

Decision Tree

Decision Tree

- Decision tree is one of the most popular classification type of algorithm
- Classification is done by tree like structures that have different test criteria for a variable at each of the nodes
- New leaves are generated based on the results of the tests at the nodes
- Decision Tree is a supervised learning system in which classification rules are constructed from the decision tree

Decision Tree

ID3, stands for "Inductive Dichotomizer", this is a non-incremental algorithm, which means that it derives its classes from a fixed set of training data

Incremental algorithms can revise developed concepts if necessary, using a new sample, but the decision trees ID3 algorithm in contrast, is an inductive type

In inductive type algorithms specific classes once created, are expected to work for all future instances or data with the same dimensions

ID3 is a greedy algorithm, which constructs a decision tree in the top down recursive manner, and never checks back on its previous decisions

Concept Learning Systems

ID3 is an improved version of a Concept Learning System (CLS)

CLS Algorithm:

Step 1:

lf

All instances in training dataset, C are positive

then

Create YES node and halt

lf

All instances in training dataset, C are negative

then

create NO node and halt

Otherwise select a feature, F with values $v_1, v_2, \dots v_n$ and create a decision node.

Step 2:

Partition the training instances in C into subset C₁, C₂, ..., C_n according to the value of V

Step 3:

Apply the algorithm recursively to each of the sets Ci

Decision Trees

- Decision trees represent attribute-based descriptions of concepts:
 - We assume a universe of objects of interest (e.g. the set of all animals)
 - A "concept" is defined by the subset of objects which satisfy it (e.g. the concept of a "fox", as defined by the set of all foxes)
 - Each object has a number of attributes, or properties (e.g. "colour", "has_fur", "eats_meat", etc.)
 - The decision tree defines the concept in terms of the values of these attributes that an example must have
- Often, decision trees define Boolean Functions: Input to the tree is an object described by a set of properties; output is "Yes/No"

Decision Trees

- Each internal node in the tree corresponds to a test of the value of one attribute, with branches to each of the possible values of that test.
- Each leaf node specifies the Boolean output of the tree if that point is reached.
- The aim is to learn a definition of the goal predicate for the problem at hand.
 - The goal predicate can be seen as a logical rule defining the concept – equivalent to the decision tree.

Example – Restaurant Problem

- Should we wait for a table at a restaurant?
- Input Attributes:
 - Alternate Suitable alternative restaurant nearby?
 - Bar Is there one to wait in?
 - Fri/Sat Is it Friday or Saturday?
 - Hungry Are we?
 - Patrons How many (None, Some, Full)?
 - Price How pricey is this place?
 - Raining Is it?
 - Reservation Have we made one?
 - Type Of food (French, Italian, Burger, . . .).
 - WaitEstimate How long, estimated by the host.
- Determine output attribute: WillWait.

Some Training Examples

Example	Attributes						Goal				
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait?
X1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
X2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
Х3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X4	Yes	No	Yes	Yes	Full	\$	No	No	Thai	10-30	Yes
X5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No
X8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
X9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X10	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No
X11	No	No	No	No	None	\$	No	No	Thai	0-10	No
X12	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

We need a collection of example objects (rows in a table), each with values for all the attributes and the values of the "output class"

O Positive (Yes) and Negative (No) examples are needed

Possible Decision Tree

How to Construct a Decision Tree

- Given a table of positive & negative examples, each with an output class, how do we produce a decision tree for this training data set?
- Observe that each non-leaf node of the tree gives a test on one of the attributes in the dataset.
- Any example will satisfy only one of the options given.
- Therefore, the tree splits the training dataset between the branches of the tree according to attribute values.
- So, we start at the root node with all the training examples, and choose an attribute to split on.
- Each of the daughter nodes gives a subset of the training set.
- Then we can do exactly the same thing with each daughter node, until the examples remaining are all "Yes" or all "No", or we run out of attributes.

Example of a Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Start from the root of tree.

Test Data

Refund		Taxable Income	Cheat
No	Married	80K	?

Test Data

Test Data

Decision Tree Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Measures of Node Impurity

Gini Index

Entropy

Misclassification error

Selecting f₃ doesn't help much as mixture is still with almost the same ratio compared with f₇ which seems to be a good selection

Entropy

p := proportion of positive examples in data set

$$H = -p \log_2 p - (1-p) \log_2 (1-p)$$

p

$$0\log_2 0 = 0$$

D: 9 positive 10 negative

D: 9 positive 10 negative

4 negative

H = .99

4 positive 6 negative

H= .97

6 positive 0 negative

f₇

H = .00

3 positive 10 negative

H = .78

AE (j) =
$$P_i H (D_i^+) + (1-p_i) H (D_i^-)$$

% of D with $f_i=1$

subset of D with $f_i=1$

D: 9 positive 10 negative

4 negative

H = .99

4 positive 6 negative

H = .97

f₇

H = .00

3 positive 10 negative

H = .78

$$AE = (9/19) * .99 + (10/19) * .97$$

= .98

$$AE = (6/19) * .00 + (13/19) * .78$$

= .53

Algoritm


```
BuildTree(Data)

if all elements of Data have the same y value, then

MakeLeafNode(y)

else

feature := PickBestFeature(Data)

MakeInternalNode(feature,

BuildTree(SelectFalse(Data,Feature)),

BuildTree(SelectTrue(Data,Feature)))
```

Best feature minimizes average entropy of data in the children

Stopping

- Stop recursion if data contains only multiple instances of the same
 x with different y values
 - Make leaf node with output equal to the y value that occurs in the majority of the cases in the data
- Consider stopping to avoid over-fitting when:
 - Entropy of a data set is below some threshold
 - Number of elements in a data set is below threshold
 - ❖Best next split does not decrease average entropy

Example

Entropy for each feature

•
$$AE_1 = .92$$

•
$$AE_2 = .92$$

•
$$AE_3 = .81$$

•
$$AE_4 = 1$$

The best feature for split is f₃

f ₁	f ₂	f ₃	f ₄	У
0	1	1	0	0
1	0	1	1	1
1	1	1	0	1
0	0	1	1	1
1	0	0	1	0
0	1	1	1	0

 f_3

f ₁	f ₂	f ₃	f ₄	у
0	1	1	0	0
1	0	1	1	1
1	1	1	0	1
0	0	1	1	1
0	1	1	1	0

	f_3
0	

•AE ₁	=	.5	5
------------------	---	----	---

•
$$AE_2 = .55$$

•
$$AE_4 = .95$$

•Arbitrarily decide to split on f₁

f ₁	f ₂	f ₃	f ₄	у
0	1	1	0	0
1	0	1	1	1
1	1	1	0	1
0	0	1	1	1
0	1	1	1	0

У

0

0

Pruning

- Best way to avoid over-fitting and not get tricked by short-term lack of progress
 - Grow tree as far as possible
 - **❖Leaves are uniform or contain a single X**
 - •Prune the tree until it performs well on held-out data
 - Amount of pruning is like epsilon in DNF algorithm

Pre pruning

Post Pruning

- Making useful predictions in (usually corporate) applications
- Decision trees very popular because :
 - **❖**Easy to implement
 - Efficient (even on huge data sets)
 - **❖**Easy for humans to understand resulting hypotheses