

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

F-016

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-151245

(43)公開日 平成6年(1994)5月31日

(51)InLCL⁵

H 0 1 G

4/42

1/015

4/12

識別記号

府内整理番号

F I

技術表示箇所

9174-5E

9174-5E

3 5 2

審査請求 未請求 求求項の数1(全8頁)

(21)出願番号

特願平4-322415

(71)出願人

000006284
三菱マテリアル株式会社

(22)出願日

平成4年(1992)11月6日

東京都千代田区大手町1丁目5番1号

(72)発明者

志村 優
埼玉県秩父郡横瀬町大字横瀬2270番地 三
菱マテリアル株式会社セラミックス研究所
内

(72)発明者

平岡 春生
埼玉県秩父郡横瀬町大字横瀬2270番地 三
菱マテリアル株式会社セラミックス研究所
内

(74)代理人

弁理士 須田 正義

最終頁に続く

(54)【発明の名称】ノイズフィルタ

(57)【要約】

【目的】複数の信号線路に対してクロストークを生じることなく高周波ノイズを除去し小型で高密度に実装できる、また実装コストが安価で済む。

【構成】方形状の誘電体シート10と20と30と40の接層体65であって、シート10は1つの辺に接続され残りの3つの辺とは互いに絶縁される間隔をもつ内部電極11a, 11bをシート表面に備える。シート30はシート10と同様に内部電極31をシート表面に備える。中間シートとしてのシート20は内部電極が接続されるシート10と30に対応する一対の辺とは絶縁され別の一対の辺に接続されるアース電極23をシート表面に備え、シート20又は30を介して内部電極とアース電極との間でキャパシタンスを形成する。内部電極に接続する信号用電極51, 52とアース電極に接続する接地用電極53, 54とを積層体の表面に互いに独立して形成する。

【特許請求の範囲】

【請求項1】 方形状の第2誘電体シート(20, 70)を中間シートとして前記シート(20, 70)と同形同大の第1誘電体シート(10, 60)と前記シート(20, 70)と同形同大の第3誘電体シート(30, 80)を1組として1組又は2組以上積層し、最上層にシート表面に電極の形成されない第4誘電体シート(40, 90)を積層して一体化された積層体(65, 115)を含み。

前記第1誘電体シート(10, 60)は、1つの辺に電気的に接続され残りの3つの辺とは互いに電気的に絶縁される間隔(12, 13, 14, 62, 63, 64)を有する第1内部電極(11a, 11b, 61)をシート表面に備え。

前記第3誘電体シート(30, 80)は、前記第1内部電極(11a, 11b, 61)が電気的に接続される第1誘電体シート(10, 60)に対応する1つの辺に向対する1つの辺に電気的に接続され残りの3つの辺とは電気的に絶縁される間隔(32, 33, 34, 82, 83, 84)を有する第2内部電極(31, 81)をシート表面に備え。

前記第2誘電体シート(20, 70)は、前記第1及び第2内部電極(11a, 11b, 31, 61, 81)が電気的に接続される第1及び第3誘電体シート(10, 30, 60, 80)に対応する一対の辺とは電気的に絶縁される間隔(21, 22, 71, 72)を有しかつ前記一対の辺と別の一対の辺に電気的に接続されるアース電極(23, 73)をシート表面に備え。

前記第2誘電体シート(20, 70)を介して前記第1内部電極(11a, 11b, 61)と前記アース電極(23, 73)との間にかつ前記第3誘電体シート(30, 80)を介して前記第2内部電極(31, 81)と前記アース電極(23, 73)との間にそれぞれキャバシタンスを形成するように構成され、前記積層体(65, 115)の側面に露出した前記第1及び第2内部電極(11a, 11b, 31, 61, 81)にそれぞれ接続する第1及び第2信号用電極(51, 51, 52, 101, 102)がこの側面に形成され。

前記積層体(65, 115)の別の両側面に露出した前記アース電極(23, 73)に接続する接地用電極(53, 54, 103, 104)がこの両側面又はこの両側面のいずれか一方の側面に形成されたことを特徴とするノイズフィルタ。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、複数の信号線路における高周波ノイズを除去するためのノイズフィルタに関する。更に詳しくは複数の信号線路間のクロストークを防止するに適した積層チップコンデンサからなるノイズフィルタに関するものである。

【0002】

【従来の技術】 コンピュータ等のデジタル機器では、信号線路に高周波のノイズが混入すると誤動作を生じ易く、しかも他の電子機器等に障害をもたらす恐れのある不要な電磁波を配線から放射する問題点がある。このため、信号線路にはコンデンサ素子を用いた高周波ノイズ

を除去するノイズフィルタが多用されている。この種のノイズフィルタとしては、単板コンデンサ、2端子型積層チップコンデンサ、貫通型コンデンサ、貫通型コンデンサアレイ等がある。単板コンデンサ、2端子型積層チップコンデンサ及び貫通型コンデンサはそれぞれ1つの信号線路に対して1個用いられ、複数のコンデンサを内蔵した貫通型コンデンサアレイは单品で複数の信号線路に対して用いられる。

【0003】

【発明が解決しようとする課題】 しかし、上記単板コンデンサ、2端子型積層チップコンデンサ、貫通型コンデンサ、及び貫通型コンデンサアレイには、次に述べる欠点がある。

① 単板コンデンサは、1枚のディスク状のコンデンサ素子の両面に外部電極をそれぞれ設け、そこに一对のリード線を接続している。単板コンデンサはこの構造に起因して回路基板への高密度の実装が妨げられ、電子機器を小型化しにくい。また回路基板に実装する時にリード線を含むことから、図13に示すようにこの単板コンデンサ1を回路基板の信号線路2とグランド3との間に接続したときの等価回路はL-C直列共振回路に近似して、ある周波数以上ではノイズフィルタとして機能しなくなる。

② 2端子型積層チップコンデンサは、1つのシート外周辺まで延びてこのシート外周辺と反対側のシート外周辺とは間隔をあけてシート表面に内部電極が形成された角形のセラミックシート2枚を1組とし、これら2枚のセラミックシートを内部電極の延びたシート外周辺がそれぞれ反対側になるように重ね合せ、この重ね合せた1組のセラミックシートを複数組積層し一体化してなる積層体と、積層体の両側面にそれぞれ露出した内部電極に接続して形成された一対の外部電極(2つの端子電極)とを備える。この積層チップコンデンサは、単板コンデンサと比べて回路基板により高密度に実装できるものの、コンデンサの内部電極や接地点までの配線の引き回しが避けられない。このため、このコンデンサを含む回路は単板コンデンサと同様に図13に示すL-C直列共振回路に近似して、ある周波数以上ではノイズフィルタとして機能しなくなる。

③ 贯通型コンデンサは、例えばディスク状のコンデンサ素子の中央に信号線路が通る貫通孔をあけ、コンデンサ素子の片面の貫通孔周縁に信号線路に接続する第1導体を形成し、コンデンサ素子の他面及びその外周面に第1導体と間隔をあけて接地点用の第2導体層を形成し、コンデンサ素子を介して第1導体層と第2導体層との間でキャバシタンスを形成するよう構成される。貫通型コンデンサは、単板コンデンサや2端子型積層チップコンデンサのように回路基板に実装する時にリード線や配線を引き回す必要がなく、図12に示す理想の回路に近づけることができる。しかし、貫通型コンデン

ンサはその構造に起因して回路基板への高密度の実装が妨げられ、電子機器を小型化しにくい。また実装に手間がかかるため実装コストの上昇を招いている。

【0005】④ 貫通型コンデンサアレイは、例えば方形状のコンデンサ素子にそれぞれ信号線路が通る複数の貫通孔をあけ、コンデンサ素子の片面の各貫通孔の周縁に信号線路に接続する第1導体をそれぞれ形成し、コンデンサ素子の上面及びその外周面に第1導体と間隔をあけて接地用の第2導体層を形成し、コンデンサ素子を介して第1導体層と第2導体層との間にキャパシタンスを形成するように構成される。貫通型コンデンサアレイは、貫通型コンデンサと同様の理由で図12に示す理想の回路に近づけることができ、貫通型コンデンサが有する欠点、即ち高密度化の困難性と実装コストの上昇の問題点を解消する。しかし、この貫通型コンデンサアレイでは隣接して配設された複数の貫通孔のそれぞれにリード線等の導体が通るため、貫通孔の間隔をあまりに狭めでそれぞれの第1導体の間隔を狭めるとリード線等の信号線路に高周波信号が流れたときに、乗り合う2つの第1導体間に存在する浮遊キャパシタンスのために、所定の周波数以上のノイズが伝播され、クロストークを生じ易い。このため、高密度化にはクロストーク防止の観点から一定の制限があった。

【0006】本発明の目的は、高周波ノイズを除去でき、小型で高密度に実装できるノイズフィルタを提供することにある。本発明の別の目的は、実装コストが安価で済むノイズフィルタを提供することにある。本発明の更に別の目的は、複数の信号線路に接続する内部電極をより高密度に設けても各信号線路を流れる信号の他の線路へのクロストークを確実に防止できるノイズフィルタを提供することにある。

【0007】

【課題を解決するための手段】上記目的を達成するための本発明の構成を図1～図4に基づいて説明する。なお、図1、図2及び図4は説明を容易にするためにセラミックシート部分を厚さ方向に拡大して示している。本発明のノイズフィルタは、方形状の第2誘電体シート20と中間シートとして前記シート20と同形同大の第1誘電体シート10と前記シート20と同形同大の第3誘電体シート30を1組として1紙又は2紙以上積層し、最上層にシート表面に電極の形成されない第4誘電体シート40を積層して一体化された積層体65を含む。第1誘電体シート10は、1つの辺に電気的に接続され残りの3つの辺とは互いに電気的に絶縁される間隔12、13、14を有する第1内部電極11a、11bをシート表面に備える。また第3誘電体シート30は、第1内部電極11a、11bが電気的に接続される第1誘電体シート10に対応する1つの辺に對向する1つの辺に電気的に接続され残りの3つの辺とは電気的に絶縁される間隔32、33、34を有する第2内部電極31をシート表面に備える。更に第2誘電体シート20は、第1及び第2内部電極11a、11b、31が電気的に接続される第1及び第3誘電体シート10、30に対応する一对の辺とは電気的に絶縁される間隔21、22を有しがつこの一对の辺と別の一対の辺に電気的に接続されるアース電極23をシート表面に備える。第2誘電体シート20を介して第1内部電極11a、11bとアース電極23との間でかつ第3誘電体シート30を介して第2内部電極31とアース電極23との間でそれぞれキャバシ

10 タンスを形成するよう構成される。積層体65の側面に露出した第1及び第2内部電極11a、11b、31にそれぞれ接続する第1及び第2信号用電極51、51、52がこの側面に形成され、積層体65の別の両側面に露出したアース電極23に接続する一对の第1及び第2接地用電極53、54がこの両側面に形成される。なお、図示しないが、接地用電極53又は54のいずれか一方を積層体の側面に設けるだけでもよい。

【0008】

【作用】第1誘電体シート10上の第1内部電極11a、11bと第3誘電体シート30上の第2内部電極31の間に、接地用電極53、54を介して接地されるアース電極23を配置することにより、隣接した信号線路間の浮遊キャパシタンスが実質的になくなり、信号やノイズの線路間のクロストークを解消できる。また、第2誘電体シート20を介して第1内部電極11a、11bとアース電極23との間でかつ第3誘電体シート30を介して第2内部電極31とアース電極23との間でキャパシタンスが形成されるため、過電圧にある内部電極11a、11b、31とアース電極23との間に電位差が生じ、コンデンサとして機能し高周波ノイズは吸収される。

【0009】

【実施例】次に本発明の実施例を説明する。本発明はこれら実施例に限られるものではない。

<実施例1>実施例1のノイズフィルタを図1～図5に基づいて説明する。先ず、同形同大のセラミックグリーンシートを4枚用意した。それぞれ1枚ずつを第1セラミックグリーンシート、第2セラミックグリーンシート、第3セラミックグリーンシート、及び第4セラミックグリーンシートとした。これらのグリーンシートはボリエステルベースシートの上面に例えばチタン酸パリウム系のJIS-R特性を有する誘電体スラリーをドクタープレード法によりコーティングした後、乾燥して形成される。

【0010】次いで第1セラミックグリーンシートと、第2セラミックグリーンシート及び第3セラミックグリーンシートの各表面にそれぞれ別々のパターンでPdを主成分とする導電性ペーストをスクリーン印刷し、80°Cで4分間乾燥した。即ち、図3に示すように第1セラミックグリーンシート10には、1つの辺に電気的に接

続され残りの3つの辺とは電気的にそれぞれ絶縁される間隔1, 2, 3, 4を有する第1内部電極11a, 11bが印刷形成される。また、第2セラミックグリーンシート20には、積層した後に第1セラミックグリーンシート10上に形成された内部電極11a, 11bと重なり部分を有し、一対の辺とは電気的に絶縁される間隔2, 2を有しかつこの一対の辺と別の一対の辺に電気的に接続されるアース電極23が印刷形成される。更に、第3セラミックグリーンシート30には、積層した後に第2セラミックグリーンシート上に形成されたアース電極23と重なり部分を有し、かつ第1内部電極11a, 11bが電気的に接続される第1セラミックグリーンシート10に対応する1つの辺に向する1つの辺に電気的に接続され、残りの3つの辺とは電気的にそれぞれ絶縁される間隔3, 3, 3, 3を有する第2内部電極31が印刷形成される。

【0011】スクリーン印刷した第1、第2及び第3セラミックグリーンシート10, 20, 30の3枚のシートをこの順に積層し、更に最上層には導電性ペーストを全く印刷していない第4セラミックグリーンシート40を重ね合わせた。これらのがリーンシートはそれぞれ本発明の誘電体シートになる。図4に示される積層体65は熱圧着して一体化した後、1,300°Cで約1時間焼成して厚さ約1mmの焼結体を得た。図4に示すようにこの焼結体をバレル研磨して焼結体の周囲側面に第1内部電極11a, 11b、第2内部電極31(図4には説明せず)、及びアース電極23を磨出させた。

【0012】次に図5に示すように焼結体の周囲側面の内部電極11a, 11b, 31及びアース電極23が露出出した部分にAgを主成分とする導電性ペーストをそれぞれ塗布し、焼付けでそれぞれ信頼用電極51, 51, 52及び接地用電極53, 54を形成した。これにより第1内部電極11a, 11bが第1信号用電極51に、第2内部電極31が第2信号用電極52に、及びアース電極23が第1及び第2接地用電極53, 54にそれぞれ電気的に接続されたノイズフィルタが得られた。図10はこのノイズフィルタの等価回路図である。図10において図5に示した符号と同一符号は同一構成要素を示す。

【0013】このノイズフィルタの特性を調べるために、別途用意したプリント基板5上にこのノイズフィルタを実装した。プリント基板5の上面には3本の信号線路56a, 56b及び57がプリント配線され、これらの両側には接地用電極58及び59が形成される。電極58及び59にはそれぞれスルーホール58a及び59aが設けられ、電極58及び59はスルーホール58a及び59aを介して基板5の下面のほぼ全面に形成された接地用電極55aに電気的に接続される。接地用電極55aは接地される。信号線路56a, 56bに信号用電極51, 51をそれぞれはんだ付けし、信号線

路57に信号用電極52をはんだ付けし、接地用電極58, 59に接地用電極53, 54をそれぞれはんだ付けした。

【0014】この状態で信号線路56a, 56b及び57の各一端から高周波信号を入力し、その他端で出力信号を測定し、押入損失を求めた。その結果、周波数が高くなるに従って、急峻に押入損失が大きくなり、このノイズフィルタは良好なフィルタ特性を有することが判った。また隣接する信号線路56aと57の各他端で、また信号線路56bと57の各他端で出力信号を測定して、クロストークの有無を観べたところ、このクロストークは検出できない程小さく、従来のノイズフィルタの測定例と比較して非常に改善されていることが確認された。

【0015】<実施例2>実施例2のノイズフィルタを図6～図9に基づいて説明する。図6～図9において、実施例1に対応する構成部品の各符号は実施例1の各符号に50を加えている。先ず、実施例1と同様にして、1枚の同形同大のセラミックグリーンシートを用意し、それを一枚ずつを第1セラミックグリーンシート、第2セラミックグリーンシート、第3セラミックグリーンシート、及び第4セラミックグリーンシートとした。

【0016】次いで第1セラミックグリーンシートと、第2セラミックグリーンシート及び第3セラミックグリーンシートの各表面にそれぞれ別のパウダーでPdを主成分とする導電性ペーストをスクリーン印刷し、80°Cで4分間焼成した。即ち、図7に示すように第1セラミックグリーンシート60には、1つの辺に電気的に接続され残りの3つの辺とは互いに電気的に絶縁される間隔62, 63, 64を有する第1内部電極61が印刷形成される。また、第2セラミックグリーンシート70には、積層した後に第1セラミックグリーンシート60上に形成された第1内部電極61と重なり部分を有し、一対の辺とは電気的に絶縁される間隔71, 72を有しかつこの一対の辺と別の一対の辺に電気的に接続されるアース電極73が印刷形成される。更に、第3セラミックグリーンシート80には、第1内部電極61が電気的に接続される第1誘電体シート60に対応する1つの辺に向する1つの辺に電気的に接続され残りの3つの辺とは電気的に絶縁される間隔82, 83, 84を有し、かつ第2セラミックグリーンシート70のアース電極73とは重なり部を有する第2内部電極81が印刷形成される。

【0017】実施例1と同様にして、スクリーン印刷した第1、第2及び第3セラミックグリーンシート60, 70, 80の3枚のシートをこの順に積層し、更に最上層には導電性ペーストを全く印刷していない第4セラミックグリーンシート90を重ね合わせた。この積層体を熱圧着して一体化した。図8に示される積層体115を実施例1と同様に焼成し、かつ焼結体をバレル研磨して

焼結体の周囲側面に第1内部電極61及び第2内部電極81(図8には示さない)、アース電極73を露出させた。

【0018】次に実施例1と同様にして、図9に示すように焼結体の周囲側面の内部電極61、81、及びアース電極73が露出した部分にAgを主成分とする導電性ペーストをそれぞれ塗布し、焼付けて信号用電極101、102及び接地用電極103、104を形成した。これにより第1内部電極61と第2内部電極81が第1及び第2信号用電極101、102に、及びアース電極73が第1及び第2接地用電極103、104にそれぞれ電気的に接続されたノイズフィルタが得られた。図11はこのノイズフィルタの等価回路図である。図11において図9に示した符号と同一符号は同一構成要素を示す。

【0019】このノイズフィルタを別途用意したプリント基板上に実装して、実施例1と同様にその特性を調べた。信号用電極101又は102に接続した図外の信号線路の一端から高周波信号を入力し、その他端で出力信号を測定し、挿入損失を求めた。その結果、周波数が高くなるに従って、急峻に挿入損失が大きくなり、このノイズフィルタも良好なフィルタ特性を有することが判った。また信号用電極101及び102にそれぞれ接続した図外の信号線路の各他端で出力信号を測定して、クロストークの有無を調べたところ、このクロストークは検出できない程小さく、從来のノイズフィルタの測定例と比較して非常に改善されていることが確認された。

【0020】なお、実施例1及び実施例2では、第1、第2、第3セラミックグリーンシートをそれぞれ1枚ずつ積層したが、本発明の第1セラミックグリーンシートと第2セラミックグリーンシートと第3セラミックグリーンシートの積層数はこれに限るものではない。この積層数を適宜増加させることにより、内部電極とアース電極で形成されるキャパシタンスが変化して挿入損失を変化させることができる。また、実施例1では2つの第1内部電極と、1つの第2内部電極を示したが、第1及び第2内部電極の数はこれに限らず、更に増やすこともできる。各シートに複数の内部電極を設ける場合には、隣接する内部電極間に別のシートの内部電極が位置するよう設計することがクロストークを防止する上で好ましい。更に、実施例1及び実施例2では焼結体の両側面にそれぞれ接地用電極53、54及び102、104を設けたが、いずれか一方の接地用電極を焼結体の一側面に設けるだけでもよい。

【0021】

【発明の効果】以上述べたように、本発明によれば、信号伝送のために用いられる信号線路や信号リードに少なくとも2個以上の信号用電極を電気的に接続し、接地用電極を接続することにより、第1誘電体シートの第1内部電極と第2誘電体シートのアース電極の間でかつ第3

誘電体シートの第2内部電極と第2誘電体シートのアース電極の間でキャパシタンスが形成されたため、信号線路等に侵入する高周波ノイズを除去することができる。

また、第1内部電極と第2内部電極との間にアース電極を配置し、このアース電極を接地用電極を介して接地することにより、信号線路に高周波信号が流れてもより確実に浮遊キャパシタンスを除去し、隣接する信号線路間相互のクロストークを防止することができる。特に、本発明のノイズフィルタを従来の2端子型の横層チップコンデンサと異なり、多端子型の横層チップコンデンサで構成することにより、信号線路毎にノイズフィルタを設ける必要がなく、複数の信号線路に対して1個のノイズフィルタで足りる。この結果、本発明のノイズフィルタは小型で高密度に実装でき、しかも実装コストを低減することができる。

【図面の簡単な説明】

【図1】本発明実施例のノイズフィルタの図5のA-A線断面図。

【図2】そのB-B線断面図。

【図3】その横層体の焼成前の斜視図。

【図4】その横層体を焼成した焼結体の斜視図。

【図5】プリント基板に実装されたノイズフィルタの斜視図。

【図6】本発明の別の実施例のノイズフィルタの図9のC-C線断面図。

【図7】その横層体の焼成前の斜視図。

【図8】その横層体を焼成した焼結体の斜視図。

【図9】そのノイズフィルタの斜視図。

【図10】図5に示されるノイズフィルタの等価回路図。

【図11】図9に示されるノイズフィルタの等価回路図。

【図12】インダクタンス成分を有しない理想的なコンデンサーの等価回路図。

【図13】LC直列共振回路に近似したコンデンサーの等価回路図。

【符号の説明】

10 1, 6, 6 第1誘電体シート(第1セラミックグリーンシート)

11a, 11b, 61 第1内部電極

12, 13, 14, 62, 63, 64 電気的に絶縁される開隙

20, 70 第2誘電体シート(第2セラミックグリーンシート)

21, 22, 71, 72 電気的に絶縁される開隙

23, 73 アース電極

30, 80 第3誘電体シート(第3セラミックグリーンシート)

31, 81 第2内部電極

32, 33, 34, 82, 83, 84 電気的に絶縁さ

9

れる間隔
40, 90 第4誘電体シート(第4セラミックグリーンシート)
51, 101 第1信号用電極

52, 102 第2信号用電極
53, 103 第1接地用電極
54, 104 第2接地用電極
65, 115 積層体

【図1】

- 10 第1誘電体シート(第1セラミックグリーンシート)
- 11a, 11b 第1内部電極
- 12, 14 電気的に絶縁される間隔
- 20 第2誘電体シート(第2セラミックグリーンシート)
- 23 アース電極
- 30 第3誘電体シート(第3セラミックグリーンシート)
- 31 第2内部電極
- 32, 34 電気的に絶縲される間隔
- 40 第4誘電体シート(第4セラミックグリーンシート)
- 53 第1接地用電極
- 54 第2接地用電極

【図2】

【図4】

【図11】

【図3】

【図6】

【図10】

【図12】

【図5】

【図8】

【図13】

【図7】

【図9】

フロントページの続き

(72)発明者 池松 廉一

新潟県南魚沼郡大和町浦佐972番地 三義
マテリアル株式会社セラミックス研究所浦
佐分室内

(72)発明者 内田 彰

新潟県南魚沼郡大和町浦佐972番地 三義
マテリアル株式会社セラミックス研究所浦
佐分室内

(72)発明者 小島 靖

新潟県南魚沼郡大和町浦佐972番地 三義
マテリアル株式会社セラミックス研究所浦
佐分室内