$11n_{55} (K11n_{55})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -43u^{35} - 186u^{34} + \dots + 32b + 285, \ 41u^{35} + 278u^{34} + \dots + 4a + 100, \ u^{36} + 7u^{35} + \dots + 7u + 1 \rangle$$

 $I_2^u = \langle b^6 - b^5 - b^4 + 2b^3 - b + 1, \ a, \ u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 42 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -43u^{35} - 186u^{34} + \dots + 32b + 285, \ 41u^{35} + 278u^{34} + \dots + 4a + 100, \ u^{36} + 7u^{35} + \dots + 7u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{41}{4}u^{35} - \frac{139}{2}u^{34} + \dots - 126u - 25 \\ 1.34375u^{35} + 5.81250u^{34} + \dots - 28.4375u - 8.90625 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -12.5938u^{35} - 82.0625u^{34} + \dots - 128.313u - 23.8438 \\ -0.906250u^{35} - 9.43750u^{34} + \dots - 50.6875u - 13.9063 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0312500u^{35} + 0.187500u^{34} + \dots + 1.18750u + 0.0312500 \\ -0.906250u^{35} - 5.50000u^{34} + \dots - 1.18750u - 0.0312500 \\ -0.906250u^{35} - 5.50000u^{34} + \dots - 4.75000u - 0.968750 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.625000u^{35} - 3.81250u^{34} + \dots - 4.06250u + 0.312500 \\ 0.968750u^{35} + 5.87500u^{34} + \dots + 6.12500u + 1.03125 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{41}{4}u^{35} + \frac{139}{2}u^{34} + \dots + 126u + 25 \\ -2.84375u^{35} - 13.8125u^{34} + \dots + 33.9375u + 11.1563 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{41}{4}u^{35} + \frac{139}{2}u^{34} + \dots + 126u + 25 \\ -2.84375u^{35} - 13.8125u^{34} + \dots + 33.9375u + 11.1563 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{161}{16}u^{35} + \frac{897}{16}u^{34} + \dots \frac{87}{16}u \frac{49}{8}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{36} - 7u^{35} + \dots - 7u + 1$
c_2	$u^{36} + 9u^{35} + \dots + 11u + 1$
c_3, c_7	$u^{36} - u^{35} + \dots - 128u + 64$
<i>C</i> ₅	$u^{36} - 6u^{35} + \dots - 74u + 17$
c_6, c_9	$u^{36} - 2u^{35} + \dots - 2u + 1$
<i>c</i> ₈	$u^{36} + 2u^{35} + \dots - 56u + 49$
c_{10}	$u^{36} - 18u^{35} + \dots - 2u + 1$
c_{11}	$u^{36} - 2u^{35} + \dots - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{36} - 9y^{35} + \dots - 11y + 1$
c_2	$y^{36} + 43y^{35} + \dots + 57y + 1$
c_3, c_7	$y^{36} - 39y^{35} + \dots - 61440y + 4096$
c_5	$y^{36} + 14y^{35} + \dots + 2990y + 289$
c_6, c_9	$y^{36} - 18y^{35} + \dots - 2y + 1$
c ₈	$y^{36} + 6y^{35} + \dots + 490y + 2401$
c_{10}	$y^{36} + 2y^{35} + \dots + 18y + 1$
c_{11}	$y^{36} + 42y^{35} + \dots - 2y + 1$

(vi) Complex Volumes and Cusp Shapes

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
b = 0.303700 + 0.290509I	
u = 1.061290 - 0.326287I	10 <i>I</i>
	10I
a = -0.642038 + 0.460220I $-0.00265 - 2.23213I$ $-0.68244 + 4.156$	
b = 0.303700 - 0.290509I	
u = 0.515673 + 0.710660I	
a = -0.862097 - 0.946791I $2.02771 - 6.40530I$ $1.88436 + 7.113$	12I
b = 0.155712 + 0.653329I	
u = 0.515673 - 0.710660I	
a = -0.862097 + 0.946791I $2.02771 + 6.40530I$ $1.88436 - 7.113$	12I
b = 0.155712 - 0.653329I	
u = 0.785644 + 0.339119I	
a = 0.531433 + 0.754793I -1.48377 - 1.33270I -5.42230 + 4.026	94I
b = -0.166697 - 0.401361I	
u = 0.785644 - 0.339119I	
a = 0.531433 - 0.754793I -1.48377 + 1.33270I -5.42230 - 4.026	94I
b = -0.166697 + 0.401361I	
u = 1.177000 + 0.085808I	
a = 0.589499 + 0.125039I -2.50865 - 0.37469I -1.90153 - 1.636	09I
b = -0.316874 - 0.078348I	
u = 1.177000 - 0.085808I	
a = 0.589499 - 0.125039I -2.50865 + 0.37469I -1.90153 + 1.636	09I
b = -0.316874 + 0.078348I	
u = -0.888941 + 0.845189I	
a = 0.755005 + 0.931742I $3.30506 + 0.68404I$ $-1.00000 + 0.5033$	330I
b = 0.44408 - 1.66748I	
u = -0.888941 - 0.845189I	
a = 0.755005 - 0.931742I $3.30506 - 0.68404I$ $-1.00000 - 0.5033$	330I
b = 0.44408 + 1.66748I	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.512682 + 0.569033I		
a = 0.780897 + 0.985416I	-0.43379 - 1.94575I	-1.80433 + 3.98828I
b = -0.113983 - 0.584856I		
u = 0.512682 - 0.569033I		
a = 0.780897 - 0.985416I	-0.43379 + 1.94575I	-1.80433 - 3.98828I
b = -0.113983 + 0.584856I		
u = 1.231010 + 0.192137I		
a = -0.699294 - 0.225880I	-0.47071 - 4.51088I	0.51157 + 3.50709I
b = 0.379504 + 0.152175I		
u = 1.231010 - 0.192137I		
a = -0.699294 + 0.225880I	-0.47071 + 4.51088I	0.51157 - 3.50709I
b = 0.379504 - 0.152175I		
u = -0.977681 + 0.835405I		
a = -0.710165 - 0.943837I	3.02757 + 5.62134I	-1.94819 - 5.64508I
b = -0.44152 + 1.76315I		
u = -0.977681 - 0.835405I		
a = -0.710165 + 0.943837I	3.02757 - 5.62134I	-1.94819 + 5.64508I
b = -0.44152 - 1.76315I		
u = 0.268102 + 0.646439I		
a = -0.923789 - 1.064280I	3.06250 + 1.09495I	4.73244 - 0.17091I
b = 0.005979 + 0.692881I		
u = 0.268102 - 0.646439I		
a = -0.923789 + 1.064280I	3.06250 - 1.09495I	4.73244 + 0.17091I
b = 0.005979 - 0.692881I		
u = -0.813768 + 1.033210I		
a = 0.813317 + 1.002390I	6.28852 - 0.72428I	0
b = 0.26375 - 1.59543I		
u = -0.813768 - 1.033210I		
a = 0.813317 - 1.002390I	6.28852 + 0.72428I	0
b = 0.26375 + 1.59543I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.791993 + 1.084540I		
a = -0.827522 - 1.018650I	9.06514 - 5.65458I	3.21416 + 3.51542I
b = -0.21954 + 1.58084I		
u = -0.791993 - 1.084540I		
a = -0.827522 + 1.018650I	9.06514 + 5.65458I	3.21416 - 3.51542I
b = -0.21954 - 1.58084I		
u = -0.890160 + 1.056150I		
a = -0.787704 - 1.021790I	10.62450 + 2.78646I	4.96714 + 0.I
b = -0.24615 + 1.66009I		
u = -0.890160 - 1.056150I		
a = -0.787704 + 1.021790I	10.62450 - 2.78646I	4.96714 + 0.I
b = -0.24615 - 1.66009I		
u = -0.584281 + 0.166417I		
a = 1.042350 + 0.296118I	-0.74873 + 6.02926I	3.12323 - 6.76386I
b = 1.36445 - 0.54728I		
u = -0.584281 - 0.166417I		
a = 1.042350 - 0.296118I	-0.74873 - 6.02926I	3.12323 + 6.76386I
b = 1.36445 + 0.54728I		
u = -1.094200 + 0.888442I		
a = -0.670282 - 0.996339I	5.38321 + 7.74752I	0
b = -0.35959 + 1.85999I		
u = -1.094200 - 0.888442I		
a = -0.670282 + 0.996339I	5.38321 - 7.74752I	0
b = -0.35959 - 1.85999I		
u = -1.07312 + 0.94681I		
a = 0.693971 + 1.015250I	10.02090 + 4.50426I	0
b = 0.31569 - 1.82618I		
u = -1.07312 - 0.94681I		
a = 0.693971 - 1.015250I	10.02090 - 4.50426I	0
b = 0.31569 + 1.82618I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.12915 + 0.89488I		
a = 0.657336 + 1.008600I	7.9678 + 12.8462I	0
b = 0.34290 - 1.88751I		
u = -1.12915 - 0.89488I		
a = 0.657336 - 1.008600I	7.9678 - 12.8462I	0
b = 0.34290 + 1.88751I		
u = -0.540727 + 0.094568I		
a = -1.134090 - 0.180057I	-2.55842 + 1.10908I	-0.054318 - 1.238814I
b = -1.312240 + 0.291727I		
u = -0.540727 - 0.094568I		
a = -1.134090 + 0.180057I	-2.55842 - 1.10908I	-0.054318 + 1.238814I
b = -1.312240 - 0.291727I		
u = -0.267380 + 0.307929I		
a = 1.39318 + 0.77500I	1.71662 - 0.40164I	5.72630 + 0.15643I
b = 0.600824 - 0.555255I		
u = -0.267380 - 0.307929I		
a = 1.39318 - 0.77500I	1.71662 + 0.40164I	5.72630 - 0.15643I
b = 0.600824 + 0.555255I		

II.
$$I_2^u = \langle b^6 - b^5 - b^4 + 2b^3 - b + 1, \ a, \ u - 1 \rangle$$

(i) Arc colorings

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -b \\ b \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -b^2 \end{pmatrix}$$

$$a_c = \begin{pmatrix} b^2 - 1 \\ b^4 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} b^{2} - 1 \\ -b^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} b^{4} - b^{2} + 1 \\ -b^{4} \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $b^5 + 4b^4 2b^3 4b^2 + 6b 3$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^6$
c_2, c_4	$(u+1)^6$
c_{3}, c_{7}	u^6
c_5, c_{10}	$u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1$
c_6, c_8, c_{11}	$u^6 - u^5 - u^4 + 2u^3 - u + 1$
<i>c</i> ₉	$u^6 + u^5 - u^4 - 2u^3 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_7	y^6
c_5, c_{10}	$y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1$
c_6, c_8, c_9 c_{11}	$y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	-3.53554 + 0.92430I	-9.40317 - 0.69886I
b = -1.002190 + 0.295542I		
u = 1.00000		
a = 0	-3.53554 - 0.92430I	-9.40317 + 0.69886I
b = -1.002190 - 0.295542I		
u = 1.00000		
a = 0	0.245672 + 0.924305I	0.635956 + 0.093695I
b = 0.428243 + 0.664531I		
u = 1.00000		
a = 0	0.245672 - 0.924305I	0.635956 - 0.093695I
b = 0.428243 - 0.664531I		
u = 1.00000		
a = 0	-1.64493 - 5.69302I	-5.23279 + 4.86918I
b = 1.073950 + 0.558752I		
u = 1.00000		
a = 0	-1.64493 + 5.69302I	-5.23279 - 4.86918I
b = 1.073950 - 0.558752I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{36}-7u^{35}+\cdots-7u+1)$
c_2	$((u+1)^6)(u^{36}+9u^{35}+\cdots+11u+1)$
c_3, c_7	$u^6(u^{36} - u^{35} + \dots - 128u + 64)$
C ₄	$((u+1)^6)(u^{36} - 7u^{35} + \dots - 7u + 1)$
<i>C</i> 5	$(u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1)(u^{36} - 6u^{35} + \dots - 74u + 17)$
c_6	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)(u^{36} - 2u^{35} + \dots - 2u + 1)$
<i>C</i> ₈	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)(u^{36} + 2u^{35} + \dots - 56u + 49)$
<i>C</i> 9	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)(u^{36} - 2u^{35} + \dots - 2u + 1)$
c_{10}	$(u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1)(u^{36} - 18u^{35} + \dots - 2u + 1)$
c_{11}	$ (u6 - u5 - u4 + 2u3 - u + 1)(u36 - 2u35 + \dots - 2u + 1) $

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^6)(y^{36} - 9y^{35} + \dots - 11y + 1)$
c_2	$((y-1)^6)(y^{36} + 43y^{35} + \dots + 57y + 1)$
c_3, c_7	$y^6(y^{36} - 39y^{35} + \dots - 61440y + 4096)$
c_5	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)(y^{36} + 14y^{35} + \dots + 2990y + 289)$
c_6, c_9	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)(y^{36} - 18y^{35} + \dots - 2y + 1)$
c_8	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)(y^{36} + 6y^{35} + \dots + 490y + 2401)$
c_{10}	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)(y^{36} + 2y^{35} + \dots + 18y + 1)$
c_{11}	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)(y^{36} + 42y^{35} + \dots - 2y + 1)$