RAPPORT TRAVAUX PRATIQUES DE PROGRAMMATION ORIENTE OBJET (INF2112)

MEMBRE DU GROUPE:

Nom et Prénoms	Matricule
DOUANLA SONHAFO CHAMPLAIN	21T2657
KOUAM NOUBISSI SERAPHIN BRICE	21T2432
MEKA MOISE CHRISTIAN JUNIOR	21T2561
RUDY TCHAMBA TCHABTCHE ITIEL	21T2991

Sous la supervision de : $\operatorname{Dr}\operatorname{DJIOMEKONG}$

INTRODUCTION

La programmation orientée objet (POO) est un paradigme de programmation informatique de plus en plus utilisé, que ce soit dans le développement logiciel ou la data science. Organisée autour des objets, ou données, la programmation orientée objet offre de nombreux avantages. Faisant partir de la liste des matières au programme des étudiants de Licence 2, nous avons implémenté dans le cadre du travail pratique relatif à cette matière les concepts de POO appris en cours dans les trois (3) exercices constituant ce TP. C'est ainsi que dans l'exercice 1 nous devions identifier les objets visible des plats Malgaches, les regrouper classes et implémenter les concepts de POO identifiés dans les langages de programmation. L'exercice 2 lui portait sur les habitudes alimentaires et il était question de construire un graphe d'habitude alimentaire, de prédire les plats à consommer et mettre en place un programme d'amélioration de la qualité de l'alimentation. Le dernier exercice dénommé « Le chat et la sourie » consistait à implémenter les concepts de POO pour la simulation de la survie en milieu hostile. Dans les lignes qui suivent il sera question de décrire les différentes etapes de conception et d'implémentation de chacun de ces excercices.

I. Environnement de développement

Système d'exploitati on	Langage de programmation	Compilateur/ Interpréteur	Version	Éditeur
Ubuntu 22.04 LTS	Python	Python	3.9.7	Gedit Version 41.0 & VS Code Version 1.74.2
	Java	OpenJDK	18.0.2	
	JavaScript	NodeJS	12.22.9	
	C++	g++	11.3.0	

II. Exercice 1

1. Collecte de données et identification des objets

Durant cet exercice, il était question de chercher 50 plats malgaches, d'identifier les objets visibles dans chacun de ces plats et d'annoter les images de chacun de ces plats. Les résultats de cette activité a été consigné dans un Data set comprenant les résultats des annotations (format XML) et les autres données sur les plats (dans un fichier Excel).

Capture 1 : fichier de données des plats malgaches collectés

2. Diagramme de classe et implémentation

Suite à l'activité précédente, nous avons réalisé un diagramme de classe permettant de modéliser les plats que nous avons collecté. Nous avons par suite implémenté ces différentes classes ainsi que le programme d'identification des plats en Java, JavaScript, C++ et Python.

Capture 2 : Diagramme de classe des plats

III. Exercice 2

1. Collecte de données et modélisation

Durant la phase de collecte de données, nous avons pour chaque jour renseigné notre formulaire GoogleForms dans le quel nous devions renseigner nos habitudes alimentaires ainsi que les différents problèmes de santé rencontré. A la fin de cette phase, nous avions une base de données sous format Excel de ces données pour une période de trois (3) mois.

Capture 3 : Data Set des habitudes alimentaires

Suite à la collecte de données, la conception était marqué par la définition d'un graphe hétérogène pour y stocker nos données (Capture 6), d'un diagramme de classe (Capture 4), d'un diagramme d'état transition (Capture 5) et d'un modèle de prévision des consommations futures (Capture 7).

Capture 4 : Diagramme de classe

Capture 5 : Diagramme d'état transition

Capture 6 : Graphe hétérogène des Habitudes alimentaires

	Pood 1	700d2	F. 3	.	- Pood(n)
lund:	nly	n612	n6 ₁₃		nban
Mondi	nb21	nbzz	nb ₂₃		nbzn
Mer Ged:	nb31	nbsz	nb33		nban
Jandi'	ŊЬ ₄₁	nbyr	n6 ₄₃		nbyn
Ver dredi	01	nbsz	nbss		nbsn
Somedi	nb ₆₁	N662	n663		nben
Dimonche	nbzz	nbzz	n673		nbin.
		_			

Capture 7 : Modèle des habitudes alimentaires pour la prévision

2. Implémentation

Ici nous avons implémenté les différents algorithmes demandé dans l'exercice. A savoir, l'algorithme de prédiction des plats, de parcours du graphe et le « **Fill Max Bag** ».

IV. Exercice 3

Comme dit plus haut, cet exercice consistait à simuler la survie en milieu hostile de deux espèces (Chat et Sourie).

Pour la réalisation de cet exercice, nous avons réalisé un diagramme de classe (Capture 8) et avons implémenté cette survie en python, C++, Java et C++.

Capture 8 : Diagramme de classe des espèces de l'environnement

Capture 9 : Survie en environnement hostile