

Data Analytics Platforms in the Cloud

Large Scale Data Platforms in the Cloud

Two marketing customers

60TB

55B

300

800

Real-time processing of click stream data

Automated
Machine Learning
Lifecycle

Raw data on linear blob storage

Number of rows in MPP Database

Number of nodes in transparent elastic scaling

Websites with simultanious click stream collection

Collaboration with Google

Joel Akeret Expert Data Scientist Zühlke Engineering AG

Hendrik Schöneberg Lead Software Architect Zühlke Engineering AG

Why data analytics platforms?

Drivers for Data Analytics Platforms

Data Ānalytics Platforms in the Cloud Slide 5 © Zuhlke 2018

BIG DATA & AI LANDSCAPE 2018

Data platform architecture

Platform Architecture Overview

Technological choices

Amazon Web Services

Service Bus Source

Systems

Monitoring & Alerting

Hybrid Cloud Platform

Technological choices

Google Cloud Platform

Deepdive Data Processing Pipelines

Data Platform Architecture

Core Data Ingestion and Processing

Workflows orchestrated by Apache Airflow

 Execution of parallelizable data transformations done with Apache Beam on Google Cloud Dataflow

Apache Airflow

- Originally created at Airbnb, open sourced 2015
- Author, schedule and monitor workflows
- "Cron on steroids"
- Workflows are part of the codebase (Python)
- Workflows defined as DAGs of tasks
- Clear and transparent
- Easy to rerun or reproduce historical jobs by date → backfilling
- Thriving community

Apache Airflow

Example

Apache Beam

- Unified model for batch and streaming
- Executes on a broad variety of runners (no vendor lock-in)
- Decouples data processing from the executor
- Comprehensive set of windowing, timing, lateness and triggering primitives

...and your runtime.

Source

http://beam.apache.org

Apache Beam Python SDK


```
61
        with beam.Pipeline(options=options) as p:
62
          messages = (p | 'ReadPubSub' >> beam.io.ReadFromPubSub(args.topic)
63
                          "ParseRawMessage" >> beam.Map(parse message)
64
                          "ConvertRadiogram" >> beam.Map(convert to dict)
65
                          "ProcessMessage" >> beam.Map(process message)
67
68
          (messages | "ConvertForPubSub" >>> beam.Map(to json)
69
                      "WriteToPubSub" >> beam.io.WriteToPubSub(args.response topic)
70
71
72
                     "WriteToBigQuery" >> beam.io.WriteToBigQuery(
          messages
73
                          args.table_name, args.dataset,
74
                          schema=SCHEMA,
75
                          create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
76
                          write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND)
77
78
```

Apache Beam Resulting pipeline

Apache Beam

Unified model for stream and batch processing

Example: Calculate Team scores by the hour


```
Spark
gameEvents
  [... input ...]
  .window(Durations.minutes(10), Durations.minutes(10))
  .mapToPair(new ExtractUserScore())
  .reduceByKey(new SumScore())
  .transformToPair((rdd, timestamp) -> {
    userWindowTimestamp.set(Math.max(
    return rdd:
  .updateStateByKey(new SumAggregator())
  .filter(x -> x._2().timestamp() >= userWindowTimestamp.get())
                                                                     Window, Trigger
  [... output ...]
                                                                     Accumulation,
                                                                     & Sum (but no
private static class SumAggregator implements Function2<
    List, Optional,
Optional> {
                                                                     Lateness), all
                                                                     mixed together
  final private static Integer INITIAL STATE = 0;
  public Optional call(
      List scores, Optional state) {
    if (scores.size() == 0) return state;
    Integer sumWithTimestamp = state.or(INITIAL_STATE);
    Integer sum = sumWithTimestamp.val() +
      scores.stream().mapToInt(Integer::intValue).sum();
    return Optional.of(sum);
```

Source:

https://cloud.google.com/dataflow/blog/dataflow-beam-and-spark-comparison

D 0 4 :

Cloud Vendor comparison

Data Platform Monthly Breakdown

Cloud Storage	Multi-Regional storage	15360 GB	\$399.36
Cloud Storage Storage	Regional storage	5120 GB	\$117.76
Cloud Storage	Coldline storage	10240 GB	\$102.40
Analytics Database	BigQuery	10 GB	\$949.80
Cloud Dataflow Elastic P	50 x n1-standard-2 workers in	3000	\$232.03
5 x Application Abstraction Layer Compute	n1-standard-4 Sustained Usage Discount Monthly Breakdown: • 1st ¼ - 912.5 hrs @ 0.0% off: \$223.38 • 2nd ¼ - 912.5 hrs @ 20.0% off: \$178.70 (\$44.68 saved) • 3rd ¼ - 912.5 hrs @ 40.0% off: \$134.03 (\$89.35 saved) • 4th ¼ - 912.5 hrs @ 60.0% off: \$89.35 (\$134.03 saved)	3650 total hours per month	\$625.46
Persistent disk	Storage	500 GB	\$24.00
Total Estimated Mor	\$2,450.82		

Google Cloud Platform

Service Type	▼ Components	Region	▼ Component Price	Service Price
Amazon EC2 Service (EU (Frankfurt))				\$612.32
	Compute:	EU (Frankfurt)	\$439.2	
	EBS Volumes:	EU (Frankfurt)	\$147.5	
Compute	Elastic IPs:	EU (Frankfurt)	\$3.66	
	Classic LBs:	EU (Frankfurt)	\$21.96	
Amazon S3 Service (EU (Frankfurt))				\$445.45
	S3 Standard Storage:	EU (Frankfurt)	\$376.32	
Storage	S3 Standard Other Requests	: EU (Frankfurt)	\$0.01	
	S3 Standard - IA Storage:	EU (Frankfurt)	\$69.12	
Amazon Redshift Service (EU (Frankfurt))				\$1055.81
Database	Compute:	EU (Frankfurt)	\$1055.81	
Amazon Glacier Service (EU (Frankfurt))				\$46.08
	Storage:	EU (Frankfurt)	\$46.08	
A <u>mazon Elastic MapReduce Serv</u> ice (EU (Frankfurt))			\$189.45
Elastic Processing	Compute:	EU (Frankfurt)	\$189.45	
AWS Support (Business)				\$232.53
Cusaset Fas	Support for all AWS services	:	\$232.53	
Support Fee		Free Tier Discount:		\$-23.87
Total Monthly Payment:		\$2557.77		

Conclusion

- We created reproducible and traceable data pipelines using Apache Airflow and Apache Beam
- We established an essential building block to incrementally create trustworthy data-driven applications
- The tech stack relies on OSS and avoids a vendor lock-in (runs on own laptop, on-prem, AWS, GCP, ...)
- Great collaboration with Google

Thank you