Harold's Calculus Notes Cheat Sheet

26 April 2016

AP Calculus

Limits **Definition of Limit** Let *f* be a function defined on an open f(x)interval containing c and let L be a real number. The statement: $\lim_{x \to a} f(x) = L$ (2) then f(x) is within this interval. means that for each $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$ Tip: Direct substitution: Plug in f(a) and see if (1) If x is within this interval, it provides a legal answer. If so then L =go to (2). f(a). $\lim_{x \to a^{-}} f(x) = L$ $\lim_{x \to a^{+}} f(x) = L$ The Existence of a Limit The limit of f(x) as x approaches a is L if and only if: Prove that $f(x) = x^2 - 1$ is a continuous function. |f(x) - f(c)|= $|(x^2 - 1) - (c^2 - 1)|$ **Definition of Continuity** $=|x^2-1-c^2+1|$ $= |x^2 - c^2|$ A function **f is continuous** at c if for = |(x+c)(x-c)|every $\varepsilon > 0$ there exists a $\delta > 0$ such that = |(x+c)| |(x-c)| $|x-c| < \delta$ and $|f(x)-f(c)| < \varepsilon$. Since $|(x+c)| \le |2c|$ $|f(x) - f(c)| \le |2c||(x - c)| < \varepsilon$ Tip: Rearrange |f(x) - f(c)| to have So given $\varepsilon > 0$, we can **choose** $\delta = \left| \frac{1}{2c} \right| \varepsilon > 0$ in the |(x-c)| as a factor. Since $|x-c| < \delta$ we can find an equation that relates both δ Definition of Continuity. So substituting the chosen δ and ε together. for |(x-c)| we get: $|f(x) - f(c)| \le |2c| \left(\left| \frac{1}{2c} \right| \varepsilon \right) = \varepsilon$ Since both conditions are met, f(x) is continuous. $\lim_{x \to 0} \frac{\sin x}{x} = 1$

Two Special Trig Limits

 $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$

Derivatives	(See Larson's 1-pager of common derivatives)	
Definition of a Derivative of a Function Slope Function	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $f'(x), f^{(n)}(x), \frac{dy}{dx}, y', \frac{d}{dx}[f(x)], D_x[y]$ $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$	
Notation for Derivatives	$f'(x), f^{(n)}(x), \frac{dy}{dx}, y', \frac{d}{dx}[f(x)], D_x[y]$	
0. The Chain Rule	$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$ $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ $\frac{d}{dx}[cf(x)] = cf'(x)$	
1. The Constant Multiple Rule	$\frac{d}{dx}[cf(x)] = cf'(x)$	
2. The Sum and Difference Rule	$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$ $\frac{d}{dx}[fg] = fg' + gf'$ $\frac{d}{dx}[f] = gf' - fg'$	
3. The Product Rule	$\frac{d}{dx}[fg] = fg' + gf'$	
4. The Quotient Rule	$\frac{d}{dx} \left[\frac{f}{g} \right] = \frac{gf' - fg'}{g^2}$ $\frac{d}{dx} [c] = 0$ $\frac{d}{dx} [x^n] = nx^{n-1}$	
5. The Constant Rule	$\frac{d}{dx}[c] = 0$	
6a. The Power Rule	$\frac{d}{dx}[x^n] = nx^{n-1}$	
6b. The General Power Rule	$\frac{d}{dx}[u^n] = nu^{n-1} u' \text{ where } u = u(x)$	
7. The Power Rule for x	$\frac{d}{dx}[u^n] = nu^{n-1} u' \text{ where } u = u(x)$ $\frac{d}{dx}[x] = 1 \text{ (think } x = x^1 \text{ and } x^0 = 1)$	
8. Absolute Value		
9. Natural Logorithm	$\frac{d}{dx}[x] = \frac{x}{ x }$ $\frac{d}{dx}[\ln x] = \frac{1}{x}$	
10. Natural Exponential	$\frac{d}{dx}[e^x] = e^x$	
11. Logorithm	$\frac{d}{dx}[\log_a x] = \frac{1}{(\ln a) x}$	
12. Exponential	$\frac{d}{dx}[a^x] = (\ln a) a^x$	
13. Sine	$\frac{d}{dx}[\sin(x)] = \cos(x)$	
14. Cosine	$\frac{d}{dx}[\cos(x)] = -\sin(x)$	
15. Tangent	$\frac{d}{dx}[tan(x)] = sec^2(x)$	
16. Cotangent	$\frac{d}{dx}[cot(x)] = -csc^2(x)$	
17. Secant	$\frac{d}{dx}[a^x] = (\ln a) a^x$ $\frac{d}{dx}[sin(x)] = cos(x)$ $\frac{d}{dx}[cos(x)] = -sin(x)$ $\frac{d}{dx}[tan(x)] = sec^2(x)$ $\frac{d}{dx}[cot(x)] = -csc^2(x)$ $\frac{d}{dx}[sec(x)] = sec(x) tan(x)$	

Derivatives	(See Larson's 1-pager of common derivatives)	
18. Cosecant	$\frac{d}{dx}[csc(x)] = -csc(x)\cot(x)$	
19. Arcsine	$\frac{d}{dx}[\sin^{-1}(x)] = \frac{1}{\sqrt{1-x^2}}$	
20. Arccosine	$\frac{d}{dx}[\cos^{-1}(x)] = \frac{-1}{\sqrt{1-x^2}}$	
21. Arctangent	$\frac{d}{dx}[\tan^{-1}(x)] = \frac{1}{1+x^2}$	
22. Arccotangent	$\frac{d}{dx}[\cot^{-1}(x)] = \frac{-1}{1+x^2}$	
23. Arcsecant	$\frac{d}{dx}[\csc(x)] = -\csc(x)\cot(x)$ $\frac{d}{dx}[\sin^{-1}(x)] = \frac{1}{\sqrt{1 - x^2}}$ $\frac{d}{dx}[\cos^{-1}(x)] = \frac{-1}{\sqrt{1 - x^2}}$ $\frac{d}{dx}[\tan^{-1}(x)] = \frac{1}{1 + x^2}$ $\frac{d}{dx}[\cot^{-1}(x)] = \frac{-1}{1 + x^2}$ $\frac{d}{dx}[\sec^{-1}(x)] = \frac{1}{ x \sqrt{x^2 - 1}}$ $\frac{d}{dx}[\csc^{-1}(x)] = \frac{-1}{ x \sqrt{x^2 - 1}}$	
24. Arccosecant	$\frac{d}{dx}[\csc^{-1}(x)] = \frac{-1}{ x \sqrt{x^2 - 1}}$	
25. Hyperbolic Sine	$\frac{d}{dx}[\sinh(x)] = \cosh(x)$	
26. Hyperbolic Cosine	$\frac{d}{dx}[cosh(x)] = sinh(x)$	
27. Hyperbolic Tangent	$\frac{d}{dx}[tanh(x)] = sech^2(x)$	
28. Hyperbolic Cotangent	$\frac{d}{dx}[\sinh(x)] = \cosh(x)$ $\frac{d}{dx}[\cosh(x)] = \sinh(x)$ $\frac{d}{dx}[\tanh(x)] = \operatorname{sech}^{2}(x)$ $\frac{d}{dx}[\coth(x)] = -\operatorname{csch}^{2}(x)$ $\frac{d}{dx}[\operatorname{sech}(x)] = -\operatorname{sech}(x) \tanh(x)$ $\frac{d}{dx}[\operatorname{csch}(x)] = -\operatorname{csch}(x) \coth(x)$ $\frac{d}{dx}[\sinh^{-1}(x)] = \frac{1}{-1}$	
29. Hyperbolic Secant	$\frac{d}{dx}[sech(x)] = -sech(x) tanh(x)$	
30. Hyperbolic Cosecant	$\frac{d}{dx}[csch(x)] = -csch(x)coth(x)$	
31. Hyperbolic Arcsine	$\frac{d}{dx}[\sinh^{-1}(x)] = \frac{1}{\sqrt{x^2 + 1}}$ $\frac{d}{dx}[\cosh^{-1}(x)] = \frac{1}{\sqrt{\frac{2}{x^2 + 1}}}$	
32. Hyperbolic Arccosine	$\frac{d}{dx}[\cosh^{-1}(x)] = \frac{1}{\sqrt{x^2 - 1}}$	
33. Hyperbolic Arctangent	$\frac{dx}{dx} \left[\tanh^{-1}(x) \right] = \frac{1}{1 - x^2}$ $\frac{d}{dx} \left[\coth^{-1}(x) \right] = \frac{1}{1 - x^2}$	
34. Hyperbolic Arccotangent	$\frac{d}{dx}[\coth^{-1}(x)] = \frac{1}{1 - x^2}$	
35. Hyperbolic Arcsecant	$\frac{d}{dx}[\operatorname{sech}^{-1}(x)] = \frac{-1}{x\sqrt{1-x^2}}$	
36. Hyperbolic Arccosecant	$\frac{d}{dx}[\tanh^{-1}(x)] = \frac{1}{1 - x^2}$ $\frac{d}{dx}[\coth^{-1}(x)] = \frac{1}{1 - x^2}$ $\frac{d}{dx}[\operatorname{sech}^{-1}(x)] = \frac{-1}{x\sqrt{1 - x^2}}$ $\frac{d}{dx}[\operatorname{csch}^{-1}(x)] = \frac{-1}{ x \sqrt{1 + x^2}}$ $s(t) = \frac{1}{2}at^2 + v_0t + s_0$	
Position Function	$s(t) = \frac{1}{2}gt^2 + v_0t + s_0$	
Velocity Function		
Acceleration Function	$v(t) = s'(t) = gt + v_0$ $a(t) = v'(t) = s''(t)$	
Jerk Function	$j(t) = a'(t) = v''(t) = s^{(3)}(t)$	

Applications of Differentiation		
Rolle's Theorem f is continuous on the closed interval [a,b], and f is differentiable on the open interval (a,b).	If $f(a) = f(b)$, then there exists at least one number c in (a,b) such that $f'(c) = 0$.	
Mean Value Theorem If f meets the conditions of Rolle's Theorem, then	$f'(c) = \frac{f(b) - f(a)}{b - a}$ $f(b) = f(a) + (b - a)f'(c)$ Find 'c'.	
L'Hôpital's Rule	Find 'c'. $If \lim_{x \to c} f(x) = \lim_{x \to c} \frac{P(x)}{Q(x)} = \begin{cases} \frac{0}{0}, \frac{\infty}{\infty}, 0 \bullet \infty, 1^{\infty}, 0^{0}, \infty^{0}, \infty - \infty \\ \frac{1}{0}, \frac{\infty}{\infty}, 0 \bullet \infty, 1^{\infty}, 0^{0}, \infty^{0}, \infty - \infty \end{cases}, but not \{0^{\infty}\},$ $then \lim_{x \to c} \frac{P(x)}{Q(x)} = \lim_{x \to c} \frac{P'(x)}{Q'(x)} = \lim_{x \to c} \frac{P''(x)}{Q''(x)} = \cdots$	
Graphing with Derivatives		
Test for Increasing and Decreasing Functions	 If f'(x) > 0, then f is increasing (slope up) If f'(x) < 0, then f is decreasing (slope down) If f'(x) = 0, then f is constant (zero slope) → 	
The First Derivative Test	 If f'(x) changes from - to + at c, then f has a relative minimum at (c, f(c)) If f'(x) changes from + to - at c, then f has a relative maximum at (c, f(c)) If f'(x), is + c + or - c -, then f(c) is neither 	
The Second Deriviative Test Let $f'(c)$ =0, and $f''(x)$ exists, then	1. If $f''(x) > 0$, then f has a relative minimum at $(c, f(c))$ 2. If $f''(x) < 0$, then f has a relative maximum at $(c, f(c))$ 3. If $f'(x) = 0$, then the test fails (See 1^{st} derivative test)	
Test for Concavity	1. If $f''(x) > 0$ for all x , then the graph is concave up \cup 2. If $f''(x) < 0$ for all x , then the graph is concave down \cap	
Points of Inflection Change in concavity	If $(c, f(c))$ is a point of inflection of f , then either 1. $f''(c) = 0$ or 2. f'' does not exist at $x = c$.	
Analyzing the Graph of a Function	(See Harold's Illegals and Graphing Rationals Cheat Sheet)	
x-Intercepts (Zeros or Roots)	f(x) = 0	
y-Intercept	f(0) = y	
Domain	Valid x values	
Range	Valid y values	
Continuity Vertical Asymptotes (VA)	No division by 0, no negative square roots or logs $x = \text{division by 0 or undefined}$	
Horizontal Asymptotes (HA)	$\lim_{x \to \infty^{-}} f(x) \to y \text{ and } \lim_{x \to \infty^{+}} f(x) \to y$	
, , ,	$\lim_{x \to \infty^{-}} f(x) \to \infty \text{ and } \lim_{x \to \infty^{+}} f(x) \to \infty$	
Infinite Limits at Infinity Differentiability		
Relative Extrema	Limit from both directions arrives at the same slope Create a table with <i>domains</i> , $f(x)$, $f'(x)$, and $f''(x)$	
Concavity	If $f''(x) \to +$, then cup up \bigcup If $f''(x) \to -$, then cup down \bigcap	
Points of Inflection	f''(x) = 0 (concavity changes)	
	<u>, , , , , , , , , , , , , , , , , , , </u>	

Approximating with Differentials		
Newton's Method Finds zeros of f , or finds c if $f(c) = 0$.	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ $y = mx + b$	
Tangent Line Approximations	y = mx + b $y = f'(c)(x - c) + f(c)$	
Function Approximations with Differentials	$f(x + \Delta x) \approx f(x) + dy = f(x) + f'(x) dx$	
Related Rates $\frac{dy}{dt} = ?$	Steps to solve: 1. Identify the known variables and rates of change. $\left(x = 15 \; m; y = 20 \; m; \; x' = 2 \frac{m}{s}; \; y' = ?\right)$ 2. Construct an equation relating these quantities. $\left(x^2 + y^2 = r^2\right)$ 3. Differentiate both sides of the equation. $\left(2xx' + 2yy' = 0\right)$ 4. Solve for the desired rate of change. $\left(y' = -\frac{x}{y} \; x'\right)$ 5. Substitute the known rates of change and quantities into the equation. $\left(y' = -\frac{15}{20} \bullet 2 = \frac{3}{2} \; \frac{m}{s}\right)$	

Integration	(See Harold's Fundamental Theorem of Calculus Cheat Sheet)	
Basic Integration Rules Integration is the "inverse" of differentiation, and vice versa.	$\int f'(x) dx = f(x) + C$ $\frac{d}{dx} \int f(x) dx = f(x)$	
f(x) = 0	$\int 0 dx = C$	
$f(x) = k = kx^0$	$\int k dx = kx + C$	
The Constant Multiple Rule	$\int k f(x) dx = k \int f(x) dx$	
The Sum and Difference Rule	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$	
The Power Rule $f(x) = kx^n$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$ $\int x^n dx = \frac{x^{n+1}}{n+1} + C, where n \neq -1$ $If n = -1, then \int x^{-1} dx = \ln x + C$	
The General Power Rule	If $n = -1$, then $\int x^{-1} dx = \ln x + C$ If $u = g(x)$, and $u' = \frac{d}{dx}g(x)$ then $\int u^n u' dx = \frac{u^{n+1}}{n+1} + C$, where $n \neq -1$	
Reimann Sum	$\sum f(c_i) \Delta x_i, \text{where } x_{i-1} \le c_i \le x_i$	
Definition of a Definite Integral Area under curve	$\ \Delta\ = \Delta x = \frac{b-a}{n}$ $\lim_{\ \Delta\ \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i = \int_a^b f(x) dx$ $\int_a^b f(x) dx = -\int_b^a f(x) dx$ $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$	
Swap Bounds	$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$	
Additive Interval Property	$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$	
The Fundamental Theorem of Calculus	$\int_{a}^{b} f(x) dx = F(b) - F(a)$	
The Second Fundamental Theorem of Calculus	$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$ $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt = f(g(x))g'(x)$ $\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) dt = f(h(x))h'(x) - f(g(x))g'(x)$	
Mean Value Theorem for Integrals	$\int_{a}^{b} f(x) dx = f(c)(b-a) \text{ Find 'c'}.$	
The Average Value for a Function	$\int_{a}^{b} f(x) dx = f(c)(b - a) \text{ Find 'c'}.$ $\frac{1}{b - a} \int_{a}^{b} f(x) dx$	

Integration Methods	
1. Memorized	See Larson's 1-pager of common integrals
1. Memorizeu	$\int f(g(x))g'(x)dx = F(g(x)) + C$
2. U-Substitution	Set $u = g(x)$, then $du = g'(x) dx$
	$\int f(u) \ du = F(u) + C$
	$u = \underline{\qquad} du = \underline{\qquad} dx$
	$u = \underline{\qquad} du = \underline{\qquad} dx$ $\int u dv = uv - \int v du$
	$\begin{array}{ccc} u = \underline{\hspace{1cm}} & v = \underline{\hspace{1cm}} \\ du = \underline{\hspace{1cm}} & dv = \underline{\hspace{1cm}} \end{array}$
	Didd a distant
2 Integration by Posts	Pick 'u' using the LIATED Rule: L – Logarithmic : $\ln x$, $\log_b x$, etc.
3. Integration by Parts	I – Inverse Trig. : $\tan^{-1} x$, $\sec^{-1} x$, etc .
	A – Algebraic: $x^2, 3x^{60}, etc$.
	T - Trigonometric: $\sin x$, $\tan x$, etc.
	E – Exponential : e^x , 19^x , etc.
	D - Derivative of: $\frac{dy}{dx}$
	$\int \frac{P(x)}{Q(x)} dx$
	where $P(x)$ and $Q(x)$ are polynomials
4. Partial Fractions	
	Case 1: If degree of $P(x) \ge Q(x)$ then do long division first
	Case 2: If degree of $P(x) < Q(x)$
	then do partial fraction expansion
	$\int \sqrt{a^2 - x^2} \ dx$
5a. Trig Substitution for $\sqrt{a^2 - x^2}$	Substitution: $x = a \sin \theta$
Sa. Trig substitution for $\forall \alpha = \lambda$	Identity: $1 - \sin^2 \theta = \cos^2 \theta$
	$\int \sqrt{x^2 - a^2} \ dx$
5b. Trig Substitution for $\sqrt{x^2 - a^2}$	Substutution: $x = a \sec \theta$
35. Trig Substitution for $\sqrt{\lambda} = u$	Identity: $\sec^2 \theta - 1 = \tan^2 \theta$
	$\int \sqrt{x^2 + a^2} \ dx$
5c. Trig Substitution for $\sqrt{x^2 + a^2}$	Substutution: $x = a \tan \theta$
	Identity: $tan^2 \theta + 1 = sec^2 \theta$
6. Table of Integrals	CRC Standard Mathematical Tables book
7. Computer Algebra Systems (CAS)	TI-Nspire CX CAS Graphing Calculator
	TI – Nspire CAS iPad app Riemann Sum, Midpoint Rule, Trapezoidal Rule, Simpson's
8. Numerical Methods	Rule, TI-84
9. WolframAlpha	Google of mathematics. Shows steps. Free.
2. Womannipha	<u>www.wolframalpha.com</u>

Partial Fractions	(See Harold's Partial Fractions Cheat Sheet)	
Condition	$f(x) = \frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomials and degree of $P(x) < Q(x)$	
	If degree of $P(x) \ge Q(x)$ then do long division first $P(x)$	
Example Expansion	$= \frac{A}{(ax+b)(cx+d)^2(ex^2+fx+g)} = \frac{A}{(ax+b)} + \frac{B}{(cx+d)} + \frac{C}{(cx+d)^2} + \frac{Dx+E}{(ex^2+fx+g)}$	
Typical Solution	$\int \frac{a}{x+b} dx = a \ln x+b + C$	

Sequences & Series	(See Harold's Series Cheat Sheet)	
	$\lim_{n\to\infty} a_n = L \text{(Limit)}$	
Sequence	Example: $(a_n, a_{n+1}, a_{n+2},)$	
	$a(1-r^n)$ a	
	$S = \lim_{n \to \infty} \frac{a(1 - r^n)}{1 - r} = \frac{a}{1 - r}$	
Geometric Series		
Geometric Series	only if $ r < 1$	
	where r is the radius of convergence	
	and $(-r,r)$ is the interval of convergence	

Convergence Tests	(See Harold's Series Convergenc	ce Tests Cheat Sheet)
Series Convergence Tests	1. Divergence or n^{th} Term	6. Ratio
	2. Geometric Series	7. Root
	3. p-Series	8. Direct Comparison
	4. Alternating Series	9. Limit Comparison
	5. Integral	10. Telescoping

Taylor Series	(See Harold's Taylor Series Cheat Sheet)	
	$f(x) = P_n(x) + R_n(x)$	
Taylor Series	$= \sum_{n=0}^{+\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n + \frac{f^{(n+1)}(x^*)}{(n+1)!} (x-c)^{n+1}$	
	where $x \le x^* \le c$ (worst case scenario x^*)	
	and $\lim_{x \to +\infty} R_n(x) = 0$	