Transport layer: Reliable Transmission

ECE 50863 – Computer Network Systems

Transport Layer

Application
Layer

Transport
Layer

TCP, UDP

Network
Layer

IP

(Data) Link
Layer

802.3, 802.11

Reliable Transmission

- Use two basic techniques:
 - Acknowledgements (ACKs)
 - Timeouts
- Two examples:
 - Stop-and-go
 - Sliding window

Stop-and-Go

- Receiver: send an acknowledge (ACK) back to the sender upon receiving a packet (frame)
- Sender: excepting first packet, send a packet only upon receiving the ACK for the previous packet

What Can Go Wrong?

Stop-and-Go Disadvantage

- May lead to inefficient link utilization
- Example: assume
 - One-way propagation = 15 ms
 - Bandwidth = 100 Mbps
 - Packet size = 1000 bytes → transmit = $(8*1000)/10^8 = 0.08$ ms
 - Neglect queue delay → Latency = approx. 15 ms; RTT = 30 ms

Stop-and-Go Disadvantage (cont'd)

- Send a message every 30 ms → Throughput = (8*1000)/0.03 = 0.2666 Mbps
- Thus, the protocol uses less than 0.3% of the link capacity!

Sliding Window Approach

Sliding window protocol

Send multiple packets without waiting for ACK.

Sliding window size: Max number of packets that can be sent without ACK being received (3 in figure)

Sequence Numbers in TCP

- Each byte in byte stream is numbered.
 - 32 bit value
- TCP breaks up the byte stream in segments
- Each segment has a sequence number.
 - Indicates where it fits in the byte stream

Sliding Window Protocol: Sender

- TCP: operates at a byte stream level (rather than packet level)
- Sender maintains a window of sequence numbers
 - SWS (sender window size) maximum data that can be sent without receiving an ACK
 - LBA (last byte acknowledged)
 - LBS (last byte sent)
- TCP sender side socket buffer:
 - Data sent but not acknowledged
 - Data written by application but not sent yet

Sliding Window Protocol: Receiver

- TCP maintains a receive socket buffer
 - Stores data that arrived out-of-order (cannot be given to application yet)
 - Also stores data that arrived in-order but not yet read by application (slow process)
- Receiver maintains a window of sequence numbers
 - NBE (next byte expected all previous bytes received in sequence
 - LBR (last byte read by application)
 - LBG (last byte got by receiver)

Sliding Window Protocol: Receiver

- If incoming byte < NBE
 - Discard packet
- Else
 - Accept packet (provided it fits in the buffer)
 - ACK largest byte that all previous bytes were received
 - Cumulative ACK scheme

Cumulative vs. Selective ACK

- Imagine receiver already got and ACK'd packets 1,2 and 3. (Packets for simplicity).
- Next receiver gets packet 6.
- Cumulative ACK scheme:
 - ACK packet 3 again (or say 4 is expected)
 - Approach taken by basic versions of TCP.
- Selective ACK
 - In addition to ACKing packet 3, also ACKs packet 6
 - This is an extra option added to TCP header (would increase header size).
 - Upto 3 out-of-order segments can be acknowledged in addition to cumulative ACK.

TCP Header

