1 Assignment One - Lebesgue measure in \mathbb{R}^d

This assignment is about defining Lebesgue measure on \mathbb{R}^d as opposed to \mathbb{R} . Later in the course we will also see product σ -algebras and product measures which give another way of doing this. We begin by defining Lebesgue outer measure, λ^* on \mathbb{R}^d by first defining the measure of the rectangle $(a_1, b_1] \times (a_2, b_2] \times \cdots \times (a_d, b_d]$. We define

$$\lambda((a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_d, b_d)) = (b_1 - a_1)(b_2 - a_2) \dots (b_d - a_d).$$

Then for any subset of \mathbb{R}^d , A, we define

$$\lambda^*(A) = \inf\{\sum_{n=1}^{\infty} \lambda(R) : R_k \text{ are rectangles}, A \subseteq \bigcup_{n=1}^{\infty} R_n\}.$$

Question 1.1. Show that λ^* is indeed an outer measure. 3 marks

Question 1.2. Show that if R is a rectangle then $\lambda(R) = \lambda^*(R)$. 5 marks

We now recall that a set, A, will be λ^* - measureable if for every set B

$$\lambda^*(B) = \lambda^*(B \cap A) + \lambda^*(B \cap A^c).$$

As for the one dimensional case we write \mathcal{M} for the set of Lebesgue measurable sets. We know from the proof of Carathéodory's extension theorem that \mathcal{M} is a σ -algebra

Question 1.3. Explain why if $\lambda^*(A) = 0$ then $\lambda^*(B \cap A)$ will also be zero. Therefore show that if $\lambda^*(A) = 0$ or $\lambda^*(A^c) = 0$ then A is λ^* -measureable. 5 marks

Question 1.4. In this question we will prove that every Borel subset of \mathbb{R}^d is Lebesgue measurable.

- Show that every half space of the form $H_{j,b} = \{(x_1, \ldots, x_d) : x_j \leq b\}$ is Lebesgue measurebale. 5 marks
- Show that every rectangle R is Lebesgue measurable. 2 marks
- Show that every open set in \mathbb{R}^d is a countable union of rectangles. 3 marks
- Show that every Borel set is Lebesgue measureable. 2 marks

Again we define Lebesgue measure on \mathbb{R}^d to be the restriction λ^* to \mathcal{M} .