

Optimization in Machine Learning: Lecture 1 **Tutorial**

by Xiaolin Huang

xiaolinhuang@sjtu.edu.cn SEIEE 2-429

Institute of Image Processing and Pattern Recognition

http://www.pami.sjtu.edu.cn/

目录 Contents

What is Optimization

History of Optimization

Optimization in Machine Learning

4 Course Information

目录 Contents

1 What is Optimization

2 History of Optimization

Optimization in Machine Learning

4 Course Information

Definition of Optimization

• **Optimization** includes finding "best available" values of some objective function given a defined domain (or input), including a variety of different types of objective functions and different types of domains^[wikipedia]

"Since 1990 many applications have been discovered in areas such as automatic control systems, estimation and signal processing, communications and networks, electronic circuit design, data analysis and modeling, statistics, and finance." —— S. Boyd and L. Vendenberghe

Automatic Control Systems

- Optimal Control deals with the problem of finding a control law for a given system such that a certain optimality criterion is achieved.
- **Stability condition** of continuous-time linear systems could be modeled as an linear matrix inequality, a convex constraint.
- **Filter Design** is to find a discrete FIR filter by minimizing the integral of the square of the error to an ideal frequency function of the filter
- Model Predictive Control, Network Allocation

Signal Processing

 Compressive/Compressed Sensing By minimizing the 11 regularization term, one could recover sparse signals with relatively fewer measurements

- Parameters Setting
 - Antenna/Cell/District/City

J. Mattingley and S. Boyd, in Signal Processing

Anisotropic Total Variation for Limited Angle Tomography

- Electronic Circuit Design
 - Device sizing (EDA)
- Finance
 - Prediction
 - Portfolio optimization
 - Risk control
- Route Planning
- Scheduling

https://forum.airportoeo.com/

- Route Planning
- Scheduling

Other Words

- **Optimization** includes finding "best available" values of some objective function given a defined domain (or input), including a variety of different types of objective functions and different types of domains^[wikipedia]
- Operations Research/Operational Research
- Mathematical Programming

$$\min_{\mathbf{x}} f_0(\mathbf{x})$$
s.t.
$$f_i(x) \le 0, i = 1, \dots, m,$$

$$h_i(\mathbf{x}) = 0, i = 1, \dots, p.$$

- 优化/运筹学/数学规划
- 优选法/统筹法

Optimization Problem

$$\min_{x} f_{0}(x)$$
s. t. $f_{i}(x) \leq 0, i = 1, ..., m$

$$h_{i}(x) = 0, i = 1, ..., p$$

- $f_0(x)$: objective function
 - loss/cost function
 - (minus) utility/fitness/energy function
 - $f_0(x): \mathbb{R}^n \to \mathbb{R}$
 - $f_0(x)$ could be a vector function \rightarrow multiple-criterion problem

Optimization Problem

$$\min_{x} f_{0}(x)$$
s. t. $f_{i}(x) \leq 0, i = 1, ..., m$

$$h_{i}(x) = 0, i = 1, ..., p$$

- $f_i(x)$, $h_i(x)$: constratins
 - $f_i(x)$ inequality constraints
 - $h_i(x)$ equality/equation constraints
 - any x satisfying $f_i(x) \le 0$, $h_i(x) = 0$ is called a *feasible solution*
 - all the feasible solutions form the feasible set/feasible domain
 - the feasible set is not empty, the problem is *feasible*
- optimal solution $x^* = \underset{x}{\operatorname{argmin}} \{ f_0(x), \text{ s. t. } \dots \}$: no better feasible solution

Optimization Variable

$$\min_{x} f_{0}(x)$$
s. t. $f_{i}(x) \leq 0, i = 1, ..., m$

$$h_{i}(x) = 0, i = 1, ..., p$$

- $x \in D$: it is very important to distinguish the possible value of x
 - real
 - Boolean (0/1)
 - integer

continuity is very important

Sudoku problem

- requirement
 - each column
 - each row,
 - each 3×3 subregion

have different values but equal summarization

- if the item chooses value from real
 - very easy
- if it can only take integer 1,2,...,9
 - a complicated problem
 - could solved by continuous optimization

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Optimization Variable

$$\min_{x} f_{0}(x)$$
s. t. $f_{i}(x) \leq 0, i = 1, ..., m$

$$h_{i}(x) = 0, i = 1, ..., p$$

- $x \in D$: it is very important to distinguish the possible value of x
 - if the variables can take any real values, the problem is relatively easy
 many machine learning tasks can be modeled as continuous problems, which
 will be our main focus
 - some or all variables are constrained to take on integer values, it is called integer programming, usually results in a combination programming combination programming becomes more and more important in machine learning, e.g., alpha-GO, auto-ML, network architecture search (NAS),

目录 Contents

1 What is Optimization

History of Optimization

Optimization in Machine Learning

4 Course Information

Linear Programming

General Problem

$$\min_{\mathbf{x}} f_0(\mathbf{x})$$
s.t. $f_i(x) \le 0, i = 1, ..., m,$
 $h_i(\mathbf{x}) = 0, i = 1, ..., p.$

Linear Programming

$$x^{\mathsf{T}}y = \langle x, y \rangle = \Sigma_i \, x(i) y(i)$$

$$\min_{\mathbf{x}} \quad \mathbf{f}_0^{\top} \mathbf{x}$$
s.t.
$$\mathbf{f}_i^{\top} \mathbf{x} + a_i \le 0, i = 1, \dots, m, \\
\mathbf{h}_i^{\top} \mathbf{x} + b_i = 0, i = 1, \dots, p.$$

Linear Programming

General Problem

$$\min_{\mathbf{x}} f_0(\mathbf{x})$$
s.t. $f_i(x) \le 0, i = 1, ..., m,$
 $h_i(\mathbf{x}) = 0, i = 1, ..., p.$

Linear Programming

$$\min_{\mathbf{x}} \quad \mathbf{f}_0^{\top} \mathbf{x}$$
s.t.
$$\mathbf{f}_i^{\top} \mathbf{x} + a_i \le 0, i = 1, \dots, m, \\
\mathbf{h}_i^{\top} \mathbf{x} + b_i = 0, i = 1, \dots, p.$$

- minimize a linear function with linear constraints
- minimize a linear function over a polyhedron

Simplex Method

Dantzig: simplex method

- one of the vertices is optimal
- search along the edges

max
$$z = 2x(1) + x(2)$$

s.t. $x(1) + x(2) \le 5$
 $6x(1) + 2x(2) \le 24$
 $5x(2) \le 15$
 $x(1) \ge 0, x(2) \ge 0$

"A few days later I apologized to Neyman for taking so long to do the homework — the problems seemed harder to do than usual" George B. Dantzig (1914-2005)

Discussion from Complexity Theory

1972, Klee-Minty cube
 Simplex Method is NP-hard
 (non-deterministic polynomial-time)

• 1979, Khachain designed Ellipsoid Method,

which is proved that LP could be solved in polynomial time.

• Simplex method has high complexity, but is quite efficient in practice Ellipsoid method has low complexity, but is not efficient in practice

Interior-point-method

- 1984, Karmarkan designed interior-point-method
 - von Neumanm 1940s
 - low complexity & efficient

S. Boyd and L. Vandenberghe, Convex Optimization

Interior-point-method for Convex Optimization

Polynomial property seems less important in interior-point-method

 1994, Nemirovski and Nesterov gave the interior-point-method for Convex Optimization

minimize a **convex function**over a **convex set**

 $\hat{\mathbf{x}}^{\star}(10)$

Convex Optimization

Trend in Optimization

From convex to non-convex problems; Towards large scale; Towards applications

- Convergence analysis: condition, speed, acceleration
- Parallel computing
- Stochastic optimization
- Robust optimization
- Discrete optimization
- Intelligent optimization

目录 Contents

1 What is Optimization

2 History of Optimization

Optimization in Machine Learning

4 Course Information

Basic Learning Framework

—— Michael I. Jordan

- Machine learning is to establish f from data generated by unknown g
- f(x) and g(x) could be similar but the structures of f and g generally are totally different

- Regression
- Classification
- Clustering
- Dimension reduction

- Regression
- Classification
- Clustering
- Dimension reduction

$$\sum_{i} (f(x_i) - y_i)^2$$

- other requirements?
- why squares?
- why sum?

- Regression
- Classification
- Clustering
- Dimension reduction

$$\sum_{i} (f(x_i) - y_i)^2$$

- other requirements?
- why squares?
- why sum?

- Regression
- Classification
- Clustering
- Dimension reduction

$$\sum_{i} I(f(x_i) \neq y_i)$$

- misclassification loss
- however discontinues

$$\sum_{i} \max\{0, 1 - y_i f(x_i)\}$$

• hinge loss

- quadratic cost
- cross-entropy
- softmax (log-likelihood)

- Regression
- Classification
- Clustering
- Dimension reduction

Project data in to one direction $w^{T}x$ to reserve information

- Regression
- Classification
- Clustering
- Dimension reduction

Project data in to one direction $w^{T}x$ to reserve information

maximize the covariance of the (centralized) projected data

$$-w^{\mathsf{T}}X^{\mathsf{T}}Xw$$

what to learn

consider about learning and optimization simultaneously

• the minimizer of empirical loss (loss on the training data) is not necessarily optimal to expected loss (loss on the unknown distribution/new data)

$$R_{\rho}(f) \le R_{\text{empirical}}(f) + R_{\text{structural}}(f)$$

this general inequality implies the importance of complexity control

we want to decompose foreground and background,

X. Liu et al. "Background Subtraction Based on Low-Rank and Structured Sparse Decomposition", IEEE-TIP 2015

we want to decompose foreground and background,

$$\min_{F,B} \|H - (F + B)\|_{2} + \lambda \|F\|_{1} + \gamma \|B\|_{*}$$

Background

Background is low-rank

Foreground is **sparse**

X. Liu et al. "Background Subtraction Based on Low-Rank and Structured Sparse Decomposition", IEEE-TIP 2015

we want to decompose foreground and background,

10-1

- The essence of regularization term is to control the functional space
 - Transfer learning
 - Manifold constraint
 - Early Stop
 - Overparametrization

- linear model $f(x) = w^{\mathsf{T}}x + b$
- basis function $f(x) = w^{\mathsf{T}} \phi(x) + b$
- kernel method
- neural networks

Prior knowledge

what to learn

can we learn features automatically in a data-driven way

Convolution operator:

*1/8	0	1	0
	1	4	1
	0	1	0

	0	-1	0
*	-1	4	-1
	0	-1	0

onvolutional Neural Networks

Prior knowledge

what to learn

can we learn features automatically in a data-driven way

Convolution operator:

*1/8	0	1	0
	1	4	1
	0	1	0

how to

learn

	0	-1	0	
*	-1	4	-1	
8.500	0	-1	0	
olution	nal I	Ven	ral	Netwo

can you image the result?

min f∈F

where to learn

Prior knowledge

what to learn

can we learn features automatically in a data-driven way

Convolution operator:

*1/8	0	1	0
	1	4	1
	0	1	0

how to

learn

	0	-1	0	
*	-1	4	-1	
	0	-1	0	
- 1 :	/ A	7		A T _

why it should be 2? How about 1.99 and 2.01

can you image the result?

min $f \in F$

where to learn

Prior knowledge

what to learn

can we learn features automatically in a data-driven way

• by backpropagation, we can optimize the parameters and learn features

Optimization

Recall the development of neural networks

- 1950's Perceptrons
- 1980's CNN, RNN (original)

Kunihiko Fukushima 福島 邦彦

Optimization

Recall the development of neural networks

- 1950's Perceptrons
- 1980's CNN, RNN
- 2005- Deep Neural Networks

Optimization

Recall the development of neural networks

- 1950's Perceptrons
- 1980's CNN, RNN
- 2005- Deep Neural Networks

when we can efficiently optimize the parameters, we can use more and more complicated models

For the same problem, the difference between different algorithms could be vast.

- Solving accuracy
- Computational time
- Different operations
 - GPU
 - CPU
 - vector-friend
 - matrix/tensor-friend

S. Boyd and L. Vandenberghe, Convex Optimization

TABLE I AVERAGE COMPUTATIONAL TIME WITH DIFFERENT $M,\ N$ When $K=100, s_n=10, s=10\%.$					
Methods	M=500	M=1000	M=500	M=1000	M=1500
	N=1000	N=1000	N=2000	N=2000	N=2000
LASSO	0.0121 s	0.0436 s	0.0296 s	0.1333 s	0.1563 s
RDCS	0.9355 s	0.5129 s	8.5300 s	7.9630 s	5.5730 s
M1bit-CSC	0.9627 s	1.0500 s	8.5410 s	9.2600 s	8.7560 s
Alg.1-sL1	0.0929 s	0.1340 s	0.3713 s	0.5177 s	0.7089 s
Alg.1-MCP	0.1306 s	0.1663 s	0.5907 s	0.7127 s	0.7265 s
Alg.1-L0	0.1073 s	0.1430 s	0.5604 s	0.6758 s	0.6958 s
Alg.1–L1	0.1004 s	0.1375 s	0.5548 s	0.6671 s	0.6854 s

F. He, X. Huang, Y. Ming, Fast Signal Recovery from Saturated Measurements

- Accuracy requirement is **not** very high, especially for **large-scale problem**
 - modeling has error, e.g., image quality evaluation itself is a challenging problem

- Accuracy requirement is **not** very high, especially for **large-scale problem**
 - modeling has error, e.g., image quality evaluation itself is a challenging problem
 - there is gap between training and test

https://medium.com/@LightOnIO/beyond-overfitting-abeyond-silicon-the-double-descent-curve-18b6d9810e1

- Accuracy requirement is **not** very high, especially for **large-scale problem**
 - modeling has error, e.g., image quality evaluation itself is a challenging problem
 - there is gap between training and test
 - in other topics, e.g., scheduling, signal processing, accuracy is very important

 Accuracy requirement is not 	Problem Scale	Operations	
modeling has error, e.g., inthere is gap between training	small size	any, e.g., Hessian matrix	n
	madium ciza	inverse A^{-1}	
	large size	multiplication Ax	
• in other topics, e.g., schedu	huge size	addition $r + v$	

— Yurri Nesterov

Scale could be very large

$$\min_{x} \ \Sigma_{i=1}^{m} (f(x_i) - y_i)^2$$

- Objective function usually could be **decomposed** in some way
- Objective function is usually non-convex

Many things need to consider when put into practical application

目录 Contents

1 What is Optimization

2 History of Optimization

Optimization in Machine Learning

4 Course Information

Course Information

- Lecturer
 - Xiaolin Huang, Department of Automation, SEIEE
 - xiaolinhuang@sjtu.edu.cnwww.pami.sjtu.edu.cn
- TAs: Kaijie Wang, kaijie_wang@sjtu.edu.cn
 Yingwen Wu, yingwen_wu@sjtu.edu.cn
- Text Book:

Stephen Boyd, Lieven Vandenberghe:

Convex Optimization

Cambridge (free download)

王书宁,许鋆,黄晓霖[译]凸优化清华大学出版社 2013

Course Information

- Full score: 100
 - class performance/quiz (20) + homework (30) + project (10) + examination (40)
- Schedule (planed)
- 1. **Tutorial** (2)
- 2. Convex Set (3) Convex Function (3) Convex Optimization (4) Convex Machine Learning Models (4)
- 3. Solving Algorithm for Non-constrained Problems (6) Large-scale Algorithm I (6) Nonconvex Models (4)
- 4. Duality (6) Large-scale Algorithm II (6)
- 5. Report Presentation (2) Outlook and Conclusion (2)

THANKS

