

Coding Theory for Storage and Networks Lab 3: Interleaved Reed–Solomon Codes

Solve the tasks in *IRS.sage*. Complete the lines with? markers in comment or the noted blocks.

Problem 1: Homogeneous IRS Code

Let C_1 denote an IRS code consisting of l=2 Reed–Solomon codes $\mathcal{RS}(15,8)$ over \mathbb{F}_{2^4} . Assume that the codewords of C_1 were transmitted over a bursty channel and we therefore choose a common error-locator polynomial for both Reed–Solomon (RS) codes in the decoding process.

- 1. Calculate the decoding radius $t_{max,1}$ of C_1 for collaborative IRS decoding.
- 2. In the file *IRS.sage*, 4 random information vectors **info_1**x are given, compute the corresponding codewords **c_1**x.
 - 2 error vectors occur and the resulting received words are given $\mathbf{y}_{-}\mathbf{1}\mathbf{x}$. Compute the corresponding syndromes $\mathbf{s}_{-}\mathbf{1}\mathbf{x}$.
- 3. Implement the function $irs_decoding()$ that returns the error positions given the syndromes.

Hint: construct and solve the linear system of equations for finding the error locator polynomial. Find the roots of the error locator polynomial to find the error locations.

Problem 2: Heterogeneous IRS Code

We extend C_1 to a heterogeneous IRS code C_2 of interleaving order $\ell = 3$ by adding an RS code over \mathbb{F}_{2^4} of length n = 15 and dimension $k_2 = 6$. We assume one common error-locator polynomial for all three RS codes.

- 1. What is the decoding radius $t_{max,2}$ of C_2 ?
- 2. Calculate the syndromes \mathbf{s}_{11} , \mathbf{s}_{12} , \mathbf{s}_{2} corresponding to the new error vector given in the file IRS.sage.
- 3. Use the function *irs_decoding()* to find the error locations.
- 4. Do we need the syndromes of all three RS codes for the decoding?

Problem 3: Virtual Interleaving (Power Decoding)

In order to decode the $\mathcal{RS}(15,2)$ code over \mathbb{F}_{2^4} beyond half the minimum distance, we extend it virtually to a heterogeneous IRS code.

- 1. Calculate the maximal decoding radii $t_{max}^{(i)}$ for virtual interleaving orders i = 2, ..., 6. Let $t_{max} = \max_{i=2,...,6} t_{max}^{(i)}$. Determine the minimum i_{max} such that t_{max} can be achieved.
- 2. Implement the power decoding algorithm in the function $Power_dec()$. This algorithm consists of the following steps:
 - Calculate the element-wise powers of the received word up to interleaving order i_{max} to obtain \mathbf{y}_i , for $i = 2, \dots, i_{max}$;
 - Calculate the dimensions k_i , $i = 2, ..., i_{max}$ of the virtual codes;
 - Calculate the corresponding syndromes \mathbf{s}_i , $i = 1, \dots, i_{max}$, where \mathbf{s}_1 denotes the syndrome of the original received word;
 - Calculate the error positions by solving a system of equations. Hint: use the function irs_decoding().

Problem 4: Decoding Failure

As discussed in the lecture, the virtual interleaving principle can results in a decoding failure.

1. Run power decoding over 1000 random error vectors of length 15 and weight t_{max} and calculate the failure probability of power decoding.

Compare the result with the estimation from the lecture.

Hint: adapt the function irs_decoding() to raise an error when the decoding fails; use try-except to catch the errors.