

Bin Yang, Hayoung Kim, Jui-Jia Lin

TABLE OF CONTENTS

O1 PROBLEM & DATA

02 DYNAMIC PRICING STRATEGY

03 MODELING & SIMULATION

04 CONCLUSIONS

O1 PROBLEM & DATA

PROBLEM STATEMENT

CONTEXT

PROBLEM

OBJECTIVE

Currently, the ride-hailing platform only uses ride duration to determine ride fares

The company wants to implement dynamic pricing to optimize fares based on real-time market conditions

Develop a dynamic pricing model that considers various factors and enhance the potential revenues

DATASET OVERVIEW

1,000 OBSERVATIONS 10 VARIABLES 0 NULL VALUES

NUMERICAL

Number of Drivers \rightarrow SUPPLY Number of Riders \rightarrow

DEMAND

Expected Ride Duration Ride Fare

CATEGORICAL

Vehicle Type (Premium / Economy)
Time of Booking
Ride Location
Customer Loyalty Status

EXPLORATORY DATA ANALYSIS

The dataset reveals a consistent deficit in supply compared to demand, and this persists across all examined variables and categories

EXPLORATORY DATA ANALYSIS

There's a consistent price differences between premium and economy ride fares across all categories, with minimal variation within each vehicle type.

EXPLORATORY DATA ANALYSIS

Currently, the Ride Fare is predominantly based solely on Expected Ride Duration, with correlation 0.93

O2 DYNAMIC PRICING STRATEGIES

INTRODUCTION TO DYNAMIC PRICING

Dynamic Pricing:

a strategy in which product or service prices continue to adjust in response to the real-time supply and demand.

WHY NOT JUST COMPARE DEMAND TO SUPPLY?

Direct comparison can cause extreme price swings due to temporary market conditions, potentially alienating customers.

- **Statistical Basis:** Percentiles provide a consistent and objective way to define what 'high' and 'low' demand and supply look like within historical data.
- Market Stability: Using percentiles helps stabilize pricing by smoothing out anomalies and not reacting to every fluctuation.
- Long-Term Strategy: Focuses on sustainable pricing that supports business growth and customer retention.

IMPLEMENTING DEMAND & SUPPLY MULTIPLIERS

	25 Percentile	50 Percentile	75 Percentile	
Demand (Riders)	40	X	81	
Supply (Drivers)	X	22	38	

```
Demand > High_Demand_Value → Demand / High_Demand_Value ("Surge Multiple")
Demand < Low_Demand_Value → Demand / Low_Demand_Value</pre>
```

```
If Supply < Low_Supply_Value → Low_Supply_Value / Supply ("Surge Multiple" )
Supply > High_Supply_Value → High_Supply_Value / Supply
```

IMPLEMENTING DEMAND & SUPPLY MULTIPLIERS

IMPLEMENTING DEMAND & SUPPLY MULTIPLIERS

RESULTS OF OUR NEW PRICING STRATEGY

Profitability of Rides (Dynamic Pricing vs Historical Pricing)

Expected Revenue Comparison

Previous Revenue	Adjusted Revenue		%
\$372,503	\$467,199	\$ 94,696	25.42%

Our Adjusted Ride Fares vs Expected Ride Duration

O3 MODELING & SIMULATION

MODEL - RANDOM FOREST

SIMULATION

	1	2	3	4	5	6
Number of Riders	40 🗕	100	100	100	100	100
Number of Drivers	40	40 —	> 30	30	30	30
Vehicle Type	Economy	Economy	Economy	Economy	Premium	Premium
Time of Booking	Afternoon	Afternoon	Afternoon	Evening	Evening	Evening
Expected Ride Duration	40	40	40	40	40 —	60
Predicted Ride Cost	154.99	162.08	174.31	175.36	186.01	265.63

+7.09

+12.23

+1.05

+10.65

+79.62

O4 CONCLUSIONS

CONCLUSIONS & TAKEAWAYS

DISTRIBUTION & CORRELATION

- Supply is consistently lower than Demand
- Original price is highly correlated with ride duration

PRICING STRATEGY ADJUSTMENT

- Supply and Demand should play more important roles when it comes to pricing
 - >> Multiplier

PRICE PREDICTION

 Build price prediction model based on the adjusted price

THANK YOU!