

Az elemi sorműveletek

AZ ELEMI LINEÁRIS ALGEBRA SVÁICI BICSKÁIA

Wettl Ferenc

ALGEBRA TANSZÉK

Az elemi lineáris algebra svájci bicskája = elemi sorműveletek

Tartalomjegyzék

Egyenletrendszerek

Lineáris függetlenség

A lineáris algebra alaptétele

Az elemi sorműveletek alkalmazásai

Mátrixfelbontások

Ismeretek, képességek, célok

- Lineáris kombináció (üres halmazé is), függetlenség, függőség
- Lépcsős alak/Gauss, redukált lépcsős alak/Gauss-Jordan
- Egyenletrendszer megoldáshalmaza
- · Generátorrendszer, bázis, dimenzió
- Kitüntetett alterek: $\mathcal{N}(A)$, $\mathcal{S}(A) = \mathcal{O}(A^T)$, $\mathcal{O}(A) = \mathcal{S}(A^T)$, $\mathcal{N}(A^T)$
- A lineáris algebra alaptétele
- A sortérbe eső egyetlen megoldás
- Determináns definíciója és kiszámítása

Egyenletrendszerek

Egyenletrendszerek

Elemi sorműveletek, lépcsős alak

Elemi sorműveletek

- Egy mátrix sorain végzett alábbi műveleteket elemi sorműveleteknek nevezzük:
 - Sorcsere: két sor cseréje (S_i ↔ S_j: az i-edik és a j-edik sorok cseréje.)
 - Beszorzás: egy sor beszorzása egy nemnulla számmal (cS_i : az i-edik sor beszorzása c-vel, ahol $c \neq 0$)
 - Hozzáadás: egy sorhoz egy másik sor konstansszorosának hozzáadása (S_i + cS_j: a j-edik sor c-szeresének az i-edik sorhoz adása).
- Hasonlóan definiálhatók az elemi oszlopműveletek $(O_i \leftrightarrow O_j, cO_i, O_i + cO_j)$.

Lépcsős alak

- D Egy mátrix lépcsős alakú, ha
 - 1. a 0-sorok (ha vannak) a mátrix utolsó sorai;
 - bármely két egymás után következő nem-0 sorban az alsó sor elején (legalább eggyel) több 0 van, mint a fölötte lévő sor elején.

A nemnulla sorok első zérustól különböző elemét <mark>főelemnek, vezérelemnek vagy pivotelemnek h</mark>ívjuk. Egy főelem oszlopának főoszlop vagy bázisoszlop a neve.

A következő mátrixok lépcsős alakúak:

$$\begin{bmatrix} 3 & 2 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -2 & 3 & -4 \\ 0 & 0 & -5 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Lépcsős alak és rang

- T Bármely test feletti mátrix elemi sorműveletekkel lépcsős alakra hozható.
- B 1. bal oldali nulloszlopok letakarása
 - 2. sorcsere után $a_{11} \neq 0$
 - 3. $S_i \frac{a_{i1}}{a_{11}}S_1$ után a_{11} alatt minden elem 0.
 - takarjuk le az első oszlopot és az első sort, és ha nincs több sor, VÉGE, ha van, menjünk a 1 pontra.
- T Egy mátrix bármely lépcsős alakjában azonos a nemzérus sorok száma.
- D E számot a mátrix rangjának nevezzük.

Redukált lépcsős alak (rref = reduced row echelon form)

- D Egy mátrix redukált lépcsős, ha
 - 1. lépcsős alakú;
 - 2. minden főelem egyenlő 1-gyel (vezéregyes);
- 3. a főoszlopokban a főelemeken kívül minden elem 0;
- A következő mátrixok redukált lépcsős alakúak:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & -2 & 0 & -4 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

 Algoritmus: oszloponként haladva először a vezérelemek alatt, majd csak utána az utolsó oszloppal kezdve és visszafelé haladva fölöttük is eliminálunk!

Redukált lépcsős alakra hozás

$$\mathbf{M2} \begin{bmatrix} 1 & 3 & 0 \\ 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \xrightarrow{S_1 \leftrightarrow S_2} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 2 & 4 \end{bmatrix} \xrightarrow{S_2 - S_1} \begin{bmatrix} 1 & 1 & 2 \\ S_3 - 2S_1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{S_1 - S_2} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

- A redukált lépcsős alak egyértelmű
 - Egy test elemeiből képzett bármely mátrix redukált lépcsős alakra hozható. Ez az alak egyértelmű.
 - A MATLAB-típusú nyelvekben **rref()** ez a függvény.

Egyenletrendszerek

Egyenletrendszerek megoldása

Gauss-módszer

- D Az egyenletrendszer konzisztens, ha van megoldása, egyébként inkonzisztens.
- m A Gauss-módszer, -kiküszöbölés vagy -elimináció: lin.egy.rsz. megoldása lépcsős alakra hozással (oszloponként haladva). A főoszlopok változói: kötött változók, a többi a szabad. Megoldás visszahelyettesítéssel (backward substitution).
- P Oldjuk meg az x+y+z=2y+z=3 egyenletrsz.-t Gauss-módszerrel!
- M Az egy.rsz. bővített mátrixa már lépcsős alakú: $\begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 3 \end{bmatrix}$, így a megoldás visszahelyettesítésekkel megkapható:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 3 - t \\ t \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} t.$$

Gauss–Jordan-módszer (megoldás rref-ra hozással)

$$\mathbf{P} \begin{bmatrix}
1 & 1 & 2 & 0 \\
2 & 2 & 3 & 2 \\
1 & 3 & 3 & 4 \\
1 & 2 & 1 & 5
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
1 & 1 & 2 & 0 \\
0 & 2 & 1 & 4 \\
0 & 0 & -1 & 2 \\
0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{1/2S_2}
\begin{bmatrix}
1 & 1 & 2 & 0 \\
0 & 1 & \frac{1}{2} & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{S_2 - \frac{1}{2}S_3} \stackrel{S_3 - 2S_3}{\stackrel{S_1 - 2S_3}{\stackrel{S_3 - 2$$

- Tehát az egyenletrendszer egyetlen megoldása (x, y, z) = (1, 3, -2).

Gauss–Jordan-módszer – több megoldás

$$\begin{bmatrix} 1 & 2 & 0 & 3/2 & 1 & 3/2 \\ 0 & 0 & 1 & 1/2 & 0 & -1/2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{matrix} x_1 + 2x_2 & +\frac{3}{2}x_4 + x_5 = \frac{3}{2} \\ x_3 + \frac{1}{2}x_4 & = -\frac{1}{2} \end{matrix}$$

A kötött változók: x_1 , x_3 , a szabad változók: $x_2 = s$, $x_4 = t$, $x_5 = u$.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} - 2s - \frac{3}{2}t - u \\ s \\ -\frac{1}{2} - \frac{1}{2}t \\ t \\ u \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ 0 \\ -\frac{1}{2} \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{3}{2} \\ 0 \\ -\frac{1}{2} \\ 1 \\ 0 \\ 0 \end{bmatrix} + u \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Egyenletrendszerek

A megoldások terei

Nulltér

- T Egy n-ismeretlenes \mathbb{F} testbeli együtthatós homogén lineáris egyenletrendszer megoldáshalmaza alteret alkot \mathbb{F}^n -ben (azaz zárt a vektorok összeadására és skalárral szorzására nézve).
- D Az A együtthatómátrixú homogén lineáris egyenletrendszer megoldásainak alterét az A mátrix nullterének nevezzük és $\mathcal{N}(\mathbf{A})$ -val jelöljük.

$$\mathbf{M} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix} = \begin{bmatrix} -2s - \frac{3}{2}t - u \\ s \\ -\frac{1}{2}t \\ t \\ u \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ + t \begin{bmatrix} -\frac{3}{2} \\ 0 \\ -\frac{1}{2} \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Az inhomogén lineáris egyenletrendszer megoldásai

T Homogén és inhomogén egyenletrendszer megoldásai

Az inhomogén lineáris Ax = b egyenletrendszerre:

inhomogén összes megoldása

inhomogén egy = tetszőleges megoldása Ax = 0 homogén + rész összes megoldása

Lineáris függetlenség

		Explicit vektoregyenlet	Implicit egyenlet(rendszer)
Síkban	egyenes	$r = r_0 + tv$	Ax + By = C
	pont	$r = r_0$	$A_1x + B_1y = C_1$ $A_2x + B_2y = C_2$
Térben	sík	$\mathbf{r} = \mathbf{r}_0 + \mathbf{s}\mathbf{u} + t\mathbf{v}$	Ax + By + Cz = D
	egyenes	$r = r_0 + tv$	$A_1x + B_1y + C_1z = D_1$ $A_2x + B_2y + C_2z = D_2$
	pont	$r = r_0$	$A_1x + B_1y + C_1z = D_1$ $A_2x + B_2y + C_2z = D_2$ $A_3x + B_3y + C_3z = D_3$
\mathbb{R}^n -ben	hipersík	$\mathbf{r} = \mathbf{r}_0 + t_1 \mathbf{u}_1 + \ldots + t_{n-1} \mathbf{u}_{n-1}$	$a_1x_1+a_2x_2+\ldots+a_nx_n=b$
	sík	$\mathbf{r} = \mathbf{r}_0 + \mathbf{s}\mathbf{u} + t\mathbf{v}$	n − 2 független?? egyenlet
	egyenes	$r = r_0 + tv$	n − 1 független?? egyenlet
	pont	$\mathbf{r} = \mathbf{r}_0$	n független?? egyenlet

Vektorok lineáris függetlensége, lineáris összefüggősége

 $\mathbf{D} \quad \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathcal{V}_{\mathbb{F}} \text{ line\'{a}ris kombin\'{a}ci\'{o}ja } \sum_{i=1} c_i \mathbf{v}_i \ (c_i \in \mathbb{F}).$

- D $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ lineárisan független, ha egyik sem áll elő a többi lin.komb-jaként. (egy vektorra is jó: $\{\mathbf{v}\}$ független, ha $\mathbf{v}\neq\mathbf{0}$) Lineárisan függő, ha nem független (van olyan, amelyik előáll)
- T $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ lin.független $\iff \sum_{i=1}^k c_i \mathbf{v}_i = \mathbf{0}$ csak $c_1 = c_2 = \dots = c_k = \mathbf{0}$ esetén áll fenn.

Lineáris függetlenség végtelen sok vektor esetén, bázis

- D AMH a $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n, \dots\}$ véges vagy végtelen vektorhalmaz lineárisan független, ha minden véges részhalmaza lineárisan független.
- D AMH $\mathcal B$ generátorrendszer $\mathcal V$ -ben (kifeszíti $\mathcal V$ -t), ha bármely $\mathbf v \in \mathcal V$ vektor előáll véges sok $\mathcal B$ -beli lineáris kombinációjaként.
- D AMH \mathcal{B} a \mathcal{V} egy bázisa, ha (1) lineárisan független, (2) generátorrendszer.
- T Minden vektortérnek van bázisa.A zérustéré az üreshalmaz. (Zérustér = {0})

Bázis és dimenzió

- Á L! \mathcal{V} vektortér, és $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subseteq \mathcal{V}$. A következők ekvivalensek:
- \mathcal{B} lineárisan független generátorrendszere \mathcal{V} -nek (azaz bázisa \mathcal{V} -nek),
- B minimális generátorrendszer,
- ${\cal B}$ maximális független vektorokrendszer.
- T Bázis-tétel Ha a $\mathcal V$ vektortérnek van n-elemű bázisa, akkor minden bázisa n-elemű.
- **D** A \mathcal{V} vektortér n-dimenziós, ha van n-elemű bázisa. (véges dimenziós vektortér)

Sormodell: lin. egyenletrendszer mo-a = hipersíkok metszete

$$x + y = 3$$
 az $x + 2y = 3$ és az $x + 2y = 3$
 $2x + 4y = 7$ $2x + 4y = 6$

Sormodell 3D-ben

Oszlopmodell: jobb oldal = oszlopvektorok lineáris komb-ja

$$x + y = 3$$
 $x + 2y = 3$ és $x + 2y = 3$
 $x + 2y = 4$ $2x + 4y = 7$ $2x + 4y = 6$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \end{bmatrix} y = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 2 \end{bmatrix} x + \begin{bmatrix} 2 \\ 4 \end{bmatrix} y = \begin{bmatrix} 3 \\ 7 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 2 \end{bmatrix} x + \begin{bmatrix} 2 \\ 4 \end{bmatrix} y = \begin{bmatrix} 3 \\ 6 \end{bmatrix}.$$

Kifeszített altér

D a $W = \{ \mathbf{v}_i \in \mathcal{V}_{\mathbb{F}} : i = 1, 2, ... \}$ vektorrendszer által kifeszített altér $\mathrm{span}(\mathbf{v}_1, \mathbf{v}_2, ...)$ az összes belőlük képzett lineáris kombinációk altere, azaz

$$\left\{\,c_{i_1}v_{i_1}+\ldots+c_{i_k}v_{i_k}:c_{i_1},\ldots,c_{i_k}\in\mathbb{F},\,\,u_{i_1},\ldots,u_{i_k}\in\mathcal{W}\,\right\}.$$

- $\acute{\mathbf{A}} \quad \mathrm{span}(\mathbf{v}_1,\mathbf{v}_2,\dots) \leqslant \mathcal{V}$, azaz altér.
- $\acute{A} \quad \mathrm{span}(v_1,v_2,\dots)$ a minimális altér azok között, melyek tartalmazzák a v_1,v_2,\dots vektorokat.

Egyenletrendszer megoldhatóságának feltétele

- **D** Egy mátrix oszlopvektorai által kifeszített alteret oszloptérnek, a sorvektorai által kifeszített alteret sortérnek nevezzük.
- $\acute{\mathbf{A}}$ Az $\mathbf{A} \in \mathbb{F}^{m \times n}$ mátrix sortere \mathbb{F}^n altere, oszloptere \mathbb{F}^m altere.
- J A sortere: $\mathcal{S}(A)$ vagy $\mathrm{Row}(A)$, oszloptere: $\mathcal{O}(A)$ vagy $\mathrm{Col}(A)$
- T (b ∈ O(A) feltétel) Az Ax = b egyenletrendszer pontosan akkor oldható meg, ha b előáll az A oszlopainak lineáris kombinációjaként (b benne van A oszlopterében). A lineáris kombináció együtthatói megegyeznek a megoldásvektor koordinátáival.
- T (Mátrixrangos feltétel) Az Ax = b egyenletrendszer pontosan akkor oldható meg, ha az együtthatómátrix és a bővített mátrix rangja megegyezik, azaz ha

$$\mathrm{r}(A)=\mathrm{r}(A|b).$$

A lineáris algebra alaptétele

Sortér és oszloptér változása elemi sorműveletek közben

Sortér és oszloptér változása

Elemi sorműveletek közben a

- sortér nem változik és az
- · oszlopvektorok közti lineáris kapcsolatok nem változnak.
- K Legyen B az A mátrix egy lépcsős alakja. Ekkor
 - 1. A és B sortere megegyezik,
 - az A oszlopvektorai közt lévő lineáris kapcsolatok azonosak a B ugyanolyan sorszámú oszlopai közti lin. kapcsolatokkal,
 - 3. B nemzérus sorvektorai lineárisan függetlenek,
 - 4. a főoszlopok A-ban és B-ben is lineárisan függetlenek.

Mátrix, rang, dimenzió

Á Dimenzió = rang

Egy mátrix rangja, sorterének dimenziója és oszlopterének dimenziója megegyezik. (Ebből következőleg $\mathbf{r}(\mathbf{A}) = \mathbf{r}(\mathbf{A}^T)$.)

T Dimenziótétel – rang-nullitási tétel

Bármely $\mathbf{A} \in \mathbb{F}^{m \times n}$ mátrix esetén a sortér dimenziójának (=rangjának) és a nulltér dimenziójának (=nullitásának) összege n. Képlettel:

$$\dim(\mathcal{S}(A)) + \dim(\mathcal{N}(A)) = n.$$

B kötött változók száma + szabad változók száma = *n*

Valós mátrixok sor- és nulltere

- Egy valós vektortér két altere merőleges, ha bárhogy választva egy vektort az egyik, egy másikat a másik altérből, azok merőlegesek.
- **D** Két altér kiegészítő altér, ha \mathcal{V} bármely vektora egyértelműen előáll az egyik és a másik altérbe eső vektorok összegeként.
- D A $\mathcal{W} \leqslant \mathcal{V}$ altér merőlegesén a rá merőleges vektorok alterét értjük, jele \mathcal{W}^{\perp} ("W perp").
- T A lineáris algebra alaptétele Minden valós mátrix sortere és nulltere merőleges kiegészítő alterei egymásnak.
- $\begin{array}{ll} \textbf{K} & \mathcal{S}(\textbf{A})^{\perp} = \mathcal{N}(\textbf{A}), \, \mathcal{O}(\textbf{A}^{\mathsf{T}})^{\perp} = \mathcal{N}(\textbf{A}), \, \mathcal{N}(\textbf{A})^{\perp} = \mathcal{S}(\textbf{A}), \, \mathcal{O}(\textbf{A})^{\perp} = \mathcal{N}(\textbf{A}^{\mathsf{T}}). \\ \textbf{K} & \text{Minden } \textbf{x} \text{ vektor egyértelműen előáll egy sortérbe és egy} \end{array}$
- nulltérbe eső vektor összegeként. D Az A mátrix négy kitüntetett altere: S(A), $\mathcal{N}(A)$, $\mathcal{O}(A)$, $\mathcal{N}(A^T)$.

A négy kitüntetett altér

Lineáris leképezés rangja

- D A lineáris $A: \mathbb{F}^n \to \mathbb{F}^m$ leképezés rangján képterének dimenzióját értjük, azaz $\mathbf{r}(A) = \dim(\operatorname{Im}(A))$, míg nullitásán magterének dimenzióját, azaz $\operatorname{null}(A) = \dim(\operatorname{Ker}(A))$.
- T Dimenziótétel rang-nullitási tétel lineáris leképezésekre Ha $A: \mathcal{V} \to \mathcal{W}$ lineáris leképezés, és $\dim \mathcal{V} = n$, akkor $\dim(\operatorname{Im}(A)) + \dim(\operatorname{Ker}(A)) = n \qquad (\operatorname{r}(A) + \operatorname{null}(A) = n) \ .$

Az elemi sorműveletek alkalmazásai

Az altérbe tartozás vizsgálata

- P Határozzuk meg, hogy a $\mathbf{v}_1 = (1,0,1,2)$, $\mathbf{v}_2 = (-1,2,-2,1)$ és $\mathbf{v}_3 = (1,1,1,1)$ vektorok által kifeszített altérnek eleme-e az $\mathbf{u} = (-1,2,-3,6)$ vektor! Adjunk meg egy ezt bizonyító lineáris kombinációt! Mutassuk meg, hogy a $\mathbf{w} = (-1,2,-3,4)$ vektor nem eleme az altérnek!
- M $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{u}$ (= \mathbf{w}) megoldását keressük. A szimultán egyenletrendszer mátrixa [\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 | \mathbf{u} \mathbf{w}].

$$\begin{bmatrix} 1 & -1 & 1 & -1 & -1 \\ 0 & 2 & 1 & 2 & 2 \\ 1 & -2 & 1 & -3 & -3 \\ 2 & 1 & 1 & 6 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 3 & 3 \\ 0 & 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & -2 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

amiből $(x_1, x_2, x_3) = (3, 2, -2)$, és **w** valóban nem áll elő lineáris kombinációként, mert a **w**-t tartalmazó egyenletrendszer ellentmondásos.

Lineáris függetlenség eldöntése

- **K** Legyen $A = \begin{bmatrix} a_1 & a_2 & \dots & a_R \end{bmatrix}$! Az alábbi állítások ekvivalensek:
 - az **a**₁, **a**₂,..., **a**_k vektorok lineárisan függetlenek;
 - az A együtthatómátrixú homogén lineáris egyrndsz.-nek a triviálison kívül nincs más megoldása;
 - az A lépcsős alakjának minden oszlopában van főelem, azaz r(A) = k.
- P Mutassuk meg, hogy a 4-dimenziós (1,2,3,4), (0,1,0,1) és (1,1,1,0) vektorok lineárisan függetlenek.
- M A vektorokból képzett mátrix és lépcsős alakja

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 3 & 0 & 1 \\ 4 & 1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix},$$

ami azt mutatja, hogy a hom.lin.egyrsz-nek csak egyetlen megoldása van, azaz az oszlopvektorok lineárisan függetlenek.

Altér bázisának meghatározása

P Határozzuk meg az (1,1,0,-2), (2,3,3,-2), (1,2,3,0) és (1,3,6,2) vektorok által kifeszített altér egy bázisát! oszlopvektorokkal a redukált lépcsős alakból:

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 3 & 2 & 3 \\ 0 & 3 & 3 & 6 \\ -2 & -2 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 3 & 3 & 6 \\ 0 & 2 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & -3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Ennek alapján:

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix} = -\begin{bmatrix} 1 \\ 1 \\ 0 \\ -2 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ 3 \\ -2 \end{bmatrix}, \qquad \begin{bmatrix} 1 \\ 3 \\ 6 \\ 2 \end{bmatrix} = -3 \begin{bmatrix} 1 \\ 1 \\ 0 \\ -2 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 3 \\ 3 \\ -2 \end{bmatrix}.$$

Koordinátás alak felírása (az előbbi bázisban)

P Jelölje $\mathcal{B}=\{(1,1,0,-2),(2,3,3,-2)\}$ a bázist. A redukált lépcsős alak nemzérus soraiból

$$\begin{bmatrix} 1 & 0 & -1 & -3 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

kapjuk a négy vektor koordinátás alakjait:

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{\mathcal{B}}, \ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{\mathcal{B}}, \ \mathbf{v}_3 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}_{\mathcal{B}}, \ \mathbf{v}_4 = \begin{bmatrix} -3 \\ 2 \end{bmatrix}_{\mathcal{B}}.$$

Az elemi sorműveletek alkalmazásai

Sortérbe eső egyetlen megoldás

Valós együtthatós egyenletrendszer megoldásai

T Lineáris egyenletrendszer megoldásai

Minden valós együtthatós megoldható (konzisztens) lineáris egyenletrendszerre igazak a következő állítások:

- egyetlen megoldása esik az együtthatómátrix sorterébe;
- a sortérbe eső megoldás az összes megoldás közül a legkisebb abszolút értékű;
- az összes megoldás előáll úgy, hogy a sortérbe eső megoldáshoz hozzáadjuk a homogén rész összes megoldását.

Megoldások és a kitüntetett alterek

- Legyen $\mathbf{A} \in \mathbb{R}^{3 \times 3}$, $\mathbf{r}(\mathbf{A}) = 2$.
- Ekkor $\dim(\mathcal{S}(A)) = \dim(\mathcal{O}(A)) = 2$, $\dim(\mathcal{N}(A)) = 3 2 = 1$.

A sortérbe eső megoldás meghatározása

P Állítsuk elő a következő egyenletrendszer összes megoldását a sortérbe eső egyetlen megoldás segítségével.

$$x + y + z + w = 3$$
$$x + y - z - w = 1$$

M A bővített mátrix és redukált lépcsős alakja:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 3 \\ 1 & 1 & -1 & -1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

- Az egyenletrendszer megoldása:

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 2 - s \\ s \\ 1 - t \\ t \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} s + \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix} t.$$

- A nullteret a (-1,1,0,0) és a (0,0,-1,1) vektorok feszítik ki. A sortérbe eső megoldásvektor ezekre merőleges:

$$-x + y = 0$$
$$-z + w = 0$$

- Ezekkel kibővítve az egyenletrendszert, majd megoldva

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 1 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 1/2 \end{bmatrix}$$

tehát a sortérbe eső mo.: (1, 1, 1/2, 1/2), az összes mo.:

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1/2 \\ 1/2 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} s + \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix} t.$$

Determináns

Az elemi sorműveletek alkalmazásai

Motiváció: paralelogramma előjeles területe

Definíció

D Determináns (elemi sorműveletekkel)

Determináns az a test fölötti négyzetes mátrixokon értelmezett skalár értékű függvény, amely

- D1 értéke c-szeresére változik, ha egy sorát c-vel szorozzuk,
- D2 –1-szeresére változik különböző sorok fölcserélésekor,
- D3 nem változik a hozzáadás sorművelete közben,
- D4 az egységmátrixhoz 1-et rendel.
- **m** A determináns egységelemes kommutatív nullosztómentes gyűrű (integritási tartomány) fölött is definiálható, bár kiszámítása a Gauss-módszerrel nehézségekbe ütközik, mivel az osztás nem mindig végezhető el.
- T Integritási tartomány fölött a fenti D1–D4 feltételeket kielégítő függvény létezik és egyértelmű.

A determináns kiszámítása

- **m** det kiszámítása: elemi sorműveletekkel a determinánst olyan alakra hozzuk, melynek vagy van egy zérussora, vagy háromszög alakú.
- P Pascal-háromszögből képzett mátrix determinánsa:

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 5 & 9 \\ 0 & 3 & 9 & 19 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 3 & 10 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1.$$

Permutáló mátrix determinánsa

- Permutáló mátrix: minden sorában és oszlopában egyetlen
 1-es van, a többi elem 0. Kígyó: minden sorában és oszlopában egyetlen elem van, amin kívül minden más elem 0.
- D egy permutáló mátrix két sora inverzióban áll, ha az előbb álló sorbeli 1-es hátrébb van, mint a másik sorbeli
- P $\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ inverzióinak száma például 4.

 D Legyen σ az $X = \{1, 2, \dots, n\}$ halmaz egy permutációja. AMH az
 - $i,j \in X$ elemek inverzióban állnak, ha i < j, de $\sigma(i) > \sigma(j)$. A 3241 permutációban 4 inverzió van.
- D Egy permutáció páros(ptln), ha inverzióinak száma páros(ptln).
- T A permutáló mátrix determinánsa aszerint +1 vagy -1, hogy inverzióban álló sorpárjainak száma páros vagy páratlan. (Ez megegyezik annak a permutációnak a paritásával, mely az 1-es elemek első indexeit a másodikba viszi.)

Additivitás használata

Mivel
$$(a, b, c) = (a, 0, 0) + (0, b, 0) + (0, 0, c)$$
 ezért
$$\begin{vmatrix} a + 0 + 0 & 0 + b + 0 & 0 + 0 + c \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & 0 & 0 \\ d & e & f \\ g & h & i \end{vmatrix} + \begin{vmatrix} 0 & b & 0 \\ d & e & f \\ g & h & i \end{vmatrix} + \begin{vmatrix} 0 & 0 & c \\ d & e & f \\ g & h & i \end{vmatrix}$$

Determináns mint kígyók összege

T Tétel

Minden n-edrendű determináns fölbomlik az összes belőle kiválasztható kígyó determinánsának összegére. Jelölje $d_{j_1j_2...j_n}$ (ennek értéke +1 vagy -1) annak a permutáló mátrixnak a determinánsát, mely az a_{1j_1} , a_{2j_2} ,..., a_{nj_n} elemekből álló kígyóhoz tartozik. Ekkor

$$\det([a_{ij}]) = \sum d_{j_1j_2...j_n} a_{1j_1} a_{2j_2} ... a_{nj_n},$$

ahol az összegzés az $\{1,2,\ldots,n\}$ halmaz összes lehetséges $\{j_1,j_2,\ldots,j_n\}$ permutációján végigfut.

Mátrixfelbontások

Bázisfelbontás

Mátrixfelbontások

Bázisfelbontás

- **T** Jelölje az $\mathbf{A}_{m \times n}$ mátrix
 - redukált lépcsős alakjának nemzérus soraiból álló $r \times n$ -es részmátrixát **R** (r = r(A)),
 - az R főoszlopainak megfelelő A-beli oszlopok alkotta m × r-es részmátrixot B.

Ekkor az **R** mátrix *j*-edik oszlopa megegyezik az **A** mátrix *j*-edik oszlopának a **B** oszlopai alkotta bázisban felírt koordinátás alakjával. Képletben:

$$A_{*j} = BR_{*j}$$
, azaz $A = BR$.

Bázisfelbontás

$$\mathbf{P} \quad \mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 8 & 6 & 2 \\ 1 & 2 & 7 & 0 & -11 \end{bmatrix} .$$

Μ

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 8 & 6 & 2 \\ 1 & 2 & 7 & 0 & -11 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 2 & -2 & -8 \\ 0 & 0 & 4 & -4 & -16 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 7 & 17 \\ 0 & 0 & 1 & -1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

E mátrix első két sora alkotja az **R** mátrixot, az **A** mátrix első és harmadik oszlopa a **B** mátrixot, így a felbontás

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 8 & 6 & 2 \\ 1 & 2 & 7 & 0 & -11 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 8 \\ 1 & 7 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 7 & 17 \\ 0 & 0 & 1 & -1 & -4 \end{bmatrix} = BR.$$

Mátrixfelbontások

LU-felbontás, PLU-felbontás

LU-felbontás

- D A = LU LU-felbontás, ha L alsó egység háromszögmátrix, U felső háromszögmátrix.
- **m** nincs mindig: $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} b & c \\ 0 & d \end{bmatrix}$
- m Invertálható mátrixra egyértelmű (ha létezik!), különben nem feltétlenül:

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & a & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

m Egyenletrendszer megoldása LU-felbontással: Ax = b, A = LU, azaz LUx = b megoldása:

$$Ax = b \iff Ly = b, Ux = y,$$

és e két egyenletrendszer visszahelyettesítésekkel megoldható.

n hasonlóképp a mátrixinvertálás is egyszerű

$$\begin{split} \textbf{A} &= \begin{bmatrix} 4 & 8 & 4 & 8 \\ 2 & 6 & 4 & 4 \\ 1 & 3 & 2 & 4 \end{bmatrix} \overset{S_2 - 1/2S_1}{\Longrightarrow} & \left(\textbf{E}_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \\ \textbf{E}_1 \textbf{A} &= \begin{bmatrix} 4 & 8 & 4 & 8 \\ 0 & 2 & 2 & 0 \\ 1 & 3 & 2 & 4 \end{bmatrix} \overset{S_3 - 1/4S_1}{\Longrightarrow} & \left(\textbf{E}_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{4} & 0 & 1 \end{bmatrix} \right) \\ \textbf{E}_2 \textbf{E}_1 \textbf{A} &= \begin{bmatrix} 4 & 8 & 4 & 8 \\ 0 & 2 & 2 & 0 \\ 0 & 1 & 1 & 2 \end{bmatrix} \overset{S_3 - 1/2S_2}{\Longrightarrow} & \left(\textbf{E}_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix} \right) \\ \textbf{E}_3 \textbf{E}_2 \textbf{E}_1 \textbf{A} &= \begin{bmatrix} 4 & 8 & 4 & 8 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} = \textbf{U}. \end{split}$$

Tehát $E_{32}E_{31}E_{21}A = U$, amiből $L = (E_{32}E_{31}E_{21})^{-1} = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1}$.

- Tudva, hogy $S_j - l_{ij}S_i$ inverze $S_j + l_{ij}S_i$, kapjuk hogy

$$\mathbf{L} = \mathbf{E}_{21}^{-1} \mathbf{E}_{31}^{-1} \mathbf{E}_{32}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{4} & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{4} & \frac{1}{2} & 1 \end{bmatrix}.$$

- Tehát A = LU, azaz

$$\begin{bmatrix} 4 & 8 & 4 & 8 \\ 2 & 6 & 4 & 4 \\ 1 & 3 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{4} & \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 4 & 8 & 4 & 8 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

A fenti példából megsejthető egyszerű számolás általában is igaz. Az $\mathbf{A}_{m \times n}$ mátrix $a_{11} \neq 0$ elemével elimináljuk az alatta lévőket, azaz elvégezzük az $S_2 - \frac{a_{21}}{a_{11}}S_1,...,S_m - \frac{a_{m1}}{a_{11}}S_1$ sorműveleteket. Legyen $l_{21} = \frac{a_{21}}{a_{11}}$, általában

$$l_{ij} = \frac{a_{ij}}{a_{jj}}, \quad m \ge i > j > 0.$$

Az e műveletekhez tartozó elemi mátrixok inverzei

$$\mathbf{E}_{21}^{-1} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ l_{21} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}, \dots \mathbf{E}_{m1}^{-1} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{m1} & 0 & \dots & 1 \end{bmatrix}, \dots$$

Igazolható, hogy ha az első oszloppal kezdve, és oszloponként föntről lefelé haladva végezzük az eliminálást, akkor az elimináló elemi mátrixok szorzatára igaz, hogy L = (E₂₁⁻¹E₃₁⁻¹...E_{n1}⁻¹)(E₃₂⁻¹...E_{m2}⁻¹)...(E_{m,m-1}⁻¹) ami megkapható az l_{ij} értékeknek az egységmátrix ij-indexű helyére való beírásával, azaz

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ l_{21} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{m1} & l_{m2} & \dots & 1 \end{bmatrix}.$$

Az LU-felbontás memóriahasználata

```
2.00

    1
    0
    0
    4
    1
    2

    1
    0
    2
    4
    1

    1
    1
    2
    4

                                                                                                                       1.00
                                                                                                          2.00 4.00 1.00
                                                                                                                          2.00
                                                                                                                                       4.00
\begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ & & 1 \end{bmatrix} \begin{bmatrix} 4 & 1 & 2 \\ 0 & 7/2 & 0 \\ 1 & 2 & 4 \end{bmatrix}
                                                                                                          4.00 1.00
                                                                                                                                          2.00
                                                                                                                         3.50
                                                                                                                                          0.00
                                                                                                                          2.00

    1
    0
    0

    1/2
    1
    0

    1/4
    1
    0

    7/4
    7/2

                                                                                                                          1.00
                                                                                                                                          2.00
                                                                                                                          3.50
                                                                                                                                          0.00
                                                                                                                           1.75
                                                                                                                                          3.50

    1
    0
    0

    1/2
    1
    0

    1/4
    1/2
    1

    0
    7/2
    0

    0
    0
    7/2

                                                                                                          4.00
                                                                                                                           1.00
                                                                                                                                           2.00
                                                                                                                           3.50
                                                                                                                                           0.00
                                                                                                                                           3.50
```

PLU-felbontás

- **D** PA = LU, azaz $A = P^TLU$, **P** permutáló.
- m nem csak négyzet alakúakra értelmezhető

$$\begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$

- **m** A Matlab/Octave programok csak PLU-t számolnak, és mindig az oszlop legnagyobb abszolút értékű elemével eliminálnak a számítási hibák csökkentése érdekében.
- $\begin{array}{ll} m & \text{Egyenletrendszer megoldása PLU-val: } Ax = b \iff PAx = Pb \\ \iff LUx = Pb \iff Ly = Pb \text{ \'es } Ux = y \end{array}$

PLU

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & 6 & 1 & -7 & 4 \\ 1 & 4 & 4 & -7 & 5 \\ 4 & -8 & 4 & 8 & -4 \\ 3 & -6 & 8 & 6 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{4} & 1 & 0 & 0 \\ \frac{3}{4} & 0 & 1 & 0 \\ -\frac{1}{4} & \frac{2}{3} & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & -8 & 4 & 8 & -4 \\ 0 & 6 & 3 & -9 & 6 \\ 0 & 0 & 5 & 0 & -5 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}.$$

Matlab/Octave megoldás az előző feladatra

```
>> A = [
  3 -6 8 6 -8 ];
>> [L U P] = lu(A)
   1.00000
            0.00000
                      0.00000
                               0.00000
   0.25000
           1.00000
                      0.00000
                               0.00000
   0.75000
          0.00000
                      1.00000
                               0.00000
  -0.25000
          0.66667
                      0.00000
                               1.00000
U =
     6 3 -9 6
     0 5 0 -5
P =
```

Permutation Matrix

0	0	1	0
0	1	0	0
0	0	0	1
1	0	0	0