Reinforcement Learning for Recommender Systems

From Contextual Bandits to Slate-Q

Christy Bergman, DevAdvocate Ray RLIib

https://linkedin.com/in/christybergman christy@anyscale.com @cbergman on Twitter

Avnish Narayan, Software Engineer Ray RLlib

https://linkedin.com/in/avnishn avnish@anyscale.com @narayan avnish on Twitter

Overview of the tutorial

Our iPython Notebook

... and how to git it

\$ git clone https://github.com/sven1977/rllib_tutorials
\$ cd rllib_tutorials/production_rl_summit_2022
\$ jupyter-lab

- \$ git clone https://github.com/sven1977/rllib tutorials
- \$ cd rllib_tutorials/production_rl_summit_2022
- \$ jupyter-lab

Overview of the tutorial

25 min: Intro to RL - What is RL and why should we use RL to solve

Recommender Systems?

5 min: break

25 min: RLlib's Contextual Bandits and SlateQ on Google RecSim problem

5min: break

25min: Ray Tune, Offline RL, Ray Serve

~1.5h

\$ jupyter-lab

^{\$} git clone https://github.com/sven1977/rllib_tutorials

^{\$} cd rllib_tutorials/production_rl_summit_2022

- We want to teach a mouse to get to the center of a maze ... how can we do that?
- Place bits of cheese in the maze along paths that we **do** want the mouse to take.
- Place bits of poison along paths that we don't want the mouse to take.
- Let the mouse repeatedly explore the maze for a fixed time from different random starting points.
- Eventually the mouse learns all paths from everywhere in the maze that maximize cheese and minimize poison.

- The mouse can be at different positions in the maze. We call this its **state** or observation.
- The mouse can move up down left and right in the maze. We call this its **actions.**

The mouse gets cheese or poison depending on whether its taking the best action at its state. We call this its **reward.**

The mouse, or our **agent,** is incentivized to take the sequence of actions at the states which it visits that maximizes the total reward per episode in a particular maze **environment**.

- The mouse collects experiences over a certain period of time. We call this collecting episodes of experience.
- An episode ends when the mouse reaches the center of the maze. We can also send a **done** signal to end the episode due to time out.

Going from Mice and Mazes to the Real World

Autonomous Vehicle vision-based controller

State: camera images, lidar, sensor readings

Action: steering wheel angle, pressure on brake,

pressure on gas pedal

Reward: +1 if close to destination & driving safely,

0 otherwise

Done: true if reached destination

What are Recommender Systems and where do you find them?

What	Where
We want to serve up personalized content, based on users interactions, in order to improve each user's experience.	 Websites, web apps Mobile apps Purchasing apps (B2B, B2C) Games Online ads and offers Emails Chatbots Call centers

Typical Supervised Learning Approach to Recommender System

High-level steps to build supervised DL Recommender

- Build User feature embeddings vectors
- Build Document feature embeddings vectors for content items
- Rank items per user based on "preferences of others or the crowd" (Collaborative and/or Content Filtering)
- Assign items to the user's feed onto "slate" positions based on each user's item rankings.

Why use RL over Supervised Learning for Recommendations?

Challenges not solved by typical Supervised Learning prediction

- High sparsity of data can lead to high bias.
- Cold-start problem for brand new items or users which have no data yet.
- Delay between in-product realtime user actions and updating the Models. Billiions of items, millions of users calculations are usually pre-processed in batch offline.
- Myopic algorithms that optimize only for short-term click-through rate can end up hurting long term engagement. Long-term satisfaction, typically measured as long-term user engagement, needs to be part of the model.
- Exploration. Besides offering users the same type of content they interacted with historically, offer education and new content.

Approach - Real-time Recommendations based on real-time sequential decision-making (RL)

- Historical data "Batch" pre-processed into traditional Supervised Learning models and the model input feature embeddings
- User and product feature embeddings used to define Environment for RL

Going from Mice and Mazes to RecSys

State: user actions, user feature embeddings, doc feature embeddings

Action: click_slate_0_0, skip_slate_0_0, click_slate_0_1, skip_slate_0_1, ...

Reward: +1 if user clicks a piece of content AND long-term satisfaction has increased, 0 otherwise

Done: true if X days since user's last interactive session

RL Ingredients and RLlib code abstractions

RL Ingredients and RLlib code abstractions

\$ git clone https://github.com/sven1977/rllib_tutorials \$ cd rllib_tutorials/production_rl_summit_2022

\$ jupyter-lab

anyscale

A Recommender System in Action

\$ git clone https://github.com/sven1977/rllib_tutorials

\$ cd rllib_tutorials/production_rl_summit_2022

\$ jupyter-lab

RLlib Parallelize and Distribute

RLlib Parallelize and Distribute

RLlib Parallelize and Distribute

- Beyond a "collection of algorithms",
- RLlib's abstractions let you easily implement and scale new algorithms (multi-agent, novel losses, architectures, etc)

What does a Ray Cluster look like ...

Scaling to Multiple Nodes

Tasks are sent to remote workers if there are no local resources available, transparently scaling Ray applications out to multiple nodes.

ψ Jupy

```
And why should
                                                                                                        TensorFlow &
                                                                                                        PyTorch Policies
         class CustomModel(TFModelV2):
             """Example of a keras custom model that just delegates to an fc-net."""
             def __init__(self, obs_space, action_space, num_outputs, model_config,
                         name):
                 super(CustomModel, self).__init__(obs_space, action_space, num_outputs,
                                                model_config, name)
                                                                                              RLIŶЬ
                 self.model = FullyConnectedNetwork(obs_space, action_space,
                                                num_outputs, model_config, name)
                                                                                                                    actions
             def forward(self, input_dict, state, seq_lens):
                 return self.model.forward(input_dict, state, seq_lens)
  cont
             def value_function(self):
ModelCatalog.register_custom_model(
    "my_model", TorchCustomModel
    if args.framework == "torch" else CustomModel)
                                                                 to a fc-net."""
confiq = {
                                                                 model_config,
    "model": {
                                                                                      {}),
                                                                                                      HIP AT THE CAPE!
                                                                 num_outputs,
         "custom_model": "my_model",
    },
                                                               ace, num_outputs,
                                                                                   t id % 21),
             def forward(self, input_dict, state, seq_lens):
                 input_dict["obs"] = input_dict["obs"].float()
                fc_out, _ = self.torch_sub_model(input_dict, state, seq_lens)
                 return fc_out, []
                                                                                   e=1)
  resi
             def value function(self):
                 return torch.reshape(self.torch_sub_model.value_function(), [-1])
```


RLI

Mod

con

\$ jupy

And why should TensorFlow & PyTorch Policies # === Settings for Rollout Worker processes === # Number of rollout worker actors to create for parallel sampling. Setting # this to 0 will force rollouts to be done in the trainer actor. "num_workers": 2, # Number of environments to evaluate vector-wise per worker. This enables # model inference batching, which can improve performance for inference RLIŶЬ # bottlenecked workloads. actions "num_envs_per_worker": 1, # If using num_envs_per_worker > 1, whether to create those new envs in # remote processes instead of in the same worker. This adds overheads, but # can make sense if your envs can take much time to step / reset # (e.g., for StarCraft). Use this cautiously; overheads are significant. "remote_worker_envs": False, # Timeout that remote workers are waiting when polling environments. # 0 (continue when at least one env is ready) is a reasonable default, # but optimal value could be obtained by measuring your environment # step / reset and model inference perf. "remote_env_batch_wait_ms": 0, }. ace, num_outputs, Mistakes On This 0 Disengagement... def forward(self, input_dict, state, seq_lens): input_dict["obs"] = input_dict["obs"].float() parallelize and fc_out, _ = self.torch_sub_model(input_dict, state, seq_lens) return fc_out, [] distribute \$ git c \$ cd rl def value function(self): return torch.reshape(self.torch_sub_model.value_function(), [-1])

=== Settings for Rollout Worker # Number of rollout worker actors # this to 0 will force rollouts to "num_workers": 2, # Number of environments to evalua # model inference batching, which # bottlenecked workloads. "num_envs_per_worker": 1, # If using num_envs_per_worker > 1 # remote processes instead of in t # can make sense if your envs can # (e.g., for StarCraft). Use this "remote_worker_envs": False, # Timeout that remote workers are # 0 (continue when at least one en # but optimal value could be obtai # step / reset and model inference "remote_env_batch_wait_ms": 0,

\$ git clone https://github.com/sven19 \$ cd rllib_tutorials/production_rl_sun \$ jupyter-lab

RLlib Algorithms

- · High-throughput architectures

 - ∘ 🖒 🌓 Importance Weighted Actor-Learner Architecture (IMPALA)
 - () ↑ Asynchronous Proximal Policy Optimization (APPO)
 - O Decentralized Distributed Proximal Policy Optimization (DD-PPO)
- Gradient-based
 - ↑ Advantage Actor-Critic (A2C, A3C)
 - ∘ (↑ ↑ Deep Deterministic Policy Gradients (DDPG, TD3)
 - ⋄ ★ Deep Q Networks (DQN, Rainbow, Parametric DQN)
 - o () 1 Policy Gradients
 - o () 1 Proximal Policy Optimization (PPO)
 - ∘ () ↑ Soft Actor Critic (SAC)
 - Slate Q-Learning (SlateQ)
- Derivative-free
 - () The Augmented Random Search (ARS)
 - ∘ () ↑ Evolution Strategies
- · Model-based / Meta-learning / Offline
 - Single-Player AlphaZero (contrib/AlphaZero)
 - ∘ (↑ ↑ Model-Agnostic Meta-Learning (MAML)
 - Model-Based Meta-Policy-Optimization (MBMPO)
 - o () Dreamer (DREAMER)
 - Conservative Q-Learning (CQL)
- · Multi-agent
 - OMIX Monotonic Value Factorisation (QMIX, VDN, IQN)
 - Multi-Agent Deep Deterministic Policy Gradient (contrib/MADDPG)
- Offline
 - ∘ (↑ ↑ Advantage Re-Weighted Imitation Learning (MARWIL)
- Contextual bandits
 - Linear Upper Confidence Bound (contrib/LinUCB)
 - ∘ (Linear Thompson Sampling (contrib/LinTS)
- Exploration-based plug-ins (can be combined with any algo)
 - Curiosity (ICM: Intrinsic Curiosity Module)

25+ available algorithms (model-free/based; offline RL; meta RL; evolutionary strategies)

llelize and

ribute

RLlib Algorithms

25+ available algorithms
(model-free/based; offline RL;

→ High-throughput architecture

→ O↑ Distributed Priorit Tuned examples for most of our

\$ git clone https://gir \$ cd rllib_tutorials/pr \$ jupyter-lab

And why should I use RLlib?

Because these companies here do!

[RLlib] Deprecate vf share layers in top-

[RLlib] Add all simple learning tests as fram

[RLlib] Deprecate vf share layers in top-

atari-ppo.yaml

cartpole-ppo.yaml

cartpole-appo-vtrace-separate-losses.yaml

cartpole-appo-vtrace-fake-gpus.yaml	[RLlib] Optionally don't drop last ts in v-trac

- cartpole-appo-vtrace.yaml

 [RLlib] Minor fixes/cleanups; chop_into_seq

 cartpole-appo.yaml

 [RLlib] Refactor: All tf static graph code sho
- cartpole-ddppo.yaml

 [RLlib] Auto-framework, retire use_pytorch

 cartpole-grid-search-example.yaml

 [RLlib] Auto-framework, retire use_pytorch
- cartpole-grid-searcn-example.yaml [RLlib] Auto-framework, retire_use_pytorcn

 [RLlib] Move existing fake multi-GPU learnin
 - cartpole-ppo-hyperband.yaml [RLlib] Auto-framework, retire use_pytorch
- frozenlake-appo-vtrace.yaml [RLlib] Upgrade gym version to 0.21 and deg
- halfcheetah-appo.yaml [RLlib] Refactor: All tf static graph code sho
- halfcheetah-ppo.yaml [RLlib] Auto-framework, retire use_pytorch
 - hopper-ppo.yaml [RLlib] Auto-framework, retire use_pytorcl

\$ jupyter-lab humanoid-ppo-gae.yaml [RLlib] Auto-framework, retire_use_pytorch_in favor of `framework=....

ale

Summitel

Add file ▼

14 months ago

nths ago

nths ago

nths ago

nths ago

nths ago

ears ago

ears ago

nths ago

ears ago

nths ago

nths ago

nths ago

ears ago

ears ago

2 years ago

X 6522935 17 days ago (1) History

Go to file

506 Bytes

episode reward mean: 150

Works for both torch and tf.

observation filter: MeanStdFilter

timesteps_total: 200000

num_envs_per_worker: 5

1 20 lines (20 sloc)

cartpole-appo:

stop:

confia:

10

11

12

13

14

15

16

17

18

19

run: APPO

env: CartPole-v0

framework: tf

num workers: 1

num sqd iter: 6

vtrace: false

model:

vf_loss_coeff: 0.01

fcnet hiddens: [32]

fcnet activation: linear

vf_share_layers: true

num_gpus: 0

TWO SIGMA

And why should I use RLlib?

Because these companies here do!
Thx for presenting at Ray- and Production RL Summits!

\$ cd rllib_tutorials/production_rl_summit_2022

\$ jupyter-lab

5 min Break :) Then ... moving to our Jupyter Notebook

What's Offline Reinforcement Learning?

Aka: "Batch RL"

What's Offline Reinforcement Learning?

Aka: Batch RL

Historic data recorded in the past (e.g. a JSON file!).

What's Offline Reinforcement Learning?

Aka: Batch RL

Historic data recorded in the past (e.g. a JSON file!).

Policy (in deep-RL, this is a neural network)

2 ways of doing this:

- Behavioral Cloning (BC), aka: "Imitation learning": loss = -log(p(a_n))
 - Don't care about rewards.
 - Pure SL: Observations=inputs; actions=labels
- Offline RL: Don't only imitate the historic policy, but also try to improve over it.
 - Rewards are needed for computing losses.

