

- 1. Distance Measures for Distributions
- 2. Approximating Marginals: Expectation Propagation
- 3. Approximating Normalization Constants

Introduction to Probabilistic Machine Learning

- 1. Distance Measures for Distributions
- 2. Approximating Marginals: Expectation Propagation
- 3. Approximating Normalization Constants

Introduction to Probabilistic Machine Learning

Distance Measures: α -Divergence

- **Problem**. We have a non-Gaussian normalized marginal $p(\cdot)$ and would like to approximate it by a Gaussian $q(\cdot) = \mathcal{N}(\cdot; \mu, \sigma^2)$. What is the optimal approximation?
- **Solution**. To define "optimality", we need a distance measure between probability densities $p(\cdot)$ and $q(\cdot)!$
- α -Divergence (Amari, 1985). Given two probability densities $p(\cdot)$ and $q(\cdot)$ and $\alpha \in \mathbb{R} \setminus \{0,1\}$ the α -divergence $D_{\alpha}[p,q]$ is defined by

Shun'ichi Amari (甘利 俊) (1936)

$$D_{\alpha}[p,q] = \frac{1}{\alpha(1-\alpha)} \cdot \left(1 - \int_{-\infty}^{+\infty} \left[\frac{p(x)}{q(x)}\right]^{\alpha} \cdot q(x) dx\right)$$
Expectation of $\left[\frac{p(x)}{q(x)}\right]^{\alpha}$ over $q(x)$.

If $p = q$ then $\left[\frac{p(x)}{q(x)}\right]^{\alpha} = 1$

- **Non-Negativity**: If p = q then $D_{\alpha}[p,q] = 0$; otherwise $D_{\alpha}[p,q] > 0$
- **Asymmetry**: $D_{\alpha}[p,q] \neq D_{\alpha}[q,p]$
- Flexibility:
 - $\alpha > 1$ gives more weight to regions where p(x) > q(x)
 - α < 1 gives more weight to regions where q(x) > p(x)

and the expectation is 1

Introduction to **Probabilistic Machine** Learning

α -Divergence with a Gaussian in Pictures

 α

zero-forcing & mode seeking

inclusive & support seeking

Introduction to Probabilistic Machine Learning

- Only for $\alpha=1$ both the first and second moment (that is, mean and variance) are matched with that of the approximation!
- The case $\alpha = 1$ is a limit case.

Introduction to Probabilistic Machine Learning

$\alpha = 1$: KL Divergence

■ Theorem (Limit $\alpha \to 1$). Given two probability densities $p(\cdot)$ and $q(\cdot)$ the limit of the α -divergence $D_{\alpha}[p,q]$ for $\alpha \to 1$ is the Kullback-Leibler divergence

$$\lim_{\alpha \to 1} D_{\alpha}[p, q] = \mathrm{KL}[p, q] := \int_{-\infty}^{+\infty} \log \left(\frac{p(x)}{q(x)} \right) \cdot p(x) \, \mathrm{d}x$$

Proof: Taking limits, we have

$$\lim_{\alpha \to 1} D_{\alpha}[p, q] = \lim_{\alpha \to 1} \frac{1}{\alpha(1 - \alpha)} \cdot \left(1 - \int_{-\infty}^{+\infty} \left[\frac{p(x)}{q(x)}\right]^{\alpha} \cdot q(x) \, dx\right)$$

$$= \lim_{\alpha \to 1} \frac{1}{1 - 2\alpha} \cdot \left(-\int_{-\infty}^{+\infty} \log\left(\frac{p(x)}{q(x)}\right) \cdot \left[\frac{p(x)}{q(x)}\right]^{\alpha} \cdot q(x) \, dx\right)$$

$$= \int_{-\infty}^{+\infty} \log\left(\frac{p(x)}{q(x)}\right) \cdot p(x) \, dx$$

■ Theorem (Moment Matching). Given any distribution $p(\cdot)$ the minimizer μ^*, σ^{2^*} of the KL divergence $\text{KL}[p(\cdot), \mathcal{N}(\cdot; \mu, \sigma^2)]$ to a Gaussian distribution has

$$\mu^* = E_{X \sim p(\cdot)}[X]$$
 and $\sigma^{2^*} = E_{X \sim p(\cdot)}[X^2] - (\mu^*)^2$

Solomon Kullback (1909 – 1994)

Richard Leibler (1914 – 2003)

Introduction to Probabilistic Machine Learning

- 1. Distance Measures for Distributions
- 2. Approximating Marginals: Expectation Propagation
- 3. Approximating Normalization Constants

Introduction to Probabilistic Machine Learning

Sum-Product Algorithm Revisited

■ The key operation for factor $f(x_1, x_2, ..., x_n)$ and variable X_1 is

$$m_{f \to X_1}(x_1) = \sum_{\{x_2\}} \cdots \sum_{\{x_n\}} f(x_1, x_2, \dots, x_n) \prod_{j=2}^n m_{X_j \to f}(x_j)$$
If all $m_{X_j \to f}(x_j)$ are Gaussian, the result might not be Gaussian!

■ Based on outgoing messages, we can compute both non-normalized marginals $p_X(\cdot)$ and $m_{X \to f}(\cdot)$

$$p_X(x) = \prod_{f \in \text{ne}(X)} m_{f \to X}(x) \qquad m_{X \to f}(x) = \frac{p_X(x)}{m_{f \to X}(x)}$$

If all $m_{X_j \to f}(x_j)$ are Gaussian, the result **must be** Gaussian!

- Idea:
 - 1. We approximate all outgoing messages $m_{f\to X}(\cdot)$ by a Gaussian $\widehat{m}_{f\to X}(\cdot)=\mathcal{N}(\cdot;\mu,\sigma^2)$
 - 2. We measure the approximation quality in the normalized marginal, **not** the outgoing message

$$\hat{p}(\cdot) = \arg\min_{\mu,\sigma^{2}} KL \left[\frac{m_{f \to X}(\cdot) \cdot \hat{m}_{X \to f}(\cdot)}{\int_{-\infty}^{+\infty} m_{f \to X}(\tilde{x}) \cdot \hat{m}_{X \to f}(\tilde{x}) \, \mathrm{d}\tilde{x}}, \frac{\mathcal{N}(\cdot; \mu, \sigma^{2}) \cdot \hat{m}_{X \to f}(\cdot)}{\int_{-\infty}^{+\infty} \mathcal{N}(\tilde{x}; \mu, \sigma^{2}) \cdot \hat{m}_{X \to f}(\tilde{x}) \, \, \mathrm{d}\tilde{x}} \right]$$

Introduction to Probabilistic Machine Learning

Unit 5 – Graphical Models: Approximate Inference

True normalized marginal with approximate incoming message

Approximate marginal with approximate incoming message

Approximate Message Passing: Example

$$f(x) = \mathbb{I}(x > 0)$$

$$\widehat{m}_{X \to f}(x) \propto \frac{\widehat{p}_X(x)}{\widehat{m}_{f \to X}(x)} \longrightarrow p_X(x) \propto f(x) \cdot \widehat{m}_{X \to f}(x) \qquad \widehat{m}_{f \to X}(x) \propto \frac{\widehat{p}_X(x)}{\widehat{m}_{X \to f}(x)}$$

$$\widehat{p}_X(x) = \mathcal{N}(x; E_{X \sim p_X}[X], \text{var}_{X \sim p_X}[X])$$

Introduction to **Probabilistic Machine** Learning

Expectation Propagation

- **Idea**: If we have factors in the factor graph that require approximate messages, we keep iterating on the whole path between them until convergence minimizing $\mathrm{KL}\big(p(\cdot)|\mathcal{N}(\cdot;\mu,\sigma^2)\big)$ locally for the affected marginals of the approximate factor.
- Theorem (Minka, 2003): The approximate message passing algorithm using the Kullback-Leibler divergence will always converge if the approximating distribution is in the exponential family!

Tom Minka

Introduction to Probabilistic Machine Learning

Doubly-Truncated Gaussians

■ **Doubly-Truncated Gaussian**. Given $l, u \in \mathbb{R}$, $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}^+$, a random variable X has a doubly-truncated Gaussian distribution if

$$p_X(x) \propto \mathbb{I}(l < x < u) \cdot \mathcal{N}(x; \mu, \sigma^2)$$

■ Moments of Doubly-Truncated Gaussian. Given a random variable X that has a doubly-truncated Gaussian distribution and $t_a \coloneqq \alpha/\sigma$, we know

$$E[X^0] = \Phi(t_{u-\mu}) - \Phi(t_{l-\mu}) -$$

$$E[X^{1}] = \mu + \sigma \cdot \frac{\mathcal{N}(t_{l-\mu}) - \mathcal{N}(t_{u-\mu})}{\Phi(t_{u-\mu}) - \Phi(t_{l-\mu})}$$

Additive correction that goes to zero as $u \to \infty$ and $l \to -\infty$

Learning

Unit 5 - Graphical Model

Introduction to Probabilistic Machine

Unit 5 – Graphical Models: Approximate Inference

$$E[X^{2}] = \mu^{2} + \sigma^{2} \cdot \left[1 - \frac{t_{u+\mu} \cdot \mathcal{N}(t_{u-\mu}) - t_{l+\mu} \cdot \mathcal{N}(t_{l-\mu})}{\Phi(t_{u-\mu}) - \Phi(t_{l-\mu})} \right]$$

0.5

Doubly-Truncated Gaussians (ctd)

Using the variance decomposition theorem we see

$$var[X] = \sigma^2 \cdot \left[1 - w_{\frac{l}{\sigma}, \frac{u}{\sigma}} \left(\frac{\mu}{\sigma} \right) \right]$$

$$w_{l,u}(z) := \frac{(u+z) \cdot \mathcal{N}(u-z) - (l+z) \cdot \mathcal{N}(l-z)}{\Phi(u-z) - \Phi(l-z)} + v_{l,u}(z) \cdot [2z + v_{l,u}(z)]$$

0 < x

-5 < x < 0

Introduction to **Probabilistic Machine** Learning

Unit 5 - Graphical Models: Approximate Inference

- 1. Distance Measures for Distributions
- 2. Approximating Marginals: Expectation Propagation
- **3.** Approximating Normalization Constants

Introduction to Probabilistic Machine Learning

Normalization Constant

Normalization Constant: Given a factor graph with factors $f_1, ..., f_m$, each over a subset of n variables $X_1, X_2, ..., X_n$, the normalization constant Z is defined as the sum over all variables

$$Z = \sum_{\{x_1\}} \cdots \sum_{\{x_n\}} f_1(\mathbf{x}_{\operatorname{ne}(f_1)}) \cdot f_2(\mathbf{x}_{\operatorname{ne}(f_2)}) \cdots f_m(\mathbf{x}_{\operatorname{ne}(f_m)})$$

- Inference in Factor Graphs: In order to learn from data D we
 - **1. Modelling**: Formulate a joint model $p(\theta, D)$ of parameters $\theta = \theta_1, ..., \theta_n$ and data D

$$Z = \sum_{\{\theta_1\}} \cdots \sum_{\{\theta_n\}} \sum_{\{D\}} p(\boldsymbol{\theta}, D) = 1$$

2. **Conditioning**: Remove the variables that represent data *D* from the factor graph

$$Z = \sum_{\{\theta_1\}} \cdots \sum_{\{\theta_n\}} p(\theta, D) = p(D)$$
 Law of total probability

The normalization constant is the probability of the data *D* and measures how good our probabilistic model explains the observed training set *D* (*model evidence*)!

$$p(S_1, S_2, P_1, P_2, Y = 1)$$

Normalization Constant via Message Passing

The non-normalized marginal $p_{X_i}(\cdot)$ is defined as

Introduction to Probabilistic Machine Learning

Unit 5 – Graphical Models: Approximate Inference

Normalization Constant via Message Passing: Example

$$\mathcal{N}(s_1; \mu_1, \sigma_1^2) \cdot \mathcal{N}(s_2; \mu_2, \sigma_2^2) \cdot \mathcal{N}(p_1; s_1, \beta^2) \cdot \mathcal{N}(p_2; s_2, \beta^2) \cdot \mathbb{I}(y(p_1 - p_2) > 0)$$

Variable node root

Factor node root

Introduction to Probabilistic Machine Learning

Unit 5 – Graphical Models: Approximate Inference

Normalization Constant via Approximate Message Passing

- **Challenge**: Computing the normalization constant *Z* requires
 - Tracking the normalization constants for all messages
 - 2. Choosing a variable X_i or factor f_i as a root of the factor tree
- Observation: Tracking the normalization constant for all messages is not always possible when approximating messages!
- **Theorem**: Given a factor tree with renormalized messages $\widetilde{m}_{X_j \to f_i}(\cdot) = \beta_{j,i} \cdot m_{X_j \to f_i}(\cdot)$ and $\widetilde{m}_{f_i \to X_j}(\cdot) = \alpha_{i,j} \cdot m_{f_i \to X_j}(\cdot)$ the normalization constant Z is

$$Z = \left(\prod_{i=1}^m Z_{f_i}\right) \cdot \left(\prod_{j=1}^n Z_{X_j}\right)$$
 Factor Normalization

 $Z_{f_i} = \frac{\sum_{\left\{x_{\text{ne}(f_i)}\right\}} f\left(x_{\text{ne}(f_i)}\right) \prod_{k \in \text{ne}(f_i)} \widetilde{m}_{X_k \to f_i}(x_k)}{\sum_{\left\{x_{\text{ne}(f_i)}\right\}} \prod_{k \in \text{ne}(f_i)} \widetilde{m}_{f_i \to X_k}(x_k) \cdot \widetilde{m}_{X_k \to f_i}(x_k)}$

$$Z_{X_j} = \sum_{\{x_j\}} \prod_{i \in ne(X_j)} \widetilde{m}_{f_i \to X_j}(x_j)$$

Introduction to Probabilistic Machine Learning

Unit 5 – Graphical Models: Approximate Inference

Simplifying the variable normalization Z_{X_j} and factor normalization Z_{f_i}

Summary

1. Distance Measures for Distributions

- α -divergences are a general class of distance measures between distributions
- For $\alpha = 1$, the α -divergence becomes the Kullback-Leibler divergence where the minimizer for Gaussian approximating distributions matches mean and variance
- \blacksquare Minimizers of α -divergences range from mode-seeking to support-seeking

2. Approximate Message Passing and Expectation Propagation

- Approximations will always be done on the marginals, not the messages
- When the Kullback-Leibler divergence is used as distance, all moments get preserved
- In case of doubly-truncated Gaussians, the moments are closed form

3. Approximating Normalization Constants

- If factor graphs represent joint probabilities of data and parameters with data variables only, the normalization constant equals the probability of data (under the model)
- If messages can be explicitly represented and normalized, efficient updates can be done starting at any factor or variable
- There is a general distributed algorithm for approximating the normalization constant

Introduction to Probabilistic Machine Learning

Unit 5 – Graphical Models: Approximate Inference

See you next week!