

MÓDULO PARA BIODIGESTORES DE USO EM RESTAURANTES

Gabriela de Lima Kido (PQ)¹, Vinicius Modulo (PQ)²

¹Instituto Federal de Educação, Ciência e Tecnologia de São Paulo – Catanduva – SP, Brasil

Palavras Chave: módulo supervisório, biodigestores, biogás.

Introdução

Os biodigestores são recipientes onde se armazenam restos orgânicos para produção de biogás por meio da biodigestão anaeróbica (RIBEIRO, 2020). Esses tem sido uma solução para o aproveitamento de matéria orgânica que é descartada incorretamente, assim gera uma diminuição na contaminação do ar e solo.

Além disso, o biogás tem sido uma alternativa barata e eficaz ao gás de cozinha derivado do petróleo, visto que reduz a emissão de gases poluentes.

Este trabalho visa desenvolver um módulo supervisório que monitorará remotamente as variáveis temperatura, umidade e percentual de metano produzido, para assim ter mais controle sobre o processo.

Metodologia

Para realização do trabalho, selecionou-se os sensores DHT22, para medição de temperatura e umidade. Além de um MQ-4 para percentual de metano. A escolha foi feita com base na precisão dos mesmos e devido a faixa de trabalho considerada ideal para o biodigestor.

Para montagem do circuito montou-se uma fonte de alimentação de corrente contínua com saída regulada em 3V e 5V, responsável por alimentar os sensores e o ESP32 (ESPRESSIF SYSTEMS, 2022). A programação para funcionamento dos sensores foi desenvolvida na plataforma Arduino IDE.

Figura 1: Circuito montado com fonte e sensores

Após utilizou-se o protocolo de comunicação MQTT para comunicar os dados dos sensores, obtidos pelo ESP, com um banco de dados em nuvem, localizado em servidores *da Amazon Web services* (AWS) e informar esses dados em uma página web que foi desenvolvida na plataforma de desenvolvimento Node-RED (OpenJS Foundation & Contributors, 2022).

Resultados e Discussão

A partir da programação e das plataformas utilizadas, tornou-se possível realizar o monitoramento remoto do módulo do biodigestor por meio de uma página web em que são apresentados os dados em tempo real, como temperatura, umidade e a porcentagem do gás produzido.

Figura 2: Página web com dados gráficos coletados

Conclusões

O sistema supervisório se mostrou preciso na medição das variáveis, dessa forma, conclui-se que o módulo poderá ser usado na montagem de biodigestores reais para uso em restaurantes.

Agradecimentos

Ao Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - Campus Catanduva pelo apoio e incentivo.

AMAZON WEB SERVICE. **Amazon RDS**, c2022. Banco de Dados na nuvem AWS. Disponível em: https://aws.amazon.com/pt/products/databases/?nc2=h_ql_prod_db. Acesso em: 28 maio 2022.

ESPRESSIF SYSTEMS. **ESP32-WROOM-32:** datasheet. Shangai: Espressif Systems, 2022. Disponível em: https://www.espressif.com/sites/default/files/documentation/esp 32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf.Acesso em: 01 maio 2022.

OPENJS FOUNDATION & CONTRIBUTORS. **Node-RED:** Low-code programming for event-driven applications . Versão 2.2.2 (npm). Disponível em: Node-RED (nodered.org). Acesso em: 31 maio 2022.

RIBEIRO, Maria de Fátima dos Santos. **Sistemas de bioenergias [recurso eletrônico]**. 1.ed. Curitiba: Contentus, 2020.

IV MostraPeEx: Mostra de Ensino, Pesquisa e Extensão 2021

