

T830(E)(J24)T

NATIONAL CERTIFICATE INDUSTRIAL INSTRUMENTS N6

(8080216)

24 July 2018 (X-Paper) 09:00-12:00

This question paper consists of 5 pages and 1 formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
INDUSTRIAL INSTRUMENTS N6
TIME: 3 HOURS
MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

SECTION A: ANALYSERS

QUESTION 1

- 1.1 Make a neat sketch of a Geiger-Mueller tube. (5)
- 1.2 Describe the construction and operation of a Geiger-Mueller tube. (5)
- 1.3 Draw a basic circuit for an AC arc and describe its working principle. (5)
- 1.4 Choose an item from COLUMN B that matches a description in COLUMN A. Write only the letter (A–H) next to the question number (1.4.1–1.4.6) in the ANSWER BOOK.

COLUMN A		COLUMN B	
1.4.1	Source of IR energy	A magnetic wind-type analyser	
1.4.2	Radiation with a wavelength shorter than that of radio waves and longer than that of light waves	B X-rays C intensities of radiation D wavelengths of the radiation	
1.4.3	Measure the percentage of oxygen in the gas mixture	E ultraviolet radiation	
1.4.4	Very high-frequency electromagnetic waves with a very short wavelength of between 10 ⁻¹² and 10 ⁻⁸ m	F glow wire G infrared radiation H gas chromatography	
1.4.5	Used to determine the concentration of the elements within the sample		
1.4.6	Used to identify the elements comprising the mixture		

 $(6 \times \overline{1})$ (6)

1.5 What is actually determined by an IR analyser?

(3)

1.6 Make a neat, labelled sketch of an IR reflectance analyser.

(6) **[30]**

TOTAL SECTION A: 30

SECTION B: AUTOMATIC CONTROLLERS AND VALVES

QUESTION 2

2.1 Explain the difference between *split range control* and *override control*. (4)

2.2 Make a neat sketch of the valve characteristic curves (% flow against % valve opening) of the following valves on the same set of axis:

A quick opening valve, an equal-percentage valve and a linear valve (5)

2.3 Make a neat sketch and explain the derivation of the two parameters needed in the ultimate method of adjusting a PID controller.

2.4 Define the following terms:

2.4.1 Measurement lag

2.4.2 Process lag

 $(2 \times 2) \qquad (4)$

2.5 With the derivative and integral action at its lowest value, we adjust the proportional band of a controller to decrease while the smallest set point variations are made, until the process just starts cycling. The Pbu is now 52% and the cycle period Pu is measured as 0,5 minutes.

By using the ultimate sensitive method, determine the adjustments of a PID action controller.

(6)

(6)

[25]

TOTAL SECTION B: 25

SECTION C: DISTILLATION COLUMN AND STEAM BOILERS

QUESTION 3

3.1 Explain the basic distillation process of a mixture of two components. (5)

3.2 On what type of boiler can single-element level control be used? (2)

3.3 Explain why integral action should not be used in a single-element level control. (2)

3.4 A control valve must be installed in a line to control the flow of fuel to a furnace.

What type of valve would you use and why? (2)

3.5 A distillation column consists of the following components: A feed pump, preheater, reboiler, condenser, reflux accumulator and reflux pump.

Make a neat, labelled sketch, showing the following:

•	Feed rate flow control	(1)
•	Temperature cascaded onto the steam flow control to the reboiler	(5)

- Bottom product level control
 (2)
- Top product draw off controlled by the reflux accumulator level (3)
- 3.6 Explain why pressure control is important in distillation columns. (8)

 [30]

TOTAL SECTION C: 30

SECTION D: INTRINSIC SAFETY

QUESTION 4

4.1 Name and briefly explain the THREE basic requirements that must be met, as a rule, for an explosion to take place in atmospheric air. (3 x 2) (6)

4.2 Define the term the *flash point* of a flammable liquid. (2)

4.3 Name FOUR types of protection that can be used in a hazardous location. (4)

4.4 Define a hazardous location. (3)

[15]

TOTAL SECTION D: 15
GRAND TOTAL: 100

(8080216) T830**(E)**(J24)T

FORMULA SHEET

1. Point of inflection =
$$\frac{reaction \, range}{2}$$

2.
$$\%$$
 change in variable = $\frac{point\ of\ inflection}{process\ range} \times 100$

3.
$$R = \frac{\% \ change \ in \ variable}{time \ in \ minutes}$$

4.
$$Proportional\ band = \frac{100\ RL}{\Delta P}$$

5.
$$Proportional\ band = \frac{110\ RL}{\Delta P}$$

6. Integral rate
$$(r/m) = \frac{0.3}{L}$$

7.
$$Proportional\ band = \frac{83\ RL}{\Delta P}$$

8. Integral rate
$$(r/m) = \frac{0.5}{L}$$

9.
$$C_v = 1{,}16Q\sqrt{\frac{G_f}{\Delta P}}$$

10.
$$C_v = \frac{1,16 W}{\sqrt{G_f \Delta P}}$$

11.
$$C_v = \frac{Q}{295} \sqrt{\frac{G.T}{\Delta P(P_1 + P_2)}}$$

12.
$$C_v = \frac{47.2 W}{\sqrt{\Delta P(P_1 + P_2)}}$$

13.
$$C_v = \frac{72.4 W}{\sqrt{\Delta P (P_1 + P_2)}}$$

14.
$$PB = \frac{change\ in\ process\ variable}{100}\%$$