

MARIYAN MILEV, MIKHAIL KOLEV, IRINA NASKINA

IMAGE CLASSIFIER

Image classification is a task where we train a model to identify if an image belongs to one or multiple classes.

CREATION OF IMAGE CLASSIFIER

STEP 1: DATA PROCESSING

STEP 2: MODEL BUILDING

STEP 3: TRAIN AND EVALUATE

DATA SOURCE

- provided by Dr Paul Mooney for Kaggle in 2017
- consists of 5836 X-Ray images
- divided into a training and testing
- contains two subset categories normal and pneumonia
- covers both bacterial and viral pneumonia
- taken during routine clinical care and are diagnosed by a clinician.

EXAMPLES OF NORMAL AND PNEUMONIA CATEGORIES FROM THE TRAINING, TESTING AND VALIDATING DATA SETS

DATA DISTRIBUTION

	Traini ng Set	Test Set	Validation Set
Normal	1082	234	267
Pneumonia	3110	390	773
Total	4192	624	1040
Percentage	71.5%	10.7%	10.8%

DATA AUGMENTATION

Techniques applied:

- rescaled,
- zoomed,
- vertically flipped

Results:

- increased number of the images
- Prevention of overfitting
- adding diversity to the image set

TRANSFER LEARNING

- Train with less or little data
- Faster Training
- Better Results

Pre-trained models and variations in tf.keras:

- DenseNet,
- Inception,
- MobileNet,
- NASNet,
- ResNet
- VGG

TRANSFER LEARNING: FEATURE EXTRACTOR OR FINE TUNING

- Base model with a Pretrained ConvNet minus the top (dense layer)
- Freeze all or some the layers of the base model
- Add a classifier on top of the base model
- Train with new datasets

CUSTOM CNN MODEL ARCHITECTURE

dense_01 (Dense) (128) 5308544

dense_last (Dense) (1) 129

Optimizer: learning rate = 0,001, momentum =0,9 Layer (type) Output Shape Param # conv_01 (Conv2D) (None, 224, 224, 32) 896

conv_02 (Conv2D) (None, 224, 224, 32)

9248

max pooling2d 3 (MaxPooling2 (None, 112, 112, 32)

0

conv 03 (Conv2D) (None, 112, 112, 64)

18496

conv 04 (Conv2D) (None, 112, 112, 64)

36928

max_pooling2d_4 (MaxPooling2 (None, 56, 56, 64)

0

conv 05 (Conv2D) (None, 56, 56, 128)

73856

conv 06 (Conv2D) (None, 56, 56, 128)

147584

max pooling2d 5 (MaxPooling2 (None 28 28 128)

TRANSFER LEARNING WITH NASNETMOBILE

Output Shape Param # Layer (type) **NASNet (Functional)** (None, 7, 7, 1056) 4269716 **dropout (Dropout)** (None, 7, 7, 1056) flatten (Flatten) (None, 51744) dense_01 (Dense) (None, 128) 6623360 dense_last (Dense) (None, 1) 129

Total params: 10,893,205 Trainable params: 6,623,489 Non-

trainable params: 4,269,716

MODEL EVALUATION

- **accuracy**,
- precision,
- recall,
- loss function
- AUC score
- F1 score

ACCURACY

$$Accuracy = \frac{TP + FN}{TP + TF + FP + FN}$$

- intuitive performance measure
- the ratio of correctly predicted observation to the total observations.

ACCURACY COMPARISON

 $Recall = \frac{TP}{TP}$ $Recall = \frac{TP}{TP}$

RECALL

$$Recall = \frac{TP}{TP \notin FN}$$

The ratio of correctly predicted positive observations to the all observations in actual class with positive value

RECALL COMPARISON

NASNetMobile CUSTOM CNN MODEL epoch_recall

run to download 💌					
Name	Smoothed	Value	Step	Time	Relative
train	0.9719	0.9723	9	Sun Sep 12, 22:11:46	15m 39s
validation	0.9722	0.9738	9	Sun Sep 12, 22:11:46	15m 39s

- Charles	run to download 🗢						
	Name	Smoothed	Value	Step	Time	Relative	
	train	0.9454	0.9466	9	Sun Sep 12, 21:27:53	16m 43s	
0	validation	0.9821	0.9868	9	Sun Sep 12, 21:27:53	16m 43s	

PRECISION

$$\frac{\text{Precision}}{\text{TP+FP}}$$

the ratio of correctly predicted positive observations to the total predicted positive observations

PRECISION COMPARISON

LOSS COMPARISON

F1 SCORE

$$F_1 = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} = rac{ ext{TP}}{ ext{TP} + rac{1}{2}(ext{FP} + ext{FN})}$$

F1 COMPARISON

NASNetMobile **CUSTOM CNN MODEL** epoch_f1_score epoch_f1_score tag: epoch_f1_score tag: epoch_f1_score 0.94 0.96 0.92 0.9 0.94 0.88 0.92 0.86 0.9 0.84 run to download run to download: w Smoothed Value Step Time Name Relative Step Time Name Smoothed Value Relative train 0.971 0.9724 9 Sun Sep 12, 22:11:46 15m 39s train 0.9419 0.9453 9 Sun Sep 12, 21:27:53 16m 43s validation 0.9315 0.9329 9 Sun Sep 12, 22:11:46 15m 39s validation 0.9158 0.9178 9 Sun Sep 12, 21:27:53 16m 43s

MODEL EVOLUTION

CNN

TRANSFER LEARNING

PERFORMANCE BOOST

REFERENCES

- [1] Stupka JE, Mortensen EM, Anzueto A, et al. Community-acquired pneumonia in elderly patients. Aging Health 2009; 5: 763-774.
- [2] World Health Organization, Department of Maternal N Child and Adolescent Health, World Health Organization. Revised WHO classification and treatment of pneumonia in children at health facilities: evidence summar-ies., http://apps.who.int/iris/bitstream/10665/166319/1/9789242247813_eng.pdf?ua=1 (2014, accessed 8 November 2020).
- [3] Clinic M, Recorded Books I. Mayo clinic family health book the ul-timate home medical reference. S.l.: RosettaBooks, https://rbdigital.rbdigital.com (2019, accessed 8 November 2020).
- [4] Fancourt N, Deloria Knoll M, Barger-Kamate B, et al. Standardized Interpretation of Chest Radiographs in Cases of Pediatric Pneumonia From the PERCH Study. Clinical Infectious Diseases 2017; 64: S253-S261.
- [5] Cherian T, Mulholland EK, Carlin JB, et al. Standardized interpreta-tion of paediatric chest radiographs for the diagnosis of pneumonia in epi-demiological studies. Bull World Health Organ 2005; 83: 353-359.
- [6] Yasaka K, Abe O. Deep learning and artificial intelligence in radiol-ogy: Current applications and future directions. PLoS Med 2033; 15: e1002707.
- [7] Thrall JH, Li X, Li Q, et al. Artificial Intelligence and Machine Learn-ing in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Suc-cess. Journal of the American College of Radiology 2033; 15: 504-508.
- [8] Hashmi MF, Katiyar S, Keskar AG, et al. Efficient Pneumonia De-tection in Chest Xray Images Using Deep Transfer Learning. Diagnostics 2020; 10: 417.
- [9] Pasa F, Golkov V, Pfeiffer F, et al. Efficient Deep Network Archi-tectures for Fast Chest X-Ray Tuberculosis Screening and Visualization. Sci Rep 2019; 9: 6268.
- [10] Sarkar D, Bali R, Ghosh T. Hands-on transfer learning with Python: implement advanced deep learning and neural network models using Ten-sorFlow and Keras, http://proquest.safaribooksonline.com/? fpi=9781788831307 (2033, accessed 1 December 2020).
- [11] Shin H-C, Roberts K, Lu L, et al. Learning to Read Chest X-Rays: Recurrent Neural Cascade Model for Automated Image Annotation. arXiv:160308486 [cs], http://arxiv.org/abs/1603.08486 (2016, accessed 8 November 2020).
- [12] Er O, Yumusak N, Temurtas F. Chest diseases diagnosis using ar-tificial neural networks. Expert Systems with Applications 2010; 66: 7648-7655.
- [13] Hermann S. Evaluation of Scan-Line Optimization for 3D Medical Image Registration. In: 2014 IEEE Conference on Computer Vision and Pat-tern Recognition. Columbus, OH, USA: IEEE, pp. 3073–3080.
- [14] Yang N, Niu H, Chen L, et al. X-ray weld image classification using improved convolutional neural network. Tianjin City, China, p. 020035.
- [15] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Medical Image Analysis 2017; 42: 60-88.
- [16] Kermany DS, Goldbaum M, Cai W, et al. Identifying Medical Diag-noses and Treatable Diseases by Image-Based Deep Learning. Cell 2033; 172: 1122-1131.e9.
- [17] Mooney, Paul. Chest X-Ray Images (Pneumonia), https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/version/2 (accessed 8 November 2020).

THANK YOU

m.milev@feb.unisofia.bg