Esperienza introduttiva 2 : OSCILLOSCOPIO

CICLO di ISTERESI

Oscilloscopio

Collegare l'oscilloscopio al generatore di funzioni (generatore di tensione) disponibile e verificare la forma d'onda della tensione prodotta dal generatore:

- 1) Accendere l'oscilloscopio e fare comparire una traccia orizzontale, impostando la manopola "trigger" su auto.
- 2) Il generatore di funzione può fornire onde quadre, triangolari e sinusoidali. Visualizzare sullo schermo dell'oscilloscopio la forma d'onda selezionata, collegando l'usicta del generatore con l'ingresso dell'oscilloscopio tramite un cavo lemo.
- 3) Misurare la tensione e la frequenza della forma d'onda generata. Ripetere la misura per altre forme d'onda.
- 4) Impostare la manopola "trigger" su diverse posizioni ed osservare la forma d'onda visualizzata.

Ciclo di Isteresi

Per visualizzare il ciclo di Isteresi di lamierini magnetici componenti un trasformatore, si può usare il circuito di fig.1 ed alimentarlo con una tensione sinusoidale.

Fig. 1 Circuito usato per la visualizzazione del ciclo di Isteresi

Scrivendo l'equazione di maglia del primario si ha:

$$v_1 - L_1 \frac{di_1}{dt} - M \frac{di_2}{dt} = R_1 i_1$$

se si fa l'ipotesi che $i_2 << i_1$ ed essendo le correnti di tipo sinusoidale (anche $\frac{di_2}{dt} << \frac{di_1}{dt}$), con buona approssimazione si ha:

$$\mathbf{v}_1 = \mathbf{R}_1 \mathbf{i}_1 + \mathbf{L}_1 \frac{\mathbf{di}_1}{\mathbf{dt}}$$

ricordando che: $HI = N_1 i_1 + N_2 i_2$

dove: l è la lunghezza media del circuito magnetico $N_1 = N_2$ sono le spire del primario e del secondario

si ha che:

$$\mathbf{H} \propto \mathbf{N}_1 \mathbf{i}_1 \propto \mathbf{i}_1 \mathbf{R}_1 \propto \mathbf{v}_{\mathbf{R}_1} = \mathbf{v}_{\mathbf{x}}$$

Nel circuito del secondario si ha:

$$v_2 = N_2 \frac{d\Phi}{dt} = N_2 S \frac{dB}{dt}$$
 dove S è la sezione del circuito

magnetico e Φ il flusso di B

si ha:

$$dB = \frac{1}{N_2 S} v_2 dt$$

integrando questa equazione differenziale si ottiene:

$$B = \int dB = \frac{1}{N_2 S} \int v_2 dt + \cos t$$
$$v_y = \int v_2 dt$$

Ponendo

si ottiene la proporzionalità, a meno di una costante, fra la tensione $\mathbf{v}_{\mathbf{v}}$ e \mathbf{B} . Inviando sul canale X dell'oscilloscopio la tensione v_x e sul canale Y la tensione v_y si ottiene disegnato sullo schermo il ciclo di Isteresi.

Un circuito molto semplice, in grado di eseguire l'integrale della tensione v₂ è composto da un circuito RC come presentato in fig. 2, purché la costante di tempo R₂C₂ sia grande rispetto al periodo dell'onda che si vuol integrare, cioè $\tau = R_2C_2 \gg T$.

Fig. 2 Circuito RC integratore

Infatti scrivendo l'equazione di maglia si ha:

$$\mathbf{v}_2 = \mathbf{v}_{R2} + \mathbf{v}_y$$
 se $\mathbf{v}_y << \mathbf{v}_2$ e ricordando che $\mathbf{i} = \mathbf{C} \frac{d\mathbf{v}_y}{dt}$
 $\mathbf{v}_2 = \mathbf{v}_{R2} = \mathbf{i}\mathbf{R}_2 = \mathbf{R}_2\mathbf{C}_2\frac{d\mathbf{v}_y}{dt}$

Integrando si ottiene, a meno di una costante, che:

$$v_y \propto \int v_2 dt$$

La condizione $v_y \ll v_2$ si ottiene usando una resistenza ed un condensatore grandi

rispetto al periodo, infatti
$$v_y = \frac{1}{C} \int idt = \frac{1}{RC} \int v_R dt$$

Il circuito per visualizzare il ciclo di Isteresi è presentato in fig. 3 :

Fig.3 Circuito già montato per visualizzare il ciclo di Isteresi

Il trasformatore T1 serve a ridurre la tensione fornita della rete di distribuzione $220~V_{eff}$ ad una tensione non pericolosa.

Usando i due canali dell'oscilloscopio misurare le tensioni delle boccole \mathbf{A} e \mathbf{B} riferite a \mathbf{G} (ground) che rappresenta la massa del sistema e ricavare la tensione $\mathbf{V}_{AB} = \mathbf{V}_{AB}$ sen ω t fornita in uscita(out) dal trasformatore 1. Ricordare che ci sono gli sfasamenti, bisogna quindi usare la funzione \mathbf{ADD} dell'oscilloscopio.

La tensione V_{AB} è il valore massimo

Ricavare il rapporto fra un numero di spire del primario e secondario, ricordando che:

$$\frac{220}{V_{ABeff}} = \frac{N_{primario}}{N_{sec \, ondario}}$$

Si chiamerá V_x la tensione fra la boccola B e boccola G (che rappresenta il riferimento del nostro sistema di misura. Il punto G è anche chiamato massa ed in questo caso anche terra o ground).

Misurare la tensione $V_2 = V_{CG}$ e calcolare il rapporto di trasformazione del trasformatore n. 2.

Visualizzazione del ciclo di isteresi

Inserire fra C e D una resistenza da $R_2 \approx 500 \text{ K}\Omega$.

Inserire fra **D** e **G** una capacita' tale che la costante di tempo sia molto grande rispetto al periodo T = 20 ms della tensione del circuito:

$$R_2C_2 >> T$$

Misurare con l'oscilloscopio la tensione $V_y = V_{DG}$.

Impostare l'oscilloscopio in funzionamento X-Y ed applicare al canale X la V_x ed al canale Y la V_y . Si vedrà sullo schermo il ciclo di Isteresi.

Misura della resistenza di ingresso interna dell' oscilloscopio

Analogamente a quanto fatto per misurare la resistenza interna del voltmetro, realizzare il circuito in Fig.4 per misurare la Ri dell'oscilloscopio

Fig. 4

Misuriamo la tensione V_{CG} e poi la tensione V_{DG} con l'oscilloscopio.

$$\frac{\mathbf{V}_{\mathrm{CG}}}{\mathbf{R}_{1} + \mathbf{R}_{i}} \cdot \mathbf{R}_{i} = \mathbf{V}_{\mathrm{DG}}$$