

Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 10

23 de Abril

MAT1106 - Introducción al Cálculo

1) Escriba que significa que x_n sea decreciente y su negación.

Solución.

 x_n es decreciente si \forall $n \in \mathbb{N}, x_n \ge x_{n+1}$. Luego, la negación de esto sería $\neg(\forall n \in \mathbb{N}, x_n \ge x_{n+1}) = \exists n \in \mathbb{N}, x_n < x_{n+1}$.

- 2) (16 2018) Considere $x_n = \frac{n!}{n^n}$.
 - a) Demuestre que

$$\frac{x_{n+1}}{x_n} \le \frac{1}{2}$$

.

Demostración. Como n>0, entonces $n!\neq 0, n^n\neq 0$, por lo que todas las expresiones están bien definidas. Luego, reemplazando tenemos que

$$\frac{x_{n+1}}{x_n} = \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \frac{(n+1)! \cdot n^n}{n! \cdot (n+1)^{n+1}} = \frac{n^n}{(n+1)^n} = \left(\frac{n}{n+1}\right)^n$$

Sabemos que $2 \le \left(\frac{n+1}{n}\right)^n \le 3$. Esto implica que $\frac{1}{3} \le \left(\frac{n}{n+1}\right)^n \le \frac{1}{2}$. Luego, reemplazando $\left(\frac{n}{n+1}\right)^n$ por $\frac{x_{n+1}}{x_n}$ tenemos lo pedido.

b) Demuestre que

$$0 \le x_n \le \frac{1}{2^{n-1}}$$

para todo $n \in \mathbb{N}$.

Demostración. Como $n \in \mathbb{N}$, entonces n! > 0 y $n^n > 0$, por lo que $x_n > 0$. Para mostrar que $x_n \leq \frac{1}{2^{n-1}}$, usamos inducción.

Caso base (n=1): $\frac{1!}{1!} = \frac{1}{1} = \frac{1}{20}$, por lo que se cumple.

Supongamos que para algún k se cumple $x_k \leq \frac{1}{2^{k-1}}$. Multiplicando por $\frac{1}{2}$ a ambos lados, tenemos que $\frac{x_k}{2} \leq \frac{1}{2^k}$. Por el problema anterior, tenemos que $\frac{x_{k+1}}{x_k} \leq \frac{1}{2} \Rightarrow x_{k+1} \leq \frac{x_k}{2}$. Luego, por transitividad tenemos que $x_{k+1} \leq \frac{1}{2^k}$. que es lo que queríamos.

Por lo tanto, por inducción tenemos la otra desigualdad buscada, completando la demostración.

3) ¿Es $x_n = \sqrt[n]{n!}$ monótona?

Idea: Notemos que $x_1=1$ y $x_2=\sqrt{2!}=\sqrt{2}$. Como $1<\sqrt{2}$, tenemos que x_n no puede ser decreciente. Luego, la sucesión es creciente o no es monótona.

Solución. Mostraremos que x_n es creciente. Esto ocurre si y solo si para todo n se cumple $x_n \leq x_{n+1}$. Como x_n siempre es positivo, esto es equivalente a mostrar que $\frac{x_n}{x_{n+1}} \leq 1$. Tenemos que

$$\frac{x_n}{x_{n+1}} \le 1 \iff \frac{\sqrt[n]{n!}}{\sqrt[n+1]{n+1!}} \le 1$$

$$\iff \frac{(n!)^{n+1}}{(n+1)!^n} \le 1^{n(n+1)} = 1$$

$$\iff \frac{(n!)^n \cdot n!}{(n!)^n \cdot (n+1)^n} \le 1$$

$$\iff \frac{n!}{(n+1)^n} \le 1 \qquad (*)$$

Sabemos que $n! \le n^n$. Luego, $\frac{n!}{(n+1)^n} \le \frac{n^n}{(n+1)^n} = \left(\frac{n}{n+1}\right)^n \le 1^n = 1$. Usando transitividad, lo anterior implica que $\frac{n!}{(n+1)^n} \le 1$. Como hasta (*) los pasos son reversibles, podemos concluír que x_n es creciente.

4) Para a > 0, se define la función

$$f(x) = x^3 - 2$$
 y $g_a(x) = a^3 - 2 + 3a^2(x - a)$.

Sea x_n una sucesión tal que $x_1 = 2$ y x_{n+1} cumpla

$$g_{x_n}(x_{n+1}) = 0.$$

a) Muestre que

$$f(x) - g_a(x) = (x+2a)(x-a)^2$$

y concluya que $f(x) \ge g_a(x)$ cuando $x \ge 0$.

Demostración. Reemplazando, tenemos que

$$f(x) - g_a(x) = x^3 - 2 - (a^3 - 2 + 3a^2(x - a)) = x^3 - a^3 - 3a^2(x - a).$$

Sabemos que $x^3 - a^3 = (x - a)(x^2 + ax + a^2)$. Reemplazando esto arriba y factorizamos llegamos a que

$$f(x) - g_a(x) = (x - a)[(x^2 + ax - 2a^2)]$$

= $(x - a)[(x + 2a)(x - a)] = (x + 2a)(x - a)^2$.

Como $a \ge 0$, si $x \ge 0$ entonces (x+2a) es positivo. Como $(x-a)^2$ siempre es no-negativo, tenemos que $(x+2a)(x-a)^2 \ge 0$ cuando $x \ge 0$, que era lo buscado.

b) Escriba x_{n+1} en función de x_n .

Demostración. Usando la definición, tenemos que x_{n+1} cumple

$$g_{x_n}(x_{n+1}) = 0.$$

Reemplazando y despejando, tenemos que

$$x_n^3 - 2 + 3x_n^2(x_{n+1} - x_n) = 0 \Rightarrow 3x_n^2(x_{n+1} - x_n) = 2 - x_n^3$$

$$\Rightarrow x_{n+1} - x_n = \frac{2 - x_n^3}{3x_n^2}$$

$$\Rightarrow x_{n+1} = \frac{2 - x_n^3}{3x_n^2} + x_n = \frac{2(1 + x_n^3)}{3x_n^2},$$

que corresponde a lo pedido.

c) Muestre que $x_n > 0$ para todo $n \in \mathbb{N}$.

Demostración. Por inducción:

Caso base (n = 1): Trivial (2 > 0).

Hipótesis inductiva: Supongamos que para algún k natural se cumple $x_n > 0$. Notar que $x_{k+1} = \frac{2(1+x_k^3)}{3x_k^2}$. Como $x_k > 0$, tanto x_k^2 como x_k^3 son positivos. Como los positivos son cerrados bajo multiplicación y suma, tenemos que x_{k+1} es positivo.

Por lo tanto, por inducción tenemos que para todo n natural, $x_n > 0$.

d) Use las partes anteriores para mostrar que $x_n^3 \ge 2$ para todo n natural.

Demostración. Para x_1 claramente se cumple. Ahora, sabemos que $x_n > 0$ para todo n natural por la parte c). Usando la parte a) de manera conveniente ($x = x_{n+1}, a = x_n > 0$) tenemos que

$$f(x_{n+1}) \ge g_{x_n}(x_{n+1}) \Rightarrow x_{n+1}^3 - 2 \ge 0 \Rightarrow x_{n+1}^3 \ge 2,$$

donde la primera implicancia se tiene ya que $g_{x_n}(x_{n+1}) = 0$ por definición. Como esto se cumple para todo n natural, tenemos que para todo $n \geq 2$ se cumple $x_n^3 \geq 2$. Como revisamos x_1 anteriormente, tenemos lo pedido.

e) Pruebe que esta sucesión es monótona.

Demostración. Por la parte b) sabemos que

$$x_{n+1} = \frac{2 - x_n^3}{3x_n^2} + x_n$$

Como $x_n^3 \ge 2$, tenemos que $2 - x_n^3 \le 0$. Esto implica que $x_{n+1} = \frac{2-x_n^3}{3x_n^2} + x_n \le x_n$, por lo que la sucesión es decreciente (y por lo tanto monótona). Luego, tenemos lo pedido.