CHAPTER 1: BASIC CONCEPTS IN GRAPH THEORY

Discrete Mathematics 2

Lecturer: Nguyen Kieu Linh

Posts and Telecommunications Institute of Technology

Hanoi, 2023 http://www.ptit.edu.vn

Contents

- 1 Graph Definitions
 - Graphs
 - Undirected graph
 - Directed graph
- 2 Basic terminologies in undirected graphs
- 3 Basic terminologies in directed graphs
- 4 Some special types of graphs

Contents

- 1 Graph Definitions
 - Graphs
 - Undirected graph
 - Directed graph
- 2 Basic terminologies in undirected graphs
- 3 Basic terminologies in directed graphs
- 4 Some special types of graphs

Graphs

Definition

A graph $G = \langle V, E \rangle$ consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect its endpoints.

Figure: A Computer Network.

Contents

- 1 Graph Definitions
 - Graphs
 - Undirected graph
 - Directed graph
- 2 Basic terminologies in undirected graphs
- 3 Basic terminologies in directed graphs
- 4 Some special types of graphs

Some types of Graphs

- * Undirected graph
 - * Undirected Simple Graph
 - ⋆ Undirected Multigraph
 - ⋆ Undirected Pseudograph
- * Directed graph
 - ⋆ Directed Simple Graph
 - ⋆ Directed Multigraph

Undirected Simple Graph

Undirected simple graph $G = \langle V, E \rangle$:

- $\star V$ is the set of vertices
- ★ E is the set of edges, consisting of unordered pairs of two distinct vertices in V
- * There is at most one edge connecting two vertices.

Figure: Undirected Simple Graph.

Undirected Multigraph

Undirected multigraph $G = \langle V, E \rangle$:

- \star V is the set of vertices
- ★ E is the set of edges, consisting of unordered pairs of two distinct vertices in V
- * $e_1, e_2 \in E$ are called multiple edges if they connect the same two vertices, $e_1 = (u, v), e_2 = (v, u)$.

Figure: Undirected multigraph.

Undirected Pseudograph

Undirected Pseudograph $G = \langle V, E \rangle$:

- \star V is the set of vertices
- \star E is the set of edges, consisting of unordered pairs of two vertices (maybe the same) in V
- * The graph includes edges that connect a vertex to itself. Such edges are called *loops*, and sometimes we may even have more than one loop at a vertex.

Figure: Undirected Pseudograph.

Contents

- 1 Graph Definitions
 - Graphs
 - Undirected graph
 - Directed graph
- 2 Basic terminologies in undirected graphs
- 3 Basic terminologies in directed graphs
- 4 Some special types of graphs

Directed Simple Graph

Directed Simple Graph $G = \langle V, E \rangle$:

- \star V is the set of vertices
- ★ E is the set of *directed edges* (or arcs, arrows), consisting of ordered pairs of two distinct vertices in V
- * There is at most one directed edges (or arcs) from a vertex u to another one v. The directed edge associated with the ordered pair (u, v) is said to start at u and end at v.

Figure: Directed Simple Graph.

Directed Multigraph

Directed Multigraph $G = \langle V, E \rangle$:

- \star V is the set of vertices
- ★ E is the set of <u>directed edges</u> (or <u>arcs</u>), consisting of ordered pairs of two distinct vertices in V
- ★ $e_1, e_2 \in E$ are called *multiple directed edges* if they connect the same two vertices, $e_1 = (u, v), e_2 = (v, u)$.

Figure: Directed Simple Graph.

Convention

- We will focus on Undirected Simple Graph and Directed Simple Graph
- * "Undirected Graph" means "Undirected Simple Graph"
- * "Directed Graph" means "Directed Simple Graph"

Contents

- 1 Graph Definitions
 - Graphs
 - Undirected graph
 - Directed graph
- 2 Basic terminologies in undirected graphs
- 3 Basic terminologies in directed graphs
- 4 Some special types of graphs

Vertex Degree

Definition

Two vertices u and v in an undirected graph G are called *adjacent* (or neighbors) in G if u and v are endpoints of an edge e of G. Such an edge e is called *incident* with the vertices u and v and e is said to connect u and v.

Definition

The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex v is denoted by deg(v).

Vertex Degree

Example

What are the degrees in the graphs G and H displayed in following figure?

- * A vertex of degree zero is called *isolated*.
- * A vertex is *pendant* if and only if it has degree one.

Vertex Degree

Theorem

* Let $G = \langle V, E \rangle$ be an undirected graph with m edges. Then

$$2m = \sum_{v \in V} deg(v)$$

* An undirected graph has an even number of vertices of odd degree.

Example

How many edges are there in a graph with 10 vertices each of degree six?

Path and Circuit

- * A path with length n from vertex u to vertex v in undirected graph $G = \langle V, E \rangle$ is sequence $x_0, x_1, \ldots, x_{n-1}, x_n$ in which n is a positive integer, $x_0 = u, x_n = v, (x_i, x_{i+1}) \in E$, $i = 0, 1, 2, \ldots, n-1$.
- * The above path can be represented as a sequence of edges $(x_0, x_1)(x_1, x_2), \ldots, (x_{n-1}, x_n)$.
- \star u is the starting point and v is the ending point of the path
- * A circuit is a path ending at the starting point (u = v)
- * A path or a circuit is said to be *simple* if there is no repetition of edges
- * A cycle is a simple circuit with no repeated vertices other than the first and last ones

Path and Circuit

Example

- \star a, d, c, f, e is a simple path with length 4
- \star d, e, c, b is not a path because (e, c) is not an edge
- \star b, c, f, e, b is a circuit with length 4
- * Path with length 5 : a, b, e, d, a, b is not simple because (a, b) appears twice

Connected Graph

Definition

- * An undirected graph is said to be *connected* if there is a path between every pair of vertices
- * If is not connected, G consists of several connected subgraphs (two subgraphs do not share any vertex)
 - Each such subgraph is called a *connected component* of *G*.
 - An undirected graph is connected if and only if it has only one connected component

Theorem

In an undirected graph, if there exist a vertex $v \in V$ such that there is a path from v to all the other vertices of V, the graph is connected.

Example

How many connected components are there in graph G?

Bridge and Cut Vertex

Definition

In an undirected graph, a *bridge* is an edge of the graph whose deletion increases its number of connected components. A *cut vertex* is a vertex whose deletion (with its boundary edges) increases its number of connected components.

Example

Find the bridges and cut vertices in the graph below

Discrete Mathematics 2 - Nguyen Kieu Linh ----

Contents

- 1 Graph Definitions
 - Graphs
 - Undirected graph
 - Directed graph
- 2 Basic terminologies in undirected graphs
- 3 Basic terminologies in directed graphs
- 4 Some special types of graphs

In-degree and Out-degree

Definition

When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v and v is said to be adjacent from u. The vertex u is called the *initial vertex of* (u, v), and v is called the terminal or end vertex of (u, v).

Definition

In a graph with directed edges the *in-degree* of a vertex v, denoted by $\deg^- v$, is the number of edges with v as their terminal vertex. The *out-degree* of v, denoted by $\deg^+(v)$, is the number of edges with v as their initial vertex.

In-degree and Out-degree

Example

Find the in-degree and out-degree of each vertex in the following graph with directed edges.

In-degree and Out-degree

Theorem

For any directed graph $G = \langle V, E \rangle$, we have

$$\sum_{v \in V} \mathsf{deg}^+(v) = \sum_{v \in V} \mathsf{deg}^-(v) = |E|.$$

Notation

- * Many properties of directed graphs do not depend on directions. In some cases, we can ignore the directions on directed edges.
- * The undirected graph receiving by removing directions on directed edges is called the corresponding undirected graph.

Path and Circuit

- * A path with length n from vertex u to vertex v in directed graph $G = \langle V, E \rangle$. is sequence $x_0, x_1, \ldots, x_{n-1}, x_n$ in which n is a positive integer, $x_0 = u, x_n = v, (x_i, x_{i+1}) \in E$, $i = 0, 1, 2, \ldots, n-1$.
- * The above path can be represented as a sequence of edges $(x_0, x_1)(x_1, x_2), \dots, (x_{n-1}, x_n)$.
- \star u is the starting point and v is the ending point of the path
- \star A *circuit* is a path ending at the starting point (u = v)
- * A path or a circuit is said to be *simple* if there is no repetition of directed edges.

Strongly Connected Graph, Weakly Connected Graph

Definition

- * Directed graph $G = \langle V, E \rangle$ is said to be *strongly connected* if there is a path between every pair of vertices.
- * Directed graph $G = \langle V, E \rangle$ is said to be weakly connected if its corresponding undirected graph is connected.

Orientation

Definition

An *orientation* of an undirected graph is an assignment of a direction to each edge, turning the initial graph into a directed graph. A *strong orientation* is an orientation that results in a strongly connected graph.

Theorem

For any undirected graph $G = \langle V, E \rangle$, there exists a strong orientation on G if and only if all its edges are not bridge.

Contents

- 1 Graph Definitions
 - Graphs
 - Undirected graph
 - Directed graph
- 2 Basic terminologies in undirected graphs
- 3 Basic terminologies in directed graphs
- 4 Some special types of graphs

Complete Graph

Definition

- * Complete graph n vertices, denoted by K_n , is a simple undirected graph that exists an edge connecting between two every vertices
- * Number of edges: $\frac{n(n-1)}{2}$

Cycle Graph

Definition

Cycle Graph C_n , $n \geq 3$, consists of n vertices

$$\{v_2, v_3\}, ..., \{v_{n-1}, v_n\}, \text{ and } \{v_n, v_1\}.$$

Wheel Graph

Definition

Wheel graph n vertices, denoted by W_n is a graph formed by connecting a single vertex to all vertices of a cycle graph C_{n-1} .

Bipartite Graph (Bigraph)

Definition

Bigraph $G = \langle V, E \rangle$ is a graph whose vertices can be divided into two disjoint sets X and Y and such that every edge connects a vertex in to one in, i.e. (x, y), in which $x \in X, y \in Y$

Exercise 1. Determine the degree of each vertex in the below undirected graph

Exercise 2. Determine the in-degree and out-degree of each vertex in the below directed graph

Exercise 3. Determine the degree of each vertex in the below undirected graph

Exercise 4. Determine the in-degree and out-degree of each vertex in the below directed graph

