CS113 LAB 2: Truth Values Generator

```
SML
PolyML.print\_depth 64;
exception OutOfRange;
[fun\ expand((a:'a,b:'a), []) = []
   expand((a:'a,b:'a), g::gs:'a \ list \ list) =
   [q @ [a]] @ [q @ [b]] @ expand ((a,b), qs) : 'a list list;
[fun\ tv(0, (\_, \_)) = [[]] : 'a\ list\ list\ ]
   tv(1, (a:'a,b:'a)) = [[a],[b]]
   tv(d, (a:'a,b:'a)) = expand((a,b), tv(d-1, (a,b)));
 fun expand((a:'a,b:'a),[]) = []
    expand((a:'a,b:'a), q::qs : 'a list list) =
     [q @ [a]] @ [q @ [b]] @ expand ((a,b), qs) : 'a list list;
fun tv(0, (_, _)) = [[]] : 'a list list |
    tv(1, (a:'a,b:'a)) = [[a],[b]]
    tv(d, (a:'a,b:'a)) = expand((a,b), tv(d-1, (a,b)));
# # val expand = fn: ('a * 'a) * 'a list list -> 'a list list
> # # val tv = fn: int * ('a * 'a) -> 'a list list
```

CS113 LAB 2: NOT gate

Normal

P	$\sim P$
0	1
1	0

```
> map NOT (tv(1,(0,1)));
val it = [1, 0]: int list
```

REVERSE

P	$\sim P$
1	0
0	1

```
> map NOT (tv(1,(1,0)));
val it = [0, 1]: int list
```

CALL

CS113 LAB 2: AND gate

Normal

P	Q	$(P \wedge Q)$
0	0	0
0	1	0
1	0	0
1	1	1

```
> map pAND (tv(2,(0,1)));
val it = [0, 0, 0, 1]: int list
```

REVERSE

\overline{P}	Q	$(P \wedge Q)$
1	1	1
1	0	0
0	1	0
0	0	0

```
SML
```

|
$$infix \ AND$$
;
| $fun \ 0 \ AND \ _ = 0 \ |$
| $1 \ AND \ Q = Q \ |$
| $_ AND \ _ = raise \ OutOfRange$;
| $fun \ pAND[P,Q] = P \ AND \ Q$;
| $map \ pAND \ (tv(2,(0,1)))$;
| $map \ pAND \ (tv(2,(1,0)))$;

CS113 LAB 2: OR gate

Normal

P	Q	$(P \lor Q)$
0	0	0
0	1	1
1	0	1
1	1	1

```
> map pOR (tv(2,(0,1)));
val it = [0, 1, 1, 1]: int list
```

REVERSE

\overline{P}	Q	$(P \lor Q)$
1	1	1
1	0	1
0	1	1
0	0	0

```
> map pOR (tv(2,(1,0)));
val it = [1, 1, 1, 0]: int list
```

```
 | infix OR; 
 | fun 1 OR _ = 1 | 
 | 0 OR Q = Q | 
 | _ OR _ = raise OutOfRange; 
 | fun pOR[P,Q] = P OR Q; 
 | map pOR (tv(2,(0,1))); 
 | map pOR (tv(2,(1,0)));
```


CS113 LAB 2: NAND gate

Normal

P	Q	$\sim (P \wedge Q)$
0	0	1
0	1	1
1	0	1
1	1	0

```
> map pNAND (tv(2,(0,1)));
val it = [1, 1, 1, 0]: int list
```

REVERSE

$\overline{}$		
P	Q	$\sim (P \wedge Q)$
1	1	0
1	0	1
0	1	1
0	0	1

```
> map pNAND (tv(2,(1,0)));
val it = [0, 1, 1, 1]: int list
```

SML

$$\begin{array}{ll} \textit{infix} \; \textit{NAND}; \\ \textit{fun} \; P \; \textit{NAND} \; Q = \textit{NOT} \; [P \; \textit{AND} \; Q]; \\ \textit{fun} \; p\textit{NAND}[P,Q] = P \; \textit{NAND} \; Q; \\ \textit{map} \; p\textit{NAND} \; (tv(2,(0,1))); \\ \textit{map} \; p\textit{NAND} \; (tv(2,(1,0))); \\ \end{array}$$

CS113 LAB 2: NOR gate

Normal

P	Q	$\sim (P \lor Q)$
0	0	1
0	1	0
1	0	0
1	1	0

```
> map pNOR (tv(2,(0,1)));
val it = [1, 0, 0, 0]: int list
```

REVERSE

P	Q	$\sim (P \lor Q)$
1	1	0
1	0	0
0	1	0
0	0	1

```
> map pNOR (tv(2,(1,0)));
val it = [0, 0, 0, 1]: int list
```

```
SML
```

infix NOR; fun P NOR Q = NOT [P OR Q]; fun pNOR[P,Q] = P NOR Q; map pNOR (tv(2,(0,1))); map pNOR (tv(2,(1,0)));

CS113 LAB 2: XOR gate

Normal

P	Q	$(P \oplus Q)$
0	0	0
0	1	1
1	0	1
1	1	0

```
> map pXOR (tv(2,(0,1)));
val it = [0, 1, 1, 0]: int list
```

REVERSE

$\overline{}$		
P	Q	$(P \oplus Q)$
1	1	0
1	0	1
0	1	1
0	0	0

> map pXOR (tv(2,(1,0)));
val it =
$$[0, 1, 1, 0]$$
: int list

```
SML
```

infix
$$XOR$$
;
fun θ XOR $Q = Q \mid$
 Q XOR $\theta = Q \mid$
1 XOR 1 = $\theta \mid$
2 XOR 2 = raise OutOfRange;
fun $pXOR[P,Q] = P$ XOR Q ;
map $pXOR$ $(tv(2,(\theta,1)))$;
map $pXOR$ $(tv(2,(1,\theta)))$;

CS113 LAB 2: Example 2.2 & 2.3

Normal

P	Q	R	$P \lor Q$	$(P \lor R)$	$((P \lor Q) \land (P \lor R))$
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

```
> map ex2 (tv(3,(0,1)));
val it = [0, 0, 0, 1, 1, 1, 1, 1]: int list
```

P	Q	R	$(P \lor Q)$	$(P \vee R)$	$((P \lor Q) \land (P \lor R))$
1	1	1	1	1	1
1	1	0	1	1	1
1	0	1	1	1	1
1	0	0	1	1	1
0	1	1	1	1	1
0	1	0	1	0	0
0	0	1	0	1	0
0	0	0	0	0	0

> map ex2 (
$$tv(3,(1,0))$$
);
val it = [1, 1, 1, 1, 1, 0, 0, 0]: int list
sml
 $fun \ ex2[P,Q,R] = (P \ OR \ Q) \ AND \ (P \ OR \ R);$

map
$$ex2\ (tv(3,(0,1)));$$

map $ex2\ (tv(3,(1,0)));$

$$P = 0, Q = 1, R = 0$$

CS113 LAB 2: Problem 2

Normal

P	Q	R	$(P \wedge Q)$	$\sim R$	$((P \land Q) \lor \sim R)$
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	0	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	1	0	1

```
> map p2 (tv(3,(0,1)));
val it = [1, 0, 1, 0, 1, 0, 1, 1]: int list
```

P	Q	R	$(P \wedge Q)$	$\sim R$	$((P \land Q) \lor \sim R)$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

```
> map p2 (tv(3,(1,0)));

val it = [1, 1, 0, 1, 0, 1, 0, 1]: int list

| fun p2[P,Q,R] = (P AND Q) OR NOT [R];

| map p2 (tv(3,(0,1)));

| map p2 (tv(3,(1,0)));
```


CS113 LAB 2: Problem 3

Normal

P	Q	R	$(P \wedge Q)$	$\sim R$	$((P \land Q) \land \sim R)$
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	0	1	0
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	1	0	0

```
> map p3 (tv(3,(0,1)));
val it = [0, 0, 0, 0, 0, 0, 1, 0]: int list
```

P	Q	R	$(P \wedge Q)$	$\sim R$	$((P \land Q) \land \sim R)$
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	0
0	1	1	0	0	0
0	1	0	0	1	0
0	0	1	0	0	0
0	0	0	0	1	0

```
> map p3 (tv(3,(1,0)));

val it = [0, 1, 0, 0, 0, 0, 0, 0]: int list

[fun \ p3[P,Q,R] = (P \ AND \ Q) \ AND \ NOT \ [R];

[fun \ p3 \ (tv(3,(0,1)));

[fun \ p3 \ (tv(3,(1,0)));
```


CS113 LAB 2: Problem 7

Normal

A	B	$\mid S \mid$	$\sim S$	$(A \land \sim S)$	$(S \wedge B)$	$((A \land \sim S) \lor (S \land B))$
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	1
1	0	1	0	0	0	0
1	1	0	1	1	0	1
1	1	1	0	0	1	1

```
> map p7 (tv(3,(0,1)));
val it = [0, 0, 0, 1, 1, 0, 1, 1]: int list
```

A	B	S	$\sim S$	$(A \land \sim S)$	$(S \wedge B)$	$((A \land \sim S) \lor (S \land B))$
1	1	1	0	0	1	1
1	1	0	1	1	0	1
1	0	1	0	0	0	0
1	0	0	1	1	0	1
0	1	1	0	0	1	1
0	1	0	1	0	0	0
0	0	1	0	0	0	0
0	0	0	1	0	0	0

```
> map p7 (tv(3,(1,0)));

val it = [1, 1, 0, 1, 1, 0, 0, 0]: int list

[fun \ p7[A,B,S] = (A \ AND \ NOT \ [S]) \ OR \ (S \ AND \ B);

[map \ p7 \ (tv(3,(0,1)));

[map \ p7 \ (tv(3,(1,0)));
```

