VEŽBE IZ MATEMATIČKE ANALIZE I

Novi Sad, 2021.

2		Matematička analiza I
\mathbf{S}_{i}	adržaj	
1	Vežbe I.2	3
	1.1 Teorema o uklještenju	8

1. Vežbe I.2

Zadatak 1.1. Izračunati $\lim_{n\to\infty} \sin\left(\pi\sqrt{n^2+n}\right)$.

Rešenje.

$$\lim_{n \to \infty} \sin\left(\pi\sqrt{n^2 + n}\right) = \sin \infty = \text{ne postoji}$$

$$= \lim_{n \to \infty} \sin\left(\pi\sqrt{n^2 + n} \pm n\pi\right)$$

$$= \lim_{n \to \infty} \sin\left(\frac{\pi\sqrt{n^2 + n} - n\pi}{\alpha} + \frac{n\pi}{\beta}\right)$$

$$[\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta]$$

$$= \lim_{n \to \infty} \sin\left(\pi\sqrt{n^2 + n} - n\pi\right) \underbrace{\cos n\pi}_{=(-1)^n} + \cos\left(\pi\sqrt{n^2 + n} - n\pi\right) \underbrace{\sin n\pi}_{=(-1)^n}$$

$$= \lim_{n \to \infty} \underbrace{(-1)^n}_{a_n} \underbrace{\sin\left(\pi\sqrt{n^2 + n} - n\pi\right)}_{b_n}$$

Ovde ne možemo primeniti $\lim_{n\to\infty}a_nb_n=\lim_{n\to\infty}a_n\lim_{n\to\infty}b_n$, jer $\lim_{n\to\infty}(-1)^n$ ne postoji. Međutim, posmaraćemo posebno niz b_n i kako je

$$\lim_{n \to \infty} \sin\left(\pi\sqrt{n^2 + n} - n\pi\right) = \lim_{n \to \infty} \sin\left[\pi\left(\sqrt{n^2 + n} - n\right) \frac{\left(\sqrt{n^2 + n} + n\right)}{\left(\sqrt{n^2 + n} + n\right)}\right]$$

$$= \lim_{n \to \infty} \sin\frac{\pi(n^2 + n - n^2)}{\sqrt{n^2 + n} + n}$$

$$= \lim_{n \to \infty} \sin\frac{n\pi}{\sqrt{n^2 + n} + n}$$

$$= \sin\lim_{n \to \infty} \frac{n\pi}{\sqrt{n^2 + n} + n} = \sin\frac{\pi}{2} = 1,$$

dobijamo da ni $\lim_{n\to\infty} (-1)^n \sin\left(\pi\sqrt{n^2+n}-n\pi\right)$ ne postoji.

Zadatak 1.2. Izračunati $\lim_{n\to\infty}\sin^2\left(\pi\sqrt{n^2+n}\right)$.

Rešenje.

Analogno, kao i prethodnom zadatku, dobijamo

$$\lim_{n \to \infty} \sin^2 \left(\pi \sqrt{n^2 + n} \right) = \lim_{n \to \infty} (-1)^{2n} \sin^2 \left(\pi \sqrt{n^2 + n} - n\pi \right)$$
$$= \lim_{n \to \infty} \sin^2 \left(\pi \sqrt{n^2 + n} - n\pi \right) = \lim_{n \to \infty} \sin^2 \frac{\pi}{2} = 1.$$

Zadatak 1.3. Dat je niz sa opštim članom

$$a_n = n - 1 - \sqrt{pn^2 + qn},$$

gde su $p,q\in\mathbb{R},\,p>0.$ U zavisnosti od p i q odrediti kada ovaj niz:

- a) konvergira,
- b) divergira.

U slučaju konvergencije, odrediti kada ovaj niz konvergira ka nuli, a kada broju različitom od nule.

Rešenje.

Kako je

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(n - 1 - \sqrt{pn^2 + qn} \right) \frac{n - 1 + \sqrt{pn^2 + qn}}{n - 1 + \sqrt{pn^2 + qn}}$$

$$= \lim_{n \to \infty} \frac{(n - 1)^2 - pn^2 - qn}{n - 1 + \sqrt{pn^2 + qn}} = \lim_{n \to \infty} \frac{(1 - p)n^2 - (2 + q)n + 1}{n - 1 + \sqrt{pn^2 + qn}},$$

dobijamo da

- a) za p = 1 i $\forall q$ niz konvergira,
- b) za $p \neq 1$ i $\forall q$ niz divergira.

U nastavku posmatramo slučaj kada je p=1, dobijamo da je

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{-(2+q)n+1}{n-1+\sqrt{n^2+qn}} = \frac{-(2+q)}{2}.$$

Primetimo da konvergencija niza ne zavisi od q, dok je granična vrednost niza $\{a_n\}$ za p=1 i q=-2 jednaka 0, a za p=1 i $q\neq -2$ jednaka broju $A, A\neq 0$.

Definicija 1.4. s je **supremum niza** $\{a_n\}$ ako važi:

1. $\forall n \in \mathbb{N} \ a_n \leq s$,

2.
$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(a_{n_0} > s - \varepsilon)$$
.

Tada pišemo $s = \sup\{a_n\}$

Definicija 1.5. i je **infimum niza** $\{a_n\}$ ako važi:

- 1. $\forall n \in \mathbb{N} \ a_n \geq i$,
- 2. $(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(a_{n_0} < i + \varepsilon)$.

Tada pišemo $i = \inf\{a_n\}$

Svaki monotono rastući (neopadajući) niz koji je ograničen sa gornje strane, konvergira svom supremumu. Svaki monotono opadajući (nerastući) niz koji je ograničen sa donje strane, konvergira svom infimumu.

Zadatak 1.6. Ispitati monotonost, ograničenost, supremum, infimum, tačke nagomilavanja i graničnu vrednost (ukoliko postoji) za niz $\{a_n\}$ čiji je opšti član niza dat sa

$$a_n = \frac{3n-1}{5n+1}.$$

Rešenje. Kako je

$$a_{n+1} - a_n = \frac{3(n+1) - 1}{5(n+1) + 1} - \frac{3n - 1}{5n + 1} = \frac{3n + 2}{5n + 6} - \frac{3n - 1}{5n + 1}$$
$$= \frac{(3n+2)(5n+1) - (5n+6)(3n-1)}{(5n+6)(5n+1)}$$
$$= \frac{8}{(5n+6)(5n+1)} > 0,$$

dobijamo da je niz monotono rastući, a samim tim $a_n \geq \frac{1}{3}$ za sve $n \in \mathbb{N}$, pa je ograničen i sa donje strane. Primetimo da je imeniilac veći od brojioca, pa je i $a_n < 1$ za sve $n \in \mathbb{N}$. Dakle, niz je ograničen.

Iz monotonosti i ograničenosti sledi da je niz konvergentan i pri tome je

$$\lim_{n \to \infty} a_n = \frac{3n-1}{5n+1} = \frac{3}{5}.$$

Jedina tačka nagomilavanja je $\frac{3}{5}$, supremum $\sup\{a_n\}=\frac{3}{5}$ i infimum $\inf\{a_n\}=\frac{1}{3}$.

Zadatak 1.7. Za prethodni primer odrediti počev od kog člana se svi naradne nalaze u ε -okolini granične vrednosti za $\varepsilon = 0.1$.

Rešenje. Posmatramo za koje vrednosti n će važiti $|a_n - a| < \varepsilon$, odnosno za koje vrednosti n važi

 $\left| \frac{3n-1}{5n+1} - \frac{3}{5} \right| < 0.1.$

Pošto je

$$\begin{split} \left|\frac{3n-1}{5n+1} - \frac{3}{5}\right| < 0.1 \iff \left|\frac{15n-5-15n-3}{5(5n+1)}\right| < \frac{1}{10} \\ \iff \left| -\frac{8}{5(5n+1)}\right| < \frac{1}{10} \\ \iff \frac{8}{5(5n+1)} < \frac{1}{10} \\ \iff 16 < 5n+1 \\ \iff 5n > 15 \\ \iff n > 3, \end{split}$$

dobijamo da za sve n>3 važi nejednakost, odnosno počevši od $n_0:=4$ svi naredni članovi niza se nalaze u ε -okolini.

Napomena. Broj n_0 zavisi od ε i on pokazuje koliko se članova niza nalazi izvan ε -okoline tačke a. Da bismo videli tu zavisnost, pretpostavimo da nam vrednost za ε nije data u zadatku. U tom slučaju potrebno je odrediti prvi prirodan broj za koji važi

$$\begin{split} \left| \frac{3n-1}{5n+1} - \frac{3}{5} \right| < \varepsilon \iff \frac{8}{5(5n+1)} < \varepsilon \\ \iff 5n+1 > \frac{8}{5\varepsilon} \\ \iff n > \frac{1}{5} \left(\frac{8}{5\varepsilon} - 1 \right). \end{split}$$

U opštem slučaju broj $\frac{1}{5}\left(\frac{8}{5\varepsilon}-1\right)$ nije prirodan broj. Dakle, prvi prirodan broj veći od njega je dat sa

$$n_0 = \lfloor \frac{1}{5} \left(\frac{8}{5\varepsilon} - 1 \right) \rfloor + 1.$$

Funkcija $\lfloor \cdot \rfloor$ je najveće donje celo - $\lfloor x \rfloor$ je najveći prirodan broj koji je manji ili jednak sa x.

1.1. Teorema o uklještenju

Neka su $\{a_n\}, \{b_n\}$ i $\{c_n\}$ realni nizovi. Ako važi:

(1) $\{a_n\}$ i $\{b_n\}$ su konvergentni i pri tome je

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = A,$$

(2) $a_n \le c_n \le b_n$ za sve $n \in \mathbb{N}$.

Tada je niz $\{c_n\}$ konvergentan i $\lim_{n\to\infty} c_n = A$.

Zadatak 1.8. Pokazati da je niz $\{c_n\}$ dat sa opštim članom

$$c_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}}$$

konvergentan i odrediti njegovu graničnu vrednost.

Rešenje. Pre svega, primetimo da je

$$c_{1} = \frac{1}{\sqrt{1^{2}+1}} = \frac{1}{\sqrt{2}},$$

$$c_{2} = \frac{1}{\sqrt{2^{2}+1}} + \frac{1}{\sqrt{2^{2}+2}} = \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{6}},$$

$$c_{3} = \frac{1}{\sqrt{3^{2}+1}} + \frac{1}{\sqrt{3^{2}+2}} + \frac{1}{\sqrt{3^{2}+3}} = \frac{1}{\sqrt{10}} + \frac{1}{\sqrt{11}} + \frac{1}{\sqrt{12}},$$

$$\vdots$$

$$c_{n} = \frac{1}{\sqrt{n^{2}+1}} + \frac{1}{\sqrt{n^{2}+2}} + \dots + \frac{1}{\sqrt{n^{2}+n}},$$

odnosno, n-ti član niza c_n ima n sabiraka. Kako je

$$\underbrace{n\frac{1}{\sqrt{n^2+n}}}_{\text{kandidat za }a_n} \leq \underbrace{\frac{1}{\sqrt{n^2+1}}}_{\text{najveći sabirak}} + \underbrace{\frac{1}{\sqrt{n^2+2}}}_{\text{najmanji sabirak}} \leq \underbrace{n\frac{1}{\sqrt{n^2+1}}}_{\text{kandidat za }b_n},$$

dobijamo da je $a_n \leq c_n \leq b_n$ za sve $n \in \mathbb{N}$, pa je uslov (2) iz teoreme o uklještenju ispunjen. Takođe, važi da je

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} n \frac{1}{\sqrt{n^2 + n}} = 1,$$
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} n \frac{1}{\sqrt{n^2 + 1}} = 1,$$

tj. imamo $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=1$, pa je i uslov (1) iz teoreme o uklještenju ispunjen. Dakle, na osnovu teoreme o uklještenju niz $\{c_n\}$ je konvergentan i važi da je $\lim_{n\to\infty}c_n=1$.

Zadatak 1.9. Pokazati da je niz $\{c_n\}$ dat sa opštim članom

$$c_n = \frac{1}{\sqrt[3]{8n^6 + 1}} + \frac{1}{\sqrt[3]{8n^6 + 2}} + \dots + \frac{1}{\sqrt[3]{8n^6 + 5n^2}}$$

konvergentan i odrediti njegovu graničnu vrednost.

Rešenje. Ako je

$$a_n = \frac{5n^2}{\sqrt[3]{8n^6 + 5n^2}} \le \underbrace{\frac{1}{\sqrt[3]{8n^6 + 1}}}_{\text{najveći sabirak}} + \underbrace{\frac{1}{\sqrt[3]{8n^6 + 2}}}_{\text{najmanji sabirak}} \le \frac{5n^2}{\sqrt[3]{8n^6 + 1}} = b_n,$$

dobijamo da je $a_n \leq c_n \leq b_n$ za sve $n \in \mathbb{N}$ i

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{5n^2}{\sqrt[3]{8n^6 + 5n^2}} = \frac{5}{2},$$
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{5n^2}{\sqrt[3]{8n^6 + 1}} = \frac{5}{2},$$

pa na osnovu teoreme o uklještenju dobijamo da je i niz $\{c_n\}$ konvergentan i pri tome je $\lim_{n\to\infty}c_n=\frac{5}{2}$.

Zadatak 1.10. Pokazati da je niz $\{a_n\}$ dat sa opštim članom

$$a_n = \frac{1}{\sqrt[7]{n^{14} + 2}} + \frac{1}{\sqrt[7]{n^{14} + 3}} + \dots + \frac{1}{\sqrt[7]{n^{14} + 2n^2}}$$

konvergentan i odrediti njegovu graničnu vrednost.

Rešenje.

Primetimo da je opšti član niza $\{a_n\}$ dat kao zbir $2n^2 - 1$ sabiraka od kojih je prvi sabirak najveći, a poslednji najmanji, pa važi:

$$b_n = \frac{2n^2 - 1}{\sqrt[7]{n^{14} + 2n^2}} \le a_n \le \frac{2n^2 - 1}{\sqrt[7]{n^{14} + 2}} = c_n.$$

Kako je

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{2n^2 - 1}{\sqrt[7]{n^{14} + 2n^2}} = \lim_{n \to \infty} \frac{2n^2 - 1}{n^2 \sqrt[7]{1 + \frac{2}{n^{12}}}} = 2$$

i

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{2n^2 - 1}{\sqrt[7]{n^{14} + 2}} = \lim_{n \to \infty} \frac{2n^2 - 1}{n^2 \sqrt[7]{1 + \frac{2}{n^{14}}}} = 2,$$

važi da je

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n = 2.$$

Na osnovu teoreme o uklještenim nizovima sledi da je niz $\{a_n\}$ konvergentan i da je $\lim_{n\to\infty}a_n=2.$

Literatura

- [1] Ilija Kovačević, Nebojša Ralević, Biljana Carić, Vojislav Marić, Momčilo Novaković, Slavica Medić. *Matematička analiza 1, Uvodni pojmovi i granični procesi*. FTN Izdavaštvo, Novi Sad 2018.
- [2] Ilija Kovačević, Nebojša Ralević, Biljana Carić, Vojislav Marić, Momčilo Novaković, Slavica Medić. *Matematička analiza 1, Diferencijalni i integralni račun; obične diferencijalne jednačine*. FTN Izdavaštvo, Novi Sad 2018.
- [3] Ilija Kovačević, Biljana Carić, Slavica Medić, Vladimir Ćurić. *Testovi sa ispita iz Matematičke analize 1.* FTN Izdavaštvo, Novi Sad 2018.
- [4] Ilija Kovačević, Biljana Carić, Slavica Medić, Vladimir Ćurić, Momčilo Novaković. Zbirka rešenih zadataka iz Matematičke analize 1. FTN Izdavaštvo, Novi Sad 2018.
- [5] Neboja Ralevi, Tijana Ostoji, Manojlo Vukovi, Aleksandar Janjo. *Praktikum iz Matematike analize I.* FTN Izdavatvo, Novi Sad, 2020.