### Recap: tagging

- POS tagging is a sequence labelling task.
- We can tackle it with a model (HMM) that uses two sources of information:
  - The word itself
  - The tags assigned to surrounding words
- The second source of information means we can't just tag each word independently.

# **Local Tagging**

Words:

Possible tags: (ordered by frequency for each word)

| <b><s></s></b> | one | dog | bit |  |
|----------------|-----|-----|-----|--|
| <b>&lt;</b> S> | CD  | NN  | NN  |  |
|                | NN  | VB  | VBD |  |
|                | PRP |     |     |  |

- Choosing the best tag for each word independently, i.e. not considering tag context, gives the wrong answer (<s> CD NN NN </s>).
- Though NN is more frequent for 'bit', tagging it as VBD may yield a better sequence (<s> CD NN VB </s>)
  - because P(VBD|NN) and P(</s>|VBD) are high.

### Recap: HMM

- Elements of HMM:
  - Set of states (tags)
  - Output alphabet (word types)
  - Start state (beginning of sentence)
  - State transition probabilities  $P(t_i \mid t_{i-1})$
  - Output probabilities from each state  $P(w_i \mid t_i)$

### Recap: HMM

• Given a sentence  $W=w_1...w_n$  with tags  $T=t_1...t_n$ , compute P(W,T) as:

$$P(\mathbf{W}, \mathbf{T}) = \prod_{i=1}^{n} P(w_i|t_i)P(t_i|t_{i-1})$$

- But we want to find  $\underset{\mathsf{T}}{\operatorname{argmax}} P(\mathbf{T}|\mathbf{W})$  without enumerating all possible tag sequences  $\mathbf{T}$ 
  - Use a greedy approximation, or
  - Use Viterbi algorithm to store partial computations.

# **Greedy Tagging**

#### Words:

Possible tags: (ordered by frequency for each word)

| <s></s>         | one | dog | bit |  |
|-----------------|-----|-----|-----|--|
| <b>&lt;</b> \$> | CD  | NN  | NN  |  |
|                 | NN  | VB  | VBD |  |
|                 | PRP |     |     |  |

- For i = 1 to N: choose the tag that maximizes
  - transition probability  $P(t_i|t_{i-1}) \times$
  - emission probability  $P(w_i|t_i)$
- This uses tag context but is still suboptimal. Why?
  - It commits to a tag before seeing subsequent tags.
  - It could be the case that ALL possible next tags have low transition probabilities. E.g., if a tag is unlikely to occur at the end of the sentence, that is disregarded when going left to right.

# Greedy vs. Dynamic Programming

- The greedy algorithm is fast: we just have to make one decision per token, and we're done.
  - Runtime complexity?
  - -O(TN) with T tags, length-N sentence
- But subsequent words have no effect on each decision, so the result is likely to be suboptimal.
- Dynamic programming search gives an optimal global solution, but requires some bookkeeping (= more computation). Postpones decision about any tag until we can be sure it's optimal.

### Viterbi Tagging: intuition

Words:

Possible tags: (ordered by frequency for each word)

| <s></s>         | one | dog | bit |  |
|-----------------|-----|-----|-----|--|
| <b>&lt;</b> \$> | CD  | NN  | NN  |  |
|                 | NN  | VB  | VBD |  |
|                 | PRP |     |     |  |

- Suppose we have already computed
  - a) The best tag sequence for  $\leq s \geq ...$  bit that ends in NN.
  - b) The best tag sequence for  $\leq s \geq \dots$  bit that ends in VBD.
- Then, the best full sequence would be either
  - sequence (a) extended to include </s>, or
  - sequence (b) extended to include </s>.

### Viterbi Tagging: intuition

#### Words:

Possible tags: (ordered by frequency for each word)

| <s></s>        | one | dog | bit |  |
|----------------|-----|-----|-----|--|
| <b>&lt;</b> S> | CD  | NN  | NN  |  |
|                | NN  | VB  | VBD |  |
|                | PRP |     |     |  |

- But similarly, to get
  - a) The best tag sequence for <s> ... bit that ends in NN.
- We could extend one of:
  - The best tag sequence for <s> ... dog that ends in NN.
  - The best tag sequence for ≤s> ... dog that ends in VB.
- And so on...

### Viterbi: high-level picture

- Intuition: the best path of length i ending in state t must include the best path of length i-1 to the previous state. So,
  - Find the best path of length i-1 to each state.
  - Consider extending each of those by 1 step, to state t.
  - Take the best of those options as the best path to state t.

### Viterbi: high-level picture

- Want to find  $\operatorname{argmax}_{\mathbf{T}} P(\mathbf{T}|\mathbf{W})$
- Intuition: the best path of length i ending in state t must include the best path of length i-1 to the previous state. So,
  - Find the best path of length i-1 to each state.
  - Consider extending each of those by 1 step, to state t.
  - Take the best of those options as the best path to state t.

# Viterbi algorithm

- Use a chart to store partial results as we go
  - T × N table, where v(t, i) is the probability\* of the best state sequence for  $w_1...w_i$  that ends in state t.

<sup>\*</sup>Specifically, v(t,i) stores the max of the joint probability  $P(w_1...w_i,t_1...t_{i-1},t_i=t\,|\,\lambda)$ 

# Viterbi algorithm

- Use a chart to store partial results as we go
  - T × N table, where v(t, i) is the probability\* of the best state sequence for  $w_1...w_i$  that ends in state t.
- Fill in columns from left to right, with

$$v(t,i) = \max_{t'} v(t',i-1) \cdot P(t|t') \cdot P(w_i|t_i)$$

- The max is over each possible previous tag t'
- Store a **backtrace** to show, for each cell, which state at i-1 we came from.

<sup>\*</sup>Specifically, v(t,i) stores the max of the joint probability  $P(w_1...w_i,t_1...t_{i-1},t_i=t \mid \lambda)$ 

### Transition and Output Probabilities

Transition matrix:  $P(t_i | t_{i-1})$ :

|         | Noun | Verb | Det | Prep | Adv |     |
|---------|------|------|-----|------|-----|-----|
| <s></s> | .3   | .1   | .3  | .2   | .1  | 0   |
| Noun    | .2   | .4   | .01 | .3   | .04 | .05 |
| Verb    | .3   | .05  | .3  | .2   | .1  | .05 |
| Det     | .9   | .01  | .01 | .01  | .07 | 0   |
| Prep    | .4   | .05  | .4  | .1   | .05 | 0   |
| Adv     | .1   | .5   | .1  | .1   | .1  | .1  |

#### Emission matrix: $P(w_i | t_i)$ :

|      | a  | cat | doctor | in  | is  | the | very |
|------|----|-----|--------|-----|-----|-----|------|
| Noun | 0  | .5  | .4     | 0   | 0.1 | 0   | 0    |
| Verb | 0  | 0   | .1     | 0   | .9  | 0   | 0    |
| Det  | .3 | 0   | 0      | 0   | 0   | .7  | 0    |
| Prep | 0  | 0   | 0      | 1.0 | 0   | 0   | 0    |
| Adv  | 0  | 0   | 0      | .1  | 0   | 0   | .9   |

## Example

Suppose W=the doctor is in. Our initially empty table:

| V    | $w_1$ =the | w <sub>2</sub> =doctor | $w_3=is$ | w <sub>4</sub> =in |  |
|------|------------|------------------------|----------|--------------------|--|
| Noun |            |                        |          |                    |  |
| Verb |            |                        |          |                    |  |
| Det  |            |                        |          |                    |  |
| Prep |            |                        |          |                    |  |
| Adv  |            |                        |          |                    |  |

# Filling in the first column

Suppose W=the doctor is in. Our initially empty table:

| <b>V</b> | $w_1$ =the | w <sub>2</sub> =doctor | $w_3=is$ | w <sub>4</sub> =in |  |
|----------|------------|------------------------|----------|--------------------|--|
| Noun     | 0          |                        |          |                    |  |
| Verb     | 0          |                        |          |                    |  |
| Det      | .21        |                        |          |                    |  |
| Prep     | 0          |                        |          |                    |  |
| Adv      | 0          |                        |          |                    |  |

$$v(\text{Noun, the}) = P(\text{Noun}|<\text{s}>)P(\text{the}|\text{Noun})=.3(0)$$
  
$$v(\text{Det, the}) = P(\text{Det}|<\tilde{\text{s}}>)P(\text{the}|\text{Det})=.3(.7)$$

```
v(\text{Noun, doctor})
= \max_{t'} v(t', \text{the}) \cdot P(\text{Noun}|t') \cdot P(\text{doctor}|\text{Noun})
```

| <b>V</b> | $w_1$ =the | w <sub>2</sub> =doctor | $w_3=is$ | w <sub>4</sub> =in |  |
|----------|------------|------------------------|----------|--------------------|--|
| Noun     | 0          | ?                      |          |                    |  |
| Verb     | 0          |                        |          |                    |  |
| Det      | .21        |                        |          |                    |  |
| Prep     | 0          |                        |          |                    |  |
| Adv      | 0          |                        |          |                    |  |

P(Noun|Det) P(doctor|Noun)=.3(.4)

```
v(Noun, doctor)
        = \max_{t'} v(t', \text{the}) \cdot P(\text{Noun}|t') \cdot P(\text{doctor}|\text{Noun})
        = \max \{ 0, 0, .21(.36), 0, 0 \} = .0756
           w_1=the |w_2=doctor |w_3=is |w_4=in |</s>
                            .0756
 Noun
                0
 Verb
               .21
 Det
 Prep
 Adv
```

P(Noun|Det) P(doctor|Noun) = .9(.4)

```
v(\text{Verb, doctor})
= \max_{t'} v(t', \text{the}) \cdot P(\text{Verb}|t') \cdot P(\text{doctor}|\text{Verb})
= \max \{ 0, 0, .21(.001), 0, 0 \} = .00021
```

| V    | $w_1$ =the | w <sub>2</sub> =doctor | $w_3 = is$ | w <sub>4</sub> =in |  |
|------|------------|------------------------|------------|--------------------|--|
| Noun | 0          | .0756                  |            |                    |  |
| Verb | 0          | .00021                 |            |                    |  |
| Det  | .21        |                        |            |                    |  |
| Prep | 0          |                        |            |                    |  |
| Adv  | 0          |                        |            |                    |  |

P(Verb|Det) P(doctor|Verb) = .01(.1)

```
v(\text{Verb, doctor})
= \max_{t'} v(t', \text{the}) \cdot P(\text{Verb}|t') \cdot P(\text{doctor}|\text{Verb})
= \max \{ 0, 0, .21(.001), 0, 0 \} = .00021
```

| V    | $w_1$ =the | w <sub>2</sub> =doctor | $w_3 = is$ | w <sub>4</sub> =in |  |
|------|------------|------------------------|------------|--------------------|--|
| Noun | 0          | .0756                  |            |                    |  |
| Verb | 0          | .00021                 |            |                    |  |
| Det  | .21        | 0                      |            |                    |  |
| Prep | 0          | 0                      |            |                    |  |
| Adv  | 0          | 0                      |            |                    |  |

P(Verb|Det) P(doctor|Verb) = .01(.1)

#### The third column

```
v(\text{Noun, is})
= \max_{t'} v(t', \text{doctor}) \cdot P(\text{Noun}|t') \cdot P(\text{is}|\text{Noun})
= \max \{ .0756(.02), .00021(.03), 0, 0, 0 \} = .001512
```

| V    | $w_1$ =the | w <sub>2</sub> =doctor | $w_3=is$ | w <sub>4</sub> =in |  |
|------|------------|------------------------|----------|--------------------|--|
| Noun | 0          | .0756 ←                | 001512   |                    |  |
| Verb | 0          | .00021                 |          |                    |  |
| Det  | .21        | 0                      |          |                    |  |
| Prep | 0          | 0                      |          |                    |  |
| Adv  | 0          | 0                      |          |                    |  |

$$P(\text{Noun}|\text{Noun}) P(\text{is}|\text{Noun})=.2(.1)=.02$$
  
 $P(\text{Noun}|\text{Verb}) P(\text{is}|\text{Noun})=.3(.1)=.03$ 

#### The third column

```
v(\text{Verb, is})
= \max_{t'} v(t', \text{doctor}) \cdot P(\text{Verb}|t') \cdot P(\text{is}|\text{Verb})
= \max \{ .0756(.36), .00021(.045), 0, 0, 0 \} = .027216
v = \text{the} \left[ w_t = \text{doctor} \right] w_t = \text{is} \left[ w_t = \text{in} \right] < /\text{s} > 0
```

| V    | $w_1$ =the | w <sub>2</sub> =doctor | $w_3 = is$ | w <sub>4</sub> =in |  |
|------|------------|------------------------|------------|--------------------|--|
| Noun | 0          | .0756                  | 001512     |                    |  |
| Verb | 0          | .00021                 | .027216    |                    |  |
| Det  | .21        | 0                      | 0          |                    |  |
| Prep | 0          | 0                      | 0          |                    |  |
| Adv  | 0          | 0                      | 0          |                    |  |

$$P(\text{Verb}|\text{Noun}) P(\text{is}|\text{Verb}) = .4(.9) = .36$$
  
 $P(\text{Verb}|\text{Verb}) P(\text{is}|\text{Verb}) = .05(.9) = .045$ 

#### The fourth column

```
v(Prep, in)
       = \max_{t'} v(t', is) \cdot P(\text{Prep}|t') \cdot P(in|\text{Prep})
       = \max \{.001512(.3), .027216(.2), 0, 0, 0\} = .005443
           w_1=the w_2=doctor w_3=is w_4=in
                                 .001512
                          .0756
 Noun
                          .00021
               0
                                     .027216
 Verb
              .21
                                         0
 Det
```

.005443

0

$$P(\text{Prep}|\text{Noun}) P(\text{in}|\text{Prep})=.3(1.0)$$
  
 $P(\text{Prep}|\text{Verb}) P(\text{in}|\text{Prep})=.2(1.0)$ 

Prep

Adv

#### The fourth column

```
v(Prep, in)
        = \max_{t'} v(t', is) \cdot P(\text{Prep}|t') \cdot P(in|\text{Prep})
       = \max \{.000504(.004), .027216(.01), 0, 0, 0\} = .000273
           w_1=the w_2=doctor w_3=is w_4=in
                                   .001512
                           .0756
 Noun
                           .00021
                                       .027216
               0
                                                     0
 Verb
               .21
                                          0
 Det
                                                  .005443
                              \mathbf{0}
                                          0
               0
 Prep
```

.000272

$$P(Adv|Noun) P(in|Adv)=.04(.1)$$
  
 $P(Adv|Verb) P(in|Adv)=.1(.1)$ 

Adv

### End of sentence

```
v(</s>)
= \max_{t'} v(t', \text{in}) \cdot P(</s>|t')
= \max\{0, 0, 0, .005443(0), .000272(.1)\} = .0000272
```

| V    | $w_1$ =the | w <sub>2</sub> =doctor | $w_3=is$ | $w_4=in$ |         |
|------|------------|------------------------|----------|----------|---------|
| Noun | 0          | .0756                  | 001512   | 0        |         |
| Verb | 0          | .00021                 | .027216  | 0        |         |
| Det  | .21        | 0                      | 0        | 0        | .000027 |
| Prep | 0          | 0                      | 0        | .005443  |         |
| Adv  | 0          | 0                      | 0        | .000272  |         |

$$P(|Prep)=0$$
  
 $P(|Adv)=.1$ 

# Completed Viterbi Chart

| V    | $w_1$ =the | w <sub>2</sub> =doctor | $w_3=is$ | w <sub>4</sub> =in |         |
|------|------------|------------------------|----------|--------------------|---------|
| Noun | 0          | .0756                  | 001512   | 0                  |         |
| Verb | 0          | .00021                 | .027216  | 0                  |         |
| Det  | .21        | 0                      | 0        | 0                  | .000027 |
| Prep | 0          | 0                      | 0        | .005443            |         |
| Adv  | 0          | 0                      | 0        | .000272            |         |

| V    | $w_1$ =the | w <sub>2</sub> =doctor | $w_3=is$ | w <sub>4</sub> =in |         |
|------|------------|------------------------|----------|--------------------|---------|
| Noun | 0          | .0756                  | 001512   | 0                  |         |
| Verb | 0          | .00021                 | .027216  | 0                  |         |
| Det  | .21        | 0                      | 0        | 0                  | .000027 |
| Prep | 0          | 0                      | 0        | .005443            |         |
| Adv  | 0          | 0                      | 0        | .000272            |         |

| V    | $w_1$ =the | w <sub>2</sub> =doctor | $w_3=is$ | w <sub>4</sub> =in |         |
|------|------------|------------------------|----------|--------------------|---------|
| Noun | 0          | .0756                  | 001512   | 0                  |         |
| Verb | 0          | .00021                 | .027216  | 0                  |         |
| Det  | .21        | 0                      | 0        | 0                  | .000027 |
| Prep | 0          | 0                      | 0        | .005443            |         |
| Adv  | 0          | 0                      | 0        | .000272            |         |

| V    | $w_1$ =the | w <sub>2</sub> =doctor | $w_3=is$ | w <sub>4</sub> =in |         |
|------|------------|------------------------|----------|--------------------|---------|
| Noun | 0          | .0756                  | 001512   | 0                  |         |
| Verb | 0          | .00021                 | .027216  | 0                  |         |
| Det  | .21        | 0                      | 0        | 0                  | .000027 |
| Prep | 0          | 0                      | 0        | .005443            |         |
| Adv  | 0          | 0                      | 0        | .000272            |         |

| V    | $w_1$ =the | w <sub>2</sub> =doctor | $w_3=is$ | w <sub>4</sub> =in |         |
|------|------------|------------------------|----------|--------------------|---------|
| Noun | 0          | .0756                  | 001512   | 0                  |         |
| Verb | 0          | .00021                 | .027216  | 0                  |         |
| Det  | .21        | 0                      | 0        | 0                  | .000027 |
| Prep | 0          | 0                      | 0        | .005443            |         |
| Adv  | 0          | 0                      | 0        | .000272            |         |
|      | Det        | Noun                   | Verb     | Prep               |         |

# Implementation and efficiency

- For sequence length N with T possible tags,
  - Enumeration takes  $O(T^N)$  time and O(N) space.
  - Bigram Viterbi takes  $O(T^2N)$  time and O(TN) space.
  - Viterbi is exhaustive: further speedups might be had using methods that prune the search space.
- As with N-gram models, chart probs get really tiny really fast, causing underflow.
  - So, we use costs (neg log probs) instead.
  - Take minimum over sum of costs, instead of maximum over product of probs.

### Higher-order Viterbi

- For a tag **trigram** model with T possible tags, we effectively need  $T^2$  states
  - n-gram Viterbi requires  $T^{n-1}$  states, takes  $O(T^nN)$  time and  $O(T^{n-1}N)$  space.

