Improving Protection against Internet Attacks through Contextual Feature Pairing

Georgiana Ingrid Stoleru

Supervised by: Assoc. Prof. PhD Dragos, Teodor Gavriluț

Faculty of Computer Science, "Alexandru Ioan Cuza" University

July, 2018

Table of Contents

- Introduction
- 2 Problem description
- 3 Solutions
 - Subroutines
 - Machine Learning Models
- Feature Extraction
- 5 Formal Model
- 6 Results
- 7 Future directions

Table of Contents

- 1 Introduction
- 2 Problem description
- 3 Solutions
 - Subroutines
 - Machine Learning Models
- 4 Feature Extraction
- 5 Formal Mode
- 6 Results
- 7 Future directions

Introduction

000

Definition

A security attack represents an attempt to gain unauthorized access to information resources or services, or to cause damage to information systems.

(Big Data Security Management, Zaiyong Tang and Youqin Pan)

Overview

000

Steps at which detection occurs

- Downloading
- Writing on disk
- Reading from disk
- Execution

- 2 Problem description
- - Subroutines
 - Machine Learning Models

Status Quo

Increasing number of malicious URLs:

Phishing URLs	Malicious URLs	
> 45000 per week	> 15000 per week	

- Short life span of a malicious URL:
 - Average phishing web site: 54 hours (AntiPhishing Working Group, June 2018)

Statistical Indicators

Weekly number of displayed warnings (Google Safe Browsing)

Related work: Blacklists

Standard detection technologies:

Blacklists

```
Malicious URLs
http://www.comprealm.net/wordpress/1w0jkheYE8/
http://www.icb.cl/ZxavoDe/
http://www.chungcusamsoraprimier.com/DW8dXe/
http://www.service-pc.com.ro/7o9opMY/
http://www.minami.com.tw/P4UDGp/
```

URLs hosting Emotet samples

Related work: Subroutines

Subroutines

Malicious URL Attack and Subroutine Defense flow

Related work: Subroutines

Subroutines

Malicious URL Attack and Subroutine Defense flow

Table of Contents

- 1 Introduction
- 2 Problem description
- 3 Solutions
 - Subroutines
 - Machine Learning Models
- 4 Feature Extraction
- 5 Formal Mode
- 6 Results
- 7 Future directions

Subroutines

Subroutines description

Description of the approach

• Detection technique consisting of various sets of rules

Remarks

- An approach to the identification of **similar URLs**
- A step towards feature extraction

Subroutines

Description

Advantages

- The **certainty** that the URL will be detected
- The effectiveness in a suite of attacks
 (E.g.: http://www.example.com/image.png)

Disadvantages

- The ease of evading detection
- The rules are manually specified

Machine Learning Models

Machine Learning Classification System

•00

URL Classification System

000

Machine Learning Models

Remarks

Related Work

These approaches often involve a high rate of False Positives.

000

Machine Learning Models

Solution

- 1 Introduction
- 2 Problem description
- 3 Solutions
 - Subroutines
 - Machine Learning Models
- 4 Feature Extraction
- 5 Formal Mode
- 6 Results
- 7 Future directions

URL Features

1st Remark

We extracted the **lexical features** of the URLs (148 features).

2nd Remark

We **discretized** the continuous features.

Advantages of discretization

- Memory space
- Resiliency to change

URL Features Classification

Domain Features

- Domain is IP address
- TID is common
- Domain is **randomly** generated

Directory Features

- Subdirectory tokens
- Existence of small words
- Existence of random words

URL Features Classification

Content Features

- File content is an executable or a document.
- File content has a known extension
- File name is randomly generated

Argument Features

- URL contains parameters
- Parameters can indicate log-in information

Example

Malicious URL Example

Consider the malicious URL:

http://cdn.discordapp.com/attachments/ 402490727474528267/407242837365751809/d.exe

Category	Feature	Description of the fea-	
		ture	
Content related	URL-IS-EXEC	The content is an exe-	
		cutable file	
Content related	FILENAME-IS-	The downloaded file name	
	ALPHANUMERIC	contains alphanumeric sym-	
		bols	
Content related	KNOWN-	The extension of the down-	
	EXTENSION	loaded file belongs to a pre-	
		defined list	
URL related	HTTP-PROTOCOL	The protocol used is "http"	
Domain related	KNOWN-TLD	The tld is common	
Directory related	PREV-DIGIT	The last but one split con-	
		tains only digits	
Directory related	PREV-SHORT	The last but one split has a	
		small length	

A part of the extracted features for the URL

1st Remark

We **downloaded** the files corresponding to the URLs in the database.

2nd Remark

We extracted the **features** corresponding to the **downloaded files** (8413 features).

Extracted features

- Behaviour in virtual environments
- File format from the geometrical point of view
- Packed/ Obfuscated file

A part of the extracted features for the file

Table of Contents

- 1 Introduction
- 2 Problem description
- 3 Solutions
 - Subroutines
 - Machine Learning Models
- 4 Feature Extraction
- 5 Formal Model
- 6 Results
- 7 Future direction

Formal Model: Algorithm

Algorithm

We have used the **OSC** algorithm, a derived version of the **Perceptron**, because it is adjusted for a low number of **False Positives**.

Advantages of OSC

- Verdict provided in linear time
- Low number of false positives
- Less resource demanding

Feature Selection: F2-Score

F2-Score

$$\mathbf{F2} = 5 \times \frac{precision \times recall}{4 \times precision + recall} \tag{1}$$

Remark

F2-Score is a **Uni-variate** feature selection method.

Conditional Mutual Information Maximization Criterion

- It does not select a feature similar to already pickes ones.
- Naive Bayes Classifier together with CMIM criterion provide the same error rates as AdaBoost or SVMs.

Table of Contents

- - Subroutines
 - Machine Learning Models

- 6 Results

Dataset

Data Selection

1 million samples (Bitdefender Cyber Threat Intelligence Lab)

Data Filtering - 1st Step

- Not executable content
- Clusters consisting of highly similar URLs
- A lower life span than the average for a malicious URL
- 98163 malicious samples and 234574 benign ones

Dataset

Data Filtering - 2nd Step

- Inconsistencies removal
- Sequences of features related to benign samples
- Duplicated data
- 11107 malicious samples and 31247 benign ones

OSC-U

• Number of features: 148

• Source of features: URLs

• Number of epochs: **2000**

• Dataset: 11107 malicious samples and 31247 benign samples

Se	Tn	Тр	Acc	
44.002%	31,247	4,887	85.31%	

148 features — 2000 epochs

Remark

In order to be used in practice, the model should provide a high detection rate.

Solution

- Increase the precision of the model by adding features extracted from files.
- Apply feature selection on the set of file features.

OSC-UF

Number of features from URLs: 148

Number of features from files: 256

Feature Selection Algorithm: **F2-Score**

Number of epochs: 2000

Se	Tn	Тр	Acc
72.57%	31,247	8,060	92.8%

404 features — 2000 epochs

Remark

We notice a considerable **evolution**, but still with a detection rate lower than 75%.

F2-Score **scores** each of the features **individually**.

Solution

Choose a feature selection algorithm which selects only features which carry additional information about the class to predict. (Conditional Mutual Information Maximization criterion)

OSC-UFF

Number of features from URLs: 148

Number of features from files: 256

Feature Selection Algorithm: **CMIM criterion**

Number of epochs: 2000

Se	Tn	Тр	Acc
94.34%	31,247	10,478	98.5%

404 features — 2000 epochs

- Making features linearly separable by mapping
- New space with m(m+1)/2 features
- Logical conjunction between initial features

OSC-CM

Number of features from URLs: 148

Number of features from files: 81,810

Feature Selection Algorithm: **CMIM criterion**

Number of epochs: 2000

Se	Tn	Тр	Acc	
95.26%	31,247	10,580	98.75%	

81,810 features — 2000 epochs

OSC-CM1

Number of features from URLs: 148

Number of features from files: 81,810

Feature Selection Algorithm: **CMIM criterion**

Number of epochs: 10000

Se	Tn	Тр	Acc	
96.60%	31,247	10,729	99.10%	

81,810 features — 10,000 epochs

Real world detection data

Statistical indicators

- Test environment: Bitdefender's technologies
- Period: 1 month
- Subset from the classified data: 15,273 malicious samples and 34,727 clean samples

FP + TN	FP	FP rate	FN + TP	TP	TP rate
34,727	52	0.0015%	15,273	12,140	79.49%

Real world detection data

Table of Contents

- 1 Introduction
- 2 Problem description
- 3 Solutions
 - Subroutines
 - Machine Learning Models
- 4 Feature Extraction
- 5 Formal Mode
- 6 Results
- 7 Future directions

Future directions

- Extend the approach for different **protocols**
- Add further categories of features (e.g.:host-based)
- Port the algorithms on the GPU of the clients
- Process data in the cloud
- Take into account the reputation of a sample

Thank you!

Q&A

