

EASTERN INDIA ECOLOGICAL FORECASTING

A Multi-Sensor Approach to Enhance the Prediction of Mangrove Biophysical Characteristics in Bhitarkanika Wildlife Sanctuary and Chilika Lagoon, Odisha, India

Abhishek Kumar (Project Lead)

Roger Bledsoe

Caren Remillard

María José Rivera

Jessica Staley

Patricia Stupp

Study Area

Chilika Mangroves

Bhitarkanika

Latitude: 20.71°N

Longitude: 86.86°E

Mangrove Types: Dense, Closed & Open

Total Mangrove Species: 55

Mangrove Area: 145 km²

Chilika

Latitude: 19.84° N

Longitude: 85.47° E

Mangrove Types: Open, Small patches

Source: Eastern India Ecological Forecasting

Community Concerns

- 4 Residents from **36 villages** receive valuable resources and services from the mangroves.
- 4 Mangroves have been **overexploited** or **converted** to various other forms of land use.
- 4 Encroachment upon forests, unauthorized aquaculture practices, and discharge of effluent place even more pressure on mangrove forests and biodiversity.

Objectives

- 4 Develop a multi-sensor mangrove biophysical characteristics prediction tool for Bhitarkanika Wildlife Sanctuary and Chilika Lagoon using moderate resolution remote sensing reflectance data.
- 4 Derive a phenology in order to enhance management and restoration efforts by the Department of Forest and Environment in Odisha, India.

Methodology

Workflow Diagram

Atmospheric Correction

Re-sampling Pixels at 1km

Calibration Results

Bands & Indices	Abbreviation	Formula	LAI Correlation Coefficient (R)	LAI Correlation Equation	GPP Correlation Coefficient (R)	GPP Correlation Equation
Blue	В3	R _{rs} (B3)	0.64	y=93.098x + 6.7841	0.64	y = -0.5418x + 0.0699
Red	B1	R _{rs} (B1)	0.69	y= -55.106x + 6.8859	0.71	y = -0.3287x + 0.0709
Green	B4	R _{rs} (B4)	0.53	y= -54.753x + 7.5682	0.59	y = -0.3543x + 0.0765
Near-InfraRed	B2	R _{rs} (B2)	0.49	y= 24.498x - 2.102	0.45	y = 0.1315x + 0.0212
Shortwave Infrared-1	B5	R _{rs} (B5)	0.1	y= -3.9268x + 5.5421	0.095	y = -0.0218x + 0.0624
Shortwave Infrared-2	B6	R _{rs} (B6)	0.54	y= -18.622x + 7.2501	0.56	y = -0.1126x + 0.0733
Normalized Difference Vegetation Index	NDVI	[R _{rs} (NIR)- R _{rs} (B1)]/ [R _{rs} (NIR)+R _{rs} (B1)]	0.69	y= 9.5734x - 2.392	0.73	y = 0.0599x + 0.0135
Enhanced Vegetation Index 1	EVI1	2.5*[(R _{rs} (NIR)- R _{rs} (B1)])/ (1+R _{rs} (NIR)+6*R _{rs} (B1)-7.5* R _{rs} (B3)]	0.78	y= 17.009x - 2.6598	0.77	y = 0.098x + 0.0153
Enhanced Vegetation Index 2	EVI2	2.5*[(R _{rs} (NIR)- R _{rs} (B1)])/ (1+R _{rs} (NIR)+2.4*R _{rs} (B1)]	0.78	y= 17.155x - 2.5745	0.77	y = 0.0983x + 0.0161
Normalized Difference Vegetation Index (Green)	NDVI(G)	$[R_{rs}(NIR) - R_{rs}(B4)]/$ $[R_{rs}(NIR) + R_{rs}(B4)]$	0.63	y= 12.398x - 3.6427	0.68	y = 0.078x + 0.0054
Simple Ratio	SR	[R _{rs} (NIR)/R _{rs} (B1)]	0.65	y= = 0.3428x + 2.0964	0.67	y = 0.0021x + 0.0421
Normalized Difference Moisture Index	NDMI	$[R_{rs}(NIR)-R_{rs}(B6)]/$ $[R_{rs}(NIR)+R_{rs}(B6)]$	0.65	y= 7.4622x + 2.3086	0.69	y = 0.046x + 0.0431

Validation and Error Estimation

Bands & Indices	LAI: Root Mean Square	LAI: Percentage	GPP: Root Mean Square	GPP: Percentage
	Error (RMSE)	Normalized Root Mean	Error (RMSE)	Normalized Root Mean
	1.15	Square Error (%NRMSE)	0.0044	Square Error (%NRMSE)
Blue	1.15	31.89	0.0066	23.63
Red	1.08	30.19	0.0063	22.76
Green	1.33	37.01	0.0076	27.47
Near-InfraRed	0.82	22.88	0.0059	21.26
Shortwave Infrared-1	1.47	40.91	0.0087	31.28
Shortwave Infrared-2	1.42	39.49	0.0082	29.51
Normalized Difference Vegetation Index	1.29	33.32	0.0073	25.64
Enhanced Vegetation Index 1	0.77	19.86	0.0055	19.26
Enhanced Vegetation Index 2	0.76	19.54	0.0053	18.64
Normalized Difference Vegetation Index (Green)	1.28	32.93	0.0072	25.41
Simple Ratio	1.46	37.46	0.011	37.44
Normalized Difference Moisture Index	1.18	30.32	0.0069	24.19

Seasonal Spectral Variability

MODIS Spectral Bands

MODIS Bands	Center Wavelength and Bandwidth (nm)		
Blue (B3)	469 (459 – 479)		
Green (B4)	555 (545 – 565)		
Red (B1)	645 (620 – 670)		
Near-Infrared (B2)	859 (841 – 876)		
Shortwave Infrared-1 (B5)	1240 (1230 – 1250)		
Shortwave Infrared-2 (B6)	1635 (1628 – 1652)		

ASTER Cross-Calibration

Sentinel-2 Cross-Calibration

Landsat-8 OLI (EVI2)

Source: Eastern India Ecological Forecastin

CHL: Terra MODIS Composites (2013 – 2016)

CHL: Landsat 8 OLI Composites (2013 – 2016)

CHL (µg/cm²)

0 78

Source: Eastern India Ecological Forecasting

GPP: Terra MODIS

GPP: Landsat 8 OLI

GPP (g-C/m²)

0 56

Source: Eastern India Ecological Forecasting

LAI: Terra MODIS

LAI: Landsat 8 OLI

Conclusion

- 4 The methodology developed in this study can be used to predict mangrove biophysical parameters.
- 4 All biophysical parameters followed a similar seasonal pattern.
- 4 Cross-calibration was required for Top of Atmosphere (TOA) Products because they differ in atmospheric correction technique.
- 4 The **accuracy** of biophysical models can be further improved by incorporating **field data**.

Future Work

- 4 Incorporate field data.
- 4 Improve the cross-calibration of satellite sensors.
- 4 Utilize **radar data** to overcome cloudy satellite images.
- 4 Analyze the **factors** affecting mangrove health and seasonality.
- 4 Classify different types of mangrove in the study area using hyperspectral data.
- 4 Estimate long-term change in mangrove land area coverage.

Acknowledgements

Science Advisor

Dr. Deepak Mishra, University of Georgia Department of Geography

Project Partner

Dr. Gurdeep Rastogi, Senior Scientist, Wetland Research and Training Center

Others

Sean Cameron, Assistant Center Lead and Project Coordination Fellow Dr. Marguerite Madden, UGA Lead Science Advisor