CIS-350 INFRASTRUCTURE TECHNOLOGIES

Study Guide for Test 1

Closed book, closed notes. You may use a calculator only for calculations. You may have a "cheat sheet", i.e., an index card 3"×5" filled up on <u>one</u> side with anything you want. The other side of the card should be blank. You need to turn this card with the test.

Materials covered:

- (1) <u>Chapters 1-6</u> to the extent they were covered in class or assigned explicitly for reading. For chapters 1, 2, 4, and 6 you need to know the lecture notes posted on BB as well as the textbook material. For chapters, 3 and 5 you may rely exclusively on the lecture notes. Reading of these two chapters is not required.
- (2) Please also review <u>Homeworks 1, 2, and 3</u> as well as <u>In-class Small Group Activities 1, 2, and 3</u>. The solutions for Homeworks and In-class Activities are posted in the Course Documents folder on BB.

Test format:

- (1) Multiple choice questions on all the mentioned material, similar to those in Homework 1.
- (2) Short essay questions, similar to those in Homework 1. Also, look at the Reading Review Questions and Exercises following chapters 1, 2, 4, and 6.
- (3) Short numerical problems to work, similar to those in Homeworks 2 and 3 and In-class Small Group Activities 1 and 2.
- (4) Fill in blanks, similar to those in Homework 1, and matching. Memorize the description of the keywords (those in bold) used in text.
- (5) Simple programs to write/analyze in the LMC assembly language like in Homework 3 and In-class Small Group Activity 3.

Sample Test 1

I. MC, T/F, and fill in blanks questions.

1.	What entity do the following abbreviations describe? Fill in the blanks with the appropriate
	brief description.
a.	2 GB DDR2 SDRAM
b.	$16 \times \text{DVD} \pm \text{RW}$
c.	TCP/IP or HTTP
d.	IBM z/OS or Sun Solaris
e.	What digits does the octal system use?
f.	Four bytes contains bits.
	In a floating point number, the term <i>underflow</i> refers to
Ü	
h.	The most significant bit (the most leftmost bit) in a signed number represents

2.	A bundle of wires that can carry signals, power, data, commands, and instructions is called a
b.	channel bus interface unit
d.	communication channel
e.	protocol
3.	A 2GB memory has exactly bytes.
	4,000,000,000
b.	4,294,967,296
c.	2,147,483,648
d.	4,194,304
e.	1,073,741,824
	107374182400 bytes is exactly
a.	100GB
b.	10GB
c.	10TB
	1TB
e.	4TB
5	The contains the most important operating system
٥.	processing functions.
9	application programming interface
	user interface
	file management system
	I/O driver
	kernel
6.	The stored in ROM loads the remainder of the operating system
	from disk or network into RAM.
	application program
	bootstrap program
	IPO program
	embedded program
e.	virtual program
7.	In the concept of computing, each computer can do part of the
	processing for higher overall efficiency.
a.	open
	closely-coupled
	loosely-coupled
	distributed
	shared
8.	In batch systems, a job consisted of card, together with the required for each program (Fill in)
9.	What fact made the Unix operating system portable?

10.	The links between the components of a system must be physical (True/False).
11.	The diagram of a system drawn on paper is very often an abstraction of the real system (True/False).
a. b. c. d.	The idea that the program instructions and data are both stored in memory while being processed is known as the stored program concept application programming interface user interface distributed computing graphical user interface
a. b. c. d.	To simplify analysis, understanding, and maintenance of a system, one can decompose the system into clients servers subsystems peers procedures
a. b. c. d.	Anything outside the boundary a system represents the that the system operates or presents itself within. interface component linkage environment module
15.	The relationship between a client and a server in the client-server model can be 1 to 1, 1 to many, or many to many (True/False).
16.	How many computers would typically be involved in a four-tier architecture?
17.	The problem of solving incompatibilities between the application software residing on different computers which have to work together is often assigned to special software called
b.c.d.	operating system application program I/O drivers middleware shared server
18.	The different types of " <i>n</i> -tier architectures" mainly concern distributing the processing load among <i>n</i> computers involved (True/False)
19.	Google is always eager to reveal the details about the infrastructure technologies that it uses (True/False).
	To store a string " <i>Madam</i> " in ASCII or EBCDIC, the computer would use bytes. o not count "s.)
a) 1	byte b) 5 bytes c) 10 bytes d) 15 bytes

			ed a 10-bit word rs is		numbers. The dec	cimai <u>range</u>
			d) [-512,511]			
22. An image bytes, this	has a resolutio	on of 800x1200	pixels. Assumin	ng that ea storage.	ch pixel would co	nsume 2
a) 960,000	b) 1,9	920,000	bytes of s c) 2,880,000		d) 3,840,000	
23		ages are made	up of lines and	curves th	nat can be defined	
a) bit map	•	etor	c) pixel		d) compressed	
	USB, PCI, AG		he names of pop	oular	used	in
-	ers		ard	c) inter	rrupt lines	d)
	supposed to be 2's complement		yte (8 bits), it is	represer	nted in the compu	ter in the
			c) 11110110		d) 11111111	
a. in the mailb	ooxes			asket	ext instruction to c. in the calculat	
27. Which of a. SUB	the following b. MUL	arithmetic inst c. Al		n the LM	IC instruction set	?
28. How many Englander's to		are in the instr	uction set of the	LMC co	omputer introduce	ed in the
		out 10	c. about 100		d. about 150	
29. In the LM	C instructions	IN (901) and C	OUT (902), 01 an	nd 02 repr	resent the addresse	es of
a. input device c. accumulator	-	evice, respective	elyb. memory lo d. cal	cations culators		
			nch to the instru . (choose the mo d. =0		address 25 is execuse answer)	ited when the
31. In the LMO a. memory d. control unit	b. I/C	ne Little Man ad Dinterface Ogram counter	cts as (the) c. ALU			

numbe	rs.						
a. Cha	nge (BE	E7) ₁₆ to I	Binary form.				
b. Cha	nge (110	010111)	₂ to Octal form.				
c. Char	nge (11	101001)	₂ to Decimal form.				
d. Cha	nge (772	2) ₈ to He	exadecimal form.				
e. Cha	nge (27.	.625) ₁₀ to	o Hexadecimal.				
Octal I 0 1 2 3	3inary 000 001 010 011	Octal F 4 5 6 7	Binary 100 101 110 111	Hex B 0 1 2 3 4 5 6 7	Sinary 0000 0001 0010 0011 0100 0101 0110 0111	Hex B 8 9 A B C D E F	inary 1000 1001 1010 1011 1100 1101 1110 1111
III. Ess	say que	stions					
See the 6.	e homev	works aı	nd Reading Review Qu	iestions	and Exercises	followi	ng chapters 1, 2, 4, and
IV. Fil	l in blaı	<u>nks</u>					
1. In a	n instru	ction S7	ΓΟ 80, an 80 is an		and <i>STO</i> i	s an	

II. <u>Make the following conversions</u>. (If you need help with the Octal and Hex charts, see the middle of the page.) Do not use a calculator that provides direct conversion. Assume <u>unsigned</u> binary

<u>V. Write the LMC program</u> which reads in two numbers (one at a time); places them in memory locations 50 and 51, respectively; calculates their positive difference; places this difference in memory locations 52; and writes the result (difference) out.

<u>VI.</u> In the LMC program below, determine the contents of the Program Counter (PC) <u>before</u> and <u>after</u> each instruction is executed. Also determine the contents of the Out-basket, Accumulator (A); and memory locations 60, 61, and 62 <u>after</u> each instruction is executed. Note that some instructions may not be executed. Also, note that memory locations 60, 61, and 62 have been initialized with 15, 15, and 10, respectively.

Address	Instruction	PC	OUT	Α	60	61	62
00 01 02	LDA 60 ADD 62 STO 61	00 → 01 ———					
03 04	BRP 05 BR 01						
05 06	OUT HLT						
60 61 62	15 15 10						

Answers

<u>I.</u>

- 1. What entity do the following abbreviations describe? Fill in the blanks with the keyword(s).
- a. Main/primary memory
- b. Digital video disc
- c. Internet protocols
- d. Operating systems
- e. 0 through 7 only
- f. 32.
- g. In a floating point number, the term *underflow* refers to the region of vey very small positive and negative numbers which cannot be represented by the type float or double (or any other type) in the computer. Simply, these numbers are too small to be stored.
- h. The most significant bit (the most leftmost bit) in a signed number represents the sign of the number and also contributes to the magnitude of the number.
- 2. bus
- 3. 2,147,483,648
- 4. 100GB
- 5. kernel
- 6. bootstrap program
- 7. distributed
- 8. True
- 9. Written in C language
- 10. False
- 11. True
- 12. stored program concept
- 13. subsystems
- 14. environment

- 15. True
- 16. 4
- 17. middleware
- 18. True
- 19. False
- 20. 5 bytes
- 21. [0,1023]
- 22. 1,920,000
- 23. object/vector
- 24. buses/interfaces
- 25. 11110111
- 26. in the instruction location counter
- 27. MUL
- 28. about 10
- 29. input device and output device, respectively
- 30. ≥0
- 31. control unit

<u>II.</u>

a.
$$(BE7)_{16} = (1011111100111)_2$$

b.
$$(11010111)_2 = (327)_8$$

c.
$$(11101001)_2 = (233)_{10}$$

d.
$$(772)_8 = (1FA)_{16}$$

e.
$$(27.625)_{10} = (1B.A)_{16}$$

<u>IV</u>.

1. operand (or address), operation code (opcode)

<u>V</u>.

<u>VI</u>.

Address	Instruction	PC	OUT	Α	60	61	62
00	LDA 60	$00 \rightarrow 01$?	15	15	15	10
01	ADD 62	$01 \rightarrow 02$?	25	15	15	10
02	STO 61	$02 \rightarrow 03$?	25	15	25	10
03	BRP 05	$03 \rightarrow 05$	(branc	h is ex	ecuted a	as A=25	5≥0)
04	BR 01	This instruct	`				,
05	OUT	$05 \rightarrow 06$	25	25	15	25	10
06	HLT	$06 \rightarrow 06$	sam	e as ab	ove or a	all 0s	
		or					
		$06 \rightarrow 00$					
60	15						
61	15						
62	10						