Math 322 Notes

Henry Xia

September 13, 2018

Contents

1 Introduction 1

1 Introduction

Definition 1.1. A quotient set is a set S/\sim whose elements are in one to one correspondence with equivalence classes of S. We also write $\overline{S} = S/\sim$.

Definition 1.2. A natural map $S \to S/\sim$ is a surjective map to the equivalence classes of S.

Definition 1.3. A semigroup is a set S that is closed under multiplication. That is $\forall a, b \in S$, we have $ab \in S$.

Definition 1.4. A monoid is a semigroup that has an identity element. That is $\exists 1 \in S$ such that 1a = a1 = a for all $a \in S$.

Definition 1.5. A group is a monoid where every element has an inverse. That is $\forall a \in S$, there exists some a^{-1} such that $aa^{-1} = 1$.

Definition 1.6. A subgroup is a subset of a group that is also a group.

Definition 1.7. An Abelian group is a group whose multiplication is commutative.

Definition 1.8. The symmetric group on n elements is the set of all permutations of n elements. We denote this as S_n .

Definition 1.9. A cyclic group is a group that can be generated by one of its elements. That is $G = \{a, a^2, \dots, a^{n-1}, a^n = 1\}$. We say that a generates G.

Definition 1.10. The order of a group is the number of elements in the cardinality of the group. The order of an element a is the smallest m such that $a^m = 1$. If no such m exists, we say a has infinite order. This is equivalently the order of the group generated by a.

Definition 1.11. The direct product is the cartesian product of the groups, where the group action is defined componentwise.

Definition 1.12. We say a group G is isomorphic to a group H, or $G \simeq H$, if there exists a bijection from G to H that preserves the group action. That is there exists some bijection $f: G \to H$ such that f(xy) = f(x)f(y).

Example 1.1. The group \mathbb{R} with addition is isomorphic to \mathbb{R}_+^* with multiplication. We can take $f(x) = e^x$, then $f(x+y) = e^{x+y} = e^x e^y = f(x)f(y)$.

Theorem 1.1 (Cayley's Theorem). Any finite group G is isomorphic to a subgroup of the symmetric group acting on G.

Proof. Let $G = \{x_1, x_2, ..., x_n\}$ have order n. Then for each $a \in G$, define $f_a : G \to G$ where $f_a(x) = ax$. We claim that f_a is a bijection. It suffices to show that f_a is an injection. Suppose that $f_a(x) = f_a(y)$, then $ax = ay \implies a^{-1}ax = a^{-1}ay \implies x = y$.

Let $\phi: G \to S_n$ map each element $a \in G$ to the element of S_n that corresponds to f_a . Now we need to check that ϕ is injective. Indeed, if $\phi(a) = \phi(b)$, then $ax = f_a(x) = f_b(x) = bx \implies a = b$. We also need to check that $\phi(ab) = \phi(a)\phi(b)$. Indeed, $\phi(ab)$ maps x to abx, $\phi(b)$ maps x to bx, and $\phi(a)$ maps bx to abx.

Example 1.2. Is $(\mathbb{Q}, +)$ isomorphic to (\mathbb{Q}_+^*, \times) ?

No. Consider 2x = a, where $a \in \mathbb{Q}$. There exists some $x \in \mathbb{Q}$ for all a. This equation becomes $f(x)^2 = f(a)$ should the two groups be isomorphic, however, it is clear that f(x) does not exist for all f(a).

Example 1.3. Fix $a \in G$, then let $C = \{b \in G : ab = ba\}$. We call a the centralizer. Observe that C is a subgroup of G.

It is obvious that $1 \in C$.

Let $x, y \in C$, then xya = xay = axy by associativity, hence $xy \in C$.

Let $x \in C$, then $x^{-1}a = x^{-1}axx^{-1} = x^{-1}xax^{-1} = ax^{-1}$ by associativity, hence $x^{-1} \in C$.

Definition 1.13. The *center* of a group G is the subgroup $\{a : ax = xa \ \forall x \in G\}$.

Remark 1.1. The intersection of subgroups is also a subgroup.