COSC265 — Relational Database Systems

Neville Churcher

Department of Computer Science & Software Engineering University of Canterbury

2021

cional Bata Moa

Domain: Set (finite?) of values

Relation: Subset of the Cartesian product of one or more domains

Tuple: Elements (members) of a relation

$$r = \{t | t \in \otimes \mathcal{D}_i\}$$

are k-tuples

$$\{(\nu_1,\nu_2\ldots\nu_k)|\nu_i\in\mathcal{D}_i\}$$

Tables: Relations can be thought of as tables whose (unordered) rows are tuples and whose columns are components

Attributes

- ☆ Names for tuple components (columns).
- Tuples viewed as mappings from attributes names to values in corresponding domains
- If columns have names then order of columns does not matter (set of mappings)
- ☆ Otherwise component order does matter. The relation is viewed as a set of lists
- Both forms have uses. Conversion between them is achieved by assigning arbitrary attribute names or by fixing attribute order

Relations & Schemes

A relation scheme or schema is the set of attributes

$$R = \{A_1, A_2 \dots A_n\}$$

 \triangle A relation over schema R is denoted by

$$r(R) \equiv r(A_1, A_2 \dots A_n)$$

☆ Concatenation of attributes (or sets of attributes) used to denote union

$$R \equiv A_1 A_2 \dots A_n$$

$$R = attr(r)$$

Restriction of tuple to specified components (by name or position)

$$s[i], s \in r(R)$$

Keys & Superkeys

 \Rightarrow A key K is a set of attributes such that

$$\nexists t_i, t_j : t_i[\mathcal{K}] = t_j[\mathcal{K}]$$

- ☆ Duplicate tuples not allowed as all elements of set (relation) must be distinct
- \Rightarrow R is a key for any r(R)
- \bigstar If K, K' are keys and $K \supseteq K'$ then K is a superkey
- Relation may have more than one candidate key
- ☆ Usually assume 'key' has no proper subset that is also a key
- ☆ Keys should be time (≡ tuple value) independent

Review: Relational model 6

- A Primarily interested in *finite* relations
- Arr Define dom(R) as set of all tuples over attributes of R and their domains
- ightharpoonup Define relation complement of r(R) as

$$\bar{r} = dom(R) - r$$

- \Rightarrow If R has any ∞ domains then \overline{r} is ∞
- A If $R \equiv A_1 A_2 \dots A_n$ and $D_i \equiv dom(A_i)$ then define the active domain of A_i in r as

$$adom(A_i, r) = \{d \in D_i | \exists t \in r, t(A_i) = d\}$$

- \Rightarrow Then can define adom(R,r) as set of all tuples over the attributes of R and their active domains relative to R
- Active complement (always a finite relation)

$$\tilde{r} = adom(R, r) - r$$

Example

$$R = ABC, dom(A) = \{a_1, a_2\}, dom(B) = \{b_1, b_2, b_3\}, dom(C) = \{c_1, c_2\}$$

r(R)			dom(R)		ī	$ar{r} = dom(R) - r$			$\tilde{r}=3$	$\tilde{r} = adom(R)$			
	Α	В	С	A	В	C	_	Α	В	C	Α	В	C
	a_1	b_1	c_1	a_1	b_1	c_1	_	a_1	b_1	<i>c</i> ₂	$\overline{a_1}$	b_1	c ₂
	a_1	b_2	c_1	a_1	b_1	<i>c</i> ₂		a_1	b_2	c_2	a_1	b_2	<i>c</i> ₂
	a_2	b_1	<i>c</i> ₂	a_1	b_2	c_1		a_1	b_3	c_1	a_2	b_1	c_1
				a_1	b_2	<i>c</i> ₂		a_1	b_3	<i>c</i> ₂	a_2	b_2	c_1
				a_1	b_3	c_1		a 2	b_1	c_1	a_2	b_2	<i>c</i> ₂
				a_1	b_3	c ₂		a 2	b_2	c_1			
				a_2	b_1	c_1		a 2	b_2	<i>c</i> ₂			
				a_2	b_1	<i>c</i> ₂		<i>a</i> ₂	b_3	c_1			
				a_2	b_2	c_1		<i>a</i> ₂	b_3	<i>c</i> ₂			
				a_2	b_2	<i>c</i> ₂							
				a_2	b_3	c_1							

Observations

- Active complements can arise naturally as in trained in(Employee, Dept)
- If every employee (and dept) appears in at least one tuple, then tuples of trained_in are those combinations which have not taken place
- Thought for the day: If $\|\tilde{r}\| < \|r\|$ then could the active complement be used as a storage compression device?

ational Algebr

- Operands are constant relations or variables denoting relations of fixed 'arity'
- Relations on the same scheme are sets over the same universe
- Set of all relations exhibits closure under the operators of the relational algebra
 - Intersection

U Union

- Difference ('but not'). \ also used
- ⊗ Cartesian product
- σ selection
- π Projection
- ⋈ Join
- Dini-i
- Division
- \bigstar All operations expressible in terms of $\{\cup, -, \otimes, \sigma, \pi\}$
- Some operators $(\cup, \cap, -)$ require *union-compatible* operands (same degree, corresponding domains)

Relational Operations Illustrated

Relational Operations Illustrated

Several join operators defined as shorthand for various restrictions of the Cartesian product

Theta Joins: If r is of arity k and θ is a comparison operator, the theta join on columns i, i is written as

$$r\bowtie_{i\theta j}s\equiv\sigma_{i\theta(k+j)}(r\otimes s)$$

Equijoin This is the case where θ is '='. The resulting relation has two identical (sets of) columns — so well usually want remove one.

Natural Join ⋈ Like an equijoin, but one of the duplicate (sets of) columns removed. Only applicable when columns have names (attributes). Given r(R), s(S) and $I = R \cap S$

$$r\bowtie s=\pi_{RS}\sigma_{r.I=s.I}(r\otimes s)$$

Theta Join Example

Given R = ABC, S = DE

A 1 4 7	r(R) B 2 5 8	C 3 6 9		D 3 6	(S) E 1 2	_	
					$r \otimes s$	5	
			Α	В	C	D	E
			1	2	3	3	1
			1	2	3	6	2
			4	5	6	3	1
			4	2 2 5 5 8	6	6	2
			7		9	3	2 1
			7	8	9	6	2

	r	⋈ B <d< th=""><th>s</th><th></th></d<>	s	
Α	В	C	D	
1	2	3	3	
1	2	3	6	
4	2 5	6	6	
	'	'	ı	

Natural Join Example

r(R)							
Α	В	C					
а	b	С					
d	b b	С					
b	b	f					
С	a	d					

s(S)					
В	C	D			
b	С	d			
b	С	e			
a	c d	e b			

B C D
b c d
b c e
b c d
b c e
a d b

 $r \bowtie s$

a a d d

С

$r \otimes s$								
Α	В	C	B'	C,	D			
а	b	С	b	С	d			
a	b	С	b	С	e			
a	b	С	a	d	b			
d	b	С	b	С	d			
d	b	С	b	С	e			
d	b	С	a	d	b			
С	a	d	a	d	b			

$r \bowtie S S S \land r.C = s.C$								
Α	В	С	В	С,	D			
a	b	С	b	С	d			
a	b	С	b	С	e			
d	b	С	b	С	d			
d	b	С	b	С	e			
 C	а а	d	а а	d	b			

Relational Division Operator

Consider relations r(R), s(S) where $S \subseteq R$.

Tuples $\eta \in (r \div s)$ appear in r in combination with every tuple in s and the schema of $r \div s$ is R - S

 $r \div s = \{ \eta | (\forall \mu \in s) (\exists \nu \in r) \nu [S] = \mu [S] \land \nu [R - S] = \eta [R - S] \}$ The tuples satisfying the second part of the definition (i.e. possible η) are given by

m
$$\pi_{R-S}$$

 $\pi_{R-S}(r)$

The combination of all pairs of tuples from $\pi_{R-S}(r)$ and s is given by

$$\pi_{R-S}(r) \otimes s$$

Those combinations which do not appear in r (thus violating the first part of the above definition) are given by

$$(\pi_{R-S}(r)\otimes s)-r$$

Thus

$$r \div s = \pi_{R-S}(r) - \pi_{R-S}((\pi_{R-S}(r) \otimes s) - r)$$

S135

S# S1 S2

			vvarenouse-Supplier					
W-S				W-S'				
	W #	S#		W #	S#			
	W1	S1	-	W1	S1			
	W1	S2	≡	W3	S1		W135	
	W1	S3		W5	S1			
	W2	S3		W1	S2	÷	W #	
	W3	S1		W3	S2	•	W1	
	W3	S2		W5	S2		W3	
	W5	S1		W2	S3		W5	

W5

W6

\//1

S4

S2

53

W5

W5

W6

S2

S4

52

Additional Operators

Example

Assignment Operator(\leftarrow)

☆ Not essential — adds no expressive power

Convenient for complex queries involving intermediate variables/expressions

$$r \leftarrow \sigma_{\mathsf{X}<\mathsf{42}}(\mathsf{s} \bowtie \mathsf{p})$$

Renaming Operator(δ)

Used to construct aliases

🖈 e.g.foreign keys, distinguishing between duplicate columns in joins

Example

If $R = \dots X \dots$ and r = r(R)

$$r' = \delta_{X \leftarrow Y}(r) \equiv r'(R')$$

where $R' = \dots Y \dots$