

OIL SHALE TRACT C-b ENVIRONMENTAL AND EXPLORATION PROGRAM

SUMMARY REPORT #4

(Through August 31, 1975)

C-b SHALE OIL PROJECT

Ashland Oil, Inc.
Atlantic Richfield Company
Shell Oil Company, Operator
The Oil Shale Corporation

United States Department of the Interior

GEOLOGICAL SURVEY
Conservation Division
Area Oil Shale Supervisor
Suite 300, Mesa Federal Savings Building
Grand Junction, Colo. 81501

Telephone: 303-242-0731, Ext. 281, 282, 283, 284

FTS: 303-242-3281, 82, 83, 84

November 12, 1975

The attached report is the fourth of a planned series of reports from the Federal Oil Shale Lessees to the Area Oil Shale Supervisor describing progress under approved exploration and baseline data plans.

The purpose of these reports is to provide interested parties with a review of ongoing operations and a summary of the data being collected. Because of the sheer volume of data being generated, these reports should be considered as the first (overview) phase of planned data distribution. Parties interested in reviewing more detailed data on specific portions of the program should contact the Area Oil Shale Office in Grand Junction where such data will be kept on file.

We would appreciate receiving any comments or suggestions you may have concerning these reports.

Peter A. Rutledge

Area Oil Shale Supervisor

1788064978

859 . C64 . C3747 no.4 c.3

U. S. DEPARTMENT OF THE INTERIOR PROTOTYPE OIL SHALE LEASING PROGRAM

TRACT C-b

BLM Library D-553A, Building 50 Denver Federal Center P. O. Box 25047 Denver, CO 80225-0047

SUMMARY REPORT #4

(Through August 31, 1975)

Submitted to:

Mr. Peter A. Rutledge Area Oil Shale Supervisor Conservation Division U. S. Geological Survey Grand Junction, Colorado

By:

C-b Shale Oil Project

Ashland Oil, Inc. Atlantic Richfield Company Shell Oil Company, Operator The Oil Shale Corporation

1700 Broadway Denver, Colorado 80202

October 28, 1975

TRACT C-b SUMMARY REPORT #4 (Through August 31, 1975)

TABLE OF CONTENTS

			Pag	ţе
INI	ROD	UCTIO	N	1
I.	PR	E-EXP	LORATION ENVIRONMENTAL RECONNAISSANCE SURVEYS	2
II.	EN	VIRON	MENTAL BASELINE MONITORING PROGRAMS	3
	Α.	Sur	face Water	3
		1. 2.		3
	В.			.3
		1. 2. 3.	Well Survey Plats	4 1 1
		4. 5. 6.	Water Quality - General	1 1 9
		7. 8. 9. 10.	Aquifer Data Pumping Test	6
		11.	Trace Element Analyses	7
	c.	Air	Quality	5
		1. 2. 3. 4. 5.	Air Quality and Surface Meteorology	2 8 8 4

TABLE OF CONTENTS (Continued)

			Page												
II.	ENVIRONMENTAL BASELINE MONITORING PROGRAMS (Continued)														
	D.	Biology	125												
		1. Terrestrial Wildlife Studies	125 133 154 158 158												
III.	OTH	ER STUDIES	160												
	A. B. C.	Fish and Wildlife Management Plan	160 162 172												
	D. E. F.	Aerial Photographic Program	175 176 177												

TRACT C-b SUMMARY REPORT #4 (Through August 31, 1975)

LIST OF FIGURES

Figure Number	<u>Title</u>	Page
II-1	Hydrology/Geology Flow Diagram	4
II A-1	Surface Water Monitoring Stations	5
II A-2	Uncorrected Hydrograph U.S.G.S. Station 09306007	12
II A-3	Uncorrected Hydrograph U.S.G.S. Station 09306061	13
II A-4	Uncorrected Hydrograph U.S.G.S. Station 09306058	14
II A-5	Uncorrected Hydrograph U.S.G.S. Station 09306022	15
II A-6	Diurnal Water Temperature Variations	16
II A-7	Distribution of Major Ions/Surface Water Stations Tract C-b (12-month average)	17
II A-8	Variation of Magnesium/Surface Water Stations Tract C-b	18
II A-9	Variation of Sulfate/Surface Water StationsTract C-b	19
II A-10	Variation of Calcium/Surface Water Stations Tract C-b	20
II A-11	Variation of Sodium/Surface Water Stations Tract C-b	21
II A-12	Variation of Calcium/Sodium Ration and Discharge Surface Water Stations Tract C-b	23
II A-13	Variation of Bicarbonate Concentration and Discharge Surface Water Stations Tract C-b	24
II A-14	Map of Tract Showing Springs and Seeps	27
II A-15	Hydrograph of Flow at Spring S-1 and CER-6	28
II A-16	Hydrograph of Flow at Spring W-1 and W-3	29
II B-1	Map of Well Locations	38
II B-2	Well Penetration Chart	39-40
II B-3	SG-11, Total Dissolved Solids vs. Depth	42

LIST OF FIGURES (Continued)

Figure Number	<u>Title</u>	Page
II B-4	SG-17, Total Dissolved Solids vs. Depth	43
II B-5	Stiff Diagrams (3 sheets)	45-47
II B-6	Upper Aquifer, Total Dissolved Solids Distribution	48
1I B-7	Upper Aquifer, Bicarbonate Distribution	50
II B-8	Upper Aquifer, Sodium Distribution	51
II B-9	Upper Aquifer, Calcium Distribution	52
II B-10	Upper Aquifer, Magnesium, Hardness, Sulfate vs. Depth	53
II B-11	Drawdown of Upper Aquifer AT-1b	60
II B-12	AT-1c Water Level History String #3	63
II B-13	AT-1c Water Level History String #2	64
II B-14	Gas Production vs. Time Lower Aquifer Pump Test	70
II B-15	Gas Production per 100 Gallons Water Pump Test	70
II B-16	Gas Production vs. Time AT-1 Lower Aquifer Pulse Test	71
II B-17	Gas Production per 100 gallons water Pulse Test	71
II C-1	The Air Quality and Meteorological Station Locations	76
II C-2	Station 023 - 30' Elevation Wind Roses ('74-"75)	103
II C-3	Station 021 - 30' Elevation Wind Roses ('74-"75)	104
II C-4	Wind Patterns on July 24-25	105
II C-5	Quarterly Wind Rose - 100' Level	106
II C-6	Variation of Wind Speed (V) with Height (z)	107
II C-7	Tract C-b Noise Level Measurement Locations	115
II C-8	State Highway Traffic Sampling Stations	119

LIST OF FIGURES (Continued)

Figure Number	<u>Title</u>	Page
II C-9	Segments of Piceance Valley used in Box Model Analyses	123
II C-10	CO Emissions for East End of Piceance Creek Valley to P/L Ranch	124
II D-1	Deer Mortality on Tract C-b	128
II D-2	Vegetation Map	157
III F-1	U.S.F.S. Visual Management System	178
III F-2	Visual Quality Analysis Intensive Study Area	179
III F-3	Visual Character Sub-Types	181
III F-4	Distinctive Rockform	185
III F-5	Common Vegetation	185
III F-6	Minimal Vegetation and Landform	186
III F-7	Common Landform and Distinctive Waterform	186
III F-8	Variety Classes	187
III F-9	Viewer Sensitivity Levels	191
III F-10	Distance Zones/Sensitivity Levels Composite	194
III F-11	Sensitivity Classes	197

TRACT C-b SUMMARY REPORT #4 (Through August 31, 1975)

LIST OF TABLES

Number Number	<u>Title</u>	Page
II A-1	Summary Water Quality U.S.G.S. Station 09306007	7
II A-2	Summary Water Quality U.S.G.S. Station 09306022	8
II A-3	Summary Water Quality U.S.G.S. Station 09306025	9
II A-4	Summary Water Quality U.S.G.S. Station 09306058	10
II A-5	Summary Water Quality U.S.G.S. Station 09306061	11
II A-6	Locations of Springs and Seeps	26
II A-7	Water Quality for Springs, Tract C-b	30
II A-8	Water Quality for Springs (by Water Resources Division	31
II A-9	Mean and Standard Deviation for Selected Element Found in Spring Water Tract C-b	32
II B-1	Well Summary Table	35-37
II B-2	Summary of Reduced Water Levels	55-57
II B-3	Results of Aquifer Pump Tests	61
II B-4	Results of Mini Pump Tests on SG-1 and SG-1a	65
II B-5	AT-1 Lower Aquifer Pump Test Data	68-69
II B-6	Analysis of Gas Samples from Tract C-b	73
II B-7	Gas Sample Analysis - Lower Aquifer Test	74
II C-1	Quarterly Summary of Concentrations, Trailer 020	77
II C-2	Quarterly Summary of Concentrations, Trailer 021	78
II C-3	Quarterly Summary of Concentrations, Trailer 022	79

LIST OF TABLES

(Continued)

Table Number	<u>Title</u>	Page
II C-4	Quarterly Summary of Concentrations, Trailer 023	80
II C-5	Quarterly Summary of Concentrations, Trailer 024	81
II C-6	Particulate Concentration Frequency Distribution	82
II C-7	One-Hour Maximum Concentrations, SO ₂	83
II C-8	One-Hour Maximum Concentrations, H ₂ S	84
II C-9	One-Hour Maximum Concentrations, O ₃	85
II C-10	One-Hour Maximum Concentrations, NO	86
II C-11	One-Hour Maximum Concentrations, NO2	87
II C-12	Three-Hour Maximum Concentrations, Non-Methane HC	88
II C-13	Three-Hour Maximum Concentrations, Methane HC	89
II C-14	One-Hour Maximum Concentrations, CO	90
II C-15	24-Hour Maximum Concentrations, Particulates	91
II C-16	Monthly Average Concentrations	92
II C-17	Ambient Concentrations of Trace Elements on Tract C-b, Composite Sample	97
II C-18	Trace Element Analysis of Single Filter Samples	98
II C-19	Gross Radioactivity	99
II C-20	Meteorological Summary: Winds and Temperature	100
II C-21	Meteorological Summary: Relative Humidity and Precipita	tion 101
II C-22	Average Hourly Stability Classes	109
II C-23	Meteorological Summary: Stability Class Frequencies	110
II C-24	Summary of Inversions at the C-b Tract	111
II C-25	Air Temperature Inversion Characteristics	112

LIST OF TABLES

(Continued)

Table Number	<u>Title</u>	Page
II C-20	Frequency Analysis of Air Temperature Inversion Duration	113
II C-2	7 Tract C-b Noise Study Data Sheet	117
II C-28	Approximate Traffic Noise Levels at Locations in Piceance Creek Basin and Surrounding Areas	118
II C-29	Stack Emission Parameter Characteristics for the Hydro- treated Shale Oil Case	121
II C-30	Projection of Tract C-b Ambient Concentrations of Pollutan 24-Hour Maximum Values	122
II D-1	Distribution of Deer Carcasses in Five Habitat Types on Tract C-b	127
II D-2	Percent Frequency of Tracks from Counts Conducted 7/14/75	129
II D-3	Small Mammals Present on Tract C-b in June and July 1975	130
II D-4	Relative Frequencies of Small Mammal Diet Items for May, June, July and August 1975.	131
II D-5	Species of Birds Observed on Tract C-b During Fall, Winter, Springs, and Summer of the First Year's Investigations	134-143
II D-6	Numerical Abundance of Species of Fish Captured During July 1975 in Piceance and Stewart Creeks	144
II D-7	Food of Brook Trout Collected from Lower Stewart Lake, July 1975	145-146
II D-8	Food of Mountain Suckers Collected from Piceance Creek (P-January 1975	2) 147
II D-9	Fish Population Estimates for Selected Piceance Creek Stations Based on Sampling in July 1975	149
II D-10	Periphyton Productivity Estimates for Piceance Basin Stations, July 1975	150-151
II D-11	Light and Dark Bottle Dissolved Oxygen Determinations for Upper and Lower Willow and Stewart Lakes, July 1975	152-153

LIST OF TABLES (Continued)

Table Number	<u>Titl</u> e	Page
II D-12	Heavy Metal Spectographic Screen Analyses for Selected Sediment Samples from Piceance Basin, July 1975	155
II D-13	Vegetation Cover Types Portrayed on the Tract C-b Vegetation Map	156
II D-14	Soils of Lease Tract C-b Study Area	159
III B-1	Revegetation Site Planting Plans	163-167
III B-2	Site Planting Plans	168-171
III C-1	Microenvironmental Stations Monthly Summary - May, 1975	173
III C-2	Microenvironmental Stations Monthly Summary - June, 1975	174
III F-1	Variety Classes Determiniation	184
III F-2	User Area Criteria	189
III F-3	Viewer Sensitivity Levels	190
III F-4	Distance Zone Criteria	193
III F-5	Sensitive Areas Quality Objectives Comparison	195
III F-6	Sensitivity Class Matrix	196

Summary Report #4 and Quarterly Data Report #4 cover the fourth quarter of exploration and environmental data for the first year of the Environmental Baseline Program for Tract C-b. These reports specifically cover the summer quarter of June, 1975 through August, 1975. Quarterly Data Report #4 consists of four volumes of a comprehensive compilation of data submitted to the Area Oil Shale Supervisor in Grand Junction on October 15, 1975. Parties interested in reviewing the comprehensive data may contact the Area Oil Shale Supervisor's Office. This Summary Report #4 is intended to provide the reader with a general overview and initiate the interpretation of the information included in the Quarterly Data Report #4. For a complete summary of on-Tract activities to date, reports from all four quarters must be consulted.

The 5th Quarterly Data Report and Summary Report will cover the fifth quarter of the two-year Environmental Baseline Program. In addition, it will include a section on annual summary and trends for the first year of the baseline program.

For ready reference, the reader is reminded that both outline and section numbering in Summary and Quarterly Data Reports are identical. Further, the complete data for this quarter are presented in Quarterly Data Report #4 and for in-depth study the reader is referred to that reference.

No environmental reconnaissance surveys were conducted during this quarter. The results of previous surveys are contained in Quarterly Data Reports #1 and #2 and are summarized in Summary Reports #1 and #2.

Although the basic data are reported under separate subsections, the Environmental Baseline Programs of Section II are not independent of each other, but are in fact all part of the same ecosystem. Separation into subsections is prudent at this stage in the program and any attempt to integrate data reporting might lead to confusion. As sufficient data are gathered for analytical purposes, interfaces between subsections become recognized and the program tends to become more systems oriented.

One of the more complex subsystems or interfaces involves the surface water, ground water, and geologic programs. These programs and their interfaces are depicted in the accompanying flow diagram (Figure II-1). The flow of each program is from left to right; interfaces between programs are shown by directed arrows to or through circles; activities are rectangles, and ovals represent inputs and outputs between phases. The interested reader may inspect the flow chart to ascertain how each program interrelates with others and contributes to the overall outputs--the Detailed Development Plan, Mine Dewatering Plan, Water Disposal Plan, and baseline data reports.

II A SURFACE WATER

II A-1 Surface Streams

During the fourth quarter, surface water samples were analyzed from five of the thirteen stations on or near Tract C-b. The locations for all thirteen stations are shown on Figure II A-1; stations where water quality data were obtained are:

U.S.G.S 0936025

0936007

0936022

0936058

0936061

The latter four stations are located on perennial streams and are classified as major gauging stations. Station 0936025 is located on the west fork of Stewart Gulch were stream flow is ephemeral and data are obtained

FIGURE II A-1

only when there is precipitation enough to cause a recordable flow. Tables II A-1 through II A-5 give a summary of water quality parameters analyzed.

Only preliminary data for the four continuous-recording stations measuring flow, temperature, pH, dissolved oxygen, and conductivity have been made available by the U.S.G.S. Daily-flow data for the perennial and ephemeral streams show that there was negligible or no flow during the period of observation in the ephemeral streams. Figures II A-2 through II A-5 are preliminary hydrographs of flow recorded at the four major gauging stations. The hydrograph patterns of Piceance Creek for upstream and downstream continuous-gauging stations are in general agreement (Figures II A-2 and II A-3). As one would expect, the flow at the downstream gauging station generally is higher than that at the upstream gauging station because of the influx of flow from tributaries. At low-flow levels, the hydrograph patterns may fluctuate because of loss of water in seepage and evaporation. At higher flow levels, these components are a minor part of the total flow.

General conclusions on the relationship of four primary water quality characteristics (temperature, pH, dissolved oxygen, and conductivity) to the flow cannot be made with the data available to date; however, continuous water temperature measurements show a marked diurnal pattern (Figure II A-6) with peaks in the afternoon and lows in the morning, as might be expected in a shallow stream.

The solubility of oxygen is a function of temperature and pressure and, since the chief source of oxygen in surface water is the atmosphere, the oxygen content of surface water and meteorological conditions are interwoven. Other factors influencing the oxygen content are hydraulic parameters, such as water chemistry and stream-bed roughness, and biological activity, such as fresh water biota or organic material load. Some oxygen is contributed indirectly as a by-product of photosynthesis. Dissolved oxygen readings are indicators of the biochemical condition of a stream. However, because of the rapidly changing conditions influencing the intake or consumption, the oxygen content of surface water is highly transient. A dissolved oxygen value is meaningful only at the sampling station and only for a brief interval of time.

Figure II A-7 shows the major ionic constituents and water hardness (yearly averages) as determined at the five gauging stations where stream flow data are available. Figures II A-8 through II A-11 show variations in the content of various ions as a function of time. All the waters are quite high in total dissolved solids(TDS), with the tributaries exhibiting higher TDS than the main stream. Magnesium and sodium are the dominant cations with sodium being dominant on the main stream, as shown at Station 007* and 061, and magnesium being the dominant cation on the tributaries, Stewart Gulch and Willow Creek. Bicarbonate is the dominant anion at all locations except the West Fork of Stewart Gulch, where sulfate dominates.

Maximum, minimum and median concentrations of selected stream water constituents based on the first complete year of data for five gauging stations are presented in Summary Report #3. With regard to total dissolved

^{*} Only the 1st three digits of the station number are used in each case; e.g. 007 is U.S.G.S. Station number 09306007.

TABLE II-A-1

SURFACE WATER QUALITY BASELINE DATA

BASELINE DATA TO BE

STATION: U.S.G.S. No. 09306007 Piceance Creek Below Rio Blanco February 1975 - June 1975

COL	LECTED SEMI-MONTHLY	11, 13	/ 5 - 0										
		2/3	2/19	3/6	3/20	4/2	4/14	5/7	5/22	6/4	7/1		
1.	Ammonia (mg/1) (Nitrogen)	.06	.07	.09	.03	.04	.05	.01	.01	.01	.00	1	i
2.	Arsenic (ug/l)	_5	1	2	4.	2	3	3	2	2	3		
3.	Barium (110/1)	100	<100	200	<100	<100	<100	. 0	100	0	0		
4.	Bicarbonate (mg/1)	562	602	533	450	541	481	498	390	464	557		\Box
5.	Boron (ug/1)	190	220	220	220	240	190	190	110	330	180		
6.	Cadmium (ug/1)	0		0	0	0	1	0	1	0	0		
7.	Calcium (mg/1)	72	69	70	66	69	67	71	59	65	74		
8.	Carbonate (mg/1)	0	0	0	32	0	0	10	0	0	0		
9.	Chloride (mg/l)	19	17	15	16	15	19	18	9.0	11	15		
10.	Chromium (ug/1)	. 0		0	0	0	0	0	0	0	0		
11.	Color (PCU)	3		20	5	8	15	15	15	10	8 .		
12.	Copper (ug/1)	1	- 1	2	1	1	2	2	6	1	1		
13.	Cyanide (mg/1)	.00	.00	.00	.00	.00	.00	.01	.00		.00		
14.	Fluoride (mg/1)	1.1	1.3	1.1	1.3	1.3	.8	.7	.3	.7	.8	1	
15.	Iron (ug/1)	20	60	90	10	20	10	30	290	50	20		
16.	Kjeldahl Nitrogen (mg/1)	.61	.59	.86	.58	1.0	1.9	67	1.9	4.0	.40		1
17.	Lead (ug/1)	6		3	2	1	4	0	1	1	2		
13.	Lithium (ug/1)	20		10	20	20	20	20	10	10	10		-
19.	Mognesium (mg/1)	46	56	48	49	47	49	45	34	39	50		
20.	Manganese (ug/1)	67		110	110	70	70	70	30	20	120		
21.	Mercury (ug/1)	.1		. 2	.0	.8	.0	.0	.1	.1	.1		
22.	Nitrate (mg/1) as NO _z	1.4	1.2	.97	.44	1.2	2.4	2.2	3.7	2.6	.40		
25.	Nitrite (mg/1) as NO ₂	.03	.03	.03		.00	.03	.03	.00	.00	.00		
24.	Odor	0	-	0	0	0	0	0	0	0	0		-1
25.	0:1 & Grease (mg/1)	6	10	6	3	3		1	1	1	3		
25.	Ortho-Prosphorus (mg/l) (total)	.04	.04	.10	.03	. 04	.11	.06			.01		
27.	Potassium (mg/1)	2.6	2.6	4.9	3.3	3.6	2.9	5.8		2.8	3.2		
28.	Sclenium (ug/1)	1	1	1	1	1	1	1	2	1	1		
29.	Silica (mg/l)	16	16	14	12	14	13	16	15	16	16		
30.	Sodium (mg/1)	130	130	120	120	120	120	110	75	98			
31.	Solids, Dissolved (mg/1)	736	761	678	683	699	702	695	502	604	754		
32.	Sulfate (mg/1)	170	170	140	160	160	190	170		140	180		
33.	Sulfide (mg/1)	.1	.0	.2	.2	.2	.3	.2		.1	.1		
34.	Turbidity (JTI)	10	80.	20	20	130	34	120			4		
35.	Zinc (ug/1)	.20		_10	20	20	50	10	10/	0	10		
36.	pH	9.0	8.5	8.0	8.5	8.5	8.4	8.6	8.4	8.2	8.4		
													 _

DATA TO BE OBTAINED QUARTERLY														
AT FOUR MAJOR STATIONS												Т	1	
1. Complete Element Scan	-	-	-	-	-									
2. Radioactivity														
a. Gross Alpha (pcl) U Nat. Suspended	-	-	2,1	-	-	-	-		7.8					
Radium 226*														
b. Gross Beta Cs-137 & Sr90 Suspended	-	-	6.2			-	-	-	12.3	-				
Thorium 250**														
Uranium**								1						
3. Total Organic Carbon (TOC) (mg/1)	-	-	8.4		-	-	-	-	12					
If OC> 10 mg/liter, then						1								
a Nitrogen (Base Extraction)														
b. Organic Carbon, Dissolved		1												
c. Organic Carbon, Suspended						<u> </u>								
d. Phenels						L								
e. Polycyclic Aromatics							ļ							
f. Sulfur (Acid Extraction)														
4. (20)	-	-	35	-	-	-	-	<u> </u>	30	-				
5. Coliform, Fecal		-	28	-	· -		-	-						
6. Posticides	-	-	-	-		1 -	<u> </u>	1 -	<u> </u>		L	1		· · ·

^{**} Required if Gross Alpha> 4 picocuries per liter (pcl)
** Required if Gross Beta >1000 picocuries per liter (pcl)
N Non-Instantaneous Discharge

TABLE II A-2

SURFACE WATER QUALITY BASELINE DATA

STATION: U.S.G.S. No. 09306022 Stewart Gulch Ab West Fork Nr Rio Blanco Co. February 1975 - June 1975 BASELINE DATA TO BE COLLECTED SEMI-MONTHLY

COLLECTED SEAT PRIVITES	cuti, i		Othic											-
	2/3	2/19	3/6	3/20	4/2	4/14	5/7	5/22	6/4					i
1. Ammonia (mg/1)(Nitrogen)	.06	.05	.03	.03	.01	.00	.01	.01	.00					
1. Ammonia (mg/1)(Nitrogen) 2. Arsenic (ug/1)	3	1	0	2	0	0	0	1	0					
3. Barium (ug/1)	<100	<100	<100	<100	<100	<100	0	0	0					
4. Bicarbonate (mg/1)	519	516	510	437	497	474	505	480	492					
5. Boron (ug/1)	70	80	80	80	90	80	80	80	80					
6. Cadmium (ug/1)	1	1	0		1	0	0	0	0					
7. Calcium (mg/l)	98	93	95	0 97	95	97	98	93	93					
8. Carbonate (mg/1)	0.	. 0	. 0	38	0.	0	9	0	0			الأبسا		
9. Chloride (mg/1)	7.0	8.1	7.2	7.0	7.0	7.4	7.3	6.6	6.7					
10. Chromium (ug/1)	. 0	0	0	20	0	0	0	0	0					
11. Color (PCU)	3	3	20	8	0	2	4	2	1			إربين		
12. Copper (ug/1)	88	33	2	1	3	0	1	0	2			إزننج		
15. Cyanide (mg/1) 14. Fluoride (mg/1)	.01	.02	.00	.00	.00	.01	.01	.00	.00			إبالا		
14. Fluoride (mg/1)	. 4	.3	.3	.1	.3	.2	.2	.3	.2	الكانيا				
15. Iron (ug/1)	10	10_	40	20	30	10	50	20	60					
16. Kjeldahl Nitrogen (mg/l)	.45	.65	.46	.80	.36	.39	.24	. 53	3.5					
17. Lead (ug/1)	6	2	0	3	2	0	ŋ	2	2					
18. Lithium (ug/1)	10	20	20	10	10	10	20	10	0					
19. Magnesium (mg/1)	78	76	81	86	74	75	72	80	779					
20. Manganese (ug/1)	40	30	30	30	10	20	20	20	0					
21. Mercury (ug/1)	.0	.0	.0	.0	.1	.0	.0	.2	1		أتحبب			
22. Nitrate (mg/1) as NO ₃	8.4	7.9	7.9		8.0	7.5	7.5	6.6	6.6					
23. Nitrite $(mg/1)$ as NO_2	.03	.03	.03	.00	.00	.03	.00	.00						'
24. Odor	0	0	0	.0	0	0	0	0	0					
25. Oil & Grease (mg/l)	9	8	7	4	3	1	1	2	1					
26. Ortho-Phosphorus (mg/1) (total)	.18	. 05	.06	.03	.02	04	.02	.02						
27. Potassium (mg/1)	1.6	1.5	1.7	1.6	2.4	1.5	1.8	1.5	1.4				[
28. Selenium (ug/1)	1	1	1	1	1	1	0	0	1					
29. Silica (mg/l)	16	15 -	15	14	15	14	15	14	15					
30. Sodium (mg/1)	120		120	120	120	12.0	130	120	120					
31. Solids, Dissolved (mg/1)	956			958	937	917	950	939	965					
32. Sulfate (mg/1)	370		370	370	370	360	360	380	400					
33. Sulfide (mg/1)	.1	.0	.1	.1	.2	11	.1	. 3	.0					
34. Turbidity arm	5	30	10	16	17	8	2	.12	23					
35. Zinc (ug/1)	20	60	20 8.1	30 8.4	20	_20	10	0	10					
36. pH	8.8	8.5	8.1	8.4	8.6	8.4	8.6	8.1	8.1					1

DATA TO BE OBTAINED QUARTERLY AT FOUR MAJOR STATIONS

	Out I bott Office										1		
1.	Complete Element Scan												
2.	Racioactivity											1	
	a. Gross Alpha (pcl) Suspended U Nat	-		1.7			-	-	-	51.2			
	Radium 226*												
	b. Gross Beta CS-137 & Sr	-	-	4.5	_	-	-		ابد جيا	6.8			
	Thorium 230**												
	Uranium**												
5.	Total Organic Carbon (TOC) (mg/1)	-	-	3.1		-	-			4.4			
	If TOC > 10 mg/liter, then												
	a. Nitrogen (Base Extraction)												
	b. Organic Carbon, Dissolved				إستعبا								
	c. Organic Carbon, Suspended												
	d. Phenois												
	e. Folycyclic Aromatics f. Sulfur (Acid Extraction)]							المرازان			
	f. Sulfur (Acid Extraction)												
7.	COD	-	-	10	-	_	-	-		15			
	Coliform, Fecal	-	-	0	i -	-				-			
6.	Pesticides	-	-	_	_			-		_			

[#] Required if Gross Alpha> 4 picocuries per liter (pcl)
Required if Gross Peta >1000 picocuries per liter (pcl)
N Non-Instantaneous Discharge

TABLE II A-3

SURFACE WATER QUALITY BASELINE DATA

BASELINE DATA TO BE COLLECTED SEMI-MONTHLY

STATION: U.S.G.S. No. 09306025 West Fork Stewart Gulch Nr. Rio Blanco Co. November 1974 , May and June 1975

COLLECTED SENT-MONTHLE	1001 1	2,49	-)	· ocure					 				
	11/6	11/20	1	5/9	5/20	6/4	6/19						
1. Ammonia (mg/l) (Nitrogen)	-	-		.02	.00	.00	.02				1		
2. Arsenic (ug/1)	1	2		.0	1	.0	1						
3. Barium (ug/1)	<100	<100		0	0	0	0						
4. Bicarbonate (mg/1)	488	757		525	505	541	499						
5. Eoron (ug/1)	90	130		110	150	80	100						
6. Cadmium (ug/1)	1-	1		1	0	0	0						1
7. Calcium (mg/l)	82	130		94	78	90	93						
8. Carbonate (mg/1)	_	-		0	0	0	0						
9. Chloride (mg/1)	9.4	12		11	9.9	8.4	11						
10. Chromium (ug/1)	_	_		0	0	0	0						
11. Color (PCU)	-	-		5	30	15	5						
12. Copper (ug/1)	. 1	1		2	1	2	3						
13. Cyanide (mg/1)	-	-		.00		.00	.01						
14. Fluoride (mg/l)	• 2	-2		.2	.2	.2	.2						
15. Iron (ug/1)	210	20	ì	40	80	30	220 -						
16. Kjeldahl Nitrogen (mo/1)	-	-		40	.55	1.3	.47						
17. Lead (ug/1)	3	11		1 1	0	1	2						. [
18. Lithium (ug/1)	0	0		10	10	0	10						1
19. Magnesium (mg/1)	84	120		82	100	97	93						
20. Manganese (ug/1)	0	10		0	20	0	10						
21. Mercury (ug/1)	.0	.0		.0	.2	.1	.0						
22. Nitrate (mg/l) as NO ₂		-		.09	. 22	.09	.44						
23. Nitrite $(mg/1)$ as NO_2		-		.00	.00	.00	. 03						
24. Odor	0	-		0	0	1	2						
25. Oil & Grease (mg/1)	-	-		1	1	1	2						
26. Ortho-Phosphorus (mg/l) as P	.02	.02		.01	.00	.00		الجام					
27. Potassium (mg/l)	3.1	3.7		3.4	3.8	2.3	2.1						
28. Selenium (ug/1)	5	0		1	0	0	1			النازار			
29. Silica (mg/l)	13	17		7.5	2.8	5.4	11						
30. Sodium (mg/1)	130	200		150	160		150		1			-	
31. Solids, Dissolved (mg/l)	943	1450		1020		1100							
32. Sulfate (mg/l)	380	590		410	500		470		1	1		1	
33. Sulfide (mg/1)	-	-		.1	.2	. 2	.2		 				
34. Turbidity (JTU)	-	-		1	14	11	15						i
35. Zinc (ug/1)	40	20		4	20	0	0						
36. pH .	8.2	-		8.9	-	8.3	8.6						

DATA TO BE OBTAINED QUARTERLY AT FOUR MAJOR STATIONS

111 10011 1110 111				 	,	 			 	
_ 1. Complete Element Scan	-	-								
2. Radicactivity										
a. Cross Alpha (pcl)										
Radium 226*		الأخطيب								
b. Gross Beta										
Thorium 230**										
Uranium**										
3. Total Organic Carbon (TOC) (mg/1) If TOC> 10 mg/liter, then							أرزاجها	بخبينة		
If TOC> 10 mg/liter, then					التجالا					
a. Nitrogen (Base Extraction)								التجرائي		
b. Organic Carbon, Dissolved										
c. Organic Carbon, Suspended								بجنيب	إصبيا	
d. Phenols										
e. Polycyclic Aromatics f. Sulfur (Acid Extraction)										
f. Sulfur (Acid Extraction)										
4. COD										
5. Coliform, Fecal										
6. Pesticides	1		1							

^{*} Required if Gross Alpha> 4 picocuries per liter (pcl)
** Required if Gross Reta >1000 picocuries per liter (pcl)
N Non-Instantaneous Discharge

TABLE II A-4 SURFACE WATER QUALITY BASELINE DATA

BASELINE DATA TO BE COLLECTED SEMI-MONTHLY

STATION: U.S.G.S. 09306058 Willow Creek Nr Rio Blanco, Co. February - June 1975

- 002	EDUTED OF IT INVITED	/										 	
		2/3	2/9	3/6	3/20	4/3	4/15	5/7	5/22	6/4			
1.	Armonia (mg/1) (Nitrogen)	.08	. 03	.08	.02_	01	.02	.03	.03	-			
2.	Arsenic (ug/l)	4	0	0	2	1	3	0	1	-			
3.	Barium (ug/1)	100	100	100	<100	100	<100	0	0	-			
4.	Bicarbonate (mg/1)	531	536	537	496	509	484		472	-			
5.	Boron (ug/1)	110	130	100	100	110	120	120	100	-			
6.	Cadmium (ug/1)	1	1	0	. 0	0	0	0	Ω	-			
7.	Calcium (mg/l)	100	96	94	97	98	98	82	84	-			
8.	Carbonate (mg/1)	0	0	0	0	0	0	0	0	-			
9.	Chloride (mg/1)	12	-11	9.9	11	9.7	12	12	12	-			
10.	Chromium (ug/1)	0	10	0	10	0	0	0	0	-			
11.	Color (PCU)	0	5	20	5	3	3	8	3	0			
12.	Copper (ug/1)	4	4	1	1	1	0	1	0	-	1		
13.	Cyanide (mg/1)	.00	.00	.00	.00	.00	.01	.01	.00	-			
14.	Fluoride (mg/l)	.3	.4	.4	.6	. 4	.3	.3	.4	-			
15.	Iron (ug/1)	10	20	50	10	20	10	40	20	-			
16.	Iron (ug/1) Kjeldahl Nitrogen (mg/1)	1.0	1.1	1.2	.73	.99	.51	. 56	.46	-			1
17.	Lead (ug/1)	2	2	2	3	1	0	0	1	-			
18.	Lithium (ug/1)	0	10	10	10	10	10	10	10	-			
19.	Magnesium (mg/1)	74	74	75	79	72	74	78	81	-			
20.	Manganese (ug/1)	30	20	50	30	10	0	20	20				
21.	Mercury (ug/1)	.2	.0	0	.0	.0	.0	.0	.0	-			
22.	Nitrate (mg/1) as NO ₂	1.9	1.6	1.7	1.7	1.4	.93	1.4	1.4	-			
23.	Nitrite (mg/1) as NO ₂	.00	.00	.03	.00	.00	.03	.03	.00	-			
24.	Odor	0	0	0	0	0	0	0	0				
25.	Oil & Grease (mg/l)	5	7	4	3	5	2	3	3	-			
26.	Ortho-Phosphorus (mg/1) Total	.00	.07	.10	.04	. 03	. 04	.02	.01	-			
27.	Potassium (mg/1)	2.3	1.8	3.8	3.0	3.3	1.8	2.3	2.4	_			
28.	Selenium (ug/1)	1	0	1	1	0	1	I	1	0			
29.	Silica (mg/l)	17	15	14	14	15	14	14	12	-			
30.	Sodium (mg/1)	120	110	110	110	110			120	-			
31.	Solids, Dissolved (mg/1)	940	915	894	901	901		882	906	-			
32.	Sulfate (mg/1)	350	340	320	340	340	310	330	360	-			
33.	Sulfide (mg.1)	.1	.1	.3	.1	.0	.2	.1	.2	-			
34.	Turbidity (JTU)	30	200	100	55	40	33	72	5	-			
35.	Zinc (ug/1)	30	50	30	10	30	30	10	0	-			
	рН .	7.5	7.9	8.2	8.2	8.2	8.3		8.9	-			
	· · · · · · · · · · · · · · · · · · ·	1.0	100	0.6	-0.4	0.4	0,0						

DATA TO BE OBTAINED QUARTERLY AT FOUR MAJOR STATIONS

					~~~~	 						
1. Complet	e Element Scan											
2. Radioac												
a. Gro	ss Alpha (pcl) as U Natural			26					< .4			
R	adium 226*											
b. Gro	ss Beta as CS-137 & Sr90 horium 230**	-	-	-38			-	_	< .12			
T	horium 230**											
	ranium**											
3. Total 0	rganic Carbon (TOC) (mg/1)	-	-	16								
Jf TOC>	10 mg/liter, then											
a. Nit	rogen (Base Extraction)											
b. Org	anic Carbon, Dissolved											
c. Org	anic Carbon, Suspended											
d. Phe												
e. Pol	ycyclic Aromatics											
f. Sul	fur (Acid Extraction)											
4. COD		-	-	38								
5. Colifor	m, Fecal	-	-	5			-		-			
6. Pestici	des	-	_	V	1							

[#] Required if Gross Alpha> 4 picocuries per liter (pcl)
Required if Gross Beta >1000 picocuries per liter (pcl)
N Non-Instantaneous Discharge

TABLE II A-5

SURFACE WATER QUALITY BASELINE DATA

BASELINE DATA TO BE

STATION: U.S.G.S. 09306061 Piceance Creek Ab Hunter Creek Nr Rio Blanco, Co.

COLLECTED SEMI-MONTHLY Feb	ruary ·	July	1975										
	2/3	2/19	3/6	3/20	4/3	4/15	5/7	5/22	6/4	6/19	7/2		
1. Ammonia (mg/l) (Nitrogen)	.04	.03	.09	.03	04	.06	.03			.01	.00		
2. Arsenic (ug/1)	5	1	1	0	0	3	2	2	-	1	3		
3. Barium (ug/1)	< 100	<100	100	< 100	<100	<100	0	0	-	0	0		
4. Bicarbonate (mg/1)	591	571	554	475	576	473	552	460	-	620	605		
5. Boron (ug/1)	150	160	170	160	150	150	180	140	-	220	170		
6. Cadmium (ug/1)	1	1	0	0	0	0	6	0	i	0	0		
7. Calcium (mg/1)	88	84	81	82	83	74	77	63		78	84		
8. Carbonate (mg/1)	. 0	0	0	39	0	0	11	0	-	0	0		
9. Chloride (mg/l)	13	.14	13	14	14	16	14	11	-	14	14		L
10. Chromium (ug/1)	10	0	0	0	0	0	0	0		0	0	 	
11. Color (PCU) (PCU)		5	30	8	3	15	7	15	-	9	10		
12. Copper (ug/1)	5	10	2	2	1	0	8	0	-	2	1		
13. Cyanide (mg/1)	.00	.03	.00	.00	.00	.00	.01	.00	-	.02	.00		
14. Fluoride (mg/1)	.6	.7	.7	.9	.7	.6	.6	.5	-	.7	.6		<u></u>
15. Iron (ug/1)	30	20	60	30_	.10	10	70	30	-	30	10		
16. Kjeldahl Nitrogen (mg/1)	.46	1.9	.99	.61	79	3.8	.33	1.3	-	.47	.21		
17. Lead (ug/1)	2	1	2	3	٥	0	0	1	-	2	1		
18. Lithium (ug/1)	10	20	20	20	10	20	10	10		0	0		
19. Magnesium (mg/1)	67	70	64	70	64	50	61	46	-	63	67		
20. Manganese (ug/1)	40	30	30	30	0	50	20	30	-	50	40		
21. Mercury (ug/1)	1.1	.0	.0	.0	.0	.0	.0	.1	-	.0	.0		
22. Nitrate (mg/1) as NO ₂	3.0			2.9	2.6	2.1	2.5	3.0	-	1.5	.35		
23. Nitrite (mg/1) as NO ₂	.03	.00	.03	.03	.00	.03	.03	.00	-	.03	.00		
24. Odor	0	0	0	0	0	0	0	0	-	0	0	 	
25. Oil & Grease (mg/1)	8	4	4	3	2	8	1	2	-	1	2		1
26. Ortho-Phosphorus (mg/1) (total)		.06	.10	.04	.04	.10	.07	.07	-	.02	.01		
27. Potassium (mg/1)	2.7			3.9	5.0	3.0	3.8	3.5	-	3.9	3.6		ļ
28. Selenium (ug/l)	1	1	1	1	1	1	1	2	-	1	1_	 	ļ
29. Silica (mg/l)	17	16	15	13	15	14	16	15		18	17		Li
30. Sodium (mg/1)	140	140	130	130	140	120	130	100	-	160	170		
51. Solids, Dissolved (mg/1)	944	923	835	851	889	734	839	639	-	906	985	 	ļ
32. Sulfate (mg/1)	320	310	250	260	280	220	250	170	<u> </u>	260	330		
33. Sulfide (mg/1)	.2	.0	.2		.1	.2	.1	.1		.5	.1		
34. Turbidity (JIU)	10	300	50	50	50	670	72	340		28	3		
35. Zinc (ug/1)	30	40	10	20	20	30	20	10	-	0	10_		
36. pH	7.5	8.0	8.1	8.7	7.8	8.3	9.2	-	-	8.0	8.4		
	1											 	

DATA TO BE OBTAINED QUARTERLY AT FOUR MAJOR STATIONS

		1											
1. Complete Element Scan													
	-											 	
2. Radioactivity									~			1	
a. Gross Alpha (pcl) as U Natural			8.1		-				12				
Radium 226*													
b. Gross Beta as Cs-137 & Sr90 Thorium 230**	-	-	126	_		-	-	-	22	-	-		
Uranium**													
3. Total Organic Carbon (TOC)	-	-	8.2	-	-								
If TOC> 10 mg/liter, then													
a. Nitrogen (Base Extraction)													
b. Organic Carbon, Dissolved													
c. Organic Carbon, Suspended													
d. Phenols													
e. Polycyclic Aromatics													
f. Sulfur (Acid Extraction)													
4. COD	-	-	24	-	-								
5. Coliform, Fecal	-	-	12	-	-								
6. Pesticides	-	1 -	-	-	-								

N Non-Instantaneous Discharge

^{*} Required if Gross Alpha> 4 picocuries per liter (pcl)

** Required if Gross Beta >1000 picocuries per liter (pcl) **

FIGURE II A-2 HYDROGRAPH-USGS # 09306007

FIGURE II A-7 DISTRIBUTION OF MAJOR IONS
SURFACE WATER STATIONS, TRACT C-b
(12-month Average)

solids (TDS), the upstream station, 007, along Piceance Creek shows the lowest concentration as well as the lowest concentrations of most constituents. The median TDS at this location is 718 mg/l. Higher concentrations of TDS in the tributary streams, which reach a maximum of more than 1450 mg/l along Stewart Gulch, contribute to the downstream increase in TDS content of Piceance Creek. Below Tract C-b, the median TDS content is more than 900 mg/l.

To show the relationships between flow rate, or discharge, and TDS content, several chronological plots of ion concentration were made and compared to a plot of discharge (as determined manually at the time of sampling) over the same time period (Figures II A-12 and II A-13). Stations 007 and 061 on Piceance Creek show the same general pattern. For these two stations, from the second week in May, 1974, to the second week of July, 1974, the discharge on Piceance Creek was constantly low, with the discharge at the downstream station, 061, being lower than that at the upstream stations. This is the phenomenon of the growing season and withdrawal of water for irrigation. As a result, except for a few peak recordings, after mid-July the flows at Stations 007 and 061 are fairly equal until mid-November. From mid-November to mid-May the flow at the downstream station, 061, exceeds that at the upstream station, 007.

During the mid-May to mid-July low-flow period there is a general increase in concentrations of constituents. A similar increase is seen in October during which month the lowest flows have been recorded. can be interpreted as a classic dilution effect--where the base stream flow originates from ground water sources with a high TDS. During periods of storm runoff or snow melt, the addition of higher quality runoff water results in a diluting effect and a lowering of concentrations of dissolved solids. The increase in TDS during the irrigation season can also be related to the irrigation process and leaching from the fields being irrigated. During these periods the concentrations of magnesium and sulfate appear to increase more at the downstream station, 061, then at the upstream station (Figures II A-8 and II A-9). There is no apparent explanation for the difference. Plots of calcium and sodium are given in Figures II A-10 and II A-11. From mid-November to mid-May the calciumsodium ratio is greater at the downstream station than at the upstream station, but during the irrigation season the reverse is true (Figure II A-13). This change in concentration ratio may be attributed to ion exchange in soil and sediment -- a common result of irrigation water percolating through the soil.

The dates of minimum and maximum concentrations for major constituents were examined. At Piceance Creek Stations 007 and 061, a preponderance of minimum values occurred on May 22, 1975. At this time, the discharge for that day is not known, but it is suspected of being relatively high. Precipitation records at Trailer 023 on May 21, 1975, show precipitation in the amount of 1.22 inches. The number and value of the minimum concentrations suggest appreciable dilution. At Station 007 minimums were recorded on May 22, 1975, for specific conductivity, bicarbonate, hardness, magnesium, sodium, chloride, fluoride, sulfate, and manganese. At Station 061 all the above elements except bicarbonate, fluoride, and manganese recorded minimums. In addition, calcium was recorded at its maximum value for the year on this same date. No other maximums were recorded, but

high readings for nitrite, nitrate, and iron were obtained. The low readings can be explained by dilution from storm runoff. An explanation for the high calcium reading at Station 007 is not apparent.

Maximum readings are more scattered, but on June 26, 1974, maximum readings were obtained at Station 007 for specific conductivity and at Station 061 for specific conductivity, potassium, chloride, sodium, and manganese. The lowest flow of the year was recorded on June 27, 1974 at Station 061; this date was near the end of the irrigation season.

On July 2 and 11, 1974, maximum values were recorded at both Piceance Creek stations for bicarbonate, hardness, magnesium, sodium, and sulfate. Maximums were also recorded for nitrate, nitrite, phosphate, and manganese at the upstream station. These maximum values occurred at the end of an eight-week period of constant low flow. It is not surprising that there was a concentration of the more soluble ions. The nitrite, nitrate, and phosphate maximums could be attributed to agricultural sources, e.g., fertilization of hay meadows with manure.

II A-2 Springs and Seeps

The Colorado State Division of Water Resources in a cooperative program with the U. S. Geological Survey has been collecting flow data from springs and seeps near the Tract. Some samples of spring flow were analyzed for water quality. Table II A-6 gives the locations of springs studied by the Division of Water Resources and their correspondence to those on Tract shown in Figure II A-14. Figures II A-15 and II A-16 are hydrographs of the flow recorded by Parshall flumes near four of these springs.

Table II A-7 presents water quality analysis for the springs inventoried near the Tract. This table was first presented in Summary Report #1. Analyses of spring water from spring S-10 reported in Quarterly Data Report #3 correspond with the analyses for S-10 reported in Table II A-7. The samples were collected about six months apart. It appears that the water quality from this spring is fairly constant. Water quality data for these springs sampled by the State are shown in Table II A-8.

The springs can be divided into two groups--those springs, S-1 to S-4, on Stewart Gulch and Piceance Creek, and those springs, S-6 to S-10, on Willow Creek. In general, a comparison of the reported water quality for these two groups indicates a difference in water chemistry. For example, the aluminum content reported at springs S-6, S-7, and S-10 is significantly higher than the aluminum content reported at other springs; the fluoride content is higher on Willow Creek, pH is slightly greater, and iron and nitrates are lower on Willow Creek than in those springs reported on Stewart Gulch (Table II A-9).

The high fluoride content of the Willow Creek samples suggests that the aluminum readings are correct since high fluoride concentrations increase the solubility of aluminum. In this case, however, explanations are necessary for the low aluminum in springs S-8 and S-9. At the present time, there are none.

Table II A-6

Locations of Springs and Seeps Measured by Water Resources Divsion

Corresponding Identification	in Figure II A-14	S1 and S3		No pur Co	to tile 70	13 pm 93		O		S10			
Identification of Water Resources Division Springs	Location	Lat 039 ^o 49' 30"	Lon 108º 11' 07"	Lat 039 ^o 48' 25"	Lon 108 ^o 10' 34"	Lat 039 ^o 50' 20"	Lon 108 ^o 14' 35"	Lat 039 ⁰ 47' 36"	Lon 108 ^o 14' 59"	Lat 039 ⁰ 47' 17"	Lon 108 ^o 15' 03"		
tion of Wate	I.D. #	1081	1082	1063		1078		1110		1079			
Identifica	Designation	S-1 and)*	S-1-A)	CER-6**		W-1		W-2		W-3			

These springs are adjacent to one-anther. Single flume measures the discharge from both the springs.

This is a measuring site with flow coming from two upstream springs. *

TABLE II A-7

WATER QUALITY ANALYSIS

SEEPS and SPRINGS (a)

Location: (See Map)

(unless stated otherwise, all units are mg/l)

	Element Measured	1	2	3	14	6	7	8	9	10
1.	Aluminum	.06	1.1	. 3	0.1	1.3	2.3	.2.	.2	6.1
2.	Ammonia	.1	(.1	<.1	7.1	₹.1	₹.1	0.1	0.1	0.1
3.	Arsenic	- 003	• 004	• 003		03			.002	. 002
4.	Barium	.02	.05	.01	.05	.03	0.01	.06	.05	.05
5.	Beryllium	₹.005	.002	₹.006	.001	(.007	(. 007	(.007	4. 003	(,001
6.	Bicarbonate	520	495	520	480	560	520	606	516	540
7.	Bismuth	1. 005	1.006	(. 006	1. 007	(. 007	4. 007	1.007	₹.003	(.001
8.	Boron	1.4	1.2	1.1	1.2	1.6	1.6	0.2	0.4	0.6
9.	Cadmium	(. 005	4.006	<.006	<.007	.007	₹. 007	3. 007	(. 003	7.001
10.	Calcium	100	82	92	66	102	116	143	130	161
11.	Carbonate	1. 1	(.1	<. 1	<.1	₹.1	<.1	(.1	7.1	(.1
12.	Cerium	1.005	(.006	(.006	.005	(.007	1. 007	.005	.002	.002
13.	Chloride	4.2	4.8	4.8	3.5	4.	4.	4.0	4.0	0.8
14.	Chrome, Hexavalent	(. 01	1. 01	1. 01	€.01	5. 01	6.01	₹.01	6.01	(. 01
15.	Cobalt	0.002	₹.006	.004	0.03	0.01	_0.002	.02	.05	.002
16.	Conductivity, Specific	1380	1145	1250	1100	1250	1260	1280	1180	1180
17.	Copper	. 04	.04	.03	.2	. 05	.03	. 2	.1	.03
18.	Fluoride	.9	.6	. 7	, 6	2.1	1.5	1.7	1.5	1.4
19.	Gallium	1.005	4. 006	₹.006	.006	0.005	0.006	₹.007	1. 003	3. 001
20.	Hardness, Total	484	536	380	548	512	512	576	512	516
21.	Hydroxide	<. 1	(.1	(. 1	<. 1	₹.1	< 1	<.1	<.1	<.1
22.	Iron	1.8	. 5	4.0	7.8	. 8		.14	.84	.47
23.	Lead	<. 005	. 01	.02	. 04	. 03	.7	₹. 007	₹.003	. 02
24.	Lithium	. 05		.03	.3	14	. 1	. 1	-5_	. 2
25.	Magnesium	57	81	37	93	63	54	53	46	28
26.	Manganese	.2	.02	. 04	1.4	.03	.01	.1	0.5	.06
27.	Mercury	.001	.001	.002	.001	-0017	_0003	. 0001	.0001	. 0014
28.	Molybdenum	1.005	(.006	<. 006	.013	0.01	₹.007	.06	. 2	.02
29.	Nickel	0.02	.004	.01	08	0.01	0.009	.01	02	.005
30.	Nitrate	8.1	5.4	5.6	6.0	2.7	2.9	1.1	1.7	.1
31.	рH	7.9	8.0	7.6	7.8	8.2	8.1	7.9	8.1	7.9
32.	Phosphate, Total	₹.1	<. 1	4. 1	(.1	(. 1	(. 1	<.1	<. 1	<.1
33.	Potassium									
34.	Selenium	.005	1. 006	<. 006	<. 007	<. 007	<. 007	<. 007	7. 003	4. 001
35.	Silica	12	13	13	13	15	16	13	14	13
36.	Silver	<. 0Q5	<.006	6.006	₹.007	€.007	€.007	€.007	€ 0.03	<. 001
37.	Sodium	200	110	195	90	163	147	138	152	125
38.	Solids, Dissolved	1078	875	972	805	988	967	995	9.48	910
39.	Strontium	1	3	2	14	5	2	3	1	1
40.	Sulfate	440	335	370	290	360	375	350	350	310
41.	Titanium	0.1	.06	.08	0.1	0.3	0.2	0.2	0.2	0.2
42.	Vanadium	0.004	.005	.002	.009	0.004	0.004	.003	.005	.002
43.	Yttrium	<. 005	.002	1. 006	.003	(.007	<. 007	<. 007	<. 003	<.001
44.	Zinc	0.04	. 1	3	.1	0.4	.08	.05	,2	. 2
45.	Zirconium	(. 005	<. 006	1. 006	(.007	1. 007	<. 007	<. 007	<. 003	6.001
46.	Radioactivity									
	Gross Alpha (pcl)	2.8	2.1	3.4	14	3.3	1.6	4.2	4.7	1.3
	Radium 226*							0.3	0	
	Gross Beta (pcl)	0	0	0	0	0	0	0	0	0
	'Thorium 230**									
	Uranium**									
47.	Total Organic Carbon (TOC)	6	3	14	3	3	6	3	3	6
	Dissolved Organic Carbon***									
	Suspended Organic Carbon***									
	Phenols***									
	Sulfate, Acid Extraction***									
	Nitrogen, Base Extraction***									

^{*} To be reported if gross alpha is greater than 4 picocuries per liter (pcl).

** To be reported if gross beta is greater than 100 picocuries per liter (pcl).

*** To be reported if TOC is greater than 10 mg. per liter.

^{1.} Seep @ Mouth Stewart Creek 2. East Stewart Gulch Stream from Seeps @ Mouth 3. Spring at Mouth of Stewart Gulch 4. Spring at Savage Cabin Stewart Gulch 5. Napped in error 6. Spring @ Mouth of Willow Creek West of PL Ranch 7. Spring @ PL Ranch 8. Spring @ Willow Creek at Mouth of Scandard 9. Willow Creek 3/4 mile past Scandard 10. Willow Creek 2 miles past Scandard

⁽a) all samples taken during week of September 30, 1974

Table II A-8

Water Quality Analysis Seeps and Springs

(Preliminary Data obtained from Water Resources Division, State of Colorado)

Element Measured	Units	Identif: W-1	ication of W-2	on of Springs 2 W-3			
111 1 m. 4-1 (0-00)	/1	/07	400				
Alkali, Total (as CaCO ₃)	mg/1	497	482	442			
Aluminum Arsenic	μg/1.	0	0	20			
	μg/1	0	0	1			
Barium	μg/1 /1	606	588	0 534			
Bicarbonate	mg/1 μg/1	140	320	100			
Boron		0.1	0.0	1.1			
Bromide	mg/1	96	100	100			
Calcium Carbonate	mg/1	0	0				
Chloride	mg/1 mg/1	11	9.1	0 9.0			
Fluroide	mg/1	0.6	0.5	0.4			
Hardness (non-carbonate)	mg/1	98	98	120			
Hardness (Total)	mg/1	590	580	560			
Iron	μg/1	10	10	0			
Lead	μg/1 μg/1	1	1	1			
Lithium	μg/1 μg/1	0	0	0			
Magnesium	mg/1	85	79	75			
Manganese	μg/1	. 0	20	0			
$NO_2 + NO_3$ as N	mg/1	0.84	0.28	0.55			
pH	mg/ ±	7.3	7.8	7.9			
Phosphate, ortho as P	mg/1	0	0.01	0.04			
Phosphate (ortho)	mg/1	0	0.03	0.12			
Potassium	mg/1	2.3	1.3	1.3			
Residue, calc. sum	mg/1	1020	976	906			
Residue, (Dis)	Ton/AFT	1.96	0.66	1.79			
SAR		2.5	2.4	2.0			
Selinium	μg/1	1	0	0			
Silicon	mg/1	21	20	18			
Sodium	mg/1	140	130	110			
Sodium	percent	34	33	30			
Specific conductance	FLD	1400	1400	1300			
Stream flow - instrument	cfs	0.71	0.25	0.73			
Strontium	μg/1	4500	4400	3800			
Sulfate	mg/1	360	340	320			
Water, Temperature	oC_	9	10.5	8.0			
Zinc	μg/l	0	0	0			
Total cations	mea/1	17.931	17.177	15.978			
Total anions	mea/1	17.829	17.019	15.811			

TABLE II A-9

MEAN AND STANDARD DEVIATION FOR SELECTED ELEMENTS FOUND IN SPRING WATER TRACT C-b

	STEWART GULCH SPI	RINGS 1-4	WILLOW CREEK S	PRINGS 6-10
	Mean (mg/1)	Std. Dev.	Mean (mg/1)	Std. Dev.
Aluminum	0.14	0.052	2.02	0.964
			3.23	0.714 (springs 6, 7, & 10 only)
Fluoride	0.7	0.061	1.64	0.112
Iron	3.52	1.384	0.59	0.136
Nitrate	6.28	0.538	1.7	0.363
рН	7.82	0.075	8.04	0.056

Nitrogen in the form of dissolved nitrate is a major nutrient for vegetation, and found in biological wastes. The differences in nitrate content between Stewart Gulch and Willow Creek could be explained by any number of reasons, e.g., contamination of the spring pool with aniaml waste, decaying vegetation, or agricultural runoff contaminating the spring pool.

There are several hypotheses that can be made to explain the differences in water chemistry. Additional water samples will be collected. As these new data are analyzed the various hypotheses will be stated, tested, and reported in subsequent documents.

II B CORE DRILLING AND ASSOCIATED GROUND WATER

The initial vertical well drilling and coring program has been completed and most of the data generated has been previously published. Information contained herein that relates to this program deals with (1) data that, because of time constraints, were not included in previous reports, (2) additional analysis of aquifer test data, and (3) data obtained from water level measurements and the preliminary analysis of that data. Additional geologic and engineering information were also attained by a slant-hole coring program. The primary purpose of this slant-hole program was to acquire additional structural-fabric information for use in mine design.

Four slant holes were cored through the mine zone and then cemented back to the surface after reaching total depth. Cores from each slant hole were oriented and logged to obtain joint directions and inclination (strike and dip). This information will be used to help determine mine orientation, to evaluate pillar and roof design, and to aid in shaft design. Structural fabric may also be significant in hydrologic evaluations. Other information obtained from the slant-hole drilling program includes mechanical laboratory evaluation of cores for data to be used in foundation, shaft, and mine design, assay for additional data points for assessing the overall oil shale reserves, and gassy core tests and analysis.

Data from the completed slant-hole program and included in Quarter-ly Data Report #4 are well survey plats, completion reports, and gas sampling program information. All slant holes were drilled with fluid whereas the vertical wells were drilled with mist. Thus no drilling water quality information was obtained.

The Well Summary Table, II B-1, has been updated to reflect current data. Listed in the table are the various types of information which have been presented and the quarterly reports in which that information will be found. Figure II B-1 is an updated map of the Tract showing the well locations. To graphically summarize the core-drilling program, Tract C-b penetration charts are presented in Figure II B-2, sheets 1 and 2.

There has been a slight modification of format beginning with this report in that Water Quality and Aquifer Data subsections each have been regrouped to better present the dynamic nature of this program.

II B-1 Well Survey Plats

Survey plats for all vertical test wells, core holes and observation wells have been reported previously. The slant holes are designated NQ-4, NQ-7, NQ-12 and NQ-22. Well survey plats for NQ-7 and NQ-12 slant hole pad locations were included in Summary Report #3. Survey plats for NQ-4 and NQ-22 are included in Quarterly Data Report #4.

TABLE II B-1

			WELL S	UMMARY						1			,	
1. Well Designation	AT-1		AT-la	AT-1	AT-1c	AT-1d	SG-1	SG1a	SG-6	SG-8	SG-9		SG-10a	
2. Well Type	AT	AT (CH)	AT	AT	AT	AT	СН	GHT	CH (AT)	CH	CH	CH (AT)	GHT	(AT)
3. Completion Date	1/23/ 75	7/1/ 74	7/10/ 74	7/20/ 74	8/18/ 74	7/28/	12/6, 74	2/7/ 75	74	74	(10/23) 74	74	7/10/ 74	9/8/
4. Total Depth (Geolograph) (feet)	1700	1621	1341	1638	1640	1640	2525	1180	2220	2608	2750	2211	1333	2826
5. Water Data														
a. Drilling Water Production	C1Q 2Q	C1Q	C1Q	C1Q	C1Q	C1Q	C2Q	C2Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q
b. Drilling Water Samples (# taken)	1	4	NA	NA	4	NA	7	NA	5	7	5	4	NA	25
c. Water Quality Analyses	C1Q 2Q	C1Q			C1Q		C2Q		C1Q	C2Q	C1Q	C1Q		C1Q
6. Aquifer Data														
a. Drill Stem Tests		C1Q			C1Q		C2Q C3Q			C3Q		C1Q		
b. Jetting Tests	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C2Q	C3Q	C1Q		C1Q	C1Q	C1Q	C1Q
7. Geophysical Logs,														
a. Schlumberger (1) Borehole, Compensated Sonic	C1Q	*		C1Q	C3Q	C1Q	C2Q		C3Q	C2Q	C2Q	*		C1Q
(2) Laterolog	C1Q	*		C1Q	C3Q	C1Q	C2Q		C3Q	C2Q	C2Q	*		C1Q
(3) Formation Density	C1Q	*		C1Q		C1Q	C2Q	C2Q		C2Q	C2Q	*		
Compensated Neutron (4) Formation Density		*		C1Q	C3Q	C1Q			C3Q			*		
(5) Temperature	C1Q	C1Q		C1Q	C3Q	C1Q	C2Q		C3Q	C2Q	C2Q	C1Q		C1Q
(6) Cement Bond Log		*		C3Q	C3Q	C3Q	C3Q		C3Q		C3Q	*		C3Q
(7) Perforated Depth Control							C3Q				C3Q			
Casing Collar Log and (8) Perforating Record														
Oriented Perforating Record (9) and Casing Collar Log				C3Q	C3Q	C3Q	C3Q		C3Q		C3Q			C3Q
b. Geophysical Logs, Other														
(1) Welex, Micro-seismogram		C10										C1Q		
(2) McCullough, Temperature				C1Q										
8. Field Lithologic Log	C10	C3Q	C1Q	C1Q	C1Q	C1Q	C3Q	C2Q	C3Q	C3Q	C3Q	C3Q	C1Q	C3Q
9. Cored Interval (feet from surface)														<u>`</u>
a. Top	NA	1270	NA	NA	NA	NA	550	NA	1195	580	1200	1200	NA	750
b. Bottom	NA	1519		NA	NA	NA	2525	NA	2220	2608	2750	2211	NA	2810
10. Assay Data														
a. Fischer Assay	NA	C1Q	NA	NA	NA	NA	C3Q	NA	C3Q	C3Q	C2Q	C1Q	NA	C3Q
b. Soluble Sodium	NA	C1Q	NA	NA	NA	NA	C3Q	NA	C3Q	C3Q	C2Q	C1Q	NA	C3Q
c. Alumina	NA	C1Q	NA	NA	NA	NA	C3Q	NA	C3Q	C3Q	C2Q	C1Q	NA	C3Q
11. Trace Element Analysis			C2Q 3Q	į.						C2Q 3Q	C2Q 3Q	C2Q 3Q		
12. Rock Mechanics Data		C10										C1Q		
13. Gas Data														
a. Drilling Log	NA	NA	NA	NA		NA	C1Q		C1Q	C1Q	C1Q		NA	C1Q
b. Bomb Samples (# taken)	NA NA	NA	NA	NA	2	NA	8		4	11	8		NA	6
c. Bomb Analyses	C3Q	NA NA	NA NA	NA NA	C2Q	NA	C1Q 2Q		C1Q	C1Q 2Q	C1Q		141	C3Q C1Q
14. Completion Data	C2Q	C10	C1Q	C1Q	C1Q	C1Q	C3Q	C2Q	C1Q	C2Q	C1Q	C1Q	C1Q	C1Q
15. Survey Plat	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C3Q	C1Q	C1Q	C1Q		C1Q	
	1										`			

KEY: NA = Not Applicable

Inc. = Incomplete
C1Q = Complete, First Quarterly Report
C2Q = Complete, Second Quarterly Report
C3Q = Complete, Third Quarterly Report

^{*}Birdwell Company logs run on this well instead of Schlumberger. See Quarterly Report #1. **Alluvial Pump Test. # Not applicable. Wells drilled prior to granting C-b Tract Lease.

TABLE II B-1 (continued)

WELL SUMMARY TABLE															
1. Well Designation	SG-17	SG-18	SG-18a		SG-20	SG-21	Cb-1	Cb-2	Cb-2b	Cb-3	Cb-4	NQ7B	NQ12D	NO 4	NQ22
2. Well Type	СН	AB (GHT)	GHT	CH	GHT	GHT	GHT	GHT	AB (GHT)	GHT	GHT	СН	СН	СН	СН
3. Completion Date	75	10/13/ 74	10/18 74	74 74	12/13 74	75	#	#	9/20/ 74	#	#				
4. Total Depth (Geolograph)	2460	1430	1330	980	987	1036	2104	1482	1220	2122	1470	1740	1670	1554	1841
5. Water Data							#	#		#	#		-None-		
a. Drilling Water Production	C2Q	C1Q	C1Q	C1Q	C2Q	C2Q			C1Q						
b. Drilling Water Samples	31	3	1	4	5_	5									
c. Water Quality Analyses	C2Q 3Q	C1Q	C1Q	C1Q	C2Q	C2Q									
6. Aquifer Data							#	#		#	#		None		
a. Drill Stem Tests	C2Q 3Q				C2Q 3Q	C2Q 3 Q									
b. Jetting Tests	C2Q 3Q	C1Q	C1Q	C1Q	C2Q	C2Q									
7. Geophysical Logs,															
a. Schlumberger (1) Borehole, Compensated Sonic	C2Q	C1Q		C1Q	C2Q	C2Q						*		*	* -
(2) Laterolog	C2Q	C10		C1Q		C2Q						*	*	*	*
(3) Formation Density	C2Q	C1Q		C1Q	C2Q	C2Q						*	*	*	*
Compensated Neutron (4) Formation Density												*	*	*	*
(5) Temperature	C2Q	C1Q		C1Q	C2Q	C2Q	C2Q	C2Q		C2Q	C2Q	*	*	*	*
(6) Cement Bond Log	C3Q						C3Q	C3Q			C3Q				
(7) Perforated Depth Control	C3Q						C3Q	C3Q							
Casing Collar Log and (8) Perforating Record							C3Q	C3Q			C3Q				
Oriented Perforating Record (9) and Casing Collar Log	C3Q														
b. Geophysical Logs, Other															
(1) Birdwell, Caliper log												*	*	*	*
(2) McCullough, Temperature															
8. Field Lithologic Log	C3Q	C3Q	C1Q	Č3Q	C2Q	C2Q	#	#	C1Q	#	#				
9. Cored Interval							#	#		#	#				
а. Тор	800	1380	NA	930					NA			70	70	70	70
b. Bottom	2460	1426	NA	980								TD	TD	TD	TD
10. Assay Data							#	#	NA	#	#				
a. Fischer Assay	C3Q	C3Q		C1Q	C3Q	C3Q									
b. Soluble Sodium	C3Q	C3Q		C3Q	C3Q	C3Q									
c. Alumina	C3Q	C3Q		C3Q	C3Q	C3Q									
11. Trace Element Analysis							#	#	NA	#	#				
12. Rock Mechanics Data						·	#	#	NA	#	#				
13. Gas Data							#	#		#	#				
a. Drilling Log	C2Q	C1Q	C1Q	C1Q	C2Q				C1Q						
b. Bomb Samples	31	1	1	4	5	4			1			5	4	4	4
c. Bomb Analyses	C1Q- C30	C1Q	C1Q	C1Q	C2Q	C2Q			C1Q			C4Q	C4Q	C4Q	C40
14. Completion Data	C2Q	C1Q	C1Q	C1Q	C2Q	C2Q	C1Q	C2Q	C1Q	C1Q	C1Q	C4Q	C4Q	C4Q	C40
15. Survey Plat	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q		C1Q	C1Q	C1Q	C1Q	C3Q	C3Q	C4Q	C4Q
			_			· · ·	<u> </u>								

KEY: NA = Not Applicable
 Inc. = Incomplete
 C1Q = Complete, First Quarterly Report
 C2Q = Complete, Second Quarterly Report
 C3Q = Complete, Third Quarterly Report

^{*}Birdwell Company logs run on this well instead of Schlumberger. Logs in Quarterly Report #4. **Alluvial Pump Test. # Not applicable. Wells drilled prior to granting C-b Tract Lease.

AT = Aquifer Test CH = Core Hole GHT = Groundwater Test Hole

TABLE II B-1 (continued) WELL SUMMARY TABLE														
1. Well Designation	A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12	A-13	
2. Well Type	AW	AW	AW	AW	AW	AW	AW	ÄW	AW	AW	AW	AW	AW	
3. Completion Date (1974)	10/2	10/4	10/7	10/8	10/3	10/10	9/28	10/1	9/23	9/23	9/24	9/24	10/8	
4. Total Depth (Geolograph)	112	82	109	64	86	60	51	70	57	67	66	81	14	
5. Water Data														
a. Drilling Water Production														
b. Drilling Water Samples														
c. Water Quality Analyses	C1Q	C1Q	C1Q	NA	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	NA	
6. Aquifer Data														
a. Drill Stem Tests														
b. Jetting Tests														
7. Geophysical Logs,	NO I	OGS RU	N											
a. Schlumberger (1) Borehole, Compensated Sonic														
(2) Laterolog														
(3) Formation Density														
Compensated Neutron (4) Formation Density														
(5) Temperature														
(6) Cement Bond Log	ļ													
(7) Perforated Depth Control	ļ													
Casing Collar Log and (8) Perforating Record	<u> </u>													
Oriented Perforating Record (9) and Casing Collar Log														
b. Geophysical Logs, Other														
(1) Welex, Micro-seismogram														
(2) McCullough, Temperature														
8. Field Lithologic Log	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C2Q	C1Q	C1Q	C1Q	C1Q	C1Q	C10	
9. Cored Interval	WELLS	NOT C	ORED	,										
a. Top														
b. Bottom														
10. Assay Data	NO AS	SAYS		,										
a. Fischer Assay														
b. Soluble Sodium														
c. Alumina														
11. Trace Element Analysis	NO. AN	ALYSIS											-	
12. Rock Mechanics Data	NO RO	CK MEC	HANICS	DATA										
13. Gas Data		S DATA												
a. Drilling Log														
b. Bomb Samples														
c. Bomb Analyses														
14. Completion Data	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	
15. Survey Plat	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	C1Q	

KEY: NA = Not Applicable

Inc. = Incomplete
ClQ = Complete, First Quarterly Report
C2Q = Complete, Second Quarterly Report
C3Q = Complete, Third Quarterly Report

*Birdwell Company logs run on this well instead of Schlumberger. See Quarterly Report #1. **Alluvial Pump Test. # Not applicable. Wells drilled prior to granting C-b Tract Lease.

TRACT C-b

A ALLUVIAL WELLS

C-b TRACT DRILLING SUMMARY

These new locations are shown on Figure II B-1.

II B-2 Well Completion Data

Well completion plats for the slant-holes are included in <u>Quarterly Data Report #4</u>. NQ-7A was abandoned at 800' with a reamer lodged in the hole. NQ-7B is a twin location to NQ-7A. The NQ-12 series holes are located just a few feet from each other on the NQ-12 pad. NQ-12A was abandoned because of a crooked hole. NQ-12B and NQ-12C were abandoned with drilling equipment left in the hole.

II B-3 Drilling Water Production

There are no data to report for this section.

II B-4 Water Quality - General

Data in this section include drilling water analysis, not previously reported for SG-11 and SG-17. Information on total dissolved solids obtained from jetting tests and drillstem tests are presented on Figures II B-3 and II B-4. Water from a jetting test is a composite of all water entering the well bore while water from a drillstem test is from a discrete depth interval. Nevertheless, these two figures show a wide variation in the water chemistry above the mining zone on Tract C-b. Also, within the Four Senators Zone, the total dissolved solids in SG-11 is fairly constant at approximately 600 mg/l; at SG-17, less than 1.5 miles to the southeast, the dissolved solids content increases abruptly from 500 mg/l to 1000 mg/l. On the other hand, the reverse exists between these two wells for water quality in the zone between the top of Parachute Creek and the top of Four Senators Zone. In this interval, the total dissolved solids content in SG-17 is significantly less and more stable throughout the section than it is at SG-11. Additional information can be found in section II B-5 of this report.

II B-5 Water Quality - Baseline

Baseline water samples were not collected during the fourth quarter. Baseline sampling occurs on a semi-annual basis and will be collected during the fifth quarter. Laboratory analysis of these samples should be available for Quarterly Data Report #5.

Stiff diagrams, plots of major anions and cations, were first presented and described in <u>Summary Report #3</u>. Diagrams for five wells were presented in <u>Summary Report #3</u>; this report presents Stiff diagrams for 16 water samples. For those samples where previous baseline data were not available for comparison, Stiff diagrams were made from water quality analysis on samples taken during jetting tests or from

drilling water samples. (See Figure II B-5, sheets 1, 2 and 3.)

In general, the analyses of April's environmental samples from Cb-1, Cb-2, and Cb-4, (presented in Summary Report #3) A-9, A-10, SG-1, String #2, SG-9, SG-11, String #2, $\overline{\text{SG-20}}$, and $\overline{\text{SG-21}}$ exhibit the same form and hence similar ionic concentration, as previous samples. Apparently, these waters have undergone no change during the past four or five months.

The alluvial wells A-1, A-2, (in Summary Report #3), A-5, A-8, A-11 and A-21 show slightly differing Stiff diagram forms which reflect slightly different water analysis. Wells A-11 and A-12 principally show an increase in magnesium content while all the other wells exhibit a noticeable decrease in sodium. The original samples were taken by bailing the hole immediately after drilling. There could have been contamination by the drilling fluid. The April samples were collected after pumping at least 120 gallons of water; thus, these latest samples probably are more representative of the true water quality of the alluvial aquifer.

Wells SG-9 and SG-18a were sampled during their drilling in 1974 and again in April 1975. The original analysis showed basically a sodium bicarbonate water for SG-18a, typical of Parachute Creek waters. The 1975 analyses show a continuation of the sodium bicarbonate character at SG-18a and the upper aquifer water at SG-9 shows an increase in magnesium. The drilling water samples were composites of all water in the borehole at time of sampling. The latest samples are probably the most representative of their water types.

At well AT-1C water samples from all three strings are slightly different than in 1974, e.g., String #1 shows a decrease in carbonate, String #2 shows a decrease in sulfate. This well is about 100 feet from the pumped well, AT-1, used during the two aquifer drawdown tests. The flushing action of the pumped well should make the latest samples more representative of the various waters.

Other analysis can be made and the observed changes in water quality may take on additional meaning. As shown in Figure II B-6, in the upper aquifer areas of high concentrations of total dissolved solids (TDS) occur on the east-southeast edge of the Tract, just north of the Tract, and in the southwest corner of the Tract. A trough of lower concentrations of TDS appears to run diagonally southwest-northeast across the Tract.

In <u>Summary Report #1</u>, based on preliminary data, it was mentioned that, in <u>general</u>, <u>conductivities</u> increased to the northeast across the Tract. Since there exists a direct relationship between conductivities and TDS, based on Figure II B-6, that preliminary statement can be modified. Conductivities increase to the northeast and east across the Tract.

COMPARISON OF STIFF DIAGRAMS OF SELECTED WELLS

LEGEND

A ALLUVIAL WELLS

DISTRIBUTION OF TOTAL DISSOLVED SOLIDS
IN THE UPPER AQUIFER SYSTEM

OTHERS

ISOPLETH INTERVAL 500 mg/1

INTERMEDIATE ISOPLETHS (---) 200 mg/1

FIG. II B-6

There are several possible explanations for this phenomenon one of which is osmotically-induced differences in ionic concentrations across a semi-permeable membrane. Such a membrane could consist of a clay or shale facies or any other rock that exhibits a low transmissibility. If one assumes that osmosis contributes to the differences in the TDS content in the upper aquifer, then the isopleths in Figure II B-6 suggest a rather significant change in permeability along a line northeast-southwest through SG-11 and toward the southeast corner of the Tract. Continuation of this anomalous condition is seen in both the bicarbonate and sodium distribution maps. (Figures II B-7 and 8). However, in these distributions, the trough, that is, the area of least concentration, is further westward in the Tract. This representation plus the rather dramatic reversal shown in the map of calcium distribution (Figure II B-9) suggests basic differences in the causal relationships of ions and TDS. Now, as new information is generated and correlations attempted, various hypotheses to explain these basic differences can be tested.

In previous reports, <u>Summary Report #1</u> and <u>Summary Report #3</u> it was suggested that the Parachute Creek member of the Uinta Formation exhibited stratified water conditions. A plot of selected parameters from analyses of water samples obtained from jetting tests lends support to this initial hypothesis (Figure II B-10). However, the samples from SG-6 at 20 feet and SG-18 at 35 feet are from the same section based on log correlation. Thus, it is possible that the water quality owes its apparent vertical stratification to lateral rather than vertical changes in stratigraphy. As stated above, additional correlations of data in the interface between hydrology and geology are required before a conclusion can be reached.

II B-6 Aquifer Data - General

Aguifor Tost Wolls

Lease stipulations require the monitoring of water levels in the observation wells at six-month intervals. In addition to meeting the lease requirements, water levels in the wells were monitored at more frequent intervals. These data may be used in computer simulation and modeling of the aquifers for mine design and water management.

Listed below are those completed wells in which water levels were monitored since the beginning of the core drilling and associated ground water program. Figure II B-1 shows the locations of the wells.

Allancial Malla

Aquiter lest wells	Alluviai wells
AT-1 AT-1B String #3 AT-1C String #1, 2 and 3 AT-1D String #1 and 2	A-1 A-8 A-2 A-9 A-3 A-10 A-4 (Dry) A-11 A-5 A-12 A-6 A-13 (Dry)
	A - 7

LEGEND

A ALLUVIAL WELLS

OTHERS

DISTRIBUTION OF BICARBONATE (mg/1) IN THE UPPER AQUIFER SYSTEM

Isopleth interval 250 mg/l

FIG II B-7

LEGEND

A ALLUVIAL WELLS

OTHERS

DISTRIBUTION OF SODIUM IN THE UPPER AQUIFER SYSTEM

Isopleth interval 200 mg/1
Intermediate isopleths (---) 50 mg/1

LEGEND

A ALLUVIAL WELLS

OTHERS

DISTRIBUTION OF CALCIUM IN THE UPPER AQUIFER SYSTEM

Isopleth interval 10mg/l

FIG II B-9

VERTICAL DISTRIBUTION OF MAGNESIUM, SULFATE & HARDNESS IN TOP 150 FEET PARACHUTE CREEK

Deep Coreholes and Wells

Existing Open Coreholes

SG-1 Strings #1 and 2	Cb-1
SG-6 Strings #1, 2 and 3	Cb-2
SG-8 Strings #1* and 2	Cb-3
SG-9 Strings #1 and 2	Cb-4
SG-10 and SG-10a	
SG-11 Strings #1, 2 and 3	
SG-17 Strings #1* and 2	
SG-18a	
SG-21	

Table II B-2 gives the summary of reduced water levels and the months of observations. Plots of water level elevations in each well are presented in <u>Quarterly Data Report #4</u>.

Examination of the water level data suggests that there is no hydraulic continuity between upper and lower aquifers through the Mahogany Mining Zone. Except during pump tests, water levels in Strings #1 and #2 of well AT-1c remained fairly steady from October, 1974 to August, 1975, but the water level in String #3 rose by about 12 feet. Similar phenomenon are seen in wells SG-6, SG-9, and SG-11. During June - August, 1975, in the upper aquifer, the water level in the well SG-6 was higher than the water level in well SG-9. During the same period, in the lower aquifer, the water level in SG-6 was lower than the water level in SG-9. These varying fluid levels may add support to the concept that there is no hydraulic continuity between upper and lower aquifers. Detailed study of the data with the use of potentiometric maps for upper and lower aquifers will be made during the next quarter to define the flow regime in the aquifers within the Tract.

Both the upper and lower aquifers are composed of fractured sedimentary rocks and the water holding capacity is enhanced by secondary (fracture) porosity. Modeling such an aquifer involves many complexities not encountered in sand and gravel aquifers. Extensive data on water levels will aid in developing this model.

II B-7 Aquifer Data Pumping Test

The aquifer pumping tests (including the mini-pump test) were reported in previous quarterly reports. In this report preliminary analysis is presented based upon procedures developed for quantitative analysis of drawdown in an anisotropic aquifer. The quantitative method is presented first and then the pump tests are discussed in light of the quantitative presentation.

The drawdown by pumping an anisotropic aquifer is obtained from the following considerations. Sedimentary processes, diagenesis, or struc-

* Water levels could not be measured because of obstructions in the tubing.

TABLE II B-2 SUMMARY OF WATER LEVELS (Reduced Level in Feet)

	A-5 A-6 A-7 A-8 A-9 A-10				6350.60 6492.05,6563.60	6325.00 6325.15 6384.35		6325.75 6327.97 6351.15 6385.50 6493.00 6567.15	6325.60 6325.80 6350.80 6385.90 6492.35 6565.30		6323.85 6323.45 6349.90 6382.40 6490.26 6564.40			6326.51 6332.49 6354.01 6386.09 6491.74 6569.32	6325.89 6330.01 6356.52 6385.65 6491.67,6568.36	6325.72 6354.04 6385.34 6491.45 6564.65
	A-4		X	NG SI	MELL		X	IS DE	MEFF				X	IC DE	METT	
TION	A-3					6374.10		5376.55	6374.05		5371.95			6377.24	6372.75	6374.08
IDENTIFICATION	A-2					6268.05		6271.60 6376.55	6270.55		6269.05			6271.73	6271.36	6270.29
WELL II	A-1							6235.85	6235.20 6270.55		6233.26 6269.05 6371.95			6237.99	6240.03	6239.95 6270.29
	AT-1D #2					6537.00 6236.45								6545.79		
	AT-1D #1					00.5659								6500.50		
	AT-1C #3					6538.60	6535.30									6550.10
	AT-1C #2					6510.00	6513.00									6510.43
	AT-1C #1					6506.50	6508.90									6508.75
	AT-1B #3						6536.75							6552.17		
	TIME	1974 June	July	Aug.	Sept.	Oct.	Nov.	Dec.	1975 Jan.	Feb.	March	April	May.	June	July	Aug.

TABLE II B-2 (Continued)
SUMMARY OF WATER LEVELS
(Reduced Level in Feet)

	SG-11					6530.6								6525.28	6503.32	
	SG-11								anu 	MEAS	LE TO	TANU				
	SG-10A													6572.23	6573.78	6574.73
	SG-10													6526.19	6527.04	6487.72
	SG-9 #2						6523.99							6521.45	6522.12	6522.08
	SG-9 #1						6505.6							6507.83	6521.15	6450.41 6510.98 6522.08 6487.72 6574.73
	SG-8 #2													6450.18	6453.06	6450.41
ATION	SG-8 #1							CEND	EANIC TTEA	AO HT YXAW	BOMN ED MI	EILL (B				
WELL IDENTIFICATION	SG-6 #3													6548.99	6552.55	6559.37
WELL I	SG-6 #2															6504.16
	SG-6 #1													6366.66 6487.16	6367.47 6490.12	6489.90
	SG-1 #2													6366.66	6367.47	6364.34 6367.39 6489.90 6504.16
	SG-1 #1															6364.34
	A-13	,	IS DE	MELL			X	HC SI	MEFF				ВХ	a śi	MEFT	
	A-12				6.9599			6638.92	6637.85		6638.45			6638.58	6637.69	6637.08
	A-11				6448.75			6449.55	6449.55		6448.25			6449.27	6449.14	6448.97
	TIME	1974 June	July	Aug.	Sept.	Oct.	Nov.	Dec.	1975 Jan.	Feb.	March	April	May	June	July	Aug.

TABLE II B-2 (Continued)
SUMMARY OF WATER LEVELS
(Reduced Level in Feet)

ATION	Cb-4	6476.55 6621.75				6616.00	6619.25	6453.00 6313.75						1 6626.99	6628.05	6629.14
WELL IDENTIFICATION	Cb-2 Cb-3	6457.35 6476.55				6418.00	6404.10	6398.90 6453.00						6416.83 6416.74	6418.33	6418.23
	Cb-1													6405.51	6406.11	
	SG-21													6699.83	6713.84	6640.92 6900.12 6703.30
	SG-18A						6901.00							6899.51	6901.03	6900.12
	SG-17 #2													6638.48	6639.92	6640.92
	SG-17 #1					свир	ANIC TE)	H ORC	TIW Q	(BKOM						
	SG-11 #3					6544.00								6546.04	6549.14	
	TIME	1974 June	July	Aug.	Sept.	Oct.	Nov.	Dec.	1975 Jan.	Feb.	March	April	May	June	July	Aug.

tural forces can work on aquifers so that permeabilities are not equal in all horizontal directions. This anisotropic characteristic should be recognized and treated separately just as the difference between vertical and horizontal permeability is recognized and treated separately. The most noticeable effect of this characteristic is the modification of the cone of depression from a circular cross-section to one that is elliptical. Equations for treating data obtained from pumping a well at a constant rate in an anisotropic aquifer are developed by Glover and reported in detail in Quarterly Data Report #4. The resulting equation is as follows:

$$s = \frac{Q}{2\pi K_1 D} \sqrt{\frac{K_1}{K_2}} \int_{\frac{e^{-u^2} du}{\sqrt{4\alpha t}}}^{\frac{e^{-u^2} du}{u}} (\frac{\sqrt{\frac{e^{-u^2} + \frac{K_1}{K_2} y^2}{\sqrt{4\alpha t}}}})$$

Definitions of terms used in the above equation and following text are:

Q = discharge in gallons per minute

r = distance (in feet) of observation well from pumped well

s = drawdown in feet

t = time (seconds)

 α = a constant for a given aquifer which defines the rapidity with which a transient change will take place (ft. 2 /t)

 $K = permeability; K_1 = x-direction; K_2 = y-direction$

D = an initial saturated depth (feet)

KD = transmissivity (ft.2/day)

V = storage coefficient: the volume yield of an artesian aquifer per unit of horizontal area per unit of pressure reduction (dimensionless)

p = permeability for vertical flow through a semi-permeable bed
 (feet/day)

 λ = thickness of a semi-permeable confining bed (aquitard) (feet)

u = dummy (dimensionless) variable

x,y = orthogonal coordinates of permeability directions (feet)

A typical indication of the "goodness-of-fit" of this equation is shown on Figure II B-11 for the drawdown of well AT-1b. The line corresponds to the above equation and the circles to the actual data points. The agreement is very good. Additional such plots are presented in Quarterly Data Report #4.

Pump Test

An extensive aquifer test was used to determine the areal hydraulics of the upper and lower aquifer and measure the vertical flow across the Mahogany Zone. Data from these tests have been reported in previous quarterly reports. These reports included field graphing and analysis for each well used in each aquifer test. The basic data obtained from these tests was reanalyzed using the leaky-artesian equations from R. E. Glover's Transient Groundwater Hydraulics.* The results of the recalculations are shown in Table II B-3.

The drawdown curves for the upper aquifer test data and the close-in wells fit the data very well. The curves of more distant wells reasonably agree with curves presented by Glover as typical of leaky-artesian conditions. For observation well layout, see Figure II B-1. The average computed transmissivity is 168 ft.²/day. The greatest transmissivity value occurred in well SG-10 (233 ft.²/day); the lowest

^{*} Robert E. Glover, <u>Transient Groundwater Hydraulics</u> (Fort Collins, Colorado: 1974, College of Engineering, Colorado State University).

TABLE II B-3
RESULTS OF AQUIFER PUMP TESTS

		Storage	Leakance/day
Well Number (String #)	Transmissivity ft ² /day (KD)	Coefficient $(\overline{\mathbb{V}})$	$\left(\frac{p}{\lambda}\right)$
		R AQUIFER	
AT-1a (#3)	153	4.21×10^{-4}	4.26 x 10 ⁻⁶
AT-1b	162	3.71 x 10 ⁻⁴	1.56 x 10 ⁻⁶
AT-1c	128	2.73 x 10 ⁻⁴	1.23 x 10 ⁻⁶
AT-1d	130	2.97×10^{-4}	8.05 x 10 ⁻⁷
SG-6	212	1.68 x 10 ⁻³	1.27 x 10 ⁻⁶
SG-10	233	4.21 x 10 ⁻⁴	4.26×10^{-7}
SG-11	155	6.92×10^{-5}	5.90 x 10 ⁻⁷
	LOWER	AQUIFER	
AT-1a(#1)	44	4.19 x 10 ⁻⁴	
AT-1c(#1)	20	1.22×10^{-4}	1.96 x 10 ⁻⁵
AT-1c(#2)	41	1.21 X 10 ⁻⁵	3.93×10^{-7}
AT-1d(#1)	35	2.67×10^{-5}	8.77 x 10 ⁻⁷
SG-6(#1)	92	5.30×10^{-4}	8.77 x 10 ⁻⁷
SG-6(#2)	36	6.48 x 10 ⁻⁵	3.44 x 10 ⁻⁶
SG-10(#1)	15	3.92×10^{-5}	6.88 x 10 ⁻⁶

transmissivity was 128 ft. 2 /day in well AT-1c. The storage coefficient in the upper aquifer averaged 5.05 x 10^{-4} . The maximum storage coefficient was 1.68 x 10^{-3} in well SG-6 and the lowest storage coefficient was 6.92 x 10^{-5} in well SG-11. The greatest vertical leakance was 6.1 x 10^{-6} /day in AT-1a, and the least was 4.26 x 10^{-7} /day in SG-10. The average discharge of AT-1, the pumped well, over the drawdown period was 373 gpm.

During the upper aquifer test, which produced from the entire saturated section above the Mahogany Zone, no drawdown was noted in the lower aquifer. This establishes that no vertical leakage occurred through the Mahogany Zone during this test. Figures II B-12 and II B-13, plots of the water level history of AT-1c Strings #2 and #3 during the test, indicate that no relation exists between the upper string (#3) and the lower string (#2). The fluctuation occurring in String #2 was explained by poor well completion, allowing leakage from String #1. Similar data plots are avialable in the previous quarterly reports for all strings in all wells.

The analyses of the lower aquifer drawdown test also show a good fit of the observation well data to the type curves. The transmissivity of the lower aquifer is less than that of the upper aquifer by one order of magnitude (Table II B-3). Transmissivity in the lower aquifer ranges from 14.7 ft. 2 /day in SG-10 to 91.9 ft. 2 /day in SG-6, String #1. The average transmissivity was 46.5 ft. 2 /day. The storage coefficient was generally less than half as large as that of the upper aquifer. The average storage coefficient was 2.22 x $^{10^{-4}}$. The maximum storage coefficient of 5.3 x $^{10^{-4}}$ was found in SG-6 String #1; the minimum of 1.21 x $^{10^{-5}}$ occurred in AT-1c String #1. The computed leakance values were of the same order of magnitude as in the upper aquifer. The range was from 3.93 x $^{10^{-7}}$ to 1.96 x $^{10^{-5}}$ /day. The average yield of the well during this test was 120 gpm. Linear data plots similar to Figures II B-12 and II B-13 show that no water moved vertically downward through the Mahogany Zone during the pumping of the lower aquifer.

During both aquifer tests, significant anisotropic, directional flow was noted. Well SG-11 was noted to drop much more rapidly than SG-10 and SG-6 during the upper aquifer test. Computations for analyzing the drawdown relationship, using Glover's equations for anistropic analysis indicate that the greatest permeability direction for the upper aquifer may be in the east-northeast direction from the pumped well with a ratio of 9:1. Because of more limited data, the analysis of the lower aquifer can only state in general that the direction of greatest permeability lies in a more north-south direction.

The mini-pump test system, which was used on SG-1 and SG-1a, obtained the results summarized in Table II B-4. Plots of the data and corresponding analyses show a good curve fit on tests number 8 and 10. Unfortunately, the jetting system fluctuated during the initial tests number 4 and 6, and produced erratic results. The transmissivities are small even in the A-Groove (Test #10) and B-Groove (Test #8). The

PRESSURE, psi

350

TABLE II B-4
RESULTS OF MINI PUMP TESTS

ON

SG-1 and SG-1A

Test Number	Transmissivity ft ² /day (KD)	Storage Coefficient (V)	Leakance day ⁻¹ (p/\lambda)	Permeability (ft/day) (p)
Test #4	1.71	2.08 x 10 ⁻⁴	3.20×10^{-7}	1.60 x 10 ⁻⁶
Test #6	5.27	9.13 x 10 ⁻⁴	7.58×10^{-4}	4.55×10^{-3}
Test #8	18.4	4.34×10^{-4}	1.84×10^{-5}	3.06×10^{-6}
Test #10	11.6	1.20×10^{-3}	4.63 x 10 ⁻⁵	2.78 x 10 ⁻⁴

range is from $1.71~\rm ft.^2/\rm day$ to $18.4~\rm ft.^2/\rm day$. The storage coefficient is the same order of magnitude as that found in the main aquifer tests previously discussed, ranging from $2.08~\rm x~10^{-4}$ to $1.20~\rm x~10^{-3}$. Leakance determinations were the main objective of these tests; computed leakance ranged from $3.20~\rm x~10^{-7}$ to $7.58~\rm x~10^{-4}/\rm day$. Vertical permeabilities, using estimated aquitard thicknesses derived from geophysical logs, ranged from $1.60~\rm x~10^{-6}$ to $4.55~\rm x~10^{-3}$ feet per day. From these analyses, and those of the aquifer tests, it can be seen that the leakance is a very small number and the actual vertical permeabilities are also very small. The leakance on tests number $10~\rm and~8$ is $1,000~\rm and~25,000$ times smaller than the corresponding horizontal permeabilities, respectively. The water volume produced during these tests was small, ranging from 6 to $11~\rm gpm$, owing to the limited thickness and tight confining aquitards above and below, plus the limited lifting capacity of the system. Geologic mapping has indicated that a number of these aquitards, may be continuous throughout the Tract.

Short term pumping tests were conducted in two alluvial wells near Tract C-b. The analyses using the Jacob formula from a semi-log plot indicated transmissivity values of 1350 ft.²/day. Details of these analyses are available in the previous quarterly reports.

II B-8 Lithologic Log Data

All of the lithologic logs for the vertical holes have been reported in previous quarterly reports. Lithologic logs for the slant-hole program are not yet available and will be presented in subsequent reports.

II B-9 Geophysical Log Data

As stated in <u>Quarterly Data Report #3</u>, the geophysical log package for the vertical holes was completed with the issuance of that report. With the submittal of Quarterly Data Report the geophysical log package for the slant-hole drilling program is completed for NQ-4, NQ-7b, NQ-12d and NQ-22.

$\frac{\text{Geophysical Logs}}{\underline{\text{In}}}$ Quarterly Data Report #4

	<u>NQ-4</u>	<u>NQ-7b</u>	<u>NQ-12d</u>	<u>NQ-22</u>
Electric Log	Χ	Χ	Χ	Χ
Temperature Log	Χ	Χ	X	χ
Gamma Ray Neutron	Χ	Χ		Χ
Formation Density Log	χ	Χ	Χ	Χ
3-Demensional Velocity Log	Χ	Χ		Χ
Caliper Log	Χ	Χ	Χ	Χ
Nuclear Log	Χ		X	

II B-10 Core Assay Data

The presentation of vertical core assay data was completed with issuance of Quarterly Data Report #3.

II B-11 Trace Element Analysis

The presentation of trace element analysis data was completed with the issuance of Quarterly Data Report #3.

II B-12 Rock Mechanics

Quarterly Data Report #3 contained the complete file for basic rock mechanics data on all vertical core holes.

II B-13 Gas Sampling Program

As discussed in previous quarterly reports, analytical results show that most gas samples collected during normal drilling operations contained only a small amount of methane gas, normally less than 5 mole percent, and very little or no ethane gas. Additional correlation and interpretation of the data collected are in progress. The results of the lower aquifer test and sampling from cores for the slant holes are discussed in the following sections.

Aquifer Test Data

As discussed in Quarterly Data Report #3, a gas-water separator was used during the lower aquifer pump test to monitor the water and gas produced from the rock strata immediately below the potential mining zone in the Mahogany Zone. As in the case of the upper aquifer(s), the gas produced from the lower aquifer(s) was in solution in the water and was produced as the water was produced. At the temperature and pressure prevailing in the lower aquifer, the ground water is capable of containing in solution approximately four times the quantity of gas that was produced for the same amount of water. So, in effect, only soluble gas was produced. The gas-water ratio was very low, measuring about one cubic foot of gas to 104 gallons of water. Results of laboratory analysis of the gas produced gave an average of 75.92 mole percent methane, 210 volumetric parts per million ethane, 0.42 and 0.15 mole percent ethylene and carbon dioxide respectively with the balance of the sample being air. Table II B-5 presents the gas sample analyses from the lower aquifer test. The gas production is plotted versus time in Figure II B-14 and the gas production per 100 gallons of water pumped is shown in Figure II B-15 for the initial drawdown phase of the lower aquifer test. Figures II B-16 and II B-17 show the same information for the pulse phase of the lower aquifer test.

TABLE II B-5 AT-1 LOWER AQUIFER PUMP TEST DATA

			Measure	4					
Time		, GAS METI		Cu. Ft.		WATE	R	Meter	
(Military		Read-	Rate			Flume		ft3	Meas.
Time in	Elapsed Time		ft. Ft. Min.	1.1 Moter	Meas.		GPM		ft ³ 100 gal
Hours)	Time	110 010	ou. Min.	MCLEI	Meas.	ing		gal.	100 gai
$\frac{2-23-75}{11:30}$	Min Hr 0 0	606.0 -	- 1.2		1.42	. 29	130.1		1.09
2-24-75 10:00 12:00	1350 22.5 120 24.5		1 - 1 -		1.42		116.7 116.7		1.22
2-25-75 9:10 11:50 16:20 22:10	160 48.3 270 52.8	687.0 864.9 1	76.1 4.9 77.9 46.6	1.00 .04 0.78 1.17		.27	116.7 116.7 125.7	0.62	
2-26-75 8:50 18:00 23:00	550 78.5	795.0 2	71.0 12.5 	0.68 0.46 1.23		. 28	116.7 125.7 116.7	0.37	
2-27-75 09:00 11:25 19:55	600 93.5 745 95.9 510 104.4	856.5 74	.95 49.0 .92 48.5	1.19	1.12	. 28	112.2 125.7 116.7	0.95	0.99 0.86
2-28-75 5:45 10:00 15:00 20:00	590 114.2 255 118.5 300 123.5 300 128.5	378.4 3 693.0 3	16.0 57.4 14.6 1.0	1.63 1.65 1.24 0.79	1.18	.28	116.7 125.7 125.7 116.7	1.31 0.99	0.94
3-1-75 00:40 6:50 11:17 16:00 21:00	280 133.2 370 139.4 247 143.5 283 148.2 300 153.2	689.0 3 861.8 1 145.6 2	03 1.1 1.0 83.8 94.9	1.70 1.25 0.83 1.18 1.16	1.30	.27	116.7 116.7 116.7 116.7 116.7	1.07 0.71 1.01	
3-2-75 2:00 6:50 11:45 14:10	300 158.2 290 163 295 167.9 245 172.0	45.0 3	94.5 10.0 1.0 23.9		1.18 1.18 1.27	.27	116.7 116.7 125.7 125.7	1.08	
3-3-75 2:45 7:50 12:45	755 184.6 305 189.7 295 194.6	603.0 2	21.1 13.0 13.0 1.0	1.09 0.82 1.34	1.18	. 2.7	116.7 116.7 125.7	0.70	

TABLE II B-5 (Continued)

			М	easure	d				Meter	
Time			METER						ft3	
(Military Time in	Elapsed	Read-	cu.ft.	Rate Ft.		ted to	Fluir	e - GPM	100	Meas.
Hours)	Time	ft3	prod.	FL.	l. Meter		ing	- GPM	gal.	100 gal.
110413)										
3-4-75	Min. Hr.									
3:45		838.0		1.0	1.18	1.18	. 28	125.7	0.94	0.94
9:00 14:00		098.5			0.98		.29	130.1	0.75	
14.00	300 213.3	330.0	297.5		1.11		. 20	1. 2 3 . 1	0.55	
3-5-75										
9:50	1190 239.7				1.28		. 28	125.7		
14:55	305 244.8	907.5	221.5		0.86		.28	125.7	0.68	
3-6-75										
12:00	1265 265.9		113.8		1.06		. 28	125.7		
14:00		558.8		1.1		1.30	. 28	125.7		1.03
17:00		483.5			1.72 0.99		.28	125.7	1.37	0
22:00	300 273.9	733.0	231.3		0.33		. 20	123.7	0.79	
3-7-75					•					•
08:00	600 285.7				1.39		.28	125.7		
13:00	300 290.9	779.0	337.5	1.18	1.33	1.39	.28	125.7	1.06	1.11
3-8-75										
13:20	1460 315.2			1.17		1.38	.28	125.7		1.10
18:00	280 319.9				0.92		. 28	125.7		
23:00	300 324.9	449.0	316.0		1.24		.28	1.25.7	0.99	
3-9-75										
09:00	600 334.9			1.08	:	1.27	. 28	125.7		1.01
19:00	600 344.9				1.54		. 28	125.7	1.23	
24:00	300 349.9	211.0	326		1.28		.28	125.7	1.02	
3-10-75		1			-,					
05:00	300 354.9	351.5					.28	125.7		

Arithmetic Average = .958 $\frac{\text{ft}^3}{100 \text{ gal}}$.

^{*} Meter Frozen - read after thawing (Data not Applicable)

Sampling From Cores

The method described in Quarterly Data Report #3 under the heading "Sampling From Cores" has been used on slant core holes at Tract C-b. For details of the method please refer to Quarterly Data Report #3, II B-15. Data in Quarterly Data Report #4 present the results of the measurements made in the field from cores from NQ-4, NQ-7b, NQ-12d, and NQ-22. These cores are currently being crushed and tested to determine the amount of residual gas left in the core; results are not available for inclusion in the Quarterly Data Report. Table II B-6 presents the analysis of gas samples from Tract C-b, May, 1975 - August, 1975.

Fifteen core intervals (14 of which were oil shale cores) from the slant holes have been tested in the field for gas emission. No emission occurred in thirteen of the cores and only a very small amount in the other two, 58 ml. and 22 ml. in cores from NQ-7b. Laboratory analysis of the sample collected from the core which evolved 58 ml. revealed that this gas was 0.19 mole percent methane and the remainder was air. Analysis also showed that all of the 22 ml. which evolved from the other sample were air (Refer to Table II B-7).

TABLE II B-6

ANALYSIS OF GAS SAMPLES FROM TRACT C-b

MAY, 1975 - AUGUST, 1975*

Balance Air	Air	Air	Air	Air	Air	Air	Air	Air	Air
CO Mole%	0.10	1	1	ı	ì	1	ND	N	N
CO ₂ Mole%	3.70	1	0.07	i	ı		QN N	N	ND
Ethane Mole%	0.10	1	1	1	1	1	N N	g	S
Methane Mole%	95.29	1	<1 ppm	99.0	1	ı	ON O	QN QN	<u>S</u>
Depth Ft.	ND ND	1375	1553	1552.5 to 1555	1563.1 to 1565.1	1611.5	1470	1449	1617
Date	4-7-75	6-1-75	7-6-75	7-6-75	7-6-75	7-7-75	5-18-75	5-17-75	5-21-75
Description	String No. 1 5:45 hrs.	1700 Hours Mahogany Mark	1335 Hours Mahogany Mark At Well Head	Gassy Core Test	Gassy Core Test	1228 Hours At Well Head	Mine Zone 12:30 a.m.	Mine Roof 1310 hrs.	"B" Groove 0230 hrs.
Core	SG#11	NQ-4b	NQ-7b				NQ-12d		

ND = Not detectable *= No H2, H2S, N2, O2 or heavier hydrocarbons were found in any of the samples.

TABLE II B-7

GAS SAMPLE ANALYSIS LOWER AQUIFER TEST

Date and Description	Methane (mole %)	Ethane (Vppm)	Ethylene (mole %)	CO ₂ (mole %)	Balance Air
2-16-75	72.12	200	0.39		Air
3-6-75 1400 Hr.	77.47	229	-	0.15	Air
Lower Aquifer Drawdown 3-9-75 1500 Hr.	78.43	100	1	0.15	Air
Average Value Initial Drawdown	76.01	176	!	0.15	Air
Lower Aquifer Pulse Test 3-26-75	75.67	311	0.45	0.16	Air
Average All Values	75.92	210	0.42	0.15	Air

II C AIR QUALITY

The current air quality/meteorology network is shown on Figure II C-1 and now includes five air quality trailers, the meteorological tower, two acoustic sounders, three ground-level mechanical weather stations and an area-wide visibility site. Trailers 020, 021 and 022 are located in the Piceance Creek Valley at Redd Ranch, Rock School, and the Gerald Oldland Ranch, respectively. Trailers 023 and 024 are located on the Tract plateau. The sounders are co-located with Trailers 021 and 023. The mechanical weather stations are located in the Piceance Valley in Section 9 (T2S,R98W) near Dudley Bluffs(MRI 1), on the north-west corner of the Tract in Section 2 (T3S,R97W) near Scandard Gulch (MRI 2) and near the southern edge of the Tract in Section 17 (T3S,R96W) near the West Fork of Stewart Gulch (MRI 3). The visibility site is in Section 30 (T3S,R98W) along the Hunter Creek road near Dry Gulch. The reader is referred to Tables II C-1 and II C-2 of the Quarterly Data Report #4 for specific data measurements and sampling frequencies.

The air quality discussion is divided into paragraphs as follows: Air Quality and Surface Meteorology, Low Altitude Meteorology, Upper Air Studies, Visibility, Noise, and Atmospheric Diffusion Studies.

II C-1 Air Quality and Surface Meteorology

Tables II C-1 through II C-5 summarize the maximum concentrations for the gases and particulates from March through May that correspond to the appropriate time intervals as determined by State and Federal regulations. Table II C-6 is the frequency distribution by concentration per trailer for particulates and shows the geometric mean for the three months. Tables II C-7 through II C-15 tabulate the monthly maximum, sliding one-hour average. In the case of the non-methane hydrocarbons and the particulates, these maximums are for the 6:00 - 9:00 a.m. interval and 24 hour period, respectively. These are shown with the corresponding date, time of day, wind direction, and speed. Monthly averages follow on Table II C-16.

The May, June, and July sulfur dioxide (SC₂) and hydrogen sulfide (H₂S) monthly one-nour maximums are reported in Tables II C-7 and II C-8, respectively, and the monthly averages are given in Table II C-16. A review of the Radian monthly data reports indicates that the majority of the measurements show ambient air concentrations below the 5ppb minimum detectable limit of the instrumentation. However, ambient air concentrations well above the 5ppb level are occasionally recorded. This is occasionally recorded as can be seen in Tables II C-7 and II C-8. In fact, in the three-month period, May to July, new maximum values of SO₂ were recorded at all valley trailers. New low values were recorded at valley Trailers O₂₁ and O₂₂. Similarly, new low values for concentrations of H₂S were recorded at all valley trailers as well as plateau Trailer O₂₄. Both plateau trailers recorded new maximum values as did valley Trailer O₂₀. As of this time, no trend can be seen in the maximum or minimum recordings of either gas.

TABLE II C-1 QUARTERLY SUMMARY (March '75 - May '75) (Concentrations in micrograms per cubic meter)

TRAILER No. 20

Maximum 5-min. Concentration	+011	3/31	3/7		·5/1 23:55	5/1	3/16	3/15	4/27	4/27	3/16 11:55	3/27
Maxfru	20110	138.1	26.3		3179.3	2864.8	1314.2	314.5	146.0	146.0	5193.4	33.7
1-hr. ration	****	3/7	3/7					3/26	5/7	5/25	3/16	5/10
Maximum 1-hr. Concentration	Value	32.8	12.5					146.2	35.7	34.0	3680.4	17.0
3-hr.	Time*	3/7			5/20	3/5	4/22					
Maximum 3-hr. Concentration	Value	31.5		\ \	2200.8	8.866	7.707					
Maximum 8-hr. Concentration	Time*										5/29	
Max fmur Concent	Value										3272.5	
Maximum 24-hr. Concentration	Tine	3/7		4/25								
Maximum Concent	. Value	30.2	\bigwedge	89.0								
Average		7.	.1	9.8	921.7	753.6	137.9	77.8	15.0	11.9	1457.4	3.1
Recorded		50 ₂	H2S	Farciculates	Total Hydro- carbons	сн	Non-CH, Hydrocarbons	0,	×CN	NO	00	20%

1 - Geometric Mean, 2 - 30-Minute Averaging Time, *Start of interval of occurrence.

TABLE II C-2 QUARTERLY SURGARY (March '75 - May '75) (Concentrations in micrograms per cubic meter)

TRAILER NO. 21

Maximum 5-min. Concentration	71000	5/5	3/19								
Maximum 5-min Concentration	Value	91.2	20.8								,
Maximum 1-hr. Concentration	Timost	5/5	5/9								
Maxfmum 1-hr. Concentration	Value	34.3	9.0								
3-hr.	Time*	5/5									
Haximum 3-hr. Concentration.	Value	26.1									
8-hr.	Time*	1									
Maximum 8-hr. Concentration	Value										
24-hr.	Time	4/26	·	4/25		<i> </i> -					
Maximum 24-hr Concentration	Value	12.1		125.0				1			
Average		1.0	.3	11.11	X	X			X		X
Recorded		\$0°2	H2S	Particulates	Total Hydro- carbons	⁷ کنا	Non-CH, Hydrocarbons	. 03	NOX	NO	00 .

1 - Geometric Mean, 2 -. 30-Minute Averaging Time, "Start of time interval of occurrence.

TABLE II C-3 QUARTERLY SUPERRY (March '75 - May '75) (Concentrations in micrograms per cubic meter)

TRAILER No. 22

Recorded	Average	Maximum, 24-hr. Concentration	Maximum, 24-hr. Concentration	Maximum 8-hr. Concentration	8-hr.	Maximum 3-hr. Concentration.	3-hr.	Maximum 1-hr. Concentration	1-hr.	Maxfeum 5-min. Concentration	5-min.
		Value	Time	Value	Time*	Value	Time*	Value	Time*	Value	* 4 - 7 1
so ₂	2	13.9	5/23			17.7	5/23	18.2	5/23	169.3	3/3
H ₂ S	.3	\bigwedge						14.1	3/1	84.4	3/3
Particulates	9.01	82.0	4/25								
Total Hydro- carbons	X										
, CH &	X										
Non-CH4 Hydrocarbons											
03											
NO _x	X										
KO											
00	\bigvee										

1 - Geometric Mean, 2 -, 30-Minute Averaging Time, *Start of time interval of occurrence.

TABLE II C-4 QUARTERLY SURZARY (March '75 - May '75) (Concentrations in micrograms per cubic meter)

TRAILER No. 23

Recorded	Average	Maximum 24-hr Concentration	Maximum 24-hr. Concentration	. Kax fmu Concen	Maximum 8-hr. Concentration	Maximum 3-hr. Concentration	Maximum 3-hr. Concentration:	Maxfmum 1-hr. Concentration	1-hr.	Maximum 5-min Concentration	Maximus 5-sin. Concentration
•		Value	Time	Value	Time*	Value	Time#	Value	Time*	Value	*****
so ₂	.3	7.2.	3/29			12.0	3/29 21:05	12.2	3/29	86.0	5/4
H2S	1.1							19.1	3/7	113.5	3/9
Fartfculates	15.7	171.0	3/22								
Total Hydro-	872.0					1079.0	4/21			2562.6	3/24
⁷ HO	838.0					910.2	3/3		/	1189.8	4/26
Non-CH, Hydrocarbons	43.0					302.2	4/21 6:00			109901	3/17
0,3	87.9							145.9	3/8	455.2	3/8
»C%	1.1							18.7	3/17	52.4	3/21 10:55
NO	.5							16.7	3/17	52.4	3/21 10:55
00	572.0			940.1	3/24 12:55	,		2421.1	3/24	5071.5	3/24
KO ₂	9.		/		\bigvee		/	10.1	4/28	30.0	3/20

1 - Geometric Mean, 2 - 30-Minute Averaging Time, *Start of interval of occurrence.

TABLE II C-5 QUARTERLY SUMMARY (March '75 - May '75) (Concentrations in micrograms per cubic meter)

TRAILER No. 24

Tire* 5/2 3:00 17:05 Maxicum 5-min. Concentration 4/13 Value 86.0 S 113. Time* 5/2 4/14 0:35 Maximum 1-hr. Concentration Value 56.4 62.6 5/2 Time* Maximum 3-hr. Concentration: Value 53.9 Time* Maximum 8-hr. Value 4/13 Maximum 24-hr. Concentration 5/20 Time Value 86.0 28.9 Average 8.4 6. 5. Non-C", Hydrocarbons Particulates Total Hydro-carbons Recorded 70 % % 505 H_2S ပ္ပ 2 0

1 - Geometric Mean, 2 - 30-Minute Averaging Time, *Start of time interval of occurrence.

TABLE II C-6

PARTICULATE CONCENTRATION FREQUENCY DISTRIBUTION

C-b Shale Oil Monitoring Project

March 1975 - May 1975

SITE	020	021	022	023	024
Concentration µg/m ³ 260 240-260 220-240 200-220 180-200 160-180 140-160 120-140 100-120 80-100 60-80 40-60 20-40 20	1 2 2 7 76	1 0 1 2 1 8 70	1 1 0 3 74	1 0 0 0 2 1 6 19 51	1 2 2 8 74
TOTAL (No. of Samples)	88	83	79	80	87

GEOMETRIC MEAN $(\mu g/m^3)$ 9.8 11.1 9.0 15.7 8.4

1/2- HOUR MAXIMUM CONCENTRATIONS

SO 2 Constituent

By Month

		Item	(1) Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Junc	July	Aug.	Sept.	0ct.
0.2 97.9 50.6 5.0 12.2 8.2 7.2 11/1 12/21 1/1 2/20 3/29 4/5 5/4 11:15 11:55 14:30 11:30 22:05 10:05 11:00 191 156 358 236 201 184 186 8 7 4 18 3 184 27 191 156 25.8 53.4 25.2 20.3 184 27 32.8 25.8 53.4 25.2 21.3 21.7 34.3 11/1 12/19 1/26 2/21 3/25 4/25 5/5 128 324 176 55 8 11 5 128 324 176 156 154 288 147 5 7 10 5 8 11 5/23 11/6 12/20 1/25 2/22 3/3 4/17 5/23 17:00 11:15 14:25 3/3 3/3 3/3 5/3 17 6 9 2 5 1 5 11/29 12/7 2/25 3/3 4/17 5/2	alue ate ime (A ind Di	n (Deg.) PH)		17.4 12/8 21:48 102	2.6 1/14 16:10 134 5	7.6 2/20 10:55 275 12	32.8 3/7 10:05 190 8	7.2 4/12 11:35 266 3	7.6 5/30 14:50 292 7	20.8 6/23 4:45 134	33.9 7/14 13:10 157			
(ug/m³) 32.8 25.8 53.4 25.2 21.3 21.7 34.3 (MST) 11/1 12/19 1/26 2/21 3/25 4/25 5/5 Olirection (Deg.) 1:35 15:45 14:06 5:00 9:00 20:25 10:50 Speed (MPH) 1:28 324 176 5 8 11 5 (ug/m³) 13:0 20.8 5.9 11.7 14.1 2.6 18.2 MST) 11/6 12/20 1/25 2/22 3/3 4/17 5/23 Direction (Deg.) 120 1:15 14:15 291 82 Speed (MPH) 1 6 9 2 5 1 Image: Company (MST) 11/29 127 27.5 107 110 50.1 Image: Company (MST) 11/29 12.2 27.5 27.5 27.5 27.5 27.5 Image: Company (MST) 11/29 11/29 11/29 27.5 <	alue (ate ime (bind Di			97.9 12/21 1:55 156 7	50.6 1/1 14:30 358	5.0 2/20 11:30 236 18	12.2 3/29 22:05 201 3	8.2 4/5 10:05 184 18	7.2 5/4 11:00 186 27	3.7 6/23 12:45 199	13.2 7/28 19:15 184 11			
(MST) (ug/m³)	alue (Arime (Arime Di	(ug/m ³) IST) rection (Deg.)		25.8 12/19 15:45 324	53.4 1/26 14:05 176	23.2 2/21 5:00 156 5	21.3 3/25 9:00 154	21.7 4/25 20:25 288 11	34.3 5/5 10:50 147 5	67.9 6/16 13:45 304 15	18.2 7/11 22:55 127 5			
(MST) (ug/m ³) 5.2 128.5 54.3 34.3 50.8 49.1 56.4 11/29 12/10 1/5 2/26 3/3 4/13 5/2 11:50 2:25 22:50 17:55 3:20	alue (vate ime (vate ind Di	n (Deg.)		20.8 12/20 1:15 1127 6	5.9 1/25 14:25 275	11.7 2/22 2/22 8:45 107	14.1 3/3 8:30 110 5	2.6 4/17 3:30 291 5	18.2 5/23 20:55 82 1	27.4 6/12 0:00 123	14.5 7/23 0:40 114			
3 0 6 0 284 103	alue ate ime (N ind Di	m (Deg.)		128.5 12/10 6:20 12 0	54.3 1/5 11:50 9	34.3 2/26 2:25 63	50.8 3/3 22:50 60 3	49.1 4/13 17:35 284 5	56.4 5/2 3:20 103	33.0 6/23 9:20 55	10.6 7/17 19:55 170 8			

(1) 30-Minute Averages

1 - HOUR MAXIMUM CONCENTRATIONS

H S 2 Constituent

Ī	Oct.					
	Sept.					
	Aug.					
	July	2.9 7/29 10:50 201 5	71.2 7/9 0:10 57 3	3.5 7/8 1:40 143	5.7 7/14 12:55 139 4	3.0 7/29 11:55 244 8
	June	21.7 6/15 6:00 130 6	8.0 6/25 18:05 316 19	13.8 6/16 11:40 294 13	11.9 6/15 19:45 57	70.9 6/22 19:05 232 4
	Мау	1.2 5/9 13:20 225	6.9 5/1 6:35 238 1	9.0 5/9 1:30 151	1.3 5/28 9:15 267 8	56.9 5/2 1:40 120 2
	Apr.	2.2 4/2 13:30 208 5	6.5 4/14 6:55 113 5	4.3 4/26 23:20 350 3	10.1 4/11 14:00 34 5	62.5 4/14 0:35 197 6
	Mar.	12.5 3/7 10:05 190 8	19.1 3.7 18:55 165	7.3 3/21 21:30 117 6	14.1 3/1 0:00 102 5	8.5 3/23 2:40 89 2
	Feb.	13.7 2/19 12:35 186	8.2 2/26 6:05 156	9.5 2/7 17:10 163 12	14.3 2/28 20:55 72	8.1 2/17 13:10 258 9
	Jan.	6.2 1/13 14:05 174	28.4 1/1 11:10 315 4	4.7 1/31 4:35 138 5	2.4 1/25 14:25 275 9	27.6 1/10 16:45 201 2
	Dec.	2.2 12/8 7:10 104	45.3 12/21 1:55 156 7	4.6 12/7 8:00 337 2	8.4 12/8 0:40 69 8.5	7.7 12/24 1:55 154
	Nov.	10.1 11/9 20:00 111	3.2 11/12 5:40 123 4	58.9 11/18 1:25 123 0	4.7 11/18 9:35 126 10	8.3 11/5 15:55 268 3
	Item	Value (ug/m ³) Date Time (MST) Wind Direction (deg.)	Value (ug/m³) Date Time (MST) Wind Direction (Deg.)	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.)	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.)	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)
	Trailer	020	023	00 84	022	024

1 - HOUR MAXIMUM CONCENTRATIONS

, , ,	Oct.					
	Sept.					
	Aug.					
By Month	ylul.	130.9 7/15 16:45 63	129.9 7/14 11:15 325 5			
	June	160.4 6/26 14:00 170 6	152.2 6/26 13:05 228 10			
	May	124.5 5/22 6:40 104 3	139.5 5/22 6:25 197 3		*** · · · · · · · · · · · · · · · · · ·	
	Apr.	115.3 4/22 11:50 221 9	116.1 4/27 14:20 276 9			
	Mar.	146.2 3/26 9:00 130 4	145.9 3/8 11:40 197 15			
	Feb.	146 2/19 15:55 184 7	136 2/23 21:45 306 3			
	Jan.	130.9 1/29 12:00 124 4	97.7 1/28 13:15 269 12			
	Dec.	117.9 12/12 11:45 133 0	68.5 12/30 13:25 -			
	Nov.	108.1 11/27 11:50 141	64.6 11/18 13:20 209 20			
Constituent	Item	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.)	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	Value (ug/m^3) Date Time (MST) Wind Direction (Deg.)
	Trailer	020	023	051	022	024

NO Constituent

TABLE II C-10

1 - HOUR MAXIMUM CONCENTRATIONS

By Month

Oct.					
Sept.					
Aug.					
July	3.1 7/31 22:20 129 4	15.3 7/13 4:30 83 4			
June	29.8 6/1 8:55 294 3	28.7 6/28 3:25 240 5			
May	34.0 5/25 2:35 9	4.2 5/8 11:40 295 10			
Apr.	27.1 4/26 14:30 235 11	10.1 4/27 7:25 328 11			
Mar.	4.7 3/19 19:15 122 4	16.7 3/17 11:40 9			
Feb.	7.8 2/19 9:35 126 8	52.6 2/9 9:25 179			
Jan.	43.7 1/22 7:30 105	114.2 1/17 9:55 116 3			
Dec.	16.4 12/9 7:05 106 2	93.9 12/24 1:05 263 4			
Nov.	44.3 11/10 5:50 131 0	38.5 11/28 8:10 303 11			
Item	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.)	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.)	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.)	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.)	Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)
Trailer	020	023	051	022	024

	Oct.					
	Sept.					
	Aug.					
By Month	July	33.9 7/14 13:10 157 1	13.2 7/28 19:15 184 11			
	June	20.8 6/23 4:45 134	3.7 6/23 12:45 199 11			
	May	17.0 5/10 19:45 127	8.0 5/1 8:35 95 5			
Š	Apr.	16.7 4/18 16:20 277 11	10.1 4/28 119:40 60			
1 ENTRATION	Mar.	11.2 3/19 18:40 137 5	4.8 3/23 7:10 146			
TABLE II C-11 - HOUR MAXIMUM CONCENIRATIONS	Feb.	14.4 2/1 0:45 1107	9.2 2/23 20:10 179			
TA - HOUR MA	Jan.	17.6 1/25 6:35 106	68.2 1/16 9:15 143			
1	Dec.	36.0 12/3 17:10 120 0	47.0 12/6 13:10 57 5			
	Nov.	26.7 11/26 22:30 95	21.2 11/26 16:00 315 7			
NO_2 Constituent	Item	Value (ug/m³) Date Time (MST) Wind Direction (Deg.)	Value (ug/m ³) Date Time (MST) Wind Direction (030') Wind Speed (0 30')	Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)
lo .	Trailer	020	023	051 87	022	024

Table II C-12

Non-Methane HC Constituent

3 - HOUR MAXIMUM CONCENTRATIONS (6-9 am)

٥

By Month

July Aug. Sept. Oct. 69.6 7/7 93 0 895.6(2) 7/9 131 5	
Aug.	
9 9 9	
11y 59.6 7/7 0 0 131 5	
June 141.2 6/21 68 2 355.1(2) 6/5 22,	
May 83.5 83.5 172 3 5/26 281 3 3	
Apr. 707.7(2) 8 4/22 130 6 4/21 139? 139?	
Mar. 288.6 (2) 7 3/31 128 134.2 3/31 194 115	
Feb. 107 4 4 18.1 2/28 182 7	
Jan. 223.8 1/12 117 7 117 2316 1/4 116 6	
Nov. Dec. 197.6 179.7 11/25 12/19 127 101 11 11 17151.9 33269.7 11/23 12/12 28 179 5 6	
Nov. 197.6 11/25 11 11 11/23 11/23 28 3	
	Wind Direction (Deg.) Wind Speed (MPH)
Trailer 020 023 023 022 022	

(1) Reported data are incorrect because of contaminated manifold. (2) Reported data may be incorrect because of malfunctioning instrument.

Methane HC Constituent

TABLE II C-13

3 - HOUR MAXIMIM CONCENTRATIONS (6-9 a.m.)

Trailer Item Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. 1020 Walue (ug/m ³) 1129 1218 1218 1128 1218 112		oct.								
Trailer Item Nov. Dec. Jan. Feb. Nar. Apr. May June July 1972 1219-5 999-2 1298-0 998-9 877-8 97-3 17-31 Trailer (ug/m²) 11/9 12/8 11/2 12/2 11/2 11		Sept.								
Trailer Item Nov. Dec. Jan. Feb. Nar. Apr. May June 020 Value (ug/m³)		Aug.								
Trailer Treater Trea	by Month	July	859.2	0 0	879.4	179				
Trailer Item Nov. Dec. Jan. Feb. Mar. Apr. 1974 Trailer Oxford (ug/m²) 1020		June	862.5	621	879.1	65				
1974 1974 1974 1974 1975		May		3 3	903.9	180				
Trailer Item Nov. Dec. Jan. Feb. 1974 Nov. Dec. Jan. Feb. 1020 Value (ug/m ³) 1179 1278 -33 1179 1278 -33 1179 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 -33 1170 1278 1278 -33 1170 1278 1278 -33 1170 1278 1278 -33 1170 1278 1278 -33 1170 1278 1278 -33 1170 1278 1278 -33 1170 1278 1278 -33 1170 1278 1278 -33 1170 1278 1278 1278 -33 1170 1278 1278 1278 -33 1170 1278 1278 -33 1170 1278 1278 -33 1170 1278 1278 -33 1170 1278 1278 1278 -33 1170 1278 1278 1278 -33 1170 1278 1278 1278 1278 1278 1278 1278 1278		Apr.	(2) 837.8 4/28	1 1 24	902.4	228				
Trailer Item Nov. Dec. Jan. O20 Value (ug/m³) 933.2 1219.5 999.2 11/9 12/8 1/12 Wind Direction (Deg.) 77 111 118 Wind Speed (WPH) 98 15/1 12/29 1/1 Wind Direction (Deg.) 98 15/1 144 Wind Direction (Deg.) 98 15/1 144 O21 Value (ug/m³) 98 15/1 144 Wind Direction (Deg.) 98 15/1 144 O22 Value (ug/m³) 98 15/1 144 O24 Wind Direction (Deg.) Wind Speed (WPH) O24 Wind Direction (Deg.) Wind Speed (WPH) Mind Speed (WPH) O25 Wind Speed (WPH) Mind		Mar.	998.9 3/15) i	910.2	159				
Trailer Item Nov. Dec. Jan. O20 Value (ug/m³) 933.2 1219.5 999.2 11/9 12/8 1/12 Wind Direction (Deg.) 77 111 118 Wind Speed (WPH) 98 15/1 12/29 1/1 Wind Direction (Deg.) 98 15/1 144 Wind Direction (Deg.) 98 15/1 144 O21 Value (ug/m³) 98 15/1 144 Wind Direction (Deg.) 98 15/1 144 O22 Value (ug/m³) 98 15/1 144 O24 Wind Direction (Deg.) Wind Speed (WPH) O24 Wind Direction (Deg.) Wind Speed (WPH) Mind Speed (WPH) O25 Wind Speed (WPH) Mind	(U-9 a.III.	Feb.	1298.0 2/3	3 2/8	900.1	306				
Trailer Item Nov. Dec 020 Value (ug/m³) 933.2 1219. 021 Value (wg/m³) 11/9 12/8 Time (MST) 77 111 Wind Direction (0eg.) 06.7 Time (MST) 12/29 151 12/29 151 12/29 1525 151 12/29 151 12/29 151 12/29 1526 151 12/29 151 12/29 1527 151 12/29 1528 151 11/7 12/29 1529 151 11/7 12/29 1520 1520 1520 1530 1530 1530 1540 1540 1550 1550 1550 1550 1550 1550 1550 1550 1550 1550 1550 1550 1550 1550 1550 1550 1550 1570 117/9 12/8 1570		Jan.	999.2 1/1.2	6	(1) 1137.7 1/1	144 4				
Trailer Item O20 Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Direction (@ 30') Wind Speed (MPH) O21 Value (ug/m³) Date Time (MST) Wind Speed (@ 30') Wind Speed (WPH) O22 Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH) O24 Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Direction (Deg.) Wind Speed (MPH) Wind Direction (Deg.) Wind Speed (MPH)		Dec.	1219.5	2	(1) 1925.3 12/29	151				
020 023 022 022	1974	Nov.	933.2	`0	(1) 96.7 11/7	98				_
		Item	Value (ug/m³) Date Time (MST)	Wind Speed (MPH)	Value (ug/m³) Date	Wind Direction (@ 30') Wind Speed (@ 30')	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.)	Value (ug/m³) Date Time (MST) Wind Direction (Deg.)	Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	
		Trailer	020		023			022	024	

(1) Report data are incorrect because of contaminated manifold.

(2) Reported data may be incorrect because of malfunctioning instrument.

Table II C-14

	0ct.					
	Scpt.					
: th	Aug.					
By Month	July	2065.3 ⁽²⁾ 7/29 14:55 219 5	1635.9 7/9 111:50 175 3			
	June	$3680.4^{(2)}1811.5^{(2)}3296.9^{(2)}4650.9^{(2)}2065.3^{(2)}$ $3/16$ $4/11$ $5/29$ $6/4$ $7/29$ $11:25$ $13:35$ $18:20$ $4:55$ $14:55$ 14 360 126 108 219 5 6	790.8 6/26 22:10 114 5			
1 9 1 1 9	May)3296.9 ⁽ 5/29 18:20 126 6	1155.9 5/27 17:15 96 13			
NS	Apr.)1811.5 ⁽² 4/11 13:35 360 5	740.9 4/26 7:20 39 5			
CENTRATIO	Mar.		2421.1 3/24 13:20 206 12			
1 - HOUR MAXIMUM CONCENTRATIONS	Feb.	1716.6 ⁽²⁾ 2/19 10:05 115	769.7 2/3 15:05 202 10			
- HOUR N	Jan.	1700.8 1/11 19:30 341 6	(1) 2563.2 1/23 17:15 214 7			
1974	Doc.	1853.7 12/15 13:30 117	(1) 5061.4 12/19 4:50 246 10			
	Nov.	1353.8 11/14 11:55 113 0	(1) 11/14 11/14 15:25 210 11			
Constituent	Itan	Value (ug/m3) Date Time (MST) Wind Direction (Deg.)	Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)
	Trailer	020	023	021	022	024

Reported data are incorrect because of contaminated manifold. Reported data may be incorrect because of malfunctioning instrument. £

Methane HC Constituent

TABLE 11 C-13

3 - HOUR MAXIMUM CONCENTRATIONS (6-9 a.m.)

Nov. Dec	Dec	Dec.		(6-9 a.m.) Jan. Feb. Mar.	(6-9 a.m.) Feb.	Mar.		May	June	By Month July	Aug.	Sept.	Oct.
020	Value (ug/m³) Date Time (MST)	933.2 11/9	1219.5 12/8	999.2 1/12	0.	998.9 3/15	837.8 4/28	924.0 5/2	862.5 6/2	859.2			
	Wind Direction (Deg.) Wind Speed (MPH)	77 0	111	118 6	78	~317	124	172 3	125 6	334			
023	Value (ug/m³) Date Time MST)	96.7 11/7	1925.3 11/29 17/29	1137.7 2	900.1 2/15	910.2	902.4	903.9	879.1 6/6	879.4 7/29			
	Wind Direction (@ 30') Wind Speed (@ 30')	98	151	144 4	306 9	159 0	228	180	65	179 8			
68	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.)	-											
022	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.)												
024	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	*											

(1) Report data are incorrect because of contaminated manifold.
(2) Reported data may be incorrect because of malfunctioning instrument.

S
\leq
LIO
≶
Ě
둗
픰
\odot
8
\simeq
IAXIMUM
릇
×
⋖
2
8
5
HOUR
I
_

Constituent

By Month

	0ct.					
	Sept.					
	. Ցու					
	July	2065.3 ⁽²⁾ 7/29 14:55 219 5	1635.9 7/9 111:50 175 3			
	June	4650.9 ⁽² 6/4 4:55 108	790.8 6/26 22:10 114 5			
	May	3680.4 (2) 1811.5 (4) 3296.9 (2) 3/16 4/11 5/29 11:25 13:35 18:20 147 360 126 12 6	1155.9 5/27 17:15 96 13			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Apr.) _{1811.5} (3 4/11 13:35 360 5	740.9 4/26 7:20 39 5			
20 CM	Mar.,	3680.4 ⁽² 3/16 3/16 11:25 147 12	2421.1 3/24 13:20 206 12			
77	Feb.	1716.6 ⁽²⁾ 2/19 10:05 115	769.7 2/3 115:05 202 10			
	Jam.	1700 1/11 19:3 341 6	(1) (1) (4) 2563.2 11/23 17:15 7			
1974	Dec.	1853.7 12/15 13:30 117	5061, 12/19 4:50 246 10			
	Nov.	1353.8 11/14 11:55 113 0	(1) 11/14 11/14 15:25 210 11			
	ltem	Value (ug/m³) Date Time (MST) Wind Direction (Deg.)	Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	Value (ug/m³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	Value (ug/m ³) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)	Value (ug/m^3) Date Time (MST) Wind Direction (Deg.) Wind Speed (MPH)
	Trailer	020	023	002	022	024

(1) Reported data are incorrect because of contaminated manifold.
(2) Reported data may be incorrect because of malfunctioning instrument.

Particulate Constituent

TABLE II C-15

24 - HOUR MAXIMUM CONCENTRATIONS
Midnight - Midnight

	Oct.					
	Sept.					
	Aug.					
By Month	July	47.0 7/12 60 6	42.0 7/1 188 18	28.0 7/7 56 9	69.0 7/24 354 11 7	27.0 7/2 141 21 6
Ŕ	June	48.0 6/18 119 12 6	65.0 6/17 215 23 11	75.0 6/19 143 14	55.0 6.18 121 8 5	52.0 6/18 205 18 9
	May	70.0 5/20 236 20 10	107.0 5/20 234 34 17	97.0 5/20 327 21 12	80.0 5/20 183 15	86.0 5/20 235 30 14
0	Apr.	89.0 4/25 170 24 15	112.0 4/25 186 41 27	125.0 4/25 168 28 14	82.0 4/25 136 16 13	80.0 4/25 180 37 22
ight	Mar.	39.0 3/22 195 14	171.0 3/22 226 38 16	32.0 3/22 170 20 9	44.0 3/21 168 9	27.0 3/22 196 33 13
24 - mour manimum concentrations Midnight - Midnight	Feb.	11.0 2/27 124 5	11.0 2/27 192 5 4	10.0 2/28 140 8	12.0 2/12 116 12 7	9.0 2/28 130 8 4
Midnig	Jan.	17.0 1/18 117 8 5	6.0 1/11 313 16 8	7.0 1/13 4 6 3	10.0 1/26 112 12 5	16.0 1/27 248 5 3
† 7	Dec.	11.0 12/12 107 8	22.0 12/4 171 18 10	18.0 12/10 102 9 4	116.0 12/1 137 9? 5	8.0 12/5 261 7 2
	Nov.	153.0 11/29 121 5	26.0 11/27 174 15	71.0 11/21 114 10 4	154.0 11/28 290 9	178.0 11/27 118 8 4
	Item	Value (ug/m ³) Date (1)24-hr. ave. Wind Direction(Deg) Max. 1-hr. ave. Wind Speed (MPH) Wind Speed - 24-hr. ave. (MPH)	Value (ug/m ³) Date (1)24-hr. ave. Wind Direction Max. 1-hr. ave. Wind Speed Wind Speed - 24-hr. ave.	Value (ug/m³) Date (1)24-hr. ave. Wind Direction Max. 1-hr. ave. Wind Speed Wind Speed - 24-hr. ave.	Value (ug/m³) Date (1)24-hr. ave. Wind Direction Max. 1-hr. ave. Wind Speed Wind Speed - 24-hr. ave.	Value (ug/m³) Date (1)24-hr. ave. Wind Direction Max. 1-hr. ave. Wind Speed Wind Speed - 24-hr. ave.
	Trailer	020	023	77 91	022	024

(1) Vector Averages

TABLE II C- 16

* 50% Or Less Data

	Oct									
	Sept									
	Aug									
	July	*0.4	*1.7	74.6 86.1	25.8 220.2	825.9 780.7	206.5 ⁽²⁾ 468.5	1.6 1.3 0.4 0.6 0.1	0.2 0.2 4.8 0.1	14.7 15.6 14.6 14.4 11.3
	June	*3.2	*0.3	69.1 84.4	50.8 196.5	821.2 814.7	1092.1 (2) 437.0	1.0 2.1 1.7 0.0 0.0	0.2 0.7 0.4 0.3	10.7 12.3 9.5 18.3 8.7
th	Мау	17.8	4.1 0.5	71.5 87.3	38.9	833.6 834.3	1815.5 ⁽²⁾ 699.9	0 1.1 0.5 0	0.4 0.5 0.3	12.4 13.2 11.2 19.3 11.4
Mon	Apr	9.6 0.6	2.7	77.1 90.5	327.6 ⁽²⁾ 49.1	590.6(2) 836.3	*853.0(2) 485.8	0.1 1.2 0 0.5 1.1	0 0.2 0.7 0.5 1.0	11.6 13.7 11.9 15.4
	Mar	*0.3	*1.2 *0.4	88.0 85.6	38.6	829.8 *859.8	1498.0(2) 504.5	1.1 0.6 0.6 0.9	0.4 0.4 0.3 2.7 0.4	6.5 6.9 5.3 11.5 4.9
	Feb	*0.4	*2.5 0.2	105.1 85.8	23.4	879.4 *833.7	1228.5(2) 391.4	0.1 0.8 0.2 0.1 5.5	0 0.8 0.2 0.7 0.2	3.8 3.2 3.2 3.8
	Jan	3.4	4.5	93.7	*75.7 *662.8(1)	*908.1 *943.6(1)	908.2 1786.2(1)	0 0.8 0 3.3 1.3	0.2 . 0 . 2.5	3.3 4.0 *2.9 *2.5
	Dec	*12.8	6.8 *4.7	69.3	97.4 20213.64)			1.8 1.7 0.1 6.4	0 0 1.2 5.2 0.1	4.3 5.4 *6.8 2.9
	Nov	1.9	2.8	58.0 *31.4	73.4 933.0¢)	826.1 149.7(L)	553.8 3703.61)	0 1.3 2.6 0.0	0 1.6 0.2 0	*48.7 *20.4 *35.3 *18.0
Item		NO (ug/m³)	NO ₂ (ug/m ³)	0 ₃ (ug/m³)	Non-Methane H.C. (ug/m³)	CH4 (ug/m ³)	CO (ug/m ³)	SO ₂ (ug/m ³)	H ₂ S(ug/m ³)	Particulate(ug/m3)
Trailer		020	020	020 023	020	020	050 053	020 021 022 023 023	020 021 022 023 023	020 021 022 023 023
		Item Nov Dec Jan Feb Mar Apr May June July Aug Sept	Item Nov Dec Jan Feb Mar Apr May July Aug Sept NO(ug/m3) 1.9 0.7 3.4 *0.4 *1.2 0.6 0.1 0.3 0.6 0.1 0.3 0.6 0.6 0.1 0.3 0.6 0.1 0.3 0.6 0.6 0.1 0.3 0.6 0.6 0.1 0.3 0.6 0.6 0.1 0.3 0.6 0.6 0.1 0.5 0.6 0.1 0.5 0.6 0.1 0.5 0.6 0.6 0.1 0.5 0.6 0.6 0.1 0.6 0.6 0.1 0.6 0.6 0.1 0.6 0.6 0.1 0.6	Item Nov Dec Jan Feb Mar Apr May June July Aug Sept NO(ug/m3) 1.9 0.7 3.4 *0.4 *0.4 *0.3 9.6 17.8 *3.2 *0.4 8.9.4 NO2(ug/m3) 2.8 6.8 4.5 *2.5 *1.2 0.0 0.5 0.0 1.5 *1.7 NO2(ug/m3) 2.4 *4.7 7.4 0.2 *0.4 0.9 0.5 0.0 1.5 8.1.7	Item Mov Dec Jan Feb Mar Apr May June July Aug Sept NO(ug/m³) 1.9 0.7 3.4 *0.4 *1.2 0.6 17.8 *3.2 *0.4 Sept NO ₂ (ug/m³) 2.8 6.8 4.5 *2.5 *1.2 0.6 0.1 0.0 1.5 0.6 0.3 (ug/m³) 58.0 69.3 93.7 105.1 88.0 77.1 71.5 69.1 77.1 74.6 86.1 74.6 86.1 74.6 86.1 <td< td=""><td> No Dec Jan Feb Mar Apr May June July Aug Sept </td><td> Now Dec Jan Feb Mar Apr May June July Aug Sept </td><td> Nov Dec Jan Feb Nar Apr May June July Aug Sept </td><td>Trailer Item Nov Dec Jan Feb Mar Apr May June July Aug Sept 023 NO(ug/m³) 1.9 4.4 12.8 14.7 0.4 41.2 0.6 0.1 0.5 0.6 0.1 0.3 0.6 0.0 0.5 0.0 0.0</td><td>Trailer Item Nov Dec Jan Feb Nar Apr May June July Aug Sept No Lug/m³)</td></td<>	No Dec Jan Feb Mar Apr May June July Aug Sept	Now Dec Jan Feb Mar Apr May June July Aug Sept	Nov Dec Jan Feb Nar Apr May June July Aug Sept	Trailer Item Nov Dec Jan Feb Mar Apr May June July Aug Sept 023 NO(ug/m³) 1.9 4.4 12.8 14.7 0.4 41.2 0.6 0.1 0.5 0.6 0.1 0.3 0.6 0.0 0.5 0.0 0.0	Trailer Item Nov Dec Jan Feb Nar Apr May June July Aug Sept No Lug/m³)

The July one-hour maximum concentration for H_2S at Trailer 023 is the highest value yet to be reported for this gas and represents a very large increase from the May and June values. On the other hand, both the July one-hour maximums and the monthly averages for H_2S for the remaining four Trailers show a decrease in the ambient air concentrations.

The correlations of wind direction with ambient air concentrations for the different gases are displayed in a bi-variate frequency distribution in the Radian monthly data reports. A month-to-month examination of these data for $\rm H_2S$ or $\rm SO_2$ has failed to establish any consistent or predictable long-term patterns.

The significance of the reported H_2S and SO_2 data and the interpretation of the observations made in these reports are not obvious. As has been stated in previous reports, these observed trends and patterns in the concentration of these two gases have not provided an explanation as to the possible source, type, or location. However, these data confirm that high concentrations are not isolated events and occur frequently.

In addition to the normal instrument monitoring for sulfur dioxide, analyses were performed in July for this gas using both the West-Gaeke wet chemical measurement and a modified version of this method using an impregnated filter in place of the usual gas bubbler (method to be published by H. A. Axelrod, Anal. Chem.). The July 4-5 sulfur dioxide levels were below the estimated 0.5 ppb detection limit for the standard West-Gaeke bubbler technique. However, six simultaneous samples, collected at Trailer 023, on July 25, using the impregnated filters, yielded an average sulfur dioxide level of 0.13 ppb. The sulfur dioxide and hydrogen sulfide detection instruments in Trailer 023 were reading zero at this same time since this value (0.13) is below the minimum detectable limits of the instruments in the Trailer.

Ozone is measured only at Trailers 020 and 023. The ozone (03) monthly one-hour maximums are given in Table II C-9 and the monthly averages are given in Table II C-16. The plateau concentrations at Trailer 023 continue near the higher monthly averages which began last February, and are slightly above those measured in the valley at Trailer 020. The higher ozone levels on the plateau reported since April contrast with the higher ozone levels in the valley during the winter months. The June monthly one-hour maximums are the highest ozone concentrations reported to date for both the valley and the plateau.

As was noted in the last two summary reports, there appears to be a very obvious diurnal ozone trend at both Trailers. The May through July diurnal ozone variations are surprisingly similar and indicate a minimum ozone concentration at 0600 which begins to increase at 0700. It reaches a peak around 1300 and decreases to a low around 2300 hours at the valley Trailer 020. The Trailer 023 on the plateau indicates a very similar trend except that the minimum and peak onset appear one hour later than in the valley. The similarity in the diurnal trends

between the two Trailers is remarkable and a review of the complete diurnal tables shows a correlation between the two that coincides even to the hour on certain days. This high degree of correlation would seem to suggest that both Trailers are measuring the same air mass with respect to the ozone levels. It seems unlikely that the maximum ozone levels which are significantly above the accepted background level of 80 ug/m³ could be the result of downwind urban pollution. It seems equally unlikely that stratospheric transport of ozone would produce the consistent diurnal trends or could cause the valley concentrations during the winter months to exceed those of the plateau.

The monthly one-hour maximums for nitric oxide (NO) and nitrogen dioxide (NO $_2$) are reported in Tables II C-10 and II C-11, respectively. The monthly averages are presented in Table II C-16. Only partial-days data for Trailer 020 are reported during June and July because of instrument malfunction. The February-through-July monthly averages for these two gases reported for Trailer 023 are generally lower than the same values for the preceeding months. These lower values may be because of decreased activities associated with the Tract corehole drilling operations or the greater instability of the atmosphere during the spring and summer months which would enhance the dispersion of these pollutants, or both.

The data through May reported for Trailer 020 show an increasing trend of both NO and NO_2 and may be associated with the increased automobile traffic along the Piceance Creek road in the valley. Unusual, sudden shifts in the values of the reported data which persist over a period of several days have been investigated in detail in order to substantiate data validity.

The 6:00 - 9:00 a.m. maximums for the non-methane hydrocarbons (NMHC) are given in Table II C-12 and in Table II C-13 for methane. The monthly averages are given in Table II C-16. The footnote for the November, December, and January data at Trailer 023 has already been explained in the Summary Report #3. The other footnote refers to the April data at Trailer 020 which may be in error due to a faulty instrument.

The 6:00 - 9:00 a.m. maximum and the monthly averages for the May through July methane concentrations are quite similar. There are no differences between the values at valley Trailer 020 and the plateau Trailer 023. The methane concentration measured in the Tract vicinity is in agreement with the accepted background range of 814 - 977 ug/m 3 at 760 mm and 0°C.

The non-methane hydrocarbon (NMHC) 6:00 - 9:00 a.m. maxima and average monthly concentrations show much greater variation and significant difference between the valley and plateau sites. Considerable caution is urged in interpreting these data. Recent tests conducted by Environmental Protection Agency have indicated that the precision of the NMHC measurements determined by subtractive gas chromatograph (the

method most frequently employed and used in C-b's air quality network) is poor. Bearing this in mind the rather large increase in the monthly average for Trailer 023 during May through June could be significant. It was mentioned in the Summary Report #3 that this could be associated with warmer temperatures of the season and the increased vegetation growth which would promote the release of volatile vegetation-related organics into the atmosphere. However, additional data are necessary to establish whether or not this is a real trend. Increased automobile traffic could produce a similar trend.

Tables II C-14 and II C-16 give the one-hour maxima and the monthly averages, respectively, for carbon monoxide. Again, the footnotes indicate data that are incorrect owing to the contaminated manifold at Trailer 023 or data suspected of being in error because of a possible malfunction in the instrument. The contaminated manifold and its probable effect on the carbon monoxide data were discussed in the Summary Report #3. Daily carbon monoxide data for Trailer 020 for the period from February into April show an unexplained gradual upward trend that exceeds by several times both the earlier concentrations measured at this site and the carbon monoxide concentration measured by Trailer 023. This trend is interrupted suddenly on April 27, after the analytical and stripper columns were replaced in the monitoring instrument. Following this change, the carbon monoxide levels show a significant decrease and are similar to those concentrations reported for Trailer 023. On May 6th, a faulty heating control destroyed the oven and catalytic converter for the carbon-monoxide-to-methane conversion. The columns and catalyst were then replaced. Following this the carbon monoxide measurements suddenly indicated a sixfold increase. These high readings continued until June 7th when a sudden decrease was observed. A similar decrease was again observed on June 21st. These decreases have persisted and the low carbon monoxide levels continued into July, representing only a fraction of the measured values at Trailer 023.

The carbon monoxide data do not indicate any significant changes in level from May through July. The carbon monoxide levels in the Tract vicinity may be influenced by automobile traffic.

The particulate 24-hour maxima and the monthly averages are reported in Tables II C-15 and II C-16, respectively. These data seem to indicate a seasonal trend with higher particulate concentrations occurring in the spring and summer months and the lower concentrations in the winter months. Such a trend would be expected with the disappearance of the winter snow cover and the generally drier soil conditions and higher wind speeds during the warmer months.

The May 24-hour maxima correlate well with the monthly one-hour maximum high wind speeds reported in Table II C-20. The June and July 24-hour maxima do not show a similar correlation. It may be that the agricultural activities in the Piceance Creek Valley near the Tract play a more important role than does the wind in its contribution to the ambient air particulate concentration. Certainly, the particulate

concentrations measured at the valley Trailers 020, 021, and 022 were affected by the alfalfa plantings and harvests during these months. During these two months heavy-duty grading equipment was used in the immediate vicinity of Trailer 022 on several occasions, undoubtedly contributing further to the particulate concentrations at this site.

Special cellulose filters which have a low trace-element background are used to collect particulates every sixth day at Trailer 023. These filters are screened for trace elements and radioactivity and analyzed as a quarterly composite in order to determine average concentrations, (Table II C-17). A spot-check, single-filter sample has been analyzed to detect any gross short-term variations from the average (Table II C-18). Table II C-19 reports the gross alpha and gross beta radioactivity in picocuries per cubic meter (pCi/m3) for both the composite and single particulate sample. The first report of these data for the months of November and December was included as part of the first Radian quarterly data report for September - November. The second set of these data for the months of January, February and March, as well as a correction thereto and the concentrations in ug/m³ and pCi/m³ for the first quarter are included in the Quarterly Data Report #4. The concentrations for these elements as well as the gross beta radioactivity remain well below the hazardous levels. These measured radioactivity levels are well below the 1 pCi/m³ level which is stipulated in the Conditions of Approval as the level below which further quantitative analyses is not required and can be considered to be normal background radiation.

Also reported for the 4th quarter are the volatile trace metals, selenium, mercury, and arsenic (or arsine), collected once per quarter at Trailer 023. These values for the July 25th sampling are: 0.0027 ug/m³ mercury, 0.16 ug/m³ selenium, and 7.83 ug/m³ arsine.

Particulate size distributions at Trailer 023 are also determined once per quarter; for this quarter, they are:

Size Range in Microns	Concentration in ug/m ³
7.0 - Above	5.02
3.3 - 7.0	3.43
2.0 - 3.3	2.64
1.1 - 2.0	1.85
0.01- 1.1	1.58

Regarding near-surface meteorology, Tables II C-20 and II C-21 present a meteorological summary of winds, temperature, precipitation, and relative humidity by Trailer for each month to date, with the months of May through July representing new data.

Maximum hourly temperature achieved to date on the plateau of the Tract was 90°F, occurring in July; maximum in Piceance Creek Valley was also 90°F (July). Minima to date have been -29°F (January) and -51°F (January) on Tract and in Piceance Creek Valley respectively. Relative

AMBIENT CONCENTRATIONS OF TRACE ELEMENTS ON TRACT C-b Concentrations in ug/m³

Composite																				
Composite 2761 əmut-lirq	9×10-4	9.6x10-2	2×10-4	1.2	07.0	*	8.5x10 ⁻²	6.5x10 ⁻²	1.2	0.31	0.13	0.14	*	£	Æ	£	Œ.	5-10-2	OTVC	3.1x10
Composite San-March 1975	2×10-4	6×10-3		.44	.26		6×10 ⁻²	4.2×10 ⁻²	.42	2×10-2	3.6	4.2		ž	Æ	Æ				
Composite NovDec. 1974	4×10-4			٤.	.1	1x10-3	7×10-3	3x10-3		.1	.2	5x10 ⁻²	1×10-2				2×10-2	7-01-6	0177	1×10-4
	Vanadium	Titanium	Scandium	Calcium	Potassium	Chlorine	Sulphur	Phosphorus	Silicon	Aluminum	Magnesium	Sodium	Fluorine	Oxygen	Nitrogen	Carbon	Roron		<u> </u>	Lithium
Composite																				
Composite 2761 ənul-firqA		*	2x10-3	3.8x10 ⁻³	5x10-4	1.2x10 ⁻²	5x10-4	2×10-5	4×10-5	3x10-4	4×10-5	1×10-4	*	1.3x10 ⁻²	*	3x10-4	6	10.0	8.1x10	4.3x10-
Composite JanMarch 1975					1x10-4	2×10-4	9×10-4	1×10-4	6×10-5	1x10-3	3x10-5	1×10-5	9x10-3	6x10 ⁻²	3x10-4		2,6	2-0-2	OTX/	
Composite NovDec. 1974		2×10-4	6x10-5	3x10 ⁻⁴	1x10-4	3x10-3	2×10-3		8×10-7	1x10-4	3x10-5	1x10-4	1x10 ⁻²	9×10-3	4×10-4	3x10 ⁻⁴	3x10-2	7.10-3	OTXC	7x10 ⁻⁴
	Ruthenium	Molyhdenum	Niobium	Zirconium	Yttrium	Strontium	Rubidium	Bromine	Selenium	Arsenic	Germanium	Gallium	2 inc	Copper	Nickel	Cobalt	Iron		Manganese	Chromium
 əz;sodinoj																				
Composite April-June 1975		1x10-5	2×10 ⁻⁵	2x10 ⁻⁴	5x10 ⁻⁴	2x10-4	4×10-3	1×10-3	2.9×10 ⁻²	1x10-4	8×10-5		8×10-5	2×10-4	Internal Standard	2×10-4	2×10-5			10-14
Composite Jan March 1975					x10-4	Zx10-5	x10-4	×10-5	x10-3				×10-5	2×10-4	Internal Standard		2×10-5			10-15
Composite NovDec. 1974					4x10-4 1x10-4	3x10-5 2	1x10-4 1x10-4	9x10-5 5x10 ⁻⁵	1x10 ⁻³ 1x10 ⁻³	7x10			5x10 ⁻⁵ 8x10 ⁻⁵	6x10 ⁻⁴ 2	S		6x10 ⁻⁴ 2			10-15
	Terbium	Gadolinium	Europium	Samarium	Neodymium	Praseodymium	Cerium	Lanthanum	Barium	Cesium	Iodine	Tellurium	Antimony	Tin	Indium	Cadmium	Silver	Palladium	Rhodium	Radium
91isoqmoJ																				
Composite 2791 =ful-lirqA	2x10-4	3x10-4	2x10 ⁻⁴	5.8x10 ⁻³		2x10-4					Internal Internal Standard Standard	*								
Composite Jan March 1975	2x10 ⁻³		1x10 ⁻⁴	2x10-3		2×10-8					Internal Standard									
Composite NovDec. 1974	7x10 ⁻⁵	6×10-5	2×10-5	3x10 ⁻³		2x10-3						4×10-5								
	Uranium	Thorium	Bismuth	Lead	Thallium	Mercury	Gold	Platinum	Iridium	Osmium	Rhenium	Tungsten	Tantalum	Hafnium	Lutecium	Ytterbium	Thullium	Erbium	Holmium	Dysprosium

NOTE: NR--Not reported When no number appears, concentration is less than $1\mathrm{x}10^{-5}~\mathrm{ug/m}^3$

*Unable to determine because of blank level.

TABLE II C-18
TRACE ELEMENT ANALYSIS
OF SINGLE FILTER SAMPLES ON TRACT C-b
Concentrations in ug/m³

									-										
	Single Filter Sample 12/4/74	Single Filter 1/28/75	Single Filter	Single Filter		Tatlif Filter Sample \$7/4/21	Single Filter 27/88/75	Single Filter 27/24/74	Teiliq elgni2		Sample Filter Sample AT/4/21	St/8S/I	Single Filter 4/24/75	Single Filter		Single Filter Sample 12/4/74	Single Filter 1/28/75	Single Filter 47/24/74	Single Filter
Uranium	5x10-5		1x10-4		Terbium					Ruthenium				Var	Vanadium	2x10 ⁻³ 5	5x10-4	2.1×10 ⁻³	
Thorium	3x10-5		2x10-4		Gadolinium				d'a	holybdenum	5x19 ⁻⁴ 1	1x10 ⁻³	*	TiT	Titanium	9×10 ⁻³ 1	1.4×10 ⁻²	0.11	
Bismuth	3×10-5	1×10-3	2x10 ⁻⁴		Europium					Niobjtum	7×10-5 2	2x10 ⁻⁵ 1.	1.2×10 ⁻³	Sca	Scandium			1x10 ⁻⁴	
Lead	1x10-2		1.2x10-2		Samarium				.4	Zirconium	1x10-3 C	(x10-5 3.	3.1x10 ⁻³	3	Calcium	1.1	.5.	≈1.7	
Thallium					Neodymium	9×10-5		1x10=4	_	Yttrium	2x10 ⁻⁴ 2	2x10-4 4x	4×10-4	Pot	Potassium	0.7	.42	0.35	
Mercury	1x10-5	2x10-8	2x10-4		Praseodymium	7x10-5		2×10-4	J,	Strontium	6x10 ⁻³ 5	5x10 ⁻³ 1.	1.3x10 ⁻²	~ 등	Chlorine	3×10^{-3}		2.4×10-3	
Cold					Cerium	5x10-4	1x10-4	1.5x10 ⁻³		Rubidium	4x10 ⁻³ 2	2x10-4 6x	6x10 ⁻⁴	Sul	Sulphur	7×10-2	1.8×10 ⁻²	0.24	
Platinum					Lanthanum	2×10-4	1x10-4	1.7x10 ⁻³		Bromine	7×10 ⁻⁵ ?	7x10 ⁻⁴ 4x	4x10-4	Pho	Phosphorus !	5x10 ⁻³ 2	2.1	0.14	
Iridium					Barium	2×10-3	2×10-3	1.5x10-2	7,	Selenium	8x10-5	1x10 ⁻⁴ 4x	4x10 ⁻⁴	Sil	Silicon		1.8	≈2.1	
Osmium					Cesium	1x10-4			*	Arsenic	7x10-4 2	2x10-3 3x	3x10 -4	Alt	Aluminum	.2	.12	≈0.48	
Rhenium	Internal		Internal		Iodine		8×10-4	7x10 ⁻⁵	3	Germanium	-	2x10-5 4x	4x10-5	Mag	Magnesium (0.47 3	3.9	0.18	
Tungsten	3x10-5		2x10-6		Tellurium	4×10-5			<u> </u>	Gallium	5x10-4 2	2x10-5 1x	1x10-4	Soc	Sodium	6×10 ⁻²		0.11	
Tantalum					Antimony	2×10-4	5×10-5	1x10-4	14	Zinc	2×10 ⁻² 3	3x10-3	*	FIL	Fluorine 4	4x10 ⁻³	.25	0.016	
Hafnium					Tin	2×10-3	2×10-4	2×10-4	<u>J</u>	Copper		2x10 ⁻³ 3.	3.1x10 ⁻³	8	Oxygen		ž	Æ	
Lutecium					Indium		Internal Internal	Internal	<i>A</i> .	Nickel	3x10 4	4x10-4 2x	2x10-4	Nit	Nitrogen	2	Æ	Ę.	
Ytterbium					Cadmium	8x10-7	2x10-4	1×10-4	5	Cobalt	4x10-4	2x	2x10-4	25	Carbon	2	NR.	S.	
Thullium					Silver	1×10-4		2×10-5		Iron	7x10 ⁻² 1	1.6 ≈0	≈0.81	Boron	-	8x10 ⁻³ 9	9x10 ⁻³	Œ.	
Erbium					Palladium				2	Manganese	1x10 ⁻² 5	5x10 ⁻² 1	1.1x10 ⁻²	Ber	Beryllium 2	2×10-6			
Holmium					Rhodium				J	Chromium	1x10 ⁻³	×9	6×10-4	Lit	Lithium	3x10 ⁻⁴		2.4x10 ⁻³	
Dysprosium	-				Radium	<10-15	<10-15	<10-15			,								!
								1			-	-		1	-				

NOTE: NR--Not Reported . When no numbers appear, concentration is less than $1x10^{-5}\ ug/m^3$

^{*} Unable to determine because of blank level.

TABLE II C-19

Gross Radioactivity (pCi/m³)

Gross Beta + Precision (1)	11.4 x $10^{-2} \pm 0.4 \times 10^{-2}$ (2) 13.2 x $10^{-2} \pm 0.8 \times 10^{-2}$	$7.1 \times 10^{-2} \pm 0.1 \times 10^{-2}$ (2) $19.6 \times 10^{-2} \pm 4.2 \times 10^{-2}$	$3.1 \times 10^{-2} \pm 0.09 \times 10^{-2}$ $5.0 \times 10^{-2} \pm 0.4 \times 10^{-2}$	
Gross Alpha + Precision (1)	$6.5 \times 10^{-4} \pm 2.7 \times 10^{-4}$ (3) $13.0 \times 10^{-4} \pm 8.0 \times 10^{-4}$	$6.3 \times 10^{-4} \pm 4.1 \times 10^{-4}$ (4) $3.4 \times 10^{-4} \pm 1.3 \times 10^{-4}$	$6.3 \times 10^{-4} \pm 1.1 \times 10^{-4}$ $19.0 \times 10^{-4} \pm 6.0 \times 10^{-4}$	
Date of Sample Collection	Composite of Samples November - December Single Day Sample 12/4/74	Composite of Samples January - March Single Day Sample 1/28/75	Composite of Samples April - June Single Day Sample 4/24/75	Composite of Samples

(1) Variability of radioactivity disintegration process (counting error) at the 95% confidence level, 1.96 α

⁽²⁾ Blank Gross Beta 0.004 ± 0.004 pCi/cm² (420 cm²/ filter)

⁽³⁾ Blank Gross Alpha 0.0004 \pm 0.0004 pCi/cm² (420 cm²/filter)

⁽⁴⁾ Blank Gross Alpha 0.0007 \pm 0.0006 pCi/cm² (420 cm²/filter)

TABLE II C-20
METEOROLOGICAL SUNMARY:
WINDS AND TEMPERATURE

Trem			T	1	T		T		
Frence, Hourly Max. (OF) 27 13 15 15 15 15 15 15 15 15 15 15 15 15 15			Oct.						
Speed, Hourly Nax. (OF) Speed, Hourly Na			Sept.						
Parture, Hourly Max. (PF) 27 13 15 20 20 16 15 20 16 15 20 16 15 20 16 16 17 18 18 18 18 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18			Aug.						
rature, Hourly Max. (OF) 27 13 15 19 174 18 18 17 27 18 18 20 17 18 18 18 17 24 18 18 18 17 24 18 18 18 18 17 24 18 18 18 18 17 24 20 18 18 18 18 18 18 18 18 18 18 18 18 18			July	89 90 87 84 90	42 37 45 51 51	67 67 68 67 71	42 19 16 15 25 21	4 4 S C S	
1974-1975 1974			June	88 78 78 83 87	30 31 34 32 32	58 56 56 56 61	52 16 20 17 28 25	78866	
Trem Nov. Dec. Jan. Feb. March April rature, Hourly Max. (OF) 50 45 55 47 55 68 Sature, Hourly Min. (OF) -14 -30 -46 -24 -28 -19 rature, Hourly Min. (OF) -14 -30 -46 -24 -28 -19		ų	Мау	78 78 77 71	15 16 14 22 28	48 47 48 46 49	53 20 21 15 38 31	6 9 7	
Item		Mont	April	69 68 68 68	-19 -21 -15 6	36 35 35 38	56 24 28 17 43 37	6 6 6 10 7	
Item			March	59 55 50 55 55	-28 -28 -23 -6	32 30 30 31 32 32	52 17 20 19 38 33	5 6 6 10 7	
Item	1975		Feb.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-24 -29 -22 0 -10	19 20 21 24 24	36 18 17 17 24 20	2886	
Item Nov. Nov. Nov. S2 S2 S3 S3 S4 S4 S4 S4 S4 S4	1974-		Jan.	53 53 43 51	-46 -51 -38 -5	15 15 18 23 22	48 18 19 18 32 25	28665	
stature, Hourly Max. (OF) rature, Hourly Min. (OF) rature, Hourly Ave. (OF) Speed, 5-Min. Max. (MPH) Speed, Hourly Max. (MPH) Speed, Hourly Ave. (MPH)			Dec.	45 46 47 49 37	-30 -34 -22 0 -8	13 11 15 25 15	52 11 13 20 38 25	3 7 3	
srature, Hourly Max. srature, Hourly Min. speed, 5-Min. Max. (Speed, Hourly Max. (Sp			Nov.	50 52 53 48	-14 -17 0 5 	27 27 29 32	39 11 19 15 25 19	88 S C 8	
		Item		Temperature, Hourly Max. (OF)	Temperature, Hourly Min. (^O F)	Temperature, Hourly Ave. (^O F)	Wind Speed, 5-Min. Max. Wind Speed, Hourly Max.	Wind Speed, Hourly Ave. (MPH)	
001 002 002 002 002 002 002 002 002 002		Trailer		020 021 022 023 024	020 021 022 023 024		Tower, 200' 020 021 022 023 023	020 021 022 023 023	

Winds @ 30' except where noted

TABLE II C-21

METEOROLOGICAL SUMMARY:
RELATIVE HUMIDITY AND PRECIPITATION

		Sept						
		Aug						
		July	99 100 99 100	10 10 21 28 12	49 56 57 54	.03 .09 .13 .20	.09 .11 .33 .33	.41 .30 .85 .53
		June	98 100 100 100	9 19 25 11	53 53 54 38	.08 .17 .05 .09	.10 .36 .05 .14	. 28 . 73 . 10 . 27
		May	100 100 100 100	12 12 17 28 28	54 58 58 64 51	0.03 0.12 0.03 0.05 0.05	0.08 0.18 0.12 0.16 0.06	0.25 0.51 0.54 1.22 0.57
	Month	Apr	99 100 100 100	15 22 19 32 32 16	56 65 61 67 55	0.02 0.01 0.02 0.03	0.05 0.03 0.10 0.13	0.32 0.20 0.42 0.49 0.66
		Mar	100 100 100 100	23 30 28 37 28	64 70 72 72 66	0.02 0.01 0.04 0.02 0.02	0.08 0.06 0.07 0.08	0.31 0.45 0.38 0.51 0.72
		Feb	98 100 100 100	22 29 27 32 32	65 73 71 72 66	0.02 0.01 0.01 0.01	0.02 0.02 0.02 0.01	0.04 0.08 0.06 0.13
1974-1975		Jan	96 100 100 100	24 26 30 26 26 26	66 75 71 68 65	0.02 0.03 0.03 0.04	0.05 0.04 0.05 0.08 0.03	0.18 0.25 0.20 0.38 0.20
197		Dec	100 95 100 100	23 22 27 25 25 25	72 74 74 69 69	0.01	0.01	0.02
		Nov	100 85 100 100	22 19 26 24 24 25	66 63 70 63 63			
		Oct	100 90 100 100	10 10 14 20 16	62 69 53 56			
	Item		Rel. Hum, Hrly Max. (%)	Rel. Hum, Hrly Min.(%)	Rel. Hum, Hrly Avg. (%)	Precip., 5-Min. Max. (Inches)	Precip., 1-Hr. Max. (Inches)	Precip., Monthly Tot. (Inches)
	Trailer		020 021 022 023 023	020 021 022 023 024	101 0222 0223 0243	020 021 022 023 024	020 021 022 023 023	020 021 022 023 023

humidities range from 100% every month down to values as low as 8% (June); 80% diurnal variations in humidity are not uncommon, particularly in the valley. Heaviest monthly precipitation to date on the plateau has been 1.22 inches (May) and 0.85 inches (July) in Piceance Creek.

Maximum wind speeds (5-min.) have reached 56 MPH with gusts to 79 MPH on the plateau in April. Hourly average wind speeds have ranged from 2 to 10 MPH, generally higher on the plateau. Typical monthly wind roses on the plateau and in the valley are presented in Figures II C-2 and II C-3 for Trailer 023 and 021, respectively (new data for May -July). The predominant wind direction on the plateau is south-southwest, whereas that at Rock School in Piceance Creek Valley follows general southeasterly (down-valley) - northwesterly (up-valley) directions, dictated by the valley wall topography. The perspective of the whole windfield is now enhanced by the addition of the three new MRI mechanical weather stations (Figure II C-1) as indicated on Figure II C-4 in four intervals on July 24-25, 1975 (as a typical day). The windfield shown is at 30 feet above the surface; MRI wind speed magnitudes at 7 feet elevation. Note the general up-valley flow direction at 1200 and 1800 hours switching to down-valley for 2400 and 0600 hours. Knowledge of the near-surface windfield patterns is important, relative to the understanding of atmospheric diffusion of pollutants from both plant stacks and vehicular traffic.

II C-2 Low Altitude Meteorology

Low altitude meteorological data are obtained at 8, 30, 100, and 200 feet on the meteorological tower at Stations 023.

The quarterly wind rose at the 100 foot level on the tower (Figure II C-5) indicates that the predominant wind direction is from the south-southwest, similar to the previous quarter (December - February). Winds of the previous period were predominantly southerly.

Not only is the horizontal wind pattern important, its vertical structure also influences atmospheric diffusion. Based on tower data, the vertical variation of wind speed with height above the surface has been "fit" to a logarithmic equation of the form shown on Figure II C-6 for mean hourly speeds for each month. This is, the constants (V^{*}/k) and z_{0} were varied each month and are shown on the figure; $(V^{*}=\mathrm{friction}\ velocity,\ k=0.4=\mathrm{von}\ \mathrm{Karman's}\ \mathrm{constant},\ z_{0}=\mathrm{roughness}\ \mathrm{length}.)$ Data points shown correspond to mean hourly speeds and the lines shown are the derived equations from these data points, indicating the "goodness of fit." Fitting a more complex equation to these data was not justified, inasmuch as the data are rounded-off whole-number values in the data-reduction process.

Pasquill-Gifford atmospheric stability classes have been estimated

QUARTERLY WIND ROSE-100' LEVEL MAR. 75-MAY 75

TOTAL % OF CALMS DISTRIBUTED (0.14%)
TOTAL NO. OF 5-MIN. SAMPLES-21,509

for use in diffusion studies for each hour of each month from temperature-difference data (30 foot level to 200 foot level) on the tower (Table II C-22). Stability class frequencies by month are presented on Table II C-23. The range of variation in slope of the temperature-height curve corresponding to each class is indicated on the latter Table; the reader should recall that Class A is most unstable (lots of mixing and diffusion) and Class F the most stable (restricted mixing). Data for July on Tables II C-22 and II C-23 are incomplete. Note the higher frequency of the A category in the spring and summer, as opposed to D, E, and F in the winter. Major seasonal changes in class occur in late morning to late afternoon, whereas the class existing from late-evening to early-morning is relatively insensitive to seasonal change.

II C-3 Upper Air Studies

Four 15-day quarters of upper atmospheric studies have now been completed. On Table II C-24 are presented the number of days for which inversions have occurred in Piceance Valley below the Tract (designated ''C''), above the Tract surface at the meteorological tower (designated 'T''), days with ''C'' or 'T'' and days with both ''C'' and 'T.'' On a cumulative basis for the year, the percentages are 57.2, 76.8, 89.2 and 44.6 respectively. Unexpectedly, the summer period had the highest number of inversions.

During this reporting period a second acoustic sounder was installed, this one at the Rock School site at Station 021 in Piceance Valley. (The other one is on the plateau at Station 023.) Tables II C-25 and II C-26 show the following inversion characteristics for both sounders: number of inversions, average duration, average height, and inversion duration frequency. In general, inversions in Piceance Valley last longer, are at a lower average height, but are roughly of equal number with those on the plateau. The aircraft data indicated a higher frequency on Tract but it must be recognized that the aircarft cannot fly at Piceance Valley altitude in the dark so that it tends to miss a few early-morning valley inversions.

II C-4 Visibility

There are no visibility requirements in the Lease Stipulations; site visibility measurements are required in the <u>Conditions</u> of <u>Approval</u> by the Mining Supervisor.

A joint proposal request with the C-a Tract has been prepared and a contract go-ahead given to Dames and Moore; work is expected to start operationally approximately October 1. The shelter has been constructed and installed at the Hunter Creek site. The selected area-wide technique utilizes photographic photometry. The visual range will be measured every sixth day during a one year period. On that day, photographs will be taken of four views covering an approximate 900 north to

Table II C-22
Average Hourly Stability Classes DT2

	24	щ	Q	D	щ	Q	Q	Q	щ	•					
	23	ш	Q	Q	ш	Q	Q	Q	ш	ı					
	22	ш	Q	Q	ш	Q	Q	Q	Q	ı					
	21	ш	Q	Q	Щ	D	Q	D	Q	1					
	20	ш	Q	Ω	ш	ပ	Q	၁	ပ	1					
	19	Э	D	Q	щ	၁	S	æ	æ	1					
	18	ш	Q	Q	ш	4	В	A	В	В					
	17	ш	ш	D	Q	A	A	A	В	V					
	16	ш	ш	ш	၁	A	A	A	A	V					
	15	ш	ш	ш	၁	A	A	A	A	V.					
	14	ഥ	щ	щ	၁	A	A	A	4	K					
	13	ഥ	ഥ	ш	ပ	A	A	4	A	V					
Hour	12	ţr,	ഥ	ш	၁	A	A	A	A	A					
	11	뚀	ţŢ,	ш	D	A	A	A	A	1					
	10	단	ഥ	Щ	D	A	В	А	Α	1					
	6	댸	ш	ш	ш	А	В	А	A	1					
	8	म	щ	D	ш	၁	В	В	В	ı					
	7	П	ш	D	ш	ပ	၁	၁	Q	1					
	9	Ξ	D	D	ш	ပ	D	D	Э	1					
	5	ш	Q	D	Щ	D	D	D	Щ	1					
	4	ш	щ	Q	ш	D	D	D	Щ	ı					
	3	ш	Ω	Ω	ш	Q	Q	Q	ш	1					
	2	ш	Ω	D	ш	D	Q	Q	ш	ı					
	1	П	щ	Q	щ	Q	Q	D	ш	1					
17-14	Month	Nov '74	Dec	Jan '75	Feb	Mar	Apr	May	June	July	Aug	Sept	0ct		

Table II C-23
Meteorological Summary:
Stability Class Frequencies (%)
1974 - 1975

Source: Tower DT2 (30' to 200')

1		 	-		-				
	Oct.								
	Sept.								
	July Aug.								
		75	25	0	0	0	0		100
	June	42.9	4.6	4.4	16.1	17.7	14.3		100
th	May	57.2	3.1	2.8	12.3	12.2	12.4		100
Month	Apr.	48.4	4.1	3.9	20.6	17.7	5.3		100
	Mar.	45.4	6.5	6.5	27.0	14.1	0.5		100
	Feb.	6.3	1.5	0.7	33.7	41.8	16.0		100
	Jan.	12.5	2.7	3.8	22.6	31.5	26.9		100
	Dec.	17.4	1.3	1.5	19.0	40.3	20.5		100
_	Nov.	 2.0	0.4	0	5.3	62.8	29.5	A war desper	100
dT/dz Range	for this Stability Class (°C/100m)	<- 1.9	-1.9 to -1.7	-1.7 to -1.5	-1.5 to -0.5	-0.5 to +1.5	>1.5		A VALLAGORIA
Pasquill - Gifford	Stability Class	А	B	ပ	D	Щ	ш,		Total

SUMMARY OF INVERSIONS AT THE C-b TRACT (Source: Temperature vs. Altitude Data)

· ca incol		ichterate 13. Altitude Data)	ic Data)		
Item	Fall '74	Winter '75	Spring	Summer 175	Cumulative
	(Oct.)	(Jan.)	(Apr.)	(July)	
No. of Days with Inversions In Canyons below Tract (=C) Above Tract Surface (=T) C or T C and T	4 11 3 3	8 11 13 6	5 7 10 2	15 14 15	32 43 50 25
No. of Successful* Days without Inversions	0	2	4	0	9
Total No. of Successful* Days	12	15	14	15	26
Percentage of Days with Inversions C T C or T C and T	33.3 91.6 100.0 25.0	53.3 73.3 86.6 40.0	35.7 50.0 71.4 14.3	100. 93.3 100. 93.3	57.2 76.8 89.2 44.6

*A "success" is defined here as one for which (a)at least two successful flights were obtained and for which one of the flights was either at nominally 6 am or 9 am or (b) one inversion was obtained.

AIR TEMPERATURE INVERSION CHARACTERISTICS
June 1, 1975 to August 31, 1975.

)21	August	10	5.9	915	Ŋ	26	
Sounder @ Sta. 021	JuIy	30	5.6	1023	14	17	
Sou	June	;	;	1	0	30	
023	August	8	3.5	1155	∞	23	
Sounder @ Sta. 023	July	33	2.7	1202	15	16	
Sol	June	;	į,	;	0	30	
		Number of inversions	Average duration (hours)	Average height (feet)	Number of days of measurement	Number of days of missing data	

TABLE II C-26 FREQUENCY ANALYSIS OF AIR TEMPERATURE INVERSION DURATION

June 1, 1975 to August 31, 1975.

	Percent	40	25	12.5	20	2.5	
Sta. 021	Total	16	10	5	∞	1	
Sounder @ Sta. 021	August	4	23	0	2	1	
	July	12	7	2	9	0	
	nt		10	10			
	Percent	92	19.5	4.5	0	0	
Sounder @ Sta. 023	Total	31	∞	2	0	0	
Sounder (August	9	Н	Н	0	0	
	July	25	7	1	0	0	
	Inversion Duration (Hours)	0 - 3.9	4 - 6.9	7 - 9.9	10 - 12.9	13 - 15	

east sector looking across the Roan Plateau from the Hunter Creek site. Each view will be shot seven times throughout the day with black and white and color film. The contrast between the object image and the background sky is used to compute the visual range in miles.

II C-5 Noise

This program will document baseline levels of noise on Tract C-b and along the roads leading to the Tract. Actual noise level measurements will complement traffic noise predictions made from Colorado State Highway statistics.

A General Radio 1565-B Sound-Level Meter is used to record the noise level at the following locations (See Figure II C-7):

- 1. Two locations along Piceance Creek road near the Tract:
 - a. Junction of Collins Gulch road and Piceance Creek road, Location No. I.
 - b. Piceance Creek road 3/8 of a mile east of P-1 road turn-off, Location No. II.
 - Utilizing A weighting*, fast meter response, peak noise level is measured for five passing vehicles. Type and condition of vehicle and distance from the centerline of lane of travel are recorded as well as background noise at each location for A-, B-, and C-weighting.
 - Measurements are made at the selected sites, appropriately marked, 50' to 1,000' from centerline of lane of travel.
- 2. Location near proposed plant site: Corehole SG-10 drill pad, Location No. III.
- 3. Locations at intervals away from mine and plant site, suitable for monitoring plant noise at some future date.
 - a. Near Corehole SG-11, Location No. IV.
 - b. Vegetation site on ridge between Little Scandard Gulch and Willow Creek near SG-9, Location No. V.
 - c. Near Corehole C-b 2 (2b), Location No. VI.
- * ''A-weighting'' is a weighting technique to approximate the response of the human ear to noise of various frequencies. Measurements are recorded in dB (A), the A-weighted sound level in decibels.

Tract C-b Noise Level Measurement Locations

O NOISE LEVEL Measurement
Location
I LOCATION NUMBER

- 4. Proposed mine shaft site and mine surface facilities site, aquifer test site well, AT-1, Location No. VII.
- 5. Location near process shale disposal conveyor; 1/8 to 1/4 mile directly east of aquifer test site well, AT-1, Location No. VIII.
- 6. Locations at Tract boundaries to monitor cumulative noise levels from operations on Tract:
 - a. North: Intersection of Tract boundary and Tract C-b access road, Location No. IX.
 - b. South: Tract boundary near the vegetation sites near SG-16, Location No. X.
 - c. East: Tract boundary near SG-8 or alluvial well A-9, Location No. XI.
 - d. West: Willow Creek road near the center of western Tract boundary, Location No. XII.
- 7. Location in valley bottom and ridge top remote from expected areas of activity or disturbance: SG-1 drill pad site and ridge near SG-1 drill pad site.
 - Valley, Location No. XIII
 - -Ridge, Location No. XIV

At each of the above sites, the peak measurement reading on the A-, B-, and C-weighting scales is recorded. Measurements are made on a monthly basis for one year. Table II C-27 indicates the August data.

Colorado State Highway data have been used with a correlation curve to estimate traffic noise levels in the Piceance Creek Basin and surrounding areas as shown in Table II C-28 for the 13 traffic sampling stations shown on Figure II C-8.

II C-6 Atmospheric Diffusion Studies

Phase I of these studies has been completed utilizing a Gaussian plume model with modified Briggs plume-rise equations for dispersion of stack effluents and a simplified 'box' model in segments of Piceance Canyon for auto and truck emission dispersion-analysis.

Phase I did not have available one complete year of meteorological data; thus it was deemed adequate to utilize average hourly values for one representative month for each quarter with the summer quarter estimated.

TABLE II C-27

TRACT C-b NOISE STUDY DATA SHEET

Name: Jean M. Bissett

Date: 8/21/75 *** 8/22/75

		24	D - 1		D	(1)		Micro- phone	Other
Location	Time		Read				Observer*	⊥ Noise	(Vehicle
Number	(MST)	A I	eighti B 1	ng: C	spoi S	F	Standing; Height of	**	Information)
		A	D		3	1	Inst. 6'		,
	1210	46	47	62	X			Yes	
I. Collins	1210						Standing Facing		
Gulch 1.						Χ	West; 6'		No Cars Passed
2.						X	11 11		11 11 11
3.						X	11 11 11		11 11 11
4.						X	11 11 11		
5.						X	11 11		
								Yes	Background from
II. P. Creek	1020	46	48	62	S			ies	Centerline 2';
E. of PL							Standing Facing		'73 Jeep Wagoneer,
Gate *** 1	1020	60				X	North; 6'		Good Condition
*** 1.	1020	60 58				X	11 11 11		2'; '72 Chevy
2.		36				Α			Blazer, Good
3. I		67				X	11 11 11		Toyota, Good
4.		74				X	11 11 11		VW - New
5.		65				X	11 11		Chevy Blazer, God
III. SG-10	1147	46	48	62	X		Facing SE; Standing	Yes 1	
								NE of	
					1		C CC 11 Facing N	SG-10 Yes ⊥	
IV. SG-11	1125	53	45	49	X	ļ	S of SG-11, Facing N S of SG-9 on Road	Yes I	
V. SG-9	0943	46	46	52	X			165 +	
		4.6	47	<u> </u>	X		Facing W Facing W	Yes	1 To Minesite
VI. C-b2b	1032	46 45	47 45	54 45F	S		Facing N	Yes	20 10 111100
VII. AT-1 VIII. SE of AT-1	1019	45	45	436	1 3		Tacing N	102	c-Reading on
	1152	46	47	66/46	X		Facing N	Yes	Chopper in Distan
I Conveyor IX. Boundary	***	40	4/	00/40	1-A	-	R of Sign Facing		
(N)	1042	46	47	62	X		P. Creek	Yes	
X. SG-16 (S)	1135	45	47	62	X		Section Corner	Yes	Windy
N. 50 10 (5)	1100				i		Facing N		
X1. SG-8 (E)	1105***	46	50	61	X			ļ	
XII. Willow	***						E Side of Road on	77	
Creek (W)	08 50	47	48	51	X		Bank	Yes	
XIII. SG-1,	***				177		Facing W; Standing	Yes	Windy
Valley	0900	46	51	62	X		10' W of Sign Sitting on Finger	165	TITICY
XIV. SG-1,	***	10	10	55	X		Rock Facing Willow	Yes	Windy
Ridge	0930	48	48	55	A		C. to N.	10.7	
				!			,0. 0 14.		·

Microphone Serial No.: 44682 Meter Type: General Radio 1565-B Meter I.D. No.: 28612 Mic Posture; direction facing; height of meter above ground level

(1)

^{*}

Should be perpendicular to noise path S = Slow; F = Fast **

TABLE II C-28

APPROXIMATE TRAFFIC NOISE LEVELS AT LOCATIONS IN PICEANCE CREEK BASIN AND SURROUNDING AREAS (1)

(During peak hour of traffic, average 24-hour day, 1974)

Noise levels predicted by utilizing 1974 Colorado State Highway Statistics, "Nomograph For Approximate Prediction of Highway Noise Levels," and data from Colorado State Highway Department Computer Program DFINCLS.

⁽²⁾ Locations shown in Figure II C-8.

Noise level at location 500 feet from highway.

L₁₀ - the sound level that is exceeded 10 percent of the time for the time period under consideration (1 hour).

dBA - Noise level in decibels on "A" weighting scale, a weighting technique to approximate the response of the human ear to noise of various frequencies.

⁽⁴⁾ S.H. - State Highway

FIGURE <u>II C-8</u>

STATE HIGHWAY TRAFFIC SAMPLING STATIONS

PICEANCE BASIN 1974

Legend

S.H.6 - State Highway 6

1 - 13 Traffic Sampling Stations (Refer to Table II C-28) Stack emissions, which served as an input to this analysis, are based principally on the Colony design and are presented in Table II C-29. Hourly concentrations on both 1 km. and 0.5 km. grid spacings were generated for sulfur dioxide, particulates, oxides of nitrogen, $(\mathrm{NO}_{\mathrm{X}})$ and total hydrocarbons (THC). Three-hour and twenty-four-hour average concentrations were then computed for each "quarter." Recognizing the limitations of these data, only 24-hour concentrations are presented on Table II C-30. Results should be interpreted as "indicators" and not in light of compliance or non-compliance at this early date.

Vehicular emissions are analyzed in the access corridors leading to Tract C-b, specifically for two segments of Piceance Creek road from the Tract C-a turnoff to the P-L Ranch and from the start of Piceance Creek Valley (on the east) to the P-L Ranch (Figure II C-9). A simple box-model was used to predict concentrations of NO_{X} , CO and THC in two portions of the Piceance Creek Valley for three inversion heights (150, 250, and 400 feet) and two wind speeds (2 and 6 MPH). Figure II C-10 illustrates a typical nomograph of the concentrations reached in the model at the end of one hour for CO in the east end of Piceance Creek Valley to the P-L Ranch to illustrate the method. Similar concentrations for both portions of Piceance Creek Valley are given on Figures II C-6 through II C-11 of Quarterly Data Report #4. for NO_{X} , CO and THC.

By way of example, during the construction phase a loading of 500 cars plus 20 trucks, traveling at an average speed of 35 MPH is assumed to be a representative maximum in the eastern segment of Piceance Creek road during an early-morning shift change. If an altitude of 6500' and an average model year of 1973 are assumed, then EPA and State-of-Colorado-supplied auto and truck emission factors and speed/altitude correction factors yield emission rates of 52700 gm./hr. of nitrogen oxide, 987,000 gm./hr. of carbon monoxide, and 73,900 gm./hr. of total hydrocarbons. Entering the nomographs referred to above at these abscissa values and representative wind speed of 6 MPH and inversion height of 150' yields maximum incremental concentrations at the end of one hour of 80 ug/m³ for NO $_{\rm X}$, 1800 ug/m³ for CO, and 130 ug/m³ for THC. These estimated concentrations are conservative since the actual travel time at 35 MPH in this 21 mile segment is only 36 minutes.

TABLE 11 C-29

STACK EMISSION PARAMETER CHARACTERISTICS
FOR THE HYDROTREATED SHALE OIL CASE

	M	35	30	2	1	35
n/sec)	THC	35	;	:	1	;
Rate (gr	NO _X THC	180	15	10	;	;
	$\frac{20^{2}}{5}$	7	12	4	10	
	Vel (m/s)	15	15	15	10	15
	Temp (⁰ K)	350	375	200	400	200
	Rad (m)	1.5	1.0	1.0	1.0	1.0
	Ht (m)	95	95	25	65	95
	Stack*	Preheat	Elutriator	H ₂ Furnace	Sulfur Plant	Wetter

All numbers are approximate.

* Component Parts of Retort.

TABLE II C-30

PROJECTION OF TRACT C-b AMBIENT CONCENTRATIONS OF POLLUTANTS

24-Hour Maximum Values

(ug/m3)

Pollutant	Location	Oct. '74	"Representative" Month Jan. '75 Apr. '75	ive" Month Apr. '75	July '75 (estimated)
so ₂	On Tract Near Tract Boundary Off Tract	0 0 2	1 3 3 3	728	6 9 9
NO _X	On Tract Near Tract Boundary Off Tract	0 0 10	1 1 12	35 7 10	34 11 28
THC	On Tract Near Tract Boundary Off Tract	0 0 1	0 0 1	5 - 1 - 1	S 4 4
M	On Tract Near Tract Boundary Off Tract	3 0 0	1 7	19 6 6	19 15 15

CO EMISSIONS IN GRAMS PER HOUR

FIGURE II C-10 CO EMMISSIONS FOR EAST END OF PICEANCE CREEK VALLEY
TO P-L RANCH

II D BIOLOGY

The biological studies in this quarter are discussed in the following sections:

II D-1 Terrestrial Wildlife Studies

Big Game, Medium-Sized Mammals, Small Mammals, Birds, Amphibians and Reptiles, and Arthropods

II D-2 Aquatic Studies

Fish, Benthos, Periphyton, Phytoplankton Primary Productivity, Water Quality, and Sediment Analyses

II D-3 Terrestrial Vegetation Studies

Flora, Vegetation Mapping and Additional Sampling Program, Intensive Study Sites, Productivity Studies, Phenology and Shrub Growth, and Decomposition and Litter Accumulation

II D-4 Dendrochronology and Dendroclimatology

II D-5 Soil Survey

II D-1 Terrestrial Wildlife Studies

Big Game

During this quarter, mortality data gathered during early spring were analyzed. These mortality data were gathered from quadrats located in five habitat types: 1) pinyon-juniper woodland; 2) chained pinyon-juniper; 3) valley sagebrush; 4) lower valleys near agricultural meadows; and 5) small lateral draws. Deer carcasses encountered were tallied. The age at death, year of death, cause of death (where possible), and habitat type where death occurred were recorded. Criteria were established to classify a deer carcass and year of death. Established methods were utilized to determine age at death and attempt to determine cause of death.

The greatest numbers of deer carcasses were found in the lower valleys and small draws (Table II D-1). These represent total deer deaths over several years for Tract C-b and vicinity. The majority of deaths occur in fawns (Figure II D-1), indicating that the probability of death is greatest in the first year of life. Causes of death could be determined in some cases, e.g., the 1974-75 road kills and predator kills. Of the total of 171 deer carcasses examined, 29 (17%) were deer deaths which occurred during the previous winter (1974-75). Three predator kills were recorded (2 coyote; one unknown).

Medium-Sized Mammals

A continuation of the track count study initiated in the fall of 1974 revealed that cottontail rabbit tracks were the most numerous of the medium-sized mammals (Table II D-2). They were present in the pinyon-juniper woodland, upper sagebrush valleys, and lower agricultural valleys and agricultural meadows. Coyote tracks were counted in the upper sagebrush and lower valleys. Bobcat tracks were observed in the upper sagebrush valleys. No other medium-sized mammal tracks were counted in July although a red squirrel was observed south of the Tract boundaries in the Douglas fir forest.

Small Mammals

During the June and July 1975 trapping period, eleven different species of small mammals were live-trapped (Table II D-3). This total included six species at Grid 1, four species at Grid 2 and eleven species from the nine satellites. The deer mouse continues to be the most abundant small rodent. All species encountered but two have been previously captured. Two new species have been positively identified, Zapus princeps, the western jumping mouse, and Peromyscus truei, the pinyon mouse.

Density estimates remained generally low at Grids 1 and 2 compared to fall, 1974, estimates. A limited number of species showed increased densities from spring (May, 1975) estimates. These were the montane vole and the deer mouse.

Preliminary work was begun on determination of average litter size and reproductive cycles. Results indicate an average of 5.0 embryos implanted for Peromyscus maniculatus, the deer mouse, and 5.6 embryos for Eutamias minimus, the least chipmunk.

The frequency of food items in the diets of the most abundant rodent species was determined. See Table II D-4. The deer mouse relied heavily on arthropods for food in May and June and consumed lesser amounts of arthropods in July and August. The remainder of the deer mouse diet consisted of vegetation. The least chipmunk consumed vegetation and arthropods in approximately equal amounts. Their intake of seeds was minimal in May, June, and July, but was somewhat higher in August for the chipmunk. Both species appear to be opportunistic feeders.

Table II D-1 DISTRIBUTION OF DEER CARCASSES IN FIVE HABITAT TYPES ON TRACT C-b2

Habitat Type	Number of Carcasses Found (No./acre)	Number of Carcasses Expected If Randomly Distributed	Number of Acres in Each Habitat
Pinyon-juniper	22 (0.3)	46	79
Chained pinyon- juniper	7 (0.1)	46	79
Valley sagebrush	17 (0.4)	23	40
Lower valleys	77 (1.0)	46	79
Small draws	48 (2.7)	10	18

^{1.} Carcasses are not randomly distributed (chi²= 204; df = 4; P < .001).

^{2.} Total area sampled = 119.25 hectares (295 acres).

Table II D-2 PERCENT FREQUENCY^a OF TRACKS FROM COUNTS CONDUCTED 14 JULY 1975.

Habitat Type	No. of Quadrats	Deer	Coyote	Cottontail	Other
Pinyon- juniper	19	0	0	31.6	0
Chained pinyon-juniper	19	0	0	0	0
Upper sagebrush valleys	19	0	15.8	73.7	5.3 (bobcat
Lower valleys and agricultural meadows	18	0	5.5	11.1	0

 $a_{\text{Percent frequency}} = \frac{\text{number of quadrats with tracks}}{\text{total number of quadrats}} \times 100$

Scientific Name	Common Name	June Satellites	June 1975 es Site 1	Site 2	Jul	July 1975 es Site 1	Site 2
LAGOMORPHA							
Sylvilagus sp.	Cottontail rabbit	×					
RODENTIA							
Sciuridae							
Citellus lateralis	Golden-mantled ground	×	×		×	×	×
Citellus richardsoni	Squiffer Richardson's ground	×					
Eutamias minimus Eutamias quadrivittatus	squiici Least chipmunk Colorado chipmunk	××	×	××	××	×	××
Geomyidae				:	<		<
Thomomys talpoides	Northern pocket gopher		×				
Heteromyidae							
Perognathus apache Cricetidae	Apache pocket mouse	×	×		×		
Microtus montanus Microtus sp.	Montane vole Vole Bushy-tailed wood rat	×	×		×	×	
Peromyscus maniculatus Zapus princeps	Deer mouse Western jumping mouse	××	×	×	< ×	×	×
CARNIVORA			•				
Mustelidae							
Mustela erminea	Ermine	×					

RELATIVE FREQUENCIES OF SMALL MAMMAL DIET ITEMS FOR MAY, JUNE, JULY AND AUGUST 1975 Table II D-4

Species / Diet Item	iet Item	May Site 1	Site 2	June Site 1	Site 2	July Site 1	Site 2	August Site 1 S	ust Site 2
Peromyscus maniculatus	maniculatus								
	Vegetation	19.2%	22.2%	31.7%	21.2%	50.0%	55.7%	47.2%	39.4%
	Insect	79.1%	75.9%	68.3%	78.8%	50.0%	40.5%	50.9%	%9.09
	Seed	1.7%	1.9%	0	0	0	3.8%	1.9%	0
	Stomachs Examined	9	4	20	4	1	2	М	4
Eutamias minimus	nimus								
	Vegetation	50.7%	66.2%	67.9%	61.1%	30.9%	î	56.9%	63.4%
	Insect	48.6%	33.8%	32.1%	38.9%	69.1%	ſ	33.9%	27.2%
	Seed	0.7%	0	0	0	0	1	9.5%	. 9.4%
	Stomachs Examined	ы	2	1	1	. 5	1	7	in

Birds

Censuses of avian communities on Tract C-b occurred between May 26 and June 2, 1975 and between July 11 and July 12, 1975. The major objective was to obtain information on the nesting bird populations within principal tract habitats.

During the late May and early June investigations, censusing was accomplished by Emlen strip procedures along the eight standard avian transects. During July, Emlen strip procedures were employed in four habitats. Data from these censuses were used to provide estimates of relative abundance of songbird species utilizing habitats on or close to Tract C-b. Of the 49 summer residents recorded on the transects during both series of censuses, 24 species had not been recorded in previous censuses on the Tract. Thirteen species noted during these censuses had also been recorded during fall, winter, and spring seasons.

Waterfowl observations at the two impoundments documented the presence of nine species in May and June and six species during July. Species diversity was numerically dominated by the mallard, greenwinged teal, and spotted sandpiper during both investigative periods. The cinnamon teal, American coot, and Wilson's phalarope were also observed during May, June, and July, while the pied-billed grebe, common snipe, and blue-winged teal were seen in May and June.

Qualitative observations made throughout tract habitats verified the presence of an additional 25 species. The most frequently encountered breeding species in the study area were mountain bluebirds, chipping sparrows, vesper sparrows, red-winged blackbirds, Brewer's sparrows, and yellow-rumped warblers. Violet-green, rough-winged, and cliff swallows were also very common. Two species considered unusual in northwestern Colorado, the red-eyed vireo and bobolink, were recorded.

Eleven passerine nests were encountered during the reporting period. The nesting species were black-billed magpies, red-winged blackbirds, Brewer's blackbirds, starlings, Say's phoebes, and blue-gray gnatcatchers.

The common raven, red-tailed hawk, turkey vulture, and great horned owl were the most frequently observed raptors. The American kestrel, golden eagle, goshawk, and Cooper's hawk were the other diurnal species noted, while the screech owl and saw-whet owl comprised the other nocturnal species recorded. The saw-whet owl had not been previously observed on the Tract.

No additional raptor nest sites were discovered during the late spring and summer census periods. All active raptor nests previously encountered on the Tract were described in the Quarterly Data Report #3. One-hundred fourteen raptor pellets were collected from active nesting sites and roosting stations during May and analyzed. Pellets were predominantly from great horned owls; pellet analysis proved that microtines (voles) were the owl's major prey, comprising 79.5% of 478 prey species identified.

Because of the relatively low amount of raptor activity observed on the Tract during summer, the July pellet collections were postponed until September.

Seventy-six species were tallied during field census activities conducted during May, June and July, 1975. A total of 117 bird species have been documented since the initiating of field sampling in early October, 1974 (Table II D-5).

Amphibians and Reptiles

During the first year of study of Tract C-b, six reptiles and two amphibians were observed. The reptiles included two snakes and four lizards. The tiger salamander, an amphibian, was collected for the first time during June. Lizards represent the most abundant group and Sceloporus graciosus, the sagebrush lizard, was the most abundant lizard observed at both small mammal trapping grids.

Arthropods

Arthropods representing three classes, 15 orders and 70 familes were identified from collections on Tract C-b during May-July, 1975. Analysis of data from pit-can traps indicates that the chained pinyon-juniper and pinyon-juniper vegetation support equally diverse arthropod faunal assemblages. The relative abundance was not found to vary greatly with the species of shrub sampled by sweep netting. Of those species collected in the period May-July, 1975, 43% are classified as herbivores, 36% predators, 4% omnivores, 10% scavengers, and 7% parasites. Periods of peak activity could not be discerned for the majority of arthropods collected during each survey period. Lepidoptera larvae were particularly abundant during the months of May and June, 1975. Food habit studies show that small rodents consumed large quantities of these larvae.

II D-2 Aquatic Studies

The aquatic studies for this quarter included fish, benthos, periphyton, primary productivity, sediment analysis, and water quality. Locations and descriptions of sampling stations are included in the data report.

Fish

Fish were collected in July; however, high flows prevented sampling for fish in the White River. Species of fish collected included those caught in previous surveys (Table II D-6). Mountain suckers and speckled dace were in spawning condition in July.

Stomach analyses indicated brook trout had fed primarily on aquatic insects, with dipterons being the most abundant food (Table II D-7). Mountain suckers had been feeding on algae and some insects (Table II D-8).

SPECIES OF BIRDS OBSERVED ON TRACT C-b DURING FALL, WINTER, SPRING, AND SUMMER OF THE FIRST YEAR'S INVESTIGATION Table II D-5

ORDER FAMILY		Sea	son of 0	Season of Observation	u
Species	Соштоп Nате	Fa11	Winter	Spring	Summer
ANSERIFORMES (Screamers, Swans, Ge	Geese and Ducks)				
ANATIDAE (Swans, Geese and Ducks)	(8)				
Anas platyrhynchos	Mallard	×	×	×	×
Anas strepera	Gadwall	×	×		
Anas crecca	Green-winged teal	×	×	×	×
Anas discors	Blue-winged teal	×			×
Anas americana	American wigeon	×	×	×	
Anas clypeata	Northern shoveler	×			
Anas cyanoptera	Cinnamon teal			×	×
Aix sponsa	Wood duck			×	
Bucephala clangula	Common goldeneye		×	×	
Bucephala islandica	Barrow's goldeneye		×		
Bucephala albeola	Bufflehead		×		
Mergus serrator	Red-breasted merganser		×		
FALCONIFORMES (Vultures, Hawks and Falcons)	Falcons)				
CATHARTIDAE (Vultures)					
Cathartes aura	Turkey vulture			×	×

(continued)	
II D-5	
Table	

ORDER FAMILY Species	Common Name	Season of Observation Fall Winter Spring S	bservatic	Summer
FALCONIFORMES (Cont.)				
ACCIPITRIDAE (Kites, Hawks and Eagles)				
Accipiter gentilis	Goshawk			×
Accipiter cooperii	Cooper's hawk			×
Circus cyaneus	Marsh hawk	×		
Buteo lagopus	Rough-legged hawk	×	×	
Buteo jamaicensis	Red-tailed hawk	×	×	×
Aquila chrysaetos	Golden eagle	×	×	×
Haliaeetus leucocephalus	Bald eagle		×	
RALCONIDAE (Caracarae and Balcana)				
incontinu (varacaras and ratcons)				
Falco sparverius	American kestrel	×	×	×
(Sith Las See 2) STANDSTINGS				
onotronico (cranes and Allies)				
RALLIDAE (Rails, Gallinules and Coots)				
Fulica americana	American coot	×		×
CHARADRIFORMES (Shorehirds, Gulls, Auks and Allies)	nd Allies)			
CHARADRIIDAE (Plovers, Turnstones and Surfbirds)	Surfbirds)			
Charadrius vociferus	Killdeer		×	

Winter Spring Summer Season of Observation × × × × × Fall × × × × Solitary sandpiper Wilson's phalarope Great horned owl Mourning dove Common snipe Common Name Screech owl Barn owl COLUMBIFORMES (Sand-grouse, Pigeons and Doves) COLUMBIDAE (Pigeons and Doves) PHALAROPODIDAE (Phalaropes) STRIGIDAE (Typical owls) Steganopus tricolor Zenaidura macroura TYTONIDAE (Barn Owls) Capella gallinago Tringa solitaria Bubo virginianus CHARADRIFORMES (Cont.) STRIGIFORMES (Owls) SCOLOPACIDAE Otus asio Tyto alba Species FAMILY ORDER

×

×

(continued)

Table II D-5

×

×

× × ×

×

×

Long-eared owl

Saw-whet owl

Aegolius acadicus

Nyctea scandiaca

Asio otus

Snowy owl

(continued)
D-5
Table II
g

ORDER					
FAMILY		Seaso	on of Obs	Season of Observation	
Species	Common Name	Fall	Winter	Spring S	Summer
CAPRIMULGIFORMES (Goatsuckers, Oilbirds	Oilbirds and Allies)				
CAPRIMULGIDAE (Goatsuckers)					
Phalaenoptilus nuttalli Chordeiles minor	Poor-will Common nighthawk				××
APODIFORMES (Swifts and Hummingbirds)					
APODIDAE (Swifts)					
<u>Aeronautes</u> <u>saxatalis</u>	White-throated swift				×
TROCHILIDAE (Hummingbirds)					:
Selasphorus platycercus	Broad-tailed hummingbird				×
CORACIIFORMES (Kingfishers, Motmots, Rollers, Bee-eaters and Hornbills)	llers,				
ALCEDINIDAE (Kingfishers)					
Megaceryle alcyon	Belted kingfisher			×	
PICIFORMES (Woodpeckers, Jacamars, Toucans and Barbets)	ans				
PICIDAE (Woodpeckers and Wrynecks)					
Colaptes auratus	Common flicker	×	×	×	×
Sphyrapicus thyroideus	Williamson's sapsucker				×
Dendrocopos villosus	Hairy woodpecker	×			
Dendrocopos pubescens	Downy woodpecker		×		

Table II D-5 (continued)

OKDEK FAMILY		Season of Observation
Species	Common Name	Fall Winter Spring Summer
PASSERIFORMES (Perching birds)		
TYRANNIDAE (Tyrant flycatchers)		
Myiarchus cinerascens	Ash-throated flycatcher	×
Sayornis saya	Say's phoebe	×
Epidonax wrightii	Gray flycatcher	×
Epidonax difficilis	Western flycatcher	×
Contopus sordidulus	Western wood pewee	×
Nuttallornis borealis	Olive-sided flycatcher	×
ALAUDIDAE (Larks)		
Alauda arvensis	Horned lark	×
HIRUNDINIDAE (Swallows)		
Hirundo rustica	Barn swallow	×
Petrochelidon pyrrhonota	Cliff swallow	×
Tachycineta thalassina	Violet-green swallow	×
Iridoprocne bicolor	Tree swallow	×
Stelgidopteryx ruficollis	Rough-winged swallow	×

Table II D-5 (continued)

Species Common Name PASSERIFORMES (Cont.) CORVIDAE (Jays, Magpies and Crows)			Winter		Season Or Observation
PASSERIFORMES (Cont.) CORVIDAE (Jays, Magpies and Crows)		Fall W	- }	Spring S	Summer
CORVIDAE (Jays, Magpies and Crows)					
Cyanocitta stelleri	s jay	×	×		
Aphelocoma coerulescens Scrub jay	(A	×		×	×
Gymnorhinus cyanocephalus Pinyon jay	ay	×	×	×	
Pica pica Black-billed magpie	.lled magpie	×	×	×	×
Nucifraga columbiana Clark's nutcracker	nutcracker	×	×	×	×
Corvus corax	aven	×	×	×	×
Corvus brachyrhynchos Common crow	row	×			
PARIDAE (Chickadees, Titmice, Verdins and Bushtits)					
Parus atricapillus Black-capped	Black-capped chickadee	×	×		
Parus gambeli Mountain chickadee	chickadee	×	×	×	×
Parus inornatus Plain titmouse	tmouse.			×	
SITTIDAE (Nuthatches)					
Sitta carolinensis White-breaste	White-breasted nuthatch	×	×		
Sitta canadensis Red-breasted	Red-breasted nuthatch	×	×		

Table II D-5 (continued)

ORDER		Season of Observation	servation	
Species	Common Name	Fall Winter Spring	Spring S	Summer
PASSERIFORMES (Cont.)				
TROGLODYTIDAE (Wrens)				
Troglodytes aedon	House wren	×		×
Salpinctes obsoletus	Rockwren	×		×
Catherpes mexicanus	Canyon wren	×	×	
MIMIDAE (Mockingbirds and Thrashers)				
Sporeoscoptes montanus	Sage thrasher	×		
TURDIDAE (Thrushes, Solitaires and Bluebirds)	ebirds)			
Turdus migratorius	Robin	×	×	×
Myadestes townsendii	Townsend's solitaire	×		×
Hylocichla guttata	Hermit thrush			×
Sialia currucoides	Mountain bluebird	×	×	×
SYLVIIDAE (Gnatcatchers and Kinglets)				
Polioptila caerulea	Blue-gray gantcatcher			×
Regulus calendula	Ruby-crowned kinglet	×		

Table II D-5 (continued)

ORDER FAMILY		Sea	son of 0	Season of Observation	no
Species	Common Name	Fall	Winter	Spring	Summer
PASSERIFORMES (Cont.)					
LANIIDAE (Shrikes)					
Lanius excubitor	Northern shrike	×	×	×	
Lanius ludovicianus	Loggerhead shrike			×	
STURNIDAE (Starlings)					
Sturnus vulgaris	Starling	×		×	
VIREONIDAE (Vireos)					
Vireo solitarius	Solitary vireo				×
Vireo olivaceus	Red-eyed vireo				×
Vireo gilvus	Warbling vireo				×
PARULIDAE (Wood warblers)					
Mniotilta varia	Black-and-white warbler				×
Vermivora ruficapilla	Orange-crowned warbler				×
Vermivora virginiae	Virginia's warbler				×
Dendroica petechia	Yellow warbler				×
Dendroica coronata	Yellow-rumped warbler	×			×
Dendroica nigrescens	Black-throated gray warbler				×
Geothlypis trichas	Common yellowthroat				×
Oporornis tolmiei	MacGillvray's warbler				×
Wilsonia pusilla	Wilson's warbler				×

ORDER FAMILY Species	Common Name	Season of Observation Fall Winter Spring St	servation Spring Su	n Summer
PASSERIFORMES (Cont.)				
ICTERIDAE (Blackbirds and Orioles)				
Dolichonyx oryzivorus	Bobolink			×
Sturnella neglecta	Western meadowlark	×	×	×
Agelaius phoeniceus	Red-winged blackbird	×	×	×
Euphagus cyanocephalus	Brewer's blackbird	×		×
Molothrus ater	Brown-headed cowbird			×
THRAUPIDAE (Tanagers)				
Piranga ludoviciana	Western tanager		•	×
FRINGILLIDAE (Grosbeaks, Finches, Sparrows, and Buntings)	rows,			
Pheucticus melanocephalus	Black-headed grosbeak			×
Carpodacus mexicanus	House finch	×		×
Leucosticte tephrocotis	Gray-crowned rosyfinch	×		
Leucosticte atrata	Black rosy finch	×		
Leucosticte austcalis	Brown-capped rosy finch	×		
Spinus pinus	Pine siskin	×		×
Spinus tristis	American goldfinch	×		
Chlorura chlorura	Green-tailed towhee			×

Table II D-5 (continued)

ORDER	ER FAMILY Species	Common Name	Season Fall Wi	Season of Observation 1 Winter Spring Su	Servation Spring Sum	Summer
PASSE	PASSERIFORMES (Cont.)					
FR	FRINGILLIDAE (Cont.)					
	Pipilo erythrophthalmus	Rufous-sided towhee			×	
	Passerculus sandwichensis	Savannah sparrow	×			
	Calamospiza melanocorys	Lark bunting			×	
	Pooecetes gramineus	Vesper sparrow	×		×	
14	Amphispiza belli	Sage sparrow			×	
13	Junco hyemalo	Dark-eyed junco		×	×	
	Junco caniceps	Gray-headed junco	×	×	×	
	Spizella arborea	Tree sparrow	×	×	×	
	Spizella passerina	Chipping sparrow			×	
	Spizella breweri	Brewer's sparrow			×	
	Zonotrichia leucophrys	White-crowned swallow	×		×	
	Melospiza melodia	Song sparrow	×	×	×	

Table II D-6 NUMERICAL ABUNDANCE OF SPECIES OF FISH CAPTURED DURING JULY 1975 IN PICEANCE AND STEWART CREEKS

		Spe	ecies		
Station	Brook trout	Rainbow trout	Mountain sucker	Speckled dace	Total
P-0			57	3	60
P-1	2		42	35	79
P-2	1		2		3
P-3	7		24	14	45
P-5			4		4
P-5A		1	1		2
P-6			2		2
P-7				3	3
S-1	2				2
S-2	6				6
L.S.L.	7				7
Totals	25	1	132	55	213

Station Legend:

S1-2: Stewart Creek

L.S.L.: Lower Stewart Lake

Species Legend:

P1-7: Piceance Creek Brook trout - Salvelinus fontinalis

Rainbow trout -Salmo gairdneri

Mountain sucker -Catostomus platyrhynchus

Speckled dace - Rhinichthys osculus

FOOD OF BROOK TROUT COLLECTED FROM LOWER STEWART LAKE, JULY 1975 Table II D-7

Fish #2 Length wt. Sex Length wt. 154mm 42g. Male 183mm 85g.	106 (54) 35 (18) 1 (0.5) 4 (2) 3 (1.5) 3 (1.5) 18 (44) 15 (14) 2 (2) 2 (2) 2 (2) 3 (2) 3 (1.5) 3 (2)	12 (6) 9 (8) 4 (3)	3 (1.5)	1 (0.5)	27 (14) 1 (0.5)
#1 Sex in 34.5g. Female			5)		
Sex Length #1 Contents Female 139mm	ptera Tipulidae Chironomidae Simulidae Tipulidae Culicidae Stratiomyiidae Odontomyia	ptera ae <u>is</u> 2 (3)	ra nidae idae inus	ata lults optera dropsychidae Hydropsyche	a idae arus a ae 2
Stomach Contents	Diptera Tipulidae Chironomidae Simulidae Tipulidae Culicidae Stratiomyiid Odontomyia	Ephemeroptera Baetidae Baetis Adults	Coleoptera Hydraenidae Dytiscidae Agabinus	Odonata Adults Tricoptera Hydropsychidae	Amphipoda Gammaridae Gammarus Hemiptera Coreidae ²

Table II D-7 (continued)

Stomach Contents	Sex Length wt. Female 139mm 34.5g.	Sex Fish #2 Female 154mm 42g.	Sex Length wt. Male 183mm 85g.
Oligochaeta			3 (2)
Homoptera Cicadellidae (Leafhopper)	2 (3)	1 (0.5)	1 (1)
Algae	(5)		
Total Insects	09	197	110
Total Stomach Volume	0.2 ml.	1.4 ml.	1.8 m1.

1. Number of individuals; percentage of contents in parentheses.

2. Terrestrial

FOOD OF MOUNTAIN SUCKERS COLLECTED FROM PICEANCE CREEK (P-2) JANUARY 1975 Table II D-8

Volume of Contents	0.1 m1.	0.2 ml.	0.1 ml.	0.1 ml.	0.1 ml.	0.1 ml.	0.2 ml.	<0.1 ml.	0.1 ml.	<0.1 ml.
Algae (%)	40%	20%	92%	25%	40%	92%	%09	1%	85%	%66
All insects (%)	%09	\$0\$	5%	75%	30%	5%	40%	%66	15%	D.°°
Simulidae (#)	7	12	2	6	ı	2	3	ı	2	ı
Stomach Contents Chironomidae (#)	19	21	м	17	30	1	19	1	12	М
Baetidae (#)	*\$	ı	i	4		I ,	ı	ı	ı	i
Fish Number	1.	2.	3.	4.	δ.	. 9	7.	∞.	9.	10.

Baetis sp.

Scale analyses were completed and fish of several age groups were identified. Fecundity estimates were made for mountain suckers and speckled dace. Female mountain suckers of 129-134 mm in total length produced from 2671 to 4166 eggs per spawning season; speckled dace of 87 to 109 mm in length produced from 2696 to 6998 eggs per spawning season. Population estimates were made for several areas of Piceance Creek (Table II D-9).

Benthos

Benthic macroinvertebrates collected include the annelids, arthropods and molluscs. The arthropods were the most numerous and diverse, represented by 7 orders and 34 taxa.

Benthic invertebrates were generally more abundant at upstream stations, with the exception of oligochaetes. Most orders of invertebrates were present in increased numbers compared to spring samples. These shifts in abundance are attributed to seasonal changes which occur naturally.

Periphyton

Periphyton samples from May and July were analyzed for this report. Diatoms were the most abundant periphyton species. Green, blue-green algae and euglenids were also collected. Periphyton primary productivity estimates were made from ash-free weights (Table II D-10). The upstream and downstream stations in Piceance Creek had lower productivity estimates, with the highest values occurring at the station in between.

Phytoplankton Primary Productivity

Light and dark bottle analyses of primary production in the four lakes (Upper and Lower Stewart and Upper and Lower Willow), were made in July. Analysis of planktonic primary production showed that production is negligible (Table II D-11). A possible explanation for this might be related to the high intensity of light in the upper portions of these clear, high-bicarbonate waters. An effort will be made to place sampling bottles at a greater depth during the next sampling period to compensate for any inhibition of oxygen production by light near the surface.

Water Quality

In July, water samples were analyzed for common minerals and nutrients, total hardness, total alkalinity, total dissolved solids, bacteria, and pathogens. In addition, pH, temperature, dissolved oxygen and specific conductance were measured in the field. Temperatures in Piceance Creek ranged from 55°F to 58°F in July. Dissolved solids increased with diminished flow and ranged from 1300 to 2600 ppm, increasing downstream. Sodium and potassium levels increased significantly over May values;

Table II D-9 FISH POPULATION ESTIMATES FOR SELECTED PICEANCE CREEK STATIONS BASED ON SAMPLING IN JULY 1975

Replicate	Total Fish	Mountain Suckers	Brook Trout	Speckled Dace
Station P-1				
1	35	18	2	15
2	26	15	0	11
3	18	9	0	9
Tota	als 79	42	2	35
	Regression Dat	a: Correlation	Coefficient	-0.99
			Slope	-2.59
			Ÿ	58.33
			Std. Dev. Y	22.12
			Χ̈́	26.33
			Std. Dev. X	8.50
	(Pop	ulation Estimat	te) Intercept	126.65
Station P-3				
1	25	13	4	8
2	11	7	1	3
3	9	4	2	_3
Tota	als 45	24	7	14
	Regression Dat	a: Correlation	Coefficient	-0.93
			Slope	-1.07
			Ÿ	35.33
			Std. Dev. Y	10.01
			Σ̄	15.00
			Std. Dev. X	8.71
	(Pop	ulation Estimat	te) Intercept	51.51

Table II D-10 PERIPHYTON PRODUCTIVITY ESTIMATES FOR PICEANCE BASIN STATIONS, JULY 1975

Station No.	Ash Free Weight (gram)	Productivity (gm ash free wt/day/m ²)
P-1	.0088	.1136
P-2	.0031	.0400
P-2	.0045	.0581
P-2	.0122	.1576
P-3	.0091	.1175
P-3	.0122	.1576
P-3	.0119	.1537
P-5	.0166	.2144
P-5	.0228	.2945
P-5	. 0281	.3630
P-6	.0010	.0129
P-6	.0027	.0348
P-6	.0023	.0297
P-7	.0048	.0620
P-7	.0022	.0284
P-7	.0040	.0516
S-1	.0023	. 0283
S-1	.0019	.0233
S-1	.0025	.0307
S-2	.0060	. 0704
S-2	.0063	.0739
S-2	.0058	. 0681
USL	.0021	.0258
USL	.0017	. 0209
USL	. 0031	.0381

Table II D-10 (continued)

Station No.	Ash Free Weight (gram)	Productivity (gm ash free wt/day/m²)
LSL(H)*	.0000	0
LSL(H)*	. 0036	.0465
LSL(H)*	.0029	.0374
LSL(V)*	.0017	.0219
LSL(V)*	.0009	.0116
LSL(V)*	.0006	.0077
W – 1	.0058	. 0681
W-1	.0068	.0798
W – 1	.0173	.2031
W-3	.0360	.4433
W-3	.0034	.0418
W-3	.0030	.0369
UWL	.0035	. 0452
UWL	.0034	.0439
UWL	.0021	.0271

Station Legend:

P1-7 Piceance Creek

S1-2 Stewart Creek

USL, LSL Upper, Lower Stewart Lake

W1-3 Willow Creek

UWL Upper Willow Lake

^{* (}V) Vertically positioned substrate (slide)

⁽H) Horizontally positioned substrate (slide)

Table II D-11 LIGHT AND DARK BOTTLE DISSOLVED OXYGEN DETERMINATIONS 1 FOR UPPER AND LOWER WILLOW AND STEWART LAKES, JULY 1975

Station & Replicate	Time of Exposure	Temp.	Light Bottle D.O. (mg/L)	Dark Bottle D.O. (mg/L)	D.O. Sample From Lake (mg/L)
U.S.L.					
	1. Initial	61°F			8.96
	2. Initial	61°F			8.82
	1. 8 Hrs.	61°F	8.96	8.82	
	2. 8 Hrs.	61°F	9.38	8.54	
	1. 24 Hrs.	61°F	8.68	8.68	
	2. 24 Hrs.	61°F	8.96	8.96	
L.S.L.		==0-			
	1. Initial	55°F			4.62
	2. Initial	55°F			4.55
	1. 8 Hrs.	55°F	4.76	4.76	
	2. 8 Hrs.	55°F	4.62	3.50	
	1. 24 Hrs.	55°F	4.90	4.62	
	2. 24 Hrs.	55°F	4.90	4.76	
13 T.7 Y					
U.W.L.	l. Initial	50°F			7.28
	2. Initial	50°F			8.26
			7 70	7 70	3 ,2 0
	1. 8 Hrs. 2. 8 Hrs.	50°F 50°F	7.70 7.28	7.70	
				-	
	1. 24 Hrs.	50°F	7.42	6.44	
	2. 24 Hrs.	50°F	7.70	6.86	
L.W.L.					
	l. Initial	53°F			3.99
	2. Initial	53°F			3.50

Table II D-11 (continued)

Station & Replicate	Time of Exposure	Temp.	Light Bottle D.O. (mg/L)	Dark Bottle D.O. (mg/L)	D.O. Sample From Lake (mg/L)
L.W.L. (con	t)				
	1. 8 Hrs.	53°F	4.06	3.50	
	2. 8 Hrs.	53°F	4.34	-	
	1. 24 Hrs.	53°F	4.20	3.36	
	2. 24 Hrs.	53°F	4.06	-	

Station Legend:

U.S.L. - Upper Stewart Lake

L.S.L. - Lower Stewart Lake

U.W.L. - Upper Willow Lake L.W.L. - Lower Willow Lake

Computed by Modified Winkler Method.
 Taken when light and dark bottles were placed in the lake.

cattle grazing diminished in July, resulting in these lower levels at lower altitudes. No pathogenic bacteria were identified in samples during the quarter.

Sediment Analyses

Sediment samples were collected from all stations and analyzed for total Kjeldahl nitrogen and chemical oxygen demand. A spectrographic screen was run for heavy metals on selected samples. No heavy metals were detected in amounts above permissible standards (Table II D-12). Sediment grain-size analyses were conducted for all stations. Silt and fine sediment levels were diminished in July compared with May samples.

II D-3 Terrestrial Vegetation Studies

Flora

The collection of field data has been emphasized during the fourth quarter and these data are currently being analyzed. Sixty species not previously reported for the Tract were collected during the 1975 field season. Numerous collections of mosses, lichens, and fungi have been made but have not yet been identified.

Vegetation Mapping and Additional Sampling Program

The vegetation map has been completed; fourteen cover types have been used to characterize the vegetation (Table II D-13 and Figure II D-2). Seventeen additional vegetation sites have been sampled. These communities correspond directly to the mapped vegetation units and will be used for preparing descriptions of the plant communities.

Intensive Study Sites

Initial collection of baseline for each site has been completed. Frequency data for all herbaceous species, and density, cover, and frequency data for trees and shrubs have been gathered and will be analyzed in the next report.

Productivity Studies

Clipping of 0.1 m² quadrats has been conducted at monthly intervals throughout the growing season (May - August) to calculate herbaceous productivity. Shrub productivity clippings were made in April and will be taken again in September. Again, analysis will be completed in the next report.

Table II D-12 HEAVY METAL SPECTROGRAPHIC SCREEN ANALYSIS FOR SELECTED SEDIMENT SAMPLES FROM PICEANCE BASIN, JULY 1975

	Stations					
Metals	P-1	P-7	LSL	LWL		
Silicon	7.10%	7.20%	6.55%	6.10%		
Manganese	0.28	0.30	0.18	0.15		
Chromium	0.035	0.025	0.050	0.020		
Nickel	0.010	0.005	0.010	0.008		
Boron	0.020	0.015	0.010	0.015		
Lead	0.005	0.001	0.003	0.005		
Magnesium	0.003	0.010	0.005	0.005		
Copper	0.015	0.015	0.025	0.010		
Titanium	0.015	0.010	0.020	0.020		
Aluminum	2.85	3.50	3.10	2.58		
Potassium	0.020	0.015	0.010	0.015		
Calcium	0.43	0.55	0.35	0.30		
Sodium	0.080	0.085	0.080	0.075		
Iron	Remainder	Remainder	Remainder	Remainde		

Station Legend

P-1, P-7 - Piceance Creek

L.S.L. - Lower Stewart Lake

L.W.L. - Lower Willow Lake

Douglas-fir Forest
Pinyon-Juniper Woodland
Chained Pinyon-Juniper Rangeland
Mixed Mountain Shrub Community
Big Sagebrush Community
Greasewood Community
Rabbitbrush Community
Bunchgrass Community
Great Basin Wild Rye Community
Riparian Community
Marsh
Annual Weed Community
Agricultural Area
Pond

Phenology and Shrub Growth

Observations on phenological development of selected herbaceous species have been collected at least monthly throughout the season. Measurements of marked twigs on shrubs were made during June and will again be made in September.

Decomposition and Litter Accumulation

Litter trap and decomposition studies are progressing. Litter collected in July is currently being dried and weighed. Additional collections of litter will be made when decomposition bags are retrieved in October.

II D-4 Dendrochronology and Dendroclimatology

The Dendroclimatology and Dendrochronology Studies were completed during the third quarter. The final report on these studies was submitted in Quarterly Data Report #3 and summarized in Summary Report #3. No further studies are anticipated in this area.

11 D-5 Soil Survey

During the 4th quarter, 36 soil samples were collected from 10 areas designated by the Soil Conservation Service (SCS) as representative types of the soil series occurring on Tract C-b and the surrounding one mile study area. The samples were obtained in each horizon from each of the following soil series:

- 1. Glendive Fine Sandy Loam
- 2. Piceance Fine Sandy Loam
- 3. Redcreek-Rentsac Complex
- 4. Rentsac Channery
- 5. Forelle Loam
- 6. Hagga Loam
- 7. Hanly Loam

Table II D-14 indicates the classification of these soil series.

Physical and chemical descriptions of the series will be identified in the Quarterly Data Report #5. Narrative descriptions of the physical characteristics of the series have been furnished by the SCS. The chemical analysis of soils (see Quarterly Data Report #4 for details) is currently being completed. A soil map accompanies these data.

TABLE 11 D-14

SOILS OF LEASE TRACT C-b STUDY AREA

(USDA Soil Classification System, 1960)

SPPIES	Rorelle Loam	Piceance Fine Sandv Loam	Glendive Fine Sandy Loam	Hanly Loam	Надда Loam	Redcreek-Rentsac Complex	Rentsac Channery
FAVILV	Fine Loamv Mixed	Fine Loamy Mixed	Coarse Loamv Mixed (Cal.) Frigid	Sandy Mixed Frigid	Fine Loamv Mixed (Cal.) Frigid	Loamv Mixed (Cal.) Frigid	Loamv Skeletal (Cal.) Frigid
SUBGROUP	Borallic	Borallic	Ustic	Ustic	Typic	Lithic-Ustic	Lithic-Ustic
GREAT GROUP	Haplargids	Camborthids	Torrifluvents			Torriorthents	
SUBORDER	Argid	Orthids	Fluvents			Orthents	
ORDER	ARIDISOLS		ENTISOLS				

Arid = dry; Arg = Clayev: Hapl = minimum horizon; Bor = cool, high organic: Orth = typical: Camb = altered; Ent = recent: Flux = deposited hy water.

Torri = dry, low organic: Ust = dry, summer rains: Typ = typical: Lith = rocky Key to Suffixes and Prefixes:

Cal. = calcareous; Skeletal = interspersed with rock: Channery = containing fine pieces of sandstone or shale Other Terminology:

ŕ

III A FISH AND WILDLIFE MANAGEMENT PLAN

During this quarter, work has continued on the preparation of a procedural Fish and Wildlife Managment Plan for submission with the Detailed Development Plan. Through intensive interaction with consultants who have been working on the Environmental Baseline Studies, and through analysis of the data collected in those studies, the following major topics are to be included in the Plan:

- 1. Goals of the Plan. A statement of the goals of the Fish and Wildlife Management Plan, which include meeting the requirements of the Oil Shale Lease Environmental Stipulations;
- 2. Scope of the Plan. General statements regarding the areal coverage of the Plan, phases covered, envisioned interaction with agencies involved in traditional management in the Piceance Basin area, and procedures for cooperating with these agencies;
- 3. Existing Wildlife and Habitats. A section covering a general discussion of wildlife habitat types as they have been identified to date in the Tract area, and wildlife species which have been identified in this area, or could be expected to occur in the area. Ecological relationships such as the terrestrial food web, predator-prey relationships, migratory patterns of mule deer and raptors, and determination of "important" species for the purposes of the Plan are also included;
- 4. Operational Setting. A section covering the planned location of facilities and planned scheduling of development activities.

 Also included are indications of specific types of impacts which might be expected to occur as a result of each type of activity planned for each phase of development; and
- 5. Implementation Plan. Concerned with the general strategy of the Plan, recommended design, and specific problem areas. Included are definition of problems envisioned, timing of expected problems, proposed accomplishments with respect to minimizing the effects of these problems, details on strategies and tactics, and performance standards. Types of specific problem areas include the following: significant modification of terrestrial habitats;

160

erosion in terrestrial habitats; modification of aquatic habitats; water pollution affecting aquatic habitats; reduction in ground-water discharge affecting terrestrial habitats; wildlife harassment resulting from extra vehicular and human activity and from activities of companion animals; impacts resulting from air pollution; impacts resulting from noise; vehicle-wildlife collisions; secondary impacts resulting from growth in human population; personnel management; access management; and contingency planning problems.

III B REVEGETATION PROGRAM

During the fourth quarter, generalized procedures for the revegetation of areas disturbed during the exploration phase on Tract C-b were finalized. The specific plans to be used for each individual revegetation site were prepared from these general specifications and submitted to the Area Oil Shale Supervisor for approval. The specific plans have been approved and will be implemented during October and November of this year. The preparation of sites for seeding is currently underway.

Tables III B-1 and III B-2 are intended as informative summaries of the specific planting plans to be implemented this fall on Tract C-b.

TABLE III B-1

67316375 \$1 \$1 \$10 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1															
45/16 18 18 15/15 6/5/16 18 18 15/15	Nε														
77,07,037,77,04	1bs./acre	7	m		7			H	1/2		. н	п	1/2		a
10,70,000	lbs./acre	2	m		8			гd	1/2		м	н	1/2		11
1 4.00	lbs./acre	7	m		2			н	1/2		н		1/2		11
30000	lbs./acre	m	٣		m				1/2		м	1/2	н		. 12
3 01-27-13-13-14-15-15-15-15-15-15-15-15-15-15-15-15-15-	lbs./acre	m	e		m				1/2		д	1/2			21
112 7.04	lbs./acre				•										c
A STATE OF THE STA	lbs./acre	m	m		m				1/2			1/2			c1
	lbs./acre	2	2		2	н	1/2		1/2	7	н	1/2	н	1/2	1115
PLAYTING PLAY	Species	Agrepyram intermedium amur - Intermediate Wheatgrass	Agropyron trichophorum Pubescent wheatgrass	Breaus marginatus Mountain brome	Azropyron smithil rosano - Nostern Wheatgrass	Agrepyron trachycaulum Slender wheatgrass	Cerocarpus montanus Mountain Mahogany	Flymus cinereus Basin wildrye	Hedysarum boreale utah Sweetvetch	Nocleria gracilis June grass	Orvzoysis hymodoides Indian ricegrass	Purshia tridentata Antelope bitterbrush	Stipa comata Green needlegrass	Symphoricarpus orcophilus Snowberry	Тотал

TOUT HORING TO SERVING TO THE PARTY OF THE P															
11/2 10	lbs./acre	7	5		7	rt	1/2	_	1/2	. 2	ц			1/2	114
Top Heliothy Or	1bs./acre	7			7	rl	1/2		1/2	7	гı			1/2	411
They today	lbs./acre	2	æ		2			п	1/2		н	ml	1/2		11
10171.075 110H31703	lbs./acre	7	е	•	2			Ħ	1/2		r	r	1/2		=
The state of the s	lbs./acre	2	т		2			-	1/2		ч	-	1/2		=
3100 400 9000 400	lbs./acre	2	м		7			=	1/2		я		1/2		
A Struct Solice Struct Solice Struct Solice	lbs./acre	2	м		7			r	1/2		гd	н	1/2		1
A-A-S-LEUSIL VOIL	lbs./acre	7	м		7			ч	1/2		r		1/2		=
Page -2- STE PLANTING PLAN	Species	Agropytan intermedium amur - intermediate wheatgrass	Agropyron trichophorum Pubescent wheatgrass	Bromus marginatus Mountain brome	Agropyron smithil rosano - Vestern Wheatgrass	Agropyron trachycaulum Slender wheatgrass	Gorocarpus montanus Mountain Mahogany	Elvans cinereus Basin wildrye	Hedysarum boreale utah Sweetvetch	Kocleria gracilis June grass	Orveorsis hyredoldes Indian ricegrass	Purshia tridentata Antelope bitterbrush	Stiffa comata Green needlegrass	Symphoricarpus oreophilus Snowberry	TOTAL

TABLE III B-1 Cont.

touthout.	Sos Alayand Assay																
		Tbs./acre	5	7		7	pd	1/2		1/2	2	r			1/2	11½	
OND	La book a sullage of the sold for the sold f	1bs./acre	2	7	~-	8		1/2		1/2	7				1/2	1115	
no ent	Danis Poorto	lbs./acre	2	2		2	7	1/2		1/2	. 4				1/2	113	
	or the Urnon	Ibs./.wre	2	r.		74 1.		7/1		1/2	61	-			1/2	1115	
P.S	מנט פחזרון הייוט	lbs./acre	т	e		m				1/2		1	1/2	-		12	
. "	Day Septing	1bs./acre	2	2		2		1/2		, 1/2	7				1/2	द्वा	
Sulfation bank	Danie Series Series of Ser	1bs./acre	7	7		2	Ħ	1/2		1/2	7	-			1/2	21112	
	11.42 54.14	lbs./acre	2	2		2		1/2		1/2	7	н			. 2/1	. 511	
- 5 - 0 % e - 5 - 6	<u>PLANTING</u> PLAN .	Species	Agropyran intermedium amur - Intermediate wheatgrass	Agronyren stbireum Siberian wheatgrass	Browns marginatus Mountain brome	Agropyron smithill rosano - Western wheatgrass	Agropyron ruachycaulum Slender wheatgrass	Gergenrous montains Mountain Mahogany	Elymus cincreus Basin wildrye	Hedysarum boreale utah Sweetvetch	Koeleria gracilis June grass	Orvzopsis ivredoides Indian ricegrass	Purshia tridentata Antelope bitterbrush	Stipa comata Green needlegrass	Symphoricarpus orcophilus Snowberry	TOTAL	

TABLE III B-1 Cont.

John Story Flores Proper Cutor Non-																
Cultalianous production	ibs./acre	2	7	8	<u>.</u>		1/2		1/2	7	п			1/2	न्त	
Ta Jo Jones	lbs./acre	7	~	7	-		1/2		1/2	c4	н			1/2	, 4II	
10/6368 40dr	lbs./acre	7	2	7	1		1/2		1/2	61	٦	•	e at	1/2	भार	
Solution S	lbs./acre	2	2	7	M		1/2		1/2	8	н			1/2	۲. ۲.	
Toy of Oto	lbs./acre	7	64	2	,		1/2		1/2	2	, ,			1/2	2275	
Pallyton	lbs./acre	7	п		7			-1	1/2		-		1/2		1	
Solve Color of the	lbs./acre	7	7		2	-1	1/2		1/2	2	-			1/2	2115	
10 33b1	1bs./acre	7	7		7	-	1/2		1/2	. 7	7			1/2	1115	
Page -4- SITE PLANTING PLAN	Species	Agropyran intermedium amur - Intermediate wheatgrass	Agropyron sibircum Siberian wheatgrass	Browns marginatus Mountain brome	Agropyron smithili rosano - Mestern wheatgrass	Agropyron trachyraulum Slender wheatgrass	Cerecarpus montanus Mountain Mahogany	Elymus cinereus Basin wildrye	Hedysarum boreale utah Sweetvetch	Koeleria gracilis June grass	Oryzopsis hymedoldes Indian ricegrass	Purshia tridentata Antelope bitterbrush	Stipa comata Green needlegrass	Symphoricarpus orcophilus Snowberry	TOTAL	

TABLE III B -1 Cont.

107	Coston by State Con	Tres ress														, ,		
Ĭ	57/10	Pro Pra	10	m	m	m "nr name	Balan ku Maran kuta kuta kuta a maranananananananananananananananananana				1/2		г.	1/2	н		12	
	137781	1000 15	lbs./acre	2	e	7				п	1/2		г	г	1/2		11	
	ness so	, /3	lbs./acrc	2	n	7	•			п	1/2		1	r-1	1/2		ıı	
	drung oso	37,00,	lbs./acre	2	C4		п		1/2		1/2	64	н			1/2	114	
1317 RS	03.01.03.03.03.03.03.03.03.03.03.03.03.03.03.	10 20 20 20 20 20 20 20 20 20 20 20 20 20	ibs./acre	6	2	2		٦				7	ı	1/2		1/2	п П	
`	Jac. 1.055	Do Salls	/867	2	7	2	ч		1/2		1/2	7	н			1/2	115	
1410	Service Bold Control of the Control	135	lbs./acre	2	7	2	н		1/2		1/2	7	r			1/2	1115	
		Asus Asus Ses	lbs./acre	74	е	7				ы	1/2		ч	Ħ	1/2		п	
P 5.5 c - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	SITE PLAYING	PLAN	Species	Apropyran intermedium amur - Intermediate wheatgrass	Agrepyron sibircum Siberian wheatgrass	Bromus marginatus Nountain brome	Agropyron smithii rosano - Mostern wheatgrass	Agropyron trachycaulum Slender wheatgrass	Cerocarpus montanus Mountain Mahogany	Elymus cinereus Basin wildrye	Hedvsarum boreale utah Sweetvetch	Kocleria gracilis June grass	Oryzopsis hymedoides Indian ricegrass	Purshia tridentata Antelope bitterbrush	Stina comming Green needlegrass	Symphoricarpus oreophilus Snowberry	TOTAL	

TABLE III B-2

SITE PLANTING PLAN

Remarks	provide gravelied access to tower and instrument site	favorable site for re- habilitation	vegetation cover has been naturally established	less than 1/10 acre next to road, favorable site	favorable site, western wheat grass seedlings scattered	favorable site, base of north slope	favorable site, base of north slope	favorable sitc, base of north slope	favorable site	area could also be smoothed when pir is covered up	5 foot cut on west side may re- quire broadcast seeding and mulch excelsion
Fencins	non	ouou	1 1	none	nonc	3 strand barowire	3 strand barbwire	3 strand barbwire	3 strand barbwire	already in fenced area	3 strand barbwire
Fertilizer	none	none	1 1	none	none	none	none	none	none	1	none
Mulching Treatment	distribute slash	noue	:	none	none	none	neou n	o co c	none	! ! !	none
Seedbed Preparation	hand scarification	harrow lightly with pipe harrow	none, leave as is	harrow lightly	harrow lightly	harrow lightly	harrow lightly	harrow lightly	harrow lightly	harrow lightly, pit needs cover and litter cleanup	harrow lightly
Seed Application	broadcast and drill	drill	1 1	drill	drill	drill	drill	drill	dr111	drill	drill
Planting Period	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	1 1 1	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 -	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15
Site Description and Location	Air Quality Mereorological Tower, Chained Pinyon- Juniper	A-1, Vailey Bottom Sage- brush, near main turnoif on Piceance Creek Road	A-2, Valley Bottom Sage- brush, pasture	A-3, Valley Sottom Sage- brush, in Scandard Gulch	A-4, Valley Bottom Sage, brush head of Scandard Gulch	A-5, Vailey Bottom Sage- brush on Piceance Creek at Eauth of Cottonwood Gulch	A-6/SG-20, Valley Bottom Sacebrush, on Piceance Creek Read, big cut in bill side next to it	A-7/St-19, Valley Bottom Sagebrush, on Piccance Creek at mouth of Sorghum Gulch	A-S, Valley Bottom, Sage- Frush, lower Stewart talch	A-9'SG-8, Valley Bottom Sagebrush, near Oldland Summer Camp	A-10/Se-14, Valley Bottom Sagebrush, middle Steaurt Gulch

TABLE III B-2 Cont. SITE PLANTING PLAN

favorable site Pase 2	favorable site	favorable site, small area about 20 to 50 feet	this site shows voluntary establishment of permanent vegetation	!	include roadway; water bars needed on roadway site		no monitoring access required; some device needed to prevent vehicular traffic	access for well monitoring required	cut slope requires broadcasting	
3 strand barbwire	3 strand barbwire	none	none	none	none	none	none	3 strand barbwire	none	none
none	none	ounu .	อนอน	none	less than 80 lbs. available N.P.K./acre in summer of 1976	none	none	none	less than 80 lbs. available N.P.K./acre in summer of 1976	less than 80 lbs. available N.P.K./acre in summer of 1976
กงกด	none	none	none	· .	. auou	rcplace slash	none	none	strav or excelsior on cat area	none
harrow lightly	lightly harrow	lightly harrow	pad requires minimal roughing; no re- contouring is necessary	minor ripping and scanfication, re-	lightly harrow after recontouring	rip and cover with available fine material	recontour pad; rough and distribute slash	(pad has been pre- pared)	recontouring followed by light harrowing	harrow lightly
drill	drill	drill with some broad- casting	drill and broadcast	broadcast and drill	drill and broadcast	broadcast and drill	broadcast and drill	drill	drill and broadcast	drill and broadcast
Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 -	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 -
A-11, Valley Bottom Sagebrush West Stewart, Just past turneif to ridge met.	A-12, Valley Bottom Sage- brush, Tpper West Stewart Gulch	A-13, Valley Bottom Sage- brush in wash at head of Sorghum Gulch	C-b2, Chained Pinyon- Juniper ridge east of Cottonwood Gulch	C-b., Chained Pinyon- Juniper ridge west of Stewart Gulch	Nith, Chained Pinyon- Juniper ridge West of Seandard Gulch	NQ7/SG-7, Chained Finyon- Juniper, ridge West of West Stewart Gulch	Ny12-SG12, Chained Pinyon- Juniper, ridge East of Sorghum Gulch	SGI, Valley Bottom Sagebrush, mouth of Scandard Gulch	Sill, Chained Pinyon- Juniper ridge west of Cettenwood Gulch	StJ, Chained Pinyon- Juniper, ridge East of Sorghum Guich

TABLE III B-2 Cont. SITE PLANTING PLAN

Page 3	1 1 1	retain gravel access to monitoring shea	!	ares could also be amoothed when the pit is covered up	:	maintain monitoring access	•	no monitoring access required; some device needed to prevent vehicular traffic	;
none	none	none ret	none	already in are fenced-in area whe	none	none mai	none	none no som	none
less than 80 lbs. available N.P.K./acre in summer of 1976	less than 80 lbs. available N.P.K./acre in summer of 1976	none	none	alred	less than 80 lbs. available N.P.K./acre in summer of 1976	none	less than 80 lbs. no available N.P.K./acre in summer of 1976	none	none
none	possibly on 6 foot cut	1 1 1 1	. replace slaash	1 1 1	nonc	nonc	nonc	ouou	none
harrow lightly	light harrowing following re-	Fine material on edges of bed should be pulled back on pad. Slush should be spread on pad. Minimal roughing with pipe harrow; no contouring.	rip and cover with available fine material	harrow lightly. Pit needs covered and litter cleaned up.	harrow lightly	pad necds minimal roughing and pipe harrow	harrow lightly	recontour pad; rough and distribute slash	light harrowing; restore contour
drill and broadcast	drill and broadcast	drill and broadcast	broadcast and drill	drill	drill and broadcast	broadcast and drill	drill and broadcast	broadcast and drill	drill and broadcast
Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 -
Sub, Chained Pinyon- Juniper ridge between Scandard and Little Scandard Guiches	SGS, Chained Pinyon- Juniper West of Support Facility	Süb, Chained Pinyon- Juniper ridge West of Sorghum Gulch	SG7/NQ7, Chained Pinyon- Juniper, ridge West of West Stewart Gulch	Sagebrush, near oldland Summer Camp	Sco. Chained Pinyon-Juniper, ridge above Scandard Gulch	SCIO, Fateau' Sage/Chained Pinyon-Juniper, near met. tower	SGI1, Chained Pinyon- Juniper, ridge East of Sorghum Gulch	SG12/NQ12, Chained Pin- yon-Juniper, ridge East of Sorghum Gulch	Soil), Chained Pinyon- Junfper lower ridge West of West Stewart Guich

Page 4

ρ.,							
S foot cut on West side may require broadcast seeding and mulch exelsior	include several shrub species as transplants as follow-up	place water bars adjacent to drainings to disperse runoff onto pad; plans include access roadway	allow access through pad/shrub sod; Pinyon and Juniper set outs, as follow-up	must allow access for monitoring and through pad	favorable site, base of north alope	favorable site; base of north slope	fence pad on either side of road; plant shrub species on lower slope terraces
3 strand barbwire	none	none	none	3 strand barowire	3 strand barbwire	3 strand barbwire	3 strand barbwire
a	ಲ	U	9		o	o	a
none	none	none	none	none	none	cone	none
y	1	ŧ	e e	٠.	U	U	a
nonc	1	1	none	none	none	none	none
harrow lightly	rip surface recontour pad; pull back toe of pad; replace fina mater- ial stockpiled; distribute slash	minimal roughlas and pipe harrow; toe of pad should be pulled back	rip surface; replace debris and fine material	pad has been ripped and recontoured	harrow lightly	harrow lightly	(seedbed has been roughed) terrace slopes above and below roadway
drill	broadenst and drill	drill and broadcast	broadcast	drill and broadcast	drill	drill	drill
Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	0ct. 15 -	Oct. 15 -	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15	Oct. 15 - Nov. 15
SG14/A-10, Valley Bottom Sacebrush, Middle Stewart Gulch	Scif_ Chained Pincen- Junper, ridge between Scandard and Sorghum Gulches	Sele, Chained Rinyon- Janiper and Plateau Sage, site near Vege- tation Plot #3	SG17, Pinyon-Juniper, ridge between Rest Stewart and Middle Stewart Gulches	N.118., Plateau Sage- brush, head of Sorghum Gulch	SG19/A-7, Valley Bottom Sagebrush, on Piccance Creek at mouth of Serghum Gulch	SAZOVA-6, Valley Bottom Sagebrush, on Piceance Creek Read, big cut in hill side next to it	SG21, Valley Bottom Supebrush, Scandard Galch

III C MICROENVIRONMENTAL PROGRAM

Data collected from the four continuous recording microenvironmental stations and the thirteen relocatable spot-check stations during May and June are summarized in Tables III C-1 and III C-2. The operation of these stations and the parameters measured have previously been described in Quarterly Data Reports #1 and #2 and in Summary Reports #1 and #2.

It is anticipated that subsequent reports will contain some substantive discussion of these data as they pertain to typification of the microenvironment on Tract C-b and its relationship to plant and animal activity.

MICROENVIRONMENTAL STATIONS MONTHLY SUMMARY MAY, 1975 TABLE III C-1

	VECETATION TYPE AND LOCATION	CHAINED PINYON-JUNIPER RANGELAND (Vegetation Plot #1)	CHAINED PINYON-JUNIPER RANGELAND (Vegetation Plot #2)	PLATEAU SAGEBRUSH (Vegetation Plot #3)	VALLEY BOTTOM SACEBRUSH (Vegetation Plot 14)	PINYON-JUNIPER WOODLAND (Vegetation Plot #5)	PINYON-JUNIPER WOODLAND (Vegetation Plot #6)	CHAINED PINYON-JUNIPER RANGELAND (Animal Trapping Grid)	BUNCHGRASS CYMMUNITY (South-Facing Slope)	VALLEY BOTTOM SAGEBRUSH (Mouth of Sorghum Gulch)	RABBITBRUSH COMMINITY (Mouth of West Stewart Gulch)	MINCHERASS COMMINITY (West-Facing Talus Slope)	VALLEY BOTTOM SAGEBRUSH (Alluvial)	MIXED MOUNTAIN SHRUBLAND (North-Facing Slope)	PINYON-JUNIPER WOODLAND (West-Facing Slope)	PINYON-JUNIPER WOODLAND (Cottonwood Gulch)	PLATEAU SAGEBRUSH (Head of Sorghum Gulch)	ANNIAL WEED COMMINITY (Abandoned Drill Pad)
	NET SOLAR RADIATION, Langleys			***				0	***	***	***	***						
WIND DIRECTION OAzimuth	srəjəm č			<u></u>				175	***		***							
	l meter		***	153	149		174	190			***	***					***	
WIND SPRED MPH	ereters			***			***	3.5			***	***						
WIND	Teter	***	***	5.6	1.4		1.6	2.2	***		**	***	***	***	****	***		
	RELATIVE HUMIDITY, %	С	0	0	0	0	24	0	31	56	0	27	56	36	0	0	0	0
	PRECIPITATION, Total cm4	С	0	2.62	2.59	0	3.40	.53	0.64	0	0	0	0	5.59	0	0	0	0
URE	-20 cm	38.0	39.3	32.8	0	 ??	30.8	0	0	21.5	0	20.5	0	28.5	0	0	0 8	0
MOI STURE	-40 cm			45.5	32.5		37.3	0	14.0	21.5	0		25.0		35.5	40.5	33.	34.5
3011	. 109 сш			40.8	31.5		33.3	0	21.5	20.0	0		27.6		30.0	31.0	38.0	31.5
	Maximum, Absolute	0	0	7	45.0	0	25.0	48.1	0 41.0	34.0	0	0	0	.0 32.0	0	0	0	
ATURE	Minimum, Absolute	© ****	····	-1.5	-7.0		S- ****	-7.6	1.0	2.0	O	C ****	C	-10.0	0		C ****	C ****
AIR TEMPERATURE OC	srefers						***	7.4										
AIR	l meter			7.5	5.6		3.5	8.0										
- 11	0 СШ			7.0	8.2		4.6	11.6		***	***							
TEMPERATURE OC	no 02-	O	0	7.0	8.0	C *****	3.1	8.5	0	16.3	C	0	C *****	C	0	C	○	
L TEMP	rp 04-			7.2	8.9		2.4	7.4										
SOIL	шэ 09-			7.1	5.9		2.1	6.9			***							
	SLVLION NUMBER	-	2	30	46	S	99	76	8	6	10	11	12	13	14	15	16	17

Continuous Recording Stations
Precipitation Values Are Totals For Period, Minimum And Maximum Temperature Values Are Absolute; All Other Values Are Expressed As Means
Values Not Measured At These Stations
Values Not Available For This Period Due To Instrument Failure **" #** ∭C

173

TABLE III C-2 MICROENVIRONMENTAL STATIONS MONTHLY SUMMARY JUNE, 1975

	VEGETATION TYPE	CHAINED PINYON-JUNIPER RAWELAND (Vegetation Plot #1)	CHAINED PINYON-JUNIPER RANGELAND (Vegetation Plot #2)	PLATEAU SAGERRUSH (Vegetation Plot #3)	VALLEY BOTTOM SAGEBRUSH (Vegetation Plot #4)	PINYON-JUNIPER WOODLAND (Vegetation Plot #5)	PINYON-JUNIPER WOODLAND (Vegetation Plot #6)	CHAINED PINYON-JUNIPER RANGELAND (Animal Trapping Grid)	BUNCHGRASS COMMINITY (South-Facing Slope)	VALLEY BOTTOM SAGEBRUSH (Mouth of Sorghum Gulch)	RABBITBRUSH COMMINITY (Mouth of West Stewart Gulch)	MINCHGRASS COMMINITY (West-Facing Talus Slope)	VALLEY BOTTOM SAGEBRUSI (Alluvial)	MIXED MOUNTAIN SHRUBLAND (North-Facing Slope)	PINYON-JUNIPER WOODLAND (West-Facing Slope)	PINYON-JUNIPER WOODLAND (Cottonwood Gulch)	PLATEAU SAGEBRUSH (Head of Sorghum Gulch)	ANNUAL WEED COMMUNITY (Abandoned Drill Pad)
	NET SOLAR RADIATION, Langleys	***					***	0	***		***				***			***
WIND DIRECTION	ereters						***	170										***
		***		143	175		168	190	***		***				***	****		***
CERED WITH	Z meters	***					***	3.2				 						
WIND	l meter	***		4.4	1.2		0.7	2.0	***								***	
-	RELATIVE HUMIDITY, \$	29	23	9 47	62 32	8 30	99 29	28 31	52 27	05 27	31	46	51	30 46	36	8 41	0 36	38
-	PRECIPITATION, Total Cm	7 0	8	1 2.49	4.	9 2.18	6.	3.	-	3.	0 6	2 0	4 0	0 3.3	0	7 3.68	9 4.70	0
MOISTURE	-20 cm	69.7	54.8	8 69.1	7 0	49.9	.6 G	0	0	0 8	.3 33.	39.	9 45.	53.	0 8	2 67.7	4 57	0 9
IL MOTS	-\$0 cm -\$0 cm			.2 82.	.5 59.		.0 68.	.4 65.0	.3 0	.6 34.8	() 34		0 49.		.8 58.	0 59.	.8 65.	9.09 9.09
SOIL	Maximum, Absolute	‱ 0.	0.	.0 77.	.0 59.	0.	61.	.7 69	.0 42.3	30.0 36.6					50.		74.8	
ш	Minimum, Absolute	7.0 31	.6 31	.5 41	.5 35	0 34	-3.0 37	5.0 43	3.0 39.0	-7.0 30	0 0	0 0	0 0	31	32	34	0	0
ERATUR	o meters		-2	-1	-3	-5	**************************************	- 0	2	- 2		 	<u> </u>		-5	-5	○ ‱	
AIR TEMPERATURE	l meter	***		12.0	1.0		10.1	13.1 13.									***	₩
A	ш 0	***		12.4	13.5 11		12.8	15.2 1	***						***	***	*** ***	**** ****
TURE	mp 02-	22.5	18.0	11.0	14.1 1	21.0	10.5 1	13.0 1	21.5	16.0	15.5	13.0	14.0	15.0	12.0		⋘	 C
TEMPERATURE	шо О†-	**************************************		10.8 1	12.7 1	~	9.1	11.6	5								***	
SOIL 1	шэ 09-			10.3	11.5		8.2	10.7									****	
	STATION NUMBER	1	2	36	46	S	99	70	0	6	10	11	12	13	14	15	16	17

Continuous Recording Stations
Precipitation Values Are Totals For Period, Ninimum And Maximum Temperature Values Are Absolute; All Other Values Are Expressed As Means Values Not Measured At These Stations
Values Not Available For This Period Due To Instrument Failure ***** € ⊗ C

174

III D AERIAL PHOTOGRAPHIC PROGRAM

No additional information has been produced from this program to date. It is anticipated that one additional flight will be conducted during the two-year baseline study. This flight will be accomplished at an as-yet undetermined date prior to June, 1976.

III E ARCHAEOLOGICAL STUDIES

The Final Report, "Cultural and Paleontological Resources - Federal Oil Shale Lease Tract C-b", is included in Quarterly Data Report #2. At this time, no additional archaeological work is planned, with the exception of the reconnaissance studies being performed in all areas which are planned for surface disturbance during the Exploration Phase. In addition, test-excavations may become necessary if sites which are identified in the Final Report are disturbed.

OBJECTIVES

This study was undertaken to determine the type and quality of the scenic resources presently existing in the Tract C-b area. The objectives of the study were to characterize the scenic elements of the Piceance Basin both as they relate specifically to the Tract and also as they are related to the scenic resources of surrounding areas in Western Colorado. This information was then used to define and evaluate areas of visual sensitivity on Tract C-b. General guidelines developed by the Forest Service were adopted to minimize visual impacts occurring during development.

METHODS

The methodology and guidelines used in this study are those used by the U. S. Forest Service in its Visual Management System (USDA Handbook No. 462). A diagrammatic representation of this methodology is shown in Figure III F-1. This figure shows the steps which are followed in this methodology to arrive at a determination of the visual sensitivity of the natural landscape. A complete discussion of each phase of the study follows. The intensive study area covers Tract C-b and a zone within 4 miles of the Tract boundary (Figure III F-2).

LANDSCAPE FACTORS

Character Type

Visual Character Type is based on common distinguishing visual characteristics of an area of land. Character Type is determined, in this U. S. Forest Service method, by physiographic sections as defined by Fenneman in Physiography of the Western United States. The Piceance Basin is included in Fenneman's Uinta Basin section, which is continuous with a strip of high plateaus on the western border of the Colorado Plateau province. A 50-100 mile strip running east along the northern border of this physiographic section abuts with the Uinta Mountains on the north. The southern portion of the section is composed of north-dipping beds which are limited on their southern edge by the escarpment of the Book Cliffs; the higher portion of the southern margin is the Tavaputs Plateau. The interior of the section, which is for the most part lower than its edges, is a plateau area dissected by streams, with relatively narrow patches existing between headwaters.

Figure III F-2

Character Subtypes

In order to describe more effectively the landscape types of a diverse region such as the Uinta Basin, it is necessary to define visually distinct Subtypes of this Character Type. Those visual Subtypes described in this study surround the Piceance Basin Subtype. These surrounding Subtypes are the Book Cliffs, Roan Cliffs, Colorado River Valley, Grand Mesa, Grand Hogback, Colorow Mountains, Flattops, and Cathedral Bluffs-Douglas Creek. These Subtypes are shown in Figure III F-3 and described below in terms of form, line, color and texture - the basic components of any landscape.

1. Piceance Basin

This subtype is characterized by a gently sloping basin which is moderately dissected by parallel streambeds. The stream valleys are bordered by walls which vary from steep cliffs to gentle slopes. Streambeds are generally narrow and most are ephemeral. These streams lead to the Piceance Creek valley, which is a slightly larger version of its tributaries. Line is smooth and strongly horizontal. Colors are the beige of the eroded sandstone substrate and rock outcroppings, the muted green of sagebrush and darker greens of pinyon-juniper and Douglas fir vegetation. Valley bottoms range in color from sage green to the brighter green of irrigated hay meadows. Texture ranges from the very smooth irrigated meadows to coarser rock outcroppings and fairly coarse mottled natural vegetation areas.

2. Book Cliffs

This subtype is characterized by cliffs approximately 2000 feet high which are capped with strong horizontal sandstone layers. Steeply eroded, sharp-angled gullies on the cliff faces lead down into flat, gently rolling terrain. The cliff top forms a strong line cutting horizontally across the skyline. The predominant colors of the landscape are the gray of the bottom of the cliffs which grades into light beige at the top, intermixed with sandy pink and gold-toned horizontal bands. The texture of the cliffs is smooth, as there is no vegetation on them, and this grades into the fine texture of the sparse vegetation on the lower terrain.

3. Roan Cliffs

This subtype is characterized by cliffs approximately 3000 feet high with massively blocky forms at the top. The cliff faces have highly eroded, long steep slopes which are interspersed with areas of relatively small jutting rocks of strong form. The cliff tops cut into the skyline with a rounded, massively blocky line. The color of the landscape is light gray with several horizontal reddish bands near the bottom of

the cliffs. The texture of the steep eroded slopes is smooth, interspersed with areas of coarse texture which result from the occurrence of juniper and Douglas fir vegetation.

4. Colorado River Valley

This subtype is characterized by benchlands formed by the cutting of the river, bordered by tall trees. The lines are strong, low, and horizontal. Colors of vegetation range from sage green to dark green as the results of extensive agricultural and residential uses and from cottonwoods along the river. Soils are beige in color. The texture is moderately coarse, with the cottonwoods giving a rough texture contrasting with the smoothness of the river.

5. Grand Mesa

This subtype consists of a flat to very gently rolling mesa top situated at a 10,000 foot elevation, becoming more rolling to the east, with slightly angular foothills having gently sloping sides. The line is strongly horizontal and is strengthened by a 200-300 foot escarpment immediately below the mesa top. Color is primarily the dark green of evergreens. Texture varies from the smooth, large open spaces of the western portion of the mesa top which contain large groves of coarse-textured evergreen, to the coarse texture of the continuous tree cover of the of the top, both of which are interspersed with many. The foothills are coarsely-textured, owing to the heavy evergreen forest cover.

6. Grand Hogback

This subtype is characterized by strongly upwarped strata of a pointed and plate-like form rimmed by rock, fading into regularly-spaced, rounded mountains. Line is predominantly the diagonals of the tilted strata. The vegetation on the mountains (mountain shrub, pinyon-juniper and Douglas fir) is of a dark green color and coarse texture and is interspersed with the banded (reddish, beige, yellowish) color and smoother texture of the exposed rock outcroppings.

7. Colorow Mountains

This subtype has a subdued, very slightly angular mountainous form, with a moderate horizontal line type. Colors are the dark muted-green tones of the vegetation (pinyon-juniper type) and the beige of the rock. Rock covered by a mottled vegetation pattern gives a slightly coarse texture.

8. Flattops

The form of this subtype is one of high, uplifted flat volcanic strata, deeply cut by narrow river valleys. Line is strongly horizontal on the top, becoming steep to moderately angular in

the foothills. Colors range from dark green of evergreens to lighter green of aspen and interspersed grass parks. This varied vegetation results in a moderately coarse texture.

9. Cathedral Bluffs - Douglas Creek

This subtype is characterized by a rolling, angular, low mountain form. Horizontal line predominates in the rock strata of Cathedral Bluffs, with angular line occurring in the other hill areas of the subtype. Colors are the sage green of the vegetation, alternating with light beige of the earth. The resulting texture is moderately coarse.

When compared with most of the other Subtypes of the region, it is evident that the Piceance Basin is less notable in terms of strength of form and line, and ranks fairly equally with regard to color and texture variations.

VARIETY CLASSES

Within the confines of the Piceance Basin there is considerable variation in landform, rockform, vegetation and waterforms. This variation is accounted for by defining a series of Variety Classes which depict the inherent scenic quality of the landscape. The human aspects will be considered below. A series of criteria (Table III F-1) were used to differentiate the Variety Classes (Distinctive, Common, Minimal) which exist in the Piceance Basin. In practice it was convenient to identify the Distinctive and Minimal areas on a map and to assume the remainder was Common. Examples of these various Variety Classes are shown in Figures III F-4 through III F-7 and a map of Variety Classes in Figure III F-8. Only one Distinctive area was found on the Tract. It consists of the cliffs at the mouth of Scandard Gulch. Several other Distinctive areas are located off-tract with most of these also being dominant rockforms. The Minimal areas of the study area are quite extensive and cover a considerable portion of the Tract and nearby Hunter-Willow Ridge. These areas have been either chained or sprayed to destroy woody vegetation within the past ten years.

HUMAN FACTORS

In order to account for the human aspects of the visual experience in this scenic quality analysis, the methodology incorporates measures of the relative importance of use areas, water bodies and travel routes viewers' concern for scenic values and the distance from which the landscape is viewed. The rationale used to account for each of these factors will be discussed below.

Importance of User Areas

User Areas such as roads, trails, overlooks, camp sites, ranch headquarters, cow camps, ponds and streams are rated as being of primary

TABLE III F-1

VARIETY CLASSES DETERMINATION*

	DISTINCTIVE	COMMON	MINIMAL
LANDFORM	Cliffs on valley sides Highly eroded slopes	Moderately steep valley sides, flat ridge tops and flat valley bottoms	
ROCKFORM	Rock features which stand out on landform Unusual rock strata ex- posures	Rock features ob- vious but do not stand out	Rock features small to nonexistent
VEGETATION	High degree of patterns in vegetation High diversity in plant forms Relatively large stands of trees	Continuous vegetative cover with some degree of pattern Low diversity in plant forms Irrigated meadows	Continuous vegeta- tive cover with little or no pattern Chained or sprayed areas Non-irrigated valley bottoms
LAKES, PONDS	Irregular shorelines Greater than one acre in size	Regular shorelines Less than one acre in size	No lakes or ponds
	Springs and seeps which form ponds	Springs and seeps which do not form ponds	
STREAMS, SPRINGS AND SEEPS	Perennial streams Large volume	Ephemeral streams Low volume	No streams, springs or seeps

^{*}Only one of the criteria had to be met for an area to be classed as Distinctive, whereas two or three criteria had to be met for an area to be classed as Minimal. This allowed Distinctive areas to be readily identified while Minimal areas needed considerably more factors for them to be classified.

Figure II F-4
DISTINCTIVE ROCKFORM

Figure II F-5
COMMON VEGETATION

Figure III F-6
MINIMAL VEGETATION AND LANDFORM

Figure III F-7
COMMON LANDFORM AND DISTINCTIVE WATERFORM

Figure II F-8

or secondary importance based on size, volume of use, duration of use, recreational use, and local importance. In this study User Importance was considered only in terms of use factors within the Piceance Basin. These factors are shown in Table III F-2 and a map of Primary and Secondary User Areas identified in the study area are shown in Figure III F-9. No User Areas of national importance exist in the Piceance Basin. User volume, duration of use and size were the criteria used to differentiate User Areas.

The only Travel Routes rated as being of Primary Importance were the Piceance Creek Road and the Collins Gulch Road. Piceance Creek Road is used by local residents, drilling crews, and governmental personnel. It is not a scenic highway as is the Rifle-Meeker-Rangely road along the Hogback and White River (as indicated on many traveler highway maps). In fact until it was completely paved several years ago, the Piceance Creek Road did not appear on many highway maps. Collins Gulch Road serves the employees of a gas adsorption plant located north of Tract C-b. All other roads were classed as being of Secondary Importance because of the lower traffic volumes and seasonality of use. These roads are used primarily by local ranches for movement of cattle and sheep and by hunters in search of deer and elk.

Use Areas of Primary Importance are the ranch headquarters, all of which are situated on the Piceance Creek Road. All other Use Areas and Water Bodies were classed as being of Secondary Importance because of low volume of use and low recreation use.

Viewer Sensitivity Levels

To account for the concern for scenic values which the users of the Piceance Basin have, a matrix was developed incorporating the importance of User Areas and an appraisal of the percentage of users having SOME concern for scenic values (Table III F-3). The Forest Service method bases its user concern for scenic values on a percentage of viewers having a MAJOR concern for scenic values. The Forest Service assumes that persons having a MAJOR concern for scenic values are those engaged in driving for pleasure, hiking scenic trails, camping at primary use areas, and those using lakes and streams in conjunction with other forms of recreational activities. Minor concern for scenic values is assumed to be held by persons involved with daily commuter driving, hauling forest products, and those employed in other commercial uses of the forest. It is estimated that less than 10 percent of all Piceance Basin users have a MAJOR concern for scenic values. Since no hard data on which to base this 10 percent estimate was available, a liberal approach was taken by stating that users had SOME concern for scenic values. This permitted use of areas representing all Sensitivity Levels. Travel routes and use areas depicted in Figure III F-9 were allocated to various Sensitivity Levels (Table III F-3). The Piceance Creek Road and ranch headquarters were placed in Sensitivity Level 1 since it was assumed that at least 25 percent of the users had SOME concern for scenic values. Collins Gulch Road was judged to have fewer users concerned about scenic values and was therefore placed in Sensitivity Level 2. All other roads in the intensive study area were also placed in Sensitivity Level 2 because, while they are of secondary

TABLE III F-2 USER AREA CRITERIA

	PRIMARY IMPORTANCE	SECONDARY IMPORTANCE
TRAVEL ROUTES Roads Trails	High use volume Major access road Long use duration	Low use volume Project road Short use duration
USE AREAS Overlooks Camp areas Ranch headquarters Cow camps	Large size Long use duration High use volume	Small size Short use duration Low use volume
WATER BODIES Ponds Streams	High recreation use	Low recreation use

TABLE III F-3
VIEWER SENSITIVITY LEVELS

User	V	iewer Sensitivity Levels	
Area	1	2	3
Primary	At least 1/4 of users have SOME concern for scenic values (PICEANCE CREEK ROAD AND RANCH HEADQUARTERS).	Less than 1/4 of users have SOME concern for scenic values (COLLINS GULCH ROAD)	
Secondary	More than 3/4 of users have SOME concern for scenic values.	Between 3/4 and 1/4 of users have SOME concern for scenic values (ALL OTHER INTENSIVE STUDY AREA ROADS)	Less than 1/4 of users have SOME concern for scenic values (AREAS NOT SEEN FROM ANY USER AREA)

Figure II F-9

importance, a considerable number of users (deer hunters and local ranchers) were assumed to have SOME concern for scenic values while engaged in their primary goals. All areas not seen from any travel route or use area were placed in Sensitivity Level 3 - the lowest level.

Distance Zones

As a general rule, the closer a viewer is to an alteration in the natural landscape, the more obvious the alteration is. A means of accounting for how closely different sections of the study area are viewed by users is to define Distance Zones (Table III F-4) and then view the landscape from each User Area and delineate each zone on a map. This mapping was done in the field, with all User Areas being mapped separately, Then all Distance Zone maps were overlayed and Sensitivity Levels of each User Area were utilized to set priorities in developing a composite Distance Zone/Sensitivity Level map, Figure III F-10. In all cases the most restrictive Sensitivity Level was used in the composite map.

SENSITIVITY CLASSES

The final step in depicting the Sensitivity Classes which exist on Tract C-b was to overlay the Variety Class map with the Distance Zone/Sensitivity Level map. The Forest Service method is designed to produce a final map showing Visual Quality Objectives and recommends the management methods which will accomplish these objectives. In this study the Quality Objectives have been changed to Sensitivity Classes, as shown in Table III F-5, in order that the final map may be more easily used to consider scenic values in the planning of development. A matrix developed by the Forest Service was used to arrive at the Sensitivity Class map. This matrix is shown in Table III F-6; its function is to integrate the Variety Classes with the Distance Zones/Sensitivity Levels to arrive at the Sensitivity Classes. The map of Sensitivity Classes (Figure III F-11) depicts the baseline scenic quality of the intensive study area. Guidelines for visual management of these Sensitivity Classes are discussed below.

VISUAL MANAGEMENT GUIDELINES

The Forest Service has developed management guidelines for retaining the scenic quality of lands under its control. The C-b Shale Oil Project will make use of these same visual management guidelines in all planning, construction, reclamation and mining operations. In the event that development activities must take place in areas of relatively great visual sensitivity, these activities will be designed to minimize, to the extent possible, the visual impact of the activity. The level of visual sensitivity of the affected area will be a factor determining the degree of design modification necessary to minimize visual impact. The visual management guidelines for each Sensitivity Class are given below:

TABLE III F-4
DISTANCE ZONE CRITERIA

	Foreground	Midground	Background
Distance (miles)	0 to 1/4-1/2	1/4-1/2 to 3-5	3-5 miles to infinity
Sight capacity	Detail -		No detail
Object viewed (example)	Rock point	Entire ridge	System of ridges
Visual characteristics	Individual plants & species	Texture and Form (conifers/ hardwoods)	Patterns (light and dark)

TABLE III F-5
SENSITIVE AREAS - QUALITY OBJECTIVES COMPARISON

Sensitivity Class	USFS Visual Quality Objective	Degree of Acceptable Change
Α	Retention	Should not be evident
В	Partial Retention	Should be visually subordinate
С	Modification	May be visually dominant but must possess visual characteristics of natural landscape.
D	Maximum Modification	May be visually dominant but must possess visual characteristics of natural landscape when viewed as background.

SENSITIVITY CLASS MATRIX * TABLE III F-6

Variety			Distance Zone	Distance Zone/Viewer Sensitivity Level	tivity Level		
Class	Foreground, level 1	Midground, level 1	Background, level 1	Foreground, level 2	Midground, level 2	Background, level 2	Not Seen level 3
Distinctive	A	A	A	В	В	В	В
Соптоп	Ą	В	В	В	ט	ပ	D
Minimal	В	В	Ú	С	ט	D	D
*Sensitivity Classes	Ses						

Decreasing Sensitivity m U n

Class A

Development activities may only repeat form, line, color, and texture which are frequently found in the landscape. Changes in their size, amount, intensity, direction, pattern, etc., should not be evident. Reduction in contrasts of form, line, color, and texture due to development should be initiated either during construction or immediately thereafter. It may be done by such means as seeding vegetation clearings and cut-and-fill slopes, hand planting large plant stock, or painting structures.

Class B

Development activities may repeat form, line, color, or texture common to the landscape, but changes in size, amount, intensity, direction, pattern, etc., should remain visually subordinate to the landscape. Activities may also introduce form, line, color, or texture which are found infrequently or not at all in the landscape, but they should remain subordinate to the visual strength of the landscape. Reduction in contrasts of form, line, color, and texture due to development should proceed as soon after construction as possible, but no more than one year later.

Class C

Development activities <u>may visually dominate</u> the original landscape; however, activities of <u>vegetative</u> and landform alteration must borrow from naturally established form, line, color and texture so completely and at such a scale that their visual characteristics are those of the natural landscape. Additional parts of these activities such as structures and roads must remain visually subordinate to the proposed composition. Activities which are predominately introduction of facilities such as buildings, signs, roads, etc., should borrow from the existing form, line, color, and texture so completely and at such a scale that their visual character is compatible with the natural landscape. Reduction in contrasts of form, line, color, and texture owing to development should be initiated in the first year or at a minimum should meet any existing regional guidelines.

Class D

Developemnt activities <u>may dominate the landscape</u>; however, when viewed as background, the visual characteristics must be those of the natural landscape. When viewed as foreground or midground, they need not borrow from the natural form, line, color, and texture. Alterations may also be out of scale or contain incongruent detail when viewed as foreground or midground. Introduction of additional parts of these activities such as structures and roads must remain visually subordinate when viewed as background. Reduction of contrast in form, line, color, and texture due to development should proceed within five years.

SUMMARY

The Piceance Basin was found to have low scenic value when compared to the other landscape types of the region. It contains marginal strength of form and line when compared to nearby western Colorado areas such as the Book Cliffs, Roan Cliffs, Grand Mesa, and the Flattops. It rates about equally with these other types with regard to color and texture. On a regional (much less a national) basis the Piceance Basin has an extremely low degree of visual variety. It should be noted, however, that this lack of variety results in a landscape in which smaller degrees of change are more obvious than they might be in an area which was less uniform.

In the intensive study area surrounding Tract C-b, the scenic resources were evaluated solely within the context of the Piceance Basin itself. A four-level rating scale (Sensitivity Classes A, B, C, and D) was developed based on the U. S. Forest Service Visual Management System. Class C, B, and A areas are, progressively, more sensitive than Class D areas. Within the context of the Piceance Basin proper, the only Class A area near Tract C-b is the Piceance Creek Road corridor. Most of the Tract is located on areas determined to be of Sensitivity Classes B and C. The Sensitivity Class B areas include the principal drainages cutting through the Tract. The Class C areas comprise the chained regions which cover more than half of the Tract. The only Class D area on Tract exists at the bottom of Sorghum Gulch. It was so rated because it is not visible from any User Area.

The assumptions made in this study were designed to maximize the scenic values which do exist in the Piceance Basin. It was stated earlier that these values are in fact marginal when compared to those existing in contiguous areas of western Colorado. The final map of Sensitivity Classes is also a liberal interpretation of the Piceance Basin's scenic values for the reason that most users' cone-of-vision does not expose them to many of the side gulches which contain the Basin's distinctive landscapes. This was most evident to the two field investigators who had considerable familiarity with the area, but who discovered a number of visually attractive areas solely as a result of this study.

It should be emphasized that this methodology primarily accounts for scenic qualities seen by the <u>majority</u> of Basin users. It does not account for small, isolated areas that the individual hiker or hunter may encounter when traveling off established travel routes. Such areas are subject to extremely individual preferences that no methodology designed to study regional scenic values can accommodate.

In its consideration of scenic resources, the C-b Shale Oil Project will utilize the Sensitivity Class map and guidelines on an in-house basis to plan for routine development activities such as road improvements, drill pads, and minor clearing. In order to take scenic resources into consideration, when major development activities such as plant siting and processed shale disposal are in the planning and construction stages, it may be necessary to acquire outside professional assistance. The design of major facilities to attempt to conform with the Visual Quality Objectives corresponding to the sensitivity level of the proposed site location will also require professional guidance.

CITATIONS

- Fenneman, Nevin M. 1931. Physiography of the Western United States. New York and London: McGraw-Hill Book Company.
- United States Forest Service. 1974. National Forest Landscape Management, Vol. 2.: Chapter 1 The Visual Management System. USDA Agricultural Handbook No. 462. 47 pp.

DATE BORROWER
LOANED BORROWER
USDI - ELM

Form 1279-3 (June 1984)

BORROWER

TN 859 .C64 C3747 C-b Shale Oil Pro Tract C-b: summan

