CHAPTER TRANSMISSION HEOLA

- · Transmission media are actually located below The physical layer of directly contralled by the Physical layer
- Transmission media belong to layer 0. Anything that Com cally inform from Saurce to destination is TH

Transmission medium is actually free space, metallic Coble or

CLASSIFICATION OF TH

- · tusted pair of co-axial cake use metallic (copper) conductoris that accept of transport signals in the form of electric current.
- . optical file accepts of transports signals in the form of light
- (1) Twister-PAIR CABLE Consists of two conductor's (normally copple)
 each with its own plastic insulation, Twisted together.
 - · one of the wive is used to carry signals to the seccence of the other is used only a ground seference. The secence uses the difference blue the Two.

ally musty	
Naises are generated in signal le So the naise current in date	ies by magnetic fields from the environmental lines is the sexual of that magnetic
In a straight cable, all naise	Current is flaving in the Same director
Just the in an ad	and naise away magnetic field
Straight	Cable noticed of naise surrent
of the Cable is twisted, in so of the Cable. Because of This, the as compared to ordinary steray	one parts of signal lines, the decention ate from the current in other parts a resulting maise current lowers down et cable
3 101	R
Z H TWISTED	PAIR CABLE
UTP F	STP
· Unshielded TWISTEP PAIR	· SHIELDED TWISTED PAIR CABLE
. Mast commonly used in communication	. Not used frequently (Expensive)
· Does not cover an extra	. STP Cable has a metal fail or braided mesh to cover insulated conductoris.
Batch Time:	Кол Митрет:
Date:	Name of Candidate:

than STP

. Bulker & more expensive

Metal Shuld

CATEGORIES OF UTP CABLES

· classified into 7 categories · Categories determined by cable Quality with I as the lawest of 7 as the highest

UTP Calegary	Data rate	Hax length
CAT 1	UPTO IMBPS	
CAT 2	UPTO YHBPS	
CAT 3	UPTO 10 HBPS	100 M
CAT 4.	UPTO 16 MBPS	100 H
CAT 5	UPTO 100 MBRS	luo M
CATG	UPTO 169BPS	100 P
CAT 7	UPTO 10 GBPS	1001
	l .	

Application

our Telephone cobles

To ken mig n/w

Tokenning of lo base T Ethernet

Token mig n/w

Ethernet, Fast Ethernet, Token mig

agabet Ethernet, log Ethernet (55 methes)

agabet Ethernet, log Ethernet (100 m)

Connector used

. Most Common UTP commetar is RT 45

. RI stards for regulared Jack.

Parfermence of Twisted Pair cable

. To Measure the performance, comparison of alternation release frequency of distance is taken

Applications. - O used in telephone lines to provide vaice & data charmels.

3 DSL lines used by telephone companies to provide high data sate also used UTP

(3) LAN, Such as lobose T, loo Base T also use TPC

COAXIAL CABLES

Contains a single salid-copper core.

It has over 80 times the transmission Capability of TPC.
It is commonly used to deliver television Signals & to connect

Computers in a n/w as well.

(anducting shield (protects noise)

copper) enclosed in an insulating sheath, encased in an auter-conductor of metal foil, blaid or a combination of two.

. The auter metallie wrapping sources both as a shield against naise of asthe second conductor, which completes The circuit.

. The whole caple is protected by a plate cover.

Co-axial standards

. Standards are categorized by their radio gout (RG) ratings

Colegany

1. RG-59

Cable TV

2. RG-58

Thin Ethernel

3. RG-11

Trick Ethernel

Co axial Coble cornectoris

· BNC (Bayore-Neill Concelment) must common type of cornelar

Three Popular types of BNC Connector's

(i) BNC connector

(2) BNC T connector

3 BNC TERMINATOR

(3) Critical angle - Small angle of incidence for which light is totally reflected

GASE 315 - OPTICAL fibre follows case 3 called Tatal Internal reflection frinciple. In TIR when engle of incidence is greated Than the critical engle the vay reflects (males a twen) of travels in The same substance (ie denser)

. An optical fishe is made upof core of clading

· A Glass or platte core is sorrounded by a clading of less density glass or platte.

The difference in density of two materials must be such that a beam of light moving Through The core is reflected off The cladding instead of being reported into it.

M	10		1	Ho	DE
480	and the second	1000	E 200	2000	

o'n multimode, multiple begans from a light Saurce move through The care in different Paths.

p Haltemode Stop Index fibes

Hulti mode

Single mode

Refractive index - rate of velocity of light in vaccum to its relocity in aspectied medium

The no, of modes in a fiber optic cable depends upon the dimension of the cable of variation of the indies of refraction of both Core and cladding.

- Osingle mode Step Index

 n1 < n2

 New Step Index

 Ocianter of the core is fairly Small as compared to cladding.
 - · It is lotting thicker than core.
 - This creates less alternation of time depension.

- · Cess time dispersion means higher bandwidth (it to to loo GHZ)
- · Also most costly in Premises
- . used more with WAN.

Multimode Step Index

Diarreter of core is fairly large as composed to cladding.

The output pulse is significantly attenuated selective to the Exput

It also siftee's significant time dispossion.

. Rays tend to leak into the cladding as they Propagate down the fiber optic cable. They loose some of their energy into heat. This sesults in an alternated of signal

. Cost costly of used in Brenises upto 5 km.

3) Multi mode Graded Index n, >n2 (comparale not)

. The core is much larger than Single mode Step moder. There is att little attenuation of time dispersion but not nearly as great as with Multimode step Index fishe

· Higher bandwidly

less signal attenuation

· Resistance - la Corrosine · leight wey.

2 Cast Installation & maintenance

UNGUIDED MEDIA

Transport electromogratic wares without using a physical conductor, often referred to as wireless communication freq of I markyth

Bro pagation of UNGUIDED SIGNALS

() GROUND PROPAGATION (Below 2NHZ)

· Radio wards travel Through lawest Partion of atmosphere.

· Emanate in all directions

· Distance depends on the Ramer of the Signal

SIEY PROPAGATION -

. High frequency sodio waves vadiate appeared into The ionosphere where they are seflected back to easily

· This type of transmission allows for greater distances with lower of Pamer

In line of Sight Propagation -

transmitted in steaght line directly from

antenna to antenna

ROUGH SHEET

· Anternas must be duretly facing each other

(1) RADIO WAVES - Range of Frequency 1 3KH2 & 1GH2

· RW are omnidirectional je when an antenna transmits radio waves, they are propagated in all directions.

- The Rw transmitted by one antenna are Susceptible to interference by another antenna That may send signals using the same frequency.
- · Rw, That Propogate in sky mode can travel long distances
 This makes radio waves a good conducte for long
 distance broadcastry Such as AM radio

Applications

- commidurational characteristic of Rodio wave makes ituseful for multicosting in which there is one fender but mony receivers.
 - Example For radio, Televisión, maritime radio, Corclus Phones & Paging
- MICROWAVES Range of Frequency is 1942and 300 GHZ 7
 - o Are unidirectional. Hears that Sending & receiving antennes need to be aligned.
 - · Mw Propagation is line of Agent

Applications

- · Due to uniducational property, very usiful in unicast communication (one-to-one)
- ased in Cellular phones, Satellite n/w of mircless LAN.

3 Infra red -

- · Frequency from 300 GHZ to 400 THZ Coverelegets from Imm 770 mm)
- · Short range communication
- o High forequency. Commod Penetrate walls

pplications

· Infrared signals can be used for short varge communication in a clased area using line of Sight Propagation.