

ATLAS Note

Search for flavor-changing neutral currents tHq interactions with $H \to \tau^+\tau^-$ in proton-proton collisions at $\sqrt{s} = 13$ TeV

The ATLAS Collaboration

30th July 2020

A search is presented for flavor-changing neutral currents tHq interactions with $H \to \tau^+\tau^-$ using a data set collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 fb⁻¹ of proton-proton collisions at a center-of-mass energy of 13 TeV. The search is performed in the decay chain $t\bar{t} \to Wb + Hq$ or $qg \to tH \to Wb + H$ (q = c/u), where the W boson decays inclusively and H decays to $\tau^+\tau^-$. Upper limits at 95 % confidence level for the coupling coefficient are measured to be XXX and XXX, while the expected limits are XXX_{-XXX}^{+XXX} % and XXX_{-XXX}^{+XXX} %, respectively.

To be done:

10

15

- 1) Theory systematics
- 2) Systematics for lepton channels

© 2020 CERN for the benefit of the ATLAS Collaboration.

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

18 Contents

19	1	Intr	roduction	4
20	2	Dete	ector, data set and Monte Carlo simulation	5
21		2.1	ATLAS detector	5
22		2.2	Data set	6
23		2.3	Signal and background simulation	7
24	3	Obj	ect reconstruction	8
25		3.1	Jets	8
26		3.2	b-tagging	9
27		3.3	Electrons	9
28		3.4	Muons	9
29		3.5	Hadronic tau decays	9
30		3.6	Missing transverse energy	10
31		3.7	Overlap removal	10
32	4	Rec	onstruction of event topology	12
33	5	Sele	ection of events	17
34		5.1	Trigger	17
35		5.2	Event cuts and regions	19
36	6	FCN	NC signal samples	30
37	7	Bac	kground estimation	30
38		7.1	Origin of fake $ au_{ m had}$	31
39		7.2	MC fake τ_{had} estimation (obsolete)	31
40		7.3	MC fake $\tau_{\rm had}$ estimation	32
41		7.4	QCD fake $\tau_{\rm had}$ estimate in $\tau_{\rm had}\tau_{\rm had}$	33
42		7.5	Fake lepton background	34
43		7.6	Summary of signal and background events	34
44	8	MV	A analysis	44
45	9	Syst	tematic uncertainties	53
46		9.1	Luminosity	55
47		9.2	Detector-related uncertainties	55
48		9.3	Uncertainties on fake background estimations	56
49		9.4	Theoretical uncertainties on the background	56
50		9.5	Uncertainties on the signal modelling	57

51	10 Fit model and signal extraction	58
52	11 Results	64
53	Appendix	66
54	Contents	

55 1 Introduction

Since the discovery of the Higgs boson in 2012, great efforts are made to study its properties. As the mass of the Higgs boson is about 125 GeV [1], it is kinematically allowed that a top quark decays to a Higgs boson and an up-type quark via the flavour-changing neutral current (FCNC). In the Standard Model (SM), the FCNC interaction is forbidden at tree level and suppressed at higher orders due to the Glashow-Iliopoulos-Maiani (GIM) mechanism [2]. The $t \rightarrow u/c + H$ branching fraction in the SM is calculated to be around 10^{-15} [3]. It would be enhanced in many models beyond the SM (BSM). Examples are the quark-singlet model [4, 5], the two-Higgs doublet model with or without the flavour violation [6, 7], the minimal supersymmetric standard model (MSSM) [8], supersymmetry with R-parity violation [9], the Topcolour-assisted Technicolour model [10] or models with warped extra dimensions [11], the little Higgs model with T-parity conservation [12] and the composite Higgs models [13]. Especially, the ansatz of Cheng and Sher [14] allows a branching fraction of about 10^{-3} [15]. Therefore, an observation of this decay would be a clear evidence for new physics.

On the other hand, if the tHq interaction exists, the single-top, Higgs associated production through this interaction should also be enhanced. The tH associated production in the SM prediction is expected to be small at LHC[16]. So the study on this process will also contribute to the FCNC interaction searches.

Upper 95% CL limits on BR($t \to Hq$) have been obtained by ATLAS based on the data from 2015 and 2016, in the $H \to \gamma\gamma$ [17], $H \to WW/\tau_{\rm lep}\tau_{\rm lep}$ multilepton [18] and $H \to \tau\tau$, $H \to b\bar{b}$ [19] channels. The combined expected (observed) limits are 0.083% (0.11%) and 0.083% (0.12%) for $t \to Hc$ and $t \to Hu$, respectively.

The $t \to Hq$ decay and $gq \to tH$ production are also searched by CMS based on the data from 2015 and 2016[20].

The FCNC coupling is parametrised using dim-6 operators [21]. The effective Lagrangian regarding tqH interaction before spontaneously symmetry breaking is:

$$\mathcal{L}_{EFT} = \frac{C_{u\phi}^{i3}}{\Lambda^2} (\phi^{\dagger} \phi) (\bar{q}_i t) \tilde{\phi} + \frac{C_{u\phi}^{3i}}{\Lambda^2} (\phi^{\dagger} \phi) (\bar{Q} u_i) \tilde{\phi} + H.c \tag{1}$$

Where the operator notation is consistent with [21]. C^{i3} is the Wilson coefficient of the 6-dim operator with i=1,2 denoting the flavor of upper type quark. Λ is the scale of the new physics where the UV cut off happens which is set as 1 TeV as benchmark. ϕ is the SM higgs doublet. $\tilde{\phi} = \epsilon \phi^*$ where ϵ is the antisymmetric matrix with $\epsilon_{12} = -\epsilon_{21} = 1$.

The Wilson coefficient $C_{u\phi}$'s can be extracted as

$$(C_{u\phi}^{i3})^{2} + (C_{u\phi}^{3i})^{2} = 1946.6 \text{ BR}(t \to qH)$$

$$(C_{u\phi}^{13})^{2} + (C_{u\phi}^{31})^{2} = \sigma(ug \to tH)/365.2 \text{ fb}$$

$$(C_{u\phi}^{23})^{2} + (C_{u\phi}^{32})^{2} = \sigma(cg \to tH)/52.9 \text{ fb}$$
(2)

To give a better impression on the numbers, we use BR($t \to qH$) = 1(0.2)% as benchmark, which is corresponding to $(C_{u\phi}^{13})^2 + (C_{u\phi}^{31})^2 = 19.47(3.89)$, $\sigma(ug \to tH) = 7109.0(1421.8)$ pb, $\sigma(cg \to tH) = 1029.8(206.0)$ pb.

In this article, a search for the decay $t \to qH$ in the $t\bar{t}$ production (TT) and single-top, Higgs associated production (ST) with $H \to \tau\tau$ as shown in Fig 1 using 140 fb⁻¹ of proton-proton collision data at 13 TeV, taken with the ATLAS detector at the Large Hadron Collider (LHC), is presented. The final state is characterized by one top and one Higgs. In TT, there is an additional u/c quark forming a top resonance with Higgs.

Figure 1: Diagrams of FCNC TT(left) and ST(right) process.

2 Detector, data set and Monte Carlo simulation

2.1 ATLAS detector

The ATLAS detector [22] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroid magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged particle tracking in the range $|\eta| < 2.5$. A high-granularity silicon pixel detector covers the vertex region and typically provides three measurements per track. It is followed by a silicon microstrip tracker, which usually provides four two-dimensional measurement points per track. These silicon detectors are complemented by a transition radiation tracker, which enables radially extended track reconstruction up to $|\eta| < 2.0$. The transition radiation tracker also provides electron identification information based on the fraction of hits above a higher energy-deposit threshold corresponding to transition radiation. Compared to Run-1, an Insertable B-Layer [23] (IBL) is inserted as the innermost pixel layer during LS1 for Run-2, which significantly improves the tracking performance.

- The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. Within the region $|\eta| < 3.2$, electromagnetic calorimetry is provided by barrel and endcap high-granularity liquid-argon (LAr) electromagnetic calorimeters, with an additional thin LAr presampler covering $|\eta| < 1.8$, to correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry is provided by a scintillator-tile calorimeter, segmented into three barrel structures within $|\eta| < 1.7$, and two LAr hadronic endcap calorimeters.
- A muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field generated by superconducting air-core toroids. The precision chamber system covers the region $|\eta| < 2.7$ with three layers of monitored drift tubes, complemented by cathode strip chambers in the forward region, where the background is highest. The muon trigger system covers the range $|\eta| < 2.4$ with resistive-plate chambers in the barrel, and thin-gap chambers in the endcap regions.

18 **2.2 Data set**

- This analysis is based on the full proton-proton data at a center-of-mass energy $\sqrt{s} = 13$ TeV with a bunch spacing of 25 ns collected by ATLAS in Run-2. The following good run list (GRL) was used for the 2015 dataset:
- data15_13TeV.periodAllYear_DetStatus-v89-pro21-02_Unknown_PHYS_StandardGRL_All_Good_25ns.xml
- which corresponds to an integrated luminosity of 3.22 fb^{-1} .
- The GRL used for the 2016 dataset:
- data16_13TeV.periodAllYear_DetStatus-v89-pro21-01_DQDefects-00-02-04_PHYS_StandardGRL_All_Good_25ns.xml
- corresponds to an integrated luminosity of 32.88 fb⁻¹.
- These GRLs exclude data where the IBL was not fully operational. The uncertainty in the combined 2015+2016 integrated luminosity, 36.1 fb⁻¹, is 2.1%. It is derived, following a methodology similar to that detailed in Ref. [24], from a calibration of the luminosity scale using x-y beam-separation scans performed in August 2015 and May 2016.
- 131 The GRL used for the 2017 dataset:
- data17_13TeV.periodAllYear_DetStatus-v99-pro22-01_Unknown_PHYS_StandardGRL_All_Good_25ns_Triggerno17e33prim.xml
- corresponds to an integrated luminosity of 44.307 fb⁻¹.
- The GRL used for the 2018 dataset:
- data18_13TeV.periodAllYear_DetStatus-v102-pro22-04_Unknown_PHYS_StandardGRL_All_Good_25ns_Triggerno17e33prim.xml
- corresponds to an integrated luminosity of 59.937 fb^{-1} . The final luminosity used for the analysis is 140.45 fb^{-1} .

2.3 Signal and background simulation

- The overview of the major samples generated is summarized in table 1.
- The TopFCNC UFO model [25, 26] with 5-flavour scheme is used for signal simulation.
- The FCNC ST signal is simulated using MadGraph5_aMC@NLO v2.6.2 [27] interfaced with Pythia 8 [28] with the A14 tune [29] for the generation of parton showers, hadronisation and multiple interactions and the NNPDF30NLO [30] parton distribution functions (PDF) is used to generate *qg* events at next-to-leading order (NLO) in QCD. Depending on either up quark or charm quark involved in the FCNC decay and either the *W* bosons decaying hadronically or leptonically, 4 samples are generated for each term of effective Lagrangian, so eight samples in total.
- The FCNC TT signal is simulated using Powheg-Box [31] V2 interfaced with Pythia8 [28] with the A14 tune [29] for the generation of parton showers, hadronisation and multiple interactions and the NNPDF30NLO [30] parton distribution functions (PDF) is used to generate $t\bar{t}$ events at next-to-leading order (NLO) in QCD. Depending on either the top or the anti-top quark decaying to bW, either up quark or charm quark involved in the FCNC decay and either the W bosons decaying hadronically or leptonically, eight samples are produced with the Higgs going to a τ -lepton pair.
- The dominant background is the $t\bar{t}$ production. The $t\bar{t}$ process and the single top process are generated with Powheg-Box [31] V2, and Pythia8 is used for the parton shower. NNPDF30NLO [30] and A14 tune [29] are used for $t\bar{t}$ (single top). The $t\bar{t}$ sample is also generated with different generators and parton showers models, as well as different amount of radiations, for systematics as detailed in Sec. 9.
- The $t\bar{t}X$, where X=W, ee, $\mu\mu$, $\tau\tau$ or Z(qq, vv) ($\tau\tau$ has the Higgs resonance excluded), are generated with MadGraph5_aMC@NLO and inferfaced with Pythia8 for the parton shower. The NNPDF30NLO [30] is used for the matrix element PDF. The $t\bar{t}$, single top and $t\bar{t}X$ are combined into a single process named top background in the analysis.
- The W+jets, Z+jets and diboson backgrounds are simulated using Sherpa 2.2.1 [32] with NNPDF30NNLO PDF [30].
- The τ decay in the single top samples is handled by Tauola [33]. All samples showered by Pythia8 (Sherpa) have the τ decays also handled by Pythia8 (Sherpa). All the decay modes of the τ lepton are allowed in the event generators (but may be subject to generator filters). The summary of used generators for matrix element and parton shower is given in Tab. 1.
- The SM higgs background includes ggH, VH, VBF and $t\bar{t}H$, generated from Powheg-Box [31] V2 interfaced with Pythia8. The overall contribution is pretty small. Various PDF and tune options are use for those samples depending on the decay modes.

Process	Generator		PDF	set	Tune	Order			
1100088	ME	PS	ME	PS	Tune	Order			
TT Signal	Powheg	Pythia8	NNPDF30NLO	NNPDF23LO	A14	NLO			
ST Signal	MadGraph5_aMC@NLO	Pythia8	NNPDF30NLO	NNPDF23LO	A14	NLO			
W/Z+jets	W/Z+jets Sherpa 2.2.1		NNPDF3	0NNLO	Sherpa	NLO/LO			
$t\bar{t}$	Powheg	Pythia8	NNPDF30NLO	NNPDF23LO	A14	NLO			
Single top	Powheg	Pythia6	CT10(NLO)	CTEQ6L1[44]	Perugia2012	NLO			
$t\bar{t}X$	MadGraph5_aMC@NLO	Pythia8	NNPDF30NLO	NNPDF23LO	A14	NLO			
Diboson	Sherpa 2.2.1 NNPDF30NNLO		Sherpa	NLO/LO					

Table 1: Overview of the MC generators used for the main signal and background samples

The *tH* associated production is negligible but we still considered it. The sample is generated using MadGraph5 and interfaced with pythia8 for parton shower. CT10 PDF and A14 tune are used. It is treated as part of SM higgs background explained in above.

All Monte-Carlo (MC) samples were passed through the full GEANT4 [34] simulation of the ATLAS detector, except for two extra $t\bar{t}$ samples with Pythia8 and Herwig7 [35] parton showering which are simulated with ATLFAST-II [36] for systematics (Sec. 9). In the analysis, the simulated events were reweighted based on their pile-up to match the pile-up profile observed in data.

The full list of MC samples and their corresponding cross sections are given in App. ??. The single boson and diboson cross sections are calculated to NNLO [37]. The $t\bar{t}$ cross section is calculated at NNLO in QCD including resummation of NNLL soft gluon terms for a top-quark mass of 172.5 GeV [38]. The $t\bar{t}H$ and $t\bar{t}V$ are normalized to NLO cross sections according to [39] and [40]. The t-channel and t-channel single top cross sections are calculated at NLO with Hathor v2.1 [41, 42], while the Wt channel is calculated at NLO+NNLL [43].

3 Object reconstruction

In this section, various objects used in this analysis are defined, namely jets, electrons, muons, hadronically decaying taus and missing transverse energy.

86 3.1 Jets

Jets are reconstructed using the anti- k_t algorithm [45] with a distance parameter R=0.4 applied to the particle flow candidates. Only jets with $p_T>25$ GeV and $|\eta|<4.5$ are considered by the analysis. To suppress jets produced in additional pile-up interactions, jets with $p_T<60$ GeV and $|\eta|<2.4$ are required to have a Jet Vertex Tagger (JVT [46]) parameter larger than 0.2 (Medium working point). The JVT is the output of the jet vertex tagger algorithm used to identify and select jets originating from the hard-scatter

interaction through the use of tracking and vertexing information. About 10% of selected jets in the signal are in the forward detector region. Figure ?? shows the η of the 4th leading jet in the analysis. After the above selection and overlap removal, a "jet cleaning" cut is applied on all the jets, and the events with jets not passing this cut are discarded.

196 3.2 b-tagging

The DL1r [47] algorithm is used to identify the jets initiated by b-quarks. A working point corresponding to an average efficiency of 70% for jets containing b-quarks is chosen.

199 3.3 Electrons

Electron candidates are identified by tracks reconstructed in the inner detector and the matched cluster of energy deposited in the electromagnetic calorimeter. Electrons candidates are required to have $E_T > 15$ GeV and $|\eta| < 2.47$. The transition region, $1.37 < |\eta| < 1.52$, between the barrel and end-cap calorimeters is excluded. They are further required to pass a loose + b-layer likelihood-based identification point [48] and a FCLoose isolation working point [49]. The electrions are further removed if its cluster is affected by the presence of a dead frontend board in the first or second sampling or by the presence of a dead high voltage region affecting the three samplings or by the presence of a masked cell in the core.

207 **3.4 Muons**

Muon reconstruction begins with tracks reconstructed in the MS and is matched to tracks reconstructed in the inner detector. Muon candidates are required to have $p_T > 10$ GeV and $|\eta| < 2.5$. A Loose identification selection [50] based on the requirements on the number of hits in the ID and the MS is satisfied. A Gradient isolation [49] criterion is also required.

212 3.5 Hadronic tau decays

The hadronic tau candidates [51] are seeded by jets reconstructed by the anti- k_t algorithm [45], which 213 is applied on calibrated topo clusters [52] with a distance parameter of R=0.4. They are required to 214 have $p_T > 20$ GeV and $|\eta| < 2.5$. The transition region between the barrel and end-cap calorimeters $(1.37 < |\eta| < 1.52)$ is excluded. An identification algorithm based on Recursive Neural Network [53] 216 is applied to discriminate the visible decay products of hadronically decaying tau lepton τ_{had} from jets 217 initiated by quarks or gluons. Different RNN working points are provided and required at different levels 218 depending on the analysis channel. The Loose ID taus are used for the overlap removal and missing 219 transverse energy calculation. In the analysis event selection, the hadronic tau candidates are required to have one or three charged tracks and an absolute charge of one, and pass the Medium tau ID to reject the 221

jets. For the Medium ID, the tau efficiency is about 75% (60%) for 1-prong (3-prong) candidates. The ID efficiencies are optimized to be flat versus the tau p_T and pileup. The tau candidates are required to not overlap with a very loose electron candidate, and a dedicated BDT variable is also used to veto the taus which are actually electrons. If the τ_{had} candidate is also tagged as a b-jet, then this tau object is also not used. Efficiency scale factors for tau reconstruction, ID and electron BDT rejection [54] are applied on tau candidates in MC.

228 3.6 Missing transverse energy

The missing transverse energy $E_{\rm T}^{\rm miss}$ is computed using the fully calibrated and reconstructed physics objects as described above. The TrackSoftTerm (TST) algorithm is used to compute the SoftTerm of the $E_{\rm T}^{\rm miss}$ [55].

232 3.7 Overlap removal

For the objects passing the selection above, a geometric overlap removal is applied to eliminate the ambiguity in the object identification. When two objects are close geometrically with ΔR less than a certain threshold, or satisfy some certain requirements, one of them will be removed. The overlap removal is done by the official overlap removal tool provided by ASG group. The "Standard" working point is used. The rules are discribed as follows in sequence:

- If two electrons have overlapped second-layer cluser, or shared tracks, the electron with lower $p_{\rm T}$ is removed.
- $\tau_{\rm had}$ within a $\Delta R = 0.2$ cone of an electron or muon are removed.
- If a muon sharing an ID track with an electron and the muon is calo-tagged, the muon is removed.

 Otherwise the electron is removed.
- Jets within a $\Delta R = 0.2$ cone of an electron are removed.
 - Electrons within a $\Delta R = 0.4$ cone of a jet are removed.
- When a muon ID track is ghost associated to a jet or within a $\Delta R = 0.2$ cone of a jet, the jet is removed if it has less than 3 tracks with $p_{\rm T} > 500$ MeV or has a relative small $p_{\rm T}$ ($p_{\rm T}^{\mu} > 0.5p_{\rm T}^{\rm jet}$ and $p_{\rm T}^{\mu} > 0.7$ [the scalar sum of the $p_{\rm T}$'s of the jet tracks with $p_{\rm T} > 500$ MeV]).
 - Muons within a $\Delta R = 0.4$ cone of a jet are removed.
- Jets within a $\Delta R = 0.2$ cone of the leading τ_{had} ($\tau_{lep}\tau_{had}$), or with the two leading τ_{had} 's ($\tau_{had}\tau_{had}$), are excluded. The overlap also works for the reverted tau ID regions used in the analysis, since the tau ID information is not used.

244

- If a tau object is also tagged as a b-jet, then this tau object is removed.
- Note that the $E_{\rm T}^{\rm miss}$ calculation package has its own overlap removal procedure. Taus that fail Loose ID are also passed to the package. Only two leading taus are considered in the calculation.

Table 2: Overview of the final states of signal events

# of particles		alias	b-jet	jets	lepton	taus
ST	$W \rightarrow l \nu$	STL	1	1	1	2
31	$W \rightarrow q\bar{q}$	STH	1	3	0	2
TT	$W \rightarrow l \nu$	TTL	1	2	1	2
	$W \to q\bar{q}$	TTH	1	4	0	2

Table 3: Overview of the signal regions

# of particles	b-jet	jets	lepton	hadronic taus
$2lSS\tau_{ m had}$	1	≥ 1	2	1
$l au_{ m had} au_{ m had}$	1	≥ 1	1	2
STH $ au_{ m had} au_{ m had}$	1	3	0	2
TTH $\tau_{\rm had} \tau_{\rm had}$	1	≥ 4	0	2
STH $\tau_{\rm lep} \tau_{\rm had}$	1	3	1	1
TTH $\tau_{\rm lep} \tau_{\rm had}$	1	≥ 4	1	1

4 Reconstruction of event topology

Depending on the production modes and the decay of the W boson from top quark, the analysis is split into 4 categories as shown in table 3. All of the 8 decay modes are considered in the analyses. The selection requirement dedicated for each decay mode is also listed in talbe 3. Due to the low statistics when STL cuts are applied, the ST and TTL are included in a single region ($l\tau_{had}$ for $H \to \tau_{had}\tau_{had}$ and $2lSS\tau_{had}$ for $H \to \tau_{lep}\tau_{had}$) where there is no light jet multiplicity requirement. In order to reduce the background, the $2lSS\tau_{had}$ region requires the the leptonic tau and the lepton from W decay to be of the same charge, where the "2lSS" comes from.

For the future convenience, STH $\tau_{lep}\tau_{had}$ and TTH $\tau_{lep}\tau_{had}$ are indicated by $\tau_{lep}\tau_{had}$; STH $\tau_{had}\tau_{had}$ and TTH $\tau_{had}\tau_{had}$ are indicated by $\tau_{had}\tau_{had}$; All the channels involving leptons (including τ_{lep}) are indicated by leptonic channels.

To comply with the signal topology, in each channel, exactly one jet should be tagged as a b-jet.

In TTH channel, all jets from the top hadronic decay and the jet from $t \to Hq$, denoted as the FCNC jet, pass the jet selection, there should be at least four jets among which the one with smallest $\Delta R(p_{\rm jet}^{\mu}, p_{\tau 1}^{\mu} + p_{\tau 2}^{\mu})$ is considered as FCNC jet. If there are more than 2 jets beside FCNC jet and b-jet, the jets from W boson decay are chosen based on W boson resonance. There is the chance that one of the jets fails the p_T requirement and not reconstructed. This kind of events will fall into STH channel. The FCNC top resonance is still reconstructed given the big chance that the jet which is missing is from W decay.

In STH events, there are 3 jets coming from top decay including the b-jet. So a Higgs resonance formed by the taus and a top resonance formed by the jets are expected.

In STH and TTH channels , the method introduced in [56] is used to recontruct the ditau mass and momentum by taking the τ decay kinematics into account. To determine the 4-momenta of the invisible decay products of the tau decays, the following χ^2 in Eq. 3, based on the probability functions above and the constraints from the tau mass, the Higgs mass and the measured $E_{\rm T}^{\rm miss}$, is defined,

$$\chi^{2} = -2\ln\mathcal{P}_{1} - 2\ln\mathcal{P}_{2} + \left(\frac{m_{\tau_{1}}^{\text{fit}} - 1.78}{\sigma_{\tau}}\right)^{2} + \left(\frac{m_{\tau_{2}}^{\text{fit}} - 1.78}{\sigma_{\tau}}\right)^{2} + \left(\frac{m_{H}^{\text{fit}} - 125}{\sigma_{\text{Higgs}}}\right)^{2} + \left(\frac{E_{x,\text{miss}}^{\text{fit}} - E_{x,\text{miss}}}{\sigma_{\text{miss}}}\right)^{2} + \left(\frac{E_{y,\text{miss}}^{\text{fit}} - E_{y,\text{miss}}}{\sigma_{\text{miss}}}\right)^{2},$$
(3)

where $\mathcal{P}_i(\Delta R)$ are the probability distributions of the angular distance of the visible and invisible decay products in the tau decay, parametrized as a function of the momentum of the tau lepton. In the τ_{lep} mode where two neutrinos are present, it is extended to be the joint probability distribution of ΔR and m_{mis} with m_{mis} being the invariant mass of the neutrinos, denoted by $\mathcal{P}(\Delta R, m_{mis})$. These probability density functions are obtained from the MC simulation. Figure 2 illustrates the distributions of $\mathcal{P}(\Delta R, m_{mis})$ for τ_{lep} , and $\mathcal{P}(\Delta R)$ for τ_{had} , with the original tau's momentum in the range 60 GeV< p < 80 GeV. Figures ??-?? in App. ?? show the distributions for each term in Eq. 3.

Figure 2: The distributions of (a) $\mathcal{P}(\Delta R, m_{\text{mis}})$ for τ_{lep} , and (b) $\mathcal{P}(\Delta R)$ for τ_{had} , with the original tau's momentum in the range 60 GeV < p < 80 GeV.

In Eq. 3, the free parameters scanned are the 4-momentum components of the invisible decay products for each tau decay. In the $\tau_{\rm had}$ mode, only three momentum components are scanned since a single neutrino is massless. $m_{\tau_{1,2}}^{\rm fit}$, $m_H^{\rm fit}$ and $E_{xy,{\rm miss}}^{\rm fit}$ are the calculated tau mass, Higgs mass, and missing transverse energy with the scanned parameters. The corresponding mass resolutions, σ_{τ} and $\sigma_{\rm Higgs}$, are set to 1.8 GeV and 290 GeV respectively. The $E_{\rm T}^{\rm miss}$ resolution is parametrized as

$$\sigma_{\text{miss}} = 13.1 + 0.50\sqrt{\Sigma E_{\text{T}}},\tag{4}$$

where $\Sigma E_{\rm T}$ (in GeV) is the scalar sum of transverse energy depositions of all objects and clusters. The

280

281

283

invisible 4-momenta are obtained by minimizing the combined χ^2 for each event¹. By adding the Higgs mass constraint term in the kinematic fit, not only is the Higgs mass resolution improved, but also the resolutions of the Higgs boson's four-momentum, and the mass of the top from which the Higgs comes. Figure 3 shows the distributions of χ^2 in different regions. Good agreement between data and background predictions are achieved.

Figure 3: The distributions of χ^2 in Eq. 3 in the hadronic channels.

In $l\tau_{had}\tau_{had}$ channels, a Higgs resonance formed by the taus is expected. Additionally for TTL $\tau_{had}\tau_{had}$ events, a top resonance formed by the c/u jet and Higgs is expected. Thus the invariant mass of the hadronic tau candidates and the FCNC-jet is required to be less than 125GeV. Due to the large amount of neutrinos produced in leptonic channels with a huge degree of freedom. The kinematic fit to reconstruct the neutrinos is given up in $l\tau_{had}\tau_{had}$ channels. The kinematics calculated directly from visible particles and $E_{\rm T}^{\rm miss}$ are used as BDT input.

With the event topology reconstructed, a number of variables are defined for signal and background

293

294

295

297

298

300

301

¹ The coarse global minimum of the χ^2 in Eq. 3 is first obtained by scanning the (η, ϕ) of the netrino(s) from one tau, and repeating for the other tau. Then a final minimum is obtained around it with the MINUIT packge [57].

- separation. Their distributions can be found in Sec. 7, and some of their explanations are as follows. In the following explanations, tau candidates or di-tau point to the visible decay product of both τ_{had} and τ_{lep} .
- 1. E_{miss}^{T} is the missing transverse momentum.
- 2. $p_{T,\tau}$ is the transverse momentum of the leading tau candidate.
- 3. $p_{T,sub-\tau}$ is the transverse momentum of the sub-leading tau candidate.
- 4. $p_{T,l}$ is the transverse momentum of the leading lepton.
- 5. $p_{T,sub-l}$ is the transverse momentum of the sub-leading lepton.
- 6. χ^2 is derived from kinematic fitting for the neutrinos.
- 7. $m_{t,SM}$ is the invariant mass of the b-jet and the two jets from the W decay, and reflects the top mass in the decay $t \to Wb \to j_1j_2b$. This variable is only defined for the 4-jet STH and TTH events.
- 8. m_W^T is the transverse mass calculated from the lepton and E_T^{miss} in the leptonic channels, defined as

$$m_W^T = \sqrt{2p_{\text{T,lep}}E_{\text{T}}^{\text{miss}}\left(1 - \cos\Delta\phi_{\text{lep,miss}}\right)}.$$
 (5)

- 9. $m_{\tau,\tau}$ is the invariant mass of the tau candidates and reconstructed neutrinos in STH and TTH channels.
- m_W is the reconstructed invariant mass of the hadronic W boson from SM top quark.
- 11. $m_{t,FCNC}$ is the visible invariant mass of the FCNC-decaying top quark reconstructed from di-tau candidates, FCNC-jet and reconstructed neutrinos.
- 12. $m_{\tau\tau,vis}$ is the visible invariant mass of the two tau candidates
- 13. $p_{T,\tau\tau,vis}$ is the p_T of the di-tau candidates.
- $m_{t,FCNC,vis}$ is the reconstructed invariant mass of the FCNC-decaying top quark.
- 15. $m_{t,SM,vis}$ is the invariant mass of the lepton (the lepton far-away from tau candidate in the 2ISS channel) and the b-jet, which reflects the visible SM top mass.
- 16. $M(\tau \tau light jet, min)$ is the invariant mass of the two tau candidates (include leptonic tau) and the light-flavor jet, minimized by choosing different jet.
- 17. M(light jet, light jet, min) is the invariant mass of two light-flavor jet, minimized by choosing different jets.

18. E_{miss}^{T} centrality is a measure of how central the E_{T}^{miss} lies between the two tau candidates in the transverse plane, and is defined as

$$E_{\rm T}^{\rm miss} \ {\rm centrality} = (x+y)/\sqrt{x^2+y^2}, \\ {\rm with} \ x = \frac{\sin(\phi_{\rm miss}-\phi_{\tau_1})}{\sin(\phi_{\tau_2}-\phi_{\tau_1})}, \ y = \frac{\sin(\phi_{\tau_2}-\phi_{\rm miss})}{\sin(\phi_{\tau_2}-\phi_{\tau_1})},$$
 (6)

- 19. $E_{\nu,i}/E_{\tau,i}$, i=1,2 is the momentum fraction carried by the visible decay products from the tau mother. It is based on the best-fit 4-momentum of the neutrino(s) according to the event reconstruction algorithm in this section. For the τ_{had} decay mode, the visible decay products carry most of the tau energy since there is only a single neutrino in the final state, which is evident in the excess around 1 in Fig. 4.
- 20. $\Delta R(l+b-jet,\tau+\tau)$ is the angular distance between the lepton+b-jet and di-tau candidates.
- 21. $\Delta R(l, b jet)$ is the angular distance between the lepton and b-jet.
- 22. $\Delta R(\tau, b jet)$ is the angular distance between the tau and b-jet.
- 23. $\eta_{\tau,max}$ is the larger polar angle among the tau candidates.
- 24. $\Delta R(l, \tau)$ is the angular distance between the lepton and the closest tau candidate in the leptonic channels.
- 25. $\Delta R(\tau, f cnc j)$ is the angular distance between the tau and the reconstructed fcnc jet.
- 26. $\Delta R(\tau, \tau)$ is the angular distance between two tau candidates.
- 27. $\Delta R(\tau, light jet, min)$ is the angular distance between the closest tau candidate and light-flavor jet.
- 28. $\Delta \phi(\tau \tau, P_{miss}^T)$ is the azimuthal angle between the $E_{\rm T}^{\rm miss}$ and di-tau $p_{\rm T}$.

5 Selection of events

- In the leptonic channels, exactly one lepton with $p_{\rm T} > 10$ GeV passing Tight ID as defined in Sec. 3 is required. Further more, the $p_{\rm T}$ of the lepton is required to be 1 GeV above the trigger threshold. After the object reconstruction and overlap removal. The events are categorized according to tab. ??.
- In the $\tau_{\rm had}\tau_{\rm had}$ channel, no leptons (as defined in Sec. 3) should be present in the event, and the two tau candidates with the highest $p_{\rm T}$ are chosen. They should also pass the Medium tau ID and overlap removal.
- To account for the trigger thresholds, the two hadronic taus in $\tau_{had}\tau_{had}$ are required to pass the $p_T > 40$ GeV and $p_T > 30$ GeV cuts.

5.1 Trigger

359

360

364

370

- In the leptonic channels, the single-lepton triggers are required to select the candidate events. In general, the lowest unprescaled triggers are used in both data-taking periods:
- Single-lepton triggers in 2015:
 - HLT_e24_lhmedium_L1EM20VH, or HLT_e60_lhmedium, or HLT_e120_lhloose
 - HLT_mu20_iloose_L1MU15, or HLT_mu50
- 361 Single-lepton triggers in 2016:
- HLT_e26_lhtight_nod0_ivarloose, or HLT_e60_lhmedium_nod0, or HLT_e140_lhloose

 _nod0
 - HLT_mu26_ivarmedium, or HLT_mu50
- The trigger matching between the offline and trigger level lepton objects is also required for the corresponding leptons selected for the analysis. The minimum offline lepton p_T should be 1 GeV above the trigger threshold. For the $\tau_{\mu}\tau_{had}$ channel in 2016, the offline muon p_T is 2 GeV above the trigger threshold due to the trigger scale factors' binning².
- In the $\tau_{had}\tau_{had}$ channel, for the 2015 data-taking period, events are required to pass the triggers:
 - HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo_L1TAU20IM_2TAU12IM
 - HLT_tau35_loose1_tracktwo_tau25_loose1_tracktwo
 - For the 2016 data-taking, events are required to pass the triggers:

² The trigger p_T cuts on the leptons are independent of and additional to the other p_T cuts introduced previously. For example, the p_T cuts used in the overlap removal are still as those in Sec. 3. It is also the case for the cuts introduced in the AOD derivations (Sec. 5.2).

```
• HLT_tau35_loose1_tracktwo_tau25_loose1_tracktwo
```

- HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo
- HLT_tau80_medium1_TAU60_tau50_medium1_L1TAU12
- HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo
- For the 2017 data-taking, events are required to pass the triggers:
- HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo
- HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo_03dR30_L1DR_TAU20ITAU12I_J25
- HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo_L1DR_TAU20ITAU12I_J25
- HLT_tau40_medium1_tracktwo_tau35_medium1_tracktwo
- HLT_tau80_medium1_tracktwo_L1TAU60_tau50_medium1_tracktwo_L1TAU12
- HLT_tau80_medium1_tracktwo_L1TAU60_tau35_medium1_tracktwo
 _L1TAU12IM_L1TAU60_DR_TAU20ITAU12I
- HLT_tau80_medium1_tracktwo_L1TAU60_tau50_medium1_tracktwo_L1TAU12
- HLT_tau80_medium1_tracktwo_L1TAU60_tau35_medium1_tracktwo
 _L1TAU12IM_L1TAU60_DR_TAU20ITAU12I
- HLT_tau80_medium1_tracktwo_L1TAU60_tau60_medium1_tracktwo_L1TAU40
- For the 2018 data-taking, events are required to pass the triggers:
- HLT_tau80_medium1_tracktwoEF_L1TAU60_tau60_medium1_tracktwoEF_L1TAU40
- HLT_tau80_medium1_tracktwoEF_L1TAU60_tau35_medium1_tracktwoEF

 L1TAU12IM_L1TAU60_DR_TAU20ITAU12I
- HLT_tau80_mediumRNN_tracktwoMVA_L1TAU60_tau60_mediumRNN_tracktwoMVA_L1TAU40
- HLT_tau80_mediumRNN_tracktwoMVA_L1TAU60_tau35_mediumRNN_tracktwoMVA
 _L1TAU12IM_L1TAU60_DR_TAU20ITAU12I
- HLT_tau40_medium1_tracktwoEF_tau35_medium1_tracktwoEF
- HLT_tau35_medium1_tracktwoEF_tau25_medium1_tracktwoEF_L1DR_TAU20ITAU12I_J25
- HLT_tau40_mediumRNN_tracktwoMVA_tau35_mediumRNN_tracktwoMVA
- HLT_tau35_mediumRNN_tracktwoMVA_tau25_mediumRNN_tracktwoMVA
 _L1DR_TAU20ITAU12I_J25

is required. The two τ_{had} candidates are matched to the respective legs of the di-tau trigger using the individual single tau trigger objects. The p_T thresholds are chosen such that the selected τ_{had} candidate 403 $p_{\rm T}$ already lies in the plateau of the respective trigger efficiency curve. Due to the rising instantaneous 404 luminosity, the trigger used in the 2016 data taking includes a requirement for an additional level-1 405 calorimeter trigger jet with $p_T > 25 \text{ GeV}$ and $|\eta| < 3.2$. The leading jet in the 2016 events is required to 406 be matched within $\Delta R < 0.4$ with the jet ROI that fulfilled the jet part of the trigger criteria (trigger jet). Figure ?? shows the turn-on curves of the additional jet as in [58], and the leading jet p_T in the $\tau_{had}\tau_{had}$ 408 channel. A cut of $p_{\rm T}^{\rm Lljet} > 50\,{\rm GeV}$ is required on the trigger jet, and a leading-jet $p_{\rm T} > 60\,{\rm GeV}$ cut is 409 applied to remove the effect of turn on curve. 410

5.2 Event cuts and regions

415

416

417

418

419

420

423

424

425

426

431

A number of event cuts are applied before getting to the signal enhanced regions with the background suppressed. Then the DAOD_HIGG8D1 (DAOD_HIGG4D3) derivation is feed to ttHMultiAna (xTauFramework) to produce n-tuples for analysis. The list of event-level selection criteria is as follows:

- 1. DAOD_HIGG8D1 (leptonic channels) and DAOD_HIGG4D3 ($\tau_{had}\tau_{had}$) derivations are used for this analysis. At the derivation level, the following cuts are applied:
 - In DAOD_HIGG8D1, trigger skimming: all election, muon, tau triggers; Offline skimming: at least 2 light leptons or at least 1 lepton plus 1 tau.
 - In DAOD_HIGG4D3, no trigger skimming. Offline skimming: 2taus
- 2. At the xTauFramework level, skim cuts are applied to reduce the ntuple size:
 - No leptons, at least 1 medium tau and 1 loose tau, at least 3 jets with $p_{\rm T} > 30$ GeV, $|\eta| < 4.5$ and passing either central or forward JVT cuts and with at least 1 b-tagged, pass di-tau trigger, LooseBad Event Cleaning, leading tau $p_{\rm T} > 40$ GeV, sub-leading tau $p_{\rm T} > 30$ GeV, two taus comes from a single vertex, leading jet $p_{\rm T} > 60$ GeV, leading jet $|\eta| < 3.2$, $E_{\rm T}^{\rm miss} > 15$ GeV. In the case of data, GRL cut as defined in Sec. 2.2 is also applied.
 - 3. At the ttHMultiAna level, skim cuts [59] are applied to reduce the ntuple size.
- 4. A least one primary vertex exists in the event. The primary vertex is defined as the vertex that has the largest sum of track p_T^2 associated to it, and has at least 4 tracks with $|z_0| < 100$ mm.
- 5. The tau candidtes expected from Higgs decay should pass the Medium ID and the other quality cuts in Sec. 3.
 - 6. It is required that the tau objects are not b-tagged, otherwise the event is rejected.
- 7. Exactly one *b*-tagged jets with $p_T > 30$ GeV and $|\eta| < 2.5$.

- 8. Considering the di-tau are from the Higgs decay, their invariant mass should satisfy 50 GeV $< m_{\tau\tau, \rm vis} < 130$ GeV and $\Delta R(\tau, \tau) < 3.4$ in the $\tau_{\rm had}\tau_{\rm had}$ channel and 25 GeV $< m_{\tau\tau, \rm vis} < 125$ GeV in leptonic channels.
- 9. In $l\tau_{\rm had}\tau_{\rm had}$ channels, the lepton and b-jet are from SM top decay, so their invarian mass is expected to be smaller or around top mass: $m_{t,{\rm SM,vis}} < 190$ GeV.

Figure 4: The distributions of $x_{1,2}^{\rm fit}$ in the TTH $\tau_{\rm lep}\tau_{\rm had}$ (top) and $\tau_{\rm had}\tau_{\rm had}$ (bottom) channels.

The expected event yields for the backgrounds, signal and data after the above cuts are given in Tab. 4-14, with the exception for the fake background, which is estimated at a later cut stage as detailed in Sec. 7.

The summery of the yields and signal significance in leptonic channels are shown in table ?? and ??.

433

434

435

436

Table 4: The expected event yields (corresponds to 36.1 fb⁻¹) for different MC processes and data after each cut in the $\tau_{\rm lep}\tau_{\rm had}$ channel. The signal yields are obtained by assuming BR($t \to Hq$)=1%, and BR($t \to Hc$)=BR($t \to Hu$)=0.5%. The uncertainties are statistical only.

	To	op	diboson	$Z \to \ell \ell$	
	real $ au_{ m had}$	fake $ au_{ m had}$	GIDOSOII		
AOD	$(3.1881 \pm 0.0004) \times 10^7$		$(2.801 \pm 0.001) \times 10^6$	$(1.5049 \pm 0.0005) \times 10^8$	
DAOD	(1.1555 ± 0.00)	$0002) \times 10^7$	$(7.186 \pm 0.004) \times 10^5$	$(5.723 \pm 0.003) \times 10^7$	
skim	76041.7 ± 145.9	1380820.6 ± 625.1	3735.5 ± 25.0	26761.2 ± 144.6	
vertex	71579.4 ± 141.6	1299919.6 ± 606.6	3515.5 ± 24.2	25208.0 ± 140.3	
trigger	58457.1 ± 127.9	1116757.0 ± 561.3	3094.6 ± 22.8	21913.8 ± 118.7	
tau sel.	26798.8 ± 99.8	23601.1 ± 97.7	119.0 ± 6.5	579.2 ± 24.8	
3jet veto	24427.2 ± 95.5	20198.7 ± 90.4	106.7 ± 6.2	518.4 ± 23.5	
tau not b-tagged	23818.9 ± 94.3	17991.9 ± 84.5	103.3 ± 6.2	493.3 ± 23.2	
$x_{1,2}^{\text{fit}}$	12833.8 ± 69.0	11784.7 ± 68.4	62.9 ± 3.9	357.0 ± 22.3	
N _{bjet} =1	7094.9 ± 50.7	7027.7 ± 52.3	53.7 ± 3.6	316.3 ± 22.0	
	Z o au au	$W \rightarrow l \nu$	$t \rightarrow qH$	data	
AOD	$(4.491 \pm 0.006) \times 10^6$	$(2.152 \pm 0.001) \times 10^9$	12126.9 ± 19.6	$(6.32610 \pm 0.00008) \times 10^9$	
DAOD	$(2.951 \pm 0.005) \times 10^6$	$(3.945 \pm 0.009) \times 10^8$	5691.6 ± 13.5	$(8.0089 \pm 0.0003) \times 10^8$	
skim	4251.9 ± 38.3	94984.2 ± 628.6	984.8 ± 5.7	1427385.0 ± 1194.7	
vertex	3997.5 ± 36.8	89554.7 ± 615.6	926.0 ± 5.5	1419052.0 ± 1191.2	
trigger	2471.5 ± 26.4	77051.1 ± 535.5	610.4 ± 4.5	1272074.0 ± 1127.9	
tau sel.	998.5 ± 25.6	1851.4 ± 146.2	197.0 ± 2.9	55068.0 ± 234.7	
3jet veto	910.9 ± 23.4	1672.9 ± 143.3	169.8 ± 2.8	48681.0 ± 220.6	
tau not b-tagged	901.1 ± 23.0	1597.1 ± 142.7	166.8 ± 2.7	45319.0 ± 212.9	
$x_{1,2}^{\text{fit}}$	875.4 ± 22.8	1073.8 ± 137.0	163.8 ± 2.7	27633.0 ± 166.2	
N _{bjet} =1	757.3 ± 20.8	1019.7 ± 136.8	147.9 ± 2.5	16882.0 ± 129.9	

Table 5: The expected event yields (corresponds to $140~{\rm fb^{-1}}$) for different MC processes and data after the cuts applied before the n-tuples produced by the xTauFramework. The signal yields are obtained by assuming BR($t \to Hq$)=1%. The uncertainties are statistical only.

cut	diboson	fene prod ch	fene uh qq	wjet	data
Total Events	$(2.45 \pm 0.00) \times 10^7$	1060.00 ± 0.00	25588.00 ± 0.00	$(1.24 \pm 0.00) \times 10^{11}$	$(6.35 \pm 0.00) \times 10^9$
DAOD	$(3.46 \pm 0.00) \times 10^6$	668.25 ± 0.00	14215.19 ± 0.00	$(3.46 \pm 0.00) \times 10^9$	$(5.29 \pm 0.00) \times 10^8$
skim	69.04 ± 1.68	39.23 ± 0.35	611.11 ± 5.42	451.31 ± 14.31	$(1.32 \pm 0.00) \times 10^5$
LooseBad Event Cleaning	68.60 ± 1.67	39.05 ± 0.35	608.35 ± 5.40	448.09 ± 14.28	$(1.30 \pm 0.00) \times 10^5$
Tau pT cut	48.63 ± 1.34	30.88 ± 0.31	455.46 ± 4.68	284.66 ± 12.34	65257.00 ± 255.45
Di-tau common Vx cut	48.19 ± 1.33	30.81 ± 0.31	454.06 ± 4.67	276.79 ± 12.20	60090.00 ± 245.13
Leading jet cut	46.22 ± 1.29	30.27 ± 0.31	446.86 ± 4.63	261.00 ± 11.85	55873.00 ± 236.37
MET cut	43.76 ± 1.25	27.92 ± 0.30	399.92 ± 4.38	238.83 ± 7.65	46107.00 ± 214.73
trigger matching	39.19 ± 2.04	25.24 ± 0.43	368.62 ± 4.27	201.55 ± 20.53	46107.00 ± 214.73
n tracks = 1,3	30.98 ± 1.73	22.38 ± 0.41	319.22 ± 3.97	144.95 ± 18.69	26148.00 ± 161.70

cut	fene ch lv	fene prod uh	smhiggs	zll
Total Events	12299.39 ± 0.00	5271.38 ± 0.00	$(1.32 \pm 0.00) \times 10^6$	$(5.56 \pm 0.00) \times 10^9$
DAOD	5590.81 ± 0.00	3291.00 ± 0.00	$(4.56 \pm 0.00) \times 10^5$	$(2.77 \pm 0.00) \times 10^8$
skim	149.90 ± 2.15	185.92 ± 1.70	110.18 ± 1.42	9.36 ± 0.95
LooseBad Event Cleaning	149.26 ± 2.14	183.98 ± 1.69	109.70 ± 1.42	9.36 ± 0.95
Tau pT cut	113.67 ± 1.87	150.17 ± 1.52	84.64 ± 1.26	7.07 ± 0.90
Di-tau common Vx cut	113.49 ± 1.87	149.92 ± 1.52	84.35 ± 1.26	6.73 ± 0.88
Leading jet cut	109.12 ± 1.83	147.59 ± 1.51	80.68 ± 1.22	5.56 ± 0.65
MET cut	104.39 ± 1.79	137.01 ± 1.46	75.62 ± 1.18	4.50 ± 0.62
trigger matching	101.25 ± 1.80	128.57 ± 2.13	72.23 ± 1.97	3.11 ± 1.47
n tracks = 1,3	88.17 ± 1.68	111.65 ± 1.98	63.44 ± 1.87	1.35 ± 0.23
cut	fene ch qq	fene uh lv	top	ztautau
	11		1	
Total Events	25591.91 ± 0.00	12297.07 ± 0.00	$(4.29 \pm 0.00) \times 10^8$	$(1.92 \pm 0.00) \times 10^9$
Total Events DAOD		12297.07 ± 0.00 5645.15 ± 0.00	$(4.29 \pm 0.00) \times 10^{8}$ $(9.61 \pm 0.00) \times 10^{7}$	$(1.92 \pm 0.00) \times 10^9$ $(2.13 \pm 0.00) \times 10^7$
	25591.91 ± 0.00		_	_
DAOD	25591.91 ± 0.00 14182.99 ± 0.00	5645.15 ± 0.00	$(9.61 \pm 0.00) \times 10^7$	$(2.13 \pm 0.00) \times 10^7$
DAOD skim	25591.91 ± 0.00 14182.99 ± 0.00 623.70 ± 6.32	5645.15 ± 0.00 140.81 ± 2.08	$(9.61 \pm 0.00) \times 10^7$ 16614.80 ± 58.13	$(2.13 \pm 0.00) \times 10^7$ 2275.01 ± 26.63
DAOD skim LooseBad Event Cleaning	25591.91 ± 0.00 14182.99 ± 0.00 623.70 ± 6.32 620.68 ± 6.30	5645.15 ± 0.00 140.81 ± 2.08 139.89 ± 2.07	$(9.61 \pm 0.00) \times 10^{7}$ 16614.80 ± 58.13 16533.76 ± 57.98	$(2.13 \pm 0.00) \times 10^7$ 2275.01 ± 26.63 2261.00 ± 26.60
DAOD skim LooseBad Event Cleaning Tau pT cut	25591.91 ± 0.00 14182.99 ± 0.00 623.70 ± 6.32 620.68 ± 6.30 463.75 ± 5.45	5645.15 ± 0.00 140.81 ± 2.08 139.89 ± 2.07 105.99 ± 1.81	$(9.61 \pm 0.00) \times 10^{7}$ 16614.80 ± 58.13 16533.76 ± 57.98 10632.17 ± 45.97	$(2.13 \pm 0.00) \times 10^{7}$ 2275.01 ± 26.63 2261.00 ± 26.60 1439.59 ± 12.62
DAOD skim LooseBad Event Cleaning Tau pT cut Di-tau common Vx cut	25591.91 ± 0.00 14182.99 ± 0.00 623.70 ± 6.32 620.68 ± 6.30 463.75 ± 5.45 461.83 ± 5.44	5645.15 ± 0.00 140.81 ± 2.08 139.89 ± 2.07 105.99 ± 1.81 105.54 ± 1.80	$(9.61 \pm 0.00) \times 10^{7}$ 16614.80 ± 58.13 16533.76 ± 57.98 10632.17 ± 45.97 10447.76 ± 45.53	$(2.13 \pm 0.00) \times 10^{7}$ 2275.01 ± 26.63 2261.00 ± 26.60 1439.59 ± 12.62 1431.03 ± 12.58
DAOD skim LooseBad Event Cleaning Tau pT cut Di-tau common Vx cut Leading jet cut	25591.91 ± 0.00 14182.99 ± 0.00 623.70 ± 6.32 620.68 ± 6.30 463.75 ± 5.45 461.83 ± 5.44 454.54 ± 5.39	5645.15 ± 0.00 140.81 ± 2.08 139.89 ± 2.07 105.99 ± 1.81 105.54 ± 1.80 101.89 ± 1.77	$(9.61 \pm 0.00) \times 10^{7}$ 16614.80 ± 58.13 16533.76 ± 57.98 10632.17 ± 45.97 10447.76 ± 45.53 10200.06 ± 45.03	$(2.13 \pm 0.00) \times 10^{7}$ 2275.01 ± 26.63 2261.00 ± 26.60 1439.59 ± 12.62 1431.03 ± 12.58 1339.92 ± 10.98

Table 6: The expected event yields (corresponds to 140 fb⁻¹) for different MC processes and data after each cut in the STH $\tau_{had}\tau_{had}$ channel. The signal yields are obtained by assuming BR($t \to Hq$)=1%. The uncertainties are statistical only.

cut	diboson	fene prod ch	fene uh qq	wjet	data
2 medium OS tau 2 light-j	9.15 ± 1.15	9.38 ± 0.29	75.31 ± 2.21	26.15 ± 8.94	3491.00 ± 59.08
true taus	8.10 ± 1.01	9.33 ± 0.29	71.85 ± 2.17	0.23 ± 0.17	3491.00 ± 59.08
jet pt cut	8.10 ± 1.01	9.33 ± 0.29	71.85 ± 2.17	0.23 ± 0.17	3491.00 ± 59.08
bjet pt eta cut	7.95 ± 1.00	8.90 ± 0.28	69.01 ± 2.14	0.23 ± 0.17	3121.00 ± 55.87
tautau vis mass > 50	7.26 ± 0.97	8.75 ± 0.28	68.67 ± 2.13	0.23 ± 0.17	2710.00 ± 52.06
tautau vis mass < 130	6.64 ± 0.96	8.54 ± 0.28	68.60 ± 2.13	0.23 ± 0.17	1875.00 ± 43.30
drtautau > 3.4	6.64 ± 0.96	8.54 ± 0.28	68.50 ± 2.13	0.23 ± 0.17	1856.00 ± 43.08

cut	fenc ch lv	fene prod uh	smhiggs	zll
2 medium OS tau 2 light-j	25.43 ± 1.03	43.13 ± 1.41	19.73 ± 0.97	0.35 ± 0.22
true taus	24.68 ± 1.01	42.58 ± 1.41	19.63 ± 0.97	0.23 ± 0.17
jet pt cut	24.68 ± 1.01	42.58 ± 1.41	19.63 ± 0.97	0.23 ± 0.17
bjet pt eta cut	23.51 ± 0.99	41.29 ± 1.39	18.20 ± 0.94	0.23 ± 0.17
tautau vis mass > 50	23.11 ± 0.98	39.87 ± 1.37	17.73 ± 0.94	0.23 ± 0.17
tautau vis mass < 130	20.07 ± 0.92	38.57 ± 1.36	17.61 ± 0.94	0.23 ± 0.17
drtautau > 3.4	20.00 ± 0.92	38.56 ± 1.36	17.60 ± 0.94	0.23 ± 0.17

cut	fene ch qq	fenc uh lv	top	ztautau
2 medium OS tau 2 light-j	74.20 ± 2.39	25.65 ± 0.98	723.83 ± 11.95	579.17 ± 18.36
true taus	71.97 ± 2.36	25.04 ± 0.97	432.75 ± 9.36	572.12 ± 18.28
jet pt cut	71.97 ± 2.36	25.04 ± 0.97	432.75 ± 9.36	572.12 ± 18.28
bjet pt eta cut	69.38 ± 2.32	24.06 ± 0.95	412.98 ± 9.18	529.87 ± 16.43
tautau vis mass > 50	69.01 ± 2.31	23.66 ± 0.94	390.94 ± 8.96	471.80 ± 15.97
tautau vis mass < 130	68.94 ± 2.31	20.40 ± 0.87	239.37 ± 6.90	459.53 ± 15.77
drtautau > 3.4	68.94 ± 2.31	20.33 ± 0.87	237.10 ± 6.87	459.50 ± 15.77

Table 7: The expected event yields (corresponds to 36.1 fb⁻¹) for different MC processes and data after each cut in the TTH $\tau_{had}\tau_{had}$ channel. The signal yields are obtained by assuming BR($t \to Hq$)=1%. The uncertainties are statistical only.

cut	diboson	fene prod ch	fene uh qq	wjet	data
2 medium OS tau 3light-j 1b-j	14.69 ± 1.15	9.49 ± 0.31	180.65 ± 3.34	21.49 ± 3.76	2897.00 ± 53.82
true taus	12.44 ± 0.81	9.40 ± 0.31	174.68 ± 3.29	0.30 ± 0.18	2897.00 ± 53.82
jet pt cut	12.44 ± 0.81	9.40 ± 0.31	174.68 ± 3.29	0.30 ± 0.18	2897.00 ± 53.82
bjet pt eta cut	11.52 ± 0.77	8.85 ± 0.29	166.93 ± 3.23	0.30 ± 0.18	2653.00 ± 51.51
tautau vis mass > 50	10.08 ± 0.73	8.61 ± 0.29	165.48 ± 3.21	0.30 ± 0.18	2307.00 ± 48.03
tautau vis mass < 130	9.25 ± 0.72	8.44 ± 0.29	165.15 ± 3.21	0.30 ± 0.18	1558.00 ± 39.47
drtautau > 3.4	9.25 ± 0.72	8.44 ± 0.29	164.89 ± 3.21	0.30 ± 0.18	1542.00 ± 39.27

cut	fenc ch lv	fene prod uh	smhiggs	zll
2 medium OS tau 3light-j 1b-j	28.65 ± 1.03	47.83 ± 1.54	23.97 ± 1.39	0.32 ± 0.13
true taus	28.19 ± 1.02	47.13 ± 1.53	22.88 ± 1.29	0.30 ± 0.18
jet pt cut	28.19 ± 1.02	47.13 ± 1.53	22.88 ± 1.29	0.30 ± 0.18
bjet pt eta cut	27.08 ± 1.00	45.07 ± 1.51	20.63 ± 1.22	0.30 ± 0.18
tautau vis mass > 50	26.30 ± 0.98	43.52 ± 1.48	20.18 ± 1.22	0.30 ± 0.18
tautau vis mass < 130	22.29 ± 0.90	42.81 ± 1.47	19.86 ± 1.22	0.30 ± 0.18
drtautau > 3.4	22.22 ± 0.90	42.75 ± 1.47	19.85 ± 1.22	0.30 ± 0.18

cut	fenc ch qq	fene uh lv	top	ztautau
2 medium OS tau 3light-j 1b-j	181.51 ± 3.91	29.03 ± 1.06	790.24 ± 12.43	436.60 ± 13.11
true taus	176.21 ± 3.86	28.37 ± 1.05	414.73 ± 9.02	429.82 ± 13.01
jet pt cut	176.21 ± 3.86	28.37 ± 1.05	414.73 ± 9.02	429.82 ± 13.01
bjet pt eta cut	167.96 ± 3.72	26.92 ± 1.03	395.17 ± 8.84	389.90 ± 11.79
tautau vis mass > 50	165.44 ± 3.69	26.14 ± 1.01	367.07 ± 8.38	336.68 ± 11.46
tautau vis mass < 130	165.44 ± 3.69	22.19 ± 0.94	215.20 ± 6.62	328.07 ± 11.38
drtautau > 3.4	165.44 ± 3.69	22.14 ± 0.94	213.75 ± 6.60	328.36 ± 11.38

Table 8: Pre-selection cutflow of leptonic channels.

	SM Higgs	W+jets			Diboson		$Z \rightarrow ll$	
n-tuple	6597.49 ± 59.30	770461.33 ± 6109.46		89	89790.20 ± 189.61 66		9259.82 ± 3005.68	
basic selection	6495.06 ± 59.07	769159.07 ± 6107.81		88	88777.01 ± 189.38		662954.69 ± 2997.95	
	$Z \rightarrow \tau \tau$		Rare		$t\bar{t}$		$t\bar{t}V$	
n-tuple	203946.94 ± 153	7.26	57833.73 ± 121.5	55	997077.20 ± 463	.83	7033.28 ± 8.88	

 56886.30 ± 120.61

	$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	$cg \rightarrow tH(BR = 0.2\%)$	tcH merged signal(BR=0.2%)	$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$
n-tuple	1142.04 ± 3.02	52.58 ± 0.23	1194.62 ± 3.03	1131.16 ± 2.93
basic selection	1127.51 ± 3.00	52.03 ± 0.23	1179.54 ± 3.01	1118.62 ± 2.92

 968555.36 ± 457.26

 6797.60 ± 8.73

	$ug \rightarrow tH(BR = 0.2\%)$	tuH merged signal(BR=0.2%)	Data
n-tuple	265.40 ± 1.15	1396.56 ± 3.15	3238107.00 ± 1799.47
basic selection	262.73 ± 1.15	1381.35 ± 3.14	3169584.00 ± 1780.33

basic selection

 203718.90 ± 1536.90

Table 9: cutflow STH $\tau_{lep}\tau_{had}$ os

	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
this region	46.97 ± 4.03	2398.77 ± 100.47	337.49 ± 16.22	1074.28 ± 51.06
tau b-veto	44.23 ± 3.86	1758.94 ± 34.21	306.80 ± 13.56	920.36 ± 26.08
PIV and MET<30	32.00 ± 2.96	1252.60 ± 28.82	215.40 ± 11.29	396.33 ± 16.56

	$Z \rightarrow \tau \tau$	Rare	$t\bar{t}$	$t\bar{t}V$
this region	1279.73 ± 36.41	2920.03 ± 27.57	45380.03 ± 100.21	108.95 ± 1.20
tau b-veto	1190.79 ± 24.87	2799.65 ± 27.00	42716.33 ± 97.14	104.33 ± 1.17
PIV and MET<30	746.14 ± 18.62	2246.26 ± 24.20	34556.48 ± 87.38	88.17 ± 1.08

	$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	$cg \rightarrow tH(BR = 0.2\%)$	tcH merged signal(BR=0.2%)	$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$
this region	82.19 ± 0.87	4.28 ± 0.07	86.47 ± 0.88	84.83 ± 0.85
tau b-veto	80.43 ± 0.86	4.17 ± 0.07	84.60 ± 0.87	82.95 ± 0.84
PIV and MET<30	58.62 ± 0.72	3.10 ± 0.06	61.73 ± 0.73	60.36 ± 0.71

	$ug \rightarrow tH(BR = 0.2\%)$	tuH merged signal(BR=0.2%)	Data
this region	22.45 ± 0.36	107.28 ± 0.92	50593.00 ± 224.93
tau b-veto	21.92 ± 0.36	104.87 ± 0.91	47798.00 ± 218.63
PIV and MET<30	16.57 ± 0.31	76.93 ± 0.77	36981.00 ± 192.30

Table 10: cutflow STH $\tau_{lep}\tau_{had}$ ss

	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
this region	16.53 ± 1.93	1486.09 ± 88.26	140.71 ± 11.25	303.37 ± 27.48
tau b-veto	15.71 ± 1.93	952.47 ± 25.56	130.01 ± 10.26	253.88 ± 13.67
PIV and MET<30	10.70 ± 0.82	681.24 ± 21.56	100.53 ± 9.15	112.82 ± 8.88
			_	_

	$Z \to \tau \tau$	Rare	l tt	ttV
this region	36.64 ± 6.46	464.18 ± 11.01	8072.87 ± 42.99	45.47 ± 0.67
tau b-veto	31.39 ± 4.56	393.98 ± 10.12	6202.92 ± 37.73	42.37 ± 0.65
PIV and MET<30	21.49 ± 3.48	301.58 ± 8.87	4783.12 ± 33.13	34.93 ± 0.59

	$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	$cg \rightarrow tH(BR = 0.2\%)$	tcH merged signal(BR=0.2%)	$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$
this region	41.90 ± 0.52	1.14 ± 0.03	43.04 ± 0.52	44.62 ± 0.54
tau b-veto	40.84 ± 0.52	1.12 ± 0.03	41.96 ± 0.52	43.65 ± 0.53
PIV and MET<30	32.18 ± 0.46	0.91 ± 0.03	33.09 ± 0.46	34.07 ± 0.47

	$ug \rightarrow tH(BR = 0.2\%)$	tuH merged signal(BR=0.2%)	Data
this region	6.44 ± 0.16	51.06 ± 0.56	11048.00 ± 105.11
tau b-veto	6.31 ± 0.16	49.96 ± 0.56	9252.00 ± 96.19
PIV and MET<30	5.06 ± 0.14	39.12 ± 0.49	6284.00 ± 79.27

Table 11: cutflow TTH $\tau_{lep}\tau_{had}$ os

	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
this region	100.96 ± 2.98	1221.35 ± 134.17	279.71 ± 11.16	510.51 ± 29.28
tau b-veto	96.76 ± 2.98	1130.92 ± 24.72	264.25 ± 10.26	461.70 ± 13.98
PIV and MET<30	79.41 ± 2.55	826.09 ± 20.77	203.20 ± 8.89	222.60 ± 9.39
	Z o au au	Rare	$t\bar{t}$	$t\bar{t}V$
this region	743.76 ± 16.14	1606.79 ± 20.28	37505.03 ± 90.76	247.93 ± 2.13
tau b-veto	731.39 ± 13.10	1531.99 ± 19.79	35169.52 ± 87.83	236.18 ± 2.07
PIV and MET<30	516.70 ± 10.15	1255.47 ± 17.95	28905.37 ± 79.61	198.22 ± 1.91

	$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	$cg \rightarrow tH(BR = 0.2\%)$	tcH merged signal(BR=0.2%)	$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$
this region	110.00 ± 1.07	3.50 ± 0.07	113.51 ± 1.07	115.86 ± 1.05
tau b-veto	107.43 ± 1.06	3.43 ± 0.07	110.86 ± 1.06	113.51 ± 1.04
PIV and MET<30	78.56 ± 0.90	2.67 ± 0.06	81.23 ± 0.90	82.90 ± 0.88

	$ug \rightarrow tH(BR = 0.2\%)$	tuH merged signal(BR=0.2%)	Data
this region	19.05 ± 0.35	134.92 ± 1.11	37643.00 ± 194.02
tau b-veto	18.56 ± 0.35	132.07 ± 1.10	35460.00 ± 188.31
PIV and MET<30	14.62 ± 0.31	97.52 ± 0.93	28315.00 ± 168.27

Table 12: cutflow TTH $\tau_{lep}\tau_{had}$ ss

	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
this region	44.42 ± 1.15	870.77 ± 32.77	116.87 ± 9.00	139.86 ± 10.82
tau b-veto	41.13 ± 1.15	738.58 ± 19.97	110.99 ± 8.25	135.42 ± 7.30
PIV and MET<30	34.86 ± 1.14	540.29 ± 16.80	88.75 ± 7.45	71.35 ± 5.38
	Z o au au	Rare	$t\bar{t}$	$t\bar{t}V$
this region	46.51 ± 17.68	363.16 ± 9.55	9265.89 ± 45.77	114.70 ± 1.29
tau b-veto	26.18 ± 3.34	314.12 ± 8.87	7497.91 ± 41.24	106.68 ± 1.24
PIV and MET<30	16.19 ± 2.48	248.08 ± 7.89	5926.27 ± 36.70	88.06 ± 1.13

	$\bar{t}t \rightarrow bWcH(BR=0.2\%)$	$cg \rightarrow tH(BR = 0.2\%)$	tcH merged signal(BR=0.2%)	$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$
this region	37.06 ± 0.50	0.63 ± 0.02	37.69 ± 0.50	39.67 ± 0.51
tau b-veto	36.12 ± 0.49	0.61 ± 0.02	36.73 ± 0.49	38.79 ± 0.51
PIV and MET<30	28.91 ± 0.44	0.49 ± 0.02	29.41 ± 0.44	31.47 ± 0.45

	$ug \rightarrow tH(BR = 0.2\%)$	tuH merged signal(BR=0.2%)	Data
this region	3.78 ± 0.13	43.45 ± 0.53	10773.00 ± 103.79
tau b-veto	3.68 ± 0.13	42.48 ± 0.52	9126.00 ± 95.53
PIV and MET<30	3.04 ± 0.12	34.51 ± 0.47	6708.00 ± 81.90

Table 13: cutflow $l\tau_{had}\tau_{had}$ os

	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
this region	12.52 ± 0.43	106.29 ± 76.54	4 11.77 ± 0.88	1.82 ± 4.17
tau b-veto	11.76 ± 0.43	24.63 ± 5.01	11.31 ± 0.87	1.48 ± 4.15
PIV and MET<30	9.68 ± 0.13	14.48 ± 4.06	8.16 ± 0.80	2.39 ± 2.11
$m_{l,b} > 190$	7.75 ± 0.11	6.25 ± 3.23	5.26 ± 0.76	0.69 ± 2.01
	Z o au au	Rare	$t\bar{t}$	$t\bar{t}V$
this region	15.27 ± 3.87	35.91 ± 2.91	633.79 ± 12.18	13.32 ± 0.37
tau b-veto	14.84 ± 3.68	29.92 ± 2.64	437.09 ± 10.15	12.40 ± 0.35
PIV and MET<30	5.61 ± 2.27	24.16 ± 2.35	350.51 ± 9.12	10.61 ± 0.32
$m_{l,b} > 190$	4.84 ± 2.18	19.48 ± 2.12	312.45 ± 8.63	8.43 ± 0.29

	$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	$cg \rightarrow tH(BR = 0.2\%)$	tcH merged signal(BR=0.2%)	$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$
this region	41.47 ± 0.52	2.97 ± 0.05	44.44 ± 0.52	42.36 ± 0.52
tau b-veto	39.69 ± 0.50	2.84 ± 0.05	42.53 ± 0.51	40.50 ± 0.51
PIV and MET<30	31.12 ± 0.45	2.22 ± 0.04	33.34 ± 0.45	31.37 ± 0.45
$m_{l,b} > 190$	30.14 ± 0.44	2.17 ± 0.04	32.31 ± 0.44	30.62 ± 0.44

	$ug \rightarrow tH(BR = 0.2\%)$	tuH merged signal(BR=0.2%)	Data
this region	13.71 ± 0.24	56.07 ± 0.57	699.00 ± 26.44
tau b-veto	13.12 ± 0.23	53.62 ± 0.56	523.00 ± 22.87
PIV and MET<30	10.32 ± 0.21	41.69 ± 0.49	396.00 ± 19.90
$m_{l,b} > 190$	10.07 ± 0.20	40.70 ± 0.48	354.00 ± 18.81

Table 14: cutflow $l\tau_{\rm had}\tau_{\rm had}$ ss

nad nad				
	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
this region	2.73 ± 0.06	53.58 ± 19.54	3.80 ± 0.46	18.27 ± 4.72
tau b-veto	2.42 ± 0.06	14.82 ± 3.70	3.58 ± 0.46	15.22 ± 3.94
PIV and MET<30	2.01 ± 0.05	11.68 ± 3.18	2.59 ± 0.39	10.75 ± 2.88
$m_{l,b} > 190$	1.63 ± 0.05	11.32 ± 2.73	2.01 ± 0.38	9.82 ± 2.84
	$Z \rightarrow \tau \tau$	Rare	$tar{t}$	$t\bar{t}V$
this region	11.06 ± 4.50	43.44 ± 3.40	693.38 ± 12.66	5.52 ± 0.27
tau b-veto	9.73 ± 4.46	34.71 ± 3.03	501.77 ± 10.76	4.76 ± 0.24
PIV and MFT<30	7 63 + 3 08	27.00 + 2.66	405 55 + 9 67	4.00 ± 0.23

 19.80 ± 2.27

 5.40 ± 3.05

 $m_{l,b} > 190$

	$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	$cg \rightarrow tH(BR = 0.2\%)$	tcH merged signal(BR=0.2%)	$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$
this region	4.37 ± 0.19	0.23 ± 0.01	4.59 ± 0.19	5.07 ± 0.20
tau b-veto	4.09 ± 0.18	0.22 ± 0.01	4.31 ± 0.18	4.81 ± 0.19
PIV and MET<30	3.15 ± 0.16	0.16 ± 0.01	3.31 ± 0.16	3.58 ± 0.16
$m_{l,b} > 190$	2.71 ± 0.15	0.12 ± 0.01	2.83 ± 0.15	3.02 ± 0.15

 348.64 ± 8.96

 3.19 ± 0.20

	$ug \rightarrow tH(BR = 0.2\%)$	tuH merged signal(BR=0.2%)	Data
this region	1.21 ± 0.08	6.27 ± 0.21	709.00 ± 26.63
tau b-veto	1.15 ± 0.08	5.96 ± 0.21	543.00 ± 23.30
PIV and MET<30	0.83 ± 0.07	4.41 ± 0.18	422.00 ± 20.54
$m_{l,b} > 190$	0.57 ± 0.06	3.60 ± 0.16	378.00 ± 19.44

Table 15: The sample and data yield before the fit.

	$l au_{ m had} au_{ m had}$ ss	$l\tau_{\rm had}\tau_{\rm had}$ os	STI	H $\tau_{\rm lep} \tau_{\rm had}$ ss	STH $\tau_{lep}\tau_{had}$ os
data	478.00 ± 21.86	448.00 ± 21.17	877	2.00 ± 93.66	46425.00 ± 215.46
background	493.92 ± 12.19	453.77 ± 11.89	796	8.87 ± 50.05	50565.95 ± 115.48
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	3.36 ± 0.16	38.00 ± 0.49	40	0.20 ± 0.51	77.94 ± 0.85
$cg \rightarrow tH(BR = 0.2\%)$	0.17 ± 0.01	2.72 ± 0.05	1	$.10 \pm 0.03$	4.04 ± 0.07
tcH merged signal(BR=0.2%)	3.53 ± 0.16	40.72 ± 0.49	41	$.31 \pm 0.51$	81.98 ± 0.85
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	4.01 ± 0.17	38.92 ± 0.49	42	2.67 ± 0.53	80.25 ± 0.82
$ug \rightarrow tH(BR = 0.2\%)$	0.79 ± 0.06	12.73 ± 0.23	6	$.25 \pm 0.16$	21.15 ± 0.35
tuH merged signal(BR=0.2%)	4.80 ± 0.18	51.65 ± 0.54	48	3.91 ± 0.55	101.40 ± 0.90
	TTH $\tau_{lep}\tau_{had}$ ss	TTH $\tau_{\rm lep} \tau_{\rm had}$	os	$l\tau_{\rm had}\tau_{\rm had}$ 2b s	$l\tau_{\rm had}\tau_{\rm had}$ 2b os
data	8745.00 ± 93.51	34478.00 ± 185	5.68	166.00 ± 12.83	8 149.00 ± 12.21
background	8834.84 ± 47.86	$39784.72 \pm 96.$.49	174.43 ± 6.21	150.15 ± 5.57
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	35.24 ± 0.48	103.13 ± 1.04	4	0.34 ± 0.05	3.44 ± 0.15
$cg \rightarrow tH(BR = 0.2\%)$	0.61 ± 0.02	3.32 ± 0.06		0.01 ± 0.00	0.07 ± 0.01
tcH merged signal(BR=0.2%)	35.85 ± 0.48	106.45 ± 1.04	4	0.35 ± 0.05	3.51 ± 0.15
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	37.98 ± 0.50	108.89 ± 1.02	2	0.14 ± 0.04	0.97 ± 0.08
$ug \rightarrow tH(BR = 0.2\%)$	3.66 ± 0.13	17.78 ± 0.34	l	0.02 ± 0.01	0.20 ± 0.03
tuH merged signal(BR=0.2%)	41.64 ± 0.52	126.67 ± 1.07	7	0.15 ± 0.04	1.16 ± 0.09

	STH $\tau_{lep}\tau_{had}$ 2b ss	STH $\tau_{lep}\tau_{had}$ 2b os	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os
data	2576.00 ± 50.75	15933.00 ± 126.23	2296.00 ± 47.92	10072.00 ± 100.36
background	2589.61 ± 24.10	18357.83 ± 63.05	2394.25 ± 22.86	11926.97 ± 50.43
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	3.32 ± 0.15	8.76 ± 0.31	2.41 ± 0.13	8.91 ± 0.32
$cg \rightarrow tH(BR = 0.2\%)$	0.04 ± 0.01	0.21 ± 0.02	0.04 ± 0.01	0.14 ± 0.01
tcH merged signal(BR=0.2%)	3.36 ± 0.15	8.97 ± 0.31	2.45 ± 0.13	9.05 ± 0.32
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	1.36 ± 0.09	3.98 ± 0.20	1.30 ± 0.09	4.77 ± 0.22
$ug \rightarrow tH(BR = 0.2\%)$	0.22 ± 0.03	0.91 ± 0.08	0.20 ± 0.03	0.71 ± 0.07
tuH merged signal(BR=0.2%)	1.58 ± 0.10	4.89 ± 0.21	1.50 ± 0.10	5.48 ± 0.23

	2lSS1tau os	2lSS1tau ss	2lSS1tau 2b os	2lSS1tau 2b ss
data	66.00 ± 8.12	21.00 ± 4.58	22.00 ± 4.69	4.00 ± 2.00
background	67.73 ± 3.14	12.81 ± 2.30	23.23 ± 1.16	3.86 ± 0.73
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	16.27 ± 0.32	0.29 ± 0.04	1.67 ± 0.10	0.03 ± 0.01
$cg \rightarrow tH(BR = 0.2\%)$	1.16 ± 0.03	0.01 ± 0.00	0.03 ± 0.01	/
tcH merged signal(BR=0.2%)	17.44 ± 0.32	0.30 ± 0.04	1.70 ± 0.10	0.03 ± 0.01
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	17.21 ± 0.33	0.27 ± 0.04	0.34 ± 0.05	0.01 ± 0.01
$ug \rightarrow tH(BR = 0.2\%)$	5.81 ± 0.15	0.08 ± 0.02	0.10 ± 0.02	/
tuH merged signal(BR=0.2%)	23.03 ± 0.36	0.35 ± 0.04	0.44 ± 0.05	0.01 ± 0.01

Table 16: The stat. only significance of the signal in each regions with the benchmark μ value.

	$l au_{ m had} au_{ m had}$ ss	$l au_{ m had} au_{ m had}$ os	STH $\tau_{\rm lep} \tau_{\rm had}$ ss	STH $\tau_{\rm lep}\tau_{\rm had}$ os
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	0.17	2.93	0.48	0.53
$cg \rightarrow tH(BR = 0.2\%)$	0.01	0.20	0.01	0.05
tcH merged signal(BR=0.2%)	0.18	3.11	0.49	0.57
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	0.20	3.07	0.51	0.53
$ug \rightarrow tH(BR = 0.2\%)$	0.04	0.91	0.07	0.30
tuH merged signal(BR=0.2%)	0.24	3.88	0.58	0.81

	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ ss	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ os	$l\tau_{\rm had}\tau_{\rm had}$ 2b ss	$l\tau_{\rm had}\tau_{\rm had}$ 2b os
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	0.40	1.10	0.03	0.54
$cg \rightarrow tH(BR = 0.2\%)$	0.01	0.04	0.00	0.01
tcH merged signal(BR=0.2%)	0.41	1.13	0.03	0.55
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	0.43	1.15	0.02	0.16
$ug \rightarrow tH(BR = 0.2\%)$	0.04	0.22	0.00	0.02
tuH merged signal(BR=0.2%)	0.47	1.36	0.02	0.18

	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	STH $\tau_{lep}\tau_{had}$ 2b os	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	0.20	0.11	0.06	0.21
$cg \rightarrow tH(BR = 0.2\%)$	0.00	0.01	0.00	0.00
tcH merged signal(BR=0.2%)	0.20	0.11	0.06	0.21
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	0.03	0.06	0.03	0.11
$ug \rightarrow tH(BR = 0.2\%)$	0.01	0.03	0.00	0.02
tuH merged signal(BR=0.2%)	0.04	0.09	0.04	0.13

	2lSS1tau os	2lSS1tau ss	2lSS1tau 2b os	2lSS1tau 2b ss
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	3.81	0.28	0.58	0.04
$cg \rightarrow tH(BR = 0.2\%)$	nan	0.01	0.06	/
tcH merged signal(BR=0.2%)	nan	0.28	0.58	0.04
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	3.89	0.28	0.12	0.03
$ug \rightarrow tH(BR = 0.2\%)$	1.55	0.11	0.14	/
tuH merged signal(BR=0.2%)	4.18	0.30	0.18	0.03

6 FCNC signal samples

The targeted signal in this analysis is tqH/tH with $H \to \tau\tau$ (samples 411170-411177 and 412098-412105) in App. ??). However, if the FCNC processes exists, the other decays of the Higgs can be part of the signal. Therefore, samples xxxxxx-xxxxxx (App. ??) with inclusive W and Higgs decays are also included. These sample have a one-lepton (electron or muon) filter at truth level (either coming from W or Higgs decays). Events overlapping with 410818-410839 are removed based on truth information.

It is checked that after the final selection, there are 110 overlapped signal events caused by different overlap removal and object definition in xTauFramework and ttHMultiAna (27140 in total for hadhad channel and 95253 in total for lepton channels) but there is no overlap in the signal enriched region (BDT > 0.5).

The total FCNC signal with fake taus in this analysis is not used in the MVA training, but is regarded as part of the total signal in the fit. The normalization factor of the other components is common with the signal, so that their yields are fully correlated in the fit. In Sec. ??, this signal is summed with the nominal signal in the control plots. The signal fake tau shares the same normalisation and systematics as described in ??.

7 Background estimation

The background events with real tau leptons are represented by Monte Carlo (MC) samples. These include 456 $t\bar{t}$, $t\bar{t}+H/V$ and single top events with real taus, and $Z\to \tau\tau$ +jets. The $Z\to ee$, $\mu\mu$ processes are included 457 for lepton faking tau background, and the contribution from jet faking tau. The fake background with 458 one or more taus faked by jets consists of the top fake (with at least one fake tau from jets in the top 459 events), QCD multijet, W+jets and diboson events. Since a jet can be reconstructed as a fake tau with equal probability charge being positive or negative at the first order, the fake taus in the opposite-sign 461 di-tau events could be estimated using the same-sign events after correction of the truth tau contributions. 462 However, the charge of two taus candidates might be correlated in the $t\bar{t}$ events when one of taus is a 463 real tau from the $W \to \tau \nu$ decay while the other tau is a fake from a jet from other $W \to jj$ decay. 464 They are likely to carry the opposite charges to each other. Because of this charge asymmetry we have to calibrate the fake-tau modeling using a Data-Driven (DD) Scale Factor (SF) method by comparing the 466 normalization of fake-tau events in MC to data in the dilepton + jets control regions. This SF is then 467 applied to correct the normalization of tau fakes in the MC yields. The excess of the SS events over these 468 MC background in $\tau_{\text{had}}\tau_{\text{had}}$ is dominated by the fake-tau background from multi-jets (QCD). However, for the leptonic events, the fake-tau contribution is dominated by the $t\bar{t}$ events and we simply estimate the fake-tau background by correcting the normalization of tau fakes in the MC yields. 471

72 7.1 Origin of fake $au_{ m had}$

480

- Top fake is the largest fake background in the total fake in the leptonic channels. Within the top fake events, fake taus can come from different origins, i.e., from jets (heavy/light flavor quark or gluon initiated) or leptons (electron or muon). Different fake origins in SS and OS can induce additional systematics. To this end, the tau fake origins are checked with the top MC. Three dedicated top pair production control regions are define for:
- W-jet faking tau: exactly 1 lepton, exactly 1 tau candidate, exactly 3 jets with exactly 2 b-tagged.

 Tau candidate and lepton have the same charge.
 - B-jet faking tau: 2 leptons with different flavors or away from Z pole ($M_{ll} > 100$ GeV or $M_{ll} < 90$ GeV), exactly 1 tau candidate, exactly 1 b-tagged jet.
- Radiation faking tau: 2 leptons with different flavors or away from Z pole, exactly 1 tau candidate, exactly 2 b-tagged jets.
- Figure 5 shows the fractions of fake taus from different origins in top control regions and SS, OS signal regions. The matching between tau candidates and truth particles or partons are based on $\Delta R < 0.4$. Most of the fake taus come from quark initiated jets, but the flavor distributions in OS are similar to those in SS.

7.2 MC fake $\tau_{\rm had}$ estimation (obsolete)

To estimate the fake tau background from MC, we use the same Data-Driven (DD) Scale Factor (SF) method developed for the ATLAS ttH multi-lepton analysis [59] in which the SF is derived in the opposite-sign dilepton + τ_{had} ($2lOS+1\tau_{had}$) control region by comparing the rate of observed fake-tau events to the MC simulation. The scale factors are parametrized as a function of p_T for 1- and 3-prong τ_{had} separately and the final SF are summarized in Table 17. The systematics on the scale factors are derived by comparing the values in the nominal control region to those obtained in either enriched $t\bar{t}$ or Z boson control regions respectively.

Table 17: The fake-tau SF measured from the control regions as a function of tau p_T where uncertainty is divided into statistical and systematic obtained from control regions enriched in $t\bar{t}$ and Z + jets. The p_T bins for 1-prong(3-prong) τ_{had} are listed separately.

type of $\tau_{\rm had}$	25-45(25-50) GeV	45-70(50-75) GeV	> 70(75) GeV
1-prong	1.05±0.04±0.05	0.94±0.08±0.21	$0.64 \pm 0.10 \pm 0.07$
3-prong	1.25±0.10±0.41	1.30±0.32±0.72	$0.52 \pm 0.30 \pm 0.64$

These SF are then applied to correct the normalization of MC yields in the for both leptonic and hadronic channels. To validate the fake-tau estimate, we have compared the leading τ_{had} p_T between data and MC

prediction using the events in the same-sign control region where the di-tau have the same-sign charge (SS). The distributions are shown in Figure 6. The data are in good agreement with MC predictions, which indicated the fake tau is well modeled in MC.

7.3 MC fake τ_{had} estimation

501

520

521

522

523

526

527

Although the method mentioned in the 7.2 was adopted by the tthML analysis, a new method is needed 502 in this case. As shown in the Figure 7, the data is generally over-estimated in the OS regions while it is 503 opposite in the SS region. If the fake taus are corrected by the same scale factors, this mismodelling will 504 never get solved. This asymmetry of the SS and OS fake taus can be interpreted by the mis-modelling of 505 the fake tau charges. Since the fake taus mainly come from light-flavored jets as shown in Figure 5, the 506 mis-modelling is related to the charge carried by the jets. In conclusion, the mis-modelling is originated from the charge correlation between the jet which is faking a tau and the lepton. So the parent of the jet 508 is believed to be charge correlated with the lepton. Considering the main background is $\bar{t}t$ process. The 509 only suspect is the hadronic W boson. In order to find the contribution of w-jet faking taus (τ_W) , the truth 510 information is used to match between the w-jet and the fake tau with $\Delta R < 0.2$. As shown in the Figure 511 8, there is a considerable amount of τ_W 's in both SS and OS regions. There are three kinds of fake taus that need to be calibrated: Type1) τ_W 's with the opposite charge of the lepton; Type2) τ_W 's with the same 513 charge of the lepton; Type3) the fake taus that are not from W-decay jets. Many control regions are used 514 to calibrate the three components: 515

- 2*l1tau1b*: 2 leptons with different flavors or away from Z pole, exactly 1 tau candidate, exactly 1 b-tagged jets.
- 2*l1tau2b*: 2 leptons with different flavors or away from Z pole, exactly 1 tau candidate, exactly 2 b-tagged jets.
 - 111tau2b2jSS: Exactly 1 lepton, exactly 1 tau candidate, exactly 4 jets with exactly 2 b-tagged. Tau candidate and lepton have the same charge.
 - 111tau2b2jOS: Exactly 1 lepton, exactly 1 tau candidate, exactly 4 jets with exactly 2 b-tagged. Tau candidate and lepton have the opposite charge.
- 111tau2b3jSS: Exactly 1 lepton, exactly 1 tau candidate, at least 5 jets with exactly 2 b-tagged.

 Tau candidate and lepton have the same charge.
 - 111tau2b3jOS: Exactly 1 lepton, exactly 1 tau candidate, at least 5 jets with exactly 2 b-tagged. Tau candidate and lepton have the opposite charge.

Where di-lep regions (2l1tau1b and 2l1tau2b) are used to calibrate the Type3 fake taus. As explained in the 7.1, these regions are dominated by the bjet and the radiated gluon-jet faking taus. 2bOS regions (1l1tau2b2jOS and 1l1tau2b3jOS) are used to calibrate Type1 fake taus. Compared to the signal region,

Table 18: The results of the fit in di-lep and 2bOS regions.

		_	_
	25 – 35 GeV	35 – 45 GeV	45GeV-
non- τ_W fakes	1.18 ± 0.16	0.95 ± 0.11	0.92 ± 0.07
$ au_W$	0.70 ± 0.27	0.66 ± 0.24	0.50 ± 0.31

Table 19: The results of the fit in di-lep and 2bSS regions.

	25 – 35 GeV	35 – 45 GeV	45GeV-
non- τ_W fakes	1.19 ± 0.11	0.94 ± 0.10	0.89 ± 0.10
$ au_W$	0.83 ± 0.33	0.88 ± 0.30	0.61 ± 0.35

this region has an additional b-jet. So the $\bar{t}t$ background is enhanced in this region and signal is depleted. 531 Similarly for the Type2 we can use 2bSS regions (111tau2b2jSS) and 111tau2b3jSS) to calibrate. The 532 components of these regions are shown in Figure 9. Then two fits are made to derive the scale factors 533 for the fake taus. There are three parameters needed to be decided (the scale factors for the 3 types). But considering the p_T dependence of the tau reconstruction, the scale factors are derived in 3 p_T slices 535 (25-35,35-45,45-inf)GeV. So there are 9 parameters to be decided. Since we only care about the signal 536 region (OS), adding the SS region might worse the modelling, so only the the di-lep regions and 2bOS 537 regions are used. A fit is done to the MC to match the data in these control regions by floating the scale 538 factor of Type1 and Type3 fake taus. The fit result is shown in table 18. In order to have a cross check, the 539 fit for di-lep and 2bSS regions are also made to derive the scale factor of Type2 and Type3. The results 540 is shown in table 19. All of the CP and theory uncerntainties are used to derive the uncertainty of the 541 scale factors. It is observed that for both fit, the scale factors of the Type3 fake taus are consistent. The 542 post-fit plots are shown in Figure 10. Then the scale factors are applied to the corresponding single b-jet 543 regions. In $l\tau_{had}\tau_{had}$ channel, both taus can be fake, so the calibration is done to them separately, following the same procedure as $au_{lep} au_{had}$ channels using the lepton and fake tau charges, then the scale factors are 545 multiplied together. The data-MC comparison is show in Figure 11. 546

7.4 QCD fake $\tau_{\rm had}$ estimate in $\tau_{\rm had}\tau_{\rm had}$

Figure 12 shows the τ_{had} p_T spectra in the $\tau_{had}\tau_{had}$ SS and OS. The fake tau background events from QCD multi-jets is not added yet so the data have more than the background prediction. The top fake are dominated by fakes with one real tau. It is found, based on the MC prediction, that the QCD fake is the dominant fake process in the $\tau_{had}\tau_{had}$ channel.

The excess of the SS events over MC with truth taus are used to estimate the fake tau background in OS from QCD multi-jets in the $\tau_{had}\tau_{had}$ + jets channel:

$$N_{\text{QCD fake}}^{\text{OS}} = f_{\text{norm}} \cdot (N_{\text{data}}^{\text{SS}} - N_{\text{MC}}^{\text{SS}}), \tag{7}$$

- where f_{norm} is a ratio of OS and SS from multi-jets QCD, $N_{\text{data}}^{\text{SS}}$, and $N_{\text{MC}}^{\text{SS}}$ are observed data and estimated MC predictions in the SS regions.
- The f_{norm} is measured separately to be 1.32 ± 0.03 in the signal-depleted one b-tag events with BDT < 0.5
- and 1.6 ± 0.1 in the double *b*-tagged $\tau_{had}\tau_{had} + \ge 3$ jets events, which provides a good closure test of QCD
- fake tau estimation. We take the difference between these two values as a systematics for the method and
- assign $f_{\text{norm}} = 1.3 \pm 0.3$ for the analysis.

560 7.5 Fake lepton background

- The fake lepton background in $\tau_{lep}\tau_{had}$ and lepton+ $\tau_{had}\tau_{had}$, which is estimated from MC³, is about 0.3-
- $_{562}$ 0.5% of the total background. It constitutes such a negligible fraction because a very high lepton $p_{\rm T}$
- threshold is already required at the trigger level. This background is varied by 100% as a conservative
- 564 systematics.

7.6 Summary of signal and background events

- We estimate the expected signal and background events in different regions, which are summarized in Table 29.
- Figure 13 shows the leading τ_{had} p_T distribution from the OS events in the τ_{had} signal regions where the points are data and the histograms as the expected various backgrounds.

³ This includes fake lepton + real tau events from all MC samples, namely, top, W/Z+jets, diboson

Figure 5: The origins of fake τ 's in the top fake MC for W-jet fake control region (a,b), b-jet fake control region (c), radiation control region (d); in the leptonic OS (e) and SS (f) categories. The flavor distributions are quite similar between OS and SS.

Figure 6: The distributions of tau p_T are compared between data and MC predictions in the $l\tau_{had}\tau_{had}$ (left), the STH $\tau_{lep}\tau_{had}$ (middle), and the TTH $\tau_{lep}\tau_{had}$ (right) same-sign control regions before (top row) and after (bottom row) the fake-tau SF corrections.

Figure 7: The data-MC comparison of τ $p_{\rm T}$ in the signal and SS control regions.

Figure 8: The distributions of τ $p_{\rm T}$ in the signal and SS control regions.

Figure 9: The distributions of τ $p_{\rm T}$ in the control regions used to calibrate the fake taus.

Figure 10: The post-fit distributions of τ $p_{\rm T}$ in the control regions after the fake tau correction.

Figure 11: The data-MC comparison of τ $p_{\rm T}$ in the signal and SS control regions after the fake tau correction.

Figure 12: The distributions of τ p_T in the STH $\tau_{had}\tau_{had}$ (SS)(a), STH $\tau_{had}\tau_{had}$ (OS) (b), TTH $\tau_{had}\tau_{had}$ (SS) (c) and TTH $\tau_{had}\tau_{had}$ (OS) (d), to illustrate the background composition. Data is more than the prediction because the fake tau backgrounds are missing.

Figure 13: The distributions of leading τ p_T in the $\tau_{had}\tau_{had}$ + 3 jets (a), and 4 jets OS (b)

8 MVA analysis

In this section, we investigate the sensitivity of probing signal using one of the Multi-Variate Analysis (MVA) methods, the Gradient Boosted Decision Trees (BDT) method [60, 61], with the TMVA software package. The BDT output score is in the range between -1 and 1. The most signal-like events have scores near 1 while the most background-like events have scores near -1.

The signal topology and kinematics are different across all the channels. To maximize the overall sensitivity, separated BDTG trainings are applied to each the signal region. A number of variables as the BDT inputs are used to train and test events in each signal region for maximal signal acceptance and background rejection. They are listed in Tab. 20.

Table 20: The BDT input variables (checkmarked) used in each FR.

	$ au_{ m lep} au_{ m l}$	_{nad} + jets	$\tau_{\rm had}\tau_{\rm had}+{ m jets}$		$\tau_{\rm had} \tau_{\rm had} + l$
	3 jets	>=4 jets	3 jets	>=4 jets	>=1 jet
$m_{ au au}^{ m fit}$	✓	✓	✓	✓	
$E_{ m miss}^{ m T}$	✓	✓	✓	✓	
pT,lead $- au$	✓	✓	✓	✓	✓
$p_{\mathrm{T,sublead}- au}$	✓	✓	✓	✓	✓
$\Delta\phi(au au, P_{ m miss}^{ m T})$	✓	✓	✓	✓	
$m_{ au au, ext{vis}}$	✓ ✓	✓	✓	✓	✓
$E_{\rm T}^{\rm miss}$ centrality	✓	✓	✓	✓	
$\Delta R(\tau, \tau)$	✓	✓	✓	✓	✓
$\Delta R(\tau, \text{light-jet, min})$	✓	✓ ✓	✓	✓	✓
$m_{t,\mathrm{SM}}$		✓		✓	
$m_{t, \text{FCNC}}$	✓	✓	✓	✓	
x_1^{fit}	✓	✓ ✓	✓	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
x_2^{fit}	✓	✓	✓	✓	
$\Delta R(l, \tau)$					✓
$\eta_{ au, ext{max}}$					✓
m_W^{T}					✓
$\Delta R(l+b\text{-jet}, \tau\tau)$					✓
$m_{t, \text{FCNC, vis}}$					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$m_{t, \mathrm{SM, vis}}$					✓
$P_{ ext{t,vis}}^{ au au}$					✓

The signal and background samples are randomly divided into two equal parts (denoted as even and odd parity events). The BDT is trained with one part, and tested on the other part. It is always ensured that the BDT derived from the training events is not applied to the same events, but only to the independent test

Table 21: The Separation and Importance of different variables used in the training for STH $\tau_{lep}\tau_{had}$ category.

	Importance
$\Delta R(\tau, \tau)$	1.022×10^{-1}
$p_{ m T,lead- au}$	1.001×10^{-1}
$m_{ au au,\mathrm{vis}}$	9.796×10^{-2}
$E_{ m miss}^{ m T}$	9.766×10^{-2}
$\Delta R(\tau, \text{light-jet, min})$	9.375×10^{-2}
$E_{\rm T}^{ m miss}$ centrality	8.673×10^{-2}
x_1^{fit}	7.750×10^{-2}
$\Delta\phi(au au, P_{ m miss}^{ m T})$	7.690×10^{-2}
$m_{ au au}^{ m fit}$	7.321×10^{-2}
$m_{t, \text{FCNC}}$	7.089×10^{-2}
x_2^{fit}	6.434×10^{-2}
$p_{\mathrm{T,sublead}- au}$	5.874×10^{-2}

ones. The sum of all background processes, corrected normalized, are used in the training and testing. The
Gradient BDT parameters used are listed in Tab. ??. With the IgnoreNegWeightsInTraining option,
only MC events with positive MC weights are used in the training. The comparison of BDT performances
in test-odd and test-even samples is given in Fig. 15. The BDT parameters NTrees and nCuts are tuned
such that the test-odd and test-even agrees, and the signal sensitivity is optimised.

The seperation⁴ and importance⁵ of different variables used in the training are listed in Tab. 21-24. The last two variables in the importance ranking are moved to check the impact on the MVA performance, and the results can be found in App. ??.

The distributions of the variables with the largest importance are shown in Fig. 14.

As a cross check, the comparisons between BDT distributions in testing samples, as well as the test even and test odd ROC curves, are shown in Fig. 15.

The final yield and stat. only significance is shown in Table 29 and Table 27

$$\langle S^2 \rangle = \frac{1}{2} \int \frac{[p_S(y) - p_B(y)]^2}{p_S(y) + p_B(y)} dy,$$
 (8)

where $p_S(y)$ and $p_B(y)$ are the signal and background PDFs of the classifier y. The separation is 0 (1) for identical (non-overlapping) signal and background shapes.

⁴ The separation is defined by, as in [61],

⁵ The importance is evaluated as the total separation gain that this variable had in the decision trees (weighted by the number of events). It is normalized to all variables together, which have an importance of 1.

Table 22: The Separation and Importance of different variables used in the training for TTH $\tau_{lep}\tau_{had}$ category.

	Importance
$m_{ au au, { m vis}}$	9.658×10^{-2}
$p_{\mathrm{T,lead}- au}$	9.449×10^{-2}
$\Delta R(au, au)$	9.045×10^{-2}
$E_{ m miss}^{ m T}$	8.637×10^{-2}
$m_{ au au}^{ m fit}$	8.353×10^{-2}
$\Delta R(\tau, \text{light-jet, min})$	7.600×10^{-2}
$\Delta\phi(au au, P_{ m miss}^{ m T})$	7.475×10^{-2}
$E_{\mathrm{T}}^{\mathrm{miss}}$ centrality	7.357×10^{-2}
x_1^{fit}	6.675×10^{-2}
$m_{t, \mathrm{FCNC}}$	6.511×10^{-2}
x_2^{fit}	5.272×10^{-2}
$p_{\mathrm{T,sublead}- au}$	4.691×10^{-2}
$m_{t,\mathrm{SM}}$	4.671×10^{-2}
m_W	4.606×10^{-2}

Table 23: The Separation and Importance of different variables used in the training for STH $\tau_{had}\tau_{had}$ category.

	Importance
$m_{ au au}^{ m fit}$	9.937×10^{-2}
$m_{ au au, \mathrm{vis}}$	9.904×10^{-2}
$m_{t,\mathrm{SM}}$	8.786×10^{-2}
$E_{ m miss}^{ m T}$	8.323×10^{-2}
$\Delta R(\tau, \text{light-jet, min})$	7.952×10^{-2}
$p_{\mathrm{T,lead}- au}$	7.244×10^{-2}
pT, sublead $- au$	6.678×10^{-2}
$m_{t, \mathrm{FCNC}}$	6.614×10^{-2}
$\Delta R(au, au)$	6.585×10^{-2}
x_2^{fit}	6.394×10^{-2}
$E_{\mathrm{T}}^{\mathrm{miss}}$ centrality	5.735×10^{-2}
$\Delta\phi(au au, P_{ m miss}^{ m T})$	5.557×10^{-2}
x_1^{fit}	5.152×10^{-2}
m_W	5.138×10^{-2}

Table 24: The Separation and Importance of different variables used in the training for TTH $\tau_{had}\tau_{had}$ category.

	Importance
$m_{ au au}^{ m fit}$	1.066×10^{-1}
$m_{ au au, ext{vis}}$	1.008×10^{-1}
$\Delta R(\tau, \tau)$	8.598×10^{-2}
$m_{t,\mathrm{SM}}$	8.339×10^{-2}
x_2^{fit}	7.583×10^{-2}
pT, lead $- au$	7.551×10^{-2}
$m_{t, ext{FCNC}}$	7.434×10^{-2}
$p_{\mathrm{T,sublead}- au}$	7.252×10^{-2}
$\Delta R(\tau, \text{light-jet, min})$	6.636×10^{-2}
$\Delta\phi(au au, P_{ m miss}^{ m T})$	6.453×10^{-2}
$E_{ m miss}^{ m T}$	5.848×10^{-2}
$E_{\rm T}^{ m miss}$ centrality	5.803×10^{-2}
x_1^{fit}	4.552×10^{-2}
m_W	3.215×10^{-2}

Table 25: The Separation and Importance of different variables used in the training for $l\tau_{\rm had}\tau_{\rm had}$ channel.

	Importance
$m_{ au au, ext{vis}}$	1.123×10^{-1}
$\Delta R(au, au)$	8.934×10^{-2}
$m_{t, \text{FCNC, vis}}$	8.809×10^{-2}
$\eta_{ au, ext{max}}$	8.034×10^{-2}
$\Delta R(l, au)$	8.018×10^{-2}
$m_{t, { m SM, vis}}$	7.749×10^{-2}
$\Delta R(l+b\text{-jet}, \tau\tau)$	7.400×10^{-2}
$p_{\mathrm{T,sublead}- au}$	7.328×10^{-2}
$p_{\mathrm{T,lead}- au}$	7.110×10^{-2}
$m_W^{ m T}$	6.980×10^{-2}
$\Delta R(\tau, \text{light-jet, min})$	6.645×10^{-2}
$m_{t, \text{FCNC, vis}}$	6.176×10^{-2}
$P_{ m t,vis}^{ au au}$	5.588×10^{-2}

Table 26: The stat. only signal significance in $\tau_{had}\tau_{had}$ channels with luminosity of $140 fb^{-1}$.

	$STH\tau_{\mathrm{had}}\tau_{\mathrm{had}}ss$	$STH\tau_{\mathrm{had}}\tau_{\mathrm{had}}os$	$TTH\tau_{\mathrm{had}}\tau_{\mathrm{had}}ss$	$TTH\tau_{\mathrm{had}}\tau_{\mathrm{had}}os$
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	0.68	1.17	0.92	3.22
$cg \rightarrow tH(BR = 0.2\%)$	0.07	0.16	0.04	0.13
tcH merged signal(BR=0.2%)	0.73	1.31	0.94	3.32
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	0.71	1.16	1.03	3.43
$ug \rightarrow tH(BR = 0.2\%)$	0.25	0.84	0.19	0.61
tuH merged signal(BR=0.2%)	0.90	1.95	1.17	3.93

	$STH\tau_{\rm had}\tau_{\rm had}2bss$	$STH\tau_{\rm had}\tau_{\rm had}2bos$	$TTH\tau_{\rm had}\tau_{\rm had}2bss$	$TTH\tau_{\mathrm{had}}\tau_{\mathrm{had}}2bos$
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	0.62	0.70	0.47	1.14
$cg \rightarrow tH(BR = 0.2\%)$	0.04	0.03	0.07	0.03
tcH merged signal(BR=0.2%)	0.63	0.72	0.48	1.17
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	0.24	0.31	0.21	0.87
$ug \rightarrow tH(BR = 0.2\%)$	0.16	0.16	0.13	0.15
tuH merged signal(BR=0.2%)	0.32	0.45	0.27	1.00

Table 27: The stat. only signal significance in leptonic channels with luminosity of $80 \mathrm{fb}^{-1}$.

	$l au_{ m had} au_{ m had}$ ss	$l\tau_{\rm had}\tau_{\rm had}$ os	STH $\tau_{lep}\tau_{had}$ ss	STH $\tau_{lep}\tau_{had}$ os
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	0.15	2.70	0.48	0.59
$cg \rightarrow tH(BR = 0.2\%)$	0.01	0.19	0.01	0.05
tcH merged signal(BR=0.2%)	0.16	2.87	0.49	0.64
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	0.17	2.80	0.50	0.59
$ug \rightarrow tH(BR = 0.2\%)$	0.03	0.84	0.07	0.31
tuH merged signal(BR=0.2%)	0.20	3.54	0.58	0.89

	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ ss	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ os	$l\tau_{\rm had}\tau_{\rm had}$ 2b ss	$l\tau_{\rm had}\tau_{\rm had}$ 2b os
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	0.39	1.39	0.03	0.47
$cg \rightarrow tH(BR = 0.2\%)$	0.01	0.06	0.00	0.01
tcH merged signal(BR=0.2%)	0.39	1.45	0.03	0.48
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	0.43	1.50	0.02	0.16
$ug \rightarrow tH(BR = 0.2\%)$	0.04	0.31	0.00	0.03
tuH merged signal(BR=0.2%)	0.47	1.80	0.02	0.18

	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os	TTH $\tau_{lep}\tau_{had}$ 2b ss	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	0.07	0.14	0.05	0.25
$cg \rightarrow tH(BR = 0.2\%)$	0.00	0.01	0.00	0.00
tcH merged signal(BR=0.2%)	0.08	0.14	0.06	0.25
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	0.03	0.09	0.03	0.15
$ug \rightarrow tH(BR = 0.2\%)$	0.01	0.03	0.00	0.03
tuH merged signal(BR=0.2%)	0.03	0.13	0.04	0.18

Table 28: The yield in $\tau_{had}\tau_{had}$ channels with luminosity of $140 fb^{-1}.$

	•		•	
	$STH\tau_{\mathrm{had}}\tau_{\mathrm{had}}ss$	$STH\tau_{\mathrm{had}}\tau_{\mathrm{had}}os$	$TTH\tau_{\mathrm{had}}\tau_{\mathrm{had}}ss$	$TTH\tau_{\rm had}\tau_{\rm had}os$
data	1871.00 ± 43.26	4328.00 ± 65.79	2038.00 ± 45.14	4879.00 ± 69.85
background	16.92 ± 1.97	4177.78 ± 63.08	19.65 ± 1.59	4595.26 ± 66.34
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	1.79 ± 0.12	38.59 ± 0.73	3.23 ± 0.16	107.30 ± 1.23
$cg \rightarrow tH(BR = 0.2\%)$	0.10 ± 0.01	4.04 ± 0.07	0.10 ± 0.01	5.58 ± 0.09
tcH merged signal(BR=0.2%)	1.89 ± 0.12	42.63 ± 0.73	3.33 ± 0.16	112.88 ± 1.23
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	1.93 ± 0.12	37.81 ± 0.70	3.27 ± 0.17	112.07 ± 1.21
$ug \rightarrow tH(BR = 0.2\%)$	0.54 ± 0.05	20.12 ± 0.37	0.62 ± 0.06	27.39 ± 0.46
tuH merged signal(BR=0.2%)	2.47 ± 0.13	57.93 ± 0.79	3.89 ± 0.18	139.46 ± 1.29

	$STH\tau_{\rm had}\tau_{\rm had}2bss$	$STH\tau_{\rm had}\tau_{\rm had}2bos$	$TTH\tau_{\rm had}\tau_{\rm had}2bss$	$TTH\tau_{\rm had}\tau_{\rm had}2bos$
data	195.00 ± 13.96	700.00 ± 26.46	282.00 ± 16.79	877.00 ± 29.61
background	2.56 ± 0.46	411.48 ± 7.11	1.95 ± 0.43	362.12 ± 6.05
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	0.17 ± 0.03	6.63 ± 0.34	0.34 ± 0.05	11.58 ± 0.40
$cg \rightarrow tH(BR = 0.2\%)$	0.01 ± 0.00	0.26 ± 0.02	0.00 ± 0.00	0.32 ± 0.02
tcH merged signal(BR=0.2%)	0.18 ± 0.03	6.89 ± 0.34	0.35 ± 0.05	11.90 ± 0.40
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	0.04 ± 0.02	2.85 ± 0.19	0.12 ± 0.03	6.39 ± 0.29
$ug \rightarrow tH(BR = 0.2\%)$	0.02 ± 0.01	1.15 ± 0.09	0.04 ± 0.01	1.41 ± 0.10
tuH merged signal(BR=0.2%)	0.06 ± 0.02	4.01 ± 0.21	0.16 ± 0.03	7.80 ± 0.31

Figure 14: The BDT input distributions for the background and merged signal in the STH $\tau_{had}\tau_{had}$ (a1-3), TTH $\tau_{had}\tau_{had}$ (b1-3), STH $\tau_{lep}\tau_{had}$ (c1-3), TTH $\tau_{lep}\tau_{had}$ (d1-3), $l\tau_{had}\tau_{had}$ (e1-3) channels.

Figure 15: The BDT output distributions for the background and TT signal (a1, b1, c1, d1, e1), background and ST signal (a2, b2, c2, d2, e2) and ROC curves (a3, b3, c3, d3, e3) in the STH $\tau_{had}\tau_{had}$ (a1-3), TTH $\tau_{had}\tau_{had}$ (b1-3), STH $\tau_{lep}\tau_{had}$ (c1-3), TTH $\tau_{lep}\tau_{had}$ (d1-3), $l\tau_{had}\tau_{had}$ (e1-3) channels.

Table 29: The yield in leptonic channels with luminosity of $80 \mathrm{fb}^{-1}$.

	$l au_{ m had} au_{ m had}$ ss	$l\tau_{\rm had}\tau_{\rm had}$ os	ST	H $\tau_{\rm lep} \tau_{\rm had}$ ss	STH $\tau_{\text{lep}}\tau_{\text{had}}$ os
data	378.00 ± 19.44	354.00 ± 18.81	628	34.00 ± 79.27	36981.00 ± 192.30
background	396.76 ± 10.39	345.79 ± 9.56	622	25.41 ± 44.65	37252.38 ± 95.29
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	2.68 ± 0.14	30.06 ± 0.44	3	2.16 ± 0.46	58.47 ± 0.72
$cg \rightarrow tH(BR = 0.2\%)$	0.12 ± 0.01	2.16 ± 0.04	(0.91 ± 0.03	3.10 ± 0.06
tcH merged signal(BR=0.2%)	2.80 ± 0.14	32.22 ± 0.44	3	3.07 ± 0.46	61.57 ± 0.72
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	2.98 ± 0.14	30.52 ± 0.44	3	4.07 ± 0.47	60.25 ± 0.70
$ug \rightarrow tH(BR = 0.2\%)$	0.57 ± 0.06	10.06 ± 0.20	5	5.05 ± 0.14	16.54 ± 0.31
tuH merged signal(BR=0.2%)	3.54 ± 0.15	40.58 ± 0.48	39.12 ± 0.49		76.79 ± 0.77
	TTH $\tau_{\rm lep} \tau_{\rm had}$ ss	TTH $\tau_{\rm lep} \tau_{\rm had}$	os	$l\tau_{\rm had}\tau_{\rm had}$ 2b s	s $l\tau_{\rm had}\tau_{\rm had}$ 2b os
data	6708.00 ± 81.90	28315.00 ± 168	.27	134.00 ± 11.5	$8 117.00 \pm 10.82$
background	7222.94 ± 44.08	29899.02 ± 81.	07	136.13 ± 5.37	7 110.06 ± 4.53
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	28.89 ± 0.44	78.37 ± 0.89)	0.23 ± 0.04	2.74 ± 0.13
$cg \rightarrow tH(BR = 0.2\%)$	0.49 ± 0.02	2.67 ± 0.06		0.01 ± 0.00	0.05 ± 0.01
tcH merged signal(BR=0.2%)	29.38 ± 0.44	81.03 ± 0.90)	0.24 ± 0.04	2.79 ± 0.13
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	31.45 ± 0.45	82.74 ± 0.88		0.12 ± 0.03	0.83 ± 0.08
$ug \rightarrow tH(BR = 0.2\%)$	3.04 ± 0.12	14.60 ± 0.31		0.01 ± 0.01	0.16 ± 0.03
tuH merged signal(BR=0.2%)	34.49 ± 0.47	97.35 ± 0.93		0.13 ± 0.03	1.00 ± 0.08

	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os
data	2009.00 ± 44.82	13219.00 ± 114.97	1819.00 ± 42.65	8463.00 ± 91.99
background	2075.57 ± 22.00	13575.02 ± 52.29	1987.54 ± 21.22	9040.96 ± 42.44
$\bar{t}t \rightarrow bWcH(BR = 0.2\%)$	2.76 ± 0.14	6.43 ± 0.26	2.05 ± 0.12	7.06 ± 0.28
$cg \rightarrow tH(BR = 0.2\%)$	0.03 ± 0.01	0.16 ± 0.01	0.03 ± 0.01	0.11 ± 0.01
tcH merged signal(BR=0.2%)	2.79 ± 0.14	6.59 ± 0.26	2.08 ± 0.12	7.17 ± 0.28
$\bar{t}t \rightarrow bWuH(BR = 0.2\%)$	1.04 ± 0.08	2.92 ± 0.17	1.09 ± 0.08	3.68 ± 0.19
$ug \rightarrow tH(BR = 0.2\%)$	0.19 ± 0.03	0.79 ± 0.07	0.17 ± 0.03	0.59 ± 0.06
tuH merged signal(BR=0.2%)	1.24 ± 0.09	3.71 ± 0.18	1.25 ± 0.09	4.27 ± 0.20

9 Systematic uncertainties

The signal efficiency and the background estimations are affected by uncertainties associated with the detector simulation, the signal modelling and the data-driven background determination. In the combined fit, these uncertainties are called Nuisance Parameters (NP), as opposed to the parameter of interest, the signal strength, which is a scaling factor applied on the total signal events.

Any systematic effect on the the overall normalisation or shape of the final BDT distribution in the signal region is considered. In TRExFitter [62], the NP pruning is applied, which means that NPs whose impact are less than a certain threshold are discarded. The lower thresholds to remove a shape systematic and a normalisation systematic from the fit are both 1% in the fit.

Table 30 gives the QCD fake estimation for $\tau_{had}\tau_{had}$ channel in 7.4 and six fake normalization factor NPs for fake method mentioned in 7.3. The lists of systematic NPs that survive the pruning are in Tab. ?? and 31, and their meanings are given below. All the NPs in Tab. 31 and the fakeSF* in 30 are fully correlated in all signal regions.

Table 30: The fake normalization factor NP for $\tau_{had}\tau_{had}$ channel.

norm_fake_hh	
fakeSFNP_ptbin0	fakeSFNP_ptbin0_wjet
fakeSFNP_ptbin1	fakeSFNP_ptbin1_wjet
fakeSFNP_ptbin2	fakeSFNP_ptbin2_wjet

Table 31: The NPs that are common to the all channels in the fit model, excluding the MC statistical NPs.

the 141's that are common to the air channels in the fit model, excitating the tyre statis			
TAUS_TRUEHADTAU_EFF_JETID_SYST	JET_EffectiveNP_Modelling1		
TAUS_TRUEHADTAU_SME_TES_DETECTOR	LumiUncertainty		
PRW_DATASF	jet_FT_EFF_Eigen_B_0		
jet_FT_EFF_Eigen_B_1	jet_FT_EFF_Eigen_B_2		
jet_FT_EFF_Eigen_B_3	jet_FT_EFF_Eigen_B_4		
jet_FT_EFF_Eigen_B_5	jet_FT_EFF_Eigen_B_6		
jet_FT_EFF_Eigen_B_7	jet_FT_EFF_Eigen_B_8		
jet_FT_EFF_Eigen_C_0	jet_FT_EFF_Eigen_C_1		
jet_FT_EFF_Eigen_C_2	jet_FT_EFF_Eigen_C_3		
jet_FT_EFF_Eigen_Light_0	jet_FT_EFF_Eigen_Light_1		
jet_FT_EFF_Eigen_Light_2	jet_FT_EFF_Eigen_Light_3		
jet_FT_EFF_Eigen_Light_4	jet_FT_EFF_extrapolation		
jet_FT_EFF_extrapolation_from_charm	jet_JET_JvtEfficiency		
jet_JET_fJvtEfficiency	TAUS_TRUEELECTRON_EFF_ELEOLR_STATHIGHMU		
Continued on next page			

Table 31 – continued from previous page

Tuble 51 Continued	in one previous page
TAUS_TRUEELECTRON_EFF_ELEOLR_STATLOWMU	TAUS_TRUEELECTRON_EFF_ELEOLR_SYST
TAUS_TRUEHADTAU_EFF_ELEOLR_TOTAL_HadTau	TAUS_TRUEHADTAU_EFF_ELEOLR_TOTAL
TAUS_TRUEHADTAU_EFF_JETID_1PRONGSTATSYSTUNCORR2025	TAUS_TRUEHADTAU_EFF_JETID_1PRONGSTATSYSTUNCORR2530
TAUS_TRUEHADTAU_EFF_JETID_1PRONGSTATSYSTUNCORR3040	TAUS_TRUEHADTAU_EFF_JETID_1PRONGSTATSYSTUNCORRGE40
TAUS_TRUEHADTAU_EFF_JETID_3PRONGSTATSYSTUNCORR2030	TAUS_TRUEHADTAU_EFF_JETID_3PRONGSTATSYSTUNCORRGE30
TAUS_TRUEHADTAU_EFF_JETID_HIGHPT	TAUS_TRUEHADTAU_EFF_RECO_HIGHPT
TAUS_TRUEHADTAU_EFF_RECO_TOTAL	TAUS_TRUEHADTAU_EFF_RECO_HIGHPT_selection
TAUS_TRUEHADTAU_EFF_RECO_TOTAL_selection	TAUS_TRUEHADTAU_EFF_TRIGGER_STATDATA2015_tau25
TAUS_TRUEHADTAU_EFF_TRIGGER_STATDATA2016_tau25	TAUS_TRUEHADTAU_EFF_TRIGGER_STATDATA2017_tau25
TAUS_TRUEHADTAU_EFF_TRIGGER_STATMC2015_tau25	TAUS_TRUEHADTAU_EFF_TRIGGER_STATMC2016_tau25
TAUS_TRUEHADTAU_EFF_TRIGGER_STATMC2017_tau25	TAUS_TRUEHADTAU_EFF_TRIGGER_SYST2015_tau25
TAUS_TRUEHADTAU_EFF_TRIGGER_SYST2016_tau25	TAUS_TRUEHADTAU_EFF_TRIGGER_SYST2017_tau25
TAUS_TRUEHADTAU_EFF_TRIGGER_STATDATA2015_tau35	TAUS_TRUEHADTAU_EFF_TRIGGER_STATDATA2016_tau35
TAUS_TRUEHADTAU_EFF_TRIGGER_STATDATA2017_tau35	TAUS_TRUEHADTAU_EFF_TRIGGER_STATMC2015_tau35
TAUS_TRUEHADTAU_EFF_TRIGGER_STATMC2016_tau35	TAUS_TRUEHADTAU_EFF_TRIGGER_STATMC2017_tau35
TAUS_TRUEHADTAU_EFF_TRIGGER_SYST2015_tau35	TAUS_TRUEHADTAU_EFF_TRIGGER_SYST2016_tau35
TAUS_TRUEHADTAU_EFF_TRIGGER_SYST2017_tau35	TAUS_TRUEHADTAU_SME_TES_INSITU
TAUS_TRUEHADTAU_SME_TES_MODEL	JET_BJES_Response
JET_EffectiveNP_Detector1	JET_EffectiveNP_Detector2
JET_EffectiveNP_Mixed1	JET_EffectiveNP_Mixed2
JET_EffectiveNP_Mixed3	JET_EffectiveNP_Modelling2
JET_EffectiveNP_Modelling3	JET_EffectiveNP_Modelling4
JET_EffectiveNP_Statistical1	JET_EffectiveNP_Statistical2
JET_EffectiveNP_Statistical3	JET_EffectiveNP_Statistical4
JET_EffectiveNP_Statistical5	JET_EffectiveNP_Statistical6
JET_EtaIntercalibration_Modelling	JET_EtaIntercalibration_NonClosure_highE
JET_EtaIntercalibration_NonClosure_negEta	JET_EtaIntercalibration_NonClosure_posEta
JET_EtaIntercalibration_TotalStat	JET_Flavor_Composition
JET_Flavor_Response	JET_JER_DataVsMC_MC16
JET_JER_EffectiveNP_1	JET_JER_EffectiveNP_2
JET_JER_EffectiveNP_3	JET_JER_EffectiveNP_4
JET_JER_EffectiveNP_5	JET_JER_EffectiveNP_6
JET_JER_EffectiveNP_7restTerm	JET_Pileup_OffsetMu
JET_Pileup_OffsetNPV	JET_Pileup_PtTerm
JET_Pileup_RhoTopology	JET_PunchThrough_MC16
JET_SingleParticle_HighPt	JET_TILECORR_Uncertainty
EG_RESOLUTION_ALL	EG_SCALE_AF2
	Continued on next page

30th July 2020 – 11:32

Table 31 – continued from previous page

EG_SCALE_ALL	MUON_ID
MUON_MS	MUON_SAGITTA_RESBIAS
MUON_SAGITTA_RHO	MUON_SCALE
MET_SoftTrk_ResoPara	MET_SoftTrk_ResoPerp
MET_SoftTrk_Scale	
	End

9.1 Luminosity

617

618

619

620

621

622

623

625

626

627

628

630

631

The integrated luminosity measurement has an uncertainty of 1.7% for the combined Run-2 data, and it is applied to all simulated event samples.

9.2 Detector-related uncertainties

Uncertainties related to the detector are included for the signal and backgrounds that are estimated using simulation. These uncertainties are also taken into account for the simulated events that enter the data-driven background estimations. All instrumental systematic uncertainties arising from the reconstruction, identification and energy scale of electrons, muons, (b-)jets and the soft term of the $E_{\rm T}^{\rm miss}$ measurement are considered. The effect of the energy scale uncertainties on the objects is propagated to the $E_{\rm T}^{\rm miss}$ calculation. These systematics include uncertainty associated with:

- The electron and muon trigger, reconstruction, identification and isolation efficiencies. These are estimated with the tag-and-probe method on the $Z \to ll$, $J/\psi \to ll$ and $W \to l\nu$ events [63].
- Electron and muon momentum scales. They are estimated from the early 13 TeV $Z \rightarrow ll$ events.
- Jet energy scale (JES) and resolution (JER). The JES uncertainty is estimated by varying the jet energies according to the uncertainties derived from simulation and in-situ calibration measurements using a model with a reduced set of 38 orthogonal NPs [64] which has up to 30% correlation losses, which are assumed to be uncorrelated, and the induced changes can be added in quadrature. The individual scale variations on the jets are parameterised in p_T and η . The total JES uncertianty is below 5% for most jets and below 1% for central jets with pT between 300 GeV and 2 TeV. The difference between the JER in data and MC is represented by one NP. It is applied on the MC by smearing the jet p_T within the prescribed uncertainty. JVT is applied in the analysis to select jets from hard-scattered vertices. It was found that different MC generators (and different fragmentation models) lead to efficiency differences of up to 1%, and the uncertainty on the efficiency measurement was found to be around 0.5%. Two NPs are assigned for the JVT efficiency, one for the central and the other for the forward jets.

- Calibration of the $E_{\rm T}^{\rm miss}$. The uncertainties on $E_{\rm T}^{\rm miss}$ due to systematic shifts in the corrections for leptons and jets are accounted for in a fully correlated way in their evaluation for those physics objects, and are therefore not considered independently here. The systematic uncertainty assigned to the track-based soft term used in the $E_{\rm T}^{\rm miss}$ definition quantifies the resolution and scale of the soft term measurement by using the balance between hard and soft contributions in $Z \to \mu\mu$ events. The uncertainties are studied using the differences between Monte Carlo generators, using Powheg+Pythia8 as the nominal generator [65]. One NP is assigned for the soft-track scale, and two NPs for the soft-track resolution.
- Jet flavour tagging systematics. The uncertainties on the *b*-tagging are assessed independently for *b*, *c* and light-flavour quark jets, with extrapolation factors [66]. The efficiencies and mis-tag rates are measured in data using the methods described in [67]-[68] with the 2015, 2016 and 2017 data set. There are 19 NPs assigned for the flavour tagging systematics (so-called "Loose" reduced set, with 5 NPs for light flavor, 4 for *c*, 9 for *b*, and 1 for extrapolation).
- Pileup. The uncertainty on the pileup reweighting is evaluated by varying the pileup scale factors by 1σ based on the reweighting of the average interactions per bunch crossing. However, this uncertainty is highly correlated with the luminosity uncertainty and may be an overestimate.
- Tau object systematics. These include the τ_{had} reconstruction, identification and trigger efficiencies, the efficiency for tau-electron overlap removal of true τ_{had} , the one for tau-electron overlap removal of true electrons faking τ_{had} , and the one for a "medium" BDT electron rejection. There are also three NPs that cover the tau energy scale (TES) systematics due to the modeling of the detector geometry (TAU_TES_DETECTOR), the measurement in the tag-and-probe analysis (TAU_TES_INSITU) and the Geant4 shower model (TAU_TES_MODEL). The systematics are based on detailed MC variation study, as well as the Run-2 $Z \to \tau \tau$ data for insitu calibrations of the tau TES and trigger efficiencies, as documented in [51] and the dedicated software tools [53] recommended by the Tau CP Woking Group [54].

9.3 Uncertainties on fake background estimations

Systematic uncertainties resulting from the data-driven background estimation and usage of SS events as described in Sec. 7. They are named fakeSF*prong*Ptbin and norm_factor_hh in Tab. 31.

9.4 Theoretical uncertainties on the background

Theoretical uncertainties have been applied to the MC background in this analysis. The NNPDF3.0 systematic set (which has 100 variations) is used to get the variation envelope around the nominal PDF, and the renormalization and factorization scales are varied by a factor of 0.5 and 2.0 around the nominal

values. There are eight such variations. In the final BDT distributions, the largest variations of the eight per bin are taken.

The default $t\bar{t}$ sample is generated with Powheg. A separate full-sim $t\bar{t}$ sample generated with Sherpa (0 and 1-jet at NLO, and ≥ 2 jets at LO) is compared with the Powheg sample, and the difference in final results is treated as the hard scattering systematics [69].

The default $t\bar{t}$ MC events are showered with Pythia8. A separate sample showered with Herwig7 is compared with the Pythia8 sample, and the difference is treated as fragmentation and hadronization systematics [69]. These two samples are both generated with ATLFAST-II [36], and their difference is then applied to the default full-simulation $t\bar{t}$ sample.

The Powheg+Pythia8 $t\bar{t}$ MC is also generated with different shower radiations (initial and final-state radiation modelling). For a sample with increased radiation, the factorisation and renormalization scales are scaled by 0.5 with respect to their nominal values, the hdamp parameter (which controls the amount of radiation produced by the parton shower in POWHEG-BOX v2) is set to $3m_{top}$ and the A14var3cUp tune is used. Conversely, for a sample with decreased radiation, the two scales are scaled by 2 with respect to their nominal values, the hdamp is kept at the nominal value of $1.5m_{top}$ and the A14var3cDown tune is used [69].

Uncertainty affecting the normalisation of the V+jets background is estimated to be about 30% according to the study done in the FCNC $H \to b\bar{b}$ channel [70]. The uncertainty on the diboson cross section is 5% [71], on single top +5%/-4% [43][72, 73], on $t\bar{t}V$ 15% [74, 75], and on $t\bar{t}H$ +10%/-13% [76].

9.5 Uncertainties on the signal modelling

Since the signal samples share the same production as the $t\bar{t}$ process, the systematics listed above for $t\bar{t}$ also apply to the signal. However, because the systematics variation samples are only generated for the SM decays of $t\bar{t}$, only the integral change of the yields observed for the $t\bar{t}$ background with real taus in the FR is used, and applied on the signal in the same region in a fully correlated way. An additional 1.6% uncertainty on BR($H \to \tau \tau$) is also assigned [39].

The fake calibration is also applied to the fake tau part of the signal the same way as the background. The 6890 6 NPs are also applied to the signal and fully correlated with the background.

10 Fit model and signal extraction

The parameter of interest in this search is the signal strength of the FCNC interactions, $BR(t \to Hq)$ and corresponding production mode cross section. The statistical analysis of the data employs a binned likelihood function constructed as the product of Poisson probability terms, in bins of the BDT output.

To take into account the systematic uncertianties associated with the MC estimation from different sources for both the signal and background samples, the fit model incorporates these systematics as extra Gaussian or Log-Normal constraint terms multiplied with the combined likelihood. The fitted central values and errors of the systematics parameters, or NPs, are expected to follow a normal distribution centered around 0 with unit width, when the Asimov data is used. The fit model construction is obtained with the RooFit and RooStats software, and the model configuration and persistence files (as input to RooStats) are produced by TRExFitter [62], which is a software package interface with HistFactory. The TRExFitter includes additional features such as histogram smoothing, NP pruning and error symmetrization before the fits.

The correlated bin-by-bin histogram variation corresponds to the up and down variation of each NP. The independent bin-by-bin fluctuations in the combined MC templates are also treated as NPs. They are incorporated in the model as extra Poisson constraint terms, and are expected to have a fitted value of 1 and a fitted error reflecting the relative statistical error in each particular bin. There is one parameter if interest (POI) freely floating in the fit without any constraints, namely, the signal strength μ (SigXsecOverSM) which is a multiplicative factor on a presumed branching ratio of BR($t \rightarrow Hq$)=1% in this analysis. The errors associated with the different systematics will be properly propogated to the fitted error of μ in a simultaneous fit of multiple regions via a profiled likelihood scan by the minimization program MINUIT.

The one-sided NPs in the analysis, namely, fakeSFXprongXPtbin, ttbar fragmentation, ttbar
hard scattering, JET_BJES_Response, JET_JER_DataVsMC_MC16, JET_SingleParticle_HighPt,

JET_TILECORR_Uncertainty, MET_SoftTrk_ResoPara, MET_SoftTrk_ResoPerp are symmetrized.

This is done manually on the MC components of the background. By default, all the kinematic NPs (shape

NPs due to, e.g., energy scales) are smoothed using the default smoothing parameters in TRExFitter.

This helps removing the artificial NP constraints due to statistical fluctuations in the systematic variations,
and makes the fit well behaved. The NPs pull distributions before the smoothing for each SR are given in

App. ??.

Figure 19 shows the ranking of the 25 top NPs along with their pull distributions, produced also with TRExFitter. The highest ranked NP is defined to have the largest impact on μ . The impact is evalated by varying the NP under consideration by one σ (either pre or post-fit error) up and down, and afterwards looking at the relative change in μ under the conditional fit where the NP under consideration is fixed to its varied new value. Figure ?? shows the pull distributions of all NPs in asimov fit. Normalization and shape systematics whose impact is less than 1% are removed from the fit. The list of removed NPs are given in App. ??.

The NP ranking and constraints can be qualitatively understood from the variations of the BDT distributions due to the relevant NPs. Figures ??-?? show the systematic variations due to the top ranked NPs.

Figure 20 shows the correlation matrix for diffrent NPs. Except for self-correlations, and the correlations between the normalization factors (including POI) and the others, all the NPs have relatively small correlations with each other, which justifies the fit models for independent systematics.

Figure 16: The asimov prefit (left) and postfit (right) BDT distributions in the STH $\tau_{lep}\tau_{had}$ (a1-2) and TTH $\tau_{lep}\tau_{had}$ (b1-2), $l\tau_{had}\tau_{had}$ (c1-2)

Figure 17: The asimov prefit (left) and postfit (right) BDT distributions in the TTH $\tau_{had}\tau_{had}$ (a1-2) and STH $\tau_{had}\tau_{had}$ (b1-2)

Figure 18: The asimov fit pull distributions of different NPs for $\tau_{had}\tau_{had}$ channels (left) combined and lepton channels combined (right).

30th July 2020 - 11:32

Figure 19: The asimov fit ranking of the top 25 NPs for $\tau_{had}\tau_{had}$ channels (left) combined and lepton channels combined (right). The scale of the relative impact on μ (the pull) of the NPs is shown on the top (bottom) axis.

Figure 20: The asimov fit correlation matrix (%) of different NPs, with a threshold of 20% for $\tau_{had}\tau_{had}$ channels (left) combined and lepton channels combined (right).

Table 32: The limits derived from leptonic channels.

			$l au_{ m had} au_{ m had}$	Combined
tuH	$3.56^{+1.41}_{-1.00}$	$1.63^{+0.67}_{-0.46}$	$0.68^{+0.31}_{-0.19}$	$0.61^{+0.27}_{-0.17}$
tcH	45.59 ^{+-36.56} -12.74	$2.03^{+0.85}_{-0.57}$	$0.86^{+0.39}_{-0.24}$	$0.77^{+0.34}_{-0.22}$

2 11 Results

The significance of any small observed excess in data is evaluated by quoting the p-values to quantify the

level of consistency of the data with the BR=0 hypothesis. The asymptotic approximation in [77] is used.

The test statistic used for the exclusion limits derivation is the \tilde{q}_{μ} test statistic and for the *p*-values the q_0

test statistic⁶ [77].

The 95% CL upper limits on tqH interaction with BR $(t \to Hq) = 0.2\%$ as reference are given in Tab. 34.

The best asimov fit values with S+B hypothesis are given in Tab. ??

Table 33: The expected 95% CL exclusion upper limits on BR($t \to Hc$) and BR($t \to Hu$) (0.2%) with the Asimov (B-only).

	tcH	tuH
$ au_{ m had} au_{ m had}$	$0.80^{+0.41}_{-0.22}$	$0.64^{+0.33}_{-0.18}$
leptonic channels	$0.77^{+0.33}_{-0.21}$	$0.60^{+0.26}_{-0.17}$

Table 34: The best asimov fit values with S+B hypothesis.

	tcH	tuH
$ au_{ m had} au_{ m had}$	$1.00^{+0.23+0.51}_{-0.22-0.38}$	$1.00^{+0.18+0.44}_{-0.18-0.33}$
leptonic channels	$1.00^{+0.56+X.XX}_{-0.54-X.XX}$	$1.00^{+0.47+X.XX}_{-0.46-X.XX}$

The search for the FCNC decay $t \to Hq$, $H \to \tau\tau$ with the ATLAS detector at the LHC using 13 TeV data was presented in this note. The best-fit values for BR($t \to Hc$) and BR($t \to Hu$) are found to be $-X.XX_{-X.XX}^{+X.XX}\%$ and $-X.XX_{-X.XX}^{+X.XX}\%$ respectively, based on 140 fb⁻¹ of data collected from 2015 to

$$\tilde{q}_{\mu} = \begin{cases} -2\ln(\mathcal{L}(\mu,\hat{\hat{\theta}})/\mathcal{L}(0,\hat{\hat{\theta}})) & \text{if } \hat{\mu} < 0 \\ -2\ln(\mathcal{L}(\mu,\hat{\hat{\theta}})/\mathcal{L}(\hat{\mu},\hat{\theta})) & \text{if } 0 \leq \hat{\mu} \leq \mu \\ 0 & \text{if } \hat{\mu} > \mu \end{cases}$$

and

$$q_0 = \begin{cases} -2\ln(\mathcal{L}(0,\hat{\hat{\theta}})/\mathcal{L}(\hat{\mu},\hat{\theta})) & \text{if } \hat{\mu} \ge 0 \\ 0 & \text{if } \hat{\mu} < 0 \end{cases}$$

where $\mathcal{L}(\mu, \theta)$ denotes the binned likelihood function, μ is the parameter of interest (i.e. the signal strength parameter), and θ denotes the nuisance parameters. The pair $(\hat{\mu}, \hat{\theta})$ corresponds to the global maximum of the likelihood, whereas $(x, \hat{\theta})$ corresponds to a conditional maximum in which μ is fixed to a given value x.

⁶ The definition of the test statistics used in this search is the following:

⁷⁴² 2018. The observed (expected) 95% CL upper limits on BR($t \to Hc$) and BR($t \to Hu$) are found to be ⁷⁴³ X.XX% ($X.XX^{+X.XX}_{-X.XX}\%$) and X.XX% ($X.XX^{+X.XX}_{-X.XX}\%$), respectively.

744 Appendix

References

- 746 [1] ATLAS Collaboration, Combined Measurement of the Higgs Boson Mass in pp Collisions at 747 \sqrt{s} =7 and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. **114** (2015) 191803, 748 arXiv: 1503.07589 [hep-ex].
- [2] S. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry,
 Phys. Rev. D 2 (1970) 1285.
- [3] J. Aguilar-Saavedra,
 Top flavor-changing neutral interactions: Theoretical expectations and experimental detection,
 Acta Phys. Polon. B 35 (2004) 2695, arXiv: 0409342 [hep-ph].
- F. del Aguila, J. A. Aguilar-Saavedra, and R. Miquel,

 Constraints on top couplings in models with exotic quarks, Phys. Rev. Lett. **82** (1999) 1628,

 arXiv: 9808400 [hep-ph].
- J. Aguilar-Saavedra, *Effects of mixing with quark singlets*, Phys. Rev. D **67** (2003) 035003, arXiv: **0210112** [hep-ph].
- S. Bejar, J. Guasch and J. Sola, *Loop induced flavor changing neutral decays of the top quark in a general two Higgs doublet model*, Nucl. Phys. B **600** (2001) 21, arXiv: **0011091** [hep-ph].
- I. Baum, G. Eilam and S. Bar-Shalom, Scalar flavor changing neutral currents and rare top quark decays in a two Higgs doublet model 'for the top quark', Phys. Rev. D 77 (2008) 113008, arXiv: 0802.2622 [hep-ph].
- [8] J. J. Cao et al., SUSY-induced FCNC top-quark processes at the large hadron collider,
 Phys. Rev. D 75 (2007) 075021, arXiv: 0702264 [hep-ph].
- ⁷⁶⁶ [9] G. Eilam et al., *Top quark rare decay t* \rightarrow *ch in R-parity violating SUSY*, Phys. Lett. B **510** (2001) 227, arXiv: **0102037** [hep-ph].
- G. Lu et al., The rare top quark decays $t \to cV$ in the topcolor-assisted technicolor model, Phys. Rev. D **68** (2003) 015002, arXiv: 0303122 [hep-ph].
- [11] K. Agashe, G. Perez and A. Soni,
 Collider signals of top quark flavor violation from a warped extra dimension,
 Phys. Rev. D 75 (2007) 015002, arXiv: 0606293 [hep-ph].
- B. Yang, N. Liu and J. Han, *Top quark flavor-changing neutral-current decay to a 125 GeV Higgs boson in the littlest Higgs model with T parity*, Phys. Rev. D **89** (2014) 034020, arXiv: 1308.4852 [hep-ph].
- K. Agashe and R. Contino, *Composite Higgs-mediated flavor-changing neutral current*, Phys. Rev. D **80** (2009) 075016, arXiv: 0906.1542 [hep-ph].

```
T. P. Cheng and Marc Sher,

Mass Matrix Ansatz and Flavor Nonconservation in Models with Multiple Higgs Doublets,

Phys. Rev. D 35 (1987) 3484.
```

- ⁷⁸¹ [15] Wei-Shu Hou, *Tree level t* \rightarrow *ch or h* \rightarrow *tc decays*, Phys. Lett. B **296** (1992) 179.
- Federico Demartin, Fabio Maltoni, Kentarou Mawatari, Marco Zaro,

 Higgs production in association with a single top quark at the LHC, (2015),

 arXiv: 1504.00611 [hep-ph].
- ATLAS Collaboration, Search for top quark decays $t \to qH$, with $H \to \gamma\gamma$, in $\sqrt{s} = 13$ TeV pp collisions using the ATLAS detector, JHEP (2017) 129, arXiv: 1707.01404 [hep-ex].
- [18] ATLAS Collaboration,

 Search for flavor-changing neutral currents in top quark decays $t \to Hc$ and $t \to Hu$ in

 multilepton final states in proton–proton collisions at sqrts = 13 TeV with the ATLAS detector,

 Phys. Rev. D (2018) 36, arXiv: 1805.03483 [hep-ex].
- 791 [19] ATLAS Collaboration, Search for top-quark decays $t \to qH$ with 36 fb-1 of pp collision data at \sqrt{s} =13 TeV with the ATLAS detector, (), arXiv: 1812.11568 [hep-ex].
- CMS Collaboration, Search for the flavor-changing neutral current interactions of the top quark and the Higgs boson which decays into a pair of b quarks at $\sqrt{s} = 13$ TeV, JHEP **06** (2018) 102, arXiv: 1712.02399 [hep-ex].
- Celine Degrande, Fabio Maltoni, Jian Wang, Cen Zhang, *Automatic computations at*next-to-leading order in QCD for top-quark flavor-changing neutral processes,
 Phys. Rev. D (2015) 6, arXiv: 1412.5594 [hep-ex].
- 799 [22] ATLAS Collaboration, *The ATLAS Experiment at the CERN Large Hadron Collider*, 800 JINST **3** (2008) \$08003.
- ATLAS Collaboration, *ATLAS Insertable B-Layer Technical Design Report*,
 CERN-LHCC-2010-013; ATLAS-TDR-19, 2010,
 URL: https://cds.cern.ch/record/1291633.
- ATLAS Collaboration,

 Luminosity determination in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector at the LHC,

 (2016), arXiv: 1608.03953 [hep-ex].
- ⁸⁰⁷ [25] Celine Degrande et al., *Automatic computations at next-to-leading order in QCD for top-quark*⁸⁰⁸ *flavor-changing neutral processes*, Phys. Rev. D **91** (2015) 034024, arXiv: 1412.5594 [hep-ph].
- Celine Degrande et al., Effective theory for top flavor changing interactions, 2016, URL: https://feynrules.irmp.ucl.ac.be/wiki/TopFCNC.
- J. Alwall et al., *The automated computation of tree-level and next-to-leading order differential* cross sections, and their matching to parton shower simulations, JHEP **07** (2014) 079, arXiv: 1405.0301 [hep-ph].

```
<sup>814</sup> [28] T. Sjostrand et al., An introduction to PYTHIA 8.2, Comp. Phys. Commun. 191 (2015) 159, arXiv: 1410.3012 [hep-ph].
```

- ATLAS Collaboration, *ATLAS Pythia 8 tunes to 7 TeV data*, ATL-PHYS-PUB-2014-021, 2014, URL: https://cdsweb.cern.ch/record/196641.
- 818 [30] R. D. Ball et al., *Parton distributions for the LHC Run II*, JHEP **04** (2015) 040, arXiv: 1410.8849 [hep-ph].
- 820 [31] C. Oleari, *The POWHEG-BOX*, Nucl. Phys. Proc. Suppl. **205-206** (2010) 36–41, arXiv: 1007.3893 [hep-ph].
- ⁸²² [32] T. Gleisberg et al., *Event generation with Sherpa 1.1*, JHEP **02** (2009) 007, arXiv: **0811.4622** [hep-ph].
- N. Davidson et al., *Universal interface of TAUOLA: Technical and physics documentation*, Comp. Phys. Commun. **183** (2012) 821.
- 826 [34] S. Agostinelli et al., GEANT4 A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.
- ⁸²⁷ [35] J. Bellm et al., *Herwig 7.0/Herwig++ 3.0 release note*, Eur. Phys. J. C **76** (2016) 196.
- 828 [36] ATLAS Collaboration,

 829 The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim,

 830 ATL-PHYS-PUB-2010-013, 2010, URL: http://cds.cern.ch/record/1300517.
- J Butterworth et al.,

 Single Boson and Diboson Production Cross Sections in pp Collisions at √s=7 TeV,

 ATL-COM-PHYS-2010-695, 2010, URL: http://cds.cern.ch/record/1287902.
- M. Czakon and A. Mitov,

 Top++: a program for the calculation of the top-pair cross-section at hadron colliders,

 Comput. Phys. Commun **185** (2014) 2930, arXiv: 1112.5675 [hep-ph].
- B37 [39] D. de Florian et al.,
 B38 Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector,
 B39 CERN-2017-002-M (2017), arXiv: 1610.07922 [hep-ph],
 B40 URL: https://cds.cern.ch/record/2227475.
- J. Alwall et al., *The automated computation of tree-level and next-to-leading order differential* cross sections, and their matching to parton shower simulations, JHEP **07** (2014) 079, arXiv: 1405.0301 [hep-ph].
- M. Aliev et al., *HATHOR HAdronic Top and Heavy quarks crOss section calculatoR*, Comput. Phys. Commun **182** (2011) 1034, arXiv: 1007.1327 [hep-ph].
- P. Kant et al., HATHOR for single top-quark production: Updated predictions and uncertainty
 estimates for single top-quark production in hadronic collisions,
 Comput. Phys. Commun 191 (2015) 74, arXiv: 1406.4403 [hep-ph].

```
[43] N. Kidonakis,
          Two-loop soft anomalous dimensions for single top quark associated production with a W^- or H^-,
850
          Phys. Rev. D 82 (2010) 054018, arXiv: 1005.4451 [hep-ph].
851
   [44]
         J. Pumplin et al.,
852
         New Generation of Parton Distributions with Uncertainties from Global QCD Analysis,
853
          JHEP 07 (2002) 012, arXiv: 0201195 [hep-ph].
854
   [45] M. Cacciari, G. P. Salam, and G. Soyez, The Anti-k(t) jet clustering algorithm,
855
          JHEP 04 (2008) 063, arXiv: 0802.1189 [hep-ph].
856
         ATLAS Collaboration, Tagging and suppression of pileup jets with the ATLAS detector,
          ATLAS-CONF-2014-018, 2014, url: http://cds.cern.ch/record/1700870.
858
         ATLAS Collaboration, Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run,
859
          ATL-PHYS-PUB-2016-012, 2016, url: https://cds.cern.ch/record/2160731.
   [48] Electron and Photon Selection and Identification for Run2, Accessible on 2017-11-24,
861
          URL: https:
862
          //twiki.cern.ch/twiki/bin/view/AtlasProtected/EGammaIdentificationRun2.
         Official Isolation Working Points, Accessible on 2017-11-24, url: https://twiki.cern.ch/
864
          twiki/bin/viewauth/AtlasProtected/IsolationSelectionTool#Leptons.
865
         MuonSelectionTool, Accessible on 2017-11-24.
   [50]
866
          URL: https://twiki.cern.ch/twiki/bin/view/Atlas/MuonSelectionTool.
867
         ATLAS Collaboration, Reconstruction, Energy Calibration, and Identification of Hadronically
868
          Decaying Tau Leptons in the ATLAS Experiment for Run-2 of the LHC,
869
          ATL-PHYS-PUB-2015-045, 2015, url: https://cds.cern.ch/record/2064383.
870
        ATLAS Collaboration,
   [52]
871
          Jet energy measurement with the ATLAS detector in proton-proton collisions at \sqrt{s} = 7 TeV,
872
          Eur. Phys. J. C 73 (2013) 2304, arXiv: 1112.6426 [hep-ex].
873
         TauAnalysisTools, Accessible on 2017-11-24,
   [53]
874
          URL: https://svnweb.cern.ch/trac/atlasoff/browser/PhysicsAnalysis/TauID/
875
          TauAnalysisTools/tags/TauAnalysisTools-00-02-62/README.rst.
876
   [54] 2017 Tau Recommendations, Accessible on 2017-11-24, URL: https://twiki.cern.ch/
877
          twiki/bin/view/AtlasProtected/TauRecommendationsMoriond2017.
878
         Usage of Missing ET in analyses: rebuilding and systematics, Accessible on 2017-11-24,
   [55]
879
          URL: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/METUtilities.
880
         X. Chen and L. Xia,
   [56]
881
          Search for Flavor Changing Neutral Current in t \to Hc, H \to \tau\tau Decay at the LHC,
882
          Phys. Rev. D 93 (2016) 113010, arXiv: 1509.08149 [hep-ph].
883
```

```
James, F. and Roos, M., Minuit: A System for Function Minimization and Analysis of the

Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343,

URL: http://lcgapp.cern.ch/project/cls/work-packages/mathlibs/minuit.
```

- [58] ATLAS Collaboration,

 Measurement of the $H \to \tau^+ \tau^-$ cross-section in 13TeV Collisions with the ATLAS Detector,

 ATL-COM-PHYS-2017-446, 2017, URL: https://cds.cern.ch/record/2261605.
- ATLAS Collaboration, Search for the Associated Production of a Higgs Boson and a Top Quark

 Pair in multilepton final states in 80 fb⁻¹ pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector,

 ATL-COM-PHYS-2018-410, 2018, url: https://cds.cern.ch/record/2314122.
- 893 [60] J. Friedman, Stochastic gradient boosting, Comput. Stat. Data Anal. 38 (2002) 367.
- A. Hoecker et al., *TMVA Toolkit for Multivariate Data Analysis*, PoS A CAT **040** (2007), arXiv: **0703039** [physics].
- TRExFitter, Accessible on 2017-11-24,
 URL: https://gitlab.cern.ch/TRExStats/TRExFitter.
- ATLAS Collaboration, Electron efficiency measurements with the ATLAS detector using the 2015
 LHC proton-proton collision data, ATLAS-CONF-2016-024, 2016,
 URL: https://cds.cern.ch/record/2157687.
- 901 [64] ATLAS Collaboration, Jet Calibration and Systematic Uncertainties for Jets Reconstructed in the 902 ATLAS Detector at $\sqrt{s} = 13$ TeV, ATL-PHYS-PUB-2015-015, 2015, 903 URL: https://cds.cern.ch/record/2037613.
- ⁹⁰⁴ [65] ATLAS Collaboration, *Performance of missing transverse momentum reconstruction for the*⁹⁰⁵ *ATLAS detector in the first proton-proton collisions at* $\sqrt{s} = 13$ TeV, ATL-PHYS-PUB-2015-027,
 ⁹⁰⁶ 2015, URL: https://cds.cern.ch/record/2037904.
- 907 [66] ATLAS Collaboration, *Expected performance of the ATLAS b-tagging algorithms in Run-2*,
 908 ATL-PHYS-PUB-2015-022, 2015, URL: https://cds.cern.ch/record/2037697.
- 909 [67] ATLAS Collaboration,
 910 Calibration of the performance of b-tagging for c and light-flavour jets in the 2012 ATLAS data,
 911 ATLAS-CONF-2014-046, 2014, URL: https://cds.cern.ch/record/1741020.
- 912 [68] ATLAS Collaboration, *Calibration of b-tagging using dileptonic top pair events in a*913 *combinatorial likelihood approach with the ATLAS experiment*, ATLAS-CONF-2014-004, 2014,
 914 URL: https://cds.cern.ch/record/1664335.
- 915 [69] ATLAS Collaboration,
 916 Studies on top-quark Monte Carlo modelling with Sherpa and MG5_aMC@NLO,
 917 ATL-PHYS-PUB-2017-007, 2017, URL: https://cds.cern.ch/record/2261938.

- 918 [70] ATLAS Collaboration, Search for flavor-changing neutral current $t \to Hq$ (q=u,c) decays, with $H \to b\bar{b}$, in the lepton+jets final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, ATL-COM-PHYS-2017-346, 2017, URL: https://cds.cern.ch/record/2257631.
- J. M. Campbell and R. K. Ellis, An Update on vector boson pair production at hadron colliders,
 Phys. Rev. D 60 (1999) 113006, arXiv: 9905386 [hep-ph].
- N. Kidonakis, *Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel* single top quark production, Phys. Rev. D **83** (2011) 091503, arXiv: 1103.2792 [hep-ph].
- N. Kidonakis, *NNLL resummation for s-channel single top quark production*, Phys. Rev. D **81** (2010) 054028, arXiv: 1001.5034 [hep-ph].
- 927 [74] M. V. Garzelli et al., $t\bar{t}W^{\pm}$ and $t\bar{t}Z$ Hadroproduction at NLO accuracy in QCD with Parton 928 Shower and Hadronization effects, JHEP **1211** (2012) 056, arXiv: **1208.2665** [hep-ph].
- 929 [75] J. M. Campbell and R. K. Ellis, $t\bar{t}W^{\pm}$ production and decay at NLO, JHEP **1207** (2012) 052, arXiv: 1204.5678 [hep-ph].
- EHC Higgs Cross Section Working Group,
 Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, (2011),
 arXiv: 1101.0593 [hep-ph].
- G. Cowan, K. Cranmer, E. Gross and O. Vitells,
 Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554,
 arXiv: 1007.1727 [physics.data-an].

List of contributions

938

- Boyang Li: main analyser, signal generation; ntuple production; fake tau estimation; BDT analysis; systematics; fit; support note.
- Weiming Yao: main analyser, ttHML ntuple skimming and support; fake tau estimation; BDT analysis; cross check; support note.
- Xin Chen: Supervisor of Boyang Li