Introduction to hypothesis testing

Chrysafis Vogiatzis

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Lectures 24-25

ISE | Industrial & Enterprise Systems Engineering GRAINGER COLLEGE OF ENGINEERING

©Chrysafis Vogiatzis. Do not distribute without permission of the author

Hypothesis testing

- 1 94% of UIUC's College of Engineering graduates secure employment or go to graduate school within a year of graduation.
- The average starting salary for these Engineering graduates is \$78,159.
- 3 Electrical Engineering or Construction Management? Electrical engineers earn more in the start of their careers.
- 4 Electrical Engineering or Construction Management? The top 10% construction management professionals earn more than the top 10% electrical engineering professionals.
- The majority of customers prefers Coke to Pepsi.
- 6 People with a dog in the house live longer.

All of the above are *claims* waiting to be *tested* and eventually *rejected* or *accepted*.

Hypothesis testing

- 1 94% of UIUC's College of Engineering graduates secure employment or go to graduate school within a year of graduation.
- The average starting salary for these Engineering graduates is \$78,159.
- 3 Electrical Engineering or Construction Management? Electrical engineers earn more in the start of their careers.
- 4 Electrical Engineering or Construction Management? The top 10% construction management professionals earn more than the top 10% electrical engineering professionals.
- 5 The majority of customers prefers Coke to Pepsi.
- 6 People with a dog in the house live longer.

All of the above are *claims* waiting to be *tested* and eventually *rejected* or *accepted*.

Formally, we define:

- Statistical hypothesis: a claim about the unknown parameters or distributions of a population.
 - The mean grade of a student in a class is a B+.
 - The proportion of students that end up with an A in a class is 25%.
 - The grade of a student in a class is normally distributed.
- Null hypothesis, H_0 : the hypothesis/claim that is being tested.
- Alternative hypothesis, *H*₁: the opposite of or simply an alternative to the hypothesis/claim.

Or in statistical terms:

 H_0 : null hypothesis

 H_1 : alternative hypothesis

Formally, we define:

- Statistical hypothesis: a claim about the unknown parameters or distributions of a population.
 - The mean grade of a student in a class is a B+.
 - The proportion of students that end up with an A in a class is 25%.
 - The grade of a student in a class is normally distributed.
- Null hypothesis, H_0 : the hypothesis/claim that is being tested.
- Alternative hypothesis, H₁: the opposite of or simply an alternative to the hypothesis/claim.

Or in statistical terms:

 H_0 : null hypothesis H_1 : alternative hypothesis

Formally, we define:

- Statistical hypothesis: a claim about the unknown parameters or distributions of a population.
 - The mean grade of a student in a class is a B+.
 - The proportion of students that end up with an A in a class is 25%.
 - The grade of a student in a class is normally distributed.
- **Null hypothesis**, *H*₀: the hypothesis/claim that is being tested.
- Alternative hypothesis, H₁: the opposite of or simply an alternative to the hypothesis/claim.

Or in statistical terms

 H_0 : null hypothesis H_1 : alternative hypothesis

Formally, we define:

- Statistical hypothesis: a claim about the unknown parameters or distributions of a population.
 - The mean grade of a student in a class is a B+.
 - The proportion of students that end up with an A in a class is 25%.
 - The grade of a student in a class is normally distributed.
- **Null hypothesis**, *H*₀: the hypothesis/claim that is being tested.
- Alternative hypothesis, H₁: the opposite of or simply an alternative to the hypothesis/claim.

Or in statistical terms:

 H_0 : null hypothesis H_1 : alternative hypothesis

Formally, we define:

- **Statistical hypothesis**: a claim about the unknown parameters or distributions of a population.
 - The mean grade of a student in a class is a B+.
 - The proportion of students that end up with an A in a class is 25%.
 - The grade of a student in a class is normally distributed.
- Null hypothesis, H₀: the hypothesis/claim that is being tested.
- Alternative hypothesis, H₁: the opposite of or simply an alternative to the hypothesis/claim.

Or in statistical terms:

 H_0 : null hypothesis

 H_1 : alternative hypothesis

"The average grade of a student in a class is 84%."

Null hypothesis:

$$\blacksquare$$
 $H_0: \mu = 84\%.$

$$\blacksquare H_1: \mu \neq 84\%.$$

"More than half of the population prefers Coke to Pepsi."

Null hypothesis:

$$\blacksquare H_0: p = 0.5$$

Alternative hypothesis:

$$\blacksquare$$
 $H_1: p < 0.5.$

"There is no life expectancy change by eating vegetables."

Null hypothesis:

$$\blacksquare H_0: \mu_1 - \mu_2 = 0$$

Alternative hypothesis:

$$H_1: \mu_1 - \mu_2 \neq 0.$$

"There is no life expectancy increase by eating vegetables."

Null hypothesis:

$$H_0: \mu_1 - \mu_2 = 0.$$

$$\blacksquare H_1: \mu_1 - \mu_2 > 0.$$

"The average grade of a student in a class is 84%."

Null hypothesis:

■
$$H_0$$
: μ = 84%.

Alternative hypothesis:

■
$$H_1: \mu \neq 84\%$$
.

"More than half of the population prefers Coke to Pepsi."

Null hypothesis:

$$\blacksquare$$
 $H_0: p = 0.5.$

Alternative hypothesis:

$$\blacksquare$$
 $H_1: p < 0.5.$

"There is no life expectancy change by eating vegetables."

Null hypothesis:

$$\blacksquare H_0: \mu_1 - \mu_2 = 0$$

Alternative hypothesis:

$$\blacksquare H_1: \mu_1 - \mu_2 \neq 0.$$

"I here is no life expectancy increase by eating vegetables."

Null hypothesis:

$$\blacksquare H_0: \mu_1 - \mu_2 = 0.$$

$$\blacksquare H_1: \mu_1 - \mu_2 > 0.$$

"The average grade of a student in a class is 84%."

Null hypothesis:

■
$$H_0$$
: μ = 84%.

Alternative hypothesis:

■
$$H_1: \mu \neq 84\%$$
.

"More than half of the population prefers Coke to Pepsi."

Null hypothesis:

■
$$H_0: p = 0.5$$
.

■
$$H_1: p < 0.5$$
.

$$H_0: \mu_1 - \mu_2 = 0.$$

$$\mu_1 - \mu_2 = 0.$$

$$H_1: \mu_1 - \mu_2 \neq 0.$$

$$\blacksquare H_0: \mu_1 - \mu_2 = 0.$$

$$\blacksquare H_1: \mu_1 - \mu_2 > 0.$$

"The average grade of a student in a class is 84%."

Null hypothesis:

■
$$H_0$$
: μ = 84%.

Alternative hypothesis:

■
$$H_1: \mu \neq 84\%$$
.

"More than half of the population prefers Coke to Pepsi."

Null hypothesis:

■
$$H_0: p = 0.5$$
.

Alternative hypothesis:

■
$$H_1: p < 0.5$$
.

"There is no life expectancy change by eating vegetables."

Null hypothesis:

$$\blacksquare H_0: \mu_1 - \mu_2 = 0.$$

Alternative hypothesis:

■
$$H_1: \mu_1 - \mu_2 \neq 0$$
.

There is no life expectancy increase by eating vegetables."

Null hypothesis:

$$\blacksquare H_0: \mu_1 - \mu_2 = 0.$$

$$\blacksquare H_1: \mu_1 - \mu_2 > 0.$$

"The average grade of a student in a class is 84%."

Null hypothesis:

■
$$H_0$$
: μ = 84%.

Alternative hypothesis:

■
$$H_1: \mu \neq 84\%$$
.

"More than half of the population prefers Coke to Pepsi."

Null hypothesis:

■
$$H_0: p = 0.5$$
.

Alternative hypothesis:

■
$$H_1: p < 0.5$$
.

"There is no life expectancy change by eating vegetables."

Null hypothesis:

$$\blacksquare H_0: \mu_1 - \mu_2 = 0.$$

Alternative hypothesis:

■
$$H_1: \mu_1 - \mu_2 \neq 0$$
.

"There is no life expectancy increase by eating vegetables."

Null hypothesis:

$$\blacksquare$$
 $H_0: \mu_1 - \mu_2 = 0.$

■
$$H_1: \mu_1 - \mu_2 > 0$$
.

Formulate hypothe-

sis. $H_0: p = 0.6$.

vs. $H_1 : p \neq 0.6$.

Accepting and **rejecting** a hypothesis are not the correct terms for the outcomes of a hypothesis test. Instead, we say:

Reject the hypothesis.

- Strong conclusion
- Implies the existence of sufficient evidence agains the hypothesis.
- We are quite certain that H_0 is wrong.

■ Fail to reject the hypothesis.

- Weak conclusion.
- Implies the lack of sufficient evidence agains the hypothesis.
- It does not mean that H_0 is true! It merely implies that we are uncertain about either H_0 or H_1 being true.

Accepting and **rejecting** a hypothesis are not the correct terms for the outcomes of a hypothesis test. Instead, we say:

- Reject the hypothesis.
 - Strong conclusion.
 - Implies the existence of sufficient evidence agains the hypothesis.
 - We are quite certain that H_0 is wrong.
- Fail to reject the hypothesis.
 - Weak conclusion
 - Implies the lack of sufficient evidence agains the hypothesis.
 - It does not mean that H_0 is true! It merely implies that we are uncertain about either H_0 or H_1 being true.

Accepting and **rejecting** a hypothesis are not the correct terms for the outcomes of a hypothesis test. Instead, we say:

- Reject the hypothesis.
 - Strong conclusion.
 - Implies the existence of sufficient evidence agains the hypothesis.
 - We are quite certain that H_0 is wrong.
- Fail to reject the hypothesis.
 - Weak conclusion.
 - Implies the lack of sufficient evidence agains the hypothesis.
 - It does not mean that H_0 is true! It merely implies that we are uncertain about either H_0 or H_1 being true.

Accepting and **rejecting** a hypothesis are not the correct terms for the outcomes of a hypothesis test. Instead, we say:

- Reject the hypothesis.
 - Strong conclusion.
 - Implies the existence of sufficient evidence agains the hypothesis.
 - We are quite certain that H_0 is wrong.
- Fail to reject the hypothesis.
 - Weak conclusion.
 - Implies the lack of sufficient evidence agains the hypothesis.
 - It does not mean that H_0 is true! It merely implies that we are uncertain about either H_0 or H_1 being true.

Accepting and **rejecting** a hypothesis are not the correct terms for the outcomes of a hypothesis test. Instead, we say:

- Reject the hypothesis.
 - Strong conclusion.
 - Implies the existence of sufficient evidence agains the hypothesis.
 - We are quite certain that H_0 is wrong.
- Fail to reject the hypothesis.
 - Weak conclusion.
 - Implies the lack of sufficient evidence agains the hypothesis.
 - It does not mean that H_0 is true! It merely implies that we are uncertain about either H_0 or H_1 being true.

Errors

Decision	H_0 is true	H_0 is false
Reject H ₀	incorrect decision	correct decision
Fail to reject H_0	correct decision	incorrect decision

```
Type I error: P(\text{reject } H_0|H_0 \text{ is true}) = \alpha,
Type II error: P(\text{fail to reject } H_0|H_0 \text{ is not true}) = \beta
```

- 1 $-\alpha$ is also the significance of the test.
- \blacksquare 1 β is also the power of the test.

Errors

Decision	H_0 is true	H_0 is false
Reject H ₀	incorrect decision	correct decision
Fail to reject H_0	correct decision	incorrect decision

Type I error: $P(\text{reject } H_0|H_0 \text{ is true}) = \alpha$,

Type II error: $P(\text{fail to reject } H_0|H_0 \text{ is not true}) = \beta.$

- 1 $-\alpha$ is also the significance of the test.
- 1β is also the power of the test.

Errors

Decision	H_0 is true	H_0 is false
Reject H ₀	incorrect decision	correct decision
Fail to reject H_0	correct decision	incorrect decision

Type I error: $P(\text{reject } H_0|H_0 \text{ is true}) = \alpha$,

Type II error: $P(\text{fail to reject } H_0|H_0 \text{ is not true}) = \beta.$

- 1 $-\alpha$ is also the significance of the test.
- 1β is also the power of the test.

First, assume that $H_0: p = p_0$ is true. Then, the observed proportion \hat{p} is distributed as $\mathcal{N}\left(p_0, \frac{p_0(1-p_0)}{n}\right)$.

Additionally, we can put α in the mix.

The limits can be found as $p_0 \pm z_{\alpha/2} \sqrt{\frac{p_0(1-p_0)}{n}}$.

First, assume that $H_0: p = p_0$ is true. Then, the observed proportion \hat{p} is distributed as $\mathcal{N}\left(p_0, \frac{p_0(1-p_0)}{n}\right)$.

Additionally, we can put α in the mix.

The limits can be found as $p_0 \pm z_{\alpha/2} \sqrt{\frac{p_0(1-p_0)}{n}}$.

First, assume that $H_0: p = p_0$ is true. Then, the observed proportion \hat{p} is distributed as $\mathcal{N}\left(p_0, \frac{p_0(1-p_0)}{n}\right)$.

Additionally, we can put α in the mix.

The limits can be found as $p_0 \pm z_{\alpha/2} \sqrt{\frac{p_0(1-p_0)}{n}}$.

First, assume that $H_0: p = p_0$ is true. Then, the observed proportion \hat{p} is distributed as $\mathcal{N}\left(p_0, \frac{p_0(1-p_0)}{n}\right)$.

Additionally, we can put α in the mix.

The limits can be found as $p_0 \pm z_{\alpha/2} \sqrt{rac{p_0(1-p_0)}{n}}$.

Procedure

1 Select the desired α and set up your hypothesis test:

$$H_0: p = p_0$$

 $H_1: p \neq p_0$.

2 Compute test statistic or simply \hat{p} :

$$Z_0 = rac{\hat{p} - p_0}{\sqrt{rac{p_0(1-p_0)}{n}}}$$
 or \hat{p}

- 3 Check whether Z_0 is below $z_{\alpha/2}$ or above $z_{\alpha/2}$, or check whether \hat{p} is below $p_0 z_{\alpha/2} \sqrt{\frac{p_0(1-p_0)}{n}}$ or above $p_0 + z_{\alpha/2} \sqrt{\frac{p_0(1-p_0)}{n}}$.
- 4 If yes, reject the hypothesis; otherwise, fail to reject it.

 \blacksquare α : typically given! But, if not, then it can be found as

$$P(L \leq \hat{p} \leq U)$$

where
$$\hat{p} \sim \mathcal{N}\left(p_0, \frac{p_0(1-p_0)}{n}\right)$$
.

a β : requires a specific alternative. For example, let $H_0: p = p_0$ vs. $H_1: p = p_1$. Then:

in If
$$H_i$$
 is true, $\hat{p} \sim \mathcal{N}\left(p_1, \frac{D(1-D)}{n}\right)$ in And hence.

$$\beta = P\left(p_0 - z_{\alpha/2}\sqrt{\frac{p_0(1-p_0)}{n}} \le \beta \le p_0 + z_{\alpha/2}\sqrt{\frac{p_0(1-p_0)}{n}}\right)$$

 \blacksquare α : typically given! But, if not, then it can be found as

$$P(L \leq \hat{p} \leq U)$$

where
$$\hat{p} \sim \mathcal{N}\left(p_0, \frac{p_0(1-p_0)}{n}\right)$$
.

■ β : requires a specific alternative. For example, let $H_0: p = p_0$ vs. $H_1: p = p_1$. Then:

If
$$H_1$$
 is true, $\hat{\rho} \sim \mathcal{N}\left(\rho_1, \frac{\rho_1(1-\rho_1)}{n}\right)$.

And hence

- $p = P\left(n_0 z_{1/2}\sqrt{\frac{25(1-25)}{3}} \le \hat{p} \le p_0 + z_{1/2}\sqrt{\frac{25(1-25)}{3}}\right)$
- Finally, increasing the sample size n will improve (decrease) both α and β . Keeping n constant, then improving α will worsen β and vice versa.

 \blacksquare α : typically given! But, if not, then it can be found as

$$P(L \leq \hat{p} \leq U)$$

where
$$\hat{p} \sim \mathcal{N}\left(p_0, \frac{p_0(1-p_0)}{n}\right)$$
.

- β : requires a specific alternative. For example, let $H_0: p = p_0$ vs. $H_1: p = p_1$. Then:
 - If H_1 is true, $\hat{p} \sim \mathcal{N}\left(p_1, \frac{p_1(1-p_1)}{n}\right)$.
 - And hence:

$$\beta = P\left(p_0 - z_{\alpha/2}\sqrt{\frac{p_0(1 - p_0)}{n}} \le \hat{p} \le p_0 + z_{\alpha/2}\sqrt{\frac{p_0(1 - p_0)}{n}}\right)$$

 \blacksquare α : typically given! But, if not, then it can be found as

$$P(L \leq \hat{p} \leq U)$$

where
$$\hat{p} \sim \mathcal{N}\left(p_0, \frac{p_0(1-p_0)}{n}\right)$$
.

- β : requires a specific alternative. For example, let $H_0: p = p_0$ vs. $H_1: p = p_1$. Then:
 - If H_1 is true, $\hat{p} \sim \mathcal{N}\left(p_1, \frac{p_1(1-p_1)}{n}\right)$.
 - And hence:

$$\beta = P\left(p_0 - z_{\alpha/2}\sqrt{\frac{p_0\left(1 - p_0\right)}{n}} \le \hat{p} \le p_0 + z_{\alpha/2}\sqrt{\frac{p_0\left(1 - p_0\right)}{n}}\right).$$

 \blacksquare α : typically given! But, if not, then it can be found as

$$P(L \leq \hat{p} \leq U)$$

where $\hat{p} \sim \mathcal{N}\left(p_0, \frac{p_0(1-p_0)}{n}\right)$.

- β : requires a specific alternative. For example, let $H_0: p = p_0$ vs. $H_1: p = p_1$. Then:
 - If H_1 is true, $\hat{p} \sim \mathcal{N}\left(p_1, \frac{p_1(1-p_1)}{n}\right)$.
 - And hence:

$$\beta = P\left(p_0 - z_{\alpha/2}\sqrt{\frac{p_0\left(1-p_0\right)}{n}} \le \hat{p} \le p_0 + z_{\alpha/2}\sqrt{\frac{p_0\left(1-p_0\right)}{n}}\right).$$

 \blacksquare α : typically given! But, if not, then it can be found as

$$P(L \leq \hat{p} \leq U)$$

where $\hat{p} \sim \mathcal{N}\left(p_0, \frac{p_0(1-p_0)}{n}\right)$.

- β : requires a specific alternative. For example, let $H_0: p = p_0$ vs. $H_1: p = p_1$. Then:
 - If H_1 is true, $\hat{p} \sim \mathcal{N}\left(p_1, \frac{p_1(1-p_1)}{n}\right)$.
 - And hence:

$$\beta = P\left(p_0 - z_{\alpha/2}\sqrt{\frac{p_0\left(1-p_0\right)}{n}} \le \hat{p} \le p_0 + z_{\alpha/2}\sqrt{\frac{p_0\left(1-p_0\right)}{n}}\right).$$

