闘

考试座位号

考场

任课教师姓名

佻

┉

 \leftarrow

尺

卦

倒

学院

理工大学试卷(A) 明 昆

勤奋求学 诚信考试

考试科目: 大学物理B(2) 考试日期: 2022 年 1 月 4 日 命题教师:

题号	选择题	填空题		计算题		简答题	总分
/ 1	20170	7,10	1	2	3	140/2	
评分							
阅卷人							

物理基本常量

真空的磁导率: $\mu_0 = 4~\pi~\times 10^{-7} \text{H/m};$ 真空的电容率: $\varepsilon_0 = 8.85 \times 10^{-12} \text{F/m};$ 电子静止质量: $m_e = 9.11 \times 10^{-31}$ kg; $1 \text{nm} = 10^{-9} \text{m}$; $1 \text{ eV} = 1.602 \times 10^{-19}$ J; 基本电荷: $e = 1.602 \times 10^{-19}$ C; 普朗克常数: $h = 6.63 \times 10^{-34}$ J·s; 1 atm = 1.013×10^5 Pa; 玻尔兹曼常数: $k = 1.38 \times 10^{-23}$ J/K; $R = 8.31 J \cdot mol^{-1} \cdot K^{-1}$

总分: 一、选择题(共11题,每题3分,共33分)答案请填在"[

11、一定量的理想气体贮于某一容器中,温度为 T,气体分子的质量为 m。根据理想气 体的分子模型和统计假设,分子速度在 x 方向的分量平方的平均值

(A)
$$\overline{v_x^2} = \sqrt{\frac{3kT}{m}}$$
 (B) $\overline{v_x^2} = \frac{1}{3}\sqrt{\frac{3kT}{m}}$ (C) $\overline{v_x^2} = \frac{3kT}{m}$ (D) $\overline{v_x^2} = \frac{kT}{m}$

(B)
$$\overline{v_x^2} = \frac{1}{3} \sqrt{\frac{3kT}{m}}$$

(C)
$$\overline{v_x^2} = \frac{3kT}{m}$$

(D)
$$\overline{v_x^2} = \frac{kT}{m}$$

12、麦克斯韦速率分布曲线如图所示,图中 A、B 两部分面积相等,则该图表示

- (A) v_0 为最概然速率
- (B) v_0 为平均速率
- (C) v_0 为方均根速率
- (D) 速率大于和小于 v_0 的分子数各占一半

- 13、根据热力学第二定律判断下列哪种说法是正确的
 - (A) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体
 - (B) 功可以全部变为热,但热不能全部变为功
 - (C) 气体能够自由膨胀, 但不能自动收缩
 - (D) 有规则运动的能量能够变为无规则运动的能量, 但无规则运动的能量不能变为有规则运

动的能量

]4、一物体作简谐振动,振动方程为 $x = A\cos(\omega t + \frac{\pi}{4})$ 。在 t = T/4(T 为周期)时刻, 物体的加速度为

(A)
$$-\frac{1}{2}\sqrt{2}A\omega^2$$
 (B) $\frac{1}{2}\sqrt{2}A\omega^2$ (C) $-\frac{1}{2}\sqrt{3}A\omega^2$ (D) $\frac{1}{2}\sqrt{3}A\omega^2$

(B)
$$\frac{1}{2}\sqrt{2}A\omega^2$$

(C)
$$-\frac{1}{2}\sqrt{3}A\omega^2$$

(D)
$$\frac{1}{2}\sqrt{3}A\omega^2$$

]5、已知一质点沿 y 轴作简谐振动, 其振动方程为 $y = A\cos(\omega t + 3\pi/4)$ 。与之对应的振 动曲线是

-]6、横波以波速 <math>u 沿 x 轴负方向传播。t 时刻波形曲线如图。则该时刻
 - (A) A点振动速度大于零
 - (B) B点静止不动
 - (C) C点向下运动
 - (D) D点振动速度小于零

]7、在双缝干涉实验中,若单色光源 S到两缝 S1、S2距离 相等,则观察屏上中央明条纹位于图中0处。现将光源S向下移动 到示意图中的S'位置,则

- (A) 中央明条纹向下移动,且条纹间距不变
- (B) 中央明条纹向上移动, 且条纹间距不变
- (C) 中央明条纹向下移动, 且条纹间距增大
- (D) 中央明条纹向上移动, 且条纹间距增大
- 18、把一平凸透镜放在平玻璃上,构成牛顿环装置。当平凸透镜慢慢地向上平移时,由

反射力	光形成的牛顿环			
	(A) 向中心收缩,	条纹间隔变小	(B) 向中心收缩,	环心呈明暗交替变化
	(C) 向外扩张,环	心呈明暗交替变化	(D) 向外扩张,	条纹间隔变大
[]9、波长 <i>λ</i> =550	nm 的单色光垂直入射于)	と栅常数 <i>d</i> =2×10⁻⁴ cr	n 的平面衍射光栅上,且透
光部分	分的宽度为 <i>a</i> =1×10 ⁻	⁴ cm,最多观察到多少条为	光谱线	
	(A) 9	(B) 7	(C) 5	(D) 3
ſ]10、根据玻尔的	的氢原子理论,若大量氢原	原子处于主量子数 <i>n</i> =	5 的激发态,则跃迁辐射的
谱线	可以有多少条			
	(A) 5	(B) 7	(C) 9	(D) 10
ſ	l11、波长λ=50	0 nm 的光沿 x 轴正向传播	,若光的波长的不确	定量Δλ=10 ⁻⁴ nm,则利用不
确定		可得光子的 x 坐标的不确定		,C
	(A) 250 cm	(B) 500 cm	(C) 25 cm	(D) 50 cm
总分	分: 二、填	空题(共 11 题,1-1	10 题各 3 分,1	1 题 2 分, 共 32 分)
	1、一容器内储	有氧气,其压强为 P ,温	度为 T ,则气体的分	子数密度为,分
子的₹	平均平动动能为	,分子的平均总动	协能为。	
		,一瓶是氦气,另一瓶是		² 理想气体),若它们的压
强、作	体积、温度均相同,	则氢气的内能是氦气的	倍。	
	2 J. M. H. I. I. I.		W + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	七 4日本帝 15日
	3、田绝热材料	包围的谷器被隔极隔为两	半,左辺是埋想气体	, 右边是真空。如果把隔板

4、质点同时参与 2	$x_1 = 4\cos 3t$, $x_2 = 2\cos 3t$	$\cos(3t+\pi)$ 两个振动,	其中 x ₁ , x ₂	以厘米计, t 以
秒计,则合成后的振幅	A=;	初位相 $\varphi =$;	振动方程为
x=	o			

撤去,气体将进行自由膨胀过程,达到平衡后气体的温度_____(填"升高"、"降低"

或"不变"),气体的熵____(填"增加"、"减小"或"不变")。

5、在介质中传播的机械波,其任意质元的动能和势能的变化规律
(填 "相同"或 "不同"); 而质元的总能量也随时间(填 "改变"或 "不
改变")。
6、一弦线按下述方程振动 $y = 0.5\cos\frac{\pi x}{3}\cos 40\pi$ 。式中 x、y 的单位为厘米, t 为秒。
则上述振动在 x=1.5cm 处,弦上质点的振幅为。
$egin{array}{cccccccccccccccccccccccccccccccccccc$
8、从波长为2的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角
为 $ heta$ = $\pm\pi/6$,则缝宽的大小为。
9、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为 60° ,光强为 L 的自然光垂
直入射在偏振片上,则出射光强为。
10、当具有 5.0 eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大
的初动能是 1.5 eV,为了使这种金属产生光电效应,入射光的最低能量为eV。
11、已知粒子在无限深势阱中运动,其波函数为 $\psi(x) = \sqrt{\frac{2}{a}} \sin \frac{\pi x}{a}$ (0 $\leq x \leq a$),则发现
粒子概率最大的位置为 x=。
三、计算题(共 3 题, 每题 10 分, 共 30 分)
1 甘油亚匠乙层体 25 1 供加网配二种纸厂计和 甘山
」 1、某种双原子气体 25 mol ,做如图所示的循环过程,其中 ca 为等温过程, p_1 =4.15 \times 10 5Pa , $V=2.0\times10^2m^3$ 以 $=2.0\times10^2m^3$ 求 (1)复体在名过程中原传递的基
V_1 =2.0×10 ⁻² m^3 , V_2 =3.0×10 ⁻² m^3 。求: (1)气体在各过程中所传递的热量; (2)一循环中气体所做的净功; (3)循环的效率。

2、 图示为一平面简谐波在 t=0 时刻的波形图,求: (1) 原点 O 处质点的振动方程;

(2) 该波的波动方程;(3) P点处质点的振动方程。

3、一衍射光栅,每厘米有 400 条透光缝,每条透光缝宽为 $a=1\times10^{-3}$ cm,在光栅后放一焦距 f=1.0m 的凸透镜,现以 $\lambda=600$ nm 的单色平行光垂直照射光栅,求:(1)该衍射光栅的光栅常数 d 是多少?(2)透光缝为 a 的单缝衍射,其中央明条纹宽度 l_0 为多少?(3)在该宽度内出现的光栅衍射主极大是哪几个?

总分:

四、简答题(共1题,共5分)

写出康普顿效应中波长的改变量与散射角的关系,并解释散射规律。