• RP (Randomized Polynomial time)

- RP (Randomized Polynomial time)
 - ► One-sided error

- RP (Randomized Polynomial time)
 - One-sided error
- coRP (complement of RP)

- RP (Randomized Polynomial time)
 - One-sided error
- coRP (complement of RP)
 - One-sided error

- RP (Randomized Polynomial time)
 - One-sided error
- coRP (complement of RP)
 - One-sided error
- BPP (Bounded-error Probabilistic Polynomial time)

- RP (Randomized Polynomial time)
 - One-sided error
- coRP (complement of RP)
 - One-sided error
- BPP (Bounded-error Probabilistic Polynomial time)
 - ► Two-sided error

- RP (Randomized Polynomial time)
 - One-sided error
- coRP (complement of RP)
 - One-sided error
- BPP (Bounded-error Probabilistic Polynomial time)
 - Two-sided error
- **ZPP** (Zero-error Probabilistic Polynomial time)

- RP (Randomized Polynomial time)
 - One-sided error
- coRP (complement of RP)
 - One-sided error
- BPP (Bounded-error Probabilistic Polynomial time)
 - Two-sided error
- **ZPP** (Zero-error Probabilistic Polynomial time)
 - Zero error

Definition: RP

The complexity class RP is the class of all languages L for which there exists a polynomial PTM M such that

$$x \in L \implies Prob[M(x) = 1] \ge \frac{1}{2}$$

 $x \notin L \implies Prob[M(x) = 0] = 1$

Definition: RP

The complexity class RP is the class of all languages L for which there exists a polynomial PTM M such that

$$x \in L \implies Prob[M(x) = 1] \ge \frac{1}{2}$$

 $x \notin L \implies Prob[M(x) = 0] = 1$

Definition: coRP

The complexity class coRP is the class of all languages L for which there exists a polynomial $PTM\ M$ such that

$$x \in L \implies Prob[M(x) = 1] = 1$$

 $x \notin L \implies Prob[M(x) = 0] \ge \frac{1}{2}$

Let PTM M decide a language $L \in RP$

$$x \in L \implies Prob[M(x) = 1] \ge \frac{1}{2}$$

 $x \notin L \implies Prob[M(x) = 0] = 1$

- If M(x) = 1, then $x \in L$.
- If M(x) = 0, then $x \in L$ or $x \notin L$, we can't really tell.

Let PTM M decide a language $L \in RP$

$$x \in L \implies Prob[M(x) = 1] \ge \frac{1}{2}$$

 $x \notin L \implies Prob[M(x) = 0] = 1$

- If M(x) = 1, then $x \in L$.
- If M(x) = 0, then $x \in L$ or $x \notin L$, we can't really tell.

Let PTM M decide a language $L \in \mathbf{coRP}$

$$x \in L \implies Prob[M(x) = 1] = 1$$

 $x \notin L \implies Prob[M(x) = 0] \ge \frac{1}{2}$

- If M(x) = 0, then $x \notin L$.
- If M(x) = 1, then $x \in L$ or $x \notin L$, we can't really tell.

Theorem

 $\mathsf{RP}\subseteq \mathsf{NP}$

Theorem

$\mathsf{RP}\subseteq \mathsf{NP}$

Proof

 \bullet Let L be a language in $\ensuremath{\mathsf{RP}}$. Let M be a polynomial probabilistic Turing Machine that decides L.

Theorem

$\mathsf{RP} \subseteq \mathsf{NP}$

- \bullet Let L be a language in RP . Let M be a polynomial probabilistic Turing Machine that decides L.
- If x ∈ L, then there exists a sequence of coin tosses y such that M accepts x with y as the random string.

Theorem

$\mathsf{RP}\subseteq\mathsf{NP}$

- Let L be a language in RP. Let M be a polynomial probabilistic Turing Machine that decides L.
- If x ∈ L, then there exists a sequence of coin tosses y such that M
 accepts x with y as the random string.
- So we can consider y as a certificate instead of a random string. y
 can be verified in polynomial time by the same machine.

Theorem

$\mathsf{RP} \subseteq \mathsf{NP}$

- Let L be a language in RP. Let M be a polynomial probabilistic Turing Machine that decides L.
- If x ∈ L, then there exists a sequence of coin tosses y such that M
 accepts x with y as the random string.
- So we can consider y as a certificate instead of a random string. y
 can be verified in polynomial time by the same machine.
- If $x \notin L$, then Prob[M(x) = 1] = 0. So there is no certificate. M rejects x.

Theorem

$\mathsf{RP} \subseteq \mathsf{NP}$

- Let L be a language in RP. Let M be a polynomial probabilistic Turing Machine that decides L.
- If x ∈ L, then there exists a sequence of coin tosses y such that M
 accepts x with y as the random string.
- So we can consider y as a certificate instead of a random string. y
 can be verified in polynomial time by the same machine.
- If $x \notin L$, then Prob[M(x) = 1] = 0. So there is no certificate. M rejects x.
- So *L* ∈ **NP**

Boosting for $\ensuremath{\mathsf{RP}}$

• The constant 1/2 in the definition of RP can be replaced by any constant k, 0 < k < 1

- The constant 1/2 in the definition of RP can be replaced by any constant k, 0 < k < 1
- Since the error is one-sided, we can repeat the algorithm *t* times independently:

- The constant 1/2 in the definition of RP can be replaced by any constant k, 0 < k < 1
- Since the error is one-sided, we can repeat the algorithm *t* times independently:
- We accept the string x if any of the t runs accept, and reject x otherwise

- The constant 1/2 in the definition of RP can be replaced by any constant k, 0 < k < 1
- Since the error is one-sided, we can repeat the algorithm *t* times independently:
- We accept the string x if any of the t runs accept, and reject x otherwise
- Clearly, if $x \notin L$, all t runs will return a 0

- The constant 1/2 in the definition of RP can be replaced by any constant k, 0 < k < 1
- Since the error is one-sided, we can repeat the algorithm *t* times independently:
- We accept the string x if any of the t runs accept, and reject x otherwise
- Clearly, if $x \notin L$, all t runs will return a 0
- If $x \in L$, if any of the t runs returns a 1, we return the correct answer

- The constant 1/2 in the definition of RP can be replaced by any constant k, 0 < k < 1
- Since the error is one-sided, we can repeat the algorithm *t* times independently:
- We accept the string x if any of the t runs accept, and reject x otherwise
- Clearly, if $x \notin L$, all t runs will return a 0
- If $x \in L$, if any of the t runs returns a 1, we return the correct answer
- If $x \in L$, if all t runs returns 0, we make mistake

- The constant 1/2 in the definition of RP can be replaced by any constant k, 0 < k < 1
- Since the error is one-sided, we can repeat the algorithm *t* times independently:
- We accept the string x if any of the t runs accept, and reject x otherwise
- Clearly, if $x \notin L$, all t runs will return a 0
- If $x \in L$, if any of the t runs returns a 1, we return the correct answer
- If $x \in L$, if all t runs returns 0, we make mistake
- $\Pr[\text{algorithm makes a mistake } t \text{ times}] \leq \frac{1}{2^t}$

- The constant 1/2 in the definition of RP can be replaced by any constant k, 0 < k < 1
- Since the error is one-sided, we can repeat the algorithm t times independently:
- We accept the string x if any of the t runs accept, and reject x otherwise
- Clearly, if $x \notin L$, all t runs will return a 0
- If $x \in L$, if any of the t runs returns a 1, we return the correct answer
- If $x \in L$, if all t runs returns 0, we make mistake
- $\Pr[\text{algorithm makes a mistake } t \text{ times}] \leq \frac{1}{2^t}$
- Thus, we can make the error exponentially small by polynomial number of repetitions.

Examples of RP and coRP

Examples of RP and coRP

Example of RP

Primes, the set of all prime numbers, is in $\ensuremath{\mathsf{RP}}$. This was shown by Adelman and Huang (1992), who gave a primality testing algorithm that always rejected composite numbers, and accepted primes with probability at least 1/2

Examples of RP and coRP

Example of RP

Primes, the set of all prime numbers, is in RP .

This was shown by Adelman and Huang (1992), who gave a primality testing algorithm that always rejected composite numbers, and accepted primes with probability at least 1/2

Example of coRP

Primes, the set of all prime numbers, is in coRP also.

Miller and Rabin gave a primality test that always accepts prime numbers, but rejects composites with probability at least 1/2

Bounded-error Probabilistic Polynomial time

Bounded-error Probabilistic Polynomial time

Definition: BPP

The complexity class BPP is the class of all languages $\it L$ for which there exists a polynomial PTM $\it M$ such that

$$x \in L \implies Prob[M(x) = 1] \ge \frac{2}{3}$$

 $x \notin L \implies Prob[M(x) = 1] < \frac{1}{3}$

M answers correctly with probability 2/3 on any input x regardless if $x \in L$ or $x \notin L$

Bounded-error Probabilistic Polynomial time

Definition: BPP

The complexity class BPP is the class of all languages L for which there exists a polynomial PTM M such that

$$x \in L \implies Prob[M(x) = 1] \ge \frac{2}{3}$$

 $x \notin L \implies Prob[M(x) = 1] < \frac{1}{3}$

M answers correctly with probability 2/3 on any input x regardless if $x \in L$ or $x \notin L$

Example of BPP

Primes, the set of all prime numbers, is in BPP .

BPP is closed under complement.

BPP = coBPP

• 2/3 is arbitrary and can be improved as follows:

- 2/3 is arbitrary and can be improved as follows:
 - ▶ Repeat the algorithm t times, say it returns X_i at the i-th run

- 2/3 is arbitrary and can be improved as follows:
 - ▶ Repeat the algorithm *t* times, say it returns *X_i* at the *i*-th run
 - ▶ Take majority answer, i.e., if $\geq t/2$ times M returns 1, return 1, otherwise return 0

- 2/3 is arbitrary and can be improved as follows:
 - ▶ Repeat the algorithm t times, say it returns X_i at the i-th run
 - ▶ Take majority answer, i.e., if $\geq t/2$ times M returns 1, return 1, otherwise return 0

The Chernoff Bound

Suppose X_1, \ldots, X_t are t independent random variables with values in $\{0,1\}$ and for every i, $\Pr[X_i=1]=p$.

- 2/3 is arbitrary and can be improved as follows:
 - \triangleright Repeat the algorithm t times, say it returns X_i at the i-th run
 - ▶ Take majority answer, i.e., if $\geq t/2$ times M returns 1, return 1, otherwise return 0

The Chernoff Bound

Suppose X_1, \ldots, X_t are t independent random variables with values in $\{0,1\}$ and for every i, $\Pr[X_i=1]=p$. Then

$$Pr\left[\frac{1}{t}\sum_{i=1}^{t}X_{i}-p>\epsilon\right]<\mathrm{e}^{-\epsilon^{2}\cdot\frac{t}{2p(1-p)}}$$

$$Pr\left[\frac{1}{t}\sum_{i=1}^{t}X_{i}-p>-\epsilon\right]<\mathrm{e}^{-\epsilon^{2}\cdot\frac{t}{2p(1-p)}}$$

• $x \in L$: M outputs correctly if $\sum_{i=1}^{t} X_i \ge \frac{t}{2}$

- $x \in L$: M outputs correctly if $\sum_{i=1}^{t} X_i \ge \frac{t}{2}$
- ullet The algorithm makes a mistake when $\sum_{i=1}^t X_i < rac{t}{2}$

- $x \in L$: M outputs correctly if $\sum_{i=1}^{t} X_i \ge \frac{t}{2}$
- ullet The algorithm makes a mistake when $\sum_{i=1}^t X_i < rac{t}{2}$
- Pr[Algorithm outputs the wrong answer on x]

- $x \in L$: M outputs correctly if $\sum_{i=1}^{t} X_i \geq \frac{t}{2}$
- The algorithm makes a mistake when $\sum_{i=1}^{t} X_i < \frac{t}{2}$
- Pr[Algorithm outputs the wrong answer on x]= $Pr[\sum_{i=1}^{t} X_i < \frac{t}{2}]$

- $x \in L$: M outputs correctly if $\sum_{i=1}^{t} X_i \ge \frac{t}{2}$
- The algorithm makes a mistake when $\sum_{i=1}^{t} X_i < \frac{t}{2}$
- Pr[Algorithm outputs the wrong answer on x]

$$= Pr[\sum_{i=1}^t X_i < \tfrac{t}{2}]$$

$$= Pr\left[\frac{1}{t} \sum_{i=1}^{t} X_i < \frac{1}{2}\right]$$

- $x \in L$: M outputs correctly if $\sum_{i=1}^{t} X_i \geq \frac{t}{2}$
- The algorithm makes a mistake when $\sum_{i=1}^{t} X_i < \frac{t}{2}$
- Pr[Algorithm outputs the wrong answer on x]

$$= Pr\left[\sum_{i=1}^{t} X_{i} < \frac{t}{2}\right]$$

$$= Pr\left[\frac{1}{t} \sum_{i=1}^{t} X_{i} < \frac{1}{2}\right]$$

$$= \Pr[\frac{1}{t} \sum_{i=1}^{t} X_i < \frac{1}{2}]$$

$$= Pr[\frac{1}{t} \sum_{i=1}^{t} X_i - 2/3 < -\frac{1}{6}]$$

- $x \in L$: M outputs correctly if $\sum_{i=1}^{t} X_i \geq \frac{t}{2}$
- ullet The algorithm makes a mistake when $\sum_{i=1}^t X_i < rac{t}{2}$
- Pr[Algorithm outputs the wrong answer on x]

$$= Pr\left[\sum_{i=1}^{t} X_{i} < \frac{t}{2}\right]$$

$$= Pr\left[\frac{1}{t} \sum_{i=1}^{t} X_{i} < \frac{1}{2}\right]$$

$$= Pr\left[\frac{1}{t} \sum_{i=1}^{t} X_{i} - 2/3 < -\frac{1}{6}\right]$$

$$< e^{-\frac{t}{36 \cdot 2 \cdot 2/3 \cdot 1/3}}$$

- $x \in L$: M outputs correctly if $\sum_{i=1}^{t} X_i \ge \frac{t}{2}$
- ullet The algorithm makes a mistake when $\sum_{i=1}^t X_i < rac{t}{2}$
- Pr[Algorithm outputs the wrong answer on x]

$$= Pr\left[\sum_{i=1}^{t} X_{i} < \frac{t}{2}\right]$$

$$= Pr\left[\frac{1}{t} \sum_{i=1}^{t} X_{i} < \frac{1}{2}\right]$$

$$= Pr\left[\frac{1}{t} \sum_{i=1}^{t} X_{i} - 2/3 < -\frac{1}{6}\right]$$

$$< e^{-\frac{t}{36 \cdot 2 \cdot 2/3 \cdot 1/3}}$$

 $=e^{-ct}$, where c is some constant

- $x \in L$: M outputs correctly if $\sum_{i=1}^{t} X_i \ge \frac{t}{2}$
- ullet The algorithm makes a mistake when $\sum_{i=1}^t X_i < rac{t}{2}$
- Pr[Algorithm outputs the wrong answer on x]

$$= Pr\left[\sum_{i=1}^{t} X_{i} < \frac{t}{2}\right]$$

$$= Pr\left[\frac{1}{t} \sum_{i=1}^{t} X_{i} < \frac{1}{2}\right]$$

$$= Pr\left[\frac{1}{t} \sum_{i=1}^{t} X_{i} - 2/3 < -\frac{1}{6}\right]$$

$$\leq e^{-\frac{t}{36 \cdot 2 \cdot 2/3 \cdot 1/3}}$$

 $=e^{-ct}$, where c is some constant

$$\leq \frac{1}{2^n}$$
 for $t = (\ln 2^n)/c$

- $x \in L$: M outputs correctly if $\sum_{i=1}^{t} X_i \ge \frac{t}{2}$
- The algorithm makes a mistake when $\sum_{i=1}^{t} X_i < \frac{t}{2}$
- ullet Pr[Algorithm outputs the wrong answer on x]

$$= Pr\left[\sum_{i=1}^{t} X_{i} < \frac{t}{2}\right]$$

$$= Pr\left[\frac{1}{t} \sum_{i=1}^{t} X_{i} < \frac{1}{2}\right]$$

$$= Pr\left[\frac{1}{t} \sum_{i=1}^{t} X_{i} - 2/3 < -\frac{1}{6}\right]$$

$$\leq e^{-\frac{t}{36 \cdot 2 \cdot 2/3 \cdot 1/3}}$$

$$= e^{-ct}, \text{ where } c \text{ is some constant}$$

$$< \frac{1}{27} \text{ for } t = (\ln 2^{n})/c$$

• So by running the algorithm O(n) times, reduce probability exponentially

$RP \subseteq BPP$

RP

- $x \in L \Rightarrow Prob[M(x) = 1] \ge \frac{1}{2}$
- $x \notin L \Rightarrow Prob[M(x) = 1] = 0$

$RP \subset BPP$

RP

- $x \in L \Rightarrow Prob[M(x) = 1] \ge \frac{1}{2}$
- $x \notin L \Rightarrow Prob[M(x) = 1] = 0$

BPP

- $x \in L \Rightarrow Prob[M(x) = 1] \ge \frac{2}{3}$
- $x \notin L \Rightarrow Prob[M(x) = 1] < \frac{1}{3}$

$RP \subset BPP$

RP

- $x \in L \Rightarrow Prob[M(x) = 1] \ge \frac{1}{2}$
- $x \notin L \Rightarrow Prob[M(x) = 1] = 0$

BPP

- $x \in L \Rightarrow Prob[M(x) = 1] \ge \frac{2}{3}$
- $x \notin L \Rightarrow Prob[M(x) = 1] < \frac{1}{3}$
- Can boost RP probability by running twice:

RP ⊂ BPP

RP

- $x \in L \Rightarrow Prob[M(x) = 1] \ge \frac{1}{2}$
- $x \notin L \Rightarrow Prob[M(x) = 1] = 0$

BPP

- $x \in L \Rightarrow Prob[M(x) = 1] \ge \frac{2}{3}$
- $x \notin L \Rightarrow Prob[M(x) = 1] < \frac{1}{3}$
- Can boost RP probability by running twice:

$$x \in L \Rightarrow Prob[M(x) = 1] \ge \frac{3}{4}$$

$$x \notin L \Rightarrow Prob[M(x) = 1] = 0$$

Clearly the above definition satisfies BPP

Randomized Computation

Nabil Mustafa

Computational Complexity

Definition: **ZPP**

The complexity class \mathbf{ZPP} is the class of all languages L for which there exists a polynomial \mathbf{PTM} M such that

$$x \in L \implies M(x) = 1 \text{ or } M(x) = \text{`Don't know'}$$

Definition: **ZPP**

The complexity class \mathbf{ZPP} is the class of all languages L for which there exists a polynomial \mathbf{PTM} M such that

$$x \in L \implies M(x) = 1 \text{ or } M(x) = \text{`Don't know'}$$

$$x \notin L \implies M(x) = 0 \text{ or } M(x) = \text{`Don't know'}$$

Definition: **ZPP**

The complexity class \mathbf{ZPP} is the class of all languages L for which there exists a polynomial \mathbf{PTM} M such that

$$x \in L \implies M(x) = 1 \text{ or } M(x) = \text{`Don't know'}$$

 $x \notin L \implies M(x) = 0 \text{ or } M(x) = \text{`Don't know'}$
 $\forall x, \ Prob[M(x) = \text{`Don't know'}] \le 1/2$

Definition: **ZPP**

The complexity class \mathbf{ZPP} is the class of all languages L for which there exists a polynomial \mathbf{PTM} M such that

$$x \in L \implies M(x) = 1 \text{ or } M(x) = \text{`Don't know'}$$

$$x \notin L \implies M(x) = 0 \text{ or } M(x) = \text{`Don't know'}$$

$$\forall x, \ Prob[M(x) = 'Don't \ know'] \le 1/2$$

Whenever M answers with a 0 or a 1, it answers correctly. If M is not sure, it'll output a 'Don't know'. On any input x, it outputs 'Don't know' with probability at most 1/2.

Theorem

 $ZPP = RP \cap coRP$

Theorem

$$ZPP = RP \cap coRP$$

Theorem

$$ZPP = RP \cap coRP$$

Claim: $ZPP \subseteq RP \cap coRP$

 \bullet Show that $\mathsf{ZPP} \subseteq \mathsf{RP}\$ and $\mathsf{ZPP} \subseteq \mathsf{coRP}\$

Theorem

$$ZPP = RP \cap coRP$$

- ullet Show that $\mathsf{ZPP} \subseteq \mathsf{RP}$ and $\mathsf{ZPP} \subseteq \mathsf{coRP}$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar
- Let $L \in \mathbf{ZPP}$. Then $\exists \ \mathbf{PTM} \ M$ that, for all x, either correctly decides $x \in L$ or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = 'Don't know' and otherwise returns M(x).

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar
- Let $L \in \mathbf{ZPP}$. Then $\exists \ \mathbf{PTM} \ M$ that, for all x, either correctly decides $x \in L$ or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - ▶ *x* ∈ *L*:

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - ▶ $x \in L$: M(x) = 1

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar
- Let $L \in \mathbf{ZPP}$. Then $\exists \ \mathbf{PTM} \ M$ that, for all x, either correctly decides $x \in L$ or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \times $x \in L$: M(x) = 1 or M(x) = 'Don't know'

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar
- Let $L \in \mathbf{ZPP}$. Then $\exists \ \mathbf{PTM} \ M$ that, for all x, either correctly decides $x \in L$ or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \bullet $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \star $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.
 - x ∉ L:

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = 'Don't know' and otherwise returns M(x).
 - \triangleright $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.
 - ▶ $x \notin L$: M(x) = 0

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \triangleright $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.
 - $\triangleright x \notin L$: M(x) = 0, which is correct

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar
- Let $L \in \mathbf{ZPP}$. Then $\exists \ \mathbf{PTM} \ M$ that, for all x, either correctly decides $x \in L$ or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \triangleright $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.
 - $x \notin L$: M(x) = 0, which is correct, or M(x) = 'Don't know'

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \times $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.
 - ▶ $x \notin L$: M(x) = 0, which is correct, or M(x) = 'Don't know' where M'(x) returns incorrectly with probability $\leq 1/2$.

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \times $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.
 - ▶ $x \notin L$: M(x) = 0, which is correct, or M(x) = 'Don't know' where M'(x) returns incorrectly with probability $\leq 1/2$.
- So $L \in \mathbf{coRP}$, and $\mathbf{ZPP} \subseteq \mathbf{coRP}$

Claim: $RP \cap coRP \subseteq ZPP$

• Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two TM 's s.t.:

```
Claim: RP \cap coRP \subseteq ZPP
```

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two TM 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two TM 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a **PTM** M' which works as follows on M'(x):

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.
 - Else return 'Don't know'.

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.
 - Else return 'Don't know'.
- Claim: If M'(x) returns a 0 or a 1, it is correct.

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.
 - Else return 'Don't know'.
- Claim: If M'(x) returns a 0 or a 1, it is correct.
- Claim: M'(x) returns 'Don't know' with prob. $\leq 1/2$

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.
 - Else return 'Don't know'.
- Claim: If M'(x) returns a 0 or a 1, it is correct.
- Claim: M'(x) returns 'Don't know' with prob. $\leq 1/2$
 - Assume $x \in L$. Then we don't return a 1 iff $M_2(x) = 0$.

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.
 - Else return 'Don't know'.
- Claim: If M'(x) returns a 0 or a 1, it is correct.
- Claim: M'(x) returns 'Don't know' with prob. $\leq 1/2$
 - Assume $x \in L$. Then we don't return a 1 iff $M_2(x) = 0$.
 - ▶ By definition, $M_2(x) = 0$ for $x \in L$ with prob. $\leq 1/2$.

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.
 - Else return 'Don't know'.
- Claim: If M'(x) returns a 0 or a 1, it is correct.
- Claim: M'(x) returns 'Don't know' with prob. $\leq 1/2$
 - Assume $x \in L$. Then we don't return a 1 iff $M_2(x) = 0$.
 - ▶ By definition, $M_2(x) = 0$ for $x \in L$ with prob. $\leq 1/2$.
 - ▶ The case for $x \notin L$ similar.