Addition Polymers

Addition polymerisation is the addition of monomers to a polymer chain through double (or triple) bonds of the monomers.

Steps

- 1. Initiation an initiator (such as peroxide) containing a free valence electron will bond to one side of a monomer, forming a free radical. The free valence electron "spot" will move to the end of the chain.
- 2. Propagation Monomers continue to add to the end of the chain. A long enough chain may bend back on itself, resulting in the radical moving into the middle of the chain and creating a branch. This is called backbiting.
- 3. Termination when two polymers meet and join at the radical, the polymer is complete.

Initiation

$$\begin{array}{ccc} R-O-O-R & \longrightarrow & 2R-O & \\ \hline R-O & & C=C & \longrightarrow & R-O-C-C & \end{array}$$

Propagation

Termination

Permination
$$R - O - \stackrel{\downarrow}{C} - \stackrel{\downarrow}{C} + \stackrel{\downarrow}{C} - \stackrel{\downarrow}{C} + \stackrel{\downarrow}{C} - \stackrel{\downarrow}{C} - \stackrel{\downarrow}{C} + \stackrel{\downarrow}{C} - \stackrel{\downarrow}$$

Examples

Polymer	Common	Abbreviation	Structure	Monomer	Process	Comments
	name					
Low density polyethylene		LDPE	/H H\	Ethene		Has high branching
High density polyethylene		HDPE	$\begin{pmatrix} -C - C \\ H & H \end{pmatrix}_{n}$		Polymerisation occurs on surface of catalysts (e.g. Ziegler catalysts)	Has low branching
Crystal Polystyrene		PS, Crystal		Styrene (ethene is combined with benzene with aluminium catalyst and high temperatures, then sulfur catalysed dehydrogenation makes styrene)		Large benzene rings make for high stiffness
Expanded polystyrene	Styrofoam	EPS	H-C-H		Made by blasting melted crystal PS with compressed air	

Polyvinylchloride	PVC .	PVC	H CI 	Chloroethene (vinyl chloride)		Has dipole-dipole bonds between chains (due to CI), so is stronger than PE (which has dispersion only)
Polytetrafluoroethylene	Teflon	PTFE		Tetrafluoroethylene	TFE is made from CaF ₂ , H ₂ SO ₄ , and CHCl ₃ . The polymerisation is complex	Repels all substances, heat resistant, strong, acid/base/solvent resistant, slippery

•

Condensation Polymers

Condensation Polymerisation is the combination of chemicals resulting in a by-product such as water of methanol

Steps

- Two monomers with the same functional group on both ends joins at one of their functional groups, producing a by-product such as water. This is called a dimer. Alternatively two of the same monomer with reactable groups at either end could join, like a carboxylic acid with a hydroxy at the opposing end.
- 2. Dimers join together to form a polymer, producing a by-product at each step.

Polyester

Polyamide

Examples

Name	Common	Parent monomers	By product	Common example	
	name				
Polyester		Dicarboxylic acid and diol	Water	PET (textiles, electronics, water bottles, etc.) – Polyethylene tetraphalate. Made from Ethylene glycol and terephthalic acid	
				но он НО ОН	
Polyamide	Polyamide Nylon Dicarboxylic acid and diamir			Nylon 66 (airbags, tyres, ropes, hoses). Made from hexamethylenediamine and adipic acid	
				$HO \longrightarrow OH$ $H_2N \longrightarrow NH_2$	