Prof. Dr. Klaus Hulek Benjamin Wieneck

ÜBUNGSBLATT 11

Aufgabe 1. Sei C eine glatte projektive Kurve mit g(C) = 2. Man zeige folgendes:

- (i) Es ist dim $|K_C| = 1$ und K_C ist basispunktfrei.
- (ii) Es existiert ein Morphismus $f: C \to \mathbb{P}^1$ mit $\deg(f) = 2$.

Aufgabe 2. Sei C eine glatte projektive Kurve mit g(C) = 2. Man zeige, dass ein Divisor $D \in \text{Div}(C)$ genau dann sehr ampel ist, wenn deg $D \ge 5$.

Aufgabe 3. Sei $C = \cap_i H_i \subset \mathbb{P}^n$ eine glatte projektive Kurve die als Schnitt von endich vielen Hyperflächen $H_i \subset \mathbb{P}^n$ ensteht, so dass I(C) von n-1 Elementen erzeugt wird. Es sei $g(C) \geq 2$. Man zeige:

- (i) K_C ist sehr ampel.
- (ii) Für g(C) = 2 kann solch eine Kurve C nicht existieren.

Aufgabe 4. Man betrachte die Grassmannsche G(k,n). Sei $U_0 \subset G(k,n)$ die offene Menge, in der die Koordinate $e_1 \wedge \cdots \wedge e_k$ bezüglich der Plücker-Einbettung nicht verschwindet. Man zeige, dass $U_0 \cong \mathbb{A}^{k(n-k)}$.

Hinweis: Beachte den Unterschied zwischen Gr(k,n) und G(k,n).