Κβαντοποίηση Διανυσμάτων σε Κωδικοποιητές Βίντεο

Καλός Πέτρος

Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και Δικτύων Πανεπιστήμιο Θεσσαλίας Ιούνιος 2013

- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM Η.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

Περιγραφή Προβλήματος

- Βίντεο συνεπάγεται τεράστιος όγκος δεδομένων
- Τεχνικές Συμπίεσης
 - Με απώλειες
 - Χωρίς απώλειες
- Η ευαισθησία του ανθρώπινου ματιού είναι μικρότερη των 38dB
- Μεγάλη πολυπλοκότητα σημερινών τεχνικών συμπίεσης
- 56.5 HD min uncompressed = 110GB
- Compress Techniques
 - Compressed 1.3GB.
 - Lossless 8-10 compress ratio.
- Ευαισθησία ματιού μικρότερη των 38dB PSNR
- Πολυπλοκότητα κλιμακώνει άσχημα ανάλογα με την ανάλυση

Ασυμπίεστη Εικόνα

• QP 70,95,97

- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM Η.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

Ψηφιακό Βίντεο

- Αποτελείται από μία σειρά καρέ που αναπαράγονται με σταθερό ρυθμό (25 ή 30Hz)
- Καρέ είναι μια σειρά από pixels τοποθετημένα στον δυσδιάστατο χώρο. Οι διαστάσεις του καθορίζουν την ανάλυση του βίντεο
- Κάθε pixel έχει ένα βάθος (8 14bits)
- Το κάθε καρέ απεικονίζεται σε ένα χώρο χρωμάτων που ονομάζεται YUV, οπού το Y είναι η φωτεινότητα και το U,V η χρωματικότητα

Συνιστώσες ΥUV

Τύποι YUV

 Τα pixel έχουν ένα εύρος τιμών (βάθος) και για να δημιουργήσουν ένα καρέ τα τοποθετούμε με διάφορους τρόπους (πχ YUV420,YUV444)

Single Frame YUV420:

Position in byte stream:

Οργάνωση των pixels

• Οργάνωση σε macroblocks, blocks, subblocks

Οργάνωση των καρέ

- Intra (Temporal)
 - I frames
- Inter (Special)
 - P,B frames
- Στόχος η δημιουργία διαφορών pixel (residuals)
- Μικρή ενέργεια που αργότερα μας μηδενίζει πολλές συνιστώσες

Intra frames

- Χρήση πληροφορίας μόνο εντός καρέ
- Intra prediction modes

- Δοκιμή όλων μέχρι να καταλήξουμε στο καλύτερο
- Με τον όρο καλύτερο εννοούμε η λιγότερα bits η μικρότερο SAD
- Χειρότερη απόδοση συμπίεσης
- Αναγκαία γιατί από εδώ ξεκινάει ο αποκωδικοποιητής μιας και έχει όλη την πληροφορία.
- Μικρή πολυπλοκότητα

Inter frames

- P (predictive) frames
 - Δημιουργία διαφορών παίρνοντας ως pixels αναφοράς pixels από ένα συγκεκριμένο προηγούμενο καρέ
- B (bidirectional) frames
 - Δημιουργία διαφορών παίρνοντας ως pixels αναφοράς τον μέσο όρο των pixels από προηγούμενα ή επόμενα καρέ
- Motion Vectors

• Μεγάλες διαφορές ανα εφαρμογή

Encoding

- Μετασχηματισμός DCT 4x4,8x8,16x16
- √ Κβαντοποίηση
- Zigzag Scan
- Run Length Encoding
- Entropy encoding

Κβαντοποίηση

- Εισαγωγή σφάλματος
- Ακέραια διαίρεση συντελεστών DCT με κάποια ακέραια τιμή, πιθανόν διαφορετική για κάθε συντελεστή
- Quantization Parameter (QP) καθορίζει την ποιότητα
- Οι πολλαπλασιαστές του πίνακαςκβαντοποίησης είναι ανάλογος με το QP στον H264 [0,51]
- Μικρότεροι αριθμοι [λιγότερα bits] και περισσότερα 0

Run Length Encoding

• Μείωση αριθμών προς κωδικοποίηση

Ποιότητα Βίντεο

• PSNR =
$$10 \times \log_{10} \left(\frac{MAX_i^2}{MSE} \right)$$

$$- MSE = \frac{\sum_{i=0}^{X*Y} (Source_i - Reconstructed_i)^2}{X*Y}$$
$$- MAX_i^2 = bitdepth^2 - 1$$

 Υπολογίζεται για κάθε συνιστώσα YUV ξεχωριστά αλλά ως μετρική λαμβάνεται το PSNR του Y

- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM Η.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

Θεωρία Πληροφοριών

- Εντροπία
 - H(X) = $-\sum_{i=1}^{\rm n}(p(x_i)\times\log_bp(x_i)),$ $p(x_i)$ η πιθανότητα του ενδεχομένου x_i
 - Το απόλυτο κάτω όριο που η πληροφορία μίας πηγής μπορεί να συμπιεστεί

• Uniform 2 bits με πιθανότητα 0.7,0.1,0.1 τοτε 1.35bits

Κωδικοποιητές Εντροπίας

- Μέθοδος Huffman
 - Μικρή πολυπλοκότητα
 - $-H(X) \le L_c \le H(X) + 1bit$

- Αριθμητική Κωδικοποίηση
 - Context Adaptive Binary Arithmetic Encoding (CABAC)
 - Μεγάλη πολυπλοκότητα
 - Πλησιάζει "κοντά" στο όριο εντροπίας
- Huffman
 - Encode one symbol
 - · Offline tree construction
 - · Encoding free
 - Decoding 1 operation/bit
- CABAC
 - Encode symbol sequence
 - 50-100 operations /bit for encoding, decoding

- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM Η.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

K-means

• Επαναληπτικός αλγόριθμος που χωρίζει με το ελάχιστο σφάλμα n σημεία σε διάσταση χώρου R^d σε k περιοχές $k \leq d$

• k=2, d=2, n=100

• KKZ κανει και την πρωτη επαναληψη πραγμα το οποιο συμπεριλαμβανουμε και στην random

Aναζήτηση κοντινότερου cluster • Με Full Search η με FastNN FastNN vs. Full Search To a search FastNN vs. Full Search To a search FastNN vs. Full Search

- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM Η.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

K-means Training

- Επιλογή των residuals ως training set
- Υπάρχουν τόσα residuals όσα και pixels
- Διαίρεση των καρέ σε mxm κομμάτια με m=4
- Χρησιμοποιήθηκαν 2600 καρέ από 10 βίντεο με διαφορετικό περιεχόμενο

Εξαγωγή του training set από τον Η.264

- Τροποποίηση Decoder
- Βήματα για την εξαγωγή
 - Encoding σε lossless mode με δύο διαφορετικά GOP
 - 1. |-|-|-....
 - 2. I-P-P-B-P-P-B-...
 - Decoding
 - Keepl = 1, 1° GOP
 - KeepP = 1, 2° GOP
 - KeepB = 1, 2^o GOP

• Τροποποίηση του cfg του decoder ώστε να εξάγει residuals

Codebooks

• Codebooks για IntraY, UV και InterY, UV

Τύπος	d	n	k	Εντροπία	PSNR(dB)	Επαναλήψεις	Διάρκεια (minutes)
IntraY	16,000	56160000,000	65536	0,712229	33,6	3249	12154
IntraUV	16,000	28080000,000	65536	0,743071	42,1	2697	3119
InterY	16,000	42117616,000	65536	0,692577	40,5	3270	9120
InterUV	16,000	21058808,000	65536	0,707785	48,1	4221	8509

- Συνολική διάρκεια 23 μέρες.
- Χρειαζόμαστε πολλά vectors για να έχουμε καλα στατιστικα

Εντροπία υπό συνθήκη

 Η πληροφορία για μια τυχαία μεταβλητή Υ μπορεί μόνο να μας μειώσει την εντροπία της μεταβλητής Χ

$$H(X|Y) \leq H(X)$$

- Δημιουργία 8 ισοπίθανων περιοχών με βάση την ενέργεια των codewords
- Παραγωγή στατιστικών των 8 contexts με βάση την ενέργεια των γειτόνων
- εφόσον είναι γνωστή η ενέργεια των κβαντοποιημένων block τότε είναι γνωστή και η κατηγορία που ανήκει το τρέχον block κάτι το οποίο μειώνει την αβεβαιότητα για το τρέχον block
- Εξαγωγή residuals σε μορφη καρε

• Αξίζει να παρατηρήσουμε ότι υπάρχουν λίγα στο πλήθος αλλά με μεγάλη πιθανότητα clusters μικρής ενέργειας (αριστερό μέρος), ενώ υπάρχουν πολλά με μικρή πιθανότητα clusters μεγάλης ενέργειας (δεξί μέρος).

- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM Η.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

- Αλλαγές στο cfg
- Συγχρονισμός encoder-decoder
- QP=0, αποφευγουμε τον μηχανισμο quant trans
- Πολλές δοκιμές άρα προσωρινα vq indices

=16 indices gia to 16x16 Y kai 4+4 gia to U,V 8x8 macroblock

- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM Η.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

• Υλικό δοκιμής του Η265

Αποτελέσματα VQ H.264

- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM Η.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

- •PSNR των βίντεο πολύ κοντά μεταξυ jm-vq
- •Στα δύσκολα βίντεο καλύτερη απόδοση
- •Υπολογισμός πλήθους των skipped mb
- •Δεν υπολογίστηκε το overhead του κωδικοποιητή αλλά ούτε και τα επιπλέον skipped blocks
- •Jmcoeff bits antikatastithikan apo plithos vqindices*16*entropy

Vtune

- Περιγραφή Προβλήματος
- Ψηφιακό Βίντεο
- Θεωρία Πληροφοριών
- K-means
- VQ Training
- Τροποποίηση JM Η.264
- Αποτελέσματα VQ H.264
- VQ H.264 vs. JM H.264
- Συμπεράσματα

Συμπεράσματα

- ✓ Καλύτερη απόδοση του VQ και ιδιαίτερα στα δύσκολα βίντεο
- ✓ Εύκολη και γρήγορη βελτίωση των codebooks
- ✓ Μείωση πολυπλοκότητας του decoder
- Μεγάλη αύξηση της πολυπλοκότητας του encoder
- Μεγάλη απόκλιση του PSNR κάθε συνιστώσας

- •Δυσκολα το 1,3 με 27% και 31% κερδος
- •Γλυτώνουμε την αρχικοποίηση και πολλες επαναληψεις