Does $\sum_{n=1}^{\infty} \frac{2n + \cos n}{n^2 + \sin n}$ diverge, converge absolutely, or converge conditionally?

Solution

The function $f(x) = \frac{2x + \cos x}{x^2 + \sin x}$ is continuous, positive, and decreasing. We do the following indefinite integral with the substitution $u = x^2 + \sin x$ to get

$$\int \frac{2x + \cos x}{x^2 + \sin x} \, dx = \int \frac{1}{u} \, du = \ln|u| + C = \ln|x^2 + \sin x| + C.$$

So the definite, improper integral evaluates

$$\int_{1}^{\infty} \frac{2x + \cos x}{x^2 + \sin x} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{2x + \cos x}{x^2 + \sin x} dx$$
$$= \lim_{t \to \infty} (\ln|t^2 + \sin t| - \ln|1^2 + \sin 1|)$$
$$= \infty$$

Since the integral $\int \frac{2x + \cos x}{x^2 + \sin x} dx$ diverges, the series $\sum_{n=1}^{\infty} \frac{2n + \cos n}{n^2 + \sin n}$ diverges.