Christopher J Harris

502 Cinnaminson St Riverton, NJ 08077-1325

Profile

http://cjharris.tk/ cjharris@alumni.rutgers.edu

Goal	Create new products or improve existing ones, whether the target entity involves material,
	equipment, software, or humans.

Chemical Engineer with over 20 years of semiconductor research and 10 years of data science

seeking to redefine opportunity in the industrial sector:

crystal growth plasma chemistry gene therapy surface science laser excitation applied neuroscience chemical vapor deposition optical characterization computer modeling molecular beam epitaxy electrochemical methods statistical analysis semiconductor devices additive manufacturing process control

Real Time Reflectometry of Ga-based Compound Semiconductor Films on Silicon during Plasma **Thesis** Enhanced Molecular Beam Epitaxy, NCSU Materials Science Dept: 1999.

Clifton Strengths

Character Strategic faced with any given scenario, can quickly spot the relevant patterns.

> Learner have a great desire to learn and want to continuously improve. Ideation able to find connections between seemingly disparate phenomena.

Futuristic inspired by the future and what could be.

Self-Assurance possess an inner compass yielding confidence in decision making.

Milestone Invent a new approach for process control to optimize laser power.

> Write a Pascal based data acquisition program for DOS environment in 1986, long before LabView enters the Windows market.

> Analyze optical signals from a ceramic powder reaction chamber, leading to a computer monitoring scheme, which replaces a human operator.

> Construct interferometer to measure film thickness, providing a realtime signal, to calibrate growthrate.

> Refine process control loop to stabilize laser power, producing a steady deposition rate with reliable material properties.

> Collect in-situ stress measurements of growing films, through deflection of an optical laser, as sample curvature evolves.

Grow the first laser-induced, chemical vapor deposition, amorphous silicon solar cell.

Develop a microwave plasma, chemical vapor deposition system, to create polycrystalline diamond from methane gas, in a regime where kinetics dominates over thermodynamics.

Achieve a unique ellipsoidal plasma advantageous for film growth over spherical plasmas.

Design a radio frequency nitrogen plasma source for GaN film growth.

Monitor the surface evolution of compound semiconductor heterostructure films, in a chemical beam epitaxy system, with plane polarized reflectance spectroscopy.

Derive substrate temperature from plane polarized reflectance intensity.

Apply cyclic voltammetry to find: catalytic activity in gold compounds for methanol oxidation, and electrochemiluminescence in a ruthenium compound for DNA analysis.

Experience Engineering Consultant, Independent (1/18 to present)

Futures Trader, Independent (9/06 to present)

Research Assistant, Maine Chemistry Dept: Orono, ME (8/03 to 5/06) Research Assistant, NCSU Materials Science Dept: Raleigh, NC (1/87 to 5/99)

Research Specialist, MIT Advanced Energy Materials Lab: Cambridge, MA (11/84 to 1/87)

Education MS Physical Chemistry Rutgers: New Brunswick, NJ Jan 2003

MS Material Science North Carolina State: Raleigh, NC unofficial BS Chemical Engineering Texas A&M: College Station, TX May 1984 Jun 1979

HS Diploma Waltham High: Waltham, MA

Honor Bausch & Lomb Science Award

DECEMBER 10, 2014

Statement of Accomplishment

WITH DISTINCTION

CHRISTOPHER HARRIS

HAS SUCCESSFULLY COMPLETED GEORGIA INSTITUTE OF TECHNOLOGY'S ONLINE OFFERING OF

Computational Investing, Part I

This course covers computational aspects of investing, including: Company valuation, the Capital Assets Pricing Model, Efficient Markets Hypothesis, the role of information in pricing, historical data and its manipulation, portfolio performance assessment and optimization.

TUCKER BALCH, PH.D

ASSOCIATE PROFESSOR

COLLEGE OF COMPUTING

GEORGIA INSTITUTE OF TECHNOLOGY

NELSON BAKER, PH.D.

DEAN, PROFESSIONAL EDUCATION
GEORGIA INSTITUTE OF TECHNOLOGY

Mol Bel

PLEASE NOTE: THE ONLINE OFFERING OF THIS CLASS DOES NOT REFLECT THE ENTIRE CURRICULUM OFFERED TO STUDENTS ENROLLED AT GEORGIA INSTITUTE OF TECHNOLOGY. THIS STATEMENT DOES NOT AFFIRM THAT THIS STUDENT WAS ENROLLED AS A STUDENT AT GEORGIA INSTITUTE OF TECHNOLOGY IN ANY WAY. IT DOES NOT CONFER A GEORGIA INSTITUTE OF TECHNOLOGY GRADE; IT DOES NOT CONFER GEORGIA INSTITUTE OF TECHNOLOGY DEGREE; AND IT DOES NOT VERIFY THE IDENTITY OF THE STUDENT.

JULY 02, 2015

Statement of Accomplishment

CHRISTOPHER HARRIS

HAS SUCCESSFULLY COMPLETED THE ONLINE OFFERING OF

Computational Neuroscience

This advanced undergraduate course introduces a broad range of computational techniques for analyzing, modeling, and understanding the behavior of neurons and networks of neurons in the brain.

Rejet P.N. Res
WONIVERSITY of WASHINGTON

DR. RAJESH P. N. RAO
PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY OF WASHINGTON

W UNIVERSITY of WASHINGTON

DR. ADRIENNE FAIRHALL
ASSOCIATE PROFESSOR
DEPARTMENT OF PHYSIOLOGY AND BIOPHYSICS
UNIVERSITY OF WASHINGTON

THE ONLINE OFFERING NOTED ABOVE IS NOT A COURSE OFFERED BY THE UNIVERSITY OF WASHINGTON. THIS STATEMENT OF ACCOMPLISHMENT IS NOT ISSUED BY THE UNIVERSITY OF WASHINGTON AND DOES NOT CONFIRM OR IMPLY ENROLLMENT AT THE UNIVERSITY OF WASHINGTON. THE UNIVERSITY OF WASHINGTON AWARDS NO CREDIT FOR THE ABOVE OFFERING AND MAINTAINS NO RECORD OF THE OFFERING OR OF ANY STUDENT'S ENROLLMENT IN THE OFFERING.

MARCH 08, 2015

Statement of Accomplishment

WITH DISTINCTION

CHRISTOPHER HARRIS

HAS SUCCESSFULLY COMPLETED THE JOHNS HOPKINS UNIVERSITY'S OFFERING OF

The Data Scientist's Toolbox

Overview of the data, questions, & tools that data analysts & scientists work with. It is a conceptual introduction to the ideas behind turning data into knowledge as well as a practical introduction to tools like version control, markdown, git, GitHub, R. and RStudio.

Bun Calle

JEFFREY LEEK, PHD
DEPARTMENT OF BIOSTATISTICS, JOHNS HOPKINS
BLOOMBERG SCHOOL OF PUBLIC HEALTH

ROGER D. PENG, PHD

DEPARTMENT OF BIOSTATISTICS, JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH

BRIAN CAFFO, PHD, MS
DEPARTMENT OF BIOSTATISTICS, JOHNS HOPKINS
BLOOMBERG SCHOOL OF PUBLIC HEALTH

MAY 07, 2015

Statement of Accomplishment

WITH DISTINCTION

CHRISTOPHER HARRIS

HAS SUCCESSFULLY COMPLETED

Programming for Everybody (Python)

The Programming for Everybody (#PR4E) course from the University of Michigan School of Information introduces students to the Python programming language and studies how Python can be used to do data analysis.

CHARLES SEVERANCE

CLINICAL ASSOCIATE PROFESSOR, SCHOOL OF INFORMATION

UNIVERSITY OF MICHIGAN

PLEASE NOTE: THE ONLINE OFFERING OF THIS CLASS DOES NOT REFLECT THE ENTIRE CURRICULUM OFFERED TO STUDENTS ENROLLED AT THE UNIVERSITY OF MICHIGAN. THIS STATEMENT DOES NOT AFFIRM THAT THIS STUDENT WAS ENROLLED AS A STUDENT AT THE UNIVERSITY OF MICHIGAN IN ANY WAY. IT DOES NOT CONFER A UNIVERSITY OF MICHIGAN GRADE; IT DOES NOT CONFER UNIVERSITY OF MICHIGAN DEGREE; AND IT DOES NOT VERIFY THE IDENTITY OF THE STUDENT.

MAY 19, 2015

Statement of Accomplishment

WITH DISTINCTION

CHRISTOPHER HARRIS

HAS SUCCESSFULLY COMPLETED AN ONLINE NON-CREDIT COURSE OFFERED BY DUKE UNIVERSITY.

Data Analysis and Statistical Inference

This course introduces students to core statistical concepts such as exploratory data analysis, statistical inference and modeling, and basic probability, as well as statistical computing.

DR. MINE ÇETINKAYA-RUNDEL
ASSISTANT PROFESSOR OF THE PRACTICE
STATISTICAL SCIENCE, DUKE UNIVERSITY