Симметрийные соображения применительно к шестиугольной решётке

Anikin Evgeny, 121

21 августа 2016 г.

Пусть решётка построена из шестиугольников или из треугольников так, что она обладает симметрией относительно вращений на $\pi n/3$. Будем также считать, что начало координат находится в центре шестиугольной ячейки, система T-инвариантна и в ней выбран базис волновых функций ψ_p^s , таких что

$$\psi_{-p}^{s} = (\psi_{p}^{s})^{*} \psi_{p}^{s}(-x) = \psi_{-p}^{s}(x)$$
 (1)

Вращения действуют на состояния, разумеется, как унитарные операторы. Вращения инвариантны относительно обращения времени, а также самих вращений (в том числе вращения на π). Из этого следует, что матрица Λ поворота на $\pi n/3$ вещественна. В самом деле, из инвариантности относительно вращений на π следует, что

$$\langle \psi_{p} | \Lambda | \psi_{p'} \rangle = \langle \psi_{-p} | \Lambda | \psi_{-p'} \rangle,$$

а из T-инвариантности —

$$\langle \psi_p | \Lambda | \psi_{p'} \rangle = \langle \psi_p^* | \Lambda | \psi_p'^* \rangle^*$$

Используя соотношение $\psi_{-p} = \psi_p^*$, получим

$$\langle \psi_p | \Lambda | \psi_{p'} \rangle = \langle \psi_p | \Lambda | \psi_{p'} \rangle^*, \tag{2}$$

что и требовалось.

Таким образом, матрицы Λ образуют вещественное представление группы шестиугольника на пространстве состояний.