Chapter 3. Continuous Distribution

Math 3215 Summer 2023

Georgia Institute of Technology

Section 1.
Random Variables of the Continuous Type

Let the random variable X denote the outcome when a point is selected at random from an interval [0,1].

If the experiment is performed in a fair manner, it is reasonable to assume that the probability that the point is selected from an interval $\left[\frac{1}{3}, \frac{1}{2}\right]$ is

$$Size = x$$

Size =
$$\alpha$$

$$\chi$$
1

$$P = 576e \text{ of } \left[\frac{1}{3}, \frac{1}{2}\right] = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$$

$$0 \quad \frac{1}{3} \quad \frac{1}{2} \quad 1 \quad P\left(X = \frac{1}{2}\right) = 0$$

$$P\left(\frac{1}{6}(X \le \frac{1}{3}) = \emptyset\right).$$

$$1$$

$$\frac{1}{2} = \mathbb{P}(X = 1) \qquad \mathbb{P}(X = 2) = \frac{1}{2}$$

Definition

We say a random variable X on a sample space S is a continuous random variable if there exists a function f(x) such that

• $f(x) \ge 0$ for all x,

Similar to prof.

- $\int_{S(X)} f(x) dx = 1$, and
- For any interval $(a, b) \subset \mathbb{R}$,

$$\mathbb{P}\left(\times \in (a,b) \right) = \mathbb{P}(a < X < b) = \int_{\underline{a}}^{\underline{b}} \underline{f(x)} \, dx.$$

The function f(x) is called the probability density function (pdf) of X.

density

finite. Countable \rightarrow discrete random consimble.

Strate random contable.

Continuous random contable.

(-\omega, \infty) [0, 1], [0, \infty)

(-\infty, \infty) = R

$$X$$
 is conti.
Here exists a density $f(x)$ need not to be conti.
 $P(a < X < b) = \int_{a}^{b} f(x) dx$

The cdf of
$$X$$
 is $\digamma(x) = \digamma(x \leqslant x) = \int_{-\infty}^{x} f(t) dt$
The expectation (mean) of X is $\digamma[x] = \int_{-\infty}^{\infty} x f(x) dx$

The expectation (mean) of
$$X$$
 is $\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) dx$
The variance of X is $V_{or}(X) = \mathbb{E}[X - \mathbb{E}[X]] = \int_{-\infty}^{\infty} (x - \mu)^2 dx dx$

The standard deviation of
$$X$$
 is $SHJ(X) = \sqrt{Var(X)} = \sqrt{var(X)} = \sqrt{var(X)}$

The moment generating function of X is

$$M(t) = \mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} - f(x) dx$$

For pmf
$$f(k)$$
, $f(k) = 1 \Rightarrow f(k) \le 1$

For pmf $f(x) = 1 \Rightarrow f(k) \le 1$

For pmf $f(x) = 1 \Rightarrow f(x) \le 1$

For pmf $f(x) = 1 \Rightarrow f(x) \le 1$

For pmf $f(x) = 1 \Rightarrow f(x) \ge 1$

For some $f(x) = 1 \Rightarrow f(x) \ge 1$

For some $f(x) = 1 \Rightarrow f(x) \ge 1$

For some $f(x) = 1 \Rightarrow f(x) \ge 1$

For some $f(x) = 1 \Rightarrow f(x) \ge 1$

For some $f(x) = 1 \Rightarrow f(x) \ge 1$

For some $f(x) = 1 \Rightarrow f(x) \ge 1$

Properties

The pmf of a discrete random variable is bounded by 1. But for pdf, f(x) can be greater than 1.

For cdf F, we have F'(x) = f(x) where F is differentiable at x.

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

$$\frac{d}{dx}F(x) = \frac{d}{dx}\int_{-\infty}^{x} f(t) dt = f(x)$$

$$Fundamental Thm 4$$

$$f Calonbus.$$

Example

Let X be a continuous random variable with a pdf x y y y for 0 < x < 1.

Find the cdf and the expectation.

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} 0, & x \le 0 \\ \frac{1}{2} \cdot x \cdot (2x) = x^{2}, & 0 < x < 1 \end{cases}$$

Example

Let X be a continuous random variable with a pdf x = 2x for 0 < x < 1.

Find the cdf and the expectation.

$$E[X] = \int_{-\infty}^{\infty} x - f(x) dx = \int_{0}^{1} x \cdot 2x dx$$

$$= \int_{0}^{1} 2x^{2} dx = \left[2 \cdot \frac{1}{3} \cdot x^{3}\right]_{0}^{1} = \frac{2}{3}.$$

Example

Let X have the pdf $f(x) = xe^{-x}$. Find the mgf.

Let X have the pair
$$f(x) = xe^{-x}$$
. Find the high.

$$f(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x < 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x < 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x < 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x < 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x < 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x < 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x < 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x < 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x < 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & x < 0 \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & xe^{-x} & xe^{-x} \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & xe^{-x} & xe^{-x} \\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & xe^{-x} & xe^{-x} \\ 0 & xe^{-x} \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & xe^{-x} & xe^{-x} \\ 0 & xe^{-x} \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & xe^{-x} & xe^{-x} \\ 0 & xe^{-x} \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & xe^{-x} & xe^{-x} \\ 0 & xe^{-x} \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & xe^{-x} & xe^{-x} \\ 0 & xe^{-x} \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & xe^{-x} & xe^{-x} \\ 0 & xe^{-x} \end{cases}$$

$$f(x) = \begin{cases} xe^{-x} & xe^{-x} & xe^{-x} \\ 0 & xe^{-x} \end{cases}$$

$$\int u(x) \cdot v(x) dx = u \cdot (x) V(x) - \int u(x) \cdot V(x) dx$$

$$= \left[- \frac{1}{(1-1)^2} e^{\frac{(1-1)^2}{c_0}} \right]_0^{\infty} = \frac{1}{(1-1)^2} \cdot \frac{1}{c_0} \cdot \frac{1}{c_0}$$

Definition

X is a uniform random variable if its pdf is constant on its support.

If its support is [a, b], then the pdf is

We denote by $X \sim U(a, b)$.

7

$$f(x) = \begin{cases} \frac{1}{b-\alpha}, & \alpha \in x \in J \\ 0, & \omega \end{cases}$$

 $=\frac{\alpha+b}{2}$

Theorem

If $X \sim U(a, b)$, then

$$\mathbb{E}[X] = \frac{\alpha + b}{2}$$

$$Var[X] = \frac{1}{(2)} (\alpha - b)$$

$$M(t) =$$
 Exercise.

$$\mathbb{E}[X] = \int_{\alpha}^{b} \frac{1}{b-\alpha} \cdot X \, dx = \frac{1}{b-\alpha} \cdot \left[\frac{x^{2}}{2}\right]_{\alpha}^{b} = \frac{b^{2}-a^{2}}{2 \cdot (b-\alpha)}$$

$$\mathbb{E}\left[X^{2}\right] = \int_{a}^{b} \frac{1}{b-a} X^{2} dx = \frac{1}{(b-a)} \cdot \frac{1}{3} \cdot (b^{3}-a^{3})$$

$$= \frac{3}{1}(\sigma_5 + \sigma_5 + \rho_5)$$

$$V_{ar}(x) = \frac{1}{3}(a^2 + ab + b^2) - \frac{1}{4}(a^2 + 2ab + b^2)$$

$$= \frac{1}{12} \left(a^2 - 2ab + b^2 \right) = \frac{(a-b)^2}{12}$$

Example

If X is uniformly distributed over (0,10), calculate $\mathbb{P}(X<3)$, $\mathbb{P}(X>6)$, and $\mathbb{P}(3< X<8)$.

$$P(x < 3) = 3 \cdot \frac{1}{6} = 0.3$$

$$P(x>6) = \frac{4}{6}$$

$$P(3(X < 8) = \frac{5}{6}$$

9

Example

A bus travels between the two cities A and B, which are 100 miles apart. If the bus has a breakdown, the distance from the breakdown to city A has a U(0,100) distribution. There are bus service stations in city A, in B, and in the center of the route between A and B. It is suggested that it would be more efficient to have the three stations located 25, 50, and 75 miles, respectively, from A. Do you agree? Why?

Percentile

EX

The (100p)-th percentile is a number π_p such that $F(\pi_p) = p$.

For example, the 50th percentile is the number $\pi_{\frac{1}{2}}=q_2$ such that $F(\pi_{\frac{1}{2}})=\frac{1}{2}$ and this is called the median.

The 25th and 75th percentiles are called the first and third quartiles, respectively, and are denoted by $q_1 = \pi_{0.25}$ and $q_3 = \pi_{0.75}$.

Percentile

Example

Let X be a continuous random variable with pdf f(x) = |x| for -1 < x < 1. Find q_1, q_2, q_3 .

 $g_2 = 50^{th}$ percentile = median = Tto.5 = 0 $g_1 = 25^{th}$ percentile = 18^{t} quartile = $10.50 = -\frac{1}{12}$

$$q_3 = \frac{1}{\sqrt{2}}$$

12

Exercise

Let $f(x) = c\sqrt{x}$ for $0 \le x \le 4$ be the pdf of a random variable X.

Find c, the cdf of X, and $\mathbb{E}[X]$.

$$1 = \int_{0}^{4} c \sqrt{x} dx = c \cdot \left[\frac{2}{3} \cdot x^{\frac{3}{2}} \right]_{0}^{4} = c \cdot \frac{2}{3} \cdot 8 \quad \therefore c = \frac{3}{16}.$$

$$F(t) = P(X \le t) = \int_{0}^{t} c \cdot \sqrt{x} dx = \left[c \cdot \frac{2}{3} \cdot x^{\frac{3}{2}} \right]_{0}^{t}$$

$$= \frac{3}{8^{\frac{3}{16}}} \cdot \frac{2}{2} \cdot t^{\frac{3}{2}}$$

$$= \frac{1}{8} t^{\frac{3}{2}}$$

$$= \frac{1}{8} t^{\frac{3}{2}}$$
13

$$F(t) = \begin{cases} 0 & \text{to} \\ \frac{1}{8} - t^{\frac{3}{2}} & \text{of } t \leq 1 \end{cases}$$

Section 2.
The Exponential, Gamma, and Chi-Square Distributions

Consider a Poisson random variable X with parameter λ .

This represents the number of occurrances in a given interval, say [0,1].

If $\lambda = 5$, that means the expected number of occurrances in [0,1] is 5.

Let W be the waiting time for the first occurrence. Then,

$$P(W > t) = P(\text{no occurrences in } [0, t]) = P(Y = 0)$$
for $t > 0$.
$$V = \# = \text{fevents in } [0, t] \sim Poisson(\lambda t)$$

$$V = \# = \text{fevents in } [0, t] \sim Poisson(\lambda t)$$

$$F(t) = 1 - e^{-\lambda t} \quad PDF = f(t) = \lambda e^{-\lambda t}, \quad t \gg 0.$$

$$F(t) = \int_{-\infty}^{t} f(s) ds$$

$$W = \text{Waiting time of } 1^{st} \text{ occurrence}$$

$$V = \text{Waiting time of } 1^{st} \text{ occurrence}$$

$$V = \text{Waiting time of } 1^{st} \text{ occurrence}$$

$$V = \text{Waiting time of } 1^{st} \text{ occurrence}$$

$$V = \text{Waiting time of } 1^{st} \text{ occurrence}$$

Definition

We say X is an exponential random variable with parameter λ (or mean θ where $\lambda = \frac{1}{\theta}$) if its pdf is

$$f(x) = \lambda e^{-\lambda x}$$

for $x \ge 0$ and otherwise 0. Here, λ is the parameter and θ is the mean.

$$f(t) = \lambda e^{-\lambda t}, \quad t \geq 0 \qquad \times \sim Exp(\lambda)$$

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx = \int_{0}^{\infty} x \cdot e^{-\lambda x} dx, \quad \lambda x = t$$

$$dx = \frac{1}{\lambda} \int_{0}^{\infty} t \cdot e^{-t} dt = \int_{0}^{\infty} (-t e^{-t})^{\infty} + \int_{0}^{\infty} e^{-t} dt = \int_{0}^{\infty} e^{-t} dt$$

$$= \int_{0}^{\infty} e^{-t} dt = \int_{0}^{\infty} (-t e^{-t})^{\infty} + \int_{0}^{\infty} e^{-t} dt = \int_{0}^{\infty} e^{-t} dt$$

$$= \int_{0}^{\infty} e^{-t} dt = \int_{0}^$$

Theorem

Suppose that X is an exponential random variable with parameter $\lambda = \frac{1}{\theta}$.

$$\mathbb{E}[X] = \frac{1}{\lambda} = \theta$$

$$\operatorname{Var}[X] = \frac{1}{\lambda^2} = \theta^2$$
 = $\operatorname{\mathbb{E}}[x^2] - (\operatorname{\mathbb{E}}[x])^2$

$$M(t) = \frac{\lambda}{\lambda - t} = \frac{1}{1 - \theta t}$$

$$M(t) = \mathbb{E}[e^{t \times}] = \int_{0}^{\infty} e^{t \times} \cdot \lambda e^{-\lambda x} dx$$

$$= \lambda \int_{0}^{\infty} e^{-(\lambda - t) \times} dx$$

$$= \frac{\lambda}{\lambda - t} \cdot \frac{1}{\sqrt{t}} \frac{1}{1 - \theta t}.$$
if $\lambda - t > 0$

$$\theta = \frac{1}{\lambda}$$

16

$$f(x) = \lambda e^{-\lambda x} = \frac{1}{20} \cdot e^{-\frac{x}{20}}$$

Example

Let X have an exponential distribution with a mean $\theta = 20$.

$$\lambda = \frac{1}{0} = \frac{1}{20}$$

Find $\mathbb{P}(X < 18)$.

$$P(\times (18)) = \int_{-\infty}^{18} f(x) dx = \int_{0}^{18} \frac{1}{20} e^{-\frac{x}{20}} dx$$

$$F(18) = \left[-e^{-\frac{x}{20}} \right]_{0}^{18} = 1 - e^{-\frac{18}{20}}.$$

17

$$\mathbb{P}(X > X) = e^{-\lambda X}$$

$$P(X > t+s \mid X>t) = \frac{P(X7t+s)}{P(X>t)} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda t}}$$

$$= e^{-\lambda s} = P(x > s)$$

$$+ \begin{cases} s \end{cases}$$
memoryless p

memoryless property

$$b(M > 2) = 6$$

$$-\frac{3}{1} \cdot 2$$

Example

Customers arrive in a certain shop according to an approximate Poison process at a mean rate of 20 per hour.

What is the probability that the shopkeeper will have to wait more than five minutes for the arrival of the first customer?

$$X = \text{# of customer on 1 how } \sim \text{Poisson}(\lambda)$$
, $\underline{\lambda} = \underline{20}$

$$W = \text{waitry time} \sim \overline{Lp}(20)$$

$$P(W > \frac{1}{12}) = e^{-20\frac{1}{12}} = e^{-\frac{5}{3}}.$$
18

$$P(W>+) = e^{-\lambda +}$$

Gamma random variables

Consider a Poisson random variable X with λ .

d=1,2,3,--Let W be the waiting time until α -th occurrences, then its cdf is

$$F(t) = \mathbb{P}(W \leq t) = 1 - \mathbb{P}(W > t) = 1 - \sum_{k=0}^{\alpha-1} \frac{(\lambda t)^k e^{-\lambda t}}{k!}.$$

Thus, the pdf is

$$f(x) = \frac{\lambda(\lambda x)^{\alpha - 1}}{(\alpha - 1)!} e^{-\lambda x}.$$

This random variable is called a gamma random variable with λ and α where $\lambda = \frac{1}{\theta} > 0$.

This can be extended to non-integer $\alpha > 0$.

$$W = \text{waiting time with } x^{\text{th}} \text{ customers}$$

$$W = \text{waiting time with } x^{\text{th}} \text{ customers}$$

$$W = \text{for customers}$$

$$W = \text{fo$$

Gamma functions

The gamma function is defined by

T(1) = \[\sqrt{1-1}e^{-\gamma} d\gamma

for t > 0.

By integration by parts, we have $\begin{bmatrix} -y^{t-1} - e^{-y} \end{bmatrix}_{e}^{\infty} + \int_{e}^{\infty} (t-1)y^{t-2} e^{-y} dy$

$$= (t-1) - \int_{0}^{\infty} y^{(t-1)-1} e^{-7} dy$$

20

Def
$$X \sim Gamma(\lambda, \underline{A})$$
 if
$$f(x) = \frac{\lambda \cdot (\lambda \times)^{d-1}}{\Gamma(d)} \cdot e^{-\lambda x} \quad \text{for} \quad x > 0$$

Gamma functions

$$\Gamma(t) = \Gamma(t-1) \cdot (t-1)$$

In particular, $\Gamma(1) = \bot$

$$\Gamma(2) = (2-1) \cdot \Gamma(2-1) = \Gamma(1) = 1$$

$$\Gamma(3) = (3-1) \cdot \Gamma(3-1) = 2 \cdot \Gamma(2) = 2$$

$$\Gamma(\underline{n}) = (n-1) \cdot \Gamma(\underline{n-1}) = (n-1) \cdot (n-2) \cdot \Gamma(\underline{n-2}) = (n-1) \cdot (n-2) \cdot \Gamma(\underline{n-2})$$

$$= (n-1) \cdot \Gamma(\underline{n-2}) \cdot \Gamma(\underline{n-2}) = (n-1) \cdot (n-2) \cdot \Gamma(\underline{n-2}) = (n-1) \cdot \Gamma(\underline{n-2}) = (n-1$$

for integers n.

$$X \sim Ganna(\lambda, \alpha)$$

 $f = \frac{\lambda \cdot (\lambda x)^{d-1}}{r(\alpha)} e^{-\lambda x}, \quad x > 0.$

Gamma random variables

$$\Gamma(t) = \int_{0}^{\infty} y^{t-1} e^{-t} dy / \Gamma(t) = (t-1)\Gamma(t-1)$$

Theorem

$$\mathbb{E}[X] = rac{lpha}{\lambda}$$
 When computing, use definition of Gamma functions

$$Var[X] = \frac{\alpha}{\lambda^2}$$

$$M(t) = \frac{1}{(1- heta t)^{lpha}} ext{ for } t \leq rac{1}{ heta}.$$

Gamma random variables

$$\int_{-\infty}^{\infty} \frac{(x)^{2}}{(x)^{2}} = \int_{-\infty}^{\infty} \frac{1}{x} \cdot x = \int_{-\infty}^{\infty}$$

Example

That is, if a minute is our unit, then $\lambda = \frac{1}{3}$.

0 = mean of Exp.

What is the probability that the second customer arrives more than five minutes after the shop opens for the day?

$$W = \text{waitry fine for } 2^{nd} \text{ cuctombs} \sim \text{Gamma}(\frac{1}{3}, 2)$$

$$P(W > \frac{1}{3}) = \int_{\frac{1}{3}}^{\infty} \frac{1}{4} e^{-\frac{1}{3}} dx = \frac{1}{3} \int_{\frac{1}{3}}^{\infty} 4 e^{-\frac{1}{3}} dy$$

$$= \int_{\frac{1}{3}}^{\infty} \frac{1}{4} e^{-\frac{1}{3}} dx = \frac{1}{3} \int_{\frac{1}{3}}^{\infty} 4 e^{-\frac{1}{3}} dy$$

$$= \int_{\frac{1}{3}}^{\infty} \frac{1}{4} e^{-\frac{1}{3}} dx = \frac{1}{3} \int_{\frac{1}{3}}^{\infty} 4 e^{-\frac{1}{3}} dy$$

$$= \int_{\frac{1}{3}}^{\infty} e^{-\frac{1}{3}} dx = \frac{1}{3} \int_{\frac{1}{3}}^{\infty} 4 e^{-\frac{1}{3}} dy$$

$$= \int_{\frac{1}{3}}^{\infty} e^{-\frac{1}{3}} dx = \frac{1}{3} e^{-\frac{1}{3}} dx = \frac{1}{3} e^{-\frac{1}{3}} dx$$

$$= \frac{1}{3} e^{-\frac{1}{3}} + e^{-\frac{1}{3}} = \frac{1}{3} e^{-\frac{1}{3}} dx$$

$$= \frac{1}{3} e^{-\frac{1}{3}} + e^{-\frac{1}{3}} = \frac{1}{3} e^{-\frac{1}{3}} dx$$

Chi-square distribution

 $\lambda = \frac{1}{2}$

Let X have a gamma distribution with $\theta = 2$ and $\alpha = r/2$, where r is a positive integer.

The pdf of X is

 $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}}$ many application The State.

for x > 0.

We say that X has a chi-square distribution with r degrees of freedom and we use the notation $X \sim \chi^2(r)$.

Exercise

 $y = \frac{\theta}{1}$

Let X have an exponential distribution with mean θ .

Compute $\mathbb{P}(X > 15 | X > 10)$ and $\mathbb{P}(X > 5)$.

$$P(x>t+s|x>t) = P(x>s)$$

$$P(x>t+s|x>t) = P(x>s) = e^{-5/6}.$$

Section 3. The Normal Distribution

Central Limit Theorem.

Gaussian random variables

$$\chi \sim E_{xp}(\lambda)$$
 $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$

Definition

We say X is a Gaussian random variable or has a normal distribution if its pdf is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$
 $\forall x \in \mathbb{R}$

26

Here μ is the mean and σ is the standard deviation. We use the notation $X \sim N(\mu, \sigma^2)$.

If
$$\mu = 0$$
, $\sigma^2 = 1$.
$$f(x) = \frac{1}{2\pi} e^{-\frac{1}{2}x^2}$$

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{2\sigma^2} e^{-\frac{1}{2\sigma^2}}$$

Gaussian random variables

Theorem

$$\int_{\mathbb{R}} f(x) \, dx = 1$$

$$\mathbb{E}[X] = \mu$$

$$Var[X] = \sigma^2$$

$$M(t) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$$

For
$$\mu=0$$
, $\tau=1$,
$$\int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{|x|^2}{2}} dx = 1 \quad (Gaussian Integral)$$

27

$$f(x) = \frac{1}{1} \int_{-\infty}^{\infty} e^{-\frac{x}{2}} dx$$

In particular, if $\mu=0$ and $\sigma^2=1$, then $Z\sim N(0,1)$ is called the standard normal random variable.

Example

Let $Z \in \mathcal{N}(0,1)$.

Find
$$\mathbb{P}(Z \le 1.24)$$
, $\mathbb{P}(1.24 \le Z \le 2.37)$, and $\mathbb{P}(-2.37 \le Z \le -1.24)$.

$$P(\Xi(1.24) = -1.24) = \Phi(2.37) - \Phi(1.24)$$

$$P(-2.37 \le \Xi \le -1.24) = \Phi(2.37) - \Phi(1.24)$$

$$= P(\Xi(\Xi))$$

$$= P(\Xi(\Xi))$$

$$= P(\Xi(\Xi))$$

$$= -1.24 = -1.24 = -1.24$$

Theorem

If $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X - \mu}{\sigma}$ is the standard normal.

$$Z = \frac{4Z+3}{4} \sim N(0,1)$$

Example

Let
$$X \sim N(3, 16)$$
. $M = 3$, $\sigma^2 = 16$, $\sigma = 4$.

Find $\mathbb{P}(4 \le X \le 8)$, $\mathbb{P}(0 \le X \le 5)$, and $\mathbb{P}(-2 \le X \le 1)$.

$$P(4 \le X \le 8) = P(4 \le 4z + 3 \le 8)$$
in terms of z

$$= P(1 \le 4z \le 5)$$

$$= P(0.25 \le z \le 1.25)$$

$$= \Phi(1.25) - \Phi(0.25)$$

Example

Let
$$(X) \sim N(25, 36)$$
. $\mu = 25$, $\sigma^2 = 36$, $\sigma = 6$

Find a constant c such that
$$\mathbb{P}(|X-25| \le c) = 0.9544$$
.

$$Z \sim N(0,1)$$
 $X = \sigma Z + \mu = 6Z + 25$

$$\mathbb{P}(|\underline{x}-25|\leqslant c)$$

$$= P(|6Z| \leq c) = P(|Z| \leq c/6)$$

$$= \mathbb{P}\left(-\frac{c}{c} \le Z \le \frac{c}{6}\right) = \mathbb{P}\left(\frac{c}{6}\right) - \mathbb{P}\left(-\frac{c}{6}\right)$$

31

$$\frac{\mathbb{E}(z) = \mathbb{P}(\mathbb{Z} \leqslant z)}{z} = 2 \cdot \mathbb{P}(0 \leqslant \mathbb{Z} \leqslant \frac{c}{b})$$

$$= 2 \cdot \mathbb{P}(0 \leqslant \mathbb{Z} \leqslant \frac{c}{b}) - \mathbb{P}(\mathbb{Z} \leqslant \frac{c}{b})$$

$$\frac{\mathbb{E}(z) = \mathbb{P}(\mathbb{Z} \leqslant z)$$

$$= 2 \cdot \mathbb{P}(0 \leqslant \mathbb{Z} \leqslant \frac{c}{b}) - \mathbb{P}(\mathbb{Z} \leqslant \frac{c}{b})$$

$$\mathbb{E}(z) = \frac{1.9544}{2} = 0.9772$$

$$= 2 \cdot \mathbb{E}(z)$$

Theorem

If Z is the standard normal, then Z^2 is $\chi^2(1)$.

Section 4. Additional Models

Recall the postulates of an approximate Poisson:

- The numbers of occurrences in nonoverlapping subintervals are independent.
- The probability of two or more occurrences in a sufficiently short subinterval is essentially zero.
- The probability of exactly one occurrence in a sufficiently short subinterval of length h is approximately λh .

One can think the event occurrence as a failure and so λ can be understood as the failure rate.

Poisson distribution and its waiting time (exponential distribution) has a constant failure rate.

Sometimes, it is more natural to choose λ as a function of t in the last assumption.

Then the waiting time W for the first occurrence satisfies

$$\mathbb{P}(W > t) = \exp\left(-\int_0^t \lambda(w) \, dw\right).$$

Definition

If $\lambda(t) = \alpha \frac{t^{\alpha-1}}{\beta^{\alpha}}$, then the waiting time W for the first occurrence has the density

$$g(t) = \lambda(t) \exp\left(-\int_0^t \lambda(w) dw\right) = \alpha \frac{t^{\alpha-1}}{\beta^{\alpha}} \exp\left(-(\frac{t}{\beta})^{\alpha}\right).$$

W is called the Weibull random variable.

Example

If $\lambda(t) = 2t$, then the waiting time W has the density

and it is a Weibull random variable with $\alpha = -$ and $\beta = -$.

If W_1, W_2 are independent Weibull with α and β above, is the minimum of W_1, W_2 Weibull?

Theorem

The mean of W is $\mu = \beta \Gamma(1 + \frac{1}{\alpha})$.

The variance is $\sigma^2 = \beta^2 \left(\Gamma(1 + \frac{2}{\alpha}) - \Gamma(1 + \frac{1}{\alpha})^2 \right)$.

Mixed type random variables

Example

Suppose X has a cdf

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{x^2}{4}, & 0 \le x < 1 \\ \frac{1}{2}, & 1 \le x < 2 \\ \frac{x}{3}, & 2 \le x < 3 \\ 1, & x \ge 3. \end{cases}$$

Find $\mathbb{P}(0 < X < 1)$, $\mathbb{P}(0 < X \le 1)$, and $\mathbb{P}(X = 1)$.

Mixed type random variables

Example

Consider the following game: A fair coin is tossed.

If the outcome is heads, the player receives \$2.

If the outcome is tails, the player spins a balanced spinner that has a scale from 0 to 1.

The player then receives that fraction of a dollar associated with the point selected by the spinner.

Let X be the amount received. Draw the graph of the cdf F(x).

Exercise

The cdf of X is given by

$$F(x) = \begin{cases} 0, & x < -1 \\ \frac{x}{4} + \frac{1}{2}, & -1 \le x < 1 \\ 1, & x \ge 1. \end{cases}$$

Find $\mathbb{P}(X<0)$, $\mathbb{P}(X<-1)$, and $\mathbb{P}(-1\leq X<\frac{1}{2})$.