

Copyright © 2013 John Smith

PUBLISHED BY PUBLISHER

BOOK-WEBSITE.COM

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

First printing, March 2013

	Part One	
1	Persamaan dan Pertidaksamaan Linear Satu Variabel yang Memu Nilai Mutlak	
1.1	Paragraphs of Text	7
1.2	Citation	8
1.3	Lists	8
1.3.1	Numbered List	
1.3.2 1.3.3	Bullet Points	
2	Linear Tiga Variabel	. 9
2.1	Theorems	9
2.1.1	Several equations	
2.1.2	Single Line	
2.2	Definitions	9
2.3	Notations	10
2.4	Remarks	10
2.5	Corollaries	10
2.6	Propositions	10
2.6.1	Several equations	
2.6.2	Single Line	
2.7	Examples	10
2.7.1	Fauation and Text	10

2.7.2	Paragraph of Text	11
2.8	Exercises	11
2.9	Problems	11
2.10	Vocabulary	11
II	Part Two	
3	Fungsi	15
3.1	Relasi dan Fungsi	15
3.2	Operasi Aritmatika	23
3.3	Komposisi Fungsi	23
3.4	Fungsi Linear	23
3.5	Fungsi Kuadrat	23
3.6	Fungsi Inversi	23
3.7	Fungsi Rasional	23
4	Trigonometri	25
4.1	Pengukuran Sudut	25
4.2	Perbandingan Trigonometri pada Segitiga Siku-Siku	25
4.3	Sudut-sudut Berelasi	25
4.4	Identitas Trigonometri	25
4.5	Aturan Sinus dan Cosinus	25
4.6	Fungsi Trigonometri	25
	Bibliography	31
	Books	31
	Articles	31

Part One

1	Persamaan dan Pertidaksamaan Linea Satu Variabel yang Memuat Nilai Mutlak
1.1	7 Paragraphs of Text
1.2	Citation
1.3	Lists
2	Linear Tiga Variabel
2.1	Theorems
2.2	Definitions
2.3	Notations
2.4	Remarks
2.5	Corollaries
2.6	Propositions
2.7	Examples
2.8	Exercises
2.9	Problems
2.10	Vocabulary

1.1 Paragraphs of Text

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim.

Chapter 1. Persamaan dan Pertidaksamaan Linear Satu Variabel yang Memuat 8 Nilai Mutlak

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim.

1.2 Citation

This statement requires citation [book_key]; this one is more specific [article_key].

1.3 Lists

Lists are useful to present information in a concise and/or ordered way¹.

1.3.1 Numbered List

- 1. The first item
- 2. The second item
- 3. The third item

1.3.2 Bullet Points

- The first item
- The second item
- The third item

1.3.3 Descriptions and Definitions

Name Description
Word Definition
Comment Elaboration

¹Footnote example...

2.1 Theorems

This is an example of theorems.

2.1.1 Several equations

This is a theorem consisting of several equations.

Theorem 2.1.1 — Name of the theorem. In $E = \mathbb{R}^n$ all norms are equivalent. It has the properties:

$$|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}||$$
 (2.1)

$$\left|\left|\sum_{i=1}^{n} \mathbf{x}_{i}\right|\right| \leq \sum_{i=1}^{n} \left|\left|\mathbf{x}_{i}\right|\right| \quad \text{where } n \text{ is a finite integer}$$
(2.2)

2.1.2 Single Line

This is a theorem consisting of just one line.

Theorem 2.1.2 A set $\mathcal{D}(G)$ in dense in $L^2(G)$, $|\cdot|_0$.

2.2 Definitions

This is an example of a definition. A definition could be mathematical or it could define a concept.

Definition 2.2.1 — Definition name. Given a vector space E, a norm on E is an application, denoted $||\cdot||$, E in $\mathbb{R}^+ = [0, +\infty[$ such that:

$$||\mathbf{x}|| = 0 \Rightarrow \mathbf{x} = \mathbf{0} \tag{2.3}$$

$$||\lambda \mathbf{x}|| = |\lambda| \cdot ||\mathbf{x}|| \tag{2.4}$$

$$||x + y|| \le ||x|| + ||y|| \tag{2.5}$$

2.3 Notations

Notation 2.1. Given an open subset G of \mathbb{R}^n , the set of functions φ are:

- 1. Bounded support G;
- 2. Infinitely differentiable;

a vector space is denoted by $\mathcal{D}(G)$.

2.4 Remarks

This is an example of a remark.

The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K}=\mathbb{R}$, however, established properties are easily extended to $\mathbb{K}=\mathbb{C}$.

2.5 Corollaries

This is an example of a corollary.

Corollary 2.5.1 — Corollary name. The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K} = \mathbb{R}$, however, established properties are easily extended to $\mathbb{K} = \mathbb{C}$.

2.6 Propositions

This is an example of propositions.

2.6.1 Several equations

Proposition 2.6.1 — Proposition name. It has the properties:

$$\left| ||\mathbf{x}|| - ||\mathbf{y}|| \right| \le ||\mathbf{x} - \mathbf{y}|| \tag{2.6}$$

$$\left|\left|\sum_{i=1}^{n} \mathbf{x}_{i}\right|\right| \leq \sum_{i=1}^{n} \left|\left|\mathbf{x}_{i}\right|\right| \quad \text{where } n \text{ is a finite integer}$$
(2.7)

2.6.2 Single Line

Proposition 2.6.2 Let $f, g \in L^2(G)$; if $\forall \varphi \in \mathcal{D}(G), (f, \varphi)_0 = (g, \varphi)_0$ then f = g.

2.7 Examples

This is an example of examples.

2.7.1 Equation and Text

Example 2.1 Let $G = \{x \in \mathbb{R}^2 : |x| < 3\}$ and denoted by: $x^0 = (1,1)$; consider the function:

$$f(x) = \begin{cases} e^{|x|} & \text{si } |x - x^0| \le 1/2\\ 0 & \text{si } |x - x^0| > 1/2 \end{cases}$$
 (2.8)

The function f has bounded support, we can take $A = \{x \in \mathbb{R}^2 : |x - x^0| \le 1/2 + \varepsilon\}$ for all $\varepsilon \in]0; 5/2 - \sqrt{2}[$.

2.8 Exercises

2.7.2 Paragraph of Text

■ Example 2.2 — Example name. Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2.8 Exercises

This is an example of an exercise.

Exercise 2.1 This is a good place to ask a question to test learning progress or further cement ideas into students' minds.

2.9 Problems

Problem 2.1 What is the average airspeed velocity of an unladen swallow?

2.10 Vocabulary

Define a word to improve a students' vocabulary. **Vocabulary 2.1 — Word.** Definition of word.

Part Two

3 3.1 3.2 3.3	Fungsi
3.4	Fungsi Linear
3.5	Fungsi Kuadrat
3.6	Fungsi Inversi
3.7	Fungsi Rasional
4	Trigonometri
4.1	Pengukuran Sudut
4.2	Perbandingan Trigonometri pada Segitiga Siku-Siku
4.3	Sudut-sudut Berelasi
4.4	Identitas Trigonometri
4.5	Aturan Sinus dan Cosinus
4.6	Fungsi Trigonometri
	Bibliography 31
	Books
	Articles

3.1 Relasi dan Fungsi

1. RELASI

(a) Pengertian Relasi

Relasi adalah hubungan antara 2 elemendua himpunan. Relasi dikatakan sebagai suatu aturan yang memasangkan anggota himpunan satu ke himpunan yang lain. Suatu relasi dari himpunan A ke himpunan B adalah pemasangan korespondensi dari anggota-anggota himpunan A ke anggota-anggota himpunan B. Relasi dari himpunan A ke himpunan B adalah aturan yang memasangkan anggota himpunan A dan anggota himpunan B dengan aturan tertentu.

Contoh 1.1

Ada 4 orang anak Eko, Rina, Tono, dan Dika. Mereka diminta untuk menyebutkan warna favorit mereka. Hasilnya adalah sebagai berikut:

Dari hasil uraian di atas terdapat dua buah himpunan. Pertama adalah himpunan anak, kita sebut dengan A dan himpunan warna yang kita sebut dengan B. Hubungan antara A dan B digambarkan seperti ilustrasi di bawah ini:

Gambar 1 contoh relasi himpunan

Kesimpulannya, relasi antara himpunan A dan himpunan B adalah "suka dengan warna". Eko dipasangkan dengan merah karena eko suka dengan warna merah. Rina dipasangkan dengan warna hitam karena rina menyukai warna hitam, dan seterusnya. Dari uraian di atas kita dapat mengambil kesimpulan bahwa definisi relasi adalah

"Relasi antara dua himpunan, contoh himpunan A dengan himpunan B adalah suatu aturan yang memasangkan anggota-anggota himpunan A dengan anggota-anggota himpunan B."

Contoh 1.2

Ada 3 anak mengatakan makanan kesukaannya yaitu : Anis menyukasi Bakso, Rina menyukasi Sate dan Diko menyukasi Nasi Padang.

Dari pernyataan diatas terdapat dua himpunan yaitu :

A = Himpunan anak {Anis, Rina, Diko}

B = Himpunan makanan {Bakso, Sare, Nasi Padang}

Relasi antara anggota himpunan A ke himpunan B yang mungkin adalah menyukasi atau menyenangi.

Dari contoh di atas, himpunan A tersebut domain (daerah asal) dan himpunan B disebut daerah tujuan (ko-domain). Sementara itu menyukasi disebut relasi. Himpunan semua anggota ko-domain di sebut range (daerah hasil).

1. (a) Menyatakan Relasi

Relasi antara dua himpunan dapat dinyatakan dengan tiga cara, yaitu menggunakan diagram panah, himpunan pasangan berurutan, dan diagram Cartesius.

1. Diagram Panah

Perhatikan gambar di bawah ini. Relasi antara himpunan A dengan himpunan B dinyatakan dengan panah-panah yang memasangkan anggota himpunan A dengan anggota himpunan B. Karena penggambarannya menggunakan bentuk panah (arrow) maka disebut dengan diagram panah.

Langkah-langkah menyatakan relasi dengan diagram panah:

- a. Membuat dua lingkaran atau elips
- b. Untuk meletakkan anggota himpunan A dan anggota himpunan B x=A diletakkan pada lingkaran A dan y=B diletakkan pada lingkaran B
- c. X dan Y dihubungkan dengan anak panah
- d. Arah anak panah menunjukkan arah relasi
- e. Anak panah tersebut mewakili aturan relasi

Gambar 2 diagram panah

1. Himpunan Pasangan Berurutan

Sebuah relasi juga dapat dinyatakan dengan menggunakan pasangan beruturan. Artinya kita memasangkan himpunan A dengan himpunan B secara berurutan.

menyatakan relasinya dengan pasangan berurutan sebagai berikut:(*eko, merah*), (*rina, hitam*),(*tono, merah*),(*dika, biru*).

Jadi relasi antara himpunan A dengan himpunan B dapat dinyatakan sebagai pasangan berurutan (x,y) dengan $x \in A$ dan $y \in B$.

1. Diagram Cartesius

Relasi antara dua himpunan dapat dinyatakan ke dalam pasangan berurutan yang kemudian dituangkan dalam dot (titik-titk) dalam diagram cartesius. Contoh dari relasi suka dengan warna di atas dapat digambarkan dalam bentuk diagram cartesius sebagai berikut:

Pada diagram Cartesius diperlukan dua salip sumbu yaitu : sumbu mendatar (horizontal) dan sumbu tegak (vertical) yang berpotongan tegak lurus.

- a. X= A diletakkan pada sumbu mendatar
- b. Y= B diletakkan pada sumbu tegak
- c. Pemasangan (x,y) ditandai dengan sebuah Noktah (titik) yang koordinatnya ditulis sebagai pasangan berurutan x,y.

Gambar 3 Diagram Cartecius

1.3 Sifat-Sifat Relasi

a. Relasi Refleksif (Bercermin)

Relasi disebut *refleksif* jika dan hanya jika untuk setiap x anggota semesta-nya, x berelasi dengan dirinya sendiri. Jadi R refleksif jika dan hanya jika xRx.

Contoh:

Jika diketahui $A = \{1,2,3,4\}$ dan relasi $R = \{(1,1),(2,2),(3,3),(4,4)\}$ Pada A, maka R $x \in A$ adalah refleksif, karena untuk setiap $x \in A$ terdapat (x,x) pada R.Perhatikan relasi pada himpunan = $\{1,2,3,4\}$ berikut:

$$R1 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$$

$$R2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

Relasi-relasi tersebut merupakan relasi refleksif karena memiliki elemen (1,1), (2,2), (3,3), dan (4,4).

b. Relasi Irrefleksif

Relasi R pada A disebut *Irrefleksif* (anti refleksif) jika dan hanya jika setiap elemen di dalam tidak berelasi dengan dirinya sendiri. Jadi, irrefleksif jika dan hanya jika xRx.

Contoh:

Diketahui himpunan B= $\{a,b,c\}$ dan relasi R= $\{(a,c), (b,c), (b,a)\}$. Relasi R adalah irrefleksif, karena (a,a), (b,b), dan (c,c) bukan elemen.

Diketahui A= $\{1,2,3,4\}$ dan relasi R= $\{(2,1), (3,2), (4,1), (4,2), (4,3)\}$. Relasi R merupakan relasi irrefleksif, karena tidak terdapat elemen (x,x), dimana $x \in A$.

1. Relasi Nonrefleksif

Relasi R pada A disebut *nonrefleksif* jika dan hanya jika ada sekurang-kurangnya satu elemen di dalam A yang tidak berelasi dengan dirinya sendiri.

Contoh:

Perhatikan relasi pada himpunan A= $\{1,2,3,\}$

$$R = \{(1,1), (1,2), (2,2), (2,3), (3,3)\}$$

Relasi tersebut merupakan relasi non refleksif, karena ada (1,2) dan (2,3).

1. Relasi Simetri

Relasi R disebut *simetri* pada S jika dan hanya jika setiap dua anggota a dan b dari S berlaku jika a berelasi R dengan b maka b juga berelasi dengan a.

Secara simbolik: $aRb \rightarrow bRa$.

Contoh:

- 1. Relasi $R = \{ (a,b), (b,a), (a,c), (c,a) \}$ dalam himpunan $\{a, b, c\}$.
- 2. Ani menyukai Budi, Budi menyukai Ani {(Ani,Budi),(Budi,Ani)}
- 1. Relasi Asimetri

Relasi R disebut *asimetri* pada S jika dan hanya jika setiap dua anggota a dan b dari S berlaku: jika a berelasi R dengan b maka b tidak berelasi R dengan a.

Secara simbolik: R asimetri pada S jhj $(\forall a,b \in S)$ aRb \rightarrow bRa.

Contoh

1. Relasi $R = \{ (a,b), (b,c), (c,a) \}$ dalam himpunan $\{ a,b,c \}$.

1. Relasi Nonsimetri

Relasi R disebut *nonsimetri* pada S jika dan hanya jika ada dua anggota a dan b dari S sedemikian hingga berlaku: a berelasi R dengan b tetapi b tidak berelasi R dengan a.Perhatikan bahwa nonsimetri adalah negasi/ingkaran dari simetri.

Contoh:

1. Relasi R = $\{(a,b), (a,c), (c,a)\}$ dalam himpunan $\{a,b,c\}$

1. Relasi Antisimetri

Relasi R disebut *antisimetri* pada S jika dan hanya jika setiap dua anggota a dan b dari S berlaku: jika a berelasi R dengan b dan b berelasi R dengan a maka a=b.

Contoh:

1. A = keluarga himpunan.

Relasi "himpunan bagian" adalah relasi yang antisimetris pada A, karena untuk setiap dua himpunan x dan y, jika x y dan y x, maka x = y.

- 1. Relasi "kurang dari atau sama dengan (\leq) " dalam himpunan bilangan real. Jadi, relasi "kurang dari atau sama dengan (\leq) " bersifat anti simetri, karena jika $a \leq b$ dan $b \leq a$ berarti a = b.
- 1. Relasi "habis membagi" pada himpunan bilangan bulat asli N merupakan contoh relasi yang tidak simetri karena jika a habis membagi b, b tidak habis membagi a, kecuali jika a = b. Sementara itu, relasi "habis membagi" merupakan relasi yang anti simetri karena jika a habis membagi b dan b habis membagi a maka a = b.

1. Relasi Transitif

R adalah relasi pada A. R disebut relasi *Transitif* pada A jika dan hanya jika setiap 3 anggota himpunan A, $(a,b,c \in A)$ jika $(a,b)\in R$, dan $(b,c)\in R$ maka $(a,c)\in R$ (setiap tiga anggota a,b,c dari A, jika a berelasi dengan b dan b berelasi dengan c maka a berelasi dengan c).

Contoh:

- 1. Relasi R = $\{(a,b), (b,c), (a,c), (c,c)\}$ dalam himpunan $\{a,b,c\}$.
- 1. Relasi Nontransitif

R adalah relasi pada A. R disebut relasi *nontransitif* pada A jika dan hanya jika ada tiga anggota himpunan A, $(a,b,c \in A)$ sedemikian hingga $(a,b)\in R$, dan $(b,c)\in R$ dan $(a,c)\notin R$ (ada tiga anggota a,b,c dari A sedemikian hingga a berelasi dengan b dan b berelasi dengan c dan a tidak berelasi dengan c).

Contoh:

 $R = \{(1,2),(2,3),(3,4)\}$ dalam himpunan $\{1,2,3,4\}$

1. Relasi Intransitif

R adalah relasi pada himpunan A. R disebut relasi intransitif pada A jika dan hanya jika setiap tiga anggota himpunan A, $(a,b,c \in A)$ jika $(a,b)\in R$ dan $(b,c)\in R$ maka $(a,c)\notin R$ (setiap tiga anggota a,b,c dari A, jika a berelasi dengan b dan b berelasi dengan c maka a tidak berelasi dengan c).

Misal E =
$$\{1,2,3\}$$
, R = $\{(1,2),(2,3),(2,5),(3,4),(5,7)\}$

Relasi di atas intransitif karena:

- $(1,2) \in R \text{ dan } (2,3) \in R, \text{ tetapi } (1,3) \notin R$
- $(1,2) \in R \text{ dan } (2,5) \in R, \text{ tetapi } (1,5) \notin R$
- $(2,3) \in R \text{ dan } (3,4) \in R, \text{ tetapi } (2,4) \notin R$
- $(2,5) \in R \text{ dan } (5,7) \in R, \text{ tetapi } (2,7) \notin R$

1.4 Komposisi Relasi

R adalah relasi dari himpunan A ke himpunan B

T adalah relasi dari himpunan B ke himpunan C.

Komposisi R dan S, dinotasikan dengan T o R, adalah relasi dari A ke C yang didefinisikan oleh:

T o
$$R = \{(a, c) \mid a \in A, c \in C, \text{ dan untuk suatu } b \in B \text{ sehingga } (a, b) \in R \text{ dan } (b, c) \in S \}$$

- Contoh komposisi relasi
- Ø Misalkan, $A = \{a, b, c\}$, $B = \{2, 4, 6, 8\}$ dan $C = \{s, t, u\}$
- Ø Relasi dari A ke B didefinisikan oleh :

$$R = \{(a, 2), (a, 6), (b, 4), (c, 4), (c, 6), (c, 8)\}$$

Ø Relasi dari B ke C didefisikan oleh:

$$T = \{(2, u), (4, s), (4, t), (6, t), (8, u)\}$$

Ø Maka komposisi relasi R dan T adalah

$$T \circ R = \{(a, u), (a, t), (b, s), (b, t), (c, s), (c, t), (c, u)\}$$

contoh soal relasi dan jawabannya Dikelas 8 SMP belajar matematika terdapat 4 orang siswa yang lebih menyukai pelajaran tertentu. berikut ke-4 anak tersebut :

- 1. Buyung menyukai pelajaran IPS dan Kesenian
- 2. Doni menyukai pelajaran ketrampilan dan olah raga
- 3. Vita menyukai pelajaran IPA, dan
- 4. Putri lebih menyukai pelajaran matematika dan bahasa ingris

Buatlah relasi dari soal diatas dan disajikan menggunakan diagram panah, diagram cartesius, dan himpunan pasangan berurutan. *Jawab:* Untuk mempermudah menjawab persoalan diatas gunakanlah permisalan seperti :

Himpunan A = {Buyung, Doni, Vita, Putri}

Himpunan B = {IPS, kesenian, keterampilan, olahraga, matematika, IPA, bahasa Inggris}

"pelajaran yang disukai" adalah relasi yang menghubungkan himpunan A ke B.

1. Diagram panah

Gambar 4 Diagram Panah

b. Diagram Cartesius

Gambar 5 Diagram Cartecius

1. Himpunan pasangan berurutan

Himpunan pasangan berurutan dari soal diatas adalah:

{(Buyung, IPS), (Buyung, kesenian), (Doni, keterampilan), (Doni, olahraga), (Vita, IPA), (Putri, matematika), (Putri, bahasa Inggris)}

2. FUNGSI

2.1 Pengertian Fungsi

Fungsi adalah bentuk khusus dari relasi. Sebuah relasi dikatakan fungsi jika xRy, untuk**setiap** x anggota A memiliki **tepat satu** pasangan, y, anggota himpunan B Kita dapat menuliskan f(a) = b, jika b merupakan unsur di B yang dikaitkan oleh f untuk suatu a di A. Ini berarti bahwa jika f(a) = b dan f(a) = c maka b = c. Jika f adalah fungsi dari himpunan A ke himpunan B, kita dapat menuliskan dalam bentuk : $f: A \to B$

Gambar 5 fungsi dan bukan fungsi

Perhatikan contoh kasus diatas, gambar satu dan dua merupakan fungsi dan gambar tiga dan empat bukan merupakan fungsi. Sehingga dari penjelasan contoh diatas yang merupakan fungsi adalah jika setiap anggota A memiliki pasangan dengan anggota B, dan setiap anggota memiliki tepat satu kawan dengan anggota B. Maka dapat kita simpulkan bahwa relasi dari himpunan A ke himpunan B adalah relasi khusus yang memasangkan setiap anggota A dengan tepat satu anggota B. Relasi seperti ini disebut sebagai fungsi atau pemetaan.

Fungsi atau pemetaan dari himpunan A ke himpunan B merupakan relasi khusus yang memasangkan setiap anggota A dengan tepat satu anggota B.

Dimana syarat suatu relasi adalah fungsi atau pemetaan sebagai berikut.

- 1. Setiap anggota A memiliki pasangan di B
- 2. Setiap anggota A dipasangkan dengan tepat satu anggota di B

2.2 Domain, Kodomain, Dan Range

- ? $f:A \rightarrow B$
- ? A dinamakan daerah asal (domain) dari f dan B dinamakan daerah hasil (codomain) dari f.
- ? Misalkan f(a) = b, maka b dinamakan bayangan (image) dari a,dan a dinamakan pra-bayangan (pre-image) dari b.
- ? Himpunan yang berisi semua nilai pemetaan f dinamakan jelajah (range) dari f.

Dalam materi fungsi dikenal istilah Domain, Kodomain, dan juga Range Fungsi. Coba perhatikan gambar di bawah ini.

Gambar 6 Domain dan kodomain

Dari diagram panah tersebut himpunan A atau himpunan daerah asal disebut dengan **Domain**. Himpunan B yang merupakan daerah kawan disebut dengan **Kodomain** sedangkan anggota daerah kawan yang merupakan hasil dari pemetaan disebut dengan daerah hasil atau **range fungsi**. Jadi dari diagram panah di atas dapat disimpulkan

Domain (D_f) adalah A = $\{1,2,3\}$ Kodomain adalah B = $\{1,2,3,4\}$ Range Hasil (R_f) adalah = $\{2,3,4\}$

2.3 Jenis-jenis Fungsi

1 Fungsi konstan (fungsi tetap)

Suatu fungsi $f: A \to B$ ditentukan dengan rumus f(x) disebut fungsi konstan apabila untuk setiap anggota domain fungsi selalu berlaku f(x) = C, di mana C bilangan konstan. Untuk lebih jelasnya, pelajarilah contoh soal berikut ini.

Diketahui $f: R \to R$ dengan rumus f(x) = 3 dengan daerah domain: $\{x \mid -3 \le x < 2\}$. Sehingga, gambar grafiknya.

x	-3	-2	-1	0	1
f(x)	3	3	3	3	3

Gambar 7 grafik fungsi konstan

1. Fungsi linear

Suatu fungsi f(x) disebut fungsi linear apabila fungsi itu ditentukan oleh f(x) = ax + b, di mana a \neq 0, a dan b bilangan konstan dan grafiknya berupa garis lurus. Perhatikan contoh berikut.Diketahui f(x) = 2x + 3, gambar grafiknya

2x + 3				
x	0	$-1\frac{1}{2}$		
f(x)	3	0		

Gambar 8 grafik fungsi Linier

1. Fungsi Kuadrat

Suatu fungsi f(x) disebut fungsi kuadrat apabila fungsi itu ditentukan oleh $f(x) = ax^2 + bx + c$, di mana $a \neq 0$ dan a, b, dan c bilangan konstan dan grafiknya berupa parabola. Perhatikan contoh fungsi kuadrat berikut.

Fungsi f ditentukan oleh $f(x) = x^2 + 2x - 3$, gambar grafiknya

Gambar 8 grafik fungsi kuadrat

1. Fungsi identitas

Suatu fungsi f(x) disebut fungsi identitas apabila setiap anggota domain fungsi berlaku f(x) = x atau setiap anggota domain fungsi dipetakan pada dirinya sendiri. Grafik fungsi identitas berupa garis lurus yang melalui titik asal dan semua titik absis maupun ordinatnya sama. Fungsi identitas ditentukan oleh f(x) = x. Agar lebih memahami tentang fungsi identitas, pelajarilah contoh berikut ini.

Fungsi pada R didefinisikan sebagai f(x) = x untuk setiap x.a. Carilah f(-2), f(0), f(??), f(??).b. Gambarlah grafiknya.

Penyelesaian:a. Nilai f(-2), f(0), f(??), dan f(??). f(x) = xf(-2) = -2f(0) = 0

b. Gambar grafik.

Gambar 9 grafik fungsi identitas

1. (a) Sifat-sifat Fungsi

Dengan memperhatikan bagaimana elemen-elemen pada masing-masing himpunan A dan B yang direlasikan dalam suatu fungsi, maka kita mengenal tiga sifat fungsi yakni sebagai berikut :

1. Injektif (Satu-satu)

Misalkan fungsi f menyatakan A ke B maka fungsi f disebut suatu fungsi satu-satu (injektif), apabila setiap dua elemen yang berlainan di A akan dipetakan pada dua elemen yang berbeda di B. Selanjutnya secara singkat dapat dikatakan bahwa $f:A \rightarrow B$ adalah fungsi injektif apabila $a \neq a$ ' berakibat $f(a) \neq f(a)$ atau ekuivalen, jika f(a) = f(a) maka akibatnya a = a'.

- ? Fungsi satu-satu
- ? Fungsi f: A \rightarrow B disebut fungsi satu-satu jika dan hanya jika untuk sembarang a_1 dan a_2 dengan a_1 tidak sama dengan a_2 berlaku $f(a_1)$ tidak sama dengan $f(a_2)$. Dengan kata lain, bila $a_1 = a_2$ maka $f(a_1)$ sama dengan $f(a_2)$.

2. Surjektif (Onto)

Misalkan f adalah suatu fungsi yang memetakan A ke B maka daerah hasil f(A) dari fungsi f adalah himpunan bagian dari B. Apabila f(A) = B, yang berarti setiap elemen di B pasti merupakan peta dari sekurang-kurangnya satu elemen di A maka kita katakan f adalah suatu fungsi surjektif atau "f memetakan A Onto B".

- ? Fungsi kepada
- ? Fungsi f: A \rightarrow B disebut fungsi kepada jika dan hanya jika untuk sembarang b dalam kodomain B terdapat paling tidak satu a dalam domain A sehingga berlaku f(a) = b.
- ? Suatu kodomain fungsi surjektif sama dengan *range*-nya (semua kodomain adalah peta dari domain).

3. Bijektif (Korespondensi Satu-satu)

Suatu pemetaan f: $A \rightarrow B$ sedemikian rupa sehingga f merupaka n fungsi yang injektif dan surjektif sekaligus, maka dikatakan "f adalah fungsi yang bijektif" atau " A dan B berada dalam korespondensi satu-satu

- ? Fungsi f: $A \to B$ disebut disebut fungsi bijektif jika dan hanya jika untuk sembarangb dalam kodomain B terdapat tepat satu a dalam domain A sehingga f(a) = b, dan tidak ada anggota A yang tidak terpetakan dalam B.
- ? Dengan kata lain, fungsi bijektif adalah **fungsi injektif sekaligus fungsi surjektif.**
 - 1. (a) Menghitung Nilai dari Sebuah Fungsi
 - 2. Penulisan Fungsi
 - 1. Himpunan pasangan terurut.

? Misalkan fungsi kuadrat pada himpunan $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ maka fungsi itu dapat dituliskan dalam bentuk :

$$f = \{(2, 4), (3, 9)\}$$

1. Formula pengisian nilai (assignment)

- ? $f(x) = x^2 + 10,$
- ? f(x) = 5x

1. Notasi Fungsi

Sebuah fungsi dinotasikan dengan huruf kecil seperti f, g, h, i, dan sebagainya. Pada fungsi g yang memetakan himpunan A ke himpunan B dinotasikan dengan g(x). Misal ada fungsi f yang memetakan A ke B dengan aturan f: $x \to 2x + 2$. Dari notasi fungsi tersebut, x merupakan anggota domain. fungsi $x \to 2x + 2$ berarit fungsi f memetakan x ke 2x+2. Jadi daerah bayangan x oleh fungsi f adalah 2x + 2. Dapat di notasikan dengan f(x) = 2x + 2. Kesimpulan

Jika fungsi $f: x \to ax + b$ dengan x anggota domain f maka rumus fungsi f adalah f(x) = ax + b

1. Menghitung nilai dari Sebuah Fungsi

Menghitung nilai dari sebuah fungsi cukup sederhana. Kita hanya perlu mengikuti *rules* dari fungsi tersebut. Semakin susah fungsi yang memetakannya maka akan semakin susah menghitung nilai fungsinya. Terkadang soal-soal membalik fungsi tersebut, diketahui daerah hasil kemudian diminta mencari daerah asal. Yuk mari dismak contoh berikut:

Diketahui fungsi $f: x \to 2x - 2$ dengan x anggota bilangan bulat. Coba tentukan nilai dari

- 1. f(??)
- 2. f(??)
- 3. bayangan (-3) oleh f
- 4. nilai f untuk x = -10
- 5. nilai a jika f(a) = 14

Jawaban:

fungsi fungsi f : $x \rightarrow 2x - 2$ dapat dinyatakan dengan f(x) = 2x - 2

- 1. f(x) = 2x 2f(??) = 2(??) 2 = 4
- 1. f(x) = 2x 2f(??) = 2(??) 2 = 6
- 1. f(x) = 2x 2f(-3) = 2(-3) 2 = -8
- 1. f(x) = 2x 2f(??) = 2(??) 2 = 18
- 1. f(a) = 2a 214 = 2a 22a = 16a = 8

1. Menentukan Rumus sebuah fungsi

Sebuah fungsi dapat ditemukan rumusnya apabila ada nilai atau data yang diketehui. Kemudian dengan menggunakan aljabar kita bisa dengan mudah menemukan rumus dari fungsi tersebut. Untuk lebih jelasnya bisa simak contoh berikut:

Fungsi g yang berlaku pada himpunan bilangan riil ditentukan oleh rumus g(x) = ax + b dengan a dan b adalah bilangan bulat. Jika g(-2) = -4 dan g(??) = 5. Coba tentukan nalai dari:

- 1. nilai dari a dan b
- 2. rumus fungsi
- 3. g (-3)

Jawaban:

Untuk mencari nila a dan b kita buat persamaan dulu dari himpunan pasangan berurutan yang diketahui.

$$g(-2) = -4 \rightarrow -4 = -2a + b \rightarrow b = 2a - 4$$
 ...(??) $g(??) = 5 \rightarrow 5 = a + b$...(??) kita substitusikan persamaan 1 ke persamaan 2

$$5 = a + b
5 = a + 2a - 4
5 = 3a - 4
9 = 3a
a = 3$$

- 1. (a) i. b = 2a 4b = 2(??) -4b = 2jadi nilai a = 3 dan b = 4
- 1. (a) i. rumus fungsinya g(x) = 3a + 2
- 1. (a) i. g(x) = 3a + 2g(-3) = 3(-3) + 2g(-3) = -7
- 3.2 Operasi Aritmatika
- 3.3 Komposisi Fungsi
- 3.4 Fungsi Linear
- 3.5 Fungsi Kuadrat
- 3.6 Fungsi Inversi
- 3.7 Fungsi Rasional

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table 3.1: Table caption

- 4.1 Pengukuran Sudut
- 4.2 Perbandingan Trigonometri pada Segitiga Siku-Siku
- 4.3 Sudut-sudut Berelasi
- 4.4 Identitas Trigonometri
- 4.5 Aturan Sinus dan Cosinus
- 4.6 Fungsi Trigonometri

Pada subbab ini, kita akan mengkaji bagaimana konsep trigonometri jika dipandang sebagai suatu fungsi. Mengingat kembali konsep fungsi pada Bab 3, fungsi f(x) harus terdefinisi pada daerah asalnya. Jika $y = f(x) = \sin x$, maka daerah asalnya adalah semua x bilangan real. Namun, mengingat satuan sudut (subbab 4.1) dan nilai-nilai perbandingan trigonometri (yang disajikan pada Tabel 4.3), pada kesempatan ini, kita hanya mengkaji untuk ukuran sudut dalam derajat. Mari kita sketsakan grafik fungsi $y = f(x) = \sin x$, untuk $0 \le x \le 2\pi$.

1. Grafik Fungsi $y = \sin x$, dan $y = \cos x$ untuk $0 \le x \le 2\pi$

Problem 4.1 Dengan keterampilan kamu dalam menggambar suatu fungsi (Bab 3), gambarkan grafik fungsi $y = \sin x$, untuk $0 \le x \le 2\pi$.

Alternatif Penyelesaian

Dengan mencermati nilai-nilai sinus untuk semua sudut istimewa yang disajikan pada Tabel 4.3, kita dapat memasangkan ukuran sudut dengan nilai sinus untuk setiap sudut tersebut, sebagai berikut.

$$(0,0); \left(\frac{\pi}{6},\frac{1}{2}\right); \left(\frac{\pi}{4},\frac{\sqrt{2}}{2}\right); \left(\frac{\pi}{3},\frac{\sqrt{3}}{2}\right); \left(\frac{\pi}{2},1\right), \left(\frac{2\pi}{3},\frac{\sqrt{3}}{2}\right); \left(\frac{3\pi}{4},\frac{\sqrt{2}}{2}\right); \left(\frac{5\pi}{6},\frac{1}{2}\right); \left(\pi,0\right); \left(\frac{7\pi}{6},\frac{1}{2}\right); \left(\frac{5\pi}{6},-\frac{\sqrt{1}}{2}\right); \left(\frac{4\pi}{3},-\frac{\sqrt{3}}{2}\right); \left(\frac{3\pi}{2},-1\right); \left(\frac{5\pi}{3},-\frac{\sqrt{3}}{2}\right); \left(\frac{7\pi}{4},-\frac{\sqrt{2}}{2}\right); \left(\frac{11\pi}{3},-\frac{1}{2}\right); dan (2\pi,0).$$

Selanjutnya pada koordinat kartesius, kita menempatkan pasangan titiktitik untuk menemukan suatu kurva yang melalui semua pasangan titik-titik tersebut. Selengkapnya disajikan pada Gambar berikut ini.

Figure 4.1: Grafik fungsi $y = \sin x$, untuk $0 \le x \le 2\pi$

Dari grafik di atas, kita dapat merangkum beberapa data dan informasi seperti berikut.

- Untuk semua ukuran sudut x, nilai maksimum fungsi $y = \sin x$ adalah 1, dan nilai minimumnya adalah -1.
- Kurva fungsi $y = \sin x$, berupa gelombang.
- Untuk 1 periode (1 putaran penuh) kurva fungsi $y = \sin x$, memiliki 1 gunung dan 1 lembah.
- Nilai fungsi sinus berulang saat berada pada lembah atau gunung yang sama.
- Untuk semua ukuran sudut x, daerah hasil fungsi $y = \sin x$, adalah $1 \le y \le 1$. Dengan konsep grafik fungsi $y = \sin x$, dapat dibentuk kombinasi fungsi sinus.

Misalnya $y = 2.\sin x$, $y = \sin 2x$, dan $y = \sin(x + \pi/2)$. Selengkapnya dikaji pada contoh berikut.

■ Example 4.1 Gambarkan grafik fungsi $y = \sin 2x$ dan $y = \sin(x + \pi/2)$, untuk $0 \le x \le 2\pi$. Kemudian tuliskanlah perbedaan kedua grafik tersebut.

Alternatif Penyelesaian

Dengan menggunakan nilai-nilai perbandingan trigonometri yang disajikan pada Tabel 4.3, maka pasangan titik-titik untuk fungsi $y = \sin 2x$, untuk $0 \le x \le 2\pi$ adalah:

Untuk x = 0, maka nilai fungsi adalah $y = \sin 2$. $(0) = \sin 0 = 0 \Rightarrow (0,0)$

Untuk $x = (\pi/6)$, maka nilai fungsi adalah $y = \sin 2 \cdot (\pi/6) = \sin \pi/3 = \sqrt{3}/2 \Rightarrow (\pi/6, \sqrt{3}/2)$

Untuk $x = \pi/4$, maka nilai fungsi adalah $y = \sin 2 \cdot (\pi/4) = \sin \pi/2 = 1 \Rightarrow (\pi/4, 1)$.

Demikian seterusnya hingga

untuk $x = 2\pi$, maka niali fungsi adalah $y = \sin 2 \cdot (2\pi) = \sin 4\pi = \sin 0 = 0 \Rightarrow (2\pi, 0)$

Selengkapnya pasangan titik-titik untuk fungsi $y = \sin 2x$, $0 \le x \le 2\pi$, yaitu

$$(0,0); \left(\frac{\pi}{12},\frac{1}{2}\right); \left(\frac{\pi}{8},\frac{\sqrt{2}}{2}\right); \left(\frac{\pi}{6},\frac{\sqrt{3}}{2}\right); \left(\frac{\pi}{4},1\right); \left(\frac{\pi}{3},\frac{\sqrt{3}}{2}\right); \left(\frac{\pi}{2},0\right); \left(\frac{2\pi}{3},-\frac{\sqrt{3}}{2}\right);$$

$$\left(\frac{3\pi}{4}, \frac{\sqrt{3}}{2}\right); \left(\frac{5\pi}{6}, -\frac{\sqrt{3}}{2}\right); (\pi, 0); \left(\frac{7\pi}{6}, \frac{\sqrt{3}}{2}\right); \ \dots \dots; (2\pi, 0).$$

Dengan pasangan titik-titik tersebut, maka grafik fungsi $y = \sin 2x$, $0 \le x \le 2\pi$ disajikan pada Gambar.

Figure 4.2: Grafik fungsi $y = \sin 2x$, untuk $0 \le x \le 2\pi$

Berbeda dengan fungsi $y = \sin 2x$, setiap besar sudut dikalikan dua, tetapi untuk fungsi $y = \sin(x + \pi/2)$, setiap besar sudut ditambah $\pi/2$ atau 90° .

Sekarang kita akan menggambarkan fungsi $y = \sin(x + \pi/2)$, untuk $0 \le x \le 2\pi$.

Coba kita perhatikan kembali, bahwa $\sin(x+\pi/2)=\cos x$. Artinya, sekarang kita akan menggambarkan fungsi $y=\cos x$, untuk $0 \le x \le 2\pi$. Dengan menggunakan nilai-nilai cosinus yang diberikan pada Tabel kita dapat merangkumkan pasangan titik-titik yang memenuhi fungsi $y=\cos x$, untuk $0 \le x \le 2\pi$, sebagai berikut.

$$(0,1); \left(\frac{\pi}{6}, \frac{\sqrt{3}}{2}\right); \left(\frac{\pi}{4}, \frac{\sqrt{2}}{2}\right); \left(\frac{\pi}{3}, \frac{1}{2}\right); \left(\frac{\pi}{2}, 0\right); \left(\frac{2\pi}{3}, -\frac{1}{2}\right); \left(\frac{3\pi}{4}, -\frac{\sqrt{2}}{2}\right); \left(\frac{5\pi}{6}, -\frac{\sqrt{3}}{2}\right); (\pi, -1)$$

$$\left(\frac{7\pi}{6}, -\frac{\sqrt{3}}{2}\right); \left(\frac{5\pi}{4}, -\frac{\sqrt{2}}{2}\right); \left(\frac{4\pi}{3}, -\frac{1}{2}\right); \left(\frac{3\pi}{2}, 0\right); \left(\frac{5\pi}{3}, \frac{1}{2}\right); \left(\frac{7\pi}{4}, \frac{\sqrt{2}}{2}\right); \left(\frac{11\pi}{6}, \frac{\sqrt{3}}{2}\right); (2, 1).$$

Dengan demikian, grafik fungsi $y = \cos x$, untuk $0 \le x \le 2\pi$, disajikan pada Gambar berikut.

Figure 4.3: Grafik fungsi $y = \cos x$, untuk $0 \le x \le 2\pi$

Dari kajian grafik, grafik fungsi $y = \sin 2x$ sangat berbeda dengan grafik fungsi $y = \sin(x + \pi/2) = \cos x$, meskipun untuk domain yang sama. Grafik $y = \sin 2x$, memiliki 2 gunung dan 2 lembah, sedangkan grafik fungsi $y = \sin(x + \pi/2) = \cos x$, hanya memiliki 1 lembah dan dua bagian setengah gunung. Nilai maksimum dan minimum fungsi $y = \sin 2x$ sama $y = \sin(x + \pi/2) = \cos x$ untuk domain yang sama. Selain itu, secara periodik, nilai fungsi $y = \sin 2x$ dan $y = \sin(x + \pi/2) = \cos x$, berulang, terkadang menaik dan terkadang menurun.

Exercise 4.1 Dengan pengetahuan dan keterampilan kamu akan tiga grafik di atas dan konsep yang sudah kamu miliki pada kajian fungsi, sekarang gambarkan dan gabungkan grafik $y = \sin x$ dan $y = \cos x$, untuk domain $0 \le x \le 2\pi$.

Rangkumkan hasil analisis yang kamu temukan atas grafik tersebut.

2. **Grafik Fungsi** y = tanx, **dan** $y = \cos x$ **untuk** $0 \le x \le 2\pi$ Kajian kita selanjutnya adalah untuk menggambarkan grafik fungsi $y = \tan x$, untuk $0 \le x \le 2\pi$. Mari kita kaji grafik fungsi $y = \tan x$, melalui masalah berikut

Problem 4.2 Untuk domain $0 \le x \le 2\pi$, gambarkan grafik fungsi $y = \tan x$.

Alternatif Penyelesaian

Dengan nilai-nilai tangen yang telah kita temukan pada Tabel 4.3 dan dengan pengetahuan serta keterampilan yang telah kamu pelajari tentang menggambarkan grafik suatu fungsi, kita dengan mudah memahami pasangan titik-titik berikut.

$$\begin{aligned} &(0,0); \left(\frac{\pi}{6},\frac{\sqrt{3}}{3}\right); \left(\frac{\pi}{4},1\right); \left(\frac{\pi}{3},\sqrt{3}\right); \left(\frac{\pi}{2},\sim\right); \left(\frac{2\pi}{3},-\sqrt{3}\right); \left(\frac{3\pi}{4},-1\right); \left(\frac{5\pi}{6},\frac{\sqrt{3}}{3}\right); \\ &(\pi,\ 0); \ \left(\frac{7\pi}{6},\frac{\sqrt{3}}{3}\right); \ \left(\frac{5\pi}{4},1\right); \ \left(\frac{4\pi}{3},\sqrt{3}\right); \ \left(\frac{3\pi}{2},\sim\right); \ \left(\frac{5\pi}{3},-\sqrt{3}\right); \ \left(\frac{7\pi}{4},-1\right); \\ &\left(\frac{11\pi}{6},-\frac{\sqrt{3}}{3}\right); (2\pi,0). \end{aligned}$$

Dengan demikian, grafik fungsi $y = \tan x$, untuk $0 \le x \le 2\pi$, seperti pada Gambar berikut ini.

Figure 4.4: Grafik fungsi $y = \tan x$, untuk $0 \le x \le 2\pi$

Dari grafik di atas, jelas kita lihat bahwa jika x semakin mendekati $\pi/2$ (dari kiri), nilai fungsi semakin besar, tetapi tidak dapat ditentukan nilai terbesarnya. Sebaliknya, jika x atau mendekati $\pi/2$ (dari kanan), maka nilai fungsi semakin kecil, tetapi tidak dapat ditentukan nilai terkecilnya. Kondisi ini berulang pada saat x mendekati $3\pi/2$. Artinya, fungsi $y = \tan x$, tidak memiliki nilai maksimum dan minimum.

Books Articles