらにモジユールを合体したときに使い勝 手や美的まとまり方、空間効率といったユーザーへの配 慮、あるいは電磁放射、ノイズイミュニティ、熱放散、 メカニカル共振の防止といった技術面の課題に対処した 方式としてある。例えば、複写装置を構成する場合には 少なくとも上記3モジュールとテーブルもしくは選択多 段給紙装置を組み合わせるが、空間効率からするとこれ らを縦に積み重ねるのが良く、またプラテンの高さは9 00mmないし1100mmとすると良好な原稿載置操 作性が得られる。

【0020】また、各種ボタンはプラテン面かそれより若干下面に位置させることで的確なヒューマンインタフェースが実現できる。これらを勘案し3つのモジュールは積み重ね面の投影形状を概ね等しくして不格好さや上位モジュールの脱落を回避し、積み重ねたときのプラテン、操作装置面が上述の位置となるようにした。さらに、外観性と電磁環境両立性の観点からこれらを接続するケーブルは極力その本数を減らし、またその長さが短くなるように端子位置が互いに近くなるように工夫した。尤もシステム制御モジュール600は、単に複写機能のみを実現すればいいといったケースでは、きわめてコンパクトに構成することも可能であり、これを他のモジュールの部分として組み入れるのも容易であって、こ

のときは2モジュールの組み合わせで上記の配慮がなさ れればよい。

【0021】図2、図3の200内において、230は スキャナ制御手段を実装した回路板、201は第1電力 受容もしくは供給手段、201Pは商用電源もしくは直 流電源接続用電源プラグ、2018Wは電源スイッチ、 202はプラテンガラス、2028は画像先端基準位 置、202SHはシェーディング補正用白板、202B は個体識別用バーコード板、208は第1キャリジ、2 09は第2キャリジ、203は原稿照明ランプ、204 A、B、Cはそれぞれ第1、第2、第3ミラー、205 は結像レンズ、205×はしンズ光軸、207はカラー 撮像デバイス、211はキャリジホームセンサ、230 S1、230S2はスキャナ制御手段230上にあって 同一形状、同一インタフェースを有したSCSIコネク タ、230F1、230F2はスキャナ選択的付加装置 通信用光ファイバコネクタ、250は原画読み取り回路 を実装した回路板、300は基本画像処理手段を実装し た回路板、350は拡張画像処理手段を実装した回路板 である。これらは図3に示す200で示すスキャナモジ ユール筐体内にすべて収納されている。

【0022】図4は、1回分の原画走査について記したもので、上部には2走査線分の詳細を示してある。まずシステム制御手段600からのSCANコマンド受信したとき、第1キャリジ208は受信からいつもも5時間後に光軸205Xが原画先端202Sに達し、かつ副走査速度をVsubとするように第1通信制御手段制御する。これによってコマンド受信タイミングから常に一定時間も5の後に画像データを出力するので少なくとも位相に関する同期は保たれる。

【0023】次に、周期に関するの同期のために、第1 同期損号発生手段230SYNCの発生するのパルス列 周期ts1に同期して1つの主走査線を読み取り、これ を送出バッファ230FIFOに入れるようにした。ま たこのデータの受取側、この図ではシステム制御モジュ ール600が周期ts1と実質的同一周期で順次取り出 すようにした。複写モードにおいてはデータの受取側を プリンタモジュール400し、上記同期メカニズムを維 持するようにした。よって何回原画走査してもコマンド 受信からいつも一定時間後に原画データが得られ、紙と 画像の位置関係(レジストレーション)がいつも正しく 維持され、またカラーコピー時は余分なバッフアメモリ を要せず、色版レジストレーションが維持され、またコ ピーが素早く出力される。なおスキャナモジュール20 0は基本的に他の2モジュール、システム制御モジュー ル600またはプリンタモジュール400から前記コマ ンドを受容する。

【0024】図5は、スキャナ制御手段230の作用を示したフローチャートであり、これらの機能は図2の230CPUマイクロプロセサのプログラム実行で果たさ

れる。実行プログラムは読み出し専用メモリ230RO Mに内蔵される。p201は電源201SW投入操作を 示し、p202は初期化処理、例えば各種回路素子の初 期パラメータ設定、ウオッチドグタイマスタート、キャ リジ208の初期位置(211上)への移動といった機 能である。p203は端子202S1、S2からのコマ ンド入力が所定時間(タイムアウトタイム)内に来なか ったかどうかを判定する。p204は画像読み取り部2 00rdのパワーを切り、画像処理手段300、拡張画 像処理手段350の電源電圧を回路素子内レジスタのデ ータが保持できる限界まで低下させる機能であり、待機 時の消費電力削減、冷却ファン騒音低減に寄与する。p 205はウオッチドグタイマがプログラムの正常実行を 離れた時に発生し、このとき故障発生通知機能p205 がシステム制御モジュール600にこれを通知する。p 201は画像読み取り部200rd、画像処理手段 【0025】図2において、207はカラー撮像デバイ ス、252はアナログ/ディジタル(A/D)変換器、 253はシェーディング補正回路、254はサンプリン グ位置ずれ補償回路である。原画180はプラテン20 2に複写面が下、読み取り開始位置がプラテンの左端2 02Sとなるように載置される。結像レンズ205は原 画像を撮像デバイス207の受光面に縮小投影結像す る。撮像デバイス207は電荷結合素子(CCD)でカ ラー撮像機能を備え、赤フイルタで覆われた4752画 素1次元配列されたR撮像部、緑フイルタで覆われた4 752画素1次元配列されたG撮像部、青フイルタで覆 われた4752画素1次元配列されたB撮像部が主走査 方向(図3の紙面に鉛直方向)に3列平行に並べられた 構造としている。3本の走査線は殆ど近接、具体的には 原画180面に換算して4/16mm間隔であるのと等 価であ。なおこの1次元撮像デバイスによる走査方向を 主走査、これと直交する方向を副走査と称することにす

【0026】照明ランプ203と第1ミラー204Aは第1キャリジ208にマウントされ、第2ミラー204Bと第3ミラー204Cは第2キャリジ209に固着されている。原画を読み取るときは、第1キャリジは副走査速度Vsubで、第2キャリジはVsub/2の速度で原画走査モータ210、駆動ワイヤ210Wによって光学的共役関係を維持したまま左端から右端に向かって走査(副走査)駆動される。モータ210にはステッピングモータを用いている。副走査速度Vsubは基準速度に対して1/8倍ないし4倍まで1%刻みで可変であり、他モジュールからのコマンドで任意の速度が選択される。

【0027】図4に画像読み取り機構部の速度線図を示してある。これを参照し、原画走査を説明する。第1キャリジ208は通常キャリジホームセンサ211の真上で静止し、待機している。この時のセンサ出力はONで

ある。読み取り走査指令SCANまたはREQを受信とき、t1でランプ203を点灯、モータ210を駆動し右方向に走査を開始する。t2時間後キヤリジ208がホームセンサ211の検知範囲を外れ、出力はOFFとなる。この外れる位置が走査基準位置として記憶され、位置の校正基準点として用いられる。

【0028】また、スキャナ制御手段230は面先端2 02Sまでの到達時間t5と速度Vsubの要求精度と を達成すべ最適加速計画を計算し、モータ210のステ ップパルス列を算出する。以降キャリジ速度はこのパル ス列で駆動され、面先端202Sに至る時刻および所望 の一定速度走査が期待通り達成される。校正基準点を通 過した後は、副走査速度の如何に拘わらず撮像デバイス 207はレンズ205が投影する各色の画像を主走査縁 単位で読み取る。これは撮像デバイス207の電荷蓄積 時間を一定にするために都合がよい。主走査周期は第1 同期損号発生手段230SYNCの発生するのパルス列 周期ts1であり、同パルス列はバス230BUSを経 由読み取り手段250に接続されている。なお第1同期 損号発生手段230SYNCはここに接続された水晶発 振子230XTLの原発振周波数を分周してバス230 BUSに出力する。

【0029】撮像デバイス207の総画素数は4752個で主走査1ラインを原画換算で16画素/mmに分解、標本化して読み取り、原画180からの画素単位のRGB反射光に応じたアナログ電圧を出力する。その後A/D変換器252にて8ビットのディジタル信号に変換、即ち256階調に量子化され以降の回路に渡される。上記基準点通過後は先ずt3で白基準板202SHを読み取り、8ビットのディジタル変換値がシェーディング補正回路253に記憶される。以降読み取られた画像データはシェーディング補正が有効こ施されることになる。t4時刻にキャリジ208が有価証券違法複写の追跡、リモートサーピスに供するための個体識別バーコード板202Bの下を通過するとき、これを読みとり、画像データはシステム制御モジュール600に伝送される

【0030】次にも5時刻に原画先端202Sに達すると、画像読み取り部200rdは原画像180を走査線単位で読み取り、画素毎の色分解ディジタルデータ250Dとして順次次段の基本画像処理手段300に出力する。A3判原画180のすべて、6720走査線分を読み取り、キャリジ208が右端に達し、も6時刻となったときモータ210を反対方向に回し、ホーム位置211まで復帰、停止させ、次の走査に備える。

【0031】図2において、301は空間フィルタ回路、302は変倍回路、303は色処理回路、304は階調処理回路、310は像域自動分離回路、320はカラー原稿自動検知回路、500は特定原画検出回路である。空間フィルタ回路301は平滑化処理もしくは鮮鋭

化処理を施す。一般に原稿180が網点印刷物である場合には前者の処理を施し、文字だけの原稿では後者の処理を施す。選択はコンソール800の原稿指定画面で入力するかもしくは後述の像域自動分離回路310からの分離結果に依存させる。変倍回路302は、画像を主走査方向に25%ないし400%に変倍させる。なお副走査方向の複写変倍は画像読み取り速度(副走査速度)を変えることで達成している。

【0032】色処理回路303は原画RGB信号にマスキング処理を施して記録色信号であるC(シアン)、M(マゼンタ)、Y(黄色)、K(黒)画像形成信号に変換する機能を持つ。さらに、文字画像と濃淡画像とでそれぞれに適した色処理、例えば黒文字部の純黒化処理などいわゆる適応的色処理を施す。また必要に応じてRGB信号のままスキャナ制御手段230を経由させシステム制御モジュール600に出力する。階調処理回路304は、8ビットのCMYKいずれかの画像信号からディザ処理を施し4ビットの記録画像信号を作る。さらに文字画像と濃淡画像とでそれそれに適した階調変換、いわゆる適応的階調処理を施す。像域自動分離回路310は1枚の原画上の文字画像部分と濃淡画像部分とを画素単位で域別し、この結果を空間フイルタ回路301、色処理回路303、階調処理回路304に出力する。

【0033】カラー原稿自動検知回路320はカラー原稿/白黒原稿識別処理を行う。特定原画検出回路500は原稿180が複写が禁じられている有価証券などの特定原画か否かを判定する。特定原画を検出したときは全面真っ黒にするなど面信号を変質させる。500はn個の地肌特性照合手段520-1、一2..nと色特性検出手段570と特定マーク検出手段580と特定文字列検出手段590およびこれらの論理和手段521から構成され、複写無用な原画を検出し、前記信号手段300に通知する。地肌特性照合手段、色特性検出手段、特定文字列検出手段、特定マーク検出手段は国情に応じて取捨選択して任意個数組み合わせて使用できるのが本装置の特徴である。

【0034】読み取られた原画RGB画像データ250 Dは空間フイルタ回路301、像域自動分離回路31 0、はカラー原稿自動検知回路320、特定原画検出回路500に並列に入力され、並列処理される。基本画像処理手段300の機能は2つの力テゴリに分けられる。第1のカテゴリは画像信号を直接操作するのではなく画像操作を支援するための機能である。例えば文字領域と階調画像領域に識別分離する像域分離処理や原稿サイズ検知処理や、カラー原稿/白黒原稿識別処理がある。このカテゴリの処理には例えばカラー原稿/白黒原稿識別処理がある。このカテゴリの処理には例えばカラー原稿/白黒原稿識別処理がある。第2のカテゴリは画像信号を操作する処理で、例えば空間フィルタ処理、変倍、画像トリミング、像移動、色補正、階調変換といっ た画像処理である。これらの処理はさらに像域によって 共通の処理内容のもの、例えば変倍と、文字画像と濃淡 画像部の2像域で異なるもの、例えば階調処理に分類さ れる

【0035】図6はプリンタ制御手段430の作用を示 したフローチャートであり、これらの機能は図2の43 0 C P U マイクロプロセサのプログラム実行で果たされ る。実行プログラムは430ROMは読み出し専用メモ リに内蔵される。p401は電源401の投入操作を示 し、p402は初期化処理、例えば各種回路素子の初期 パラメータ設定、ウオッテドグタイマスタート、4色現 像装置集合体420の初期位置合わせといった機能であ る。p403は端子402S1、2からのコマンド入力 が所定時間内に来なかったかどうかを判定する。p40 4は定着手段423のヒータ電源を切る機能であり、待 機時消費電力削減に寄与する。p405はウオッチドグ タイマがプログラムの正常実行を離れた時に発生し、こ のとき故障発生通知機能p405がシステム制御モジュ ール600にこれを通知する。p201は画像形成部4 00img、その他本モジュール内に故障が発生したと きの割り込みベクタで、p411が故障部位の特定、要 因の分析を行い、p412がこれをシステム制御モジュ ール600に通知する。p413は例えばモータ414 Mが過熱故障に至った場合、火災などの危険を避けるた めのフェールセーフ処理を行う。

【0036】図7は複写処理手段650CPおよび印字処理手段650PRの作用を説明する図、図8(A)は写処理動作タイミング図、図8(B)は印字処理動作タイミング図、図8(C)は複写処理動作中に故障が発生した場合のタイミング図である。図8で細線枠は複写処理650CPおよび印字処理650PR共通の処理、細破線枠は複写処理650CP特有の処理、太線枠は印字処理650PR特有の処理であることを表している。

【0037】次に、画像処理条件の調整について説明す

る。より詳しくは、作像部の階調特性を補正するための プリンタャ変換回路に設定するプリンタャ補正データの 最適化に関する。図15を用いて、プリンタャ補正の原 理を説明する。図15中(1)は、プリンタの現状の γ 特性を示すもので、プリンタ γ 変換回路の出力(γ OUT)があるレベルのときに作像した画像を、読取装置で 読み取ったときの値(VSCN (現))の関係を示してい る。本実施の形態では、読取装置を印刷の濃淡を計測す るための計測器として用いるため、濃淡は読取装置の出 力値で表している。図16のにプリンタヶ特性の現状値 を検知するためのテストパターンの例を示してある。A 4判の記録紙の中央部に、白レベル(地肌)から黒レベ ル(ベタ)まで7段階のパッチが作像されている。左上 には、このテストパターンを読取装置の原稿載置台に載 置する方向を指示する三角形のマーカーが印字されてい る。図27~図32は原稿載置台にテストパターン出力

を載置する様子を示した図である。この読取装置は、操作部の方から見て左上のコーナーが原稿位置の基準となっており、基準位置を示す三角形のマーカーが表示されている。この原稿載置台のマーカーとテストパターンのマーカーの三角形の頂点を合わせるように、裏返しにして載置する。

【0038】図17は、カラー機用のテストパターン出 力の例で、写真モード用の階調処理パターンと文字モー ド用の階調理パターンについて、それぞれK、C、M、 Yの4色、合わせて8本の階調パターンが出力されてい る。この例では、原稿載置方向を示すために、「↑ シ ートは伏せて矢印を複写機の左奥にセットして下さ い。」とメッセージをテストパターンに重畳して印字し ている。図18は左上コーナー基準のテストパターンを 出力する際に、種々のサイズの記録紙を用いた場合の様 子を示したものである。ここではB5横、A4横、B4 縦およびA3縦置きの記録紙の場合である。何れの場合 も左上コーナーの基準位置から同じ位置にテストパター ンが形成されている。そのため、テストパターン出力を 原稿載置台に載置する場合は、テストパターンと読取装 置の基準位置を合わせれば、記録紙のサイズに関わりな く原稿載置台の同じ位置にテストパターンが置かれる。 従って、読取装置は、記録紙のサイズを考慮することな くテストパターンを読み取ることができる。

【0039】図19は基準位置を中央・上部に設定した場合のテストパターンの形成の様子を表した図である。この場合も基準位置に対して、同じ位置にテストパターンが形成されている。この場合は、読取装置側も基準位置を主走査方向の中央に設定する必要がある。図21は基準位置を中央・上部(原稿載置台としては、左端中央部)に設定した場合のテストパターン出力を原稿載置台に載置する様子を表したものである。テストパターンおよび原稿載置台のそれぞれに基準位置を示すマーカーがあり、両マーカーの頂点を合わせるように載置する。その他、テストパターンの基準位置は右上コーナーに設定しても良いし、読取装置も右側から左側に走査するように構成したものでは、右端の奥、中央、手前等に基準位置を設定してもよい。

【0040】読取装置は、原稿載置台に載置されたテストパターンの各パッチを読み取ることにより、図15の(1)中の丸印でプロットされたデータを得る。このデータを基にして、3次スプライン関数や簡単には直線近似法などの方法を用いて、256段の出力レベルに対する濃淡データ(読取装置で読み取ったときの値)を知ることができる。図17のように複数の階調パターンがある場合は、各パターン毎にこのプリンタャ特性を求めることになる。

【0041】図15の(3)はプリンタャ特性の目標値である。これはプリンタャ変換回路へ入力されるレベル(rIN) とその印字出力パターンの読取装置による読み

取り値(VSCN(標))の関係を示している。ここで読取値は、標準的な特性の読取装置によるデータを用いている。(2)は読取装置のヶ特性の機差を補正するためのカーブである。目標とする調整精度に対し、機差が小さければこのカーブは恒等変換を示す直線となる。以上(1)~(3)の特性を基にして、(4)のヶ補正カーブを得ることができる。このプリンタヶ独正データをプリンタヶ変換回路に設定することで、(3)に示す所望のプリンタヶ特性に調整することができる。

【0042】次に、本実施の形態に係る画像形成装置の 構成と動作を説明する。 図9は、本実施の形態で用いる 画像処理部(IPU部)のブロック図であり、原稿読取 部 (スキャナ) 9. 1、スキャナγ変換回路9. 3、色 変換などの加工処理をする拡張IPU9.5、平滑化処 理やエッジ強調処理などの空間フィルタおよび色補正処 理、UCR/UCA処理、テストパターン信号発生回路 を含むブロック9.6、主走査方向の変倍回路9.7、 プリンタγ変換回路9.8、階調処理回路9.9および タイミング調整のための、FIFO(ファースト イン ファースト アウト メモリ) 9.12、SCSI I /F (インターフェース)回路9.13、紙幣などの複 写禁止原稿を認識する特定原画検出回路9.10、像域 自動分離回路・カラー原稿自動検知回路9.11、画像 信号と像域信号のタイミング調整するための遅延メモリ 4およびこれらのブロックを制御するためのCPU (中央処置装置) 9. 2から構成されている。各ブロッ クはパラメータを設定して処理条件の変更を行うため、 必要に応じてCPUバスと接続されている。さらに、C PU9.2は光沢度センサ9.14の出力値を参照する ことができ、階調処理パラメータを算出する際にそのデ ータを用いられる。

【0043】図10は、図9のテストパターン発生回路を含むブロック9.6の詳細ブロック図である。原稿を読み取って得られた画像信号を空間フィルタ処理する回路1(10.1)および回路2(10.3)、色補正・UCR/UCA回路10.2、画像信号と像域信号のタイミングを調整するための遅延メモリ10.6~10.8、テストパターン信号発生回路10.5および原稿読取部から得られた画像信号かテストパターン信号を選択するセレクタ10.4から構成されている。自動画像調整を実行するためにテストパターン画像を出力するときは、CPU10.2は原稿画像データの代わりにテストパターン信号を画像信号として選択する。

【0044】図11は図9の像域信号発生回路を含むブロック9.11の詳細ブロック図である。原稿色検知回路11.1、網点領域判定回路11.2、文字領域判定回路11.3、テストパターン切換信号発生回路11.4および文字判定信号を選択するセレクタ11.5から構成されている。テストパターン切換信号は、テストパターン画像を出力する際に、1枚の出力中に写真モード

用と文字モード用のパターンを形成するためのものである。文字判定信号として階調処理回路9.9に入力され、写真モード用の処理か文字モード用の処理が選択される。

【0045】図12はテストパターン発生回路の例である。図14は、、図12で示した回路によって、図17のテストパターン信号を出力する様子を表したものである。このテストパターンは、副走査方向に出力レベルが7段に変化し、色および画質モードの組み合わせに対応して8本の階調パターンから構成される。図16において、CNT1は副走査方向テストパターン切換信号を発生する回路である。出力レベルの変化点に対応したパルスを発生する回路であって、同レベルのパッチの長さがmラインとすると、副走査方向テストパターン有効領域信号の開始(Hレベルになった時点)からライン同期信号をm回カウントする毎に副走査方向テストパターン切換信号がHレベルになる。

【0046】出力レベルの初期値(i)および出力レベルの間隔(ステップ値(s))は読取装置を制御するCPUによってレジスタREG2およびREG1に設定される。出力レベルは、加算器(ADD)によって、副走査方向テストパターン切換信号のパルスが入力される毎にステップ値sだけ加算される。セレクタSEL1およびSEL2はテストパターン信号出力開始時に初期値iが出力されるように加算器の入力をOおよびiにするためのものである。計算された出力レベルは、次の切り換えパルスが入力されるまで、フリップフロップ回路(FF)に保持される。主走査方向のパターン形状は、CNT2によって発生する主走査方向テストパターン有効領域信号により制御される。

【0047】セレクタ(SEL3)の選択信号がHレベ ルの時だけ〇でない値を出力する。選択信号は主走査方 向および副走査方向のテストパターン有効領域の論理積 である。主走査方向テストパターン有効領域信号は、図 14に示すごとく作像色K、C、M、Yごとに領域が異 なっており、単色の階調パターンが形成される。また各 色とも写真モード用と文字モード用の2パターンを形成 するため、2箇所で有効領域がある。画質モードの切り 換えは、テストパターン形成時は、図11のテストパタ ーン切換信号発生回路(11.4)の信号が像域信号の 内の文字判定信号(CHR)として選択され、図14に 示すごとく主走査方向の中央部より左側ではLレベルと なり、階調処理回路で写真モード用の処理が選択さる。 右側では切換信号はHレベルとなり、階調処理回路で文 字モード用の処理が選択される。かくして図17のテス トパターンが形成される。

【0048】テストパターンは、図13のようなメモリテーブルを用いて構成することもできる。画素同期信号をカウントして主走査方向のアドレスを発生する回路(CNTX)、ライン同期信号をカウントして副走査方

向のアドレスを発生する回路(CNTY)およびそのアドレスに対応した領域で所定のテストパターンレベルを出力するメモリテーブル(MEM)から構成される。16 dot/mm の密度でA4判だと主・副走査方向のアドレスはそれぞれ13ビットであるが、テストパターンはそれほど細かく設定する必要がないので、それぞれ下位7ビットを捨てて上位6ビットをメモリテーブルのアドレスとして用いる。換言すれば、128×128(8m×8mm)単位でテストパターンを設定できる。

【0049】この回路では、メモリテーブルのアドレスとして、2ビットの色選択信号も入力される構成のため、色毎にテストパターンの設定ができる。この場合、メモリテーブルの容量は、16KB(キロバイト)である。メモリテーブルはROM(リード・オンリ・メモリ)でも良いが、RAM(ランダム・アクセス・メモリ)を用いてCPUを介して設定できるように構成して、複数通りのテストパターンを発生できるように構成して、複数通りのテストパターンを発生できるようにすることもできる。メモリテーブルを用いた場合は、必要なアドレスにのみ所定の出力データを書き込み、その他の領域には0を書き込んで置くことにより、図12の回路の主・副走査方向テストパターン有効領域信号は不要である。

【0050】図12の回路では副走査方向に階調レベルが変化するテストパターンを発生するが、主走査方向に関する信号と副走査方向に関する信号を入れ換えると主走査方向に階調レベルの変化するテストパターンを形成することができる。図13の回路ではメモリテーブルの設定値を更新するだけで、8㎜×8㎜単位で任意にテストパターンの設計ができる。

【0051】図22~図26は、テストパターンと読取装置によって読み取られ、メモリに取り込まれる領域を示したものである。メモリは、図9のFIFO(9.12)である。このメモリは256Kワード×8ビットFIFO構成のメモリである。通常のコピー時には、このメモリはユニット間のタイミング調整に用いられる。主走査方向の読取サイズが297mm/line×16dot/mm=4752dot/lineであり、1ドット当たり4ビットの階調数で出力すると 256K×8ビット/4ビット/4752=110ライン、即ち長さにして約7mmのタイミング調整が可能である。

【0052】テストパターン読取時にはプリンタ出力はしないので、タイミング調整のためにこのメモリを用いる必要はない。そこでテストパターンデータの取り込みにこのメモリを用いることができる。但し、テストパターン読取時は1ドット当たり8ビットの階調数でメモリに取り込む。テストパターン読取時のフィールドメモリの動作について説明する。図33は読取装置で用いられる同期信号(画素同期信号GCLK、ライン同期信号LSYNC、フレーム同期信号FSYNC)と画像信号DATAのタイミングを示したタイミングチャートであ

る。読取密度16dot/mでA4横サイズの原稿を読み取った場合であり、フレーム同期信号がHレベルの間に、3360のライン同期信号がある。また、ライン同期信号がHレベルの間に、4752画素の画素同期信号があり、画素同期信号に同期して原稿を読み取って得た画像信号が出力される。

【0053】図22では、左端の7パッチから成るパターンを読み取る様子を示している。パターンの中央部を含む斜線部がメモリに取り込まれる領域である。副走査方向の全てのラインを読み込むと、256K/3360=78であるから、主走査方向に78ドット(約5㎜)の幅でデータを取り込むことができる。即ち、テストパターン読み取り時は、画角が78画素×3360ラインのフィールドメモリとして用いる。必要なデータは2重斜線で示した各パッチの中央部であるから、副走査方向の取り込み領域を2重斜線部を含む最小領域に限定すれば、主走査方向のデータ取り込み領域を増やすことができる。

【0054】図23は、主走査方向に階調変化するテストパターンの場合を表した図であり、最上部のパターンを読み取る様子を表している。図22の場合と同様に斜線部がメモリに取り込まれる領域である。主走査方向にフルサイズである4752画素の幅で読み込むと、256K/4752=55であるから、副走査方向には55ライン(約3.4mm)のデータを取り込むことができる。ここでは、画角が4752画素×55ラインのフィールドメモリとして用いる。この場合も必要なデータは2重斜線部で示した各パッチの中央部であるから、主走査方向の取り込み領域を2重斜線部を含む最小領域に限定すれば、副走査方向の取り込み領域を増やすことができる。

【0055】図39はテストパターン読取時のフィールドメモリへの信号の接続を示した図である。メモリへのデータ取り込みは、読取装置の画素同期信号に同期して取り込むため、ライトクロック(WCK)として画素同期信号(GCLK)を用いる。画像データ(DATA)は、白黒機の場合やRGBの内1色のみ取り込む場合は、8ビットであるが、RGB3色全てのデータを取り込むときは、読取動作を3回繰り返すか、このフィールドメモリ3個を用いて1度に24ビットのデータを取り込むようにする。ライトイネーブル信号(WE)として、後述する主走査方向のテストパターン領域信号(LGATA)および副走査方向のテストパターン領域信号(FGATE)のNAND出力を用い、テストパターン領域のみメモリへの取り込みを許可する。

【0056】また、フレーム同期信号(FSYNC)をライトリセット信号として用い、メモリの先頭アドレスからデータを記憶するようになっている。メモリからのデータの読み出しは、読取動作後または動作間にCPUによって行われる。このため、メモリのデータ読み出し

のための信号線はCPUバスに直接または間接に接続される。メモリからデータを読み出すには、まずリードリセット信号をLレベルにし読み出しアドレスを先頭にリセットする。その後リードリセット信号をHレベルにし、リードイネーブル信号およびアウトプットイネーブル信号をLレベルにすれば、リードクロックにパルスを入力する毎にシーケンシャルにデータを読み出すことができる。データは、読取領域をラスタースキャンした順番に読み出すことができる。CPUは画像データを順次読み出し、各パッチ毎に2重斜線の領域のデータの平均値を算出する。この平均値データを図15(1)の丸印でプロットされた点のVSCN値として用いる。

【0057】図34、図35はテストパターン読取時にフィールドメモリに入力される制御信号のタイムチャートである。図22の読取動作では、左端のパターンを読み込むために主走査方向のLGATEとして、LGATE1を用いる。LGATE1~8は、それぞれ図22の8本のパターンに左から順番に対応しており、パターンの中央部のデータを取り込むことができる。副走査方向に関しては、フルサイズ読み込むのであれば、FSYNCを用いることができる。また、副走査方向に関し2重斜線の領域を含む区間のみHレベルとなるFGATE9を用いることにより、必要な領域のみ読み込むことができる。

【0058】図23のパターンの場合は、主走査方向の 領域信号としては、LSYNCを用いることでフルサイ ズのデータを読み込むことができる。2重斜線の領域を 含む区間のみHレベルとなるLGATE 19を用いれば 必要な領域のみ読み取ることができる。副走査方向の領 域信号は、最上部のパターンを読み取る場合は、FGA TE10を用いる。FGATE10~17は、それぞれ 図23の8本のパターンに上から順番に対応しており、 パターンの中央部のデータを取り込むことができる。 【0059】図36は、GCLK、LSYNC、LGA TEおよびLSYNC、FSYNC、FGATEの信号 の関係を示すタイムチャートである。LGATEは、L SYNCの立ち上がりからXOFS 個のGCLKをカウン トした後Hレベルになり、更にXN 個のGCLKをカウ ント後に再びLレベルになる信号である。FGATE は、FSYNCの立ち上がりからYOFS 個のLSYNC をカウントした後Hレベルになり、さらにYN 個のLS YNCをカウント後に再びしレベルになる信号である。 【0060】図37は、このLGATEあるいはFGA TE信号を発生するための回路である。FGATE信号 は、LGATE信号に於けるGLCKをLSYNCに、 LSYNCをFSYNCに置き換えることで同様の回路 で発生することができるので、ここでは代表して、前者

をCLK、後者をXSYNC、そして出力をXGATE

とする。このXGATE発生回路は、XSYNCの立ち

上がりからCLKをカウントして走査方向のアドレスを

発生する回路(CNT)、XGATE信号の立ち上がりまでのオフセット値(OFS)およびHレベルの幅(N)を保持するレジスタ(REG1およびREG2)、OFS値とN値より、XGATEの立ち下がるアドレス(OFS+N)を計算する加算器(ADD)、アドレスとOFS値および(OFS+N)値を比較する比較器(CMP1およびCMP2)およびCMP1の出力(s1)とCMP2の出力(s2)の論理積を出力するAND回路から構成される。REG1および2の設定値は、CPUによって設定でき、XGATEのHレベルの領域を任意に変更することができる。REG2の設定値としてCPUは(OFS+N)を設定するようにして、加算器ADDを不要にすることもできる。

【0061】図38に、図37で示した回路の中間信号 (s1)、(s2)およびXGATE信号のタイムチャ ートを示す。(s1)はアドレスOFSでHレベルにな り、XSYNCがLレベルになるまでHレベルを維持す る。(s2)はアドレス(OFS+N)でLレベルにな り、XSYNCがLレベルになるまでLレベルを維持す る。従って(s1)(s2)の論理積をとることにより XGATE信号を得ることができる。以上説明したよう に、テストパターン読取時に、フィールドメモリの画角 を変更して複数のパッチから成るテストパターンを1回 の読取動作で読み取ることができるので、時間の短縮が できる。複数色、複数種類の階調処理パターンがある場 合は、その組み合わせの数だけ、例えば4色、2種類の 階調パターンがある場合は、8本の階調パターンを形成 し、それぞれ1回の読取動作で読み取ると、8回の読取 動作で必要なデータを得ることができる。

【0062】図24は、フィールドメモリを主走査方向に分割して、不連続な領域の画像データを1回の読取動作で取り込む様子を表した図である。主走査方向のテストパターン領域信号として、図34のLGATE9のごとく、複数のテストパターンの中心部でHレベルとなる信号を用いる。この信号は、個々のパターンの領域信号であるLGATE1~8の論理和で合成することができる。これにより、1回の読取動作で全てのパターンを読み取ることができる。

【0063】図25は、フィールドメモリを副走査方向に分割して、不連続な領域の画像データを1回の読取動作で取り込む様子を表したものである。副走査方向のテストパターン領域信号として、図35のFGATE18のごとく、複数のテストパターンの中心部でHレベルとなる信号を用いる。この信号は、個々のパターンの領域信号であるFGATE10~17の論理和で合成することができる。これにより、1回の読取動作で全てのパターンを読み取ることができる。但し、メモリ容量が同じならば、各パッチを読み取る領域は狭くなるので、必要に応じて、メモリチップを増やすか容量の大きなメモリを用いればよい。あるいは、1回で全てのパターンを読

み取るのではなく、2パターンずつ4回や、4パターンずつ2回のパターンを読み取るように制御して1パッチ当たりの読取領域を確保してもよい。

【0064】図26は、フィールドメモリを主・副両走査方向に分割して、各パッチの中央部の必要な領域のみを取り込む様子を表したものである。主走査方向のテストパターン領域信号は図34のLGATE9に示すように、8本のパターンの中央部のみHレベルとなる。副走査方向のテストパターン領域信号は図34のFGATE8に示すように、各パターンを構成する7個のパッチの中央部でHレベルとなる。主・副走査方向の領域信号の論理積を領域信号として用いることにより、図26の斜線部の領域のみメモリに取り込むことができる。

【0065】また、図23に示すような横長のテストパターンの場合でも、領域信号として図35のLGATE 18およびFGATE18の論理積を用いて、テストパターンを構成するパッチの中央部分のみをメモリに取り込むことができる。この場合、取り込んだデータに無駄がないので、効率的にメモリを使うことができる。そのため容量の大きなメモリを用いたり読取動作を増やしたりすることなく、1回または少数回の読取動作でテストパターンを読み取ることができる。

【0066】次に、カラー複写機の場合の読取データの 扱いについて説明する。フルカラー複写機の場合は、読 取手段はRGBの3色に色分解し、作像手段はYMCK の4色の色材の組み合わせで色再現するのが一般的であ る。この場合、Y、M、C、Kの4色それぞれがプリン タヶ特性の補正の対象となる。YMCKそれぞれの単色 で形成したテストパターンを読取装置で読み取るのであ るが、1次色のパターンの場合は、読取データもパター ンの色の補色に色分解されたデータが最も濃淡を良く反 映する。従って、精度良く濃淡を計測するにはY、M、 CそれぞれB、G、Rに色分解されたデータを用いる必 要がある。K色のパターンは基本的には可視領域におい てフラットな分光特性を有するため、RGBのいずれの 色分解データを用いても良い。望ましくは、読取装置の 照明や撮像素子の分光感度特性から最もS/N比の良好 なデータを用いるべきである。通常は、人の比視感度特 性に近く安定した照明光量の得られるGデータを用いる のが望ましい。

【0067】フルカラー機でなく、黒と赤、青、緑など内から $1\sim2$ 色の有彩色の色材を組み合わせ、読取装置もRGBの3色または2色に色分解するカラー複写機も提案されている。この場合も、各色材の濃淡を最も安定して良く反映する色分解データを用いれば良い。例えばR(赤)あるいはB(青)の色材にはGデータを用い、G(緑)の色材には、Rデータを用いる。G色の色材の場合にBデータではなくRデータを用いるのは、読取装置において、一般的には短波長側は照明光量、撮像素子の感度共に低いためデータのS/N比が長波調側より悪

度の良い撮像素子を用いる場合はこの限りではない。 【0068】ここでテストパターン読取時に色分解データを選択する方法について、(図9)に示す画像処理手段を例に説明する。テストパターン読取時は、スキャナケ変換回路には、実質的に無変換となる変換テーブルを設定する。拡張IPUもここでは無処理とする。フィルタ・色補正・UCR/UCA回路については後述する。変倍回路も等倍処理とし、実質的には無処理である。プリンタケ変換回路もスキャナケ変換回路と同様に実質的な無効性による。

いためである。但し、短波長側に光量の豊かな照明や感

タ・色補正・UCR/UCA回路については後述する。 変倍回路も等倍処理とし、実質的には無処理である。プリンタャ変換回路もスキャナケ変換回路と同様に実質的に無変換としる変換データを設定する。階調処理回路も無変換とし、8ビットデータのままデータ記憶手段(FIFO)に入力される。実質的に無変換とする回路については、無変換と等価になるデータを設定するのではなく、バイパス回路を設け、テストパターン読取時にはそのバイパス回路を選択するように構成しても良い。

【0069】フィルタ・色補正・UCR/UCA回路については、(図10)を用いて説明する。フィルタ1はRGB3色の各データに対して平滑化処理またはエッジ強調処理を選択できる。テストパターンの作像ムラや読取装置の読み取りムラの影響を減らすため、ここでは最も平滑効果の高いフィルタ処理を選択する。通常フィルタ2は色補正処理により、YMCK系に変換された画像データに対して平滑化処理やエッジ強調処理を選択して施す。ここではフィルタ1と同じく平滑化処理を選択する。色補正・UCR/UCA回路は、R、B、Gデータの1次結合演算を行う。

【0070】図40、図41に色補正回路の例を示して ある。各係数を保持するレジスタ(REG1~4)、係 数とRGBデータの積を計算する乗算器 (MUL1~ 3) および各積を加算する加算器 (ADD1~3) から 構成されている。係数レジスタはCPUに接続され、任 意に設定ができる構成になっている。それぞれのデータ に対する係数および定数部をa、b、c、dとすると、 色補正回路の出力はa×R+b×G+c×B+dであ る。ここではUCR/UCA処理は不要なので、無処理 となるデータを設定する。ここでRGBデータをから1 色を選択するには、上記係数の組として、選択すべき色 の係数のみ1とし、他の係数は0を設定すれば良い。但 し、平滑化フィルタのサイズが各パッチの参照領域に比 べて十分小さい場合は、参照領域のデータを平均化する ことで十分効果があるので、平滑化処理でなく無処理の ままでも良い。また、色補正回路の係数を、テストパタ ーン領域信号に同期して選択できるように構成すること で、1回の読取動作中に複数の色のパターンを読み取る ことができる。

【0071】図41にテストパターン領域信号に同期して係数を選択可能なレジスタの回路を示す。テストパターン読取時は係数は、1か0を選択するので、係数レジスタ(REG)にはCPUより1を設定しておく。領域

信号を選択信号としたセレクタ(SEL)は領域信号が HレベルのときはREGに設定された1を、Lレベルの ときは、0を出力する。ここで領域信号はYMCKそれ ぞれの有効領域を示す信号から合成して用いる。Rデー タの係数の選択にはCの領域信号を用い、Gデータの係 数の選択にはMおよびKの領域信号の論理和を用い、B データの係数の選択にはYの領域信号を用いる。かくし てYMCKのパターンに対してそれぞれBGRGデータ を選択することができる。

【0072】ところで、図22または図23で説明した ようにフィールドメモリの画角のみ変更して、1個の矩 形領域を読み取る構成は、メモリの制御回路が簡単で低 コストで実現できる長所はあるが、色および画質モード の種類が増えると読取回数が多く必要となり、時間が掛 かるという不具合がある。図27、図28は、必要な読 取回数を減らし、処理時間の短縮をするためのパターン である。図27においては、同色の写真モード用および 文字モード用のパターンを副走査方向に直線状に並ぶよ うに配置している。図28においては同じく、2個のパ ターンが主走査方向に直線状に並ぶように配置してあ る。1回の動作で1色のデータを読み取る構成でも、こ のように同色のパターンを直線状に並べることにより、 1回の読取動作で複数のパターンを読み取ることができ 時間短縮することができる。ここでは、写真モードと文 字モードの2種類のモードを例に挙げたが、中間的な文 字写真モードや、16値の他に2値や4値等多値数の異 なる階調パターンを組み合わせてもよい。

【0073】また、他のテストパターンおよびデータ取り込みの構成例として、図29~図32等がある。図29は2次元的に分布するパッチで1 組の階調パターンを構成している。パッチ数を増やして多くの階調レベルを実測し、プリンタ τ 特性をより精度良く求めることができる。この例は $12\times3=36$ レベルのパッチから構成される。また、同色の写真モードと文字モードのパターンが主走査方向に並置されており、フィールドメモリを副走査方向に3分割して用いることにより、1回の読取動作で1色2パターンを読み取ることができる。

【0074】図30の例では、テストパターンの構成は 図29と同じであるが、1パターンの領域全てを1この 矩形領域として読み取るように構成している。図31の 例では、1パッチ内を複数の領域に分割して空間的に分 散して読み取るように構成している。パッチ内から広く サンプリングしたデータを平均することにより、ムラの 影響を低減できる利点がある。あるいは複数の領域毎の 平均値を比較することで、パッチ内のムラの程度を知る ことができ、各パッチ毎の読み取りデータの正当性の判 定や修正をすることもできる。

【0075】図31の例では1パッチ当たり16個のデータをサンプリングする。16個のデータの分散が所定値以上の場合は、ムラが多いと判断でき、このパッチの

データは不適当としてプリンタヶ特性算出に用いないようにすることができる。あるいは、16個のデータの分布を調べ、平均値からのズレが所定値以上(例えば標準 偏差以上)のデータを除外したデータの平均値や簡単には中央値をそのパッチの代表値をして用いることにより ムラの影響を回避することができる。図32の例では、1枚のテストパターン出力内に同じパターンを複数箇所(ここでは2箇所)に形成し、図31の場合について説明したのと同様に平均値や中央値を用いることでムラの影響を低減することができる。また、図31のパターンは、同色のパターン同士を直線状に配置したので、効率的に読み取ることができる。

【0076】以上説明した実施の形態では、CMYKの各色毎に γ 補正データの最適化を行うため、複数回に分けてパターンの読み取りを行う構成では、1個のパターンのデータ読み取りが完了すると、他のパターンデータに関わりなく γ 補正データの算出をすることができる。そこで、読取動作が終了する毎に、CPUはデータ記憶手段からまず必要なデータを読み取り、CPUが管理するワーク用のRAMにデータを移す。この際に平均化処理のみを行ってから平均値をワークRAMに記憶するようにすれば、計算のためにデータ記憶手段を占有する時間は少なくて済み、かつワークRAMの使用量も少なくて済む。

【0077】データ記憶手段から必要なデータの取り出しが終了すると、速やかに次のパターンの読み取り動作にはいる。CPUは読取動作と並行して、既に読み取ったデータの解析を行い、γ補正データを算出する。並列処理により、トータルのγ調整に掛かる時間を低減することができる。また、データの分析において、各パッチの読取値が、所定の条件に適合するかどうかを判定し、不適合の場合は、以降の計算および読取動作を中止することで、調整失敗時の時間の無駄を最小限に抑えることができる。さらに、γ特性は、少なくとも同じ画質モードにおいてはグレーバランスを保証するためにYMCK共に所定の特性になるように調整する必要がある。

【0078】それゆえ、パターンを複数回に分けて順次 読み取り、並行して r 補正データを算出する場合は、4 色の r 補正データが正常に算出されるまでワークRAM に保持し、4 色のデータが揃ってからプリンタ r 変換回路および C P Uが管理する同データ用の不揮発性のメモリの領域に保存する。途中でパターンデータからの r 補正データの算出に失敗した場合は、それまで正常に算出できた色の r 補正データも破棄し、データの更新は行わない。不揮発メモリに保存されたデータは、電源再投入したときに読み出され、プリンタ r 変換回路に設定される。

【0079】次に、読み取りデータの正当性の判定について説明する。テストパターンは、図16~図20に示すように白レベルから黒ベタレベルまで連続的な階調レ

ベルの複数のパッチで構成し、読取値は反射率リニアまたは黒い(濃度が高い)ほど小さな値となるものとして説明する。ここで階調パターンの読み取りデータが満足すべき条件として、(1)白レベルの読取値は、所定の濃度相当の出力より高いこと(所定濃度より低いこと)。(2)黒レベルの読取値は、所定の濃度相当の出力より低いこと(所定濃度より高いこと)。(3)1組の階調パッチの読取値は、単調に減少すること(階調出

カレベルが高いほど濃度が高いこと)。がある。

【0080】条件(1)は地肌汚れがひどいとき、条件(2)はベタ濃度が十分出ていないとき、条件(3)はムラがひどくて正しくァ特性を検知できないときを想定している。また、テストパターン出力が原稿載置台へ正しく載置されていない場合は、1~3の何れかに反するため、知ることができる。また前述のように、各パッチ内でのムラの判定を組み込んでもよい。さらに、パッチ数が十分多い場合は、条件2を厳格に適用せず、不適当なパッチの読み取りデータのみ除去して解析を続行するようにしてもよい。

【0081】データの正当性判定で不適合となった場合 は、再度テストパターン出力の画像形成からやり直す必 要がある。画像調整は本来頻繁に実施するものではない ので、単なる原稿載置台への載置ミスを犯す可能性が高 い。この場合でも、画像形成からやり直すのは時間が掛 かり煩わしいものである。そのため、本実施の形態で は、1回目に失敗したときは、図20の操作部中の文字 表示部に「原稿の向きを確かめてスタートキーを押して 下さい。等の警告メッセージを発し、原稿の再読み取り をオペレータに促す。そして、2回目にも失敗した場合 は、テストパターン出力自体の異常が考えられるため、 「画像調整は失敗しました」等のメッセージを発し、オ ペレータに異常終了を知らせる。また、成功した場合 は、「画像調整終了しました」等のメッセージを発し、 オペレータに正常終了したことを知らせて、画像調整処 理を終了する。以上は、自動的に階調補正を行う画像形 成装置の基本構成と動作について説明した。

【0082】次に、本実施の形態の特徴である正反射光成分の検知手段と、検知結果の用い方について説明する。原理的には、光沢度の違いによる濃度測定値への影響を評価し、原稿上の色材量を正確に検知する。その原理を簡単に説明する。図44は、光沢度の違いによる、検知方向と反射率の関係を示す図である。図43はその際のサンプルに対する照明と反射光の検出器(センサ)の関係を示す図である。サンプル面に垂直方向を0°として、照明光はサンプルに対して、-45°方向から入射し、反射光を検知するセンサを0°付近から90°付近まで移動させながら反射率を測定するものである。その結果が図44である。ここでは、サンプルの光沢度が高い場合、中位の場合、低い場合についてそのプロファイルを定性的に示してある。即ち、光沢度が高くなるほ

ど正反射光成分が増え、+45°方向の反射率が相対的に高くなる。逆に光沢が無光沢に近づくと、正反射光成分がなくなり、0°方向の反射率が増加する。従って、正反射光成分を含む45°方向と、その他の方向、好ましくは概ね0°方向の反射率の比を算出することで、表面光沢度を知ることができる。但し、45°方向は照明光の入射角が-45°であるためで、例えば、照明光を-30°方向とした場合は、+30°方向に正反射光が含まれることになる。

【0083】さらに、前述の図42に示したように、光 沢度と濃度の関係を予め調べておくことにより、検知し た濃度値(または反射率や明度など濃淡を表す量)と光 沢度から、サンプルの色材量を知ることができる。つま り、拡散反射光成分と正反射光成分を測定すれば、その 測定値を基に原稿上の色材の量を定量することができる。 る。

【0084】図45は本実施の形態で用いる拡散反射光成分と正反射光成分を検知する機能を有する画像入力装置の光学系の例である。照明ランプは、原稿面に対して一45°方向に照射し、拡散反射光成分は、概ね0°方向の反射光成分を第1~第3ミラー、レンズを通ってセンサ1でその光強度を検知する。センサ1はCCD等のライン型の撮像素子であり、通常の画像読み取りにも用い、等倍読み取り時で400dpi程度の解像度を有する。センサ2は、正反射光成分を含む45°方向の反射光の強度を検知する。センサとしては、センサ1と同様にライン型のCCDを用いてもよい。但し、このセンサの目的は、ある程度の大きさ(面積)のテストパターンの読み取ることにあるので、センサ1のように高解像度である必要はないし、変倍(拡大や縮小)読み取りをする必要もない。

【0085】テストパターンを構成するパッチの大きさ が、例えば、5m×5mであれば1m素/mm≒25d piもあれば十分である。但し、比較的高解像度のセン サであっても、読み取りデータの平均化や間引きにより テストパターンの読み取り値の代表値としてもよい。ま た、画像形成装置が、カラー画像を形成する構成の場合 は、原稿画像を読み取るセンサ1は、例えば、R、G、 Bの3色に色分解して読み取るカラー用のセンサとする 必要がある。これは、拡散反射光はサンプルの色材の内 部からの反射光であるため、色材の色に応じた分光分布 を持つためである。しかし、サンプルの表面からの正反 射光成分は光源と同一の分光分布を持つため、センサ2 はカラー画像形成装置の場合であっても、安価なモノク ロ用のセンサを用いることができる。以上より、センサ 2としては、例えばファクシミリ用の200dpi程度 の等倍型ライン状イメージセンサを用いることができ る。安価に入手できるのであれば、100dpiや50 dpiなど更に低解像度のライン状イメージセンサでも 差し支えない。

【0086】図46、図48は、等倍のライン状イメージセンサと等倍用のレンズ(セルホックレンズアレイ)でセンサ2を構成したものである。図47、図49はさらに安価にするために、センサとしてフォトトランジスター等の光センサと、検知すべきパッチの正反射光成分を選択するための遮光板(筒状の絞り)とから構成したものである。図49の例では、図17のテストパターンに対応して8組の遮光板とセンサから構成したものである。図45において、センサ2は等倍での検知のみであるから、照明ランプや第1ミラーと共にキャリッジにマウントされ、駆動機構により副走査方向に移動することができる。等倍光学系のため、複雑なミラーやレンズの駆動機構が不要であるので、センサと、センサの出力を一時保持するメモリ手段の追加のみで構成することができる。

【0087】拡散反射光成分は、本来の画像読み取り用のイメージセンサで検知されるので、データの取得方法については、テストパターンの読み取りのところで既に説明した通りである。正反射光検知センサからの出力値は、図9において図示しない一時記憶用のメモリに保持され、CPU9.2によって読み出される。既に説明したように、図44に相当するデータテーブルを参照することにより、拡散反射光成分および正反射光成分の測定値から光沢度を知ることができる。

【0088】次に、検知した光沢度と濃度(拡散反射光成分の検知データそのもの、またはそれを変形したデータ)から、色材量を算出する方法について説明する。図50は等色材量の時、光沢度と濃度の関係を示した図である。 aからjまでの曲線は、それぞれ標準光沢度(30%)のときに濃度2.4~0.6になる色材量であることを示す等色材量線である。この表を参照することにより、光沢度と濃度値から標準光沢度での濃度値を算出することができる。光沢度と濃度で示される点が、図示された10本の等色材量線上にならない場合は、最寄りの2本の等色材量線から補間して、いくつの色材量であるかを求めることができる。

【0089】ここでは、光沢度30%での濃度値に換算して、0.2年に示したあるが、更に細かい間隔で等色材量線データを有するようにしてもよいし、逆に演算精度を若干犠牲にして、もっと粗い間隔で等色材量線データを有し、データ保存のためのメモリを減らすようにしてもよい。色材量は、通常は単位面積当たりの色材付着量であされるが、光沢度一定の場合は、色材付着量と画像濃度は一義的に決まるため、色材付着量に換算せずに濃度のまま取り扱っても差し支えない。さらに、濃度値ではなく、画像入力装置の読取値そのままでもよい。【0090】図15の第1象現のプリンタヶ特性の現状値データとして、画像入力装置の読取値(または平均値)そのままではなく、図50の等色材量線データから得られる標準光沢度時の濃度に相当するVscn値に

正してから用いる。図15の第3象現に示すプリンタャ 特性の目標値は標準光沢度を仮定しての設計値であるの で、この光沢度の補正により、作像系が標準光沢度が得 られる条件の時に所望の濃度特性となる用に調整するこ とができる。換言すれば色材付着量で評価したときの階 調特性が常に一定になるように調整されることになる。 【0091】上記に説明した例では、光沢度でテストパ ターンの読取値を補正するように構成したが、読取値で はなく、調整の目標値を可変にし、光沢度に応じた目標 に変更するように構成しても同じ効果を得ることができ る。図51は光沢度の違いによるプリンタヶ特性の調整 目標値を示す図である。目標特性a~fはそれぞれ光沢 度が10、15、20、30、40、50%の場合の目 標値である。低光沢度の方が色材付着量に対する濃度の 飽和が起こりやすいので光沢度の間隔を細かくとり、補 正精度の確保を図ってある。中間の光沢の場合は、最寄 りの目標値から補間して求めることができる。但しここ で参照する光沢度データは、色材付着量の高いパッチに 対する光沢度を用いる。光沢度は色材付着量によっても 異なるためであるが、1枚のコピー(出力画像)内で は、作像条件はほぼ一定であると見なせるため、特定の 付着量と光沢度の関係が判れば、他の付着量と光沢度の 関係も知ることができるからである。それ故、特に光沢 が変動しやすい高付着量のパッチの光沢度で代表して差 し支えない。

【0092】光沢の影響は特に高濃度部で受けやすいた め、光沢度に対応した目標データは、高濃度部のみ記憶 するようにしてメモリ量の低減をしても良い。光沢度に 応じて調整目標値を変更することにより、画像入力装置 の読取値をそのまま用いて、階調補正データを算出・設 定して、付着量で評価した場合の階調特性が一定になる ように調整することができる。また、テストパターンの 濃度値(拡散反射光成分の検知データ)を光沢度に基づ いて補正するように説明したが、光沢度は、拡散反射光 成分と正反射光成分から一義的に求めることができるの で、直接的に光沢度に変換することなく、正反射光成分 に基づいてテストパターンの濃度値を補正するようにし てもよい。以上は、ある代表色の調整について説明した が、フルカラー画像形成装置のようにCyan、Mag enta, YellowおよびBlackなどの複数色 の色材を用いる場合は、必要に応じてそれぞれの色に対 応した、等色材量線データ、プリンタヶ特性目標値、拡 散反射光成分と正反射光成分の検知データから光沢度を 求めるためのデータ等を用いることは言うまでもない。 [0093]

【発明の効果】請求項1の発明では、解析手段によるテストパターンの読み取りデータの解析結果に応じて画像処理条件を調整するので、光沢度の不安定な画像出力装置であっても、その階調特性を自動的に良好に調整することがでる。

【0094】請求項2の発明では、調整する画像処理条件が γ 補正データであり、解析手段は、複数の検知手段によるテストパターンの画像読取値から、解析対象のテストパターンを形成する色材料を定量するようにしたので、色材の付着量からみた階調特性を良好に調整することができる。請求項3の発明では、調整する画像処理条件が γ 補正データであり、解析手段は、複数の検知手段によるテストパターンの画像読取値から、 γ 補正の調整目標値を可変にしたので、色材の付着量からみた階調特件を良好に調整することができる。

【0095】請求項4の発明では、複数の反射光の検知装置は2つであり、主として原稿からの正反射光を検知する装置と、原稿から概ね垂直方向に反射する拡散反射光を検知する装置とから構成したので、光沢度を高精度に検知し、階調特性をより良好に調整することができる。請求項5の発明では、請求項1~4の発明において、正反射光の検知手段は、概ね垂直方向の検知手段より低解像度のセンサを用いるようにしたので、低コストな光沢度検知装置を具備した画像形成装置を提供することができる。

【0096】請求項6の発明では、正反射光の検知手段は、等倍光学系のセンサを用いるようにしたので、より低コストな光沢度検知装置を具備した画像形成装置を提供することができる。請求項7の発明では、正反射光の検知装置は、単色用のセンサを用いるようにしたので、更に低コストな光沢度検知装置を具備した画像形成装置を提供することができる。

【図面の簡単な説明】

【図1】モジュールを組み合わせて各種システムを構成 したところ示す図である。

【図2】画像形システムの機能ブロックと信号の流れを 表すフローチャートである。

【図3】図2の画像形成システムの機構部を表す図である

【図4】スキャナモジュールの制御のタイミング図である.

【図5】スキャナモジュールの制御のフローチャートで ある。

【図6】 プリンタモジュールの制御のフローチャートである。

【図7】システム制御モジュールの制御のフローチャートである。

【図8】画像形成システムのタイミング図である。

【図9】画像処理部のブロック図である。

【図10】テストパターン発生部を含むブロック図である。

【図11】像域トパターン発生部を含むブロック図である。

【図12】テストパターン発生回路を示すブロック図である。

【図13】テストパターン発生回路を示すブロック図で ある

【図14】図12で示したテストパターン回路によって、テストパターン信号を出力する様子を表した図である。

【図15】プリンタ γ 補正の原理を説明する図である。

【図16】 プリンタ 7 特性の現状値を検知するためのテストパターンの例を示した図である。

【図17】カラー機用のテストバターン出力の例を示した図である。

【図18】左上コーナー基準のテストパターンを出力する際に、種々のサイズの記録紙を用いた場合の様子を示した図である。

【図19】基準位置を中央・上部に設定した場合のテストパターンの形成の様子を表した図である。

【図20】原稿読取装置部と原稿基準位置マーカーの関係を示した図である。

【図21】原稿読取装置部と原稿基準位置マーカーの関係を示した図である。

【図22】テストパターンと読取装置によって読み取られ、メモリに取り込まれる領域を示した図である。

【図23】テストパターンと読取装置によって読み取られ、メモリに取り込まれる領域を示した図である。

【図24】テストパターンと読取装置によって読み取られ、メモリに取り込まれる領域を示した図である。

【図25】テストパターンと読取装置によって読み取られ、メモリに取り込まれる領域を示した図である。

【図26】テストパターンと読取装置によって読み取られ、メモリに取り込まれる領域を示した図である。

【図27】必要な読取回数を減らし、処理時間の短縮をするためのパターンを示した図である。

【図28】必要な読取回数を減らし、処理時間の短縮を するためのパターンを示した図である。

【図29】2次元的に分布するパッチで1組の階調パターンを構成した例を示す図である。

【図30】1パターンの領域全てを1個の矩形領域として読み取るように構成したテストパターンおよびデータ取り込みの構成例を示す図である。

【図31】1パターンの領域全てを1個の矩形領域として読み取るように構成したテストパターンおよびデータ取り込みの構成例を示す図である。

【図32】1枚のテストパターン出力内に同じパターン を複数箇所に形成したテストパターンおよびデータ取り 込みの構成例を示す図である。

【図33】読取装置で用いられる同期信号と画像信号D ATAのタイミングを示したタイムチャートである。

【図34】テストパターン読取時にフィールドメモリに 入力される制御信号のタイムチャートである。

【図35】テストパターン読取時にフィールドメモリに 入力される制御信号のタイムチャートである。 【図36】GCLK、LSYNC、LGATEおよびLSYNC、FSYNC、FGATEの信号の関係を示す タイムチャートである。

【図37】LGATEおよびFGATE信号を発生する ための回路である。

【図38】図37で示した回路の中間信号(s 1)、 (s 2)およびXGATE信号のタイムチャートであ る.

【図39】テストパターン読取時のフィールドメモリへ の信号の接続を示した図である。

【図40】色補正回路の例を示した図である。

【図41】テストパターン領域信号に同期して係数を選択可能なレジスタの回路を示した図である。

【図42】光沢度とジオメオリ0/45°の濃度計による測定値の関係を示した図である。

【図43】サンプルに対する照明と反射光のセンサの関係を示す図である。

【図44】光沢度の違いによる、検知方向と反射率の関係を示す図である。

【図45】本実施の形態で用いる拡散反射光成分と正反射光成分を検知する機能を有する画像入力装置の光学系の例を示す図である。

【図46】等倍のライン状イメージセンサと等倍用のレンズ(セルホックレンズアレイ)でセンサ2を構成した

例を示す図である。

【図47】センサとして光センサと、検知すべきパッチ の正反射光成分を選択するための遮光板(筒状の絞り) とから構成した例を示す図である。

【図48】等倍のライン状イメージセンサと等倍用のレンズ(セルホックレンズアレイ)でセンサ2を構成した例を示す図である。

【図49】センサとして光センサと、検知すべきパッチ の正反射光成分を選択するための遮光板(筒状の絞り) とから構成した例を示す図である。

【図50】等色材量の時、光沢度と濃度の関係を示した 図である。

【図51】光沢度の違いによるプリンタヶ特性の調整目 標値を示す図である。

【符号の説明】

200 スキャナモジュール

200rd 画像読み取り部

230 スキャナ制御手段

300 基本画像処理手段

400 プリンタモジュール

400im 画像形成部

430 プリンタ制御手段

600 システムモジュール

630 システム制御手段

【図1】

【図11】

【図2】

【図3】

【図5】

【図6】

【図8】

【図9】

【図10】

【図16】

【図13】

【図17】

【図12】

【図14】

【図18】

【図19】

【図22】

【図23】

【図24】

【図25】

【図35】

【図38】

【図39】

【図43】

la :データ入力

DÕa :データ出力

WCE :ライトクロック入力

配 :ライトイネーブル入力

TE :リードイネーブル人刀 TE :リードイネーブル入力

DE :アウトプットイネーブル入力

WRST:ライトリセット入力

RRST:リードリセット入力

フロントページの続き

 (51) Int. Cl. 6
 識別記号
 F I

 H O 4 N
 1/60
 H O 4 N
 1/40
 D

 1/46
 Z