

<HMC5883L>

Hướng dẫn sử dụng

Version 0.1 02/06/2024

UM Version 0.1 i <HMC5883L>

Mục Lục

1.	Giới	thiệu	1
	1.1	Tổng quan	1
2.	Khởi	đầu	2
	2.1	Thông số kỹ thuật	2
	2.2	Lưu ý	2
	2.3	Sơ đổ kết nối	3
	2.4	Cài đặt driver	5
	2.5	Cách sử dụng	
	2.6	Gỡ cài đặt driver	5
3.	Sử d	ụng thư viện	7
	3.1	Cấu trúc chế độ cấu hình Adjust	7
	3.1.1	Số lần lấy mẫu	
	3.1.2	Thời gian lấy mẫu	8
	3.1.3	Chế độ đo lường	8
	3.1.4		
	3.1.5		
	3.2	Cấu trúc chế độ cấu hình Default10	
	3.3	Cấu trúc chế độ đo từ trường10	
	3.4	Cấu trúc chế độ đo góc địa lý10	
	3.5	Cấu trúc chế độ đo la bàn điện từ1	1
4.	Kiểm	tra & Hỗ trợ1	2
	4.1	Tự kiểm tra12	2
	4.2	Thông báo lỗi	2
	4.3	Liên hệ hỗ trợ13	
ΡI	hụ lục	A: Tài liệu tham khảo14	4

HCMUTE-FME Mục lục

Phụ lục hình ảnh

Hình 1: Hình ánh sơ đô kêt nôi chân cho Master & Slave	3
Hình 2: Hình ảnh cảm biến la bàng HMC5883L	4
Hình 3: Hình ảnh sơ đồ kết nối chân cho cảm biến	4

Phụ lục bảng

Bảng 1 – Thông số kỹ thuật	2
Bảng 2 – Bảng chức năng	7
Bảng 3 – Bảng số lượng mẫu	8
Bảng 4 – Bảng thời gian lấy mẫu	8
Bảng 5 – Bảng chế độ đo lường	8
Bảng 6 – Bảng dải đo	9
Bảng 7 – Bảng chế độ vận hành	9
Bảng 8 – Tự kiểm tra	12
Bảng 9 – Bảng thông báo lỗi	12
Bảng 10 – Liên hệ hỗ trợ	13
Bảng 11 – Tài liệu tham khảo	14

HCMUTE-FME Giới thiệu

1. Giới thiệu

HMC5883L sản xuất bởi Honeywell, là một cảm biến từ trường 3 trục kỹ thuật số, được thiết kế để cung cấp các phép đo từ trường chính xác trong các ứng dụng như la bàn kỹ thuật số, điều hướng và theo dõi chuyển động, sử dụng rộng rãi trong các thiết bị điện tử tiêu dùng và công nghiệp. Cuốn hướng dẫn sử dụng này sẽ đưa ra những thông tin cần thiết để bạn có thể sử dụng một cách hiệu quả cảm biến HMC5883L bằng driver và thư viện mà chúng tôi đã cung cấp.

1.1 Tổng quan

Cuốn hướng dẫn người dùng này sẽ hỗ trợ người dùng với những vấn đề cơ bản sau:

- Đo từ trường
- Đo góc địa lý
- La bàn điện từ
- ...

2. Khởi đầu

2.1 Thông số kỹ thuật

Bảng 1 – Thông số kỹ thuật

Thông số	Trạng thái	Min	Тур	Max	Đơn vị
Điện áp hoạt động	-	2.16	2.5	3.6	Volts
Dòng tiêu thụ	Chế độ đo	-	100	-	μA
Dong aca ana	Chế độ nghỉ	-	2	-	μΑ
Dải đo từ trường	Full scale	-8	-	+8	gauss
Độ nhạy (Gain)	-	230	-	1370	LSb/gauss
Độ phân giải	-	0.73	-	4.35	milli-gauss
	Address		0x1E		hex
Địa chỉ I ² C	8-bit read address	-	0x3D	-	hex
	8-bit write address		0x3C		hex
Tốc độ truyền dữ liệu l²C	-	-	-	400	kHz
Nhiệt độ hoạt động	-	-40	-	+85	°C

2.2 Lưu ý

Hãy tuân thủ một số lưu ý sau đây để có thể sử dụng cảm biến HMC5883L:

- Kiểm tra kỹ nguồn cấp điện để tránh hư hỏng do quá áp hoặc dưới áp.
- Đảm bảo vi điều khiển có chuẩn giao tiếp I²C
- Tránh để cảm biến tiếp xúc trực tiếp với từ trường mạnh hoặc môi trường có nhiệt độ, độ ẩm quá cao, vì điều này có thể làm hỏng cảm biến.
- Thực hiện tự kiểm tra định kỳ để đảm bảo cảm biến hoạt động chính xác.
- Hiệu chỉnh lại cảm biến theo hướng dẫn của nhà sản xuất nếu thấy kết quả đo bị lệch hoặc không chính xác.
- Đảm bảo sử dụng đúng driver và thư viện chúng tôi đã cung cấp.

2.3 Sơ đồ kết nối

Hình 1: Hình ảnh sơ đồ kết nối chân cho Master & Slave

Hướng dẫn kết nối chân HMC5883L:

- VDD -> Nguồn
- GND -> GND
- SCL -> SCL Vi điều khiển
- SDA -> SDA Vi điều khiển

Hình 2: Hình ảnh cảm biến la bàn HMC5883L

Hình 3: Hình ảnh sơ đồ kết nối chân cho cảm biến

2.4 Cài đặt driver

1. Tải bộ cài đặt theo đường link:

https://github.com/LQCuong0258/Final_Embedded_System.git

- 2. Mở terminal tại folder chứa bộ cài.
- 3. Trong màn hình terminal
 - Run Makefile: gõ lệnh make
 - Install driver: gõ lệnh sudo insmod hmc5883l_driver.ko
 - M
 o
 terminal kernel: dmesg -w

Terminal Kernel Notification:

Initializing HMC5883L driver!!!

HMC5883L driver INSTALLED with major number: 238

• Clean: sau khi cài driver về máy, bạn có thể dọn dẹp các file sinh ra trong quá trình cài đặt driver bằng lệnh: **make clean**

Như vậy là bạn đã hoàn tất việc cài đặt, bây giờ bạn đã có thể sử dụng thư viện của chúng tôi. Chúc bạn có trải nghiệm tốt nhất!

2.5 Cách sử dung

- 1. Bạn cần thêm thư viện người dùng vào project của mình: hmc5883l.c, hmc5883l.h
- 2. Import file header và code: #include "hmc5883I.h"
- 3. Biên dịch: gcc <yourfile>.c hmc5883l.c -o <outputfile>
- 4. Để chạy được file sau khi biên dịch có 2 cách:
 - Cấp quyền cho file khi thực thi: sudo ./<outputfile>
 - Cấp quyền cho driver: **sudo chmod a+r+w+x /dev/hmc5883I_driver**. Sau đó thì chạy file như bình thường: **./<outputfile>**

2.6 Gỡ cài đặt driver

Ngược lại với quá trình cài đặt, để gỡ cài đặt driver.

- 1. Mở terminal tại folder chứa bộ cài.
- 2. Trong màn hình terminal
 - Gỡ cài đặt: gỡ lệnh sudo rmmod hmc5883I_driver
 - Mo terminal kernel: dmesg -w

Terminal Kernel Notification:

HMC5883L driver removed!!!

• Reboot: gõ lệnh sudo reboot

Như vậy là bạn đã gỡ cài đặt driver thành công, cảm ơn bạn đã sử dụng sản phẩm của chúng tôi!

3. Sử dụng thư viện

Các chức năng được cung cấp trong driver và thư viện:

Bảng 2 – Bảng chức năng

Define code	Mô tả
hmc5883l_Default_Setup()	Chế độ cấu hình mặc định
hmc5883I_Adjust_Setup()	Chế độ cấu hình tùy chỉnh
hmc5883I_Magnetic()	Chế độ đo từ trường
hmc5883l_Angle()	Chế độ đo góc địa lý
hmc5883I_Direction()	Chế độ la bàn điện từ

3.1 Cấu trúc chế độ cấu hình Adjust

<u>Define code:</u> volatile int hmc58831_Adjust_Setup(struct hmc58831_config config, int check)

- struct hmc5883I_config config : Cấu trúc thông số cấu hình
- check: 1 Thông báo cấu hình thành công
 - 0 Không thông báo cấu hình thành công

Ví dụ: Dưới đây là một ví dụ thiết lập cho IC chế độ đo normal, tần số 15HZ, lấy kết quả trung bình của 8 mẫu dữ liệu, giới hạn đo là 2.5GA và đo liên tục.

```
struct hmc58831_config config =
{
    .MEASUREMENT = HMC5883L MEASUREMENT NORMAL,
    .RATE = HMC5883L RATES 15HZ,
    .SAMPLES = HMC5883L SAMPLES 8,
    .GAIN = HMC5883L RANGE 2 5GA,
    .MODE = HMC5883L MODE CONTINOUS
};
int hmc5883l = hmc5883l_Adjust_Setup(config, 0);
```

Ghi chú: Các giá trị được highlight là các giá trị cần được thay đổi để phù hợp với thiết lập của bạn.

3.1.1 Số lần lấy mẫu

Mô tả: Là số lượng mẫu được cảm biến lấy trung bình trước khi ghi vào các thanh ghi đầu ra.

Bảng 3 – Bảng số lượng mẫu

Define code	Số lượng mẫu trung bình
HMC5883L_SAMPLES_1	1
HMC5883L_SAMPLES_2	2
HMC5883L_SAMPLES_4	4
HMC5883L_SAMPLES_8	8

3.1.2 Thời gian lấy mẫu

Mô tả: Là tốc độ mà cảm biến cập nhật dữ liệu từ trường mới vào các thanh ghi đầu ra.

Bảng 4 – Bảng thời gian lấy mẫu

Define code	Tốc độ lấy mẫu (Hz)	Thời gian lấy mẫu (s)
HMC5883L_RATES_0_75_HZ	0.75	1.33
HMC5883L_RATES_1_5HZ	1.5	0.67
HMC5883L_RATES_3HZ	3	0.33
HMC5883L_RATES_7_5HZ	7.5	0.13
HMC5883L_RATES_15HZ	15	0.067
HMC5883L_RATES_30HZ	30	0.033
HMC5883L_RATES_75HZ	75	0.013

3.1.3 Chế độ đo lường

Mô tả: Là chế độ đo và cấu hình cảm biến trước khi thực hiện đo lường từ trường.

Bảng 5 – Bảng chế độ đo lường

Define code	Mô tả	Ứng dụng
HMC5883L_MEASUREMENT_NORMAL	Chế độ đo bình thường	Đo từ trường
HMC5883L_MEASUREMENT_POSITIVE	Chế độ bias dương	Tự kiểm tra và điều chỉnh.
HMC5883L_MEASUREMENT_NEGATIVE	Chế độ bias âm	Tự kiểm tra và điều chỉnh.

3.1.4 Dải đo

Mô tả: Là các dải đo từ trường mà cảm biến có thể đo lường một cách chính xác.

Bảng 6 – Bảng dải đo

Gain	Define code	Dải đo (Gauss)	Độ nhạy (LSB/Gauss)	Độ phân giải (Gauss/LSB)
0	HMC5883L_RANGE_0_88GA	±0.88	1370	0.73
1	HMC5883L_RANGE_1_3GA	±1.3	1090	0.92
2	HMC5883L_RANGE_1_9GA	±1.9	820	1.22
3	HMC5883L_RANGE_2_5GA	±2.5	660	1.52
4	HMC5883L_RANGE_4GA	±4.0	440	2.27
5	HMC5883L_RANGE_4_7GA	±4.7	390	2.56
6	HMC5883L_RANGE_5_6GA	±5.6	330	3.03
7	HMC5883L_RANGE_8_1GA	±8.1	230	4.35

3.1.5 Chế độ vận hành

Mô tả: là cách thức hoạt động của cảm biến, bao gồm chế độ đo và chế độ chờ.

Bảng 7 – Bảng chế độ vận hành

Define code	Chế độ	Mô tả				
HMC5883L_MODE_CONTINOUS	Đo liên tục	Cảm biến liên tục đo lường và cập nhật các thanh ghi đầu ra.				
HMC5883L_MODE_SINGLE	Đo một lần	Cảm biến thực hiện một phép đo duy nhất và sau đó chuyển sang chế độ chờ.				
HMC5883L_MODE_IDLE_1	Chờ (Wait)	Cảm biến ở chế độ chờ, không thực hiện phép đo nào.				
HMC5883L_MODE_IDLE_2	Ngủ (Sleep)	Cảm biến ở chế độ ngủ, không được sử dụng.				

3.2 Cấu trúc chế độ cấu hình Default

Define code: volatile int hmc58831_ Default_Setup(int check)

• check: 1 – Thông báo cấu hình thành công

0 - Không thông báo cấu hình thành công

Ví dụ:

```
int hmc58831 = hmc58831_Adjust_Setup(0);
```

Ghi chú: Chức năng của hàm này là sẽ thiết lập IC với các thông số mặc định (đã được giới thiệu trên mỗi bảng). Bạn không cần phải tự lựa chọn cấu hình để thiết lập.

3.3 Cấu trúc chế độ đo từ trường

<u>Define code:</u> volatile float hmc58831_Magnetic(int hmc58831, int axis, int format)

- int hmc5883:1: Cấu trúc cấu hình
- int axis: Trục tọa độ, có 3 lựa chọn: Axis_X, Axis_Y, Axis_Z
- int format: Đơn vị, có 2 lưa chon: GAUSS và MILIGAUSS

Ví du:

```
float Magnetic_X = hmc58831_Magnetic(hmc58831, Axis_X, MILIGAUSS);
```

Ghi chú: Chức năng của hàm là với mỗi lựa chọn axis và format tương ứng thì bạn có thể lấy được giá trị từ trường kiểu **float** tương ứng.

3.4 Cấu trúc chế độ đo góc

Define code: float hmc58831_Angle(int hmc58831, int axis)

- int hmc5883:L: Cấu trúc cấu hình
- int axis: Trục tọa độ, có 4 lựa chọn: Axis X, Axis Y, Axis Z, COMPASS

Ví du:

```
float Angle_X = hmc58831_Angle(hmc58831, Axis_X);
float Angle = hmc58831_Angle(hmc58831, COMPASS);
```

Chú thích:

- Axis_X: Góc xoay quanh trục X
- Axis Y: Góc xoay quanh trục Y
- Axis Z: Góc xoay quanh trục Z
- COMPASS: Góc xoay địa lý, la bàn số.

Ghi chú: Chức năng của hàm là với mỗi lựa chọn axis tương ứng thì bạn có thể lấy được giá trị góc kiểu **float** xoay quanh trục tương ứng.

3.5 Cấu trúc chế độ la bàn điện từ

Define code: volatile void hmc58831_Direction(int hmc58831, char *direction)

- int hmc58831: : Cấu trúc cấu hình
- char *direction: Chuỗi ký tự trả về hướng mà la bàn xác định được

Chú ý: Độ dài của chuỗi direction nên từ 10 ký tự trở lên để tránh thiếu dữ liệu.

Ví du:

```
char DIRECTION[10];
hmc58831_Direction(hmc58831, DIRECTION);
```

Ghi chú: Chức năng của hàm là sẽ xác định hướng hiện tại của la bàn và gán vào chuỗi DIRECTION mà bạn đã tạo.

<u>Lưu ý:</u> Khi sử dụng 2 chế độ "hmc58831_Angle", "hmc58831_Direction" trong chương trình bạn cần import thư viện "math.h"

HCMUTE-FME Kiểm tra & Hỗ trợ

4. Kiểm tra & Hỗ trợ

4.1 Tự kiểm tra

Mô tả: Tự kiểm tra khả năng hoạt động của cảm biến HMC5883L bằng cách đưa về chế độ đo (Positive hoặc Negative), so sánh giá trị của 3 với giá trị trong bảng 8 dựa theo các Gain được thiết lập tương ứng thông qua bảng 6.

Bảng 8 –	Τự	kiếm	tra
----------	----	------	-----

Gain	Code	Tỷ lệ	Giá trị XYZ (LSB)
0	HMC5883L_RANGE_0_88GA	1370/390	±853 - 2016
1	HMC5883L_RANGE_1_3GA	1090/390	±678 - 1606
2	HMC5883L_RANGE_1_9GA	820/390	±510 - 1209
3	HMC5883L_RANGE_2_5GA	660/390	±410 - 972
4	HMC5883L_RANGE_4GA	440/390	±274 - 651
5	HMC5883L_RANGE_4_7GA	1	±243 - 575
6	HMC5883L_RANGE_5_6GA	330/390	±206 - 488
7	HMC5883L_RANGE_8_1GA	230/390	±144 - 342

4.2 Thông báo lỗi

Bảng 9 – Bảng thông báo lỗi

Thông báo lỗi	Nguyên nhân	Khắc phục	
Can't open I2C	Không mở I2C của hệ thống	Kiểm tra lại Interface của raspberry và xem lại quá trình cài đặt	
Failed to Configuration HMC5883L	Cấu hình thất bại	Kiểm tra các thông số cấu hình	
error magnetic Axis X	Lỗi từ trường trục X	Kiểm tra phần cứng, cấu - hình, các biến khai báo	
error magnetic Axis Y	Lỗi từ trường trục Y		
error magnetic Axis Z	Lỗi từ trường trục Z		
error gauss Gain	Lỗi đơn vị Gauss	Kiểm tra phần cứng, cấu - hình, các biến khai báo	
error mili gauss Gain	Lỗi đơn vị mili Gauss		

HCMUTE-FME Kiểm tra & Hỗ trợ

4.3 Liên hệ hỗ trợ

Bảng 10 – Liên hệ hỗ trợ

Liên hệ	Mã số sinh viên	SĐT	Email
Lê Quốc Cường	21146070	0859801352	21146070@student.hcmute.edu.vn
Trần Hoàng Duy	21146073	0348787164	21146073@student.hcmute.edu.vn
Nguyễn Minh Hiếu	21146458	-	21146458@student.hcmute.edu.vn
Nguyễn Phúc Truyền	21146162	-	21146162@student.hcmute.edu.vn

HCMUTE-FME Phụ lục A: Tài liệu tham khảo

Phụ lục A: Tài liệu tham khảo

Bảng 11 – Tài liệu tham khảo

Tên tài liệu	Nguồn	Ngày phát hành
Datasheet – HMC5883L	©2010 Honeywell International Inc.	Tháng 2 2013
Final_Embedded_System	https://github.com/***/Final_Embedded_System	Tháng 5 2024
Arduino-HMC5883L	https://github.com/***/Arduino-HMC5883L	2014

Hướng dẫn:

TS. Bùi Hà Đức

Tác giả:

Syaoran

Biên tập:

Trần Hoàng Duy – Lê Quốc Cường

Hỗ trợ:

Hồ Xuân Huy – Võ Duy Khải – Trần Quang Huy