

CIFRAS SIMÉTRICAS

Gerência e Segurança de Redes

Objetivos de Aprendizagem

Introduzir o conceito de cifra simétrica

Apresentar as técnicas clássicas

Agenda

- 1. Modelo
- 2. Técnicas de substituição
- 3. Técnicas de transposição
- 4. Máquinas de rotor

Modelo de Cifra Simétrica

Elementos

- Texto claro
 - Mensagem ou dados originais
- Algoritmo de encriptação/decriptação
 Realiza substituições e transformações para tornar a mensagem ilegível/
- Chave secreta
 - Entrada para o algoritmo que modifica a mensagem original
- Texto cifrado
 - Mensagem embaralhada produzida pelo algoritmo

REQUISITOS PARA O USO SEGURO

PRIMEIRO

"Um oponente deverá ser incapaz de decifrar o texto cifrado ou descobrir a chave, mesmo que possua diversos textos cifrados com seus respectivos textos claros"

REQUISITOS PARA O USO SEGURO

SEGUNDO

"Emissor e Receptor precisam ter obtido a chave secreta de forma segura. Se um oponente descobrir a chave e o algoritmo a comunicação está comprometida"

REQUISITOS PARA O USO SEGURO

OBSERVAÇÃO

"O sigilo do algoritmo de encriptação/decriptação não é determinante para a segurança"

TIPO DE ATAQUE	CONHECIDO AO CRIPTOANALISTA
Apenas texto cifrado	 Algoritmo de encriptação Texto cifrado
Texto claro conhecido	 Algoritmo de encriptação Texto cifrado Um ou mais pares de texto claro-texto cifrado produzidos pela chave secreta
Texto claro escolhido	 Algoritmo de encriptação Texto cifrado Mensagem de texto claro escolhida pelo criptoanalista, com seu respectivo texto cifrado gerado com a chave secreta
Texto cifrado escolhido	 Algoritmo de encriptação Texto cifrado Texto cifrado escolhido pelo criptoanalista, com seu respectivo texto claro decriptado produzido pela chave secreta
	 Algoritmo de encriptação Texto cifrado Mensagem de texto claro escolhida pelo criptoanalista, com seu respectivo texto cifrado produzido pela chave secreta Texto cifrado escolhido pelo criptoanalista, com seu respectivo texto claro decriptado
Texto escolhido	produzido pela chave secreta

Ataque Texto Cifrado Conhecido

- Ataque usando a técnica de Força Bruta
- Utiliza testes estatísticos
- Necessário conhecer um padrão mínimo do texto claro
- Mais fácil de ser defendido
- Apenas algoritmos fracos não suportam esse tipo de ataque

Ataque Texto Claro Conhecido

- Texto claro capturado
- Padrão de texto claro observado pelo oponente
 Banner padronizado, mensagem de copyright, padrões de arquivo
- Dedução da chave

Ataque Texto Claro Escolhido

 Injeta-se texto claro na origem para observar o texto cifrado e deduzir a chave

Encriptação Computacionalmente Segura

- Custo para quebrar a cifra ultrapassa o valor da informação encriptada
- Tempo exigido para quebrar a cifra supera o tempo de vida útil da informação

Classificação

- Tipo de operação
 Substituição ou Transposição
- Quantidade de chaves
 Simétrica ou assimétrica
- Modo de processamento Bloco ou Fluxo

Ataque de Força Bruta

- Metade das chaves precisa ser experimentada
- Texto claro em idioma conhecido facilita a quebra da chave
- Arquivos numéricos e/ou compactados dificultam a quebra da chave

Cifra de César

claro: meet me after the toga party

cifra: PHHW PH DIWHU WKH WRJD SDUWB

claro: a b c d e f g h i j k l m n o p q r s t u v w x y z

cifra: DEFGHIJKLMNOPQRSTUVWXYZABC

Criptoanálise e Cifra de César

```
PHHW PH DIWHU WKH WRJD SDUWB
CHAVE
          oggv og chvgt vjg vqic rctva
          nffu nf bgufs uif uphb qbsuz
          meet me after the toga party
          ldds ld zesdq sgd snfz ozgsx
          kccr kc ydrcp rfc rmey nyprw
    5
          jbbq jb xcqbo qeb qldx mxoqv
          iaap ia wbpan pda pkcw lwnpu
          hzzo hz vaozm ocz ojbv kvmot
          gyyn gy uznyl nby niau julns
          fxxm fx tymxk max mhzt itkmr
   10
  11
          ewwl ew sxlwj lzw lgys hsjlq
  12
          dvvk dv rwkvi kyv kfxr grikp
          cuuj cu qvjuh jxu jewq fqhjo
  13
          btti bt puitg iwt idvp epgin
   14
  15
          assh as othsf hvs houo dofhm
  16
          zrrq zr nsgre gur gbtn cnegl
  17
          yqqf yq mrfqd ftq fasm bmdfk
          xppe xp lqepc esp ezrl alcej
  18
          wood wo kpdob dro dygk zkbdi
   19
   20
          vnnc vn jocna cqn cxpj yjach
   21
          ummb um inbmz bpm bwoi xizbg
          tlla tl hmaly aol avnh whyaf
   22
          skkz sk glzkx znk zumg vgxze
   23
          rjjy rj fkyjw ymj ytlf ufwyd
   24
   25
          qiix qi ejxiv xli xske tevxc
```

Criptoanálise e Cifra de César

- Algoritmos conhecidos
- Chave fraca
- Mensagem em texto claro identificável

```
PHHW PH DIWHU WKH WRJD SDUWB
CHAVE
          oggv og chvgt vjg vqic rctva
          nffu nf bgufs uif uphb qbsuz
          meet me after the toga party
          ldds ld zesdq sgd snfz ozgsx
          kccr kc ydrcp rfc rmey nyprw
          jbbq jb xcqbo qeb qldx mxoqv
          iaap ia wbpan pda pkcw lwnpu
          hzzo hz vaozm ocz ojbv kvmot
          gyyn gy uznyl nby niau julns
   10
          fxxm fx tymxk max mhzt itkmr
   11
          ewwl ew sxlwj lzw lgys hsjlg
          dvvk dv rwkvi kyv kfxr grikp
   12
          cuuj cu qvjuh jxu jewa fahjo
   13
          btti bt puitg iwt idvp epgin
   14
   15
          assh as othsf hvs houo dofhm
   16
          zrrq zr nsgre gur gbtn cnegl
   17
          yggf yg mrfgd ftg fasm bmdfk
          xppe xp lqepc esp ezrl alcej
   18
          wood wo kpdob dro dygk zkbdi
   19
          vnnc vn jocna cqn cxpj yjach
   20
          ummb um inbmz bpm bwoi xizbg
   21
   22
          tlla tl hmaly aol avnh whyaf
          skkz sk glzkx znk zumg vgxze
   23
          rjjy rj fkyjw ymj ytlf ufwyd
   24
          qiix qi ejxiv xli xske tevxc
   25
```

Criptoanálise de Texto Compactado

- Chave de 168 bits
- ZIP de um arquivo texto plano

```
~+Wµ"- \Omega-0)\leq 4{\infty‡, ë~\Omega%ràu·¯Í ^{\circ}Z-^{\circ}Ú\neq20#Åæ^{\circ}0 @«q7,\Omegan·®3N^{\circ}0 @z'Y-f\inftyÍ[\pmÛ_ è\Omega,<NO¬\pm«×ã Åä£èü3Å x}ö§k°Â _yÍ ^\DeltaÉ] _¤ J/°iTê&ı 'c<u\Omega-ÄD(G WÄC~y_ĭõÄW PÔı«Î܆ç],¤; `l^üÑ\pi×°'L '90gflo &@\leq ¬\leq ØÔ§": `@!SGqèvo^ ú\,S>h<-*6ø‡%x′"|fiÓ#\approxmy% \geqñP<,fi Áj Å^{\circ}0."Õ¯6\otimes9{% "\OmegaÊó ,ï \pi+Áî°úO2çSÿ'O-2Äflßi /@^"\prodK°*P\otimes\pi, úé^'3\sum"ö °ÔZÌ"Y¬Ÿ\Omega\otimesY> \Omega+eô/'<Kf;*÷~"\leq0" B ZøK~Qßÿüf,!ÒflÎzsS/]>ÈQ ü
```

Cifras Monoalfabéticas

- A cifra de César respeita a sequência do alfabeto cifrado criando 25 possibilidades de chave
- As cifras monoalfabéticas trazem um aprimoramento substituindo cada letra por QUALQUER outra letra em uma ordem específica

a->Q

b->W

c->E

d->R

Cifras Monoalfabéticas

- Chaves de cifras de substituição monoalfabéticas possuem 26! Possibilidades
- Aparenta segurança comparada a cifra de César
- Mesmo com pequena quantidade de texto a cifra pode ser quebrada com estratégias de propriedades estatísticas de idiomas

Exemplo de Texto Cifrado

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

Frequência Relativa

- Considerando que o texto é em Inglês
- Extrair a frequência relativa do texto cifrado
- Comparar com a frequência do idioma

P 13,33	Н 5,83	F 3,33	В 1,67	C 0,00
Z 11,67	D 5,00	W 3,33	G 1,67	K 0,00
S 8,33	E 5,00	Q 2,50	Y 1,67	L 0,00
U 8,33	V 4,17	T 2,50	I 0,83	N 0,00
O 7,50	X 4,17	A 1,67	J 0,83	R 0,00
M 6,67				

Frequência Relativa

- É provável que P e Z correspondam a 'e' e 't'
- É provável S, U, O, M e H correspondam ao conjunto {a, h, i, n, o, r, s}
- A, B, G, Y, I, J devem pertencer ao conjunto {b, j, k, q, v, x, z}

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

Frequência Relativa

- Busca pelo digrama mais frequente em inglês: th Corresponde ao ZW
- Busca pelo trigrama mais frequente: the Corresponde ao ZWP
- A sequência ZWSZ na primeira linha
 Corresponde a th?t
 Fazendo uma tentativa de atribuição a that, teríamos S=a

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

Resultado Parcial

A partir de 4 letras

```
UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

ta e e te a that e e a

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

e t ta t ha e ee a e th t a

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

e e e tat e the t
```

Resultado Final

 Continuando a análise da frequência e o conhecimento do idioma

> it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Cifras de Substituição

- A frequência do alfabeto original se reflete no alfabeto da cifra, facilitando sua quebra
- Uma melhoria da CS consiste em utilizar vários alfabetos de cifra
 Cifras polialfabéticas
- Outra possível melhoria seria o uso de homófonos
 Atribuir várias símbolos diferentes em rodízio para mesma letra
 Cifra Playfair
 Cifra de Hill

Cifras Polialfabéticas

- Utilizam um conjunto de regras monoalfabéticas simultaneamente
- Uma chave determina a regra específica
- Cifra de Vigenère
 Utiliza as 26 cifras de César
- Exemplo

Exemplo

chave: deceptivedeceptive

texto claro: wearediscoveredsaveyourself

texto cifrado: ZIC<u>VTW</u>QNGRZG<u>VTW</u>AVZHCQYGLMGJ

Exemplo

chave: deceptivewearediscoveredsav

texto claro: wearediscoveredsaveyourself

texto cifrado: ZICVTWQNGKZEIIGASXSTSLVVWLA

Fragilidades CV

- Estudo de criptoanálise pode determinar que foi utilizada uma cifra mono ou polialfabética
 Estatísticas de Frequência
- É possível determinar o tamanho da palavra chave buscando padrões de repetição no texto cifrado

One Time Pad

- Chave do mesmo tamanho da mensagem
- Chave descartada após o uso
- Sistema inquebrável
- Exemplo

texto cifrado:	ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
chave:	pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih
texto claro:*	mr mustard with the candlestick in the hall
texto cifrado:	ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
chave:	${\it mfugpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt}$
texto claro:**	miss scarlet with the knife in the library

Fragilidades OTP

- Sistema inquebrável, porém pouco prático
- A largura de banda exigida para as chaves é similar aos dados
- Problema de distribuição de chaves

texto cifrado:	ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
chave:	pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih
texto claro:*	mr mustard with the candlestick in the hall
texto cifrado:	ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
chave:	${\it mfugpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt}$
texto claro:**	miss scarlet with the knife in the library

Técnicas de Transposição

Transposição

- Técnicas que envolvem a permutação das letras do texto claro
- Rail Fence
- Exemplo
 Meet after the toga party

mematrhtgpry etefeteoaat

Rail Fence

```
Chave: 4 3 1 2 5 6 7

Texto claro: a t t a c k p
o s t p o n e
d u n t i l t
w o a m x y z

Texto cifrado: TTNAAPTMTSUOAODWCOIXKNLYPETZ
```

Cifras de Transposição

- Criptoanálise explora as CT através das estatísticas de frequência aplicadas as cifras alfabéticas
- Melhorias são obtidas aplicando múltiplos estágios de transposição

Máquinas de Rotor

Máquinas de Rotor

- Aplica várias etapas de encriptação
- Precursor da encriptação DES
- Conjunto de cilindros independentes
- 26 pinos de entrada + 26 pinos de saída

Máquinas de Rotor

Exemplos

- Aplicando 3 rotores com 26 letras cada tem-se 17.576 alfabetos possíveis
- Com 4 rotores 456.976 alfabetos
- Uma máquina com 5 rotores é equivalente a uma Cifra de Vigenère com chave de tamanho maior que 11 milhões de letras
- Enigma e Purple foram máquinas usadas na segunda guerra.

Referências

- https://www.youtube.com/watch?v=5w3zDa7bgLU
- https://www.youtube.com/watch?v=E0YX8BC4RLo

Referências

Capítulo 2. Criptografia e Segurança de Redes. William Stallings. 6º. Edição. Editora Pearson.

FIM

Prof. José Roberto Bezerra

jbroberto@ifce.edu.br

IFCE – Campus Fortaleza