

ODS: Test-Time Adaptation in the Presence of Open-World Data Shift

Learning And Mining from DatA

Zhi Zhou, Lan-Zhe Guo, Lin-Han Jia, Ding-Chu Zhang, Yu-Feng Li

Brief Introduction

Test-time adaptation (TTA) adapts a source model to the distribution shift in testing data without using any source data. However, current test-time adaptation account for relatively simple distribution shift, such as covariate shift, which challenges in the following two aspects:

- TTA degenerates when label and covariate distribution shifts mix
- TTA cannot adapt to changed label distribution shift

These two points are very crucial for deploying test-time adaptation in the real world.

- In our work, we study an Open-World Data Shift setting for testtime adaptation and where the model needs to adapt to both covariate and label distribution shifts.
- We propose a test-time adaptation framework ODS to solve the above open-world data shift setting, which can apply to many existing test-time algorithms.
- Our proposal is clearly better than one baseline and six test-time adaptation methods evaluated on two benchmark datasets.

ODS Method

The ODS framework contains two modules:

- **Distribution** Tracker \mathcal{M}_T : Estimating label distribution w_t for subsequent adaptation and predictive optimization;
- **Prediction Optimizer \mathcal{M}_{O}:** Improving the prediction using \mathbf{w}_{t} .

Experiments

RQ1: Whether ODS can outperform prior TTA methods when encountering open-world data shift?

METHODS	Noise			Blur			WEATHER			DIGITAL			AVG			
METHODS	GAUSS.	Sнот	IMPUL.	DEFOC.	GLASS	MOTION	Zoom	SNOW	FROST	Fog	Brit.	CONTR.	ELASTIC	PIXEL	JPEG	AVG.
Source	14.70	18.52	15.61	56.92	31.99	68.01	63.25	82.19	72.44	76.31	92.41	23.38	72.33	68.72	79.72	55.77
BN STATS	50.60	51.16	45.31	71.73	47.99	69.35	68.59	60.16	60.39	64.27	69.60	67.56	59.21	66.12	58.17	60.68
TENT	53.53	60.97	59.34	63.33	47.12	65.81	68.11	55.08	55.00	58.68	63.40	49.59	46.95	50.45	45.38	56.18
EATA	48.94	48.21	42.05	65.44	43.42	59.81	57.27	55.09	52.98	56.00	59.54	61.47	51.32	55.75	50.88	53.88
LAME	57.99	60.15	53.07	78.83	53.04	76.67	74.90	67.81	67.30	71.94	77.05	74.84	68.53	73.44	66.90	68.16
CoTTA	57.43	60.06	56.03	66.66	52.25	66.54	66.65	58.32	58.92	60.09	64.69	55.05	59.37	64.74	61.92	60.58
NOTE	51.90	54.57	68.38	84.29	50.53	88.97	86.21	86.15	86.68	83.27	86.48	90.64	77.84	80.77	81.02	77.18
ODS	67.45	65.78	71.88	88.66	56.32	90.48	88.09	86.16	86.93	83.96	87.37	91.16	79.35	84.43	82.02	80.67

\triangle Detailed Results on CIFAR10 dataset with $\gamma = 10$

METHODS	$\gamma = 2$	$\gamma = 5$	$\gamma = 10$	METHODS	$\gamma = 2$	$\gamma = 5$	$\gamma = 10$
Source	32.71 ± 0.15	32.71 ± 0.18	32.75 ± 0.14	Source	$ 56.41 \pm 0.05$	56.12 ± 0.07	55.77 ± 0.16
BN STATS	52.69 ± 0.20	52.82 ± 0.08	52.76 ± 0.15	BN STATS	78.33 ± 0.05	71.75 ± 0.08	60.68 ± 0.14
TENT	40.07 ± 2.35	51.39 ± 0.59	52.95 ± 0.17	TENT	68.85 ± 3.14	66.94 ± 3.52	56.18 ± 4.13
ЕАТА	43.68 ± 18.16	45.12 ± 15.79	48.99 ± 7.79	EATA	79.35 ± 0.16	69.23 ± 0.25	53.88 ± 0.53
LAME	52.49 ± 0.25	52.51 ± 0.24	52.62 ± 0.21	LAME	78.96 ± 0.05	75.20 ± 0.10	68.16 ± 0.13
Cotta	47.74 ± 0.59	50.48 ± 0.57	51.72 ± 0.47	CoTTA	$\textbf{81.81} \pm \textbf{0.37}$	73.58 ± 0.28	60.58 ± 0.15
Note	50.34 ± 0.11	48.41 ± 0.33	47.06 ± 0.35	Note	78.81 ± 0.27	77.96 ± 0.75	77.18 ± 0.38
ODS	$\textbf{56.86} \pm \textbf{0.18}$	$\textbf{56.43} \pm \textbf{0.21}$	$\textbf{55.83} \pm \textbf{0.23}$	Ods	$ 81.13 \pm 0.09$	$\textbf{80.40} \pm \textbf{0.36}$	$\textbf{80.67} \pm \textbf{0.29}$

▲ Average results on CIFAR100 dataset

▲ Average results on CIFAR10 dataset

RQ2: Whether ODS is generic to integrate with different TTA methods and boost their performance?

▲ Detailed results on CIFAR10 dataset with $\gamma = 10$

▲ Average results on CIFAR10 dataset of three TTA methods with and without ODS framework

RQ3: Does ODS accurately estimate label distribution and effectively optimize the prediction?

▲ Confusion Matrix of NOTE method and ODS framework. ODS can improve performance of each class.

Ablation Study

In-depth Comparison

	$\frac{\text{Modules}}{\mathcal{M}_T \mathcal{M}_O}$		TENT	CoTTA	Note		Note	NOTE+LAME	ODS
,	√ √		58.95 ± 2.36	60.58 ± 0.15 60.65 ± 0.31 74.72 \pm 0.64	77.20 ± 0.57	$\begin{array}{l} \gamma = 2 \\ \gamma = 5 \\ \gamma = 10 \end{array}$	77.96 ± 0.75		$81.13 \pm 0.09 \ 80.40 \pm 0.36 \ 80.67 \pm 0.29$

▲ Effectiveness of each module in ODS framework.

▲ In-depth Comparison between LAME, NOTE and ODS

- ✓ If you are interested in this paper, feel free to contact Zhi Zhou (zhouz@lamda.nju.edu.cn)
- ✓ Our code is released at: https://www.lamda.nju.edu.cn/code ODS.ashx
- ✓ This research was supported by the National Key R&D Program of China (2022ZD0114803), National Science Foundation of China (62176118) and CAAI-Huawei Mind-Spore Open Fund.

