Q: Regard to the recurrence equation below:

T(n) = 4T(n/2) + n

- a. Draw the recursion tree.
- b. Determine the number of nodes and cost at each level.
- c. Determine the total cost for all levels (i.e. in summation form).

Steps:

- 1. Draw the tree based on the recurrence
- 2. From the tree determine:
 - a. # of levels in the tree
 - b. cost per level
 - c. # of nodes in the last level
 - d. cost of the last level (which is based on the number found in 2c)
- 3. Write down the summation using \sum notation this summation sums up the cost of all the levels in the recursion tree
- 4. Recognize the sum or look for a closed form solution for the summation created in 3). Use Appendix A.
- 5. Apply that closed form solution to your summation coming up with your "guess" in terms of Big-O, or Θ , or Ω (depending on which type of asymptotic bound is being sought).

Solution:

T(n/4) = 4T(n/8) + (n/4)

Level #	#of node	Recursion tree	Level Sum
0	1	n	n
1	4	<u>n/2</u> <u>n/2</u> <u>n/2</u>	4(n/2) = 2n
2	4 ²	n/4 n/4 n/4	$4^2(n/4) = 4n$
3	4 ³ .	n/8 n/8	4 ³ (n/8) = 8n
i	4 ⁱ	n/2 ⁱ .	$4^{i}(n/2^{i}) = 2^{i}n$ $4^{h-1}(n/2^{h-1}) = 2^{h-1}n$
h	4 ^h	T(1) T(1) T(1)	4 ^h

First Semester 1433/1434H Tutorial # 2 Recursion Tree

$$T(n) = 4^{h}T(1) + \sum_{i=0}^{h-1} 2^{i} n$$

$$\frac{n}{2^{h}} = 1 \rightarrow h = \log_{2}n \leftarrow equation \#1$$

from equation #1

$$T(n) = 4^{\log_2 n} T(1) + \sum_{i=0}^{h-1} 2^i n$$

$$T(n) = n^{\log_2 4} T(1) + \sum_{i=0}^{h-1} 2^i n$$

$$n^{\log_2 4} = n^2$$
 since $\log_2 4 = 2 \leftarrow equation #2$

from equation #2

$$T(n) = n^2T(1) + n \sum_{i=0}^{h-1} 2^i$$
 $T(n) = n^2T(1) + n [1 + 2 + 2^2 + \dots + 2^{h-1}]$
Increasing Geometric Series $r = 2$ $a = 1$

$$S = a + ar + ar^{2} + \dots + ar^{k-1} = \frac{a(r^{k} - 1)}{r - 1} \qquad r > 1$$

$$Since \quad r = 2 \quad a = 1$$

$$n \left[1 + 2 + 2^{2} + \dots + 2^{h-1} \right] = \frac{1(2^{h} - 1)}{2 - 1} = 2^{h} - 1$$

$$from \ Equation \ #1$$

$$= 2^{\log_{2} n} - 1$$

$$= n^{\log_{2} 2} - 1 = n - 1 \quad Since \ \log_{2} 2 = 1$$

$$T(n) = n^{2} \quad T(1) + n(n - 1)$$

$$T(n) = \theta(n^{2})$$