Proving Universally Quantified Statements

To prove the universally quantified statement " $\forall x \in S, P(x)$ ":

Choose a representative mathematical object $x \in S$. This cannot be a specific object. It has to be a placeholder, that is, a variable, so that our argument would work for any specific member of the domain S.

Then, show that the open sentence P must be true for our representative x, using known facts about the elements of S.

Disproving UQS (Proof by counter-example

To prove the universally quantified statement " $\forall x \in S, P(x)$ ":

Find an element $x \in S$ for which the open sentence P(x) is false. This process is called finding a **counter-example**.

Proving Existentially Quantified Statements

To prove the existentially quantified statement " $\exists x \in S$ ", P(x):

Provide an explicit value of x from the domain S, and show that P(x) is true for this value of x. In other words, find an element of S that satisfies property of S.

Disproving EQS

To disprove the existentially quantified statement " $\exists x \in S$ ", P(x): Prove that **universally** quantified statement " $\forall x \in S$, $\neg P(x)$ ".

Proof by Contradiction

Let A be a statement. Note that either A or $\neg A$ must be false, so the compound statement $A \land (\neg A)$ is always **false**. The statement " $A \land (\neg A)$ is true" is called a contradiction.

Proving Implications

- To prove the implication " $A \Longrightarrow B$ ", assume that the hypothesis A is true, and use this assumption to show that the conclusion B is true. The hypothesis A is what you start with. The conclusion B is where you must end up.
- To prove the universally quantified implication " $\forall x \in S, P(x) \Longrightarrow Q(x)$ ": Let x be an arbitrary element of S, assume that the hypothesis P(x) is true, and use this assumption to show that the conclusion Q(x) is true.

Proof by Contrapositive

- To prove the implication " $A \Longrightarrow B$ ", replace it with its contrapositive " $(\neg B) \Longrightarrow (\neg A)$ ". Then prove this contrapositive, usually by a direct proof. That is, assume $\neg B$ is true and deduce that $\neg A$ must be true as well.
- To prove the universally quantified implication " $\forall x \in S, P(x) \Longrightarrow Q(x)$ ", replace it with its universally quantified contrapositive " $\forall x \in S, (\neg Q(x)) \Longrightarrow (\neg P(x))$ ". Then prove this universally quantified contrapositive.

Proving Uniqueness

To prove the statement "There is a **unique** element $x \in S$ such that P(x) is true":

- ("Existence"): Prove that there is at least one element $x \in S$ such that P(x) is true (i.e., prove the existentially quantified statement " $\exists x \in S, P(x)$ ").
- ("Uniqueness"): Do either of the below.
 - Assume that P(x) and P(y) are true for $x, y \in S$, , and prove that this assumption leads to the conclusion x = y,
 - Assume that P(x) and P(y) are true for distinct $x, y \in S$ (so $x \neq y$), and prove that and prove that this assumption leads to a contradiction.

Proving If and Only If Statements

For proving an if and only if statement:

- To prove the statement $A \longleftrightarrow B$, it is equivalent to prove both the implication " $A \Longrightarrow B$ " and its converse " $B \Longrightarrow A$ ".
- To prove the universally quantified statement " $\forall x \in S, P(x) \longleftrightarrow Q(x)$ ", it is equivalent to do either of the below.
 - Let x be an arbitrary element of S, and prove both the implication $P(x) \implies Q(x)$ and its converse $Q(x) \implies P(x)$.
 - Prove both the universally quantified implication " $\forall x \in S, P(x) \Longrightarrow Q(x)$ " and its universally quantified converse " $\forall x \in S, Q(x) \Longrightarrow P(x)$ ".

Proof by Mathematical Induction

To prove the universally quantified statement "For all $n \in \mathbb{N}, P(n)$ ":

- Prove "*P*(1)"
- Prove the universally quantified implication "For all $k \in \mathbb{N}$, if P(k), then P(k+1)."

Proof by Strong Induction

To prove the universally quantified statement "For all integers $n \geq b$, P(n)":

- Prove " $P(b) \wedge P(b+1) \wedge \cdots \wedge P(B)$ ", for some integers $B \geq b$.
- Prove the universally quantified implication "For all $k \geq B$, if $P(b) \wedge P(b+1) \wedge \cdots \wedge P(k)$, then P(k+1)."

Prove $S \subseteq T$

To prove that $S \subseteq T$, prove the universally quantified implication:

$$\forall x \in \mathcal{U}, (x \in S) \implies (x \in T)$$