A MULTIVARIATE ANALYSIS OF CERTAIN BIOCHEMICAL COMPONENTS OF EQUINE AND FELINE SERUM SAMPLES AS REPORTED BY AN AUTO-ANALYZER SYSTEM

Ву

Robert Rothnick Jorgensen



# United States Naval Postgraduate School



## THESIS

A MULTIVARIATE ANALYSIS OF CERTAIN BIOCHEMICAL COMPONENTS OF EQUINE AND FELINE SERUM SAMPLES AS REPORTED BY AN AUTO-ANALYZER SYSTEM

by

Robert Rothnick Jorgensen, Sr.

Thesis Advisor:

A. F. Andrus

March 1971

Approved for public release; distribution wilimited.



A Multivariate Analysis of Certain Biochemical Components
of Equine and Feline Serum Samples
as Reported by an Auto-analyzer System

by

Robert Rothnick Jorgensen, Sr.
Lieutenant Colonel, United States Army
B.S., University of Minnesota, 1957
D.V.M., University of Minnesota, 1959
M.P.H., University of Minnesota, 1965

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the
NAVAL POSTGRADUATE SCHOOL
March 1971

#### ABSTRACT

This thesis contains a multivariate statistical analysis of the results of an automated analysis of serum samples from the horse and cat. In the horse, 12 biochemical components plus body weight and age are recorded; thus, observations are made on 14 random variables. In the case of the cat there are observations on 13 random variables. Ninety-one (91) pair-wise correlation coefficients are computed from the equine data and 78 pair-wise correlation coefficients are computed from the feline data. Extensive hypothesis testing concerning these correlation coefficients is conducted and the results are presented. A discriminant analysis for 2 groups, male and female, is conducted for each species. In this analysis the vector of sample means of the biochemical components plus body weight and age for males is contrasted with the corresponding vector from females. Tolerance limits for each biochemical component measured are presented for both species.



#### TABLE OF CONTENTS

| I. ·    | INTRODUCTION                                                | 6  |
|---------|-------------------------------------------------------------|----|
| II.     | A BRIEF CONSIDERATION OF THE AUTOANALYZER                   | 8  |
| III.    | THE MAMMALIAN SPECIES UNDER STUDY AND COLLECTION OF SAMPLES | 9  |
| IV.     | TABULAR PRESENTATION OF DATA                                | 10 |
| v.      | SAMPLE STATISTICS                                           | 16 |
| VI.     | HYPOTHESES TESTED                                           | 30 |
| VII.    | TOLERANCE LIMITS                                            | 44 |
| VIII.   | SUMMARY                                                     | 48 |
| IX.     | RECOMMENDATIONS                                             | 56 |
| LIST OF | REFERENCES                                                  | 57 |
| INITIAI | DISTRIBUTION LIST                                           | 59 |
| FORM DI | 1473                                                        | 60 |



#### LIST OF TABLES

| Table | e   |                                                                                                      |    |
|-------|-----|------------------------------------------------------------------------------------------------------|----|
| I     | -   | Serum Biochemical Values in 44 Horses as<br>Reported by an Auto-analyzer System                      | 11 |
| II    | -   | Serum Biochemical Values in 30 Cats as<br>Reported by an Auto-analyzer System                        | 14 |
| III   | -   | Table of Sample Mean Vectors                                                                         | 20 |
| IV -  | A   | Variance-covariance Matrix for 44 Horses                                                             | 22 |
|       | В   | Variance-covariance Matrix for 21 Female Horses                                                      | 23 |
|       | С   | Variance-covariance Matrix for 21 Female Horses                                                      | 24 |
|       | D   | Variance-covariance Matrix for 30 Cats                                                               | 25 |
|       | Е   | Variance-covariance Matrix for 15 Male Cats                                                          | 26 |
|       | F   | Variance-covariance Matrix for 15 Female Cats                                                        | 27 |
| V     | -   | Critical Values $r_{j,k}$ for the Specified $\alpha$ for 44 Horses and 30 Cats                       | 31 |
| VI -  | A   | Correlation Matrix for 44 Horses                                                                     | 32 |
|       | В   | Correlation Matrix for 30 Cats                                                                       | 33 |
| VII   | -   | Critical Values of $r_{j,k}$ for the Specified $\alpha$ for 23 Male Horses and 15 Male Cats          | 34 |
| VIII  | -A  | Correlation Matrix for 23 Male Horses                                                                | 35 |
|       | В - | Correlation Matrix for 15 Male Cats                                                                  | 36 |
| IX    | -   | Critical Values of r <sub>j,k</sub> for the Specified<br>$\alpha$ for 21 Female Horses and 15 Female | 25 |



#### Table

| x -   | A  | Correlation Matrix for 21 Female Horses                                                            | 38 |
|-------|----|----------------------------------------------------------------------------------------------------|----|
|       | В  | Correlation Matrix for 15 Female Cats                                                              | 39 |
| XI    | -  | Statistically Significant Differences in Sample Correlation Coefficients in Male and Female Horses | 41 |
| XII   | -  | Discriminant Analysis Between Males and Females                                                    | 43 |
| XIII. | -A | Tolerance Limits in the Horse                                                                      | 46 |
|       | В  | Tolerance Limits in the Cat                                                                        | 47 |



#### I. INTRODUCTION

There is a basic oneness of the human and veterinary medical professions [1]. Many diagnostic and therapeutic devices developed for use in one of these professions have sooner or later found equally significant application in the other. In particular, the advent of automated devices for the analysis of human serum has greatly facilitated biochemical profiling [2]. However, as Coffman reports, restricted availability of these devices in the past has limited their practicality in clinical veterinary medicine [3]. Coffman goes on to point out, and this writer has encountered no statement to the contrary, that the applicability of these devices, in enhancing the diagnostic capabilities of the clinician, will be cause for their increased utilization by the veterinary medical profession [4]. It is therefore logical to assume that automated biochemical profiling will be of increasing value in describing the normal intervals about the true biochemical parameters in the serum of domestic animals.

Although the auto-analyzer devices are capable of generating a large volume of data concerning biochemical values in human and animal sera, the proper analysis of these data should not be treated superficially. The lack of proficiency in statistical methodology by members of the bio-medical professions is an unfortunate fact [5].



Additionally, qualified statisticians are often asked to make meaningful conclusions from biological data that have been generated in meaningless fashion [6]. The increased reliance of the veterinary medical profession upon automated analyzing devices will yield little addition to our knowledge of serum biochemical parameters and their concomitant physiological significance unless the data are meaningfully collected and analyzed by sophisticated statistical techniques. It is this conclusion which has motivated the research effort reported herein.



#### II. A BRIEF CONSIDERATION OF THE AUTOANALYZER

The autoanalyzer used in this study was a Technicon Sequential Multiple Analyzer, SMA 12/60, which was first introduced in 1967 as a successor to the widely used SMA 12 [7]. The SMA 12/60 analyzes a serum sample quantitatively and reports on the concentration of 12 of the serum biochemical components on an easily interpreted pre-calibrated chart paper. The 12 biochemical components quantitatively analyzed are: calcium, inorganic phosphate, glucose, blood urea nitrogen (BUN), uric acid, cholesterol, total protein, albumen, total bilirubin, alkaline phosphatase, lactic dehydrogenase (LDH), and glutamic oxalacetic transaminase (SGOT).

The primary value of the autoanalyzer is that it provides a reasonable biochemical profile of the subject from a single serum sample within 60 seconds; it is invaluable as a screening device in that certain metabolic aberrations, whether suspected or unsuspected, will be manifested in abnormal serum chemistry charts.



### III. THE MAMMALIAN SPECIES UNDER STUDY AND COLLECTION OF SAMPLES

The horse has recently enjoyed a resurgence of popularity although it is more in demand as a pleasure and recreation animal rather than a source of agricultural power. It was selected for this study because it was felt that the economic value of the horse justifies the most sophisticated diagnostic techniques by consulted veterinarians. While some data are available as to equine biochemical parameters the work thus far reported does not fully exploit the statistical potential of these data [8].

In this study, 44 horses of various breeds, 23 males and 21 females, were selected. All were clinically in good health. Blood samples were obtained by vena puncture; the serum was separated from the clot and was then centrifuged, frozen, and maintained in a frozen state until submitted to the laboratory.

The cat was selected for this study because information concerning biochemical parameters in the serum of this animal is particularly lacking [9]. Thirty (30) cats, 15 males and 15 females, all of mixed breed but of varying ages were included in this study. All were free of clinical illness. Blood samples were obtained by cardiac puncture and the samples were then processed as described above.



#### IV. TABULAR PRESENTATION OF DATA

In consideration of the equine data 14 variables were under consideration; in addition to the 12 serum biochemical components reported by the autoanalyzer, body weight and age were also considered. A previous report indicates that equine serum albumen is not reliably reported by the autoanalyzer [10]. Albumen is nonetheless included in this study to form a basis for substantiation or repudiation of this fact as may be justified by further research.

A similar approach was employed with the feline data with the exception that 13 variables were under consideration; inasmuch as no cat demonstrated measurable total bilirubin it was deleted from consideration.

The data as reported by the SMA 12/60 Auto-analyzer for the 44 horses and 30 cats are presented in Table I and Table II respectively.



SERUM BIOCHEMICAL VALUES IN 44 HORSES AS REPORTED BY AN AUTO-ANALYZER SYSTEM

| xəs             | ᄕ          | [편-   | Σ         | Ē         | * \       | ĹΉ    | * \       | × W  | W*   | M*   | F-   | F.   | × W      | F-    | F     | M*    |           |
|-----------------|------------|-------|-----------|-----------|-----------|-------|-----------|------|------|------|------|------|----------|-------|-------|-------|-----------|
|                 | <u>, H</u> | 11    | .5        | .5 E      | 24        | 14    |           | 24   | 24   | 24   | Ŀ    | .5 F | 2        | F     | 표     | 24    | ഥ         |
| Age             | 13         | 8     | 0         | 0         | 2         | 14    | 6         | 4    | 3    | 5    | 14   | 1    | 7        | 8     | 5     | 4     | 10        |
| Меідћ           | 850        | 1000  | 200       | 200       | 1075      | 1100  | 1050      | 950  | 1200 | 1100 | 1050 | 800  | 1100     | 1100  | 1200  | 1100  | 1.150     |
| CCOT            | 460        | 560   | 650       | 740       | 260       | 1290  | 530       | 750  | 260  | 840  | 1330 | 700  | 630      | 630   | 630   | 590   | 590       |
| грн             | 211        | 224   | 250       | 255       | 205       | 187   | 3.0       | 325  | 259  | 250  | 250  | 240  | 250      | 150   | 265   | 141   | 252       |
| Phos.           | 87         | 105   | 490       | 350       | 111       | 118   | 78        | 125  | 172  | 120  | 138  | 335  | 95       | 121   | 107   | 146   | 92        |
| .T<br>niduriLia | 6.0        | 1.0   | 0.7       | 0.8       | 1.3       | 2.0   | 1.2       | 1.0  | 1.0  | 0.8  | 9.0  | 6.0  | 1.0      | 0.8   | 1.2   | 0.8   | 1.1       |
| А1Ъител         | 9.0        | 9.0   | 9.0       | 9.0       | 0.5       | 0.4   | 0.4       | 0.5  | 0.5  | 9.0  | 0.5  | 0.4  | 0.5      | 0.5   | 9.0   | 0.5   | 0.5       |
| Total           | 6.4        | 6.9   | 5.7       | 5.5       | 6.5       | 6.8   | 9.9       | 6.3  | 9.9  | 6.5  | 6.3  | 9.9  | 5.8      | 6.3   | 0.9   | 6.4   | 6.5       |
| Choles-         | 110        | 135   | 135       | 152       | 101       | 94    | 06        | 107  | 142  | 112  | 111  | 101  | 100      | 118   | 110   | 104   | 112       |
| Uric            | 0.5        | 0.5   | 0.5       | 1.0       | 0.4       | 0.4   | 0.4       | 0.4  | 0.4  | 0.7  | 0.4  | 0.4  | 0.3      | 0.4   | 0.8   | 0.3   | 0.3       |
| BUN             | 10         | 11    | 13        | 12        | 91        | 19    | 24        | 18   | 21   | 14   | 16   | 13   | 11       | 16    | 15    | 17    | 11        |
| egncose         | 86         | 85    | 98        | 102       | 76        | 79    | 78        | 85   | 94   | 83   | 80   | 105  | 79       | 81    | 86    | 85    | 72        |
| Inor.           | 3.3        | 3.1   | 6.4       | 6.7       | 4.0       | 3.1   | 3.3       | 3.4  | 3.7  | 3.7  | 3.7  | 5.1  | 3.2      | 3.7   | 3.8   | 2.7   | 3.7       |
| Galcium         | 11.2       | 11.8  | 12.0      | 11.3      | 11.2      | 10.5  | 11.4      | 11.0 | 12.1 | 11.6 | 11.1 | 12.2 | 11.8     | 12.2  | 11.9  | 11.6  | 11.5      |
| Breed           | Grade      | Grade | Qtr.Horse | Qtr.Horse | Qtr.Horse | Grade | Qtr.Paint | -    | 1    | i    | 1    | 1    | Palomino | Grade | Grade | Grade | Qtr.Horse |
| No.             | 7          | 2     | 3         | 4         | 2         | 9     | 7         | 8    | 6    | 10   | 11   | 12   | 13       | 14    | 15    | 16    | 17        |



| xəg               | 균         | ഥ     | *W        | W*    | 냰        | W*        | W*    | ഥ     | Ĺ                  | *W      | ഥ     | W*       | <b>W</b> * | W*       | 댸     | ᅜᅺ    | *W    | *W                |
|-------------------|-----------|-------|-----------|-------|----------|-----------|-------|-------|--------------------|---------|-------|----------|------------|----------|-------|-------|-------|-------------------|
| уде               | 2         | 6 .   | 9         | 6     | 6        | 3         | 7     | 13    | .9                 | 4       | 9     | 12       | .12        | 10       | 7.5   | 4     | 12    | 5                 |
| Меідћ             | 1000      | 1100  | 006       | 1000  | 1000     | 1200      | 1050  | 006   | 1000               | 1000    | 900   | 850      | 1000       | 1100     | 006   | 750   | 1000  | 1000              |
| TODS              | 750       | 540   | 530       | 1080  | 1410     | 750       | 850   | 680   | 2500               | 600     | 410   | 480      | 490        | 800      | 640   | 640   | 630   | 2100              |
| НGЛ               | 550       | 185   | 200       | 230   | 235      | 221       | 206   | 206   | 240                | 213     | 165   | 176      | 109        | 224      | 190   | 260   | 168   | 285               |
| Alkaline<br>Phos. | 207       | 138   | 150       | 135   | 147      | 135       | 105   | 66    | 75                 | 114     | 106   | 145      | 88         | 125      | 96    | 195   | 171   | 136               |
| T.<br>Ridurifia   | 1.1       | 1.7   | 0.8       | 0.5   | 0.8      | 6.1       | 2.3   | 1.8   | 1.2                | 1.2     | 1.0   | 1.8      | 2.8        | 2.1      | 1.0   | 1.2   | 1.6   | 1.3               |
| Albumen           | 0.5       | 0.4   | 0.5       | 0.5   | 0.5      | 0.1       | 0.4   | 0.4   | 9.0                | 0.5     | 0.5   | 0.4      | 0.4        | 0.4      | 0.5   | 0.5   | 0.5   | 0.5               |
| Total<br>Protein  | 6.1       | 6.5   | 6.5       | 6.2   | 6.1      | 6.5       | 6.5   | 6.4   | 0.9                | 6.4     | 7.0   | 9.9      | 7.0        | 7.1      | 6.3   | 6.7   | 6.4   | 6.5               |
| Choles-           | 120       | 130   | 104       | 06    | 108      | 120       | 119   | 130   | 121                | 107     | 107   | 93       | 118        | 110      | 150   | 92    | 95    | 93                |
| Uric              | 0.5       | 0.4   | 0.3       | 0.5   | 0.5      | 0.4       | 0.4   | 0.4   | 0.7                | 0.4     | 0.4   | 0.4      | 0.5        | 0.4      | 0.4   | 9.0   | 0.4   | 0.3               |
| вли               | 14        | 15    | 16        | 11    | 12       | ω         | 14    | 16    | 16                 | 15      | ω     | 12       | 19         | 13       | 16    | 17    | 15    | 18                |
| Glucose           | 84        | 85    | 85        | 84    | 75       | 81        | 75    | 84    | 89                 | 85      | 80    | 80       | 145        | 9.7      | 87    | 80    | 77    | 95                |
| Inor.             | 5.2       | 4.1   | 3.2       | 3.5   | 3.3      | 4.4       | 3.5   | 3.7   | 2.3                | 4.4     | 2.9   | 2.9      | 2.2        | 2.9      | 3.7   | 4.1   | 3.9   | 3.5               |
| muislad           | 11.3      | 11.4  | 13.1      | 12.8  | 12.7     | 10.5      | 12.1  | 11.5  | 11.8               | 11.9    | 12.2  | 11.8     | 11.0       | 12.3     | 11.4  | 11.4  | 11.2  | 12.1              |
| Breed             | Qtr.Horse | Grade | Appaloosa | Grade | Palomino | Appaloosa | Grade | Grade | Amer.<br>Sadl.Bred | Arabian | Grade | Palomino | Qtr.Horse  | Std.Bred | Grade | Grade | Grade | Throw-<br>Quarter |
| No.               | 18        | 19    | 20        | 21    | 22       | 23        | 24    | 25    | 26                 | 27      | 28    | 29       | 30         | 31       | 32    | 33    | 34    | 35                |



F = 21 M = 23 44



SERUM BIOCHEMICAL VALUES FOR 30 CATS AS REPORTED BY AN AUTO-ANALYZER SYSTEM

| Comments     |      |     |     |      |      |     |     |      |      |      |      |     |     |     | Spayed |     |     |
|--------------|------|-----|-----|------|------|-----|-----|------|------|------|------|-----|-----|-----|--------|-----|-----|
| xəs          | M    | M   | M   | দ    | M    | 균   | 균   | M    | দ    | M    | M    | দ   | M   | 돠   | 댼      | M   | Σ   |
| yde          | 2    | 4   | 0.5 | 1    | 1.5  | 1   | 3   | 4    | 4    | 0.7  | 2    | 0.8 | 0.3 | 0.3 | 3      | 2   | 1.5 |
| Weight       | 7    | 10  | 4   | 7    | 8    | 7   | 12  | 5    | 5    | 7    | 7    | 5   | 3   | 3   | 7      | 8   | 7   |
| TODS         | 135  | 80  | 70  | 09   | 62   | 58  | 85  | 74   | 100  | 73   | 48   | 52  | 72  | 58  | 78     | 164 | 93  |
| ндл          | 240  | 265 | 3 5 | 135  | 195  | 280 | 375 | 375  | 310  | 750  | 310  | 250 | 320 | 215 | 220    | 275 | 340 |
| Alkaline.    | 72   | 45  | 87  | 9.7  | 62   | 52  | 30  | 75   | 97   | 82   | 09   | 70  | 140 | 145 | 41     | 43  | 82  |
| nəmudlA      | 1.8  | 1.6 | 1.2 | 1.7  | 1.6  | 1.7 | 1.5 | 1.1  | 1.5  | 1.4  | 1.5  | 1.5 | 1.4 | 1.6 | 1.7    | 1.8 | 1.6 |
| Total        | 6.4  | 6.7 | 5.5 | 6.5  | 6.4  | 9.9 | 7.7 | 6.9  | 7.1  | 6.3  | 6.3  | 6.5 | 6.2 | 6.4 | 7.1    | 7.4 | 9.9 |
| Choles-      | 115  | 134 | 92  | 75   | 75   | 85  | 107 | 97   | 112  | 69   | 95   | 99  | 45  | 53  | 152    | 100 | 131 |
| Uric<br>Acid | 1.2  | 9.0 | 0.7 | 9.0  | 0.8  | 0.8 | 6.0 | 6.0  | 1.0  | 0.8  | 1.0  | 1.2 | 1.2 | 1.0 | 6.0    | 0.7 | 0.7 |
| ВОИ          | 24   | 23  | 26  | 15   | 26   | 22  | 23  | 25   | . 27 | 23   | 26   | 27  | 28  | 26  | 41     | 21  | 21  |
| Glucose      | 69   | 58  | 70  | 64   | 54   | 09  | 09  | 50   | 89   | 30   | 69   | 5.8 | 80  | 86  | 65     | 62  | 38  |
| Thorg.       | 7.3  | 6.8 | 7.8 | 6.8  | 7.3  | 6.8 | 6.0 | 9.0  | 8.7  | 7.8  | 8.0  | 7.9 | 7.9 | 7.4 | 5.9    | 8.0 | 8.5 |
| muislaS      | 10.4 | 8.6 | 9.5 | 10.0 | 10.1 | 6.6 | 9.2 | 11.0 | 9.6  | 10.1 | 10.2 | 9.4 | 9.6 | 9.7 | 9.1    | 9.6 | 9.3 |
| 0<br>N       | 1    | 2   | 3   | 4    | S    | 9   | 7   | 8    | 6    | 10   | 11   | 12  | 13  | 14  | 15     | 16  | 17  |



| Comments          |     |       |     |     |     |     |     |      | Neutered |     |     |     | Spayed |
|-------------------|-----|-------|-----|-----|-----|-----|-----|------|----------|-----|-----|-----|--------|
| xəs               | ഥ   | Σ     | দ   | দ   | Z   | M   | M   | দ    | Σ        | ſτι | দ   | দ   | 댼      |
| уде               | 1   | 2     | 2   | 2   | 5   | 9   | 2   | 9.0  | 9        | 5   | ∞   | г   | 1.5    |
| Метдрь            | 9   | 11    | 5   | 9   | 10  | 8   | 8   | 5    | 6        | 12  | 7   | 2   | 6      |
| SGOT              | 103 | 177   | 72  | 103 | 72  | 9.0 | 70  | 152  | 29       | 63  | 72  | 83  | 105    |
| LDH               | 185 | 335   | 368 | 216 | 260 | 251 | 132 | 299  | 176      | 77  | 75  | 290 | 267    |
| Alkaline<br>Phos. | 20  | 09    | 30  | 26  | 32  | 31  | 30  | 62   | 52       | 57  | 52  | 26  | 29     |
| иЭшифТА           | 1.3 | 1.8   | 1.4 | 1.4 | 1.7 | 1.5 | 1.3 | 1.6  | 1.6      | 1.8 | 1.6 | 1.3 | 1.4    |
| Total<br>Protein  | 7.1 | 6.5   | 6.2 | 7.7 | 7.0 | 7.0 | 7.0 | 7.0  | 8.9      | 7.3 | 7.8 | 6.3 | 7.0    |
| choles-           | 115 | 146   | 38  | 26  | 15  | 100 | 63  | 69   | 55       | 51  | 31  | 30  | 62     |
| Uric              | 0.8 | 8 • 0 | 6.0 | 1.1 | 1.0 | 1.0 | 1.0 | 6.0  | 8.0      | 6.0 | 1.0 | 6.0 | 1.0    |
| BUN.              | 20  | 27    | 26  | 34  | 32  | 29  | 31  | 26   | 21       | 26  | 22  | 18  | 29     |
| clucose           | 55  | 112   | 69  | 55  | 70  | 9.0 | 80  | 110  | 166      | 117 | 16  | 9.2 | 97     |
| Inorg.            | 7.8 | 8.2   | 5.3 | 6.1 | 6.4 | 7.4 | 4.7 | 9.2  | 5.7      | 5.8 | 9.9 | 8.4 | 7.4    |
| Calcium           | 9.0 | 9.6   | 8.7 | 8.5 | 8.3 | 8.3 | 7.9 | 10.0 | 8.2      | 8.1 | 8.0 | 8.3 | 8.7    |
| No.               | 18  | 19    | 20  | 21  | 22  | 23  | 24  | 25   | 26       | 27  | 28  | 29  | 30     |



#### V. SAMPLE STATISTICS

The analysis of the data is amenable to multivariate methodology. In the case of the equine data we have observations on 14 random variables:

$$x_{i,j}$$
  $i = 1,2,...,44$   
 $j = 1,2,...,14$ 

where "i" refers to the identification of the animal and j refers to a variable.

In particular we have:

| Random Variable     | Definition                              |
|---------------------|-----------------------------------------|
| x <sub>i,1</sub>    | Calcium Level of Horse Number "i"       |
| x <sub>i,2</sub>    | Inorganic Phosphate Level of Horse "i"  |
| <sup>X</sup> i,3    | Glucose Level of Horse "i"              |
| X <sub>i,4</sub>    | BUN Level of Horse "i"                  |
| X <sub>i,5</sub>    | Uric Acid Level of Horse "i"            |
| X <sub>1,6</sub>    | Cholesterol Level of Horse "i"          |
| X <sub>i,7</sub>    | Total Protein Level of Horse "i"        |
| X <sub>i,8</sub>    | Albumen Level in Horse "i"              |
| X <sub>i,9</sub>    | Total Bilirubin Level of Horse "i"      |
| - X <sub>i,10</sub> | Alkaline Phosphatase Level of Horse "i" |
| X <sub>i,11</sub>   | LDH Level of Horse "i"                  |
| X <sub>i,12</sub>   | SGOT Level of Horse "i"                 |
| X <sub>i,13</sub>   | Body Weight of Horse "i"                |
| <sup>X</sup> 1,14   | Age of Horse "i"                        |



In the case of the cat we have observations on 13 random variables:

$$Y_{i,j}$$
  $i = 1,2,...,30$   
 $j = 1,2,...,13$ 

where "i" and "j" again refer to the identification of the animal and the characteristic respectively.

In particular we have:

| Random Variable   | Definition                            |
|-------------------|---------------------------------------|
| Y <sub>i,1</sub>  | Calcium Level of Cat "i"              |
| Y <sub>i,2</sub>  | Inorganic Phosphate Level of Cat "i"  |
| Y <sub>i,3</sub>  | Glucose Level of Cat "i"              |
| Y <sub>i,4</sub>  | BUN Level of Cat "i"                  |
| Y <sub>i,5</sub>  | Uric Acid Level of Cat "i"            |
| <sup>Y</sup> i,6  | Cholesterol Level of Cat "i"          |
| Y <sub>i,7</sub>  | Total Protein Level of Cat "i"        |
| Y <sub>i,8</sub>  | Albumen Level of Cat "i"              |
| Y <sub>i,9</sub>  | Alkaline Phosphatase Level of Cat "i" |
| Y <sub>i,10</sub> | LDH Level of Cat "i"                  |
| Y <sub>i,11</sub> | SGOT Level of Cat "i"                 |
| Y <sub>i,12</sub> | Body Weight of Cat "i"                |
| <sup>Y</sup> i,13 | Age of Cat "i"                        |

In the description of sample statistics that follow, the computational formulae are given for  $x_{i,j}$ . The same formulae apply for  $y_{i,j}$  and it is understood that N=44 and N=30 for the horse and cat respectively.



In multivariate terminology, each horse may be represented as a 14 dimensional vector  $\underline{\mathbf{x}}^{(i)}$ . For example, referring to Table I we see that horse number 1 is represented as follows:

$$\begin{bmatrix}
x_{1,1} \\
x_{1,2} \\
3_{1,3} \\
x_{1,4} \\
x_{1,5} \\
x_{1,6} \\
x_{1,6} \\
x_{1,7} \\
x_{1,8} \\
x_{1,9} \\
x_{1,10} \\
x_{1,11} \\
x_{1,12} \\
x_{1,13} \\
x_{1,14}
\end{bmatrix}$$

$$\begin{bmatrix}
11.2 \\
3.3 \\
86. \\
10. \\
0.5 \\
110. \\
6.4 \\
0.6 \\
0.9 \\
87. \\
211. \\
460. \\
850. \\
13.
\end{bmatrix}$$

The sample mean,  $\bar{x}$ , is required for each of the set of observations on the 14 variables and is computed as follows:

$$\bar{x}_{\cdot,j} = \sum_{i=1}^{N} \frac{x_{i,j}}{N}$$

The sample means of the observations on the j variables may be represented as a j-dimensional sample mean vector,  $\bar{\mathbf{x}}$ , where



$$\bar{x} = \begin{bmatrix} \bar{x} \\ \bar{x} \\ \bar{x} \\ 2 \end{bmatrix} = \frac{1}{N} \begin{bmatrix} \sum_{i=1}^{N} x_{i,1} \\ \sum_{i=1}^{N} x_{i,2} \\ \vdots \\ \sum_{i=1}^{N} x_{i,2} \\ \vdots \\ \sum_{i=1}^{N} x_{i,j} \\ \vdots \\ \sum_{i=1}^{N} x_{i,j} \\ \vdots \\ \sum_{i=1}^{N} x_{i,j} \end{bmatrix}$$

The 6 sample mean vectors representing 44 horses, 23 male horses, 21 female horses, 30 cats, 15 male cats, 15 female cats, are presented in Table III.

The sample variance,  $s_j^2$  or  $s_{j,j}$  is computed for each set of observations on the j variables as follows:

$$s_{j}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i,j} - \bar{x}_{i,j})^{2}$$

The sample standard deviation is computed by simply obtaining the square root of the sample variance:

$$s_j = \sqrt{s_j^2}$$

The sample covariance,  $s_{j,k}$ , between the observations  $x_{i,j}$  and  $x_{i,k}$ ,  $i=1,\ldots,N$ , is computed as follows:



TABLE OF SAMPLE MEAN VECTORS

| -                                  | 44<br>Horses                                                     | 23<br>Male<br>Horses | 21<br>Female<br>Horses                | 30<br>.Cats                                | 15<br>Male<br>Cats          | 15<br>Female<br>Cats                  |
|------------------------------------|------------------------------------------------------------------|----------------------|---------------------------------------|--------------------------------------------|-----------------------------|---------------------------------------|
| CALCIUM (mg%)                      | 11.78                                                            | 11.87                | 11.70                                 | 9.27                                       | 9.46                        | 9.08                                  |
| INORGANIC PHOSPHATE (mg%)          | 3.62                                                             | 3.49                 | 3.75                                  | 7.23                                       | 7.39                        | 7.07                                  |
| GLUCOSE (mg%)                      | 86.77                                                            | 88.57                | 84.81                                 | 75.53                                      | 73.20                       | 77.87                                 |
| BUN (mg%)                          | 14.55                                                            | 14.78                | 14.29                                 | 25.50                                      | 25.53                       | 25.46                                 |
| URIC ACID (mg%)                    | 0.45                                                             | 0.43                 | 0.48                                  | 06.0                                       | 0.88                        | 0.93                                  |
| CHOLESTEROL (mg%)                  | 112.70                                                           | 108.52               | 117.29                                | •                                          | 87.73                       | 71.47                                 |
|                                    |                                                                  |                      |                                       | **97.33                                    |                             |                                       |
| TOTAL PROTEIN (gms%)               | 5.49                                                             | 6.55                 | 6.43                                  | 6.78                                       | 09*9                        | 6.95                                  |
| ALBUMEN (gms%)                     | 0.48                                                             | 0.47                 | 0.50                                  | 1.53                                       | 1.53                        | 1.53                                  |
| TOTAL BILIRUBIN                    | 1.40                                                             | 1.56                 | 1.22                                  | N/A                                        | N/A                         | N/A                                   |
| ALKALINE PHOSPHATASE T.U.          | 145.39                                                           | 144.52               | 146.33                                | 60.67                                      | 63.53                       | 57.80                                 |
| LDH T.U.                           | 223.57                                                           | 217.74               | 229.95                                | 271.03                                     | 302.60                      | 239.47                                |
| SGOT T.U.                          | 786.36                                                           | 714.35               | 865.24<br>***615.00                   | 86.37                                      | 89.60                       | 82.93                                 |
| BODY WEIGHT                        | 986.93                                                           | 1022.83              | 947.62                                | 7.10                                       | 7.47                        | 6.73                                  |
| AGE                                | L 7.14                                                           | 6.89                 | 7.40                                  | 2.26                                       | 2.43                        | 2.08                                  |
| *6 animals **1 male wi ***5 female | with SGOT > 1200 T<br>ith SGOT > 1200 T.U<br>es with SGOT > 1200 |                      | U. deleted<br>deleted<br>T.U. deleted | *6 animals < 50 mg% d **9 animals < 60 mg% | s with<br>delete<br>is with | cholesterol<br>d<br>cholesterol<br>ed |



$$s_{j,k} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i,j} - \bar{x}_{i,j}) (x_{i,k} - \bar{x}_{i,k})$$

In multivariate analysis the sample variances of the observation on the variables and the sample covariances between each pair of these variables is presented as a sample variance-covariance matrix (S) with dimensions p by p. The elements of the sample variance-covariance matrix are as follows:

$$(s) = \begin{bmatrix} s_{1,1} & s_{1,2} & s_{1,3} & \cdots & s_{1,k} & \cdots & s_{1,p} \\ s_{2,1} & s_{2,2} & s_{2,3} & \cdots & s_{2,k} & \cdots & s_{2,p} \\ \vdots & & & & & & \\ s_{j,1} & s_{j,2} & s_{j,3} & \cdots & s_{j,k} & \cdots & s_{j,p} \\ \vdots & & & & & \\ s_{p,1} & s_{p,2} & s_{p,3} & \cdots & s_{p,k} & \cdots & s_{p,p} \end{bmatrix}$$

In the main diagonal of the matrix j is equal to k and the main diagonal elements represent the sample variances for each of the j variables. Since  $s_{j,k} = s_{k,j}$ , for the sample variance-covariance matrices computed, those elements above the main diagonal will be deleted and the matrices will be lower triangular. The variance-covariance matrices for 44 horses, 23 male horses, 21 female horses, 30 cats, 15 male cats, and 15 female cats are presented in Tables IV, A thru F.



TABLE IV-A

VARIANCE-COVARIANCE MATRIX FOR 44 HORSES

888 yde 26874. 161. 12<sup>4</sup> метдрг Bogk 562 -21.936188153 CCOL 3887 3396. -611. 835 012 4557. -87. IDH -8091. -2036. 5988. 516 134 921 1189. ·soyd -153. Alka. ←111. 819 526 0.204 861 0.807 Bilirubin 14. Total 090 0.976 -4. 545 0.008 0.854 -0-Albumen 955 -9. -0.0 -10. 681 0.430 0.162 0.129 Protein Total 343. .437 -765. 981 623 191 0.183 72.846 -1.300-501. terol 234 суотьз-0 340 -0. -0. 5.459 120 0.006 0.021 3.025 Acid Uric 533 -0.0 6.288 -32. 285 0.250 -0. -0. 122 -0. 635 180. 13,835 BUN 209320 -709. -473. 317 313 388 542 542 331 38.768 041 0.488 -143. 55 egncose 0-0 0 9 1290-1 1-0-184 -45. -84. 344 875 102 934 4.647 0.012 0.162 0.050 · soyd 0.84 .paonI 54 0-25 -0. -0. 134 -0. -0. 11. -0. 1.599 670 608 0.003 0.044 0.020 0.37 Calcium Phosphatase Cholesterol Inorganic Phosphate Bilirubin Alkaline Calcium Glucose Protein Albumen Weight Total Total Uric Body SGOT Age BUN LDH



TABLE IV-B
VARIANCE-COVARIANCE MATRIX FOR 23 MALE HORSES

|                    |         |                        |             |            |              |             |                  |         | <del></del>        | - 1                     |              |                      |                |              |
|--------------------|---------|------------------------|-------------|------------|--------------|-------------|------------------|---------|--------------------|-------------------------|--------------|----------------------|----------------|--------------|
| уде                |         |                        |             |            |              |             |                  |         |                    |                         |              |                      |                | 9.817        |
| воду<br>Воду       |         |                        |             |            |              |             |                  |         |                    |                         |              |                      | 25733.<br>664  | 48.          |
| TODS               |         |                        | ·           |            |              |             |                  |         |                    |                         |              | 111907.              | 2566.<br>693   | -179.<br>960 |
| грн                |         |                        |             |            |              |             |                  |         |                    |                         | 2866.<br>743 | 6547.<br>984         | -867.<br>636   | -70.<br>348  |
| Phos.              |         |                        |             |            |              |             |                  |         |                    | 6708.<br>227            | 0.9          | -359 <b>.</b><br>644 | -8465.<br>828  | -117.<br>032 |
| Total<br>Bilirubin |         |                        |             |            |              |             |                  |         | 1.284              | -15.<br>492             | -11.<br>520  | -15 <b>,</b><br>276  | 43.            | 0.193        |
| пэшиdlА            |         |                        |             |            |              |             |                  | 0.012   | 100                | 2.164                   | 0.868        | 1.476                | -6.            | -0.          |
| Total<br>Protein   |         |                        |             |            |              |             | 0.131            | -0.     | 0.106              | -12.<br>615             | -5.<br>600   | -13.<br>782          | 25.            | 0.570        |
| Choles-            |         |                        |             |            |              | 199.<br>624 | 0.440            | -0.     | 3.262              | 605.<br>258             | 73.870       | -1062.<br>370        | -95.<br>404    | -20.<br>918  |
| Uric<br>Acid       |         |                        |             |            | 0.014        | 0.502       | 1070.009         | 0.004   | 0.003              | 1.506                   | 0.663        | -6.<br>411           | -5.<br>726     | 0.042        |
| BOM                |         |                        |             | 15.<br>632 | -0.<br>138   | -7.<br>063  | 0.107            | 0.092   | -1.                | -69.<br>791             | 26.          | 48.<br>716           | 69.            |              |
| erncose            |         |                        | 227.<br>983 | 7.583      | 0.237        | 52.<br>419  | 1.642            | -0.     | 1.932              | 49.                     | -317.<br>527 | ļ I                  | -308.<br>941   | 9.246        |
| Inorg.             |         | 0.718                  | -3.         | -0.        | 0.023        | 4.078       | -0.              | 0.0     | 0.024              | 49.                     | 16.          | 16.                  | -78.           | -1.          |
| Calcium            | 0.432   | -0.<br>910             | -0.<br>466  | -0.        | 0.014        | -0.<br>472  | 0.028            | 0.036   | -0.<br>352         | 4.196                   | 0.186        | 22.                  | -27.           | 0.253        |
|                    | Calcium | Inorganic<br>Phosphate | Glucose     | BUN        | Uric<br>Acid | Cholesterol | Total<br>Protein | Albumen | Total<br>Bilirubin | Alkaline<br>Phosphatase | ГДН          | SGOT                 | Body<br>Weight | Age          |



TABLE IV-C

VARIANCE-COVARIANCE MATRIX FOR 21 FEMALE HORSES

| yde               |         |                        |            |            |              |             |                  |            |                    |                         |              |                |                | 16.<br>765   |
|-------------------|---------|------------------------|------------|------------|--------------|-------------|------------------|------------|--------------------|-------------------------|--------------|----------------|----------------|--------------|
| Body              |         |                        |            |            |              |             |                  |            |                    |                         |              |                | 26369.         | 314.         |
| TODS              |         |                        |            |            |              |             |                  |            |                    |                         |              | 268935.<br>688 | 11763.         | 108.273      |
| грн               |         |                        |            |            |              |             |                  |            |                    |                         | 6562.<br>324 | 6-             | 144.<br>87     | -114.<br>905 |
| Phos.             |         |                        |            |            |              |             |                  |            |                    | 5495.<br>410            | 1773.<br>714 | -4133.<br>809  | -8009.<br>137  | -201.<br>016 |
| TetoT<br>nidmilia |         |                        |            |            |              |             |                  |            | 0.261              | -8°-                    | -9.<br>849   | 76             |                | 0.322        |
| Albumen           |         |                        |            |            |              |             |                  | 0.005      | -0.                | -0.<br>580              | 0.910        | 4.900          | -0·<br>750     | -0.          |
| Total<br>Protein  |         |                        |            |            |              |             | 0.195            | -0-        | 0.138              | -8.<br>965              | -12.964      | 6.143          | 17.<br>072     | 0.333        |
| Choles-           |         |                        |            |            |              | 242.<br>014 | -2.<br>684       | 0.280      | -1.                | 64.<br>599              | 16.<br>614   | -1204.<br>070  | -611.<br>784   | -7.<br>821   |
| Uric<br>Acid      |         |                        |            |            | 0.029        | 0.746       | -0.<br>040       | 0          | -0.<br>019         | 4.797                   | 3.469        | 14.            | -9.<br>548     | -0.<br>319   |
| вои               |         |                        |            | 12.<br>414 | -0.<br>074   | -6.<br>036  | -0.<br>414       | -0.<br>105 | 0                  | 7.850                   | -11.<br>986  | 37             | -29.<br>286    | 0            |
| esoonto           |         |                        | 75.<br>562 | 4.207      | 0.556        | 43.         | -1.<br>994       | 0.035      | -1.                | 399.                    | 65.<br>840   | -976.<br>450   | -832.<br>974   | -18.<br>394  |
| Inorg.            |         | 0.994                  | 4.466      | -0.<br>021 | 0.076        | 4.249       | -0.<br>174       | 0.002      | -0.                | 62.<br>936              | 34.          | -138.<br>788   |                | -2.          |
| Calcium           | 0.320   | -0-                    | -0.        | -0-        | -0.<br>004   | -0.<br>494  | 0.053            | 900.0      | 900                | -1.<br>008              | '            | 13.            | 9.238          | 808          |
|                   | Calcium | Inorganic<br>Phosphate |            | BUN        | Uric<br>Acid | Cholesterol | Total<br>Protein | Albumen    | Total<br>Bilirubin | Alkaline<br>Phosphatase | грн          | SGOT           | Body<br>Weight | Age .        |



TABLE IV-D VARIANCE-COVARIANCE MATRIX FOR 30 CATS

| yde              |         |                        |         |     |              |              |                  |            |                         |                      |              |                | 3.789       |
|------------------|---------|------------------------|---------|-----|--------------|--------------|------------------|------------|-------------------------|----------------------|--------------|----------------|-------------|
| Body<br>Weight   |         |                        |         |     |              |              |                  |            |                         |                      |              | 5.610          | 2.587 3     |
| TOSS             |         |                        | ·       |     |              |              |                  |            |                         |                      | 1046.        | 2.859          | 6.246       |
| грн              |         |                        |         |     |              |              |                  | J          |                         | 88<br>88             |              | -42.<br>383    | -99.        |
| Alka.<br>Phos.   |         |                        |         |     |              |              |                  |            | 952.<br>366             | 656.<br>837          | -193.<br>217 | -40.<br>517    | -26.<br>691 |
| иэшиdlА          |         |                        |         |     |              |              |                  | 0.034      | 0.069                   | -6.                  |              | 0.211          | 0.          |
| Total<br>Protein |         |                        |         |     |              |              | 0.265            | 0.019      | -8°<br>098              | -21.<br>410          | 3.957        | 0.533          | 0.516       |
| Choles-          |         |                        |         |     |              | 1342.<br>660 | -0.              | 1.550      | -44.<br>241             | 7 <u>18</u> .<br>806 | 443.         | 19.<br>628     | -9.<br>518  |
| Uric<br>Acid     |         |                        |         |     | 0.026        | -2.<br>085   | 0.011            | -0.<br>004 |                         | -1.862               | -0-          | 104            |             |
| вии              |         |                        |         | 25. | 0.388        | 2.793        | 0.460            | -0.        |                         | -30.<br>431          | -0.          |                | 0.867       |
| egncose          |         |                        | 747.843 | -1. | 0.488        | -269.<br>951 | 1.327            | 1.166      | -8.<br>126              | -1460.<br>532        | 113.         | 12.            | 23.<br>093  |
| Inorg.           |         | 1.275                  | -5.     | - 1 | -0.          | 11.          | -0.              | -0.        | 15.                     | 54.<br>192           | 13.          | -1.            | -1.         |
| Muisled          | 0.659   | 0.543                  | -10.    |     |              | 13.          |                  | 0.003      | 12.                     | 44.                  | 3.215        | -0-            | -0.<br>952  |
|                  | Calcium | Inorganic<br>Phosphate | Glucose | BUN | Uric<br>Acid | Cholesterol  | Total<br>Protein | Albumen    | Alkaline<br>Phosphatase | ГДН                  | SGOT         | Body<br>Weight | Age         |



TABLE IV-E
VARIANCE-COVARIANCE MATRIX FOR 15 MALE CATS



TABLE IV-F
VARIANCE-COVARIANCE MATRIX FOR 15 FEMALE CATS

| yde              |         |                        |            |             |              |              |                  |         |                         |              |              |                | 175          |
|------------------|---------|------------------------|------------|-------------|--------------|--------------|------------------|---------|-------------------------|--------------|--------------|----------------|--------------|
|                  |         |                        |            |             |              |              |                  |         |                         |              |              | 16             | 4 4.         |
| Body             |         |                        |            |             |              |              |                  |         |                         |              |              | 6.495          | 2.59         |
| LOSS             |         |                        |            |             |              |              |                  |         |                         |              | 696.065      | -5.305         | -10.416      |
| ГОН              |         |                        |            |             |              |              |                  |         |                         | 8747.        |              | -43.<br>081    | -104.<br>211 |
| Phos.            |         |                        |            |             |              |              |                  |         | 1141.                   | -430.<br>828 | -288.<br>942 | -37.<br>986    | -19.<br>440  |
| иэшис1А          |         |                        |            |             |              |              |                  | 0.024   | 2.071                   | - 6.<br>488  | -1.<br>455   | 0.124          | 001.0        |
| Total<br>Protein |         |                        |            |             |              |              | 0.276            | 0.007   | -7.<br>253              | -13.         | 4.611        | 0.730          | 0.684        |
| Choles-<br>terol |         |                        |            |             |              | 1350.<br>835 | 2,388            | 1.119   | -72.<br>114             | 697.<br>765  | 98.          | 15.<br>490     | 14.          |
| Uric             |         |                        |            |             | 0.019        | -1.          | 0.016            | 900     | -0-                     | 1.794        | 0.173        | -0.            | 0.028        |
| ВПИ              |         |                        |            | 39.<br>838  | 0.458        | 63.          | 0.938            | 0.112   | -43.<br>828             | 62.<br>481   | 29.          | -0.<br>081     | 966 • 0      |
| esocnto          |         |                        | 471.       | -10.<br>505 | 0.182        | -345.<br>004 | 0.072            | 0.883   | 185.<br>328             | -621.<br>218 | 111.         | 6.319          | 13.<br>133   |
| Inorg.           |         | 1.355                  | 5.489      | -1.         | 0.019        | 2.513        | -0.<br>139       | -0.     | 13                      | 21.<br>556   | 14           | -1.<br>458     | -1.<br>195   |
| muisleD          | 0.465   | 0.316                  | -4.<br>317 |             | -0.          |              | -0.<br>136       | 0.029   | 11.                     | 21.          | 1.392        | -9.7           | -0.<br>944   |
|                  | Calcium | Inorganic<br>Phosphate | Glucose    | BUN         | Uric<br>Acid | Cholesterol. | Total<br>Protein | Albumen | Alkaline<br>Phosphatase |              | SGOT         | Body<br>Weight | Age          |



The primary purpose of computing the sample variance-covariance matrix is in computing the Pearson Product Moment Correlation Coefficient,  $r_{j,k}$ . This statistic is a measure of the tendency of 2 variables to vary together in linear fashion. It is described as the ratio of the sample covariance between 2 variables to the square root of the product of the sample variances of the 2 variables; that is,

$$r_{j,k} = \frac{s_{j,k}}{\sqrt{(s_{j,j})(s_{k,k})}}$$

For the equine data there are  $\binom{14}{2}$  = 91 pair-wise correlation coefficients to be computed and for the feline data there are  $\binom{13}{2}$  = 78 pair-wise correlation coefficients to compute and consider.

The tests of hypotheses conducted in this research effort rely on certain assumptions concerning the sample statistics. The central limit theorem, which permits us to assume a normal  $(\mu, \frac{\sigma^2}{N})$  distribution of sample means in the univariate case [11], also permits us to make the assumption of normality in the multivariate case; namely, the distribution of the sample mean vectors,  $\overline{\mathbf{x}}$ , is normal with mean  $\underline{\mu}$  and variance-covariance matrix  $\frac{1}{N}$   $\Sigma$  [12]. This assumption will be employed in testing the notion that the vector of sample means of the males of a given species does not differ significantly from that of females of the same species.

Additionally, if the population correlation coefficient,  $\rho_{\text{j,k}}, \text{ between 2 variables equals zero, then the sample}$ 



correlation coefficient, rj,k is distributed as

$$\frac{t_{(N-2)}\sqrt{(1-r_{j,k}^2)}}{\sqrt{N-2}}$$

where  $t_{(N-2)}$  represents the Student "t" distribution with N-2 degrees of freedom [13]. Equivalently, the statistic

$$\frac{r_{j,k}\sqrt{N-2}}{\sqrt{1-r_{j,k}^2}}$$

is distributed according to the Student "t" distribution with N-2 degrees of freedom, provided that the hypothesis that  $\rho_{j,k}$  = 0 is true.



## VI. HYPOTHESES TESTED

A "null" hypothesis, denoted as  $H_{\rm O}$ , can be defined as a statement or notion for which it is possible to compute a statistic and the corresponding probability of a more extreme value of that statistic. Alternatively, it is common to establish a probability corresponding to the risk of rejecting  $H_{\rm O}$  when, in fact, it is true and denoting this probability as  $\alpha$ .  $H_{\rm O}$  is then rejected only when the test statistic is more extreme than that associated with  $\alpha$ .

In this study the following null hypotheses were tested:

1.  $H_0$ : The true correlation coefficient  $(\rho_{j,k})$  between variables j and k is equal to zero. This hypothesis was tested for both equine and feline data irrespective of the sex of the animal.

Since the sample correlation coefficient can be converted into a "t $_{(N-2)}$ " statistic, providing H $_{0}$  is true, it is possible to solve for the "critical" value of r $_{j,k}$  by establishing a type I error ( $\alpha$ ) and locating the appropriate "t $_{(N-2)}$ " value from a statistical table. In fact, this critical value of r $_{j,k}$ , denoted r $_{\alpha j,k}$ , is obtained as follows:

$$r_{\alpha j,k} = \frac{t_{\alpha}}{\sqrt{t_{\alpha}^2 + (N-2)}}$$

where  $t_{\alpha}$  is the  $1-\alpha$  percentile point of the "t" distribution with N-2 degrees of freedom. Conveniently, values of



 $r_{\alpha j,k}$  are already tabulated [14]. Those appropriate to the testing of this null hypothesis are presented in Table V.

TABLE V

| CRI | TTICAL VALUES | OF rj,k FOR     | SPECIFIED α     |
|-----|---------------|-----------------|-----------------|
|     | N             | $\alpha = 0.05$ | $\alpha = 0.01$ |
| 44  | (Horses)      | 0.298           | 0.385           |
| 30  | (Cats)        | 0.367           | 0.470           |

Triangular matrices of sample correlation coefficients for the 44 horses and 30 cats are presented in Tables VI-A and VI-B respectively. In these tables those values of  $r_{j,k}$  for which  $H_{o}$ :  $\rho_{j,k} = 0$  can be rejected at  $\alpha = 0.05$  are indicated by a\* and those for which the hypothesis can be rejected at  $\alpha = 0.01$  are indicated with \*\*.



TABLE VI-A
CORRELATION MATRIX - 44 HORSES

| Meight<br>Body     |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.385)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|-----------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tobs               |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -  ×, i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| грн                |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                       |                                         | 0.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )1 ( rj,k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Alka.<br>Phos.     |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                       | 0.228                                   | -0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\alpha = 6.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TstoT<br>nidvrili8 |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  | -0.170                | -0.190                                  | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ه<br>٦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| мЭшифТА            |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -0.727           | 0.120                 | 0.157                                   | 0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total<br>Protein   |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.242            | 0.358            | -0.343                | -0.342                                  | -0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Choles-            |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.130             | 0.032            | 0.290                 | 0.070                                   | -0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) ; **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| oirU<br>bioA       |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 0.322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.457             | -0.089           | 0.269                 | 0.215                                   | 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.298)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| вли                |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.207             | -0.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.018            | -0.190           | -0.112                | 0.025                                   | 0.112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .j,k  ≥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| esoonto            |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.183              | 0.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.036            | 0.044            | 0.217                 | -0.171                                  | -0.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05 ( r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Inorg.             |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.376              | 0.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.140             | -0.081           | 0.770                 | 0.404                                   | -0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\alpha = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Calcium            |                                                                                                                                                                                                                                                                                                                        | -0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.033              | -0.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.352             | -0.305           | 0.034                 | -0.113                                  | 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ant at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | alcium                                                                                                                                                                                                                                                                                                                 | norganic<br>hosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lucose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ric                | holesterol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otal<br>rotein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1bumen            | otal<br>ilirubin | lkaline<br>hosphatase | рн                                      | GOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ody Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | де                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | Inorg.  Fhos.  Glucose  Glucose  Total  Protal  Protal | Inorg.  Phos.  Choles- | LDH  LOCAL  TOCAL  TOCA | -0.013 Calcium Calcium Calcium Uric Phos. Calcium Choles- Chol | -0.2½ -0.100 0.136 | cium  cium  cium  cium  cium  cium  cium  cium  cose  -0.018 0.014  cose  -0.254 -0.100 0.136  cose  c | ium   Calcium   Calcium   Inorg.   Choles.   Choles. | ium    Cal   Inpo | inm  Ca          | tum  in mine          | tuum tuum tuum tuum tuum tuum tuum tuum | tum  tum  full  fu | tum tium  and the following th | tum  tum  tum  color fig.  col | tum  itum  i |



TABLE VI-B CORRELATION MATRIX - 30 CATS

| Calcium Inorganic Phosphate Glucose BUN Uric Acid Cholesterol Total Protein Albumen Albumen Albumen Albumen Albumen SGOT BOdy Weight | -0.458 -0.458 -0.458 -0.458 -0.458 -0.458 -0.458 -0.171 -0.447 -0.468 -0.122 -0.289 -0.122 | -0.184<br>-0.272<br>-0.278<br>-0.433<br>0.395<br>-0.363 | 0.128<br>0.197 | 0.482<br>0.015<br>0.015<br>0.016<br>-0.024<br>-0.026<br>-0.002 | -0.354<br>0.092<br>-0.068 | Choles-<br>10.039<br>0.230<br>0.374<br>0.226 | Protein Protein 0.238 0.238 0.437 | о. 0 о. 29 о о. 48 ж ж. 44 | Phos0.194 -0.554 ** |           | TODS                                  | Meight<br>Body |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------|----------------------------------------------------------------|---------------------------|----------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|---------------------------------------|----------------|
| Age                                                                                                                                  | 0.602                                                                                      | -0.4                                                    | 0.434          | 6                                                              | 0.018                     | -0.133                                       | 0.514                             | 0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | 0.4       | -0.09                                 | 0.561          |
| * - significant                                                                                                                      | at                                                                                         | $\alpha = 0.0$                                          | 5 ( r;         | 소<br>~ II                                                      | 0.367);                   | ₩<br>*                                       | ignificant                        | cant at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $t \alpha = 0$      | .01( r.j. | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 0.470)         |



2.  $H_0$ : The true coefficient of correlation,  $\rho_{j,k}^m$ , between variables j and k for the males is zero. This hypothesis is tested separately for horses and cats. The critical values of  $r_{j,k}$  are presented in Table VII.

TABLE VII

CRITICAL VALUE OF  $r_{j,k}$  FOR THE SPECIFIED  $\alpha$ 

| N                | $\alpha = 0.05$ | $\alpha = 0.01$ |
|------------------|-----------------|-----------------|
| 23 (Male Horses) | 0.413           | 0.526           |
| 15 (Male Cats)   | 0.514           | 0.641           |

Triangular matrices of sample correlation coefficients for the 23 male horses and 15 male cats are presented in Tables VIII-A and VIII-B respectively. Significant values are indicated as previously described.



TABLE VIII-A CORRELATION MATRIX - MALE HORSES

|                         |         |        | ااد      | ORREDALION | - 11   | MAINI   | TUMP -           | CICATON     |                    |                 |          |                                          |                |
|-------------------------|---------|--------|----------|------------|--------|---------|------------------|-------------|--------------------|-----------------|----------|------------------------------------------|----------------|
|                         | muiols) | Inorg. | egncose  | ВПИ        | Uric   | Choles- | Total<br>Protein | и∋шлqГА     | Total<br>nidurilia | Phos.           | грн      | TODS                                     | Body<br>Weight |
| Calcium                 |         |        |          |            |        |         |                  |             |                    |                 |          |                                          |                |
| Inorganic               | -0.035  |        |          |            |        |         |                  |             |                    |                 |          |                                          |                |
| Glucose                 | -0.047  | -0.254 |          |            |        |         |                  |             |                    |                 |          |                                          |                |
| BUN                     | -0.124  | -0.176 | 0.127    |            |        |         |                  |             |                    |                 |          |                                          |                |
| Uric                    | 0.178   | 0.229  | 0.132    | -0.296     |        |         |                  |             |                    |                 |          |                                          |                |
| Cholesterol             | -0.051  | 0.341  | 0.246    | -0.126     | 0.300  |         |                  |             |                    |                 |          |                                          |                |
| Total                   | 0.119   | -0.610 | 0.301    | 0.075      | 0.216  | 980.0   |                  |             |                    |                 |          |                                          |                |
| Albumen                 | 0.512   | 0.187  | -0.030   | 0.218      | 0.302  | -0.032  | -0.209           |             |                    |                 |          |                                          |                |
| Total<br>Bilirubin      | -0.472  | 0.025  | 0.113    | -0.337     | 0.023  | 0.204   | 0.259            | -0.825      |                    |                 |          |                                          |                |
| Alkaline<br>Phosphatase | 0.078   | 0.718  | 0.040    | -0.216     | 0.155  | 0.523   | -0.426           | 0.247       | -0.167             |                 |          |                                          |                |
| грн                     | 0.005   | 0.359  | -0.393   | 0.124      | 0.104  | 0.098   | -0.289           | 0.151       | -0.190             | 0.160           |          |                                          |                |
| SGOT                    | 0.101   | 090.0  | -0.043   | 0.037      | -0.162 | -0.225  | -0.114           | 0.041       | -0.040             | -0.013          | 0.366    | •                                        |                |
| Body Weight             | -0.262  | -0.578 | -0.128   | 0.110      | -0.301 | 1       | 0.441            | -0.402      | 0.240              | -0.644          | -0.101   | 0.048                                    |                |
| Age                     | 0.123   | -0.611 | 0.195    | -0.017     | 0.113  | -0.472  | 0.503            | 980.0-      | 0.054              | -0.456          | -0.419   | -0.172                                   | 960 • 0        |
| * - significant         | ant at  | α = 0. | 0.05 ( r |            | 0.41   | 3); **  | 1                | significant | at                 | $\alpha = 0.01$ | 1 ( rj,k | \\ \  \  \  \  \  \  \  \  \  \  \  \  \ | 526)           |



TABLE VIII-B
CORRELATION MATRIX - MALE CATS

| Body<br>Weight   |         |                        |         |        |              |             |                  |         |                         |        |        |             | 0.629  | > 0.641         |
|------------------|---------|------------------------|---------|--------|--------------|-------------|------------------|---------|-------------------------|--------|--------|-------------|--------|-----------------|
| LODS             |         |                        |         |        |              |             |                  |         |                         |        |        | 0.350       | -0.053 | rj,k  }         |
| НДЛ              |         |                        |         |        |              |             |                  |         |                         |        | -0.014 | -0.225      | -0.424 | .01 (           |
| Phos.            |         |                        |         |        |              |             |                  |         |                         | 0.399  | -0.122 | -0.768      | -0.682 | at $\alpha = 0$ |
| иэшиdlA          |         |                        |         |        |              |             |                  |         | -0.311                  | -0.223 | 0.631  | 0.666       | 0.363  |                 |
| Total<br>Protein |         |                        |         |        |              |             |                  | 0.321   | -0.650                  | -0.293 | 0.282  | 0.514       | 0.522  | significant     |
| choles-          |         |                        |         |        |              |             | 0.006            | 0.278   | 890•0-                  | 0.048  | 0.557  | 0.238       | -0.123 | 1<br>*<br>*     |
| Uric<br>Acid     |         |                        |         |        |              | -0,377      | -0.017           | -0.040  | 0.226                   | -0.159 | -0.106 | -0.314      | -0.021 | .514);          |
| впи              |         |                        |         |        | 0.548        | -0.463      | 0.018            | -0.211  | -0.191                  | -0.262 | -0.227 | 0.030       | 0.119  | 0<br>^II<br>    |
| egncose          |         |                        | *       | 0.058  | 0.120        | -0.148      | 0.121            | 0.216   | -0.202                  | -0.490 | 0.112  | 0.306       | 0.574  | ( r,k           |
| Inorg.           |         |                        | -0.455  | -0.344 | -0.132       | 0.454       | -0.269           | -0.073  | 0.516                   | 0.514  | 0.267  | -0.395      | -0.508 | $\alpha = 0.05$ |
| -<br>Calcium     |         | 0.739                  | -0.532  |        | -0.048       | 0.411       | -0.353           | -0.111  | 0.480                   | 0.446  | 0.112  | -0.362      | -0.638 | at              |
|                  | Calcium | Inorganic<br>Phosphate | Glucose | BUN    | Uric<br>Acid | Cholesterol | Total<br>Protein | Albumen | Alkaline<br>Phosphatase | гон    | SGOT   | Body Weight | Age    | * - significant |



3.  $H_0$ : The true correlation coefficient,  $\rho_{j,k}^f$ , between variables j and k for females is equal to zero. This hypothesis is tested separately for horses and cats. The critical values of  $r_{j,k}$  are specified in Table IX.

|    | N       |         | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----|---------|---------|-----------------|-----------------|
| 21 | (Female | Horses) | 0.433           | 0.549           |
| 15 | (Female | Cats)   | 0.514           | 0.641           |

Triangular matrices of sample correlation coefficients for the 21 female horses and 15 female cats are presented in Tables X-A and X-B. Significance is indicated as previously specified.



TABLE X-A
CORRELATION MATRIX - FEMALE HORSES

| Body<br>Weight     |         |                        |         |        |              |             |                  |         |                    |                         |        |        |             | 0.473  | 0.549)        |
|--------------------|---------|------------------------|---------|--------|--------------|-------------|------------------|---------|--------------------|-------------------------|--------|--------|-------------|--------|---------------|
| TODS               |         |                        |         |        |              |             |                  |         |                    |                         |        |        | 0.140       | 0.051  | -<br>  ×, c   |
| ГDH                |         |                        |         |        |              |             |                  |         |                    |                         |        | -0.022 | 0.011       | -0.346 | 01 (  ]       |
| Phos.              |         |                        |         |        |              |             |                  |         |                    |                         | 0.295  | -0.108 | -0.665      | -0.662 | ت<br>اا<br>ع  |
| LatoT<br>niduriLia |         |                        |         |        |              |             |                  |         |                    | -0.212                  | -0.238 | 0.289  | 0.203       | 0.154  | at            |
| иэшиqlA            |         |                        |         |        |              |             |                  |         | -0.360             | -0.111                  | 0.159  | 0.134  | -0.065      | -0.242 | significant   |
| Total<br>Protein   |         |                        |         |        |              |             |                  | -0.256  | 0.613              | -0.274                  | -0.362 | 0.027  | 0.238       | 0.184  | ।<br>ਲ±ਲ      |
| choles-            |         |                        |         |        |              |             | -0.390           | 0.254   | -0.129             | 0.056                   | 0.013  | -0.149 | -0.242      | -0.123 | ** .(         |
| Uric<br>Acid       |         |                        |         |        |              | 0.283       | -0.534           | 0.669   | -0.220             | 0.382                   | -0.253 | 0.166  | -0.348      | -0.461 | 0.433         |
| вли                |         |                        |         |        | -0.125       | -0.110      | -0.266           | -0.421  | 0.113              | 0.030                   | -0.042 | 0.206  | -0.051      | 0.063  | ], k   ≥      |
| esoonte            |         |                        |         | 0.137  | 0.378        | 0.324       | -0.506           | 0.057   | -0.399             | 0.620                   | 0.094  | -0.217 | -0.590      | -0,517 | 0.05 ( r      |
| Inorg.             |         |                        | 0.515   | 900.0- | 0.448        | 0.274       | -0.394           | 0.028   | -0.241             | 0.852                   | 0.425  | -0.268 | -0.524      | -0.601 | α = 0.        |
| muioleO            |         | -0.163                 | -0.0260 | -0.470 | -0.043       | -0.056      | 0.210            | 0.162   | -0.022             | -0.024                  | -0.198 | 0.046  | 0.100       | -0.349 | int at        |
|                    | Calcium | Inorganic<br>Phosphate | Glucose | BUN    | Uric<br>Acid | Cholesterol | Total<br>Protein | Albumen | Total<br>Bilirubin | Alkaline<br>Phosphatase | грн    | SGOT   | Body Weight | Age    | - significant |



TABLE X-B
CORRELATION MATRIX - FEMALE CATS

| Body<br>Body   |         |           |         |        |              |             |                  |         |                         |        |        |             | 0.498  |
|----------------|---------|-----------|---------|--------|--------------|-------------|------------------|---------|-------------------------|--------|--------|-------------|--------|
| TODS           |         |           |         |        |              |             |                  |         |                         |        |        | -0.079      | -0.193 |
| грн            |         |           |         |        |              |             |                  |         |                         |        | 0.305  | -0.181      | -0.545 |
| ъров.<br>Р1Ка. |         |           |         |        |              |             |                  |         |                         | -0.136 | -0.324 | -0.441      | -0.282 |
| иЭшпаТА        |         |           |         |        |              |             |                  |         | 0.397                   | -0.450 | -0.357 | 0.315       | 0.317  |
| Total          |         |           |         |        |              |             |                  | 0.091   | -0.409                  | -0.279 | 0.333  | 0.545       | 0.638  |
| choles-        |         |           |         |        |              |             | 0.124            | 0.197   | -0.058                  | 0.203  | 0.101  | 0.165       | -0.192 |
| Uric           |         |           |         |        |              | -0.284      | 0.214            | -0.278  | -0.019                  | 0.138  | 0.047  | -0.201      | 0.098  |
| впи            |         |           |         |        | 0.523        | 0.272       | 0.283            | 0.115   | -0.206                  | 0.106  | 0.175  | -0.005      | 0.077  |
| grncose        |         |           |         | -0.077 | 0.060        | -0.432      | 900.0            | 0.264   | 0.252                   | 0.306  | 0.195  | 0.114       | 0.296  |
| Inorg.         |         |           | 0.217   | -0 269 | 0.120        | 0.059       | -0.228           | -0.277  | 0.355                   | 0.198  | 0.488  | -0.491      | -0.502 |
| -<br>muislaD   |         | 0.398     | -0.292  | -0.122 | -0.304       | 0.460       | -0 •380          | 0.278   | 0.508                   | 0.341  | 0.077  | -0.332      | -0.678 |
|                | Calcium | Inorganic | Glucose | BUN    | Uric<br>Acid | Cholesterol | Total<br>Protein | Albumen | Alkaline<br>Phosphatase | грн    | SGOT   | Body Weight | Age    |

\*-significant at  $\alpha = 0.05 \; (|r_{j,k}| \ge 0.514); \; **$ -significant at  $\alpha = 0.01 \; (|r_{j,k}| \ge 0.641)$ 



4. 
$$H_0: \rho_{j,k}^m = \rho_{j,k}^f = \rho_{j,k}$$

To test this hypothesis Fisher's Z transformation is employed where

$$z_{j,k}^{m} = \frac{1}{2} \ln \left[ \frac{1 + r_{j,k}^{m}}{1 - r_{j,k}^{m}} \right]$$

and

$$Z_{j,k}^{f} = \frac{1}{2} \ln \left[ \frac{1 + r_{j,k}^{f}}{1 - r_{j,k}^{f}} \right]$$

It will be noted that each  $z_{j,k}$  is the inverse hyperbolic tangent of  $r_{j,k}$  [16]. If H<sub>o</sub> is true, then

$$\frac{\left|z_{j,k}^{m} - z_{j,k}^{f}\right|}{\sqrt{\frac{1}{N^{m}-3} + \frac{1}{N^{f}-3}}}$$

has a standard normal distribution [17]. In the equine data,  $N^{m}=23$  and  $N^{f}=21$ . The quantity  $\sqrt{\frac{1}{N^{m}-3}+\frac{1}{N^{f}-3}}$  therefore becomes  $\sqrt{\frac{1}{20}+\frac{1}{18}}\simeq \sqrt{0.10555...}\simeq 0.325$ . To reject H<sub>O</sub> at



the  $\alpha$  = 0.05 level ( $|z_{j,k}^{m} - z_{j,k}^{f}|$ ), must be greater than or equal to (1.96)(0.325) = 0.637. To reject H<sub>o</sub> at the  $\alpha$  = 0.01 level this absolute difference must be greater than or equal to (2.575)(0.325) = 0.837. It should be recalled that 1.96 and 2.575 represent the (1- $\alpha$ ) = 0.95 and (1- $\alpha$ ) = 0.99 percentile points of the standard normal distribution, respectively.

In the equine data, statistically significant differences between male and female sample correlation coefficients are presented in Table XI.

TABLE XI

| Paired Variables                   | r <sup>m</sup> j,k | z <sup>m</sup><br>j,k | r <sup>f</sup> j,k | z <sup>f</sup><br>j,k | $ z_{j,k}^m - z_{j,k}^f $ |
|------------------------------------|--------------------|-----------------------|--------------------|-----------------------|---------------------------|
| Inorganic Phos-<br>phate & Glucose | -0.254             | -0.260                | 0.515              | 0.570                 | 0.830*                    |
| Glucose and Age                    | 0.195              | -0.198                | -0.517             | -0.572                | 0.770*                    |
| Uric Acid and<br>Total Protein     | 0.216              | 0.220                 | -0.534             | -0.596                | 0.816*                    |
| Glucose and<br>Total Protein       | 0.301              | 0.311                 | -0.506             | -0.557                | 0.868**                   |

<sup>\* -</sup> significant at  $\alpha = 0.05$ 

In the feline data there were no statistically significant differences between any of the male and female correlation coefficients. Therefore,  $H_{\text{O}}$  cannot be rejected in the case of the cat, at  $\alpha$  = 0.05.

<sup>\*\* -</sup> significant at  $\alpha = 0.01$ 



5.  $H_0$ :  $\underline{\mu}^m - \underline{\mu}^f = 0$ ; that is, the sample mean vector for males and the sample mean vector for females came from the same parent population with mean vector  $\underline{\mu}$ . To test the validity of  $H_0$ , Mahalanobis'  $D^2$  statistic is computed as follows:

$$[\bar{\mathbf{x}}^{\mathrm{m}} - \bar{\mathbf{x}}^{\mathrm{f}}]^{\mathrm{T}} \quad s^{-1}[\bar{\mathbf{x}}^{\mathrm{m}} - \bar{\mathbf{x}}^{\mathrm{f}}] = D^{2}$$

where  $[\bar{x}^m - \bar{x}^f]^T$  is the transpose of the 14 by 1 vector of the arithmetic difference between the male and female vectors of sample means,  $S^{-1}$  is the inverse of the pooled variance-covariance matrix S,

where 
$$S = \frac{(N^{m}-1)S^{m} + (N^{f}-1)S^{f}}{N^{m} + N^{f} - 2}$$

and  $S^m$  is the variance-covariance matrix for male data  $S^f$  is the variance-covariance matrix for female data  $N^m$  is the male sample size  $N^f$  is the female sample size.

If  $H_0$  is true, then  $D^2 \left[ \frac{N^m N^f (N^m + N^f - p - 1)}{p (N^m + N^f) (N^m + N^f - 2)} \right]$  is distributed in accordance with the F distribution that has  $(p, N^m + N^f - p - 1)$  degrees of freedom [18]. The results of this hypothesis test are presented in Table XII.



TABLE XII

DISCRIMINANT ANALYSIS BETWEEN MALES AND FEMALES

| Species | Computed<br>D2 | Degrees of<br>Freedom | Computed<br>F Value | F at $\alpha = 0.05$ |
|---------|----------------|-----------------------|---------------------|----------------------|
| Equine  | 2.537          | (14,29)               | 1.374               | 2.10                 |
| Feline  | 5.748          | (13,16)               | 1.895               | 2.40                 |

Thus, for each species, the computed F statistic is not significant at  $\alpha$  = 0.05 and H $_{\odot}$  cannot be rejected at that level of significance.



## VII. TOLERANCE LIMITS

Upper and lower tolerance levels based on the observed data are determined as follows: each  $\bar{x}$ . j is estimating a population mean,  $\mu_j$ ; each  $s_j^2$  is estimating a population variance,  $\sigma_j^2$ .  $\mu_j$  and  $\sigma_j^2$  are fixed but unknown parameters. The statistics  $\bar{x}$ . j and  $s_j^2$  are random variables. It is possible to determine a constant, K, such that in a large series of samples from a normal distribution, a fixed proportion,  $\gamma$ , of the intervals  $\bar{x}$ . j  $\pm K_{\alpha}\sqrt{s_j^2}$  will include  $100 \ (1-\alpha)$ % or more of the distribution. Thus, statistical tolerance limits for a normal random variable,  $X_{i,j}$ , are given by the following:

$$L = \bar{x}_{ij} - K_{\alpha} \sqrt{s_{j}^{2}}$$
 and  $U = \bar{x}_{ij} + K_{\alpha} \sqrt{s_{j}^{2}}$ 

These limits have the property that the probability that the interval includes at least a specified proportion  $(1-\alpha)$  of the distribution is equal to a preassigned value  $\alpha$  [19]. In this paper, values of 0.95 and 0.05 were assigned to  $\gamma$  and  $\alpha$  respectively. The following  $K_{0.05}$  values such that the probability is 0.95 that at least 95% of the distribution will be included between  $\bar{x}$ .  $\pm K_{0.05} \sqrt{s_j^2}$  are presented:



| N<br>44 | $\frac{K_{0.05}}{2.415}$ |
|---------|--------------------------|
| 38      | 2.464                    |
| 30      | 2.549                    |
| 24      | 2.651                    |
| 21      | 2.723                    |

These values are employed in constructing the tolerance limits for the biochemical components of each species.

These limits are presented in Tables XIII-A and XIII-B.



TABLE XIII-A
TOLERANCE LIMITS IN THE HORSE

| Biochemical<br>Component | N        | ₹·j              | sj               | K. <sub>05</sub> | x.j ± K. <sub>05</sub> S |
|--------------------------|----------|------------------|------------------|------------------|--------------------------|
| Calcium                  | 44       | 11.78            | 0.61             | 2.415            | 10.31 - 13.25            |
| Inorganic<br>Phosphate   | 44       | 3.62             | 0.92             | 2.415            | 1.40 - 5.84              |
| Glucose                  | 44       | 86.77            | 12.47            | 2.415            | 56.65 - 116.89           |
| BUN                      | 44       | 14.55            | 3.72             | 2.415            | 5.57 - 23.53             |
| Uric Acid                | 44       | 0.45             | 0.15             | 2.415            | 0.09 - 0.81              |
| Cholesterol              | 44       | 112.70           | 15.31            | 2.415            | 75.73 - 149.67           |
| Total<br>Protein         | 44       | 6.49             | 0.40             | 2.415            | 5.52 - 7.46              |
| Albumen                  | 44       | 0.48             | 0.09             | 2.415            | 0.26 - 0.70              |
| Total<br>Bilirubin       | 44       | 1.40             | 0.90             | 2.415            | 0 - 3.57                 |
| Alkaline<br>Phosphatase  | 44       | 145.39           | 77 <b>.</b> 39   | 2.415            | 0 - 332.29               |
| LDH                      | 44       | 223.57           | 67.51            | 2.415            | 60.53 - 386.61           |
| SGOT                     | 44<br>38 | 786.36<br>636 05 | 433.77<br>127.80 | 2.464            | 321.15 - 950.95          |



TABLE XIII-B
TOLERANCE LIMITS IN THE CAT

| Variable               | N              | x                       | S                       | к. <sub>05</sub>        | KS                      | x ± KS                                         |
|------------------------|----------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------------------------------|
| Calcium                | 30             | 9.27                    | 0.81                    | 2.549                   | 2.06                    | 7.21 - 11.33                                   |
| Inorganic<br>Phosphate | 30             | 7.23                    | 1.13                    | 2.549                   | 2.88                    | 4.35 - 10.11                                   |
| Glucose                | 30             | 78.53                   | 27.35                   | 2.549                   | 69.72                   | 8.81 - 148.25                                  |
| BUN                    | 30             | 25.50                   | 5.01                    | 2.549                   | 12.77                   | 12.73 - 38.27                                  |
| Uric Acid              | 30             | 0.90                    | 0.16                    | 2.549                   | 0.41                    | 0.49 - 1.31                                    |
| Choles-<br>terol       | 30<br>24<br>21 | 79.60<br>91.79<br>97.33 | 36.64<br>29.91<br>27.76 | 2.549<br>2.651<br>2.723 | 93.40<br>79.29<br>75.59 | 0 - 173.00<br>12.50 - 171.08<br>21.74 - 172.92 |
| Total<br>Protein       | 30             | 6.78                    | 0.52                    | 2.549                   | 1.33                    | 5.45 - 8.11                                    |
| Albumen                | 30             | 1.53                    | 0.18                    | 2.549                   | 0.46                    | 1.07 - 1.99                                    |
| Alkaline<br>Phos.      | 30             | 60.67                   | 30.86                   | 2.549                   | 78.66                   | 0 - 139.33                                     |
| LDH                    | 30             | 271.03                  | 121.49                  | 2.549                   | 309.68                  | 0 - 580.71                                     |
| SGOT                   | 30             | 86.37                   | 32.35                   | 2.549                   | 82.46                   | 3.91 - 168.83                                  |



## VIII. SUMMARY

A summary of the significant findings of this study will be presented according to species. In this summary, "significant," as applied to sample correlation coefficients, refers to an ability to reject  $H_0$ :  $\rho_{j,k} = 0$  at  $\alpha \le 0.05$ .

## A. EQUINE DATA

In the case of the data pertaining to the 44 horses, significant positive correlation coefficients were obtained for the 23 males in the following pair-wise observa ions:

Calcium and Albumen
Inorganic Phosphate and Alkaline Phosphatase
Cholesterol and Alkaline Phosphatase
Total Protein and Body Weight
Total Protein and Age

Significant negative correlation coefficients for the 23 male horses were obtained in the following paired observations:

Calcium and Total Bilirubin

Inorganic Phosphate and Total Protein

Inorganic Phosphate and Body Weight

Inorganic Phosphate and Age

Cholesterol and Age

Total Protein and Alkaline Phosphatase

Albumen and Total Bilirubin



Alkaline Phosphatase and Body Weight
Alkaline Phosphatase and Age
LDH and Age

Significant positive correlation coefficients were observed in the sample of 21 female horses between the following paired variables:

\*Inorganic Phosphate and Glucose
Inorganic Phosphate and Uric Acid
Inorganic Phosphate and Alkaline Phosphatase
Glucose and Alkaline Phosphatase
Uric Acid and Albumen
Total Protein and Total Bilirubin
Body Weight and Age

Significant negative correlation coefficients were observed in the sample of 21 female horses between the following paired variables:

Calcium and BUN

Inorganic Phosphate and Body Weight

Inorganic Phosphate and Age

Glucose and Body Weight

\*Glucose and Age

\*Uric Acid and Total Protein

Uric Acid and Age

Glucose and Total Protein

Alkaline Phosphatase and Body Weight

Alkaline Phosphatase and Age



Those correlation coefficients in the female found to be significantly different from the corresponding correlation coefficient in the male are indicated with a \*.

Significant positive correlation coefficients in all 44 horses as a group that were not significant in either of the sub-groups considered separately were observed between the following paired variables:

Inorganic Phosphate and Cholesterol
Uric Acid and Cholesterol
Inorganic Phosphate and LDH

Significant positive correlation coefficients in all 44 horses as a group that were also significant in both the male and female sub-groups were observed between the following paired variables:

Inorganic Phosphate and Alkaline Phosphatase

Significant negative correlation coefficients in all 44 horses that were also significant in both the male and female sub-groups are as follows:

Inorganic Phosphate and Body Weight
Inorganic Phosphate and Age
Alkaline Phosphatase and Body Weight
Alkaline Phosphatase and Age

All other positive and negative correlation coefficients that were observed to be significant in all 44 horses appear to have reached significant levels only because of a very high correlation coefficient in one of the sub-groups.



In considering the fifth hypothesis, it is concluded from this study that there is no difference between male and female with respect to the mean values of the 12 serum biochemical parameters as reported by the autoanalyzer in the population of horses from which this sample of 44 horses is a representative sample.

## B. FELINE DATA

With respect to 15 female cats, the following positive bivariate correlation coefficients were found to be significant:

BUN and Uric Acid

Total Protein and Body Weight

Total Protein and Age

The following negative bivariate correlation coefficients were found to be significant in the data obtained from the 15 female cats:

Calcium and Age

The 15 male cats showed the following positive correlation coefficients that were statistically significant:

Calcium and Inorganic Phosphate
Inorganic Phosphate and Alkaline Phosphatase
Inorganic Phosphate and LDH
Glucose and Age
BUN and Uric Acid



Cholesterol and SGOT

Total Protein and Age

Albumen and Body Weight

Body Weight and Age

The following statistically significant bivariate correlation coefficients were demonstrated from the male data:

Calcium and Glucose

Total Protein and Alkaline Phosphatase

Alkaline Phosphatase and Body Weight

Alkaline Phosphatase and Age

None of the correlation coefficients in one sex differed significantly from the corresponding coefficient in the other sex. Admittedly, the relatively small size of the sub-groups is a limiting factor.

The influence of the number of observations on the significance of correlation coefficients is evidenced when we consider the 30 cats as a single group. Significant positive correlation coefficients in all 30 cats were obtained for the following paired variables:

Calcium and Inorganic Phosphate

\*Calcium and Cholesterol

\*Calcium and Alkaline Phosphatase

\*Calcium and LDH

Inorganic Phosphate and Alkaline Phosphatase
Inorganic Phosphate and LDH
Glucose and Age



BUN and Uric Acid

Cholesterol and SGOT

\*Total Protein and Body Weight

Total Protein and Age

Albumen and Body Weight

Body Weight and Age

The following significant negative correlation coefficients between paired variables were observed in the 30 cats:

Calcium and Glucose
\*Calcium and Total Protein

Calcium and Age

\*Inorganic Phosphate and Body Weight

\*Inorganic Phosphate and Age

Glucose and LDH

Total Protein and Alkaline Phosphatase

Alkaline Phosphatase and Body Weight

Alkaline Phosphatase and Age

LDH and Age

Significant correlation coefficient in the combined sample of 30 cats that were not significant in either males or females considered separately are indicated with a \*.

Certainly, it would appear that additional observations in both male and female cats could result in an increased number of bivariate correlation coefficients attaining significance; this is particularly true of the female group.



With respect to the fifth hypothesis of equality of the mean vectors, it is concluded that there is no difference between males and females in the means of the 12 biochemical components in the feline population from which this sample of 30 is representative.



## IX. RECOMMENDATIONS

The analysis of the equine biochemical data suggests future work is desirable, particularly in the measurement of albumen, LDH, and SGOT as reported by the autoanalyzer. The significant bivariate correlation coefficients, particularly as they occur in the female, should be exploited for possible diagnostic significance.

The analysis of the feline biochemical data demonstrates that animals in apparent robust health can nonetheless be hypercholesterolemic, at least as reported by the auto-analyzer. Even when the 9 most extreme cases were ignored the lower limit of the cholesterol tolerance was considerably below those values previously reported by Cornelius and Kaneko [20].

This work has been undertaken as a pilot study in multivariate analysis of biochemical components of the serum of two of the common species of domestic animals. Emphasis has been placed on tolerance interval estimations, possibly significant bivariate linear association as measured by the Pearson Product Moment Correlation Coefficient, and a discriminant analysis of the male and female sample mean vectors. With the increased use of the autoanalyzer and increased availability of data, this method of statistical analysis can and should be expanded.



## LIST OF REFERENCES

- 1. Schwabe, C. W., <u>Veterinary Medicine and Human Health</u>, p. 3, Williams and Wilkins, 1964.
- 2. Technicon Corporation, SMA 12/60, p. 1, 1967.
- 3. Coffman, J. R., "A Perspective on Clinical Chemistries in the Horse," Veterinary Medicine/Small Animal Clinician, vol. 65, No. 11, p. 1092, Nov., 1970.
- 4. Ibid, p. 1092.
- 5. Schor, S. S., "The Mystic Statistic," <u>Journal of the American Medical Association</u>, vol. 95, No. 8, p. 615, 1966.
- 6. Worcester, J., "The Statistical Method," New England Journal of Medicine, vol. 274, No. 1, p. 27, 1966.
- 7. Technicon, Op. Cit., p. 1.
- 8. Wolff, W. A., Tumbleson, M. E., and Littleton, C. A.,
  "Serum Chemistry in Normal and Diseased Horses,"

  Advances in Automated Analysis, vol. III, Mediad, Inc.,
  White Plains, N.Y., pp 179-135, 1970.
- 9. Kaneko, J. J., Personal Communication, October 22, 1970.
- 10. Coffman, Op. Cit., p. 1024.
- 11. Mood, A. M., and Graybill, F. A., <u>Introduction to the</u>
  Theory of Statistics, pp. 149-150, McGraw-Hill, 1963.
- 12. Anderson, T. W., An Introduction to Multivariate Statistical Analysis, p. 2, Wiley, 1958.
- 13. Ostle, B., Statistics in Research, p. 225, Iowa State University Press, 1963.
- 14. Snedecor, G. W., and Cochran, W. G., <u>Statistical</u> <u>Methods</u>, p. 557, Iowa State University Press, 1967.
- 15. Sokal, R. R., and Rohlf, F. J., <u>Biometry</u>, p. 520, Freeman, 1969.
- 16. Ibid, p. 519.
- 17. Ibid, p. 521.



- 18. Dixon, W. J., BMD Biomedical Computer Programs, p. 190, University of California Press, 1970.
- 19. Bowker, A. H., and Lieberman, G. J., Engineering Statistics, p. 228, Prentice-Hall, 1964.
- 20. Cornelius, C. E., and Kaneko, J. J., Clinical Biochemistry of Domestic Animals, p. 100, Academic Press, 1963.



## INITIAL DISTRIBUTION LIST

|    | ·                                                                                                                                                              | No. | Copies |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| 1: | Defense Documentation Center<br>Cameron Station<br>Alexandria, Virginia 22314                                                                                  |     | 2      |
| 2. | Library, Code 0212<br>Naval Postgraduate School<br>Monterey, California 93940                                                                                  |     | 2      |
| 3. | Department of Operations Analysis, Code 55<br>Naval Postgraduate School<br>Monterey, California 93940                                                          |     | 1      |
| 4. | Assoc. Professor A. F. Andrus, Code 55As<br>Department of Operations Analysis<br>Naval Postgraduate School<br>Monterey, California 93940                       |     | 1      |
| 5. | LTC Robert R. Jorgensen 246 Ardennes Circle Fort Ord, California 93941                                                                                         |     | 1      |
| 6. | Office of the Surgeon General Attn: MEDVS Department of the Army Washington, D. C. 20314                                                                       |     | 1      |
| 7. | Dr. J. J. Kaneko Professor and Chairman Department of Clinical Pathology School of Veterinary Medicine University of California - Davis Davis California 95616 |     | 1      |



Security Classification

| ח | 0 | _ | ш | V | F | N | T | 0 | ^ | ıN | ı. | ۲ | R | 1 | ٦ | 1 | D | 1 | 1 | ۲. | A | R | 8 | L | D | ı |
|---|---|---|---|---|---|---|---|---|---|----|----|---|---|---|---|---|---|---|---|----|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

ORIGINATING ACTIVITY (Corporate author)

Naval Postgraduate School Monterey, California 93940 Unclassified

2b. GROUP

3 REPORT TITLE

A MULTIVARIATE ANALYSIS OF CERTAIN BIOCHEMICAL COMPONENTS OF EQUINE AND FELINE SERUM SAMPLES AS REPORTED BY AN AUTO-ANALYZER SYSTEM

A DESCRIPTIVE NOTES (Type of report and inclusive dates)
Master's Thesis; March 1971

5. AUTHORISI (First name, middle initial, last name)

Robert Rothnick Jorgensen, Sr.; Lieutenant Colonel, United States Army

6. REPORT DATE
March 1971

8a. CONTRACT OR GRANT NO.

b. PROJECT NO.

c.

9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)

d.

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

1. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School Monterey, California 93940

13. ABSTRACT

This thesis contains a multivariate statistical analysis of the results of an automated analysis of serum samples from the horse and cat. In the horse, 12 biochemical components plus body weight and age are recorded; thus, observations are made on 14 random variables. In the case of the cat there are observations on 13 random variables. Ninety-one (91) pair-wise correlation coefficients are computed from the equine data and 78 pair-wise correlation coefficients are computed from the feline data. Extensive hypothesis testing concerning these correlation coefficients is conducted and the results are presented. A discriminant analysis for 2 groups, male and female, is conducted for each species. In this analysis the vector of sample means of the biochemical components plus body weight and age for males is contrasted with the corresponding vector from Tolerance limits for each biochemical component females. measured are presented for both species.

DD FORM 1473 (PAGE 1) S/N 0101-807-6811

UNCLASSIFIED
Security Classification



|      | curity Classification    | LIN  | K A | LIN  | K B | LIN  | кс |
|------|--------------------------|------|-----|------|-----|------|----|
|      | KEY WORDS                | ROLE | wr  | ROLE | wr  | ROLE | wT |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
| RATT | LTIVARIATE ANALYSIS      |      |     |      |     |      |    |
| MO   | LIIVARIAIE ANALISIS      |      |     |      | 3   |      |    |
| SE   | RUM - EQUINE AND FELINE, | 1 3  |     |      |     |      |    |
| •    | AUTOMATED ANALYSIS       | 1    |     |      |     | 1 3  |    |
|      |                          | 1    |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     | 4    |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     | 1 8  |    |
|      |                          |      | 1   |      |     |      |    |
|      |                          |      | 1   |      |     |      |    |
|      |                          |      |     |      |     | 1    |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     | 1    |    |
|      |                          |      |     |      |     |      |    |
|      |                          | 1    |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          | 1    |     |      |     |      |    |
|      |                          |      |     |      |     | 1    |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      | •                        |      |     |      |     |      |    |
|      |                          |      |     |      |     | 1    |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          | 1    |     |      |     |      |    |
|      | ·                        |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |
|      |                          |      |     |      |     |      |    |

61

DD FORM 1473 (BACK)
5/N 0101-307-6821

UNCLASSIFIED



13 NO v 72 22274 126356 Thesis Jorgensen J825 A multivariate analysis of certain c.1 biochemical components of equine and feline serum samples as reported by an auto-analyzer system. 1187672 ts 126356

Thesis J825 c.1

Jorgensen

A multivariate analysis of certain biochemical components of equine and feline serum samples as reported by an auto-analyzer system.

thesJ825
A multivariate analysis of certain bloch

3 2768 001 03038 0

DUDLEY KNOX LIBRARY