Tropical Meteorology

Kerry Emanuel, Instructor Allison Wing, TA

Course Outline

Radiative-Convective Equilibrium

- General principles of radiative transfer
- Simple models without phase change
- General principles of moist convection
- Simple models with phase change
- Quantitative assessments of the equilibrium state comparisons to observations

The Zonally-Averaged Circulation

- The observed climatology
- Breakdown of the radiative-convective equilibrium state
- Dry theory
- Moist theory
- Regulation of intensity

Asymmetric Steady Circulations

- Monsoons
 - Development and onset of the Asian monsoon
 - Monsoon breaks
 - Nonlinear, asymmetric theory
- The Walker Circulation
 - Observations
 - Theory

Interannual Fluctuations of the Walker Circulation – ENSO

- Observed behavior
- Theory and modeling of ENSO

Intraseasonal Oscillations

- Observations
- GCM simulations
- Theory of equatorial waves
 - Dry
 - Moist
- WISHE

Cloud-radiation interactions and ISOs

Higher Frequency Disturbances

- Monsoon depressions
- Equatorial waves
- Easterly waves

Tropical Cyclones

- Structure and climatology
- Steady-state physics
- Genesis
- Ocean interaction

Brief Overview of the Global Atmosphere

Atmospheric Composition

Gas Name	Chemical Formula	Percent Volume
Nitrogen	N ₂	78.08%
Oxygen	O ₂	20.95%
*Water	H ₂ O	0 to 4%
Argon	Ar	0.93%
*Carbon Dioxide	CO ₂	0.0360%
Neon	Ne	0.0018%
Helium	Не	0.0005%
*Methane	CH4	0.00017%
Hydrogen	H ₂	0.00005%
*Nitrous Oxide	N ₂ O	0.00003%
*Ozone	O3	0.000004%

^{*} variable gases

Image by MIT OpenCourseWare.

Fig. 1.6 Global map of the (a) January and (b) July surface temperature. [From Shea (1986). Reproduced with permission from the National Center for Atmospheric Research.]

Fig. 1.7 Map of the amplitude of the annual cycle of surface temperature. [From Shea (1986). Reproduced with permission from the National Center for Atmospheric Research.]

Seasonal variation of solar radiation

A One-Dimensional Description of the Tropical Atmosphere

Image by MIT OpenCourseWare.

Elements of Thermal Balance: Solar Radiation

- Luminosity: $3.9 \times 10^{26} \text{ J s}^{-1} = 6.4 \times 10^7 \text{ Wm}^{-2}$ at top of photosphere
- Mean distance from earth: 1.5 x 10¹¹ m
- Flux density at mean radius of earth

$$S_0 = \frac{L_0}{4\pi d^2} = 1370 \, Wm^{-2}$$

Stefan-Boltzmann Equation: $F = \sigma T^4$ $\sigma = 5.67 \times 10^{-8} Wm^{-2}K^{-4}$

Sun:
$$\sigma T^4 = 6.4 \times 10^7 \ Wm^{-2}$$

$$\rightarrow$$
 $T \approx 6,000 K$

Disposition of Solar Radiation:

Total absorbed solar radiation =
$$S_0 \left(1 - a_p \right) \pi r_p^2$$

$$a_p \equiv \text{planetary albedo} (\approx 30\%)$$

Total surface area =
$$4\pi r_p^2$$

Absorption per unit area =
$$\frac{S_0}{4} \left(1 - a_p \right)$$

Absorption by clouds, atmosphere, and surface

Terrestrial Radiation:

Effective emission temperature:

$$\sigma T_e^{4} = \frac{S_0}{4} \left(1 - a_p \right)$$

Earth:
$$T_e = 255K = -18^{\circ}C$$

Observed average surface temperature = $288K = 15^{\circ}C$

Highly Reduced Model

- Transparent to solar radiation
- Opaque to infrared radiation
- Blackbody emission from surface and each layer

Radiative Equilibrium:

Top of Atmosphere:

$$\sigma T_A^{4} = \frac{S_0}{4} \left(1 - a_p \right) = \sigma T_e^{4}$$

$$\rightarrow \boxed{T_A = T_e}$$

Surface:

$$\sigma T_s^4 = \sigma T_A^4 + \frac{S_0}{4} (1 - a_p) = 2\sigma T_e^4$$

$$\to T_s = 2^{\frac{1}{4}} T_e = 303 K$$

Surface temperature too large because:

- Real atmosphere is not opaque
- Heat transported by convection as well as by radiation

Energy Balance

Principal Atmospheric Absorbers

- H₂O: Bent triatomic, with permanent dipole moment and pure rotational bands as well as rotation-vibration transitions
- O₃: Like water, but also involved in photodissociation
- CO₂: No permanent dipole moment, so no pure rotational transitions, but temporary dipole during vibrational transitions
- Other gases: N₂O, CH₄

Radiative Equilibrium

- Equilibrium state of atmosphere and surface in the absence of non-radiative enthalpy fluxes
- Radiative heating drives actual state toward state of radiative equilibrium

Extended Layer Models

$$TOA: \quad \sigma T_2^4 = \sigma T_e^4 \rightarrow T_2 = T_e$$

Middle Layer:
$$2\sigma T_1^4 = \sigma T_2^4 + \sigma T_s^4 = \sigma T_e^4 + \sigma T_s^4$$

Surface:
$$\sigma T_s^4 = \sigma T_e^4 + \sigma T_1^4$$

$$\rightarrow T_s = 3^{\frac{1}{4}} T_e$$
 $T_1 = 2^{\frac{1}{4}} T_e$

Effects of emissivity<1

Surface:
$$2\varepsilon_A \sigma T_A^4 = \varepsilon_A \sigma T_1^4 + \varepsilon_A \sigma T_s^4$$

$$\rightarrow T_A = \left(\frac{5}{2}\right)^{\frac{1}{4}} T_e \simeq 321K < T_s$$

Stratosphere:
$$2\varepsilon_t \sigma T_t^4 = \varepsilon_A \sigma T_2^4$$

$$\rightarrow T_t = \left(\frac{1}{2}\right)^{\frac{1}{4}} T_e \simeq 214K < T_e$$

Full calculation of radiative equilibrium:

Time scale of approach to equilibrium

Contributions of various absorbers

MIT OpenCourseWare http://ocw.mit.edu

12.811 Tropical Meteorology Spring 2011

Æror information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.