

# Parallels between Natural language and Proteins

### **NATURAL LANGUAGES**

Letters

Words

ı

Sentences

Meaning

### **PROTEINS**

Amino Acids

 $\downarrow$ 

**Domains** 

**Proteins** 

**Function** 

# Parallels between Natural language and Proteins

#### **NATURAL LANGUAGES**

Description of occupation

#### **PROTEINS**

Regulation of carbohydrate metabolism



### CAN NLP DO THIS?

## What is ProtGPT2

- Protein LLM
- Transformer decoder
- Using many common practices from NLP
  - Decoding strategies
  - Tokenisation



# Did they succeed

- Depends on your criteria?
  - No "unified" benchmark
  - No downstream tasks
  - BUT results are interesting



Table 1 | Disorder and secondary structure predictions of the natural and ProtGPT2 dataset

|                            | Natural dataset | ProtGPT2 dataset |
|----------------------------|-----------------|------------------|
| IUPred3 (globular domains) | 88.40%          | 87.59%           |
| Ordered content            | 79.71%          | 82.59%           |
| Alpha-helical content      | 45.19%          | 48.64%           |
| Beta-sheet content         | 41.87%          | 39.70%           |
| Coil content               | 12.93%          | 11.66%           |

(n = 10,000 independent sequences/dataset).



07/12/2023



07/12/2023



# What's the point

- Therapeutics development
  - Vaccines
  - Personalised medicine
- Structure and function prediction
- Genetic modification



## What's next?

- Different architectures
- Robust and standardised validation methods
- Development of real-world applications



Lyu et al. 2023

