Zero-Knowledge from MPC-in-the-Head: Constructions and Applications

Carmit Hazay
Faculty of Engineering,
Bar-Ilan University

- 1. P vs NP
- 2. Interactive vs Non-interactive
- 3. Trusted setup vs No setup (transparent)
- 4. ZK vs (only) Soundness
- 5. Succinct vs Non-succinct
- 6. Public-Key Crypto vs (only) Symmetric-Key Crypto

- 1. P vs NP
- 2. Interactive vs Non-interactive
- 3. Trusted setup vs No setup (transparent)
- 4. ZK vs (only) Soundness
- 5. Succinct vs Non-succinct
- 6. Public-Key Crypto vs (only) Symmetric-Key Crypto

- 1. P vs NP
- 2. Interactive vs Non-interactive
- 3. Trusted setup vs No setup (transparent)
- 4. ZK vs (only) Soundness
- 5. Succinct vs Non-succinct
- 6. Public-Key Crypto vs (only) Symmetric-Key Crypto

- 1. P vs NP
- 2. Interactive vs Non-interactive
- 3. Trusted setup vs No setup (transparent)
- 4. ZK vs (only) Soundness
- 5. Succinct vs Non-succinct
- 6. Public-Key Crypto vs (only) Symmetric-Key Crypto

- 1. P vs NP
- 2. Interactive vs Non-interactive
- 3. Trusted setup vs No setup (transparent)
- 4. ZK vs (only) Soundness
- 5. Succinct vs Non-succinct
- 6. Public-Key Crypto vs (only) Symmetric-Key Crypto

- 1. P vs NP
- 2. Interactive vs Non-interactive
- 3. Trusted setup vs No setup (transparent)
- 4. ZK vs (only) Soundness
- 5. Succinct vs Non-succinct
- 6. Public-Key Crypto vs (only) Symmetric-Key Crypto

- 1. P vs NP
- 2. Interactive vs Non-interactive
- 3. Trusted setup vs No setup (transparent)
- 4. ZK vs (only) Soundness
- 5. Succinct vs Non-succinct
- 6. Public-Key Crypto vs (only) Symmetric-Key Crypto

Prior Approaches to "Practical" ZK

- 1. Probabilistically Checkable Proofs (PCPs) [BFLS91, Kil92, Mic94, ALMSS98, AS98, DL08, GLR11, CMT12, BC12, DFH12, BCCT12, IMS12, Tha13, VSBW13], Interactive PCPs [KR08], Interactive Oracle PCPs [BCGT13, BCS16, RRR16, BCGRS16, BBCGGHPRSTV17,BBHR17]
- 2. Linear PCPs [IKO07, Gro10, GGPR13, BCIOP13, Gro10, Lip12, SMBW12, Lip13, PGHR13, BCGTV13, FLZ13, SBBPW13, Lip14, DFGK14, KPPSST14, ZPK14, CFHKKNPZ15, WSRBW15, BCTV14, BBFR15, Groth16, FFGKOP16, BFS16, BISW17, GM17, BBBPWM18]
- 3. Interactive Proofs (IP) [GKR08, ZGKPP17-18, WTSTW18]
- **4. Multiparty Computation (MPC)** [IKOS07, GMO16, CDGORRSZ17, AHIV17,KKW18]

No setup High prover's complexity

Short Proofs
Fast Verification
Heavy Public-Key Crypto
Trusted Setup
Quantum Insecure

No setup Moderate Public-Key Crypto

Zero-Knowledge from MPC [IKOS07]

- Goal: ZK proof for an NP-relation R(x,w)
- Towards using MPC:
 - Define n-party functionality

$$g(x; W_1,...,W_n) = R(x, W_1 \oplus ... \oplus W_n)$$

- Use OT-based MPC
 - Security in semi-honest model

Zero-Knowledge from MPC [IKOS07]

Given MPC protocol π for $g(x; w_1,...,w_n) = R(x, w_1 \oplus ... \oplus w_n)$

Verifier

accept iff output=1 &

Vi,Vj are consistent

Analysis

- Completeness: $\sqrt{}$
- Zero-knowledge: by 2-security of π and randomness of w_i , w_j

Analysis

Prover

 $\mathbf{W} = \mathbf{W}_1 \oplus ... \oplus \mathbf{W}_n$

In fact, proof of knowledge

- Soundness: Suppose R(x,w)=0 for all w either (1) $V_1,...,V_n$ consistent with protocol π
 - or (2) $V_1,...,V_n$ not consistent with π
 - (1) outputs=0 (perfect correctness) verifier rejects
 - (2) for some (i,j), V_i, V_j are inconsistent verifier rejects with prob. $\geq \binom{n}{2}$

Analysis

Communication complexity:

 \approx (comm. complexity + rand. complexity + input size) of π

ZKBoo: Faster Zero-Knowledge for Boolean Circuits [GMO16]

Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives (ZKB++) [CDGORRSZ17]

Zero-Knowledge from 3-Party GMW [IKOS07,GMO16]

Use 3-party GMW protocol π^{OT} for $g(x; w_1, w_2, w_3) = R(x, w_1 \oplus w_2 \oplus w_3)$

Verifier

accept iff output=1 &

 V_i , V_j are consistent soundness error $\leq 2/3$

Extensions

- Variant 1: Use 1-secure MPC
 - Commit to views of parties + channels
 - Open one view and incident channels
- Variant 2: Directly get 2^{-k} soundness error via security in malicious model
 - n=O(k) parties
 - Ω (n)-security with abort
 - Broadcast is "free"
- Handle MPC with error via coin-flipping

Prior Approaches to "Practical" ZK

- 1. Probabilistically Checkable Proofs (PCPs) [BFLS91, Kil92, Mic94, ALMSS98, AS98, DL08, GLR11, CMT12, BC12, DFH12, BCCT12, IMS12, Tha13, VSBW13], Interactive PCPs [KR08], Interactive Oracle PCPs [BCGT13, BCS16, RRR16, BCGRS16, BBCGGHPRSTV17,BBHR17]
- 2. Linear PCPs [IKO07, Gro10, GGPR13, BCIOP13, Gro10, Lip12, SMBW12, Lip13, PGHR13, BCGTV13, FLZ13, SBBPW13, Lip14, DFGK14, KPPSST14, ZPK14, CFHKKNPZ15, WSRBW15, BCTV14, BBFR15, Groth16, FFGKOP16, BFS16, BISW17, GM17, BBBPWM18]
- 3. Interactive Proofs (IP) [GKR08, ZGKPP17-18, WTSTW18]
- **4. Multiparty Computation (MPC)** [IKOS07, GMO16, CDGORRSZ17, AHIV17,KKW18]

No setup High prover's complexity

Short Proofs
Fast Verification
Heavy Public-Key Crypto
Trusted Setup
Quantum Insecure

No setup Moderate Public-Key Crypto

No Setup
Fast Prover
Post Quantum Secure
Everything Linear

Ligero: Lightweight Sublinear Arguments Without a Trusted Setup [AHIV17]

High-Level Overview

High level approach: use **MPC** in the head [IKOS07]

- Transform Honest-majority MPC to ZK
- Optimized and implemented in [GMO16,CDGORRSZ17]

Can the communication be sublinear?

Communication complexity of (i.t.) MPC > circuit size

Key insight: Communication per party can be sublinear [DI06,IPS09]

High-Level Overview

High level approach: use **MPC** in the head [IKOS07]

- Transform Honest-majority MPC to ZK
- Optimized and implemented in [GMO16,CDGORRSZ17]

MPC \longrightarrow Interactive PCP[KR08] $\stackrel{\text{[BCS16]}}{\longrightarrow}$ ZK

it size

Key insight: Communication per party can be sublinear [DI06,IPS09]

Main Result

Sublinear ZK arguments without trusted setup

- o Simple, concretely efficient
- Symmetric-crypto only (eg, SHA256)
- o Post-quantum secure

First "sublinear" arguments for NP that avoid both complex PCP machinery and public-key crypto

Main Result

Sublinear ZK arguments without trusted setup

Concretely:

- o **40-bit security:** comm. is $0.5\sqrt{|C|}$ kb in the Boolean case
- o Can be made non-interactive via Fiat-Shamir
- Can handle Boolean or arithmetic circuits
- o Prover computation: Merkle Tree ($O(\sqrt{|C|})$ leaves) + $O(\sqrt{|C|})$ FFT's of $O(\sqrt{|C|})$ evaluations

Eg, SHA256 certification with 40-bit security:

i.e. For statement y, prover proves knowledge of x such that SHA256(x) = y

	Linear PCP (Pinocchio)	ZKB00/++ [CDGORRSZ17]	Ligero
Communication	~ bytes	200 KB	34 KB
Prover time	mins	~33ms	140ms
Verifier time	<10ms	~38ms	60ms
Asymptotic Communication	~ bytes	O(ICI)	O (√ C)
Trusted Setup	YES	NO	NO
Amortization	NA	NO	YES

Proof Schematic

Prover

Verifier

Verifier

Verifier

The Underlying MPC Protocol

- 1. Input sharing phase
 - Sharing of extended witness
 - Server's view is a matrix column
- 2. Local computation
 - Proofs of correctness

Idea 1: Shamir Secret Sharing [S79]

Pick a random t-degree polynomial p such that **p(0) is secret**Distribute p(1), ..., p(n)
t shares do not reveal the secrets
n-t/2 modified shares do not affect correctness

Idea 1: Packed Secret Sharing [FY92]

Pick a random t+e-degree polynomial p such that p(0), p(-1), ..., p(-e) are secrets Distribute p(1), ..., p(n) t+e shares do not reveal the secrets

Prover

•			•		•			•	•
•			•			•			•
•	•						•		•
•	•	•		•		•		•	•
•				•				•	•
	•	•	•	•		•	•	•	•
•	•		•	•				•	•

Verifier

Center for Research in Applied Cryptography and Cyber Security

Prover

•	•	•	•	•	•	•	•	•	
•				•			•		
•	•					•	•		
•	•	•	•	•	•	•		•	
•		•			•			•	
•	•			•	•	•	•		
•				•	•			•	

$$\mathbf{i_1}, \mathbf{i_2}, \mathbf{i_3}, \dots$$

Prover

Center for Research in Applied Cryptography and Cyber Security

Prover

$$z(x) = \sum_{i} f_{i}(p_{i}(x)q_{i}(x) - r_{i}(x))$$

Prover

$$z(x) = \sum_{i} f_{i}(p_{i}(x)q_{i}(x) - r_{i}(x))$$

Verifier

Check

$$z(i) = \sum_i f_i(p_i(i)q_i(i) - r_i(i))$$

Center for Research in Applied Cryptography and Cyber Securit

Post-Quantum Signatures from NIZK [CDGORRSZ17,KKW18]

Obtaining (Post Quantum) Signatures from NIZK

The signature scheme:

PK: $y=PRF_k(0^k)$ where PRF is a block cipher

Sig(m): a proof for (y,k) on a challenge H(a,m)

Advantages:

- Based on symmetric-key primitives
- Easily extendable to ring and group signatures

High-Level Overview [KKW18]

Use MPC-in-the-head in the preprocessing model

• Check consistency of preprocessing using cut-and-choose

High-Level Overview [KKW18]

MPC-in-the-head can be instantiated with dishonest majority protocols

- Semi-honest instances for generating correlated randomness
- Implies two versions of 5/3 rounds

Removing Interaction via the Fiat-Shamir Transform

Scalable Transparent Proofs (STARK, Aurora)

- Proof length and round complexity scale with log |C| [BBHR18,BCRSVW18]
- Prover's running time better in Ligero

