

Data Collection and Preprocessing Phase

Date	07 JULY 2024
Team ID	739850
Project Title	Air Quality Index Analyzer using machine learning
Maximum Marks	6 Marks

Data Exploration and Preprocessing Report

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis

De	escri	ption									
Ва	sic s	statistics,	dimensio	ns, and st	ructure of	the data.					
: d	ata_c	ity.describe	≘()								
:		PM2.5	PM10	NO	NO2	NOx	NH3	со	SO2	03	Benzene
	count	24933.000000	18391.000000	25949.000000	25946.000000	25346.000000	19203.000000	27472.000000	25677.000000	25509.000000	23908.000000
	mean	67.450578	118.127103	17.574730	28.560659	32.309123	23.483476	2.248598	14.531977	34,491430	3.280840
	std	64.661449	90.605110	22.785846	24.474746	31.646011	25.684275	6.962884	18.133775	21,694928	15.811136
	min	0.040000	0.010000	0.020000	0.010000	0.000000	0.010000	0.000000	0.010000	0.010000	0.000000
	25%	28.820000	56.255000	5.630000	11.750000	12.820000	8.580000	0.510000	5.670000	18.860000	0.120000
	50%	48.570000	95.680000	9.890000	21.690000	23.520000	15.850000	0.890000	9.160000	30.840000	1.070000
	75%	80.590000	149.745000	19.950000	37.620000	40.127500	30.020000	1.450000	15.220000	45,570000	3.080000
	max	949.990000	1000.000000	390.680000	362.210000	467.630000	352.890000	175.810000	193.860000	257,730000	455.030000


```
Identification and treatment of outliers.
Out
liers
and
     26]:
          import pandas as pd
Ano
          import numpy as np
mal
ies
          import matplotlib.pyplot as plt
          def handle outliers(df):
               # Plot boxplots before handling outliers
               plt.figure(figsize=(15, 10))
               df.boxplot(rot=90)
               plt.title('Boxplot Before Handling Outliers')
               plt.show()
               for column in df.columns:
                   if pd.api.types.is_numeric_dtype(df[column]):
                        Q1 = df[column].quantile(0.25)
                        Q3 = df[column].quantile(0.75)
                        IQR = Q3 - Q1
                        lower bound = Q1 - 1.5 * IQR
                        upper bound = Q3 + 1.5 * IQR
                        # Cap the outliers
                        df[column] = np.where(df[column] < lower_bound,</pre>
                                                np.where(df[column] > upp
               # Plot boxplots after handling outliers
               plt.figure(figsize=(15, 10))
               df.boxplot(rot=90)
               plt.title('Boxplot After Handling Outliers')
               plt.show()
               return df
Data Preprocessing Code Screenshots
Loa
din
    Code to load the dataset into the preferred environment (e.g., Python, R).
g
Dat
```

In [48]: X=data_city.drop('AQI',axis=1)
y=data_city['AQI']

In [49]: X

Out[49]:

	City	PM2.5	PM10	NO	NO2	NOx	
0	0	34.515	154.750	0.92	18.22	17.15	
1	0	25.830	226.235	0.97	15.69	16.46	
2	0	36.205	72.125	17.40	19.30	29.70	
3	0	25.830	226.235	1.70	18.48	17.97	
4	0	54.440	72.125	22.10	21.42	37.76	
29526	25	15.020	50.940	7.68	25.06	19.54	
29527	25	24.380	74.090	3.42	26.06	16.53	
29528	25	22.910	65.730	3.45	29.53	18.33	
29529	25	16.640	49.970	4.05	29.26	18.80	
29530	25	15.000	66.000	0.40	26.85	14.05	

29531 rows × 15 columns

Handling Missing Data	Code for identifying and handling missing values.											
	Handling Null Values											
	2]: data_city.isna().sum()											
	2]: City 0 Date 0 PM2.5 4598 PM10 11140 NO 3582 NO2 3585 NOX 4185 NH3 10328 CO 2059 SO2 3854 O3 4022 Benzene 5623 Toluene 8041 Xylene 18109 AQI 4681											
Data	AQI_Bucket 4681 dtype: int64 Code for transforming variables (scaling, normalization).											

Transfor mation														
Feature Engineer	Code for cre	eating no	ew fe	eatures	or modi	fying	existir	ng one	S.					
ing	In [48]:	<pre>X=data_city.drop('AQI',axis=1) y=data_city['AQI']</pre>												
	In [49]:	X												
	Out[49]:		City	PM2.5	PM10	NO	NO2	NOx	NH3	со	SO2	03	Benzene	To
		0	0	34.515	154.750	0.92	18.22	17.15	8.975	0.92	27.640	85.635	0.00	
		1	0	25.830	226.235	0.97	15.69	16.46	9.095	0.97	24.550	34.060	3.68	
		2	0	36.205	72.125	17.40	19.30	29.70	6.880	2.86	29.070	30.700	6.80	
		3	0	25.830	226.235	1.70	18.48	17.97	9.085	1.70	18.590	36.080	4.43	
		4	0	54.440	72.125	22.10	21.42	37.76	7.915	2.86	29.545	39.310	7.01	
		29526	25	15.020	50.940	7.68	25.06	19.54	12.470	0.47	8.550	23.300	2.24	
		29527	25	24.380	74.090	3.42	26.06	16.53	11.990	0.52	12.720	30.140	0.74	0000000
		29528	25	22.910	65.730	3.45	29.53	18.33	10.710	0.48	8.420	30.960	0.01	
		29529	25	16.640	49.970	4.05	29.26	18.80	10.030	0.52	9.840	28.300	0.00	
		29530	25	15.000	66.000	0.40	26.85	14.05	5.200	0.59	2.100	17.050	0.00	
		29531 r	ows	× 15 col	umns									