Tutorial 1

January 22, 2024

1 Question 1

a. There exists at least one subsequence of a_n that does not converge.

b.
$$\exists x_n \geq 5 \ni x_n \notin S$$
.

- c. $x \notin A \cup B$.
- c. $x \notin A \cap B$.
- d. $\exists x \in (a, b) \ni f(x) < 0$.
- e. For all $K \in \mathbb{R}, \ \exists \ x \in [-a, a] \ni |f(x) \le k|$

2 Question 2

Prove that $\lim_{n\to\infty}\frac{n}{n+1}=1$. Given $\epsilon>0$, by the Archimedean property of $\mathbb{R},\ \exists\ K\in\mathbb{N}\ni$

$$\frac{1}{K+1} < \epsilon \implies \frac{1}{n+1} \le \frac{1}{K+1} < \epsilon \ \forall \ n \ge K \implies \left| \frac{n}{n+1} - 1 \right| = \left| \frac{n}{n+1} - \frac{n+1}{n+1} \right|$$
$$= \left| \frac{1}{n+1} \right| = \frac{1}{n+1} < \epsilon \ \forall \ n \ge K.$$

Prove that $\lim_{n\to\infty}\frac{n}{n+2\sqrt{2}}=1$. Given $\epsilon>0$, by the Archimedean property of $\mathbb{R},\ \exists\ K\in\mathbb{N}\ni$

$$\frac{2\sqrt{2}}{K+2\sqrt{2}} < \epsilon \implies \frac{2\sqrt{2}}{n+2\sqrt{2}} \le \frac{2\sqrt{2}}{K+2\sqrt{2}} < \epsilon \ \forall \ n \ge K \implies \left|\frac{n}{n+2\sqrt{2}}-1\right| = \left|\frac{2\sqrt{2}}{n+2\sqrt{2}}\right| = \frac{2\sqrt{2}}{n+2\sqrt{2}} < \epsilon \ \forall \ n \ge K.$$

3 Question 3

4 Question 4

5 Question 5

Since (a_n) is a null sequence, $\lim_{n\to\infty} a_n = 0 \implies \text{given } \epsilon > 0, \ \exists \ K \in \mathbb{N} \ni |a_n - 0| = |a_n| < \epsilon \ \forall \ n \geq K \implies K|a_n| < K \cdot \epsilon \implies |b_n - l| < K|a_n| < K \cdot \epsilon.$ Yep death.

6 Question 6

7 Question 7 (Sus)

7.1 Part 1

Given
$$\epsilon > 0$$
, choose $N \in \mathbb{N} \ni N \ge \frac{\epsilon^2}{8} - \frac{3}{2}$. Then, $\forall m, n > N$,
$$|\sqrt{3+2m} - \sqrt{3+2n}| = |-\sqrt{3+2n} + \sqrt{3+2m}| \le \sqrt{3+2n} + \sqrt{3+2m} < \sqrt{3+2\cdot(\frac{\epsilon^2}{8} - \frac{3}{2})} + \sqrt{3+2\cdot(\frac{\epsilon^2}{8} - \frac{3}{2})} = \sqrt{3+\frac{\epsilon^2}{4} - 3} + \sqrt{3+\frac{\epsilon^2}{4} - 3} = \epsilon$$

$$\implies a_n \text{ is a Cauchy sequence} \implies a_n \text{ is bounded.}$$

7.2 Part 2

Let
$$f(x) = \sqrt{3+2x}$$
. $f'(x) = \frac{1}{\sqrt{3+2x}}$. Since $a_0 = 0$, $\sqrt{3+2x}$ will always be positive. $\implies f'(x)$ will always be positive $\implies f(x)$ is an increasing function. $\implies a_n$ is a monotone increasing sequence by comparison.

Since a_n is monotone and bounded, it is convergent according to the monotone convergence theorem.

8 Question 8 (Sus)

8.1 Part 1

Given
$$\epsilon > 0$$
, choose $N \in \mathbb{N} \ni N \ge \frac{\epsilon^2}{12} - \frac{4}{3}$. Then, $\forall m, n > N$,
$$|\sqrt{4+3m} - \sqrt{4+3n}| = |-\sqrt{4+3n} + \sqrt{4+3m}| \le \sqrt{4+3n} + \sqrt{4+3m} < \sqrt{4+3\cdot(\frac{\epsilon^2}{12} - \frac{4}{3})} + \sqrt{4+3\cdot(\frac{\epsilon^2}{12} - \frac{4}{3})} = \sqrt{4+\frac{\epsilon^2}{4} - 4} + \sqrt{4+\frac{\epsilon^2}{4} - 4} = \epsilon$$

$$\implies a_n \text{ is a Cauchy sequence} \implies a_n \text{ is bounded.}$$

8.2 Part 2

Let
$$f(x) = \sqrt{4+3x}$$
. $f'(x) = \frac{1}{\sqrt{4+3x}}$. Since $a_0 = 6$, $\sqrt{4+3x}$ will always be positive. $\implies f'(x)$ will always be positive $\implies f(x)$ is an increasing function. $\implies a_n$ is a monotone increasing sequence by comparison.