Теория Вероятностей и Статистика Гипотезы о среднем, дисперсии и доле

Потанин Богдан Станиславович

старший преподаватель, кандидат экономических наук

2021-2022

Краткое повторение структуры параметрического теста

ullet Имеется выборка $X=(X_1,...,X_n)$ из некоторого распределения D_X с вектором параметров heta.

- ullet Имеется выборка $X=(X_1,...,X_n)$ из некоторого распределения D_X с вектором параметров heta.
- Формулируются нулевая и альтернативные гипотезы: $H_0: \theta \in \Theta_0$ и $H_1: \theta \in \Theta_1$, где $\Theta_0 \cap \Theta_1 = \emptyset$.

- ullet Имеется выборка $X=(X_1,...,X_n)$ из некоторого распределения D_X с вектором параметров heta.
- Формулируются нулевая и альтернативные гипотезы: $H_0: \theta \in \Theta_0$ и $H_1: \theta \in \Theta_1$, где $\Theta_0 \cap \Theta_1 = \emptyset$.
- Задается уровень значимости теста α (вероятность совершить ошибку первого рода) и подбирается тестовая статистика T(X), исходя из распределения которой (при условии верной нулевой гипотезы) задается критическая область \mathcal{T}_{α} , то есть $P(T(X) = \in \mathcal{T}_{\alpha} | H_0) = \alpha$.

- ullet Имеется выборка $X=(X_1,...,X_n)$ из некоторого распределения D_X с вектором параметров heta.
- Формулируются нулевая и альтернативные гипотезы: $H_0: \theta \in \Theta_0$ и $H_1: \theta \in \Theta_1$, где $\Theta_0 \cap \Theta_1 = \emptyset$.
- Задается уровень значимости теста α (вероятность совершить ошибку первого рода) и подбирается тестовая статистика T(X), исходя из распределения которой (при условии верной нулевой гипотезы) задается критическая область \mathcal{T}_{α} , то есть $P(T(X) = \in \mathcal{T}_{\alpha} | H_0) = \alpha$.
- Как правило критическая область \mathcal{T}_{α} подбирается таким образом, чтобы в нее входили экстремальные (наибольшие и наименьшие) реализации тестовой статистики.

- ullet Имеется выборка $X=(X_1,...,X_n)$ из некоторого распределения D_X с вектором параметров heta.
- Формулируются нулевая и альтернативные гипотезы: $H_0: \theta \in \Theta_0$ и $H_1: \theta \in \Theta_1$, где $\Theta_0 \cap \Theta_1 = \emptyset$.
- Задается уровень значимости теста α (вероятность совершить ошибку первого рода) и подбирается тестовая статистика T(X), исходя из распределения которой (при условии верной нулевой гипотезы) задается критическая область \mathcal{T}_{α} , то есть $P(T(X) = \in \mathcal{T}_{\alpha} | H_0) = \alpha$.
- Как правило критическая область \mathcal{T}_{α} подбирается таким образом, чтобы в нее входили экстремальные (наибольшие и наименьшие) реализации тестовой статистики.
- Например, если по выборке из нормального распределения тестируется гипотеза $H_0: \mu = \mu_0$ с помощью статистики $T(X) = \overline{X}_n$, то интуиция подсказывает целесообразность отклонения нулевой гипотезы когда выборочное среднее \overline{X}_n окажется намного больше или намного меньше предполагаемого математического ожидания μ_0 .

- ullet Имеется выборка $X=(X_1,...,X_n)$ из некоторого распределения D_X с вектором параметров heta.
- Формулируются нулевая и альтернативные гипотезы: $H_0: \theta \in \Theta_0$ и $H_1: \theta \in \Theta_1$, где $\Theta_0 \cap \Theta_1 = \emptyset$.
- Задается уровень значимости теста α (вероятность совершить ошибку первого рода) и подбирается тестовая статистика T(X), исходя из распределения которой (при условии верной нулевой гипотезы) задается критическая область \mathcal{T}_{α} , то есть $P(T(X) = \in \mathcal{T}_{\alpha} | H_0) = \alpha$.
- Как правило критическая область \mathcal{T}_{α} подбирается таким образом, чтобы в нее входили экстремальные (наибольшие и наименьшие) реализации тестовой статистики.
- Например, если по выборке из нормального распределения тестируется гипотеза $H_0: \mu = \mu_0$ с помощью статистики $T(X) = \overline{X}_n$, то интуиция подсказывает целесообразность отклонения нулевой гипотезы когда выборочное среднее \overline{X}_n окажется намного больше или намного меньше предполагаемого математического ожидания μ_0 .
- Если мы, например, тестируем гипотезу о математическом ожидании зарплаты случайно взятого индивида, то нулевая гипотеза будет отклоняться, если наблюдаемая по результатам опроса средняя зарплата намного больше или меньше предполагаемой.

Левосторонняя, двухсторонняя, и правосторонняя критические области

• Обозначим через c_q квантиль уровня q тестовой статистики при условии верной нулевой гипотезы, то есть $T(X)|H_0$.

- Обозначим через c_q квантиль уровня q тестовой статистики при условии верной нулевой гипотезы, то есть $T(X)|H_0$.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) < c_{\alpha}$, то критическая область $\mathcal{T}_{\alpha} = (-\infty, c_{\alpha})$ именуется **левосторонней**.

- Обозначим через c_q квантиль уровня q тестовой статистики при условии верной нулевой гипотезы, то есть $T(X)|H_0$.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) < c_{\alpha}$, то критическая область $\mathcal{T}_{\alpha} = (-\infty, c_{\alpha})$ именуется **левосторонней**.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) > c_{1-\alpha}$, то критическая область $\mathcal{T}_{\alpha} = (c_{1-\alpha}, \infty,)$ именуется **правосторонней**.

- Обозначим через c_q квантиль уровня q тестовой статистики при условии верной нулевой гипотезы, то есть $T(X)|H_0$.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) < c_{\alpha}$, то критическая область $\mathcal{T}_{\alpha} = (-\infty, c_{\alpha})$ именуется **левосторонней**.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) > c_{1-\alpha}$, то критическая область $\mathcal{T}_{\alpha} = (c_{1-\alpha}, \infty,)$ именуется **правосторонней**.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) < c_{\alpha/2}$ и $T(X) > c_{1-\alpha/2}$, то критическая область $\mathcal{T}_{\alpha} = \left(-\infty, c_{\alpha/2}\right) \cup \left(c_{1-\alpha/2}, \infty, \right)$ именуется двухсторонней.

Левосторонняя, двухсторонняя, и правосторонняя критические области

- Обозначим через c_q квантиль уровня q тестовой статистики при условии верной нулевой гипотезы, то есть $T(X)|H_0$.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) < c_{\alpha}$, то критическая область $\mathcal{T}_{\alpha} = (-\infty, c_{\alpha})$ именуется **левосторонней**.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) > c_{1-\alpha}$, то критическая область $\mathcal{T}_{\alpha} = (c_{1-\alpha}, \infty,)$ именуется **правосторонней**.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) < c_{\alpha/2}$ и $T(X) > c_{1-\alpha/2}$, то критическая область $\mathcal{T}_{\alpha} = \left(-\infty, c_{\alpha/2}\right) \cup \left(c_{1-\alpha/2}, \infty, \right)$ именуется двухсторонней.
- Для соответствующих критических областей довольно просто считать p-value:

Левосторонняя: p-value = $F_{T(X)|H_0}(T(x))$

- Обозначим через c_q квантиль уровня q тестовой статистики при условии верной нулевой гипотезы, то есть $T(X)|H_0$.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) < c_{\alpha}$, то критическая область $\mathcal{T}_{\alpha} = (-\infty, c_{\alpha})$ именуется **левосторонней**.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) > c_{1-\alpha}$, то критическая область $\mathcal{T}_{\alpha} = (c_{1-\alpha}, \infty,)$ именуется **правосторонней**.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) < c_{\alpha/2}$ и $T(X) > c_{1-\alpha/2}$, то критическая область $\mathcal{T}_{\alpha} = \left(-\infty, c_{\alpha/2}\right) \cup \left(c_{1-\alpha/2}, \infty, \right)$ именуется двухсторонней.
- Для соответствующих критических областей довольно просто считать p-value:

Левосторонняя: p-value
$$= F_{T(X)|H_0}(T(x))$$

Правосторонняя: p-value $= 1 - F_{T(X)|H_0}(T(x))$

- Обозначим через c_q квантиль уровня q тестовой статистики при условии верной нулевой гипотезы, то есть $T(X)|H_0$.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) < c_{\alpha}$, то критическая область $\mathcal{T}_{\alpha} = (-\infty, c_{\alpha})$ именуется **левосторонней**.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) > c_{1-\alpha}$, то критическая область $\mathcal{T}_{\alpha} = (c_{1-\alpha}, \infty,)$ именуется **правосторонней**.
- Если нулевая гипотеза отвергается на уровне значимости α при $T(X) < c_{\alpha/2}$ и $T(X) > c_{1-\alpha/2}$, то критическая область $\mathcal{T}_{\alpha} = \left(-\infty, c_{\alpha/2}\right) \cup \left(c_{1-\alpha/2}, \infty, \right)$ именуется двухсторонней.
- Для соответствующих критических областей довольно просто считать p-value:

Левосторонняя: p-value
$$=F_{T(X)|H_0}(T(x))$$
 Правосторонняя: p-value $=1-F_{T(X)|H_0}(T(x))$ Двухсторонняя: p-value $=2\min\left(F_{T(X)|H_0}(T(x)),1-F_{T(X)|H_0}(T(x))\right)$

Левосторонняя критическая область, графическая иллюстрация

Правосторонняя критическая область, графическая иллюстрация

Двухстороняя критическая область, графическая иллюстрация

Формулировка

• Имеется выборка $X = (X_1, ..., X_n)$ из нормального распределения $\mathcal{N}\left(\mu, \sigma^2\right)$ с неизвестными параметрами.

Формулировка

- Имеется выборка $X = (X_1, ..., X_n)$ из нормального распределения $\mathcal{N}\left(\mu, \sigma^2\right)$ с неизвестными параметрами.
- На уровне значимости α гипотезу $H_0: \mu = \mu_0$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_{α} :

$$T(X) = \frac{\overline{X}_n - \mu_0}{\sqrt{\hat{\sigma}_n^2/n}}, \qquad T(X)|H_0 \sim t(n-1)$$

Формулировка

- Имеется выборка $X = (X_1, ..., X_n)$ из нормального распределения $\mathcal{N}\left(\mu, \sigma^2\right)$ с неизвестными параметрами.
- На уровне значимости α гипотезу $H_0: \mu = \mu_0$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_{α} :

$$T(X) = \frac{\overline{X}_n - \mu_0}{\sqrt{\hat{\sigma}_n^2/n}}, \qquad T(X)|H_0 \sim t(n-1)$$

• Рассмотрим несколько типов альтернативных гипотез, через $t_{n-1,q}$ обозначая квантиль уровня q распределения t(n-1):

Тип	Левосторонняя	Двухсторонняя	Правосторонняя
Гипотеза	$H_1: \mu < \mu_0$	$H_1: \mu eq \mu_0$	$H_1: \mu > \mu_0$
\mathcal{T}_{lpha}	$(-\infty, -t_{n-1,1-\alpha})$	$\left(-\infty,-t_{n-1,1-\alpha/2}\right)\cup\left(t_{n-1,1-\alpha/2},\infty\right)$	$(t_{n-1,1-lpha},\infty)$
p-value	$F_{t(n-1)}(T(x))$	$2 \min \left(F_{t(n-1)}(T(x)), 1 - F_{t(n-1)}(T(x)) \right)$	$1 - F_{t(n-1)}(T(x))$

Температура случайно взятого напитка хорошо описывается нормальным распределением. Лаврентий выпил три напитка, температуры которых составили 5, 7 и 3 градусов. На 5%-м уровне значимости протестируем гипотезу о том, что математическое ожидание температуры случайно взятого напитка равняется 6-ти градусам, против альтернативы о том, что ожидаемая температура случайного напитка холоднее. Также, посчитаем p-value теста.

ullet Формализуем гипотезы: $H_0: \mu = 6$ и $H_1: \mu < 6$, где $X_1 \sim \mathcal{N}\left(\mu, \sigma^2\right)$.

- ullet Формализуем гипотезы: $H_0: \mu = 6$ и $H_1: \mu < 6$, где $X_1 \sim \mathcal{N}\left(\mu, \sigma^2\right)$.
- Поскольку речь идет о левосторонней критической области и $\alpha=0.05$, то необходимо рассмотреть квантиль $t_{3-1,0.95}=t_{2,0.95}\approx 2.92$, откуда получаем критическую область $\mathcal{T}_{0.05}=(-\infty,-2.92)$.

- ullet Формализуем гипотезы: $H_0: \mu = 6$ и $H_1: \mu < 6$, где $X_1 \sim \mathcal{N}\left(\mu, \sigma^2\right)$.
- Поскольку речь идет о левосторонней критической области и $\alpha=0.05$, то необходимо рассмотреть квантиль $t_{3-1,0.95}=t_{2,0.95}\approx 2.92$, откуда получаем критическую область $\mathcal{T}_{0.05}=(-\infty,-2.92)$.
- ullet Так как $\overline{x}_3=5$ и $\hat{\sigma}_3^2(x)=4$, то $T(x)=rac{(5-6)}{\sqrt{4/3}}pprox -0.866$.

- ullet Формализуем гипотезы: $H_0: \mu = 6$ и $H_1: \mu < 6$, где $X_1 \sim \mathcal{N}\left(\mu, \sigma^2\right)$.
- Поскольку речь идет о левосторонней критической области и $\alpha=0.05$, то необходимо рассмотреть квантиль $t_{3-1,0.95}=t_{2,0.95}\approx 2.92$, откуда получаем критическую область $\mathcal{T}_{0.05}=(-\infty,-2.92)$.
- Так как $\overline{x}_3 = 5$ и $\hat{\sigma}_3^2(x) = 4$, то $T(x) = \frac{(5-6)}{\sqrt{4/3}} \approx -0.866$.
- В силу того, что $-0.866 \notin (-\infty, -2.92)$, нулевая гипотеза не отвергается на 5%-м уровне значимости.

- ullet Формализуем гипотезы: $H_0: \mu = 6$ и $H_1: \mu < 6$, где $X_1 \sim \mathcal{N}\left(\mu, \sigma^2\right)$.
- Поскольку речь идет о левосторонней критической области и $\alpha=0.05$, то необходимо рассмотреть квантиль $t_{3-1,0.95}=t_{2,0.95}\approx 2.92$, откуда получаем критическую область $\mathcal{T}_{0.05}=(-\infty,-2.92)$.
- Так как $\overline{x}_3 = 5$ и $\hat{\sigma}_3^2(x) = 4$, то $T(x) = \frac{(5-6)}{\sqrt{4/3}} \approx -0.866$.
- В силу того, что $-0.866 \notin (-\infty, -2.92)$, нулевая гипотеза не отвергается на 5%-м уровне значимости.
- Наконец, p-value= $F_{t(2)}(-0.866)\approx 0.239$, а значит нулевая гипотеза (не) отвергается на любом уровне значимости, больше (меньше) 23.9%, например, на 30%-м (10%-м).

Формулировка

• Имеется выборка $X = (X_1, ..., X_n)$ из распределения с конечными математическим ожиданием μ и дисперсией σ^2 .

Формулировка

- Имеется выборка $X = (X_1, ..., X_n)$ из распределения с конечными математическим ожиданием μ и дисперсией σ^2 .
- При большом $n \geq 30$ на уровне значимости α гипотезу $H_0: \mu = \mu_0$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_{α} :

$$T(X) = \frac{\overline{X}_n - \mu_0}{\sqrt{\hat{\sigma}_n^2/n}}, \qquad T(X)|H_0 \stackrel{d}{\to} \mathcal{N}(0,1)$$

Формулировка

- Имеется выборка $X = (X_1, ..., X_n)$ из распределения с конечными математическим ожиданием μ и дисперсией σ^2 .
- При большом $n \ge 30$ на уровне значимости α гипотезу $H_0: \mu = \mu_0$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_{α} :

$$T(X) = rac{\overline{X}_n - \mu_0}{\sqrt{\hat{\sigma}_n^2/n}}, \qquad T(X)|H_0 \stackrel{d}{
ightarrow} \mathcal{N}\left(0,1
ight)$$

• Рассмотрим несколько типов альтернативных гипотез, через z_q обозначая квантиль уровня q стандартного нормального распределения:

Тип	Левосторонняя	Двухсторонняя	Правосторонняя
Гипотеза	$H_1: \mu < \mu_0$	$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$
\mathcal{T}_{lpha}	$(-\infty, -z_{1-\alpha})$	$\left(-\infty,-z_{1-\alpha/2}\right)\cup\left(z_{1-\alpha/2},\infty\right)$	(z_{1-lpha},∞)
p-value	$\Phi(T(x))$	$2 \min \left(\Phi(T(x)), 1 - \Phi(T(x)) \right)$	$1 - \Phi(T(x))$

Пример

Пример

Продолжительность сна ученого кота хорошо описывается экспоненциальным распределением. За месяц (30 дней) общая продолжительность сна ученого кота составила 300 часов, а реализация исправленной выборочной дисперсии – 50. На уровне значимости 10% протестируем гипотезу о том, что ожидаемая продолжительность сна ученого кота составляет 8 часов, против альтернативы о том, что в среднем он спит дольше.

ullet Формализуем гипотезы: $H_0: \mu = 8$ и $H_1: \mu > 8$, где $E(X_1) = \mu.$

Пример

- ullet Формализуем гипотезы: $H_0: \mu = 8$ и $H_1: \mu > 8$, где $E(X_1) = \mu$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантиль $z_{0.9}\approx 1.28$, откуда получаем критическую область $\mathcal{T}_{0.1}=(1.28,\infty)$.

Пример

- ullet Формализуем гипотезы: $H_0: \mu = 8$ и $H_1: \mu > 8$, где $E(X_1) = \mu$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантиль $z_{0.9}\approx 1.28$, откуда получаем критическую область $\mathcal{T}_{0.1}=(1.28,\infty)$.
- Так как $\overline{x}_{30}=300/30=10$ и $\hat{\sigma}_{30}^2(x)=50$, то $T(x)=\frac{(10-8)}{\sqrt{50/30}}\approx 1.55$.

Пример

- ullet Формализуем гипотезы: $H_0: \mu = 8$ и $H_1: \mu > 8$, где $E(X_1) = \mu$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантиль $z_{0.9}\approx 1.28$, откуда получаем критическую область $\mathcal{T}_{0.1}=(1.28,\infty)$.
- Так как $\overline{x}_{30}=300/30=10$ и $\hat{\sigma}_{30}^2(x)=50$, то $T(x)=\frac{(10-8)}{\sqrt{50/30}}\approx 1.55$.
- ullet В силу того, что $1.55 \in (1.28, \infty)$, нулевая гипотеза отвергается на 10%-м уровне значимости.

Пример

- ullet Формализуем гипотезы: $H_0: \mu = 8$ и $H_1: \mu > 8$, где $E(X_1) = \mu$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантиль $z_{0.9}\approx 1.28$, откуда получаем критическую область $\mathcal{T}_{0.1}=(1.28,\infty)$.
- Так как $\overline{x}_{30}=300/30=10$ и $\hat{\sigma}_{30}^2(x)=50$, то $T(x)=\frac{(10-8)}{\sqrt{50/30}}\approx 1.55$.
- ullet В силу того, что $1.55 \in (1.28, \infty)$, нулевая гипотеза отвергается на 10%-м уровне значимости.
- Наконец, p-value= $1-\Phi(1.55)\approx 0.06$, а значит нулевая гипотеза (не) отвергается на любом уровне значимости, больше (меньше) 6%, например, на 15%-м (5%-м).

Гипотеза о разнице математических ожиданий

Формулировка

• Имеются независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из распределений с конечными математическими ожиданиями μ_X , μ_Y и дисперсиями σ_X^2 , σ_Y^2 .

Формулировка

- Имеются независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из распределений с конечными математическими ожиданиями μ_X , μ_Y и дисперсиями σ_X^2 , σ_Y^2 .
- При больших $n \geq 30$ и $m \geq 30$ на уровне значимости α гипотезу $H_0: \mu_X = \mu_Y$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_α :

$$T(X) = rac{\overline{X}_n - \overline{Y}_m}{\sqrt{\hat{\sigma}_X^2/n + \hat{\sigma}_Y^2/m}}, \qquad T(X)|H_0 \xrightarrow{d} \mathcal{N}(0,1)$$

Формулировка

- Имеются независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из распределений с конечными математическими ожиданиями μ_X , μ_Y и дисперсиями σ_X^2 , σ_Y^2 .
- При больших $n \geq 30$ и $m \geq 30$ на уровне значимости α гипотезу $H_0: \mu_X = \mu_Y$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_α :

$$T(X) = rac{\overline{X}_n - \overline{Y}_m}{\sqrt{\hat{\sigma}_X^2/n + \hat{\sigma}_Y^2/m}}, \qquad T(X)|H_0 \stackrel{d}{
ightarrow} \mathcal{N}(0,1)$$

• Рассмотрим несколько типов альтернативных гипотез, через z_q обозначая квантиль уровня q стандартного нормального распределения:

Тип	Левосторонняя	Двухсторонняя	Правосторонняя
Гипотеза	$H_1: \mu_X < \mu_Y$	$H_1: \mu_X \neq \mu_Y$	$H_1: \mu_X > \mu_Y$
\mathcal{T}_{lpha}	$(-\infty, -z_{1-\alpha})$	$\left(-\infty,-z_{1-\alpha/2}\right)\cup\left(z_{1-\alpha/2},\infty\right)$	(z_{1-lpha},∞)
p-value	$\Phi(T(x))$	$2 \min \left(\Phi(T(x)), 1 - \Phi(T(x)) \right)$	$1 - \Phi(T(x))$

Пример

На программе обучаются 100 студентов. Средняя оценка по статистике оказалась равна 5, а по эконометрике – 6. Реализации исправленных выборочных дисперсий оценок за эти курсы оказались равны 9 и 7 соответственно. На уровне значимости 1% проверим гипотезу о равенстве ожидаемых оценок за рассматриваемые курсы против альтернативы о том, что соответствующие математические ожидания не равны. Также, рассчитаем p-value.

Пример

На программе обучаются 100 студентов. Средняя оценка по статистике оказалась равна 5, а по эконометрике -6. Реализации исправленных выборочных дисперсий оценок за эти курсы оказались равны 9 и 7 соответственно. На уровне значимости 1% проверим гипотезу о равенстве ожидаемых оценок за рассматриваемые курсы против альтернативы о том, что соответствующие математические ожидания не равны. Также, рассчитаем p-value.

ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X
eq \mu_Y$, где $E(X_1) = \mu_X$ и $E(Y_1) = \mu_Y$.

Пример

На программе обучаются 100 студентов. Средняя оценка по статистике оказалась равна 5, а по эконометрике -6. Реализации исправленных выборочных дисперсий оценок за эти курсы оказались равны 9 и 7 соответственно. На уровне значимости 1% проверим гипотезу о равенстве ожидаемых оценок за рассматриваемые курсы против альтернативы о том, что соответствующие математические ожидания не равны. Также, рассчитаем p-value.

- ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X \neq \mu_Y$, где $E(X_1) = \mu_X$ и $E(Y_1) = \mu_Y$.
- Поскольку речь идет о двухсторонней критической области и $\alpha=0.01$, то необходимо рассмотреть квантиль $z_{0.995}\approx 2.58$, откуда получаем критическую область $\mathcal{T}_{0.99}=(-\infty,-2.58)\cup(2.58,\infty)$.

Пример

На программе обучаются 100 студентов. Средняя оценка по статистике оказалась равна 5, а по эконометрике -6. Реализации исправленных выборочных дисперсий оценок за эти курсы оказались равны 9 и 7 соответственно. На уровне значимости 1% проверим гипотезу о равенстве ожидаемых оценок за рассматриваемые курсы против альтернативы о том, что соответствующие математические ожидания не равны. Также, рассчитаем p-value.

- ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X \neq \mu_Y$, где $E(X_1) = \mu_X$ и $E(Y_1) = \mu_Y$.
- Поскольку речь идет о двухсторонней критической области и $\alpha=0.01$, то необходимо рассмотреть квантиль $z_{0.995}\approx 2.58$, откуда получаем критическую область $\mathcal{T}_{0.99}=(-\infty,-2.58)\cup(2.58,\infty)$.
- Так как n=m=100, $\overline{x}_{100}=5$, $\overline{y}_{100}=6$, $\hat{\sigma}_X^2(x)=9$ и $\hat{\sigma}_Y^2(y)=7$, то $T(x)=\frac{(5-6)}{\sqrt{9/100+7/100}}=-2.5$.

Пример

На программе обучаются 100 студентов. Средняя оценка по статистике оказалась равна 5, а по эконометрике -6. Реализации исправленных выборочных дисперсий оценок за эти курсы оказались равны 9 и 7 соответственно. На уровне значимости 1% проверим гипотезу о равенстве ожидаемых оценок за рассматриваемые курсы против альтернативы о том, что соответствующие математические ожидания не равны. Также, рассчитаем p-value.

- ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X \neq \mu_Y$, где $E(X_1) = \mu_X$ и $E(Y_1) = \mu_Y$.
- Поскольку речь идет о двухсторонней критической области и $\alpha=0.01$, то необходимо рассмотреть квантиль $z_{0.995}\approx 2.58$, откуда получаем критическую область $\mathcal{T}_{0.99}=(-\infty,-2.58)\cup(2.58,\infty)$.
- Так как n=m=100, $\overline{x}_{100}=5$, $\overline{y}_{100}=6$, $\hat{\sigma}_X^2(x)=9$ и $\hat{\sigma}_Y^2(y)=7$, то $T(x)=\frac{(5-6)}{\sqrt{9/100+7/100}}=-2.5$.
- ullet В силу того, что $-2.5
 otin (-\infty, -2.58)$, нулевая гипотеза не отвергается на 1%-м уровне значимости.

Пример

На программе обучаются 100 студентов. Средняя оценка по статистике оказалась равна 5, а по эконометрике -6. Реализации исправленных выборочных дисперсий оценок за эти курсы оказались равны 9 и 7 соответственно. На уровне значимости 1% проверим гипотезу о равенстве ожидаемых оценок за рассматриваемые курсы против альтернативы о том, что соответствующие математические ожидания не равны. Также, рассчитаем p-value.

- ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X
 eq \mu_Y$, где $E(X_1) = \mu_X$ и $E(Y_1) = \mu_Y$.
- Поскольку речь идет о двухсторонней критической области и $\alpha = 0.01$, то необходимо рассмотреть квантиль $z_{0.995} \approx 2.58$, откуда получаем критическую область $\mathcal{T}_{0.99} = (-\infty, -2.58) \cup (2.58, \infty)$.
- Так как n=m=100, $\overline{x}_{100}=5$, $\overline{y}_{100}=6$, $\hat{\sigma}_X^2(x)=9$ и $\hat{\sigma}_Y^2(y)=7$, то $T(x)=\frac{(5-6)}{\sqrt{9/100+7/100}}=-2.5$.
- ullet В силу того, что $-2.5
 otin (-\infty, -2.58)$, нулевая гипотеза не отвергается на 1%-м уровне значимости.
- Наконец, рассчитаем p-value:

p-value =
$$2 \min (\Phi(-2.5), 1 - \Phi(-2.5)) \approx 2 \min (0.0062, 0.9938) = 2 \times 0.0062 = 0.0124$$

Поскольку p-value= 0.0124, то нулевая гипотеза (не) отвергается на любом уровне значимости, больше (меньше) 1.24%, например, на 5%-м (1%-м).

Формулировка

ullet Имеется выборка $X=(X_1,...,X_n)$ из распределения Бернулли с параметром $p\in(0,1).$

Формулировка

- ullet Имеется выборка $X=(X_1,...,X_n)$ из распределения Бернулли с параметром $p\in (0,1).$
- При $n \geq 30$ на уровне значимости α гипотезу $H_0: p = p_0$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_{α} :

$$T(X) = \frac{\overline{X}_n - p_0}{\sqrt{p_0 (1 - p_0)/n}}, \qquad T(X)|H_0 \stackrel{d}{\rightarrow} \mathcal{N}(0, 1)$$

Формулировка

- ullet Имеется выборка $X=(X_1,...,X_n)$ из распределения Бернулли с параметром $p\in(0,1).$
- При $n \geq 30$ на уровне значимости α гипотезу $H_0: p = p_0$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_{α} :

$$T(X) = \frac{\overline{X}_n - p_0}{\sqrt{p_0 (1 - p_0)/n}}, \qquad T(X)|H_0 \stackrel{d}{\rightarrow} \mathcal{N}(0, 1)$$

• Рассмотрим несколько типов альтернативных гипотез, через z_q обозначая квантиль уровня q стандартного нормального распределения:

Тип	Левосторонняя	Двухсторонняя	Правосторонняя
Гипотеза	$H_1: p < p_0$	$H_1: p \neq p_0$	$H_1: p > p_0$
$\overline{\mathcal{T}_{lpha}}$	$(-\infty, -z_{1-\alpha})$	$\left(-\infty,-z_{1-\alpha/2}\right)\cup\left(z_{1-\alpha/2},\infty\right)$	(z_{1-lpha},∞)
p-value	$\Phi(T(x))$	$2\min\left(\Phi(T(x)),1-\Phi(T(x))\right)$	$1-\Phi(T(x))$

Пример

Пример

Из 100 заказов курьеры доставили вовремя 60. На уровне значимости 20% протестируйте гипотезу о том, что курьеры вовремя доставляют заказ в половине случаев, против альтернативы о том, что заказы приходят вовремя чаще. Также, вычислите p-value теста.

ullet Формализуем гипотезы: $H_0: p=0.5$ и $H_1: p>0.5$, где $X_1\sim Ber(p)$.

Пример

- ullet Формализуем гипотезы: $H_0: p=0.5$ и $H_1: p>0.5$, где $X_1\sim Ber(p)$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.2$, то необходимо рассмотреть квантиль $z_{0.8}\approx 0.84$, откуда получаем критическую область $\mathcal{T}_{0.2}=(0.84,\infty)$.

Пример

- ullet Формализуем гипотезы: $H_0: p=0.5$ и $H_1: p>0.5$, где $X_1\sim Ber(p)$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.2$, то необходимо рассмотреть квантиль $z_{0.8}\approx 0.84$, откуда получаем критическую область $\mathcal{T}_{0.2}=(0.84,\infty)$.
- Так как $\overline{x}_{100}=60/100=0.6$ то $T(x)=\frac{(0.6-0.5)}{\sqrt{0.5(1-0.5)/100}}=2.$

Пример

- ullet Формализуем гипотезы: $H_0: p=0.5$ и $H_1: p>0.5$, где $X_1\sim Ber(p)$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.2$, то необходимо рассмотреть квантиль $z_{0.8}\approx 0.84$, откуда получаем критическую область $\mathcal{T}_{0.2}=(0.84,\infty)$.
- Так как $\overline{x}_{100}=60/100=0.6$ то $T(x)=\frac{(0.6-0.5)}{\sqrt{0.5(1-0.5)/100}}=2.$
- ullet В силу того, что $2\in(0.84,\infty)$, нулевая гипотеза отвергается на 20%-м уровне значимости.

Пример

- ullet Формализуем гипотезы: $H_0: p=0.5$ и $H_1: p>0.5$, где $X_1\sim Ber(p)$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.2$, то необходимо рассмотреть квантиль $z_{0.8}\approx 0.84$, откуда получаем критическую область $\mathcal{T}_{0.2}=(0.84,\infty)$.
- Так как $\overline{x}_{100} = 60/100 = 0.6$ то $T(x) = \frac{(0.6-0.5)}{\sqrt{0.5(1-0.5)/100}} = 2$.
- ullet В силу того, что $2\in(0.84,\infty)$, нулевая гипотеза отвергается на 20%-м уровне значимости.
- Наконец, p-value= $1-\Phi(2)\approx 0.023$, а значит нулевая гипотеза (не) отвергается на любом уровне значимости, больше (меньше) 2.3%, например, на 25%-м (1%-м).

Формулировка

• Имеются независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из распределений Бернулли с параметрами $p_X,p_Y\in(0,1)$.

Формулировка

- Имеются независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из распределений Бернулли с параметрами $p_X,p_Y\in(0,1).$
- При $n \ge 30$ и $m \ge 30$ на уровне значимости α гипотезу $H_0: p_X = p_Y$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_{α} :

$$T(X) = \frac{\overline{X}_n - \overline{Y}_m}{\sqrt{Z_{n,m}(1 - Z_{n,m})(1/n + 1/m)}}, \qquad Z_{n,m} = \frac{\sum_{i=1}^n X_i + \sum_{j=1}^m Y_j}{n + m}, \qquad T(X)|H_0 \stackrel{d}{\to} \mathcal{N}(0, 1)$$

Формулировка

- Имеются независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из распределений Бернулли с параметрами $p_X,p_Y\in(0,1).$
- При $n \ge 30$ и $m \ge 30$ на уровне значимости α гипотезу $H_0: p_X = p_Y$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_{α} :

$$T(X) = \frac{\overline{X}_n - \overline{Y}_m}{\sqrt{Z_{n,m}(1 - Z_{n,m})(1/n + 1/m)}}, \qquad Z_{n,m} = \frac{\sum_{i=1}^n X_i + \sum_{j=1}^m Y_j}{n + m}, \qquad T(X)|H_0 \xrightarrow{d} \mathcal{N}(0, 1)$$

• Рассмотрим несколько типов альтернативных гипотез, через z_q обозначая квантиль уровня q стандартного нормального распределения:

Тип	Левосторонняя	Двухсторонняя	Правосторонняя
Гипотеза	$H_1: p_X < p_Y$	$H_1: p_X \neq p_Y$	$H_1: p_X > p_Y$
\mathcal{T}_{lpha}	$(-\infty, -z_{1-\alpha})$	$\left(-\infty,-z_{1-\alpha/2}\right)\cup\left(z_{1-\alpha/2},\infty\right)$	(z_{1-lpha},∞)
p-value	$\Phi(T(x))$	$2 \min \left(\Phi(T(x)), 1 - \Phi(T(x)) \right)$	$1-\Phi(T(x))$

Пример

Из 100 испытуемых, принявших плацебо, выздоровели 70, а из 225 получивших лекарство, поправились 180. На уровне значимости 5% протестируйте гипотезу о том, что лекарство не работает, против альтернативы о том, что оно помогает.

ullet Формализуем гипотезы: $H_0: p_X = p_Y$ и $H_1: p_X < p_Y$, где $X_1 \sim Ber(p_X)$ и $Y_1 \sim Ber(p_Y)$.

Пример

- ullet Формализуем гипотезы: $H_0: p_X = p_Y$ и $H_1: p_X < p_Y$, где $X_1 \sim Ber(p_X)$ и $Y_1 \sim Ber(p_Y)$.
- Поскольку речь идет о левосторонней критической области и $\alpha=0.05$, то необходимо рассмотреть квантиль $z_{0.95}\approx 1.65$, откуда получаем критическую область $\mathcal{T}_{0.05}=(-\infty,-1.65)$.

Пример

- ullet Формализуем гипотезы: $H_0: p_X = p_Y$ и $H_1: p_X < p_Y$, где $X_1 \sim Ber(p_X)$ и $Y_1 \sim Ber(p_Y)$.
- Поскольку речь идет о левосторонней критической области и $\alpha=0.05$, то необходимо рассмотреть квантиль $z_{0.95}\approx 1.65$, откуда получаем критическую область $\mathcal{T}_{0.05}=(-\infty,-1.65)$.
- Так как $\overline{x}_{100}=70/100=0.7$, $\overline{y}_{225}=180/225=0.8$ и $z_{100,225}=(70+180)/(100+225)\approx 0.77$, то $T(x)=\frac{(0.7-0.8)}{\sqrt{0.77(1-0.77)(1/100+1/225)}}\approx -1.98$.

Пример

- ullet Формализуем гипотезы: $H_0: p_X = p_Y$ и $H_1: p_X < p_Y$, где $X_1 \sim Ber(p_X)$ и $Y_1 \sim Ber(p_Y)$.
- Поскольку речь идет о левосторонней критической области и $\alpha=0.05$, то необходимо рассмотреть квантиль $z_{0.95}\approx 1.65$, откуда получаем критическую область $\mathcal{T}_{0.05}=(-\infty,-1.65)$.
- Так как $\overline{x}_{100}=70/100=0.7$, $\overline{y}_{225}=180/225=0.8$ и $z_{100,225}=(70+180)/(100+225)\approx 0.77$, то $T(x)=\frac{(0.7-0.8)}{\sqrt{0.77(1-0.77)(1/100+1/225)}}\approx -1.98$.
- ullet В силу того, что $-1.98 \in (-\infty, -1.65)$, нулевая гипотеза отвергается на 5%-м уровне значимости.

Пример

- ullet Формализуем гипотезы: $H_0: p_X = p_Y$ и $H_1: p_X < p_Y$, где $X_1 \sim Ber(p_X)$ и $Y_1 \sim Ber(p_Y)$.
- Поскольку речь идет о левосторонней критической области и $\alpha=0.05$, то необходимо рассмотреть квантиль $z_{0.95}\approx 1.65$, откуда получаем критическую область $\mathcal{T}_{0.05}=(-\infty,-1.65)$.
- Так как $\overline{x}_{100}=70/100=0.7$, $\overline{y}_{225}=180/225=0.8$ и $z_{100,225}=(70+180)/(100+225)\approx 0.77$, то $T(x)=\frac{(0.7-0.8)}{\sqrt{0.77(1-0.77)(1/100+1/225)}}\approx -1.98$.
- ullet В силу того, что $-1.98 \in (-\infty, -1.65)$, нулевая гипотеза отвергается на 5%-м уровне значимости.
- Наконец, p-value= $\Phi(-1.98) \approx 0.024$, а значит нулевая гипотеза на любом уровне значимости, больше (меньше) 2.4%, например, на 5%-м (1%-м).

Формулировка

• Имеется выборка $X = (X_1, ..., X_n)$ из нормального распределения $\mathcal{N}\left(\mu, \sigma^2\right)$ с неизвестными параметрами.

Формулировка

- Имеется выборка $X = (X_1, ..., X_n)$ из нормального распределения $\mathcal{N}\left(\mu, \sigma^2\right)$ с неизвестными параметрами.
- На уровне значимости α гипотезу $H_0: \sigma^2 = \sigma_0^2$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_{α} :

$$T(X) = \frac{(n-1)\hat{\sigma}_n^2}{\sigma_0^2}, \qquad T(X)|H_0 \sim \chi^2(n-1)$$

Формулировка

- Имеется выборка $X = (X_1, ..., X_n)$ из нормального распределения $\mathcal{N}\left(\mu, \sigma^2\right)$ с неизвестными параметрами.
- На уровне значимости α гипотезу $H_0: \sigma^2 = \sigma_0^2$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_{α} :

$$T(X) = \frac{(n-1)\hat{\sigma}_n^2}{\sigma_0^2}, \qquad T(X)|H_0 \sim \chi^2(n-1)$$

• Рассмотрим несколько типов альтернативных гипотез, через $\chi^2_{n-1,q}$ обозначая квантиль уровня q распределения $\chi^2(n-1)$:

Тип	Левосторонняя	Двухсторонняя	Правосторонняя
Гипотеза	$H_1: \sigma^2 < \sigma_0^2$	$H_1:\sigma^2 eq\sigma_0^2$	$H_1:\sigma^2>\sigma_0^2$
\mathcal{T}_{lpha}	$\left(0,\chi_{n-1,\alpha}^2\right)$	$\left(0,\chi^2_{n-1,lpha/2} ight)\cup\left(\chi^2_{n-1,1-lpha/2},\infty ight)$	$\left(\chi^2_{n-1,1-\alpha},\infty\right)$
p-value	$F_{\chi^2(n-1)}(T(x))$	$2\min\left(F_{\chi^{2}(n-1)}(T(x)), 1 - F_{\chi^{2}(n-1)}(T(x))\right)$	$1 - F_{\chi^2(n-1)}(T(x))$

Пример

Прибыль заправки хорошо описывается нормальным распределением. За три дня прибыли составили 1, 10 и 7 соответственно. На 10%-м уровне значимости протестируем гипотезу о том, что дисперсия прибыли равна 20 против альтернативы о том, что она не равняется данному значению.

Пример

Прибыль заправки хорошо описывается нормальным распределением. За три дня прибыли составили 1, 10 и 7 соответственно. На 10%-м уровне значимости протестируем гипотезу о том, что дисперсия прибыли равна 20 против альтернативы о том, что она не равняется данному значению.

ullet Формализуем гипотезы: $H_0: \sigma^2=$ 20 и $H_1: \sigma^2
eq 20$, где $X_1 \sim \mathcal{N}\left(\mu,\sigma^2\right)$.

Пример

Прибыль заправки хорошо описывается нормальным распределением. За три дня прибыли составили 1, 10 и 7 соответственно. На 10%-м уровне значимости протестируем гипотезу о том, что дисперсия прибыли равна 20 против альтернативы о том, что она не равняется данному значению.

- ullet Формализуем гипотезы: $H_0: \sigma^2=20$ и $H_1: \sigma^2
 eq 20$, где $X_1 \sim \mathcal{N}\left(\mu,\sigma^2\right)$.
- Поскольку речь идет о двухсторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантили $\chi^2_{2,0.05}\approx 0.103$ и $\chi^2_{2,0.95}\approx 5.99$, откуда получаем критическую область $\mathcal{T}_{0.9}=(0,0.103)\cup (5.99,\infty)$.

Пример

Прибыль заправки хорошо описывается нормальным распределением. За три дня прибыли составили 1, 10 и 7 соответственно. На 10%-м уровне значимости протестируем гипотезу о том, что дисперсия прибыли равна 20 против альтернативы о том, что она не равняется данному значению.

- ullet Формализуем гипотезы: $H_0:\sigma^2=$ 20 и $H_1:\sigma^2
 eq$ 20, где $X_1\sim\mathcal{N}\left(\mu,\sigma^2
 ight)$.
- Поскольку речь идет о двухсторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантили $\chi^2_{2,0.05}\approx 0.103$ и $\chi^2_{2,0.95}\approx 5.99$, откуда получаем критическую область $\mathcal{T}_{0.9}=(0,0.103)\cup (5.99,\infty)$.
- ullet Так как $\hat{\sigma}_3^2(x)=21$, то $T(x)=rac{(3-1) imes 21}{20}pprox 2.1.$

Пример

Прибыль заправки хорошо описывается нормальным распределением. За три дня прибыли составили 1, 10 и 7 соответственно. На 10%-м уровне значимости протестируем гипотезу о том, что дисперсия прибыли равна 20 против альтернативы о том, что она не равняется данному значению.

- ullet Формализуем гипотезы: $H_0: \sigma^2 = 20$ и $H_1: \sigma^2
 eq 20$, где $X_1 \sim \mathcal{N}\left(\mu, \sigma^2\right)$.
- Поскольку речь идет о двухсторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантили $\chi^2_{2,0.05}\approx 0.103$ и $\chi^2_{2,0.95}\approx 5.99$, откуда получаем критическую область $\mathcal{T}_{0.9}=(0,0.103)\cup (5.99,\infty)$.
- ullet Так как $\hat{\sigma}_3^2(x)=21$, то $T(x)=rac{(3-1) imes 21}{20}pprox 2.1.$
- В силу того, что $2.1 \notin (0,0.103) \cup (5.99,\infty)$, нулевая гипотеза не отвергается на 10%-м уровне значимости.

Пример

Прибыль заправки хорошо описывается нормальным распределением. За три дня прибыли составили 1, 10 и 7 соответственно. На 10%-м уровне значимости протестируем гипотезу о том, что дисперсия прибыли равна 20 против альтернативы о том, что она не равняется данному значению.

- ullet Формализуем гипотезы: $H_0: \sigma^2 = 20$ и $H_1: \sigma^2 \neq 20$, где $X_1 \sim \mathcal{N}\left(\mu, \sigma^2\right)$.
- Поскольку речь идет о двухсторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантили $\chi^2_{2,0.05}\approx 0.103$ и $\chi^2_{2,0.95}\approx 5.99$, откуда получаем критическую область $\mathcal{T}_{0.9}=(0,0.103)\cup (5.99,\infty)$.
- ullet Τак как $\hat{\sigma}_3^2(x)=21$, το $T(x)=rac{(3-1) imes 21}{20}pprox 2.1$.
- В силу того, что $2.1 \notin (0,0.103) \cup (5.99,\infty)$, нулевая гипотеза не отвергается на 10%-м уровне значимости.
- Наконец, рассчитаем p-value:

p-value =
$$2 \min \left(F_{\chi^{2}(2)}(2.1), 1 - F_{\chi^{2}(2)}(2.1) \right) \approx 2 \min (0.65, 0.35) = 0.7$$

Поскольку p-value= 0.7, то нулевая гипотеза (не) отвергается на любом уровне значимости, больше (меньше) 70%, например, на 80%-м (50%-м).

Гипотеза о равенстве дисперсий: нормальная выборка

Формулировка

• Имеются независимые выборки $X = (X_1,...,X_n)$ из нормальных распределений $\mathcal{N}\left(\mu_X,\sigma_X^2\right)$ и $\mathcal{N}\left(\mu_Y,\sigma_Y^2\right)$ с неизвестными параметрами.

Формулировка

- Имеются независимые выборки $X = (X_1,...,X_n)$ из нормальных распределений $\mathcal{N}\left(\mu_X,\sigma_X^2\right)$ и $\mathcal{N}\left(\mu_Y,\sigma_Y^2\right)$ с неизвестными параметрами.
- На уровне значимости α гипотезу $H_0: \sigma_X^2 = \sigma_Y^2$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_α :

$$T(X) = \frac{\hat{\sigma}_X^2}{\hat{\sigma}_Y^2}, \qquad T(X)|H_0 \sim F(n-1, m-1)$$

Формулировка

- Имеются независимые выборки $X = (X_1,...,X_n)$ из нормальных распределений $\mathcal{N}\left(\mu_X,\sigma_X^2\right)$ и $\mathcal{N}\left(\mu_Y,\sigma_Y^2\right)$ с неизвестными параметрами.
- На уровне значимости α гипотезу $H_0: \sigma_X^2 = \sigma_Y^2$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_α :

$$T(X) = rac{\hat{\sigma}_X^2}{\hat{\sigma}_Y^2}, \qquad T(X)|H_0 \sim F(n-1, m-1)$$

• Рассмотрим несколько типов альтернативных гипотез, через $F_{n-1,m-1}^q$ обозначая квантиль уровня q распределения F(n-1,m-1):

Тип	Левосторонняя	Двухсторонняя	Правосторонняя
Гипотеза	$H_1: \sigma_X^2 < \sigma_Y^2$	$H_1:\sigma_X^2 eq\sigma_Y^2$	$H_1: \sigma_X^2 > \sigma_Y^2$
\mathcal{T}_{lpha}	$\left(0,F_{n-1,m-1}^{\alpha}\right)$	$\left(0,F_{n-1,m-1}^{lpha/2} ight)\cup\left(F_{n-1,m-1}^{1-lpha/2},\infty ight)$	$\left(F_{n-1,m-1}^{1-lpha},\infty\right)$
p-value	$F_{F(n-1,m-1)}(T(x))$	$2\min\left(F_{F(n-1,m-1)}(T(x)),1-F_{F(n-1,m-1)}(T(x))\right)$	$1 - F_{F(n-1,m-1)}(T(x))$

Доходы в стране хорошо описываются нормальным распределением. По результатам опроса 6 граждан и 11 мигрантов оказалась, что реализация исправленной выборочной дисперсии доходов граждан равна 20, а мигрантов -10. На уровне значимости 10% протестируем гипотезу о том, что дисперсии доходов граждан и мигрантов совпадают, против альтернативы о том, что у граждан она больше.

Доходы в стране хорошо описываются нормальным распределением. По результатам опроса 6 граждан и 11 мигрантов оказалась, что реализация исправленной выборочной дисперсии доходов граждан равна 20, а мигрантов -10. На уровне значимости 10% протестируем гипотезу о том, что дисперсии доходов граждан и мигрантов совпадают, против альтернативы о том, что у граждан она больше.

• Формализуем гипотезы: $H_0: \sigma_X^2 = \sigma_Y^2$ и $H_1: \sigma_X^2 > \sigma_Y^2$, где $X_1 \sim \mathcal{N}\left(\mu_X, \sigma_X^2\right)$ и $Y_1 \sim \mathcal{N}\left(\mu_Y, \sigma_Y^2\right)$.

Пример

Доходы в стране хорошо описываются нормальным распределением. По результатам опроса 6 граждан и 11 мигрантов оказалась, что реализация исправленной выборочной дисперсии доходов граждан равна 20, а мигрантов – 10. На уровне значимости 10% протестируем гипотезу о том, что дисперсии доходов граждан и мигрантов совпадают, против альтернативы о том, что у граждан она больше.

- Формализуем гипотезы: $H_0: \sigma_X^2 = \sigma_Y^2$ и $H_1: \sigma_X^2 > \sigma_Y^2$, где $X_1 \sim \mathcal{N}\left(\mu_X, \sigma_X^2\right)$ и $Y_1 \sim \mathcal{N}\left(\mu_Y, \sigma_Y^2\right)$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантиль $F_{6-1,11-1}^{0.9}\approx 2.52$, откуда получаем критическую область $\mathcal{T}_{0.9}=(2.52,\infty).$

Пример

Доходы в стране хорошо описываются нормальным распределением. По результатам опроса 6 граждан и 11 мигрантов оказалась, что реализация исправленной выборочной дисперсии доходов граждан равна 20, а мигрантов – 10. На уровне значимости 10% протестируем гипотезу о том, что дисперсии доходов граждан и мигрантов совпадают, против альтернативы о том, что у граждан она больше.

- Формализуем гипотезы: $H_0: \sigma_X^2 = \sigma_Y^2$ и $H_1: \sigma_X^2 > \sigma_Y^2$, где $X_1 \sim \mathcal{N}\left(\mu_X, \sigma_X^2\right)$ и $Y_1 \sim \mathcal{N}\left(\mu_Y, \sigma_Y^2\right)$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантиль $F_{6-1,11-1}^{0.9}\approx 2.52$, откуда получаем критическую область $\mathcal{T}_{0.9}=(2.52,\infty).$
- ullet Так как $\hat{\sigma}_X^2(x)=20$, и $\hat{\sigma}_Y^2(y)=10$, то T(x)=20/10=2.

Пример

Доходы в стране хорошо описываются нормальным распределением. По результатам опроса 6 граждан и 11 мигрантов оказалась, что реализация исправленной выборочной дисперсии доходов граждан равна 20, а мигрантов -10. На уровне значимости 10% протестируем гипотезу о том, что дисперсии доходов граждан и мигрантов совпадают, против альтернативы о том, что у граждан она больше.

- Формализуем гипотезы: $H_0: \sigma_X^2 = \sigma_Y^2$ и $H_1: \sigma_X^2 > \sigma_Y^2$, где $X_1 \sim \mathcal{N}\left(\mu_X, \sigma_X^2\right)$ и $Y_1 \sim \mathcal{N}\left(\mu_Y, \sigma_Y^2\right)$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантиль $F_{6-1,11-1}^{0.9}\approx 2.52$, откуда получаем критическую область $\mathcal{T}_{0.9}=(2.52,\infty).$
- ullet Так как $\hat{\sigma}_X^2(x)=20$, и $\hat{\sigma}_Y^2(y)=10$, то T(x)=20/10=2.
- ullet В силу того, что $2 \notin (2.52, \infty)$, нулевая гипотеза не отвергается на 10%-м уровне значимости.

Пример

Доходы в стране хорошо описываются нормальным распределением. По результатам опроса 6 граждан и 11 мигрантов оказалась, что реализация исправленной выборочной дисперсии доходов граждан равна 20, а мигрантов -10. На уровне значимости 10% протестируем гипотезу о том, что дисперсии доходов граждан и мигрантов совпадают, против альтернативы о том, что у граждан она больше.

- Формализуем гипотезы: $H_0: \sigma_X^2 = \sigma_Y^2$ и $H_1: \sigma_X^2 > \sigma_Y^2$, где $X_1 \sim \mathcal{N}\left(\mu_X, \sigma_X^2\right)$ и $Y_1 \sim \mathcal{N}\left(\mu_Y, \sigma_Y^2\right)$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантиль $F_{6-1,11-1}^{0.9}\approx 2.52$, откуда получаем критическую область $\mathcal{T}_{0.9}=(2.52,\infty).$
- ullet Так как $\hat{\sigma}_X^2(x)=20$, и $\hat{\sigma}_Y^2(y)=10$, то T(x)=20/10=2.
- ullet В силу того, что $2 \notin (2.52, \infty)$, нулевая гипотеза не отвергается на 10%-м уровне значимости.
- Наконец, поскольку p-value= $1 F_{F(5,10)}(2) = 0.164$, то нулевая гипотеза (не) отвергается на любом уровне значимости, больше (меньше) 16.4%, например, на 20%-м (5%-м).

Гипотеза о разнице математических ожиданий при равных дисперсиях Формулировка для выборки из нормального распределения

• Имеются независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из нормальных распределений с математическими ожиданиями μ_X , μ_Y и равными дисперсиями $\sigma_X^2=\sigma_Y^2=\sigma^2$.

Формулировка для выборки из нормального распределения

- Имеются независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из нормальных распределений с математическими ожиданиями μ_X , μ_Y и равными дисперсиями $\sigma_X^2=\sigma_Y^2=\sigma^2$.
- На уровне значимости α гипотезу $H_0: \mu_X = \mu_Y$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_α :

$$T(X) = \frac{\overline{X}_n - \overline{Y}_m}{\sqrt{\hat{\sigma}^2 (1/n + 1/m)}}, \qquad \hat{\sigma}^2 = \frac{(n-1)\hat{\sigma}_X^2 + (m-1)\hat{\sigma}_Y^2}{n + m - 2}, \qquad T(X)|H_0 \sim t(n + m - 2)$$

Формулировка для выборки из нормального распределения

- Имеются независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из нормальных распределений с математическими ожиданиями μ_X , μ_Y и равными дисперсиями $\sigma_X^2=\sigma_Y^2=\sigma^2$.
- На уровне значимости α гипотезу $H_0: \mu_X = \mu_Y$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_α :

$$T(X) = rac{\overline{X}_n - \overline{Y}_m}{\sqrt{\hat{\sigma}^2 \left(1/n + 1/m
ight)}}, \qquad \hat{\sigma}^2 = rac{(n-1)\hat{\sigma}_X^2 + (m-1)\hat{\sigma}_Y^2}{n + m - 2}, \qquad T(X)|H_0 \sim t(n + m - 2)$$

• Рассмотрим несколько типов альтернативных гипотез, через $t_{n+m-2,q}$ обозначая квантиль уровня q распределения t(n+m-2):

Тип	Левосторонняя	Двухсторонняя	Правосторонняя
Гипотеза	$H_1: \mu_X < \mu_Y$	$H_1: \mu_X \neq \mu_Y$	$H_1: \mu_X > \mu_Y$
\mathcal{T}_{lpha}	$(-\infty, -t_{n+m-2,1-\alpha})$	$\left(-\infty,-t_{n+m-2,1-\alpha/2} ight)\cup\left(t_{n+m-2,1-\alpha/2},\infty ight)$	$(t_{n+m-2,1-\alpha},\infty)$
p-value	$F_{t(n+m-2)}(T(x))$	$2\min(F_{t(n+m-2)}(T(x)), 1 - F_{t(n+m-2)}(T(x)))$	$1-F_{t(n+m-2)}(T(x))$

Объем нефти (в тысячах баррелей), независимо добываемой на каждой из двух скважинах, хорошо описывается нормальными распределениями с равными дисперсиями. На первой скважине в первый день добыли 2 тысячи баррелей нефти, во второй 3 тысячи баррелей, а в третий – 4 тысячи баррелей. На второй скважине в первый день добыли 2 тысячи баррелей, а во второй – 5 тысяч. На уровне значимости 5% протестируем гипотезу о том, что в среднем на обоих скважинах добывается равный объем нефти, против альтернативы о том, что на первой скважине добывают больше.

Объем нефти (в тысячах баррелей), независимо добываемой на каждой из двух скважинах, хорошо описывается нормальными распределениями с равными дисперсиями. На первой скважине в первый день добыли 2 тысячи баррелей нефти, во второй 3 тысячи баррелей, а в третий — 4 тысячи баррелей. На второй скважине в первый день добыли 2 тысячи баррелей, а во второй — 5 тысяч. На уровне значимости 5% протестируем гипотезу о том, что в среднем на обоих скважинах добывается равный объем нефти, против альтернативы о том, что на первой скважине добывают больше.

ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X > \mu_Y$, где $X_1 \sim \mathcal{N}\left(\mu_X, \sigma^2\right)$ и $Y_1 \sim \mathcal{N}\left(\mu_Y, \sigma^2\right)$.

Объем нефти (в тысячах баррелей), независимо добываемой на каждой из двух скважинах, хорошо описывается нормальными распределениями с равными дисперсиями. На первой скважине в первый день добыли 2 тысячи баррелей нефти, во второй 3 тысячи баррелей, а в третий — 4 тысячи баррелей. На второй скважине в первый день добыли 2 тысячи баррелей, а во второй — 5 тысяч. На уровне значимости 5% протестируем гипотезу о том, что в среднем на обоих скважинах добывается равный объем нефти, против альтернативы о том, что на первой скважине добывают больше.

- ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X > \mu_Y$, где $X_1 \sim \mathcal{N}\left(\mu_X, \sigma^2\right)$ и $Y_1 \sim \mathcal{N}\left(\mu_Y, \sigma^2\right)$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.05$, то необходимо рассмотреть квантиль $t_{3+2-2,0.95}\approx 2.35$, откуда получаем критическую область $\mathcal{T}_{0.95}=(2.35,\infty)$.

Объем нефти (в тысячах баррелей), независимо добываемой на каждой из двух скважинах, хорошо описывается нормальными распределениями с равными дисперсиями. На первой скважине в первый день добыли 2 тысячи баррелей нефти, во второй 3 тысячи баррелей, а в третий — 4 тысячи баррелей. На второй скважине в первый день добыли 2 тысячи баррелей, а во второй — 5 тысяч. На уровне значимости 5% протестируем гипотезу о том, что в среднем на обоих скважинах добывается равный объем нефти, против альтернативы о том, что на первой скважине добывают больше.

- ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X > \mu_Y$, где $X_1 \sim \mathcal{N}\left(\mu_X, \sigma^2\right)$ и $Y_1 \sim \mathcal{N}\left(\mu_Y, \sigma^2\right)$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.05$, то необходимо рассмотреть квантиль $t_{3+2-2,0.95}\approx 2.35$, откуда получаем критическую область $\mathcal{T}_{0.95}=(2.35,\infty)$.
- Так как $\overline{x}_3 = 3$, $\overline{y}_2 = 3.5$, $\hat{\sigma}_X^2(x) = 1$, $\hat{\sigma}_Y^2(y) = 4.5$ и $\hat{\sigma}^2 \approx 0.93$, то $T(x) = \frac{(3-3.5)}{\sqrt{0.93 \times (1/3+1/2)}} \approx -0.568$.

Объем нефти (в тысячах баррелей), независимо добываемой на каждой из двух скважинах, хорошо описывается нормальными распределениями с равными дисперсиями. На первой скважине в первый день добыли 2 тысячи баррелей нефти, во второй 3 тысячи баррелей, а в третий — 4 тысячи баррелей. На второй скважине в первый день добыли 2 тысячи баррелей, а во второй — 5 тысяч. На уровне значимости 5% протестируем гипотезу о том, что в среднем на обоих скважинах добывается равный объем нефти, против альтернативы о том, что на первой скважине добывают больше.

- ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X > \mu_Y$, где $X_1 \sim \mathcal{N}\left(\mu_X, \sigma^2\right)$ и $Y_1 \sim \mathcal{N}\left(\mu_Y, \sigma^2\right)$.
- Поскольку речь идет о правосторонней критической области и $\alpha=0.05$, то необходимо рассмотреть квантиль $t_{3+2-2,0.95}\approx 2.35$, откуда получаем критическую область $\mathcal{T}_{0.95}=(2.35,\infty)$.
- Так как $\overline{x}_3=3$, $\overline{y}_2=3.5$, $\hat{\sigma}_X^2(x)=1$, $\hat{\sigma}_Y^2(y)=4.5$ и $\hat{\sigma}^2\approx 0.93$, то $T(x)=\frac{(3-3.5)}{\sqrt{0.93\times(1/3+1/2)}}\approx -0.568$.
- ullet В силу того, что $-0.568 \notin (2.35,\infty)$, нулевая гипотеза не отвергается на 5%-м уровне значимости.

Объем нефти (в тысячах баррелей), независимо добываемой на каждой из двух скважинах, хорошо описывается нормальными распределениями с равными дисперсиями. На первой скважине в первый день добыли 2 тысячи баррелей нефти, во второй 3 тысячи баррелей, а в третий – 4 тысячи баррелей. На второй скважине в первый день добыли 2 тысячи баррелей, а во второй – 5 тысяч. На уровне значимости 5% протестируем гипотезу о том, что в среднем на обоих скважинах добывается равный объем нефти, против альтернативы о том, что на первой скважине добывают больше.

- ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X > \mu_Y$, где $X_1 \sim \mathcal{N}\left(\mu_X, \sigma^2\right)$ и $Y_1 \sim \mathcal{N}\left(\mu_Y, \sigma^2\right)$.
- Поскольку речь идет о правосторонней критической области и $\alpha = 0.05$, то необходимо рассмотреть квантиль $t_{3+2-2,0.95} \approx 2.35$, откуда получаем критическую область $\mathcal{T}_{0.95} = (2.35, \infty)$.
- Так как $\overline{x}_3=3$, $\overline{y}_2=3.5$, $\hat{\sigma}_X^2(x)=1$, $\hat{\sigma}_Y^2(y)=4.5$ и $\hat{\sigma}^2\approx 0.93$, то $T(x)=\frac{(3-3.5)}{\sqrt{0.93\times(1/3+1/2)}}\approx -0.568$.
- ullet В силу того, что $-0.568
 otin (2.35, \infty)$, нулевая гипотеза не отвергается на 5%-м уровне значимости.
- Наконец, рассчитаем p-value:

p-value =
$$1 - F_{t(3)} (-0.568) \approx 0.695$$

Поскольку p-value= 0.695, то нулевая гипотеза (не) отвергается на любом уровне значимости, больше (меньше) 69.5%, например, на 80%-м (60%-м).

Гипотеза о разнице математических ожиданий при равных объемах

Формулировка для выборки из нормального распределения

• Имеются выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_n)$, такие, что X-Y является выборкой из нормального распределения. Обозначим $E(X_1)=\mu_X$ и $E(Y_1)=\mu_Y$.

Гипотеза о разнице математических ожиданий при равных объемах

Формулировка для выборки из нормального распределения

- Имеются выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_n)$, такие, что X-Y является выборкой из нормального распределения. Обозначим $E(X_1)=\mu_X$ и $E(Y_1)=\mu_Y$.
- На уровне значимости α гипотезу $H_0: \mu_X = \mu_Y$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_α :

$$T(X)=rac{\overline{X}_n-\overline{Y}_n}{\sqrt{\hat{\sigma}_{X-Y}^2/n}}, \qquad \hat{\sigma}_{X-Y}^2$$
 считается по выборке $X-Y, \qquad T(X)|H_0\sim t(n-1)$

Гипотеза о разнице математических ожиданий при равных объемах

Формулировка для выборки из нормального распределения

- Имеются выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_n)$, такие, что X-Y является выборкой из нормального распределения. Обозначим $E(X_1)=\mu_X$ и $E(Y_1)=\mu_Y$.
- На уровне значимости α гипотезу $H_0: \mu_X = \mu_Y$ можно протестировать с помощью следующей тестовой статистики с критической областью \mathcal{T}_α :

$$T(X)=rac{\overline{X}_n-\overline{Y}_n}{\sqrt{\hat{\sigma}_{X-Y}^2/n}}, \qquad \hat{\sigma}_{X-Y}^2$$
 считается по выборке $X-Y, \qquad T(X)|H_0\sim t(n-1)$

• Рассмотрим несколько типов альтернативных гипотез, через $t_{n-1,q}$ обозначая квантиль уровня q распределения t(n-1):

Тип	Левосторонняя	Двухсторонняя	Правосторонняя
Гипотеза	$H_1: \mu_X < \mu_Y$	$H_1: \mu_X \neq \mu_Y$	$H_1: \mu_X > \mu_Y$
\mathcal{T}_{lpha}	$(-\infty, -t_{n-1,1-\alpha})$	$\left(-\infty,-t_{n-1,1-\alpha/2}\right)\cup\left(t_{n-1,1-\alpha/2},\infty\right)$	$(t_{n-1,1-lpha},\infty)$
p-value	$F_{t(n-1)}(T(x))$	$2 \min (F_{t(n-1)}(T(x)), 1 - F_{t(n-1)}(T(x)))$	$1-F_{t(n-1)}(T(x))$

Разница в доходах мужей и жен хорошо описывается нормальным распределением. В первой семейной паре муж зарабатывал 50 тысяч рублей, а жена -110 тысяч рублей. Во второй семейной паре муж зарабатывал на 10 тысяч рублей больше, чем жена. На уровне значимости 10% протестируйте гипотезу о том, что средние заработки мужей и жен равны, против альтернативы о том, что в среднем жены зарабатывают больше.

ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X < \mu_Y$, где $(X_1 - Y_1) \sim \mathcal{N}\left(\mu_X - \mu_Y, \sigma^2_{X-Y}\right)$.

- ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X < \mu_Y$, где $(X_1 Y_1) \sim \mathcal{N}\left(\mu_X \mu_Y, \sigma_{X-Y}^2\right)$.
- Поскольку речь идет о левосторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантиль $t_{2-1,0.9}\approx 3.08$, откуда получаем критическую область $\mathcal{T}_{0.9}=(-\infty,-3.08)$.

- ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X < \mu_Y$, где $(X_1 Y_1) \sim \mathcal{N}\left(\mu_X \mu_Y, \sigma^2_{X-Y}\right)$.
- Поскольку речь идет о левосторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантиль $t_{2-1,0.9}\approx 3.08$, откуда получаем критическую область $\mathcal{T}_{0.9}=(-\infty,-3.08)$.
- Так как x-y=(-60,10), $\overline{x}_2-\overline{y}_2=-25$ и $\hat{\sigma}_{X-Y}^2=2450$, то $T(x)=\frac{-25}{\sqrt{2450/2}}\approx -0.71$.

- ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X < \mu_Y$, где $(X_1 Y_1) \sim \mathcal{N}\left(\mu_X \mu_Y, \sigma^2_{X-Y}\right)$.
- Поскольку речь идет о левосторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантиль $t_{2-1,0.9}\approx 3.08$, откуда получаем критическую область $\mathcal{T}_{0.9}=(-\infty,-3.08)$.
- ullet Так как x-y=(-60,10), $\overline{x}_2-\overline{y}_2=-25$ и $\hat{\sigma}_{X-Y}^2=2450$, то $T(x)=rac{-25}{\sqrt{2450/2}}pprox -0.71$.
- ullet В силу того, что $-0.71 \notin (-\infty, -3.08)$, нулевая гипотеза не отвергается на 10%-м уровне значимости.

Разница в доходах мужей и жен хорошо описывается нормальным распределением. В первой семейной паре муж зарабатывал 50 тысяч рублей, а жена -110 тысяч рублей. Во второй семейной паре муж зарабатывал на 10 тысяч рублей больше, чем жена. На уровне значимости 10% протестируйте гипотезу о том, что средние заработки мужей и жен равны, против альтернативы о том, что в среднем жены зарабатывают больше.

- ullet Формализуем гипотезы: $H_0: \mu_X = \mu_Y$ и $H_1: \mu_X < \mu_Y$, где $(X_1 Y_1) \sim \mathcal{N}\left(\mu_X \mu_Y, \sigma_{X-Y}^2\right)$.
- Поскольку речь идет о левосторонней критической области и $\alpha=0.1$, то необходимо рассмотреть квантиль $t_{2-1,0.9}\approx 3.08$, откуда получаем критическую область $\mathcal{T}_{0.9}=(-\infty,-3.08)$.
- Так как x-y=(-60,10), $\overline{x}_2-\overline{y}_2=-25$ и $\hat{\sigma}_{X-Y}^2=2450$, то $T(x)=\frac{-25}{\sqrt{2450/2}}\approx -0.71$.
- В силу того, что $-0.71 \notin (-\infty, -3.08)$, нулевая гипотеза не отвергается на 10%-м уровне значимости.
- Наконец, рассчитаем p-value:

p-value =
$$F_{t(1)}$$
 (-0.71) \approx 0.3

Поскольку p-value= 0.3, то нулевая гипотеза (не) отвергается на любом уровне значимости, больше (меньше) 30%, например, на 90%-м (20%-м).