CS 446: Machine Learning

Homework 3: Binary Classification

Due on Tuesday, Feb 06, 2018, 11:59 a.m. Central Time

1.	15	points	Binary	Classifiers

	order to use a linear regression model for binary classification, how do we map the ession output $\mathbf{w}^{\top}\mathbf{x}$ to the class labels $y \in \{-1, 1\}$?
Yo	ur answer:
	ogistic regression, the activation function $g(a) = \frac{1}{1+e^{-a}}$ is called sigmoid. Then how we map the sigmoid output $g(\mathbf{w}^{\top}\mathbf{x})$ to binary class labels $y \in \{-1, 1\}$?
Yo	ur answer:
	possible to write the derivative of the sigmoid function g w.r.t a , i.e. $\frac{\partial g}{\partial a}$, as a simple tion of itself g? If so, how?
Yo	our answer:
(d) A gg	uma quadratia logg is used in the logistic regression together with the sigmoid fund

(d) Assume quadratic loss is used in the logistic regression together with the sigmoid function. Then the program becomes:

$$\min_{\mathbf{w}} f(\mathbf{w}) := \frac{1}{2} \sum_{i} \left(y_i - g(\mathbf{w}^{\top} \mathbf{x}_i) \right)^2$$

where $y \in \{0, 1\}$. To solve it by gradient descent, what would be the **w** update equation?

	Your answer:				
(e)) Assume $y \in \{-1, 1\}$. Consider the following program for logistic regression:				
	$\min_{\mathbf{w}} f(\mathbf{w}) := \sum_{i} \log \left(1 + \exp(-y^{(i)} \mathbf{w}^{T} \phi(x^{(i)})) \right).$				
	The above program for binary classification makes an assumption on the samples/dat points. What is the assumption?				
	Your answer:				