Links: Runl Results 15-only Moriond 16 ICHEP CONF Note 17 Boosted Int Note 17 Resolved Int Note

hh4b Boosted Analysis Unblinding Closure

D. Abbott^{Ma}, J. Alison^{Ch}, O. Brandt^{He}, P. Bryant^{Ch}, M. Bellomo^{Ma}, Su Dong^{Sl}, M. Franklin^{Ha}
J. Frost^{Ox}, K. Gregersen^{Lo}, C. Issever^{Ox}, M. Kagan^{Sl}, L. Kaplan^{Wi}, N. Konstantinidis^{Lo},
T. Lenz^{Bo}, A. Melzer^{Bo}, N. Norjoharuddeen^{Ox}, G. Putnam^{Ha}, M. Sahinsoy^{He},
J. Schaarschmidt^{Wa}, M. Shochet^{Ch}, T. Tong^{Ha}, A. Tuna^{Ha}, D. Wardrope^{Lo}, S. Willocq^{Ma},
S. Wu^{Wi}, Q. Zeng^{Sl}

Harvard University
Ox Oxford University
S1SLAC Accelerator Laboratory
Ch University of Chicago
Ic IHEP
Lo University College London
Ma University of Massachusetts
Wi University of Wisconsin-Madison
Wa University of Washington
Hi University of Heidelberg
Bo University of Bonn

EB: A. Mehta (chair), G. Aad, C. Pollard

Tony(Baojia)Tong, on behalf of the hh4b analysis team

Harvard University

baojia.tong@cern.ch

Overview

- Outstanding issues:
 - Log-falling smoothing impact on modeling
 - ttbar smoothing variations
 - Acceptance up to 5 TeV
- List of investigations: (all in SB)
 - The dip in 2bs SB large-R jet pT at 800 GeV
 - The 3b sublHcand pT in SB
 - The deficit in 3b SB MJJ around 2000 GeV
 - The leadHCand lead trkjet pT discrepancy at low pT (2bs and 3b)

NO RI

- Links:
 - CDS link to Note: <u>Boosted</u>; <u>Resolved</u>
 - EB meeting talks: 1st, 2nd, 3rd

ICHEP Run II 4b Limit, 13.2 fb⁻¹

Signal Region: Smoothed

MJ8 $f_8(x) = \frac{p_0}{x^2} (1 - x)^{p_1 - p_2 \ln x}$ MJ1 (Dijet) $f_1(x) = p_0 (1 - x)^{p_1} x^{p_2}$

 MJ8 function is used to smooth both QCD and ttbar;

 Suggestion to test dijet function, results for 3b shown below, steeper tail

(Harvard)

Tony Tong

VE BI

3

Limits

- All smoothing changed to dijet, compared with MJ8 on stat-only limits
- Impact on the limit minimal at high mass:
 - ~ 5% for 3b

- ~ 2% for combined
- Variations are covered in the smoothing functional uncertainties

Functional Range and Functional Form variations

- Default is 1200-3000 GeV, vary range in SR prediction; drop the variations with prob <
 0.001 and large normalization differences
- Default is MJ8, vary smoothing function in SR prediction
- Overall, the smoothing systematics is smaller than the smoothing error, maybe not necessary to assign

(Harvard)

3000

mHH [GeV]

0.8

Acceptance up to 5 TeV

- Very few events...3.5 TeV have 0.058 events expected in Signal Region
- Also, only have >3 TeV samples for RSG c=1.0, not for 2HDM and RSG c=2.0

Resonance Mass [GeV]	Mini-ntuple Skimming	2 large-R jets	$\Delta\eta$	Xhh ; 1.6	2bs SR	3b SR	4b SR
500	317.31 ± 6.0	295.75 ± 5.79	164.5 ± 4.32	8.45 ± 0.99	1.08 ± 0.37	2.14 ± 0.52	0 ± 0
600	269.07 ± 3.64	247.94 ± 3.5	136.31 ± 2.59	11.31 ± 0.76	2.57 ± 0.37	3.84 ± 0.45	0.66 ± 0.19
700	253.68 ± 3.35	226.93 ± 3.16	124.83 ± 2.35	16.79 ± 0.86	3.74 ± 0.42	6.99 ± 0.56	1.91 ± 0.29
800	286.26 ± 2.28	245.36 ± 2.11	129.2 ± 1.53	24.41 ± 0.67	5.11 ± 0.31	11.27 ± 0.46	4.13 ± 0.27
900	306.51 ± 1.61	275.57 ± 1.52	158.03 ± 1.15	40.72 ± 0.59	8.81 ± 0.28	19.76 ± 0.41	7.5 ± 0.25
1000	238.2 ± 0.98	226.98 ± 0.96	165.2 ± 0.82	52.86 ± 0.47	10.87 ± 0.22	26.0 ± 0.33	10.07 ± 0.2
1100	164.5 ± 0.63	160.94 ± 0.63	132.53 ± 0.57	45.26 ± 0.34	9.55 ± 0.16	21.88 ± 0.23	9.03 ± 0.14
1200	109.24 ± 0.41	107.92 ± 0.4	93.45 ± 0.38	33.53 ± 0.23	6.96 ± 0.11	15.8 ± 0.16	7.38 ± 0.1
1300	72.72 ± 0.59	72.2 ± 0.59	63.74 ± 0.56	24.19 ± 0.35	5.02 ± 0.17	11.33 ± 0.24	5.45 ± 0.16
1400	48.83 ± 0.17	48.61 ± 0.17	42.96 ± 0.16	16.62 ± 0.1	3.72 ± 0.052	7.61 ± 0.07	3.68 ± 0.046
1500	33.13 ± 0.12	33.02 ± 0.12	29.25 ± 0.11	11.31 ± 0.07	2.67 ± 0.036	5.08 ± 0.047	2.44 ± 0.031
1600	22.81 ± 0.08	22.75 ± 0.08	20.16 ± 0.075	7.74 ± 0.048	1.93 ± 0.025	3.48 ± 0.032	1.53 ± 0.02
1800	11.2 ± 0.1	11.18 ± 0.1	9.93 ± 0.094	3.71 ± 0.059	1.1 ± 0.034	1.6 ± 0.038	0.6 ± 0.022
2000	5.72 ± 0.021	5.71 ± 0.021	5.07 ± 0.019	1.83 ± 0.012	0.6 ± 0.0072	0.76 ± 0.0076	0.25 ± 0.0041
2250	2.61 ± 0.0088	2.61 ± 0.0088	2.32 ± 0.0083	0.78 ± 0.005	0.31 ± 0.0032	0.3 ± 0.003	0.078 ± 0.0014
2500	1.24 ± 0.0054	1.24 ± 0.0054	1.11 ± 0.0051	0.33 ± 0.0028	0.16 ± 0.002	0.11 ± 0.0016	0.021 ± 0.00066
2750	0.6 ± 0.0026	0.6 ± 0.0026	0.54 ± 0.0025	0.14 ± 0.0013	0.081 ± 0.00099	0.038 ± 0.00065	0.0055 ± 0.00024
3000	0.3 ± 0.0011	0.3 ± 0.0011	0.27 ± 0.0011	0.058 ± 0.00051	0.039 ± 0.00041	0.013 ± 0.00023	$0.0016 \pm 8e-05$
3500	0.081 ± 0.00027	0.081 ± 0.00027	0.073 ± 0.00026	0.012 ± 0.0001	$0.0089 \pm 9.1 \text{e-}05$	$0.0017 \pm 3.9 \text{e-}05$	$0.00021 \pm 1.3\text{e-}05$
4000	$0.023 \pm 7.4 \text{e-}05$	$0.023 \pm 7.4 \text{e-}05$	$0.021 \pm 7.1 \text{e-}05$	$0.0026 \pm 2.5 \text{e-}05$	$0.0021 \pm 2.2 \text{e-}05$	$0.00031 \pm 8.7\text{e-}06$	$4.9e-05 \pm 3.3e-06$
4500	$0.0066 \pm 2.2 \text{e-}05$	$0.0066 \pm 2.2 \text{e-}05$	$0.006 \pm 2.1 \text{e-}05$	0.00065 ± 6.7 e-06	$0.00051 \pm 5.9 \text{e-}06$	$8.6 \text{e-}05 \pm 2.5 \text{e-}06$	$1.7e-05 \pm 1e-06$
5000	$0.002 \pm 6.5 \text{e-}06$	$0.002 \pm 6.5 \text{e-}06$	$0.0018 \pm 6.2 \text{e-}06$	$0.00018 \pm 2e-06$	$0.00014 \pm 1.7 \text{e-}06$	$2.8\text{e-}05 \pm 7.7\text{e-}07$	$6.5 \text{e-}06 \pm 3.6 \text{e-}07$
6000	$0.00021 \pm 6.9 \text{e-}07$	$0.00021 \pm 6.9 \text{e-}07$	0.00019 ± 6.6 e-07	$2.2 \text{e-}05 \pm 2.3 \text{e-}07$	$1.4 \text{e-}05 \pm 1.8 \text{e-}07$	$5.3e-06 \pm 1.1e-07$	$1.4\text{e-}06 \pm 5.5\text{e-}08$

MC Syst

 Systematics up to 5
 TeV seems
 reasonable

 Jet uncertainties grow larger

Tony Tong (Harvard)

IVE RI

Detailed Study

- The reason 3 TeV 2bs b-tag SF uncertainty is smaller is because of the anti-correlation between the efficiency SF and the inefficiency SF
- Plotting:
 - Nominal: applying the normal SF
 - All SF: applying all the FT_EFF_Eigen_B_0__1down variation
 - EFF SF only: only apply the variation if the jet is b-tagged
 - Ineff SF only: only apply the variation if the jet is non-b-tagged
- 2bs 2 TeV have larger impact from the inefficiency SF, compared to 3 TeV, thus the smaller variation
- More on this can also be find on the 2015 Internal note section O

Tony Tong

2500

3000

3500 4000

mHH [GeV]

1500 2000

mHH [GeV]

mHH [GeV]

Signal Region Predictions

- Use the last non-increasing bin if the functional form starts to increase in the tail, hence the flat prediction
- Limits could be evaluated up to 5 TeV

(Harvard)

Tony Tong

9

Introduction of Method

- List of investigations: (all in SB)
 - The dip in 2bs SB large-R jet pT at 800 GeV
 - The 3b sublHcand pT in SB
 - The deficit in 3b SB MJJ around 2000 GeV
 - The leadHCand lead trkjet pT discrepancy at low pT (2bs and 3b)

- In general, no significant mis-modeling; could come from statistical fluctuations
- Can test the old reweighting method where leadingHcand pT and all track jets pT in the 1b/2b/2b samples are reweighed to 2bs/3b/4b sideband region distributions
- Will by definition have better modeling and can then compare SR predictions

TAS TAS

The dip in 2bs SB large-R jet pT at 800 GeV

Better modeling of these variables by construction

III EII

The 3b sublHcand pT in SB

 Comparable modeling, since this variable in the reweight to sideband case is not reweighed directly

12

Jul 12, 2017

The deficit in 3b SB MJJ around 2000 GeV

- Dip still observed
- Fluctuation in data is non-smooth

13

VE RI

Jul 12, 2017

The leadHCand lead trkjet pT at low pT (2bs/3b)

 First bin issue in the Add Tag method gets solved

14

Different Method's Impact on SR prediction

- Here the qcd background estimations from the AddTag and the sideband reweighting is directly compared, without normalizing
- Almost all bin's value agrees within statistical uncertainty
- The impact of the potential mis-modeling on the signal region mJJ is minimal

15

Tony Tong (Harvard)

16

Back up Slides

Functional Form variations

Default is MJ8, vary smoothing function in SR prediction

Name	Functional Form			
MJ1 (Dijet)	$f_1(x) = p_0(1-x)^{p_1}x^{p_2}$			
MJ2	$f_2(x) = p_0(1-x)^{p_1}e^{p_2 x^2}$			
MJ3	$f_3(x) = p_0(1-x)^{p_1} x^{p_2 x}$			
MJ4	$f_4(x) = p_0(1-x)^{p_1} x^{p_2 \ln x}$			
MJ5	$f_5(x) = p_0(1-x)^{p_1}(1+x)^{p_2 x}$			
MJ6	$f_6(x) = p_0(1-x)^{p_1}(1+x)^{p_2 \ln x}$			
MJ7	$f_7(x) = \frac{p_0}{r}(1-x)^{p_1-p_2 \ln x}$			
MJ8	$f_8(x) = \frac{\hat{p}_0}{x^2} (1 - x)^{p_1 - p_2 \ln x}$			

