FÍSICA COMPUTACIONAL II

Interpolação - Entrega: 09/04

Interpolação usando o scipy.interpolate

- a) Importe os dados do arquivo 'scattering.data' e a função interp1d: "from scipy.interpolate import interp1d".
- b) Gere uma função interpoladora linear usando o interp1d (Ex: "f = interp1d(x_d , y_d)"), onde x_d e y_d são os dados fornecidos.
- c) O comando acima cria uma função, e para que você possa fazer um gráfico dela você deve fornecer diversos valores de x para a função, e então guardar os valores gerados por ela. O processo é similar ao que fizemos anteriormente para fazer o gráfico de uma função como o seno.
- d) Modifique a função definida acima para interpolar usando um spline cúbico: " $f = interp1d(x_d, y_d, kind='cubic')$ ". Gere um gráfico com esta nova função.

Figure 1: Esquerda: Interpolação linear. Direita: Interpolação usando spline cúbico.

Interpolação linear

a) Crie uma função que gera um polinômio interpolador linear, usando a fórmula

$$f(x) = \frac{f(a)(b-x) + f(b)(x-a)}{b-a}.$$

b) Use sua função para gerar um gráfico similar ao obtido no exercício anterior.

Polinômio interpolador de Lagrange

$$g(x) \simeq g_1 \lambda_1(x) + g_2 \lambda_2(x) + \dots + g_n \lambda_n(x) ,$$

$$\lambda_i(x) = \prod_{j(\neq i)=1}^n \frac{x - x_j}{x_i - x_j} = \frac{x - x_1}{x_i - x_1} \frac{x - x_2}{x_i - x_2} \dots \frac{x - x_n}{x_i - x_n}$$

- a) Crie uma função que gera um polinômio interpolador de Lagrange de ordem n=8 (ver fórmula acima).
- b) Use sua função para gerar um gráfico similar ao mostrado abaixo.
- c) Adapte sua função para gerar uma sequência de polinômios interpoladores de Lagrange de ordem 2, conforme mostrado na figura da página seguinte.

Relembrando alguns comandos

loadtxt

Importa dados de um arquivo de texto externo. Função do numpy. **Ex:** A = loadtxt("dados.txt",float)

arange

Cria um vetor contendo uma lista de valores. Funcão do numpy. **Ex:** a = arange(0.0,1.0,0.1)

Slicing

Útil para pegar subconjuntos de um vetor ou de uma matriz. **Ex:** xd = dados[:,0] - pega a primeira coluna de uma matriz de dados.