Лабораторна робота №6

СТВОРЕННЯ РЕКОМЕНДАЦІЙНИХ СИСТЕМ

Мета: використовуючи спеціалізовані бібліотеки та мову програмування Python навчитися створювати рекомендаційні системи.

Хід роботи

Посилання на GitHub: GitHub - Nastya3147/-

Завдання №1:

Напишемо код для навчального конвеєра:

```
X_{i} y = make blobs(n samples=150,
classifier = ExtraTreesClassifier(n estimators=60, max depth=4)
processor pipeline = Pipeline([('selector', k best selector), ('erf', classi-
fier)])
processor pipeline.set params(selector k=7, erf n estimators=30)
processor pipeline.fit(X, y)
output = processor_pipeline.predict(X)
print("\nScore:", processor pipeline.score(X, y))
status = processor pipeline.named steps['selector'].get support()
```

Результат:

					Житомирська політехні	ка.22.1	21.11.0	000 – Лр6
Змн.	$Ap\kappa$.	№ докум.	Підпис	Дата				
Розр	0 б.	Моргун А.М.				Літ.	Арк.	Аркушів
Пере	евір.	Філіпов В.О.			Звіт з		1	16
Керіс	зник							
Н. кс	нтр.				лабораторної роботи	ΦΙΚ	Т Гр. І	71-60[1]
3ae	каф						•	

Рис. 1. Результат навчального конвеєра

Перше отримане значення представляє собою результуючі мітки. Значення Score характеризує ефективність процесора даних. В останній стрічці відображені індекси відібраних властивостей.

Завдання №2:

Напишемо код для пошуку найближчих сусідів:

```
import numpy as np
import matplotlib.pyplot as plt
plt.figure()
plt.title('Input data')
plt.scatter(X[:,0], X[:,1], marker='o', s=75, color='black')
knn_model = NearestNeighbors(n_neighbors=k, algorithm='ball tree').fit(X)
distances, indices = knn model.kneighbors([test datapoint])
print("\nK Nearest Neighbors:")
plt.figure()
plt.title('Nearest neighbors')
plt.scatter(X[:, 0], X[:, 1], marker='o', s=75, color='k')
plt.scatter(test datapoint[0], test datapoint[1],
```

		Моргун А.М.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

		Моргун А.М.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Х

Рис. 3. Графік найближчих сусідів

```
K Nearest Neighbors:
1 ==> [5.1 2.2]
2 ==> [3.8 3.7]
3 ==> [3.4 1.9]
4 ==> [2.9 2.5]
5 ==> [5.7 3.5]
```

Рис. 4. Результат пошуку найближчих сусідів

На першому графіку відображено вхідні дані. На другому графіку позначено п'ять найближчих сусідів. Тестова точка позначена хрестиком, а найближчі точки обведені колом. В вікні терміналу показується результат пошуку найближчих сусідів.

Завдання №3:

Напишемо код для створення класифікатора методом к найближчих сусідів:

		Моргун А.М.				Арк.
		Філіпов В.О.			Житомирська політехніка.22.121.11.000 – Лр6	1
Змн.	Арк.	№ докум.	Підпис	Дата		4

```
import numpy as np
import matplotlib.pyplot as plt
input file = 'data.txt'
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1].astype(np.int)
plt.figure()
plt.title('Input data')
marker_shapes = 'v^os
mapper = [marker_shapes[i] for i in y]
num neighbors = 12
step\_size = 0.01
classifier = neighbors.KNeighborsClassifier(num neighbors, weights='distance')
classifier.fit(X, y)
x \min, x \max = X[:, 0].\min() - 1, X[:, 0].\max() + 1
y \min, y \max = X[:, 1].min() - 1, X[:, 1].max() + 1
x values, y values = np.meshgrid(np.arange(x min, x max, step size),
# Evaluate the classifier on all the points on the grid
output = classifier.predict(np.c [x values.ravel(), y values.ravel()])
# Visualize the predicted output
output = output.reshape(x values.shape)
plt.figure()
plt.pcolormesh(x values, y values, output, cmap=cm.Paired)
plt.xlim(x values.min(), x values.max())
plt.ylim(y_values.min(), y_values.max())
plt.title('K Nearest Neighbors classifier model boundaries')
# Test input datapoint
test datapoint = [5.1, 3.6]
plt.figure()
plt.title('Test datapoint')
for i in range(X.shape[0]):
plt.scatter(test datapoint[0], test datapoint[1], ma
```

		Моргун А.М.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

N Figure 1

X

Рис. 5. Графік вхідних даних

		Моргун А.М.			
		Філіпов В.О.			Житомирська політехніка.22.121.11.000 – Лр6
Змн.	Арк.	№ докум.	Підпис	Дата	

Рис. 6. Графік кордонів класифікатора

		Моргун А.М.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 7. Графік положення тестової точки даних (позначена хрестиком)

		Моргун А.М.		
	·	Філіпов В.О.	·	
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 8. Графік з 12 найближчими сусідами тестової точки

Predicted output: 1

Рис. 9. Спрогнозований результат

Отже, тестова точка відноситься до класу 1.

Завдання №4:

Напишемо код для обчислення оцінок подібності:

		Моргун А.М.		
	·	Філіпов В.О.	·	
Змн.	Арк.	№ докум.	Підпис	Дата

```
def pearson score(dataset, user1, user2):
    for item in dataset[user1]:
mon movies])
mon movies])
```

		Моргун А.М.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
# Calculate the sum of products of the ratings of the common movies
sum_of_products = np.sum([dataset[user1][item] * dataset[user2][item] for item
in common_movies])

# Calculate the Pearson correlation score
Sxy = sum_of_products - (user1 sum * user2_sum / num_ratings)
Sxx = user1_squared_sum - np.square(user1_sum) / num_ratings
Syy = user2_squared_sum - np.square(user2_sum) / num_ratings

if Sxx * Syy == 0:
    return 0

return Sxy / np.sqrt(Sxx * Syy)

if __name__ == '__main__':
    args = build_arg_parser().parse_args()
    user1 = args.user1
    user2 = args.user1
    user2 = args.user2
    score_type = args.score_type

ratings_file = 'ratings.json'

with open(ratings_file, 'r') as f:
    data = json.loads(f.read())

if score_type == 'Euclidean':
    print("\nEuclidean score:")
    print(euclidean_score(data, user1, user2))
else:
    print("\nPearson score(data, user1, user2))
```

```
Euclidean score: 0.585786437626905
```

Рис. 10. Результат обчислення евклідової оцінки подібності користувачів David Smith та Bill Duffy

```
Pearson score:
0.9909924304103233
```

Рис. 11. Результат обчислення оцінки подібності Пірсона для користувачів David Smith та Bill Duffy

```
Euclidean score:
0.1424339656566283
PS C:\Users\win34\Py
Pearson score:
-0.7236759610155113
```

Рис. 12. Результат обчислення евклідової оцінки та оцінки подібності Пірсона для користувачів David Smith та Brenda Peterson

 $Ap\kappa$.

11

		Моргун А.М.			
		Філіпов В.О.			Житомирська політехніка.22.121.11.000 – Лр6
Змн.	Арк.	№ докум.	Підпис	Дата	

```
Euclidean score:
0.30383243470068705
PS C:\Users\win34\Py
Pearson score:
0.7587869106393281
```

Рис. 13. Результат обчислення евклідової оцінки та оцінки подібності Пірсона для користувачів David Smith та Samuel Miller

Euclidean score:

0.2857142857142857

PS C:\Users\win34\l

Pearson score:

0

Рис. 14. Результат обчислення евклідової оцінки та оцінки подібності Пірсона для користувачів David Smith та Julie Hammel

Euclidean score:
0.28989794855663564
PS C:\Users\win34\Py
Pearson score:
0.6944217062199275

Рис. 15. Результат обчислення евклідової оцінки та оцінки подібності Пірсона для користувачів David Smith та Clarissa Jackson

Euclidean score:
0.38742588672279304
PS C:\Users\win34\Py
Pearson score:
0.9081082718950217

Рис. 16. Результат обчислення евклідової оцінки та оцінки подібності Пірсона для користувачів David Smith та Adam Cohen

 $Ap\kappa$.

12

		Моргун А.М.			
		Філіпов В.О.			Житомирська політехніка.22.121.11.000 – Лр6
Змн.	Арк.	№ докум.	Підпис	Дата	

```
Euclidean score:
0.38742588672279304
PS C:\Users\win34\Py
Pearson score:
1.0
```

Рис. 17. Результат обчислення евклідової оцінки та оцінки подібності Пірсона для користувачів David Smith та Chris Duncan

Отже, судячи з графіку, найважливішим параметром ϵ LSTAT.

Завдання №5:

Напишемо код для пошуку користувачів зі схожими уподобаннями методом колаборативної фільтрації:

```
import argparse
import numpy as np
def build arg parser():
   parser = argparse.ArgumentParser(description='Find users who are similar to
def find similar users(dataset, user, num users):
   scores sorted = np.argsort(scores[:, 1])[::-1]
   args = build arg_parser().parse_args()
   ratings file = 'ratings.json'
```

		Моргун А.М.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
print('User\t\t\similarity score')
print('-'*41)
for item in similar_users:
    print(item[0], '\t\t', round(float(item[1]), 2))
```

```
Users similar to Bill Duffy:

User Similarity score

------
David Smith 0.99

Samuel Miller 0.88

Adam Cohen 0.86
```

Рис. 18. Користувачі аналогічні користувачеві Bill Duffy

```
Users similar to Clarissa Jackson:

User Similarity score

Chris Duncan 1.0

Bill Duffy 0.83

Samuel Miller 0.73
```

Рис. 19. Користувачі аналогічні користувачеві Clarissa Jackson

Завдання №6:

Напишемо код для створення рекомендаційної системи фільмів:

		Моргун А.М.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
similarity score = pearson score(dataset, input user, user)
```

Movie recommendations for Chris Duncan:

- Vertigo
- 2. Scarface
- Goodfellas
- 4. Roman Holiday

Рис. 20. Рекомендаційні фільми для користувача Chris Duncan

Movie recommendations for Julie Hammel:

- 1. The Apartment
- 2. Vertigo
- Raging Bull

Puc. 21. Рекомендаційні фільми для користувача Julie Hammel

 $Ap\kappa$.

15

		Моргун А.М.			
		Філіпов В.О.			Житомирська політехніка.22.121.11.000 – Лр6
Змн.	Арк.	№ докум.	Підпис	Дата	

в ок : на цій л лрограмув				
Моргун А.М.				

Змн. Арк.

№ докум.

Підпис Дата