TEMA 2 ESTADISTICA BIDIMENSIONAL

TABLAS DE DISTRIBUCION DE FRECUENCIAS BIDIMENSIONALES

 $n_{ij} \rightarrow$ Frecuencia absoluta: número de individuos de la población que presentan la modalidad x_i de X y la modalidad y_i de Y.

Tabla de frecuencias absolutas de una variable bidimensional

	suma	
' _q	$n_{i\cdot}$	
lq	n_{1} .	
2	n _a	

n = N

 $n_{\cdot q}$

(X/Y) y_1 n_{11} n_{12} n_{13} x_1 x_2 n_{23} n_{21} n_{22} n_{2q} n_2 . n_{3q} x_3 n_{31} n_{32} n_{33} n_3 x_p n_{p2} n_{p3} n_{p} . n_{p1} n_{pq}

n.3

Nota: el primer subíndice indica el número de fila y el segundo subíndice indica el número de columna

TAB LA DISTRIBUCION

DE FRECUENCIAS

suma

 $f_{ij} \rightarrow$ Frecuencia relativa: proporción de individuos de la población que presentan la modalidad x_i de X y la modalidad y_i de Y. Se obtiene dividiendo la frecuencia absoluta entre el número de elementos de la población (N).

 $n_{\cdot 2}$

Tabla de frecuencias relativas de una variable bidimensional

 $n_{\cdot 1}$

		7/1/	
•	••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	u		æ

(X/Y)	y_1	<i>y</i> ₂	<i>y</i> ₃	 y_q	n_{i}
x_1	f_{II}	f_{12}	f_{13}	 f_{lq}	$f_{I\cdot}$
x_2	f_{21}	f_{22}	f_{23}	 f_{2q}	$f_{2\cdot}$
x_3	f_{31}	f_{32}	f_{33}	 f_{3q}	f_3 .
x_p	f_{pI}	f_{p2}	f_{p3}	 f_{pq}	$f_{p\cdot}$
$f_{\cdot i}$	$f_{\cdot 1}$	$f_{\cdot 2}$	f.3	 f _{·a}	f.:=1

DISTRIBUCIONES MARGINALES

Estas distribuciones nos indican cómo se distribuye una variable independientemente de los valores que tome la otra.

Distribución marginal de X:

X	$n_{i\cdot}$
x_1	n_{1} .
x_2	n_2 .
x_3	n ₃ .
x_p	n_p .
suma	n =N

Distribución marginal de Y:

Y	$n_{\cdot j}$
y_1	n .1
y_2	$n_{\cdot 2}$
<i>y</i> ₃	n.3
y_q	$n_{\cdot q}$
suma	n=N

Existe una única distribución marginal de X y una única distribución marginal de Y.

DISTRIBUCIONES CONDICIONADAS

Son distribuciones unidimensionales obtenidas a partir de las bidimensionales, manteniendo fijo un valor en una de las variables y considerando los valores que toma la otra con sus respectivas frecuencias

Distribución de X condicionada al valor y_j de Y:

$X Y=y_i$	$n_{i j}$
x_1	n_{1j}
x_2	n_{2j}
x_3	n_{3j}
x_p	n_{pj}
suma	$n_{\cdot j}$

Distribución de Y condicionada al valor x_i de X:

$Y X=x_i$	$n_{j i}$
<i>y</i> ₁	n_{il}
y_2	n_{i2}
<i>y</i> ₃	n_{i3}
y_q	n_{iq}
suma	n_{i}

COVARIANZA

COVARIANZA

$$\sigma_{XY} = Cov(X, Y) = \frac{1}{N} \sum_{j=1}^{q} \sum_{i=1}^{p} (x_i - \overline{x})(y_j - \overline{y}) n_{ij} = \frac{1}{N} \sum_{j=1}^{q} \sum_{i=1}^{p} x_i y_j n_{ij} - \overline{xy}$$

COVARIANZA CALCULO

i,j i,j

Emplo: Calcular la covarianza del Ejemplo 2.2

$X \setminus Y$	1	2	3	4	5	6	$n_{i.}$	$n_{i,}x_{i}$	$n_{i.}x_i^2$	$\sum_{j=1}^{6} x_i y_j n_{ij}$
1	0	1	0	0	0	3	4	4	4	0+2+0+0+0+18=20
2	1	0	1	0	1	0	3	6	12	2+0+6+0+10+0=18
3	1	0	0	2	1	1	5	15	45	3+24+15+18=60
4	2	3	0	0	0	1	6	24	96	8+24+15+18=56
5	2	1	1	0	0	0	4	20	100	10+10+15=35
6	0	1	0	0	1	0	2	12	72	12+30=42
$n_{.j}$	6	6	2	2	3	5	24	81	329	231
$n_{.j}y_j$	6	12	6	8	15	30	77			
$n_{.j}y_j^2$	6	24	18	32	75	180	335			

$$\sigma_{xy} = \sum_{i,j} x_i y_j f_{ij} - \overline{xy} = \frac{231}{24} - 3.3 \times 3.2 = -0.9$$

Ejemplo: Obtener la covarianza de las variables X e Y

Χ\Y	150	170	190	210	Suma	x _i *n _i .	x _i *y _i *n _{ii}
50	10	6	2	0	18	900	145000
70	8	12	6	2	28	1960	336000
90	1	8	10	6	25	2250	420300
Suma	19	26	18	8	71	5110	901300
y _i *n. _i	2850	4420	3420	1680	12370		

Cálculo por filas de x_i*y_j*n_{ij}

$$\bar{x} = \frac{5110}{71} = 71,9718$$

$$\bar{y} = \frac{12370}{71} = 174,2254$$

$$\sigma_{XY} = \frac{901300}{71} - 71,9718 * 174,2256$$

$$= 155,0486$$

REGRESION LINEAL

Recta de regresión de Y respecto X:

Y = a + bX

D representa la pendiente de la recta:

- Si b > 0, representa el incremento que se produce en Y al aumentar en una unidad X.
- Si b < 0, representa la disminución que se produce en Y al aumentar en una unidad X.
- Si b = 0, Y no depende linealmente de X (lo que no significa que sean independientes).

$$b = \frac{\sigma_{xy}}{\sigma_x^2}$$

$$a = \overline{y} - b\overline{x}$$

 \mathbf{a} , ordenada en el origen. Representa el valor que toma Y cuando X = 0.

COEFICIENTE CORRELACION DE PEARSON

$$r = \frac{\sigma_{xy}}{\sigma_x \sigma_y} \; ; \quad -1 \le r \le 1$$

COEFICIENTE DE DETERMINACION

Porcentaje de variabilidad de Y explicada o debida a la regresión

$$R^2 = \frac{\sigma_{\text{exp}}^2}{\sigma_y^2} = 1 - \frac{\sigma_{\text{res}}^2}{\sigma_y^2}, \quad 0 \le R^2 \le 1$$

$$R^2 = r^2 = \frac{\sigma_{xy}^2}{\sigma_x^2 \sigma_y^2}, \quad 0 \le R^2 \le 1$$

■ R² es una medida de la **bondad de ajuste**, del grado de ajuste de la regresión a los datos.