Chemistry Honors Study Guide

Test 3 S2

Test date: TBD

1 Gasses and Heat in Stoichiometry

Gasses

$$6HCl + 2Al \longrightarrow 2AlCl_3 + 3H_2$$

At STP, how many ml of H_2 gas are produced from 12 g of solid Al? (1 mol = 22.4 L at STP)

Using stoichiometry:

$$(12 g \text{ Al}) \times \left(\frac{1 \text{ mol Al}}{26.98 \text{ g Al}}\right) \times \left(\frac{3 \text{ mol H}_2}{2 \text{ mol Al}}\right) \times \left(\frac{22.4 \text{ L H}_2}{1 \text{ mol H}_2}\right) \times \left(\frac{1000 \text{ ml}}{1 \text{ L}}\right)$$
$$= \boxed{14944.4 \text{ ml}}$$

Heats of Formation

 $\Delta H_{\rm f}$ is the heat absorbed/released when compounds are formed from elemental units. The $\Delta H_{\rm f}$ of elements, including diatomic elements, is always 0.

Heats of formation equation:

$$\Delta H_{\rm rxn} = \sum \Delta H_{\rm f(products)} - \Delta H_{\rm f(reactants)}$$
 (1)

$$CS_2 + 3O_2 \longrightarrow CO_2 + 2SO_2$$

Find the heat of formation given the following:

$$\Delta H_{\rm f} (\mathrm{CO}_2) = -393.5 \, \frac{kJ}{mol}$$

$$\Delta H_{\rm f} (\mathrm{SO}_2) = -296.8 \, \frac{kJ}{mol}$$

$$\Delta H_{\rm f} (\mathrm{CS}_2) = 87.9 \, \frac{kJ}{mol}$$

Solution: Using 1:

$$[-393.5 + 2(-296.8)] - [3(0) + 87.9]$$
$$= 1075 \frac{kJ}{mol}$$

2 Redox

Definitions

• redox reaction: Short for oxidation/reduction reaction.

• *oxidation*: Losing electrons (becoming more positive).

• reduction: Gaining electrons (becoming more negative).

Reactions

LEO the lion says GER (Losing Electrons = Oxidation, Gaining Electrons = Reduction)

$$Na \longrightarrow Na^+ + e^-$$
 oxidation $^1/2$ reaction $Cl_2 + 2e^- \longrightarrow 2Cl^-$ reduction $^1/2$ reaction $^2/2$ and $^2/2$ overall reaction

Assigning Oxidation Numbers

Rules

- 1. An element in its elemental state is neutral.
- 2. H in a compound is always +1.
- 3. O in a compound is -2 except for H_2O_2 ; in that case, the oxidation number of O is -1.
- 4. Monatomic ions are whatever ionic charge they would normally form.
- 5. All oxidation numbers must add to the overall charge of the molecule or ion.

Example: What is the oxidation number of I in $Mg(IO_3)_2$?

Solution: By looking at the charge on Mg, the charge on $(IO_3)_2$ can be found to be 2-, so the charge on one ion is 1-, making the ion $(IO_3)^-$. The oxidation number of O in this compound is 2- by rule 3. There are 3 oxygen atoms, so:

$$3(-2) + I = -1$$

Solving for I:

$$-6 + I = -1$$

$$I = -1 + 6$$
$$I = 5$$

The charge on I is $\boxed{+5}$.