Module 5 Problem Set

• Student Name: Gaole Dai

• Student ID: S01435587

Problem 1

 $\mathcal{O}(n\log(n))$

For 2-way merge sort, the complexity equation is $T(n)=2T(\frac{n}{2})+\mathcal{O}(n)$.

Similarly, 3-way merge sort, the equation is $T(n)=3T(\frac{n}{3})+\mathcal{O}(n)$. According to the master's theory, a=3,b=3,k=1,p=0 and $3=3^1,0>-1$.

The complexity is then $\mathcal{O}(n\log(n))$.

Problem 2

 $\mathcal{O}(n\log(n))$

Alternating Recursive Pattern:

Top Level: Even Divide $T_e(n) = 2T_e(\frac{n}{2}) + \mathcal{O}(n)$.

Alternating Recursive Pattern:

Alt Level: Bad divide

$$T_b(n) = T_b(n-1) + T(1) + \mathcal{O}(n)$$

$$=T_b(n-1)+\mathcal{O}(n)$$

Put these together:

$$T_e(n) = 2T_b(rac{n}{2}) + \mathcal{O}(n)$$

$$T_b(n) = T_b(n-1) + \mathcal{O}(n)$$

Then implies:

$$T_e(n) = 2T_e(rac{n}{2}-1) + \mathcal{O}(n)$$

$$T_b(\frac{n}{2}) = T_e(\frac{n}{2} - 1) + \mathcal{O}(\frac{n}{2})$$

$$T_e(n) = 2T_e(rac{n}{2}-1) + \mathcal{O}(rac{n}{2}) + \mathcal{O}(n)$$

$$T_e(n) = 2T_e(rac{n}{2}-1) + \mathcal{O}(n)$$

Solve the equations, we could find upper bound:

$$T_e(n) = 2T_e(rac{n}{2}-1) + \mathcal{O}(n)$$

Note that,

$$T_e(\frac{n}{2}-1) \le T_e(\frac{n}{2})$$

$$T_e(n) \leq 2T_e(\frac{n}{2}) + \mathcal{O}(n)$$

Therefore, by master's theorem

$$T_e(n) = \mathcal{O}(n \log(n))$$

Problem 3

Insertion Sort

The complexity of quicksort in worst case is $\mathcal{O}(n^2)$ when sorted or reverse sorted, and the expected complexity is $\mathcal{O}(n\log(n))$.

The complexity of Insertion sort in worst case is $\mathcal{O}(n^2)$, alternative complexity measure for insertion sort is $\mathcal{O}(\#inversions)$, so could get $\mathcal{O}(n)$ when #inversions is $\mathcal{O}(n)$.

Therefore, the insertion sort works better than quicksort.

Problem 4

$$\mathcal{O}(k^2n)$$

Induction:

Step 1: merge(1, 2), work = 2n

Step 2: merge(1', 2'), work = 2n + n = 3n

.....

Step k-1: merge (1'''....', 2'''....'), work = (k-1)n + n = kn

•••••

Total work = $2n+3n+4n+\ldots+kn=(2+3+4+\ldots+k)n=rac{(2+k)(k-1)}{2}n=\mathcal{O}(k^2n)$

Problem 5

 $\mathcal{O}(k\log(k)n)$

ldx	Phase	Work phase
0	Merge pairs	Merge pairs $rac{k}{2} imes 2n=kn$
1	Merge $rac{k}{2}$ $2n$	Merge Pairs $rac{k}{4}$ pairs cost $4n=rac{k}{4} imes 4n=kn$
2	Merge $rac{k}{8}$ $8n$	Merge Pairs $rac{k}{8}$ pairs cost $4n=rac{k}{8} imes 8n=kn$
n	Total phase = $\log_2(k)$	For each phase, the cost is kn

We found that the work for every phase is kn, and the total number of phase is $\log_2(k)$.

Therefore, the total work = $\mathcal{O}(k \log(k)n)$