

Exact Solutions > Basic Handbooks > A. D. Polyanin and V. F. Zaitsev, *Handbook of Nonlinear Partial Differential Equations*, Chapman & Hall/CRC, Boca Raton, 2004

INDEX

Α

Abel equation (ODE), 5, 7, 8, 31, 37 additive separable solution, xviii, 698 adiabatic gas flow, 776, 778, 781, 785 Airy equation (ODE), 518 auto-Bäcklund transformation, 126, 691 autonomous equation (ODE), 1–3, 5–8, 11

В

Bäcklund transformation, 11, 267, 519, 690-693 auto-, 126, 691 BBM equation, 583 Bellman type equations, 472–477 Bernoulli equation (ODE), 77, 78, 84, 87, 90 bilinear functional equations, 705, 706 Blasius problem, 542 generalized, 548 Blasius solution, 125 Born-Infeld equation, 445 boundary layer, diffusion, 118, 124, 168 hydrodynamic, 540-547, 549, 551, 553 thermal, 124, 125 Boussinesq equation, 142, 595, 597 canonical form, 595 unnormalized, 597 Burgers equation, 9, 78, 79 cylindrical, 14 generalized, 10 modified, 13 unnormalized, 11, 109 vector, 179 Burgers-Korteweg-de Vries equation, 532 generalized, 635

C

Calogero equation, 434 canonical form Boussinesq equation, 595 elliptic equations, 684 hyperbolic equations, 684 Korteweg-de Vries equation, 515 parabolic equations, 683 Cauchy problem, 10, 520, 446, 765, 773 Cauchy-Riemann equations, 739 characteristic direction, 774 characteristic equation, 683 characteristic lines, 773, 774 characteristic velocity, 774 Clarkson-Kruskal direct method, 728, 731 classical method for symmetry reductions, 735 classification of second-order semilinear equations, 683

cnoidal waves, 515 commutator of operators, 765 condition of conservation of energy, 31 conditions evolutionary, 780 Rankine-Hugoniot jump, 779 conservation laws, 106, 108, 693, 769, 772 mass, 772, 777 momentum, 772, 777 systems, 772 contact transformations, 688 continuity equation, 772 continuous point Lie group, 736 coordinates of first prolongation, 737-740, 742, coordinates of second prolongation, 737-740, 742, 745 Crocco transformation, 543, 546 cylindrical Burgers equation, 14 cylindrical Korteweg-de Vries equation, 521

D

differential constraints first-order, 749 method, 747–749 second-order, 754 third- and higher-order, 756 differential substitutions, 691 differentiation method, 718 double sine-Gordon equation, 229 double sinh-Gordon equation, 225

Е

eigenvalue of matrix, 774 eigenvector of matrix left, 774-777 right, 774, 777, 780, 787 elliptic equations canonical form, 684 with n independent variables, 428–431 with three space variables, 405-428 with two space variables, 347-404 elliptic Weierstrass function, 2, 362, 533, 596, 598 Emden-Fowler equation (ODE), 48, 198, 199, 210, 211 generalized (ODE), 111, 114, 202, 219, 245 equation Abel (ODE), 5, 7, 8, 31, 37 Airy (ODE), 518 anisotropic diffusion, stationary, 395 anisotropic heat, stationary, 395 autonomous (ODE), 1-3, 5-8, 11 BBM, 583 Bernoulli (ODE), 77, 78, 84, 87, 90

D If-11 445	V
Born–Infeld, 445	Kuramoto–Sivashinsky, 593
Boussinesq, 142, 595, 597	Laplace, 162, 173, 174, 182, 278
Boussinesq, canonical form, 595	linear wave, 684
Boussinesq, unnormalized, 597	Liouville, 213, 267
Burgers, 9, 78, 79	Liouville, generalized, 679
Burgers, cylindrical, 14	minimal surfaces, 447
Burgers, generalized, 10	modified Burgers, 13
Burgers–Korteweg–de Vries, 532	modified Korteweg-de Vries, 522
Burgers-Korteweg-de Vries, generalized, 635	Monge-Ampère, 451
Burgers, modified, 13	nonlinear diffusion boundary layer, 124, 168,
Burgers, unnormalized, 11, 109	169
Burgers, vector, 179	nonlinear Klein-Gordon, 234, 719, 721
Calogero, 434	Painlevé, first (ODE), 518, 596, 759
characteristic, 683	Painlevé, second (ODE), 518, 523, 596, 759
continuity, 772	Poisson, 150, 155, 163, 174, 184
cylindrical Burgers, 14	Riccati (ODE), 75, 77, 78, 81, 85
cylindrical Korteweg–de Vries, 521	Schrödinger, of general form, 134, 135, 137,
diffusion boundary layer, nonlinear, 118, 124,	138
168, 169	Schrödinger, three-dimensional, of general
double sine-Gordon, 229	form, 189
double sinh-Gordon, 225	Schrödinger, two-dimensional, of general form,
Emden–Fowler (ODE), 48, 198, 199, 210, 211	188
Emden–Fowler, generalized (ODE), 111, 114,	
	Schrödinger, with cubic nonlinearity, 125, 127, 128, 129, 131, 189
202, 219, 245	
first Painlevé (ODE), 518, 596, 759	Schrödinger, with power-law nonlinearity, 127,
Fisher, 1	129
Fitzhugh–Nagumo, 4, 744 Gel'fand–Levitan–Marchenko, integral, 519,	separable (ODE), 35, 47, 208, 214, 366
	sine-Gordon, 227, 229, 269, 766
520, 523, 597, 606	sine-Gordon, double, 229
generalized Burgers–Korteweg–de Vries, 635	sinh-Gordon, 225, 268, 767
generalized Kadomtsev–Petviashvili, 629	sinh-Gordon, double, 225
generalized Khokhlov–Zabolotskaya, 437	state, ideal polytropic gas, 772
generalized Korteweg-de Vries, 524	stationary anisotropic diffusion, 395
generalized Liauville 670	stationary anisotropic heat, 395
generalized Liouville, 679	stationary heat, with nonlinear source, 382
Goursat, 272	stationary Khokhlov–Zabolotskaya, 353
Grad–Shafranov, 379	steady transonic gas flow, 361, 363, 431
Harry Dym, 528, 732	thermal boundary layer, nonlinear, 124
Helmholtz, 150, 165, 182, 184, 279	Tzitzéica, 268
homogeneous (ODE), 23, 24, 35, 49, 205	unnormalized Boussinesq, 597
homogeneous Monge–Ampère, 451	unnormalized Burgers, 11
hyperbolic, 684	unsteady transonic gas flow, 409, 440
Kadomtsev–Petviashvili, 605, 762	vector Burgers, 179
Kadomtsev–Petviashvili, canonical form, 605	Yermakov (ODE), 97, 251
Kadomtsev–Petviashvili, generalized, 629	equations
Kadomtsev–Petviashvili, unnormalized, 607	admitting variational formulation, 772
Kawahara, 632	Bellman type, 472–477
Khokhlov–Zabolotskaya, 435	bilinear functional, 705, 706
Khokhlov–Zabolotskaya, generalized, 437	boundary layer, 118, 124, 125, 540, 553
Khokhlov–Zabolotskaya, stationary, 353	boundary layer, for Newtonian fluid, 553
Khokhlov–Zabolotskaya, three-dimensional, 438	boundary layer, for non-Newtonian fluids, 547,
Khokhlov–Zabolotskaya, two-dimensional, 435	566
Klein–Gordon, nonlinear, 234	elliptic, canonical form, 684
Kolmogorov–Petrovskii–Piskunov, 71	elliptic, with n independent variables, 428–431
Korteweg-de Vries, 515, 767	elliptic, with three space variables, 405–428
Korteweg-de Vries, canonical form, 515	elliptic, with two space variables, 347–404
Korteweg–de Vries, cylindrical, 521	Euler, 570, 573, 574
Korteweg–de Vries, generalized, 524	Euler–Lagrange, 770
Korteweg-de Vries, modified, 522	fifth-order, 631–633
Korteweg–de Vries, spherical, 522	fourth-order, 589–629
Korteweg-de Vries, unnormalized, 523	functional, 705, 723–728

functional, bilinear, 705, 706 Euler transformation, 123, 447, 689 functional, three-argument, 722 evolutionary conditions, 780 functional-differential, 701 evolutionary shocks, 780 heat and mass transfer, 159, 174, 391, 420, 423 exponential self-similar solutions, 696 heat and mass transfer in anisotropic media, 161, 163, 164, 166, 167 heat transfer in quiescent media, 29, 53 Falkner-Skan problem, 544 heat transfer in quiescent media with chemical generalized, 550 reaction, 107, 159, 160 fifth-order equations, 631-633 heat and mass transfer with complicating facfirst-order differential constraints, 749 tors, 423 first Painlevé equation (ODE), 518, 596, 759 higher orders, 631-681 first prolongation, coordinates of, 737, 738 hydrodynamic boundary layer, 542 Fisher equation, 1 hydrodynamic, canonical form, 684 Fitzhugh-Nagumo equation, 4, 744 hyperbolic, with one space variable, 191-273 fixed singularities of solutions, 758 hyperbolic, with three space variables, 317-346 fourth-order equations, 589-629 hyperbolic, with two space variables, 275-316 function involving arbitrary functions, 71, 125, 161, 236, error, 10 273, 384 Weierstrass elliptic, 2, 533 mass transfer in moving media with chemical functional-differential equations, 701, 705 reactions, 169 functional equation, 723-728 mass transfer in quiescent media with chemical bilinear, 705, 706 reactions, 159, 169 functional separable solutions, xviii, 713 motion of ideal fluid, 570 Navier-Stokes, nonstationary, 616 Navier-Stokes, stationary, 607 gas flow, adiabatic, 776, 778, 781, 785 nonlinear diffusion boundary layer, 124, 168, gas, ideal polytropic, equation of state, 772 169 Gel'fand-Levitan-Marchenko integral equation, nonlinear functional, 723 519, 520, 523, 597, 606 nonlinear Schrödinger, 125-130, 186-190 generalized Blasius problem, 548 nonlinear telegraph, 299 generalized Burgers-Korteweg-de Vries equation, nonstationary, 155, 157 nonstationary hydrodynamic, 574, 616, 627 generalized Kadomtsev-Petviashvili equation, 629 parabolic, canonical form, 683 generalized Khokhlov-Zabolotskaya equation, 437 parabolic, with one space variable, 1–140 generalized Korteweg-de Vries equation, 524 parabolic, with three space variables, 169-179 generalized Landau-Ginzburg equation, 135 parabolic, with two space variables, 141–168 generalized Liouville equation, 679 reducible to Korteweg-de Vries equation, 526 generalized Schlichting problem, 548 second-order, 1-588 generalized separable solutions, xviii, 701, 709 second-order, evolution, 749 generalized similarity reductions, 728, 757 second-order, general form, 479-514 generalized traveling-wave solutions, xviii, 713 second-order, semilinear, 683 Goursat equation, 272 stationary hydrodynamic, 570, 607 Grad-Shafranov equation, 379 steady boundary layer, for Newtonian fluid, 540 group analysis methods, 735-747 steady boundary layer, for non-Newtonian fluclassical, 735 ids, 547 nonclassical, 744 telegraph, linear, 230, 265, 300, 301, 303 group invariant, 737, 741 telegraph, nonlinear, 299-305 third-order, 515-588 н unsteady boundary layer, for Newtonian fluid, 553 Harry Dym equation, 528, 732 unsteady boundary layer, for non-Newtonian heat and mass transfer equations, fluids, 564 in anisotropic media, 161, 163, 164, 166, 167 elliptic equations in moving media with chemical reactions, 169 canonical form, 684 in quiescent media, 29, 53 with n independent variables, 428–431 in quiescent media with chemical reactions, with three space variables, 405-428 107, 159, 169 with two space variables, 347-404 with complicating factors, 423 error function, 10 Helmholtz equation, 150, 165, 182, 184, 279 hodograph transformation, 26, 122, 254, 356, 686 Euler equations, 570, 573, 574 Euler-Lagrange equation, 770 homogeneous equation (ODE), 23, 24, 35, 49, 205

homogeneous Monge-Ampère equation, 451	L
Hopf–Cole transformation, 10, 692, 762	Lagrangian, 770
hydrodynamic boundary layer equations, 540, 544,	Landau problem, 615
546, 547, 549	Laplace equation, 162, 173, 174, 182, 278
hyperbolic equation	Laplace operator, 167, 170, 173, 190
first canonical form, 684	law of conservation, 106, 108, 693, 769, 772
second canonical form, 684	law of conservation of mass, 772, 777
hyperbolic equations	law of conservation of momentum, 772, 777
canonical form, 684	Lax condition, 781
with one space variable, 191–273	Lax pair, 764, 765 Lax pair method, 764
with three space variables, 317–346	Legendre transformation, 263, 266, 404, 447, 689
with two space variables, 275–316	Lie group methods, 735
hyperbolic system	Lie group of transformations, 736
conservation laws, 772	limit self-similar solution, 696
nonstrict, 786 quasilinear equations, 772, 774	linear subspaces invariant under nonlinear operator, 710, 711
strictly, 774	linear wave equation, 684
_	Liouville equation, 213, 267
I	generalized, 679
ideal polytropic gas, equation of state, 772	M
infinitesimal operator, 736	mathematical physics equations, see equation and
infinitesimal transformation, 736	equations
initial-boundary value problem, 773, 786	Maxwell's relations, 776
initial value problem, 773	method
integral equation, Gel'fand–Levitan–Marchenko, 519, 520, 523, 597, 606	Clarkson–Kruskal direct, 728, 731
invariance condition, 737	classical, symmetry reductions, 735
invariant of group, 737	differential constraints, 747–749 direct, Clarkson–Kruskal, 728, 731
invariant of group, 737 invariant solutions, 694, 736, 741, 742	functional separation of variables, 713
invariant surface condition, 744	generalized separation of variables, 698
inverse scattering method, 764	group analysis, 735, 744, 757
inverse seattering method, 701	inverse scattering, 764
K	Lax pair, 764, 765
N.	nonclassical, for symmetry reductions, 744
Kadomtsev-Petviashvili equation, 605, 762	similarity, 693, 695
generalized, 629	splitting, 721 Titov–Galaktionov, 710
canonical form, 605	Mises transformation, 444, 543, 545, 552, 678
unnormalized, 607	Miura transformation, 519, 523, 692
Kawahara's equation, 632	modified Burgers equation, 13
Khokhlov–Zabolotskaya equation, 435	modified Korteweg-de Vries equation, 522
generalized, 437	Monge–Ampère equation, 451
stationary, 353	homogeneous, 451
three-dimensional, 438	movable pole, 760
two-dimensional, 435	movable singularities, 758 multiplicative separable solution, xviii, 698
Klein-Gordon equation, 234, 719, 721	multiplicative separable solution, xviii, 098
Kolmogorov–Petrovskii–Piskunov equation, 71	N
Korteweg-de Vries equation, 515, 767	•
canonical form, 515	Newtonian fluid, 540, 553
cylindrical, 521	steady hydrodynamic boundary layer equations,
generalized, 524	540 Nootherian symmetries 770
modified, 522	Noetherian symmetries, 770 nonclassical method for symmetry reductions, 744
spherical, 522	nonclassical symmetries, 744
unnormalized, 521	nonlinear diffusion boundary layer equations, 124,
Kuramoto-Sivashinsky equation, 593	168, 169

nonlinear equations of the thermal boundary layer, 124	R
nonlinear functional equations, 723	rarefaction waves, 777, 778
nonlinear Klein–Gordon equation, 234	Rankine-Hugoniot jump conditions, 779
nonlinear Schrödinger equations, see also Schröd-	reductions, symmetry, 735
inger equation, 125, 186	Riccati equation (ODE), 75, 77, 78, 81, 85
nonlinear telegraph equations, 299–305	Riemann invariant, 776, 778
non-Newtonian fluids, 547	Riemann problem, 773, 777, 782
steady hydrodynamic boundary layer equations, 547	S
nonstationary equations, 576	Schlichting problem, 542
nonstationary hydrodynamic equations, 574, 616	generalized, 548
nonstrict hyperbolic system, 786	Schrödinger equation,
N-soliton solution, 126, 228, 516, 605	of general form, 134, 135, 137, 138 three-dimensional, of general form, 189
	three-dimensional, with cubic nonlinearity, 189
0	two-dimensional, of general form, 188
one-soliton solution, 126, 228, 515, 524, 599, 605	with cubic nonlinearity, 125, 127, 128, 129,
operator operator	131, 189
infinitesimal, 736	with power-law nonlinearity, 127, 129
Laplace, 167, 170, 173, 190	second-order differential constraints, 754
prolonged, 737, 771	second-order equations of general form, 479–514
total differential, 737, 750, 751, 753, 771	754 second-order evolution equations, 749
	second-order hyperbolic equations, 191–346, 753
Р	self-similar solutions, xviii, 13, 24, 695, 777
	separable equation (ODE), 35, 47, 208, 214, 366
Painlevé equation (ODE)	separable solutions, generalized, xviii, 701, 709
first, 518, 596, 759	shock (shock wave), 780, 781
second, 518, 523, 596, 759	similarity methods, 693
Painlevé test, 758	similarity reduction, 732, 734 special form, 728
parabolic equations canonical form, 183	general form, 731
with one space variable, 1–140	generalized, 728, 757
with three space variables, 169–179	single-soliton solution, see also one-soliton solu-
with two space variables, 141–168	tion, 126, 228
partial differential equation, see equation and	sine-Gordon equation, 227, 229, 269, 766
equations	double, 229
point transformations, 685	sinh-Gordon equation, 225, 268, 767 double, 225
Poisson equation, 150, 155, 163, 174, 184	soliton, 125, 228, 516, 521, 605
problem	"soliton + pole" solution, 516
Blasius, 542	solution
Blasius, generalized, 548	additive separable, xviii, 698
boundary layer, 118, 124	Blasius, 125
Cauchy, 10, 520, 446, 765, 773	exponential self-similar, 696
Falkner–Skan, 544	functional separable, xviii, 713 generalized separable, xviii, 701, 709
Falkner–Skan, generalized, 550	generalized traveling-wave, xviii, 703,
initial-boundary value, 773, 774, 786	invariant, 694, 736, 741, 742
initial value, 773 Landau, 615	limit self-similar, 696
Riemann, 773, 777, 782	multiplicative separable, xviii, 698
Schlichting, 542	N-soliton, 126, 228, 516, 605
Schlichting, generalized, 548	one-soliton, 125, 228, 515, 524, 599, 605
probability integral, 10	Riemann problem, 782 self-similar, xviii, 13, 24, 695, 777
prolonged operator, 737, 771	single-soliton, see also one-soliton solution,
coordinates of first prolongation, 737–740, 742,	126, 228
745	"soliton + pole", 516
coordinates of second prolongation, 737-740,	special functional separable, 713
742, 745	traveling-wave, xviii, 5–8, 13, 14, 694

traveling-wave, generalized, xviii, 5-8, 13, 36, 39, 713 two-soliton, 228, 516, 524, 599, 605 special functional separable solutions, 713 spherical Korteweg-de Vries equation, 522 splitting method, 705, 721 stationary anisotropic diffusion equation, 395 stationary anisotropic heat equation, 395 stationary heat equation with nonlinear source, stationary hydrodynamic equations, 607 stationary Khokhlov-Zabolotskaya equation, 353 stationary Navier-Stokes equations, 607 steady hydrodynamic boundary layer equations for Newtonian fluid, 540 for non-Newtonian fluids, 547 strictly hyperbolic system, 774 structural formula, 782 structure of functional separable solutions, 713 structure of generalized separable solutions, 700 symmetry reductions, 735 systems of conservation laws, 772

Т

telegraph equations linear, 230, 285, 300, 301, 303 nonlinear, 299-305 third-order equations, 515-588 three-argument functional equations, 722 three-dimensional equations, 191 three-dimensional Khokhlov-Zabolotskaya equation, 438 three-dimensional nonlinear Schrödinger equation of general form, 189 three-dimensional Schrödinger equation with cubic nonlinearity, 189 Titov-Galaktionov method, 710 total differential operator, 737, 750, 751, 753, 771 transformation auto-Bäcklund, 126, 691 Bäcklund, 11, 267, 519, 690-693 contact, 688 Crocco, 543, 546 Euler, 123, 447, 689 hodograph, 26, 122, 254, 356, 686 Hopf-Cole, 10, 692, 762 infinitesimal, 736

Legendre, 263, 266, 404, 447, 689 Mises, 444, 543, 545, 552, 678 Miura, 519, 523, 692 point, 685 traveling-wave solutions, xviii, 5-8, 13, 14, 694 generalized, xviii, 13, 36, 39, 713 two-dimensional Khokhlov-Zabolotskaya equation, two-dimensional nonlinear Schrödinger equation of general form, 188 two-dimensional Schrödinger equation with cubic nonlinearity, 186 two-dimensional Schrödinger equation with powerlaw nonlinearity, 187 two-soliton solution, 228, 516, 524, 599, 605 types of equations, 683 Tzitzéica equation, 268

U

universal invariant of group, 737

unnormalized Boussinesq equation, 597
unnormalized Burgers equation, 11, 109
unnormalized Kadomtsev–Petviashvili equation,
607
unnormalized Korteweg–de Vries equation, 521
unsteady boundary layer equations for Newtonian
fluid, 555
unsteady boundary layer equations for non-New-

tonian fluids, 566

vector Burgers equation, 179 von Mises transformation, 444, 543, 545, 552, 678

W

wave cnoidal, 515 nonlinear, 196, 198, 199, 201, 218, 239, 245 rarefaction, 777, 778 shock, 779
Weierstrass elliptic function, 2, 362, 533, 596, 598

Yermakov's equation (ODE), 97, 251