Exercises 3: Gaussian processes

Basics

A *Gaussian process* is a collection of random variables $\{f(x): x \in \mathcal{X}\}$ such that, for any finite collection of indices $x_1, \ldots, x_N \in \mathcal{X}$, the random vector $[f(x_1), \ldots, f(x_N)]^T$ has a multivariate normal distribution. It is a generalization of the multivariate normal distribution to infinite-dimensional spaces. The set \mathcal{X} is called the index set or the state space of the process, and need not be countable.

A Gaussian process can be thought of as a random function defined over \mathcal{X} , often the real line or \mathbb{R}^p . We write $f \sim \mathrm{GP}(m,C)$ for some mean function $m: \mathcal{X} \to \mathbb{R}$ and a covariance function $C: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$. These functions define the moments¹ of all finite-dimensional marginals of the process, in the sense that

$$E\{f(x_1)\} = m(x_1)$$
 and $cov\{f(x_1), f(x_2)\} = C(x_1, x_2)$

for all $x_1, x_2 \in \mathcal{X}$. More generally, the random vector $[f(x_1), \ldots, f(x_N)]^T$ has covariance matrix whose (i, j) element is $C(x_i, x_j)$. Typical covariance functions are those that decay as a function of increasing distance between points x_1 and x_2 . The notion is that $f(x_1)$ and $f(x_2)$ will have high covariance when x_1 and x_2 are close to each other.

(A) Define the squared exponential covariance function as

$$C_{SE}(x_1, x_2) = \tau_1^2 \exp\left\{-\frac{1}{2} \left(\frac{x_1 - x_2}{b}\right)^2\right\} + \tau_2^2 \delta(x_1, x_2),$$

where (b, τ_1^2, τ_2^2) are constants (often called *hyperparameters*), and where $\delta(a, b)$ is the Kronecker delta function that takes the value 1 if a = b, and 0 otherwise.

Let's start with the simple case where $\mathcal{X} = [0,1]$, the unit interval. Write an R function that simulates a mean-zero Gaussian process on [0,1] under the squared-exponential covariance function. The function will accept as arguments: (1) finite set of points x_1, \ldots, x_N on the unit interval; and (2) a triplet (b, τ_1^2, τ_2^2) . It will return the value of the random process at each point: $f(x_1), \ldots, f(x_N)$.

Use your function to simulate (and plot) Gaussian processes across a range of values for h, τ_1^2 , and τ_2^2 . Try starting with a very small value of τ_2^2 (say, 10^{-6}) and playing around with the other two first. On the basis of your experiments, describe the role of these three

¹ And therefore the entire distribution, because it is normal

- hyperparameters in controlling the overall behavior of the random functions that result. What happens when you try $\tau_2^2 = 0$? Why? If you can fix this, do-remember our earlier discussion on different ways to simulate the MVN.
- (B) Suppose you observe the value of a Gaussian process $f \sim GP(m, C)$ at points x_1, \ldots, x_N . What is the conditional distribution of the value of the process at some new point x^* ? For the sake of notational ease simply write the value of the (i, j) element of the covariance matrix as $C_{i,j}$, rather than expanding it in terms of a specific covariance function.
- (C) Prove the following lemma.

Lemma 1 Suppose that the joint distribution of two vectors y and θ has the following properties: (1) the conditional distribution for y given θ is multivariate normal, $(y \mid \theta) \sim N(R\theta, \Sigma)$; and (2) the marginal distribution of θ is multivariate normal, $\theta \sim N(m, V)$. Assume that R, Σ , m, and V are all constants. Then the joint distribution of y and θ is multivariate normal.

In nonparametric regression

- (A) Suppose we observe data $y_i = f(x_i) + \epsilon_i$, $\epsilon_i \sim N(0, \sigma^2)$, for some unknown function f. Suppose that the prior distribution for the unknown function is a mean-zero Gaussian process: $f \sim GP(0, C)$ for some covariance function C. Let x_1, \ldots, x_N denote the previously observed x points. Derive the posterior distribution for the random vector $[f(x_1), \dots, f(x_N)]^T$, given the corresponding outcomes y_1, \ldots, y_N , assuming that you know σ^2 .
- (B) As before, suppose we observe data $y_i = f(x_i) + \epsilon_i$, $\epsilon_i \sim N(0, \sigma^2)$, for i = 1, ..., N. Now we wish to predict the value of the function $f(x^*)$ at some new point x^* where we haven't seen previous data. Suppose that f has a mean-zero Gaussian process prior, $f \sim GP(0,C)$. Show that the posterior mean $E\{f(x^*) \mid y_1,\ldots,y_N\}$ is a linear smoother, and derive expressions both for the smoothing weights and the posterior variance of $f(x^*)$.
- (C) Go back to the utilities data, and plot the pointwise posterior mean and 95% posterior confidence interval for the value of the function at each of the observed points x_i (again, superimposed on top of the scatter plot of the data itself). Choose τ_2^2 to be very small, say 10^{-6} , and choose (b, τ_1^2) that give a sensible-looking answer.

out the random function f. This is called a marginal likelihood.

(E) Return to the utilities data. Fix $\tau_2^2=0$, and evaluate the marginal likelihood function $p(y\mid \tau_1^2,b)$ over a discrete 2-d grid of points. If you're getting errors in your code with $\tau_2^2=0$, use something very small instead. Use this plot to choose a set of values $(\hat{\tau}_1^2,\hat{b})$ for the hyperparameters. Then use these hyperparameters to compute the posterior mean for f, given y.