An algorithm for computing an optimal approximation of a random variable with respect to the Kolmogorov distance

Anonymous Author(s)

Affiliation Address email

1 Introduction

- 2 Many different approaches to approximation of probability distributions are studied in the litera-
- 3 ture [12, 15, 16]. The approaches vary in the types random variables involved, how they are rep-
- 4 resented, and in the criteria used for evaluation of the quality of the approximations. This paper is
- 5 on approximating discrete distributions represented as explicit probability mass functions with ones
- 6 that are simpler to store and to manipulate. This is needed, for example, when a discrete distribution
- 7 is given as a large data-set, obtained, e.g., by sampling, and we want to represent it approximately
- 8 with a small table.
- 9 The main contribution of this paper is an efficient algorithm for computing the best possible ap-
- proximation of a given random variable with a random variable whose complexity is not above a
- prescribed threshold, where the measures of the quality of the approximation and the complexity of
- the random variable are as specified in the following two paragraphs.
- 13 We measure the quality of an approximation by the distance between the original variable and the
- 14 approximate one. Specifically, we use the Kolmogorov distance which is one of the most used in
- statistical practice and literature. Given two random variables X and X' whose cumulative distribu-
- tion functions (cdfs) are F_X and $F_{X'}$, respectively, the Kolmogorov distance between X and X' is
- $d_K(X, X') = \sup_t |F_X(t) F_{X'}(t)|$ (see, e.g., [9]). We say taht X' is a good approximation of X
- if $d_K(X, X')$ is small.
- 19 The complexity of a random variable is measured by the size of its support, the number of values
- that it can take, $|\operatorname{support}(X)| = |\{x \colon Pr(X=x) \neq 0\}|$. When distributions are maintained as
- 21 explicit tables, as done in many implementations of statistical software, the size of the support of
- 22 a variable is proportional to the amount of memory needed to store it and to the complexity of the
- 23 computations around it. In summary, the exact notion of optimality of the approximation targeted in
- 24 this paper is:
- **Definition 1.** A random variable X' is an optimal m-approximation of a random variable X if
- | support(X')| $\leq m$ and there is no random variable X'' such that $|\operatorname{support}(X'')| \leq m$ and
- 27 $d_K(X, X'') < d_K(X, X')$.

The main contribution of the paper is an efficient algorithm that takes X and m as parameters and constructs an optimal m-approximation of X.

The rest of the paper is organized as follows. In Section 2 we describe how our work relates to other algorithms and problems studied in the literature. In Section 3 we detail the proposed algorithm, analyze its properties, and prove the main theorem. In Section 4 we demonstrate how the proposed approach performs on the problem of estimating the probability of hitting deadlines is plans and compare it to alternatives approximation approaches from the literature. We also demonstrate the performance of our approximation algorithm on some randomly generated random variables. The paper is concluded with a discussion in Section 5.

37 **2 Related Work**

The most relevant work related to this paper is the papers by Cohen at. al. [5, 4]. These papers study 38 approximations of random variables in the context of estimating deadlines. In this context, X' is 39 defined to be a good approximation of X if $F_{X'}(t) > F_X(t)$ for any t and $\sup_t F_{X'}(t) - F_X(t)$ 40 is small. This is not a distance because it is not symmetric. The motivation given by Cohen at. al. 41 for using this notion is for cases where overestimation of the probability of missing a deadline is 42 acceptable but underestimation is not. In Section 4, we consider the same examples examined by 43 Cohen at. al. and show how the algorithm proposed in this paper performs relative to the algorithms 44 proposed there when both over- and under- estimations are allowed. As expected, the Kolmogorov 45 distance between the approximation and the original random variable is smaller by a factor of one 46 47 half, on average.

Another very relevant work is the theory of Sparse Approximation (aka Sparse Representation) that deals with sparse solutions for systems of linear equations, as follows.

Given a matrix $D \in \mathbb{R}^{n \times p}$ and a vector $x \in \mathbb{R}^n$, the most studied sparse representation problem is finding the sparsest possible representation $\alpha \in \mathbb{R}^p$ satisfying $x = D\alpha$:

$$\min_{\alpha \in \mathbb{R}^p} \|\alpha\|_0$$
 subject to $x = D\alpha$.

where $\|\alpha\|_0 = |\{i: \alpha_i \neq 0, i = 1, \dots, p\}|$ is the ℓ_0 pseudo-norm, counting the number of non-zero coordinates of α . This problem is known to be NP-Hard with a reduction to NP-complete subset selection problems.

In these terms, using also the ℓ_{∞} norm that represents the maximal coordinate and the ℓ_1 norm that represents the sum of the coordinates, our problem can be phrased as:

$$\min_{\alpha \in [0,\infty)^p} \|x - D\alpha\|_{\infty} \text{ subject to } \|\alpha\|_0 = m \text{ and } \|\alpha\|_1 = 1.$$

where D is the all-ones triangular matrix (the entry at row i and column j is one if $i \leq j$ and zero otherwise), x is related to X such that the ith coordinate of x is $F_X(x_i)$ where $\operatorname{support}(X) = \{x_1 < x_2 < \cdots < x_n\}$ and α is related to X' such that the ith coordinate of α is $f_{X'}(x_i)$. The functions F_X and $f_{X'}$ represent, respectively, the cumulative distribution function of X and the mass distribution function of X'. This, of course, means that the coordinates of x are assumed to be positive and monotonically increasing and that the last coordinate of x is assumed to be one. We demonstrate an application for this specific sparse representation problem and show that it can be solve in $O(n^2m)$ time and $O(m^2)$ memory.

- Another related research is binning in statistical inference. Consider, for example, the problem of credit scoring [21] that deals with separating good applicants from bad applicants where the Kolmogorov–Smirnov statistic KS is a standard measure. The KS comparison is often preceded by a procedure called binning where a large table is shrinked to a smaller one by collecting nearby values together. There are many methods for binning [11, 17, 2, 19]. In this context, our algorithm can be consider as a new binning strategy that provides optimality guarantees with respect to the Kolmogorov distance that none of the existing binning technique that we are aware of provides.
- The present study is also related to the work of Pavlikov and Uryasev [15], where a procedure for producing a random variable X' that optimally approximates a random variable X is presented. Their approximation scheme, achieved using convex and linear programming, is designed for a different notion of distance (called CVaR). The new contribution of the present work in this context is that our method is direct, not using linear or convex programming, thus allowing tighter analysis of time and memory complexity. Also, our method is designed for optimizing the Kolmogorov distance that is more prevalent in applications.

75 3 An Algorithm for Optimal Approximation

- In the scope of this section, let X be a given random variable with a finite support of size n, and let $0 < m \le n$ be a given complexity bound. We first develop notations and collect facts towards an algorithm for finding an optimal m-approximation of X.
- The first useful fact is that it is enough to limit our search to approximations X's such that support $(X') \subseteq \operatorname{support}(X)$:
- **Lemma 2.** There is an optimal m-approximation X' of X such that $\operatorname{support}(X') \subseteq \operatorname{support}(X)$.
- Proof. Let X'' be a random variable whose support is of size smaller or equal to m. We find a random variable X' with $\operatorname{support}(X') \subseteq \operatorname{support}(X)$ such that $d_K(X,X') \leq d_K(X,X'')$. Let $\{x_1,\ldots,x_n\}=\operatorname{support}(X)$, and let $x_0=-\infty,x_{n+1}=\infty$. Consider the random variable X' whose probability mass function is $f_{X'}(x_i)=P(x_{i-1}< X'' \leq x_i)$ for $i=1,\ldots,n-1,f_{X'}(x_n)=P(x_n-1< X'' < x_{n+1})$, and $F_{X'}(x)=0$ if $x \notin \operatorname{support}(X)$. Since X' "accumulates" the non-zero probabilities of X'' to the support of X, we have that f is a probability mass function and therefore X' is well defined.
- First see by construction that $|F_X(x_i) F_{X'}(x_i)| = |F_X(x_i) F_{X''}(x_i)|$ for every $1 \le i \le n 1$. For i = n we have $|F_X(x_n) - F_{X'}(x_n)| = |1 - 1| = 0$. Finally see that $|F_X(x) - F_{X'}(x)| = |F_X(x_i) - F_{X'}(x_i)|$ for every $0 \le i < n + 1$ and $x_i < x < x_{i+1}$. Therefore we have that $|F_X(x_i) - F_{X'}(x_i)| \le d_K(X, X'') = max_i |F_X(x_i) - F_{X'}(x_i)| \le max_i |F_X(x_i) - F_{X''}(x_i)| \le d_K(X, X'')$.
- Next, note that every random variable X'' with support of size at most m that is contained in support (X) can be described by first setting the (at most m) elements of the support of X''; then for every such option, determine X'' by setting probability values for the elements in the chosen support of X', and setting 0 for rest of the elements.
- Denote the set of random variables with support $S \subseteq \operatorname{support}(X)$ by \mathbb{X}_S . In Step 1 below, we find a random variable in \mathbb{X}_S that minimizes the Kolmogorov distance from X, and denote this distance by $\varepsilon(X,S)$. Next, in Step 2, that we will describe later, we will show how to efficiently find S that minimizes $\varepsilon(X,S)$ among all the sets that satisfy $S \subset \operatorname{support}(X)$ and $|S| \leq m$. Then the minimized random variable \mathbb{X}_S from the minimal S, is the m-optimal approximation to X.

102 3.1 Step 1: Finding an X' in X_S that minimizes $d_K(X,X')$

- We first fix a set $S \subseteq \operatorname{support}(X)$ of size at most m, and among all the random variables in
- 104 X_S find one with a minimal distance from X. Denote the elements of S in increasing order by
- 105 $S = \{x_1 < \cdots < x_m\}$ and let $x_0 = -\infty$, and $x_{m+1} = \infty$. For every $1 < i \le m$ let \hat{x}_i be the
- maximal element of support (X) that is smaller than x_i .
- Next, as the elements of S are also elements of support (X), we can define the following weight
- 108 function:
- 109 **Definition 3.** For $0 \le i \le m$ let

$$w(x_i, x_{i+1}) = \begin{cases} P(x_i < X < x_{i+1}) & \text{if } i = 0 \text{ or } i = m; \\ P(x_i < X < x_{i+1})/2 & \text{otherwise.} \end{cases}$$

- Note that $x_i = -\infty$ for i = 0 and $x_i = \infty$ for i = m + 1. Also note that $P(x_i < X < x_{i+1}) = 0$
- 111 $F_X(\hat{x}_{i+1}) F_X(x_i)$, a fact that we will use throughout this section.
- 112 **Definition 4.** Let $\varepsilon(X, S) = \max_{i=0,...,m} w(x_i, x_{i+1})$.
- We first show that $\varepsilon(X,S)$ is a lower bound. That is, every random variable in \mathbb{X}_S has a distance at
- least $\varepsilon(X,S)$. Then, we present a random variable $X' \in \mathbb{X}_S$ with distance $\varepsilon(X,S)$. It then follows
- that such X' is an optimal m-approximation random variable among all random variables in \mathbb{X}_S .
- The intuition behind choosing these specific weights and $\varepsilon(X,S)$ being a lower bound is as follows.
- Since for every $X' \in \mathbb{X}_S$ the probability values of X' for the elements not in S are set to 0, we have
- that $F_{X'}(\hat{x}_{i+1}) = F_{X'}(x_i)$. Therefore the distance between X' and X at points x_i and \hat{x}_{i+1} that we
- have to take into additional account is increased by $F_X(\hat{x}_{i+1}) F_X(x_i) = P(x_i < X < x_{i+1})$.
- 120 Formally we have the following.
- Proposition 5. If $X' \in \mathbb{X}_S$ then $d_K(X, X') \geq \varepsilon(X, S)$.
- 122 Proof. By definition, for every $0 \le i \le m$, $d_K(X,X') \ge \max\{|F_X(\hat{x}_{i+1})|$
- 123 $F_{X'}(\hat{x}_{i+1})|, |F_X(x_i) F_{X'}(x_i)|\}$. Note that $F_{X'}(\hat{x}_{i+1}) = F_{X'}(x_i)$ since the probability values
- for all the elements not in S are set to 0.
- 125 If i=0, that is $x_i=-\infty$, we have that $F_X(x_i)=F_{X'}(x_i)=F_{X'}(\hat{x}_{i+1})=0$ and therefore
- 126 $d_K(X, X') \ge |F_X(\hat{x}_{i+1})| = |F_X(\hat{x}_{i+1}) F_X(x_i)| = P(x_i < X < x_{i+1}) = w(x_i, x_{i+1}).$
- 127 If i=m, that is $x_{i+1}=\infty$, we have that $F_X(\hat{x}_{i+1})=F_{X'}(\hat{x}_{i+1})=F_{X'}(x_i)=1$. and therefore
- 128 $d_K(X, X') \ge |1 F_X(\hat{x}_i)| = |F_X(\hat{x}_{i+1}) F_X(x_i)| = P(x_i < X < x_{i+1}) = w(x_i, x_{i+1}).$
- Otherwise for every $1 \le i < m$, we use the fact that $max\{|a|,|b|\} \ge |a-b|/2$ for every $a,b \in$
- 130 \mathbb{R} , to have $d_K(X, X') \geq 1/2|F_X(\hat{x}_{i+1}) F_X(x_i) + F_{X'}(x_i) F_{X'}(\hat{x}_{i+1})|$. So $d_K(X, X') \geq 1/2|F_X(\hat{x}_{i+1}) F_X(x_i)|$
- 131 $1/2|F_X(\hat{x}_{i+1}) F_X(x_i)| = P(x_1 < X < x_2)/2 == w(x_i, x_{i+1}).$
- Therefore since $d_K(X,X') \geq w(x_i,x_{i+1})$ for every $0 \leq i \leq m$, by definition of $\varepsilon(X,S)$ proof
- follows.
- Next we show a random variable $X' \in \mathbb{X}_S$ with a distance of $\varepsilon(X,S)$ from X. Thus X' is an
- optimal m-approximation among the set X_S . We define X' as follows:
- Definition 6. Let $f_{X'}(x_i) = w(x_{i-1}, x_i) + w(x_i, x_{i+1}) + f_X(x_i)$ for i = 1, ..., m and $f_{X'}(x) = 0$
- for $x \notin S$.

- We first show that X' is a properly defined random variable:
- **Lemma 7.** $f_{X'}$ is a probability mass function. 139
- *Proof.* From definition $f_{X'}(x_i) \geq 0$ for every i. To see that $\sum_i f_{X'}(x_i) = 1$, we have 140
- $\sum_{i} f_{X'}(x_i) = \sum_{i} (w(x_{i-1}, x_i) + w(x_i, x_{i+1}) + f_X(x_i)) = \sum_{x_i \in S} f_X(x_i)) + w(x_0, x_1) +$
- $\sum_{0 < i < m} 2w(x_i, x_{i+1}) + w(x_m, x_{m+1}) = \sum_{x_i \in S} P(X = x_i) + P(x_0 < X < X_1) + \sum_{0 < i < m} P(x_i < X < X_{i+1}) + P(x_m < X < X_{m+1}) = 1$ since this sum is the entire cpt of
- 144
- Note that X' can be constructed in linear time to the size of the cdf of X. Intuitively the setting of 145
- X' allows to take an "advantage" of distance from X at the elements of support (X'), to avoid the
- overall increased distance of X from X' at the elements that are not at support(X) and in which 147
- $f_{X'}$ is set to 0. Formally we have the following. 148
- **Lemma 8.** Let $x \in \text{support}(X)$ and $0 \le i \le m$ be such that $x_i \le x \le x_{i+1}$ then $-w(x_i, x_{i+1}) \le x_i$
- $F_X(x) F_{X'}(x) \le w(x_i, x_{i+1}).$
- *Proof.* We prove by induction on $0 \le i < m$. 151
- First see that $F_{X'}(j) = 0$ for every $x_0 < j < x_1$ and therefore $F_X(j) F_{X'}(j) = F_X(j) 0 \le 0$
- $F_X(\hat{x}_1) = F_X(\hat{x}_1) F_X(x_0) = w(x_0, x_1)$. For $j = x_1$ we have $F_X(x_1) F_{X'}(x_1) = F_X(\hat{x}_1) + F_{X'}(x_1) = F_X(\hat{x}_1) + F_X(\hat{x}_1) = F_X(\hat{x}_1)$
- $f_X(x_1) (w(x_0, x_1) + w(x_1, x_2) + f_X(x_1) = w(x_0, x_1) + f_X(x_1) (w(x_0, x_1) + w(x_1, x_2) + f_X(x_1) + f_X$
- $f_X(x_1) = -w(x_1, x_2).$ 155
- Next assume that $F_X(\hat{x}_i) F_{X'}(\hat{x}_i) = w(x_{i-1}, x_i)$. Then $F_X(x_i) F_{X'}(x_i) = F_X(\hat{x}_i) + f_X(x_i) F_{X'}(x_i)$ 156
- $(w(x_{i-1},x_i)+w(x_i,x_{i+1})+f_X(x_i))=w(x_{i-1},x_i)+f_X(x_i)-(w(x_{i-1},x_i)+w(x_i,x_{i+1})+f_X(x_i))$ 157
- $f_X(x_i) = -w(x_i, x_{i+1}).$ 158
- As before we have that for all $x_i < j < x_{i+1}$, we have $F_X(j) F_{X'}(j) = F_X(j) F_{X'}(\hat{x}_{i+1}) \le$ 159
- $F_X(\hat{x}_{i+1}) F_{X'}(\hat{x}_{i+1})$. Then $F_X(\hat{x}_{i+1}) F_{X'}(\hat{x}_{i+1}) = (F_X(x_i) + P(x_i < x < x_{i+1})) F_{X'}(\hat{x}_{i+1})$ 160
- $F_{X'}(x_i) = -w(x_i, x_{i+1}) + 2w(x_i, x_{i+1}) = w(x_i, x_{i+1}).$ 161
- Finally for $x_m \leq j \leq x_{m+1}$ we have that $F_{X'}(x_m) = 1$ therefore $F_X(x_m) F_{X'}(x_m) = (1 1)$ 162
- $P(x_m < X < x_{m+1}) 1 = P(x_m < X < x_{m+1}) = w(x_m, x_{m+1}),$ and for every $x_m < j < j < j$ 163
- x_{m+1} we have $F_X(j) F_{X'}(j) < (1 P(x_m < X < x_{m+1})) 1 < -P(x_m < X < x_{m+1})) =$ 164
- $-w(x_m, x_{m+1})$ as required. 165
- From Lemma 8, by the definition of $\varepsilon(X,S)$, we then have: 166
- Corrolary 9. $d_K(X, X') = \varepsilon(X, S)$. 167
- 3.2 Step 2: Finding an S that minimizes $\varepsilon(X,S)$ 168
- Chakravarty, Orlin, and Rothblum [3] proposed a polynomial-time method that, given a certain 169
- objective functions (additive), finds an optimal consecutive partition. Their method involves the 170
- construction of a graph such that the (consecutive) set partitioning problem is reduced to the problem 171
- of finding the shortest path in that graph. 172
- The Kolmogorov Approx algorithm (Algorithm 1) starts by constructing a directed weighted graph 173
- G similar to the method of Chakravarty, Orlin, and Rothblum [3]. The nodes V consist of the support 174
- of X together with an extra two nodes, $-\infty$ and ∞ for technical reasons, whereas the edges E 175
- connect every pair of nodes in one direction (lines 1-2). The weight w of each edge $e = (x, y) \in E$

is determined by one of two cases as in Definition 3. The values taken are non inclusive, since 177 we are interested only in the error value. The source node of the shortest path problem at hand 178 corresponds to the $-\infty$ node added to G in the construction phase, and the target node is the extra 179 node ∞ . The set of all solution paths in G, i.e., those starting at $-\infty$ and ending in ∞ with at most 180 m edges, is called $paths(G, -\infty, \infty)$. The goal is to find the path l in $paths(G, -\infty, \infty)$ with the 181 lightest bottleneck (line 3). This can be achieved by using the Bellman - Ford algorithm with 182 two tweaks. The first is to iterate the graph G in order to find only paths with length of at most m183 edges. The second is to find the lightest bottleneck as opposed to the traditional objective of finding 184 the shortest path. This is performed by modifying the manner of "relaxation" to bottleneck(x) =185 min[max(bottleneck(v), w(e))], done also in [10, 18]. Consequently, we find the lightest maximal 186 edge in a path of length $\leq m$, which represents the minimal error, $\varepsilon(X,S)$, defined in Definition 4 187 where the nodes in path l represent the elements in set S. The approximated random variable X'188 is then derived from the resulting path l (lines 4-5). Every node $x \in l$ represent a value in the new 189 calculated random variable X', we than iterate the path l to find the probability of the event $f_{X'}(x)$ 190 as described in Definition 6. 191

Algorithm 1: KolmogorovApprox(X, m)

Theorem 10. KolmogorovApprox(X, m) is an m-optimal-approximation of X.

```
193 Proof. If we consider the vertexes S=l\setminus \{-\infty,\infty\} for a path l\in paths(G,-\infty,\infty) we have that \max\{w(e)\colon e\in l\}=\varepsilon(X,S). Therefore, line 3 of the algorithm essentially computes a set 195 S\in \operatorname{argmin}_{S\subseteq \operatorname{support}(X),|S|\le m}\varepsilon(X,S). By Corollary 9, the variable X' constructed in lines 4 and 196 5 satisfies d_K(X,X')=\varepsilon(X,S) and by the minimality of S and by Proposition 5, it is an optimal approximation.
```

Theorem 11. The KolmogorovApprox(X, m) algorithm runs in time $O(mn^2)$, using $O(n^2)$ mem-199 ory where $n = |\operatorname{support}(X)|$.

```
200 Proof. Constructing the graph G takes O(n^2). The number of edges is O(E) \approx O(n^2) and for every edge the weight is at most the sum of all probabilities between the source node -\infty and the target node \infty, which can be done efficiently by aggregating the weights of already calculated edges. The construction is also the only stage that requires memory allocation, specifically O(E+V) = O(n^2). Finding the shortest path takes O(m(E+V)) \approx O(mn^2).
```

205 [[GW: put a reference to the work of the fellows from the Technion to avoid some of this?]]

Since G is DAG (directed acyclic graph) finding a shortest path takes O(E+V). We only need to find paths of length $\leq m$, which takes O(m(E+V)). Deriving the new random variable X' from the computed path l takes O(m). For every node x_i in l (at most m nodes), use the already calculated weights to find the probability mass function $f_{X'}(x_i)$. To conclude, the worst case runtime complexity is $O(n^2+mn^2+m)=O(mn^2)$ and memory complexity is $O(E+V)=O(n^2)$.

4 A case study and experimental results

The case study examined in our experiments is the problem of task trees with deadlines [5, 4]. 213 Hierarchical planning is a well-established field in AI [6, 7, 8], and is still relevant nowadays [1, 214 20]. A hierarchical plan is a method for representing problems of automated planning in which 215 the dependency among tasks can be given in the form of networks, here we focus on hierarchical 216 plans represented by task trees. The leaves in a task tree are *primitive* actions (or tasks), and the 217 internal nodes are either sequence or parallel actions. The plans we deal with are of stochastic 218 nature, and the task duration is described as probability distributions in the leaf nodes. We assume 219 that the distributions are independent but not necessarily identically distributed and that the random 220 variables are discrete and have a finite support. 221

A sequence node denotes a series of tasks that should be performed consecutively, whereas a parallel 222 node denotes a set of tasks that begin at the same time. A valid plan is one that is fulfilled before 223 some given deadline, i.e., its makespan is less than or equal to the deadline. The objective in this 224 context is to compute the probability that a given plan is valid, or more formally computing P(X <225 T), where X is a random variable representing the makespan of the plan and T is the deadline. The 226 problem of finding the probability that a task tree satisfies a deadline is known to be NP-hard. In 227 fact, even the problem of summing a set of random variables is NP-hard [13]. This is an example of 228 an explicitly given random variable that we need to estimate deadline meeting probabilities for. 229

The first experiment we focus on is the problem of task trees with deadlines, and consider three 230 types of task trees. The first type includes logistic problems of transporting packages by trucks and 231 airplanes (from IPC2 http://ipc.icaps-conference.org/). Hierarchical plans of those logistic problems 232 were generated by the JSHOP2 planner [14], one parallel node with all descendant task nodes being 233 in sequence. The second type consists of task trees used as execution plans for the ROBIL team 234 entry in the DARPA robotics challenge (DRC simulation phase), and the third type is of linear plans 235 (sequential task trees). The primitive tasks in all the trees are modeled as discrete random variables 236 with support of size M obtained by discretization of uniform distributions over various intervals. 237 The number of tasks in a tree is denoted by N. 238

We implemented the approximation algorithm for solving the deadline problem with four different 239 methods of approximation. The first two are for achieving a one-sided Kolmogorov approxima-240 tion – the OptTrim [4] and the Trim [5] operators, and the third is a simple sampling scheme. 241 We used those methods as a comparison to the Kolmogorov approximation with the suggested 242 KolmogorovApprox algorithm. The parameter m of OptTrim and KolmogorovApprox corre-243 sponds to the inverse of ε given to the Trim operator. Note that in order to obtain some error ε , one 244 must take into consideration the size of the task tree N, therefore, $m/N = 1/(\varepsilon \cdot N)$. We ran also an exact computation as a reference to the approximated one in order to calculate the error. The exper-246 iments conducted with the following operators and their parameters: KolmogorovApprox operator 247 with $m=10 \cdot N$, the OptTrim operator with $m=10 \cdot N$, the Trim as operator with $\varepsilon=0.1/N$, 248 and two simple simulations, with a different samples number $s = 10^4$ and $s = 10^6$. 249

Table 1 shows the results of the case study experiment. The quality of the solutions provided by using the KolmogorovApprox operator are better than those provided by the Trim and OptTrim operators, following the optimality guarantees, but is interesting to see that the quality gaps happen in practice in each of the examined task trees. However, in some of the task trees the sampling method produced better results than the approximation algorithm with KolmogorovApprox. Nevertheless, the approximation algorithm comes with an inherent advantage of providing an exact quality guarantees, as opposed to the probabilistic guarantees provided by sampling.

Task Tree	M	KolmogorovApprox	OptTrim	Trim	Sampling	
		m/N=10	m/N=10	$\varepsilon \cdot N = 0.1$	$s=10^4$	$s=10^{6}$
Logistics $(N = 34)$	2	0	0	0.0019	0.007	0.0009
	4	0.0024	0.0046	0.0068	0.0057	0.0005
Logistics (N=45)	2	0.0002	0.0005	0.002	0.015	0.001
	4	0	0.003	0.004	0.008	0.0006
DRC-Drive (N=47)	2	0.0014	0.004	0.009	0.0072	0.0009
	4	0.001	0.008	0.019	0.0075	0.0011
Sequential (N=10)	2	0.0093	0.015	0.024	0.0063	0.0008
	4	0.008	0.024	0.04	0.008	0.0016

Table 1: Comparison of estimated errors with respect to the reference exact computation on various task trees.

In order to better understand the quality gaps in practice between KolmogorovApprox, OptTrim, and Trim, we investigate their relative errors when applied on single random variables with support size n=100, and different support sizes of the resulting random variable approximation (m). In each instance of this experiment, a random variable is randomly generated by choosing the probabilities of each element in the support uniformly and then normalizing these probabilities so that they sum to 1.

Figure ?? present the error produced by the above methods. The depicted results are averages over several instances (50 instances) of random variables. The curves in the figure show the average error of OptTrim and Trim operators with comparison to the average error of the optimal approximation provided by KolmogorovApprox as a function of m. According to the depicted results it is evident that increasing the support size of the approximation m reduces the error, as expected, in all three methods. However, errors produced by the KolmogorovApprox are significantly smaller, a half of the error produced by OptTrim and Trim.

We also examined how our algorithm compares to linear programing as described and discussed, for 270 example, in [15]. We ran an experiment to compare the run-time between the KolmogorovApprox 271 algorithm with the run-time of a state-of-art implementation of linear programing. We used the 272 "Minimize" function of Wolfram Mathematica and fed it with the equations $\min_{\alpha \in \mathbb{R}^n} \|x - \alpha\|_{\infty}$ 273 subject to $\|\alpha\|_0 \le m$ and $\|\alpha\|_1 = 1$. The run-time comparison results were clear and persuasive, 274 for a random variable with support size n=10 and m=5, the LP algorithm run-time was 850 275 seconds, where the KolmogorovApprox algorithm run-time was less than a tenth of a second. For 276 n=100 and m=5, the KolmogorovApprox algorithm run-time was 0.14 seconds and the LP 277 algorithm took more than a day. Due to these timing results of the LP algorithm we did not proceed 278 to examine it any further. Since it is not trivial to formally analyze the run-time of the LP algorithm, 279 we conclude by the reported experiment that in this case the LP algorithm might not be as efficient 280 as Kolmogorov Approx algorithm whose complexity is proven to be polynomial in Theorem 11. 281

282 5 Discussion

283 References

263

264

265

266

267

268

269

- [1] R. Alford, V. Shivashankar, M. Roberts, J. Frank, and D. W. Aha. Hierarchical planning: Relating task and goal decomposition with task sharing. In *IJCAI*, pages 3022–3029, 2016.
- ²⁸⁶ [2] C. Bolton et al. *Logistic regression and its application in credit scoring*. PhD thesis, Citeseer, 2010.

- 288 [3] A. Chakravarty, J. Orlin, and U. Rothblum. A partitioning problem with additive objective with an application to optimal inventory groupings for joint replenishment. *Operations Research*, 30(5):1018–1022, 1982.
- [4] L. Cohen, T. Grinshpoun, and G. Weiss. Optimal approximation of random variables for
 estimating the probability of meeting a plan deadline. In *Proceedings of the Thirty-Second* AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018,
 2018.
- [5] L. Cohen, S. E. Shimony, and G. Weiss. Estimating the probability of meeting a deadline in hierarchical plans. In *IJCAI*, pages 1551–1557, 2015.
- [6] T. Dean, R. J. Firby, and D. Miller. Hierarchical planning involving deadlines, travel time, and resources. *Computational Intelligence*, 4(3):381–398, 1988.
- [7] K. Erol, J. Hendler, and D. S. Nau. HTN planning: Complexity and expressivity. In *AAAI*, volume 94, pages 1123–1128, 1994.
- [8] K. Erol, J. Hendler, and D. S. Nau. Complexity results for HTN planning. *Annals of Mathematics and Artificial Intelligence*, 18(1):69–93, 1996.
- [9] J. D. Gibbons and S. Chakraborti. Nonparametric statistical inference. In *International ency*clopedia of statistical science, pages 977–979. Springer, 2011.
- 305 [10] R. Guérin and A. Orda. Computing shortest paths for any number of hops. *IEEE/ACM Trans- actions on Networking (TON)*, 10(5):613–620, 2002.
- [11] E. Mays. Handbook of credit scoring. Global Professional Publishi, 2001.
- [12] A. C. Miller and T. R. Rice. Discrete approximations of probability distributions. *Management Science*, 29(3):352–362, 1983.
- [13] R. Möhring. Scheduling under uncertainty: Bounding the makespan distribution. *Computational Discrete Mathematics*, pages 79–97, 2001.
- ³¹² [14] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman. SHOP2: An HTN planning system. *Journal of Artificial Intelligence Research*, 20:379–404, 2003.
- 114 [15] K. Pavlikov and S. Uryasev. CVaR distance between univariate probability distributions and approximation problems. Technical Report 2015-6, University of Florida, 2016.
- [16] A. N. Pettitt and M. A. Stephens. The kolmogorov-smirnov goodness-of-fit statistic with discrete and grouped data. *Technometrics*, 19(2):205–210, 1977.
- 318 [17] M. Refaat. Credit Risk Scorecard: Development and Implementation Using SAS. Lulu. com, 2011.
- [18] E. Shufan, H. Ilani, and T. Grinshpoun. A two-campus transport problem. In *MISTA*, pages 173–184, 2011.
- 122 [19] N. Siddiqi. *Credit risk scorecards: developing and implementing intelligent credit scoring*, volume 3. John Wiley & Sons, 2012.
- [20] Z. Xiao, A. Herzig, L. Perrussel, H. Wan, and X. Su. Hierarchical task network planning with task insertion and state constraints. In *IJCAI*, pages 4463–4469, 2017.

[21] G. Zeng. A comparison study of computational methods of kolmogorov–smirnov statistic in
 credit scoring. Communications in Statistics-Simulation and Computation, 46(10):7744–7760,
 2017.