关键路径

吉林大学计算机学院 谷方明 fmgu2002@sina.com

学习目标

□掌握AOE网、关键路径等概念的定义。

□掌握关键路径的求解方法、技巧及相关分析。

计算机专业必修课程

课号	课名	先修	学期	数			
$\mathbf{C_0}$	高等数学	无	3				
\mathbf{C}_{1}	程序设计基础	无	1				
$\mathbf{C_2}$	离散数学	C_0, C_1	2	C_0	C_7	C_8	C_6
C_3	数据结构	C_2,C_4	1	Q	\rightarrow O-	→ O-	\rightarrow
$\mathbf{C_4}$	程序设计语言	$\mathbf{C_1}$	1	C	2	→ ($\sqrt{C_3}$
$\mathbf{C_5}$	编译技术	C_3,C_4	2				
C_6	操作系统	C_3,C_8	2		\circlearrowleft	√	Ó
$\mathbf{C_7}$	普通物理	C_0	2	C	1	\mathbb{C}_4	\mathbf{C}_{5}
C_8	计算机原理	$\mathbf{C_7}$	2				

AOE网

□时间约束

- □ 边表示活动(Activity)
- □ 边的权值表示活动的持续时间(Duration)
- □ 顶点表示入边的活动已完成,出边的活动可以开始的状态,也称为事件(Event)
- □ 这样的有向无环带权图叫做AOE (Activity On Edges)网。

[例] 某工程

- □ AOE网中,有些活动可并行进行。只有各条路径 上所有活动都完成了,整个工程才算完成。
- □ 完成整个工程至少需要多少时间?
- □ 为缩短工程的时间,应当加快哪些活动?
- □ 为了不延误整个工期,哪些活动不得延期,哪些 可适当延期

关键路径和关键活动

- □源点:表示整个工程的开始(入度为零)
- □汇点:表示整个工程的结束(出度为零)
- □ 完成整个工程所需的时间取决于从源点到 汇点的最长路径长度。

- □ 关键路径: AOE网中具有最大长度的路径。
- □ 关键活动: 不得延期的活动。不按期完成就会响整个工期的活动。

- □ 关键活动: 关键路径上的活动;
- □ 关键路径: 从源点到汇点由关键活动构成的路径。

关键路径有关的量

①从源点v₀到v_i的最长路径长度 为事件v_i的最早发生时间 ve(i)

ve(1)=0

ve(2) = 6

ve(3) = 4

ve(4) = 5

ve(5) = 7

ve(6) = 7

ve(7) = 16

ve(8) = 15

ve(9) = 19

[例] 求关键路径 —第1步ve(i)

按拓扑序递推

$$ve(k) \begin{cases} ve(1) = 0 & k=1 \\ max\{ve(j) + weight(< j, k>)\} \\ < v_j, v_k > \in E(G), k=2, 3, ..., n \end{cases}$$

$$ve(1)=0$$

$$ve(2)=ve(1)+weight(<1,2>) = 0$$

$$ve(3)=ve(1)+weight(<1,3>)=4$$

$$ve(4)=ve(1)+weight(<1,4>)=5$$

$$ve(5)=\max\{ve(2)+weight(<2,5>),$$

$$ve(3)+weight(<3,5>)\}=\max\{6+1,4+1\}=7$$

$$ve(6)=\max\{ve(3)+weight(<3,6>),$$

$$ve(4)+weight(<4,6>)\}=\max\{4+1,5+3\}=7$$

$$ve(7)=ve(5)+weight(<5,7>)=7+9=16$$

$$ve(8)=\max\{ve(5)+weight(<5,8>),$$

$$ve(6)+weight(<5,8>)\}=\max\{7+8,7+4\}=15$$

$$ve(9)=\max\{ve(7)+weight(<7,9>),$$

$$ve(8)+weight(<8,9>)\}=\max\{16+2,15+4\}=19$$

关键活动有关的量

②事件v_j的最迟发生时间 vl(j): 保证汇点的最早发生时间不推 迟的前提下,事件v_j允许的最迟 开始时间,等于ve(n)减去从v_j 到v 最长路径长度。

vl(5) = 7

vl(4) = 9

vl(3)=6

vl(2)=6

[例] 求关键路径 —第2步vl(k)

按逆拓扑序递推:

```
vl(9) = ve(9) = 19
vl(8) = vl(9) - weight(<8,9>) = 15(4)
vl(7) = vl(9) - weight(<7,9>) = 17
vl(6) = vl(8) - weight(<6,8>) = 11
vl(5) = min\{vl(8) - weight(<5,8>),
              vl(7)- weight(<5,7>)} =min{15-8,16-9}=7
vl(4) = vl(6) - weight(<4,6>) = 11-2=9
vl(3) = min\{vl(6) - weight(<3,6>),
              vl(5)- weight(<3,5>)} =min{11-1,7-1}=6
vl(2) = vl(5) - weight(<2,5>) = 7-1=6
vl(1) = min\{vl(2) - weight(<1,2>),
            vl(3)- weight(<1,3>),
            vl(4)- weight(<1,4>)} = min\{6-6,6-4,9-5\}=0
```

关键路径有关的量

- ③ 活动a_i的最早开始时间e(i): 设活动 a_i 为有向边〈v_i,v_k〉,则 e(i) = ve(j)。
 - ✓ ve(j)是从源点v₀到v_j的最长路径长度,决定了所有从v_j 开始的活动的最早开始时间。
- ④ 活动a_i的最迟开始时间 1(i):

设活动 a_i 为有向边 $\langle v_j, v_k \rangle$,则 $1(i) = v1(k) - weight(\langle j, k \rangle)$ 。

✓ 1(i) 是在不会引起工期延误的前提下,该活动允许的 最迟开始时间。 关键活动: 1(i) = e(i) 表示活动 a_k 是没有时间 A = bb + bb

为找出关键活动, 需要求各个活动的 e(i) 与 l(i),以判别是否 l(i) = e(i)

为求得e(i) 与 l(i),需要先求得从源点 V_0 到各个顶点 V_j 的 ve(j) 和 vl(j)。

$\mathbf{a_i}$	\mathbf{a}_1	$\mathbf{a_2}$	$\mathbf{a_3}$	$\mathbf{a_4}$	$\mathbf{a_5}$	\mathbf{a}_{6}	a ₇	$\mathbf{a_8}$	\mathbf{a}_{9}	\mathbf{a}_{10}	a ₁₁	a ₁₂
e(i)	0	0	0	6	4	4	5	7	7	7	16	15
l(i)	0	2	4	6	6	10	9	8	7	11	17	15
l _i -e _i	0	2	2	0	2	5	3	1	0	4	0	0

求关键活动算法

- ① 对AOE网拓扑排序;(若网中有回路,则终止算法)
- ② 按拓扑次序求出各顶点事件的最早发生时间ve;
- ③ 按拓扑序列的逆序求各顶点事件的最迟发生时间vl;
- ④ 根据ve和vl的值,求各活动的最早开始时间e(i)与最迟开始时间l(i),若e(i)=l(i),则i是关键活动。

图的关键路径算法


```
算法CriticalPath()
/* 关键路径核心算法,假定源点1、汇点n、拓扑序1~n */
CPath2[计算事件的最早发生时间]
  for (i = 1; i \le n; i ++) ve [i] = 0;
  for (i = 1; i <= n-1; i ++ ) /*按拓扑序<mark>递推</mark>求ve[i]*/
    for (p = Head[i]. adjacent; p; p = p -> link) {
      k = p \rightarrow VerAdj;
      if (ve[i] + p \rightarrow cost > ve[k])
         ve[k] = ve[i] + p -> cost;
   } //不必存逆图;前点处理时更新后点,下标1..n-1
```



```
CPath3[计算事件的最迟发生时间]
  for (i = 1; i \le n; i ++) vl[i] = ve[n];
  for (i = n-1; i >= 1; i -- ) /*接逆拓扑序求vI*/
    for (p = Head[i]. adjacent; p; p = p -> link) {
      k = p \rightarrow VerAdj;
      if (vI[k] - p -> cost < vI[i])
            v[i] = v[k] - p -> cost;
```



```
CPath4[求诸活动的最早开始时间和最迟开始时间]
  for (i = 1; i \le n; i ++)
    for (p = Head[i]. adjacent; p; p = p -> link) {
      k = p \rightarrow VerAdj;
      e = ve[i];
      I = vI[k] - cost(p);
      if (I = e)
           cout << "< i, k> is Critical Activity! "
```

算法分析

□增加拓扑排序

- ✓ 调用算法TopoOrder(),若返回false,则有环,CPath 算法结束。否则,拓扑排序的结果存放在torder[].
- ✓ 更改CPath算法的2、3两步。即在第2、3计算循环中引入变量 j, 使j=torder[i];然后用 j 代替 i 进行计算。

□时间复杂性

- ✓ 进行拓扑排序的时间复杂性为O(n+e),
- ✓ 以拓扑序求ve[i]和以逆拓扑序求vl[i], 所需时间均为O(e),
- ✓ 求各个活动的e[k]和l[k]的时间复杂度为O(e), 整个算法的时间复杂性是O(n+e)

算法CriticalPath的说明

- □ CriticalPath正确性
 - ✓ 关键路径和关键活动的定义
 - ✓ ve的递推公式。
- □ 定理6.3:任意的非空AOE网至少存在一条关键路径。请忽略该定理。
- □ 定理6.3 (新): 关键路径上的顶点满足 ve(i)= vl(i)。

引理: 假设AOE网的事件集为{T1,T2,...,Tn}, n≥1. 对任意i有vl(i) ≥ ve(i).

□ 证明: 由vl(i)和ve(i)的定义知,对任意出度为零的顶点上式显然成立。假设顶点Ti的所有后继顶点也满足上式,根据vl 的定义知存在顶点Tj和边<Ti, Tj>,且 vl(i)=vl(j)-weight(<Ti, Tj>)

又由ve的定义知:

ve(j) ≥ve(i)+weight(<Ti, Tj>) ve(j)-weight(<Ti, Tj>) ≥ ve(i)

由归纳假设知 $vI(j) \ge ve(j)$,从而

vl(i) = vl(j)-weight(<Ti, Tj>)

>ve(j)-weight(<Ti, Tj>)> ve(i)

定理6.3(新)证明

假定路径 Ti₁, Ti₂, ..., Ti_k是所有从入度为零的顶点到出度为零的顶点 的具有最大路径长度的路径。由于该路径具有最大路径长度,因此

ve(i₁)=0, ve(i₂)=ve(i₁)+weight(< Ti₁, Ti₂ >),..., ve(i_j)=ve(i_{j-1})+weight(< Ti_{j-1}, Ti_j >),... (6-2) 当j=k时,显然有ve(i_k)=vl(i_k)

假定当j>m时有ve(i_j)=vl(i_j),并假定 Ti_m 发出的边至少有两条(只有一条,显然得证)。不妨设是< Ti_m , Ti_{m+1} >和< Ti_m , T_y >,如图所示.

```
由ve的定义知
   ve(y) \ge ve(i_m) + weight(< Ti_m, T_v >)
由引理,得
    vl(y)-weight(< Ti_m, T_v >) \ge ve(i_m)
又由(6-2)式得
    ve(i_m)=ve(i_{m+1})-weight(< Ti_m, Ti_{m+1}>)
再由归纳假设有
    ve(i_m)=vl(i_{m+1})-weight(< Ti_m, Ti_{m+1}>)
从而结合(6-3)式得:
    vl(i_{m+1})—weight(< Ti_m, Ti_{m+1} >) \le vl(y)—
weight(< Ti_m, T_v >)
由y的任意性知:
    vl(i_m)=vl(i_{m+1})-weight(< Ti_m, Ti_{m+1}>) = ve(i_m)
```

定理6.3(新)拓展

- □ 推论 1: 假设边<Ti, Tj>属于AOE网,则有ve(j) ve(i) ≥ weight(< Ti, Tj>) 且如果<Ti, Tj>属于某一条关键路径,则
 - ve(j) ve(i) = weight(< Ti, Tj >)
- □ 由推论可知,活动 $<T_i, T_j>$ 的最大可利用时间是vI(i)-ve(i). 如果最大可利用时间等于边 $<T_i, T_j>$ 的权值 $Weight(<T_i, T_j>)$,则该活动是关键活动,该活动延期将导致整个工程延期。如果最大可利用时间大于 $Weight(<T_i, T_j>)$,则该活动不是关键活动,其持续时间只要不超过最大可利用时间,就不会影响整个工程的进度。

定理6.3 (新)的逆定理不成立

- □一条路径上的所有顶点都满足ve(i)= vl(i)
 - ,则为关键路径; (错误)

□因为,边<Ti, Tj>两端点都满足该等式,不能保证是边<Ti, Tj>关键活动。

点权图

计算机专业必修课程

课号	课名	先修	学期数	
$\mathbf{C_0}$	高等数学	无	3	
$\mathbf{C_1}$	程序设计基础	无	1	
$\mathbf{C_2}$	离散数学	C_0, C_1	C_0 C_7	C_8 C_6
C_3	数据结构	C_2, C_4	$1 \bigcirc \bigcirc$	$\longrightarrow \bigcirc \longrightarrow \bigcirc$
$\mathbf{C_4}$	程序设计语言	$\mathbf{C_1}$	$1 C_2$	C_3
C_5	编译技术	C_3,C_4	$\frac{1}{2}$	
C_6	操作系统	C_3,C_8	2 🖒	→ Ø → Ø
$\mathbf{C_7}$	普通物理	$\mathbf{C_0}$	$\mathbf{C_1}$	C_4 C_5
C_8	计算机原理	$\mathbf{C_7}$	2	

点权图关键路径处理方法

□引入虚源虚汇(常用技巧)

- □关键路径处理方法
 - ✓ 按点计算路径
 - ✓ 点权转换为边权
 - 每个点v引入镜像点v',点权放到新增边<v,v'>上,原 来的边<u,v>转换为<u',v>。
 - 点权向后推到边上

关键路径小结

□关键路径的求解方式是DAG上的递推。

□思考

- ✓ 如何求出一条关键路径(如序号排列最小)?
- ✓ 如何求出所有关键路径?
- ✓ 关键路径的条数?