Topological Mating of CRTs & Geometry of Brownian Excursion GSAS Talk

Linhang Huang

University of Washington

April 25th 2024

Outline

- 1 Introduction
 - Mating of CRTs
 - Statement
- 2 Why is It a Sphere?
 - Moore's Theorem
 - Equivalent Classes
- 3 Brownian Motion & Brownian Excursion
 - Brownian Motion
 - Brownian Excursion
- 4 Proof
 - Outline
 - Local Half Extrema of Brownian Motion
 - Local Equivalence

Table of Contents

- 1 Introduction
 - Mating of CRTs
 - Statement
- 2 Why is It a Sphere?
 - Moore's Theorem
 - Equivalent Classes
- 3 Brownian Motion & Brownian Excursion
 - Brownian Motion
 - Brownian Excursion
- 4 Proof
 - Outline
 - Local Half Extrema of Brownian Motion
 - Local Equivalence

 \sqsubseteq Introduction

☐ Mating of CRTs

Continuum Random Tree

Given an excursion $e:[0,1]\to[0,+\infty)$, one can define an equivalence relation \sim_e on [0,1] (and thus on \mathbb{S}^1) such that

$$x \sim_e y \quad \Leftrightarrow \quad d_e(x,y) = e(x) + e(y) - 2 \min_{t \in [x,y]} e(t) = 0.$$

This induces a **topological tree** with metric ($T_e := [0,1]/_{\sim_e}, d_e$).

└─ Introduction

☐ Mating of CRTs

Continuum Random Tree

Given an excursion $e:[0,1]\to[0,+\infty)$, one can define an equivalence relation \sim_e on [0,1] (and thus on \mathbb{S}^1) such that

$$x \sim_e y \quad \Leftrightarrow \quad d_e(x,y) = e(x) + e(y) - 2 \min_{t \in [x,y]} e(t) = 0.$$

This induces a **topological tree** with metric $(T_e := [0,1]/_{\sim_e}, d_e)$.

☐ Introduction

☐ Mating of CRTs

Brownian Excursion & Continuum Random Tree

The Continuum Random Tree \mathcal{T} is the tree induced by a Brownian excursion (defined later).

Figure 1: Brownian Excursion & Continuum Random Tree

```
☐ Introduction ☐ Mating of CRTs
```

Mating of Two CRTs

Given two independent Brownian excursion E_t , E'_t , the mating of two CRTs can be defined using equivalence relation as follows:

Figure 2: Mating of two CRTs

Introduction
Statement

Statement

Theorem (Duplantier, Miller & Sheffeld 2014)

- 1 With probability one, the mating of two independent CRTs will produce a (topological) sphere with a conformal structure;
- **2** The conformal structure induces the Liouville Quantum Gravity (LQG) measure on \mathbb{S}^2 .

Introduction

 L Statement

Statement

Theorem (Duplantier, Miller & Sheffeld 2014)

- 1 With probability one, the mating of two independent CRTs will produce a (topological) sphere with a conformal structure;
- **2** The conformal structure induces the Liouville Quantum Gravity (LQG) measure on \mathbb{S}^2 .

```
Introduction

Statement
```

Statement

Theorem (Duplantier, Miller & Sheffeld 2014)

- 11 With probability one, the mating of two independent CRTs will produce a (topological) sphere with a conformal structure;
- **2** The conformal structure induces the Liouville Quantum Gravity (LQG) measure on \mathbb{S}^2 .

Table of Contents

- 1 Introduction
 - Mating of CRTs
 - Statement
- 2 Why is It a Sphere?
 - Moore's Theorem
 - Equivalent Classes
- 3 Brownian Motion & Brownian Excursion
 - Brownian Motion
 - Brownian Excursion
- 4 Proof
 - Outline
 - Local Half Extrema of Brownian Motion
 - Local Equivalence

```
└─Why is It a Sphere?
└─Moore's Theorem
```

Moore's Theorem

To check that the equivalence relation actually gives a sphere. We will use the famous **Moore's theorem**.

Theorem (Moore, 1925)

Let \sim be a closed equivalence relation on \mathbb{S}^2 such that

- 1 Each equivalence class is connected;
- 2 Each equivalence class has connected complement;
- 3 There are more than one equivalence classes.

Then the quotient space \mathbb{S}^2/\sim is homeomorphic to \mathcal{S}^2 .

What do equivalent class look like?

Proposition (Equivalence Classes for Mating of CRTs)

With probability one, all the equivalence classes are of one of the following forms:

- 1 The boundary of the rectangle;
- **2** A single vertical segment;
- 3 A single horizontal segment with two vertical segments connecting to its end points;
- 4 A single horizontal segment and two vertical segment connecting to its end points, along with one additional vertical segment in between.

What do equivalent class look like?

Proposition (Equivalence Classes for Mating of CRTs)

With probability one, all the equivalence classes are of one of the following forms:

- 1 The boundary of the rectangle;
- **2** A single vertical segment;
- 3 A single horizontal segment with two vertical segments connecting to its end points;
- 4 A single horizontal segment and two vertical segment connecting to its end points, along with one additional vertical segment in between.

What do equivalent class look like?

Proposition (Equivalence Classes for Mating of CRTs)

With probability one, all the equivalence classes are of one of the following forms:

- 1 The boundary of the rectangle;
- **2** A single vertical segment;
- 3 A single horizontal segment with two vertical segments connecting to its end points;
- 4 A single horizontal segment and two vertical segment connecting to its end points, along with one additional vertical segment in between.

What do equivalent class look like?

Proposition (Equivalence Classes for Mating of CRTs)

With probability one, all the equivalence classes are of one of the following forms:

- 1 The boundary of the rectangle;
- **2** A single vertical segment;
- **3** A single horizontal segment with two vertical segments connecting to its end points;
- 4 A single horizontal segment and two vertical segment connecting to its end points, along with one additional vertical segment in between.

What do equivalent class look like?

Proposition (Equivalence Classes for Mating of CRTs)

With probability one, all the equivalence classes are of one of the following forms:

- 1 The boundary of the rectangle;
- **2** A single vertical segment;
- **3** A single horizontal segment with two vertical segments connecting to its end points;
- 4 A single horizontal segment and two vertical segment connecting to its end points, along with one additional vertical segment in between.

```
└─Why is It a Sphere?
└─Equivalent Classes
```

What do equivalent class look like?

Proposition (Equivalence Classes for Mating of CRTs)

With probability one, all the equivalence classes are of one of the following forms:

- 1 The boundary of the rectangle;
- **2** A single vertical segment;
- **3** A single horizontal segment with two vertical segments connecting to its end points;
- 4 A single horizontal segment and two vertical segment connecting to its end points, along with one additional vertical segment in between.

Why is It a Sphere?

Equivalent Classes

What do equivalent class look like?

└─Why is It a Sphere?

Equivalent Classes

Local Half Extrema

Given a curve $\gamma \in C([0,1])$, we use L_{γ} to denote the set of **local left maxima** of γ . That is,

$$L_{\gamma}:=\{t\in(0,1]:\gamma(t)>\max_{s\in(t-arepsilon,t)}\gamma(s)\quad ext{ for some } arepsilon>0\}.$$

We also define the **local right maxima** set R_{γ} similarly.

For our two independent Brownian excursions E_t , E_t' , the proposition is equivalent to that

$$(L_E \cup R_E \cup L_{-E} \cup R_{-E}) \cap (L_{E'} \cup R_{E'} \cup L_{-E'} \cup R_{-E'}) = \emptyset.$$

Local Half Extrema

Given a curve $\gamma \in C([0,1])$, we use L_{γ} to denote the set of **local left maxima** of γ . That is,

$$L_{\gamma} := \{t \in (0,1] : \gamma(t) > \max_{s \in (t-\varepsilon,t)} \gamma(s) \quad \text{ for some } \varepsilon > 0\}.$$

We also define the **local right maxima** set R_{γ} similarly.

For our two independent Brownian excursions E_t , E_t' , the proposition is equivalent to that

$$(L_E \cup R_E \cup L_{-E} \cup R_{-E}) \cap (L_{E'} \cup R_{E'} \cup L_{-E'} \cup R_{-E'}) = \emptyset.$$

Local Half Extrema

Given a curve $\gamma \in C([0,1])$, we use L_{γ} to denote the set of **local left maxima** of γ . That is,

$$L_{\gamma}:=\{t\in(0,1]:\gamma(t)>\max_{s\in(t-arepsilon,t)}\gamma(s)\quad ext{ for some } arepsilon>0\}.$$

We also define the **local right maxima** set R_{γ} similarly.

For our two independent Brownian excursions E_t , E_t' , the proposition is equivalent to that

$$(L_E \cup R_E \cup L_{-E} \cup R_{-E}) \cap (L_{E'} \cup R_{E'} \cup L_{-E'} \cup R_{-E'}) = \emptyset.$$

Table of Contents

- 1 Introduction
 - Mating of CRTs
 - Statement
- 2 Why is It a Sphere?
 - Moore's Theorem
 - Equivalent Classes
- 3 Brownian Motion & Brownian Excursion
 - Brownian Motion
 - Brownian Excursion
- 4 Proof
 - Outline
 - Local Half Extrema of Brownian Motion
 - Local Equivalence

Brownian Motion

Definition

Given i.i.d **coin tosses** $X_n \in \{-1,1\}$, we define **random walk** $S_t := \sum_{n=0}^{\lfloor t \rfloor} X_n$.

Brownian motion is the almost sure compact convergence limit

$$B_t := \lim_{n \to \infty} S_{nt} / \sqrt{n}.$$

Brownian Motion

Definition

Given i.i.d **coin tosses** $X_n \in \{-1,1\}$, we define **random walk** $S_t := \sum_{n=0}^{\lfloor t \rfloor} X_n$.

Brownian motion is the almost sure compact convergence limit

$$B_t := \lim_{n \to \infty} S_{nt} / \sqrt{n}.$$

Brownian Motion & Brownian Excursion

 igspace Brownian Motion

Geometry of Brownian Motion

Figure 3: Simulation of Brownian Motion

 B_t is almost surely **Hölder continuous** and **nowhere differentiable**. The graph of B_t has dimension 3/2.

Brownian Motion

Bizzare Geometry of Brownian Motion

Perfect Zero Set

The zero set $\{t \in [0,1] : B_t = 0\}$ is homeomorphic to **Cantor set**.

No Point of Increase

Brownian motion has no **point of increase**. That is, there does not exist $t \in \mathbb{R}$ such that $\max_{s \in (t-\varepsilon,t)} B_s \leq B_t \leq \min_{s \in (t,t+\varepsilon)} B_s$ for some $\varepsilon > 0$.

Dimension Doubling

Let $B^d(t)$ be d-dimension Brownian motion. Then for any Borel set A, we have

$$\dim B^d(A) = 2\dim A.$$

Brownian Motion

Bizzare Geometry of Brownian Motion

Perfect Zero Set

The zero set $\{t \in [0,1] : B_t = 0\}$ is homeomorphic to **Cantor set**.

No Point of Increase

Brownian motion has no **point of increase**. That is, there does not exist $t \in \mathbb{R}$ such that $\max_{s \in (t-\varepsilon,t)} B_s \leq B_t \leq \min_{s \in (t,t+\varepsilon)} B_s$ for some $\varepsilon > 0$.

Dimension Doubling

Let $B^d(t)$ be d-dimension Brownian motion. Then for any Borel set A, we have

$$\dim B^d(A) = 2\dim A.$$

Brownian Motion

Bizzare Geometry of Brownian Motion

Perfect Zero Set

The zero set $\{t \in [0,1] : B_t = 0\}$ is homeomorphic to **Cantor set**.

No Point of Increase

Brownian motion has no **point of increase**. That is, there does not exist $t \in \mathbb{R}$ such that $\max_{s \in (t-\varepsilon,t)} B_s \leq B_t \leq \min_{s \in (t,t+\varepsilon)} B_s$ for some $\varepsilon > 0$.

Dimension Doubling

Let $B^d(t)$ be d-dimension Brownian motion. Then for any Borel set A, we have

$$\dim B^d(A) = 2\dim A.$$

-Brownian Excursion

Definitions of Brownian Excursion

Brownian excursion $(E_t)_{0 \le t \le 1}$ can be understood as Brownian motion $(B_t)_{0 \le t \le 1}$ conditioned on

$$B_0 = B_1 = 0, B_t > 0$$
 for $0 < t < 1$.

Figure 4: Simulation of Brownian Excursion

Equivalent Definitions of Brownian Excursion

- 11 Rescaled $|B_t|$ restricted to a maximal positive interval; or
- $|Br_t^{(3)}|_2$ for 3d **Brownian bridge** $Br_t^{(3)}$; or
- **3** $(1-t)X_{t/(1-t)}$ for **Bessel process** X_t of order 3; or
- 4 Solution to the stochastic differential equation

$$dE_t = dB_t + \left(\frac{1}{E_t} - \frac{E_t}{1-t}\right) dt.$$

Brownian Excursion

Equivalent Definitions of Brownian Excursion

- 1 Rescaled $|B_t|$ restricted to a maximal positive interval; or
- $|Br_t^{(3)}|_2$ for 3d **Brownian bridge** $Br_t^{(3)}$; or
- **3** $(1-t)X_{t/(1-t)}$ for **Bessel process** X_t of order 3; or
- 4 Solution to the stochastic differential equation

$$dE_t = dB_t + \left(\frac{1}{E_t} - \frac{E_t}{1-t}\right) dt.$$

lueBrownian Motion & Brownian Excursion

Brownian Excursion

Equivalent Definitions of Brownian Excursion

- 1 Rescaled $|B_t|$ restricted to a maximal positive interval; or
- $|Br_t^{(3)}|_2$ for 3d Brownian bridge $Br_t^{(3)}$; or
- **3** $(1-t)X_{t/(1-t)}$ for **Bessel process** X_t of order 3; or
- 4 Solution to the stochastic differential equation

$$dE_t = dB_t + \left(\frac{1}{E_t} - \frac{E_t}{1-t}\right)dt.$$

Brownian Excursion

Equivalent Definitions of Brownian Excursion

- 1 Rescaled $|B_t|$ restricted to a maximal positive interval; or
- $|Br_t^{(3)}|_2$ for 3d Brownian bridge $Br_t^{(3)}$; or
- $(1-t)X_{t/(1-t)}$ for Bessel process X_t of order 3; or
- 4 Solution to the stochastic differential equation

$$dE_t = dB_t + \left(\frac{1}{E_t} - \frac{E_t}{1-t}\right)dt.$$

Brownian Motion & Brownian Excursion

Brownian Excursion

Equivalent Definitions of Brownian Excursion

- 1 Rescaled $|B_t|$ restricted to a maximal positive interval; or
- $|Br_t^{(3)}|_2$ for 3d Brownian bridge $Br_t^{(3)}$; or
- $(1-t)X_{t/(1-t)}$ for **Bessel process** X_t of order 3; or
- 4 Solution to the stochastic differential equation

$$dE_t = dB_t + \left(\frac{1}{E_t} - \frac{E_t}{1-t}\right) dt.$$

Table of Contents

- 1 Introduction
 - Mating of CRTs
 - Statement
- 2 Why is It a Sphere?
 - Moore's Theorem
 - Equivalent Classes
- 3 Brownian Motion & Brownian Excursion
 - Brownian Motion
 - Brownian Excursion
- 4 Proof
 - Outline
 - Local Half Extrema of Brownian Motion
 - Local Equivalence

Proof
Outline

Outline of the Proof

- 1 Prove that **no local half extrema** of two independent Brownian motion match;
- 2 Show that Brownian excursion locally "looks like" Brownian motion.

Proof
Outline

Outline of the Proof

- 1 Prove that **no local half extrema** of two independent Brownian motion match;
- 2 Show that Brownian excursion locally "looks like" Brownian motion.

Proof
Outline

Outline of the Proof

- 1 Prove that **no local half extrema** of two independent Brownian motion match;
- 2 Show that Brownian excursion **locally "looks like"** Brownian motion.

Lévy's Reflection Theorem

Recall that L_{γ} is the set of local left maxima of the curve γ . We would like to show that almost surely

$$L_B \cap L_{B'} = \emptyset.$$

The key ingredient will be the following famous result by Lévy:

Theorem (Drawdown Process)

Let $M_t := \sup_{s \in [0,t]} B_s$ be the maximum process of Brownian motion B_t . Then we have

$$(M_t - B_t)_{t \in [0,\infty)} \stackrel{d}{=} (|B_t|)_{t \in [0,\infty)}.$$

 $\mathsf{L}\mathsf{Proof}$

Local Half Extrema of Brownian Motion

Lévy's Reflection Theorem

Recall that L_{γ} is the set of local left maxima of the curve γ . We would like to show that almost surely

$$L_B \cap L_{B'} = \emptyset.$$

The key ingredient will be the following famous result by Lévy:

Theorem (Drawdown Process)

Let $M_t := \sup_{s \in [0,t]} B_s$ be the maximum process of Brownian motion B_t . Then we have

$$(M_t - B_t)_{t \in [0,\infty)} \stackrel{d}{=} (|B_t|)_{t \in [0,\infty)}.$$

└ Proof

Local Half Extrema of Brownian Motion

Brownian Dropdown

Figure 5: Brownian Dropdown

No Local Half Extrema Match - BM Case

Set $M_t^r := \sup_{s \in [r,t]} B_s$. We then have

$$L_B = \bigcup_{q \in [0,1) \cap \mathbb{Q}} \{t \in (q,1] : M_t^q - B_t = 0\}.$$

Thus it is suffice to check that for any $q, q' \in [0, 1)$, the event

$$\{t \in (q \vee q', 1] : M_t^q - B_t = M_t'^{q'} - B_t' = 0\} = \emptyset$$

has probability zero, where $M_t^{\prime q'}$ is similarly defined.

No Local Half Extrema Match - BM Case

Set $M_t^r := \sup_{s \in [r,t]} B_s$. We then have

$$L_B = \bigcup_{q \in [0,1) \cap \mathbb{Q}} \{t \in (q,1] : M_t^q - B_t = 0\}.$$

Thus it is suffice to check that for any $q, q' \in [0, 1)$, the event

$$\{t \in (q \vee q', 1] : M_t^q - B_t = M_t'^{q'} - B_t' = 0\} = \emptyset$$

has probability zero, where $M_t^{\prime q^{\prime}}$ is similarly defined.

No Local Half Extrema Match - BM Case

Since we have

$$(M^q - B, M'^{q'} - B') \stackrel{d}{=} (|B - B_q|, |B' - B'_{q'}|),$$

this follows from the fact that (B_t, B'_t) visit $(B_q, B'_{q'})$ after time $q \vee q'$ with **probability zero** by the **Markov property**.

Absolute Continuity

How to go from $L_B \cap L_{B'}$ to $L_E \cap L_{E'}$?

Definition

$$P(Y \in A) = 0 \Rightarrow P(X \in A) = 0.$$

- 1 The things that won't happen for Y will **not take place** for X either;
- 2 We can't tell X apart from Y with certainty.

Local Equivalence

Absolute Continuity

How to go from $L_B \cap L_{B'}$ to $L_E \cap L_{E'}$?

Definition

$$P(Y \in A) = 0 \Rightarrow P(X \in A) = 0.$$

- 1 The things that won't happen for Y will **not take place** for X either;
- 2 We can't tell X apart from Y with certainty.

Proof

Local Equivalence

Absolute Continuity

How to go from $L_B \cap L_{B'}$ to $L_E \cap L_{E'}$?

Definition

$$P(Y \in A) = 0 \Rightarrow P(X \in A) = 0.$$

- 1 The things that won't happen for Y will **not take place** for X either;
- 2 We can't tell X apart from Y with certainty.

 $\mathsf{L}\mathsf{Proof}$

Local Equivalence

Absolute Continuity

How to go from $L_B \cap L_{B'}$ to $L_E \cap L_{E'}$?

Definition

$$P(Y \in A) = 0 \Rightarrow P(X \in A) = 0.$$

- 1 The things that won't happen for Y will **not take place** for X either;
- 2 We can't tell X apart from Y with certainty.

└─ Proof

Local Equivalence

Local Equivalence

We want to show that E_t is absolutely continuously to B_t locally.

 $\mathsf{L}\mathsf{Proof}$

Local Equivalence

Girsanov Transform

Theorem (Girsanov Transform for Langevin Equations)

Given measurable function $\mu(t,x)$, if Langevin SDE

$$dX_t = \mu(t, X_t)dt + dB_t$$

has a unique strong solution, and

$$\exp\left(\int_0^t \mu(s,B_s)dB_s - \frac{1}{2}\int_0^t \mu(s,B_s)^2ds\right)$$

is uniformly integrable. Then X_t and B_t are mutually absolute continuous.

Proof

Local Equivalence

Girsanov Transform

Theorem (Girsanov Transform for Langevin Equations)

Given measurable function $\mu(t,x)$, if Langevin SDE

$$dX_t = \mu(t, X_t)dt + dB_t$$

has a unique strong solution, and

$$\exp\left(\int_0^t \mu(s,B_s)dB_s - \frac{1}{2}\int_0^t \mu(s,B_s)^2ds\right)$$

is uniformly integrable. Then X_t and B_t are mutually absolute continuous.

For Brownian excursion E_t , we have SDE

$$dE_t = \mu(t, E_t)dt + dB_t,$$

with $\mu(t,x) = \frac{1}{x} - \frac{x}{1-t}$. We can modify μ with

$$\mu^{\varepsilon}(t,x) = \frac{1}{x \vee \varepsilon} - \frac{x}{1-t}.$$

 μ^{ε} is **Lipschitz** away from t=1. Note that $\mu=\mu^{\varepsilon}$ when $x>\varepsilon$.

Local Equivalence

Pathwise Uniqueness for SDE

For Brownian excursion E_t , we have SDE

$$dE_t = \mu(t, E_t)dt + dB_t,$$

with $\mu(t,x) = \frac{1}{x} - \frac{x}{1-t}$. We can modify μ with

$$\mu^{\varepsilon}(t,x) = \frac{1}{x \vee \varepsilon} - \frac{x}{1-t}.$$

 μ^{ε} is **Lipschitz** away from t=1. Note that $\mu=\mu^{\varepsilon}$ when $x>\varepsilon$.

For Brownian excursion E_t , we have SDE

$$dE_t = \mu(t, E_t)dt + dB_t,$$

with $\mu(t,x) = \frac{1}{x} - \frac{x}{1-t}$. We can modify μ with

$$\mu^{\varepsilon}(t,x) = \frac{1}{x \vee \varepsilon} - \frac{x}{1-t}.$$

 μ^{ε} is **Lipschitz** away from t=1. Note that $\mu=\mu^{\varepsilon}$ when $x>\varepsilon$.

If we restrict our process to time interval $[\delta, T] \in (0, 1)$, then given initial condition $E_{\delta}^{\varepsilon} = x > 0$, SDE

$$dE_t^{\varepsilon} = \mu^{\varepsilon}(t, E_t^{\varepsilon})dt + dB_t,$$

has a unique strong solution and

$$(E_t^{\varepsilon} - x)_{[\delta, T]} \equiv (B_t - B_{\delta})_{[\delta, T]}.$$

If we restrict our process to time interval $[\delta, T] \in (0, 1)$, then given initial condition $E_{\delta}^{\varepsilon} = x > 0$, SDE

$$dE_t^{\varepsilon} = \mu^{\varepsilon}(t, E_t^{\varepsilon})dt + dB_t,$$

has a unique strong solution and

$$(E_t^{\varepsilon}-x)_{[\delta,T]}\equiv (B_t-B_{\delta})_{[\delta,T]}.$$

Local Equivalence

Finishing up the Proof

The last ingredient is to show that E_t is a **strong solution** to its SDE.

This follows from the fact that $E_t = (1-t)\sqrt{Y_{t/(1-t)}}$, where Y_t is squared Bessel-3 process satisfying strongly the SDE

$$dY_t = 2\sqrt{Y_t}dB_t + 3dt.$$

Local Equivalence

Finishing up the Proof

The last ingredient is to show that E_t is a **strong solution** to its SDE.

This follows from the fact that $E_t = (1-t)\sqrt{Y_{t/(1-t)}}$, where Y_t is squared Bessel-3 process satisfying strongly the SDE

$$dY_t = 2\sqrt{Y_t}dB_t + 3dt.$$

Proof

Local Equivalence

Finishing up the Proof

Now consider the event

$$A_{\delta,T}^{\varepsilon} := \{X_t(\omega) : X_t(\omega) \geq \varepsilon \quad \text{for all} \quad t \in [\delta, T]\}.$$

Conditioned on $X_{\delta}(\omega) = x > 2\varepsilon$, this is an event with **positive probability** for B_t and thus for E_t^{ε} .

Note that on $A_{\delta,T}^{\varepsilon}$, E_t and E_t^{ε} satisfy the same SDE and thus are **indistinguishable**. It follows that conditioned on $A_{\delta,T}^{\varepsilon}$,

$$P_x^B \equiv P_x^E$$
.

for all $x > 2\varepsilon$. Here, the processes are defined on $[\delta, T]$.

└─ Proof

Local Equivalence

Finishing up the Proof

Now consider the event

$$A_{\delta,T}^{\varepsilon} := \{X_t(\omega) : X_t(\omega) \geq \varepsilon \quad \text{for all} \quad t \in [\delta, T]\}.$$

Conditioned on $X_{\delta}(\omega) = x > 2\varepsilon$, this is an event with **positive probability** for B_t and thus for E_t^{ε} .

Note that on $A_{\delta,T}^{\varepsilon}$, E_t and E_t^{ε} satisfy the same SDE and thus are **indistinguishable**. It follows that conditioned on $A_{\delta,T}^{\varepsilon}$,

$$P_x^B \equiv P_x^E$$
.

for all $x > 2\varepsilon$. Here, the processes are defined on $[\delta, T]$.

 $\mathsf{L}\mathsf{Proof}$

Local Equivalence

Finishing up the Proof

Since E_t always **stays positive**, we have

$$P_{x}^{E}(\cup_{\varepsilon>0}A_{\delta,T}^{\varepsilon})=1.$$

It follows that

Theorem (Local Absolute Continuity)

For any $\delta < t_1 < t_2 < T$, we set $\mathcal{F}_{t_1}^{t_2}$ to be the σ -algebra generated by $(\omega \mapsto \omega(t))_{t \in [t_1, t_2]}$. Then restricted to $\mathcal{F}_{t_1}^{t_2}$, we have

$$P_x^E \ll P_x^B$$
.

└─ Proof

Local Equivalence

Finishing up the Proof

Since E_t always **stays positive**, we have

$$P_{\mathsf{x}}^{\mathsf{E}}(\cup_{\varepsilon>0}A_{\delta,T}^{\varepsilon})=1.$$

It follows that

Theorem (Local Absolute Continuity)

For any $\delta < t_1 < t_2 < T$, we set $\mathcal{F}_{t_1}^{t_2}$ to be the σ -algebra generated by $(\omega \mapsto \omega(t))_{t \in [t_1, t_2]}$. Then restricted to $\mathcal{F}_{t_1}^{t_2}$, we have

$$P_x^E \ll P_x^B$$
.

Graduate Student Analysis Seminar

Proof

Local Equivalence

Thank you.

Thank you!