Функциональный анализ-1

Михаил Пирогов

Аннотация

Конспект курса А. Д. Баранова, прочитанного в осеннем семестре 2017 года.

1 Топологические векторные пространства

1.1 Основные определения

Определение 1.1. Пусть X – векторное пространство над $\mathbb R$ или $\mathbb C$, снабжённое топологией τ . Пару $(X,\, au)$ называют *топологическим векторным пространством*, если сложение и умножение на скаляр непрерывны относительно τ , и каждая точка является замкнутым множеством.

Пример 1.1. Нормированное пространство со стандартной топологией – ТВП, а прямая с топологией Зарисского – нет, ибо в ней $U+V=\mathbb{R}$ для любых двух открытых множеств (ведь их дополнения конечны).

Утверждение 1.1. Параллельный перенос T_a и растяжение M_λ – гомеоморфизмы ТВП X в себя. При T_a локальная база переходит в локальную базу.

Определение 1.2. ТВП называют *локально выпуклым,* если в нём есть база в нуле, состоящая из выпуклых множеств.

Определение 1.3. Множество $E\subset X$ называют уравновешенным, если для любого α такого, что $|\alpha|\leqslant 1$ верно, что $\alpha E\subset E$.

Определение 1.4. Множество $E\subset X$ называют *ограниченным,* если для любой окрестности нуля U

$$\exists t: \forall s > t \ sU \supset E.$$

Утверждение 1.2. Легко видеть, что при растяжении ограниченное множество переходит в ограниченное множество. Позже мы докажем, что это происходит с ним при любом непрерывном линейном отображении (то есть и при параллельном переносе).

Определение 1.5. ТВП X называют *локально ограниченным,* если в нём существует база в нуле из ограниченных множеств.

Утверждение 1.3. Существования всего одной ограниченной окрестности нуля достаточно, чтобы ТВП было локально ограничено.

Теорема 1.1. ТВП (X, τ) метризуемо \Leftrightarrow есть счётная база в нуле.

Теорема 1.2 (Колмогоров). ТВП нормируемо \Leftrightarrow оно локально ограничено и локально выпукло.

1.2 Топология, порождённая счётным семейством полунорм

Определение 2.1. Пусть X – векторное пространство над $\mathbb R$ или $\mathbb C$. Функцию $p: X \to [0, \infty)$ называют полунормой, если выполняются следующие условия:

- 1. $p(\lambda x) = |\lambda| p(x)$,
- 2. $p(x+y) \le p(x) + p(y)$.

Пример 2.1. На C((-1, 1)) полунормой является

$$\|f\|=\max_{\left\lceil -\frac{1}{2},\frac{1}{2}\right\rceil}|f|.$$

Определение 2.2. Семейство полунорм $\{p_n\}_{n\in\mathbb{N}}$ на ВП X называют определяющим, если

$$\forall n \ p_n(x) = 0 \Rightarrow x = 0.$$

Определение 2.3. Топологией, *порождённой* семейством полунорм, называют самую грубую топологию, относительно которой все они непрерывны.

Утверждение 2.1. Базой этой топологии являются множества вида

$$V_{\varepsilon, i_1, \dots, i_n}(x_0) = \{ x \in X \mid \forall k \ p_{i_k}(x - x_0) < \varepsilon \}.$$

Утверждение 2.2. Семейство полунорм определяющее ⇔ топология, порождённая им, хаусдорфова.

Утверждение 2.3. Векторное пространство с топологией, порождённой определяющим семейством полунорм – локально выпуклое ТВП.

Теорема 2.1. Топология au, порождённая определяющим семейством полунорм p_n , задаётся метрикой

$$\rho(x, y) = \sum_{n=1}^{\infty} \frac{\min(1, p_n(x - y))}{2^n}.$$

Доказательство.

- 1. Очевидно, что ряд сходится, причём $\rho(x, y) \geqslant 0$.
- 2. Если $\rho(x, y) = 0$, то все слагаемые нулевые, поэтому x = y.
- 3. $\rho(x, y) = \rho(y, x)$.
- 4. Если верно неравенство

$$\forall a, b \ge 0 \min(1, a + b) \le \min(1, a) + \min(1, b),$$

то

$$\min(1, p_n(x-z)) \le \min(1, p_n(x-y) + p_n(y-z)) \le \min(1, p_n(x-y)) + \min(1, p_n(y-z)),$$

откуда сразу следует искомый результат.

- 5. Неравенство довольно просто доказать.
- 6. Осталось лишь понять, что этой метрикой задаётся нужная топология. Для этого достаточно доказать, что

$$\forall B_{\delta}(0) \; \exists \, V_{\varepsilon, \, i_1, \, \dots, \, i_n}(0) : V_{\varepsilon} \subset B_{\delta}$$

и, напротив,

$$\forall V_{\varepsilon, i_1, \dots, i_n}(0) \exists B_{\delta}(0) : B_{\delta} \subset V_{\varepsilon}.$$

Докажем сначала первое включение. Найдётся такое N, что

$$\forall N' > N \sum_{n=N'}^{\infty} \frac{1}{2^n} < \frac{\delta}{2} \Rightarrow \forall x \in B_{\delta} \sum_{n=N'}^{\infty} \frac{\min(1, p_n(x))}{2^n} < \frac{\delta}{2}.$$

Возьмём $arepsilon=rac{\delta}{2}$ и n=N. Тогда

$$x \in V_{\varepsilon} \Rightarrow \forall k \leqslant N \ p_k(x) < \frac{\delta}{2}$$

Поэтому

$$\sum_{n=1}^{N} \frac{\min\left(1, \, p_n(x)\right)}{2^n} \leqslant \sum_{n=1}^{N} \frac{p_n(x)}{2^n} < \frac{\delta}{2} \sum_{n=1}^{N} \frac{1}{2^n} < \frac{\delta}{2}.$$

Таким образом получаем, что из того, что $x \in V_{\varepsilon}$, следует, что

$$\sum_{n=1}^{\infty} \frac{\left(1, \, p_n(x)\right)}{2^n} < \delta \Rightarrow x \in B_{\delta}.$$

7. Докажем теперь второе включение. Не умаляя общности, положим $\varepsilon < 1$. Пусть $\max(i_1,\,\dots,\,i_n) = N$. Возьмём

$$\delta = \frac{\varepsilon}{2^N}$$
.

Если $x \in B_{\delta}$, то

$$\sum_{n=1}^{\infty} \frac{p_n(x)}{2^n} < \frac{\varepsilon}{2^N} \Rightarrow \sum_{n=1}^N \frac{p_n(x)}{2^n} < \frac{\varepsilon}{2^N} \Rightarrow \forall n \leqslant N \ p_n(x) < \varepsilon.$$

Отсюда получаем, что $x \in V_{\varepsilon}$.

Теорема 2.2. Пусть X – ТВП с топологией τ , порождённой определяющим семейством полунорм p_n .

- 1. $x_k \to x_0 \Leftrightarrow \forall n \ p_n(x_k x_0) \to 0$
- 2. $E \subset X$ ограничено $\Leftrightarrow \forall n \ p_n$ ограничены на E.

Доказательство.

1. \Rightarrow : Пусть $x_k \to x_0$. Это означает, что $\rho(x_k, x_0) \to 0$, т.е.

$$\sum_{n=1}^{\infty} \frac{\min\left(1, \, p_n(x_n - x_0)\right)}{2^n} \to 0 \Rightarrow \forall n \, p_n(x_k - x_0) \to 0.$$

 \Leftarrow : Пусть все p_n стремятся к нулю. Рассмотрим $\varepsilon > 0$. Пусть N таково, что

$$\sum_{n=N+1}^{\infty} \frac{1}{2^n} < \frac{\varepsilon}{2}.$$

Тогда

$$\rho(x_k, x_0) < \sum_{n=1}^{N} \frac{\min(1, p_n(x_k - x_0))}{2^n} + \frac{\varepsilon}{2}.$$

Выбирая достаточно большое k, первую сумму можно сделать меньше $\frac{\varepsilon}{2}$.

2. \Rightarrow : Пусть множество E ограничено. Фиксируем некоторую полунорму p_n из семейства; рассмотрим окрестность $V_{\varepsilon,\,n}(0)$. Т.к. V является окрестностью нуля, $E\subset kV$ для некоторого k. Но тогда $p_n(x) < k$ для любого x из E.

 \Leftarrow : Пусть теперь все полунормы ограничены на E. Возьмём U – произвольную окрестность нуля, и $V_{\varepsilon,\,i_1,\,...,\,i_n}(0)\subset U$. Найдутся M_i такие, что $\forall x\in E\ p_i(x)< M_i$. Отсюда следует, что $E\in nU$, если $n>M_in_i$ для всех i. Поэтому E ограничено. Если умножить V на число, превосходящее $M_{i_1},\,\ldots\,M_{i_n}$, то получится окрестность, содержащая E.

Пример 2.2. Примеры -C((a,b)), $C^{\infty}(\Omega)$, $\Omega \subset \mathbb{R}^n$ — открытое множество. На $C^{\infty}(\Omega)$ нужно построить последовательность компактов K_n такую, что $K_n \subset \operatorname{Int} K_{n+1}$ и $\cup K_n = \Omega$. После этого полунорма p_n определяется следующим образом:

$$p_n(f) = \max_{x \in K_n, |\alpha| \le n} |D^{\alpha} f(x)|.$$

Оба этих пространства полны.

Простой пример – множество последовательностей комплексных чисел $\{x_n\}$, в котором p_n возвращает модуль x_n . Его обозначают \mathbb{C}^{∞} .

Гораздо больше написано в параграфе «Примеры» первой главы книжки Рудина.

1.3 Функционал Минковского

Определение 3.1. Пусть X – ТВП, $A \subset X$. A называют поглощающим, если

$$\forall x \in X \ \exists \ t > 0 : x \in tA.$$

3амечание 3.1. Если A поглощающее, то $0 \in A$.

Утверждение 3.1. Любая окрестность нуля – поглощающее множество.

Доказательство. Это можно вывести, например, из того, что ноль – ограниченное множество, а точка – ноль после параллельного переноса. Параллельный перенос, как непрерывное линейное оторбажение, сохраняет ограниченность.

Иначе это можно увидеть так: понятно, что $x\cdot 0=0$, а из непрерывности умножения следует, что

$$\forall U(0) \exists V(x), W_{\varepsilon}(0): VW_{\varepsilon} \subset U.$$

Поэтому

$$\frac{1}{t} \in W_{\varepsilon} \Rightarrow \frac{x}{t} \in U \Rightarrow x \in tU.$$

Определение 3.2. Пусть A – поглощающее множество. Тогда

$$\mathfrak{m}_A(x) = \inf\left\{t \, \big| \, \frac{x}{t} \in A \right\}$$
 — функционал Минковского.

Замечание 3.2. Если A выпукло и содержит ноль, то из того, что $\frac{x}{t} \in A$, следует, что $\frac{x}{s} \in A$ для любого s > t.

Утверждение 3.2. Пусть A – выпуклое и поглощающее, и $t>\mathfrak{m}_A(x)$. Тогда $\frac{x}{t}\in A$.

Теорема 3.1. Пусть A – выпуклое поглощающее множество. Тогда:

- 1. $\forall t > 0 \ \mathfrak{m}_A(tx) = t\mathfrak{m}_A(x)$ (положительная однородность),
- 2. $\mathfrak{m}_{A}(x+y) \leqslant \mathfrak{m}_{A}(x) + \mathfrak{m}_{A}(y)$ (полуаддитивность),
- 3. Если A уравновешенное, \mathfrak{m}_A полунорма.

Доказательство.

1.

$$\mathfrak{m}_A(tx) = \inf\left\{s \, \Big| \, \frac{tx}{s} \in A\right\} = t\inf\left\{\frac{s}{t} \, \Big| \, \frac{tx}{s} \in A\right\} = t\mathfrak{m}_A(x).$$

2. Для любого $\varepsilon>0$ найдутся s и t такие, что

$$s-\varepsilon < \mathfrak{m}_A(x) < s, \ \frac{x}{s} \in A \text{ и } t-\varepsilon < \mathfrak{m}_A(y) < t \text{ и } \frac{y}{t} \in A.$$

Распишем частное сумм:

$$\frac{x+y}{s+t} = \frac{s}{s+t} \frac{x}{s} + \frac{t}{s+t} \frac{y}{t}.$$

По выпуклости это частное лежит в A, поэтому

$$\mathfrak{m}_A(x+y) \leqslant s+t < \mathfrak{m}_A(x) + \mathfrak{m}_B(y).$$

3. Не хватает возможности умножать на любую константу из \mathbb{C} . Пусть $\alpha = r\beta$, $r \geqslant 0$, $|\beta| = 1$.

$$\mathfrak{m}_A(\alpha x) = \inf \left\{ s \, \big| \, \frac{\alpha r x}{s} \in A \right\} = \inf \left\{ s \, \big| \, \frac{r x}{s} \in \underbrace{\alpha^{-1} A}_{=A} \right\} = \mathfrak{m}_A(r x) = r \mathfrak{m}_A(x) = |\alpha| \mathfrak{m}_A(x).$$

1.4 Теорема о нормируемости

Лемма 4.1.

- 1. Любая окрестность нуля содержит уравновешенную окрестность;
- 2. любая выпуклая окрестность нуля содержит выпуклую уравновешенную окрестность.

Доказательство.

- 1. Пусть U окрестность нуля. По непрерывности умножения, существуют V(0) и $\varepsilon>0$ такие, что если $|\alpha|<\varepsilon$, то $\alpha V\subset U$. Объединение αV по всем α и есть искомая окрестность.
- 2. Пусть U выпуклая окрестность нуля. Положим $A=\cap \alpha U$ по всем α на единичной окружности. Пусть W окрестность из предыдущего пункта. Очевидно, что $W\subset A$. Отсюда следует, что внутренность $\inf A$ является окрестностью нуля, лежащей в U. Выпуклость и уравновешенность внутренности следуют из выпуклости и уравновешенности A.

Теорема 4.1 (Колмогоров). Следующие условия равносильны:

- 1. X нормируемо;
- 2. X локально выпукло и локально ограничено.

Доказательство.

 $1 \Rightarrow 2$: Очевидно.

 $2\Rightarrow 1$: Пусть $\{U_{\alpha}\}$ – база в нуле из выпуклых окрестностей, V – ограниченная окрестность. Найдётся α такое, что $U_{\alpha}\subset V\Rightarrow U_{\alpha}$ ещё и ограниченная. Выпуклая окрестность нуля U_{α} содержит выпуклую уравновешенную U; таким образом, U – выпуклое ограниченное уравновешенное поглощающее множество, окрестность нуля. Введём норму следующим образом:

$$||x|| = \mathfrak{m}_U(x).$$

По теореме 3.1 $\|\cdot\|$ – полунорма.

Докажем, что это норма. Возьмём $x \neq 0$. Все точки замкнуты, поэтому существует окрестность нуля, не содержащая x. Т.к. U ограничена, найдётся r>0 такое, что rU лежит в этой окрестности. Значит, есть r такое, что

$$x \notin rU \underset{\text{Bbiff.}}{\Rightarrow} \forall s \in (0,r) \; \frac{x}{s} \notin U \Rightarrow \mathfrak{m}_U(x) \geqslant r > 0 \Rightarrow \|x\| \neq 0.$$

Осталось доказать, что эта норма задаёт нужную топологию. Для этого достаточно получить, что

$$rU = \{x \mid ||x|| < r\};$$

отсюда будет следовать совпадение локальных баз. Докажем это равенство.

Обозначим множество справа через B_r . Заметим, что

$$x \in rU \Rightarrow \frac{x}{r} \in U \Rightarrow ||x|| \leqslant r.$$

Отсюда $rU\subset \overline{B_r}$. Т.к. rU открытое, $rU\subset B_r$.

Докажем обратное включение.

$$||x|| < r \Rightarrow \exists \, s < r : \frac{x}{s} \in U.$$

Поскольку U выпукло

$$\frac{x}{r} \in U \Rightarrow x \in rU.$$

1.5 Примеры ненормируемых пространств

Утверждение 5.1. Пусть на локально ограниченном X топология задана определяющим семейством полунорм $\{p_n\}$. Тогда найдётся окрестность нуля $V_{\varepsilon,\,1,\,...,\,n}(0)$ такая, что на ней все полунормы ограничены.

Доказательство. Пусть X локально ограничено. Тогда найдётся ограниченная $V_{\varepsilon,\,1,\,...,\,n}(0)$. По теореме 2.2 это как раз и значит, что

$$\forall i \in \mathbb{N} \sup_{V} p_i < \infty.$$

Пример 5.1. Легко видеть, что для пространств $C^\infty(\Omega)$, $C(\Omega)$, \mathbb{C}^∞ это всегда не так.

Определение 5.1. Говорят, что ТВП X обладает *свойством Гейне-Бореля*, если любое замкнутое и ограниченное множество в нём компактно.

Замечание 5.1. Из теоремы Рисса следует, что любое нормированное пространство, обладающее этим свойством, конечномерно.

Утверждение 5.2. C^{∞} обладает свойством Гейне-Бореля.

Доказательство. Поскольку C^{∞} метризуемо, в нём компактность равносильна секвенциальной компактности. Её и будем проверять.

ной компактности. Её и будем проверять. Пусть
$$x^k=\left(x_n^k\right)_{n=1}^\infty$$
 – элементы $\mathbb{C}^\infty.$ Тогда сходимость x^k к x^0 просто означает, что

$$\forall n \ x_n^k \to x_n^0.$$

Пусть E — замкнутое и ограниченное подмножество X, $x^k \in E$. E ограничено $\Rightarrow \forall n \; p_n(x^k) = |x_n^k|$ ограничены. Поэтому можно выделить $x^{k,\,1}$ — подпоследовательность в $\{x^k\}$ такую, что $x_n^{k,\,1}$ сходится. Продолжая диагональным методом, получим то, что нужно.

Замечание 5.2. $C^\infty(\mathbb{R})$ обладает свойством Гейне-Бореля, а $C(\mathbb{R})$ нет. $\mathcal{H}(\mathbb{C})$ обладает свойством Гейне-Бореля.

1.6 Теорема о непрерывности линейных отображений

Определение 6.1. Линейное отображение ТВП называют *ограниченным*, если оно переводит ограниченные множества в ограниченные.

Лемма 6.1.

1. Если d – инвариантная относительно сдвига метрика на пространстве X, то для любого $x \in X$ и $n \in \mathbb{N}$

$$d(nx, 0) \leqslant nd(x, 0).$$

2. Если $\{x_n\}$ – сходящаяся к 0 последовательность точек метризуемого ТВП, то существуют такие положительные скаляры γ_n , что $\gamma_n \to \infty$ и $\gamma_n x_n \to 0$.

Доказательство.

1.

$$d(nx, 0) = d((n-1)x, -x) \leqslant d((n-1)x, 0) + \underbrace{d(0, -x)}_{=d(x, 0)}.$$

Продолжая эту деятельность, по индукции получаем наше утверждение.

2. Мы знаем, что раз X метризуемо, в нём можно ввести инвариантную метрику, совместимую с топологией. Построим такую возрастающую последовательность целых чисел n_k , что $d(x_n,0) < k^{-2}$ при $n \geqslant n_k$ и положим $\gamma_n = 1$ при $n < n_1$ и $\gamma_n = k$ при $n_k \leqslant n < n_{k+1}$. Посмотрим, как ведёт себя последовательность $\gamma_n x_n$:

$$d(\gamma_n x_n, 0) = d(kx_n, 0) \leqslant kd(x_n, 0) < k^{-1}.$$

Поэтому $\gamma_n x_n \to 0$ при $n \to \infty$.

Лемма 6.2. Следующие два свойства подмножества E топологического векторного пространства эквивалентны:

- 1. E ограничено;
- 2. если $\{x_n\}$ любая последовательность точек из E, а α_n такая последовательность скаляров, что $\alpha_n \to 0$, то $\alpha_n x_n \to 0$.

Доказательство.

 $1\Rightarrow 2$: Пусть E ограничено, а U – произвольная окрестность нуля. По определению ограниченности

 $\left(\exists\, t>0\colon \forall s>t\; E\subset sU\right)\Rightarrow \left(\exists\, t>0\colon \forall s>t\; \forall n\; \frac{x_n}{s}\in U\right).$

Поскольку $\gamma_n \to 0$, с некоторого момента будет выполнено неравенство $\gamma_n < \frac{1}{t} \Rightarrow \gamma_n x_n \in U$. По определению предела отсюда следует, что $\gamma_n x_n \to 0$.

 $2\Rightarrow 1$: Пусть теперь E не ограничено. Тогда найдётся окрестность нуля U и последовательность скаляров $r_n\to\infty$ такие, что $E\not\subset r_nU$. Выберем x_n такими, что $x_n\notin r_nU$, а γ_n положим равным r_n^{-1} . Тогда γ_nx_n ни при каком n не попадает в U, а значит, и к нулю не сходится.

Теорема 6.1. Пусть X и Y – ТВП, а L: $X \to Y$ – линейное отображение. Рассмотрим следующие утверждения:

- 1. L непрерывно;
- $2. \ L$ ограничено;
- 3. если $x_n \to 0$, то $\{Lx_n\}$ ограниченное множество;
- 4. $x_n \to 0 \Rightarrow Lx_n \to 0$.

Импликация $1\Rightarrow 2\Rightarrow 3$ выполняется всегда; импликация $3\Rightarrow 4\Rightarrow 1$ выполняется, если X метризуемо.

Доказательство.

 $1\Rightarrow 2$: Пусть $E\subset X$ — ограниченное множество, W — окрестность нуля в Y. Из непрерывности L следует, что $L^{-1}(W)$ открыто в X.

Найдётся окрестность нуля V такая, что $V\subset L^{-1}(W)\Rightarrow L(V)\subset W.$ E ограничено, поэтому существует t такое, что $\forall s>t$ $E\subset sV\Rightarrow L(E)\subset L(sV)=sL(V)\subset sW.$

Таким образом, для произвольной окрестности $W\subset Y$ мы нашли t такое, что при s>t $L(E)\subset sW.$ Отсюда следует ограниченность L(E).

 $2\Rightarrow 3$: Для этого нужно только доказать, что сходящаяся к нулю последовательность ограничена. Сходимость x_n к 0 значит, что

$$\forall U(0) \exists N: \forall n > N \ x_n \in U.$$

Возьмём произвольную окрестность U и в ней выберем уравновешенную окрестность V. Из только что написанного определения следует, что вне неё находится лишь конечное количество точек последовательности; обозначим их $\{x_{i_k}\}_{k=1}^K$. Поскольку любая окрестность нуля – поглощающее множество, для любого k найдётся n_k такое, что $x_{i_k} \in n_k V$. Легко видеть, что

$$\{x_i\}_{i=1}^{\infty} \subset V \cup \bigcup_{k=1}^{K} n_k V.$$

Т.к. V – уравновешенное множество, то и $(\max_{k \in 1...K} n_k) V$ тоже. Поэтому

$$\{x_i\}_{i=1}^{\infty} \subset \left(\max_{k \in 1...K} n_k\right) \cdot V \subset \left(\max_{k \in 1...K} n_k\right) \cdot U.$$

Отсюда и следует искомая ограниченность.

 $4\Rightarrow 1$: С этого места мы предполагаем, что X метризуемо. Пусть (1) неверно, то есть отображение L не непрерывно. Легко видеть, что оно тогда не непрерывно в нуле (для этого надо рассмотреть определение непрерывности в точке через окрестности и вспомнить, что параллельный перенос – автоморфизм). Это значит, что найдётся окрестность нуля $U\subset Y$ такая, что $L^{-1}(U)$ не содержит ни одной окрестности нуля.

Поскольку X метризуемо, в нём есть счётная локальная база, причём в каждом её элементе есть точка, которая не попадает в U. Из этих точек можно составить сходящуюся к нулю последовательность, образ которой с U вовсе не пересекается. Это противоречит (3).

 $3\Rightarrow 4$: Пусть X метризуемо и L обладает свойством (3). Пусть $x_n\to 0$. По лемме 6.1 найдётся последовательность положительных скаляров γ_n такая, что $\gamma_n\to\infty$ и $\gamma_n x_n\to 0$. Тогда $\{L\gamma_n x_n\}$ — ограниченное множество.

По лемме 6.2 выходит, что

$$\underbrace{\frac{1}{\gamma_n}}_{\text{огранич.}} \underbrace{L(\gamma_n x_n)}_{\text{огранич.}} \to 0 \Rightarrow Lx_n \to 0.$$

1.7 Равностепенно непрерывные семейства, теорема Банаха-Штейнгауза, следствия

Определение 7.1. Подмножество топологического пространства называют *нигде не плотным*, если его замыкание имеет пустую внутренность. Говорят, что множество относится к *первой категории* (или *худое*), если его можно представить в виде счётного объединения нигде не плотных множеств. Все остальные множества относят ко *второй категории* (их называют ещё *тучными*).

Свойство 7.1.

- 1. Если $A\subset B$ и B первой категории, то A тоже первой категории.
- 2. Счётное объединение множеств первой категории множество первой категории.
- 3. Замкнутое в S множество $E\subset S$ с пустой внутренностью является множеством первой категории в S.
- 4. Если h гомеоморфизм пространства S на себя, то множества E и h(E) имеют одну категорию в S.

Теорема 7.1. (Бэр) Пусть S либо

- 1. полное метрическое пространство, либо
- 2. локально компактное хаусдорфово пространство.

Тогда пересечение любого счётного семейства всюду плотных множеств всюду плотно в S.

Следствие 7.1. Полные метрические пространства и локально компактные хаусдорфовы пространства являются множествами второй категории в себе.

Определение 7.2. Пусть X и Y – ТВП, а Γ – некоторое семейство отображений из X в Y. Назовём Γ равностепенно непрерывным, если для любой $U(0) \subset Y$ найдётся $V(0) \subset X$ такая, что $\Gamma(V) \subset U$ (т.е. $\forall \Lambda \in \Gamma \ \Lambda(V) \subset U$).

Лемма 7.1. Пусть X и Y – ТВП, а Γ – равностепенно непрерывное семейство линейных отображений. Тогда если E – ограниченное множество в X, то $\Gamma(E)$ тоже ограничено.

Доказательство. Рассмотрим произвольную U — окрестность нуля в Y. Поскольку Γ равностепенно непрерывно, найдётся $V(0)\subset X$ такая, что $\Gamma(V)\subset U$. Ограниченность E означает, что

$$\exists t: \forall s > t \ E \subset sV.$$

Отсюда

$$\Gamma(E) \subset s\Gamma(V) \subset sU$$
,

что и даёт ограниченность $\Gamma(E)$.

Теорема 7.2 (Теорема Банаха-Штейнгауза, принцип равномерной ограниченности). Пусть X и Y – ТВП, Γ – некоторое семейство непрерывных линейных отображений из X в Y, а B – множество всех таких точек $x \in X$, что их орбиты $\Gamma(x)$ ограничены. Если B – множество второй категории в X, то B = X и семейство Γ равностепенно непрерывно.

Доказательство. Выберем в Y такие уравновешенные окрестности нуля U и W , что $\overline{U}+\overline{U}\subset V$, и положим

$$E = \bigcap_{\Lambda \in \Gamma} \Lambda^{-1}(\overline{U}).$$

Если $x \in B$, $\Gamma(x) \subset nU$ для некоторого натурального n, так что $x \in nE$. Поэтому

$$B\in\bigcup_{n\in\mathbb{N}}nE.$$

Хотя бы одно из множеств nE является множеством второй категории в X, ибо B таково. Поскольку умножение на n – гомеоморфизм, само E тоже относится ко второй категории. Но E замкнуто, как пересечение замкнутых множеств; поэтому в нём есть внутренняя точка x_0 . Множество $E-x_0$ содержит некоторую окрестность нуля V, причём

$$\Lambda(V) \subset \Lambda(E) - \Lambda(x_0) \subset \overline{U} - \overline{U} \subset W$$

для любого $\Lambda \in \Gamma$.

Отсюда следует, что Γ равностепенно непрерывно. По лемме 7.1 Γ ещё и равномерно ограничено, в частности, все множества $\Gamma(x)$ ограничены. Поэтому B=X.

Следствие 7.2. Пусть Γ – семейство непрерывных линейных отображений F-пространства X в ТВП Y, причём все множества $\Gamma(x)$ ограничены. Тогда Γ равностепенно непрерывно.

Теорема 7.3. Пусть X и Y – ТВП, а $\{\Lambda_n\}$ – последовательность непрерывных линейных отображений из X в Y.

- 1. Пусть C множество $x\in X$, для которых $\{\Lambda_n x\}$ является последовательностью Коши в Y. Если C множество второй категории в X, то C=X.
- 2. Пусть L множество всех $x \in X$ таких, что для них существует предел

$$\Lambda x = \lim_{n \to \infty} \Lambda_n x.$$

Если Y-F-пространство, а L – множество второй категории в X , то L=X и отображение Λ непрерывно.

Доказательство.

1. Так как каждая последовательность Коши ограничена (для сходящихся это доказано в теореме 6.1; для последовательностей Коши доказательство идейно похоже 2), по теореме 7.2 Банаха-Штейнгауза семейство Λ_n равностепенно непрерывно. Можно проверить, что C – подпространство X. Его замыкание \overline{C} всюду плотно (если бы это было не так, \overline{C} было бы собственным подпространством X, поэтому у него не было

бы внутренних точек и ${\cal C}$ было бы первой категории).

 $^{^{1}}F$ -пространство – ТВП, в котором топология порождается полной инвариантной метрикой.

 $^{^2}$ В ТВП можно назвать последовательность $\{x_n\}$ последовательностью Коши, если для любой окрестности нуля U найдётся такое N, что при $n,\ m>N$ точка x_n-x_m лежит в U. Для пространств, на которых можно ввести **инвариантную** метрику (на самом деле, все метризуемые таковы), это определение совпадает с обычным. Отсюда, кстати, следует, что две эквивалентные инвариантные метрики задают одинаковые последовательности Коши и полны одновременно.

Зафиксируем $x\in X$ и $W(0)\subset Y$. Из равностепенной непрерывности $\{\Lambda_n\}$ следует, что есть симметричная окрестность $V(0)\subset X$ такая, что $\Lambda_n(V)\subset W$ для всех n. Раз C всюду плотно, найдётся точка $x'\in C\cap (x+V)$.

Пусть n и m столь велики, что

$$\Lambda_n x' - \Lambda_m x' \in W.$$

Тождество

$$(\Lambda_n - \Lambda_m)x = \Lambda_n(x - x') + (\Lambda_n - \Lambda_m)x' + \Lambda_m(x - x')$$

показывает, что $\Lambda_n x - \Lambda_m x \in W + W + W.$ Поэтому $\{\Lambda_n x\}$ — последовательность Коши в Y, и $x \in C.$

2. Из полноты Y следует, что L=C. Пусть V и W обозначают то же самое, что и в пункте (1); тогда $\Lambda_n(V)\subset V$ для всех n. Поэтому $\Lambda(V)\subset \overline{V}$. Из этого и регулярности любого ТВП (и Y в том числе) следует непрерывность Λ .

П

Замечание 7.1. Идея доказательства пункта (1) выражается всего в трёх утверждениях:

- 1. C подпространство, и его вторая категория требует, чтобы оно было всюду плотным.
- 2. То, что Λ_n равностепенно непрерывно, позволяет из того, что для x' последовательность $\Lambda_n(x)$ сходится в себе, заключить это для близкой к ней x.
- 3. То, что C всюду плотно, позволяет взять эту самую x^\prime достаточно близко к x.

Теорема 7.4. Пусть $\{\Lambda_n\}$ – семейство непрерывных линейных отображений из F-пространства X в ТВП Y, причём в каждом x существует предел

$$\Lambda x = \lim_{n \to \infty} \Lambda_n x.$$

Тогда отображение Λ непрерывно.

Доказательство. Из следствия 7.2 получется, что семейство Λ_n равностепенно непрерывно. Дальнейшее рассуждение эквивалентно пункту (2) предыдущей теоремы.

Теорема 7.5. Пусть X и Y – ТВП, $K \subset X$ – компактное выпуклое подмножество, а Γ – такое семейство непрерывных отображений из X в Y, что для всех x $\Gamma(x)$ – ограниченное множество. Тогда $\Gamma(K)$ ограничено.

1.8 Теорема об открытом отображении

Теорема 8.1. Пусть X-F-пространство, Y – топологическое векторное пространство, а Λ : $X \to Y$ – такое непрерывное линейное отображение, что его образ является множеством второй категории в Y. Тогда верны следующие утверждения:

- 1. $\Lambda(X) = Y$;
- 2. Λ открытое отображение;
- 3. Y является F-пространством.

Доказательство. Подробно изложено в [1, с. 58-60].

Следствие 8.1 (Теорема Банаха). Если $\Lambda: X \to Y$ – непрерывная линейная биекция, а X и Y – F-пространства, то Λ – гомеоморфизм.

Доказательство. По теореме 8.1 об открытом отображении отображение Λ открыто. Из этого сразу следует непрерывность обратного к нему.

1.9 Теорема о замкнутом графике

Определение 9.1. Пусть X, Y – множества, $f \colon X \to Y$ – отображение. Тогда r рафиком f называют множество

$$\Gamma_f = \{(x, f(x)) \in X \times Y \mid x \in X\}.$$

Утверждение 9.1. Пусть X, Y – топологические пространства, $f: X \to Y$ – непрерывное отображение, Y хаусдорфово. Тогда Γ_f замкнут в топологии произведения.

Доказательство. Рассмотрим произвольную точку (x,y) не на графике; пусть $f(x)=y_0$. Так как Y хаусдорфово, существуют непересекающиеся окрестности U(y) и $V(y_0)$. Так как f непрерывно, существует окрестность W(x) такая, что $f(W)\subset V$. Легко видеть, что

$$W \times U \cap \Gamma_f \subset W \times U \cap W \times V = \varnothing.$$

Таким образом, дополнение Γ_f открыто, поэтому оно замкнуто.

Теорема 9.1. Пусть $A: X \to Y$ – линейное отображение двух F-пространств. Если график A замкнут, то оно непрерывно.

Доказательство. Операции векторного пространства на $X \times Y$ можно определить просто покомпонентно. Пусть d_X и d_Y – полные инвариантные метрики пространств X и Y соответственно. Метрику на $X \times Y$ можно определить следующим образом:

$$d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2).$$

Можно проверить, что она будет совместима с топологией произведения, полна и инвариантна, а всё это вместе будет F-пространством, но это не очень интересно.

Поскольку отображение A линейно, его график будет линейным пространством. Так как он замкнут, он тоже будет F-пространством.

Определим отображения $\pi_1(x,\Lambda x)=x$ и $\pi_2(x,y)=y$ из графика в соответствующие пространства. Тогда π_1 будет непрерывной биекцией между F-пространствами, а по теореме Банаха 8.1 мы знаем, что тогда и обратное к нему непрерывно. Но $A=\pi_2\circ\pi_1^{-1}$, поэтому и оно непрерывно, как композиция непрерывных отображений.

Утверждение 9.2. Пусть $A: X \to Y$ – линейное отображение двух F-пространств. Рассмотрим последовательность $\{x_n\}$ точек из X такую, что существуют пределы

$$x = \lim_{n \to \infty} x_n$$
 u $y = \lim_{n \to \infty} y_n$.

Если для любой такой последовательности y = Ax, то график A замкнут.

Доказательство. Поскольку все пространства метризуемы, можно говорить о замкнутости на языке последовательностей. Если график не замкнут, то существует последовательность точек графика (x_n, y_n) , сходящаяся к точке, на нём не лежащей (полнота гарантирует, что она не сходится к «дырке»). Так как сходимость в $X \times Y$ с определённой нами метрикой покомпонентная, это прямое противоречие.

1.10 Теорема Хана-Банаха

Определение 10.1. Пусть X – векторное пространство над $\mathbb R$. Отображение $p: X \to \mathbb R$ называют выпуклым функционалом на X, если

$$\forall \lambda \in [0, 1] \ p(\lambda x_1 + (1 - \lambda)x_2) \leqslant \lambda p(x_1) + (1 - \lambda)p(x_2).$$

Определение 10.2. Пусть X – векторное пространство над \mathbb{R} . Отображение p: $X \to \mathbb{R}$ называют положительно однородным, если

$$\forall \alpha \geqslant 0 \ p(\alpha x) = \alpha p(x).$$

Утверждение 10.1. Пусть p – выпуклый, положительно однородный. Тогда $p(x_1+x_2)\leqslant p(x_1)+p(x_2)$.

Утверждение 10.2. Пусть p – выпуклый, положительно однородный и неотрицительный. Тогда он является функционалом Минковского для множества

$$A = \{ x \in x \, | \, p(x) < 1 \}.$$

Теорема 10.1 (Вещественная теорема Хана-Банаха). Пусть X – векторное пространство над \mathbb{R} , p – положительно однородный выпуклый функционал на X, X_0 – подпространство X.

Рассмотрим f_0 – линейный функционал на X_0 . Если $f_0(x)\leqslant p(x)$ на X_0 , то найдётся функционал $f\colon X\to\mathbb{R}$ такой, что

- 1. $f|_{x_0} = f_0$,
- 2. $f(x) \leqslant p(x)$ на X.

Теорема 10.2 (Комплексная теорема Хана-Банаха). Пусть X – векторное пространство над \mathbb{C} , p – полунорма на X, X_0 – подпространство X.

Рассмотрим f_0 – линейный функционал на X_0 . Если $|f_0(x)|\leqslant p(x)$ на X_0 , то найдётся функционал $f\colon X\to\mathbb{C}$ такой, что

- 1. $f|_{x_0} = f_0$,
- 2. $|f(x)| \leq p(x)$ на X.

1.11 Первая теорема об отделимости

Определение 11.1. Пусть X – векторное пространство над \mathbb{R} , E, $F \subset X$ – непустые множества. Говорят, что E и F отделимы, если есть линейный функционал $f\colon X \to \mathbb{R}$ такой, что

$$\forall x \in E \ \forall y \in F \ f(x) \leqslant f(y).$$

Другими словами, $f(E) \leqslant f(F)$. Говорят, что f разделяет E и F.

Утверждение 11.1. Пусть $f: X \to \mathbb{R}$ – линейный функционал. Тогда

$$\exists a \in X : \{\alpha a + x \mid \alpha \in \mathbb{R}, x \in \operatorname{Ker} f\} = X.$$

Определение 11.2. Подпространство $Y \neq X$ такое, что есть $a \in X$: Lin(a, Y) = X называют *гиперподпространством*.

Утверждение 11.2. Y – гиперподпространство в $X \Rightarrow$ есть линейный функционал f такой, что $\operatorname{Ker} f = Y$.

Определение 11.3. Гиперплоскость – множество вида x_0+Y , где Y – гиперподпространство. Замечание 11.1. Понятно, что уравнение $f(x)=\alpha$ задаёт гиперплоскость. Пусть $\sup_E f=\alpha$. Тогда эта самая гиперплоскость разделяет множества E и F в обычном геометрическом смысле.

Определение 11.4. Говорят, что E и F строго отделимы, если существует линейный функционал f такой, что

$$\sup_E f < \inf_F f.$$

Теорема 11.1. Пусть X – ТВП, E и F – непустые выпуклые множества, $\operatorname{Int} E \neq \varnothing$ и $F \cap \operatorname{Int} E = \varnothing$. Тогда найдётся **непрерывный** линейный функционал, разделяющий E и F.

Доказательство. Введём обозначение $\stackrel{\circ}{E}=$ Int E. $f(x)-f(y)\leqslant 0 \Leftrightarrow f(E-F)\leqslant 0$, поэтому можно просто отделять E-F от нуля.

Не умаляя общности, предположим, что $0\in \overset{\circ}{E}$ (в противном случае можно было бы сдвинуть всё на какой-нибудь вектор). Зафиксируем $y_0\in F$. Отделимость E-F и $\{0\}$ равносильна отделмиости $E-F+y_0$ и $\{y_0\}$. Введём $K=\overset{\circ}{E}-F+y_0$ и докажем сначала отделимость K и $\{y_0\}$.

Множество K – выпуклая окрестность нуля. Поэтому оно поглощающее \Rightarrow можно рассмотреть на нём функционал Минковского. Заметим, что

$$\stackrel{\circ}{E} \cap F = \varnothing \Rightarrow 0 \notin \stackrel{\circ}{E} - F.$$

а значит, $y_0 \notin K$. Отсюда получаем, что $\mathfrak{m}_K(y_0) \geqslant 1$ (здесь мы пользуемся ещё выпуклостью K). Рассмотрим $X_0 = \text{Lin}(y_0)$. На нём можно задать функционал f_0 такой, что

$$\alpha y_0 \mapsto \alpha \mathfrak{m}_K(y_0).$$

Легко видеть, что $f_0\leqslant\mathfrak{m}_K$ на X_0 , ведь

$$\begin{cases} \alpha \geqslant 0 \Rightarrow \mathfrak{m}_K(\alpha y_0) = \alpha \mathfrak{m}_K(y_0) = f_0(\alpha y_0) \\ \alpha < 0 \Rightarrow f_0(\alpha y_0) < 0, \ \mathfrak{m}_A(\alpha y_0) \geqslant 0. \end{cases}$$

По теореме Хана-Банаха f_0 можно продолжить на всё пространство X и получить линейный функционал f. Понятно, что f разделяет K и y_0 , ведь

$$x \in K \Rightarrow p(x) \leqslant 1 \Rightarrow f(x) \leqslant 1$$

и $f(y_0) = f_0(y_0) = p(y_0) \geqslant 1$.

Мы доказали, что f разделяет $\overset{\circ}{E}$ и F. Почему он разделяет E и F? Пусть $x \in E$. Нетрудно доказать 3 , что тогда

$$\forall \varepsilon \in [0, 1) \ (1 - \varepsilon)x \in \stackrel{\circ}{E}.$$

Мы уже знаем, что $(1-\varepsilon)f(x)=f\big((1-\varepsilon)x\big)\leqslant f(y)$ при $y\in F.$ Предельным переходом в неравенстве получаем искомое.

Осталось доказать непрерывность f. Ноль лежит в $\stackrel{\circ}{E}$, поэтому можно выбрать уравновешенную $V(0)\subset \stackrel{\circ}{E}$. Зафиксируем какой-нибудь $y\in F$.

$$\forall x \in V \ f(x) \leqslant f(y) = a.$$

Если x лежит в V , то и -x лежит в V , поэтому $f(-x)\leqslant a$. Отсюда следует, что a>0 . Заметим, что

$$f(V) \subset (-2a, 2a) \Rightarrow V \subset f^{-1}((-2a, 2a)) \Rightarrow \frac{\varepsilon}{2a}V \subset f^{-1}((-\varepsilon, \varepsilon)).$$

Вот и получили непрерывность.

1.12 Вторая теорема об отделимости

Лемма 12.1. Каждая окрестность нуля W содержит симметричную окрестность U такую, что $U+U\subset W.$

Доказательство. Существование двух окрестностей V_1 и V_2 таких, что $V_1+V_2\subset W$ следует из непрерывности сложения. Полагая

$$U = V_1 \cap V_2 \cap (-V_1) \cap (-V_2),$$

получим окрестность нуля U, обладающую нужными свойствами.

Замечание 12.1. Понятно, что опираясь на эту лемму, можно сделать и три, и четыре, и сколько угодно таких окрестностей.

Лемма 12.2. Пусть K и C – подмножества ТВП X, причём K компактно, C замкнуто и $K\cap C=\varnothing$. Тогда найдётся окрестность нуля V такая, что

$$(K+V)\cap (C+V)=\varnothing.$$

Доказательство. Если множество K пусто, то утверждение тривиально. Поэтому рассмотрим $x \in K$. По только что доказанной лемме 12.1, найдётся окрестность $V_x(0)$ такая, что $x + V_x + V_x + V_x$ не пересекается с C; из симметричности V_x следует, что

$$(x + V_x + V_x) \cap (C + V_x) = \varnothing.$$

Поскольку K компактно, в нём найдётся множество точек $x_1, \ldots x_n$ такое, что

$$K \subset (x_1 + V_{x_1}) \cup \ldots \cup (x_n + V_{x_n}).$$

Положим $V = V_{x_1} \cap \ldots \cap V_{x_n}$. Тогда

$$K + V \subset \bigcup_{i=1}^{n} (x_i + V_{x_i} + V) \subset K + V \subset \bigcup_{i=1}^{n} (x_i + V_{x_i} + V_{x_i}),$$

а ни одно из множеств в последнем объединении не пересекает C+V.

Теорема 12.1. Пусть X — локально выпуклое ТВП, E и F — непустые выпуклые множества, причём E компактно, а F замкнуто, $E \cap F = \varnothing$. Тогда E и F строго отделимы.

Доказательство. Лемма 12.2 позволяет отделить E и F непересекающимися окрестностями, а локальная выпуклость позволяет сделать их выпуклыми. После этого можно просто сослаться на первую теорему об отделимости 11.1.

 $^{^3}$ Нужно рассмотреть множество $(1-arepsilon)x+arepsilon\stackrel{\circ}{E}$ и использовать выпуклость.

Определение 12.1. Если X – комплексное ТВП, то говорят, что непустые E и F отделимы, если существует линейный функционал f такой, что

$$f(E) \leqslant f(F)$$
.

Утверждение 12.1. Для $\mathbb C$ формулировки теорем в точности такие же.

Доказательство. Нужно сослаться на доказанные теоремы, рассмотрев комплексное пространство, как вещественное. Функционал f определится через вещественный, как

$$f(x) = \varphi(x) - i\varphi(ix).$$

Определение 12.2. Пусть X – ТВП. Тогда *двойственное* к нему X^* – пространство всех **непрерывных** линейных функционалов на X.

Следствие 12.1. Если X – локально выпуклое пространство, и $x \neq y$, то найдётся непрерывный линейный функционал такой, что $f(x) \neq f(y)$ (другими словами, X^* разделяет точки пространства X).

1.13 Теорема Крейна-Мильмана

Определение 13.1. Пусть X — ТВП, $E \subset X$ — выпуклый непустой компакт. Тогда говорят, что $S \subset E$ — крайнее для E, если

$$x, y \in E; y \notin S; t \in (0, 1) \Rightarrow tx + (1 - t)y \notin S.$$

Определение 13.2. Если крайнее множество состоит из одной точки, эта точка называется *крайней*.

Теорема 13.1 (Крейна-Мильмана). Пусть X – ТВП, E – выпуклый непустой компакт. Пусть Ext E – множество крайних точек E. Тогда

$$E = \overline{\mathsf{Conv}(\mathsf{Ext}\,E)}$$

1.14 Слабые топологии

Определение 14.1. Пусть X – множество, Y – топологическое пространство, $\mathcal F$ – семейство отображений из X в Y. Обозначим через $\tau_{\mathcal F}$ топологию, состояющую из всех объединений всех конечных пересечений множеств вида $f^{-1}(U)$, где U открыто в Y, а $f \in \mathcal F$.

Замечание 14.1. Легко видеть, что эта конструкция действительно даёт топологию.

Утверждение 14.1. $au_{\mathcal{F}}$ – самая слабая топология, относительно которой все $f \in \mathcal{F}$ непрерывны.

Доказательство. Рассмотрим произвольную такую топологию au. Множества вида $f^{-1}(U)$ в ней открыты по определению непрерывного отображения, а их объединения и конечные пересечения – по определению топологии. Поэтому $au_{\mathcal{F}} \subset au$.

Утверждение 14.2. Если пространство Y хаусдорфово, и семейство $\mathcal F$ разделяет точки X, то $(X,\, au_{\mathcal F})$ тоже хаусдорфово.

Доказательство. Рассмотрим две различные точки x_1 и x_2 в X. Раз $\mathcal F$ их разделяет, существует $f\in \mathcal F$ такое, что $f(x_1)\neq f(x_2)$. У точек $f(x_1)$ и $f(x_2)$ есть непересекающиеся окрестности, раз Y хаусдорфово, и их прообразы — окрестности точек x_1 и x_2 — тоже не пересекаются. \square

1.15 Топология, порождённая подпространством в пространстве функционалов

Лемма 15.1. Пусть X_n – векторное пространство, f_1, \ldots, f_n, f – линейные функционалы на X; пусть

$$N = \bigcap_{i=1}^n \operatorname{Ker} f_i.$$

Тогда следующие утверждения эквивалентны:

- 1. $\exists \alpha_1, \ldots, \alpha_n$: $f = \alpha_1 f_1 + \ldots + \alpha_n f_n$;
- 2. $\exists M : \forall x \in X | f(x) | \leq M \cdot \max | f_i(x) |$;
- 3. $f|_N = 0$.

Доказательство. Импликация $1\Rightarrow 2\Rightarrow 3$ очевидна. Докажем $3\Rightarrow 1$. Рассмотрим

$$\Pi: X \to \mathbb{C}^n$$

$$x \mapsto (f_1(x), \dots, f_n(x));$$

пусть $Y=\Pi X$. Возьмём произвольный $y=\Pi x\in Y$; определим $F\colon Y\to\mathbb{C}$ следующим образом:

$$F(y) = f(x)$$
.

Для корректности нужно проверить, что если $\Pi x = \Pi x'$, то и f(x) = f(x'). Это так:

$$\Pi(x) = \Pi(x') \Rightarrow \Pi(x - x') = 0 \Rightarrow x - x' \in N \Rightarrow f(x) = f(x').$$

F – линейный функционал на подпространстве \mathbb{C}^n , его всегда можно продолжить на всё \mathbb{C}^n , просто отправив всё лишнее в ноль, и записать в координатах:

$$F(y) = \sum_{i=1}^{n} \alpha_i y_i \Rightarrow f(x) = F(\Pi x) = \sum_{i=1}^{n} \alpha_i f_i(x).$$

Теорема 15.1. Пусть X – векторное пространство, X' – подпространство пространства линейных функционалов на X, X' разделяет точки X. Тогда X с топологией, порождённой X' – локально выпуклое ТВП, а $X^* = X'$.

Доказательство. Мы уже знаем, что пространство $(X,\, au_{X'})$ хаусдорфово. Рассмотрим множества вида

$$V_{\varepsilon, f_1, \dots, f_n}(x_0) = \left\{ x \in X \, \middle| \, \forall i \, \left| f_i(x - x_0) \right| < \varepsilon, \, f_i \in X' \right\}.$$

Нетрудно проверить, что любая точка в пересечении двух множеств такого типа содержится вместе с третьим множеством того же типа. Поэтому они образуют базу некоторой топологии τ

Из непрерывности f_i в $au_{X'}$ следует открытость множеств $V_{arepsilon,\,f_1,\,...,\,f_n}(x_0)$. Это значит, что $au\subset au_{X'}$. Однако

$$\forall f \in X' \ f^{-1}(B_{\varepsilon}(x_0)) \in \tau,$$

поэтому f непрерывно относительно au. Поскольку $au_{X'}$ самая слабая, $au = au_{X'}$.

Непрерывность сложения, умножения на скаляр и выпуклость доказываются довольно просто теперь, когда у нас есть удобная база.

Осталось лишь увидеть, что нет никаких непрерывных функционалов не из X'. Пусть f непрерывен в $(X, \tau_{X'})$. Тогда найдётся окрестность вида $V_{\varepsilon, f_1, \dots, f_n}(0)$ такая, что

$$\forall x \in V |f(x)| < 1.$$

Возьмём $y \in N$ в обозначнениях предыдущей леммы 15.1:

$$f_i(y) = 0 \Rightarrow f_i(\alpha y) = 0 \Rightarrow \alpha y \in V$$

для любого скаляра lpha. Но

$$|f(\alpha y)| < 1 \Rightarrow \forall \alpha |\alpha| |f(y)| \leq 1.$$

Отсюда следует, что f(y) = 0. Пользуясь леммой, получаем искомое.

1.16 Слабая топология и слабая сходимость

Определение 16.1. Пусть X – нормированное пространство. Тогда *слабой топологией* на нём называют самую слабую топологию, в которой все функционалы из X^* непрерывны. Её обозначают через $\sigma(X, X^*)$.

Утверждение 16.1. Слабая сходимость $x_n \stackrel{w}{\longrightarrow} x_0$ равносильна тому, что $\forall f \in X^*$ $f(x_n) \to f(x_0)$.

 $\ \mathcal{A}$ оказательство. $x_n \xrightarrow{w} x_0$ означает, что

$$\forall V_{\varepsilon, f_1, \dots, f_n}(x_0) \exists N : n > N \Rightarrow x_n \in V.$$

Если рассмотреть окрестность типа $V_{\varepsilon,\,f}$, получится в точности то, что справа.

Докажем теперь обратно. Для всех $f \in X^*$ выполняется

$$f(x_n) \to f(x_0) \Leftrightarrow \forall V_{\varepsilon, f}(x_0) \exists N: n > N \Rightarrow x_n \in V.$$

Рассмотрим окрестность общего вида $V_{\varepsilon,\,f_1,\,...,\,f_n}(x_0)$. Если записать последнее утверждение для всех окрестностей $V_{\varepsilon,\,f_i}(x_0)$ и выбрать наибольшее из полученных N, оно станет верным и для окрестности общего вида.

Теорема 16.1. $x_n \xrightarrow{w} x_0$ равносильна тому, что одновременно выполняются два утверждения:

- 1. $\sup ||x_n|| < \infty$,
- 2. для всех f в некотором всюду плотном множестве $E \subset X^*$ $f(x_n) \to f(x_0)$.

Доказательство. Пусть f – произвольный непрерывный линейный функционал на X. Поскольку E всюду плотно, найдётся функционал $f_0 \in E$ такой, что $\|f - f_0\| < \varepsilon$. Заметим, что

$$f(x_n - x_0) = f_0(x_n - x_0) + (f - f_0)(x_n - x_0),$$

поэтому

$$|f(x_n - x_0)| \le |f_0(x_n - x_0)| + |(f - f_0)(x_n - x_0)| \le |f_0(x_n - x_0)| + ||f - f_0|| (||x_n|| + ||x_0||).$$

Используя ограниченность, окончательно пишем

$$|f(x_n - x_0)| \le |f_0(x_n - x_0)| + M||f - f_0||.$$

Первое слагаемое стремится к нулю, а второе можно сделать сколь угодно малым, верно выбрав f_0 . Успех!

Пример 16.1. Пусть $x_n \in l^p$. Тогда сходимость $x_n \xrightarrow{w} x_0$ равносильна тому, что одновременно выполняются два утверждения:

- 1. $\sup ||x_n|| < \infty$,
- 2. $x_n^k \to x_0^k$.

Доказательство. Мы знаем, как устроено пространство, двойственное к l^p – это просто l^q , где

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Линейная оболочка векторов вида

$$e_k = (0, \ldots, \underbrace{1}_k, 0, \ldots)$$

образует всюду плотное множество в l^q . При этом, если рассмотреть их как функционалы, то

$$e_k(x) = x^k \Rightarrow e_k(x_n) \to e_k(x_0).$$

При линейных комбинациях векторов это, конечно, не ломается, поэтому можно спокойно использовать только что доказанную теорему. \Box

Пример 16.2. Пусть $x_n \in C(K)$, где $K \subset \mathbb{R}^n$ – компакт. Тогда сходимость $x_n \xrightarrow{w} x_0$ равносильна тому, что одновременно выполняются два утверждения:

- 1. $\sup ||x_n|| < \infty$,
- 2. $\forall t \in K \ x_n(t) \to x_0(t)$.

 $extit{Доказательство}. \;\;$ Мы знаем, как устроены функционалы и на C(K) – любой из них имеет вид

$$\varphi(x) = \int_{\mathcal{K}} x \, \mathrm{d}\mu,$$

где μ – некоторая регулярная борелевская комплексная мера. По теореме Лебега об ограниченной сходимости из условий теоремы следует, что

$$\int\limits_K x_n \, \mathrm{d}\mu \to \int\limits_K x_0 \, \mathrm{d}\mu,$$

поскольку борелевская мера компактного множества конечна⁴.

В обратную сторону доказательство тривиально: надо в качестве функционала взять значение в точке.

Теорема 16.2. Пусть H – гильбертово пространство. Следующие утверждения равносильны:

- 1. $x_n \rightarrow x_0$;
- 2. $x_n \xrightarrow{w} x_0$ и $||x_n|| \rightarrow ||x_0||$.

Доказательство. Доказывать надо только $2\Rightarrow 1$. Распишем норму разности:

$$||x_n - x_0||^2 = ||x_n||^2 + (x_n, x_0) - (x_0, x_n) + ||x_0||^2.$$

Вторые два слагаемых стремятся к квадрату нормы x_0 из-за слабой сходимости (они ведь непрерывные линейные функционалы по сути!) Первое стремится к квадрату нормы x_0 .

1.17 Слабая ограниченность, теорема Мазура

Теорема 17.1. Пусть X – нормированное пространство, $E\subset X$. Следующие условия равносильны:

- 1. E ограничено в слабой топологии;
- 2. f(E) ограничено для любого непрерывного на X функционала;
- 3. E ограничено по норме.

Доказательство.

- $3 \Rightarrow 2$: Очевидно.
- $2\Rightarrow 3$: Пусть π_x функционал на X^* , который переводит f в f(x) (он, конечно, непрерывный). Ограниченность f(E) означает, что множество $\{\pi_x(f)\,|\,x\in E\}$ ограничено, а это орбита f! Поскольку X^* F-пространство, можно воспользоваться теоремой Банаха-Штейнгауза 7.2 и получить, что семейство π_x равностепенно непрерывно, а потому и равномерно ограничено, т.е. $\sup \|\pi_x\| < \infty$, а $\|\pi_x\| = \|x\|$.
 - $1\Rightarrow 2$: Пусть $f\in X^*$. Рассмотрим $V_{1,f}(0)$. Из ограниченности E следует, что

$$\exists s > 0 : \forall t > s \ E \subset tV \Rightarrow \sup |f(E)| < t.$$

 $2\Rightarrow 1$: Пусть U — окрестность нуля в слабой топологии. Не умаляя общности, $U=V_{arepsilon,\,f_1,\,\dots,\,f_n}.$ Найдутся M_i такие, что $|f_i(x)|\leqslant M_i$ для всех x из E. Пусть $M=\max M_i$; тогда при $t>\frac{M}{arepsilon}$ $E\subset tU$.

Теорема 17.2 (Мазура). Пусть X – нормированное пространство, а $E\subset X$ непусто и выпукло. Тогда замкнутость E в слабой и в обычной топологии равносильны.

 \mathcal{L} доказательство. Если E слабо замкнуто, то оно и по норме замкнуто, ибо топология нормы сильнее. Интересно в обратную сторону.

Пусть множество E замкнуто по норме. Предположим, что существует точка $x_0 \notin E$, которая попала в слабое замыкание E. По второй теореме отделимости 12.1 точку можно отделить от замкнутого множества E функционалом $f \in X^*$ так, что

$$\operatorname{Re} f(x_0) > M > \sup_{x \in E} \operatorname{Re} f(x).$$

Пусть

$$U = \{x \mid \text{Re } f(x) > M\}.$$

f непрерывен в слабой топологии, поэтому $\mathrm{Re}\,f$ непрерывен в ней, а значит, U в ней открыто. $x_0\in U$ и U не пересекает E, что даёт противоречие. \square

⁴Это требование, кажется, не всегда включают в определение борелевской меры.

1.18 *-слабая топология

В принципе, можно было бы рассмотреть слабую топологию на пространстве линейных функционалов. Однако она оказывается довольно бесполезной, потому что второе двойственное зачастую слишком большое. Вместо этого поступают иначе.

Определение 18.1. Пусть X – нормированное пространство. Рассмотрим отображение π : $X^* \to X^{**}$, которое точку x переводит в функционал на пространстве X^* , сопоставляющий $f \in X^*$ его значение f(x). *-слабой топологией называют самую слабую топологию, относительно которой непрерывны все функционалы из множества $\pi(X)$. Вместо $\pi(x)$ иногда пишут π_x .

Утверждение 18.1 (Корректность). Функционал π_x действительно непрерывен, его норма не превосходит ||x||.

Доказательство.

$$|\pi_x(f)| = |f(x)| \le ||f|| ||x||.$$

Отсюда следует, что

$$\|\pi_x\| = \sup_x \frac{|\pi_x(f)|}{\|f\|} \leqslant \|x\|.$$

Это значит, что π_x ограничен \Rightarrow непрерывен, причём его норма не превосходит $\|x\|$.

Теорема 18.1. Пусть X – нормированное пространство.

- 1. Рассмотрим $X_0\subset X$ линейное подпространство, $f_0\colon X_0\to \mathbb{C}$ непрерывный линейный функционал. Тогда найдётся непрерывный линейный функционал $f\colon X\to \mathbb{C}$ такой, что $f|_{X_0}=f_0$ и $\|f\|=\|f_0\|$.
- 2. Для любой ненулевой точки $x_0 \in X$ найдётся $f \in X^*$ такой, что ||f|| = 1 и $f(x_0) = ||x_0||$.

Доказательство.

- 1. Рассмотрим $p(x) = \|f_0\| \|x\|$. Это полунорма на X (а если $f_0 \neq 0$), даже норма. Понятно, что p(x) ограничивает f_0 . Поэтому по теореме Хана-Банаха существует линейный функционал f на X такой, что $f|_{X_0} = f_0$ и $f(x) \leqslant \|f_0\| \|x\|$. Это сразу же даёт нам ограниченность f и то, что его норма не превосходит $\|f_0\|$. При этом меньше она тоже никак быть не может.
- 2. Пусть $X_0 = \text{Lin}(x_0)$. Положим $f(\alpha x_0) = \alpha \|x_0\|$. По первому пункту теоремы всё получается.

 \Box

Теорема 18.2. Отображение $\pi: X \to X^{**}$ – изометрия.

Доказательство. Теперь мы знаем, что по любой точке x можно пострить функционал f такой, что $\|f\|=1$ и $f(x)=\|x\|$. Это значит, что

$$\frac{\left|\pi_x(f)\right|}{\|f\|} = \|x\|.$$

Поэтому верхняя оценка из утверждения 18.1 достигается и $\|\pi_x\| = \|x\|$, что и значит, что отображение π – изометрия.

Определение 18.2. Если каноническое вложение π – изоморфизм, пространство X называют рефлексивным.

Пример 18.1. Рефлексивны все гильбертовы пространства (потому что они изоморфны своим двойственным). Рефлексивно также L^p при $1 , потому что двойственное к нему <math>L^q$, а к нему снова L^p . То, что именно π задаёт этот изоморфизм, строго говоря, надо проверять, но это довольно просто. А вот L^1 , L^∞ и C(K) не являются рефлексивными.

Утверждение 18.2. База *-слабой топологии состоит из множеств вида

$$V_{\varepsilon, x_1, \dots, x_n}(f_0) = \left\{ f \in V^* \mid \forall i \in 1 \dots n \mid f(x_i) - f_0(x_i) \right\} < \varepsilon \right\}.$$

Утверждение 18.3. $f_n \xrightarrow{w^*} f_0 \Leftrightarrow \forall x \; \pi_x(f_n) \to \pi_x(f_0)$, то есть, *-слабая сходимость – по сути поточечная сходимость.

Теорема 18.3. $f_n \xrightarrow{w^*} f_0 \Leftrightarrow$ выполнению двух условий:

- 1. $\sup ||f_n|| < \infty$.
- 2. Найдётся E всюду плотное множество в X такое, что $f_n(x) \to f_0(x)$ для всех $x \in E$. Всё это делается аналогично обычной слабой топологии.

Пример 18.2. Если X рефлексивно, то *-слабая и слабая тополгии на X^* совпадают.

1.19 Теорема Банаха-Алаоглу

Теорема 19.1. Пусть X – нормированное пространство. Единичный шар \overline{B}^* в пространстве X^* компактен и секвенциально компактен в *-слабой топологии.

Доказательство в предположении, что X сепарабельно. Доказывать будем в два этапа:

- 1. Сужение *-топологии на \overline{B}^* метризуемо,
- 2. \overline{B}^* секвенциально компактен.

Начнём с первого.

1. Пусть x_n – счётное всюду плотное множество в X. $p_n(f) = |f(x_n)|$ – полунормы в X^* . Поскольку x_n всюду плотно, если $p_n(f) = 0$, то и в любой точке f обратится в ноль из-за его непрерывности. Поэтому семейство p_n определяющее. Значит, топология τ , которую порождает это семейство, метризуема.

Докажем, что

$$\sigma^*|_{\overline{R}^*} = \tau|_{\overline{R}^*}.$$

База топологии au состоит из множеств вида

$$V_{\varepsilon, i_1, \dots, i_n}(f_0) = \left\{ f \in X^* \mid \forall k \in 1 \dots n \mid f(x_{i_k}) - f_0(x_{i_k}) \mid < \varepsilon \right\},$$

а база топологии σ^* – из множеств вида

$$V_{\varepsilon, y_1, \dots, y_n}(f_0) = \left\{ f \in X^* \, \middle| \, \forall k \in 1 \dots n \, \middle| f(y_1) - f_0(y_n) \middle| < \varepsilon \right\}, \, x_k \in X.$$

Отсюда сразу очевидно, что $\tau \subset \sigma^*$. Базы топологий, суженных на \overline{B}^* , получаются из этих просто пересечением с \overline{B}^* . Хочется для них получить обратное включение, а для этого хочется доказать, что

$$\forall y_1, \ldots, y_n \in X \ \forall \varepsilon > 0 \ \exists i_1, \ldots, i_n : U_{\delta, i_1, \ldots, i_n}(f_0) \cap \overline{B}^* \subset V_{\varepsilon, x_1, \ldots, x_n}(f_0).$$

Поскольку множество $\{x_n\}$ плотное, для каждого y_k найдётся x_{i_k} такой, что

$$||y_k - x_{i_k}|| < \frac{\varepsilon}{3(1 + ||f_0||)}.$$

Положим $\delta=\frac{\varepsilon}{3}$ и рассмотрим $f\in U_\delta\cap\overline{B}^*$. Проверим, лежит ли f в V_ε :

$$\begin{aligned} \left| f(y_{k}) - f_{0}(y_{k}) \right| &= \left| f(y_{k}) - f(x_{i_{k}}) + f(x_{i_{k}}) - f_{0}(x_{i_{k}}) + f_{0}(x_{i_{k}}) - f_{0}(y_{k}) \right| \leqslant \\ &\leqslant \left| f(y_{k}) - f(x_{i_{k}}) \right| + \left| f(x_{i_{k}}) - f_{0}(x_{i_{k}}) \right| + \left| f_{0}(x_{i_{k}}) - f_{0}(y_{k}) \right| \leqslant \\ &\leqslant \underbrace{\| f \| \|y_{k} - x_{i_{k}} \|}_{\leqslant \varepsilon} + \underbrace{\left| f(x_{i_{k}}) - f_{0}(x_{i_{k}}) \right|}_{\leqslant \varepsilon} + \| f_{0} \| \underbrace{\|x_{i_{k}} - y_{k}\|}_{\leqslant \varepsilon} \leqslant \varepsilon. \end{aligned}$$

Успех!

2. Пусть теперь $\{f_n\} \in \overline{B}^*$, $\{x_n\}$ – всюду плотное множество в X. Заметим, что

$$|f_n(x_1)| \le ||f_n|| \, ||x_1|| \le ||x_1||,$$

поэтому $\left\{f_n(x_1)\right\}$ ограничена в $\mathbb C$. Это значит, что можно выбрать подпоследовательность $f_n^{(1)}$ такую, что $f_n^{(1)}(x_1)$ сходится. Продолжая эту деятельность и используя диагональный метод, получаем последовательность $f_n^{(n)}$, сходящуюся во всех точках x_n . Но раз $\{x_n\}$ всюду плотно, оно и в каждой точке X будет.

1.20 Банаховы алгебры

Определение 20.1. Пусть A – алгебра над $\mathbb C$, т.е. линейное пространство с дистрибутивным ассоциотивным умножением, коммутирующим с умножением на константу. A называют δ называ

- 1. На A есть норма, относительно которой A банахово пространство;
- 2. $||ab|| \leq ||a|| \, ||b||$;

3. в алгебре есть единица e, причём $\|e\|=1$.

Свойство 20.1. Умножение непрерывно относительно нормы, то есть если $x_n \to x$ и $y_n \to y$, то $x_n y_n \to xy$.

Доказательство.

$$||xy - x_n y_n|| = ||xy - xy_n + xy_n - x_n y_n|| = ||x(y - y_n) + y_n||x - x_n||| \le$$

$$\le ||x|| ||y - y_n|| + ||y_n|| ||x - x_n||.$$

Правая часть стремится к нулю.

Свойство 20.2.

$$||x^n|| \leqslant ||x||^n.$$

Пример 20.1.

- 1. C(K),
- 2. $C^1([a, b]), ||f|| = \max |f| + \max |f'|,$
- 3. $L^{\infty}(X, \mu)$,
- 4. непрерывные операторы на банаховом пространстве,
- 5. алгебра матриц,
- 6. $l^1(\mathbb{Z})$ с умножением

$$z_n = \sum x_k y_{n-k},$$

- 7. $L^{1}(X)$ со свёрткой,
- 8. диск-алгебра A(D) алгебра аналитических функций на единичном круге в \mathbb{C} ,
- 9. алгебра H^{∞} аналитических и ограниченных функций на единичном круге.

Замечание 20.1. В алгебре может не быть единицы, как, например, в L^1 (δ -функция). Её можно добавить с помощью общей конструкции: если есть алгебра A, рассмотреть алгебру \tilde{A} из пар (x,α) , где $x\in A$ и $\alpha\in\mathbb{C}$. Норму надо определить, как

$$||(x, \alpha)|| = ||x|| + |\alpha|,$$

а умножение, как

$$(x, \alpha) \cdot (y, \beta) = (xy + \alpha x + \beta y, \alpha \beta).$$

Единица будет (0, 1).

1.21 Обратимые элементы

Определение 21.1. Пусть A – банахова алгебра. Элемент $a \subset A$ называют *обратимым*, если есть $a^{-1} \in A$ такой, что $aa^{-1} = a^{-1}a = e$.

Утверждение 21.1. a^{-1} единственен.

Теорема 21.1. Пусть A – банахова алгебра, $x \in A$, $\|x\| < 1$. Тогда элемент e-x обратим, причём

$$(e-x)^{-1} = \sum_{i=1}^{\infty} x^{i}$$
.

Доказательство. Докажем сначала, что ряд из формулировки вообще сходится. Поскольку пространство банахово, она будет следовать из сходимости ряда

$$\sum_{i=1}^{\infty} ||x||^n.$$

Но норма x меньше единицы, поэтому он сходится.

Теперь надо понять, почему он обратный. Рассмотрим произведение

$$(e-x)S_n = (e-x)\sum_{i=1}^N x^i = e-x^{N+1}.$$

Правая часть стремится к e, а левая часть стремится к e-x по свойству 20.1. С другой стороны будет то же самое, ибо многочлены коммутируют. Успех!

Теорема 21.2. Пусть A – банахова алгебра, $x \in A$ обратим, а $\|h\| < \|x^{-1}\|^{-1}$. Тогда элемент x-h обратим, причём

$$\|(x-h)^{-1}\| \le \frac{\|x\|^{-1}}{1-\|h\|\|x^{-1}\|}.$$

И

$$\|(x-h)^{-1} - x^{-1}\| \le \frac{\|h\| \|x^{-1}\|^2}{1 - \|h\| \|x^{-1}\|}.$$

Доказательство. Более-менее простые выкладки.

Следствие 21.1. Множество U обратимых элементов открыто; отображение $x \mapsto x^{-1}$ является гомеоморфизмом U на U.

1.22 Спектр, его непустота, теорема Гельфанда-Мазура

С этого момента все банаховы алгебры над $\mathbb C.$

Определение 22.1. Пусть A – банахова алгебра, $x \in A$. Тогда *спектром* элемента x называется множество

$$\sigma(x) = \{ \lambda \in \mathbb{C} \mid \lambda e - x \text{ необратим} \}.$$

Дополнение спектра $\rho(x)$ называют множеством регулярных точек или резольвентным множеством; α из него называют резольвентой.

Теорема 22.1. Пусть A – банахова алгебра, $x \in A$. Тогда $\sigma(x)$ – непустой компакт.

Доказательство. Пусть $\lambda \in \mathbb{C}$ и $\|\lambda\| > \|x\|$. Рассмотрим $\lambda e - x$:

$$\lambda e - x = \lambda \left(e - \frac{x}{\lambda} \right).$$

Поскольку

$$\left\| \frac{x}{\lambda} \right\| < 1,$$

элемент $\lambda e - x$ обратим, и λ – резольвента. Поэтому

$$\sigma(x) \subset \{\lambda \in \mathbb{C} \mid |\lambda| \leq ||x||\}.$$

Пусть $\lambda \in \rho(x)$. Рассмотрим μ такое, что

$$|\mu - \lambda| < \frac{1}{\|(\lambda e - x)^{-1}\|}.$$

Докажем, что $\mu \in \rho(x)$:

$$\left\|(\mu e - x) - (\lambda e - x)\right\| = \left\|(\mu - \lambda)e\right\| = |\mu - \lambda| < \frac{1}{\left\|(\lambda e - x)^{-1}\right\|}.$$

По теореме 21.1 $\mu \in \rho(x)$. Отсюда следует открытость ρ и замкнутость σ , поэтому σ компактен (как замкнутое и ограниченное множество в $\mathbb C$).

Нужно ещё доказать непустоту. Тут нам всерьёз понадобится комплексность A. Для начала запишем тождество Гильберта:

$$(\lambda e - x)^{-1} - (\mu e - x)^{-1} = (\mu - \lambda)(\lambda e - x)^{-1}(\mu e - x)^{-1}.$$

Его легко угадать, если представить себе, что это всё числа и заменить отрицательную степень на дробь. Доказательство не сильно сложнее.

Предположим, что $\sigma(x)$ пуст. Тогда $\forall \lambda \in \mathbb{C}$ найдётся $(\lambda e - x)^{-1}$. Пусть $\varphi \in A^*$. Рассмотрим функцию

$$f(\lambda) = \varphi((\lambda e - x)^{-1})$$

и докажем, что она целая:

$$\begin{split} \lim_{\lambda \to \mu} \frac{f(\lambda - f(\mu))}{\lambda - \mu} &= \lim_{\lambda \to \mu} \frac{\varphi \left((\mu - \lambda)(\lambda e - x)^{-1} (\mu e - x)^{-1} \right)}{\lambda - \mu} = \\ &= \lim_{\lambda \to \mu} -\varphi \left((\lambda e - x)^{-1} (\mu e - x)^{-1} \right) = -\varphi \left((\mu e - x)^{-2} \right). \end{split}$$

Теперь докажем, что f ограничена. Пусть $|\lambda| > ||x|| + 1$. Тогда

$$(\lambda e - x)^{-1} = \left(\lambda \left(e - \frac{x}{\lambda}\right)^{-1}\right) = \lambda^{-1} \left(e - \frac{x}{\lambda}\right)^{-1}.$$

Поэтому (оценка нормы обратного – по теореме 21.2)

$$\|(\lambda e - x)^{-1}\| \le \frac{1}{|\lambda|} \cdot \frac{1}{1 - \|\frac{x}{\lambda}\|} = \frac{1}{|\lambda| - \|x\|} \le 1.$$

При этом

$$|f(\lambda)| \le ||\varphi|| ||(\lambda e - x)^{-1}|| \le ||\varphi||.$$

Таким образом, f — целая и ограниченная, а из теоремы Лиувилля — постоянная. Записав ту же оценку более точно, имеем

$$\left|f(\lambda)\right|\leqslant\frac{\|\varphi\|}{|\lambda|-\|x\|}\Rightarrow |f(\lambda)|\xrightarrow{|x|\to\infty}0\Rightarrow f=0.$$

Раз все непрерывные линейные функционалы обращаются в ноль на $(\lambda e - x)^{-1}$, оно тоже должно быть равно нулю (например, по второму пункту теоремы 18.1). Но такого не может быть, ведь у нуля нет обратного! Поэтому $\sigma(x)$ непуст.

Теорема 22.2 (Гельфанда-Мазура). Пусть A — банахова алгебра, и в ней все ненулевые элементы обратимы. Тогда она изометрически изоморфна $\mathbb C$.

Доказательство. Для каждого $x\in A$ спектр непуст, поэтому есть $\lambda(x)$ такое, что $x-\lambda(x)e$ необратим, а необратим лишь ноль, поэтому $x=\lambda(x)e$. Изоморфизм задаётся так, чтобы $x\mapsto \lambda(x)$.

1.23 Спектральный радиус

Определение 23.1. Пусть A – банахова алгебра, $x \in A$. Спектральным радиусом элемента x называют

$$r(x) = \overline{\lim_{n \to \infty}} \sqrt[n]{\|x^n\|}.$$

Замечание 23.1. Поскольку $||x^n|| \le ||x||^n$, $r(x) \le ||x||$.

Теорема 23.1 (О спектральном радиусе).

$$r(x) = \max_{\lambda \in \sigma(x)} |\lambda|.$$

Доказательство. Обозначим правую часть через R. По теореме об отображении спектра если $\lambda \in \sigma(x)$, то $\lambda^n \in \sigma(x^n)$. Мы знаем, что элементы спектра y лежат в замкнутом круге с радиусом $\|y\|$, поэтому

$$|\lambda^n| \leqslant ||x^n|| \Rightarrow |\lambda| \leqslant \sqrt[n]{||x^n||} \Rightarrow |\lambda| \leqslant r(x) \Rightarrow R \leqslant r(x).$$

Как доказать неравенство в обратную сторону? Возьмём $\varphi \in A^*$ и рассмотрим функцию

$$f(\lambda) = \varphi((\lambda e - x)^{-1})$$

для λ не из спектра. Так же, как в теореме 22.1, доказывается аналитичность f; поэтому она аналитична вне круга с радиусом R.

Разложим её в этом кольце в ряд Лорана:

$$f(\lambda) = \sum_{n = -\infty}^{+\infty} \frac{c_n}{\lambda^n}.$$

Если $|\lambda| > ||x||$,

$$(\lambda e - x)^{-1} = \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}} \Rightarrow f(\lambda) = \sum_{n=0}^{\infty} \frac{\varphi(x^n)}{\lambda^{n+1}}.$$

Поэтому при n > 0 получается, что $c_{n+1} = \varphi(x^n)$.

С другой стороны,

$$c_{n+1} = \frac{1}{2\pi i} \int_{|\lambda| = r_0} \lambda^n f(\lambda) \, d\lambda, \ r_0 > R.$$

Отсюда следует, что

$$\varphi(x^n) = |c_{n+1}| \leqslant r_0^{n+1} M.$$

По теореме 18.1 найдётся такой функционал φ , что $\|\varphi\|=1$, причём $\varphi(x^n)=\|x^n\|$, поэтому

$$||x^n|| \leqslant Mr_0^{n+1} \Rightarrow \sqrt[n]{||x^n||} \leqslant r_0 \Rightarrow r(x) \leqslant R.$$

1.24 Примеры вычисления спектров операторов

Определение 24.1. Пусть X – банахово пространство, $U\colon X\to X$ – непрерывный оператор. Тогда ненулевой вектор $x\in X$ называют собственным вектором X, если существует λ такое, что $Ux=\lambda x$. В такой ситуации λ называют собственным числом оператора U.

Замечание 24.1. Существование у оператора собственных чисел и векторов равносильно тому, что он не инъективен. В конечномерном случае это равносильно его необратимости; в бесконечномерном оператор бывает инъективен, но не сюръективен.

Определение 24.2. Множество собственных чисел U называют точечным спектром U, а оставшуюся часть спектра – непрерывным спектром U. Первый обозначают как $\sigma_p(U)$, а второй – как $\sigma_c(U)$.

Пример 24.1. Рассмотрим $l^2(\mathbb{N})$ и оператор S на нём такой, что

$$(x_1, x_2, \ldots) \mapsto (0, x_1, \ldots).$$

Это так называемый оператор сдвига. Для него

$$\sigma(S) = \sigma_c(S) = \{ |\lambda| \le 1 \}.$$

Доказательство. Поищем сначала собственные числа. В координатах условие $Ux=\lambda x$ выглядит, как

$$\begin{cases} 0 &= \lambda x_1, \\ x_1 &= \lambda x_2, \\ &\vdots \\ x_n &= \lambda x_{n+1}, \\ &\vdots \end{cases}$$

Отсюда понятно, что может подойти лишь $\lambda=0$, но ядро оператора S пусто. Поэтому у него нет собственных чисел, и он инъективен.

Пусть теперь $\lambda \in \rho(S)$, тогда для любого $y \in l^2$ найдётся единственный $x \in l^2$ такой, что

$$\begin{cases}
-\lambda x_1 &= y_1, \\
x_1 - \lambda x_2 &= \lambda y_2, \\
\vdots \\
x_n - \lambda x_{n+1} &= \lambda y_{n+1}, \\
\vdots &\vdots
\end{cases}$$

Решая систему, находим

$$x_n = -\frac{y_1}{\lambda^n} - \ldots - \frac{y_n}{\lambda}.$$

При $|\lambda| < 1$ и, например, $y = e_1$, x просто не попадает в l^2 , поэтому этот круг лежит в спектре; поскольку спектр компактен, там лежит и круг $|\lambda| \leqslant 1$. При этом спектральный радиус ограничен сверху ||S|| = 1, поэтому все остальные точки лежат в резольвентном множестве.

Пример 24.2. Можно рассмотреть очень похожий оператор S^* – сдвиг в обратную сторону. Для него всё делается похожим путём, но получается даже проще:

$$\sigma(S) = \{|\lambda \leqslant 1|\} \text{ in } \sigma_p(S) = \{|\lambda| < 1\}.$$

Пример 24.3. Рассмотрим оператор M на C(K), где K – компакт в $\mathbb C$, который переводит функцию f(z) в zf(z). Его называют оператором умножения на независимую переменную. Для него

$$\sigma(M)=K$$
 и $\sigma_p(M)=\{$ изол. точки $K\}.$

 $\ \ \,$ Доказательство. Выясним, какие у S собственные числа. Нужно, чтобы выполнялось условие

$$zf(z) = \lambda f(z) \Rightarrow (z - \lambda)f(z) = 0 \Rightarrow f(z) = 0$$

всюду, кроме точки λ . Если λ – предельная точка K, то f просто совсем ноль, это не годится. А вот если λ – изолированная точка K, то λ – собственное число.

Теперь посмотрим на резольвентное множество. Пусть $\lambda \in \rho(M)$, тогда для любой $g \in C(K)$ найдётся $f \in C(K)$ такая, что

$$(z - \lambda)f(z) = g(z).$$

Если λ не в K, то можно просто поделить, поэтому $\rho(M)\subset K$. Но вот если λ в K, то ничего не выйдет, ибо всегда можно положить g(z)=1, а тогда и $g(\lambda)=1$. Поэтому $\sigma(M)=K$.

Пример 24.4. Пусть μ – конечная борелевская мера на $K\subset \mathbb{C}$. Тогда можно рассмотреть такую же задачу для $L^2(K)$. Собственными числами окажутся *атомы* меры μ – точки с ненулевой мерой. А вот весь спектр совпадёт с *замкнутым носителем меры* μ – наименьшим замкнутым множеством $F\subset K$ таким, что $\mu(\mathbb{C}\setminus F)=0$.

1.25 Теорема об отображении спектра, спектр сопряжённого оператора

Теорема 25.1 (Теорема об отображении спектра). Пусть A – банахова алгебра, $x \in A$,

$$p(z) = \sum_{j=0}^n c_j z^j$$
 – многочлен.

Тогда $\sigma(p(x)) = p(\sigma(x)).$

Доказательство. Пусть $\lambda \in \sigma(x) \Rightarrow \lambda e - x$ необратим. Заметим, что

$$p(\lambda)e - p(x) = (\lambda e - x)q(x),$$

где q(x) – многочлен (по теореме Безу). Предположим, что $p(\lambda e - p(x))$ обратим, и

$$v = (p(\lambda)e - p(x))^{-1}.$$

Нетрудно видеть, что xv = vx (домножить надо), поэтому qv = vq.

$$v(\lambda e - x)q = (\lambda e - x)qv = e = qv(\lambda e - x),$$

поэтому qv обратный к $\lambda e-x$. Поэтому $p\big(\sigma(x)\big)\subset\sigma\big(p(x)\big)$.

Пусть теперь $\mu \in \sigma(p(x))$. Рассмотрим $\lambda_1, \ldots, \lambda_n$ – корни уравнения $p(\lambda) = \mu$. Ясно, что

$$p(z) - \mu = c(\lambda_1 - z) \dots (\lambda_n - z)$$

И

$$p(x) - \mu e = c(\lambda_1 e - x) \dots (\lambda_n e - x).$$

Если λ_i не лежит в спектре, то правая часть обратима, что ведёт к противоречию. \Box

Определение 25.1. Пусть H – гильбертово пространство со скалярным произведением (\cdot,\cdot) , а U – оператор на H. Сопряжённым к U называют оператор U^* , удовлетворяющий соотношению

$$(U(x), y) = (x, U(y)).$$

Он существует и единственен для любого ограниченного оператора, это доказано, например, в [2, с. 393-394].

Утверждение 25.1. $\sigma(U^*) = \overline{\sigma(U)}$.

Доказательство.

$$\lambda \in
ho(U) \Leftrightarrow U - \lambda I$$
 обратим $\Leftrightarrow (U - \lambda I)^* = U^* - \overline{\lambda} I$ обратим $\Leftrightarrow \overline{\lambda} \in
ho(U^*).$

1.26 Спектр унитарного и самосопряжённого оператора

Определение 26.1. Ограниченный линейный оператор U на гильбертовом пространстве H называют *унитарным*, если он обратим и $U^* = U^{-1}$.

Определение 26.2. Линейный оператор U на гильбертовом пространстве H называют *самомопряжённым*, если $U^* = U$.

Замечание 26.1. Из самосопряжённости оператора можно вывести его непрерывность с помощью теоремы о замкнутом графике.

Утверждение 26.1. Пусть U – унитарный оператор на H. Тогда

$$\sigma(U) \subset \{|\lambda| = 1\}.$$

Доказательство. Поскольку U унитарный, $\|Ux\|=\|x\|$, поэтому $\|U\|=1$ и модуль λ не может быть больше 1. Если $|\lambda|<1$, то оператор

$$U - \lambda I = U \left(I - \lambda U^{-1} \right)$$

обратим по теореме 21.1.

Теорема 26.1. Пусть U — самосопряжённый оператор. Тогда $\sigma(U) \subset \mathbb{R}$.

Доказательство. Возьмём какое-нибудь $M>\|U\|$. Понятно, что тогда $iM\in \rho(U)$ и оператор U+iMI обратим. Рассмотрим

$$V = (U - iMI)(U + iMI)^{-1}.$$

Докажем, что оператор V унитарен. Очевидно, что он обратим, причём

$$V^{-1} = (U + iMI)(U - iMI)^{-1}.$$

Найдём сопряжённый к V:

$$V^* = ((U + iMI)^{-1})^* (U - iMI)^* = (U - iMI)^{-1} (U + iMI).$$

Равенство нужных нам выражений получается тривиально.

На минуту представим, что корректно равенство

$$V = \frac{U - iMI}{U + iMI},$$

и рассмотрим отображение $\mathbb{C} \to \mathbb{C}$, которое действует следующим образом:

$$\mu \mapsto i\frac{1+\mu}{1-\mu} = w.$$

Это отображение переводит единичный круг в верхнюю полуплоскость, а единичную окружность – в вещественную ось. Для любого $\lambda \notin \mathbb{R}$ найдётся единственное μ , которое в него перейдёт и $|\mu| \neq 1$. В этой ситуации $\mu \in \rho(V)$ и оператор $V - \mu I$ обратим.

Из этого следует, что обратимы операторы

$$(U - iMI) - \mu(U + iMI) \Rightarrow U(1 \mu) - iM(1 + \mu)I \Rightarrow U - iM\frac{1 + \mu}{1 - \mu}I.$$

Поэтому $M\lambda \in \rho(U)$, но тогда и $\lambda \in \rho(U)$. Успех!

1.27 Компактные операторы и их простейшие свойства

Определение 27.1. Пусть X и Y – нормированные пространства, $U \in L(X,Y)$, и пусть B^X – замкнутый единичный шар в X. Линейный оператор U называют *компактным*, если $U(B^X)$ – предкомпактное множество в Y.

Утверждение 27.1. U компактен \Leftrightarrow образ любого ограниченного множества E относительно компактен в U.

Доказательство.

$$\forall x \in E \ ||x|| \leqslant M \Rightarrow E \subset MB^X \Rightarrow U(E) \subset MU(B^X).$$

Умножение на M – гомеоморфизм Y в себя, поэтому $MU(B^X)$ предкомпактно. Однако любое подмножество предкомпактного множества предкомпактно. \square

Утверждение 27.2. U компактен $\Leftrightarrow \forall x_n \in X, \ \|x_n\| \leqslant 1 \ \exists \ x_{n_k} \colon Ux_{n_k}$ сходится в Y.

Доказательство. В нормированном пространстве компактность и секвенциальная компактность совпадают. \Box

Замечание 27.1. Любой компактный оператор является ограниченным, а поэтому и непрерывным.

Теорема 27.1. Пусть X и Y – нормированные пространства, а U и V – линейные компактные операторы из X в Y. Тогда $\alpha U + \beta V$ компактен.

Доказательство. Следует без труда из секвенциального определения компактности оператора. \Box

Теорема 27.2. Пусть $U: X \to Y$ и $V: Y \to Z$ – компактные операторы. Тогда если один из них компактен, то и композиция компактна.

Замечание 27.2. Компактные операторы образуют в пространстве операторов двусторонний идеал.

Следствие 27.1. Пусть X, Y – нормированные и бесконечномерные. Тогда никакой обратимый оператор $X \to Y$ не компактен.

Доказательство. Это так, потому что иначе был бы компактен тождественный оператор в одном из пространств. \Box

Теорема 27.3. Пусть X, Y – нормированные пространства, U_n, U – операторы из X в Y, причём U_n компактны и $\|U_n - U\| \to 0$. Тогда и U компактен (другими словами, множество компактных операторов замкнуто).

Доказательство. Рассмотрим $x_n \in X$: $||x_n|| \leqslant 1$. Найдётся подпоследовательность $\{x_n^{(1)}\}$ такая, что её образ при U_1 сходится. Продолжив выделять и использовав диагональный метод, получим $\{x_k^{(k)}\}$ такую, что её образ сходится при любом U_n .

Докажем, что $Ux_k^{(k)}$ сходится, проверим фундаментальность:

$$\begin{aligned} \left\| Ux_{k}^{(k)} - Ux_{l}^{(l)} \right\| &= \left\| Ux_{k}^{(k)} - U_{j}x_{k}^{(k)} + U_{j}x_{k}^{(k)} - U_{j}x_{l}^{(l)} + U_{j}x_{l}^{(l)} - Ux_{l}^{(l)} \right\| \leqslant \\ &\leqslant \left\| U - U_{j} \right\| \, \left\| x_{k}^{(k)} \right\| + \left\| U_{j} \left(x_{k}^{(k)} - x_{l}^{(l)} \right) \right\| + \left\| U_{j} - U \right\| \, \left\| x_{l}^{(l)} \right\|. \end{aligned}$$

Пользуясь тем, что $U_j x_k^{(k)}$ сходится, можно выбрать такое N, что при $k,\ l>N$ второе слагаемое меньше $\frac{\varepsilon}{3}$. Пользуясь тем, что $x_k^{(k)}$ ограничены единицей по норме, и тем, что $\|U_j-U\|\to 0$, можно выбрать такое M, что при j>M первое и третье слагаемые в сумме меньше $\frac{2\varepsilon}{3}$. Таким образом, получаем фундаментальность. Почему из фундаментальности следует сходимость? Не должен ли образ быть банаховым?

Следствие 27.2. Отсюда, в частности, следует, что если оператор можно приблизить операторами конечного ранга, он будет компактен, потому что любой ограниченный оператор конечного ранга компактен.

1.28 Критерий компактности оператора в гильбертовом пространстве

Теорема 28.1. Пусть H — гильбертово пространство, A — оператор из H в H. Следующие условия равносильны:

- 1. A компактен;
- 2. $\forall x_n \in H : x_n \xrightarrow{w} x_0$ верно, что $Ax_n \to Ax_0$.

Доказательство.

 $2\Rightarrow 1$: Пусть x_n — такая последовательность, что $\|x_n\|\leqslant 1$. По теореме Банаха-Алаоглу 19.1 найдётся подпоследовательность $x_{n_k}\xrightarrow{w} x_0$, а из этого следует, что $Ax_n\to Ax_0$.

 $1\Rightarrow 2$: Предположим, что Ax_n не сходится к Ax_0 . Тогда найдётся x_{n_k} и $\delta>0$ такие, что $\|Ax_{n_k}-Ax_0\|\geqslant \delta$.

Поскольку x_{n_k} слабо сходится, $\sup_{n_k}\|x_{n_k}\|<\infty$. Раз A компактен, найдётся $Ax_{n_{k_j}}\to z$. Докажем, что $z=Ax_0$. Пусть $y\in H$, тогда $(Ax_{n_{k_j}},y)\to (z,y)$. С другой стороны,

$$(Ax_{n_{k_j}}, y) = (x_{n_{k_j}}, A^*y) \to (x_0, A^*y) = (Ax_0, y) \Rightarrow (z, y) = (Ax_0, y) \Rightarrow z = Ax_0.$$

Но такого не может быть, потому что $\|Ax_{n_k} - Ax_0\| \geqslant \delta!$ Успех.

1.29 Примеры компактных интегральных операторов

Определение 29.1. Пусть U – интегральный оператор с ядром K:

$$(Uf)(s) = \int_T K(s, t)f(t) \,\mathrm{d}\mu(t).$$

Ядро K называют вырожденным, если

$$K(s, t) = \sum_{j=1}^{N} \alpha_j(s)\beta_j(t).$$

Пример 29.1. Интегральный оператор с вырожденным ядром на L^p компактен.

Пример 29.2. Если ядро непрерывно на замыкании области определения, то оператор тоже компактен.

1.30 Собственные числа компактного оператора

Теорема 30.1. Пусть X – нормированное пространство, и A: $X \to X$ – компактный линейный оператор. Для любого $\delta > 0$ множество собственных чисел A таких, что $|\lambda| \geqslant \delta$ конечно. При этом собственное подпространство любого $\lambda \neq 0$ конечномерно.

Доказательство. Пусть есть бесконечно много собственных чисел $\lambda_1,\,\lambda_2,\,\dots$ таких, что $|\lambda_k|\geqslant \delta$. Пусть x_k — собственный вектор λ_k . Как собственные вектора разных собственных чисел, x_k линейно независимы; пусть

$$X_m = \operatorname{Lin}(x_1, \ldots, x_m).$$

Возьмём $y_m \in X_m$ такой, что $\|y_m\| = 1$ и

$$\rho(y_m, X_{m-1}) \geqslant \frac{1}{2}.$$

Это возможно по лемме о почти перпендикуляре. Докажем, что $A\left(\frac{y_m}{\lambda_m}\right)$ не содержит сходящейся подпоследовательности.

Пусть
$$y_m = \alpha_m x_m + \underbrace{\tilde{y}_m}_{\in X_{m-1}}$$
 . Тогда

$$A\frac{y_m}{\lambda_m} = \frac{\alpha_m \lambda_m x_m}{\lambda_m} + \frac{A\tilde{y}_m}{\lambda_m} = \alpha_m x_m + \underbrace{\frac{1}{\lambda_m} A\tilde{y}_m}_{\in X_{m-1}} = y_m - \tilde{y}_m + \frac{1}{\lambda_m} A\tilde{y}_m.$$

Таким образом,

$$A\left(\frac{y_m}{\lambda_m}\right) = y_m + z_m,$$

где $z_m \in X_{m-1}$. Поэтому

$$\left\| A\left(\frac{y_m}{\lambda_m}\right) - A\left(\frac{y_n}{\lambda_n}\right) \right\| = \|y_m + \underbrace{z_m - y_n - z_n}_{\in X_{m-1}}\| \geqslant \frac{1}{2},$$

поэтому сходящейся подпоследовательности не выделить.

Аналогично доказывается отсутствие бесконечномерных собственных подпространств. $\ \Box$

1.31 Теорема Гильберта-Шмидта

Теорема 31.1. Пусть A – компактный и самосопряжённый оператор в сепарабельном гильбертовом пространстве H. Тогда существует ортогональный базис $\{x_i\}_{i=1}^{\infty}$, состоящий из собственных векторов A.

Доказательство. Рассмотрим квадратичную форму Q(x) = (Ax, x). Поскольку A самосопряжённый,

$$\overline{Q(x)} = (x, A(x)) = Q(x).$$

Лемма 31.1.

$$x_n \xrightarrow{w} x_0 \Rightarrow Q(x_n) \to Q(x_0).$$

Доказательство.

$$|Q(x_n) - Q(x_0)| = |(Ax, x) - (Ax_0, x_0)| \le |(Ax, x) - (Ax_0, x)| + |(Ax_0, x) - (Ax_0, x_0)|.$$

Второе слагаемое очевидно стремится к нулю, а первое – по теореме 28.1.

Лемма 31.2. Пусть

$$M = \sup_{\|x\| \leqslant 1} |Q(x)|.$$

Тогда найдётся x_0 такой, что $||x_0|| = 1$ и $M = |Q(x_0)|$.

Доказательство. Можно выбрать последовательность x_n такую, что $\|x_n\| \leqslant 1$ и $Q(x_n) \to M$. По теореме Банаха-Алаоглу 19.1 можно выделить

$$x_{n_k} \xrightarrow{w} x_0.$$

П

По предыдущей лемме $Q(x_n) \to Q(x_0)$.

Лемма 31.3. Пусть $x \in H$, $||x_0|| = 1$ и

$$|Q(x_0)| = \max_{\|x\| \le 1} |Q(x)|.$$

Пусть y перпендикулярен к x_0 . Тогда $(y, Ax_0) = 0$.

Доказательство. Не умаляя общности, положим ||y|| = 1, рассмотрим

$$\tilde{x} = \frac{x_0 + ry}{\sqrt{1 + |r|^2}}, \ r \in \mathbb{C}.$$

Ясно, что $\|\tilde{x}\| = 1$. Найдём $Q(\tilde{x})$:

$$Q(\widetilde{x}) = \frac{1}{1 + |r|^2} \bigg(Q(x_0) + 2 \operatorname{Re} \left(r \overline{(y, Ax_0)} \right) + |r|^2 Q(y) \bigg).$$

Пусть $(Ax_0,y)=|(Ax_0,y)|e^{i\theta}$, и пусть $r=he^{i\theta}$, где h – некоторое малое число. Заметим, что

$$r\overline{(Ax_0, y)} = h|(Ax_0, y)|.$$

Из написанного выше следует, что

$$Q(\tilde{x}) = Q(x_0) + 2h |(Ax_0, y)| + o(h^2).$$

Пусть $\big|(Ax_0,\,y)\big|>0$. Если $Q(x_0)>0$, берём h>0 и $Q(\tilde x)>Q(x_0)$. С отрицательным наоборот.

Следствие 31.1. x_0 – собственный вектор оператора A, отвечающий $\lambda = Q(x_0)$.

Доказательство. Разложим Ax_0 по $\text{Lin }x_0$ и x_0^{\perp} : пусть $Ax_0=\lambda x_0+y$, где $y\perp x_0$. По лемме $y\perp Ax_0$, поэтому

$$0 = (Ax_0, y) = (y, y) \Rightarrow y = 0 \Rightarrow Ax_0 = \lambda x_0.$$

При этом

$$Q(x_0) = (Ax_0, x_0) = \lambda.$$

Определение 31.1. Пусть T – линейный оператор на X, X нормируемо, X_0 – замкнутое подпространство в X. Говорят, что X_0 инвариантно, если $TX_0 \subset X_0$.

Утверждение 31.1. Пусть H – гильбертово пространство, T – линейный оператор, H_0 инвариантно для T. Тогда H_0^{\perp} инвариантно относительно T^* .

Следствие 31.2. Если H_0 инвариантно относительно самосопряжённого A, то и H_0^{\perp} тоже.

Возьмём $x_1 \in H$ такой, что $\|x_1\| = 1$ и

$$\big|Q(x_0)\big| = \max_{\|x\| \leqslant 1} \big|Q(x)\big|.$$

Мы знаем, что x_1 – собственный вектор, а $\lambda_1=Q(x_1)$ – собственное число. Можно взять $H_1={\rm Lin}(x_1)$, это A-инвариантное подпространство, его ортогональное дополнение, значит, тоже. Поэтому можно сузить всю задачу на H_1^\perp и продолжать.

Какие есть возможные концовки?

- 1. Найдётся k такое, что Q(x) = 0 на всём H_k^{\perp} ,
- 2. это будет продолжаться до бесконечности.

Рассмотрим эти случаи.

1. Если Q(x)=0 на H_k^\perp , то мы знаем, что $\forall x\in H_k\ (x,\,Ax)=0.$ Воспользуемся 31.3:

$$(x, Ax) = 0 \Rightarrow ||x||^2 \left(\frac{x}{||x||}, \frac{Ax}{||x||}\right) = 0,$$

и, положив

$$x_0 = \frac{x}{\|x\|}$$
 и $y = \frac{Ax}{\|x\|}$,

получим

$$(Ax, Ax) = 0 \Rightarrow Ax = 0.$$

Поэтому $H_k^{\perp} \in \operatorname{Ker} A$.

2. Предположим, что нашёлся x такой, что он перпендикулярен всем x_k . Докажем, что $x \in \text{Ker } A$, предположим, не умаляя общщности, что $\|x\| \leqslant 1$.

Введём обозначение

$$\bigcap_{n=1}^{\infty} H_k^{\perp} = \left(\operatorname{Lin}\{x_k\}\right)^{\perp} = \tilde{H},$$

ясно, что $x \in \tilde{H}$.

$$\forall k \; x \in H_k^\perp \Rightarrow \left| Q(x) \right| \leqslant \max_{\|z\| \leqslant 1, \; z \in H_k^\perp} \left| Q(z) \right| = \left| Q(x_{k+1}) \right| = |\lambda_{k+1}| \to 0,$$

а потому $\forall x \in \tilde{H} \, Q(x) = 0.$

Аналогичным рассуждением, используя 31.3, получаем, что $ilde{H} \subset \operatorname{Ker} A$.

В случае 1 пространство H_k – конечномерно. Поэтому оно полное, а значит, замкнутое, а потому $H=H_k\oplus H_k^\perp$. Поскольку $H_k^\perp\subset {\rm Ker}\, A$, можно выбрать там базис Шаудера из элементов ядра, а в H_k есть базис из собственных векторов. Таким образом, во всём H получится базис из собственных векторов.

В случае 2 ясно, что

$$\left(\overline{\operatorname{Lin}\{x_k\}}\right)^{\perp} \subset \left(\operatorname{Lin}B\right)^{\perp} \subset \operatorname{Ker}A.$$

При этом

$$H = \left(\overline{\mathsf{Lin}\{x_k\}}\right)^{\perp} \oplus \overline{\mathsf{Lin}\{x_k\}},$$

 $\{x_k\}$ является базисом Шаудера в $\overline{{\sf Lin}\{x_k\}}$ и в $\overline{{\sf Lin}\{x_k\}}$ можно выбрать базис Шаудера из элементов ядра.

1.33 Компактность сопряжённого оператора

Определение 33.1. Пусть X, Y – банаховы пространство, $A: X \to Y$ – непрерывный линейный оператор. Тогда *банаховым сопряжённым оператором* A^{b*} называют оператор из Y^* в X^* такой, что

$$f\mapsto f\circ A.$$

Замечание 33.1. Легко видеть, что оператор A^{b*} ограничен, потому что

$$\frac{\|f\circ A\|}{\|f\|}\leqslant \|A\|.$$

Определение 33.2. Пусть H и K – гильбертовы пространства, A – непрерывный оператор из H в K. Тогда *гильбертовым сопряжённым* оператором называют оператор A^{h*} из K в H такой, что коммутативна диаграмма

$$H \stackrel{A^{h*}}{\longleftarrow} K$$

$$\downarrow J$$

$$H^* \stackrel{A^{h*}}{\longleftarrow} K^*$$

где I и J – сопряжённо-линейные унитарные изоморфизмы, доставляемые теоремой Рисса.

Утверждение 33.1. Гильбертов сопряжённый оператор линеен и ограничен.

Доказательство. Явное выражение для него имеет вид $I^{-1}A^{b*}J$, поэтому его линейность следует из линейности A^{b*} и сопряжённой линейности I и J. Ограниченность же следует из того, что

$$\frac{\|I^{-1}A^{b*}J(x)\|}{\|x\|} = \frac{\|A^{b*}J(x)\|}{\|x\|} \leqslant \frac{\|A^{b*}\|\,\|J(x)\|}{\|x\|} = \|A^{b*}\|.$$

Утверждение 33.2. Гильбертов сопряжённый оператор из H в H является сопряжённым в обычном смысле.

Доказательство. Проведём прямое вычисление:

$$y = A^{h*}(x) = I^{-1}A^{b*}I(x) = I^{-1}\Big(\big(A(\cdot), x\big)\Big) \Rightarrow (\cdot, y) = \big(A(\cdot), x\big).$$

Отсюда для любого t выполняется

$$(t, A^{h*}x) = (At, x).$$

Теорема 33.1. Пусть A – компактный оператор, заданный на банаховом пространстве X. Тогда банахово сопряжённый к нему оператор компактен.

Доказательство. Будем доказывать, что A^{b*} переводит B^{X*} в предкомпактное множество. Рассмотрим элементы из X^* как функции только на компакте \overline{AS} – замыкании образа открытого единичного шара. Оказывается, что множество Φ функций, отвечающих функционалам из B^{X*} , равномерно ограничено и равностепенно непрерывно. Действительно, если $\|\varphi\|\leqslant 1$, то

$$\sup_{x\in \overline{AS}}\left|\varphi(x)\right|=\sup_{x\in AS}\left|\varphi(x)\right|\leqslant \|\varphi\|\sup_{S}\|Ax\|\leqslant \|A\|$$

И

$$\|\varphi(x') - \varphi(x'')\| \le \|\varphi\| \|x' - x''\| \le \|x' - x''\|.$$

Поэтому множество Φ предкомпактно в $C(\overline{AS})$ по теореме Арцела-Асколи.

С другой стороны, Φ с метрикой из $C(\overline{AS})$ изометрично множеству $A^{b*}B^{X^*}$ с нормой. Это так, поскольку

$$\begin{split} \|A^{b*}g_1 - A^{b*}g_2\| &= \sup_{x \in S} \left| (A^{b*}g_1 - A^{b*}g_2)(x) \right| = \sup_{x \in S} \left| (g_1 - g_2)A(x) \right| = \sup_{z \in AS} \left| (g_1 - g_2)z \right| = \\ &= \sup_{z \in \overline{AS}} \left| (g_1 - g_2)z \right| = \rho(g_1, g_2). \end{split}$$

Раз Φ предкомпактно, оно вполне ограничено; но тогда вполне ограничено и изометричное ему множество $A^*B^{X^*}$. Поэтому $A^*B^{X^*}$ предкомпактно.

Следствие 33.1. Если оператор на гильбертовом пространстве компактен, то и сопряжённый к нему компактен.

Доказательство. Это следует из изометричности биекций I и J из теоремы Рисса. \square

1.34 Лемма о замкнутости образа и ортогональные представления пространства

Сформулируем для начала теорему, которую будем доказывать три пункта.

Теорема 34.1. Пусть A – компактный оператор на гильбертовом пространстве H, и T=I-A.

- 1. Уравнение $T\varphi=f$ разрешимо при тех и только тех f, которые ортогональны каждому решению уравнения $T^*\psi_0=0$.
- 2. Либо уравнение $T\varphi=f$ имеет при любом $f\in H$ ровно одно решение, либо уравнение $T\varphi_0=0$ имеет ненулевое решение.
- 3. Уравнения $T\varphi=f$ и $T\varphi_0=0$ имеют одно и то же, притом конечное, число линейно независимых решений.

А теперь начнём доказывать.

Лемма 34.1. Образ оператора T замкнут.

Список литературы

- [1] У. Рудин «Функциональный анализ», Лань, 2005
- [2] А. Я. Хелемский «Лекции по функциональному анализу», МЦНМО, 2014