Um isolante com formato irregular tem volume com densidade de carga ρ (carga/volume) e uma carga total q como mostrado abaixo. A área da superfície do isolante é S.

O fluxo elétrico através da superfície do isolante é:

- a) $\Phi_{\rm E} = \frac{q}{2\epsilon_0}$
- b) $\Phi_{\rm E} = \frac{\rho S}{\varepsilon_0}$
- c) $\Phi_{\rm E} = \frac{qS}{\epsilon_0}$
- d) $\Phi_{\rm E} = \frac{p}{\epsilon_{\rm o}}$
- e) $\Phi_{\rm E} = \frac{q}{\epsilon_0}$
- 2. Um cilindro isolante, com eixo coincidindo com o eixo –y, tem uma carga $q=50\mu C$ distribuída uniformemente no volume de r=0 até $r=r_0=2cm.$ O comprimento \boldsymbol{L} do cilindro é muito maior que r_0 de tal forma que você pode considerá-lo como um cilindro longo e infinito. Considere uma carga $Q=-12\mu C$ em x=4cm. Determine o campo elétrico no ponto $A=(x,\ y)=(-6cm,\ 0),\ como\ indicado\ no$ diagrama abaixo. $\epsilon_0=8,85\cdot 10^{-12}C^2/N\cdot m^2.$

- a) $\vec{E} = 7.8 \cdot 10^6 \text{N/Ci}$
- d) $\vec{E} = -13.8 \cdot 10^6 \text{N/Ci}$
- b) $\vec{E} = 13.8 \cdot 10^6 \text{N/C} \vec{i}$
- e) N.r.a.
- c) $\vec{E} = -7.8 \cdot 10^6 \text{N/C} \vec{i}$
- 3. Na figura **A**, uma carga positiva +Q está localizada no centro do cubo. Na figura **B**, a mesma carga positiva é movida para cima continuando dentro do cubo.

- a) O fluxo através do cubo é o mesmo nas duas figuras.
- b) O fluxo através do cubo é maior na figura A.
- c) O fluxo através das faces inferiores é o mesmo nas duas figuras.
- d) O fluxo através das faces inferiores é maior na figura B.
- e) N.r.a.

4. Uma partícula de massa m e carga positiva +q é colocada no centro do segmento de reta que une duas cargas fixas, cada uma de valor +Q, afastadas uma da outra de 2d (Figura 1). Se o movimento da partícula ficar restrito à direção desse segmento de reta, é possível mostrar que, para pequenos deslocamentos, ela descreve um movimento harmônico simples. Qual a pulsação ω₁ desse MHS? E se essa partícula for substituída por outra, também de massa m, mas de carga -q, movimentando-se no plano perpendicular ao segmento de reta que une as cargas fixas, qual a pulsação ω₂ desse movimento harmônico, também considerando pequenas oscilações?

- a) $\omega_1 = \sqrt{\frac{2KQq}{md^3}}$ e $\omega_2 = \sqrt{\frac{KQq}{md^3}}$
- b) $\omega_1 = \omega_2 = \sqrt{\frac{2KQq}{md^3}}$
- c) $\omega_1 = \omega_2 = \sqrt{\frac{4KQq}{md^3}}$
- d) $\omega_1 = \sqrt{\frac{4KQq}{md^3}}$ e $\omega_2 = \sqrt{\frac{2KQq}{md^3}}$
- $e) \ \omega_1 = \sqrt{\frac{2KQq}{md^3}} \ e \ \omega_2 = \sqrt{\frac{4KQq}{md^3}}$
- 5. A figura representa uma esfera de raio R uniformemente carregada com carga positiva. No interior há duas cargas pontuais negativas (-Q cada uma) colocada sobre um mesmo diâmetro da esfera e equidistantes do centro. O sistema é eletricamente neutro. Este é o bem conhecido modelo atômico de Thomson (no caso, para o átomo de hélio).

Figura

Notas: se b << a. $(a + b)^2 \approx a^2 + 2ab$. Se x << 1, $(1 + x)^{-1} \approx 1 - x$.

- a) Determine a distância **r** a que devem estar as cargas negativas do centro da esfera para que o sistema esteja em equilíbrio eletrostático.
- b) Calcule a frequência de pequenas oscilações radiais de cada um dos elétrons (admita que o outro permanece em repouso), sendo **m** a massa do elétron.

GABARITO				
1	2	3	4	5
Е	A	A	D	*

* 5. a) R/2 b) -

FM - 23/06/09 — Rev.: MA