LaPIS Diagnostic Test Workbook - Mathematics

Name : Gokuladharshini T

Class: 7

Section : C

School : AKV Public School

Login ID : AKV189

Gokuladharshini T's Performance Report

Score: 21/40 Percentage: 52.5%

Gokuladharshini T's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	ipal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from $__$ ° to $__$ °.

The angle perpendicular to 0° is ____°.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
$\underline{\textit{Question: 3}}$
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Data handling

	J	Topics to be	Improved		
Range	Findin	ng the range			
Hi, here in this	video you will l	earn Rang	je		
Question: 4					
Range of the data $=$					
$\underline{Answer:}$					
The difference betwee Example: Find the resulting Highest value =	ange of 10, 5, 30, 5	23, 54, 39 and e =	d 16		
Question: 5					
Question: 5					
	nge for the following	ng data 31, -2		0, 43, -25, 51,	
	nge for the following	ng data 31, -2	20, 35, -38, 29,	0, 43, -25, 51,	
Circle the correct rank Answer: Range =	nge for the following $-20 + 51$	ng data 31, -2 $\frac{-38-51}{2}$	20, 35, -38, 29, 51 + 38	$0, 43, -25, 51,$ $\frac{51+20}{2}$	
Circle the correct randal Answer: Range = Arranging the data in	nge for the following $-20 + 51$	ng data 31, -2 $\frac{-38-51}{2}$	20, 35, -38, 29, 51 + 38	$0, 43, -25, 51,$ $\frac{51+20}{2}$	
Circle the correct rank Answer: Range =	nge for the following $-20 + 51$ n ascending order.	$\frac{-38-51}{2}$	20, 35, -38, 29, 51 + 38	$0, 43, -25, 51,$ $\frac{51+20}{2}$	14, 9
Circle the correct rank Answer: Range = Arranging the data in the given data, Highest value =	nge for the following $-20 + 51$ n ascending order.	ng data 31, -2 -38-51 -38-51 ,	20, 35, -38, 29, 51 + 38 	$0, 43, -25, 51,$ $\frac{51+20}{2}$ $= $	14, 9
Circle the correct rank Answer: Range = Arranging the data in the given data, Highest value =	nge for the following $-20 + 51$ n ascending order, t, Lowest value =	ng data 31, -2 -38-51 -38-51 ,, Range	20, 35, -38, 29, 51 + 38 	$0, 43, -25, 51,$ $\frac{51+20}{2}$ $= $	14, 9
Circle the correct randal Answer: Range = Arranging the data in the given data, Highest value = Question: 6	nge for the following $-20 + 51$ n ascending order, t, Lowest value =	ng data 31, -2 -38-51 -38-51 ,, Range	20, 35, -38, 29, 51 + 38 	$0, 43, -25, 51,$ $\frac{51+20}{2}$ $= $	14, 9

Geometry

	Topics to be Improved
Faces vertex and edges	
Angle sum property of triangle	Angle sum property of triangle
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle
Transversal angle made by transversal	Basics of Transversal angle

 Hi , here in this video you will learn $\operatorname{\bf Basics}$ of $\operatorname{\bf 3D}$ $\operatorname{\bf model}$

Question: 7	
A point at which two or more lines segments meet is called	(Vertex/ edges/ faces).
$\underline{Answer:}$	
has two end point (line/line segment/ray).	
Ais a point where two or more line segments meet(Vertex/	edges/ faces).
Mark the vertices in the diagram,	

Question: 8

Mark and find the number of vertices, edges and faces in a cube.

Mark the vertex, edges and faces in a cube.

Count the number Cube have							s.				
Question: 9							 	 	 	 	
TT	1	1 C	1	1.	1	0					

How many vertices, edges and faces does dices have?

Answer: The shape of dice is _____. Dices have ____ vertices, ____ edges and ____ faces. Hi, here in this video you will learn Angle sum property Question: 10

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 11

Which of the following triangle satisfy the angle sum property.

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _____

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C =$ _____ = ____

In $\triangle PQR$, Sum of the angles = _____ = ____ = ____

In $\triangle KLM$, Sum of the angles = _____ = ____ = ____

In $\triangle XYZ$, Sum of the angles = ____ = __ = ___

Therefore, the triangles that satisfy the angle sum property are = _____

$Question: \ 12$

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is _____

Let's consider the angles of triangle be 8x, ____ and ____

We know sum of the angles of a triangle is ____

Therefore, $8x + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$

The angles of the triangle are _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 13

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

Side AC = _____

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 14

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 15

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

......

Answer:

1. The sum of the two sides of a triangle is Therefore, the third side should be + Here, sum of the two sides = + Therefore, the length of the third side is less that	(less/ greater) than sum of other two sides.
2. The difference of the two sides of a triangle is triangle.	
Therefore, the third side should be Here, difference of the two sides =	, ,
Therefore, the length of the third side is greater	
Therefore, length of the third side is greater than	but less than
Hi, here in this video you will learn Basics of	of Transversal angle
Question: 16	

Answer:

A line that intersects two or more lines at distinct points is called a	(transversal/
Intersecting line).	,
Angle that lies on different vertices and on the opposite sides of transversal is $_$	
angles.	
Angle that lies on different vertices and on the same sides of transversal is	angles.
Therefore, $\angle 1$ and $\angle 7$ are	

Question: 17

Find the transversal, alternate angles and corresponding angles in a given diagram.

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 18

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Number system

Topics to be Improved				
Operations on rational numbers	Division of rational numbers			
Fractions	Multiplication of fractions			
Integers	Basics of integers			
Decimals	Multiplication and division of decimals			
Positive and negative rational numbers	Identification of positive rational numbers			
Law of Exponents	Law of Exponents			
Introduction to rational numbers Basics of rational numbers				

Hi, here in this video you will learn **Operation on rational numbers**

Question: 19

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{15} \times \boxed{}$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______(same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 20

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$

when any fraction is divided by a fraction, we multiply the dividend by the $__$ (same/reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{18}{7} \div \boxed{ } = \frac{18}{7} \times \boxed{ } = \boxed{ }$$

Question: 21

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn Multiplication on fractions

Question: 22

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as ____ in fraction.

4 can be written as ____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 23

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls = \square \times \square = \square

Question: 24

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{\qquad} \times \frac{2}{3} = \boxed{\qquad}$$

Hi, here in this video you will learn Basics of integers

Question: 25

Highlight the ring that contains whole numbers.

Answer:
The numbers inside the inner ring $(1, 2, 3,)$ are numbers. The numbers inside the middle ring are numbers. The numbers inside the outer ring are negative numbers, positive numbers and zero and they are
called as
Question: 26
Colour the frame of the box which contains the number 1, 4 and -10
Whole numbers
Answer:
Whole number consists of $0,1,2,3,4,$. Negative number consists of Natural numbers consists of Integers consists of Now, 1, 4, -10 are in
Question: 27
State whether the statement is true or false. Every positive number is an integer.
Answer:
Positive numbers are Integers consists of Therefore, positive numbers are (in/not in) integers.
Hi, here in this video you will learn Basics of decimals
Question: 28
Shade 0.4 part of the given shape.
Answer:
There are boxes. 0.4 can be expressed as in fraction This fraction represents parts out ofequal parts. So, we need to shade boxes out ofboxes.
Question: 29 Solve the following.

- (i) 0.4×1.2
- (ii) 0.48×1.2

(i)	0.4×1.2 : Multiplication of 0.4×1.2 assuming there is no decimal point is The number of digits after decimal point in 0.4 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is
(ii)	0.48×1.2 : Multiplication of 0.48×1.2 assuming there is no decimal point is The number of digits after decimal point in 0.48 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is
One	box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 olates?
\underline{Ans}	wer:
	box contains chocolates. The cost of one box is n cost of one chocolate = ÷ =
(i)	Total digits after decimal point in decimal number =
(ii)	Divide the two numbers assuming there is no decimal point.
. ,	$\frac{2010}{15} = $
(iii)	Place the decimal point after digits counting from the right in the quotient after division.

Hi, here in this video you will learn **Positive and Negative rational numbers**

The cost of 15 chocolates = cost of one chocolate \times ____ = _

Question: 31

Segregate positive and negative rational number.

Then the cost of one chocolate is ______.

......

•	If both the numerator and the denominator of a rational number are
	(positive/negative), then it is positive rational number.

•	If either the numerator and the denominator of a rational number are negative,	then i	t is
	(positive/negative) rational number.		

(positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
$Question: \ 32$
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
$\underline{Answer:}$
−3 is a number, −4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)

Question:~33	
--------------	--

The product of a positive rational number and a negative rational number is ______rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers: ______

Examples for negative rational numbers: ______

Positive rational number × Negative rational number = _____ × ___ = ____ and this is ______ rational number

Hi, here in this video you will learn Law of exponents

 $\underline{Question: 34}$

$(x)^0$ is equal to
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itsel to get the desired result.
$ In (x)^0 base = \underline{\qquad} $ $ Power = \underline{\qquad} $
Any number or variable with power zero is equal to Therefore, $(x)^0$ equal to
Question: 35
i. $a^m \times a^n = \underline{\hspace{1cm}}$ ii. $a^m \div a^n = \underline{\hspace{1cm}}$
Answer:
Multiplication of two numbers with same base with different power, their exponents are
(added/ subtracted) Division of two numbers with same base with different power, their exponents are (added/ subtracted).
Question: 36
Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$
a+n+x bmy 1 $ab+mn+xy$ 0 anx $b+m+y$
Answer:
Any number with power zero is equal to (One/ Zero). Any number with power one is equal to (same/ different) number.
$ (a^{0} \times b^{1}) + (m^{1} \times n^{0}) + (x^{0} \times y^{1}) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{O} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}}) $ $ = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$ $ = \underline{\hspace{1cm}}$
Hi, here in this video you will learn Basics of rational numbers
Question: 37

The numbers in the diagram represents_____

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as _____ numbers.

Question: 38

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer), denominator is equal to _____ (zero/ one/ any integer other than zero).

......

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Question: 39

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, _____ is/are rational number and _____ is/are not a rational number.

Comparing Quantities

Topics to be Improved

Conversion of fraction into percentage

Conversion of fraction into percentage

......

Hi, here in this video you will learn Converting fraction into percentage

Question: 40

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____.

Therefore, 5% can be expressed as _____

.....

Question: 41

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %.

Therefore, correct conversion form is _____

Question: 42

Find the percentage of shaded part of square.

Answer:	
The square shape is divided into parts Number of shaded part of square is	
Shaded part of square in fraction is	
To Convert into percentage ,	x 100

Algebra

Topics to be Improved			
Terms of an expression	Identification of terms in an expression		
Monomials, binomials, trinomials and polynomials	Types of algebraic expression		
Addition and subtraction of algebraic expressions	Like terms and Unlike terms		
Basics of simple equation	Solving of simple equation		
subtraction of algebraic expressions	subtraction of algebraic expressions		

Hi, here in this video you will learn Terms of an expression

Question: 43

Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

Question: 44

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression $3x + 5$ is/are
The terms in the expression $12a$ is/are
The terms in the expression $4xy$ is/are
The terms in the expression $12a + b + 1$ is/are
The terms in the expression $7m + 0$ is/are
Question: 45
Shade the outline of circle that contains the term of the given expression.
$6m^2 - 7mn + nl$
(m^2) $(7mn)$ $(6m^2)$ $(-7mn)$ (mn) (mn)
$\underline{Answer:}$
In algebraic expression, (variables/ terms) are connected together with operations
of addition.
Here,,, are the terms of the given expression.
Hi, here in this video you will learn Types of expression
Question: 46
There are terms in the expression $7x + 3y + m + 5$.
Answer:
In algebraic expression, (variables/ terms) are connected together with operations
of addition.
The terms in the expression are,, and
Therefore, there are terms in the expression.
Ougstion, 17
Question: 47
Classify the following expression into monomial, binomial and polynomial.
1. $7m + n + 2$
2. $8x^2 + 0$
3. 7xy + 4m
$\underline{Answer:}$
1. The terms in expression $8x^2 + 0$ are Here, expression has term and it is a

2. The terms in expression $7xy + 4m$ are Here, expression has term and it is a
3. The terms in expression $7m + n + 2$ are Here, expression has term and it is a
Question: 48
$5m^2 + m + 0$ is a expression. (Monomial/Binomial/Trinomial)
$\underline{Answer:}$
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a expression.
Hi, here in this video you will learn Addition on expression
Question: 49
Shade the like terms.
$\begin{array}{ c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$
$\underline{Answer:}$
Given terms are Two or more term have (same/ different) variables is called like terms. Here, like terms are
$\underline{Question:~50}$
Complete the expression $7r^2 + r \square - 2 \square = \underline{r^2}$
Answer:
(Like / Unlike) terms can be added or subtracted.
$7r^2 + r $

 $\underline{\textit{Question: 51}}$

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

.....

(i)	Total	chocolates	Ram	and	Sam	have:	_
\ /	100001	CIIOCOIGUCS	T COLLI	and		may c.	

(ii) How many icecreams Sam have more than Ram: ______.

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have :

 $Ram's chocolate + Sam's chocolates = ____ + ___ = ___$

(ii) How many icecreams Sam have more than Ram:

•	•			
icecream -	icecream —			
icecreaiii =	icecream —	_	_	

......

Hi, here in this video you will learn Solving an equation

Question: 52

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

Question: 53

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7 \square + 3 = -4$$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times __+3 = __$$

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 54

Arrange the terms in the descending order when the value of x is 2.

$$2x 5x \times 1 x+3 2x-4 \frac{1}{2}x$$

Answer:

The '	given expression a value of x is				
	2x =	2× =	2x-	4 = 2× 4 =	=
	x +	3 = =	_	$\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} =$	=
	$5x \times 1 = 5 \times$	×1=	_		
	~ ~	ng order:,, raic terms are,	· ·		6193216
Hi,	here in this vi	deo you will learn	Subtraction	on expression	
Que	stion: 55				
Find	the sum of two ex	expressions $a + b + c$	and $b + c + d$		
Ans	<u>wer:</u>				
The the s	two terms will get	ions are and _ added only if they are sions = +	e(Like	/ Unlike) terms.	
Que	stion: 56				
			School A	School B	
		Number of boys	100b	250b	
		Number of girls	150g	200g	
		Number of teachers	25t	45t	
(i)	Total number of	boys in school A and	B is		
(ii)	Total number of	students in school B is	s		
(iii)	How many more	teachers are there in s	school B than so	chool A?	
Ans	wer:				
(i)	•	in school A = in school B =	*		

Total number of boys in school A and school B is $___$ + $__$

- (ii) Number of boys in school B= _____, Number of girls in school B= _____. Total number of students in school B is _____ + ____ = ____.
- (iii) Number of teachers more in school B than school A = Teachers in school B Teachers in school A = $_$

Question: 57

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
\hline
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.