# (In-)Stability of Slow Manifolds Linked to Guiding Center Motion

# Jaydeep Singh

# Princeton University, Department of Mathematics

#### Introduction

Gyroaveraging is an important tool for deriving dimensionally reduced models, relying on a separation of scales between "slow" guiding center motion (GCM) and "fast" gyromotion. To better understand the limitations of this procedure we apply the dynamical systems perspective of [1,2], interpreting GCM as a formal slow manifold in an appropriate higher dimensional system. The validity of projecting to this slow manifold, and thus using averaged models, translates to a question of **normal stability** for such manifolds.

Question: Introduced in [2], **Loop dynamics** models the behavior of charged, rotating loops in a strong magnetic field, admitting a slow manifold recovering GCM. Is this manifold stable, i.e. does data initialized in an  $O(\epsilon)$  neighborhood of this set remain so for O(1) times? For  $O(\epsilon^{-\sigma})$  times?

Mathematically, concerns the normal stability of an elliptic, formal slow manifold, without any coercive conserved quantity.

## Background

A singularly-perturbed system

$$\begin{cases} \dot{y} = \frac{1}{\epsilon} f_{\epsilon}(x, y) \\ \dot{x} = g_{\epsilon}(x, y) \end{cases}$$

is

• fast-slow if  $f_0(x,y) = 0$  locally determines a function  $y_{slow}(x)$ . To lowest order, the **limiting slow-manifold** is

$$\mathcal{SM}_0 = \{(x, y_{slow}(x))\}.$$

• Hamiltonian nearly-periodic if (a) there exists a compatible,  $\epsilon$ -dependent Hamiltonian structure, and (b) the limiting vector field  $f_0(x,y)$  decomposes as  $f_0(x,y) = \omega(x)\xi(x,y)$ , where  $\xi(x,y)$  is a vector field generating  $2\pi$ -periodic orbits and  $\omega(x) \in \mathbb{R}$  satisfies  $\mathcal{L}_{\xi}\omega = 0$ .

Under natural conditions, such systems admit a formal, approximately conserved **adiabatic invariant** 

$$\mu = \sum_{i=0}^{\infty} \mu_i \epsilon^i$$

#### The Model

Planar, truncated loop dynamics is a finite dimensional approximation of the system introduced in [2], acting on parameterized loops  $\mathbb{S}^1_{\theta} \to \mathbb{R}^2_{x_1,x_2}$  supported on harmonics  $|k| \leq 1$ .

**Proposition 1** Planar loop dynamics is a Hamiltonian system, and in appropriate coordinates exhibits both fast-slow and nearly-periodic behavior. Moreover,

- $SM_0$  is five-dimensional\*, and the equations for the slow variables recover ZGCM.
- There is a conserved energy E, and non-vanishing adiabatic invariant  $\mu_2 + O(\epsilon)$ .





Governing equations

 $\int \partial_t \tilde{x}(\theta) = -\frac{1}{\epsilon} |B(x_0)| \partial_\theta \tilde{x}(\theta) + \tilde{v}(\theta)$ 



### Theorems

Theorem 1 (Normal Stability for  $\mathbf{t} \sim \mathbf{O}(1)$ ) Given a planar magnetic field  $\vec{B} = h(x,y)\hat{z}$ , a constant T > 0, and initial data  $Q_{0,\epsilon}$  satisfying  $dist(\mathcal{SM}_0, Q_{0,\epsilon}) \lesssim \epsilon$ , over time  $t \in [0,T]$  the solution  $Q_{\epsilon}(t)$  satisfies the following, uniformly in  $\epsilon$ :

$$\sup_{t \in [0,T]} \operatorname{dist}(\mathcal{SM}_0, Q_{\epsilon}(t)) \lesssim \epsilon.$$

Theorem 2 (Normal Instability for  $\mathbf{t} \sim \mathbf{O}(\epsilon^{-\sigma})$ ) Fixing the magnetic field  $\vec{B} = x\hat{z}$  and a constant  $\sigma \ll 1$ , there exists initial data  $Q_{0,\epsilon}$  satisfying  $dist(\mathcal{SM}_0, Q_{0,\epsilon}) \lesssim \epsilon$ , and a constant  $\delta > 0$ , such that

$$\lim_{\epsilon \to 0} \sup_{t \in [0, \delta \epsilon^{-\sigma}]} \epsilon^{-1} dist(\mathcal{SM}_0, Q_{\epsilon}(t)) = +\infty.$$

## Example









The proof relies on periodic averaging. While conserving  $(E, \mu)$ , a resonant instability in the averaged system causes the  $x_2$  loop dimensions to exhibit a secular  $\sim (\epsilon t)^2$  growth, on top of rapid oscillation. Possible extensions:

- Extend the analytical control on the solution beyond the onset of instability, tracking the long-term, nonlinear behavior.
- Develop the functional framework for proving an instability result in the infinite dimensional loop space setting.

#### References

- [1] J. Xiao and H. Qin, "Slow manifolds of classical Pauli particle enable structure-preserving geometric algorithms for guiding center dynamics," Comp. Phys. Commun. 265, 107981 (2021).
- [2] J. W. Burby, "Guiding center dynamics as motion on a formal slow manifold in loop space", J. Math. Phys. 61, 012703 (2020).