

Energija biomase

Korištenje energije biomase za proizvodnju el. energije Energijske tehnologije FER 2008.

Gdje smo:

- Organizacija i sadržaj predmeta
- 2. Uvodna razmatranja
- 3. O energiji
- 4. Energetske pretvorbe i procesi u termoelektranama
- 5. Energetske pretvorbe i procesi u hidroelektranama
- 6. Energetske pretvorbe i procesi u nuklearnim el.
- 7. Geotermalna energija
- 8. Potrošnja električne energije
- 9. Prijenos i distribucija električne energije
- 10. Energija Sunca
- 11. Energija vjetra

12. Biomasa

- 13. Gorivne ćelije i ostale pretvorbe
- 14. Skladištenje energije
- 15. Utjecaj na okoliš, održivi razvoj i energija

AREA REQUIREMENTS FOR POWER PLANTS 100 MW POWER PLANT RUNNING AT 100% CAPACITY (876 GWh/YEAR) (km² / MW)

- Primjeri korištenja
- Ukratko

Uvod: Što je biomasa

- Sve organsko.
- Organski materijal s energetskom vrijednosti podložan pretvorbi u gorivo ili direktno u toplinu.
- Prvobitni izvor energije.
- Danas se u svijetu još uvijek biomasa dominantno koristi na tradicionalan način (izravno izgaranje a ne prerada u tekuća ili plinovita goriva).

- Toplina se može koristiti za proizvodnju el. en.
- Gorivo može biti kruto, tekuće ili plinovito:
 - kruto gorivo: drvo i peleti,
 - tekuće gorivo: bioetanol, biodizel i bioulja,
 - plinovito gorivo: bioplin i vodik.
- Ostale primjene za industrijske materijale i kemikalije te druge raznovrsne primjene.

http://hearth.com/what/historyfire.html

Neto primarna proizvodnja biomase 2002 - ugljik pohranjen u biljkama po m²

Najvažnije vrste izvora biomase

Uzgoj

- Brzorastuće drveće
 - vrba
 - topola
 - eukaliptus

- Ligno-celulozne vrste
 - trska
- Šećerne vrste
 - šećerna repica, trska i proso
 - slatki sirak
- Škrobne vrste
 - kukuruz
 - žitarice (pšenica, ječam)
- Uljne vrste
 - uljana repica
 - suncokret

Ostatci i otpad

- Drvni otpad
 - održavanje šuma
 - obrada drvnih proizvoda
 - građevinski i drugi ostatci
- Poljoprivredni ostatci i otpad
 - slama
 - gnoj
- Organski dio javnog krutog otpada
- Kanalizacijski talog
- Industrijski ostatci
 - prerada hrane
 - prerada papira i sl.

Energija iz biomase - putovi i mogućnosti

2008.

Resursi

1 EJ (Exa J) = 1e18 J 1 EJ = 26,2e9 L ili 223 Mb sirove nafte

Waste from Livestock

Waste from Farming

Waste from Forestry

Godišnje stvaranje biomase

Svjetska proizvodnja biomase i korištenje energije

45±10 EJ

-za 2002. uključujući i tradicionalnu upotrebu

- -to je 14% ukupne potrošnje
- -samo ~3% u razvijenih
- -i do 90% kod nerazvijenih

Korištenje biomase: Svijet

SAD

45±10 EJ

Svjetsko korištenje energije

Svjetsko korištenje nafte

Udio biomase u potrošnji energije – primjeri za 2001.

Relativni udio korištenja energije biomase

Zemlja	U primarnoj en.	U el. en.
Austrija	10,0%	2,8%
Danska	8,5%	4,7%
Etiopija	93,0%	0,0%
Finska	19,0%	11,2%
Indija	35,0%	0,0%
Kongo	8,3%	3,5%
Švedska	16,0%	2,1%

Sudjelovanje u ukupnoj proizvodnji energije biomase dijelova svijeta.

Biomasa u energetskom sektoru svijeta

Ukupna svjetska potrošnja primarne energije za 2000. godinu

Relativna proizvodnja električne energije za 2000. godinu

Proizvodnja električne energije za 2000. godinu

Sources: 2004: Energy Information Administration (EIA), International Energy Annual 2004 (May-July 2006), web site www.eia.doe.gov/iea. Projections: EIA, System for the Analysis of Global Energy Markets (2007).

Biomasa u Europi

Cijene goriva u industrijskim elektranama zemalja Baltika (€/GJ)

Mtoe – energija 1e6 tona ekvivalentne nafte 42 GJ

EU TOTAL ENERGY NEEDS: Year 2000: 1.580MTOE/y Year 2030: 2.138MTOE/y

Odnos nafte i biogoriva

Potrošnja nafte za 2003.

- ~30000 Mb (b=barrel)/god proizvodnja nafte (3500000 ML/god)
 - 80 Mb/dan proizvodnja nafte (9400 ML/dan)
- ~1000x proizvodnje biogoriva!
- Brazil svojim uzgojem šećerne trske i proizvodnje bioetanola osigurava energetsku neovisnost i zaposlenost.
- Europa biodizel proizvodi iz uljane repice

Stanje i perspektive korištenja biomase

PREDNOSTI

- nerazvijeni
 - značajan izvor energije
 - potencijal za unapređivanje kvalitete života
 - razvoj, okoliš i održivost
- razvijeni
 - energetska sigurnost
 - globalno zagrijavanje
- decentraliziran izvor
- dodatna društvena korist
- lokalni okoliš (otpad)
- mala cijena goriva
- stalniji obnovljivi izvor

- mala energetska vrijednost i gustoća
 - prikupljanje i korištenje
 - ovisnost o izvoru biomase
- skupo korištenje
 - zahtjeva poticaje
 - poremećaji proizvodnje hrane
- održivost
 - upitna bez organizacije i tehnologije

Pojednostavljeni ciklus biomase.

Za razliku od fosilnih goriva biomasa uklanja znatan dio CO₂ emitiranog u atmosferu kod upotrebe (obrada i izgaranje).

Fotosinteza i prinos po ha

- Samo svjetlost se koristi
 - 43% od ukupne
 - biljka troši 30%
 - iskor. maks. ef. 10%
- Stvarno srednje iskorištenje ~0,15%
- Uzgajane vrste dostižu 1 do 3% (6%)
 Basic Photosynthesis

carbon dioxide

- biodizela
 - 1,5 t iz uljane repice
- bioetanola
 - 3,0 t iz kukuruza (ili žitarica)
 - 5,0 t šećerne repice
- Europa za 6 % goriva u biogorivu (12 Mt etanola i 6 Mt biodizela) uzgaja:
 - 40 Mt kukuruza ili žitarica
 - 15 Mt uljane repice
 - na 10e6 ha obradiva tla
 - od ukupno 75e6 ha obradive zemlje u EU

ZADATAK 1. Energija i obradiva zemlja

Nakon 3 godine rasta s 10 ha zemlje posiječe se brzorastuće drveće prinosa 90 t/ha i 30% vlažnosti.

Ogrjevna vrijednost suhog drva iznosi 20 GJ/t.

Koliko iznosi ukupna proizvedena toplina ukoliko se cjelokupna količina biomase iskoristi u peći na drva efikasnosti 60%?

Pretpostaviti linearnu ovisnost ogrjevne vrijednosti o vlažnosti.

Udio vlage je definiran kao omjer mase vlage prema ukupnoj masi:

 $W = m_v/(m_d + m_v)$

Masa drveta : $90 \cdot 10 = 900 \text{ t}$

Ogrjevna vrijednost vlažnog drveta: $20 \cdot (1-0,3) = 14 \text{ GJ/t}$

Energija sadržana u biomasi: 900 · 14 = 12600 GJ

Toplina proizvedena u peći: 12600 · 0,6 = 5400 GJ

Pretvorbe biomase

- Pretvoba biomase se dijeli na primarnu i sekundarnu
- Primarna transformira početnu biomasu u biogorivo (dijagram dolje)
- Sekundarna služi pridobivanju korisne energije:
 - peć, turbine plinske i parne, motori s unutrašnjim izgaranjem, mikroturbine i gorivne ćelije

A/D – anaeorobna digest.

Drvna biomasa za ogrjev

- Drvna industrija
 - ostatci kod obrade (piljenje, blanjanje i brušenje)
 - otpadci iz drvne industrije jeftiniji i kvalitetniji
- Gospodarenje šumama
 - održivo međunarodni konsenzus
 - HR ima 44% površine pod šumama sa 9,6 Mm³ god. prirasta
- Poljoprivredi ostatci
 - heterogeno i različitih svojstava (slama, kukurozovina, oklasak, stabljike, koštice, ljuske, ...)
 - niska ogrjevna vrijednost (vlažno)

- Uzgoj biomase za energiju
 - Prinos suhe tvari po ha
 - vrbe i topole 10 do 12 t/god.
 - brzorastuće trave ~16 t/god.
 - eukaliptus 35 t/god.
 - Dodatne prednosti
 - korištenje otpadnih voda, gnojiva i taloga (vegetacijski filtri)
 - bioraznolikost i
 - rješavanje problema viškova poljoprivredne proizvodnje
- Korištenje kao
 - gorivo za direktno spaljivanje ili obradu
- Kompaktiranje:
 - baliranjem, prešanjem i peletiranjem za automatsko loženje
 - Potrošnja u srednjoj Europi
 - 2001. 0,12 Mt; 2002. 0,20 Mt
 - 2010. 1,00 Mt

Zadatak 2. Vlažnost drvne biomase

Usporediti masu, količinu energije i energetsku gustoću sadržanu u 5 m³ hrastovih cjepanica odmah nakon sječe (vlažnost 55%) i nakon sušenja u šumi (vlažnost 30%) tijekom ljetnih mjeseci.

Gustoća i ogrjevna vrijednost potpuno suhog hrastovog drva iznose 580 kg/m³ odnosno 19 MJ/kg. Pretpostaviti da se volumen drva ne mijenja s promjenom vlažnosti. Faktor popune za cjepanice je 0,7. **Faktor popune** definiran je kao omjer volumena punog drveta i volumena naslaganih cjepanica.

Ogrjevna vrijednost vlažnog drva računa se približno prema sljedećoj formuli: $H_{net} = H_d \cdot (100 - W) / 100 - 2,442 \cdot W / 100 \quad (MJ/kg), gdje je <math>H_d$ ogrjevna vrijednost suhog drva, a W vlažnost.

Volumen punog drveta:

$$5 \cdot 0.7 = 3.5 \text{ m}^3$$

Udio vlage je definiran kao omjer mase vlage prema ukupnoj masi:

$$W = m_v/(m_d + m_v)$$

Zadatak 2. Vlažnost drvne biomase - rješenje

Uz vlažnost 55%:

Gustoća vlažnog drva iznosi:

 $m_d/(1-w) = 1289 \text{ kg/m}^3$

Masa vlažnog drva iznosi:

3,5 * 1289 = 4512 kg

Ogrjevna vrijednost vlažnog drva:

= 19 *(100 -55) /100 -2,442 *55 /100

= 7,21 MJ/kg

Količina energije sadržana u drvu:

7,21 * 4512 = 32,52 GJ

Energetska gustoća iznosi:

32,52/3,5 = 9,29 GJ/m3

Uz vlažnost 30%:

Gustoća vlažnog drva iznosi:

829 kg/m³

Masa vlažnog drva iznosi:

3,5 * 829 = 2900 kg

Ogrjevna vrijednost vlažnog drva:

= 19 *(100 -30) /100 -2,442 *30 /100

= 12,57 MJ/kg

Količina energije sadržana u drvu:

12,57 * 2900 = **36,45 GJ**

Energetska gustoća iznosi:

 $36,45 / 3,5 = 10,4 \text{ GJ/m}^3$

Izgaranje drvne biomase

- Karakteristika goriva
 - promjenjiva i velika vlažnost (svježe drvo preko 50%)
 - veće emisije zbog lošijeg izgaranja
 - vrlo velik udio hlapljivih sastojaka (80%)
- Posebna konstrukcija peći
- Manji sustavi
 - nepomična i pomična rešetka
 - pouzdana i poznata tehnologija
- Veći sustavi
 - cirkulirajući i mjehurićasti fluidizirani sloj
- Manja efikasnost

Potrošnja drva prema snazi

Snaga (kW)	(kg / hr)	(m³/ sezoni)
18	4	10
80	18	50

Biokemijske pretvorbe

- biogoriva

Bioetanol (C₂H₅OH)

- Biomasa sirovina
 - šećerna trska šećer
 - kukuruz škrob
 - drvo celuloza
- Fermentacija (vrenje)
 - biokemijsko razlaganje složenih organskih molekula u jednostavnije molekule (npr. raspad šećera u alkohol i CO₂)
 enzimi kataliziraju
- Zamjena za benzin
 - mješavina udio do 20% etanola bez potrebe za preinakama motora

Biodizel

Basic Emissions Effects of Biodiesel Use

- Esterifikacija
 - biljnih ulja s metanolom (uljana repica, suncokret, soja, otpadno jestivo ulje, loj)
- Svojstva slična dizelu
 - miješana ili čista potrošnja
 - gustoća i energetska vrijednost
 - bolja mazivost
 - manje ili nema sumpora
 - novi automobili prilagođeni (cijevi i brtve za gorivo)

Životinjski ostatci i otpad

- Lešine i stelja
 - Spaljivanje
- Izmet i zelena masa
 - anaerobna fermentacija za bioplin
 - 60% metan, 35% CO₂ i
 5% ostalo (vodik, dušik, amonijak, sumporovodik, CO, kisik i vodena para)
 - krava ili dvije svinje 1,5 m³ plina na dan (26 MJ/Nm³)

- Porijeklo otpada
 - biljni ostatci i drugo iz gradskog otpada
 - održavanje parkova i vrtova
 - mulj iz otpadnih voda
- Primarno je zbrinjavanje otpada
 - Velike investicije (4000 US\$/kW)

Deponijski (bio)plin

Rasplinjavanje – nepotpuno izgaranje

- Termokemijski proces
 - na visokim temperaturama (i do 1400°C)
 - uz ograničen dovod kisika
- Proizvodnja el. en. je efikasnija u plinskoj turbini
 - termički stupanj 45%
 - parni kotao na drva oko 20%
- Problem
 - osjetljivost plinskih turbina na čestice i paru
 - pročišćavanje skupo
- Glavni sastojci plina:
 - CH₄, CO₂, H₂O

Svojstva plina određuje:

- izvedba postrojenja
 - protustrujno, istostrujno, s fluidiziranim slojem
- biomasa
 - temperatura, vlažnost i sastav
- sredstvo rasplinjavanja
 - zrak energetska vrijednost plina od 4 do 6 MJ/Nm³
 - kisik energetska vrijednost plina od 15 do 20 MJ/Nm³

Energetska vrijednost goriva iz biomase

GORIVO	Sadržaj vode %	MJ/kg
Hrast	20	14,1
Bor	20	13,8
Slama	15	14,0
Sjemenje	15	14,2
Repičino ulje	-	37,1
Kameni ugljen	4	30-35
Smeđi ugljen	20	10-20
Lož ulje	-	42,7
Bioetanol	-	25,5

Gorivo	MJ/ Nm ³
Deponijski plin	16,0
Plin iz drva	7,0
Bioplin iz živ. ostataka	22,0
Prirodni plin	31,7
Vodik	10,8

Gorivo	En. vrijednost
Biljni ostatci	6 ÷ 17 MJ/kg
Drvo	8 ÷ 19 MJ/kg
Etanol	26,8 MJ/L
Biodizel	37,2 MJ/L
Nafta	42 MJ/L

Proizvodnja el. en. iz biogoriva

- Velika sličnost fosilnim gorivima
- Parna turbina
 - Pouzdana i poznata tehnologija
 - Pregrijana para na 5 do 10 MPa
 - Rasponi snaga od 500 kW do 500 MW_{el}
 - Manje snage pogodnije za biomasu
 - Troškovi transporta
 - Niža efikasnost:
 - 5 MW_{el} do 20%, a 500 MW_e do 40%

- Plinska turbina
 - Pouzdana i poznata rješenja
 - Efikasnost oko 45%
 - Kombinirani proces s parnom i do 55%
- Stirling motor
 - Zatvoreni ciklus (zrak, H, He)
 - Efikasniji proces od parnog
 - Još se razvija

Budućnost u gorivnim ćelijama

Flow diagram of the Sanguesa straw-burning power plant

Elektrane na biomasu

49 MW, Finska

3,5 MW, Brazil (samostalani rad)

3x30 kW, SAD (mikroturbina – samostalno i na mreži)

Konverzija energije

Tablica navodi nekoliko primjera korištenja biomase u elektranama/toplanama različitih primarnih procesa.

Vrsta	Efikasnost	Ulaz	Izlaz		Drvo	
	%	(MW)	Toplina (MW _t)	El. en. (MW _e)	Ukupno (MW)	odt/y
Samo toplina	75	1,3	1	0	1	4056
Parni kombinirani ciklus	80	53	30	12	42	170333
rasplinjavanje/ piroliza	75	1,3	0,7	0,3	1	4056
rasplinjavanje/ piroliza	80	49	29	10	39	158167

odt: Oven Dried Ton. Tona drva sa 0 % vlažnosti. Za 10 t suhog drveta treba 1 ha zemljišta.

Potrebe biomase za energijų

Potreban broj kamiona volumena 120 m³ svaki dan u elektranama za primjer:

Elektrana	Drvena sječka	Bale sijena	Bale trske
Izgaranje (30MWe)	21	28	17
Rasplinjavanje (30MWe)	17	23	13

Korištene gustoće:

- 0.15 m³/t za drvne sječke (Suurs, 2002),
- 0.11 m³/t za slamu i
- 0.19 m³/t za trsku (Bullard, 1999).

Kogeneracija

- Kombinirana proizvodnja
 - Električne i toplinske energije
- Veća efikasnost i manji investicijski troškovi u odnosu na odvojeni rad
 - Uz kontinuiranu potrebu za toplinom
 - Vezano za izvor biomase i potrošača
- Trigeneracija (i hlađenje)
 - Prehrambena industrija i topliji krajevi

Zadatak 3. Kombinirana elektrana

Potreba drvnoprerađivačkog poduzeća za električnom energijom i toplinom mogu se zadovoljiti postrojenjem kapaciteta **2,8 MW**_e i **5,6 MW**_t, uz godišnji pogon od **5000** sati. Izračunati efikasnost pretvorbe ukoliko se koristi kogeneracija ili posebna postrojenja za toplinski i električni dio.

Za kogeneraciju se zna da godišnji gubici u kotlu iznose **18** TJ, a gubici u pretvorbi mehaničke energije u električnu iznose **9** TJ.

Kod posebnog rješenja toplana bi imala godišnje gubitke u kotlu od 10,8 TJ. Dok bi posebna proizvodnja električne energija imala godišnje gubitke u kotlu od 12,6 TJ, gubitke u pretvorbi mehaničke energije u električnu od 5,4 TJ i gubitke topline koja se predaje u okolinu pri kondenzaciji od 57,6 TJ.

Za slučaj kogeneracije, ukupna potrebna energija iznosi:

$$(2.8 + 5.6) \cdot 5000 \cdot 3600 = 151.200.000 \text{ MJ} = 151.2 \text{ TJ}$$

Efikasnost pretvorbe iznosi:

$$151,2 / (151,2 + 18 + 9) = 84,8 \%$$

Za slučaj odvojene proizvodnje električne energije i topline, ukupna potrebna energija ostaje jednaka, a efikasnost iznosi:

$$151,2 / (151,2 + 10,8 + 12,6 + 5,4 + 57,6) = 63,6\%$$

Napomena: na isplativost osim efikasnosti pretvorbe utječu još i cijena goriva, iznos investicijskih troškova i ukupno vrijeme rada postrojenja tijekom godine.

Održivost korištenja biomase

- Korištenje < prirasta
- Važnost povratka tvari u tlo
 - organske
 - minerala
 - ostavljanje lišća i vraćanje pepela
- Planiranje rasta šuma

- Energetski nasadi i šume
 - staništa za ptice i manje sisavce
- Otklon od monokulturne poljoprivrede
- Smanjenje korištenja herbicida, pesticida i umjetnih gnojiva
- Očuvanje tla i sprečavanje erozije

Isplativost korištenja biomase

- Investicijski troškovi
- Vanjski troškovi nejasni
- Jeftina sirovina
 - niska ili zanemariva otkupnina
 - veliki utjecaj pripreme (skupljanje i transport)
- Konkurentnost
 - drvna ekonomična
 - etanol blizu konkurentnosti
 - biodizel je najskuplji

- Vlastiti izvor energije
- Socijalno-ekonomski učinci
 - direktno zapošljavanje
 - procjene za EU25 do 2010 oko 200000 radnih mjesta
- Makroekonomske dimenzije
 - Više proizvoda i usluga (BNP)
 - Velika zaposlenost
 - Stabilnost cijena (energije)
 - Smanjenje uvoza
- Izvori energije iz biomase imaju znatno veći potencijal uvažavanjem ukupnog utjecaja

Utjecaj udaljenosti biomase na cijenu.

ologije: Energija biomase

Ukratko

- Opisani su izvori biomase za energetsko korištenje
- Opisani su primarni i sekundarni procesi transformacije biomase i goriva
- Prednosti
 - povećavanje energetske neovisnosti
 - smanjivanje ispuštanja stakleničkih plinova
 - brojni ekonomsko-socijalni pozitivni učinci

- Navedene su osnovne vrste biogoriva
- Izneseni su primjeri korištenja biomase u elektranama za proizvodnju električne energije i topline ili kombinirano
- Nedostatci
 - mala gustoća energije
 - zahtjev za održivim načinom korištenja
 - ekonomičnost