OBJECTIVE:

To apply linear regression for predicting Profit and Transactions based on Sales data.

SOURCE CODE:

1. Set Up Python Environment:

Setting up the Python Environment import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split

2. Load and Prepare Data:

Loading the data
df = pd.read_csv("./Lab_2_Data.csv")
display(df)

		Month	Sales	Profit	Transactions		
	0	24-Jan	10500	3000.0	450.0		
	1	24-Feb	11000	3500.0	480.0		
	2	24-Mar	12000	4000.0	520.0		
	3	24-Apr	13500	4500.0	560.0		
	4	24-May	14000	5000.0	590.0		
	5	24-Jun	15500	5800.0	620.0		
	6	24-Jul	16000	6200.0	650.0		
	7	24-Aug	17500	6800.0	700.0		
	8	24-Sep	18000	7000.0	720.0		
	9	24-Oct	19500	7800.0	750.0		
	10	24-Nov	21200	NaN	NaN		
PROBL	.EMS	7 OUT	PUT DE	BUG CONSO	LE <u>TERMINAL</u>		
Microsoft Windows [Version 10.0.22631.4541] (c) Microsoft Corporation. All rights reserved.							
C:\Users\sayuj\OneDrive\Desktop\BIM054\00_BIM_Rep							

Preparing the data
Removing Missing Values
df = df.dropna()

Dropping the Month Column
df = df.drop(columns="Month")
display(df)

Checking for datatype of the given data df.info()

		Sales	Profit	Transactions		
	0	10500	3000.0	450.0		
	1	11000	3500.0	480.0		
	2	12000	4000.0	520.0		
	3	13500	4500.0	560.0		
	4	14000	5000.0	590.0		
	5	15500	5800.0	620.0		
	6	16000	6200.0	650.0		
	7	17500	6800.0	700.0		
	8	18000	7000.0	720.0		
	9	19500	7800.0	750.0		
<pre>(c) Microsoft Corporation. All rights reserved. C:\Users\sayuj\OneDrive\Desktop\BIM054\00_BIM_Repo> <class 'pandas.core.frame.dataframe'=""> Index: 10 entries, 0 to 9 Data columns (total 3 columns):</class></pre>						
	#	Column	n -	Non-Null Cou	ınt Dtype	
	1 2 dtyp	Profit Transa Des: flo	t actions pat64(2)	10 non-null 10 non-null 10 non-null , int64(1) 0 bytes	float64	
PROB	LEMS	7 0	UTPUT	DEBUG CONSOLE	TERMINAL PC	
Microsoft Windows [Version 10.0.22631.4541] (c) Microsoft Corporation. All rights reserved. C:\Users\sayuj\OneDrive\Desktop\BIM054\00_BIM_Repox[

3. Implement Linear Regression Models:

Implementing The Model
From relation y = mx + c, predict y (profit and transactions) based on x (sales)
x = df[['Sales']]
y_profit = df[['Profit']]
y_tr = df[['Transactions']]

Train and test data split into 80-20

x_train_profit, x_test_profit, y_train_profit, y_test_profit = train_test_split(x, y_profit, test_size=0.2, random_state=42)

x_train_tr, x_test_tr, y_train_tr, y_test_tr = train_test_split(x, y_tr, test_size=0.2, random_state=42)

Train the models

model_profit = LinearRegression()
model_profit.fit(x_train_profit, y_train_profit)
model_tr = LinearRegression()
model_tr.fit(x_train_tr, y_train_tr)

4. Make Predictions:

Making Predictions
predicted_profit = model_profit.predict(x)
predicted_tr = model_tr.predict(x)

Adding the predicted value to the dataset for visualization df['Predicted Profit'] = predicted_profit df['Predicted Transactions'] = predicted_tr display(df)

			B 67.					
		Sales	Profit	Transactions	Predicted Profit	Predicted Transactions		
		10500	3000.0	450.0	3084.054195	462.793121		
		11000	3500.0	480.0	3351.120375	479.280875		
		12000	4000.0	520.0	3885.252736	512.256384		
		13500	4500.0	560.0	4686.451277	561.719646		
	4	14000	5000.0	590.0	4953.517457	578.207400		
		15500	5800.0	620.0	5754.715998	627.670662		
		16000	6200.0	650.0	6021.782178	644.158416		
		17500	6800.0	700.0	6822.980719	693.621678		
		18000	7000.0	720.0	7090.046899	710.109432		
		19500	7800.0	750.0	7891.245440	759.572694		
PROBL	EMS	7 C	OUTPUT	DEBUG CONSOLE	TERMINAL PORTS	JUPYTER SPELL CHECKER		
Microsoft Windows [Version 10.0.22631.4541] (c) Microsoft Corporation. All rights reserved.								
C:\Users\sayuj\OneDrive\Desktop\BIM054\00_BIM_Repox								

5. Visualize Results:

```
# Plotting in graph
plt.figure(figsize=(10, 6))
plt.scatter(df['Sales'], df['Profit'], color='blue', label='Actual Profit')
plt.plot(df['Sales'], predicted_profit, color='red', label='Predicted Profit')
plt.title('Sales vs Profit')
plt.xlabel('Sales')
plt.ylabel('Profit')
plt.legend()
plt.savefig("./sales_vs_profit.png")
plt.show()
```


Plot actual vs predicted Transactions

```
plt.figure(figsize=(10, 6))
plt.scatter(df['Sales'], df['Transactions'], color='green', label='Actual Transactions')
plt.plot(df['Sales'], predicted_tr, color='orange', label='Predicted Transactions')
plt.title('Sales vs Transactions')
plt.xlabel('Sales')
plt.ylabel('Transactions')
plt.legend()
plt.savefig("./sales_vs_Transactions.png")
plt.show()
```


6. Save Results:

Saving the data into new csv

df.to_csv("./Predicted_Lab_2_Data.csv", index=False)

