Dynamic programming

Shortest paths in dags

• A dag and its linearization

- To compute the distance from S to D, only need to consider distance to C and to B (because B and C are two predecessors to D).
- $dist(D) = min \{ dist(B) + 1, dist(C) + 3 \}$
- If we compute dist values in the left-to-right order, we can make sure that when we get to a node v, we already have all the information we need to compute dist(v).

Shortest paths in dags

```
\begin{split} & \text{initialize all } \operatorname{dist}(\cdot) \text{ values to } \infty \\ & \operatorname{dist}(s) = 0 \\ & \text{for each } v \in V \backslash \{s\} \text{, in linearized order:} \\ & \operatorname{dist}(v) = \min_{(u,v) \in E} \{\operatorname{dist}(u) + l(u,v)\} \end{split}
```

- The algorithm solves a collection of subproblems, $\{dist(u) : u \in V\}$.
- Starting with dist(s), then solve "larger" subproblems.

Dynamic programming

- a very powerful algorithmic paradigm
- a problem is solved by identifying a collection of *subproblems* and tackling them one by one
 - smallest first
 - using the answers to small problems to solve larger ones,
 - until the original problem is solved.

Longest increasing subsequences

- Input: a sequence of numbers $a_1, ..., a_n$
- A *subsequence* is any subset of these numbers taken in order, of the form $a_{i1}, a_{i2}, ..., a_{ik}$ where $1 \le i_1 < i_2 < ... < i_k \le n$
- Goal: to find the increasing subsequence of greatest length.
- E.g.) the longest increasing subsequence of 5, 2, 8, 6, 3, 6, 9, 7:
 2, 3, 6, 9

Find the longest path in the dag!

Longest increasing subsequences

- L(j): the length of the longest path the longest increasing subsequence ending at j
- Algorithm

```
for j=1,2,\ldots,n: L(j)=1+\max\{L(i):(i,j)\in E\} return \max_j L(j)
```

- *Dynamic programming*: To solve the original problem, define a collection of *subproblems* $\{L(j): 1 \le j \le n\}$ with the key property (*):
 - (*) There is an *ordering* on the subproblems,
 and a *relation* that shows how to solve a subproblem
 given the answers to "smaller" subproblems
 (subproblems that appear earlier in the ordering).

Longest increasing subsequences

- Each subproblem is solved using the relation :
 - $L(j) = 1 + \max\{L(i) : (i, j) \in E\}$
- How long does this step take?
 - To compute L(j): O(in-degree(j)).
 - Total : $O(|E|) \rightarrow O(n^2)$.
- L values only tells us the *length* of the optimal subsequence. How to construct the subsequence?
 - While computing L(j), record prev(j), the previous node on the longest path to j.

Recursive vs. dynamic programming

- The formula for L(j) suggests an alternative, recursive algorithm.
- Suppose that the numbers are sorted. Then, $L(j) = 1 + \max\{L(1), L(2), \ldots, L(j-1)\}.$
- The following figure unravels the recursion for L(5):

- The tree for L(n) has *exponential* size. Many *repeated* nodes!
- Only *small* number of *distinct* subproblems -> DP solve them in the right order.

Edit distance

- Given two strings, how can we measure how close they are?
- Ex) SNOWY, SUNNY: possible alignments

- : gap (we may place any number of gaps in either string)
- Cost: the number of columns in which the letters differ
- Edit distance of two strings: the cost of their best possible alignment
 - = minimum number of *edits* insertions, deletions, and substitutions of characters needed to transform the first string into the second

Dynamic programming

- What are the subproblems?
- (*) There is an ordering on the subproblems, and a relation that shows how to solve a subproblem given the answers to "smaller" subproblems (subproblems that appear earlier in the ordering).
- Input : x[1..m], y[1..n]
- Consider prefixes : x[1..i], y[1..i] -> call this subproblem E(i, j)
- Subproblem E(7, 5)

• Goal : E(m, n)

- Express E(i, j) in terms of smaller subproblems!
- The rightmost column of the best alignment can be one of the following:

following: x[i] or - or y[j] or x[i]

- $E(i, j) = \min \{1 + E(i-1, j), 1 + E(i, j-1), \text{diff}(i, j) + E(i-1, j-1) \}$ where diff(i, j) = 0 if x[i] = y[j] and 1 otherwise.
- Base cases : i=0 or j=0

• The answers to all the subproblems E(i, j) form a two-dimensional table. j-1 j n

		j-1	n			
i-1		\				
i			*			
m						GOAL

```
for i=0,1,2,\dots,m: E(i,0)=i for j=1,2,\dots,n: E(0,j)=j for i=1,2,\dots,m: for j=1,2,\dots,n: E(i,j)=\min\{E(i-1,j)+1,E(i,j-1)+1,E(i-1,j-1)+\text{diff}(i,j)\} return E(m,n)
```

		P	O	L	Y	N	O	M	Ι	A	L
	0	1	2	3	4	5	6	7	8	9	10
\mathbf{E}	1	1	2	3	4	5	6	7	8	9	10
X	2	2	2	3	4	5	6	7	8	9	10
P	3	2	3	3	4	5	6	7	8	9	10
O	4	3	2	3	4	5	5	6	7	8	9
N	5	4	3	3	4	4	5	6	7	8	9
\mathbf{E}	6	5	4	4	4	5	5	6	7	8	9
N	7	6	5	5	5	4	5	6	7	8	9
T	8	7	6	6	6	5	5	6	7	8	9
I	9	8	7	7	7	6	6	6	6	7	8
A	10	9	8	8	8	7	7	7	7	6	7
L	11	10	9	8	9	8	8	8	8	7	6

Underlying dag

Common subproblems

- Finding the right subproblem takes creativity and experimentation.
- Standard choices

i. The input is
$$x_1, x_2, \ldots, x_n$$
 and a subproblem is x_1, x_2, \ldots, x_i .

$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10}

The number of subproblems is therefore linear.

ii. The input is x_1, \ldots, x_n , and y_1, \ldots, y_m . A subproblem is x_1, \ldots, x_i and y_1, \ldots, y_j .

$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10}

$$y_1$$
 y_2 y_3 y_4 y_5 y_6 y_7 y_8

The number of subproblems is O(mn).

Common subproblems

iii. The input is x_1, \ldots, x_n and a subproblem is $x_i, x_{i+1}, \ldots, x_j$.

$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10}

The number of subproblems is $O(n^2)$.

iv. The input is a rooted tree. A subproblem is a rooted subtree.

Knapsack

- Given a knapsack of capacity W, n items of weight $w_1, ..., w_n$ and value $v_1, ..., v_n$, choose the most valuable combination of items.
- E.g.) *W*=10

Item	Weight	Value
1	6	\$30
2	3	\$14
3	4	\$16
4	2	\$9

- Two versions :
 - 1) allow unlimited quantities :pick item 1 and two of item 4 (total \$48)
 - 2) allow only 1 of each item:pick items 1 and 3 (total \$46).

Knapsack with repetitions

- What are the subproblems?
- Define K(w) = maximum value achievable with a knapsack of capacity w.
- If the optimal solution to K(w) includes item i, then removing it leaves an optimal solution to $K(w-w_i)$.
- We don't know which *i*, so try all possibilities.

$$K(w) = \max_{i:w_i \le w} \{K(w - w_i) + v_i\}$$

Algorithm

$$K(0)=0$$
 for $w=1$ to W :
$$K(w)=\max\{K(w-w_i)+v_i:w_i\leq w\}$$
 return $K(W)$

Analysis

```
K(0)=0 for w=1 to W: K(w)=\max\{K(w-w_i)+v_i:w_i\leq w\} return K(W)
```

- This algorithm fills in a one-dimensional table of length W+1, in left-to-right order.
- Each entry can take up to O(n) time to compute.
- The overall running time = O(nW).

Knapsack without repetition

- Need to refine the subproblem to carry additional information about the items being used by adding a second parameter, $0 \le j \le n$.
- K(w, j) = maximum value achievable using a knapsack of capacity w and items 1, ..., j.
- Goal : K(W, n).
- Express K(w, j) in terms of smaller subproblems considering whether item j is needed or not.
- $K(w, j) = \max \{ K(w-w_j, j-1) + v_j, K(w, j-1) \}$
- (The first case is invoked only if $w_i \le w$)

Analysis

```
Initialize all K(0,j)=0 and all K(w,0)=0 for j=1 to n: for w=1 to W: if w_j>w: K(w,j)=K(w,j-1) else: K(w,j)=\max\{K(w,j-1),K(w-w_j,j-1)+v_j\} return K(W,n)
```

- The algorithm fills out a 2-dimensional table, with W+1 rows and n+1 columns.
- Each table entry takes constant time.
- Running time : O(nW).

Memoization

- In dynamic programming, we use a recursive formula to fill out a table of solution values in a bottom-up manner, from smallest subproblem to largest.
- The formula also suggests a recursive algorithm, but naive recursion can be terribly inefficient, because it solves the same subproblems over and over again.
- Memoization record the results of previous invocations to avoid repetitions!

```
A hash table, initially empty, holds values of K(w) indexed by w \frac{\text{function knapsack}(w)}{\text{if } w \text{ is in hash table: return } K(w)}{K(w) = \max\{\text{knapsack}(w-w_i)+v_i: w_i \leq w\}} insert K(w) into hash table, with key w return K(w)
```