Homework 8 for MATH 312

Ashok M. Rao

October 16, 2017

6.2.15 A diagonalizable A^k approaches the zero matrix if and only if every eigenvalue satisfies $-1 < \lambda_i < 1$. The columns of A_1 sum to 1 so it is Markov and has at least one eigenvalue $\lambda = 1$. A_2 is like a Markov chain without full probability, so we can guess that it's bound to disappear and this is seen by the eigenvalues as well: the characteristic function gives $(\lambda - 0.6)^2 = 0.09$ and so the eigenvalues have absolute value below one, and $A_2^\infty \to 0$.

6.2.18 The eigenvalues for this *A* are the roots of

$$\det (A - \lambda I) = \lambda^2 - 4\lambda + 3$$

so $\lambda=1,3$. By inspection, the eigenvector corresponding to $\lambda=1$ is $x_1=(1,1)$ and the eigenvector corresponding to $\lambda=3$ is $x_2=(1,-1)$. This gives,

$$A^k = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3^k \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

with k = 1 giving the diagonalization.

Strang 6.2.34 A is the rotation matrix so we have

$$\det(A - \lambda I) = \lambda^2 - 2\lambda \cos \theta + (\cos^2 \theta + \sin^2 \theta) \tag{1}$$

$$=\lambda^2 - 2\lambda\cos\theta + 1\tag{2}$$

$$= (\lambda - \cos \theta)^2 + \sin^2 \theta \tag{3}$$

So completing the square gives two roots: $\lambda = \cos\theta \pm i\sin\theta$. To find the eigenvectors see that in $(A - \lambda I)$ only the imaginary term is left on the diagonal. For $\lambda_1 = \cos\theta + i\sin\theta$ multiplying the right column by -i eliminates the left. For the conjugate λ_2 , multiplying the same column by i works. Thus we have,

$$A^{n} = \frac{1}{2i} \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \begin{bmatrix} \operatorname{cis}(\theta) & 0 \\ 0 & \operatorname{cis}(-\theta) \end{bmatrix}^{n} \begin{bmatrix} i & -1 \\ i & 1 \end{bmatrix} = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}$$

This uses the fact that $\cos \theta$ is even and $\sin \theta$ is odd so $\operatorname{cis}(-\theta)$ returns the conjugate.

Eigenvectors of "nearly symmetric" matrices The given matrix has the characteristic polynomial

$$\det(A - \lambda I) = \lambda^2 - (2 + \epsilon)\lambda + (\epsilon + 1) \implies (\lambda - 1)^2 = (\lambda - 1)\epsilon$$

so we have $\lambda=1,\epsilon+1$ as the two eigenvalues. These correspondingly give the eigenvectors (1,0) and (1,1). The angle between these vectors is $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)=45$ degrees, which is not orthogonal.

6.4.13 Using the characteristic equations for S and B,

$$\det(S - \lambda I) = (\lambda - 4)(\lambda - 2), \quad \det(B - \lambda I) = \lambda(\lambda - 25)$$

it is clear that S has eigenvectors (1,1) and (-1,1) for $\lambda=4,2$ respectively and similarly that B has eigenvectors (3,4) and (-4,3) for $\lambda=25,0$. Thus,

$$S = (4/2)(1,1)(1,1)^T + (2/2)(-1,1)(-1,1)^T, \quad B = (25/25)(3,4)(3,4)^T$$

The fractional coefficients are left unsimplified to highlight the distinction between the eigenvalue numerators and normalizing denominators (the eigenvector corresponding with the zero eigenvalue for B is removed). This gives the $Q\Lambda Q^T$ form of S and B since the eigenvectors are orthogonal and may be added as shown to recompose into the original matrix. Since Q is symmetric we use that $QQ^T=I$.