a) Let $f \in C[0,b]$, $g \in C(\mathbb{R})$ and let g be periodic with period b. Prove that $\int_0^b f(x)g(nx) dx$ has a limit as $n \to \infty$ and

a limit as
$$n \to \infty$$
 and
$$\lim_{n \to \infty} \int_0^b f(x)g(nx) \, \mathrm{d}x$$

$$1 \int_0^b f(x)g(nx) \, \mathrm{d}x$$

 $\lim_{n \to \infty} \int_0^{\pi} \frac{\sin(x)}{1 + 3\cos^2 nx} \, \mathrm{d}x.$

 $= \frac{1}{b} \int_{0}^{b} f(x) dx \cdot \int_{0}^{b} g(x) dx.$

b) Find