Билет № 7. Подпоследовательности и частичные пределы. Теорема о верхнем и нижнем пределах.

Определение. $\forall \{x_n\} \ (n=1,2,\ldots)$ - числовая последовательность. Будем говорить, что $\{y_n\} \ (n=1,2,\ldots)$ - подпоследовательность $\{x_n\}$, если \exists строго возрастающая последовательность натуральных чисел $\{n_k\} \ (k=1,2,\ldots)$ такая, что $\forall k \in \mathbb{N}$ выполнено: $x_{n_k} = y_k$.

Определение. Будем говорить, что $A \in \mathbb{R}$ - частичный предел последовательности $\{x_n\}$, если \exists такая подпоследовательность $\{x_{n_k}\}$ $(k=1,2,\ldots)$, такая что $\lim x_{n_k}(k\to\infty)=A$.

Критерий частичного предела.

 $\forall \{x_n\}$ числовая последовательность. Следующие условия эквивалентны:

- 1) $A \in \overline{\mathbb{R}}$ частичный предел $\{x_n\}$
- $(2)\forall \varepsilon>0$ в $U_{\varepsilon}(A)$ содержатся значения бесконечного количества элементов $\{x_n\}$
- $3)\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n(\varepsilon, N) \geq N : x_{n(\varepsilon, N)} \in U_{\varepsilon}(A) \ (*)$

Доказательство

 $1\Rightarrow 2$ \exists строго возрастающая $\{n_k\}\subset\mathbb{N}: x_{n_k}\to A, k\to\infty$. Тогда $\forall \varepsilon>0$ $\exists k(\varepsilon)\in\mathbb{N}: \forall k\geq k(\varepsilon)$ выполнено, что $x_{n_k}\in U_\varepsilon(A)$. Но $\{k\in\mathbb{N}: k\geq k(\varepsilon)\}$ бесконечно \Rightarrow множество $\{x_n: x_n\in U_\varepsilon(A)\}$ бесконечно.

 $2\Rightarrow 3\ \forall \varepsilon>0$ пусть $I_{\varepsilon}=\{n\in\mathbb{N}: x_n\in U_{\varepsilon}(A)\}$ - бесконечное множество. Тогда $\forall N\in\mathbb{N}\ \exists n\in I_{\varepsilon}: n\geq N$. Действительно, если предположить обратное, то I_{ε} было бы конечным множеством, а это не так по условию. Итого: $\forall \varepsilon>0\ \forall N\in\mathbb{N}\ \exists n(\varepsilon,N)\geq N\colon x_n\in U_{\varepsilon}(A)$.

 $3\Rightarrow 1$ Построим строго возрастающую $\{n_k\}: x_{n_k} \to A, \ k \to \infty. \ n_1 = n(1,1) \ (\varepsilon = 1, \ N = 1), n_1 \geq 1, \ x_{n_1} \in U_1(A) \ \varepsilon = 1/2, \ N = n_1 + 1. \ \mathrm{B} \ \mathrm{силу} \ (*) \ \exists n_2 \geq n_1 + 1: \ x_{n_2} \in U_{1/2}(A). \ \mathrm{Построены} \ n_1 \leq n_2 \leq \cdots \leq n_k \ \mathrm{if} \ x_{n_k} \in U_{1/k}(A). \ \mathrm{Возьмем} \ n_{k+1} = n(1/(k+1), n_k+1) \ \mathrm{Тогда} \ x_{n_{k+1}} \in U_{1/(k+1)}(A). \ \mathrm{B} \ \mathrm{if} \ \mathrm{if} \ \mathrm{if} \ x_{n_k} \in \mathbb{N} \ \exists n_k = n(1/k, n_{k-1} + 1): \ x_{n_k} \in U_{1/k}(A). \ \mathrm{Следовательно}, \ \forall k \in \mathbb{N} \ \exists n_k \in \mathbb{N}: \ \forall j \geq k \ \mathrm{Bыполнено}, \ \mathrm{if} \ x_{n_j} \in U_{1/k}(A). \ \mathrm{Получаем}, \ \mathrm{if} \ \mathrm{if} \ x_{n_k} \in \mathbb{N} \ \exists n_k \in \mathbb{N}: \ \forall j \geq k \ \mathrm{If} \ x_{n_k} \in U_{2/k}(A).$

 $(k(\varepsilon) = [1/\varepsilon] + 1$ берется от того, что для следующего элемента мы выбираем $N = n_k + 1)$

Верхний и нижний пределы.

Определение. $\overline{\lim}_{n\to\infty} x_n = \sup\{$ частичные пределы $\{x_n\}\}$

Определение. $\underline{\lim} x_n = \inf \{ \text{частичные пределы } \{x_n\} \}$

Теорема. $M = \lim_{n \to \infty} x_n \in \{$ частичные пределы $\{x_n\}\}$

 $\mathbf{m} = \underline{\lim}_{n \to \infty} x_n \in \{$ частичные пределы $\{x_n\}\}$

Докажем для M. По определению общего супремума: $\forall \varepsilon > 0$ в $U_{\varepsilon/2}(M)$ $\exists c$ - частичный предел. (А если бы не нашлось - M не был бы супремумом множества частичных пределов) \Rightarrow В $U_{\varepsilon/2}(c)$ содержатся значения бесконечного количества элементов $\{x_n\}$ по критерию ЧП. $U_{\varepsilon/2}(c) \subset U_{\varepsilon}(M)$. Значит в $U_{\varepsilon}(M)$ содержатся значения бесконечного количества элементов $\{x_n\}$. Но $\varepsilon > 0$ было выбрано произвольно. Значит $\forall \varepsilon > 0$ в $U_{\varepsilon}(M)$ содержатся значения бесконечного количества элементов $\{x_n\}$. Значит, M - ЧП.