Minimização de funções Booleanas Algoritmo QM (Quine-McCluskey)

Um **implicante primo** de f é um produto p tal que $p \le f$, e não há outro produto p', p < p', tal que $p' \le f$.

Esquerda: Mintermos de $f = \sum m(0, 1, 4, 5, 6)$.

Direita: todos os implicantes primos de f.

Implicantes primos, cubos maximais

Implicantes primos, cubos maximais

$$x_1x_2x_3 + x_1x_2\overline{x}_3 = x_1x_2(x_3 + \overline{x}_3) = x_1x_2 \cdot 1 = x_1x_2$$

Juntar produtos e eliminar variáveis!

Teorema: Qualquer produto em uma expressão minimal na forma soma de produtos é um implicante primo.

Mas nem todos os implicantes primos fazem parte da forma SOP minimal!

Mas nem todos os implicantes primos fazem parte da forma SOP minimal!

Exemplo:

Esquerda: todos os implicantes primos

Direita: cobertura mínima

Algoritmo de Quine-McCluskey

Consiste de 2 etapas:

- calcular todos os implicantes primos de f
- 2 calcular uma cobertura mínima de f

Passo 1: Listar 0-cubos e agrupar de acordo com quantidade de 1's

função:
$$f(x_1, x_2, x_3) = \sum m(0, 1, 4, 5, 6)$$

Mintermos em notação cúbica: 000, 001, 100, 101, 110

Passo 1: Listar 0-cubos e agrupar de acordo com quantidade de 1's

função: $f(x_1, x_2, x_3) = \sum m(0, 1, 4, 5, 6)$

Mintermos em notação cúbica: 000, 001, 100, 101, 110

000
001
100
101
110

Passo 2: juntar 0-cubos adjacentes

Passo 2: juntar 0-cubos adjacentes

$$\begin{array}{c|c}
\hline
\sqrt{000} \\
\sqrt{001} \\
\sqrt{100} \\
\sqrt{101} \\
110
\end{array}
\implies
\begin{array}{c}
00X \\
X00 \\
X01
\end{array}$$

Passo 2: juntar 0-cubos adjacentes

Passo 2: juntar 0-cubos adjacentes

Passo 2: juntar 0-cubos adjacentes

Passo 2: juntar 0-cubos adjacentes

 000		00 <i>X</i>
 001		X00
 100	\Longrightarrow	X01
 101		10 <i>X</i>
110		

Passo 2: juntar 0-cubos adjacentes

Passo 2: juntar 0-cubos adjacentes

 000		00 <i>X</i>
 001		X00
 100	\Longrightarrow	X01
 101		10 <i>X</i>
 110		1X0

Passo 2: juntar 1-cubos adjacentes, depois 2-cubos adjacentes, ...

Passo 2: juntar 1-cubos adjacentes, depois 2-cubos adjacentes, ...

$$\begin{array}{c|c} \hline \sqrt{000} \\ \hline \sqrt{001} \\ \hline \sqrt{100} \\ \hline \sqrt{101} \\ \hline \sqrt{101} \\ \hline \sqrt{110} \\ \end{array} \Longrightarrow \begin{array}{c} \hline \sqrt{00X} \\ \hline X00 \\ \hline \sqrt{10X} \\ \hline \sqrt{10X} \\ \hline 10X \\ \hline 1X0 \\ \end{array} \Longrightarrow \begin{array}{c} \hline X0X \\ \hline \end{array}$$

$$\begin{array}{c|c} \hline \sqrt{000} \\ \hline \sqrt{001} \\ \hline \sqrt{100} \\ \hline \sqrt{101} \\ \hline \sqrt{101} \\ \hline \sqrt{110} \\ \end{array} \Longrightarrow \begin{array}{c} \hline \sqrt{00X} \\ \hline X00 \\ \hline \sqrt{10X} \\ \hline \sqrt{10X} \\ \hline \sqrt{10X} \\ \hline 10X \\ \hline 1X0 \\ \end{array} \Longrightarrow \begin{array}{c} \hline X0X \\ \hline \end{array}$$

Passo 2: juntar 1-cubos adjacentes, depois 2-cubos adjacentes, ...

$$\begin{array}{c|c} \hline \sqrt{000} \\ \hline \sqrt{001} \\ \hline \sqrt{100} \\ \hline \sqrt{101} \\ \hline \sqrt{101} \\ \hline \sqrt{110} \\ \end{array} \Longrightarrow \begin{array}{c} \hline \sqrt{00X} \\ \hline \sqrt{X00} \\ \hline \sqrt{X01} \\ \hline \sqrt{X01} \\ \hline \sqrt{10X} \\ \hline \sqrt{10X} \\ \hline \sqrt{10X} \\ \hline 10X \\ \hline 1X0 \\ \end{array} \Longrightarrow \begin{array}{c} X0X \\ \hline \end{array}$$

$$\begin{array}{c|c} \hline \sqrt{000} \\ \hline \sqrt{001} \\ \hline \sqrt{100} \\ \hline \sqrt{101} \\ \hline \sqrt{110} \\ \hline \end{array} \end{array} \Rightarrow \begin{array}{c|c} \hline \sqrt{00X} \\ \hline \sqrt{X00} \\ \hline \sqrt{X01} \\ \hline \end{array} \Rightarrow \begin{array}{c|c} \hline X0X \\ \hline \end{array}$$

Os implicantes primos são: 1X0 e X0X

Algoritmo QM — cálculo de cobertura mínima

Passo 1: contruir a tabela de implicantes primos

	1	2	3	5	9	10	11	18	19	20	21	23	25	26	27
XX01X		√	√			\vee	√	√	\checkmark					√	
X10X1					\checkmark		√						√		
0X0X1															
00X01	√														
X0101				√							\checkmark				
1010X										√	\checkmark				
10X11									\checkmark						
101X1												$\sqrt{}$			

Passo 2: selecionar os implicantes primos essenciais No exemplo, o mintermo 2 é coberto apenas pelo implicante primo XX01X. Logo XX01X é essencial.

		1	2	3	5	9	10	11	18	19	20	21	23	25	26	27
*	XX01X		√	√			√	√	\checkmark	√					√	\checkmark
	X10X1					√		√						√		
	0X0X1															
	00X01				√											
	X0101				√							√				
	1010X															
	10X11												√			
	101X1												$\sqrt{}$			
				√				√		√						

Passo 2: selecionar os implicantes primos essenciais No exemplo, o mintermo 2 é coberto apenas pelo implicante primo XX01X. Logo XX01X é essencial.

		1	2	3	5	9	10	11	18	19	20	21	23	25	26	27
*	XX01X			√				√								$\sqrt{}$
	X10X1							√								
	0X0X1															
	00X01	\checkmark			√											
	X0101				√							√				
	1010X															
	10X11									\checkmark			√			
	101X1															

Passo 2: selecionar os implicantes primos essenciais No exemplo, o mintermo 2 é coberto apenas pelo implicante primo XX01X. Logo XX01X é essencial.

		1	2	3	5	9	10	11	18	19	20	21	23	25	26	27
*	XX01X		√	√			√	√	\checkmark	√					√	\checkmark
	X10X1													$\sqrt{}$		\checkmark
	0X0X1															
	00X01				√											
	X0101				√							√				
	1010X										\checkmark					
	10X11												√			
	101X1											$\sqrt{}$	\vee			
				√				√		√						

Passo 2: selecionar os implicantes primos essenciais No exemplo, o mintermo 2 é coberto apenas pelo implicante primo XX01X. Logo XX01X é essencial.

		1	2	3	5	9	10	11	18	19	20	21	23	25	26	27
*	XX01X		√	√			√	√	√	√					√	\checkmark
	X10X1					\vee										√
	0X0X1															
	00X01				√											
	X0101				√							√				
	1010X															
	10X11									\checkmark			√			
	101X1												$\sqrt{}$			
										√						

Passo 2: selecionar os implicantes primos essenciais (cont.)
Desconsiderar linha correspondente ao implicante primo essencial, bem como as colunas cujos mintermos são cobertos por esse implicante primo.
Repetir o processo enquanto existirem implicantes primos essenciais

		1	2	3	5	9	10	11	18	19	20	21	23	25	26	27
*	XX01X						$\sqrt{}$	√	\checkmark	√					√	$\overline{}$
*	X10X1															
	0X0X1	\checkmark		\checkmark												
	00X01															
	X0101				\checkmark							\checkmark				
*	1010X										\checkmark	√				
	10X11									√			√			
	101X1															
			$\sqrt{}$	$\sqrt{}$			$\sqrt{}$		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$				$\sqrt{}$

Passo 3: eliminar todas as linhas selecionadas e colunas cobertas por essas linhas

	1	5	23
0X0X1			
00X01			
X0101			
10X11			
101X1			

Passo 4: Eliminar colunas dominantes e linhas dominadas e repetir passo 2

Passo 4: Eliminar colunas dominantes e linhas dominadas e repetir passo 2

	1	5	23
0X0X1			
00X01			
X0101			
10X11			
101X1			

Passo 4: Eliminar colunas dominantes e linhas dominadas e repetir passo 2

	1	5	23
0X0X1			
00X01			
X0101			
10X11			
101X1			

		1	5	23
	0X0X1			
**	00X01			
**	10X11			

Passo 5: Resolver a tabela cíclica

		0	4	13	15	10	26	16
а	0X10X							
b	011XX							
С	01X1X							
d	1X0X0							
е	00X00							
f	X1010							
g	X0000							

Passo 5: Resolver a tabela cíclica

		0	4	13	15	10	26	16
а	0X10X							
b	011XX							
С	01X1X							
d	1X0X0							
е	00X00							
f	X1010							
g	X0000							

Como expressar as possibilidades para cobrir todas as colunas?

$$(e+g)(a+e)(a+b)(b+c)(c+f)(d+f)(d+g) = 1$$

Passo 5: Resolver a tabela cíclica (cont.) Ao se expressar

$$(e+g)(a+e)(a+b)(b+c)(c+f)(d+f)(d+g) = 1$$

como soma de produtos, temos que cada produto corresponde a uma possível solução.

Dentre eles, devemos escolher aquele(s) de custo mínimo.

