- \bullet ${\mathcal O}$ Pior caso, pois nele mostra o tempo máximo que o algoritmo irá completar a tarefa. 1.
 - $\bullet \ \Omega$ Melhor caso para execução de uma tarefa.
 - $\bullet~\Theta$ Complexidade média de execução.
- 2. • (a) 1
 - (b) 2
 - (c) 4
 - (d) 8
 - (e) 16
 - (f) 32
 - (g) 64
 - (h) 128
 - (i) 256
 - (j) 512
 - (k) 1024
 - (1) 2048
 - (a) n
 - (b) 10
 - (c) 9
 - (d) 8
 - (e) 7
 - (f) 6
 - (g) 5
 - (h) 4
 - (i) 3
 - (j) 2
 - (k) 1
 - (1) 0
 - (a) 5
 - (b) 4
 - (c) 5
 - (d) 4
 - (e) 4
 - (f) 4
 - (g) 4,...
 - (h) 5
 - (i) 4

 - (j) 3,...
 - (k) 4
 - (l) 3

3.
$$3 = O(1)$$

4. 5 ou
$$3 = O(1)$$

5. MC- 5 =
$$\Omega(1)$$
 -—- PC- $7O(1)$

- 6. 4 = O(1)
- 7. 2n = O(n)
- 8. 3 = O(1)
- 9. n-3 = O(n)
- 10. 4 = O(1)
- 11. 4 = O(1)
- 12. 17 ou 8 = O(1)
- 13. 6 = O(1)
- 14. $n^2 = O(n^2)$
- 15. 9 = O(1)
- 16. $n^2 3n = O(n^2)$
- 17. $n^2 6n = O(n^2)$
- $18. \log_2(n) = O(\log_2(n))$
- 19. $\log_2(n+5) = O(\log_2(n))$
- 20. $n^2 14n + 49 = O(n^2)$
- 21. $\log_2(n+2) = O(\log_2(n))$
- 22. $\log_2(n) = O(\log_2(n))$
- 23. $\log_2(n) = O(\log_2(n))$
- 24. $\log_2(n+1) = O(\log_2(n))$

```
(b)

for (i=0; i<n; i++{

for (j=0; i<n; j++){

a--;

b--;

c--;

}
```

```
for (i=0; i<n; i++{
    a--;
    b--;
    c--;
    d--;
    e--;
}
```

- 26. Comparação entre elementos do array.
 - n-1 vezes.
 - Para o pior caso.