

Relazione di calcolo

Torre SuperProfessional 35

RELAZIONE DI CALCOLO

- 1- Descrizione della struttura.
- 2- Materiali utilizzati.
- 3- Carichi considerati.
- 4- Modello di calcolo.
- 5- Calcoli.
- 6- Tabelle delle portate.

Il tecnico incaricato

DESCRIZIONE DELLA STRUTTURA

La struttura in oggetto è una trave reticolare modulare realizzata con tubolari in lega di alluminio e struso. I moduli hanno le dimensioni mostrate nella tavola allegata. I correnti in ogni modulo sono realizzati con tubolari 50 x 3 mentre i diagonali sono tubolari 30 x 3 saldati ai correnti come in figura. La continuità fra i moduli è garantita da opportune boccole collegate con i correnti da tre spine. Le distanze fra gli interassi dei correnti sono pari a 30 cm.

MATERIALI UTILIZZATI

Il materiale utilizzato è una lega di alluminio P-Al-Mg-S1 Mn con denominazione 6082 HB 90 secondo le norme UNI 9006 avente una resistenza allo snervamento pari a σ =2650 Kg/cmq, ed un modulo E=700000 kg/cmq. Si considera un coefficiente di sicurezza pari a υ =1.7 e si ottiene come a σ adm=1550 kg/cmq . In prossimità delle saldature il materiale termicamente alterato subisce un decadimento delle caratteristiche meccaniche per cui la resistenza residua di tali tratti è pari a σ =1100 kg/cmq ed applicando un coefficiente di sicurezza 1.5 si ottiene σ adm=733 kg/cmq. Le saldature sono realizzate con materiale di apporto S-Al Mg5 avente una resistenza pari a 1200 kg/cmq. Considerando che il processo di saldatura realizzato è di prima classe, la resistenza della saldatura è pari a 650 kg/cmq per le condizioni di carico I e per una saldatura del tipo testa a testa e 480 kg/cmq per le saldature a cordone d'angolo.

CARICHI

Il calcolo è stato eseguito considerando un carico verticale avente una eccentricità massima pari al 2% della lunghezza della torre.

MODELLO DI CALCOLO

Per il calcolo della struttura in esame è stato utilizzato il metodo delle tensioni ammissibili.

Lo schema di calcolo delle azioni M T N dovute ai carichi è quello di un pilastro incastrato alla base e libero in sommità .Le verifiche di resistenza sono state eseguite solo sulle sezioni maggiormente sollecitate: la bas. Essendo la trave molto snella , gli elementi sono stati verificati anche alla instabilità utilizzando la nota relazione di Eulero $Ncr=\pi^2EJ/L^2_0$, dove $L_0=\alpha L$ ($\alpha=0.8$).

Nei confronti della instabilità si è utilizzato un coefficiente di sicurezza pari a v=3.0.

CALCOLI

Dati relativi al corrente:

Dimensioni 50 x 3 mm

Area = 4.427 cm^2

J=12.28 cm4

W=4.912 cm3

Dati relativi al diagonale:

Dimensioni 30 x 3.0

Area = 2.54 cm²

 $J = 2.34 \text{ cm}^4$

 $W = 1.56 \text{ cm}^3$

Lunghezza =49.5 cm

Caratteristiche della sezione nel suo complesso:

Area = 17.7 cm^2

 $J = 3970 \text{ cm}^4$

 $W = 226 \text{ cm}^3$

Verifica a sforzo normale per ogni altezza:

Applicando la formula N/A ottengo come massima tensione considerando tutte le tipologie di carico:

 $\sigma = 60 \text{ kg/cm}^2 \le 1650 \text{ kg/cm}^2$

VERIFICA ALL'INSTABILITA'

Mx=38600*0,75=28950 kgcm

My=28950 kgcm

Lo sforzo normale è da considerarsi doppio in quanto la fune di carico parte dal motore , posto in basso, gira sulla testa della torre ed è collegata al carico. Per il calcolo si utilizza la formula: $\Box = N/\Box A + \underline{Mx}/\Box W + \underline{Mx}/\Box W$ N = Sforzo normale □ □funzione dell'instabilità e del tipo di materiale □□coefficiente (1-N/Ne) W=modulo di resistenza Mx=Momento flettente in direzione x My=Momento flettente equivalente in direzione y Ne=Sforzo normale di instabilità secondo la formula di Eulero= □2EJ/I₀2 Considerando l'altezza massima di 7.00 m si ottiene: =radicequadrata(3970/17)=15.28 cm □□1000*2/12.51=117 Ne=6850 kg N=1930 kg $\Box \Box 0,71$ □ □2750/552=6,82 Mx=1930*2/100*1000=38600 kgcm My=38600 kgcm

. □=N/□A+Mx/□W+Mx/□W=1930*6.8/17+28950*2/(220*0,71)=1142 kg/cmq<1550 kg/cmq

KIT TORRE SUPERPROFESSIONAL 35

Composto da:

- TESTA
- CARRELLO cm 50 x 50 x H 60
- BASE SUPERPROFESSIONAL con quattro controventi regolabili

TABELLA DELLE PORTATE UTILI DELLA TORRE

Altezza Torre mt		Portata Kg
mt	2	5500
mt	3	4250
mt	4	3125
mt	5	2550
mt	6	2061
mt	7	1720
mt	8	1383
mt	9	1180
mt	10	965

- · I carichi sono verticali e statici
- Massimo errore di verticalità: 2,5%

Il tecnico incaricato

Pagina 5 di 5

DEGLI INGER