Cálculo diferencial

1.1 Ejemplos resueltos de problemas de extremos

Ejemplo 1.1 (Principio del producto máximo con suma constante). Dado un número positivo S. Demostrar que entre todos los pares de números positivos x e y tales que x+y=S, el producto xy es el mayor cuando $x=y=\frac{1}{2}S$.

Demostración.- Si x+y=S, y=S-x y el producto xy es igual a $x(S-x)=xS-x^2$. Pongamos $f(x)=xS-x^2$. Este polinomio cuadrático tiene como deriva primera f'(x)=S-2x que es positiva para $x<\frac{1}{2}S$ y negativa para $x>\frac{1}{2}S$. Por tanto el máximo de xy se presenta cuando $x=\frac{1}{2}S$, $y=S-x=\frac{1}{2}S$. Esto también se puede demostrar sin utilizar el Cálculo. Pongamos simplemente $f(x)=\frac{1}{4}-\left(x-\frac{1}{2}S\right)^2$ y observamos que f(x) es máximo cuando $x=\frac{1}{2}S$.

Ejemplo 1.2 (Principio de suma mínima, con producto constante). Dado un número positivo P. Demostrar que entre todos los pares de números positivos x e y tales que xy = P, el que hace la suma x + y mínima es $x = y = \sqrt{P}$.

Demostración.- Tenemos que determinar el mínimo de la función $f(x) = x + \frac{P}{x}$ para x > 0. La primera derivada es $f'(x) = 1 - \frac{P}{x^2}$. Esta es negativa para $x^2 < P$ y positiva para $x^2 > P$, de manera que f(x) tiene su mínimo en $x = \sqrt{P}$. Luego, la suma x + y es mínima cuando $x = y = \sqrt{P}$.

Ejemplo 1.3. Entre los rectángulos de perímetro dado, el cuadrado es el de mayor área.

Demostración.- Utilizando el resultado del ejemplo 4.1 Tom Apostol. Sea x e y los lados de un rectángulo cualquiera. Si el perímetro está fijado, entonces x + y es constante, con lo que el área xy tiene mayor valor cuando x = y. Luego, el rectángulo máximo es el cuadrado.

Ejemplo 1.4. La media geométrica de dos números positivos no excede a su media aritmética. Esto es, $\sqrt{ab} \le \frac{1}{2}(a+b)$.

Demostración.- Dados a > 0, b > 0, sea P = ab. Entre todos los positivos x e y siendo xy = P, la

suma x+y es la menor cuando $x=y=\sqrt{P}$. Es decir, si xy=P entonces $x+y\geq \sqrt{P}+\sqrt{P}=2\sqrt{P}$. En particular, $a+b\geq 2\sqrt{P}=2\sqrt{ab}$, con lo que $\sqrt{ab}\leq \frac{1}{2}(a+b)$. La igualdad se presenta si y sólo si a=b.

Ejemplo 1.5. Un bloque de peso W es movido a lo largo de un plano por una fuerza que forma un ángulo θ con la recta de la dirección del movimiento, siendo $0 \le \theta \le \frac{1}{2}\pi$,, como se ve en la figura 4.15 Tom Apostol. Supongamos que la resistencia por fricción es proporcional a la fuerza normal con la que el bloque presiona perpendicularmente contra el plano. Hallar el ángulo θ para el que la fuerza de propulsión necesaria para vencer la fricción sea lo más pequeña posible.

Demostración.-

1.2 Ejercicios

1. Demostrar que entre todos los rectángulos de área dada, el cuadrado es el de perímetro mínimo.

Demostración.- Sea x e y denotado por los lados del rectángulo. Si el área es fija, entonces xy es una constante, tal que xy = A. El perímetro de un rectángulo viene dado por P(x,y) = 2x + 2y, de donde

$$P(x) = 2x + 2\frac{A}{x}.$$

Para encontrar el valor mínimo, tomamos la derivada de P(x),

$$P'(x) = 2 - \frac{2A}{x^2}.$$

Luego igualamos a cero y resolvemos para x,

$$2 - \frac{2A}{x^2} = 0 \quad \Rightarrow \quad x = \sqrt{A}.$$

Ya que, P'(x) < 0, cuando $x < \sqrt{A}$ y P'(x) > 0, cuando $x > \sqrt{A}$ por el teorema 4.8 Apostol, se tiene que f tiene un mínimo relativo en \sqrt{A} .. Como $x = \sqrt{A}$ implica $y = \sqrt{A}$, tenemos que el perímetro es mínimo cuando x = y. Es decir, cuando el rectángulo es un cuadrado.

2. Un granjero tiene *L* pies de alambre para cercar un terreno de pasto rectangular adyacente a un muro de piedra. ¿Qué dimensiones darán el área máxima al terreno cercado?.

Respuesta.- Sea y el ancho de la pradera (es decir, la longitud de los lados perpendiculares a la pared) y sea x la longitud de la pradera (es decir, la longitud del lado del rectángulo que es paralelo a la pared). Entonces, tenemos lo 2y + x = L que implica x = L - 2. Entonces queremos maximizar

$$A(y) = (L - 2y)y = Ly - 2y^{2}.$$

Derivando se tiene,

$$A'(y) = L - 4y.$$

Igualando a cero,

$$L-4y=0 \quad \Rightarrow \quad y=\frac{L}{4}y.$$

Así, A'(y)>0 cuando $y<\frac{L}{4}$ y A'(y)<0 cuando $y>\frac{L}{4}$. Por el teorema 4.8 Apostol, A(y) toma el valor máximo cuando $y=\frac{L}{4}$. Luego,

$$x = L - 2y = L2\frac{L}{4} = \frac{L}{2}.$$

De donde las dimensiones serán $\frac{L}{2}$ por $\frac{L}{4}$.

3. Un granjero quiere cercar un terreno de pasto rectangular de área *A* adyacente a un muro de piedra. ¿Qué dimensiones exigen la mínima cantidad de alambre de cerca?.

Respuesta.- Sea x la longitud del lado paralelo al muro de piedra e y la longitud de los lados perpendiculares al muro de piedra. Entonces, A=xy fija, por lo que $y=\frac{A}{x}$. La función que queremos minimizar es $P=x+2y=x+\frac{2A}{x}$. Luego, tomando la derivada que tenemos,

$$P'(x) = 1 - \frac{2A}{x^2}.$$

Igualando a cero,

$$1 - \frac{2A}{x^2} = 0 \quad \Rightarrow \quad x = \sqrt{2A}.$$

Así, P'(x) < 0 cuando $x < \sqrt{2A}$ y P'(x) > 0 cuando $x > \sqrt{2A}$. Por el teorema 4.8 Apostol, P(x) toma el valor mínimo cuando $x = \sqrt{2A}$. De donde,

$$y = \frac{A}{x}$$
 \rightarrow $y = \frac{A}{2\sqrt{2A}} = \frac{\sqrt{2A}}{2}$.

4. Dado S > O. Probar que entre todos los números positivos x e y tales que x + y = S, la suma $x^2 + y^2$ es mínima cuando x = y.

Demostración.- Ya que x+y=S que implica y=S-x. Entonces, la función que queremos minimizar es

$$f(x) = x^2 + (S - x)^2.$$

Luego, tomando la derivada se tiene,

$$f'(x) = 2x - 2(S - x) = 4x - 2S.$$

Igualando a cero,

$$4x - 2S = 0 \quad \Rightarrow \quad x = \frac{S}{2}.$$

Así, f'(x) < 0 cuando $x < \frac{S}{2}$ y f'(x) > 0 cuando $x > \frac{S}{2}$. Por el teorema 4.8 Apostol, f(x) toma el valor mínimo cuando $x = \frac{S}{2}$. De donde,

$$y = S - x = S - \frac{S}{2} = \frac{S}{2}$$
.

Por lo tanto la suma es mínima, cuando

$$x = y$$
.

5. Dado R > 0. Probar que entre todos los números positivos x e y tales que $x^2 + y^2 = R$, la suma x + y es máxima cuando x = y.

Demostración.- Por la ecuación $x^2 + y^2 = R$ se tiene,

$$y = \sqrt{R - x^2}.$$

Entonces, encontramos el máximo de la función de la siguiente manera,

$$f(x) = x + \sqrt{R - x^2}$$
 \Rightarrow $f'(x) = 1 - \frac{x}{\sqrt{R - x^2}}$.

Luego, igualamos a cero,

$$\frac{x}{\sqrt{R-x^2}} = 1 \quad \Rightarrow \quad x = \sqrt{\frac{R}{2}}.$$

Así, f'(x)>0 cuando $x<\sqrt{\frac{R}{2}}$ y f'(x)<0 cuando $x>\sqrt{\frac{R}{2}}$. Por el teorema 4.8 Apostol, f(x) toma el valor máximo cuando $x=\sqrt{\frac{R}{2}}$. De donde,

$$y = \sqrt{R - x^2} = \sqrt{R - \frac{R}{2}} = \sqrt{\frac{R}{2}} = x.$$

Por lo tanto la suma x + y es máxima, cuando x = y.

6. Cada lado de un cuadrado tiene una longitud L. Demostrar que entre todos los cuadrados inscritos en el cuadrado dado, el de área mínima tiene lados de longitud $\frac{1}{2}L\sqrt{2}$.

Respuesta.- Sea un cuadrado con aristas de longitud L de donde x + y = L. Vemos que x e y son longitudes de las dos secciones de L creadas por el punto en el que la esquina del cuadrado inscrito se encuentra con el borde del cuadrado exterior. Sea e la longitud de la arista del cuadrado inscrito. Entonces, x + y = L implica y = L - x. Pongamos $f(x) = e^2$, por lo que

Área =
$$f(x) = e^2 = x^2 + y^2 = x^2 + (L - x)^2 = 2x^2 - 2Lx + L^2$$

Sacando la derivada,

$$f'(x) = 4x - 2L.$$

Igualando a cero,

$$4x - 2L = 0 \quad \Rightarrow \quad x = \frac{L}{2}.$$

Así, f'(x) < 0 cuando $x < \frac{L}{2}$ y f'(x) > 0 cuando $x > \frac{L}{2}$. Por el teorema 4.8 Apostol, f(x) toma el valor mínimo cuando $x = \frac{L}{2}$. Usando nuestra ecuación para y, tenemos

$$y = L - x = L - \frac{L}{2} = \frac{L}{2}.$$

Finalmente, resolviendo para la longitud de la arista e,

$$e^2 = \left(\frac{L}{2}\right)^2 + \left(\frac{L}{2}\right)^2 = \frac{L^2}{2} \quad \Rightarrow \quad e = \frac{L}{\sqrt{2}} = \frac{\sqrt{2}}{2}L.$$

7. Cada lado de un cuadrado tiene una longitud *L*. Hallar el tamaño del cuadrado de máxima área que puede circunscribirse al cuadrado dado.

Respuesta.- Sea la longitud de la arista del cuadrado circunscrito. Después e=x+y. Además, si L es la longitud de la arista del cuadrado dado, tenemos

$$x^2 + y^2 = L^2$$
 \Rightarrow $y = \sqrt{L^2 - x^2}$.

Sea $f(x) = \text{Área} = (x + y)^2$, entonces

Área =
$$f(x) = (x + y)^2 = (L^2 + x^2)^2 = x^2 + 2x\sqrt{L^2 - x^2} + L^2 - x^2 = 2x\sqrt{L^2 - x^2} + L^2$$
.

Sacando la derivada,

$$f'(x) = 2\sqrt{L^2 - x^2} - \frac{2x}{\sqrt{L^2 - x^2}} = 2\frac{L^2 - x^2 - x}{\sqrt{L^2 - x^2}}.$$

Igualando a cero,

$$2\frac{L^2 - x^2 - x}{\sqrt{L^2 - x^2}} = 0 \quad \Rightarrow \quad x = \frac{L}{\sqrt{2}}.$$

Así, f'(x) > 0 cuando $x < \frac{L}{\sqrt{2}}$ y f'(x) < 0 cuando $x > \frac{L}{\sqrt{2}}$. Por el teorema 4.8 Apostol, f(x) toma el valor máximo cuando $x = \frac{L}{\sqrt{2}}$. Usando nuestra ecuación para y, tenemos

$$y = \sqrt{L^2 - \frac{L^2}{2}} = \sqrt{\frac{L^2}{2}} = \frac{L}{\sqrt{2}}.$$

Finalmente, dado que e = x + y tenemos el área del cuadrado circunscrito dada por

Área =
$$e^2 = (x + y)^2 = \left(\frac{L}{\sqrt{2}} + \frac{L}{\sqrt{2}}\right)^2 = \left(\frac{2L}{\sqrt{2}}\right)^2 = 2L^2$$
.

8. Demostrar que entre todos los rectángulos que pueden inscribirse en un círculo dado, el cuadrado tiene el área máxima.

Demostración.- Sean x e y que denotan las longitudes de los lados del rectángulo inscrito, y r denota el radio del círculo. Entonces $x^2 + y^2 = 4r^2$ que implica $y = \sqrt{4r^2 - x^2}$. Sea $f(x) = x \cdot y$. Entonces, derivando se tiene,

Área =
$$f(x) = xy = x\sqrt{4r^2 - x^2}$$
 \Rightarrow $f(x) = \frac{4r^2 - 2x^2}{\sqrt{4r^2 - x^2}}$

Luego, Igualando a cero,

$$\frac{4r^2 - 2x^2}{\sqrt{4r^2 - x^2}} = 0 \quad \Rightarrow \quad x = \sqrt{2}r.$$

Así, f'(x) < 0 cuando $x < \sqrt{2}r$ y f'(x) > 0 cuando $x > \sqrt{2}r$. Por el teorema 4.8 Apostol, f(x) toma el valor máximo cuando $x = \sqrt{2}r$. Usando nuestra ecuación para y, tenemos

$$y = \sqrt{4r^2 - x^2} = \sqrt{4r^2 - 2r^2} = \sqrt{2r^2} = \sqrt{2}r.$$

Finalmente, x = y por lo que el rectángulo es un cuadrado.

9. Demostrar que entre todos los rectángulos de área dada, el cuadrado tiene el círculo circunscrito mínimo.

Demostración.- Sean x e y los lados del rectángulo, r el radio del circulo circunscrito y A = xy el área del cuadrado. Entonces,

$$A = xy \quad \Rightarrow \quad y = \frac{A}{x}.$$

Además, dado que tenemos un triángulo rectángulo cuya hipotenusa es el diámetro del círculo (por lo tanto es 2*r*) y cuyos catetos son los lados del cuadrado que tenemos,

$$(2r)^2 = x^2 + y^2 \quad \Rightarrow \quad r = \frac{1}{2}\sqrt{x^2 + y^2}$$

$$\Rightarrow \quad r = \frac{1}{2}\sqrt{x^2 + \left(\frac{A}{x}\right)^2}$$

$$\Rightarrow \quad r = \frac{\sqrt{x^4 + A^2}}{2x}.$$

Luego queremos encontrar el valor mínimo de esta función (ya que esta función nos da el radio del círculo). Llamemos a la función f(x) y tomemos su derivada de la siguiente manera,

$$f'(x) = \frac{(2x)\left(\frac{1}{2}\right)(4x^3)\left(x^4 - A^2\right)^{-\frac{1}{2}} - \left(\sqrt{x^4 + A^2}\right)(2)}{4x^2} = \frac{x^2}{\sqrt{x^4 + A^2}} - \frac{\sqrt{x^4 - A^2}}{2x^2}.$$

Igualando a cero,

$$\frac{x^2}{\sqrt{x^4 + A^2}} - \frac{\sqrt{x^4 - A^2}}{2x^2} = 0 \quad \Rightarrow \quad x^4 = a^2 \quad \Rightarrow \quad x_1 = \sqrt{A}, \quad x_2 = \sqrt{A}.$$

Luego el punto critico es un mínimo ya que, f'(x) < 0 cuando $x < \sqrt{A}$ y f'(x) > 0 cuando $x > \sqrt{A}$. Por lo tanto, el radio del círculo se minimiza cuando $x = y = \sqrt{A}$, por lo que el rectángulo es un cuadrado.

10. Dada una esfera de radio R. Hallar el radio r y la altura h del cilindro circular recto de mayor superficie lateral $2\pi rh$ que puede inscribirse en la esfera.

Demostración.- Primero, sea h una función de r. Luego sea, un triángulo rectángulo con hipotenusa de longitud r y catetos de longitud $\frac{h}{2}$ (ya que el segundo cateto solo llega al centro de la esfera, no a la longitud total del cilindro). Por lo tanto,

$$R^2 = r^2 + \frac{h^2}{4} \quad \Rightarrow \quad h = 2\sqrt{R^2 - r^2}.$$

Entonces, sabemos que el área de la superficie lateral, , viene dada por la fórmula

$$A = 2\pi rh = 2\pi r\sqrt{R^2 - r^2} = 4\pi r\sqrt{R^2 - r^2}.$$

Llamando a esta función f(r) y diferenciando tenemos,

$$f'(r) = 4\pi\sqrt{R^2 - r^2} + \frac{4\pi r}{\sqrt{R^2 - r^2}}$$

Igualando a cero,

$$4\pi\sqrt{R^2-r^2}+\frac{4\pi r}{\sqrt{R^2-r^2}}=0\quad \Rightarrow\quad 2r^2=R^2\quad \Rightarrow\quad r=\frac{R}{\sqrt{2}}.$$

Luego, f'(r) < 0 cuando $r < \frac{R}{\sqrt{2}}$ y f'(r) > 0 cuando $r > \frac{R}{\sqrt{2}}$. Por el teorema 4.8 Tom Apostol, f(r) toma el valor mínimo cuando $r = \frac{R}{\sqrt{2}}$. Por lo tanto, el área de la superficie lateral es mínima cuando

$$r = \frac{h}{2} = \sqrt{R^2 - \frac{R^2}{2}} = \frac{R}{\sqrt{2}}.$$

11. Entre todos los cilindros circulares rectos de área lateral dada, demostrar que la menor esfera circunscrita tiene el radio igual al radio del cilindro multiplicado por $\sqrt{2}$.

Demostración.- El área de la superficie lateral $A=2\pi rh$ es constante y

$$R^2 = r^2 + \frac{h^2}{4}.$$

Entonces, tenemos

$$A = 2\pi rh \quad \Rightarrow \quad h = \frac{A}{2\pi r}$$

Por lo tanto,

$$R^2 = r^2 + \frac{h^2}{4} = r^2 + \frac{A^2}{16\pi^2 r^2} \quad \Rightarrow \quad R = \sqrt{r^2 + \frac{A^2}{16\pi^2 r^2}}.$$

Llamemos a esta función f'(r) = 0. Luego tomando la derivada,

$$f'(r) = \frac{1}{2} \left(r^2 + \frac{A^2}{16\pi^2 r^2} \right)^{-\frac{1}{2}} \left(2r - \frac{2A^2}{16\pi^2 r^3} \right).$$

Igualando a cero,

$$\frac{1}{2}\left(r^2 + \frac{A^2}{16\pi^2 r^2}\right)^{-\frac{1}{2}}\left(2r - \frac{2A^2}{16\pi^2 r^3}\right) = 0 \quad \Rightarrow \quad 2r = \frac{A^2}{8\pi^2 r^3} \quad \Rightarrow \quad r^4 = \frac{A^2}{16\pi^2} \quad \Rightarrow \quad r = \frac{1}{2}\sqrt{\frac{A}{\pi}}.$$

Luego, f'(r) < 0 cuando $r < \frac{1}{2}\sqrt{\frac{A}{\pi}}$ y f'(r) > 0 cuando $r > \frac{1}{2}\sqrt{\frac{A}{\pi}}$. Por el teorema 4.8 Tom Apostol,

f(r) toma el valor mínimo cuando $r=\frac{1}{2}\sqrt{\frac{A}{\pi}}$. Por lo tanto, el radio de la esfera circunscrita es mínimo cuando

$$R = \sqrt{r^2 + \frac{A^2}{16\pi^2 r^2}} = \sqrt{\frac{2A}{2\pi}} = \sqrt{2}r.$$

12. Dado Un cono circular recto de radio R y altura H. Hallar el radio y la altura del cilindro circular recto de mayor área lateral que puede inscribirse en el cono.

Respuesta.- El área de la superficie lateral del cilindro viene dada por $A=2\pi rh$, donde res el radio del cilindro y hes la altura del cilindro. Del diagrama encontramos una fórmula para h en términos de las constantes H y R, y el radio del cilindro r,

$$h = -\frac{H}{R}r + H.$$

Así, sea f(r) el área de la superficie lateral tenemos

$$A = f(r) = 2\pi rh = 2\pi r \left(-\frac{H}{R}r + H\right) = 2\pi rH - \frac{2\pi H}{R}r^{2}.$$

Tomando la derivada con respecto a r e igualando a cero,

$$2\pi H - \frac{4\pi H}{R}r = 0 \quad \Rightarrow \quad R - 2r = 0 \quad \Rightarrow \quad r = \frac{R}{2}.$$

Luego, f'(r) > 0 cuando $r < \frac{R}{2}$ y f'(r) < 0 cuando $r > \frac{R}{2}$. Por el teorema 4.8 Tom Apostol, f(r) toma el valor máximo cuando $r = \frac{R}{2}$. Por lo tanto, el área de la superficie lateral es máxima cuando

$$h = \frac{1}{2}H.$$

13. Hallar las dimensiones del cilindro circular recto de máximo volumen que puede inscribirse en un cono circular recto de radio R y altura H.

Respuesta.- Tenemos la siguiente expresión para h,

$$h = -\frac{H}{R}r + H.$$

Entonces,

$$V = \pi r^2 h = \pi r^2 \left(-\frac{H}{R}r + H \right) = \pi r^2 - \frac{\pi H}{R}r^3.$$

Derivando con respecto a r,

$$\frac{dV}{dr} = 2\pi Hr - \frac{3\pi H}{R}r^2.$$

Igualando a cero,

$$2\pi Hr - \frac{3\pi H}{R}r^2 = 0 \quad \Rightarrow \quad 2\pi H - \frac{3\pi H}{R}r = 0$$
$$\Rightarrow \quad 1 - \frac{3}{2R}r = 0$$
$$\Rightarrow \quad r = \frac{2}{3}R.$$

Luego, f'(r) > 0 cuando $r < \frac{2}{3}R$ y f'(r) < 0 cuando $r > \frac{2}{3}R$. Por el teorema 4.8 Tom Apostol, f(r) toma el valor máximo cuando $r = \frac{2}{3}R$. Por lo tanto, el volumen es máximo cuando

$$h = \frac{2}{3}H.$$

14. Dada una esfera de radio *R*. Calcular, en función de *R*, el radio *r* y la altura *h* del cono circular recto de mayor volumen que puede inscribirse en esa esfera.

Respuesta.- Queremos maximizar el volumen del cono,

$$V = \frac{1}{3}\pi r^2 h.$$

Luego podemos encontrar la siguiente expresión para h en términos de R y r,

$$h = R + \sqrt{R^2 - r^2}.$$

Por lo tanto, nuestra expresión para V en términos de r es

$$V = \frac{1}{3}\pi r^2 R + \frac{1}{3}\pi r^2 \sqrt{R^2 - r^2}.$$

Derivando con respecto a r,

$$\frac{dV}{dr} = \frac{2}{3}\pi r R + \frac{2}{3}\pi r \sqrt{R^2 - r^2} - \frac{1}{3}\pi r^3 \left(\frac{1}{\sqrt{R^2 - r^2}}\right) = \frac{2}{3}\pi r \left(R + \sqrt{R^2 - r^2}\right) - \frac{\pi r^3}{3\sqrt{R^2 - r^2}}.$$

Igualando a cero,

$$\frac{2}{3}\pi r \left(R + \sqrt{R^2 - r^2}\right) - \frac{\pi r^3}{3\sqrt{R^2 - r^2}} = 0 \quad \Rightarrow \quad R + \sqrt{R^2 - r^2} - \frac{r^2}{2\sqrt{R^2 - r^2}} = 0$$

$$\Rightarrow \quad 9r^2 = 8r^2R^2$$

$$\Rightarrow \quad r = \frac{2\sqrt{2}}{3}R.$$

Luego, f'(r)>0 cuando $r<\frac{2\sqrt{2}}{3}R$ y f'(r)<0 cuando $r>\frac{2\sqrt{2}}{3}R$. Por el teorema 4.8 Tom Apostol, f(r) toma el valor máximo cuando $r=\frac{2\sqrt{2}}{3}R$. Por lo tanto, el volumen es máximo cuando

$$h = R + \sqrt{R^2 - \frac{8}{9}R^2} = \frac{4}{3}R.$$

15. Hallar el rectángulo de mayor área que puede inscribirse en un semicírculo, teniendo la base inferior en el diámetro.

Respuesta.- Sean r el radio del semicirculo, x la mitad de la base del rectángulo e y la altura del rectángulo. Queremos maximizar el área, A = 2xy tal que

$$y=\sqrt{r^2-x^2}.$$

Luego,

$$A = 2x \left(\sqrt{r^2 - x^2} \right).$$

Derivando con respecto a x,

$$f'(x) = \frac{dA}{dx} = 2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}}.$$

Igualando a cero,

$$2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}} = 0 \quad \Rightarrow \quad 2\sqrt{r^2 - x^2} = 2x^2$$
$$\Rightarrow \quad 2r^2 - 4x^2 = 0$$
$$\Rightarrow \quad x = \frac{r}{\sqrt{2}}.$$

Luego, f'(x) > 0 cuando $x < \frac{r}{\sqrt{2}}$ y f'(x) < 0 cuando $x > \frac{r}{\sqrt{2}}$. Por el teorema 4.8 Tom Apostol, f(x) toma el valor máximo cuando $x = \frac{r}{\sqrt{2}}$. Ya que $y = \sqrt{r^2 - x^2}$, entonces

$$y = \sqrt{r^2 - \left(\frac{r}{\sqrt{2}}\right)^2} = \frac{r}{\sqrt{2}}.$$

Por lo tanto, la base del rectángulo tiene longitud $\frac{2r}{\sqrt{2}}$ y su altura tiene longitud $\frac{r}{\sqrt{2}}$.

16. Hallar el trapecio de mayor área que puede inscribirse en un semicírculo, teniendo la base inferior en el diámetro.

Respuesta.- Sea rel radio del semicírculo, b_1 sea el borde inferior del trapezoide y b_2 el borde superior. Recordamos de la geometría que el área del trapezoide está dada por

$$A = \frac{1}{2}(b_1 + b_2)h.,$$

donde b_1 y b_2 son las longitudes de las bases y h es la altura del trapezoide. A continuación, queremos encontrar fórmulas para b_1 y b_2 en función al radio r. Como b_1 se encuentra en el diámetro del semicírculo, tenemos $b_1 = 2r$. La hipotenusa de cada uno de estos es r, y los catetos tienen longitudes h y $\frac{b_2}{2}$. Por lo tanto,

$$r^{2} = h^{2} + \left(\frac{b_{2}}{2}\right)^{2} \quad \Rightarrow \quad r^{2} = h^{2} + \frac{b_{2}^{2}}{4}$$
$$\Rightarrow \quad b_{2}^{2} = 4r^{2} - 4h^{2}$$
$$\Rightarrow \quad b_{2} = 2\sqrt{r^{2} - h^{2}}$$

Sustituyendo estos en la fórmula para el área de un trapezoide, obtenemos una expresión para el área del trapezoide en función de r y h,

$$A = \frac{1}{2}h(b_1 + b_2) = hr + h\sqrt{r^2 - h^2}.$$

Derivando con respecto a *h*,

$$f'(h) = \frac{dA}{dh} = r + \sqrt{r^2 - h^2} - \frac{h^2}{\sqrt{r^2 - h^2}}.$$

Igualamos a cero para encontrar los puntos críticos,

$$r + \sqrt{r^2 - h^2} - \frac{h^2}{\sqrt{r^2 - h^2}} = 0 \quad \Rightarrow \quad r\sqrt{r^2 - h^2} + r^2 - h^2 - h^2$$
$$\Rightarrow \quad 4h^4 = 3r^2h^2$$
$$\Rightarrow \quad h = \frac{\sqrt{3}}{2}r.$$

Luego, f'(h) > 0 cuando $h < \frac{\sqrt{3}}{2}r$ y f'(h) < 0 cuando $h > \frac{\sqrt{3}}{2}r$. Por el teorema 4.8 Tom Apostol, f(h) toma el valor máximo cuando $h = \frac{\sqrt{3}}{2}r$. Finalmente, usamos este valor h para resolver b_2 en función de r,

$$b_2 = 2\sqrt{r^2 - h^2} = 2\sqrt{\frac{r^2}{4}}r.$$

Como $b_1 = 2r$, entonces las longitudes de los bordes superiores e inferiores del trapezoide son:

$$b_1 = 2r$$
, $b_2 = r$.

17. Una caja abierta está construida con un rectángulo de cartón quitando cuadrados iguales en cada esquina y doblando hacia arriba los bordes. Hallar las dimensiones de la caja de mayor volumen que puede construirse de tal modo si el rectángulo tiene como lados a) 10 y 10; b) 12 y 18.

Respuesta.- Comenzamos con un rectángulo con lados cada uno de longitud 10. Entonces, los bordes de la base de la caja tienen cada uno, una longitud de l=w=10-2x, y la altura x; por lo tanto, el volumen es

$$V = x(10 - 2x)^2 = 4x^3 - 40x^2 + 100x.$$

Derivando con respecto a x,

$$f'(x) = \frac{dV}{dx} = 12x^2 - 80x + 100.$$

Igualamos a cero para encontrar los puntos críticos,

$$12x^2 - 80x + 100 = 0$$
 \Rightarrow $x_1 = 5$ y $x_2 = 4$.

Luego, f'(x) > 0 cuando $0 < x < \frac{5}{4}$ y f'(x) < 0 cuando $\frac{5}{3} < x < 5$. Por el teorema 4.8 Tom Apostol,

V toma el valor máximo cuando $x = \frac{5}{3}$. Resolviendo para la longitud y el ancho de la base de la caja tenemos, entonces

$$l = w = 10 - 2x = 10 - 2\left(\frac{5}{3}\right) = \frac{20}{3}.$$

Para el inciso b) comencemos con un rectángulo de 18 de largo y 12 de ancho. Entonces, los bordes de la base de la caja tienen longitudes w = 12 - 2x y l = 18 - 2x, y la altura de la caja es x. Por tanto, el volumen es

$$V = x(12 - 2x)(18 - 2x) = 4x^3 - 60x^2 + 216x.$$

Derivando con respecto a x,

$$f'(x) = \frac{dV}{dx} = 12x^2 - 120x + 216.$$

Igualamos a cero para encontrar los puntos críticos,

$$12x^2 - 120x + 216 = 0$$
 \Rightarrow $x_1 = 5 - \sqrt{7}$ y $x_2 = 5 + \sqrt{7}$.

Luego, f'(x) > 0 cuando $0 < x < \frac{5 - \sqrt{7}}{2}$ y f'(x) < 0 cuando $\frac{5 - \sqrt{7}}{2} < x < 5 + \sqrt{7}$. Por el teorema

4.8 Tom Apostol, V toma el valor máximo cuando $x = \frac{5 - \sqrt{7}}{2}$. Resolviendo para l y w se tiene,

$$l = w = 18 - 2(5 - \sqrt{7}) = 8 - 2\sqrt{7}, \qquad w = 12 - 2(5 - \sqrt{7}) = 2 + 2\sqrt{7}.$$

18. Si a y b son los catetos de un triángulo rectángulo cuya hipotenusa es 1, hallar el mayor valor de 2a + b.

Respuesta.- Por el teorema de Pitágoras, se tiene

$$a^2 + b^2 = 1 \quad \Rightarrow \quad a = \sqrt{1 - b^2}.$$

Recordemos que queremos maximizar,

$$2a + b = 2\sqrt{1 - b^2} + b.$$

Llamemos a esta función f(b) y derivemos con respecto a b tenemos,

$$f'(b) = -\frac{2b}{\sqrt{1 - b^2}} + 1.$$

Igualamos a cero para encontrar los puntos críticos,

$$-\frac{2b}{\sqrt{1-b^2}} + 1 = 0 \quad \Rightarrow \quad -2b + \sqrt{1-b^2} = 0$$
$$\Rightarrow \quad 5b^2 = 1 - b^2.$$
$$\Rightarrow \quad b = \frac{\sqrt{5}}{5}.$$

Luego, f'(b)>0 cuando $b<\frac{\sqrt{5}}{5}$ y f'(b)<0 cuando $b>\frac{\sqrt{5}}{5}$. Por el teorema 4.8 Tom Apostol, f(b) toma el valor máximo cuando $b=\frac{\sqrt{5}}{5}$. Dado que $a=\sqrt{1-b^2}$, se tiene

$$a = \frac{2\sqrt{5}}{5}.$$

Por lo tanto, el máximo valor de 2a + b es

$$2a + b = \frac{4\sqrt{5}}{5} + \frac{\sqrt{5}}{5} = \sqrt{5}.$$