Assetti e prua

Riferimenti stabiliti da un giroscopio

Riferimento verticale

Riferimenti direzionale

La terra come sistema di riferimento locale

Precessione apparente dovuta alla rotazione

Osservatore al Polo Nord e giroscopio con asse di spin perpendicolare all'asse di rotazione terrestre

Osservatore al Polo Nord e giroscopio con asse di spin allineato con l'asse di rotazione terrestre

Precessione apparente dovuta alla rotazione

Giroscopio con asse parallelo alla verticale locale

Giroscopio con asse tangente al meridiano locale

Precessione apparente dovuta al movimento

Precessione apparente dovuta al movimento

$$\omega_{p} = \frac{V_{E}}{R \cos \lambda} = \frac{V \operatorname{sen} \psi}{R \cos \lambda}$$

$$\omega_{\mathsf{p}}^{\star} = \frac{\mathsf{V}_{\mathsf{N}}}{\mathsf{R}} = \frac{\mathsf{V}\mathsf{cos}\,\psi}{\mathsf{R}}$$

Giroscopio con asse parallelo alla verticale locale

Giroscopio con asse tangente al meridiano locale

Precessione apparente complessiva

$$\omega_{\mathbf{p}} = (\Omega \pm \frac{\mathbf{V} \operatorname{sen} \psi}{\mathbf{R} \cos \lambda}) \operatorname{sen} \lambda$$

$$\omega_{p}^{*} = \frac{\mathbf{V}\cos\psi}{\mathbf{R}}$$