

Lecture 04 – Convolutional Neural Networks

Prof. João Fernando Mari

joaofmari.github.io joaof.mari@ufv.br

Agenda

- Classification pipelines
- Multi-layer Perceptron (MLP)
- Convolutional Neural Networks (CNNs)
- Convolutional layer
- Pooling layer
- Activation function
- Fully connected layer
- Output layer softmax
- Loss function
- Optimizers
- Architectures
- Development and libraries
- Image datasets

Classification pipelines

Yann LeCun's Deep Learning Course at CDS - SPRING 2021

Multi-layer Perceptron (MLP)

Learn TensorFlow and deep learning, without a Ph.D.

Convolutional Neural Networks (CNNs)

CONVOLUTIONAL LAYER

Ponti et al. Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask. Sibgrapi 2017.

w0[:,:,0]

	Universidade Federal de Viçosa
	https://cs231n.github.io/convolutional-networks/
,	
]	

				0				
x[:,:,2] * w1[:,:,2]								
-2								

b1

-1	12						1	
			Γ.	. Դ	1 * .			21
		l .	х[:,	:,2] " '	wul	:,:,	۷]
			-17	0	14	-2	-8	
		•						

b0

b1

https://cs231n.github.io/convolutional-networks/

x[.,.,0] WI[.,.,0]								
-9	14	6	7	18				
					,			

 $x[\cdot \cdot 0] * w1[\cdot \cdot 0]$

				0				
x[:,:,2] * w1[<u>:,:,</u> 2]								
-2	-21	-1	3	-17				

1 | 1 | 0 | 1 |

	x[:,:,0] * w0[:,:,0							
	12	26	18	25	21			
	-5							
Ì								

				1				
x[:,:,2] * w0[:,:,2]								
-17	0	14	-2	-8				
-3								

	Universidade Federal de Viços
	https://cs231n.github.io/convolutional-networks,
b0	
1	
0[:,:,2]	
2 -8	
+	
+	

				ட்	l				
x[:,:,2] * w1[:,:,2]									
-2	-21	-1	3	-17					
3									
					l				

b1

		b0						
x[:,	x[:,:,2] * w0[:,:,2]							
-17	0	14	-2	-8				
-3	-5	32	11	-10				
9	-7	22	12	-14				

	Universidade Federal de Viçosa
	https://cs231n.github.io/convolutional-networks/
)	
.]	
,2]	
3	
0 4	
3	

				0			
x[:,:,2] * w1[:,:,2]							
-2	-21	-1	3	-17			
3	-33	-25	-7	-18			
-3	-5	-28	-4	-16			
-7	-12	-5	-15	-10			
-4	-1	-11	0	-6			

b1

		•	
w0 -1 1 0	[:,: 1 1 -2	,0] 1 2 1	
w0	[:,:	,1]	
-1 -1 -1	1 1 -1	-1 2 1	
w0	[:,:	,2]	
-1 1 2	-1 -2 -1	1 2 2	
$\overline{}$	ـــــــــــــــــــــــــــــــــــــــ	لئا	
w1	[:,:		
w1 -1 1 -2			
-1 1 -2	- [:,: -2 1	,0] 1 2	
-1 1 -2	 [:,: -2 1 2	,0] 1 2	
-1 1 -2 w1 -2 -2 0	[:,: -2 1 2 [:,: -2 1	,0] 1 2 2 ,1] -2 0 0	
-1 1 -2 w1 -2 -2 0	[:,: -2 1 2 [:,: -2 1 -2	,0] 1 2 2 ,1] -2 0 0	

-1 -11 0

ayeı			
:,:,0]	x[:,	:,0]	*
1 1	12	26	1
1 2	-5	28	1
-2 1	-5	11	1
:,:,1]	4	16	2
1 -1	1	16	-
1 2			
-1 1			
:,:,2]			
-1 1			
-2 2			
-1 2			
:,:,0]	x[:,	:,0]	*
-2 1	-9	14	6
1 2	7	20	2
2 2	3	17	2
:,:,1]	-15	26	2
-2 -2	11	15	2
1 0			
-2 0			
0.7			

x[:,:,1] * w1[:,:,1								
-13	-11	-21	-17	-9				
-20	-30	-7	-27	-5				
-26	-15	-34	-28	-28				
-38	-34	-49	-31	-21				
-15	-17	-6	-19	-1				
_								

	v[:,	:,1]		
	-24	-18	-16	-7	-8
	-10	-43	-12	-12	-6
	-26	-3	-60	-10	-16
	-60	-20	-27	-45	4
	-8	-3	5	17	28
•					

									versia	uuc re	acrar c	ic viço	Ju
<u>http:</u>	s://c	cs23	<u>31n.</u>	gith	nub.	io/co	onvo	luti	<u>ona</u>	l-ne	two	orks	<u>/</u>
	v[:,	:,0]					y[:,	:,0]			
	0	34	39	23	35]
	-12	27	48	7	28								
\sum	-2	20	28	48	5	(f	•						Ī
	-1	27	41	39	17	7							Ī
	-6	15	34	18	35	D -	1						
						Re	Lu						-

y[:,:,1]

<u>http:</u>	s://c	<u>cs23</u>	<u>31n.</u>	gith	<u>ıub.</u>	<u>io/convo</u>	<u>luti</u>	<u>ona</u>	<u>l-ne</u>	two	<u>orks</u>	Z
	v[:,	:,0]				y[:,	.:,0]			_
	0	34	39	23	35		0	34	39	23	35	
	-12	27	48	7	28		0	27	48	7	28	
\sum	-2	20	28	48	5	(f)	0	20	28	48	5	
	-1	27	41	39	17	Y	n	27	41	39	17	

ReLu

ReLu

y[:,:,1]

POOLING LAYER

Pooling layer

Pooling layer

Pooling layer

Pooling layer

ACTIVATION FUNCTION

Activation function

FULLY CONNECTED LAYER

Fully connected layer

OUTPUT LAYER - SOFTMAX

Output layer - softmax

Softmax function for M classes:

$$- softmax(x_i) = \frac{e^{x_i}}{\sum_{j=0}^{M-1} e^{x_j}}$$

Example:

- $\mathbf{x} = [-0.8 \ 2.0 \ 6.0 \ -2.7 \ 0.8]$
 - $\sum_{j=0}^{M-1} x_j = 5.3$
 - Sum != 1.0. It cannot be interpreted as probabilities.
- $-\sum_{j=0}^{M-1} e^{x_j} = 0.4493 + 7.3891 + 403.4288 + 0.0672 + 2.2255 = 413.5599$
- $softmax(x_i) = [0.0011 \ 0.0179 \ 0.9755 \ 0.0002 \ 0.0054]$
 - $\sum_{i=0}^{M-1} softmax(x_i) = 1.0$
 - The probability of the sample belonging to each class.

LOSS FUNCTION

Cross-entropy loss

Cross-entropy for more than 2 classes (M>2):

$$- L(\mathbf{y}, \widehat{\mathbf{y}}) = -\sum_{j=0}^{M-1} \mathbf{y}_j \cdot \log(\widehat{\mathbf{y}}_j)$$

Cross-entropy for 2 classes (M=2):

$$-L(\mathbf{y},\widehat{\mathbf{y}}) = -(\mathbf{y} \cdot \log(\widehat{\mathbf{y}}) + (1-\mathbf{y})\log(1-\widehat{\mathbf{y}}))$$

Cross-entropy for M>2

- 5 classes, **correct** classification, with 72% probability:
 - $y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$
 - $-\hat{y} = [0.20 \ 0.0 \ 0.05 \ 0.72 \ 0.03]$
 - $L(\mathbf{y}, \widehat{\mathbf{y}}) = -(0 \times \log 0.2 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.72 + 0 \times \log 0.03)$
 - $L(\mathbf{y}, \widehat{\mathbf{y}}) = -(\log 0.72) = 0.14267$

Cross-entropy for M>2

- 5 classes, **correct** classification, with 72% probability:
 - $y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$ $\hat{y} = [0.20 \quad 0.0 \quad 0.05 \quad 0.72 \quad 0.03]$ $L(y, \hat{y}) = -(0 \times \log 0.2 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.72 + 0 \times \log 0.03)$ $L(y, \hat{y}) = -(\log 0.72) = 0.14267$
- 5 classes, correct classification, with 52% probability:
 - $\mathbf{y} = [0 \quad 0 \quad 0 \quad 1 \quad 0]$ $\hat{\mathbf{y}} = [0.30 \quad 0.0 \quad 0.05 \quad 0.52 \quad 0.13]$ $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.3 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.52 + 0 \times \log 0.13)$ $L(\mathbf{y}, \hat{\mathbf{y}}) = -(\log 0.52) = 0.284$

Cross-entropy for M>2

• 5 classes, **correct** classification, with 72% probability:

$$- y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$$

$$- \hat{y} = [0.20 \quad 0.0 \quad 0.05 \quad 0.72 \quad 0.03]$$

$$- L(y, \hat{y}) = -(0 \times \log 0.2 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.72 + 0 \times \log 0.03)$$

$$- L(y, \hat{y}) = -(\log 0.72) = 0.14267$$

5 classes, correct classification, with 52% probability:

$$- y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$$

$$- \hat{y} = [0.30 \quad 0.0 \quad 0.05 \quad 0.52 \quad 0.13]$$

$$- L(y, \hat{y}) = -(0 \times \log 0.3 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.52 + 0 \times \log 0.13)$$

$$- L(y, \hat{y}) = -(\log 0.52) = 0.284$$

• 5 classes, **incorrect** classification:

$$- y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$$

$$- \hat{y} = [0.60 \quad 0.0 \quad 0.07 \quad 0.30 \quad 0.03]$$

$$- L(y, \hat{y}) = -(0 \times \log 0.6 + 0 \times \log 0.0 + 0 \times \log 0.07 + 1 \times \log 0.3 + 0 \times \log 0.03)$$

$$- L(y, \hat{y}) = -(\log 0.3) = 0.5229$$

Cross-entropy for M=2

- 2 classes, correct classification:
 - y = [0]
 - $\hat{y} = [0.20]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1 0) \times \log(1 0.2))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1) \times \log(0.8)) = -(\log(0.8)) = 0.09691$

Cross-entropy for M=2

- 2 classes, correct classification:
 - y = [0]

 - $-L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1) \times \log(0.8)) = -(\log(0.8)) = 0.09691$

- 2 classes, correct classification:
 - y = [1]
 - $-\hat{y} = [0.92]$
 - $-L(\mathbf{y}, \hat{\mathbf{y}}) = -(1 \times \log 0.92 + (1-1) \times \log(1-0.92))$
 - $-L(\mathbf{y}, \hat{\mathbf{y}}) = -(1 \times \log 0.92 + (0) \times \log(0.08)) = -(\log(0.92)) = 0.03621$

Cross-entropy for M=2

- 2 classes, correct classification:
 - y = [0]
 - $\hat{y} = [0.20]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1 0) \times \log(1 0.2))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1) \times \log(0.8)) = -(\log(0.8)) = 0.09691$

- 2 classes, correct classification:
 - y = [1]
 - $-\hat{y} = [0.92]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(1 \times \log 0.92 + (1 1) \times \log(1 0.92))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(1 \times \log 0.92 + (0) \times \log(0.08)) = -(\log(0.92)) = 0.03621$

- 2 classes, incorrect classification:
 - y = [0]
 - $\hat{y} = [0.65]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.65 + (1 0) \times \log(1 0.65))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.65 + (1) \times \log(0.35)) = -(\log(0.35)) = 0.45593$

OPTIMIZERS

- Gradient descent (GD):
 - $W_{t+1} = W_t \eta \sum_{j=1}^N \nabla L(W; x_j)$
 - N is the size of the training set

Donges. Gradient Descent in Machine Learning: A Basic Introduction. https://builtin.com/data-science/gradient-descent

- Stochastic gradient descent (SGD):
 - $W_{t+1} = W_t \eta \sum_{j=1}^{B} \nabla L(W; x_j^B)$
 - B is the size of the mini-batch.

- SGD with momentum:
 - $W_{t+1} = W_t \eta \sum_{j=1}^B \nabla L(W; x_j^B)$
 - *B* is the size of the mini-batch.

$$- W_{t+1} = W_t + \alpha (W_t - W_{t-1}) + (1 - \alpha) [-\eta \sum_{j=1}^B \nabla L(W; x_j^B)]$$

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

- Other optimizers:
 - AdaGrad Adaptive Gradient
 - AdaDelta Adaptive learning rate
 - RMSProp Root Mean Squared Propagation
 - Adam Adaptive moment estimation
 - **–** ...

ARCHITECTURES

Neocognitron (1979)

Kunihiko Fukushima

Fukushima, K. (1980). "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position". Biological Cybernetics. 36 (4)

• LeNet-5 (1998)

Lecun, Y. et al. (1998). "Gradient-based learning applied to document recognition". Proceedings of the IEEE. 86 (11): 2278–2324.

AlexNet (2012)

Krizhevsky, Sutskever e Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NeuripIPS 2012

Inception (GoogLeNet) (2015)

Szegedy, Christian (2015). "Going deeper with convolutions". CVPR2015.

VGG (2014) and ResNet (2015)

Simonyan e Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. 2014

He et al. Deep Residual Learning for Image Recognition. 2015.

DenseNet (2017)

Figure 10. Illustration of a DenseBlock with 5 functions H_l and a Transition Layer.

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

Ponti et al. Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask. Sibgrapi 2017.

- ImageNet Large Scale Visual Recognition Challenge
 - https://image-net.org/challenges/LSVRC/

https://semiengineering.com/new-vision-technologies-for-real-world-applications/

DEVELOPMENT AND LIBRARIES

Development and libraries

- Training CNNs has a high computational cost.
 - These are recommended to be trained using GPUs.
 - Google Colab provides access to GPUs (with some restrictions).

Development and libraries

- Top libraries for Deep Learning and Convolutional Neural Networks
 - PyTorch
 - https://pytorch.org/
 - Tensorflow
 - https://www.tensorflow.org/

Development and libraries

- Anaconda Distribution:
 - Python distribution with support for major libraries
 - https://www.anaconda.com/products/distribution
- Google Colab:
 - Cloud execution environment with GPUs
 - https://colab.research.google.com

IMAGE DATASETS

- MNIST
 - http://yann.lecun.com/exdb/mnist/
 - 60,000 training images
 - 10,000 testing images
 - 28 x 28 pixels
 - Gray level

Cats vs. Dogs:

- https://www.kaggle.com/c/dogs-vs-cats
- 25,000 training images
- 12,500 testing images
- 2 classes
- Various sizes
- RGB images

Sample of cats & dogs images from Kaggle Dataset

• **CIFAR10**:

- https://www.cs.toronto.edu/~kriz/cifar.html
- 50,000 training images
- 10,000 testing images
- 10 classes
- 32 x 32 pixels
- RGB

• ImageNet:

- https://www.image-net.org/
- − ~1,000,000 images
- 1,000 classes
- RGB

Bibliography

- Ponti et al. Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask. Sibgrapi 2017.
- Moacir Ponti (ICMC-USP). Material para o minicurso Deep Learning
 - https://github.com/maponti/deeplearning intro datascience
- Learn TensorFlow and deep learning, without a Ph.D.
 - https://cloud.google.com/blog/products/gcp/learn-tensorflow-and-deep-learningwithout-a-phd
- CS231n: Convolutional Neural Networks for Visual Recognition
 - http://cs231n.github.io/
- Goodfellow, Bengio e Courville. Deep Learning. MIT Press, 2016
 - https://www.deeplearningbook.org/
- The MathWorks, Inc. What is a Convolutional Neural Network? 3 things you need to know.
 - https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html

Bibliography

- Fukushima, K. (1980). **Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position**. Biological Cybernetics. 36 (4): 193–202.
 - <u>10.1007/bf00344251</u>
- Lecun, Y. et al. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE. 86 (11): 2278–2324.
 - <u>10.1109/5.726791</u>
- Krizhevsky, Sutskever e Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NeuripIPS 2012.
- Szegedy, Christian (2015). Going deeper with convolutions. CVPR2015.
- Simonyan e Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition.
 2014.
- He et al. Deep Residual Learning for Image Recognition. 2015.
- Huang et al. Densely Connected Convolutional Networks. CVPR 2017.
- Rodrigues, L. F.; Naldi M. C., Mari, J. F. Comparing convolutional neural networks and preprocessing techniques for HEp-2 cell classification in immunofluorescence images. Computers in Biology and Medicine, 2019.
 - https://doi.org/10.1016/j.compbiomed.2019.103542

THE END