

$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2} \mid 0 \mid \frac{2k^2(2k^2r_1-t_1)}{(t_1+2k^2t_1)^2}$	Source constraints	$\tau_{0}^{#2} = 0$	$\tau_{0^+}^{\#1} - 2 i k \sigma_{0^+}^{\#1} == 0$	$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\tau_{1}^{\#1}\alpha == 0$	$\tau_1^{\#_1 \omega \rho} - 2ik \sigma_1^{\#_1 \omega \rho} = 0$ $\sigma_1^{\#_1 \alpha \beta} \sigma_2^{\#_2 \omega \beta} - 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	'2+ -2" \ O2+ Total #:
	$f_{1}^{#2}$	0	0	0	$i k t_1$	0	0	0
$\frac{2ik}{t_1 + 2k^2t_1}$	$\omega_{1^{-}}^{\#2}{}_{\alpha} f_{1^{-}}^{\#1}{}_{\alpha} f_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
- 	$\omega_{1^{-}}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
0	$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
0	$f_1^{\#1}{}_+\alpha\beta$	$-\frac{ikt_1}{3\sqrt{2}}$	<i>ikt</i> 1 3	$\frac{k^2t_1}{3}$	0	0	0	0
	$\omega_{1+lphaeta}^{\#1}$ $\omega_{1+lphaeta}^{\#2}$ $f_{1+lphaeta}^{\#1}$	$-\frac{t_1}{3\sqrt{2}}$	17 3	$-\frac{1}{3}ikt_1$	0	0	0	0
0	$\omega_1^{\#1}{}_+\alpha\beta$	6 6	$\frac{t_1}{3\sqrt{2}}$	$\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
$t_1^{\#2} + \alpha$		$\omega_{1}^{\#1} + ^{lphaeta}$	$\omega_{1}^{#2} + \alpha^{\beta}$	$f_1^{\#1} + ^{\alpha\beta}$	$\omega_1^{\#1} +^\alpha$	$\omega_{1}^{#2} + \alpha$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} + \alpha$

$\sigma_{2}^{\#1}$ $_{lphaeta}$	0	0	$\frac{2}{2k^2r_1+t_1}$
$\tau_{2}^{\#1}_{+}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0
	$\sigma_{2+}^{#1} + ^{\alpha\beta}$	$t_2^{#1} + ^{\alpha\beta}$	$\sigma_{2}^{#1} +^{\alpha\beta\chi}$

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$						
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0			
$f_{2+}^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0			
$\omega_2^{\#1}$ † $^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$			

	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-\bar{l}\sqrt{2}kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2$

		1		
$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\sigma_{0}^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1} \dagger$

	Massive particle		
? /	Pole residue:	$-\frac{1}{r_1} > 0$	
$J^P = 2^-$	Polarisations:	5	
k^{μ} ?	Square mass:	$-\frac{t_1}{2r_1} > 0$	
?	Spin:	2	
	Parity:	Odd	

(No massless particles)