Input missing values and outliers detection

Juan Camilo Rivera. ¹ Hugo Andres Dorado. ¹

¹Big data and site-specific agriculture Decision and Policy Analysis Centro Internacional de Agricultura Tropical

Data analysis course, 2018

Outline

- Input missing values
 - Vector Autoregression (VAR)
 - RMWAGEN package
- Outliers detection
 - Univariate approach
 - Cook's distance
 - Welsch-Kuh distance

Definition VAR

Vector autoregression is a stocastic model to identify the linear relationship between time series. This is a generalization of AR (autoregressive model)

Definition AR

AR(p) autoregressive model of order p is defined as:

$$X_t = c + \sum_{i=1}^{p} \varphi_i X_{t-i} + \epsilon_t$$

where $\varphi_1, ..., \varphi_p$ are parameters model, c is constant and ϵ_t is noise.

• There is a package, parstm, in R that contains functions to construct a model of autogression.

Example:

Real gross domestic product data in Germany (1960.1-1990.4)

Criterio	1	2	3	4
AIC	-661.60	-680.89	-669.84	-661.54
BIC	-636.30	-644.44	-622.31	-603.0
$F(\phi_{p+1,s} = $	8.54	0.80	1.35	2.91
0)				
p — value	0.00	0.53	0.26	0.03

A F - test is used for checking the periodicity of model. The Fpar.test function computes p - values for F statistc.

Season	p — value	
Intercepts	0.00	
Trends	0.00	

The table above shows that periodicity is not rejected.

The function predictpiar makes prediction based on VAR model. The figure shows 24 ahead forecasts in PIAR(2) model.

Forecast and confidence intervals

RMWAGEN package

A Daily Weather Generator generates weather time series with same statiscal patterns of the observed ones.

Generates daily of following weather variables:

- Maximum temperature
- Minimum temperature
- Precipitation

Based on VAR models.

Minimum temperature

Input value minimum temperature

Maximum temperature

Input value maximum temperature

Precipitation

Date

Outliers detection

Univariate approach

For continuous variable. The outliers are those observations that lie outside:

$$1.5 * IQR \tag{1}$$

where IQR, Inter Quartile Range is the difference between 75th and 25th quartiles.

Univariate approach

Example:

Outliers affects linear models fit. The cars is a dataset that is composed by speed and velocity of cars in 1920.

Univariate approach

Example:

Detection of outliers using boxplot. Ozone is a dataset of weather variables of 2015 in U.S.

Cook's distance

It is used to measure the influence of observation i on the estimation of the regression parameters.

$$C_{i} = \frac{\sum_{j=1}^{n} (\hat{y}_{j} - \hat{y}^{-i})}{\sigma^{2}(p+1)}$$
 (2)

where \hat{y}_j^{-i} is the prediction at point x_j and p amount points. A large value of C_i indicates that ith observation is influential.

The function **cooks.distance** () computes cooks distance.

Cook's distance

Example:

The weight at birth data is about risks associated with low weight at birth. Using the following linear model for weight at birth (BWT).

$$BWT = \beta_0 + \beta_1 SMOKE + \beta_2 AGE + \beta_3 LWT$$
 (3)

where

- SMOKE: smoke during pregnancy, yes = 1 no = 0
- AGE: age of mother
- LWT: weight of mother at last menstrual period

Cook's distance

```
finalmodel<-lm(BWT SMOKE + AGE + LWT, data=birth.weight)
plot (cooks.distance(finalmodel), type ="h")</pre>
```


Welsch - Kuh distance

$$Dffts_i = \frac{\hat{y}_i - \hat{y}_i^{-i}}{\sigma_{-i}\sqrt{h_{ii}}} \tag{4}$$

Large $|Dffts_i|$ indicates that observation i has influence on the estimate \hat{y}_i . The observation is considered influential if $|Dffts_i| \ge 2\sqrt{\frac{p+1}{n}}$.

Welsch - Kuh distance

```
threshold.fitt <- 2*sqrt((8+1)/(189))
birth.weight$ID[abs(dffits(finalmodel)) >= threshold.fitt]
```


For Further Reading I

Pierre Lafaye de Micheaux.

The R Software, Fundamentals of programming and statistical analysis Springer, 2013.