Partial derivatives and total differentials

Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

January 19, 2021

Content

Partial derivatives

1 Partial derivatives

2 Total differentials

Content

1 Partial derivatives

2 Total differentials

Definition

Let $f(x,y):D\to\mathbb{R}$, $(x_0,y_0)\in D$, open set $D\subset\mathbb{R}^2$.

The partial derivative with respect to x is

$$f'_{x}(x_{0}, y_{0}) \frac{\partial f}{\partial x}(x_{0}, y_{0}) = \frac{d}{dx} f(x, y_{0}) \Big|_{x=x_{0}}$$
$$= \lim_{\Delta x \to 0} \frac{f(x_{0} + \Delta x, y_{0}) - f(x_{0}, y_{0})}{\Delta x}$$

The partial derivative with respect to y is

$$f_{y}'(x_{0}, y_{0}) = \frac{\partial f}{\partial y}(x_{0}, y_{0}) = \frac{d}{dy}f(x_{0}, y) \Big|_{y=y_{0}}$$
$$= \lim_{\Delta y \to 0} \frac{f(x_{0}, y_{0} + \Delta y) - f(x_{0}, y_{0})}{\Delta y}$$

Partial derivatives

Total differentials Rule: when differentiating with respect to x, other variables are considered constants.

Example

Compute the partial derivatives of the following functions

If
$$f(x,y) = x^y$$
 at $(2,1)$.

2
$$u(x, y, z) = z\sqrt{x^2 + y^2}$$
.

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Multivariable chain rule (case 1)

Partial derivatives

Total differentials

Theorem

Suppose that z = f(x, y) has continuous partial derivatives, where x = x(t) and y(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$z'(t) = f'_{x}.x'(t) + f'_{y}.y'(t).$$

Multivariable chain rule (case 2)

Partial derivatives

Total differentials Recall: The composition $g \circ f : X \subset \mathbb{R}^2 \xrightarrow{f} Y \subset \mathbb{R}^2 \xrightarrow{g} \mathbb{R}$ is

$$(x,y) \stackrel{f}{\mapsto} (u(x,y),v(x,y)) \stackrel{g}{\mapsto} \underbrace{g((u(x,y),v(x,y)))}_{F(x,y)}$$

Theorem

Assume that g(u,v) has continuous partial derivatives in Y, u,v have partial derivatives in X. Then the composition function $F=g\circ f\colon X\to\mathbb{R}$ has partial derivatives in X and

$$F'_{x} = g'_{u}.u'_{x} + g'_{v}.v'_{x},$$
 $F'_{y} = g'_{u}.u'_{y} + g'_{v}.v'_{y}$

Partial derivatives

Total differentials The chain rule can be written in the matrix form as

$$\begin{cases} F_x' = g_u'.u_x' + g_v'.v_x', \\ F_y' = g_u'.u_y' + g_v'.v_y' \end{cases} \Rightarrow \begin{pmatrix} F_x' & F_y' \end{pmatrix} = \begin{pmatrix} g_u' & g_v' \end{pmatrix} \begin{pmatrix} u_x' & u_y' \\ v_x' & v_y' \end{pmatrix},$$

where
$$\frac{D(u,v)}{D(x,y)} = \begin{pmatrix} u'_x & u'_y \\ v'_x & v'_y \end{pmatrix}$$
 is called the Jacobian matrix of f .

Partial derivatives

Total differentials

Example

Compute the partial derivatives of the following functions

$$f(u,v) = \sin(u^2 + v) - e^{2u-v}, \ u = \ln(x^2 + y^2), v = xy.$$

2
$$f(x,y) = x.e^{xy}$$
, $x = \ln(2+t^2)$, $y = t^2 - t + 1$.

3
$$g(t) = \ln(t^3 + 1) + \cos(2t^2), t = x^2 + 2y.$$

Content

1 Partial derivatives

2 Total differentials

Total differentials

Partial derivatives

Total differentials

Definition

Given f(x,y): $D \subset \mathbb{R}^2 \to \mathbb{R}$, $M_0(x_0,y_0) \in D$. If we can express

$$\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y,$$

where the constants A,B depend only on x_0,y_0 , and the infinitesimals α,β tend to 0 as $\Delta x,\Delta y\to 0$, we say that f(x,y) is differentiable at M_0 ;

 $df(x_0, y_0) = A\Delta x + B\Delta y$: the total differential of f at M_0 . f is said to be differentiable on D if f is differentiable at all $M_0 \in D$.

Example

Is the function $z = 2x - y^2$ differentiable at (1,0)?

Properties

Partial derivatives

Total differentials If f is differentiable at M_0 then f is continuous at M_0 . Indeed, let $\Delta x, \Delta y \to 0$, then $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y \to 0$.

■ $\Delta y = 0$, $\frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = A + \alpha$. Passing to the limit as $\Delta x \to 0$: $A = f_x'(x_0, y_0)$. Similarly, $B = f_y'(x_0, y_0)$. $df = f_x'\Delta x + f_y'\Delta y$. If f is differentiable at M_0 then f has partial derivatives at M_0 . However, the converse is not necessary true. derivatives

Total differentials

Example

Is
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0), \end{cases}$$
 differentiable at $(0,0)$?

f is not differentiable at (0,0) although $f'_x(0,0) = f'_y(0,0) = 0$.

Partial derivatives

Total differentials

Theorem

If $f'_x(x,y)$, $f'_y(x,y)$ exist in $B(M_0,\varepsilon)$ and are continuous at M_0 . Then, f(x,y) is differentiable at M_0 and

$$df(M_0) = f_x'(M_0)\Delta x + f_y'(M_0)\Delta y.$$

Remark

f(x,y) discontinuous at $M_0 \Rightarrow f$ is not differentiable at M_0 .

Take f(x, y) = x, then $df = \Delta x = dx$. Similarly, $\Delta y = dy$, $df = f'_x dx + f'_y dy$.

Total differentials

Example

Compute the total differential of the following functions

$$(a)z = \frac{1}{2}(x^2 + y^2)$$
 $b)z = x^3$

a)
$$z = \frac{1}{2}(x^2 + y^2)$$
 b) $z = x^y$
c) $z = \arctan xy$ d) $u = \frac{z}{\sqrt{x^2 + y^2}}, du(1, 2, 3).$

Approximations using total differentials

Partial derivatives

Total differentials We have:

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + \underbrace{f'_x(x_0, y_0)\Delta x + f'_y(x_0, y_0)\Delta y}_{df(x_0, y_0)}.$$

Example

Approximate the following values

a)
$$\ln(\sqrt[3]{1,02} + \sqrt[4]{0,98} - 1)$$
 b) $\sqrt[3]{1,02^2 + 1,98^3 - 1}$

Invariance of the first order total differential

Given f(u, v). The total differential of f is

$$df = f'_u du + f'_v dv.$$

If we can write u=u(x,y), v=v(x,y) then f can be rewritten as F(x,y):=f(u(x,y),v(x,y)). The total differential of the composition function is $dF=F_x'dx+F_y'dy$. By the chain rule

$$\begin{cases} F_x' = f_u'u_x' + f_v'v_x', \\ F_y' = f_u'u_y' + f_v'v_y'. \end{cases}$$

Therefore,

$$dF = (f'_{u}u'_{x} + f'_{v}v'_{x})dx + (f'_{u}u'_{y} + f'_{v}v'_{y})dy$$

= $f'_{u}(u'_{x}dx + u'_{y}dy) + f'_{v}(v'_{x}dx + v'_{y}dy)$
= $f'_{u}du + f'_{v}dv = df$.

Partial derivatives

differentials

Total