Ouestão 1

Faça um programa que calcule o valor da expressão:

$$h = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$$

Dado o valor de N (passado pelo usuário) o programa deve calcular o somatório dessas frações.

Questão 2

Para que um número natural *n* seja triangular, o produto de três números consecutivos é igual ao seu valor. Crie um algoritmo que verifique se um número natural é triangular ou não. O valor fornecido pelo usuário deve ser um inteiro não-negativo.

Exemplo: 120 'e triangular pois 4*5*6 = 120.

Questão 3

O acesso a um laboratório é controlado a partir de uma porta automática. Para abrir a porta do referido laboratório, é necessário o uso de uma senha, composta por dígitos, no formato senha = d1d2d3...dnC, em que C é um dígito de controle da senha (e.g, se senha = 5323, então d1=5, d2=3, d3=2 e C = 3). O dígito C da senha é uma forma de verificar se uma senha é válida e é calculado da seguinte forma:

$$C = \left(\sum_{i=1}^{n} d_{i}\right) \mod 7$$

(x mod y significa "o resto da divisão inteira de x por y")

Por exemplo, a senha 5323 (d1= 5, d2= 3, d3= 2 e C = 3) é válida e a senha 7201 é inválida.

Escreva uma programa que testa a validade de uma senha, recebendo como parâmetros um vetor de inteiros com 4 elementos, que correspondem aos dígitos de uma senha (vet[0] = d1, vet[1] = d2, vet[2] = d3 e vet[3] = C).

Para este problema basta criar uma classe principal chamada LaboratorioSenha.

Questão 4

Faça um programa que solicita 5 valores ao usuário, armazena esses valores em um array chamado vet1 de inteiros. Depois, copia de forma invertida o conteúdo desse array para um segundo array chamado vet2. O programa deve imprimir os dois arrays na tela.

Exemplo de Entrada	Exemplo de Saída		
1 5 6 7 8	1 5 6 7 8 8 7 6 5 1		
8 2 0 1 2	8 2 0 1 2 2 1 0 2 8		

Questão 5

Faça um programa que leia dois vetores M[5] e N[5]. Crie um outro vetor O[10] que receba o primeiro elemento com o primeiro elemento de M, o segundo elemento com o primeiro de N, até preencher todas as posições de O usando os dois vetores M e N. Mostre o vetor O criado.

ENTRADA

A entrada contém 10 valores inteiros, positivos ou negativos, em cada vetor.

SAÍDA

Para cada posição do vetor 0, escreva "0[i] = Y", onde ié a posição do vetor e Y é o valor armazenado naquela posição.

Exemplo de Entrada	Exemplo de Saída		
1	0[0] = 1		
2	0[1] = 6		
3	0[2] = 2		
4	0[3] = 7		
5	0[4] = 3		
	0[5] = 8		
6	0[6] = 4		
7	0[7] = 9		
8	0[8] = 5		
9	0[9] = 10		
10			

Ouestão 6

Construa um vetor (vet2) de 12 posições formado a partir da seguinte regra: se o valor do índice for par, o valor do elemento deve ser igual ao elemento equivalente de vet1 multiplicado por 5; se for ímpar, deverá ser somado com 5. Ao final, mostrar o conteúdo do vetor.

Questão 7

Leia um conjunto de valores armazenando-os em um vetor de tamanho 16. Em seguida, calcule a média do vetor e mostre-a na tela. Na linha seguinte, imprima todos elementos maiores que a média.

Questão 8

Dado dois vetores de tamanho 5, cada um, faça um programa que:

- a) crie um vetor resultante da união deles;
- b) crie um vetor resultante da intercalação deles;
- c) crie um vetor resultante dada a operação v1*v2+v2^{v1}.

Exemplo de Entrada	Exemplo de Saída
--------------------	------------------

v2 = [2 3 1 2 4]	vU = [1 2 3 4 2 3 1 2 4] vI = [1 2 2 3 3 1 4 2 5 4] vP = [4 15 4 24 1044]
	vR = [4 15 4 24 1044]

Ouestão 9

Faça um programa que leia um vetor "**vet**" de 10 posições. Esse vetor indica o domínio de uma função. Crie dois vetores f1 e f2 tais que $f1 = 2*vet^2 - vet$ e $f2 = 3*vet^2$ para i=0,1,... 9. Por fim, utilize um quarto vetor f_s contendo a soma de f1 e f2. Mostre todos os vetores na tela.

Ouestão 10

Dadas duas sequências com 8 números inteiros entre 0 e 9, interpretadas como dois números inteiros de 8 algarismos, calcular a sequência de números que representa a soma dos dois inteiros.

Questão Extra

Escreva um aplicativo para simular o lançamento de dois dados. O aplicativo deve utilizar o módulo **random** uma vez para lançar o primeiro dado e novamente para lançar o segundo dado. A soma dos dois valores deve então ser calculada. Cada dado pode mostrar um valor de inteiro de 1 a 6, portanto a soma dos valores vai variar de 2 a 12, com 7 sendo a soma mais frequente e 2 e 12 sendo as somas menos frequentes. A figura abaixo mostra as 36 possíveis combinações de dois dados. Seu aplicativo deve lançar o dado 100 vezes. Utilize um array unidimensional para contar o número de vezes que cada possível soma aparece. Exiba os resultados em formato tabular.

LADOS	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Escreva as seguintes funções:

- gera() gera novamente o lançamento dos dados 100 vezes;
- historico_dado() exibe o array unidimensional da contagem de vezes que a soma aparece. **(EXTRA)**
- ultimo_lancamento() exibe o valor da soma do último lançamento.
- soma_total() exibe a soma total dos 100 lançamentos.