

Tópicos I – Morfometria Geométrica

Medidas lineares

Será que essas espécies são morfologicamente diferentes, ou sua diferença é apenas uma questão de escala?

1. Usar os resíduos do modelo

modelo <- gls(medidas~size)
prcomp(modelo\$residuals)</pre>

1. Usar os resíduos do modelo

Todos os dados transformados por In

1. Usar os resíduos do modelo

Modelo de mínimos quadrados generalizados

Busca verificar uma relação linear entre duas variáveis

Busca verificar uma relação linear entre duas variáveis

Exemplo

1. Usar os resíduos do modelo

```
modelo <- gls(medidas~size)
prcomp(modelo$residuals)</pre>
```

Resíduos, ou **erro** do modelo

Exemplo

Resíduos

Diferença entre o valor observado em uma variável e o valor previsto pelo modelo

Neste caso

A parcela da variância nos dados (DNF) ...

Neste caso

que não segue a previsão feita pelo tamanho (CT)

1. Usar os resíduos do modelo

```
modelo <- gls (medidas~size)
prcomp (modelo$residuals)</pre>
```

Análise de componentes principais (**PCA**)

	СС	DmO	DmN	DNF	DOF	AMC	AND	ANV	DIN	DIO	LC	LMC
sp1	2,5	0,5	-0,7	-0,1	0,6	1,4	1,1	0,7	0,7	0,6	2,2	1,1
sp2	3,3	1,0	0,5	1,0		2,0	1,7	1,4	1,6	1,3	2,9	1,9
sp3	2,7	0,4	-0,4	0,5	1,2	1,5	0,7	0,6	1,0	0,7	2,2	1,2
sp4	2,9	0,2	-0,5	0,3	1,3	2,0	1,4	1,0	1,2	1,2	2,6	1,7
sp5	3,0	0,9	-0,2			1,8		1,0	1,4	1,2	2,6	1,7
sp6	3,0	0,8	0,1	0,8	1,8	1,8	1,6	1,3	1,3	1,5	2,7	1,8
()	()	()	()	()	()	()	()	()	()	()	()	()

Exemplo

	СС	DmO	DmN	DNF	DOF	AMC	AND	ANV	DIN	DIO	LC	LMC
sp1	2,5	0,5	-0,7	-0,1	0,6	1,4	1,1	0,7	0,7	0,6	2,2	1,1
sp2	3,3	1,0	0,5	1,0	1,6	2,0	1,7	1,4	1,6	1,3	2,9	1,9
sp3	2,7	0,4	-0,4	0,5	1,2	1,5	0,7	0,6	1,0	0,7	2,2	1,2
sp4	2,9	0,2	-0,5	0,3	1,3	2,0	1,4	1,0	1,2	1,2	2,6	1,7
sp5	3,0	0,9	-0,2	0,2	1,2	1,8	1,5	1,0	1,4	1,2	2,6	1,7
sp6	3,0	0,8	0,1	0,8	1,8	1,8	1,6	1,3	1,3	1,5	2,7	1,8
()	()	()	()	()	()	()	()	()	()	()	()	()
		•								l		

	СС	DmO	DmN	DNF	DOF	AMC	AND	ANV	DIN	DIO	LC	LMC
sp1	2,5	0,5	-0,7	-0,1	0,6	1,4	1,1	0,7	0,7	0,6	2,2	1,1
sp2	3,3	1,0	0,5	1,0	1,6	2,0	1,7	1,4	1,6	1,3	2,9	1,9
sp3	2,7	0,4	-0,4	0,5	1,2	1,5	0,7	0,6	1,0	0,7	2,2	1,2
sp4	2,9	0,2	-0,5	0,3	1,3	2,0	1,4	1,0	1,2	1,2	2,6	1,7
sp5	3,0	0,9	-0,2	0,2	1,2	1,8	1,5	1,0	1,4	1,2	2,6	1,7
sp6	3,0	0,8	0,1	0,8	1,8	1,8	1,6	1,3	1,3	1,5	2,7	1,8
()	()	()	()	()	()	()	()	()	()	()	()	()

	CC	DmO	DmN	DNF	DOF				DIN	DIO	LC	LMC
sp1	2,5	0,5	-0,7	-0,1	q	4	1,1	d	7	0,6	2,2	1,1
sp2	3,3	1,0	0,5	1,0	1,6	2,0	1,7		,6	1,3	2,9	1,9
sp3	2,7	0,4	-0,4	0.5	-1,2	1,5	9		1,0	0,7	2,2	1,2
sp4	2,9	0,2	-0,5	,3		2,0		1,0	1,2	1,2	2,6	1,7
sp5	3,0	0,9	-0,2	0,2		1	,5	1,0	1,4	1,2	2,6	1,7
sp6	3,0	0,8	0,1	0,8	1,8	1,8	1,6	1,3	1,3	1,5	2,7	1,8
()	()	()	()	()))	()	()	()	()	()
		-	,									

Exemplo $x\alpha + y\beta + z\gamma$ com 3D У (0,0,0)X

Exemplo com 3D

CCa + DINB+ DNFy

Combinação linear das variáveis originais y (0,0,0)X

Exemplo com 3D

E permite a reprojeção dos dados em um novo eixo, primeiro componente principal da variação

PC₁

Exemplo com 3D

Exemplo com 3D

Outros componentes são obtidos da mesma forma, **perpendiculares ao PC1 e passando pela origem**

Exemplo com > 3D

	CC	DmO	DmN	DNF	DOF				DIN	DIO	LC	LMC
sp1	2,5	0,5	-0,7	-0,1	q	,4	1,1	E.	7	0,6	2,2	1,1
sp2	3,3	1,0	0,5	1,0	1,6	2,0	1,7		,6	1,3	2,9	1,9
sp3	2,7	0,4	-0,4	0.5	-1,2	1,5	8		1,0	0,7	2,2	1,2
sp4	2,9	0,2	-0,5	,3		2,0		1,0	1,2	1,2	2,6	1,7
sp5	3,0	0,9	-0,2	0,2		1	,5	1,0	1,4	1,2	2,6	1,7
sp6	3,0	0,8	0,1	0,8	1,8	1,8	1,6	1,3	1,3	1,5	2,7	1,8
()	()	()	()	()))	()	()	()	()	()

Exemplo com > 3D

Deixa de ser um problema, já que com a PCA o máximo da variância dos dados passa a ser representado por seus primeiros eixos.

Ufa...

1. Usar os resíduos do modelo

```
modelo <- gls (medidas~size)
prcomp (modelo$residuals)</pre>
```

2. Usar uma transformação por média geométrica

Size Allometry: Size and Shape Variables with Characterizations of the Lognormal and Generalized Gamma Distributions

JAMES E. MOSIMANN*

Abordagem conhecida como "log shape ratios"

Escola Gould-Mosimann

Alometria como a **covariância** entre **tamanho** e **forma**

Média aritimética: $ar{X} = rac{1}{n} \sum_{i=1}^n X_i$

Média aritimética: $ar{X} = rac{1}{n} \sum_{i=1}^{n} X_i$

Média geométrica:
$$G = \left(\prod_{i=1}^n X_i\right)^n$$

multiplicativa

Os valores são **ponderados**, de modo a respeitar certa proporcionalidade dos dados

Média geométrica:
$$G = \left(\prod_{i=1}^n X_i\right)^{rac{\pi}{n}}$$
 multiplicativa

G reflete um **tamanho global do indivíduo**: multiplicar seus fatores X_i individualmente é o mesmo que multiplicar G por este fator

Média geométrica:
$$G = \left(\prod_{i=1}^n X_i\right)^{ar{n}}$$
 multiplicativa

Média aritimética: $ar{X} = ar{\lambda} \sum_{i=1}^n X_i$

Média geométrica:
$$G = \left(\prod_{i=1}^n X_i\right)^{\frac{1}{n}}$$

Ao calcular o **log** da ponderação de X_i por G...

$$\log\left(\frac{X_i}{G}\right)$$

... G, que já assumimos como um tamanho global da amostra é removido do conjunto de dados

$$\log\left(rac{X_i}{G}
ight) = \log(X_i) - \log(G)$$

$$\log\left(rac{X_i}{G}
ight) = \log(X_i) - \log(G)$$

O que sobra é, portanto, uma espécie de proporção relativa já normalizada

Ufa...

Duas abordagens:

1. Usar os resíduos do modelo

```
modelo <- gls (medidas~size)
prcomp (modelo$residuals)</pre>
```

2. Usar uma transformação por média geométrica