## LECTURE-7

Eigen Value and Eigen Vector

# Eigenvalues and Eigenvectors

- Linear equations Ax = b come from steady state problems. Eigen values have their greatest importance in *dynamic problems*. The solution of du/dt= Au is changing with time—growing or decaying or oscillating.
- Almost all vectors change direction, when they are multiplied by square matrix A.
- Certain exceptional vectors "x" are in the same direction as Ax. Those are the "Eigen vectors".
- The basic equation is  $Ax = \lambda x$ . The number  $\lambda$  is an "Eigen value" of A.
- The eigen value tells whether the special vector "x" is stretched or shrunk or reversed or left unchanged—when it is multiplied by A.

Note: The pr

The prefix *eigen*- is adopted from the German word "eigen" for "own" in the sense of a characteristic description (that is why the eigenvectors are sometimes also called characteristic vectors, and, similarly, the eigenvalues are also known as characteristic values).

# Eigenvalues and Eigenvectors

### • Eigenvalue problem:

If A is an  $n \times n$  matrix, do there exist nonzero vectors x in  $R^n$  such that Ax is a scalar multiple of x?

#### • Eigenvalue and eigenvector:

A: an  $n \times n$  matrix

 $\lambda$ : a scalar

x: a nonzero vector in  $R^n$ 

Eigenvalue  $Ax = \lambda x$   $Ax = \lambda x$ Eigenvector

Geometrical Interpretation



• Ex 7.1: (Verifying eigenvalues and eigenvectors)

$$A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \quad x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Eigenvalue

$$Ax_1 = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2\begin{bmatrix} 1 \\ 0 \end{bmatrix} = 2x_1$$

Eigenvector

Eigenvalue
$$Ax_2 = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} = -1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = (-1)x_2$$

Eigenvector

• Theorem 7.1: (The eigenspace of A corresponding to  $\lambda$ )

If *A* is an  $n \times n$  matrix with an eigenvalue  $\lambda$ , then the set of all eigenvectors of  $\lambda$  together with the zero vector is a subspace of  $R^n$ . This subspace is called the eigenspace of  $\lambda$ .

Pf:

 $x_1$  and  $x_2$  are eigenvectors corresponding to  $\lambda$ 

(i.e. 
$$Ax_1 = \lambda x_1$$
,  $Ax_2 = \lambda x_2$ )

(1) 
$$A(x_1 + x_2) = Ax_1 + Ax_2 = \lambda x_1 + \lambda x_2 = \lambda (x_1 + x_2)$$
  
(i.e.  $x_1 + x_2$  is an eigenvector corresponding to  $\lambda$ )

(2) 
$$A(cx_1) = c(Ax_1) = c(\lambda x_1) = \lambda(cx_1)$$
  
(i.e.  $cx_1$  is an eigenvector corresponding to  $\lambda$ )

### • Ex 7.2: (An example of eigenspaces in the plane)

Find the eigenvalues and corresponding eigenspaces of

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Sol:

If 
$$\mathbf{v} = (x, y)$$

$$A\mathbf{v} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix}$$

For a vector on the *x*-axis

Eigenvalue  $\lambda = -1$ 

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} -x \\ 0 \end{bmatrix} = -1 \begin{bmatrix} x \\ 0 \end{bmatrix}$$

For a vector on the *y*-axis

Eigenvalue 
$$\lambda = 1$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix} = 1 \begin{bmatrix} 0 \\ y \end{bmatrix}$$

Geometrically, multiplying a vector (x, y) in  $\mathbb{R}^2$  by the matrix A corresponds to a reflection in the y-axis.



The eigenspace corresponding to  $\lambda_1 = -1$  is the *x*-axis. The eigenspace corresponding to  $\lambda_2 = 1$  is the *y*-axis.

• Theorem 7.2: (Finding eigenvalues and eigenvectors of a matrix  $A \in M_{n \times n}$ )

Let A is an  $n \times n$  matrix.

- (1) An eigenvalue of A is a scalar  $\lambda$  such that  $\det(\lambda \mathbf{I} A) = 0$
- (2) The eigenvectors of A corresponding to  $\lambda$  are the nonzero solutions of  $(\lambda \mathbf{I} A)x = 0$
- Note:

$$Ax = \lambda x \implies (\lambda \mathbf{I} - A)x = 0$$
 (homogeneous system)  
 $(\lambda \mathbf{I} - A)x = 0$  has nonzero solutions iff  $\det(\lambda \mathbf{I} - A) = 0$ 

• Characteristic equation of *A*:

$$\det(\lambda \mathbf{I} - A) = 0$$

• Ex 7.3: (Finding eigenvalues and eigenvectors)

Find the eigenvalues and eigenvectors of matrix A. 
$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$$

Sol: Characteristic equation:

$$(\lambda I - A) = \begin{vmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{vmatrix}$$

$$= \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2) = 0$$

$$\Rightarrow \lambda = -1, -2$$
Eigenvalue:  $\lambda_1 = -1, \lambda_2 = -2$ 

$$(1)\lambda_{1} = -1 \qquad \Rightarrow (\lambda_{1}I - A)x = \begin{bmatrix} -3 & 12 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 4t \\ t \end{bmatrix} = t \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \ t \neq 0$$

$$(2)\lambda_{2} = -2 \quad \Rightarrow (\lambda_{2}I - A)x = \begin{bmatrix} -4 & 12 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 3t \\ t \end{bmatrix} = t \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \ t \neq 0$$

Ex 7.4: (Finding eigenvalues and eigenvectors)

Find the eigenvalues and corresponding eigenvectors for the matrix A.

What is the dimension of the eigenspace of each eigenvalue?

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Sol: Characteristic equation:

$$|\lambda \mathbf{I} - A| = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3 = 0$$

Eigenvalue:  $\lambda = 2$ 

$$\lambda = 2$$

The eigenspace of A corresponding to :  $\lambda = 2$ 

$$(\lambda \mathbf{I} - A)x = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} s \\ 0 \\ t \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad s, t \neq 0$$

$$\begin{cases} s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} s, t \in R \end{cases} : \text{the eigenspace of A corresponding to } \lambda = 2$$

Thus, the dimension of its eigenspace is 2.

• Ex 7.5 : Find the eigenvalues of the matrix *A* and find a basis for each of the corresponding eigenspaces.

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & -10 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}$$

Sol: Characteristic equation:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 0 & 0 & 0 \\ 0 & \lambda - 1 & -5 & 10 \\ -1 & 0 & \lambda - 2 & 0 \\ -1 & 0 & 0 & \lambda - 3 \end{vmatrix}$$

$$= (\lambda - 1)^{2} (\lambda - 2)(\lambda - 3) = 0$$
Eigenvalue:  $\lambda_{1} = 1, \lambda_{2} = 2, \lambda_{3} = 3$ 

$$(1)\lambda_{1} = 1$$

$$\Rightarrow (\lambda_{1}I - A)x = \begin{bmatrix} 0 & 0 & 0 & 0 & x_{1} \\ 0 & 0 & -5 & 10 \\ -1 & 0 & -1 & 0 \\ -1 & 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2t \\ s \\ 2t \\ t \end{bmatrix} = s \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\ 2 \\ 1 \end{bmatrix}, s, t \neq 0$$

$$\Rightarrow \begin{cases} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix} \end{cases} \text{ is a basis for the eigenspace of A corresponding to } \lambda = 0$$

 $\lambda = 1$ 

$$(2)\lambda_{2} = 2$$

$$\Rightarrow (\lambda_{2}I - A)x = \begin{bmatrix} 1 & 0 & 0 & 0 & x_{1} \\ 0 & 1 & -5 & 10 & x_{2} \\ -1 & 0 & 0 & 0 & x_{3} \\ -1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 5t \\ t \\ 0 \end{bmatrix} = t \begin{bmatrix} 0 \\ 5 \\ 1 \\ 0 \end{bmatrix}, \ t \neq 0$$

$$\Rightarrow \begin{cases} \begin{bmatrix} 0 \\ 5 \\ 1 \\ 0 \end{bmatrix} \end{cases} \text{ is a basis for the eigenspace of A corresponding to } \lambda = 2$$

$$(3)\lambda_{3} = 3$$

$$\Rightarrow (\lambda_{3}I - A)x = \begin{bmatrix} 2 & 0 & 0 & 0 & x_{1} \\ 0 & 2 & -5 & 10 & x_{2} \\ -1 & 0 & 1 & 0 & x_{3} \\ -1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ -5t \\ 0 \\ t \end{bmatrix} = t \begin{bmatrix} 0 \\ -5 \\ 0 \\ 1 \end{bmatrix}, \ t \neq 0$$

$$\Rightarrow \begin{cases} \begin{bmatrix} 0 \\ -5 \\ 0 \\ 1 \end{bmatrix} \end{cases} \text{ is a basis for the eigenspace of A corresponding to } \lambda = 3$$

- Theorem 7.3: (Eigenvalues for triangular matrices) If A is an  $n \times n$  triangular matrix, then its eigenvalues are the entries on its main diagonal.
- Ex 7.6: (Finding eigenvalues for diagonal and triangular matrices)

• Eigenvalues and eigenvectors of linear transformations:

A number  $\lambda$  is called an eigenvalue of a linear transformation  $T:V\to V$  if there is a nonzero vector  $\mathbf{x}$  such that  $T(\mathbf{x})=\lambda\mathbf{x}$ . The vector  $\mathbf{x}$  is called an eigenvector of T corresponding to  $\lambda$ , and the set of all eigenvectors of  $\lambda$  (with the zero vector) is called the eigenspace of  $\lambda$ .

### Ex 7.7: (Finding eigenvalues and eigenspaces)

Find the eigenvalues and corresponding eigenspaces

$$A = \begin{vmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{vmatrix}.$$

Sol:

$$|\lambda I - A| = \begin{bmatrix} \lambda - 1 & -3 & 0 \\ -3 & \lambda - 1 & 0 \\ 0 & 0 & \lambda + 2 \end{bmatrix} = (\lambda + 2)^{2} (\lambda - 4)$$

eigenvalue s  $\lambda_1 = 4$ ,  $\lambda_2 = -2$ 

The eigenspaces for these two eigenvalues are as follows.

$$B_1 = \{(1, 1, 0)\}$$
 Basis for  $\lambda_1 = 4$   
 $B_2 = \{(1, -1, 0), (0, 0, 1)\}$  Basis for  $\lambda_2 = -2$ 

#### Notes:

(1) Let  $T:R^3 \to R^3$  be the linear transformation whose standard matrix is A in  $\boxed{7.7}$ , and let B' be the basis of  $R^3$  made up of three linear independent eigenvectors found in  $\boxed{7.7}$ . Then A', the matrix of T relative to the basis B', is diagonal.

$$B' = \{(1, 1, 0), (1, -1, 0), (0, 0, 1)\}$$
Eigenvectors
$$A' = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Eigenvalues

(2) The main diagonal entries of the matrix A' are the eigenvalues of A.

# Complex Eigenvalues

It is possible for the characteristic equation of a matrix with real entries to have complex solutions. In fact, because the eigenvalues of a matrix are the roots of a polynomial of precise degree *n*, *every matrix has exactly n eigenvalues if* we count them as we count the roots of a polynomial (meaning that they may be repeated, and may occur in complex conjugate pairs). For example, the characteristic polynomial of the matrix

$$A = \begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix}$$

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda + 2 & 1 \\ -5 & \lambda - 2 \end{bmatrix} = \lambda^2 + 1$$

so the characteristic equation is  $\lambda^2+1=0$ , the solutions of which are the imaginary numbers  $\lambda=i$  and  $\lambda=-i$ .

## Eigenvalues and Invertibility

#### Theorem 7.4:

A square matrix A is invertible if and only if  $\lambda=0$  is not an eigenvalue of A.

## Eigenvalues of the Power of a Matrix

#### Theorem 7.5:

If k is a positive integer,  $\lambda$  is an eigenvalue of a matrix A, and x is a corresponding eigenvector, then  $\lambda^k$  is an eigenvalue of  $A^k$  and x is a corresponding eigenvector.