

Análisis y Procesamiento de imágenes multiespectrales con Python

Expositor: Ing. Nino Bravo Morales

Investigador del Proyecto Agricultura de Precisión Celular: +51 995664488 Correo: nino@geomatica.pe

Es una plataforma de desarrollo colaborativo para alojar proyectos (en la nube)

git

software de control de versiones

Python 3.9.11

https://www.python.org/downloads/release/python-3911/

Actualizar pip

pip install pip==22.3.1
pip install pip --user

Encuentre, instale y publique paquetes de Python

https://pypi.org/

Instalación de paquetes

La herramienta oficial (y más usada) para instalar paquetes Python es pip.

Instala paquetes del Python Package Index (PyPi)

Ejemplo:

√ pip install pandas

Instalación paquetes Python (PyPi)

pip install pandas

pip install rasterio

pip install geopandas

pip install jupyter notebook

pip install jupyterlab

pip install --upgrade jupyterlab

Instalación paquetes versión prueba

https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal

Las ruedas binarias son creadas por *Christoph Gohlke* y están disponibles en su sitio web.

GDAL: the Geospatial Data Abstraction Library is a translator library for raster geospatial data formats.

This distribution includes a complete GDAL installation. Do not use together with OSGeo4W, gdalwin32, or GISInternals. Built with KML, HDF5, NetCDF, SpatiaLite, PostGIS, GEOS, PROJ etc.

The FileGDB plugin requires Esri's FileGDB API 1.3 or FileGDB 1.5 VS2015.

Requires VCredist SP1 on Python 2.7.

GDAL-3.4.3-pp38-pypy38 pp73-win amd64.whl

GDAL-3.4.3-cp311-cp311-win_amd64.whl

GDAL-3.4.3-cp311-cp311-win32.whl

GDAL-3.4.3-cp310-cp310-win amd64.wh1

GDAL-3.4.3-cp310-cp310-win32.whl

GDAL-3.4.3-cp39-cp39-win_amd64.wh1

GDAL-3.4.3-cp39-cp39-win32.whl

GDAL-3.4.3-cp38-cp38-win_amd64.whl

GDAL-3.4.3-cp38-cp38-win32.whl

Crear una cuenta en GitHub

Es una plataforma de desarrollo colaborativo para alojar proyectos (en la nube)

https://github.com/

Correo: nino@geomatica.pe

contraseña.: *******

Usuario: ninogeomatica

Yes: y

Verificación correo:

software de control de versiones

https://git-scm.com/downloads

software de control de versiones

Configuración Git

Este paso se realiza solo una vez, Git mantendrá estas configuraciones y te permite cambiarlas en cualquier momento.

Establecer tu nombre de usuario y dirección de correo electrónico:

Instalación de la extensión Git en JupyterLab

pip install jupyterlab-git

Iniciamos repositorio, nos solicitará usuario y contraseña

Clonar archivo del curso de GitHub en escritorio

git clone https://github.com/Ninobravo55/Agricultura_Python.git

Teledetección

Es la adquisición de la información de un objeto a distancia.

Fotogrametría

Longitud de Onda

Tipos de Resolución imagen

Resolución Espacial

Resolución Radiométrica

Resolución Espectral

Resolución Temporal

Resolución Espacial

Resolución Radiométrica

Resolución Espectral

Resolución Temporal

Tipos de Resolución imagen

 $2^{(n\acute{u}mero\ de\ bits)}$ = Niveles de Gris

1 bit	2 colores			
2 bits	4 colores			
3 bits	8 colores			
4 bits	16 colores			
5 bits	32 colores			
6 bits	64 colores			
7 bits	128 colores			
8 bits	256 colores			
16 bits	32.768 colores	177	ı	

Tipos de Resolución imagen

Resolución Espacial

Resolución Radiométrica

Resolución Espectral

Resolución Temporal

Tipos de Resolución imagen

Resolución Espacial

Resolución Radiométrica

Resolución Espectral

Resolución Temporal

Satélite LandSat

Resolución temporal combinación Landsat 8 y 9: 8 días

Categoría de colección

Tiempo real

Satélite LandSat

Landsat 8 y 9	Longitud de onda (µm)	Resolución Espacial (m)	Resolución Radiométrica
1 - Ultra azul (costero / aerosol)	0.43 - 0.45	30	16 bits
2- Azul	0.45 - 0.51	30	16 bits
3- Verde	0.53 - 0.59	30	16 bits
4 - Rojo	0.64 - 0.67	30	16 bits
5 - Infrarrojo Cercano (NIR)	0.85 - 0.88	30	16 bits
6 - Onda corta infrarroja (SWIR) 1	1.57 - 1.65	30	16 bits
7 - Onda corta infrarroja (SWIR) 2	2.11 - 2.29	30	16 bits
8 - Pancromática	0.52 - 0.90	15	16 bits
9 - Cirrus	1.36 - 1.38	30	16 bits
10 - Infrarrojo térmico 1	10.60 - 11.19	100*(30)	16 bits
11 - Infrarrojo térmico 2	11.50-12.51	100*(30)	16 bits

Obtención, procesamiento y análisis de imágenes multiespectrales

Equipos adquiridos

RPAS: DJI MATRICE 300 RTK

Vuelo del Matice 300 RTK en cultivos

RPAS: DJI AGRAS T30

Cámara Multiespectral MicaSence Dual RedEdg&ámara RGB y Térmica Mx + RedEdge-MX Blue H20T

MicaSense RedEdge-P

MicaSense RedEdge pancromática (RE-P) es nuestra cámara multiespectral premium, que combina un sensor pancromático con cinco bandas estrechas para producir multiespectral y RGB de alta resolución a partir de un vuelo para análisis avanzado.

RPAS Medición de vegetación

Análisis de Índices de vegetación

GRACIAS

Expositor: Ing. Nino Bravo Morales

Investigador del Proyecto Agricultura de Precisión Celular: +51 995664488 Correo: nino@geomatica.pe