Machine Learning

(機器學習)

Lecture 8: Combatting Overfitting (2)

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 8: Combatting Overfitting (2)

- Model Selection Problem
- Validation
- Leave-One-Out Cross Validation
- V-Fold Cross Validation

So Many Models Learned

Even Just for Binary Classification . . .

$$\mathcal{A} \in \{ \text{ PLA, pocket, linear regression, logistic regression} \} \\ \times \\ \mathcal{T} \in \{ 100, 1000, 10000 \} \\ \times \\ \eta \in \{ 1, 0.01, 0.0001 \} \\ \times \\ \Phi \in \{ \text{ linear, quadratic, poly-10, Legendre-poly-10} \} \\ \times \\ \Omega(\mathbf{w}) \in \{ \text{ L2 regularizer, L1 regularizer, symmetry regularizer} \} \\ \times \\ \lambda \in \{ 0, 0.01, 1 \}$$

in addition to your favorite combination, may need to try other combinations to get a good g

Model Selection Problem

which one do you prefer? :-)

- 71
- given: M models $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_M$, each with corresponding algorithm $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_M$
- goal: select \mathcal{H}_{m^*} such that $g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$ is of low $E_{\text{out}}(g_{m^*})$
- unknown E_{out} due to unknown $P(\mathbf{x}) \& P(y|\mathbf{x})$, as always :-)
- arguably the most important practical problem of ML

how to select? visually?
—no, remember Lecture 7? :-)

Model Selection by Best Ein

select by best *E*_{in}?

$$m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}} (E_m = \underset{E_{in}}{E_{in}} (\mathcal{A}_m(\mathcal{D})))$$

 \mathcal{H}_2

- Φ_{1126} always more preferred over Φ_1 ; $\lambda=0$ always more preferred over $\lambda=0.1$ —overfitting?
- if \mathcal{A}_1 minimizes E_{in} over \mathcal{H}_1 and \mathcal{A}_2 minimizes E_{in} over \mathcal{H}_2 , $\Longrightarrow g_{m^*}$ achieves minimal E_{in} over $\mathcal{H}_1 \cup \mathcal{H}_2$ \Longrightarrow 'model selection + learning' pays $d_{\text{VC}}(\mathcal{H}_1 \cup \mathcal{H}_2)$ —bad generalization?

selecting by Ein is dangerous

Model Selection by Best Etest

select by best E_{test} , which is evaluated on a fresh \mathcal{D}_{test} ?

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = E_{\text{test}}(\mathcal{A}_m(\mathcal{D})))$$

 \mathcal{H}_2

generalization guarantee (finite-bin Hoeffding):

$$m{\mathcal{E}_{\mathsf{out}}}(g_{m^*}) \leq m{\mathcal{E}_{\mathsf{test}}}(g_{m^*}) + O\left(\sqrt{rac{\log M}{N_{\mathsf{test}}}}
ight)$$

-yes! strong guarantee :-)

• but where is \mathcal{D}_{test} ?—your boss's safe, maybe? :-(

selecting by Etest is infeasible and cheating

Comparison between E_{in} and E_{test}

in-sample error **E**in

- calculated from D
- feasible on hand
- 'contaminated' as \mathcal{D} also used by \mathcal{A}_m to 'select' g_m

test error Etest

- calculated from D_{test}
- infeasible in boss's safe
- 'clean' as D_{test} never used for selection before

something in between: E_{val}

- calculated from $\mathcal{D}_{\mathsf{val}} \subset \mathcal{D}$
- feasible on hand
- 'clean' if \mathcal{D}_{val} never used by \mathcal{A}_m before

selecting by E_{val} : legal cheating :-)

Questions?

Validation Set \mathcal{D}_{val}

$$E_{\text{in}}(h) \qquad \qquad E_{\text{val}}(h)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$g_m = \mathcal{A}_m(\mathcal{D}) \qquad \qquad g_m^- = \mathcal{A}_m(\mathcal{D}_{\text{train}})$$

- $\mathcal{D}_{\text{val}} \subset \mathcal{D}$: called **validation set**—'on-hand' simulation of test set
- to connect E_{val} with E_{out} : $\mathcal{D}_{\text{val}} \stackrel{\textit{iid}}{\sim} P(\mathbf{x}, y) \iff \text{select } K \text{ examples from } \mathcal{D} \text{ at random}$
- to make sure \mathcal{D}_{val} 'clean': feed only $\mathcal{D}_{\text{train}}$ to \mathcal{A}_m for model selection

$$E_{\mathsf{out}}(\underline{g_m^-}) \leq E_{\mathsf{val}}(\underline{g_m^-}) + O\left(\sqrt{\frac{\log M}{K}}\right)$$

Model Selection by Best E_{val}

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = E_{\text{val}}(\mathcal{A}_m(\mathcal{D}_{\text{train}})))$$

generalization guarantee for all m:

$$E_{\mathsf{out}}(oldsymbol{g_m^-}) \leq E_{\mathsf{val}}(oldsymbol{g_m^-}) + O\left(\sqrt{rac{\log M}{K}}
ight)$$

heuristic gain from N – K to N:

$$E_{ ext{out}}\left(\underbrace{m{g}_{m{m}^*}}_{\mathcal{A}_{m{m}^*}(\mathcal{D})}
ight) \leq E_{ ext{out}}\left(\underbrace{m{g}_{m{m}^*}^-}_{\mathcal{A}_{m{m}^*}(m{\mathcal{D}}_{ ext{train}})}
ight)$$

-learning curve, remember? :-)

$$E_{ ext{out}}(g_{m^*}) \leq E_{ ext{out}}(g_{m^*}^-) \leq E_{ ext{val}}(g_{m^*}^-) + O\left(\sqrt{rac{\log M}{K}}
ight)$$

Validation in Practice

use validation to select between \mathcal{H}_{Φ_5} and $\mathcal{H}_{\Phi_{10}}$

- in-sample: selection with E_{in}
- optimal: cheating-selection with E_{test}
- sub-g: selection with E_{val} and report g_{m*}
- full-g: selection with E_{val} and report g_{m*}
 —E_{out}(g_{m*}) ≤ E_{out}(g⁻_{m*}) indeed

why is sub-*g* worse than in-sample some time?

The Dilemma about K

reasoning of validation:

- large K: every $E_{\text{val}} \approx E_{\text{out}}$, but all g_m^- much worse than g_m
- small K: every g_m⁻ ≈ g_m, but E_{val} far from E_{out}

practical rule of thumb: $K = \frac{N}{5}$

Questions?

Extreme Case: K = 1

reasoning of validation:

- take K = 1? $\mathcal{D}_{\text{val}}^{(n)} = \{(\mathbf{x}_n, y_n)\}$ and $\mathbf{E}_{\text{val}}^{(n)}(\mathbf{g}_n^-) = \text{err}(\mathbf{g}_n^-(\mathbf{x}_n), y_n) = e_n$
- make e_n closer to $E_{\text{out}}(g)$?—average over possible $E_{\text{val}}^{(n)}$
- leave-one-out cross validation estimate:

$$E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \text{err}(g_n^{-}(\mathbf{x}_n), y_n)$$

hope: $E_{loocv}(\mathcal{H}, \mathcal{A}) \approx E_{out}(g)$

Illustration of Leave-One-Out

$$E_{\text{loocv}}(\text{constant}) = \frac{1}{3}(e_1 + e_2 + e_3)$$

which one would you choose?

$$m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}}(E_m = E_{\text{loocv}}(\mathcal{H}_m, \mathcal{A}_m))$$

Theoretical Guarantee of Leave-One-Out Estimate

does $E_{loocv}(\mathcal{H}, \mathcal{A})$ say something about $E_{out}(g)$? yes, for average E_{out} on size-(N-1) data

$$\mathcal{E}_{\mathcal{D}} E_{loocv}(\mathcal{H}, \mathcal{A}) = \mathcal{E}_{\mathcal{D}} \frac{1}{N} \sum_{n=1}^{N} e_{n} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}} e_{n}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{\mathcal{D}_{n}(\mathbf{x}_{n}, \mathbf{y}_{n})}^{\mathcal{E}} err(g_{n}^{-}(\mathbf{x}_{n}), \mathbf{y}_{n})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{\mathcal{D}_{n}}^{\mathcal{E}} E_{out}(g_{n}^{-})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \overline{E_{out}}(N-1) = \overline{E_{out}}(N-1)$$

expected $E_{\text{loocv}}(\mathcal{H}, \mathcal{A})$ says something about expected $E_{\text{out}}(g^-)$ —often called 'almost unbiased estimate of $E_{\text{out}}(g)$ '

Leave-One-Out in Practice

Questions?

Disadvantages of Leave-One-Out Estimate

Computation

$$E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \text{err}(g_n^-(\mathbf{x}_n), y_n)$$

- N 'additional' training per model, not always feasible in practice
- except 'special case' like analytic solution for linear regression

 E_{loocv} : not often used practically

V-fold Cross Validation

how to decrease computation need for cross validation?

- essence of leave-one-out cross validation: partition $\mathcal D$ to N parts, taking N-1 for training and 1 for validation orderly
- *V*-fold cross-validation: random-partition of \mathcal{D} to V equal parts,

take V-1 for training and 1 for validation orderly

$$E_{\text{cv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{V} \sum_{v=1}^{V} E_{\text{val}}^{(v)}(g_v^-)$$

• selection by E_{cv} : $m^* = \underset{1 < m < M}{\operatorname{argmin}} (E_m = E_{cv}(\mathcal{H}_m, \mathcal{A}_m))$

practical rule of thumb: V = 10

Final Words on Validation

'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows
- 5-Fold or 10-Fold generally works well: not necessary to trade V-Fold with Leave-One-Out

Nature of Validation

- all training models: select among hypotheses
- all validation schemes: select among finalists
- all testing methods: just evaluate

validation still more optimistic than testing

do not fool yourself and others :-), report test result, not best validation result

Questions?

Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 8: Combatting Overfitting (2)

- Model Selection Problem dangerous by E_{in} and dishonest by E_{test}
- Validation select with $E_{\text{val}}(\mathcal{A}_m(\mathcal{D}_{\text{train}}))$ while returning $\mathcal{A}_{m^*}(\mathcal{D})$
- Leave-One-Out Cross Validation huge computation for almost unbiased estimate
- V-Fold Cross Validation reasonable computation and performance