2.1.3 *ϵ* − *move* 를 허용한다

(해결책)  $\epsilon - closure(\epsilon^*)$ 를 구한다.

오토마타를 더 확장해보자.  $\epsilon-move$  를 허용하다. 즉 기존에 NFA에서 입력문자열을 보지 않고 상태를 바꿀 수 있게 한다.

이 상황을 상태변화함수  $\delta$ 로 표시하면 아래와 같다.

$$\delta \colon \ Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q.$$

즉 상태변화함수의 두 번째 도메인에  $\{\epsilon\}$ 을 추가하여,  $\delta(q,\epsilon)=\{p_1\ p_2\ \cdots,p_n\}$ 을 허용한다.

- (정의 10)  $\epsilon-move$  를 허용하는 오토마타  $M_{\epsilon-NFA}=(Q,\Sigma,\delta_{\epsilon-NFA},q_0,F)$  는 아래와 같이 정의한다.
  - $(1), (2), (4), (5)의 Q, \Sigma, q_0, F는 기본정의 <math>M_{DF4}$ 와 같다. 단
  - (3)  $\delta_{\epsilon=NEA}$ :  $Q \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$  상태변화함수만이 다르다.

(정의 11)  $\mathbb{M}_{\varepsilon\text{-NFA}}$ 를  $M_{\epsilon-NFA}$ 전체의 오토마타 클래스라 부른다.

(쉬운정리 3)  $M_{DFA} \subsetneq M_{PP} \subsetneq M_{NFA} \subsetneq M_{\epsilon-NFA}$ .

 $M_{NFA}$   $\subseteq$   $M_{\varepsilon-NFA}$ 이므로 쉽다.

- (정의 10)와 (쉬운정리 3)으로 확장의 첫 번째와 두 번째 작업인 확장된 오토마타 클래스의 (A) **정의**와 (B) **확장**을 마치었다. 확장에 마지막 작업으로 **같은 일을 하면서** 상태변화함수  $\delta$ 가 전체함수인 오토마타 클래스로 바꾸어보자.
- (정의 12) 상태변화함수  $\delta$ 의 첫 번째 정의역을 상태(Q)에서 상태집합( $2^Q$ )으로 확장하고 두 번 째 정의역을  $\{\epsilon\}$  분리하여 따로 생각하자.

$$\begin{split} \delta' : \ 2^Q \times \varSigma & \to \ 2^{Q_1} \\ \delta'(P, a) & \stackrel{\text{\tiny def}}{=} \ \{q \in Q | \ p \in P, \delta(p, a) = q, a \in \varSigma \} \\ &= \bigcup_{p \in P} \delta_{\epsilon - NFA}(p, a) \ = \ \delta_{\epsilon - NFA}(P, a) \end{split}$$

(정의 13) 정의 12에서 분리된  $\epsilon-move$ 를  $\epsilon$ 으로 간단하게 써보자.

$$\begin{array}{ll} \epsilon \colon \ 2^Q \ \to \ 2^Q \\ \epsilon(P) & \stackrel{\text{\tiny def}}{=} \ \{q \in Q | \ p \in P, \delta(p, \epsilon) = q\} \\ & = \bigcup_{p \in P} \delta_{\epsilon - NFA}(p, \epsilon) \ = \ \delta_{\epsilon - NFA}(P, \epsilon) \end{array}$$

(정의 14) 반복  $\epsilon - move$   $\epsilon^{i} (i \ge 0)$ 을 정의하자.

(**정의** 15)  $\epsilon - move$ 의 반복합  $\epsilon^*$ 를 정의하자.

$$\epsilon^*: 2^Q \rightarrow 2^Q$$

<sup>1)</sup> 앞 장의 NFA (정의 8)과 같다.

$$\epsilon^*(P) = \bigcup_{i \in N_0} \epsilon^i(P)$$
 단  $P \subseteq Q(P \in 2^Q)$ .

즉  $\epsilon^*$ 는 ε-NFA에서 추가로 정의된  $\delta(q,\epsilon)$ 을 여러 번 하는 것이다.

임의의  $M_{\epsilon-NFA}$ 를 **같은 일을 하는**  $M_{DFA}$ 로 바꾸어주는 알고리즘을 보자.

(알고리즘) function  $\varepsilon$ -NFA\_to\_DFA( $Q_{\epsilon-NFA}(\varepsilon$ -NFA상태집합),  $\Sigma$ ,  $\delta_{\epsilon-NFA}(\varepsilon$ -NFA상태변화함수),  $q_0 \in Q_{\epsilon-NFA}$ ,  $F_{\epsilon-NFA} \subseteq Q_{\epsilon-NFA}$  returns ( $Q_{DFA}(DFA$ 상태집합),  $\Sigma$ ,  $\delta_{DFA}(DFA$ 상태변화함수),  $q_0^{DFA} \in Q_{DFA}$ ,  $F_{DFA} \subseteq Q_{DFA}$ );

variable  $P \subseteq Q_{\epsilon-NFA}$ ;  $a \in 입력문자집합(\Sigma)$ ;

$$q_0^{DFA} \ = \ \epsilon^*(\{q_0\}); \ q_0^{DFA} \ \subseteq \ Q_{DFA}{}^{2)};$$

repeat

for  $P \in Q_{DFA}$  do

for  $a \in \Sigma$  do

$$\epsilon^*(\delta_{\epsilon-NFA}(P,a)) \subseteq Q_{DFA}; (\delta_{DFA}(P,a) = \epsilon^*(\delta_{\epsilon-NFA}(P,a))) \subseteq \delta_{DFA}; 3)$$

od

if 
$$(P \cap F_{\epsilon-NFA}) \neq \emptyset \rightarrow P \subseteq F_{DFA}$$
 else skip fi

od

**until** no more new states are added to  $Q_{DFA}$ 

return 
$$M_{DFA} = (Q_{DFA}, \Sigma, \delta_{DFA}, q_0^{DFA}, F_{DFA});$$

end function NFA to DFA;

(부분정리) 
$$Q_{DFA} = 2^{Q_{\epsilon-NFA}} = \{P|\ P\subseteq Q_{\epsilon-NFA}\} = \{P|\ P\in Q_{DFA}\}$$
  $P\subseteq Q_{\epsilon-NFA}(\equiv\ P\in 2^{Q_{\epsilon-NFA}}\equiv\ P\in Q_{DFA}),\ a\in \Sigma.$   $\delta_{DFA}(P,a) = \epsilon^*(\delta_{\epsilon-NFA}(P,a)).$   $F_{DFA} = \{P\in 2^{Q_{DFA}}|\ P\cap F\neq\varnothing\}$ 

(증명1) 위의 (알고리즘)은 임의의 ε-NFA에서 위의 (부분정리)을 만족하는 DFA를 만든다.

(증명2) 
$$L(M_{\epsilon-NFA}) = L(M_{DFA})$$
 (생략)

- (중요정리 3) M<sub>DFA</sub> 와 M<sub>P분</sub>, M<sub>NFA</sub>, M<sub>ε-NFA</sub>는 모두 **같은 일을 하는**(같은) 오토마타 클래스이다.
- 2.1.4 입력문자열( $\Sigma^*$ )에 대한 상태변환을 허용한다 (해결책) 중간에 입력문자 하나씩 보고 상태를 바꾸는 중간상태들을 추가한다.

<sup>2)</sup> 이러한 표현은 declarative 언어에서 쓰는 표현으로 앞 장의 procedural 언어의  $Q_{DFA}:=Q_{DFA}\cup\{q_0^{DFA}\}$ 와 같다. 또한 엄밀히 쓰면  $\{q_0^{DFA}\}\subseteq Q_{DFA}$ 로 써야하나, 집합을 위한  $\{\ \}$ 기호를 빼고  $q_0^{DFA}\subseteq Q_{DFA}$ 로 쓰기도 한다.

<sup>3)</sup>  $Q = \epsilon^*(\delta_{\epsilon-NFA}(P,a))$ ;라 하고,  $Q \subseteq Q_{DFA}$ ;  $(\delta_{DFA}(P,a) = Q) \subseteq \delta_{DFA}$ 와 같다.

오토마타를 더 확장해보자.  $\epsilon-move$ 뿐만이 아니라 길이 2 이상의 입력문자열에 의한 상태 변화도 허용하다. 즉 기존에 ε-NFA에서 입력문자 여러 개를 보고 하꺼번에 상태를 바꿀 수 있게 한다.

이 상황을 상태변화함수  $\delta$ 로 표시하면 아래와 같다.

$$\delta \colon \ Q \times \Sigma^* \to 2^Q.$$

즉 상태변화함수의 두 번째 도메인을  $\Sigma^*$ 로 확장하여,  $\delta(q, a_1 a_2 \cdots a_k) = \{p_1 p_2 \cdots p_n\}$ 을 허 용한다.

(정의 12) 확장된 오토마타  $M_{XFA}=(Q,\Sigma,\delta_{XFA},q_0,F)$ 는 아래와 같이 정의한다.

- (1), (2), (4), (5)의 Q,  $\Sigma$ ,  $q_0$ , F는 기본정의  $M_{DFA}$ 와 같다. 단
- (3)  $\delta_{YEA}$ :  $Q \times \Sigma^* \rightarrow 2^Q$  상태변화함수만이 다르다.

(정의 13)  $\mathbb{M}_{XFA}$ 를  $M_{XFA}$ 전체의 오토마타 클래스라 부른다.

M<sub>DFA</sub> ⊊ M<sub>PP</sub> ⊊ M<sub>NFA</sub> ⊊ M<sub>ε-NFA</sub> ⊊ M<sub>XFA</sub>. (쉬운정리 4)

 $M_{\varepsilon-NFA}$   $\subseteq$   $M_{XFA}$ 이므로 쉽다.

(정의 12)와 (쉬운정리 4)로 확장의 첫 번째와 두 번째 작업인 확장된 오토마타 클래스의 (A) 정의와 (B) 확장을 마치었다. 확장에 세 번째 작업으로 **같은 일을 하면서** 상태변화함수  $\delta$ 가 입력문자 하나에 대하여 전체함수인 오토마타로(DFA) 바꾸는 작업은, (1) 길이가 0인  $\epsilon$ -move는 2.1.3의 알고리즘을 이용하고, (2) 길이 2 이상인 문자열(길이 n)에 관한 상태변환 은 중간에 문자 하나만 보고 상태를 바꾸는 중간 상태 (n-1)개를 넣어줌으로 쉽게 해결되므 로 생략한다.

(중요정리 4)  $\mathbb{M}_{DFA}$  와  $\mathbb{M}_{+}$   $\mathbb{M}_{NFA}$   $\mathbb{M}_{\epsilon-NFA}$   $\mathbb{M}_{XFA}$ 는 모두 **같은 일을 하는**(같은) 오토마타 클래스이다.



확장된 오토마타 MxFA를 줄여서 오토마타 MFA라 부르기도 한다.

(마지막 중요정리) M<sub>DFA</sub>, M<sub>P#</sub>, M<sub>NFA</sub>, M<sub>ε-NFA</sub>, M<sub>FA</sub>는 모두 **같은 언어 클래스(정규**언어)를 정 의하는 오토마타 클래스이고 서로 바꿀 수 있으므로, 구분 없이 사용한다.

$$\begin{array}{llll} \mathbb{M}_{\mathrm{DFA}} & & \delta_{DFA} \colon \ Q \times \ \varSigma \to \ Q & & Q \times \ \varSigma^* \to \ Q \\ \\ \mathbb{M}_{\begin{subarray}{l} \downarrow \downarrow \downarrow \end{subarray}} & & \delta_{\begin{subarray}{l} \downarrow \downarrow \downarrow \end{subarray}} \colon \ Q \times \ \varSigma \to \ Q \cup \ \{\varnothing\} & & Q \times \ \varSigma^* \to \ Q \end{array}$$

## 2-3 DFA의 확장(2) - ε-NFA와 Extended FA

KAIST 전산학과 최광무

| $\mathbb{M}_{NFA}$                 | $\delta_{NFA}$ : $Q \times \Sigma \rightarrow 2^Q$                                | $2^Q \times \varSigma^* \to 2^Q$             |
|------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------|
| $\mathbb{M}_{\epsilon\text{-NFA}}$ | $\delta_{\epsilon-NFA}$ : $Q \times \{\Sigma \cup \{\epsilon\}\} \rightarrow 2^Q$ | $2^Q  \times  \varSigma^*  \rightarrow  2^Q$ |
| $\mathbb{M}_{FA}$                  | $\delta_{FA} \colon \; Q \; 	imes \; \Sigma^{^*} \; 	o \; 2^Q$                    | $2^Q \times \Sigma^* \rightarrow 2^Q$        |