

EE/CSCI 451: Parallel and Distributed Computation

Lecture #17

10/15/2020

Viktor Prasanna

prasanna@usc.edu

ceng.usc.edu/~prasanna

University of Southern California

Outline

Last class

- Task Dependency graph
- Critical path
- Max degree of concurrency
- Task Dependency graph (TDG) → Parallel Program

Today

- Decomposition techniques
 - Algorithms
 - Data
- Data distribution (Chapter 3.2)
 - Array data
 - Block distribution
- Graph partitioning
- Mapping (Chapter 3.4)
- Parallel algorithm models (Chapter 3.6)

Announcement

- PHW5 due on 10/22 (Thursday)
- HW6 solution released
- HW7 due on 10/16 (Friday)
- Project Proposal due: 10/18 (extended!)
 - Submit on blackboard
- HW8 will be out on 10/16 and due on 10/22 (1 day before midterm2)
- Final exam date: 2-4 PM Thursday, November 19

Announcement: Midterm 2

- Time: Oct. 23 (Friday) 3:30-5:30 PM
- A sample exam is posted on Piazza!
- Covers material from Sept. 22 to Oct. 16
 - Program mapping questions (covered in Week 6) will be on midterm 2!
- Logistics: same as Midterm 1

Decomposition Techniques

Parallel Solution = Tasks + Concurrency + Interactions

Representation:

Tasks

Dependencies

Interactions

Representation:

Task dependency graph

Task interaction graph

Task interaction graph

Node – task

Edge – interaction between tasks

Type of interactions:

- Staţic / dynamic
 - interactions known at compile time
- Data Access
 - Read data from another task
 - Read/write

Recursive Decomposition Divide and Conquer

A: *n* input array

Choose a pivot element x

Partition A using x

Sort A_0 and A_1 in parallel (recursively)

Example (2)

Each node: Choose pivot

Identify data for left and right subtree

Example - Task Dependency Graph (3)


```
QS(A)
        |A| = 1 return
        Choose pivot x
        A_0 \leftarrow \text{those elements in } A \leq x
        A_1 \leftarrow \text{those elements in } A > x
        Do in parallel
                               ← Parallelism
              QS(A_0)
               QS(A_1)
        End
```

Analysis

Parallel Time

PRAM, *n* processors

 $T_p(n)$ = parallel time for QuickSort using p processes on n data items best case

$$T_n(n) = T_{n/2}(n/2) + O(n)$$

$$T_n(n) = O(n)$$
 best case

worst case
$$T_n(n) = \max\{T_{n-1}(n-1), T_1(1)\} + O(n)$$

$$T_n(n) = O(n^2)$$
 worst case

Example

Merge Sort

$$\mathsf{MS}\,(A(0),\ldots,A(n-1))$$
 Sort \longrightarrow If $|A|=1$ return
$$\mathsf{Do}\,\mathsf{in}\,\mathsf{parallel}$$

$$\mathsf{MS}\,(A(0),\ldots,A(^n/_2-1))$$

$$\mathsf{MS}\,(A(^n/_2),\ldots,A(n-1))$$

$$\mathsf{End}$$

$$\mathsf{Merge}\,\longrightarrow\,\mathsf{Merge}\,\mathsf{the}\,\mathsf{two}\,\mathsf{sorted}\,\mathsf{sequences}\,\mathsf{of}\,\mathsf{size}\,^n/_2$$

Task Dependency Graph

Parallel time on n processor PRAM

 $T_p(n) = \text{parallel time for MergeSort using } p \text{ processes}$ on n data items

$$T_n(n) = T_{n/2}(n/2) + O(n)$$

$$T_1(1) = O(1)$$

$$T_n(n) = O(n)$$
Serial merge

If we use one processor (Serial merge sort)

$$T_1(n) = 2T_1(n/2) + O(n)$$

Note: Decomposition is fast

Merge takes most of the time

Data Decomposition

Decompose data (partition the data)

Operate on data ———— tasks

Usually tasks on the partitioned data are similar and can be performed in parallel

Data decomposition → Concurrent tasks → Performance

Data Decomposition Example

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \rightarrow \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

Partition of input and output matrices into 2×2 submatrices

Task 1:
$$C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1}$$

Task 2: $C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2}$
Task 3: $C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1}$
Task 4: $C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}$

A decomposition of matrix multiplication into four tasks based on the partitioning of matrices above

Owner-Computes Rule

Data

 P_0 performs all computations on the input and output data it owns

Ex: Matrix multiplication $C \leftarrow A \times B$

 $P_{i,j}$ – owns blocks A(i,j), B(i,j), C(i,j)

Computes block C(i, j)

Block size $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$, p = total number of processes

Array Distribution Schemes

Widely used strategy

- Data decomposition using input data partitioning
- Owner computes rule

Defines tasks, mapping to processes

Key problems: Distributing 2-D arrays

Partitioning graph data

Block Distribution (1)

2-D Array ———— Processes

Block (continuous → Process portion of array)

Example

P_0
P_1
P_2
P_3

row-wise distribution

column-wise distribution

Block Distribution (2)

$$p = \text{number of processes} = p_1 \times p_2$$

Block size
$$n/p_1 \times n/p_2$$

P_0	P_1	P_2	P_3
P_4	P_5	P_6	P_7
P_8	P ₉	P ₁₀	P ₁₁
P ₁₂	P ₁₃	P ₁₄	P ₁₅

$$4 \times 4$$
 process grid

P_0	P_1	P_2	P_3	P_4	P_5	P_6	P_7
P ₈	P ₉	P ₁₀	P_{11}	P_{12}	P ₁₃	P_{14}	P ₁₅

 2×8 process grid

Impact of Distribution on Data Sharing (Communication)

Data needed for computing the shaded portion of output matrix (output matrix partitioning)

Load Balancing for MM by Output Partitioning (1)

 $n \times n$ matrix multiplication

p processes

Output partitioning : One dimensional: $\frac{n}{p} \times n$

2-dimensional: $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$

Owner Computes Rule:

Each process does the same amount of work $\binom{n^3}{p}$ Total amount of communication varies

Load Balancing for MM by Output Partitioning (2)

Ex.1: 1-dimensional *p* output processes

$$C \leftarrow A \times B$$

Each process computes $\frac{n}{p}$ output rows

Total Communication = $O(n^2)$ for each output process

Entire B Matrix is needed

Load Balancing for MM by Output Partitioning (3)

Ex.2: 2-dimensional p output processes

$$P_i \rightarrow \frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$$
 blocks of A and B

Each process computes output block of size $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$

Total Communication =
$$O\left(\sqrt{p} \cdot (\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}})\right) \leftarrow Block MM$$

= $O\left(\frac{n^2}{\sqrt{p}}\right)$ per each output process

Cyclic and Block Distribution

Problem: distribute 1-D array n > p elements to p processes

Block Cyclic Distribution (1)

- A variation of block distribution
- Partition the work into many more blocks (αp) than the number of processes
 - -n: problem size (size of input data)
 - p: # of processes
 - L: block size, $=\frac{n}{\alpha p}$ $\{=1 \ to \ \frac{n}{p}\}$
 - $-\alpha$: $1 \le \alpha \le \frac{n}{p}$
- Distribute blocks in a wraparound fashion
 - Block b_i → $P_{i\%p}$ (% is modulo operator)

Block Cyclic Distribution (2)

$$n=16, p=4$$
 processes, $lpha=1$

Block size $L={^n/_{\alpha}p}=4$
 P_0
 P_1
 P_2
 P_3

What if we do more work from left to right?

 P_0 does less work compared with P_3

Block Cyclic Distribution (3)

$$n=16, p=4$$
 processes, $lpha=2$ Block size $L=n/_{\alpha p}=2$ cyclically distribute P_0 P_1 P_2 P_3 P_0 P_1 P_2 P_3

More balanced than $\alpha = 1$

Block Cyclic Distribution (4)

$$n=16, p=4 ext{ processes, } \alpha=4$$

$$ext{Block size } L=\frac{n}{\alpha p}=1$$

$$ext{P_0 P_1 P_2 P_3 P_0 P_1 P_2 P_3 P_0 P_1 P_2 P_3 P_0 P_1 P_2 P_3 $P_0$$$

Load balance?

Note: block size $= 1 \longrightarrow Cyclic distribution$

Example Block Cyclic Distributions

$$p = 4$$
 processes

$$n \times n = 16 \times 16$$

(b) 2 dimensional distribution

Block Cyclic Distribution

Array size $n \times n$ Number of processes = p

Graph Partitioning (1)

Array data distribution (ex. Block cyclic distribution)

Suited for dense matrices

Other class of problems:

- Sparse data structures
- Interactions are (input) data dependent
- Interactions are irregular

Represented using a (undirected) graph

Graph Partitioning (2) Example

(Numerical) Simulation of physical phenomenon
Physical domain → Discretized
Mesh of elements

Model of Lake Superior

Each Point **△**✓✓→

Physical attributes (eg. Temp, chemical composition, water flow value, ...)

Values at node i at time t + 1

= f{Value at time t at node j| j is adjacent to i}

Note: Computation at each node is the same

Graph Partitioning (4)

Partition

Graph $\longrightarrow p$ Processes

Such that

- Load balance (approx. same number of nodes in each partition)
- Reduce communication cost
 Eg. # of edges between partitions

In general, computationally expensive (NP-hard, NP-complete)

Classic problem, many heuristics See METIS software

Mapping based on Task Partitioning (1)

Task-dependency graph (TDG) $\xrightarrow{\text{map}} p$ Processes (node weights , edge weights)

Goals: Load balance

Reduce Idle time

Reduce interaction (communication) time

Mapping based on Task Partitioning (2)

Heuristic: Level by level ordering
Assign to processes

Mapping for Load Balancing

Computation → Tasks

Processes

Objectives

Reduce overhead

Reduce idle time

Reduce inter process communication Evenly distribute the load among the processes

Static Mapping (1)


```
Mapping: Tasks → Processes performed before the execution of the algorithm begins
```

Use Task-dependency graph or
Task-interaction graph
+ Meta-data
Task size
Data size

Most problems are computationally expensive (NP-Complete)

Static Mapping (2)


```
In most cases,

Static mapping Decomposition of tasks based on data partitioning
```

Many scientific computations (eg. Dense matrix algebra)

- Computations are known (statically) at compile time
- Dependency graph is "static"
- Data decomposition is useful in achieving high performance
- Owner-computes rule

Dynamic Mapping (1)

Static mapping may not be effective:

- May lead to unbalanced load
- Task interactions are data dependent

Dynamic Mapping (2)

Distribute tasks among the processes at runtime (during execution of the algorithm)

May also move data

Run-time system monitors and performs dynamic task assignment

Dynamic Mapping (3)

Centralized scheme

Master process is responsible to map tasks to processes

Can become the bottleneck

Dynamic Mapping (4) Self scheduling

When a process becomes idle (completes execution), access the list and fetch a task to execute

Used for scheduling independent iterations of a loop

Processes maintain list of executable tasks
Interact to send/receive work to balance work load
Peer-to-peer system

Parallel Algorithm Models (1)

A parallel algorithm model is a way of structuring a parallel algorithm by selecting a decomposition and mapping technique and applying appropriate strategy to minimize interactions

Parallel algorithm > Tasks + Interactions + Data decomposition

Мар

Processes + Interactions

Parallel Algorithm Models (2) Data-parallel model (1)

Tasks ── processes

Similar tasks operate (in parallel) on different sets of data

- Data partitioning is important to achieve good performance
- Static mapping

Parallel Algorithm Models (3) Data-parallel model (2)

Examples:

•
$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \leftarrow \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$\begin{array}{c} Block \ \mathsf{MM} \\ \mathsf{4} \ \mathsf{processes} \end{array} \qquad C_{11} \downarrow \qquad \downarrow \qquad \downarrow \qquad C_{22} \end{array}$$

SIMD execution model

Single Instruction Multiple Data

Synchronous model

Parallel Algorithm Models (4)

Task Parallel Model (Task graph model)

Exploit parallelism in the graph representation (mapping + scheduling)

Collection of tasks

Any task can be performed by any process

Dynamic mapping of tasks to processes for load balancing

Note: Work pool can be centralized or distributed

Typically: (Small data, large amount of work) per task

Parallel Algorithm Models (6)

Master-Worker Model

Parallel Algorithm Models (7)

Producer-Consumer Model (Pipeline model)

Data (intermediate results) is passed through a series of processes

Stream parallelism

Arrival of data triggers the process

Throughput oriented implementation

Summary

- Parallel Algorithm design
- Data decomposition
- Block Cyclic distribution
- Graph partitioning
- Mapping
 - Static mapping
 - Dynamic mapping
- Parallel algorithm models
 - Task parallel model
 - Work pool model
 - Master-Worker model
 - Producer-Consumer model