Q1. RL

Pacman is in an unknown MDP where there are three states [A, B, C] and two actions [Stop, Go]. We are given the following samples generated from taking actions in the unknown MDP. For the following problems, assume $\gamma = 1$ and $\alpha = 0.5$.

(a) We run Q-learning on the following samples:

\mathbf{s}	a	s'	r
A	Go	В	2
С	Stop	A	0
В	Stop	A	-2
В	Go	С	-6
С	Go	A	2
A	Go	A	-2

What are the estimates for the following Q-values as obtained by Q-learning? All Q-values are initialized to 0.

- (i) Q(C, Stop) = _____
- (ii) Q(C, Go) =_____
- (\mathbf{b}) For this next part, we will switch to a feature based representation. We will use two features:
 - $f_1(s,a) = 1$

•
$$f_2(s, a) = \begin{cases} 1 & a = \text{Go} \\ -1 & a = \text{Stop} \end{cases}$$

Starting from initial weights of 0, compute the updated weights after observing the following samples:

\mathbf{s}	a	s'	r
A	Go	В	4
В	Stop	A	0

What are the weights after the first update? (using the first sample)

- (i) $w_1 =$ _____
- (ii) $w_2 =$ _____

What are the weights after the second update? (using the second sample)

- (iii) $w_1 =$ _____
- (iv) $w_2 =$ ______

Q2. Reinforcement Learning

- (a) Each True/False question is worth 1 points. Leaving a question blank is worth 0 points. Answering incorrectly is worth −1 points.
 - (i) [true or false] Temporal difference learning is an online learning method.
 - (ii) [true or false] Q-learning: Using an optimal exploration function leads to no regret while learning the optimal policy.
 - (iii) [true or false] In a deterministic MDP (i.e. one in which each state / action leads to a single deterministic next state), the Q-learning update with a learning rate of $\alpha = 1$ will correctly learn the optimal q-values (assume that all state/action pairs are visited sufficiently often).
 - (iv) [true or false] A small discount (close to 0) encourages greedy behavior.
 - (v) [true or false] A large, negative living reward ($\ll 0$) encourages greedy behavior.
 - (vi) [true or false] A negative living reward can always be expressed using a discount < 1.
 - (vii) [true or false] A discount < 1 can always be expressed as a negative living reward.
- (b) Given the following table of Q-values for the state A and the set of actions $\{Forward, Reverse, Stop\}$, what is the probability that we will take each action on our next move when we following an ϵ -greedy exploration policy (assuming any random movements are chosen uniformly from all actions)?

Q(A, Forward) = 0.75 Q(A, Reverse) = 0.25Q(A, Stop) = 0.5

Action	Probability (in terms of ϵ)	
Forward		
Reverse		
Stop		