Classification – An introduction

- In this lecture and lab:
 - Learn what a classifier is
 - Learn about two well-known classifiers
 - How they model the data
 - Their strengths and weaknesses
 - How to build your own classifiers in R

What is Classification?

- In lecture 2 we saw some algorithms for learning "labels" for data based on how similar items are
- Classification attempts to solve the problem:
 - Given some data
 - Where each case in the data has been allocated a class
 - Assign a class to a new unassigned case
- This is Supervised Learning

• Example:

Case	Age	Salary	Class
1	50	40	1
2	32	20	0
3	36	45	0
4	55	55	1
5	61	50	1
6	29	30	0
7	48	35	0
8	65	45	1
9	23	40	0
10	51	25	1

- Easy to visualise with only 2 variables
- 2D scatterplot

• New data:

Case	Age	Salary	Class
11	60	45	?
12	40	30	?
13	47	40	?

Decision Trees

- Very popular
- Nodes represent decisions
- Arcs represent possible answers
- Terminal nodes represent classification

Decision Trees

• Example from Iris data:

Classifying with a Decision Tree

- Traverse tree starting at the root node
- At each decision node follow the appropriate branch according to the case that you are classifying
- Repeat until you reach a leaf node
- Classify according to the label at the leaf node

Now let's use the example data we used

before:

•What happens if we add new data?:

•What happens if we add new data?:

http://arogozhnikov.github.io/2016/0 4/28/demonstrations-for-mlcourses.html

- Often known as rule induction
- Nodes are repeatedly split until all elements represented belong to one class
- Nodes then become terminal nodes
- Deciding which nodes to split next as well as the evaluation function used to split it depend on the algorithm

ID3 Algorithm

ID3(examples, target_classes)

```
Create root node, root
If all examples are pos. then return single node with label +
If all examples are neg. then return single node with label -
Otherwise
        = attribute that best classifies examples
    Set the decision attribute for root to a
    For all values of a, v_i
      add a new node corresponding to a = v_i
      Set examples_{vi} = all cases in examples where <math>a = v_i
      If examples, is empty Then add a leaf node labelled with
     most common value of target in examples
     Else Call ID3 (examples_{vi}, target classes)
   End For
End
Return root
```

ID3 Algorithm

ID3(examples, target_classes)

```
Create root node, root
If all examples are pos. then return single node with label +
If all examples are neg. then return single node with label -
Otherwise
        = attribute that best classifies examples
    Set the decision attribute for root to a
    For all values of a, v_i
      add a new node corresponding to a = v_i
      Set examples_{vi} = all cases in examples where <math>a = v_i
      If examples, is empty Then add a leaf node labelled with
      most common value of target in examples
     Else Call ID3 (examples<sub>vi</sub> , target classes)
   End For
End
Return root
```

ID3 Algorithm

ID3(examples, target_classes)

```
Create root node, root
If all examples are pos. then return single node with label +
If all examples are neg. then return single node with label -
Otherwise
        = attribute that best classifies examples
    Set the decision attribute for root to a
    For all values of a, v_i
      add a new node corresponding to a = v_i
      Set examples_{vi} = all cases in examples where a = v_i
      If examples, is empty Then add a leaf node labelled with
     most common value of target in examples
     Else Call ID3 (examples<sub>vi</sub> , target classes)
   End For
End
Return root
```

- How do we decide which attribute best classifies the examples?
- A popular function is known as entropy:

$$-\sum_{j} p_{j} log p_{j}$$

- Where j is a class and p_j is the proportion of cases that take on the class j
- ID3 uses *information gain* which is the expected reduction in entropy

$$H = -\sum_{i} P_{i} \log_{2} P_{i}$$

Where $P_{i} = P_{i} = P_{i}$

Message.

$$H = -\sum_{i=1}^{n} P_{i} \log_{2} P_{i}$$

where $P_{i} = P_{i} \log_{2} P_{i}$

message.

$$H = -\sum_{i} P_{i} \log_{2} P_{i}$$

where $P_{i} = P_{i} \log_{2} P_{i}$

message.

$$H = -\sum_{i=1}^{n} P_{i} \log_{2} P_{i}$$

where $P_{i} = P_{i} \log_{2} P_{i}$

message.

Z₁₀

Z₁₀

0,

0,

$$H = -\sum_{i} P_{i} \log_{2} P_{i}$$

Where $P_{i} = P_{i} \log_{2} P_{i}$

Message.

Pruning Decision Trees

- Simpler models are preferred
- Known as "Occam's razor"
- Prevents overfitting (more on this later)
- Tree pruning can be performed
 - Goes through each decision node
 - Considers converting it into a leaf node
 - If this does not reduce classification accuracy then the pruning is carried out

K-Nearest Neighbour

- Case based reasoning
- Based on the idea that items that are located "nearby" in the data space will influence how unknown data is classified
- Been around since 1910
- Requires:
 - Distance Metric
 - k parameter (no. of neighbours)
 - Weighting function
 - How to combine the info from neighbours

K-Nearest Neighbour

- Distance metrics
 - Euclidian (as we saw in the last lecture)
 - Correlation
 - Mahalanobis

K-Nearest Neighbour

Example

- Metric = Euclidian
- No weighting function
- Maximum vote of neighbours

$$k=1$$

$$k=3$$

KNN Demo

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Testing Performance

- Aim is to classify new unseen data
- Often look at a simple error rate to assess our classifiers

error = number of errors / number of cases

Testing Performance

- Note empirical error rate is not the same as true error rate
- Empirical is based on a sample
- True is based on infinite cases
- Is it possible to estimate the true error rate?

Training and Test Sets

- Obviously a good idea to split data into a training set and a test set
- Known as the holdout method
- Use training set to learn model
- Use test set to score the accuracy
- Ideally the two sets are independent (generated separately)

Resampling

- What if the sample of data is small or biassed?
- Resampling methods can be used
 - Randomly select training and test sets
 - Repeat for a fixed number of iterations
- Methods include
 - Cross-Validation
 - Bootstrapping

Cross Validation

- K-fold cross validation
 - Randomly split the data up into k subsets of equal size
 - Remove one of the subsets and train classifier on remaining subsets
 - Test on the removed subset
 - Repeat for all subsets
- Cross Validation considered an unbiased estimator of true error

Cross Validation

Bootstrapping

- For the bootstrap n training data items are sampled with replacement from n cases
- Cases that are not found in the training set are used for the test set
- Generally produces worse rates than the true error rate (worse case scenario)

Bootstrapping

Original Dataset X₁₀ X_2 X_7 X_8 X_9 X_5 **X**₈ Bootstrap 1 X_1 $X_7 \mid X_{10}$ X_2 X_9 X_4 **X**₈ X_3 Bootstrap 2 X_6 Bootstrap 3 **X**₅ X_3 X_7 X_8 X_{10} **Training Sets Test Sets**

This work by Sebastian Raschka is licensed under a Creative Commons Attribution 4.0 International License.

Resampling & Random Forests

Confusion Matrix

- If errors are of differing importance
 - E.g. failing to diagnose a disease can be more serious than diagnosing one that is not present
- Then use a confusion matrix:
 - Class versus prediction
 - False positives and negatives

Common measures make use of False positives and negatives

	Class Pos. (C+)	Class Neg. (C-)
Predict	True	False
Pos. (P+)	Positive	Positive
Predict	False	True
Neg. (P-)	Negative	Negative

relevant elements

Sensitivity=

Specificity =

Sensitivity: TP / C+

Specificity: TN / C-

Accuracy: (TP + TN) / ((C+) + (C-))

• For example, a classifier can have high sensitivity if it successfully classifies people who have developed cancer but a low specificity if it also classifies non-sufferers with cancer.

 But what about data where there are only a few positive cases: imbalanced?

Precision & Recall

Good for imbalanced data

ROC Curves vs PR Curves

- Receiver Operating Characteristic curve
 - Sensitivity / Specificitytradeoff

- Precision Recall Curves
 - Precision / Recall tradeoff

Some examples:

	Class Pos. (C+)	Class Neg. (C-)
Predict Pos. (P+)	15	1
Predict Neg. (P-)	10	24

Some examples:

	Class Pos. (C+)	Class Neg. (C-)
Predict Pos. (P+)	24	10
Predict Neg. (P-)	1	15

- Which would be most suitable for detecting patients with high-risk of cancer for follow up tests?
- Which would be best for selecting patients for high-risk surgery?
- Which is the best?

Bias, Variance & Overfitting

•Consider two models:

Bias, Variance & Overfitting

- Bias is some systematic error in the model
- Variance is the difference from one model to the next
- The first model (straight line) has high bias
- The second has high variance
 - It fits the data very well
 - But it will not predict new cases
 - It has overfit to the data

Overfitting, Bias and Variance

Summary

- Decision trees split the data in lines at each decision node
 - Easy to interpret, prone to overfit but can be pruned
- KNN does not model the data
 - Easy to interpret
- Different approaches to testing a classifier –
 e.g. sensitivity analysis

Summary

Decision trees split the data in lines at each decision node

Summary

Lab Next

- Explore the use of two classifiers on real data
- THIS IS ASSESSED

Reading

- David Hand: Chapter 10, Sections 2, 4, 5, 6 & 11
- Pang-Ning Tan "Introduction to Data Mining" (Chapter 4):

http://www-users.cs.umn.edu/~kumar/dmbook/index.php http://vision.stanford.edu/teaching/cs231n-demos/knn/

Notes on blackboard

