Problem Set-5 Solutions CS 230, Autumn 2023

1.a) CPI =
$$\sum_{i=0}^{3} CPI_i * p_i$$

MIPS = $f_{CPE}/(CPI*10^6)$

Computer R1:

$$CPI = \sum_{i=1}^{3} CPI_i * p_i = 0.16 * 6 + 0.1 * 8 + 0.08 * 10 + 0.66 * 3 = 4.54$$

Computer R1 needs an average of 4.54 clock periods for one instruction

MIPS =
$$f_{CPE}/CPI*10^6 = 400*10^6/4.54*10^6 = 88.1$$

Computer R1 executes an average of 88 100 000 instructions per second

Computer R2:

CPI = $\sum CPI_i * p_i = 0.16 * 20 + 0.1 * 32 + 0.08 * 66 + 0.66 * 3 = 13.66$ Computer R2 needs an average of 13.66 clock periods for one instruction MIPS = f_{CPE} /CPI*10⁶ = $400*10^6/13.66*10^6 = 29.28$

Computer R2 executes an average of 29 280 000 instructions per second.

1.b) $CPU_{time} = Number_of_instructions / MIPS * 10^6$

Another form of the equation to calculate the CPU time is:

CPUtime = Number_of_instructions * CPI * t_{CPU}

Computer R1:

CPU time = Number_of_instructions /*MIPS* * **10** ⁶ = 12000 /88.1 * 10^6 = 136.2 * 10^{-6} = 136.2 μs

Computer R2: CPU time = Number_of_instructions $MIPS * 10^6 = 12000/29.28 * 10^6 = 410 * 10-6 = 410 \mu s$

2. CPU performance_B/CPU performance_A = CPU time_A/CPU time_B

• $6 = 3/\text{CPU time}_{\text{B}}$

User CPU Time = .5 seconds

Since the I/O time is unaffected by the performance increase, it still takes 1 second to do I/O. Therefore it takes 1 + .5 = 1.5 seconds to run Program A on the faster CPU

Wallclock Time = 1.5 seconds

System Performance in MFLOPS = Number of Floating Point Operations * 10⁶/Wallclock Time

Old System Performance (10) = $\#FLOP * 10^6/4$

• $\#FLOP = 40 * 10^6$

New System Performance = 40 * 10⁶/1.5 MFLOP/sec = 26.667

3. We have the instruction count: 10^9 instructions. The clock time can be computed quickly from the clock rate to be 0.5×10^{-9} seconds. So we only need to compute clocks per instruction as an effective value:

Value	Frequency	Product
3	0.5	1.5
4	0.3	1.2
5	0.2	1.0

CPI = 3.7

Then we have,

Execution Time = $1.0*10^9*3.7*0.5*10^{-9} = 1.85$ sec

4)

If we say that there are 100 instructions, then:

30 of them will be loads and stores. 50 of them will be arithmetic instructions.

20 of them will be all others.

(30 * 6) + (50 * 4) + (20 * 3) = 440 cycles/100 instructions

Therefore, there are 4.4 Cycles per instruction.

5)

Given that 80% of 109 instructions require single cycle i.e. no conditional branching & for 20% an extra cycle required.

Time taken by 1 cycle = 10^{-9} sec

Total time= $10^{-9}(80/100 * 10^9 + 20/100 * 2 * 10^9)$

 $= 10^{-9} * 10^{9} (4/5 + 2/5) = 6/5 = 1.2$ seconds