Parcours Data scientist

Projet 3 : Concevez une application au service de la santé publique

Sommaire

- 1 Idée d'application
- 2 Opérations de nettoyage effectuées
- Description et analyse univariées et bivariées
- Analyse multivariée et résultat statistiques associés
- 3 observation sur la pertinence et la faisabilité du projet

 Synthèse

1

Idée d'application

L'idée

fournir à l'utilisateur une application qui permettent de trouver les produits ayant le meilleur nutriscore à partir de mots clefs.

L'exemple

si l'utilisateur tape : « tomate », « poivron » et « aubergine », voici les trois premiers résultats qu'il verra apparaître.

Opérations de nettoyage effectuées

Phase 1 : Taille 1,890,337 x 186 80% de données manquantes

Sélection des produits ayant un nom et étant **vendu en France**.

Suppression des colonnes ayant moins de **5% de valeurs** renseignées

Phase 2 : 800,080 x 76 49% de données manquantes

Sélection des colonnes nécessaire pour :

- nutriscore

energy-kj_100g, saturated-fat_100g, fat_100g, carbohydrates_100g, sugars_100g, fiber_100g, proteins_100g, salt_100g nutriscore-score-fr-100g, nutriscore-grade

- recherche et classement: product_name, brands, categories, pnns_groups_1, pnns_groups_2, image_url

Suppression des lignes pour lesquelles **aucunes des données** nutritionnelles sélectionnées ne sont indiquées

Suppression des doublons

Phase 3 : 627,333 x 20 22% de données manquantes

Les données aberrantes

Nutritif supérieur à 100g pour 100g de produit.

Kilo joule > 3766

Fibres > 20

Protéines > 88

Les données manquantes

Par régression

prédiction du **nutriscore** en fonction des valeurs nutritionnelles

régression linéaire score 56% régression KNN score 84%

Par classification (KNN)

prédiction du **nutrigrade** en fonction des valeurs nutritionnelles

score **72%**

79% tx de corrélation régression/classification

Remplacement des données manquantes **nutriscore** et **nutrigrade** par les prédictions.

Jeu de donné définitif :

579,132 x 16

11% de valeurs nulles

(uniquement dans les colonnes brands, categories, image_url et fibre)

```
com.orgmanager.handlers.NequestHandlers.requestHandlers.requested to the state of t
```


Description et analyse univariées et bivariées

Boîte à moustache

2 exemples extrêmes

Salt

Min: 0 Max: 100

Moy: 1,26 Med: 0,56

Std: 4,2

Carbohydrates

Min: 0 Max: 100

Moy: 27,34 Med: 14,3

Std: 27,60

Variable nutriscore

Boîte à moustache et histogramme

Test de **normalité** sur la variable **nutriscore**.

Échec successif des tests d'Anderson, d'Agostino et de Shapiro-Wilk.

Analyses bivariées

Nuage de points entre toutes les variables quantitatives

Pas de **Corrélation** évidente entre les variables mais pas de franche **indépendance** non plus.

Coefficient de
Pearson de **0,61**entre nutriscore et
energie

Analyse multivariée et résultat statistiques associées

ACP (analyse des composantes principales)

	F1	F2	F3	F4	F5	F6	F7	F8
energy-kj_100g	0.59	-0.06	0.07	0.03	-0.13	-0.43	-0.05	-0.66
fat_100g	0.53	0.27	-0.16	-0.01	0.20	-0.26	-0.40	0.59
saturated-fat_100g	0.50	0.22	-0.24	0.01	0.16	0.59	0.52	-0.06
carbohydrates_100g	0.22	-0.60	0.15	0.10	-0.20	-0.25	0.52	0.44
sugars_100g	0.21	-0.58	-0.07	0.13	-0.15	0.53	-0.54	-0.03
fiber_100g	0.12	-0.06	0.81	-0.22	0.50	0.15	-0.04	-0.00
proteins_100g	0.12	0.38	0.43	-0.06	-0.77	0.19	-0.05	0.14
salt_100g	-0.04	0.15	0.20	0.96	0.12	0.01	-0.00	-0.00

Pas de coude franc.

Plan factoriel 1 et 2:55,9%

F1: richesse nutritionnelle (gras et energie)

F2: sucre

F3: fibre

F4:sel

Représentations graphiques des plans factorielles 1 et 2

Les produits A sont + recentrés mais pas de distinction nette

La représentation factorielle 1 et 2 apparaît insuffisante pour expliquer le nutrigrade.

Représentations graphiques des plans factorielles 1 et 2

Représentation des produits de catégorie c sur le 2ème plan factoriel

Les produits **A et B** n'ont que rarement beaucoup de **Sel**.

Là encore les catégories se **superposent**.

L'ACP confirme ce que les analyses bivariées avaient montré :

Les corrélations existent mais elles sont très floues.

ANOVA (analysis of variance)

62% du nutriscore est expliqué par les variables nutritionnelles.

Ce score devrait être de 100% car le nutriscore est calculé **exclusivement** d'après les valeur nutritionnelles.

La forte valeur du coefficient de Fischer et la faiblesse de la 'p-value' nous indiquent que le résultat de l'ANOVA n'est **pas du au hasard**.

OLS Regression Results

OLS Regression Result	S						
Dep. Variable:	nut	riscore	R-sc	0.620			
Model:		OLS	Adj. R-sc	0.	0.620		
Method:	Least S	quares	F-st	1.180e	+05		
Date:	Thu, 19 Au	g 2021 P i	rob (F-sta	(0.00		
Time:	13	3:20:18	Log-Like	lihood:	-1.7839e	+06	
No. Observations:	5	579132		AIC:	3.568e	+06	
Df Residuals:	5	579123	BIC		3.568e	+06	
Df Model:		8					
Covariance Type:	nor	robust					
	coef	std err		t P> t	[0.025	0.975]	
Intercept		0.017	148.70		2.540	2.608	
energy_kj_100g		2.56e-05	127.07		0.003	0.003	
fat_100g		0.001	22.60		0.023	0.027	
saturated fat 100g		0.001	321.16		0.424	0.429	
sugars_100g		0.001	358.28		0.180	0.182	
fiber 100g		0.005	-137.80		0.649	-0.631	
proteins 100g		0.001	54.75	3 0.000	0.046	0.049	
salt 100g		0.002	171.10	5 0.000	0.276	0.282	
carbohydrates_100g		0.001	-60.54	9 0.000	0.034	-0.032	
					-		
	655.689	Durbin-V	Vatson:	1.112	2		
Prob(Omnibus):	0.000	Jarque-Be	ra (JB):	61209.91	9		
Skew:	-0.362	Pr	ob(JB):	0.00	0		

5

3 observation sur la pertinence et la faisabilité du projet

Faisabilité : **OUİ** simple **techniquement**

Pertinence : faible

les données même nettoyées sont de **mauvaise qualité**ANOVA max score = 62% alors que devrait être 100%

Nutriscore ne s'applique pas aux produits non-transformés, pas aux produits pour bébé

	energy-kj_100g	fat_100g	saturated-fat_100g	carbohydrates_100g	sugars_100g	proteins_100g	salt_100g	y_pred_R	y_pred_C	y_test
0	2198.0700	27.0	18.2	62.9	29.8	6.7	0.20	е	е	е
1	1256.0400	15.3	9.9	35.4	17.5	4.7	0.40	d	d	d
2	2122.7076	25.8	14.9	60.6	38.9	6.5	0.46	e	е	е
3	136.0000	0.5	0.1	5.4	5.4	10.0	0.50	а	а	е
4	598.0000	5.6	2.0	0.5	0.5	23.0	1.80	d	d	С

Conclusion:

Problème de qualité des données

Pertinence serait une base dont le contenu est alimenté par les industriels eux-mêmes.

À défaut, une application qui puisse lire les étiquettes des ingrédients et nutritionnelles des produits directement.

