Sistemas Digitais

Circuitos sequenciais síncronos – soluções

Observação: Uma codificação diferente dos estados dos circuitos sequenciais dá origem a outras soluções igualmente válidas (outros mapas de Karnaugh, equações de entrada dos FF e logigramas).

1. (a)

X	Y	Q_n	Q_{n+1}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

(b) O diagrama de estados está representado na Figura 1.

Figura 1: Diagrama de estados

(c) A tabela de transições de estados é a seguinte

Q*	X	Y	Q
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

i. Com flip-flop JK

	•	J		
Q*\XY	00	01	11	10
0	0	0	1	1
1	-	-	-	-

11								
Q*\XY	00	01	11	10				
0	-	-	-	-				
1	1	0	0	1				

$$J = X \\ Y = \overline{Y}$$

ii. Com flip-flop T

Q*\XY	00	01	11	10
0	0	0	1	1
1	1	0	0	1

$$T = \overline{Q^*}X + Q^*\overline{Y}$$

iii. Com flip-flop D

Q*\XY	00	01	11	10
0	0	0	1	1
1	0	1	1	0

$$T = \overline{Q^*}X + Q^*Y$$

O logigrama do circuito (inclui o desenho do flip-flop XY com os flip-flops JK, T e D) está representado na Figura 2.

Figura 2: Logigrama da síntese do flip-flop XY com flip-flops JK, T e D.

2. O circuito tem 5 estados (3 FF) e 5 saídas. O diagrama de estados está representado na Figura 3 (codificaram-se os estados usando o código binário natural). A tabela de transições de estados é a seguinte

			Q_n		Q_{n+1}							
act	seg	x2	x1	x0	x2	x1	x0	s4	s3	s2	s1	s0
a	b	0	0	0	0	0	1					1
b	\mathbf{c}	0	0	1	0	1	0				1	
c	d	0	1	0	0	1	1			1		
d	e	0	1	1	1	0	0		1			
e	a	1	0	0	0	0	0	1				

Os mapas de Karnaugh são preenchidos com a ajuda da tabela de transição de estados do circuito e da tabela de excitação do flip-flop D.

2

D2								
$x_2 \backslash x_1 x_0$	00	01	11	10				
0	0	0	1	0				
1	0	-	-	-				

Di									
$x_2 \backslash x_1 x_0$	00	01	11	10					
0	0	1	0	1					
1	0	-	-	-					

D0								
$x_2 \backslash x_1 x_0$	00	01	11	10				
0	1	0	0	1				
1	0	-	-	-				

Figura 3: Diagrama de estados

$$\begin{array}{l} D2 = x_1 x_0 \\ D1 = \overline{x_1} x_0 + x_1 \overline{x_0} = x_1 \oplus x_0 \\ D0 = \overline{x_2} \ \overline{x_0} \end{array}$$

O logigrama do circuito está representado na Figura 4.

Figura 4: Logigrama do circuito gerador de sequência.

3. O circuito tem uma entrada (X), duas saídas (s1 e s0) e 3 estados. São necessários 2 FF. A tabela de transição de estados é a seguinte (codificaram-se os estados com o código binário natural).

			Q_n		Q_{n+1}			
X	act	seg	x1	x0	x1	x0	s1	s0
0	a	b	0	0	0	1	0	0
0	b	$^{\mathrm{c}}$	0	1	1	0	0	1
0	c	a	1	0	0	0	1	0
0	-	-	-	-	-	-	-	-
1	a	$^{\mathrm{c}}$	0	0	1	0	0	0
1	b	a	0	1	0	0	0	1
1	c	b	1	0	0	1	1	0
1	-	-	-	-	-	-	-	-

Os mapas de Karnaugh são preenchidos com a ajuda da tabela de transição de estados do circuito e da tabela de excitação do flip-flop T.

	T	1					T	0		
$X \backslash x_1 x_0$	00	01	11	10		$X \setminus x_1 x_0$	00	01	11	10
0	0	1	-	1		0	1	1	-	0
1	1	0	-	1		1	0	1	-	1
	S	1					S	0		
$X \backslash x_1 x_0$	00	01	11	10		$X \setminus x_1 x_0$	00	01	11	10
0	0	0	-	1		0	0	1	-	0
1	0	0	-	1		1	0	1	-	0
$T1 = \overline{X}x_0 + X\overline{x_0} + x_1\overline{x_0} = X \oplus x_0 + x_1\overline{x_0}$										
$T0 = x_0 +$	$X \overline{x}$	$\bar{X} + X$	$x_1 =$	$x_0 +$	· X	$T \oplus x_1$				

$$T0 = x_0 + \overline{X} \overline{x_1} + Xx_1 = x_0 + \overline{X} \oplus x_1$$

$$s1 = x_1$$

$$s0 = x_2$$

 $s0 = x_0$

O logigrama do circuito está representado na Figura 5.

Figura 5: Logigrama do circuito.

Observando o diagrama de estados é possível chegar à conclusão que se trata de um circuito contador módulo 3 bi-direccional: se X=0 conta de forma crescente (00 \rightarrow 01 \rightarrow 10 \rightarrow 00...); se X=1 conta de forma decrescente $(00 \rightarrow 10 \rightarrow 01 \rightarrow 00...)$.

4. O circuito tem uma entrada E e uma saída S. Para detectar a sequência ${\bf 110010}$ são necessários 7 estados (um inicial e um quando é reconhecido cada dígito da sequência), logo são necessários 3 FF.

Existem dois comportamentos possíveis para o circuito:

- (a) não existe sobreposição de sequências (se existir um erro durante a sequência o circuito volta ao estado inicial)
- (b) pode existir sobreposição
- O diagrama de estados depende do comportamento implementado. Seguem-se as duas soluções possíveis:
- (a) O diagrama de estados está representado na Figura 7 (codificaram-se os estados com o código binário natural).

Figura 6: Diagrama de estados do circuito detector de sequências.

A tabela de transições de estados é a seguinte.

				Q_n			Q_{n+1}		
X	act	seg	x2	x1	x0	x2	x1	x0	S
0	a	a	0	0	0	0	0	0	0
0	b	a	0	0	1	0	0	0	0
0	c	d	0	1	0	0	1	1	0
0	d	e	0	1	1	1	0	0	0
0	e	a	1	0	0	0	0	0	0
0	f	g	1	0	1	1	1	0	0
0	g	a	1	1	0	0	0	0	1
0	-	-	-	-	-	-	-	-	-
1	a	b	0	0	0	0	0	1	0
1	b	\mathbf{c}	0	0	1	0	1	0	0
1	c	a	0	1	0	0	0	0	0
1	d	a	0	1	1	0	0	0	0
1	e	f	1	0	0	1	0	1	0
1	f	a	1	0	1	0	0	0	0
1	g	\mathbf{a}	1	1	0	0	0	0	1
1	-	-	-	-	-	-	-	-	-

Os mapas de Karnaugh são preenchidos com a ajuda da tabela de transição de estados do circuito e da tabela de excitação do flip-flop T.

	T2			
$Ex_2 \backslash x_1 x_0$	00	01	11	10
00	0	0	1	0
01	1	0	-	1
11	0	1	-	1
10	0	0	0	0

	11			
$Ex_2 \backslash x_1 x_0$	00	01	11	10
00	0	0	1	0
01	0	1	-	1
11	0	0	-	1
10	0	1	1	1

	1.0	l		
$Ex_2 \backslash x_1 x_0$	00	01	11	10
00	0	1	1	1
01	0	1	-	1
11	1	1	-	0
10	1	1	1	0

$$\begin{split} T2 &= x_2 \ x_1 + E \ x_2 \ x_0 + \overline{E} \ x_2 \ \overline{x_0} + \overline{E} \ x_1 \ x_0 \\ T1 &= x_1 \ x_0 + x_2 \ x_1 + E \ x_1 + \overline{E} \ x_2 \ x_0 + E \ \overline{x_2} \ x_0 \\ T0 &= x_0 + E \ \overline{x_1} + \overline{E} \ \overline{x_2} \ x_1 \\ S &= x_2 x_1 \overline{x_0} \end{split}$$

(b) O diagrama de estados está representado na Figura 7 (codificaram-se os estados com o código binário natural).

Figura 7: Diagrama de estados do circuito detector de sequências.

A tabela de transições de estados é a seguinte.

				Q_n			Q_{n+1}		
X	act	seg	x2	x1	x0	x2	x1	x0	S
0	a	a	0	0	0	0	0	0	0
0	b	\mathbf{a}	0	0	1	0	0	0	0
0	с	d	0	1	0	0	1	1	0
0	d	e	0	1	1	1	0	0	0
0	e	a	1	0	0	0	0	0	0
0	f	g	1	0	1	1	1	0	0
0	g	\mathbf{a}	1	1	0	0	0	0	1
0	-	-	-	-	-	-	-	-	-
1	a	b	0	0	0	0	0	1	0
1	b	$^{\mathrm{c}}$	0	0	1	0	1	0	0
1	с	$^{\mathrm{c}}$	0	1	0	0	1	0	0
1	d	b	0	1	1	0	0	1	0
1	e	f	1	0	0	1	0	1	0
1	f	b	1	0	1	0	0	1	0
1	g	b	1	1	0	0	0	1	1
1	-	-	-	-	-	-	-	-	-

Os mapas de Karnaugh são preenchidos com a ajuda da tabela de transição de estados do circuito e da tabela de excitação do flip-flop T.

	Τ2					
$Ex_2 \backslash x_1 x_0$	00	01	11	10		Е
00	0	0	1	0		
01	1	0	-	1	İ	
11	0	1	-	1	İ	
10	0	0	0	0		

	.1.1			
$Ex_2 \backslash x_1 x_0$	00	01	11	10
00	0	0	1	0
01	0	1	-	1
11	0	0	-	1
10	0	1	1	0

	10			
$Ex_2 \backslash x_1 x_0$	00	01	11	10
00	0	1	1	1
01	0	1	-	1
11	1	0	-	1
10	1	1	0	0

$$\begin{array}{l} T2 = x_2 \ x_1 + E \ x_2 \ x_0 + \overline{E} \ x_2 \ \overline{x_0} + \overline{E} \ x_1 \ x_0 \\ T1 = x_1 \ x_0 + x_2 \ x_1 + \overline{E} \ x_2 \ x_0 + E \ \overline{x_2} \ x_0 \\ T0 = \overline{E} \ x_0 + \overline{E} \ x_1 + E \ \overline{x_2} \ \overline{x_1} + E \ x_2 \ \overline{x_0} \\ S = x_2 x_1 \overline{x_0} \end{array}$$

Falta apresentar o logigrama.

- 5. Este exercício é semelhante ao problema apresentado no slide 12 com menos um estado, já que é um contador módulo 7 $(000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 000 \dots)$.
- 6. (a) Além das entradas usuais A e B este circuito tem mais uma entrada (o valor anterior da função F) que pode ser designada por F*. A tabela de verdade da função é:

eı	ntrac	las	son	nador	codi	ficador	demultiplexer		saída
A	В	F^*	S	Co	s1	s0	D	S	F
0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0
0	1	0	1	0	1	0	1	0	0
0	1	1	0	1	1	0	1	0	0
1	0	0	1	0	1	1	1	1	1
1	0	1	0	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1	1
1	1	1	1	1	1	1	0	1	0

O preenchimento do mapa de Karnaugh resulta na função F=A $\overline{F*}+A$ \overline{B}

(b) Olhando para as entradas e o valor da função F obtém-se a tabela de transição de estados

A	В	F^*	F				
0	0	0	0				
0	0	1	0		A	В	F
0	1	0	0		0	0	0
0	1	1	0		0	1	0
1	0	0	1		1	0	1
1	0	1	1		1	1	$\overline{F^*}$
1	1	0	1	Ì '			
1	1	1	0				

(c) O diagrama de stados está representado na Figura 8.

Figura 8: Diagrama de estados.

(d) A tabela seguinte é a tabela de excitação do flip-flop SR. Com a tabela de verdade já encontrada e a tabela de excitação do flip-flop SR, preenchem-se os mapas de Karnaugh.

Q	Q^*	\mathbf{S}	R
0	0	0	-
0	1	1	0
1	0	0	1
1	1	-	0

S	5		R				
$AB \backslash x$	0	1	$AB \backslash x$	0	1		
00	0	0	00	-	1		
01	0	0	01	-	1		
10	1	0	10	0	1		
11	1	-	11	0	0		

$$S = A\overline{x}$$

$$R = \overline{A} + B x$$

O logigrama do circuito está representado na Figura 9.

Figura 9: Logigrama.

7. O circuito tem três saídas para poder codificar em binário a sequência pedida (s2, s1 e s0) e 4 estados. São necessários 2 FF. O diagrama de estados está representado na Figura 10 (codificaram-se os estados de modo a serem iguais às saídas s1 e s0).

Figura 10: Diagrama de estados.

A tabela de transição de estados é a seguinte:

		Q	\mathcal{P}_n	Q_{n+1}				
act	seg	x1	x0	x1	x0	s2	s1	s0
a	b	0	0	1	1	1	0	0
b	$^{\mathrm{c}}$	0	1	0	0	0	0	1
c	d	1	0	0	1	1	1	0
d	a	1	1	1	0	0	1	1

Os mapas de Karnaugh são preenchidos com a ajuda da tabela de transição de estados do circuito e da tabela de excitação do flip-flop ${\bf D}.$

D1				D0			S2			
$x_1 \backslash x_0$	0	1		$x_1 \backslash x_0$	0	1		$x_1 \backslash x_0$	0	1
0	1	0		0	1	0		0	1	0
1	0	1		1	1	0		1	1	0
$D1 = \overline{x_1}$	$\oplus x$	7 0	•							

 $D0 = \overline{x_0}$

 $S2 = \overline{x_0}$ $S1 = x_1$

 $S0 = x_0$

O logigrama do circuito está representado na Figura 11.

Figura 11: Logigrama do circuito.

- 8. O sistema tem 2 entradas (SP e PF) e uma saída (M). Pode estar num de três estados possíveis: pressão ok, portas abertas, motor em funcionamento.
 - (a) O diagrama de estados está representado na Figura 12.

Figura 12: Diagrama de estados.

A tabela de transição de estados é a seguinte.

				Q_n		Q_{n+1}		
SP	PF	act	seg	x1	x0	x1	x0	M
0	0	ok	porta	0	0	0	1	0
0	0	porta	porta	0	1	0	1	0
0	0	motor	motor	1	0	1	0	1
0	0	-	-	-	-	-	-	-
0	1	ok	porta	0	0	0	1	0
0	1	porta	motor	0	1	1	0	1
0	1	motor	motor	1	0	1	0	0
0	1	-	-	-	-	-	-	-
1	0	ok	ok	0	0	0	0	0
1	0	porta	porta	0	1	0	1	1
1	0	motor	ok	1	0	0	0	0
1	0	-	-	_	-	-	-	-
1	1	ok	ok	0	0	0	0	0
1	1	porta	motor	0	1	1	0	0
1	1	motor	ok	1	0	0	0	0
1	1	-	-	-	-	-	-	-

(b) Os mapas de Karnaugh são preenchidos com a ajuda da tabela de transição de estados do circuito e do flip-flop ${\bf D}.$

	D1			
$SP PF \backslash x_1x_0$	00	01	11	10
00	0	0	-	1
01	0	1	-	1
10	0	1	-	0
11	0	0	-	0

	D0			
$SP \ PF \backslash x_1 x_0$	00	01	11	10
00	1	1	-	0
01	1	0	-	0
10	0	0	-	0
11	0	1	-	0

	\mathbf{M}			
$SP PF \backslash x_1x_0$	00	01	11	10
00	0	0	-	1
01	0	0	-	1
10	0	0	-	1
11	0	0	-	1

$$D1 = PF x_0 + \overline{SP} x_1$$

$$D0 = \overline{SP} \overline{x_1} \overline{x_0} + \overline{PF} x_0$$

$$M = x_1$$

O logigrama está representado na Figura 13.

Figura 13: Logigrama.