A Tutorial of Casual Inference

Tinghua Chen

College of Information Sciences and Technology Penn State University

Apr 25 2023

Outlines

- Motivation
- 2 What does imply Causation?
- 3 The fundamental problem of causal inference
- 4 Assumptions
- 6 Causal graph
- **6** Estimation
- Example

Outlines

- Motivation
- What does imply Causation?
- 3 The fundamental problem of causal inference
- 4 Assumptions
- 6 Causal graph
- 6 Estimation
- Example

Simpson's Paradox

	Contr	ol Group	Treatment Group		
	Heart attack	No heart attack	Heart attack	No heart attack	
Female	1	19	3	37	
Male	12	28	8	12	
Total	13	47	11	49	

- $\frac{1}{20} = 5\%$ vs $\frac{3}{40} = 7.5\%$ The drug is bad for women
- $\frac{12}{40} = 30\%$ vs $\frac{8}{20} = 40\%$ The drug is bad for man

Simpson's Paradox

	Contr	ol Group	Treatment Group		
	Heart attack	No heart attack	Heart attack	No heart attack	
Female	1	19	3	37	
Male	12	28	8	12	
Total	13	47	11	49	

- $\frac{1}{20} = 5\%$ vs $\frac{3}{40} = 7.5\%$ The drug is bad for women
- $\frac{12}{40} = 30\%$ vs $\frac{8}{20} = 40\%$ The drug is bad for man
- $\frac{13}{60}=21\%$ vs $\frac{11}{60}=18\%$ The drug is GOOD for people?????

Wait a min...

Sleeping with shoes on is strongly correlated with waking up with a headache

Sleeping with shoes on is strongly correlated with waking up with a headache common cause : drinking the night before

Sleeping with shoes on is strongly correlated with waking up with a headache common cause : drinking the night before

• Shoe sleepers differ from non-shoe sleeper in a key way

Sleeping with shoes on is strongly correlated with waking up with a headache common cause : drinking the night before

- Shoe sleepers differ from non-shoe sleeper in a key way
- Confounder

Sleeping with shoes on is strongly correlated with waking up with a headache common cause : drinking the night before

- Shoe sleepers differ from non-shoe sleeper in a key way
- Confounder

Note

Total association (e.g. correlation) is mixture of confounding and casual association

Outlines

- Motivation
- What does imply Causation?
- 3 The fundamental problem of causal inference
- 4 Assumptions
- 6 Causal graph
- 6 Estimation
- Example

Notation

T : observed treatmentY : observed outcome

i : denote a specific individual

 $Y_i(1)$: potential outcome under

Notation

T : observed treatmentY : observed outcome

i : denote a specific individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no

Notation

T: observed treatment

Y : observed outcome

i: denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

treatment

Casusal effect

$$Y_i(1) - Y_i(0)$$

Notation

T: observed treatment

Y: observed outcome

i: denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

treatment

Casusal effect

$$Y_i(1) - Y_i(0) = 1$$

Outlines

- Motivation
- What does imply Causation?
- 3 The fundamental problem of causal inference
- 4 Assumptions
- 6 Causal graph
- 6 Estimation
- Example

The fundamental problem of causal inference

Notation

T: observed treatment

Y: observed outcome

i : denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

treatment

Casusal effect

$$Y_i(1)-Y_i(0)=1$$

The fundamental problem of causal inference

Notation

T: observed treatment

Y: observed outcome

i: denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

$$Y_i(1) - Y_i(0) = 1$$

Missing values perspective

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1	?	?
2	0	1	?	1	?
3	1	1	1	?	?
4	0	0	?	0	?
5	0	0	?	0	?
6	1	0	0	?	?

Notation

T : observed treatment
Y : observed outcome

i: denote a specific individual $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

Missing values perspective

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1	?	?
2	0	1	?	1	?
3	1	1	1	?	?
4	0	0	?	0	?
5	0	0	?	0	?
6	1	0	0	?	?

Notation

T: observed treatment

Y: observed outcome

i: denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

treatment

Note

Missing the counterfactual outcomes is the fundamental problem of casual inference

Question

How could we get around it?

$$Y_i(1) - Y_i(0)$$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1	?	?
2	0	1	?	1	?
3	1	1	1	?	?
4	0	0	?	0	?
5	0	0	?	0	?
6	1	0	0	?	?

Notation

T : observed treatment

Y: observed outcome

i : denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

Individual treatment effect (ITE) $Y_i(1) - Y_i(0)$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1	?	?
2	0	1	?	1	?
3	1	1	1	?	?
4	0	0	?	0	?
5	0	0	?	0	?
6	1	0	0	?	?

Notation

T: observed treatment

Y: observed outcome

i : denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

Average Treatment effect (ATE): $\mathbb{E}[Y_i(1) - Y_i(0)]$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1	?	?
2	0	1	?	1	?
3	1	1	1	?	?
4	0	0	?	0	?
5	0	0	?	0	?
6	1	0	0	?	?

Notation

T : observed treatment

Y: observed outcome

i : denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

Average Treatment effect (ATE): $\mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y(1) - Y(0)]$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1	?	?
2	0	1	?	1	?
3	1	1	1	?	?
4	0	0	?	0	?
5	0	0	?	0	?
_6	1	0	0	?	?

Notation

T: observed treatment

Y: observed outcome

i : denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

Average Treatment effect (ATE): $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1	?	?
2	0	1	?	1	?
3	1	1	1	?	?
4	0	0	?	0	?
5	0	0	?	0	?
6	1	0	0	?	?

Notation

T: observed treatment

Y: observed outcome

i : denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

Average Treatment effect (ATE):

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$= \mathbb{E}[Y|T = 1] - \mathbb{E}[Y|T = 0]$$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1	?	?
2	0	1	?	1	?
3	1	1	1	?	?
4	0	0	?	0	?
5	0	0	?	0	?
6	1	0	0	?	?

Notation

T: observed treatment

Y: observed outcome

i: denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

Average Treatment effect (ATE):

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$= \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1		?
2	0	1		1	?
3	1	1	1		?
4	0	0		0	?
5	0	0		0	?
6	1	0	0		?

Notation

T : observed treatment

Y: observed outcome

i: denote a specific individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no

Average Treatment effect (ATE):

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$= \mathbb{E}[Y|T = 1] - \mathbb{E}[Y|T = 0]$$

	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1		?
2	0	1		1	?
3	1	1	1		?
4	0	0		0	?
5	0	0		0	?
6	1	0	0		?

2/3 1/3

Notation

T: observed treatment

Y: observed outcome

i : denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

Average Treatment effect (ATE):

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$= \mathbb{E}[Y|T = 1] - \mathbb{E}[Y|T = 0]$$

	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1		?
2	0	1		1	?
3	1	1	1		?
4	0	0		0	?
5	0	0		0	?
6	1	0	0		?
_			0./0	1 /0	1 /0

$$2/3 - 1/3 = 1/3$$

Notation

T : observed treatment

Y: observed outcome

i : denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

Average Treatment effect (ATE):

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$\neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$

	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1		?
2	0	1		1	?
3	1	1	1		?
4	0	0		0	?
5	0	0		0	?
6	1	0	0		?
			2/3_	1/3	— 1/3

$$2/3 - 1/3 = 1/3$$

Notation

T: observed treatment

Y: observed outcome

i: denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

treatment

Why?

Recall: Correlation does not imply causation

Average Treatment effect (ATE):

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$\neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$
total associational difference

	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1		?
2	0	1		1	?
3	1	1	1		?
4	0	0		0	?
5	0	0		0	?
6	1	0	0		?
			- /-	- 10	1 /0

$$2/3 - 1/3 = 1/3$$

Notation

T: observed treatment

Y: observed outcome

i : denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

How could we get around them?

Average Treatment effect (ATE):

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

casual difference

$$\neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$

total associational difference

	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1		?
2	0	1		1	?
3	1	1	1		?
4	0	0		0	?
5	0	0		0	?
6	1	0	0		?
			2/2	1 /2	1 /2

$$2/3 - 1/3 = 1/3$$

Notation

T: observed treatment

Y: observed outcome

i: denote a specific individual

 $Y_i(1)$: potential outcome under

treatment

 $Y_i(0)$: potential outcome under no

treatment

Recall

Note

Total association (e.g. correlation) is mixture of confounding and casual association

How could we get around them?

How could we get around them?

How could we get around them? - Right here!

Then, when casual difference equal to association difference?

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$
?

How could we get around them?- Right here!

Then, when casual difference equal to association difference?

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$
?

Answer

When we DO NOT have confounding association, like Randomized control trials (RCTs)!!!

How could we get around them?

The Identification-Estimation Flowchart Causal Estimand Identification Statistical Estimand Estimation Estimate

- Estimand any quantity we want to estimate
 - ① Causal estimand (e.g. $\mathbb{E}[Y(1) Y(0)]$)
 - 2 Statistical estimand (e.g. $\mathbb{E}_X[\mathbb{E}[Y|T=1,X]-\mathbb{E}[Y|T=0,X]]$)
- Estimate: approximation of some estimand, using data
- Estimation: process for getting from data + estimand to estimate

Identifiablity

A causal quantity $\mathbb{E}[Y(t)]$ is identifiable if we can compute it from a purely statistical quantity $\mathbb{E}[Y|t]$.

How could we get around them?

What assumptions we need meet so that ATE equal to the associational difference?

Outlines

- Motivation
- What does imply Causation?
- 3 The fundamental problem of causal inference
- 4 Assumptions
- 6 Causal graph
- 6 Estimation
- Example

Ignorability: $(Y(1), Y(0)) \perp \!\!\! \perp T$

Ignorability:
$$(Y(1), Y(0)) \perp T$$

 $\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$ (Ignorability)

Ignorability:
$$(Y(1), Y(0)) \perp T$$

 $\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1	?	?
2	0	1	?	1	?
3	1	1	1	?	?
4	0	0	?	0	?
5	0	0	?	0	?
6	1	0	0	?	?

Ignorability:
$$(Y(1), Y(0)) \perp T$$

 $\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1		?
2	0	1		1	?
3	1	1	1		?
4	0	0		0	?
5	0	0		0	?
6	1	0	0		?

Ignorability:
$$(Y(1), Y(0)) \perp T$$

 $\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1		?
2	0	1		1	?
3	1	1	1		?
4	0	0		0	?
5	0	0		0	?
6	1	0	0		?

Ignorability:
$$(Y(1), Y(0)) \perp T$$

 $\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1		?
2	0	1		1	?
3	1	1	1		?
4	0	0		0	?
5	0	0		0	?
6	1	0	0		?

Conditional Ignorability: $(Y(1),Y(0)) \perp T|X$ $\mathbb{E}[Y(1)|X] - \mathbb{E}[Y(0)|X] = \mathbb{E}[Y|T=1,X] - \mathbb{E}[Y|T=0,X]$ we also call this is a conditional average treatment effects (CATEs)

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1		?
2	0	1		1	?
3	1	1	1		?
4	0	0		0	?
5	0	0		0	?
6	1	0	0		?

Conditional Ignorability:
$$(Y(1), Y(0)) \perp T \mid X$$

 $\mathbb{E}[Y(1) \mid X] - \mathbb{E}[Y(0) \mid X] = \mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1		?
2	0	1		1	?
3	1	1	1		?
4	0	0		0	?
5	0	0		0	?
6	1	0	0		?

Then How could we get average treatment effect (ATE), $\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$?

Conditional Ignorability: $(Y(1), Y(0)) \perp T \mid X$ $\mathbb{E}[Y(1) \mid X] - \mathbb{E}[Y(0) \mid X] = \mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]$

i	Т	Υ	Y(1)	Y(0)	Y(1)-Y(0)
1	1	1	1		?
2	0	1		1	?
3	1	1	1		?
4	0	0		0	?
5	0	0		0	?
6	1	0	0		?

Then what could we get average treatment effect (ATE), $\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$?

Marginalize over X

Another perspective

Exchangeability:

$$\mathbb{E}[Y(1)|T=1] = \mathbb{E}[Y(1)|T=0]$$

Another perspective

Exchangeability:

$$\mathbb{E}[Y(1)|T=1] = \mathbb{E}[Y(1)|T=0] = \mathbb{E}[Y(1)]$$

Another perspective

Exchangeability:

$$\begin{split} \mathbb{E}[Y(1)|T &= 1] = \mathbb{E}[Y(1)|T = 0] = \mathbb{E}[Y(1)] \\ \mathbb{E}[Y(0)|T &= 0] = \mathbb{E}[Y(0)|T = 1] = \mathbb{E}[Y(0)] \end{split}$$

Let me try to summarize it

Ignorability (Exchangeability):
$$(Y(1), Y(0)) \perp \!\!\! \perp T$$

$$\begin{split} & \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \\ = & \mathbb{E}[Y|\mathcal{T} = 1] - \mathbb{E}[Y|\mathcal{T} = 0] \end{split}$$

Randomized Control Trails (RCTs)

Let me try to summarize it

Ignorability (Exchangeability): $(Y(1), Y(0)) \perp \!\!\! \perp T$

$$\begin{split} & \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \\ = & \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0] \end{split}$$

Observational study

Randomized Control Trails (RCTs)

Let me try to summarize it

Ignorability (Exchangeability): $(Y(1), Y(0)) \perp \!\!\! \perp T$

$$\begin{split} & \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \\ = & \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0] \end{split}$$

Randomized Control Trails (RCTs)

Conditional Ignorability (Conditional Exchangeability): $(Y(1), Y(0)) \perp \!\!\! \perp T \mid X$

$$\mathbb{E}[Y(1)|X] - \mathbb{E}[Y(0)|X]$$

$$= \mathbb{E}[Y|T = 1, X] - \mathbb{E}[Y|T = 0, X]$$

Observational study

Different face

 $Unconfoundedness = conditional\ ignorability = conditional\ exchangeability$

- Positivity
- Consistency

- Positivity : 0 < P(T = t | X = x) < 1
- Consistency

- Positivity : 0 < P(T = t | X = x) < 1
- Consistency : $T = t \rightarrow Y = Y(t)$

Outlines

- Motivation
- What does imply Causation?
- 3 The fundamental problem of causal inference
- 4 Assumptions
- 6 Causal graph
- 6 Estimation
- Example

Causal graph

Directed Acyclic Graph (DAG)

Causal graph

Directed Acyclic Graph (DAG)

Causal graph

Directed Acyclic Graph (DAG)

chain of mediation

common cause

В

Chain of Mediation

Common Cause

Collider

- Chain of Mediation
- Common Cause
- Collider

- Chain of Mediation
- Common Cause
- Collider

- Chain of Mediation
- Common Cause
- Collider

- Chain of Mediation
- Common Cause
- Collider

- Chain of Mediation
- Common Cause
- Collider

 $B \not\perp\!\!\!\perp C$

- Chain of Mediation
- Common Cause
- Collider

- Chain of Mediation
- Common Cause
- Collider

- Chain of Mediation
- Common Cause
- Collider

- Chain of Mediation
- Common Cause
- Collider

 $A \not\perp\!\!\!\perp C|B$

Blocked path definition

A path between nodes T and Y is blocked by a (potentially empty) conditioning set w if either of the following is true:

- Along the path, there is a chain of mediation $\cdots \to X \to \ldots$ or a common cause $\cdots \leftarrow X \to \ldots$ where X is conditioned on $(X \in W)$.
- There is a collider X on the path that is not conditioned on $(X \notin W)$ and none of its descendants are conditioned on.

Backdoor criterion and backdoor adjustment

A set of variables W satisfies the backdoor criterion relative to T and Y if the following are true:

- W blocks all backdoor paths from T to Y
- W does not contain any descendants of T

if we are able to find a set of W that satisfy the backdoor criterion, we can identify the causal effect of T on Y:

$$P(y|do(t)) = \sum_{x} P(y|do(t), x)P(x|do(t))$$

$$= \sum_{x} P(y|t, x)P(x)$$
(1)

Backdoor criterion and backdoor adjustment

A set of variables W satisfies the backdoor criterion relative to T and Y if the following are true:

- W blocks all backdoor paths from T to Y
- W does not contain any descendants of T

if we are able to find a set of W that satisfy the backdoor criterion, we can identify the causal effect of T on Y :

$$P(y|do(t)) = \sum_{w} P(y|do(t), w)P(w|do(t))$$

$$= \sum_{w} P(y|t, w)P(w)$$
(2)

Recall

A causal quantity $\mathbb{E}[Y(t)]$ is identifiable if we can compute it from a purely statistical quantity $\mathbb{E}[Y|t]$.

Other important ways to do identification

- Frontdoor criterion and frontdoor adjustment
- do-calculus

Outlines

- Motivation
- What does imply Causation?
- 3 The fundamental problem of causal inference
- 4 Assumptions
- 6 Causal graph
- 6 Estimation
- Example

Recall: Conditional average treatment effects (CATEs): given X is a sufficient adjustment set

$$\mathbb{E}[Y(1) - Y(0)|X = x] \tag{3}$$

Recall: Conditional average treatment effects(CATEs): given X is a sufficient adjustment set

$$\tau(x) \stackrel{\Delta}{=} \mathbb{E}[Y(1) - Y(0)|X = x]$$

Recall: Conditional average treatment effects(CATEs): given X is a sufficient adjustment set

$$\tau(x) \stackrel{\Delta}{=} \mathbb{E}[Y(1) - Y(0)|X = x]$$
$$= \mathbb{E}[Y|T = 1, X] - \mathbb{E}[Y|T = 0, X]$$

(Always assuming unconfoundedness and positivity)

Recall: Conditional average treatment effects(CATEs): given X is a sufficient adjustment set

$$\tau(x) \stackrel{\Delta}{=} \mathbb{E}[Y(1) - Y(0)|X = x]$$
$$= \mathbb{E}[Y|T = 1, X] - \mathbb{E}[Y|T = 0, X]$$

(Always assuming unconfoundedness and positivity)

And Average treatment effects(ATEs):

$$\tau = \mathbb{E}_{x}[\mathbb{E}[Y|T=1,x] - \mathbb{E}[Y|T=0,x]]$$

Average treatment effect:

$$\tau = \mathbb{E}_{x}[\mathbb{E}[Y|T=1,x] - \mathbb{E}[Y|T=0,x]]$$

Average treatment effect:

$$\begin{split} \tau &= \mathbb{E}_{x}[\mathbb{E}[Y|T=1,x] - \mathbb{E}[Y|T=0,x]] \\ \tau &= \mathbb{E}_{X}[\mu(1,X) - \mu(0,X)] \end{split}$$

ATE estimand:

$$\tau = \mathbb{E}_{\mathbf{x}}[\mathbb{E}[Y|T=1,x] - \mathbb{E}[Y|T=0,x]]$$

$$\tau = \mathbb{E}_{\mathbf{x}}[\mu(1,X) - \mu(0,X)]$$

ATE COM estimator:

$$\hat{\tau} = \mathbb{E}_X[\hat{\mu}(1,X) - \hat{\mu}(0,X)]$$

ATE estimand:

$$\begin{split} \tau &= \mathbb{E}_{x}[\mathbb{E}[Y|T=1,x] - \mathbb{E}[Y|T=0,x]] \\ \tau &= \mathbb{E}_{x}[\mu(1,X) - \mu(0,X)] \end{split}$$

ATE COM estimator:

$$\begin{split} \hat{\tau} &= \mathbb{E}_X[\hat{\mu}(1,X) - \hat{\mu}(0,X)] \\ \hat{\tau} &= \frac{1}{n_x} \sum_i (\hat{\mu}(1,x_i) - \hat{\mu}(0,x_i)) \end{split}$$

ATE estimand:

$$\tau = \mathbb{E}_{x}[\mathbb{E}[Y|T=1,x] - \mathbb{E}[Y|T=0,x]]$$

$$\tau = \mathbb{E}_{x}[\mu(1,X) - \mu(0,X)]$$

ATE COM estimator:

$$egin{aligned} \hat{ au} &= \mathbb{E}_{X}[\hat{\mu}(1,X) - \hat{\mu}(0,X)] \ \hat{ au} &= rac{1}{n_{x}} \sum_{i} (\hat{\mu}(1,x_{i}) - \hat{\mu}(0,x_{i})) \end{aligned}$$

What could go wrong here?

Grouped COM (GCOM):

COM:

$$\hat{\tau} = \frac{1}{n_x} \sum_i (\hat{\mu}(1, x_i) - \hat{\mu}(0, x_i))$$

GCOM:

$$\hat{\tau} = \frac{1}{n_x} \sum_i (\hat{\mu_1}(x_i) - \hat{\mu_0}(x_i))$$

Separate data to two (treatment vs control) and train it using two model

Grouped COM (GCOM):

COM:

$$\hat{\tau} = \frac{1}{n_x} \sum_i (\hat{\mu}(1, x_i) - \hat{\mu}(0, x_i))$$

GCOM:

$$\hat{\tau} = \frac{1}{n_x} \sum_i (\hat{\mu_1}(x_i) - \hat{\mu_0}(x_i))$$

Separate data to two (treatment vs control) and train it using two model But....

X-learner

Outlines

- Motivation
- What does imply Causation?
- 3 The fundamental problem of causal inference
- 4 Assumptions
- 6 Causal graph
- 6 Estimation
- Example

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

Data:

- Epidemiological example taken from Luque-Fernandez et al.(2018)
- Outcome Y: (systolic) blood pressure (continuous)
- Treatment T: sodium intake (1 if above 3.5 mg and 0 if below)
- Covariates
 - 1 W: age
 - 2 Z: amount of protein excreted in urine
- Simulation: so we know the "true" ATE is 1.05

Identification

Identification

Causal estimand

 $\mathbb{E}[Y(t)]$

Identification

Causal estimand

 $\mathbb{E}[Y(t)]$

Statistical estimand without causal graph:

 $\mathbb{E}_{W,Z}\mathbb{E}[Y|t,W,Z]$

Identification

Causal estimand

 $\mathbb{E}[Y(t)]$

Statistical estimand without causal graph:

 $\mathbb{E}_{W,Z}\mathbb{E}[Y|t,W,Z]$

Statistical estimand with causal graph:

 $\mathbb{E}_{W}\mathbb{E}[Y|t,W]$

Estimation of ATE

• True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Estimation of ATE

- True ATE: $\mathbb{E}[Y(1) Y(0)] = 1.05$
- Identication: $\mathbb{E}[Y(1) Y(0)] = \mathbb{E}_X[\mathbb{E}[Y|T=1,X] \mathbb{E}[Y|T=0,X]]$

Estimation of ATE

- True ATE: $\mathbb{E}[Y(1) Y(0)] = 1.05$
- Identication: $\mathbb{E}[Y(1) Y(0)] = \mathbb{E}_X[\mathbb{E}[Y|T=1,X] \mathbb{E}[Y|T=0,X]]$
- COM Estimation: $\frac{1}{n} \sum_{i} \mathbb{E}([Y|T=1,X=x_i] \mathbb{E}[Y|T=0,X=x_i])$

Estimation of ATE

- True ATE: $\mathbb{E}[Y(1) Y(0)] = 1.05$
- Identication: $\mathbb{E}[Y(1) Y(0)] = \mathbb{E}_X[\mathbb{E}[Y|T=1,X] \mathbb{E}[Y|T=0,X]]$
- COM Estimation: $\frac{1}{n} \sum_{i} \underline{(\mathbb{E}[Y|T=1,X=x_i]} \underline{\mathbb{E}[Y|T=0,X=x_i])}$ Model (linear regression)

Estimation of ATE

- True ATE: $\mathbb{E}[Y(1) Y(0)] = 1.05$
- Identication: $\mathbb{E}[Y(1) Y(0)] = \mathbb{E}_X[\mathbb{E}[Y|T=1,X] \mathbb{E}[Y|T=0,X]]$
- COM Estimation: $\frac{1}{n} \sum_{i} (\mathbb{E}[Y|T=1,X=x_i] \mathbb{E}[Y|T=0,X=x_i])$

Model (linear regression)

Estimate:

407% error

Estimation of ATE

- True ATE: $\mathbb{E}[Y(1) Y(0)] = 1.05$
- Identication: $\mathbb{E}[Y(1) Y(0)] = \mathbb{E}_X[\mathbb{E}[Y|T=1,X] \mathbb{E}[Y|T=0,X]]$
- COM Estimation: $\frac{1}{n} \sum_i (\mathbb{E}[Y|T=1,X=x_i] \mathbb{E}[Y|T=0,X=x_i])$

Model (linear regression)

Estimate:

• X = ∅ (naive) : 5.33

407% error

• X = W,Z (without graph):0.85

19% error

Estimation of ATE

- True ATE: $\mathbb{E}[Y(1) Y(0)] = 1.05$
- Identication: $\mathbb{E}[Y(1) Y(0)] = \mathbb{E}_X[\mathbb{E}[Y|T=1,X] \mathbb{E}[Y|T=0,X]]$
- COM Estimation: $\frac{1}{n} \sum_i (\mathbb{E}[Y|T=1,X=x_i] \mathbb{E}[Y|T=0,X=x_i])$

Model (linear regression)

Estimate:

• $X = \emptyset$ (naive) : 5.33 407% error

• X = W,Z (without graph) : 0.85 19% error

Topics I have not covered:

- D-separation
- Bayesian Networks
- Structural casual models
- Unobsereved confounding
- Instrumental Variables
- Mediation analysis
- Difference in Differences
- Transfer learning and transportability
- ...

Question?