NPN EPITAXIAL PLANAR TYPE

DISCRIPTION

2SC3240 is a silicon NPN epitaxial planar type transistor specifically designed for high power amplifiers in HF band.

FEATURES

- High gain: $G_{pe} \ge 11.5 dB$, $P_0 \ge 100W$ @f = 30MHz, V_{CC} = 12.5V, P_{in} = 7W
- High ruggedness: Ability to withstand 20:1 load VSWR when operated at f = 30MHz, P_O = 100W, V_{CC} = 15.2V.
- Emitter ballasted construction
- Low thermal resistance ceramic package with flange. Input-output impedance

$$Z_{in}$$
 = 0.4 - j0.8 (Ω)
 Z_{out} = 1.0 - j1.1 (Ω)
 @f = 30MHz, V_{CC} = 12.5V, P_{o} = 100W

APPLICATION

Output stage of transmitter in HF band SSB mobile radio sets.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		50	, V
V _{EBO}	Emitter to base voltage		5	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	20	V
I _C	Collector current		25	Α
Pc	Collector dissipation	Ta = 25°C	8	w
		T _C = 25°C	270	w
Tj	Junction temperature		175	°C
Tstg	Storage temperature		-55 to 175	°C
Rth-a	Thermal resistance	Junction to ambient	18.7	*c/w
Rth-c	Thermal resistance	Junction to case	0.556	°C/W

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter Test conditions	Limits				
		rest conditions	Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	I _E =20 mA, I _C =0	5			V
V(BR)CBO	Collector to base breakdown voltage	I _C =20mA, I _E =0	50			V
V _{(BR)CEO}	Collector to emitter breakdown voltage	I _C =100 mA, R _{BE} = ∞	20			V
^I сво	Collector cutoff current	V _{CB} =15V, I _E =0			5	mA
I _{EBO}	Emitter cutoff current	V _{EB} =3V, I _C =0			5	mA
hFE	DC forward current gain *	V _{CE} =10V, I _C =1A	10	50	180	_
Po	Output power	f=30 MHz, V _{CC} =12.5V, P _{in} =7W	100	110		W
η_{C}	Collector efficiency		55	60		%

Note. *Pulse test, $P_W=150\mu s$, duty=5%

Above parameters, ratings, limits and conditions are subject to change.

NPN EPITAXIAL PLANAR TYPE

82pF, 82pF, 82pF in parallel C_2 :

100pF, 4700pF, 4700pF, 0.22µF, 0.22µF, 33µF, 330µF in parallel C₃:

RFC: 27 Turns 1¢ enameled wire

100pF, 220pF, 4700pF, 0.1μF, 330μF is parallel

All coils but L_1 are made from 1.5 ϕ mm silver plated copper wire, L_1 is made from 2.3 ϕ mm copper wire.

D: Inner diameter of coil

Turn number of coil

P : Pitch of coil

Dimension in milli-meter

TYPICAL PERFORMANCE DATE

COLLECTOR DISSIPATION VS. **AMBIENT TEMPERATURE**

AMBIENT TEMPERATURE Ta (°C)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

NPN EPITAXIAL PLANAR TYPE

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE (V)