

Endo-FASt3r: Endoscopic Foundation model Adaptation

for Structure from motion

Mona Sheikh Zeinoddin^{1,2}, Mobarak I. Hoque^{1,4}, Zafer Tandogdu^{3,6}, Greg L. Shaw³, Matthew J. Clarkson^{1,4},

Evangelos B. Mazomenos 1,4, Danail Stoyanov 1,5 **Havikes Institute University College London, UK 2 Institute of Health Informatics, University College London, UK 3 Dept. of Urology, University College London Haspitals London, UK * Dept. of Medical Physics & Biomedical Engineering, University College London, UK 5 Dept. of Computer Science, University College London, UK 6 Division of Surgery and Interventional Science, University College London, UK

Let's Connect on

Linkedin:

Motivation & Background

- Camera Pose & Depth estimation is essential to achieve 3D scene understanding in robotic-assisted surgery.
- One of the most widely used frameworks to perform these two tasks is the self-supervised reprojection loss [2] pipeline.

- Previous works have investigated the use of foundation models in the depth module via Low-Rank Adaptation (LoRA) 10 - based techniques.
- Major limitations of current literature:
 - . No work has investigated the use of foundation models in the pose module.
 - The limiting low rank update space of LoRA-based approaches.

Endo-FASt3r Contributions

- In this work, Endo-FASt3r: Endoscopic Foundation model Adaptation for Structure from motion, we introduce:
- Reloc3rX: Extending the foundation model Reloc3r[3] by designing the Axis Pose Head.

DolMoRA: Enabling both low- and full-rank updates.

References

100 His Edward S. et al. "Lotte Low-Plank Adaptation of Large Language Models* In ICLR (2022) [2] Shap, Showel, et al. "Selfsupervised monocular depth and ego-motion estimation in endoscopy. Appearance flow to the nescue: "In ICEA (2021) Midong, Siyan, et al. "Relocar." In C) PR (2025)

Let's discuss

- What is the biggest barrier of using foundation models in the surgical field?
- · How does the selfsupervised reprojection loss pipeline work?
- What is the main difference of LoRA and DoMoRA?

Interested in our work?

Metho

DARES

EndoFASt3r

Results & Conclusion

Trained on the SCARED dataset and Evaluation performed on the rigid SCA and non-rigid StereoMIS datasets.

	Method	AbsRel1	SqRell	RMSEL	51	ATE-TI ↓	ATE-T2↓	Total	Tra
SCARED	DeFeat-Net	0.077	0.792	6.688	0.941	0.1765	0.0995	14.8	14
	SC-SfMLearner	0.068	0.645	5.988	0.957	0.0767	0.0509	14.8	14.
	Monodepth2	0.069	0.577	5.546	0.948	0.0769	0.0554	14.8	14.
	Endo-SfM	0.062	0.606	5.726	0.957	0.0759	0.0500	14.8	14.
	AF-SfMLearner	0.059	0.435	4.925	0.974	0.0757	0.0501	14.8	14
	Yang et al.	0.062	0.558	5.585	0.962	0.0723	0.0474	2.0	2.0
	Zero-Shot DA V2	0.091	1.056	7.601	0.916	199. 40. 200		1	1992
	Zero-Shot Reloc3r	132	100000		-	0.0938	0.0735		
	DARES	0.052	0.356	4.483	0.980	0.0752	0.0498	24.9	2.8
	EndoFASt3r (Ours)	0.051	0.354	4.480	0.998	0.0702	0.0438	24.9	2.9
Hamlyn	Endo Depth & Motion	0.185	5.424	16.100	0.732	- 36		H- N	
	AF-SfMLearner	0.168	4.440	13.870	0.770	-		14.8	14.1
	EndoFASt3r (Ours)	0.166	4.529	13.718	0.778			24.9	2.9

Qualitative comparison of our depth estimation on rigid scenes against benchm

Comparison of our ego-motion estimation on non-rigid scenes against the second-best approach

		DARES	Endo-FASt3r
od	ATE		
	0.0715		: 1/16/20 PM:
(Ours)	0.0664		100000000000000000000000000000000000000
		:- 1:1	
			1 2 2

Interested in seeing a video of our results?

Endo-FASt3r marks the first framework to use foundation models for pose estimation in surgical environments, and it does so with NO ground truth data. Endo-FASt3r surpasses all SOTA methods, reaching an improvement of 9.34% in camera pose estimation and 2% in depth estimation over the nearest competitor.

