Problem F Fundamental Neighbors

The fundamental theorem of arithmetic says that any natural number greater than one can be written uniquely as the product of prime numbers. For example: $3=3^1$, $4=2^2$, $6=2^1\times 3^1$, $72=2^3\times 3^2$, and in general,

$$n=p_1^{e_1} imes p_2^{e_2} imes\cdots imes p_k^{e_k}$$

for prime numbers p_1 through p_k and exponents e_1 through e_k .

For this problem, given an integer $n \ge 2$, determine what we will call the 'neighbor' of n. The neighbor is the integer you get by swapping the p_i and e_i values in the prime factorization of n. That is, if n is written in prime factorization as above, the neighbor of n is

$$e_1^{p_1} imes e_2^{p_2} imes\cdots imes e_k^{p_k}.$$

For example, if $n=2\,000=2^4\times 5^3$ then its neighbor is $4^2\times 3^5=3\,888$.

Input

Input is a sequence of up to $20\,000$ integers, one per line. Each integer is in the range $2 \le n < 2^{31}$. Input ends at the end of file.

Output

For each n, print n followed by its neighbor. Each neighbor is in the range $[1, 2^{31})$.

Sample Input 1

Sample Output 1

1 1	1 1
2	2 1
3	3 1
4	4 4
5	5 1
6	6 1
7	7 1
8	8 9
9	9 8
10	10 1
72	72 72
200	200 288

Problem ID: fundamentalneighbors CPU Time limit: 1 second Memory limit: 1024 MB

Author: Greg Hamerly **Source:** Baylor Competitive Learning course

License: (00) BY-SA