Course 2

1.3 Subgroups

We turn now our attention to the study of a group inside another group. Recall that the associative law and the commutative law transfer in a stable subset, whereas the identity element and the inverse element do not in general. But we will see that they do transfer in a subgroup.

Definition 1.3.1 Let (G,\cdot) be a group and let $H\subseteq G$. Then H is called a *subgroup of* G if:

- (1) H is a stable subset of (G, \cdot) , that is, $\forall x, y \in H, x \cdot y \in H$;
- (2) (H, \cdot) is a group.

We denote by $H \leq G$ the fact that H is a subgroup of G.

The following two characterization theorems provide two easy ways of checking that a subset of a group is a subgroup.

Theorem 1.3.2 Let (G,\cdot) be a group and let $H\subseteq G$. Then $H\leq G$ if and only if

- (i) $H \neq \emptyset$ $(1 \in H)$;
- (ii) $x, y \in H \Longrightarrow x \cdot y \in H$;
- (iii) $x \in H \Longrightarrow x^{-1} \in H$.

Proof. \Longrightarrow . Suppose that $H \leq G$. Then (H, \cdot) is a group, so that $H \neq \emptyset$.

Moreover, there exists an identity element $1' \in H$, hence

$$x \cdot 1' = 1' \cdot x = x, \quad \forall x \in H.$$

By multiplying by x^{-1} on the left or on the right, we get $1' = 1 \in H$. Therefore, a subgroup must contain the identity element of the group.

Condition (ii) holds by the definition of a subgroup.

Now let $x \in H$ and denote by x' its inverse in the group (H, \cdot) . Then

$$x \cdot x' = x' \cdot x = 1.$$

But $x \in H \subseteq G$ has an inverse $x^{-1} \in G$. Then by multiplying by x^{-1} on the left or on the right, we get $x' = x^{-1} \in H$.

 \Leftarrow . Suppose that the conditions (i), (ii) and (iii) hold. Then H is a stable subset of (G, \cdot) . Clearly, the associative law holds also in H. Take $x \in H \neq \emptyset$. Then by (iii), $x^{-1} \in H$ and by (ii), $1 = x \cdot x^{-1} \in H$. Hence 1 is the identity element in H. By (iii), every element of H has an inverse in H. Hence (H, \cdot) is a group. Consequently, H is a subgroup of G.

Theorem 1.3.3 Let (G,\cdot) be a group and let $H\subseteq G$. Then $H\leq G$ if and only if

- (i) $H \neq \emptyset$ (1 $\in H$);
- (ii) $x, y \in H \Longrightarrow x \cdot y^{-1} \in H$.

Proof. By Theorem 1.3.2.

Remark 1.3.4 (1) In the case of an additive group (G, +), the conditions (ii) and (iii) in Theorem 1.3.2 become

- (ii') $x, y \in H \Longrightarrow x + y \in H;$
- $(iii') \ x \in H \Longrightarrow -x \in H.$
- (2) In the case of an additive group (G, +), the condition (ii) in Theorem 1.3.3 becomes
- (ii') $x, y \in H \Longrightarrow x y \in H$.
- (3) For subsets X, Y of a group (G, \cdot) , we denote

$$X \cdot Y = \{x \cdot y \mid x \in X, y \in Y\},\$$

 $X^{-1} = \{x^{-1} \mid x \in X\}.$

Then the last two conditions from Theorem 1.3.2 are shortly written as $H \cdot H \subseteq H$ and $H^{-1} \subseteq H$, which are in fact equivalent to $H \cdot H = H$ (because $\forall x \in H, \ x = x \cdot 1 \in H \cdot H$, hence $H \subseteq H \cdot H$) and $H^{-1} = H$ (because $\forall x \in H, \ x = (x^{-1})^{-1} \in H^{-1}$, hence $H \subseteq H^{-1}$) respectively. Also, the last condition from Theorem 1.3.3 is shortly written as $H \cdot H^{-1} \subseteq H$, which is in fact equivalent to $H \cdot H^{-1} = H$.

Let us now see some examples of subgroups.

Example 1.3.5 (a) Every non-trivial group (G, \cdot) has two subgroups, namely $\{1\}$ and G, called the *trivial subgroups*.

- (b) \mathbb{Z} is a subgroup of $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ and $(\mathbb{C}, +)$. \mathbb{Q} is a subgroup of $(\mathbb{R}, +)$ and $(\mathbb{C}, +)$. \mathbb{R} is a subgroup of $(\mathbb{C}, +)$.
 - (c) Consider the group $(\mathbb{Z}, +)$. Then

$$H \leq \mathbb{Z} \iff H = n\mathbb{Z} \text{ for some } n \in \mathbb{N}.$$

Indeed, suppose first that $H=n\mathbb{Z}$ for some $n\in\mathbb{N}$. Clearly, $H\neq\emptyset$. For every $x,y\in H$, we have x=nk and y=nl for some $k,l\in\mathbb{Z}$, whence

$$x - y = nk - nl = n(k - l) \in n\mathbb{Z} = H.$$

Then by Theorem 1.3.3, $H = n\mathbb{Z} \leq \mathbb{Z}$.

Conversely, suppose that $H \leq \mathbb{Z}$. If $H = \{0\}$, then $H = 0 \cdot \mathbb{Z}$ and we are done. Assume now that $H \neq \{0\}$. Then H contains a positive element (if $x \in H$ and x < 0, then $-x \in H$ and -x > 0).

Denote

$$n = \min(H \cap \mathbb{N}^*).$$

We will prove that $H = n\mathbb{Z}$.

Since $n \in H$ and $H \leq \mathbb{Z}$, it follows that $n\mathbb{Z} \subseteq H$. Now if $x \in H$, then by the Division Algorithm, there exist unique $q, r \in \mathbb{Z}$ such that

$$x = nq + r$$
, where $0 \le r < n$.

But then $r = x - nq \in H$ and $r \ge 0$. By the minimality of n, it follows that r = 0, so that $x = nq \in n\mathbb{Z}$, hence $H \subseteq n\mathbb{Z}$. Therefore, $H = n\mathbb{Z}$.

(d) The set

$$H = \{ z \in \mathbb{C} \mid |z| = 1 \}$$

is a subgroup of the group (\mathbb{C}^*,\cdot) , called the *circle group*. But it is not a subgroup of the group $(\mathbb{C},+)$.

(e) The set

$$U_n = \{ z \in \mathbb{C} \mid z^n = 1 \} \quad (n \in \mathbb{N}^*)$$

is a subgroup of the group (\mathbb{C}^*,\cdot) , called the group of n^{th} roots of unity. Its elements are the following:

$$\varepsilon_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, \quad k \in \{0, \dots, n-1\}.$$

(f) Consider the general linear group $(GL_n(\mathbb{R}),\cdot)$ of rank n, where

$$GL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det(A) \neq 0 \}$$

 $(n \in \mathbb{N}, n \ge 2)$ and denote

$$SL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det(A) = 1 \}.$$

Then $SL_n(\mathbb{R})$ is a subgroup of $(GL_n(\mathbb{R}), \cdot)$, called the special linear group of rank n.

(g) Let (G,\cdot) be a group. Then

$$Z(G) = \{x \in G \mid x \cdot q = q \cdot x, \forall q \in G\}$$

is a subgroup of G, called the center of G. We have Z(G) = G if and only if G is abelian.

1.4 Generated subgroup. Subgroup lattice

For a group (G, \cdot) , we denote by $S(G, \cdot)$ the set of all subgroups of G.

We will see that the intersection is compatible with subgroups, whereas the union is not in general.

Theorem 1.4.1 Let (G,\cdot) be a group and let $(H_i)_{i\in I}$ be a family of subgroups of (G,\cdot) . Then $\bigcap_{i\in I} H_i \in S(G,\cdot)$.

Proof. For each $i \in I$, $H_i \in S(G, \cdot)$, hence $1 \in H_i$. Then $1 \in \bigcap_{i \in I} H_i \neq \emptyset$. Now let $x, y \in \bigcap_{i \in I} H_i$. Then $x, y \in H_i$, $\forall i \in I$. But $H_i \in S(G, \cdot)$, $\forall i \in I$. It follows that $x \cdot y^{-1} \in H_i$, $\forall i \in I$, hence $x \cdot y^{-1} \in \bigcap_{i \in I} H_i$. Therefore $\bigcap_{i \in I} H_i \in S(G, \cdot)$ by the characterization theorem of subgroups.

Example 1.4.2 We have seen that $S(\mathbb{Z},+) = \{n\mathbb{Z} \mid n \in \mathbb{N}\}$. Take $H = 2\mathbb{Z}$, $K = 3\mathbb{Z} \in S(\mathbb{Z},+)$. Then $H \cap K = 2\mathbb{Z} \cap 3\mathbb{Z} = 6\mathbb{Z}$ is a subgroup of $(\mathbb{Z},+)$. But $H \cup K = 2\mathbb{Z} \cup 3\mathbb{Z}$ is not a subgroup of $(\mathbb{Z},+)$, because, for instance, we have $2, 3 \in H \cup K$, but $2+3=5 \notin H \cup K$. Therefore, in general the union of subgroups is not a subgroup.

This leads to the idea of the subgroup generated by a subset of a group.

Definition 1.4.3 Let (G,\cdot) be a group and let $X\subseteq G$. Then we denote

$$\langle X \rangle = \bigcap \{ H \leq G \mid X \subseteq H \} \in S(G, \cdot)$$

and we call it the subgroup generated by X.

In fact, $\langle X \rangle$ is the "least" subgroup of G containing X.

Here X is called the generating set of $\langle X \rangle$.

If $X = \{x\}$, then we denote $\langle x \rangle = \langle \{x\} \rangle$.

Remark 1.4.4 Notice that $\langle \emptyset \rangle = \{1\}$ by Definition 1.4.3.

Let us now determine how the elements of a generated subgroup look like.

Theorem 1.4.5 Let (G,\cdot) be a group and let $\emptyset \neq X \subseteq G$. Then

$$\langle X \rangle = \{x_1 \cdot x_2 \cdot \ldots \cdot x_n \mid x_i \in X \cup X^{-1}, i = 1, \ldots, n, n \in \mathbb{N}^* \},$$

that is, the set of all finite products of elements or inverses of elements in X.

Proof. Denote by H the right hand side, that is,

$$H = \{x_1 \cdot x_2 \cdot \ldots \cdot x_n \mid x_i \in X \cup X^{-1}, i = 1, \ldots, n, n \in \mathbb{N}^*\}.$$

We are going to prove that H is the least subgroup of G containing X, that is, to show the following 3 properties:

- (i) $H \leq G$;
- (ii) $X \subseteq H$;
- (iii) If $K \leq G$ and $X \subseteq K$, then $H \subseteq K$.

Let us discuss them one by one.

(i) Clearly, we have $H \neq \emptyset$, because $X \neq \emptyset$. Let $x_1 \cdot x_2 \cdot \ldots \cdot x_m, y_1 \cdot y_2 \cdot \ldots \cdot y_n \in H$. Then

$$(x_1 \cdot x_2 \cdot \ldots \cdot x_m) \cdot (y_1 \cdot y_2 \cdot \ldots \cdot y_n)^{-1} = x_1 \cdot x_2 \cdot \ldots \cdot x_m \cdot y_n^{-1} \cdot \ldots \cdot y_2^{-1} y_1^{-1} \in H$$

so that $H \leq G$ by the characterization theorem of subgroups.

- (ii) Clear.
- (iii) If $K \leq G$ and $X \subseteq K$, then $X^{-1} \subseteq K$ by by the characterization theorem of subgroups. It follows that $H \subseteq K$.

Corollary 1.4.6 Let (G, \cdot) be a group and let $x \in G$. Then $\langle x \rangle = \{x^k \mid k \in \mathbb{Z}\}$.

Example 1.4.7 Consider the group $(\mathbb{Z}, +)$ and let $n \in \mathbb{Z}$. Then $\langle n \rangle = \{nk \mid k \in \mathbb{Z}\} = n\mathbb{Z}$.

Theorem 1.4.8 Let (G,\cdot) be a group. Then $(S(G,\cdot),\subseteq)$ is a complete lattice, in which

$$\inf(H_i)_{i \in I} = \bigcap_{i \in I} H_i, \quad \sup(H_i)_{i \in I} = \langle \bigcup_{i \in I} H_i \rangle$$

for every family $(H_i)_{i\in I}$ of subgroups of G.

Theorem 1.4.9 Let (G,\cdot) be a group and H_1, H_2 subgroups of G. Then

$$H_1 \cdot H_2 \le G \Leftrightarrow H_1 \cdot H_2 = H_2 \cdot H_1.$$

Proof. First assume that $H_1 \cdot H_2$ is a subgroup of G. Then $(H_1 \cdot H_2)^{-1} = H_1 \cdot H_2$, whence $H_2^{-1} \cdot H_1^{-1} = H_1 \cdot H_2$. Since H_1, H_2 are subgroups of G, we have $H_1^{-1} = H_1$ and $H_2^{-1} = H_2$. It follows that $H_2 \cdot H_1 = H_1 \cdot H_2$.

Conversely, assume that $H_1 \cdot H_2 = H_2 \cdot H_1$. Since $H_1 \neq \emptyset$ and $H_2 \neq \emptyset$, we have $H_1 \cdot H_2 \neq \emptyset$. Also, we have:

$$(H_1 \cdot H_2) \cdot (H_1 \cdot H_2) = H_1 \cdot (H_2 \cdot H_1) \cdot H_2 = H_1 \cdot (H_1 \cdot H_2) \cdot H_2 = (H_1 \cdot H_1) \cdot (H_2 \cdot H_2) = H_1 \cdot H_2,$$
$$(H_1 \cdot H_2)^{-1} = H_2^{-1} \cdot H_1^{-1} = H_2 \cdot H_1 = H_1 \cdot H_2.$$

Hence $H_1 \cdot H_2$ is a subgroup of G.

Corollary 1.4.10 Let (G,\cdot) be a group and H_1,H_2 subgroups of G such that $H_1 \cdot H_2 = H_2 \cdot H_1$. Then:

$$\sup(H_1, H_2) = \langle H_1 \cup H_2 \rangle = H_1 \cdot H_2.$$

Proof. First, we have $H_1 \subseteq H_1 \cdot \{1\} \subseteq H_1 \cdot H_2$ and $H_2 \subseteq \{1\} \cdot H_2 \subseteq H_1 \cdot H_2$. Also, if H is a subgroup of G such that $H_1 \subseteq H$ and $H_2 \subseteq H$, then $H_1 \cdot H_2 \subseteq H \cdot H = H$. Hence $\sup(H_1, H_2) = H_1 \cdot H_2$.

Example 1.4.11 (a) Let us determine the subgroup lattice of Klein's group (K, \cdot) . Its subgroups are: $\{e\}, \{e, a\}, \{e, b\}, \{e, c\}$ and K. One may draw its corresponding Hasse diagram.

(b) Let us determine the subgroup lattice of the group $(\mathbb{Z}_6, +)$. Its subgroups are: $\{0\}$, $\{0, 2, 4\}$, $\{0, 3\}$ and \mathbb{Z}_6 . One may draw its corresponding Hasse diagram.