只恢致即参照	21 10111	·	
Solution		Marks	Remarks
$(1+x)^{n} + (1+2x)^{n}$ $= 1 + {}_{n}C_{1}x + {}_{n}C_{2}x^{2} + \dots + 1 + {}_{n}C_{1}(2x)$ $= 1 + {}_{n}C_{1}x + {}_{n}C_{2}x^{2} + \dots + 1 + {}_{n}C_{1}(2x)$ $= 5 + {}_{n}C_{2} + 4 + {}_{n}C_{2}x^{2}$ $= 5 + {}_{n}C_{2}$ $5 + {}_{n}C_{2} = 75$	+,C2(2x)2+ PP-1 { 1+hx+ \frac{1}{2}x^2-1 1+2hx+ \frac{1}{2}h(n-1)x^2}	gesther 1A+1A V both	
$nC_2 = 15$ $\frac{n(n-1)}{2} = 15$ $n^2 - n - 30 = 0$ $n = 6 \text{ or } -5 \text{ (rejected)}$ $n = 6$	acept	1M	For ${}_{n}C_{2} = \frac{n(n-1)}{2}$ (can be omitted)
2. $y = (x-1)^4 + 4$ dy 3		1A	_
$\frac{dy}{dx} = 4(x-1)^3$ Slope of the line $y = 4x + 8$ is 4.			dy 4
$4(x-1)^3 = 4$ $(x-1)^3 = 1$ x = 2 Put $x = 2$, $y = (2-1)^4 + 4$		IM	For setting $\frac{dy}{dx} = 4$ For finding x, y and equation of tange
= 5 Equation of tangent is $\frac{y-5}{x-2} = 4$ $y = 4x-3$		1A	
		4	
	·		
	r.	The state of the s	
	., ^j		
		al second and a second a second and a second a second and	***···
2002-CE-A MATH-3 只限教師	參閱 FOI	RTEACH	RS' USE ONLY

Provided by dse.life

Solution	Marks	Darrand
$x\sin y = 2002$ $\sin y + x\cos y \frac{dy}{dx} = 0$ $OR \sin y \frac{dx}{dy} + x\cos y = 0$	lM+lA+lA	Remarks IM for product rule, 1A for $\frac{d}{dx} \sin y = \cos y \frac{dy}{dx}$,
$\frac{dy}{dx} = \frac{-\tan y}{x}$ Alternative solution (1)	i ;	1A for $\frac{d}{dx}(2002) = 0$ Accept $\frac{dy}{dx} = \frac{-\sin y}{x \cos y}$
$\sin y = \frac{2002}{x}$ $\cos y \frac{dy}{dx} = \frac{-2002}{x}$	1A	IM for chain rule
$\frac{dy}{dx} = \frac{-2002}{x^2 \cos y} = \frac{-2002}{\cos y} \cdot \frac{\sin y}{2002} \cdot \frac{1}{x} = \frac{-7a^2}{x}$ Alternative solution (2)	1M+1A 1A	1A for RHS
$x = \frac{2002}{\sin y}$ $\frac{dx}{dx} = -2002 \csc y \cot y - 2002 \cos y$	IA	dr
$\frac{dx}{dy} = -2002 \csc y \cot y = -2002 \cos y$ $\frac{dy}{dx} = \frac{-\sin y \tan y}{2002}$		IM for finding $\frac{dx}{dy}$ 1A for RHS
	4	
Let $x = \sin \theta$. $dx = \cos \theta d\theta$ $\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^{2}}} dx = \int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1 - \sin^{2} \theta}} \cos \theta d\theta$	1A 1A+1M 1	A for limits, 1M for integrand
$= \int_{0}^{\frac{\pi}{6}} d\theta$ $= \left[\theta\right]_{0}^{\frac{\pi}{6}}$		
<u>π</u> 6	1A O	mit dx , $d\theta$ in most cases (pp-1)
-CE-A MATH-4		

FOR TEACHERS' USE ONLY

	Solution		Marks	Remarks
·	$ x-4 = 2\sqrt{(x-1)^2 + y^2}$ $ x-4 = 2\sqrt{(x-1)^2 + y^2}$ $ x-4 = 4(x-1)^2 + 4y^2$ $ x-4 = 4x^2 - 8x + 4 + 4$	1,,2	1M+1A v exther all	1M for distance formula Accept omitting absolute sign
(b)	$x^2 + 4y^2 - 12 = 0$	× + 4 = 1	1	
_		y²-12=0 one for y one for y	1A+1A	1A for shape Axes not labeled (pp-1)
·	accept no origin			
$6. \qquad \begin{cases} y = \sin \theta \end{cases}$	ax i			
$y = \cos x = \frac{1}{2}$	cosx		1M	(can be omitted)
7	$= \int_0^{\frac{\pi}{4}} (\cos x - \sin x) dx$	alcept (\$\frac{1}{4} 15mx - 100x) dx	1M+1A	$1M \text{ for } = \int_a^b (y_2 - y_1) \mathrm{d}x$
	$= \left[\sin x + \cos x\right]_0^{\frac{\pi}{4}}$	J. '	1M	for $\int \cos x dx = \sin x$ and $\int \sin x dx = -\cos x$
	$= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - 1$ $= \sqrt{2} - 1$		1A 5	
				a de Arriconosca de la Constantina de Arriconosca de la Constantina de La Constantin

2002-CE-A MATH-

只限教師參閱

FOR TEACHERS' USE ONLY

· · · · · · · · · · · · · · · · · · ·	Solution	Marks	Remarks
(a)	x-1 > 2		
	x-1 > 2 or $x-1 < -2$	1A	
	x > 3 or $x < -1$	l lA	
		***	}
	Alternative solution (1)		1
	x-1 >2		
	$\left (x-1)^2\right > 4$	1A	
	$x^2 - 2x - 3 > 0$		
	(x+1)(x-3)>0		
	x+y(x-3)>0 x>3 or x<-1		
		1A	
	Alternative solution (2) Consider the cases (1) $x \ge 1$, (2) $x < 1$.		
	Case 1: $x \ge 1$		Accept including "=" sign
	The inequality becomes		
	x-1>2	1A	
	x > 3		· ·
	Since $x > 1$, $x > 3$.		
	Case 2 : x < 1		
	The inequality becomes		And the second s
	-x+1>2		
	x < -1		
	Since $x < 1$, $x < -1$.		
	Combining the 2 cases, $x > 3$ or $x < -1$.	1A	
(b)	y -1 > 2		
(-)	Using the result in (a),		
	y > 3 or $ y < -1$ (no solution)	1M+1M	134 6
	1) 2 or) car (no solution)	114141141	1M for using (a),
	y > 3 or $y < -3$	1A	1M for 2nd term having no solution
	·	1	
	Alternative solution (1)		
	y -1 >2		
	y -1>2 or $ y -1<-2$	1A	
	y > 3 or $ y < -1$ (no solution)	1M	For 2nd term having no solution
	y > 3 or $y < -3$	1A	
	Alternative solution (2)		1
	Consider the cases (1) $ y > 1$, (2) $ y < 1$.	*	
	Case 1: $ y > 1$ ($y > 1$ or $y < -1$)		
	The inequality becomes		
		1A	
	y >3		
	y > 3 or $y < -3$		
	Since $ y > 1$, $y > 3$ or $y < -3$.		
	Case 2: $ y < 1 \ (-1 < y < 1)$	 	
	The inequality becomes		
	- y +1>2	-	-
	y < -1 (no solution)	l 1M	
	Combining the 2 cases, $y > 3$ or $y < -3$.	1A	
			. [
		5	
	741 741 144 144 144 144 144 144 144 144		
		i i	1

2002-CE-A MATH-6

FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
$\frac{\tan x - \sin^2 x}{\tan x + \sin^2 x} = \frac{\sin x}{\cos x} - \sin^2 x$		
$\frac{\cos x}{\cos x} + \sin^2 x$ $= \frac{\sin x - \sin^2 x \cos x}{\cos x}$		
$\sin x + \sin^2 x \cos x$		
$= \frac{1 - \sin x \cos x}{1 + \sin x \cos x}$ $1 - \frac{1}{\sin 2x}$	1A .	
$=\frac{1-\frac{1}{2}\sin 2x}{1+\frac{1}{2}\sin 2x}$	1M	For $\sin x \cos x = \frac{1}{2} \sin 2x$
$= \frac{2 - \sin 2x}{2 + \sin 2x} = \frac{4 - (2 + \sin 2x)}{2 + \sin 2x}$	**************************************	
$=\frac{4}{2+\sin 2x}-1$	1	of the second se
Alternative solution		
$\frac{4}{2+\sin 2x}-1$		The state of the s
$=\frac{4}{2+2\sin x\cos x}-1$	1M	For $\sin 2x = 2\sin x \cos x$
$= \frac{2}{1 + \sin x \cos x} - 1$		
$= \frac{1 - \sin x \cos x}{1 + \sin x \cos x}$	1A	
$= \frac{\tan x (1 - \sin x \cos x)}{\tan x (1 + \sin x \cos x)}$		
$= \frac{\tan x - \sin^2 x}{\tan x + \sin^2 x}$	1	
$\frac{\tan x - \sin^2 x}{\tan x + \sin^2 x}$ is the least when $(2 + \sin 2x)$ is the		
greatest, i.e. when $\sin 2x = 1$. $x = \frac{\pi}{4}$	1 M	(can be omitted)
$\therefore \text{ Least value } = \frac{4}{2+1} - 1$		
$=\frac{1}{3}$	<u> </u>	
	_5	
	A. L.	

只限教師參閱

$z^2 + z + 1 = 0$	Marks	Remarks
$z = \frac{-1 \pm \sqrt{1 - 4}}{2}$ $= -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ $= -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$	IM	
α , β are $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$, $\cos \left(-\frac{2\pi}{3}\right) + i \sin \left(-\frac{2\pi}{3}\right)$. $\alpha^6 + \beta^6 = \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}\right)^6 + \left[\cos \left(-\frac{2\pi}{3}\right) + i \sin \left(-\frac{2\pi}{3}\right)\right]$	1A+1A	Accept degrees, Accept cis $\frac{4\pi}{2}$
$= \cos 4\pi + i \sin 4\pi + \cos (-4\pi) + i \sin (-4\pi)$ $= 2 \cos 4\pi$ $= 2$	IM	For De Moivre Theorem
Alternative solution	IA	••
$z^{2} + z + 1 = 0$ $(z-1)(z^{2} + z + 1) = 0$ $z^{3} - 1 = 0$		ر .
As α , β are the roots of $z^3 - 1 = 0$, $\alpha^3 = \beta^3 = 1$ $\alpha^6 + \beta^6 = (\alpha^3)^2 + (\beta^3)^2$ $= 1^2 + 1^2$	IM	

			ILMUILIN	O DOE ONL!
		Solution	Marks	Remarks
10.	(a)	$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$ $= \overrightarrow{OA} + \overrightarrow{OC}$		
		$=(\vec{i}+4\vec{j})+(5\vec{i}+2\vec{j})$	1M	For finding \overrightarrow{OB} or \overrightarrow{AC}
		$= 6\vec{i} + 6\vec{j}$ $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$	1A	
		$AC = OC - OA$ $= (5\vec{i} + 2\vec{j}) - (\vec{i} + 4\vec{j})$		
		$=4\vec{i}-2\vec{j}$	1A	
	(b)	$\overrightarrow{OB} \cdot \overrightarrow{AC} = \overrightarrow{OB} \overrightarrow{AC} \cos \theta$		
		$(6\vec{i} + 6\vec{j}) \cdot (4\vec{i} - 2\vec{j}) = \sqrt{6^2 + 6^2} \sqrt{4^2 + (-2)^2}$	cosθ IM	
		$24 - 12 = \sqrt{72} \sqrt{20} \cos \theta$	lM	For LHS
		$\cos \theta = \frac{1}{\sqrt{10}}$		
		$\theta = 72^{\circ}$ (correct to the nearest degree)	1A	Omit vector sign or dot product sign in most cases (pp-1)
		Alternative solution (1) mOB = 1		↓ <i>y</i>
		$mAC = -\frac{1}{2}$	} IM	B(6, 6)
		$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $ $1 - \left(-\frac{1}{2} \right)$ $\cot \theta$		4(1,4) \[\sqrt{18} \]
		$= \frac{1 - (-\frac{1}{2})}{1 + 1(-\frac{1}{2})}$		$\begin{pmatrix} M \\ (3,3) \\ \sqrt{5} \end{pmatrix}_{C(5,2)}$
		$1+1\left(-\frac{1}{2}\right)$ = 3	1M	
		$\theta = 72^{\circ}$ (correct to the nearest degree)	1A	0'
		Alternative solution (2) $BC = \sqrt{(6-5)^2 + (6-2)^2} = \sqrt{17}$	1	
		$CM = \sqrt{(5-3)^2 + (2-3)^2} = \sqrt{5}$	> IM	
		$MB = \sqrt{(6-3)^2 + (6-3)^2} = \sqrt{18}$		5
		$\cos \theta = \frac{5 + 18 - 17}{2\sqrt{5}\sqrt{18}}$		7115
			1M	
		$\theta = 72^{\circ}$ (correct to the nearest degree) Alternative solution (3)	IA	
		Slope of $OB = 1$ $\therefore \angle BOE = \tan^{-1}(1) = 45^{\circ}$	ım	
		1-5 2		The control of the co
		$\theta = \frac{(1 - 1)^2 + 153.4^\circ}{2}$		
		Slope of $AC = \frac{4-2}{1-5} = -\frac{1}{2}$ $\therefore = \tan^{-1}(-\frac{1}{2}) = 153.4^{\circ}$ $\theta = 4 - \angle BOE_{\omega}$ $= 180^{\circ} - (153.4 - 45^{\circ})$	1M	
		= 72° (correct to the nearest degree)	1Å	
			6	
•	· · · · · · · · · · · · · · · · · · ·			

只限教師參閱

	FOR TEACHERS' USE	E ONLY
Solution	Marks	
	Marks	Remarks
11. (a) $\begin{cases} y = x^2 - 2x - 6 \\ y = 2x + 6 \end{cases}$ $x^2 - 2x - 6 = 2x + 6$ $x^2 - 4x - 12 = 0$ $x = -2 \text{ or } 6$ When $x = -2$	1М	
When $x=-2$, $y=2$ When $x=6$, $y=18$ the coordinates of A and B are (-2) (6,18) respectively. $f(x) = x^2 - 2x - 6$ $= (x-1)^2 - 1 - 6 = (x-1)^2 - 7$ the coordinates of C are $(1,-7)$.	2) and 1A 1M 1A	(6,18)
 (b) The range of values of x such that f(x -2 ≤ x ≤ 6. From Figure 3, f(x) = k has only one reconstruction. 	$0 \le g(x)$ is $1A$	(1,-1)
2 < k ≤ 18 OR k = -7.	1 <u>A+1A</u> -7	
$\chi^2 - 2\chi - 6 = 0$ $(\chi - 1)^2 = 7$		
(x-1)= 7		
アナノニア		
··.		
	}	

只限教師參閱

FOR TEACHERS' USE ONLY

	只候教師参阅 FURIE		OSEONLI
B-1	Solution	Marks	Remarks
12. (a)			
	RHS = $1(2^{1+1}) = 4 = LHS$	1	
	the statement is true for $n=1$.		
	Assume $2(2) + 3(2)^2 + \dots + (k+1)(2^k) = k(2^{k+1})$ for	1	
	any positive integer k.	. A.1.	
	Then $2(2) + 3(2)^2 + 4(2)^3 + \dots + (k+1)(2^k) + (k+2)$	(2***)	
	$= k(2^{k+1}) + (k+2)(2^{k+1})$	1	
	$=2^{k+1}(k+k+2)$		
	$=(k+1)2^{k+2}$	1	
	The statement is also true for $n = k + 1$ if it is true for		
	n = k.		
	By the principle of mathematical induction,		
	the statement is true for all positive integers n.	1	Not awarded if any one of the above
			marks was withheld.
(b)	$1(2) + 2(2^2) + 3(2^3) + \dots + 98(2^{98})$	h	
•	$=2[1+2(2)+3(2^2)+\cdots+98(2^{97})]$	} IM	
	$=2+2[2(2)+3(2^2)+\cdots+98(2^{97})]$	'	
	$=2+2(97)(2^{98})$	1M	For using (a)
	$=2+97(2^{99})$	1	Tor using (a)
		1	
	Alternative solution (1)		
	Put $n = 97$:	IA	
:	$2(2)+3(2^{2})+4(2^{3})+\cdots+98(2^{97})=97(2^{98})$ Add 1 to both sides:	1 150	For using (a)
	$1 + 2(2) + 3(2^2) + \dots + 98(2^{97}) = 97(2^{98}) + 1$	1M	
	Multiply both sides by 2:		***************************************
	$2+2(2^2)+3(2^3)+\cdots+98(2^{98})=97(2^{99})+2$	1	
	Alternative solution (2)		
	$1(2) + 2(2^2) + 3(2^3) + \dots + 98(2^{98})$		
	$=(1+1)(2)+(2+1)(2^2)+(3+1)(2^3)+\cdots$	1M	Manual Andrews
	$+(98+1)(2^{98})-(2+2^2+\cdots+2^{98})$		-
	$=2(2)+3(2^2)+4(2^3)+\cdots+(99)(2^{98})$		For using (a)
	$-(2+2^2+2^3+\cdots 2^{98})$		
	*	VIM	^
	$=98(2^{98+1}) - \frac{2(2^{98}-1)}{2-1}$ $=98(2^{99}) - 2^{99} + 2$		
	$=98(2^{99})-2^{99}+2$	-	111111111111111111111111111111111111111
	=97(2 ⁹⁹) + 2	1	***************************************
	L		
		8	
) + 2(2)) + + h 2" = (4-1) 2 htl + 2		
2 L.	4.5=2, 7.41.5=2	***************************************	
د (ري	+ 5(5) + - + c5/c = (10-1) 5/c+1+5	1	
	(2) x = + (xxx + (xxx) 2xxx		
) 21c+1+2+ ((c+1)2K+1		
= K 2 K+			
• •	A MATH-II		•

5, t n > 98

只限教師參閱

只限教師參問

		六版教師參閱 Fi	OR T	TEACH	IFR	S' USE ONLY
···		Solution	·			O GOL OME!
13.	(a)			M	arks	Remarks
	(a)	$\vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos \angle AOB$				B
		$=(3)(2)\cos\frac{\pi}{2}$		-		E
		3 -3		lM		
		-		_ <u></u>		"//
				2		//
	(b)	$\overrightarrow{OE} = \frac{t\overrightarrow{OA} + (1-t)\overrightarrow{OB}}{t + (1-t)}$				0/13
		_		1		3
		$= i\ddot{a} + (1-t)\ddot{b}$ Since $CF + cF$		1A		
		Since $OE \perp AB$, $\overrightarrow{OE} \cdot \overrightarrow{AB} = 0$		1 "		
					ļ	
		$[t\vec{a}+(1-t)\vec{b}]\cdot(\bar{b}-\bar{a})=0$		IM	- 1	•
		$t \vec{a} \cdot \vec{b} - t \vec{a} \cdot \vec{a} + (1-t) \vec{b} \cdot \vec{b} - (1-t) \vec{a} \cdot \vec{b} =$	0	1M	- 1	¥9
		3t-9t+4(1-t)-3(1-t)=0		IA		For distributive law
		1 - 7t = 0		IA.		For $\vec{a} \cdot \vec{a} = 9$ or $\vec{b} \cdot \vec{b} = 4$
		$t = \frac{1}{7}$				
		1 6				
		$\overrightarrow{OE} = \frac{1}{7}\ddot{a} + \frac{6}{7}\ddot{b}$		l_iA		
		5- DE-01	1			
		$A = \frac{1}{7}\ddot{a} + \frac{0}{7}\ddot{b}$ $BA \cdot BF$	ا د.	_5		• •
	(¢)	BA · BF				•
		$= \overrightarrow{BA} \overrightarrow{BF} \cos \angle ABF$.]			· • • • • • • • • • • • • • • • • • • •
		$= \overrightarrow{BA} \overrightarrow{BE} $		1A ,		Aret
				lA		•
		= a constant since BA and BE are const the student is correct.	lants			
		by Cosine Law		1		•
		$ \overrightarrow{BA} ^2 = \overrightarrow{OA} ^2 + \overrightarrow{OB} ^2 - 2 \overrightarrow{OA} \overrightarrow{OB} \cos \angle$	ا م			
		$= 3^2 + 2^2 - 2(3)(2)\cos\frac{\pi}{3}$	IOB			
		_				·
		$= 7$ $ \overrightarrow{BA} = \sqrt{7}$				•
		DA = \(\forall \) :				
		$ \overrightarrow{BE} = \frac{\sqrt{7}}{2}$				
		7		IM ·	For	finding $ \overline{BA} $ and $ \overline{BE} $
	F	From (b), $\overrightarrow{BE} = \frac{1}{7} \overrightarrow{BA}$				· · · · · · · · · · · · · · · · · · ·
		,				
		$ \overrightarrow{BE} = \frac{1}{7} \overrightarrow{BA} $				•
		,				4
		$=\frac{\sqrt{7}}{7}$	-			
	.:	$\overrightarrow{BA} \cdot \overrightarrow{BF} = \overrightarrow{BA} \overrightarrow{BE} $				-
				İ		·
		$=\sqrt{7}\left(\frac{\sqrt{7}}{7}\right)=1$		ia l		
		,				
			-]		· ·
				-		
·A N	1ATH-12	3				
- 1,		•	1	i		

2002-C

	Solution	Marks	Remarks
	Alternative solution for finding $ \overrightarrow{BA} \overrightarrow{BE} $ $ \overrightarrow{BA} \cdot \overrightarrow{BE} = (\overrightarrow{OA} - \overrightarrow{OB}) \cdot (\overrightarrow{OE} - \overrightarrow{OB})$ $= (\vec{a} - \vec{b}) \cdot (\frac{1}{7} \vec{a} + \frac{6}{7} \vec{b} - \vec{b})$ $= \frac{1}{7} (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$ $= \frac{1}{7} (\vec{a} \cdot \vec{a} - 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b})$ $= \frac{1}{7} [3^2 - 2(3) + 2^2]$ $= 1$ $\therefore \overrightarrow{BA} \cdot \overrightarrow{BF} = 1$] IM	
	Alternative solution (c) Let $\overrightarrow{OF} = k \overrightarrow{OE}$. (k is a real no.) $\overrightarrow{BF} = \overrightarrow{OF} - \overrightarrow{OB} = k(\frac{1}{3} + \frac{6}{3} + \frac{1}{3})$ $= k\overrightarrow{OE} - \overrightarrow{OB}$	IA }	
·	$= k \left(\frac{1}{7} \vec{a} + \frac{6}{7} \vec{b}\right) - \vec{b}$ $= (\vec{a} - \vec{b}) \cdot \left[\frac{k}{7} \vec{a} + \left(\frac{6k}{7} - 1\right) \vec{b}\right]$ $= \frac{k}{7} \vec{a} \cdot \vec{a} + \left(\frac{6k}{7} - 1\right) \vec{a} \cdot \vec{b} - \frac{k}{7} \vec{a} \cdot \vec{b} - \left(\frac{6k}{7} - 1\right) \vec{b}$	IM!	
	$= \frac{k}{7}(9) + (\frac{6k}{7} - 1)(3) - \frac{k}{7}(3) - (\frac{6k}{7} - 1)(4)$ $= 1$ $\therefore \overline{BA \cdot BF} \text{ is constant and the student is correct.}$	1A 1	Omit vector sign or dot product sign in most cases (pp-1)
	$= (\vec{a} - \vec{5}) \cdot (\vec{0} + \vec{0})$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b})$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b})$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b})$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b})$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b})$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b})$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b})$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b})$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b})$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b})$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b}) \cdot \vec{0}$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b}) \cdot \vec{0}$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b}) \cdot \vec{0}$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b}) \cdot \vec{0}$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b}) \cdot \vec{0}$ $= (\vec{a} - \vec{b}) \cdot \vec{0} + (\vec{a} - \vec{b}) \cdot \vec{0}$. 9
		ed to the second se	

2002-CE-A MATH-13

Solution		
. (a) A	Marks Marks	Remarks
B C		
D 4		
(i) $PB = PC = \sqrt{x^2 + 4}$ PA = (3 - x)		
$r = PA + PB + PC$ $= 2\sqrt{x^2 + 4} + (3 - x)$		
$\frac{dr}{dx} = 2(\frac{1}{2}) \frac{2x}{\sqrt{x^2 + 4}} - 1$	1A	
$=\frac{2x}{\sqrt{x^2+4}}-1$		
(ii) (1) $\frac{dr}{dx} \ge 0$		Accept $\frac{dr}{dx} > 0$
$\frac{2x}{\sqrt{x^2+4}} - 1 \ge 0$	lM	ux
$2x \ge \sqrt{x^2 + 4}$ $4x^2 \ge x^2 + 4$		
$x \ge \frac{2}{\sqrt{3}}$		
$\therefore r \text{ is increasing on } \left(\begin{array}{c} 3 \ge j \\ x \ge j \end{array} \right)$ (2) $\frac{dr}{dx} \le 0$	$\begin{array}{c c} \hline \frac{2}{\sqrt{3}}. & IA \\ > 2 \overline{\cancel{5}} \\ 3 \end{array}$	Accept $x > \frac{2}{\sqrt{3}}$
$x \le \frac{2}{\sqrt{3}}$	77.00	
\therefore r is decreasing on $0 \le x \le x \le x$		Accept $x < \frac{2}{\sqrt{3}}$
r is the least at $x = \frac{2}{\sqrt{3}} \cdot \frac{2h}{3}$ Least value of $r = 2\sqrt{(\frac{2}{\sqrt{3}})^2 + 4}$	IM	
	$4+(3-\frac{2}{\sqrt{3}})$	
$=2\sqrt{3}+3$	1A	
	W	**************************************

Solution	Marks	
Alternative solution	IVIALKS	Remarks
(ii) $\frac{dr}{dx} = \frac{2x}{\sqrt{x^2 + 4}} - 1 = 0$ $x = \frac{2}{\sqrt{3}}$	1 M	
$\frac{d^{2}r}{dx^{2}} = 2(x^{2} + 4)^{\frac{1}{2}} - x(x^{2} + 4)^{\frac{3}{2}}(2x)$ $= \frac{8}{(x^{2} + 4)^{\frac{3}{2}}}$ $\frac{d^{2}r}{dx^{2}}\Big _{x=\frac{2}{\sqrt{3}}} = \frac{3\sqrt{3}}{8}\Big > 0$	1M	For checking
r is increasing on $ 3 \ge x \ge \frac{2}{\sqrt{3}}$. and decreasing on $ 0 \le x \le \frac{2}{\sqrt{3}}$. Least value of $ x = 2\sqrt{(\frac{2}{\sqrt{3}})^2 + 4} + (3 - \frac{2}{\sqrt{3}})$ $= 2\sqrt{3} + 3$	IA IA	Not awarded if checking was incomplete.
(iii) The greatest value of r occurs at the end-point At $x = 0$, $r = 2\sqrt{0+4} + (3-0) = 7$ At $x = 3$, $r = 2\sqrt{3^2 + 4} + (3-3) = 2\sqrt{13}$ the greatest value of r is $2\sqrt{13}$.	s. IM	when $x = \frac{2}{12}$
(b) $r = 2\sqrt{x^2 + 4} + (1 - x)$ $\frac{dr}{dx} = \frac{2x}{\sqrt{x^2 + 4}} - 1$	9 1A	13 rent = 1 + 2 13.
From (a), r is decreasing on $0 \le x \le 1$. r is the least at $x = 1$ Least value $= 2\sqrt{1+4} + (1-1)$ $= 2\sqrt{5}$	1M	
	1A 3	

Solution	Marks	Remarks
5. (a) £		
D'		
F	1	
1		
D		
E ·		
A = Area of $\triangle ODE$ + area of $\triangle OEF$ + area of $\triangle ODF$ (O is centre of C_1)		
$=\frac{1}{2}(DE)(r)+\frac{1}{2}(EF)(r)+\frac{1}{2}(DF)(r)$		
	2A	
$=\frac{1}{2}(DE+EF+FD)(r)$		·
$A = \frac{1}{2}pr$		
$n = \frac{1}{2}p$	1M+1	IM for p = DE + EF + FD
Alternative solution		
$A = \text{Area of } OD'EF' + \text{area of } \Delta OE'FD' +$		
area of $\triangle OF'DE'$		
$=2(\frac{1}{2})(ED')(r)+2(\frac{1}{2})(FE')(r)+2(\frac{1}{2})(DF')(r)$	2A	
		•
$=\frac{1}{2}(2ED'+2FE'+2DF')(r)$		***************************************
$A = \frac{1}{2} pr$		
4	IM+1	1M for = $p = 2(ED' + FE' + DF')$
	4	
(b) (i) y 1 P(2.5)		
R(2, 5)		
180		
\$*/		
3(5,2)		
Q(-2,1) [5°		
O X		

J		
$QR = \sqrt{(-2-2)^2 + (1-5)^2} = \sqrt{32}$		
$RS = \sqrt{(2-5)^2 + (5-2)^2} = \sqrt{18}$		
$SQ = \sqrt{(-2-5)^2 + (1-2)^2} = \sqrt{50}$	-	
$p = \sqrt{32} + \sqrt{18} + \sqrt{50}$	ĺ	
= 12√2		
Area of $\triangle QRS = \frac{1}{2}(QR)(RS)$	-	
*		
$=\frac{1}{2}(\sqrt{32})(\sqrt{18})$	IM	
± 12		
CE-A MATH-16		

只限教師參閱 FOR TEACHERS' USE ONLY

Alternative solution Area of $\triangle QRS = \frac{1}{2}\begin{bmatrix} -2 & 1 \\ 5 & 2 \\ 2 & 5 \\ -2 & 1 \end{bmatrix}$ $= \frac{1}{2}(-4+25+2-5-4+10)$ $= 12$ Using (a), $A = \frac{1}{2}pr$ $12 = \frac{1}{2}(12\sqrt{2})r$ $r = \sqrt{2}$ IM (ii) Let (h, k) be the centre of C_2 . From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $= 2$ $k = 5 - 2 = 3$ \therefore the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. IM $\frac{OR}{2} x^2 + y^2 - 4x - 6y + 11 = 0$	
Area of $\triangle QRS = \frac{1}{2} \begin{vmatrix} -2 & 1 \\ 5 & 2 \\ 2 & 5 \\ -2 & 1 \end{vmatrix}$ $= \frac{1}{2} (-4 + 25 + 2 - 5 - 4 + 10) \qquad 1M$ $= 12$ Using (a), $A = \frac{1}{2} pr$ $12 = \frac{1}{2} (12\sqrt{2}) r \qquad IM$ $r = \sqrt{2} \qquad 1M$ $1A$ (ii) Let (h, k) be the centre of C_2 . From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $= 2$ $k = 5 - 2 = 3$ \therefore the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. $1A \qquad QR x^2 + y^2 - 4x - 6y + 11 = 0$	
Using (a), $A = \frac{1}{2}pr$ $12 = \frac{1}{2}(12\sqrt{2})r$ $12 = \frac{1}{2}(12\sqrt{2})r$ $r = \sqrt{2}$ 1M IM IM IM IM IM IM IM IM IM	
Using (a), $A = \frac{1}{2}pr$ $12 = \frac{1}{2}(12\sqrt{2})r$ $12 = \frac{1}{2}(12\sqrt{2})r$ $r = \sqrt{2}$ 1M IM IM IM IM IM IM IM IM IM	
Using (a), $A = \frac{1}{2} pr$ $12 = \frac{1}{2} (12\sqrt{2}) r$ $12 = \frac{1}{2} (12\sqrt{2}) r$ $r = \sqrt{2}$ III III III III III III III I	
$\begin{vmatrix} -2 & 1 \\ = \frac{1}{2}(-4+25+2-5-4+10) & \text{IM} \\ = 12 & \\ \text{Using (a)}, \ A = \frac{1}{2}pr \\ 12 = \frac{1}{2}(12\sqrt{2})r & \text{IM} \\ r = \sqrt{2} & \text{IA} \\ \text{ii) Let } (h, k) \text{ be the centre of } C_2. \\ \text{From (ii), slope of } QR = 1 \text{ and slope of } RS = -1, \\ \text{so the angle bisector of } QR \text{ and } RS \text{ is a vertical line.} \\ \text{As the centre of } C_2 \text{ lies on the angle bisector, so } h = 2. & \text{IM} \\ \text{Distance between R and the centre } = \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2} \text{ IM} \\ = 2 & \text{IM} \\ \therefore \text{ the coordinates of the centre of } C_2 \text{ are } (2, 3). \\ \text{The equation of } C_2 \text{ is } (x-2)^2 + (y-3)^2 = 2. & \text{IA} \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x^2 + y^2 - 4x - 6y + 11 = 0 \\ \text{OR } x + y^2 - 4x - 6y + 11$	
Using (a), $A = \frac{1}{2}pr$ $12 = \frac{1}{2}(12\sqrt{2})r$ $12 = \frac{1}{2}(12\sqrt{2})r$ IM $r = \sqrt{2}$ i) Let (h, k) be the centre of C_2 . From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $k = 5 - 2 = 3$ $\therefore \text{ the coordinates of the centre of } C_2 \text{ are } (2, 3).$ The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. 1A $\frac{OR}{2} x^2 + y^2 - 4x - 6y + 11 = 0$	
Using (a), $A = \frac{1}{2}pr$ $12 = \frac{1}{2}(12\sqrt{2})r$ $12 = \frac{1}{2}(12\sqrt{2})r$ IM $r = \sqrt{2}$ i) Let (h, k) be the centre of C_2 . From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $k = 5 - 2 = 3$ $\therefore \text{ the coordinates of the centre of } C_2 \text{ are } (2, 3).$ The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. 1A $\frac{OR}{2} x^2 + y^2 - 4x - 6y + 11 = 0$	
Using (a), $A = \frac{1}{2}pr$ $12 = \frac{1}{2}(12\sqrt{2})r$ $12 = \frac{1}{2}(12\sqrt{2})r$ IM $r = \sqrt{2}$ i) Let (h, k) be the centre of C_2 . From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $k = 5 - 2 = 3$ $\therefore \text{ the coordinates of the centre of } C_2 \text{ are } (2, 3).$ The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. 1A $\frac{OR}{2} x^2 + y^2 - 4x - 6y + 11 = 0$	
Using (a), $A = \frac{1}{2}pr$ $12 = \frac{1}{2}(12\sqrt{2})r$ $r = \sqrt{2}$ IM IA i) Let (h, k) be the centre of C_2 . From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ IM $= 2$ $k = 5 - 2 = 3$ \therefore the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. IM $\frac{OR}{2} x^2 + y^2 - 4x - 6y + 11 = 0$	
$12 = \frac{1}{2}(12\sqrt{2})r$ $r = \sqrt{2}$ IM $r = \sqrt{2}$ i) Let (h, k) be the centre of C_2 . From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $= 2$ $k = 5 - 2 = 3$ \therefore the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. IM $\frac{OR}{2} x^2 + y^2 - 4x - 6y + 11 = 0$	
$12 = \frac{1}{2}(12\sqrt{2})r$ $r = \sqrt{2}$ IM $r = \sqrt{2}$ i) Let (h, k) be the centre of C_2 . From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $= 2$ $k = 5 - 2 = 3$ \therefore the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. IM $\frac{OR}{2} x^2 + y^2 - 4x - 6y + 11 = 0$	
i) Let (h, k) be the centre of C_2 . From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $= 2$ $k = 5 - 2 = 3$ \therefore the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. 1A OR $x^2 + y^2 - 4x - 6y + 11 = 0$	
i) Let (h, k) be the centre of C_2 . From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $= 2$ $k = 5 - 2 = 3$ \therefore the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. 1A OR $x^2 + y^2 - 4x - 6y + 11 = 0$	
In the coordinates of the centre of C_2 and C_2 is a vertical line. As the centre of C_2 lies on the angle bisector, so C_2 lies on the angle bisector lies C_2 lies on	
i) Let (h, k) be the centre of C_2 . From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $= 2$ $k = 5 - 2 = 3$ \therefore the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. 1A OR $x^2 + y^2 - 4x - 6y + 11 = 0$	
From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $= 2$ $k = 5 - 2 = 3$ \therefore the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. 1A OR $x^2 + y^2 - 4x - 6y + 11 = 0$	
From (ii), slope of $QR = 1$ and slope of $RS = -1$, so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h = 2$. Distance between R and the centre $= \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $= 2$ $k = 5 - 2 = 3$ \therefore the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x - 2)^2 + (y - 3)^2 = 2$. 1A OR $x^2 + y^2 - 4x - 6y + 11 = 0$	
so the angle bisector of QR and RS is a vertical line. As the centre of C_2 lies on the angle bisector, so $h=2$. Distance between R and the centre = $\sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $k=5-2=3$ \therefore the coordinates of the centre of C_2 are $(2,3)$. The equation of C_2 is $(x-2)^2 + (y-3)^2 = 2$. 1A OR $x^2 + y^2 - 4x - 6y + 11 = 0$	
line. As the centre of C_2 lies on the angle bisector, so $h=2$. Distance between R and the centre = $\sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $k = 5 - 2 = 3$ $\therefore \text{ the coordinates of the centre of } C_2 \text{ are } (2, 3).$ The equation of C_2 is $(x-2)^2 + (y-3)^2 = 2$. 1A $\frac{OR}{x^2 + y^2 - 4x - 6y + 11 = 0}$	
As the centre of C_2 lies on the angle bisector, so $h = 2.$ Distance between R and the centre = $\sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $k = 5 - 2 = 3$ $\therefore \text{ the coordinates of the centre of } C_2 \text{ are } (2, 3).$ The equation of C_2 is $(x-2)^2 + (y-3)^2 = 2$. 1A $OR x^2 + y^2 - 4x - 6y + 11 = 0$	
$h = 2.$ Distance between R and the centre = $\sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M $k = 5 - 2 = 3$ ∴ the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x-2)^2 + (y-3)^2 = 2$. $OR x^2 + y^2 - 4x - 6y + 11 = 0$	
Distance between R and the centre = $\sqrt{(\sqrt{2})^2 + (\sqrt{2})^2}$ 1M k = 5 - 2 = 3 \therefore the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x-2)^2 + (y-3)^2 = 2$. 1A $OR x^2 + y^2 - 4x - 6y + 11 = 0$	
$k = 5 - 2 = 3$ $\therefore \text{ the coordinates of the centre of } C_2 \text{ are } (2, 3).$ The equation of C_2 is $(x-2)^2 + (y-3)^2 = 2$. 1M $\frac{OR}{x^2 + y^2 - 4x - 6y + 11 = 0}$	
$k = 5 - 2 = 3$ $\therefore \text{ the coordinates of the centre of } C_2 \text{ are } (2, 3).$ The equation of C_2 is $(x-2)^2 + (y-3)^2 = 2$. 1M $\frac{OR}{x^2 + y^2 - 4x - 6y + 11 = 0}$	
k = 5 - 2 = 3 \therefore the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x-2)^2 + (y-3)^2 = 2$. 1M OR $x^2 + y^2 - 4x - 6y + 11 = 0$	
the coordinates of the centre of C_2 are $(2, 3)$. The equation of C_2 is $(x-2)^2 + (y-3)^2 = 2$. 1A $OR x^2 + y^2 - 4x - 6y + 11 = 0$	
The equation of C_2 is $(x-2)^2 + (y-3)^2 = 2$. 1A $OR x^2 + y^2 - 4x - 6y + 11 = 0$	
Alternative solution (1)	
Equation of QR	
$\frac{y-5}{x-2} = \frac{5-1}{2-(-2)}$	
1 1	
x-y+3=0	
Let (h, k) be the centre of C_2 .	
$\left \frac{(h-k+3)}{\sqrt{2}} \right = \sqrt{2}$ For distance formula	
h-k+1=0(1) IA For either (1), (2) or (3)	
Equation of RS	.
$\frac{y-5}{x-2} = \frac{5-1}{2-5}$	KS and (
X = 2	1 1
x+y-7=0	£ 1 t
h+k-7	
$-\left(\frac{h+k-7}{\sqrt{2}}\right) = \sqrt{2}$	
1 1.	
$h+k-5=0 \qquad(2)$	
Solve (1) and (2), $h = 2$, $k = 3$. $1M$ For solving (1) and (2)	
: the equation of C_2 is $(x-2)^2 + (y-3)^2 = 2$.	
(1 - 2) - (3 - 2) - (3 - 2) - (4 - 2	ŧ
Equation of $QS: x-7y+9=0$	
$\left \frac{h - 7k + 9}{-\sqrt{50}} \right = \sqrt{2}$	
h-7k+19=0(3)	
!	
·	
The state of the s	·
	÷

2002-CE-A MATH-17

只限教師參閱

Solution	Marks	Remarks
Alternative solution (2)		
$U_{1} = V_{1} = V_{2} = V_{2$	> S (5, 2)	
Q(-2, 1) (~ sin ~	x	
$\frac{RT}{TQ} = \frac{\sqrt{2}}{3\sqrt{2}} = \frac{1}{3}$	IМ	
$a = \frac{-2+6}{1+3} = 1, b = \frac{1+15}{1+3} = 4$	1M	
$\frac{RF}{FS} = \frac{\sqrt{2}}{2\sqrt{2}} = \frac{1}{2}$		
$c = \frac{5+4}{1+2} = 3, d = \frac{2+10}{1+2} = 4$ $h+2 = 1+3$	1A	For a, b, c, d
$\frac{h+2}{2} = \frac{1+3}{2} : h=2$ $k+5 4+4$	IM	5
$\frac{k+5}{2} = \frac{4+4}{2} \qquad k=3$: the equation of C_2 is $(x-2)^2 + (y-3)^2 = 2$.	1A ,	3
x +42 -4x-68 +11 = x	>	į

		只既致即會閱 FURIE	MOHENC	OSLONLI
		Solution	Marks	Remarks
6.	(a)	Volume = $\int_{h}^{r} \pi x^{2} dy \qquad \text{oranj with lower}$	IM.	For $V = \pi \int_a^b x^2 dy$,
		$=\pi \int_{h}^{r} (r^2 - y^2) \mathrm{d}y$	1A `	
		$=\pi\left[r^2y-\frac{1}{3}y^3\right]_h^r$	1A	For primitive function
		$= \pi \left[r^3 - \frac{1}{3}r^3 - r^2h + \frac{1}{3}h^3 \right]$		
		$=\frac{\pi}{3}(2r^3-3r^2h+h^3)$	<u> </u>	
		3 (m. s. wind)	4	
	(b)	(i) Using the result in (a), substitute $r = 14$, $h = 13$: Capacity of the pot		
		$=\frac{4}{3}\pi(14)^3-\frac{\pi}{3}[2(14)^3-3(14)^2(13)+(13)^3]$	1M	,
		= 3645 π	1A	
		Alternative solution Capacity of the pot	······································	
		$= \frac{4}{3}\pi(14)^3 - \pi \int_{13}^{14} (196 - y^2) dy$	1M	$\frac{OR}{OR} V = \pi \int_{-14}^{13} \frac{(196 - y^2) dy}{y^2} dy$
		$= \frac{4}{3}\pi (14)^3 - \pi \left[196y - \frac{1}{3}y^3 \right]_{12}^{14}$		d-14 was be wrong
		$= \frac{10976\pi}{3} - \frac{41\pi}{3}$		x 2 (196-3-) 12
		$= 3645 \pi$	1A	Ja = 1815 = 2 x
		((3)		_ (0,0
				= [14 (196-92) f]
		0 14		= 1829 12.
		Let C be the centre of the stopper. OB = 14, $BC = 6$, $OA = 13$		
		$AB = \sqrt{OB^2 - OA^2}$	13.4	Alternative solution Subs. $y = 13$ into $x^2 + y^2 = 196$, $x = 3$
		$= \sqrt{14^2 - 13^2} = \sqrt{27}$	IM (م	$y = 13$ BRO $x + y^{-} = 190, x = -190$
		$AS' = \sqrt{BO^2 - AB^2}$	iM	Subs. $x = \sqrt{27}$ into $x^2 + y^2 = 36$, $y =$
		$= \sqrt{6^2 - 27} = 3$ $(AD = 6 - 3 = 3)$	1A	to any to the state of the stat
]

2002-CE-A MATH-19

只限教師參閱

FOR TEACHERS' USE ONLY

Solution		Marks	Remarks
= 364	city of the perfume bottle eacity of pot found in (i) – Volume of port the stopper lying inside the pot $15\pi - \frac{\pi}{3} [2(6)^3 - 3(6)^2 (3) + (3)^3]$ $15\pi - 45\pi$	ion 1M 1M 1A	For 2nd term
11 - 11 - 11 - 11 - 11 - 11 - 11 - 11			
	•		
			•
			,
•			•
	•		
·			
	e e e e e e e e e e e e e e e e e e e		
		-	

2-CE-A MATH-20			

只限教師參閱

Solution		Marks	Remarks
(a) Marking Criteria Find CF Find BF Find ∠BFC	2M+1A 3M 1M+1A 25 25		
Consider $\triangle ACD$: Let E be the foot of	For perpendicular from A to CD. $\cos \angle ADE = \frac{DE}{AD} = \frac{15}{25} = \frac{3}{5}$	IM	\(\alpha ACD = \alpha ADC = 53.13^\circ \(\alpha CAD = 73.74^\circ \)
$ \begin{array}{c c} 25 & F \\ \hline & F \\ \hline & S \\ \hline & S \\ \hline & S \\ \hline & D \\ \hline & S \\ \hline & S \\ \hline & D \\ \hline & S \\ \hline & S \\ \hline & D \\ \hline & S \\ \hline $	$CF = CD \sin \angle ADE$ $= 30 \left(\frac{\sqrt{5^2 - 3^2}}{5} \right) \left(a^{cosp} \right)^{\frac{1}{2}}$ $= 24$ $+ a + 3 + 4$	1M 1A	
į.	Alternative solution $AE = \sqrt{25^2 - 15^2}$ $= 20$ $\frac{1}{2}(CD)(AE) = \frac{1}{2}(AD)(CF)$	1M	
Consider ΔABD:	$\frac{1}{2}(30)(20) = \frac{1}{2}(25)(CF)$ $CF = 24$	IM IA	
28 25	$\cos \angle BAD = \frac{28^2 + 25^2 - 40^2}{2(28)(25)}$ $= -\frac{191}{1400}$	1M	∠BAD = 97.84° ∠ADB = 43.90° ∠ABD = 38.26°
Consider $\triangle ACF$:	$AF^{2} = AC^{2} - CF^{2}$ $= 25^{2} - 24^{2} = 49$ $AF = 7$	1M	625- AF = 30 - (25-AF
C Consider $\triangle ABF$:	$BF^{2} = AB^{2} + AF^{2} - 2(AB) (AF^{2})$ $= 28^{2} + 7^{2} - 2(28) (7) (-\frac{1}{12})$	cos <i>∠BAF</i>	

只限教師參閱

Solution		1	Marks	······································
Alternative solu Consider AABI	ltíon		Maiks	Remarks
28 B 40 Consider $\triangle CDF$	25 cos ZBDA =	$=\frac{40^2 + 25^2 - 28^2}{2(40)(25)}$ $=\frac{1441}{2000}$		1M
24	DF			IM
Consider ΔBDF:	$BF^2 = BD^2 + L$	$DF^2 - 2(BD)(DF)$ $\frac{1}{2} - 2(40)(18)(\frac{14}{20})$ ≈ 29.77	cos ∠BDF 41,00) 1	M
Consider $\triangle BCF$: $\sqrt{886.48}$ F C	$\cos \angle BFC = \frac{BF^2 + CF}{2(BF)}$ $= \frac{886.48 + 24}{2(\sqrt{886.45})}$ $= -0.096$ $\angle BFC = 96^{\circ} \text{ (correct to)}$	$\begin{array}{c c} 1^2 - 40^2 \\ \hline 8) (24) & 1M \end{array}$		
	nearest	degree) 1A 8		

Solution	Marks	Remarks
Consider $\triangle ABF$: $BF^{2} + FA^{2} = 886.48 + 49$ $= 935.48$ $\neq AB^{2}$ $\therefore \angle AFB \neq 90^{\circ}$] 1M+1M+1A	
$ \sqrt{886.48} $ Alternative solution (1) $ \cos \angle AFB = \frac{7^2 + 886.48 - 28^2}{2(7)(\sqrt{886.48})} = 0.363 \neq 0 $ ∴ ∠AFB ≠ 90°]]]]]]]]	1A 1M for considering $\triangle AFB$
Alternative solution (2) From (a), $\cos \angle BAD = \frac{-191}{1400}$. $\angle BAD > 90^{\circ}$, i.e. $\angle BAF > 90^{\circ}$. $\therefore \angle AFB < 90^{\circ}$	}1M+1M+	IA IM for considering ΔAFB
From (a), $\angle BFC = 96^{\circ}$. Since $CF \perp AD$ but BF is not perpendicular to AD , $\angle BFC$ does not represent the angle between the two planes. The student is incorrect.	IA 4	
	in control and a	
	Man and a second	

FOR TEACHERS' USE ONLY

		5	Solution	Marks	Remarks
. (a)		z2 =	= cos 20 + i sin 20 (105 8 - 55 + 8) + 27 574 8105 8	1	
	(-)		$+1 = (\cos 2\theta + 1) + i \sin 2\theta$	100	8+1=(650-5700)
		$\int z^2$	$+1 ^2 = (\cos 2\theta + 1)^2 + \sin^2 2\theta$	IM	+235700050 1005 C 15
			$=\cos^2 2\theta + 2\cos 2\theta + 1 + \sin^2 2\theta$		- 1(05 0 + 17574010)
		!	$=2(1+\cos 2\theta)$		= 2 (05 0- (1050 + TS
	•	•	$e - \pi < \theta \le \pi, -2\pi < 2\theta \le 2\pi.$	l lM	
		·	2 <i>0</i> ≤ 1		13-11 = 41050 1 1050 + 155
		t	the greatest value of $ z^2 + 1 = \sqrt{2(1+1)}$		= 2(21050)
			= 2	1A 5	
	(h)	G)	and the second second	l	= 2 (£=520-41)
	(b)	(i)	$w = 3z$ (OR $w = 3(\cos\theta + i\sin\theta)$) $ w^2 + 9 = (3z)^2 + 9 $	1A .	137-11 = 21050
			$=9 z^2+1 $		18 111 = 21050.
			From (a), $ z^2 + 1 \le 2$.		
			$\therefore \text{ greatest value of } w^2 + 9 = 9(2)$. IM	For using (a)
			= 18]	
		GD.	$w^4 - 81 = 100i(w^2 - 9)$		
		(**)	$(w^2 + 9)(w^2 - 9) - 100i(w^2 - 9) = 0$	l 1M	For factorization
			$(w^2-9)(w^2+9-100i)=0$	1172	1 or factorization
			$w^2 - 9 = 0 (1)$ or $w^2 + 9 - 100i = 0$	(2)	
			Consider (1): $w = \pm 3$	1A	
			which satisfies the condition $ w =$	3	
			Consider (2): $w^2 + 9 = 100i$		
			From (i), $ w^2 + 9 \le 18$ but $ 100i = 100$. So equation (2) has no solutions] IM	
			the equation has only two roots.	1	.
			Alternative solution for explaining why (2) has	70	
			solution		
			$w^2 = -9 + 100\iota$		
			Let $w = a + bi$ $(a^2 - b^2) + 2abi = -9 + 100i$		
			$(2 \cdot 2 \cdot 2 \cdot 2 \cdot 2)$		
			$\begin{cases} a^2 - b^2 = -9 (3) \\ 2ab = 100 (4) \end{cases}$) IM	For attempting to solve (3), (4), (5)
			Since $ w = 3$, $a^2 + b^2 = 9 (5)$		
			From (3) and (5), $a = 0$.		
			Substitute $a = 0$ into (4): LHS = $0 \neq RHS$. So the equation has no solution.	1 2	
			oo do equation me no notice offi		
				<u> </u>	
			444		
				·	
					•

2002-CE-A MATH-24

只限教師參閱