Matematyka dyskretna L, Lista 9 - Tomasz Woszczyński

Zadanie 1

Przedstaw algorytm, służący do sprawdzania, czy dany graf jest dwudzielny, korzystający z przeglądania grafu metodą w głąb (DFS). Złożoność Twojego algorytmu powinna być O(m+n).

Aby dowiedzieć się, czy graf jest dwudzielny, możemy wykorzystać kolorowanie wierzchołków. Jeżeli graf da się pokolorować na dwa kolory, to graf jest dwudzielny.

```
visited = [False, ..., False] # length n
         = [False, ..., False] # length n; assume False is red
2
3
                                  # and True is green
4
  # execute DFS with colouring from any vertex v, but make sure
  # that visited[v] is True and color[v] is False (red)
  def is_bipartite(G, v, visited, color):
       for u in neighbours[v]:
8
           # if vertex u has not been visited, mark it as
9
           # visited, color it according to v's color, then
10
           # execute DFS from vertex u to go deeper and deeper
11
           # until we check all neighbours of u
12
           if not visited[u]:
13
               visited[u] = True
14
               color[u] = not color[v]
15
16
17
               # run DFS on currently visited vertex
               if not DFS(G, u, visited, color)
18
                   return False
19
20
           # if vertex u has been visited and v's and its
21
           # colors are the same, then G is not bipartite
22
           elif color[v] == color[u]:
23
               return False
24
25
26
       return True
```

Jako że korzystamy z lekko zmodyfikowanego DFS i przechodzimy wszystkie wierzchołki i krawędzie, to złożoność tego algorytmu to O(m+n), gdzie n to liczba wierzchołków, a m to liczba krawędzi. W zależności od gęstości krawędzi w grafie G, wartość O(m) może być pomiedzy O(1) i $O(n^2)$.

Niech t_i oznacza liczbę wierzchołków stopnia i w drzewie. Wyprowadź dokładny wzór na t_1 , liczbę liści w dowolnym drzewie. Dlaczego ta liczba niezależy od t_2 ?

Wiemy, że liczbę krawędzi dla *n*-wierzchołkowego drzewa można policzyć na kilka sposobów, nas szczególnie interesują dwa poniższe:

1. z lematu o uściskach dłoni:

$$2|E| = \sum_{i=1}^{n} \deg(v_i) = \sum_{i=1}^{n} (i \cdot t_i) \Longrightarrow |E| = \frac{1}{2} \sum_{i=1}^{n} (i \cdot t_i)$$

2. sumując stopnie wierzchołków i odejmując 1 (bo jest n-1 krawędzi):

$$n-1 = |E| = \sum_{i=1}^{n} t_i - 1$$

Przyrównajmy więc te wzory do siebie:

$$\frac{1}{2} \sum_{i=1}^{n} i \cdot t_i = \sum_{i=1}^{n} t_i - 1$$

$$\frac{1}{2} \sum_{i=1}^{n} (i \cdot t_i) - \sum_{i=1}^{n} t_i + 1 = 0$$

$$\sum_{i=1}^{n} (i \cdot t_i) - \sum_{i=1}^{n} 2t_i + 2 = 0$$

$$\sum_{i=1}^{n} (i - 2)t_i + 2 = 0$$

$$-t_1 + 0 + \sum_{i=3}^{n} (i - 2)t_i + 2 = 0$$

$$t_1 = \sum_{i=3}^{n} (i - 2)t_i + 2$$

Jak widać, liczba liści nie zależy od tego ile jest wierzchołków o stopniu 2 w drzewie. Spowodowane jest to tym, że dodanie takiego wierzchołka "przedłuży" tylko daną część drzewa, ale nie powstaną żadne nowe liście.

Na powyższym rysunku wierzchołki u, x mają stopień 1, a v, w są stopnia 2. Dodajemy nowy wierzchołek y taki, że z krawędzi $\{u, v\}$ powstają dwie nowe: $\{u, y\}$ oraz $\{y, w\}$. Jak widzimy, zmieniła się ilość krawędzi w grafach G_1 oraz G_2 , jednak liczba liści t_1 pozostała taka, jak na samym początku.

Pokaż, że graf G jest drzewem wtedy i tylko wtedy gdy dla dowolnej pary wierzchołków $u, v \in G$ w G istnieje dokładnie jedna ścieżka je łącząca.

Mamy udowodnić poniższą tożsamość:

G jest drzewem \iff jest tylko jedna ścieżka pomiędzy $u, v \le G$

Załóżmy, że G jest spójny, bo gdyby nie był, to G nie byłoby drzewem. Aby udowodnić twierdzenie z zadania. Przeprowadźmy więc dowód implikacji w obie strony:

- \implies : Z definicji wiemy, że aby G było drzewem, to w grafie G nie może istnieć żaden cykl, a więc więcej niż jedna ścieżka pomiędzy wierzchołkami u, v. \checkmark
- \Leftarrow : Weźmy dowolny graf G, w którym jest tylko jedna ścieżka między wierzchołkami u,v. Dołożenie jakiejkolwiek krawędzi do tego grafu (bez dodawania nowych wierzchołków) sprawiłoby, że w grafie G powstałby jakiś cykl, co byłoby sprzeczne z definicją drzewa, która mówi o tym, że w drzewie dla n wierzchołków jest dokładnie n-1 krawędzi, przez co G nie byłoby już drzewem.

Weźmy drzewo T o wierzchołkach u,v i dołóżmy do niego dwa kolejne wierzchołki x,y, a następnie utwórzmy krawędzie $\{u,x\}$ i $\{v,y\}$. Po takich operacjach drzewo T będzie wyglądać następująco:

Jak widzimy, dla n wierzchołków mamy n-1 krawędzi. Dołóżmy teraz do drzewa T dowolną krawędź, może być to np. $\{x,y\}$ (lecz dla innych krawędzi utworzonych na tym drzewie też bedzie to widoczne). Nowy graf wyglada tak:

Jak widać, dodana krawędź tworzy w drzewie cykl, a więc drzewo T przestaje być drzewem.

Udowodniliśmy więc, że graf G jest drzewem wtedy i tylko wtedy, gdy między dowolnymi wierzchołkami istnieje tylko jedna ścieżka.

Niech $d=(d_1,d_2,\ldots,d_n)$ będzie ciągiem liczb naturalnych większych od zera. Wykaż, że d jest ciągiem stopni wierzchołków pewnego drzewa o n wierzchołkach wtedy i tylko wtedy, gdy $\sum_{i=1}^{n} d_i = 2(n-1)$.

Aby udowodnić powyższe twierdzenie, przeprowadzę dowód w dwie strony:

 \implies : Drzewo o n wierzchołkach ma n-1 krawędzi, a więc z lematu o uściskach dłoni mamy:

$$\sum_{i=1}^{n} d_i = 2|E| = 2(n-1)$$

- \Leftarrow : Załóżmy bez straty ogólności, że ciąg stopni jest posortowany malejąco, a więc $d_1 \geqslant d_2 \geqslant \ldots \geqslant d_n$, wtedy dwa ostatnie wyrazy będą stopnia 1, gdyż są liściami. Udowodnię indukcyjnie po n, że wzór z twierdzenia zachodzi dla wszystkich $n \in \mathbb{N}_+$:
 - 1. Podstawa indukcji: n=2, wtedy $d_1+d_2=2$, a wiedząc, że wszystkie wyrazy ciągu d są dodatnie, mamy $d_1=d_2=1$, czyli jest to krawędź pomiędzy dwoma wierzchołkami (liściami). \checkmark
 - 2. Krok indukcyjny: załóżmy, że dla n zachodzi $\sum_{i=1}^{n} d_i = 2(n-1)$ i pokażmy, że dla n+1 prawdziwe jest $\sum_{i=1}^{n+1} d_i = 2((n+1)-1) = 2n$. Dodajmy teraz nowy wierzchołek v_{n+1} o stopniu $d_{n+1} = 1$. Niech będzie on połączony z dowolnym wierzchołkiem v_j (o stopniu d_j). Otrzymamy wtedy następujący ciąg stopni wierzchołków:

$$d_1, d_2, d_3, \dots, d'_i, \dots, d_n, d_{n+1}$$

Skoro nowy wierzchołek jest połączony z v_j , to stopień wierzchołka v_j w nowym ciągu stopni to $d'_j = d_j + 1$. Zsumujmy więc wszystkie stopnie wierzchołków po dodaniu v_{n+1} :

$$\sum_{\substack{i=1\\i\neq j}}^{n} d_i + d'_j + d_{n+1} = \sum_{i=1}^{n} d_i + 1 + d_{n+1} = 2(n-1) + 1 + 1 = 2n$$

a to chcieliśmy pokazać. ✓

Udowodniliśmy implikacje w obie strony, a więc twierdzenie jest prawdziwe.

Niech Q_k oznacza graf k-wymiarowej kostki, tzn. zbiór wierzchołków tego grafu tworzą wszystkie k-elementowe ciągi zer i jedynek, i dwa wierzchołki są sąsiednie wtedy i tylko wtedy, gdy odpowiadające im ciągi różnią się dokładnie jedną współrzędną. Wykaż, że jest to graf dwudzielny.

Aby graf był dwudzielny, musi mieć dwie rozłączne części V_1, V_2 takie, że $V_1 \cap V_2 = \emptyset$ oraz $V_1 \cup V_2 = V(G)$. Zgodnie z definicją grafu Q_k mamy, że krawędzie incydentne są wtedy i tylko wtedy, gdy ich współrzędne różnią się tylko o jedną współrzędną. Podzielmy więc zbiór wszystkich wierzchołków na dwie części: V_1 , czyli wierzchołki o parzystej liczbie 1 oraz V_2 , czyli wierzchołki o nieparzystej liczbie 1. Wtedy niemożliwe jest, aby wierzchołki z V_1 były swoimi sąsiadami, podobnie w przypadku V_2 gdyby były, to wtedy wierzchołki z każdej części różniłyby się o więcej niż jedną współrzędną, więc taki graf nie byłby grafem Q_k . Oznacza to więc, że graf Q_k jest dwudzielny, co kończy dowód.

Przykład: Po lewej stronie przedstawiony został graf Q_3 w łatwy sposób do narysowania, a po prawej ten sam graf podzielony na rozłączne części V_1 oraz V_2 . Widać, że wierzchołki o takiej samej parzystości nie są ze sobą połączone.

Wykaż, że przynajmniej jeden z grafów G=(V,E) i \overline{G} (\overline{G} jest dopełnieniem grafu G) jest spójny. Dopełnienie $\overline{G}=(V,E')$ grafu G zdefiniowane jest jako graf (V,E') taki, że $\{u,v\} \in E' \Leftrightarrow \{u,v\} \notin E'$.

Rozpatrzmy dwa przypadki:

- 1. Graf G jest spójny, wtedy przynajmniej jeden z grafów G oraz \overline{G} jest spójny, co kończy ten przypadek, gdyż spełnia założenie z zadania.
- 2. Graf G nie jest spójny, wtedy jego wierzchołki tworzą co najmniej dwie spójne składowe. Weźmy $u,v\in V$.

Jeśli $u,v\in V$ leżą w dwóch różnych spójnych składowych grafu G, więc nie istnieje między nimi krawędź, czyli $\{u,v\}\notin E$, ale z definicji dopełnienia grafu dostajemy, że $\{u,v\}\in E'$.

Niech $u, v \in V$ leżą teraz w jednej spójnej składowej V_1 grafu G, wtedy zgodnie z założeniem, że wierzchołki G tworzą co najmniej dwie spójne składowe wiemy, że istnieje inna (niepusta) spójna składowa V_2 taka, że $V_1 \cap V_2 = \emptyset$. Weźmy więc wierzchołek $w \in V_2$, wtedy w grafie G nie jest on sąsiadem ani wierzchołka u, ani v. Oznacza to, że nie istnieją krawędzie $\{u, w\}, \{v, w\}$ w grafie G, a więc muszą one istnieć w \overline{G} :

$$\{u, w\}, \{v, w\} \notin E \Rightarrow \{u, w\}, \{v, w\} \in E'$$

Skoro istnieją takie krawędzie w dopełnieniu, to istnieje ścieżka między wierzchołkami u i v w \overline{G} , która przebiega przez wierzchołek w (czyli $u \to w \to v$).

Udowodniliśmy, że przynajmniej jeden z grafów G i \overline{G} jest spójny.