Biological Psychology 10003

Lecture 2: Nerve Cells and Nerve Impulses

Overview:

- Central & peripheral nervous systems
- The blood-brain barrier (BBB)
- Types of cells that make up the nervous system: neurons and glia
- Types of neuron by function
- The basic structure of a neuron
- How a resting neuron differs from a stimulated neuron

Nervous system

- Nervous system (NS)
 - Central nervous system (CNS) the brain and the spinal cord
 - Peripheral nervous system (PNS) NS other than brain and spinal cord (e.g., nerves from sense organs to the CNS)
- Nerve cells (=neurons) share the same basic architecture
- Neurons can be grouped in numerous ways and it is the neuronal network circuitry that complex behaviour

http://www.ms-guiden.se/MS-guiden/Om-MS/

The brain

The brain

The Blood-Brain Barrier (BBB)

- A semi-permeable "barrier" between blood and brain
- Produced by tightly packed cells in the capillary walls of the brain
- Protects and helps to regulate the chemical balance of the brain
 - Passive (doesn't consume energy) crossing of the BBB:
 - small uncharged molecules (incl. oxygen & carbon dyoxide)
 - molecules that dissolve in the fats of the membrane, e.g. vitamins A&D, various drugs that affect the brain
 - Excludes most viruses, bacteria & toxins
- Necessary substances (e.g. glucose for energy & aminoacids to build proteins) access the brain via active transport systems

The brain

The Neuron Doctrine

- Santiago Ramón y Cajal (1852-1934)
- Used newly-developed staining techniques to show that neurons are separable, i.e., that there is a small gap between the tips of one neuron's fibers and the next neuron

=> the brain consists of individual neurons

The brain

- Two main types of cells in the NS:
 - Nerve cells (neurons)
 - Glial cells (glia, neuroglia) supporting cells

Neurons

- Cerebellum: 70 billion
- Cerebral cortex: at least 12-15 billion
- Spinal cord: 1 billion
- Glia (from Greek 'glue')
 - smaller than neurons but more numerous (approx 10 times as many as neurons)
 - most common glia: oligodendrocytes (76%), astrocytes (17%) and microglia (6%)

Glia (1)

- Many different types but essentially are supportive cells of the NS and have many vital roles:
- Provide structure, i.e., surround neurons and hold them in place (astrocytes)
- Insulate nerve cells with myelin sheaths (oligodendrocytes in the CNS, Schwann cells in the PNS)

Allen & Barres (2009) Nature

Glia (2)

- Supply nutrients and oxygen to neuron (astrocytes)
- Removal of dead neuronal tissue & immune defence of the CNS (microglia: phagocytes)
- During development, glial cells provide scaffolds for neurons to migrate to their final destinations (radial glia)
- Modulate neurotransmission (astrocytes: clear neurotransmitter from within the synaptic cleft, hence prevent toxic build-up of certain neurotransmitters, see the lecture on Neurotransmission)

Rakic (1972) radial gliaguided migration

Astrocyte to Neuron Ratio in Various Species

As behavioral complexity increases, the ratio of astrocytes to neurons also increases.

(Garrett, 2011; based on Nedergaard et al, 2003)

Rett Syndrome

- Strikes little girls (under 2 years) almost exclusively
- Loss of speech, motor control & functional hand use, seizures, orthopedic and severe digestive problems, breathing, anxiety, etc
 - caused by mutations in the MeCP2
 protein present in neurons and astrocytes
 - re-expression of MeCP2 in neurons or astrocytes in mouse models dramatically reversed Rett symptoms

Neurons

Neurons - cells in the nervous system that specialise in performing information-processing tasks

Neuron structure: Soma (cell body)

- Cell nucleus contains most of the cell's genetic material organized as DNA molecules
- Cell "machinery"
 - ribosomes protein production
 - mitochondria performs metabolic activities, extracts energy from nutrients
 - endoplasmic reticulum transports newly made proteins to other locations

Neuron structure: Dendrites

- Dendrites (from Greek 'tree') branching fibers that get narrower at the end
- Dendrites receive information from other neurons via synaptic receptors
- The greater the surface area of a dendrite the more information it can receive

Neuron structure: Axon

- Axon a thin fiber of constant diameter that extends away from the soma and transmits information from the soma to other neurons
 - Main conduction apparatus for carrying signals to other neurons
- Most (vertebrate) axons are covered in myelin sheaths

Neuron structure: the edge

The neuron's edge, the membrane (~8 nm thick, made up of lipid molecules and proteins), holds the cell together and separates the neuron form the outside environment

- The membrane is penetrable for small uncharged molecules (water H₂O, oxygen O₂, carbon dioxide CO₂)
- Some charged ions (sodium Na+, potassium K+, calcium Ca+, cloride Cl-) can cross through specialized protein channels, e.g. Na+ channels

- Concentration & electrical gradients: Na+ strongly dragged into the cell; K+ more-or-less in balance
- Sodium-potassium pump: 3 Na+ out, 2 K+ in

-70mV

INSIDE NEURON

- inside the
 - neuron: -70 mV

Forces acting on Na+ and K+ ions: summary

- Force of diffusion (aka concentration gradient): ions move from area of high to low concentration
 - Sodium Na+ is dragged into the cell (little Na+ inside, so Na+ is more likely to enter the cell than to leave it)
 - Potassium K+ is dragged out of the cell
- Electrostatic pressure (aka electrical gradient): positivelycharged ions are dragged to the negative charge (and vice versa)
 - Both sodium Na+ and potassium K+ are dragged into the cell
- Both gradients want to move Na+ ions into the cell
- → The two gradients almost balance each other out for K+ ions
- → The sodium-potassium pump (3 Na+ out, 2 K+ in): helps to maintain high concentration of Na+ outside/Ka+ inside

Neuron's resting potential

- The neuron inside the membrane has a more negative electric potential with respect to the outside: the resting potential of an unstimulated neuron - approx. -70 mV (millivolts)
- Q: Why does a neuron have a resting potential of -70mV (rather than 0)?
 - A: It makes it possible for the neuron to respond quickly and actively to a stimulus (via **an action potential**)

What happens if a neuron is stimulated?

- Stimulation: change of the neuron's membrane potential (in labs applying current via an electrode; naturally via synapses)
 - Hyperpolarization increased (even more negative) polarization of the neuron
 - Depolarization reduction of the neuron's polarization towards zero

If stimulation exceed a certain level – the threshold of excitation (here -55mV) – it produces a sudden, massive depolarization of the membrane (the potential shoots <u>beyond</u> the strength of the stimulus) – an action potential

Action potential

Action potential: "All-or-none" principle

- The amplitude of an action potential is independent of the amount of current which produced it, i.e. larger currents do not create larger action potentials
 - The amplitude of an action potential is constant for a given axon (e.g., +40 mV)
- Therefore action potentials are said to be all-or-none: they either occur fully or do not occur at all

■ How is the intensity of neuron's stimulation encoded? — Answer in the lecture on Audition

Propagation of action potential

- First action potential on the axon hillock
- (in a myelinated axon) Action potentials move down an axon towards another cell using saltatory conduction
 - action potentials hop along the axon and recur at successive nodes of Ranvier (and thus travel faster)
 - myelin prevents any charge leakage through the axon

Multiple Sclerosis (MS)

- MS is a neurological condition which affects around 100,000 people in the UK
- Common symptoms: fatigue, vision problems and difficulties with walking
 - Most people are diagnosed between the ages of 20-40
 - More common in women than men (~2:1 ratio)
- Cause: demyelination of axons in the brain and spinal cord

Healthy brain

Brain with damage (lesions or plaques) caused by MS

Summary

- The nervous system: central nervous system (brain + spinal cord)
 & peripheral nervous system (the rest)
- The blood-brain barrier (BBB): protects the brain from chemicals carried by the blood
- Two main types of cells in the nervous system: neurons and glia
- Glia perform many important functions
- 3 types of neurons: sensory, motor and interneurons
 - basic structure of a neuron: soma + dendrites + axon
- A stimulated neuron fires an action potential that starts at the axon hillock and propagates along the axon via saltatory conduction

Reading material

- Schacter et al., chapter 3 REQUIRED!
- Kalat, chapter 2
- Further readings:
 - Allen, N. J., & Barres, B. A. (2009). Neuroscience: glia—more than just brain glue. *Nature*, 457(7230), 675-677.
 - Breedlove, S.M., Rosenzweig, M.R., & Watson, N.V. (2009)
 Biological Psychology (5th ed.) Chapter 3 gives much detail on communication within the neuron (see also chapters 2&4)
 - Bear, M.F., Connors, B.W., & Paradiso, M.A. (2006).
 Neuroscience: exploring the brain (3rd edition). Baltimore, MA.
 - Garrett, B. L. (2011). Brain & Behavior: An Introduction to Biological Psychology. Sage. (2nd edition would do too) QP360 GAR

Major types of neurons by function (1)

- 3 major types of neurons by function: motor neurons, sensory neurons & interneurons
- Motor neurons carry signals away from the brain/spinal cord to the muscles to produce movement

Major types of neurons by function (2)

- Sensory neurons carry information from the outside world into the brain via the spinal cord
 - Specialised sensory neurons according to 5 senses: light, touch, sound, taste & smell

Major types of neurons by function (3)

 Interneurons (most numerous type) – connect sensory neurons, motor neurons or other neurons

Purkinje cell (cerebellum)
Microscope view from
http://www.astralgia.com/webportfolio/omnimoment/li
ve_science/purkwrld/index.html)

Pyramidal cell (hippocampus)
Photo from Terry E. Robinson's lab site, Umich
(A,B – dendritic spines)