PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-322490

(43)Date of publication of application: 22.11.1994

(51)Int.CI.

C22C 38/00

C22C 38/44

(21)Application number : 05-156645

(71)Applicant: SUMITOMO METAL IND LTD

(22)Date of filing:

28.06.1993

(72)Inventor: AZUMA SHIGEKI

YAMANAKA KAZUO HONCHI MASAHIRO YAMAGUCHI YOJI

(30)Priority

Priority number: 05 60053

Priority date: 19.03.1993

Priority country: JP

(54) STAINLESS STEEL FOR HIGH PURITY GAS EXCELLENT IN WORKABILITY AND MACHINABILITY (57) Abstract:

PURPOSE: To provide stainless steel for high purity gas excellent in workability and machinability. CONSTITUTION: This stainless steel for high purity gas excellent in workability and machinability is, one having a compsn. contg. 10 to 25% Ni, 15 to 30% Cr, 2 to 7% Mo and 0.10 to 0.30% N and in which the content of C in impurities is regulated to $\leq 0.03\%$, Si to $\leq 0.5\%$, Mn to $\leq 0.5\%$, P to $\leq 0.01\%$ S to $\leq 0.003\%$, O to $\leq 0.005\%$, Ti to $\leq 0.02\%$ and Al to less than (0.01/N(%)) and Ni-bal. value given by the following formula is regulated to O to $\leq 0.00\%$ Nieq. = 1.1% ICreq. = 1.1% Where Nieq. = 1.1% Nieq. = 1.1% Where Nieq. = 1.1% Nieq.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-322490

(43)公開日 平成6年(1994)11月22日

(51) Int.Cl.5

識別記号 302 Z 庁内整理番号

FΙ

技術表示箇所

C 2 2 C 38/00 38/44

請求項の数2 OL (全 8 頁)

(21)出願番号	特顧平5-156645	(71)出願人 000002118
•		住友金属工業株式会社
(22)出顧日	平成5年(1993)6月28日	大阪府大阪市中央区北浜 4 丁目 5 番33号
		(72)発明者 東 茂樹
(31)優先権主張番号	特顯平5-60053	大阪府大阪市中央区北浜4丁目5番33号
(32)優先日	平 5 (1993) 3 月19日	友金属工業株式会社内
(33)優先権主張国	日本 (JP)	(72) 発明者 山中 和夫
•		大阪府大阪市中央区北浜4丁目5番33号位
		友金属工業株式会社内
		(72)発明者 本地 雅宏
		大阪府大阪市中央区北浜4丁目5番33号位
		友金属工業株式会社内
	·	
		(74)代理人 弁理士 穂上 照忠 (外1名)
	•	最終頁に続く

(54) 【発明の名称】 加工性および被削性に優れた高純度ガス用ステンレス鋼

(57)【要約】

【目的】加工性と被削性にも優れた高純度ガス用ステン レス鋼を提供する。

【構成】Ni:10~25%、Cr:15~30%、Mo:2~7%、 N: 0.10~0.30%を含有し、不純物中のCが0.03%以*

ただし、Ni eq. = Ni(%) + 0.5Ma(%) + 30 (C(%) + N(%))

Cr eq. =Cr(%) + 1.5Si(%) + Mo(%)

上記鋼は加えて更に、Cu: 0.20~0.80%を含有すること

*下、Siが 0.5%以下、Mnが 0.5%以下、Pが0.01%以 下、Sが 0.003%以下、O(酸素)が 0.005%以下、Ti が0.02%以下、Alが〔0.01 / N(%)〕未満で、かつ下 記式①で与えられるNi-bal.値が0以上3未満である加 工性と被削性に優れた高純度ガス用ステンレス鋼。

ができる。

【効果】本発明鋼は、優れた低パーティクル発生特性 (清浄性)、耐食性、熱間と冷間の加工性および被削性 を併せ持つ高純度ガス用ステンレス鋼である。

【特許請求の範囲】

【請求項1】重量%で、Ni:10~25%、Cr:15~30%、 Mo: 2~7%およびN:0.10~0.30%を含有し、残部は Feおよび不可避的不純物からなり、不純物中のCが0.03 %以下、Siが 0.5%以下、Muが 0.5%以下、Pが0.01%*

ただし、 Ni eq. =Ni(%) + 0.5Mn(%) +30 (C(%) + N(%))

Cr eq. = Cr(%) + 1.5Si(%) + Mo(%)

【請求項2】重量%で、Ni:10~25%、Cr:15~30%、 Mo: 2~7%、Cu: 0.20~0.80%およびN: 0.10~0.30 %を含有し、残部はFeおよび不可避的不純物からなり、※

Ni-bal. = Ni eq. -1.1Cr eq. $+8.2 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \bigcirc$

ただし、 Ni eq. =Ni(%) + 0.5Mn(%) +30 (C(%) + N(%) }

Cr eq. = Cr(%) + 1.5Si(%) + Mo(%)

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体製造プロセスな どで使用される高純度ガス用ステンレス鋼に関する。 [0002]

【従来の技術】半導体製造分野においては近年、高集積 化が進み、超LSIと称されるディバイスの製造では、 1 μ Β 以下の微細パターンの加工が必要とされている。 このような超LSI製造プロセスでは、微少な塵や微量 不純物ガスが配線パターンに付着、吸着されて回路不良 の原因となるため、使用する反応ガスおよびキャリアー ガスは共に高純度であること、すなわちガス中の微粒子 および不純物ガスが少ないことが必要である。したがっ て、高純度ガス用配管および部材においては、その内面 30 から放出される汚染物としての微粒子 (パーティクル) およびガスが極力少ないことが要求される。

【0003】また、半導体製造用ガスとしては、窒素、 アルゴンなどの不活性ガス以外に塩素、クロロシラン類 などの腐食性のガスも使用されるので、これらの腐食性 ガスに接する部材には当然、高い耐食性も必要となる。

【0004】従来、このような半導体製造用ガス配管お よび継手などの部材は、塵や水分などの付着および吸着 を低減するため、その内面粗さがRmax として1μm以 下となるまで平滑化されている。この内面平滑化の方法 40 として電解研磨が適用され、その後、高純度水による洗 浄、高純度ガスによる乾燥が施されて製品となる。

【0005】半導体製造用ガス配管および継手などの部 材の材質としては通常、オーステナイト系ステンレス 例、中でもSUS316Lが主流となっており、配管には継 目無し鋼管が、継手などの部材には棒鋼などからの「切 削加工」ないしは「熱間鍛造+切削加工」仕上品が、そ れぞれ使用されている。

【0006】上記の規格鋼以外では、特開昭63-161145 号公報に、前述のような管内面からのパーティクル発生 50

*以下、Sが 0.003%以下、O(酸素)が 0.005%以下、 Tiが0.02%以下およびAlが (0.01 /N(%))未満で、 かつ下記式①で与えられるNi-bal.値が0以上、3未満 であることを特徴とする加工性および被削性に優れた高

※不純物中のCが0.03%以下、Siが 0.5%以下、Mnが 0.5 %以下、Pが0.01%以下、Sが 0.003%以下、O(酸素)が 0.005%以下、Tiが0.02%以下およびAIが (0.01 10 /N(%)] 未満で、かつ下記式①で与えられるNi-bal. 値が0以上、3未満であることを特徴とする加工性およ び被削性に優れた高純度ガス用ステンレス鋼。

を低減することを目的として、Mo、Si、Al、O(酸素) などの含有量を規制することにより非金属介在物を低減 したクリーンルーム用鋼管が開示されている。

[0007]

【発明が解決しようとする課題】高純度ガス配管用ステ ンレス鋼管などの性能として不可欠なパーティクル発生 20 低減の有効な対策としては、管内面の平滑化、さらに前 記の特開昭63-161145号公報に示されるような非金属介 在物の低減がある。配管用ステンレス鋼管の性能として は、前述したパーティクル発生特性と耐食性のほか、溶 接性、ガス放出特性が重視される。ガス配管系には、溶 接継手、パルプ、流量計等の配管部品が不可欠であり、 これら配管部品も高純度ガス用としての高清浄性が必要 であることから、鋼管の素材と同様のパーティクル発生 が低減されたステンレス鋼から製造されることとなる。

【0008】配管部品の製造は、主として棒鋼を素材と し、旋盤、ドリルなどを用いる機械加工により行われる ため、その素材となるステンレス鋼では、被削性も特に 重要な性能である。従来の一般用途での快削ステンレス 鋼では、P、S、Se、Pb、Biなどを添加し、これらの元 案がステンレス鋼組織中に形成する非金属介在物あるい は析出物により被削性を付与する。しかし、高純度ガス 用ステンレス鋼では、前記の必要性能上これらの介在物 などを極力低減せざるを得ないため、被削性が著しく劣 り、配管部品の機械加工が困難であるという問題があ

【0009】したがって、上記配管部品の製造にあたっ ては、切削加工の度合いを極力少なくすることが重要で あり、熱間もしくは冷間鍛造を導入することが望まし い。しかし、熱間鍛造と冷間鍛造を比べると、冷間鍛造 の方が切削工数の削減度合い、寸法精度、表面品質およ び材料歩留り、作業コストなどで総合評価して有利であ るので、「冷間鍛造+切削加工」方式の導入が可能な高 純度ガス用ステンレス鋼素材の開発が待望されている。

【0010】さらに、素材となる棒鋼や鋼管を製造する ためには当然、良好な熱間加工性を備えたステンレス鋼 であることも必要である。

【0011】本発明は上記の課題を解決するためになさ れたものであり、本発明の目的は、高純度ガス用ステン レス鋼として不可欠な低パーティクル発生特性(清浄 性)と耐食性を有し、さらに優れた熱間または熱間およ び冷間での加工性と被削性を併せ持つステンレス鋼を提 供することにある。

[0012]

【課題を解決するための手段】本発明の要旨は、次の (1)、(2)の加工性および被削性に優れた高純度ガス用 ステンレス鋼にある。

Ni-bal. = Ni eq. -1.1Cr eq. $+8.2 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \bigcirc$

ただし、Ni eq. =Ni(%) + 0.5Mn(%) +30 (C(%) + N(x)

Cr eq. = Cr(%) + 1.5Si(%) + Mo(%)

(2)上記(1) に記載の化学組成に加えてさらに、Cu: 0.2 -0~0.80%を含有する上記(1) の加工性および被削性に 優れた高純度ガス用ステンレス鋼。

【0015】本発明者らは、前記の課題を解決するた め、種々の化学組成を有するステンレス鋼を用いて、高 純度ガス用配管としての代表的性能であるパーティクル 発生特性、ならびに素材鋼としての性能を表す熱間、冷 間での加工性および被削性を調査した。その結果、バー ティクル発生特性を劣化させることなく熱間、冷間加工 性および被削性を向上させるには、次の①~④が有効で あるとの知見を得た。

【0016】①パーティクル発生特性を向上させるため に、不純物元素の含有量を一定値以下に抑制する。

【0017】②被削性を向上させるために、Nを適量で 含有させ、さらにこのNと窒化物を形成しやすいAl含有 量を調整する(オーステナイトステンレス鋼の場合、N は低C鋼の強度低下を補うための固溶強化元素として知 られているが、被削性改善効果についてはこれまで検討 されていない。)。

【0018】③冷間鍛造時の加工性を向上させるため に、Cuを適量で含有させる。

【0019】④熱間加工性を向上させるために、Ni-ba 1. 値を一定の範囲に調整する。

[0020]

【作用】本発明のステンレス鋼の化学組成を上述のよう に定めた理由を述べる。以下、%は重量%を意味する。

【0021】Ni、Cr、Mo:Ni、Cr、Moはいずれも、鋼の 耐食性および組織調整に重要な元素である。オーステナ イトステンレス鋼としての組織と、さらに高い耐食性と を維持させるために、Niは10~25%、Crは15~30%、Mo は2~7%とした。これらの範囲を外れると、望ましい 耐食性や金属組織が得られない。

【0022】Cu:Cuは本発明の目的の一つである冷間加 工性を改善する重要な合金元素であり、必要に応じて含 有させる。すなわち、Cuはオーステナイト相を安定化さ せ、加工硬化率を低下させる作用を有する。さらに、被 50 量から予測できる。本発明者らがその窒化物折出の関係

*【0013】(1)重量%で、Ni:10~25%、Cr:15~30 %、Mo: 2~7%およびN: 0.10~0.30%を含有し、残 部はFeおよび不可避的不純物からなり、不純物中のCが 0.03%以下、Siが 0.5%以下、Mnが 0.5%以下、Pが0. 01%以下、Sが 0.003%以下、O(酸素)が 0.005%以 下、Tiが0.02%以下およびAIが (0.01 / N(%)) 未満 で、かつ下記式①で与えられるNi-bal.値が0以上、3 未満であることを特徴とする加工性および被削性に優れ た高純度ガス用ステンレス鋼。

[0014] * 10

> 削性に対しても改善効果を有する元素である。Cu含有量 が0.20%未満では良好な冷間加工性と被削性が得られな い。一方、0.80%を超えるとCuの固溶化作用により脆化 が著しくなり、熱間加工性を劣化させるため、鋼管およ び棒鋼などの製造が困難となる。よって、Cuを含有させ る場合の含有量の範囲は0.20~0.80%とした。

【0023】N:Nは本発明の目的の一つである被削性 を改善する重要な合金元素である。被削性が向上するの は、ドリル穿孔の場合、高N化によって切削時の切り屑 が破断しやすくなり、穿孔時に孔外へ容易に排出される ためであると考えられる。

【0024】N含有量が0.10%未満の場合には、上記の 効果が少なく良好な被削性が得られない。一方、0.30% を超えると熱間加工性が劣化し、鋼管および棒鋼などの 製造が困難となる。よって、Nの含有量の範囲は0.10~ 0.30%とした。

【0025】C:Cは、Cr炭化物の析出により耐食性を 低下させるため、その含有量は低いことが望ましい。本 発明鋼の強い腐食性ガスに対する用途も考慮して、0.03 %以下とした。

【0026】Si、Mn:Si、Mnは脱酸効果を有し、ステン レス鋼の髙清浄化に有効な元素である。しかし、Si、Mo とも鋼中の〇、Sと化合して非金属介在物を形成しやす く、高純度ガス用ステンレス鋼としては、これらの含有 量はともに低いことが望ましい。よって、SiとMnの含有 量は、いずれも0.5%以下とした。

【0027】P、S:Pの含有量が0.01%を、Sの含有 量が 0.003%を、それぞれ超えると、ともに耐食性およ び熱間加工性に対して有害である。特にSは極微量でも MnS を生成し、耐食性に極めて有害である。よって、P の含有量は0.01%以下、Sの含有量は0.003 %以下とし

【0028】Al:AlもSi、Mnと同様に脱酸効果を有し、 かつ非金属介在物を形成しやすい元素である。また、N を前記範囲で含有させた場合、過剰のAIが存在するとAI 窒化物を生成し、鋼の清浄度を悪化させパーティクル発 生特性が劣化する。

【0029】Al窒化物の生成の有無は、NとAlとの含有

を系統的に調査したところ、 $N \ge A1 \ge 0$ 含有量の関係を、 $\{N(\$) \times A1(\$)\}$ で0.01未満に維持すれば、高N含有ステンレス鋼でもA1空化物は析出しないことが判明した。よって、A1含有量は $\{0.01 / N(\$)\}$ 未満とした。

【0030】〇:〇(酸素)はSと並んで非金属介在物を形成する元素であり、極力少なくする必要がある。耐食性に悪影響を及ぼさない範囲として、〇含有量は 0.0 05%以下とした。

【0031】Ti:Tiは窒化物を極めて生成しやすい元素 10であり、前記の高N含有量の範囲では極微量でも有害である。よって、Ti含有量は0.02%以下とした。

【0032】Ni-bal.値:Ni-bal.値が0未満になると、フェライト相を含む不安定なオーステナイト組織しか得られないため、機械的性質、耐食性が劣化する。一方、3以上では熱間加工性が低下し、実験室での小規模な鋼塊等の製造では支障はないものの、商用レベルの大

量製造では、鋼塊の熱間鍛造、熱間圧延時に割れが起こりやすい。よって、本発明鋼の合金元素含有量から計算されるNi-bal.値を、0以上、3未満と定めた。

【0033】本発明鋼では、さらに3%以下のWを含有させると耐食性が向上し、また0.01%以下のB、Ca、希土類元素をそれぞれ含有させると熱間加工性が向上する

[0034]

【実施例】表 1、表 2に示す化学組成を有するステンレス鋼を溶製し、肉厚10mmの板材、外径 6.4mm、肉厚1mm、長さ4mの離目無鋼管および外径20mmの棒鋼を熱間加工により成形後、1100℃→水冷の固溶化処理を施し、板材は被削性試験と熱間加工後の硬度測定試験に、管材はパーティクル発生特性試験に、棒鋼は冷間加工性試験に、それぞれ供した。

[0035]

【表1】

出

7

妆

뫲

塞

8

窒

							·								
.,		Nibal.	1.55	1.09	2.78	2.56	1.96	0.33	1.78	0. 10	3.76\$	2.53	2 70	2.51	1.28
	: Fe. 不够物)	Cr. eg.	20.53	21. 15	23.47	30. 10	30.93	19.28	20.27	21.83	20.35	21.16	22.45	24.85	21.51
		Ni eq.	15.94	16.16	20.39	27.46	27.73	13.40	15.88	15.92	17.94	17.61	19.20	21.65	16.74
		N×AI	0.0014	0.0039	0.0039	0.0015	0.0074	0.000	0.0003	0.0000	0.0024	0.0156#	0.0143\$	0.0188*	0.0017
		0	0.0011	0.0004	0.0002	0.0009	0.0008	0.0012	9000.0	0.0006	0.0012	0.0012	0.0008	0.006	0.0011
-	(Wt%, bal :	z	0.113	0.112	0. 186	0.136	0. 23I	0.002#	0.072*	0.003#	0.114	0.125	0.231	0.261	0. 121
	(Hts	Ti	0.004	0.001	0.006	0.011	0.001	0.003	0.005	0.004	0.004	0.011	0.001	0.014	0.036#
	镃	ΙV	0.012	0.035	0.021	0.011	0.032	0.012	0.004	0.007	0.021	0.125	0.062	0.072	0.014
₩X.		ng	1	1	1	۱۰	1	ı	1	ı	1	١	1	,	1
	類)No	2.91	2.72	3.65	2 12	5.86	232	2.68	3.15	2 68	2.64	2 92	3 82	2 89
		J)	17.5	17.8	19.5	27.3	24.5	16.9	17.5	18.2	17.2	17.8	18.9	23. 6	17.9
	钟	Ni	12.4	12.6	14.6	23.2	20.5	13.1	13.6	15.6	14.1	13.2	12.2	13.5	12.8
		S	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.001
	(K	P	0.008	0.008	0.005	0.007	0.007	0.009	900.0	0.004	0.006	0.003	0.006	0.003	0.004
		da.	0.05	0.04	0.12	0.06	0.23	0.12	90.02	0.09	0.11	0. 42	0.02	0.46	0.14
		Si	0.08	0. 42	0.21	0.45	0.38	0.04	0.08	0.32	0.31	0.48	0. 42	0. 42	0.48
			964	906	55	88	800	90	83	900	710	12	8	8	8

(注) * 印は本語明の範囲外

【0036】

Ħ 絮 斷 Œ 式数段 1.55 1.09 82 8 Nibal d 2 ó B Ç 83 প্ত 83 ផ <u>ರ</u>್ ئ ଞ୍ଚ ಸ ଞ ଞ 2 8 8 72 16 ಆ Z g 73 7 ស្ន N×A 0.0039 689 9074 ខ 8 **小菜包** o Ö 8 800 8 0 8 کو ö ö 98 bal Z ន 0 ö ö ö ₹ 8× 켫 8 8 တ ö Ö ö 012 ₽ 120 Ø 偿 ö ö ö 쉱 92 23 2 क्र ଷ 3 ď 22 2 ಕ æ 88 R 盎 3 N 2 ø ಣ ıci N က 17.5 ರ <u>e</u> 27. 24. 2 S 扑 Z 2 2 4 <u>ಣ</u> ផ ଷ୍ଟ <u>55</u> ᅙ ᅙ ਭ 홍 용 ᅙ S o र्ग 8 8 60 8 8 ρ, ö o **BE** 信 8 8 පු 別の 돌 ö Ö Ö 8 は本刻 8 \$ 엃 ឧ \sim ci ö ď Ö ď Ö 8 8 8 8 8 8 C o; ď ö \mathfrak{H}

 $^{\circ}$

麦

【0037】鋼管は、内面を電解研磨によってRmax が 0.7μm となるように平滑化した後、高純度水によって 洗浄し、80℃で99.999%Arガスを通して乾燥した。パーティクル発生特性は、図1に示す装置を用い、上記の電解研磨管にブラスチックハンマーによる打撃を与えた後、高純度窒素ガスを通して 0.1μm 以上のパーティクル発生数を測定し、パーティクル発生がなくなる測定回数で評価した。

【0038】被削性は、上記の板材をそれぞれ2枚用意 10 して表3に示す工具と穿孔条件でドリル穿孔試験を行う ことにより、各板材毎に新品の1本のドリルで穿孔可能 であった孔個数と切屑性状で評価した。

[0039]

【表3】

20

表 3

	工具	SKH51製ドリル、φ5mmデル型			
翠	送り	0. 15 mm/rev.			
孔	回転数	980 rpm			
条	孔梁さ	孔深さ φ10mm貫通孔			
件	潤滑	水溶性潤滑剤 4リットカ/min			

【0040】熱間加工性は、 800~1200℃で厚さ30mm、幅80mmの素材を厚さ5mmに圧延し、板材のへり部に生じる割れの有無で評価した。

【0041】冷間加工性は、上記の棒鋼から外径6㎜、 長さ11.5㎜の試験片を切り出し、冷間アプセット加工時 の割れ発生限界歪み(対数歪み)を、試料:12の場合を 30 100とした相対値で評価した。

【0042】熱間加工性、冷間加工性、パーティクル発生特性および被削性の評価結果をまとめて表4および表5に示す。

[0043]

【表4】

40

-	
-70	- 4

鋼	熱間加工性	硬度	被	削 性	冷間	パーティクルゼロ	備
種	W. Ind Mr T. D.	Hv10kg	穿孔個数	切滑性状	加工性	となるハンマリング回数	考
Α	良好	168	>100 、>100	良 好	100	4	
В	良 好	176	>100 、>100	良好	90	1	本
С	良 好	172	>100 、>100	良好	90	3	発
D	良好	168	>100 、>100	良 好	95	5 .	明
Е	良好	182	>100 、>100	良 好	80	4	991
	良好	143	2 3	ドリルに絡み付く	100.	6	
2	良 好	156	10 、 19	ドリルに絡み付く	95	2	.
3	良 好	151	4 7	ドリルに絡み付く	100	4	比
4	熱延板へり部割れ	168	>100 、>100	良 好	100	. 6	
5	良 好	162	>100 、>100	良 好	90 -	12	較
6	良 好	174	>100 、>100	良 好	90	18	例
7	良 好	182	>100 、>100	良 好	80	21	·
8	良 好	156	21 、 9	ドリルに絡み付く	100	13	

[0044]

20【表5】

表 5

30. 3								
鋼	熟問加工性	硬度	削 性	冷間	パーティクルゼロ となるハンマリング	備		
種	然间加工臣	Hv10kg	穿孔個数	切滑性状	加工性	回 数	考	
F	良好	168	>100 、>100	良 好	115	4		
G	良 好	176	>100 、>100	良 好	120	l	本	
Н	良 好	172	>100 、>100	良好	120	3	発	
I	良 好	168	>100 、>100	良 好	130	5	明	
J	良 好	182	>100 、>100	良 好	120	4	例	
9	良 好	143	2, 3	ドリルに絡み付く	120	6 .	共	
10	良 好	151	4 、 7	ドリルに絡み付く	120	4 .	比較例	

【0045】表4からわかるように、本発明で定める範囲内の化学組成を有するステンレス鋼では、熱間加工性が良好で、しかも優れたパーティクル発生特性と被削性を示した。

【0046】表5からわかるように、本発明で定める範囲内の化学組成を有するステンレス鋼では、熱問加工性、冷間加工性が良好で、しかも優れたパーティクル発生特性と被削性を示した。

[0047]

【発明の効果】本発明鋼は、高純度ガス用として不可欠な低パーティクル発生特性(清浄性)、耐食性、優れた熱間、冷間での加工性および被削性を併せ持つステンレス鋼である。この鋼を素材鋼として用いれば、棒鋼から「冷間加工+切削加工」仕上により、継手などの高純度ガス配管用部材も製造することができる。

【図面の簡単な説明】

40 【図1】鋼管内面のパーティクル発生特性を評価する装置を模式的に示す概略図である。

[図1]

フロントページの続き

(72) 発明者 山口 洋治 北九州市小倉北区許斐町 1 番地住友金属工 業株式会社小倉製鉄所内