Конверсия заряда в тепло в нанопроводе с наведенной сверхпроводимостью

Вперемежку на русском и английском

В.С. Храпай (кафедра ИФТТ РАН, Черноголовка)

Почитать:

В.В. Шмидт "Введение в физику сверхпроводников"

A.O. Denisov et al., arXiv:2006.09803; A.O. Denisov et al., arXiv:2101.02128

Сверхпроводник и распределение Ферми-Дирака

Вадим Храпай

научпоп в МФТИ, Май 11 2021

Квазичастицы и щель в сверхпроводнике

в сверхпроводнике

в нормальном металле

В сверхпроводнике существуют две взаимосвязанные электронные системы – куперовский (бозе-)конденсат и фермиевские квазичастицы. Создание квазичастицы требует пороговой энергии (щель), а ее заряд является дробной величиной

N|S интерфейс: Андреевское отражение

Подщелевая квазичастица отражается от сверхпроводника.

При этом ее заряд меняет знак, а энергия сохраняется

Sub-gap quasiparticles \equiv those with energy $|\epsilon| < \Delta$

Ретро характер Андреевского отражения

Импульс куперовской пары, уходящей в сверхпроводник, равен нулю.

Значит, траектория отраженной дырки полностью повторяет траекторию электрона.

Но это верно только если $\mathbf{k} = \mathbf{k}_{\mathbf{F}}$. В противном случае, траектории чуть расходятся.

О чем остаток этой лекции?

Легко сообразить, что тип квазичастицы сохраняется, если мы имеем дело с баллистическими траекториями. А что если в дело вступает диффузия?

О чем остаток этой лекции?

Topological transition in 1D Majorana wires

T. Laeven et al., PRL (2020)

Why else study thermal transport in SC hybrids?

Neutral modes in graphene SNS

Titov et al., PRL 2007

Re-entrant localization in Andreev wires

Kopnin et al., PRB 2004

Menard et al., PRL 2020; Puglia et al., arXiv 2020

Образцы

Main result: charge-heat separation in open nanowire devices

Open device, unlike those used for Cooper-pair splitting

Hofstetter et al., Nature 2009

Figure from Das et al., Nat. Comm 2012

Almost perfect charge-heat separation

Tiny average charge of quasiparticles traversing the super-region $q \le e$

Should I measure charge or heat?

Вадим Храпай

научпоп в МФТИ, Май 11 2021

Transmission probabilities and nonlocal response

charge:
$$I_2 = \frac{T_{21} - A_{21}}{h} \int e \left[f_1(E) - f_2(E) \right] dE = -\frac{e^2}{h} V_1 \sum \mathcal{T}_-$$

heat:
$$J_2 = \frac{T_{21} + A_{21}}{h} \int |E| [f_1(E) - f_2(E)] dE = \frac{e^2}{2h} V_1^2 \sum \mathcal{T}_+$$

Don't choose - measure both!

«I hate heat. Can I measure smth else?» - Yes, noise!

Вадим Храпай

научпоп в МФТИ, Май 11 2021

Nonlocal vs local conductance

Configuration

small non-diagonal elements

$$\widehat{G} = \begin{pmatrix} \frac{\partial I_1}{\partial V_1} & \frac{\partial I_1}{\partial V_2} \\ \frac{\partial I_2}{\partial V_1} & \frac{\partial I_2}{\partial V_2} \end{pmatrix} \quad \widehat{R} = \begin{pmatrix} \frac{\partial V_1}{\partial I_1} & \frac{\partial V_1}{\partial I_2} \\ \frac{\partial V_2}{\partial I_1} & \frac{\partial V_2}{\partial I_2} \end{pmatrix}$$

$$G_{21} \approx -R_{21} \left(R_{11} R_{22} \right)^{-1}$$

Main features: $|G_{21}| \ll G_{11}$, G_{22} ; G_{21} largest in gap, changes sign;

$$\left| \sum \mathcal{T}_{-} \right| \lesssim 0.1 \Longrightarrow T_{21} \text{ competes with } A_{21}$$

Nonlocal shot noise, thermal conductance

What else charge and noise data tell us?

Nonlocal Fano factor, vanishing quasiparticle charge

 I_2 Counts transmitted charge I_2 I_3 I_4 counts all quasiparticles time

Average charge of a quasiparticle:

$$\frac{\langle q_{\rm T} \rangle}{e} = \frac{\sum \mathcal{T}_{-}}{\sum \mathcal{T}_{+}}$$

$$F_{\rm nl} \equiv \frac{dS_2}{|2edI_2|} = \frac{\sum (\mathcal{T}_{+} - \mathcal{T}_{-}^2)}{|\sum \mathcal{T}_{-}|} \le \left| \frac{e}{\langle q_{\rm T} \rangle} \right|$$

Full charge restored in normal state

Summary

Quasiparticle response in NSN:

- Charge measurement not enough
- Noise measurement substitutes Heat
- Nonlocal response is charge-neutral

Thank you!

(where is my..) Group

Artem Denisov

@ Princeton

Anton Bubis @ Skoltech

Stas Piatrusha

@ Wuerzburg

Eugene Tikhonov

@ ISSP

InAs nanowires grown by MBE

@ WSI Garching (Germany)
group of Gregor Koblmueller

Nadezhda Titova @ MPSU

Хочешь заниматься фундаментальной наукой в молодом и дружном коллективе?

Мы выпускники ФОПФа, будет сложно!

Лаборатория электронной кинетики

ИФТТ РАН (г. Черноголовка) приглашает бакалавров и магистров для экспериментальной работы с графеном, топологическими изоляторами, наноструктурами и сверхпроводимостью.

- Международное сотрудничество
- Публикации в ведущих журналах
- Стипендия 40 тыс. рублей + участие в грантах РНФ

Зав. лаб. Храпай Вадим Сергеевич e-mail: dick@issp.ac.ru

