代数 2 H 课程讲义

Instructor: 余成龙 Notes Taker: 刘博文

Qiuzhen College, Tsinghua University $2022 \ {\rm Fall}$

课程信息:

◊ 授课人: 余成龙;

◇ 办公室: 近春园西楼 260;

♦ 邮箱: yuchenglong@mail.tsinghua.edu.cn;

◇ 成绩分布: 作业 (20%) + 期中 (30%) + 期末 (50%);

◇ 参考书: M.Atiyah Communicative algebra, S.Lang Algebra. 内容大纲:

◊ 伽罗瓦理论;

◊ 同调代数;

◊ 交换代数.

目录

第	一部	分。伽罗瓦理论	3
第	一章	域论	4
	1.1	域扩张	4
	1.2	代数扩张	6
	1.3	分裂域	7
	1.4	有限域	9
		代数闭域与代数闭包	
	1.6	正规扩张	12

第一部分

伽罗瓦理论

第一章 域论

1.1 域扩张

在本课程中, 如不加特殊说明, 环 R 总是指含有单位元的交换环, 并且环同态是保持单位元的.

定义 1.1.1. 对于环 R, 总有环同态 $\rho: \mathbb{Z} \to R$, 如果记 $\ker \rho = (n)$, 那么 R 的特征 (characteristic)定义为 n.

定义 1.1.2. 如果环 R 中任何非零元素都可逆, 那么环 R 被称为一个域 (field), 并且显然对于域来说, 其特征为素数.

我们在学习环论时, 环的理想是一个非常重要的概念, 但是对域来说, 其只有平凡理想, 即只有零理想及自身. 这很大程度上限制了域之间的同态, 假设有域同态 τ : $E \to F$, 那么如果 τ 不是零映射, 那么 τ 一定是单射, 从而我们不妨将 E 视作包含在 F 中, 这引出了下面的概念.

定义 1.1.3. 给定域 E, F, 如果存在 (单) 同态 $\tau: F \to E$, 那么称 E 是域 F 的扩张 (extension), 记做 E/F.

注记. 当我们用 (单) 同态 τ 表示域扩张 E/F 时, 我们不仅强调我们可以将 F 视作 E 的子域, 也强调映射 τ 是如何映射的, 因为可能存在多种方式将 F 视作 E 的子域, 例如:

$$\tau : \mathbb{Q}[x]/(x^2+1) \to \mathbb{C}$$
 $\tau' : \mathbb{Q}[x]/(x^2+1) \to \mathbb{C}$ $x \mapsto i$ $x \mapsto -i$

都给出了这样的映射.

定义 1.1.4. 给定域扩张 E/F, 扩张的次数 (degree)定义为 $[E:F] = \dim_F E$.

定义 1.1.5. 给定域扩张 $\tau\colon F\to E, \tau'\colon F\to E',$ 域扩张之间的态射 (morphism between field extension)是指域之间的同态 $\varphi\colon E\to E',$ 使得如下的图交换

$$F \xrightarrow{\tau'} E'$$

记号 1.1.6. 给定域扩张 E/F, E'/F, 用 $Hom_F(E, E')$ 记域扩张之间的态射的全体.

定义 1.1.7. 给定域扩张 E/F, E'/F, 其被称为**同构的** (isomorphism), 如果两者间存在是同构的域扩张之间的态射.

定义 1.1.8. 一个域扩张被称为**有限的** (finite extension), 如果其扩张次数有限, 否则被称为**无限的** (infinite extension).

命题 1.1.9. 对于域扩张 $F \subseteq E \subseteq K$, 则 [K:F] = [K:E][E:F].

证明: 先假设 E/F, K/E 都是有限扩张, 取 E 的一组 F-基 $\{\alpha_1, \ldots, \alpha_n\}$ 以及 K 的一组 E-基 $\{\beta_1, \ldots, \beta_m\}$, 那么简单的线性代数告诉我们 $\{\alpha_i\beta_i\}$ 是 K 的一组 F-基.

例子. \mathbb{C}/\mathbb{R} 是二次扩张, \mathbb{R}/\mathbb{Q} 是无穷扩张.

例子. $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}/\mathbb{Q}$ 是二次扩张.

例子. 给定域 F, 考虑

$$F(x) = \{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in F[x] \}$$

则 F(x) 是 F 的域扩张.

注记. 即任何域都可以找到一个更大的域作为其域扩张, 并且上述操作可以多次操作, 得到 F(x,y), F(x,y,z) 等等.

定义 1.1.10. E/F 是域扩张, $S \subseteq K$ 是一个子集, 则记 F[S] 是 E 中包含 F,S 的最小的子环; F(S) 是 E 中包含 F,S 最小的子域. 特别地, 如果 $S = \{u\}$, 称 F(u) 叫做域 F 的一个**单扩张** (simple extension).

命题 1.1.11. 假设域 \mathbb{F} 的特征不为 2, 如果 E/F 是二次扩张, 那么 $E = F(\alpha)$, 其中 $\alpha^2 \in F$.

证明: 假设 $\{1,\beta\}$ 是 E 的一组 F-基, 那么 $\beta^2 = a + b\beta$, 其中 $a,b \in F$, 注意到

$$(\beta - \frac{1}{2}b)^2 = a + \frac{1}{4}b^2 \in F$$

那么 $\alpha = \beta - \frac{1}{2}$ 即可.

注记. 域的特征不为 2 用在了配方上, 这是一个不可缺少的条件.

问题 1.1.12. 特征 2 域上的二次扩张是什么样的?

研究域扩张的一个重要的好处就是可以帮助我们求解方程, 例如 $x^2+1=0$ 在 \mathbb{R} 上没有根, 但是我们可以在 \mathbb{R} 的域扩张 \mathbb{C} 中找到它的一个根, 实际上, 我们总可以通过域扩张的办法去寻找根.

命题 1.1.13. 给定域 F 以及多项式 $f(x) \in F[x]$, 存在域扩张 E/F 使得 f(x) 在 E 中有根.

证明: 将 f(x) 在 F[x] 中写作不可约因子 $p_1(x) \dots p_k(x)$ 的乘积, 如果有一次因子, 那么 f(x) 在 F 中就有根, 否则取某个不可约多项式 $p_1(x)$, 考虑

$$E = F[x]/(p_1(x))$$

那么 E/F 是一个域扩张, 并且 f(x) 在 E 中有根 $x + (p_1(x))$.

1.2 代数扩张

定义 1.2.1. 给定域扩张 E/F, $\alpha \in E$ 称为在 F 上代数 (algebraic), 如果存在非零多项式 $p(x) \in F[x]$, 使得 $p(\alpha) = 0$, 否则则称 α 在 F 上超越 (transcendental).

例子. $\sqrt{2}$ 在 \mathbb{Q} 上是代数元, e,π 在 \mathbb{R} 上是超越元.

定义 1.2.2. 给定域扩张 E/F, $\alpha \in E$ 在 F 上代数,则满足 $p(\alpha) = 0$ 的次数最低的首一多项式 p(x) 称为 α 的极小多项式 (minimal polynomial).

注记. 我们还可以如下刻画 α 是否在 F 上代数: 考虑赋值映射 θ_α : $F[x] \to F[\alpha]$, 则 α 在 F 上代数当且仅当 $\ker\theta_\alpha\neq0$; α 在 G 上超越当且仅当 $\ker\theta_\alpha=0$, 即 G0; G0 是一个同构.

命题 1.2.3. 给定域扩张 E/F, $\alpha \in E$ 在 F 上代数, p(x) 是其极小多项式, 那么 $[F(\alpha):F] = \deg p(x)$.

证明: 注意到 $F(\alpha) \cong F[x]/(p(x))$, 并且 $[F[x]/(p(x)):F] = \deg p(x)$.

引理 1.2.4. 给定单扩张 $F(\alpha)/F$, 其中 α 在 F 上代数, p(x) 是其极小多项式. 对于域扩张 E/F, 存在 F-嵌入 $\tau\colon F(\alpha)\hookrightarrow E$ 当且仅当 p(x) 在 E 中有根.

证明: 假设 p(x) 在 E 中有根 β , 那么考虑 F-映射

$$\varphi \colon F[x] \to E$$
$$x \mapsto \beta$$

并且由于 $p(\beta) = 0$, 从而 φ 给出了 $F[x]/(p(x)) \cong F(\alpha)$ 到 E 的 \mathbb{F} -嵌入.

注记. 对于上述引理, 我们有如下的注记:

1. 上述引理还可以做如下的简单推广

引理 1.2.5. 给定单扩张 $F(\alpha)/F$, 其中 α 在 F 上代数, p(x) 是其极小多项式. 考虑映射 $\varphi\colon F\to F'$ 以及域扩张 E/F', 存在如下的交换图当且仅当 $\varphi(p(x))$ 在 E 中有根.

$$F(\alpha) \xrightarrow{\tau} E$$

$$\uparrow \qquad \qquad \uparrow$$

$$F \xrightarrow{\varphi} F'$$

不难发现之前是取 $\varphi: F \to F$ 为恒等的情况.

2. 从证明中我们还可以看出, p(x) 在 E 中的不同的根给出了不同的 F-嵌入, 因此嵌入的个数小于等于 $\deg p(x)$.

定义 1.2.6. 域扩张 E/F 称为代数扩张 (algebraic extension), 如果 E 中任何一个元素都在 F 上代数, 否则称为超越扩张 (transcendental extension).

例子. \mathbb{C}/\mathbb{R} 是代数扩张.

命题 1.2.7. 有限扩张是代数扩张.

证明: 假设 E/F 是有限扩张, 任取 $\alpha \in E$, 考虑 $1, \alpha, \alpha^2, \ldots$, 由于 E/F 是有限扩张, 则存在足够大的 n 使得

$$\alpha^{n+1} = a_n \alpha^n + \dots + a_1 \alpha + a_0$$

从而 $\alpha \in E$ 在 F 上代数, 即 E/F 是代数扩张.

注记. 反之并不成立, 即代数扩张不一定是有限扩张.

推论 1.2.8. 给定域扩张 E/F, 如果 $\alpha, \beta \in E$ 都在 F 上代数, 则 $\alpha \pm \beta, \alpha\beta, \alpha/\beta(\beta \neq 0)$ 都在 F 上代数.

证明:由于 $\alpha, \beta \in E$ 都是代数的,那么 $F(\alpha), F(\beta)$ 都是有限扩张,从而 $F(\alpha, \beta)$ 也是有限扩张,从而是代数扩张,即 $\alpha \pm \beta, \alpha\beta, \alpha/\beta(\beta \neq 0)$ 都是代数的.

注记. 这也就是说 E 中所有在 F 上代数的元素组成了 E 的一个子域.

命题 1.2.9. 给定代数扩张 E/F, K/E, 那么 K/F 也是代数扩张.

命题 1.2.10. 给定代数扩张 E/F, 则 $\operatorname{Hom}_F(E,E) = \operatorname{Aut}_F(E)$.

证明: 任取 φ : $E \to E$ 是域扩张之间的态射,我们现在只需要说明其一定是满射即可. 任取 $\alpha \in K$,记其极小多项式为 p(x),我们用 S 记 p(x) 在 E 中的根的全体,由于 φ 固定 E,从而 φ 给出了 E 到自身的一个映射,并且由于 E 是单的,以及 E 是有限集,从而 E 在 E 上是满射,从而一定存在 E 中的元素被 E 映射成 E0, 即 E2 是满射.

1.3 分裂域

定义 1.3.1. 给定域扩张 E/F, 多项式 $f(x) \in F[x]$ 在 E 中分裂 (split), 如果 p(x) 在 E 中可以写成:

$$f(x) = c \prod_{i=1}^{n} (x - \alpha_i)$$

其中 $\alpha_i \in E$.

定义 1.3.2. 给定域扩张 E/F, E 被称作是 $f(x) \in F[x]$ 的分裂域 (splitting field), 如果 E 是包含 F 使得 f(x) 分裂的最小的域.

注记. 如果 $E \in f(x) \in F[x]$ 的分裂域, 那么 E/F 是代数扩张.

定理 1.3.3. 给定域 F, 多项式 $f(x) \in F[x]$ 的分裂域 E 存在, 并在在同构意义下唯一. 并且 $[E:F] \le n!$, 其中 $n = \deg f(x)$.

证明:我们通过对 p(x) 次数的归纳来证明存在唯一性, 当 n=1 的时候是显然的.

1. 存在性: 根据命题1.1.13, 总可以找到域扩张 F'/F 使得 p(x) 在 F' 中有根, 因此 p(x) 在 F'[x] 中可以写成:

$$f(x) = (x - u)f_1(x), \quad \deg f_1(x) = n - 1$$

因此利用归纳假设, 存在 $f_1(x)$ 在 F' 上的唯一的分裂域 E, 并且 $[E:F'] \leq (n-1)!$, 根据分裂域的定义自然有 E 也是 p(x) 在 F 上的分裂域, 并且 $[E:F] = [E:F'][F':F] \leq (n-1)! \cdot n = n!$.

2. 唯一性: 如果 E' 是 f(x) 在 F 上的另一个分裂域, 根据引理1.2.4, 存在嵌入 $F' \hookrightarrow E'$, 那 么 E' 也应是 $p_1(x)$ 在 F' 上的分裂域, 因此 $E' \cong E$.

上述证明分裂域存在的方法虽然简洁, 但是我们实际上可以做的更精细一些, 计算出分裂域之间的同构的个数有多少个, 这主要依赖于注记1.2.

定理 1.3.4. 给定域 F, E 是 $f(x) \in F[x]$ 的分裂域. 如果 f(x) 在域扩张 L/F 中分裂, 那么存在 $\varphi \in \operatorname{Hom}_F(E,L)$. 这样 φ 的个数小于等于 [E:F], 并且等号取得当且仅当 f(x) 没有重根.

证明: 假设 $\{\alpha_1, \ldots, \alpha_n\}$ 是 f(x) 的所有根, 我们归纳地考虑: 由于 f(x) 在 L 中分裂, 那么根据引理1.2.4有如下的延拓:

$$F(\alpha_1) \xrightarrow{---} L$$

$$\uparrow \qquad \uparrow$$

$$F \xrightarrow{\text{id}} F$$

此时延拓可以选择的个数小于等于 $[F(\alpha_1):F]$. 利用注记1.2我们可以做如下的延拓:

这是因为 α_2 在 $F(\alpha_2)$ 上的极小多项式 $p_2(x)$ 是 f(x) 的因子, 从而 $\varphi_1(p_2(x))$ 依然在 L 中分裂, 此时延拓的可以选择的个数小于等于 $[F(\alpha_1,\alpha_2):F(\alpha_1)]$, 不断归纳即可得到 $\varphi\in \operatorname{Hom}_F(E,L)$, 并且这样的 φ 的个数小于等于

$$[F(\alpha_1):F][F(\alpha_1,\alpha_2):F(\alpha_1)]\dots[F(\alpha_1,\dots,\alpha_n):F(\alpha_1,\dots,\alpha_{n-1})]=[E:F]$$

并且等号取得当且仅当 f(x) 没有重根.

注记. 特别地, 如果取 L 就是 f(x) 的分裂域 E, 那么 $\varphi \in \operatorname{Hom}_F(E, E) = \operatorname{Aut}_F(E)$ 的个数小于等于 [E:F], 并且等号取得当且仅当 f(x) 没有重根.

下面我们给出一种判断多项式有无重根的办法.

定义 1.3.5. 给定域 F 以及 $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in F[x]$, 其形式导数 (formal derivative)定义为

$$f'(x) := na_n x^{n-1} + \dots + a_1$$

引理 1.3.6. 对于 $f(x), g(x) \in F[x]$, 有

- 1. (f(x)g(x))' = f'(x)g(x) + f(x)g'(x).
- 2. (f(g(x)))' = f'(g(x))g'(x).

引理 1.3.7. 给定 $f(x) \in F[x]$, p(x) 有重根当且仅当 $(f, f') \neq 1$. 特别地, 如果 f 是不可约多项式, 这个条件等价于 f' = 0.

证明: 在 f(x) 的分裂域中将 f(x) 写做 $f(x) = c \prod_{i=1}^{n} (x - u_i)$, 则

$$f'(x) = c \sum_{i=1}^{n} (x - u_1) \dots (x - u_{i-1})(x - u_{i+1}) \dots (x - u_n)$$

如果 p 有重根, 不妨假设 $u_1 = u_2$, 则 $f'(u_1) = 0$, 即 $(x - u_1) \mid (f, f')$. 另一方面, 如果 $u_i \neq u_j$ 对任意 $i \neq j$ 成立, 则 $f'(u_i) \neq 0$ 对任意 $1 \leq i \leq n$ 成立, 从而 (f, f') = 1.

特别地, 如果 f 是不可约的, 从而 (f,f')=1 或 (f,f')=f. 从而 p 有重根当且仅当 (f,f')=f, 但是 $\deg p'\leq n-1$, 从而有 f'=0.

1.4 有限域

定义 1.4.1. 域 F 被称为有限域 (finite field), 如果其元素个数 $|F| < \infty$.

记号 1.4.2. 有 q 个元素的有限域通常记做 \mathbb{F}_q .

注记. 根据定义, 显然有限域 \mathbb{F}_q 的特征一定是素数 p, 并且是 \mathbb{F}_q 是 \mathbb{F}_p 的有限扩张, 如果扩张次数为 n 的话, \mathbb{F}_q 是 \mathbb{F}_p 上的 n 维线性空间, 并且 $q=p^n$.

定理 1.4.3. 对任意 $n \in \mathbb{Z}_{>0}$, 元素个数为 $q = p^n$ 的有限域存在且唯一, 其中 p 是素数.

证明: 存在性: 考虑 $p(x) = x^q - x \in \mathbb{F}_p[x]$, 通过直接验证, 即验证加减乘除的封闭性, 可以发现 p(x) 的所有根恰好组成了一个域 E. 并且根据引理1.3.7计算可知 p(x) 没有重根, 因此 |E| = q, 即给出了一个元素个数为 $q = p^n$ 的有限域.

唯一性: 假设 \mathbb{F}_q 是元素个数为 q 的有限域, 那么 $|F^\times|=q-1$, 即任取 $\alpha\in F^\times$, 有 $\alpha^{q-1}=1$, 从而任取 $\alpha\in F$, 其满足

$$\alpha^q - \alpha = 0$$

并且由于上述方程至多有 q 个解, 从而 F 是 $x^q - x \in \mathbb{F}_p[x]$ 的分裂域, 因此是唯一的.

引理 1.4.4. 给定域 F, 以及 F^{\times} 的有限子群 G, 那么 G 是循环群.

证明:由于 G 是有限阿贝尔群,如果记其最大的不变因子为 d_n ,那么任取 $\alpha \in G$,有 $\alpha^{d_n} = 1$. 考虑 $x^{d_n} - 1 \in F[x]$,其最多只有 d_n 个根,那么 $d_n \geq |G|$.而另一方面, $|G| \leq d_n$,从而 $|G| = d_n$,即 $G \cong \mathbb{Z}/d_n\mathbb{Z}$.

推论 1.4.5. \mathbb{F}_q^{\times} 是 q-1 阶循环群.

证明: 当 F 是有限域时, F^{\times} 自身就是 F^{\times} 的有限子群, 从而是循环群.

例子. 考虑 $x^3 - x - 1 \in \mathbb{F}_3[x]$, 其为 $\mathbb{F}_3[x]$ 上的不可约多项式, 那么

$$\mathbb{F}_3[x]/(x^3-x-1)$$

给出了一个27元域.

命题 1.4.6. 对任意的 $n \in \mathbb{Z}_{>0}$, 都存在 $\mathbb{F}_q[x]$ 中的 n 次不可约多项式.

证明:由于 $\mathbb{F}_{q^n}^{\times}$ 是循环群,取其生成元为 α ,那么 $\mathbb{F}_q[\alpha]=F_{q^n}$,从而 α 对应的极小多项式就是 $\mathbb{F}_q[x]$ 中的 n 次不可约多项式.

问题 1.4.7. 对任意的 $n \in \mathbb{Z}_{>0}$, $\mathbb{F}_q[x]$ 中的 n 次不可约多项式有多少个呢?

定义 1.4.8. 给定有限域 \mathbb{F}_q , 其中 $q = p^n$, 如下映射

Frob:
$$\mathbb{F}_q \to \mathbb{F}_q$$
$$x \mapsto x^p$$

被称作弗罗贝尼乌斯映射 (Frobenius map).

注记. 根据命题1.2.10, 我们有 $Frob \in Aut_{\mathbb{F}_p}(\mathbb{F}_q)$, 并且直接计算可知 $Frob^n = id$.

命题 1.4.9. 给定有限域 \mathbb{F}_{p^n} , \mathbb{F}_{p^m} 是 \mathbb{F}_{p^n} 的子域当且仅当 $m \mid n$.

证明: 如果 \mathbb{F}_{p^m} 是 \mathbb{F}_{p^n} 的子域, 那么 \mathbb{F}_{p^n} 可以视作 \mathbb{F}_{p^m} 上的有限维线性空间, 不妨假设为 k 维, 那么 $p^n = (p^m)^k$, 即 n = mk. 另一方面, 如果 $m \mid n$, 那么考虑 $x^{n/m} - x \in \mathbb{F}_{p^m}[x]$, 其分裂域就是 \mathbb{F}_{p^n} .

注记. 由于 $\operatorname{Frob}^n = \operatorname{id}$,因此 Frob 生成了一个 n 阶循环群 G,并且注意到 G 的任何一个子群都是由 Frob^m 生成的,其中 $m \mid n$. 注意到 $\{\alpha \in \mathbb{F}_{p^n} \mid \operatorname{Frob}^m(\alpha) = \alpha\} = \mathbb{F}_{p^n/m}$,这实际上给出了一个 G 的所有子群与 \mathbb{F}_{p^n} 的所有子域之间的一一对应. 上述的结果实际上已经展示了伽罗瓦理论的雏形.

1.5 代数闭域与代数闭包

定义 1.5.1. 域 F 被称为代数闭域 (algebraic closed field), 如果其不存在真的代数扩张.

命题 1.5.2. 给定代数扩张 E/F, 如果任取 $f(x) \in F[x]$, 其在 E 上都分裂, 那么 E 是代数闭域.

证明: 任取 $\alpha \in E$, 使得其在 E 上代数, 即存在 $f(x) = a_n x^n + \dots + a_1 x + a_0 \in E[x]$, 使得 $f(\alpha) = 0$, 特别地, 我们有 α 在 $F(a_n, \dots, a_0)$ 上代数, 并且由于 E/F 上代数, 那么 $F(a_n, \dots, a_0)/F$ 也是代数扩张, 从而根据命题1.2.9可知 $F(\alpha)/F$ 是代数扩张, 因此存在多项式 $g(x) \in F[x]$ 使得 $g(\alpha) = 0$, 而由于 g(x) 在 E 中分裂, 从而 $\alpha \in E$, 即证明了 E 是代数闭域.

定义 1.5.3. 域扩张 E/F 中 E 被称为 F 的代数闭包 (algebraic closure), 如果 E/F 是代数扩张, E 是代数闭域.

例子 (\mathbb{Q} 的构造). 注意到 $\mathbb{Q}[x]$ 是可数的, 不妨排序为 f_1, f_2, \ldots , 那么我们令 E_1 是 f_1 在 \mathbb{Q} 上的分裂域, E_2 是 f_2 在 E_1 上的分裂域, 依次不断操作得到

$$\mathbb{Q} \subseteq E_1 \subseteq E_2 \subseteq \dots$$

考虑 $E = \bigcup_{i=1}^{\infty} E_i$, 则 E/\mathbb{Q} 是一个域扩张, 并且 \mathbb{Q} 上所有的多项式在 E 上都分裂, 并且根据命题 1.2.9 可知 E 是代数扩张, 从而 E 就是 \mathbb{Q} .

例子 $(\overline{\mathbb{F}_p})$ 的构造). 对于素数 p, 我们有如下的包含关系

那么我们有 $\overline{\mathbb{F}_p} = \bigcup_{n=1}^{\infty} \mathbb{F}_{p^n}$.

例子 (Newton-Puiseux). 我们用 $\mathbb{C}[[x]]$ 记 \mathbb{C} 上的形式多项式 $\{f(x) = a_0 + a_1x + a_2x^2 + \dots\}$,那 $\Delta^1\operatorname{Frac}(\mathbb{C}[[x]])$ 是洛朗级数全体. 用 $\mathbb{C}\{x\}$ 记收敛的形式幂级数 $\{f(x) = a_0 + a_1x + a_2x^2 + \dots\}$ 存在 r > 0 使得 f(x) 在 |x| < r 上收敛}

命题 1.5.4 (E. Artin). 任何域 F 都存在一个代数闭域 E 作为其扩张.

证明: 我们首先构造一个 F 的一个域扩张 E_1 使得任意次数大于等于 1 的 $f \in F[x]$ 在 E_1 中都有根: 考虑集合 $\mathfrak{X} = \{x_f \mid f \in F[x], \deg(f) \geq 1\}$,以及以集合 \mathfrak{X} 为未定元的多项式环 $F[\mathfrak{X}]$. 令 $I = (f(x_f))$,我们断言 $I \neq F[\mathfrak{X}]$ 的一个真理想. 假设 $I = F[\mathfrak{X}]$,则有

$$\sum_{i=1}^{n} g_i f_i(x_{f_i}) = 1$$

由于只有有限多个 f_i , 那么根据分裂域存在性的证明过程不难构造 F 的一个域扩张 F' 使得每一个 f_i 在 F' 中都有根 u_i . 考虑 $F[\mathfrak{X}] \to F'$, 定义为 $x_{f_i} \mapsto u_i$, 其余的 x_f 被映成零, 则考虑上述等式在这个映射下的结果, 我们有 0 = 1, 矛盾. 因此 I 是真理想, 我们取 \mathfrak{m} 是包含 I 的一个极大理想, 令 $E_1 = F[\mathfrak{X}]/\mathfrak{m}$, 则

$$F \hookrightarrow F[\mathfrak{X}] \to F[\mathfrak{X}]/\mathfrak{m} = E_1$$

我们用 \bar{x}_f 记 x_f 在 E_1 中的像, 可以发现其为 f(x) 的一个根. 不断进行如上操作则有

$$F = E_0 \subset E_1 \subset E_2 \subset \dots$$

令 $E = \bigcup_{i=0}^{\infty} E_i$, 我们证明 E 是代数闭的. 任取多项式 $f \in E[x]$, 那么其系数总会落在某一个 E_n 中,则它在 E_{n+1} 中有根,即在 E_{n+1} 中有分解

$$f = (x - u_1)f_1$$

其中 $f_1 \in E_{n+1}[x]$, 继续对 f_1 使用如上操作即可.

命题 1.5.5. F 是域, E 是代数闭域, 并且有嵌入 τ : $F \hookrightarrow E$. 如果 K/F 是代数扩张, 则 τ 可以延拓成 τ' : $K \to E$. 特别地, 如果 K 是代数闭域, 那么 τ' : $K \to E$ 是同构.

¹为什么 ℂ[[x]] 是整环?

证明: 任取 $u \in K$, u 在 F 上的极小多项式记做 p_u , 由于 E 是代数闭域, 那么 $\tau(p_u)$ 在 E 中存在根 v, 那么根据引理1.2.4可知 σ 可以延拓到 $F(u) \to E$. 用 M 记所有的 (K', τ') , 其中 K' 是 K 的包含 F 的子域, τ' 是 τ 的延拓. 并且定义偏序关系 $(K'_1, \tau'_1) \leq (K'_2, \tau'_2)$ 为 $K'_1 \subseteq K'_2$ 并且 $\tau'_2|_{K'_1} = \tau'_1$. 我们已经知道 M 非空,从而根据祖恩引理存在极大元 K',并且再次利用引理1.2.4可知 K' 就是 K.

定理 1.5.6. 域 F 的代数闭包 \overline{F} 存在且唯一 (在同构意义下).

证明: 存在性: 根据命题1.5.4, 存在代数闭域 E 使得其是 F 的扩张, 定义

$$\bar{F} := \{ u \in E \mid u \in F \perp 代数 \}$$

那么有 \bar{F} 是 F 的代数扩张. 并且 \bar{F} 是代数闭域, 因为任取 $f(x) = a_n x^n + \cdots + a_0 \in \bar{F}[x]$, 根据韦达定理可知其根在 $F(a_0, \ldots, a_n)$ 上面代数, 从而在 F 上代数, 进而属于 \bar{F} .

注记 (Artin-Schreier). 如果 $[\bar{F}:F]<\infty$, 并且大于 1, 则 $[\bar{F}:F]=2$, 且 -1 不是 F 中的平方根, $\bar{F}=F(\sqrt{-1})$.

1.6 正规扩张

定义 1.6.1. 域扩张 E/F 被称为**正规扩张** (normal extension), 如果任取不可约多项式 $p(x) \in F[x]$, 如果其在 K 中有一个根, 则其全部的根都在 K 中.

定理 1.6.2. 下列叙述等价:

- (1) E/F 是正规扩张.
- (2) 任何 F-嵌入 $\tau: E \to \overline{F}$ 满足 $\tau(E) \subseteq E$
- (3) $\operatorname{Hom}_F(E, \bar{F}) = \operatorname{Hom}_F(E, E)$
- 如果 E/F 是有限扩张,则上述三条还与下面等价:
 - (4) E 是某个多项式 $p(x) \in F[x]$ 的分裂域.

证明: 显然 (3) 和 (2) 等价, 下面我们只证明 (1) 和 (2) 的等价性:

- (1) \Longrightarrow (2): 假设 E/F 是正规扩张, 任取 $u \in E$, 考虑 u 在 F 上的极小多项式 p_u , 那么 p_u 的所有根都落在 E 中. 对于任意的 F-嵌入 τ : $E \to \bar{F}$, $\tau(u)$ 一定是 p_u 的一个根, 因为 $p_u(\tau(u)) = \tau(p_u(u)) = 0$, 因此 $\tau(u) \in E$, 即 $\tau(E) \subseteq E$.
- (2) \Longrightarrow (1): 任取 $u \in E$, 考虑其在 F 上的极小多项式 p_u , 任取其另一个根 $v \in \bar{F}$, 则存在态射 $F(u) \to \bar{F}$, $u \mapsto v$, 因此根据引理1.2.4可以延拓成 $\tau \colon K \to \bar{F}$, 因此 $\tau(u) = v \in E$, 即 $F \subseteq E$ 是正规扩张.

现在假设扩张次数有限, 我们来证明 (4) 与上述命题的等价性:

(1) \Longrightarrow (4): 假设 E/F 是正规扩张,任取 $u_1 \in E \setminus F$,记其极小多项式为 p_{u_1} ,并且 $[E:F(u_1)] < [E:F]$,再取 $u_2 \in E \setminus F(u_1)$,由于扩张次数不断在减小,因此有限次重复后一定有 $E = F(u_1, \ldots, u_n)$,令 $p = \prod_{i=1}^n p_{u_i}$,则 $K \notin P$ 的分裂域.

 $(4) \Longrightarrow (2)$: 如果 $E \not = p(x)$ 的分裂域, 其所有的根为 $\{u_1,\ldots,u_n\}$, 则 $E = F(u_1,\ldots,u_n)$, 考虑 F-嵌入 $\tau\colon F(u_1,\ldots,u_n)\to \bar F$, 由于 $\tau(u_i)$ 仍然是 p 的根, 因此 $\tau(u_i)\in E$, 即 $\tau(E)\subseteq E$.

推论 1.6.3. 对于 $F \subseteq E \subseteq K$, 有:

- (1) 如果 K/F 是正规扩张, 那么 K/E 也是正规扩张 (但是 E/F 不一定正规).
- (2) 如果 E/F, E'/F 都是正规扩张, 那么 EE'/F 也是正规扩张.

证明: (1) 任取 $u \in K$, 考虑其在 F, E 上的极小多项式, 分别为 p_u, p'_u , 则 $p'_u \mid p_u$. 由于 K/F 是正规扩张, 因此 p_u 的所有根都在 K 中, 因此 p'_u 的所有根也在 K 中, 即 K/E 也是正规扩张.

(2) 给定嵌入 τ : $EE' \to \bar{F}$, 由于 E/F, E'/F 都是正规扩张, 因此 $\tau(E) \subseteq E$, $\tau(E') \subseteq E'$, 因此 $\tau(EE') \subseteq EE'$, 即 EE'/F 是正规扩张.

注记. 如果 K/E 是正规扩张, E/F 是正规扩张, 则 K/F 不一定是正规扩张, 考虑下面的例子:

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[4]{2})$$

由于二次扩张都是正规扩张,从而 $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$ 以及 $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[4]{2})$ 都是正规扩张,但是 $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[4]{2})$ 不是正规扩张:考虑 \mathbb{Q} 上的不可约多项式 $x^4 - 2$,其中一个根 $\sqrt[4]{2}$ 在 $\mathbb{Q}(\sqrt[4]{2})$ 中,但 存在一个根 $i\sqrt[4]{2}$ 不在其中.

索引

代数, algebraic, 6 代数扩张, algebraic extension, 6 代数闭包, algebraic closure, 10 代数闭域, algebraic closed field, 10 分裂, split, 7 分裂域, splitting field, 7 单扩张, simple extension, 5 域, field, 4 域扩张, field extension, 4 域扩张之间的同构, isomorphism between field extensions, 4 域扩张之间的态射, morphism between field 超越扩张, transcendental extension, 6 extensions, 4

域扩张的次数, degree of field extension, 4 弗罗贝尼乌斯映射, Frobenius map, 10 形式导数, formal derivative, 8 无限扩张, infinite extension, 5 有限域, finite field, 9 有限扩张, finite extension, 5 极小多项式, minimal polynomial, 6 正规扩张, 12 特征, characteristic, 4 超越, transcendental, 6