Indian Institute of Technology Jodhpur MAL1010, Quiz-4, 31 Jan'22

Time: 60Min Marks: 15

Name:		Roll No:
answer.	ng, identify which are the Riemann integrable	functions on $[0,1]$. Justify your
(a)	(1, if x is rational)	
	$f(x) := \begin{cases} 1, & if \ x \ is \ rational \\ 0, & if \ x \ is \ irrational \end{cases}$	
(b)	•	

 $f(x) := \begin{cases} 1, & if \ x \in \{\alpha_1, \alpha_2, \dots, \alpha_n\} \\ 0, & otherwise \end{cases}$

where $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ are fixed, but arbitrarily chosen numbers from [0, 1].

$$f(x) := \begin{cases} 0, & \text{if } x \text{ is irrational or } x = 0\\ & \sin qx, & \text{if } x = \frac{p}{q} \end{cases}$$

where p, q are positive and coprime integers.

Q.2. Let $f:[a,b]\to\mathbb{R}$ be a bounded and Riemann integrable function. Define for $x\in[a,b], F(x)=\int_a^x f(t)dt$. Which of the following statement(s) is ture? Justify your answers. (a) The function F is uniformly continuous.

(b) The function F is differentiable on (a, b).

[3]

[3]

Q.3. Evaluate $\lim_{n\to\infty} S_n$ by showing that S_n is an approximate Riemann sum for a suitable function over a suitable interval, where

$$S_n = \frac{1}{n^{16}} \left(1^{15} + 2^{15} + \dots + n^{15} \right).$$

[4]

Q.4. Consider the planar region D bounded by the curves $y = e^x$ and $y = \ln x$, and the vertical lines x = 1 and $x = e^2$.

(i) Find the area of D.

(ii) Find the volume of the solid generated by revolving the planar region D about the x- axis.

[5]