VFD Motor Controller
Mackenzie Miller
Andrew Nguyen
Aidan Rader
Ryan Regan

EXECUTION AND VALIDATION PLAN

Execution Plan

		Exexc	ution I	Plan 8	/20/20	024-12	2/5/20	24									
	8/20	8/27	9/3	9/10	9/17	9/24	10/1	10/8	10/15	10/22	10/29	11/5	11/12	11/19	11/26	12/3	Date
CONOPS Report																	9/15
FSR, ICD, Milestones, & Validation Plan													Not Sta	arted			9/26
Firmware: GUI Development/Testing													In Prog	ress			9/24
Project Introduction Presentation													Compl	eted			9/30
Optoelectronics: Subsystem Introduction Project														Sched	ule		10/7
Microcontroller: Subsystem Introduction Project																	10/7
Parts Order 1																	10/8
Power: Subsystem Introduction Project																	10/14
Firmware: Subsystem Introduction Project																	10/15
Firmware: Develop Outline																	10/15
Project Update Presentation																	10/21
Firmware: Add Debug Print Statements to Outline																	10/22
Firmware: Write to Demo Each Component Needed																	10/22
Firmware: Single-Phase Potentiometer Duty Cycle Control																	10/29
Optoelectronics: Schematic Layout																	10/29
Power: DC Link Schematic Layout	1																11/2
Power: Rectifier Schematic Layout																	11/3
Power: Power Control Schematic Layout																	11/4
Microcontroller: Schematic Layout	1																11/4
Optoelectronics: PCB Layout																	11/5
Microcontroller: PCB Layout																	11/5
Power: PCB Layout																	11/5
Optoelectronics: Order PCB																	11/5
Microcontroller: Order PCB																	11/5
Power: Order PCB																	11/5
Parts Order 2																	11/12
Optoelectronics: PCB Assembly																	11/18
Microcontroller: PCB Assembly																	11/18
Power: PCB Assembly																	11/18
Firmware: Convert PWM signal to three-phase																	11/18
Final Presentation																	11/18
Optoelectronics: Validation/Debugging																	11/26
Microcontroller: Validation/Debugging																	11/26
Power: Validation/Debugging																	11/26
Firmware: Validation/Debugging																	11/26
Project Subsystem Demonstration																	11/26
Final Report																	12/5

Figure 1: Execution Plan Fall 2024

	Execution Plan 1/16/2025-4/28/2025															
	1/16	1/23	1/30	2/6	2/13	2/20	2/27	3/6	3/13	3/20	3/27	4/3	4/10	4/17	4/24	Date
PCBv1s Design (Full Design Review)																1/28
Status Update Presentation 1													Not Sta	arted		1/29
PCBv1s Order													In Prog	ress		2/6
Parts Order 4													Compl	eted		2/11
Firmware Validation													Behind	Sched	ule	2/12
Status Update Presentation 2																2/12
Status Update Presentation 3																2/26
PCBv1s Assembly																3/19
MCU/Firmware Integration																3/19
Status Update Presentation 4																3/19
Auxilary Power Integration																4/2
Status Update Presentation 5																4/2
PWM Control Integration																4/3
Relay Control Integration																4/7
System Integration																4/7
System Testing																4/16
Final Presentation																4/16
Diagnostic Feedback Integration																4/24
System Validation																4/24
Final Demonstration																4/24
Engineering Project Showcase																4/25
Final Report																4/28

Figure 2: Execution Plan Spring 2025

Validation Plan

Paragraph #	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)
3.2.3.11	15 V _{DC} to Isolated 15 V _{DC} Conversion	Power converters shall convert 15 V _{DC} to isolated 15 V _{DC} .	Apply 15 V _{DC} input using a DC power supply. Verify 15 V _{DC} output using an oscilloscope.	Tested	Aidan
3.2.3.12	15 V _{DC} to 3.3 V _{DC} Conversion	Power converters shall convert 15 V _{DC} to 3.3 V _{DC} .	Apply 15 V _{DC} input using a DC power supply. Verify 3.3 V _{DC} output using an oscilloscope.	Tested	Drew
3.2.3.13	3.3 V _{DC} to Isolated 5 V _{DC} Conversion	Power converters shall convert 3.3 V _{DC} to isolated 5 V _{DC} .	Apply 3.3 V _{DC} input using a DC power supply. Verify 5 V _{DC} output using an oscilloscope.	Tested	Aidan
3.2.3.14	Low Voltage Auxiliary Power	System shall convert 15 V_{DC} to isolated 15 V_{DC} , 3.3 V_{DC} ,	Apply 15 V _{DC} input using a DC power supply. Verify 15 V _{DC} , 3.3 V _{DC} , and 5	Tested	Mackenzie, Drew, Aidan

		and isolated 5	V _{DC} outputs using an oscilloscope.		
3.2.3.15	120 V _{AC} to 15 V _{DC} Conversion	Power converters shall convert 120 V _{AC} to isolated 15 V _{DC} .	Apply 120 V _{AC} input using a 120 V _{AC} outlet. Verify 15 V _{DC} output using an oscilloscope.	Tested	Drew
3.2.3.16	120 V _{AC} Auxiliary Power	System shall convert 120 V _{AC} to 15 V _{DC} , isolated 15 V _{DC} , and isolated 5 V _{DC} .	Apply 120 V_{AC} input using a 120 V_{AC} outlet. Verify 15 V_{DC} , 15 V_{DC} , 3.3 V_{DC} , and 5 V_{DC} outputs using an oscilloscope.	Tested	Mackenzie, Drew, Aidan
3.2.3.17	Relay	Relay shall toggle the motor with the relay signal.	Apply 15 V _{DC} coil voltage, 10 V _{DC} contact voltage, and 5 V _{DC} relay signal using a DC power supply. Verify 10 V _{DC} output using an oscilloscope.	Tested	Aidan
3.2.3.18	Relay Signal Isolation	Digital to power shall convert the relay signal from 3.3 V _{DC} to 5 V _{DC} .	Apply 5 V _{DC} supply voltage, 3.3 V _{DC} supply voltage, and 3.3 V _{DC} relay signal using a DC power supply. Verify 5 V _{DC} output using an oscilloscope.	Tested	Mackenzie
3.2.3.19	Relay Signal Generation	MCU shall toggle the relay signal to 3.3 V _{DC} with the button signal.	Apply 3.3 V _{DC} supply voltage and 3.3 V _{DC} button signal using a DC power supply. Verify 3.3 V _{DC} output using an oscilloscope.	Tested	Drew, Ryan
3.2.3.20	Firmware Relay Signal Generation	Dev board shall toggle the relay signal to 3.3	(On the dev board) Apply 3.3 V _{DC} supply voltage and 3.3 V _{DC} button signal using	Tested	Ryan

		V _{DC} with the button signal.	a DC power supply. Verify 3.3 V _{DC} output using an oscilloscope.		
3.2.3.21	Button Signal Generation	Button shall toggle the button signal to 3.3 V _{DC} with a button press.	Apply 3.3 V _{DC} supply voltage using a DC power supply and initiate a button press. Verify 3.3 V _{DC} output using an oscilloscope.	Tested	Drew
3.2.3.22	On/Off Button	System shall toggle the motor between on and off state with a button press.	Apply 15 V _{DC} coil voltage, 10 V _{DC} contact voltage, 5 V _{DC} supply voltage, and 3.3 V _{DC} supply voltage using a DC power supply. Initiate one button press and later a second button press. Verify the motor rotates after the first button press and stops after the second button press using a video.	Tested	All
3.2.3.23	10 VAC to 12 VDC Rectification	Rectifier shall convert 120 V _{AC} to 112 V _{DC} .	Apply 120 V _{AC} input using a 120 V _{AC} outlet. Verify 112 V _{DC} output using an oscilloscope.	Tested	Aidan
3.2.3.24	120 V _{AC} to 112 V _{DC} Rectification	Rectifier shall convert 120 V _{AC} to 112 V _{DC} .	Apply 120 V _{AC} input using a 120 V _{AC} outlet. Verify 112 V _{DC} output using an oscilloscope.	Tested	Aidan
3.2.3.25	Power Control	Power control shall invert three high and three low 5 V _{DC} PWM	Apply 40 V _{DC} bus voltage and 15 V _{DC} supply voltage using a DC power supply. Apply three high	Tested	Aidan

		signals into three modified sine waves.	and three low 5 V _{DC} PWM signals at 120° phase shifts using a function generator. Verify three modified sine waves at 120° phase shifts using an oscilloscope.		
3.2.3.26	PWM Signal Isolation	Digital to power shall convert three high and three low PWM signals from 3.3 V _{DC} to 5 V _{DC} .	Apply isolated 5 V _{DC} supply voltage and 3.3 V _{DC} supply voltage using a DC power supply. Apply three high and three low 3.3 V _{DC} PWM signals at 120° phase shifts using a function generator. Verify three high and three low 5 V _{DC} PWM signals at 120° phase shifts using an oscilloscope.	Tested	Mackenzie
3.2.3.27	PWM Signal Generation	MCU shall generate three high and three low 3.3 VDC PWM signals with the knob signal.	Apply 3.3 V _{DC} supply voltage and 3.3 V _{DC} speed knob signal using a DC power supply. Verify three high and three low 3.3 V _{DC} PWM signals at 120° phase shifts using an oscilloscope.	Tested	Drew, Ryan
3.2.3.28	Knob Signal Generation	Rotating potentiometer changes frequency to speed up and slow down motor.	Oscilloscope each signal output, spin knob and ensure the motor speed varies as expected.	Tested	Drew, Ryan

3.2.3.29	Firmware PWM Signal Generation	Dev board shall generate three high and three low 3.3 V _{DC} PWM signals with the knob signal.	(On dev board) Apply 3.3 V _{DC} supply voltage and 3.3 V _{DC} speed knob signal using a DC power supply. Verify three high and three low 3.3 V _{DC} PWM signals at 120° phase shifts using an oscilloscope.	Tested	Ryan
3.2.3.30	Firmware Knob Signal Generation	Rotating dev board potentiometer changes frequency to speed up and slow down motor.	(On dev board) Oscilloscope each signal output, spin knob and ensure the motor speed varies as expected.	Tested	Ryan
3.2.3.31	Low Voltage PWM Control	System shall change the motor speed with the knob signal.	Apply 40 V _{DC} bus voltage, 15 V _{DC} supply voltage, isolated 5 V _{DC} supply voltage and 3.3 V _{DC} supply voltage using a DC power supply. Verify the motor rotates at a different speed after a knob turn using a video.	Tested	All
3.2.3.32	112 V _{DC} PWM Control	System shall change the motor speed with the knob signal.	Apply 112 V _{DC} bus voltage, 15 V _{DC} supply voltage, isolated 5 V _{DC} supply voltage and 3.3 V _{DC} supply voltage using a DC power supply. Verify the motor rotates at a different speed	Untested	All

			after a knob turn using a video.		
3.2.3.33	Motor On/Off Signal Generation	MCU shall toggle the motor on/off LED signal to 3.3 V _{DC} with the button signal.	Directly inject 15V to MCU and use multimeter at the motor LED via.	Tested	Drew, Ryan
3.2.3.34	Motor On/Off LED	System shall toggle the motor on/off LED between on and off states with the motor on/off signal.	Directly inject 15V to MCU, then press relay toggle button and ensure the motor LED toggles.	Tested	Drew, Ryan
3.2.3.35	System On/Off Signal Generation	MCU shall toggle the circuit on/off LED signal to 3.3 V _{DC} when the board receives power.	Directly inject 15V to MCU and use multimeter at the system LED via.	Tested	Drew, Ryan
3.2.3.36	System On/Off LED	System shall toggle the circuit on/off LED when the board is connected to power with the circuit on/off signal	Directly inject 15V to MCU and ensure the system LED turns on.	Tested	Drew, Ryan
3.2.3.37	Firmware Motor On/Off LED Signal Generation	Firmware shall toggle the dev board's on/off LED signal to 3.3 V _{DC} with the button signal.	Directly inject 15V to dev board and use multimeter at the motor LED via.	Tested	Ryan

3.2.3.38	Firmware Motor On/Off LED	Firmware shall toggle the dev board's on/off LED between on and off states with the motor on/off signal.	Directly inject 15V to dev board, then press relay toggle button and ensure the motor LED toggles.	Tested	Ryan
3.2.3.39	Firmware System LED Signal Generation	Firmware shall toggle the dev board's on/off LED signal to 3.3 V _{DC} when the board receives power.	Directly inject 15V to dev board and use multimeter at the system LED via.	Tested	Ryan
3.2.3.40	Firmware System LED	Firmware shall toggle the dev board's on/off LED when the board is connected to power with the circuit on/off signal	Directly inject 15V to dev board and ensure the system LED turns on.	Tested	Ryan
3.2.3.41	Computer Display	MCU will display diagnostic feedback information to the UART console on a computer running MPLAB X IDE.	Connect system to MPLAB X IDE using a laptop and USB-UART cable. Verify diagnostic print statements are being output to UART console.	Untested	Drew, Ryan
3.2.3.42	Diagnostic Feedback Signal Isolation	Diagnostic feedback circuit shall transport the voltage, current, and temperature signals from	Apply 15 VDC supply voltage, isolated 15 VDC supply voltage, and three 15 VDC feedback signals using a DC power supply. Verify three	Untested	Mackenzie

		across the isolation barrier to the MCU.	15 VDC outputs using an oscilloscope.		
3.2.3.43	Diagnostic Feedback Signal Generation	Power Control shall generate 60 V _{DC} voltage, current, and temperature feedback signals.	Apply 40 V _{DC} bus voltage and 15 V _{DC} supply voltage using a DC power supply. Apply three high and three low 5 V _{DC} PWM signals at 120° phase shifts using a function generator. Verify three 60 V _{DC} outputs using an oscilloscope.	Untested	Aidan
3.2.3.44	Diagnostic Feedback	System shall send the voltage, current, and temperature signals to the computer display.	Each feedback signal will be verified through the UART console output.	Untested	All