

A journey to EMNLP

...writing the paper

Machine Translation Hallucination Detection
for Low and High Resource Languages
using Large Language Models

Kenza Benkirane^{1*}, Laura Gongas^{1*},
Shahar Pelles¹, Naomi Fuchs¹, Joshua Darmon¹,
Pontus Stenetorp¹, David Ifeoluwa Adelani^{2,3}, Eduardo Sanchez^{1,4}

¹UCL, ²Mila, Quebec AI institute, ³McGill University, ⁴Meta *: Equal contributions

Empirical Methods for Natural Language Processing (EMNLP) 2024

Objectives

Give all the resources, context and tips for your coursework submission to be at the level of a paper

Introduction to the research framework of the publication of a research paper

Give insights and learning material for embedding spaces and frameworks for LLM evaluation

Who are we?

Laura Gongas

- From Medellin, Colombia
- BSc Biomedical Engineering from Universidad de Las Andes
- Al Engineer and Product Manager for 4 years
 - MSc AI for Biomedicine and Healthcare
- Now: Al Lead Engineer @MedTech Startup

Kenza Benkirane

- From Casablanca, Morocco
- MSc Biomedical Engineering from INSA Lyon (France)
- Digital Health Consultant for 2 years
 - MSc AI for Biomedicine and Healthcare
 - Now: Al Lead @MedTech Startup

Table of content

1. DEFINING THE PROJECT

Ideation phase

2. SOLVING THE RESEARCH QUESTION

Implementation phase

3. WRITING THE RESEARCH

4. PRACTICAL TIPS

What we've learned on the way

Identify limitations

Literature review

The Research Question

Key Term: Low Resource Languages

Medium | Low Resource Language - what does it mean?

Key Term: Machine Translation

Emu: Enhancing Multilingual Sentence Embeddings with Semantic Similarity

Key Term: Hallucination

A refund of 194.73EUR was done on January 12th.

Se realizó el reembolso por 19.73 en Enero 12.

Do not administer insulin if the patient's blood glucose level is below 70 mg/dL

Administrer de l'insuline si la glycémie du patient est inférieure à 70 mg/dL

Hallucinations in machine translation are translations that contain information completely un- related to the input.

HalOmi: a manually annotated benchmark for multilingual hallucination and omission detection in Machine

Translation

Define group's interests

The Research Question

HalOmi

A Manually Annotated Benchmark for Multilingual Hallucination and Omission Detection in Machine Translation

Context and dataset:

- → HalOmi is a hallucination and omission dataset for 18 sentence pairs, including three low-resource languages.
- → The benchmark presents BLASER as the best method for hallucination ranking, for both high and low resource languages

<u>Internal</u>

→ Seq-logprob: if a model is not confident in the translation then it might be a hallucination

External

→ Sentence similarity measures: how similar are the source text and machine translated text?

External

→ Sentence similarity measures: how similar are the source text and machine translated text?

Step 1: Map the source and translation sentences to an embedding space.

Arize AI / Embeddings, how to compute them

External

→ Sentence similarity measures: how similar are the source text and machine translated text?

Shah, Kashif. (2012). Model adaptation techniques in machine translation.

Step 2:

Measure the distance between the embedded source and translated sentences.

Distance measures:

- → Cosine similarity
- → BLASER: neural network trained to calculate the distance between embedding points

→ Cosine similarity: mapping vectors within a graphical context and then calculating the angle between these vectors, ultimately delivering the cosine of that angle as a measure of their similarity.

A

Limitation

Suboptimal

SOTA.

Identification:

performance for low

resource languages with

Figure 5: Results for sentence-level detection of hallucinations (left) and omissions (right).

Limitation Identification:
Highly imbalanced dataset

Define group's interests

Identify limitations

Literature review

How can we improve the hallucination detection for machine translation in low-resource languages?

In other words: Beat BLASER (SOTA)

Major challenges

Constraints on computational resources and access

No access to training data

We can't train a neural network stronger than BLASER.

2. SOLVING THE RESEARCH QUESTION

"if the only tool you have is a hammer, it is tempting to treat everything as if it were a nail"

Alternative Approaches

Let's start small scale:

- Binary hallucination detection
- Only 1 language pair: English-Yoruba
- Cross validation to compensate for highly imbalanced limited dataset

Key Term: Cross Validation

Medium / Cross-Validation

Methodology – Embeddings

Step 1:

Encoding the source and translation sentences

Step 2:Calculate cosine similarity for each sentence pair

Step 3: Validation

Calculate the optimal threshold to maximise the F1-Score

Step 4: Test

Use this threshold for binary classification using the test set

Results - Embeddings

Cosine similarity for:

- → SONAR
- → Cohere 3 Multilingual Embedding from Embed 3 *cohere-embed multilingual-v3 0*
- → OpenAl latest embeddings *text-embedding-3-large*

Figure 5: Mean Test scores for LLMs, Embeddings, and *HalOmi* best performing methods.

Conclusion: Embeddings are not enough in order to beat BLASER

What next?

Methodology – LLMs

Building prompting experiments with four Large Language Models

- Cohere Command-R Plus
- Cohere Command-R
- Aya
- OpenAl GPT3.5

	Task introduction		
tt	G-Eval1	G-Eval2	
Input	Chain of Thought (CoT)		
	No CoT	CoT	
	Number of examples 0 examples (zero-shot) 10 examples		
Examples	18 examples		
	Examples order: alternative Hallucination – No Hallucination		
	No Hallucination – Hallucination		
	Label format		
	1/0	0	
	Hallucination / No Hallucination		

Prompting hyperparameters

We compared the best performing experiment of each LLM

- 3-fold cross-validation
- 174 validation samples/fold,
- 120 experiments per sample
 - → 62 640 operations per LLM

Pro-tip:

- Find experts advice
- Calculate costs before running

Methodology – LLMs

Building prompting experiments with four Large Language Models

<u>Chain of Thought (CoT)</u> <u>Zero/Few-shot</u>

Can we automate reasoning text writing?

(a) Few-shot (b) Few-shot-CoT Q: Roger has 5 tennis balls. He buys 2 more cans of tennis Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does balls. Each can has 3 tennis balls. How many tennis balls does he have now? he have now? A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 A: The answer is 11. tennis balls. 5 + 6 = 11. The answer is 11. Q: A juggler can juggle 16 balls. Half of the balls are golf balls, Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are and half of the golf balls are blue. How many blue golf balls are (Output) The answer is 8. X (Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4. / (d) Zero-shot-CoT (Ours) (c) Zero-shot Q: A juggler can juggle 16 balls. Half of the balls are golf balls, Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are and half of the golf balls are blue. How many blue golf balls are A: The answer (arabic numerals) is (Output) There are 16 balls in total. Half of the balls are golf (Output) 8 X balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls. V

Figure 1: Example inputs and outputs of GPT-3 with (a) standard Few-shot ([Brown et al., 2020]), (b)

Task introduction G-Evall G-Eval2 Chain of Thought (CoT) No CoT CoT Number of examples 0 examples (zero-shot) 110 examples 18 examples Examples order: alternative Hallucination - No Hallucination No Hallucination - Hallucination Label format 1/0 Hallucination / No Hallucination

Prompting hyperparameters

<u>Labels</u>

Example order for few shot

Order Sensitivity (positional bias?) of Prompts

Review: I like this movie. Sentiment: Good

Review: I hate this movie Sentiment: Bad

Review: Excellent!. Sentiment: ???

Accuracy: 50 %

Review: I hate this movie. Sentiment: Bad

Review: I like this movie. Sentiment: Good

Review: Excellent!. Sentiment: ???

Accuracy: 85 %

Let's discuss labels

Label words	Accuracy	
	mean (std)	
great/terrible	92.7 (0.9)	
good/bad	92.5 (1.0)	
cat/dog	91.5 (1.4)	
dog/cat	86.2 (5.4)	
terrible/great	83.2 (6.9)	

Methodology - LLMs

Prompt example

	Task Introduction
Input	G-Eval1 G-Eval2
<u>u</u>	Chain of Thought (Co) No CoT
SS	Number of examples 0 examples (zero-shot) 10 examples 18 examples
Examples	Examples order: alternative Hallucination – No Hallucination No Hallucination – Hallucination
	Label format 1/0 Hallucination / No Hallucination

Results

- ✓ LLMs are the best-performing models, beating BLASER
- ✓ Command-R Plus and Command-R outperform all models by 10 points
- ✓ Cohere's embeddings are comparable to BLASER but don't outperform it
- ✓ GPT lags behind, both the LLM and the embeddings

Command-R models outperforming from far

Best performance is also the most robust across folds

We beat BLASER*

*binary, English to Yoruba

Results

Great difference between stable (Command-R models) and unstable LLMs (Aya and GPT) G-Eval2 with CoT is preferred for stable models
All models performed better in zero-shot learning

Best performing model for each LLM - accuracy

	Command Plus	CommandR	Aya	GPT3.5
1st performing experiment	G-Eval2	G-Eval2	G-Eval2	G-Eval2
	CoT	CoT	no CoT	no CoT
	0	0	0	0
	H/NH	H/NH	H/NH	H/NH
	72%	71%	60%	47%
2 nd performing experiment	G-Eval2	G-Eval2	G-Eval2	G-Eval1
	CoT	CoT	CoT	CoT
	0	0	0	18
	347.1	630.24		starts 0
	1/0	1/0	H/NH	H/NH
	68%	69%	56%	46%

Pro-tip: Find which cases your model performs well and which ones wrong to try to find patterns. It's normally not enough to say something works better, but why?

LLMs performances depending on hyperparameters

2. SOLVING THE RESEARCH QUESTION

Results

LLMs are the best performing models, beating BLASER

Command-R Plus and Command-R are outperforming all models by 10 points

Baseline

Confusion Matrices

2. SOLVING THE RESEARCH QUESTION

LimitsWhy was GPT performing so low? Or explaining why robustness is a condition for accuracy

From embedding space to binary classification

	Number of answers changing prediction across folds						
CommandR Plus	3						
CommandR	3						
Aya	14						
GPT3.5	20						

Evaluating unclassification within experiments and LLMs

Research extension proposed: Assessing consistency and improving robustness

Writing the Coursework

Mid-April

Write the paper

15th June

ACL Submission

ACL Reviews Results

EMNLP Submission

15-20th August

EMNLP Results

20th September

3rd October

Camera-ready paper

and Poster

Submissions

Mid-November

Conference

Al Centre,
Dept. of Computer Science,
University College London (UCL), UK

Machine Translation Hallucination Detection for Low and High Resource Languages using Large Language Models

Kenza Benkirane^{1*}, Laura Gongas^{1*},
Shahar Pelles¹, Naomi Fuchs¹, Joshua Darmon¹,
Pontus Stenetorp¹, David Ifeoluwa Adelani^{2,3}, Eduardo Sanchez^{1,4}

¹UCL, ²Mila, Quebec Al institute, ³McGill University, ⁴Meta *: Equal contributions

First, let's dive into a use case

Ní gbogbo igba o gbodo gbàyè síle pelú ilé ise ofurufu lórí ago.

<u>English Human translation:</u> Always you should reserve a sit with an airline company via a telephone

Siempre te quedas sentado con la aerolínea en un vaso.

Ground Truth: Hallucination

Correct hallucination classification:

Research objective:

Evaluate hallucination detection in machine translation (MT)

- across diverse languages, including LRL
 - using LLMs and embeddings
- as a binary classification task (hallucination vs. no hallucination)

Dataset and Baseline

Scope:

18 language directions, including high-resource (HRL) and low-resource (LRL) pairs

- High-Resource Languages (HRL): $EN \leftrightarrow (AR, DE, RU, ES, ZH)$
- Low-Resource Languages (LRL): $EN \leftrightarrow (KA, YO, MN)$
- Non-English centric: ES ↔ YO

AR: Arabic, DE: German, RU: Russian, ES: Spanish,

ZH: Chinese

KA: Kashmiri, YO: Yoruba, MN: Manipuri

Dataset:

HalOmi [1] benchmark for Machine Translation (MT) hallucination detection

Validation set (DE ↔ EN) : 301 sentence pairs

Test set: 2,865 sentence pairs

Baseline:

BLASER-QE (previous state-of-the-art)

[1] HalOmi: A Manually Annotated Benchmark for Multilingual Hallucination and Omission Detection in Machine Translation

Why binary classification?

Direction Total	1 No	2 Small	3 Partial	4 Full
EN→AR 144	136	2	2	4
	94.44%	1.39%	1.39%	2.78%
AR→EN 156	132	5	2	17
	84.62%	3.21%	1.28%	10.90%
EN→RU 146	141	ī	2	2
	96.58%	0.68%	1.37%	1.37%
RU→EN 158	146	3	2	7
	92.41%	1.90%	1.27%	4.43%
EN→ES 153	131	8	3	11
	85.62%	5.23%	1.96%	7.19%
ES→EN 160	127	17	4	12
	79.38%	10.63%	2.50%	7.50%
EN→ZH 160	131	5	4	20
	81.88%	3.13%	2.50%	12.50%
ZH→EN 159	127	9	7	16
	79.87%	5.66%	4.40%	10.06%
EN→KA 184	111	8	30	35
	60.33%	4.35%	16.30%	19.02%
KA→EN 151	89	15	32	15
	58.94%	9.93%	21.19%	9.93%
EN-YO 195	166	4	11	14
	85.13%	2.05%	5.64%	7.18%
Y0→EN 146	124	4	10	8
	84.93%	2.74%	6.85%	5.48%
EN→MN 197	78	52	54	13
	39.59%	26.40%	27.41%	6.60%
MN→EN 152	43	45	58	6
	28.29%	29.61%	38.16%	3.95%
ES→Y0 151	97	16	29	9
	64.24%	10.60%	19.21%	5.96%
Y0→ES 152	80	26	37	9
	52.63%	17.11%	24.34%	5.92%
Total 2564	1859	220	287	198
	72.47%	8.58%	11.19%	7.72%

- Original dataset was based on severity ranking (No, Small, Partial, Full Hallucination)
- Further data analysis showed a **high dataset imbalance**, prompting us to switch to a binary classification paradigm
- We still evaluated the severity ranking analogy with our methods as an **ablation study**

Methodology

We used the Matthew Correlation Coefficient (MCC) providing a single, easily interpretable value between -1 and +1. This value encapsulates the model's performance for the confusion matrix scores, making it more robust to class imbalance.

$$MCC = \frac{TN \times TP - FP \times FN}{\sqrt{(TN + FN)(FP + TP)(TN + FP)(FN + TP)}}$$

Ablation study results

Model	EN→HRL			HRL→EN				EN→LRL				LRL→EN		ES→Y0	Y0→ES	AVG			
	AR	AR RU ES	ES	ZH	AR	RU ES	ZH KA	YO	YO MN	KA	YO	MN		1 20000 MINES	HRL	LRL	Overall		
GPT text-embedding-3-large	0.89	0.82	0.84	0.92	0.91	0.94	0.87	0.87	0.71	0.7	0.54	0.56	0.68	0.6	0.62	0.51	0.88	0.62	0.75
Cohere Embed v3	0.84	0.87	0.83	0.88	0.9	0.96	0.89	0.83	0.75	0.73	0.54	0.58	0.74	0.64	0.65	0.59	0.88	0.65	0.76
Mistral-embed	0.92	0.88	0.82	0.85	0.92	0.86	0.86	0.83	0.72	0.7	0.56	0.53	0.68	0.61	0.63	0.53	0.87	0.62	0.74
SONAR	0.89	0.79	0.85	0.77	0.93	0.93	0.85	0.87	0.81	0.8	0.69	0.73	0.79	0.73	0.69	0.62	0.86	0.73	0.8
GPT4-Turbo	0.8	0.72	0.65	0.8	0.86	0.91	0.86	0.79	0.61	0.57	0.26	0.47	0.43	0.31	0.38	0.4	0.8	0.43	0.61
GPT40	0.71	0.74	0.65	0.8	0.86	0.86	0.74	0.8	0.64	0.58	0.3	0.47	0.59	0.4	0.45	0.41	0.77	0.48	0.63
Command R	0.56	0.88	0.61	0.83	0.86	0.84	0.77	0.68	0.47	0.51	0.19	0.16	0.19	0.33	0.37	0.3	0.75	0.32	0.53
Command R+	0.59	0.56	0.65	0.7	0.91	0.91	0.76	0.74	0.34	0.39	0.04	0.41	0.43	0.26	0.15	0.4	0.73	0.3	0.51
Mistral 8x22b	0.25	0.59	0.53	0.67	0.84	0.94	0.74	0.77	0.51	0.4	0.08	0.46	0.52	0.5	0.33	0.46	0.67	0.41	0.54
Sonnet	0.7	0.75	0.61	0.8	0.84	0.89	0.7	0.69	0.64	0.62	0.41	0.56	0.58	0.55	0.53	0.47	0.75	0.5 5	0.65
Opus	0.6	0.91	0.69	0.83	0.88	0.9	0.83	0.76	0.66	0.54	0.2	0.49	0.7	0.53	0.33	0.49	0.8	0.49	0.65
Llama3-70B	0.6	0.91	0.69	0.83	0.88	0.9	0.83	0.76	0.66	0.54	0.2	0.49	0.7	0.53	0.33	0.49	0.8	0.49	0.65
BLASER 2.0-QE	0.9	0.89	0.85	0.78	0.94	0.92	0.87	0.87	0.81	0.83	0.79	0.73	0.78	0.8	0.68	0.58	0.88	0.75	0.81

Table 5: ROC-AUC results for severity hallucination ranking across HRL and LRL directions. *Bold values indicate the best performing prompt per model.*

Original dataset was based on **severity ranking** (No, Small, Partial, Full Hallucination)

Methodology - Embedding spaces

Step 1:

Encoding the source and translation sentences

Step 2:Calculate cosine similarity for each sentence pair

Step 3: Validation

Calculate the optimal threshold to maximise the F1-Score

Step 4: Test

Use this threshold for binary classification using the test set

Methodology - Large Language Models

System prompts variations:

Three prompts

Two CoT variations

Zero shot learning

Human Evaluation of Machine Translation Systems:

Hallucination Evaluation Criteria: Does the translated text contain information completely unrelated to the source text?

- Hallucination: there is hallucination.
- No Hallucination: there is no hallucination

Instructions for Evaluating Machine Translation: You will be given a source text in src_lang and a machine translated text in tgt_lang. Your task is to identify if the machine translated text has hallucination or not. Please make sure you read and understand these instructions carefully. Please keep this document open while reviewing, and refer to it as needed.

Evaluation Criteria:

Hallucination: Does the translated text contain information completely unrelated to the source text?

- Hallucination: there is hallucination.

No Hallucination: there is no hallucination.

Instructions for Evaluating Machine Translation:

You will be given a source text in src_lang and a machine translated text in mt_lang. Your task is to identify if the machine translated

text has hallucination or not. Please make sure you read and understand these instructions

carefully. Please keep this document open while reviewing, and refer to it as needed.

Definition of Hallucination: The translated text is considered a hallucination if it introduces

information that is completely unrelated to the source text.

Hallucination labels:

- Hallucination: there is hallucination.
- No hallucination: there is no hallucination.

Source Text: src_text
Translated Text: mt_text

Does the translation contain hallucination? Answer (label ONLY: 'Hallucination' OR 'No

Hallucination'):

Prompt structure:

Task descriptions, hallucination definitions, and language-specific instructions

<u>Validation criteria:</u> Best prompt per model selected on highest MCC score

Overall results

- → LLMs outperformed BLASER-QE in 13/16 language directions
- → New state-of-the-art achieved for most language pairs

Findings

Capabilities

Resources

Performance across languages

LLMs can outperform previous models without being explicitely trained on

Embedding spaces are competitive for

High Resource

Low Resource

Non-Latin Scripts

Results summarised

High-resource languages (HRLs):

- → Best overall: Llama3-70B (0.63 MCC, +16 points over BLASER-QE)
- → 10/12 evaluated methods surpassed BLASER-QE
- → Embedding methods competitive, especially for HRL→EN

Non- Latin scripts:

Embeddings performed well for HRL→EN

<u>Low-resource languages (LRLs):</u>

- → Best overall: Claude Sonnet
- → GPT4o most consistent across all languages (lowest standard deviation)

Non-English translations:

Opus showed promise, outperforming embeddings

seli

Conclusion and future work

Performance factors

- → Resource level (HRL vs. LRL)
- → Translation direction (to/from English, non-English centric)
- → Script type (Latin vs. non-Latin)

Challenges

- →LRL performance still lags behind HRL
- →Dataset imbalances affect evaluation
- →Non-English centric translations remain difficult
- → Fine-grained hallucination span detection to improve interpretability

3. WRITING THE RESEARCH PAPER

Writing the Coursework

ACL Submission

15-20th August

EMNLP
2024

ACL
Reviews
Results

EMNLP Submission

20th September

EMNLP Results

3rd October

Camera-ready
paper
and
Poster

Submissions

Mid-November

Conference

ACL Rolling Review (ARR)

Association for Computational Linquistics

Activities. The ACL organizes several of the top conferences and workshops in the field of computational linguistics and natural language processing. These ...

History · Annual Meeting of the ACL · Activities · Special Interest Groups

Step 1: Receive and answer reviews

Step 2: Receive the meta-review

- ✓ Recieve reviews and have 5 days to answer, most of the time during the weekend
- ✓ A few weeks later, receive the meta review with an overall assesment

Paper accepted!

Workshops

Workshop: interactive session focused on hands-on activities, discussions, or in-depth learning about a specific topic, often designed to engage participants actively.

Pro-tip:

- Great way to submit a paper and be exposed to your specific field
- Funding opportunities

Workshops

W1. BlackboxNLP 2024: Analysing and interpreting neural networks for NLP

- Organizers: Najoung Kim, Jaap Jumelet, Hosein Mohebbi, Hanjie Chen and Yonatan Belinkov
- · Date: Fri, Nov 15

W2. Seventh Workshop on Computational Models of Reference, Anaphora and Coreference (CRAC 2024)

- Organizers: Maciej Ogrodniczuk, Sameer Pradhan, Anna Nedoluzhko, Massimo Poesio and Vincent Ng
- · Date: Fri, Nov 15

W3. Seventh Workshop on Fact Extraction and VERification (FEVER)

- Organizers: Michael Sejr Schlichtkrull, Mubashara Akhtar, Rami Aly, Christos Christodoulopoulos, Oana Cocarascu, Zhijiang Guo, Zhenyun Deng, Arpit Mittal, James Thorne and Andreas Vlachos
- · Date: Fri, Nov 15

W4. Workshop on the Future of Event Detection

EMNLP 2024

NINTH CONFERENCE ON MACHINE TRANSLATION (WMT24)

3. WRITING THE RESEARCH PAPER

Writing the Coursework

Mid-April

Write the paper

15th June

ACL Submission

V 15-20th August

ACL Reviews Results

EMNLP Submission

20th September

EMNLP Results 3rd October

Camera-ready
paper
and
Poster

Submissions

The conference

In total, there are 1271 papers accepted to the Main Conference and 1029 papers accepted to Findings. The acceptance rate for Main Conference papers is 20.8%

Pro-tip:

- Try to give yourself as much exposure as possible
- List before the conference the people you'd like to meet and ideally contact them for coffee chat.
- Be proactive

A

What have we learned and how you can use it

For your coursework, for your thesis, for your next job, etc...

_earning

Be aware of timing

- Start working early
- Keep notes of everything
- Everything takes 1.25 more time
- Less is more

Go deep on the problem, not the solution

- Read papers, make sure you understand them profoundly, and reproduce them if necessary
- The best way to learn about a subject is to read the paper.
- Mentors give great feedback, make sure to come prepare to make the most out of your time

Be curious

- Each lecture will give you a new lens from which to see the problem: be proactive
- There's lot of news in the field, try to inspect the companies working on your problem, the techniques they use, the papers they publish, etc.

What helped us during our NLP module

- ✓ Speech and Language Processing 2025 new pdf shared
- ✓ Read paper: Go straight to the source
- ✓ GitHub: read code, reproduce code, etc.
- ✓ Read news, but the right ones, and the right amount

How to stay up to date

For Business: Newsletters

About Al

TLDR Tech, TLDR AI, TLDR DevOps

TheScroll DataScienceWeekly

AlphaSignal The Tech Buzz NoCode.Al

About Healthcare Al

What The Health? DoctorPenguin

HealthTech Pigeon

Machine Learning for MDs

Apps

For Developers: Social Platforms

@GoogleAI, @GoogleHealth, @GoogleDeepMind

@OpenAl @AnthropicAl @MistralAlLabs @Cohere

@dwarkesh_sp

@AIBreakfast

@trending_repos

@DAIR_AI

@DeepLearningAl

@karpathy

Mistral, Perplexity, Google Developers, Cohere, OpenAl, HuggingFace,

All have public discord workspaces with links available on their website.

A

It's worth the work

Thank you for your attention!

Check out our paper for more details!

Laura Gongas laura.gkogka.23@ucl.ac.uk

Kenza Benkirane kenza.benkirane.23@ucl.ac.uk

Kenza Benkirane^{1*}, Laura Gongas^{1*}, Shahar Pelles¹, Naomi Fuchs¹, Joshua Darmon¹, Pontus Stenetorp¹, David Ifeoluwa Adelani^{2,3}, Eduardo Sanchez^{1,4} *: Equal contributions