જાલા કર્માં Esercizio 1. Dimostrare per induzione che $2^n \ge n + 10$ per ogni $n \ge 4$.

Esercizio 2. Risolvere (cioè: trovare la forma chiusa) la relazione ricorsiva

$$\frac{1}{3}a_n = a_{n-1} - \frac{2}{3}a_{n-2} \qquad (n \ge 2)$$

con le condizioni iniziali $a_0 = 1$, $a_1 = 2$.

$$e^{n} = an$$

Esercizio 3. Risolvere la relazione ricorsiva

$$a_{n+3} = 8a_{n+2} - 21a_{n+1} + 18a_n$$

con le condizioni iniziali $a_0 = 0$, $a_1 = 3$, $a_2 = 3$.

Esercizio 4. Risolvere la relazione ricorsiva

$$a_{n+3} = -3a_{n+2} - 3a_{n+1} - a_n$$

con le condizioni iniziali $a_0 = 2$, $a_1 = -2$, $a_2 = 4$.

Esercizio 5. Risolvere la relazione ricorsiva (di grado 4)

$$a_n = 8a_{n-2} - 16a_{n-4}$$
 (per $n \ge 4$)

con le condizioni iniziali $a_0 = 1$, $a_1 = 4$, $a_2 = 28$, $a_3 = 32$.

Esercizio 6.* Siano $a, b \in \mathbb{N}$ con $b \neq 0$. Usando il principio del minimo, dimostrare che esistono $q, r \in \mathbb{N}$ tali che a = qb + r e $0 \leq r < b$. Si seguano i seguenti passaggi:

- 1. Sia $S = \{t \in \mathbb{N} \mid (t+1)b > a\} \subseteq \mathbb{N}$. Vedere che $a \in S$ e dedurre che $S \neq \emptyset$.
- 2. Per il principio del minimo esiste $q \in S$ minimo (cioè $q \in S$, ma $q-1 \notin S$). Definire r=a-qb e dimostrare che $r \geq 0$ e r < b.

 $^{^1}$ Gli esercizi marcati con asterisco sono più difficili e non verranno discussi nella correzione degli esercizi del martedì, Si possono discure a ricevimento.