Calcul différentiel

18 septembre 2014

Table des matières

1 Calcul variationnel 2

Calcul variationnel 1

Ici: recherche d'optimum non plus dans un espace de réels, mais dans un espace de fonctions. On cherche y^* tel que:

$$I(y^*) = \min_{y \in \mathcal{F}} I(y)$$

Considérons $y:[x_1,x_2]\to\mathbb{R}$ et $L:[x_1,x_2]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$. Parmis tous les y, dérivable et tel que $y(x_1)=y_1$ et $y(x_2) = y_2$, trouver la courbe minimisant :

$$I(y) = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$$

$Th\'eor\`eme: Euler-Lagrange$

Si $y \in C^1[x_1, x_2]$ minimise $\int_{x_1}^{x_2} L(x, y, y') dx$ parmi toutes les fonctions telles que $y(x_1) = y_1$ et $y(x_2) = y_2$ où $L \in C^2$, alors y satisfait : $\frac{\partial L}{\partial x_1} - \frac{d}{\partial x_2} \frac{\partial L}{\partial x_3} = 0$

$$\frac{\partial L}{\partial y} - \frac{d}{dx} \frac{\partial L}{\partial y'} = 0$$

Idée de la démonstration : On prend y minimisant I, et on pose $Y = y + \varepsilon \eta$, avec $\eta(x_1) = \eta(x_2) = 0$, puis on reprend I dépendant de ε . I est minimal pour $\varepsilon = 0$, on dérive, on trouve ce qu'il faut!

g est une intégrale première de l'équation d'Euler-Lagrange si g est contante le long des solutions de l'équation

1. Si
$$L = L(x, y')$$
, alors $\frac{\partial L}{\partial y'} = C$

1. Si
$$L = L(x, y')$$
, alors $\frac{\partial L}{\partial y'} = C$
2. Si $L = L(y, y')$ alors $L - y' \frac{\partial L}{\partial y} = C$.