COST PRACTICAL

Q1. Create Matrix using R and perform the operation addition,Inverse,Transpose and multiplication operations.

Q2. Using R execute the statistical functions mean, median, quartile, range, Inter-quartile range, histogram.

```
Mean
```

```
x<-c(12,7,3,4,2,18,2,54,-21,8,-5)
mean<-mean(x)
print(mean)
median
x<-c(12,7,3,4,2,18,2,54,-21,8,-5)
median<-median(x)
print(median)</pre>
```

<u>mode</u>

```
getmode<-function(v){
uniqv<- unique(v)
uniqv[which.max(tabulate(match(v,uniqv)))]
}
V<-(2,1,2,3,1,2,3,4,1,5,5,3,2,3)
Result<-getmode(v)
Print(result)</pre>
```

Quartile

```
nuclear<-c(7,20,16,6,58,9,20,50,23,33,8,10,15,16,104)
quartile(nuclear)
```

Range and histogram

```
x<-c(1,2,3,2,3,4,8,12,43,-4,-1)
r<-range(x)
print(r)
diff(r)
hist(r)</pre>
```

inter-quartile range

Q3. Using R import the data from excel /.CSV file and per form the above function.

	No.	X
1	2	12
2	2	7
1 2 3 4 5 6 7 8	2 2 3 4 5	7 3 4 2
4	4	4
5	5	2
6	6	18
7	7	2
8	7 8 9	2 54 -21
9	9	
10	10	8
11	11	-5

data1<-read.csv(file.choose(),header=T)</pre>

mean(data1\$x)

median(data1\$x)

Q4.Using R import the data from excel /.CSC file and calculate the standard deviation, variance and co-variance.

(1) Standard Deviation:

Example:

	Х
1	2
2	3
3	7
4	8
5	10

```
data1<-read.csv(file.choose(),header=T)
data1
sd(data$x)

variance
data1<-read.csv(file.choose(),header=T)
data1
var(data1$x)

co variance
data1<-read.csv(file.choose(),header=T)
data1
cov(data1$x)</pre>
```

Q5.Using R import the data from Excel /.CSV and draw the skewnessand kurtosis.

Seema is interested on the elapse time (in minutes.). She spends on riding a tricycle from home to school for thre e weeks(excluding weekends). She obtain the following data:

40	\sim	40 FF	47 CO	47 C2	25 45	27 27	25 24	24 65	20.02	22 64	1 7 7 4	22 04	22 60	2425
114	114	1955	1/69	I / h≺	/5 /5	27.27	75 74	/ h5	1 /11 4 /	1 // h l	1 15 /1	11111	I // hII	14 15
12	.00	± J.JJ	I/.UJ	±/.00	23.13	21.21	23.27	21.00	20.52	22.01	10.71	22.07	22.00	27.23

Compute and interpret the skewness and kurtosis.

data1<-read.csv(file.choose(),header=T)</pre>

data1

```
time<-
c(19.09,19.55,17.69,17.63,25.15,27.27,25.24,21.65,20.92,22.61,15.71,22.04,22.60,24.25)....
write this in single line
library(moments)
skewness(time)
kurtosis(time)
```

Q6. Using R perform the binomial and normal distribution on the data

```
x<-seq(0,50,by=1)
y<-dbinom(x,50,0.5)
png(file="dbinom.png")
dev.off()
null device
plot(x,y)</pre>
```

Q7. Perform the correlation using R tool.

```
year=c(2000,2001,2002,2003,2004)
> rate=c(9.34,8.50,7.62,6.93,6.60)
plot(year,rate)
cor(year,rate)
```