Linear Systems: State Space View Assignment

1. Derive the state and measurement equations for the following composite systems, assuming the system H_i to have the parameters $(\mathbf{A}_i, \mathbf{B}_i, \mathbf{C}_i, \mathbf{D}_i)$.

2. Derive the state and measurement equation for the following system, where the input is the force f applied to mass m_2 , and the output is the acceleration of the mass m_1 and velocity of mass m_2 .

Assume now that instead of f the input to this was the position of the mass m_2 (i.e. x_2) and the output of interest was the acceleration of the mass m_1 . What would be corresponding state and measurement equations in this case?

3. Obtain a state space representation for the following systems:

(a)
$$\sum_{i=0}^n a_i y^{(i)} = \sum_{j=0}^m b_j x^{(j)}$$
 , where $x^{(k)} = \frac{d^k}{dt^k} x \left(t\right)$

(b)
$$\sum_{i=0}^{n} a_i y [k+i] = \sum_{j=0}^{m} b_j x [k+j]$$

4. Write down the state and measurement equations for the following system with the scalar input $u\left[k\right]$ and output $\mathbf{y}\left[k\right] = \begin{bmatrix} y_1\left[k\right] \\ y_2\left[k\right] \end{bmatrix}$.

5. The following model shows two media and their constituent elements. Medium 1 consists of elements with mass M_1 which are interconnected through a spring and damper in parallel with spring constant k_1 and damping coefficient b_1 . Medium 2 consits of elements with mass M_2 connected through k_2 and b_2 . At the interface M_1 and M_2 are connected through k_3 nd b_3 .

The input to this system is $u\left(t\right)$ which is the position imposed on the let most element in medium 1. The output of the system are the successive differences in the positions of the massess.

$$y_i(t) = x_{i+2}(t) - x_{i+1}(t), \ 1 \le i \le N-2$$

Derive the state and measurement equations for the system.

6. Write a python program to simulate a continuous-time mass, spring, damper system, described by the folloing differential equation.

$$M\ddot{y}(t) + B\dot{y}(t) + Ky(t) = u(t)$$

Assuming the states of the system to be $\mathbf{x}\left(t\right) = \begin{bmatrix} y\left(t\right) \\ \dot{y}\left(t\right) \end{bmatrix}$, find out the matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} .

Assuming that the input $u(t)=0, \ \forall t\geq 0,$ and assuming an initial condition of $\mathbf{x}\left(0\right)=\begin{bmatrix}1\\1\end{bmatrix}$, numerically solve the state compute the evolution of the state and the output of the system using the following procedure. Let Δ be the time step used for the integration, then the time is divided into discrete time instants $n\Delta$, where $n\in\mathbb{Z}_{\geq0}$. Assuming that we know the value of the state at time $n\Delta$, the rate of change of the state $\dot{\mathbf{x}}$ and the output $\mathbf{y}\left(n\Delta\right)$ at a time $n\Delta$ are given by,

$$\dot{\mathbf{x}}(n\Delta) = \mathbf{A}\mathbf{x}(n\Delta) + \mathbf{B}\mathbf{u}(n\Delta)$$
$$\dot{\mathbf{y}}(n\Delta) = \mathbf{C}\mathbf{x}(n\Delta) + \mathbf{D}\mathbf{u}(n\Delta)$$

We can compute the state at time $(n+1)\Delta$ from $\dot{\mathbf{x}}(n\Delta)$,

$$\mathbf{x}((n+1)\Delta) \cong \mathbf{x}(n\Delta) + \mathbf{x}(n\Delta) \cdot \Delta$$

Starting from the value of the start at time 0, $\mathbf{x}\left(0\right)$, we can numerically compute the evolution of the state for a given input $\mathbf{u}\left(t\right)$.

Compute the states and the output of the system from time t=0s to t=10s for following values of the parameters M,B,K,

- (a) M = 1, B = 3, K = 1
- (b) M = 1, B = 1, K = 1

(c)
$$M = 0$$
, $B = 0$, $K = 1$

Carry out the simulations for different values of $\Delta=0.1,0.01,0.001.$ Compute the states and plot them as function of time.

What differences do you find for the three systems for the different parameters and when using different step times.