HW6 Solutions

1. Min C a) Subj to $2x_{11} + 2x_{12} + 2x_{13} + 4x_{14} - C \le 0$ $3x_{21} + x_{22} + 2x_{23} + 2x_{24} - C \le 0$ $x_{31} + 3x_{32} + 4x_{33} + 4x_{34} - C \le 0$ $x_{11} + x_{21} + x_{31} = 1$ $x_{12} + x_{22} + x_{32} = 1$ $x_{13} + x_{23} + x_{33} = 1$ $x_{14} + x_{24} + x_{34} = 1$ All $x_{13} \in \{0,1\}$

b)
$$X_{13} = 1$$
, $X_{14} = 0.0625$, $X_{22} = 1$, $X_{24} = 0.625$
 $X_{31} = 1$, $X_{34} = 0.3125$, $C = 2.25$
Using QSopt

Integral Solution:

Common = 3

M3

M2

Why optimal?

Since all P; 's are integral,

Common will be integral.

- Since LP > 2, Cmax > 2 - : Cman = 3 is optimal

2.
$$f_1 = 3$$
, $f_2 = 4$, $f_3 = 2$

$$f(\{1,2\}) = 7$$

$$f(\{1,2\}) = 5$$

$$f(\{1,3\}) = 5$$

$$f(\{1,3\}) = 6$$

$$f(\{1,2,3\}) = 6$$

$$f(\{1,2,3\}) = 9$$

$$f(\{1,2,3\})$$

$$3C_{1} + 4C_{2} = 7, 3+$$
 $3C_{1} + 2C_{3} = 7, 19$
 $4C_{2} + 2C_{3} = 7, 28$
 $3C_{1} + 4C_{2} + 2C_{3} = 7, 55$
 $C_{1} = 7, 3$
 $C_{2} = 7, 4$
 $C_{3} = 7, 2$

Solution:
$$(1) \rightarrow (2) \rightarrow (3)$$
 Zw; $G = 162$
 $G = 3$, $G = 7$, $G_3 = 9$

$$t_{33} = 0$$
, $t_{13} = 10$, $t_{1,2} = 14$, $t_{11} = 19$
 $t_{22} = 19$, $t_{21} = 28$, $t_{31} = 36$, $t_{23} = 36$
 $t_{4,3} = 45$, $t_{4,2} = 47$, $t_{4,1} = 50$, $t_{3,2} = 50$
 E $C_{max} = 56$

