Topic: Particulate Nature of Matter I

Meaning of Matter:

- Matter is anything that has mass and occupies space.
- Matter exists in three states: Solid, Liquid, and Gas.
- Matter is made up of tiny particles called atoms, molecules, or ions.

1. Physical and Chemical Changes

A. Physical Change

Definition:

A physical change is a temporary change where the appearance or state of matter changes, but its chemical composition remains the same.

Characteristics of Physical Change:

- **No new substance** is formed.
- Usually **reversible** (can go back to the original state).
- It involves change in size, shape, state (solid, liquid, gas), or texture.
- Energy is involved but **no chemical bonds are broken or formed**.

Examples of Physical Change:

Example	Explanation			
Melting of ice	Ice changes from solid to liquid (water) but remains H₂O.			
Boiling of water	Water turns to vapor but remains the same substance.			
Dissolving salt in water Salt and water mix physically but no new substance is formed.				
Breaking glass	Glass breaks into pieces but remains glass.			

B. Chemical Change

Definition:

A chemical change is a permanent change where new substances are formed with different properties from the original substances.

Characteristics of Chemical Change:

- New substances are formed.
- Usually irreversible (cannot easily return to the original state).
- Chemical bonds are broken and new ones are formed.
- There may be heat, light, gas, or color changes.

Examples of Chemical Change:

Example Explanation

Burning of wood Produces ash, smoke, and gases like carbon dioxide.

Rusting of iron Iron reacts with oxygen to form iron oxide (rust).

Cooking food New substances with different tastes and smells are formed.

Souring of milk Milk turns into curd, producing new chemicals like lactic acid.

2. Differences Between Physical and Chemical Changes

Feature Physical Change Chemical Change

New Substance? No new substance formed New substance formed

Reversibility Usually reversible Usually irreversible

Energy Involved Small or no energy change Often large energy change (heat, light)

Molecular Structure No change in molecules Molecular structure changes

Examples Melting ice, dissolving salt Burning wood, rusting iron

3. Elements, Compounds, and Mixtures								
A. Element Definition: An element is a pure substance that contains only one type of atom.								
							Propertie	es of Elements:
							• Ca	Cannot be broken down by ordinary chemical means.
• El	ements are listed in the Periodic Table .							
• Ea	ach element has a symbol (e.g., O for oxygen, H for hydrogen).							
Examples	s of Elements:							
Element	Symbol							
Hydrogei	n H							
Oxygen	0							
Carbon	С							
Iron	Fe							
Gold	Au							
B. Compo	pund							
Definitio	n:							
	und is a pure substance made up of two or more different elements that are ly combined in fixed proportions.							
Propertie	es of Compounds:							

• Can be **broken down by chemical means** (e.g., heating or electrolysis).

- The properties of a compound are different from the elements that make it.
- Chemical bonds hold the elements together.

Examples of Compounds:

Compound Chemica	ıl Formula Elen	nents Present
------------------	-----------------	---------------

Water H₂O Hydrogen + Oxygen

Carbon dioxide CO₂ Carbon + Oxygen

Sodium chloride NaCl Sodium + Chlorine

Methane CH₄ Carbon + Hydrogen

C. Mixture

Definition:

A mixture is made by physically combining two or more substances where each retains its own properties.

Properties of Mixtures:

- Can be **separated by physical means** (e.g., filtration, evaporation).
- No chemical bonding occurs.
- Components can be in any ratio (not fixed).

Examples of Mixtures:

Mixture	Components

Air Nitrogen, Oxygen, Carbon dioxide, etc.

Seawater Water and dissolved salts

Sand and iron filings Sand + Iron

Oil and water Two liquids that don't mix

Differences Between Elements, Compounds, and Mixtures:

Feature	Element	Compound	Mixture
Number of Components	One type of atom	Two or more elements chemically combined	Two or more substances physically combined
Separation	Cannot be broken down	Can be broken chemically	Can be separated physically
Example	Oxygen (O₂)	Water (H₂O)	Air, Saltwater

4. Atoms and Molecules

A. Atom

Definition:

An **atom** is the **smallest particle of an element** that can take part in a chemical reaction.

Structure of an Atom:

- Nucleus (center): Contains protons (positive) and neutrons (neutral).
- **Electrons** (negative) orbit the nucleus in **shells or energy levels**.

Examples of Atoms:

Element Atomic Symbol

Hydrogen H

Oxygen O

Carbon C

B. Molecule

Definition:

A molecule is a group of two or more atoms chemically bonded together.

Molecules can be:

- Simple molecules (like O₂ or N₂ same element)
- Compound molecules (like H₂O or CO₂ different elements)

Examples of Molecules:

Molecule Structure

Oxygen (O_2) O + O

Water (H_2O) H + H + O

Carbon dioxide (CO_2) C + O + O

Methane (CH_4) C + 4H

Summary of Key Terms:

Term Meaning

Physical change Change in form or state without new substance

Chemical change Change that forms new substances

Element Pure substance with one type of atom

Compound Pure substance of two or more elements chemically combined

Mixture Combination of substances physically mixed

Atom Smallest part of an element

Molecule Two or more atoms bonded together

Importance of Studying the Particulate Nature of Matter:

- Helps understand chemical reactions
- Explains states of matter and changes
- Forms the basis for understanding **elements**, **compounds**, **and mixtures**

Conclusion:

All matter is made of tiny particles (atoms and molecules).

Understanding **physical and chemical changes**, and knowing the differences between **elements**, **compounds**, **and mixtures**, is essential in chemistry.