

ΕΡΓΑΣΤΗΡΙΟ 1

ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ

> Καλώς ήρθατε !!!

Κανονισμός Εργαστηρίου (1/2)

- Παρακολουθούμε τη σελίδα του μαθήματος (βλέπε e-learning):
 - ▼ τον αναλυτικός κανονισμός του εργαστηρίου
 - ▼ το πρόγραμμα των εργαστηρίων
- Όσοι, παλαιότερων ετών, έχουν παρακολουθήσει το εργαστήριο και:
 - έχουν παραδώσει εργασία εξαμήνου:
 δε χρειάζεται να παρακολουθήσουν ξανά ή να παραδώσουν εργασία
 - δεν έχουν παραδώσει εργασία εξαμήνου:
 δε χρειάζεται να παρακολουθήσουν το εργαστήριο αλλά θα πρέπει να παραδώσουν τη νέα εργασία που θα ανακοινωθεί

Κανονισμός Εργαστηρίου (2/2)

- Σε κάθε εργαστήριο δίνεται μια πρακτική άσκηση που θα πρέπει να ανεβάσετε (υποβάλλετε) στη σελίδα του μαθήματος (e-learning) μέχρι το επόμενο εργαστήριο
- Παράδοση των εργαστηριακών πρακτικών ασκήσεων + παρουσία στο εργαστήριο
- → Πετυχημένη παρακολούθηση του εργαστηρίου

Επίσης ...

Υποχρεωτική Εργασία

- Στο 4ο εργαστήριο θα ανακοινωθεί η εκφώνηση της υποχρεωτικής εργασίας εξαμήνου
- Η εργασία θα είναι επαναληπτικού χαρακτήρα, θα είναι υποχρεωτική, θα είναι ατομική και θα καλύπτει το όλο το φάσμα των εργαστηριακών ασκήσεων που θα διδαχτούν.
- Η ημερομηνία παράδοσης των ασκήσεων θα σας ανακοινωθεί με την εκφώνηση της εργασίας.

ΠΕΡΙΕΧΟΜΕΝΑ

- Συνδυαστικό κύκλωμα και πύλες
- Ο προσομοιωτής Logisim
- Υλοποιήσεις των XOR & XNOR
- Από κύκλωμα σε πίνακα αληθείας
- Από πίνακα αληθείας σε κύκλωμα
- Μοντελοποίηση προβλήματος

Διάγραμμα Συνδυαστικού Κυκλώματος

747266 Quad 2 input XNOR Gates

7404 Hex NOT Gates (Inverters)

74133 Single 13 input

Οι έξοδοι είναι συναρτήσεις των τιμών των εισόδων

Λογικές Πύλες

- 1. ΝΟΤ Λογική αντιστροφή
- 2. AND Λογικό γινόμενο
- 3. OR Λογικό άθροισμα
- 4. XOR EXCLUSIVE **OR** Αποκλειστική διάζευξη
- 5. NAND NOT AND
- 6. NOR NOT OR
- 7. XNOR NOT XOR

Πύλη ΝΟΤ – Λογική Αντιστροφή

Πύλη AND – Λογικό Γινόμενο

Πύλη OR – Λογικό Άθροισμα

Πύλη XOR (eXclusive OR) Αποκλειστική διάζευξη

Πύλη NAND (Not AND)

Πύλη NOR (Not OR)

Πύλη XNOR (eXclusive NotOR)

Σύνοψη

B.) o-	F
	۱ = F	: A.	<u>к</u> +В	
18	Α	В	F	
	0	0	1	

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	1

XOR

 $F = A \oplus B$

В

0

0

0

0

Προσομοιωτής Ψηφιακών Κυκλωμάτων

Ποόγοαμμα που εκτελείται σε υπολογιστή και δέχεται σαν είσοδο:

- 1. Περιγραφή του κυκλώματός υπό σχεδίαση.
- 2. Ένα σύνολο διανυσμάτων από τιμές που εφαρμόζονται στις εισόδους του κυκλώματος.
- 3. Καθορίζεται ο χρόνος προσομοίωσης

Ως **έξοδο** λαμβάνουμε τις αποκρίσεις από τις αντίστοιχες εισόδους που εφαρμόζονται.

Διαφορά στις αποκρίσεις του προσομοιωτή από τις θεωρητικά υπολογισμένες συνιστά σφάλμα!

Υλοποίηση XOR με AND και OR

 Να υλοποιηθεί το κύκλωμα ΧΟR από τον πίνακα αληθείας.

 Να υλοποιηθεί το κύκλωμα XNOR από τον πίνακα αληθείας.

Ροή διαδικασίας: Πίνακας αληθείας -> Λογική Συνάρτηση -> Σχεδιασμός

Παράδειγμα από Αληθοπίνακα σε Κύκλωμα

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Παράδειγμα από Αληθοπίνακα σε Κύκλωμα

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Η λογική συνάρτηση είναι: F = X'Y'Z + X'YZ' + XYZ'

Παράδειγμα από Αληθοπίνακα σε Κύκλωμα

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Η λογική συνάρτηση είναι: F = X'Y'Z + X'YZ' + XYZ'

Παράδειγμα Από Κύκλωμα σε Αληθοπίνακα

A	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Παράδειγμα Από Κύκλωμα σε Αληθοπίνακα

A	В	С	K = A XOR B	L = A NAND C
0	0	0	0	1
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	0
1	1	0	0	1
1	1	1	0	0

Παράδειγμα Από Κύκλωμα σε Αληθοπίνακα

A	В	С	K = A XOR B	L = A NAND C	F = K OR L
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	0	1
1	1	0	0	1	1
1	1	1	0	0	0

Υλοποίηση XNOR με AND και OR

Να υλοποιηθεί το κύκλωμα NXOR από τον

πίνακα αληθείας.

Μοντελοποίηση προβλημάτων

Τα κυκλώματα μπορούν να μοντελοποιήσουν περίπλοκα προβλήματα του πραγματικού κόσμου χρησιμοποιώντας μαθηματική λογική αλήθειας - Ψέματος.

- Εντοπίζουμε τις μεταβλητές του προβλήματος (που θα είναι δυαδικές μεταβλητές) και έπειτα κατασκευάζουμε τον πίνακα αλήθειας που μοντελοποιεί το πρόβλημα.
- Ακολουθεί η κατασκευή του κυκλώματος σύμφωνα με αυτά που μάθαμε.

Παράδειγμα μοντελοποίησης προβλήματος (1/2)

Να κατασκευάσετε κύκλωμα που παίρνει ως είσοδο έναν τριψήφιο δυαδικό αριθμό και επιστρέφει 1 αν ο αριθμός είναι περιττός (μονός) και 0 αν ο αριθμός είναι άρτιος (ζυγός).

Παράδειγμα μοντελοποιήσης προβλήματος (2/2)

Λύση: Έστω ΧΥΖ ο δυαδικός αριθμός. Ο πίνακας αλήθειας είναι ο ακόλουθος (αφού οι περιττοί αριθμοί είναι: (001=1, 011=3, 101=5,111=7)

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Έχουμε F = 1 όταν:

- X = 0, Y = 0, Z = 1
- X = 0, Y = 1, Z = 1
- X = 1, Y = 0, Z = 1
- X = 1, Y = 1, Z = 1

Άρα η λογική συνάρτηση είναι:

$$F = X'Y'Z + X'YZ + XY'Z + XYZ$$

$$F = X'Y'Z + X'YZ + XY'Z + XYZ$$

Πρακτική Άσκηση 1

(να υποβληθεί μόνο το αρχείο .circ)

Για το ακόλουθο κύκλωμα:

- Να βρεθεί ο Πίνακας Αληθείας
- Να γραφεί η Λογική παράσταση
- 3. Να υλοποιηθεί το κύκλωμα στον προσομοιωτή και να γίνει επαλήθευση της λειτουργίας του

ΤΕΛΟΣ

1 ου εργαστηρίου

Ερωτήσεις;