E E7131

	Total Pages:	3
Reg No.:	Name:	-
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017	
	Course Code: CS309	
	Course Name: GRAPH THEORY AND COMBINATORICS (CS)	
Max. M	arks: 100 Duration: 3	Hours
	PART A	
	Answer all questions, each carries3 marks.	Marks
1	Consider a graph G with 4 vertices: v1, v2, v3 and v4 and the degrees of vertices are 3, 5, 2 and 1 respectively. Is it possible to construct such a graph G? If not, why?	(3)
2	Draw a disconnected simple graph G1 with 10 vertices and 4 components and also calculate the maximum number of edges possible in G1.	(3)
3	State Dirac's theorem for hamiltonicity and why it is not a necessary condition for a simple graph to have a Hamiltonian circuit.	(3)
4	Differentiate between symmetric and asymmetric digraphs with examples and draw a complete symmetric digraph of four vertices. PART B	(3)
	Answer any two full questions, each carries 9 marks.	
5 a)	What are the basic conditions to be satisfied for two graphs to be isomorphic? Are the two graphs below isomorphic? Explain with valid reasons	(6)
b) 6 a)	Write any two applications of graphs with sufficient explanation Consider the graph G given below:	(3) (4)
,		()
b)	Define Euler graph. Is G an Euler? If yes, write an Euler line from G. What is the necessary and sufficient condition for a graph to be Euler? And also	(5)
7 a)	prove it. Define Hamiltonian circuits and paths with examples. Find out the number of edge-disjoint Hamiltonian circuits possible in a complete graph with five vertices	(5)
b)	State Travelling-Salesman Problem and how <i>TSP</i> solution is related with	(4)

PART C

Hamiltonian Circuits?

Answer all questions, each carries 3 marks.

8 List down any two properties of trees and also prove the theorem: *A graph is a* (3) *tree if and only if it is a minimally connected.*

E E7131

9 Consider the tree T, given below

Label the vertices of T appropriately and find the center and diameter of T

10 Prove the statement:

14

(3)

(3)

Every cut-set in a connected graph G must also contain at least one branch of every spanning tree of G

List down the properties stating the relationship between the edges of graph G (3) and its dual G^*

PART D

Answer any two full questions, each carries 9 marks.

12 a) Define spanning trees. Consider the graph G given below and obtain any *three* spanning trees from G. Calculate the number of distinct spanning trees possible from a complete graph with *n* vertices. (5)

- b) Let G = (V, E) be a connected graph, and let T = (V, S) be a spanning tree of G.

 Let e = (a, b) be an edge of G not in T. Prove that, for any edge f on the path from a to b in T, $(V, (S \cup \{e\}) \{f\})$ is another spanning tree for G
- 13 a) Define cut set. Find any four cut sets from the graph G given below and also find (5) the edge connectivity of G.

- b) Define vertex connectivity and draw a graph with an articulation point. (3)
- c) State Euler's Theorem (formula). (1)

a) Draw two Kuratowski's graphs and also prove that Kuratowsk's first graph is (4) non planar using appropriate inequality.

b) Draw the geometric dual (G*) of the graph G given below and also check (5) whether G and G* are self dual or not, substantiate your answer clearly?

E E7131

PART E

Answer any four full questions, each carries 10 marks.

- 15 a) List down any four properties of adjacency matrix (4)
 - b) Construct an adjancy matrix(X) for the following graph and also mention how the concept of edge sequences is described with X^3 (no need to find X^3 from X)

- 16 a) Prove the theorem: (4)

 If A(G) is an incidence matrix of a connected graph G with *n* vertices, the rank of A(G) is *n-1*
 - b) Describe with examples the usage of incidence matrix to find two graphs (g1 and g2) are isomorphic. (6)
- 17 a) Define cut-set matrix with an example and list down any four properties of cut-set matrix (6)
 - b) If B is a circuit matrix of a connected graph G with e edges and n vertices, then show that the number of linearly independent rows in B = e-n+1
- 18 a) Draw the flow chart of minimum spanning-tree algorithm. (7)
 - b) Find MST from the graph given below by simply applying Kruskal's procedure. (3)

Write the Dijkstra's shortest path algorithm *(no need to draw flowchart)*. Apply (10) this algorithm to find the shortest path between v1 and v6

Draw the flowchart of *Connectedness and Components* algorithm and also apply this algorithm on any graph (G) with 2 components.
