Dozenal Discrete Geometry: Proofs for a Base-12 Geometric Framework

Author: Eric Larsen **Date**: October 23, 2025

Abstract: This document presents a sequence of lemmas demonstrating exact geometric constructions in base-12 (dozenal) Cartesian geometry, culminating in a lattice-anchored regular 24-gon and discrete divisions of the circle's diameter into its circumference. Aligned with foundational explorations in quantum discreteness and π 's geometry, these proofs invite verification and extension. Full details in *Understanding Base-12 Math: How to Draw the Perfect Circle Using Dozenal Geometry*.

Contact: larsenart@gmail.com | 1.604.722.6924 | youtube.com/@dozenalmath

Introduction

Let us consider the Cartesian plane equipped with a coordinate system where the fundamental unit interval [0,1] along each axis is subdivided into twelve equal parts, rather than the conventional ten. This structure, which we shall term the *dozenal Cartesian plane*, assigns coordinates to points using fractions with denominator a power of 12 (i.e., points of the form $(m/12^k, n/12^k)$ for integers m, n, $k \ge 0$).

While the underlying Euclidean geometry remains invariant, the dozenal system enables exact lattice intersections for cyclic symmetries (e.g., 15° rotations) without decimal recurrence. We demonstrate this via a regular 24-gon anchored to the lattice $\mathbb{Z}[1/12]^2$.

Lemma 1: Equal Side Lengths in the Dozenal Lattice Polygon

```
Vertices of dodecagon P (base-10 equivalents): V_0 = (13/12, 0), \ V_1 = (1, 7/12), \ V_2 = (7/12, 1), \ ..., \ V_{11} = (1, -7/12). Claim: All sides = 5/12 \ \sqrt{2}. 
Proof: d(V_0, V_1): \Delta x = -1/12, \ \Delta y = 7/12 d^2 = (1/144) + (49/144) = 50/144 = 25/72 d = \sqrt{(25/72)} = 5\sqrt{2} \ / \ 12 By symmetry, all edges are equal.
```

Lemma 2: Scaling and Radial Growth

Scaling operator: $S_{\lambda}(V_{i}) = (\lambda x_{i}, \lambda y_{i}), \lambda = k_{12}.$ 45° ray intersects $P^{(1)}$ at (19/24, 19/24), distance (19/24) $\sqrt{2}$. For k=4: intersection (19/6, 19/6), $r_{1} = (19/6)\sqrt{2} = 3.2_{12}\sqrt{2}$

Perimeter $P^{(4)} = 20\sqrt{2}$

Lemma 3: 24-gon Construction

C₁: radius $r_1 = (19/6)\sqrt{2}$

Seed of Life \rightarrow 24 rays at 15°

Offset from Q = $(3.2_{12}, 3.2_{12})$ by s = $5/12 \sqrt{2} \rightarrow$ points on C_2

C₂: $r_2 = \sqrt{(r_1^2 + s^2)} = \sqrt{(185/9)}$

24 intersection points → regular 24-gon

Lemma 4: Uniform Side Lengths

Claim: All sides = $10/12 \sqrt{2}$

Proof:

Distance between offset points: $\Delta x = 10/12$, $\Delta y = -10/12$

d = $\sqrt{[(10/12)^2 + (10/12)^2]}$ = $(10/12)\sqrt{2}$ D₂₄ symmetry ensures uniformity.

Lemma 5: Discrete Division

 $D = 6.4_{12} \sqrt{2} = 8 \times (19/24)\sqrt{2}$

At 24 vertices: circles radius $\rho = 0.49_{12} \sqrt{2}$

Gap = $(10/12)\sqrt{2}$ - 2ρ = $0.06\frac{1}{2}\sqrt{2}$ Total gaps: $24 \times 0.06\frac{1}{2}\sqrt{2} = \sqrt{2}$

Matches: 3D = 17.0₁₂ $\sqrt{2}$, perimeter = 18.0₁₂ $\sqrt{2}$ \rightarrow remainder = $\sqrt{2}$

Dozenal Discrete Division: Summary

Key Result: Diameter divides into circumference $3\times$ with discrete units + balanced gaps (total $\sqrt{2}$).

Scalable to finer rings \rightarrow increasing "space" \rightarrow inward path to quantum-like granularity.

Verify: All coordinates in $\mathbb{Z}[1/12]^2$, no approximation.

Implication: Dozenal geometry reveals π 's discrete nature naturally.

Public Access:

[QR Code Here – Insert 1.5" x 1.5" PNG]

Link: [https://yourusername.github.io/dozenal-proofs/]

