Bijection between [0,1] and \mathbb{R}

Yao Yuan

June 27, 2020

Theorem 1. Find an explicit bijection from [0,1] to \mathbb{R} .

Fact 2. There exists a bijection between (0,1) and \mathbb{R} .

证明. Function $f: y = \tan(\pi x - \frac{\pi}{2})$ is obviously a bijection between (0,1) and \mathbb{R} .

Fact 3. There exists a bijection between (0,1) and [0,1].

延明. Choose an infinite sequence $(x_n)_{n\geq 1}$ of distinct elements of (0,1). Let $X=\{x_n\mid n\geq 1\}$, hence $X\subset (0,1)$. Let $x_0=1$. Define $f(x_n)=x_{n+1}$ for every $n\geq 0$ and f(x)=x for every x in $(0,1)\backslash X$. Then f is defined on (0,1] and the map $f:(0,1]\to (0,1)$ is bijective.

Similarly, we can find a bijection between (0,1] and [0,1]. Thus there exists a bijection between (0,1) and [0,1].

Combine Fact 2 and Fact 3 and we get a bijection between [0,1] and \mathbb{R} .