科目1:資料分析與資料科學 考試日期:110年8月21日

第 1 頁,共 16 頁

單選題 50 題 (佔 100%)

		· · · · · · · · · · · · · · · · · · ·			
С		與匯出,下列敘述何者「不」正確?			
	(A) 針對來源	資料量設計資料萃取(Extract)方式,例如:將大檔案			
	切分為數	個小檔案後,各別進行資料萃取作業			
	(B) ETL 作業	常有上下游作業關係,因此需要設定好相互關係(Job			
	Dependen	cy)與執行順序			
	(C) 考慮到關	聯式資料庫之 ETL 作業執行效率,可一次執行多個大資			
	料表(Ta	ble)關聯 (Join),讓資料一次寫入目的地			
	(D) 當 ETL 作	業發生錯誤時,規劃良好的 ETL 作業具有分階段重新執			
	行能力 (Re-run),不用每次都重頭開始			
D	2. R 語言中, 使	用 read.table 匯入以下特性的文字檔資料,並指派為			
	mydf 物件,i	選項中何者是符合題目要求條件之正確語法?(1)檔案名			
	稱為「ipas.cs	v」、(2)資料以「,」區隔、(3)檔案編碼為「UTF-8」、(4)			
	資料沒有標題	到			
	(A) mydf <- rea	d.table('ipas.csv')			
	(B) mydf <- rea	d.table('ipas.csv', header = TRUE, fileEncoding = 'UTF-8')			
	(C) mydf <- rea	d.table('ipas.csv', header = TRUE, sep = ",", fileEncoding = 'UTF-8')			
	(D) mydf <- rea	d.table('ipas.csv', sep = ",", fileEncoding = 'UTF-8')			
С	3. 在製作一個(CSV(Comma-Separated Values)檔案的過程中,如果有			
	欄位的資料中	'含有逗號(例如金額的千位號),請問應如何處理該欄			
	位資料最為恰當?				
	(A) 透過文字編輯器,先將所有逗號(,)轉換為句號(.)				
	(B) 當使用資料匯入工具時,先告知工具該列資料的欄位數即可				
	(C) 使用雙引號(")包覆該欄位資料				
	(D) 不用特別]處理該欄位資料			
С	4. 透過 Python i	載入 CSV 資料時,可能會使用 pandas 套件的 read_csv 函			
	數,下列敘过	i何者「不」正確? (可參考附圖官方說明文件)			
	pandas.read_c	sv(filepath_or_buffer, sep= ',' ,)			
		filepath_or_buffer : str, pathlib.Path,			
		pypath.local.LocalPath or any object with a read() method (such as a file handle or StringIO)			
		The string could be a URL. Valid URL schemes include			
		http, ftp, s3, and file. For file URLs, a host is expected.			
	Parameters:	For instance, a local file could be			
		file://localhost/path/to/table.csv sep: str, default','			
		Delimiter to use. If sep is None, the C engine cannot			
		automatically detect the separator, but the Python			
		parsing engine can, meaning the latter will be used			

科目1:資料分析與資料科學者試日期:110年8月21日

	1. 貝杆分析與貝杆杆字 5日期:110年8月21日 第 2 頁,共 16 頁				
	automatically. In addition, separators longer than 1 character and different from '\s+' will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: '\r\t' (A) 可以載入非 CSV 格式,例如以 Tab 分隔或是以句號分隔的純文				
	字資料				
	(B) 可以直接匯入網路上的 CSV 資料,例如:				
	pandas.read_csv('http://www.sample-videos.com/csv/Sample-				
	Spreadsheet-10-rows.csv')				
	(C) XLS(Excel Spreadsheet)資料類似於 CSV,故也可透過此函數				
	進入				
	(D) 可以直接匯入本機資料夾的 CSV 資料				
В	5. 關於讀取.xlsx 檔,下列敘述何者正確?				
	(A) 在 R 語言中,只有一個套件 {readxl}可以使用				
	(B) 在 Python 語言中,可使用 pandas 套件中的 read_excel()方法				
	(C) 在 R 語言中,可使用 {readxl} 套件中的 readxl()函數				
	(D) 在 Python 語言中,可使用 pandas 套件中的 open_xlsx()方法				
D	6. 下列何者「不」屬於 Python 物件導向特性?				
	(A) 封裝 (Encapsulation)				
	(B) 繼承 (Inheritance)				
	(C) 多型 (Polymorphism)				
	(D) 動態配置 (Dynamic Allocation)				
D	7. 參考附圖,關於 Python 語言匯入 CSV 檔案, 下列敘述何者正確?				
	In [1]: import pandas as pd				
	<pre>In [2]: mydata = pd.read_csv('aqx_p_434_20200626012835.csv')</pre>				
	<pre>In [3]: mydata = mydata.iloc[0:6, 0:6]</pre>				
	In [4]: mydata Out[4]: SiteId SiteNews ManitonData AOI SO2SubIndex COSubIndex				
	SiteId SiteName MonitorDate AQI SO2SubIndex COSubIndex 0 1 基隆 2020-06-25 43 6 3.0				
	1 84 富貴角 2020-06-25 37 1 2.0				
	2 83 麥寮 2020-06-25 17 3 NaN 3 80 關山 2020-06-25 27 3 NaN				
	4 78 馬公 2020-06-25 15 3 2.0				
	5 77 金門 2020-06-25 23 4 1.0				
	(A) mydata 的資料筆數為 5				
	(B) mydata.dropna(axis = 1)執行結果顯示 4 筆資料				
	(C) sum(pd.isnull(mydata['COSubIndex']))執行結果為 3				

科目1:資料分析與資料科學

D

 \mathbf{C}

考試日期: 110 年 8 月 21 日 第 3 頁, 共 16 頁

(D) mydata.dropna()執行結果顯示 4 筆資料

8. 參考附圖, Python 語言中,選項中何者為計算各列的平均值?

- (A) df.aggregate("mean")
- (B) df.aggregate("mean", axis=0)
- (C) df.aggregate("mean", axis="index")
- (D) df.aggregate("mean", axis=1)

9. 有一 pandas DataFrame 格式的變數 df,其資料內容如下:

	姓名	科目	分數
1	Alice	English	75
2	Alice	History	80
3	Alice	Math	95
4	Ken	English	80
5	Ken	History	92
6	Ken	Math	85
7	Tony	English	80
8	Tony	History	65
9	Tony	Math	90

在執行分組彙總程式碼後(示意如下圖),得到了分組表格結果如下:

	(1)	分數		
	(1)	(2)	(3)	(4)
0	Alice	83.333333	75	95
1	Ken	85.666667	80	92
2	Tony	78.333333	65	90

請問表格中(1)、(2)、(3)、(4)依序內容,下列選項何者較為符合?

- (A) 科目、mean、min、max
- (B) 科目、median、min、max
- (C) 姓名、mean、min、max
- (D) 姓名、median、mean、max
- D 10. 有一 pandas DataFrame 格式的變數 df,其資料內容如下:

科目1:資料分析與資料科學考試日期:110年8月21日

第 4 頁,共 16 頁

	姓名	電話	信箱
0	Alfred	091AB35874	NaN
1	Batman	091XY35221	test01@gggmail.com
2	Catwoman	093XY68668	go11@gggmail.com
3	Chris	NaN	NaN
4	Ken	093XY51333	NaN

df_new = df.dropna(subset=['電話', '信箱'])

print(list(df new.姓名.unique()))

請問執行附圖程式碼後,下列何者為輸出結果?

- (A) ['Alfred', 'Batman', 'Catwoman']
- (B) ['Alfred', 'Batman', 'Catwoman', 'Chris', 'Ken']
- (C) ['Alfred', 'Ken']
- (D) ['Batman', 'Catwoman']
- D 11. 參考附圖, R語言中, 下列邏輯值索引敘述何者正確?

> mydata <- c(-10^-3, -10^-2, 0, 10^2, 10^3) > mydata

[1] -1e-03 -1e-02 0e+00 1e+02 1e+03

>

- (A) mydata[-1]執行結果為 1e+03
- (B) sum(mydata)執行結果為 0
- (C) mydata[0]執行結果為-1e-03
- (D) mydata[3]執行結果為 0
- B | 12. 有一 pandas DataFrame 格式的變數 df, 其資料內容如下:

	姓名	已就職滿月數	上個月請假日數
0	Ted	12	2
1	Jen	3	0
2	Peter	13	3
3	Ninn	3	0
4	Celine	10	1
5	Judy	1	0
6	Wendy	15	2
7	Andrew	9	0
8	Shawn	12	0

def check is Valid(row):

"判斷是否可領全勤獎金"

rName = row["姓名"]

rMonth = row["已就職滿月數"]

rLeaveDays = row["上個月請假日數"]

if rMonth \geq 3 and rLeaveDays \leq 1:

科目1:資料分析與資料科學考試日期:110年8月21日

第 5 頁,共 16 頁

return 1

return 0

df['是否可領上個月全勤獎金'] = df.apply(check_isValid, axis=1) bonusNameList = list(df.query("是否可領上個月全勤獎金 == 1").姓名.unique())

print(bonusNameList)

請問執行附圖程式碼後,下列選項內姓名何者「不」在執行結果當中?

- (A) Andrew
- (B) Judy
- (C) Celine
- (D) Jen
- C | 13. 有一 pandas DataFrame 格式的變數 df,其資料內容如下:

\$	姓名 ♦	班級 ♦	國文 ♦	英文 ♦	數學 ♦
0	John	Α	90	80	60
1	Ken	Α	70	80	90
2	Norman	В	100	70	90
3	Andy	В	80	80	80
4	Mona	Α	90	90	60

關於使用 pandas 語法對變數 df 進行運算之語法與其結果,請問下列 敘述何者「不」正確?

- (A) df.groupby("班級").agg({"姓名": "nunique"}), 可獲得各班級人數 之分組統計
- (B) df["加權分數"] = df.國文*1 + df.英文*2 + df.數學*2,可新增"加權分數"欄位至 <math>df
- (C) df.數學.median(),可得到 df 數學欄位之平均值為 76
- (D) df[df.姓名.str.startswith("K")], 可篩選出 df 姓名開頭為 K 的資料表
- C 14. 有一 pandas DataFrame 格式的變數 dfl,其資料內容如下:

科目1:資料分析與資料科學

考試日期:110年8月21日

第	6	頁	,共	16	頁
71.	-			- 0	

\$	A \$
0	1
1	2
2	3

另一 pandas DataFrame 格式的變數 df2,其資料內容如下:

\$	A \$
0	4
1	5

若要透過 pandas 語法將 df1, df2 進行合併,產出另一 pandas DataFrame 格式的變數 df3 (df3 之數據如附圖)。請問下列哪一個選項中的語法可以產出此結果?

\$	A \$
0	1
1	2
2	3
3	4
4	5

- (A) df3 = df1.merge(df2, on="A")
- (B) df3 = df1 + df2
- (C) df3 = pd.concat([df1, df2]).reset index(drop=True)
- (D) df3 = df1.concat(df2).reset index(drop=True)
- D 15. 附圖為某商店其中一位客戶的消費紀錄,請問下列何種資料處理方式 「最不」適當?

ID	時間	消費金額	商品
1	21-04-29	507	A商品
2	21-05-18	919	E商品
3	2021-06-22	215	NA(遺缺值)
4	2021-07-02	339	R商品

- (A) 修正錯誤的時間,建立消費金額的時間序列
- (B) 不修正時間,依照資料順序建立消費金額的時間序列
- (C) 依照消費金額尋找可能之商品名稱填補 NA 值
- (D) 移除含有 NA 值的該筆觀測值資料

科目1:資料分析與資料科學

考試日期: 110 年 8 月 21 日 第 7 頁, 共 16 頁

科目1:資料分析與資料科學考試日期:110年8月21日

第 8 頁,共 16 頁

科目1:資料分析與資料科學

考試日期:110年8月21日

- (A) 該數據之最小值大於 0 元
- (B) 該數據之中位數介於 10-20 元之間
- (C) 該數據之箱型圖繪製結果中,沒看到有離群值的情況
- (D) 該數據之第三四分位數 (第75個百分位數) 大約是24元
- A 21. 請問資訊增益 (Information Gain) 衡量是應用在樹狀模型 (如:決策樹)建構過程中的哪一個階段?
 - (A) 分割資料集的預測變數 (Attribute Selection Measures) 與其分割值
 - (B) 樹的深度或複雜度
 - (C) 葉節點 (Leaf Node) 的預測方程或方式
 - (D) 訓練樣本數
- D 22. 關於模型績效評量,下列敘述何者「不」正確?
 - (A) 沒有衡量就無法管控,任何預測模型只有運用適當的指標,評核 其模型績效後方能合理的運用之
 - (B) 以迴歸模型來說,許多績效評量的計算是基於殘差 (Residual), 或稱預測誤差 (Prediction Error),也可簡稱為誤差 (Error)
 - (C) 均方預測誤差(Mean Squared Error, MSE)或簡稱為均方誤差, 它是殘差平方值的算術平均,因其單位是原始反應變數單位的平 方,容易造成數據解讀上的困擾
 - (D) 衡量該模型績效的方式通常很多,實務上建議以單一評估指標瞭解特定模型的優缺點
- B 23. 混淆矩陣 (Confusion Matrix) 是等長的觀測類別值向量與預測類別值向量, 交叉統計後的二維表格結果, 請問下列敘述何者「不」正確?

科目1:資料分析與資料科學

考試日期: 110 年 8 月 21 日 第 10 頁, 共 16 頁

				真實類別					
		預		Cp(relevant)	Cn(not relevant)				
		測	Cp(retrieved)	真陽數	假陽數				
		類		True Positive(TP)	False Positive(FP)				
		別	Cn(not retrieved)	假陰數	真陰數				
				False Negative (FN)	True Negative (TN)				
		(A)	形容詞真與假意	指預測的結果是否與其	真實的類別相同				
	(B) 混淆矩陣中真陽數一定大於真陰數								
		(C) R 語言 caret 套件與 Python 語言 pandas_ml 套件中有分類模型的							
	各種績效評估指標								
		(D)	陽性事件通常是	我們所關心的事件,例如	如:授信客户違約、垃圾				
			郵件與簡訊、患	有某種疾病等,當這些	事件發生時,人們通常會				
			採取因應措施						
В	24. 3	定叉	.驗證(Cross-Vali	dation) 主要用於模型部	川練或建模應用中,目的				
				的模型。請問下列敘述任					
	(A) k 摺交叉驗證 (k-fold Cross Validation), 若 k=10, 代表將數抗								
	分成 10 份,將其中 5 份做訓練、5 份做驗證 (B) 交叉驗證經常用於分類預測、偏最小平方 (Partial Least Squares								
					方(Partial Least Squares,				
	PLS)迴歸建模等								
		(C)			on)通常會重複 k 次以				
				古果均值作為對算法精度	·				
<u> </u>		• •)驗證不算交叉驗證的					
C					NG)是一種常見的重抽樣				
		-		下列敘述何者「不」』					
		` ′		巴有的觀察值當作是母兒	痘,里梭廷仃抽條 類似的特性時,拔靴集成				
		(D)	法可用來近似分		関似的村任时, 极靴亲放				
		(C)		心的心瓜 於大量數據資料重抽樣					
		` /			代方法,在原來的樣本中				
		(1)		平為文文					
A	26. 1	直實		預測的反應變數值之間的					
. 1				以风的及恋复数值之间: 是應用殘差平方值的總?					
		Ŋ) 文?	·····································	し、心はなる人工 一つ 田里での					
	. ·	· ·							

科目1:資料分析與資料科學考試日期:110年8月21日

	日期: 110 年 8 月 21 日 第 11 頁, 共 16 頁
	(C) 均方根預測誤差(Root Mean Squared Error, RMSE)
	(D) 誤差絕對值和(Sum of Absolute Error, SAE)
С	27. 建構決策樹過程中常以資訊增益 (Information Gain) 為分類的指標,
	請問資訊增益是以下列何者為基礎?
	(A) 變異數
	(B) 四分位距
	(C) 熵(Entropy)係數
	(D) 中位數絕對離差
В	28. 當資料科學家建模時,下列何者為過度配適(Over-fitting)的狀況?
	(A) 測試誤差高,訓練誤差高
	(B) 測試誤差高,訓練誤差低
	(C) 測試誤差低,訓練誤差低
	(D) 測試誤差低,訓練誤差高
D	29. 下列選項何者為梯度下降法的正確步驟順序?(1)重複迭代,直到得
	到權重最佳值、(2)把輸入傳入類神經網路,得到輸出、(3)對每一個
	神經元計算誤差與調整相對應的權重以減少誤差、(4)用隨機值初始
	化權重與偏差、(5)計算預測值與真實值之間的誤差
	(A) 45132
	(B) 24513
	(C) 45312
	(D) 42531
D	30. 機器學習模型中,關於模型的偏差(Bias)與變異(Variance),下列
	敘述何者正確?
	(A) 高偏差代表模型過於複雜
	(B) 高變異代表模型過於簡單
	(C)模型訓練的目標為低偏差與高變異
D	(D) 偏差與變異之間存在平衡(Trade-off)關係 31. 若執行新專案,輸入的向量超過 100 維,下列何種方法「不」適合用
В	31. 右執行刑等系, ,例例 更超過 100 維,下列 作
	(A) PCA (Principal Component Analysis)(B) LSTM (Long Short-Term Memory)
	(C) ICA (Independent Component Analysis)
	(D) Autoencoder
D	32. 附圖是某次瑕疵檢測的混淆矩陣,此次總共檢測 100 片電路板,實際
	有瑕疵的電路板有9片,下列敘述何者「不」正確?
	74 managed (M. 1974) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

科目1:資料分析與資料科學者試日期:110年8月21日

							
	實際預測	True	False				
	True	1	1				
	False	8	90				
	(A) 正確率(Accu	racy) 為 0.91					
	(B) F1-measure 為	0.18					
	(C) Recall Rate 為	(C) Recall Rate 為 0.11					
	(D) Precision Rate	為 0.11					
C	33. 基於集群的離群值.			es),下列			
		判斷離群值的依據?					
	(A) 物件不屬於任						
	, , , , , , , , , , , , , , , , , , , ,	的集群之間是否存在	主較大距離				
	(C) 物件是否位於						
	(D) 物件是小型或		r ada O				
В	34. 關於資料解析,下			1 但,			
			是一種資料解析的過				
	要好的作用 果有京知鹹和· 更好的作用	技巧處珪數據,使代	寻特徵能在機器學習	异			
		中,芸遇到有異常的	为數據資料,考慮時	· 放性 雁 該 首			
	接予以剔除		1944年11 7 12 17	从江心以且			
		,可以採取專家討論	命或使用分析方法的	方式來進行			
	(D) 資料整理、解	析、變數篩選等步駅	聚,往往佔據建模過	程中大量的			
	時間						
D	35. 建模的過程中,經	常會出現不平衡資料	斗(Imbalanced Data) 的問題,			
	下列敘述何者「不	」正確?					
	(A) 採用數據合成	,例如:SMOTE(S	Synthetic Minority O	versampling			
	Technique)						
	(B) 使用採樣,例:	如:上採樣(Oversa	ampling)、下採樣				
	(Undersampli						
	(C) 採用加權方式		`				
	, ,	法(Gradient Descen		0			
A	36. 關於特徵工程(Fea						
			它將兩個或更多的類 = ## - # # # # # # # # #				
	-	可 的行倒安比 里 個 年	持徵更好時,這是一	垻非吊月用			
	的技術 (B) 時問點屬性通	堂口雪亜公離出一日	丙個維度,比如:年	、日,甘仙			
	(D) 町間似風性理	中八而女刀御成一N	7四年及 / 凡型・十	一万 / 舟他			

科目1:資料分析與資料科學

考試日期: <u>110 年 8 月 21 日</u> 第 13 頁,共 16 頁 太細如:日、小時、分鐘、秒鐘等就不需要了 (C) 遇到類別型屬性的資料,不可以採用單熱編碼(One-hot Encoding) 方式來進行分解 (D) 逐步迴歸經常用於特徵縮放 37. 貝氏定理主要是哪三種機率構成? A (A) 事前機率、事後機率、條件機率 (B) 事前機率、聯合機率、條件機率 (C) 事前機率、獨立事件、條件機率 (D) 聯合機率、獨立事件、條件機率 38. 典型的 k 平均數 (k-means) 屬於下列何種集群 (Clustering) 方式? A (A) 分割式集群 (Partitional Clustering) (B) 階層式集群(Hierarchical Clustering) (C) 密度集群 (Density-based Clustering) (D) 基於圖的集群(Graph-based Clustering) \mathbf{C} 39. 請問附圖最可能是使用何種分群方法的結果? 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0. 1 (圖取自維基百科) (A) 分割式集群 (Partitional Clustering) (B) 階層式集群(Hierarchical Clustering) (C) 密度集群 (Density-based Clustering) (D) 基於圖的集群 (Graph-based Clustering) В 40. 機器學習建模的過程中,面對解決模型變異過高的問題,下列何者是 添加建模過程的隨機噪訊,以有效降低模型變異的方法? (A) 生成式對抗網路 (Generative Adversarial Networks, GAN)

科目1:資料分析與資料科學

	日期: 110 年 8 月 21 日 第 14 頁, 共 16 頁			
	(B) 拔靴集成法(Bootstrap AGGregatING, BAGGING)			
	(C) 支援向量機(Support Vector Machines, SVM)			
	(D) 策略梯度方法(Policy Gradient Method)			
С	41. 在集成學習(Ensemble Learning)中,拔靴集成法(Bootstrap			
	AGGregatING, BAGGING)和提升法(Boosting)是兩種常見的技			
	術,關於兩者的比較,下列敘述何者正確?			
	(A) 提升法解決了拔靴集成法的過度配適(Over-fitting) 問題,因此			
	有較好的分類準確率			
	(B) 拔靴集成法會根據每個樣本的重要性不同,調整不同權重,而提			
	升法中的每個樣本的權重皆相同			
	(C) 提升法需要依序訓練各個分類器,拔靴集成法則可以平行訓練各			
	個分類器			
	(D) 拔靴集成法會產生袋外(Out-of-bag)資料,但提升法不會			
C	42. 關於隨機森林 (Random Forest),下列敘述何者正確?			
	(A) 處理的問題涉及序列相關的決策 (Sequential Decisions)			
	(B) 產生的模型集合俗稱裝袋樹 (Bagged Trees)			
	(C) 在模型中融入屬性隨機挑選的機制			
	(D) 經常使用在 Kaggle 競賽中的統計機器學習算法之一,以建立多			
	個互補的弱模型(Weak Learner)提升效能			
В	43. 在隨機森林演算法中,如果資料數目總共為 N 個,該如何進行拔靴			
	集成法(Bootsrap AGGregatING, BAGGING)處理?			
	(A) 從 N 個資料分布中,挑選位於平均正負一個標準差的樣本,並			
	將樣本放回			
	(B) 從 N 個資料中取 n 個資料並將樣本放回			
	(C) 從 N 個資料分布中,挑選位於平均正負一個標準差的樣本,並			
	不將樣本放回			
	(D)從N個資料中取n個資料並且不將樣本放回			
C	44. 關於處理不平衡的數據資料集,下列何者「不」是常見採用的解決方			
	法? (A) 1- 长京 平野歌 (1- fald Cross and idealing)			
	(A) k 折交叉驗證法 (k-fold Cross-validation)			
	(B) 數據複製(Repetition) (C) C5.0 法			
	(C) C3.0 法 (D) 拔靴法(Boostrapping)			
В	45. 關於效能提升法 (Boosting), 下列敘述何者「不」正確?			
	(A) 是集成學習 (Ensemble Learning) 的一種方法			
	(B) 可以用來減少變異數(Variance)			
	(C) 自適應 Boosting (AdaBoost) 是一種改良效能提升的方法			
	Commence of the second			

科目1:資料分析與資料科學者試日期:110年8月21日

	1·貝科分析與貝科科学 ,日期: <u>110年8月21日 第 15 頁,共 16 頁</u>
	(D) 自適應 Boosting (AdaBoost) 方法中的各個學習器存在著強依賴
	關係
В	46. 關於隨機森林 (Random Forest) 的建立過程中,下列敘述何者「不」
	正確?
	(A) 因為隨機採樣的關係,就算不剪枝,也較不會出現過度配適
	(Over-fitting)的現象
	(B) 隨機森林是對決策樹 (Decision Tree) 的一種改進,森林中的每
	棵樹具有不同的分佈
	(C) 當隨機森林中的決策樹個數很多時,進行資料訓練時需要的空間
	和時間會比較大
	(D) 隨機森林能處理很高維度的資料,並且不用做特徵篩選
D	47. 下列何者「不」是 k 平均數 (k-means) 集群法的特點?
	(A) 算法涉及隨機抽樣,每次運行的結果不盡相同
	(B) 原理簡單,容易以非統計的詞彙解釋說明之
	(C) 形成的群多為類圓球狀且大小相近
	(D) 不易受到離群值的影響
C	48. 關於關聯分析之 FP-growth (Frequent Pattern-growth) 演算法,下列
	敘述何者正確?
	(A) 這是一種需要生成候選項目集的頻繁項目集探勘方法
	(B) 採用類似 Apriori 方法的生成和測試(Generate-and-test)策略
	(C) 構造了一個高度緊凑的資料結構 (FP-tree) 來壓縮原始交易資料
	庫
	(D) 著重於多次掃描資料庫以避免昂貴的候選生成
A	49. 關於非監督式學習(Unsupervised Learning),下列敘述何者正確?
	(A) 在訓練時僅須對機器提供輸入範例,非監督式學習的方法會自動
	從這些範例中找出潛在的規則
	(B) KNN(K Nearest Neighbor) 演算法屬於非監督式學習方法
	(C) 針對網站上線後進行 A/B Test 是屬於非監督式學習的一種實務應
	用
	(D) 因為對大量資料進行標籤相當費時,所以非監督式學習只需要對 小如八次似次行標節即可
	少部分資料進行標籤即可
D	50. 關於支援向量機(Support Vector Machines, SVM), 下列敘述何者
	「不」正確?
	(A) 是分類、異常偵測與迴歸的工具 (D) 莊中是土化初至五與咨判之門的邊界幅度, 決定公割共同樣本的
	(B) 藉由最大化超平面與資料之間的邊界幅度,決定分割步同樣本的 最佳決策邊界
	取住洪來還介 (C) 以原始空間內積,來表達屬性空間中向量的內積,而計算屬性空
	(C) 以你知工间的價,不仅是倒性工间下內里的的價,则可昇屬性至

科目1:資料分析與資料科學

考試日期: 110 年 8 月 21 日 第 16 頁, 共 16 頁

間中向量內積的函數稱為核函數 (Kernel Function)

(D) 易受雜訊影響,容易過度配適 (Over-fitting)

