Private-Key Encryption and Pseudorandomness (Part II)

Yu Zhang

HIT/CST/NIS

Cryptography, Spring, 2012

Outline

Content

Stream Ciphers

- Stream cipher: Encrypting by XORing with pseudorandom stream.
- **State of the art**: No standardized and popular one¹. Security is questionable, e.g. RC4 in WEP protocol in 802.11, and Linear Feedback Shift Registers (LFSRs).

WARNING

Don't use any stream cipher. If necessary, construct one from a block cipher.

¹eStream project worked on it. Salsa20/12 is a promising candidate.

Security for Multiple Encryptions

The multiple-message eavesdropping experiment $\mathsf{PrivK}^{\mathsf{mult}}_{\mathcal{A},\Pi}(n)$:

- 1 \mathcal{A} is given input 1^n , outputs $\vec{M}_0=(m_0^1,\ldots,m_0^t)$, $\vec{M}_1=(m_1^1,\ldots,m_1^t)$ with $\forall i,|m_0^i|=|m_1^i|$.
- 2 $k \leftarrow \mathsf{Gen}(1^n)$, a random bit $b \leftarrow \{0,1\}$ is chosen. Then $c^i \leftarrow \mathsf{Enc}_k(m_b^i)$ and $\vec{C} = (c^1, \dots, c^t)$ is given to \mathcal{A} .
- **3** \mathcal{A} outputs b'. If b'=b, $PrivK_{\mathcal{A},\Pi}^{\mathsf{mult}}=1$, otherwise 0.

Definition of Multi-Encryption Security

Definition 1

 Π has indistinguishable multiple encryptions in the presence of an eavesdropper if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{mult}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Theorem 2

 $\Pi=(\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$ for which Enc is a deterministic function of the key and the message. Then Π does not have indistinguishable multiple encryptions in the presence of an eavesdropper.

For the deterministic encryption, the adversary generates $m_0^1=m_0^2$ and $m_1^1\neq m_1^2$ and then outputs b'=0 if $c^1=c^2$, otherwise b'=1.

Secure Multiple Encryptions Using a Stream Cipher

Unsynchronized mode: $Enc(m) := \langle IV, G(k, IV) \oplus m \rangle$. Initial vector IV is chosen u.a.r.

Related Keys: Real World Cases

Keys for multiple enc. must be independent.

802.11b WEP

Unsynchronized mode: $Enc(m_i) := \langle IV_i, G(IV_i||k) \oplus m_i \rangle$.

- Length of IV is 24 bits, repeat IV after $2^{24} \approx 16 \text{M}$ frames.
- lacksquare On some WiFi cards, IV resets to 0 after power cycle.
- $IV_i = IV_{i-1} + 1$. For RC4, recover k after 40,000 frames.

Content

Chosen-Plaintext Attacks (CPA)

CPA: the adversary has the ability to obtain the encryption of plaintexts of its choice.

A story in WWII

- Navy cryptanalysts believe the ciphertext "AF" means "Midway island" in Japanese messages.
- But the general did not believe that Midway island would be attacked.
- Navy cryptanalysts sent a plaintext that the freshwater supplies at Midway island were low.
- Japanese intercepted the plaintext and sent a ciphertext that "AF" was low in water.
- The US forces dispatched three aircraft carriers and won.

Security Against CPA

The CPA indistinguishability experiment $PrivK_{A,\Pi}^{cpa}(n)$:

- $1 k \leftarrow \mathsf{Gen}(1^n).$
- 2 \mathcal{A} is given input 1^n and **oracle access** $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ to $\mathsf{Enc}_k(\cdot)$, outputs m_0, m_1 of the same length.
- 3 $b \leftarrow \{0,1\}$. Then $c \leftarrow \operatorname{Enc}_k(m_b)$ is given to \mathcal{A} .
- **4** \mathcal{A} continues to have oracle access to $Enc_k(\cdot)$, outputs b'.
- **5** If b' = b, \mathcal{A} succeeded PrivK $_{\mathcal{A},\Pi}^{\mathsf{cpa}} = 1$, otherwise 0.

CPA Security for Multiple Encryptions

Definition 3

 Π has indistinguishable encryptions under a CPA (CPA-secure) if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Proposition 4

Any private-key encryption scheme that is CPA-secure also is **multiple-encryption** CPA-secure.

- CPA-secure means Enc is probabilistic.
- **Fixed-length** CPA-secure encryption scheme can be used to construct a **arbitrary-length** CPA-secure one quite easily.

Content

Concepts on Pseudorandom Functions

- Keyed function $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$. $F_k: \{0,1\}^* \to \{0,1\}^*$, $F_k(x) \stackrel{\text{def}}{=} F(k,x)$.
- **Look-up table** $f: \{0,1\}^n \to \{0,1\}^n$ with size $n \cdot 2^n$.
- Function family $Func_n$: all functions $\{0,1\}^n \to \{0,1\}^n$. $|Func_n| = 2^{n \cdot 2^n}$.

Definition of Pseudorandom Function

Intuition: A PRF F generates a function F_k that is indistinguishable for a PPT distinguisher D from truly random selected function f (look-up table) in Func_n . However, the function has **exponential length**. Give D the deterministic **oracle access** $D^{\mathcal{O}}$ to the functions \mathcal{O} .

Definition 5

An efficient length-preserving, keyed function F is a **pseudorandom function (PRF)** if \forall PPT distinguishers D,

$$\left|\Pr[D^{F_k(\cdot)}(1^n)=1] - \Pr[D^{f(\cdot)}(1^n)=1]\right| \leq \mathsf{negl}(n),$$

where f is chosen u.a.r from Func_n.

PRG vs. PRF:

- Pseudorandomness over a set of strings vs. a set of functions.
- A PRG an instance of keyed PRF.

Existence: if PRG exists. In practice, block ciphers may be PRF.

CPA-Security from Pseudorandom Function

Construction 6

- Fresh random string r.
- $F_k(r)$: |k| = |m| = |r| = n.
- Gen: $k \in \{0,1\}^n$.
- Enc: $s := F_k(r) \oplus m$, $c := \langle r, s \rangle$.
- Dec: $m := F_k(r) \oplus s$.

Theorem 7

If F is a PRF, this fixed-length encryption scheme Π is CPA-secure.

Proof of CPA-Security from PRF

Idea: First, analyze the security in an idealized world where f is used in $\tilde{\Pi}$; next, claim that if Π is insecure when F_k was used then this would imply F_k is not PRF by reduction.

Proof.

- (1) Analyze $\Pr[\mathsf{Break}]$, Break means $\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1$: \mathcal{A} collects $\{\langle r_i, f(r_i) \rangle\}$, $i = 1, \ldots, q(n)$ with q(n) queries; The challenge $c = \langle r_c, f(r_c) \oplus m_b \rangle$.
 - Repeat: $r_c \in \{r_i\}$ with probability $\frac{q(n)}{2^n}$. \mathcal{A} can know m_b .
 - Repeat: As OTP, $\Pr[\mathsf{Break}] = \frac{1}{2}$

$$\begin{split} \Pr[\mathsf{Break}] &= \Pr[\mathsf{Break} \land \mathsf{Repeat}] + \Pr[\mathsf{Break} \land \overline{\mathsf{Repeat}}] \\ &\leq \Pr[\mathsf{Repeat}] + \Pr[\mathsf{Break} | \overline{\mathsf{Repeat}}] \\ &\leq \frac{q(n)}{2^n} + \frac{1}{2}. \end{split}$$

Proof of CPA-Security from PRF (Cont.)

Proof.

(2) Reduce D to A:

$$\begin{split} &\Pr[D^{F_k(\cdot)}(1^n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{A,\Pi}(n) = 1] = \frac{1}{2} + \varepsilon(n). \\ &\Pr[D^{f(\cdot)}(1^n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{A,\tilde{\Pi}}(n) = 1] = \Pr[\mathsf{Break}] \leq \frac{1}{2} + \frac{q(n)}{2^n}. \\ &\Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1] \geq \varepsilon(n) - \frac{q(n)}{2^n}. \; \varepsilon(n) \; \text{is negligible}. \end{split}$$

Remarks on CPA-Security from PRF

■ For arbitrary-length messages, $m = m_1, \ldots, m_\ell$

$$c := \langle r_1, F_k(r_1) \oplus m_1, r_2, F_k(r_2) \oplus m_2, \dots, r_\ell, F_k(r_\ell) \oplus m_\ell \rangle$$

Corollary 8

If F is a PRF, then Π is CPA-secure for arbitrary-length messages.

■ Efficiency: |c| = 2|m|.

Pseudorandom Permutations

- **Bijection**: F is one-to-one and onto.
- **Permutation**: A bijective function from a set to itself.
- **Keyed permutation**: $\forall k, F_k(\cdot)$ is permutation.
- \blacksquare F is a bijection \iff F^{-1} is a bijection.

Proposition 9

If F is a pseudorandom permutation then it is a PRF.

Definition 10

An efficient, keyed permutation F is a **strong pseudorandom permutation (PRP)** if \forall PPT distinguishers D,

$$\left|\Pr[D^{F_k(\cdot),F_k^{-1}(\cdot)}(1^n)=1] - \Pr[D^{f(\cdot),f^{-1}(\cdot)}(1^n)=1]\right| \leq \mathsf{negl}(n),$$

where f is chosen u.a.r from the set of permutations on n-bit strings.

Block Cipher and Modes of Operation

- Block cipher: A practical (strong) PRP.
 - Not encryption scheme, but a building block of encryption scheme.
 - Block cipher itself is not CPA-secure.
- **Modes of Operation**: A way of encrypting arbitrary-length messages using a block cipher/PRP.

Electronic Code Book (ECB) Mode

■ Weakness: not indistinguishable in the presence of an eavesdropper.

Cipher Block Chaining (CBC) Mode

Strength: CPA-secure.

■ Weakness: not parallelizable.

Output Feedback (OFB) Mode

- **Strength**: CPA-secure, pre-processing the stream, PRF-compatible.
- Weakness: not parallelizable.

Counter (CTR) Mode

■ **Strength**: CPA-secure, pre-processing the stream, PRF-compatible, parallelizable, random access.

CTR Mode Is CPA-secure

Theorem 11

If F is a PRF, then randomized CTR mode is CPA-secure.

Proof.

The message length and the number of query are q(n).

Overlap: the sequence for the challenge overlaps the sequences for the queries from the adversary.

 $\mbox{ctr}^*: \mbox{ ctr in the challenge. } \mbox{ctr}_i: \mbox{ ctr in the queries, } i=1,\ldots,q(n).$ Overlap: $\mbox{ctr}_i-q(n)<\mbox{ctr}^*<\mbox{ctr}_i+q(n).$

$$\Pr[\mathsf{Overlap}] \le \frac{2q(n)-1}{2^n} \cdot q(n)$$

Proof of CPA-secure CTR Mode (Cont.)

Proof.

See proof of theorem $\ref{eq:condition}$ (1) Analyze Break : $\operatorname{PrivK}^{\operatorname{cpa}}_{4\ ilde{\Pi}}(n)=1.$

$$\begin{split} \Pr[\mathsf{Break}] &= \Pr[\mathsf{Break} \wedge \mathsf{Overlap}] + \Pr[\mathsf{Break} \wedge \overline{\mathsf{Overlap}}] \\ &\leq \Pr[\mathsf{Overlap}] + \Pr[\mathsf{Break}|\overline{\mathsf{Overlap}}] \\ &\leq \frac{2q(n)^2}{2^n} + \frac{1}{2}. \end{split}$$

(2) Reduce D to A

$$\Pr[D^{f(\cdot),f^{-1}(\cdot)}(1^n)=1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n)=1] \leq \frac{2q(n)^2}{2^n} + \frac{1}{2}$$

$$\Pr[D^{F_k(\cdot),F_k^{-1}(\cdot)}(1^n)=1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)=1] \leq \frac{1}{2} + \varepsilon(n)$$

If F is PRP, $\varepsilon(n)$ is negligible.

IV Should Not Be Predictable

If IV is predictable, then CBC/OFB/CTR mode is not CPA-secure.

Bug in SSL/TLS 1.0

IV for record #i is last CT block of record #(i-1).

API in OpenSSL

```
void AES_cbc_encrypt (
    const unsigned char *in,
    unsigned char *out,
    size_t length,
    const AES_KEY *key,
    unsigned char *ivec, User supplies IV
    AES_ENCRYPT or AES_DECRYPT);
Input ivec should be random, otherwise it is not secure.
```

Remarks on Block Ciphers

- **Block length** should be sufficiently large.
- Message tampering is not with message confidentiality.
- **Padding**: TLS: For n > 0, n byte pad is n, n, ..., n. If no pad needed, add a dummy block.
- Stream ciphers vs. block ciphers:
 - Steam ciphers are faster but have lower security.
 - It is possible to use block ciphers in "stream-cipher mode".

Performance: Crypto++ 5.6, AMD Opetron 2.2GHz

	Block/key size	Speed MB/sec
RC4		126
Salsa20/12		643
Sosemanuk		727
3DES	64/168	13
AES-128	128/128	109

Content

Security Against CCA

The CCA indistinguishability experiment $PrivK_{A,\Pi}^{cca}(n)$:

- $1 k \leftarrow \mathsf{Gen}(1^n).$
- **2** \mathcal{A} is given input 1^n and oracle access $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ and $\mathcal{A}^{\mathsf{Dec}_k(\cdot)}$, outputs m_0, m_1 of the same length.
- 3 $b \leftarrow \{0,1\}$. $c \leftarrow \operatorname{Enc}_k(m_b)$ is given to \mathcal{A} .
- 4 \mathcal{A} continues to have oracle access **except for** c, outputs b'.
- **5** If b' = b, \mathcal{A} succeeded PrivK^{cca}_{\mathcal{A},Π} = 1, otherwise 0.

Definition 12

 Π has indistinguishable encryptions under a CCA (CCA-secure) if \forall PPT $\mathcal{A},\ \exists$ negl such that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Remarks on CCA-security

- In real world, the adversary might conduct CCA by influencing what gets decrypted.
 - If the communication is not authenticated, then an adversary may send certain ciphertexts on behalf of the honest party.
- None of the above scheme is CCA-secure: If one bit of CT is flipped, so does one bit of PT.
- CCA-security implies "non-malleability": If the adversary tries to modify a given ciphertext, either an illegal ciphertext or one that encrypts a plaintext having no relation to the original one.

Summary

- Asymptotic approach, proof of reduction, indistinguishable.
- PRG, PRF, PRP, stream cipher, block cipher.
- Security/construction against eavesdropping/CPA.
- EBC, CBC, OFB, CTR.