WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI

dla uczniów szkół podstawowych w roku szkolnym 2021/2022

etap rejonowy - SCHEMAT OCENIANIA

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12		13	
Poprawna odpowiedź	В	С	E	С	E	D	E	A	В	D	D	С	F	F	Р
Liczba punktów	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Zadanie nr 14 (7 pkt)

Uporządkuj rosnąco liczby a, b i c jeśli

$$a = \frac{2}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}}$$

$$b = \frac{3}{3 + \frac{1}{3 + \frac{1}{3 + \frac{1}{3}}}}$$

$$C = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}}$$

Rozwiązanie:

$$a = \frac{2}{2 + \frac{1}{2 + \frac{1}{5}}}$$

$$b = \frac{3}{3 + \frac{1}{3 + \frac{1}{10}}}$$

$$C = \frac{1}{1 + \frac{1}{1 + \frac{1}{\frac{3}{2}}}}$$

$$a = \frac{2}{2 + \frac{1}{2 + \frac{2}{5}}}$$

$$b = \frac{3}{3 + \frac{1}{3 + \frac{3}{10}}}$$

$$C = \frac{1}{1 + \frac{1}{1 + \frac{2}{3}}}$$

$$a = \frac{2}{2 + \frac{1}{\frac{12}{5}}}$$

$$b = \frac{3}{3 + \frac{1}{\frac{33}{10}}}$$

$$C = \frac{1}{1 + \frac{1}{\frac{5}{3}}}$$

$$a = \frac{2}{2 + \frac{5}{12}}$$

$$b = \frac{3}{3 + \frac{10}{33}}$$

$$C = \frac{1}{1 + \frac{3}{5}}$$

$$a = \frac{2}{\frac{29}{12}}$$

$$b = \frac{3}{\frac{109}{33}}$$

$$C = \frac{1}{\frac{8}{5}}$$

$$a = \frac{24}{29}$$

$$b = \frac{99}{109}$$

$$c = \frac{5}{8}$$

$$c = 0.625$$

c < a < b

Obliczenie liczby a	2 pkt
Obliczenie liczby b	2 pkt
Obliczenie liczby c	2 pkt
Porównanie liczb	1 pkt

UWAGA!

1 punkt za obliczenia poszczególnych liczb przyznajemy, jeżeli uczeń poprawnie wykona przekształcenia przynajmniej do postaci, gdzie mamy w mianowniku $2 + \frac{2}{5}$ lub $3 + \frac{3}{10}$ lub $1 + \frac{2}{3}$ Punkt za porównanie liczb przyznajemy tylko wtedy, gdy są one poprawnie policzone.

Zadanie nr 15 (7 pkt)

Podaj wszystkie liczby całkowite, które spełniają równocześnie obie nierówności

$$\frac{2x+1}{2} - \frac{3-x}{4} < 3 + \frac{x-2}{2}$$
oraz $(x\sqrt{3} - 2)(x\sqrt{3} + 2) - (2x - 1)^2 \le 5x - 4 + (x + 2)(2 - x)$

Rozwiązanie:

$$\frac{2x+1}{2} - \frac{3-x}{4} < 3 + \frac{x-2}{2} / \cdot 4$$

$$4x + 2 - 3 + x < 12 + 2x - 4$$

$$4x + x - 2x < 12 - 4 - 2 + 3$$

$$3x < 9 / : 3$$

$$x < 3$$

$$(x\sqrt{3} - 2)(x\sqrt{3} + 2) - (2x - 1)^{2} \le 5x - 4 + (x + 2)(2 - x)$$

$$3x^{2} - 4 - 4x^{2} + 4x - 1 \le 5x - 4 + 4 - x^{2}$$

$$3x^{2} - 4x^{2} + x^{2} + 4x - 5x \le -4 + 4 + 4 + 1$$

$$-x \le 5 / : (-1)$$

$$x \ge -5$$
Szukane liczby: -5, -4, -3, -2, -1, 0, 1, 2

Poprawne wykonanie mnożenia pierwszej nierówności przez 4	1 pkt
Poprawne pogrupowanie wyrazów z x po lewej stronie i wyrazów wolnych	
po prawej stronie nierówności	1 pkt
Podanie rozwiązania: x<3	1 pkt
Poprawne opuszczenie nawiasów w drugiej nierówności	1 pkt
Poprawne pogrupowanie wyrazów z x po lewej stronie i wyrazów wolnych	1 pkt
po prawej stronie nierówności	1 pkt
Podanie rozwiązania: x≥ - 5	1 pkt
Poprawne podanie wszystkich liczb	1 pkt

UWAGA!

Jeżeli uczeń popełni błąd przy mnożeniu pierwszej nierówności lub przy opuszczaniu nawiasów w drugiej nierówności, ale dalej rozwiąże nierówność poprawnie, bez kolejnych błędów, otrzymuje 1 punkt za sposób rozwiązania nierówności.

Jeżeli jedna lub obie nierówności rozwiązane są jak w poprzedniej uwadze, ale odpowiedź jest właściwa do rozwiązań, jakie uczeń otrzymał, przyznajemy punkt za podanie liczb spełniających obie nierówności.

Zadanie nr 16 (7 pkt)

Zosia otrzymała stypendium sportowe. Trzecią część tej kwoty wydała na nowy sprzęt do ćwiczeń. Następnie opłaciła roczny karnet na siłownię, na co wydała 400zł. Ćwierć kwoty, która jej została, przeznaczyła na opłaty związane z wyjazdami na zawody. Zapłaciła też 900 złotych zaliczki na letni obóz sportowy. Policzyła wszystkie wydatki i okazało się, że zostało jej jeszcze 10% całego stypendium. Jaką kwotę stypendium otrzymała Zosia?

Rozwiązanie:

Kozwiązanie.
$$x$$
 – kwota stypendium $\frac{1}{3}x$ – kwota wydana na zakup sprzętu $\frac{2}{3}x$ – 400 – reszta $\frac{1}{4}(\frac{2}{3}x-400)$ - kwota przeznaczona na zawody $\frac{3}{4}(\frac{2}{3}x-400)$ - zostało $\frac{3}{4}(\frac{2}{3}x-400)$ – 900 = 0,1 x lub $\frac{1}{3}x+400+\frac{1}{4}(\frac{2}{3}x-400)+900+0,1x=x$ $\frac{1}{2}x-300-900=0,1x$ $\frac{1}{3}x+400+\frac{1}{6}x-100+900+0,1x=x$ / \cdot 6 0,4 $x=1200$ /: 0,4 2 $x=$

Zosia otrzymała 3000 zł stypendium.

Oznaczenie niewiadomej i zapisanie kwoty na zakup sprzętu	1 pkt
Zapisanie, jaka kwota zostaje po kupieniu sprzętu i opłaceniu karnetu	1 pkt
Zapisanie kwoty przeznaczonej na zawody	1 pkt
Zapisanie równania	2 pkt
Rozwiązanie równania i odpowiedź (za rozwiązanie z usterką uczeń otrzymuje 1 punkt)	2 pkt

UWAGA!

Jeżeli w zapisie równania pojawi się **drobna usterka** (np. zabraknie jednego z wydatków), przyznajemy za ułożenie równania 1 pkt. Punktów za rozwiązanie równania w takiej sytuacji nie przyznajemy.

Zadanie nr 17 (7 pkt)

Zegar ścienny ma wskazówki długości 6 cm i 16 cm. Jaka jest odległość między ich końcami o godzinie 2⁰⁰ ?

Rozwiązanie:

O godzinie 2°° kąt między wskazówkami minutową i godzinową ma miarę 60°. Rysujemy wysokość i otrzymujemy trójkąt prostokątny o kątach 30°, 60°, 90°, w którym przeciwprostokątna ma długość 6 cm. Krótsza przyprostokątna ma więc długość 3 cm, a dłuższa $3\sqrt{3}$ cm. Obliczamy przyprostokątną w drugim trójkącie 16-3=13 i zapisujemy dla tego trójkąta twierdzenie Pitagorasa $x^2 = 13^2 + \left(3\sqrt{3}\right)^2$ $x^2=169+27=196$ x=14, ponieważ x>0 Odległość końców wskazówek wynosi 14 cm.

Rysunek z zaznaczoną odległością końców wskazówek	1 pkt
Podanie miary kąta między wskazówkami 60°	1 pkt
Narysowanie wysokości i podanie długości odcinków w trójkącie o kątach	
$30^{\circ},60^{\circ},90^{\circ}$ równych 3 i $3\sqrt{3}$	2 pkt
Obliczenie przyprostokątnej w drugim trójkącie równej 13	1 pkt
Zapisanie twierdzenia Pitagorasa $x^2 = (3\sqrt{3})^2 + 13^2$	1 pkt
Obliczenie odległości końców wskazówek x=14	1 pkt

Zadanie nr 18 (7 pkt)

Julia rozcięła kwadratową kartkę papieru na dwa przystające prostokąty. Każdy z nich złożyła w ten sposób, że otrzymała powierzchnie boczne dwóch różnych graniastosłupów prawidłowych czworokątnych. Suma objętości tych graniastosłupów wynosi 375 cm³. Jakie jest pole kartki, którą Julka miała na początku?

Rozwiązanie:

$$V_{1} = (2x)^{2} \cdot 4x = 16x^{3}$$
 lub
$$V_{1} = \left(\frac{1}{4}a\right)^{2} \cdot \frac{1}{2}a = \frac{1}{32}a^{3}$$

$$V_{2} = x^{2} \cdot 8x = 8x^{3}$$

$$V_{2} = \left(\frac{1}{8}a\right)^{2} \cdot a = \frac{1}{64}a^{3}$$

$$16x^{3} + 8x^{3} = 375$$

$$\frac{1}{32}a^{3} + \frac{1}{64}a^{3} = 375$$

$$24x^{3} = 375$$

$$\frac{3}{64}a^{3} = 375$$

$$x^{3} = \frac{375}{24} = \frac{125}{8}$$

$$a^{3} = 375 : \frac{3}{64} = 375 \cdot \frac{64}{3} = 125 \cdot 64$$

$$x = \frac{5}{2} = 2,5$$

$$a = 5 \cdot 4 = 20$$

bok kwadratu a = $8x = 8 \cdot 2,5 = 20$ [cm]

 $P = (20 \text{ cm})^2 = 400 \text{ cm}^2$

Wprowadzenie oznaczeń	1 pkt
Zapisanie objętości jednego graniastosłupa	1 pkt
Zapisanie objętości drugiego graniastosłupa	1 pkt
Zapisanie równania	1 pkt
Rozwiązanie równania	1 pkt
Obliczenie długości boku kwadratu	1 pkt
Obliczenie pola powierzchni początkowego kwadratu 400 cm²	1 pkt

UWAGA:

Za każde poprawne rozwiązanie inne niż w schemacie oceniania przyznajemy maksymalną liczbę punktów.