

第四章 连续时间信号与系统的复频域分析 20200618

4.1 拉普拉斯变换

- ◆ 从傅里叶变换到拉普拉斯变换
- → 单边拉普拉斯变换
 - ▶ 单边拉普拉斯变换的性质

4.3 LTI系统的复频域分析 → 电路系统的复频域求解

- ◆ 微分方程的复频域求解
- ◆ 系统函数分析

4.4 系统的图形表示方法

- 系统框图
- ◆ 信号流图
- 梅森公式
- 系统模拟

三. 系统函数分析

3. 系统的稳定性与零极点分布

表 4-2 一阶极点

$$H(s) = \frac{1}{s}, p_1 = 0$$
 在原点, $h(t) = L^{-1}[H(s)] = u(t)$

$$H(s) = \frac{1}{s+a}, p_1 = -a$$

a>0,在左实轴上, $h(t)=e^{-\alpha t}u(t)$,指数衰减

a < 0,在右实轴上, $h(t) = e^{-at}u(t)$,-a > 0,指数增加

$$H(s) = \frac{\omega}{s^2 + \omega^2}, p_1 = j\omega$$
, 在虚轴上

 $h(t) = \sin \omega t u(t)$, 等幅振荡

$$H(s) = \frac{\omega}{(s+\alpha)^2 + \omega^2}, p_1 = -\alpha + j\omega, p_2 = -\alpha - j\omega, \pm \sqrt{m}$$

当α>0,极点在左半平面,衰减振荡

当α<0,极点在右半平面,增幅振荡

三. 系统函数分析

- 4. 系统的因果性和稳定性分析
- 2) 稳定性

复频域系统函数满足条件。

- 1) H(s)的极点位于左半平面,h(t)绝对可积,系统稳定
- 2)H(s)的极点位于右半平面或者虚轴上有二阶及以上极点,h(t)不满足绝对可积;
- 3) *H*(*s*)的极点位于虚轴上且阶次为一, *h*(*t*)处于不满足绝对可积的临界状态, 系统处于临界状态, 无规定, 认为属于不稳定范围

例题:

系统如上图:

1) 是确定a与b,使得系统函数为:
$$\frac{s}{(s+2)(s+3)}$$

2)设a=2,欲使系统有稳定的输出,求b的值

 $Y(s)[s^{2} + (a+1)s + (a+b)] = sX(s)$

$$\frac{s}{(s+2)(s+3)}$$

解: 1)由系统图可知:

$$[X(s) - \frac{b}{s}Y(s)] \frac{s}{(s+1)(s+a)} = Y(s) \implies H(s) = \frac{Y(s)}{X(s)} = \frac{s}{s^2 + (a+1)s + (a+b)}$$

$$sX(s) - bY(s) = (s+1)(s+a)Y(s)$$

因此: a = 4, b = 2

$$b = -6, \quad p_1 = 1, p_2 = -4$$

$$b = -2, \quad p_1 = 0, p_2 = -3 \quad \text{有一阶极点位于虚轴,}$$
临界稳定
$$b = 0, \quad p_1 = -1, p_2 = -2$$

$$b > \frac{1}{4}, \text{ 有共轭复根在左半平面}$$

如果系统稳定,则有:

$$\frac{-3+\sqrt{1-4b}}{2} < 0;$$
解得 $b > -2$

LTI系统的分析方法

系统分析研究的主要问题就是对于给定的具体系统,求出它对给定激励的响应。具体来说就是:建立表征系统的数学方程并求出解答。

系统特性: 系统函数-系统的稳定性

外部法: 状态变量法

第三&四章 LTI的频域分析和复频域分析

频域分析

复频域分析

拉普拉斯变换

傅里叶级数&傅里叶变换

傅里叶变换的优点:

- 简化系统响应求解过程:
- 物理意义明确, 比如频率响 应、带宽等。

傅里叶变换的缺点:

- 满足狄利赫里条件
- 积分计算比较复杂
- 只能求系统的零状态响应。

拉普拉斯变换的优点:

- 引入初始条件,求系统的全响应;
- 微积分运算转变为代数运算:
- 对信号的适应性比较强,

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \qquad X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

 $X(s) = \int_{0^{-}}^{+\infty} x(t)e^{-st}dt \qquad x(t) = \frac{1}{2\pi i} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st}ds$

基本信号的变换,以及傅里叶变换的性质

基本信号拉氏变换,单边拉氏变换的性质

LTI系统的频域分析

任意信号可分解为众多不同频率的虚指数分量之和。

LTI系统的复频域分析

任意信号可分解为不同复频率的复指数分量之和。

系统零极点分布

调制与解调

无失真系统

━ 系统函数分析

滤波器

系统图形表示与系统模拟

因果性

稳定性

单边拉普拉斯变换与傅里叶变换的关系

$$X(s) = \int_{0^{-}}^{+\infty} x(t)e^{-st}dt \qquad X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

x(t)的拉氏变换X(s)是 $x(t)e^{-\sigma t}$ 的傅里叶变换, 而傅里叶变换即是 σ =0时的(即s平面虚轴上)拉氏变换。

1) 当收敛域包含虚轴时,拉氏和傅氏变换都存在,并且 $X(j\omega) = X(s)|_{s=j\omega}$

$$x(t) = e^{\alpha t}u(t), \alpha < 0; X(j\omega) = \frac{1}{j\omega - \alpha}, X(s) = \frac{1}{s - \alpha}, \text{Re}[s] > \alpha$$

2) 当收敛域不包含虚轴并且不以虚轴为边界时,拉氏变换存在,但傅氏变换不存在

$$x(t) = e^{\alpha t}u(t), \alpha > 0; X(s) = \frac{1}{s-\alpha}, \text{Re}[s] > \alpha$$

3) 当收敛域以虚轴为边界时,拉氏和傅氏变换都存在,但傅氏变换中含有冲激函数,故有 $X(j\omega) \neq X(s)|_{s=j\omega}$ 如果已知拉氏变换,如何求解傅里叶变换?

$$x(t) = u(t), X\left(j\omega\right) = \pi\delta(\omega) + \frac{1}{j\omega}, X(s) = \frac{1}{s}, \operatorname{Re}[s] > 0 \qquad X\left(j\omega\right) = X(s)\Big|_{s=j\omega} + \sum_{i=1}^{N} K_{i}\pi\delta(\omega - \omega_{i})$$

常用傅里叶变换和单边拉普拉斯变换

$$e^{-\alpha|t|} \leftrightarrow \frac{2\alpha}{\alpha^2 + \omega^2}, \quad \alpha > 0 \qquad e^{-\alpha t} \ u(t) \leftrightarrow \frac{1}{j\omega + \alpha}, \quad \alpha > 0$$

$$e^{-\alpha t}u(t) \leftrightarrow \frac{1}{s+\alpha}, \operatorname{Re}(s) > -\alpha; \ e^{\alpha t}u(t) \leftrightarrow \frac{1}{s-\alpha}, \operatorname{Re}(s) > \alpha;$$

$$\cos \omega_0 t \leftrightarrow \pi [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$$

$$e^{-j\omega_0 t}u(t) \leftrightarrow \frac{1}{s+j\omega_0}, \qquad e^{j\omega_0 t}u(t) \leftrightarrow \frac{1}{s-j\omega_0}, \qquad \operatorname{Re}(s) > 0;$$

$$u(t)\cos\omega_0 t \leftrightarrow \frac{\pi}{2} [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)] + \frac{\omega}{j(\omega^2 - \omega_0^2)}$$

$$\cos \omega_0 t \ u(t) \leftrightarrow \frac{s}{s^2 + \omega_0^2}, \sin \omega_0 t \ u(t) \leftrightarrow \frac{\omega_0}{s^2 + \omega_0^2}, \qquad \text{Re}(s) > 0;$$

$$G_{\tau}(t) \leftrightarrow \tau Sa\left(\frac{\omega \tau}{2}\right) \qquad Sa\left(\omega_{c}t\right) \leftrightarrow \frac{\pi}{\omega_{c}}G_{2\omega_{c}}(\omega)$$

$$e^{-\sigma_0 t} \cos \omega_0 t \ u(t) \leftrightarrow \frac{s + \sigma_0}{(s + \sigma_0)^2 + \omega_0^2}, \ e^{-\sigma_0 t} \sin \omega_0 t \ u(t) \leftrightarrow \frac{\omega_0}{(s + \sigma_0)^2 + \omega_0^2}, \operatorname{Re}(s) > -\sigma_0$$

$$\Lambda_{4\omega_c}(t) \leftrightarrow 2\omega_c Sa^2(\omega_c\omega)$$

$$t\cos\omega_{0}t \ u(t) \leftrightarrow \frac{s^{2}-\omega_{0}^{2}}{(s^{2}+\omega_{0}^{2})^{2}}, \ t\sin\omega_{0}t \ u(t) \leftrightarrow \frac{2\omega_{0}s}{(s^{2}+\omega_{0}^{2})^{2}}, \ \operatorname{Re}(s) > 0$$

$$\delta(t) \leftrightarrow 1$$
 $1 \leftrightarrow 2\pi\delta(\omega)$ $t \leftrightarrow j2\pi\delta'(\omega)$

$$\delta(t) \leftrightarrow 1, \quad \delta^{(n)}(t) \leftrightarrow s^n, \quad \text{Re}(s) > -\infty \qquad tu(t) \leftrightarrow \frac{1}{s^2} \quad \text{Re}(s) > 0$$

$$|t| \leftrightarrow -\frac{2}{\omega^2}$$
 $\frac{1}{t} \leftrightarrow -j\pi \operatorname{sgn}(\omega)$

$$u(t) \leftrightarrow \frac{1}{s}, \operatorname{Re}(s) > 0$$
 $t^n u(t) \leftrightarrow \frac{n!}{s^{n+1}}, \operatorname{Re}(s) > 0$

$$\operatorname{sgn}(t) \leftrightarrow \frac{2}{j\omega} \qquad u(t) \leftrightarrow \pi\delta(\omega) + \frac{1}{j\omega}$$

$$te^{-\lambda t}u(t) \leftrightarrow \frac{1}{(s+\lambda)^2}$$
 $\operatorname{Re}(s) > -\lambda$

傅里叶变换和拉普拉斯变换的性质

1. 线性性质

$$ax_1(t) + bx_2(t) \Leftrightarrow aX_1(j\omega) + bX_2(j\omega)$$

 $\alpha x_1(t) + \beta x_2(t) \leftrightarrow \alpha X_1(s) + \beta X_2(s)$

 $x(t-t_0)u(t-t_0) \leftrightarrow e^{-st_0}F(s)$ $t_0 \ge 0$,

2.奇偶性

$$|X(j\omega)| = |X(-j\omega)|, \quad \varphi(\omega) = -\varphi(-\omega)$$

3. 对称性

$$X(jt) \Leftrightarrow 2\pi x(-\omega)$$

4. 展缩特性

$$x(at) \Leftrightarrow \frac{1}{|a|} X(j\frac{\omega}{a}) \quad a \neq 0$$

 $x(at) \leftrightarrow \frac{1}{a} X\left(\frac{s}{a}\right), a > 0$

5. 时移性

$$f(t \pm t_0) \Leftrightarrow F(j\omega)e^{\pm j\omega t_0}$$

,

6. 频移性

$$x(t)e^{\pm j\omega_0 t} \Leftrightarrow X[j(\omega \mp \omega_0)]$$

 $x(t)e^{s_0t} \leftrightarrow X(s-s_0)$

7. 卷积定理

$$x_1(t) * x_2(t) \Leftrightarrow X_1(j\omega)X_2(j\omega)$$

$$x_1(t) * x_2(t) \leftrightarrow X_1(s)X_2(s)$$

 $x_1(t)x_2(t) \Leftrightarrow \frac{1}{2\pi}X_1(j\omega) * X_2(j\omega)$

 $x_1(t)x_2(t) \leftrightarrow \frac{1}{2\pi i} \int_{-\infty}^{c+j\infty} X_1(\eta)X_2(s-\eta)d\eta$

8. 时域微积分特性

$$\frac{d^{n}x(t)}{dt^{n}} \Leftrightarrow (j\omega)^{n}X(j\omega), \quad \int_{-\infty}^{t} x(\tau)d\tau \Leftrightarrow \pi X(0)\delta(\omega) + \frac{X(j\omega)}{j\omega} \qquad x^{(n)}(t) \Leftrightarrow s^{n}X(s) - \sum_{m=0}^{n-1} s^{n-1-m}x^{(m)}(0^{-}), \quad \left(\int_{-\infty}^{t}\right)^{n}x(\tau)d\tau \Leftrightarrow \frac{1}{s^{n}}X(s) + \sum_{m=1}^{n} \frac{1}{s^{n-m+1}}x^{(-m)}(0^{-})$$

9. 频域微积分特性

$$(-jt)^n x(t) \Leftrightarrow \frac{dX^n(j\omega)}{d\omega^n}, \quad \pi x(0)\delta(t) + \frac{x(t)}{(-jt)} \Leftrightarrow \int_{-\infty}^{\omega} X(j\tau)d\tau$$

$$(-t)^n x(t) \leftrightarrow \frac{d^n X(s)}{ds^n}, \quad \frac{x(t)}{t} \leftrightarrow \int_{s}^{\infty} X(\eta) d\eta$$

10. 帕塞瓦尔 (Parserval)定理

$$\int_{-\infty}^{\infty} |X(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$$

初值定理
$$x(0^+) = \lim_{t \to 0^+} x(t) = \lim_{s \to \infty} sX(s)$$
 终值定理 $x(\infty) = \lim_{s \to 0} sX(s)$, $s = 0$ 在 $sF(s)$ 的收敛域内

第五章 抽样: 从连续到离散的过渡

5.1 时域抽样定理

- ◆抽样概述
- ◆时域抽样定理
- ◆实际抽样的过程
- ◆实际信号的重建过程

5.2 频域抽样定理(自学)

离散时间系统

离散时间系统的发展:

- ◆ 20世纪60年代, 计算机科学的进一步发展与应用标志着离散时间系统的理论研究 和实践进入一个新的阶段;
- ◆ 1965年, J. W. Cooley 与J. W. Tukey在前人的基础上提出了快速计算傅里叶变换的方法, 称为快速傅里叶变换 (FFT);
- ◆ 集成电路使得体积小、重量轻、成本低的离散时间系统的实现成为可能;
- ◆ 20世纪末期,数字信号处理技术迅速发展,在诸多领域比如通信、雷达、控制、 遥感、微电子学等应用日益广泛;

离散时间系统优点:

- ◆ 容易做到精度高、可靠性好、便于实现大规模集成,在体积和重量方面显示其优 越性;
- ◆ 灵活性和通用性-连续时间信号通常只注重一维变量的研究,离散时间系统二维或 多维技术广泛应用;离散系统容易利用可编程技术,借助软件控制,更适合用户 设计和修改系统的各种需求
- ◆ 但是并不能认为数字化技术就可以取代一切连续系统的应用:
 - 1) AD或者DA转换,转换时不可避免出现连续时间系统;
 - 2) 工作频率较高时,直接采用采用数字集成器件尚有一定困难;

一. 抽样概述

1. 抽样数学模型

采样(抽样):将连续信号转换为离散信号,便于采用数字系统进行处理

抽样的时域表示: $x_s(t) = x(t) \cdot p_T(t)$

抽样的频域表示: $X_s(j\omega) = \frac{1}{2\pi}X(j\omega)*P_T(j\omega)$

一. 抽样概述

2. 冲激串抽样

抽样序列:
$$p_T(t) = \delta_T(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$$

时域抽样: $x_s(t) = x(t)p_T(t) = x(t)\delta_T(t)$

$$= x(t) \sum_{n=-\infty}^{\infty} \delta(t-nT) = \sum_{n=-\infty}^{\infty} x(kT) \delta(t-nT)$$

$$\omega_{s} = 2\pi/T$$
 为抽样频率

T: 抽样间隔

频域表示:

$$P_{T}(j\omega) = F\left[\delta_{T}(t)\right] = \frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta(\omega - n\frac{2\pi}{T}) = \omega_{s} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_{s})$$

$$X_{s}(j\omega) = \frac{1}{2\pi} X(j\omega) * P_{T}(j\omega)$$

$$= \frac{1}{2\pi} X(j\omega) * \omega_{s} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_{s})$$
...
$$\frac{1}{-2\omega_{s}} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_{s})$$

 $=\frac{1}{T}\sum_{s=1}^{\infty}X[j(\omega-k\omega_{s})]$ 在时域以T为间隔对连续时间信号进行理想抽样,相当 于在频域将该信号的频谱以 $\omega_s=2\pi/T$ 为周期进行延拓。

<mark>本质:</mark>用连续信号的样本值来表示信号 将频域信号以ω_s=2π/T为周期进行延拓

二. 时域抽样定理

1.信号抽样

三个不同的连续信号: 在指定时刻的采样值完全相同!

问题:

- · 采样信号是否保留了原始信号的全部信息?
- 如何从采样信号恢复原始信号?

二. 时域抽样定理

1.信号抽样

已知信号 $x(t)=Sa^2(5\pi t)$ 的频谱为 $X(j\omega)=0.2A_{20\pi}$ 。分别选用三种抽样速率,5Hz、10Hz以及20Hz,画出抽样信号和其频谱。

抽样速率fs	频率周期 $o_{ m s}$	抽样间隔T	$0.2 \Lambda_{20\pi}$ (ω)/T
5Hz	10π rad/s	0.2s	$\Lambda_{20\pi}\left(\omega\right)$
10Hz	20π rad/s	0.1s	$2\Lambda_{20\pi}(\omega)$
20Hz	$40\pi \text{ rad/s}$	0.05s	$4\Lambda_{20\pi}(\omega)$

二. 时域抽样定理

1.信号抽样

当
$$f_s = 5$$
 Hz时, $x(t)$ 以周期为 $T=0.2$ s 抽样

$$X(j\omega) = 0.2\Lambda_{20\pi}$$

$$X_{s}(j\omega) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X \left[j(\omega - k\omega_{s}) \right]$$

当
$$f_s = 5$$
 Hz时, $X(j\omega)$ 以 $\omega_s = 2\pi/T = 10\pi$ rad/s为周期延拓

频谱混叠

二. 时域抽样定理

1.信号抽样

当 $f_s = 10$ Hz时,x(t)以周期为T=0.1 s抽样

$$X(j\omega) = 0.2\Lambda_{20\pi}$$

$$X_{s}(j\omega) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X \left[j(\omega - k\omega_{s}) \right]$$

当 $f_s = 10$ Hz时, $X(j\omega)$ 以 $\omega_s = 2\pi/T = 20\pi$ rad/s为周期延拓

二. 时域抽样定理

1.信号抽样

当 $f_s = 20$ Hz时,x(t)以周期为T=0.05 s抽样

$$X(j\omega) = 0.2\Lambda_{20\pi}$$

$$X_{s}(j\omega) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X \left[j(\omega - k\omega_{s}) \right]$$

当 $f_s = 20$ Hz时, $X(j\omega)$ 以 $\omega_s = 2\pi/T = 40\pi \text{ rad/s}$ 为周期延拓

二. 时域抽样定理

1.信号抽样

结论:如果要使抽样后的信号样本能完全代表原来的信号,意味着要能够从 $X_s(j\omega)$ 中不失真地分离出 $X(j\omega)$,因而必须满足频谱延拓距离 $\omega_s=2\pi/T$ 大于 $X(j\omega)$ 的最高频率的两倍,即:

$$\omega_s \ge 2\omega_M$$
 其中 $\omega_s = 2\pi f_s$ 和 $\omega_M = 2\pi f_M$

$$f_s \ge 2f_M$$
, $\mathbb{E}T_s \le \frac{1}{2f_M}$

通常把最低允许取样频率 $f_s = 2f_M$,称为奈奎斯特(Nyquist)频率,把最大允许取样间隔 $T_s = 1/2f_M$ 称为奈奎斯特间隔。

二. 时域抽样定理

1.信号抽样

总结:一个连续信号x(t)可以唯一的由样本x(nT)来确定必须满足两个条件:

- (1) x(t) 傅里叶变化必须是带限的,及当 $|\omega| > \omega_{\mathrm{M}}, X(j\omega) = 0$
- (2) 抽样频率必须大于奈奎斯特频率,或者说抽样间隔不小于奈奎斯特间隔。

音频实例

在数字音频领域,常用

假设有一张标准音乐CD光盘容量是746.93MB(注意大B是字节,小b是位。一字节(B)等于8位(b)。)

在数字音频领域,常用的采样

8,000 Hz - 电话所用采样率, 对

11,025 Hz

22,050 Hz - 无线电广播所用采

32,000 Hz - miniDV 数码视频

CD音频是以采样率为44.1KHZ,采样位数为16位,左右双声道(立体声)进行采样的。而一张标准CD光盘的时长是74分钟。

那么容量计算公式为: (44100 x 16 x 2)/8 x (74 x 60)=783216000字节 转为MB为 783216000/1024/1024=746.93MB(兆字节)

44,100 Hz - 音频 CD, 也常用于 MPEG-1 音频 (VCD, SVCD, MP3) 所用采样率

47.250 Hz - 商用 PCM 录音机所用采样率

48,000 Hz - miniDV、数字电视、DVD、DAT、电影和专业音频所用的数字声音所用采样率

50,000 Hz - 商用数字录音机所用采样率

96,000 或者 192,000 Hz - DVD-Audio、一些 LPCM DVD 音轨、BD-ROM(蓝光盘)音轨、和 HD-DVD (高清晰度 DVD) 音轨所用所用采样率

2.8224 MHz - Direct Stream Digital 的 1 位 sigma-delta modulation 过程所用采样率。

例: P190,6.1-2, 求奈奎斯特频率和间隔

$$(1)Sa(100t) \leftrightarrow \frac{\pi}{100}G_{200}(\omega) \quad \Longrightarrow \quad \omega_{\scriptscriptstyle M} = 100 \Rightarrow \omega_{\scriptscriptstyle S} = 200 \Rightarrow f_{\scriptscriptstyle S} = \frac{\omega_{\scriptscriptstyle S}}{2\pi} = \frac{100}{\pi}Hz, \quad T_{\scriptscriptstyle S} = \frac{1}{f_{\scriptscriptstyle S}} = \frac{\pi}{100}s$$

$$(2)Sa^{2}(100t) \leftrightarrow \frac{\pi}{100}\Lambda_{400}(\omega) \implies \omega_{M} = 200 \Rightarrow \omega_{s} = 400 \Rightarrow f_{s} = \frac{\omega_{s}}{2\pi} = \frac{200}{\pi}Hz, \quad T_{s} = \frac{1}{f_{s}} = \frac{\pi}{200}s$$

$$(3)Sa(100t) + Sa(50t) \leftrightarrow \frac{\pi}{100}G_{200}(\omega) + \frac{\pi}{50}G_{100}(\omega) \implies \qquad \Rightarrow f_s = \frac{\omega_s}{2\pi} = \frac{100}{\pi}Hz, \quad T_s = \frac{1}{f_s} = \frac{\pi}{100}s$$

$$(4)Sa(100t) + Sa^{2}(60t) \leftrightarrow \frac{\pi}{100}G_{200}(\omega) + \frac{1}{60}\Lambda_{240}(t) \implies \qquad \omega_{M} = 120 \Rightarrow \omega_{s} = 240$$

$$\Rightarrow f_{s} = \frac{\omega_{s}}{2\pi} = \frac{120}{\pi}Hz, \quad T_{s} = \frac{1}{f_{s}} = \frac{\pi}{120}s$$

例1 有限频带信号 $f_1(t)$ 的最高频率为 $\omega_{m1}(f_{m1})$, $f_2(t)$ 的最高频率为 $\omega_{m2}(f_{m2})$,对下列信号进行时域抽样,试求使频谱不发生混叠的奈奎斯特频率 f_s 与奈奎斯特间隔 T_s 。

(1)
$$f_1(\alpha t)$$
; $\alpha \neq 0$

(2)
$$f_1(t) + f_2(t)$$
;

(3)
$$f_1(t) * f_2(t)$$
;

(4)
$$f_1(t)f_2(t)$$
;

(5)
$$f_1^2(t)$$
;

解:(1)
$$f_1(\alpha t); \alpha \neq 0 \leftrightarrow \frac{1}{|\alpha|} F_1(j\frac{\omega}{\alpha})$$

$$\left| \frac{\omega}{\alpha} \right| \leq \omega_{m_1} \quad \Longrightarrow \quad \omega \leq \omega_m = \left| \alpha \right| \omega_{m_1}$$

奈奎斯特频率和周期为:
$$f_s = 2f_m = 2\frac{\omega_m}{2\pi} = \frac{|\alpha|\omega_{m_1}}{\pi} = 2|\alpha|f_{m_1}, \quad T_s = \frac{1}{f_s}$$

解:(2)
$$f_1(t) + f_2(t) \leftrightarrow F_1(j\omega) + F_2(j\omega)$$

解:(3)
$$f_1(t) * f_2(t) \leftrightarrow F_1(j\omega)F_2(j\omega)$$

$$\omega_m = \max(\omega_{m_1}, \omega_{m_2}); f_m = \max(f_{m_1}, f_{m_2})$$

$$\omega_{m} = \min(\omega_{m_{1}}, \omega_{m_{2}}); f_{m} = \min(f_{m_{1}}, f_{m_{2}})$$

奈奎斯特频率和周期为:

$$f_{s} = 2f_{m} = 2\max(f_{m_{1}}, f_{m_{2}})$$

$$T_{s} = \frac{1}{f_{s}} = \frac{1}{2\max(f_{m_{1}}, f_{m_{2}})}$$

奈奎斯特频率和周期为:

$$f_{s} = 2f_{m} = 2\min(f_{m_{1}}, f_{m_{2}})$$

$$T_{s} = \frac{1}{f_{s}} = \frac{1}{2\min(f_{m_{1}}, f_{m_{2}})}$$

解:(4)

$$f_1(t)f_2(t) \leftrightarrow \frac{1}{2\pi}F_1(j\omega)*F_2(j\omega)$$

$$\omega_m = \omega_{m_1} + \omega_{m_2}$$

$$f_m = f_{m_1} + f_{m_2}$$

解:(5)

$$f_1^2(t) \leftrightarrow \frac{1}{2\pi} F_1(j\omega) * F_1(j\omega)$$

$$\omega_m = 2\omega_{m_1}$$

$$f_m = 2f_{m_1}$$

奈奎斯特频率和周期为:

$$f_s = 2f_m = 2f_{m_1} + f_{m_2}$$

$$T_s = \frac{1}{f_s} = \frac{1}{2f_{m_1} + f_{m_2}}$$

奈奎斯特频率和周期为:

$$f_s = 2f_m = 4f_{m_1}$$

$$T_s = \frac{1}{f_s} = \frac{1}{4f_{m_s}}$$

二. 时域抽样定理

$$X_{s}(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X[j(\omega - k\omega_{s})]$$

抽样后的频谱通过幅频特性如下式所示的理想滤波器,就可以恢复原信号。

$$H(j\omega) = TG_{2\omega_{M}} = \begin{cases} T, |\omega| \leq \omega_{M} \\ 0, |\omega| > \omega_{M} \end{cases}$$

$$Y(j\omega) = X_s(j\omega)H(j\omega) = X(j\omega)$$

 $y(t) = x(t)$ 傅里叶变换唯一性

总结: 当抽样频率大于奈奎斯特频率,则理想低通滤波器截止频率 $\omega_{\rm c}$ 满足 $\omega_{\rm M} < \omega_{\rm c} < (\omega_{\rm s} - \omega_{\rm M})$,则信号可以完全恢复。

二. 时域抽样定理

3.时域抽样定理:

(1) 对于带限最高频率 $\omega_{\rm M}$ 的连续时间信号x(t),只有在以 $\omega_{\rm s} > 2\omega_{\rm M}$ 的频率周期对其进行理想抽样时,x(t)可以唯一的由样本x(nT)来确定而不丢失原有的信息。

(2) 如果需要从连续时间信号的离散时间样本x(nT)不失真的恢复成原来的连续时间信号x(t),需要将其样本值序列通过一个低通滤波器,该理想低通滤波器截止频率 ω_c 满足 $\omega_M < \omega_c < (\omega_s - \omega_M)$,并且通带增益为T。

三. 实际抽样的过程

实际情况下,抽样序列选为: $p_T(t) = \sum_{n=-\infty}^{\infty} G_{\tau}(t-nT)$

$$p_{\mathrm{T}}(t) = \sum_{n=-\infty}^{\infty} G_{\tau}(t - nT) \leftrightarrow \frac{2\pi}{T} \tau \sum_{n=-\infty}^{\infty} Sa(\frac{n\omega_{s}\tau}{2}) \delta(\omega - n\omega_{s}), \quad \omega_{s} = \frac{2\pi}{T}$$

实际抽样结果为: $x_s(t) = x(t)p_T(t) = x(t)\sum_{n=-\infty}G_{\tau}(t-nT)$

频域抽样结果为:
$$X_s(j\omega) = \frac{1}{2\pi} X(j\omega) * \frac{2\pi}{T} \tau \sum_{n=-\infty}^{\infty} Sa\left(\frac{n\omega_s \tau}{2}\right) \delta(\omega - n\omega_s)$$
$$= \sum_{n=-\infty}^{\infty} \frac{\tau}{T} Sa\left(\frac{n\omega_s \tau}{2}\right) X[j(\omega - n\omega_s)]$$

三. 实际抽样的过程

$$X_{s}(j\omega) = \sum_{n=-\infty}^{\infty} \frac{\tau}{T} Sa\left(\frac{n\omega_{s}\tau}{2}\right) X[j(\omega - n\omega_{s})]$$

为了能够恢复信号,需要的低通滤波器满足:

$$H(j\omega) = \begin{cases} \frac{T}{\tau} \frac{1}{Sa\left(\frac{n\omega\tau}{2}\right)}, & |\omega| \leq \omega_{M} \\ 0, & |\omega| > \omega_{M} \end{cases}$$

低通滤波器截止频率 ω_c 满足 $\omega_M < \omega_c < (\omega_s - \omega_M)$ 。

5.2 频域抽样定理

P189-CH6-4.6

- ◆ 抽样的本质是将连续变量的函数离散化,
- ◆ 在频域也可以对连续的频谱进行抽样,
- ◆ 由于时域与频域是对偶的,因此这一过程 可以与时域抽样一样来分析。

数学模型

5.2 频域抽样定理

例2 如图 (a) 为二次载波振幅调制系统。已知输入信号 $f(t) = \frac{\sin t}{\pi t}$,

 $-\infty < t < \infty$,调制信号 $s(t) = \cos 500t$, $-\infty < t < \infty$ 。低通滤波器的传输函数如图(b)所示,其相位特性为 $\varphi(\omega) = 0$,试求输出信号y(t)。

解: $y(t) = f(t) \times s(t) \times s(t) * h(t)$

$$Y(j\omega) = \{\frac{1}{2\pi} \left[\frac{1}{2\pi} F(j\omega) * S(j\omega) \right] * S(j\omega) \} \bullet H(j\omega)$$

1. 时域抽样的本质

质:用连续信号的样品值来表示信号 将频域信号以 $ω_s=2π/T$ 为周期进行延拓

2. 一个连续信号x(t)可以唯一的由样本x(nT)来确定必须满足两个条件

无线移动通信技术

1G: 仅限语音,是模拟技术,使用它的手机电池寿命和语音质量差,安全性差,并且容易掉线;

2G:短信和彩信,从1G升级到2G时,手机首次进行了重大升级。这种飞跃于1991年在芬兰的GSM网络上发生,并有效地将手机从模拟通信转移到数字通信;

3G: 更快数据传输,视频通话和 移动互联网

4G:2008年发布,它支持像3G那样的移动网络访问,以及可以满足游戏服务,高清移动电视,视频会议,3D电视以及其他需要高速的功能。

5G: 物联网、车联网、智慧医疗、 VR/AR、工业4. 0等关键应用,将 驱动新产业生态链。

1G 2G	3G	4G	T.	5G
		12:33		

网络	信号	速率(理论值/bps)	技术	制式
1G	模拟	2.4k	FDMA	AMPS, TACS
2G	数字	64k	TDMA, CDMA	GSM, CDMA
3G	数字	2M	WCDMA, SCDMA	WCDMA, CDMA2000, TD-SCDMA
4G	数字	100M	OFDM、IMT-Advanced	TD-LTE、FDD-LTE
5G	数字	7.5G	IMT-2020	=

无线移动通信技术

频分复用

时分复用

为什么4G比3G快

1. OFDM技术(Orthogonal Frequency Division Multiplexing)

正交频分复用 (多载波调制)

主要思想是:一个信道分成若干正交子信道,每个子信道上使用一个子载波进行调制,每个子载波可以并行传输。简单来说,就是OFDM具有更好的频谱扩展性,可以有效地支持宽带传输。

根据香农定理, $C = B\log 2(1+S/N)$; C是信道容量, B是信道带宽, S/N是信噪比

OFDM极大的提高FDM的频谱利用效率。

频分多址 (Frequency Division)

(Frequency Division Multiple Access, FDMA)

时分多址

(Time Division Multiple Access, TDMA) 2G

码分多址

(Code Division Multiple Access, CDMA) 3G

正交频分复用

4G

Orthogonal Frequency Division Multiplexing)

为什么4G比3G快

2. MIMO技术(Multiple-Input Multiple-Output)

通过多对天线多发多收,实现提高信道容量

3. 聚波载合能够进一步提高用户快带,到100M以上

原理是捆绑多个载波对单个 用户传输不同的数据,就可 以实现传输率倍增的效果

射频电路原理

Thank You!