This file was provided by: Muath Alghamdi

January Camp - 2020 Number theory L4 Vieta Jumping

Problems

- 1. Let a and b be positive integers such that ab+1 divides a^2+b^2 . Prove that $\frac{a^2+b^2}{ab+1}$ is a perfect square.
- 2. Let a and b be positive integers such that ab divides $a^2 + b^2 + 1$. Prove that

$$3ab = a^2 + b^2 + 1.$$

3. Prove that for every real number N, equation

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4$$

has a solution for which x_1, x_2, x_3, x_4 are all integers larger than N.

- 4. Let a and b be positive integers such that $4ab-1 \mid (4a^2-1)^2$. Show that a=b.
- 5. Let a and b be odd positive integers such that $2ab + 1 \mid a^2 + b^2 + 1$. Show that a = b.
- 6. Find all pairs of positive integers (m,n) such that mn-1 divides $(n^2-n+1)^2$.

Homework

- 1. Suppose a, b, and c are positive integers such that $0 < a^2 + b^2 abc < c$. Show that $a^2 + b^2 abc$ is a perfect square.
- 2. If a and b are positive integers such that $\frac{a^2+b^2}{ab-1}=k$ is an integer, then k=5.
- 3. Let a and b be distinct positive integers such that $2ab + 1 \mid a^2 + b^2 + 1$. Show that 2ab + 1 is a perfect square.