

Stratospheric Circulation Changes Associated with the Hunga Tonga-Hunga Ha'apai Eruption

Paul A. Newman

Gary Partyka

Susan E. Strahan

Krzysztof Wargan

Steven Pawson

NASA Goddard Space Flight Center

Earth Sciences

M2-SCREAM: MERRA-2 Stratospheric Composition Reanalysis of Aura Microwave Limb Sounder

MERRA-2: Modern-Era Retrospective analysis for Research and Applications, Version 2

Stratospheric Circulation Changes Associated with the Hunga Tonga-Hunga Ha'apai Eruption

Outline:

- 1. The data going into MERRA-2 can capture the effects of the Tonga water vapor, even though MERRA-2 physics does not include the water vapor perturbation
- 2. Evaluation of the changes in the MERRA-2 winds, temperatures, and circulations associated with the Tonga water vapor perturbation

M2-SCREAM: MERRA-2 Stratospheric Composition Reanalysis of Aura Microwave Limb Sounder

MERRA-2: Modern-Era Retrospective analysis for Research and Applications, Version 2

Water vapor from eruption spreads around the globe

Special M2-SCREAM assimilates the MLS

water vapor measurements.

K. Wargan, 2022

Location: 20°S 175°W

Eruption Date: 15 January 2022

Note: Standard GMAO assimilation products do not assimilation middle atmosphere water vapor.

650 K Potential Temperature Surface ~26 km

MERRA-2: unusually low global temperatures at 20 hPa

Global Mean Temperature 20 hPa (~27 km)

MERRA-2 Monthly Averaged

2022 global temperatures at 20 hPa were much lower than in past years

Missing water vapor cooling in 2022 created extreme temperature increments at 20 hPa

Global Mean Temperature Increments 20 hPa (~27 km)

MERRA-2 Monthly Averaged

Data analysis generated tendencies can capture missing radiative effects

MERRA-2 data analysis increments capture the perturbed water vapor cooling.

Southern Hemisphere Mean Temperature Increments 20 hPa (~27 km)

Monthly Averaged

M2-SCREAM

Increments near zero
Strong radiative cooling

MERRA-2

Increments large
Sum is strongly cooling

Record low temperature and strong winds were seen in June 2022

Temperatures were more than 3 standard deviations below the mean Winds were more than 3 standard deviations above the mean

June 2022

The residual mean stream function was greatly distorted in June 2022

June 2022

Gray 1980-2021 Average

Black 2022

The residual circulation had a record strong anomaly near the volcano location

Vertical residual circulation anomaly was more than 2 standard deviations above the mean

Meridional residual circulation anomaly was more than 3 standard deviations

June 2022

Clockwise circulation anomaly is centered in the lower stratosphere during June 2022

Clockwise Residual Circulation Anomaly

Vertical Wind 2 contour

Meridional Wind -2 and -3 contours

Clockwise circulation anomaly extends to higher altitudes during July 2022

Clockwise Residual Circulation Anomaly

Vertical Wind 2 contour

Meridional Wind -2 and -3 contours

Record low temperatures and strong winds descended in October 2022

Exceed Strong Wind Records by less than 5 m/s

Exceed Cold Records by -2K

Temperatures were more than 3 standard deviations below the mean Winds were more than 3 standard deviations above the mean

The residual circulation record anomaly descends with time

Low ozone is associated with the upward circulation anomaly

October 2022

Ozone anomalies
Standard deviations

Conclusions

- ▶ Data assimilation can provide assessment of model biases and even missing model physics, such as the anomalous water vapor.
- ► Water vapor from the Hunga-Tonga Hunga Ha-apai eruption disrupted the global middle atmosphere circulation for at least 10 months and is expected to continue for years.
- ► Future ensemble forecast experiments will include the anomalous water vapor.

Reference: Coy, L., Newman, P. A., Wargan, K., Partyka, G., Strahan, S. E., & Pawson, S. (2022). Stratospheric circulation changes associated with the Hunga Tonga-Hunga Ha'apai eruption. *Geophysical Research Letters*, 49, e2022GL100982. https://doi.org/10.1029/2022GL100982

