Index > Fundamentals of probability

# Markov's inequality

by Marco Taboga, PhD

Markov's inequality is a probabilistic inequality. It provides an upper bound to the probability that the realization of a random variable exceeds a given threshold.



#### **Statement**

The proposition below formally states the inequality.

**Proposition** Let X be an integrable random variable defined on a sample space  $\Omega$ . Let  $X(\omega) \ge 0$  for all  $\omega \in \Omega$  (i.e., X is a positive random variable). Let  $C \in \mathbb{R}_{++}$  (i.e., C is a strictly positive real number). Then, the following inequality, called Markov's inequality, holds:

$$P(X \ge c) \le \frac{E[X]}{c}$$

Reading and understanding the proof of Markov's inequality is highly recommended because it is an interesting application of many elementary

properties of the expected value.

#### **Proof**

First note that

$$1_{\{X \ge c\}} + 1_{\{X < c\}} = 1$$

where  $1_{\{X \geq c\}}$  is the indicator of the event  $\{X \geq c\}$  and  $1_{\{X < c\}}$  is the indicator of the event  $\{X < c\}$ . As a consequence, we can write

$$\begin{aligned} \mathbf{E}[X] &= \mathbf{E}[X \cdot \mathbf{1}] \\ &= \mathbf{E}[X \cdot (\mathbf{1}_{\langle X \geq c \rangle} + \mathbf{1}_{\langle X < c \rangle})] \\ &= \mathbf{E}[X\mathbf{1}_{\langle X \geq c \rangle}] + \mathbf{E}[X\mathbf{1}_{\langle X < c \rangle}] \end{aligned}$$

Now, note that  $X1_{\{X < c\}}$  is a positive random variable and that the expected value of a positive random variable is positive:

$$\mathbb{E}[X1_{\{X < c\}}] \geq 0$$

Therefore,

$$\mathbb{E}[X] = \mathbb{E}[X\mathbb{1}_{\langle X \geq c \rangle}] + \mathbb{E}[X\mathbb{1}_{\langle X < c \rangle}] \ge \mathbb{E}[X\mathbb{1}_{\langle X \geq c \rangle}]$$

Now, note that the random variable  $c \cdot 1_{\{X \geq c\}}$  is smaller than the random variable  $X \cdot 1_{\{X \geq c\}}$  for any  $\omega \in \Omega$ :

$$c \cdot 1_{\{X \geq c\}} \leq X \cdot 1_{\{X \geq c\}}$$

because, trivially, c is always smaller than X when the indicator  $1_{\{X \geq c\}}$  is not zero. Thus, by an elementary property of the expected value, we have that

$$c \cdot 1_{\langle X \geq c \rangle} \leq X \cdot 1_{\langle X \geq c \rangle} \Rightarrow \mathbb{E}[c \cdot 1_{\langle X \geq c \rangle}] \leq \mathbb{E}[X \cdot 1_{\langle X \geq c \rangle}]$$

Furthermore, by using the linearity of the expected value and the fact

that the expected value of an indicator is equal to the probability of the event it indicates, we obtain

$$\mathbb{E}[c \cdot 1_{\langle X \geq c \rangle}] = c \mathbb{E}[1_{\langle X \geq c \rangle}] = c \mathbb{P}(X \geq c) \Rightarrow c \mathbb{P}(X \geq c) \leq \mathbb{E}[X1_{\langle X \geq c \rangle}]$$

The above inequalities can be put together:

$$\begin{array}{l} \mathbb{E}[X] \geq \mathbb{E}[X \mathbb{1}_{\langle X \geq c \rangle}] \\ \mathbb{E}[X \mathbb{1}_{\langle X \geq c \rangle}] \geq c \mathbb{P}(X \geq c) \end{array} \Rightarrow \mathbb{E}[X] \geq c \mathbb{P}(X \geq c)$$

Finally, since *c* is strictly positive we can divide both sides of the right-hand inequality to obtain Markov's inequality:

$$P(X \ge c) \le \frac{E[X]}{c}$$

This property also holds when  $X \ge 0$  almost surely (in other words, there exists a zero-probability event E such that  $\{\omega \in \Omega : X(\omega) < 0\} \subseteq E$ ).

# **Example**

Suppose that an individual is extracted at random from a population of individuals having an average yearly income of \$40,000.

What is the probability that the extracted individual's income is greater than \$200,000?

In the absence of more information about the distribution of income, we can use Markov's inequality to calculate an upper bound to this probability:

$$P(X \ge 200,000) \le \frac{40,000}{200,000} = \frac{1}{5}$$

Therefore, the probability of extracting an individual having an income greater than \$200,000 is less than 1/5.

## Important applications

Markov's inequality has several applications in probability and statistics.

For example, it is used:

- to prove Chebyshev's inequality;
- in the proof that mean square convergence implies convergence in probability;
- to derive upper bounds on tail probabilities (Exercise 2 below).

## Solved exercises

Below you can find some exercises with explained solutions.

#### **Exercise 1**

Let *x* be a positive random variable whose expected value is

$$E[X] = 10$$

Find a lower bound to the probability

#### Solution

First of all, we need to use the formula for the probability of a complement:

$$P(X < 20) = 1 - P(X \ge 20)$$

Now, we can use Markov's inequality:

$$P(X \ge 20) \le \frac{E[X]}{20} = \frac{10}{20} = \frac{1}{2}$$

Multiplying both sides of the inequality by -1, we obtain

$$-P(X \ge 20) \ge -\frac{1}{2}$$

Adding 1 to both sides of the inequality, we obtain

$$1 - P(X \ge 20) \ge 1 - \frac{1}{2} = \frac{1}{2}$$

Thus, the lower bound is

$$P(X < 20) \ge \frac{1}{2}$$

#### **Exercise 2**

Let *x* be a random variable such that the expected value

$$\mathbb{E}[|X|^4]$$

exists and is finite.

Use the latter expected value to derive an upper bound to the tail probability

where c is a positive constant.

Solution

By Markov's inequality, we have

$$P(|X| > c) = P(|X|^4 > c^4)$$

$$\leq c^{-4} E[|X|^4]$$

# Other inequalities

If you like this page, StatLect has other pages on probabilistic inequalities:

- Chebyshev's inequality;
- Jensen's inequality.

Markov's inequality

$$P(X \ge c) \le \frac{E[X]}{c}$$

Chebyshev's inequality

$$P(|X - E[X]| \ge k) \le \frac{Var[X]}{k^2}$$

Jensen's inequality

$$E[g(X)] \ge g(E[X])$$
 if  $g$  convex

## How to cite

Please cite as:

Taboga, Marco (2021). "Markov's inequality", Lectures on probability theory and mathematical statistics. Kindle Direct Publishing. Online appendix. https://www.statlect.com/fundamentals-of-probability/Markov-inequality.



# The books

Discover why thousands of students and professionals use StatLect textbooks.

#### Probability and statistics

#### Matrix algebra

## Featured pages

Delta method
F distribution
Multinomial distribution
Conditional probability
Law of Large Numbers
Central Limit Theorem

## **Explore**

Score test
Wald test
Set estimation

# **Glossary entries**

Posterior probability
Alternative hypothesis
Convolutions
Mean squared error
Probability density function
Null hypothesis

## **Main sections**

Mathematical tools
Fundamentals of probability
Probability distributions
Asymptotic theory
Fundamentals of statistics
Glossary

#### **About**

About Statlect
Contacts
Cookies, privacy and terms of use

## **Share**

To enhance your privacy, we removed the social buttons, but **don't forget to share**.