# Mobile Application Development

(Android + IDE + First Application)

Instructor: Thanh Binh Nguyen

February 1st, 2020



Smart Software System Laboratory



- David Murphy, Founder and Editor of Mobile Marketing Daily



### Overview

- A Software Platform and OS for mobile, embedded and wearable devices
- Based on the **Linux kernel** (2.6 kernel)
- Google is the principle maintainer
- Other companies contribute to the system.
- Allow writing managed code in the java language
- Each device manufacturer can customize Android to suit their needs
- An Open Source Project
- Open Handset Alliance Project





### Who develop Android?

- Initially developed by Andrew (Andy) Rubin and his team in Android Inc.
- Google acquired Android Inc. in 2005.
- Till Mac 2013, developed by Google under Andy Rubin (Senior Vice President of Mobile)







From the past to ...







### **Architecture**

User applications
Use Java framework and, optionally, native code.

Android framework

Java classes under com.android

Native framework layer
User mode C, C++ code - compiled to native platform or 32bit compatibility mode on 64 bits.

Linux Kernel (GPL license)
C code - compiled to native platform (x86, arm, mips)







## Architecture - Application

- Android provides a set of core applications:
  - Email Client
  - SMS Program
  - Calendar
  - Maps
  - Browser
  - Contacts
  - o Etc
- All applications are written using the Java language



### Architecture - Application Framework

 Most of the application framework accesses these core libraries through the Dalvik VM, the gateway to the Android Platform

| Feature                 | Role                                                                                                |
|-------------------------|-----------------------------------------------------------------------------------------------------|
| View<br>System          | Used to build an application, including lists, grids, text boxes, buttons, and embedded web browser |
| Content<br>Provider     | Enabling applications to access data from other applications or to share their own data             |
| Resource<br>Manager     | Providing access to non-code resources (localized string , graphics, and layout files)              |
| Notification<br>Manager | Enabling all applications to display customer alerts in the status bar                              |
| Activity<br>Manager     | Managing the lifecycle of applications and providing a common navigation backstack                  |

Notification

Manager





Architecture - Application Framework

Location Manager







### Architecture - Application Framework

- Notification Manager
  - How background app Interact with users
  - Consistent notification presentation









### Architecture - Application Framework

View System











Architecture - Application Framework

View System







### Architecture - Libraries







- Including a set of C/C++ libraries used by components of the Android system
- Exposed to developers through the Android application framework
  - Media -> PacketVideo's OpenCORE for recording, playback audio and video
  - Surface Manager -> controls access to the display system and supports 2D, 3D
  - WebKit -> for browser support.
  - FreeType -> font support
  - SQLite -> a relational database

### Architecture - Android Runtime



### Core Libraries

- Providing most of the functionality available in the core libraries of the Java language
- APIs
  - Data Structures
  - Utilities
  - File Access
  - Network Access
  - Graphics
  - Etc

### Architecture - Android Runtime

Dalvik Virtual Machine







Run multiple VMs efficiently

Each app has its own VM

Minimal memory footprint

### Architecture - Android Runtime



- Dalvik Virtual Machine
  - Executing the Dalvik Executable (.dex) format
    - .dex format is optimized for minimal memory footprint.
    - Compilation



- Relying on the Linux Kernel for:
  - Threading
  - Low-level memory management

Architecture - Android Runtime

**Dalvik Virtual Machine** 

APPLICATIONS APPLICATION FRAMEWORKS ANDROID RUNTIME LIBRARIES LINUX KERNEL





18



### Architecture - Android Runtime



- From KITKAT, Dalvik Virtual Machine was replaced by ART
- ART introduces ahead-of-time (AOT) compilation, which can improve app performance. ART also has tighter install-time verification than Dalvik.

### Architecture - Android Runtime







# APPLICATIONS APPLICATION FRAMEWORKS LIBRARIES ANDROID RUNTIME LINUX KERNEL Camera Driver Flash Memory Driver Binder (IPC) Driver Keypad Driver Wifi Driver Audio Drivers Wifi Driver Management

### Architecture - Linux Kernel

- Relying on Linux Kernel 2.6 for core system services
  - Memory and Process Management
  - Network Stack
  - Driver Model
  - Security
- The supplied device drivers include Display, Camera, Keypad, WiFi, Flash Memory, Audio, and IPC (interprocess communication).
- Providing an abstraction layer between the H/W and the rest of the S/W stack

### versioning

- Platform version
  - Current one is 11
- Framework API level
  - SDK compatibility
  - Each platform version has an API level
- NDK API level
  - API level for native headers
- Distribution
  - http://developer.android.com/about/dashboards/index.html





### Browsing the android source

- Source at
  - https://android.googlesource.com/
- Porting instructions (for system developers)
  - https://source.android.com/devices/index.html
- com.android classes
  - http://developer.android.com/reference/packages.html



- Android SDK
  - Provides the Java framework classes
  - Compiles to java bytecode
  - Class framework is updated with every OS release
- Android NDK
  - C/C++ toolchain for compiling to machine code
- Android platform tools
  - o adb (android debug bridge): runs and debugs apps from your dev machine
- Android developer tools
  - Eclipse plug-in for Android
  - Android studio



### Application Packages

- apk files: compressed files
  - class byte code
  - resources( icons, sounds, etc).
  - Binary native files
- All .apks are signed
  - Default development key is created by SDK.
  - When updating an application, signature are checked.



## Installing an application

- From application distribution markets
  - Google Play
  - Amazon App Store
  - Samsung App Store
  - Or your own distribution channel
- From your local computer using adb



Compiling





Core Building Blocks (Fundamental Components)

- Activity
- Views
- Fragments
- Intents
- Services
- Content Provider
- Broadcast Receivers
- Android Manifest.xml





Core Building Blocks - Activity, View and Fragment

- An Activity is a class that represents to one UI screen
- A **View** is the UI element such as button, label, text field etc. Anything that you see is a view.
- Fragments are like parts of activity. An activity can display one or more fragments on the screen at the same time.





## Core Building Blocks - Intent

- Intent is used to invoke components. It is mainly used to:
  - Start the service
  - Launch an activity
  - Display a web page
  - Display a list of contacts
  - Broadcast a message
  - Dial a phone call etc.



Core Building Blocks - Services, Broadcast Receivers, AndroidManifest.xml

- Services: Faceless components that run in the background
  - o E.g. music player, network download etc...
- AndroidManifest.xml: It contains informations about activities, content providers, permissions etc. It is like the web.xml file in Java EE.
- Broadcast Receivers: handle communication between core Android OS and applications running on the surface layer. The application modules communicate with each other using the broadcast receiver.



Core Building Blocks - Services, Broadcast Receivers, AndroidManifest.xml







## Core Building Blocks - Content Providers

- Enables sharing of data across applications
  - E.g. address book, photo gallery
- Provides uniform APIs for:
  - Querying
  - o delete, update and insert.
- Content is represented by URI and MIME type



### **Development Process**



- Layouts in XML format
- Build and run the app on real or virtual devices
- Publish the app by assembling the final APK and distributing it through channels such as Google play





### Development Process - Create Project

- The company domain should be unique.
- The package name should be unique to public to google play





Development Process - Create Project

Choose the target device





### Development Process - Create Project

Choose the activity template







Development Process - Create Project

- Toolbar
- Navigation Bar
- Project pane
- Editor
- Tabs





Development Process - Create Project

Project pane







Development Process - Create Project

Project pane





#### Android Studio - Emulator

- Two choices for deployment:
  - Real Android device
  - Android virtual device
- Plug in your real device; otherwise,
   create an Android virtual device
- Emulator is slow. Try Intel accelerated version, or perhaps http://www.genymotion.com/
- Run the app: press "Run" button in toolbar



□ □ Ø ~ ~ × n n n Q Q 4 ~ 1 1 • app - ▶ \*



Android Studio - Emulator

Tools > Android > AVD Manager







#### Android Studio - Emulator

Tools > Android > AVD Manager





Android Studio - Actual Device Debugging

- USB data cable
- Android USB driver need to install on PC
- Enable Developers Options
  - Setting -> About Phone -> 7x taps on Build Number
- Enable USB debugging
  - Settings -> Developer options -> Enable USB Debugging



Android Studio - Logcat

Log.d("filter message", "message content");







- Install Android Studio: <a href="https://developer.android.com/studio">https://developer.android.com/studio</a>
- Create the First Android Application, Run it on emulator and Real-device.
  - https://developer.android.com/codelabs/build-your-first-android-app#2

Q & A





### Thank you for listening

"Coming together is a beginning; Keeping together is progress; Working together is success."

- HENRY FORD