Méthodes de Monte Carlo - Projet

stoehr@ceremade.dauphine.fr

- À rendre avant le 28 décembre 2020. Chaque jour de retard sera pénalisé d'un point.
- R est le seul langage autorisé. Les questions nécessitant un code R sont indiquées par le symbole .
- Le rapport (nom du fichier: numero_groupe_rapport_noms)
 - à rendre au format **.pdf** et doit contenir vos réponses et commentaires. Une rédaction soignée est attendue. Il est important de justifier/commenter les résultats théoriques et numériques
 - Pour intégrer tout ou partie de votre code et des sorties dans votre rapport, vous pouvez utiliser les outils dédiés : Notebook, Rmarkdown ou 上下X+ knitr. En revanche, il est interdit de copier-coller du code brut dans le corps du texte.
 - o Les graphiques doivent être soigneusement annotés et présentés (titre, couleur, légendes, ...).
- Une version du code pouvant être testée doit être fournie (même nom de fichier). Ce code doit
 - s'exécuter sans erreurs et permettre de reproduire l'intégralité des résultats présentés dans le rapport.
 Vous préciserez la graine utilisée pour les résultats obtenus.
 - o être bien commenté. Il est possible qu'une explication orale vous soit demandée.
 - o utiliser autant que possible les spécificités du language (bonus pour les codes les plus efficaces).

Exercice 1. Soit f une densité de \mathbb{R}^2 définie pour $(x, y) \in \mathbb{R}^2$ par $f(x, y) = a\psi(x, y)$ avec $a \in \mathbb{R}^*_+$ et

$$\psi(x,y) = \left[\left| \sin \left(\frac{2}{\pi} x^2 - \frac{\pi}{4} \right) \right| + 4 \cos(x)^2 + y^4 \right] e^{-2(x+|y|)} \mathbb{1}_{\{x \in [-\pi/2,\pi/2]\}} \mathbb{1}_{\{y \in [-1,1]\}}.$$

Pour (X, Y) de densité f, l'objectif est d'estimer f_X la densité marginale de X.

Contrainte. Les générateurs runif et rexp peuvent être utilisés directement. Les autres générateurs de variables aléatoires doivent être démontrés et codés en conséquence.

Simulation suivant la densité f

1. Montrer que pour simuler suivant f, il n'est pas nécessaire de connaître a et il suffit de trouver une constante $m \in \mathbb{R}_+^*$ et une densité g pour laquelle on dispose d'un générateur aléatoire telles que

$$\forall (x, y) \in \mathbb{R}^2, \quad \psi(x, y) \le mg(x, y). \tag{1}$$

Trouver alors m et g qui satisfont (1).

Dans la suite, on désigne par ratio d'acceptation, la fonction définie pour $(x, y) \in \text{supp}(g)$ par

$$\rho(x,y) = \frac{\psi(x,y)}{mg(x,y)}.$$

2. (\spadesuit) Coder les fonctions rgen_g(n) qui simule n réalisations suivant la densité g et rgen_f qui retourne n réalisations suivant la densité f ainsi que toutes les valeurs du ratio d'acceptation utilisées

pour obtenir ces réalisations.

3. (♠) Simuler un échantillon z de taille n=10000 suivant f à l'aide de la fonction rgen_f. Auto-évaluer votre solution à l'aide du tableau suivant. n_t désigne le nombre moyen de simulations suivant g pour différents choix de g possibles. n_ℓ est le nombre moyen de passages dans une boucle for ou while pour le code utilisé pour générer les réalisations de f.

g	*		**		***		***		****	
Code	n_t	n_ℓ	n_t	n_ℓ	n_t	n_{ℓ}	n_t	n_ℓ	n_t	n_ℓ
*		527000		263000		84000		42000		36000
**	527000	503	263000	248	84000	75	42000	36	36000	30
***		3		3		4		4		7

Méthode n°1 – Estimation de a

- **4.** (a) Construire un estimateur de a en fonction de ρ , noté \hat{b}_n . Montrer qu'il est biaisé et converge presque sûrement. En déduire un intervalle de confiance asymptotique de a au niveau $1-\alpha$ calculable en pratique.
 - (b) (a) À l'aide des variables aléatoires simulées question 3., évaluer \hat{b}_n et l'intervalle de confiance au niveau 95%.
 - (c) (\spadesuit) Proposer une méthode d'estimation du biais ne nécessitant pas de simulations supplémentaires suivant f ou g.
- 5. (a) Montrer que l'algorithme de simulation suivant f fournit un autre estimateur de a, noté \widehat{a}_n , qui converge presque sûrement mais qui est sans biais. En déduire un intervalle de confiance asymptotique de a au niveau $1-\alpha$ calculable en pratique.
 - **(b)** (**a**) À l'aide de l'échantillon z, évaluer \hat{a}_n et l'intervalle de confiance au niveau 95%.
- **6.** (\spadesuit) Exprimer le rapport des coûts pour lesquels \widehat{b}_n et \widehat{a}_n atteignent la même précision. Évaluer le à l'aide des résultats précédents. Quel est l'estimateur le plus efficace?
- 7. (a) Pour $x \in [-\pi/2, \pi/2]$ donner un estimateur $\widehat{f}_{X,n}(x)$ de $f_X(x)$ à l'aide de \widehat{a}_n .
 - **(b)** (**a**) Comparer graphiquement la distribution marginale de l'échantillon z à l'estimateur $\widehat{f}_{X,n}(x)$.

Méthode n°2 – Estimateur ponctuel

8. Soient $(X_1, Y_1), \dots, (X_n, Y_n)$ une suite de variables indépendantes suivant la loi jointes $f_{X,Y}(x,y)$ et $w(\cdot)$ une densité quelconque. Montrer que

$$\widehat{w}_n(x) = \frac{1}{n} \sum_{k=1}^n \frac{\psi(x, Y_k) w(X_k)}{\psi(X_k, Y_k)} \xrightarrow[n \to +\infty]{p.s.} f_X(x).$$

En déduire un intervalle de confiance asymptotique de $f_X(x)$ au niveau $1-\alpha$ calculable en pratique.

9. Pour quel choix de *w* obtient-on l'estimateur de variance minimale? Commenter ce résultat et expliquer comment l'utiliser en pratique.

- **10.** (\spadesuit) À l'aide de l'échantillon z, évaluer $\widehat{w}_n(-1)$ et l'intervalle de confiance au niveau 95%.
- 11. (\spadesuit) Exprimer le rapport des coûts pour lesquels $\widehat{w}_n(-1)$ et $\widehat{f}_{X,n}(-1)$ atteignent la même erreur quadratique moyenne. Évaluer le à l'aide des résultats précédents. Quel est l'estimateur le plus efficace?

Exercice 2. Soit $\mathbf{X} = (X_1, X_2, X_3)$ un vecteur aléatoire de \mathbb{R}^3 distribué suivant la loi $\mathcal{N}(\mu, \Sigma)$ avec

$$\mu = \begin{pmatrix} 0.1 \\ 0 \\ 0.1 \end{pmatrix} \quad \text{et} \quad \Sigma = \begin{pmatrix} 0.047 & 0 & 0.0117 \\ 0 & 0.047 & 0 \\ 0.0117 & 0 & 0.047 \end{pmatrix}.$$

On s'intéresse à

$$\delta = \mathbb{E}\left[\min\left(3, \frac{1}{3} \sum_{k=1}^{3} e^{-X_k}\right)\right].$$

Contrainte. Le générateur rnorm peut être utilisé directement. Les autres générateurs de variables aléatoires doivent être codés en conséquence.

- 1. (\spadesuit) Écrire une fonction rmvnorm(n, mu, sigma) qui permet de générer n réalisation de la loi normale multivariée de moyenne mu et de matrice de variance-covariance sigma. Simuler à l'aide de cette fonction un échantillon \mathbf{x} de taille n=10000 suivant la loi de \mathbf{X} .
- **2.** (a) Étant donné une ensemble de variables aléatoires $\mathbf{X}_i = (X_{1,i}, X_{2,i}, X_{3,i}), i = 1, ..., n, i.i.d.$ suivant la loi de \mathbf{X} , donner l'expression de l'estimateur de Monte Carlo de δ , noté $\overline{\delta}_n$.
 - **(b)** (\spadesuit) Pour l'échantillon \mathbf{x} , évaluer $\overline{\delta}_n$ et l'erreur quadratique moyenne associée.
- **3.** (a) Montrer qu'il existe une transformation mesurable A qui laisse la loi $\mathcal{N}(\mu, \Sigma)$ invariante et telle que pour l'estimateur de δ par la méthode de la variable antithétique, noté $\widehat{\delta}_n$, \mathbb{V} ar $\left[\widehat{\delta}_n\right] \leq \mathbb{V}$ ar $\left[\overline{\delta}_n\right]/2$. Exprimer le facteur de réduction de variance théorique, noté R_1 , de $\widehat{\delta}_n$ par rapport à $\overline{\delta}_n$.
 - **(b)** (**a**) Pour l'échantillon **x**, évaluer $\widehat{\delta}_n$, l'erreur quadratique moyenne associée et R_1 . Qu'en concluez vous?
- **4.** (a) (\spadesuit) En utilisant des moments d'ordre 1 et/ou d'ordre 2 associés à la loi de X, trouver une fonction h_0 , telle que la corrélation entre $h_0(X)$ et min $(3, \sum_{k=1}^3 e^{-X_k}/3)$ soit supérieure à 0.5. En déduire, pour $b \in \mathbb{R}$, l'expression de l'estimateur par la méthode de la variable de contrôle simple, noté $\widehat{\delta}_n(b)$.
 - (b) (a) Pour l'échantillon \mathbf{x} et une valeur de b judicieusement choisie, évaluer $\widehat{\delta}_n(b)$ et l'erreur quadratique moyenne associée. Discuter le résultat obtenu en fonction du nombre global de simulations effectuées et du nombre de simulations utilisées pour le calcul de $\widehat{\delta}_n(b)$.

Exercice 3. On suppose Y est distribué suivant la loi géométrique $\mathcal{G}(p)$, i.e., pour $k \in \mathbb{N}^*$, $\mathbb{P}[Y = k] = 0$

 $p(1-p)^{k-1}$. Pour $(X_n)_{n\geq 1}$ de variables aléatoires *i.i.d.* suivant la loi gamma $\Gamma(m,\theta)$, on s'intéresse à

$$\delta = \mathbb{E}[S], \text{ avec } S = \sum_{i=1}^{Y} \log(X_i + 1).$$

On prendra p = 0.2, m = 2 et $\theta = 2$.

- 1. (\spadesuit) Pour n=10000 tirages, donner une estimation de δ par la méthode de Monte Carlo classique et de l'erreur quadratique moyenne associée.
- **2.** (a) Proposer un ensemble de strates $D_1, ..., D_L, L \in \mathbb{N}^*$. En déduire un estimateur de δ par la méthode de stratification avec allocation proportionnelle $(n_1, ..., n_L)$. On le notera $\widehat{\delta}_n(n_1, ..., n_L)$.
 - **(b)** (\spadesuit) Évaluer $\widehat{\delta}_n(n_1,\ldots,n_L)$ pour n=10000 tirages et L=15 strates. Donner l'erreur quadratique moyenne associée. Quelle est l'efficacité relative $\widehat{\delta}_n(n_1,\ldots,n_L)$ par rapport à la méthode de Monte Carlo classique? Discuter de façon concise les résultats obtenus.

Auto-évaluation du code. Évaluer votre code à l'aide des critères suivants :

• Nombre de déclarations du type « c () »

Code	Ex. n°1	Ex. n°2	Ex. n°3	
*	≥3	≥ 1	≥1	
**	< 2	≥1		
***	_ ≤ ∠	0	0	

• Nombre de boucles for ou while utilisées

Code	Ex. n°1	Ex. n°2	Ex. n°3
*	≥3	≥2	≥ 4
**	2	1	≤3
***	1	0	0

• Nombre de boucles conditionnelles if utilisées

Code	Ex. n°1	Ex. n°2	Ex. n°3
*	≥ 1	≥ 1	≥ 1
**	0	0	0
***	U	U	U

 Code
 Ex. n°1
 Ex. n°2
 Ex. n°3

 \star $\geq 1 (0 \text{ ou } \geq 2)$ $\geq 1 (\geq 1)$ $\geq 1 (0)$
 $\star \star$ 0 (1)
 0 (0)
 0 (3)

 $\star \star \star$ 0 (4)