# Akademia Górniczo - Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Informatyki



#### Tytuł pracy

## Integracja systemów przetwarzania mowy wśrodowisku zgodnym z paradygmatem SOA

### Rafał Fronczyk, Konrad Dziedzic

rfronczyk@gmail.com, konraddziedzic@gmail.com

Promotor pracy: dr inż. Łukasz Czekierda

### Oświadczenie

| Oświadczamy, świadomi odpowiedzialnoś        | ści karnej za poświadczenie nieprawdy, że   |
|----------------------------------------------|---------------------------------------------|
| niniejszą pracę dyplomową wykonaliśmy osob   | oiście i samodzielnie ( w zakresie wyszcze- |
| gólnionym we wstępie) i że nie korzystaliśmy | ze źródeł innych niż wymienione w pracy.    |
|                                              |                                             |
|                                              |                                             |
|                                              |                                             |
|                                              |                                             |
| podpis  i  data                              | $podpis \ i \ data$                         |

### Przedmowa

Put your abstract or summary here, if your university requires it.

### Spis treści

| 1 Introduction            |        |                            |    |  |  |  |  |  |  |  |  |
|---------------------------|--------|----------------------------|----|--|--|--|--|--|--|--|--|
|                           | 1.1    | put section name here      | 1  |  |  |  |  |  |  |  |  |
|                           |        | 1.1.1 Name your subsection | 1  |  |  |  |  |  |  |  |  |
| 2                         | Ain    | ns of the project          | 5  |  |  |  |  |  |  |  |  |
|                           | 2.1    | Final aim                  | 5  |  |  |  |  |  |  |  |  |
|                           | 2.2    | Preliminary aims           | 5  |  |  |  |  |  |  |  |  |
| 3                         | Disc   | cussion                    | 7  |  |  |  |  |  |  |  |  |
| 4                         | Ma     | terials & methods          | 9  |  |  |  |  |  |  |  |  |
| $\mathbf{B}^{i}$          | bliog  | grafia                     | 11 |  |  |  |  |  |  |  |  |
| $\mathbf{s}_{\mathbf{r}}$ | ois ry | ysunków                    | 13 |  |  |  |  |  |  |  |  |
| $\mathbf{S}_{\mathbf{I}}$ | ois ta | abel                       | 15 |  |  |  |  |  |  |  |  |

### SPIS TREŚCI

### Introduction

#### 1.1 put section name here

Write your text without any further commands, like this:.... Any organised system requires energy, be it a machine of some kind or a live organism. Energy is needed to win the uphill battle against entropy and pull together lifeless molecules to be able to do something in this world, like complete a PhD.

#### 1.1.1 Name your subsection

Different organised systems have different energy currencies. The machines that enable us to do science like sizzling electricity but at a controlled voltage. Earth's living beings are no different, except that they have developed another preference. They thrive on various chemicals.

Most organisms use polymers of glucose units for energy storage and differ only slightly in the way they link together monomers to sometimes gigantic macromolecules. Dextran of bacteria is made from long chains of  $\alpha$ -1,6-linked glucose units.

Starch of plants and glycogen of animals consists of  $\alpha$ -1,4-glycosidic glucose polymers [1]. See figure 1.2 for a comparison of glucose polymer structure and chemistry.

Two references can be placed separated by a comma [1, 2].

Insulin stimulates the following processes:

• muscle and fat cells remove glucose from the blood,



Rysunek 1.1: A common glucose polymers - The figure shows starch granules in potato cells, taken from Molecular Expressions.



Rysunek 1.2: Title - Caption

- cells breakdown glucose via glycolysis and the citrate cycle, storing its energy in the form of ATP,
- liver and muscle store glucose as glycogen as a short-term energy reserve,
- adipose tissue stores glucose as fat for long-term energy reserve, and
- cells use glucose for protein synthesis.

| Gene          | ${\bf Gene ID}$ | Length               |
|---------------|-----------------|----------------------|
| human latexin | 1234            | 14.9  kbps           |
| mouse latexin | 2345            | $10.1~\mathrm{kbps}$ |
| rat latexin   | 3456            | 9.6  kbps            |

Tabela 1.1: title of table - Overview of latexin genes.

### 1. INTRODUCTION

### Aims of the project

### 2.1 Final aim

Our ultimate goal is...  $\,$ 

### 2.2 Preliminary aims

There will be several preliminary scientific targets to be accomplished on the way...

### 2. AIMS OF THE PROJECT

### Discussion

### 3. DISCUSSION

Materials & methods

### 4. MATERIALS & METHODS

### Bibliografia

- [1] Lastname. Title. Journal of Sth, 2007. 1
- [2] Name. Title. Journal of Sth, 2006. 1

#### **BIBLIOGRAFIA**

# Spis rysunków

| 1.1 | A common glucose polymers | 2 |
|-----|---------------------------|---|
| 1.2 | Title                     | 2 |

### SPIS RYSUNKÓW

### Spis tabel

| 1.1 | title of table. | _ | _ | _ | _ | _ | _ | _ | _ |  | _ | _ | _ | _ | _ | _ | _ | _ | _ |  | _ | _ |  |  | 3 |
|-----|-----------------|---|---|---|---|---|---|---|---|--|---|---|---|---|---|---|---|---|---|--|---|---|--|--|---|