النهايات (السلوك التقاربي لمنحن)

مفاهيم

- بصفة عامة يتم حساب نهاية دالة عند كل حد من حدود مجموعة تعريفها
- $\lim_{x o a}f(x)=f(a)$ أِذَا كَانَتَ f قَابِلُةُ لِلشَّتَقَاقَ عَنْدَ a حَيْثُ $a\in D_f$ عَنْدُ $a\in D_f$
 - وحيدة f إذا قبلت دالة f نهاية عند عدد a تكون هذه النهاية وحيدة
- $\lim_{x \to +\infty} \sin x$ يمكن لدالة أن لا تقبل نهاية عند حد من حدود مجموعة تعريفها مثل Φ

ا]. نهایة منتهیة عند عدد حقیقی قول أن ل f نهایة منتهیة l عند a معناه f نهایة منتهیة d عند d

II]. نهایة غیر منتهیة عند عدد حقیقی

بان:
$$g(a)=0$$
 عددان حقیقیان حیث $g(x)$ کثیر حدود، $g(x)$ کثیر حدود $g(x)=0$ فإن: إذا كانت $g(a)=0$ بان:

فإن	وإشارة d	g(x) إذا كانت إشارة
$ \lim_{x \leq a} f(x) = -\infty $	d > 0	
$\lim_{x \geq a} f(x) = +\infty$	u > 0	$-\infty$ < a > $+\infty$
$\lim_{x \leq a} f(x) = +\infty$	d < 0	_ Ψ +
$\lim_{x \geq a} f(x) = -\infty$	d < 0	
$\lim_{x \leq a} f(x) = +\infty$	d > 0	
$\lim_{x \stackrel{>}{\sim} , a} f(x) = -\infty$	d>0	$-\infty < a > +\infty$
$\lim_{x \leq a} f(x) = -\infty$	d < 0	+ 0 –
$\lim_{x \stackrel{>}{\sim} , a} f(x) = +\infty$		

*ملاحظة:

فإن	وإشارة d	إذا كانت
$\lim_{\substack{x \leq a}} f(x) = +\infty$ $\lim_{\substack{x \leq a}} f(x) = +\infty$	d > 0	f(x) = d $f(x) = d$
$\lim_{\substack{x \leq a}} f(x) = -\infty$ $\lim_{\substack{x \leq a}} f(x) = -\infty$	d < 0	$f(x) = \frac{a}{[g(x)]^2} \int_{\mathbb{R}^2} f(x) = \frac{a}{ g(x) }$

III]. نهاية منتهية عند ما لا نهاية

$$\lim_{x \to +\infty} rac{d}{x} = 0$$
 و $\lim_{x \to -\infty} rac{d}{x} = 0$ عدد حقیقی فإن: $\lim_{x \to +\infty} rac{d}{x} = 0$ و منه نستنتج أن: $\lim_{x \to +\infty} rac{d}{x} + b = b$ و منه نستنتج أن:

IV]. نهاية غير منتهية عند ما لا نهاية

 $\displaystyle \lim_{x o _{-}^{+} \infty} f(x) = _{+}^{-} \infty$ نقول أن ل f نهاية غير منتهية ∞ عند ∞ معناه

$oldsymbol{V}$]. المبرهنات الأولية على النهايات

(1) نهاية مجموع دالتين			
إذا كانت	و	فإن:	
lim f(x)	lim g(x)	lim[f(x) + g(x)]	
=	=	=	
l	l' $l+l'$		
l	+∞	+∞	
l	-∞	-∞	
+∞	+∞	+∞	
-∞	-∞	-8	
+∞	-∞	ح ع ت	
-∞	+∞	ت ح	

(2) نهاية جداء دالتين			
إذا كانت	9	فإن:	
$\lim_{x\to 0} f(x)$	$\lim_{x\to 0} g(x)$	$\lim_{x \to \infty} [f(x) \times g(x)]$	
l	l'	$l \times l'$	
<i>l</i> > 0	+∞	+∞	
l < 0	+∞	-8	
l > 0	-8	-8	
l < 0	-8	+∞	
+∞	+∞	+∞	
+∞	-8	-8	
-8	-8	+∞	
0	+∞	ح ع ت	
0	-∞	ح ع ت	
<i>l</i> < 0	$l < 0$ 0^+ 0^-		
l < 0 0-		0+	

4) حالات خاصة				
إذا كانت lim f(x) =	$\lim_{x \to 1} [f(x)]^2$ $=$	lim f(x) =	$\lim \sqrt{f(x)}$	
+∞	+∞	+∞	+8	
-8	+∞	+∞		
0-	0+	0+		

(3) نهایة حاصل قسمة دالتین				
إذا كانت lim f(x) =	∫ lim g(x) =	$\lim \left[rac{\dot{\mathbf{b}}}{g(x)} ight] =$		
l	l'	$\frac{l}{l'}$		
l	+∞	0		
l	-∞	0		
+∞	l > 0	+∞		
+∞	<i>l</i> < 0	-∞		
-∞	l > 0	-∞		
-∞	l < 0	+∞		
+∞	+∞	ح ع ت		
+∞	-∞	ح ع ت		
-∞	+∞	ح ع ت		
-∞	-∞	ح ع ت		
0	+∞	0		
0	-∞	0		
0	0	ح ت		
+∞	0+	+∞		
+∞	0-	-8		
-∞	0+			
-∞	0-	+∞		
l > 0	0+	+∞		
l < 0	0+	-∞		
l > 0	0-	-∞		
l < 0	0-	+∞		

(5) حالات عدم التعيين			
0	∞	0 × ∞	$+\infty - \infty$
$\overline{0}$	∞		$-\infty + \infty$

النهايات (2) (التفسير الهندسي)

1 المستقيم المقارب الموازي لمحور التراتيب (عمودي)

مستقیم مقارب عمودي یوازي محور التراتیب
$$x=a \Longleftrightarrow \lim_{x o a} f(x) = \infty$$

2 المستقيم المقارب الموازي لمحور الفواصل (أفقى)

مستقيم مقارب أفقي يوازي محور الفواصل
$$y=b \iff \lim_{x o \infty} f(x)=b$$

3 المستقيم المقارب المائل

أ] البحث عن المستقيم المقارب المائل

$$C_f$$
 إذا كان $y=ax+b \Longleftrightarrow egin{align*} rac{f(x)}{x}=a \ y=ax+b \Longleftrightarrow egin{align*} rac{f(x)}{x}=a \ y=ax+b \end{bmatrix}$ مستقيم مقارب مائل للمنحني $\lim_{x o\infty}[f(x)-ax]=b$

ب] اثبات أن مستقيم هو مقارب مائل ل ي

$$\displaystyle \lim_{x o \infty} [f(x) - (ax + b)] = \mathbf{0}$$
 الإثبات أن $\displaystyle y = ax + b$ مقارب مائل ل c_f يكفي برهان أن:

ج] دراسة وضعية رح بالنسبة لمستقيم

لدراسة وضعية y=ax+b نقوم بدراسة (Δ) ذو المعادلة y=ax+b نقوم بدراسة f(x)-(ax+b) الشارة الفرق:

$$ad-cb \neq 0$$
 و $c \neq 0$ مع $f(x)=rac{ax+b}{cx+d}$ مع $ad-cb \neq 0$ و $ad-cb \neq 0$ مع $ad-cb \neq 0$ م