

\$ // A billion

USD raised by **North American crowdfunding platforms** in 2020

\$ 7 7 7 million

USD raised by the crowdfunding platform **Kickstarter** in 2020

212,951

creative projects brought to life by Kickstarter

300,000+

part-time and full-time jobs created

My Coffee Box

Zen-Tek Aquaponics

East Idaho Aquarium Shirts

Mongol World Art Tour

328,283

unsuccessfully-backed projects

What makes a Kickstarter campaign successful?

Can we predict a campaign's success?

SOURCE

Kickstarter Projects Dataset

from Mickaël Mouillé on <u>Kagqle</u>

Included:

- ks-projects-201612.csv (data collected by Dec. 2016)
- ks-projects-201801.csv (data collected by Jan. 2018)

where each row = 1 project

ID (campaign ID) name (campaign name) main_category category (subcategory) currency deadline goal (funding goal) launched pledged **state** (state of campaign) backers country usdpledged + duration (length, in days)

- + percfunded

Category %

Film & Video: 18.41

Music: 15.66

Publishing: 10.97

Art: 7.82

Games: 7.51 **Design:** 6.90

Food: 6.88

Technology: 6.71

Fashion: 5.44 Theater: 3.23 Comics: 3.03

Photography: 2.83

Crafts: 2.22 **Dance:** 1.20

Journalism: 1.18

92 days

Longest Campaign

\$ 100_{mn}

Largest Funding Goal

July

Most Popular Launch Month

Dec

Least Popular Launch Month

Aug

Most Popular End Month

Jan

Least Popular End Month

CLEANING

- Removed NA/inf values
- Checked for negative values and duplicates
- Dropped instances where state == "live"

FEATURE ENGINEERING

- Added binary column outcome
 - o 1 for success, else 0
- Log transformations of pledged & goal
- One-hot encoded categories feature
 - only kept the more prominent categories to avoid overfitting.
- Added month and year features
 - check if temporality is correlated with Kickstarter success.

MODELING

Used **scikit-learn** to implement the following::

- Random Forest
- Neural Network

FINDINGS

- Initial accuracy was low
 - in the mid-60% range for both models.
- After hyperparameter tuning:
 - Random Forest:
 - 87% training accuracy
 - 84% test accuracy
 - Neural Network:
 - 84% training accuracy
 - 83% test accuracy

CLEANING & FEATURE ENGINEERING

- Dropped all null values
- Collapsed values in state
 - 5 original values: "failed", "successful", "cancelled", "live", "suspended"
 - Removed "live"
 - Categorized "cancelled" and "suspended" into "failed"
- Dropped redundant columns
 - Visualized correlations between columns (see next slide)
 - Eliminated columns usd_pledged_real and goal
 - Kept columns usd_pledged and usd_goal_real
- Dropped other irrelevant columns
 - ID, name, country
- Streamlined time data
 - Eliminated years 1970, 2018 in **year**
 - Dropped deadline and kept launched
 - Split launched column into year & month

le7

MODELING

Used **scikit-learn** to implement the following::

- Decision Tree
- Random Forest

FINDINGS

Decision Tree:

- 97% training accuracy
- 97% test accuracy

Random Forest:

- 99% training accuracy
- 98% test accuracy

CALIGULA hardcover book rare photos making of the cult film

It was the most expensive independent film in cinema history, and a debacle of equally epic...

Can a title predict a campaign's success?

What makes this better...

...than this?

Collinwood Needs Coffee!!!

Bright Coffee Bar aims to provide quality fresh, healthy gourmet foods and locally roasted coffe...

by Kimberly Homan

Funding unsuccessful Project ended on July 28, 2014

by **Thomas Negovan** and 351 backers

CLEANING

- Dropped and manipulated NA values
 - Dropped state == "undefined"
 - Substituted values from usd_pledged into missing usd_pledged_real values
 - Substituted missing country values with country associated with value in currency

FEATURE ENGINEERING

- Created the following columns based on name:
 - punctuation count
 - word count
 - character count
 - o polarity
 - Used Vader mean-sentiment-rating to determine sentiment of text

MODELING

Used **scikit-learn** to implement the following::

- Neural Network
- Logistic Regression Model

FINDINGS

- Neural Network:
 - ~60% training and testing accuracy
- Logistic Regression Model:
 - ~60% training and testing accuracy

IMPLICATIONS

- With the success of our models, we can provide useful insight to campaigners in regards to:
 - Timing of campaigns
 - Duration
 - Goal
 - Category
- We can also help investors predict the potential success of a project

FUTURE RESEARCH

- Delve deeper into campaign categories
 - Why are certain campaign categories more successful than others?
- Examine the **causal effect** of certain features on campaign performance
 - Campaign titles
 - Campaign images

SOURCES

- Data courtesy of Mickaël Mouillé from Kaggle
- All images provided by Kickstarter, with the exception of the Appendix image, provided by Death to Stock
- Font: Raleway
- Deck Design: Mei

Tyler's Workflow

Research question: What makes a kickstarter campaign successful? Can we build a model that predicts a successful campaign?

Cleaning:

- Removed na/inf values
- Checked for negative values and duplicates
- Dropped instances where state was "live" since we are focused on the outcome.

Feature engineering:

- Added binary column "outcome" (serving as my target variable) 1 for success, else 0.
- Log transformations of "pledged" and "goal " features.
- One hot encoded "categories" feature and only kept the more prominent categories to avoid overfitting.
- Added "month" and "year" features in case temporality is correlated with kickstarter success.

Modeling:

Trained a random forest model and a neural network (Both using SKlearn)

Findings:

- Initially my accuracy was rather low (in the mid 60% range) for both models.
- Tuning the hyperparameters of my model and adjusting my feature selection yielded much better results.
- Boosted random forest model up to 87% training accuracy and 84% test accuracy.
- Boosted Neural network up to 84% training accuracy and 83% test accuracy.

Weiao's work

Research goal

- Build a model to predict a successful campaign in the 2018 Kickstart projects dataset

Data Processing & EDA

- Drop all null values in the dataset
- There are five different values in the "state" column, "failed", "successful", "cancelled", "live", "suspended", I removed "live", categorized "cancelled" and "suspended" into "failed" so we only have two values in the column, "failed" and "successful"
- There are many columns that seem to be redundant like "usd pledged" and "usd_pledged_real", and "goal" and
 "usd_goal_real", by visualizing at their correlations between each other, we can see that they are basically the same,
 so I can drop columns "usd_pledged_real" and "goal" from the dataframe and only keep columns "usd pledged" and
 "usd_goal_real"
- Drop other irrelevant columns "ID", "name", "country"
- For time data, drop "deadline" and keep "launched", and break down "launched" column into columns "year" and "month"
- Eliminate years 1970 and 2018 in "year" column as these two years have too little counts

Modeling

Decision tree: accuracy 97%Random forest: accuracy 99%

Amanda's Work

- -data cleaning (drop/manipulated null values)
- -I was interested in whether or not we could predict a campaign's success based on the title alone. Looking at number of characters, number of words, punctuation count, and sentiment analysis of the words.
- Used a neural model, and logistic regression model, both were in the %60 accuracy range.

Implications

Helping Existing and future campaigns

- With the success of our models, we can potentially provide useful insight to campaigners in regards to:
 - Timing of campaigns
 - Duration
 - Goal
 - Category

Future research areas:

- Delve deeper into campaign categories
 - Why are certain campaign categories more successful than others?
- Estimate the causal effect of certain features on campaign performance
 - Eg: Campaign titles

