#### Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

| Degree & Branch     | B.E. Computer Science & Engineering              | Semester        | V         |  |
|---------------------|--------------------------------------------------|-----------------|-----------|--|
| Subject Code & Name | ICS1512 & Machine Learning Algorithms Laboratory |                 |           |  |
| Academic year       | 2025-2026 (Odd)                                  | Batch:2023-2028 | Due date: |  |

### Experiment 4: Ensemble Prediction and Decision Tree Model Evaluation

### Aim

To build classifiers such as Decision Tree, AdaBoost, Gradient Boosting, XGBoost, Random Forest, and Stacked Models (SVM + Naïve Bayes + Decision Tree) and evaluate their performance through 5-Fold Cross-Validation and hyperparameter tuning.

### **Objectives**

- Perform preprocessing on the Breast Cancer Wisconsin Dataset.
- Train and tune multiple ensemble classifiers.
- Evaluate models using Accuracy, Precision, Recall, F1 Score, ROC Curve, and Confusion Matrix.
- Compare base Decision Tree vs Ensemble methods.

#### Libraries Used

- numpy, pandas data handling
- matplotlib, seaborn visualization
- scikit-learn Decision Tree, AdaBoost, Gradient Boosting, Random Forest, evaluation metrics
- xgboost XGBoost classifier

### Theoretical Background

• Decision Tree: Recursive partitioning based on impurity (Gini/Entropy).

$$Entropy(S) = -\sum_{i=1}^{c} p_i \log_2 p_i$$

- AdaBoost: Weighted majority voting by re-weighting samples.
- Gradient Boosting: Sequential learners minimize residuals using gradient descent.
- XGBoost: Regularized boosting with optimized gradient computation.
- Random Forest: Bagging with feature randomness.
- Stacking: Combines heterogeneous models with a meta-learner.

### **Code Implementation**

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, f1_score, classification_report, confusio
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier, RandomFo
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
import xgboost as xgb
# Load and preprocess dataset
# -----
data = load_breast_cancer()
X, y = data.data, data.target
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
)
# Helper function to evaluate model
def evaluate_model(model, X_test, y_test, name="Model"):
    y_pred = model.predict(X_test)
    acc = accuracy_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
```

```
print(f"{name} -> Accuracy: {acc:.4f}, F1 Score: {f1:.4f}")
   print(classification_report(y_test, y_pred))
   cm = confusion_matrix(y_test, y_pred)
   sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
   plt.title(f"Confusion Matrix - {name}")
   plt.xlabel("Predicted")
   plt.ylabel("Actual")
   plt.show()
   # ROC Curve
   y_prob = model.predict_proba(X_test)[:, 1]
   fpr, tpr, _ = roc_curve(y_test, y_prob)
   plt.plot(fpr, tpr, label=f"{name} (AUC={auc(fpr,tpr):.2f})")
   plt.plot([0, 1], [0, 1], "k--")
   plt.legend()
   plt.title(f"ROC Curve - {name}")
   plt.show()
   return acc, f1
# -----
# Decision Tree
# -----
dt_params = {"criterion": ["gini", "entropy"], "max_depth": [3, 5, 7, None]}
dt = GridSearchCV(DecisionTreeClassifier(random_state=42), dt_params, cv=5)
dt.fit(X_train, y_train)
print("Best DT Params:", dt.best_params_)
dt_acc, dt_f1 = evaluate_model(dt.best_estimator_, X_test, y_test, "Decision Tree")
# -----
# AdaBoost
# -----
ada_params = {"n_estimators": [50, 100], "learning_rate": [0.01, 0.1, 1]}
ada = GridSearchCV(AdaBoostClassifier(random_state=42), ada_params, cv=5)
ada.fit(X_train, y_train)
print("Best Ada Params:", ada.best_params_)
ada_acc, ada_f1 = evaluate_model(ada.best_estimator_, X_test, y_test, "AdaBoost")
# -----
# Gradient Boosting
# -----
gb_params = {"n_estimators": [50, 100], "learning_rate": [0.01, 0.1, 0.5], "max_depth
gb = GridSearchCV(GradientBoostingClassifier(random_state=42), gb_params, cv=5)
gb.fit(X_train, y_train)
print("Best GB Params:", gb.best_params_)
gb_acc, gb_f1 = evaluate_model(gb.best_estimator_, X_test, y_test, "Gradient Boosting
```

```
# XGBoost (fixed - no warnings)
# -----
xgb_params = {"n_estimators": [50, 100], "learning_rate": [0.01, 0.1], "max_depth": [
xgb_clf = GridSearchCV(
   xgb.XGBClassifier(
       objective="binary:logistic", # explicitly set for classification
                             # avoids use_label_encoder warning
       eval_metric="logloss",
       random_state=42
   ),
   xgb_params,
   cv=5
)
xgb_clf.fit(X_train, y_train)
print("Best XGB Params:", xgb_clf.best_params_)
xgb_acc, xgb_f1 = evaluate_model(xgb_clf.best_estimator_, X_test, y_test, "XGBoost")
# -----
# Random Forest
# -----
rf_params = {"n_estimators": [50, 100], "max_depth": [3, 5, None], "criterion": ["gin
rf = GridSearchCV(RandomForestClassifier(random_state=42), rf_params, cv=5)
rf.fit(X_train, y_train)
print("Best RF Params:", rf.best_params_)
rf_acc, rf_f1 = evaluate_model(rf.best_estimator_, X_test, y_test, "Random Forest")
# -----
# Stacked Model
# -----
estimators = [
   ("svm", SVC(probability=True, kernel="linear")),
   ("nb", GaussianNB()),
   ("dt", DecisionTreeClassifier(max_depth=3))
]
stack = StackingClassifier(estimators=estimators, final_estimator=LogisticRegression(
stack.fit(X_train, y_train)
stack_acc, stack_f1 = evaluate_model(stack, X_test, y_test, "Stacked Ensemble")
# -----
# Cross-Validation Comparison
# -----
models = {
   "Decision Tree": dt.best_estimator_,
   "AdaBoost": ada.best_estimator_,
   "Gradient Boosting": gb.best_estimator_,
   "XGBoost": xgb_clf.best_estimator_,
   "Random Forest": rf.best_estimator_,
   "Stacked": stack
}
```

# Outputs

#### **Decision Tree**

Table 1: Decision Tree Classification Report

| Class    | Precision | Recall | F1-Score | Support |  |
|----------|-----------|--------|----------|---------|--|
| 0        | 0.83      | 0.95   | 0.89     | 42      |  |
| 1        | 0.97      | 0.89   | 0.93     | 72      |  |
| Accuracy |           | 0.9123 |          |         |  |



Figure 1: Decision Tree Confusion Matrix



Figure 2: Decision Tree ROC Curve

### AdaBoost

Table 2: AdaBoost Classification Report

| Class    | Precision | Recall | F1-Score | Support |
|----------|-----------|--------|----------|---------|
| 0        | 0.97      | 0.90   | 0.94     | 42      |
| 1        | 0.95      | 0.99   | 0.97     | 72      |
| Accuracy |           | 0.0    | 9561     |         |



Figure 3: AdaBoost Confusion Matrix



Figure 4: AdaBoost ROC Curve

### **Gradient Boosting**

Table 3: Gradient Boosting Classification Report

| Class    | Precision | Recall | F1-Score | Support |  |
|----------|-----------|--------|----------|---------|--|
| 0        | 0.97      | 0.90   | 0.94     | 42      |  |
| 1        | 0.95      | 0.99   | 0.97     | 72      |  |
| Accuracy |           | 0.9561 |          |         |  |



Figure 5: Gradient Boosting Confusion Matrix



Figure 6: Gradient Boosting ROC Curve

### **XGBoost**

 Table 4: XGBoost Classification Report

| Class    | Precision | Recall | F1-Score | Support |
|----------|-----------|--------|----------|---------|
| 0        | 0.95      | 0.90   | 0.93     | 42      |
| 1        | 0.95      | 0.97   | 0.96     | 72      |
| Accuracy | 0.9474    |        |          |         |



Figure 7: XGBoost Confusion Matrix



Figure 8: XGBoost ROC Curve

### Random Forest

Table 5: Random Forest Classification Report

| Class    | Precision | Recall | F1-Score | Support |
|----------|-----------|--------|----------|---------|
| 0        | 0.95      | 0.93   | 0.94     | 42      |
| 1        | 0.96      | 0.97   | 0.97     | 72      |
| Accuracy | 0.9561    |        |          |         |



Figure 9: Random Forest Confusion Matrix



Figure 10: Random Forest ROC Curve

### Stacked Ensemble

Table 6: Stacked Ensemble Classification Report

| Class    | Precision | Recall | F1-Score | Support |  |
|----------|-----------|--------|----------|---------|--|
| 0        | 0.98      | 0.95   | 0.96     | 42      |  |
| 1        | 0.97      | 0.99   | 0.98     | 72      |  |
| Accuracy |           | 0.9737 |          |         |  |



Figure 11: Stacked Ensemble Confusion Matrix



Figure 12: Stacked Ensemble ROC Curve

# Tables

# Hyperparameter Tuning

Table 7: Comparison of Best Models and Hyperparameters

| Model           | Best Hyperparameters                           | Accuracy | F1 Score |
|-----------------|------------------------------------------------|----------|----------|
| Decision Tree   | $criterion = entropy, max\_depth =$            | 0.9123   | 0.9275   |
|                 | 7                                              |          |          |
| AdaBoost        | n_estimators = 100, learning_rate              | 0.9561   | 0.9660   |
|                 | = 1                                            |          |          |
| Gradient Boost- | $n_{estimators} = 50$ , $learning_{rate}$      | 0.9561   | 0.9660   |
| ing             | $= 0.5, \text{max\_depth} = 3$                 |          |          |
| XGBoost         | n_estimators = 100, learning_rate              | 0.9474   | 0.9589   |
|                 | $= 0.1, \text{max\_depth} = 3, \text{gamma} =$ |          |          |
|                 | 0                                              |          |          |
| Random Forest   | $n_{\text{-}}estimators = 50, criterion = en-$ | 0.9561   | 0.9655   |
|                 | $tropy, max_depth = None$                      |          |          |
| Stacked Ensem-  | Base = (SVM, Naïve Bayes, De-                  | 0.9737   | 0.9793   |
| ble             | cision Tree), Final = Logistic Re-             |          |          |
|                 | gression                                       |          |          |

#### 5-Fold Cross Validation Results

Table 8: 5-Fold Cross Validation Comparison

| Model             | Fold1  | Fold2  | Fold3  | Fold4  | Fold5  | Avg Accuracy |
|-------------------|--------|--------|--------|--------|--------|--------------|
| Decision Tree     | 0.9298 | 0.9210 | 0.9474 | 0.9386 | 0.9461 | 0.9367       |
| AdaBoost          | 0.9825 | 0.9649 | 0.9912 | 0.9649 | 0.9823 | 0.9772       |
| Gradient Boosting | 0.9123 | 0.9298 | 0.9825 | 0.9737 | 0.9558 | 0.9580       |
| XGBoost           | 0.9561 | 0.9474 | 0.9912 | 0.9825 | 0.9646 | 0.9684       |
| Random Forest     | 0.9386 | 0.9561 | 0.9912 | 0.9825 | 0.9646 | 0.9666       |
| Stacked Model     | 0.9474 | 0.9474 | 0.9561 | 0.9737 | 0.9734 | 0.9596       |

### Results

Average Accuracies:

| Decision Tree     | 0.936749 |
|-------------------|----------|
| AdaBoost          | 0.977162 |
| Gradient Boosting | 0.950800 |
| XGBoost           | 0.968359 |
| Random Forest     | 0.966605 |
| Stacked           | 0.959603 |

dtype: float64

# Inference

- Best test accuracy: Stacked Ensemble (97.37%, F1=97.93%).
- Decision Tree vs Ensembles: Decision Tree (91.23%) far weaker than ensembles.
- Random Forest: Stable generalization with 95.61% test accuracy and 96.66% CV accuracy.
- XGBoost: 94.74% test accuracy, but strong CV (96.84%), showing robust performance.
- AdaBoost: Top performer in CV (97.72%), close to stacking.
- Stacking: Outperformed all in test set, best overall generalization.

## Learning Outcomes

- Learned model-by-model evaluation with classification metrics.
- Understood hyperparameter tuning and performance trade-offs.
- Practiced visualizing results via confusion matrices and ROC curves.
- Verified that ensemble methods outperform standalone classifiers.
- Gained insight into why stacking often generalizes best.