Home Assignment N_24

Due on November 22, 2024, 11:59pm

Exercise 1

[2 points]. Prove that the eigenvalues of a real symmetric matrix $A \in \mathbb{R}^{N \times N}$, where $A = A^T$, are real-valued (i.e., not complex-valued). Prove also that the eigenvectors of A corresponding to different eigenvalues are orthogonal to each other.

Exercise 2

[5 points]. Derive the K-th largest direction of variance in principal component analysis (PCA).

Exercise 3

[5 points]. 1) Suppose that a discrete-time linear system has outputs y[n] for the given inputs x[n], as shown in Fig. 1. Determine the response $y_4[n]$ when the input is as shown in Fig. 2.

- a) [1 point]. Express $x_4[n]$ as a linear combination of $x_1[n]$, $x_2[n]$, and $x_3[n]$.
- b) [1 point]. Using the fact that the system is linear, determine $y_4[n]$, the response to $x_4[n]$.
- c) [1 point]. From the input-output pairs in Fig. 1, determine whether the system is time-invariant.
- 2) Determine the discrete-time convolution of x[n] and h[n] for the following two cases.

- a) [1 point]. As shown in Fig. 3.
- b) [1 point]. As shown in Fig. 4.

Exercise 4

[3 points]. From the lecture slides, we know that the convolution of discrete-time signals x[n] and y[n], for $n \in [-\infty, +\infty]$, is defined as

$$z[n] = (x * y)[n] = \sum_{m = -\infty}^{\infty} x[m]y[n - m] = \sum_{m = -\infty}^{\infty} x[n - m]y[m].$$
 (1)

Here we introduce the Discrete-time Fourier Transform (DTFT) of a discrete-time signal x[n]:

$$X(\omega) = \text{DTFT}(x) = \sum_{n = -\infty}^{\infty} x[n]e^{-j\omega n}.$$
 (2)

Try to prove the Convolution Theorem:

$$Z(\omega) = \mathrm{DTFT}(x * y) = \mathrm{DTFT}(x) \cdot \mathrm{DTFT}(y) = X(\omega) \cdot Y(\omega). \tag{3}$$

Figure 1:

Figure 2:

Figure 3:

Figure 4: