$example_questions$

October 2, 2025

1 Example Questions

 $\{note\}$ The questions below are designed to be solved analytically by hand (except when otherwise stated), encouraging a deeper understanding of the underlying statistical concepts rather than relying solely on computational tools in R.

1. Linear Regression

SNo.	X1	X2	Х3	Y
1	2.258	0.917	39	150.74
2	1.315	0.595	22	126.33
3	4.996	0.843	37	151.13
4	4.647	0.474	17	124.04
5	1.653	0.123	7	99.04
6	4.939	0.995	39	158.37
7	2.762	0.026	10	98.63
8	3.214	0.180	37	121.06
9	3.229	0.222	8	106.24
10	0.464	0.345	27	117.56
11	2.567	0.463	6	113.86
12	4.755	0.700	99	180.27
13	4.770	0.811	3	130.01
14	4.753	0.663	12	129.07
15	2.150	0.001	67	129.14
16	1.162	0.171	9	101.33
17	4.313	0.351	49	136.73
18	1.676	0.157	42	120.46
19	1.056	0.449	62	142.75
20	3.412	0.855	57	160.40
21	4.385	0.644	26	135.69
22	3.261	0.527	58	147.32
23	0.046	0.447	25	119.88
24	0.817	0.782	73	162.26
25	1.650	0.512	28	126.90
26	3.616	0.201	91	153.45
27	3.740	0.284	83	152.45

SNo.	X1	X2	Х3	Y
28	3.595	0.748	81	170.04
29	1.616	0.440	13	115.34
30	2.856	0.480	39	133.81

For the above-detailed dataset with exogenous variables X_1, X_2, X_3 and endogenous variable Y, develop the following linear regression model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$ in R, and answer the questions below

{tip} Save the dataset in an Excel/CSV file and import it into R using functions
like `read.csv()` or `readxl::read_excel()`.

- a. Comment on the estimated value and significance of each coefficient $\beta_0, \beta_1, \beta_2, \beta_3$
- b. Fill in the above table, computing fitted values and corresponding errors
- c. Compute the following model statistics
- Sum Squares Total
- Sum Squares Regression
- Sum Squares Error
- R-squared
- Adjusted R-squared
- d. Perform ex-post analysis (compute correlation between exogenous variables; draw residuals plot) to comment upon the validity of the model.

{tip} You can perform similar analysis using some standard datasets available
in R, such as: - `mtcars`: Explore the relationship between car features (e.g.,
horsepower, weight) and miles per gallon. - `iris`: Predict petal length or width
using sepal measurements. - `Boston` (from the `MASS` package): Model median
house value based on socioeconomic and housing variables. - `airquality`: Analyze
how temperature, wind, and solar radiation affect ozone levels. - `swiss`: Study
fertility rates as a function of socio-economic indicators. These datasets are
well-documented and suitable for hands-on linear regression practice.

2. Logistic Regression

For the following dataset with exogenous variables X_1, X_2, X_3 and binary endogenous variable Y, develop the following logistic regression model in R

{tip} Save the dataset in an Excel/CSV file and import it into R using functions
like `read.csv()` or `readxl::read_excel()`.

$$\log\!\left(\frac{\hat{P}_{Y=S}}{1-\hat{P}_{Y=S}}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

a. Comment on the estimated value and significance of each coefficient $\beta_0, \beta_1, \beta_2, \beta_3$.

- b. Compute estimated probabilities $(\hat{P}_{Y=S} \text{ and } \hat{P}_{Y=F})$
- c. Compute the following model statistics
- Log-Likelihood for
 - Equally-Likely Model
 - Market Share Model
- McFadden R-squared for the Estimated Model vs.
 - Equally-Likely Model
 - Market Share Model
- Adjusted McFadden R-squared for the Estimated Model vs.
 - Equally-Likely Model
 - Market Share Model

SNo	X_1	X_2	X_3	Y
1	1.8	10	0	F
2	2.1	14	0	\mathbf{F}
3	2.3	13	1	F
4	2.5	15	0	F
5	2.7	18	1	\mathbf{S}
6	2.9	16	0	F
7	3.0	20	1	\mathbf{S}
8	3.1	17	0	\mathbf{F}
9	3.2	22	1	\mathbf{S}
10	3.3	21	0	F
11	3.4	19	1	\mathbf{S}
12	3.5	25	0	\mathbf{S}
13	3.6	23	1	\mathbf{S}
14	3.7	26	0	\mathbf{S}
15	3.8	24	1	\mathbf{S}
16	4.0	28	0	\mathbf{S}
17	2.2	12	1	F
18	2.6	15	1	\mathbf{S}
19	2.8	19	0	F
20	3.0	18	1	\mathbf{S}
21	3.2	22	0	\mathbf{S}
22	3.4	20	1	\mathbf{S}
23	3.6	27	0	\mathbf{S}
24	3.8	29	1	\mathbf{S}
25	2.4	14	0	F
26	2.7	16	1	F
27	2.9	18	1	S
28	3.1	21	0	\mathbf{S}
29	3.5	23	1	\mathbf{S}

SNo	X_1	X_2	X_3	Y
30	3.9	30	0	S

{tip} You can perform similar analysis using some standard datasets available
in R, such as: - `Titanic` (from the `datasets` package): Predict survival
based on passenger features. - `iris`: Convert species to a binary variable
and predict using petal/sepal measurements. - `mtcars`: Predict whether a car
has automatic or manual transmission (`am` variable) using other features. `PimaIndiansDiabetes` (from the `mlbench` package): Predict diabetes status
based on medical measurements. - `Default` (from the `ISLR` package): Predict
default status using income, balance, and student status. These datasets are
well-documented and suitable for hands-on logistic regression practice.