The Deep Mathematics Behind A.I. and Deep Learning

A mathematical generalisation and important theorems in contemporary A.I. and deep learning problems.

Sepehr Saryazdi

University of Sydney

February 25, 2023

Why learn the math behind Al?

Who am I?

Overview

- Motivation
- The Face-Space Problem Logical Boundaries Fuzzy Logic ROC/Confusion Matrix Adjustment
- 3 A General Mathematical Framework
- 4 Important Theorems Kolmogorov-Arnold Representation Theorem Universal Approximation Theorem Mercer's Theorem Representer Theorem Spin Hamiltonian-Loss Correspondence

The Face-Space Problem

Logical Boundaries

Fuzzy Logic

Fuzzy Logic

ROC/Confusion Matrix Adjustment

ROC/Confusion Matrix Adjustment

A.I. Model Representations

- Let P be a topological space, representing the model's parameters (i.e. $P = \mathbb{R}^n$).
- Let X, Y be topological spaces, and let C(X, Y) be the space of continuous functions from X to Y.
- Let a map that takes a parameter to A.I. models for $X \to Y$ be denoted by \mathcal{M} .

A.I. Model Representations

Every A.I. model may be viewed as a function \mathcal{M} that maps parameters to continuous functions from $X \to Y$.

$$\mathcal{M}: P \rightarrow C(X, Y)$$

200

A.I. Model Representations

A.I. Model Representations

Every A.I. model may be viewed as a function \mathcal{M} that maps parameters to continuous functions from $X \rightarrow Y$.

$$\mathcal{M}: P \rightarrow C(X, Y)$$

Example 1: $\mathbb{R} \to \mathbb{R}$ Linear Model

$$P = \mathbb{R}^2, (a, b) \in P, X = Y = \mathbb{R}$$

 $(\mathcal{M}(a, b))(x) := a + bx$

A.I. Model Representations: $\mathbb{R} \to \mathbb{R}$ Quadratic Model $(\mathcal{M}(a,b,c))(x) := a + bx + cx^2$

A.I. Model Representations: $\mathbb{R} \to \mathbb{R}^2 \to \mathbb{R}$ Neural Network Model

Example 3: $\mathbb{R} \to \mathbb{R}^2 \to \mathbb{R}$ Neural Network Model

$$P = \mathbb{R}^7, (a_1, a_1, b_1, b_2, b_3, c_1, c_2) \in P, X = Y = \mathbb{R}$$

$$(\mathcal{M}(a_1, a_1, b_1, b_2, b_3, c_1, c_2))(x)$$

$$:= (\mathsf{ReLU}((a_1 \ a_2)x + (b_1 \ b_2))) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + b_3$$

$$\mathsf{ReLU}(x_1, x_2) := (\mathsf{max}(x_1, 0) \ \mathsf{max}(x_2, 0))$$

A.I. Model Representations: $\mathbb{R} \to \mathbb{R}^2 \to \mathbb{R}$ Neural Network Model

Generalised Loss Functions

- Let P, X, Y be topological spaces and $\mathcal{M}: P \to C(X, Y)$ a function.
- Let $d: C(X,Y) \times C(X,Y) \to \mathbb{R}_{\geq 0}$ be a metric.
- Let L_f for some $f \in C(X, Y)$ be named a "loss function".

Generalised Loss Functions

Define the loss function $L_f: P \to \mathbb{R}_{>0}$ to satisfy

$$L_f(p) := d(f, \mathcal{M}(p))$$

Generalised Loss Functions

Example: $L^2(X, \mathbb{R}_{>0})$ Loss Function

$$L_f(p) = \int_X ||f(x) - (\mathcal{M}(p))(x)||^2 dx$$

Loss Surfaces: Optimal Parameter Search

• Let $(p_n)_{n\in\mathbb{N}}\subseteq P$ be a sequence of parameters.

Optimal Parameter Search

An optimal parameter search is an algorithm where for any $p_0 \in P$, it returns a sequence $(p_n)_{n \in \mathbb{N}} \subseteq P$ such that

$$L_f(p_n) \underset{n \to \infty}{\longrightarrow} \inf_{p \in P} L_f(p)$$

 Note: Such a sequence need not have a unique limit, as P and \mathcal{M} may over-cover the goal function f.

Loss Surfaces: Gradient Descent

Loss Surfaces: Gradient Descent

- Let $\gamma \in \mathbb{R}_{>0}$ be named the "learning rate".
- Let ∇L_f denote the gradient function of L_f .

Gradient Descent Optimal Parameter Search Algorithm

Assuming $p_0 \in P$ is given, construct the sequence $(p_n)_{n \in \mathbb{N}}$ with recursion given by

$$p_{n+1} = p_n - \gamma(\nabla L_f)(p)$$

Loss Functions: Finite Sampling of $f: X \to Y$

- In practice, we can only sample $N \in \mathbb{N}$ finitely many points $(x_i, y_i) \in X \times Y$ with $f(x_i) = y_i$.
- This collapses the L^2 loss function to a finite sum

Finite Sampling of $L^2(X, \mathbb{R}_{\geq 0})$ Loss Function (MSE)

$$L_f(p) \approx \frac{1}{N} \sum_{i=1}^{N} ||f(x_i) - (\mathcal{M}(p))(x_i)||^2$$

• As $N \to \infty$ and assuming the sampling is distributed uniformly over X, then this will approach the true L^2 loss function.

Kolmogorov-Arnold Representation Theorem

Kolmogorov-Arnold Representation Theorem

- This is a solution to the famous 13th Hilbert Problem.
- Colloquially, this theorem says that the "only true continuous multivariable function is the sum".

KA Representation Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ with $f(\mathbf{x}) := f(x_1, ..., x_n)$ be a continuous function. Then there exists univariate functions $\Phi_q: \mathbb{R} \to \mathbb{R}^m, \phi_{q,p}: \mathbb{R} \to \mathbb{R}$ such that:

$$f(\mathbf{x}) = \sum_{q=0}^{2n} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$$

Kolmogorov-Arnold Representation Theorem

Consequences of KA Representation Theorem

- From this theorem, feature engineering was born.
- This theorem allows us to transform each data column. independently before combining them with sums in an A.I. algorithm.

x_1	x_2	x_3		$0.5x_1 + 2x_2 - x_3$
10	99	85		118
67	13	8	_	51.5
82	48	89		48
				•
7	76	25		130.5

Universal Approximation Theorem

Universal Approximation Theorem

 This says that neural networks can be used to approximate any continuous function if X is closed and bounded.

Universal Approximation Theorem

If given $f: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and a valid non-polynomial function $\sigma: \mathbb{R} \to \mathbb{R}$, then $L_f(p) := ||f - \mathcal{M}(p)||_{\infty}$ can be made arbitrarily small where

$$(\mathcal{M}(p))(x) := C_p (\sigma \circ (A_p(x) + b))$$

$$p \in P := \mathbb{R}^{k(1+m+n)}, A_p \in \mathbb{R}^{k \times n}, C_p \in \mathbb{R}^{m \times k}, b \in \mathbb{R}^k$$

Universal Approximation Theorem

Universal Approximation Theorem

Universal Approximation Theorem

Universal Approximation Theorem: How It Works

- The choice of $\sigma: \mathbb{R} \to \mathbb{R}$ was really the crucial part of the entire theorem.
- This is because σ acts as a tool for approximating the 'ramp' function and this can then approximate any continuous function.

Mercer's Theorem

Mercer's Theorem

Representer Theorem

Representer Theorem

