TEXT DATA AND TEXT MINING

ADVANCED CRIME ANALYSIS

BENNETT KLEINBERG

28 JAN 2019

Text data 1

BRIEFLY ABOUT THE MODULE

- 0.5 UCL credits = 7.5 ECTS
- 150 learning hours
- 11 weeks with 14 hours/week
- 3 contact hours per week
- leaves 11 hours of self-study per week

EXPECTED SELF-STUDY

- Revise the lecture (your responsibility)
- Replicate the code/examples
- Read the required literature (read, annotate, summarise)
- Read additional literature if necessary
- Design own code examples to understand the concept
- Find tutorials/guides online
- If still unclear: attend the code clinics: Weds 10-11 am
- or: post it on Moodle or ask us

TODAY

- Why text data?
- Applications to crime and security problems
- Levels of text data
- Quantifying text data
- Considerations in text cleaning

TEXT IS EVERYWHERE

- Practically all websites
- Emails
- Messaging
- Government reports
- Laws
- Police reports
- Uni coursework
- Newspapers

... AND EVERYTHING IS TEXT

- videos -> transcripts
- music -> lyrics
- conversations -> transcripts
- speeches -> transcripts

CORE IDEA

Text is a unique documentation of human activity.

We are obsessed with documenting.

TEXT & CRIME SCIENCE

TEXT & CRIME SCIENCE

- hate speech
- police reports
- crimestoppers
 - fake reviews
- fear of crime
- cryptofraud

OBTAINING TEXT DATA

QUANTIFYING TEXT DATA

CHALLENGE OF QUANTIFICATION

- a text is not a numerical representation
- compare this to trading data
- a text is just that, "a text"
- but: for quantitative analyses, we need numbers

Text -> numerical representation?

EXAMPLE

me to experience so much suffering. I didn't All I ever wanted was to love women, and in Humanity struck at me first by condemning ask for this. I didn't want this. I didn't start behavior towards me has only earned my this war. I wasn't the one who struck first. Finally, at long last, I can show the world punish everyone. And it will be beautiful. But I will finish it by striking back. I will hatred, and rightfully so! I am the true victim in all of this. I am the good guy. turn to be loved by them back. Their my true worth.

HOW WOULD YOU QUANTIFY THE EXAMPLE?

FEATURES OF TEXT DATA

- meta dimension
- no. of words
- no. of sentences
- syntactic dimension
- word frequencies
- verbs, nouns, persons, locations, ..
- structure of a sentence
- semantic dimension
- sentiment
- psycholinguistic features
- text metrics
- readability
- lexical diversity

APPROACHES TO TEXT DATA

- 1. Modelling text data
- 2. Comparing text data
- 3. Text data for predictive models

THE QUANTEDA PACKAGE

```
## The following object is masked from 'package:utils':
                                                                                                                                                                                                                                                                                   See https://quanteda.io for tutorials and examples.
                                                                                                                                                                                                  Parallel computing: 2 of 4 threads used.
                                                                                                                                                                                                                                                                                                                                                                                                             Attaching package: 'quanteda'
                                                                                                                  Package version: 1.2.0
library(quanteda)
                                                                                                                                                                                                                                                                                     ##
```

- quanteda: Quantitative Analysis of Textual Data
- documentation
- tutorials
- examples

LEVELS OF TEXT DATA

```
    characters a('h', 'a', 't', 'r', 'e', 'd')
```

words hatred

```
• sentences I didn't ask for this.
```

- documents: individual text files
- corpora: collection of documents

COUNTING META FEATURES IN R

text level	text level R function
characters	characters nchar()
words	words quanteda::ntoken()
sentences	sentences quanteda::nsentence()

Homework: read about the type/token distinction here and here.

R EXAMPLES

```
no_of_sentences = nsentence(er)
no_of_sentences
                                                                                                                                                            no_of_words_1 = ntoken(er)
no_of_words_1
                                                                                                                                                                                                                                                                                                          no_of_words_2 = ntype(er)
                                                                                                                                                                                                                                                                                                                         no_of_words_2
#sentences
                                                                                                                                                                                                                                                                                           #words 2
                                                                                                                                                                                                                                           123
                                                                                                                                            #words 1
                                                                                                                                                                                                                                                                                                                                                                          ## text1
                                                                                                                                                                                                                            ## text1
                                                                              ## text1
```

TYPE-TOKE RATIO

Note: often used metric for "lexical diversity" is the TTR (type-token ratio).

```
"I didn't ask for this. I didn't want this."
                                          string_b = "But I will finish it by striking back."
```

What are the type-token ratios of each string?

TYPE-TOKEN RATIO

ntype(string_a)/ntoken(string_a)

text1 ## 0.6363636 ntype(string_b)/ntoken(string_b)

text1 ## 1

NUANCED META FEATURES

Characters per word

```
nchar(er)/ntoken(er)
```

```
## t.317073
```

Words per sentence

```
ntoken(er)/nsentence(er)
```

```
## text1
## 9.461538
```

TEXT REPRESENTATIONS

TEXT REPRESENTATIONS

- represent a text by its tokens (terms)
- each text consists of a frequency of its tokens

```
"I think I believe him"
```

- create a column for each token
- count the frequency

text_id I think		think	believe	her
text1	7	-	text1 2 1 1 1	H

TERM FREQUENCY

- frequency of tokens in each document
- represented in a table (matrix)
- tokens are features of a document
- voilá: fancy name -> Document Feature Matrix (= DFM)

```
example_string_tok = tokens("I think I believe him")
```


from 'tokens' object, create a DFM table

```
Document-feature matrix of: 1 document, 4 features (0% sparse).
                                                                                                      sparse Matrix of class "dfm"
                                                                                                                                                       ocs i think believe him text1 2 1 1
dfm(example_string_tok)
                                                                                                                                    features
                                                                                                                                                         ## docs
```

- Sparsity: % of zero-cells
- why is sparsity = 0% here?
- what would you expect if we take additional documents

DFM WITH MULTIPLE DOCUMENTS

Document-term frequency matrix

```
multiple_docs_tok = tokens(c("I think I believe him", "This is a coo]
                                                                                                                                                               dfm(multiple_docs_tok)
```

```
Document-feature matrix of: 2 documents, 9 features (50% sparse).
                                                                                                                                   i think believe him this is a cool function
                                                2 x 9 sparse Matrix of class "dfm"
```

DFM WITH TWO LONE-ACTORS

me to experience so much suffering. I didn't Humanity struck at me first by condemning "All I ever wanted was to love women, and ask for this. I didn't want this. I didn't start behavior towards me has only earned my this war. I wasn't the one who struck first. Finally, at long last, I can show the world punish everyone. And it will be beautiful. But I will finish it by striking back. I will in turn to be loved by them back. Their hatred, and rightfully so! I am the true victim in all of this. I am the good guy. my true worth."

DFM WITH TWO TEXTS

consequences have been a disaster for the psychological suffering (in the Third World unfulfilling, have subjected human beings the life-expectancy of those of us who live human race. They have greatly increased in "advanced" countries, but they have inflicted severe damage on the natural to physical suffering as well) and have world. The continued development of to indignities, have led to widespread technology will worsen the situation. destabilized society, have made life The Industrial Revolution and its

DFM REPRESENTATION

- Create a "mini corpus" for convenience
- makes using the quanteda pipeline easier

```
Source: /Users/bennettkleinberg/GitHub/ucl_aca_20182019/slides/*
                                                                                                                                           Corpus consisting of 2 documents:
                                                                                                                                                                                                                   Text Types Tokens Sentences
mini_corpus = corpus(c(er, ub))
                                                                                                                                                                                                                                                                                                                                                                                                    Created: Sun Feb
                                    summary(mini_corpus
                                                                                                                                                                                                                                                        text1
```

DFM REPRESENTATION

```
corpus_tokenised = tokens(mini_corpus)
corpus_dfm = dfm(corpus_tokenised)
```

knitr::kable(corpus_dfm[, 1:8])

document all i ever wanted was to love women	all	•—	ever	wanted	was to	ţ	love	women
text1 2 10 1 1 3 1 1	7	10	—	H	Н	က		1
text2	0	0	0	0	0	ന	0	0

•

knitr::kable(corpus_dfm[, 31:38])

document am	am	the	true	victim	of	this	poog	the true victim of this good guy
text1 2	2	4	7	4 2 1 1 4 1	\leftarrow	4	\vdash	—
text2 0	0	7	0	0 0 0 0 0 0 0	က	0	0	0

Is this ideal?

WHAT ARE THE MOST FREQUENT "TERMS"?

topfeatures(corpus_dfm[1])

me dic	က
by	က
and	က
	က
to	
this	4
	4
th	
•	4
·т	10
•	12
##	##

topfeatures(corpus_dfm[2])

##	the	have		to	•	of
##	7	7	4	3	က	က
##	in	suffering	world			
##	2	2	2			

Highly recommended: Vsauce on Zipf's Law

The Zipf Mystery

13,315,384 views

340K

3.7K

♦ SHARE

=+ SAVE

WORD HIERARCHIES

- some words at more meaning than others
- stopwords = meaningless (?)
- in any case: too frequent words, don't tell much about the documents
- ideally: we want to get an "importance score" for each word

BUT HOW TO GET THE IMPORTANT WORDS?

WORD IMPORTANCE

document and in turn be loved by	and	Ë	turn	þe	loved	by
text1 3 2 1 2 1 3	က	7		2	1	3
text2	2	7	0	0	0	0

Ideally, we want to "reward" words that are:

- important locally
- but not 'inflated' globally

METRIC FOR WORD IMPORTANCE

Term frequency: occurence/overall words in document

document	and	Ë	turn	pe	loved	by
text1	0.024	0.016	0.008	0.016	0.024 0.016 0.008 0.016 0.008 0.024	0.024
text2	0.023	0.023	0.000	0.000	0.023 0.023 0.000 0.000 0.000 0.000	0.000

3/ntoken(mini_corpus[1])

text1 ## 0.02439024 Term frequency: reward for words that occur often in a document.

METRIC FOR WORD IMPORTANCE

Problem: some words just occur a lot anyway (e.g. "stopwords").

Correct for global occurrence:

	×
and	7
i	7
turn	⊣
pe	Н
loved	Н
by	\vdash

Document frequency: number of documents with each

COMBINING TERM FREQUENCY AND DOCUMENT FREQUENCY

take the local importance

document	document and in turn	ij	turn
text1 0.024 0.016 0.008	0.024	0.016	0.008
text2 0.023 0.023 0.000	0.023	0.023	0.000

correct for global occurrences

×	
and	7
in	2
turn	Н

TF/DF

```
#text1: "and"
0.024/2
#text2: "and"
0.022/2
```

```
#text1: "turn"
0.008/1
#text2: "turn"
0.000/1
```

TF-IDF

- Term frequency
- INVERSE document frequency

$$TFIDF = TF/DF = TFIDF = TF * IDF$$
, since

$$IDF = 1/DF$$

IDF often modelled as $IDF = log(rac{N}{DF})$

TF-IDF

Note: for the exact formula for the inverse DF refer to the quanteda docs.

knitr::kable(round(dfm_tfidf(corpus_dfm, scheme_tf = 'prop', scheme_c

document	and	ي.	turn	pe	loved	by
text1 0 0 0.002 0.005 0.002 0.007	0	0	0.002	0.005	0.002	0.007
text2 0 0 0.000 0.000 0.000 0.000	0	0	0.000	0.000	0.000	0.000

TF-IDF

- TF: rewards local importance
- IDF: punishes for global occurrence
- TFIDF value as metric for the importance of words per document

THERE'S MORE TO WORDS

- you can count them [DONE]
- but they also have a function
- each word has a grammatical function
- nouns, verbs, pronouns
- called: parts-of-speech

SYNTACTIC DIMENSION

library(qdap)

	×
.	All
	ever
	wanted
	was
İ	to
	love
	women

PART-OF-SPEECH TAGGING

Commonly used: Penn Treebank Project POS depend on POS framework.

×	POS
All	determiner
	noun
ever	adverb
wanted	verb
was	verb
to	;
love	verb
women	noun

POS TYPES

Tag	Description
သ	Coordinating conjunction
CD	Cardinal number
DT	Determiner
EX	Existential there
ΡM	Foreign word
<u> </u>	Preposition or subordinating conjunction
\bigcap	Adjective
JJR	Adjective, comparative
JJS	Adjective, superlative
FS	List item marker
MD	Modal
Z Z	Noun, singular or mass

POS TAGGING WITH QDAP

```
er_ = "All I ever wanted was to love women"
                                     pos_tagged = pos(er_
```

```
##
```

```
pos_tagged$POStagged$POStagged
```

```
[1] all/DT i/FW ever/RB wanted/VBD was/VBD to/TO love/VB women/NN$
                                                                     Levels: all/DT i/FW ever/RB wanted/VBD was/VBD to/TO love/VB womer
```

POS TAGGING

```
pos(er, percent = F, progress.bar = F)$POSfreq
```

```
wrd.cnt CC DT FW IN JJ MD NN NNS PRP PRP$ RB TO VB VBD VBG VBN
                                  3 10 3 9
                                106 4 10 1 14 8 4 17
```

```
pos(ub, percent = F, progress.bar = F)$POSfreq
```

```
wrd.cnt CC DT IN JJ MD NN NNS PRP PRP$ RB TO VB VBN VBP WP
```

CONSIDERATIONS IN TEXT CLEANING

RESEARCHER'S DEGREES OF FREEDOM

- stopword removal
- stemming

STOPWORD REMOVAL

- We know many words are "low in meaning"
- So-called stopwords

myself we hers it

STOPWORD REMOVAL

With stopwords:

document all i ever wanted was to love women	all	•	ever	wanted	was	to	love	women
text1 2 10 1 1 3 1 1	7	10		П	Н	က	Н	Τ
text2	0	0	0	0	0	က	0	0

Without stopwords

document	ever	wanted	love	women	^	turn	loved	back
text1 1 1 4 1 2	—	1	Н	1	7	Н	Н	7
text2	0	0	0	0	4	0	0	0

STEMMING

- some words originate from the same "stem"
- e.g. "love", "loved", "loving", "lovely"
- but you might want to reduce all these to the stem

WORD STEMS

love_stem = c("love", "loved", "loving", "lovely")

document	love	loved	loving	lovely
text1	Н		0	0
text2	0	<u> </u>	0	ļ
text3	0	0	1	0
text4	0	0	0	Н

... AFTER STEMMING

knitr::kable(dfm(love_stem_tok, stem = T))

document	love
text1	
text2	
text3	 1
text4	Н

OUR MINI CORPUS

From: (incl. stopwords and without stemming)

document all i ever wanted was to love women	all	•—	ever	wanted	was	to	love	women
text1 2 10 1 1 3 1 1	7	10	— I	Н	—	က	\	\vdash
text2 0 0 0 0 3 0 0	0	0	0	0	0	က	0	0

... to (without stopwords and stemmed)

document ever	ever	love	want love women , turn back .	^	turn	back	•
text1 1		7	2 2 1 4 1 2 12	4	—	7	12
text2 0	0	0	0 0 4 0 3	4	0	0	က

LIMITATIONS OF TEXT DATA

- a lot of assumptions
- text == behaviour?
- produced text == displayed text?
- linguistic "profiles"
- many decisions in your hand
- stemming
- stopwords
- custom dictionary

RECAP

- levels of text data
- meta features
- syntactic features
 - word frequencies
- TFIDF
- parts-pf-speech

OUTLOOK

No tutorial.

Homework: Text data 1 (to come)

Next week: Text data 2

END