Introduction to Machine Learning Homework 2: Model Order Selection*

Prof. Linda Sellie

1. If your training data set D consists of N=100 points, $(\mathbf{x}^{(i)}, y^{(i)})$ for $i=1,\ldots,N$ where $\mathbf{x}^{(i)}$ consists of a single feature (i.e. $\mathbf{x}^{(i)}=[x_1^{(i)}]$), and we fit two linear regression models

model 1: $w_0 + w_1x_1 + w_2x_1^2$. model 2: $w_0 + w_1x_1$

• When using model 1, what transformation function $\Phi(\mathbf{x})$ would we use? Your answer

should have the form $\Phi(\mathbf{x}) = \begin{bmatrix} 1 \\ \phi_1(\mathbf{x}) \\ \vdots \\ \phi_{\tilde{d}}(\mathbf{x}) \end{bmatrix}$ (Include x_0 as part of your transformation.)

- For model 1, express RSS (residual sum of squares) in terms of $\Phi(\mathbf{x})$.
- Suppose the true relationship between \mathbf{x} and y is $y = w_0 + w_1 x_1 + \epsilon$. Which model would we expect to have a smaller training error, E_{in} ? Which model would we expect to have a smaller generalization error, E_{out} ? Explain.
- Suppose the true relationship between \mathbf{x} and y is $y = w_0 + w_1x_1 + w_2x_2 + w_3x_3 + \epsilon$. Which model would we expect to have a smaller training error, E_{in} ? Which model would we expect to have a smaller generalization error, E_{out} ? Explain.
- 2. A medical researcher wishes to evaluate a new diagnostic test for cancer. A clinical trial is conducted where the diagnostic measurement y of each patient is recorded along with attributes of a sample of cancerous tissue from the patient. Three possible models are considered for the diagnostic measurement:
 - Model 1: The diagnostic measurement y depends linearly only on the cancer volume.
 - Model 2: The diagnostic measurement y depends linearly on the cancer volume and the patient's age.
 - Model 3: The diagnostic measurement y depends linearly on the cancer volume and the patient's age, but the dependence (slope) on the cancer volume is different for two types of cancer Type I and II. (Hint: Use a variable x_3 , which is assigned the value 1 if the cancer is Type I, and x_3 has the value 0 if the cancer is Type II.)

^{*}Some of these questions are adapted from Prof. Rangan's homework.

¹We learned that by performing a nonlinear feature transformation, we could fit a non-linear model as if it is a linear model.

- (a) Define variables for the cancer volume, age, and cancer type and write a linear model for the predicted value \hat{y} in terms of these variables for models 1 & 2 above.
- (b) What is the number of parameters in models 1 & 2? Which model is the most complex?
- (c) Since the models in part (a) is linear, given training data, we should have $\hat{\mathbf{y}} = X\mathbf{w}$ where $\hat{\mathbf{y}}$ is the vector of predicted values on the training data, X is a design matrix (feature matrix), and \mathbf{w} is the vector of parameters. To test the different models, data is collected from 100 patients. The records of the first three patients are shown below:

Patient	Measurement	Cancer	Cancer	Patient
ID	y	type	volume	age
12	5	I	0.7	55
34	10	II	1.3	65
23	15	II	1.6	70
:	:	:	:	:

For model 1 in part (a), based on this data, what are the first three rows of the matrix X?

For model 2 in part (a), based on this data, what are the first three rows of the matrix X?

(d) To evaluate the models, 10-fold cross-validation is used with the following results.

Model	training	test
	MSE	MSE
1	2.0	2.01
2	0.7	0.72
3	0.65	0.74

Which model should be selected?

3. Suppose you trained your data² on three different models and then plotted how well the different fitted models performed with varying amounts of data:

Figure 1: A

Figure 2: B

Figure 3: C

What can you say about overfitting and underfitting? What can you say about the number of examples and the model's fit?

²The data remains the same.

- 4. What are the advantages and disadvantages of a very flexible (versus a less flexible) approach³ for regression or classification? Under what circumstances might a more flexible approach be preferred to a less flexible approach? When might a less flexible approach be preferred?⁴
- 5. Consider a binary classification problem $(y \in \{0,1\})$, where the iid examples

$$D = (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(N)}, y^{(N)})$$

are divided into two disjoint sets D_{train} and D_{val} .

- Suppose you fit a model h using the training set, D_{train} and then estimate its error using the validation set, D_{val} . If the size of D_{val} was 100 (i.e. $|D_{val}| = 100$), how confident are you the true error of h is within 0.1 of its average error on D_{val} ?
- Repeat the previous question where now $|D_{val}| = 200$ (i.e you have 200 examples in your validation set).
- (Do not turn in this question) When dividing the set of examples D into two sets, how large should you make D_{val} if you wanted to be 90% confident that the true error of h is within 0.05 of the average error your hypothesis makes on D_{val} .
- 6. Suppose you are given the following dataset, where the target variable is MED:

RM	RAD	DIS	MED
6.6	1	4.0	24.0
6.4	2	5.0	21.6
7.2	2	5.0	34.7
6.4	2	5.0	21.6
7.2	2	5.0	34.7

Using the data above, write the equation derived in the lecture notes to compute the closed form solution for ridge regression where $\lambda = 0.1$. You do not need to calculate the coefficient vector - just set up the formula using the numbers given above.

- 7. Write the gradient descent algorithm (vectorized or not) for ridge regression
- 8. (Do not turn in this question) For the training examples in question 3 from homework assignment 1, write the closed-form solution for ridge regression when $\lambda = 0.1$.
- 9. (Do not turn in this question) For each of parts 9a through 9d, indicate whether we would generally expect the performance of a flexible (complex) hypothesis class (aka complex model class) to be better or worse than an inflexible (simple) hypothesis class (aka simple model)..⁵ Justify your answer.
 - (a) The sample size N is huge, and the number of features d is small.
 - (b) The number of features d is huge, and the number of observations N is small.

³i.e., more complex hypothesis class (model class) or less complex hypothesis class (model class).

⁴This question is a modified version of a question in ISLR.

⁵This question is a modified version of a question in ISLR.

- (c) The relationship between the features and labels is highly non-linear.
- (d) The variance of the noise, i.e. $\sigma^2 = Var(\epsilon)$, is extremely high.

- 10. (Do not turn in this question) Bias-variance decomposition
 - Provide a sketch of typical (squared) bias, variance, training error, and test error on a single plot as we go from less flexible statistical learning methods toward more flexible approaches. The x-axis should represent the amount of flexibility in the method, and the y-axis should represent the values for each curve. There should be four curves. Make sure to label each one.⁶
 - Explain why each of the curves has the shape displayed in part (a).
- 11. (Do not turn in this question) Given a dataset of N items, how would you use k-fold cross-validation to decide which hypothesis class (model) to use if your choices were
 - fitting a linear regression model on the data or
 - fitting a polynomial of degree 2 model on the data

 $^{^6}$ This question is a modified version of a question in ISLR. Please also note that the lecture notes show a plot of 3 of these curves.