EXERCISE - I

SINGLE CORRECT (OBJECTIVE QUESTIONS)

- **1.** If the vector \vec{b} is collinear with the vector $\vec{a} = (2\sqrt{2}, -1, 4)$ and $|\vec{b}| = 10$, then
- (A) $\vec{a} \pm \vec{b} = 0$
- (B) $\vec{a} \pm 2\vec{b} = 0$
- (C) $2\vec{a} \pm \vec{b} = 0$
- (D) none of these
- **2.** The vertices of a triangle are A(1, 1, 2), B(4, 3, 1) and C(2, 3, 5). A vector representing the internal bisector of the angle A is
- (A) $\hat{i} + \hat{j} + 2\hat{k}$
- (B) $2\hat{i} 2\hat{j} + \hat{k}$
- (C) $2\hat{i} + 2\hat{j} \hat{k}$ (D) $2\hat{i} + 2\hat{i} + \hat{k}$
- **3.** Let $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = 2\hat{i} \hat{k}$. The point of intersection of the lines $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ is
- (A) $-\hat{i} + \hat{j} + 2\hat{k}$
- (B) $3\hat{i} \hat{j} + \hat{k}$
- (C) $3\hat{i} + \hat{i} \hat{k}$
- (D) $\hat{i} \hat{i} \hat{k}$
- **4.** If $|\vec{a}| = 5$, $|\vec{a} \vec{b}| = 8$ and $|\vec{a} + \vec{b}| = 10$, then $|\vec{b}|$ is equal to
- (A) 1
- (B) $\sqrt{57}$ (C) 3
- (D) none of these
- **5.** Angle between diagonals of a parallelogram whose side are represented by $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - \hat{j} - \hat{k}$
- (A) $\cos^{-1}\left(\frac{1}{3}\right)$ (B) $\cos^{-1}\left(\frac{1}{2}\right)$
- (C) $\cos^{-1}\left(\frac{4}{9}\right)$ (D) $\cos^{-1}\left(\frac{5}{9}\right)$
- **6.** Vector \vec{a} and \vec{b} make an angle $\theta = \frac{2\pi}{3}$. if $|\vec{a}| = 1$,
- $|\vec{b}| = 2$, then $\{(\vec{a} + 3\vec{b}) \times (3\vec{a} \vec{b})\}^2$ is equal to (A) 225 (B) 250 (C) 275

- (D) 300
- **7.** Unit vector perpendicular to the plane of the triangle ABC with position vectors \vec{a} , \vec{b} , \vec{c} of the vertices A, B, C is

- (A) $\frac{(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})}{\Lambda}$ (B) $\frac{(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})}{2\Lambda}$
- (C) $\frac{(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})}{4\Delta}$ (D) none of these
- **8.** The value of $[(\vec{a} + 2\vec{b} \vec{c}), (\vec{a} \vec{b}), (\vec{a} \vec{b} \vec{c})]$ is equal to the box product
- (A) $[\vec{a}\vec{b}\vec{c}]$ (B) $2[\vec{a}\vec{b}\vec{c}]$ (C) $3[\vec{a}\vec{b}\vec{c}]$ (D) $4[\vec{a}\vec{b}\vec{c}]$
- **9.** If \vec{b} and \vec{c} are two non-collinear vectors such that $\vec{a} \mid \mid (\vec{b} \times \vec{c})$, then $(\vec{a} \times \vec{b})$. $(\vec{a} \times \vec{c})$ is equal to
- (A) $\vec{a}^2(\vec{b},\vec{c})$ (B) $\vec{b}^2(\vec{a},\vec{c})$ (C) $\vec{c}^2(\vec{a},\vec{b})$ (D) none of these
- 10. Vector of length 3 unit which is perpendicular to $\hat{i} + \hat{j} + \hat{k}$ and lies in the plane of $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} - 3\hat{j}$
- (A) $\frac{3}{\sqrt{6}}(\hat{i}-2\hat{j}+\hat{k})$ (B) $\frac{3}{\sqrt{6}}(2\hat{i}-\hat{j}-\hat{k})$
- (C) $\frac{3}{\sqrt{114}} (8\hat{i} 7\hat{j} \hat{k})$ (D) $\frac{3}{\sqrt{114}} (-7\hat{i} + 8\hat{j} \hat{k})$
- **11.** Vector \vec{x} satisfying the relation $\vec{A} \cdot \vec{x} = c$ and $\vec{A} \times \vec{x} = \vec{B}$ is
- (A) $\frac{c\vec{A} (\vec{A} \times \vec{B})}{|\vec{A}|}$ (B) $\frac{cA (A \times B)}{|\vec{A}|^2}$
- (C) $\frac{c\vec{A} + (\vec{A} \times \vec{B})}{|\vec{A}|^2}$ (D) $\frac{c\vec{A} 2(\vec{A} \times \vec{B})}{|\vec{A}|^2}$
- **12.** If \vec{a} , \vec{b} , \vec{c} are linearly independent vectors, then which one of the following set of vectors is linearly dependent?
- (A) $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ (B) $\vec{a} \vec{b}$, $\vec{b} \vec{c}$, $\vec{c} \vec{a}$
- (C) $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$ (D) none of these
- **13.** If line $\vec{r} = (\hat{i} 2\hat{i} \hat{k}) + \lambda(2\hat{i} + \hat{i} + 2\hat{k})$ is parallel to the plane \vec{r} . $(3\hat{i} - 2\hat{i} - m\hat{k}) = 14$, then the value of m is
- (A) 2
- (B) -2
- (D) can not be predicted with these informations

- **14.** Let \vec{a} , \vec{b} , \vec{c} be vectors of length 3, 4, 5 respectively. Let \vec{a} be perpendicular to \vec{b} + \vec{c} , \vec{b} to $\vec{c} + \vec{a}$ and \vec{c} to $\vec{a} + \vec{b}$. Then $|\vec{a} + \vec{b} + \vec{c}|$

- (A) $2\sqrt{5}$ (B) $2\sqrt{2}$ (C) $10\sqrt{5}$ (D) $5\sqrt{2}$
- **15.** Given $\vec{a} = x_{\hat{i}} + y_{\hat{i}} + 2_{\hat{k}}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j}$; $(\vec{a} \wedge \vec{b}) = \pi/2$, $\vec{a} \cdot \vec{c} = 4$, then
- (A) $[\vec{a} \vec{b} \vec{c}]^2 = |\vec{a}|$ (B) $[\vec{a} \vec{b} \vec{c}] = |\vec{a}|$
- (C) $[\vec{a} \vec{b} \vec{c}] = 0$
- (D) $[\vec{a} \, \vec{b} \, \vec{c}] = |\vec{a}|^2$
- **16.** $(\vec{d} + \vec{a}) \cdot (\vec{a} \times (\vec{b} \times (\vec{c} \times \vec{d})))$ simplifies to
- $(A) (\vec{b} \cdot \vec{d}) [\vec{a} \vec{c} \vec{d}]$
- (B) (b.c)[abd]
- (C) $(\vec{b} \cdot \vec{a})[\vec{a} \vec{b} \vec{d}]$
- (D) none of these
- **17.** Let \vec{r} be a vector perpendicular to $\vec{a} + \vec{b} + \vec{c}$, where $[\vec{a} \vec{b} \vec{c}] = 2$. If $\vec{r} = \ell(\vec{b} \times \vec{c}) + m(\vec{c} \times \vec{a}) + n(\vec{a} \times \vec{b})$, then $(\ell + m + n)$ is equal to
- (A) 2
- (B) 1
- (C) 0
- (D) none of these
- **18.** If \vec{a} , \vec{b} , \vec{c} are three non-coplanar non-zero vectors and \vec{r} is any vector in space, then $(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})$ is equal to
- (A) $2[\vec{a}, \vec{b}, \vec{c}]\vec{r}$
- (B) $3[\vec{a}, \vec{b}, \vec{c}]\vec{r}$
- (C) $[\vec{a}, \vec{b}, \vec{c}]\vec{r}$
- (D) none of these
- **19.** Given the vertices A (2, 3, 1), B(4, 1, -2), C(6, 3, 7) & D(-5, -4, 8) of a tetrahedron. The length of the altitude drawn from the vertex D is
- (A) 7
- (B) 9
- (C) 11
- (D) none of these
- 20. If a, b, c are pth, qth, rth terms of an H.P. and $\vec{u} = (q - r)\hat{i} + (r - p)\hat{j} + (p - q)\hat{k}, \ \vec{v} = \frac{\hat{i}}{3} + \frac{\hat{j}}{6} + \frac{\hat{k}}{6}$, then
- (A) \vec{u}, \vec{v} are parallel vectors
- (B) \vec{u}, \vec{v} are orthogonal vectors
- (C) $\vec{u}, \vec{v} = 1$
- (D) $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$
- **21.** For a non zero vector \vec{A} If the equations $\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{C}$ and $\vec{A} \times \vec{B} = \vec{A} \times \vec{C}$ hold simultaneously, then (A) \vec{A} is perpendicular to $\vec{B} - \vec{C}$
- (B) $\vec{A} = \vec{B}$ (C) $\vec{B} = \vec{C}$
- (D) $\vec{C} = \vec{A}$

- **22.** If the unit vectors \vec{e}_1 and \vec{e}_2 are inclined at an angle 2θ and $|\vec{e}_1 - \vec{e}_2| < 1$, then for $\theta \in [0, \pi]$, θ may lie in the interval
- (A) $\left[0, \frac{\pi}{6}\right]$ (B) $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ (C) $\left(\frac{5\pi}{6}, \pi\right]$ (D) $\left[\frac{\pi}{2}, \frac{5\pi}{6}\right]$
- **23.** A vector \vec{a} has components 2p and 1 with respect to a rectangular Cartesian system. The system is rotated through a certain angle about the origin in the counterclockwise sense. If with respect to the new system, \vec{a} has components p + 1 and 1, then
- (A) p = 0

- (B) p = 1 or p = -1/3
- (C) p = -1 or p = 1/3
- (D) p = 1 or p = -1
- **24.** Taken on side \overrightarrow{AC} of a triangle ABC, a point M such that $\overrightarrow{AM} = \frac{1}{3} \overrightarrow{AC}$. A point N is taken on the side \overrightarrow{CB} such that \overrightarrow{BN} = \overrightarrow{CB} , then for the point of intersection X of \overrightarrow{AB} and \overrightarrow{MN} which of the following holds good?
- (A) $\overrightarrow{XB} = \frac{1}{3} \overrightarrow{AB}$ (B) $\overrightarrow{AX} = \frac{1}{3} \overrightarrow{AB}$
- (C) $\overrightarrow{XN} = \frac{3}{4} \overrightarrow{MN}$ (D) $\overrightarrow{XM} = 3 \overrightarrow{XN}$
- **25.** The volume of the parallelopiped constructed on the diagonals of the faces of the given rectangular parallelopiped is m times the volume of the given parallelopiped. Then m is equal to
- (A) 2
- (B) 3
- (C) 4
- (D) none of these
- **26.** If $\vec{a} = \vec{b} + \vec{c}$, $\vec{b} \times \vec{d} = 0$ and $\vec{c} \cdot \vec{d} = 0$ then
- $\frac{d \times (\vec{a} \times \vec{d})}{\vec{d}^2}$ is equal to
- (A) ā
- (B) _b
- (C) \vec{c}
- \vec{b} (D)
- **27.** Consider a tetrahedron with faces f_1 , f_2 , f_3 , f_4 Let $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$ be the vectors whose magnitudes are respectively equal to the areas of f₁, f₂, f₃, f₄ and whose directions are perpendicular to these faces in the outward direction. Then
- (A) $\vec{a}_1 + \vec{a}_2 + \vec{a}_3 + \vec{a}_4 = 0$ (B) $\vec{a}_1 + \vec{a}_3 = \vec{a}_2 + \vec{a}_4$
- (C) $\vec{a}_1 + \vec{a}_2 = \vec{a}_3 + \vec{a}_4$ (D) none of these

- **28.** In the isosceles triangle ABC, $|\overrightarrow{AB}| = |\overrightarrow{BC}| = 8$ and a point E divides AB internally in the ratio 1:3, then the cosine of angle between \overrightarrow{CE} and \overrightarrow{CA} is (where $|\overrightarrow{CA}| = 12$)
- (A) $-\frac{3\sqrt{7}}{8}$ (B) $\frac{3\sqrt{8}}{17}$ (C) $\frac{3\sqrt{7}}{8}$ (D) $-\frac{3\sqrt{8}}{17}$
- **29.** If the vector product of a constant vector \overrightarrow{OA} with a variable vector \overrightarrow{OB} in a fixed plane OAB be a constant vector, then locus of B is
- (A) a straight line perpendicular to \overrightarrow{OA}
- (B) a circle with centre O radius equal to $|\overrightarrow{OA}|$
- (C) a straight line parallel to \overrightarrow{OA}
- (D) none of these
- **30.** Let \vec{a} , \vec{b} and \vec{c} be non-coplanar unit vectors equally inclined to one another at an acute angle θ . Then $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ in terms of θ is equal to
- (A) $(1 + \cos \theta) \sqrt{\cos 2\theta}$
- (B) $(1 + \cos \theta) \sqrt{1 2\cos 2\theta}$
- (C) $(1 \cos \theta) \sqrt{1 + 2\cos 2\theta}$
- (D) none of these
- **31.** If u and v are unit vectors and θ is the acute angle between them, then 2u × 3v is a unit vector for
- (A) Exactly two values of θ
- (B) More than two values of θ
- (C) No value of θ
- (D) Exactly one value of θ
- **32.** Let $\vec{a} = \hat{i} + \hat{i} + \hat{k}$, $\vec{b} = \hat{i} \hat{i} + 2\hat{k}$ and

 $\vec{c} = x_1^2 + (x - 2)_1^2 - \hat{k}$. If the vector \vec{c} lies in the plane of \vec{a} and \vec{b} , then x equals

- (A) 0
- (B) 1
- (C) -4
- (D) -2
- 33. The value of a, for which the points A, B, C with position vectors $2\hat{i} - \hat{j} - \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and

 $a_i - 3_j - k$ respectively are the vertices of a right angled triangle with $C = \pi/2$ are

- (A) -2 and -1
- (B) -2 and 1
- (C) 2 and -1
- (D) 2 and 1
- **34.** The distance between the line $\vec{r} = 2\hat{j} 2\hat{j} + 3\hat{k} +$ $\lambda(\hat{j} - \hat{j} + 4\hat{k})$ and the plane $\vec{r} \cdot (\hat{j} + 5\hat{j} + \hat{k}) = 5$ is
- (A) 10/3 (B) 3/10
- (C) $\frac{10}{3\sqrt{3}}$
- (D) 10/9

35. Image of the point P with position vector $7\hat{i} - \hat{j} + 2\hat{k}$ in the line whose vector equation is

 $\vec{r} = 9\hat{i} + 5\hat{j} + 5\hat{k} + \lambda(\hat{i} + 3\hat{j} + 5\hat{k})$ has the position vector.

- (B)(9, 5, -2)
- (C)(9, -5, -2)
- (D) none of these
- **36.** A particle is acted upon by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ which displace it from a point $\hat{i} + 2\hat{i} + 3\hat{k}$ to the point $5\hat{i} + 4\hat{i} + \hat{k}$. The workdone in standard units by the force is given by (A) 40 (B) 30 (C) 25
- **37.** If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors and λ is a real number, then the vectors $\vec{a} + 2\vec{b} + 3\vec{c}$, $\lambda \vec{b} + 4\vec{c}$ and $(2\lambda - 1)\vec{c}$ are non-coplanar for
- (A) all values of λ
- (B) all except one value of λ
- (C) all except two values of λ
- (D) non value of λ
- **38.** Let \vec{u} , \vec{v} , \vec{w} be such that $|\vec{u}| = 1$, $|\vec{v}| = 2$, $|\vec{w}| = 3$. If the projection \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and \vec{v} , \vec{w} are perpendicular to each other, then $|\vec{u} - \vec{v} + \vec{w}|$ equals
- (A) 2
- (B) $\sqrt{7}$ (C) $\sqrt{14}$
- (D) 14
- **39.** Let \vec{a} , \vec{b} and \vec{c} be non-zero vectors such that $(\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a}$, If θ is the acute angle between the vectors \vec{b} and \vec{c} , then $sin\theta$ equals is

- (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{2}{3}$ (D) $\frac{2\sqrt{2}}{3}$
- **40.** \vec{a} , \vec{b} , \vec{c} are three vectors, such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}, |\vec{a}| = 1, |\vec{b}| = 2, |\vec{c}| = 3 \text{ then}$
- (A) 0
- $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ is equal to (B) -7
 - (C) 7
- (D) 1
- **41.** If \vec{u} , \vec{v} and \vec{w} are three non-coplanar vectors, then $(\vec{u} + \vec{v} - \vec{w}) \cdot [(\vec{u} - \vec{v}) \times (\vec{v} - \vec{w})]$ equals
- (A) 0

- (B) $\vec{u} \cdot \vec{v} \times \vec{w}$
- (C) $\vec{u} \cdot \vec{w} \times \vec{v}$
- (D) $3\vec{u} \cdot \vec{v} \times \vec{w}$

42. Consider points A, B, C and D with position vectors

$$7\,\hat{i}\,+4\,\hat{j}\,+7\,\hat{k}\,,\;\hat{i}\,-6\,\hat{j}\,+10\,\hat{k}\,,\,-\hat{i}\,-3\,\hat{j}\,+4\,\hat{k}\;\;\text{and}\;\;$$

- $5\hat{i} \hat{j} + 5\hat{k}$ respectively. The ABCD is a
- (A) square
- (B) rhombus
- (C) rectangle
- (D) none of these
- **43.** The vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is
- (A) $\sqrt{18}$ (B) $\sqrt{72}$
- (C) $\sqrt{33}$ (D) $\sqrt{288}$
- **44.** Let $\vec{u} = \hat{i} + \hat{j}$, $\vec{v} = \hat{i} \hat{j}$ and $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$. If \hat{n} is a unit vector such that $\vec{u} \cdot \hat{n} = 0$ and $\vec{v} \cdot \hat{n} = 0$ then $|\vec{w} \cdot \hat{n}|$ is equal to
- (A) 0
- (B) 1
- (C) 2
- **45.** If $\vec{a} = \hat{i} \hat{j}$, $\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \hat{i} + 3\hat{j} + 5\hat{k}$ and \vec{n} be a unit vector such that $\vec{b} \cdot \vec{n} = 0$, $\vec{a} \cdot \vec{n} = 0$ then value of $|\vec{c} \cdot \vec{n}|$
- (A) 1 Sol.
- (B)3
- (C) 5
- (D) 2
- **46.** If $\vec{u} = \vec{a} \vec{b}$, $\vec{v} = \vec{a} + \vec{b}$ and $|\vec{a}| = |\vec{b}| = 2$, then $|\vec{u} \times \vec{v}|$ is equal to
- (A) $\sqrt{2(16-(\vec{a}.\vec{b})^2)}$ (B) $2\sqrt{(16-(\vec{a}.\vec{b})^2)}$
- (C) $2\sqrt{(4-(\vec{a}.\vec{b})^2)}$
- (D) $\sqrt{2(4-(\vec{a}.\vec{b})^2)}$
- 47. Equation of a line which passes through a point with position vector \vec{c} , parallel to the plane $\vec{r} \cdot \vec{n} = 1$ and perpendicular to the line $\vec{r} = \vec{a} + t\vec{b}$ is
- (A) $\vec{r} = \vec{c} + \lambda(\vec{c} \vec{a}) \times \vec{n}$
- (B) $\vec{r} = \vec{c} + \lambda(\vec{a} \times \vec{n})$
- (C) $\vec{r} = \vec{c} + \lambda(\vec{b} \times \vec{n})$
- (D) $\vec{r} = \vec{c} + \lambda (\vec{b} \times \vec{n}) \vec{a}$
- 48. Points L, M and N lie on the sides AB, BC and CA of the triangle ABC such that ℓ (AL) : ℓ (LB) $= \ell$ (BM) : ℓ (MC) $= \ell$ (CN) : ℓ (NA) = m : n, then the areas of the triangles LMN and ABC are in the ratio
- (A) $\frac{m^2}{n^2}$

- (B) $\frac{m^2 mn + n^2}{(m+n)^2}$
- (C) $\frac{m^2 n^2}{m^2 + n^2}$
- (D) $\frac{m^2 + n^2}{(m+n)^2}$

- **49.** Let $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendiuclar to both \vec{a} and
- \vec{b} . If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then
- $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$ is equal to (A) 0

- (C) $\frac{1}{4}$ ($a_1^2 + a_2^2 + a_3^2$)($b_1^2 + b_2^2 + b_3^2$)
- (D) $\frac{3}{4}$ ($a_1^2 + a_2^2 + a_3^2$)($b_1^2 + b_2^2 + b_3^2$)($c_1^2 + c_2^2 + c_3^2$)
- **50.** $[(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}), (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}), (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})]$ is equal to
- (A) $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}^2$ (B) $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}^3$ (C) $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}^4$ (D) none of these
- **51.** If the vectors $a\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + b\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + c\hat{k}$ $(a \neq b \neq c \neq 1)$ are coplanar, then the value of
- $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$ is equal to
- (A) 1
- (B) -1 (C) 0
- (D) none of these
- **52.** The vectors $\vec{a} = -4\hat{i} + 3\hat{k}, \vec{b} = 14\hat{i} + 2\hat{j} 5\hat{k}$ are coinitial. The vector \vec{d} which is bisecting the angle between the vectors \vec{a} and \vec{b} and is having the magnitude $\sqrt{6}$, is
- (A) $\hat{i} + \hat{j} + 2\hat{k}$ (B) $\hat{i} \hat{j} + 2\hat{k}$ (C) $\hat{i} + \hat{j} 2\hat{k}$ (D) none of these
- **53.** A point taken on each median of a triangle divides the median in the ratio 1:3, reckoning from the vertex. Then the ratio of the area of the triangle with vertices at these points to that of the original triangle is (A) 5:13 (B) 25:64 (C) 13:32 (D) none of these
- **54.** If $\vec{r} \cdot (2\hat{i} + 3\hat{i} 2\hat{k}) + 3/2 = 0$ is the equation of a plane and $\hat{i} - 2\hat{i} + 2\hat{k}$ is a point, then a point equidistant from the plane on the opposite side is

(A) $\hat{i} + 2\hat{j} + 3\hat{k}$ (B) $3\hat{i} + \hat{j} + \hat{k}$ (C) $3\hat{i} + 2\hat{j} + 3\hat{k}$ (D) $3(\hat{i} + \hat{j} + \hat{k})$

- **55.** If A(1, 1, 1), C(2, -1, 2), the vector equation of the line \overrightarrow{AB} is $\overrightarrow{r} = (\hat{i} + \hat{j} + \hat{k}) + t(6\hat{i} - 3\hat{j} + 2\hat{k})$ and d is the shortest distance of the point C from \overrightarrow{AB} , then
- (A) B(6,-3,2) (B) B(5, -4, 1) (C) $d = \sqrt{2}$ (D) $d = \sqrt{6}$
- **56.** If \vec{b} and \vec{c} are any two perpendicular unit vectors and \vec{a} is any vector, then

$$(\vec{a} \cdot \vec{b})\vec{b} + (\vec{a} \cdot \vec{c})\vec{c} + \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|^2} (\vec{b} \times \vec{c})$$
 is equal to

- (A) <u>ā</u>
- $(B) \vec{b}$
- (C) \vec{c}
- (D) none of these
- **57.** If A_1 , A_2 , A_3 ,...., A_n are the vertices of a regular plane polygon with n sides and O is its centre then

$$\sum_{i=1}^{n-1} (\overline{OA_i} \times \overline{OA_{i+1}}) \text{ equals}$$

- (A) $(1 n) (O\vec{A}_2 \times O\vec{A}_1)$ (B) $(n 1) (O\vec{A}_2 \times O\vec{A}_1)$
- (C) n $(O\vec{A}_2 \times O\vec{A}_1)$
- (D) none of these
- 58. The set of values of 'm' for which the vectors $\vec{a} = m\hat{i} + (m+1)\hat{i} + (m+8)\hat{k}$,

$$\vec{b} = (m+3)\hat{i} + (m+4)\hat{j} + (m+5)\hat{k}$$
 and

$$\vec{c} = (m+6)\hat{i} + (m+7)\hat{j} + (m+8)\hat{k}$$
 are non-coplanar is

- (A) R
- (B) $R \{1\}$
- (C) R $\{1, 2\}$ (D) ϕ
- **59.** For any four points P, Q, R, S,

 $|\overline{PQ} \times \overline{RS} - \overline{QR} \times \overline{PS} + \overline{RP} \times \overline{QS}|$ is equal to 4 times the area of the triangle

- (A) PQR
- (B) QRS
- (C) PRS
- (D) PQS
- **60.** The vector $\hat{i} + x\hat{j} + 3\hat{k}$ is rotated through an angle of $\cos^{-1} \frac{11}{14}$ and doubled in magnitude, then it becomes $4\hat{i} + (4x - 2)\hat{i} + 2\hat{k}$. The value of 'x' is
- (A) $-\frac{2}{3}$ (B) $\frac{2}{3}$ (C) $\frac{1}{3}$
- (D) 2
- **61.** Given the three vectors $\vec{a} = -2\hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 5\hat{j}$ and $\vec{c} = 4\hat{i} + 4\hat{j} - 2\hat{k}$. The projection of the vector $3\vec{a} - 2\vec{b}$ on the vector \vec{c} is
- (A) 11
- (B) 11
- (C) 13
- (D) none of these

- **62.** If the acute angle that the vector, $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ makes with the plane of the two vectors $2\hat{i} + 3\hat{j} - \hat{k}$ and $\hat{i} - \hat{j} + 2\hat{k}$ is $\cot^{-1} \sqrt{2}$ then
- (A) α (β + γ) = $\beta\gamma$
- (B) β ($\gamma + \alpha$) = $\gamma \alpha$
- (C) $\gamma(\alpha + \beta) = \alpha\beta$
- (D) $\alpha\beta + \beta\gamma + \gamma\alpha = 0$