Implication House

by Sven Nilsen, 2020

This paper I visualize a semantic model of Answered Modal Logic called an "implication house".

An implication house can be visualized as the following:

This semantic model is derived from the following expression:

$$\square$$
"A \wedge B" => (\neg ! \diamond "A" \wedge \neg ! \diamond "B")

Proof:

- \Box "A \land B" => \neg ! \diamond "A" \land \neg ! \diamond "B"
- \therefore not(\square "A \land B") \lor (\neg ! \diamond "A" \land \neg ! \diamond "B")
- $\therefore \qquad ! \diamond "A \wedge B" \vee (\neg ! \diamond "A" \wedge \neg ! \diamond "B")$

Extracting tables:

!♦"A ∧ B" !♦B ¬!♦B □B	!≎A 1 1	¬!◊A 1 1	□A 1 1	Since "A" and "B" are not mentioned, fill all
$\neg ! \diamond "A \wedge B"$ $! \diamond B$ $\neg ! \diamond B$ $\square B$!♦A 0 0 0	¬!◊A 0 1 0	□A 0 0 0	¬!\$"A" ^ ¬!\$"B"
□"A ∧ B" !◊B ¬!◊B □B	!♦A 0 0 0	¬!◊A 0 1 0	□A 0 0 0	¬!\$"A" ^ ¬!\$"B"