Question Set 2

Target Course Outcome: CO4

Department of Computer Science and Engineering Amrita School of Computing Amrita Vishwa Vidyapeetham – Coimbatore

III Year B.Tech. CSE VI Sem CSE/CCE

19CSE456 – Neural Networks and Deep Learning (PE-3)

Lab Evaluation – II

Instructions:

- The total mark for the lab evaluation is 10.
- The questions should be neatly worked out in VS Code/Anaconda's Jupyter IDE and it needs to be made sure that the python notebook is named as Roll Number NNDL Eval1.ipynb (e.g. CB.EN.U8CSE96108 NNDL Eval1.ipynb).
- The pdf (the file name should be same as the name of ipynb) exported version of ipynb should be uploaded to the outlook form whose link is: https://forms.office.com/r/Ws8ifg1t1F.

1. Loading the dataset (3 marks)

- a. Import all necessary dependencies to construct a Convolutional Neural Network and for carrying out visualization. Load the **CIFAR-100** dataset (with train and test split) from **keras**. (1 mark)
- b. Perform necessary preprocessing on the images loaded from the CIFAR-100 dataset. (1 mark)
- c. Show the shapes of train and test sets (both predictor and predicted variables). Select a sample set of 10 images from the dataset and visualize in a 5X2 grid. (1 mark)

2. CNN Construction (3 marks)

- a. Build a CovNet consisting of two hidden layers (Convolution + Pooling) with 64 and 128 to be the number of filters in each convolution layer, respectively. The kernel size and pool size in all two convolution and pooling layers is (3 x 3) and (2 x 2), respectively. There should be 2 fully connected layers after the hidden layers with 256 and 100 neurons in dense layer 1 and dense layer 2, respectively. The activation for all convolution layers and dense layers is ReLU. (2 marks)
- b. Compile the model with adagrad to be the optimized and sparse_categorical _ crossentropy being the loss function. Fit the constructed CNN with training data with values for epochs, batch_size, and validation_set being 12, 128, and 0.2, respectively. (1 mark)

3. Performance Evaluation (4 marks)

a. Draw the accuracy and loss plots for training and validation sets for whatever model built because of fitting happening in questions number 2. (2 marks)

- b. Change the number of epochs and batch_size in question number 2 to 15 and 128. Then, draw the accuracy and loss plots for training and validation sets. (1 mark)
- c. Present the test set accuracy and loss for both models (model created in question number 2 and 3) (1 mark)