Calibration instructions

Note 1: By convention the first column in a data file is 'column 0', the second is 'column 1', etc Note 2: The calibration scripts only work for RDI data (will change that in the near future) and only work for stars beginning with 'HIP'

Theory

 $5sig(old) = \frac{F_m}{F_{psf}}$ Currently contrast (or '5sig') is measured as:

Where F_m is the minimum measureable flux (per unit time) at a particular radial point in an image and F_{psf} is the measured flux of the psf.fits calibration image, which is an image of BD+45_598. However, F_{psf} should actually be F_{star} , the flux of the host star to get the true 5sig contrast. It is possible to get the true 5sig using: $5sig(true) = \frac{F_m}{F_{psf}} \frac{F_{psf}}{F_{star}} = \frac{5sig(old)}{f}$

Where f is calibration factor 1 and is found using:
$$f = \frac{F_{star}}{F_{psf}} = 10^{-\frac{m_{star} - m_{psf}}{2.5}}$$

Where m_{star} is the apparent magnitude of the star and m_{psf} apparent magnitude of the psf.

This however, is not enough as F_m required a calibration too (calibration factor 2): $F_m = \frac{k \sigma_R}{T_R}$

Where k is a factor (5 in this case, for 5sig contrast), σ_R is the standard deviation or noise of the flux and T_R is the throughput or signal attenuation (dimensionless). In total: $5sig(true) = 5sig(old)\frac{1}{f} = \frac{F_m}{F_{psf}}\frac{1}{f} = \frac{k\sigma_R}{T_RF_{psf}}\frac{1}{f}$

$$5sig(true) = 5sig(old)\frac{1}{f} = \frac{F_m}{F_{nsf}}\frac{1}{f} = \frac{k\sigma_R}{T_RF_{nsf}}\frac{1}{f}$$

 σ_R is measured using a parameter Starphot (S):

$$S = F_{psf} \tau_{cube}$$

Where τ_{cube} is the exposure time of one image in the cube, inserting into 5 sig: $5 sig(true) = \frac{k\sigma_R \tau_{cube}}{T_R S} \frac{1}{f} = \frac{k\Delta C_R}{T_R S} \frac{1}{f}$

Where ΔC_R is the standard deviation of the counts. Starphot should differ for each star (because they have different exposure times), but the RDI script assumed it to be constant with $\tau_{cube} = 5s$. Therefore actually find requires an additional correction: $S = S(RDI) \frac{\tau_{cube}}{5}$

Where S(RDI) is the constant value of S used in the script, applying this to the equation for 5sig

above (note
$$\sigma_R(old) = \frac{\Delta C_m}{5}$$
):
$$5sig(true) = \frac{5k\Delta C_R}{T_R S(RDI)\tau_{cube}} \frac{1}{f} = \frac{5k\Delta C_R}{5T_R F_{psf}\tau_{cube}} \frac{1}{f} = \frac{5}{\tau_{cube}f} \frac{k\sigma_R(old)}{T_R F_{psf}} = \frac{5}{\tau_{cube}f} \frac{F_m(old)}{F_{psf}}$$

The total required correction (1 and 2) is then:

$$5sig(true) = \frac{5}{\tau_{cube}f} 5sig(\text{original})$$

Procedure

1. Access analysis:

ssh -XY abc123@analysis.astro.ex.ac.uk

typing in your password when prompted. Navigate to the calibration folder:

cd ../../data/shinkley/Keck_Data/completed_stars/calibration

- 2. I have already produced a file containing the value of correction 1 (or f) in a file known as: **output.csv.** This file can also be found in github, under **common/calibration.** If you don't want to reproduce this file, skip to step 4.
- 3. You will need the following files: **cal_name.txt, cal_date.txt, cal_name_file.txt and mag.txt.** Examples of these files can be found on github. Run the script **cal.py** using:

python cal.py cal_name.txt cal_date.txt cal_name_file.txt mag.txt output

This script will output a file: **output.csv** in DangerZone that contains the f value for each epoch of each star.

4. Make a file: star_data.txt containing 4 columns of:

Star name (no 'HIP') star epoch f filename of contrast curve data
eg: 59608 2011feb06 12.37086307 RDI_contrast_curve_2011feb06_0.8.txt
If the star has more than one epoch, have 2 lines for the different epochs with the same star name

5. Run the script **cpm2.py**:

python cpm2.py

The script will find the value of correction 2 for each epoch of each star and combine with correction 1 to get the total calibration required. It will output this in a file called: stars_calibration.txt, which contains 3 columns of:

Star name (no HIP) star epoch calibration

6. Run the script cal3.py:

python cal3.py

This will apply the calibration to the contrast curves and will create a new txt file in each RDI directory for each star of the name: RDI_calibrated_contrast_{epoch}.txt

It will also produce a new plot of the name: RDI_calibrated_contrast_curves_{epoch}.png

7. These new files can be downloaded from analysis; navigate (not on analysis) to the directory where you want the new files to be and use:

scp

abc123@analysis.astro.ex.ac.uk:/data/shinkley/Keck_Data/completed_stars/DangerZone/HIP*****/RDI/{filename}.png.

The decimal ('.') is needed. Type in your password when prompted.