ÁLGEBRA LINEAL - Clase 09/06

Para hacer en clase

Ejercicio 1.

- i) Sea $B_1 = \{1 + X^2, 1, 1 + X\}$ una base de $\mathbb{R}_2[X]$. Hallar su base dual B_1^* .
- ii) Sea $\varphi \in (\mathbb{R}_2[X])^*$ dada por $\varphi(P) = P'(1)$. Hallar las coordenadas de φ en la base B_1^* .
- iii) Sea B_2^* la base dual de $B_2 = \{1, X, X^2\}$. Dar las coordenadas de los elementos de B_2^* en la base B_1^* .
- iv) ¿Qué relación hay entre las coordenadas halladas en el ítem anterior y las coordenadas de los elementos de la base B_2 en la base B_1 ?

Ejercicio 2. Sea $B' = \{\varphi_1, \varphi_2, \varphi_3\} \subseteq (\mathbb{R}^3)^*$, donde $\varphi_1(x, y, z) = x + y$, $\varphi_2(x, y, z) = x + z$, $\varphi_3(x, y, z) = x - y + z$.

- i) Probar que B' es una base de $(\mathbb{R}^3)^*$.
- ii) Hallar la base B de \mathbb{R}^3 tal que $B^* = B'$.

En la siguiente página hay ayudas para el Ejercicio 5 de la Práctica 4. Como siempre, es (muy) importante intentar resolverlo sin consultar esta ayuda. Tómelo como un último recurso.

Ejercicios de la guía relacionados: 1 al 8.

Posible guía para el Ejercicio 5

- a) Notar que, como φ_1 y φ_2 son no nulas, ser linealmente dependientes equivale a que exista $\lambda \in K$ tal que $\varphi_1 = \lambda \varphi_2$ (observar que si $\varphi_2 = 0$ y $\varphi_1 \neq 0$, no existe tal valor de λ).
- b) Deducir una de las implicaciones del primer ítem del Ejercicio 5 a partir del ítem anterior.
- c) Usar el Teorema de la dimensión para deducir la dimensión de $Nu(\varphi_1)$ y $Nu(\varphi_2)$.
- d) Usar convenientemente el Ejercicio 32 de la Práctica 1 para probar que si los núcleos coinciden, existe $\lambda \in K$ tal que $\varphi_1 = \lambda \varphi_2$ (para esto, evaluar ambas funciones en un vector arbitrario y despejar el valor de $\lambda \in K$).
- e) Para el segundo ítem del ejercicio, llamando $S = \langle \varphi_1, \dots, \varphi_r \rangle$, podemos extraer una base de S de este conjunto de generadores, digamos B. Completando a una base de V^* , obtenemos una base de la forma $B \cup B'$.
- f) Probar que $\varphi \in S$ equivale a probar que, escribiendo a φ como combinación lineal de los elementos de esta base, los coeficientes que acompañan a los elementos de B' son nulos. Evalúe φ en los elementos de una base predual de $B \cup B'$ y use la hipótesis del enunciado para concluir.
- g) El tercer ítem se deduce aplicando apropiadamente el segundo, y recordando que V^* tiene la misma dimensión que V, por ser de dimensión finita.
- h) **Bonus (pero difícil):** La parte ii) sale usando inducción junto con la parte i). Una pista: restringir las funciones a un lugar adecuado.