Basi di dati

2 IL MODELLO RELAZIONALE

Organizzazione dei dati

 Come sono organizzati i dati in una base di dati?

Modello dei dati

- Insieme di costrutti secondo cui i dati di interesse sono organizzati e utilizzati
- Esempio:
 - il modello relazionale prevede il costrutto relazione (o tabella), che permette di definire insiemi di record (righe) omogenei

I modelli logici dei dati

- "Tradizionali"
 - ... relazionale
- Altri più recenti:
 - a oggetti, XML, "NoSQL"

stu	d	e	U.	ti

Matricola	Cognome	Nome	Data di nascita
6554	Rossi	Mario	05/12/1978
8765	Neri	Paolo	03/11/1976
9283	Verdi	Luisa	12/11/1979
3456	Rossi	Maria	01/02/1978

	ė,
esam	ı
Coairi	ı

Studente	Voto	Corso
3456	30	04
3456	24	02
9283	28	01
6554	26	01

corsi

Codice	Titolo	Docente
01	Analisi	Mario
02	Chimica	Bruni
04	Chimica	Verdi

05/10/2020

Basi di dati I --- 2

Modello "relazionale"

• relazione matematica ... (alla lavagna)

$$D_{1} = \{x,y\} \qquad D_{2} = \{1,2,3\} \quad DOMINI$$
PRODOTTO
$$\{(x,1), \quad R \subseteq D, \times D_{2}, \\ (x,2), \quad \{(x,1), \quad X \in D, \times D_{2}, \\ (x,3), \quad \{(x,3), \quad X \in D, \\ (y,1), \quad \{(x,3), \quad X \in D, \\ (y,2), \quad \{(y,1)\} \in Y \in Y \in Y \}$$

$$\{(y,3)\}$$

$$D_{1} \times D_{2}$$

 $\begin{array}{cccc} D_1 & D_2 & D_3 \\ D_1 \times D_2 \times D_3 \end{array}$ DOMINI PRODOTTO CARTESIAND $R \subseteq D_1 \times D_2 \times D_3$ RELAZIONE insieme di terne (d,,d2,d3) $d, \in D$ $d_2 \in D_2$ $d_3 \in D_3$

Due osservazioni importanti

- Struttura non posizionale
- Modello basato su valori

Struttura "posizionale" o "non posizionale"

Partite ⊆ string × string × int × int

Manchester	Arsenal	3	1
Arsenal	Liverpool	2	0
Manchester	Chelsea	0	2
Chelsea	Liverpool	0	1

Struttura non posizionale

 A ciascun dominio si associa un nome: attributo (o colonna)

Casa	Fuori	RetiCasa	RetiFuori
Manchester	Arsenal	3	1
Arsenal	Liverpool	2	0
Manchester	Chelsea	0	2
Chelsea	Liverpool	0	1

Il modello è basato su valori

 I riferimenti fra dati in relazioni diverse sono rappresentati per mezzo di valori dei domini che compaiono nelle ennuple

studenti	Matricola	Cognome	Nome	Data di na	ascita
	6554	Rossi	Mario	05/12/1	978
	8765	Neri	Paolo	03/11/1	976
	9283	Verdi	Luisa	12/11/1	979
	> 3456	Rossi	Maria	01/02/1	978
	esami	Studente	Voto	Corso	
		3456	30	04	
		3456	24	02	
		9283	28	01	
		6554	26	01	
	corsi	Codice	Titolo	Docente	
		01	Analisi	Mario	
		02	Chimica	Bruni	
		04	Chimica	Verdi	
0=1101000		D : !! ! !!			0.0

05/10/2020

Basi di dati I --- 2

22

Basi di dati: schema e istanza

Orario

Insegnamento	Docente	Aula	Ora
Analisi matem. I	Luigi Neri	N1	8:00
Basi di dati	Piero Rossi	N2	10:00
Chimica	Nicola Mori	N1	10:00
Fisica I	Mario Bruni	N1	12:00
Fisica II	Mario Bruni	N3	10:00
Sistemi inform.	Piero Rossi	N3	8:00

Basi di dati: schema e istanza

Lo schema della relazione

Orario

Insegnamento Docente Aula

Ora

28

Basi di dati: schema e istanza Lo schema della base di dati

Orario

Insegnamento	Docente	Aula	Ora
Analisi matem. I	Luigi Neri	N1	8:00
Basi di dati	Piero Rossi	N2	10:00
Chimica	Nicola Mori	N1	10:00
Fisica I	Mario Bruni	N1	12:00
Fisica II	Mario Bruni	N3	10:00
Sistemi inform.	Piero Rossi	N3	8:00

L'istanza della relazione

Definizioni e notazioni (alla lavagna)

- Schema di relazione
- Ennupla su uno schema di relazione
 - Valore di una ennupla su un attributo
- Relazione ("istanza di relazione")
- Schema di base di dati
- (Istanza di) base di dati

Scheme di relazione

R mome della relazione

A, A2...An insieme di attribiti

B, D2 Bm olomini

R (A, A2, ... An)

STUDENTI (Matriola, Coquana, ...)

Scheme di base di dati

R= {R(X,),...,Rn(Xn)}

UNIVERSITÀ = {

Studenti (Matricula,...),

esami (Studento, Voto, Corro),

corri (Codice,...) }

ISTANZA (istante di) reluzione su R (A,B,C) insieme di emurple (tupli, com volone per ciascur attributo (istanza di) base di dati insieme di relozioni, una per ciarum schemo di relazione nello scheme della BA

 Usiamo t[A] per indiacre il valore della ennupla t sull'attributo A

Altra osservazione

- La stuttura è rigida e non sempre corrisponde ai dati:
 - "informazione incompleta"

Informazione incompleta

Nome	SecondoNome	Cognome
Franklin	Delano	Roosevelt
Winston		Churchill
Charles		De Gaulle
Josip		Stalin

Informazione incompleta

Nome	Ufficio	Età
Mario	Roma	34
Luca	Milano	
Piero	Firenze	42

Informazione incompleta: soluzioni?

- Potremmo pensare:
 - stringa nulla
 - "0"
 - "99"
- Si può fare?
 - Meglio di no!!

Informazione incompleta nel modello relazionale

- Tecnica semplice ma efficace:
 - valore nullo (un valore diverso dai valori del dominio, indicato qui con NULL)
 - t[A], per ogni attributo A, è
 - un valore del dominio dom(A)
 - oppure il valore nullo NULL

- Commenti
 - tecnica semplice
 - attenzione ai troppi valori nulli

Troppi valori nulli

studenti	Matricola	Cognome	Nome	Data di na	ascita
	6554	Rossi	Mario	05/12/1	978
	9283	Verdi	Luisa	12/11/1	979
	NULL	Rossi	Maria	01/02/1	978
	esami	Studente	Voto	Corso	
		NULL	30	NULL	
		NULL	24	02	
		9283	28	01	
	corsi	Codice	Titolo	Docente	
		01	Analisi	Mario	
		02	NULL	NULL	
		04	Chimica	Verdi	
05/10/2020		Basi di dati	I 2		45

Un'anticipazione parziale

- Riassumendo, quanto visto finora:
 - La definizione dello schema di una relazione in SQL (rivedremo più avanti)

```
postgres on paolo@PostgresSQL 11

create table esami(
    studente integer not null,
    corso integer not null,
    voto integer not null
)
```

Seconda parte

- Abbiamo visto la struttura
- Per modellare bene non basta

Vincoli di integrità

 Non sempre le nostre basi di dati sono "corrette" ...

Una base di dati "scorretta"

Esami	Studente	Voto	Lode	Corso
	276545	32		01
	276545	30	e lode	02
	787643	27	e lode	03
	739430	24		04

Studenti	Matricola	Cognome	Nome	
	276545	Rossi	Mario	

787643	Neri	Piero
787643	Bianchi	Luca