ARMv7 Cortex M0

Si3 - Groupe 1

Antoine STEYER
Axel AIELLO
Gabriela CAVALCANTE DA SILVA
Raquel LOPES DE OLIVEIRA
Thomas JALABERT
Loïc ROSE

7 janvier 2016

Schedule

- Extension de l'ULA
- Contrôleur-Mémoriel
- Registres MémoireD
- 4 Assembleur/Désassembleur
- Outils logiciels
- 6 Ecriture de jeux de test
- Conclusion
- 8 References

ARM7 Component Schema

Figure: Component Schema

ULA Arithmetic Logic Unit

- Réaliser les blocs d'opérateurs arithmétiques et logiques
- Générer les Flags

Figure: Architecture générale

Figure: ALU Component

Figure: Detail de fonctionnement

Figure: Detail de fonctionnement

Contrôleur

Figure: Banc de registre

Figure: Chemin de données

Assembleur

- Lecture du fichier assembleur
- 2 Identification du opcode 1
- 3 Identification du opcode 2
- Ecriture du fichier binaire.

```
AND R2,R7
EOR R1,R5
LSL R5,R6
ADC R4,R3
LSL R1,R2,#23
```

Figure: Code assembleur

CAO Outils logiciels

- 1 Utilisation de logisim-evolution
- ② Utilisation de Quartus II (v13.0 sp1)
- Synthèse sur FPGA (DE2-BOARD)
- Validation de l'ALU

Figure: Multiplication avec l'ALU

Conclusion

Encore beaucoup de travail!

- 1 Le banc de registre, le contrôleur sont encore à vérifier
- 2 Comment entrer les données binaires dans le processeur?
- Simplifier les équations logiques

References

• ARM@v7-M Architecture Reference Manual https://web.eecs.umich.edu/~prabal/teaching/ eecs373-f10/readings/ARMv7-M_ARM.pdf