Problems in Algebra and Analytic Geometry. Part I.

Problem 1 Determine true statements:

- a) it is not true that $3 \cdot 8 = 25$; b) 3 > 4 or 5 > 3;
- c) $3^3 = 27$ and $\sqrt{9999} = 99$; d) $2 \ge 1 \Leftrightarrow 1 \ge 0$.

Problem 2 Consider the following statements:

- p: "John passed math test";
- q: "John passed physics test';
- r: "John passed computer science test";

Suppose that the statement:

"If John passed math test and did not pass physics, then he did not pass computer science test"

is false. Which of the tests did John pass for sure?

Problem 3 Show that the below are laws of logic:

- 1. $\neg(\neg p) \Leftrightarrow p$ (Rule of Double Negation);
- 2. $\neg(p \Rightarrow q) \Leftrightarrow (p \land (\neg q))$ (Rule of Conditional);
- 3. $p \lor (\neg p)$ (Rule of the Excluded Middle);
- 4. $[p \land (q \lor r)] \Leftrightarrow [(p \land q) \lor (p \land r)]$ (Distributive Law I);
- 5. $[p \lor (q \land r)] \Leftrightarrow [(p \lor q) \land (p \lor r)]$ (Distributive Law II);
- 6. $[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$ (Rule of Hypothetical Syllogism);
- 7. $[\neg (p \lor q)] \Leftrightarrow [(\neg p) \land (\neg q)]$ (De Morgan's Law I);
- 8. $[\neg(p \land q)] \Leftrightarrow [(\neg p) \lor (\neg q)]$ (De Morgan's Law II);
- 9. $[(\neg p) \Rightarrow p] \Rightarrow p$ (Law of Clavius);
- $10.(p \Rightarrow q) \Leftrightarrow [(\neg q) \Rightarrow (\neg p)]$ (Rule of Contraposition);
- 11. $[p \land (p \Rightarrow q)] \Rightarrow q$ (Rule of Detachment).

Problem 4 Are the following statements laws of logic?

a) $p \Rightarrow (p \lor q);$ b) $[(p \Rightarrow q) \land (q \Rightarrow p)] \Rightarrow (p \lor q);$ c) $[p \lor (\neg q)] \Rightarrow (p \land q);$ d) $(p \Rightarrow q) \Leftrightarrow [(\neg q) \Rightarrow (\neg p)].$

Problem 5 Write the following statements with the use of quantifiers:

- 1. Every real number is positive;
- 2. Equation $\sqrt{x} = 1$ has real solutions;
- 3. Set of natural numbers is bounded from above;
- 4. Set A ⊂ R has the greatest element;
 5. Set B ⊂ R does not contain the smallest element;
- $6.\ Every\ natural\ number\ is\ even;$
- 7. Equation $x^2 + x + 1 = 0$ has no solution.

Problem 6 Verify if the given statements are true:

a)
$$\bigvee_{x \in R} \sin x = \frac{1}{2}$$
;

b)
$$\bigwedge_{x \in R} x^2 + 4x + 3 > 0$$
;

a)
$$\bigvee_{x \in R} \sin x = \frac{1}{2}$$
;
b) $\bigwedge_{x \in R} x^2 + 4x + 3 > 0$;
c) $\bigwedge_{x \in R} \bigvee_{y \in R} x^2 - y^2 = 0$;

$$d)\bigvee_{y\in R}\bigwedge_{x\in R}xy=0;$$

d)
$$\bigvee_{y \in R} \bigwedge_{x \in R} xy = 0;$$

e) $\bigvee_{x \in R} \bigwedge_{n \in N} \bigvee_{m \in N} \frac{m}{n} + \frac{n}{m} = x.$

Problem 7 Prove that:

a)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
;

b)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$$

c)
$$A \cup B = A \cap B$$
 if and only if $A = B$.

Problem 8 Using the Principle of Mathematical Induction show that:

a)
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
;

b)
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

a)
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
;
b) $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$;
c) $(1 + \frac{1}{1})^1 \cdot (1 + \frac{1}{2})^2 \cdot \dots \cdot (1 + \frac{1}{n})^n = \frac{(n+1)^n}{n!}$;

d)
$$2^n < n!$$
 for $n > 4$;

e)
$$(1+x)^n \ge 1 + nx$$
 for $x \ge -1$ and $n \in N$;

f) 5 divides
$$n^5 - n$$
;

g)
$$a + ar + ar^2 + ... + ar^{n-1} = a\frac{1-r^n}{1-r}$$
 for $r \neq 1$.

Problem 9 Show that for every pair $n, k \in N$ where $1 \le k \le n$ we have:

$$\left(\begin{array}{c} n \\ k \end{array}\right) + \left(\begin{array}{c} n \\ k-1 \end{array}\right) = \left(\begin{array}{c} n+1 \\ k \end{array}\right).$$

Problem 10 Use the binomial theorem to expand the following:

a)
$$(2x+y)^4$$
; b) $(3x-2y)^5$; c) $(x-\frac{1}{x})^6$.

Problem 11 Find the coefficient of the indicated term:

a)
$$x^{15}$$
 in the expansion of $(x+x^2)^{10}$;

b)
$$x^{-2}$$
 in the expansion of $(2x^5 - \frac{1}{x^2})^8$;
c) a^5 in the expansion of $(a^3 + \frac{1}{a^2})^{15}$.

c)
$$a^5$$
 in the expansion of $\left(a^3 + \frac{1}{a^2}\right)^{15}$.