

How to use the design tool for FSFR-series

2008 WW FAE training PLM Display in PCK Gwan-Bon Koo, Ph.D. 7th April, 2008

the power franchise

www.fairchildsemi.com

Contents

- Motivations
- ◆ Design Example 1
 - ➤ Single output for LCD TV
- ◆ Design Example 2
 - ➤ Dual output for PDP TV

Motivations

- ◆ It's a time to release all products of FSFR-series.
- To help WW FAEs to understand easily LLC topology including FSFR-series
- ◆ To help WW FAEs to design customers' set fast and correctly
- ◆ To help customers to design LLC stage by themselves

Motivations

◆ It is different a little from the design sequences in AN4151-Half-bridge LLC Resonant Converter Design using FSFR-series Fairchild Power Switch (FPSTM).

Single Output Application for LCD TV

- ◆ Single output application for LCD TV
- Specifications
 - Output: 24V/8A
 - Input: 360Vdc ~ 400Vdc (nominal 380Vdc)
- ◆ Let's start to design using "LLC design tool Ver 1.0"

♦ Step 1: Fill out the input/output specifications

Multi-output could be possible up to three.

LLC Half-Bridge Converter Design Tool for FSFR series by Fairchild Semiconductor						
Speci	fication & Parameter		Input	Dim.	Output	Dim.
	Output Voltage1		24	V		
	Output Current 1		8	Α		
	Output Voltage 2		0	V		
	Output Current 2		0	A		
1. Output Specifications	Output Voltage 3		0			
	Output Current 3	0				
	Output Power	Output Power			192.0	W
	Select Configuration of Output	Rectifier	1			
	Maximum V _F of Output Diode		1	V		
	Maximum Input Voltage		400	V		
	Nominal Input Voltage		380	V		
	Estimated Efficiency		0.95			
2. Input Specifications	. Input Specifications Input Power				202.1	W
	DC-Link Capacitor	D	680	uF		
	Ripple voltage @ Nominal Inpu	: U			16	V
	Minimum Input Voltage		360	V		

If this is larger than the gap between Vin,nom and Vin,mim, increase the DC-Link Capacitor.

If the PFC circuit is used, then these two rows have no meaning. If the secondary side configuration is a center tapped, input <u>"1"</u>. If the secondary side configuration is a bridge type, input <u>"2"</u>.

◆ Step 2: Select m (Lp/Lr)

It is recommended to choose <u>4~8 of m</u>. The conduction loss would be decreased as m increases.

	m=	0			
	Boundary Voltage	411	V		
	Minimum Gain			1.10	
3. Gain & Turns ratio	Margin of Maximum Fain	15	%		
3. Gain & Turns ratio	Required Maximum Cain			1.44	
	Turn-ratio (Np/Ns1)			9.00	
	Turn-ratio (Np/Ns2)			-	
	Turn-ratio (Np/Ns3)			-	

- 1. To make all switching frequencies depending on the input voltage below the resonant frequency (fs<fo), let the <u>Boundary Voltage</u> higher than the maximum input voltage.
- If <u>Boundary Voltage</u> is less than Vin,max, above region operation could be with Vin,max.
- 2. To make turns ratio be a natural number, tune the <u>Boundary Voltage</u> up.

◆ Step 2: Select m (Lp/Lr)

◆ Step 3: Select Q factor

◆ Step 3: Select Q factor

Automatically calculated.

	AC Resistor	AC Resistor						214.2	ohm
	DC Resistor	DC Resistor						3.3	ohm
	Q factor				0.350				
	Expected Resonant Freque	ncy)			100	kHz		
4. Resonant Parameters	Recommended Cr	<u> </u>	1					21.2	nF
	Recommended Lr				\setminus			119.4	uН
	Selected Cr	Selected Cr		1	22.0	пF			
	Selected Lr				_\	120.0	uН		
	Estimated Lp							720.0	uН

Lr and Cr could be calculated using; $f_o = \frac{1}{2\pi\sqrt{L_rC_r}} \qquad Q = \frac{\sqrt{\frac{L_r}{C_r}}}{P}$

Choose Lr and Cr referring to the Recommended Values

To guarantee the Required Maximum Gain, <u>Q factor</u> has to be small satisfactorily.

Put the desired resonant frequency down.

◆ Step 4: Check the peak gain with the gain curve

Step 5: Just check out Section 5 and 6

Section 5 is only for the reference. Remind Lp and Lr are not Lm and Llkg.

5. Transformer Parameters for Simulation

Maganitization Inductance 657.3 uН Leakage Inductance of Primary-side 62.73 uН Inductance of Secondary-side1 8.11 uН Leakage Inductance of Secondary-side1 0.77 uН Inductance of Secondary-side2 uН Leakage Inductance of Secondary-side2 uН uН Inductance of Secondary-side3 Leakage Inductance of Secondary-side3 11H Phase Angle of Lr & Cr 615.5 krad/s Phase Angle of Lp & Cr 251.3 krad/s Resonant Freq. of Lr & Cr 98.0 kHz 6. Operating Parameters | Resonant Freq. of Lp & Cr 40.0 kHz Operating Freq. @ Max. Input Voltage 91.7 kHz Operating Freq. @ Nom. Input Voltage 83.1 kHz Operation Freq. @ Min. Input Voltage 73.7 kHz

The real value of resonant frequency.

Estimated operating frequency depending on the input voltage. Check out all are below resonant frequency.

◆ Step 6: Obtain components' values in the vicinity of RT pin

◆ Step 7: Just check out Section 8

It will be used to select the <u>sense resistor</u>.

To avoid triggering of OCP at startup, there is <u>50%</u> <u>margin</u> of the estimated peak primary current.

♦ Step 8: Select the secondary diode

	Margin of Rated Voltage	50	%		
	Margin of Rated Current	100	%		
	Dated Compact & Valtage of Output 1 Diede			72.0	V
9. Secondary Side	Rated Current & Voltage of Output 1 Diode	- [8.6	Α
Diode Specification	B442			_	V
	Rated Current & Voltage of Output 2 Diode			-	Α
	Date 4 Channel & Haller of Order 4 2 Die 4			-	V
	Rated Current & Voltage of Output 3 Diode			_	A

The voltage rating is <u>(2*Vo)*1.5</u> as your input. The current rating has <u>100%</u> margin.

♦ Step 9: Transformer Design

Select the current density and the adequate wire. If the window area of the used core is insufficient with the recommended winding wire, increase the current density.

- ◆ Design Results
 - Transformer Construction
 - Cr = 22nF
 - Secondary diode
 - > FYP2010DN
 - Rmin=9k + 0.5k
 - Rmax=6k
 - Rss=1.5k
 - Css=47uF
 - Rsense=0.22

Figure 3. Transformer specification.

	Pin(S → F)	Wire	Turns	Winding Method
Np	8 → 1	0.12φ×30 (Litz wire)	36	Section winding
N _{s1}	12 → 9	0.1φ×200 (Litz wire)	4	Section winding
N _{s2}	16 → 13	0.1φ×200 (Litz wire)	4	Section winding

Table 3. Winding Specification

Core: EER3542 (Ae=107 mm²) Bobbin: EER3542 (Horizontal)

Electrical Characteristics

	Pin	Spec.	Remark
Primary side Inductance (Lp)	1-8	720μH ± 5%	100kHz, 1V
Primary side effective leakage (Lr)	1-8	130μH max	Short one of the secondary windings

Table 4. Electrical Characteristics

Considerations

- 4~8 of m is recommended.
- Let Boundary Voltage above Vin,max.
- Select Q factor for "Peak Gain > Required Maximum Gain."
- Set fs,min to avoid ZCS region operation.
- Set the voltage margin for selecting the secondary diode.
- 0.2T~0.26T of Bmax is recommended.
- Np must be greater than Minimum Np.
- If the temperature of transformer is too high,
 - ➤ Go back to Step 2, and increase m.
 - ➤ Go back to Step 9, and decrease Current Density.

Dual Output Application for PDP TV

- Dual output application for PDP TV
- Specifications
 - Output: 210V/1.4A, 60V/1.5A (380W)
 - Input: 300Vdc ~ 400Vdc (nominal 390Vdc)
- ◆ Let's start to design using "LLC design tool Ver 1.0"

◆ Step 1: Fill out the input/output specifications

The specifications for two outputs are inserted.

LLC Half-Bridg	LLC Half-Bridge Converter Design Tool for FSFR series by Fairchild Semiconductor						
Spec	ification & Parameter		Input	Dim.	Output	Dim.	
	Output Voltage1		210	V			
	Output Current 1		1.4	Α			
	Output Voltage 2		60	V			
	Output Current 2		1.5	Α			
1. Output Specifications	Output Voltage 3		0				
	Output Current 3		0				
	Output Power	Output Power			384.0	W	
	Select Configuration of Outp	ut Rectifier	2				
	Maximum V _F of Output Dio	2	V				
	Maximum Input Voltage		400	V			
	Nominal Input Voltage		390	V			
	Estimated Efficiency		0.95				
2. Input Specifications	Input Power				404.2	W	
	DC-Link Capacitor		680	uF			
	Ripple voltage @ Nominal In	Ripple voltage @ Nominal Input			32	V	
	Minimum Input Voltage		300	V			

In this case, <u>stacked winding</u> and <u>bridge-type rectifying</u> will be used so that the selecting number is <u>"2"</u> and <u>VF is two</u> for 210V output.

◆ Step 2: Select m (Lp/Lr)

♦ Step 3: Select Q factor

◆ Step 4: Check the peak gain with the gain curve

◆ Step 5: Just check out Section 5 and 6

	Maganitization Inductance	216.3	uН
	Leakage Inductance of Primary-side	21.47	uН
5. Transformer	Inductance of Secondary-side1	204.97	uН
Parameters	Leakage Inductance of Secondary-side1	20.34	uН
for Simulation	Inductance of Secondary-side2	18.33	uН
101 SHRuration	Leakage Inductance of Secondary-side2	1.82	uН
	Inductance of Secondary-side3	-	uН
	Leakage Inductance of Secondary-side3	-	uН
	Phase Angle of Lr & Cr	627.2	krad/s
	Phase Angle of Lp & Cr	260.4	krad/s
	Resonant Freq. of Lr & Cr	99.9	kHz
6. Operating Parameters	Resonant Freq. of Lp & Cr	41.5	kHz
	Operating Freq. @ Max. Input Voltage	103.0	kHz
	Operating Freq. @ Nom. Input Voltage	96.5	kHz
	Operation Freq @ Min. Input Voltage	64.5	kHz

The estimated operating frequency @ Vin,max is 100kHz which is boundary.

◆ Step 6: Obtain components' values in the vicinity of RT pin

Referring to the gain curve, put down the minimum operating frequency. Keep it in your mind that <u>the set must do not enter the ZCS mode.</u>

	Minimum Operating Frequency of IC	50	kHz		
	Maximum Operating Frequency of IC	130	kHz		
	Rmin			10.4	kohm
7. Parameter of	Rmax			5.9	kohm
Control Part	Softstart Time	20.00	msec		
	Rss			1.7	kohm
	Css			30.3	uF
	Recommended Sense Resistor			0.09	ohm

◆ Step 7: Just check out Section 8

♦ Step 8: Select the secondary diode

	Margin of Rated Voltage	50	%		
	Margin of Rated Current	100	%		
	Batad Chamant & Waltons of Custout 1 Diada			315.0	V
9. Secondary Side	Rated Current & Voltage of Output 1 Diode	- [1.5	Α
Diode Specification	P. 1. 1. 2			90.0	V
	Rated Current & Voltage of Output 2 Diode			1.6	Α
	Rated Current & Voltage of Output 3 Diode			-	V
	Rated Current & Voltage of Output 3 Diode			_	A

It is not a center-tapped configuration.
The voltage rating is <u>Vo*1.5</u> as your input.
The current rating has <u>100%</u> margin.

♦ Step 9: Transformer Design

Np must be greater than Minimum Np. Expected B_{MAX} 0.2 Tesla 232 Ae of Core mm² Min. Number of Primary Winding Turns 21.6 Turns Number of Expected Primary Winding Turns Turns Number of Output 1 Winding Turns 22.4 Turns 6.7 Number of Output 2 Winding Turns Turns 10. Transformer Number of Output 3 Winding Turns Specifications Primaryside Inductance 237.8 uН Leakage Inductance 41.0 uН Current Density A/mm² Area of Primary Winding Wire 0.68 Area of Output 1 Winding Wire 0.42 mm² Area of Output 2 Winding Wire 0.45 mm² Area of Output 2 Winding Wire mm²

> Due to the stacked winding, Ns2 is 7 → 60V output Ns1 is 16 → 150V output Ns2+Ns1 is 23 → 210V output.

11,10

- ◆ Design Results
 - Transformer Construction
 - Cr = 62nF
 - Secondary diode
 - ➤ FEP16BT(A)
 - >FRU10UC30
 - > FCU10U30
 - Rmin=10k
 - Rmax=6.2k
 - Rss=1.5k
 - Css=33uF
 - Rsense=0.05

- ✓ Core: EED4547 (Material: PL7 and Ae = $232 \, mm^2$)
- ✓ Bobbin: Sectional bobbin with 14pin

Fig. 6. Transformer specifications.

Table 3. Winding specifications.

No	Winding	Pin(S → F)	Wire	Turns	Winding Method
1	N_p	$1 \rightarrow 7$	Litz wire 0.1φ×100	23 Ts	Solenoid winding
2	N _{S1}	14 → 13	Litz wire 0.1φ×30	16 Ts	Solenoid winding
	INS1	14 → 13	Litz Wife 0. IΨ×30	10 15	Barrier Tap 12mm
3	N	8 → 9	Litz wire 0.1φ×100	7 Ts	Solenoid winding
3	N _{S2}	0 → 9	Lit2 wire 0. 1φ×100	7 15	Barrier Tap 12mm
4	N	11 → 10	44 40 04 mm4	1 Ts	Solenoid winding
4	N _{S3}		0.4 φ×1	115	Barrier Tap 12mm

Table 4. Electrical characteristics.

Parameter	Pin	Spec.	Remark
Inductance	1-2	240uH ± 5%	100kHz, 1V
Leakage	1-2	40uH ± 5%	Short all output pins

◆ Circuit Diagram

Considerations

- VF could be changed depending on the transformer construction.
- 4~8 of m is recommended. No need to be a natural number.
- Let Boundary Voltage above Vin,max. ← Recommendation
- Select Q factor for "Peak Gain > Required Maximum Gain."
- Set fs,min to avoid ZCS region operation.
- Set the voltage margin for selecting the secondary diode.
- 0.2T~0.26T of Bmax is recommended.
- Np must be greater than Minimum Np.
- If the temperature of transformer is too high,
 - ➤ Go back to Step 2, and increase m.
 - ➤ Go back to Step 9, and decrease Current Density.

Thank you!

