Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУК4 «Программная инженерия»

Лабораторная работа №2

«Классификатор изображений в среде Orange с использованием Python»

ДИСЦИПЛИНА: «Интеллектуальные информационные системы анализа данных»

Выполнил: студент гр. ИУК4-21М	(подпись)	_ (_	Сафронов Н.С.		
Проверил:	(подпись)	_ (_	Белов Ю.С. (Ф.И.О.)		
Дата сдачи (защиты):					
Результаты сдачи (защиты):					
- Оценка.					

Цель работы: формирование практических навыков работы с инструментами для Data Mining.

Задачи:

Для всех вариантов необходимо загрузить датасет (отличающийся от использованного в образце выполнения задания), содержащий изображения, разделенные на классы. Датасет необходимо преобразовать к виду, понятному виджету Image Embedding. Используя виджет Python Script, необходимо создать модель согласно варианту для извлечения признаков из изображений на языке Python (допускается использование библиотек Keras и Scikit-Learn) или собственную модель (данный вариант рекомендуется для ПК со слабыми характеристиками), а также вывести результаты в виджет DataTable. Затем добавить в Orange Workflow 3 модели (которые имеются в Orange) для классификации изображений на основе извлеченных признаков. Сравнить точность добавленных моделей с точностью тех же моделей, но обученных на признаках, извлеченных одной из стандартных моделей Orange (виджет Image Embedding) аналогично варианту, реализованному на Python (параметр Embedder). В случае использования собственной модели сравнить точность с любой стандартной моделью, доступной в параметре Embedder, по выбору. Кроме того, в Orange Workflow необходимо добавить виджет Confusion Matrix и вывести изображения, которые были неправильно классифицированы.

Вариант 7

Использовать модель NASNet (любая по выбору). Сравнить с Inception v3 (Image Embedding).

Результаты выполнения работы

Рисунок 1 – Архитектура решения

Рисунок 2 – Матрица сомнения для Inception V3

Рисунок 3 – Матрица сомнения NASNet

Рисунок 4 – Неверно классифицированные Inception V3

Рисунок 5 – Неверно классифицированные NASNet

Вывод: в ходе выполнения работы были сформированы практические навыки работы с инструментами для Data Mining.