PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07D 265/18, A61K 31/535, C07D 413/06, 417/06

(11) International Publication Number:

WO 98/14436

A1

US

(43) International Publication Date:

9 April 1998 (09.04.98)

(21) International Application Number:

PCT/US97/17540

(22) International Filing Date:

1 October 1997 (01.10.97)

(30) Priority Data:

08/725,294 08/846,578 2 October 1996 (02.10.96)

30 April 1997 (30.04.97) US

(71) Applicant: THE DU PONT MERCK PHARMACEUTICAL COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors: CHRIST, David, Donald; 5 Cabot Place, Newark, DE 19701 (US). MARKWALDER, Jay, Andrew; 124 Shepherd Lane, Lincoln University, PA 19352 (US). FORTUNAK, Joseph, Marian; 19 Somerset lane, Newark, DE 19711 (US). KO, Soo, Sung; 7 Aston Circle, Hockessin, DE 19707 (US). MUTLIB, Abdul, Ezaz; 12 Decidedly Lane, Bear, DE 19701 (US). PARSONS, Rodney, Lawrence, Jr.; 1804 Thomas Road, Wilmington, DE 19803 (US). PATEL, Mona; 111 Scotts Way, Wilington, DE 19810 (US). SEITZ, Steven, Paul; 333 Haverford Place, Swarthmore, PA 19801 (US).

(74) Agent: VANCE, David, H.; The Du Pont Merck Pharmaceutical Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AU, BA, CA, CU, JP, LC, MX, NZ, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: 4,4-DISUBSTITUTED-1,4-DIHYDRO-2H-3,1-BENZOXAZIN-2-ONES USEFUL AS HIV REVERSE TRANSCRIPTASE INHIBITORS AND INTERMEDIATES AND PROCESSES FOR MAKING THE SAME

(57) Abstract

The present invention relates to benzoxazinones of formula I, or stereoisomeric forms or mixtures, or pharmaceutically acceptable salt forms thereof, which are useful as inhibitors of HIV reverse transcriptase, and to pharmaceutical compositions and diagnostic kits comprising the same, methods of using same for treating viral infection or as an assay standard or reagent, and intermediates and processes for making the same.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
$\mathbf{B}\mathbf{A}$	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	$\mathbf{s}\mathbf{G}$	Singapore		

TITLE

4,4-DISUBSTITUTED-1,4-DIHYDRO-2H-3,1-BENZOXAZIN-2-ONES USEFUL AS HIV REVERSE TRANSCRIPTASE INHIBITORS AND INTERMEDIATES AND PROCESSES FOR MAKING THE SAME

FIELD OF THE INVENTION

This invention relates generally to 4,4-disubstituted-1,4-dihydro-2H-3,1-benzoxazin-2-ones which are useful as inhibitors of HIV reverse transcriptase, pharmaceutical compositions and diagnostic kits comprising the same, methods of using the same for treating viral infection or as assay standards or reagents, and intermediates and processes for making the same.

15

20

25

30

35

10

5

BACKGROUND OF THE INVENTION

Two distinct retroviruses, human immunodeficiency virus (HIV) type-1 (HIV-1) or type-2 (HIV-2), have been etiologically linked to the immunosuppressive disease, acquired immunodeficiency syndrome (AIDS). HIV seropositive individuals are initially asymptomatic but typically develop AIDS related complex (ARC) followed by AIDS. Affected individuals exhibit severe immunosuppression which predisposes them to debilitating and ultimately fatal opportunistic infections.

The disease AIDS is the end result of an HIV-1 or HIV-2 virus following its own complex life cycle. The virion life cycle begins with the virion attaching itself to the host human T-4 lymphocyte immune cell through the bonding of a glycoprotein on the surface of the virion's protective coat with the CD4 glycoprotein on the lymphocyte cell. Once attached, the virion sheds its glycoprotein coat, penetrates into the membrane of the host cell, and uncoats its RNA. The virion enzyme, reverse transcriptase, directs the process of transcribing the RNA into single-stranded DNA. The viral RNA is degraded and a second DNA strand is created. The now

double-stranded DNA is integrated into the human cell's genes - and those genes are used for virus reproduction.

At this point, RNA polymerase transcribes the integrated DNA into viral RNA. The viral RNA is translated into the precursor gag-pol fusion polyprotein. The polyprotein is then cleaved by the HIV protease enzyme to yield the mature viral proteins. Thus, HIV protease is responsible for regulating a cascade of cleavage events that lead to the virus particle's maturing into a virus that is capable of full infectivity.

5

10

15

20

25

30

35

The typical human immune system response, killing the invading virion, is taxed because the virus infects and kills the immune system's T cells. In addition, viral reverse transcriptase, the enzyme used in making a new virion particle, is not very specific, and causes transcription mistakes that result in continually changed glycoproteins on the surface of the viral protective coat. This lack of specificity decreases the immune system's effectiveness because antibodies specifically produced against one glycoprotein may be useless against another, hence reducing the number of antibodies available to fight the virus. virus continues to reproduce while the immune response system continues to weaken. Eventually, the HIV largely holds free reign over the body's immune system, allowing opportunistic infections to set in and without the administration of antiviral agents, immunomodulators, or both, death may result.

There are at least three critical points in the virus's life cycle which have been identified as possible targets for antiviral drugs: (1) the initial attachment of the virion to the T-4 lymphocyte or macrophage site, (2) the transcription of viral RNA to viral DNA (reverse transcriptase, RT), and (3) the processing of gag-pol protein by HIV protease.

Inhibition of the virus at the second critical point, the viral RNA to viral DNA transcription process, has provided a number of the current therapies used in treading AIDS. This transcription must occur for the virion to

reproduce because the virion's genes are encoded in RNA and the host cell reads only DNA. By introducing drugs that block the reverse transcriptase from completing the formation of viral DNA, HIV-1 replication can be stopped.

A number of compounds that interfere with viral replication have been developed to treat AIDS. For example, nucleoside analogs, such as 3'-azido-3'-deoxythymidine (AZT), 2',3'-dideoxycytidine (ddC), 2',3'-dideoxythymidinene (d4T), 2',3'-dideoxyinosine (ddI), and 2',3'-dideoxy-3'-thiacytidine (3TC) have been shown to be relatively effective in halting HIV replication at the reverse transcriptase (RT) stage.

Non-nucleoside HIV reverse transcriptase inhibitors have also been discovered. As an example, it has been found that certain benzoxazinones are useful in the inhibition of HIV reverse transcriptase, the prevention or treatment of infection by HIV and the treatment of AIDS. U. S. Patent Number 5,519,021, the contents of which are hereby incorporated herein by reference, describe reverse transcriptase inhibitors which are benzoxazinones of the formula:

$$\begin{array}{c|c} X^1 & R \\ \hline \\ N & \\ \end{array}$$

wherein X is a halogen, Z may be O. However, benzoxazinones of this type are specifically excluded from the present invention.

In U.S. 5,519,021 one compound in particular, (-) 6-chloro-4-cyclopropylethynyl-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one (NNRTI), shown below,

NNRTI

5

10

15

20

has been found to be a potent and specific inhibitor of HIV-1 - reverse transcriptase worthy of further study. NNRTI is described in Step D of Example 6 of the disclosure. Rat, monkey, and human microsomes treated with NNRTI, during investigation of the cytochrome P450 metabolism of NNRTI, produced a metabolite which was discovered to also be a potent inhibitor of HIV reverse transcriptase. This metabolite, its stereoisomer, stereoisomeric mixtures, and derivatives thereof are an embodiment of the present invention.

5

10

15

20

25

30

35

Even with the current success of reverse transcriptase inhibitors, it has been found that HIV patients can become resistant to a single inhibitor. Thus, it is desirable to develop additional inhibitors to further combat HIV infection.

SUMMARY OF THE INVENTION

Accordingly, one object of the present invention is to provide novel reverse transcriptase inhibitors.

It is another object of the present invention to provide a novel method for treating HIV infection which comprises administering to a host in need of such treatment a therapeutically effective amount of at least one of the compounds of the present invention or a pharmaceutically acceptable salt or prodrug form thereof.

It is another object of the present invention to provide a novel method for treating HIV infection which comprises administering to a host in need thereof a therapeutically effective combination of (a) one of the compounds of the present invention and (b) one or more compounds selected form the group consisting of HIV reverse transcriptase inhibitors and HIV protease inhibitors.

It is another object of the present invention to provide pharmaceutical compositions with reverse transcriptase inhibiting activity comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of at least

one of the compounds of the present invention or a pharmaceutically acceptable salt or prodrug form thereof.

It is another object of the present invention to provide a method of inhibiting HIV present in a body fluid sample which comprises treating the body fluid sample with an effective amount of a compound of the present invention.

It is another object of the present invention to provide a kit or container containing at least one of the compounds of the present invention in an amount effective for use as a standard or reagent in a test or assay for determining the ability of a potential pharmaceutical to inhibit HIV reverse transcriptase, HIV growth, or both.

These and other objects, which will become apparent during the following detailed description, have been achieved by the inventors' discovery that compounds of formula (I):

I

wherein A, W, X, Y, Z, R^1 and R^2 are defined below, stereoisomeric forms, mixtures of stereoisomeric forms, or pharmaceutically acceptable salt forms thereof, are effective reverse transcriptase inhibitors.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

25 [1] Thus, in a first embodiment, the present invention provides a novel compound of formula I:

٦

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

A is 0 or S;

5

10

15

W is N or CR³;

X is N or CR⁴;

Y is N or CR⁵;

Z is N or CR⁶;

- 10 provided that if two of W, X, Y, and Z are N, then the remaining are other than N;
 - also, provided that if X is CR^4 and R^4 is F, Cl, Br, or I, then:
 - (a) at least one of W, Y, and Z is other than CH;
 - (b) R^2 is $-OCHR^7R^8$ or $-NHCHR^7R^8$;
 - (c) if R^2 is $-C \equiv C R^8$, then R^8 is C_{3-7} cycloalkyl substituted with 1 R^9 ; or
 - (d) any combination of (a), (b), and (c);

20

15

- R^1 is selected from CF_3 , CF_2H , C_2F_5 , C_{1-4} alkyl, C_{3-5} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl;
- R² is selected from $-QCHR^7R^8$, $-QCHR^7C = C R^8$, $-QCHR^7C = C R^8$, $-Q(CH_2)_pCHR^7R^8$, $-C = C R^8$, $-CH = CR^7R^8$, $-(CH_2)_pCHR^7R^8$, $-CHR^7C = C R^8$, $-CHR^7CH = CHR^8$, and $CH = CHCHR^7R^8$;
 - provided that when R^1 is C_{1-4} alkyl, then R^2 is $-C \equiv C R^8$;
- 30 R^3 is selected from H, F, Cl, Br, I, C_{1-3} alkoxy, and C_{1-3} alkyl;
- R⁴ is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R¹¹, C_{2-3} alkenyl, C_{2-3} alkynyl, C_{1-3} alkoxy, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, NR⁷C(O)OR^{7a}, C(O)OR⁷, S(O)pR⁷, SO₂NHR⁷, NR⁷SO₂R^{7b}, phenyl substituted with 0-2 R¹⁰, and 5-6

membered aromatic heterocycle system containing from 1-4 -heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{10} ;

- 5 alternatively, R³ and R⁴ together form -OCH₂O-;
 - R^5 is selected from H, F, Cl, Br, and I;
- alternatively, R^4 and R^5 together form $-OCH_2O-$ or a fused benzo ring;
 - $\rm R^6$ is selected from H, OH, $\rm C_{1-3}$ alkoxy, -CN, F, Cl, Br, I, NO_2, CF_3, CHO, C_{1-3} alkyl, and C(O)NH_2;
- 15 R^7 is selected from H and C_{1-3} alkyl;
 - R^{7a} is selected from H and C_{1-3} alkyl;
 - R^{7b} is C_{1-3} alkyl;

20

25

- R^8 is selected from H, C_{1-6} alkyl substituted with 0-3 R^{11} , $CH(-OCH_2CH_2O-)$, C_{2-6} alkenyl, C_{3-7} cycloalkyl substituted with 0-2 R^9 , phenyl substituted with 0-2 R^{10} , and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{10} ;
- \mathbb{R}^9 is selected from D, OH, \mathbb{C}_{1-3} alkoxy, \mathbb{C}_{1-3} alkyl, and F;
- 30 R^{10} is selected from OH, C_{1-3} alkyl, C_{1-3} alkoxy, F, Cl, Br, I, CN, NR^7R^{7a} , and $C(0)CH_3$;
 - R^{11} is selected from OR^7 , CN, F, Cl, Br, I, NO_2 , NR^7R^{7a} , CHO, $C(O)CH_3$, $C(O)NH_2$;

35

Q is selected from O, S and NH; and,

p is selected from 0, 1, and 2.

[2] In a preferred embodiment, the present invention provides a novel compound of formula I, wherein:

- R^1 is selected from CF_3 , CF_2H , C_2F_5 , C_{1-3} alkyl, C_{3-5} cycloalkyl; and,
- 10 R⁸ is selected from H, C₁₋₆ alkyl substituted with 0-3 R¹¹, CH(-OCH₂CH₂O-), C₂₋₆ alkenyl, C₃₋₅ cycloalkyl substituted with 0-1 R⁹, phenyl substituted with 0-1 R¹⁰, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-1 R¹⁰.
 - [3] In a more preferred embodiment, the present invention provides a novel compound of formula I, wherein:
- R^1 is selected from CF_3 , CF_2H , C_2F_5 , C_2H_5 , isopropyl, cyclopropyl;
 - \mathbb{R}^3 is selected from H, F, Cl, Br, I, OCH₃, CH₃;
- R⁴ is selected from H, F, Cl, Br, I, C₁₋₃ alkyl substituted with 0-3 R¹¹, C₂₋₃ alkenyl, C₂₋₃ alkynyl, C₁₋₃ alkoxy, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, NR⁷C(O)OR^{7a}, C(O)OR⁷, S(O)_pR⁷, SO₂NHR⁷, NR⁷SO₂R^{7b}, phenyl, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;
 - alternatively, R^3 and R^4 together form -OCH₂O-;
- R⁵ is selected from H, F;

20

25

 R^6 is selected from H, OH, OCH₃, -CN, F, CF₃, CH₃, and C(O)NH₂;

 R^7 is selected from H and CH_3 ;

5

 R^{7a} is selected from H and CH_3 ;

 R^{7b} is CH_3 ;

- 10 R^8 is selected from H, C_{1-4} alkyl substituted with 0-3 R^{11} , $CH(-OCH_2CH_2O_-)$, C_{2-4} alkenyl, C_{3-5} cycloalkyl substituted with 0-1 R^9 , phenyl substituted with 0-1 R^{10} , and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-1 R^{10} ;
 - \mathbb{R}^9 is selected from D, OH, OCH₃, CH₃, and F;
- R^{10} is selected from OH, CH_3 , OCH_3 , F, Cl, Br, I, CN, NR^7R^{7a} , and $C(0)CH_3$; and,
 - p is selected from 1 and 2.
- 25 [4] In an even more preferred embodiment, the present invention provides a novel compound of formula I, wherein:

A is 0;

- 30 R^1 is selected from CF_3 , CF_2H , C_2F_5 ;
 - $\rm R^2$ is selected from $\rm -OCHR^7R^8$, $\rm -OCH_2C\equiv C-R^8$, $\rm -OCH_2CHR^7R^8$, $\rm -C\equiv C-R^8$, $\rm -CH=CR^7R^8$, $\rm -CH_2CHR^7R^8$, $\rm -CH_2CEC-R^8$, $\rm -CH_2CHR^7R^8$, $\rm -CH_2CHR^7R^8$, $\rm -CH_2CHR^7R^8$, $\rm -CH_2CHR^7R^8$;
- R^3 is selected from H, F, Cl, Br, I;

 R^4 is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R^{11} , $CH=CH_2$, $C\equiv CH$, OCH_3 , OCF_3 , -CN, NO_2 , CHO, $C(O)CH_3$, $C(O)CF_3$, $C(O)NH_2$, $C(O)NHCH_3$, NR^7R^{7a} , $C(O)OR^7$, $NR^7SO_2R^{7b}$, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;

alternatively, R^3 and R^4 together form -OCH₂O-; and,

5

- 10 R^{11} is selected from OH, OCH₃, CN, F, Cl, NR^7R^{7a} , C(O)CH₃, and C(O)NH₂.
- [5] In a further preferred embodiment, the compound of the present invention is selected from:
 - (+/-)-6-Chloro-4-(cyclopropylethynyl)-8-hydroxy-4(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one;
- 20 (-)-6-Chloro-4-(cyclopropylethynyl)-8-hydroxy-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one;
 - (+/-)-6-Chloro-4-(cyclopropylethynyl)-8-fluoro-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one;
 - (+/-)-4-Cyclopropylethynyl-4-isopropyl-6-methyl-1,4-dihydro-2H-3,1-benzoxazin-2-one;
- (+/-)-4-Isopropylethynyl-4-trifluoromethyl-6-methyl-1,4dihydro-2H-3,1-benzoxazin-2-one;
 - (+/-)-6-Acetyl-4-cyclopropylethynyl-4-trifluoromethyl-1,4dihydro-2H-3,1-benzoxazin-2-one;
- 35 (+/-)-5,6-Difluoro-4-(3-methyl)-1-buten-1-yl-4trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one;

(+/-)-4-Isopropylethynyl-4-trifluoromethyl-5,6-difluoro-1,4-dihydro-2H-3,1-benzoxazin-2-one;

- (+/-)-4-Cyclopropylethynyl-6-chloro-4-trifluoromethyl-7-aza-1,4-dihydro-2H-3,1-benzoxazin-2-one;
 - (+/-)-6-Chloro-4-(2-methoxyethoxy)-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one;
- 10 (+/-)-6-Chloro-4-propylamino-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one;
 - (+/-)-6-Chloro-4-(2-(furan-2-yl)ethynyl)-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one;
 - (+/-)-4-(1-Butynyl)-6-methoxy-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one;

15

35

- (+/-)-4-(1'-Hydroxy)-cyclopropylethynyl-4-trifluoromethyl-620 chloro-1,4-dihydro-2H-3,1-benzoxazin-2-one;
 - (+/-)-4-Isopropylethynyl-4-trifluoromethyl-5-fluoro-1,4dihydro-2H-3,1-benzoxazin-2-one;
- 25 (+/-)-6-Chloro-4-(1-deuterocycloprop-1-ylethynyl)-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one; and,
- (+/-)-4-Isopropylethynyl-4-trifluoromethyl-5-fluoro-1,430 dihydro-2H-3,1-benzoxazin-2-one.
 - [6] In a second embodiment, the present invention provides a novel compound of formula II:

II

or a salt or stereoisomer thereof, wherein:

5 A is 0 or S;

W is N or CR^3 ;

X is N or CR^4 ;

10

20

Y is N or CR5;

Z is N or CR6;

15 provided that if two of W, X, Y, and Z are N, then the remaining are other than N;

 R^{1a} is selected from CF_3 , CF_2H , C_2F_5 , C_{1-4} alkyl, C_{3-5} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl;

 \mathbb{R}^3 is selected from H, F, Cl, Br, I, \mathbb{C}_{1-3} alkoxy, and \mathbb{C}_{1-3} alkyl;

R⁴ is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R¹¹, C_{2-3} alkenyl, C_{2-3} alkynyl, C_{1-3} alkoxy, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, NR⁷C(O)OR^{7a}, C(O)OR⁷, S(O)pR⁷, SO₂NHR⁷, NR⁷SO₂R^{7b}, phenyl substituted with 0-2 R¹⁰, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R¹⁰;

alternatively, R³ and R⁴ together form -OCH₂O-;

35 R^5 is selected from H, F, Cl, Br, and I;

alternatively, R^4 and R^5 together form -OCH₂O- or a fused benzo ring;

- 5 R^6 is selected from H, OH, C_{1-3} alkoxy, -CN, F, Cl, Br, I, NO_2 , CF_3 , CHO, C_{1-3} alkyl, and $C(0)NH_2$;
 - \mathbb{R}^7 is selected from H and \mathbb{C}_{1-3} alkyl;
- 10 R^{7a} is selected from H and C_{1-3} alkyl;
 - R^{7b} is C_{1-3} alkyl;
- R^{10} is selected from OH, C_{1-3} alkyl, C_{1-3} alkoxy, F, Cl, Br, I, CN, NR^7R^{7a} , and $C(O)CH_3$;
 - R^{11} is selected from OR^7 , CN, F, C1, Br, I, NO_2 , NR^7R^{7a} , CHO, $C(O)CH_3$, $C(O)NH_2$;
- 20 p is selected from 0, 1, and 2.
 - [7] In a another preferred embodiment, the present invention provides a novel compound of formula II, wherein:
- A is O; and,

25

- R^{1a} is selected from CF_3 , CF_2H , C_2F_5 , C_{1-3} alkyl, C_{3-5} cycloalkyl.
- [8] In a more preferred embodiment, the present invention provides a novel compound of formula II, wherein:
- 35 R^{1a} is selected from CF_3 , CF_2H , C_2F_5 , C_2H_5 , isopropy1, cyclopropy1;

 R^3 is selected from H, F, Cl, Br, I, OCH₃, CH₃;

R⁴ is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R¹¹, C_{2-3} alkenyl, C_{2-3} alkynyl, C_{1-3} alkoxy, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, NR⁷C(O)OR^{7a}, C(O)OR⁷, S(O)_pR⁷, SO₂NHR⁷, NR⁷SO₂R^{7b}, phenyl, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;

10

alternatively, R^3 and R^4 together form $-OCH_2O-$;

 R^5 is selected from H, F;

15 R^6 is selected from H, OH, OCH₃, -CN, F, CF₃, CH₃, and $C(0)NH_2$;

 R^7 is selected from H and CH_3 ;

20 R^{7a} is selected from H and CH_3 ;

 R^{7b} is CH_3 ;

 R^{10} is selected from OH, CH_3 , OCH_3 , F, Cl, Br, I, CN, NR^7R^{7a} , and $C(O)CH_3$; and,

p is selected from 1 and 2.

30 [9] In an even more preferred embodiment, the present invention provides a novel compound of formula II, wherein:

R^{1a} is selected from CF₃, CF₂H, C₂F₅;

35 R³ is selected from H, F, Cl, Br, I;

 R^4 is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R^{11} , $CH=CH_2$, $C\equiv CH$, OCH_3 , OCF_3 , -CN, NO_2 , CHO, $C(O)CH_3$, $C(O)CF_3$, $C(O)NH_2$, $C(O)NHCH_3$, NR^7R^{7a} , $C(O)OR^7$, $NR^7SO_2R^{7b}$, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;

alternatively, R^3 and R^4 together form -OCH₂O-; and,

- 10 R^{11} is selected from OH, OCH₃, CN, F, Cl, NR^7R^{7a} , C(O)CH₃, and C(O)NH₂.
- [10] In a third embodiment, the present invention provides a novel process for making a compound of formula II:

II

or a salt or stereoisomer thereof, comprising:

20

5

(a) contacting a compound of formula III:

III

or a suitable salt form thereof, with a carbonyl or thiocarbonyl delivering agent in the presence of a suitable solvent, wherein:

A is O or S;

30

W is N or CR3;

X is N or CR^4 ;

Y is N or CR⁵;

Z is N or CR6;

5

- provided that if two of W, X, Y, and Z are N, then the remaining are other than N;
- R^{1a} is selected from CF_3 , CF_2H , C_2F_5 , C_{1-4} alkyl, C_{3-5} 10 cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl;
 - R^3 is selected from H, F, Cl, Br, I, C_{1-3} alkoxy, and C_{1-3} alkyl;
- 15 R^4 is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R^{11} , C_{2-3} alkenyl, C_{2-3} alkynyl, C_{1-3} alkoxy, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, NR⁷C(O)OR^{7a}, C(O)OR⁷, S(O)_pR⁷, SO₂NHR⁷, NR⁷SO₂R^{7b}, phenyl substituted with 0-2 R^{10} , and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{10} ;

alternatively, R^3 and R^4 together form $-OCH_2O-;$

25

- R⁵ is selected from H, F, Cl, Br, and I;
- alternatively, R^4 and R^5 together form $-OCH_2O-$ or a fused benzo ring;

30

- R^6 is selected from H, OH, C_{1-3} alkoxy, -CN, F, Cl, Br, I, NO_2 , CF_3 , CHO, C_{1-3} alkyl, and $C(O)NH_2$;
- \mathbb{R}^7 is selected from H and \mathbb{C}_{1-3} alkyl;

35

 R^{7a} is selected from H and C_{1-3} alkyl;

 R^{7b} is C_{1-3} alkyl;

 $\rm R^{10}$ is selected from OH, $\rm C_{1-3}$ alkyl, $\rm C_{1-3}$ alkoxy, F, Cl, Br, I, CN, $\rm NR^{7}R^{7a},$ and C(O)CH3;

5

- R^{11} is selected from OR^7 , CN, F, Cl, Br, I, NO_2 , NR^7R^{7a} , CHO, $C(O)CH_3$, $C(O)NH_2$;
- Q is selected from O, S and NH; and,

10

- p is selected from 0, 1, and 2.
- [11] In another preferred embodiment, in formulae II and III,

A is O;

- R^{1a} is selected from CF₃, CF₂H, C₂F₅;
- 20 R³ is selected from H, F, Cl, Br, I;
 - R^4 is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R^{11} , $CH=CH_2$, $C\equiv CH$, OCH_3 , OCF_3 , -CN, NO_2 , CHO, $C(O)CH_3$, $C(O)CF_3$, $C(O)NH_2$, $C(O)NHCH_3$, NR^7R^{7a} , $C(O)OR^7$, $NR^7SO_2R^{7b}$, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;
 - alternatively, ${\ensuremath{\text{R}}}^3$ and ${\ensuremath{\text{R}}}^4$ together form -OCH $_2$ O-; and,

30

25

- R^5 is selected from H, F;
- R^6 is selected from H, OH, OCH₃, -CN, F, CF₃, CH₃, and C(O)NH₂;

35

 \mathbb{R}^7 is selected from H and $\mathbb{C}\mathbb{H}_3$;

 R^{7a} is selected from H and CH_3 ;

 R^{7b} is CH_3 ;

- 5 R^{10} is selected from OH, CH₃, OCH₃, F, Cl, Br, I, CN, $NR^{7}R^{7a}$, and C(O)CH₃;
 - R^{11} is selected from OH, OCH₃, CN, F, Cl, NR^7R^{7a} , C(O)CH₃, and C(O)NH₂; and,

10

- p is selected from 1 and 2.
- [12] In another more preferred embodiment, the carbonyl delivering agent is selected from phosgene, carbonyldiimidazole, chloromethylcarbonate, chloroethylcarbonate, dimethylcarbonate, diethylcarbonate, and di-t-butylcarbonate.

- [13] In another even more preferred embodiment, the carbonyl delivering agent is phospene and the solvent is toluene.
- 25 [14] In another more preferred embodiment, in step (a) a base is present and is selected from trimethylamine, triethylamine, and N,N-disopropylethylamine.
- 30 [15] In a fourth embodiment, the present invention provides of process for making a compound of formula Ia:

WO 98/14436

Ιa

or a stereoisomer or pharmaceutically acceptable salt form thereof, comprising:

5

(a) contacting a nucleophile, $\mathbf{R}^{\mathrm{2b}},$ with a compound of formula II:

II

10 or stereoisomer thereof in a suitable solvent, wherein:

 R^{2b} is selected from R^8R^7CH-OH , R^8R^7CH-OM , $R^8R^7CHNH_2$, $R^8R^7CHNH-M$, $R^8-C\equiv C-M$, $R^7R^8C=CH-M$, $R^8R^7CH(CH_2)_p-M$, $R^8CH=CHC(H)(R^7)-M$, $R^8R^7CHCH=CH-M$;

15

M is selected from Na, Li, Mg, Zn, Cu, Pd, Pt, Sn, Al, and B;

A is O or S;

20 W is N or CR³:

X is N or CR^4 ;

Y is N or CR^5 ;

25

Z is N or CR6;

provided that if two of W, X, Y, and Z are N, then the remaining are other than N;

30

 R^{1a} is selected from CF_3 , CF_2H , C_2F_5 , C_{1-4} alkyl, C_{3-5} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl;

 R^{2a} is selected from $-QCHR^7R^8$, $-QCHR^7C\equiv C-R^8$, $-QCHR^7C=C-R^8$, $-Q(CH_2)_pCHR^7R^8$, $-C\equiv C-R^8$, $-CH=CR^7R^8$, $-(CH_2)_pCHR^7R^8$, $-CHR^7C\equiv C-R^8$, $-CHR^7CH=CHR^8$, and $CH=CHCHR^7R^8$;

- \mathbb{R}^3 is selected from H, F, Cl, Br, I, \mathbb{C}_{1-3} alkoxy, and \mathbb{C}_{1-3} alkyl;
- R⁴ is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R¹¹, C_{2-3} alkenyl, C_{2-3} alkynyl, C_{1-3} alkoxy, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, NR⁷C(O)OR^{7a}, C(O)OR⁷, S(O)pR⁷, SO₂NHR⁷, NR⁷SO₂R^{7b}, phenyl substituted with 0-2 R¹⁰, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R¹⁰;
 - alternatively, R^3 and R^4 together form $-OCH_2O-$;
- 20 R⁵ is selected from H, F, Cl, Br, and I;
 - alternatively, R^4 and R^5 together form $-\text{OCH}_2\text{O-}$ or a fused benzo ring;
- 25 R⁶ is selected from H, OH, C_{1-3} alkoxy, -CN, F, Cl, Br, I, NO₂, CF₃, CHO, C_{1-3} alkyl, and C(O)NH₂;
 - R^7 is selected from H and C_{1-3} alkyl;
- 30 R^{7a} is selected from H and C_{1-3} alkyl;
 - R^{7b} is C_{1-3} alkyl;
- R^8 is selected from H, C_{1-6} alkyl substituted with 0-3 R^{11} , $CH(-OCH_2CH_2O-)$, C_{2-6} alkenyl, C_{3-7} cycloalkyl substituted with 0-2 R^9 , phenyl substituted with 0-2 R^{10} , and 5-6 membered aromatic heterocycle system containing from 1-4

heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{10} ;

 ${\tt R}^9$ is selected from D, OH, ${\tt C}_{1-3}$ alkoxy, ${\tt C}_{1-3}$ alkyl, and F;

5

- R^{10} is selected from OH, C_{1-3} alkyl, C_{1-3} alkoxy, F, Cl, Br, I, CN, NR^7R^{7a} , and $C(O)CH_3$;
- R^{11} is selected from OR^7 , CN, F, Cl, Br, I, NO_2 , NR^7R^{7a} , CHO, $C(O)CH_3$, $C(O)NH_2$;
 - Q is selected from O, S and NH; and,
 - p is selected from 0, 1, and 2.

15

- [16] In another preferred embodiment, in formulae Ia and II,
- A is O;

20

25

- R^{1a} is selected from CF₃, CF₂H, C₂F₅;
- R^{2a} is selected from $-OCHR^7R^8$, $-OCH_2C = C R^8$, $-OCH_2C = C R^8$, $-OCH_2CHR^7R^8$, $-C = C R^8$, $-CH = CR^7R^8$, $-CH_2CHR^7R^8$, $-CH_2C = C R^8$, $-CH_2CHR^7R^8$, and $-CH_2CHR^7R^8$;
 - R^3 is selected from H, F, Cl, Br, I;
- R⁴ is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R¹¹, CH=CH₂, C \equiv CH, OCH₃, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, C(O)OR⁷, NR⁷SO₂R^{7b}, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;

35

alternatively, R^3 and R^4 together form -OCH₂O-; and,

- R^5 is selected from H, F;
- R^6 is selected from H, OH, OCH₃, -CN, F, CF₃, CH₃, and $C(0)NH_2$;

5

- R^7 is selected from H and CH_3 ;
- R^{7a} is selected from H and CH_3 ;
- 10 R^{7b} is CH_3 ;
 - R^8 is selected from H, C_{1-4} alkyl substituted with 0-3 R^{11} , $CH(-OCH_2CH_2O-)$, C_{2-4} alkenyl, C_{3-5} cycloalkyl substituted with 0-1 R^9 , phenyl substituted with 0-1 R^{10} , and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-1 R^{10} ;
 - R^9 is selected from D, OH, OCH₃, CH₃, and F;

20

- $\rm R^{10}$ is selected from OH, CH_3, OCH_3, F, Cl, Br, I, CN, NR $^{7}\rm R^{7a}$, and C(O)CH_3;
- R^{11} is selected from OH, OCH₃, CN, F, Cl, NR^7R^{7a} , C(O)CH₃, and C(O)NH₂; and,
 - p is selected from 1 and 2.
- 30 [17] In another more preferred embodiment, in step (a), the compound of formula II is added to a solution containing the nucleophile.
- 35 [18] In another more preferred embodiment, in step (a), R^{2b} is $R^8-C\equiv C-M$; and M is selected from Li, Mg, and Zn.

WO 98/14436

[19] In another even more preferred embodiment, in step (a), R^8 -C \equiv C-M is formed in situ by addition of a strong base to a solution containing R⁸-C≡C-H.

5

[20] In another further preferred embodiment, in step (a), the strong base is selected from n-butyl lithium, s-butyl lithium, t-butyl lithium, phenyl lithium, and methyl lithium.

10

[21] In another further preferred embodiment, the compound of formula Ia is:

15

the compound of formula Ia is:

the nucleophile R^{2b} is lithium cyclopropylacetylide; and,

the solvent is THF.

20

[22] In a fifth embodiment, the present invention provides a novel method of making a compound of formula IIIb:

25

IIIb

or stereoisomer or salt form thereof, comprising:

(a) contacting a compound of formula IIIa:

with R^{1a}-TMS and an anion, wherein:

the anion is a fluoride or oxyanion and is selected from

tetrabutylammonium fluoride, sodium fluoride, potassium
fluoride, lithium fluoride, cesium fluoride, potassium
tert-butoxide, sodium methoxide, sodium ethoxide and
sodium trimethylsilanolate;

10 Pg is an amine protecting group;

W is N or CR3;

X is N or CR^4 ;

15

Y is N or CR^5 ;

Z is N or CR6;

20 provided that if two of W, X, Y, and Z are N, then the remaining are other than N;

R^{1a} is selected from CF₃, CF₃CF₂, and CF₃CF₂CF₂;

- 25 R^3 is selected from H, F, Cl, Br, I, C_{1-3} alkoxy, and C_{1-3} alkyl;
- R⁴ is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R¹¹, C_{2-3} alkenyl, C_{2-3} alkynyl, C_{1-3} alkoxy, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, NR⁷C(O)OR^{7a}, C(O)OR⁷, S(O)pR⁷, SO₂NHR⁷, NR⁷SO₂R^{7b}, phenyl substituted with 0-2 R¹⁰, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R¹⁰;

```
alternatively, R^3 and R^4 together form -OCH_2O-;
     R<sup>5</sup> is selected from H, F, Cl, Br, and I;
 5
     alternatively, R^4 and R^5 together form -\text{OCH}_2\text{O-} or a fused
           benzo ring;
     R^6 is selected from H, OH, C_{1-3} alkoxy, -CN, F, Cl, Br, I,
10
           NO_2, CF_3, CHO, C_{1-3} alkyl, and C(0)NH_2;
     R^7 is selected from H and C_{1-3} alkyl;
     R^{7a} is selected from H and C_{1-3} alkyl;
15
     R^{7b} is C_{1-3} alkyl;
     {\tt R}^{10} is selected from OH, {\tt C}_{1-3} alkyl, {\tt C}_{1-3} alkoxy, F, Cl, Br, I,
           CN, NR^{7}R^{7a}, and C(0)CH<sub>3</sub>;
20
     R^{11} is selected from OR^7, CN, F, Cl, Br, I, NO_2, NR^7R^{7a}, CHO,
           C(O)CH_3, C(O)NH_2;
     p is selected from 0, 1, and 2.
25
     [23] In another preferred embodiment, in formulae IIIa and
     IIIb,
     the R<sup>1a</sup>-TMS is trifluoromethyl trimethylsilane;
30
     the anion is tetrabutylammonium fluoride;
     Pg is trityl;
35
     R^{1a} is CF_3;
```

R³ is selected from H, F, Cl, Br, I;

 R^4 is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R^{11} , $CH=CH_2$, $C\equiv CH$, OCH_3 , OCF_3 , -CN, NO_2 , CHO, $C(O)CH_3$, $C(O)CF_3$, $C(O)NH_2$, $C(O)NHCH_3$, NR^7R^{7a} , $C(O)OR^7$, $NR^7SO_2R^{7b}$, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;

10 alternatively, R^3 and R^4 together form -OCH₂O-; and,

 R^5 is selected from H, F;

 R^6 is selected from H, OH, OCH₃, -CN, F, CF₃, CH₃, and C(O)NH₂;

 R^7 is selected from H and CH_3 ;

 R^{7a} is selected from H and CH_3 ;

 R^{7b} is CH_3 ;

 R^{10} is selected from OH, CH_3 , OCH₃, F, Cl, Br, I, CN, NR^7R^{7a} , and $C(O)CH_3$;

 \mathbb{R}^{11} is selected from OH, OCH₃, CN, F, Cl, $\mathbb{NR}^7\mathbb{R}^{7a}$, C(O)CH₃, and C(O)NH₂; and,

p is selected from 1 and 2.

30

25

20

- [24] In another more preferred embodiment, the process further comprises:
- (b) contacting a compound of formula IIIb with an oxidizing agent to form compound of formula IIIc:

[25] In another even more preferred embodiment, the oxidizing 5 agent is MnO_2 .

In a fifth embodiment, the present invention provides a novel pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula I or pharmaceutically acceptable salt form thereof.

In a sixth embodiment, the present invention provides a novel method for treating HIV infection which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of formula I or pharmaceutically acceptable salt form thereof.

In a seventh embodiment, the present invention provides a novel method of treating HIV infection which comprises administering, in combination, to a host in need thereof a therapeutically effective amount of:

(a) a compound of formula I; and,

10

25 (b) at least one compound selected from the group consisting of HIV reverse transcriptase inhibitors and HIV protease inhibitors.

In another preferred embodiment, the reverse

transcriptase inhibitor is a nucleoside reverse transcriptase inhibitor.

In another more preferred embodiment, the nucleoside reverse transcriptase inhibitor is selected from AZT, 3TC,

rescriptor, ddI, ddC, and d4T and the protease inhibitor is selected from saquinavir, ritonavir, indinavir, VX-478, nelfinavir, KNI-272, CGP-61755, and U-103017.

In an even more preferred embodiment, the nucleoside reverse transcriptase inhibitor is selected from AZT, rescriptor, and 3TC and the protease inhibitor is selected from saquinavir, ritonavir, indinavir, and nelfinavir.

In a still further preferred ebodiment, the nucleoside reverse transcriptase inhibitor is AZT.

In another still further preferred embodiment, the protease inhibitor is indinavir.

15

In a eighth embodiment, the present invention provides a pharmaceutical kit useful for the treatment of HIV infection, which comprises a therapeutically effective amount of:

- (a) a compound of formula I; and,
- 20 (b) at least one compound selected from the group consisting of HIV reverse transcriptase inhibitors and HIV protease inhibitors, in one or more sterile containers.

In a ninth embodiment, the present invention provides a novel method of inhibiting HIV present in a body fluid sample which comprises treating the body fluid sample with an effective amount of a compound of formula I.

In a tenth embodiment, the present invention to provides
a novel a kit or container comprising a compound of formula
(I) in an amount effective for use as a standard or reagent
in a test or assay for determining the ability of a potential
pharmaceutical to inhibit HIV reverse transcriptase, HIV
growth, or both.

DEFINITIONS

As used herein, the following terms and expressions have the indicated meanings. It will be appreciated that the compounds of the present invention contain an asymmetrically substituted carbon atom, and may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis, from optically active starting materials. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomer form is specifically indicated.

The processes of the present invention are contemplated to be practiced on at least a multigram scale, kilogram scale, multikilogram scale, or industrial scale. Multigram scale, as used herein, is preferably the scale wherein at least one starting material is present in 10 grams or more, more preferably at least 50 grams or more, even more preferably at least 100 grams or more. Multikilogram scale, as used herein, is intended to mean the scale wherein more than one kilogram of at least one starting material is used. Industrial scale as used herein is intended to mean a scale which is other than a laboratory scale and which is sufficient to supply product sufficient for either clinical tests or distribution to consumers.

The reactions of the synthetic methods claimed herein may be, as noted herein, carried out in the presence of a suitable base, said suitable base being any of a variety of bases, the presence of which in the reaction facilitates the synthesis of the desired product. Suitable bases may be selected by one of skill in the art of organic synthesis. Suitable bases include, but are not intended to be limited to, inorganic bases such as alkali metal, alkali earth metal, thallium, and ammonium hydroxides, alkoxides, phosphates, and carbonates, such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, tesium carbonate, thallium hydroxide, thallium carbonate, tetra-n-butylammonium

carbonate, and ammonium hydroxide. Suitable bases also include organic bases, including but not limited to aromatic and aliphatic amines, such as pyridine; trialkyl amines such as triethylamine, N,N-diisopropylethylamine,

- 5 N,N-diethylcyclohexylamine, N,N-dimethylcyclohexylamine, N,N,N'-triethylenediamine, N,N-dimethyloctylamine; 1,5-diazabicyclo[4.3.0]non-5-ene (DBN);
 - 1,4-diazabicyclo[2.2.2]octane (DABCO);

25

30

35

- 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU);
- 10 tetramethylethylenediamine (TMEDA); and substituted pyridines
 such as N,N-dimethylaminopyridine (DMAP),
 4-pyrrolidinopyridine, 4-piperidinopyridine.

Suitable halogenated solvents include: carbon tetrachloride, bromodichloromethane, dibromochloromethane, bromoform, chloroform, bromochloromethane, dibromomethane, butyl chloride, dichloromethane, tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1-dichloroethane, 2-chloropropane, hexafluorobenzene, 1,2,4-trichlorobenzene, o-dichlorobenzene, chlorobenzene, or fluorobenzene.

Suitable ether solvents include, but are not intended to be limited to, dimethoxymethane, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, furan, diethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, or t-butyl methyl ether.

Suitable protic solvents may include, by way of example and without limitation, water, methanol, ethanol, 2-nitroethanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, ethylene glycol, 1-propanol, 2-propanol, 2-methoxyethanol, 1-butanol, 2-butanol, i-butyl alcohol, t-butyl alcohol, 2-

butanol, 2-butanol, i-butyl alcohol, t-butyl alcohol, 2-ethoxyethanol, diethylene glycol, 1-, 2-, or 3- pentanol, neo-pentyl alcohol, t-pentyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, cyclohexanol, anisole, benzyl alcohol, phenol, or glycerol.

Suitable aprotic solvents may include, by way of example and without limitation, tetrahydrofuran (THF),

dimethylformamide (DMF), dimethylacetamide (DMAC), 1,3 dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU), 1,3 dimethyl-2-imidazolidinone (DMI), N-methylpyrrolidinone
 (NMP), formamide, N-methylacetamide, N-methylformamide,
 acetonitrile, dimethyl sulfoxide, propionitrile, ethyl
 formate, methyl acetate, hexachloroacetone, acetone, ethyl
 methyl ketone, ethyl acetate, sulfolane, N,N dimethylpropionamide, tetramethylurea, nitromethane,
 nitrobenzene, or hexamethylphosphoramide.

10 Suitable hydrocarbon solvents include, but are not intended to be limited to, benzene, cyclohexane, pentane, hexane, toluene, cycloheptane, methylcyclohexane, heptane, ethylbenzene, m-, o-, or p-xylene, octane, indane, nonane, or naphthalene.

15 As used herein, the term "amine protecting group" (or "N-protected") refers to any group known in the art of organic synthesis for the protection of amine groups. As used herein, the term "amine protecting group reagent" refers to any reagent known in the art of organic synthesis for the 20 protection of amine groups which may be reacted with an amine to provide an amine protected with an amine protecting group. Such amine protecting groups include those listed in Greene and Wuts, "Protective Groups in Organic Synthesis" John Wiley & Sons, New York (1991) and "The Peptides: Analysis,

25

30

the disclosure of which is hereby incorporated by reference. Examples of amine protecting groups include, but are not limited to, the following: 1) acyl types such as formyl, trifluoroacetyl, phthalyl, and p-toluenesulfonyl; 2) aromatic carbamate types such as benzyloxycarbonyl (Cbz) and substituted benzyloxycarbonyls, 1-(p-biphenyl)-1-methylethoxycarbonyl, and 9-fluorenylmethyloxycarbonyl (Fmoc); 3) aliphatic carbamate types such as tert-butyloxycarbonyl (Boc), ethoxycarbonyl,

Synthesis, Biology, Vol. 3, Academic Press, New York (1981),

diisopropylmethoxycarbonyl, and allyloxycarbonyl; 4) cyclic alkyl carbamate types such as cyclopentyloxycarbonyl and adamantyloxycarbonyl; 5) alkyl types such as triphenylmethyl

(trityl) and benzyl; 6) trialkylsilane such as trimethylsilane; and 7) thiol containing types such as phenylthiocarbonyl and dithiasuccinoyl.

Amine protecting groups may include, but are not limited 5 to the following: 2,7-di-t-butyl-[9-(10,10-dioxo-10,10,10,10-tetrahydrothio-xanthyl)]methyloxycarbonyl; 2trimethylsilylethyloxycarbonyl; 2-phenylethyloxycarbonyl; 1,1-dimethyl-2,2-dibromoethyloxycarbonyl; 1-methyl-1-(4biphenylyl)ethyloxycarbonyl; benzyloxycarbonyl; p-10 nitrobenzyloxycarbonyl; 2-(ptoluenesulfonyl)ethyloxycarbonyl; m-chloro-pacyloxybenzyloxycarbonyl; 5-benzyisoxazolylmethyloxycarbonyl; p-(dihydroxyboryl)benzyloxycarbonyl; mnitrophenyloxycarbonyl; o-nitrobenzyloxycarbonyl; 3,5-15 dimethoxybenzyloxycarbonyl; 3,4-dimethoxy-6nitrobenzyloxycarbonyl; N'-p-toluenesulfonylaminocarbonyl; tamyloxycarbonyl; p-decyloxybenzyloxycarbonyl; diisopropylmethyloxycarbonyl; 2,2dimethoxycarbonylvinyloxycarbonyl; di(2-20 pyridyl)methyloxycarbonyl; 2-furanylmethyloxycarbonyl; phthalimide; dithiasuccinimide; 2,5-dimethylpyrrole; benzyl; 5-dibenzylsuberyl; triphenylmethyl; benzylidene; diphenylmethylene; or methanesulfonamide.

As used herein, "alkyl" is intended to include both 25 branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms. Examples of alkyl include, but are not limited to, methyl, ethyl, npropyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl, and spentyl. "Haloalkyl" is intended to include both branched and 30 straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, substituted with 1 or more halogen (for example $-C_vF_w$ where v = 1 to 3 and w = 1 to (2v+1)). Examples of haloalkyl include, but are not limited to, trifluoromethyl, trichloromethyl, pentafluoroethyl, and 35 pentachloroethyl. "Alkoxy" represents an alkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge. Examples of alkoxy

include, but are not limited to, methoxy, ethoxy, n-propoxy,
i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy, and spentoxy. "Cycloalkyl" is intended to include saturated ring
groups, such as cyclopropyl, cyclobutyl, or cyclopentyl.

5 "Alkenyl" is intended to include hydrocarbon chains of either
a straight or branched configuration and one or more
unsaturated carbon-carbon bonds which may occur in any stable
point along the chain, such as ethenyl, propenyl and the
like. "Alkynyl" is intended to include hydrocarbon chains of
either a straight or branched configuration and one or more
triple carbon-carbon bonds which may occur in any stable
point along the chain, such as ethynyl, propynyl and the
like.

"Halo" or "halogen" as used herein refers to fluoro, chloro, bromo and iodo. "Counterion" is used to represent a small, negatively charged species such as chloride, bromide, hydroxide, acetate, sulfate and the like.

15

20

25

30

35

As used herein, "aryl" or "aromatic residue" is intended to mean an aromatic moiety containing the specified number of carbon atoms, such as phenyl or naphthyl. As used herein, "carbocycle" or "carbocyclic residue" is intended to mean any stable 3- to 7- membered monocyclic or bicyclic which may be saturated, partially unsaturated, or aromatic. Examples of such carbocyles include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, phenyl, biphenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin).

As used herein, the term "heterocycle" or "heterocyclic system" is intended to mean a stable 5- to 6- membered monocyclic heterocyclic ring which is saturated partially unsaturated or unsaturated (aromatic), and which consists of carbon atoms and from 1 to 3 heteroatoms independently selected from the group consisting of N, O and S. The nitrogen and sulfur heteroatoms may optionally be oxidized. The heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom which results in a stable structure. The heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting

compound is stable. If specifically noted, a nitrogen in the heterocycle may optionally be quaternized. It is preferred that when the total number of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not

5 adjacent to one another. It is preferred that the total number of S and O atoms in the heterocycle is not more than

1. As used herein, the term "aromatic heterocyclic system" is intended to mean a stable 5- to 6- membered monocyclic heterocyclic aromatic ring which consists of carbon atoms and

10 from 1 to 3 heterotams independently selected from the group consisting of N, O and S. It is preferred that the total number of S and O atoms in the aromatic heterocycle is not more than 1.

Examples of heterocycles include, but are not limited 15 to, 2-pyrrolidonyl, 2H-pyrrolyl, 4-piperidonyl, 6H-1,2,5thiadiazinyl, 2H,6H-1,5,2-dithiazinyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, isoxazolyl, morpholinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 20 oxazolidinyl., oxazolyl, piperazinyl, piperidinyl, pteridinyl, piperidonyl, 4-piperidonyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, pyrrolyl, tetrahydrofuranyl, 6H-1,2,5-25 thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5thiadiazolyl, 1,3,4-thiadiazolyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, and 1,3,4-triazolyl. Preferred heterocycles include, but are not limited to, pyridinyl, furanyl, thienyl, 30 pyrrolyl, pyrazolyl, imidazolyl, and oxazolidinyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.

As used herein, "HIV reverse transcriptase inhibitor" is intended to refer to both nucleoside and non-nucleoside inhibitors of HIV reverse transcriptase (RT). Examples of nucleoside RT inhibitors include, but are not limited to,

AZT, ddC, ddI, d4T, and 3TC. Examples of non-nucleoside RT inhibitors include, but are not limited to, rescriptor (delavirdine, Pharmacia and Upjohn), viviradine (Pharmacia and Upjohn U90152S), TIBO derivatives, BI-RG-587, nevirapine, L-697,661, LY 73497, and Ro 18,893 (Roche).

5

10

15

20

25

30

35

As used herein, "HIV protease inhibitor" is intended to refer to compounds which inhibit HIV protease. Examples include, but are not limited, saquinavir (Roche, Ro31-8959), ritonavir (Abbott, ABT-538), indinavir (Merck, MK-639), VX-478 (Vertex/Glaxo Wellcome), nelfinavir (Agouron, AG-1343), KNI-272 (Japan Energy), CGP-61755 (Ciba-Geigy), and U-103017 (Pharmacia and Upjohn). Additional examples include the cyclic protease inhibitors disclosed in WO93/07128, WO 94/19329, WO 94/22840, and PCT Application Number US96/03426.

As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.

The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical

methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in *Remington's Pharmaceutical Sciences*, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication commensurate with a reasonable benefit/risk ratio.

10

15

20

25

30

35

"Prodrugs" are intended to include any covalently bonded carriers which release the active parent drug according to formula (I) or other formulas or compounds of the present invention in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of the present invention, for example formula (I), are prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound. Prodrugs include compounds of the present invention wherein the hydroxy or amino group is bonded to any group that, when the prodrug is administered to a mammalian subject, cleaves to form a free hydroxyl or free amino, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of the present invention, and the like.

"Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction

mixture, and formulation into an efficacious therapeutic agent. Only stable compounds are contempleted by the present invention.

"Substituted" is intended to indicate that one or more hydrogens on the atom indicated in the expression using "substituted" is replaced with a selection from the indicated group(s), provided that the indicated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substituent is keto (i.e., =0) group, then 2 hydrogens on the atom are replaced.

5

10

15

20

25

35

"Therapeutically effective amount" is intended to include an amount of a compound of the present invention or an amount of the combination of compounds claimed effective to inhibit HIV infection or treat the symptoms of HIV infection in a host. The combination of compounds is preferably a synergistic combination. Synergy, as described for example by Chou and Talalay, Adv. Enzyme Regul. 22:27-55 (1984), occurs when the effect (in this case, inhibition of HIV replication) of the compounds when administered in combination is greater than the additive effect of the compounds when administered alone as a single agent. general, a synergistic effect is most clearly demonstrated at suboptimal concentrations of the compounds. Synergy can be in terms of lower cytotoxicity, increased antiviral effect, or some other beneficial effect of the combination compared

SYNTHESIS

with the individual components.

The compounds of the present invention can be prepared in a number of ways well known to one skilled in the art of 30 organic synthesis. The compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. Each of the references cited below are hereby incorporated herein by reference.

Scheme 1 illustrates a method of making 4,4-disubstituted-1,4-dihydro-2H-3,1-benzoxazin-2-ones starting from an appropriately substituted 2-aminobenzoic acid. The acid is converted to its N-methoxy-N-methyl amide derivative which can then be displaced to obtain the R¹-substituted ketone. Subsequent addition of another metallic species provides the alcohol which is readily cyclized with phosgene or an equivalent thereof.

5

Scheme 2 describes a means of obtaining 4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-ones starting from an appropriately substituted aniline. After iodination, the trifluoromethyl group can be introduced using a strong base and ethyl trifluoroacetate. The second 4-substituent can then be added through anion attack on the ketone or using other means well known to those of skill in the art.

10 Cyclization can be then be completed as in Scheme 1.

Because certain benzo-substituents are incompatible with the methods of Schemes 1 and 2, it may be necessary to protect these groups before forming the benzoxazinone. In Scheme 3 there is shown a means of obtaining carbonyl-substituted 4,4-disubstituted-1,4-dihydro-2H-3,1-benzoxazin-2-ones. After iodination of an acetyl-aniline, the acetyl group is protected by means well known to those of skill in the art, such as using 1,3-propanedithiol. The same procedures as in Scheme 2 are used to arrive at the cyclized product. Deprotection of the ketone can then be achieved using HgCl₂ and HgO or other means well known to those of skill in the art.

A method for forming 4,4-disubstituted-1,4-dihydro-2H-3,1-benzoxazin-2-ones, wherein R^2 is a vinyl or alkynyl group, is described in Scheme 4. Starting from an appropriately substituted ketone which can be obtained using the procedure of Scheme 1 or 2, an acetylide is added. The product can be deprotected and cyclized to obtain the alkynyl-substituted material. Alternatively, the vinyl compounds can be obtained by reduction of the alkyne with a reducing agent, such as LiAlH4, deprotection by standard means, and cyclization.

5

SCHEME 5

R³

$$\begin{array}{c} (CH_3)_3COC1, TEA \\ \hline (H_2C1_2 \\ \end{array}$$

$$\begin{array}{c} R^3 \\ N(H)COC(CH_3)_3 \\ \end{array}$$

Scheme 5 describes an alternate route to 4.4-disubstituted-1.4-dihydro-2H-3.1-benzoxazin-2-ones from anilines, wherein the aniline is protected, ester addition is accomplished using a strong base and the amine protecting group is removed. The R^2 group can then be added, e.g. via an acetylide, followed by cyclization.

SCHEME 6

C1

CF₃

$$\frac{10\% \text{ Pd/C}, \text{ H}_2}{\text{MeOH}}$$

OH

CF₃
 $\frac{\text{MnO}_2, \text{ CH}_2\text{Cl}_2}{\text{MeOH}}$

CF₃

NH₂

An intermediate useful in the preparation of the presently claimed compounds is 2-trifluoroacetylaniline. The starting 4-chloro-2-trifluoroacetylaniline can be made as shown in Scheme 2. Reduction and reoxidation removes the chloro group leaving the desired intermediate.

Scheme 7A describes a novel method of making 2-trifluoroacetylanilines as well as how these compounds can be further modified to make the presently claimed compounds. The protected aldehyde can be made from the N-methoxy-N-methyl amide of Scheme 1, by addition of a protecting group, preferably trityl, and reduction of the amide to the aldehyde. Other protecting groups known to those of skill in the art can be used in place of the shown trityl group.

5

Scheme 7B illustrates specific steps of Scheme 7A. Intermediate IIIb (R^{1a} is selected from CF_3 , CF_3CF_2 , and $CF_3CF_2CF_2$) is useful for making some of the presently claimed compounds. Pg is an amine protecting group as defined previously, preferably trityl (triphenylmethyl). 5 protected or unprotected aminobenzaldehyde, preferably protected, is treated with a perfluoralkyl trimethylsilane, preferably trifluoromethyl trimethylsilane, followed by fluoride anion, preferably tetrabutylammonium fluoride. 10 the same fashion, CF3CF2TMS, CF3CF2CF2TMS can also be used to prepare the appropriately substituted ketones. Other sources of fluoride anion such as sodium fluoride, potassium fluoride, lithium fluoride, cesium fluoride as well as oxyanionic species such as potassium tert-butoxide, sodium methoxide, sodium ethoxide and sodium trimethylsilanolate can 15 also be used.. Aprotic solvents such as DMF and THF can be used, preferably THF. The amount of perfluoralkyl trimethylsilane used can be from about 1 to about 3 equivalents with an equivalent amount of fluoride anion or oxyanionic species. The reaction can be typically carried 20 out at temperatures between about -20°C to about 50°C, preferably about -10 to about 10°C, more preferably about 0°C.

Conversion of IIIb to IIIc can be achieved by using an oxidizing agent well known to one of skill in the art such as MnO₂, PDC, PCC, K₂Cr₂O₇, CrO₃, KMnO₄, BaMNO₄, Pb(OAc)₄, and RuO₄. A preferred oxidant is MnO₂. Such conversion can be performed in an aprotic solvent like THF, DMF, dichloromethane dichloroethane, or tetrachloroethane, preferably dichloromethane.

25

Scheme 8 illustrates a method of forming aza-4,4-disubstituted-1,4-dihydro-2H-3,1-benzoxazin-2-ones from an appropriately substituted amino-pyridine. Carbonyl addition to the pyridine can be accomplished using a strong base and an appropriate ketone. Addition of base can afford the cyclized product.

5

15

20

25

SCHEME 9

$$\begin{array}{c|c}
R^8X / Pd(0) \\
\hline
 & \\
Y \\
Z
\end{array}$$

$$\begin{array}{c}
R^1 \\
O \\
H
\end{array}$$

An additional means of making 4-alkynyl-1,4-dihydro-2H-3,1-benzoxazin-2-ones is shown in Scheme 9. The alkyne group is added to the keto-aniline via a Grignard type addition, followed by cyclization. The alkyne group of the product can then be modified to obtain the desired compound.

GGTTT1-07 1

In addition to the methods of obtaining keto-anilines described in Schemes 1 and 2, nucleophilic opening of isatoic anhydrides can also be used as shown in Scheme 10. This reaction is accomplished by using an anionic nucleophile of the group R^{1a}. See Mack et al, *J. Heterocyclic Chem.* 1987, 24, 1733-1739; Coppola et al, *J. Org. Chem.* 1976, 41(6), 825-831; Takimoto et al, *Fukuoka Univ. Sci. Reports* 1985, 15(1),

37-38; Kadin et al, *Synthesis* **1977**, 500-501; Staiger et al, - *J. Org. Chem.* **1959**, *24*, 1214-1219.

It is preferred that the stoichiometry of the isatoic anhydride reagent to nucleophile is about 1.0 to 2.1 molar equivalents. The use of 1.0 eq. or more (e.g., 1.1, 1.2, 5 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or 2.0) of anion (or anion precursor) is preferred to force the conversion and improve the isolated yield. Preferably, the temperature used is from -20 to +35°C, with temperatures below 0°C being more preferred and -20°C being even more preferred. Reactions are 10 run to about completion with time dependent upon inter alia nucleophile, solvent, and temperature. Preferably this nucleophilic addition is run in THF, but any aprotic solvent would be suitable. Reaction with the active nucleophilic 15 anion is the only criterion for exclusion of a solvent.

An intermediate in this novel process is the 20 chlorobenzoxazinone (II) which can be synthesized from the corresponding keto-aniline as shown in Scheme 11. preparation of compounds of formula II works well with either the free base of the keto-aniline or its hydrochloride hydrate, though the free base is preferred due to its 25 inherent reactivity. The carbonylation or thiocarbonylation reagent is selected from the group: phosgene ($COCl_2$), thiophosgene (CSCl₂), carbonyldiimidazole (CDI), chloromethylcarbonate, chloroethylcarbonate, dimethylcarbonate, diethylcarbonate, and di-t-butylcarbonate. 30 Preferably, phosgene is used as the carbonylation reagent. About 1, 2, 3, 4, or 5 equivalents of carbonylation or

About 1, 2, 3, 4, or 5 equivalents of carbonylation or thiocarbonylation reagent are used, preferably from about 1 to about 2.5, even more preferably from about 1 to 2, and still further preferably about 1, 1.1, 1.2, 1.3, 1.4, or 1.5

5

10

15

20

25

or potassium).

equivalents. With volatile reagents like phospene more than one equivalent can help the conversion and yield of the
reaction but is not necessary to effect transformation.

Solvents such as toluene may be used. Additional nonreactive solvents, such as ethers (e.g., dimethyl ether and diethyl ether), hydrocarbons (e.g., hexane and cyclohexane) or other aromatic solvents (e.g., benzene, anisole, or quinoline) can also be used. Solvents with boiling points around that of toluene or higher are preferred. Use of such solvents allows heat to be applied to the reaction to promote the cyclization. When the preferred carbonylation reagent, phosgene is use, heat helps drive off the HCl generated and promote the closure reaction. When toluene is used, it is preferred to run the reaction near toluene's boiling point. However, one of ordinary skill in the art would recognize that too high of a temperature may decompose the product. addition, too low of a temperature may cause an undesirably slow reaction. Reaction progress may be determined by the decoloration of the reaction mixture (indicating consumption of starting material) and confirmation of completeness by proton NMR. The reaction may be catalyzed by the addition of an acid scavenger such as an amine base (e.g., triethylamine or Hunigs base) or an inorganic base (e.g., sodium carbonate

Scheme 12 describes routes to a variety of R^2 -substituted compounds of formula Ia by reacting a nucleophile (R^{2b}) with a compound of formula II (preferably R^{1a} is CF_3). This displacement reaction is quite versatile and a large range of nucleophiles can be used. Preferably the nucleophile is an amine (e.g., R^8R^7CHNH) or a metallic species selected from R^8R^7CH-OM , R^8R^7CH-SM , $R^8R^7CHNH-M$, $R^8-C\equiv C-M$, $R^7R^8C=CH-M$, $R^8R^7CH(CH_2)_p-M$, $R^8CH=CHC(H)(R^7)-M$, and $R^8R^7CH-CH=CH-M$. In addition, R^8R^7CH-OH and its thiol analog, R^8R^7CH-SH , can be used without formation of their corresponding anions. The metallic moiety, M, is selected from the group Na, Li, Zn, Mg, Cu, Pd, Pt, Sn, Al, and B, preferably Li, Mg, or Zn.

5

10

15

If an metallic nucleophile is used, it may be made in situ by methods known to those of skill in the art or formed by methods known to those of skill in the art and then added

to a solution. In either case, it is preferred that the compound of formula II is added to a solution containing the nucleophile.

Preferably, the nucleophile is an acetylide (i.e., R⁸
5 C=C-M) with Li, Mg, or Zn as the counterion. Acetylides are
well known in the art. Preferably, R⁸-C=C-M is formed in situ
by addition of a strong base to a solution containing R⁸-C=CH. Strong bases are well known to those of skill in the art
and include, but are not limited to n-butyl lithium, s-butyl

10 lithium, t-butyl lithium, phenyl lithium, and methyl lithium.
Preferably, the strong base is n-butyl lithium. The
acetylide may also be made in situ by addition of a strong
base to a dihalo-olefin (e.g., Br₂C=CHR⁸).

In the nucleophilic addition reactions the stochiometery is preferably about one equivalent of benzoxazinone to about 15 1.0 to 2.5 equivalents of nucleophile (e.g., 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, or 2.5). More preferable about 1.8 to 2.4 equivalents are used. Even more preferably, 2.1 equivalents of nucleophile 20 It is noted that less than one equivalent may be used, but care must be taken as N-H deprotonation reaction may compete with nucleophilic addition. It is preferable to run the additions from -40 to 0°C, more preferably about -20°C. The solvent used is preferably THF, but any aprotic 25 solvent, such as dimethyl ether, diethyl ether, benzene, or toluene, should be suitable. Non-reaction with the nucleophile, specifically the nucleophilic anion, is the only criterion for exclusion of a solvent.

An additional example of the utility of the final nucleophilic addition step of the present invention is shown in Scheme 13.

SCHEME 13

A preferred example of the present process is shown in 5 Scheme 14.

In Scheme 14, the preferred temperature of the carbonylation reaction is from about 104 to about 110°C and the preferred temperature of the acetylide addition is about -20°C.

5

10

One enantiomer of a compound of Formula I may display superior activity compared with the other. Thus, both of the following stereochemistries are considered to be a part of the present invention.

When required, separation of the racemic material can be achieved by HPLC using a chiral column or by a resolution using a resolving agent such as camphonic chloride as in Steven D. Young, et al, Antimicrobial Agents and Chemotheraphy, 1995, 2602-2605. A chiral compound of Formula I may also be directly synthesized using a chiral catalyst or a chiral ligand, e.g. Andrew S. Thompson, et al, Tet. lett. 1995, 36, 8937-8940.

Another method of forming a compound wherein Z is C(OH) involves incubating NNRTI, or a derivative thereof, in microsomes obtained from male rats, male rhesus monkeys or humans, preferably male rats. In addition, it is preferable to orally dose the male rats with NNRTI prior to collection of their livers and microsomal isolation. This procedure will be described in the following Example section.

Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof.

20

25

30

35

15

10

Examples

Abbreviations used in the Examples are defined as follows: "°C" for degrees Celsius, "d" for doublet, "dd" for doublet of doublets, "eq" for equivalent or equivalents, "g" for gram or grams, "mg" for milligram or milligrams, "mL" for milliliter or milliliters, "H" for hydrogen or hydrogens, "hr" for hour or hours, "m" for multiplet, "M" for molar, "min" for minute or minutes, "MHz" for megahertz, "MS" for mass spectroscopy, "nmr" or "NMR" for nuclear magnetic resonance spectroscopy, "t" for triplet, "TLC" for thin layer chromatography, "EDAC" for 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, "DIPEA" for diisopropylethylamine, "TBAF" for tetrabutylammonium fluoride, "LAH" for lithium aluminium hydride, and "TEA" for triethylamine.

EXAMPLE 1

Preparation of (+/-)-6-Chloro-4-(cyclopropylethynyl)-8hydroxy-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2one

5

10

15

20

25

30

Part A: Preparation of 4'-Chloro-2'-methoxy-2,2-dimethylpropionanilide

A stirred solution of 22.6 g (100 mmol) of stannous chloride dihydrate in 40 mL of absolute ethanol was heated to reflux and treated with 3.75 g (20 mmol) of 5-chloro-2nitroanisole in 20 mL of 1:1 ethanol-tetrahydrofuran over 3 Stirring at reflux for an additional 10 minutes gave a clear solution which was then cooled to 0°C. The mixture was treated with aqueous Na₂CO₃ until a pH of 8-9 was reached. The colloidal suspension was extracted twice with ethyl acetate, and the combined organic extracts were washed with saturated NaHCO3 then brine. The solution was dried (MgSO4) and concentrated under reduced pressure. The crude oil was dissolved in 40 mL of CH_2Cl_2 and cooled to 0°C. The solution was treated with 4.2 mL (30 mmol) of triethylamine followed by 2.8 mL (23 mmol) of pivaloyl chloride. After stirring 2h at 0°C the mixture was quenched with 0.5 N HCl, and the phases were separated. The aqueous phase was extracted with 100 mL of 1:1 ether-hexanes, and the combined organic extracts were washed sequentially with 0.1 N HCl, dilute K2CO3, water, and The solution was dried (MgSO₄) and concentrated under reduced pressure to give 4.68 g (97%) of 4'-chloro-2'methoxy-2,2-dimethylpropionanilide as an tan solid, mp 66-¹H NMR (300 MHz, CDCl₃) δ 8.36(d, 1H, J = 8.8 Hz); 8.03 (br. s, 1H); 6.94 (dd, 1H, J = 8.8, 2.2 Hz); 6.86 (d, 1H, J

= 2.2 Hz); 3.90(s, 3H); 1.32(s, 9H). High resolution mass spec: calculated for $C_{12}H_{17}NO_2Cl(M + H)^+$: 242.0948, found: 242.0943. Analysis calculated for $C_{12}H_{16}NO_2Cl$: C, 59.63; H, 6.67; N, 5.79; Cl, 14.67. Found: C, 59.73; H, 6.67; N, 5.57; Cl, 14.42.

Part B: Preparation of 2'-Amino-5'-chloro-3'-methoxy-2,2,2-trifluoroacetophenone

10 To a stirred, cooled (-20°C) solution of 12.1 g (50 mmol) of 4'-chloro-2'-methoxy-2,2-dimethylpropionanilide in 150 mL of THF was added 87 mL (115 mmol) of 1.3 M s-BuLi in cyclohexane over 15 min. The dark solution was warmed to 0°C and stirred for 1.2 h. The solution was re-cooled to -20°C and treated with 14.3 mL (120 mmol) of ethyl trifluoroacetate 15 over 5 min. The reaction was warmed to 0°C, stirred 15 min., and quenched with saturated aqueous NaHCO3. The mixture was extracted with hexanes and then with ether, and the combined organic extracts were washed sequentially with 0.5 N HCl, 20 water, and brine. The solution was dried (MgSO₄) and concentrated under reduced pressure to give a dark oil. crude amide was dissolved in 20 mL of 1,2-dimethoxyethane and treated with 100 mL of 6 N aqueous HCl. The mixture was stirred at reflux for 2h, cooled to 0°C, and brought to pH 9 25 with K₂CO₃. The mixture was extracted twice with ether, and the combined organic extracts were washed with brine, dried (MgSO₄), and concentrated under reduced pressure to give an oily solid. This crude product was recrystallized from hexanes and a minimal ammount of ethyl acetate to give 7.75 g 30 (61%) of 2'-amino-5'-chloro-3'-methoxy-2,2,2trifluoroacetophenone as yellow needles, mp 124.5-125.5°C. NMR (300 MHz, CDCl₃) δ 7.32-7.35(m, 1H); 6.87(br. s, 2H); 6.84(d, 1H, J = 1.8 Hz); 3.92(s, 3H). High resolution mass spec: calculated for $C_9H_8NO_2ClF_3(M + H)^+$: 254.0196, found: 35 254.0194. Analysis calculated for C₉H₇NO₂ClF₃: C, 42.62; H, 2.78; N, 5.52; Cl, 13.98. Found: C, 42.52; H, 3.04; N, 5.40; Cl, 13.74.

Part C: Preparation of 2'-Amino-5'-chloro-3'-hydroxy-2,2,2-trifluoroacetophenone

5 To a stirred, cooled (0°C) solution of 31.2 g (123 mmol) of 2'-amino-5'-chloro-3'-methoxy-2,2,2-trifluoroacetophenone in 150 mL of CH₂Cl₂ was added 550 mL (550 mmol) of 1 M BBr₃ in CH_2Cl_2 over 20 min. The dark solution was stirred 17 h at ambient temperature, re-cooled to 0°C, and fitted with a 10 pressure-equalizing dropping addition funnel and a Claisen adapter connected by rubber tubing to a large water scrubber. The reaction was carefully quenched by dropwise addition of aqueous Na₂CO₃ until a pH of 7-8 was reached. The phases were separated, and the aqueous phase was extracted with 1 liter 15 of 1:1 ether-hexanes. The combined organic phases were washed with water then brine, dried (MgSO₄), and concentrated under reduced pressure to afford 30.1 g (100%) of 2'-amino-5'-chloro-3'-hydroxy-2,2,2-trifluoroacetophenone as a chalky brown solid, mp 120-122°C. 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.33-20 7.36(m, 1H); 6.88(d, 1H, J = 1.8 Hz); 6.75(br. s, 2H); 5.78(br. s, 1H). High resolution mass spec: calculated for $C_8H_6NO_2ClF_3(M + H)^+$: 240.0039, found: 240.0029.

Part D: Preparation of 2'-Amino-5'-chloro-3'-(t-butyldimethylsilyloxy)-2,2,2-trifluoroacetophenone

25

30

35

To a stirred, cooled (0°C) solution of 29.3 g (122 mmol) of 2'-amino-5'-chloro-3'-hydroxy-2,2,2-trifluoroacetophenone in 280 mL of DMF was added 23.8 g (350 mmol) of imidazole followed by 66 g (250 mmol) of t-butyldimethylsilyl trifluoromethanesulfonate over 10 min. The reaction was stirred 5h at 0°C and diluted with 800 mL of 1:1 etherhexanes. The solution was washed twice with water and once with brine, dried (MgSO₄) and concentrated under reduced pressure to give a dark oil. The crude product was rapidly passed through an 800 g plug of silica gel (elution with hexanes followed by 6:1 hexanes-ether) to afford, after

evaporation of solvent, 42.5 g (98%) of 2'- amino-5'-chloro-3'-(t-butyldimethylsilyloxy)-2,2,2-trifluoroacetophenone as a yellow oil. The product solidified after extended evacuation at 0.01 torr to give a yellow solid, mp 45-46.5°C. 1 H NMR (300 MHz, CDCl₃) δ 7.34-7.36(m, 1H); 6.85(d, 1H, J = 2.2 Hz); 6.7-6.8(br. s, 2H); 1.03(s, 9H); 0.30(s, 6H). High resolution mass spec: calculated for $C_{14}H_{20}NO_{2}ClF_{3}Si$ (M + H)+: 354.0904, found: 354.0900. Analysis calculated for $C_{14}H_{19}NO_{2}ClF_{3}Si$: C, 47.52; H, 5.41; N, 3.97; Cl, 10.02. Found: C, 47.71; H, 5.36; N, 3.87; Cl, 10.02.

Part E: Preparation of (+/-)-2-(2-Amino-5-chloro-3-(t-butyldimethylsilyloxy)phenyl)-4-cyclopropyl-1,1,1-trifluoro-3-butyn-2-ol

15

10

5

To a stirred, cooled (0°C) solution of 31.8 mL (300 mmol) of 5-chloro-1-pentyne in 250 mL of THF was added 252 mL (630 mmol) of 2.5 M n-BuLi in hexanes over 20 min. Over the course of the addition the internal temperature had warmed to 20 ambient temperature, and the mixture was stirred at this temperature for 40 min. The reaction was cooled to -20 $^{\circ}$ C and treated with a solution of 32.7 g (97.4 mmol) of 2'-amino-5'chloro-3'-(t-butyldimethylsilyloxy)-2,2,2trifluoroacetophenone in 50 mL of THF over 10 min. The dark 25 solution was stirred an additional 30 min. and the cold bath was removed. The reaction was stirred 5 min and poured into 800 mL of 0°C 1 N citric acid with rapid stirring. mixture was extracted twice with ether, and the combined organic extracts were washed with water then brine, dried $(MgSO_4)$, and concentrated under reduced pressure. 30 Chromatography on silica gel (elution with hexanes then 3:1 hexanes-ether) afforded 28.8 g (70%) of (+/-)-2-(2-amino-5chloro-3-(t-butyldimethylsilyloxy)phenyl)-4-cyclopropyl-1,1,1-trifluoro-3-butyn-2-ol as an off-white solid, mp 125-¹H NMR (300 MHz, CDCl₃) δ 7.22(d, 1H, J = 2.2 Hz); 35 6.76(d, 1H, J = 2.2 Hz); 4.86(br. s, 1H); 4.39(br. s, 2H); $1.32-1.43 \, (m, 1H); 1.02 \, (s, 9H); 0.79-0.92 \, (m, 4H); 0.27 \, (s, 3H);$

0.26(s, 3H). High resolution mass spec: calculated for $C_{19}H_{26}NO_2ClF_3Si(M + H)^+$: 420.1373, found: 420.1363.

Part F: Preparation of (+/-)-6-Chloro-4 (cyclopropylethynyl)-8-hydroxy-4-(trifluoromethyl)-1,4 dihydro-2H-3,1-benzoxazin-2-one

To a stirred, cooled (-25°C) solution of 28.8 g(68.6 mmol) (+/-)-2-(2-amino-5-chloro-3-(t-

- butyldimethylsilyloxy)phenyl)-4-cyclopropyl-1,1,1-trifluoro-3-butyn-2-ol in 600 mL of toluene was added 36 mL (206 mmol) of N, N-diisopropylethylamine followed by 38.9 mL (75 mmol) of a 1.93 M solution of phosgene in toluene over 20 min. The solution was stirred an additional 20 min. at -25°C after
- which time it was warmed to -5°C and quenched with water. The mixture was washed with 100 mL of 1 N aqueous HCl then brine, dried (MgSO₄), and concentrated under reduced pressure to afford a tan solid. The crude product was dissolved in 200 mL of THF, cooled to 0°C, and treated with 40 mL of 1 M tetra-
- 20 (n-butyl)ammonium fluoride in THF over 5 min. The solution was diluted with 200 mL of ether and washed sequentially with 1 M aqueous citric acid, water, and brine. The solution was dried (MgSO₄), concentrated under reduced pressure, and chromatographed on silica gel. Elution with 1:3 ether-
- hexanes then 1:1 ether-hexanes afforded, after concentration under reduced pressure, 21.4 g (94%) of (+/-)-6-chloro-4- (cyclopropylethynyl)-8-hydroxy-4-(trifluoromethyl)-1,4- dihydro-2H-3,1-benzoxazin-2-one as an off-white solid. 1 H NMR (300 MHz, CDCl₃) δ 8.46(br s, 1H); 7.01-7.07(m, 2H); 1.33-
- 30 1.43(m, 1H); 0.81-0.97(m, 4H). High resolution mass spec: calculated for $C_{14}H_{10}NO_3ClF_3(M + H)^+$: 332.0301, found: 332.0283.

EXAMPLE 2

Preparation of (-)-6-Chloro-4-(cyclopropylethynyl)-8-hydroxy-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one

5

10

15

Chromatography of 22 g of racemic 6-chloro-4- (cyclopropylethynyl)-8-hydroxy-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one (I) on a Chiralpak AD-7.5 cm I.D. x 30 gm column using 20% methanol-80% carbon dioxide as the mobile phase at a flow rate of 120 mL/min. gave two fractions. The faster-eluting fraction was concentrated and recrystallized from hexanes and a minimal amount of ethyl acetate to afford 5 g of the title compound as a white solid, mp 170-172°C. 1 H NMR (300 MHz, CDCl₃) δ 8.46(br s, 1H); 7.01-7.07(m, 2H); 1.33-1.43(m, 1H); 0.81-0.97(m, 4H). [α]Na_d (25°C) = -32°, c = 0.28. Analysis calculated for $C_{14}H_{9}NO_{3}ClF_{3}$: C, 50.70; H, 2.75; N, 4.22; Cl, 10.69. Found: C, 50.74; H, 2.86; N, 4.26; Cl, 10.77.

20

25

30

EXAMPLE 3

Preparation of (-) 6-Chloro-4-(cyclopropylethynyl)-8-hydroxy-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one by
Rat Hepatic Microsomal Fractions

Incubation of (-) 6-Chloro-4-cyclopropylethynyl-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one (NNRTI) with hepatic microsomes from rats previously treated with NNRTI and cofactors required to support cytochromes P450 oxidative metabolism resulted in the formation of one major metabolite separable from NNRTI by reverse phase high performance liquid chromatography (HPLC). Incubations were conducted for 2 hours at 37°C in a physiological buffer. After precipitating the protein with acetonitrile, the

supernatants were dried under nitrogen and reconstituted in amixture of 55:45 (v/v) acetonitrile:0.01% aqueous formic acid (pH 3.5) and injected onto the HPLC system. The column effluent was monitored at 247 nm. The single peak observed to elute at approximately 4 minutes was collected and combined from multiple injections. Final purification was accomplished using the same HPLC system and a linear gradient developed over 15 minutes starting with solvent A (50:50 (v/v) methanol:0.01% aquesous formic acid, pH 3.5) and increasing the proportion of solvent B (80:20 v/v methanol:0.01% aqueous formic acid pH 3.5), then holding solvent B constant for 5 minutes before re-equilibration with solvent A. The single, sharp peak eluting at approximately 16.5 minutes was collected and dried under vacuum.

10

15

20

25

30

The purified metabolite described above was dissolved in 0.2 mL of methanol-d4 and placed in a 3 mm NMR tube. The proton NMR spectrum was acquired using a 30 degree pulse, a 4 second acquisition time and a 2 second relaxation delay during which the residual water signal was suppressed by selective irradiation. The spectrum was referenced to solvent at 3.30 ppm.

EXAMPLE 4

Preparation of (+/-)-6-Chloro-4-(cyclopropylethynyl)-8-fluoro-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one

Part A: Preparation of 4'-Chloro-2'-fluoro-2,2-dimethylpropionanilide

To a stirred, cooled (0°C) solution of 3.64 g (25.0 mmol) of 4-chloro-2-fluoroaniline and 4.2 mL (30 mmol) of

triethylamine in 50 mL of THF was added 4.18 mL (26 mmol) of pivaloyl chloride. After stirring for 10 min. at 0°C the mixture was warmed to ambient temperature and poured into 0.5N HCl. The mixture was extracted with 100 mL of ether, and the organic extract was washed sequentially with NaHCO3 and brine. The solution was dried (MgSO4), concentrated under reduced pressure, and chromatographed on silica gel (elution with 3:1 hexanes-ether) to give, after removal of solvent, 5.2 g (92%) of 4'-chloro-2'-fluoro-2,2-dimethylpropionanilide as a pale pink solid (IX), mp 70.5-71°C. 1 H NMR (300 MHz, CDCl3) δ 8.36(t, 1H, J = 8.4 Hz); 7.57(br. s, 1H); 7.10-7.17(m, 2H); 1.30(s, 9H). 19 F NMR (282 MHz, CDCl3) δ -129.8. High resolution mass spec: calculated for C11H14NOClF(M + H)+: 230.0748, found: 230.0760.

15

10

5

Part B: Preparation of 2'-(Trimethylacetamido)-5'-chloro-3'-fluoro-2,2,2-trifluoroacetophenone

To a stirred, cooled (-50°C) solution of 0.92 g (4.0 mmol) of 4'-chloro-2'-fluoro-2,2-dimethylpropionanilide in 10 20 mL of THF was added 2.5 mL (4.2 mmol) of 1.7 M t-BuLi in pentane over 5 min. The solution was stirred for 5 min. and treated with 1.0 mL (8.4 mmol) of ethyl trifluoroacetate over The reaction was warmed to ambient temperature, 25 stirred 15 min., and quenched with 1N aqueous citric acid. The mixture was extracted with ether, and the organic extract was washed sequentially with water then brine. The solution was dried(MgSO₄) and concentrated under reduced pressure to give an oil. The crude amide was chromatographed on silica 30 gel (elution with 3:1 hexanes-ether followed by 1:1 hexanesether) to give 570 mg (43%) of 2'-(trimethylacetamido)-5'chloro-3'-fluoro-2,2,2-trifluoroacetophenone as an off-white solid. 1 H NMR(300 MHz, CDCl₃) δ 8.68(s, 1H); 7.45-7.47(m, 1H); 7.08(dd, 1H, J = 9.5, 2.6 Hz); 1.3(s, 9H). High resolution mass spec: calculated for $C_{13}H_{13}NO_2ClF_4(M + H)^+$: 35 326.0571, found: 326.0579.

Part C: Preparation of 2'-Amino-5'-chloro-3'-fluoro-2,2,2- - trifluoroacetophenone

A stirred solution of 0.35 g (1.07 mmol) of 2'-5 (trimethylacetamido)-5'-chloro-3'-fluoro-2,2,2trifluoroacetophenone in 3 mL of 1,2-dimethoxyethane and treated with 24 mL of 6N aq. HCl. The mixture was stirred at reflux for 2h, cooled to RT, and brought to pH 9 with K_2CO_3 . The mixture was extracted twice with ether and the combined organic extracts were washed with brine, dried (MgSO4), and 10 concentrated under reduced pressure to give 240 mg (92%) of 2'-amino-5'-chloro-3'-fluoro-2,2,2-trifluoroacetophenone as an oily orange solid. ^{1}H NMR (300 MHz, CDCl $_{3}$) δ 7.54(m, 1H); 7.25(dd, 1H, J = 10.6, 2.2 Hz); 6.40-6.60(br. s, 2H). 15 High resolution mass spec: calculated for $C_8H_4NOC1F_4(M^+)$: 240.9918, found: 240.9914. ¹⁹F NMR (282 MHz, CDCl₃) -132.7(s, 1F), -70.6(s, 3F).

Part D: Preparation of (+/-)-2-Amino-5-chloro-3-fluoro-α-(cyclopropylethynyl)-α-(trifluoromethyl)benzyl alcohol

25

30

35

To a stirred, cooled (0°C) solution of 2.0 mL (7.0 mmol) of 3.5 M cyclopropylacetylene in toluene was added 2 mL of THF followed by 2.8 mL (7.0 mmol) of 2.5 M n-BuLi in hexanes The solution was stirred 5 min. at 0°C, warmed to RT, and stirred a further 20 min. The reaction was cooled to 0°C and treated with a solution of 300 mg (1.24 mmol) of 2'amino-5'-chloro-3'-fluoro-2,2,2-trifluoroacetophenone in 3 mL of THF over 2 min. The solution was stirred an additional 10 min. and the cold bath was removed. The reaction was stirred 5 min and poured into 0.5 N citric acid. The mixture was extracted with ether, and the organic extract was washed with water then brine, dried (MgSO₄), and concentrated under reduced pressure. Chromatography on silica gel (elution with hexanes then 3:1 hexanes-ether) afforded 185 mg (49%) of (+/-)-2-amino-5-chloro-3-fluoro- α -(cyclopropylethynyl)- α -(trifluoromethyl)benzyl alcohol as an off-white solid, mp

131-135°C. ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.36(m, 1H); 7.04(dd, 1H, J = 10.4, 2.4 Hz); 4.58(br. s, 2H); 3.82(br. s, 1H); 1.35-1.44(m, 1H); 0.80-0.99(m, 4H). ¹⁹F NMR (282 MHz, CDCl₃) δ -131.5(s, 1F), -80.5(s, 3F). High resolution mass spec: calculated for C₁₃H₁₁NOClF₄(M + H)+: 308.0470, found: 308.0465.

5

10

Part E: Preparation of (+/-)-6-Chloro-4-(cyclopropylethynyl)-8-fluoro-4-(trifluoromethyl)-1,4dihydro-2H-3,1-benzoxazin-2-one

To a stirred, cooled (-25°C) solution of 144 mg (0.47 mmol) of (+/-)-2-amino-5-chloro-3-fluoro- α - $(cyclopropylethynyl)-\alpha-(trifluoromethyl)benzyl alcohol in 6$ 15 mL of toluene was added 0.28 mL (2.0 mmol) of triethylamine followed by 0.62 mL(1.2 mmol) of a 1.93 M solution of phosgene in toluene over 3 min. The solution was stirred an additional 30 min. at -25°C after which time it was warmed to ambient temperatue and quenched with 0.5 N ag. citric acid. The mixture was extracted once with ether and once with ethyl 20 acetate, and the combined organic extracts were washed sequentially with sat'd aq. NaHCO3, water, and brine. The solution was dried (MgSO₄), and concentrated under reduced pressure to afford a tan solid. The crude product was 25 chromatographed on silica gel(elution with 3:1 hexanes-ether) to afford, after concentration, 90 mg (58%) of (+/-)-6chloro-4-(cyclopropylethynyl)-8-fluoro-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one as an off-white solid. $^{1}\mathrm{H}$ NMR (300 MHz, CDCl₃) δ 7.65(br s, 1H); 7.32-7.34(m, 1H); 7.22(d, 1H, J = 2.2 Hz); 1.36-1.43(m, 1H); 0.82-0.98(m, 4H).30 19 F NMR (282 MHz, CDCl $_3$) δ -132.5(s, 1F), -81.1(s, 3F). High resolution mass spec: calculated for $C_{14}H_9NO_2ClF_4$ (M + H)+: 334.0258, found: 334.0244.

EXAMPLE 5

Preparation of (+/-)-4-Cyclopropylethynyl-4-isopropyl-6-methyl-1,4-dihydro-2H-3,1-benzoxazin-2-one

5 Part A: Preparation of 2-Amino-5-methylbenzoyl N-methoxy-methylamide.

To a solution of 2-amino-5-methylbenzoic acid (7.6 g, 50.3 mmol) and N,O-dimethylhydroxylamine hydrochloride (12.5 g, 60.4 mmol) in acetonitrile (80 mL) were added triethylamine 10 (15.8 mL, 60.4 mmol) and 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (10.3 g, 55.3 mmol) and the mixture was stirred at room temperature for 5 hours. At the end of the stirring, methylene chloride (200 mL) was added 15 and washed with water and brine. The organic layer was dried over anhydrous sodium sulfate and evaporated in vacuo to give a yellow syrupy residue. It was purified by column chromatography on silica gel with elution by 15:85 ethyl acetate-hexane to give pure 2-amino-5-methylbenzoyl N-20 methoxy-methylamide.

Part B: Preparation of 2-Amino-5-methylphenylisopropylketone.

25 To a solution of 2-amino-5-methylbenzoyl N-methoxymethylamide (472.6 mg, 2.4 mmol) in dry THF (3 mL) at -20°C were added diisopropylethylamine (0.84 mL, 4.8 mmol) and chlorotrimethylsilane (0.61 mL, 4.8 mmol) dropwise and the mixture was stirred for 1 hour at $-20 \sim 5^{\circ}$ C. It was then 30 cooled to -20°C again and was added 2M-isopropyl magnesium chloride in THF (4.8 mL, 9.6 mmol) dropwise. The mixture was stirred for 1.5 hours at -20 ~ 10°C. After cooling to 0°C was added saturated ammonium chloride and extracted with The organic layer was washed with 1N-HCl, water, 35 saturated sodium bicarbonate and water, and dried over anhydrous sodium sulfate. It was evaporated in vacuo to give an oily residue. Column chromatography on silica gel with

elution by 1:9 ethyl acetate-hexane affored pure 2-amino-5-methylphenylisopropylketone (201 mg) as an oil.

Part C: Preparation of 2-Amino-5-methyl- α -cyclopropylethynyl- α -isopropyl-benzyl alcohol.

5

10

15

20

25

30

35

To a solution of cyclopropylacetylene (105 mg, 1.59 mmol) in THF (3 mL) at -20°C was added 1.6M-nBuLi in hexane (0.96 mL, 1.54 mmol) dropwise and the mixture was stirred at the same temperature for 0.5 hours. Then a solution of 2-amino-5-methylphenylisopropylketone (94.5 mg, 0.53 mmol) in THF (3 mL) was added and the mixtire was stirred for 5 hours at -20°C . The reaction was quenched with saturated NH₄Cl and the product was extraxted with ethyl acetate. After washing with brine, the extract was dried over anhydrous sodium sulfate and evaporated to give the crude amino-alcohol as an oil.

Part D: Preparation of 4-Cyclopropylethynyl-4-isopropyl-6-methyl-1,4-dihydro-2H-3,1-benzoxazin-2-one.

To a solution of the crude amino-alcohol (0.53 mmol) in dry toluene (5 mL) at -20° C were added diisopropylethylamine (0.29 mL, 1.89 mmol) and 0.31 mL of 20% solution of phosgene in toluene dropwise and the mixture was stirred for 1 hour at $-20 \sim 0^{\circ}$ C. After addition of water (5 mL) it was extracted with ethyl acetate and the organic layer was washed with brine. It was dried over Na₂SO₄ and evaporated in vacuo to give an oily residue. Column chromatography on silica gel (2:8 EtOAc-hexane) provided pure titled compound (38 mg).

EXAMPLE 6

Preparation of (+/-)-4-Isopropylethynyl-4-trifluoromethyl-6-methyl-1,4-dihydro-2H-3,1-benzoxazin-2-one.

Part A: Preparation of 2-Iodo-4-methylaniline.

To a stirred solution of p-toluidine (5 g, 46.7 mmol) in methylene chloride (25 mL) was added a solution of sodium bicarbonate (4.7 g, 56 mmol) in water (75 mL). Then was added iodine (11.26 g, 44.33 mmol) in small portions and the mixture was stirred for 16 hours at room temperature. The reaction was quenched with saturated NaHSO3 and the product was extracted with methylene chloride. The methylene chloride layer was washed with brine, dried over Na₂SO₄, and evaporated in vacuo to give a crude 2-iodo-4-methylaniline.

Part B: Preparation of Trimethylacetyl 2-iodo-4-methylanilide.

15

20

10

To a stirred mixture of 2-iodo-4-methylaniline (46.7 mmol) in chloroform (50 mL) and 50 mL of saturated sodium carbonate was added trimethylacetyl chloride dropwise over a period of 15 minutes and the mixture was stirred vigorously for 45 minutes at room temperature. The product was extracted with chloroform, washed with water and dried over Na₂SO₄. Evaporation of the solvent in vacuo affored the pivaloyl amide as a solid. It was recrystallized from ethyl acetate and hexane.

25

30

35

Part C: Preparation of Trimethylacetyl 4-methyl-2-trifluoroacetylanilide.

To a stirred solution of trimethylacetyl 2-iodo-4-methylanilide (10.7 g, 33.75 mmol) in 50 mL of dry THF at -78°C was added 1.6M-nBuLi in hexane (48.5 mL, 77.6 mmol) dropwise and the mixture was stirred for an hour at the same temperature. Then ethyl trifluoroacetate (9.6 mL, 81 mmol) was added dropwise and the mixture was stirred for 0.5 hours at -78°C. At the end of the stirring saturated NH₄Cl solution was added and the mixture was warmed up to room temperature. The product was extracted with ethyl acetate, washed with

water and brine, and dried over Na_2SO_4 . The solution was concentrated and the residue was column chromatographed on silica gel (1:9 EtOAc-hexane) to give the desired trimethylacetyl 4-methyl-2-trifluoroacetylanilide (1.29 g, 13% yield) and trimethylacetyl 4-methylanilide (major product).

5

20

Part D: Preparation of 4-Methyl-2-trifluoroacetylaniline.

10 To a solution of trimethylacetyl 4-methyl-2trifluoroacetylanilide (1.29 g) in 10 mL of dimethoxyethane
was added 6N-HCl (5 mL) and the mixture was refluxed for 2.5
hours with stirring. After cooling it was poured over ice
and was made basic with saturated NaHCO3. The product was
15 extracted with ethyl acetate, washed with brine, and dried
over Na₂SO₄. Evaporation of the solvent provided the aniline
as a yellow solid in near quantitative yield.

Part E: Preparation of 2-Amino-5-methyl- α -isopropylethynyl- α -trifluoromethyl-benzyl alcohol.

To stirred solution of 3-methyl-1-butyne (0.26 mL, 2.59 mmol) in 5 mL of dry THF at -20°C was added 1.6M-nBuLi in hexane (1.4 mL, 2.24 mmol) dropwise and the mixture was warmed up to 0°C over a period of 1 hour with stirring. It was the cooled back to -20°C and was added dropwise a solution of 4-methyl-2-trifluoroacetylaniline (150 mg, 0.74 mmol) in 2 mL of THF. After stirring for an hour at -20 ~ 0°C was added saturated NH₄Cl (~5 mL), and the product was extracted with ethyl acetate, washed with brine and dried over Na₂SO₄. The solvents were evaporated off to give crude amino-alcohol as a yellow solid residue.

Part F: Preparation of 4-Isopropylethynyl-4-trifluoromethyl--6-methyl-1,4-dihydro-2H-3,1-benzoxazin-2-one.

To a solution of the crude amino-alcohol (0.74 mmol) in dry toluene (7.5 mL) at -20°C were added diisopropylethylamine (0.39 mL, 2.22 mmol) and 0.42 mL of 20% solution of phosgene in toluene dropwise and the mixture was stirred for 1 hour at -20 ~ 0°C. After addition of water (5 mL) it was extracted with ethyl acetate and the organic layer was washed with brine. It was dried over Na₂SO₄ and evaporated in vacuo to give an oily residue. Column chromatography on silica gel (2:8 EtOAc-hexane) and recrystallization (EtOAc and hexane) provided pure titled compound (61 mg, 28% yield for 2 steps) as white crystals, mp 198-199°C.

15

25

30

10

EXAMPLE 7

Preparation of (+/-)-6-Acetyl-4-cyclopropylethynyl-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one.

20 Part A: Preparation of 4-Amino-3-iodo-acetophenone.

To a solution of 4-aminoacetophenone (5 g, 37 mmol) in 15 mL of CH₂Cl₂ and 75 mL of water was added sodium bicarbonate (3.73 g, 44.4 mmol) followed by iodine (8.92 g, 35.1 mmol), and the mixture was stirred for 5 hours at room temperature. The reaction was quenched by portionwise addition of sodium bisulfite until the iodine color disappeared. The product was extracted with CH₂Cl₂, washed with water, dried over Na₂SO₄. Evaporation of the solvent gave crude 4-amino-3-iodo-acetophenone as solid (7.92 g).

Part B: Preparation of Trimethylacetyl 2-iodo-4-acetylanilide.

To a stirred mixture of 4-amino-3-iodo-acetophenone (7.92 g, 30.3 mmol) in chloroform (50 mL) and 50 mL of saturated sodium carbonate was added trimethylacetyl chloride (7.8 mL,

63.7 mmol) dropwise over a period of 15 minutes and the mixture was stirred vigorously for 16 hours at room temperature. The product was extracted with chloroform, washed with water and dried over Na₂SO₄. Evaporation of the solvent in vacuo affored the pivaloyl amide as a brown oil. It was column chromatographed (silica gel, 1:9 EtOAc-hexane) to afford pure trimethylacetyl 2-iodo-4-acetylanilide (5.83 g) as white crystals.

10 Part C: Preparation of Trimethylacetyl 2-iodo-4-(2-methyl-1,3-dithian-2-yl)anilide.

To a stirred solution of trimethylacetyl 2-iodo-4acetylanilide (2.9 g, 8.45 mmol) and 1,3-propanedithiol in 25

15 mL of THF at 0°C was added borontrifluorate etherate (0.63 mL, 5.1 mmol) and the mixture was stirred for 16 hours at room temperature. Then was added second portion of borontrifluorate etherate (0.63 mL, 5.1 mmol) and it was continued to stir for 44 hours. The reaction mixture was poured into water and extracted with ethyl acetate. The extract was washed with water saturated NaHCO3 and brine, dried over MgSO4 and evaporated to a clear oil. It was column chromatographed (silica gel, 5:95 EtOAc-hexane) to give pure thioaketal as a foamy solid (2.85 g).

25

30

35

Part D: Preparation of Trimethylacetyl 4-(2-methyl-1,3-dithian-2-yl)-2-trifluoroacetylanilide.

To a stirred solution of trimethylacetyl 2-iodo-4-(2-methyl-1,3-dithian-2-yl)anilide (2.29 g, 5.26 mmol) in 20 mL of dry THF at -78°C was added 1.6M-nBuLi in hexane (6.7 mL, 10.7 mmol) dropwise and the mixture was stirred for 45 minutes at the same temperature. Then ethyl trifluoroacetate (12.6 mL, 105.2 mmol) was added dropwise and the mixture was gradually warmed up to room temperature over a period of 3 hours. At the end of the stirring saturated NH₄Cl solution was added, and the product was extracted with ethyl acetate, washed with

water and brine, and dried over Na_2SO_4 . The solution was concentrated and the residue was column chromatographed on silica gel (1:9 EtOAc-hexane) to give the desired trimethylacetyl 4-(2-methyl-1,3-dithian-2-yl)-2-trifluoroacetylanilide (0.63 g) and trimethylacetyl 4-(2-methyl-1,3-dithian-2-yl)anilide (1.33 g).

Part E: Preparation of 4-(2-Methyl-1,3-dithian-2-yl)-2-trifluoroacetylaniline.

10

15

5

To a solution of trimethylacetyl 4-(2-methyl-1,3-dithian-2-yl)-2-trifluoroacetylanilide (0.63 g) in 10 mL of methanol was added 6N-HCl (2 mL) and the mixture was refluxed for 4 hours with stirring. After cooling it was poured over ice and was made basic with saturated NaHCO3. The product was extracted with ethyl acetate, washed with brine, and dried over Na₂SO₄. Evaporation of the solvent provided the desired 4-(2-methyl-1,3-dithian-2-yl)-2-trifluoroacetylaniline as a bright yellow solid.

20

Part F: Preparation of 2-Amino-5-(2-methyl-1,3-dithian-2-yl)- α -cyclopropylethynyl- α -trifluoromethyl-benzyl alcohol.

To stirred solution of cyclopropylacetylene (122 mg, 1.9 mmol) in 5 mL of dry THF at -20°C was added 1.6M-nBuLi in hexane (0.99 mL, 1.59 mmol) dropwise and the mixture was warmed up to 0°C over a period of 45 minutes with stirring. It was the cooled back to -20°C and was added dropwise a solution of 4-methyl-2-trifluoroacetylaniline (150 mg, 0.74 mmol) in 2 mL of THF. After stirring for 1.5 hours at -20 ~ 0°C was added saturated NH₄Cl (~5 mL), and the product was extracted with ethyl acetate, washed with brine and dried over Na₂SO₄. The solvents were evaporated off to give crude amino-alcohol as a bright yellow solid residue.

Part G: Preparation of 4-Cyclopropylethynyl-4trifluoromethyl-6-(2-methyl-1,3-dithian-2-yl)-1,4-dihydro-2H-3,1-benzoxazin-2-one.

To a solution of the crude amino-alcohol (0.53 mmol) in dry toluene (5 mL) at -20°C were added diisopropylethylamine (0.28 mL, 1.59 mmol) and 0.3 mL of 20% solution of phosgene in toluene dropwise and the mixture was stirred for 1.5 hours at -20 ~ 0°C and for 5 minutes at room temperature. After addition of water (5 mL) it was extracted with ethyl acetate and the organic layer was washed with brine. It was dried over Na₂SO₄ and evaporated in vacuo to give an oily residue. It was purified by preparative TLC on a silica gel plate (3:7 EtOAc-hexane) to give pure titled compound (77 mg).

15

Part H: Preparation of 6-Acetyl-4-cyclopropylethynyl-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one.

To a stirred solution of 4-cyclopropylethynyl-4
trifluoromethyl-6-(2-methyl-1,3-dithian-2-yl)-1,4-dihydro-2H3,1-benzoxazin-2-one (64 mg, 0.154 mmol) in 5 mL of methanol
and 0.5 mL of water were added mercuric chloride (92 mg,
0.339 mmol) and mercuric oxide (50 mg, 0.23 mmol), and the
mixture was refluxed for 2 hours. After cooling it was

filtered through Celite and rinsed with EtOAc. The filtrate
was washed with water and brine, dried over MgSO₄, and
evaporated to give an oily residue. Column chromatography
(silica gel, 2:8 EtOAc-hexane) afforded pure 6-6cetyl-4cyclopropylethynyl-4-trifluoromethyl-1,4-dihydro-2H-3,1benzoxazin-2-one.

EXAMPLE 8

Preparation of (+/-)-5,6-Difluoro-4-(3-methyl)-1-buten-1-yl-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one

5 Part A: Preparation of 2,3-Difluoro-6-triphenylmethylamino- α -1-(3-methyl)-1-butynyl- α -trifluoromethyl-benzyl alcohol.

To a solution of 3-methyl-1-butyne (0.73 g, 10.7 mmol) in dry THF (5 mL) at -20°C was added 1.6M-nBuLi in hexane dropwise 10 and the mixture was stirred for 15 minutes at the same Then a solution of 2,3-diflupro-6temperature. triphenylmethylamino- α , α , α -trifluoroacetophenone (1 g, 2.14 mmol) in 5 mL of THF was added dropwise at -20°C. After stirring for 10 minutes, the cooling bath was removed and it 15 was allowed to warm up to room temperature. The mixture was stirred for 45 minutes and was poured into saturated NH_4Cl . The product was extracted with ether, washed with saturated NaHCO3 and brine and dried over MgSO4. Evaporation of solvent gave an oily residue, which was crystallized from methanol, 20 ether and hexane mixture to provide pure product (0.432 g, 37.6%).

Part B: Preparation of 2,3-Difluoro-6-triphenylmethylamino- α -1-(3-methyl)-1-butenyl- α -trifluoromethyl-benzyl alcohol.

To a solution of 2,3-difluoro-6-triphenylmethylamino-α-1-(3-methyl)-1-butynyl-α-trifluoromethyl-benzyl alcohol (0.431 g, 0.8 mmol) in 5 mL of dry THF was added 1M-lithium aluminumhydride in THF (2.41 mL, 2.41 mmol) at room temperature and the mixture was stirred for 1 hour. The reaction was quenched with several drops of saturated NH₄Cl and was added about 20 mL of ether. After stirring for 10 minutes it was washed with saturated NaHCO3 and dried over MgSO4. Evaporation of the solvent gave the desired trans-olefinic compound in near quantitative yield.

25

Part C: Preparation of 6-Amino-2,3-Difluoro- α -1-(3-methyl)-1-butenyl- α -trifluoromethyl-benzyl alcohol.

A solution of the crude product of step 2 (0.8 mmol) and 1.33 mL of c-HCl in methanol (5 mL) was stirred for 1 hour at room temperature and basified with saturated NaHCO3. It was extracted with ether and washed with brine. After drying over MgSO4, the solvent was evaporated off to give an oily residue. It was crystallized from hexane to give pure 6-amino-2,3-Difluoro- α -1-(3-methyl)-1-butenyl- α -trifluoromethyl-benzyl alcohol (0.184 g, 78%).

5

10

15

25

30

Part D: Preparation of 5,6-Difluoro-4-(3-methyl)-1-buten-1-yl-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one

To a solution of the crude amino-alcohol (0.13 g, 0.44 mmol) in dry toluene (5 mL) at 0°C were added diisopropylethylamine (0.23 mL, 1.32 mmol) and 0.24 mL of 2M-phosgene in toluene (0.48 mmol) dropwise and the mixture was stirred for 5 minutes at 0°C and for 30 minutes at room temperature. After addition of saturated NH₄Cl (5 mL) it was extracted with ether and the organic layer was washed with brine. It was dried over MgSO₄ and evaporated in vacuo to give an oily residue. It was purified by column chromatography on Silica gel (1:9

EXAMPLE 9

ether-hexane) to give pure titled compound (0.051 g, 36%).

Preparation of (+/-)-4-Isopropylethynyl-4-trifluoromethyl-5,6-difluoro-1,4-dihydro-2H-3,1-benzoxazin-2-one.

Part A: Preparation of N-trimethylacetyl-3,4-difluoroanilide.

To a solution of 3,4-difluoroaniline (19 mL, 191 mmol) in methylene chloride (500 mL) at 0°C was added triethylamine (32 mL, 230 mmol) followed dropwise with trimethylacetyl chloride (24 mL, 191 mmol) and the resulting reaction mixture

was allowed to stir at room temperature for 3h. The reaction-mixture was poured onto 3N HCl and extracted with methylene chloride (3x100 mL) and the combined organic extracts were dried over anhydrous NaSO4 and concentrated in vacuo. The residue was taken up in hexanes (300 mL) and filtered through a sintered glass funnel. The solids are washed thoroughly with hexanes (500 mL) and dried under vacuum to give 37.36 g of the pivaloyl amide as a solid (40.68 g theoretical, 92% yield).

10

Part B: Preparation of N-Trimethylacetyl 5,6-difluoro-2-trifluoroacetylanilide.

To a solution of N-trimethylacetyl-3,4-difluoroanilide 15 (4.0 g, 14.6 mmol) in THF (60 mL) at -78°C was added dropwise 1.6M nBuLi in hexane (22 mL, 35 mmol) and the resulting reaction mixture was allowed to stir at -78°C for 1h. Ethyl trifluoroacetate (4 mL, 33.6 mmol) is added to the reaction mixture and the resulting solution was allowed to 20 stir with warming to room temperature (ice bath removed after the addition of reagent) for 0.5h. The reaction mixture was poured onto saturated NH₄Cl and extracted with ether (3x50 The combined ether extracts were dried over anhydrous MgSO4 and concentrated in vacuo to give an orange oil. 25 product was used in the next step of the synthetic sequence without further purification.

Part C: Preparation of 5,6-Difluoro-2-trifluoroacetylaniline.

30

35

To a solution of the orange oil in DME (15 mL) was added 6N HCl (75 mL) and the resulting mixture was allowed to reflux for 2h. The reaction mixture was cooled, made basic with solid Na₂CO₃ and extracted with ether (3x50 mL). The combined ether extracts were dried over anhydrous MgSO₄ and concentrated in vacuo. Chromatography (SiO₂, 20% EtOAchexanes eluant) provided 2110 mg of 5,6-Difluoro-2-

trifluoroacetylaniline as a yellow solid (3285 mg theoretical, 64% yield).

5

10

15

20

25

30

Part D: Preparation of 2-Amino-5,6-difluoro- α -isopropylethynyl- α -trifluoromethyl-benzyl alcohol.

To a solution of 3-methyl-1-butyne (0.36 mL, 3.56 mmol) in THF (6 mL) at 0°C was added 1.6M nBuLi in hexane (2.2 mL, 3.56 mmol) and the resulting reaction mixture was allowed to stir at 0°C for 0.5h. A solution of 5,6-Difluoro-2-trifluoroacetylaniline (200 mg, 0.89 mmol) in THF (6 mL) was added to the reaction mixture and the resulting reaction mixture was allowed to stir with warming to room temperature (ice bath removed after addition of reagent) for 0.5h. The reaction mixture was poured onto saturated NH4Cl and extracted with ether (3x50 mL). The combined ether extracts were dried over anhydrous MgSO4 and concentrated in vacuo to give an orange oil. This product was used in the next step of the synthetic sequence without further purification.

Part E: Preparation of 4-Isopropylethynyl-4-trifluoromethyl-5,6-difluoro-1,4-dihydro-2H-3,1-benzoxazin-2-one.

To a solution of amino-alcohol (crude product, 1.21 mmol) in toluene (4 mL) at 0°C was added N,N-diisopropylethylamine (0.54 mL, 3.12 mmol) followed by a solution of 1.93M phosgene in toluene (0.6 mL, 1.16 mmol) and the resulting solution was allowed to stir at 0°C for 0.1h. The reaction mixture was poured onto water and extracted with ether (3x50 mL). The combined ether extracts were dried over anhydrous MgSO4 and concentrated in vacuo. Chromatography (SiO2, 20% EtOAchexanes eluant) provided 45 mg of the title compound (284 mg theoretical, 16% yield).

EXAMPLE 10

Preparation of 2-Trifluoroacetylaniline.

Part A: Preparation of 2-Amino-α-trifluoromethyl-benzyl alcohol.

To a solution of amino ketone (155 mg, 0.7 mmol) in methanol (2 mL) at room temperature was added Pd(OH)₂ (20 mg) and hydrogenated (H₂/balloon) for 2h. The reaction mixture was filtered through Celite and concentrated in vacuo. The solids were triturated with ether (20 mL) and dried in vacuo to give 117 mg of 2-Amino- α -trifluoromethyl-benzyl alcohol as a pale yellow solid. (134 mg theoretical, 87% yield).

Part B: Preparation of 2-Trifluoroacetylaniline.

To a slurry of amino alcohol (520 mg, 2.72 mmol) in methylene chloride (5 mL) at room temperature was added MnO₂ (10xwt, 5 g) and the resulting reaction mixture was allowed to stir at room temperature for 0.75h. The reaction mixture was filtered through Celite and concentrated in vacuo to give an orange oil which is used without further purification due to instability of compound.

25 EXAMPLE 11

5

10

20

30

35

Preparation of 3-Fluoro-2-trifluoroacetyl-triphenylmethylaniline.

Part A: Preparation of 2-Amino-6-fluorobenzoyl N-methoxy-methylamide.

To a solution of 2-amino-6-fluorobenzoic acid (5 g, 32.26 mmol) in AcCN (100 mL) at room temperature was added N,O-dimethylhydroxylamine hydrochloride (3.8 g, 38.71 mmol), EDAC (7.4 g, 38.71 mmol) followed by triethylamine (5.38 mL, 38.71 mmol) and the resulting reaction mixture was allowed to stir at room temperature for 6h. The reaction mixture was

5

poured onto saturated NaHCO3 and extracted with EtOAc (3x100 - mL). The combined EtOAc extracts were dried over anhydrous NaSO4 and concentrated in vacuo. Chromatography (SiO2, 25% EtOAc-hexanes eluant) provided 4.29 g of the desired compound (5.87 g theoretical, 73% yield).

Part B: Preparation of 2-Triphenylmethylamino-6-fluorobenzoyl N-methoxy-methylamide.

To a solution of 2-amino-6-fluorobenzoyl N-methoxymethylamide (300 mg, 2.14 mmol) in methylene chloride (10 mL)
at room temperature was added N,N'-diisopropylamine (1.2 mL,
6.4 mmol) followed by triphenylmethyl bromide (830 mg, 2.57
mmol) and the resulting reaction mixture is allowed to stir
at room temperature for 0.5h. The reaction mixture was
poured onto water and extracted with methylene chloride (3x50
mL) and the combined organic extracts were dried over
anhydrous NaSO4 and concentrated in vacuo. Chromatography
(SiO2, 10% EtOAc-hexanes) provided 832 mg of the desired
compound (942 mg theoretical, 88% yield).

Part C: Preparation of 2-Triphenylmethylamino-6-fluorobenzaldehyde.

To a solution of 2-triphenylmethylamino-6-fluorobenzoyl N-methoxy-methylamide (300 mg, 0.68 mmol) in THF (4 mL) at -78°C was added lithium aluminum hydride (30 mg, 0.82 mmol) and the resulting reaction mixture was allowed to stir with warming to room temperature (dry ice bath removed after addition of reagent) for 1h. The reaction mixture was quenched with 20% KHSO4 and extracted with EtOAc (3x100 mL) and the combined EtOAc extracts were dried over anhydrous NaSO4 and concentrated in vacuo. Chromatography (SiO2, 5% EtOAc-hexanes) provided 182 mg of the title compound (260 mg theoretical, 70% yield).

Part D: Preparation of 2-Amino-6-fluoro-α-trifluoromethyl- benzyl alcohol.

To a solution of 2-triphenylmethylamino-6-fluorobenzaldehyde

(100 mg, 0.24 mmol) in THF (2 mL) at 0°C was added

trifluoromethyltrimethylsilane (0.06 mL, 0.36 mmol) followed
by a solution of tetrabutylammonium fluoride in THF (1M, 0.36

mL, 0.36 mmol) and the resulting reaction mixture was allowed
to stir with warming to room temperature (ice bath removed

after the addition of reagents) for 0.5h. The reaction

mixture was poured onto water and extracted with EtOAc (3x50

mL) and the combined EtOAc extracts were dried over anhydrous
NaSO4 and concentrated in vacuo. Chromatography (SiO2, 10%
EtOAc-hexanes) provided 88 mg of the title compound (108 mg
theoretical, 82% yield).

Part E: Preparation of 3-Fluoro-2-trifluoroacetyltriphenylmethylaniline.

To a solution of 2-amino-6-fluoro-α-trifluoromethyl-benzyl alcohol (88 mg, 0.2 mmol) in methylene chloride (6 mL) at room temperature was added manganese(IV)oxide (900 mg, 10xwt) and the resulting reaction mixture was allowed to stir at room temperature for 5h. The reaction mixture is filtered through Celite and concentrated in vacuo. Chromatography (SiO₂, 5% EtOAc-hexanes) provided 52 mg of the title compound (90 mg theoretical, 58% yield).

EXAMPLE 12

Preparation of (+/-)-4-Cyclopropylethynyl-6-chloro-4trifluoromethyl-7-aza-1,4-dihydro-2H-3,1-benzoxazin-2-one.

Part A: Preparation of 5-(t-Butoxycarbonylamino)-2-chloropyridine.

To a stirred solution of 2.83 g(22.0 mmol) of 5-amino-2-chloropyridine in 20 mL of anhydrous THF was added 44.0

35

mL(44.0 mmol) of a 1.0M solution of NaHMDS in toluene over 5 min. The dark solution was stirred 15 min. and 4.36 g(20 mmol) of di-t-butyldicarbonate in 5 mL of THF was introduced over 2 min. The thick mixture was stirred an additional 1h and poured into 0.5N aq. HCl. The solution was extracted with ethyl acetate, and the organic extract was washed with saturated aq. NaHCO3, water, and brine. The solution was dried (MgSO4), concentrated under reduced pressure, and chromatographed on silica gel(gradient elution with 3:1 hexanes-ether then ether) to give, after evaporation of solvents, 3.81 g(83%) of 5-(t-butoxycarbonylamino)-2-chloropyridine as a white solid, mp 122-123°C. 1 H NMR(300 MHz, CDCl3) δ 8.23(d, 1H, J = 2Hz); 7.98(br. d, 1H, J = 8Hz); 7.25(d, 1H, J = 8Hz); 6.58(s, 1H); 1.52(s, 9H).

15

10

Part B: Preparation of 2-(5-(t-Butoxycarbonylamino)-2-chloropyrid-4-yl)-4-cyclopropyl-1,1,1-trifluoro-3-butyn-2-ol.

To a stirred, cooled (-50°C) solution of 643 mg(2.8 mmol) of 20 5-(t-butoxycarbonylamino)-2-chloropyridine in 8 mL of anhydrous THF was added 4.7 mL(7.0 mmol) of t-BuLi in pentane over 3 min. The solution was stirred an additional 35 min. at -50°C after which time 1 mL(large excess) of 4-cyclopropyl-1,1,1-trifluoro-3-butyn-2-one. The solution was stirred an additional 20 min., warming to ambient temperature. 25 reaction was poured into 10% ag. citric acid, and the mixture was extracted with 1:1 ether-ethyl acetate. organic extract was washed with saturated aq. NaHCO3, then brine, dried $(MgSO_4)$, and concentrated under reduced pressure. Chromatography on silica gel(gradient elution with 6:1 then 30 3:1 hexanes-ethyl acetate) afforded, after removal of solvent, 620 mg(56%) of 2-(5-(t-butoxycarbonylamino)-2chloropyrid-4-yl)-4-cyclopropyl-1,1,1-trifluoro-3-butyn-2-ol as an amorphous solid. Mass spec.(NH_3-CI): 391($(M + H)^+$, 35 100%); 291((M + H-t-Boc)+, 49%). ¹H NMR(300 MHz, CDCl₃) δ 9.08(br. s, 1H); 8.19(br. s, 1H); 7.59(s, 1H); 1.50(s, 9H); 1.37-1.43 (m, 1H); 0.81-0.97 (m, 4H).

Part C: Preparation of 4-Cyclopropylethynyl-6-chloro-4 trifluoromethyl-7-aza-1,4-dihydro-2H-3,1-benzoxazin-2-one.

To a stirred solution of 230 mg(0.59 mmol) of 2-(5-(tbutoxycarbonylamino) -2-chloropyrid-4-yl) -4-cyclopropyl-1,1,1trifluoro-3-butyn-2-ol in 6 mL of anhydrous toluene was added 0.92 mL of a 2.5M solution of n-BuLi in hexanes. The solution was brought to reflux and stirred 10 min. after which time an additional 0.10 mL of n-BuLi was added. 10 solution was stirred an additional 20 min. at reflux and cooled to ambient temperature. The reaction was poured into 10% ag. citric acid and extracted with ether. The organic extract was washed with brine, dried(MgSO₄), and concentrated 15 under reduced pressure. Chromatography on silica gel(elution with 3:1 hexanes-ethyl acetate) afforded 25 mg (13%) of 4cyclopropylethynyl-6-chloro-4-trifluoromethyl-7-aza-1,4dihydro-2H-3,1-benzoxazin-2-one as an amorphous solid. Mass spec. (NH_3-CI) : 334 $((M + NH_4)^+, 100\%)$; 317 $((M + H)^+, 100\%)$; 20 273((M + H-CO₂)+, 21%). ¹H NMR(300 MHz, CDCl₃) δ 9.62(br. s, 1H); 8.17(s, 1H); 7.44(s, 1H); 1.36-1.44(m, 1H); 0.82-0.99(m, 4H).

EXAMPLE 13

25 Preparation of (+/-)-6-Chloro-4-(2-methoxyethoxy)-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one

30

35

Part A: Preparation of 4-Chloro-6-methoxy-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one.

To a stirred, gently refluxing solution of 7.0 g(31.9 mmol) of 2-amino-5-methoxy-(1',1',1'-trifluoro)acetophenone in 27 mL of anhydrous toluene was added 24.8 mL(47.9 mmol) of a 1.93M solution of phosgene in toluene over 2 min.(Note: A dry ice-acetone cold finger is used to condense phosgene during this reaction.). The solution is warmed at reflux for 2h, cooled, and charged with 15 mL of hexanes. Upon stirring

overnight at ambient temperature a precipitate formed which was filtered, washed with hexanes, and briefly air-dried to give 5.06 g(60%) of 4-chloro-6-methoxy-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one as an off-white solid mp 112-114°C. 1 H NMR(300 MHz, CDCl₃) δ 9.05(br. s, 1H); 7.07(br. s, 1H); 7.02(dd, 1H, J = 8, 2Hz); 6.90(d, 1H, J = 8Hz); 3.83(s, 3H).

Part B: Preparation of 6-Chloro-4-(2-methoxyethoxy)-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one

To a solution of 0.15 mL of 2-methoxyethanol in 5 mL of anhydrous THF at ambient temperature was added 20 mg of 100% sodium hydride. After 20 min, 100 mg of 4,6-dichloro-4-(trifluoromethyl)benzoxazinone was added, and the resulting solution was stirred at ambient temperature for 30 min. The reaction mixture was poured onto aqueous ammonium chloride and was extracted with ethyl acetate. The organic extracts were washed with brine, dried and evaporated. The crude product was purified by preparative TLC on silica gel (elution with ethyl acetate / hexanes 1:1) to afford a material which was crystallized from ethyl acetate-hexanes to afford 81 mg (71%) of the title compound.

25 **EXAMPLE 14**

5

10

15

20

Preparation of (+/-)-6-Chloro-4-propylamino-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one

To a solution of 230 mg of 4,6-dichloro-4
(trifluoromethyl)benzoxazinone in 20 mL of dry ether was added 0.250 mL of n-propylamine. After stirring 30 min at ambient temperature, the solution was partitioned between ether and water, and the organic layer was washed with brine, dried, and evaporated. The crude product was purified by column chromatography on silica gel (elution with ethyl acetate-hexanes 1:3) to afford after crystallization from hexanes 24 mg (9.7%) of the title compound.

EXAMPLE 15

Preparation of (+/-)-6-Chloro-4-[2-(furan-2-y1)ethyny1]-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one

5

10

15

20

To a solution of 5.9 g (25 mmoles) of 1,1-dibromo-2-(furan-2yl)ethylene in 124 mL of anhydrous THF at -20° was added dropwise 31.0 mL of 1.6 M n-butyllithium in hexanes (50 mmoles). This solution was allowed to warm to ambient temperature over a period of 30 min, after which time it was cooled to -50°. 4,6-Dichloro-4-(trifluoromethyl)-2H-3,1benzoxazin-2-one (2.65 g, 9.27 mmoles) was added in one portion, and the resulting solution was allowed to warm to -35° over 40 min. The reaction was quenched by the addition of aqueous ammonium chloride, and this mixture was poured onto water and extracted twice with ethyl acetate. combined extracts were washed with brine, dried over sodium sulfate, and evaporated. The crude product was purified by column chromatography on silica gel (elution with 15% and 30% ethyl acetate in hexanes) affording 3.5 g of a solid which was recrystallized from ethyl acetate/hexanes to afford 3.03 g (95.7%) of the title compound.

EXAMPLE 16

25

30

35

Preparation of (+/-)-4-(1-Butynyl)-6-methoxy-4trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one.

To a stirred, cooled(-78°C) solution of 0.5 g(excess) of 1-butyne in 3 mL of anhydrous THF was added 1.6 mL(4.0 mmol) of a 2.5M solution of n-BuLi in hexanes over 3 min. The solution was stirred 5 min. and charged with 266 mg(1.00 mmol) of 4-chloro-6-methoxy-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one as a single portion. The solution was warmed to -10°C over 20 min., whereupon it was quenched with 20% aqueous citric acid. The mixture was extracted with ether, and the organic extract was washed with saturated aq. NaHCO₃ then brine. The solution was concentrated under

reduced pressure, and the crude product was recrystallized from ethyl acetate-hexanes to afford 144 mg(48%) of 4-(1-butynyl)-6-methoxy-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one as a white solid, mp 161-162°C. 1 H NMR(300 MHz, CDCl₃) δ 8.81(br. s, 1H); 7.07(d, 1H, J = 2Hz); 6.94(dd, 1H, J = 9, 2Hz); 6.81(d, 1H, J = 8Hz); 3.82(s, 3H); 2.34(q, 2H, J = 7Hz); 1.22(t, 3H, J = 7Hz).

5

10

15

20

25

EXAMPLE 17

Preparation of (+/-)-4-(1'-hydroxy)-cyclopropylethynyl-4trifluoromethyl-6-chloro-1,4-dihydro-2H-3,1-benzoxazin-2-one.

Part A: Preparation of Methyl 1-hydroxy-1-cyclopropanecarboxylate.

1-Hydroxy-1-cyclopropanecarboxylic acid (587 mg, 5.75 mmol) was dissolved in methanol (20 mL) under nitrogen. Thionyl chloride (4 drops) were added and the reaction was stirred overnight at room temperature. Triethylamine was then added until the reaction was alkaline as judged by moistened pH paper. The solvent was then removed on the rotary evaporator.

Part B: Preparation of Methyl 1-triisopropylsilylhydroxy-1-cyclopropanecarboxylate.

The residue was then dissolved in dry methylene chloride (20 mL) under a nitrogen atmosphere. Dry 2,6-lutidine (distilled from

calcium hydride, 1.0 mL, 8.62 mmol) was added and the reaction - cooled to 0°C. Triisopropylsilyl trifluoromethanesulfonate (2.3 mL, 8.62 mmol) was then added dropwise and stirring continued for 1 hour. The reaction was then poured into 1 N HCl and extracted with hexanes. The organic layer was washed successively with water and brine, then dried with magnesium sulfate, filtered and evaporated. The crude material was purified by flash chromatography (silica) using 19:1 hexanes/ethyl acetate. This provided the silyl methyl ester in 87% yield for two steps (1.35 g).

5

10

30

35

Part C: Preparation of 1-Triisopropylsilylhydroxy-1-cyclopropanemethanol.

The silyl methyl ester (1.05 g, 3.86 mmol) was dissolved in 15 hexane (12 mL) under nitrogen. The reaction was cooled in a dry ice/acetone bath and a solution of diisobutylaluminum hydride (1.5 M in toluene, 6.4 mL, 9.64 mmol) was introduced dropwise. Stirring was continued for 2 hours when the reaction was 20 quenched by the addition of methanol (12 mL). The reaction was warmed to room temperature and poured into a saturated aqueous solution of sodium potassium tartrate. The clarified solution was extracted with ether and the organic layer washed with water and brine. After drying over magnesium sulfate, the product was isolated by filtration and evaporation (894.4 mg, 95%). 25 material was of sufficient purity for direct use in the next step.

Part D: Preparation of 1-Triisopropylsilylhydroxy-1-cyclopropanecarboxaldehyde.

A 100 mL flask was flame-dried and sealed under nitrogen. The flask was charged with dry methylene chloride (11 mL) and oxalyl chloride (0.44 mL, 5.07 mmol). The solution was cooled in a dry ice/acetone bath and dimethylsulfoxide was introduced (0.73 mL, 10.3 mmol). After stirring for 5 minutes, the starting material (1.065 g, 4.36 mmol) was added as a solution in methylene

cholride (5.0 mL). After stirring for 20 minutes, triethylamine (3.1 mL, 22.4 mmol) was added and the reaction was allowed to warm to room temperature. The reaction was then poured into 1 N HCl and extracted with ether. The organic layer was washed twice with water and once with brine. Drying with magnesium sulfate, filtration and evaporation then provided the crude product. This material was of sufficient purity for use in the next step.

10 Part E: Preparation of 1-Triisopropylsilylhydroxy-1-(2',2'-dibromoethene)cyclopropane.

A 500 mL flask was charged with carbon tetrabromide (2.89 g, 8.72 mmol) dissolved in dry methylene chloride (87 mL). solution was cooled to -20° C when triphenylphosphine 15 (recrystallized from hexanes, 2.28 g, 8.72 mmol) was added and stirring continued for 45 minutes. The reaction was then cooled to -60° C where the crude aldehyde (maximum of 4.36 mmol) dissolved in dry methylene chloride (40 mL) containing 20 triethylamine (0.61 mL, 4.26 mmol) was added. Stiirring was continued overnight with warming to room temperature. reaction was then diluted with hexanes (1 1) and filtered through a pad of magnesium sulfate. Evaporation and purification by flash column chromatography (silica, hexanes) 25 gave the desired dibromoolefin (35%, 607.1 mg).

Part F: Preparation of (+/-)-4-(1'-Triisopropylsilylhydroxy)-cyclopropylethynyl-4-trifluoromethyl-6-chloro-1,4-dihydro-2H-3,1-benzoxazin-2-one.

A 50 mL two-necked flasked was flame-dried *in vacuo* and sealed under nitrogen. The dibromoolefin was dissolved in dry tetrahydrofuran (8.0 mL) and transferred to the reaction flask. The reaction was cooled to -78° C and a solution of *n*-butyllithium (2.5 M in hexanes, 1.2 mL, 2.96 mmol) was added dropwise. Stirring was continued for 20 minutes when a solution of the chlorobenzoxazinone (212 mg. 0.74 mmol) in dry

30

tetrahydrofuran (2.0 mL) was added. The reaction was warmed to-60°C and stirring continued for 30 minutes. The reaction was then poured into a saturated aqueous solution of ammonium chloride and extracted with ethyl acetate. The organic phase was washed with water and brine and then dried over magnesium sulfate. The crude product was isolated by filtration and evaporation. Flash chromatography (silica, 4:1 hexanes/ethyl acetate) gave the partially purified product (235 mg). A subsequent chromatography under similar conditions gave the desired material (35%, 118 mg) with suitable purity for the next step.

10

15

Part G: Preparation of 4-(1'-Hydroxy)-cyclopropylethynyl-4-trifluoromethyl-6-chloro-1,4-dihydro-2H-3,1-benzoxazin-2-one.

The starting material (53.0 mg, 0.117 mmol) was dissolved in dry tetrahydrofuran (2.0 mL) under nitrogen. A solution of tetra-n-butylammonium fluoride (1M in tetrahydrofuran, 0.12 mL, 0.12 mmol) was added and stirring continued for 15

20 minutes. The reaction was then diluted with 1:1 hexanes/ethyl acetate and washed twice with water and once with brine. Drying with magnesium sulfate, filtration, and evaporation gave the crude product. The compound was purified by flash chromatography (silica, 4:1 hexanes/ethyl acetate to 2:1 hexanes/ethyl acetate). The desired product was isolated in 74% yield (28.7 mg). m.p. 192-194° C. HRMS: calculated for C14H10ClF3NO3, M+H): 332.0301; found 332.0296.

EXAMPLE 18

Preparation of (+/-)-4-isopropylethynyl-4-trifluoromethyl-5-fluoro-1,4-dihydro-2H-3,1-benzoxazin-2-one

Part A: Preparation of 2-Triphenylmethylamino-5-fluoro- α isopropylethynyl- α -trifluoromethyl-benzyl alcohol.

To a solution of 3-methyl-1-butyne (0.16 mL, 1.51 mmol) in THF (2 mL) at 0°C was added 1.6M nBuLi in hexane (0.84 mL, 1.34 mmol) and the resulting reaction mixture was allowed to 10 stir at 0°C for 0.5h. A solution of 5-fluoro-2trifluoroacetyl-triphenylmethylaniline (300 mg, 0.67 mmol) in THF (2 mL) was added to the reaction mixture and the resulting reaction mixture was allowed to stir at 0°C for 15 The reaction mixture was poured onto saturated NH4Cl and extracted with ether (3x50 mL). The combined ether extracts were dried over anhydrous MgSO4 and concentrated in vacuo to give an orange oil. This product was used in the next step of the synthetic sequence without further 20 purification.

Part B: Preparation of 2-Amino-5-fluoro- α -isopropylethynyl- α -trifluoromethyl-benzyl alcohol.

To a solution of the benzyl alcohol (crude product, approx. 0.67 mmol) in methanol (5 mL) at room temperature was added concentrated hydrochloric acid (0.1 mL) and the resulting reaction mixture was allowed to stir at room temperature for 0.25h. The reaction mixture was quenched with saturated NaHCO3 and extracted with ether (3x50 mL). The combined ether extracts were dried over anhydrous MgSO4 and concentrated in vacuo. Chromatography (SiO2, 15% EtOAchexanes eluant) provided 103 mg of the title compound (184 mg theoretical, 56% yield over two steps).

35

Part C: Preparation of 4-Isopropylethynyl-4-trifluoromethyl- - 5-fluoro-1,4-dihydro-2H-3,1-benzoxazin-2-one.

To a solution of amino-alcohol (103 mg 0.37 mmol) in toluene (3 mL) at 0°C was added N,N-diisopropylethylamine (0.23 mL, 1.30 mmol) followed by a solution of 1.93M phosgene in toluene (0.25 mL, 0.48 mmol) and the resulting solution was allowed to stir at 0°C for 0.1h. The reaction mixture was poured onto water and extracted with ether (3x50 mL). The combined ether extracts were dried over anhydrous MgSO4 and concentrated in vacuo. Chromatography (SiO2, 20% EtOAchexanes eluant) provided 89 mg of the title compound (111 mg theoretical, 80% yield).

15

10

5

EXAMPLE 19

Preparation of 4-Chloro-2-cyclopropylacetylaniline

20 Cyclopropyllithium was prepared by the procedure of Dakkouri (Chem. Ber. 1979, 112, 3523.). To a 3 neck 100 ml flask equipped with a magnetic stir bar, a thermocouple probe, a West condenser and a nitrogen line was charged 1.0 g (0.14 mol.) of freshly cleaned Li ribbon and 20 ml anhydrous 25 ether. The mixture was cooled to 0°C and 5.6 ml of cyclopropylbromide (70 mmol) in 10 ml of anhydrous ether was added dropwise. The bromide solution was added over 45 min. due to the exothermic nature of the metalation reaction. After the addition was complete the lithium reagent was aged for 30 min. then cooled to - 65 °C. A solution of 5.53 g 30 (28 mmol.) of 5-chloroisatoic anhydride in 80 ml THF was prepared in a dry 3 neck flask and cooled to -40 °C. cyclopropyllithium solution was transfered via canula into the anhydride solution over 30 min. The resulting milky solution was aged for 1 h at - 40 °C during which time the 35

solution became clear with a pale green color. The anion solution was quenched by addition of 1 M citric acid solution and then warmed to ambient temperature. The phases were separated and the organic layer washed with water and concentrated to provide a tacky yellow solid which was chromatographed on silica gel with ethyl acetate/ hexanes (3:1) to provide 3.56 g of the title compound in 65% yield. Crystallization from heptane provides the title compound as a pale yellow solid: m.p. 73.7 °C; 1 H NMR (300 MHz, CDCl₃) δ 7.90 (d, J = 1.5 Hz, 1 H), 7.22 (dd, J = 2.3, 8.7 Hz, 1H), 10 6.59 (d, J = 8.7 Hz, 1H), 6.13 (brs, 2H), 2.56 (m, 1 H),. 1.18 (m, 2 H), 1.00 (m, 2 H); ^{13}C NMR (75 MHz, CDCl₃) δ 201.06, 148.23, 133.83, 130.41, 121.70, 119.69, 118.56, 17.37, 11.08; IR (cm^{-1}) 3315, 3012, 1628, 1582, 1533, 1481, 1464, 1414, 1389, 1343, 1313, 1217, 1183, 1158, 1082, 1053, 15 1032, 985, 893, 868, 813.

EXAMPLE 20

Preparation of 4-Chloro-2-((cyclopropylenthynyl)acetyl)aniline

20

Do a 3 neck 100 ml flask equipped with a magnetic stir

25 bar, a thermocouple probe, a solid addition funnel and a
nitrogen line was charged 3.7 g (56.0 mmol.) of
cyclopropylacetylene and 30 ml of anhydrous THF. The
solution was cooled to - 60 °C and 30 ml (53.1 mmol.) of 1.8
M hexyllithium in hexanes was added dropwise while

30 maintaining the internal temperature below - 20 °C. The
solution was aged at - 40 °C for 30 min. and then 5 g (25.3
mmol.) of 5-chloroisatoic anhydride was added as a solid in
small portions. The resulting solution was aged for 2 h at 40 °C during which time the solution became clear with a pale
35 yellow color. The anion solution was quenched by addition of

1 M citric acid solution and then warmed to ambient temperature. The phases were separated and the organic layer washed with water and concentrated to provide a an orange solid. The product was triturated with heptanes to provides 9 as a tan solid: 1 H NMR (300 MHz, CDCl₃) δ 8.43 (m, 1 H), 8.02 (m, 1H), 7.36 (m, 1H), 1.48 (m, 1 H), 0.99 (m, 2 H), 0.87 (m, 2 H); IR (cm⁻¹) 2978, 2221, 1641, 1579, 1502, 1434, 1410, 1370, 1299, 1055, 906, 829, 731.

10 EXAMPLE 21

Preparation of (S)-6-Chloro-4-(chloro)-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one

15

To a 3 neck flask equipped with a magnetic stirrer, a thermocouple probe and a dry ice condenser was charged 25 g (0.11 mol.) of trifluoroketone 3 and 150 ml of anhydrous toluene. This yellow solution was then heated to gentle 20 reflux and a solution (87 ml, 0.17 mol.) of phosgene (1.93 M) in toluene was added subsurface. The solution was heated to reflux (temperature range at 104 to 110 °C) for 3 h after which time the yellow color had dissipated and the starting ketone was not detected by ¹H NMR. The solution was cooled to ambient temperature and then concentrated to provide a 25 heterogeneous solution. The product was triturated with heptane (100 ml) and filtered to provide 29.24 g (92%) of the desired chlorobenzoxazinone as a white solid. m.p. °C; 1 H NMR (300 MHz) δ 9.26 (b, 1H), 7.57 (s, 1H), 7.45 (dd, J= 1.9, 8.3 Hz, 1H), 6.94 (d, J = 8.7 Hz, 1H); 13 C NMR (75) 30 MHz) δ 146.32, 132.88, 132.42, 130.27, 125.80, 122.83, 119.06, 116.79, 115.85, 0.013; 19 F NMR (282 MHz) δ - 79.5; IR (cm⁻¹) 3191, 1764, 1601, 1498, 1403, 1335, 1316, 1252, 1199, 1073, 991, 901, 874, 826, 683.

35

EXAMPLE 22

Preparation of (+/-)-6-Chloro-4-(cyclopropylethynyl)-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one

5

To a 50 ml 3 neck flask equipped with a magnetic stir bar, a thermocouple probe and nitrogen inlet was charged 10 ml anhydrous THF and 2.2 eq cyclopropylacetylene (0.23 g, 3.4 10 mmol.). The solution was cooled to-50 $^{\circ}$ C and 2.0 eq. of nhexyllithium in hexanes (1.8 M, 1.8 ml, 3.26 mmol.) was added dropwise via syringe. The internal temperature was maintained below -30 °C during the organolithium charge. solution was aged for 30 minutes and then a solution of 0.44 g (1.55 mmol.) of the chlorobenzoxazinone in 5 ml THF was 15 added dropwise. The reaction solution was maintained below -20 °C during the addition. The mixture was aged at - 20 °C for 4 h after which time all of the starting material had been consumed by TLC. The mixture was then quenched while 20 cold with saturated ammonium chloride solution and the layers separated. The organic solution was dried over sodium sulfate, concentrated to provide a light yellow solid. product was then triturated with heptanes to provide 0.47 g (95 %) of racemic title product as a white solid. HPLC: 99.8 25 area %; m.p. 183-6 °C; 1 H NMR (400 MHz, DMSO- d_{6}) δ 11.05 (s, 1H), 7.54 (dd, J = 2.5, 7 Hz, 1H), 7.43 (d, J = 2.5 Hz, 1H), 6.99 (d, J = 7 Hz, 1H), 1.58 (m, 1H), 0.92 (m, 2H), 0.77 (m, 2H); 13 C NMR (100 MHz, DMSO- d_6) δ 146.23, 134.71, 132.04, 126.93, 126.57, 122.24, 116.83, 114.08, 95.63, 77.62, 65.85, 8.48, 8.44, -1.32; 19 F NMR (282 MHz, DMSO- d_6) δ -81.1; IR (cm⁻ 30 ¹) 3316, 3094, 2250, 1752, 1602, 1498, 1196, 1186. HRMS calcd. for $C_{14H_{10}F_{3}ClNO_{2}}$ (M + H) 316.0352, found 316.0338. Anal. Calcd. for C14H9F3ClNO2: C, 53.27; H, 2.87; N, 4.45;

Cl 11.23; F, 18.05. Found: C, 53.15; H, 2.73; N, 4.37; Cl, 11.10; F, 17.84.

EXAMPLE 23

Preparation of (S)-6-Chloro-4-(1-pyridylethynyl)-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one

5

To a 50 ml 3 neck flask equipped with a magnetic stir 10 bar, thermocouple and nitrogen inlet was charged 20 ml anhydrous THF and 2.2 eq pyridylethyne (1.1 g, 10.2 mmol.). The solution was cooled to -50 °C and 2.0 eq. of nhexyllithium in hexanes (1.8 M, 4.0 ml, 10.0 mmol.) was added 15 dropwise via syringe. The internal temperature was maintained below - 30 °C during the organolithium charge. The solution was aged for 30 minutes and then a solution of 1.5 g (5.2 mmol.) of the chlorobenzoxazinone from Example 21 in 15 ml THF was added dropwise. The reaction solution was 20 maintained above -20 °C during the addition. The mixture was aged at -20 °C for 2 h at which time all of the starting material had been consumed by TLC. The mixture was then quenched while cold with saturated ammonium chloride solution and the layers separated. The organic solution was dried 25 over sodium sulfate, concentrated to provide a brown solid. The product was purified by flash chromatography (hexanes/ethyl acetate; 3:1) and then triturated with heptanes to provide 1.06 g (57 %) of the title compound as a white solid. HPLC: 99.8 area %; m.p. 185.8 °C; 1 H NMR (300 30 MHz) δ 9.62 (s, 1H), 8.68 (d, J = 4.2 Hz, 1 H), 7.76 (dd, J = 7.6, 9.5 Hz, 1H), 7.61 (d, J = 5.7 Hz, 2H), 7.40 (m, 2 H), 6.91 (d, J = 8.7 Hz, 1H; ¹³C NMR (75 MHz) δ 150.38, 148.20, 140.32, 136.57, 133.43, 132.06, 129.34, 128.30, 127.60,

124.65, 123.94, 120.13, 116.37, 114.01, 88.72, 78.75; 19 F NMR $^{-}$ (282 MHz) $^{\delta}$ -81.4; IR (cm $^{-1}$)3245, 3157, 3069, 2946, 2876, 2252, 1757, 1603, 1581, 1498, 1467, 1428, 1401, 1305, 1256, 1243, 1186, 1142, 1401, 1304, 1256+, 1243, 1186, 1142, 1103, 1072, 1037, 997, 971, 940, 866, 822, 780, 740. MS FIA/PCI (M+H) 353 m/z.

EXAMPLE 24

Preparation of (+/-)-6-Chloro-4-(1-deuterocycloprop-1-10 ylethynyl)-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one

5

Part A: Preparation of 1-(t-Butyldimethylsily1)-2cyclopropylacetylene

To a stirred, cooled (0°C) solution of 188 mL (658 mmol) of a 3.5 M solution of cyclopropylacetylene in toluene was added 200 mL of THF. The solution was re-cooled to 0°C and 20 treated with 264 mL (660 mmol) of a 2.5 M solution of n-BuLiin hexanes over 15 min. The solution was stirred an additional 40 min. at 0°C and treated with 100g(663 mmol) of t-butyldimethylsilyl chloride in 60 mL of THF over 10 min. 25 After stirring 90 min. at 0°C the reaction was quenched with saturated aq. NH₄Cl and poured into 500 mL of water. mixture was extracted with 500 mL of ether, and the organic extract was washed three times with water and once with brine. Concentration under reduced pressure followed by 30 distillation afforded 49 g(42%) of 1-(t-butyldimethylsilyl)-

2-cyclopropylacetylene as a colorless oil (b.p. 39-42°C at 0.5 torr). 1 H NMR(CDCl₃, 300 MHz) δ 1.17-1.24(m, 1H); 0.95(s, 9H); 0.61-0.75(m, 4H); 0.00(s, 6H).

5 Part B: Preparation of 1-Deutero-1-ethynylcyclpropane

To a stirred, cooled(-30°C) solution of 130 g(720 mmol) of 1-(t-butyldimethylsilyl)-2-cyclopropylacetylene in 400 mL of THF was added 403 mL(1.01 mol) of a 2.5 M solution of n-10 BuLi in hexanes over 15 min. The solution was stirred 1.5h at -20° C and then treated with 49 mL(1.2 mol) of CD₃OD over 10 After stirring 10 min. at -10°C the reaction was quenched with 10 mL of D2O, followed 15 min later with 1L of 20% aq. citric acid. The mixture was extracted with 1L of 15 ether, and the organic extract was washed sequentially with water, sat'd aq. NaHCO3, and brine. The solution was dried(MgSO4), concentrated under reduced pressure, and redissolved in 300 mL of THF. This solution was treated with 780 mL(350 mmol) of a 1 M solution of $(n-Bu)_4NF$ in THF and 20 stirred 6h at ambient temperature. The solution was cooled to 0°C, washed with 1L of water, and the aqueous phase was extracted with 150 mL of p-xylene. The organic extract was washed with 500 mL of water, and the combined aqueous phases were extracted with 70 mL of p-xylene. The two organic phases were combined, and washed 5 times with water and once 25 with brine, dried(MgSO₄), and distilled. The fraction which boiled up to 105°C at ambient pressure was collected to give 88g of a solution having a deuterocyclopropylacetylene concentration of c. 43%. The remainder is primarily THF with 30 some xylene and some 1-butene.

Part C: Preparation of (+/-) 6-Chloro-4-(1-deuterocycloprop-1-ylethynyl)-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one

To a stirred, cooled(-60°C) solution of 12.6g of a 60% solution of 1-deutero-1-ethynylcyclpropane in 65 mL of

35

anhydrous THF was added 41 mL(102 mmol) of a 2.5M solution of n-BuLi in hexanes over 20 min. The solution was stirred 30 min. and charged with 9.7g(33.9 mmol) of 4,6-dichloro-4trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one in 10 mL 5 of THF over 2 min. The solution was warmed to -30°C over 1h. whereupon it was quenched with 20% aqueous citric acid. mixture was extracted with ether, and the organic extract was washed with saturated aq. NaHCO3 then brine. The solution was concentrated under reduced pressure, and the crude product was chromatographed on silica gel(elution with 2:1 hexanes-10 ether) to afford 5.8g(54%) of (+/-) 6-chloro-4-(1deuterocycloprop-1-ylethynyl)-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one as a white solid, mp 180-181°C. NMR(300 MHz, CDCl $_3$) δ 9.32(br. s, 1H); 7.50(m, 1H); 7.37(dd, 15 1H, J = 8, 1Hz; 6.95(d, 1H, J = 8Hz); 0.82-0.96(m, 4H). Chiral chromatographic resolution provides (-) 6-Chloro-4-(1deuterocycloprop-1-ylethynyl)-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one as a white solid, mp 133-134°C.

20 **EXAMPLE 25**

25

30

35

Preparation of 4-Isopropylethynyl-4-trifluoromethyl-5-fluoro-1,4-dihydro-2H-3,1-benzoxazin-2-one

Part A: Preparation of 2-Amino-6-fluoro- α -trifluoromethylbenzyl alcohol.

To a solution of 2-triphenylmethylamino-6-fluorobenzaldehyde (100mg, 0.24mmol) in THF (2mL) at 0°C was added trifluoromethyltrimethylsilane (0.06mL, 0.36mmol) followed by a solution of tetrabutylammonium fluoride in THF (1M, 0.36mL, 0.36mmol) and the resulting reaction mixture was allowed to stir with warming to room temperature (ice bath removed after the addition of reagents) for 0.5h. The reaction mixture was poured onto water and extracted with EtOAc (3x50mL) and the combined EtOAc extracts were dried over anhydrous NaSO4 and concentrated in vacuo.

Chromatography (SiO₂, 10% EtOAc-hexanes) provided 88mg of the -title compound (108mg theoretical, 82% yield).

Part B: Preparation of 3-Fluoro-2-trifluoroacetyl-triphenylmethylaniline.

To a solution of 2-amino-6-fluoro-α-trifluoromethyl-benzyl alcohol (88mg, 0.2mmol) in methylene chloride (6mL) at room temperature was added manganese(IV)oxide (900mg, 10xwt) and the resulting reaction mixture was allowed to stir at room temperature for 5h. The reaction mixture is filtered through Celite and concentrated in vacuo. Chromatography (SiO₂, 5% EtOAc-hexanes) provided 52mg of the title compound (90mg theoretical, 58% yield).

15

20

25

30

10

5

Part C: Preparation of 2-Triphenylmethylamino-6-fluoro- α -isopropylethynyl- α -trifluoromethyl-benzyl alcohol.

To a solution of 3-methyl-1-butyne (0.15mL, 1.51mmol) in THF (2mL) at 0°C was added 1.6M nBuLi in hexane (0.84mL, 1.34mmol) and the resulting reaction mixture was allowed to stir at 0°C for 0.5h. A solution of 6-fluoro-2-trifluoroacetylaniline (300mg, 0.67mmol) in THF (2 mL) was added to the reaction mixture and the resulting reaction mixture was allowed to stir with warming to room temperature (ice bath removed after addition of reagent) for 0.5h. The reaction mixture was poured onto saturated NH4Cl and extracted with ether (3x50mL). The combined ether extracts were dried over anhydrous MgSO4 and concentrated in vacuo to give an orange oil. This product was used in the next step of the synthetic sequence without further purification.

Part D: Preparation of 4-Isopropylethynyl-4-trifluoromethyl-5-fluoro-1,4-dihydro-2H-3,1-benzoxazin-2-one.

35

To a solution of the crude trityl protected aminoalcohol (crude product, 0.67mmol) in methanol (5mL) at room

temperature was added concentrated HCl (0.1mL) and the resulting reaction mixture is allowed to stir at room temperature for 0.25h. The reaction mixture is concentrated in vacuo and the residue is taken up in ether (10mL) and washed with saturated NaHCO3. The ether extracts were dried over anhydrous MgSO4 and concentrated in vacuo. Chromatography (SiO2, 15% EtOAc-hexanes) provided 103mg of the deprotected amino-alcohol (184mg theoretical, 56% yield).

To a solution of amino-alcohol (103mg, 0.37mmol) in toluene (3mL) at 0°C was added N,N-diisopropylethylamine (0.23mL, 1.3mmol) followed by a solution of 1.93M phosgene in toluene (0.25mL, 0.48mmol) and the resulting solution was allowed to stir at 0°C for 1h. The reaction mixture was poured onto water and extracted with ether (3x50mL). The combined ether extracts were dried over anhydrous MgSO4 and concentrated in vacuo. Chromatography (SiO2, 20% EtOAchexanes eluant) provided 89mg of the title compound (111mg theoretical, 80% yield).

10

15

$$G \xrightarrow{\mathbb{R}^1} \mathbb{R}^2$$

Ex.#	G	R ¹	R ²	m.p.(°C)	Mass Spec
1	6-Cl, 8-OH	CF ₃	C≡C-cycPr		332.0301
2 (-)	6-Cl, 8-OH	CF3	C≡C-cycPr	170-172	
3 (-)	6-Cl, 8-OH	CF ₃	C≡C-cycPr		
4	6-Cl, 8-F	CF ₃	C≡C-cycPr	169-171	334.0244
5	6-CH ₃	iPr	C≡C-cycPr	138-138.5	270.1494
6	6-CH ₃	CF ₃	C≡C-iPr	198-199	298.1047
7	6-COCH ₃	CF ₃	C≡C-cycPr	197-200	
8	5,6-diF	CF ₃	3-methyl-1- buten-1-yl		
9	5,6-diF	CF ₃	C≡C-iPr		319.0616
12	6-Cl, 7-aza	CF3	C≡C-cycPr		317.0322
13	6-Cl	CF ₃	methoxyethoxy		
14	6-Cl	CF ₃	n-propylamino		
15	6-Cl	CF ₃	furan-2-yl-≡-		
16	6-OMe	CF ₃	C≡C-Et	161-162	300.0841
17	6-Cl	CF ₃	≡-(1'-OH-cycPr)		332.0296
18	5-F	CF3	≡-iPr		
22	6-Cl	CF ₃	≡-cycPr		316.0352
23	6-Cl	CF ₃	≡-2-pyridyl		353
					(M+H)
24	6-Cl	CF ₃	≡-(1-deutero-	133-134	
25	5-F	CF ₃	cycloprop-1-yl) ≡-iPr		
26	6-Cl, 8-OMe	CF ₃			346.0477
27	6-C1, 7-OH	CF ₃	C≡C-cycPr	·	332.0286
28	6-C1, 8-F	CF ₃	C≡C-cycPr C≡C-Et	191-192	339.0525 (M+NH ₄ +)

		T			
29	6-Cl, 8-F	CF ₃	CH ₂ CH ₂ CH(CH ₃) ₂	160-162	340 (MH ⁺)
30	5,6- d iF	CF ₃	C≡C-cycPr		318.0550 (MH ⁺)
31	5,6-diF	CF ₃	C≡C-iPr	amorphous	(MI)
32	5,6-diF	CF ₃	C≡C-nPr		320.0691
33	5,6-diF	CF3	C≡C-Et		306.0550 (MH ⁺)
34	5,6-diF	CF ₃	C≡C-Me	217	
35	5,6-diF	CF ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃		324.1008
36	5,6-diF	CF3	CH ₂ CH ₂ CH (CH ₃) ₂		324.1003
37	5,6-diF	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃		310.0878
38	5,6-OCH ₂ O-	CF ₃	C≡C-cycPr	223-225	326.0639
39	5,6-OCH ₂ O-	CF ₃	C≡C-iPr	240	328.0797
40	5,6-OCH ₂ O-	CF ₃	C≡C-nPr	208-210	
41	5,6-OCH ₂ O-	CF ₃	C≡C-Et	230-232	
42	5,6-OCH ₂ O-	CF ₃	CH ₂ C≡C-CH ₂ CH ₃ 215-		328.0800
43	5,6-ОСН ₂ О-	CF ₃	CH ₂ C≡C-CH ₃	207-208	314.0640
44	5,6-OCH ₂ O-	CF3	CH ₂ CH ₂ CH (CH ₃) ₂	199-200	
45	6-OMe	CF ₃	C≡C-cycPr	155-157	312.0835
46	6-OMe	CF3	C≡C-cycPr	143-144	312.0843
47	6-OMe	CF ₃	C≡C-cycPr	142-144	312.0836
48	6-ОМе	CF ₃	C≡C-iPr	158-159	314.0998
49	6-OMe	CF ₃	C≡C-nPr	148-150	314.1007
50	6-OMe	CF ₃	C≡C-Me	177-180	286.0691
51	6-OMe	CF ₃	CH ₂ C≡C−CH ₂ CH ₃	119-122	314.0989
52	6-OMe	CF ₃	CH ₂ CH ₂ CH (CH ₃) ₂		318 (MH+)
53	6-OMe	CF3	CH ₂ CH ₂ CH ₂ CH ₃		304.1167
54	6-0Me	CF3	CH ₂ CH ₂ -Ph		352.1153
55	6-OMe, 8-F	CF ₃	C≡C-cycPr	188-189	330.0738
56	6-NMe2	CF ₃	C≡C-cycPr	*******	325.1173
57	6-NMe2	CF ₃	C≡C-iPr		327.1322
58	6-NMe2	CF ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃		331.1641

59	6-NMe ₂	CF ₃	CH ₂ CH ₂ CH(CH ₃) ₂		331.1637
60	6-COCH ₃	CF ₃	C≡C-Et	180-183	
61	6-CH ₃	CF ₃	C≡C-cycPr	189	296.0905
62	6-CH ₃	CF ₃	C≡C-Et	222	284.0882
63	6,8-dicl	CF ₃	C≡C-cycPr	152-153	348.9870
64	6,8-diCl	CF ₃	CH ₂ CH ₂ -Ph		389.0188 (M ⁺)
65	5,6,8-triF	CF ₃	C≡C-cycPr	amorphous	
66	5,6,8-triF	CF ₃	C≡C-iPr	amorphous	
67	5,6,8-triF	CF ₃	C≡C-nPr	amorphous	
68	5,6,8-triF	CF ₃	C≡C-Et	amorphous	
69	5,8-diF	CF ₃	C≡C-cycPr		335.0834 (M+NH ₄ +)
70	5,8-diF	CF ₃	C≡C-iPr		320.0710 (MH ⁺)
71	5,8-diF	CF ₃	C≡C-nPr		337.0970 (M+NH4 ⁺)
72	5,8-diF	CF ₃	C≡C-Et		323.8817 (M+NH ₄ +)
73	6-iPr	CF ₃	C≡C-cycPr		324.1203
74	6-iPr	CF ₃	C≡C-iPr		326.1361
75	6-iPr	CF ₃	C≡C-Ph		360.1204
76	6-iPr	CF ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃		330.1672
77	6-iPr	CF ₃	CH ₂ CH ₂ -iPr		330.1673
78	6-iPr	CF ₃	CH ₂ CH ₂ -Ph		364.1517
79	6-OCF ₃	CF ₃	C≡C-cycPr		366.0561
80	6-OCF ₃	CF ₃	C≡C-iPr		368.0712
81	6-0CF ₃	CF ₃	C≡C-Ph		401.0475
82	6-OCF ₃	CF ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃		372.1018
83	6-0CF ₃	CF ₃	CH ₂ CH ₂ -iPr		372.1039
84	6-0CF ₃	CF ₃	CH ₂ CH ₂ -Ph		405.0795
85	Н	CF ₃	CH ₂ CH ₂ -Ph		282.0735
86	Н	CF ₃	C≡C-iPr		284.0894
87	Н	CF3	C≡C−Ph		318.0748
88	Н	CF ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃		288.1201

89	Н	CF ₃	CH ₂ CH ₂ -iPr	121-122	
90	Н	CF3	CH ₂ CH ₂ -Ph		322.1055
91	6-Ph	CF3	C≡C-cycPr	185-186	358.1055
92	6-Ph	CF ₃	C≡C-iPr	179-180	360.1211
93	6-Ph	CF ₃	C≡C-nPr	143-144	360.1211
94	6-Ph	CF ₃	C≡C-iBu	163-164	374.1352
95	6-Ph	CF3	C≡C~Et	195	346.1055
96	6-Ph	CF ₃	CH ₂ CH ₂ -iPr	147-148	364.1524
97	6-OMe	iPr	C≡C-cycPr		286.1428
98	6-OMe	iPr	C≡C-iPr		288.1583
99	6-CH ₃	cycPr	C≡C-iPr	133-134	270.1498
100	6-СН ₃	iPr	C≡C-iPr	133-134	272.1648
101	6-CH ₃	Et	C≡C-iPr	138-139	258.1505
102	6-СН ₃	Et	C≡C-Et	138.5-139	244.1333
103	6,7-diCl	cycPr	C≡C-iPr		
104	6,7-dicl	iPr	C≡C-iPr	amorphous	
105	7-Cl	cycPr	C≡C-cycPr		288.0783
106	7-Cl	cycPr	C≡C-iPr		290.0941
107	7-C1	cycPr	C≡C-iBu	117-118	304.1110
108	7-C1	iPr	C≡C-cycPr		290.0940
109	7-C1	iPr	C≡C-iPr		292.1103
110	6-Cl, 8-aza	CF ₃	C≡C-cycPr		317.0317
111	6-Cl, 8-aza	CF ₃	C≡C-iPr		319 (MH ⁺)
112	6-Cl, 8-aza	CF3	CH ₂ CH ₂ -Ph	214-215	357.0625
113	6-OCH ₃ , 7- aza	CF ₃	C≡C-cycPr	181-182	313.0800
114	6-aza	CF ₃	C≡C-cycPr		

^{*}Unless otherwise noted, stereochemistry is (+/-).

Table 2

$$G \xrightarrow{\text{II}} \bigcap_{\substack{N \\ H}}^{R^1} \bigcap_{\substack{N \\ O}}^{R^2}$$

Ex. #	G	R^1	\mathbb{R}^2
201	6-Cl, 8-F	CF ₃	C≡C-iPr
202	6-Cl, 8-F	CF ₃	C≡C-nPr
203	6-Cl, 8-F	CF ₃	C≡C-Bu
204	6-Cl, 8-F	CF_3	C≡C-iBu
205	6-Cl, 8-F	CF ₃	C≡C-tBu
206	6-Cl, 8-F	CF ₃	C≡C-Me
207	6-Cl, 8-F	CF ₃	C≡C-Ph
208	6-Cl, 8-F	CF ₃	C≡C-(2-C1)Ph
209	6-C1, 8-F	\mathtt{CF}_3	C≡C-(3-C1)Ph
210	6-C1, 8-F	\mathtt{CF}_3	C≡C-(2-F) Ph
211	6-Cl, 8-F	\mathtt{CF}_3	C≡C-(3-F)Ph
212	6-Cl, 8-F	CF ₃	C≡C-(2-OH) Ph
213	6-Cl, 8-F	CF ₃	C≡C-(3-OH) Ph
214	6-Cl, 8-F	CF_3	C≡C-(2-OMe)Ph
215	6-Cl, 8-F	CF ₃	C≡C-(3-OMe)Ph
216	6-C1, 8-F	CF_3	C≡C-(2-CN)Ph
217	6-Cl, 8-F	CF ₃	C≡C-(3-CN)Ph
218	6-C1, 8-F	CF_3	$C \equiv C - (2 - NH_2) Ph$
219	6-Cl, 8-F	CF ₃	$C \equiv C - (3 - NH_2) Ph$
220	6-Cl, 8-F	CF_3	$C = C - (2 - NMe_2) Ph$
221	6-Cl, 8-F	CF ₃	C≡C-(3-NMe ₂)Ph
222	6-Cl, 8-F	CF ₃	C≡C-2-Pyridyl
223	6-Cl, 8-F	CF ₃	C≡C-3-Pyridyl
224	6-Cl, 8-F	CF ₃	C≡C-4-Pyridyl
225	6-Cl, 8-F	CF ₃	C≡C-2-furanyl
226	6-Cl, 8-F	CF ₃	C≡C-3-furanyl
227	6-C1, 8-F	CF ₃	C≡C-2-thienyl

220	6 61 0 5	O.T.	
228	6-C1, 8-F	CF ₃	C≡C-3-thienyl
229	6-Cl, 8-F	CF ₃	CH=CH-cycPr
230	6-Cl, 8-F	CF ₃	CH=CH-iPr
231	6-Cl, 8-F	CF_3	CH=CH-nPr
232	6-Cl, 8-F	CF_3	CH=CH-Bu
233	6-Cl, 8-F	\mathtt{CF}_3	CH=CH-iBu
234	6-Cl, 8-F	CF ₃	CH=CH-tBu
235	6-Cl, 8-F	CF ₃	CH=CH-Et
236	6-Cl, 8-F	CF ₃	CH=CH-Me
237	6-Cl, 8-F	CF ₃	CH=CH-Ph
238	6-Cl, 8-F	\mathtt{CF}_3	CH=CH-2-Pyridyl
239	6-Cl, 8-F	CF ₃	CH=CH-3-Pyridyl
240	6-Cl, 8-F	CF ₃	CH=CH-4-Pyridyl
241	6-Cl, 8-F	CF_3	CH=CH-2-furanyl
242	6-Cl, 8-F	CF ₃	CH=CH-3-furanyl
243	6-Cl, 8-F	\mathtt{CF}_3	CH=CH-2-thienyl
244	6-Cl, 8-F	\mathtt{CF}_3	CH=CH-3-thienyl
245	6-Cl, 8-F	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}}$
246	6-Cl, 8-F	\mathtt{CF}_3	$CH_2CH_2CH_2CH_3$
247	6-Cl, 8-F	CF_3	CH ₂ CH ₂ -cycPr
248	6-C1, 8-F	\mathtt{CF}_3	CH ₂ CH ₂ -tBu
249	6-Cl, 8-F	CF ₃	CH ₂ CH ₂ -Ph
250	6-C1, 8-F	CF_3	$CH_2CH_2-2-Pyridyl$
251	6-C1, 8-F	CF_3	$CH_2CH_2-3-Pyridyl$
252	6-Cl, 8-F	CF ₃	${ m CH_2CH_2-4-Pyridyl}$
253	6-Cl, 8-F	CF ₃	CH_2CH_2-2 -furanyl
254	6-Cl, 8-F	CF_3	CH_2CH_2-3 -furanyl
255	6-Cl, 8-F	CF ₃	CH_2CH_2-2 -thienyl
256	6-C1, 8-F	CF ₃	CH_2CH_2-3 -thienyl
257	5,6-diF	CF ₃	C≡C-Bu
258	5,6-diF	CF ₃	C≡C-iBu
259	5,6-diF	CF ₃	C≡C-tBu
260	5,6-diF	CF ₃	C≡CCH ₂ CH ₂ OH

261	5,6-diF	CF_3	C≡C-CH(OH)Me
262	5,6-diF	CF ₃	C≡C-Ph
263	5,6-diF	CF_3	C≡C-(2-C1)Ph
264	5,6- di F	CF ₃	C≡C-(3-Cl)Ph
265	5,6-diF	CF ₃	C≡C-(4-Cl)Ph
266	5,6-d i F	CF ₃	C≡C-(2-F)Ph
267	5,6-diF	CF ₃	C≡C-(3-F)Ph
268	5,6-diF	CF ₃	C≡C-(4-F)Ph
269	5,6-diF	CF ₃	C≡C-(2-OH)Ph
270	5,6-diF	CF ₃	C≡C-(3-OH)Ph
271	5,6-diF	CF ₃	C≡C-(4-OH)Ph
272	5,6-diF	CF ₃	C≡C-(2-0Me) Ph
273	5,6-diF	CF ₃	C≡C-(3-OMe) Ph
274	5,6-diF	CF ₃	C≡C-(4-OMe) Ph
275	5,6-diF	CF ₃	C≡C-(2-CN)Ph
276	5,6- di F	CF ₃	C≡C-(3-CN)Ph
277	5,6-diF	CF ₃	C≡C-(4-CN)Ph
278	5,6-diF	CF ₃	$C \equiv C - (2 - NO_2) Ph$
279	5,6-diF	CF_3	$C \equiv C - (3 - NO_2) Ph$
280	5,6- diF	CF_3	$C \equiv C - (4 - NO_2) Ph$
281	5,6-diF	CF ₃	$C\equiv C-(2-NH_2)$ Ph
282	5,6-diF	CF ₃	$C \equiv C - (3 - NH_2) Ph$
283	5,6-diF	CF ₃	$C \equiv C - (4 - NH_2) Ph$
284	5,6-diF	CF ₃	$C \equiv C - (2 - NMe_2) Ph$
285	5,6- di F	CF ₃	$C \equiv C - (3 - NMe_2) Ph$
286	5,6- di F	CF ₃	$C \equiv C - (4 - NMe_2) Ph$
287	5,6- di F	CF_3	C≡C-2-Pyridyl
288	5,6- diF	CF ₃	C≡C-3-Pyridyl
289	5,6- di F	CF ₃	C≡C-4-Pyridyl
290	5,6-diF	CF ₃	C≡C-2-furanyl
291	5,6- di F	CF ₃	C≡C-3-furanyl
292	5,6- di F	CF ₃	C≡C-2-thienyl
293	5,6- di F	CF ₃	$C \equiv C - 3 - thienyl$

294	5,6-diF	CF ₃	C≡C-2-oxazolyl
295	5,6-diF	CF_3	C≡C-2-thiazolyl
296	5,6-diF	CF ₃	C≡C-4-isoxazolyl
297	5,6-d i F	CF_3	C≡C-2-imidazolyl
298	5,6-d i F	CF ₃	CH ₂ C≡C−CH ₃
299	5,6- di F	CF ₃	CH ₂ C≡C−CH ₂ CH ₃
300	5,6- di F	CF ₃	CH=CH-cycPr
301	5,6-diF	CF ₃	CH=CH-iPr
302	5,6- di F	CF ₃	CH=CH-nPr
303	5,6-diF	CF ₃	CH=CH-Bu
304	5,6-diF	CF_3	CH=CH-iBu
305	5,6-diF	CF ₃	CH=CH-tBu
306	5,6-diF	CF_3	CH=CH-Et
307	5,6-diF	CF_3	CH=CH-Me
308	5,6-d i F	CF_3	CH=CH-Ph
309	5,6-diF	CF_3	CH=CH-2-Pyridyl
310	5,6- di F	CF_3	CH=CH-3-Pyridyl
311	5,6-diF	CF ₃	CH=CH-4-Pyridyl
312	5,6-diF	CF_3	CH=CH-2-furanyl
313	5,6-diF	CF3	CH=CH-3-furanyl
314	5,6-diF	CF_3	CH=CH-2-thienyl
315	5,6-diF	CF_3	CH=CH-3-thienyl
316	5,6-diF	CF ₃	CH ₂ CH ₂ CH ₃
317	5,6-diF	CF ₃	$\mathrm{CH_{2}CH_{2}}\text{-cycPr}$
318	5,6-diF	CF ₃	CH ₂ CH ₂ -tBu
319	5,6-diF	CF_3	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{2}OH}$
320	5,6-diF	CF ₃	${ m CH_2CH_2}{ m -CH}$ (OH) Me
321	5,6-diF	CF ₃	CH ₂ CH ₂ Ph
322	5,6-diF	CF ₃	$CH_2CH_2-(2-C1)$ Ph
323	5,6-diF	CF ₃	$CH_2CH_2-(3-C1)$ Ph
324	5,6- di F	CF ₃	$CH_2CH_2-(4-C1)$ Ph
325	5,6-d i F	CF ₃	$CH_2CH_2-(2-F)$ Ph
326	5,6- diF	CF ₃	$CH_2CH_2-(3-F)$ Ph

327	5,6-diF	CF ₃	$CH_2CH_2-(4-F)$ Ph
328	5,6-diF	CF ₃	$CH_2CH_2-(2-OH)$ Ph
329	5,6-diF	CF ₃	$CH_2CH_2-(3-OH)$ Ph
330	5,6-diF	CF ₃	$CH_2CH_2-(4-OH)$ Ph
331	5,6-diF	CF ₃	$CH_2CH_2-(2-OMe)$ Ph
332	5,6-d i F	CF ₃	$CH_2CH_2-(3-OMe)$ Ph
333	5,6- di F	CF ₃	$\mathrm{CH_2CH_2}$ -(4-OMe) Ph
334	5,6- di F	CF ₃	$CH_2CH_2-(2-CN)$ Ph
335	5,6- di F	CF ₃	$CH_2CH_2-(3-CN)$ Ph
336	5,6- di F	CF ₃	$CH_2CH_2-(4-CN)$ Ph
337	5,6-diF	CF ₃	$CH_2CH_2-(2-NO_2)$ Ph
338	5,6- di F	CF ₃	$CH_2CH_2-(3-NO_2)$ Ph
339	5,6- di F	CF ₃	$\mathrm{CH_2CH_2}$ - (4- $\mathrm{NO_2}$) Ph
340	5,6-diF	CF ₃	$CH_2CH_2-(2-NH_2)$ Ph
341	5,6-diF	CF_3	$CH_2CH_2-(3-NH_2)$ Ph
342	5,6-diF	CF_3	$\mathrm{CH_2CH_2}$ - (4- $\mathrm{NH_2}$) Ph
343	5,6-diF	CF ₃	CH ₂ CH ₂ -(2- NMe ₂)Ph
344	5,6-diF	CF ₃	$CH_2CH_2 - (3 - NMe_2) Ph$
345	5,6-diF	CF ₃	$ ext{CH}_2 ext{CH}_2-$ (4- $ ext{NMe}_2$) Ph
346	5,6-diF	CF ₃	$CH_2CH_2-2-Pyridyl$
347	5,6-diF	CF ₃	$CH_2CH_2-3-Pyridyl$
348	5,6-diF	CF ₃	$CH_2CH_2-4-Pyridyl$
349	5,6-diF	CF ₃	CH_2CH_2-2 -furanyl
350	5,6-diF	CF ₃	CH_2CH_2-3 -furanyl
351	5,6-diF	CF ₃	CH_2CH_2-2 -thienyl
352	5,6-diF	CF ₃	CH_2CH_2-3 -thienyl
353	5,6- di F	CF ₃	CH ₂ CH ₂ -2-
354	5,6-diF	CF ₃	oxazolyl CH ₂ CH ₂ -2- thiazolyl
355	5,6-diF	CF ₃	CH ₂ CH ₂ -4-
356	5,6-diF	CF ₃	isoxazolyl CH ₂ CH ₂ -2- imidazolyl

357	5,6-diCl	CF ₃	C≡C-cycPr
358	5,6-diCl	CF ₃	C≡C-iPr
359	5,6-diCl	CF ₃	C≡C-nPr
360	5,6-diCl	CF_3	C≡C−Bu
361	5,6-diCl	CF ₃	C≡C-iBu
362	5,6-diCl	CF ₃	C≡C-tBu
363	5,6-diCl	CF ₃	C≡C-Et
364	5,6-diCl	CF ₃	C≡C-Me
365	5,6-d i Cl	CF ₃	C≡CCH ₂ CH ₂ OH
366	5,6-diCl	CF ₃	C≡C-CH(OH)Me
367	5,6- di Cl	CF ₃	C≡C-Ph
368	5,6-diCl	CF ₃	C≡C-(2-C1)Ph
369	5,6- di Cl	CF ₃	C≡C-(3-C1)Ph
370	5,6-diCl	CF ₃	C≡C-(4-C1)Ph
371	5,6-diCl	CF_3	C≡C-(2-F) Ph
372	5,6-diCl	\mathtt{CF}_3	C≡C-(3-F)Ph
373	5,6- di Cl	CF ₃	C≡C-(4-F) Ph
374	5,6-diCl	CF ₃	C≡C-(2-OH)Ph
375	5,6-diCl	CF ₃	C≡C-(3-OH)Ph
376	5,6-diCl	CF ₃	C≡C-(4-OH)Ph
377	5,6-dicl	CF ₃	C≡C-(2-OMe)Ph
378	5,6-diCl	CF ₃	C≡C-(3-OMe)Ph
379	5,6-diCl	CF_3	C≡C-(4-OMe)Ph
380	5,6-diCl	CF ₃	C≡C-(2-CN)Ph
381	5,6-dicl	CF_3	C≡C-(3-CN)Ph
382	5,6-diCl	CF ₃	C≡C-(4-CN)Ph
383	5,6-diCl	CF ₃	$C \equiv C - (2 - NO_2) Ph$
384	5,6-diCl	CF ₃	$C \equiv C - (3 - NO_2) Ph$
385	5,6-diCl	CF ₃	$C \equiv C - (4 - NO_2) Ph$
386	5,6-diCl	CF ₃	$C \equiv C - (2 - NH_2) Ph$
387	5,6-diCl	CF ₃	C≡C-(3-NH ₂) Ph
388	5,6-diCl	CF ₃	$C = C - (4 - NH_2) Ph$
389	5,6-diCl	CF ₃	C≡C-(2-NMe ₂)Ph

390	5,6-diCl	CF ₃	$C \equiv C - (3 - NMe_2) Ph$
391	5,6-diCl	CF ₃	$C \equiv C - (4 - NMe_2) Ph$
392	5,6-dicl	CF ₃	C≡C-2-Pyridyl
393	5,6-dicl	CF ₃	C≡C-3-Pyridyl
394	5,6-dicl	CF ₃	C≡C-4-Pyridyl
395	5,6-dicl	CF ₃	C≡C-2-furanyl
396	5,6-dicl	CF ₃	C≡C-3-furanyl
397	5,6-dicl	CF ₃	C≡C-2-thienyl
398	5,6-dicl	CF ₃	C≡C-3-thienyl
399	5,6-diCl	CF ₃	CH=CH-cycPr
400	5,6-dicl	CF ₃	CH=CH-iPr
401	5,6-diCl	CF ₃	CH=CH-nPr
402	5,6-diCl	CF ₃	CH=CH-Bu
403	5,6-diCl	CF ₃	CH=CH-iBu
404	5,6-d i Cl	CF ₃	CH=CH-tBu
405	5,6-diCl	CF ₃	CH=CH-Et
406	5,6-d i Cl	CF ₃	CH=CH-Me
407	5,6-diCl	CF ₃	CH=CH-Ph
408	5,6-diCl	CF_3	CH=CH-2-Pyridyl
409	5,6- di Cl	CF ₃	CH=CH-3-Pyridyl
410	5,6-diCl	CF ₃	CH=CH-4-Pyridyl
411	5,6-diCl	CF ₃	CH=CH-2-furanyl
412	5,6-diCl	CF ₃	CH=CH-3-furanyl
413	5,6-diCl	CF ₃	CH=CH-2-thienyl
414	5,6-diCl	CF ₃	CH=CH-3-thienyl
415	5,6-diCl	CF ₃	$CH_2CH_2CH_2CH_2CH_3$
416	5,6-diCl	CF ₃	${ m CH_2CH_2CH}$ (${ m CH_3}$) $_2$
417	5,6-diCl	\mathtt{CF}_3	$CH_2CH_2CH_2CH_3$
418	5,6-diCl	CF ₃	$\mathrm{CH_{2}CH_{2}} ext{-cycPr}$
419	5,6-d i Cl	CF ₃	CH ₂ CH ₂ -tBu
420	5,6-diCl	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{2}OH}$
421	5,6-d i Cl	CF ₃	$\mathrm{CH_{2}CH_{2}}\mathrm{-CH}\left(\mathrm{OH}\right)\mathrm{Me}$
422	5,6-diCl	CF ₃	CH ₂ CH ₂ -Ph

423	5,6-diCl	CF ₃	${ m CH_2CH_2-2-Pyridyl}$
424	5,6-diCl	CF_3	$CH_2CH_2-3-Pyridyl$
425	5,6-diCl	CF_3	${ m CH_2CH_2-4-Pyridyl}$
426	5,6-diCl	CF_3	CH_2CH_2-2 -furanyl
427	5,6-dicl	CF_3	CH_2CH_2-3 -furanyl
428	5,6-diCl	CF_3	CH_2CH_2-2 -thienyl
429	5,6-diCl	CF ₃	CH_2CH_2-3 -thienyl
430	5-Cl,6-F	CF_3	C≡C-cycPr
431	5-Cl,6-F	CF ₃	C≡C-iPr
432	5-Cl,6-F	CF ₃	C≡C-nPr
433	5-Cl,6-F	CF_3	C≡C-Bu
434	5-Cl,6-F	CF ₃	C≡C−iBu
435	5-Cl,6-F	CF ₃	C≡C-tBu
436	5-Cl,6-F	CF ₃	C≡C-Et
437	5-C1,6-F	CF_3	C≡C-Me
438	5-Cl,6-F	CF ₃	C≡CCH ₂ CH ₂ OH
439	5-Cl,6-F	CF ₃	C≡C-CH(OH)Me
440	5-Cl,6-F	CF ₃	C≡C-Ph
441	5-C1,6-F	CF_3	C≡C-(2-C1)Ph
442	5-C1,6-F	CF3	C≡C-(3-C1)Ph
443	5-C1,6-F	CF ₃	C≡C-(4-C1)Ph
444	5-C1,6-F	CF ₃	C≡C-(2-F)Ph
445	5-C1,6-F	CF ₃	C≡C-(3-F)Ph
446	5-C1,6-F	CF_3	C≡C-(4-F)Ph
447	5-C1,6-F	CF ₃	C≡C-(2-OH) Ph
448	5-C1,6-F	CF_3	C≡C-(3-OH) Ph
449	5-Cl,6-F	CF_3	C≡C-(4-OH)Ph
450	5-Cl,6-F	CF ₃	C≡C-(2-OMe) Ph
451	5-Cl,6-F	CF ₃	C≡C-(3-OMe) Ph
452	5-Cl,6-F	CF ₃	C≡C-(4-0Me)Ph
453	5-Cl,6-F	CF ₃	C≡C-(2-CN) Ph
454	5-C1,6-F	CF ₃	C≡C-(3-CN)Ph
455	5-Cl,6-F	CF ₃	C≡C-(4-CN)Ph

456	5-C1,6-F	CF_3	$C \equiv C - (2 - NO_2) Ph$
457	5-Cl,6-F	CF ₃	$C \equiv C - (3 - NO_2) Ph$
4 58	5-Cl,6-F	CF_3	$C \equiv C - (4 - NO_2) Ph$
4 59	5-Cl,6-F	CF ₃	$C \equiv C - (2 - NH_2) Ph$
460	5-Cl,6-F	CF ₃	$C \equiv C - (3 - NH_2) Ph$
461	5-C1,6-F	CF ₃	$C \equiv C - (4 - NH_2) Ph$
462	5-Cl,6-F	CF ₃	$C \equiv C - (2 - NMe_2) Ph$
463	5-C1,6-F	CF ₃	C≡C-(3-NMe ₂)Ph
464	5-C1,6-F	CF ₃	$C \equiv C - (4 - NMe_2) Ph$
465	5-C1,6-F	CF ₃	C≡C-2-Pyridyl
466	5-Cl,6-F	CF ₃	C≡C-3-Pyridyl
467	5-C1,6-F	CF_3	C≡C-4-Pyridyl
468	5-Cl,6-F	CF_3	C≡C-2-furanyl
469	5-C1,6-F	CF ₃	C≡C-3-furanyl
470	5-C1,6-F	CF_3	C≡C-2-thienyl
471	5-C1,6-F	CF ₃	C≡C-3-thienyl
472	5-Cl,6-F	CF_3	CH=CH-cycPr
473	5-Cl,6-F	CF ₃	CH=CH-iPr
474	5-Cl,6-F	CF ₃	CH=CH-nPr
475	5-Cl,6-F	\mathtt{CF}_3	CH=CH-Bu
476	5-Cl,6-F	CF ₃	CH=CH-iBu
477	5-C1,6-F	CF ₃	CH=CH-tBu
478	5-C1,6-F	CF ₃	CH=CH-Et
479	5-C1,6-F	CF ₃	CH=CH-Me
480	5-C1,6-F	CF ₃	CH=CH-Ph
481	5-C1,6-F	CF ₃	CH=CH-2-Pyridyl
482	5-C1,6-F	CF ₃	CH=CH-3-Pyridyl
483	5-Cl,6-F	CF ₃	CH=CH-4-Pyridyl
484	5-Cl,6-F	CF ₃	CH=CH-2-furanyl
485	5-C1,6-F	CF ₃	CH=CH-3-furanyl
486	5-C1,6-F	CF ₃	CH=CH-2-thienyl
487	5-C1,6-F	CF ₃	CH=CH-3-thienyl
488	5-C1,6-F	CF ₃	$CH_2CH_2CH_2CH_2CH_3$

489	5-Cl,6-F	CF ₃	$\mathrm{CH_2CH_2CH}\left(\mathrm{CH_3}\right)_2$
490	5-Cl,6-F	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃
491	5-C1,6-F	CF_3	${ m CH_2CH_2} ext{-cycPr}$
492	5-C1,6-F	CF_3	CH ₂ CH ₂ -tBu
493	5-C1,6-F	CF ₃	$CH_2CH_2CH_2CH_2OH$
494	5-Cl,6-F	CF_3	$\mathrm{CH_{2}CH_{2}}\text{-}\mathrm{CH}$ (OH) Me
495	5-C1,6-F	CF ₃	CH ₂ CH ₂ -Ph
496	5-Cl,6-F	CF ₃	$CH_2CH_2-2-Pyridyl$
497	5-C1,6-F	CF_3	$CH_2CH_2-3-Pyridyl$
498	5-C1,6-F	CF ₃	$\mathrm{CH_{2}CH_{2}}$ -4-Pyridyl
499	5-C1,6-F	CF ₃	CH_2CH_2-2 -furanyl
500	5-Cl,6-F	CF ₃	CH_2CH_2-3 -furanyl
501	5-Cl,6-F	CF_3	CH_2CH_2-2 -thienyl
502	5-Cl,6-F	CF ₃	CH_2CH_2-3 -thienyl
503	5,6-OCH ₂ O-	CF ₃	C≡C-Bu
504	5,6-OCH ₂ O-	CF ₃	C≡C-iBu
505	5,6-OCH ₂ O-	CF ₃	C≡C-tBu
506	5,6-OCH ₂ O-	CF ₃	C≡C-Me
507	5,6-OCH ₂ O-	CF ₃	C≡CCH ₂ CH ₂ OH
508	5,6-OCH ₂ O-	\mathtt{CF}_3	C≡C-CH(OH)Me
509	5,6-OCH ₂ O-	CF ₃	C≡C-Ph
510	5,6-OCH ₂ O-	CF ₃	C≡C-(2-C1)Ph
511	5,6-OCH ₂ O-	CF ₃	C≡C-(3-C1)Ph
512	5,6-OCH ₂ O-	CF ₃	C≡C-(4-Cl)Ph
513	5,6-OCH ₂ O-	CF_3	C≡C-(2-F)Ph
514	5,6-OCH ₂ O-	CF ₃	C≡C-(3-F) Ph
51 5	5,6-OCH ₂ O-	CF ₃	C≡C-(4-F)Ph
516	5,6-OCH ₂ O-	CF ₃	C≡C-(2-OH) Ph
517	5,6-OCH ₂ O-	\mathtt{CF}_3	C≡C-(3-OH) Ph
518	5,6-OCH ₂ O-	CF ₃	C≡C-(4-OH)Ph
519	5,6-ОСН ₂ О-	CF ₃	C≡C-(2-OMe)Ph
520	5,6-OCH ₂ O-	CF ₃	C≡C-(3-OMe)Ph
521	5,6-OCH ₂ O-	CF ₃	C≡C-(4-OMe)Ph

522	5,6-OCH ₂ O-	CF ₃	C≡C-(2-CN) Ph
523	5,6-OCH ₂ O-	CF ₃	C≡C-(3-CN)Ph
524	5,6-OCH ₂ O-	CF ₃	C≡C-(4-CN)Ph
525	5,6-OCH ₂ O-	CF_3	$C \equiv C - (2 - NO_2) Ph$
526	5,6-OCH ₂ O-	CF_3	$C \equiv C - (3 - NO_2) Ph$
527	5,6-OCH ₂ O-	CF ₃	$C \equiv C - (4 - NO_2) Ph$
528	5,6-OCH ₂ O-	CF ₃	$C \equiv C - (2 - NH_2) Ph$
529	5,6-OCH ₂ O-	CF_3	$C \equiv C - (3 - NH_2) Ph$
530	5,6-OCH ₂ O-	CF ₃	$C \equiv C - (4 - NH_2) Ph$
531	5,6-OCH ₂ O-	CF ₃	C≡C-(2-NMe ₂)Ph
532	5,6-OCH ₂ O-	CF ₃	C≡C-(3-NMe ₂)Ph
533	5,6-OCH ₂ O-	CF_3	$C \equiv C - (4 - NMe_2) Ph$
534	5,6-OCH ₂ O-	\mathtt{CF}_3	C≡C-2-Pyridyl
535	5,6-OCH ₂ O-	\mathtt{CF}_3	C≡C-3-Pyridyl
536	5,6-OCH ₂ O-	CF_3	C≡C-4-Pyridyl
537	5,6-OCH ₂ O-	CF ₃	C≡C-2-furanyl
538	5,6-OCH ₂ O-	CF ₃	C≡C-3-furanyl
539	5,6-OCH ₂ O-	CF ₃	C≡C-2-thienyl
540	5,6-OCH ₂ O-	CF ₃	C≡C-3-thienyl
541	5,6-OCH ₂ O-	CF ₃	CH=CH-cycPr
542	5,6-OCH ₂ O-	CF ₃	CH=CH-iPr
54 3	5,6-OCH ₂ O-	CF ₃	CH=CH-nPr
544	5,6-OCH ₂ O-	CF ₃	CH=CH-Bu
545	5,6-OCH ₂ O-	CF ₃	CH=CH-iBu
546	5,6-OCH ₂ O-	CF ₃	CH=CH-tBu
547	5,6-OCH ₂ O-	CF ₃	CH=CH-Et
54 8	5,6-OCH ₂ O-	CF ₃	CH=CH-Me
549	5,6-OCH ₂ O-	CF ₃	CH=CH-Ph
550	5,6-OCH ₂ O-	CF3	CH=CH-2-Pyridyl
551	5,6-OCH ₂ O-	CF ₃	CH=CH-3-Pyridyl
552	5,6-ОСН ₂ О-	CF ₃	CH=CH-4-Pyridyl
553	5,6-OCH ₂ O-	CF ₃	CH=CH-2-furanyl
554	5,6-OCH ₂ O-	CF ₃	CH=CH-3-furanyl

555	5,6-OCH ₂ O-	CF ₃	CH=CH-2-thienyl
556	5,6-OCH ₂ O-	CF ₃	CH=CH-3-thienyl
557	5,6-OCH ₂ O-	CF_3	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}}$
558	5,6-OCH ₂ O-	CF ₃	$CH_2CH_2CH_2CH_3$
559	5,6-OCH ₂ O-	CF_3	$\mathrm{CH_{2}CH_{2}}\text{-cycPr}$
560	5,6-OCH ₂ O-	CF ₃	CH ₂ CH ₂ -tBu
561	5,6-OCH ₂ O-	CF_3	$CH_2CH_2CH_2CH_2OH$
562	5,6-OCH ₂ O-	CF_3	$\mathrm{CH_{2}CH_{2}}\text{-}\mathrm{CH}\left(\mathrm{OH}\right)\mathrm{Me}$
563	5,6-OCH ₂ O-	CF_3	CH ₂ CH ₂ -Ph
564	5,6-OCH ₂ O-	CF_3	$CH_2CH_2-2-Pyridyl$
565	5,6-OCH ₂ O-	CF_3	$CH_2CH_2-3-Pyridyl$
566	5,6-OCH ₂ O-	CF ₃	$\mathrm{CH_{2}CH_{2}}4\mathrm{Pyridyl}$
567	5,6-OCH ₂ O-	CF ₃	CH_2CH_2-2 -furanyl
568	5,6-OCH ₂ O-	CF_3	CH_2CH_2-3 -furanyl
569	5,6-OCH ₂ O-	\mathtt{CF}_3	CH_2CH_2-2 -thienyl
570	5,6-OCH ₂ O-	\mathtt{CF}_3	CH_2CH_2-3 -thienyl
571	5-F	CF_3	C≡C-cycPr
572	5-F	CF ₃	C≡C-iPr
573	5-F	CF_3	C≡C-nPr
574	5-F	CF ₃	C≡C-Bu
575	5-F	CF ₃	C≡C-iBu
576	5-F	CF ₃	C≡C-tBu
577	5-F	CF3	C≡C-Et
578	5-F	CF ₃	C≡C-Me
579	5-F	CF_3	C≡CCH ₂ CH ₂ OH
580	5-F	CF ₃	C≡C-CH(OH)Me
581	5-F	CF ₃	C≡C-Ph
582	5-F	CF_3	C≡C-(2-C1)Ph
583	5-F	CF ₃	C≡C-(3-C1)Ph
584	5-F	CF ₃	C≡C-(4-C1)Ph
585	5-F	CF ₃	C≡C-(2-F)Ph
586	5-F	CF ₃	C≡C-(3-F) Ph
587	5-F	CF ₃	C≡C-(4-F)Ph

		_	
588	5-F	CF ₃	C≡C-(2-OH)Ph
589	5-F	CF ₃	C≡C-(3-OH) Ph
590	5-F	\mathtt{CF}_3	C≡C-(4-OH)Ph
591	5-F	CF ₃	C≡C-(2-OMe) Ph
592	5-F	CF ₃	C≡C-(3-OMe) Ph
593	5-F	CF ₃	C≡C-(4-OMe) Ph
594	5-F	CF ₃	C≡C-(2-CN)Ph
595	5-F	CF ₃	C≡C-(3-CN)Ph
596	5-F	CF ₃	C≡C-(4-CN)Ph
597	5-F	CF ₃	$C \equiv C - (2 - NO_2) Ph$
598	5-F	CF ₃	$C \equiv C - (3 - NO_2) Ph$
599	5-F	CF3	$C \equiv C - (4 - NO_2) Ph$
600	5-F	CF ₃	$C \equiv C - (2 - NH_2) Ph$
601	5-F	CF3	$C \equiv C - (3 - NH_2) Ph$
602	5-F	CF ₃	$C \equiv C - (4 - NH_2) Ph$
603	5-F	CF ₃	$C \equiv C - (2 - NMe_2) Ph$
604	5-F	CF ₃	$C \equiv C - (3 - NMe_2) Ph$
605	5-F	CF ₃	$C \equiv C - (4 - NMe_2) Ph$
606	5-F	CF ₃	C≡C-2-Pyridyl
607	5-F	CF ₃	C≡C-3-Pyridyl
608	5-F	CF ₃	C≡C-4-Pyridyl
609	5-F	CF ₃	C≡C-2-furanyl
610	5-F	CF ₃	C≡C-3-furanyl
611	5-F	CF ₃	C≡C-2-thienyl
612	5-F	CF ₃	C≡C-3-thienyl
613	5-F	CF ₃	CH=CH-cycPr
614	5-F	CF ₃	CH=CH-iPr
615	5-F	CF_3	CH=CH-nPr
616	5-F	CF ₃	CH=CH-Bu
617	5-F	CF ₃	CH=CH-iBu
618	5-F	CF ₃	CH=CH-tBu
619	5-F	CF ₃	CH=CH-Et
620	5-F	CF ₃	CH=CH-Me

621	5-F	CF ₃	CH=CH-Ph
622	5-F	CF ₃	CH=CH-2-Pyridyl
623	5-F	CF ₃	CH=CH-3-Pyridyl
624	5-F	CF ₃	CH=CH-4-Pyridyl
625	5-F	CF ₃	CH=CH-2-furanyl
626	5-F	CF ₃	CH=CH-3-furanyl
627	5-F	CF ₃	CH=CH-2-thienyl
628	5-F	CF ₃	CH=CH-3-thienyl
629	5-F	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}}$
630	5-F	CF ₃	$\mathrm{CH_{2}CH_{2}CH}\left(\mathrm{CH_{3}}\right)_{2}$
631	5-F	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃
632	5-F	CF ₃	$\mathrm{CH_{2}CH_{2}}\text{-cycPr}$
633	5-F	CF ₃	CH ₂ CH ₂ -tBu
634	5-F	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{2}OH}$
635	5-F	CF_3	$\mathrm{CH_{2}CH_{2}}$ - $\mathrm{CH}\left(\mathrm{OH}\right)\mathrm{Me}$
636	5-F	CF_3	CH ₂ CH ₂ -Ph
637	5-F	CF ₃	$CH_2CH_2-2-Pyridyl$
638	5-F	CF_3	CH_2CH_2-3 -Pyridyl
639	5-F	CF ₃	${ m CH_2CH_2-4-Pyridyl}$
640	5-F	CF ₃	CH_2CH_2-2 -furanyl
641	5-F	\mathtt{CF}_3	CH_2CH_2-3 -furanyl
642	5-F	CF ₃	${ m CH_2CH_2-2-thienyl}$
643	5-F	CF ₃	CH_2CH_2-3 -thienyl
644	5-Cl	CF ₃	C≡C-cycPr
645	5-Cl	CF ₃	C≡C-iPr
646	5-C1	CF_3	C≡C-nPr
647	5-Cl	CF ₃	C≡C-Bu
648	5-Cl	CF ₃	C≡C-iBu
649	5-C1	CF ₃	C≡C-tBu
650	5-Cl	\mathtt{CF}_3	C≡C−Et
651	5-Cl	CF_3	C≡C-Me
652	5-C1	CF_3	C≡CCH ₂ CH ₂ OH
653	5-C1	CF ₃	C≡C-CH(OH)Me

654	5-C1	CF ₃	C≡C-Ph
655	5-Cl	CF ₃	C≡C-(2-C1)Ph
656	5-Cl	CF ₃	C≡C-(3-C1)Ph
657	5-Cl	CF ₃	C≡C-(4-Cl)Ph
658	5-C1	CF ₃	C≡C-(2-F)Ph
659	5-Cl	CF ₃	C≡C-(3-F)Ph
660	5-Cl	CF ₃	C≡C-(4-F)Ph
661	5-Cl	CF ₃	C≡C-(2-OH)Ph
662	5-Cl	CF ₃	C≡C-(3-OH)Ph
663	5-Cl	CF ₃	C≡C-(4-OH)Ph
664	5-Cl	CF ₃	C≡C-(2-OMe) Ph
665	5-Cl	CF ₃	C≡C-(3-OMe)Ph
666	5-Cl	CF ₃	C≡C-(4-OMe) Ph
667	5-C1	CF ₃	C≡C-(2-CN) Ph
668	5-Cl	CF ₃	C≡C-(3-CN)Ph
669	5-C1	CF ₃	C≡C-(4-CN)Ph
670	5-Cl	CF ₃	$C \equiv C - (2 - NO_2) Ph$
671	5-Cl	CF ₃	$C \equiv C - (3 - NO_2) Ph$
672	5-C1	CF ₃	$C \equiv C - (4 - NO_2) Ph$
673	5-Cl	CF ₃	$C \equiv C - (2 - NH_2) Ph$
674	5-C1	CF ₃	C≡C-(3-NH ₂) Ph
675	5-Cl	CF ₃	$C \equiv C - (4 - NH_2) Ph$
676	5-Cl	CF ₃	$C \equiv C - (2 - NMe_2) Ph$
677	5-Cl	CF ₃	C≡C-(3-NMe ₂)Ph
678	5-Cl	CF ₃	C≡C-(4-NMe ₂)Ph
679	5-C1	CF ₃	C≡C-2-Pyridyl
680	5-Cl	CF ₃	C≡C-3-Pyridyl
681	5-Cl	CF ₃	C≡C-4-Pyridyl
682	5-C1	CF ₃	C≡C-2-furanyl
683	5-Cl	CF ₃	C≡C-3-furanyl
684	5-Cl	CF ₃	C≡C-2-thienyl
685	5-C1	CF ₃	C≡C-3-thienyl
686	5-Cl	CF ₃	CH=CH-cycPr

WO 98/14436	PCT/US97/17540
W O 20/14430	FC1/039//1/340

687	5-Cl	CF ₃	CH=CH-iPr
688	5-Cl	CF ₃	CH=CH-nPr
689	5-Cl	CF ₃	CH=CH-Bu
690	5-Cl	CF ₃	CH=CH-iBu
691	5-C1	CF ₃	CH=CH-tBu
692	5-Cl	CF ₃	CH=CH-Et
693	5-C1	CF ₃	CH=CH-Me
694	5-C1	CF ₃	CH=CH-Ph
695	5-Cl	CF ₃	CH=CH-2-Pyridyl
696	5-C1	CF ₃	CH=CH-3-Pyridyl
697	5-C1	CF ₃	CH=CH-4-Pyridyl
698	5-C1	CF ₃	CH=CH-2-furanyl
699	5-C1	CF ₃	CH=CH-3-furanyl
700	5-C1	CF ₃	CH=CH-2-thienyl
701	5-Cl	CF ₃	CH=CH-3-thienyl
702	5-C1	CF ₃	$CH_2CH_2CH_2CH_2CH_3$
703	5-C1	CF3	$\mathrm{CH_2CH_2CH}$ ($\mathrm{CH_3}$) $_2$
704	5-C1	CF ₃	$CH_2CH_2CH_2CH_3$
705	5-Cl	CF ₃	$\mathrm{CH_{2}CH_{2}}\text{-cycPr}$
706	5-C1	CF ₃	CH ₂ CH ₂ -tBu
707	5-C1	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{2}OH}$
708	5-C1	CF ₃	$\mathrm{CH_{2}CH_{2}}\mathrm{-CH}\left(\mathrm{OH}\right)\mathrm{Me}$
709	5-C1	CF ₃	CH ₂ CH ₂ -Ph
710	5-C1	CF ₃	$CH_2CH_2-2-Pyridyl$
711	5-C1	CF_3	$CH_2CH_2-3-Pyridyl$
712	5-Cl	CF ₃	${ m CH_2CH_2-4-Pyridyl}$
713	5-C1	CF ₃	CH_2CH_2-2 -furanyl
714	5-C1	CF ₃	CH_2CH_2-3 -furanyl
715	5-Cl	CF_3	CH_2CH_2-2 -thienyl
716	5-Cl	CF ₃	CH_2CH_2-3 -thienyl
717	6-OMe	CF ₃	C≡C-Bu
718	6-OMe	CF_3	C≡C-iBu
719	6-OMe	CF ₃	C≡C-tBu

720	6-OMe	CF_3	С≡ССН ₂ СН ₂ ОН
721	6-OMe	CF ₃	C≡C-CH(OH)Me
722	6-OMe	CF ₃	C≡C-Ph
723	6-OMe	CF ₃	C≡C-(2-C1)Ph
724	6-OMe	CF ₃	C≡C-(3-C1)Ph
725	6-OMe	CF ₃	C≡C-(4-C1)Ph
726	6-OMe	CF ₃	C≡C-(2-F) Ph
727	6-0Me	CF ₃	C≡C-(3-F)Ph
728	6-OMe	CF ₃	C≡C-(4-F)Ph
729	6-OMe	CF ₃	C≡C-(2-OH)Ph
730	6-OMe	CF ₃	C≡C-(3-OH)Ph
731	6-OMe	CF ₃	C≡C-(4-OH)Ph
732	6-OMe	CF ₃	C≡C-(2-OMe) Ph
733	6-OMe	CF ₃	C≡C-(3-OMe)Ph
734	6-OMe	CF ₃	C≡C-(4-OMe) Ph
735	6-OMe	CF ₃	C≡C-(2-CN) Ph
736	6-OMe	CF ₃	C≡C-(3-CN)Ph
737	6-OMe	CF ₃	C≡C-(4-CN)Ph
738	6-OMe	CF ₃	$C \equiv C - (2 - NO_2) Ph$
739	6-OMe	CF ₃	$C \equiv C - (3 - NO_2) Ph$
740	6-OMe	CF ₃	$C \equiv C - (4 - NO_2) Ph$
741	6-OMe	CF ₃	$C \equiv C - (2 - NH_2) Ph$
742	6-OMe	CF ₃	$C \equiv C - (3 - NH_2) Ph$
743	6-OMe	CF ₃	$C \equiv C - (4 - NH_2) Ph$
744	6-OMe	CF ₃	$C \equiv C - (2 - NMe_2) Ph$
745	6-OMe	CF ₃	C≡C-(3-NMe ₂)Ph
746	6-OMe	CF ₃	C≡C-(4-NMe ₂)Ph
747	6-OMe	CF ₃	C≡C-2-Pyridyl
748	6-OMe	CF ₃	C≡C-3-Pyridyl
749	6-OMe	CF_3	C≡C-4-Pyridyl
750	6-ОМе	CF ₃	C≡C-2-furanyl
751	6-OMe	CF ₃	C≡C-3-furanyl
752	6-OMe	CF ₃	C≡C-2-thienyl

753	6-0Ме	CF ₃	C≡C-3-thienyl
754	6-OMe	CF ₃	C≡C-2-oxazolyl
755	6-OMe	CF ₃	C≡C-2-thiazolyl
756	6-OMe	CF_3	C≡C-4-isoxazolyl
757	6-OMe	CF ₃	C≡C-2-imidazolyl
758	6-0Me	CF ₃	CH ₂ C≡C-CH ₃
759	6-OMe	CF ₃	CH=CH-cycPr
760	6-OMe	CF ₃	CH=CH-iPr
761	6-OMe	CF ₃	CH=CH-nPr
762	6-OMe	CF ₃	CH=CH-Bu
763	6-OMe	CF3	CH=CH-iBu
764	6-OMe	CF ₃	CH=CH-tBu
765	6-OMe	CF ₃	CH=CH-Et
766	6-OMe	CF ₃	CH=CH-Me
767	6-ОМе	CF ₃	CH=CH-Ph
768	6-OMe	CF ₃	CH=CH-2-Pyridyl
769	6-OMe	CF ₃	CH=CH-3-Pyridyl
770	6-OMe	CF ₃	CH=CH-4-Pyridyl
771	6-OMe	CF ₃	CH=CH-2-furanyl
772	6-ОМе	CF ₃	CH=CH-3-furanyl
773	6-OMe	CF ₃	CH=CH-2-thienyl
774	6-ОМе	CF_3	CH=CH-3-thienyl
775	6-OMe	CF_3	$CH_2CH_2CH_2CH_2CH_3$
776	6-OMe	CF_3	CH ₂ CH ₂ CH ₃
777	6-OMe	CF_3	$\mathrm{CH_{2}CH_{2}} ext{-cycPr}$
778	6-OMe	CF_3	CH ₂ CH ₂ -tBu
779	6-OMe	CF_3	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{2}OH}$
780	6-OMe	CF ₃	$\mathrm{CH_{2}CH_{2}}\text{-}\mathrm{CH}\left(\mathrm{OH}\right)\mathrm{Me}$
781	6-OMe	CF3	$CH_2CH_2 - (2-C1) Ph$
782	6-OMe	CF_3	$CH_2CH_2 - (3-C1) Ph$
783	6-0Ме	CF ₃	$CH_2CH_2-(4-C1)$ Ph
784	6-OMe	CF ₃	$CH_2CH_2-(2-F)$ Ph
785	6-OMe	CF ₃	$CH_2CH_2-(3-F)$ Ph

786	6-ОМе	CF ₃	$\mathrm{CH_2CH_2}$ -(4-F)Ph
787	6-OMe	CF ₃	$CH_2CH_2-(2-OH)$ Ph
788	6-OMe	CF ₃	$CH_2CH_2-(3-OH)$ Ph
789	6-OMe	CF ₃	CH_2CH_2 -(4-OH)Ph
790	6-OMe	CF ₃	$CH_2CH_2-(2-OMe)$ Ph
791	6-OMe	CF ₃	$CH_2CH_2-(3-OMe)$ Ph
792	6-OMe	CF ₃	$ ext{CH}_2 ext{CH}_2 ext{-}$ (4-OMe) Ph
793	6-OMe	CF ₃	$CH_2CH_2-(2-CN)$ Ph
794	6-OMe	CF ₃	$CH_2CH_2-(3-CN)$ Ph
795	6-OMe	CF ₃	$CH_2CH_2-(4-CN)$ Ph
796	6-OMe	CF ₃	$CH_2CH_2-(2-NO_2)$ Ph
797	6-OMe	CF_3	CH_2CH_2 -(3- NO_2) Ph
798	6-OMe	CF ₃	$CH_2CH_2-(4-NO_2)$ Ph
799	6-OMe	CF_3	$CH_2CH_2-(2-NH_2)$ Ph
800	6-OMe	CF ₃	$CH_2CH_2-(3-NH_2)$ Ph
801	6-OMe	CF ₃	$CH_2CH_2-(4-NH_2)$ Ph
802	6-OMe	CF ₃	CH ₂ CH ₂ -(2- NMe ₂)Ph
803	6-OMe	CF ₃	CH ₂ CH ₂ -(3- NMe ₂) Ph
804	6-OMe	CF ₃	CH ₂ CH ₂ -(4- NMe ₂)Ph
805	6-OMe	CF ₃	$CH_2CH_2-2-Pyridyl$
806	6-ОМе	CF ₃	$CH_2CH_2-3-Pyridyl$
807	б-ОМе	CF ₃	${ m CH_2CH_2-4-Pyridyl}$
808	6-OMe	CF_3	CH_2CH_2-2 -furanyl
809	6-OMe	CF ₃	CH_2CH_2-3 -furanyl
810	6-ОМе	CF_3	CH_2CH_2-2 -thienyl
811	6-OMe	CF ₃	CH_2CH_2-3 -thienyl
812	6-OMe	CF ₃	CH ₂ CH ₂ -2- oxazolyl
813	6-OMe	CF ₃	CH ₂ CH ₂ -2- thiazolyl
814	6-OMe	CF ₃	$ ext{CH}_2 ext{CH}_2 ext{-4-}$ isoxazolyl
815	6-OMe	CF ₃	CH ₂ CH ₂ -2- imidazolyl

816	6-OMe,	8-F	CF ₃	C≡C-iPr
817	6-OMe,	8-F	\mathtt{CF}_3	C≡C-nPr
818	6-OMe,	8-F	CF_3	C≡C-Et
819	6-OMe,	8-F	CF ₃	C≡C-Me
820	6-OMe,	8-F	CF ₃	C≡C-Ph
821	6-OMe,	8-F	CF ₃	C≡C-2-Pyridyl
822	6-OMe,	8-F	CF ₃	C≡C-3-Pyridyl
823	6-OMe,	8-F	CF ₃	C≡C-4-Pyridyl
824	6-OMe,	8-F	CF ₃	C≡C-2-furanyl
825	6-OMe,	8-F	CF ₃	C≡C-3-furanyl
826	6-OMe,	8-F	CF ₃	C≡C-2-thienyl
827	6-OMe,	8-F	CF ₃	C≡C-3-thienyl
828	6-OMe,	8-F	CF ₃	CH=CH-cycPr
829	6-OMe,	8-F	CF ₃	CH=CH-iPr
830	6-OMe,	8-F	CF_3	CH=CH-nPr
831	6-OMe,	8-F	CF ₃	CH=CH-Et
832	6-OMe,	8-F	CF ₃	CH=CH-Me
833	6-OMe,	8-F	CF ₃	CH=CH-Ph
834	6-OMe,	8-F	CF ₃	CH=CH-2-Pyridyl
835	6-OMe,	8-F	CF ₃	CH=CH-3-Pyridyl
836	6-OMe,	8-F	CF ₃	CH=CH-4-Pyridyl
837	6-OMe,	8-F	CF ₃	CH=CH-2-furanyl
838	6-OMe,	8-F	CF ₃	CH=CH-3-furanyl
839	6-OMe,	8-F	CF ₃	CH=CH-2-thienyl
840	6-OMe,	8-F	CF ₃	CH=CH-3-thienyl
841	6-OMe,	8-F	CF ₃	$CH_2CH_2CH_2CH_2CH_3$
842	6-OMe,	8-F	CF ₃	${ m CH_2CH_2CH}$ (${ m CH_3}$) $_2$
843	6-OMe,	8-F	CF ₃	$CH_2CH_2CH_2CH_3$
844	6-OMe,	8-F	CF ₃	${ m CH_2CH_2}$ -cycPr
845	6-OMe,	8-F	CF ₃	CH ₂ CH ₂ -Ph
846	6-0Me,	8-F	CF ₃	$CH_2CH_2-2-Pyridyl$
847	6-OMe,	8-F	CF ₃	$CH_2CH_2-3-Pyridyl$
848	6-OMe,	8-F	CF ₃	$\mathrm{CH_{2}CH_{2}}4\text{Pyridyl}$

849	6-OMe, 8-F	CF ₃	CH_2CH_2-2 -furanyl
850	6-OMe, 8-F	\mathtt{CF}_3	$CH_2CH_2-3-furanyl$
851	6-OMe, 8-F	\mathtt{CF}_3	CH_2CH_2-2 -thienyl
852	6-OMe, 8-F	CF ₃	CH_2CH_2-3 -thienyl
853	5-F, 6-OMe	CF_3	C≡C-cycPr
854	5-F, 6-OMe	CF ₃	C≡C-iPr
855	5-F, 6-OMe	CF ₃	C≡C-nPr
856	5-F, 6-OMe	CF ₃	C≡C-Bu
857	5-F, 6-OMe	CF_3	C≡C-iBu
858	5-F, 6-OMe	CF ₃	C≡C-tBu
859	5-F, 6-OMe	CF ₃	C≡C-Et
860	5-F, 6-OMe	CF ₃	C≡C-Me
861	5-F, 6-OMe	CF ₃	C≡C-Ph
862	5-F, 6-OMe	CF ₃	C≡C-(2-Cl)Ph
863	5-F, 6-OMe	CF ₃	C≡C-(3-C1)Ph
864	5-F, 6-OMe	CF_3	C≡C-(2-F)Ph
865	5-F, 6-OMe	CF ₃	C≡C-(3-F)Ph
866	5-F, 6-OMe	CF ₃	C≡C-(2-OH) Ph
867	5-F, 6-OMe	CF ₃	C≡C-(3-OH) Ph
868	5-F, 6-OMe	CF ₃	C≡C-(2-OMe)Ph
869	5-F, 6-OMe	CF_3	C≡C-(3-OMe)Ph
870	5-F, 6-OMe	CF_3	C≡C-(2-CN)Ph
871	5-F, 6-OMe	CF ₃	C≡C-(3-CN)Ph
872	5-F, 6-OMe	CF_3	$C \equiv C - (2 - NH_2) Ph$
873	5-F, 6-OMe	CF_3	$C \equiv C - (3 - NH_2) Ph$
874	5-F, 6-OMe	CF ₃	C≡C-(2-NMe ₂)Ph
875	5-F, 6-OMe	CF_3	C≡C-(3-NMe ₂) Ph
876	5-F, 6-OMe	CF ₃	C≡C-2-Pyridyl
877	5-F, 6-OMe	CF ₃	C≡C-3-Pyridyl
878	5-F, 6-OMe	CF ₃	C≡C-4-Pyridyl
879	5-F, 6-OMe	CF ₃	C≡C-2-furanyl
880	5-F, 6-OMe	CF ₃	C≡C-3-furanyl
881	5-F, 6-OMe	CF ₃	C≡C-2-thienyl

882	5-F, 6-OMe	CF ₃	C≡C-3-thienyl
883	5-F, 6-OMe	CF ₃	CH=CH-cycPr
884	5-F, 6-OMe	CF_3	CH=CH-iPr
885	5-F, 6-OMe	CF ₃	CH=CH-nPr
886	5-F, 6-OMe	CF ₃	CH=CH-Bu
887	5-F, 6-OMe	CF ₃	CH=CH-iBu
888	5-F, 6-OMe	CF ₃	CH=CH-tBu
889	5-F, 6-OMe	CF ₃	CH=CH-Et
890	5-F, 6-OMe	CF ₃	CH=CH-Me
891	5-F, 6-OMe	CF ₃	CH=CH-Ph
892	5-F, 6-OMe	CF ₃	CH=CH-2-Pyridyl
893	5-F, 6-OMe	CF ₃	CH=CH-3-Pyridyl
894	5-F, 6-OMe	CF ₃	CH=CH-4-Pyridyl
895	5-F, 6-OMe	CF_3	CH=CH-2-furanyl
896	5-F, 6-OMe	CF_3	CH=CH-3-furanyl
897	5-F, 6-OMe	CF_3	CH=CH-2-thienyl
898	5-F, 6-OMe	CF_3	CH=CH-3-thienyl
899	5-F, 6-OMe	CF ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
900	5-F, 6-OMe	CF ₃	$\mathrm{CH_{2}CH_{2}CH}\left(\mathrm{CH_{3}}\right)_{2}$
901	5-F, 6-OMe	CF_3	$CH_2CH_2CH_2CH_3$
902	5-F, 6-OMe	CF ₃	$\mathrm{CH_2CH_2}\text{-cycPr}$
903	5-F, 6-OMe	CF ₃	CH ₂ CH ₂ -tBu
904	5-F, 6-OMe	CF ₃	CH ₂ CH ₂ -Ph
905	5-F, 6-OMe	CF ₃	$CH_2CH_2-2-Pyridyl$
906	5-F, 6-OMe	CF ₃	$CH_2CH_2-3-Pyridyl$
907	5-F, 6-OMe	CF ₃	$\mathrm{CH_{2}CH_{2}}4\text{Pyridyl}$
908	5-F, 6-OMe	CF ₃	CH_2CH_2-2 -furanyl
909	5-F, 6-OMe	CF ₃	CH_2CH_2-3 -furanyl
910	5-F, 6-OMe	CF ₃	CH_2CH_2-2 -thienyl
911	5-F, 6-OMe	CF ₃	CH_2CH_2-3 -thienyl
912	$6-NMe_2$	CF ₃	C≡C-nPr
913	$6-NMe_2$	CF ₃	C≡C−Bu
914	$6-NMe_2$	CF ₃	C≡C-iBu

915	$6-NMe_2$	CF_3	C≡C-tBu
916	$6-NMe_2$	CF_3	C≡C-Et
917	$6-NMe_2$	CF ₃	C≡C-Me
918	$6-NMe_2$	CF ₃	C≡C-Ph
919	$6-NMe_2$	CF_3	C≡C-(2-C1)Ph
920	$6-NMe_2$	CF ₃	C≡C-(3-C1)Ph
921	$6-NMe_2$	CF ₃	C≡C-(2-F)Ph
922	$6-NMe_2$	CF_3	C≡C-(3-F)Ph
923	$6-NMe_2$	CF_3	C≡C-(2-OH)Ph
924	$6-NMe_2$	CF_3	C≡C-(3-OH) Ph
925	$6-NMe_2$	CF_3	C≡C-(2-OMe)Ph
926	$6-NMe_2$	CF_3	C≡C-(3-OMe) Ph
927	$6-NMe_2$	CF ₃	C≡C-(2-CN)Ph
928	$6-NMe_2$	CF ₃	C≡C-(3-CN)Ph
929	$6-NMe_2$	CF ₃	$C \equiv C - (2 - NH_2) Ph$
930	$6-NMe_2$	CF ₃	$C \equiv C - (3 - NH_2) Ph$
931	$6-NMe_2$	CF ₃	C≡C-(2-NMe ₂) Ph
932	$6-NMe_2$	CF ₃	$C \equiv C - (3 - NMe_2) Ph$
933	$6-NMe_2$	CF ₃	C≡C-2-Pyridyl
934	$6-NMe_2$	CF ₃	C≡C-3-Pyridyl
935	$6-NMe_2$	CF_3	C≡C-4-Pyridyl
936	$6-NMe_2$	CF_3	C≡C-2-furanyl
937	$6-NMe_2$	CF ₃	C≡C-3-furanyl
938	$6-NMe_2$	CF ₃	C≡C-2-thienyl
939	$6-NMe_2$	CF ₃	C≡C-3-thienyl
940	$6-NMe_2$	CF ₃	CH=CH-cycPr
941	$6-NMe_2$	CF ₃	CH=CH-iPr
942	6-NMe ₂	CF ₃	CH=CH-nPr
943	6-NMe ₂	CF ₃	CH=CH-Bu
944	$6-NMe_2$	CF ₃	CH=CH-iBu
945	$6-NMe_2$	CF ₃	CH=CH-tBu
946	$6-NMe_2$	CF ₃	CH=CH-Et
947	$6-NMe_2$	CF ₃	CH=CH-Me

948	$6-NMe_2$	CF_3	CH=CH-Ph
949	$6-NMe_2$	CF ₃	CH=CH-2-Pyridyl
950	$6-NMe_2$	CF ₃	CH=CH-3-Pyridyl
951	$6-NMe_2$	CF ₃	CH=CH-4-Pyridyl
952	$6-NMe_2$	CF ₃	CH=CH-2-furanyl
953	$6-NMe_2$	CF ₃	CH=CH-3-furanyl
954	$6-NMe_2$	CF ₃	CH=CH-2-thienyl
955	$6-NMe_2$	CF ₃	CH=CH-3-thienyl
956	$6-NMe_2$	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{3}}$
957	$6-NMe_2$	CF ₃	$\mathrm{CH_2CH_2} ext{-cycPr}$
958	$6-NMe_2$	CF_3	CH ₂ CH ₂ -tBu
959	$6-NMe_2$	\mathtt{CF}_3	CH ₂ CH ₂ -Ph
960	$6-NMe_2$	CF_3	$CH_2CH_2-2-Pyridyl$
961	$6-NMe_2$	CF_3	$CH_2CH_2-3-Pyridyl$
962	$6-NMe_2$	CF_3	${ m CH_2CH_2-4-Pyridyl}$
963	$6-NMe_2$	CF ₃	CH_2CH_2-2 -furanyl
964	6-NMe ₂	CF_3	CH_2CH_2-3 -furanyl
965	$6-NMe_2$	CF_3	$\mathrm{CH_{2}CH_{2}-2}$ -thienyl
966	$6-NMe_2$	CF_3	CH_2CH_2-3 -thienyl
967	6-COCH ₃	CF_3	C≡C-iPr
968	6-COCH ₃	CF_3	C≡C-nPr
969	6-COCH ₃	CF ₃	C≡C-Bu
970	6-COCH ₃	CF ₃	C≡C-iBu
971	6-COCH ₃	CF_3	C≡C-tBu
972	6-COCH ₃	CF ₃	C≡C-Me
973	6-COCH ₃	CF ₃	C≡C-Ph
974	6-COCH ₃	CF ₃	C≡C-(2-C1)Ph
975	6-COCH ₃	CF ₃	C≡C-(3-C1)Ph
976	6-COCH ₃	CF ₃	C≡C-(2-F) Ph
977	6-COCH ₃	CF ₃	C≡C-(3-F)Ph
978	6-COCH ₃	CF ₃	C≡C-(2-OH)Ph
979	6-COCH ₃	CF ₃	C≡C-(3-OH) Ph
980	6-COCH ₃	CF ₃	C≡C-(2-OMe)Ph

981	6-СОСН ₃	CF ₃	C≡C-(3-OMe) Ph
982	6-COCH ₃	CF ₃	C≡C-(2-CN)Ph
983	6-COCH ₃	CF ₃	C≡C-(3-CN)Ph
984	6-COCH ₃	CF ₃	C≡C-(2-NH ₂) Ph
985	6-COCH ₃	CF ₃	C≡C-(3-NH ₂) Ph
986	6-COCH ₃	CF ₃	$C \equiv C - (2 - NMe_2) Ph$
987	6-COCH ₃	CF ₃	$C \equiv C - (3 - NMe_2) Ph$
988	6-COCH ₃	CF ₃	C≡C-2-Pyridyl
989	6-COCH ₃	CF ₃	C≡C-3-Pyridyl
990	6-COCH ₃	CF ₃	C≡C-4-Pyridyl
991	6-COCH ₃	CF_3	C≡C-2-furanyl
992	6-COCH ₃	CF_3	C≡C-3-furanyl
993	6-COCH ₃	CF_3	C≡C-2-thienyl
994	6-COCH ₃	CF_3	C≡C-3-thienyl
995	6-COCH ₃	CF ₃	CH=CH-cycPr
996	6-COCH ₃	CF ₃	CH=CH-iPr
997	6-COCH ₃	CF ₃	CH=CH-nPr
998	6-COCH ₃	CF_3	CH=CH-Bu
999	6-COCH ₃	CF_3	CH=CH-iBu
1000	6-COCH ₃	CF ₃	CH=CH-tBu
1001	6-COCH ₃	CF ₃	CH=CH-Et
1002	6-COCH ₃	CF3	CH=CH-Me
1003	6-COCH ₃	CF ₃	CH=CH-Ph
1004	6-COCH ₃	CF ₃	CH=CH-2-Pyridyl
1005	6-COCH ₃	CF_3	CH=CH-3-Pyridyl
1006	6-COCH ₃	CF ₃	CH=CH-4-Pyridyl
1007	6-COCH ₃	CF ₃	CH=CH-2-furanyl
1008	6-COCH ₃	CF ₃	CH=CH-3-furanyl
1009	6-COCH ₃	CF ₃	CH=CH-2-thienyl
1010	6-СОСН ₃	CF ₃	CH=CH-3-thienyl
1011	6-СОСН ₃	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}}$
1012	6-COCH3	CF_3	$\mathrm{CH_{2}CH_{2}CH}$ ($\mathrm{CH_{3}}$) $_{2}$
1013	6-COCH ₃	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃

1014	6-COCH3	CF ₃	CH ₂ CH ₂ -cycPr
1015	6-COCH ₃	CF ₃	CH ₂ CH ₂ -tBu
1016	6-COCH ₃	CF ₃	CH ₂ CH ₂ -Ph
1017	6-COCH ₃	CF ₃	CH ₂ CH ₂ -2-Pyridyl
1018	6-COCH ₃	CF ₃	$CH_2CH_2-3-Pyridyl$
1019	6-COCH ₃	CF ₃	${ m CH_2CH_2-4-Pyridyl}$
1020	6-COCH ₃	CF ₃	CH_2CH_2-2 -furanyl
1021	6-COCH ₃	CF ₃	CH_2CH_2-3 -furanyl
1022	6-COCH ₃	CF ₃	CH_2CH_2-2 -thienyl
1023	6-COCH ₃	CF ₃	CH_2CH_2-3 -thienyl
1024	6-CH ₃	CF ₃	C≡C-nPr
1025	6-CH ₃	CF_3	C≡C−Bu
1026	6-CH ₃	CF_3	C≡C-iBu
1027	6-CH ₃	CF ₃	C≡C-tBu
1028	6-CH ₃	CF ₃	C≡C-Me
1029	6-CH ₃	CF ₃	C≡C-Ph
1030	6-CH ₃	CF ₃	C≡C-(2-C1)Ph
1031	6-CH ₃	CF ₃	C≡C-(3-C1)Ph
1032	6-CH ₃	CF ₃	C≡C-(2-F)Ph
1033	6-CH ₃	CF ₃	C≡C-(3-F) Ph
1034	6-CH ₃	CF ₃	C≡C-(2-OH) Ph
1035	6-CH ₃	CF_3	C≡C-(3-OH)Ph
1036	6-CH ₃	CF ₃	C≡C-(2-OMe) Ph
1037	6-CH ₃	CF ₃	C≡C-(3-OMe) Ph
1038	6-CH ₃	CF ₃	C≡C-(2-CN)Ph
1039	6-CH ₃	CF ₃	C≡C-(3-CN)Ph
1040	6-CH ₃	CF ₃	$C \equiv C - (2 - NH_2) Ph$
1041	6-CH ₃	CF_3	$C \equiv C - (3 - NH_2) Ph$
1042	6-CH ₃	CF ₃	C≡C-(2-NMe ₂) Ph
1043	6-CH ₃	CF ₃	C≡C-(3-NMe ₂)Ph
1044	6-CH ₃	CF ₃	C≡C-2-Pyridyl
1045	6-СН ₃	CF ₃	C≡C-3-Pyridyl
1046	6-CH ₃	CF ₃	C≡C-4-Pyridyl

1047	6-CH ₃	CF ₃	C≡C-2-furanyl
1048	6-CH ₃	CF ₃	C≡C-3-furanyl
1049	6-CH ₃	CF ₃	C≡C-2-thienyl
1050	6-CH ₃	CF ₃	C≡C-3-thienyl
1051	6-CH ₃	CF ₃	CH=CH-cycPr
1052	6-CH ₃	CF ₃	CH=CH-iPr
1053	6-CH ₃	CF ₃	CH=CH-nPr
1054	6-CH ₃	CF ₃	CH=CH-Bu
1055	6-CH ₃	CF ₃	CH=CH-iBu
1056	6-CH ₃	CF ₃	CH=CH-tBu
1057	6-CH ₃	CF ₃	CH=CH-Et
1058	6-CH ₃	CF ₃	CH=CH-Me
1059	6-CH ₃	CF ₃	CH=CH-Ph
1060	6-CH ₃	CF ₃	CH=CH-2-Pyridyl
1061	6-CH ₃	CF ₃	CH=CH-3-Pyridyl
1062	6-CH ₃	CF ₃	CH=CH-4-Pyridyl
1063	6-CH ₃	CF ₃	CH=CH-2-furanyl
1064	6-CH ₃	CF_3	CH=CH-3-furanyl
1065	6-CH ₃	\mathtt{CF}_3	CH=CH-2-thienyl
1066	6-CH ₃	CF_3	CH=CH-3-thienyl
1067	6-CH ₃	CF_3	$CH_2CH_2CH_2CH_2CH_3$
1068	6-CH ₃	CF_3	${ m CH_2CH_2CH}$ (${ m CH_3}$) $_2$
1069	6-CH ₃	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{3}}$
1070	6-CH ₃	CF ₃	$\mathrm{CH_{2}CH_{2}}\text{-cycPr}$
1071	6-CH ₃	\mathtt{CF}_3	CH ₂ CH ₂ -tBu
1072	6-CH ₃	CF_3	CH ₂ CH ₂ -Ph
1073	6-CH ₃	CF ₃	$CH_2CH_2-2-Pyridyl$
1074	6-CH ₃	CF ₃	$CH_2CH_2-3-Pyridyl$
1075	6-CH ₃	CF ₃	${ m CH_2CH_2-4-Pyridyl}$
1076	6-CH ₃	CF ₃	$\mathrm{CH_{2}CH_{2}-2}$ -furanyl
1077	6-CH ₃	CF ₃	CH_2CH_2-3 -furanyl
1078	6-CH ₃	CF ₃	CH_2CH_2-2 -thienyl
1079	6-CH ₃	CF ₃	CH_2CH_2-3 -thienyl

1080	6,8-diCl	CF ₃	C≡C-iPr
1081	6,8-d i Cl	CF3	C≡C-nPr
1082	6,8-diCl	CF_3	C≡C-Et
1083	6,8-diCl	CF ₃	C≡C-Me
1084	6,8-diCl	CF ₃	C≡C-Ph
1085	6,8-diCl	CF ₃	C≡C-2-Pyridyl
1086	6,8-diCl	CF ₃	C≡C-3-Pyridyl
1087	6,8-diCl	CF ₃	C≡C-4-Pyridyl
1088	6,8-diCl	CF ₃	C≡C-2-furanyl
1089	6,8-diCl	CF_3	C≡C-3-furanyl
1090	6,8-diCl	CF_3	C≡C-2-thienyl
1091	6,8-diCl	CF ₃	C≡C-3-thienyl
1092	6,8-diCl	CF ₃	CH=CH-cycPr
1093	6,8-diCl	CF ₃	CH=CH-iPr
1094	6,8-diCl	\mathtt{CF}_3	CH=CH-nPr
1095	6,8-diCl	CF_3	CH=CH-Et
1096	6,8-d i Cl	CF ₃	CH=CH-Me
1097	6,8-diCl	CF ₃	CH=CH-Ph
1098	6,8-diCl	CF ₃	CH=CH-2-Pyridyl
1099	6,8-diCl	CF_3	CH=CH-3-Pyridyl
1100	6,8-diCl	CF_3	CH=CH-4-Pyridyl
1101	6,8-diCl	CF_3	CH=CH-2-furanyl
1102	6,8-diCl	CF ₃	CH=CH-3-furanyl
1103	6,8-diCl	CF_3	CH=CH-2-thienyl
1104	6,8-diCl	CF ₃	CH=CH-3-thienyl
1105	6,8-d i Cl	CF ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
1106	6,8 -di Cl	CF_3	$\mathrm{CH_2CH_2CH}\left(\mathrm{CH_3}\right)_2$
1107	6,8-diCl	CF ₃	$CH_2CH_2CH_2CH_3$
1108	6,8-diCl	CF ₃	$\mathrm{CH_{2}CH_{2}}\text{-cycPr}$
1109	6,8-diCl	CF ₃	$CH_2CH_2-2-Pyridyl$
1110	6,8-diCl	CF ₃	$CH_2CH_2-3-Pyridyl$
1111	6,8-diCl	CF ₃	${ m CH_2CH_2-4-Pyridyl}$
1112	6,8-diCl	CF ₃	CH_2CH_2-2 -furanyl

1113	6,8-dicl	CF ₃	CH_2CH_2-3 -furanyl
1114	6,8-dicl	CF ₃	CH_2CH_2-2 -thienyl
1115	6,8-diCl	CF ₃	CH_2CH_2-3 -thienyl
1116	5,6,8-triF	CF ₃	C≡C-Me
1117	5,6,8-triF	CF ₃	C≡C-Ph
1118	5,6,8-triF	CF ₃	C≡C-2-Pyridyl
1119	5,6,8-triF	CF ₃	C≡C-3-Pyridyl
1120	5,6,8-triF	CF ₃	C≡C-4-Pyridyl
1121	5,6,8-triF	CF ₃	C≡C-2-furanyl
1122	5,6,8-triF	CF ₃	C≡C-3-furanyl
1123	5,6,8-triF	CF ₃	C≡C-2-thienyl
1124	5,6,8-triF	CF ₃	C≡C-3-thienyl
1125	5,6,8-triF	CF ₃	CH=CH-cycPr
1126	5,6,8-triF	CF_3	CH=CH-iPr
1127	5,6,8-triF	CF ₃	CH=CH-nPr
1128	5,6,8-triF	CF ₃	CH=CH-Et
1129	5,6,8-triF	CF ₃	CH=CH-Me
1130	5,6,8-triF	CF ₃	CH=CH-Ph
1131	5,6,8-triF	CF_3	CH=CH-2-Pyridyl
1132	5,6,8-triF	CF ₃	CH=CH-3-Pyridyl
1133	5,6,8-triF	CF ₃	CH=CH-4-Pyridyl
1134	5,6,8-triF	CF ₃	CH=CH-2-furanyl
1135	5,6,8-triF	CF ₃	CH=CH-3-furanyl
1136	5,6,8-triF	CF ₃	CH=CH-2-thienyl
1137	5,6,8-triF	CF ₃	CH=CH-3-thienyl
1138	5,6,8-triF	CF_3	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
1139	5,6,8-triF	CF ₃	$ ext{CH}_2 ext{CH}_2 ext{CH}$ ($ ext{CH}_3$) $_2$
1140	5,6,8-triF	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃
1141	5,6,8-triF	CF ₃	$\mathrm{CH_{2}CH_{2}}\text{-cycPr}$
1142	5,6,8-triF	CF ₃	CH ₂ CH ₂ -Ph
1143	5,6,8-triF	CF ₃	$CH_2CH_2-2-Pyridyl$
1144	5,6,8-triF	CF ₃	CH ₂ CH ₂ -3-Pyridyl
1145	5,6,8-triF	CF ₃	$\mathrm{CH_{2}CH_{2}}$ -4-Pyridyl

1146	5,6,8-triF	CF ₃	CH_2CH_2-2 -furanyl
1147	5,6,8-triF	CF ₃	CH_2CH_2-3 -furanyl
1148	5,6,8-triF	CF ₃	CH_2CH_2-2 -thienyl
1149	5,6,8-triF	CF ₃	CH_2CH_2-3 -thienyl
1150	5,8-diF	CF ₃	C≡C-Me
1151	5,8-diF	CF ₃	C≡C-Ph
1152	5,8- di F	CF ₃	C≡C-2-Pyridyl
1153	5,8-diF	CF ₃	C≡C-3-Pyridyl
1154	5,8-diF	CF ₃	C≡C-4-Pyridyl
1155	5,8-diF	CF ₃	C≡C-2-furanyl
1156	5,8-diF	CF_3	C≡C-3-furanyl
1157	5,8-diF	CF_3	C≡C-2-thienyl
1158	5,8-diF	CF ₃	C≡C-3-thienyl
1159	5,8-diF	CF_3	CH=CH-cycPr
1160	5,8-diF	CF ₃	CH=CH-iPr
1161	5,8-diF	CF_3	CH=CH-nPr
1162	5,8-diF	\mathtt{CF}_3	CH=CH-Et
1163	5,8-diF	CF ₃	CH=CH-Me
1164	5,8-diF	CF_3	CH=CH-Ph
1165	5,8-diF	CF_3	CH=CH-2-Pyridyl
1166	5,8-diF	CF_3	CH=CH-3-Pyridyl
1167	5,8-diF	CF ₃	CH=CH-4-Pyridyl
1168	5,8-diF	CF ₃	CH=CH-2-furanyl
1169	5,8-diF	CF ₃	CH=CH-3-furanyl
1170	5,8-diF	CF ₃	CH=CH-2-thienyl
1171	5,8-diF	CF ₃	CH=CH-3-thienyl
1172	5,8-diF	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}}$
1173	5,8-diF	CF ₃	$\mathrm{CH_2CH_2CH}\left(\mathrm{CH_3}\right)_2$
1174	5,8-diF	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃
1175	5,8-diF	CF3	CH ₂ CH ₂ -cycPr
1176	5,8-diF	CF3	CH ₂ CH ₂ -Ph
1177	5,8-diF	CF ₃	$CH_2CH_2-2-Pyridyl$
1178	5,8-diF	CF ₃	$CH_2CH_2-3-Pyridyl$

1179	5,8-diF	CF ₃	$\mathrm{CH_{2}CH_{2}}4\text{Pyridyl}$
1180	5,8-diF	CF ₃	CH_2CH_2-2 -furanyl
1181	5,8-diF	CF ₃	CH_2CH_2-3 -furanyl
1182	5,8-diF	CF ₃	$\mathrm{CH_{2}CH_{2}-2}$ -thienyl
1183	5,8-diF	CF ₃	CH_2CH_2-3 -thienyl
1184	6-iPr	CF ₃	C≡C-nPr
1185	6-iPr	CF_3	C≡C-Et
1186	6-iPr	CF ₃	C≡C-Me
1187	6-iPr	CF ₃	C≡C-3-Pyridyl
1188	6-iPr	CF ₃	C≡C-2-furanyl
1189	6-iPr	CF ₃	C≡C-3-furanyl
1190	6-iPr	CF_3	C≡C-2-thienyl
1191	6-iPr	CF ₃	C≡C-3-thienyl
1192	6-iPr	CF ₃	CH=CH-cycPr
1193	6-iPr	CF ₃	CH=CH-iPr
1194	6-iPr	CF ₃	CH=CH-nPr
1195	6-iPr	CF ₃	CH=CH-Et
1196	6-iPr	CF ₃	CH=CH-Me
1197	6-iPr	CF ₃	CH=CH-Ph
1198	6-iPr	CF ₃	CH=CH-2-furanyl
1199	6-iPr	CF ₃	CH=CH-3-furanyl
1200	6-iPr	CF_3	CH=CH-2-thienyl
1201	6-iPr	CF ₃	CH=CH-3-thienyl
1202	6-iPr	CF ₃	$CH_2CH_2CH_2CH_3$
1203	6-iPr	CF ₃	$\mathrm{CH_{2}CH_{2}}\text{-}\mathrm{cycPr}$
1204	6-OCF ₃	CF3	C≡C-nPr
1205	6-OCF ₃	CF ₃	C≡C-Et
1206	6-OCF ₃	CF ₃	C≡C-Me
1207	6-OCF ₃	CF_3	C≡C-3-Pyridyl
1208	6-OCF ₃	CF ₃	C≡C-2-furanyl
1209	6-OCF ₃	CF ₃	C≡C-3-furanyl
1210	6-OCF ₃	CF ₃	C≡C-2-thienyl
1211	6-OCF ₃	\mathtt{CF}_3	C≡C-3-thienyl

1212	6-OCF ₃	CF ₃	CH=CH-cycPr
1213	6-OCF ₃	CF ₃	CH=CH-iPr
1214	6-OCF ₃	CF ₃	CH=CH-nPr
1215	6-OCF ₃	CF ₃	CH=CH-Et
1216	6-OCF ₃	CF ₃	CH=CH-Me
1217	6-OCF ₃	CF ₃	CH=CH-Ph
1218	6-OCF ₃	CF ₃	CH=CH-3-Pyridyl
1219	6-OCF ₃	CF ₃	CH=CH-2-furanyl
1220	6-OCF ₃	CF ₃	CH=CH-3-furanyl
1221	6-OCF ₃	CF_3	CH=CH-2-thienyl
1222	6-OCF ₃	CF_3	CH=CH-3-thienyl
1223	6-OCF ₃	CF_3	$CH_2CH_2CH_2CH_3$
1224	6-OCF ₃	CF_3	$\mathrm{CH_2CH_2} ext{-cycPr}$
1225	6-(pyrazol- 5-y1)	CF ₃	C≡C-cycPr
1226	6-(pyrazol- 5-yl)	CF ₃	C≡C-iPr
1227	6-(pyrazol- 5-yl)	CF ₃	C≡C-nPr
1228	6-(pyrazol- 5-yl)	CF ₃	C≡C-Et
1229	6-(pyrazol- 5-yl)	CF ₃	С≡С-Ме
1230	6-(pyrazol- 5-yl)	CF_3	C≡C-Ph
1231	6-(pyrazol- 5-yl)	CF ₃	C≡C-3-Pyridyl
1232	6-(pyrazol- 5-yl)	CF ₃	C≡C-2-furanyl
1233	6-(pyrazol- 5-yl)	CF3	C≡C-3-furanyl
1234	6-(pyrazol- 5-yl)	CF3	C≡C-2-thienyl
1235	6-(pyrazol- 5-yl)	CF ₃	C≡C-3-thienyl
1236	6-(pyrazol- 5-yl)	CF ₃	CH=CH-cycPr
1237	6-(pyrazol- 5-yl)	CF ₃	CH=CH-iPr
1238	6-(pyrazol- 5-yl)	CF ₃	CH=CH-nPr
1239	6-(pyrazol- 5-yl)	CF ₃	CH=CH-Et

1240	6-(pyrazol- 5-yl)	CF ₃	CH=CH-Me
1241	6-(pyrazol- 5-yl)	CF ₃	CH=CH-Ph
1242	6-(pyrazol- 5-yl)	CF ₃	CH=CH-3-Pyridyl
1243	6-(pyrazol- 5-yl)	CF ₃	CH=CH-2-furanyl
1244	6-(pyrazol- 5-vl)	CF ₃	CH=CH-3-furanyl
1245	6-(pyrazol- 5-yl)	CF ₃	CH=CH-2-thienyl
1246	6-(pyrazol- 5-yl)	CF ₃	CH=CH-3-thienyl
1247	6-(pyrazol- 5-yl)	CF ₃	Pentyl
1248	6-(pyrazol- 5-yl)	CF ₃	CH ₂ CH ₂ -iPr
1249	6-(pyrazol- 5-yl)	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃
1250	6-(pyrazol- 5-yl)	CF ₃	CH ₂ CH ₂ -cycPr
1251	H H	CF ₃	C≡C-nPr
1252	Н	CF ₃	C≡C-Et
1253	Н	CF ₃	C≡C-Me
1254	Н	CF ₃	C≡C-3-Pyridyl
1255	Н	CF ₃	C≡C-2-furanyl
1256	н	CF ₃	C≡C-3-furanyl
1257	Н	CF ₃	-
1258	Н	CF ₃	C≡C-2-thienyl
1259	H	CF ₃	C≡C-3-thienyl CH=CH-cycPr
1260	H	CF ₃	CH=CH-iPr
1261	н	CF ₃	
1262		-	CH=CH-nPr
	Н	CF ₃	CH=CH-Et
1263	Н	CF ₃	CH=CH-Me
1264	Н	CF ₃	CH=CH-Ph
1265	Н	CF ₃	CH=CH-3-Pyridyl
1266	H	CF ₃	CH=CH-2-furanyl
1267	Н	CF ₃	CH=CH-3-furanyl
1268	H	CF ₃	CH=CH-2-thienyl

1269	Н	CF ₃	CH=CH-3-thienyl
1270	Н	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃
1271	Н	CF ₃	$\mathtt{CH_2CH_2} ext{-}\mathtt{cycPr}$
1272	6-Ph	CF ₃	C≡C-Me
1273	6-Ph	CF ₃	C≡C-Ph
1274	6-Ph	CF ₃	C≡C-3-Pyridyl
1275	6-Ph	CF ₃	C≡C-2-furanyl
1276	6-Ph	CF ₃	C≡C-3-furanyl
1277	6-Ph	CF ₃	C≡C-2-thienyl
1278	6-Ph	CF ₃	C≡C-3-thienyl
1279	6-Ph	CF ₃	CH=CH-cycPr
1280	6-Ph	CF ₃	CH=CH-iPr
1281	6-Ph	CF ₃	CH=CH-nPr
1282	6-Ph	CF ₃	CH=CH-Et
1283	6-Ph	CF ₃	CH=CH-Me
1284	6-Ph	CF ₃	CH=CH-Ph
1285	6-Ph	CF ₃	CH=CH-3-Pyridyl
1286	6-Ph	CF ₃	CH=CH-2-furanyl
1287	6-Ph	CF_3	CH=CH-3-furanyl
1288	6-Ph	CF ₃	CH=CH-2-thienyl
1289	6-Ph	CF ₃	CH=CH-3-thienyl
1290	6-Ph	CF ₃	Pentyl
1291	6-Ph	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃
1292	6-Ph	CF ₃	$\mathrm{CH_{2}CH_{2}}\text{-cycPr}$
1293	6-CN	CF ₃	C≡C-cycPr
1294	6-CN	CF ₃	C≡C-iPr
1295	6-CN	CF ₃	C≡C-nPr
1296	6-CN	CF ₃	C≡C-Et
1297	6-CN	CF ₃	C≡C-3-Pyridyl
1298	6-CN	CF ₃	C≡C-2-furanyl
1299	6-CN	CF ₃	C≡C-3-furanyl
1300	6-CN	CF ₃	C≡C-2-thienyl
1301	6-CN	CF ₃	C≡C-3-thienyl

1302	6-CN	CF ₃	CH=CH-cycPr
1303	6-CN	CF ₃	CH=CH-iPr
1304	6-CN	CF ₃	CH=CH-nPr
1305	6-CN	CF ₃	CH=CH-Et
1306	6-CN	CF ₃	CH=CH-3-Pyridyl
1307	6-CN	CF ₃	CH=CH-2-furanyl
1308	6-CN	CF ₃	CH=CH-3-furanyl
1309	6-CN	CF ₃	CH=CH-2-thienyl
1310	6-CN	CF ₃	CH=CH-3-thienyl
1311	6-NO ₂	CF ₃	C≡C-cycPr
1312	6-NO ₂	CF ₃	C≡C-iPr
1313	6-NO ₂	CF ₃	C≡C-nPr
1314	6-NO ₂	CF_3	C≡C-Et
1315	$6-NO_2$	CF3	C≡C-3-Pyridyl
1316	$6-NO_2$	\mathtt{CF}_3	C≡C-2-furany1
1317	6-NO ₂	CF_3	C≡C-3-furanyl
1318	6-NO ₂	CF ₃	C≡C-2-thienyl
1319	6-NO ₂	CF ₃	C≡C-3-thienyl
1320	6-NHMe	CF_3	C≡C-cycPr
1321	6-NHMe	CF ₃	C≡C-iPr
1322	6-NHMe	CF ₃	C≡C-nPr
1323	6-NHMe	CF ₃	C≡C−Et
1324	6-NHMe	CF ₃	C≡C-3-Pyridyl
1325	6-NHMe	CF ₃	C≡C-2-furanyl
1326	6-NHMe	CF ₃	C≡C-3-furanyl
1327	6-NHMe	CF ₃	C≡C-2-thienyl
1328	6-NHMe	CF ₃	C≡C-3-thienyl
1329	6-NHMe	CF ₃	CH=CH-cycPr
1330	6-NHMe	CF ₃	CH=CH-iPr
1331	6-NHMe	CF ₃	CH=CH-nPr
1332	6-NHMe	CF ₃	CH=CH-Et
1333	6-NHMe	CF ₃	CH=CH-3-Pyridyl
1334	6-NHMe	CF ₃	CH=CH-2-furanyl

1335	6-NHMe	CF ₃	CH=CH-3-furany1
1336	6-NHMe	CF ₃	CH=CH-2-thienyl
1337	6-NHMe	CF ₃	CH=CH-3-thienyl
1338	6,7-OCH ₂ O-	CF ₃	C≡C-cycPr
1339	6,7-OCH ₂ O-	CF ₃	C≡C-iPr
1340	6,7-OCH ₂ O-	CF ₃	C≡C-nPr
1341	6,7-OCH ₂ O-	CF ₃	C≡C-Et
1342	6,7-OCH ₂ O-	CF ₃	C≡C-3-Pyridyl
1343	6,7-ОСН ₂ О-	CF ₃	C≡C-2-furanyl
1344	6,7-OCH ₂ O-	CF ₃	C≡C-3-furanyl
1345	6,7-OCH ₂ O-	CF ₃	C≡C-2-thienyl
1346	6,7-OCH ₂ O-	CF ₃	C≡C-3-thienyl
1347	6,7-dicl	CF_3	C≡C-cycPr
1348	6,7-diCl	CF ₃	C≡C-iPr
1349	6,7-dicl	CF ₃	C≡C-nPr
1350	6,7-diCl	CF ₃	C≡C-Et
1351	6,7-dicl	CF ₃	C≡C-3-Pyridyl
1352	6,7-dicl	CF ₃	C≡C-2-furanyl
1353	6,7-dicl	CF ₃	C≡C-3-furanyl
1354	6,7-dicl	CF ₃	C≡C-2-thienyl
1355	6,7-dicl	CF ₃	C≡C-3-thienyl
1356	7-C1	CF ₃	C≡C-cycPr
1357	7-Cl	CF ₃	C≡C-iPr
1358	7-C1	CF ₃	C≡C-nPr
1359	7-C1	CF_3	C≡C-Et
1360	7-Cl	CF ₃	C≡C-3-Pyridyl
1361	7-C1	CF ₃	C≡C-2-furanyl
1362	7-C1	CF ₃	C≡C-3-furanyl
1363	7-C1	CF ₃	C≡C-2-thienyl
1364	7-C1	CF ₃	C≡C-3-thienyl

^{*}Unless otherwise noted, stereochemistry is (+/-).

Table 3

$$G \xrightarrow{\text{II}} \bigcap_{\substack{N \\ N \\ H}} \bigcap_{\substack{N \\ O}} \bigcap$$

Ex. #	G	R^1	R^2
1401	6-Cl, 8-F	cycPr	C≡C-cycPr
1402	6-Cl, 8-F	cycPr	C≡C-iPr
1403	6-Cl, 8-F	cycPr	C≡C-nPr
1404	6-Cl, 8-F	cycPr	C≡C-Et
1405	6-Cl, 8-F	cycPr	C≡C-3-Pyridyl
1406	6-C1, 8-F	cycPr	C≡C-2-furanyl
1407	6-C1, 8-F	cycPr	C≡C-3-furanyl
1408	6-C1, 8-F	cycPr	C≡C-2-thienyl
1409	6-C1, 8-F	cycPr	C≡C-3-thienyl
1410	6-Cl, 8-F	iPr	C≡C-cycPr
1411	6-Cl, 8-F	iPr	C≡C-iPr
1412	6-Cl, 8-F	iPr	C≡C-nPr
1413	6-Cl, 8-F	iPr	C≡C-Et
1414	6-Cl, 8-F	iPr	C≡C-3-Pyridyl
1415	6-Cl, 8-F	iPr	C≡C-2-furanyl
1416	6-Cl, 8-F	iPr	C≡C-3-furanyl
1417	6-C1, 8-F	iPr	C≡C-2-thienyl
1418	6-Cl, 8-F	iPr	C≡C-3-thienyl
1419	6-C1, 8-F	Et	C≡C-cycPr
1420	6-Cl, 8-F	Et	C≡C-iPr
1421	6-Cl, 8-F	Et	C≡C-nPr
1422	6-Cl, 8-F	Et	C≡C-Et
1423	5,6-diF	cycPr	C≡C-cycPr
1424	5,6-diF	cycPr	C≡C-iPr
1425	5,6-diF	cycPr	C≡C-nPr
1426	5,6- diF	cycPr	C≡C-Et
1427	5,6-diF	cycPr	C≡C-3-Pyridyl

1428	5,6-diF	cycPr	C≡C-2-furanyl
1429	5,6-diF	cycPr	C≡C-3-furanyl
1430	5,6-diF	cycPr	C≡C-2-thienyl
1431	5,6- di F	cycPr	C≡C-3-thienyl
1432	5,6-diF	iPr	C≡C-cycPr
1433	5,6-diF	iPr	C≡C-iPr
1434	5,6- diF	iPr	C≡C-nPr
1435	5,6-diF	iPr	C≡C-Et
1436	5,6- diF	iPr	C≡C-3-Pyridyl
1437	5,6-diF	iPr	C≡C-2-furanyl
1438	5,6-diF	iPr	C≡C-3-furanyl
1439	5,6-d i F	iPr	C≡C-2-thienyl
1440	5,6-diF	iPr	C≡C-3-thienyl
1441	5,6-diF	Et	C≡C-cycPr
1442	5,6-diF	Et	C≡C-iPr
1443	5,6-diF	Et	C≡C-nPr
1444	5,6-diF	Et	C≡C-Et
1445	5,6-diCl	cycPr	C≡C-cycPr
1446	5,6-diCl	cycPr	C≡C-iPr
1447	5,6-diCl	cycPr	C≡C-nPr
1448	5,6-diCl	cycPr	C≡C-Et
1449	5,6-diCl	cycPr	C≡C-3-Pyridyl
1450	5,6-diCl	cycPr	C≡C-2-furanyl
1451	5,6-diCl	cycPr	C≡C-3-furanyl
1452	5,6-diCl	cycPr	C≡C-2-thienyl
1453	5,6-diCl	cycPr	C≡C-3-thienyl
1454	5,6-dicl	iPr	C≡C-cycPr
1455	5,6-diCl	iPr	C≡C-iPr
1456	5,6-diCl	iPr	C≡C-nPr
1457	5,6-diCl	iPr	C≡C-Et
1458	5,6-dicl	iPr	C≡C-3-Pyridyl
1459	5,6-diCl	iPr	C≡C-2-furanyl
1460	5,6-diCl	iPr	C≡C-3-furanyl

1461	5,6-diCl	iPr	C≡C-2-thienyl
1462	5,6-dicl	iPr	- C≡C-3-thienyl
1463	5,6-diCl	Et	C≡C-cycPr
1464	5,6-diCl	Et	C≡C-iPr
1465	5,6- di Cl	Et	C≡C-nPr
1466	5,6-diCl	Et	C≡C-Et
1467	5-C1,6-F	cycPr	C≡C-cycPr
1468	5-C1,6-F	cycPr	C≡C-iPr
1469	5-C1,6-F	cycPr	C≡C-nPr
1470	5-C1,6-F	cycPr	C≡C-Et
1471	5-C1,6-F	cycPr	C≡C-3-Pyridyl
1472	5-Cl,6-F	cycPr	C≡C-2-furanyl
1473	5-Cl,6-F	cycPr	C≡C-3-furanyl
1474	5-Cl,6-F	cycPr	C≡C-2-thienyl
1475	5-C1,6-F	cycPr	C≡C-3-thienyl
1476	5-C1,6-F	iPr	C≡C-cycPr
1477	5-Cl,6-F	iPr	C≡C-iPr
1478	5-Cl,6-F	iPr	C≡C-nPr
1479	5-Cl,6-F	iPr	C≡C-Et
1480	5-Cl,6-F	iPr	C≡C-3-Pyridyl
1481	5-Cl,6-F	iPr	C≡C-2-furanyl
1482	5-C1,6-F	iPr	C≡C-3-furanyl
1483	5-C1,6-F	iPr	C≡C-2-thienyl
1484	5-Cl,6-F	iPr	C≡C-3-thienyl
1485	5-C1,6-F	Et	C≡C-cycPr
1486	5-Cl,6-F	Et	C≡C-iPr
1487	5-C1,6-F	Et	C≡C-nPr
1488	5-Cl,6-F	Et	C≡C-Et
1489	5,6-OCH ₂ O-	cycPr	C≡C-cycPr
1490	5,6-OCH ₂ O-	cycPr	C≡C-iPr
1491	5,6-OCH ₂ O-	cycPr	C≡C-nPr
1492	5,6-OCH ₂ O-	cycPr	C≡C-Et
1493	5,6-ОСН ₂ О-	cycPr	C≡C-3-Pyridyl
			<u>-</u>

1494	5,6-OCH ₂ O-	cycPr	C≡C-2-furanyl
1495	5,6-OCH ₂ O-	cycPr	- C≡C-3-furanyl
1496	5,6-OCH ₂ O-	cycPr	C≡C-2-thienyl
1497	5,6-OCH ₂ O-	cycPr	C≡C-3-thienyl
1498	5,6-OCH ₂ O-	iPr	C≡C-cycPr
1499	5,6-OCH ₂ O-	iPr	C≡C-iPr
1500	5,6-OCH ₂ O-	iPr	C≡C-nPr
1501	5,6-OCH ₂ O-	iPr	C≡C−Et
1502	5,6-OCH ₂ O-	iPr	C≡C-3-Pyridyl
1503	5,6-OCH ₂ O-	iPr	C≡C-2-furanyl
1504	5,6-OCH ₂ O-	iPr	C≡C-3-furanyl
1505	5,6-OCH ₂ O-	iPr	C≡C-2-thienyl
1506	5,6-OCH ₂ O-	iPr	C≡C-3-thienyl
1507	5,6-OCH ₂ O-	Et	C≡C-cycPr
1508	5,6-OCH ₂ O-	Et	C≡C-iPr
1509	5,6-OCH ₂ O-	Et	C≡C-nPr
1510	5,6-OCH ₂ O-	Et	C≡C-Et
1511	5-F	cycPr	C≡C-cycPr
1512	5-F	cycPr	C≡C-iPr
1513	5-F	cycPr	C≡C-nPr
1514	5-F	cycPr	C≡C-Et
1515	5-F	cycPr	C≡C-3-Pyridyl
1516	5-F	cycPr	C≡C-2-furanyl
1517	5-F	cycPr	C≡C-3-furanyl
1518	5-F	cycPr	C≡C-2-thienyl
1519	5-F	cycPr	C≡C-3-thienyl
1520	5-F	iPr	C≡C-cycPr
1521	5-F	iPr	C≡C-iPr
1522	5-F	iPr	C≡C-nPr
1523	5-F	iPr	C≡C-Et
1524	5-F	iPr	C≡C-3-Pyridyl
1525	5-F	iPr	C≡C-2-furanyl
1526	5-F	iPr	C≡C-3-furanyl

1527	5-F	iPr	C≡C-2-thienyl
1528	5-F	iPr	C≡C-3-thienyl
1529	5-F	Et	C≡C-cycPr
1530	5-F	Et	C≡C-iPr
1531	5-F	Et	C≡C-nPr
1532	5-F	Et	C≡C-Et
1533	5-Cl	cycPr	C≡C-cycPr
1534	5-C1	cycPr	C≡C-iPr
1535	5-Cl	cycPr	C≡C-nPr
1536	5-C1	cycPr	C≡C−Et
1537	5-C1	cycPr	C≡C-3-Pyridyl
1538	5-Cl	cycPr	C≡C-2-furanyl
1539	5-C1	cycPr	C≡C-3-furanyl
1540	5-C1	cycPr	C≡C-2-thienyl
1541	5-Cl	cycPr	C≡C-3-thienyl
1542	5-Cl	iPr	C≡C-cycPr
1543	5-Cl	iPr	C≡C-iPr
1544	5-Cl	iPr	C≡C-nPr
1545	5-Cl	iPr	C≡C-Et
1546	5-Cl	iPr	C≡C-3-Pyridyl
1547	5-Cl	iPr	C≡C-2-furanyl
1548	5-Cl	iPr	C≡C-3-furanyl
1549	5-Cl	iPr	C≡C-2-thienyl
1550	5-Cl	iPr	C≡C-3-thienyl
1551	5-Cl	Et	C≡C-cycPr
1552	5-Cl	Et	C≡C-iPr
1553	5-C1	Et	C≡C-nPr
1554	5-C1	Et	C≡C-Et
1555	6-OMe	cycPr	C≡C-cycPr
1556	6-OMe	cycPr	C≡C-iPr
1557	6-OMe	cycPr	C≡C-nPr
1558	6-OMe	cycPr	C≡C-Et
1559	6-OMe	cycPr	C≡C-3-Pyridyl

WO 98/14436	PCT/US97/17540
VV O 20/14430	PC1/US9//1/540

1560	6-OMe	cycPr	C≡C-2-furanyl
1561	6-OMe	cycPr	C≡C-3-furanyl
1562	6-OMe	cycPr	C≡C-2-thienyl
1563	6-OMe	cycPr	C≡C-3-thienyl
1564	6-OMe	iPr	C≡C-nPr
1565	6-OMe	iPr	C≡C-Et
1566	6-OMe	iPr	C≡C-3-Pyridyl
1567	6-OMe	iPr	C≡C-2-furanyl
1568	6-OMe	iPr	C≡C-3-furanyl
1569	6-OMe	iPr	C≡C-2-thienyl
1570	6-OMe	iPr	C≡C-3-thienyl
1571	6-OMe	Et	C≡C-cycPr
1572	6-OMe	Et	C≡C-iPr
1573	6-OMe	Et	C≡C-nPr
1574	6-OMe	Et	C≡C-Et
1575	5-F, 6-OMe	cycPr	C≡C-cycPr
1576	5-F, 6-OMe	cycPr	C≡C-iPr
1577	5-F, 6-OMe	cycPr	C≡C-nPr
1578	5-F, 6-OMe	cycPr	C≡C-Et
1579	5-F, 6-OMe	cycPr	C≡C-3-Pyridyl
1580	5-F, 6-OMe	cycPr	C≡C-2-furanyl
1581	5-F, 6-OMe	cycPr	C≡C-3-furanyl
1582	5-F, 6-OMe	cycPr	C≡C-2-thienyl
1583	5-F, 6-OMe	cycPr	C≡C-3-thienyl
1584	5-F, 6-OMe	iPr	C≡C-cycPr
1585	5-F, 6-OMe	iPr	C≡C-iPr
1586	5-F, 6-OMe	iPr	C≡C-nPr
1587	5-F, 6-OMe	iPr	C≡C-Et
1588	5-F, 6-OMe	iPr	C≡C-3-Pyridyl
1589	5-F, 6-OMe	iPr	C≡C-2-furanyl
1590	5-F, 6-OMe	iPr	C≡C-3-furanyl
1591	5-F, 6-OMe	iPr	C≡C-2-thienyl
1592	5-F, 6-OMe	iPr	C≡C-3-thienyl

1593	5-F, 6-OMe	Et	C≡C-cycPr
1594	5-F, 6-OMe	Et	C≡C-iPr
1595	5-F, 6-OMe	Et	C≡C-nPr
1596	5-F, 6-OMe	Et	C≡C-Et
1597	6-NMe ₂	cycPr	C≡C-cycPr
1598	6-NMe ₂	cycPr	C≡C-iPr
1599	$6-NMe_2$	cycPr	C≡C-nPr
1600	6-NMe ₂	cycPr	C≡C-Et
1601	$6-NMe_2$	cycPr	C≡C-3-Pyridyl
1602	$6-NMe_2$	cycPr	C≡C-2-furanyl
1603	$6-NMe_2$	cycPr	C≡C-3-furanyl
1604	$6-NMe_2$	cycPr	C≡C-2-thienyl
1605	$6-NMe_2$	cycPr	C≡C-3-thienyl
1606	$6-NMe_2$	iPr	C≡C-cycPr
1607	$6-NMe_2$	iPr	C≡C-iPr
1608	6-NMe ₂	iPr	C≡C-nPr
1609	$6-NMe_2$	iPr	C≡C-Et
1610	6-NMe ₂	iPr	C≡C-3-Pyridyl
1611	$6-\mathrm{NMe}_2$	iPr	C≡C-2-furanyl
1612	$6-NMe_2$	iPr	C≡C-3-furanyl
1613	6-NMe_2	iPr	C≡C-2-thienyl
1614	$6-\mathtt{NMe}_2$	iPr	C≡C-3-thienyl
1615	$6-NMe_2$	Et	C≡C-cycPr
1616	$6-NMe_2$	Et	C≡C-iPr
1617	$6-NMe_2$	Et	C≡C-nPr
1618	$6-NMe_2$	Et	C≡C-Et
1619	6-COCH ₃	cycPr	C≡C-cycPr
1620	6-COCH ₃	cycPr	C≡C-iPr
1621	6-COCH ₃	cycPr	C≡C-nPr
1622	6-COCH ₃	cycPr	C≡C-Et
1623	6-COCH ₃	cycPr	C≡C-3-Pyridyl
1624	6-COCH ₃	cycPr	C≡C-2-furanyl
1625	6-COCH ₃	cycPr	C≡C-3-furanyl

1626	6-COCH ₃	cycPr	C≡C-2-thienyl
1627	6-COCH ₃	cycPr	C≡C-3-thienyl
1628	6-COCH ₃	iPr	C≡C-cycPr
1629	6-COCH ₃	iPr	C≡C-iPr
1630	6-COCH ₃	iPr	C≡C-nPr
1631	6-COCH ₃	iPr	C≡C-Et
1632	6-COCH ₃	iPr	C≡C-3-Pyridyl
1633	6-COCH ₃	iPr	C≡C-2-furanyl
1634	6-COCH ₃	iPr	C≡C-3-furanyl
1635	6-COCH ₃	iPr	C≡C-2-thienyl
1636	6-COCH ₃	iPr	C≡C-3-thienyl
1637	6-COCH ₃	Et	C≡C-cycPr
1638	6-COCH ₃	Et	C≡C-iPr
1639	6-COCH ₃	Et	C≡C-nPr
1640	6-COCH ₃	Et	C≡C-Et
1641	6-CH ₃	cycPr	C≡C-cycPr
1642	6-CH ₃	cycPr	C≡C-nPr
1643	6-CH ₃	cycPr	C≡C-Et
1644	6-CH ₃	cycPr	C≡C-3-Pyridyl
1645	6-CH ₃	cycPr	C≡C-2-furanyl
1646	6-CH ₃	cycPr	C≡C-3-furanyl
1647	6-CH ₃	cycPr	C≡C-2-thienyl
1648	6-CH ₃	cycPr	C≡C-3-thienyl
1649	6-CH ₃	iPr	C≡C-nPr
1650	6-CH ₃	iPr	C≡C-Et
1651	6-CH ₃	iPr	C≡C-3-Pyridyl
1652	6-CH ₃	iPr	C≡C-2-furanyl
1653	6-CH ₃	iPr	C≡C-3-furanyl
1654	6-CH ₃	iPr	C≡C-2-thienyl
1655	6-CH ₃	iPr	C≡C-3-thienyl
1656	6-CH ₃	Et	C≡C-cycPr
1657	6-CH ₃	Et	C≡C-nPr
1658	6,8-diCl	cycPr	C≡C-cycPr

1659	6,8-dicl	cycPr	C≡C-iPr
1660	6,8-dicl	cycPr	C≡C-nPr
1661	6,8-diCl	cycPr	C≡C-Et
1662	6,8-diCl	cycPr	C≡C-3-Pyridyl
1663	6,8-diCl	cycPr	C≡C-2-furanyl
1664	6,8-diCl	cycPr	C≡C-3-furanyl
1665	6,8- di Cl	cycPr	C≡C-2-thienyl
1666	6,8-diCl	cycPr	C≡C-3-thienyl
1667	6,8-dicl	iPr	C≡C-cycPr
1668	6,8-diCl	iPr	C≡C-iPr
1669	6,8-dicl	iPr	C≡C-nPr
1670	6,8-diCl	iPr	C≡C-Et
1671	6,8-dicl	iPr	C≡C-3-Pyridyl
1672	6,8-dicl	iPr	C≡C-2-furanyl
1673	6,8-diCl	iPr	C≡C-3-furanyl
1674	6,8-diCl	iPr	C≡C-2-thienyl
1675	6,8-diCl	iPr	C≡C-3-thienyl
1676	6,8-diCl	Et	C≡C-cycPr
1677	6,8-diCl	Et	C≡C-iPr
1678	6,8-diCl	Et	C≡C-nPr
1679	6,8-diCl	Et	C≡C-Et
1680	5,6,8-triF	cycPr	C≡C-cycPr
1681	5,6,8-triF	cycPr	C≡C-iPr
1682	5,6,8-triF	cycPr	C≡C-nPr
1683	5,6,8-triF	cycPr	C≡C-Et
1684	5,6,8-triF	cycPr	C≡C-3-Pyridyl
1685	5,6,8-triF	cycPr	C≡C-2-furanyl
1686	5,6,8-triF	cycPr	C≡C-3-furanyl
1687	5,6,8-triF	cycPr	C≡C-2-thienyl
1688	5,6,8-triF	cycPr	C≡C-3-thienyl
1689	5,6,8-triF	iPr	C≡C-cycPr
1690	5,6,8-triF	iPr	C≡C-iPr
1691	5,6,8-triF	iPr	C≡C-nPr

1692	5,6,8-triF	iPr	C≡C-Et
1693	5,6,8-triF	iPr	C≡C-3-Pyridyl
1694	5,6,8-triF	iPr	C≡C-2-furanyl
1695	5,6,8-triF	iPr	C≡C-3-furanyl
1696	5,6,8-triF	iPr	C≡C-2-thienyl
1697	5,6,8-triF	iPr	C≡C-3-thienyl
1698	5,6,8-triF	Et	C≡C-cycPr
1699	5,6,8-triF	Et	C≡C-iPr
1700	5,6,8-triF	Et	C≡C-nPr
1701	5,6,8-triF	Et	C≡C-Et
1702	5,8-diF	cycPr	C≡C-cycPr
1703	5,8-diF	cycPr	C≡C-iPr
1704	5,8-diF	cycPr	C≡C-nPr
1705	5,8-diF	cycPr	C≡C-Et
1706	5,8-diF	cycPr	C≡C-3-Pyridyl
1707	5,8-diF	cycPr	C≡C-2-furanyl
1708	5,8-diF	cycPr	C≡C-3-furanyl
1709	5,8-diF	cycPr	C≡C-2-thienyl
1710	5,8-diF	cycPr	C≡C-3-thienyl
1711	5,8-diF	iPr	C≡C-cycPr
1712	5,8-diF	iPr	C≡C-iPr
1713	5,8-diF	iPr	C≡C-nPr
1714	5,8-diF	iPr	C≡C-Et
1715	5,8-diF	iPr	C≡C-3-Pyridyl
1716	5,8-diF	iPr	C≡C-2-furanyl
1717	5,8-diF	iPr	C≡C-3-furanyl
1718	5,8-diF	iPr	C≡C-2-thienyl
1719	5,8-diF	iPr	C≡C-3-thienyl
1720	5,8-diF	Et	C≡C-cycPr
1721	5,8-diF	Et	C≡C-iPr
1722	5,8-diF	Et	C≡C-nPr
1723	5,8-diF	Et	C≡C-Et
1724	6-iPr	cycPr	C≡C-cycPr
			_

1725	6-iPr	cycPr	C≡C-iPr
1726	6-iPr	cycPr	C≡C-nPr
1727	6-iPr	cycPr	C≡C-Et
1728	6-iPr	cycPr	C≡C-3-Pyridyl
1729	6-iPr	cycPr	C≡C-2-furanyl
1730	6-iPr	cycPr	C≡C-3-furanyl
1731	6-iPr	cycPr	C≡C-2-thienyl
1732	6-iPr	cycPr	C≡C-3-thienyl
1733	6-iPr	iPr	C≡C-cycPr
1734	6-iPr	iPr	C≡C-iPr
1735	6-iPr	iPr	C≡C-nPr
1736	6-iPr	iPr	C≡C-Et
1737	6-iPr	iPr	C≡C-3-Pyridyl
1738	6-iPr	iPr	C≡C-2-furanyl
1739	6-iPr	iPr	C≡C-3-furanyl
1740	6-iPr	iPr	C≡C-2-thienyl
1741	6-iPr	iPr	C≡C-3-thienyl
1742	6-iPr	Et	C≡C-cycPr
1743	6-iPr	Et	C≡C-iPr
1744	6-iPr	Et	C≡C-nPr
1745	6-iPr	Et	C≡C-Et
1746	6-OCF ₃	cycPr	C≡C-cycPr
1747	6-OCF3	cycPr	C≡C-iPr
1748	6-OCF ₃	cycPr	C≡C-nPr
1749	6-OCF3	cycPr	C≡C-Et
1750	6-OCF ₃	cycPr	C≡C-3-Pyridyl
1751	6-OCF ₃	cycPr	C≡C-2-furanyl
1752	6-OCF3	cycPr	C≡C-3-furanyl
1753	6-OCF3	cycPr	C≡C-2-thienyl
1754	6-OCF ₃	cycPr	C≡C-3-thienyl
1755	6-OCF ₃	iPr	C≡C-cycPr
1756	6-OCF3	iPr	C≣C-iPr
1757	6-OCF ₃	iPr	C≡C-nPr

1758	6-OCF ₃	iPr	C≡C-Et
1759	6-OCF ₃	iPr	C≡C-3-Pyridyl
1760	6-OCF ₃	iPr	C≡C-2-furanyl
1761	6-OCF ₃	iPr	C≡C-3-furanyl
1762	6-OCF ₃	iPr	C≡C-2-thienyl
1763	6-OCF ₃	iPr	C≡C-3-thienyl
1764	6-OCF ₃	Et	C≡C-cycPr
1765	6-OCF ₃	Et	C≡C-iPr
1766	6-OCF ₃	Et	C≡C-nPr
1767	6-OCF ₃	Et	C≡C-Et
1768	6-(pyrazol- 5-yl)	cycPr	C≡C-cycPr
1769	6-(pyrazol- 5-yl)	cycPr	C≡C-iPr
1770	6-(pyrazol- 5-yl)	cycPr	C≡C-nPr
1771	6-(pyrazol- 5-yl)	cycPr	C≡C-Et
1772	6-(pyrazol- 5-yl)	cycPr	C≡C-3-Pyridyl
1773	6-(pyrazol- 5-yl)	cycPr	C≡C-2-furanyl
1774	6-(pyrazol- 5-yl)	cycPr	C≡C-3-furanyl
1775	6-(pyrazol- 5-yl)	cycPr	C≡C-2-thienyl
1776	6-(pyrazol- 5-yl)	cycPr	C≡C-3-thienyl
1777	6-(pyrazol- 5-yl)	iPr	C≡C-cycPr
1778	6-(pyrazol- 5-yl)	iPr	C≡C-iPr
1779	6-(pyrazol- 5-yl)	iPr	C≡C-nPr
1780	6-(pyrazol- 5-yl)	iPr	C≡C-Et
1781	6-(pyrazol- 5-yl)	iPr	C≡C-3-Pyridyl
1782	6-(pyrazol- 5-yl)	iPr	C≡C-2-furanyl
1783	6-(pyrazol- 5-yl)	iPr	C≡C-3-furanyl
1784	6-(pyrazol- 5-yl)	iPr	C≡C-2-thienyl

1785	6-(pyrazol- 5-yl)	iPr	C≡C-3-thienyl
1786	6-(pyrazol- 5-yl)	Et	C≡C-cycPr
1787	6-(pyrazol- 5-yl)	Et	C≡C-iPr
1788	6-(pyrazol- 5-yl)	Et	C≡C-nPr
1789	6-(pyrazol- 5-yl)	Et	C≡C-Et
1790	Н	cycPr	C≡C-cycPr
1791	Н	cycPr	C≡C-iPr
1792	Н	cycPr	C≡C-nPr
1793	Н	cycPr	C≡C−Et
1794	Н	cycPr	C≡C-3-Pyridyl
1795	Н	cycPr	C≡C-2-furanyl
1796	H	cycPr	C≡C-3-furanyl
1797	H	cycPr	C≡C-2-thienyl
1798	H	cycPr	C≡C-3-thienyl
1799	H	iPr	C≡C-cycPr
1800	H	iPr	C≡C-iPr
1801	H	iPr	C≡C-nPr
1802	H	iPr	C≡C-Et
1803	Н	iPr	C≡C-3-Pyridyl
1804	H	iPr	C≡C-2-furanyl
1805	H	iPr	C≡C-3-furanyl
1806	H	iPr	C≡C-2-thienyl
1807	H	iPr	C≡C-3-thienyl
1808	H	Et	C≡C-cycPr
1809	H	Et	C≡C-iPr
1810	Н	Et	C≡C-nPr
1811	Н	Et	C≡C-Et
1812	6-Ph	cycPr	C≡C-cycPr
1813	6-Ph	cycPr	C≡C-iPr
1814	6-Ph	cycPr	C≡C-nPr
1815	6-Ph	cycPr	C≡C-Et
1816	6-Ph	cycPr	C≡C-3-Pyridyl

1817	6-Ph	cycPr	C≡C-2-furanyl
1818	6-Ph	cycPr	C≡C-3-furanyl
1819	6-Ph	cycPr	C≡C-2-thienyl
1820	6-Ph	cycPr	C≡C-3-thienyl
1821	6-Ph	iPr	C≡C-cycPr
1822	6-Ph	iPr	c≡c-iPr
1823	6-Ph	iPr	C≡C-nPr
1824	6-Ph	iPr	C≡C-Et
1825	6-Ph	iPr	C≡C-3-Pyridyl
1826	6-Ph	iPr	C≡C-2-furanyl
1827	6-Ph	iPr	C≡C-3-furanyl
1828	6-Ph	iPr	c≡C-2-thienyl
1829	6-Ph	iPr	C≡C-3-thienyl
1830	6-Ph	Et	C≡C-cycPr
1831	6-Ph	Et	C≡C-iPr
1832	6-Ph	Et	C≡C-nPr
1833	6-Ph	Et	C≡C-Et
1834	6-CN	cycPr	C≡C-cycPr
1835	6-CN	cycPr	C≡C-iPr
1836	6-CN	cycPr	C≡C-nPr
1837	6-CN	cycPr	C≡C-Et
1838	6-CN	cycPr	C≡C-3-Pyridyl
1839	6-CN	cycPr	C≡C-2-furanyl
1840	6-CN	cycPr	C≡C-3-furanyl
1841	6-CN	cycPr	C≡C-2-thienyl
1842	6-CN	cycPr	C≡C-3-thienyl
1843	6-CN	iPr	C≡C-cycPr
1844	6-CN	iPr	C≡C-iPr
1845	6-CN	iPr	C≡C-nPr
1846	6-CN	iPr	C≡C-Et
1847	6-CN	iPr	C≡C-3-Pyridyl
1848	6-CN	iPr	C≡C-2-furanyl
1849	6-CN	iPr	C≡C-3-furanyl

1850	6-CN	iPr	C≡C-2-thienyl
1851	6-CN	iPr	- C≡C-3-thienyl
1852	6-CN	Et	C≡C-cycPr
1853	6-CN	Et	C≡C-iPr
1854	6-CN	Et	C≡C-nPr
1855	6-CN	Et	C≡C-Et
1856	6-NO ₂	cycPr	C≡C-cycPr
1857	6-NO ₂	cycPr	C≡C-iPr
1858	6-NO ₂	cycPr	C≡C-nPr
1859	6-NO ₂	cycPr	C≡C-Et
1860	$6-NO_2$	cycPr	C≡C-3-Pyridyl
1861	6-NO ₂	cycPr	C≡C-2-furanyl
1862	6-NO ₂	cycPr	C≡C-3-furanyl
1863	6-NO ₂	cycPr	C≡C-2-thienyl
1864	6-NO ₂	cycPr	C≡C-3-thienyl
1865	$6-NO_2$	iPr	C≡C-cycPr
1866	6-NO ₂	iPr	C≡C-iPr
1867	6-NO ₂	iPr	C≡C-nPr
1868	6-NO ₂	iPr	C≡C-Et
1869	6-NO ₂	iPr	C≡C-3-Pyridyl
1870	6-NO ₂	iPr	C≡C-2-furanyl
1871	6-NO ₂	iPr	C≡C-3-furanyl
1872	6-NO ₂	iPr	C≡C-2-thienyl
1873	6-NO ₂	iPr	C≡C-3-thienyl
1874	6-NO ₂	Et	C≡C-cycPr
1875	$6-NO_2$	Et	C≡C-iPr
1876	$6-NO_2$	Et	C≡C-nPr
1877	$6-NO_2$	Et	C≡C-Et
1878	6-NHMe	cycPr	C≡C-cycPr
1879	6-NHMe	cycPr	C≡C-iPr
1880	6-NHMe	cycPr	C≡C-nPr
1881	6-NHMe	cycPr	C≡C-Et
1882	6-NHMe	cycPr	C≡C-3-Pyridyl
			=

1883	6-NHMe	cycPr	C≡C-2-furanyl
1884	6-NHMe	cycPr	C≡C-3-furanyl
1885	6-NHMe	cycPr	C≡C-2-thienyl
1886	6-NHMe	cycPr	c≡C-3-thienyl
1887	6-NHMe	iPr	C≡C-cycPr
1888	6-NHMe	iPr	C≡C-iPr
1889	6-NHMe	iPr	C≡C-nPr
1890	6-NHMe	iPr	C≡C-Et
1891	6-NHMe	iPr	C≡C-3-Pyridyl
1892	6-NHMe	iPr	C≡C-2-furanyl
1893	6-NHMe	iPr	C≡C-3-furanyl
1894	6-NHMe	iPr	C≡C-2-thienyl
1895	6-NHMe	iPr	C≡C-3-thienyl
1896	6-NHMe	Et	C≡C-cycPr
1897	6-NHMe	Et	- C≡C-iPr
1898	6-NHMe	Et	C≡C-nPr
1899	6-NHMe	Et	C≡C-Et
1900	6,7-diCl	cycPr	C≡C-cycPr
1901	6,7-dicl	cycPr	C≡C-nPr
1902	6,7-dicl	cycPr	C≡C-Et
1903	6,7-diCl	cycPr	C≡C-3-Pyridyl
1904	6,7-dicl	cycPr	C≡C-2-furanyl
1905	6,7-dicl	cycPr	C≡C-3-furanyl
1906	6,7-dicl	cycPr	C≡C-2-thienyl
1907	6,7-dicl	cycPr	C≡C-3-thienyl
1908	6,7-d i Cl	iPr	C≡C-cycPr
1909	6,7-dicl	iPr	C≡C-nPr
1910	6,7-diCl	iPr	C≡C-Et
1911	6,7-diCl	iPr	C≡C-3-Pyridyl
1912	6,7-dicl	iPr	C≡C-2-furanyl
1913	6,7-diCl	iPr	- C≡C-3-furanyl
1914	6,7-diCl	iPr	C≡C-2-thienyl
1915	6,7-dicl	iPr	C≡C-3-thienyl

WO 98/14436	PCT/US97/17540
VI O 20/11/100	1 C1/00/1/1/340

1916	6,7-dicl	Et	C≡C-cycPr
1917	6,7-dicl	Et	-
			C≡C-iPr
1918	6,7-dicl	Et	C≡C-nPr
1919	6,7-dicl	Et	C≡C-Et
1920	7-C1	cycPr	C≡C-nPr
1921	7-C1	cycPr	C≡C-Et
1922	7-C1	cycPr	C≡C-3-Pyridyl
1923	7-Cl	cycPr	C≡C-2-furanyl
1924	7-C1	cycPr	C≡C-3-furanyl
1925	7-Cl	cycPr	C≡C-2-thienyl
1926	7-Cl	cycPr	C≡C-3-thienyl
1927	7-C1	iPr	C≡C-nPr
1928	7-Cl	iPr	C≡C-Et
1929	7-Cl	iPr	C≡C-3-Pyridyl
1930	7-Cl	iPr	C≡C-2-furanyl
1931	7-Cl	iPr	C≡C-3-furanyl
1932	7-Cl	iPr	C≡C-2-thienyl
1933	7-Cl	iPr	C≡C-3-thienyl
1934	7-C1	Et	C≡C-cycPr
1935	7-C1	Et	C≡C-iPr
1936	7-Cl	Et	C≡C-nPr
1937	7-C1	Et	C≡C-Et

^{*}Unless otherwise noted, stereochemistry is (+/-).

Table 4

	R_1	R_2
x-W\$	Y	·ρ
Y Z	✓ H	∕>o

Ex. #	W	Х	Y	Z	\mathbb{R}^1	\mathbb{R}^2
2001	CH	CCl	СН	N	CF ₃	C≡C-nPr
2002	CH	CCl	CH	N	CF ₃	C≡C-Bu
2003	CH	CCl	CH	N	CF ₃	C≡C-iBu
2004	CH	CCl	CH	N	CF_3	C≡C-tBu
2005	CH	CCl	CH	N	\mathtt{CF}_3	C≡C-Et
2006	CH	CCl	CH	N	\mathtt{CF}_3	C≡C-Me
2007	CH	CCl	CH	N	CF_3	C≡C-Ph
2008	CH	CC1	CH	N	CF ₃	C≡C-2-Pyridyl
2009	CH	CCl	CH	N	CF_3	C≡C-3-Pyridyl
2010	CH	CCl	CH	N	CF ₃	C≡C-4-Pyridyl
2011	CH	CCl	CH	N	CF_3	C≡C-2-furanyl
2012	CH	CCl	CH	N	CF_3	C≡C-3-furanyl
2013	CH	CCl	CH	N	CF_3	C≡C-2-thienyl
2014	CH	CCl	CH	N	CF_3	C≡C-3-thienyl
2015	CH	CCl	CH	N	CF ₃	CH=CH-cycPr
2016	CH	CCl	CH	N	CF_3	CH=CH-iPr
2017	CH	CCl	CH	N	CF_3	CH=CH-nPr
2018	CH	CCl	CH	N	CF_3	CH=CH-Bu
2019	CH	CCl	CH	N	CF ₃	CH=CH-iBu
2020	CH	CCl	CH	N	CF ₃	CH=CH-tBu
2021	CH	CCl	CH	N	CF ₃	CH=CH-Et
2022	CH	CCl	CH	N	CF ₃	CH=CH-Me
2023	CH	CCl	CH	N	CF ₃	CH=CH-Ph
2024	CH	CCl	CH	N	CF ₃	CH=CH-2-Pyridyl
2025	CH	CCl	CH	N	CF ₃	CH=CH-3-Pyridyl
2026	СН	CCl	CH	N	CF ₃	CH=CH-4-Pyridyl
2027	CH	CCl	CH	N	CF ₃	CH=CH-2-furanyl

CH CH	CCl	СН	N	CF_3	CH=CH-3-furanyl
СН	~~7			_	_
	CCl	CH	N	CF ₃	CH=CH-2-thienyl
CH	CC1	CH	N	CF_3	CH=CH-3-thienyl
CH	CCl	CH	N	CF_3	$CH_2CH_2CH_2CH_3$
CH	CCl	CH	N	CF ₃	$\mathrm{CH_{2}CH_{2}CH}\left(\mathrm{CH_{3}}\right)_{2}$
CH	CCl	CH	N	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃
CH	CC1	CH	N	CF ₃	CH ₂ CH ₂ CH ₃
CH	CCl	СН	N	CF ₃	CH ₂ CH ₂ -cycPr
CH	CCl	CH	N	CF ₃	CH ₂ CH ₂ -tBu
CH	CCl	CH	N	CF ₃	CH ₂ CH ₂ -2-Pyridyl
CH	CCl	CH	N	CF ₃	$CH_2CH_2-3-Pyridyl$
CH	CCl	CH	N	CF ₃	$CH_2CH_2-4-Pyridyl$
CH	CCl	CH	N	CF ₃	CH_2CH_2-2 -furanyl
CH	CC1	CH	N	CF ₃	CH_2CH_2-3 -furanyl
CH	CCl	CH	N	CF_3	CH_2CH_2-2 -thienyl
CH	CCl	CH	N	CF_3	CH_2CH_2-3 -thienyl
CH	C(OCH ₃)	CH	N	CF3	C≡C-cycPr
CH	C(OCH ₃)	CH	N	CF_3	C≡C-iPr
CH	C(OCH ₃)	CH	N	CF ₃	C≡C-nPr
CH	C(OCH ₃)	CH	N	CF ₃	C≡C−Bu
CH	C(OCH ₃)	CH	N	CF_3	C≡C-iBu
CH	C(OCH ₃)	CH	N	CF ₃	C≡C-tBu
CH	C(OCH ₃)	CH	N	\mathtt{CF}_3	C≡C-Et
CH	C(OCH ₃)	CH	N	CF ₃	C≡C-Me
CH	C(OCH ₃)	CH	N	CF_3	C≡C-Ph
CH	C(OCH ₃)	CH	N	CF_3	C≡C-2-Pyridyl
CH	C(OCH ₃)	CH	N	CF ₃	C≡C-3-Pyridyl
CH	C(OCH ₃)	CH	N	CF ₃	C≡C-4-Pyridyl
CH	C(OCH ₃)	CH	N	CF_3	C≡C-2-furanyl
CH	C(OCH ₃)	CH	N	CF_3	C≡C-3-furanyl
CH	C(OCH ₃)	CH	N	CF ₃	C≡C-2-thienyl
CH	C(OCH ₃)	CH	N	CF ₃	C≡C-3-thienyl
СН	C(OCH ₃)	CH	N	CF ₃	CH=CH-cycPr
	CH C	CH CC1 CH3) CH C (OCH3)	CH CC1 CH CH C (OCH3) CH	CH	CH CC1 CH N CF3 CH CC1 CH3 CH N CF3

2061	OTT	G (OGII)	CTT		~-	
2061	СН	C (OCH ₃)	CH	N	CF ₃	CH=CH-iPr
2062	CH	C(OCH ₃)	CH	N	CF3	CH=CH-nPr
2063	CH	$C(OCH_3)$	CH	N	CF3	CH=CH-Bu
2064	CH	C(OCH ₃)	CH	N	CF ₃	CH=CH-iBu
2065	СН	$C(OCH_3)$	CH	N	CF3	CH=CH-tBu
2066	CH	C(OCH ₃)	CH	N	CF ₃	CH=CH-Et
2067	CH	$C(OCH_3)$	CH	N	CF ₃	CH=CH-Me
2068	CH	C(OCH ₃)	CH	N	CF_3	CH=CH-Ph
2069	CH	C(OCH ₃)	CH	N	CF ₃	CH=CH-2-Pyridyl
2070	CH	C(OCH ₃)	CH	N	CF ₃	CH=CH-3-Pyridyl
2071	CH	C(OCH ₃)	CH	N	CF ₃	CH=CH-4-Pyridyl
2072	CH	$C(OCH_3)$	CH	N	CF_3	CH=CH-2-furanyl
2073	CH	C(OCH ₃)	CH	N	CF_3	CH=CH-3-furanyl
2074	CH	C(OCH ₃)	CH	N	CF_3	CH=CH-2-thienyl
2075	CH	C(OCH ₃)	CH	N	\mathtt{CF}_3	CH=CH-3-thienyl
2076	CH	C(OCH ₃)	CH	N	CF_3	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
2077	CH	C(OCH ₃)	CH	N	CF_3	$\mathrm{CH_{2}CH_{2}CH}$ ($\mathrm{CH_{3}}$) $_{2}$
2078	CH	C(OCH ₃)	CH	N	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{3}}$
2079	CH	C(OCH ₃)	CH	N	CF_3	CH ₂ CH ₂ CH ₃
2080	CH	C(OCH ₃)	CH	N	CF ₃	CH ₂ CH ₂ -cycPr
2081	CH	C(OCH ₃)	CH	N	CF_3	CH ₂ CH ₂ -tBu
2082	CH	C(OCH ₃)	CH	N	CF ₃	CH ₂ CH ₂ -Ph
2083	CH	C(OCH ₃)	CH	N	CF ₃	CH ₂ CH ₂ -2-Pyridyl
2084	CH	C(OCH ₃)	CH	N	CF ₃	$CH_2CH_2-3-Pyridyl$
2085	CH	C(OCH ₃)	CH	N	CF ₃	$\mathrm{CH_{2}CH_{2}-4}$ -Pyridyl
2086	CH	C(OCH ₃)	CH	N	CF ₃	CH_2CH_2-2 -furanyl
2087	CH	C(OCH ₃)	CH	N	CF ₃	CH_2CH_2-3 -furanyl
2088	CH	C(OCH ₃)	CH	N	CF ₃	CH_2CH_2-2 -thienyl
2089	CH	C(OCH ₃)	СН	N	CF ₃	CH_2CH_2-3 -thienyl
2090	CH	CH	СН	N	CF ₃	C≡C-cycPr
2091	CH	CH	CH	N	CF ₃	C≡C-iPr
2092	CH	CH	CH	N	CF ₃	C≡C-nPr
2093	СН	СН	CH	N	CF3	C≡C-Et

2094	СН	CH	CH	N	CF ₃	C≡C-3-Pyridyl
2095	CH	CH	CH	N	CF ₃	C≡C-2-furanyl
2096	CH	CH	CH	N	\mathtt{CF}_3	C≡C-3-furanyl
2097	CH	CH	CH	N	CF ₃	C≡C-2-thienyl
2098	CH	CH	CH	N	CF ₃	C≡C-3-thienyl
2099	CH	CCl	N	CH	CF ₃	C≡C-iPr
2100	CH	CCl	N	CH	CF ₃	C≡C-nPr
2101	CH	CCl	N	CH	CF ₃	C≡C-Bu
2102	CH	CCl	N	CH	CF_3	C≡C−iBu
2103	CH	CCl	N	CH	CF ₃	C≡C-tBu
2104	CH	CCl	N	CH	CF_3	C≡C-Et
2105	CH	CCl	N	CH	CF ₃	C≡C-Me
2106	CH	CCl	N	CH	CF_3	C≡C-Ph
2107	CH	CCl	N	CH	CF ₃	C≡C-2-Pyridyl
2108	CH	CCl	N	CH	CF ₃	C≡C-3-Pyridyl
2109	CH	CCl	N	CH	CF_3	C≡C-4-Pyridyl
2110	CH	CCl	N	CH	CF ₃	C≡C-2-furanyl
2111	CH	CCl	N	CH	CF ₃	C≡C-3-furanyl
2112	CH	CCl	N	CH	CF ₃	C≡C-2-thienyl
2113	CH	CCl	N	CH	CF_3	C≡C-3-thienyl
2114	CH	CCl	N	CH	CF_3	CH=CH-cycPr
2115	CH	CCl	N	CH	CF_3	CH=CH-iPr
2116	CH	CCl	N	CH	CF ₃	CH=CH-nPr
2117	CH	CCl	N	CH	CF ₃	CH=CH-Bu
2118	CH	CC1	N	CH	CF_3	CH=CH-iBu
2119	CH	CCl	N	CH	CF_3	CH=CH-tBu
2120	CH	CCl	N	CH	CF_3	CH=CH-Et
2121	CH	CCl	N	CH	CF_3	CH=CH-Me
2122	СН	CCl	N	CH	CF3	CH=CH-Ph
2123	CH	CCl	N	СН	CF ₃	CH=CH-2-Pyridyl
2124	СН	CCl	N	СН	CF_3	CH=CH-3-Pyridyl
2125	СН	CCl	N	CH	CF ₃	CH=CH-4-Pyridyl
2126	CH	CCl	N	СН	CF ₃	CH=CH-2-furanyl

2127	СН	CCl	N	СН	CF ₃	CH=CH-3-furanyl
2128	СН	CCl	N	CH	CF ₃	CH=CH-2-thienyl
2129	СН	CCl	N	CH	CF ₃	CH=CH-3-thienyl
2130	CH	CCl	N	CH	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{3}}$
2131	CH	CCl	N	CH	CF ₃	$\mathrm{CH_2CH_2CH}$ ($\mathrm{CH_3}$) $_2$
2132	CH	CCl	N	CH	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃
2133	CH	CCl	N	CH	CF_3	CH ₂ CH ₂ CH ₃
2134	CH	CCl	N	СН	CF_3	CH ₂ CH ₂ -cycPr
2135	CH	CCl	N	CH	CF ₃	CH ₂ CH ₂ -tBu
2136	CH	CCl	N	CH	CF_3	CH ₂ CH ₂ -Ph
2137	CH	CC1	N	СН	CF3	CH ₂ CH ₂ -2-Pyridyl
2138	CH	CCl	N	CH	CF ₃	CH ₂ CH ₂ -3-Pyridyl
2139	CH	CCl	N	CH	CF ₃	CH ₂ CH ₂ -4-Pyridyl
2140	CH	CCl	N	CH	CF_3	CH_2CH_2-2 -furanyl
2141	CH	CC1	N	CH	CF ₃	CH_2CH_2-3 -furanyl
2142	CH	CCl	N	CH	CF ₃	CH_2CH_2-2 -thienyl
2143	CH	CCl	N	CH	CF_3	CH_2CH_2-3 -thienyl
2144	CH	C(OCH ₃)	N	CH	CF_3	C≡C-iPr
2145	CH	C(OCH ₃)	N	CH	CF ₃	C≡C-nPr
2146	CH	C(OCH ₃)	N	CH	CF_3	C≡C-Bu
2147	CH	C(OCH ₃)	N	CH	CF_3	C≡C-iBu
2148	CH	C(OCH ₃)	N	CH	CF_3	C≡C-tBu
2149	CH	C(OCH ₃)	N	CH	CF ₃	C≡C-Et
2150	CH	C(OCH ₃)	N	CH	CF ₃	C≡C-Me
2151	CH	C(OCH ₃)	N	CH	CF ₃	C≡C-Ph
2152	CH	C(OCH ₃)	N	CH	CF ₃	C≡C-2-Pyridyl
2153	CH	C(OCH ₃)	N	CH	CF ₃	C≡C-3-Pyridyl
2154	CH	C(OCH ₃)	N	СН	CF ₃	C≡C-4-Pyridyl
2155	CH	C(OCH ₃)	N	CH	CF_3	C≡C-2-furanyl
2156	CH	C(OCH ₃)	N	CH	CF_3	C≡C-3-furanyl
2157	CH	C(OCH ₃)	N	CH	CF ₃	C≡C-2-thienyl
2158	СН	C(OCH ₃)	N	CH	CF_3	C≡C-3-thienyl
2159	СН	C(OCH ₃)	N	CH	CF ₃	CH=CH-cycPr

2160	СН	C(OCH ₃)	N	СН	CF ₃	CH=CH-iPr
2161	CH	C(OCH ₃)	N	CH	CF ₃	CH=CH-nPr
2162	CH	C(OCH ₃)	N	CH	CF ₃	CH=CH-Bu
2163	CH	C(OCH ₃)	N	CH	CF ₃	CH=CH-iBu
2164	CH	C(OCH ₃)	N	CH	CF ₃	CH=CH-tBu
2165	CH	C(OCH ₃)	N	CH	CF ₃	CH=CH-Et
2166	CH	C(OCH ₃)	N	CH	CF ₃	CH=CH-Me
2167	CH	C(OCH ₃)	N	CH	CF ₃	CH=CH-Ph
2168	СН	C(OCH ₃)	N	CH	CF ₃	CH=CH-2-Pyridyl
2169	CH	C(OCH ₃)	N	СН	CF ₃	CH=CH-3-Pyridyl
2170	CH	C(OCH ₃)	N	CH	CF ₃	CH=CH-4-Pyridyl
2171	CH	C(OCH ₃)	N	CH	CF_3	CH=CH-2-furanyl
2172	CH	C(OCH ₃)	N	СН	CF_3	CH=CH-3-furanyl
2173	CH	C(OCH ₃)	N	CH	CF ₃	CH=CH-2-thienyl
2174	CH	C(OCH ₃)	N	CH	CF_3	CH=CH-3-thienyl
2175	CH	C(OCH ₃)	N	CH	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}}$
2176	CH	C(OCH ₃)	N	CH	CF_3	$\mathrm{CH_{2}CH_{2}CH}\left(\mathrm{CH_{3}}\right)_{2}$
2177	CH	C(OCH ₃)	N	CH	CF_3	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{3}}$
2178	CH	C(OCH ₃)	N	CH	CF ₃	$CH_2CH_2CH_3$
2179	CH	C(OCH ₃)	N	CH	CF_3	CH ₂ CH ₂ -cycPr
2180	CH	C(OCH ₃)	N	CH	CF_3	CH ₂ CH ₂ -tBu
2181	CH	C(OCH ₃)	N	CH	CF_3	CH ₂ CH ₂ -Ph
2182	CH	C(OCH ₃)	N	CH	CF ₃	CH ₂ CH ₂ -2-Pyridyl
2183	CH	C(OCH ₃)	N	CH	CF_3	CH ₂ CH ₂ -3-Pyridyl
2184	CH	C(OCH ₃)	N	CH	CF_3	$\mathrm{CH_{2}CH_{2}}4\text{Pyridyl}$
2185	CH	C(OCH ₃)	N	CH	CF ₃	CH_2CH_2-2 -furanyl
2186	CH	C(OCH ₃)	N	CH	CF ₃	CH_2CH_2-3 -furanyl
2187	CH	C(OCH ₃)	N	CH	CF ₃	$\mathrm{CH_{2}CH_{2}-2}$ -thienyl
2188	CH	C(OCH ₃)	N	CH	CF ₃	CH_2CH_2-3 -thienyl
2189	CH	CH	N	CH	CF ₃	C≡C-cycPr
2190	CH	CH	N	CH	CF ₃	C≡C-iPr
2191	CH	CH	N	CH	CF ₃	C≡C-nPr
2192	CH	CH	N	СН	CF ₃	C≡C-Et

2193	CH	СН	N	CH	CF ₃	C≡C-3-Pyridyl
2194	CH	CH	N	CH	CF ₃	C≡C-2-furanyl
2195	CH	CH	N	СН	CF ₃	C≡C-3-furanyl
2196	CH	CH	N	CH	CF ₃	C≡C-2-thienyl
2197	CH	CH	N	CH	CF_3	C≡C-3-thienyl
2198	CCl	N	CH	CH	CF_3	C≡C-cycPr
2199	CCl	N	CH	CH	CF_3	C≡C-iPr
2200	CCl	N	CH	CH	CF_3	C≡C-nPr
2201	CCl	N	CH	CH	CF_3	C≡C-Bu
2202	CCl	N	CH	CH	CF_3	C≡C-iBu
2203	CCl	N	CH	CH	CF_3	C≡C-tBu
2204	CCl	N	CH	CH	CF_3	C≡C-Et
2205	CCl	N	CH	CH	CF_3	C≡C-Me
2206	CCl	N	CH	CH	CF_3	C≡C-Ph
2207	CCl	N	CH	CH	CF_3	C≡C-2-Pyridyl
2208	CCl	N	CH	CH	CF_3	C≡C-3-Pyridyl
2209	CCl	N	CH	CH	CF_3	C≡C-4-Pyridyl
2210	CCl	N	CH	CH	CF ₃	C≡C-2-furanyl
2211	CCl	N	CH	CH	CF_3	C≡C-3-furanyl
2212	CCl	N	CH	CH	CF_3	C≡C-2-thienyl
2213	CCl	N	CH	CH	CF ₃	C≡C-3-thienyl
2214	CCl	N	CH	CH	CF ₃	CH=CH-cycPr
2215	CC1	N	CH	CH	CF_3	CH=CH-iPr
2216	CCl	N	CH	CH	CF ₃	CH=CH-nPr
2217	CC1	N	CH	CH	CF_3	CH=CH-Bu
2218	CCl	N	CH	CH	CF_3	CH=CH-iBu
2219	CC1	N	CH	CH	CF_3	CH=CH-tBu
2220	CC1	N	CH	CH	CF ₃	CH=CH-Et
2221	CCl	N	CH	CH	CF ₃	CH=CH-Me
2222	CC1	N	CH	CH	CF ₃	CH=CH-Ph
2223	CCl	N	СН	СН	CF ₃	CH=CH-2-Pyridyl
2224	CCl	N	CH	СН	CF ₃	CH=CH-3-Pyridyl
2225	CCl	N	CH	CH	CF ₃	CH=CH-4-Pyridyl

2226	CCl	N	СН	СН	CF ₃	CH=CH-2-furanyl
2227	CCl	N	СН	CH	CF ₃	CH=CH-3-furanyl
2228	CCl	N	СН	CH	CF ₃	CH=CH-2-thienyl
2229	CCl	N	СН	CH	CF ₃	CH=CH-3-thienyl
2230	CCl	N	СН	CH	CF ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
2231	CCl	N	CH	CH	CF ₃	$\mathrm{CH_{2}CH_{2}CH}\left(\mathrm{CH_{3}}\right)_{2}$
2232	CCl	N	СН	CH	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃
2233	CC1	N	CH	CH	CF ₃	CH ₂ CH ₂ CH ₃
2234	CCl	N	CH	CH	CF_3	CH ₂ CH ₂ -cycPr
2235	CCl	N	CH	CH	CF ₃	CH ₂ CH ₂ -tBu
2236	CCl	N	CH	CH	CF3	CH ₂ CH ₂ -Ph
2237	CCl	N	СН	CH	CF ₃	CH ₂ CH ₂ -2-Pyridyl
2238	CCl	N	CH	CH	CF_3	$CH_2CH_2-3-Pyridyl$
2239	CCl	N	CH	CH	CF_3	$CH_2CH_2-4-Pyridyl$
2240	CCl	N	CH	CH	CF_3	CH_2CH_2-2 -furanyl
2241	CCl	N	CH	CH	CF ₃	CH_2CH_2-3 -furanyl
2242	CCl	N	CH	CH	CF ₃	CH_2CH_2-2 -thienyl
2243	CC1	N	CH	CH	CF ₃	CH_2CH_2-3 -thienyl
2244	CH	N	CH	CH	CF ₃	C≡C-iPr
2245	CH	N	CH	CH	CF_3	C≡C-nPr
2246	CH	N	CH	CH	CF_3	C≡C-Et
2247	CH	N	CH	CH	CF_3	C≡C-3-Pyridyl
2248	CH	N	CH	CH	CF ₃	C≡C-2-furanyl
2249	CH	N	CH	CH	CF ₃	C≡C-3-furanyl
2250	CH	N	CH	CH	CF_3	C≡C-2-thienyl
2251	CH	N	CH	CH	CF ₃	C≡C-3-thienyl
2252	N	CCl	CH	CH	CF ₃	C≡C-cycPr
2253	N	CCl	CH	CH	CF ₃	C≡C-iPr
2254	N	CCl	CH	CH	CF ₃	C≡C-nPr
2255	N	CCl	CH	CH	CF ₃	C≡C-Bu
2256	N	CCl	CH	CH	CF ₃	C≡C-iBu
2257	N	CCl	CH	CH	CF ₃	C≡C-tBu
2258	N	CCl	CH	CH	CF ₃	C≡C-Et

2259	N	CCl	CH	CH	CF ₃	C≡C-Me
2260	N	CCl	CH	CH	CF_3	C≡C-Ph
2261	N	CCl	CH	CH	CF_3	C≡C-2-Pyridyl
2262	N	CCl	CH	CH	CF_3	C≡C-3-Pyridyl
2263	N	CCl	CH	CH	CF_3	C≡C-4-Pyridyl
2264	N	CCl	CH	CH	CF_3	C≡C-2-furanyl
2265	N	CCl	CH	CH	CF3	C≡C-3-furanyl
2266	N	CCl	CH	CH	CF_3	C≡C-2-thienyl
2267	N	CCl	CH	CH	CF_3	C≡C-3-thienyl
2268	N	CCl	CH	CH	CF3	CH=CH-cycPr
2269	N	CCl	CH	CH	CF_3	CH=CH-iPr
2270	N	CC1	CH	CH	CF_3	CH=CH-nPr
2271	N	CCl	CH	CH	CF_3	CH=CH-Bu
2272	N	CCl	CH	CH	CF_3	CH=CH-iBu
2273	N	CC1	CH	CH	CF ₃	CH=CH-tBu
2274	N	CCl	CH	CH	CF_3	CH=CH-Et
2275	N	CCl	CH	CH	CF ₃	CH=CH-Me
2276	N	CCl	CH	CH	CF_3	CH=CH-Ph
2277	N	CCl	CH	CH	CF ₃	CH=CH-2-Pyridyl
2278	N	CCl	CH	CH	CF_3	CH=CH-3-Pyridyl
2279	N	CCl	CH	CH	CF_3	CH=CH-4-Pyridyl
2280	N	CCl	CH	CH	CF_3	CH=CH-2-furanyl
2281	N	CCl	CH	CH	CF_3	CH=CH-3-furanyl
2282	N	CCl	CH	CH	CF_3	CH=CH-2-thienyl
2283	N	CCl	CH	CH	CF ₃	CH=CH-3-thienyl
2284	N	CCl	CH	CH	CF ₃	$CH_2CH_2CH_2CH_3$
2285	N	CCl	CH	CH	CF_3	CH ₂ CH ₂ CH (CH ₃) ₂
2286	N	CCl	CH	CH	CF_3	$CH_2CH_2CH_3$
2287	N	CCl	CH	CH	CF ₃	$CH_2CH_2CH_3$
2288	N	CC1	CH	CH	CF_3	$\mathtt{CH_2CH_2} ext{-}\mathtt{cycPr}$
2289	N	CCl	CH	СН	CF_3	CH ₂ CH ₂ -tBu
2290	N	CCl	CH	СН	CF ₃	CH ₂ CH ₂ -Ph
2291	N	CCl	CH	CH	CF ₃	CH ₂ CH ₂ -2-Pyridyl

2292	N	CCl	CH	CH	CF ₃	CH ₂ CH ₂ -3-Pyridyl
2293	N	CCl	СН	СН	CF ₃	$CH_2CH_2-4-Pyridyl$
2294	N	CCl	CH	CH	CF ₃	CH_2CH_2-2 -furanyl
2295	N	CC1	CH	CH	CF ₃	CH_2CH_2-3 -furanyl
2296	N	CCl	CH	CH	CF3	CH_2CH_2-2 -thienyl
2297	N	CC1	CH	СН	CF ₃	CH_2CH_2-3 -thienyl
2298	N	C(OCH ₃)	CH	CH	CF3	C≡C-cycPr
2299	N	$C(OCH_3)$	CH	CH	CF_3	C≡C-iPr
2300	N	$C(OCH_3)$	CH	CH	CF_3	C≡C-nPr
2301	N	C(OCH ₃)	CH	CH	CF ₃	C≡C-Bu
2302	N	C(OCH ₃)	CH	CH	CF ₃	C≡C-iBu
2303	N	C(OCH ₃)	CH	CH	CF_3	C≡C-tBu
2304	N	$C(OCH_3)$	CH	CH	CF_3	C≡C-Et
2305	N	$C(OCH_3)$	CH	CH	CF_3	C≡C-Me
2306	N	C(OCH ₃)	CH	CH	CF ₃	C≡C-Ph
2307	N	$C(OCH_3)$	CH	CH	CF ₃	C≡C-2-Pyridyl
2308	N	C(OCH ₃)	CH	CH	CF_3	C≡C-3-Pyridyl
2309	N	C(OCH ₃)	CH	CH	CF_3	C≡C-4-Pyridyl
2310	N	C(OCH ₃)	CH	CH	CF ₃	C≡C-2-furanyl
2311	N	$C(OCH_3)$	CH	CH	CF ₃	C≡C-3-furanyl
2312	N	$C(OCH_3)$	CH	CH	CF ₃	C≡C-2-thienyl
2313	N	$C(OCH_3)$	CH	CH	CF ₃	C≡C-3-thienyl
2314	N	$C(OCH_3)$	CH	CH	CF3	CH=CH-cycPr
2315	N	$C(OCH_3)$	CH	CH	CF ₃	CH=CH-iPr
2316	N	$C(OCH_3)$	CH	CH	CF ₃	CH=CH-nPr
2317	N	C(OCH ₃)	CH	CH	CF ₃	CH=CH-Bu
2318	N	C(OCH ₃)	CH	CH	CF ₃	CH=CH-iBu
2319	N	C(OCH ₃)	CH	CH	CF ₃	CH=CH-tBu
2320	N	C(OCH ₃)	CH	CH	CF ₃	CH=CH-Et
2321	N	C(OCH ₃)	CH	CH	CF_3	CH=CH-Me
2322	N	C(OCH ₃)	СН	CH	CF_3	CH=CH-Ph
2323	N	C(OCH ₃)	CH	CH	CF ₃	CH=CH-2-Pyridyl
2324	N	C(OCH ₃)	CH	CH	CF ₃	CH=CH-3-Pyridyl

WO 98/14436	PCT/US97/17540
WU 98/14430	PC1/US9//1/540

2325	N	C(OCH ₃)	CH	СН	CF ₃	CH=CH-4-Pyridyl
2326	N	$C(OCH_3)$	CH	CH	CF ₃	CH=CH-2-furanyl
2327	N	$C(OCH_3)$	CH	CH	CF_3	CH=CH-3-furanyl
2328	N	$C(OCH_3)$	CH	CH	CF_3	CH=CH-2-thienyl
2329	N	$C(OCH_3)$	CH	CH	CF_3	CH=CH-3-thienyl
2330	N	C(OCH ₃)	CH	CH	CF ₃	$\mathrm{CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}}$
2331	N	C(OCH ₃)	CH	CH	CF_3	$\mathrm{CH_2CH_2CH}\left(\mathrm{CH_3}\right)_2$
2332	N	$C(OCH_3)$	CH	CH	CF3	CH ₂ CH ₂ CH ₂ CH ₃
2333	N	C(OCH ₃)	CH	CH	CF_3	CH ₂ CH ₂ CH ₃
2334	N	$C(OCH_3)$	CH	CH	CF ₃	$\mathtt{CH_2CH_2} ext{-}\mathtt{cycPr}$
2335	N	C(OCH ₃)	CH	CH	CF_3	CH ₂ CH ₂ -tBu
2336	N	C(OCH ₃)	CH	CH	\mathtt{CF}_3	CH ₂ CH ₂ -Ph
2337	N	C(OCH ₃)	CH	CH	CF_3	CH ₂ CH ₂ -2-Pyridyl
2338	N	C(OCH ₃)	CH	CH	CF ₃	CH ₂ CH ₂ -3-Pyridyl
2339	N	C(OCH ₃)	CH	CH	CF_3	${ m CH_2CH_2-4-Pyridyl}$
2340	N	$C(OCH_3)$	CH	CH	CF_3	CH_2CH_2-2 -furanyl
2341	N	C(OCH ₃)	CH	CH	CF_3	CH_2CH_2-3 -furanyl
2342	N	C(OCH ₃)	CH	CH	CF ₃	CH_2CH_2-2 -thienyl
2343	N	C(OCH ₃)	CH	CH	CF ₃	CH_2CH_2-3 -thienyl
2344	N	CH	CH	CH	CF ₃	C≡C-cycPr
2345	N	CH	CH	CH	CF_3	C≡C-iPr
2346	N	CH	CH	CH	CF ₃	C≡C-nPr
2347	N	CH	CH	CH	CF_3	C≡C-Et
2348	N	CH	CH	CH	CF_3	C≡C-3-Pyridyl
2349	N	CH	CH	CH	CF_3	C≡C-2-furanyl
2350	N	CH	CH	CH	CF ₃	C≡C-3-furanyl
2351	N	CH	CH	CH	CF ₃	C≡C-2-thienyl
2352	N	CH	CH	CH	CF ₃	C≡C-3-thienyl

^{*}Unless otherwise noted, stereochemistry is (+/-).

Table 5

$$G \xrightarrow{\mathbb{R}^1 \\ \mathbb{R}^2} O$$

Ex. #	G	R^1	\mathbb{R}^2	m.p. (°C)	Mass Spec
2401	6-Cl	cycPr	C≡C-Et	137-138.5	
2402	6-Cl	CF ₃	C≡C-Et	178	
2403	6-Cl	Et	C≡C-Et	175-176	
2404	6-Cl	CH ₃	CH ₃	202	212.0440
2405	6-C1	CH ₃	C≡C-cycPr	184	
2406	6-Cl	CH ₃	CH ₃	221-222	228.0262
2407	6-Cl	CH ₃	C≡C-iPr	168	264.07 90
2408	6-Cl	CF ₃	CH=CH-cycPr(cis)		
2409	6-Cl	CF ₃	C≡C-iPr	167-168	
2410	6-Cl	CF ₃	CH=CH-iPr(cis)	146-147	
2411	6-C1	CF ₃	$\mathtt{CH_2CH_2} ext{-iPr}$	129-131	
2412	6-C1	CF ₃	C≡C-iPr	116-118	
2413	6-Cl	CF ₃	CH=CH-iPr(trans)	127-129	
2414	6-Cl	OMe	$\mathrm{CH_{2}CH_{2}}$ -Ph		318.0897
2415	6-Cl	OEt	Ph		304 (MH+)
2416	6-Cl	CF ₃	C≡C-1-d-cycPr	180-181	317.0406
2417	6-Cl	CF ₃	C≡C-1-d-cycPr	133-134	317.0417
2418	6-C1	CF ₃	C≡C-1-Me-cycPr	158-159	347.0785
2419	6-C1	CF ₃	Butyl	135-136	
2420	6-C1	CF ₃	C≡C-cycBu	183-185	330.0495
2421	6-Cl	\mathtt{CF}_3	C(Me) ₂ CC≡CCH		
2422	6-Cl	CF ₃	CF ₃	148-149	
2423	6-Cl	CF ₃	C≡C-CF ₃	155-156	
2424	6-Cl	CF ₃	Pentyl		
2425	6-Cl	CF ₃	C≡C-Ph		352.0353
2426	6-C1	CF ₃	C≡C-3-py		
2427	6-Cl	CF ₃	C≡C-2-thiazole		

WO 98/14436	PCT/US97/17540
-------------	----------------

2428	6-Cl	CF ₃	NH-iBu	182-183	
2429	6-Cl	CF ₃	C≡C-4-py		
2430	6-Cl	CH ₃	C≡C-Ph	181-182	298.0620
2431	6-C1	iPr	C≡C-iPr	oil	292.1106
2432	6-Cl	iPr	C≡C-iBu	oil	306.1268
2433	6-Cl	iPr	C≡C-cycPr	amorphous	290.0938
2434	6-Cl	iPr	C≡C-Ph	177-178	326.0955
2435	6-Cl	Et	C≡C-cycPr	183-184	276.0792
2436	6-Cl	Et	C≡C-iPr	143-144	278.0958
2437	6-Cl	Et	C≡C-Ph	165-166	312.0790
2438	6-Cl	Et	C≡C-iBu	136-137	292.1100
2439	6-Cl	cycPr	C≡C-cycPr	142-143	288.0789
2440	6-Cl	cycPr	C≡C-iPr	152-153	290.0950
2441	6-Cl	cycPr	C≡C-Ph	156-157	324.0778
2442	6-Cl	cycPr	C≡C-iBu	142-143	304.1102
2443	6-Cl	iPr	CH ₂ CH ₂ -iPr	oil	296.1417
2444	6-Cl	cycPr	$CH_2CH_2CH=CH_2$	oil	278.0946
2445	6-C1	C≡C-cycPr	C≡C-cycPr	129-131	312.0786
2446	6-Cl	CF ₃	C≡C-iBu	176-177	332.0664
2447	6-Cl	C≡C-iPr	C≡C-iPr	139	316.1104
2448	6-Cl	iPr	$CH_2CH_2CH=CH_2$	oil	280.1109
2449	6-Cl	C≡CH	C≡C-iPr	161-162	274.0638
2450	6-Cl	CF ₃	$C(Me)_2CH=CH_2$	113-114	320.0662
2451	6-Cl	CF ₃	C≡C-2-Py		
2452	6-Cl	CF ₃	C≡C-nPr	193-194	318.0500 (MH ⁺)
2453	6-Cl	CF ₃	C≡C-1-OH-cycPr		
2454	6-C1	C≡CH	C≡C-Et	157-159	260.0483
2455	6-C1	CF ₃	$\mathtt{CH_2-iPr}$	177-178	308.0659
2456	6-Cl	iPr	CH ₂ -iPr	132-133	282.1261
2457	6-Cl	cycPr	CH ₂ -iPr	136-137	280.1104
2458	6-C1	iPr	C≡C-Et	amorphous	
2459	6-C1	CF ₃	C≡C-Et	142-146	
2460	6-Cl	CF ₃	C≡C-Et	143-147	

2461	6-C1	CF ₃	CH ₂ CH ₂ -iPr	amorphous	
2462	6-Cl	CF ₃	CH ₂ CH ₂ -iPr	amorphous	
2463	6-Cl	iPr	C≡C-cycPr	amorphous	
2464	6-Cl	iPr	C≡C-cycPr	amorphous	
2465	6-C1	CF ₃	CH ₂ -C≡C-Me	196-199	
2466	6-C1	CF ₃	CH ₂ -C≡C-Et	140-145	
2467	6-Cl	CF ₃	NHCH ₂ CH ₂ CH ₃	184-185	309.0628
2468	6-Cl	CF ₃	C≡C-2-furanyl	170-171	
2469	6-C1	CF ₃	C≡C-3-thienyl	176.7-178	
2470	6-Cl	CF ₃	C≡C-3-furanyl	155-156	
2471	6-Cl	CF ₃	OBu	132-133	
2472	6-Cl	CF ₃	C≡C-5-thiazolyl	196-196.5	
2473	6-Cl	CF ₃	CH=CH-3-Py (t)	188-189	
2474	6-Cl	CF ₃	C≡C-3-py	183.5	
2475	6-Cl	CF ₃	C≡C-3-py		
2476	6-Cl	CF ₃	CH=CH-iPr(t)		
2477	6-Cl	CF ₃	CH=CH-iPr(t)		
2478	6-Cl	CF ₃	OCH ₂ CH ₂ -iPr		338.0766
2479	6-Cl	CF ₃	OCH_2CH_2-OMe	127-128	326.0391
2480	6-Cl	CF3	CH=CH-cycPr(t)	136-137	
2481	6-Cl	CF ₃	CH=CH-cycPr(t)	amorphous	
2482	6-Cl	CF ₃	CH=CH-cycPr(t)	amorphous	
2483	6-C1	CF ₃	CH=CH-nPr(t)	127-128	
2484	6-Cl	CF ₃	CH=CH-Et(t)	146-147	
2485	6-C1	CF ₃	C≡C-Me	243-244	
2486	6-Cl	CF ₃	C≡C-iPr	116-118	
2487	6-F	iPr	C≡C-iPr		276.1400
2488	6-F	iPr	C≡C-cycPr		274.1243
2489	6-F	CF ₃	C≡C-iPr		302.0797
2490	6-F	CF ₃	CH ₂ CH ₂ -iPr		306.1111
2491	6-F	CF ₃	C≡C-cycPr		300.0638
2492	6-F	CF ₃	C≡C-Ph		336.0648
2493	6-F	CF ₃	Pentyl		306.1106

WO 98/14	436	PCT/US97/17540		
2494	6-F	CF ₃	C≡C-iPr	-
2495	6-F	CF_3	C≡C-iPr	302.0792
2496	6-F	CF ₃	C≡C-Et	288.0650 (MH ⁺)
2497	6-F	CF ₃	C≡C-nPr	302.0796
2498	6-F	CF ₃	Butyl	292.0947

^{*}Unless otherwise noted, stereochemistry is (+/-).

<u>Utility</u>

The compounds of this invention possess reverse transcriptase inhibitory activity, in particular, HIV inhibitory efficacy. The compounds of formula (I) possess HIV reverse transcriptase inhibitory activity and are therefore useful as antiviral agents for the treatment of HIV infection and associated diseases. The compounds of formula (I) possess HIV reverse transcriptase inhibitory activity and are effective as inhibitors of HIV growth. The ability of the compounds of the present invention to inhibit viral growth or infectivity is demonstrated in standard assay of viral growth or infectivity, for example, using the assay described below.

5

10

15

20

25

30

35

The compounds of formula (I) of the present invention are also useful for the inhibition of HIV in an ex vivo sample containing HIV or expected to be exposed to HIV. Thus, the compounds of the present invention may be used to inhibit HIV present in a body fluid sample (for example, a serum or semen sample) which contains or is suspected to contain or be exposed to HIV.

The compounds provided by this invention are also useful as standard or reference compounds for use in tests or assays for determining the ability of an agent to inhibit viral clone replication and/or HIV reverse transcriptase, for example in a pharmaceutical research program. Thus, the compounds of the present invention may be used as a control or reference compound in such assays and as a quality control standard. The compounds of the present invention may be provided in a commercial kit or container for use as such standard or reference compound.

Since the compounds of the present invention exhibit specificity for HIV reverse transcriptase, the compounds of the present invention may also be useful as diagnostic reagents in diagnostic assays for the detection of HIV reverse transcriptase. Thus, inhibition of the reverse transcriptase activity in an assay (such as the assays described herein) by a compound of the present invention

would be indicative of the presence of HIV reverse transcriptase and HIV virus.

As used herein "µg" denotes microgram, "mg" denotes milligram, "g" denotes gram, "µL" denotes microliter, "mL" denotes milliliter, "L" denotes liter, "nM" denotes nanomolar, "µM" denotes micromolar, "mM" denotes millimolar, "M" denotes molar and "nm" denotes nanometer. "Sigma" stands for the Sigma-Aldrich Corp. of St. Louis, MO.

10

5

HIV RNA Assay

DNA Plasmids and in vitro RNA transcripts:

Plasmid pDAB 72 containing both gag and pol sequences of BH10 (bp 113-1816) cloned into PTZ 19R was prepared according to Erickson-Viitanen et al. AIDS Research and Human Retroviruses 1989, 5, 577. The plasmid was linearized with Bam HI prior to the generation of in vitro RNA transcripts using the Riboprobe Gemini system II kit (Promega) with T7 RNA polymerase. Synthesized RNA was purified by treatment with RNase free DNAse (Promega), phenol-chloroform extraction, and ethanol precipitation. RNA transcripts were dissolved in water, and stored at -70°C. The concentration of RNA was determined from the A260.

25 <u>Probes</u>:

Biotinylated capture probes were purified by HPLC after synthesis on an Applied Biosystems (Foster City, CA) DNA synthesizer by addition of biotin to the 5' terminal end of the oligonucleotide, using the biotin-phosphoramidite reagent of Cocuzza, Tet. Lett. 1989, 30, 6287. The gag biotinylated capture probe (5-biotin-CTAGCTCCCTGCTTGCCCATACTA 3') was complementary to nucleotides 889-912 of HXB2 and the pol biotinylated capture probe (5'-biotin -CCCTATCATTTTTGGTTTCCAT 3') was complementary to nucleotides 2374-2395 of HXB2. Alkaline phosphatase conjugated oligonucleotides used as reporter probes were prepared by Syngene (San Diego, CA.). The pol reporter probe (5'

CTGTCTTACTTTGATAAAACCTC 3') was complementary to nucleotides 2403-2425 of HXB2. The gag reporter probe (5' CCCAGTATTTGTCTACAGCCTTCT 3') was complementary to nucleotides 950-973 of HXB2. All nucleotide positions are those of the GenBank Genetic Sequence Data Bank as accessed through the Genetics Computer Group Sequence Analysis Software Package (Devereau Nucleic Acids Research 1984, 12, 387). The reporter probes were prepared as 0.5 µM stocks in 2 x SSC (0.3 M NaCl, 0.03 M sodium citrate), 0.05 M Tris pH 8.8, 1 mg/mL BSA. The biotinylated capture probes were prepared as 100 µM stocks in water.

Streptavidin coated plates:

Streptavidin coated plates were obtained from Du Pont 15 Biotechnology Systems (Boston, MA).

Cells and virus stocks:

10

MT-2 and MT-4 cells were maintained in RPMI 1640 supplemented with 5% fetal calf serum (FCS) for MT-2 cells or 10% FCS for MT-4 cells, 2 mM L-glutamine and 50 μg/mL gentamycin, all from Gibco. HIV-1 RF was propagated in MT-4 cells in the same medium. Virus stocks were prepared approximately 10 days after acute infection of MT-4 cells and stored as aliquots at -70°C. Infectious titers of HIV-1(RF) stocks were 1-3 x 10⁷ PFU (plaque forming units)/mL as measured by plaque assay on MT-2 cells (see below). Each aliquot of virus stock used for infection was thawed only once.

For evaluation of antiviral efficacy, cells to be infected were subcultured one day prior to infection. On the day of infection, cells were resuspended at 5×10^5 cells/mL in RPMI 1640, 5% FCS for bulk infections or at 2×10^6 /mL in Dulbecco's modified Eagles medium with 5% FCS for infection in microtiter plates. Virus was added and culture continued for 3 days at 37° C.

HIV RNA assay:

35

Cell lysates or purified RNA in 3 M or 5 M GED were mixed with 5 M GED and capture probe to a final guanidinium isothiocyanate concentration of 3 M and a final biotin oligonucleotide concentration of 30 nM. 5 Hybridization was carried out in sealed U bottom 96 well tissue culture plates (Nunc or Costar) for 16-20 hours at 37°C. RNA hybridization reactions were diluted three-fold with deionized water to a final guanidinium isothiocyanate concentration of 1 M and 10 aliquots (150 μ L) were transferred to streptavidin coated microtiter plates wells. Binding of capture probe and capture probe-RNA hybrid to the immobilized streptavidin was allowed to proceed for 2 hours at room temperature, after which the plates were washed 6 times with DuPont ELISA plate 15 wash buffer (phosphate buffered saline(PBS), 0.05% Tween 20.) A second hybridization of reporter probe to the immobilized complex of capture probe and hybridized target RNA was carried out in the washed streptavidin coated well by addition of 120 μ l of a hybridization cocktail containing 4 X 20 SSC, 0.66% Triton X 100, 6.66% deionized formamide, 1 mg/mL BSA and 5 nM reporter probe. After hybridization for one hour at 37°C, the plate was again washed 6 times. Immobilized alkaline phosphatase activity was detected by addition of 100 μ L of 0.2 mM 4-methylumbelliferyl phosphate 25 (MUBP, JBL Scientific) in buffer δ (2.5 M diethanolamine pH 8.9 (JBL Scientific), 10 mM MgCl2, 5 mM zinc acetate dihydrate and 5 mM N-hydroxyethyl-ethylene-diamine-triacetic acid). The plates were incubated at 37°C. Fluorescence at 450 nM was measured using a microplate fluorometer (Dynateck) 30 exciting at 365 nM.

Microplate based compound evaluation in HIV-1 infected MT-2 cells:

Compounds to be evaluated were dissolved in DMSO and diluted in culture medium to twice the highest concentration to be tested and a maximum DMSO concentration of 2%. Further three-fold serial dilutions of the compound in culture medium

were performed directly in U bottom microtiter plates (Nunc). After compound dilution, MT-2 cells (50 $\mu L)$ were added to a final concentration of 5 x 10^5 per mL (1 x 10^5 per well). Cells were incubated with compounds for 30 minutes at 37°C in a CO2 incubator. For evaluation of antiviral potency, an appropriate dilution of HIV-1 (RF) virus stock (50 $\mu L)$ was added to culture wells containing cells and dilutions of the test compounds. The final volume in each well was 200 μL . Eight wells per plate were left uninfected with 50 μL of medium added in place of virus, while eight wells were infected in the absence of any antiviral compound. For evaluation of compound toxicity, parallel plates were cultured without virus infection.

5

10

15

35

After 3 days of culture at 37°C in a humidified chamber inside a CO₂ incubator, all but 25 μ L of medium/well was removed from the HIV infected plates. Thirty seven μ L of 5 M GED containing biotinylated capture probe was added to the settled cells and remaining medium in each well to a final concentration of 3 M GED and 30 nM capture probe.

20 Hybridization of the capture probe to HIV RNA in the cell lysate was carried out in the same microplate well used for virus culture by sealing the plate with a plate sealer (Costar), and incubating for 16-20 hrs in a 37°C incubator. Distilled water was then added to each well to dilute the hybridization reaction three-fold and 150 μL of this diluted mixture was transferred to a streptavidin coated microtiter plate. HIV RNA was quantitated as described above. A standard curve, prepared by adding known amounts of pDAB 72 in vitro RNA transcript to wells containing lysed uninfected cells, was run on each microtiter plate in order to determine the amount of viral RNA made during the infection.

In order to standardize the virus inoculum used in the evaluation of compounds for antiviral activity, dilutions of virus were selected which resulted in an IC90 value (concentration of compound required to reduce the HIV RNA level by 90%) for dideoxycytidine (ddC) of 0.2 μ g/mL. IC90 values of other antiviral compounds, both more and less

potent than ddC, were reproducible using several stocks of HIV-1 (RF) when this procedure was followed. concentration of virus corresponded to ~3 x 10⁵ PFU (measured by plaque assay on MT-2 cells) per assay well and typically produced approximately 75% of the maximum viral RNA level 5 achievable at any virus inoculum. For the HIV RNA assay, IC90 values were determined from the percent reduction of net signal (signal from infected cell samples minus signal from uninfected cell samples) in the RNA assay relative to the net 10 signal from infected, untreated cells on the same culture plate (average of eight wells). Valid performance of individual infection and RNA assay tests was judged according to three criteria. It was required that the virus infection should result in an RNA assay signal equal to or greater than the signal generated from 2 ng of pDAB 72 in vitro RNA 15 transcript. The IC90 for ddC, determined in each assay run, should be between 0.1 and 0.3 μ g/mL. Finally, the plateau level of viral RNA produced by an effective reverse transcriptase inhibitor should be less than 10% of the level 20 achieved in an uninhibited infection. A compound was considered active if its IC_{90} was found to be less than $20\mu M$.

For antiviral potency tests, all manipulations in microtiter plates, following the initial addition of 2X concentrated compound solution to a single row of wells, were performed using a Perkin Elmer/Cetus ProPette.

25

30

35

HIV-1 RT Assay Materials and Methods

This assay measures HIV-1 RT RNA dependent DNA polymerase activity by the incorporation of 3H dTMP onto the template primer Poly (rA) oligo (dT)12-18. The template primer containing the incorporated radioactivity was separated from unincorporated label by one of two methods:

Method 1. The template primer was precipitated with TCA, collected on glass fiber filters and counted for radioactivity with a scintillation counter.

Method 2. The currently used method is more rapid and convenient. The template primer is captured on an diethyl

amino ethyl (DEAE) ion exchange membrane which is then counted for radioactivity after washing off the free nucleotide.

5 <u>Materials and Reagents</u>:

10

30

35

The template primer Poly (rA) oligo (dT)12-18 and dTTP were purchased from Pharmacia Biotech. The template primer and nucleotide were dissolved in diethyl pyrocarbonate water to a concentration of 1 mg/ml and 5.8 mM respectively. The substrates were aliquoted (template primer at 20 μ l/aliquot, dTTP at 9 μ l/aliquot) and frozen at -20 C.

The 3H dTTP (2.5 mCi/ml in 10 mM Tricine at pH 7.6; specific activity of 90-120 Ci/mmol) and the recombinant HIV-1 Reverse Transcriptase (HxB2 background; 100 U/10 μ l in 100 15 mM potassium phosphate at pH 7.1, 1 mM dithiothreitol and 50% glycerol) were purchased from DuPont NEN. 1 Unit of enzyme is defined by DuPont NEN as the amount required to incorporate 1 nmol of labelled dTTP into acid-insoluble material in 10 minutes at 37 C. The 3H dTTP was aliquoted at 23.2 μ l/microfuge tube (58 μ Ci) and frozen at -20 C. 20 HIV-1 Reverse Transcriptase (RT) was diluted 10 fold with RT buffer (80 mM KCl, 50 mM Tris HCl, 12 mM MgCl2, 1 mM DTT, 50 μM EGTA, 5 mg/ml BSA, 0.01% Triton-X 100, pH 8.2) and aliquoted at 10 μ l/microfuge tube (10 Units/10 μ l). One 25 aliquot (enough for 8 assays) was diluted further to 10 Units/100 μ l and aliquoted into 8 tubes (1.25 Units/12.5 μ l). All aliquots were frozen at -70 C.

The Millipore Multiscreen DE 96 well filter plates, multiscreen plate adaptors, and microplate press-on adhesive sealing film were purchased from Millipore. The filter plate containing 0.65 μm pore size diethyl amino ethyl cellulose (DEAE) paper disks was pretreated with 0.3 M ammonium formate and 10 mM sodium pyrophosphate (2 times 200 μl /well) at pH 8.0 prior to use. A Skatron 96 well cell harvester and glass fiber filter mats were purchased from Skatron Instruments. Microscint 20 scintillation cocktail was

purchased from Packard. Beckman Ready Flow III scintillation cocktail was purchased from Beckman.

<u>HIV-1 RT Assay</u>:

30

35

5 The enzyme and substrate mixture were freshly prepared from the above stock solutions. 1.25 Units of enzyme was diluted with RT buffer (containing 5 mg/ml BSA) to a concentration of 0.05 Units/10 μ l or 0.7 nM. Final enzyme and BSA concentrations in the assay were 0.01 Units or 0.14 10 nM and 1 mg/ml respectively. The inhibitor and substrate mixture were diluted with RT buffer containing no BSA. All inhibitors were dissolved in dimethyl sulfoxide (DMSO) at a stock concentration of 3 mM and stored at -20 C after use. A Biomek robot was used to dilute the inhibitors in a 96 well 15 plate. Inhibitors were initially diluted 96 fold from stock and then serially diluted two times (10 fold/dilution) from $31.25 \mu M$ to 3125 nM and 312.5 nM. Depending on the potency of the inhibitor, one of the three dilutions was further diluted. Typically the highest concentration (31.25 µM) was 20 serially diluted three times at 5 fold/dilution to 6.25, 1.25, and 0.25 μM . Final inhibitor concentrations in the assay were 12.5, 2.5, 0.5, and 0.1 μM . For potent inhibitors of HIV-1 RT, the final inhibitor concentrations used were 0.1 or 0.01 that stated above. The substrate mixture contained 25 6.25 μ g/ml of Poly (rA) oligo (dT)12-18 and 12.5 μ M of dTTP (58 μ Ci 3H dTTP). The final substrate concentrations were 2.5 μ g/ml and 5 μ M respectively.

Using the Beckman Instruments Biomek robot, 10 μ l of HIV-1 RT was combined with 20 μ l of inhibitor in a 96 well U bottom plate. The enzyme and inhibitor were preincubated at ambient temperature for 6 minutes. 20 μ l of the substrate mixture was added to each well to initiate the reaction (total volume was 50 μ l). The reactions were incubated at 37 C and terminated after 45 minutes.

For method 1, 200 μ l of an ice-cold solution of 13% trichloroacetic acid (TCA) and 10 mM sodium pyrophosphate was added to each of the 96 wells. The 96 well plate was then

placed in an ice-water bath for 30 minutes. Using A Skatron 96 well cell harvester, the acid precipitable material was collected on a glass fiber filter mat that had been presoaked in 13% TCA and 10 mM sodium pyrophosphate. The filter disks were washed 3 times (2.0 ml/wash) with 1 N HCl and 10 mM sodium pyrophosphate. The filter disks were punched out into scintillation vials, 2.0 ml of Beckman Ready Flow III scintillant was added, and the vials were counted for radioactivity for 1 minute.

5

25

30

35

10 For method 2, the assay was terminated with the addition of 175 μl/well of 50 mM EDTA at pH 8.0. Then 180 μl of the mixture was transferred to a pretreated Millipore DE 96 well filter plate. Vacuum was applied to the filter plate to aspirate away the liquid and immobilize the template primer on the DEAE filter disks. Each well was washed 3 times with 200 μl of 0.3 M ammonium formate and 10 mM sodium pyrophosphate at pH 8.0. 50 μl of microscint 20 scintillation cocktail was added to each well and the plate was counted for radioactivity on a Packard Topcount at 1 minute/well.

The IC₅₀ values are calculated with the equation:

 IC_{50} = [Inh]/(1/fractional activity - 1) where the fractional activity = RT activity (dpms) in the presence of inhibitor/RT activity (dpms) in the absence of inhibitor. For a given inhibitor, the IC_{50} values were calculated for the inhibitor concentrations that range between 0.1-0.8 fractional activity. The IC_{50} values in this range (generally 2 values) were averaged. A compound was considered active if its IC_{50} was found to be less than $12\mu M$.

Protein Binding and Mutant Resistance

In order to characterize NNRTI analogs for their clinical efficacy potential the effect of plasma proteins on antiviral potency and measurements of antiviral potency against wild type and mutant variants of HIV which carry amino acid changes in the known binding site for NNRTIs were

examined. The rationale for this testing strategy is two fold:

- 1. Many drugs are extensively bound to plasma proteins. Although the binding affinity for most drugs for the major components of human plasma, namely, human serum albumin (HSA) 5 or alpha-1-acid glycoprotein (AAG), is low, these major components are present in high concentration in the blood. Only free or unbound drug is available to cross the infected cell membrane for interaction with the target site (i.e., 10 HIV-1 reverse transcriptase, HIV-1 RT). Therefore, the effect of added HSA+AAG on the antiviral potency in tissue culture more closely reflects the potency of a given compound in the clinical setting. The concentration of compound required for 90% inhibition of virus replication as measured 15 in a sensitive viral RNA-based detection method is designated the IC90. The fold increase in apparent IC90 for test compounds in the presence or added levels of HSA and AAG that reflect in vivo concentrations (45 mg/ml HSA, 1 mg/ml AAG) was then calculated. The lower the fold increase, the more compound will be available to interact with the target site. 20
- The combination of the high rate of virus replication in the infected individual and the poor fidelity of the viral RT results in the production of a quasi-species or mixtures of HIV species in the infected individual. 25 species will include a majority wild type species, but also mutant variants of HIV and the proportion of a given mutant will reflect its relative fitness and replication rate. Because mutant variants including mutants with changes in the amino acid sequence of the viral RT likely pre-exist in the infected individual's quasi-species, the overall potency 30 observed in the clinical setting will reflect the ability of a drug to inhibit not only wild type HIV-1, but mutant variants as well. We thus have constructed, in a known genetic background, mutant variants of HIV-1 which carry amino acid substitutions at positions thought to be involved 35 in NNRTI binding, and measured the ability of test compounds to inhibit replication of these mutant viruses. The

concentration of compound required for 90% inhibition of virus replication as measured in a sensitive viral RNA-based detection method is designated the IC90. It is desirable to have a compound which has high activity against a variety of mutants.

Dosage and Formulation

5

10

15

20

25

30

35

The antiviral compounds of this invention can be administered as treatment for viral infections by any means that produces contact of the active agent with the agent's site of action, i.e., the viral reverse transcriptase, in the body of a mammal. They can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic agents or in a combination of therapeutic agents. They can be administered alone, but preferably are administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.

The dosage administered will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the age, health and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; and the effect desired. A daily dosage of active ingredient can be expected to be about 0.001 to about 1000 milligrams per kilogram of body weight, with the preferred dose being about 0.1 to about 30 mg/kg.

Dosage forms of compositions suitable for administration contain from about 1 mg to about 100 mg of active ingredient per unit. In these pharmaceutical compositions the active ingredient will ordinarily be present in an amount of about 0.5-95% by weight based on the total weight of the composition. The active ingredient can be administered orally in solid dosage forms, such as capsules, tablets and powders, or in liquid dosage forms, such as elixirs, syrups

and suspensions. It can also be administered parenterally, in sterile liquid dosage forms.

Gelatin capsules contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract. Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.

15 In general, water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the 20 active ingredient, suitable stabilizing agents, and if necessary, buffer substances. Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts, and sodium EDTA. 25 addition, parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol. Suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences, supra, a standard reference text in this field.

30 Useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows:

<u>Capsules</u>

10

A large number of unit capsules can be prepared by filling standard two-piece hard gelatin capsules each with

100 mg of powdered active ingredient, 150 mg of lactose, 50 mg of cellulose, and 6 mg magnesium stearic.

Soft Gelatin Capsules

A mixture of active ingredient in a digestible oil such as soybean oil, cottonseed oil or olive oil can be prepared and injected by means of a positive displacement pump into gelatin to form soft gelatin capsules containing 100 mg of the active ingredient. The capsules should then be washed and dried.

<u>Tablets</u>

A large number of tablets can be prepared by conventional procedures so that the dosage unit is 100 mg of active ingredient, 0.2 mg of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 275 mg of microcrystalline cellulose, 11 mg of starch and 98.8 mg of lactose. Appropriate coatings may be applied to increase palatability or delay absorption.

20

25

30

15

Suspension

An aqueous suspension can be prepared for oral administration so that each 5 mL contain 25 mg of finely divided active ingredient, 200 mg of sodium carboxymethyl cellulose, 5 mg of sodium benzoate, 1.0 g of sorbitol solution, U.S.P., and 0.025 mg of vanillin.

<u>Injectable</u>

A parenteral composition suitable for administration by injection can be prepared by stirring 1.5% by weight of active ingredient in 10% by volume propylene glycol and water. The solution is sterilized by commonly used techniques.

35 <u>Combination of components (a) and (b)</u>

Each therapeutic agent component of this invention can independently be in any dosage form, such as those described

above, and can also be administered in various ways, as described above. In the following description component (b) is to be understood to represent one or more agents as described previously. Thus, if components (a) and (b) are to be treated the same or independently, each agent of component (b) may also be treated the same or independently.

Components (a) and (b) of the present invention may be formulated together, in a single dosage unit (that is, combined together in one capsule, tablet, powder, or liquid, etc.) as a combination product. When component (a) and (b) 10 are not formulated together in a single dosage unit, the component (a) may be administered at the same time as component (b) or in any order; for example component (a) of this invention may be administered first, followed by 15 administration of component (b), or they may be administered in the revserse order. If component (b) contains more that one agent, e.g., one RT inhibitor and one protease inhibitor, these agents may be administered together or in any order. When not administered at the same time, preferably the 20 administration of component (a) and (b) occurs less than about one hour apart. Preferably, the route of administration of component (a) and (b) is oral. The terms oral agent, oral inhibitor, oral compound, or the like, as used herein, denote compounds which may be orally administered. Although it is preferable that component (a) and component (b) both be administered by the same route (that is, for example, both orally) or dosage form, if desired, they may each be administered by different routes (that is, for example, one component of the combination product may be administered orally, and another component may be administered intravenously) or dosage forms.

25

30

35

As is appreciated by a medical practitioner skilled in the art, the dosage of the combination therapy of the invention may vary depending upon various factors such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration, the age, health and weight of the recipient, the nature and extent of the

symptoms, the kind of concurrent treatment, the frequency of treatment, and the effect desired, as described above.

The proper dosage of components (a) and (b) of the present invention will be readily ascertainable by a medical practitioner skilled in the art, based upon the present disclosure. By way of general guidance, typically a daily dosage may be about 100 milligrams to about 1.5 grams of each component. If component (b) represents more than one compound, then typically a daily dosage may be about 100 milligrams to about 1.5 grams of each agent of component (b). By way of general guidance, when the compounds of component (a) and component (b) are administered in combination, the dosage amount of each component may be reduced by about 70-80% relative to the usual dosage of the component when it is administered alone as a single agent for the treatment of HIV infection, in view of the synergistic effect of the combination.

10

15

The combination products of this invention may be formulated such that, although the active ingredients are 20 combined in a single dosage unit, the physical contact between the active ingredients is minimized. In order to minimize contact, for example, where the product is orally administered, one active ingredient may be enteric coated. By enteric coating one of the active ingredients, it is 25 possible not only to minimize the contact between the combined active ingredients, but also, it is possible to control the release of one of these components in the gastrointestinal tract such that one of these components is not released in the stomach but rather is released in the intestines. Another embodiment of this invention where oral 30 administration is desired provides for a combination product wherein one of the active ingredients is coated with a sustained-release material which effects a sustained-release throughout the gastrointestinal tract and also serves to 35 minimize physical contact between the combined active ingredients. Furthermore, the sustained-released component can be additionally enteric coated such that the release of

this component occurs only in the intestine. Still another approach would involve the formulation of a combination product in which the one component is coated with a sustained and/or enteric release polymer, and the other component is also coated with a polymer such as a lowviscosity grade of hydroxypropyl methylcellulose or other appropriate materials as known in the art, in order to further separate the active components. The polymer coating serves to form an additional barrier to interaction with the other component. In each formulation wherein contact is prevented between components (a) and (b) via a coating or some other material, contact may also be prevented between the individual agents of component (b).

5

10

35

Dosage forms of the combination products of the present 15 invention wherein one active ingredient is enteric coated can be in the form of tablets such that the enteric coated component and the other active ingredient are blended together and then compressed into a tablet or such that the enteric coated component is compressed into one tablet layer 20 and the other active ingredient is compressed into an additional layer. Optionally, in order to further separate the two layers, one or more placebo layers may be present such that the placebo layer is between the layers of active In addition, dosage forms of the present ingredients. 25 invention can be in the form of capsules wherein one active ingredient is compressed into a tablet or in the form of a plurality of microtablets, particles, granules or non-perils, which are then enteric coated. These enteric coated microtablets, particles, granules or non-perils are then 30 placed into a capsule or compressed into a capsule along with a granulation of the other active ingredient.

These as well as other ways of minimizing contact between the components of combination products of the present invention, whether administered in a single dosage form or administered in separate forms but at the same time or concurrently by the same manner, will be readily apparent to those skilled in the art, based on the present disclosure.

Pharmaceutical kits useful for the treatment of HIV infection, which comprise a therapeutically effective amount of a pharmaceutical composition comprising a compound of component (a) and one or more compounds of component (b), in one or more sterile containers, are also within the ambit of 5 the present invention. Sterilization of the container may be carried out using conventional sterilization methodology well known to those skilled in the art. Component (a) and component (b) may be in the same sterile container or in 10 separate sterile containers. The sterile containers of materials may comprise separate containers, or one or more multi-part containers, as desired. Component (a) and component (b), may be separate, or physically combined into a single dosage form or unit as described above. Such kits may 15 further include, if desired, one or more of various conventional pharmaceutical kit components, such as for example, one or more pharmaceutically acceptable carriers, additional vials for mixing the components, etc., as will be readily apparent to those skilled in the art. Instructions, 20 either as inserts or as labels, indicating quantities of the components to be administered, guidelines for administration, and/or guidelines for mixing the components, may also be included in the kit.

Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

WHAT IS CLAIMED AS NEW AND DESIRED TO BE SECURED BY LETTER PATENT OF UNITED STATES IS:

1. A compound of formula (I):

5

Ι

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

10

A is O or S;

W is N or CR^3 :

15 X is N or CR^4 ;

Y is N or CR^5 ;

Z is N or CR^6 ;

20

30

provided that if two of W, X, Y, and Z are N, then the remaining are other than N;

- also, provided that if X is CR^4 and R^4 is F, Cl, Br, or I, then:
 - (a) at least one of W, Y, and Z is other than CH;
 - (b) R^2 is $-OCHR^7R^8$ or $-NHCHR^7R^8$;
 - (c) if R^2 is $-C \equiv C R^8$, then R^8 is C_{3-7} cycloalkyl substituted with 1 R^9 ; or

(d) any combination of (a), (b), and (c);

 $\rm R^1$ is selected from CF_3, CF_2H, C_2F_5, C_{1-4} alkyl, C_{3-5} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl;

 $\rm R^2$ is selected from $\rm -QCHR^7R^8$, $\rm -QCHR^7C\equiv C-R^8$, $\rm -QCHR^7C=C-R^8$, $\rm -Q(CH_2)_pCHR^7R^8$, $\rm -C\equiv C-R^8$, $\rm -CH=CR^7R^8$, $\rm -(CH_2)_pCHR^7R^8$, $\rm -CHR^7C\equiv C-R^8$, $\rm -CHR^7CH=CHR^8$, and $\rm CH=CHCHR^7R^8$;

- 5 provided that when R^1 is C_{1-4} alkyl, then R^2 is $-C \equiv C R^8$;
 - \mathbb{R}^3 is selected from H, F, Cl, Br, I, \mathbb{C}_{1-3} alkoxy, and \mathbb{C}_{1-3} alkyl;
- 10 R⁴ is selected from H, F, Cl, Br, I, C₁₋₃ alkyl substituted with 0-3 R¹¹, C₂₋₃ alkenyl, C₂₋₃ alkynyl, C₁₋₃ alkoxy, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, NR⁷C(O)OR^{7a}, C(O)OR⁷, S(O)_pR⁷, SO₂NHR⁷, NR⁷SO₂R^{7b}, phenyl substituted with 0-2 R¹⁰, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O,

alternatively, R^3 and R^4 together form -OCH₂O-;

and S substituted with $0-2 R^{10}$;

 R^5 is selected from H, F, Cl, Br, and I;

alternatively, \mathbf{R}^4 and \mathbf{R}^5 together form -OCH $_2$ O- or a fused benzo ring;

 R^6 is selected from H, OH, C_{1-3} alkoxy, -CN, F, Cl, Br, I, NO_2 , CF_3 , CHO, C_{1-3} alkyl, and $C(O)NH_2$;

 \mathbb{R}^7 is selected from H and \mathbb{C}_{1-3} alkyl;

 R^{7a} is selected from H and C_{1-3} alkyl;

 R^{7b} is C_{1-3} alkyl;

20

25

30

35 R⁸ is selected from H, C_{1-6} alkyl substituted with 0-3 R¹¹, $CH(-OCH_2CH_2O-)$, C_{2-6} alkenyl, C_{3-7} cycloalkyl substituted with 0-2 R⁹, phenyl substituted with 0-2 R¹⁰, and 5-6

membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{10} ;

- 5 R^9 is selected from D, OH, C_{1-3} alkoxy, C_{1-3} alkyl, and F;
 - R^{10} is selected from OH, C_{1-3} alkyl, C_{1-3} alkoxy, F, Cl, Br, I, CN, $NR^{7}R^{7a}$, and $C(0)CH_{3}$;
- 10 R^{11} is selected from OR^7 , CN, F, Cl, Br, I, NO_2 , NR^7R^{7a} , CHO, $C(O)CH_3$, $C(O)NH_2$;
 - Q is selected from O, S and NH; and,
- 15 p is selected from 0, 1, and 2.
 - 2. A compound according to Claim 1, wherein:
- 20 R^1 is selected from CF_3 , CF_2H , C_2F_5 , C_{1-3} alkyl, C_{3-5} cycloalkyl; and,
- R^8 is selected from H, C_{1-6} alkyl substituted with 0-3 R^{11} , $CH(-OCH_2CH_2O_-)$, C_{2-6} alkenyl, C_{3-5} cycloalkyl substituted with 0-1 R^9 , phenyl substituted with 0-1 R^{10} , and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-1 R^{10} .

30

- 3. A compound according to Claim 2, wherein:
- R^1 is selected from CF_3 , CF_2H , C_2F_5 , C_2H_5 , isopropyl, cyclopropyl;
- R^3 is selected from H, F, Cl, Br, I, OCH₃, CH₃;

 R^4 is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R^{11} , C_{2-3} alkenyl, C_{2-3} alkynyl, C_{1-3} alkoxy, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, NR⁷C(O)OR^{7a}, C(O)OR⁷, S(O)_pR⁷, SO₂NHR⁷, NR⁷SO₂R^{7b}, phenyl, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;

alternatively, R^3 and R^4 together form $-OCH_2O-$;

10

5

R⁵ is selected from H, F;

 R^6 is selected from H, OH, OCH₃, -CN, F, CF₃, CH₃, and $C(O)NH_2$;

15

 R^7 is selected from H and CH_3 ;

 R^{7a} is selected from H and CH_3 ;

20 R^{7b} is CH_3 ;

 R^8 is selected from H, C_{1-4} alkyl substituted with 0-3 R^{11} , $CH(-OCH_2CH_2O-)$, C_{2-4} alkenyl, C_{3-5} cycloalkyl substituted with 0-1 R^9 , phenyl substituted with 0-1 R^{10} , and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-1 R^{10} ;

 R^9 is selected from D, OH, OCH₃, CH₃, and F;

30

25

 R^{10} is selected from OH, CH_3 , OCH_3 , F, Cl, Br, I, CN, NR^7R^{7a} , and $C(O)CH_3$; and,

p is selected from 1 and 2.

35

4. A compound according to Claim 3, wherein:

A is 0; and,

 R^1 is selected from CF_3 , CF_2H , C_2F_5 ;

5

15

30

- R^2 is selected from $-OCHR^7R^8$, $-OCH_2C = C R^8$, $-OCH_2C = C R^8$, $-OCH_2CHR^7R^8$, $-C = C R^8$, $-CH = CR^7R^8$, $-CH_2CHR^7R^8$, $-CH_2C = C R^8$, $-CH_2CHR^7R^8$; and $-CH_2CHR^7R^8$;
- 10 R³ is selected from H, F, Cl, Br, I;
 - R^4 is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R^{11} , $CH=CH_2$, $C\equiv CH$, OCH_3 , OCF_3 , -CN, NO_2 , CHO, $C(O)CH_3$, $C(O)CF_3$, $C(O)NH_2$, $C(O)NHCH_3$, NR^7R^{7a} , $C(O)OR^7$, $NR^7SO_2R^{7b}$, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;
 - alternatively, R^3 and R^4 together form -OCH₂O-; and,

20 $R^{11} \text{ is selected from OH, OCH}_3, \text{ CN, F, Cl, NR}^7 R^{7a}, \text{ C(O)CH}_3, \text{ and } \\ \text{C(O)NH}_2.$

- 5. A compound according to Claim 4, wherein the compound is selected from:
 - (+/-)-6-Chloro-4-(cyclopropylethynyl)-8-hydroxy-4(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one;

(-)-6-Chloro-4-(cyclopropylethynyl)-8-hydroxy-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one;

(+/-)-6-Chloro-4-(cyclopropylethynyl)-8-fluoro-4(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one;

(+/-)-4-Cyclopropylethynyl-4-isopropyl-6-methyl-1,4-dihydro-2H-3,1-benzoxazin-2-one;

- (+/-)-4-Isopropylethynyl-4-trifluoromethyl-6-methyl-1,4dihydro-2H-3,1-benzoxazin-2-one;
 - (+/-)-6-Acetyl-4-cyclopropylethynyl-4-trifluoromethyl-1,4dihydro-2H-3,1-benzoxazin-2-one;
- 10 (+/-)-5,6-Difluoro-4-(3-methyl)-1-buten-1-yl-4trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one;

15

- (+/-)-4-Isopropylethynyl-4-trifluoromethyl-5,6-difluoro-1,4-dihydro-2H-3,1-benzoxazin-2-one;
- (+/-)-4-Cyclopropylethynyl-6-chloro-4-trifluoromethyl-7-aza-1,4-dihydro-2H-3,1-benzoxazin-2-one;
- (+/-)-6-Chloro-4-(2-methoxyethoxy)-4-(trifluoromethyl)-1,4-20 dihydro-2H-3,1-benzoxazin-2-one;
 - (+/-)-6-Chloro-4-propylamino-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one;
- 25 (+/-)-6-Chloro-4-(2-(furan-2-yl)ethynyl)-4-(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one;
 - (+/-)-4-(1-Butynyl)-6-methoxy-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one;
- (+/-)-4-(1'-Hydroxy)-cyclopropylethynyl-4-trifluoromethyl-6-chloro-1,4-dihydro-2H-3,1-benzoxazin-2-one;
- (+/-)-4-Isopropylethynyl-4-trifluoromethyl-5-fluoro-1,4dihydro-2H-3,1-benzoxazin-2-one;

(+/-)-6-Chloro-4-(1-deuterocycloprop-1-ylethynyl)-4 (trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazin-2-one;
and,

- 5 (+/-)-4-Isopropylethynyl-4-trifluoromethyl-5-fluoro-1,4-dihydro-2H-3,1-benzoxazin-2-one.
 - 6. A compound of formula II:

10

II

or a salt or stereoisomer thereof, wherein:

15 A is O or S;

W is N or CR^3 ;

X is N or CR^4 ;

20

30

Y is N or CR5;

Z is N or CR6;

- 25 provided that if two of W, X, Y, and Z are N, then the remaining are other than N;
 - R^{1a} is selected from CF_3 , CF_2H , C_2F_5 , C_{1-4} alkyl, C_{3-5} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl;
 - \mathbb{R}^3 is selected from H, F, Cl, Br, I, \mathbb{C}_{1-3} alkoxy, and \mathbb{C}_{1-3} alkyl;
- R^4 is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R^{11} , C_{2-3} alkenyl, C_{2-3} alkynyl, C_{1-3} alkoxy,

OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, NR⁷C(O)OR^{7a}, C(O)OR⁷, S(O)_pR⁷, SO₂NHR⁷, NR⁷SO₂R^{7b}, phenyl substituted with 0-2 R¹⁰, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R¹⁰;

alternatively, R^3 and R^4 together form $-OCH_2O-$;

- 10 R⁵ is selected from H, F, Cl, Br, and I;
 - alternatively, R^4 and R^5 together form $-OCH_2O-$ or a fused benzo ring;
- 15 R^6 is selected from H, OH, C_{1-3} alkoxy, -CN, F, Cl, Br, I, NO_2 , CF_3 , CHO, C_{1-3} alkyl, and $C(O)NH_2$;

 \mathbb{R}^7 is selected from H and \mathbb{C}_{1-3} alkyl;

20 R^{7a} is selected from H and C_{1-3} alkyl;

 R^{7b} is C_{1-3} alkyl;

- R^{10} is selected from OH, C_{1-3} alkyl, C_{1-3} alkoxy, F, Cl, Br, I, CN, NR^7R^{7a} , and $C(O)CH_3$;
 - R^{11} is selected from OR^7 , CN, F, C1, Br, I, NO_2 , NR^7R^{7a} , CHO, $C(O)CH_3$, $C(O)NH_2$;
- 30 p is selected from 0, 1, and 2.
 - 7. A compound according to Claim 6, wherein:
- 35 A is 0; and,

 ${\bf R^{1a}}$ is selected from ${\bf CF_3}$, ${\bf CF_2H}$, ${\bf C_2F_5}$, ${\bf C_{1-3}}$ alkyl, ${\bf C_{3-5}}$ cycloalkyl.

- 5 8. A compound according to Claim 7, wherein:
 - R^{1a} is selected from CF_3 , CF_2H , C_2F_5 , C_2H_5 , isopropyl, cyclopropyl;
- 10 R^3 is selected from H, F, Cl, Br, I, OCH₃, CH₃;
 - $\rm R^4$ is selected from H, F, Cl, Br, I, $\rm C_{1-3}$ alkyl substituted with 0-3 $\rm R^{11}$, $\rm C_{2-3}$ alkenyl, $\rm C_{2-3}$ alkynyl, $\rm C_{1-3}$ alkoxy, OCF_3, -CN, NO_2, CHO, C(O)CH_3, C(O)CF_3, C(O)NH_2,
- 15 $C(0)NHCH_3$, NR^7R^{7a} , $NR^7C(0)OR^{7a}$, $C(0)OR^7$, $S(0)_pR^7$, SO_2NHR^7 , $NR^7SO_2R^{7b}$, phenyl, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;
- 20 alternatively, R^3 and R^4 together form $-OCH_2O-$;

R⁵ is selected from H, F;

 R^6 is selected from H, OH, OCH3, -CN, F, CF3, CH3, and C(O)NH2;

 \mathbb{R}^7 is selected from H and $\mathbb{C}\mathbb{H}_3$;

 R^{7a} is selected from H and CH_3 ;

 R^{7b} is CH_3 ;

30

35

 R^{10} is selected from OH, CH₃, OCH₃, F, Cl, Br, I, CN, $NR^{7}R^{7a}$, and C(O)CH₃; and,

p is selected from 1 and 2.

9. A compound according to Claim 8, wherein:

R^{1a} is selected from CF₃, CF₂H, C₂F₅;

R³ is selected from H, F, Cl, Br, I;

R⁴ is selected from H, F, Cl, Br, I, C₁₋₃ alkyl substituted with 0-3 R¹¹, CH=CH₂, C≡CH, OCH₃, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, C(O)OR⁷, NR⁷SO₂R^{7b}, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;

15 alternatively, R^3 and R^4 together form -OCH₂O-; and,

 R^{11} is selected from OH, OCH₃, CN, F, Cl, NR^7R^{7a} , C(O)CH₃, and C(O)NH₂.

20

5

10. A process for making a compound of formula II:

TT

25 or salt or stereoisomer thereof, comprising:

(a) contacting a compound of formula III:

III

30

or a suitable salt form thereof, with a carbonyl or thiocarbonyl delivering agent in the presence of a suitable solvent, wherein:

```
A is O or S;
      W is N or CR^3;
 5
      X is N or CR^4;
      Y is N or CR^5;
10
      Z is N or CR6;
      provided that if two of W, X, Y, and Z are N, then the
             remaining are other than N;
      \rm R^{1a} is selected from CF_3, CF_2H, C_2F_5, C_{1-4} alkyl, C_{3-5}
15
             cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl;
      \mbox{R}^{3} is selected from H, F, Cl, Br, I, \mbox{C}_{1-3} alkoxy, and \mbox{C}_{1-3}
             alkyl;
20
      {\tt R}^4 is selected from H, F, Cl, Br, I, {\tt C}_{1-3} alkyl substituted
             with 0-3 R^{11}, C_{2-3} alkenyl, C_{2-3} alkynyl, C_{1-3} alkoxy,
             OCF_3, -CN, NO_2, CHO, C(O)CH_3, C(O)CF_3, C(O)NH_2,
             \texttt{C(O)NHCH}_3, \; \; \texttt{NR}^7 \texttt{R}^{7a}, \; \; \texttt{NR}^7 \texttt{C(O)OR}^{7a}, \; \; \texttt{C(O)OR}^7, \; \; \texttt{S(O)}_{\texttt{p}} \texttt{R}^7, \; \; \texttt{SO}_2 \texttt{NHR}^7, \; \; \\
             NR^7SO_2R^{7b}, phenyl substituted with 0-2 R^{10}, and 5-6
25
             membered aromatic heterocycle system containing from 1-4
             heteroatoms selected from the group consisting of N, O,
             and S substituted with 0-2 R^{10};
30
      alternatively, R<sup>3</sup> and R<sup>4</sup> together form -OCH<sub>2</sub>O-;
     R<sup>5</sup> is selected from H, F, Cl, Br, and I;
      alternatively, R^4 and R^5 together form -OCH_2O- or a fused
```

35

benzo ring;

 R^6 is selected from H, OH, C_{1-3} alkoxy, -CN, F, Cl, Br, I, NO_2 , CF_3 , CHO, C_{1-3} alkyl, and $C(0)NH_2$;

 R^7 is selected from H and C_{1-3} alkyl;

5

 R^{7a} is selected from H and C_{1-3} alkyl;

 R^{7b} is C_{1-3} alkyl;

10 R^{10} is selected from OH, C_{1-3} alkyl, C_{1-3} alkoxy, F, Cl, Br, I, CN, NR^7R^{7a} , and $C(0)CH_3$;

 R^{11} is selected from OR^7 , CN, F, Cl, Br, I, NO_2 , NR^7R^{7a} , CHO, $C(O)CH_3$, $C(O)NH_2$;

15

Q is selected from O, S and NH; and,

p is selected from 0, 1, and 2.

20

11. The process according to claim 10, wherein:

A is O;

25 R^{1a} is selected from CF₃, CF₂H, C₂F₅;

R³ is selected from H, F, Cl, Br, I;

R⁴ is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R¹¹, CH=CH₂, C=CH, OCH₃, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, C(O)OR⁷, NR⁷SO₂R^{7b}, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;

35

alternatively, \mathbb{R}^3 and \mathbb{R}^4 together form -OCH₂O-; and,

R⁵ is selected from H, F;

 R^6 is selected from H, OH, OCH₃, -CN, F, CF₃, CH₃, and C(O)NH₂;

5

 R^7 is selected from H and CH_3 ;

 R^{7a} is selected from H and CH_3 ;

10 R^{7b} is CH_3 ;

 R^{10} is selected from OH, CH_3 , OCH_3 , F, Cl, Br, I, CN, NR^7R^{7a} , and $C(O)CH_3$;

15 R^{11} is selected from OH, OCH₃, CN, F, Cl, NR^7R^{7a} , C(O)CH₃, and C(O)NH₂; and,

p is selected from 1 and 2.

20

- 12. The process according to claim 11, wherein the carbonyl delivering agent is selected from phosgene, carbonyldiimidazole, chloromethylcarbonate, chloroethylcarbonate, dimethylcarbonate, diethylcarbonate, and di-t-butylcarbonate.
- 13. The process according to claim 12, wherein the carbonyl delivering agent is phosgene and the solvent is toluene.
- 14. The process according to claim 13, wherein in step(a) a base is present and is selected from trimethylamine,35 triethylamine, and N,N-disopropylethylamine.

15. A process for making a compound of formula Ia:

Ia

5 or a stereoisomer or pharmaceutically acceptable salt form thereof, comprising:

(a) contacting a nucleophile, \mathbf{R}^{2b} , with a compound of formula II:

10

I.

or stereoisomer thereof in a suitable solvent, wherein:

R^{2b} is selected from R⁸R⁷CH-OH, R⁸R⁷CH-OM, R⁸R⁷CHNH₂, R⁸R⁷CHNH
M, R⁸-C \equiv C-M, R⁷R⁸C=CH-M, R⁸R⁷CH(CH₂)_p-M, R⁸CH=CHC(H)(R⁷)
M, R⁸R⁷CHCH=CH-M;

M is selected from Na, Li, Mg, Zn, Cu, Pd, Pt, Sn, Al, and B;

20 A is 0 or S;

W is N or CR³;

X is N or CR^4 ;

25

Y is N or CR^5 ;

Z is N or CR6;

30 provided that if two of W, X, Y, and Z are N, then the remaining are other than N;

 R^{1a} is selected from CF_3 , CF_2H , C_2F_5 , C_{1-4} alkyl, C_{3-5} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl;

- R^{2a} is selected from $-QCHR^{7}R^{8}$, $-QCHR^{7}C \equiv C-R^{8}$, $-QCHR^{7}C = C-R^{8}$, $-Q(CH_{2})_{p}CHR^{7}R^{8}$, $-C \equiv C-R^{8}$, $-CH=CR^{7}R^{8}$, $-(CH_{2})_{p}CHR^{7}R^{8}$, $-CHR^{7}C \equiv C-R^{8}$, $-CHR^{7}CH=CHR^{8}$, and $CH=CHCHR^{7}R^{8}$;
 - R^3 is selected from H, F, Cl, Br, I, C_{1-3} alkoxy, and C_{1-3} alkyl;

R⁴ is selected from H, F, Cl, Br, I, C₁₋₃ alkyl substituted
 with 0-3 R¹¹, C₂₋₃ alkenyl, C₂₋₃ alkynyl, C₁₋₃ alkoxy,
 OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂,
 C(O)NHCH₃, NR⁷R^{7a}, NR⁷C(O)OR^{7a}, C(O)OR⁷, S(O)_pR⁷, SO₂NHR⁷,
 NR⁷SO₂R^{7b}, phenyl substituted with 0-2 R¹⁰, and 5-6
 membered aromatic heterocycle system containing from 1-4
 heteroatoms selected from the group consisting of N, O,

20 alternatively, R^3 and R^4 together form $-OCH_2O-$;

and S substituted with $0-2 R^{10}$;

 R^5 is selected from H, F, Cl, Br, and I;

alternatively, R^4 and R^5 together form $-OCH_2O-$ or a fused 25 benzo ring;

 R^6 is selected from H, OH, C_{1-3} alkoxy, -CN, F, Cl, Br, I, NO_2 , CF_3 , CHO, C_{1-3} alkyl, and $C(O)NH_2$;

30 R^7 is selected from H and C_{1-3} alkyl;

 R^{7a} is selected from H and C_{1-3} alkyl;

 R^{7b} is C_{1-3} alkyl;

35

 R^8 is selected from H, C_{1-6} alkyl substituted with 0-3 R^{11} , $CH(-OCH_2CH_2O-)$, C_{2-6} alkenyl, C_{3-7} cycloalkyl substituted

with 0-2 R^9 , phenyl substituted with 0-2 R^{10} , and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{10} ;

5

- R^9 is selected from D, OH, C_{1-3} alkoxy, C_{1-3} alkyl, and F;
- $\rm R^{10}$ is selected from OH, $\rm C_{1-3}$ alkyl, $\rm C_{1-3}$ alkoxy, F, Cl, Br, I, CN, NR $^{7}\rm R^{7a}$, and C(O)CH $_{3}$;

10

- R^{11} is selected from OR^7 , CN, F, Cl, Br, I, NO_2 , NR^7R^{7a} , CHO, $C(O)CH_3$, $C(O)NH_2$;
- Q is selected from O, S and NH; and,

15

- p is selected from 0, 1, and 2.
 - 16. The process according to claim 15, wherein:

20

- A is O;
- R^{1a} is selected from CF₃, CF₂H, C₂F₅;

25 F

- R^{2a} is selected from $-OCHR^7R^8$, $-OCH_2C\equiv C-R^8$, $-OCH_2C=C-R^8$, $-OCH_2CHR^7R^8$, $-C\equiv C-R^8$, $-CH=CR^7R^8$, $-CH_2CHR^7R^8$, $-CH_2C\equiv C-R^8$, $-CH^7CH=CHR^8$, and $CH=CHCHR^7R^8$;
 - R³ is selected from H, F, Cl, Br, I;

30

35

 R^4 is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R^{11} , $CH=CH_2$, $C\equiv CH$, OCH_3 , OCF_3 , -CN, NO_2 , CHO, $C(O)CH_3$, $C(O)CF_3$, $C(O)NH_2$, $C(O)NHCH_3$, NR^7R^{7a} , $C(O)OR^7$, $NR^7SO_2R^{7b}$, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;

alternatively, R^3 and R^4 together form $-OCH_2O-$; and,

R⁵ is selected from H, F;

5 R^6 is selected from H, OH, OCH₃, -CN, F, CF₃, CH₃, and $C(0)NH_2$;

R⁷ is selected from H and CH₃;

10 R^{7a} is selected from H and CH_3 ;

 R^{7b} is CH_3 ;

R⁸ is selected from H, C₁₋₄ alkyl substituted with 0-3 R¹¹,

CH(-OCH₂CH₂O-), C₂₋₄ alkenyl, C₃₋₅ cycloalkyl substituted with 0-1 R⁹, phenyl substituted with 0-1 R¹⁰, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-1 R¹⁰;

20

 R^9 is selected from D, OH, OCH₃, CH₃, and F;

 $\rm R^{10}$ is selected from OH, CH₃, OCH₃, F, Cl, Br, I, CN, NR $^{7}\rm R^{7a}$, and C(O)CH₃;

25

 R^{11} is selected from OH, OCH $_3$, CN, F, Cl, NR^7R^{7a} , C(O)CH $_3$, and C(O)NH $_2$; and,

p is selected from 1 and 2.

30

17. The process according to claim 16, wherein in step (a), the compound of formula II is added to a solution containing the nucleophile.

18. The process according to claim 17, wherein in step (a), R^{2b} is $R^8-C\equiv C-M$; and M is selected from Li, Mg, and Zn.

- 19. The process according to claim 18, wherein in step (a), $R^8-C\equiv C-M$ is formed in situ by addition of a strong base to a solution containing $R^8-C\equiv C-H$.
- 20. The process according to claim 19, wherein in step (a), the strong base is selected from n-butyl lithium, s-butyl lithium, t-butyl lithium, phenyl lithium, and methyl lithium.

21. The process according to claim 20, wherein the compound of formula Ia is:

the compound of formula Ia is:

20

15

the nucleophile \mathbb{R}^{2b} is lithium cyclopropylacetylide; and, the solvent is THF.

25

22. A process of making a compound of formula IIIb:

IIIb

or stereoisomer or salt form thereof, comprising:
(a) contacting a compound of formula IIIa:

5 with R^{1a}-TMS and an anion, wherein:

the anion is a fluoride or oxyanion and is selected from tetrabutylammonium fluoride, sodium fluoride, potassium fluoride, lithium fluoride, cesium fluoride, potassium tert-butoxide, sodium methoxide, sodium ethoxide and sodium trimethylsilanolate;

Pg is an amine protecting group;

15 W is N or CR^3 ;

X is N or CR^4 ;

Y is N or CR⁵;

20

10

Z is N or CR^6 ;

provided that if two of W, X, Y, and Z are N, then the remaining are other than N;

25

 R^{1a} is selected from CF_3 , CF_3CF_2 , and $CF_3CF_2CF_2$;

 ${\bf R}^3$ is selected from H, F, Cl, Br, I, ${\bf C}_{1-3}$ alkoxy, and ${\bf C}_{1-3}$ alkyl;

30

35

 $\rm R^4$ is selected from H, F, Cl, Br, I, $\rm C_{1-3}$ alkyl substituted with 0-3 $\rm R^{11}$, $\rm C_{2-3}$ alkenyl, $\rm C_{2-3}$ alkynyl, $\rm C_{1-3}$ alkoxy, OCF3, -CN, NO2, CHO, C(O)CH3, C(O)CF3, C(O)NH2, C(O)NHCH3, NR^7R^7a, NR^7C(O)OR^7a, C(O)OR^7, S(O)_pR^7, SO_2NHR^7, NR^7SO_2R^7b, phenyl substituted with 0-2 $\rm R^{10}$, and 5-6

membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{10} ;

- 5 alternatively, R³ and R⁴ together form -OCH₂O-;
 - R^5 is selected from H, F, Cl, Br, and I;
- alternatively, R^4 and R^5 together form -OCH₂O- or a fused benzo ring;
 - R^6 is selected from H, OH, C_{1-3} alkoxy, -CN, F, Cl, Br, I, NO_2 , CF_3 , CHO, C_{1-3} alkyl, and $C(O)NH_2$;
- 15 R^7 is selected from H and C_{1-3} alkyl;
 - R^{7a} is selected from H and C_{1-3} alkyl;
 - R^{7b} is C_{1-3} alkyl;
- 20 $R^{10} \text{ is selected from OH, } C_{1-3} \text{ alkyl, } C_{1-3} \text{ alkoxy, F, Cl, Br, I,} \\ CN, NR^{7}R^{7a}, \text{ and } C(0)CH_3;$
- R^{11} is selected from OR^7 , CN, F, Cl, Br, I, NO_2 , NR^7R^{7a} , CHO, $C(O)CH_3$, $C(O)NH_2$;
 - p is selected from 0, 1, and 2.
- 30 23. The process according to claim 22, wherein:
 - the R^{la}-TMS is trifluoromethyl trimethylsilane;
 - the anion is tetrabutylammonium fluoride;
- Pg is trityl;

R^{1a} is CF₃;

R³ is selected from H, F, Cl, Br, I;

5 R⁴ is selected from H, F, Cl, Br, I, C_{1-3} alkyl substituted with 0-3 R¹¹, CH=CH₂, C=CH, OCH₃, OCF₃, -CN, NO₂, CHO, C(O)CH₃, C(O)CF₃, C(O)NH₂, C(O)NHCH₃, NR⁷R^{7a}, C(O)OR⁷, NR⁷SO₂R^{7b}, and 5-6 membered aromatic heterocycle system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S;

alternatively, R^3 and R^4 together form -OCH₂O-; and,

 R^5 is selected from H, F;

15

 R^6 is selected from H, OH, OCH3, -CN, F, CF3, CH3, and C(O)NH2;

 R^7 is selected from H and CH_3 ;

20

 R^{7a} is selected from H and CH_3 ;

R^{7b} is CH₃;

- 25 R^{10} is selected from OH, CH_3 , OCH₃, F, Cl, Br, I, CN, NR^7R^{7a} , and $C(0)CH_3$;
 - R^{11} is selected from OH, OCH₃, CN, F, Cl, NR^7R^{7a} , C(O)CH₃, and C(O)NH₂; and,

30

p is selected from 1 and 2.

- 24. The process according to claim 23, wherein the 35 process further comprises:
 - (b) contacting a compound of formula IIIb with an oxidizing agent to form compound of formula IIIc:

IIIc

- 5 25. The process according to claim 24, wherein the oxidizing agent is MnO_2 .
- 26. A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 1.
- 27. A method for treating HIV infection, comprising:

 15 administering to a host in need of such treatment a
 therapeutically effective amount of a compound of Claim 1, or
 a pharmaceutically acceptable salt form thereof.
- 28. A method of treating HIV infection which comprises administering, in combination, to a host in need thereof a therapeutically effective amount of:
 - (a) a compound according to Claim 1; and,
- (b) at least one compound selected from the group 25 consisting of HIV reverse transcriptase inhibitors and HIV protease inhibitors.
- 29. A method according to Claim 28, wherein the reverse transcriptase inhibitor is selected from AZT, 3TC, rescriptor ddI, ddC, and d4T and the protease inhibitor is selected from saquinavir, ritonavir, nelfinavir, indinavir, VX-478, KNI-272, CGP-61755, and U-103017.

30. A method according to Claim 29, wherein the reverse transcriptase inhibitor is selected from AZT, rescriptor, and 3TC and the protease inhibitor is selected from saquinavir, ritonavir, nelfinavir, and indinavir.

INTERNATIONAL SEARCH REPORT

Internati Application No PCT/US 97/17540

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07D265/18 A61K31/535 C07D413	/06 C07D417/06	•	
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC		
B. FIELDS	SEARCHED		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Minimum do IPC 6	ocumentation searched (classification system followed by classification CO7D A61K	on symbols)		
Documenta	tion searched other than minimum documentation to the extent that s	uch documents are included in the fields sea	arched	
Electronic d	lata base consulted during the international search (name of data ba	se and, where practical, search terms used)		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the rela	evant passages	Relevant to claim No.	
Х	US 5 519 021 A (YOUNG ET AL.) 21 cited in the application see the whole document	May 1996	1-26	
Х	GB 1 135 899 A (SOCIETÀ FARMACEU ITALIA) 4 December 1968 see examples 1,3,4,6,7	TICI	1	
Furl	ther documents are listed in the continuation of box C.	Patent family members are listed in	n annex.	
"T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention invention or cannot be considered to be of particular relevance. The claimed invention or cannot be considered to understand the principle or theory underlying the invention or cannot be considered to involve an inventive step when the document is taken alone which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report			the application but early underlying the plaimed invention to considered to cument is taken alone plaimed invention wentive step when the pore other such docutent is a person skilled family	
27 January 1998 Name and mailing address of the ISA Authorized officer				
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Lauro, P		

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internati Application No
PCT/US 97/17540

Patent document cited in search report Publication date Patent family member(s) Publication date Patent family member(s) Publication date Patent family member(s) Publication Pu		-	PCT/	US 97/17540
WO 9520389 A 03-08-95 US 5663169 A 02-09-97 US 5665720 A 09-09-97 AU 4449693 A 10-02-94 BG 99383 A 29-09-95 CA 2101572 A 08-02-94 CN 1090277 A 03-08-94 CZ 9500286 A 13-09-95 EP 0582455 A 09-02-94 FI 950508 A 06-02-95 HR 931102 A 31-10-97 HU 71219 A 28-11-97 JP 2063220 C 24-06-96 JP 6184124 A 05-07-94 JP 7080860 B 30-08-95 MX 9304775 A 31-05-94 NO 950424 A 06-04-95 NZ 255216 A 28-05-96 PL 307348 A 15-05-95 SI 9300419 A 30-06-94 SK 16195 A 11-07-95 WO 9403440 A 17-02-94 ZA 9305724 A 03-03-94 GB 1135899 A BE 702201 A 02-02-68 BE 704583 A 02-04-68 DE 1695780 A 29-04-71 DK 111568 B 16-09-68 FR 93909 E 06-06-69 FR 153010 A 22-11-68 NL 6710332 A 05-02-68 NL 6710332 A 05-02-69 NL 6710332 A 05-02-69 NL 6710332 A 05-02-68 NL 6710332 A 05-02-69				
GB 1135899 A BE 702201 A 02-02-68 BE 704583 A 02-04-68 DE 1695756 A 02-03-72 DE 1695780 A 29-04-71 DK 111568 B 16-09-68 FR 93909 E 06-06-69 FR 1533010 A 22-11-68 NL 6710332 A 05-02-68 NL 6713047 A 21-10-68 SE 337823 B 23-08-71 US 3526621 A 01-09-70 CH 478828 A 30-09-69 DK 118877 B 19-10-70	US 5519021 A	21-05-96	WO 9520389 A US 5663169 A US 5665720 A AU 4449693 A BG 99383 A CA 2101572 A CN 1090277 A CZ 9500286 A EP 0582455 A FI 950508 A HR 931102 A HU 71219 A IL 106507 A JP 2063220 C JP 6184124 A JP 7080860 B MX 9304775 A NO 950424 A NZ 255216 A PL 307348 A SI 9300419 A SK 16195 A WO 9403440 A	03-08-95 02-09-97 09-09-97 10-02-94 29-09-95 08-02-94 03-08-94 13-09-95 09-02-94 06-02-95 31-10-97 28-11-95 20-11-97 24-06-96 05-07-94 30-08-95 31-05-94 06-04-95 28-05-96 15-05-95 30-06-94 11-07-95 17-02-94
	GB 1135899 A		BE 702201 A BE 704583 A DE 1695756 A DE 1695780 A DK 111568 B FR 93909 E FR 1533010 A NL 6710332 A NL 6713047 A SE 337823 B US 3526621 A CH 478828 A DK 118877 B	02-02-68 02-04-68 02-03-72 29-04-71 16-09-68 06-06-69 22-11-68 05-02-68 21-10-68 23-08-71 01-09-70 30-09-69 19-10-70

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internat. J Application No
PCT/US 97/17540

		PCI/U	PC1/03 91/1/540	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
GB 1135899 A		SE 331997 B	25-01-71	