



## **Model Optimization and Tuning Phase Template**

| Date          | 18 July 2024                  |
|---------------|-------------------------------|
| Team ID       | SWTID1720277644               |
| Project Title | Rice Classification using CNN |
| Maximum Marks | 10 Marks                      |

## **Model Optimization and Tuning Phase**

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

## **Hyperparameter Tuning Documentation (8 Marks):**

| Model | Tuned Hyperparameters |
|-------|-----------------------|
|       |                       |





```
from keras.preprocessing.image import ImageDataGenerator
# Set the image size and batch size
image_size = (50, 50)
batch\_size = 32
# Create an ImageDataGenerator object with data augmentatio
datagen = ImageDataGenerator(
   rescale=1./255,
   rotation_range=45,
   width_shift_range=0.2,
   height_shift_range=0.2,
   shear_range=0.2,
   zoom_range=0.2,
   horizontal_flip=True,
   fill_mode='nearest'
 # Create a generator for the training data
 train_generator = datagen.flow_from_dataframe(
      df_train,
     x_col='image',
     y_col='label',
      target_size=image_size,
      batch_size=batch_size,
      class_mode='categorical',
      shuffle=True
```

# Create a generator for the test data

df\_test,

x\_col='image',
y\_col='label',

shuffle=False

target\_size=image\_size,
batch\_size=batch\_size,
class\_mode='categorical',

test\_generator = datagen.flow\_from\_dataframe(

**CNN** 





```
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
# Set the input shape for the model
input_shape = (50, 50, 3)

# Create a Sequential model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(5, activation='softmax'))
```

## **Final Model Selection Justification (2 Marks):**

| Final Model | Reasoning                                                                                                                                                                                                  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | We were supposed to evaluate different rice types using the CNN model because it gives the most accurate results and handles complex relationships, large datasets, and huge training time, justifying its |
| CNN         | selection.                                                                                                                                                                                                 |