UFRGS - INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2024/2 Prova da área IIb

1	2	3	4	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- $\bullet~$ Seja sucinto, completo e claro.
- $\bullet~$ Justifique to do procedimento usado.
- $\bullet\,$ Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.

FIOPI	ropriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.							
1.	Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$						
2.	Transformada da derivada	Se $\lim_{t\to\pm\infty}f(t)=0$, então $\mathcal{F}\left\{f'(t)\right\}=iw\mathcal{F}\left\{f(t)\right\}$						
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$						
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$						
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$						
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$						
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$						
7.	Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{ onde } (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$						
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$						
8.	Conjugação	$\overline{F(w)} = F(-w)$						
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$						
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$						
11.	Mudança de escala	$\mathcal{F}\left\{f(at) ight\} = rac{1}{ a }F\left(rac{w}{a} ight), \qquad a eq 0$						
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$						
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$						

Séries e transformadas	de Fourier:	
	Forma trigonométrica	Forma exponencial
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(w_n t) + b_n \sin(w_n t) \right]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$
	onde $w_n = \frac{2\pi n}{T}, T$ é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$	
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$	
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$	
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real},$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$
	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$

Integrais definidas

111	tegrais definidas		
1.	$\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2.	$\int_0^\infty e^{-ax} \operatorname{sen}(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3.	$\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{- m a} \qquad (a > 0)$	4.	$\int_0^\infty \frac{x \sin(mx)}{a^2 + x^2} dx = \begin{cases} \frac{\pi}{2} e^{-ma}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2} e^{ma}, & m < 0 \end{cases}$
5.	$\int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ n > 0) \\ 0, & n > m \end{cases}$	6.	$\int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2}, & m < 0 \end{cases}$
7.	$\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8.	$\int_0^\infty e^{-a^2 x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9.	$\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10.	$\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$
			$=\frac{m(a^2+m^2-n^2)}{(a^2+(m-n)^2)(a^2+(m+n)^2)} (a>0)$
11.	$\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12.	$\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13.	$\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14.	$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15.	$\int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases}$	16.	$\int_0^\infty \frac{\operatorname{sen}(mx)\operatorname{sen}(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases}$
17.	$\int_0^\infty x^2 e^{-ax} \sin(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18.	$\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19.	$\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20.	$\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21.	$\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma)e^{-ma} \begin{array}{l} (a > 0, \\ m \ge 0) \end{array}$	22.	$\int_0^\infty x e^{-a^2 x^2} \sin(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}} (a > 0)$

Identidades Trigonométricas:

$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$	$\operatorname{sen}(x)\operatorname{sen}(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$	$sen(x)cos(y) = \frac{sen(x+y) + sen(x-y)}{2}$

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó #	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá #	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Integrais:

$$f(t) = 8\cos^2(t) + 16\sin^3(2t)$$

Responda os itens abaixo.

a) (1.0 ponto) Considere a série de Fourier trigonométrica dada por

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(w_n t) + b_n \sin(w_n t).$$

Preencha as tabelas abaixo com os coeficientes de Fourier a_n e b_n e com o período T e a frequência angular fundamental w_1 .

n	0	1	2	3
a_n				
b_n				
T				
w_1				

b) (1.0 ponto) Considere a série de Fourier exponencial dada por

$$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t}.$$

Preencha a tabela abaixo com os coeficientes de Fourier C_n , com o módulo $|C_n|$ e com a fase ϕ_n .

n	-3	-2	-1	0	1	2	3
C_n							
$ C_n $							
ϕ_n							

c) (0.5 ponto) Esboce os diagramas de espectro de magnitudes e fases nos espaços indicados abaixo. Complete as escalas em cada eixo do gráfico.

Solução:

a)

$$\begin{split} f(t) &= 8\cos^2(t) + 16\sin^3(2t) \\ &= 8\left(\frac{e^{it} + e^{-it}}{2}\right)^2 + 16\left(\frac{e^{2it} - e^{-2it}}{2i}\right)^3 \\ &= 8\left(\frac{e^{2it} + 2e^{it}e^{-it} + e^{-2it}}{4}\right) + 16\left(\frac{e^{6it} - 3e^{4it}e^{-2it} + 3e^{2it}e^{-4it} - e^{-6it}}{8i^3}\right) \\ &= 8\left(\frac{2 + e^{2it} + e^{-2it}}{4}\right) + 16\left(\frac{e^{6it} - e^{-6it} - 3e^{2it} + 3e^{-2it}}{8i}\right) \\ &= 4 + 4\left(\frac{e^{2it} + e^{-2it}}{2}\right) - 4\left(\frac{e^{6it} - e^{-6it}}{2i}\right) + 12\left(\frac{e^{2it} - e^{-2it}}{2i}\right) \\ &= 4 + 4\cos(2t) + 12\sin(2t) - 4\sin(6t) \end{split}$$

n	0	1	2	3
a_n	8	4	0	0
b_n	0	12	0	-4
T	π			
w_1	2			

b) Usamos a expressão $C_n = \frac{a_n - ib_n}{2}$ para $n \ge 0$ e $C_{-n} = \overline{C_n}$.

n	-3	-2	-1	0	1	2	3
C_n	-2i	0	2 + 6i	4	2-6i	0	2i
$ C_n $	2	0	$2\sqrt{10}$	4	$2\sqrt{10}$	0	2
ϕ_n	$-\frac{\pi}{2}$	0	arctan(3)	0	- arctan(3)	0	$\frac{\pi}{2}$

• Questão 2 (3.0 pontos) O gráfico abaixo apresenta a magnitude da transformada de Fourier da função f(t).

- a) (0.6) É possível calcular f(t) usando o gráfico acima? Justifique sua resposta.
- b) (0.6) Trace o diagrama de magnitudes da transformada de $g(t) = f(t)\cos(3000t)$.
- c) (0.6) Trace o diagrama de magnitudes da transformada de $g(t) = f\left(\frac{t}{2}\right)$.
- d) (0.6) É possível traçar o diagrama de magnitudes da transformada de $g(t) = f(t)\cos(1000t)$? Justifique sua resposta
- e) (0.6) Marque a resposta que pode ser deduzida a partir do diagrama de magnitudes:
 - () A função f(t) é periódica.
 - () A função f(t) é nula para $|t| \ge 2000$.
 - $() \int_{-\infty}^{\infty} f(t)dt = 1$
 - $\left(\right) \left| \int_{-\infty}^{\infty} f(t)dt \right| = 1$
 - () nenhuma das respostas anteriores.

Solução:

- a) Para calcular a função f(t), precisamos ter a transformada da f(t), ou seja, F(w). Mas o gráfico só apresenta o módulo |F(w)|, faltando a fase. Portanto, não é possível calcular f(t).
- b) Usando o propriedade da modulação, temos $G(w) = \frac{F(w+3000) + F(w-3000)}{2}$. Como não há sobreposição espectral, podemos calcular o módulo da forma $|G(w)| = \frac{|F(w+3000)| + |F(w-3000)|}{2}$.

c) Usando o propriedade da mudança de escala, temos G(w)=2F(2w). Portanto, |G(w)|=2|F(2w)|.

- d) Usando o propriedade da modulação, temos $G(w) = \frac{F(w+1000) + F(w-1000)}{2}$. Como há sobreposição espectral, não conseguimos calcular o módulo |G(w)|, pois quando temos dois números complexos não nulos, vale a desigualdade triangular $G(w) \leq \frac{|F(w+1000)| + |F(w-1000)|}{2}$, sendo que a igualdade sempre é válida quando um dos números complexos da soma é zero, ou seja, quando não há sobreposição espectral (item b)). Portanto, não é possível traçar o diagrama de magnitudes de $g(t) = f(t)\cos(1000t)$.
- e) Uma função f(t) é periódica quando o espectro é discreto, o que não é o caso. Também,

$$f(t) = \int_{-\infty}^{\infty} F(w) e^{iwt} dw = \int_{-2000}^{2000} e^{iwt} dw = 2 \int_{0}^{2000} \cos(wt) dw = \frac{\sin(2000t)}{t}$$

não é nula para $|t| \ge 2000$. Temos que:

$$\int_{-\infty}^{\infty} f(t)dt = \int_{-\infty}^{\infty} f(t)e^{i\cdot 0\cdot t}dt = F(0).$$

No gráfico, não temos F(0), mas temos

$$|F(0)| = \left| \int_{-\infty}^{\infty} f(t)dt \right| = 1.$$

• Questão 3 (2.0 pontos) Calcule a série de Fourier da função 2π -periódica f(t) dada por

$$f(t) = \begin{cases} sen(t), & -\frac{\pi}{2} < t \le \frac{\pi}{2} \\ 0, & \frac{\pi}{2} < t \le \frac{3\pi}{2} \end{cases}$$

$$f(t+2\pi) = f(t), t \in \mathbb{R}.$$

Solução:

$$f(t) = \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos(w_n t) + b_n \sin(w_n t),$$

onde $w_n = \frac{2\pi}{2\pi}n = n$. Os coeficientes a_n , n = 0, 1, 2, ..., são todos zero, pois a função é ímpar. Então, vamos calcular os coeficientes b_n :

$$b_{n} = \frac{2}{2\pi} \int_{-\pi}^{\pi} f(t) \sin(w_{n}t) dt$$

$$= \frac{4}{2\pi} \int_{0}^{\pi} f(t) \sin(w_{n}t) dt$$

$$= \frac{2}{\pi} \int_{0}^{\pi/2} \sin(t) \sin(nt) dt$$

$$= \frac{2}{\pi} \int_{0}^{\pi/2} \frac{\cos(t - nt) - \cos(t + nt)}{2} dt$$

$$= \frac{1}{\pi} \left[\frac{\sin(t(1 - n))}{1 - n} - \frac{\sin(t(1 + n))}{1 + n} \right]_{0}^{\pi/2}$$

$$= \frac{1}{\pi} \left(\frac{\sin(\frac{\pi}{2}(1 - n))}{1 - n} - \frac{\sin(\frac{\pi}{2}(1 + n))}{1 + n} \right)$$

$$= \frac{1}{\pi} \left(\frac{\cos(\frac{\pi n}{2})}{1 - n} - \frac{\cos(\frac{\pi n}{2})}{1 + n} \right)$$

$$= \frac{\cos(\frac{\pi n}{2})}{\pi} \left(\frac{1}{1 - n} - \frac{1}{1 + n} \right)$$

$$= \frac{2n \cos(\frac{\pi n}{2})}{\pi(1 - n^{2})}$$

$$= \begin{cases} 0, & \text{se } n \text{ impar} \\ \frac{2n(-1)^{\frac{n}{2}}}{\pi(1 - n^{2})}, & \text{se } n \text{ par} \end{cases}$$

• Questão 4 (2.5 pontos) Considere a função

$$f(t) = \begin{cases} t^2 e^{-t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

Responda o que se pede.

- a) (1.0 ponto) Use a definição da transformada de Fourier calcular $F(w) = \mathcal{F}\{f(t)\}$.
- b) (0.25 ponto) Use a definição da transformada inversa de Fourier calcular $g(t) = \mathcal{F}^{-1}\{2\pi\delta(w)\}$.
- c) (0.5 ponto) Calcule a função $h(t) = \mathcal{F}^{-1}\{F(w)e^{-2iw}\}$
- d) (0.75 ponto) Calcule a função $p(t) = \mathcal{F}^{-1}\{2\pi\delta(w)F(w)\}$

Solução

a)

$$\begin{split} F(w) &= \int_{-\infty}^{\infty} f(t)e^{-iwt}dt \\ &= \int_{0}^{\infty} t^2e^{-t}e^{-iwt}dt \\ &= \int_{0}^{\infty} t^2e^{-t}\cos(wt)dt - i\int_{0}^{\infty} t^2e^{-t}\sin(wt)dt \\ &= \frac{2(1-3w^2)}{(1+w^2)^3} - i\frac{2w(3-w^2)}{(1+w^2)^3}, \end{split}$$

onde foram usadas as propriedades 17 e 18.

b)

$$g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(w) e^{iwt} dw$$
$$= e^{0} = 1.$$

c)

$$\begin{array}{rcl} h(t) & = & \mathcal{F}^{-1}\{F(w)e^{-2iw}\}\\ & = & f(t-2)\\ \\ & = & \left\{ \begin{array}{rcl} (t-2)^2e^{-(t-2)}, & (t-2) \geq 0\\ 0, & (t-2) < 0 \end{array} \right.\\ \\ & = & \left\{ \begin{array}{rcl} (t-2)^2e^{-(t-2)}, & t \geq 2\\ 0, & t < 2 \end{array} \right. \end{array}$$

d)

$$p(t) = \mathcal{F}^{-1}\{2\pi\delta(w)F(w)\}\$$

$$= 1 * f(t)$$

$$= \int_{-\infty}^{\infty} f(t)dt$$

$$= \int_{0}^{\infty} t^{2}e^{-t}dt$$

$$= \left[-t^{2}e^{-t}\right]_{0}^{\infty} - \int_{0}^{\infty} -2te^{-t}dt$$

$$= 2\int_{0}^{\infty} te^{-t}dt$$

$$= 2\left(\left[-te^{-t}\right]_{0}^{\infty} - \int_{0}^{\infty} -e^{-t}dt\right)$$

$$= 2\int_{0}^{\infty} e^{-t}dt$$

$$= 2\left[-e^{-t}\right]_{0}^{\infty}$$

$$= 2.$$

Alternativamente, pode-se fazer usando a definição

$$\begin{split} p(t) &= \mathcal{F}^{-1}\{2\pi\delta(w)F(w)\} \\ &= \frac{1}{2\pi}\int_{-\infty}^{\infty}2\pi\delta(w)F(w)e^{iwt}dw \\ &= F(0) \\ &= \frac{2(1-3\cdot 0^2)}{(1+0^2)^3} - i\frac{2\cdot 0(3-0^2)}{(1+0^2)^3} \\ &= 2. \end{split}$$