Lecture 8

Def: The o-algebra generated by the class of all the intervals of the form [2,6), a, b ER is called the Borel o-algebra, & denote by B.
The members of B are called Borel sets of R.
Theorem: - (1) Every Borel set is measurable is, BEM.
@ B is the o-algebra generated by early
of the following classes: The open intervals, the open sets, the Gg-Sets, the Fg-Sets
Proof-(1) Since [a,b) EM for any a,b ER,
Proof- (1) Since [a,b) EM for any a,b ER, Therefore B = M. [a,b] EB (5,6). Let B = the \u00cddgehra generated by the open intervals.
Let B = the o-algebra generated by the over intervals.
_ T

To show:
$$B_1 = B$$
.

Any open intel, $(a_{2}b) = \bigcup_{n=1}^{\infty} [a_{1}+\frac{1}{n}, b]$

E R

Remaining: EXERCISE. B₂ = the o-deline gen by
Open sets.

From B = B₂.

Ans: NO! (B = M)

Proposition: Let A & IR. Then There exists a

measurable set E such that $E\supseteq A$ & $m^*(A) = m^*(E)$.

proof we shready proved: Criver E>0, There exists an open set $U \subseteq \mathbb{R}$ such that $A \subseteq U & m^*(U) \subseteq m^*(A) + E$.

Take $E = \frac{1}{n}$. Then them exists open set U_n such that $A \subseteq U_n$ & $m^*(U_n) \leq m^*(A) + \frac{1}{n}$.

Let E= 1 Un. E ina G-set.

:- E is measurable. (in fact E is a Bond set) $x = x^*(E) \le x^*(U_n)$

 $\leq m^*(A) + \frac{1}{h} + n$

 \Rightarrow $w^*(E) \leq w^*(A)$

Alm $A \subseteq \bigcap_{m=1}^{\infty} U_m = E$ $\Rightarrow m^*(A) \leq m^*(E).$

 $m^{\star}(A) = m^{\star}(E),$

Def: For any segment of Sets
$$\{E_i\}$$

 $\lim_{n\to\infty} (E_i) := \bigcap_{n=1}^{\infty} (\bigcup_{i\geq n} \{E_i\})$
 $\lim_{n\to\infty} (E_i) := \bigcup_{n=1}^{\infty} (\bigcap_{i\geq n} \{E_i\})$
 $\lim_{n\to\infty} (E_i) := \bigcup_{n\to\infty} (\bigcap_{i\geq n} \{E_i\})$
 $\lim_{n\to\infty} (E_i) := \lim_{n\to\infty} (\bigcap_{i\geq n} \{E_i\})$
 $\lim_{n\to\infty} (E_i) := \lim_{n\to\infty} (\bigcap_{i\geq n} \{E_i\})$

living (Ei) = the set of points belonging to all but finitely many of the sets Ei.

D liminf (E_i) \subseteq limbup (E_i) . If they are segral, then we denote this set as $\lim (E_i)$.

Example:-(i) Suppose
$$E_i \subseteq E_2 \subseteq \dots$$

Then $\lim_{i \to \infty} (E_i) = \bigcup_{i=1}^{\infty} E_i$
 $\lim_{i \to \infty} (F_i) = \bigcup_{i=1}^{\infty} E_i$

$$: \lim_{i \to \infty} (E_i) = \bigcup_{i=1}^{\infty} E_i.$$

Description
$$E_1 \ge E_2 \ge ---$$
 Then $\lim_{h \to \infty} (E_i) = \bigcap_{j=1}^{\infty} E_j = \lim_{j=1}^{\infty} (E_i) = \bigcap_{j=1}^{\infty} E_j$

i- $\lim_{h \to \infty} (E_i) = \bigcap_{j=1}^{\infty} E_j$

i- $\lim_{h \to \infty} (E_i) = \bigcap_{j=1}^{\infty} E_j$

Theorem: Let { E; } be a segmence of meanable Sets in R. Then

(i) if $E_1 \subseteq E_2 \subseteq --$, then $m(\lim_{E_i}) = \lim_{E_i} (\lim_{E_i})$ (ii) if $E_1 \supseteq E_2 \supseteq ---$, & $m(E_i) < \infty$ for all i, then $m(\lim_{E_i}) = \lim_{E_i} m(E_i)$.

proof: $f_{i} = E_{i} \setminus E_{i-1} \quad \forall i \geq 2.$ Then $\bigcup_{i=1}^{\infty} E_{i} = \bigcup_{i=1}^{\infty} F_{i} \quad \forall i \geq 2.$ $(F_{i} = E_{i} \cap E_{i-1}) = m \quad (F_{i} = E_{i} \cap E_{i-1}).$ $(F_{i} = E_{i} \cap E_{i-1}) = m \quad (F_{i} = E_{i} \cap E_{i-1}).$

$$= \sum_{i=1}^{m} m(F_i)$$

$$= \lim_{i=1}^{m} \left(\sum_{i=1}^{m} m(F_i) \right)$$

$$= \lim_{i=1}^{m} \left(m(\bigvee_{i=1}^{m} F_i) \right)$$

$$= \lim_{i=1}^{m} \left(m(\bigvee_{i=1}^{m} F_i) \right)$$

$$= \lim_{i=1}^{m} \left(m(E_i) \right)$$

$$= \lim_{i=1}^{m} \left(m(E_i) \right)$$

$$= \lim_{i=1}^{m} \left(\lim_{i=1}^{m} F_i \right)$$

$$= \lim_{i=1}^{m} \left($$

_

Thus $m(E_1 \setminus lim(E_i)) = m(E_1) - lim m(E_i)$ $\Rightarrow m(E_1) \setminus m(lim(E_i)) = n$ $\Rightarrow m(E_1) \setminus m(lim(E_i)) = n$