B.Sc. Engg. / HD CSE 4th Semester (52)

29 September 2012 (Morning)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION

SUMMER SEMESTER, 2011-2012

DURATION: 3 Hours

FULL MARKS: 150

Math 4407: Statistical and Mathematical Analysis

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 8 (eight) questions. Answer any 6 (six) of them.

Figures in the right margin indicate marks.

1. a) The least square regression line for a set of n data points is given by y = ax + b where, 10+10

$$a = \frac{n\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \text{ and } b = \frac{1}{n} \left(\sum_{i=1}^{n} y_{i} - a \sum_{i=1}^{n} x_{i}\right)$$

i. Find the least square regression line for the points: $\{(-2,1),(1,1),(3,2)\}$. Plot the given points and the regression line in the same rectangular system of axes.

ii. The sales of a company (in million dollars) for five years are shown in the table below

X (year)	2005	2006	2007	2008	2009
Y(sales)	12	19	29	37	45

Find the least square regression line y = ax + b. Use the least square regression line as a model to estimate the sales of the company in 2012.

- Briefly describe three measures of dispersion.
- Suppose you draw two cards from a standard deck without replacement. Given that the first card is an ace, what is the probability that the second card is a queen?
 - A new car salesperson knows from past experience that she will make a sale to about 20% of her customers. Find the probability that in five (randomly selected) attempts, she makes a sale to
 - i. Exactly three customer
 - ii. At most one customer
 - iii. At least one customer
 - Discuss on different types of skewness and kurtosis.
- 3. a) Briefly explain the function of a complex variable.
 - b) Define:
 - i. Polynomial function ii. Rational function
 - iii. Harmonic function
 - iv. Power series
 - c) Derive Cauchy Riemann equation in polar form.

What is fundamental period and periodic function? a)

- Discuss on the method to find the Fourier coefficients.
- Find the Fourier series of the function f(x) = x where $-\pi \le x \le \pi$. Assume a fundamental period of 2π for f(x).

5

5

15

5

10

5

12

8

- Discuss on the representation of f(x) as Fourier Integral. 5.
 - Find the Fourier sine transform and the Fourier cosine transform for the functions
- 10

10

10

10

8

5

6

$$f(x) = \begin{cases} 1 & 0 < x < 1 \\ -1 & 1 < x < 2 \\ 0 & x \ge 2 \end{cases}$$

If $a = \vec{i} + 2\vec{j} + 3\vec{k}$, $b = \vec{i} - 3\vec{j} + 4\vec{k}$, and $c = 2\vec{i} + 4\vec{j} - 2\vec{k}$, then find $a \times (b \times c)$.

If $a = \overrightarrow{2i} + 3\overrightarrow{j} - \overrightarrow{k}$, $b = \overrightarrow{i} - \overrightarrow{j} - 2\overrightarrow{k}$, and $c = \overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k}$, then find $(a \times b) \times c$.

- What is Linear dependence and independence of vectors? Find out whether the following 15 vectors are linearly dependent or independent.
 - i. $V_1 = (2,5,3), V_2 = (1,1,1), and V_3 = (4,-2,0)$
 - ii. $V_1 = (4,1,-2), V_2 = (-3,0,1), and V_3 = (1,-2,1)$
- 7. a) If $\vec{x} = 3t\hat{i} t^2\hat{j}$ and $\vec{y} = 2t^2\hat{i} + 3\hat{j}$, then verify
 - i. $\frac{d}{dt}(\vec{x}.\vec{y}) = \vec{x}.\frac{d\vec{y}}{dt} + \frac{d\vec{x}}{dt}.\vec{y}$
 - ii. $\frac{d}{dt}(\vec{x} \times \vec{y}) = \vec{x} \times \frac{d\vec{y}}{dt} + \frac{d\vec{x}}{dt} \times \vec{y}$
 - Let \vec{a} and \vec{b} be two three-dimensional vectors. Is the following result true?
 - $\int_{0}^{t} \vec{a} \, dt \times \int_{0}^{t} \vec{b} \, dt = \int_{0}^{t} \vec{a} \times \vec{b} \, dt$

Proof your opinion.

- Briefly describe the differentiation and integration of a vector.
- 5
- What is gradient of a function? Find the gradient of the following functions: 8.

i.
$$f(x, y) = 4x^3 - 3xy + 2y^2$$

ii.
$$f(x, y, z) = x^3y - xy^2z + yz^2$$

- Explain divergence and curl of a vector field.
- Find the divergence of the following vector fields

i.
$$F_1 = 3x\hat{i} + 4y\hat{j}$$

ii.
$$F_2 = 6xy^2\hat{i} - 3xy\hat{j}$$

iii.
$$F_3 = 5x^3y\hat{i} + 3xy\hat{j} - 4y\hat{k}$$

Find the curl of the following vector fields:

i.
$$F_1 = 4x\hat{i} - 4y\hat{j} + 2xy\hat{k}$$

ii.
$$F_2 = 3xy\hat{i} + 3y\hat{j}$$

iii.
$$F_3 = 5x^2y\hat{i} + 2xy\hat{j}$$