14.	Recordemos que para $c \in \mathbb{R}$ y $A \subseteq \mathbb{R}$ denotamos
	$cA = \{ca : a \in A\}.$
	(a) Probar que si $A \in \mathcal{M}$ entonces $cA \in \mathcal{M}$.
	 (b) Probar que si c > 0 entonces μ(cA) = c μ(A). (c) ¿Qué se puede decir de μ(cA) en el caso c < 0?
	(c) Eque se puede decir de $\mu(ex)$ en el caso $e < 0$:
@ Pedas	A = A = A = A = A = A = A = A = A = A =
1600	que si let - clet
Cons	denner f X-y con Mcy/f=1x, ceih so
	denner f x-y con M=y/f=1x, centro - f'(M)={f'(A)/AEM}- {cA/AEM, CENTRO}=
	Como a biyedive
	→ Uma 5-álgibra
	Vand que es medile
	-> M= {x < X/f(x) < H/= {x < X/1 x < M}=
	$\{(c_{\lambda})/x \in X\}$