Práctica 3 - Determinismo (con resumen) - LFAC

Philips

1er Cuatrimestre 2025

Esquema

¿Como pasar de un AFND a un AFD?

- i. Si en AFND puedo saltar, desde un estado, a otros x estados. Entonces, en el AFD debería poder hacer un solo salto hacia un conjunto que tenga los x estados mencionados.
- ii. Sea un AFND $M = (Q, \Sigma, \delta, q_0, F)$ defino $M' = (\mathcal{P}(Q), \Sigma, \delta', q'_0, F')$
- iii. Ejemplo de estados:

$$p \xrightarrow{\alpha} r, p \xrightarrow{\alpha} s, p \xrightarrow{\alpha} t \Rightarrow \{p\} \xrightarrow{\alpha} \{r, s, t\}$$
$$p \xrightarrow{\alpha} s, q \xrightarrow{\alpha} s \Rightarrow \{p, q\} \xrightarrow{\alpha} \{s\}$$

iv. F' son los subconjuntos que contienen los estados finales del autómata original.

Algoritmo

i. Defino Mover (move) para saber donde puedo saltar, desde cada estado de T, utilizando una transición α .

$$Mover :: \mathcal{P}(Q)x\Sigma \to \mathcal{P}(Q)$$

 $Mover(T, a) = \bigcup_{t \in T} \delta(t, a)$

- ii. Defino $q'_0 = \{q_0\}$
- iii. Inicializo Q' con $\{q_0\}$ y lo marco como no-visitado.
- iv. Mientras que exista $T \in Q'$ no-visitado quiero:
 - \bullet Marcar T visitado.
 - Para cada símbolo $a \in \Sigma$:
 - -U = Mover(T, a)
 - Si $U \notin Q' \to \text{agrego } U$ a Q' como no-visitado
 - Defino $\delta'(T, a) = U$
- v. Defino $F' = \{T \in Q' \mid T \cap F \neq \emptyset\}$. Es decir, los conjuntos de estados que contengan algún estado final.

¿Como pasar de un AFND- λ a un AFD?

- i. Definir $cl_{\lambda} :: \mathcal{P}(Q) \to \mathcal{P}(Q)$ tal que: $cl_{\lambda}(k) = \{r \in Q \mid \exists p \in k, (p, \lambda) \vdash^{*} (r, \lambda)\}$ Es decir, el $cl_{\lambda}(k)$ es el conjunto de estados alcanzables desde k mediante solo transiciones lambda.
 - \rightarrow Tener en cuenta que: $k \subseteq cl_{\lambda}(k)$ y $cl_{\lambda}(c1 \cup c2) = cl_{\lambda}(c1) \cup cl_{\lambda}(c2)$
- ii. Usar el **algoritmo** pero con $q_0'=cl_\lambda(\{q_0\})$ y $Mover(T,a)=cl_\lambda(\bigcup_{t\in T}\delta(t,a))$

1

Resumen

¿Como pasar de un AFND a un AFD?

- I. Arranco con el estado inicial $\rightarrow q'_0 = q_0$ ¿A que conjunto de estados puedo ir con cada letra de Σ ? Formo los conjuntos correspondientes a q_0 y a cada letra de Σ .
- II. Repito para cada conjunto nuevo que haya aparecido en el paso anterior. Esto lo hago hasta que no tenga un nuevo conjunto.
- III. $F' = \{t \in Q \mid t \cap F \neq \emptyset\}$. En otras palabras, un conjunto de estados sera un estado final en F' si contiene un estado que sea final en F.

¿Como pasar de un AFND- λ a un AFD?

- I. Arranco con el estado inicial $\rightarrow q_0' = cl_{\lambda}(q_0)$ ¿A que conjunto de estados puedo ir con cada letra de Σ ? Formo los conjuntos correspondientes a q_0' y a cada letra de Σ . A cada uno de estos conjuntos les hago la clausura- λ
- II. Repito para cada conjunto (cl_{λ}) nuevo que haya aparecido en el paso anterior. Esto lo hago hasta que no tenga un nuevo conjunto.
- III. $F' = \{t \in Q \mid t \cap F \neq \emptyset\}$. En otras palabras, un conjunto de estados sera un estado final en F' si contiene un estado que sea final en F.

Ejercicio 1a

Para los siguientes autómatas finitos no determinísticos, dar un autómata determinístico que reconozca el mismo lenguaje:

$$M_0 = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta_0, q_0, \{q_3\})$$

$$\delta_{0} = \begin{vmatrix}
 & a & b & \lambda \\
 & q_{0} & \{q_{0}, q_{1}\} & \{q_{0}\} & \emptyset \\
 & q_{1} & \{q_{2}\} & \{q_{0}\} & \emptyset \\
 & q_{2} & \{q_{3}\} & \{q_{0}\} & \emptyset \\
 & q_{3} & \{q_{3}\} & \{q_{3}\} & \emptyset
\end{vmatrix}$$

i.
$$M_0' = (Q', \{a, b\}, \delta', \{q_0\}, F')$$

ii. defino a la función de transición δ' :

$Q'x\Sigma$	a	b
$\{q_0\}$	$move(\{q_0\}, a) = \{q_0, q_1\}$	$move(\{q_0\}, b) = \{q_0\}$
$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_0\}$
$\{q_0,q_1,q_2\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_3\}$
$\{q_0,q_3\}$	$\{q_0,q_1,q_3\}$	$\{q_0,q_3\}$
$\{q_0,q_1,q_3\}$	$\{q_0, q_2, q_1, q_3\}$	$\{q_0,q_3\}$

iii. Gráfico: q_0 es el estado inicial.

Ejercicio 1b

$$M_1 = (\{0, 1, 2, 3, 4, 5, 6\}, \{a, b\}, \delta_0, 0, \{6\})$$

$$\delta_{0} = \begin{vmatrix} a & b & \lambda \\ 0 & \{1\} & \{2\} & \{4\} \\ 1 & \emptyset & \emptyset & \{0, 3\} \\ 2 & \emptyset & \emptyset & \{0, 3\} \\ 3 & \{4\} & \emptyset & \emptyset \\ 4 & \emptyset & \emptyset & \{5\} \\ 5 & \{6\} & \{6\} & \emptyset \\ 6 & \emptyset & \emptyset & \{5\} \end{vmatrix}$$

- i. $M_1' = (Q', \{a, b\}, \delta', cl_{\lambda}(\{0\}) = \{0, 4, 5\}, F')$
- ii. defino a la función de transición δ' :

$$\begin{array}{c|cccc} Q'x\Sigma & a & b \\ \hline cl_{\lambda}(0) & cl_{\lambda}(\{1,6\}) & cl_{\lambda}(\{6,2\}) \\ cl_{\lambda}(\{1,6\}) & cl_{\lambda}(\{4,1,6\}) & cl_{\lambda}(\{2,6\}) \\ cl_{\lambda}(\{2,6\}) & cl_{\lambda}(\{6,1\}) & cl_{\lambda}(\{2,6\}) \\ \end{array}$$

donde:

$$cl_{\lambda}(0) = \{0, 4, 5\}$$
 $cl_{\lambda}(1) = \{1, 3, 0, 4, 5\}$ $cl_{\lambda}(2) = \{2, 0, 4, 5, 3\}$ $cl_{\lambda}(3) = \{3\}$ $cl_{\lambda}(4) = \{4, 5\}$ $cl_{\lambda}(5) = \{5\}$ $cl_{\lambda}(6) = \{6, 5\}$

Observar que $cl_{\lambda}(\{1,6\}) = cl_{\lambda}(\{4,1,6\}).$

iii. Gráfico:

Ejercicio 1c

$$M_{2} = (\{p, q, r, s\}, \{0, 1\}, \delta_{0}, p, \{q, s\})$$

$$\delta_{0} = \begin{cases} 0 & 1 & \lambda \\ \hline p & \{q, s\} & \{q\} & \emptyset \\ \hline q & \{r\} & \{q, r\} & \emptyset \\ \hline r & \{s\} & \{p\} & \emptyset \\ s & \emptyset & \{p\} & \emptyset \end{cases}$$

i.
$$M_2' = (Q', \{a, b\}, \delta', cl_{\lambda}(\{p\}) = \{p\}, F')$$

ii. defino a la función de transición δ' :

$Q'x\Sigma$	0	1	
$-\{p\}$	$\{q,s\}$	$\{q\}$	
$\{q\}$	$\{r\}$	$\{q,r\}$	
$\{r\}$	$\{s\}$	$\{p\}$	
$\{s\}$	Ø	$\{p\}$	
$\{q,s\}$	$\{r\}$	$\{q,r,p\}$	
$\{q,r\}$	$\{r,s\}$	$\{q,r,p\}$	
$\{q, r, p\}$	$\{r, s, q\}$	$\{q, r, p\}$	
$\{r, s, q\}$	$\{s,r\}$	$\{q, r, p\}$	
$\{s,r\}$	$\{s\}$	$\{p\}$	

donde:

$$F' = \{\{q\}, \{s\}, \{s, r\}, \{q, r\}, \{q, s\}, \{q, r, p\}, \{r, s, q\}\} \text{ y } q'_0 = \{p\}$$

iii. Gráfico:

Ejercicio 3

Dado el alfabeto $\Sigma = \{0, 1\}$ y los siguientes lenguajes \mathcal{L}_1 y \mathcal{L}_2 , dar un autómata finito determinístico para $\mathcal{L}_1 \cap \mathcal{L}_2$:

 $\mathcal{L}_1 = \{ \alpha \mid \alpha \in \Sigma^* \land 01 \text{ es subcadena de } \alpha \}$

 $\mathcal{L}_2 = \{ \alpha \mid \alpha \in \Sigma^* \land \alpha \text{ tiene una cantidad par de ceros} \}$

- $Q = Q_1 x Q_2$
- $s_0 = (q_0, p_0)$
- $\delta((p,q),a) = (\delta_1(q,a),\delta_2(p,a))$
- $F = \{(q, p) \in Q_3 \mid q \in F_1 \land p \in F_2\}$

Desarrollando...

- $Q = \{(q_0, p_0), (q_0, p_1), (q_1, p_0), (q_1, p_1), (q_2, p_0), (q_2, p_1)\}$
- $s_0 = (q_0, p_0)$
- $F = \{q_2, p_0\}$

Tabla de transición: δ

	I	
\mathbf{Estado}	0	1
(q_0, p_0)	(q_1,p_1)	(q_0, p_0)
(q_0,p_1)	(q_1, p_0)	(q_0,p_1)
(q_1,p_0)	(q_1,p_1)	$(\mathbf{q_2},\mathbf{p_0})$
(q_1,p_1)	(q_1, p_0)	(q_2,p_1)
(q_2, p_0)	(q_2, p_1)	$(\mathbf{q_2},\mathbf{p_0})$
(q_2, p_1)	(q_2, p_0)	(q_2, p_1)

