Q1: Let $X, X_1, X_2, ...$ be a sequence of random variables defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Further, let $g : \mathbb{R} \to \mathbb{R}$. Let D_g be the set of the discontinuity points of g. Assume that $\mathbb{P}(X \in D_g) = 0$. Prove the following continuous mapping theorem for convergence in distribution: If $X_n \xrightarrow{D} X$, then $g(X_n) \xrightarrow{D} g(X)$.

: I Yn, Y has the same distribution with 8n.8 s.t. Yn ais Y

For any bounded, continuous f: IR-IR, Dfog & Dg

Also, : f is bounded. by the bounded convergence than we have

$$Elf(g(Y_n))) \rightarrow Ef(g(Y))$$
 If bounded

$$\Rightarrow g(Y_n) \xrightarrow{D} g(Y)$$

$$\Rightarrow g(8n) \xrightarrow{D} g(8)$$

0

Q2: Suppose $g, h : \mathbb{R} \to \mathbb{R}$ are continuous with g(x) > 0, and $|h(x)|/g(x) \to \Re$ as $|x| \to 0$. Let F, F_1, F_2, \ldots be a sequence of distribution functions. Suppose $F_n \to F$ weakly and $\int g(x) dF_n(x) \leq C < \infty$ uniformly in n. Prove

$$\int h(x)dF_n(x) \to \int h(x)dF(x).$$

·: Fn -> F

We can assume h(0)=0, since $\int h(x)+(d Fn(x))=\int h(x)dFn(x)+c$ we can always substract a constant h(0) from h and the conclusion will not be affected.

Select a large enough M sit. IP (181=M)=0

Let 8 = 81 (181=n). Bn = 8n1(18n) = n)

Then, Bn ass B and h(Bn) is bounded

By bounded convergence thm, we have $Eh(8n) \rightarrow Eh(8)$

: h(0)=0. Let En = sup (gix) - 1x1 > M)

|Eh(8n)-Eh(8n)| = Elh(8n)-h(8n)|

< E[h(8n) 1(18n) > M)]

= Em Eg (8n)

< CEm

By Fatou's Lemma.

Eg(x) = En = g(xn) = linf Eg(xn) = c

Similarly,

1Eh(3)-Eh(8) (=Elh(3)-h(8)

= E | h(8)1(181>m)

= En Eg (x)

E C Em

As a result,

|Eh(8n)-Eh(8)| =|Eh(8n)-Eh(8n)|+|Eh(8n)-Eh(8)|+|Eh(8)|-Eh(8)| =3chn →0 Q3: Let X_1, X_2, \ldots be i.i.d. and have the standard normal distribution. It is known that

$$\mathbb{P}(X_i > x) \sim \frac{1}{\sqrt{2\pi}x} \exp(-\frac{x^2}{2})$$
 as $x \to \infty$.

where $a(x) \sim b(x)$ means $a(x)/b(x) \to 1$ if $x \to \infty$.

(i): Prove that for any real number θ ,

$$\mathbb{P}(X_i > x + \frac{\theta}{x})/\mathbb{P}(X_i > x) \to \exp(-\theta), \quad \text{as } x \to \infty$$

(ii) Show that if we define b_n by $\mathbb{P}(X_i > b_n) = 1/n$,

$$\mathbb{P}(b_n(\max_{1 \le i \le n} X_i - b_n) \le x) \to \exp(-e^{-x}).$$

(iii) Show that $b_n \sim (2 \log n)^{\frac{1}{2}}$ and conclude $\max_{1 \leq i \leq n} X_i/(2 \log n)^{\frac{1}{2}} \to 1$ in probability.

(i)
$$\lim_{X \to \infty} \frac{P(8i > x + \frac{\theta}{x})}{IP(8i > 8)} = \underbrace{\frac{x}{x + \frac{\theta}{x}}}_{X + \frac{\theta}{x}} \underbrace{e^{-\frac{(x+x)^2}{2} + \frac{x^2}{2}}}_{= e^{-\theta}}$$

(ii)
$$P(bn(max 8i - bn) \le x) = P(bn(8i - bn) \le x)^n$$

$$= (1 - P(bn(8i - bn) > n))^n$$

$$= (1 - P(8i > bn + \frac{x}{bn}))^n$$

From (i),
$$\frac{P(8i > bn + \frac{\pi}{bn})}{P(8i > bn)} = nP(8i > bn + \frac{\pi}{bn}) \rightarrow e^{\pi}$$
 as $bn \rightarrow \infty$

Then
$$P(bn (max 8i - bn) \leq \pi) \rightarrow 2(1 - \frac{e^{-x}}{n})^n = e^{-e^{-x}}$$

$$(iii) P(8i > (2logn)^{\frac{1}{2}}) \sim \sqrt{2\pi} (2logn)^{\frac{1}{2}} e^{-\frac{2logn}{2}}$$

$$= \frac{1}{2\sqrt{\pi}(logn)^{\frac{1}{2}}} \cdot \frac{1}{n}$$

bn = (2logn) when n is sufficiently large

Moreover,
$$|P(8i > (2\log n - 2\log \log n)^{\frac{1}{2}}) \sim \sqrt{2\pi} (2\log n - 2\log \log n)^{\frac{1}{2}} e^{-\frac{2\log n - 2\log \log n}{2}}$$

$$\sim \frac{1}{\sqrt{2\pi} (\log n)^{\frac{1}{2}}} \frac{(\log n)}{n}$$

$$= \frac{(\log n)^{\frac{1}{2}}}{2\sqrt{\pi}} \mathbb{P} (3; > bn)$$

For sufficiently large n. $(2lugn - 2loglugn)^{\frac{1}{2}} = bn$:- $bn \sim (2lugn)^{\frac{1}{2}}$

From (ii), we have

$$IP(bn(max 8i-bn) \leq \pi) \rightarrow e^{-e^{-x}}$$

$$P(bn (max 8i-bn) \ge \pi) \rightarrow 1-e^{-e^{-x}} \odot$$

Let 7 = 8n in O

$$P(\max 8i - bn \leq \frac{8n}{bn}) \rightarrow e^{-e^{-8n}}$$

Let $8n = o(bn) \rightarrow \infty$, we have

Moreover, let 7= Yn in @ we have

Let Yn = o (bn) -> - oo, we have

$$\frac{1}{p} \left(\frac{\max z_i}{p_n} = 1 \right) \rightarrow 1$$

$$P\left(\frac{\max Zi}{(2(\log n)^{\frac{1}{2}}}=1\right) \rightarrow 1$$

Q4: Let $X_1, X_2, ...$ be independent taking values 0 and 1 with probability 1/2 each. Let $X = 2\sum_{j>1} X_j/3^j$. Compute the characteristic function of X.

$$P(3j=0) = \frac{1}{2}$$
, $P(3j=1) = \frac{1}{2}$
 $\varphi_{j}(t) = Ee^{it8j} = \frac{1}{2} + \frac{1}{2}e^{it}$
Then $E_{e}^{it} = \frac{28j}{3^{5}} = \varphi_{j}(\frac{2}{3^{5}} + \frac{1}{2}) = \frac{1}{2} + \frac{1}{2}e^{\frac{2jt}{3^{5}}}$

Denote
$$S_n = \sum_{j=1}^n \frac{28j}{3^j}$$

Then
$$Ee^{itSn} = Ee^{it\sum_{3^{j}}^{23_{j}}} = \prod_{j=1}^{n} Ee^{\frac{2it8_{j}}{3^{j}}}$$

:
$$E^{it3} = \frac{0}{j=1} E e^{\frac{2it8j}{33}} = \frac{0}{j=1} \frac{1+e^{\frac{2it}{33}}}{2}$$

Q5: Let $S_n = X_1 + \cdots + X_n$ in the following problems.

(a): Suppose that X_i 's are independent and $\mathbb{P}(X_i = i) = \mathbb{P}(X_i = -i) = \frac{i^{-\alpha}}{4}$ and $\mathbb{P}(X_i = 0) = 1 - \frac{i^{-\alpha}}{2}$ for some nonnegative parameter α . Find $a_n(\alpha), b_n(\alpha)$ such that $(S_n - a_n(\alpha))/b_n(\alpha) \Rightarrow N(0,1)$ when $\alpha \in (0,1)$ and prove this CLT.

(b): Suppose that X_i 's are independent and $\mathbb{P}(X_i=1)=\frac{1}{i}=1-\mathbb{P}(X_i=0)$. Find a_n and b_n such that $(S_n - a_n)/b_n \Rightarrow N(0,1)$ and prove this CLT.

(a)
$$E(8i) = 0$$
 $Var(8i) = E(8i^2) = \frac{i^2 - 1}{2}$

$$Var(Sn) = Var(\Sigma Sr) = \sum_{i=1}^{j=1} \sim \frac{1}{2} \sim \frac{1}{2(3-1)} N^{3-1}$$

Let
$$Z_{n,m} = \frac{(2(3-1))^{\frac{1}{2}} Z_m}{n^{\frac{3-1}{2}}}$$

Since
$$0 < \lambda < 1$$
.
 $\forall \xi > 0$. $\exists n \in s.t.$ when $n \ge n \in [8n, m] = \left| \frac{\sqrt{2(3-\lambda)} 8m}{n^{\frac{3-\lambda}{2}}} \right| \le \frac{\sqrt{2(3-\lambda)} n}{n^{\frac{3-\lambda}{2}}} < \xi$

Then
$$\frac{Sn}{\sqrt{Var(Sn)}} = \frac{\sqrt{2(3-d)}Sn}{n^{\frac{3-d}{2}}} \sim N(0.1)$$

Thus
$$an(d) = 0$$

$$bn(d) = \sqrt{2(3-d)} \quad n^{\frac{3-d}{2}}$$

$$Var(8i) = E(8i) - E8i)^2 = \frac{1}{i} - \frac{1}{2i}$$

$$Var(S_n) = Var(\Sigma Bi) = \Sigma \frac{1}{i} - \frac{1}{i^2} \sim log n$$

Then

$$\frac{S_n - \Sigma_{\bar{z}}^{\perp}}{(\log n)^{\frac{1}{2}}} \sim N(0,1) \quad \text{or} \quad \frac{S_n - \log n}{(\log n)^{\frac{1}{2}}} \sim N(0,1)$$

$$\therefore an = \log n \cdot bn = (\log n)^{\frac{1}{2}}$$

Q6: Suppose that X_n and Y_n are independent, and $X_n \to X_\infty$ in distribution and $Y_n \to Y_\infty$ in distribution. Show that $X_n^2 + Y_n^2$ converges in distribution.

 $: X_n \xrightarrow{D} X_{\infty}, Y_n \xrightarrow{D} Y_{\infty}$

Also, g(x) = x2 is continuous

By Continuous Mapping Thm. $Zn^2 \xrightarrow{D} Z_{\infty}^2$

and Bry Yn, Boill You

By Lévy's continuity Thm. Ht

(Pri (t) -> (Pri (t)

Yxitt) -> Yxit)

: Knill Yn , Boly You

: (18 + 42 (t) = (82 (t) (4) (t) -> (82 (t) (4) (t)

and falt), quality are continuous at 0

Then, (soit) (you'lt) is the characteristic function of 800+ You

: 8n2 + Yn2 D 800 + Y02

Q7: Let X_1, X_2, \ldots be i.i.d. with a density that is symmetric about 0, and continuous and positive 0. Find the limiting distribution of

$$\frac{1}{n} \left(\frac{1}{X_1} + \ldots + \frac{1}{X_n} \right).$$

$$P\left(\frac{1}{8i} > \pi\right) = P\left(o < 8i < \frac{1}{\pi}\right)$$

$$= \int_{0}^{\frac{1}{2}} f(y) dy \sim \frac{f(o)}{\pi} \quad \text{as } \eta \to \infty$$

$$P\left(\frac{1}{8i} < -\pi\right) = P\left(-\frac{1}{\pi} < 8i < o\right)$$

$$= \int_{-\frac{1}{\pi}}^{\infty} f(y) dy \sim \frac{f(o)}{\pi} \quad \text{as } \eta \to \infty$$

Then an ~ zf(o)n

: Density of Bi is symmetric about o

Then,
$$\frac{Sn-bn}{an} \sim \frac{Sn}{2f(0)n} \Rightarrow \gamma$$

where the characteristic function of Y is e .

Q8: Do some self-study and explain why the *Stable distributions* and *Infinitely divisible distributions* bear such names.

Stable distribution:

A distribution is said to be stable if summing independent random variables from it results in a random variable in the same distribution.

It is called stable because its shape remains unchanged (thus stable) when being summed.

Infinitely divisible distribution:

A sufficient condition for Z be a limit of sums of the form $S_n = 8n_{,1} + \dots + 8n_{,n}$

is that I has an infinitely divisible distribution, i.e. for each n I i.i.d. sequence Ymi... Ymn s.t.