Exp No: 4B	Ensemble Methods: Random Forest
Date: 21/8/25	

Aim:

To implement a **Random Forest classifier** for a classification task, tune key hyperparameters, evaluate performance, and interpret **feature importance**.

Algorithm:

- 1. Import libraries.
- 2. Load data (use same dataset to compare with SVM).
- 3. Train/Test split with stratification.
- 4. (Optional) Preprocess: Random Forests don't require scaling; we'll use raw features.
- 5. Model: RandomForestClassifier.
- 6. Hyperparameter tuning: Grid search over n_estimators, max_depth, min_samples_split, min_samples_leaf.
- 7. Train the best model on training data.
- 8. Evaluate with accuracy, precision, recall, F1, confusion matrix, ROC-AUC.
- 9. Interpretation: Plot top feature importances.


```
confusion_matrix, classification_report, roc_auc_score, roc_curve
)
# 2) Load dataset (same as 4A for comparison)
data = load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = pd.Series(data.target, name="target")
# 3) Train/test split (no scaling needed for RF)
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.20, random_state=42, stratify=y
)
#4) Define model
rf = RandomForestClassifier(random_state=42, n_jobs=-1)
# 5) Hyperparameter grid & tuning
param_grid = {
  "n_estimators": [100],
  "max_depth": [None, 10],
  "min_samples_split": [2],
  "min_samples_leaf": [1]
}
grid = GridSearchCV(
  estimator=rf,
  param_grid=param_grid,
  scoring="f1",
  cv=3,
  n_jobs=-1,
  verbose=0)
grid.fit(X_train, y_train)
print("Best Parameters (CV):", grid.best_params_)
best_rf = grid.best_estimator_
#6) Train final model & predict
```

```
best_rf.fit(X_train, y_train)
y_pred = best_rf.predict(X_test)
y_prob = best_rf.predict_proba(X_test)[:, 1]
#7) Evaluate
acc = accuracy_score(y_test, y_pred)
prec = precision_score(y_test, y_pred, zero_division=0)
rec = recall_score(y_test, y_pred)
f1 = f1\_score(y\_test, y\_pred)
auc = roc_auc_score(y_test, y_prob)
cm = confusion_matrix(y_test, y_pred)
print("\n=== Random Forest — Test Metrics ===")
print(f"Accuracy: {acc:.4f}")
print(f"Precision: {prec:.4f}")
print(f"Recall : {rec:.4f}")
print(f"F1-Score : {f1:.4f}")
print(f"ROC-AUC : {auc:.4f}")
print("\nConfusion Matrix:\n", cm)
print("\nClassification Report:\n", classification_report(y_test, y_pred, zero_division=0))
#8) Feature Importance (Top 10)
importances = pd.Series(best_rf.feature_importances_, index=X.columns)
top10 = importances.sort_values(ascending=False).head(10)
plt.figure()
top10[::-1].plot(kind="barh")
plt.xlabel("Importance")
plt.title("Top 10 Feature Importances — Random Forest")
plt.grid(axis="x", alpha=0.3)
plt.show()
#9) ROC Curve
```

```
fpr, tpr, thresholds = roc_curve(y_test, y_prob)
plt.figure()
plt.plot(fpr, tpr, label=f"Random Forest (AUC = {auc:.3f})")
plt.plot([0, 1], [0, 1], linestyle="--", color='gray')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve — Random Forest")
plt.legend()
plt.grid(True)
plt.show()
```

OUTPUT:

macro avg

weighted avg

0.96

0.95

0.95

114

```
Best Parameters (CV): {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100}
=== Random Forest - Test Metrics ===
Accuracy: 0.9561
Precision: 0.9589
Recall : 0.9722
F1-Score : 0.9655
ROC-AUC : 0.9937
Confusion Matrix:
[[39 3]
[ 2 70]]
Classification Report:
                          recall f1-score
                                           support
         0
                 0.95
                          0.93
                                    0.94
                                               42
         1
                 0.96
                          0.97
                                    0.97
                                               72
                                    0.96
                                              114
   accuracy
```


Result:

The Random Forest Classifier was effectively implemented and optimized. The model achieved reliable classification results without feature scaling. Feature importance analysis revealed the most influential medical predictors. Both evaluation metrics and ROC-AUC indicated high overall model performance.