Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible First Marker(s): M.K. Gurcan

Second Marker(s): K.K. Leung

Special Instructions for Invigilators: None

Information for candidates:

Q function values

Z	Q(z)				
0	0.5				
0.0251	0.49				
0.0502	0.48 0.47 0.46				
0.0753					
0.1004					
0.1257	0.45				
0.151	0.44				
0.1764	0.43				
0.2019	0.42				
0.2275	0.41				
0.2533	0.4				
0.2793	0.39				
0.3055	0.38				
0.3319	0.37				
0.3585	0.36				
0.3853	0.35				
0.4125	0.34				
0.4399	0.33				
0.4677	0.5				

Q(z)					
0.32					
0.31					
0.3					
0.29					
					0.27
0.26					
0.25					
0.24 0.23 0.22					
					0.21
					0.2
0.19					
0.18					
0.17					
0.16					
0.15					
0.14					

z	Q(z)
0.9945	0.16
1.0364	0.15
1.0803	0.14
1.1264	0.13
1.175	0.12
1.2265	0.11
1.2816	0.1
1.3408	0.09
1.4051	0.08
1.4758	0.07
1.5548	0.06
1.6449	0.05
1.7507	0.04
1.8808	0.03
2.0537	0.02
2.3263	0.01

- a) An in-building radio system operates at the transmission frequency $f_c = 900 \, \text{MHz}$, and has cells of radius 10 m. Assuming free-space path loss model, and non-directional antennas at the transmitters and receivers, answer the following
 - i) What is the required transmit power at the base station such that all terminals within the cell receive a minimum power of 10 μ W?
 - ii) How will this change if the system frequency is 5 GHz?
 - b) Over an indoor radio transmission link, the terms $P_{t,dBm}$ and $P_{r,dBm}$ represent the dB power levels for the transmitted and received signals. At distance d_i , the simplified path loss model estimates the received signal power in dB from

$$P_{r,dBm} = P_{t,dBm} + K - 10 \cdot \gamma \cdot \log_{10} \left(d_i \right)$$

where $K = 20\log_{10}(\lambda/4\pi)$ is the free space path loss at unit distance, and γ is the path loss exponent.

Consider the set of empirical measurements of $P_{r,dBm} - P_{t,dBm}$ given in the Table 1.1 for the system at 900 MHz.

Distance, d_i , from transmitter	$P_{r,dBm} - P_{t,dBm}$
10 m	-70 dB
20 m	-75 dB
30 m	-90 dB
100 m	-100 dB
300 m	-125 dB

Table 1.1

The minimum-mean-square-error (mmse) between the empirical dB power measurements and the dB power estimate for the simplified model is

$$F\left(\gamma\right) = \sum_{i=1}^{5} \left[M_{measured}\left(d_{i}\right) - M_{model}\left(d_{i}\right) \right]^{2}$$

Where $M_{measured}\left(d_{i}\right)$ is the path loss measurements given in Table 1.1 and $M_{model}\left(d_{i}\right)=K-10\bullet\gamma\bullet\log_{10}\left(d_{i}\right)$ at distance d_{i} .

By differentiating the mmse with respect to γ , find the path loss exponent which minimises the mmse.

Question continued over

[8]

[3]

[2]

Paper E4.03, SO10, ISE4.3, Page 2 of 8

ii) With this path loss exponent and a transmit power of 1 mW (0dBm), calculate the received power at 150 m for the simplified path loss model.

[2]

Consider a cellular system operating at 900 MHz where propagation follows free space path loss (the path loss exponent $\gamma=2$) with variations from log normal shadowing with $\sigma=6$ dB. Suppose that for acceptable voice quality a signal-to-noise power ratio of $SNR_{min}=15$ dB is required at the mobile. Assume the base station transmits at $P_{\tau}=1$ W (30 dBm) and its antenna has a gain of $G_{t,dB}=10\log_{10}G_t=3$ dB. There is no antenna gain at the mobile and the receiver noise in the bandwidth of interest is -70 dBm.

Under path loss and shadowing, outage probability $P_{out}\left(P_{\min},d\right)$ is defined to be the probability that the received power, $P_{r}\left(d\right)$, at a given distance, d, falls below P_{\min} , i.e., $P_{out}\left(P_{\min},d\right) = p\left(P_{r}\left(d\right) \leq P_{\min}\right)$. For the combined path loss and shadowing

$$p(P_r(d) \le P_{\min}) = 1 - Q\left(\frac{P_{\min,dBm} - (P_{t,dBm} + K - 10 \cdot \gamma \cdot \log_{10}(d))}{\sigma}\right)$$

where the Q function (see useful information section on page 1) is defined as

$$Q(z) = \frac{1}{2} \operatorname{erfc}\left(\frac{z}{\sqrt{2}}\right)$$

The term $K = 20 \log_{10} \left(\sqrt{G_t} \ \lambda / 4\pi \right)$ is the free space path loss at reference distance unity.

Find the maximum cell size so that a mobile on the cell boundary will have acceptable voice quality 90% of the time.

d) Consider a channel with Rayleigh fading and average received power $P_c = 20 \text{ dBm}$.

Find the probability that the received power is below 10 dBm. [3]

2) a) The multipath power delay profile, $A_c(\tau)$, is the autocorrelation function of the multi-path channel impulse response. The average delay spread, μ_{T_m} , and rms delay spread, σ_{T_m} are defined in terms of the power delay profile as

$$\mu_{T_m} = \frac{\int_0^\infty \tau A_c(\tau) d\tau}{\int_0^\infty A_c(\tau) d\tau} \quad \text{and} \quad$$

$$\sigma_{T_m} = \sqrt{\frac{\int_0^{\infty} (\tau - \mu_{\tau_m})^2 A_c(\tau) d\tau}{\int_0^{\infty} A_c(\tau) d\tau}}$$

A linearly modulated waveform with symbol period, T_s , experiences significant inter-symbol-interference (ISI) if $T_s \ll \sigma_{T_m}$.

 The multipath power delay profile is modelled as a one-sided exponential distribution:

$$A_{c}\left(\tau\right) = \frac{1}{\overline{T}_{m}} e^{-\frac{\tau}{\overline{T}_{m}}}, \quad \tau \geq 0$$

Show that the average delay spread is $\mu_{T_m}=\overline{T}_m$. Find the rms [3] delay spread σ_{T_m} .

ii) Consider a wideband channel with power delay profile

$$A_c(\tau) = \begin{cases} e^{-\frac{\tau}{0.00001}}, & 0 < \tau \le 20 \ \mu \text{ sec} \\ 0 & else \end{cases}$$

- (01) Find the mean and rms delay spreads of the channel.
- (02) Find the maximum symbol rate such that a linearly modulated signal transmitted through this channel does not experience ISI.
- iii) A linearly modulated signal is transmitted through a channel which experiences severe ISI. A maximum likelihood sequence detector (MLSD) is used as the decision device.
 - Explain how the channel impulse response rotation method can be [11] used to maximise the minimum distance of the MLSD receiver.

Question continued over

[3]

- b) Consider a deferred-first transmission Aloha system.
 - i) Suppose that the transmission rate is R = 10 Mbps and packets consist of 1000 bits.

[2]

For what packet arrival rate λ will the system achieve the maximum throughput.

What is the effective data rate associated with this throughput?

ii) Explain how the joint-drift analysis is used to stabilise the system to operate at the maximum throughput.

[4]

- 3) a) The SIR for a CDMA uplink with non-orthogonal codes under the standard Gaussian assumption is given as SIR = 3G/(K-1). Where G=128 is the ratio of spread bandwidth to signal bandwidth, and K is the number of users. Assume that the bandwidth of the information signal prior to spreading is $B_s = 9.765 \, \text{KHz}$.
 - i) Calculate how many users the CDMA uplink can support if the required SINR on a channel is 10 dB.

[3]

ii) How many could be supported within the same total bandwidth for an FDMA system? Comment on the result.

[2]

b) Consider the third generation wideband UTRA/FDD radio system and describe how the User Equipment, when it is first turned on, identifies the random access physical channel parameters using the following channels:

[10]

- i) the Primary Synchronization Channel,
- ii) the Secondary Synchronization Channel,
- iii) the Pilot Channel,
- iv) the Primary Common Control Physical Channel (PCCPCH), and
- v) the Secondary Common Control Physical Channel (SCCPCH).
- c) Consider a mobile system downlink channel, with additive white Gaussian noise, used as the downlink broadcast channel with total transmission power limited to 20 mW. The downlink bandwidth is limited to 150 kHz and will be used to broadcast messages to 2 users with each having unity link path gain. The noise power spectral densities for the link 1 and 2 are 7•10⁻⁹ W/Hz and 2•10⁻⁸ W/Hz respectively. Suppose user 1 requires a data rate of 310 kbps. Using the Corporate broadcast method, find the data rate allocated to user 2 under the following allocation schemes:
 - i) Fixed power time division,
 - ii) Equal bandwidth frequency division, and [3]
 - iii) Superposition coding.

[3]

[4]

4. a) The parameters, used for a service in the third generation FDD wideband UTRA/FDD radio system downlink (DL), are shown in Table 4.1.

	Service 1, DCH#1
Transport block size	164 bits
TTI	40 ms
Bit rate	4.1 kbps
CRC	16 bits
Coding	Convolutional rate 1/3

Table 4.1 parameters for the 4.1 kbps data service.

Describe how a 4.1 kbps data service can be mapped to the downlink dedicated physical channel.

[6]

Consider an ad hoc wireless network with three users. Users 1 and 2 require a received SINR of $\gamma_1^* = \gamma_2^* = 7$ dB whereas user 3 requires an SINR of $\gamma_3^* = 10$ dB. Assume all receivers have the same noise power $n_k = 1$, for k=1,2,3, and there is no processing gain to reduce interference, i.e. $\rho = 1$. Assume a matrix of gain values, indexed by the transmitter receiver numbers, is given by

$$\mathbf{G} = \begin{bmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{bmatrix} = \begin{bmatrix} 0.85, & 0.05, & 0.03 \\ 0.08, & 0.95, & 0.116 \\ 0.054, & 0.034, & 0.75 \end{bmatrix}$$

The SINR at the intended receiver on link k is given by $\gamma_k = g_{kk} P_k / \left(n_k + \rho \sum_{j \neq k} g_{kj} P_j \right) \text{ where } P_K > 0 \text{ is the transmission power for user } k. \text{ Assume that } \mathbf{P} = \begin{bmatrix} P_1 & P_2 & P_3 \end{bmatrix}^T \text{ is the column vector for the transmission powers, } \mathbf{u} = \begin{bmatrix} \gamma_1^* n_1 / g_{11}, & \gamma_2^* n_2 / g_{22}, & \gamma_3^* n_3 / g_{33} \end{bmatrix}^T \text{ is the column vector of noise powers scaled by the SIR constraints and channel gains, and } \mathbf{F} \text{ is matrix with } F_{kj} = \begin{cases} 0 & k = j \\ \gamma_k^* g_{kj} & \rho / g_{kk} & k \neq j \end{cases} \text{ with } k, j \in \{1, 2, 3\}.$

- i) Confirm that the vector equation $(I F)P \ge u$ is equivalent to the SINR constraints of each user.
- ii) Show that a feasible power vector exists for this system such that all users achieve their desired SINRs.

In IEEE 802.11a standard for the wireless LANs, N=64 subcarriers are generated over 20MHz bandwidth (equal to the sampling rate $1/T_s$). Only 48 subcarriers are actually used for data transmission, with the outer 12 subcarriers not used to minimize interference, and 4 subcarriers are used as pilot symbols for channel estimation. The cyclic prefix consists of $\mu=16$ samples, so the total number of samples associated with each OFDM symbol, including both data samples and the cyclic prefix, is 80. The same code and modulation are used for *all* the subcarriers at any given time. The error correction code is a convolutional code with one of three possible coding rates: r=1/2, 2/3, or 3/4. The modulation types that can be used on the subchannels are BPSK, QPSK, 16QAM, or 64QAM.

i)	What is the bandwidth for each subchannel?	[1]
ii)	What is the maximum delay spread for which ISI is removed?	[1]
iii)	What is the symbol time per subchannel?	[1]
iv)	What is the minimum data rate corresponding to BPSK?	[1]
v)	What is the maximum data rate that can be transmitted?	[1]
vi)	Find the data rate by assuming 16 QAM modulation and rate 2/3	[2]
	coding is used.	

May 2005 **Examinations: Mobile Radio Communication** Session | Confidential MODEL ANSWERS and MARKING SCHEME Paper Code: E4.03, SO10, ISE4.3 First Examiner: Gurcan, M.K. Page | out of \ \ \ Question Second Examiner: Leung, K.K. Marks allocations in right margin Question labels in left margin we must find the dransmit power such that the terminals at the cell boundary receive the minimum required power. We obtain a formula for the required transmit power $P_{\tau} = P_{r} \left(\frac{4\pi d}{\sqrt{G_{r}} \lambda} \right)^{L}$ where $G_{\tau} = 1$, $\lambda = \frac{c}{f_{c}} = 0.33 \,\text{m}$, $d = 10 \,\text{m}$ PT = 1.45 W = 1.61 dBW and 10 log (PT 0.001) dBm = 10 log (1.45) = 31.61 den 2 1-a.il At 5 GHZ $\lambda = 0.06$ So $P_{T} = 43.9 \text{ kW} \Rightarrow 10 log \left(\frac{42.9 \times 10}{0.001}\right) = 76.42 d g m$ 1-6) F(X)= (-90+31.54+10X)+(-75+31.54+13.01X)+ (-90+31.54+16.39X)2 + (-110+31.54+207)2+ (-125+31.54+24.778)2 8 = 21676.3-11654.58+1571.4782 Differentiating F18) relative to Y and setting it to zero $\frac{3F(X)}{3X} = -11654.9 + 3142.948 = 0 \implies X = 3.71$ 2 with k=-31.54, Y=3.71 and P== 0 d8m we have Pride= Ptilen+K- 10 logio (d) = 0-31.54-10x3.71 x log (150)=-112.27 dBm

1-Q(Z)=0.1 => Q(Z)=0.9

2Q(t) = erfc (=)=1- erf (=)

: Z= 12 x (-0.9062) = -1.2816

 $d = 10^{\frac{48.71}{20}} = 272 \text{ m}.$

erf (=) = 1-20(2)=1-2*0.9=1-1.8=-0.8

 $Q(z) = Q(-1.2816) = Q(\frac{P_{min} - P_T - K + 2010S_{10}d}{6})$

 $P_{min} - (-70) = 15 \implies P_{min} = -70 + 15 = -55$ $K = 20 \log_{10} \left(\frac{\sqrt{2} * 0.33}{4 \pi} \right) = -28.6$ $6 \times (-1.2816) = -55 - 30 + 28.6 + 20 \log d$

eif(=)=-0.8 => == -0.9062

1-0-1

Mobile Radio Communication Session May 2005 **Examinations:** Confidential MODEL ANSWERS and MARKING SCHEME Paper Code: E4.03, SO10, ISE4.3 First Examiner: Gurcan, M.K. Lout of 12 Question Page Second Examiner: Leung, K.K. Marks allocations in right margin Question labels in left margin Pr = 20 dm = 100 mW. We want to find the probability that $\frac{2}{2} < 10 dBM = 10 mW$ we have exponential pdf for the rayleigh signal power $P(\frac{2}{2} < 10) = \int_{0}^{10} \frac{1}{100} e^{-\frac{x}{100}} dx = 0.095$

May 2005 **Mobile Radio Communication** Session **Examinations:** Confidential MODEL ANSWERS and MARKING SCHEME Paper Code: E4.03, SO10, ISE4.3 First Examiner: Gurcan, M.K. Question 4 2 Page 3 Second Examiner: Leung, K.K. Marks allocations in right margin Question labels in left margin $\int_{-\infty}^{\infty} A_{i}(\tau) d\tau = \int_{-\frac{\pi}{2}}^{\infty} e^{ix} p(-\frac{\pi}{2}) d\tau = 1$ 1 = = = = = = T = exp(- = Tm = 1 = 1 = Tm = Tm = Tm = Tm = Tm = Tm () $\frac{\mu_{T_{m}}}{\sqrt{20\times10^{6}}} = \frac{\int_{-\infty}^{20\times10^{6}} \gamma \exp(-\gamma/0.0001) d\tau}{\exp(-\gamma/0.0001) d\tau} = 6.87 \text{ /sec}$ $\frac{1-a.\pi}{\sqrt{20\times10^{6}}} \exp(-\gamma/0.0001) d\tau$ $\mathcal{O}_{T_{m}} = \sqrt{\frac{\sum_{0}^{20 + 10^{-6}} (\tau - f_{m})^{2} \exp(-\tau) d\tau}{\int_{0}^{20 + 10^{-6}} (\tau - \tau) d\tau}} = 5.25 \, \mu \text{sec}$ we see that the new delay is roughly equal to its rms. To word ISI we require that $T_s > 10 \, \text{T}_m$ which gives $T_s = 52.5 \text{ Al}$ or symbol with $R_s = 1/T_s = 19.04 \text{ ksps}$. 2011 let ak E {+1,-1}, h= [ho ---h2] lexpljko) sk nk lexpl-jkaj at the output of the channel $S_{k} = a_{i_{k}}^{T} h$ where $a_{k} = [a_{k}, a_{k-1}, a_{k-2}, ---- a_{k-1}]^{T}$ $Y_{k} = S_{k} + \Gamma_{k}$ with $E(M_{k})^{T} = N_{2}$ a= arg max P (Yla) $S_{i} = \begin{bmatrix} a_{i,k-1} & a_{i,k-2} & --- & a_{i,k-1} \end{bmatrix} \quad i = 0, ... 2-1$ output SymbolSize = [a(1. 1 = 7]. h hmcj, k = 172 - 5cs, k = 17 - [a 25, k 5] h 2

Examinations: Mobile Radio Communication Session May 2005

Confidential

MODEL ANSWERS and MARKING SCHEME

First Examiner: Gurcan, M.K. Paper Code: E4.03, SO10, ISE4.3

Second Examiner: Leung, K.K. Question * 2 Page 4 out of 13

Question labels in left margin Marks allocations in right margin

The branch metric comprises of three terms the data vector Cansis and the detection response h let the error vectors be C,= [-2]T e2 = [-2, +2] $e_3 = [-2, +2, -2]^T$ e, = [-2,-2]^T
es = [-2,-2,-2]^T e6= [-2, 0,+2] e7= [+2, 0 +2] eg= [-2, +2, +2] (2)eq=[-2,-2,+2] The error event vector is $d_i = e_i *h$, the squared error event distance is $d_i^2 = |d_i|^2$ and the minimum distance is given by dmin, h = min (di) i=1--N dmin, h = min h'E' Eih for i=1---N
where where $C_{i,j}$ $C_{i,j}$ $C_{i,j}$ $C_{i,j}$ $C_{i,j}$ $C_{i,j}$ $C_{i,j+1}$ $C_{i,j+1}$ $C_{i,j+1}$ where $e_i = [e_{0,1}, \dots, e_{i,pm}]^T$ The BER for the MUSD Pe ~ KQ { \dinn,h

May 2005 **Mobile Radio Communication** Session **Examinations:** Confidential MODEL ANSWERS and MARKING SCHEME Paper Code: E4.03, SO10, ISE4.3 Gurcan, M.K. First Examiner: Page 5 out of 13 Question Second Examiner: Leung, K.K. Marks allocations in right margin **Ouestion labels in left margin** if we multiply are with explike) the received signal one,

sk = exp(1 kg) dr so, h The rotated received signal becomes The branch metric is modified to bmij, k = [Yk - [aij, k si] 502 h]²

The detection response is modified to

So, h

and the minimum distance as a function of

drin(to) = min h so. H Ei Ei so, L h Simplifications lead to

PALFILL L

Respirations exp(j (b-a)a))

distance as a function of the maximum minimum distance

y

The minimum distance as a function of the maximum minimum distance

operate system at these onstes.

May 2005 **Mobile Radio Communication** Session **Examinations:** Confidential MODEL ANSWERs and MARKING SCHEME Paper Code: E4.03, SO10, ISE4.3 First Examiner: Gurcan, M.K. Question 1 Page 6 out of 2 Second Examiner: Leung, K.K. Marks allocations in right margin Question labels in left margin The throughput T is maximised for $L=\lambda T=1$, where λ is the packet arrival rate and ϵ is the 2 b 4 Packet duration. With 10 Mbps transmission rate and 1000 bits/packet, ~= 1000/10 = 0.1 ms. 7 = L/2 = 1/104 = 104 packets/second maximises throughput. The throughput for L=1 is T=0.37 so the effective data rate is TR=3.7 Mbps. ____///___ joint drift= dj | dj = dn - 6.ds 47 G. d; (6=0) = } din d3 (a) = -0 : of has at least one, at most three roots. Looks with positive going slapes are the setting points. In order to avoid britable operation. We wist have one root with positive point slope at the optimen operating point.

May 2005 Session **Examinations: Mobile Radio Communication** Confidential MODEL ANSWERS and MARKING SCHEME Paper Code: E4.03, SO10, ISE4.3 First Examiner: Gurcan, M.K. Page \ out of \ _ Question Second Examiner: Leung, K.K. Marks allocations in right margin Question labels in left margin 3 at to determine how many users can be supported we invert the SIR expression to get $K \leq \frac{3C}{518} + 1 = \frac{256}{20} + 1 = 39.4$ and since K must be an integer, the system can support 30 users. FDMA we have $K = \frac{1.25 \times 10^6}{9.765 \times 10^3} = 128$ so the total bondwidth of 1.25 MHZ can suppose 128 channels of 9.765 kHz. This calculation implies that FOMA is three kines more efficient than non-orthogonal CDMA under the standard Gaussian assumption code cross correlation, The primary synchronisation channel transmits the synchronisation code at every base station. The hand-set primary synchronisation code and finds the strongest peak. This peak identifies the dot time. In order to find the frame timing the hand set cross correlates 64 synchronisation group codes to identify the scrambing codes families used on the pilot and common boroadcast channels. Once the scrambling code family is identified, using each one of 8 scrambing codes belonging to the family and also the satu transmitted on the pilot channel the hourset cross correlates the received signal against the signature wavefirm. The scrambling code signal against the signature wavefirm. The scrambling code used highest correlation identifies the scrambling code used Using this scrambline code, the hand-set cross correlates the signature waveform agains the received signal to

decode the data on the broad cast channel

Examinations: Mobile Radio Communication Session May 2005

Confidential

MODEL ANSWERS and MARKING SCHEME

First Examiner: Gurcan, M.K. Paper Code: E4.03, SO10, ISE4.3

First Examiner: Gurcan, M.K.

Second Examiner: Leung, K.K.

Paper Code: E4.03, SO10, ISE4.3

Question \$\frac{1}{2}\$ Page \$\frac{1}{2}\$ out of \$\frac{1}{2}\$.

Question labels in left margin Marks allocations in right margin

From this date, hand set identifies the signature waveforms used on the Forward Access channel, paging channel random access channel and acquisition indication channels.

The hard set randomly selects one of the signature waveforms and transmits over the random access channel. Successfully received random access preambles are acknowledged on the indication channel.

When the hand-set receives the acknowledgement it when the hand-set receives the acknowledgement it transmits a message to inform the base station what it wants to do.

The base station uses forward channel to inform the base station what it hand-set which physical channels are assigned to the hand-set which physical channels are assigned to

where $P = 20 \times 10^3$ W $R_1 = 310$ kbps $n_1 = 7 \times 10^3$ W/Hz

 $R_{1} = 7 3 \log_{2} \left(1 + \frac{P}{1, B}\right) = 7.150 \times 10^{2} \log_{2} \left(1 + \frac{20 \times 10^{2}}{7 \times 10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 150 \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 10^{2}}\right) = 3 \log_{2} \left(1 + \frac{20 \times 10^{2}}{10^{2} \times 10^{2}}\right)$

: 7 = 0.4778

10

For user 2 the rate is $R_2 = (1-T) B \log_2 \left(1 + \frac{P}{N_1 R}\right) = 230 \text{ kHz}$

In equal bandwidth frequency division we require $R_1 = 0.5 \text{ B bs}_2\left(1 + \frac{P_1}{N_1 \text{ B}}\right) = 310.10^3 \text{ bps}$. solving this for $P_1 = 0.5 \text{ n}$, $P_2 = 0.5 \text{ n}$, $P_3 = 0.0087$ Setting $P_2 = P - P_1 = 20 \times 10^3 - 8.7 \text{ 10} = 11.3 \times 10^3 \text{ W}$ we get $R_2 = 0.5 \text{ B}$ by $2 \left(1 + \frac{P_2}{N_2 \text{ B}}\right) = 232 \times 10^3 \text{ bps}$

May 2005 Mobile Radio Communication Session **Examinations:** Confidential MODEL ANSWERS and MARKING SCHEME Paper Code: E4.03, SO10, ISE4.3 Gurcan, M.K. First Examiner: Page out of 12 Question Second Examiner: Leung, K.K. Marks allocations in right margin Question labels in left margin with superposition coding we have $R_{i} = 8 \log_{2} \left(1 + \frac{P_{i}}{n_{i}B} \right) = 3 \log_{2} \delta \log^{3} \delta p^{3}$ gives $P_{i} = n_{i}B \left(2 - 1 \right) \text{ yields } P_{i} = 3.3 \times 10^{3} \text{ M}$ Then $R_{z} = 8 \log \left(1 + \frac{P - P_{i}}{n_{z}B + P_{i}} \right) = 278.6 \times 10^{3} \log_{2} \delta p^{3}$ (Z)

Examinat	tions : Mobile	Radio Co	mmunicat	ion	Session	May 2005		
Confident								
	MC	DEL AN	SWERs a	nd MAR			40 ICE 4 2	
First Exa						Code: E4.03, SO		7
Second Examiner: Leung, K.K.			Questio		Out of			
Question	labels in left ma	rgin				Marks allocation	ns in right mai	gm
·- T	411.							
4-0		plane of the second of the sec						
	Transport Block							
			164					
	CRC Attachment		***************************************	CRC				
			164	16				
	Tail Bit Attachment	***************************************		**************************************	Tail			
			180	**************************************	8			6
	Convolutional		experience V	**************************************				
	Coding	£	56	4				
	Rate Matching		- 10 / / 2 m	Y				
		**************************************	564 + N			: - - N = 36	,	
	lst Interleaving		1977 - Adamanda Marie - Adamanda Adamanda (1980)	interpretarios como como especial de la como especial del la como especial de la como	ilidanga ya	·		
	or necessia		564 + N					
	Radio Frame			}				
	Segme n tation	#1 (564+N)/4	#2 (564+NV4	#3 (564+N)/4	#4 (564+N)/4	······································		
		***************************************	120713184	13017.774	(304711)//	•		
	2nd Interleaving	150		150	150	\$		
		17) 120	150	130	130			
	Physical Channel		30 kbps DPC	4				i
	Mapping		***************************************					
	TPC	- Pilos						
April 1		I slot						
2.4								

May 2005 Mobile Radio Communication Session **Examinations:** Confidential MODEL ANSWERS and MARKING SCHEME Paper Code: E4.03, SO10, ISE4.3 Gurcan, M.K. First Examiner: 4 Page | out of] **Question** Second Examiner: Leung, K.K. Marks allocations in right margin **Question labels in left margin** have sink at the input of the decision device 46 $V_i = \frac{P_i g_{ii}}{e \ge P_j g_{ij} + n_i}$ where $V_i > V_i^* = \frac{P_i g_{ii}}{SNJ_i 2}$ re organising the above equation $P_{i} - \sum_{i \neq j} P_{j} \frac{e \times 9_{ij}}{9_{ij}} = \frac{n_{i} \times 8_{i}}{9_{ii}}$ her ce let $N = \begin{bmatrix} x_1 & n_1 \\ y_1 & y_2 \\ y_2 & y_3 \end{bmatrix}$ F is a matrix with $Fij = \begin{cases} x_1 & y_2 \\ y_3 & y_4 \end{cases}$ if $i \neq j$ in matrix form if ([-F)P) u and if the maximum eigenvalue of F is less than unity we have power allocations which (ι` satisfy the required SNIR values 46ic G= \[0.85 0.05 0.03 \]
0.08 0.95 0.116
0.054 0.034 0.75 Y", = [6, 7, 9] X* = [3.9811, 5.0119, 7.9433] $F = \begin{bmatrix} 0 & 0.2342 & 0.1405 \\ 0.4211 & 0 & 0.6120 \\ 0.5719 & 0.3601 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} (1-F) P = 10 \\ 9ives \end{bmatrix}$ P=[11.4358, 22.108, 20.4588]

May 2005 **Mobile Radio Communication** Session **Examinations:** Confidential MODEL ANSWERS and MARKING SCHEME Paper Code: E4.03, SO10, ISE4.3 First Examiner: Gurcan, M.K. Question # 4 Page () out of |) Second Examiner: Leung, K.K. Marks allocations in right margin **Question labels in left margin** since the bandwidth B is 20 MHz and 64 subcarriers evenly spaced over the bandwidth, the subcarrier bandwidth BN = 20 MHZ = 312.5 KHZ Since 1=16 and 1/Ts = 20 MHz the splead for which 151 is removed Tm < p Ts = 16 = 4 / sec which corresponds to delay spread in an indoor environment. Including both the OFDM symbol and cyclic prefix, there are 16+64=80 samples per OFDM symbol time so the symbol time TN = 80Ts = 80 = 4/1 The rate per sub channel is log M/T. The minimum data rate for this system, corresponding to BPSK (1 bit/symbol) a rate = 1/2 code, and into account that only 48 subcarriers actually carry usable data, is given by Rmin = 48 Subcarriers x 1/2 bit 1 codebit subcarrier Symbol 4 x 10-6 seconds = 6 Mbps The moseinum data rate that can be transmitted is R_{max} = 48 subcarriers × $\frac{3/4}{\text{code bit}}$ × $\frac{6}{\text{coded bits}}$ × $\frac{1}{4 \times 10^{-6}}$ seconds = 54 m 6 p 8. Naturally a wide range of data rates between these two extremes is possible