Universidad Surcolombiana

Course: Teoría de Circuitos AC

Taller Análisis de Circuitos en AC

Resuelva los siguientes ejercicios sobre la temática Análisis de circuitos en estado estacionario, dando respuesta al requerimiento que se hace en cada punto. El producto entregable será:

- 1. Solución teórica en hojas tipo examen con el desarrollo, análisis y solución de cada punto.
- 2. Un único archivo *Live Script* *.mlx con la comprobación en MATLAB de cada ejercicio y pantallazos de la simulación en únicamente Simulink de los ejercicios 9 y 10 (Pantallazo del resultado acorde a lo hallado en el desarrollo teórico)
- 1. Encuentre la expresión sinusoidal para el voltaje en v_a de acuerdo con el circuito abajo

$$e_{in} = 60 \sin(377t + 20^{\circ})$$

 $v_b = 20 \sin(377t - 20^{\circ})$

2. En la figura 15.27. Z₁ y Z₂ representan un elemento pasivo (R, C o L). encuentre dicho elemento, y halle su valor. La corriente I es 4.5 A 27° (tome 100V como voltaje pico y una frecuencia de 60 HZ)

FIG. 15.27

3. Calcule V_1 , V_2 e I_X en el siguiente circuito:

4. Encuentre los valores para I_R, I_C e I_L. También encuentre el valor del capacitor, si el inductor es de 2mH.

FIG. 15.78

5. En la figura 16.14 halle el valor de cada corriente expresada en el circuito.

6. En la figura 16.18 halle la impedancia total Z_T , la corriente I, I_1 e I_2 , así como el voltaje en la resistencia R_3 .

FIG. 16.18

7. Encuentre la impedancia de carga Z_L de tal forma que absorba la máxima potencia

8.) Halle el voltaje V_L y la corriente I_o .

9.) En la figura 16.45. halle el voltaje V_1

FIG. 16.45

10. En la figura 17.15 utilice el teorema de superposición para hallar el valor de I_2

FIG. 17.15