SMARTWIZ

GRADE12 PHYSICAL SCIENCE EXAM

MARKS: 150	MARKS	
TIME: 2.5 HOURS		
SCHOOL		
CLASS (eg. 4A)		
SURNAME		
NAME		

Instructions for Learners:

- Read all instructions carefully before you begin the exam.
- Write your full name and student number clearly on the answer sheet/book.
- Answer all questions unless otherwise instructed.
- Show all your work/calculations where necessary.
- Write neatly and clearly.
- Use only a blue or black pen. Do not use correction fluid or tape.
- Electronic devices (calculators, cell phones, etc.) are not allowed unless explicitly permitted.
- Raise your hand if you have any questions.
- Do not talk to other learners during the exam.
- Any form of dishonesty will result in immediate disqualification from the exam.

This exam consists of Eight pages, including the cover page.

SECTION A: PHYSICS (75 MARKS)

QUESTION 1: MULTIPLE CHOICE QUESTIONS $(5 \times 2 = 10)$
Choose the correct letter (A–D). Write only the letter.
1.1 Which of the following quantities is a vector? A. Energy B. Speed C. Work D. Displacement Answer:
1.2 A body in free fall: A. Loses mass B. Has constant velocity C. Accelerates downwards D. Moves with zero net force Answer:
1.3 Which principle explains how transformers work? A. Coulomb's Law B. Ohm's Law C. Faraday's Law D. Newton's 3rd Law Answer:
1.4 Which wave phenomenon causes bending around a barrier? A. Reflection B. Refraction C. Diffraction D. Absorption Answer:
1.5 The slope of a position vs. time graph represents: A. Acceleration B. Distance C. Displacement D. Velocity Answer:
QUESTION 2: NEWTON'S LAWS AND APPLICATIONS (15 MARKS)
A box of mass 12 kg is placed on a flat surface. A horizontal force of 30 N is applied to it. The coefficient of kinetic friction is 0.2.
2.1 State Newton's Second Law. (2)
2.2 Calculate the frictional force acting on the box. (3)

2.3 Determine the net force on the box. (2)

.4 Calculate the acceleration of the box. (3)	
.5 If the box takes 5 seconds to move, calculate the distance it covers. (Assume it starts from res	t.) (3)
.6 What happens to the acceleration if the applied force is removed? Explain. (2)	
QUESTION 3: ELECTRIC FIELDS AND POTENTIAL DIFFERENCE (10 MA	RKS)
wo point charges, $Q_1 = +3 \mu C$ and $Q_2 = -2 \mu C$, are 0.5 m apart in a vacuum.	
.1 Draw a labelled diagram showing the electric field pattern between the two charges. (3)	
.2 State Coulomb's Law. (2) .3 Calculate the electrostatic force between the charges. (3)	
=9×109 N\cdotpm ² \cdotpC ⁻² k = 9 \times 10^9 \text{ N·m ² ·C ⁻² }k=9×109 N\cdotpm ² \cdotpC ⁻²	

QUESTION 4: MOTION AND GRAPHS (10 MARKS)

The velocity-time graph below describes the motion of a car:

Time (s)	0	2	4	6	8	10
Velocity (m/s)	0	4	8	8	4	0

- 4.1 Describe the motion of the car between:
- a) 0–4 seconds (2)
- b) 4–6 seconds (1)
- c) 6–10 seconds (2)
- 4.2 Calculate the total distance covered in 10 seconds. (Use area under graph) (5)

QUESTION 5: OPTICAL PHENOMENA AND ELECTROMAGNETIC WAVES (10 MARKS)

- 5.1 List three differences between sound waves and light waves. (3)
- 5.2 Light passes from air (n = 1.00) into water (n = 1.33) at an angle of 40° . Calculate the angle of refraction. (3)

Use Snell's Law:

 $n1\sin[f_0]\theta 1=n2\sin[f_0]\theta 2n$ 1\sin\theta_1 = n_2\sin\theta_2n1\sin\theta_2n1\sin\theta_2

- 5.3 What is meant by total internal reflection? (2)
- 5.4 State one application of total internal reflection. (2)

SECTION B: CHEMISTRY (75 MARKS)

QUESTION 6: INTERMOLECULAR FORCES (10 MARKS)		
6.1 Define intermolecular forces. (2)		
6.2 Name and describe the strongest type of intermolecular force. (3)		
6.3 Water has a higher boiling point than methane. Explain why. (3)		
6.4 List two types of van der Waals forces. (2)		
QUESTION 7: CHEMICAL INDUSTRY AND PROCESSES (10 MARKS) 7.1 Name one industrial process used to manufacture ammonia. (1)		
7.2 Write the balanced equation for this process. (2)		
7.3 State two conditions that favour the rate of ammonia production. (2)		
7.4 State two conditions that favour the yield of ammonia. (2)		
7.5 Why is a catalyst used in this reaction? (3)		

QUESTION 8: ACIDS AND BASES (15 MARKS)

A solution of HCl has a concentration of 0.01 mol·dm⁻³.

8.1 Define a strong acid. (2)

8.2 Calculate the pH of the HCl solution. (3) pH=-log[fo][H+]\text{pH} = -\log [H^+]pH=-log[H+]
8.3 Define neutralisation. (2)
8.4 Write the balanced equation for the reaction between HCl and NaOH. (2)
8.5 If 25 cm ³ of NaOH reacts completely with 20 cm ³ of 0.01 mol·dm ⁻³ HCl, calculate the concentration of NaOH. (6)
QUESTION 9: ORGANIC CHEMISTRY – FUNCTIONAL GROUPS AND REACTIONS (10 MARKS)
9.1 Identify the functional groups in the following molecules: a) CH₃COOH ✓ b) CH₃CH₂OH ✓ (2 marks) 9.2 Give the general formula of an alkene. (1)
9.3 Complete the following reaction: C2H4+Br2→C_2H_4 + Br_2 → C2H4+Br2→ Balanced product:(2) 9.4 Describe a chemical test to distinguish between an alkene and an alkane. (2)
9.5 Define isomerism. (2)
9.6 Give an example of a positional isomer of but-1-ene. (1)

QUESTION 10: ELECTROLYSIS AND ELECTROCHEMISTRY (10 MARKS)

10.1	What is	electrol	ysis?	(2)
------	---------	----------	-------	-----

- 10.2 In the electrolysis of CuCl₂, write the half-reactions at:
- a) Cathode 🗸
- b) Anode **✓**
- (4 marks)
- 10.3 What is the function of the electrolyte? (2)

10.4 Name one industrial use of electrolysis. (2)

TOTAL: 150

MYST PATHWORKS

MEMO

SECTION A: PHYSICS (75 MARKS)

QUESTION 1: MULTIPLE CHOICE (10)

1.1 D **√√**

1.2 C **✓**✓

1.3 C **√**✓

1.4 C **✓**✓

1.5 D **√**✓

QUESTION 2: NEWTON'S LAWS & APPLICATIONS (15)

2.1

Newton's Second Law: The net force acting on an object is equal to the rate of change of momentum OR $F=maF=maF=ma \checkmark \checkmark$

2.2

Frictional force = $fk=\mu k \cdot N=0.2 \cdot (12 \cdot 9.8)=0.2 \cdot 117.6=23.52 \text{ Nf}_k = \mu k \cdot N=0.2 \cdot (12 \cdot 9.8)=0.2 \cdot (17.6=23.52), \text{ } k=\mu k \cdot N=0.2 \cdot (12 \cdot 9.8)=0.2 \cdot (17.6=23.52) \text{ } \checkmark\checkmark$

ST PATHIW OR

2.3

Net force = Fapplied-fk=30-23.52=6.48 NF_{applied} - f_k = 30 - 23.52 = 6.48\, \text{N}Fapplied-fk = 30-23.52=6.48 N \checkmark

2.4

Acceleration: a=Fnetm=6.4812=0.54 m\cdotps-2a = \frac{F_{net}}{m} = \frac{6.48}{12} = 0.54\, \text{m·s}^{-2}a=mFnet=126.48=0.54m\cdotps-2 $\checkmark\checkmark\checkmark$

2.5

Use s=ut+12at2=0+12(0.54)(5)2=6.75 ms = $ut+\frac{1}{2}at^2=0+\frac{1}{2}(0.54)(5)^2=6.75$, $text\{m\}s=ut+21at2=0+21(0.54)(5)2=6.75$ m $\checkmark\checkmark\checkmark$

2.6

Acceleration becomes zero (or negative if friction remains) \checkmark Object slows down or stops due to friction \checkmark

QUESTION 3: ELECTRIC FIELDS (10)

3.1 Diagram:

- Field lines from + to $-\checkmark$
- Closer lines between charges ✓
- Arrows in correct direction ✓

3.2

Coulomb's Law: The electrostatic force between two point charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them $\checkmark\checkmark$

3.3 $F=k|Q1\cdot Q2|r2=9\times 109\cdot 3\times 10-6\cdot 2\times 10-6(0.5)2=0.216\ NF=k\ frac\{|Q_1\cdot Q_2|\}\{r^2\}=9\ times\ 10^9\ cdot\ frac\{3\ times\ 10^{-6}\ cdot\ 2\ times\ 10^{-6}\}\{(0.5)^2\}=0.216\,\ text\{N\}F=kr2|Q1\cdot Q2|=9\times 109\cdot (0.5)23\times 10-6\cdot 2\times 10-6=0.216\ \ \checkmark\checkmark\checkmark$

3.4 Attractive ✓ — opposite charges attract ✓

QUESTION 4: MOTION AND GRAPHS (10)

4.1

- a) Acceleration speed increasing linearly ✓
- b) Constant speed ✓
- c) Deceleration speed decreasing ✓✓

4.2

Area under graph:

- Triangle 0–4s: 12.4.8=16\frac{1}{2}\cdot 4\cdot 8 = 1621.4.8=16 \checkmark
- Rectangle 4–6s: $2.8=162 \cdot 8=162.8=16 \checkmark$
- Trapezium 6–10s: 12(4)(8+0)=16\frac{1}{2}(4)(8+0) = 1621(4)(8+0)=16 \frac{1}{2}(4)(8+0) = 16416+16=48 m 16+16+16=48 m 16+16+16=48

QUESTION 5: LIGHT & EM WAVES (10)

5.1

- Sound: mechanical wave; Light: electromagnetic ✓
- Sound: requires medium; Light: can travel in vacuum ✓
- Sound: longitudinal; Light: transverse ✓

5.2

Snell's Law:

 $\frac{\sin[f_0]}{\theta} 2 = n1 \sin[f_0] \theta 1 n2 = 1.00 \cdot \sin[f_0] (40) 1.33 = 0.64281.33 = 0.4832 \cdot \sin \theta 2 = \frac{n_1 \sin \theta}{1.331.00 \cdot \sin(40)} = \frac{1.331.00 \cdot \sin(40)}{1.332} = \frac{0.64281.33}{1.333} = 0.4832 \cdot \sin(40) = 1.331.00 \cdot \sin(40) = 1.330.6428 = 0.4832 \cdot \sin(40) = 0.4832 \cdot \sin($

 $\theta = \arcsin[f_0](0.4832) = 28.94 \circ \text{theta } 2 = \arcsin(0.4832) = 28.94 \circ \text{circ}\theta = \arcsin(0.4832) = 28.94 \circ \text{s} = 28.94 \circ \text{circ}\theta = 28.94$

5.3

Total internal reflection occurs when light travels from a denser to a rarer medium at an angle greater than the critical angle and reflects entirely back into the medium $\checkmark\checkmark$

5.4

Application: Optical fibres, binoculars, prisms ✓✓

SECTION B: CHEMISTRY (75 MARKS)

QUESTION 6: INTERMOLECULAR FORCES (10)

6.1

Forces between molecules 🗸

6.2

Hydrogen bonding ✓

Occurs when H is bonded to N, O, or F ✓

Strong due to high polarity and small size \checkmark

6.3

Water forms hydrogen bonds ✓

Methane only has London forces ✓

Hydrogen bonding requires more energy to break ✓

6.4

- Dipole-dipole ✓
- London dispersion forces ✓

QUESTION 7: CHEMICAL INDUSTRY & PROCESSES (10)

7.1

Haber process ✓

```
7.2
N2+3H2⇌2NH3N_2 + 3H_2 ⇌ 2NH_3N2+3H2⇌2NH3 ✓✓
```

7.3

- High temperature ✓
- Catalyst (iron) ✓

7.4

- High pressure ✓
- Moderate temperature ✓
- 7.5

Catalyst increases rate ✓

By lowering activation energy ✓

Without being used up ✓

QUESTION 8: ACIDS & BASES (15)

8.1

A strong acid completely ionises in solution $\checkmark\checkmark$

8.2
$$pH = -\log[f_0][0.01] = 2 \cdot text\{pH\} = -\log[0.01] = 2pH = -\log[0.01] = 2 \checkmark \checkmark \checkmark$$

8.3

Reaction of acid and base to form salt and water 🗸

8.4

HCl+NaOH→NaCl+H2OHCl + NaOH → NaCl + H 2OHCl+NaOH→NaCl+H2O ✓✓

8.5

 $n(HCl)=0.01\cdot0.020=2\times10-4 \text{ moln}(HCl)=0.01 \setminus 0.020=2 \setminus 0.020=2 \setminus 0.020=2 \setminus 0.01 \setminus 0.020=2\times10-4 \setminus 0.020=2\times10-$

From mole ratio: 1:1, so $n(NaOH)=2\times10-4n(NaOH)=2\times10-4$ mol

 $C=nV=2\times 10-40.025=0.008 \text{ mol} \\ \\ cdotpdm-3C = \\ \\ frac\{n\}\{V\} = \\ \\ frac\{2 \times 10^{-4}\}\{0.025\} = 0.008 \\ \\ \\ \\ frac\{n\}\{V\} = \\ \\ frac\{n\}\{V\} =$

 $\text{text}\{\text{mol}\cdot\text{dm}\}^{-3}C=\text{Vn}=0.0252\times10-4=0.008\text{mol}\cdot\text{cdotpdm}-3$

QUESTION 9: ORGANIC CHEMISTRY (10)

9.1

a) Carboxylic acid ✓

b) Alcohol **✓**

9.2

Alkene: C_nH_{2n} ✓

9.3

C2H4+Br2 \rightarrow C2H4Br2C 2H 4+Br 2 \rightarrow C 2H 4Br 2C2H4+Br2 \rightarrow C2H4Br2 $\checkmark\checkmark$

9.4

Add bromine water ✓

Alkene: turns colourless ✓ Alkane: remains orange ✓

9.5

Compounds with same molecular formula but different structures 🗸

9.6

But-2-ene ✓

QUESTION 10: ELECTROLYSIS & CELLS (10)

10.1

Chemical change caused by electric current ✓✓

10.2

a) Cathode: Cu2++2e \rightarrow CuCu $^{2+}$ + 2e $^{-}$ \rightarrow CuCu2++2e \rightarrow Cu $\checkmark\checkmark$

b) Anode: $2Cl \rightarrow Cl2 + 2e - 2Cl^{-} \rightarrow Cl \ 2 + 2e^{-} - 2Cl \rightarrow Cl2 + 2e^{-} \checkmark$

10.3

Allows movement of ions ✓

Completes circuit ✓

10.4

Electroplating ✓

Purifying metals ✓

