Himpunan

Ilham Rais Arvianto F. Wiwiek Nurwiyati

(diadopsi dari Bahan Kuliah Matematika Diskrit ITB – Rinaldi Munir)

Pertemuan 3

Operasi Terhadap Himpunan

1. Irisan (intersection)

• Notasi : $A \cap B = \{ x \mid x \in A \text{ dan } x \in B \}$

Contoh 14.

(i) Jika $A = \{2, 4, 6, 8, 10\}$ dan $B = \{4, 10, 14, 18\}$, maka $A \cap B = \{4, 10\}$

(ii) Jika $A = \{ 3, 5, 9 \}$ dan $B = \{ -2, 6 \}$, maka $A \cap B = \emptyset$. Artinya: A // B

2. Gabungan (union)

• Notasi : $A \cup B = \{ x \mid x \in A \text{ atau } x \in B \}$

Contoh 15.

(i) Jika $A = \{ 2, 5, 8 \}$ dan $B = \{ 7, 5, 22 \}$, maka $A \cup B = \{ 2, 5, 7, 8, 22 \}$

$$(ii) A \cup \emptyset = A$$

3. Komplemen (complement)

• Notasi : $\overline{A} = \{ x \mid x \in U, x \notin A \}$

Contoh 16.

Misalkan $U = \{ 1, 2, 3, ..., 9 \}, _$

(i) jika $A = \{1, 3, 7, 9\}$, maka $A = \{2, 4, 6, 8\}$

 $(10i)^{320}j^{10}ka A = \{ x \mid x/2 \in P_{an}Rx.A \in Q_{ab}\}, M_{a}Raka A = \{ 1, 3, 5, 7, 92\}^9 \}$

Contoh 17. Misalkan:

A = himpunan semua mobil buatan dalam negeri

B = himpunan semua mobil impor

C = himpunan semua mobil yang dibuat sebelum tahun 1990

D = himpunan semua mobil yang nilai jualnya kurang dari Rp 100 juta

E = himpunan semua mobil milik mahasiswa universitas tertentu

- (i) "mobil mahasiswa di universitas ini produksi dalam negeri atau diimpor dari luar negeri" $\rightarrow (E \cap A) \cup (E \cap B)$ atau $E \cap (A \cup B)$
- (ii) "semua mobil produksi dalam negeri yang dibuat sebelum tahun 1990 yang nilai jualnya kurang dari Rp 100 juta" \rightarrow $A \cap C \cap D$
- (iii) "semua mobil impor buatan setelah tahun 1990 mempunyai nilai jual lebih dari Rp 100 juta" \rightarrow

4. Selisih (difference)

• Notasi : $A - B = \{ x \mid x \in A \text{ dan } x \notin B \} = A \cap \overline{B}$

Contoh 18.

- (i) Jika $A = \{ 1, 2, 3, ..., 10 \}$ dan $B = \{ 2, 4, 6, 8, 10 \}$, maka $A B = \{ 1, 3, 5, 7, 9 \}$ dan $B A = \emptyset$
- (ii) $\{1, 3, 5\} \{1, 2, 3\} = \{5\}$, tetapi $\{1, 2, 3\} \{1, 3, 5\} = \{2\}$

5. Beda Setangkup (Symmetric Difference)

• Notasi: $A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)$

Contoh 19.

Jika $A = \{ 2, 4, 6 \}$ dan $B = \{ 2, 3, 5 \}$, maka $A \oplus B = \{ 3, 4, 5, 6 \}$

Contoh 20. Misalkan

U = himpunan mahasiswa

P = himpunan mahasiswa yang nilai ujian UTS di atas 80

Q = himpunan mahasiswa yang nilain ujian UAS di atas 80

Seorang mahasiswa mendapat nilai A jika nilai UTS dan nilai UAS keduanya di atas 80, mendapat nilai B jika salah satu ujian di atas 80, dan mendapat nilai C jika kedua ujian di bawah 80.

- (i) "Semua mahasiswa yang mendapat nilai A": $P \cap Q$
- (ii) "Semua mahasiswa yang mendapat nilai B" : $P \oplus Q$
- (iii) "Semua mahasiswa yang mendapat nilai C" : $U (P \cup Q)$

6. Perkalian Kartesian (cartesian product)

• Notasi: $A \times B = \{(a, b) \mid a \in A \text{ dan } b \in B \}$

Contoh 20.

- (i) Misalkan $C = \{ 1, 2, 3 \}$, dan $D = \{ a, b \}$, maka $C \times D = \{ (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) \}$
- (ii) Misalkan A = B = himpunan semua bilangan riil, maka $A \times B =$ himpunan semua titik di bidang datar

Catatan:

- 1. Jika A dan B merupakan himpunan berhingga, maka: $|A \times B| = |A| \cdot |B|$.
- $2. (a, b) \neq (b, a).$
- 3. $A \times B \neq B \times A$ dengan syarat A atau B tidak kosong.

Pada Contoh 20(i) di atas,
$$C = \{1, 2, 3\}$$
, dan $D = \{a, b\}$, $D \times C = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$ $C \times D = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$ $D \times C \neq C \times D$.

4. Jika $A = \emptyset$ atau $B = \emptyset$, maka $A \times B = B \times A = \emptyset$

Contoh 21. Misalkan

 $A = \text{himpunan makanan} = \{ s = \text{soto}, g = \text{gado-gado}, n = \text{nasi goreng}, m = \text{mie rebus} \}$

 $B = \text{himpunan minuman} = \{ c = \text{coca-cola}, t = \text{teh}, d = \text{es dawet} \}$

Berapa banyak kombinasi makanan dan minuman yang dapat disusun dari kedua himpunan di atas?

Jawab:

 $|A \times B| = |A| \cdot |B| = 4 \cdot 3 = 12$ kombinasi dan minuman, yaitu $\{(s, c), (s, t), (s, d), (g, c), (g, t), (g, d), (n, c), (n, t), (n, d), (m, c), (m, t), (m, d)\}.$

Perampatan Operasi Himpunan

$$A_{1} \cap A_{2} \cap \ldots \cap A_{n} = \bigsqcup_{i=1}^{n} A_{i}$$

$$A_{1} \cup A_{2} \cup \ldots \cup A_{n} = \bigsqcup_{i=1}^{n} A_{i}$$

$$A_{1} \times A_{2} \times \ldots \times A_{n} = \sum_{i=1}^{n} A_{i}$$

$$A_{1} \oplus A_{2} \oplus \ldots \oplus A_{n} = \bigoplus_{i=1}^{n} A_{i}$$

Contoh 22.

(i)
$$A \cap (B_1 \cup B_2 \cup ... \cup B_n) = (A \cap B_1) \cup (A \cap B_2) \cup ... \cup (A \cap B_n)$$

 $A \cap (\bigcap_{i=1}^n B_i) = \bigcap_{i=1}^n (A \cap B_i)$

(ii) Misalkan
$$A = \{1, 2\}, B = \{a, b\}, \text{dan } C = \{\alpha, \beta\}, \text{maka}$$

 $A \times B \times C = \{(1, a, \alpha), (1, a, \beta), (1, b, \alpha), (1, b, \beta), (2, a, \alpha),$
 $(2, a, \beta), (2, b, \alpha), (2, b, \beta)\}$

Prinsip Inklusi-Eksklusi

Untuk dua himpunan A dan B:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A \oplus B| = |A| + |B| - 2|A \cap B|$$

Contoh 24. Berapa banyaknya bilangan bulat antara 1 dan 100 yang habis dibagi 3 atau 5?

Penyelesaian:

A = himpunan bilangan bulat yang habis dibagi 3,

B = himpunan bilangan bulat yang habis dibagi 5,

 $A \cap B$ = himpunan bilangan bulat yang habis dibagi 3 dan 5 (yaitu himpunan bilangan bulat yang habis dibagi oleh KPK – Kelipatan Persekutuan Terkecil – dari 3 dan 5, yaitu 15),

Yang ditanyakan adalah $|A \cup B|$.

$$\begin{vmatrix} A & | = \lfloor 100/3 \rfloor = 33, \\ B & | = \lfloor 100/5 \rfloor = 20, \\ A \cap B & | = \lfloor 100/15 \rfloor = 6 \\ A \cup B & | = |A| + |B| - |A \cap B| = 33 + 20 - 6 = 47 \end{vmatrix}$$

Jadi, ada 47 buah bilangan yang habis dibagi 3 atau 5.

Untuk tiga buah himpunan A, B, dan C, berlaku

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Untuk himpunan $A_1, A_2, ..., A_r$, berlaku:

$$\begin{vmatrix} A_1 \cup A_2 \cup \dots \cup A_r \end{vmatrix} = \sum_{i} \begin{vmatrix} A_i \end{vmatrix} - \sum_{1 \le i \le j \le r} \begin{vmatrix} A_i \cap A_j \end{vmatrix} + \sum_{1 \le i \le j \le k \le r} \begin{vmatrix} A_i \cap A_j \cap A_k \end{vmatrix} + \dots + (-1)^{r-1} \begin{vmatrix} A_1 \cap A_2 \cap \dots \cap A_r \end{vmatrix}$$

Latihan

- 1. Di antara bilangan bulat antara 1 600 (termasuk 1 dan 600 itu sendiri)
 - a. berapa banyak bilangan yang habis dibagi 3 atau 7
 - b. berapa banyak bilangan yang **tidak** habis dibagi 3 atau 7
- 2. Di antara bilangan bulat antara 101 600 (termasuk 101 dan 600 itu sendiri),
 - a. berapa banyak bilangan yang habis dibagi 3 atau 7
 - b. berapa banyak bilangan yang habis dibagi 3 atau 7, tetapi **tidak** habis dibagi oleh keduanya
- 3. Diantara bilangan bulat 501 sampai dengan 950 (termasuk 501 dan 950 itu sendiri), berapa banyak bilangan yang tidak habilangan 3, 5 atau 7

Contoh 30. Buktikan bahwa untuk sembarang himpunan *A* dan *B*, bahwa

(i)
$$A \cup (\overline{A} \cap B) = A \cup B$$
 dan

(ii)
$$A \cap (\overline{A} \cup B) = A \cap B$$

Bukti:

(i)
$$A \cup (\overline{A} \cap B) = (A \cup \overline{A}) \cap (A \cap B)$$
 (H. distributif)
= $U \cap (A \cap B)$ (H. komplemen)
= $A \cup B$ (H. identitas)

(ii) adalah dual dari (i)

$$A \cap (\overline{A} \cup B) = (A \cap \overline{A}) \cup (A \cap B)$$
 (H. distributif)
= $\emptyset \cup (A \cap B)$ (H. komplemen)
= $A \cap B$ (H. identitas)

2. (Kuis IF2091 2012) Hitunglah banyak bilangan genap diantara 1 sampai 2000 yang habis dibagi 7 tetapi tidak habis dibagi 9.

• **Jawaban**: Banyak bilangan tersebut adalah banyak bilangan yang habis dibagi 2 dan 7 dikurangi banyak bilangan yang habis dibagi 2,7, dan 9.

Banyak bilangan habis dibagi 2 dan $7 = \left\lfloor \frac{2000}{14} \right\rfloor^{=142}$ Banyak bilangan habis dibagi 2,7, dan 9 ada $\left\lfloor \frac{2000}{126} \right\rfloor^{=15}$

Jadi, banyak bilangan tersebut adalah 142-15=127.