Banc Balafre ★

B2-14

Pas de corrigé pour cet exercice.

La figure suivante représente le paramétrage permettant de modéliser les actions mécaniques s'exerçant sur l'ensemble $S = \{JR + CB\}$. On nommera G le centre d'inertie de l'ensemble S.

Données et hypohèses

- ► On note $\overrightarrow{BM} = z\overrightarrow{z_0} + R_J\overrightarrow{u}(\theta)$ où R_J est le rayon du joint avec $R_J = 175$ mm; ► la longueur du joint est $L_J = 150$ mm. La position du point B, centre du joint est
- ▶ la longueur du joint est $L_J = 150$ mm. La position du point B, centre du joint est $\overrightarrow{OB} = z_B \overrightarrow{z_0}$ avec $z_B = 425$ mm;
- ► Le coeur de butée a une masse $M_{CB} = 40 \text{ kg}$ et la position de son centre d'inertie G_{CB} est paramétrée par $\overrightarrow{OG_{CB}} = L_{CB} \overrightarrow{z_0}$ avec $L_{CB} = 193 \text{ mm}$;
- Les positions des points A_4 et A_8 sont paramétrées par $\overrightarrow{OA_4} = z_4 \overrightarrow{z_0} R_{CB} \overrightarrow{y_0}$ et $\overrightarrow{OA_8} = -R_{CB} \overrightarrow{y_0}$ avec $z_4 = 280$ mm et $R_{CB} = 150$ mm.

On souhaite déterminer la résultante des actions de pression du fluide sur le joint (rotor). On rappelle qu'un élément de surface dS autour d'un point M sur une surface cylindrique de rayon R_J s'exprime d $S=R_J\mathrm{d}\theta\mathrm{d}z$.

Question 1 Exprimer au point M le torseur $\{dT_{f \to J_R}\}$ de l'action de pression du fluide sur un élément de surface dS joint en fonction de p(t), dS et $\overrightarrow{u}(\theta)$.

Question 2 En déduire l'expression en B du torseur $\{T_{f \to J_R}\}$ de l'action de pression du fluide sur l'ensemble du joint.

Corrigé voir .

