EPC - 6A Hardware Reference

RadiSys Corporation

5445 NE Dawson Creek Drive

Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150

www.radisys.com

07-0082-05 October 1998

EPC, iRMX, INtime, Inside Advantage and RadiSys are registered trademarks of RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma and SAIB are trademarks of RadiSys Corporation.

† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

October 1998

Copyright © 1998 by RadiSys Corporation

All rights reserved.

Contents

Chapter 1: Product Description	
Specifications	
EPC-6A Hardware Features	
Differences between the EPC-6 and the EPC-6A	
Additional References	
Chapter 2: Installation	
Determine whether to use the EPC-6A as a system controller	
Jumpers	
EPC-6A Insertion	
EXM Module Insertion	
VME Backplane Jumpers	
Serial Port Cap	
Connecting Peripherals to the EPC-8	
Chapter 3: Operation	
Initialization Sequence	
ROM DOS Interaction	
System Reset	
Generating VMEbus SYSRESET	
Responding to VMEbus SYSRESET	
Front Panel Indicators	
Toggle Switch	
Setup Utilities	
Remote Setup Utility	
Remote Setup Utility Screens (RSU)	
Main RSU Screen	
Clock/Calendar	
Drive Configuration	
VME Control	
EXM Bus	
Exit Menu	
Chapter 4: Programming Interface	
Memory Map	
I/O Map	
EPC-6A Registers	
VMEbus Accesses	
D32 Accesses	
Byte Ordering	
Read-Modify-Write Operations	
Slave Accesses from the VMEbus	
Self Accesses Across the VMEbus	

Read-Modify-Write Operations	
VMEbus Interrupt Handler	
VMEbus Interrupt Response	
VMEbus Mapped Registers	
Chapter 5: Theory of Operation	
Processor, Coprocessor, and Memory	
Application Flash Memory or RFA	
Flash Boot Device	
Nonvolatile SRAM Memory	
Battery	
Interrupts	
Watchdog Timer	
EXMbus	
VMEbus Interface	
VMEbus System Controller Functions	
VMEbus Timing	
Chapter 6: Error Messages	
Seven-Segment Display Codes	
Phoenix NuBIOS Checkpoints	
-	
Support Software	
Chapter 7: Support and Service	
In North America	
Technical Support	
World Wide Web	
Repair Services	
Warranty Repairs	
Non-Warranty Services	
Arranging Service	
Other Countries	
Appendix A: Connectors	
Front Panel LEDs	
Speaker Connector	
Keyboard Connector	
Serial port connectors	
VMEbus Connectors	
Appendix B: About the Flash Boot Device	
Forced recovery	
When to Reflash the FBD	
Before You Begin	
Reflashing Processes	
Force Update	
Appendix C: Registers	
Overview	
Memory Control Register (81004h)	
VME A21–16 Address Register (8130h)	
ID Registers (8140h and 8141h)	
Device Type Registers (8142h and 8143h)	
Status/Control Registers (8144h and 8145h)	
Slave Offset Registers (8146h and 9147H)	
Protocol Registers (8148h and 8149h)	

	Response Registers (814Ah and 814Bh)	57
	Message High Registers (814Ch and 814Dh)	58
	Message Low Registers 814Eh and 814Fh)	58
	VME Modifier Register (8151h)	58
	VME Interrupt State Register (8152h)	59
	VME Interrupt Enable Register (8153h)	59
	VME Event State Register (8154h)	59
	VME Event Enable Register (8155h)	59
	Module Status/Control Register (8156h)	60
	Interrupt Generator Register (815Fh)	60
	FSA Address Registers 8380h)	60
	Flash Data Register (8383h)	61
	SRAM Data Register 8384h)	61
	LED Register (8385h)	61
	Register State after Reset	61
1	lev	63

Figures

Figure 2-1.	Jumper locations	6
Figure 3-1.	Boot Process.	9
Figure 5-1.	Block Diagram	29
Figure B-1.	EPC-6A FBD Memory Map	47
Figure B-2.	Null Modem Cable Connection	50
Tables		
Table 1-1.	Specifications	2
Table 2-1.	Jumper locations	6
Table 3-1.	Main Menu Selections	
Table 3-2.	Clock/Calendar	14
Table 3-3.	Drive Configuration	15
Table 3-4.	Configure Floppy Drive A and B	15
Table 3-5.	Configure Fixed Disk C and D	15
Table 3-6.	Edit Subtype	16
Table 3-7.	VME Control	16
Table 3-8.	ULA Setup	17
Table 3-9.	Slave Memory Base	17
Table 4-1.	I/O Map	19
Table 4-2.	VME mapped registers	28
Table 5-1.	Interrupts	31
Table 5-2.	VMEbus timing	33
Table 6-1.	Seven-segment display failure codes	35
Table 6-2.	Phoenix NuBIOS Auxiliary Checkpoint Codes	36
Table 6-3.	Phoenix 'NuBIOS Checkpoint Codes	38
Table 6-4.	Phoenix 'NuBIOS Boot Block Checkpoint Codes	39
Table A-1.	LEDs	45
Table A-2.	Speaker Connector	45
Table A-3.	Keyboard Pin-out	46
Table A-4.	COM1 Connector	46
Table A-5.	COM2 Connector	46
Table B-1.	FBD object placement	48

Product Description 1

This manual contains the information you need to install and use the EPC-6A VMEbus controller. Additional user and programmer manuals discuss the use of software packages available with the EPC-6A.

The EPC-6A, a high-speed VMEbus module based on the Intel 80486DX2 processor, is a redesign of the EPC6 VMEbus module which is based on Intel 80386SX processor.

You can use the EPC-6A to:

- Perform VMEbus master accesses.
- Act as a VMEbus slave (by having its dual-port DRAM mapped onto the VMEbus).
- Configure as the VMEbus SLOT-1 system controller.
- Act as an interrupter and interrupt handler.

The EPC-6A computer is also compatible with the IBM PC hardware architecture. The standard version of the EPC-6A contains, in ROM, a PC-compatible BIOS and a ROM-based version of Datalight ROM-DOS. The EPC-6A also includes on-board nonvolatile flash memory supported as a DOS-compatible solid-state disk and file system. You can store one or more embedded applications on the processor board and automatically invoke them at system start-up.

The EPC-6A also includes one slot for an EXM expansion module. This allows some of the I/O of the EPC-6A to be customized for a particular application.

Specifications

This table defines the power and environmental specifications of the EPC-6A.

Table 1-1. Specifications

Characteristic		Value
Temperature	operating	0 – 60°C ambient
	storage	-40 - 125°C (without battery; 85°C max with battery
Humidity	operating	0 – 90% noncondensing
	storage	0 – 95% noncondensing
Altitude	operating	0 – 10,000 ft. (3000 m)
	storage	0 – 50,000 ft. (15,000 m)
Vibration	operating	0.015 inch (0.38 mm) P-P displacement with 2.5 g peak (max) acceleration over 5–2000 Hz
	storage	0.030 inch (0.76 mm) P-P displacement with 5.0 g peak (max) acceleration over 5–2000 Hz
Shock	operating	30 g, 11 ms duration, half-sine shock pulse
	storage	50 g, 11 ms duration, half-sine shock pulse
Current	typical	5V @ 3.4A, 12V @ 5 mA, -12V @ 10 mA
VME	master address	A16, A24
	master transfer	D08(EO), D16, RMW
	slave address	A16, A24
	slave transfer	D08(EO),D16,RMW
	interrupter	(1–7)
	interrupt handler	D08(O),D16 IH(1-7)
	requester	ROR,RONR
	arbiter	RRS,PRI
	system controller	SYSCLK, IACK daisy chain, bus timer
VXI	device type	message based
	protocols	cmdr/master/interrupter

EPC-6A Hardware Features

- Intel 486DX2 CPU at 66MHZ (internal clock speed); external bus speed at 33MHz.
- 8KB On-Chip Cache
- Integrated Floating Point Unit (DX2 option only)
- RadiSys R400EX highly integrated single chip system controller
- 4 MB dual ported DRAM on board
- Two PC compatible serial ports with 16-Byte FIFO (only one is brought out to the faceplate)
- 1MB of application flash memory
- 128K x 8Bit of battery-backed SRAM
- Keyboard port
- Seven-segment display

- A24/A16/D16/D08 VME master/slave support
- Slot 1 system controller functions
- One EXM expansion slot

It should be noted that, due to mechanical limitations, the EPC-6A cannot support EXMs such as EXM-9, EXM-MX, EXM-16, EXM-23, EXM-19, EXM20, EXM-17.

Differences between the EPC-6 and the EPC-6A

The EPC-6A differs from the EPC-6 in the following ways:

EPC-6	EPC-6A
20Mhz 80386SX PCAT design	486DX2 [66Mhz internal speed] with 33Mhz
	external bus speed PCAT design
External 16K byte 2 way set-associative	8K- Byte On-Chip Cache
cache	
External cache controller	
External co-processor option	Integrated floating-point unit
AT chip set [ATU + DPU] and separate memory controller	RadiSys R400 highly integrated single chip system controller [low cost 208 pin PQFP]
MB dual ported DRAM	4 Megabytes dual ported DRAM on board
Two serial ports	Two PC compatible serial ports with 16-Byte FIFO
Up to 512K bytes of programmable flash memory (for DOS/user applications).	1MB of application flash memory contains Datalight ROM-DOS 6.22 [rev2]
,	
Up to 512K EPROM (for BIOS, ROM).	Separate boot device with reflash option
Award BIOS	The System BIOS is based on Phoenix
	Technologies NuBIOS revision 4.05.
	The Flash File System can be installed as a DOS device driver.
	Flash File System (FFS) support for flash is based
	on Phoenix Technologies PicoFlash and includes
	read/write capability. The Xformat based FFS is no longer supported for Flash.
	IRQ12 is not available on EXM bus
	VMEbus and Memory Controller Configuration register (8104h) semantics changed.
	System BIOS does not share space in the FBD with ROMDOS. DOS now resides in the RFA.
	EXM-2 and EXM-2A are no longer supported.
32 KB of battery-backed SRAM	128KX8Bit of battery backed SRAM with software supports only 32KB SRAM.

Additional References

<u>PhoenixBIOS† 4.05 Developer's Reference</u>, Phoenix Technologies, Ltd., 5/22/95 (*NOTE: This document cannot be distributed to customers*).

<u>PhoenixBIOS 4.0 Technical Reference</u>, Phoenix Technologies, Ltd., 3/15/94 (*NOTE: This document can be distributed to customers only upon receipt of written permission from Phoenix Technologies*, Ltd.).

<u>Phoenix BIOS PICO OAK Porting Guide</u>, Phoenix Technologies, Ltd., 9/95 (NOTE: This document can be distributed to customers only upon receipt of written permission from Phoenix Technologies, Ltd.).

<u>Plug and Play BIOS Specification 1.0A</u>, Compaq Computer Corp., Phoenix Technologies Ltd., Intel Corp., May 5, 1994.

Memory Products Data Manual, Intel Corporation, 1993.

<u>Intel486† Microprocessor Family Programmer's Reference Manual</u>, Intel Corporation, 1992.

R400EX Development Specification, Version 3.23, RadiSys Corporation, 1996.

EPC-6A Hardware Specification, RadiSys Corporation, 1997.

<u>Technical Reference, Personal Computer AT</u>, International Business Machines Corporation, 1985.

Installation

Before installing your EPC-6A, you should unpack and inspect it for shipping damage.

Avoid causing ESD damage:

- Remove modules from their antistatic bags only in a static-free environment.
- Perform the installation process (described later in this chapter) only in a static-free environment.

EPC-6A modules, like most other electronic devices, are susceptible to ESD damage. ESD damage can cause a partial breakdown in semiconductor devices that might not immediately result in a failure.

Determine whether to use the EPC-6A as a system controller

Before installing the EPC-6A in a VMEbus chassis, you need to decide whether the EPC-6A will be the VMEbus *Slot 1* System controller. Every VMEbus system needs a module that performs the system controller functions, including generation of the 16 MHz SYSCLK signal, arbitration of the bus, detection of Bus time-out conditions, and initiation of the interrupt-acknowledge daisy chain. The EPC-6A can serve as the system controller.

To use the EPC-6A as the system controller:

- Make sure the jumper labelled SLOT1 is installed on the EPC-6A processor board to connect the two pins. For information about jumper locations, see Figure 2-1, *Jumper locations* on page 6.
- Install the EPC-6A in the leftmost slot on the chassis.

If you do *not* plan to use the EPC-6A as the system controller:

- Make sure the jumper labelled SLOT1 on the EPC-6A processor board is removed.
- Install EPC-6A in a slot other than slot 1 in the chassis.

Other jumpers and headers on the board are shown in the next table.

Jumpers

The jumpers located on the EPC-6A are used for the following functions:

Table 2-1. Jumper locations

Jumper	Function	Description
FLASHWE (JP2(1-2))	FBD write-enable	Install this jumper to enable writes to the FBD.
BB_ENB (JP2(3-4))	FBD boot block write enable	Install this jumper to enable writes to the boot block of the FBD.
POSTLP (JP2(5-6))	Manufacturing loop enable	Install this jumper to enter the manufacturing POST loop.
FRCUPDT (JP2(7-8))	Force BIOS recovery	Install this jumper to force a BIOS recovery during the boot process.
SLOT1 (H2)	Slot 1 Functionality	Install this jumper to enable Slot 1 functionality
SPEAKER (JP3)	Speaker	Speaker header

Figure 2-1. Jumper locations

EPC-6A Insertion

Insert the EPC-6A into a VME chassis as follows:

Make sure that power to your VME system is off. The module is not designed to be inserted or removed from a live backplane.

When inserting the EPC-6A module, avoid touching the circuit board and connector pins, and make sure the environment is static-free.

- 1. Make sure the ejector handles are in the normal non-eject position. (Push the top handle down and the bottom handle up so that the handles are not tilted.)
- 2. Slide the EPC-6A module into the VME chassis, making sure the top and bottom board edges are in the chassis' card guides. Use thumb pressure on the handles to mate the module firmly with the VME backplane connector.
- 3. Tighten the two screws in the top and bottom of the front panel to ensure proper connector mating and prevent loosening of the module via vibration.

EXM Module Insertion

You can optionally install one EXM through the front panel of the EPC-6A. To install an EXM:

Make sure that power to your VME system is off. EXMs are not designed to be inserted or removed from live systems.

When inserting an EXM, avoid touching the circuit board, and make sure the environment is static-free.

- 1. Remove and save the blank face plate from the EXM slot in the EPC-6A face plate.
- 2. Slide the EXM into place in the card guides. Push firmly on the EXM front panel to insert its rear connector.
- 3. Tighten the thumb screws on the EXM's face plate.

The EPC-6A can accept most EXM types excluding those that either require a disk BIOS in the EPC or do not fit by form factor.

Once an EXM is installed, you must to run the BIOS setup program to describe how the specific EXM should be dynamically configured upon power-up. This is described in 3, *Operation*.

VME Backplane Jumpers

The VMEbus contains several daisy-chained control signals. Almost all VMEbus backplanes contain jumpers for these control signals to allow systems to operate with empty slots. Failing to install these jumpers properly is a common source of problems in building a new VMEbus system.

There are five jumpers per VME slot, one for each of the four bus-grant arbitration levels and one for the interrupt-acknowledge daisy chain. Depending on the backplane manufacture, the jumpers may be on the rear pins of the J1 connector, or may be alongside it on the front or rear side of the backplane.

For the slot that contains the EPC-6A, remove the jumpers. Leave the jumpers inserted for all empty slots. For slots otherwise occupied, consult the documentation from the manufacturers of the modules.

Serial Port Cap

Your EPC-6A may have been shipped with a plastic cap over the serial port connector. This cap is a conductive cap that shields the exposed pins in the connector from ESD (electrostatic discharge). You should leave it installed when nothing is connected to the serial port.

Connecting Peripherals to the EPC-8

Do not:

- Plug any cable or connector into the front panel connectors while the system is powered up.
- Plug in a serial or parallel device, keyboard, transceiver, monitor, or other component while the system is ON.

In general, electronics equipment are not designed to withstand damage that may arise from fluctuations in power.

The next step of installation is connecting peripherals, typically a video display and keyboard, but also perhaps a mouse, modem, printer, etc.

Pin-outs for the EPC-6A front-panel connectors are specified in Appendix A, Connectors.

Operation

This chapter contains information about user operation and BIOS setup of the EPC-6A.

Initialization Sequence

The EPC-6A and its BIOS go through these major initialization steps: The seven-segment display shows information about the EPC-6A's initialization state.

Figure 3-1. Boot Process.

The EPC-6A performs these major initialization steps:

1. Display

At power-up, this display reads 8. When the system begins the POST (Power On Self Test), this number changes.

2. Run selftests; display

At various times during the POST, a new code displays in the 7-segment display. For detailed information about displayed codes, see the POST code description. To see a list and explanation of these codes, see Chapter 6, *Error Messages*.

3. Shadow PicoFlash RFA BIOS extension

To access the RFA (Resident Flash Array) as a DOS disk, you must shadow a BIOS extension that chains the INT13 disk interface. This checkpoint essentially starts a flash disk driver.

a. Check for catastrophic errors

Any error that prevents the system from reaching INT 19 (which attempts to boot the OS) halts the system. The 7-segment LED displays the last completed POST task and the initialization sequence terminates.

If the EPC-6A has a problem that prevents the POST program from running, the 7-segment LED displays the number "8".

b. Check for configuration errors

Errors that do not prevent the system from booting that the CMOS configuration can correct are considered configuration errors. An example of a configuration error is an incorrect EXM ID entered for an EXM card.

If the selftest completes successfully, the system is configured using configuration information maintained by the BIOS in a small battery-backed CMOS RAM.

If a problem is encountered, it causes the BIOS to load MS-DOS from RFA and then give DOS control. This allows the user to alter the boot process.

MS-DOS always loads from flash, which is a read-write file system. It is recommended that you embed ABORTSWI.EXE your AUTOEXEC.BAT file to allow users to alter the machine's boot process. During development, users may find it convenient to expose the keyboard connector so they can press the F8 key to step through the CONFIG.SYS and AUTOEXEC.BAT files.

The method for interacting with DOS is described in the next section. Problems at this point are regarded as non-catastrophic, and include loss of the configuration information due to a battery failure or change, and a mismatch between the type of installed EXM versus the type expected. Information about non-catastrophic errors is saved in the upper 2K bytes of the SRAM for use by the setup program.

If there are no errors, the BIOS looks for a boot device with a valid boot image. The boot device can be the on-board flash memory or a source specified in the CMOS configuration information (using the setup program) If a boot device is not present, the BIOS invokes the ROM DOS.

4. Attempt to boot from RFA

If the BIOS proceeds down the flash memory path, the flash memory is viewed as a bootable disk device and the BIOS starts the bootstrap process by loading the first 512 bytes into memory location 07C0:0000 and passing control to it. The display blanks before the bootstrap process begins.

Once the system completes POST, an INT19 is attempted. This attempts to read the boot sector from the disk. In the EPC-6A's case, this is routed through an INT13 handler which reads the boot sector from the RFA.

For more information about the bootstrap process and how to create a bootable image in the flash memory, see the *EPControl Programmer's Guide*.

In the event that an invalid CMOS setup is saved or the disk image becomes un-bootable it will be necessary to go into forced recovery. From forced recovery, it is possible to restore CMOS values to there factory defaults. It is also possible to reload the factory default bootable DOS image into the RFA should it become corrupt or mis-configured. For more on these items, see *Forced recovery* section on page 48.

ROM DOS Interaction

Although you can use a standard PC-compatible keyboard, the EPC-6A is used more as a dedicated controller than an embedded PC-compatible computer. When using the EPC-6A without a keyboard, you can interact with the ROM DOS on the EPC-6A in these ways:

• Connect a standard ASCII terminal with an RS-232 interface to the serial port connector on the front panel.

The EPC-6A's customized CONFIG.SYS and AUTOEXEC.BAT files redirect the command input and output streams to the COM1 serial port. Connecting a terminal and invoking ROM DOS displays the standard DOS prompt on the terminal. By typing the DOS DIR command, you can see available programs. You can use the SETUP program in ROM to display and change the configuration information maintained by the BIOS.

• Use a separate full EPC (having keyboard and monitor) on the same VMEbus with supplied software that uses this EPC as a virtual console to the EPC-6A(s).

The software needed to use another EPC as the human interface for an EPC-6A is part of the EPControl software product. For detailed information about this software, see the EPControl software's documentation.

System Reset

The reset switch performs a hardware reset of the EPC-6A and any EXM module, and then invokes the BIOS initialization process discussed in the previous sections. Removing and reapplying power to the EPC-6A also causes a hardware reset. Note that if the dot, or decimal point, in the lower right corner of the 7-segment LED display is illuminated, an EPC-6A program disabled the reset toggle switch. To reset the EPC-6A in this case, you must externally signal the VMEbus SYSRESET (unless the EPC-6A program has disabled this also) or by a power-off/on cycle.

Generating VMEbus SYSRESET

Upon power on, the EPC-6A drives the VMEbus SYSRESET signal in accordance with the VMEbus specification. Resetting the EPC-6A via the reset switch does *not* cause the EPC-6A to assert SYSRESET. The EPC-6A does contain a software-controllable register bit to allow software to assert SYSRESET.

Responding to VMEbus SYSRESET

A software-controllable register bit in the EPC-6A controls whether or not a hardware reset of the EPC-6A occurs when the VMEbus SYSRESET signal is asserted.

Front Panel Indicators

The front panel contains a seven-segment LED display. The front-panel display has these purposes:

- During BIOS initialization it describes the current stage of the initialization. If a test
 fails in the selftest phase, it displays a code indicating the test that caused the BIOS to
 abort the normal initialization flow. These codes are described in Chapter 6, Error
 Messages.
- 2. After initialization, the display is available for use by the application program.
- 3. The display shows whether software disabled the reset function of the front-panel switch. If the decimal point in the lower right corner of the display is lit, the reset function of the switch is disabled.

The EPC-6A also contains the following LEDs:

- RUN
- SYSFAIL
- MASTER
- SLAVE

For detailed information about the LEDs, see *Front Panel LEDs* on page 45.

Toggle Switch

The front-panel toggle switch has these positions:

- **Inactive** (normal position):
- **Reset**: Suspends the EPC-6A; releasing the switch causes a hardware reset.
- **Abort**: Generates the IRQ11 interrupt.

The interrupt position has two purposes. An application program can install an IRQ11 interrupt handler and thus define the switch in an application-specific fashion. The second purpose is a special interpretation of the switch during BIOS initialization after a reset.

Moving the switch to the interrupt position during the five-second operator-override period (when the display shows a circling light), causes the BIOS to load MS-DOS from ROM and give control to DOS.

Setup Utilities

Unlike other RadiSys products, the EPC-6A uses, as its primary CMOS setup utility, a remote setup utility (either serial or across the VMEbus) rather than a monitor/keyboard based approach. This is due to the EPC-6A's default configuration, where no keyboard or video is available. For debug purposes, an EXM video card is installed and the PS/2 keyboard port is available. This means you can use the standard Phoenix CMOS setup utility.

Remote Setup Utility

The EPC-6A has DOS, remote setup, and other utilities located in a read/write flash disk which (however unlikely) can be corrupted. If the RFA can no longer boot DOS, the DOS-based setup program is not available.

The remote setup controls a subset of all the possible Phoenix Setup options. Only those CMOS tokens absolutely necessary for booting are manipulated by the setup utility. The number of tokens modified are limited to reduce the FFF impact of the EPC-6A versus EPC-6.

Remote Setup Utility Screens (RSU)

The Remote Setup Utility Screens appear the same, whenever possible, as those of the EPC-6. Menu selections are driven by typing the character listed in the key column. Pressing the ESC key from a sub-menu returns to the previous menu. Pressing the ESC key from the Main Screen starts the exits procedure.

Main RSU Screen

The next figure shows the layout of the main remote setup screen; the following tables describes menus and their options.

```
RadiSys Controller Setup Program, Version 2.01
     Copyright 1997 by RadiSys Corporation. All rights reserved.
+-----
  SYS EPC: 6A CPU: 486DX2 Mem:
Info BIOS: 4.05 Mhz: 66 Ext-Mem:
 SYS EPC: 6A
                                                   640K
                                                 3072K
  Clock Time: 00:05:08 Date: 01/01/97
  Disks Floppy A: None
                            Floppy B: None
         Fixed C: IDE AUTO Subtype C: 541MB 1049C, 16H, 63S
Fixed D: None Subtype D: None
        Release mode: RONR (VXI) Arb Mode: Round Robin
  VME
   Bus Arb Priority: 0 Module ULA: F8 (FE00)
         Slave Mem: 400000 (A24)
        ID: None OB1: 0x00 OB2: 0x00
 Main Menu:
  1) Clock
              2) Disk 3) VME
                                         4) EXM
  5) eXit
Choice:
```

Table 3-1. Main Menu Selections

Function	Key	Description
Clock	С	Set Date and Time
Disks	V	Enter the VMEBus configuration menu
VMEBus	D	Enter the Drive Configuration menu
EXMBus	E	Enter the EXMBus configuration menu
eXit	Х	Exit the Remote Setup program

Clock/Calendar

```
Clock Edit Menu:

1) Date
2) Time
Choice: 1
Format: <mm/dd/yy>
Enter New Value:
```

Table 3-2. Clock/Calendar

Function	Key	Description
Date	D	Enter new date (mm/dd/yy)
Time	T	Enter new time (hh:mm:ss)

Drive Configuration

Edit Drive Menu:
1) Floppy A 2) Floppy B 3) Fixed C 4) Fixed D
Choice:

Table 3-3. Drive Configuration

Function	Key	Description
Floppy A:	Α	Configure Floppy Drive A: (sub-menu)
Floppy B:	В	Configure Floppy Drive B: (sub-menu)
Fixed Disk C:	С	Configure Fixed Disk C: (sub-menu)
Fixed Disk D:	D	Configure Fixed Disk D: (sub-menu)

Table 3-4. Configure Floppy Drive A and B

Function	Key	Description	
360K (5.25)	1	Configure floppy for 360K	
1.2M (5.25)	2	Configure floppy for 1.2M	
720K (3.5)	3	Configure floppy for 720K	
1.44M (3.5)	4	Configure floppy for 1.44M	
None	N	Disable floppy	

Edit Fixed Drive Menu:

1) IDE 2) Flash 3) VME 4) EXM Flash
5) None 6) Edit Subtype
Choice:

Table 3-5. Configure Fixed Disk C and D

Function	Key	Description
IDE	Α	Configure Fixed Disk for AT (IDE)
Flash	F	Configure Fixed Disk for Flash
VME	V	Configure Fixed Disk for VMEbus
EXM Flash	Е	Configure Disk for EXM Flash
None	N	Disable Drive
Edit Subtype	U	Edit User Hard Drive Parameters (sub-menu)

Edit Subtype Menu:

1) Autodetect
2) Edit
Choice:

Table 3-6. Edit Subtype

Function	Key	Description	
Autodetect	А	Autodetect drive parameters. Selecting this option means the Remote Setup queries the disk drive for its internal parameters on every bootup.	
Edit	E	Configure Fixed Disk for Flash (sub-menu). Selecting this option displays these prompts which must be completed with the proper parameters:	
		# of Heads: Enter the number of heads on the drive	
		• # of Cylinders: Enter the number of cylinders per head	
		• # of Sectors: Enter the number of sectors per cylinder	

VME Control

VME Bus Menu:

1) Release Mode 2) Arb Mode 3) Arb Priority 4) Module ULA
5) Slave Mem
Choice:

Table 3-7. VME Control

Function	Key	Description	
Release mode	R	Bus release mode, a) ROR or b) RONR (AB)?	
Arbitration mode	Α	Bus arbitration mode, Priority or Round robin (PR)?	
Arbitration Priority	Р	Bus arbitration priority, (0123)?	
Module ULA	U	Module ULA (sub-menu)	
Slave Mem	S	Slave base address	

```
ULA Menu:

1) F8 (FE00)
2) F9 (FE40)
3) FA (FE80)
4) FB (FEC0)
5) FC (FF00)
6) FD (FF40)
7) FE (FF80)
8) FF (FFC0)
Choice:
```

Table 3-8. ULA Setup

Function	Key	Description
F8 (FE00)	0	Set ULA to FE00
F9 (FE40)	1	Set ULA to FE40
FA (FE80)	2	Set ULA to FE80
FB (FEC0)	3	Set ULA to FEC0
FC (FF00)	4	Set ULA to FF00
FD (FF40)	5	Set ULA to FF40
FE (FF80)	6	Set ULA to FF80
FF (FFC0)	7	Set ULA to FFC0

```
Slave Base Memory Menu:
1) Disabled 2) 000000 3) 400000 4) 800000
5) C00000
Choice:
```

Table 3-9. Slave Memory Base

Function	Key	Description	
Disabled	0	Disable Slave Memory Access	
000000 (A24)	1	Set Slave Base Address to 0	
400000 (A24)	2	Set Slave Base Address to 400000	
800000 (A24)	3	Set Slave Base Address to 800000	
C00000 (A24)	4	Set Slave Base Address to C00000	

EXM Bus

Since there is only one EXM slot available, only one can be configured. When you select EXM from the main menu, the following prompts display:

```
Enter the EXM ID = a hex value or 'none'
Enter the EXM OB1 = a hex value
Enter the EXM OB2 = a hex value
```

Exit Menu

If you select 'X' at the main menu, the exit procedure starts. Changes take effect only after a reboot.

4

Programming Interface

This chapter describes the EPC-6A as seen by a program. Wherever possible, users should avoid direct use of most of these facilities. Hardware features in common with standard PCs should be accessed by standard BIOS calls. Hardware unique to EPC-6A, such as the VMEbus interface should be accessed through a variety of software packages and drivers available with the EPC-6A.

Memory Map

Memory at addresses between 0 and 4 MB (0FFFFFh) are mapped as follows:

Range	Content
000000h - 09FFFFh	DRAM
0A0000h - 0BFFFFh	Uncommitted, EXM bus or VIDBIOS
0C0000h - 0C7FFFh	Uncommitted, DRAM, EXM bus or VIDBIOS
0C8000h - 0DFFFFh	Uncommitted, mapped to EXM bus
0E0000h - 0EFFFFh	Mappable window onto VMEbus
0F0000h - 0FFFFFh	System BIOS
100000h - 3FFFFFh	DRAM
400000h – F7FFFFh	Uncommitted, EXM bus
F80000h - FFFFFFh	BIOS ROM

I/O Map

The following defines the I/O addresses decoded by the EPC-6A. It does not define addresses that might be decoded by the installed EXM.

Table 4-1. I/O Map

Port	Functional group	Usage
00	DMA	Channel 0 address
01		Channel 0 count
02		Channel 1 address
03		Channel 1 count
04		Channel 2 address
05		Channel 2 count
06		Channel 3 address
07		Channel 3 count
08		Command/status
09		DMA request

Port	Functional group	Usage			
0A		Command register (R)			
		Single-bit DMA request mask(W)			
0B		Mode			
0C		Set byte pointer (R)			
		Clear byte pointer (W)			
0D		Temporary register (R)			
		Master clear (W)			
0E		Clear mode reg counter (R)			
		Clear all DMA req mask(W)			
0F		All DMA request mask			
20	Interrupt controller 1	Port 0			
21		Port 1			
24	83000 Controller	Data register			
26		Index register			
40	Timer	Counter 0			
41		Counter 1			
42		Counter 2			
43		Control (W)			
60	Keyboard controller	Data I/O register			
61	NMI status	NMI status			
64	Keyboard controller	Command/status register			
70	Real-time clock	RTC index reg / NMI enable			
71		RTC data register			
		0	seconds		
		1	seconds alarm		
		2	minutes		
		3	minutes alarm		
		4	hours		
		5	hours alarm		
		6	day of week		
		7	date of month		
		8	month		
		9	year		
		Α	status A		
		В	status B		
		С	status C		
		D	status D		
		Е	RAM		
		3F	RAM		
80	BIOS debug port				
81	DMA	Channel 2 page register			
82		Channel 3 page register			
83		Channel 1 page register			
87		Channel 0 page register			
89		Channel 6 page register			

Port	Functional group	Usage
8A		Channel 7 page register
8B		Channel 5 page register
8F		Refresh page register
A0	Interrupt controller 2	Port 0
Port	Functional group	Usage
A1		Port 1
C0	DMA	Channel 4 address
C2		Channel 4 count
C4		Channel 5 address
C6		Channel 5 count
C8		Channel 6 address
CA		Channel 6 count
CC		Channel 7 address
CE		Channel 7 count
D0		Command/status
D2		DMA request
D4		Command register (R)
		Single-bit DMA req mask(W)
D6		Mode
D8		Set byte pointer (R)
		Clear byte pointer (W)
DA		Temporary register (R)
		Master clear (W)
DC		Clear mode reg counter (R)
		Clear all DMA req mask (W)
DE		All DMA request mask
F0	Coprocessor	Clear coprocessor busy
F1		Reset coprocessor
2F8	COM2 serial port	Receiver/transmitter buffer
		Baud rate divisor latch (LSB)
2F9		Interrupt enable register
-		Baud rate divisor latch (MSB)
2FA		Interrupt ID register
2FB		Line control register
2FC		Modem control register
2FD		Line status register
2FE		Modem status register
378	LPT1 parallel port	Printer data register
379		Printer status register
37A		Printer control register
3F8	COM1 serial port	Receiver/transmitter buffer
-		Baud rate divisor latch (LSB)
3F9		Interrupt enable register
		Baud rate divisor latch (MSB)
3FA		Interrupt ID register
3FB		Line control register

Port	Functional group	Usage		
3FC		Modem control register		
3FD		Line status register		
3FE		Modem status register		
8104	VME and misc control	Memory control		
8130		VME A21–16 address		
8132		alias address of 8130		
8134		alias address of 8130		
8136		alias address of 8130		
8140		ID low		
8141		ID high		
8142		Device type low		
8143		Device type high		
8144		Status/control low		
8145		Status/control high		
8146		Slave offset low		
8147		Slave offset high		
8148		Protocol low		
8149		Protocol high		
814A		Response low		
814B		Response high		
814C		Message high low		
814D		Message high high		
814E		Message low low		
814F		Message low high		
8151		VME modifier		
8152		VME interrupt state		
8153		VME interrupt enable		
8154		VME event state		
8155		VME event enable		
8156		Module status/control		
8157		alias address of 815F		
8159		alias address of 8151		
815A		alias address of 8152		
815B		alias address of 8153		
815C		alias address of 8154		
815D		alias address of 8155		
815E		alias address of 8156		
815F		VME interrupt generator		
8380		Flash/SRAM address		
8381		Flash/SRAM address		
8382		Flash/SRAM address		
8383		Flash data		
8384		SRAM data		

EPC-6A Registers

The next table lists registers in the I/O space specific to the EPC-6A. For detailed information about each register, see Appendix C, *Registers*.

EPC-6A Registers

Memory Control Register (81004h) VME Interrupt State Register (8152h) VME A21–16 Address Register (8130h) VME Interrupt Enable Register (8153h) ID Registers (8140h and 8141h) VME Event State Register (8154h) Device Type Registers (8142h and 8143h) VME Event Enable Register (8155h) Status/Control Registers (8144h and 8145h) Module Status/Control Register (8156h) Slave Offset Registers (8146h and 9147H) Interrupt Generator Register (815Fh) Protocol Registers (8148h and 8149h) FSA Address Registers 8380h) Response Registers (814Ah and 814Bh) Flash Data Register (8383h) Message High Registers (814Ch and 814Dh) SRAM Data Register 8384h) Message Low Registers 814Eh and 814Fh) LED Register (8385h) VME Modifier Register (8151h) Register State after Reset

VMEbus Accesses

Two C-language examples are given here for performing VMEbus accesses through the E page.

Example 1: 16-bit read from the VMEbus A16 space

This example performs a 16-bit read from the VMEbus A16 space. It requires setting the address modifier, relocating the A16 address into the E page (address range E0000–EFFFF), and then accessing the value pointed to by a C pointer variable.

Example 2: Byte write into the VMEbus A24 space

This next example does a byte write into the VMEbus A24 space. Here the upper 8 bits of the VME address need to be stored in the appropriate registers.

```
LWORD addr;  /* 32-bit A24 address */
BYTE data;
BYTE far * wptr;

outp(0x8151,6 | (((addr << 8) >> 30) << 6));
  /* A23-A22 and address modifier for A24 supervisory data access</pre>
```

The success of the access can be checked either by enabling BERR as an interrupt or by looking at the BERR bit in the event state register after each access. Since writes are pipelined, software that looks at the BERR bit should first wait until the DONE bit is set.

It is recommended that rather than performing accesses in this low-level, hardware-dependent form, the Bus Manager component of the EPConnect software package be used instead.

The following summarizes the source of the VMEbus address lines for accesses through the E page.

	23 22	21 16	15	0
A24	From port 8151	From port 8130	From 486DX2 ac bits 15-	ldress
			15	0
A16			From 486DX2 ac bits 15-	ldress

D32 Accesses

Although the 386SX, used in the original EPC6, is a 32-bit processor (for example, 32-bit registers and operations), its external data bus is 16 bits wide. Any memory operation with an operand width of 32 bits is broken apart by logic in the processor to two 16-bit operations. As a result the EPC-6A, using the same VME interface and being a replacement for the EP6, never performs a VMEbus D32 access.

Byte Ordering

Unlike EPCs that have 32-bit buses, EPC-6A does not contain software-controlled byte-ordering hardware. The principal reason is that, as described in the previous section, EPC-6A never performs VMEbus D32 accesses, and therefore there is no feasible way in hardware to support both forms of byte ordering on what a program would see as a 32-bit access.

EPC-6A accesses the VMEbus in little-endian (Intel) byte ordering, meaning that, for a 16-bit numerical value, the least-significant byte is assumed to be at the lowest memory address. This means, for instance, that if a big-endian processor (for example, Motorola 680x0) stored the 16-bit value 0102h, the EPC-6A would interpret its value as 0201h. If a big-endian processor stored the 32-bit value 01020304h and it were fetched by a program on the EPC-6A as a 32-bit operand (meaning, as explained above, the EPC-6A would perform two 16-bit accesses), the EPC-6A program would see the value as 04030201h.

The EPConnect Bus Manager software provides functions for swapping byte ordering during memory-copy operations.

Read-Modify-Write Operations

VMEbus RMW (read-modify-write) cycles can be performed through use of the 486DX2's LOCK instruction prefix with certain instructions along with BS16# being asserted. All of these instructions perform a read followed by a write. When such a read occurs that is mapped to the VMEbus, the EPC-6A treats it as the start of a VME RMW cycle. The next VME access from the 486DX2 is treated as the write that terminates the RMW cycle. For this reason, RMW accesses that cross a 16-bit boundary will not behave as expected (because the 486DX2 issues two read accesses).

Slave Accesses from the VMEbus

When SLE in the status/control register is set, the EPC-6A responds to accesses in a 4 MB range of the A24 space. All types of VME accesses (reads, writes, and read-modify-writes of all lengths) are supported, except for block transfer cycles and D32 accesses, as a result of EPC6 compatibility. The address modifier can specify supervisory, nonprivileged, program, or data.

The 4 MB space occupied by the EPC-6A in the VMEbus A24 space has the same view of EPC-6A memory as the 486DX2, except that only those accesses that map to EPC-6A DRAM memory are valid; all others respond with BERR.

Self Accesses Across the VMEbus

Since the EPC-6A's DRAM can be mapped into the VMEbus A24 address space, the EPC-6A can access its DRAM in an alternate way—by generating VMEbus accesses to the appropriate addresses. This can be of use in multiple-processor systems where some of the EPC-6A's DRAM is used as shared global memory; it means that the EPC-6A can access the global memory with the same addresses as used by other processors without needing to understand that the memory is actually on-board.

This ability is also useful in system checkout (for example, checking operation of the backplane).

A24 slave accesses result in accesses to the on-board DRAM and never to the cache. Because the EPC-6A's cache is a write-through cache, there is never a discrepancy between data in the cache and the DRAM. When a slave access results in a *write* into the DRAM, the EPC-6A automatically purges the cached entry, via cache invalidation operation.

Read-Modify-Write Operations

The EPC-6A provides synchronization integrity in its local DRAM between accesses from the 486DX2 into the DRAM and RMW VME accesses from other masters into the DRAM.

When a VMEbus slave read access occurs to the local DRAM, the EPC-6A watches the VMEbus data and address strobes to determine if the cycle is an RMW cycle. If it is, accesses by the 486DX2 are held up until the terminating access of the RMW cycle occurs.

When the 486DX2 performs a locked access (for example, via an instruction using the LOCK instruction prefix) to the local DRAM, VMEbus slave accesses are held up until the last locked access completes.

VMEbus Interrupt Handler

Although software available for the EPC-6A shields the user from the details of interrupt handling, the following information is provided for the reader who needs further detail.

The relationship between VME interrupts (and other interrupt-causing events) and an interrupt as seen by a program is shown in the following diagram.

Interrupts and events are visible in two state registers. These are unlatched, meaning that a read of the state register shows the actual state of the signals at the instant of the read. The exception is BERR, which is a "sticky" bit, meaning that the bit signifies whether BERR had ever been asserted. The convention used is that a 0 bit signifies an asserted (interrupting) state.

The primary purpose of the state registers is to let the interrupt handler software determine which interrupts and events generated the IRQ10 interrupt to the processor. The state registers can also be read by non-interrupt-handler software to poll for the state of these signals.

The enable registers allow one to mask selectively these 12 states. A 0 state bit and a corresponding 1 enable bit causes the PC architecture IRQ10 interrupt to be asserted.

Unlike the 12 input conditions, which are level sensitive inputs, the PC architecture defines the PC interrupts, such as IRQ10, as edge sensitive. This requires special attention if you are writing your own interrupt handlers (for example, if you are not using the functions in the Bus Manager software). Because IRQ10 is edge triggered, you could miss an incoming interrupt/event that occurs when IRQ10 is disabled, meaning that your software needs to test for and handle all pending interrupts/events before you leave from the IRQ10 interrupt handler. To do this correctly, follow the following steps. These steps assume the reader is familiar with the programming of the 8259 interrupt controller in the PC architecture.

- 1. When the IRQ10 interrupt occurs, acknowledge the interrupt by sending end-of-interrupt to both 8259 interrupt controllers.
- 2. Depending on your environment, you may wish to switch to another stack (a must under DOS), and may wish to save the state of the VME modifier and address registers if you will be using them.
- 3. To prevent reentry to the interrupt handler, mask off all the interrupts/events or mask off the IRQ10 interrupt. (Reenable what you have masked off at the end of the interrupt handler.)
- 4. Find an enabled pending interrupt/event.
- 5. If an enabled pending VMEbus interrupt is found, do an interrupt-acknowledge cycle by setting the IACK bit in the VME modifier register and performing a VMEbus read, setting address bits A3–A1 to denote the interrupt number. This returns the status/ID value from the interrupter. For the other controllable conditions (message, sticky BERR, watchdog timer), you may follow the instructions earlier in this chapter to remove these interrupting conditions.
- 6. Perform application-dependent handling of the interrupt/event.
- 7. If there are still enabled pending interrupts/events, go to step 4. If not, return from the IRQ10 interrupt handler.

VMEbus Interrupt Response

When the EPC-6A's interrupt generator register is used to assert an interrupt, the EPC-6A formulates a status/ID value that is transmitted on the bus as the response to a matching interrupt acknowledgeInterrupt:acknowledgement cycle. The EPC-6A acts as both a D08(O) and D16 interrupter. For D08 interrupt acknowledge cycles, the status/ID value is the EPC-6A's logical address (11111aaa, where aaa is the value of ULA as defined in port 814A). For D16 interrupt-acknowledge cycles, the status/ID value consists of 16 bits. The upper eight bits are the upper half of the response register (the value in I/O port 814B) and the lower eight bits are the logical address.

VMEbus Mapped Registers

EPC-6A follows the lead of the VXIbus specification in defining a standard set of configuration registers that are mapped into the VMEbus A16 space and thus accessible by other VMEbus modules. These registers are 16-bit registers occupying 64 bytes of A16 space at a base address defined by the EPC-6A's logical address. The base address is:

1111 111a aa00 0000

where aaa is the value of the ULA field in the response register at I/O port 814A.

The VME-mapped registers are a subset of those defined previously as I/O ports in the EPC-6A. The registers are dual-ported in that they are accessible both from VME and from within the EPC-6A as ports in its I/O space. The VME mapped registers are defined in the next table.

Offset Upper byte Lower byte 0 ID (8141) ID (8140) 2 Device type (8143) Device type (8142) 4 Status/control (8145) Status/control (8144) 6 Slave offset (8147) Slave offset (8146) 8 Protocol (8149) Protocol (8148) Ā Response (814B) Response (814A) $\overline{\mathsf{C}}$ Message high (814D) Message high (814C) E Message low (814F) Message low (814E)

Table 4-2. VME mapped registers

The registers occupy the first 16 bytes of the 64-byte space; the remainder of the space is undefined. (Actually, the registers are mapped into each 16-byte chunk of the 64-byte space.)

Reads and writes of the registers from VME and as I/O ports have identical results and effects except for the following:

- 1. Changing the RELM, ARBPRI, and ARBM fields of the status/control register from VME will appear to have changed the fields (for example, if the register is then read), but the new values will not effect the EPC-6A's bus-control logic. To use these fields for their intended purpose, they must be set by I/O port accesses.
- 2. A read of the response register from VME clears the LOCK bit (immediately after the current value of the response register is returned).

5

Theory of Operation

This chapter specifies other information about EPC-6A operation useful to the system designer. The following diagram shows the major elements of the EPC-6A and data paths among them.

Figure 5-1. Block Diagram

Processor, Coprocessor, and Memory

The processor is an Intel 486DX2 in a 168 pin PGA package, with 32-bit architecture. The Intel 486DX2 processor has an internal 8KB on-chip cache and an integrated floating point unit. There is one factory-installed 4MB DRAM option.

Application Flash Memory or RFA

A 1MB array of nonvolatile flash memory is provided in the form of an E280085A component. The flash memory is mapped into its own address space beginning at address 0. This address space is accessible through address and data registers in the I/O space. It

also contains Datalight ROM-DOS (version 6.22, revision 2.1) as a 250KB portion of the memory space.

The intent of the flash memory is to hold application programs in a standard file-system format, as opposed to being directly user accessible. Software drivers are provided with the EPC-6A for this purpose.

Flash Boot Device

The 28F004BV-T contains two 8KB parameter blocks. Block 1 is used for System BIOS code storage and is not available for application use.

Nonvolatile SRAM Memory

A 128K x 8 bit array of nonvolatile SRAM memory is provided. The software supports only 32KB of SRAM. The SRAM address space is accessible through I/O registers where 8380h, 8381h, and 8382h control the address and 8384h provides data access.

The BIOS and ROM DOS use the upper 2 KB of the SRAM array to communicate error messages to the setup program. Thus the user should consider the SRAM as a 30 KB array. Information in the upper 2 KB of the SRAM memory runs the risk of getting destroyed by the BIOS after a reset. Writing into the upper 2 KB of SRAM memory runs the risk of destroying error messages saved for the setup program.

Battery

The battery powers the CMOS RAM and TOD clock when system power is not present. At $60\times C$, the battery should have a shelf life of over four years. In a system that is powered on much of the time and where the ambient power-off temperature is less than $60\times C$, the battery is estimated to have a life of 10 years.

The battery holder is for a 23 mm coin cell, such as a Panasonic BR2330 or Rayovac BR2335.

To remove or replace the battery, first remove the EXM card guide above the battery by removing its three mounting screws. The battery cell is held in place by a spring lever. To remove the battery, apply downward pressure to the cell in the vicinity of the base of the spring (a small screwdriver may be used), while at the same time applying lateral pressure to the cell in the direction away from the spring base.

A new cell is installed by sliding it beneath the spring until it snaps into the holder. Ensure that the spring has not been damaged and that it is in firm contact with, and applying downward pressure on, the battery cell.

Interrupts

The following table shows interrupt assignment.

Table 5-1. Interrupts

Interrupt	Source	
NMI	DRAM parity error, EXMbus I/O channel check	
IRQ0	Timer (connected to R400 internal 8254 count 0 out)	
IRQ1	Keyboard controller (R400 internal)	
IRQ2	Cascade interrupt input	
IRQ3	COM2 serial port	
IRQ4	COM1 serial port	
IRQ5	unassigned	
IRQ6	unassigned/floppy disk	
IRQ7	unassigned	
IRQ8	Real-Time clock	
IRQ9	unassigned	
IRQ10	VME interrupt/event	
IRQ11	front-panel toggle switch	
IRQ12	not available	
IRQ13	coprocessor (FERR)	
IRQ14	unassigned/IDE	
IRQ15	unassigned	

Watchdog Timer

EPC-6A contains a continually running timer having a period of approximately either 8 seconds or 250 milliseconds (software selectable). The watchdog timer event is generated whenever the period expires. This event may be enabled as a source of the IRQ10 interrupt or as a complete reset. The timer is reset to its maximum value by an I/O write to the module status/control register.

EXMbus

The EXM bus, an I/O expansion bus, is provided on a connector to allow the user to insert one EXMbus module. The EXMbus is very similar to the PC/AT ISA I/O bus. In addition, it contains a signal -EXMID used for dynamic recognition and configuration of EXMs. EXMs respond to one or more I/O addresses in the range 100h–107h only when their –EXMID line is asserted. EXMs are required to return a unique EXM-type identification byte in response to a read from I/O address 100h. Since the EPC-6A has only a single EXM slot, its –EXMID line is wired as asserted.

Although IRQ11 is on the EXMbus, IRQ11 is also used by the reset/abort toggle switch and is driven by a totem-pole driver that has no tristate. Thus the IRQ11 interruptIRQ11 interrupt is not available to EXM modules.

Further information on the EXMbus, its connectors, and standards for building EXMs is available upon request.

VMEbus Interface

The EPC-6A connects to the VMEbus J1 connector. All of the VMEbus signals and voltages on this connector are used except for SERCLK, SERDAT, and +5V STDBY.

The EPC-6A, when configured as an A24 slave, responds with BERR if another bus master attempts a D32 access into the EPC-6A's memory. It also responds with BERR if another master does an access that would map to other than DRAM within the EPC-6A.

The EPC-6A does address pipelining in one circumstance—when the EPC-6A has been granted the bus while some other master is performing a bus cycle. In this circumstance the EPC-6A will start its cycle (for example, drive AS* low) before the other master has removed its data strobes (for example, before DS0* and DS1* are driven high).

The EPC-6A performs write pipelining of 486 write cycles to the VMEbus. The VME control logic signals completion to the 486 of a write cycle that is mapped to the VMEbus as soon as the VMEbus AS* signal has been driven low and the data from the 486 has been latched.

VMEbus System Controller Functions

When the EPC-6A is configured as the VMEbus system controller, it performs the standard VMEbus system controller functions. It serves as the bus arbiter (priority or round robin), drives the 16 MHz SYSCLK signal, and starts the IACK daisy chain.

The SYSFAIL LED is operable only when the EPC-6A is configured as the system controller.

When configured as the system controller, the EPC-6A also detects and terminates bus timeouts. Once it sees either of the DS0 and DS1 lines asserted, a counter is started. If the counter expires before both DS0 and DS1 are deasserted, the EPC-6A asserts the VMEbus BERRsignal until both data strobes are deasserted. The duration of the counter is approximately 100 microseconds.

VMEbus Timing

The following table contains some illustrations of the duration of VMEbus operations. The times were measured with the EPC-6A in the ROR bus-release mode.

Table 5-2. VMEbus timing

Operation	Time
Fill VMEbus slave memory, each iteration of REP,STOSW instructions	300 ns + DS-DTACK slave's write access time
Move block of local memory to VMEbus slave memory, each iteration of REP,MOVSW instructions	400 ns + the greater of: 50 ns slave's DS-DTACK write access time
Move block of VMEbus slave memory to local memory, each iteration of REP,MOVSW instructions	650 ns + DS-DTACK slave's read access time
Write access from another master to the EPC-6A's DRAM	DS-DTACK time = 325 ns+ HI HI is hold-interference time, can range from 0 to 15000 ns, typically is 150 ns
Read access from another master to the EPC-6A's DRAM	DS-DTACK time = 450 ns + HI HI as defined above

6

Error Messages

This chapter lists error and warning messages, alphabetized by message text. These are messages generated by the BIOS and MS-DOS that may be related to your hardware configuration.

CMOS checksum invalid

Something in the nonvolatile CMOS RAM is incorrect. Run the BIOS setup program to determine what is wrong, and correct it. If the error occurs repeatedly, the EPC-6A's battery has failed. This error is available only on a VGA screen.

CMOS RAM error, check battery / run setup

Something in the nonvolatile CMOS RAM is incorrect. Run the BIOS setup program to determine what is wrong, and correct it. If the error occurs repeatedly, first try reinitializing all CMOS RAM parameters. If the problem still occurs, the EPC-6A's battery has failed. This error is available only on a VGA screen.

EXM configuration error

The EXM installed (or not installed) does not match the configuration information in the novolatile CMOS RAM. Hitting any key will allow you to continue, but doing so may cause problems later if software tries to use the EXM. To correct the problem, enter the remote setup program, change the information on the setup screen and reboot. This message is logged to the NVRAM.

Real time clock error - run setup

The battery-backed TOD clock is incorrect. Run the BIOS setup program to determine what is wrong, and correct it. If the error occurs repeatedly, the EPC-6A's battery has failed. This error is available only on a VGA screen.

Seven-Segment Display Codes

The following list shows the two-digit codes displayed in the seven-segment display when a catastrophic selftest failure is detected. The two digits display repeatedly in the following way: first digit, pause, second digit, long pause.

Table 6-1. Seven-segment display failure codes

Code	Description	Code	Description
01	Selftest initiation	18	Memory refresh test
02	Chipset initialization	19	Interrupt vector table initialization
03	Chipset initialization	1A	does not occur
04	DRAM controller initialization	1B	does not occur

Code	Description	Code	Description
05	DRAM initialization	1C	Interrupt controller test
06	DRAM 0- and F-page test	1D	Interrupt controller test
07	DRAM byte enable logic test	1E	Battery level test
08	Copy ROM	1F	CMOS checksum test
09	Copy ROM	20	Configuration byte initialization
0A	Copy ROM	21	Size system memory
0B	Copy ROM	22	System memory test
0C	Copy ROM	23	Stuck interrupt test
0D	Copy ROM	24	Stuck NMI (parity/IOCHK) bit test
0E	Clear 8042 interface	25	Interrupt controller test
0F	Reset 8042 interface	26	Size extended memory
10	PC hardware initialization	27	Extended memory test
11	Video interface initialization	28	VME interface test
12	Timer test	29	VXI register test
13	CMOS shutdown test	2A	COM1 serial port test
14	DMA test	2B	COM2 serial port test
15	DMA test	2C	Cache test
16	DMA page registers test		
17	does not occur		

Phoenix NuBIOS Checkpoints

The Phoenix™ NuBIOS writes a number of checkpoints to I/O port 80h just before they are executed. Note that the execution order of the POST tests generally follows the order listed in the tables below, but not exactly.

Table 6-2. Phoenix™ NuBIOS Auxiliary Checkpoint Codes

Beep code	Post code	Checkpoint description
	02h	Verify Real Mode
	04h	Get CPU type
	06h	Initialize system hardware
	08h	Initialize system controller registers with initial POST values
	09h	Set in POST flag
	0Ah	Initialize CPU registers
	0Bh	Enable CPU cache
	0Ch	Initialize cache to initial POST values
	0Eh	Initialize I/O
	0Fh	Initialize localbus IDE
	11h	Load alternate registers with initial POST values
	12h	Jump to UserPatch0
	14h	Initialize keyboard controller
1-2-2-3	16h	BIOS ROM checksum
	18h	8254 timer initialization
	1Ah	8237 DMA controller initialization
	1Ch	Reset Programmable Interrupt Controller
1-3-1-1	20h	Test DRAM refresh

Beep code	Post code	Checkpoint description
1-3-1-3	22h	Test 8742 Keyboard Controller
	24h	Set ES segment to register to 4GB
	28h	Autosize DRAM
	2Ah	Clear 512KB base RAM
1-3-4-1	2Ch	Test 512KB base address lines
1-3-4-3	2Eh	Test low byte of 512KB base memory
1-4-1-1	30h	Test high byte of 512KB base memory
	32h	Test CPU bus-clock frequency
	34h	Test CMOS RAM
	35h	Initialize alternate system controller registers
	36h	Warmstart shutdown entry point
	37h	Reinitialize the system controller
	38h	Shadow system BIOS ROM
	39h	Reinitialize the cache
	3Ah	Autosize cache
	3Ch	Configure advanced system controller registers
	3Dh	Load alternate registers with CMOS values
	40h	Set Initial CPU speed
	42h	Initialize interrupt vectors
	44h	Initialize BIOS interrupts
2-1-2-3	46h	Check ROM copyright notice
	47h	Initialize manager for PCI Option ROMs
	48h	Check video configuration against CMOS
	49h	Initialize PCI bus and devices
	4Ah	Initialize all video adapters in system
	4Bh	Display QuietBoot™ screen
	4Ch	Shadow video BIOS ROM
	4Eh	Display copyright notice
	50h	Display CPU type and speed
	51h	Initialize EISA board
	52h	Test keyboard
	54h	Set key click if enabled
	56h	Enable keyboard
2-2-3-1	58h	Test for unexpected interrupts
	5Ah	Display prompt "Press F2 to enter SETUP"
	5Ch	Test RAM between 512KB and 640KB
	60h	Test extended memory
	62h	Test extended memory address lines
	64h	Jump to UserPatch1
	66h	Configure advanced cache registers
	68h	Enable external and CPU caches
	6Ah	Display external cache size
	6Ch	Display shadow message
	6Eh	Display non-disposable segments
	70h	Display error messages
	72h	Check for configuration errors
		=

Beep code	Post code	Checkpoint description
	74h	Test real-time clock
	76h	Check for keyboard errors
-	7Ah	Test for key lock on
	7Ch	Set up hardware interrupts vectors
	7Eh	Test coprocessor if present
	80h	Disable onboard I/O ports
	82h	Detect and install external RS232 ports
	84h	Detect and install external parallel ports
	85h	Initialize PNP ISA devices
	86h	Re-initialize onboard I/O ports
	88h	Initialize BIOS Data Area
	8Ah	Initialize Extended BIOS Data Area
	8Ch	Initialize floppy controller
	90h	Initialize hard disk controller
	91h	Initialize localbus hard disk controller
	92h	Jump to UserPatch2
	93h	Build MPTABLE for multiprocessor boards
	94h	Disable A20 address line
-	95h	Install CDROM for boot
	96h	Clear huge ES segment register
1-2	98h	Search for option ROMs (beep for bad checksum)
	9Ah	Shadow option ROMs
	9Ch	Set up Power Management
	9Eh	Enable hardware interrupts
	A0h	Set time of day
	A2h	Check keylock
	A4h	Initialize typematic rate
	A8h	Erase F2 prompt
	AAh	Scan for F2 keystroke
	ACh	Enter SETUP
	AEh	Clear in-POST flag
	B0h	Check for errors
	B2h	POST done—prepare to boot operating system
	B4h	One beep
	B5h	Display MultiBoot menu
	B6h	Check password (optional)
	B8h	Clear global descriptor table
	BCh	Clear parity checkers
	BEh	Clear screen (optional)
	BFh	Check virus and backup reminders
	C0h	Try to boot with INT19

Table 6-3. Phoenix[™] NuBIOS Checkpoint Codes.

Beep code	Post code	Checkpoint description
	D0h	Interrupt handler error

Beep code	Post code	Checkpoint description
	D2h	Unknown interrupt error
	D4h	Pending interrupt error
	D6h	Initialize option ROM error
	D8h	Shutdown error
	DAh	Extended Block Move
	DCh	Shutdown 10 error

Table 6-4. Phoenix™ NuBIOS Boot Block Checkpoint Codes

Beep code	Post code	Checkpoint description
	E2h	Initialize the system controller
	E3h	Initialize refresh counter
	E4h	Check for Forced Flash
	E5h	Check HW status of ROM
	E6h	BIOS ROM is OK
	E7h	Do a complete RAM test
	E8h	Do OEM initialization
	E9h	Initialize interrupt controller
	EAh	Read in bootstrap code
	EBh	Initialize all vectors
	ECh	Boot the Flash program
	EDh	Initialize the boot device
	EEh	Boot code was read OK

Support Software

The following programs are available for the EPC-6A:

Item	Filename	Description
RadiSys BIOS reflash tools and	ABORTSWI.EXE	When placed in the AUTOEXEC.BAT program, this file alters the EPC-6A's boot behavior via the toggle switch.
images	FLSHDUMP.EXE	Dumps the contents of the EPC-6A's RFA to a 1MB file. This utility can be used to create "Gold Disks" for the RFA.
	UTILS.TXT	Describes the contents of the UTILS directory.
BIOS directory	BIOS512K.ROM	512K bios image (used with the FBD command in forced recovery).
	BIOS.ROM	256K bios image (used with the BIOS command in forced recovery).
	BIOS.TXT	Describes BIOS images.
Sample directory	AUTOEXEC.BAT	Sample AUTOEXEC.BAT file which you can use as a template for the user AUTOEXEC.BAT file.

Item	Filename	Description
FLASH directory	README.TXT	Text file that describes the RFA image and recovery procedures
	6A_V102.ZIP	A factory default zipped (archived) RFA image that you must unzip before use. The readme file explains how to extract this file. Once unzipped, you can upload this file to the RFA via forced recovery.
ROMDOS disk	ROMDOS	A collection of utilities, drivers, system files, and documentation that make up the ROMDOS operating system.
EPCONTRL disk		See the EPCONTRL documentation for more information.

Support and Service

In North America

Technical Support

RadiSys maintains a technical support phone line at (503) 615-1100 that is staffed weekdays (except holidays) between 8 AM and 5 PM Pacific time. If you have a problem outside these hours, you can leave a message on voice-mail using the same phone number. You can also request help via electronic mail or by FAX addressed to RadiSys Technical Support. The RadiSys FAX number is (503) 615-1150. The RadiSys E-mail address is support@radisys.com. If you are sending E-mail or a FAX, please include information on both the hardware and software being used and a detailed description of the problem, specifically, how the problem can be reproduced. We will respond by E-mail, phone or FAX by the next business day.

Technical Support Services are designed for customers who have purchased their products from RadiSys or a sales representative. If your RadiSys product is part of a piece of OEM equipment, or was integrated by someone else as part of a system, support will be better provided by the OEM or system vendor that did the integration and understands the final product and environment.

World Wide Web

RadiSys maintains an active site on the Technical Support:world wide web access. The home-page URL is:

http://www.radisys.com

The site contains current information about the company and locations of sales offices, describes new and existing products, provides contacts for sales, service, and technical support information, and offers news about the company. You can also send E-mail to RadiSys using the web site. All requests for sales, service, and technical support information receive a prompt response.

Repair Services

Factory Repair Service is provided for all RadiSys products. Standard service for all RadiSys products covers factory repair with customers paying shipping to the factory and RadiSys paying for return shipment. Overnight return shipment is available at customer expense. Normal turn-around time for repair and re-certification is five working days.

Quick Exchange services (immediate shipment of a loaner unit while the failed product is being repaired) or other extra-cost services can be arranged, but need to be negotiated in advance to allow RadiSys to pool the correct product configurations. RadiSys does not maintain a general "loaner" pool. Units are available only for customers that have negotiated this service in advance.

RadiSys does not provide a fixed-price "swap-out" repair service, as customers have indicated that issues of serial number tracking and version control make it more convenient to receive their original products back after repair.

Warranty Repairs

Products under warranty (see warranty information in the front of this manual) will have manufacturing defects repaired at no charge. Products sent in for warranty repair that have no faults will be subject to a recertification charge. Extended Warranties are available and can be purchased at a standard price for any product still under warranty. RadiSys will gladly quote prices for Extended Warranties on products whose warranties have lapsed; contact the factory if this applies.

Customer induced damage (resulting from misuse, abuse, or exceeding the product specifications) is not covered by the standard product warranty.

Non-Warranty Services

There are several classes of non-warranty service. These include repair of customer induced problems, repairs of failures for products outside the warranty period, recertification (functional testing) of a product either in or out of warranty, and procurement of spare parts.

All non-warranty repairs are subject to service charges. RadiSys has determined that pricing repairs based on time and materials is more cost-effective for the customer than a flat-rate repair charge. When product is received, it will be analyzed and, if appropriate, a cost estimate will be communicated to the customer for authorization. After the customer authorizes the repair and billing arrangements have been made, the product will be repaired and returned to the customer.

A recertification service is provided for products either in or out of warranty. This service will verify correct operation of a product by inspection and testing of the product with standard manufacturing tests. There is a product-dependent charge for recertification.

There are only a few components that are generally considered field-repairable, but, because RadiSys understands that some customers want or need the option of repairing their own equipment, all components are available in a spares program. There is a minimum billing charge associated with this program.

Arranging Service

To schedule service for a product, please call RadiSys RMA Dispatcher directly at (800) 256-5917. Have the product model and serial numbers available, along with a description of the problem. An RMA Dispatcher will issue a Returned Materials Authorization (RMA) number, a code number by which we track the product while it is being processed. Once you have received the RMA number, follow the instructions of the RMA Dispatcher

and return the product to us, freight prepaid, with the RMA number clearly marked on the exterior of the package. If possible re-use the original shipping containers and packaging. In any case, be sure you follow good ESD-control practices when handling the product, and ensure that anti-static bags and packing materials with adequate padding and shock-absorbing properties are used.

Ship the product, freight prepaid, to:

Product Service Center RadiSys Corporation 5445 NE Dawson Creek Drive Hillsboro, Oregon 97124

When shipping the product, include the following information: return address, contact names and phone numbers in purchasing and engineering, and a description of the suspected problem. Any ancillary information that might be helpful with the debugging process will be appreciated.

Other Countries

Contact the sales organization from whom you purchased your RadiSys product for service and support.

A

Connectors

This chapter specifies the details of the connectors and headers on the EPC-6A The EXMbus connector is not defined here; its definition is available upon request.

Front Panel LEDs

The EPC-6A has four discreet LEDs in the front panel's top left corner. The front panel also contains a seven-segment LED display. For detailed information about the seven-segment LED display, see *Front Panel Indicators* on page 12.

Table A-1. LEDs

^{*} The Master LED on and the Run LED off indicates that the EPC-6A stopped because either it can't access the bus, or because no module responded to the access and the access has not timed out.

Speaker Connector

The speaker header on the EPC-6A circuit board is defined as:

Table A-2. Speaker Connector

Pin	Signal	Pin	Signal
1	Reference voltage	2	Speaker tone

Keyboard Connector

The standard PS2 keyboard connector, available in the front panel, is a 6-pin mini-DIN connector defined as follows:

Table A-3. Keyboard Pin-out

Pin	Signal	Pin	Signal
1	Data	4	+5V
2	Not used	5	Clock
3	Ground	6	Not used

Serial port connectors

The next table defines the DB-9 COM1serial port connector.

1 0 6

Table A-4. COM1 Connector

Pin	Signal	Pin	Signal
1	Carrier detect	6	Data set ready
2	Receive data	7	Request to send
3	Transmit data	8	Clear to send
4	Data terminal ready	9	Ring indicator
5	Signal ground		

A second serial port, addressable at PC serial port COM2, COM2 exists in the form of a 10-pin header on the printed-circuit board near the bottom of the front panel. Pin 2 is the pin closest to the front panel and the bottom. The header is defined as:

Table A-5. COM2 Connector

6	Pin	Signal	Pin	Signal
	1	Carrier detect	6	Clear to send
	2	Data set ready	7	Data terminal ready
	3	Receive data	8	Ring indicator
	4	Request to send	9	Signal ground
10	5	Transmit data		unconnected
			☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐

VMEbus Connectors

EPC-6A has a standard VMEbus P1 connector. It does not access the P1 pins +5VSTDBY, SERCLK, and SERDAT.

About the Flash Boot Device

This appendix describes how to reflash the Flash Boot Device (FBD) which contains the EPC-6A System BIOS and the picoFlash BIOS extension. The FBD's memory map is shown below:

Figure B-1. EPC-6A FBD Memory Map

Main Block #1 and #2 are reserved.

The EPC-6A employs Phoenix PicoBIOS version 4.05, implemented as a flash BIOS using the 4 Mb (512 KB) Intel 28F004 SmartVoltage Boot Block. The Flash Boot Device (FBD) contains a 16 KB boot block which holds the BIOS initializing and recovery code

Main block #3 contains an 8KB RadiSys manufacturing BIOS and the PicoFlash BIOS extension.

The system BIOS code image resides in main block 4.

Parameter blocks 1 & 2 contain the System BIOS code.

The FBD is memory addressed and resides in the last 512KB of physical address space at addresses 3F80000h through 3FFFFFh. The System BIOS is shadowed and write-protected at 0E0000h through 0FFFFFh (128KB) upon any system reset (warm boot, shutdown, power-up or "reset button" reset).

The boot block, main blocks, and parameter blocks are protected against accidental writes. Three register bits in the R400's BIOS Control Register gate the WE# signal into the flash parts, and the boot block is further protected by a jumper which must also be in place before writes to the boot block can take place.

Forced recovery

A "force recovery" jumper is provided which is readable by the boot block and can force the boot block to initiate a BIOS recovery sequence. This jumper is readable by the boot block and can force the boot block to initiate a recovery sequence should the other methods of initiating the sequence become inaccessible (for example, the System BIOS becomes corrupted such that the system cannot boot to the OS).

The following table describes the exact sizes and placement of the various code and data objects present in the FBD:

Object Name	FBD Offset	Object Size	Write Enable
Boot and recovery code	7C000h	16KB	BB write-enable jumper
System BIOS	60000h	96KB	In chipset
PicoFlash BIOS extension	4A000h	16KB	In chipset

Table B-1. FBD object placement

The recovery process occurs because the boot block detects corrupt a BIOS or the force recovery jumper is installed. System BIOS corruption is detected by calculating an 8-bit checksum over the area occupied by System BIOS code.

The recovery is performed by using any Serial Communication Package (SCP) which supports the XModem/CRC protocol. The SCP speed is determined automatically.

To determine the baud rate at which the SCP is running, the user repeatedly presses the space bar. The autobaud mechanism should determine the baud rate that the SCP is running at. If the baud rate is not determined before a predetermined timeout value, the baud rate is defaulted to 9600 baud. The recovery module autobaud mechanism then detects one of the following supported baud rates: 9600, 19200, 38400, 56800 or 115200.

The SCP executes on an external host computer and establishes a communication link with the EPC-6A via the recovery serial port. The recovery mechanism supports the recovery of:

- Bootblock
- System BIOS and BIOS extensions, Main Blocks 3-4, Parameter block 1 & 2
- FBD, the entire 512K (minus the 16K bootblock) device is reflash, no attempt is made to reprogram the bootblock.
- RFA
- CMOS

Images suitable for update or recovery use absolute binary format (8-bit data, little endian byte ordering).

The EPC-6A boot block XModem serial communication requires a straight-through serial connection to the external host computer and operates at the auto-detected baud rate with no parity, eight data bits, and 1 stop bit. Cabling between the host and the EPC-6A may be dictated by the SCP. However, the only RS-232 signals required by the EPC-6A are Tx, Rx, and Gnd.

When to Reflash the FBD

Install the boot block enable jumper only when updating the bootblock. Update your bootblock only when instructed to by RadiSys.

Before You Begin

Before you begin an FBD force update flash recovery, have the following items ready for use:

- External host computer with an installed Xmodem serial communication program, such as PROCOMM.
- Null modem cable.
- The new images for the FBD which are contained on the utilities diskette provided with the EPC-6A.

Reflashing Processes

You must install the following jumpers to start the reflash process:

JP2 FLASH WE

JP2 FORCE RECOVERY

JP1 WREN

Force Update

The force update process occurs because the boot block detects a corrupt system BIOS image (for example, a bad checksum for main block 2) or because you installed the force update jumper (JP2) at power up. A force update is necessary only to:

- Replace a system BIOS image damaged by power failure during an earlier flash update process.
- Recover from accidental writes to the FBD.

Enable FBD recovery when the system cannot boot to a DOS-compatible operating system.

Perform the force update flash recovery process by connecting a null modem serial cable between the EPC-6A's COM1 port and a source computer on which is installed an SCP that supports the Xmodem protocol. The SCP should also support terminal emulation, as the source computer serves only as a remote console during the flash recovery process. The SCP dictates necessary cabling between the source computer and the EPC-6A, however, the only RS-232 signals required by the EPC-6A are Tx, Rx, and GND.

Figure B-2. Null Modem Cable Connection

Power up the EPC-6A and execute the SCP on the source computer. Press the space bar repeatedly to invoke the autobaud capability, which automatically sets the baud rate for you. Set up the SCP to communicate with no parity, eight data bits, and 1 stop bit. The SCP should establish a straight-through serial communication link with the EPC-6A COM1 port. The EPC-6A boot block contains resident Xmodem code necessary to establish communication with the SCP, serially download the images to flash, and re-program the FBD.

Once the BIOS configures the communication port, the EPC-6A is ready to synchronize with the source computer through Xmodem. The EPC-6A receives no data from the source computer via the serial port until synchronization is complete.

When synchronization is complete and the force update flash recovery process is ready to begin, you must enter one of the following commands to define how the process occurs:

FBD	Reflashes the entire FBD (except the boot block).
BB	Reflashes the FBD boot block.
BIOS	Reflashes the system and video BIOS images.
EXIT	Ignores the force recovery jumper and continues booting the system BIOS.
HELP	Prints help messages that explain the FBD, BB, and BIOS commands.
RFA	Reflashes the RFA.
CMOS	Restores factory default values to CMOS. Use this command if a non-bootable CMOS configuration has been saved.

The force update flash recovery process will not begin unless you enter a command. When you enter the FBD, BB, or BIOS commands, code in the boot block automatically initiates the reflashing process. The SCP indicates the status of the recovery process while it occurs, displaying the activities of erasing and rewriting each image.

When the force update flash recovery process is complete and the FBD is recovered, the program issues the statement "flash recovery successful." Power down the EPC-6A and remove the serial interface cable. Also remove the force update jumper at JP2 if the force update process was not initiated by a corrupt image. Remove the write-enable jumpers if

you reflashed the FBD boot block. When you power up the system, it boots with the recovered BIOS images.

Note that the message: "Image has exceeded target size, Image is being truncated" is normal; this alerts the user that the bootblock was not reflashed.

C

Registers

Use this table to locate information about EPC-6A registers in the I/O space.

Register	Page
Overview	54
Memory Control Register (81004h)	54
VME A21–16 Address Register (8130h)	55
ID Registers (8140h and 8141h)	55
Device Type Registers (8142h and 8143h)	55
Status/Control Registers (8144h and 8145h)	55
Slave Offset Registers (8146h and 9147H)	56
Protocol Registers (8148h and 8149h)	
Response Registers (814Ah and 814Bh)	57
Message High Registers (814Ch and 814Dh)	58
Message Low Registers 814Eh and 814Fh)	58
VME Modifier Register (8151h)	58
VME Interrupt State Register (8152h)	59
VME Interrupt Enable Register (8153h)	59
VME Event State Register (8154h)	59
VME Event Enable Register (8155h)	59
Module Status/Control Register (8156h)	
Interrupt Generator Register (815Fh)	60
FSA Address Registers 8380h)	60
Flash Data Register (8383h)	61
SRAM Data Register 8384h)	
LED Register (8385h)	
Register State after Reset	61

Overview

Where a bit position has been described by a 0 or 1, the bit is a ROM bit, and writing to it has no effect. Unless otherwise noted, all registers and bit values are readable and writeable. TSEN, when set, inhibits the front panel toggle switch from generating a reset

Register
Memory Control Register
VME A21-16 Address Reg
ID Register, lower
ID Register, upper
Device Type Reg, lower
Device Type Reg, upper
Status/Control Reg, lower
Status/Control Reg, upper
Slave Offset Reg, lower
Slave Offset Reg, upper
Protocol Register, lower
Protocol Register, upper
Response Register, lower
Response Register, upper
Message High Reg, lower
Message High Reg, upper
Message Low Reg, lower
Message Low Reg, upper
VME Modifier Register
VME Interrupt State Reg
VME Interrupt Enable Reg
VME Event State Register
VME Event Enable Register
Module Status/Control Reg
Interrupt Generator Register
FSA7–0 Address Register
FS A15–8 Address Register
FS A19–16 Address Register
Flash Data Register
SRAM Data Register
LED Register

VMEbus address bits 21–16 res res res 8130f 1 1 1 0 0 1 1 0 0 8140f 1 0 0 0 1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	I/O port	
1 1 1 0 0 8140f 1 0 0 0 1 1 1 1 8141f 1 1 0 0 1 1 0 0 8144f 0 0 0 1 <			rese	rved			EVME	CDEN	8104h	
1 0 0 0 1 1 1 1 1 81411 1 1 0 0 1 1 1 1 1 1 81421 0 0 0 0 1 1 1 1 1 1 1 81431 SRIE RELM ARBPRI RDY PASS NOSF SLE 1 SYSR SYSF ARBM 1 1 1 1 81461 0 0 0 0 1 1 1 1 1 1 1 1 81461 0 0 0 0 1 1 1 1 1 1 1 1 81481 0 1 1 1 1 1 1 1 1 1 1 1 1 1 81491 LOCK 1 ABMH 1 1 ULA 81441 0 0 0 0 0 1 RRDY WRDY 1 81441 0 0 0 0 0 1 RRDY WRDY 1 81461 VME WA23-22 res IACK res AM4 AM2 AM1 81461 IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 81531 IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 81531 1 1 1 1 WDT ACFA BERR SYSF 81561 DONE AS DS0 DS1 res res FWDT ENRE 1561 1 1 1 1 0 INTERRUPT-OUT 81561 Flash/SRAM address bits 15-8 reserved Flash/SRAM address bits 19-16 83821	VMEbus address bits 21–16							res	8130h	
1 1 0 0 1 1 1 0 0 8142f 0 0 0 0 1 1 1 1 1 1 1 8143f SRIE RELM ARBPRI RDY PASS NOSF SLE 1 SYSR SYSF ARBM 1 1 1 1 8146f 1 1 1 1 1 1 1 1 1 1 1 1 1 8148f 0 0 0 0 1 1 1 1 1 1 1 1 1 8148f 0 1 0 1 0 1 1 1 1 1 1 1 1 8148f 0 1 0 0 0 0 1 1 1 1 1 1 1 1 8148f 0 0 0 0 0 1 1 1 1 1 1 1 1 8148f 0 0 0 0 0 1 1 RRDY WRDY 1 8148f 0 0 0 0 0 1 RRDY WRDY 1 8148f 0 0 0 0 0 1 RRDY WRDY 1 8148f VME WA23-22 res IACK res AM4 AM2 AM1 8148f IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 8153f IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 8153f 1 1 1 1 WDT ACFA BERR SYSF 8154f 1 1 1 1 WDT ACFA BERR SYSF 8155f DONE AS DS0 DS1 res res FWDT ENRE 8156f 1 1 1 1 1 0 INTERRUPT-OUT 815F Flash/SRAM address bits 15-8 8382f reserved Flash/SRAM address bits 19-16 8382f 8382f	1	1	1	0	1	1	0	0	8140h	
0 0 0 1 1 1 1 1 8143i SRIE RELM ARBPRI RDY PASS NOSF 8144i SLE 1 SYSR SYSF ARBM 1 1 1 8145i 1 <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>8141h</td>	1	0	0	0	1	1	1	1	8141h	
SRIE RELM ARBPRI RDY PASS NOSF SLE 1 SYSR SYSF ARBM 1 <t< td=""><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>8142h</td></t<>	1	1	0	0	1	1	0	0	8142h	
SLE 1 SYSR SYSF ARBM 1 1 1 1 8145f 1	0	0	0	1	1	1	1	1	8143h	
1 1	SRIE	RELM	ARE	BPRI		RDY	PASS	NOSF	8144h	
0 0 0 1 1 1 SLAVE BASE 8147h 1 1 1 1 1 1 1 1 1 1 8148h 0 1 0 1 1 1 1 1 1 8149h LOCK 1 ABMH 1 1 ULA 8149h 0 0 0 0 1 RRDY WRDY 1 8148h 814Ch 814Ch 814Ch 814Ch 814Ch 814Ch 814Ch 814Ch 814Ch 815Ch	SLE	1	SYSR	SYSF	ARBM	1	1	1	8145h	
1 1 1 1 1 1 1 1 1 1 1 8148ł 0 1 0 1 0 1 1 1 1 1 1 1 8149ł LOCK 1 ABMH 1 1 1 ULA 814Ał 0 0 0 0 0 1 RRDY WRDY 1 814Bł 814Cł 814Cł 814Eł VME WA23–22 res IACK res AM4 AM2 AM1 8151ł IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 8152ł IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 8153ł 1 1 1 1 1 WDT ACFA BERR SYSF 8154ł 1 1 1 1 1 WDT ACFA BERR SYSF 8154ł DONE AS DS0 DS1 res res FWDT ENRE 8156ł 1 1 1 1 0 INTERRUPT-OUT 815Fł Flash/SRAM address bits 7–0 8380ł Flash/SRAM address bits 15–8 8382ł reserved Flash/SRAM address bits 19–16 8382ł	1	1	1	1	1	1	1	1	8146h	
0 1 0 1 1 1 1 1 1 8149ł LOCK 1 ABMH 1 1 ULA 814Ał 814Ał 0 0 0 0 1 RRDY WRDY 1 814Bł 814Bł 814Cł 814Bł 814Eł 814Eł 814Eł 814Eł 814Eł 814Eł 814Eł 815tł	0	0	0	1	1	1	SLAVE	BASE	8147h	
LOCK	1	1	1	1	1	1	1	1	8148h	
0 0 0 1 RRDY WRDY 1 814Bf 814CF 814CF 814EF 814EF VME WA23—22 res IACK res AM4 AM2 AM1 8151f IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 8152f IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 8153f 1 1 1 1 WDT ACFA BERR SYSF 8154f 1 1 1 WDT ACFA BERR SYSF 8155f DONE AS DS0 DS1 res res FWDT ENRE 8156f 1 1 1 1 0 INTERRUPT-OUT 815Ff Flash/SRAM address bits 15—8 8381f reserved Flash/SRAM address bits 19—16 8382f	0	1	0	1	1	1	1	1	8149h	
814Cr 814Dr 814Er 814Fr 815Fr 815F	LOCK	1	ABMH	1	1		ULA			
814Dr 814Er 814Fr VME WA23-22 res IACK res AM4 AM2 AM1 RQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR RQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR R153r R1 1 1 1 WDT ACFA BERR SYSF R154r R00 DS1 res res FWDT ENRE R156r R1 1 1 1 0 INTERRUPT-OUT R1ash/SRAM address bits 7-0 R1ash/SRAM address bits 15-8 R14Fr R154r R154r R154r R154r R154r R155r R155r R156r R	0	0	0	0	1	RRDY	WRDY	1	814Bh	
S14Er S14Fr S15Fr S15F								•	814Ch	
Note									814Dh	
VME WA23–22 res IACK res AM4 AM2 AM1 8151h IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 8152h IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 8153h 1 1 1 1 WDT ACFA BERR SYSF 8154h 1 1 1 1 WDT ACFA BERR SYSF 8155h DONE AS DS0 DS1 res res FWDT ENRE 8156h 1 1 1 1 0 INTERRUPT-OUT 815Fh Flash/SRAM address bits 7-0 8380h Flash/SRAM address bits 15-8 8381h reserved Flash/SRAM address bits 19-16 8382h									814Eh	
IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 8152h IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 8153h 1									814Fh	
IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR 1	VME W	A23-22	res	IACK	res	AM4	AM2	AM1	8151h	
1 1 1 1 WDT ACFA BERR SYSF 8154f 1 1 1 1 WDT ACFA BERR SYSF 8155f DONE AS DS0 DS1 res res FWDT ENRE 8156f 1 1 1 1 0 INTERRUPT-OUT 815Ff Flash/SRAM address bits 7-0 Flash/SRAM address bits 15-8 reserved Flash/SRAM address bits 19-16 8382f 8383f 8383f	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	MSGR	8152h	
1 1 1 1 WDT ACFA BERR SYSF 8155h DONE AS DS0 DS1 res res FWDT ENRE 8156h 1 1 1 1 0 INTERRUPT-OUT 815Fh Flash/SRAM address bits 7-0 8380h Flash/SRAM address bits 15-8 8381h reserved Flash/SRAM address bits 19-16 8382h 8383h	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	MSGR	8153h	
DONE AS DS0 DS1 res res FWDT ENRE 8156h 1 1 1 0 INTERRUPT-OUT 815Fh Flash/SRAM address bits 7-0 8380h Flash/SRAM address bits 15-8 8381h reserved Flash/SRAM address bits 19-16 8382h 8383h	1	1	1	1	WDT	ACFA	BERR	SYSF	8154h	
1 1 1 1 0 INTERRUPT-OUT 815Fk Flash/SRAM address bits 7-0 8380k Flash/SRAM address bits 15-8 8381k reserved Flash/SRAM address bits 19-16 8382k 8383k 8383k	1	1	1	1	WDT	ACFA	BERR	SYSF	8155h	
Flash/SRAM address bits 7–0 8380h	DONE	AS	DS0	DS1	res	res	FWDT	ENRE	8156h	
Flash/SRAM address bits 15–8 8381h reserved Flash/SRAM address bits 19–16 8382h 8383h	1	1	1	1	0	INTE	RRUPT	-OUT	815Fh	
reserved Flash/SRAM address bits 19–16 8382h		Flash/SRAM address bits 7–0								
8383ł	Flash/SRAM address bits 15–8								8381h	
	reserved Flash/SRAM address bits 19–16								8382h	
8384									8383h	
03041										
TSEN LED6 LED5 LED4 LED3 LED2 LED1 LED0 8385h	TSEN	LED6	LED5	LED4	LED3	LED2	LED1	LED0	8385h	

Memory Control Register (81004h)

Memory Control Register	reserved	EVME	CDEN
-------------------------	----------	------	------

This register contains two control bits that pertain to the DRAM and the flash memory:

EVME

If set, allows E page (0E0000h) access to and from the VMEbus. This is necessary because the Phoenix BIOS occupies the memory region 0E0000h \sim 0FFFFF at POST. When POST is complete and just before INT 19, this bit is set to allow VME access.

CDEN

If set, the flash memory is accessible. If clear, writes to the flash data register have no effect and reads from it return an unpredictable value.

VME A21-16 Address Register (8130h)

When an access is performed by the EPC-6A in its "E page" (address range 0E0000–0EFFFF), the access is mapped onto the VMEbus. The least-significant sixteen of the VME address bits are provided directly (from the 486DX2), and the remaining 8 (for an A24 access) bits must come from somewhere else. Six of them come from this register. Bit 7 of this register is used as VME address bit 21, bit 6 as VME address bit 20, ..., and bit 2 as VME address bit 16.

The two low-order bits are reserved RAM bits. On writes, assign them the value 0. For compatibility with EPC-1, this register is aliased at I/O port addresses 8132, 8134, and 8136.

ID Registers (8140h and 8141h)

ID Register, lower	1	1	1	0	1	1	0	0
ID Register, upper	1	0	0	0	1	1	1	1

This read-only register adheres to the VXIbus specification. It defines the EPC-6A as a message-based device and the manufacturer as RadiSys Corporation.

Device Type Registers (8142h and 8143h)

Device Type Reg, lower	1	1	0	0	1	1	0	0
Device Type Reg, upper	0	0	0	1	1	1	1	1

This register adheres to the VXIbus specification. The first four bits of the upper half denote that the EPC-6A maps into a 4 MB range in the A24 space when used as a slave. The remaining ROM bits define the EPC-6A as having a model code of 4044.

Status/Control Registers (8144h and 8145h)

This register adheres to the VXIbus specification and also contains EPC-6A specific bits.

SRIE SYSRESET input enable. If set, assertion of VME SYSRESET generates a reset of the EPC-6A. One use of this bit is having EPC-6A software reset other VME devices (via bit SYSR) without resetting the EPC-6A.

RELM Bus release mode. If set, the bus release mode is ROR (release on request); otherwise it is the VXI RONR "fair requester" mode (request on no request). Altering this bit via the VME-mapped location of this register has no effect.

ARBPRI Arbitration priority. This defines the level at which the EPC-6A arbitrates for the VMEbus.

This value	Means	
11	3	
10	2	
01	1	
00	0	

Like for RELM, altering this field via the VME-mapped location of this register has no effect.

RDY This is a RAM bit defined by the VXI specification. In a VXIbus software environment, if RDY=1 and PASS=1, the EPC-6A is ready to accept VXI-defined messages. The VMEbus user needn't be concerned with this and the next bit.

PASS This is a RAM bit defined by the VXI specification. If set (1), the EPC-6A completed its selftest successfully.

NOSF SYSFAIL inhibit. If set, the EPC-6A cannot assert the VME SYSFAIL line.

RSTP Reset EPC. Setting this bit resets the EPC-6A.

SLE Slave enable. If set, the EPC-6A responds to certain A24 accesses on the VMEbus.

SYSR SYSRESET. The EPC-6A asserts the VME SYSRESET line while this bit is 1. When using this bit, it is software's responsibility to ensure that the VME specified minimum assertion time of SYSRESET is met.

SYSF SYSFAIL. The EPC-6A asserts the VME SYSFAIL line while this bit is 0 (zero). (The polarity of the bit is reversed from that of SYSRESET so that an EPC-6A reset—which clears this bit—causes SYSFAIL to be asserted until the BIOS stores a 1 in this bit.)

ARBM Arbitration mode. This bit is pertinent only if the EPC-6A is jumpered to be the VMEbus system controller. If set, the EPC-6A is a priority arbiter; otherwise it is a round-robin arbiter. Like for RELM, altering this field via the VME-mapped location of this register has no effect.

Slave Offset Registers (8146h and 9147H)

Slave Offset Reg, lower	1	1	1	1	1	1	1	1
Slave Offset Reg, upper	0	0	0	1	1	1	SLAVE	BASE

SLAVE BASE defines the base address of the EPC-6A's memory in the VMEbus A24 address space as follows: 00 - 000000, 01 - 400000, 10 - 800000, 11 - C00000.

Protocol Registers (8148h and 8149h)

Protocol Register, lower	1	1	1	1	1	1	1	1
Protocol Register, upper	0	1	0	1	1	1	1	1

This read-only register is defined by the VXIbus specification. In VXI systems, it defines the EPC-6A as being a servant and commander, having no signal register, being a bus master, and not providing fast handshake mode.

Response Registers (814Ah and 814Bh)

Response Register, lower	LOCK	1	ABMH	1	1	ULA	
Response Register, upper	0	0	0	0	1	RRDY WRDY	1

With the exception of LOCK, this register is defined by the VXIbus specification. It contains control bits associated with the message registers.

- LOCK If set, the message register can be locked for the sending of a message. If clear, the message register is locked.
- ABMH This bit is cleared when the message high register is read or written. It serves as a location monitor for determining whether a message is 16 or 32 bits in length.
- ULAULA Unique logical address. This determines the base of the registers in the VMEbus A16 space. 0 denotes FE00, 1 denotes FE40, 2 denotes FE80, 3 denotes FEC0, 4 denotes FF00, 5 denotes FF40, 6 denotes FF80, and 7 denotes FFC0.
- RRDY Read ready. As defined by VXI, a 1 denotes that the message registers contain outgoing data to be read by another device. RRDY is cleared when the message low register is read.
- WRDY Write ready. If set, the message registers are armed for an incoming message. When a write occurs into the message-low register, WRDY is cleared and the MSGR interrupt condition is asserted.

Although the intention is that the message register reads and writes that clear WRDY and RRDY come from another VMEbus processor, accesses to the message register as mapped into the EPC-6A's I/O space also have the same effect.

When the response register is read from the VMEbus, the current value of the register is read, and then LOCK is cleared. The protocol for sending a message to the EPC-6A, if there are multiple potential senders, is the following. The sender first reads the response register. If both WRDY and LOCK are 1, he may then proceed to send the message. For a 16-bit message, the sender writes into the message-low register. For a 32-bit message, he writes first into the message-high register and then the message-low register.

Message High Reg, lower	
Message High Reg, upper	

This register is an extension of the following register for 32-bit messages. An access to this register clears flag ABMH in the response register.

Message Low Registers 814Eh and 814Fh)

Message Low Reg, lower	
Message Low Reg, upper	

This register is typically used as an incoming message register by doing a D16 write into it from the VMEbus (this register, as are many others, are mapped into the VMEbus A16 address space, as discussed later).

VME Modifier Register (8151h)

This register is also used when the EPC-6A makes an access through its E page to the VMEbus. Bits 7 and 6 provide VME address bits A23 and A22, respectively. Bits 2–0 define the value placed on the associated VMEbus address-modifier lines. Register bits are not defined for the VMEbus address-modifier AM3 and AM0 lines since, for all defined address-modifier values in the VMEbus specification, AM3 is 1 and AM0 is the inverse of AM1. Therefore these two bit values are generated by hardware.

AMx These bits drive the VME address-modifier lines AM4, AM2, and AM1. The other three VME address-modifier lines are generated automatically: AM5 and AM3 are always 1 and AM0 is always the inverse of AM1. Thus these three register bits correspond to the following VMEbus functions:

- 000 A16 non-privileged access
- 001 reserved
- 010 A16 supervisory access
- 011 reserved
- 100 A24 non-privileged data access
- 101 A24 non-privileged program access
- 110 A24 supervisory data access
- 111 A24 supervisory program access
- IACK This bit, when set, is used to define the VMEbus access as an interrupt acknowledge cycle. The interrupt being acknowledged must be encoded by software as a value on VME address lines A1–A3.

For compatibility with other EPCs, when writing to this register assign 0 to reserved bit 5 and 1 to reserved bit 3.

VME Interrupt State Register (8152h)

VME Interrupt State Reg IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 MSGR

This read-only register defines the state of the VMEbus and message interrupts.

IRQx If clear (0), the associated VMEbus interrupt line is asserted.

MSGR If clear (0), a message interrupt is being signalled. MSGR is clear if both of bits

RRDY and WRDY in the response register are clear.

VME Interrupt Enable Register (8153h)

VME Interrupt Enable Reg | IRQ7 | IRQ6 | IRQ5 | IRQ4 | IRQ3 | IRQ2 | IRQ1 | MSGR

This is a mask of the interrupt conditions in the interrupt state register. A 1 denotes that the corresponding interrupt is enabled. If any bit in this register is a 1 and the corresponding bit in the interrupt state register is a 0, the EPC-6A IRQ10 interrupt is asserted. Software may then examine the interrupt and event state registers to determine the cause.

VME Event State Register (8154h)

VME Event State Register 1 1 1 1 WDT ACFA BERR SYSF

Similar to the interrupt state register, this register defines additional conditions that may result in an IRQ10 interrupt. If the bit is 0, the condition is present.

WDT The EPC-6A's watchdog timer's period has expired.

ACFA VMEbus ACFAIL is asserted.

BERR An access from the EPC-6A to the VMEbus was terminated with a BERR (bus

error).

SYSF VMEbus SYSFAIL is asserted.

All bits are read-only except BERR. BERR is a sticky bit that is cleared whenever an access from the EPC-6A is terminated by a bus error, and remains clear (0) unless changed by software (by writing any value to this register).

VME Event Enable Register (8155h)

VME Event Enable Register 1 1 1 1 WDT ACFA BERR SYSF

This is a mask of the interrupt conditions in the event state register. A 1 denotes that the corresponding event is enabled as an interrupt. If any bit in this register is a 1 and the corresponding bit in the event state register is a 0, the EPC-6A IRQ10 interrupt is asserted. Software may then examine the interrupt and event state registers to determine the cause.

Module Status/Control Register (8156h)

Module Status/Control Reg DONE AS DS0 DS1 res res FWDT ENRE

This register contains miscellaneous status and control bits.

DONE This read-only bit is 0 whenever the EPC-6A has a VMEbus access

outstanding. It is used for determining when a pipelined VMEbus write is

complete.

AS This read-only bit is 1 whenever the VMEbus AS (address strobe) signal is

asserted. It may be used for bus monitoring.

DS0 This read-only bit is 1 whenever the VMEbus DS0 (data strobe) signal is

asserted. It may be used for bus monitoring.

DS1 This read-only bit is 1 whenever the VMEbus DS1 (data strobe) signal is

asserted. It may be used for bus monitoring.

FWDT Fast watchdog timer. If clear, the period of the watchdog timer is

approximately 8 seconds. If set, the period is approximately 250 ms.

A write to the module status/control register also has a side effect of resetting the watchdog timer. Therefore, if you are using the watchdog timer, the intention is that you are required to write to this register within the defined period of the timer to prevent its generating an interrupt or reset.

Interrupt Generator Register (815Fh)

Interrupt Generator Register 1 1 1 1 0 INTERRUPT-OUT

This register is used to assert one of the VMEbus interrupt signals. If the INTERRUPT-OUT bits are zero, no interrupt line is asserted by the EPC-6A. If set to 001, IRQ1 is asserted. If set to 010, IRQ2 is asserted, and so on. If and when an interrupt acknowledge is sent to the EPC-6A, the INTERRUPT-OUT bits are cleared.

You can also deassert a previously asserted interrupt by writing 0 into the register.

FSA Address Registers 8380h)

FSA7–0 Address Register

Flash/SRAM address bits 7–0

FS A15–8 Address Register

Flash/SRAM address bits 15–8

FS A19–16 Address Register

reserved

Flash/SRAM address bits 19–16

These read/write registers specify the address of the byte to be accessed within the flash or SRAM array when the data register is accessed. Since the SRAM has software support for only 32 KB, the 15 low-order address bits are pertinent to it.

Flash Data Register (8383h)

Flash Data Register

This read/write register is used to access the byte in the flash memory array addressed by the FS address registers. A read returns the value of the addressed byte if bit CDEN in the memory control register is set; otherwise the read returns an unpredictable value. A write to this register writes to the addressed byte if bit CDEN is set and if the flash write-protect jumper is not installed on the board.

SRAM Data Register 8384h)

SRAM Data Register

This read/write register is used to access the byte in the nonvolatile SRAM array addressed by the FS address register. The BIOS and ROM DOS use the upper 2 KB of the SRAM array to communicate error messages to the setup program. Thus the user should consider the SRAM as a 30 KB array.

LED Register (8385h)

LED Register TSEN LED6 LED5 LED4 LED3 LED2

The LED register is a read/write register that controls the seven-segment display and reset toggle switch on the front panel.

TLEDx These bits control the segments of the LED seven-segment display as shown to the right. The segment is lit when the corresponding bit is 0.

TSEN This bit controls both the decimal point on the LED display and the front-panel toggle switch. When the bit is 0, the decimal point is lit and the front-panel switch is disabled. This bit can be used to prevent an inadvertent reset from the front-panel switch.

Register State after Reset

A hardware reset of the EPC-6A (not a keyboard CTRL+ALT+DEL reset) clears all of the register bits to 0, except for RELM, ARBM, ARBPRI, TSEN, and the registers at ports 8130 and 8151, which may be in an undefined state. (All bits, however, are cleared by a power-on reset.)

The above is not apparent, however, because the BIOS initialization sequence stores values in these register fields, largely as a result of the nonvolatile configuration information specified in the setup screen.

The BIOS clears the interrupt and event enable registers.

Index

Α	С
A16 28	Cache 25
A24 23, 55	CMOS RAM 10, 30
ACFAIL 26, 59	error 35
Address modifier 23, 25, 58	COM1 31, 46
Address strobe 60	COM2 31, 46
Altitude 1	Commander 57
Arbitration mode 56	Configuration information 10
Arbitration priority 56	Configuration registers 28
1 ,	Coprocessor 29
В	Current 1
Backplane jumpers 7	
Battery	D
cell type 30	D32 access 24, 32
failure 35	Daisy chain 7
header 5	Data strobe 60
holder 30	Device type register 55
life 30	Disk 10
removal 30	DRAM parity error 31
replacement 30	Did not purity error 31
BERR 24, 25, 26, 32, 59	E
Big endian 24	
BIOS	E page 23, 55, 58
force update flash recovery process defined 49	EPC-1 24, 55
initialization 9–??	EPControl 11
use of SRAM 30, 61	EXM
Block transfer cycles 25	bus 31
Boot Block	configuration error 35
description of the FBD 47	insertion 7
reflashing the 50	types 7
Boot device 10	EXM configuration error 9
Bus arbiter 32	EXM-3 7
Bus error 59	EXM-9 7
Bus grant 45	EXMbus 31
Bus Manager 24, 27	EXMID signal 31
Bus monitoring 60	_
Bus release 55	F
Bus timeout 32, 45	Fast handshake mode 57
bus timeout 5	Flash Boot Device
Byte ordering 24	boot block description 47
Dju ordoning 2 i	flash recovery commands defined 50
	functional description 47
	recovery process defined 49

reflashing processes defined 49	Lock 57
reflashing the 47	LOCK instruction prefix 25, 26
Flash memory	loop. See internal loop.
access protection 61	
address registers 60	M
booting from 10	Master LED 45
components 30	
data register 61	Memory control register 54, 61
jumper 5	Message high register 57, 58
write protection 5	Message interrupt 59
write-protect jumper 61	Message low register 57, 58
Front-panel indicators 12	Message protocol 57
Front-panel switch 12, 13	Message register 57
FS address registers 60	Message-based device 55
1 b address registers oo	Model code 55
н	Module status/control register 60
	Module status/control register 31
Hardware reset 12, 61	mouse 8
Humidity 1	MS-DOS 10, 13
	MSGR interrupt 57, 59
I	
I/O space map 19	N
IACK daisy chain 32	NMI 31
ID register 55	non-warranty service 42
Initialization sequence 9	·
internal loop. See loop.	Р
Interrupt	P1 connector 46
acknowledge 7, 27, 60	PC/AT I/O bus 31
acknowledge 58	
assignments 31	peripherals 8
handler 26–??	Pipelined write 24, 60
IRQ10 31, 59	Power 1
IRQ11 13, 31	Priority arbiter 56
message 57, 59	Protocol register 57
MSGR 57, 59	_
register 59, 60	R
Interrupt generator register 27	Read ready 57
IRQ10 interrupt 26, 59	Real time clock error 35
IRQ11 interrupt 13, 31	Reflashing
inQ11 interrupt 13, 31	flash recovery commands defined 50
J	flash recovery process defined 49
	flash recovery serial connection 49
J1 connector 32	Release on request 55
Jumpers 5, 7, 45	repair 41
	Request on no request 55
K	Reset 56
keyboard 8	Reset disabled indicator 12
keyboard connector 46	Reset switch 12, 13, 61
,	Response register 28, 57, 59
L	RMA number 43
	RMW cycle 25
LED register 61	ROM DOS interaction 11
LEDs 12, 32	RONR 55
Little endian 24	ROR 55
Location monitor 57	NON 33

Round-robin arbitration 56	TOD clock 30, 35 Toggle switch 13, 31, 61				
S	Toggie switch 13, 31, 01				
Self accesses 25	U				
Selftest	ULA 28, 57				
codes displayed 35	,				
failure codes 12	V				
PASS LED 56	-				
Serial port	Vibration 1 video 8				
cap 8					
ESD shield 8	VME event enable register 26, 50				
header 46	VME event state register 26, 59				
terminal 11	VME event state register 59				
Serial port	VME interpret analysis are 26				
connector 46	VME interrupt generator register 60				
Servant 57	VME interrupt generator register 60 VME interrupt state register 26, 59				
Setup program 7, 10, 11, 30					
Seven-segment display	VME mapped registers 28				
decimal point 12, 61	VME modifier register 27, 58 VMEbus				
failure codes 35	accesses 23				
register 61	address modifier 58				
usage during initialization 9					
Seven-segment display	address pipelining 32				
purposes 12	addressing 1 arbiter 1				
Shock 1					
Signal register 57	connector 32, 46				
Slave 25, 32	interrupt handler 1, 26–??				
Slave access 45	interrupte 1				
Slave enable 56	interrupter 27				
Slave LED 45	jumpers 7				
Slave offset register 56	master data transfer 1				
Slot 1 5	monitoring 60				
Speaker header 5, 45	pipelined write 60				
SRAM	requester 1				
address registers 60	RMW 25				
BIOS usage of 30	slave access 25				
data register 61	slave data transfer 1				
memory 30	specifications 1				
SRAM BIOS usage of 61	system controller 1, 32				
Status/control register 55	timing 33				
Status/ID value 27	write 24, 60				
SYSCLK 5, 32	VXI				
SYSFAIL 26, 32, 56, 59	register 28, 55, 57				
SYSFAIL 45	147				
SYSFAIL inhibit 56	W				
SYSRESET 12, 56	warranty repair 42				
SYSRESET input enable 55	Watchdog timer 27, 31, 59, 60				
System controller 5, 32, 45, 56	WPRT bit 25				
2,500 controller 5, 52, 15, 50	Write pipelining 32				
т	Write ready 57				
Technical Support	X				
world wide web access 41					
Temperature 1	Xmodem				

use of for self-hosted reflashing 50