Ricardo Salgueiro salgueiro@ufs.br

Edilayne Salgueiro edilayne@dcomp.ufs.br

- A Engenharia de Requisitos
 - O projeto deve satisfazer metas do negócio e técnicas que compreendem Requisitos de
 - Disponibilidade
 - Possibilidade de Escalonamento
 - Viabilidade (Baixo Custo)
 - Segurança
 - Facilidade de gerenciamento

- A Metodologia de projeto de redes Top-Down
 - O projeto começa com o entendimento dos requisitos para definição da camada de aplicação seguindo o modelo OSI até a camada física
 - Focaliza os aplicativos, as sessões e o transporte de dados antes de selecionar roteadores, switches e mídia que operam nas camadas mais baixas

□ A oitava camada do Modelo OSI

8. POLÍTICA LOCAL 7. APLICAÇÃO 6. APRESENTAÇÃO 5. SESSÃO 4. TRANSPORTE 3. REDE 2. ENLACE 1. FÍSICA

☐ O perfil do cliente

- A Metodologia de projeto de redes Top-Down é um modelo espiral
 - Parte-se de uma visão global dos requisitos do cliente
 - Com o andamento do projeto define-se detalhes que podem alterar as determinações iniciais

- Fases da Metodologia Top-Down
 - Identificação das Necessidades e das Metas
 - Projeto da Rede Lógica
 - Projeto da Rede Física
 - Teste, Otimização e Documentação do Projeto de Rede

Identificação das Necessidades e das Metas

- Análise das metas e das restrições do negócio
- Análise das metas e das restrições técnicas
- Caracterização da inter-rede existente
- Caracterização do tráfego da rede

- A etapa inicial refere-se ao conhecimento geral do cliente, na qual deve-se
 - Discutir bem suas metas do negócio
 - Entender seu mercado, incluindo fornecedores, produtos e vantagens competitivas
 - Conhecer a estrutura organizacional da empresa, incluindo
 - A estruturação em departamentos
 - Localização de escritórios, fornecedores e parceiros

- Identificar as autoridades influentes
 - Quem pode aceitar, rejeitar ou alterar o projeto
- Definir com o cliente as metas globais do negócio
 - O propósito empresarial da nova rede
 - O impacto que a nova rede pode causar na atividade da empresa

- Após o conhecimento do perfil do cliente é preciso estabelecer quais metas devem ser atingidas para sua satisfação.
- As metas podem incluir
 - Promover uma economia operacional
 - Aumentar a receita e o lucro
 - Aumentar as parcerias

- Melhorar as comunicações na empresa
- Encurtar os ciclos de desenvolvimento de produtos
- Aumentar a produtividade dos funcionários
- Expandir-se para mercados mundiais
- Mudar para um modelo de negócios em rede global
- Atualizar tecnologias

- Reduzir custos com telecomunicações
- Aumentar a disponibilidade de dados
- Melhorar a segurança e a confiabilidade dos aplicativos e dados de missão crítica
- Oferecer melhor suporte ao cliente
- Oferecer novos serviços ao cliente

- Na análise das metas, é imprescindível identificar os aplicativos de rede
 - Pode-se construir uma tabela contendo
 - Nome do aplicativo
 - Tipo do aplicativo
 - Se o aplicativo é novo ou já faz parte da rede (no caso de um projeto de *upgrade* da rede)
 - Nível de importância
 - Comentários

- Conhecidas as metas é importante avaliar as consequências de um fracasso
 - Se o projeto de desenvolvimento falhar
 - Se a rede, depois de instalada, falhar
 - O impacto do sucesso ou fracasso nos níveis mais alto e nos níveis operacionais da empresa
 - Até que ponto um comportamento imprevisto poderia provocar uma ruptura das oprerações

- A análise das restrições do negócio deve relatar
 - Como a política e normas da empresa podem afetar o projeto
 - As restrições orçamentárias e de pessoal
 - O projeto deve se adptar as condições do cliente
 - O orçamento deve incluir a previsão de
 - Compra de equipamentos
 - Licença de software

- Contratos de manutenção e suporte
- Testes
- Treinamento e formação de equipes técnicas
- Possíveis consultorias e terceirizações
- Deve também conter um cronograma acordado com o cliente

- Deve ser acordado com o cliente os requisitos de
 - Facilidade de escalonamento e acesso a dados
 - Disponibilidade
 - Desempenho da rede
 - Segurança
 - Facilidade de gerenciamento
 - Facilidade de uso
 - Facilidade de adaptação
 - Viabilidade

- □ Facilidade de escalonamento e acesso a dados
 - Nível de crescimento que um projeto deve permitir
 - Número de usuários locais
 - Número de usuários remotos
 - Numero de servidores
 - Previsão de inclusão de redes corporativas

Disponibilidade

- Tempo durante o qual uma rede está disponível para o usário
- Expressa em % de ano, mês, dia ou hora
 - Uma rede com 99,70% de disponibilidade está inativa 30 minutos em uma semana
 - Poderia ocorrer de uma só vez
 - Ou a cada hora a rede estaria inativa 10,70 segundos

- Diponibilidade está vinculada a confiabilidade, redundância e resiliência (tempo para recuperação de problemas)
- Pode ser expressa pela relação entre o tempo médio entre falhas (MTBF) e e o tempo média para recuperação (MTTR)
 - DISPONIBILIDADE = MTBF/ (MTBF + MTTR)

- Desempenho da redes
 - Utilização
 - % de largura de banda utilizada durante um período de tempo específico
 - Caso a utilização em um segmento seja maior que um limiar, este segmento deve ser dividido
 - Uma regra típica para ethernet prevê um limiar de 37% devido colisões inerentes ao compartilhamento

Vazão

- Quantidade de dados isentos de erros transmitidos por unidade de tempo
- A vazão aumenta com o aumento da carga oferecida até no máximo, em condições ideais, a capacidade da rede
- A vazão depende
 - do método de acesso
 - da carga na rede
 - da taxa de erros

- A vazão da camada de aplicativo é também chamada de g*oodput*
- Pode ser expressa em termos de
 - bits por segundo (bps)

número de pacotes por segundo (PPS)

Tamanho da estrutura (em bytes)	PPS máximo de Ethernet a 10 Mbps
64	14.880
128	8.445
256	4.528
512	2.349
768	1.586
1.024	1.197
1.280	961
1.518	812

- Fatores que limitam a vazão da camada de aplicativo
 - Taxa de erros de um ponto a outro
 - Parânmetros de protocolos, como tamanho da estrutura e cronômetros de retransmissão
 - Taxa de PPS de dispositivos de interligação
 - Pacotes perdidos em dispositivos de interligação

- Fatores de desempenho de estações de trabalho e servidores
 - » Velocidade de acesso ao disco
 - » Tamanho do cache de disco
 - » Desempenho de drivers de dispositivos
 - » Desempenho do barramento do computador
 - » Desempenho da CPU
 - » Desempenho da memória
 - » Influências do sistema operacional
 - » Ineficiências ou bugs de aplicativos

- Precisão

- A meta é que os dados no destino sejam iguais aos enviados pela origem
- Taxa de erros de bits (BER) típica

− Enlace analógico: 1 em 10⁵

- Enlace de cobre: 1 em 10⁶

- Enlace de fibra óptica: 1 em 10¹¹
- Em redes locais, não deve haver mais de uma estrutura defeituosa em cada 10⁶ bytes verficados com um analisador de protocolos

- Em ethernet a precisão é ditada pelo número de erros de CRC (cyclic Redundancy Check)
 - Colisões que acontecem durante os 8 bytes de preâmbulo não são detectadas
 - Colisões que acontecem entre o preâmbulo e os 64 primeiros bytes são denominadas de colisões válidas
 - Menos de 0,1% das estruturas deve ser afetada por uma colisão válida
 - O tamanho excessivo da rede pode gerar colisões após os 64 primeiros bytes. Estas colisões são ditas tardias e nunca devem acontecer

- Eficiência
 - Especifica o quanto é exigido de sobrecarga para enviar os dados
 - Fatores de sobrecargas
 - Colisões
 - Passagem de tokens
 - Relatórios de erros
 - Repetição de roteamentos
 - reconhecimentos
 - Cabeçalhos

- Retardo

- Depende da tecnologia de transmissão
 - Em fibras ópticas, o sinal é propagado a aproximadamente 2/3 da velocidade da luz no vácuo
 - Em comunicações por satélite o retardo é cerca de 270 ms
 - O retardo para transmitir um pacote de 1.024
 bytes em uma linha T1 de 1,544 Mbps é de 5
 ms
- Depende da latência dos dispositivos de interligação

Depende do tempo de enfileiramento
 Nº de pacotes na fila = utilização / (1 - utilização)

- Variação do retardo (Jitter)
 - Aplicações de voz e vídeo digital são sensíveis ao jitter
 - Aplicativos de áudio/vídeo de desktop podem minimizar o jitter através da técnica de *smoothing* (suavização)
 - As variações de retardo devem ser menores que o tamanho do buffer
 - Uma regra básica é que a variação deve ser 1 ou 2% do retardo

- Tempo de resposta
 - É meta de desempenho vista pelo usuário
 - Um tempo satisfatório deve ser inferior a 100 ms
 - Excluem-se deste limiar medidas como o tempo para transferência de arquivos grandes
 - Implementações do TCP retransmitem dados não reconhecidos após 100 ms

Segurança

- Controle de dados para usuários locais e remotos
- Pode afetar a produtividade pois torna a rede mais lenta devido a processamento de algoritmos de autenticação, monitoração e criptografia

- □ Facilidade de gerenciamento
 - Tipos de Gerenciamento
 - Gerenciamento de desempenho
 - Gerenciamento de falhas
 - Gerenciamento de configuração
 - Gerenciamento de segurança
 - Gerenciamento de contabilidade
 - As informações de gerenciamento não devem sobrecarregar a rede

- □ Facilidade de uso
 - Normas de segurança podem prejudicar a facilidade de uso
 - É importante nomes amigáveis para os hosts
 - O uso de protocolos de configuração dinâmicos como o DHCP (dynamic Host Configuration Protocol) facilita a utilização da rede

Análise das metas e das restrições técnicas

- □ Facilidade de adaptação
 - Às tecnologias futuras
 - Às alterações em parâmetros que determinam a qualidade de serviço (QOS)
 - A problemas e autualizações na rede
- Viabilidade
 - refere-se ao baixo custo do projeto

Análise das metas e das restrições técnicas

- O cliente deve ponderar suas metas
 - Por exemplo:

• Facilidade de escalonamento	20%
 Disponibilidade 	30%
• Desempenho da rede	15%
• Segurança	5%
• Facilidade de gerenciamento	5%
• Facilidade de uso	5%
• Facilidade de adaptação	5%
 Viabilidade 	15%

Análise das metas e das restrições técnicas

- A tabela de aplicativos de rede construída na elaboração das metas do negócio pode ser ampliada com as informações sobre
 - Custo da inatividade
 - MTBF aceitável
 - MTTR aceitável
 - Meta da vazão
 - Limiar de retardo
 - Limiar da variação do retardo

- Em muitos casos o projeto de rede envolve o aproveitamento de uma estrutura já existente, ou mesmo um upgrade
- □ É preciso
 - A caracterização da infra-estrutura existente
 - A verificação do estado da inter-rede existente

- Caracterização da infra-estrutura
 - Desenvolvimento de um mapa da rede
 - Algumas ferramenta auxiliam no desenvolvimento permitindo diagramação, doumentação e pesquisa dos mapas
 - Caracterização do endereçamento e das nomenclaturas utilizadas
 - Caracterização do cabeamento instalado
 - Verficar a concordância com os padrões para cabeamento estruturado

- Verificação do estado da inter-rede
 - Verificar com um analisador de protocolos quais protocolos estão funcionando de fato
 - Estudar o desempenho da rede
 - Analisar a disponibilidade da rede verificando o que há documentado e comparar com os novos objetivos do cliente
 - Avaliar a utilização da rede verificando com cuidado em intervalos de interesse

 O alto tráfego das 17:00 horas foi devido ao broadcast de desligamento das máquinas às 16:50

- Medir a utilização da largura de banda por protocolo verificando a
 - Utilização relativa
 - Quantidade de largura de banda usada pelo protocolo em comparação com a largura de banda total em uso no segmento
 - Utilização absoluta
 - Quantidade de largura de banda usada pelo protocolo em comparação com a capacidade total do segmento
 - Taxa de broadcast e multicast

- Analisar a precisão da rede
 - Pode-se utilizar um BERT (Testador de taxa de erros de bit)
 - Ou medir o número de erros de CRC com um analisador de protocolos
 - È interessante registrar o erros em função do número de bytes vistos pelo analisador
 - Uma boa regra básica é o limiar de uma estrutura incorreta a cada megabyte de dados

- Análisar a eficiência da rede
 - A meta é maximizar o número de bytes de dados em comparação com o número de bytes em cabeçalhos e em pacotes de reconhecimento
 - Os analisadores de protocolos permitem produzir diagramas que documentam a quantidade de estruturas que se enquadram dentro dos padrões desejados

• Medições em uma token ring

- Em redes ethernet
 - Um grande número de estruturas com menos de 64 bytes pode indicar uma quantidade excessiva de colisão
 - Se a colisão aumenta mesmo sem o aumento da utilização, pode haver um problema de componente, como um repetidor ou uma placa de rede com defeito

- Analisar o retardo e o tempo de resposta
 - Pode-se mandar pacotes de ping para medir o tempo de ida e volta (RTT Round Trip Time) e efetuar cálculo estatísticos com média, variância e desvio padrão
- Verificar o Status dos roteadores principais

- □ A antiga regra 80/20 dizia que
 - 80% do tráfego é local
 - 20% do tráfego pertence a outros departamentos ou redes externas
- É uma regra já superada pois o percentual de tráfego remoto tem se tornado cada vez maior
- É preciso um estudo mais detalhado para adequar o projeto às necessidades do cliente

- O estudo compreende
 - Identificar as principais origens e destinos de tráfego
 - Identificar os locais de armazenamento de dados
 - Documentar o fluxo de tráfego na rede existente
 - Caracterizar os tipos de fluxo de tráfego para novos aplicativos de rede
 - Estimar a sobrecarga de tráfego causada por aplicativo

- Identificar as principais origens e destinos de tráfego
 - Deve-se conhecer as comunidades de usários
 - Pode-se montar uma tabela contendo
 - Nome da comunidade de usuário
 - Número de usuários da comunidade
 - Local, ou locais, da comunidade
 - Em concordância com o mapa de rede
 - Aplicativos usados pela comunidade

- Identificar os locais de armazenamento de dados
 - É onde residem os dados da camada de aplicativo
 - Os dados podem ser armazenados em
 - Servidor
 - Celeiro de servidores
 - Mainframe
 - Unidade de backup de fita
 - Biblioteca de vídeo digital

- Pode-se preencher uma tabela contendo
 - Local de armazenamento
 - Localização
 - Aplicativo
 - Comunidade de usuários que utiliza
 - Frequência da sessões do aplicativo
 - Duração média de uma sessão do aplicativo
 - Número de usuários simultâneos

- Algumas suposições podem ser feitas
 - O número de usuários de um aplicativo pode ser igual ao número de usários simultâneos
 - Pode-se considerar que todos os aplicativos são utilizados o tempo todo, estimando a largura de banda para o pior caso
 - Pode-se supor que cada usuário abrirá apenas uma sessão e que cada sessão dura o dia inteiro

- Documentar o fluxo de tráfego na rede existente
 - Com o auxílio de um analisador de protocolos monte uma tabela contendo todas origens e destinos incluindo o fluxo em Mbps e o caminho seguido

- Caracterizar os tipos de fluxo de tráfego para novos aplicativos de rede
 - Fluxo de tráfego terminal/host
 - Fluxo de tráfego cliente/servidor
 - Fluxo de tráfego não-hierárquico
 - Fluxo de tráfego servidor/servidor
 - Fluxo de tráfego de computação distribuída

- Fluxo de tráfego terminal/host
 - É assimétrico. O terminal envia alguns caracteres e o host envia muito caracteres
- Fluxo de tráfego cliente/servidor
 - É bidirecional e assimétrico. Em geral, os pedidos do cliente tem menos de 64 bytes e as respostas do servidor variam de 64 bytes a 1.500 bytes

- Fluxo de tráfego não-hierárquico
 - Em geral é bidirecional e simétrico
- Fluxo de tráfego servidor/servidor
 - É bidirecional e a simetria depende do aplicativo
 - A simetria não ocorre nos casos em que há uma hierarquia de servidores
- Fluxo de tráfego de computação distribuída
 - O fluxo depende da aplicação em questão

- Montar uma tabela contendo
 - Nome do aplicativo
 - Tipo de fluxo de tráfego
 - Protocolo usado pelo aplicativo
 - Comunidade de usuários que utilizam o aplicativo
 - Locais de armazenamento de dados
 - Requisito aproximado de largura de banda
 - Requisito de QoS

- Estimar a sobrecarga de tráfego causada por aplicativo
 - Pode-se considerar o tamanho aproximado de objetos que os aplicativos transferem através da redes
 - Sobrecarga de tráfego devido aos protocolos
 - Estimativa da carga de tráfego causada pela inicialização de estações de trabalho e sessões

Tipo de objeto	Tamanho em Kbytes
Tela de terminal	4
Mensagem de correio eletrônico	. 10
Página da Web (incluindo elementos gráficos GIF e JPEG simples)	50
Planilha eletrônica	100
Documento de processamento de textos	200
Tela gráfica de computador	500
Documento de apresentação	2.000
Imagem de alta resolução (qualidade de impressão)	50.000
Objeto de multimídia	100.000
Banco de dados (backup)	1.000.000

Protocolo	ocolo Detalhes de sobrecarga			
Ethernet Versão II	net Versão II Preâmbulo = 8 bytes, cabeçalho = 14 bytes, CRC = 4 bytes, intervalo entre estruturas (IFG) = 12			
802.3 com 802.2	Preâmbulo = 8 bytes, cabeçalho = 14 bytes, LLC = 3 ou 4 bytes, SNAP (se presente) = 5 bytes, CRC = 4 bytes, IFG = 12 bytes	46		
802.5 com 802.2	Delimitador inicial = 1 byte, cabeçalho = 14 bytes, LLC = 3 ou 4, SNAP (se presente) = 5 bytes, CRC = 4 bytes, Delimitador final = 1 byte, Status de estrutura = 1 byte	29		
FDDI com 802.2	Preâmbulo = 8 bytes, delimitador inicial = 1 byte, cabeça- lho = 13 bytes, LLC = 3 ou 4 bytes, SNAP (se presente) = 5 bytes, CRC = 4 bytes, delimitador final e status de estrutura = cerca de 2 bytes	36		
HDLC	Sinalizadores = 2 bytes, endereços = 2 bytes, controle = 1 ou 2 bytes, CRC = 4 bytes	10		
IP	Tamanho de cabeçalho sem opções	20		
TCP	Tamanho de cabeçalho sem opções	20		
IPX	Tamanho de cabeçalho	30		
DDP	Tamanho de cabeçalho longo ("estendido") da fase 2	13		

Pacotes de inicialização de cliente TCP/IP tradicional (sem DHCP)

Tipo de pacote	Origem	Destino	Tamanho do pacote em bytes	Número de pacotes	Total de bytes		
ARP para se certificar de que seu próprio endereço é exclusivo (opcional)	Cliente	Difusão	28	1	28		
ARP para quaisquer servidores	Cliente	Difusão	28	Depende do número de servidores	Depende		
ARP para roteador	Cliente	Difusão	28	1	28		
Resposta ARP	Servi- dor(es) ou roteador	Cliente	28	Depende do número de servidores	Depende		

Projeto da Rede Lógica

- Projeto da topologia
- Projeto de modelos para endereçamento e nomenclatura
- □ Seleção de protocolos
- Desenvolvimento de segurança de rede e de estratégias de gerenciamento de redes

- Projeto de rede hierárquica
 - O modelo de três camadas permite a agregação e a filtragem do tráfego em três níveis sucessivos de roteamento ou comutação
 - Camada de núcleo
 - Camada de distribuição
 - Camada de acesso

□ Camada de núcleo

- Formada por roteadores e switches de alta tecnologia, otimizados visando à disponibilidade e ao desempenho
- É o backbone de alta velocidadeda inter-rede
- Deve ser altamente confiável e se adaptar rapidamente a mudança
 - É importante haver redundância
- Deve-se priorizar a vazão aos procedimentos de filtragens e outros recursos que degradam o desempenho

- Camada de distribuição
 - É o ponto de demarcação entre a camada de núcleo e de acesso
 - Permite que a camada de núcleo se conecte a diversos locais mantendo desempenho elevado
 - Suas funções
 - Controle de acesso a recursos, por razões de segurança

- Controle do tráfego que atravessa o núcleo, por razões de desempenho
- Determina os domínios de broadcast (também pode ser feito pela camada de acesso)
- Permite configurações de VLANs
- Traduz endereços, permitindo a camada de acesso utilizar endereços particulares

- Camada de acesso
 - Fornece aos usuários de segmentos locais acesso a inter-rede
 - Pode incluir roteadores, switches, pontes e hubs
 - Para inter-redes que incluem pequenos escritórios de filiais e escritório de pessoas que trabalham em casa, a camada de acesso pode oferecer acesso à inter-rede corporativa com o uso de tecnologias como linhas dedicadas digitais, banda larga, etc

- Diretrizes para o projeto de redes hierárquicas
 - Controlar o diâmetro da rede preservando uma latência baixa e previsível
 - Controlar a topologia na camada de acesso para evitar a quebra da hierárquia em três níveis
 - Evitar cadeias
 - uma quarta camada
 - Evitar porta de fundos
 - ligação entre dispositivos de mesma camada

Projeto da topologia

Projeto de Modelos para Endereçamento e Nomenclatura

- A utilização de um modelo estruturado para endereçamento e nomenclatura evita
 - Desperdícios de endereços
 - Introdução de nomes e endereços duplicados e difíceis de administrar
- Deve-se seguir uma hierárquia planejada de autoridades sob nomes e endereços da rede

Seleção de Protocolos

- A seleção de protocolos deve ser baseada nas informações obtidas sobre as metas do negócio e técnicas do cliente
- A facilidade de escalonamento e desempenho dos protocolos são fundamentais na seleção

- Os projetos de segurança e gerenciamento devem ser completados antes do início da fase do projeto físico
- Etapas do projeto de segurança
 - Identificar ativos de rede
 - Analisar riscos de segurança
 - Analisar requisitos de segurança
 - Desenvolver um plano de segurança
 - Definir uma norma de segurança

- Desenvolver procedimentos para aplicar normas de segurança
- Desenvolver uma estratégia de implementação técnica
- Conseguir o comprometimento de usuários, gerentes e pessoal técnico
- Treinar usuários, gerentes e pessoal técnico
- Implementar a estratégia técnica e os procedimentos de segurança

- Testar a segurança e atualizá-la no caso de problemas
- Manter a segurança
 - Programando auditorias
 - Lendo logs de auditoria
 - Respondendo a incidentes
 - Lendo a literatura atual e os alertas divulgados
 - Continuando a testar e treinar
 - Atualizando o plano e normas de segurança

- Um bom projeto de gerenciamento pode ajudar uma organização a alcançar metas de disponibilidade, desempenho e segurança
- O gerenciamento de uma rede pode também introduzir facilidade de escalonamento
 - A análise do comportamento da rede pode resultar em atualizações mais adequadas

Projeto da Rede Física

- Etapas do Projeto
 - Projeto de cabeamento
 - Seleção de Tecnologias de LANs
 - Seleção de equipamentos de Rede

Projeto da Rede Física

- Cabeamento da Rede Local
 - Importância
 - Dimensão exata das necessidades
 - Mudanças ainda enquanto projeto
 - Mudanças de layout
 - Ampliação do sistema
 - Conformidade com padrões internacionais
 - Investimento adequado

Cabeamento da Rede Local

Fases do Projeto de Cabeamento

Cabeamento da Rede Local

Levantamento Físico

- Verificação detalhada de todos os pontos in loco
- Leva em conta todas as interferências possíveis e a infra-estrutura existente e necessária para atender as ligações estabeçecidas pelo Projeto Lógico
- O sucesso de um projeto e da instalação está associado diretamente à qualidade do levantamento que é executado

Cabeamento da Rede Local

Indisponibilidade

 70% das interrupções dos ambientes de produção são causadas por problemas de cabeamento de má qualidade

Cabeamento Estruturado

- Estrututura integrada distribuída em uma edificação ou entre edificações de forma a conectar equipamentos de dados, voz e imagem
- Possui arquitetura aberta e padronizado internacionalmente

Um Projeto Exemplo

Um Projeto Exemplo 5 PCs ---bibl com 5 PCs -----5 PCs Frame Relay c 56 Kbps para Internet 5 servidores 3 impressoras 10 Macs 25 PCs FOIRL para edifício da administração

