Global-local shrinkage prior for variable selection in graph-structured models.

Marie Denis and Mahlet G. Tadesse

JSM, August 12, 2021

Context

Dependence between variables may be induced by various factors in different applications:

- Disease mapping: structure in space and time for variables measured over time at adjacent locations,
- Functional MRI: spatial dependence between voxels within anatomical regions of the brain,
- Genomic studies: dependence structure between genes obtained from biological pathways or inferred computationally (e.g., based on co-expression),
- \hookrightarrow Most of the dependence between variables may be encoded by an undirected graph \mathcal{G} .

Objective:

To develop a unified Bayesian variable selection for graph-structured variables providing flexibility in the amount of shrinkage and smoothness over the graph.

From a statistical point of view

Why incorporate the dependence structure into statistical models?

- helps the model building process by reducing the complexity of models and by circumventing the problem of high collinearity through identifiability constraints,
- → increases power to detect associations,
- \hookrightarrow improves the predictive power.

Why incorporate the dependence structure into variable selection methods?

• It encourages the identification of groups of dependent variables acting jointly on the response, especially those with subtle individual effects.

How to incorporate the dependence structure into variable selection methods?

- Penalized likelihood approaches
- Bayesian regularization

Bayesian regularization

In Bayesian context regularization is done by specifying shrinkage priors on the regression coefficients:

⇒ Natural framework for integrating knowledge about the covariates' structures into the analysis

Two classes of shrinkage priors:

- Spike-and-slab prior (Mitchell and Beauchamp, 1988; George and McCulloch, 1993): a discrete mixture of two distributions
- Continuous shrinkage priors: unimodal continuous distributions
- the class of global-local priors (Carvalho et al., 2010; Polson and Scott, 2010): a scale mixture of Gaussian distributions with the mixing density depending on two hyperparameters to control the global shrinkage and the local deviations

The proposed approach

We propose to combine:

- A global-local prior, the horseshoe (HS) prior (Carvalho et al., 2010), for its efficiency and flexibility in terms of selection and estimation with performances comparable to the spike-and-slab prior
- allows to shrink towards zero small coefficients while allowing large signals to escape from the overall shrinkage

- With a Gaussian Markov random field (GMRF) for its appealing connection with undirected graphs (Rue and Held, 2005)
- allows to impose the dependence structure between the parameters via the precision matrix of a conditionally Gaussian prior thus leading to sparse matrices and to smooth coefficients over the graph with possible abrupt changes

→ An extension of the approach by Faulkner and Minin (2018);
 Faulkner (2019) to the more general context of graph-structured variable selection.

Bayesian hierarchical model

We assume that $\mathcal{G} = \bigcup_{i=1}^{l} \mathcal{G}_i = \bigcup_{i=1}^{l} (V_i, E_i)$ a disjoint union of I subgraphs and \mathcal{S} the set of indices associated to one representative of each of the *I* subgraphs.

HS-GMRF model

$$\begin{aligned} \boldsymbol{y}|\boldsymbol{\beta}, \sigma^2 &\sim & \mathcal{N}_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{\mathsf{I}}_n) \\ \beta_j - s_{jj'}\beta_{j'}|\tau_{jj'}^2, \ \lambda^2 &\sim & \mathcal{N}(0, \lambda^2\tau_{jj'}^2) \text{ for } (j,j') \in \bigcup_{i=1}^l E_i \\ \beta_j|\tau_j^2, \ \lambda^2 &\sim & \mathcal{N}(0, \lambda^2\tau_j^2) \text{ for } j \in \mathcal{S} \\ \tau_{jj'} &\sim & \mathcal{C}^+(0,1) \text{ for } (j,j') \in \bigcup_{i=1}^l E_i; \tau_j \sim \mathcal{C}^+(0,1) \text{ for } j \in \mathcal{S} \\ \lambda|\sigma &\sim & \mathcal{C}^+(0,\sigma); \ \sigma^2 \sim \mathcal{I}\mathcal{G}(a_0,b_0) \end{aligned}$$

with $s_{ii'} = sign\{cor(X_i, X_{i'})\}$ to encourage regression coefficients of negatively correlated variables to take opposite signs.

Bayesian hierarchical model

Joint distribution of $\beta | \lambda^2, au^2$

$$\boldsymbol{\beta}|\boldsymbol{\tau}^2, \lambda^2 \sim \mathcal{N}_p(0, \lambda^2 \boldsymbol{Q}^{-1}),$$

 \hookrightarrow A GMRF distribution where $m{Q}$ is the precision matrix of full rank with diagonal elements

$$Q_{jj} = \begin{cases} \frac{1}{\tau_j^2} + \sum_{j' \in \mathcal{N}(j)} s_{jj'} \frac{1}{\tau_{jj'}^2} & \text{if } j \in \mathcal{S} \\ \sum_{j' \in \mathcal{N}(j)} s_{jj'} \frac{1}{\tau_{jj'}^2} & \text{otherwise} \end{cases}$$

and off-diagonal elements

$$Q_{jj'}=\left\{egin{array}{l} -s_{jj'}rac{1}{ au_{jj'}^2}\ 0 \end{array}
ight.$$

if $(j, j') \in \bigcup_{i=1}^{l} E_i$ otherwise

MCMC implementation

MCMC implementation

A Gibbs sampling algorithm is straightforward to fit the hierarchical models:

- by using the parametrization of a half-Cauchy as a mixture of inverse-gamma distributions (Makalic and Schmidt, 2016),
- by introducing a q-dimensional vector $\phi = (\phi_1, \dots, \phi_q)' = C\beta$ (Martínez-Beneito and Botella-Rocamora, 2019) where q = |E| + |S| and C is a contrast matrix such that:

$$\phi \sim \mathcal{N}_q(0, \Sigma_\phi),$$

with $\Sigma_{\phi} = \operatorname{diag}(\lambda^2 \tau^2)$.

Simulation study

Objectives

- To evaluate the performances of the proposed approach with and without incorporating the sign of the sample correlation (HS-GMRF and HS-GMRF-nosign),
- To compare the results with two other approaches: the HS and the spike-and-slab with Ising prior (SS-Ising) (Smith and Fahrmeir, 2007; Li and Zhang, 2010) and when the true graph is known and unknown.

$$Y = \sum_{g=1}^G \mathbf{X}_g \beta_g + \varepsilon$$
 with $X_{i,g} = (X_{i,g1}, \dots, X_{i,gk})' \sim \mathcal{N}_k(0, \Sigma_g)$ and $\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)$

12 simulated scenarios

- Two covariance structures
- Two levels of correlation ($\rho = 0.5, 0.9$)
- Three regression coefficients

 \hookrightarrow Focus on the scenario where half of groups with $\Sigma_{\it g}$ and

$$\beta_g = \left(5, -\frac{5}{\sqrt{10}}, -\frac{5}{\sqrt{10}}, \frac{5}{\sqrt{10}}, \dots, \frac{5}{\sqrt{10}}\right)$$

Simulations

- G = 14 groups of k = 10 predictors,
- Only groups g = 1, 3, 5, 8, 10 have non-zero effects.
- $\sigma^2 = \sum_{g=1}^{G} \beta_g^2 / 5$
- Repetitions: 50

Simulation study

Performance criteria

- Variable selection criteria:
- 9- For HS-based: variable selected if 95% HPD interval does not contain 0,
- → For SS-Ising: variable selected if marginal inclusion posterior probabilitie greater than 0.5.
 - Matthews correlation coefficient (MCC),
 - Mean squared error (MSE) of the regression coefficients,
 - Mean squared prediction error (MSPE).

MCMC settings:

- iterations: 6000,
- burn-in: 1000.

Table 1: Average MCC, MSE and MSPE (with SE) over 50 simulated replications.

		MCC	MSE	MSPE
$\Sigma_{g,\mathrm{half}}$	HS-GMRF	0.708 (± 0.018)	0.513 (± 0.067)	94.871 (± 13.632)
	HS-GMRF-nosign	$0.624 (\pm 0.034)$	$0.728 (\pm 0.155)$	$122.188 (\pm 21.609)$
$\rho = 0.5$	HS	$0.240 (\pm 0.041)$	$1.009 (\pm 0.200)$	126.252 (± 19.657)
	SS-Ising	$0.323 (\pm 0.054)$	$1.386 (\pm 0.204)$	149.294 (± 27.384)
$\Sigma_{g,\mathrm{half}}$	HS-GMRF	0.668 (± 0.046)	0.541 (± 0.089)	84.954 (± 14.485)
	HS-GMRF-nosign	$0.444 (\pm 0.117)$	$1.038 (\pm 0.259)$	99.123 (± 17.694)
$\rho = 0.9$	HS	$0.219 (\pm 0.038)$	$2.243 (\pm 0.551)$	95.219 (± 19.279)
	SS-Ising	0.312 (± 0.048)	$2.359 (\pm 0.437)$	109.387 (± 23.713)

- HS-GMRF-based approaches lead to the best results in terms of MCCs, MSEs, and MSPEs,
- HS-GMRF outperforms HS-GMRF-nosign especially when ho=0.9

Table 2: Average MCC and MSE for connected and non-connected covariates over 50 simulated replications.

	MCC		MSE		
	Connected	Non-connected	Connected	Non-connected	
	$\Sigma_{g,\mathrm{half}} \; ho = 0.5$				
HS-GMRF	0.956 (± 0.033)	0.277 (± 0.039)	0.558 (± 0.061)	0.469 (± 0.111)	
HS-GMRF-nosign	$0.810 (\pm 0.053)$	$0.264 (\pm 0.057)$	0.913 (± 0.202)	$0.542 (\pm 0.151)$	
HS	$0.237 (\pm 0.038)$	$0.244 (\pm 0.054)$	$1.464 (\pm 0.374)$	$0.553 (\pm 0.139)$	
SS-Ising	0.332 (± 0.062)	$0.295 \ (\pm \ 0.096)$	2.028 (± 0.372)	$0.744~(\pm~0.208)$	
	$\Sigma_{g,\mathrm{half}} \; ho = 0.9$				
HS-GMRF	0.883 (± 0.078)	0.278 (± 0.049)	0.611 (± 0.138)	0.470 (± 0.091)	
HS-GMRF-nosign	0.526 (± 0.177)	$0.265 (\pm 0.053)$	1.582 (± 0.465)	$0.495 (\pm 0.112)$	
HS	$0.188 (\pm 0.043)$	$0.271 (\pm 0.046)$	3.998(± 1.105)	$0.488 (\pm 0.103)$	
SS-Ising	$0.310 (\pm 0.047)$	$0.304 \ (\pm \ 0.081)$	4.055 (± 0.855)	$0.662 (\pm 0.135)$	

- Performances for non-connected predictors are similar for HS and HS-GMRF-based approaches.
- For connected variables the integration of the dependence structure helps to select variables with small effects

Table 3: Coverage probability (CP) and width of 95% HPD intervals averaged over the 50 simulated replications.

			CP of 95% HPD	Width of 95% HPD
$\Sigma_{g,\mathrm{half}}$	ho=0.5	HS-GMRF	0.923 (±0.026)	2.047 (±0.188)
		HS-GMRF nosign	0.931 (±0.027)	$2.712 (\pm 0.231)$
		HS	0.894 (±0.037)	$2.871 (\pm 0.278)$
		SS-Ising	0.751 (±0.026)	$0.656 (\pm 0.117)$
	$\rho = 0.9$	HS-GMRF	0.928 (±0.019)	$2.415 (\pm 0.248)$
		HS-GMRF nosign	$0.922 (\pm 0.031)$	$3.212 (\pm 0.284)$
		HS	0.908 (±0.05)	$3.255 (\pm 0.419)$
		SS-Ising	0.773 (±0.029)	$0.927\ (\pm0.181)$

• CPs similar for HS-based approaches but wider intervals for HS

- HS leads to a bimodal posterior density or a distribution concentrated around 0 with large tails
- HS-GMRF-based approaches give narrower posterior densities away from 0
- For $\beta=-5/\sqrt(10)$ HS-GMRF-nosign spreads out posterior density around the average of β 's

Estimated coefficients along with 80% HPD intervals in one simulated replication ($\Sigma_{g,half}$, $\rho = 0.9$).

- HS and SS-Ising tend to select one representative of a group of correlated variables,
- HS gives wide HPD intervals,
- HS-GMRF-based approaches give similar estimates for highly correlated covariates,
- HS-GMRF yields narrower HPD intervals with good coverage and fairly accurate estimates for regression coefficients with opposite signs.

Results using an estimated graphs

Graph structure may not be known and may need to be estimated. Graphical Lasso approach used to estimate the graph (Friedman et al., 2008)

- HS-GMRF-based approaches outperform the other approaches,
- For moderate correlation: graph is underestimated ⇒ slightly poorer selection and estimation for the HS-GMRF-based approaches than with the true graph,
- For high correlation: graph is overestimated ⇒ improved selection for the HS-GMRF-based approaches compared to the true graph but with an overesmoothing of the regressions coefficients

Application

Objective

To identify gene expressions involved in the variability of riboflavin production using data on 71 samples

- A total of 142 gene expressions considered
- Estimation of an undirected graph with 157 edges
- 5-fold cross-validation procedure

Methods	CV-MSPE	Selected genes
HS-GMRF	0.29	4 (90% HPD) 8 (80% HPD)
HS-GMRF-nosign	0.31	4(90% HPD) 6 (80% HPD)
HS	0.33	0(90% HPD) 0 (80% HPD)
SS-Ising	0.37	21 (<i>PPI</i> > 0.5) 16 (<i>PPI</i> > 0.8)
Lasso	0.41	16

→ HS-GMRF yields the smallest CV-MSPE

Application

For moderate non-zero effects:

- HS estimates densities concentrated around 0 with long tails or bimodal densities with one of the modes around 0,
- HS-GMRF-based methods estimate unimodal densities or bimodal densities with the mode around 0 less than with HS.

HS-GMRF-based approaches select groups of genes involved in the same biological pathway.

Conclusion/Perspective

The proposed approaches allow to:

- consider a broad type of dependence structures,
- achieve flexibility in the estimation and the selection due to the local and global shrinkage hyperparameters,
- need to consider the sign of the sample correlation,
- give better predictive performances notably by selecting groups of connected variables,
- give good results even when true graph is unknown and needs to be estimated.

Limitation:

 tend to encourage similar values fo connected variables, especially for highly correlated variables or overestimated graphs.

For future research:

- Extension to non-Gaussian distributions,
- Integration of prior knowledge on strengths of connections between variables.

Outline

Bibliography

20 / 20

- Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). The horseshoe estimator for sparse signals. *Biometrika*, 97(2):465–480.
- Faulkner, J. R. (2019). Adaptive Bayesian Nonparametric Smoothing with Markov Random Fields and Shrinkage Priors. PhD thesis.
- Faulkner, J. R. and Minin, V. N. (2018). Locally adaptive smoothing with markov random fields and shrinkage priors. *Bayesian analysis*, 13(1):225.
- Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9(3):432–441.
- George, E. I. and McCulloch, R. E. (1993). Variable selection via gibbs sampling. *Journal of the American Statistical Association*, 88(423):881–889.
- Li, F. and Zhang, N. R. (2010). Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics. *Journal of the American statistical association*, 105(491):1202–1214.
- Makalic, E. and Schmidt, D. F. (2016). High-dimensional bayesian regularised regression with the bayesreg package. *arXiv preprint arXiv:1611.06649*.
- Martínez-Beneito, M. A. and Botella-Rocamora, P. (2019). Disease Mapping: From Foundations to Multidimensional Modeling. CRC Press.
- Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. *Journal of the american statistical association*, 83(404):1023–1032.

- Polson, N. G. and Scott, J. G. (2010). Shrink globally, act locally: Sparse bayesian regularization and prediction. *Bayesian statistics*, 9(501-538):105.
- Rue, H. and Held, L. (2005). *Gaussian Markov random fields: theory and applications*. CRC press.
- Smith, M. and Fahrmeir, L. (2007). Spatial bayesian variable selection with application to functional magnetic resonance imaging. *Journal of the American Statistical Association*, 102(478):417–431.

