Filtering Filtering properties Correlation & convolution

Compute function of local neighborhood at each position:

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Really important!

- Enhance images
 - Denoise, resize, increase contrast, etc.
- Extract information from images
 - Texture, edges, distinctive points, etc.
- Detect patterns
 - Template matching

Linear Filters

Linearity:

imfilter(I,
$$f_1 + f_2$$
) =
imfilter(I, f_1) + imfilter(I, f_2)

Shift/translation invariance:

Same behavior given intensities regardless of pixel location m,n

Any linear, shift-invariant operator can be represented as a convolution.

Correlation and Convolution

Definition

2D correlation

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

e.g., h = scipy.signal.correlate2d(f,I)

2D convolution

$$h[m,n] = \sum_{k,l} f[k,l] I[m-k,n-l]$$

e.g., h = scipy.signal.convolve2d(f,I)

Convolution is the same as correlation with a 180° rotated filter kernel. Correlation and convolution are identical when the filter kernel is rotationally symmetric*.

^{*} Symmetric in the geometric sense, not in the matrix linear algebra

Cross-correlation

1	2	3
4	5	6
7	8	9
	W	

1	2	3
4	5	6
7	8	9
	f	

Convolution

1	2	3
4	5	6
7	8	9
	W	

1	2	3
4	5	6
7	8	9
	f	

Convolution

Convolution Properties

Commutative: a * b = b * a

- Conceptually no difference between filter and signal
- But filtering implementations might break this equality, e.g., image edges
- Correlation is _not_ commutative (rotation effect) produces rotated version of output.

Associative: a * (b * c) = (a * b) * c

- Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
- This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$ -> computationally faster
- Correlation is _not_ associative (rotation effect)

Distributes over addition: a * (b + c) = (a * b) + (a * c)

Scalars factor out: ka * b = a * kb = k (a * b)

Identity: a * e = a when e = [0, 0, 1, 0, 0],

Convolution in Convolutional Neural Networks

Convolution is the basic operation in CNNs

 Learning convolution kernels allows us to learn which `features' provide useful information in images. Gaussian Filter

Viewed from top

Christopher Rasmussen

Χ

Kernel size 5 x 5, Standard deviation $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Smoothing with Gaussian Filter

Smoothing with Box Filter

Gaussian Filter Properties

Gaussian convolved with Gaussian...

...is another Gaussian

- So can smooth with small-width kernel, repeat, and get same result as larger-width kernel
- Convolving twice with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$

Separable kernel

Factors into product of two 1D Gaussians

Separability of the Gaussian Filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of *x* and the other a function of *y*

In this case, the two functions are the (identical) 1D Gaussian

Separability Example

2D convolution (center location only)

1	2	1		2	3	3
2	4	2	*	3	5	5
1	2	1		4	4	6

=

Separability Example

2D convolution (center location only)

1	2	1		2	3	3
2	4	2	*	3	5	5
1	2	1		4	4	6

65

65

The filter factors into a product of 1D filters:

Perform convolution along rows:

Followed by convolution along the remaining column:

Separability Use

MxN image, PxQ filter

- 2D convolution: ~MNPQ multiply-adds
- Separable 2D: ~MN(P+Q) multiply-adds

Speed up = PQ/(P+Q)

9x9 filter = \sim 4.5x faster

Example: Box Filter

$$f[\cdot,\cdot]$$

• Replaces each pixel with an average of its neighborhood

• Achieve smoothing effect (remove sharp features)

• Why does it sum to one?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
О	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$
 $m = 1, n = 1$
 $k,l = [-1,0,1]$

$$m = 1, n = 1$$

 $k, l = [-1,0,1]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$
Steve Seitz

$$m = 1, n = 1$$

 $k, l = [-1,0,1]$

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$
Steve Seitz

$$m = 2, n = 1$$

 $k, l = [-1,0,1]$

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$
Steve Seitz

$$m = 3, n = 1$$

 $k, l = [-1,0,1]$

h[.,.]

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$
Steve Seitz

$$m = 4, n = 1$$

 $k, l = [-1,0,1]$

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$
Steve Seitz

$$m = 5, n = 1$$

 $k, l = [-1,0,1]$

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$
Steve Seitz

$$m = 4, n = 6$$

 $k, l = [-1,0,1]$

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$
Steve Seitz

$$m = 6, n = 4$$

 $k, l = [-1,0,1]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

	0	0	0
١.	0	1	0
	0	0	0

0	0	0
0	0	1
0	0	0

2.

3.

1	0	-1
2	0	-2
1	0	-1

 1
 1
 1
 1

 9
 1
 1
 1

 1
 1
 1
 1

Original

0	0	0
0	1	0
0	0	0

?

Original

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

?

Original

Shifted left By 1 pixel

Sobel Filter

1	2	1
0	0	0
-1	-2	-1

Sobel

- What is the 1 2 1 pattern?
 - Binomial distribution or "triangle filter"
 - Discrete approximate to Gaussian; fast for integer mathematics
 - Smooths along edge
- What happens to negative numbers?
- For visualization:
 - Shift image + 0.5
 - If gradients are small, scale edge response

3. Practice with linear filters (Sobel Filter)

1	0	-1
2	0	-2
1	0	-1

3. Practice with linear filters (Sobel Filter)

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

3. Practice with linear filters (Sobel Filter)

1	2	1
0	0	0
-1	-2	-1

3. Practice with linear filters (Sobel Filter)

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

before after

Source: D. Lowe

What does blurring take away?

Let's add it back:

What does blurring take away?

Let's add it back:

$$f_{sharp} = f + \alpha (f - f_{blur})$$

$$= (1 + \alpha)f - \alpha f_{blur}$$

$$= (1 + \alpha)(w * f) - \alpha (v * f)$$

$$= (1 + \alpha)(w * f) - \alpha (v * f)$$

$$= (1 + \alpha)(w + \alpha)(v * f)$$

$$= (1 + \alpha)(w + \alpha)(v * f)$$

$$= (1 + \alpha)(w + \alpha)(v * f)$$

Sharpening filter

Original

Source: D. Lowe

(accentuates edges)

4. Practice with linear filters

after

- The filter window falls off the edge
- Need to extrapolate
- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- The filter window falls off the edge
- Need to extrapolate
- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- The filter window falls off the edge of the image
- Need to extrapolate
- methods:
 - clip filter (black)

- The filter window falls off the edge of the image
- Need to extrapolate
- methods:
 - wrap around

S. Marschner

- The filter window falls off the edge of the image
- Need to extrapolate
- methods:
 - copy edge

- The filter window falls off the edge of the image
- Need to extrapolate
- methods:
 - reflect across edge

S. Marschner

Non-linear Filters

Non-Linear Filter: Median Filter

 Operates over a window by selecting the median intensity in the window.

- 'Rank' filter as based on ordering of gray levels
 - E.G., min, max, range filters

Median Filter

h[.,.]

Salt and Pepper Noise

3 x 3 Mean Filter

11 x 11 Mean Filter

Salt and Pepper Noise

3 x 3 Median Filter

11 x 11 Median Filter

Median filters

- Operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Interpretation: Median filtering is sorting.

Question

• Consider the following image. what will be the new value of the pixel (2,2) of smoothing is done using a 3 x 3 kernel.

$$I = egin{bmatrix} 10 & 20 & 30 & 40 & 50 \ 15 & 25 & 35 & 45 & 55 \ 20 & 30 & 40 & 50 & 60 \ 25 & 35 & 45 & 55 & 65 \ 30 & 40 & 50 & 60 & 70 \end{bmatrix}$$

Question

- Mean Filter (Simple average).
- Average Weighted Filter
- Let's assume a common weighted kernel (e.g., Gaussian-like):

$$K = egin{bmatrix} 1 & 2 & 1 \ 2 & 4 & 2 \ 1 & 2 & 1 \end{bmatrix}$$

- Median Filter
- Min Filter
- Max Filter

Question

- Define the neighborhood for pixel (2,2).
- Assuming 0-based indexing, pixel (2,2) corresponds to the value
 40 (third row, third column).
- The **3×3 neighborhood** around (2,2) is:

$$N = \begin{bmatrix} 25 & 35 & 45 \\ 30 & 40 & 50 \\ 35 & 45 & 55 \end{bmatrix}$$

Edge Detection

Edge Detection

Definition

The process of identifying parts of a digital image with sharp changes (discontinuities) in image intensity.

Beginning to extract information.

Helpful to

- Recognize objects
- Reconstruct scenes
- Edit images (artistically)

Causes of Edges

Edges are caused by a variety of factors

