Agenda Why Data Flow Analysis Works? CS738: Advanced Compiler Optimizations Foundations of Data Flow Analysis ► Suitable initial values and boundary conditions Suitable domain of values **Lattice Theory** Amey Karkare ► Intraprocedural Data Flow Analysis Bounded, Finite karkare@cse.iitk.ac.in We looked at 4 classic examples Suitable meet operator ► Today: Mathematical foundations http://www.cse.iitk.ac.in/~karkare/cs738 Suitable flow functions Department of CSE, IIT Kanpur monotonic, closed under composition ► But what is **SUITABLE** ? Taxonomy of Dataflow Problems Taxonomy of Dataflow Problems Partially Ordered Sets Chain Confluence → Posets ► Categorized along several dimensions ► Linear Ordering the information they are designed to provide S: a set **Direction** ↓ the direction of flow ▶ Poset where every pair of elements is comparable <: a relation confluence operator ▶ $x_1 \le x_2 \le ... \le x_k$ is a chain of length k (S, \leq) is a **poset** if for $x, y, z \in S$ **Forward** R D Av E Four kinds of dataflow problems, distinguished by x < x (reflexive)</p> We are interested in chains of finite length ► the operator used for confluence or divergence $x \le y$ and $y \le x \Rightarrow x = y$ (antisymmetric) data flows backward or forward **Backward** VBE \triangleright $x \le y$ and $y \le z \Rightarrow x \le z$ (transitive) Greatest Lower Bound (glb) Observation Semilattice Familiar (Semi)Lattices ▶ Set S and meet ∧ Powerset for a set S, 2^S \triangleright $x, y, z \in S$ \triangleright $x, y, z \in S$ Any finite nonempty subset of a poset has minimal and ▶ Meet \(\) is \(\) \triangleright $x \land x = x$ (idempotent) plb of x and y is an element q such that maximal elements $\triangleright x \land y = y \land x$ (commutative) ▶ Partial Order is ⊃ ▶ $g \le x$ Any finite nonempty chain has unique minimum and $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ (associative) ► Top element is ∅ maximum elements Partial order for semilattice ▶ Bottom element is S \triangleright $x \le y$ if and only if $x \land y = x$ ► Reflexive, antisymmetric, transitive **Border Elements** QQ Semi(?)-Lattice Familiar (Semi)Lattices ▶ Powerset for a set S, 2^S ► Top Element (⊤) ► We can define symmetric concepts x, v ∈ S Meet ∧ is ∩ $\forall x \in S, x \land \top = \top \land x = x$ > order ► (S, \(\)) is a semilattice ▶ Partial Order is ▶ (Optional) Bottom Element (⊥) ▶ Join operation (\/) ▶ Prove that $x \land y$ is glb of x and y. Least upper bound (lub) $\forall x \in S, x \land \bot = \bot \land x = \bot$ ► Top element is S ► Bottom element is ∅

Lattice	Lattice		What if there is a large number of elements?	Product Lattice
 (S, ∧, ∨) is a lattice iff for each non-empty finite subset Y of S both ∧ Y and ∨ Y are in S. (S, ∧, ∨) is a complete lattice iff for each subset Y of S both ∧ Y and ∨ Y are in S. 	 Complete lattice (S, ∧, ∨) For every pair of elements x and y, both x ∧ y and x ∨ y should be in S Example : Powerset lattice We will talk about meet semi-lattices only except for some proofs 		 Combine simple lattices to build a complex one Superset lattices for singletons {a} {b} {c} √ √ √	▶ (S, \land) is product lattice of (S_1, \land_1) and (S_2, \land_2) when $S = S_1 \times S_2$ (domain) For (a_1, a_2) and $(b_1, b_2) \in S$ $(a_1, a_2) \land (b_1, b_2) = (a_1 \land_1 b_1, a_2 \land_2 b_2)$ $(a_1, a_2) \leq (b_1, b_2)$ iff $a_1 \leq b_1$ and $a_2 \leq b_2$ \leq relation follows from \land ▶ Product of lattices is associative ▶ Can be generalized to product of $N > 2$ lattices ▶ $(S_1, \land_1), (S_2, \land_2), \ldots$ are called component lattices
Lattice Diagram	Lattice Diagram	-	Product Lattice: Example	Height of a Semilattice
 Graphical view of posets Elements = the nodes in the graph If x < y then x is depicted lower than y in the diagram An edge between x and y (x lower than y) implies x < y and no other element z exists s.t. x < z < y (i.e. transitivity is excluded) 	$\{a,b,c\}$ $\{c,a\}$ $\{c,a\}$ $\{a,b\}$ $\{a$		$ \begin{cases} a, b, c \\ & \langle a, b \rangle \\ & \langle c, a \rangle \\ & \langle c, a \rangle \end{cases} $ $ \begin{cases} a, b, c \\ & \langle c, a \rangle \\ & \langle c, a \rangle \end{cases} $ $ \begin{cases} a, b \\ & \langle c, a \rangle \end{cases} $	 Length of a chain x₁ ≤ x₂ ≤ ≤ xk is k Let K = max over lengths of all the chains in a semilattice Height of the semilattice = K − 1
Data Flow Analysis Framework	Transfer Functions		Knaster-Tarski Fixed Point Theorem	Application of Fixed Point Theorem
 (D, S, ∧, F) D: direction – Forward or Backward (S, ∧): Semilattice – Domain and meet F: family of transfer functions of type S → S (see next slide) 	 F: family of functions S → S. Must Include functions suitable for the boundary conditions (constant transfer functions for Entry and Exit nodes) Identity function I: I(x) = x ∀x ∈ S Closed under composition: f, g ∈ F, f ∘ g ⇒ h ∈ F 		▶ Let f be a monotonic function on a complete lattice (S, \land, \lor) . Define ▶ red $(f) = \{v \mid v \in S, f(v) \leq v\}$, pre fix-points ▶ $\operatorname{ext}(f) = \{v \mid v \in S, f(v) \geq v\}$, post fix-points ▶ $\operatorname{fix}(f) = \{v \mid v \in S, f(v) = v\}$, fix-points Then, ▶ $\land \operatorname{red}(f) \in \operatorname{fix}(f)$. Further, $\land \operatorname{red}(f) = \land \operatorname{fix}(f)$ ▶ $\lor \operatorname{ext}(f) \in \operatorname{fix}(f)$. Further, $\lor \operatorname{ext}(f) = \lor \operatorname{fix}(f)$ ▶ $\operatorname{fix}(f)$ is a complete lattice	▶ $f: S \to S$ is a monotonic function ▶ (S, \bigwedge) is a finite height semilattice ▶ \top is the top element of (S, \bigwedge) ▶ Notation: $f^0(x) = x$, $f^{i+1}(x) = f(f^i(x))$, $\forall i \ge 0$ ▶ The greatest fixed point of f is $f^k(\top)$, where $f^{k+1}(\top) = f^k(\top)$
Monotonic Functions	Monotone Frameworks	-	Fixed Point Algorithm	
 (S, ≤): a poset f: S → S is monotonic iff ∀x, y ∈ S x ≤ y ⇒ f(x) ≤ f(y) Composition preserves monotonicity If f and g are monotonic, h = f ∘ g, then h is also monotonic 	 (D, S, ∧, F) is monotone if the family F consists of monotonic functions only f ∈ F, ∀x, y ∈ S x ≤ y ⇒ f(x) ≤ f(y) Equivalently f ∈ F, ∀x, y ∈ S f(x ∧ y) ≤ f(x) ∧ f(y) Proof? : QQ in class 		// monotonic function f on a meet semilattice $ x := T; \\ while (x \neq f(x)) x := f(x); \\ return x; $	