由协方差矩阵 \boldsymbol{B} 知, $Cov(X_1, X_2) = 0$, $Cov(X_1, X_3) = -0.5$, $Cov(X_2, X_3) = 1$, 且 $Var(X_1) = 1$, $Var(X_2) = 2$, $Var(X_3) = 4$, 所以

$$Var(\xi) = 9 \times 1 + 4 \times 2 + 1 \times 4 - 12 \times 0 + 6 \times (-0.5) - 4 \times 1 = 14.$$

即 $\xi \sim N(-2, 14)$

(2) 注意到 X 服从三元正态分布,且 $X_3, X_3 - c_1X_1, X_3 - c_2X_2$ 均为 X_1, X_2, X_3 的线性组合,所以 X_3 与 $X_3 - c_1X_1, X_3 - c_2X_2$ 相互独立等价于

$$Cov(X_3, X_3 - c_1X_1) = 0$$
, $Cov(X_3, X_3 - c_2X_2) = 0$.

又
$$Cov(X_3, X_3) = Var(X_3) = 4$$
, $Cov(X_3, X_1) = -0.5$, $Cov(X_3, X_2) = 1$, 故

$$Cov(X_3, X_3 - c_1X_1) = 4 - c_1 \cdot (-0.5) = 0$$
, $Cov(X_3, X_3 - c_2X_2) = 4 - c_2 \cdot 1 = 0$.

解得 $c_1 = -8$, $c_2 = 4$. 因此, 当 $c_1 = -8$, $c_2 = 4$ 时, X_3 与 $X_3 - c_1X_1$, $X_3 - c_2X_2$ 均相互独立.

■思考题四

1. 设随机变量 X 的密度函数为

$$f(x) = \begin{cases} 1+x, & -1 \le x < 0, \\ 1-x, & 0 \le x < 1. \\ 0, & \not\equiv \text{th}, \end{cases}$$

则 X 的数学期望为

$$E(X) = \begin{cases} \int_{-1}^{0} (1+x)x dx, & -1 \leq x < 0, \\ \int_{0}^{1} (1-x)x dx, & 0 \leq x < 1, \\ 0, & \text{其他}. \end{cases}$$

对吗?

- 2. 随机变量 X 与 Y 同分布, 那么它们的任意阶矩 (如果存在) 是否全部相等? 反之, 若有 E(X) = E(Y) 且 Cov(X) = Cov(Y), 能否推出随机变量 X 与 Y 分布一定相同?
- 3. 某品牌的矿泉水, 一瓶净含量记为随机变量 X (单位: mL). 已知 $X \sim N(500, 2.5^2)$, 从中随机抽取两瓶, 则两瓶矿泉水的总重量的方差是 2×2.5^2 还是 $2^2 \times 2.5^2$ 呢?
- 4. 试述独立性与不相关性的区别和联系.
- 5. 对于随机变量序列 $\{X_i, i \ge 1\}$, 判断下面两个结论是否成立:

(1) 对于
$$n \ge 1$$
, 有 $E\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} E(X_{i})$, 且 $Var\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} Var(X_{i})$;
(2) 若 $\{X_{i}, i \ge 1\}$ 相互独立,那么对于 $n \ge 1$, 有 $E\left(\prod_{i=1}^{n} X_{i}\right) = \prod_{i=1}^{n} E(X_{i})$, 且 $Var\left(\prod_{i=1}^{n} X_{i}\right) = \prod_{i=1}^{n} Var(X_{i})$.

6. 若 Var(X) = Var(Y) = 1, 则 Var(X - 2Y) = Var(X) - 2Var(Y) = -1, 对吗?

7. 设
$$X$$
 服从 $U(1,3)$, 则 $E\left(\frac{1}{X}\right) = \frac{1}{E(X)} = \frac{1}{2}$, 对吗?

▶ 习题四

- 1. 某批产品共有 M 件, 其中正品 N 件 $(0 \le N \le M)$. 从整批产品中随机地进行放回抽样, 每次抽取一件, 记录产品是正品还是次品后放回, 抽取了 n 次 $(n \ge 1)$. 试求这 n 次中抽到正品的平均次数.
- 2. 一位即将毕业的大学生有意向与某企业签订就业合同. 该企业给他两个年薪方案供选择. 方案一: 年薪 3 万; 方案二: 底薪 1.2 万, 如果业绩达到公司要求, 则再可获得业绩津贴 3 万元, 如果达不到, 则没有业绩津贴, 一般约有 80% 的可能性可以达到公司的业绩要求. 问: 他应当采用哪种方案? 并说明理由.
- 3. 一袋中有 8 个球, 分别编号为 $1 \sim 8$ 号, 现随机从袋中取出 2 球, 记其中最大号码的球号为 X, 求 E(X).
- 4. 直线上一质点在时刻 0 从原点出发,每经过一个单位时间向左或者向右移动一个单位,若每次移动是相互独立的,并且向右移动的概率为 $p(0 . <math>\eta_n$ 表示到时刻 n 为止质点向右移动的次数, S_n 表示在时刻 n 时质点的位置, $n \ge 1$. 求 η_n 与 S_n 的数学期望.
- 5. 抛一枚均匀的硬币, 直到正、反两面都出现后停止试验, 求试验的平均次数,
- 6. 设二元随机变量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} \frac{2}{x} e^{-2x}, & 0 < x < +\infty, 0 < y < x, \\ 0, & \text{其他.} \end{cases}$$

求: (1) E(X); (2) E(3X-1); (3) E(XY) 的值.

- 7. 已知一根长度为 1 的棍子上有个标志点 Q. 现随机地将此棍子截成两段.
 - (1) 求包含 Q 点的那一段棍子的平均长度 (若截点刚好在 Q 点,则认为 Q 包含在较短的一截内);
 - (2) 当 Q 位于棍子何处时, 包含 Q 点的棍子平均长度达到最大?

- 8. 甲、乙两人约定上午 8:00—9:00 在某地见面, 两人均在该时段随机到达, 且到达时间独立. 求两人中先到的人需要等待的平均时间.
- 9. 为诊断 500 人是否有人患有某种疾病, 抽血化验. 可用两种方法: (1) 每个人化验一次; (2) 分成 k 人一组 $\left(\pm\frac{500}{k}\right)$ 组,假设 $\frac{500}{k}$ 为正整数, k>1 . 将每组 k 人的血样集中起来一起检验, 如果化验结果为阴性, 则说明组内的每人都是阴性, 就无需分别化验; 若检验结果为阳性, 则说明这 k 人中至少有一人患病, 那么就对该组内的 k 人再单独化验. 如果此病的得病率为20%, 试问哪种方法的平均检验次数相对少些?
- 10. 某设备无故障运行的时间 T (以小时计) 服从数学期望为 $\frac{1}{\lambda}(\lambda > 0)$ 的指数分布. 若设备在一天 8 个小时的工作时间内发生故障就自动停止运行待次日检修, 否则就运行 8 小时后停止. 求该设备每天运行的平均时间.
- 11. 某电子监视器的圆形屏幕半径为 r(r>0), 若目标出现的位置点 A 服从均匀分布. 设 A 的平面直角坐标为 (X,Y).
 - (1) 求 E(X) 与 E(Y); (2) 求点 A 与屏幕中心位置 (0,0) 的平均距离.
- 12. 一个袋子中有 15 个均匀的球, 其中 a 个是白球, 其他的是黑球. 不放回地随机抽取 n 次 (每次取一球), 记取到的白球数为 ξ_n . 当 n=2 时, 已知 $E(\xi_2)=\frac{4}{3}$.
 - (1) 求 a; (2) 当 n = 9 时, 求 $E(\xi_9)$.
- 13. 在区间 (0,1) 中随机地取 n 个点 $(n \ge 2)$, 求相距最远的两个点间距离的数学期望.
- 14. 设进入大型购物中心的顾客有可能去其中的一家冷饮店购买冷饮, 购买的概率为 p(0 . 若在一天的营业时间内进入该购物中心的顾客数 <math>X 服从参数为 $\lambda(\lambda > 0)$ 的泊松分布, 求这一天去该冷饮店购买冷饮的顾客数 Y 的分布及数学期望.
- 15. 接第 12 题. 当 n = 2 时, 求 $Var(\xi_2)$.
- 16. 随机变量 X 服从 Γ 分布, 密度函数为

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x > 0,$$

其中, $\alpha>0$ 称为 "形状参数", $\lambda>0$ 称为 "尺度参数". 求 $E(X^k)(k\geqslant 1)$ 和 $\mathrm{Var}(X)$.

17. 设随机变量 X 服从拉普拉斯分布, 密度函数为

$$f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty,$$

计算 X 与 |X| 的方差.

18. 机器处于不同状态时制造产品的质量有所差异. 如果机器运作正常, 则产品的正品率为 98%; 如果机器老化, 则产品的正品率为 90%; 如果机器处于需要维修的状态, 则产品的正品率为

74%. 机器正常运作的概率为 0.7, 老化的概率为 0.2, 需要维修的概率为 0.1. 现随机抽取了 100 件产品 (假设生产这些产品的机器的状态相互独立).

- (1) 求产品中非正品数的数学期望与方差;
- (2) 在已知这些产品都是正常机器制造出来的条件下, 求正品数的数学期望和方差.
- 19. 随机变量 X 与 Y 独立同分布, 都服从参数为 $\frac{1}{2}$ 的 0-1 分布.
 - (1) 求 $P\{X + Y \ge 1\}$; (2) 计算 $E(X \cdot (-1)^Y)$ 及 $Var(X \cdot (-1)^Y)$.
- 20. 设系统 L 由两个相互独立的子系统 L_1 和 L_2 构成, L_1 和 L_2 的寿命 X 与 Y 分别服从期望 为 $\frac{1}{2}$, $\frac{1}{4}$ 的指数分布. 试就下列三种连接方式写出系统 L 寿命 Z 的数学期望和变异系数.
 - (1) L_1 和 L_2 串联; (2) L_1 和 L_2 并联; (3) L_2 为 L_1 的备用.
- 21. 接第 17 题. (1) 求 X 与 |X| 的相关系数, 并判断两者是否相关?
 - (2) 判断 X 与 |X| 是否独立?
- 22. 设随机变量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} \frac{1}{4}(1+xy), & 若 |x| < 1, |y| < 1, \\ 0, & 其他. \end{cases}$$

- (1) 计算 X 与 Y 的相关系数, 并判断它们的独立性和相关性;
- (2) 计算 X^2 与 Y^2 的相关系数, 并判断它们的独立性和相关性.
- 23. 独立地抛一枚均匀的骰子 n 次 $(n \ge 2)$. 记 X,Y 分别表示试验中 "1 点朝上" 以及 "6 点朝上" 出现的次数, 求 X 与 Y 的相关系数, 并判断两者的相关关系.
- 24. 随机三角形 ABC, 角 A 与角 B 独立同分布, 其概率分布律均为

A	$\frac{\pi}{3}$	$rac{\pi}{4}$	$\frac{\pi}{6}$
p	λ	θ	$1 - \lambda - \theta$

其中 $\lambda > 0, \theta > 0$, 且满足 $\lambda + \theta < 1$. 已知 $E(\sin A) = E(\cos A) = \frac{\sqrt{3} + 2\sqrt{2} + 1}{8}$.

- (1) 写出 (A,B) 的联合分布律;
- (2) 求 $E(\sin C)$;
- (3) 求角 A 与角 C 的相关系数, 并由此判断它们的相关性 (若相关, 要求说明是正相关 还是负相关).
- 25. 设随机变量 X_1, X_2, \dots, X_n 均服从标准正态分布并且相互独立. 记 $S_k = \sum_{i=1}^k X_i, T_k = \sum_{j=n_0+1}^{n_0+k} X_j,$ 其中 $1 \le n_0 < k < n_0 + k \le n$,求 S_k 与 T_k 的相关系数.

- 26. 设 $X \sim N(0,1), Y$ 的可能取值为 ± 1 , 且 $P\{Y=1\} = p(0 . 若 <math>X$ 与 Y 相互独立, 并 记 $\xi = X \cdot Y$.
 - (1) 证明: $\xi \sim N(0,1)$;
 - (2) 计算 $\rho_{X\xi}$, 并判断 X 与 ξ 的相关性和独立性.
- 27. 设甲、乙两个盒子中都装有 2 个白球,3 个黑球. 先从甲盒中任取 1 个球放入乙盒, 再从乙盒中随机地取出一球. 用 *X* 与 *Y* 分别表示从甲、乙盒中取得的白球数.
 - (1) 求 (X,Y) 的联合分布律, 并判断 X 与 Y 是否独立;
 - (2) 求出 Cov(X,Y), 并由此判断 X 与 Y 的相关性.
- 28. 设二元随机变量 (X,Y) 服从正态分布 $N(0,1,1,4,\rho)$. 令 $\xi = aX bY, \eta = aY bX$, 其中 a,b 为实数, $a \neq b$ 且 $ab \neq 0$.
 - (1) 当 $\rho = 0$ 时, 分别写出 ξ 与 η 的分布 (要求写出参数) 及它们各自的标准化变量, 并计算 ξ 与 η 相关系数;
 - (2) 当 $\rho = \frac{1}{2}$ 时, 计算 ξ 的变异系数;
 - (3) 当 $\rho = \frac{1}{2}$ 时, 计算 η 的中位数;
 - (4) 当 $\rho = -1$ 时, 判断 ξ 与 η 的独立性和相关性.
- 29. 三元正态变量 $X = (X_1, X_2, X_3)^T \sim N(a, B)$, 其中

$$m{a} = (0,0,1)^{\mathrm{T}}, \quad m{B} = \left(egin{array}{ccc} 1 & 2 & -1 \\ 2 & 16 & 0 \\ -1 & 0 & 4 \end{array}
ight).$$

- (1) 写出 X 的每个分量的分布:
- (2) 判别 X₁, X₂, X₃ 的相关性与独立性;
- (3) 若 $Y_1 = X_1 X_2, Y_2 = X_3 X_1$, 求 $Y = (Y_1, Y_2)^T$ 的分布.
- 30. 设有一煤矿一天的产煤量 X (以万吨计) 服从 $N(1.5,0.1^2)$ 分布. 设每天产量相互独立,一个月按 30 天计,求一月总产量超 46 万吨的概率.
- 31. 某地区成年男子身高 X (单位: cm) 服从正态分布 N(170,144), 从该地区独立抽选 4 人,求 4 人平均身高超过 176 cm 的概率.