	open	close	bounded	compact	inter	closure	boundary
Ø	V	~	V	V	ø	Ø	-
Rn	V	V	×	×	iR ⁿ	IR ⁿ	P
211)0(213)0(45)	×	×	V	×	(0,1) ((2,3) 0(4,5)	[0,][0[2,]][[4,5]	{0,1,2,3,4,5}
C×.95 (x >0, 470	} ×	*	*	×	(0,+0)X(0,+00)	[0,+0)×[0,+0)	{(x,y) [x=0] y =0 }
Z (under R	1	×	*	×	ø	Z	Z
法[xeZ]	- 29	X	V	*	<i>\$</i>	的独	1030173
twink kez		*	V	x	Ø na	ormal Ufx=0,yEE-11	j} normal U{x=0,y€l
2.(Q-linear) rate of convergence			rate-	constant.	×*		
XK=JK				1 2		0	
1+ 102k	5 10 ^{3/K} 1 -2 ^K 2			1/9.		ı	1-1-1-1
0.000(0)						0	1
						0	-2 ^k
3-k2. 1 (R-linear)			1/9.		٥	c -2-2*	
3-1-2-2k odd		10/7		1		- 100	ex= } -K eve

第三题三个小问,每个小问两个答案分别用小圈 1,2 标出

Answer

DYTMY = XMMMMX = 1 51 18 IE

(XMMMMX)

N-T=M-1

② of $f = \frac{x^T Y}{11 Y 1 | M}$ 本身 $\frac{\partial f}{\partial Y} = 0 \Rightarrow Y = \frac{M^{-1} X}{11 M^{-1} X 1 | M} 取得 极值$

像上 ||X||*= xT. Y = xTM-1X = ||X||M-1

5. AX = λη (A+B) ηχ

∴ Λχ = (A+B) ηχ

∴ χΤΑχ = λη (A+B) χ

∴ (1-λ) χΤΑχ = λχ ΤΒχ

Ζ΄ Α ρ.d; Β ρ.s.d.

∴ (-λ>0; λλ0 Η

6. cond (A) = $\frac{\sigma_{\text{max}}}{\sigma_{\text{min}}}$ $AA^{T} = \begin{pmatrix} 1 & 6 & 15 \\ 6 & 16 & 30 \end{pmatrix}$ $\Rightarrow \sigma = \sqrt{\lambda}(AA^{T}) \approx \begin{pmatrix} 16 & 15 \\ 15 & 30 & 81 \end{pmatrix}$ $\therefore \text{ cond } (A) \approx 31.55.$

7. $X = (X_1 p)_1 j$. $= A(X), y > = \langle X, A^*(y) \rangle$ $= A(X), y > = \langle X, A^*(y) \rangle$ $= A(X) = \langle X_1 + X_{12} - X_{51} + 2X_{63} \rangle$ $= A(X) = \langle X_1 + X_{12} - X_{51} + 2X_{63} \rangle$ $= A(X) = \langle X_1 + X_{12} - X_{51} + 2X_{63} \rangle$ $= A(X) = \langle X_1 + X_{12} - X_{51} + 2X_{63} \rangle$ $= A(X) = \langle X_1 + X_{12} - X_{51} + 2X_{63} \rangle$ $= A(X) = \langle X_1 + X_{12} - X_{51} + 2X_{63} \rangle$ $= A(X) = \langle X_1 + X_{12} - X_{51} + 2X_{63} \rangle$ $= A(X) = \langle X_1 + X_{12} - X_{51} + 2X_{63} \rangle$ $= A(X) = \langle X_1 - X_{12} - X_{51} + 2X_{63} \rangle$ $= A(X) = \langle X_1 - X_{12} - X_{51} + 2X_{63} \rangle$ $= A(X) = \langle X_1 - X_{12} - X_{51} + 2X_{63} \rangle$ $= A(X) = \langle X_1 - X_{12} - X_{51} + 2X_{63} \rangle$ $= A(X) = \langle X_1 - X_{12} - X_{12} + X_{12} - X_{13} \rangle$ $= A(X) = \langle X_1 - X_1 - X_{12} - X_{13} + X_{13} \rangle$ $= A(X) = \langle X_1 - X_1 \rangle$ $= A(X) = \langle X_1 - X$