Polynomials over Fields

Cunsheng Ding

HKUST, Hong Kong

November 18, 2015

1/26

Contents

- Polynomials over Fields
- 2 Polynomial Ring $\mathbb{F}[x]$
- 3 Division Algorithm in $\mathbb{F}[x]$
- 4 Euclidean Domain ($\mathbb{F}[x], +, \cdot, \deg$)
- 5 Irreducible Polynomials in $\mathbb{F}[x]$
- $oldsymbol{6}$ Unique Factorization in $\mathbb{F}[x]$
- **7** Polynomial Congruence mod m(x)

The Objectives of This Lecture

The fields we learnt so far

- The prime fields $(\mathbb{Z}_p, \oplus_p, \otimes_p)$, where p is any prime.
- The field $(\mathbb{Q},+,\cdot)$ of rational numbers.
- The field $(\mathbb{R},+,\cdot)$ of real numbers.
- The field $(\mathbb{C},+,\cdot)$ of complex numbers.

Let $(\mathbb{F},+,\cdot)$ denote any of the fields above throughout this lecture.

Our objective

The objective of this lecture is to study polynomials over \mathbb{F} .

Definition 1

A polynomial over $\ensuremath{\mathbb{F}}$ is an expression of the form

$$f(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + \dots + a_n x^n,$$

where n is a nonnegative integer, the coefficients a_i , $0 \le i \le n$, are elements of the field \mathbb{F} , and x is a symbol not belonging to \mathbb{F} , called an <u>indeterminate</u> over \mathbb{F} .

For any positive integer h, the polynomial f(x) above may be given in the equivalent form

$$f(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + \dots + a_n x^n + 0 x^{n+1} + \dots + 0 x^{n+h}.$$

By convention, we usually do not write terms with 0 coefficients.

Definition 2

 $\mathbb{F}[x]$ denotes the set of all polynomials in indeterminate x over \mathbb{F} .

Let
$$f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{F}[x]$$
 and $g(x) = \sum_{i=0}^{n} b_i x^i \in \mathbb{F}[x]$.

Definition 3

Two polynomials f(x) and g(x) are considered equal if and only if their coefficients are equal, i.e., $a_i = b_i$ for all $0 \le i \le n$.

5/26

Let
$$f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{F}[x]$$
 and $g(x) = \sum_{i=0}^{n} b_i x^i \in \mathbb{F}[x]$.

Definition 4

The <u>sum</u> (or <u>addition</u>) of f(x) and g(x) is defined by

$$f(x)+g(x)=\sum_{i=0}^n(a_i+b_i)x^i\in\mathbb{F}[x].$$

Proposition 5

 $(\mathbb{F}[x],+)$ is an abelian group with identity 0, called the <u>zero</u> polynomial, whose all coefficients are zero.

Proof.

Note that \mathbb{F} is a field. The proof is trivial and left as an exercise.

Let
$$f(x) = \sum_{i=0}^n a_i x^i \in \mathbb{F}[x]$$
 and $g(x) = \sum_{i=0}^m b_i x^i \in \mathbb{F}[x]$.

Definition 6

The product (or multiplication) of f(x) and g(x) is defined by

$$f(x)\cdot g(x)=\sum_{i=0}^{n+m}c_kx^k\in\mathbb{F}[x],$$

where

$$c_k = \sum_{\substack{i+j=k\\0 \le i \le n, 0 \le j \le m}} a_i b_j.$$

Remark

This is the polynomial multiplication we learnt in school, except that the computation of each c_k is over \mathbb{F} .

Proposition 7

 $(\mathbb{F}[x],+,\cdot)$ is a commutative ring with identity 1.

Proof.

- \bullet The binary operation \cdot is associative, as the multiplication \cdot in $\mathbb F$ is so.
- The distribution laws hold as \mathbb{F} is a field.
- \bullet The binary operation \cdot for polynomials is commutative, as $\mathbb F$ is commutative.
- $1 \cdot f = f \cdot 1 = f$ for all $f \in \mathbb{F}[x]$. Hence, 1 is the identity.

The desired conclusion then follows from Proposition 5.

Definition 8

Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{F}[x]$ and $f \neq 0$. Suppose that $a_n \neq 0$. Then a_n is called the leading coefficient of f(x) and a_0 the constant term, while n is called the degree of f(x), and denoted by $\deg(f)$.

We define $deg(0) = -\infty$.

Polynomials of degree \leq 0 are called <u>constant</u> polynomials.

A polynomial over $\mathbb F$ is called $\underline{\mathsf{monic}}$ if its leading coefficient is 1.

Proposition 9

Let $f,g \in \mathbb{F}[x]$. Then

$$\deg(f+g) \le \max(\deg(f), \deg(g)),$$

 $\deg(fg) = \deg(f) + \deg(g).$

Proof.

The proof is trivial and omitted.

Polynomial Ring $\mathbb{F}[x]$ over \mathbb{F}

Proposition 10

 $(\mathbb{F}[x],+,\cdot)$ is an integral domain.

Proof.

Let $f \in \mathbb{F}[x]$ and $g \in \mathbb{F}[x]$ be any two nonzero polynomials. Then

$$f(x) = \sum_{i=0}^{m} a_i x^i$$
 and $g(x) = \sum_{j=0}^{n} b_j x^j$

where m and n are nonnegative integers such that $a_m \neq 0$ and $b_n \neq 0$. Then

$$f(x) \cdot g(x) \neq 0$$

as the leading coefficient of $f(x) \cdot g(x)$ is equal to $a_m b_n \neq 0$. The desired conclusion then follows from Proposition 7.

Division Algorithm in $\mathbb{F}[x]$

Proposition 11

Let $g \neq 0$ be a polynomial in $\mathbb{F}[x]$. Then for any $f \in \mathbb{F}[x]$ there exist unique polynomials $q, r \in \mathbb{F}[x]$ such that

$$f = qg + r$$
,

where either r = 0 or deg(r) < deg(g).

Proof.

One can give a proof by induction. This is left as an assignment problem.

Definition 12

In the Division Algorithm, the polynomial q is called the <u>quotient</u> and r the <u>remainder</u>, in symbol we write $r = f \mod g$.

Example for the Division Algorithm

Example 13

Let $f = x^3 + x^2 - 1 \in \mathbb{R}[x]$ and $g(x) = x - 1 \in \mathbb{R}[x]$. Find the quotient q(x) and remainder r(x) such that

$$f = qg + r$$
,

where either r = 0 or deg(r) < deg(g).

Hence,
$$q(x) = x^2 + 2x + 2$$
 and $r(x) = 1$.

Euclidean Domain ($\mathbb{F}[x], +, \cdot, \deg$)

Theorem 14

 $(\mathbb{F}[x],+,\cdot,\mathsf{deg})$ is a Euclidean domain.

Proof.

It follows from Propositions 10 and 11.

Divisors and Divisibility in $\mathbb{F}[x]$

Definition 15

Let $f, g \neq 0$ be two polynomials in $\mathbb{F}[x]$. In the Division Algorithm, if the remainder r = 0, then g is called a <u>divisor</u> or <u>factor</u> of f. In this case, we say that g divides f and f is divisible by g.

Example 16

 $x + 2 \in GF(3)[x]$ is a divisor of $x^2 - 1 \in GF(3)[x]$.

Common Divisors in $\mathbb{F}[x]$

Definition 17

A <u>common divisor</u> $h(x) \in \mathbb{F}[x]$ of $f \in \mathbb{F}[x]$ and $g \in \mathbb{F}[x]$ is a divisor of both f and g.

The greatest common divisor, denoted by $\gcd(f,g)$, of $f\in\mathbb{F}[x]$ and $g\in\mathbb{F}[x]$ is the common divisor of f and g with leading coefficient 1 and the largest degree. The least common multiple, denoted by $\operatorname{lcm}(f,g)$, of f and g is the monic polynomial with the least degree that is a multiple of both f and g.

Greatest Common Divisor gcd(f,g)

Remarks

- By definition, gcd(f,g) is unique.
- It can be computed with the Euclidean Algorithm for polynomials, which is similar to that for integers.

Problem 18

Let $f(x) = 2x^6 + x^3 + x^2 + 2 \in GF(3)[x]$ and $g(x) = x^4 + x^2 + 2x \in GF(3)[x]$. Use the Euclidean algorithm to prove that gcd(f,g) = 1.

Greatest Common Divisor gcd(f,g)

Definition 19

Two polynomials $f,g \in \mathbb{F}[x]$ are said to be <u>coprime</u> or <u>relatively prime</u>, if gcd(f,g) = 1.

Example 20

Let $f(x) = x^2 + 1 \in GF(2)[2]$ and $g(x) = x^2 + x + 1 \in GF(2)[x]$. Then $gcd(x^2 + 1, x^2 + x + 1) = 1$. Hence, they are coprime.

Greatest Common Divisor gcd(f,g)

Theorem 21

Let $f \in \mathbb{F}[x]$ and $g \in \mathbb{F}[x]$, which are not zero at the same time. Then there exist two polynomials $u \in \mathbb{F}[x]$ and $v \in \mathbb{F}[x]$ such that

$$\gcd(f,g)=uf+vg.$$

Proof.

The Extended Euclidean Algorithm for polynomials, which is similar to that for integers, gives a constructive proof of this conclusion.

Problem 22

Let $f(x) = 2x^6 + x^3 + x^2 + 2 \in GF(3)[x]$ and $g(x) = x^4 + x^2 + 2x \in GF(3)[x]$. Use the Extended Euclidean Algorithm to find two polynomials u and v such that gcd(f,g) = uf + vg.

Zeros of Polynomials in ${\mathbb F}$

Definition 23

Let $f \in \mathbb{F}[x]$. An element $a \in \mathbb{F}$ is called a <u>zero</u> or <u>root</u> of f if f(a) = 0.

Example 24

The polynomial $f(x) = x^2 + x + 2 \in GF(3)[x]$ has no zero in GF(3), while $g = x^2 + x + 1$ has the zero 1.

Zeros of Polynomials in ${\mathbb F}$

An important connection between roots and divisibility is given by the following theorem.

Theorem 25

An element $b \in \mathbb{F}$ is a root of $f \in \mathbb{F}[x]$ if and only if x - b divides f(x), i.e., x - b is a divisor of f(x).

Proof.

By the Division Alroithm, we find $q \in \mathbb{F}[x]$ and $c \in \mathbb{F}$ such that f(x) = q(x)(x-b) + c. Substituting b for x, we obtain that c = f(b). Hence, f(x) = q(x)(x-b) + f(b). The desired conclusion then follows.

Irreducible Polynomials in $\mathbb{F}[x]$

Definition 26

A polynomial $f \in \mathbb{F}[x]$ is called <u>irreducible</u> over \mathbb{F} (or in $\mathbb{F}[x]$) if f has positive degree and only nonzero constant divisors $a \in \mathbb{F}$ and af, where a is a nonzero element of \mathbb{F} .

Example 27

 $f(x) = x^2 + x + 2 \in GF(3)[x]$ is irreducible over GF(3).

Proof.

Since $f(a) \neq 0$ for all $a \in GF(3)$, f(x) cannot have a divisor of degree one in GF(3)[x].

Remark

Irreducible polynomials In $\mathbb{F}[x]$ are similar as primes in \mathbb{Z} .

Unique Factorization in $\mathbb{F}[x]$

Theorem 28 (Canonical factorization)

Any polynomials $f \in \mathbb{F}[x]$ with positive degree can be written in the form

$$f = ap_1^{e_1}p_2^{e_2}\cdots p_k^{e_k},$$

where $a \in \mathbb{F}$, p_1, p_2, \ldots, p_k are distinct monic irreducible polynomials in $\mathbb{F}[x]$, e_1, e_2, \ldots, e_k are positive integers. Moreover, this factorization is unique apart from the order in which the factors occur.

Proof.

An inductive proof on the degree of *f* is easily worked out and left as an exercise.

Example of the Canonical Factorization

Example 29

The canonical factorization of

$$f(x) = x^9 + x^8 + 2x^7 + x^5 + 2x^4 + x^3 + 2x^2 + x + 1 \in GF(3)[x]$$
 is

$$f(x) = (x^2 + x + 2)^3 (x + 2)(x + 1)^2.$$

Factorization of Polynomials in $\mathbb{F}[x]$

By Theorem 28, every polynomial $f \in \mathbb{F}[x]$ has a canonical factorization. However, we have the following question.

Question 1 (Factorization problem)

How do we factorize $f \in \mathbb{F}[x]$ into the canonical form?

There are techniques for solving this problem, which can be found in Chapter 4 of the following book:

R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press 1997.

Polynomial Congruence mod m(x)

Definition 30

Let f(x), g(x), and m(x) be polynomials in $\mathbb{F}[x]$. We say that f(x) is congruent to g(x) modulo m(x), written as $f(x) \equiv g(x) \pmod{m(x)}$, if f(x) - g(x) is divisible by m(x).

Example 31

Let
$$f(x) = x^4 + x^2 + x \in GF(2)[x]$$
, $g(x) = x^2 + x + 1 \in GF(2)[x]$ and $m(x) = x^2 + 1 \in GF(2)[x]$. Then $f(x) \equiv g(x) \pmod{m(x)}$.

Remark

Solving polynomial congruence equations is similar to solving integer congruence equations. Some of the assignment questions are of this type.