7.2 Coordonnées cylindriques et sphériques

Coordonnées cylindriques

Un point P dans l'espace \mathbb{R}^3 peut être représenté en coordonnées cylindriques (r,θ,z) , où

- (r, θ) sont les coordonnées polaires de la projection de P dans le plan z = 0.
- z est distance du point P au plan z = 0.

Relations entre les coordonnées cylindriques et cartésiennes

$$x = r \cos(\theta)$$
 $r = \sqrt{x^2 + y^2}$
 $y = r \sin(\theta)$ $\tan(\theta) = \frac{y}{x}$
 $z = z$ $z = z$

Figure 8 – Coordonnées cylindriques.

Coordonnées sphériques

Un point P dans l'espace \mathbb{R}^3 peut être représenté en coordonnées sphériques (ρ, θ, ϕ) , où

- ρ est la distance de P à l'origine
- θ est l'angle formé par l'axe Ox et le segment joignant l'origine à la projection de P dans le plan z=0.
- ϕ est l'angle formé par l'axe Oz et le segment joignant l'origine à P.

Relations entre coordonnées sphériques et cartésiennes

$$x = \rho \sin(\phi) \cos(\theta)$$

$$p = \sqrt{x^2 + y^2 + z^2}$$

$$y = \rho \sin(\phi) \sin(\theta)$$

$$tan(\theta) = \frac{y}{x}$$

$$z = \rho \cos(\phi)$$

$$cos(\phi) = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

 ${\bf FIGURE}~9-Coordonn\'{e}es~sph\'{e}riques.$