AULA 11: UMA PRÉVIA DA INTEGRAL DE LEBESGUE

Seja $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$. Definiremos

$$\int_{\mathbb{R}^d} f(x) \, d\mathbf{m}(x) = \int f \,,$$

a integral de f com respeito a medida de Lebesgue, ou, simplesmente, a integral de Lebesgue.

Nem todas as funções podem ser integradas; aquelas que podem ser integradas são chamadas funções mensuráveis à Lebesgue.

O conceito de integração está relacionado ao da soma. Vamos considerar o conceito de somabilidade com mais atenção.

Somas infinitas (séries). Uma série infinita $\sum_{n\geq 1} c_n$ é somável se a sua sequência de somas parciais $S_N := \sum_{n=1}^N c_n$ converge. Vamos considerar duas situações especiais relevantes na construção da integral de Lebesgue.

■ Soma infinita sem sinal

Suponha que $c_n \in [0, \infty]$ para todo $n \ge 1$, isto é, $\sum_{n \ge 1} c_n$ é uma série infinita sem sinal. Neste caso, a soma desta série existe, embora possa ser infinita, e

$$\sum_{n=1}^{\infty} c_n = \lim_{N \to \infty} \sum_{n=1}^{N} c_n = \sup \left\{ \sum_{n \in \mathcal{F}} c_n \colon \mathcal{F} \subset \mathbb{N} \text{ finito} \right\}.$$

■ Soma infinita absolutamente somável

Uma série $\sum_{n\geq 1} c_n$ é chamada absolutamente somável se a série sem sinal $\sum_{n=1}^{\infty} |c_n|$ é finita (o que, em particular, implica a somabilidade da série $\sum_{n\geq 1} c_n$).

Notação. Para um número $c \in \mathbb{R}$, denotamos por

$$c^{+} := \begin{cases} c & \text{se } c \ge 0 \\ 0 & \text{se } c < 0 \end{cases} = \max\{c, 0\} \quad \text{e} \quad c^{-} := \begin{cases} 0 & \text{se } c \ge 0 \\ -c & \text{se } c < 0 \end{cases} = \max\{-c, 0\}.$$

Note que

$$c^+, c^- \ge 0, \quad c = c^+ - c^-, \quad |c| = c^+ + c^-.$$

Com essas notações, uma série $\sum_{n\geq 1} c_n$ é absolutamente somável se e somente se as séries sem sinais $\sum_{n\geq 1} c_n^+$ e $\sum_{n\geq 1} c_n^-$ são finitas. Neste caso,

$$\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} c_n^+ - \sum_{n=1}^{\infty} c_n^-.$$

Portanto, a somabilidade (absoluta) de séries pode ser reduzida ao caso de séries sem sinais.

Construção da integral de Lebesgue. Definiremos este conceito em vários passos.

1. Seja $f = \mathbf{1}_E$ a função indicadora de um conjunto mensurável E. Então,

$$\int_{R^d} f \, d\mathbf{m} := \mathbf{m}(E) \,.$$

Mais geralmente, suponha que $f = \sum_{i=1}^k c_1 \mathbf{1}_{E_i}$ seja uma combinação linear de funções indicadoras de conjuntos mensuráveis E_i , com coeficientes $c_i \geq 0$ para todo $i \in [k] := \{1, \ldots, k\}$. Este tipo de função será chamada de função simples. Então,

$$\int_{R^d} f \, d\mathbf{m} := \sum_{i=1}^k c_i \, \mathbf{m}(E_i) \,.$$

Esta definição corresponde à nossa intuição geométrica da integral de uma função não negativa como o volume abaixo do gráfico da função. Também, por construção, é uma operação linear (como deveria ser).

2. Suponha que $f \ge 0$ possa ser aproximada (de uma maneira razoável) por funções *simples*. Chamamos tal função "mensurável à Lebesgue". Então,

$$\int_{R^d} f \, d\mathbf{m} := \sup \left\{ \int_{R^d} s \, d\mathbf{m} \colon s \leq f, \ s \ \text{\'e uma função simples} \right\} \, .$$

3. Seja $f \colon \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$, então $|f| \ge 0$. Escreva

$$f = f^+ - f^-,$$

onde

$$f^+(x) := f(x)^+$$
 e $f^-(x) := f(x)^-$.

A função f é chamada absolutamente integrável se f^+ e f^- são funções mensuráveis (logo, $|f| = f^+ + f^-$ é mensurável também) e

$$\int_{R^d} |f| \ d\mathbf{m} < \infty \ .$$

Neste caso, defina

$$\int_{R^d} f \, d\mathbf{m} := \int_{R^d} f^+ \, d\mathbf{m} - \int_{R^d} f^- \, d\mathbf{m} \, .$$

A seguir, faremos uma apresentação detalhada de cada passo da construção acima.

Integração de funções simples

Começamos com a definição e as propriedades básicas de funções simples.

Definição 1. Uma função $s: \mathbb{R}^d \to \mathbb{R}$ é dita simples se

$$s = \sum_{i=1}^k c_i \mathbf{1}_{E_i} \,,$$

onde $c_i \in \mathbb{R}$ e E_i são conjuntos mensuráveis à Lebesgue para todo $i \in [k]$.

Ademais, $s = \sum_{i=1}^{k} c_i \mathbf{1}_{E_i}$ é uma função simples sem sinal se os coeficientes $c_i \in [0, +\infty]$ para todo $i \in [k]$.

Notação. Vamos fazer as seguintes *convenções* naturais sobre operações algébricas que envolvem $+\infty$.

$$\infty + \infty = \infty$$

$$c \cdot \infty = \infty, \text{ se } c > 0$$

$$0 \cdot \infty = 0$$

$$\infty \cdot c = \infty, \text{ se } c > 0$$

$$\infty \cdot 0 = 0.$$

Observação 1. Seja $s = \sum_{i=1}^k c_i \mathbf{1}_{E_i}$ uma função simples. Os conjuntos mensuráveis E_1, \ldots, E_k não precisam ser disjuntos. Porém, se for conveniente, pode-se supor que eles são disjuntos e até mesmo, que eles formam uma partição do espaço \mathbb{R}^d .

De fato, se (por simplicidade) k=2, logo $s=c_1\mathbf{1}_{E_1}+c_2\mathbf{1}_{E_2}$, como os dois conjuntos E_1 e E_2 determinam uma partição de espaço \mathbb{R}^d em quatro subconjuntos

$$\mathbb{R}^{d} = (E_{1} \setminus E_{2}) \sqcup (E_{2} \setminus E_{1}) \sqcup (E_{1} \cap E_{2}) \sqcup (E_{1} \cup E_{2})^{\complement}$$
$$= (E_{1} \cap E_{2}^{\complement}) \sqcup (E_{2} \cap E_{1}^{\complement}) \sqcup (E_{1} \cap E_{2}) \sqcup (E_{1}^{\complement} \cap E_{2}^{\complement}),$$

segue que

$$s(x) = c_1 \mathbf{1}_{E_1}(x) + c_2 \mathbf{1}_{E_2}(x) = \begin{cases} c_1 & \text{se } x \in E_1 \cap E_2^{\complement} \\ c_2 & \text{se } x \in E_2 \cap E_2^{\complement} \\ c_1 + c_2 & \text{se } x \in E_1 \cap E_2 \\ 0 & \text{se } x \in E_1^{\complement} \cap E_2^{\complement} \end{cases}$$

$$= c_1 \, \mathbf{1}_{E_1 \cap E_2^{\complement}} + c_2 \, \mathbf{1}_{E_2 \cap E_1^{\complement}} + (c_1 + c_2) \, \mathbf{1}_{E_1 \cap E_2} + 0 \, \mathbf{1}_{E_1^{\complement} \cap E_2^{\complement}} \, .$$

O mesmo argumento vale com qualquer número k de conjuntos E_i , $i \in [k]$.

Dado um conjunto $E \subset \mathbb{R}^d$, vamos denotar por $E^+ := E$ e por $E^- := \tilde{E}^{\complement}$. Então, com estas notações, os conjuntos E_1, \ldots, E_k determinam uma partição

$$\mathbb{R}^d = \bigsqcup_{\alpha_1, \dots, \alpha_k \in \{+, -\}} E_1^{\alpha_1} \cap \dots \cap E_k^{\alpha_k}$$

em 2^k conjuntos mensuráveis, e, claramente,

$$s = \sum_{\alpha_1, \dots, \alpha_k \in \{+, -\}} c'_{(\alpha_1, \dots, \alpha_k)} \, \mathbf{1}_{E_1^{\alpha_1} \cap \dots \cap E_k^{\alpha_k}}$$

para alguns coeficientes $c'_{(\alpha_1,\dots,\alpha_k)}$.

Note que se $c_1, \ldots, c_k \in [0, \infty]$, então, claramente $c'_{(\alpha_1, \ldots, \alpha_k)} = c_1^{\alpha_1} + \ldots + c_k^{\alpha_k} \in [0, \infty]$.

Proposição 1. (propriedades básicas de funções simples) Sejam s e σ duas funções simples e $c \in \mathbb{R}$. Então,

- (1) $s + \sigma$ e cs são funções simples.
- (2) $s \cdot \sigma$ é uma função simples.
- (3) $s^+, s^-, |s|$ são funções simples.

Demonstração. O primeiro item é óbvio. O segundo segue do fato de que $\mathbf{1}_E \mathbf{1}_F = \mathbf{1}_{E \cap F}$. Para provar o terceiro, seja $s = \sum_{i=1}^k c_i \mathbf{1}_{E_i}$, onde os conjuntos mensuráveis E_i , $i \in [k]$ são disjuntos. Então, evidentemente,

$$s^{\pm} = \sum_{i=1}^{k} c_i^{\pm} \mathbf{1}_{E_i} \quad \text{e} \quad |s| = \sum_{i=1}^{k} |c_i| \mathbf{1}_{E_i},$$

que são funções simples.

Definição 2. (da integral de Lebesgue de uma função simples)

Seja $s = \sum_{i=1}^k c_i \mathbf{1}_{E_i}$ uma função simples sem sinal, então $c_i \in [0, \infty]$ para todo $i \in [k]$. Definimos a integral de s por

$$\int_{R^d} s \, d\mathbf{m} := \sum_{i=1}^k c_i \, \mathbf{m}(E_i) \,,$$

com as convenções acima mencionadas para operações com ∞ .

Ademais, uma função simples qualquer é dita absolutamente integrável se

$$\int_{R^d} |s| \ d\mathbf{m} < \infty \ .$$

Neste caso, definimos a integral de s por

$$\int_{R^d} s \, d\mathbf{m} := \int_{R^d} s^+ \, d\mathbf{m} - \int_{R^d} s^- \, d\mathbf{m} \, .$$

Observação 2. A integral de uma função simples sem sinal (e então também a de uma função absolutamente integrável) é bem definida. De fato, dadas duas representações da função simples sem sinal s,

$$s = \sum_{i=1}^{k} c_i \mathbf{1}_{E_i} = \sum_{i=1}^{l} d_i \mathbf{1}_{F_j},$$

onde $c_1, \ldots, c_k, d_1, \ldots, d_l \in [0, \infty]$, temos que

$$\sum_{i=1}^{k} c_{i} \operatorname{m}(E_{i}) = \sum_{j=1}^{l} d_{j} \operatorname{m}(F_{j}).$$

Provamos isso em duas etapas. Em primeiro lugar, supomos que os conjuntos $\{E_i\}_{i\in[k]}$ e, respectivamente, $\{F_j\}_{j\in[l]}$ sejam disjuntos dois a dois. Portanto, $\{E_i\cap F_j\}_{(i,j)\in[k]\times[l]}$ também são disjuntos. Pela Observação 1, sem perda da generalidade, podemos supor que

$$\bigcup_{i=1}^k E_i = \bigcup_{j=1}^l F_j = \mathbb{R}^d.$$

Portanto, para todo $i \in [k]$ e $j \in [l]$,

$$E_i = \bigsqcup_{j=1}^{l} (E_i \cap F_j)$$
 e $F_j = \bigsqcup_{i=1}^{k} (E_i \cap F_j)$,

logo

$$\mathrm{m}(E_i) = \sum_{j=1}^l \mathrm{m}(E_i \cap F_j)$$
 e $\mathrm{m}(F_j) = \sum_{i=1}^k \mathrm{m}(E_i \cap F_j)$.

Note que se $E_i \cap F_j \neq \emptyset$ e se x pertence a esta interseção, então $c_i = s(x) = d_j$. Por outro lado, se $E_i \cap F_j = \emptyset$, então m $(E_i \cap F_j) = 0$. Logo, para todo $(i, j) \in [k] \times [l]$, tem-se

$$c_i \operatorname{m}(E_i \cap F_j) = d_j \operatorname{m}(E_i \cap F_j).$$

Portanto,

$$\sum_{i=1}^{k} c_i \operatorname{m}(E_i) = \sum_{i=1}^{k} c_i \sum_{j=1}^{l} \operatorname{m}(E_i \cap F_j) = \sum_{i=1}^{k} \sum_{j=1}^{l} c_i \operatorname{m}(E_i \cap F_j) = \sum_{i=1}^{k} \sum_{j=1}^{l} d_j \operatorname{m}(E_i \cap F_j)$$

$$= \sum_{j=1}^{l} \sum_{i=1}^{k} d_j \operatorname{m}(E_i \cap F_j) = \sum_{j=1}^{l} d_j \sum_{i=1}^{k} \operatorname{m}(E_i \cap F_j) = \sum_{j=1}^{l} d_j \operatorname{m}(F_j).$$

Se $\{E_i\}_{i\in[k]}$ não são disjuntos, podemos substituí-los por conjuntos disjuntos. De fato, pela Observação 1,

$$s = \sum_{i=1}^{k} c_i \mathbf{1}_{E_i}$$

$$= \sum_{\alpha_1, \dots, \alpha_k \in \{+, -\}} (c_1^{\alpha_1} + \dots + c_k^{\alpha_k}) \, \mathbf{1}_{E_1^{\alpha_1} \cap \dots \cap E_k^{\alpha_k}}.$$

Ademais, como $c_i^-=0$ para todo $i\in[k]$, pois $c_i\geq 0$, temos que

$$\sum_{\alpha_{1},\dots,\alpha_{k}\in\{+,-\}} (c_{1}^{\alpha_{1}}+\dots+c_{k}^{\alpha_{k}}) \operatorname{m}(E_{1}^{\alpha_{1}}\cap\dots\cap E_{k}^{\alpha_{k}}) =$$

$$= \sum_{\alpha_{1},\dots,\alpha_{k}\in\{+,-\}} c_{1}^{\alpha_{1}} \operatorname{m}(E_{1}^{\alpha_{1}}\cap\dots\cap E_{k}^{\alpha_{k}}) + \dots + \sum_{\alpha_{1},\dots,\alpha_{k}\in\{+,-\}} c_{k}^{\alpha_{k}} \operatorname{m}(E_{1}^{\alpha_{1}}\cap\dots\cap E_{k}^{\alpha_{k}})$$

$$= \sum_{\alpha_{1}=+,\alpha_{2},\dots,\alpha_{k}\in\{+,-\}} c_{1} \operatorname{m}(E_{1}\cap E_{2}^{\alpha_{2}}\cap\dots\cap E_{k}^{\alpha_{k}}) + \dots$$

$$+ \sum_{\alpha_{1},\dots,\alpha_{k-1}\in\{+,-\},\alpha_{k}=+} c_{k} \operatorname{m}(E_{1}^{\alpha_{1}}\cap\dots\cap E_{k-1}^{\alpha_{k-1}}\cap E_{k})$$

$$= c_{1} \operatorname{m}(E_{1}) + \dots + c_{k} \operatorname{m}(E_{k}),$$

assim estabelecendo que a integral de uma função simples sem sinal está bem definida.

Dizemos que uma propriedade P(x) vale para quase todo ponto (abreviado q.t.p.) $x \in \mathbb{R}^d$ se

$$m\{x \in \mathbb{R}^d \colon P(x) \text{ não vale}\} = 0.$$

Por exemplo, dada uma função $f: \mathbb{R}^d \to \mathbb{R}$, a afirmação f=0 q.t.p. significa f(x)=0 para quase todo ponto $x \in \mathbb{R}^d$, ou seja,

$$m\left\{x \in \mathbb{R}^d \colon f(x) \neq 0\right\} = 0.$$

Além disso, para duas funções f e g, a afirmação f=g q.t.p. significa

$$m\left\{x \in \mathbb{R}^d \colon f(x) \neq g(x)\right\} = 0.$$

Filosofia de Lebesgue: Conjuntos de medida zero não importam em teoria da medida, ou seja, uma afirmação válida em q.t.p. é suficientemente boa.

Definição 3. O suporte (no sentido de teoria da medida) de uma função $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ é o conjunto:

$$\operatorname{supp}(f) := \{ x \in \mathbb{R}^d \colon f(x) \neq 0 \} .$$

O seguinte resultado resume as propriedades básicas da integral de uma função simples sem sinal.

Proposição 2. Sejam $s, \sigma \colon \mathbb{R}^d \to [0, \infty]$ duas funções simples sem sinal, e seja $c \in [0, \infty]$. Então,

(i) (linearidade)

$$\int_{\mathbb{R}^d} (s+\sigma) d\mathbf{m} = \int_{\mathbb{R}^d} s d\mathbf{m} + \int_{\mathbb{R}^d} \sigma d\mathbf{m}$$
$$\int_{\mathbb{R}^d} (cs) d\mathbf{m} = c \int_{\mathbb{R}^d} s d\mathbf{m}.$$

(ii) (finitude)

$$\int_{\mathbb{R}^d} s \, d\mathbf{m} < \infty \quad \text{se e somente se} \quad s < \infty \ \text{q.t.p. e} \ \mathbf{m} \left(\mathrm{supp}(f) \right) < \infty \, .$$

(iii) (nulidade)

$$\int_{\mathbb{R}^d} s \, d\mathbf{m} = 0 \quad se \ e \ somente \ se \quad s = 0 \ q.t.p.$$

(iv) (monotonicidade) Se
$$s \leq \sigma$$
 q.t.p., então $\int s \leq \int \sigma$.

(v) (equivalência) Se
$$s=\sigma$$
 q.t.p., então $\int s=\int \sigma$.

 $\begin{array}{l} \textit{Demonstração}. \text{ A linearidade \'e\'obvia por definição}. \\ \boxed{\text{ii}} \text{ Seja } s = \sum_{i=1}^k c_i \mathbf{1}_{E_i} \text{ uma função simples sem sinal. Podemos supor que } c_i \in (0, \infty] \text{ para todo } i \in [k] \text{ e que os conjuntos } \{E_i\}_{i \in [k]} \text{ são disjuntos. Então,} \end{array}$

$$\operatorname{supp}(f) = \bigcup_{i=1}^{k} E_i.$$

Vamos começar com a implicação oposta.

Como m (supp(f)) $< \infty$, temos que m $(E_i) < \infty$ para todo $i \in [k]$.

Como $s < \infty$ q.t.p., se para algum $j \in [k]$, $c_j = \infty$, então $m(E_j) = 0$, logo $c_j m(E_j) = 0$.

Para todos os outros índices i, temos $c_i \operatorname{m}(E_i) < \infty$. Portanto, $\int s = \sum_{i=1}^{n} c_i \operatorname{m}(E_i) < \infty$.

Provamos a implicação direta. Como $\int s = \sum_{i=1}^{\kappa} c_i m(E_i) < \infty$, e como $c_i > 0$ para todo $i \in [k]$, necessariamente $m(E_i) < \infty$, logo

$$\operatorname{m}\left(\operatorname{supp}(f)\right) = \operatorname{m}\left(\bigcup_{i=1}^{k} E_{i}\right) = \sum_{i=1}^{k} \operatorname{m}(E_{i}) < \infty.$$

Além disso, se para algum índice j temos $c_j = \infty$, como $c_j \operatorname{m}(E_j) \leq \int s < \infty$, então necessariamente $m(E_i) = 0$. Portanto,

$$\{x \colon s(x) = \infty\} = \{x \colon \text{ existe } j \in [k], \ x \in E_j \ \text{ e } c_j = \infty\} = \bigcup_{j \colon c_j = \infty} E_j,$$

logo

$$m\left(\left\{x\colon s(x)=\infty\right\}\right)=0.$$

[iii] Como no item anterior, escrevemos $s = \sum_{i=1}^k c_i \mathbf{1}_{E_i}$, com $c_i > 0$ e E_i disjuntos, logo

$$\operatorname{supp}(f) = \bigcup_{i=1}^{k} E_i.$$

Se s=0 q.t.p., então m(supp(f)) = 0, logo m $(E_i)=0$ para todo $i\in[k]$, e daí,

$$\int s = \sum_{i=1}^{k} c_i \operatorname{m}(E_i) = 0.$$

Por outro lado, se

$$\int s = \sum_{i=1}^{k} c_i \operatorname{m}(E_i) = 0,$$

para todo $i \in [k]$ temos que $c_i \operatorname{m}(E_i) = 0$, e como $c_i > 0$, tem-se $\operatorname{m}(E_i) = 0$, mostrando que

$$m(\operatorname{supp}(f)) = \sum_{i=1}^{k} m(E_i) = 0,$$

isto é, s = 0 q.t.p.

|iv| Suponha que $s \le \sigma$ q.t.p.. Pela Observação 1, podemos representar essas funções como

$$s = \sum_{i=1}^{k} c_i \mathbf{1}_{E_i} \quad \text{e} \quad \sigma = \sum_{j=1}^{l} d_j \mathbf{1}_{F_j},$$

onde $\{E_i\}_{i\in[k]}$ e, respectivamente, $\{F_j\}_{j\in[l]}$ são partições do espaço \mathbb{R}^d . Portanto, semelhante argumento ao da Observação 2, implica

$$\int s = \sum_{i=1}^{k} c_i \, m(E_i) = \sum_{i=1}^{k} \sum_{j=1}^{l} c_i \, m(E_i \cap F_j)$$

$$\int \sigma = \sum_{i=1}^{l} d_j \operatorname{m}(F_j) = \sum_{i=1}^{k} \sum_{j=1}^{l} d_j \operatorname{m}(E_i \cap F_j).$$

Dados $i \in [k]$ e $j \in [l]$, ou $\mathrm{m}(E_i \cap F_j) = 0$, e neste caso $c_i \, \mathrm{m}(E_i \cap F_j) = d_j \, \mathrm{m}(E_i \cap F_j)$, ou $\mathrm{m}(E_i \cap F_j) > 0$, e neste caso, como $s \leq \sigma$ q.t.p., necessariamente temos $c_i \leq d_j$, logo $c_i \, \mathrm{m}(E_i \cap F_j) \leq d_j \, \mathrm{m}(E_i \cap F_j)$. Segue que $\int s \leq \int \sigma$.

Finalmente, item (v) é uma consequência imediata da monotonicidade da integral. \Box

A seguir, apresentamos as propriedades básicas da integral de funções simples com sinal.

Proposição 3. Dadas $s, \sigma \colon \mathbb{R}^d \to \mathbb{R}$ funções simples absolutamente integráveis e $c \in \mathbb{R}$, tem-se (i) (linearidade)

$$\int_{\mathbb{R}^d} (s+\sigma) \, d\mathbf{m} = \int_{\mathbb{R}^d} s \, d\mathbf{m} + \int_{\mathbb{R}^d} \sigma \, d\mathbf{m} \quad e \quad \int_{\mathbb{R}^d} (cs) \, d\mathbf{m} = c \int_{\mathbb{R}^d} s \, d\mathbf{m} \, .$$

(ii) (monotonicidade) Se $s \le \sigma$ q.t.p., então $\int s \le \int \sigma$.

(iii) (equivalência) Se
$$s = \sigma$$
 q.t.p., então $\int s = \int \sigma$.

Demonstração. Exercício.