

deeplearning.ai

Basics of Neural Network Programming

Vectorizing Logistic

Regression

Vectorizing Logistic Regression

$$Z^{(1)} = w^{T}x^{(1)} + b$$

$$Z^{(2)} = w^{T}x^{(2)} + b$$

$$Z^{(3)} = w^{T}x^{(3)} + b$$

$$Z^{(3)} = \sigma(z^{(3)})$$

$$Z^$$

Andrew Ng

deeplearning.ai

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

Vectorizing Logistic Regression

$$\frac{dz^{(1)} = a^{(1)} - y^{(1)}}{dz^{(2)}} = a^{(2)} - y^{(2)}$$

$$\frac{dz^{(1)} = a^{(1)} - y^{(1)}}{dz^{(2)}} = a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - a^{(1)}] \qquad Y = [y^{(1)} - y^{(2)}]$$

$$A = [a^{(1)} - a^{(1)}] \qquad Y = [y^{(1)} - y^{(2)}]$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(1)} \rightarrow [a^{(1)} - y^{(1)}]$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(1)} \rightarrow [a^{(1)} - y^{(1)}]$$

$$A =$$

$$db = \frac{1}{m} \sum_{i=1}^{n} dz^{(i)}$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

Implementing Logistic Regression

J = 0,
$$dw_1 = 0$$
, $dw_2 = 0$, $db = 0$

for i = 1 to m:

 $z^{(i)} = w^T x^{(i)} + b$
 $a^{(i)} = \sigma(z^{(i)}) \leftarrow$
 $J += -[y^{(i)} \log a^{(i)} + (1-y^{(i)}) \log(1-a^{(i)})]$
 $dz^{(i)} = a^{(i)} - y^{(i)} \leftarrow$

$$\begin{bmatrix} dw_1 += x_1^{(i)} dz^{(i)} \\ dw_2 += x_2^{(i)} dz^{(i)} \end{bmatrix} \partial \omega + = x_1^{(i)} dz^{(i)}$$
 $db += dz^{(i)}$

J = J/m, $dw_1 = dw_1/m$, $dw_2 = dw_2/m$
 $db = db/m$

iter in range (1000):
$$=$$
 $Z = \omega^T X + b$
 $= n p \cdot dot (\omega \cdot T \cdot X) + b$
 $A = \omega (Z)$
 $A = \omega$