Ecuaciones Diferenciales Ordinarias

Basado en las clases impartidas por - en el segundo semeste del $2025\,$

Chapter 1

1.1 Clase (20/08)

1.1.1 Algunas ecuaciones no-lineales

Example. Considere la EDO:

$$y' = -\frac{t^2 + y^2}{t^2 - ty} = -\frac{M(t, y)}{N(t, y)}, \quad t > 0$$

Sean $M(t,y)=t^2+y^2$ y $N(t,y)=t^2-ty, \quad \forall (t,y)\in\mathbb{R}^2,$ y así:

$$M(st, sy) = s^2 M(t, y)$$
 y $N(st, sy) = s^2 N(t, y)$, $s, t, y \in \mathbb{R}$.

En tal caso, conviene introductir el cambio de variable y=ty, y así:

$$u + tu' = -\frac{t^2 + t^2u^2}{t^2 - t^2u} = -\frac{1 + u^2}{1 - u},$$

y así

$$\begin{split} u' &= -\frac{1}{t} \cdot \frac{1+u}{1-u} \Leftrightarrow \frac{du}{dt} = -\frac{1}{t} \cdot \frac{1+u}{1-u} \\ &\Leftrightarrow \frac{1-u}{1+u} du = -\frac{1}{t} dt \\ &\Leftrightarrow \log((1+u)^2) - u = -\log(t) + C \\ &\Leftrightarrow (1+u)^2 = \frac{C}{t} e^u \\ &\Leftrightarrow (t+y(t))^2 = C t e^{y(t)/t} \quad \text{(solución definida implícitamente)}. \end{split}$$

 \Diamond

En general, si $M, N : \mathbb{R}^2 \to \mathbb{R}$ son dos funciones tales que

$$M(st, sy) = s^{\alpha}M(t, y) \text{ y } N(st, sy) = s^{\alpha}N(t, y), \quad \forall s, t, y \in \mathbb{R},$$

para cierto $\alpha > 0$, se sugiere utilizar el cambio de variable y = tu.

Ecuación de Bernoulli: tiene la forma

$$y'(t) + P(t)y(t) = f(t)(y(t))^n \quad \text{con } n \in \mathbb{N}$$

Note. los casos n=0 y n=1 ya han sido estudiados.

Para $n \ge 2$ conviene utilizar el cambio de variable $u=y^{1-n}$. Luego, $u'=(1-n)y^{-n}y'$, es decir: $y'=\frac{1}{1-n}y^nu'$, y así:

$$\frac{y^n}{1-n}u' + P(t)y(t) = f(t)(y(t))^n \Leftrightarrow \frac{1}{1-n}u' + P(t)y^{1-n} = f(t)$$
$$\Leftrightarrow u'(t) + (1-n)P(t)u(t) = (1-n)f(t)$$
(se resuelve con factor integrante).

Ecuación de Ricatti: es de la forma

$$y' = P(t) + Q(t)y(t) + R(t)(y(t))^{2}$$

Supongamos que se conoce una solución $y_1(t)$ de esta EDO, es decir:

$$y_1'(t) - P(t) - Q(t)y_1(t) - R(t)(y_1(t))^2 = 0$$

Luego, definimos $z(t) = y(t) - y_1(t)$, y así:

$$y'(t) = z'(t) + y_1'(t) = P(t) + Q(t)(z(t) + y_1(t)) + R(t)(z(t) + y_1(t))^2 \Leftrightarrow z'(t) - [Q(t) + 2y_1(t)R(t)]z(t) = R(t)(z(t))^2 + R(t)(z(t) + y_1(t))^2 \Leftrightarrow z'(t) - [Q(t) + 2y_1(t)R(t)]z(t) = R(t)(z(t))^2 + R(t)(z(t) + y_1(t))^2 \Leftrightarrow z'(t) - [Q(t) + 2y_1(t)R(t)]z(t) = R(t)(z(t) + y_1(t))^2 + R(t)(z(t) + y_1(t))^2 \Leftrightarrow z'(t) - [Q(t) + 2y_1(t)R(t)]z(t) = R(t)(z(t) + y_1(t))^2 + R(t)(z(t) + y_1(t))^2 \Leftrightarrow z'(t) - [Q(t) + 2y_1(t)R(t)]z(t) = R(t)(z(t) + y_1(t))^2 + R(t)(z(t) + x_1(t)^2 + x$$

Example. Resolver la EDO:

$$y'(t) = 6 + 5y(t) + (y(t))^2$$

Corresponde a una ecuación de Ricatti con:

$$P(t) = 6$$
, $Q(t) = 5$, $R(t) = 1$, $\forall t \in \mathbb{R}$

Nótese que $y_1(t) = -2, \ \forall t \in \mathbb{R}$ es solución. Luego, definimos:

$$z(t) = y(t) - y_1(t) = y(t) + 2 \quad \forall t \in \mathbb{R}$$

$$\Rightarrow z'(t) - z(t) = (z(t))^2.$$

Luego,

$$u'(t) + u(t) = -1 \Rightarrow u(t) = Ce^{-t} - 1 \quad \forall t \in \mathbb{R} \ (C \in \mathbb{R})$$
$$\Rightarrow z(t) = \frac{1}{u(t)} = \frac{1}{Ce^{-t} - 1}$$
$$\Rightarrow y(t) = z(t) - 2 = \frac{1}{Ce^{-t} - 1} - 2.$$

Note. Si C > 0, la solución "explota" cuando $t = \log(C)$.

1.1.2 III. Problema de Cauchy: existencia y unicidad

Sea $\Omega \subset \mathbb{R}^{n+1}$ un conjunto abierto, que por lo general será de la forma $\Omega = I \times \widetilde{\Omega}$, con $I \subset \mathbb{R}$ un intervalo abierto y $\widetilde{\Omega} \subset \mathbb{R}^n$ un conjunto abierto. Dada una función

$$f \in C(\Omega; \mathbb{R}^n)$$

consideramos nuevamente el problema de Cauchy

$$(PC) \begin{cases} y'(x) = f(x, y(x)), & \forall x \in I \text{ con} \quad x_0 \in I \text{ y} \\ y(x_0) = y_0, & y \in \mathbb{R}^n \end{cases}$$

El (PC) puede ser formulado de manera equivalente, pero "relativamente" más débil:

CHAPTER 1.

2

 \Diamond

Lemma 1.1. Sea $\Omega \subset \mathbb{R}^{n+1}$ un conjunto abierto de la forma $\Omega = I \times \widetilde{\Omega}, \ I \subset \mathbb{R}$ intervalo abierto y $\widetilde{\Omega} \subset \mathbb{R}^n$ conjunto abierto. Dados $x_0 \in I, \ y_0 \in \mathbb{R}^n$ y $f \in C(\Omega; \mathbb{R}^n)$, una función $\varphi : I \to \mathbb{R}^n$ es solución de (PC) si y sólo si:

- $$\begin{split} &\text{(i)} \ \ \varphi \in C(I;\mathbb{R}^n);\\ &\text{(ii)} \ \ (x,\varphi(x)) \in \Omega \quad \forall x \in I;\\ &\text{(iii)} \ \ \varphi(x) = y_0 + \int_{x_0}^x f(s,\varphi(s)) ds \quad \forall x \in I. \end{split}$$
- (i, ii y iii es formulación integral del (PC)).

Remark. La formulación integral nos permite estudiar el (PC) desde una perspectiva más abstracta. Supongamos por ahora que

$$\Omega = \mathbb{R}^{n+1}, \ I = \mathbb{R}, \ \widetilde{\Omega} = \mathbb{R}^n \ \mathrm{y} \ f \in C(\mathbb{R}^{n+1}; \mathbb{R}^n).$$

Dados $y_0 \in \mathbb{R}^n$ y $x_0 \in \mathbb{R}$, consideramos la aplicación $T: C(\mathbb{R}; \mathbb{R}^n) \to C(\mathbb{R}; \mathbb{R}^n)$.

$$T(\varphi)(x) = y_0 + \int_{x_0}^x f(s, \varphi(s)) ds \quad \forall x \in \mathbb{R}$$

Por el lema precedente, es evidente que $\varphi \in C(\mathbb{R}; \mathbb{R}^n)$ es solución de (PC) si y sólo si $T(\varphi) \equiv \varphi$ (i.e., φ es punto fijo de T).