On se place dans une catégorie localement petite \mathcal{C} telle que

- \mathcal{C} admet un objet zéro.
- \mathcal{C} admet des noyaux et des conoyaux.
- \mathcal{C} admet des pushouts et des pullbacks.

<u>Lemme</u> 1. Pour tout morphisme $f: X \to Y$, le morphisme canonique $\pi: Y \to \operatorname{Coker} f$ est un épimorphisme.

Démonstration. Soient α, β : Coker $f \to Z$ deux morphismes tels que $\alpha \pi = \beta \pi$, on a en particulier $\alpha \pi f = \beta \pi f = 0$, il existe donc un unique φ : Coker $f \to Z$ tel que $\varphi \pi = \alpha \pi = \beta \pi$. Par unicité de φ , on a $\beta = \alpha = \varphi$.

On considère $A \in \mathcal{C}$, muni de deux monomorphismes normaux $I \to A$ et $J \to A$ (pour des raisons de lisibilité, si $X \to Y$ est un monomorphisme normal, on notera Y/X son conoyau, on a donc un couple noyau/conoyau $X \to Y \to Y/X$). On a donc un diagramme commutatif

$$I \xrightarrow{\iota_1} A \xrightarrow{\pi_1} A/I$$

$$\downarrow^{\pi_2}$$

$$A/J$$

En formant le pushout de π_1 et π_2 , on obtient un carré de pushout :

$$A \xrightarrow{\pi_1} A/I$$

$$\downarrow^{p_1}$$

$$A/J \xrightarrow{p_2} B$$

<u>Lemme</u> 2. Les morphismes p_1 et p_2 sont des épimorphismes.

Démonstration. Soient $\alpha, \beta: B \to Z$ tels que $\alpha p_1 = \beta p_1$, on a alors

$$\alpha p_1 \pi_1 = \beta p_1 \pi_1 \Rightarrow \alpha p_2 \pi_2 = \beta p_2 \pi_2 \Rightarrow \alpha p_2 = \beta p_2$$

Il existe donc un unique $\varphi: B \to Z$ tel que en particulier $\varphi p_1 = \alpha p_1 = \beta p_1$, donc $\alpha = \beta = \varphi$ par unicité. On applique le même raisonnement pour p_2 .

On pose à présent $\pi = p_1 \circ \pi_1 (= p_2 \circ \pi_2)$, et $\iota : I \vee J \to A$ le noyau de π . Comme $\pi \circ \iota_1 = p_1 \circ \pi_1 \circ \iota_1 = 0$, il existe un unique $\iota_I : I \to I \vee J$ tel que $\iota\iota_I = \iota_1$, et de même pour J, on a donc un diagramme commutatif :

Attention: on ne sait pas quels morphismes sont normaux sur ce diagramme.

Proposition 3. Le morphisme π est le conoyau de ι : c'est un épimorphisme normal.

Démonstration. Soit $f: A \to Z$ tel que $f\iota = 0$, on a alors $f\iota\iota_J = f\iota_2 = 0$, donc il existe un unique $\beta: A/J \to Z$ tel que $f = \beta\pi_2$, de même, il existe un unique $\alpha: A/I \to Z$ tel que $f = \alpha\pi_1$.

Par propriété universelle du pushout, il existe un unique morphisme $\varphi: B \to Z$ tel que $\varphi p_1 = \alpha$ et $\varphi p_2 = \beta$, on a alors

$$\varphi p_2 \pi_2 = \varphi \pi = f$$

et comme π_2 est un épimorphisme, φ est bien unique avec la propriété $\varphi \pi = f$, d'où le résultat.

Venons en à présent au résultat recherché.

Proposition 4. (Propriété des quotients successifs)
Si l'on a deux carrés commutatifs

$$I \xrightarrow{\iota_1} A \qquad et \qquad J \xrightarrow{\rho_2} J'$$

$$\downarrow \rho_1 \downarrow \qquad \downarrow \pi_2 \qquad \iota_2 \downarrow \qquad \downarrow \iota_2$$

$$I' \xrightarrow{\iota_1} A/J \qquad A \xrightarrow{\pi_1} A/I$$

Alors les conoyaux de i_1 et i_2 , respectivement $m_1:A/J\to K_1$ et $m_2:A/I\to K_2$ sont isomorphes, et $m_1\pi_2,m_2\pi_1$ sont deux conoyaux de ι . En particulier, si i_1 et i_2 sont normaux, on a

$$A/J/I' \simeq A/I/J'$$

et cet isomorphisme est canonique.

Démonstration. On considère $m: A/J \to K$ le conoyau de i_1 , on montre que $m\pi_2$ est un conoyau de ι (par symétrie, on aura le même résultat sur d). Soit $f: A \to Z$ tel que $f\iota = 0$, on a donc $f\iota_2 = 0$, et il existe un unique $\beta: A/J \to z$ tel que $\beta\pi_2 = f$. On a alors

$$\beta i_1 \rho_1 = \beta \pi_2 \iota_1 = f \iota \iota_I = 0$$

comme ρ_1 est un épimorphisme, on a $\beta i_1 = 0$ et donc il existe un unique $\varphi : K \to Z$ tel que $\varphi m = \beta$, on a alors $\varphi m \pi_2 = \beta \pi_2 = f$, et comme π_2 est un épimorphisme, φ est unique avec cette propriété, d'où le résultat.

Exemple 5. Dans la catégorie des pseudo-anneaux, on a un isomorphisme entre $\mathbb{Z}[i]/(p)$ et $\mathbb{F}_p[X]/(X^2+1)$, en considérant le diagramme

