

M5 Project: Cross-modal Retrieval

Week 4

Image Retrieval

Rubèn Pérez Tito rperez@cvc.uab.cat

Ernest Valveny ernest@cvc.uab.cat

M5 Project Stages and Schedule

Week 1 March 6-12

P1: Introduction to Pytorch - Image Classification

Week 2

March 13-19

Week 3Marh 20 - 26

P2 & P3: Object Detection, Recognition and Segmentation

Week 4

March 27 – April 2

P4: Image Retrieval

EASTER

Week 5April 17 - 23

P5: Cross-modal Retrieval

Deliverable: Report on object Detection and Segmentation, first version

Week 6 April 24 **Deliverable: Presentation**

Deliverable: Report on object Detection and Segmentation, final version

Application approach

- Extract features from database images (train set).
- Extract features of the query image (val/test set).
- Retrieve the most similar images from the database.

Notice that image retrieval is not a training methodology, but an application!

By training the to classify. It will implicitly learn an image representation that is representative to perform retrieval.

Training strategies for image retrieval

- Classification
- Metric learning:
 - Siamese networks

By performing metric learning, we explicitly learn a representation that facilitates the retrieval of the images.

Training strategies for image retrieval

- Classification
- Metric learning:
 - Siamese networks
 - Triplet networks

By performing metric learning, we explicitly learn a representation that facilitates the retrieval of the images.

Training strategies for image retrieval

- Classification
- Metric learning:
 - Siamese networks
 - Triplet networks

By performing metric learning, we explicitly learn a representation that **facilitates** the retrieval of the images.

Training strategies for image retrieval

- Classification
- Metric learning:
 - Siamese networks
 - Triplet networks
 - Quadruplet Networks
 - o Etc.

By performing metric learning. We explicitly learn a representation that facilitates the retrieval of the images.

Dataset: MIT Split

Training strategies for image retrieval

- Classification
- Metric learning:
 - Siamese networks
 - Triplet networks

Note: When you will read that models share parameters, you can use the same model.

```
1. img1_emb = model(img1)
2. img2_emb = model(img2)
3. loss = criterion(img1_emb, img2_emb)
```


Retrieval process

- Extract features from database images (train set).
- Extract features of the query image (val/test set).
- Retrieve the most similar images from the database.
 - o NN, KNN...
 - Facebook AI Similarity Search (<u>FAIS</u>), getting started <u>documentation</u>.

Retrieval process

- Extract features from database images (train set) → use torch.no_grad()
- Extract features of the query image (val/test set) → use torch.no_grad()
- Retrieve the most similar images from the database.
 - o NN, KNN...
 - Facebook AI Similarity Search (<u>FAIS</u>), getting started <u>documentation</u>.

Retrieval process

- Extract features from database images (train set).
- Extract features of the query image (val/test set).
- Retrieve the most similar images from the database.
 - o NN, KNN...
 - Facebook AI Similarity Search (FAIS), getting started <u>documentation</u>.

Evaluation / Metrics

- Mean Average Precision (MAP)
- Precision@K
- Recall@K
- Difference between object detection
- and information retrieval metrics <u>link</u>.

Master in Computer Vision Barcelona

Tasks

- Image retrieval with pre-trained image classification model. a.
- Train the model on metric learning (Siamese network). b.
- Train the model on metric learning (Triplet network). C.
- Visualize the learned image representation of each of the previous tasks a-c d.
- Image Retrieval on COCO with Faster R-CNN or Mask R-CNN e.
- f. Finish the paper: Results and Conclusions.

Deliverable (for next week)

- **Github** repository with readme.md (code explanation & instructions)
- Presentation with all items listed in the tasks under the **Project presentation** title.
- One summary slide at the end of your presentation.
- **Report** on overlaf about object detection and segmentation.

Task (a): Image retrieval with pre-trained image classification model.

- Use P1 or standard Image Classification method (ResNet) pre-trained for Image Classification on the MIT_Split dataset.
 - You might need to remove the last linear layer where you project the hidden size into the output (num classes) size.
- Show (and analyze) precision-recall curve.
- Show qualitative results in your presentation.
- Show quantitative results in your presentation.
 - At least MAP, Prec@1, Prec@5
 - For MAP use the average_precision_score() function from the <u>Sklearn</u> library
 - Sklearn: Metrics, Basic models (NN, KNN, K-Means, SVMs)...
 - You will have to turn your integer targets [7, 3, 1, 3, ...]_{bs} to binary [0, 1, 0, 1, ...]_{database size}
- You can choose the retrieval method you prefer (NN, KNN, FAIS...)

Task (b): Train the model on metric learning (Siamese network)

• Include precision-recall curve, quantitative and qualitative results in your presentation.

Task (c): Train the model on metric learning (Triplet network)

• Include precision-recall curve, quantitative and qualitative results in your presentation.

Task (d): Visualize the learned image representation of each of the previous tasks a-c

- You can use PCA, TSNE, UMAP or another you choose.
 - TSNE <u>paper</u> and implementation in <u>sklearn</u>.

Task (e): Image Retrieval on COCO with Faster R-CNN or Mask R-CNN

- Perform image retrieval on subset of COCO with triplet networks.
- Dataset: COCO 2014
 - /home/mcv/datasets/COCO/
 - train2014
 - val2014
 - Annotations
 - Train (metric learning) ← Train set (82K images: 100 %)
 - **Database** (image retrieval DB) ← Train set (1.9K images: 2.5 %)
 - Val (queries) ← Val set (1.1K images: 2.9 %)
 - Test (queries) ← Val set (1.9K images: 4.8 %)
 - Format:
 - Obj_M: [ImageId₀, ImageId₁, ImageId_N]

Task (e): Image Retrieval on COCO with Faster R-CNN or Mask R-CNN

- Evaluating correct / wrongly retrieved images:
 - The retrieved image contains at least one object of the queried image.
 - Selection
 - The retrieved image contains same objects as the queried image.
 - Aggregation
 - The retrieved image contains similar objects with similar quantities as the queried image.
 - Weighted aggregation

Task (e): Image Retrieval on COCO with Faster R-CNN or Mask R-CNN

- Evaluating correct / wrongly retrieved images:
 - The retrieved image contains at least one object of the queried image.
 - Selection
 - The retrieved image contains same objects as the queried image.
 - Aggregation
 - The retrieved image contains similar objects with similar quantities as the queried image.
 - Weighted aggregation

Task (f): Finish the paper.

- Abstract
- Introduction (½ page)
- Related Work (1 page)
- Methodology (1 page with diagram)
 - Faster R-CNN & Mask R-CNN
- Experiments
 - Datasets
 - Metrics
 - You can include a section on implementation details (detectron, backbones, hyperparameters, training, ...)
- Results
 - Do not include all experiments and results. Only a summary of most relevant ones
- Conclusion

Max: 6 pages w/o references

Interesting features to analyze

- 1. How different metric learning setups affect the results?
 - Different losses, different distances (Euclidean, Mahalanobis), different weights or margins.
 - Use of hard negative and different hard-negative mining strategies.
- 2. How different retrieval methods (NN, KNN, FAIS) affect the results for the same learned image representations?
- 3. How different visualization methods plot the same learned image representations?

General information requirements for the presentation

- Describe your method.
 - Was it necessary to perform any change? (remove the last fully connected layer).
- Describe the training strategies (loss function).
 - Did you use any hard negative strategy? Which one?
- Describe the retrieval method.
- Describe the visualization method.

Extra material

- Siamese, Triplet examples (AdamBielski)
- Pytorch-metric-learning <u>library</u> (Kevin Musgrave)
 - Oficial Github repository
 - CIFAR 10 examples

M5 – P4: Image Retrieval

Due date

17th of April, Monday, before 10:00 AM

Include one summary slide at the end of your presentation with main results and conclusions

One member of the group members will have to present this slide in 1 minute during the follow-up session next week.