SD-TSIA204 Statistical hypothesis testing (for linear model)

Ekhine Irurozki Telecom Paris

December 2021

Outline

1. Statistical hypothesis testing

Definition

The p-value

Tests for linear regression

2. Illustration: forward variable selection Data set "diabetes"

3. ROC Curve

Presentation

Examples

1. Statistical hypothesis testing Definition

The p-value
Tests for linear regression

- 2. Illustration: forward variable selection
- 3. ROC Curve

General principle

Context

- We observe X_1, \ldots, X_n from a common distribution \mathcal{P}
- We are interested in $\theta \in \Theta$, a parameter of \mathcal{P}

Goal

To decide whether an assumption on θ is likely (or not)

$$\mathcal{H}_0 = \{\theta \in \Theta_0\}$$

against some alternative

$$\mathcal{H}_1 = \{\theta \in \Theta_1\}$$

Call \mathcal{H}_0 the null hypothesis, \mathcal{H}_1 : the alternative

General principle

Means

Determine a test statistic $T(X_1, \ldots, X_n)$ and a region R such that if

$$T(X_1,\ldots,X_n)\in R \Rightarrow \text{we reject } \mathcal{H}_0$$

In other words the observed data discriminates between H_0 and H_1

Hypothesis testing for "heads or tails"

When flipping a coin the model is a Bernoulli distribution with parameter p, $\mathcal{B}(p)$.

Is the coin fair?

$$\mathcal{H}_0 = \{p = 0.5\} \quad \mathrm{against} \quad \mathcal{H}_1 = \{p \neq 0.5\}$$

Is the coin possibly unfair?

$$\mathcal{H}_0 = \{0.45 \leq p \leq 0.55\} \quad \mathrm{against} \quad \mathcal{H}_1 = \{p \notin [0.45, 0.55]\}$$

What happens when n goes to ∞ ?

Do we reject or do we accept?

In most practical situations, \mathcal{H}_0 is simple, i.e.,

$$\Theta_0 = \{\theta_0\}$$

and $\Theta_1 = \Theta \backslash \Theta_0$ is large

 $(\mathcal{H}_0$ is often an hypothesis on which we care particularly, e.g., something acknowledged to be true, easy to formulate)

We only reject \mathcal{H}_0

If \mathcal{H}_0 is not rejected we cannot conclude \mathcal{H}_0 is true because \mathcal{H}_1 is too general

e.g. $\{p \in [0, 0.5[\cup]0.5, 1]\}$ can not be rejected!

2 types of error

	\mathcal{H}_0	\mathcal{H}_1			
\mathcal{H}_0 is not rejected	Correct (True positive)	Wrong (False negative)			
\mathcal{H}_0 is rejected	Wrong (False positive)	Correct (True negative)			

• Type I: probability of a wrong reject

$$\mathbb{P}(T(X_1,\ldots,X_n)\in R\mid \mathcal{H}_0)$$

• Type II: probability of wrong non-reject

$$\mathbb{P}(T(X_1,\ldots,X_n)\notin R\mid \mathcal{H}_1)$$

Significance level and power

Significance level α if

$$\limsup_{n \to +\infty} \mathbb{P}(T(X_1, \dots, X_n) \in R \mid \mathcal{H}_0) \le \alpha$$

(We speak of 95%-test when α is 0.05%)

Consistency

A test statistics (given by $T(X_1, ..., X_n)$ and a region R) is said to be α -consistent if the significant level is α and if the power goes to one, i.e.,

$$\limsup_{n\to+\infty} \mathbb{P}(T(X_1,\ldots,X_n)\in R\mid \mathcal{H}_0)\leq \alpha$$

$$\lim_{n\to\infty} \mathbb{P}(T(X_1,\ldots,X_n)\in R\mid \mathcal{H}_1)=1$$

Test statistic and reject region

Goal: to build a α -consistent test

- (1) Define the test statistic $T(X_1, \ldots, X_n)$ and the level α you wish
- (2) Do some maths to determine a reject region R that achieves a significance level α
- (3) Prove the consistency
- (4) Rule decision: reject whenever $T_n(X_1, \dots, X_n) \in R$

Famous tests

- Test of the equality of the mean for 1 sample
- Test of the equality of the means between 2 samples
- Chi-square test for the variance
- Chi-square test of independence
- Regression coefficient non-effects test

Example: Gaussian mean

- Model: $\Theta = \mathbb{R}, \mathbb{P}_{\theta} = \mathcal{N}(\theta, 1)$
- Observe (X_1, \ldots, X_n) i.i.d. from this model
- Null hypothesis: \mathcal{H}_0 : $\{\theta = 0\}$
- Under \mathcal{H}_0 , $T_n(X_1,\ldots,X_n) = \frac{1}{\sqrt{n}} \sum_i X_i \sim \mathcal{N}(0,1)$
- Critical region for T_n ? Gaussian quantile:

$$\mathbb{P}(T_n \in [-1.96, 1.96] \mid \mathcal{H}_0) = 0.95$$

- Take $R =]-\infty, -1.96[\cup]1.96, +\infty[$.
- Numerical example: If $T_n = 1.5$, we do not reject \mathcal{H}_0 at level 95%

1. Statistical hypothesis testing

Definition

The p-value

Tests for linear regression

2. Illustration: forward variable selection

3. ROC Curve

Usage of the *p*-value

- The decision to accept or reject \mathcal{H}_0 is subject to the chosen significance level α .
- To avoid making this choice in advance, in particular in software, the notion of the p-value is used to represent the result of a test.
- The *p*-value is the probability that, under \mathcal{H}_0 , the test statistic \mathcal{T}_n takes a value at least as extreme as its observed value.
- Relation to the critical region:
 - If the test is one-sided with $R = \{t \mid t > c\}$ then for the observed T_n the p-value is $\mathbb{P}(T > t_0 \mid \mathcal{H}_0)$.
 - If the test is one-sided with $R = \{t \mid t < c\}$ then for the observed T_n the p-value is $\mathbb{P}(T < T_n \mid \mathcal{H}_0)$.
 - If the test is two-sided with $R = \{t \mid t \in]-\infty; c_1) \cup (c_2; +\infty[]\}$ then for the observed T_n the p-value is $2\mathbb{P}(T < T_n \mid H_0)$ if T_n is smaller than the median, and $2\mathbb{P}(T > T_n \mid H_0)$ if T_n is larger than the median.

Usage of the p-value: example

- Model: $\Theta = \mathbb{R}, \, \mathbb{P}_{\theta} = \mathcal{N}(\theta, 1)$
- Observe (X_1, \ldots, X_n) i.i.d. from this model
- Null hypothesis: $\mathcal{H}_0: \{\theta \leq 5\}$
- Under \mathcal{H}_0 , $T_n(X_1,\ldots,X_n) = \frac{\overline{X}_n-5}{\frac{1}{\sqrt{n}}} \sim \mathcal{N}(0,1)$

The test decision:

• Reject \mathcal{H}_0 if $\overline{X}_n > 5 + z_{1-\alpha} \frac{1}{\sqrt{n}}$.

Using the p-value:

- Assume n = 10 and $\overline{X}_n = 5.75$.
- The *p*-value equals $\mathbb{P}(\overline{X} > 5.75)$ with $\overline{X} \sim \mathcal{N}(5, \frac{1}{10})$, i.e. $\mathbb{P}(Z > 2.3717)$ with $Z \sim \mathcal{N}(0, 1)$, which equals 0.0089.
- This indicates directly that one should reject at a level 0.05 and even 0.01.
- If the test would be two sided, *i.e.* with $\mathcal{H}_0: \{\theta = 5\}$, the *p*-value for $\overline{X}_n = 5.75$ would be $0.0089 \times 2 = 0.0178$ implying **reject** at a level 0.05 but **not** 0.01.

Cons of hypothesis testing

- No limits on te sample size
- What if we don't reject?

1. Statistical hypothesis testing

Definition
The p-value

Tests for linear regression

- 2. Illustration: forward variable selection
- 3. ROC Curve

Test of no-effect: Gaussian case

Gaussian Model

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} x_{i,k} + \varepsilon_{i}$$

$$x_{i}^{\top} = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1} \text{ (deterministic)}$$

$$\varepsilon_{i} \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^{2}), \text{ for } i = 1, \dots, n$$

Theorem

Let $X = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^{n \times (p+1)}$ of full rank, and $\widehat{\sigma}^2 = \|\mathbf{y} - X\widehat{\boldsymbol{\theta}}\|_2^2 / (n - (p+1))$, then

$$\widehat{T}_j = rac{\widehat{ heta_j} - heta_j^*}{\widehat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-(p+1)}$$

where \mathcal{T}_{n-p} is a Student law (with n-(p+1) degrees of freedom)

Test of no-effect: Gaussian case

Null hypothesis

Aim is to test

$$\mathcal{H}_0: \theta_i^* = 0$$

equivalently, $\Theta_0 = \{ \theta \in \mathbb{R}^p : \theta_i = 0 \}$

Under \mathcal{H}_0 , we know the value of $\widehat{\mathcal{T}}_j$:

$$\mathcal{T}_j := rac{\widehat{ heta}_j}{\widehat{\sigma} \sqrt{(X^ op X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-(p+1)}$$

Choosing $R = [-t_{1-\alpha/2}, t_{1-\alpha/2}]^c$ with $t_{1-\alpha/2}$ the $1 - \alpha/2$ -quantile of $\mathcal{T}_{n-(p+1)}$, we decide to reject \mathcal{H}_0 whenever

$$|\widehat{T}_j| > t_{1-\alpha/2}$$

Test of no-effect : Random-design case

Random design Model

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} x_{i,k} + \varepsilon_{i}$$

$$x_{i}^{\top} = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1}$$

$$(\varepsilon_{i}, x_{i}) \stackrel{i.i.d}{\sim} (\varepsilon, x), \text{ for } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon | \mathbf{x}) = 0, \, \mathbb{V}\text{ar}(\varepsilon | \mathbf{x}) = \sigma^{2}$$

Theorem

If var(x) has full rank, then

$$\widehat{T}_j = rac{\widehat{ heta}_j - heta_j^*}{\widehat{\sigma} \sqrt{(X^ op X)_{j,j}^{-1}}} \stackrel{ ext{d}}{\longrightarrow} \mathcal{N}(0,1)$$

Test of no-effect : Random-design case

Null hypothesis

Aim is to test

$$\mathcal{H}_0: \theta_i^* = 0$$

equivalently, $\Theta_0 = \{ \theta \in \mathbb{R}^p : \theta_i = 0 \}$

Under \mathcal{H}_0 , we know the value of $\widehat{\mathcal{T}}_j$:

$$\mathcal{T}_j := rac{\widehat{ heta}_j}{\widehat{\sigma}\sqrt{(X^ op X)_{j,j}^{-1}}} \stackrel{ ext{d}}{\longrightarrow} \mathcal{N}(0,1)$$

Choosing $R = [-z_{1-\alpha/2}, z_{1-\alpha/2}]^c$ with $z_{1-\alpha/2}$ the $1 - \alpha/2$ -quantile of $\mathcal{N}(0,1)$, we decide to reject \mathcal{H}_0 whenever

$$|\widehat{T}_j| > z_{1-\alpha/2}$$

Link between IC and test

Reminder (Gaussian model):

$$IC_{\alpha} := \left[\widehat{\theta}_{j} - t_{1-\alpha/2}\widehat{\sigma}\sqrt{(X^{\top}X)_{j,j}^{-1}}, \widehat{\theta}_{j} + t_{1-\alpha/2}\widehat{\sigma}\sqrt{(X^{\top}X)_{j,j}^{-1}}\right]$$

is a CI at level α for θ_j^* . Stating " $0 \in IC_{\alpha}$ " means

$$|\widehat{\theta}_j| \le t_{1-\alpha/2} \widehat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}} \quad \Leftrightarrow \quad \frac{|\widehat{\theta}_j|}{\widehat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \le t_{1-\alpha/2}$$

It is equivalent to accepting the hypothesis $\theta_j^* = 0$ at level α . The smallest α such that $0 \in IC_{\alpha}$ is called the *p*-value.

Rem: Taking α close to zero IC_{α} covers the full space, hence one can find (by continuity) an α achieving equality in the aforementioned equations.

Outline

1. Statistical hypothesis testing

Definition

The p-value

Tests for linear regression

2. Illustration: forward variable selection Data set "diabetes"

3. ROC Curve

Presentation

Examples

- 1. Statistical hypothesis testing
- 2. Illustration: forward variable selection Data set "diabetes"
- 3. ROC Curve

"Diabetes" data set

	age	sex	bmi	bp		Serun	n mea	surei	nents		Resp
patient	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	у
1	59	2	32.1	101	157	93	38	4	4.9	87	151
2	48	1	21.6	87	183	103	70	3	3.9	69	75
• • •											
441	36	1	30.0	95	201	125	42	5	5.1	85	220
442	36	1	19.6	71	250	133	97	3	4.6	92	57

n=442 patients having diabetes, p=10 variables "baseline" body mass index (bmi), average blood pressure (bp), etc... have been measured.

Goal: predict disease progression one year in advance after the "baseline" measurement [EHJT04].

- Each variable of the data set from *sklearn* has been previously standardized.
- We apply an "expensive" version of the **forward variable selection** method (see, e.g., [Zha09])

"Diabetes" data set

• We define a vector of covariates with intercept $\tilde{X}=(\mathbb{1},x_1,\ldots,x_{10}).$

Step 0

• for each variable \tilde{X}_k , $k=1,\ldots,11$, we consider the model

$$y \simeq \beta_k x_k$$

• we test whether its regression coefficient equals zero, i.e.

$$H_0: \beta_k = 0$$

using the statistic $\frac{\widehat{\beta}_k}{\widehat{s}_k}$ with \widehat{s}_k being the estimated standard deviation.

• we compare all of the p-values, and keep the one possessing the smallest p-value. We save the residuals in the vector r_0 .

"Diabetes" data set

Step ℓ

We have selected ℓ variable(s) : $\tilde{X}^{(\ell)} \in \mathbb{R}^{\ell}$. Those not selected are noted $\tilde{X}^{(-\ell)} \in \mathbb{R}^{p-\ell}$. We possess the vector of residuals $r_{\ell-1}$ calculated on the previous step.

• for each variable x_k in $\tilde{X}^{(-\ell)}$, we consider the model

$$\mathsf{r}_{\ell-1} \simeq \beta_k \mathsf{x}_k$$

• we test if its regression coefficient equal zero, *i.e.*

$$H_0: \beta_k = 0$$

using the test statistic $\frac{\widehat{\beta}_k}{\widehat{s}_k}$ with \widehat{s}_k being the estimated standard deviation.

• we compare all of the p-values, and keep the one possessing the smallest p-value. We save the residuals in the vector \mathbf{r}_{ℓ} .

Values of the test statistics at each step

- The test statistic of the selected variable is 0 on the following steps.
- The intercept is the first selected variable, then x_3 , etc...

Values of the test statistics at each step

• Sequence of the selected variables wit the test size 0.1 :

Other heuristics: rank the coefficients by coefficient, p-values, backwards selection, \dots

(a)
$$\hat{e}^{LOO}(\text{LDC}) = 0$$

 $\hat{e}^{LOO}(\text{1NN}) = 1$

(b)
$$\hat{e}^{LOO}(\text{LDC}) = 1$$

 $\hat{e}^{LOO}(\text{1NN}) = 0$

[KMAGR20]

Outline

1. Statistical hypothesis testing

Definition

The p-value

Tests for linear regression

2. Illustration: forward variable selection

Data set "diabetes"

3. ROC Curve

Presentation

Examples

- 1. Statistical hypothesis testing
- 2. Illustration: forward variable selection
- 3. ROC Curve

Presentation

Examples

Medical context

- A group of patients i = 1, ..., n is followed for disease screening.
- For each individual, the test relies on a random variable $X_i \in \mathbb{R}$ and a threshold $q \in \mathbb{R}$

as soon as
$$X_i > q$$
 the test is **positive** o.w. the test is **negative**

Set of possible configurations

	Normal H_0	Sick H_1
negative	true negative	false negative
positive	false positive	true positive

False positive vs. false negative

False positive vs. false negative

False positive vs. false negative

Sensitivity - Specificity

- \bullet Assumption: Normal individuals have the same c.d.f. F
- Assumption: Sick individual have the same c.d.f G

Definition

```
• Sensitivity : Se(q) = 1 - G(q) (1- type 2nd error)
```

• Specificity: Sp(q) = F(q) (1- type 1st error)

ROC curve

Definition

The ROC curve is the curve described by $(1 - \mathsf{Sp}(q), \mathsf{Se}(q))$, when $q \in \mathbb{R}$. Hence, it is the function $[0,1] \to [0,1]$

$$ROC(t) = 1 - G(F^{-}(1-t))$$

where $F^{-}(1-t) = \inf\{x \in \mathbb{R} : F(x) \ge 1-t\}.$

- 1. Statistical hypothesis testing
- 2. Illustration: forward variable selection
- 3. ROC Curve

Presentation

Examples

ROC curves for bi-normal case

- F and G are Gaussian with parameter μ_0, σ_0 and μ_1, σ_1 , respectively.
- Here $\mu_0 = 0$, $\sigma_0 = \sigma_1 = 1$, and μ_1 varies

Estimation-application

ROC curve estimation

- Maximum likelihood
- Non-parametric
- Bayesian with latent variables
- Estimation of the area under the ROC curve (AUC)

Application

- To compare different statistic tests
- To compare different (supervised) learning algorithm
- To compare variable selection methods (e.g. Lasso, OMP, etc.)

nb: ROC = Receiver Operating Characteristic

References I

- [EHJT04] B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani. Least angle regression. Ann. Statist., 32(2):407–499, 2004. With discussion, and a rejoinder by the authors.
- [KMAGR20] Ludmila I Kuncheva, Clare E Matthews, Álvar Arnaiz-González, and Juan J Rodríguez. Feature selection from high-dimensional data with very low sample size: A cautionary tale. arXiv preprint arXiv:2008.12025, 2020.
 - [Zha09] Tong Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. In *Advances in Neural Information Processing Systems*, pages 1921–1928, 2009.
 - Some of these slides have been prepared by Anne Sabourin and Josef Salmon, the authors express their gratitude for this.