Week 1:

- Analysis of Algorithm
 - Background analysis through a Program and its functions.
- Asymptotic Notations
 - Best, Average and Worst case explanation through a program.
- Arrays
- Introduction and Advantages
- Types of Arrays
 - Fixed-sized array
 - Dynamic-sized array
- Operations on Arrays
 - Searching
 - Insertions
 - Deletion
 - o Arrays vs other DS
 - Reversing Explanation with complexity

Problems

- Left Rotation of the array by 1
- Left Rotation of the array by D places
- Leaders in an Array
- o Maximum Difference Problem
- Stock Buy and Sell Problem
- Trapping Rainwater Problem
- Maximum subarray sum
- Longest even-odd subarray
- o Maximum Circular sum subarray.
- Majority Element
- Sliding Window Technique
- Prefix sum technique etc.
- Basic Recursion

Week 2:

- Basic Bit Manipulation
- Bitwise Operators in C++
 - Operation of AND, OR, XOR operators
 - Operation of Left Shift, Right Shift and Bitwise Not
- Bitwise Operators in Java
 - o Operation of AND, OR
 - o Operation of Bitwise Not, Left Shift
 - Operation of Right Shift and unsigned Right Shift

- Problem: Check Kth bit is set or not
 - o Method 1: Using the left Shift.
 - Method 2. Using the right shift
- · Problem: Count Set Bits
 - o Method 1: Simple method
 - Method 2: Brian and Kerningham Algorithm
 - Method 3: Using Lookup Table
- Problem: To check whether a number is a power of 2 or not
- Problem: Odd occurrences in an array.
- Problem: Two numbers having odd occurrences in an array.
- Problem: Generate power set using bitwise operators.
- Hashing
- Introduction and Time complexity analysis
- Application of Hashing
- Discussion on Direct Address Table
- · Working and examples on various Hash Functions
- Introduction and Various techniques on Collision Handling
- Chaining and its implementation
- Open Addressing and its Implementation
- Chaining V/S Open Addressing
- Double Hashing
- C++
 - Unordered Set
 - Unordered Map
- Java
 - HashSet
 - HashMap
- Problems
 - Count Distinct Elements
 - Count of the frequency of array elements
 - The intersection of two arrays
 - Union of two unsorted arrays
 - o Pair with given sum in an unsorted array
 - Subarray with zero-sum
 - Subarray with given sum
 - Longest subarray with a given sum
 - Longest subarray with an equal number of 0's and 1's
 - Longest common span with the same sum in a binary array
 - Longest Consecutive Subsequence
 - Count Distinct elements in every window

- Strings
- Discussion of String DS
- Problems
 - Given a string, check if they are an anagram of each other.
 - Given a string, find the leftmost character that repeats.
 - o Given a string, find the leftmost character that does not repeat.
 - â€cGiven a string, find the lexicographic rank of it in O(n) time.
 - Implementation of the previously discussed lexicographic rank problem.
 - Given a text string and a pattern string, find if a permutation of the pattern exists in the text.
 - Given two strings, check if they are rotations of each other or not.
 - Various Pattern Searching Algorithms.
- Linked Lists
- Introduction
 - Implementation in CPP
 - Implementation in Java
 - o Comparison with Array DS
- Doubly Linked List
- Circular Linked List
- Loop Problems
 - Detecting Loops
 - Detecting loops using Floyd cycle detection

- Linked List
- Problem:
- · Middle of Linked List
- Nth node from the end of linked list
- Deleting a Node without accessing Head pointer of Linked List
- An iterative method to Reverse a linked list
- · Recursive method to reverse a linked list
- · Segregating even-odd nodes of linked list
- The intersection of two linked list
- · Pairwise swap nodes of linked list
- · Clone a linked list using a random pointer

- LRU Cache Design
- Stacks
- Understanding the Stack data structure
- Applications of Stack
- Implementation of Stack in Array and Linked List
 - o In C++
 - o In Java

Problem:

- Balanced Parenthesis
- Two stacks in an array
- K Stacks in an array
- Stock span problem with variations
- Previous Greater Element
- Next Greater Element
- Largest Rectangular Area in a Histogram

Queues

- Introduction and Application
- Implementation of the queue using array and LinkedList
 - In C++ STL
 - In Java
 - Stack using queue

Problem:

- Reversing a Queue
- Generate numbers with given digits
- Maximums of all subarrays of size k

Week 5

Linked List

- Problem:
- Middle of Linked List
- Nth node from the end of linked list
- Deleting a Node without accessing Head pointer of Linked List
- An iterative method to Reverse a linked list
- Recursive method to reverse a linked list
- Segregating even-odd nodes of linked list
- The intersection of two linked list
- · Pairwise swap nodes of linked list
- Clone a linked list using a random pointer
- LRU Cache Design
- Stacks
- Understanding the Stack data structure
- Applications of Stack
- Implementation of Stack in Array and Linked List
 - o In C++

o In Java

Problem:

- Balanced Parenthesis
- Two stacks in an array
- K Stacks in an array
- Stock span problem with variations
- Previous Greater Element
- Next Greater Element
- o Largest Rectangular Area in a Histogram

Queues

- Introduction and Application
- · Implementation of the queue using array and LinkedList
 - In C++ STL
 - In Java
 - Stack using queue

• Problem:

- Reversing a Queue
- o Generate numbers with given digits
- Maximums of all subarrays of size k

Week 5

- Binary Tree
- Introduction
 - Tree
 - Application
 - Binary Tree
 - Tree Traversal

Implementation of:

- Inorder Traversal
- Preorder Traversal
- Postorder Traversal
- Level Order Traversal (Line by Line)
- Tree Traversal in Spiral Form

Problems:

- Size of Binary Tree
- Maximum in Binary Tree
- Height of Binary Tree
- o Print Nodes at K distance
- Print Left View of Binary Tree
- Children Sum Property
- Check for Balanced Binary Tree
- Maximum Width of Binary Tree

- Convert Binary Tree to Doubly Linked List
- o Construct Binary Tree from Inorder and Preorder
- The diameter of a Binary Tree
- LCA problem with an efficient solution
- Binary Search Tree
- Background, Introduction and Application
- · Implementation of Search in BST
 - In CPP
 - o In Java
- Insertion in BST
 - o In CPP
 - In Java
- Deletion in BST
 - In CPP
 - o In Java
- Floor in BST
 - In CPP
 - o In Java
- Self Balancing BST
- AVL Tree
- Red Black Tree
- Set in C++ STL
- Map in C++ STL
- TreeSet in java
- TreeMap in Java
- Problems:
 - The ceiling of a key in BST
 - Ceiling on the left side in an array
 - Find Kth Smallest in BST
 - Check for BST
 - Fix BST with Two Nodes Swapped
 - Pair Sum with given BST
 - Vertical Sum in a Binary Tree
 - Vertical Traversal of Binary Tree
 - Top View of Binary Tree
 - Bottom View of Binary Tree

- Heaps
- Introduction & Implementation
- Binary Heap

- Insertion
- Heapify and Extract
- Decrease Key, Delete and Build Heap
- Heap Sort
- Priority Queue in C++
- PriorityQueue in Java
- Problems:
 - Sort K-Sorted Array
 - Buy Maximum Items with Given Sum
 - K Largest Elements
 - Merge K Sorted Arrays
 - Median of a Stream
- · Graph Algorithms
- Introduction to Graph
- Graph Representation
 - Adjacency Matrix
 - Adjacency List in CPP and Java
 - Adjacency Matrix VS List
- Breadth-First Search
 - Applications
- Depth First Search
 - Applications

- Graph Algorithms
- Problems:
 - Shortest Path in an Unweighted Graph
 - Number of Islands
 - Snake-Ladder
 - Detecting Cycle
 - In the Undirected Graph
 - In the Directed Graph
 - Topological Sorting
 - Kahn's BFS Based Algorithm
 - DFS Based Algorithm
- Shortest Path in Directed Acyclic Graph
- Greedy Algorithms
- Introduction
- Activity Selection Problem
- Fractional Knapsack
- Job Sequencing Problem

- Dynamic Programming
- Introduction
- Dynamic Programming
 - Memoization
 - Tabulation
- Problems:
 - Longest Common Subsequence
 - Coin Change Count Combinations
 - Edit Distance Problem
 - Naive Approach
 - DP Approach
 - Longest Increasing Subsequence Problem
 - Naive Approach
 - Efficient Approach
 - Maximum Cuts
 - Minimum coins to make a value
 - o Minimum Jumps to reach at the end
 - 0-1 knapsack problem
 - Naive Approach
 - Efficient Approach
 - Optimal Strategy for a Game
 - o Variation of Longest Common Subsequence
 - Variation of Longest Increasing Subsequence
 - Egg Dropping Problem