Thurs: Class

Tues: Exam II

Covers Class 12-21

Project Topics due by Friday

* remaining HW assignments will include project applates.

* Final draft 7 December

* First 11 30 November.

* Will produce subsic.

Deutsch-Jozsa algorithm

The DJ problem considers functions from 1 bits to 1 bit

 $(X_{n-1},...,X_o)$ $f(x_{n-1},...,X_o)$

and these are restricted to two categories:

function returns some value for all possible arguments, e.g.

f(xn-1,..., xo) = 1
regardless of input

Category 1 (lonstant) Category 2 (Balanced)

function returns "0" for exactly half the arguments and "1" for exactly half the arguments. e.g. $f(x_{n-1},...,x_{n},x_{n}) = x_{n}$ The D-J problem is:

One party chooses a function and constructs an oracle that can evaluate the function. The other party has to determine the category to which the function belongs with a minimal number of oracle queries.

To be specific, the oracle operates as:

Then a classical algorithm would be:

Alice picks, f, and constructs oracle

P for ûf

Bob systematically evaluates function at various inputs - the oracle must be used repeatedly.

 $f(0,...,0,1,1) \equiv f(3)$

In the worst case of a balanced function (first $2^{n}/2$ all give same outcome) Bdo has to evaluate on $2^{n}/2+1=2^{n-1}+1$ arguments.
Thus

To determine the function type classically, Bob must use
$$2^{n-1}+1$$
 oracle queries

This grows exponentially in the number of bits on which the function can be evaluated. This is a "difficult" problem to assess.

Note that Bob uses the oracle in a very conventional function evaluation way.

input further organism further
$$get$$
 further get further get further get further get further get get further get get

But it is only coincidental to the classical strategy that Bob evaluates the function on various arguments. In terms of solving the problem he does not case if e.g. f(14) = 0 or f(14) = 1. He only needs to know whether f differs on some pair of inputs, and not what those values are. So the issue is not a typical one of evaluating f(14) or f(21), etc.,...

The quarton algorithm avoids this, Here

Bob sets up quantum circuit in anticipation of receiving the cracle:

Use quantum physics one can track the state of all qubits as they pass through the process. We find.

The coefficients depend on the function.

Simon's algorithm

Simons algorithm considers a function that maps in an exactly two to one function - thus for each output there are exactly two inputs

$$000...00$$
 $000...00$
 $f(0,0...0) = f(0,0,...01)$
 $f(0,0,...0) = f(0,0,...01)$
 $f(0,0,...0) = f(0,0,...01)$

Additionally it requires that the function be periodic. So there exist some $a = a_{n-1}, \dots a_1 a_0$ so that for all $x_{n-1}, \dots x_n$ $f(x_{n-1} \oplus a_{n-1}, x_{n-2} \oplus a_{n-2}, \dots, x_n \oplus a_1, x_n \oplus a_0)$

$$= f(x_{n-1,\ldots,x_{\omega}})$$

Then the task is to find a. We will use as a shorthand

$$X \oplus \alpha \equiv X_{n-1} \oplus \alpha_{n-1}, X_{n-2} \oplus \alpha_{n-2}, \dots, X_{o} \oplus \alpha_{o}$$
decimal binary.

So we need to find a s.t. $f(x \in a) = f(x)$

Classically we need to evaluate f on various inputs until we find two that it was the same output. Note that if f(x') = f(x) we know $X' = X \oplus \alpha$ and $\alpha = X' \oplus X$

1 Simon's problem

Consider functions that map two bits onto a single bit:

$$(x_1, x_0) \mapsto f(x_2, x_1, x_0)$$

Which of these are $2 \to 1$ and satisfy $f(x \oplus a) = f(x)$ for all possible x? Determine the value of a in those cases.

a)
$$f(x_1, x_0) = x_1$$
.

b)
$$f(x_1, x_0) = x_1 \oplus x_0$$
.

c)
$$f(x_1, x_0) = x_1 x_0$$
.

Answer

×	Χo	f = x1	$f = x_i \oplus x_0$	f=x,x0
0	0	0	0	0
0)	0	Į.	C
l	0	1	L	0
t	1	1	0	1
		is 2-71	15 2-01	not 2-01
	(a = 01 works	a=11 Works	

In order to determine the period we need to evaluate the function at least twice (for n=2)

A detailed analysis shows that the admissible functions are

$$f(x_1,x_0) = x_1$$

$$f(x_1,x_0) = x_1 \oplus 1$$

$$q = 01$$

$$f(x_1,x_0) = x_0 \oplus 1$$

$$q = 10$$

$$f(x_1,x_0) = x_0 \oplus 1$$

$$q = 10$$

$$f(x_1,x_0) = x_0 \oplus 1$$

$$q = 11$$

$$f(x_1,x_0) = x_1 \oplus x_0 \oplus 1$$

$$q = 11$$

Now consider the scheme

So
$$|\Psi_1\rangle = \frac{1}{2} \sum_{x_1 x_0} |x_1 x_0\rangle |C\rangle$$

 $\frac{\hat{u}_F}{\hat{v}} = \frac{1}{2} \sum_{x_1 x_0} |x_1 x_0\rangle |f(x_1, x_0)\rangle$

The exact structure here depends on the function and we consider the first case $f(x_1,x_2)=x_1$

Then

$$|\hat{Y}_{2}\rangle = \frac{1}{2} \left\{ |x, x_{c}\rangle |x_{l}\rangle = \frac{1}{2} \left\{ |00\rangle |0\rangle + |cl\rangle |0\rangle + |cl\rangle |1\rangle + |ll\rangle |1\rangle \right\}$$

 $= \frac{1}{2} \frac{1}{2} \frac{100 + 101}{100 + 100} = \frac{1}{2} \frac{1}{2} \frac{100 + 100}{100 + 100} = \frac{1}{2} \frac{1}{2} \frac{100}{100 + 100} = \frac{1}{2} \frac{100}{100} = \frac{1}{2} \frac{10$

We see that the doubling up has produced a periodicity in the argument register. Finally

$$|\Psi_{3}\rangle = \frac{1}{2} |H(0)|H(10)+11)|0\rangle + \frac{1}{2}|H(1)|\hat{H}(10)+11)|1\rangle$$

$$= \frac{1}{2} |(10)+(1)||0\rangle|0\rangle + \frac{1}{2}|(40)-11\rangle|0\rangle|1\rangle$$

$$= \frac{1}{2} |(10)+(1)||0\rangle|0\rangle + \frac{1}{2}|(40)-11\rangle|0\rangle|1\rangle$$

$$= \frac{1}{2} |(10)+(10)||0\rangle|1\rangle + \frac{1}{2}|10\rangle|(10)-11\rangle|0\rangle$$

Note that measurement in the computational basis gives either x = 00 or x = 10 and these both satisfy $x \cdot a = 0$. Each are equally likely.

This is true in general of Simons algorithm. The algorithm always returns x s.t x, a = 0. We run the algorithm multiple times and obtain a set

x, x, x, etc....

such that each satisfies x·a =0.

This gives a set of linear equations:

 $X_{n-1} Q_{n-1} + X_{n-2} Q_{n-2} + \cdots + X_{o} Q_{o} = 0$ $X_{n-1} Q_{n-1} + X_{n-2} Q_{n-2} + \cdots + X_{o} Q_{o} = 0$

If we have a independent equations, then we can invert these to find an-1, ..., ac.

So typically we need n oracle invocations and $O(n^2)$ classical operations to invert the equations. A classical algorithm requires $O\left(2^{n/2}\right)$ oracle queries

2 Simon's algorithm for a two bit function

Consider the standard scheme for implementing Simon's algorithm. Suppose that the function is $f(x_1, x_0) = x_0$.

- a) Determine the state of the system immediately before the oracle query.
- b) Determine the state of the system immediately after the oracle query.
- c) Determine the state of the system immediately before the measurement on the argument register.
- d) Describe the possible outcomes of the measurement on the argument register.
- e) The period is a number that satisfies $x \cdot a = 0$ where x is a measurement outcome. What would the possible outcomes here reveal about the period?

$$\frac{Ans:}{Z^{n/2}}\sum_{x_1x_0}|x_1x_0\rangle|0\rangle = \frac{1}{2}\left[|00\rangle|0\rangle + |01\rangle|0\rangle + |10\rangle|0\rangle + |10\rangle|0\rangle = |4\rangle$$

b)
$$|P_2| = \hat{U}f |\hat{Y}_1\rangle = \frac{1}{2} \left[\hat{U}f |\cos(0) + \hat{U} |\cos(1) + \cdots \right]$$

$$= \frac{1}{2} \left[|\cos(f(0)) + |\cos(1) f(1)\rangle + |\cos(f(2)) + |\sin(1) f(3)\rangle \right]$$

But
$$f(0) = 0$$

 $f(1) = 1$
 $f(2) = 0$
 $f(3) = 1$

$$|\Psi_{2}\rangle = \frac{1}{2} \left[|100\rangle |10\rangle + |10\rangle |11\rangle + |10\rangle |10\rangle + |11\rangle |11\rangle \right]$$

$$= \frac{1}{2} \left[(100) + |10\rangle |10\rangle + (|01\rangle + |11\rangle |11\rangle \right]$$

$$= \frac{1}{2} \left[(10) + |11\rangle |10\rangle |10\rangle + \frac{1}{2} \left[(10) + |11\rangle |11\rangle |11\rangle \right]$$

$$= \frac{1}{2} \left[(10) + |11\rangle |10\rangle |10\rangle + \frac{1}{2} \left[(10) + |11\rangle |11\rangle |11\rangle \right]$$

$$= \frac{1}{2} \left[(10) + |11\rangle |10\rangle |10\rangle + \frac{1}{2} \left[(10) + |11\rangle |11\rangle |11\rangle \right]$$

c) A Hadamard acts on each argument register. $|\Psi_{3}\rangle = \frac{1}{2} \hat{H} (10) + |11\rangle \hat{H} |0\rangle |0\rangle + \frac{1}{2} \hat{H} (10) + |11\rangle \hat{H} |1\rangle |1\rangle$ $= \frac{1}{2} \sqrt{2} |0\rangle \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) |0\rangle + \frac{1}{2} \sqrt{2} |0\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) |1\rangle$ $= \frac{1}{2} (|0\rangle + |0\rangle) |0\rangle + \frac{1}{2} (|0\rangle - |0\rangle) |1\rangle$

d) either 00 or 01

If one gets 00 then 000 + 001 = 0does not say anything if one gets 01 then

 $0a_0 + 1a_1 = 0 = 0$ $a_1 = 0$

The only non-trivial possibility is $\alpha_0 = 1$ $\alpha_1 = 0$

This is the period