Eine Woche, ein Beispiel 5.28. dual spaces of oo-dim v.s.

 $Ref: http://staff.ustc.edu.cn/{\sim}wangzuoq/Courses/{15F-FA/index.html} \\$

F = IR or C. What would happen if IF = Cp?

1. def 2. examples

1. def

Def. For any topo v.s. X, Y, define $L(X,Y) = PL: X \rightarrow Y \mid L$ is linear and cont?

The dual space of X is defined as $X' := L(X,IF) = PL: X \rightarrow IF \mid L$ is linear and cont?

We follow the notation of analysis in this document.

Other possibilities for the dual space: X^* , X^* , X^* , ...

Rmk. When X, Y are normed v.s., L(X,Y) is a normed v.s. Y

Rmk. When X,Y are normed v.s., L(X,Y) is a normed v.s. with $\|L\| = \sup_{\|\mathbf{x}\|_X = 1} \|L(\mathbf{x})\|_Y$

On the other hand, we have the weak *-topology on L(X,Y). the weakest topo s.t.

 $ev_x: L(x,Y) \longrightarrow Y \qquad L \longmapsto L(x)$

is cont for any xeX.

These two structures are not compatible with each other.

Rmk. By Klein-Milman theorem, we can show that some Banach spaces are not dual space.

2. examples.

For a bounded domain Ω , we have

$$(L^{\infty}(\Omega))'\supset \dots \supset L^{1}(\Omega)\supset \dots \supset L^{\infty}(\Omega)$$

$$\downarrow dual$$

For arbitrary domain Ω , we don't have inclusion. inclusion: cont inj map

Ex. Show that $(c_0)' = l^1$, $(l^p)' = l^9$, $(l')' = l^\infty$ by direct argument. Show that $(l^\infty)' \supseteq l^1$.

c.
$$\stackrel{\text{not dense}}{=} l^{\infty} \qquad l^{\rho} \qquad l^{1}$$

$$l^{1} \iff (l^{\infty})' \qquad l^{q} \qquad l^{\infty}$$

Rnk. For Hilbert space, $H' \cong H$. e.p. $(H^s(\Omega))' \cong H^s(\Omega)$ For X: cpt Hausdorff space, $C(X)' \subset S \text{ signed regular Bovel measures}$