

Project 3

ONOS Application Development: SDN-enabled Learning Bridge

Deadline: 2020/10/21 (WED) 23:55

- **☐** Overview
- Build ONOS Application Project
 - **■** Environment Setup
 - **■** Create and Write ONOS Application
 - **■** Compile, Install, and Activate ONOS Application
 - Reinstall ONOS Application
- Learning Bridge Function
 - Introduction
 - Workflow
- Project 3 Requirements
 - Create ONOS Application (10%)
 - **■** Learning Bridge Function (60%)
 - **■** Flow Rule Regulation (20%)
 - Submission Naming Convention (10%)
 - Restrictions

- **□** Overview
- **☐** Build ONOS Application Project
 - **■** Environment Setup
 - **■** Create and Write ONOS Application
 - **■** Compile, Install, and Activate ONOS Application
 - Reinstall ONOS Application
- **☐** Learning Bridge Function
 - Introduction
 - Workflow
- Project 3 Requirements
 - **■** Create ONOS Application (10%)
 - **■** Learning Bridge Function (60%)
 - **■** Flow Rule Regulation (20%)
 - Submission Naming Convention (10%)
 - Restrictions

Overview

- ☐ Overview
- Build ONOS Application Project
 - **■** Environment Setup
 - **■** Create and Write ONOS Application
 - **■** Compile, Install, and Activate ONOS Application
 - Reinstall ONOS Application
- **☐** Learning Bridge Function
 - Introduction
 - Workflow
- Project 3 Requirements
 - **■** Create ONOS Application (10%)
 - **■** Learning Bridge Function (60%)
 - **■** Flow Rule Regulation (20%)
 - Submission Naming Convention (10%)
 - Restrictions

JDK installation (1/4)

- Download Oracle JDK 11 (JDK: Java Development Kit)
 - Java SE Development Kit 11- Downloads

Java SE Development Kit 11.0.8

This software is licensed under the Oracle Technology Network License Agreement for Oracle Java SE

Product / File Description	File Size	Download
Linux Debian Package	148.77 MB	jdk-11.0.8_linux-x64_bin.deb
Linux RPM Package	155.45 MB	jdk-11.0.8_linux-x64_bin.rpm
Linux Compressed Archive	172.66 MB	jdk-11.0.8_linux-x64_bin.tar.gz
macOS Installer	166.84 MB	jdk-11.0.8_osx-x64_bin.dmg

JDK installation (2/4)

- Download Oracle JDK 11 (JDK: Java Development Kit)
 - You will be asked to create an Oracle account to download this software.

JDK installation (3/4)

- Download Oracle JDK 11 (JDK: Java Development Kit)
 - After creating the Oracle account and login, you can download this file now.

JDK installation (4/4)

- ☐ Untar JDK in /opt
- \$ sudo tar -zxf ~/Downloads/jdk-11.0.8_linux-x64_bin.tar.gz -C /opt
- Set Oracle JDK as the default JVM

```
$ sudo update-alternatives --install /usr/bin/java java /opt/jdk-11.0.8/bin/java 2000
$ sudo update-alternatives --install /usr/bin/javac javac /opt/jdk-11.0.8/bin/javac 2000
```

Check the result

```
$ java -version
$ javac -version
```

```
demo@SDN:~$ java -version
java version "11.0.8" 2020-07-14 LTS
Java(TM) SE Runtime Environment 18.9 (build 11.0.8+10-LTS)
Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.8+10-LTS, mixed mode)
demo@SDN:~$ javac -version
javac 11.0.8_
```


Apache Maven installation

- Apache Maven
 - A software project management and comprehension tool
 - Based on the concept of a project object model (POM)
 - Can manage a project's build, reporting and documentation
- Install Maven
 - \$ sudo apt install maven
- Indicate the version of ONOS API
 - \$ export ONOS_POM_VERSION=2.2.0
- Build the current version of ONOS application archetypes
 - ONOS version: 2.2.0
 - \$ cd \$ONOS_ROOT/tools/package/archetypes
 - \$ mvn clean install -DskipTests

- **□** Overview
- Build ONOS Application Project
 - **■** Environment Setup
 - **■** Create and Write ONOS Application
 - **■** Compile, Install, and Activate ONOS Application
 - Reinstall ONOS Application
- **☐** Learning Bridge Function
 - Introduction
 - Workflow
- Project 3 Requirements
 - **■** Create ONOS Application (10%)
 - **■** Learning Bridge Function (60%)
 - **■** Flow Rule Regulation (20%)
 - Submission Naming Convention (10%)
 - Restrictions

Create and Write ONOS Application (1/5)

Create ONOS Application (Red words are what to type)

```
$ onos-create-app
[INFO] ...
Define value for property 'groupId': nctu.winlab
Define value for property 'artifactId': bridge-app
Define value for property 'version' 1.0-SNAPSHOT: : «enter»
Define value for property 'package' nctu.winlab: : nctu.winlab.bridge
Confirm properties configuration:
groupId: nctu.winlab
artifactId: bridge-app
version: 1.0-SNAPSHOT
package: nctu.winlab.bridge
y:: <enter>
[INFO] ...
[INFO] BUILD SUCCESS
```


Create and Write ONOS Application (2/5)

- After successful creation of application
 - onos-create-app creates a folder named <artifactId>.

```
sdnfv@sdnfv-VirtualBox:~/bridge-app$ tree
    Src
        main
                 nctu
                     winlab
                        - bridae
                              AppComponent.java
                              SomeInterface.java
        test
                 nctu
                    – winlab
                        – bridge

    AppComponentTest.java

11 directories, 4 files
```


Create and Write ONOS Application (3/5)

- Describe your project
 - By modifing pom.xml (pom: Project Object Model)

```
properties>
                      <onos.version>2.2.0/onos.version>
            31
                      <!-- Uncomment to generate ONOS app from this module.
            32
                      <onos.app.name>org.foo.app</onos.app.name>
            33
                      <onos.app.title>Foo App</onos.app.title>
pom.xml
                      <onos.app.origin>Foo, Inc.</onos.app.origin>
            34
Before
            35
                      <onos.app.category>default</onos.app.category>
            36
                      <onos.app.url>http://onosproject.org</onos.app.url>
                      <onos.app.readme>ONOS OSGi bundle archetype.</onos.app.readme>
            37
            38
            39
                  </properties>
                  coroperties>
                      29
                      <onos.version>2.2.0
                      <!-- Uncomment to deperate ONOS and from this module ---</p>
                      <onos.app.name>nctu.winlab.bridge</onos.app.name>
pom.xml
            33
                      <onos.app.title>Learning Bridge App</onos.app.title>
After
                      <onos.app.origin>Winlab, NCTU</onos.app.origin>
                      <onos.app.category>derautt</onos.app.category>
            22
                      <onos.app.url>http://onosproject.org</onos.app.url>
            36
            37
                      <onos.app.readme>ONOS OSGi bundle archetype.
            38
            39
                  </properties>
```


Create and Write ONOS Application (4/5)

☐ Find the template code in the application fold
`<artifactId>/src/main/java/nctu/winlab/bridge/`

```
sdnfv@sdnfv-VirtualBox:~/bridge-app$ tree
    pom.xml
        main
                nctu
                    winlab
                             AppComponent.java
                             SomeInterface.java
        test
                    winlab
                            AppComponentTest.java
  directories, 4 files
```


Create and Write ONOS Application (5/5)

```
Execute when app activated.
public class AppComponent implements SomeInterface {
                                                         @Activate
   private final Logger log = LoggerFactory.getLogger(getClass());
                                                          protected void activate() {
   /** Some configurable property. */
                                                                cfqService.registerProperties(getClass());
   private String someProperty;
                                                                log.info("Started");
   @Reference(cardinality = ReferenceCardinality.MANDATORY)
   protected ComponentConfigService cfgService;
   @Activate
   protected void activate() {
      cfgService.registerProperties(getClass());
                                                                                  Execute when app deactivated.
      log.info("Started"):
                                                          @Deactivate
                                                          protected void deactivate() {
   @Deactivate
   protected void deactivate() {
                                                                cfqService.unregisterProperties(getClass(), false);
      cfgService.unregisterProperties(getClass(), false);
      log.info("Stopped");
                                                                log.info("Stopped");
   @Modified
   public void modified(ComponentContext context) {
      Dictionary<?. ?> properties = context != null ? context.getProperties() : new Properties();
      if (context != null) {
         someProperty = get(properties, "someProperty");
      log.info("Reconfigured");
   @Override
   public void someMethod() {
      log.info("Invoked");
```


- ☐ Overview
- Build ONOS Application Project
 - **■** Environment Setup
 - Create and Write ONOS Application
 - **■** Compile, Install, and Activate ONOS Application
 - Reinstall ONOS Application
- ☐ Learning Bridge Function
 - Introduction
 - Workflow
- Project 3 Requirements
 - **■** Create ONOS Application (10%)
 - Learning Bridge Function (60%)
 - **■** Flow Rule Regulation (20%)
 - Submission Naming Convention (10%)
 - Restrictions

Compile, Install and Activate ONOS Application

- Compile ONOS application
- \$ cd <artifactId>
 \$ mvn clean install -DsktipTests
 # option '-DskipTests' to skip running the tests for our project
- Run ONOS
- \$ bazel run onos-local -- clean debug
- Install and activate ONOS application
- \$ onos-app localhost install! target/<artifactId>-<version>.oar
 - 'install' with exclamation mark: activate the application immediately after the application being installed on ONOS.

- ☐ Overview
- ☐ Build ONOS Application Project
 - **■** Environment Setup
 - Create and Write ONOS Application
 - **■** Compile, Install, and Activate ONOS Application
 - **■** Reinstall ONOS Application
- Learning Bridge Function
 - Introduction
 - Workflow
- Project 3 Requirements
 - **■** Create ONOS Application (10%)
 - Learning Bridge Function (60%)
 - **■** Flow Rule Regulation (20%)
 - Submission Naming Convention (10%)
 - Restrictions

Reinstall ONOS Application

- Reinstall your application
 - If you modify your application you need to recompile and reinstall your application on ONOS.
 - 1. Recompile application by Maven
- \$ cd <artifactId> && mvn clean install -DskipTests
 - 2. Deactivate application on ONOS

```
# <onos-app-name> is indicated in your pom.xml
```

- \$ onos localhost app deactivate <onos-app-name>
 - 3. Uninstall application

```
#e.g. nctu.winlab.bridge-app
```

- \$ onos-app localhost uninstall <onos-app-name>
 - 4. Install and Activate application
- \$ onos-app localhost install! target/<artifactId>-<version>.oar

References

- ONOS Wiki Template Application Tutorial
 - https://wiki.onosproject.org/display/ONOS/Template+Application+Tutor
 ial
- ONOS Application Subsystem
 - https://wiki.onosproject.org/display/ONOS/Application+Subsystem
- ONOS Java API (2.2.0)
 - http://api.onosproject.org/2.2.0/apidocs/
- JDK installation
 - https://www.digitalocean.com/community/tutorials/how-to-manually-installoracle-java-on-a-debian-or-ubuntu-vps

- **□** Overview
- Build ONOS Application Project
 - **■** Environment Setup
 - **■** Create and Write ONOS Application
 - **■** Compile, Install, and Activate ONOS Application
 - Reinstall ONOS Application
- Learning Bridge Function
 - **■** Introduction
 - Workflow
- Project 3 Requirements
 - **■** Create ONOS Application (10%)
 - Learning Bridge Function (60%)
 - **■** Flow Rule Regulation (20%)
 - Submission Naming Convention (10%)
 - Restrictions

Introduction of Learning Bridge Function

1. Forwarding information learning

Associate the source MAC address with incoming port

2. Packets forwarding

Use destination MAC address as index to look up the MAC address table and forward the packet to the proper output port

- ☐ Overview
- **☐** Build ONOS Application Project
 - **■** Environment Setup
 - Create and Write ONOS Application
 - **■** Compile, Install, and Activate ONOS Application
 - Reinstall ONOS Application
- Learning Bridge Function
 - Introduction
 - **■** Workflow
- Project 3 Requirements
 - Create ONOS Application (10%)
 - Learning Bridge Function (60%)
 - **■** Flow Rule Regulation (20%)
 - Submission Naming Convention (10%)
 - Restrictions

Workflow of Learning Bridge Function

- ☐ Initially, MAC table and flow table are empty.
 - Flow table (switch)

								ONOS(Controller)
STATE	PACKETS	DURATION	FLOW PRIORITY	TABLE NAME	SELECTOR	TREATMEN	T APP NAME	Control plane
Added	0	100	40000	0	ETH_TYPE:bddp	imm[OUTPUT NTROLLER cleared:tru], *core	Data plane —
Added	0	100	40000	0	ETH_TYPE:arp	imm[OUTPUT NTROLLER cleared:tru], *core	s1
Added	0	100	40000	0	ETH_TYPE:lldp	imm[OUTPUT NTROLLER cleared:tru], *core	
	MAC	table (co	ontroller)					\$2 1 1
	s1		s2		s3		h1	h2 h3 h4
MAC	Po	rt M	AC P	ort N	ЛАС	Port	MAC= 00:00:00 :	:00:00:01 MAC=00:00:00:00:00:

MAC=00:00:00:00:04

Workflow of Learning Bridge Function

- ☐ When App is activated:
 - Install rules with very low priority to Packet-in on **ALL** switches.

- 1. h1 pings h4
- 2. Switch sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - b. Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h4 receives packet from h1

s1		s2		s3		
MAC	Port	MAC	MAC Port		Port	

- 1. h1 pings h4
- 2. Switch (s2) sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - b. Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h4 receives packet from h1

s1		s2	2	s3	
MAC	C Port MAC		Port	MAC	Port

- 1. h1 pings h4
- 2. Switch sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - **b.** Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h4 receives packet from h1

s1		s2		s3	
MAC	Port	MAC	Port	MAC	Port
		00::01	1		

- 1. h1 pings h4
- 2. Switch sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - **b.** Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h4 receives packet from h1

- 1. h1 pings h4
- 2. Switch sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - b. Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h4 receives packet from h1

s1		s2		s3		
MAC	Port	MAC	Port	MAC	Port	
		00::01	1			

- 1. h1 pings h4
- 2. Switch sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - b. Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h4 receives packet from h1

s1		s2		s3		
MAC	Port	MAC	Port	MAC	Port	
		00::01	1			

- 1. h1 pings h4
- 2. Switch (s1) sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - **b.** Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h4 receives packet from h1

s1		s2		s3		
MAC	Port	MAC	Port	MAC	Port	
		00::01	1			

- 1. h1 pings h4
- 2. Switch (s1) sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - **b.** Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h4 receives packet from h1

s1		s2		s3		
MAC	Port	MAC	Port	MAC	Port	
		00::01	1			

Skip the repeated steps...

- 1. h1 pings h4
- 2. Switch sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - b. Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h4 receives packet from h1

s1		s2		s3	
MAC	Port	MAC	Port	MAC	Port
00::01	1	00::01	1	00::01	2

Workflow (h4→h1)

- h4 replies to h1
- 2. Switch sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - b. Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h1 receives packet from h4

s1		s2		s3	
MAC	Port	MAC	Port	MAC	Port
00::01	1	00::01	1	00::01	2

- 1. h4 replies to h1
- 2. Switch (s3) sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - b. Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h1 receives packet from h4

s1		s2		s3		
MAC	Port	rt MAC F		MAC	Port	
00::01	1	00::01	1	00::01	2	

- 1. h4 replies to h1
- 2. Switch sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - b. Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h1 receives packet from h4

s1		s2		s3	
MAC	Port	MAC	Port	MAC	Port
00::01	1	00::01	1	00::01	2
				00::04	1

- 1. h4 replies to h1
- 2. Switch sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - b. Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h1 receives packet from h4

s1		s2		s3		
MAC	Port	MAC Port		MAC	Port	
00::01	1	00::01	1	00::01	2	
				00::04	1	

- 1. h4 replies to h1
- 2. Switch sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding

b. Table hit:

- Sends Packet out with designated port
- Installs flow rule on switch
- 5. h1 receives packet from h4

s1		s2		s3	
MAC	Port	MAC Port		MAC	Port
00::01	1	00::01 1		00::01	2
				00::04	1

- 1. h4 replies to h1
- 2. Switch sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding

b. Table hit:

- Sends Packet out with designated port
- Installs flow rule on switch
- 5. h1 receives packet from h4

s1		s2		s3		
MAC	Port	MAC Port		MAC	Port	
00::01	1	00::01	1	00::01	2	
				00::04	1	

- 1. h4 replies to h1
- 2. Switch (s1) sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - b. Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h1 receives packet from h4

s1		s2		s3		
MAC	Port	MAC Port		MAC	Port	
00::01	1	00::01 1		00::01	2	
				00::04	1	

- 1. h4 replies to h1
- 2. Switch (s1) sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - b. Table hit:
 - Sends Packet-out with designated port
 - Installs flow rule on switch
- 5. h1 receives packet from h4

s1		s2		s3	
MAC	Port	MAC Port		MAC	Port
00::01	1	00::01 1		00::01	2
				00::04	1

Skip the repeated steps...

- 1. h4 replies to h1
- 2. Switch sends Packet-in to Controller
- 3. Controller updates MAC address table with source MAC
- 4. Controller looks up MAC address table for destination MAC:
 - a. Table miss:
 - Sends Packet out with flooding
 - b. Table hit:
 - Sends Packet out with designated port
 - Installs flow rule on switch
- 5. h1 receives packet from h4

s1		s2		s3		
MAC	Port	MAC	Port	MAC	Port	
00::01	1	00::01	1	00::01	2	
00::04	2	00::04	2	00::04	1	

- ☐ Overview
- Build ONOS Application Project
 - **■** Environment Setup
 - **■** Create and Write ONOS Application
 - **Compile, Install, and Activate ONOS Application**
 - Reinstall ONOS Application
- Learning Bridge Function
 - Introduction
 - Workflow
- Project3 Requirement
 - Create ONOS Application (10%)
 - **■** Learning Bridge Function (60%)
 - **■** Flow Rule Regulation (20%)
 - Submission Naming Convention (10%)
 - Restrictions

Create an ONOS application

- Maven project naming convention
 - Incorrect naming convention or format subjects to not scoring
 - <groupId>: nctu.winlab
 - <artifactId>: bridge-app
 - <version>: (default)
 - <package>: nctu.winlab.bridge

```
sdnfv@sdnfv-VirtualBox:~/bridge-app$ tree

pom.xml
src
main
java
nctu
Minlab
SomeInterface.java
someInterface.java
nctu
Minlab
M
```


- ☐ Overview
- Build ONOS Application Project
 - **■** Environment Setup
 - **■** Create and Write ONOS Application
 - **■** Compile, Install, and Activate ONOS Application
 - Reinstall ONOS Application
- Learning Bridge Function
 - Introduction
 - Workflow
- Project3 Requirement
 - Create ONOS Application (10%)
 - **■** Learning Bridge Function (60%)
 - **■** Flow Rule Regulation (20%)
 - Submission Naming Convention (10%)
 - Restrictions

Learning Bridge Function

- Learning Bridge & Forwarding Packet
 - a. Learning Bridge Function with *tree* (depth=2) topology (20%)
 - b. Learning Bridge Function with *tree* (depth=3~5) topology (20%)
- \$ sudo mn --controller=remote,127.0.0.1:6653 --topo=tree,depth=2
- ☐ Ping should work between all hosts.

mininet> pingall

```
mininet> pingall
*** Ping: testing ping reachability
h1 -> h2 h3 h4
h2 -> h1 h3 h4
h3 -> h1 h2 h4
h4 -> h1 h2 h3
*** Results: 0% dropped (12/12 received)
mininet>
```

(Ex. mininet *tree* topology with depth=2)

Learning Bridge Function

- ☐ Use "log.info()" to print the status of learning bridge table . (20%)
 - 1. New MAC address added into the table.
 - 2. Table miss, packet flooded.
 - 3. Table hit, flow rule installed on the switch.

```
2020-09-30T13:30:47.799 | INFO
                                 onos-of-dispatcher-127.0.0.1:43988 | AppComponent
nctu.winlab.bridge-app - 1.0.0.SNAPSHOT | MAC 3E:C5:5D:D6:1A:B0 is missed on of:0000000000000003! Flood
                                                                                                        packet!
2020-09-30T13:30:47.801 | INFO | onos-of-dispatcher-127.0.0.1:43990 | AppComponent
nctu.winlab.bridge-app - 1.0.0.SNAPSHOT | Add MAC address ==> swich: of:00000000000000000, MAC: 3E:C5:5D:D6:1A:B0
. port: 2
2020-09-30T13:30:47.805 | INFO | onos-of-dispatcher-127.0.0.1:43990 | AppComponent
nctu.winlab.bridge-app - 1.0.0.SNAPSHOT | MAC 8A:6C:5A:C0:6E:64 is matched on of:00000000000000002! Install flow
                                 onos-of-dispatcher-127.0.0.1:43990 | AppComponent
                                                                                                          209 -
nctu.winlab.bridge-app - 1.0.0.SNAPSHOT | MAC 06:14:52:63:EF:AD is missed on of:00000000000000002! Flood packet!
2020-09-30T13:30:47.827 | INFO | onos-of-dispatcher-127.0.0.1:43982 | AppComponent
                                                                                                          209 -
nctu.winlab.bridge-app - 1.0.0.SNAPSHOT | MAC 06:14:52:63:EF:AD is missed on of:0000000000000001! Flood packet!
2020-09-30T13:30:47,827 | INFO | onos-of-dispatcher-127.0.0.1:43988 | AppComponent
                                                                                                          209 -
nctu.winlab.bridge-app - 1.0.0.SNAPSHOT | MAC 06:14:52:63:EF:AD is missed on of:00000000000000003! Flood packet!
2020-09-30T13:30:47.828 | INFO | onos-of-dispatcher-127.0.0.1:43988 | AppComponent
                                                                                                          209 -
nctu.winlab.bridge-app - 1.0.0.SNAPSHOT | Add MAC address ==> swich: of:0000000000000003, MAC: 06:14:52:63:EF:AD
. port: 1
2020-09-30T13:30:47,828 | INFO | onos-of-dispatcher-127.0.0.1:43988 | AppComponent
                                                                                                          209 -
nctu.winlab.bridge-app - 1.0.0.SNAPSHOT | MAC 8A:6C:5A:C0:6E:64 is matched on of:00000000000000003! Install flow
2020-09-30T13:30:47,833 | INFO | onos-of-dispatcher-127.0.0.1:43982 | AppComponent
nctu.winlab.bridge-app - 1.0.0.SNAPSHOT | Add MAC address ==> swich: of:0000000000000001, MAC: 06:14:52:63:EF:AD
. port: 2
```


- **□** Overview
- Build ONOS Application Project
 - **■** Environment Setup
 - Create and Write ONOS Application
 - **■** Compile, Install, and Activate ONOS Application
 - Reinstall ONOS Application
- Learning Bridge Function
 - Introduction
 - Workflow

Project3 Requirement

- Create ONOS Application (10%)
- Learning Bridge Function (60%)
- **■** Flow Rule Regulation (20%)
- Submission Naming Convention (10%)
- Restrictions

Flow Rule Regulation

- □ Rule Requirement (20%)
 - Match field (selector): ETH_SRC, ETH_DST
 - Action field (treatment): OUTPUT
 - Flow priority: 20
 - Flow timeout: 20

STATE	PACKETS	DURATION	FLOW PRIORITY	TABLE NAME	SELECTOR	TREATMENT	APP NAME
Added	1	14	20	0	ETH_DST:6E:99:DD:47:6B:F1, ETH_SRC:E2:68:3F:8B:5C:C0	imm[OUTPUT:2], cleared:false	nctu.winlab.testapp
Added	1	14	20	0	ETH_DST:E2:68:3F:8B:5C:C0, ETH_SRC:6E:99:DD:47:6B:F1	imm[OUTPUT:1], cleared:false	nctu.winlab.testapp
Added	2	14	20	0	ETH_DST:E2:68:3F:8B:5C:C0, ETH_SRC:9E:5F:63:7C:ED:49	imm[OUTPUT:1], cleared:false	nctu.winlab.testapp
Added	1	14	20	0	ETH_DST:9E:5F:63:7C:ED:49, ETH_SRC:E2:68:3F:8B:5C:C0	imm[OUTPUT:2], cleared:false	nctu.winlab.testapp
Added	2	14	20	0	ETH_DST:92:1E:58:93:76:B4, ETH_SRC:6E:99:DD:47:6B:F1	imm[OUTPUT:1], cleared:false	nctu.winlab.testapp
Added	1	14	20	0	ETH_DST:6E:99:DD:47:6B:F1, ETH_SRC:92:1E:58:93:76:B4	imm[OUTPUT:2], cleared:false	nctu.winlab.testapp
Added	1	14	20	0	ETH_DST:9E:5F:63:7C:ED:49, ETH_SRC:92:1E:58:93:76:B4	imm[OUTPUT:2], cleared:false	nctu.winlab.testapp
Added	2	14	20	0	ETH_DST:92:1E:58:93:76:B4, ETH_SRC:9E:5F:63:7C:ED:49	imm[OUTPUT:1], cleared:false	nctu.winlab.testapp
Added	92	144	40000	0	ETH_TYPE:bddp	imm[OUTPUT:CONTROLLER], cleared:true	*core

- ☐ Overview
- Build ONOS Application Project
 - **■** Environment Setup
 - **■** Create and Write ONOS Application
 - **■** Compile, Install, and Activate ONOS Application
 - Reinstall ONOS Application
- Learning Bridge Function
 - Introduction
 - Workflow

Project3 Requirement

- Create ONOS Application (10%)
- **■** Learning Bridge Function (60%)
- **■** Flow Rule Regulation (20%)
- **■** Submission Naming Convention (10%)
- Restrictions

About Submission

Files

- You need to submit all files under the *bridge-app* project directory.
- Zip the whole *bridge-app* folder into a .zip file.
 - Named: project3_<studentID>.zip

☐ Submit

- Upload ".zip" file to New e3
 - Named: project3_<studentID>.zip
- Your project will not be scored if you type wrong file name or wrong format.

```
sdnfv@sdnfv-VirtualBox:~/bridge-appS tree
    pom.xml
        main
                    winlab
                             AppComponent.iava
                             SomeInterface.iava
        test
                    winlab
                             AppComponentTest.java
11 directories, 4 files
```


- ☐ Overview
- **☐** Build ONOS Application Project
 - **■** Environment Setup
 - **■** Create and Write ONOS Application
 - **■** Compile, Install, and Activate ONOS Application
 - Reinstall ONOS Application
- Learning Bridge Function
 - Introduction
 - Workflow

Project3 Requirement

- Create ONOS Application (10%)
- **■** Learning Bridge Function (60%)
- **■** Flow Rule Regulation (20%)
- Submission Naming Convention (10%)
- Restrictions

Restrictions

ONOS Applications activation

You are only allowed to activate your bridge-app and the following ONOS applications:

```
.nlab@root > apps -a -s
12 org.onosproject.optical-model
                                                   Optical Network Model
                                         2.2.0
13 org.onosproject.drivers
                                         2.2.0
                                                   Default Drivers
83 org.onosproject.openflow-base
                                         2.2.0
                                                   OpenFlow Base Provider
84 org.onosproject.lldpprovider
                                                   LLDP Link Provider
                                         2.2.0
85 org.onosproject.hostprovider
                                                   Host Location Provider
                                         2.2.0
156 org.onosproject.openflow
                                         2.2.0
                                                   OpenFlow Provider Suite
172 org.onosproject.gui2
                                         2.2.0
                                                   ONOS GUI2
```

☐ You are only allowed to use Java API <u>FlowObjective</u> or <u>FlowRule</u> to install flow rules on the network devices.

Hints

- ☐ Use Java API FlowObjective or FlowRule to send Flow-mod
 - You can trace <u>ReactiveForwarding</u>.java to find out how can we use Java API to install flow rules
- Make sure to Packet-out when you send Flow-mod
 - Since flow modification message only install flow rule on the switch
- Make sure to cancel request for Packet-in when you deactivate your app
- ☐ How to debug:
 - (1) Use Logger (Java API) to print out some information on your terminal
 - (2) Use Wireshark to capture your packet

References

- ONOS Reactive Forwarding application
 - https://github.com/opennetworkinglab/onos/blob/master/apps/fwd/sr c/main/java/org/onosproject/fwd/ReactiveForwarding.java
- ONOS Java API
 - http://api.onosproject.org/2.2.0/apidocs/