A Family of Vertex Transitive Graphs

Edward L. Platt

September 4, 2019

1 Sylvester Number System

Let s_n be the *n*th element of Sylvester's sequence [1], defined as:

$$s_0 = 2 \tag{1}$$

$$s_{n+1} = 1 + \prod_{i=0}^{n} s_n. (2)$$

A mixed-base number system can be constructed from Sylvester's sequence as follows:

Definition 1.1. A Sylvester-radix number a is a sequence of digits a_n such that: $a_n \in \mathbb{Z} : 0 \le a_n < s_n$.

Lemma 1. There are $(s_n - 1)$ Sylvester-radix numbers of length n.

Proof. The Sylvester-radix numbers of length 1 are (0) and (1). $(s_1 - 1) = 2$ so the lemma holds for n = 1.

For n > 1, there are s_i possible values for each digit, with $0 \le i < n$. The number of valid digit combinations is thus given by:

$$\prod_{i=0}^{n-1} s_i = s_n - 1 \qquad \text{(by (2))}.$$

Corollary 1. The place value of index i in a Sylvester-radix number is $(s_i - 1)$.

The integer value of a length-n Sylvester-radix number a is thus:

$$z(a) = \sum_{i=0}^{n-1} a_i(s_i - 1).$$
(3)

References

[1] James J Sylvester. On a point in the theory of vulgar fractions. *American Journal of Mathematics*, 3(4):332–335, 1880.