R

Last Update: 2021-10-19

Contents

																												_
1																												5
	1.1																											5
	1.2																											5
	1.3																											6
	1.4																											6
2	R(S	studio)																										7
3	RSt	udio																										9
	3.1	RStudio																										9
	3.2	RStudio		•	•	•	•	•	•	•	•	•	 •	•	•	•	•		•	•	•	•	•	•	•	•	•	9
	3.3	RStudio			•		•	•		٠	•	•		•								•	•	•	•	•	•	10
	3.4	Tibliadio	•		•	•	•	•		•	•	•		•					-	-		•	•	•	•	•	•	10
	$3.4 \\ 3.5$	• •		٠.	•		•	•		•														•	•	•	•	10
	5.5	•			•	•	•	•	• •	•	٠	•	 •	٠	•	•	•		•	•	•	•	•	•	•	•	•	10
4																												13
5	\mathbf{R}																											15
•	5.1																											15
	5.2	• •		•	•	•	•	•	•	•	•	•	 •	•	•	•			•	•	•		•	•	•	•	•	16
	5.3				•		•	•		•	•	•			•	•								•	•	•	•	17
	5.4				•		•	•		•	•	•	 ٠	٠				•	•			•	•	•	•	•	•	18
	$5.4 \\ 5.5$	• •			•		•	•	• •	•	•	•										•	•	•	•	•	•	18
	5.5				•	•	•	•	• •	•	•	•	 •	٠	•	•	•		٠	•	•	•	•	•	•	•	•	10
6																												19
	6.1																											19
	6.2																											19
	6.3																											20
	6.4																											20
-																												0.1
7	7 1																											21
	7.1				•		•	٠		٠	•	•	 •	•	•	•	•		•	٠	•	٠	٠	•	•	•	•	21
	7.2				•		•	٠		•	•	•	 •	٠	•	•	•		•		•	٠	٠	•	•	•		21
	7.3																											22

4 CONTENTS

8			23
	8.1	%>%	23
	8.2		24
	8.3		26
	8.4		29
	8.5		29
	8.6		30
	8.7		31
9			33
	9.1		33
	9.2		34
10			37
	10.1 1		37
	10.2 2		40
	10.3		45
11	t		47
	11.1		48
12			49
	12.1		49
	12.2 R		49
	12.3		51
	12.4		51
	12.5		52
	12.6		53
	12.7		54
	12.8		55
13	Word		57
	13.1		57

 \mathbf{R} • R Word \mathbf{R} Word \mathbf{R} 1.1 • R, RStudio RStudio Chapter 2 R RStudio \mathbf{R} 2018 RStudio RStudio[] —tidyverse $2018~\mathrm{R}$ 1.2 ${\bf YouTube}$ $tomo_econ$ ${\bf R}$

6 CHAPTER 1.

1.3

- 2021/10/19 YouTube2020/09/03

1.4

• tidyverse %>% - tidyverse

R(Studio)

 $R(Studio) & Windows \\ http://yukiyanai.github.io/jp/resources/\\ & Windows \\ \bullet & - & 1 \\ & - & 4 \operatorname{Rtools} \\ & - \operatorname{RStudio} \\ \bullet & & \rightarrow \\ \bullet & \operatorname{OneDrive} & \rightarrow \\ & & \operatorname{macOS} \\ \bullet & & - \operatorname{RStudio} \\ \end{array}$

RStudio

3.1 RStudio

RStudio Windows Mac

OK \mathbf{R}

RStudio

3.2 **RStudio**

RStudio

RStudio 4

R Script RStudio

3.3 RStudio

R 1 + 1

| Untitled1* x | Source on Save | Q | 1 + 1 |

Windows Ctrl + Enter Mac Command + Enter

 Run

Ctrl + Enter (Command + Enter)

 \rightarrow

3.4

 $\begin{tabular}{lll} Windows Ctrl & + & S Mac Command & + & S \\ \end{tabular}$

3.5

RStudio

3.5.

"New Directory"

"New Project"

Create Project

Test Test.Rproj

RStudio

• .Rproj

• RStudio

R R .R

14 CHAPTER 4.

\mathbf{R}

```
Section 5.5
5.1
\mathbf{R}
              object
                                    \mathbf{R}
first_object <- 1</pre>
                     first_object
                OK
first_object
## [1] 1
[1] 1
      ()
                          \verb"second_object"\,2
(second_object <- 2)</pre>
## [1] 2
first_string_object <- "Ritsumeikan University"</pre>
first_string_object
## [1] "Ritsumeikan University"
   first_string_object
                                    "Ritsumeikan University"
        1
                                           c()
```

16 CHAPTER 5. R

```
first_vector_object \leftarrow c(1, 2, 3, 4, 5)
first_vector_object
## [1] 1 2 3 4 5
                            1 5
  first_vector_object
                        10000
  • third_object
  • my_name
  • second_vector_object
                                    1, 1, 2, 3, 5, 8
5.2
\mathbf{R}
                   +, -
1 + 1
## [1] 2
5 - 2
## [1] 3
  * /
                        Excel
2 * 3
## [1] 6
10 / 2
## [1] 5
4 ^ 2
## [1] 16
                           'age'
                                     10
age <- 20
age + 10
## [1] 30
                            1 + 1 one_plus_one
one_plus_one <- 1 + 1
one_plus_one
## [1] 2
   one_plus_one
                   2
```

5.3.

```
\bullet \qquad \mathtt{a} \ 3 \qquad \mathtt{b} \ 4
  • a, b 2
                   25
5.3
R
                  function
                                () argument
5.3.1
        \mathbf{R}
                       sqrt()
sqrt(4)
## [1] 2
  sqrt() 4 4 2
                                       log()
        \mathtt{a}\ 3
  • a, b 2
                       5
               sqrt()
5.3.2
                                   age_vector <- c(18, 21, 22, 23,
34)
         min()
age_vector <- c(18, 21, 22, 23, 34)
min(age_vector)
## [1] 18
    18
                    max()
                              median()
                     mean()
                                            sd()
mean(age_vector)
## [1] 23.6
median(age_vector)
## [1] 22
sd(age_vector)
```

18 CHAPTER 5. R

```
## [1] 6.107373
                         10, 100, 1000, 10000, 100000
        income_vector
  • income_vector
5.4
                          \mathbf{R}
      age_vector
                     gender_vector
                                                        data.frame()
age <- c(18, 21, 22, 23, 34) #
gender <- c("female", "male", "female", "female") #</pre>
first_dataframe <- data.frame(age, gender)</pre>
first_dataframe
##
     age gender
## 1 18 female
## 2 21
           male
## 3 22
           male
## 4 23 female
## 5 34 female
                          Chapter @ref(#ImportData) Excel
1 18 2 21 ...
                                                                \mathbf{R}
                              $
                                                     first_dataframe
first_dataframe$gender
## [1] "female" "male"
                                   "female" "female"
                          "male"
mean(first_dataframe$age)
## [1] 23.6
                   10, 100, 1000, 10000, 100000
        income
                 "ibaraki", "takatsuki", "ibaraki", "takatsuki",
        city
     "takatsuki"
  • income city
                      income_data
```

5.5

• income_data

income

Section 6.4

```
RStudio
6.1
                           Chapter 3
                      CSV .csv Excel .xlsx, .xls
        1
6.2
6.2.1 CSV
                    .csv
         read_csv
                           sotsuron.csv
data_original <- read_csv("sotsuron.csv")</pre>
  \operatorname{csv}
          data_original
                                                                            data_original
6.2.2
       \mathbf{Excel}
                     .xlsx
Excel
               readxl
install.packages("readxl")
library(readxl)
read_excel
```

CHAPTER 6.

```
data_original <- read_excel("sotsuron.xlsx")</pre>
```

6.2.3 Qualtrics

```
Qualtrics qualtRics
install.packages("qualtRics")
library(qualtRics)
```

```
Qualtrics CSV CSV read_survey
data_original <- read_survey("sotsuron.csv")
```

Qualtrics

6.3

- "Data" data_original
- head(data_original)
- str(data_original)

6.4

library(wooldridge)

7.1

2

 \leftarrow

←

7.2

•

5 15

• • 5 •

 $1, 2 \quad 3, 4, 5$

22 CHAPTER 7.

7.3

```
{\tt wooldridge}^1
                      saving
install.packages("wooldridge")
library(wooldridge)
  data()
data("saving")
head()
head(saving)
##
            inc size educ age black
                                     cons
## 1
                        2 40
       30
          1920
                                  1 1890
                   4
## 2 874 12403
                                  0 11529
                   4
                        9
                           33
## 3 370 6396
                   2
                       17
                           31
                                  0 6026
## 4 1200
                   3
                                  0 5805
          7005
                       9 50
## 5 275
           6990
                   4
                       12 28
                                  0 6715
## 6 1400
          6500
                       13 33
                                  0 5100
   1980
  • sav:
  • inc:
  • size:
  • educ:
  • age:
  • black:
   • cons:
library(tidyverse)
library(wooldridge)
data("saving")
```

 $^{^{1} \}mbox{Wooldridge} \qquad \qquad \mbox{``Introductory Econometrics: A Modern Approach''}$

```
Section 8.7
                                                     8
   dplyr
                        dplyr tidyverse
                                         tidyverse
                                                       OK
        %>%
8.1
                     magrittr
  %>%
                                  tidyverse
saving %>% head()
          inc size educ age black cons
     sav
     30 1920 4
                   2 40
                           1 1890
## 2 874 12403
                   9 33
                              0 11529
                    17 31
## 3 370 6396
                 2
                              0 6026
## 4 1200 7005
                 3
                    9 50
                              0 5805
## 5 275
         6990
                    12 28
                              0 6715
## 6 1400
         6500
                    13 33
                              0 5100
    Chapter head(saving)
          : saving
       : %>%
        : head()
```

24 CHAPTER 8.

```
saving$sav %>% mean()
## [1] 1582.51
                      saving$sav
                                         mean() %>%
    saving sav
        100
        saving inc
8.2
     dplyr mutate()
8.2.1
mutate()
           sav inc
                          saving_rate
saving_with_rate <-</pre>
  saving %>%
   mutate(saving_rate = sav / inc)
head(saving_with_rate)
##
      sav
           inc size educ age black cons saving_rate
## 1
      30
         1920
                       2 40
                                 1 1890 0.01562500
## 2 874 12403
                       9 33
                                 0 11529 0.07046682
## 3 370 6396
                  2
                      17 31
                                 0 6026 0.05784866
## 4 1200 7005
                  3
                      9 50
                                 0 5805 0.17130621
## 5 275 6990
                      12 28
                                 0 6715 0.03934192
## 6 1400 6500
                  4
                      13 33
                                 0 5100 0.21538462
            saving_with_rate
                                  2
                                             saving mutate()
3 mutate
                    saving_rate
head(saving_with_rate)
                                6
 1 saving saving
```

8.2.

```
• saving age
                  age_squared
                  inc_yen
  • saving inc
             1 = 140
8.2.2
mutate
                           1, 2, 3, 4, 5 5, 4, 3, 2, 1 5
          \rightarrow(1, 2, 3, 4, 5) (-1, -2, -3, -4, -5)
     6 \rightarrow (-1, -2, -3, -4, -5) (5, 4, 3, 2, 1)
         6
saving
data <- data.frame(Q1 = c(3, 2, 4, 1, 5)) # Q1
data_gyakuten <-
 data %>%
    mutate(Q1_gyakuten = - Q1 + 6)
data_gyakuten
## Q1 Q1_gyakuten
## 1 3
                  3
## 2 2
## 3 4
## 4 1
## 5 5
  • 7 17
8.2.3
  0 1
                                      scale() mutate()
                                                              educ
                                                                       educ_standardized
saving_standardized_educ <-</pre>
  saving %>%
    mutate(educ_standardized = scale(educ))
head(saving_standardized_educ)
##
            inc size educ age black cons educ_standardized
      sav
                                   1 1890
## 1
     30
          1920
                        2 40
                                                  -2.7886549
```

2 874 12403

3 370 6396

4 1200 7005

4

9 33

2 17 31

3 9 50

0 11529

0 6026

0 5805

-0.7510156

1.5777150

-0.7510156

26 CHAPTER 8.

```
## 5 275 6990
                  4
                      12
                          28
                                 0 6715
                                                 0.1222584
## 6 1400 6500
                      13 33
                                 0 5100
                                                 0.4133497
  • inc
            inc_standardized
8.3
8.3.1
\mathbf{R}
                                           str()
str(saving)
## 'data.frame':
                   100 obs. of 7 variables:
## $ sav : int 30 874 370 1200 275 1400 3159 1766 3984 1017 ...
## $ inc : int 1920 12403 6396 7005 6990 6500 26007 15363 14999 9185 ...
## $ size : int 4 4 2 3 4 4 5 5 5 5 ...
## $ educ : int 2 9 17 9 12 13 17 16 9 16 ...
## $ age : int 40 33 31 50 28 33 36 44 48 31 ...
## $ black: int 1 0 0 0 0 0 0 1 0 ...
## $ cons : int 1890 11529 6026 5805 6715 5100 22848 13597 11015 8168 ...
## - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"
    int
                  int
                             (integer)
  • int: integer,
  • dbl: double,
  • num: numeric,
8.3.2
     fct (factor) saving
                                           as_xxx() xxx
          as_factor()
                          integer
                                   black
saving_with_factor <-</pre>
  saving %>%
   mutate(black_factor = as_factor(black))
str(saving_with_factor)
## 'data.frame':
                   100 obs. of 8 variables:
## $ sav
                 : int 30 874 370 1200 275 1400 3159 1766 3984 1017 ...
                 : int 1920 12403 6396 7005 6990 6500 26007 15363 14999 9185 ...
## $ inc
## $ size
                 : int 4423445555...
## $ educ
                 : int 2 9 17 9 12 13 17 16 9 16 ...
```

: int 40 33 31 50 28 33 36 44 48 31 ...

: int 100000010...

\$ age ## \$ black 8.3.

```
: int 1890 11529 6026 5805 6715 5100 22848 13597 11015 8168 \dots
## $ black_factor: Factor w/ 2 levels "0","1": 2 1 1 1 1 1 1 1 2 1 ...
## - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"
             black_factor
  mutate
                               str()
                                        Factor
          as_factor
   (chr, character)
                             as factor
      size
8.3.3
                         12
                                    2
                                             2
                                                    if_else
if_else() if_else( ,
                                   )
table(saving$educ) #
##
## 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## 1 1 1 1 4 10 11 9 4 32 2 4 1 9 6 2 1 1
saving_with_hsdummy <-</pre>
 saving %>%
   mutate(highschool = if_else(educ >= 12, 1, 0))
head(saving_with_hsdummy)
##
           inc size educ age black cons highschool
      sav
## 1
                       2 40
      30 1920
                  4
                                 1 1890
                       9 33
                                 0 11529
## 2 874 12403
                                                  0
## 3 370
          6396
                     17 31
                                 0 6026
                                                  1
                  2
## 4 1200
          7005
                       9 50
                                 0 5805
                                                  0
                  3
## 5 275
          6990
                  4
                      12 28
                                 0 6715
                                                  1
## 6 1400 6500
                  4
                      13 33
                                 0 5100
                                                  1
table(saving_with_hsdummy$highschool) #
##
## 0 1
## 42 58
highschool
             12
                       12
                                                             as_factor()
saving_with_hsdummy <-</pre>
 saving %>%
   mutate(highschool = if_else(educ >= 12, 1, 0),
          highschool = as_factor(highschool)) #highschool factor
```

28 CHAPTER 8.

```
head(saving_with_hsdummy)
##
      sav
            inc size educ age black cons highschool
## 1
       30
          1920
                   4
                        2
                           40
                                  1 1890
## 2 874 12403
                           33
                                  0 11529
                                                    0
                   4
                        9
## 3 370 6396
                           31
                                  0 6026
                                                    1
                       17
## 4 1200 7005
                   3
                       9 50
                                  0 5805
                                                    0
## 5 275
          6990
                   4
                       12 28
                                     6715
                                                    1
## 6 1400 6500
                   4
                       13 33
                                  0
                                     5100
                                                    1
       40
               over40
8.3.4
         if_else
                    3
                                                        case_when case_when( A
                          case_when
                                          age
        , B ~
summary(saving$age) #
                              Mean 3rd Qu.
##
      Min. 1st Qu.
                    Median
                                               Max.
##
     26.00
             33.00
                     38.50
                             38.77
                                     44.00
                                              54.00
saving_with_age_category <-</pre>
  saving %>%
    mutate(age_category = case_when(age < 30 ~ "20s",</pre>
                                    age >= 30 \& age < 40 ~ "30s",
                                    age \geq 40 \& age < 50 \sim "40s",
                                    age >= 50 \sim "50s"
          )
head(saving_with_age_category)
##
      sav
            inc size educ age black cons age_category
## 1
       30
          1920
                           40
                                  1 1890
                                                    40s
## 2 874 12403
                                                    30s
                   4
                        9
                           33
                                  0 11529
## 3 370 6396
                       17
                                  0 6026
                                                    30s
                           31
## 4 1200
          7005
                   3
                       9 50
                                  0
                                     5805
                                                    50s
## 5 275
                                                    20s
           6990
                   4
                       12
                           28
                                  0
                                     6715
## 6 1400
          6500
                       13 33
                                  0 5100
                                                    30s
                          chr(character)
                                                as_factor
```

"poor" 6000 12000 "middle" 12000

"rich"

inc_category

6000

8.4.

8.4

```
dplyr select()
 saving inc age
saving_selected <-</pre>
 saving %>%
   select(inc, age)
head(saving_selected)
##
      inc age
## 1 1920 40
## 2 12403 33
## 3 6396 31
## 4 7005 50
## 5 6990 28
## 6 6500 33
2
                      saving cons
saving_deleted <-</pre>
 saving %>%
   select(-cons)
head(saving_deleted)
##
           inc size educ age black
     sav
## 1
     30 1920
                4
                       2 40
## 2 874 12403
                      9 33
                                 0
                  4
## 3 370 6396
                  2 17 31
                                 0
## 4 1200
          7005
                3 9 50
                                 0
## 5 275
                4
                    12 28
          6990
                                 0
## 6 1400 6500
                     13 33
                 {\tt black}\ 3
           size
     sav
      educ age
8.5
                      dplyr arrange()
                                           saving inc
saving_arranged <-</pre>
 saving %>%
   arrange(inc)
```

CHAPTER 8.

```
head(saving_arranged)
     sav inc size educ age black cons
## 1
      0 750
              2 4 49
                              0 750
## 2
      30 1920
                4 2 40
                              1 1890
## 3 50 2340
                2 6 46
                              1 2290
                7 10 39
## 4 -112 2936
                              0 3048
                4 9 34
## 5 2575 3941
                              0 1366
## 6 2483 4091
                     8 44
                              0 1608
                       desc()
saving_arranged_desc <-</pre>
  saving %>%
   arrange(desc(inc))
head(saving_arranged_desc)
##
      sav
            inc size educ age black cons
## 1 1800 32080
                  2 16 54
                                0 30280
## 2 10668 30996
                  4 12 41
                                0 20328
## 3 4115 30610
                4 16 44
                                0 26495
## 4 3159 26007
                  5 17 36
                                0 22848
## 5 -2749 24226
                5 17 44
                                0 26975
## 6 5082 19362
                  3 11 48
                                0 14280
8.6
          %>%
      saving_rate
      size
     inc
saving_handled <-
  saving %>%
   mutate(saving_rate = sav / inc) %>%
   select(-size) %>%
   arrange(desc(inc))
head(saving_handled)
      sav
            inc educ age black cons saving_rate
## 1 1800 32080 16 54 0 30280 0.05610973
                        0 20328 0.34417344
## 2 10668 30996
                12 41
## 3 4115 30610 16 44 0 26495 0.13443319
## 4 3159 26007 17 36 0 22848 0.12146730
```

8.7.

```
## 5 -2749 24226  17  44     0 26975 -0.11347313
## 6 5082 19362  11  48     0 14280  0.26247289

#
saving_handled
saving %>%
    mutate(saving_rate = sav / inc) %>% #
select(-size) %>% #
arrange(desc(inc)) #
```

8.7

32 CHAPTER 8.

summarytools

##

```
install.packages("summarytools")
library(summarytools)
                    Word
                                 Chapter ??Word)
   Chapter
9.1
         summarytools descr()
                                   saving
saving %>%
  descr()
## Descriptive Statistics
## saving
## N: 100
##
##
                                                           educ
                            age
                                   black
                                                 cons
                                                                        inc
                                                                                   sav
                                                                                            size
##
##
                 Mean
                          38.77
                                    0.07
                                              8358.73
                                                          11.58
                                                                   9941.24
                                                                               1582.51
                                                                                            4.35
              Std.Dev
                          7.40
                                    0.26
                                              5729.53
                                                           3.44
                                                                   5584.00
                                                                               3284.90
##
                                                                                            1.49
##
                  Min
                          26.00
                                    0.00
                                            -13055.00
                                                           2.00
                                                                    750.00
                                                                              -5577.00
                                                                                            2.00
##
                   Q1
                          33.00
                                    0.00
                                              5726.00
                                                           9.00
                                                                   6508.00
                                                                                189.00
                                                                                            3.00
##
               Median
                          38.50
                                    0.00
                                              7561.50
                                                          12.00
                                                                   8776.50
                                                                                982.00
                                                                                            4.00
##
                   QЗ
                          44.00
                                    0.00
                                              9987.00
                                                          13.00
                                                                  11965.00
                                                                               1838.50
                                                                                            5.00
##
                  Max
                          54.00
                                    1.00
                                             30280.00
                                                          20.00
                                                                  32080.00
                                                                              25405.00
                                                                                           10.00
                                    0.00
                                              3092.70
##
                  MAD
                          8.15
                                                           2.97
                                                                   3463.35
                                                                               1235.75
                                                                                            1.48
```

4131.50

4.00

5393.00

1640.25

2.00

0.00

11.00

IQR

34 CHAPTER 9.

##	CV	0.19	3.66	0.69	0.30	0.56	2.08	
##	Skewness	0.24	3.32	0.91	0.05	1.98	4.15	
##	SE.Skewness	0.24	0.24	0.24	0.24	0.24	0.24	
##	Kurtosis	-0.96	9.11	4.31	0.05	4.96	26.31	
##	N.Valid	100.00	100.00	100.00	100.00	100.00	100.00	10
##	Pct.Valid	100.00	100.00	100.00	100.00	100.00	100.00	10

- stats
 - mean sd min max n.valid
- transpose TRUE
- heading FALSE

```
saving %>%
  descr(stats = c("mean", "sd", "min", "max", "n.valid"), transpose = TRUE, headings =
```

	Mean	Std.Dev	Min	Max	N.Valid
age	38.77	7.40	26.00	54.00	100.00
black	0.07	0.26	0.00	1.00	100.00
cons	8358.73	5729.53	-13055.00	30280.00	100.00
educ	11.58	3.44	2.00	20.00	100.00
inc	9941.24	5584.00	750.00	32080.00	100.00
sav	1582.51	3284.90	-5577.00	25405.00	100.00
size	4.35	1.49	2.00	10.00	100.00
	black cons educ inc sav	age 38.77 black 0.07 cons 8358.73 educ 11.58 inc 9941.24 sav 1582.51	age 38.77 7.40 black 0.07 0.26 cons 8358.73 5729.53 educ 11.58 3.44 inc 9941.24 5584.00 sav 1582.51 3284.90	age 38.77 7.40 26.00 black 0.07 0.26 0.00 cons 8358.73 5729.53 -13055.00 educ 11.58 3.44 2.00 inc 9941.24 5584.00 750.00 sav 1582.51 3284.90 -5577.00	age 38.77 7.40 26.00 54.00 black 0.07 0.26 0.00 1.00 cons 8358.73 5729.53 -13055.00 30280.00 educ 11.58 3.44 2.00 20.00 inc 9941.24 5584.00 750.00 32080.00 say 1582.51 3284.90 -5577.00 25405.00

9.2

2

- descr()
 - black
- summarytools freq()

Chapter ??DataHandling) age_category

9.2.

age_category freq()

age_category %>%
freq()

Frequencies

age_category\$age_category

Type: Character

##

##		Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
##						
##	20s	12	12.00	12.00	12.00	12.00
##	30s	44	44.00	56.00	44.00	56.00
##	40s	31	31.00	87.00	31.00	87.00
##	50s	13	13.00	100.00	13.00	100.00
##	<na></na>	0			0.00	100.00
##	Total	100	100.00	100.00	100.00	100.00

age_category %>%
freq(report.nas = FALSE, totals = FALSE, cumul = FALSE, headings = FALSE)

##			
##		Freq	%
##			
##	20s	12	12.00
##	30s	44	44.00
##	40s	31	31.00
##	50s	13	13.00

- report.nas = FALSE: NA
- totals = FALSE:
- cumul = FALSE:
- headings = FALSE:

36 CHAPTER 9.

Chapter 10

Section 10.3

```
{
m R} ggplot2
                         ggplot2 tidyverse
 ggplot2
            ggplot2
      %>%
 ggplot(aes(x = x , y = y )) +
 geom_ ()
  • 1

    aes aesthetic

      - geom_bar:
      - geom_hitstogram:
      - geom_boxplot:
      - geom_point:
      - geom_smooth:
10.1 1
                  1
10.1.1
  1
                       saving
                                size
```

```
saving %>%
mutate(size = as_factor(size)) %>% #size
ggplot(aes(x = size)) +
geom_bar()
```


1 x y geom_bar() count 4 5 $3 \dots$

10.1.2

```
1 saving inc
saving %>%
ggplot(aes(x = inc)) +
geom_histogram()
```

10.1. 1

binwidth center boundary

10.2 2

2

•

10.2.1

```
geom_point() age inc
saving %>%
ggplot(aes(x = age, y = inc)) +
geom_point()
```


2 xy x y x y

```
geom_smooth
```

```
saving %>%
  ggplot(aes(x = age, y = inc)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```

$geom_smooth()$ using formula 'y ~ x'

10.2. 2

 $\begin{array}{lll} {\rm ggplot} & + & {\rm geom_point()} & {\rm geom_smooth()} \\ {\rm geom_smooth()} & {\rm method} & {\rm lm} & {\rm linear} & {\rm model} \\ {\rm se} & {\rm FALSE} \end{array}$

educ highschool inc

width = 0.2

10.2.2

```
geom_bar() stat_summary() stat_summary() fun.y mean geom
saving %>%
mutate(highschool = if_else(educ >= 12, 1, 0),
         highschool = as_factor(highschool)) %>%
ggplot(aes(x = highschool, y = inc)) +
stat_summary(fun.y = "mean", geom = "bar")
```

Warning: `fun.y` is deprecated. Use `fun` instead.

10.2. 2

10.2.3

geom_boxplot


```
25%
50%
75%
1.5×IQR
```

10.3. 45

10.3

Chapter 11

 \mathbf{t}

```
Section 11.1
                        t.test() t.test()
                  t
t.test( ~ , data =
  black
                 inc
t.test(inc ~ black, data = saving)
## Welch Two Sample t-test
##
## data: inc by black
## t = 1.8562, df = 7.3906, p-value = 0.1036
\#\# alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -890.170 7726.938
## sample estimates:
## mean in group 0 mean in group 1
        10180.527
                          6762.143
       р 0.103
                                                                                       Welch t
 t.test()
                      Welch {\bf t}
                                    var.equal = TRUE
              broom
                          tidy
                                              bloom
install.packages("broom")
  tidy()
             t.test
                          tidy()
```

48 CHAPTER 11. T

```
library(broom)
t.test(inc ~ black, data = saving) %>%
  tidy()
## # A tibble: 1 x 10
     estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high
##
        <dbl>
                  <dbl>
                            <dbl>
                                       <dbl>
                                               <dbl>
                                                         <dbl>
                                                                  <dbl>
                                                                             <dbl>
## 1
        3418.
                 10181.
                            6762.
                                       1.86
                                               0.104
                                                          7.39
                                                                  -890.
                                                                             7727.
## # ... with 2 more variables: method <chr>, alternative <chr>
  • estimate:
  • estimate1:
  • estimate2:
  • statistic: t
  • p.value: p
  • parameter:
  • conf.low, conf.high:
  • method:
  • alternative:
```

11.1

Chapter 12

Section 12.8

Linear Regression

12.1

```
y = x - y - x y = \alpha + \beta x y - x - \beta - x - y - \beta - x - 1 - y - \beta \alpha - \beta - OLS - R Coefficient x - y - \beta - x - 1 - y - \beta
```

12.2 R

```
R y ~ x
               Chapter 11 t
                                        lm() lm linear model
lm( , data =
               educ
                                 inc = \alpha + \beta educ
      inc
lm(inc ~ educ, data = saving)
##
## Call:
## lm(formula = inc ~ educ, data = saving)
## Coefficients:
## (Intercept)
                       educ
        1342.7
                      742.5
##
```

```
Coefficients intercept \alpha educ \beta \beta
                                  1
                                        742.5
lm()
                                   lm() summary()
                           t p
lm(inc ~ educ, data = saving) %>%
 summary()
##
## lm(formula = inc ~ educ, data = saving)
##
## Residuals:
    Min 1Q Median
                           3Q
                                 Max
## -7570 -3297 -1288
                         1617 20743
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1342.7 1763.5 0.761 0.448
## educ
                 742.5
                            146.1 5.084 1.78e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4993 on 98 degrees of freedom
## Multiple R-squared: 0.2087, Adjusted R-squared: 0.2006
## F-statistic: 25.84 on 1 and 98 DF, p-value: 1.777e-06
Coefficients
  • Estimate:
  • Std. Error:
  • t value: t
  • Pr(>|t|): p
                   1.78 \times 10^{-6} = 1.78 \times 0.000001 = 0.00000178
educ p 1.78e-06
     educ \beta
     \mathbb{R}^2
                              Chapter 11 broom
                                                  tidy()
summary()
lm(inc ~ educ, data = saving) %>%
 tidy()
## # A tibble: 2 x 5
## term
               estimate std.error statistic
                                                 p.value
     <chr>
                <dbl> <dbl>
                                        <dbl>
                                                   <dbl>
                                        0.761 0.448
## 1 (Intercept) 1343.
                              1764.
## 2 educ
                   743.
                             146.
                                       5.08 0.00000178
```

12.3. 51

• inc size

12.3

12.4

1

0

```
x_{1}, x_{2}
y = \alpha + \beta_1 x_1 + \beta_2 x_2
     y ~ x1 + x2 +
                           inc educ
                                     size
lm(inc ~ educ + size, data = saving) %>%
tidy()
## # A tibble: 3 x 5
## term
         estimate std.error statistic p.value
## <chr>
               ## 1 (Intercept) 3027.
                           2283.
                                    1.33 0.188
## 2 educ
                          146.
                                    5.10 0.00000171
                 743.
## 3 size
                  -389.
                           335.
                                   -1.16 0.249
            R y \sim x1 + x2 + x3 + x4 + ... +
   3 4 ...
            black
        age
equation <- inc ~ educ + size + age + black
lm(equation, data = saving) %>%
tidy()
## # A tibble: 5 x 5
## term
             estimate std.error statistic
                                              p.value
## <chr>
                          <dbl>
                  <dbl>
                                   <dbl>
                                                <dbl>
                                   -2.54 0.0126
## 1 (Intercept) -10005.
                          3934.
## 2 educ
                          144.
                                   5.97 0.0000000408
                 857.
## 3 size
                 -101.
                          320.
                                   -0.317 0.752
## 4 age
                  271.
                          66.3
                                   4.09 0.0000917
## 5 black
                 -553.
                          1878.
                                   -0.294 0.769
4
    sav
            educ size age
```

```
inc
         black
lm(inc ~ black, data = saving)
##
## Call:
## lm(formula = inc ~ black, data = saving)
## Coefficients:
## (Intercept)
                      black
         10181
                      -3418
##
    -3418
                      3418
12.5
                                       A, B, C 3
                     -1
  • B 1
             0 B
  • C 1
             0 C
  • B
            В
               Α
  • C
            C A
  В С
R
      factor
       age_category
                        inc
saving_with_age_category <-</pre>
  saving %>%
    mutate(age_category = case_when(age < 30 ~ "20s",</pre>
                                     age \geq 30 \& age < 40 ~ "30s",
                                     age \geq 40 \& age < 50 \sim "40s",
                                     age >= 50 ~ "50s"
          )
lm(inc ~ age_category, data = saving_with_age_category)
##
## lm(formula = inc ~ age_category, data = saving_with_age_category)
##
## Coefficients:
       (Intercept) age_category30s age_category40s age_category50s
                                1330
##
              7685
                                                 3761
                                                                  3885
```

12.6.

```
"20s"
                    20
  • 30 20
         1330
  • 40 20
          3761
  • 50 20
          3885
     20 < 30 < 40 < 50
                            40 50
12.6
                                         R
                                              2:
  R
lm(inc ~ educ + black + educ:black, data = saving) %>%
tidy()
## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr>
           <dbl>
## 1 (Intercept) 1595.
                        1926.
                                0.828 0.410
## 2 educ
               727.
                        157.
                               4.63 0.0000115
## 3 black
              -525.
                       5773.
                               -0.0909 0.928
## 4 educ:black
             -63.1
                        615. -0.103 0.918
            educ 727 1 727
 educ:black-63
                      727-63=664
                                    1 664
     р
lm(inc ~ educ*black, data = saving) %>%
tidy()
## # A tibble: 4 x 5
## term
             estimate std.error statistic
                                       p.value
## <chr>
             <dbl>
## 1 (Intercept) 1595.
                        1926.
                                0.828 0.410
## 2 educ
               727.
                        157.
                              4.63
                                    0.0000115
## 3 black
               -525.
                        5773. -0.0909 0.928
## 4 educ:black
               -63.1
                        615. -0.103 0.918
```

• inc age

12.7

```
tidy()
                         stargazer
  2
  1.
          inc
                    educ
  2.
          inc
                    educ age
stargazer()
regression1 <- lm(inc ~ educ, data = saving) #</pre>
regression2 <- lm(inc ~ educ + age, data = saving) #</pre>
stargazer(regression1, regression2, type = "html", out = "test.doc")
Dependent variable:
inc
(1)
(2)
\operatorname{educ}
742.530***
869.852***
(146.062)
(137.566)
age
276.677***
(63.872)
Constant
1,342.745
-10,858.410***
(1,763.546)
(3,250.631)
Observations
100
100
R2
```

```
0.209
0.337
Adjusted R2
0.201
0.323
Residual Std. Error
4,992.593 (df = 98)
4,593.594 (df = 97)
F Statistic
25.844*** (df = 1; 98)
24.646**** (df = 2; 97)
Note:
p<0.1; p<0.05; p<0.01
12 lm()
                                                      stargazer()
                      regression1,regression2
type LaTeX
                              HTML
                                             out
```

55

1%

5% *

10%

- Observation:
- R^2 :

12.8.

- Adjusted \mathbb{R}^2 :
- Residual Std. Error:
- F Statistic: F F

12.8

Chapter 13

Word

