西安交通大学考试题

成绩

课	程大学化学 I		
系	别	考试日期 2016年4月24	日
专业理	五号		
姓	名	学 号期中 🗸 期:	末

(可能用到的基本物理常数: $(R \neq 8.314 \text{J·mol}^{-1} \cdot \text{K}^{-1}, (F \neq 96485 \text{C·mol}^{-1})$

- 一、是非题 (错题标"×",对题标"√";每题1分,共8分)
- $(\sqrt{})$ 1.以 $|\psi|^2$ 表示的空间图象即为电子云,电子云越浓密处电子出现的 概率必然越大。
- ✓ ✓ (AIF6]3-中 AI 原子采用 sp3d2杂化,则配离子空间构型为正八面体。
- ★ (×) 3. 对氢原子来说,其原子能级顺序为 1s<2s<2p<3s<3p<4s<3d。</p>
- ✓(X)4. 共价键都具有饱和性与方向性,而离子键没有饱和性与方向性。
- X (X) 5. 溶液的蒸汽压下降值与溶液中溶质的摩尔分数成正比。
- (/(J) 6. 在同重量的两份水中,分别加入等物质的量的甘油和蔗糖形成两份 稀溶液,则这两份溶液的沸点一定相同。
- ★★ 00 7. 稳定单质在 100 kPa, 298.15 K 时的标准摩尔生成焓和标准摩尔摩 尔熵均为零。
- χ (χ) 8. 等温等压条件下,用 $\Delta_r G^0_m$ 可以判断任何化学反应自发进行的方向。
- 二、选择颲(每小圆有1_或多个答案;每题 2 分,共 22 分)
 - 1. 价层电子对互斥理论认为, SF4 分子的空间构型是 (A)。
- 变形四面体 B. 三角锥形 C. 平面三角形 D. 正四面体

由 扫描全能王 扫描创建

西安交通大学考试题

2.	根据分子轨道理法				•	-3	13/	迦	
	是理论,	下列	小分-	不耐毒	7				
	根据分子轨道理论, A. B ₂ ; ✓ B. L	r		,政商	于不可	可能存	在的是	是 (($\mathbb{C}_{\mathbb{R}}$

A. B_2 ; \checkmark B. He_2^+ ; \checkmark C Be_2 ; D. O_2^{2+} . 3. 下列各组量子数中,对应于能量最低的电子是()。

A. $(3, 1, 0, +\frac{1}{2});$ B. $(3, 1, 1, -\frac{1}{2});$

(3, 0, 0, $+\frac{1}{2}$); D. (3, 2, 1, $-\frac{1}{2}$).

4. 下列叙述中正确的是 (AB。

A. CCl₃、CO₂/为非极性分子,NH₃、PQl₃为极性分子;

B) PCl_5 、BeCl₂ 为非极性分子, H_2S 、NH₃ 为极性分子;

C. CO₂、CCl₄为非极性分子, PCl₃、BeCl₂为极性分子; ~

 $D. CO_2$ 、 BCl_3 为非极性分子, BF_3 、 $BeCl_2$ 为极性分子。义

5. 在 NH₃ 和 CCl₄ 分子之间存在哪些作用力(B)。

A. 取向力和诱导力

B) 色散力和诱导力

C. 取向力和色散力

D. 取向力、色散力和诱导力

6. 在一定温度下,某容器中含有相同质量的氢气、氧气、氮气和二氧化碳 混合气体,混合气体中分压最小的是()。

A. 氢气 B. 氧气 C. 氮气 (D.) 二氧化碳

)下列溶液中沸点最高的是(┪) (ン)。

A. 0.1mol·L⁻¹ MgCl₂

B. 0.1 mol·L⁻¹ NaCl -

(C) 0.1 mol·L⁻¹ AICl₃

D. 0.1 mol·L⁻¹ 蔗糖

8. 下列叙述正确的是(人)。
(A) 离了化合物可能含有具价键 /
B. 构成晶体的粒子一定含有其价键 *
(C) 共价化合物中也可能含有离子键成份 ×
D. 非极性分子中一定含有非极性键 *
9. 常温常压下 2 mol H ₂ 和 2 mol Cl ₂ 4(绝别钢管内反应生成 HCl 气体, 则
(().
$A.\triangle_t U = 0$, $\triangle_t H = 0$, $\triangle_t S > 0$, $\triangle_t G < 0 \times$
B. $\triangle_t U < 0$, $\triangle_t H < 0$, $\triangle_t S > 0$, $\triangle_t G < 0$
$(C)\Delta_1U=0$, $\Delta_1H<0$, $\Delta_1S>0$, $\Delta_1G<0$
D. $\triangle_t U > 0$, $\triangle_t H > 0$, $\triangle_t S = 0$, $\triangle_t G > 0$ \propto
10. 生产水煤气的反应为 C(s) + H ₂ O(g)→ CO ₂ (g) + H ₂ (g), 该反应的△,
=131.3 kJ·mol⁻¹,则该反应(△)。
(A.) 高温正向自发, 低温正向非自发 B. 高温正向非自发, 低温正向自然
C. 任何温度下均正向自发 D. 任何温度下均正向非自发
(11)下列属于状态函数的一组是 (D)。
A. Q , W , U B. Q , W , $\triangle U$ C. $\triangle U$, $\triangle H$, $\triangle S$ D. G , H , S
三、填空题(每空1分,共10分)
1. 根据现代价键理论, 在 HBr 分子中形成 o 键的原子轨道是和
2. [Co(NO ₂)(NII ₃) ₃]SO ₄ 的名称为, 中心 ^{原子}
是,配体是,配位原子是。
由 扫描全能王 扫描创建

3.已知 M²*离子的 3d 轨道中有 6 个 d 电子, M 原子的核外电子分布为, M 元素在周期表中第_____周期。/

4. 己知下列反应的热效应,则 C_2H_2 (g) 的生成热 $\triangle_lH^0_m$ 为 $_^{-2l}$.

(1)
$$C_2H_2(g) + 5/2O_2(g) \rightarrow 2CO_2(g) + H_2O(g)$$
 $\triangle_t H_m^0 = -1246.2 \text{kJ} \cdot \text{mol}^{-1}$

(2)
$$C(s) + 2H_2O(g) \rightarrow CO_2(g) + 2H_2(g)$$
 $\triangle_r H_m^0 = +90.9 \text{kJ-mol}^{-1}$

(3)
$$2H_2O(g) \rightarrow 2H_2(g) + O_2(g)$$
 $\triangle_t H_m^0 = +483.6 \text{kJ·mol·}^1$

5. 标准状态下, 2 mol NH₃(g)和 2 mol HCl (g) 生成 2 mol NH₄Cl(g)放出热量为 352.2 kJ·mol⁻¹,则 1 mol NH₃(g)和 1 mol HCl (g) 生成 1 mol NH₄Cl(g)的热化学方程式为 NH₃(g) + HCl (g) = NH₄Cl (g) △rH⁻¹ = -176

四、简答题(1、2、4小题各6分,第3、5小题各8分,共34分)

- 1. 对某一多电子原子来说,
- (1)下列原子轨道 3s、3p_x、3p_y、3p_x、3d_{xy}、3d_{xz}、3d_{yz}、3d_x、3d_x、3d_x、3d_x、1 中,哪 些是等价(简并)轨道?
 - (2)用符号">"、"="表示具有下列量子数的电子的能量:
 - (A) 3, 2, 1, +1/2; (B) 4, 3, 2, -1/2; (C) 2, 0, 0, +1/2;
 - (D) 3, 2, 0, +1/2; (E)1, 0, 0, -1/2.
- 2. 按照分子轨道理论,原子轨道组合成分子轨道后,电子在分子轨道中的 排布要遵循哪些原则?写出 O₂ 分子中电子的分子轨道排布式,并用分子轨道 理论说明其键级和磁性。
- 3.试结合价层电子对理论和杂化轨道理论说明 PCI₃ 分子和 NO₃ 中中心原子的杂化类型以及分子和离子的空间构型。

- 4. 红细胞膜和白细胞膜都是半透膜。血液中溶质的总浓度约为 0.6 mol·L⁻¹。 如果把红细胞分别放在纯水和 1.0 mol·L·l NaCl 溶液中会发生什么现象? 并解 科原因。溶血(55). 1.0 NaCl: 皱缩(35)
- 5.9.14 g HgCl₂ 溶解于 32.75 g 乙醇中,沸点升高了 1.27 ℃, HgCl₂ 在乙醇 中是电解质吗? 通过计算说明。(M ($HgCl_2$) =271.59g/mol; K_b (乙醇)=1.20 K·kg·mol-1)

1.058 mol·lg-1 > 1.028 mol·lg-1. 缺是电码质。 五、计算题(第1小题6分,第2、3小题各10分,共26分)

- 1. 有一蛋白质的饱和水溶液,每升溶液中含有蛋白质 5.18 g, 已知在 298.15 K 时,溶液的渗透压为 0.413 kPa,求此蛋白质的相对分子质量。 $M_r = 3/090$.
- 2. 已知 298 K 时, C(石墨)、甲烷及氢的标准摩尔燃烧热分别为-394 kJ·mol⁻¹, -890 kJ·mol⁻¹ 和-285.8 kJ·mol⁻¹。求 298 K 时在下列情况下甲烷的标准摩尔生成热,
 - - (1) 求该反应在 298K 时的△,H⁰_m、△,S⁰_m及△,G⁰_m, 并判断反应在 298K, 标准态时能否自发进行。
 - (2) 计算在标准状态下,该反应正向自发进行所需要的条件。 T>964.25 K.