- 1. Hallar una curva parametrizada  $\alpha$  cuya traza es el círculo  $x^2 + y^2 = 1$ , con  $\alpha(t)$  recorriéndolo en el sentido de las agujas del reloj y con  $\alpha(0) = (0, 1)$ .
- 2. Sea  $\alpha(t)$  una curva que no pasa por el origen. Si  $\alpha(t_0)$  es el punto de la traza de  $\alpha$  más cercano al origen y  $\alpha'(t_0) \neq 0$ , demostrar que el vector de posición  $\alpha(t_0)$  es ortogonal a  $\alpha'(t_0)$ .
- **3**. Sea  $\alpha: I \to \mathbb{R}^3$  una curva y  $v \in \mathbb{R}^3$  un vector dado. Si  $\alpha'(t)$  es ortogonal a v para todo  $t \in I$ , y si  $\alpha(0)$  también lo es, desuestre que  $\alpha(t)$  es ortogonal a v para todo  $t \in I$ .
- **4.** Si  $\alpha: I \to \mathbb{R}^3$  es una curva regular, demuestre que  $|\alpha(t)|$  es constante (diferente de cero) si y sólo si  $\alpha(t) \perp \alpha'(t)$  para todo  $t \in I$ .
- **5**. Si  $\alpha: I \to \mathbb{R}^3$  es una curva y  $M: \mathbb{R}^3 \to \mathbb{R}^3$  es un movimiento rígido, demostrar que las longitudes de  $\alpha$  y de  $M \circ \alpha$  entre a y b coinciden.
- 6. Demuestre que las líneas tangentes a la curva  $\alpha(t)=(3t,3t^2,2t^3)$  forman un ángulo constante con la recta  $y=0,\,z=x.$
- 7. La curva engendrada por un punto P de una circunferencia de radio r que rueda sin deslizar por una recta fija se llama **cicloide**. Tomando dicha recta como eje de las X, y como parámetro t el ángulo orientado  $\widehat{MCP}$  (C es el centro de la circunferencia, y M el punto de contacto con el eje), probar que la posición de P para cada t es

$$\alpha(t) = (rt - r\sin t, r - r\cos t)$$

Se ha supuesto que en t=0, P coincide con M, y con el origen de coordenadas. Determine los puntos t donde  $\alpha'(t)=0$  (llamados de retroceso). (Nota: "sin deslizar" significa a efectos prácticos que la longitud del arco MP coicide con la longitud del segmento OM)



- 8. Pruebe que la recta tangente a la cicloide por un punto P regular cualquiera viene determinada por los puntos P y M', siendo M' el simétrico de M respecto a C.
- 9. Determine la longitud del arco de cicloide entre dos puntos consecutivos de retroceso, en función del radio de la circunferencia rodante.

10. La espiral logarítmica  $\alpha: \mathbb{R} \to \mathbb{R}^2$  está parametrizada como

$$\alpha(t) = (a \exp bt \cos t, a \exp bt \sin t)$$

donde  $a>0,\ b<0$ . Demuestre que cuando  $t\to\infty,\ \alpha(t)$  se acerca al origen. Calcule, para cada  $t_0\in\mathbb{R}$ , la longitud de arco de  $\alpha$  entre  $t_0$  y  $t_1$ . Halle las ecuaciones de la reparametrización de la curva por el arco, y dibuje la traza.

**11**. Sea  $\alpha:(-1,\infty)\to\mathbb{R}^2$  la curva

$$\alpha(t) = \left(\frac{3at}{1+t^3}, \frac{3at^2}{1+t^3}\right), \quad a > 0$$

Se pide demostrar:

- La tangente a  $\alpha$  en t=0 es el eje OX.
- Cuando  $t \to \infty$ ,  $\alpha(t) \to (0,0)$  y  $\alpha'(t) \to (0,0)$ .
- Si se toma la curva con la orientación opuesta, demuestre que cuando  $t \to -1$ ,  $\alpha(t)$  y su tangente se acercan a la recta x + y + a = 0.
- 12. En la descripción que sigue, ayuda bastante ir trazando el dibujo correspondiente. Consideramos una circunferencia C de radio r, y una recta L tangente a ella. Denotamos como S el punto de tangencia, y como A al punto diametralmente opuesto. Para cada punto R en L, trazamos la recta AR y llamamos Q a la intersección de ésta con la circunferencia C. En AR, hay un único P con d(A, P) = d(Q, R); a la unión de tales P se le llama la cisoide.



Tomando un sistema de coordenadas centrado en A y en el que la recta L tenga ecuación x=2r, determinar la ecuación implicita de la cisoide y demostrar que

$$\alpha(t) = \left(\frac{2rt^2}{1+t^2}, \frac{2rt^3}{1+t^2}\right)$$

son ecuaciones paramétricas de la cisoide. Determine el intervalo máximo donde la curva es regular.

13. Sea  $\alpha:(0,\pi)\to\mathbb{R}^2$  definida como

$$\alpha(t) = \left(\sin t, \cos t + \log \tan \frac{t}{2}\right)$$

donde t es el ángulo que el eje OY forma con el vector  $\alpha'(t)$ . La traza de  $\alpha$  se llama la tractriz. Demuestre que  $\alpha$  es una curva parametrizada regular excepto en  $t = \pi/2$ , y que la logitud del segmento de la tangente a la tractriz entre el punto de tangencia y el eje OY es constante e igual a 1.

- **14**. Sea  $\alpha: I \to \mathbb{R}^3$  una curva diferenciable y  $[a, b] \subset I$ . Demuestre que la longitud de  $\alpha$  entre a y b es mayor o igual que la distancia entre  $\alpha(a)$  y  $\alpha(b)$ . Dé la interpretación geométrica de este resultado.
- **15**. Si  $f:[a,b]\to\mathbb{R}$  es una función  $C^{\infty}$ , parametrice el grafo de f y calcule su longitud de arco
- **16**. Sea  $\alpha: I \to \mathbb{R}^2$  una curva PPA y  $M: \mathbb{R}^2 \to \mathbb{R}^2$  un movimiento de  $\mathbb{R}^2$  (esto es, una aplicación afín que preserva distancias). Si  $\beta = M \circ \alpha$ , demuestre que  $\beta$  también está parametrizada por longitud de arco, y halle la relación entre las curvaturas de  $\alpha$  y  $\beta$ .
- 17. Sea  $\alpha: I \to \mathbb{R}^2$  una curva PPA. Demuestre que  $\alpha$  es un segmento de recta o un arco de circunferencia si y sólo si la curvatura de  $\alpha$  es constante.
- 18. Si  $\alpha:(-a,a)\to\mathbb{R}^2$  es una curva PPA, definimos  $\beta(s)=\alpha(-s)$  para cada  $s\in(-a,a)$ . Demuestre que  $\beta$  está parametrizada por arco, y halle su función de curvatura.
- 19. Si  $\alpha:(-a,a)\to\mathbb{R}^2$  es una curva PPA con  $k_{\alpha}(-s)=k_{\alpha}(s)$  para cada  $s\in(-a,a)$ , demuestre que la traza de  $\alpha$  es simétrica respecto a la recta normal de  $\alpha$  en 0.
- **20**. Si  $\alpha:(-a,a)\to\mathbb{R}^2$  es una curva PPA con  $k_{\alpha}(-s)=-k_{\alpha}(s)$  para todo  $s\in(-a,a)$ , demuestre que la traza de  $\alpha$  es simétrica con respecto al punto  $\alpha(0)$ .
- **21**. Dada una curva  $\alpha:I\to\mathbb{R}^2$  PPA, demuestre que:
  - 1.  $\alpha$  es un segmento de recta si y sólo si existe un punto  $p_0 \in \mathbb{R}^2$  por el cual pasan todas sus rectas tangentes;
  - 2.  $\alpha$  es un arco de circunferencia si y sólo si existe un punto  $p_0 \in \mathbb{R}^2$  por el cual pasan todas sus rectas normales.
- **22**. Dada una curva  $\alpha:I\to\mathbb{R}^2$  PPA, demuestre que todas las rectas normales de  $\alpha$  equidistan de un punto si y sólo si existen  $a,b\in R$  tales que

$$k(s) = \pm \frac{1}{\sqrt{as+b}}$$

para cada  $s \in I$ .

**23**. Sea  $\alpha: I \to \mathbb{R}^2$  una curva PPA, y  $s_o \in I$ . Definimos  $f: I \to \mathbb{R}$  por

$$f(s) = \langle \alpha(s) - \alpha(s_0), N(s_0) \rangle$$

f mide la distancia orientada del punto  $\alpha(s)$  a la recta tangente a  $\alpha$  en  $s_0$ . Demuestre que  $f(s_0) = 0$ ,  $f'(s_0) = 0$  y que  $f''(s_0) = k(s_0)$ . Como consecuencia, demuestre que:

- 1. Si  $k(s_0) > 0$ , existe un entorno J de  $s_0$  en I tal que  $\alpha(J)$  está en el semiplano determinado por la recta tangente a  $\alpha$  en  $s_0$  hacia el que apunta  $N(s_0)$ .
- 2. Si existe un entorno J de  $s_0$  en I tal que  $\alpha(J)$  está en el semiplano determinado por la recta tangente a  $\alpha$  en  $s_0$  hacia el que apunta  $N(s_0)$ , entonces  $k(s_0) \geq 0$ .
- **24**. Si  $\alpha: I \to \mathbb{R}^2$  está dada por  $\alpha(t) = (x(t), y(t))$ , donde t no es necesariamente el parámetro de arco, demostrar que la curvatura está dada por la fórmula

$$k(t) = \frac{x'y'' - x''y'}{((x')^2 + (y')^2)^{3/2}}$$

**25**. Demostrar que la curvatura de una curva plana que en coordenadas polares se escribe como  $\rho = \rho(\theta)$  es

$$k(\theta) = \frac{2(\rho')^2 - \rho \rho'' + \rho^2}{((\rho')^2 + \rho^2)^{3/2}}$$

**26**. Se<br/>a $\alpha:I\to\mathbb{R}^2$ una curva regular PPA. Supongamos que <br/>  $k(s)\neq 0,\,s\in I.$  La curva

$$\beta(s) = \alpha(s) + \frac{1}{k(s)}N(s)$$

se llama la evoluta de  $\alpha$ .

- 1. Demuestre que la recta tangente a la evoluta de  $\alpha$  en s coincide con la normal de  $\alpha$  en s.
- 2. Demuestre que el punto de intersección de las rectas normales a  $\alpha$  en  $\alpha(t)$  y en  $\alpha(t+h)$  converge a un punto en la evoluta de  $\alpha$  cuando  $h \to 0$  (nota: asuma que el punto de intersección depende diferenciablemente de h).
- 27. La catenaria es la traza de la curva  $\alpha(t)=(t,\cosh t),\,t\in\mathbb{R}.$ 
  - Demuestre que la curvatura de  $\alpha$  es  $k(t) = 1/(\cosh t)^2$ .
  - Demuestre que la evoluta de la catenaria es la curva

$$\beta(t) = (t - \sinh t \cosh t, 2 \cosh t).$$

28. Se tiene la hélice

$$\alpha(s) = \left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}\right)$$

con  $c^2 = a^2 + b^2$ .

- $\bullet$  Demuestre que s es el parámetro de arco.
- Halle la curvatura y la torsión de  $\alpha$ .
- Halle el plano osculador en  $\alpha(s)$ .
- Demuestre asimismo que las rectas normales a  $\alpha$  cortan al eje OZ en un ángulo recto.
- Demuestre que las rectas tangentes a  $\alpha$  forman ángulo constante con el eje z.
- **29**. Demuestre que la torsión de una curva biregular PPA  $\alpha: I \to \mathbb{R}^3$  se puede calcular con la fórmula

$$\tau(s) = -\frac{\alpha'(s) \wedge \alpha''(s) \cdot \alpha'''(s)}{|k(s)|^2}$$

- **30**. Sea  $\alpha: I \to \mathbb{R}^3$  una curva biregular PPA. Supongamos que todas sus rectas normales pasan por el mismo punto. Demuestre que la traza de  $\alpha$  está contenida en una circunferencia.
- **31**. Sea  $\alpha: \mathbb{R} \to \mathbb{R}^3$  la curva

$$\alpha(t) = \begin{cases} (t, 0, e^{-1/t^2}) & t > 0\\ (t, e^{-1/t^2}, 0) & t < 0\\ (0, 0, 0) & t = 0 \end{cases}$$

- Demuestre que  $\alpha$  es una curva diferenciable regular.
- Demuestre que su curvatura es diferente de cero si y sólo si  $t \neq \pm \sqrt{2/3}, t \neq 0$ .
- Pruebe que el límite de los planos osculadores cuando  $t \to 0$ , t > 0 es el plano y = 0, pero cuando  $t \to 0$ , t < 0 es el plano z = 0.
- Observe que  $\alpha$  no es una curva plana. Observe asimismo que tiene torsión definida en cada  $s \neq 0$ , y que esta es constante e igual a cero.
- **32**. Sea  $\alpha: I \to \mathbb{R}^3$ ,  $\alpha = \alpha(t)$ , una curva regular no necesariamente parametrizada por arco, y sea  $\beta: J \to \mathbb{R}^3$ ,  $\beta = \beta(s)$ , una reparametrización por arco, donde s = s(t) se calcula desde  $t_0$ . Sea t = t(s) la función inversa, y sean  $\alpha'$ ,  $\alpha''$ , etc, derivadas con respecto a t. Demuestre que
  - $dt/ds = 1/|\alpha'|$ ,  $d^2t/ds^2 = -(\alpha' \cdot \alpha''/|\alpha'|^4)$ .
  - La curvatura de  $\alpha$  en  $t \in I$  es

$$k(t) = \frac{|\alpha' \wedge \alpha''|}{|\alpha'|^3}.$$

• La torsión de  $\alpha$  en  $t \in I$  es

$$\tau(t) = -\frac{(\alpha' \wedge \alpha'') \cdot \alpha'''}{|\alpha' \wedge \alpha''|^2}.$$

- 33. Sea  $\alpha:I\to\mathbb{R}^3$  una curva PPA con curvatura positiva. Entonces la traza de  $\alpha$  es un arco de circunferencia si y sólo si tiene curvatura constante y su traza está contenida en una esfera.
- **34**. Se dice que una curva PPA  $\alpha: I \to \mathbb{R}^3$  con curvatura positiva es una hélice cuando todas sus rectas normales son perpendiculares a una dirección dada. Probar que  $\alpha$  es una hélice si y sólo si existe  $a \in \mathbb{R}$  con  $\tau(s) = ak(s)$  para cada  $s \in I$  (teorema de Lancret).
- **35**. Sea  $\alpha: I \to \mathbb{R}^3$  una curva PPA con  $\tau(s) \neq 0$ ,  $k'(s) \neq 0$  en I. Demostrar que la traza de  $\alpha$  está contenida en una esfera si y solo si

$$\frac{1}{k^2} + \frac{k'^2}{k^4 \tau^2}$$

es constante.

- **36**. Sea  $\alpha: I \to \mathbb{R}^3$  una curva biregular PPA. Supongamos que para un  $s \in I$  existe un plano (afín)  $\Pi$  que contiene la recta tangente a  $\alpha$  en s y tal que para cualquier  $\varepsilon > 0$ , hay puntos de  $\alpha(s \varepsilon, s + \varepsilon)$  a ambos lados de  $\Pi$ . Demostrar que  $\Pi$  es el plano osculador de  $\alpha$  en s.
- **37**. Demostrar que si  $\alpha$ ,  $\beta: I \to \mathbb{R}^3$  son dos curvas biregulares con las mismas funciones de torsión, curvatura, y con  $\|\alpha'\| = \|\beta'\|$ , entonces son congruentes (esto es, hay un movimiento directo de  $\mathbb{R}^3$  que lleva una en la otra).
- **38**. Sea  $\alpha:(-a,a)\to\mathbb{R}^3$  una curva PPA. Definimos  $\beta(s)=\alpha(-s)$ . Demostrar que  $\beta$  está parametrizada por arco y hallar las funciones de curvatura y torsión de  $\beta$ . Demostrar que si  $k_{\alpha}(s)=k_{\alpha}(-s)$  y  $\tau_{\alpha}(-s)=-\tau_{\alpha}(s)$ , entonces la traza de  $\alpha$  es simétrica respecto al plano normal a  $\alpha$  en  $\alpha(0)$ .
- **39**. Sea  $\alpha: I \to \mathbb{R}^3$  una curva PPA biregular. Demostrar que  $\alpha$  es plana si y solo si todos los planos osculadores de  $\alpha$  son concurrentes.
- **40**. Demostrar que el cilindro  $\{(x,y,z): x^2+y^2=1\}$  es una superficie y hallar una parametrización en cada punto.
- **41**. Decida si el conjunto  $\{(x,y,0): x^2+y^2\leq 1\}$  es una superficie. Idem para  $\{(x,y,0): x^2+y^2< 1\}$ .
- **42**. Sea P el plano de  $\mathbb{R}^3$  de ecuación x=y. Definimos  $\phi:U\subset\mathbb{R}^2\to\mathbb{R}^3$  como  $\phi(u,v)=(u+v,u+v,uv)$  donde  $U=\{(u,v):u>v\}$ . Decida si  $\phi$  es una parametrización de P.

- **43**. Sea  $f(x, y, z) = (x + y + z 1)^2$ . Halle los puntos y valores críticos de f. Decida para que valores c,  $f^{-1}(c)$  es una superficie regular. Conteste las mismas preguntas cuando f se reemplaza por  $f(x, y, z) = xyz^2$ .
- **44**. Sea  $U=\{(\theta,\psi): 0<\theta<\pi, 0<\psi<2\pi\}$ . Demuestre que  $\phi:U\to\mathbb{R}^3$  dada por  $\phi(\theta,\psi)=(\sin\theta\cos\psi,\sin\theta\sin\psi,\cos\theta)$  es una parametrización de  $S^2$ , y determine el entorno coordenado correspondiente. Una vez hecho esto, modifique  $\phi$  para obtener una parametrización del elipsoide

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

- **45**. Demuestre que  $S = \{(x, y, z) : z = x^2 y^2\}$  es una superficie. Compruebe si  $\phi_1(u, v) = (u + v, u v, 4uv)$  donde  $(u, v) \in \mathbb{R}^2$  y  $\phi_2(u, v) = (u \cosh v, u \sinh v, u^2)$ , donde  $(u, v) \in \mathbb{R}^2$  con  $u \neq 0$  son parametrizaciones de S.
- **46**. Halle una parametrización en cada punto del hiperboloide de dos hojas  $-x^2 y^2 + z^2 = 1$ .
- **47**. Dos puntos p(t) y q(t) se mueven a la misma velocidad. p empieza a moverse en (0,0,0) a lo largo del eje z, mientras que q arranca de (a,0,0) (donde  $a \neq 0$ ) y se mueve en la dirección paralela al eje y. Demuestre que el conjunto unión de las líneas que pasan por p(t) y q(t) coincide con  $\{(x,y,z): y(x-a)+zx=0\}$ . Decida si esto es una superficie regular.
- **48**. Se considera la aplicación  $\phi: \mathbb{R}^2 \to \mathbb{R}^3$  definida de la siguiente forma:  $\phi(u,v)$  es la intersección de la recta definida por los puntos (u,v,0) y el polo norte  $p^+=(0,0,1)$ , con la esfera  $S^2=\{(x,y,z): x^2+y^2+z^2=1\}$ . Se denomina a  $\phi$  la proyección estereográfica desde el polo norte  $p^+$ .
  - 1. Determine las ecuaciones de  $\phi$  y pruebe que define una parametrización de la esfera con imagen  $S^2 p^+$ .
  - 2. Encuentre una aplicación diferenciable  $\psi: \mathbb{R}^3 \{(x,y,1): (x,y) \in \mathbb{R}^2\} \to R^2$  cuya restricción a  $S^2 p^+$  coincide con  $\phi^{-1}$ .
  - 3. Si se define de forma similar la proyección estereográfica de polo sur  $\theta: \mathbb{R}^2 \to \mathbb{R}^3$  (esto es, reemplazando  $p_+$  por  $p_- = (0, 0, -1)$ ), halle las ecuaciones de  $\theta^{-1} \circ \phi$ , su dominio de definición, y compruebe que es un difeomorfismo.
- **49**. Sean r, R > 0 con r < R. Llamamos toro T al conjunto de puntos  $(x, y, z) \in \mathbb{R}^3$  obtenido al hacer girar alrededor del eje 0Z la circunferencia C de centro (0, R, 0), radio r, y situada en el plano x = 0. Demuestre que  $T = F^{-1}(0)$ , donde  $F : \mathbb{R}^3 \to \mathbb{R}$  es

$$F(x,y,z) = (x^2 + y^2 + z^2 - R^2 - r^2)^2 - 4R^2(r^2 - z^2)$$

Deduzca como consecuencia que T es una superficie regular.

- **50**. Demuestre que la aplicación  $\phi(\Phi, \theta) = ((R + r \cos \Phi) \cos \theta, (R + r \cos \Phi) \sin \theta, r \sin \Phi)$  define una parametrización local del toro del ejercicio anterior cuando  $(\Phi, \theta) \in (-\pi, \pi)$ .
- **51**. Sea  $F: \mathbb{R}^3 \to \mathbb{R}^3$  una aplicación diferenciable y biyectiva con det  $dF_p \neq 0$  en todo  $p \in \mathbb{R}^3$ . Si S es una superficie, demuestre que F(S) también lo es.
- **52**. Sea S una superficie de revolución obtenida al hacer girar la curva regular simple (i.e, sin autointersecciones) del plano XZ,  $\alpha(t) = (\rho(t), 0, h(t))$ , alrededor del eje OZ. Se supone que  $\rho(t) > 0$  para todo t. Encontrar una parametrización local de S en los puntos donde  $y \neq 0$ . Idem en aquellos donde  $x \neq 0$ .
- **53**. Construya un difeomorfismo entre la esfera  $x^2 + y^2 + z^2 = 1$  y el elipsoide

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

- **54**. Demuestre que el paraboloide  $z=x^2+y^2$  es difeomorfo al plano z=0. Halle el plano tangente en cada uno de sus puntos.
- **55**. Sean  $S_1 = S^2 \{(0,0,1), (0,0,-1)\}$ , y  $S_2 = \{(x,y,z) : x^2 + y^2 = 1\}$ . A través de cada  $p \in S_1$ , tomamos la intersección de la semirrecta 0p con  $S_2$ . Demostrar que esto define una aplicación diferenciable  $F: S_1 \to S_2$ . Hallar la imagen mediante  $dF_{(1,0,0)}$  de los vectores (0,1,0) y de (0,0,1).
- **56**. Demuestre que un subconjunto  $A \subset S$  de una superficie regular es a su vez una superficie si y sólo si es un abierto de S, i.e, hay un abierto U de  $\mathbb{R}^3$  con  $A = S \cap U$ .
- 57. Demostrar que si  $F: \mathbb{R}^3 \to \mathbb{R}$  es una función diferenciable, y a es un valor regular, entonces el plano tangente a un punto  $p_0 = (x_0, y_0, z_0)$  de  $S = F^{-1}(a)$  coincide con el núcleo de  $dF_{p_0}$ . Usar esto para determinar en que puntos de  $x^2 + y^2 z^2 = 1$  el plano tangente contiene el vector (0, 0, 1). Compruébelo gráficamente.
- **58**. Demuestre que los planos tangentes a  $x^2 + y^2 z^2 = 1$  en puntos de la forma (x, y, 0) son paralelos al eje z.
- **59**. Sea S el grafo de la función  $f: \mathbb{R}^2 \to \mathbb{R}$ . Demuestre que la ecuación del plano tangente a S en el punto  $(x_0, y_0, f(x_0, y_0))$  tiene por ecuación

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

**60**. Demuestre que los planos (afines) tangentes a una superficie de ecuación z = xf(y/x), donde  $x \neq 0$  y f es  $C^{\infty}$ , pasan por el punto (0,0,0).

- **61**. Supongamos que  $\phi: U \to S$  es una parametrización de una superficie de la forma  $\phi(u,v) = \alpha_1(u) + \alpha_2(v)$ , donde  $\alpha_1$  y  $\alpha_2$  son curvas regulares. Demuestre que los planos tangentes afines a lo largo de una curva coordenada dada son paralelos a una recta fija.
- **62**. Sea  $\alpha: I \to \mathbb{R}^3$  una curva regular con curvatura no nula. Supongamos que  $S = \{\alpha(t) + v\alpha'(t) : t \in I, v \neq 0\}$  es una superficie (llamada la superficie tangente de  $\alpha$ ). Demuestre que los planos tangentes a lo largo de la curva  $v \to \alpha(t_0) + v\alpha'(t_0)$  coinciden.
- **63**. Sea  $\alpha: \mathbb{R} \to \mathbb{R}^3$  la hélice  $\alpha(t) = (\cos t, \sin t, t)$ . La unión de todas sus rectas normales se llama *helicoide*. Hallar una parametrización global. Hallar las ecuaciones del plano tangente a los puntos del helicoide.
- **64**. Mostrar que todos los planos tangentes a la superficie  $z = x^3 + y^3$  en los puntos con z = 0 forman un haz de planos.
- **65**. Demostrar que si  $f: S \to \mathbb{R}$  es la función  $f(p) = u \cdot p$ , entonces  $df_p = 0$  si y solo si u es un vector normal a  $T_pS$ .
- **66**. Sea  $f: S \to \mathbb{R}$  dada por  $f(p) = |p p_0|^2$ , donde  $p \in S$ . Demuestre que  $df_p(w) = 2w \cdot (p p_0), w \in T_pS$ .
- **67**. Un punto crítico de una función diferenciable  $f: S \to \mathbb{R}$  es un  $p \in S$  tal que  $df_p = 0$ . Si  $f: S \to \mathbb{R}$  está dada por  $f(p) = |p p_0|$ ,  $p_0 \notin S$ , demuestre que p es un punto crítico de S si y sólo si el segmento que une p con  $p_0$  es normal a S en p.
- **68**. Sea  $L: \mathbb{R}^3 \to \mathbb{R}^3$  una aplicación lineal, y S una superficie tal que  $L(S) \subset S$ . Demuestre que  $L|_S: S \to S$  es una aplicación diferenciable, y que  $d(L|_S)_p(w) = L(w)$ , donde  $p \in S$  y  $w \in T_pS$ .
- 69. Demuestre que si todas las rectas normales a una superficie conexa pasan por el mismo punto, entonces la superficie está contenida en una esfera.
- **70**. Halle la primera forma fundamental (los coeficientes) de las siguientes superficies con las parametrizaciones dadas:
  - $\phi(u, v) = (a \sin u \cos v, b \sin u \sin v, c \cos u)$  (elipsoide);
  - $\phi(u, v) = (au \cos v, bu \sin v, u^2)$  (paraboloide elíptico);
  - $\phi(u, v) = (au \cosh v, bu \sinh v, u^2)$  (paraboloide hiperbólico);
  - $\phi(u,v) = (a \sinh u \cos v, b \sinh u \sin v, c \cosh u)$  (hiperboloide de dos hojas).
- 71. Sea S una superficie de revolución obtenida al hacer girar una curva regular simple en el plano YZ,  $\alpha(t)=(0,\rho(t),h(t))$  con  $\rho>0,\ t\in(a,b)$  alrededor del eje Z. Halle

parametrizaciones en cada uno de sus puntos, escribir los coeficientes de la primera forma fundamental en ellas, y usarlas para demostrar que el área de S está dada por  $2\pi \int_a^b \rho(t)dt$  cuando  $\alpha$  está parametrizada con respecto al arco.

- 72. Sea  $\phi(\Phi, \theta) = ((R + r\cos\Phi)\cos\theta, (R + r\cos\Phi)\sin\theta, r\sin\Phi), (\Phi, \theta) \in (-\pi, \pi)$ , la parametrización local del toro estudiada en un ejercicio anterior. Halle la primera forma fundamental y el área del toro.
- 73. Si  $\phi(u,v) = (u\cos v, u\sin v, \log\cos v + u)$  con  $u \in \mathbb{R}, v \in (-\frac{\pi}{2}, \frac{\pi}{2})$  es una parametrización de la superficie S, demostrar que el par de curvas  $\phi(u_1,v)$ ,  $\phi(u_2,v)$  cortan a cada curva  $\phi(u,v_0)$  (con  $v_0$  constante) en segmentos con igual longitud.
- 74. Demostrar que  $\phi: (0, \infty) \times (0, 2\pi) \to \mathbb{R}^3$  dada por  $\phi(u, v) = (u \sin \alpha \cos v, u \sin \alpha \sin v, u \cos \alpha)$  es una parametrización de un cono con ángulo  $2\alpha$  en el vértice (obviamente,  $\alpha < \pi/2$ ). Demostrar que la curva dada por  $u(t) = c \exp(t \sin \alpha \cot \beta)$ , v(t) = t (con c,  $\beta$  constantes) interseca cada generatriz del cono con ángulo  $\beta$ .
- 75. Demuestre que el área de la región R de la superficie z = f(x, y) está dada por

$$A = \int \int_{O} \sqrt{1 + f_x^2 + f_y^2} \, dx \, dy \,,$$

donde Q es la proyección de R sobre el plano xy.

- **76.** Supongamos que S es una superficie regular que puede cubrirse mediante dos cartas  $(V_1, c_1), (V_2, c_2)$  tal que cada  $V_i$  es conexo,  $V_1 \cap V_2 = W_1 \bigcup W_2$  donde  $W_1, W_2$  son abiertos conexos disjuntos, y tal que el jacobiano del cambio de coordenadas en  $W_1$  y en  $W_2$  es de signos diferentes. Demostrar que S no es orientable.
- 77. Tomamos la circunferencia  $C = \{(x, y, 0) \in \mathbb{R}^3 : x^2 + y^2 = r^2\}$  y el segmento abierto  $L = (r, 0, z) \in \mathbb{R}^3 : -l < z < l\}$ , donde 0 < l < r. Traslademos el centro c de L a lo largo de C rotando al mismo tiempo L (en torno a dicho centro) en el plano determinado por c y el eje z, de forma que, cuando c ha recorrido un ángulo  $\psi$ , L haya rotado un ángulo  $\psi/2$ . El subconjunto M de  $\mathbb{R}^3$  barrido por el segmento L se llama banda de Moebius. Admitido que M es una superficie, demostrar que la aplicación

$$\phi(u,v) = \left( (r - v\sin\frac{u}{2})\cos u, (r - v\sin\frac{u}{2})\sin u, v\cos\frac{u}{2} \right) \qquad u \in (-\pi,\pi), v \in (-l,l)$$

es una parametrización de M. Demostrar que la banda de Moebius es no orientable.

- 78. Si  $S_2$  es una superficie orientable y  $F: S_1 \to S_2$  es un difeomorfismo local, demostrar que  $S_1$  es orientable. Use esto para demostrar que una superficie orientable no puede contener un abierto difeomorfo a una cinta de Moebius.
- **79**. Si  $f: S \to \mathbb{R}$  es diferenciable, el gradiente de f se define como una aplicación grad  $f: S \to \mathbb{R}^3$  tal que

- (i) grad  $f(p) \in T_p S$ ,
- (ii)  $\langle \operatorname{grad} f(p), v \rangle_p = df_p(v)$

para todo  $p \in S$   $v \in T_pS$ . Se pide:

- 1. Si  $\phi: U \to S$  es una parametrización, halle las coordenadas de grad  $f_p$  en la base de vectores coordenados  $\phi_u, \phi_v$  de  $T_pS$ .
- 2. Use el apartado anterior para hallar el gradiente de una función  $f: S = \{(x, y, 0)\} \to \mathbb{R}$  cuando se toma la parametrización natural en S.
- 3. Demuestre que sobre el círculo ||v|| = 1 en  $T_pS$ ,  $df_p(v)$  alcanza su máximo sobre el vector  $v = \operatorname{grad} f/||\operatorname{grad} f||$  (siempre que  $/||\operatorname{grad} f|| \neq 0$ ).
- 80. Sea U un abierto en  $\mathbb{R}^2$  que contiene al origen, y  $f: U \to \mathbb{R}$  una función diferenciable, con  $f(0,0) = f_x(0,0) = f_y(0,0) = 0$ . Si S es el grafo de f, hallar su plano tangente en (0,0,0). Después de elegir una normal unitaria N, determine  $dN_{(0,0,0)}(\vec{w})$  donde  $\vec{w} \in T_{(0,0,0)}S$  es un vector arbitrario.
- 81. Se considera el grafo de la función  $f(x,y) = 2x^2 + y^2$ . De todas las curvas diferenciables  $\alpha: (-\varepsilon, \varepsilon) \to S$  con  $\alpha(0) = (0,0,0)$ , determine una con curvatura mínima en p. ¿Existe alguna con curvatura máxima?
- 82. Sea  $\alpha$  una curva regular contenida en una superficie S. Si S tiene curvatura Gaussiana positiva K > 0, demuestre que la curvatura  $k_{\alpha}$  de  $\alpha$  en un punto p satisface  $k_{\alpha} \ge \min(|k_1|, |k_2|)$  donde  $k_1, k_2$  son las curvaturas principales de S en p.
- 83. Demuestre que en un punto hiperbólico, las direcciones principales bisecan a las asintóticas.
- 84. Demostrar que si una superficie es tangente a un plano a lo largo de una curva, entonces los puntos de tangencia son o bien parabólicos, o bien planos.
- 85. Supongamos que una superficie tiene la propiedad de que  $|k_1| \le 1$  y  $|k_2| \le 1$  en todos sus puntos. ¿Es cierto que la curvatura k de una curva cualquiera  $\alpha$  en S cumple asimismo que  $|k| \le 1$ ?
- 86. Demuestre que la curvatura media en un punto  $p \in S$  puede calcularse como

$$H = \frac{1}{\pi} \int_0^{\pi} k_n(\theta) d\theta,$$

donde  $k_n(\theta)$  es la curvatura normal en p a lo largo de una dirección que forma un ángulo  $\theta$  medido desde una dirección fija.

87. Demostrar que la suma de las curvaturas normales correspondientes a dos direcciones unitarias ortogonales en un punto  $p \in S$  es una constante.

- 88. Demuestre que si la curvatura media se anula en un  $p \in S$  y p no es un punto plano, entonces existen dos direcciones asintóticas ortogonales en p.
- 89. Sean  $F: \mathbb{R}^2 \to \mathbb{R}$  una función diferenciable con  $DF_p \neq (0,0)$  en todo punto  $p \in F^{-1}(0)$ . Demuestre que  $S = F^{-1}(0) \times \mathbb{R}$  es una superficie que tiene todos sus puntos parabólicos o planos, y un punto (x, y, z) es plano si y sólo si la curvatura de la curva plana  $F^{-1}(0)$  en (x, y) es nula.
- 90. Pruebe que la superficie  $z = \cos x + \cos y + xy 2$  tiene un punto parabólico aislado.
- 91. Demuestre que una superficie conexa con todos sus puntos planos es necesariamente un abierto del plano.
- 92. Considérese la superficie parametrizada

$$\phi(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, u^2 - v^2\right)$$

Determine los coeficientes de la primera y segunda forma fundamental. Determine las curvaturas principales. Demuestre que las curvas coordenadas son líneas de curvatura. Pruebe que las curvas  $u + v = a_0$ , y las curvas  $u - v = a_0$  son asintóticas.

93. Sea S una superficie orientada con aplicación de Gauss N. Si  $\alpha: I \to S$  es una curva PPA biregular que no contiene puntos planos o parabólicos, demuestre que  $\beta = N \circ \alpha$  es una curva regular ( $\beta$  se llama imagen esférica de  $\alpha$ ). Demuestre asimismo que si  $\alpha$  es una línea de curvatura de S y  $k_{\alpha}$  es su curvatura en p, entonces

$$k_{\alpha} = |k_n|k_{\beta}$$

donde  $k_n$  es la curvatura normal de  $\alpha$  y  $k_{\beta}$  la curvatura de su imagen esférica.

- 94. Sean  $S_1$  y  $S_2$  dos superficies que se intersecan transversalmente a lo largo de una curva diferenciable  $\alpha : \mathbb{R} \to S_i$ , i = 1, 2. Esto quiere decir que  $S_1 \cap S_2 = \alpha(\mathbb{R})$ , y que para todo  $t \in \mathbb{R}$ ,  $T_{\alpha(t)}S_1$  y  $T_{\alpha(t)}S_2$  se intersecan en un subespacio de dimensión 1. Denotemos por  $\theta : I \to \mathbb{R}$  el ángulo que  $S_1$  forma con  $S_2$  a lo largo de  $\alpha$  (i.e,  $\theta$  es el ángulo que forma la normal a  $S_1$  con la normal a  $S_2$ ). Supongamos además que  $\alpha$  es una línea de curvatura en  $S_1$ . Demuestre que el ángulo  $\theta$  es constante a lo largo de  $\alpha$  si y sólo si  $\alpha$  es una línea de curvatura en  $S_2$ .
- 95. Demuestre que una curva biregular es asintótica si y sólo si su plano osculador es tangente a la superficie en cada punto.
- 96. Demuestre que cualquier línea recta contenida en una superficie es una curva asintótica.
- 97. Demuestre que toda superficie compacta contiene al menos un punto elíptico.