TARGET SQL PROJECT

Name: Anusha Jadhav

Batch: DSMLAUG 2022 BEGINNER MORNING

1.Import the dataset: and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

Dataset imported successfully from the drive.

1.1)Data type of customers columns in a table

1.2) Time period for which the data is given

1.3). Cities and States of customers ordered during the given period

2.In-depth Exploration:

PERSONAL HISTORY

2.1) Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

PROJECT HISTORY

Yes, there is a growing trend observed. When we look for seasonality in months irrespective of years, the highest number of orders were placed in the month of august (winter season with dry weather) but there is sharp fall of orders in september(onset of rainy season).

2.2) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
+SHARE ▼

    SCHEDULE ▼

                                                           ☎ MORE ▼
            SAVE ▼
  RUN
   /*What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)? */
2 with orders_per_hour as (
3
       select count(*) as no_of_orders,
4
             extract(hour from order_purchase_timestamp) as hour
                `target_sql.orders`
5
       from
       group by hour)
7
   select sum(no_of_orders) as Total_orders,
8
9
             when hour between 1 and 6 then 'dawn'
10
             when hour between 5 and 13 then 'morning'
             when hour between 12 and 19 then 'afternoon'
11
             else 'night'
12
13
             end as Timings
14 from
           orders_per_hour
15 group by Timings
16 order by Total_orders
17
```

Query results

JOB IN	FORMATION	RESULTS	JSON
Row	Total_orders	Timings	
1	2848	dawn	
2	24743	night	
3	34251	morning	
4	37599	afternoon	
PE	RSONAL HISTOR	Y PROJ	ECT HISTORY

According to the given data, customers tend to purchase more during afternoon(i.e from 12pm to 18pm) and the least purchase is done during the dawn (i.e from 1am to 5am)

3. Evolution of E-commerce orders in the Brazil region:

3.1)Get month on month orders by states

From the above result state: AC has highest no of orders in the month of May.

3.2) Distribution of customers across the states in Brazil

Total records are 4310 which cannot be plotted on a graph.Instead <u>distribution of customers</u> by each state is done below

Now here we have only 27 records which is plotted in pie chart. The States in order: SP>RJ>MG>>RR has the distribution of no of customers across Brazil

- **4.Impact on Economy:** Analyze the money movement by e-commerce by looking at order prices, freight and others.
- 4.1) Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

```
SAVE ▼
                                         ( SCHEDULE ▼
                                                           MORE -
  ♠ RUN
                          +SHARE ▼
    with p1_2017 as
2
    ( select
                payment_value,
3
                extract (year from order_purchase_timestamp) as Year,
 4
                extract (month from order_purchase_timestamp) as Month
 5
      from
               target_sql.orders`as o
               `target_sql.payments` as p
 б
      join
 7
      on o.order_id = p.order_id
 8
      where
                extract (year from order_purchase_timestamp) = 2017 and
 9
                extract (month from order_purchase_timestamp) between 1 and 8
10
   ١).
    p2_2018 as
11
12
    ( select
                payment_value,
13
                extract (year from order_purchase_timestamp) as Year,
14
                extract (month from order_purchase_timestamp) as Month
15
      from
               target_sql.orders`as o
               `target_sql.payments` as p
16
      join
17
      on o.order_id = p.order_id
18
               extract (year from order_purchase_timestamp) = 2018 and
      where
19
             extract (month from order_purchase_timestamp) between 1 and 8
20
    select round(((sum(p2.payment_value) - sum(p1.payment_value))/ sum(p1.payment_value))*100,2) as
21
   percentage_of_cost_increase_from_2017_to_2018
22
23
   from
            p1_2017 as p1
            p2_2018 as p2
    join
25
    on p1.Month = p2.Month
26
```

Query results JOB INFORMATION RESULTS JSON EXECUTION II Row percentage_of_cost_increase_from_2017_to_2018 1 4.21

4.2) Mean & Sum of price and freight value by customer state

```
RUN
               SAVE ▼
                              +SHARE ▼

    SCHEDULE ▼

                                                                  MORI
      /*Mean & Sum of price and freight value by customer state*/
      select c.customer_state,
              avg(oi.price) as Mean_Price,
              sum(oi.price) as Total_Price,
  4
  5
             avg(oi.freight_value) as Mean_freight_value,
  б
             sum(oi.freight_value) as Total_freight_value,
            avg(oi.price + oi.freight_value) as Mean_Cost_of_order, sum(oi.price + oi.freight_value) as Total_Cost_of_order
  8
               `target_sql.order_items`as oi
             `target_sql.orders`as o
 10 join
 11
     on oi.order_id = o.order_id
 12
      join
            `target_sql.customers`as c
 13 on o.customer_id = c.customer_id
 14 group by c.customer_state
Query results

♣ SAVE RESULTS ▼
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH	PREVIEW	
Row	customer_state	li.	Mean_Price	Total_Price	Mean_freight_va	Total_freight_val	Mean_Cost_of_c	Total_Cost_o
1	SP		109.653629	5202955.05	15.1472753	718723.069	124.800904	5921678.11.
2	RJ		125.117818	1824092.66	20.9609239	305589.310	146.078742	2129681.97.
3	PR		119.004139	683083.760	20.5316515	117851.680	139.535790	800935.440
4	SC		124.653577	520553.340	21.4703687	89660.2600	146.123946	610213.600
5	DF		125.770548	302603.939	21.0413549	50625.4999	146.811903	353229.440.
6	MG		120.748574	1585308.02	20.6301668	270853.460	141.378740	1856161.48
7	PA		165.692416	178947.809	35.8326851	38699.3000	201.525101	217647.109
8	BA		134.601208	511349.990	26.3639589	100156.679	160.965167	611506.670
9	GO		126.271731	294591.949	22.7668152	53114.9799	149.038546	347706.930
10	RS		120.337453	750304.020	21.7358043	135522.740	142.073257	885826.760.

M EXP

State :PB has the highest Mean-Price, Mean-Freight-value, Mean-Cost-of-order and State:SP Being the lowest of all

5. Analysis on sales, freight and delivery time

5.1) Calculate days between purchasing, delivering and estimated delivery

```
/*Calculate days between purchasing, delivering and estimated delivery*/
select order_id,
date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as btw_purchase_to_delivery_date
date_diff(order_delivered_customer_date,order_estimated_delivery_date,day) as delay_in_delivery,
date_diff(order_estimated_delivery_date,order_purchase_timestamp,day) as btw_purchase_to_estimated
from __itarget_sql.ordersimated_delivery_date_desc,delay_in_delivery_desc,btw_purchase_to_estimated
order_by_btw_purchase_to_delivery_date_desc,delay_in_delivery_desc,btw_purchase_to_estimated
```

Query results								
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION	DETAILS EX	KECUTION GRAPH PREVIEW		
Row	order_id	//	btw_purchase_	to_delivery_date	delay_in_delivery	btw_purchase_to_estimated		
1	ca07593549f181	16d26a572e06		209	181	28		
2	1b3190b2dfa9d7	789e1f14c05b		208	188	19		
3	440d0d17af5528	315d15a9e41a		195	165	30		
4	285ab9426d698	2034523a855f		194	166	28		
5	0f4519c5f1c541	ddec9f21b3bd		194	161	32		
6	2fb597c2f772ec	a01b1f5c561b		194	155	39		
7	47b40429ed8cc	e3aee9199792		191	175	15		
8	2fe324febf907e	3ea3f2aa9650		189	167	22		
9	2d7561026d542	c8dbd8f0daea		188	159	28		
10	c27815f7e3dd0b	926b5855262		187	162	25		

For above there are 99441 orders done in the dataset.

5.2)Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

- time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
- diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

Clearly from the first row: estimated_delivery says 181 days,but the item got delivered 28 days later on 209th day of the purchase.

5.3) Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

5.4 Sort the data to get the following:

a)Top 5 states with lowest average freight value - sort in asc limit 5

b)Top 5 states with highest average time to delivery

Mean-Time-Delivery = AVG(order delivered customer date - order purchase timestamp)

c)Top 5 states where delivery is really fast/ not so fast compared to estimated date

6.Payment type analysis:

6.1) Month over Month count of orders for different payment types

```
RUN
             SAVE ▼ + SHARE ▼ ( SCHEDULE ▼
                                                         MORE -
     /* Month over Month count of orders for different payment types */
  2
     select extract(month from order_purchase_timestamp) as Month,
  3
            payment_type,
  4
            count(o.order_id) as no_of_orders
  5 from
             `target_sql.orders` as o
            `target_sql.payments` as p
  6 join
  7 on o.order_id = p.order_id
  8 group by Month, payment_type
9 order by Month, no_of_orders
```

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DE
Row	Month	payment_type		no_of_orders
1	1	debit_card		118
2	1	voucher		477
3	1	UPI		1715
4	1	credit_card		6103
5	2	debit_card		82
6	2	voucher		424
7	2	UPI		1723
8	2	credit_card		6609
9	3	debit_card		109
10	3	voucher		591

Payments done by credit cards is more as compared to other payment_type

6.2) Count of orders based on the no. of payment instalments

7. Actionable Insights:

- The given time period for the Dataset is in between 09-sept-2016 and 17-oct-2018
- There is consistent increase in number of orders from 2016 to 2018 as shown in the graph below:

- The issue of delay in delivery of the orders has to be looked into inorder to maximise the purchase and ensure brand trust for the customers. It can done by:
 - Introducing more of number of warehouses in order to reduce scarcity of products by looking into geolocations table for every state
 - How to speed up deliveries during extreme weather conditions
 - Having a sufficient delivery network system becomes very important as customers tend to purchase more during holidays.
- Number of orders purchased via credit cards is more in the given dataset and then comes UPI transaction

Top three product category with highest cost price ordered by customers

Highest purchased category is housewares and health-beauty being the cheapest category purchased.

8.Recommendations:

- As we know that payments done by credit cards are way more than debit cards ,hence in order to engage more customers who only own debit cards, a high value of discounts have to be given.
- Tracking each customer's purchases will help the target to recommend product category items they are interested in.
- Customer table should include age and gender for better understanding of interests of customer
- Review_score from reviews table can be used to eliminate items with review score=1 given by more than 1000 customers