CS-235: Computer Organization & Assembly Language

x86 Addressing Modes

Engr. Taufique-ur-Rehman Muhammad Imran Abeel <taufique.rehman@seecs.edu.pk> <imran.abeel@seecs.edu.pk>

Immediate

Register addr. << Data

Reg. direct

Register addr. << Register addr.

Reg. indirect

Memory addr. << Register

Reg. relative

Register addr. << Memory addr.

Direct

Memory addr. << Register addr.

Immediate

Reg. direct

Reg. indirect

Reg. relative

Indirect

An opcode, or operation code, tells the microprocessor which operation to perform.

Instructions

Opcode Operands

[3]

Immediate

Reg. direct

Reg. indirect

Reg. relative

Direct

Destination

Register CH

Source

Data 3AH

Register addr. << Data

- MOV CH, 3AH
- MOV AL, 'N'

Not allowed

MOV AL, 0200H

[4]

FIGURE 3–4 The operation of the MOV EAX,3456H instruction. This instruction copies the immediate data (13456H) into EAX.

MOV EAX, 3456H

Immediate

Reg. direct

Reg. indirect

Reg. relative

Direct

Destination

Register **BX**

Source

Register **AX**

Instructions

Immediate

Reg. direct

Reg. indirect

Reg. relative

Direct

Destination

Register **BX**

Source

Register AX

Register addr. << Register addr.

MOV BX, AX

Not allowed

- MOV ES, DS; segment to segment
- MOV CS , AL ; Code segment is not destination
- MOV BL , DX ; Mixed Sizes

[7]

Register direct addressing modes

MOV BX, CX

Immediate

Reg. direct

Reg. indirect

Reg. relative

Direct

DestinationSourceMem. addr.
10300hRegister
CL

Instructions

CS-235 Computer organization & assembly language, Fall(2019)

Immediate

Reg. direct

Reg. indirect

Reg. relative

Direct

Destination

Mem. addr. 10300h

Source

Register CL

Memory addr. << REgister addr.

MOV [BX], CL

Memory address:

$$DS \times 10H + BX$$

10000H + 0300H = 10300H

Immediate

Reg. direct

Reg. indirect

Reg. relative

Direct

Destination

Register CL

Source

Mem. addr. 10304h

Register addr. << Memory addr.

MOV CL, [BX+4]

Memory address:

$$DS \times 10H + BX + 4$$

10000H + 0300H + 4
= 10304H

Reg. relative addressing modes

Immediate

Reg. direct

Reg. indirect

Reg. relative

Direct

Instructions

Immediate

Reg. direct

Reg. indirect

Reg. relative

Direct

Destination

Memory [11234H]

Source

Register **AX**

Memory addr. << Memory addr.

MOV [1234H], CL

Memory address: DS × 10H + DISP 10000H + 1234H = 11234H

Direct Addressing modes

MOV AL, [1234H]

FIGURE 3–5 The operation of the MOV AL,[1234H] instruction when DS = 1000H.

Questions?

THANK YOU!