Teoría de la Dualidad

2.4. Problemas Primal y Dual.

- Problema primal, problema original de optimización lineal
- Problema dual, derivado del primal, con estructura asociada
- Todo problema de programación lineal tiene un problema dual.
- La teoría de dualidad tiene un papel central en el análisis de sensibilidad
- **Dualidad fuerte:** Si hay solución óptima en uno, existe en el otro y sus valores son iguales

Aplicaciones

- Evaluación económica de recursos.
- Análisis de sensibilidad.
- Diseño de algoritmos más eficientes.
- Interpretación estratégica en negocios e ingeniería.

Correspondencia Primal y Dual.

Correspondencia

Elemento del Primal	Dual
Maximización	Minimización
Nro Variables de decisión (xj)	Numero de restricciones (Restricción j-ésima)
Restricción i-ésima	Variable dual yi
Coeficientes de la función objetivo	Términos del lado derecho
≤	2

$$Z = 3x_1 + 5x_2,$$

sujeta a

$$x_1 \le 4$$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1 \ge 0, \quad x_2 \ge 0.$

Problema primal en forma de matriz

Maximizar
$$Z = \begin{bmatrix} 3, 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, sujeta a
$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$$
 y
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

$$W = 4y_1 + 12y_2 + 18y_3,$$

sujeta a

$$y_1 + 3y_3 \ge 3$$

$$2y_2 + 2y_3 \ge 5$$

y

$$y_1 \ge 0$$
, $y_2 \ge 0$, $y_3 \ge 0$.

Problema dual en forma de matriz

Minimizar
$$W = [y_1, y_2, y_3] \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$$

sujeta a

$$[y_1, y_2, y_3] \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 2 \end{bmatrix} \ge [3, 5]$$

У

$$[y_1, y_2, y_3] \ge [0, 0, 0].$$

TABLA 6.15 Una form primal-dual del ejemplo de terapia de radiación

Minimizar

sujeta a

 $\rightarrow y_1 \ge 0$

 $\rightarrow y_3' \leq 0$

Problema primal

Problema dual

 $\widehat{W} = 2.7y_1 + 6y_2 + 6y_3'$

FO: -Z

Restricciones (3): C, E R

 $-0.4x_1 - 0.5x_2$ Maximizar sujeta a

(C)
$$0.3x_1 + 0.1x_2 \le 2.7$$

(E)
$$0.5x_1 + 0.5x_2 = 6$$

(R)
$$0.6x_1 + 0.4x_2 \ge 6$$

$$x_1 \ge 0$$

 $x_2 \ge 0$

y

 $\rightarrow 0.3y_1 + 0.5y_2 + 0.6y_3' \ge -0.4$ $\rightarrow 0.1y_1 + 0.5y_2 + 0.4y_3' \ge -0.5$

→ y₂ no restringida en signo

(C)

(E)

(R)

Matriz de coeficientes

0,3	0,1
0,5	0,5
0,6	0,4

M. Variables

X1	X2

2,7	
6	

6

M. Term Ind.

0,3	0,5	0,6
0,1	0,5	0,4

Ejercicio: Problema Primal

Maximizar
$$Z = 3x_1 + 5x_2$$

s.a.:
 $x_1 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1 \ge 0, x_2 \ge 0$

- 1. Formular el problema en su formato
- 2. estandarizado:

$$Z=3x_1+5x_2+0s_1+0s_2+0s_3$$

$$x_1 + S_1 = 4$$

 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$

2. Revisar la Solución Básica Factible Inicial

•
$$x_1 = 0$$
 • $s_1 = 4$
• $x_2 = 0$ • $s_2 = 12$ • Z=0
• $s_3 = 18$

3. Primera Tabla Simplex

$$Z-3x_1-5x_2-0s_1-0s_2-0s_3=0$$

				V	D		VB		
1	/ B	R	Z	X1	X2	S1	S2	S3	RHS
		R0	1	-3	-5	0	0	0	0
5	s1	R1	0	1	0	1	0	0	4
9	s 2	R2_	0	0	2	0	1	0	12
5	s3	R2	0	3	2	0	0	1	18

4. Iteraciones

Ve: X2

• Vs: CM → s2

CM: 4/0= ind ; **12/2=6** ; 18/2=9

3. Tabla Simplex Original

			V	D		VB		
VB	R	Z	X1	X2	S1	S2	S3	RHS
	R0	1	-3	-5	0	0	0	0
s1	R1	0	1	0	1	0	0	4
s2	R2	0	0	2	0	1	0	12
s3	R3	0	3	2	0	0	1	18

$$Z=3x_1+5x_2+0s_1+0s_2+0s_3$$

$$x_1 + S_1 = 4$$

 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$

4.1 Primera Iteración

			V	D		VB		
VB	R	Z	X1	X2	S1	S2	S3	RHS
	R0	1	-3	0	0	5/2	0	30
s1	R1	0	1	0	1	0	0	4
x2	R2	0	0	1	0	1/2	0	6
s3	R2	0	3	0	0	-1	1	6

4.1 Primera Iteración

			V	D		VB		
VB	R	Z	X1	X2	S1	S2	S3	RHS
	R0	1	-3	0	0	5/2	0	30
s1	R1	0	1	0	1	0	0	4
x2	R2	0	0	1	0	1/2	0	6
s3	R2	0	3	0	0	-1	1	6

$Z=3x_1+5x_2+0s_1+0s_2+0s_3$

$$x_1 + S_1 = 4$$

 $2x_2 + S_2 = 12$
 $3x_1 + 2x_2 + S_3 = 18$

4.1 Segunda Iteración

			V	D		VB		
VB	R	Z	X1	X2	S1	S2	S3	RHS
	R0	1	0	0	0	3/2	1	36
s1	R1	0	0	0	1	1/3	-1/3	2
x2	R2	0	0	1	0	1/2	0	6
x1	R2	0	1	0	0	-1/3	1/3	2

Problema Dual

Problema primal

Maximizar $Z = 3x_1 + 5x_2$ s.a.:

- **(1)** $x_1 \leq 4$
- (2) $2x_2 \le 12$
- (3) $3x_1 + 2x_2 \le 18$ $x_1 \ge 0, x_2 \ge 0$

Matriz de coeficientes A

x1	x2
1	0
0	2
3	2

M. Term Ind. M. VNB.

M. Coef FO

Problema Dual

 $Minimizar\ W = 4y_1 + 12y_2 + 18y_3$

s.a.:

$$(1) \quad y_1 + 0y_2 + 3y_3 \ge 3$$

(2)
$$0y_1 + 2y_2 + 2y_3 \ge 5$$

$$y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$$

Matriz de coeficientes A^T

1	0	3
0	2	2

$$Maximizar - W = -4y_1 - 12y_2 - 18y_3 + Ma1 + Ma2$$

Solución del Dual

s.a.:

(1)
$$y_1 + 0y_2 + 3y_3 - e_1 + a_1 = 3$$

(2)
$$0y_1 + 2y_2 + 2y_3 - e_2 + a_2 = 5$$

 $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$
 $e_1, e_2, a_1, a_3 \ge 0$

Renglón 0: -1-2M, 4-M, 12-2M, 18-5M, M, M, 0, 0, -8M

Tabla Simplex Original

			VD					V	В	
VB	R	W	y1	y2	у3	e1	e2	a1	a2	RHS
	RO	1-2M	4-M	12-2M	18-5M	M	М	0	0	-8M
a1	R1	0	1	0	3	-1	0	1	0	3
a2	R2	0	0	2	2	0	-1	0	1	5

Solución del Dual

Tabla Simplex Original

			VD					VB		
VB	R	W	y1	y2	у3	e1	e2	a1	a2	RHS
	RO	1-2M	4-M	12-2M	18-5M	M	М	0	0	-8M
a1	R1	0	1	0	3	-1	0	1	0	3
a2	R2	0	0	2	2	0	-1	0	1	5

- R0=RP*(5M-18)+R0
- RP=R1/3
- R2=RP*(-2)+R2

Primera Iteración

			VD				VB			
VB	R	W	y1	y2	у3	e1	e2	a1	a2	RHS
	RO	1-2M	2/3M-2	12-2M	0	-2/3M+6	M	5/3M-6	0	-3M-18
у3	R1	0	1/3	0	1	-1/3	0	1/3	0	1
a2	R2	0	-2/3	2	0	2/3	-1	-2/3	1	3

$$W = 18$$

- Y1: 0 e1: 0
- Y2:0 e2:0
- **Y3:1** a1:0
 - a2:3

Solución del Dual

Primera Iteración

			VD			VB			В	
VB	R	W	y1	y2	у3	e1	e2	a1	a2	RHS
	RO	1-2M	2/3M-2	12-2M	0	-2/3M+6	М	5/3M-6	0	-3M-18
у3	R1	0	1/3	0	1	-1/3	0_	1/3	0	11
y2	R2	0	-2/3	2	0	2/3	-1	-2/3	1	3

- R0=RP*(2M-12)+R0
- R1=***
- RP=R2/2

			VD			VB			В	
VB	R	W	y1	y2	у3	e1	e2	a1	a2	RHS
	RO	1-2M	2	0	0	2	12	M-2	M-6	-36
у3	R1	0	1/3	0	1	-1/3	0	1/3	0	1
y2	R2	0	-1/3	1	0	1/3	-1/2	-1/3	1/2	3/2

$$-W = -36$$

- Y1:0 e1:0
- Y2: 3/2e2: 0
- **Y3:1** a1:0
 - a2:0

Problema Dual

Problema primal

Maximizar $Z = 3x_1 + 5x_2$ s.a.:

(1)
$$x_1 \leq 4$$

(2)
$$2x_2 \le 12$$

(3)
$$3x_1 + 2x_2 \le 18$$

 $x_1 \ge 0, x_2 \ge 0$

- **X1: 2** s1: 2
- **X2:6** s2:0

$$Z = 36$$

Factibilidad Primal

Problema Dual

 $Minimizar\ W = 4y_1 + 12y_2 + 18y_3$

s.a.:

$$(1) \quad y_1 + 0y_2 + 3y_3 \ge 3$$

(2)
$$0y_1 + 2y_2 + 2y_3 \ge 5$$

$$y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$$

- Y1: 0 e1: 0
- Y2: 3/2 e2: 0
- **Y3:1** a1:0
 - a2:0

$$W = 36$$

Propiedades de la Dualidad

- 1. Factibilidad Primal y Dual
 - Revisar si las soluciones cumplen las restricciones
- 2. Optimalidad Complementaria

$$\mathbf{c}\mathbf{x}^* = \mathbf{y}^*\mathbf{b}$$
.

$$C*x=36=y*b$$

3. Igualdad de Valores Objetivo

$$Z = 36$$

$$W = 36$$

Desafios

- De los problemas del ultimo desafío encuentre el Dual en cada caso
- Investigue que significa la Dualidad débil y que significa la dualidad fuerte