POLYNÔMES ET ÉQUATIONS DU SECOND DEGRÉ

1. FONCTIONS POLYNÔMES

DÉFINITION

Une fonction P est une **fonction polynôme** si elle est définie sur $\mathbb R$ et si on peut l'écrire sous la forme :

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

REMARQUES

- par abus de langage, on dit souvent polynôme au lieu de fonction polynôme.
- les nombres a_i s'appellent les **coefficients** du polynôme.

DÉFINITION (DEGRÉ D'UN POLYNÔME)

Si $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ (où le coefficient a_n est non nul), on dit que P est une fonction polynôme de **degré** n.

CAS PARTICULIERS

- la fonction nulle n'a pas de degré.
- une fonction constante non nulle définie par f(x) = a avec $a \ne 0$ est une fonction polynôme de degré 0.
- une fonction affine f(x) = ax + b avec $a \ne 0$ est une fonction polynôme de degré 1.

PROPRIÉTÉ

Le produit d'un polynôme de degré n par un polynôme de degré m est un polynôme de degré m+n.

REMARQUE

Il n'existe pas de formule donnant le degré d'une somme de polynôme. On peut tout au plus dire que le degré de P + Q est inférieur ou égal à la fois au degré de P et au degré de Q.

PROPRIÉTÉ

Deux polynômes sont égaux si et seulement si les coefficients des termes de même degré sont égaux.

CAS PARTICULIER

P est le polynôme nul si et seulement si tous ses coefficients sont nuls.

DÉFINITION

On dit que $a \in \mathbb{R}$ est une racine du polynôme P si et seulement si P(a) = 0.

EXEMPLE

1 est racine du polynôme $P(x) = x^3 - 2x + 1$ car P(1) = 0

THÉORÈME

Si P est un polynôme de degré $n \ge 1$ et si a est une racine de P alors P(x) peut s'écrire sous la forme :

$$P(x) = (x - a) Q(x)$$

où Q est un polynôme de degré n-1.

2. FONCTIONS POLYNÔMES DU SECOND DEGRÉ

DÉFINITION

On appelle polynôme (ou trinôme) du second degré toute expression pouvant se mettre sous la forme :

$$P(x) = ax^2 + bx + c$$

où a, b et c sont des réels avec $a \neq 0$.

EXEMPLES

- $P(x) = 2x^2 + 3x 5$ est un polynôme du second degré.
- $P(x) = x^2 1$ est un polynôme du second degré avec b = 0 mais Q(x) = x 1 n'en est pas un car a n'est pas différent de zéro (c'est un polynôme du premier degré ou une fonction affine).
- P(x) = 5(x-1)(3-2x) est un polynôme du second degré car en développant on obtient une expression du type souhaité.

THÉORÈME ET DÉFINITION

Tout polynôme du second degré $P(x) = ax^2 + bx + c$ peut s'écrire sous la forme :

$$P(x) = a(x - \alpha)^2 + \beta$$

avec
$$\alpha = -\frac{b}{2a}$$
 et $\beta = P(\alpha)$.

Cette expression s'appelle **forme canonique** du polynôme *P*.

DÉFINITION

Le nombre $\Delta = b^2 - 4ac$ s'appelle le **discriminant** du trinôme $ax^2 + bx + c$.

PROPRIÉTÉ (RACINES D'UN POLYNÔME DU SECOND DEGRÉ)

L'équation $ax^2 + bx + c = 0$:

- n'a aucune solution réelle si $\Delta < 0$;
 - a une solution unique $x_0 = \alpha = -\frac{b}{2a}$ si $\Delta = 0$;
 - a deux solutions $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b \sqrt{\Delta}}{2a}$ si $\Delta > 0$.

EXEMPLES

•
$$P_1(x) = -x^2 + 3x - 2$$
:

$$\Delta = 9 - 4 \times (-1) \times (-2) = 1.$$

$$P_1$$
 possède 2 racines :
 $x_1 = \frac{-3-1}{-2} = 2$ et $x_2 = \frac{-3+1}{-2} = 1$

•
$$P_2(x) = x^2 - 4x + 4$$
:

$$\Delta = 16 - 4 \times 1 \times 4 = 0.$$

 P_2 possède une seule racine :

$$x_0 = -\frac{-4}{2} = 2.$$

•
$$P_3(x) = x^2 + x + 1$$
:

$$\Delta = 1 - 4 \times 1 \times 1 = -3.$$

 P_3 ne possède aucune racine.

PROPRIÉTÉ (SOMME ET PRODUIT DES RACINES)

Soit un polynôme $P(x) = ax^2 + bx + c$ dont le discriminant est strictement positif.

- La somme des racines vaut $x_1 + x_2 = -\frac{b}{a}$.
- Le produit des racines vaut $x_1x_2 = \frac{c}{a}$.

REMARQUE

Ces propriétés sont souvent utilisées pour résoudre rapidement une équation qui possède une racine "évidente".

Par exemple l'équation $x^2 - 4x + 3 = 0$ admet $x_1 = 1$ comme racine puisque $1^2 - 4 \times 1 + 3 = 0$; comme $x_1 \times x_2 = \frac{c}{a} = 3$ l'autre racine est $x_2 = 3$.

PROPRIÉTÉ (SIGNE D'UN POLYNÔME DU SECOND DEGRÉ)

Le polynôme $P(x) = ax^2 + bx + c$:

- est toujours du signe de a si $\Delta < 0$;
- est toujours du signe de *a* mais s'annule en $x_0 = \alpha = -\frac{b}{2a}$ si $\Delta = 0$;
- est du signe de a « à l'extérieur des racines » (c'est à dire sur $]-\infty$; $x_1[\cup]x_2;+\infty[)$ et du signe opposé « entre les racines » (sur $]x_1;x_2[)$.

REMARQUE

Suivant chacun des cas on peut représenter le tableau de signe de P de la façon suivante :

• Si $\Delta > 0$: P(x) est du signe de a à l'extérieur des racines (c'est à dire si $x < x_1$ ou $x > x_2$) et du signe opposé entre les racines (si $x_1 < x < x_2$).

x	$-\infty$		x_1		<i>x</i> ₂		+∞
P(x)		signe de <i>a</i>	0	signe de $-a$	0	signe de <i>a</i>	

• **Si** $\Delta = 0$: P(x) est toujours du signe de a sauf en x_0 (où il s'annule).

x	-∞		x_0		+∞
P(x)		signe de <i>a</i>	0	signe de <i>a</i>	

• Si $\Delta < 0$: P(x) est toujours du signe de a.

x	$-\infty$	+∞
P(x)	się	gne de <i>a</i>

EXEMPLES

Si l'on reprend les exemples précédents :

•
$$P_1(x) = -x^2 + 3x - 2$$
:
 $\Delta > 0$ et $a < 0$.

x	-∞		1		2		+∞
P(x)		_	0	+	0	_	

•
$$P_2(x) = x^2 - 4x + 4$$
:
 $\Delta = 0$ et $a > 0$.

x	-∞		2		+∞
P(x)		+	0	+	

•
$$P_3(x) = x^2 + x + 1$$
:
 $\Delta < 0$ et $a > 0$.

x	-∞		+∞
P(x)		+	

On rappelle que les solutions de l'équation f(x) = 0 sont les abscisses des **points d'intersection de la courbe** C_f et de l'axe des abscisses.

En regroupant les propriétés de ce chapitre et celles vues en Seconde on peut résumer ces résultats dans le tableau :

