Funktionen mehrerer Variablen

FS 2024 Prof. Dr. Bernhard Zgraggen Autoren:

Laurin Heitzer, Flurin Brechbühler

Version:

0.1.20240617

 $\underline{https://github.com/P4ntomime/funktionen-mehrerer-variablen}$

Inhaltsverzeichnis

1	Dim	ensionen, Schnitte und Kontouren	2
	1.1	Dimensionen	2
	1.2	Schnitte	2
	1.3	Kontouren, Levelsets, Niveaulinien, Höhenlinen,	2
2	Able	eitungen, DGL und Gradienten (bi-variat)	3
	2.1	Partielle Ableitung	3
	2.2	Gradient (Nabla-Operator)	3
	2.3	Totale Ableitung	3
	2.4	Linearapproximation (Tangentialapproximation)	3
	2.5	DGL	3
	2.6	Richtungselement (Tangentiallinie an Kontouren)	3
	2.7	Gradientenfeld ⊥ Kontouren	3
	2.8	?Wie heisst dieser Abschnitt?	3
	2.9	Richtungs-Ableitung	3
3	Exti	rema von Funktionen finden	4
	3.1	Extrema von Funktionen zweier Variablen finden	4
	3.2	Extrema von Funktionen mehrerer Variablen finden	4
	3.3	Lokales oder Globales Extremum	4
	3.4	Extrema von Funktionen zweier Variablen mit NB finden	4
	3.5	Extrema von Funktionen mehrerer Variablen mit NB finden	4
4	Sup	port Vector Machine (SVM)	5
	4.1	Lineare Trennbarkeit von Daten	5

5		gration (bi-variat)
	5.1	Normalbereich
	5.2	Zweidimensionale Koordinatensysteme
	5.3	2D Transformation Polar zu Kartesisch
	5.4	Derivative, Ableitung
	5.5	Anwendungsformeln Doppelintegral
6	Inte	gration (multi-variat)
	6.1	Dreidimensionale Koordinatensysteme
	6.2	Längenintegrale
	6.3	Flächenintegrale
	6.4	Volumenintegrale
	6.5	Anwendungen Trippel-Integrale
7	Diff	erenziation und Integration von Kurven
		or ornamicon time arredge to our your ready you
8		er-)Flächenintegrale
8		9
8	(Ob	er-)Flächenintegrale Allgemeine Wendelfläche
8	(Ob 8.1	er-)Flächenintegrale Allgemeine Wendelfläche
8	(Ob 8.1 8.2 8.3	er-)Flächenintegrale Allgemeine Wendelfläche
	(Ob 8.1 8.2 8.3	er-)Flächenintegrale Allgemeine Wendelfläche
	(Ob 8.1 8.2 8.3 Vek	er-)Flächenintegrale Allgemeine Wendelfläche
	(Ob 8.1 8.2 8.3 Vekt 9.1	er-)Flächenintegrale Allgemeine Wendelfläche
	(Ob 8.1 8.2 8.3 Vek 9.1 9.2	er-)Flächenintegrale Allgemeine Wendelfläche Freie Fläche 1. metrischer Tensor toranalysis Vektorfelder Divergenz (Volumenableitung) Integralsatz von Gauss
	(Ob 8.1 8.2 8.3 Vekt 9.1 9.2 9.3	er-)Flächenintegrale Allgemeine Wendelfläche
	(Ob 8.1 8.2 8.3 Vek 9.1 9.2 9.3 9.4	Allgemeine Wendelfläche Freie Fläche 1. metrischer Tensor toranalysis Vektorfelder Divergenz (Volumenableitung) Integralsatz von Gauss Poisson-Gleichung (Laplace-Gleichung) Rotation eines Vektorfelds (rot(), curl())
	(Ob 8.1 8.2 8.3 Vekt 9.1 9.2 9.3 9.4 9.5	er-)Flächenintegrale Allgemeine Wendelfläche Freie Fläche 1. metrischer Tensor toranalysis Vektorfelder Divergenz (Volumenableitung) Integralsatz von Gauss Poisson-Gleichung (Laplace-Gleichung)

1 Dimensionen, Schnitte und Kontouren

1.1 Dimensionen

$$f: \mathbb{D}_f(\subseteq \mathbb{R}^m) \longrightarrow \mathbb{W}_f(\subseteq \mathbb{R}^n)$$

m Anzahl Dimensionen von \mathbb{D}_f , wobei $\mathbf{m} \in \mathbb{N}$

n Anzahl Dimensionen von \mathbb{W}_f , wobei $n \in \mathbb{N}$

 \vec{f} wenn Output vektoriell

\triangle Variablen sind abhängig von einander!

Multi-Variat:

f ist "Multi-Variat", wenn:

ti-Variat", wenn: f ist nicht

• Input mehrdimensional ist

· Output mehrdimensional ist

 Input und Output mehrdimensional sind f ist nicht "Multi-Variat", wenn:Input und Output Skalare sind

1.1.1 Raumzeit

Raum 3D
$$(x; y; z) \mathbb{R}^3$$

Zeit 1D $(t) \mathbb{R}^1$ $\mathbb{R}^1 \times \mathbb{R}^3 = \text{Raumzeit 4D } (t; x; y; z)$

1.1.2 Stationärer Fall

$$t \to \infty \to \text{Stationär}$$

$$T(x; y; z) \frac{\Delta T}{\Delta t} \to 0$$

1.1.3 Einheitsvektoren (Koordinatenvektoren)

$$\hat{x} = \vec{i} = \hat{i} = \vec{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\hat{y} = \vec{j} = \hat{j} = \vec{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\hat{z} = \vec{k} = \hat{k} = \vec{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

1.2 Schnitte

 ${\sf Schnitt} = {\sf Restriktion} \to {\sf Teilmenge} \ {\sf vom} \ {\sf Definitionsbereich} \ \mathbb{D}_f$

1.2.1 Partielle Funktion

- Nur eine Variable ist frei! (wählbar)
- Alle anderen Variablen sind fix!

 \(\Delta \) \(\mathbb{W}_f \) Analyse!

Beispiel: Schnitte

x-Linien

- Fläche wird geschnitten mit Ebene, die parallel zur x,z-Ebene liegt
- Bestehen aus den (x; y; z) Punkten $(x; y_0; f(x; y_0))$
- x-Wert ist variabel
- y-Wert ist fixiert \Leftrightarrow $y_0 = 2$

y-Linien

- Fläche wird geschnitten mit Ebene, die parallel zur y,z-Ebene liegt.
- Bestehen aus den (x; y; z) Punkten (x₀; y; f(x₀; y))
- x-Wert ist fixiert $\Leftrightarrow x_0 = 3$
- y-Wert ist variabel

1.2.2 Bedingungen

Initial $bedingungen \rightarrow Beziehen sich auf die Zeit$

Randbedingungen → Beziehen sich auf räumliche Ebenen

1.3 Kontouren, Levelsets, Niveaulinien, Höhenlinen, ...

Bei Kontouren, Levelsets, Niveaulinien oder Höhenlinien ist der Output der Funktion f konstant.

$$\vec{y} = \vec{f}(\vec{x}) = \text{const. wobei } \vec{x} \subset \mathbb{D}_f$$

Beispiel: Höhenlinien

Kontouren (Höhenlinien)

- Fläche wird geschnitten mit einer Ebene, die parallel zur x,y-Ebene liegt
- Bestehen aus den (x; y; z) Punkten $(x; y; f(x; y) = z_0)$
- x-Wert ist variabel
- y-Wert ist variabel
- z-Wert ist fixiert $\Leftrightarrow z_0 = 3$

2 Ableitungen, DGL und Gradienten (bi-variat)

$$f: \mathbb{D}_f \subseteq \mathbb{R}^2 \to \mathbb{W}_f \subseteq \mathbb{R}$$
 skalar

2.1 Partielle Ableitung

Ableitung einer Partiellen Funktion.

Beispiel: Bi-Variate Funktion

f(x, y): y fixieren = const. = y_0 ; x einzige freie Variable

Notationen

1. Ordnung:
$$f(x; y_0) \Rightarrow \frac{\partial f}{\partial x} = f_x(x; y_0)$$
2. Ordnung:
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{xy}$$

2.1.1 Schwarz-Symmetrie

Wenn f_{xx} , f_{yy} , f_{xy} & f_{yx} stetig (sprungfrei) sind, dann gilt:

$$f_{xy} \stackrel{!}{=} f_{yx}$$

2.2 Gradient (Nabla-Operator)

Spaltenvektor mit partiellen Ableitungen

2.3 Totale Ableitung

Für Fehlerrechnung benützt, da man hierbei die Abstände von (x; y; z) zu einem festen Punkt $(x_0; y_0; z_0)$ erhält. (relative Koordinaten)

$$D(f; (x_0, y_0, \ldots)) : \mathbb{R}^2 \xrightarrow{\longrightarrow} \mathbb{R}^1;$$
 "gute Approximation"

$$f(x = x_0 + \Delta x; y = y_0 + \Delta y; \dots) = (D_{11}; D_{12}) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} + f(x_0; y_0) + R_1$$

Wobei R_1 dem "Rest" entspricht. (Ähnlich wie bei Taylorreihe

$$\frac{R_1}{d = \sqrt{\Delta x^2 + \Delta y^2}} \rightarrow 0 \text{ ("gut", "schneller gegen 0 als } d")$$

$$D(f;(x_0;y_0)) = \left(D_{11} = \frac{\partial f}{\partial x}(x_0;y_0); D_{12} = \frac{\partial f}{\partial y}(x_0;y_0)\right)$$
$$= (\nabla f)^{\text{tr}} \text{ wenn } \frac{\partial f}{\partial x}; \frac{\partial f}{\partial y} \text{ stetig bei } A$$

2.4 Linearapproximation (Tangential approximation)

$$f(x; y) \approx f(x_0; y_0) + D(f; (x_0; y_0)) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$
 linear in Δx und Δy

2.4.1 Tangentialebene

$$g(x;y) = f(x_0; y_0) + D(f; (x_0; y_0)) \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

$$g(x; y) = f(x_0; y_0) + f_x(x_0; y_0) \cdot (x - x_0) + f_y(x_0; y_0) \cdot (y - y_0)$$

2.4.2 Tangentialer Anstieg (Totale Differential)

$$\mathrm{d}f \stackrel{!}{=} \frac{\partial f}{\partial x} \, \mathrm{d}x + \frac{\partial f}{\partial y} \, \mathrm{d}y \quad \text{bezüglich } A = \underbrace{(x_0; y_0)}$$

2.4.3 Differential-Trick (df Trick)

$$\begin{cases} f = c = \text{const.} & |d(\dots)| \\ df = dc \stackrel{!}{=} 0 \end{cases} \qquad f_x dx + f_y dy = 0 \quad \text{für Kontourlinien}$$

2.4.4 Implizite (Steigungs-)Funktion

$$y'(x) = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{f_x}{f_y \neq 0} \lor x'(y) = \frac{\mathrm{d}x}{\mathrm{d}y} = -\frac{f_y}{f_x \neq 0}$$
 $y_0 = -\frac{P_0}{y'} \to 0$

2.5 DGL

$$y' = \left(-\frac{f_x}{f_y}\right); \ y(x_0) = y_0$$

right-hand-side (r.h.s.) Funktion

2.6 Richtungselement (Tangentiallinie an Kontouren)

$$\vec{r} = \left(dx = h; dy = y' dx = -\frac{f_x}{f_y} dx \right)^{tt}$$

2.7 Gradientenfeld \(\perp \) Kontouren

Skalarprodukt
$$\nabla f \cdot \begin{pmatrix} dx \\ dy = y' dx \end{pmatrix} \stackrel{!}{=} 0$$

2.8 ?Wie heisst dieser Abschnitt?

$$s(t): P_0 + t \cdot \hat{v} \mid t \in \mathbb{R}$$

$$s(t): f(x_0 + t \cdot \hat{v}_1; y_0 + t \cdot \hat{v}_2)$$

$$\frac{ds(t)}{dt} = \dot{s}(t): \qquad t \mapsto \overbrace{\begin{pmatrix} x_0 + t \cdot v_1 \\ y_0 + t \cdot v_2 \end{pmatrix}}^{\left(x_0 + t \cdot v_1\right)} \mapsto f(x, y)$$

2.9 Richtungs-Ableitung

$$\frac{\partial f}{\partial \hat{v}} \stackrel{!}{=} D(f; (x_0; y_0)) \cdot \hat{v} \stackrel{\mathrm{Def.}}{\Leftrightarrow} \mathrm{grad}(f)^{\mathrm{tr}} \cdot \hat{v} = f_x \cdot v_1 + f_y \cdot v_2$$

Beispiel: Richtungs-Ableitung

$$\vec{x}: \vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \hat{e}_1 \quad \Rightarrow \quad \frac{\partial f}{\partial \hat{e}_1} = f_x \cdot 1 + f_y \cdot 0 = \underline{f_x}$$

2.9.1 Spezialfälle

• $\alpha = \frac{\pi}{2} \Rightarrow \text{rechter Winkel}$ • $\frac{\partial f}{\partial \hat{v}}$ extremal - $\alpha = 0 \text{ (max)}$: $\nabla f \cdot \hat{v} > 0 \Rightarrow \text{grad}(f) \text{ liegt auf } \hat{v}$ - $\alpha = \pi \text{ (min)}$: $\nabla f \cdot \hat{v} < 0 \Rightarrow \text{grad}(f) \text{ liegt invers auf } \hat{v}$

Trigo: $\nabla f \cdot \hat{v} \wedge \frac{\partial f}{\partial \hat{v}} \implies \cos(\alpha) \cdot |\nabla f|$

3 Extrema von Funktionen finden

Stationäritätsbedingung: $\nabla f \stackrel{!}{=} \vec{0}$

3.1 Extrema von Funktionen zweier Variablen finden

1. Gradient von f Null-setzten und kritische Stellen finden:

$$\nabla f = \begin{pmatrix} f_x \\ f_y \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \Rightarrow x_0 \text{ und } y_0 \text{ bestimmen}$$

2. Zweite Partielle Ableitungen bestimmen:

$$f_{xx} = \dots$$
 $f_{xy} = f_{yx} = \dots$ $f_{yy} = \dots$

3. Determinante Δ der Hesse-Matrix H bestimmen:

 $\Delta = f_{xx}(x_0; y_0) \cdot f_{yy}(x_0; y_0) - \left(f_{xy}(x_0; y_0)\right)^2$

4. Auswertung:

$\Delta > 0$	AND	$f_{xx}(x_0;y_0)<0$	\Longrightarrow	lokales Maximum
$\Delta > 0$	AND	$f_{yy}(x_0;y_0)<0$	\Longrightarrow	lokales Maximum
$\Delta > 0$	AND	$f_{xx}(x_0;y_0) > 0$	\Longrightarrow	lokales Minimum
$\Delta > 0$	AND	$f_{yy}(x_0;y_0) > 0$	\Longrightarrow	lokales Minimum
$\Delta < 0$			\Longrightarrow	Sattelpunkt
$\Delta = 0$?	Multi-variate-Taylor-logik

3.2 Extrema von Funktionen mehrerer Variablen finden

1. Gradient von f Null-setzten und kritische Stellen finden:

$$\nabla f = \begin{pmatrix} f_x \\ f_y \\ \vdots \\ f_t \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \implies x_0, y_0, \dots, t_0 \text{ bestimmer}$$

2. Zweite Partielle Ableitungen für Hesse-Matrix H bestimmen:

$$\mathbf{H} = \begin{pmatrix} f_{xx} & f_{xy} & \cdots & f_{xt} \\ f_{yx} & f_{yy} & \cdots & f_{yt} \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx} & f_{ty} & \cdots & f_{tt} \end{pmatrix}$$

- Symmetrien beachten!
- Nicht doppelt rechnen! $\Rightarrow f_{xt} = f_{tx}$
- 3. Hesse-Matrix H mit gefundenen Stellen füllen:

$$\mathbf{H}(x_0, y_0, \dots t_0) = \begin{pmatrix} f_{xx}(x_0, y_0, \dots t_0) & f_{xy}(x_0, y_0, \dots t_0) & \cdots & f_{xt}(x_0, y_0, \dots t_0) \\ f_{yx}(x_0, y_0, \dots t_0) & f_{yy}(x_0, y_0, \dots t_0) & \cdots & f_{yt}(x_0, y_0, \dots t_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx}(x_0, y_0, \dots t_0) & f_{ty}(x_0, y_0, \dots t_0) & \cdots & f_{tt}(x_0, y_0, \dots t_0) \end{pmatrix}$$

4. Eigenwerte λ_i der Hesse-Matrix bestimmen:

 $\det\left(\mathbf{H}(x_0,y_0,\ldots t_0)-\lambda\cdot\mathbf{E}\right)=0$ Nullstellen λ_i finden \rightarrow Eigenwerte

Zur Erinnerung:

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & 1 \end{pmatrix}, \quad \lambda \cdot \mathbf{E} = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & \lambda \end{pmatrix}$$

 $\mathbf{H}(x_0, y_0, \dots t_0) - \lambda \cdot \mathbf{E} = \dots$

$$\dots = \begin{cases} f_{xx}(x_0, y_0, \dots t_0) - \lambda & f_{xy}(x_0, y_0, \dots t_0) & \cdots & f_{xt}(x_0, y_0, \dots t_0) \\ f_{yx}(x_0, y_0, \dots t_0) & f_{yy}(x_0, y_0, \dots t_0) - \lambda & \cdots & f_{yt}(x_0, y_0, \dots t_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx}(x_0, y_0, \dots t_0) & f_{ty}(x_0, y_0, \dots t_0) & \cdots & f_{tt}(x_0, y_0, \dots t_0) - \lambda \end{cases}$$

5. Auswertung:

$\lambda_i < 0 \ \forall i$	\Longrightarrow	lokales Maximum
$\lambda_i > 0 \ \forall i$	\Longrightarrow	lokales Minimum
$\lambda_i > 0$ und $\lambda_i < 0$	\Longrightarrow	Sattelpunkt

- $\lambda_i < 0 \ \forall i \Leftrightarrow \text{Alle } \lambda_i \text{ sind negativ}$
- $\lambda_i > 0 \ \forall i \Leftrightarrow \text{Alle } \lambda_i \text{ sind positiv}$

3.3 Lokales oder Globales Extremum

Für eine beliebige die Funktion f(x, y, ..., t) gilt:

$f(x, y, \dots, t) \le M_{\text{max}}$	$\forall (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	globales Maxinum
$f(x, y, \dots, t) > M_{\text{max}}$	$\exists (x,y,\ldots,t)\in \mathbb{D}_f$	\Rightarrow	kein globales Maximum
$f(x, y, \dots, t) \ge M_{\min}$	$\forall (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	globales Minimum
$f(x, y, \dots, t) < M_{\min}$	$\exists (x,y,\ldots,t)\in \mathbb{D}_f$	\Rightarrow	kein globales Minimum

grösstes lokales Maximum $M_{\rm max}$: kleinstes lokales Minimum M_{\min} :

3.4 Extrema von Funktionen zweier Variablen mit NB finden

1. Nebenbedingung (NB) in Standartform bringen:

Standartform: $n(x, y) \stackrel{!}{=} 0$

Nebenbedingung: x + y = 1Standartform der Nebenbedingung: x + y - 1 = 0

2. Lagrancge-Funktion \mathcal{L} aufstellen:

 $\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda \cdot n(x, y)$ Am besten gleich ausmultiplizieren

3. Gradient der Lagrancge-Funktion $\mathcal L$ Null-setzten und kritische Stellen finden:

$$\nabla \mathcal{L} = \begin{pmatrix} \mathcal{L}_x \\ \mathcal{L}_y \\ \mathcal{L}_\lambda \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow x_0 \text{ und } y_0 \text{ bestimmen}$$

4. Zweite Partielle Ableitungen bestimmen:

$$\mathcal{L}_{\lambda\lambda} \stackrel{!}{=} 0 \qquad \qquad \mathcal{L}_{\lambda x} = \mathcal{L}_{x\lambda} = n_x = \dots$$

$$\mathcal{L}_{xx} = \dots \qquad \qquad \mathcal{L}_{\lambda y} = \mathcal{L}_{y\lambda} = n_y = \dots$$

$$\mathcal{L}_{yy} = \dots \qquad \qquad \mathcal{L}_{xy} = \mathcal{L}_{yx} = \dots$$

5. Geränderte Hesse Matrix $\overline{\mathbf{H}}$ aufstellen und kritische Stellen einsetzen:

$$\overline{\mathbf{H}}(x_0, y_0) = \begin{pmatrix}
\mathcal{L}_{\lambda\lambda}(x_0, y_0) & \mathcal{L}_{\lambda x}(x_0, y_0) & \mathcal{L}_{\lambda y}(x_0, y_0) \\
\mathcal{L}_{x\lambda}(x_0, y_0) & \mathcal{L}_{xx}(x_0, y_0) & \mathcal{L}_{xy}(x_0, y_0) \\
\mathcal{L}_{y\lambda}(x_0, y_0) & \mathcal{L}_{yx}(x_0, y_0) & \mathcal{L}_{yy}(x_0, y_0)
\end{pmatrix}$$

$$= \begin{pmatrix}
0 & n_x(x_0, y_0) & n_y(x_0, y_0) \\
n_x(x_0, y_0) & \mathcal{L}_{xx}(x_0, y_0) & \mathcal{L}_{xy}(x_0, y_0) \\
n_y(x_0, y_0) & \mathcal{L}_{yx}(x_0, y_0) & \mathcal{L}_{yy}(x_0, y_0)
\end{pmatrix}$$

6. Determinante der geränderten Hesse Matrix bestimmen:

 $det(\overline{\mathbf{H}}) = ...$

7. Auswertung

$\det\left(\overline{\mathbf{H}}\right) > 0$	\Longrightarrow	lokales Maximum	
$\det\left(\overline{\mathbf{H}}\right) < 0$	\Longrightarrow	lokales Minimum	
$det(\overline{\mathbf{H}}) = 0$	\Longrightarrow	keine Aussage möglich	

3.5 Extrema von Funktionen mehrerer Variablen mit NB finden

1. Nebenbedingung (NB) in Standartform bringen:

Standartform: $n(x, y, ..., t) \stackrel{!}{=} 0$

2. Lagrancge-Funktion \mathcal{L} aufstellen:

 $\mathcal{L}(x, y, ..., t, \lambda) = f(x, y, ..., t) + \lambda \cdot n(x, y, ..., t)$ Am besten gleich ausmultiplizieren

3. Gradient der Lagrancge-Funktion \mathcal{L} Null-setzten und kritische Stellen finden:

$$\nabla \mathcal{L} = \begin{pmatrix} \mathcal{L}_x \\ \mathcal{L}_y \\ \vdots \\ \mathcal{L}_t \\ \mathcal{L}_\lambda \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_0, y_0, ..., t_0 \text{ bestimmen}$$

4. Zweite Partielle Ableitungen bestimmen:

$$\mathcal{L}_{\lambda\lambda} \stackrel{!}{=} 0 \\
\mathcal{L}_{xx} = \dots \\
\mathcal{L}_{yy} = \dots \\
\vdots \\
\mathcal{L}_{tt} = \mathcal{L}_{x\lambda} = n_x = \dots \\
\mathcal{L}_{\lambda y} = \mathcal{L}_{y\lambda} = n_y = \dots \\
\mathcal{L}_{xt} = \mathcal{L}_{tx} \\
\mathcal{L}_{yt} = \mathcal{L}_{ty} \\
\vdots \\
\mathcal{L}_{\lambda t} = \mathcal{L}_{t\lambda} = n_t = \dots$$

$$\mathcal{L}_{xy} = \mathcal{L}_{yx} \\
\mathcal{L}_{xt} = \mathcal{L}_{tx} \\
\mathcal{L}_{yt} = \mathcal{L}_{ty} \\
\vdots \\
\vdots \\
\vdots$$

5. Geränderte Hesse Matrix $\overline{\mathbf{H}}$ aufstellen und kritische Stellen einsetzen:

$$\overline{\mathbf{H}}(x_0, y_0, \dots t_0) = \begin{pmatrix} \mathcal{L}_{\lambda l}(\dots) & \mathcal{L}_{\lambda l}(\dots) & \mathcal{L}_{\lambda l}(\dots) & \dots & \mathcal{L}_{\lambda l}(\dots) \\ \mathcal{L}_{x l}(\dots) & \mathcal{L}_{x x}(\dots) & \mathcal{L}_{x y}(\dots) & \dots & \mathcal{L}_{x l}(\dots) \\ \mathcal{L}_{y l}(\dots) & \mathcal{L}_{y x}(\dots) & \mathcal{L}_{y y}(\dots) & \dots & \mathcal{L}_{y l}(\dots) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathcal{L}_{t l}(\dots) & \mathcal{L}_{t x}(\dots) & \mathcal{L}_{t y}(\dots) & \dots & \mathcal{L}_{t l}(\dots) \\ n_{x}(\dots) & \mathcal{L}_{x x}(\dots) & \mathcal{L}_{t y}(\dots) & \dots & \mathcal{L}_{x l}(\dots) \\ n_{y}(\dots) & \mathcal{L}_{y x}(\dots) & \mathcal{L}_{y y}(\dots) & \dots & \mathcal{L}_{y l}(\dots) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n_{t}(\dots) & \mathcal{L}_{t x}(\dots) & \mathcal{L}_{t y}(\dots) & \dots & \mathcal{L}_{t l}(\dots) \end{pmatrix}$$

6. Determinante der geränderten Hesse Matrix bestimmen:

 $\det(\overline{\mathbf{H}}) = \dots$

7. Auswertung

	$det(\overline{\mathbf{H}})$	> 0	\Longrightarrow	lokales Maximum
	$det(\overline{\mathbf{H}})$	< 0	\Longrightarrow	lokales Minimum
	det (H	= 0	\Longrightarrow	keine Aussage möglich

4 Support Vector Machine (SVM)

4.1 Lineare Trennbarkeit von Daten

4.1.1 Allgemeines

Datenpunkte: (2D Beispiel)

$$A: (\underbrace{(x_1, x_2)}_{\vec{x_1}}; y_1), \quad B: (\underbrace{(x_1, x_2)}_{\vec{x_2}}; y_2), \quad C: (\underbrace{(x_1, x_2)}_{\vec{x_3}}; y_3), \quad \cdots, \quad N: (\underbrace{(x_1, x_2)}_{\vec{x_n}}; y_n)$$

 \vec{x}_j sind Datenvektoren

 $y_i \in \{\pm 1\}$ klassifiziert die jeweiligen Datenvektoren

<u>Hyperebenen:</u>

$$\vec{w}^{tr} \cdot \vec{x} + b = 0$$

 \overrightarrow{w} : Normalenvektor, $\overrightarrow{w} \in \mathbb{R}^d$ und $\overrightarrow{w} \neq 0$

b: Konstante, $b \in \mathbb{R}$

Dimmension der Hyperebene = d - 1

Abstand der Hyperebene zum Ursprung: $\frac{|b|}{|\vec{w}|}$

y = -1

Klassifizierung:

$$\overrightarrow{w}^{tr} \cdot \overrightarrow{x} + b > 0$$

$$\overrightarrow{w}^{tr} \cdot \overrightarrow{x} + b < 0$$

$$\Rightarrow \overrightarrow{x} \text{ gehört zur Klasse } y = +1$$

$$\Rightarrow \overrightarrow{x} \text{ gehört zur Klasse } y = -1$$

Klassifizierung der Trainigsdaten:

$$|\vec{w}^{tr} \cdot \vec{x}_j + b| \ge 0$$
 $\Rightarrow \vec{x}_j$ gehört zur Klasse $y = +1$ $|\vec{w}^{tr} \cdot \vec{x}_j + b| \le 0$ $\Rightarrow \vec{x}_j$ gehört zur Klasse $y = -1$

Zielfunktion:

$$\left| \frac{2}{|\vec{w}|} = \frac{2}{w} \right|$$

4.1.2 Das primale Optimierungsproblem

$$\frac{1}{2}\vec{w}^{tr}\cdot\vec{w} = \frac{1}{2}\left|\vec{w}\right|^2 = \frac{1}{2}w^2 \rightarrow \min! \quad \text{s.t.} \quad \left(\vec{w}^{tr}\cdot\vec{x}_j + b\right)y_j \ge 1 \quad (j = 1, \dots, N)$$

4.1.3 Das duale Optimierungsproblem

Nebenbedingung:

$$\underbrace{1 - \left(\vec{w}^{tr} \cdot \vec{x}_j + b\right) y}_{g_j(\vec{w}^{tr}, b)} \leq 0 \Leftrightarrow g_j(\vec{w}^{tr}, b) \leq 0 \quad (j = 1, \dots, N)$$

Lagrange-Funktion:

Zusammengesetzt aus dem primalen Problem und den Nebenbedingungen.

L(
$$\vec{w}^{tr}, b, \vec{a}$$
) = $L(w_1, w_2, ..., w_d, b, \alpha_1, \alpha_2, ..., \alpha_N)$
= $\frac{1}{2}\vec{w}^{tr} \cdot \vec{w} + \sum_{j=1}^{N} \alpha_j \underbrace{\left(1 - \left(\vec{w}^{tr} \cdot \vec{x}_j + b\right) y_j\right)}_{g_j(\vec{w}^{tr}, b)}$

Stationaritätsbedingungen:

Aus der Bedingung, dass grad(L) = 0 sein muss, lassen sich folgende Formeln ableiten:

Das duale Problem:

Die oben erhaltenen Summen können nun in die Lagrange-Fkt. eingesetzt werden. Daraus entsteht

$$L(\vec{\alpha}) = \sum_{j=1}^{N} \alpha_j - \underbrace{\frac{1}{2} \sum_{j,j'=1}^{N} \alpha_j \alpha_{j'} y_j y_{j'} \vec{x}_j^{t'} \cdot \vec{x}_{j'}}_{=\frac{1}{2} \vec{w}^{t''} \cdot \vec{w}} \quad \rightarrow \quad \text{max!} \quad \text{s.t.} \quad \alpha_j \ge 0 \land \sum_{j=1}^{N} \alpha_j y_j = 0$$

Vorgehen zum lösen des dualen Optimierungsproblems:

1. Skizze mit Datenpunkten erstellen:

- Einzelne Datenpunkte klassenweise farblich hervorheben
- Falls ein Datenpunkt der gleichen Klasse weit weg von den anderen ist
 - \Rightarrow diesen vergessen, da sein $\alpha = 0$ sein wird

2. Nebenbedingungen, Es muss gelten:

 $\alpha_i \geq 0$

$$\mathbf{b:} \quad \sum_{j=1}^{N} \alpha_j \cdot y_j = 0$$

Nach einem α unstellen und anschliessend jenes α

(damit die Nebenbedingung miteinbezogen wird) in der Lagrange-Funktion ersetzen

3. Kernel-Matrix aufstellen:

$$K(\vec{x}^{tr}; \vec{x}) = \vec{x}^{tr} \bullet \vec{x}$$

• Einträge sind die Ergebnisse der Skalarprodukte

4. Lagrange-Funktion aufstellen:

$$L(\vec{\alpha}) = \sum_{j=1}^N \alpha_j - \frac{1}{2} \sum_{j,j'=1}^N \alpha_j \cdot \alpha_{j'} \cdot y_j \cdot y_{j'} \cdot \vec{x}_j^{tr} \bullet \vec{x}_{j'} \quad \rightarrow \quad \max!$$

• 2. b und 3 brauchen

5. Alle α finden durch Stationaritätsbedingung

$$\nabla L = \vec{0}$$

 \Rightarrow ersetztes α mit gefundenen α berechnen

6. ₩ berechnen:

$$\vec{\vec{w}} = \sum_{j=1}^{N} \alpha_j y_j \vec{x}_j$$

7. Konstante b berechnen:

Datenpunkte mit der Klasse y = 1 oder y = -1 wählen und einsetzen

• **Variante 1:** Stützvektor-Datenpunkt mit
$$y = +1$$

$$\vec{w}^{tr} \cdot \vec{x}_{...} + b = 1 \Leftrightarrow b = 1 - \vec{w}^{tr} \cdot \vec{x}_{...} = ...$$

• **Variante 2:** Stützvektor-Datenpunkt mit
$$y = -1$$

$$\vec{w}^{tr} \cdot \vec{x}_{...} + b = -1 \Leftrightarrow b = -1 - \vec{w}^{tr} \cdot \vec{x}_{...} = ...$$

5 Integration (bi-variat)

Als bi-variate Integrale versteht man Integrale, die siech über zwei unabhängige Variablen erstrecken. Sie haben die Form

$$\int_{\Omega} f(\omega) \cdot d\omega = \int_{Y} \int_{Y} f(x; y) \cdot dy \cdot dx$$

wobei $\Omega \subset \mathbb{R}^2$, $X \subset \mathbb{R}$ und $Y \subset \mathbb{R}$ ist.

5.1 Normalbereich

TODO: WTF ist ein Normalbereich? Schnitte sind Strecken (Intervalle) für x, y, ...

5.2 Zweidimensionale Koordinatensysteme

Neben den Kartesischen Koordinatensystemen kommen in zweidimensionalen Räumen auch Polare Koordinatensysteme zum Einsatz. Die beiden Systeme können mit Hilfe der Trigonometrie in einander überführt werden.

5.2.1 Umrechnung Kartesisch ↔ Polar

Polar zu Kartesisch

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r * \cos \varphi \\ r * \sin \varphi \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r * \cos \varphi \\ r * \sin \varphi \end{pmatrix} \qquad \qquad \begin{pmatrix} r \\ \varphi \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \tan^{-1} \frac{y}{x} \end{pmatrix}$$

Dabei ist zu beachten, dass \tan^{-1} nur werte von $-\frac{\pi}{2}$ bis $\frac{\pi}{2}$ liefert, für φ jedoch $\varphi \in [0,\pi]$ gelten soll. φ wird also, je nach dem in welchem Quadranten sich \vec{p} befindet, nach folgendem Schema berechnet:

$$\frac{\pi + \tan^{-1} \frac{y}{x}}{\pi + \tan^{-1} \frac{y}{x}} = \frac{\tan^{-1} \frac{y}{x}}{2\pi + \tan^{-1} \frac{y}{x}}$$

Um eine ganzes Integral vom einen Koordinatensystem ins andere zu überführen, muss zum einen die Funktion f(x, y) zu $f(r, \varphi)$ (oder umgekehrt) umgeschrieben, sowie die differentiale angepasst werden. Hier dafür einige gängige Elemente: Kartacicah

Kartesisch	Polar
$\mathrm{d}x$	$dx = \cos\varphi dr - r\sin\varphi d\varphi$
dy	$dx = \sin \varphi dr + r \cos \varphi d\varphi$
$ds^2 = dx^2 dy^2$	$\mathrm{d}s^2 = \mathrm{d}r^2 + r^2 \mathrm{d}\varphi^2$
dA = dx dy	$dA = r dr d\varphi$
	dx dy $ds^2 = dx^2 dy^2$

5.3 2D Transformation Polar zu Kartesisch

TODO: Das isch ja ds gliiche wie obe beschribe, oder? Wänn da no meh ane sött wüsstich nöd was... -Flurin T = Transformation

Polar
$$(r, \varphi) \xrightarrow{T} (x, y)$$
 Kartesisch

$$\begin{pmatrix} x = r \cdot \cos(\varphi) \mathbb{R} \\ y = r \cdot \sin(\varphi) \mathbb{R} \end{pmatrix} 2D$$

Die Funktionen für x und y sind skalare Funktion.

$$x = x(r; \varphi)$$
 $y = y(r; \varphi)$

5.4 Derivative, Ableitung

TODO: Idk was da ane söll -Flurin

5.5 Anwendungsformeln Doppelintegral

Allgemein	Kartesische Koordinaten	Polarkoordinaten		
Flächeninhalt ei	ner ebenen Figur F			
$A = \iint_F \mathrm{d}a$	$= \int\limits_X \int\limits_Y \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} r \mathrm{d}r \mathrm{d}\varphi$		
Oberfläche eine	r Ebene in drei Dimensionen			
		$= \iint_{\Phi} \sqrt{r^2 + r^2 \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial \varphi}\right)^2} dr d\varphi$		
Volumen eines Z	Zylinders			
$V = \iint_A z \mathrm{d}a$	$= \int\limits_X \int\limits_Y z \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} z r \mathrm{d}r \mathrm{d}\varphi$		
Trägheitsmome	nt einer ebenen Figur F, bezogen a	nuf die x-Achse		
$I_x = \iint_E y^2 da$ $= \iint_V y(y^2) dy dx$		$= \int_{\Phi} \int_{R} (r^2 \sin^2 \varphi) r dr d\varphi$		
Trägheitsmome	nt einer ebenen Figur F, bezogen a	nuf den Pol (0,0)		
$I_x = \iint_F r^2 \mathrm{d}a$	$= \int\limits_X \int\limits_Y (x^2 + y^2) \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} (r^2) r \mathrm{d}r \mathrm{d}\varphi$		
Masse einer ebe	nen Figur F mit Dichtefunktion ϱ			
$m = \iint_F \varrho \mathrm{d}a$ $= \iint_X \varrho(x, y) \mathrm{d}y \mathrm{d}x$		$= \int_{\Phi} \int_{R} \varrho(r,\varphi) r \mathrm{d}r \mathrm{d}\varphi$		
Koordinaten des Schwerpunkts S einer homogenen, ebenen Figur F				
$x_S = \frac{\iint\limits_F x \mathrm{d}a}{A}$	$= \frac{\int\limits_{X} \int\limits_{Y} x \mathrm{d}y \mathrm{d}x}{\int\int\int \mathrm{d}y \mathrm{d}x}$	$= \frac{\iint_{\Phi} r^2 \cos \varphi dr d\varphi}{\iint_{\Gamma} r dr d\varphi}$		
$y_S = \frac{\iint\limits_F y \mathrm{d}a}{A}$	$\int_{X}^{X} \int_{Y}^{Y} y dy dx$	$= \frac{\int\limits_{0}^{\tilde{\Phi}} \int\limits_{R}^{\tilde{\Phi}} r^{2} \sin \varphi dr d\varphi}{\int\int \int r dr d\varphi}$		
$y_S = {A}$	$=\frac{\int \int dy dx}{\int \int dy dx}$	$=\frac{\int \int r dr d\varphi}{\int \int r dr d\varphi}$		

Hinweis: Damit die Flächenelemente leichter erkennbar und die Formeln entsprechend besser nachvollziebar sind, wurden sie teilweise nicht vollständig vereinfacht.

6 Integration (multi-variat)

6.1 Dreidimensionale Koordinatensysteme

6.1.1 Umrechnen zwischen Koordinatensystemen

Beim Umrechnen zwischen den Koordinatensystemen gelten im Grunde genommen die obigen Formeln. Dabei muss jedoch in einigen Fällen auf die Wertebereiche von den trigonometrischen Funktionen rücksicht genommen werden.

Zylindrisch → Kartesisch:

$\underline{Sph\"{a}risch} \rightarrow Kartesisch:$

Keine weiteren Berücksichtigungen nötig, die Berechnung erfolgt nach der Formel oben.

Kartesisch \rightarrow Zylindrisch:

Der Parameter ϕ wird analog zum zweidimensionalen Fall, je nach dem in welchem Quadranten sich P befindet, nach dem Schema rechts berechnet.

$$\frac{\pi + \tan^{-1} \frac{y}{x}}{\pi + \tan^{-1} \frac{y}{x}} \qquad \tan^{-1} \frac{y}{x}$$

$\underline{Sph\"{a}risch} \rightarrow \underline{Zylindrisch} :$

Kartesisch → Sphärisch:

Keine weiteren Berücksichtigungen nötig, die Berechnung erfolgt nach der Formel oben.

Zylindrisch → Sphärisch:

Auch hier macht der tan⁻¹ Probleme, da er Werte von $-\frac{\pi}{2}$ bis $\frac{\pi}{2}$ liefert, für θ jedoch $\theta \in [0, \pi]$ gelten soll. Je nach dem, ob P sich oberhalb oder unterhalb der xv-Ebene befindet, wird θ wie rechts berechnet.

$$\tan^{-1} \frac{r_{od}}{z}$$

$$\pi + \tan^{-1} \frac{r_{od}}{z}$$

$$xy$$
-Ebene

6.2 Längenintegrale

6.2.1 Längenelemente

$$\mathrm{d}s^2 = \underbrace{\mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2}_{\text{Kartesisch}} = \underbrace{\mathrm{d}r^2 + r^2\,\mathrm{d}\theta^2 + \mathrm{d}z^2}_{\text{Zylindrisch}} = \underbrace{\mathrm{d}r^2 + r^2\,\mathrm{d}\theta^2 + r^2\,\sin^2\theta\,\mathrm{d}\phi^2}_{\text{Sphärisch}}$$

6.2.2 Länge einer Funktion

Die Bestimmung der Länge einer Kurve kann in folgende Schritte unterteilt werden:

- 1. Funktion in die Parameterdarstellung überführen (sofern nicht gegeben): Dafür wird einer der Parameter (z.B. x oder θ) = t gesetzt und die anderen Parameter ebenfals als Funktion von t ausgedrückt.
- 2. Integral aufstellen:

Das Integral in der Form $\iiint ds$ wird mit $\frac{dt}{dt}$ erweitert.

3. Das Integral lösen

6.2.3 Beispiel

Es soll die Länge der Kurve $\vec{v}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ auf dem Interval $[t_1, t_2]$ bestimmt werden. Dazu

werden die oben genannten Schritte abgearbeitet:

1. Funktion in die Parameterdarstellung überführen

Hier nicht nötig.

2. Integral aufstellen
$$\iiint ds = \iiint \sqrt{dx^2 + dy^2 + dz^2} = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt$$
3. Integral lösen
$$dx = \int_{t_1}^{t_2} dx + \int_{t_2}^{t_2} dx + \int_{t_1}^{t_2} dx + \int_{t_2}^{t_2} dx + \int_{t_2}^{t$$

 $\frac{dx}{dt}$, $\frac{dy}{dt}$ und $\frac{dz}{dt}$ ausrechnen, einsetzen, integrieren.

6.3 Flächenintegrale

6.3.1 Flächenelemente

Das Bestimmen der Flächenelemente ist in drei Dimensionen nicht wie bei den Längenund Volumenelementen pauschal möglich. Dies, da jeweils nur über zwei der drei Koordinaten integriert werden muss. Ein einfaches Verfahren für das Berechnen von Flächeninhalten schafft iedoch abhilfe.

6.3.2 Flächeninhalt einer Oberfläche

Für das Berechnen der Oberflächen von Funktionen des Typs f(a,b) in 3D kann die Formel

$$S = \int_{B} \int_{A} \sqrt{(f_a)^2 + (f_b)^2 + 1} \, da \, db$$

verwendet werden. Dabei repräsentieren a und b die beiden Koordinatenrichtungen, in denen sich die Fläche erstreckt. f_a und f_b sind die partiellen Ableitungen der Funktion f(a,b)

Beispiele zur Veranschaulichung:

Es soll die Oberfläche der Funktion f(x, y) im Bereich $x \in [x_1, x_2], y \in [y_1, y - 2]$ bestimmt werden. Das entsprechende integral lautet:

$$S = \int_{y_1}^{y_2} \int_{x_1}^{x_2} \sqrt{(f_x)^2 + (f_y)^2 + 1} \, dx \, dy$$

Wäre die Funktion f stat in kartesischen in polaren oder sphärischen Koordinaten formuliert, ändern sich lediglich die Namen der Variablen. Folglich ist das zu einer in sphärischen Koordinaten definierten Fkt. $f(\theta, \phi)$ gehörende Integral

$$S = \int_{\theta_1}^{\phi_2} \int_{\theta_2}^{\theta_2} \sqrt{(f_{\theta})^2 + (f_{\phi})^2 + 1} \, d\theta \, d\phi$$

sehr leicht aufzustellen.

6.4 Volumenintegrale

6.4.1 Volumenelemente

$$dV = \underbrace{dx \, dy \, dz}_{\text{Kartesisch}} = \underbrace{r \, dr \, d\phi \, dz}_{\text{Zylindrisch}} = \underbrace{r^2 \sin \theta \, d\theta \, d\phi \, dr}_{\text{Sphärisch}}$$

6.5 Anwendungen Trippel-Integrale

Allgemein	Kartesische Koordinaten	Zylinderkoordinaten	Kugelkoordinaten				
Volumen eines Körpers K							
$V = \iiint_K dV$	$= \iiint \mathrm{d}x\mathrm{d}y\mathrm{d}z$	$= \iiint r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z$	$= \iiint r^2 \sin\theta \mathrm{d}\theta \mathrm{d}\phi \mathrm{d}r$				
Trägheitsmom	ent eines Körpers K , bezogen	auf die Z-Achse					
$I_z = \iiint_K r^2 \mathrm{d}V$	$= \iiint (x^2 + y^2) \mathrm{d}x \mathrm{d}y \mathrm{d}z$	$= \iiint (r^2) r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z$	$= \iiint (r^2 \sin^2 \theta) r^2 \sin\theta d\theta d\phi dr$				
Masse eines Kö	örpers K mit der Dichtefunkt	ion ϱ					
$M = \iiint_K \varrho \mathrm{d}V$	$= \iiint \varrho(x, y, z) \mathrm{d}x \mathrm{d}y \mathrm{d}z$	$= \iiint \varrho(r,\phi,z) r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z$	$= \iiint \varrho(r,\theta,\phi)r^2 \sin\theta d\theta d\phi dr$				
Koordinaten d	es Schwerpunktes S eines ho	mogenen Körpers K					
$x_S = \frac{\iint\limits_K x dV}{\int\limits_{CC} V}$	$= \frac{\iiint(x) \mathrm{d}x \mathrm{d}y \mathrm{d}z}{V}$	$= \frac{\iiint (r\cos\phi)r\mathrm{d}r\mathrm{d}\phi\mathrm{d}z}{V}$	$= \frac{\iiint (r\sin\theta\cos\phi)r^2\sin\theta\mathrm{d}\theta\mathrm{d}\phi\mathrm{d}r}{V}$				
$y_S = \frac{\iint_K y dV}{\int_K V}$	$= \frac{\iiint(y) \mathrm{d}x \mathrm{d}y \mathrm{d}z}{V}$	$= \frac{\iiint (r\sin\phi)r\mathrm{d}r\mathrm{d}\phi\mathrm{d}z}{V}$	$= \frac{\iiint (r\sin\theta\sin\phi)r^2\sin\theta\mathrm{d}\theta\mathrm{d}\phi\mathrm{d}r}{V}$				
$z_S = \frac{\iint\limits_K z \mathrm{d}V}{V}$	$= \frac{\iint (z) \mathrm{d}x \mathrm{d}y \mathrm{d}z}{V}$	$= \frac{\iiint(z)r\mathrm{d}r\mathrm{d}\phi\mathrm{d}z}{V}$	$= \frac{\iiint (r\cos\theta)r^2\sin\theta\mathrm{d}\theta\mathrm{d}\phi\mathrm{d}r}{V}$				

Hinweis: Damit die Volumenelemente leichter erkennbar und die Formeln entsprechend besser nachvollziebar sind, wurden sie teilweise nicht vollständig vereinfacht.

7 Differenziation und Integration von Kurven

8 (Ober-)Flächenintegrale

8.1 Allgemeine Wendelfläche

$$\vec{S}(t,\varphi) = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} \cdot \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

Bei c = 1 \Rightarrow Voller Meter bei einer Kurv

8.2 Freie Fläche

8.3 1. metrischer Tensor

9 Vektoranalysis

9.1 Vektorfelder

- Jedem Punkt P im Raum ist ein Vektor \vec{V} zugeordnet
- Kann als $\vec{V}(\vec{r})$ geschrieben werden, wobei \vec{r} ein Ortsvektor mit fixem Ursprung $\vec{0}$ ist

9.2 Divergenz (Volumenableitung)

- Beschreibt, wie stark sich ein Vektorfeld in einem Punkt ausbreitet oder zusammen-
- Beispiel: Vektorfeld das die Geschwindigkeit von Wasser in eineem Fluss beschreibt
 - An Punkten mit positiver Divergenz fliesst Wasser hinaus (Quelle)
 - An Punkten mit negativer Divergenz fliesst Wasser hinein (Senke)

$$\nabla \cdot \vec{V} = \operatorname{div} \vec{V} = \lim_{\Delta V \to 0} \frac{\oint_{(s)} \vec{V} \cdot d\vec{S}'}{\Delta V}$$

9.2.1 Kartesisch

$$\operatorname{div} \vec{V} = \nabla \cdot \vec{V} = \underbrace{\left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z}\right)}_{\nabla} \cdot \underbrace{\begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix}}_{} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$

9.2.2 Zylinderkoordinaten

$$\operatorname{div} \vec{V} = \frac{1}{r} \frac{\partial}{\partial r} (rV_r) + \frac{1}{r} \frac{\partial V_{\varphi}}{\partial \varphi} + \frac{\partial V_z}{\partial z}$$

9.3 Integralsatz von Gauss

$$\int_{(V)} \operatorname{div} \vec{A} \, \mathrm{d}V = \oint_{(S) = \partial V} \vec{A} \cdot \mathrm{d}\vec{S}$$

Fluss durch eingeschlossenen Körper = Gesamter Fluss durch geschlossenen Rand des

9.4 Poisson-Gleichung (Laplace-Gleichung)

$$\Delta \phi = \operatorname{div} \left(\operatorname{grad}(\phi) \right) = \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = f(\vec{r})$$

$$\phi : f(\vec{z}) : f(\vec{z$$

Laplace-Operator

Potentialfeld

Quellfunktion

9.4.1 Laplace-Gleichung

$$\Delta \phi = f = 0$$
 \Rightarrow Spezialfall der Poisson-Gleichung ohne äussere Quellfunktion

9.5 Rotation eines Vektorfelds (rot(), curl())

Beschreibt, wie stark und in welche Richtung sich ein Vektorfeld an einem Punkt rotiert. Wobei der Vektor selbst die Rotationsachse beschreibt und dessen Betrag proportional zur Rotationsgeschwindigkeit ist. Beispiel: Wirbelfelder

$$\operatorname{rot} \vec{A} = \nabla \times \vec{A} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_z}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_z}{\partial x} - \frac{\partial A_z}{\partial y} \end{pmatrix}$$

• $|\operatorname{rot} \vec{A}| < 0$: Uhrzeigersinn

• $|\operatorname{rot} \vec{A}| = 0$: Wirbelfrei • $|\operatorname{rot} \vec{A}| > 0$: Gegenuhrzeigersinn

Gauss: div $\left(\operatorname{rot}(\vec{A})\right) \stackrel{!}{=} 0$

9.6 Integralsatz von Stokes

$$\oint_{(C)=\partial S} \vec{A} \cdot d\vec{r} = \int_{(S)} \operatorname{rot} \vec{A} \cdot d\vec{S}$$

 ∂S muss anhand Rechter-Hand-Regel orientiert sein.

Stokes sagt aus, dass die Summe der Verwirbelungen in einer Fläche, der Summe der Vektoren dessen Randes entsprechen.

9.7 Anwendungen: Maxwell-Gleichungen

-TBD-