

DeepOPG: Improving Orthopantomogram Finding Summarization with Weak Supervision

Tzu-Ming Harry Hsu¹, Yin-Chih Chelsea Wang ¹MIT CSAIL

Full Paper

Motivation & Contributions

- An orthopantomogram (OPG) is a half-circle 2D scanning of the oral region
- Interpretation of OPGs suffers from *low* inter-rater agreement among clinicians
- Current models to derive OPG finding summary all require time-consuming per-pixel annotations

Orthopantomogram

Finding Summary

	Туре	Subtotal	FDI#	
	Missing Teeth	14		
	Impacted Teeth	0		
→	Teeth with Crown & Bridge	own & Bridge 11		
	Teeth with Restorations	2		
	Root Filled Teeth	7		
	Implants	6		

- We propose DeepOPG, a system to predict OPG finding summary with
 - (1) weak supervision data, and
 - (2) dental knowledge infused

Data: UFBA-UESC Dental Images

Methods: Dental Coherence Reward

- Functional Segmentation Module (ResNet-50 + U-Net) first takes OPG and derives the 7-class functional segmentation map: background, normal (non-impacted) teeth, impaction, crown & bridge, restoration, root filling material, and implant
- **Tooth Localization Module** (ResNet-101 + RPN) then takes OPG and segmentation map and derives the 34-class instance map: background, 32 teeth in FDI notation, and implant
- **Dental Coherence Module** refines the instance ↔ teeth assignment E by maximizing the clinical knowledge-based Dental Coherence Reward
 - Inference-Time Decoding: solve a Generalized Quadratic Assignment Problem (GQAP) with no model modifications
 - Weakly Supervised Reinforcement Learning (RL): use weak summary data and REINFORCE to learn better models

We (A) train Functional Segmentation first, then (B) train Tooth Localization w/o RL, followed by (C) fine-tuning with RL.

Results

Tooth Localization Performance: Ablation Study

Method	Per-Object			Per-Image	
	$AP_{0.0} (\%)$	$AP_{0.5} (\%)$	DA (%)	FA (%)	IoU (%)
DeepOPG (full)	$\mathbf{98.6_{0.1}}$	$97.6_{0.3}$	$\mathbf{98.7_{0.4}}$	$\boldsymbol{97.5_{0.6}}$	$\mathbf{80.5_{1.5}}$
w/o RL	$98.4_{0.1}$	$97.2_{0.4}$	$98.7_{0.4}$	$97.5_{0.6}$	80.1 _{1.5}
w/o RL and	$93.0_{0.1}$	$91.3_{0.4}$	$93.7_{0.9}$	$87.4_{1.2}$	$79.7_{1.6}$
dental coherence					
w/o segmentation	$97.7_{0.1}$	$96.2_{0.3}$	$97.9_{0.5}$	$95.7_{0.8}$	$80.2_{1.5}$

Comparison to Prior Work

- - Tuzoff et al.: Tooth Detection and Numbering in Panoramic Radiographs using Convolutional
 - Kim et al.: Automatic Tooth Detection and Numbering Using a Combination of a CNN and Heuristic Algorithm
- DeepOPG (full): Ours with all features