Algoritmer for søgning og sortering

Dan Witzner Hansen

Søgning og sortering

Søgning: Givet et array af heltal int[]
 arr, og et tal x, afgør om der findes et i
 således at arr[i] = x, og returner et
 sådant i hvis det findes

• **Sortering:** Givet et array af heltal int[] arr omarranger elementerne, så de står sorteret efter rækkefølge

Anvendelser

- Søgning i telefonbog
- Søgning i databaser
- Sortering af søgeresultater
- Sortering af inbox
- Både søgning og sortering foregår bag kuliserne i mange applikationer

Algoritmer

- En algoritme er en måde at løse et problem på
- En implementation af en algoritme er et program, der løser problemet ved at følge algoritmen
- En algoritme er en abstrakt ide
- En algoritme er sproguafhængig
- Man kan også tale om algoritmer i andre kontekster (ikke computere)

Dagens mål

- betragte forskellige algoritmer til at søge og sortere
- introducere køretider for forskellige algoritmer
- argumentere for at algoritmerne (faktisk implementationerne) er korrekte
- sammenligne fordele og ulemper ved de forskellige algoritmer

Mål med undervisning

 Algoritmer for søgning og sortering er almen dannelse

- I vil nok aldrig i praksis få brug for at implementere disse algoritmer
- Men I kan få brug for at overveje hvilken af disse der er mest hensigstmæssig i en given situation

lineær søgning

Søgning: Givet et array af heltal int[]
arr, og et tal x, afgør om der findes et i
således at arr[i] = x, eller returner et
sådant i hvis det findes

 Lineær søgning: Kig arrayet igennem fra ende til anden

Implementation af lineær søgning

Binær søgning

- Antag at arrayet er sorteret
- Slå op midt i arrayet. Hvis x er mindre end det tal vi finder her, så kig i nederste halvdel af arrayet, ellers kig i øverste halvdel
- Gentag dette: Slå op midt i den tilbageværende halvdel og afgør hvilken fjerdedel af arrayet, vi skal kigge i
- Gentag indtil man ikke kan halvere mere
 IT University of Copenhagen
 www.itu.dk

Sammenligning af algoritmer

 Lineær søgning svarer til hvad man ville gøre hvis man havde telefonnummer og ville finde navn

Binær søgning svarer til opslag i telefonbog

Implementation af binær søgning

Rekursiv binær-søgning

```
private int bin ary Search (int[] a, int x, int low, int high){
    if (low > high) return -1;
    int m id = (low + high)/2;
    if (a[m id] == x) return m id;
else if (a[m id] < x)

        return bin ary Search (a, x, m id + 1, high);
else // last possibility: a[m id] > x

    return bin ary Search (a, x, low, m id -1); }
```


Hvorfor virker algoritmerne?

Køretidsanalyse

- Lad os tælle hvor mange sammenligninger af heltal man skal lave i hver algoritme, som funktion af længden af arrayet
- Hvor mange skal man højst lave? (værste tilfælde)
- Hvor mange skal man lave i gennemsnit?

Analyse lineær søgning

Køretid for lineær søgning vokser som f(n) = n i længden af arrayet

Binær søgning Analyse

For et array med N elementer kan ½ "glemmes" indtil der kun er 1 element tilbage.

N, N/2, N/4, N/8, ..., 4, 2, 1

- Hvor mange gange kan det gøres?

Tænk på det modsat

– Hvor mange gange skal vi gange med 2 for at nå N?

Lad x være antallet af multiplikationer.

$$2^{\times} = N$$

$$x = log_2 N$$

Sammenligning

- Køretid for lineær søgning vokser som f(n)
 n i længden af arrayet
- Køretid for binær søgning vokser som log2(n) i længden af arrayet

Køretidsanalyser

- Bemærk: Køretidsanalyse var uafhængig af implementation
- Bemærk: Vi interesserede os kun for hvorledes køretiden afhang af størrelsen af input
- Husk at køretidsanalysen er baseret på teoretiske modeller af beregning
- Praktisk køretid kan afhænge af andet end antal sammenligninger
- F.eks. spiller lagerstruktur i computeren ind
- Teorien bør bekræftes af eksperimenter

Sammenligning af søgningsalgoritmer

- Binær søgning er klart hurtigere end lineær søgning
- Binær søgning virker kun korrekt, hvis arrayet er sorteret
- Hvis man vil lave mange søgninger kan det nogle gange betale sig at sortere først

UDVALGSSORTERING OG QUICKSORT

Udvalgssortering

- Engelsk: Selection sort
- Simpel sorteringsalgoritme
- Kigger listen igennem efter mindste element og sætter det først
- Kigger derefter listen igennem efter det næstmindste og sætter det ind som nummer 2
- Fortsætter således indtil listen er sorteret

Implementation

```
private static void swap(int[] arr, int s, int t) {
 int tmp = arr[s]; arr[s] = arr[t]; arr[t] = tmp;
}
// Selection sort
public void selsort(int[] arr, int n)
    // sort arr[0..n-1]
                                               /* pp1 */
 for (int i = 0; i < n; i++)
                                               /* pp2 */
      int least = i;
      for (int j = i+1; j < n; j++)
          if (arr[j] < arr[least])</pre>
            least = j;
      swap(arr, i, least);
                                               /* pp3 */
```

Køretid

 Hvor mange sammenligninger skal man bruge for at finde det mindste element i en liste af n elementer?

Køretid

$$(n-1) + (n-2) + \ldots + 1 = \frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n$$

 Så køretiden vokser kvadratisk i længden af listen

 I praksis vil det sige, at de andre algoritmer vi kommer til at se er langt hurtigere for større lister

Opgave

- Noterne opg 4.10.1.
- Dvs. Kør selsort manuelt på en liste med 6 elementer
- Noter hvordan listen ser ud efter hvert gennemløb af den ydre løkke
- Noter værdien af variablene i, least efter hvert gennemløb af den ydre løkke

Torsdag

• På torsdag vil jeg fortsættem med sortering

I dag

- Hobsortering
 - Køretider
 - Implementation
 - Korrekthed
- Sammenligning af sorteringsalgoritmer
- Opsummering

Læringsmål

- Til eksamen forventer vi at I kan
 - Forklare hver algoritme
 - Huske køretidresultater
 - I store træk udlede køretidsresultater
 - Kunne skitsere hvorfor hver algoritme virker
 - Kunne redegøre for fordele og ulemper ved hver algoritme
- Vi forventer ikke at I kan gennemgå korrekthedsbeviser i detaljer

Quicksort

- Del-og-hersk algoritme
- Vælg et element x (kaldet pivotelementet) fra listen
- Flyt alle elementer mindre end x hen før det, og alle elementer større end x hen efter det
- Sorter rekursivt listen af elementer mindre end x
- Sorter rekursivt listen af elementer større end x

Illustration

alle elementer, usorterede

opdel:

 $\leq x$, usorterede $x \geq x$, usorterede

sorter:

 \leq x, sorterede \times \geq x, sorterede

færdig:

alle elementer, sorterede

Implementation

```
private void qsort(int[] arr, int a, int b) {
 if (a < b)
      int i = a, j = b;
                                              /* pp1 */
      int x = arr[(i+j) / 2];
                                              /* pp2 */
      do {
      while (arr[i] < x) i++;
                                              /* pp3 */
       while (arr[j] > x) j--;
                                              /* pp4 */
       if (i <= j)
          swap(arr, i, j);
          i++; j--;
                                               /* pp5 */
                                              /* pp6 */
      } while (i <= j);</pre>
                                              /* pp7 */
      qsort(arr, a, j);
                                               /* pp8 */
      asort(arr, i, b);
                                               /* pp9 */
}
public void quicksort(int[] arr, int n) {
 asort(arr, 0, n-1);
}
```

Køretider

- Opdelingsskridtet kræver ca n sammenligninger
- I værste fald bliver man ved med at vælge det mindste element som pivot element.
 Da skal man i det rekursive kald sortere en liste på n-1 elementer
- Værste falds køretid

$$n + (n-1) + \ldots + 1 = \frac{n(n+1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n$$

Gennemsnit

- Et andet ekstrem er at man vælger det midterste element
- Da får køretiden T(n) bestemt af ligningen

$$T(n) = n + 2 \times T(\frac{n}{2})$$

$$T_{best}(n) = n + 2 \cdot T_{best}(\frac{n}{2})$$

$$= n + 2 \cdot (\frac{n}{2} + 2 \cdot T_{best}(\frac{n}{4}))$$

$$= n + n + 4 \cdot T_{best}(\frac{n}{4})$$

$$= n + n + 4 \cdot (\frac{n}{4} + 2 \cdot T_{best}(\frac{n}{8}))$$

$$= n + n + n + 8 \cdot T_{best}(\frac{n}{8})$$

$$= n + n + n + 8 \cdot T_{best}(\frac{n}{8})$$

$$= n + n + \dots + n$$

$$\log_2(n) \text{ terms}$$

$$= n \log_2(n)$$

$$T(n) = n \times \log(n)$$

Opgave

• Kør quicksort manuelt på arrayet

$${35,62,28,50,11,45}$$

 Hold styr på arrayet, <u>kaldestakken</u> og variablene a, b, i, j

Konklusion for quicksort

- Quicksort har en gennemsnitskøretid assymptotisk med $n \times \log(n)$
- Quicksort har en køretid i værste tilfælde på n^2

HOBSORTERING

Køretider for quicksort

- Quicksort har en gennemsnitskøretid assymptotisk med $n \times \log(n)$
- Quicksort har en køretid i værste tilfælde på n^2

Hobsortering

- Engelsk: Heapsort
- Har bedre teoretiske egenskaber end quicksort: $n \times \log(n)$
- Køretid er garanteret
- Kører i praksis almindeligvis 2-3 gange langsommere end quicksort

Hobsortering, algoritmen

- Minder om udvalgssortering
- Find største element og sæt det sidst, find derefter næststørste ...
- Afgørende forskel: Vi finder største element ved at holde elementerne i en særlig datastruktur (en hob)
- Hobsortering er mere kompleks end de foregående, men den er hurtig

Binære træer

 Et (binært) træ er enten et blad med et tal eller en knude med et tal og et eller to undertræer

- Man taler om børn, forældre, søskende etc
- På tegningen er knuden med 44 træets rod

Træer i Java

```
public class BinaryTree
    private BinaryTree leftChild;
    private BinaryTree rightChild;
    private int n;
    public BinaryTree(BinaryTree leftChild, BinaryTree rightChild, int n)
    public boolean isLeaf()
        return (null == leftChild) && (null == rightChild);
    public BinaryTree leftChild()
        return leftChild;
```

Lister som træer

- Vi vælger en anden løsning:
- Lister repræsenterer træer:
 - 0. element er rod
 - i. element har 2i+1 og 2i+2 som børn
- På den måde kan vi arbejde med træer i Java uden at introducere nye klasser
- Advarsel: Ikke alle træer svarer til lister!

Eksempel

Hobe

 En knude tilfredsstiller hobbetingelsen, hvis dens børn har mindre (lig) værdi end den selv

 En hob er et træ, hvor alle knuder tilfredsstiller hobbetingelsen

Eksempel

Blå knude opfylder hobbetingelsen

Blå knude opfylder hobbetingelsen

Blå knude opfylder IKKE hobbetingelsen

Hob egenskab

- I en hob er knuden det største element
- Næststørste element er et af knudens børn
- Mindste element er et blad

Hobsortering ide

- Arranger elementer i en hob
- Udtag rod (største element)
- Arranger resterende elementer i hob og gentag
- Afgørende: Vi skal kunne lave et træ om til en hob på en effektiv måde

Hobifikation basis

Hobifikation af en knude

Antag først vi er givet et træ, hvor undertræer er hobe

- Hvis vi bytter om på 44 og 65 risikerer vi at højre deltræ ikke længere er en hob
- Vi bliver da nødt til at kalde algoritmen

Hobifikation af træ

- Start nedefra: Hvert blad er allerede en hob
- Hobificer derefter alle næst-nederste knuder
- Fortsæt op, et niveau ad gangen
- Slut med at hobificere roden

Konstruktion af hob

Bemærk andre "børn" bliver ikke påvirket

Opgave

Hobificer træet svarende til listen

44 99 42 71 2 64

Hobificeret betyder ikke sorteret

Største tal i roden

• Fjern det element mest til højre og dybest (højste index) og brug det som rod

Heapificering

• Roden opfylder ikke længere hob egenskab

Fortsæt med at fjerne og hobificer indtil listen er tom

Hobsortering

• Skridt 1:

Hobificer arrayet fra 0 til n-1

Skridt 2:

- Udtag roden af hoben og erstat den med arr[n-1]
- Dvs ombyt arr[n-1] og arr[0]
- Hobificer arrayet fra 0 til n-2
- Ombyt arr[n-2] og arr[0]
- osv. indtil slut

Hvad sker der I liste repræsentationen

• Byt roden (første element) og det element der er mest til højre og dybest (sidste)

• ... sidste element "eksisterer ikke mere"

Gentag hobificering

• Hobificering af roden (index 0, værdi11)...

• ...og igen.. Fjern og erstat roden or erstat med "sidste" element

Implementation

Implementation

```
private void heapify(int[] arr, int i, int k)
     // heapify node arr[i] in the tree arr[0..k]
 int j = 2 * i + 1;
                                               /* pp1 */
 if (j \ll k)
      if (j+1 \le k \& arr[j] < arr[j+1])
                                               /* pp2 */
        j++;
      if (arr[i] < arr[j])
                                               /* pp3 */
          swap(arr, i, j);
          heapify(arr, j, k);
                                               /* pp4 */
    }
                                               /* pp5 */
```

Køretider

- Lad n være antallet af knuder i træet
- Hvis træet svarer til liste er det højst log(n) dybt
- Det kræver højst log(n) rekursive kald, at hobificere en knude (dybden af træet)
- Det kræver n*log(n) sammenligninger at hobificere et træ

Køretider for hobsortering

- Skridt 1 er en hobificering af et træ
- Skridt 1 kræver n*log(n) sammenligninger
- Skridt 2 indeholder en hobificering af en knude (roden)
- Denne kræver log(n) sammenligninger
- Skridt 2 gentages n gange
- Ialt er køretiden assymptotisk med n*log(n)

Opgave

• Kør hobsortering på listen

44 99 42 71 2 64

Sammenligning af sorteringsalgoritmer

Køretider

	Værste fald	Gennemsnit
Udvalgssortering	$O(N^2)$	$O(N^2)$
Quicksort	$O(N^2)$	$O(nlog_2(N))$
Hobsortering	$O(nlog_2(N))$	$O(nlog_2(N))$

 I praksis er quicksort ofte hurtigere end hobsortering

 Hvad er vigtigst: Gennemsnitstiden eller værste falds tiden?

Eksperimentelle data

n	Selection sort	Quicksort	Heap Sort
3,000	2	0	0
4,000	5	0	0
5,000	7	0	0
6,000	10	0	0
7,000	18	0	0
8,000	20	0	0
9,000	22	0	0
10,000	27	0	0
15,000	62	0	0
50,000	766	1	2
100,000	3 995	2	5
500,000	(21 hours)	11	30
1,000,000	(111 hours)	27	66

Eksperimentelle data

Søgning og sortering

- Kan det betale sig at sortere før man søger?
- Hvor mange gange skal man søge i en liste før det kan betale sig at sortere først?

Opsummering

- Betragtede to almindelige og klassiske problemer i datalogi: Søgning og sortering
- Betragtede algoritmer (abstrakte løsninger) og deres implementation
- Algoritmerne kan analyseres uafhængigt af implementationerne
- Vi så at forskellige løsninger havde forskellige egenskaber mht. køretid
- Teoretisk analyse bør testes eksperimentelt

Næste forelæsning