FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA

TÓPICOS AVANZADOS EN OPTIMIZACIÓN COMBINATORIA Y TEORÍA DE GRAFOS

PRÁCTICA 2

Alumno: Rodríguez Jeremías 20 de abril de 2017

1. Ejercicio 2

Sea (S,I) un sistema independiente. Demostraré $M2 \Rightarrow M2' \Rightarrow M2'' \Rightarrow M2$.

$$M2 \Rightarrow M2'$$

 $|F_1| < |F_2|$. Supongamos que $\forall e \in F_2 - F_1$, $F_1 \cup \{e\} \notin I$. Entonces, F_1 es maximal de $F_1 \cup F_2$. Además, F_2 o bien es maximal de $F_1 \cup F_2$, o bien está contenido en $F' \subset F_1 \cup F_2$ con F' maximal en $F_1 \cup F_2$.

Luego, por M2, $|F'| = |F_1|$. Pero $|F'| \ge |F_2| \Rightarrow |F_1| \ge |F_2|$. Absurdo.

$$\therefore \exists e \in F_2 - F_1, F_1 \cup \{e\} \in I$$

$$M2' \Rightarrow M2'')$$

Supongamos que J es independiente maximal de A, pero no es máximo:

$$\exists J' \in I \mid J' \subset A \land |J'| > |J|$$

Luego, por hipótesis:

$$\exists \ e \in (J'-J) \subset A \mid J \cup \{e\} \in I$$

Entonces:

$$\exists e \in A \mid J \cup \{e\} \in I$$

Luego J no es maximal en A. Absurdo.

 \therefore J es máximo en A

$$M2'' \Rightarrow M2)$$

Supongamos que tenemos dos independientes maximales en A: J_1 y J_2 . Por hipótesis ambos serán máximos en A. Luego $|J_1| \leq |J_2| \leq |J_1|$.

$$|J_1| = |J_2|$$

2. Ejercicio 3

Sea $G = (V_1 \cup V_2, E)$ bipartito.

2.1. Apartado A

Veamos que $(E, \{M \subseteq E \mid M \text{ es matching de } G\})$ es un SI.

- ullet es un matching de G, pues al no haber aristas tampoco habrá ninguna con vértices en común.
- Sea M un matching de G y $M' \subset M$. M' seguirá siendo un matching, pues si en M ningún arista tenía vértices en común, tampoco sucederá en un subconjunto de M.

Este sistema independiente no es matroide. Consideremos el siguiente grafo:

Vemos que $M_1 = \{ad\}$ y $M_2 = \{ab, dc\}$ son matchings tales que $|M_1| < |M_2|$ y no podemos agregar aristas de M_2 a M_1 manteniendo la propiedad de matching.

... Es un sistema independiente no matroide.

2.2. Apartado B

Veamos que (S, I_1) es matroide. $((S, I_2)$ es análogo).

- $\emptyset \in I_1$ pues al no haber aristas, tampoco hay dos incidentes en el mismo vértice de V_1 .
- Sea $A \in I_1$ y $A' \subset A$. Supongamos que $A' \notin I_1$. Luego hay dos aristas en A' incidentes en el mismo vértice de V_1 . Luego ambas aristas están en A y resulta $A \notin I_1$. Absurdo. Entonces, $A' \in I_1$.
- Sean $A_1, A_2 \in I_1$ tales que $|A_1| < |A_2|$. Sean $V_1(A_i) \subseteq V_1$, i = 1, 2 los vértices v de V_1 tales que existe alguna arista en A_i incidente en v. Como $|A_1| < |A_2|$, entonces $|V_1(A_1)| < |V_1(A_2)|$. Tomamos un $v \in V_1(A_2) V_1(A_1)$, y consideramos la arista e de A_2 incidente en v. Entonces $A_1 \cup \{e\} \in I_1$. Por ejemplo:

$$A_1 = \{ag, bf, cg, dh, eh\}$$
y $V_1(A_1) = \{a, b, c, d, e\}$
 $A_2 = \{af, dh, eh\}$ y $V_1(A_2) = \{a, d, e\}$

Tomamos, por ejemplo, cg y podemos extender A_1 .

2.3. Apartado C

Debo probar $I_M = I_1 \cap I_2$. Veamos la doble contención:

 \subseteq) Sea $M \in I_M$ un matching de G. Entonces, no hay dos aristas en M que incidan en el mismo vértice de V_1 , pues M no sería matching; luego $M \in I_1$. Análogamente, no hay dos aristas en M que incidan en el mismo vértice de V_2 , pues M no sería matching; luego $M \in I_2$.

 $\therefore M \in I_1 \cap I_2$

 \supseteq) Sea $M \in I_1 \cap I_2$. Supongamos que no es matching. Entonces hay un vertice en el cual inciden dos aristas de M. El vértice está en V_i con $i \in \{1, 2\}$. Entonces, $M \notin I_i$. Entonces, $M \notin I_1 \cap I_2$. Absurdo.

 $M \in I_M$

3. Ejercicio 8

3.1. Apartado A

Sea G = (V, E) un grafo de linea. Entonces, existe $G^* = (V^*, E^*)$ tal que:

$$V = E^* \tag{1}$$

$$e_1e_2 \in E \Leftrightarrow e_1 \ y \ e_2 \ comparten \ un \ extremo \ en \ G^*$$
 (2)

Sea $V' \subseteq V$. Debo probar que el subgrafo inducido(por nodos) por V', llamémoslo H, es un grafo de linea. Es decir, debo hallar un H^* tal que:

- $V' = E(H^*)$
- $e_1e_2 \in E(H) \Leftrightarrow e_1 \text{ y } e_2 \text{ comparten un extremo en } H*$

Propongo como H^* al subgrafo de G^* inducido por el subconjunto de aristas $V' \subseteq V = E^*$

- $V(H) = E(H^*)$ por la forma en que definimos H^* .
- Sea un arista $w_1w_2 \in E(H)$. En particular, $w_1w_2 \in E(G)$. Luego, $w_1, w_2 \in E(G^*)$ y tienen un extremo en común en G^* . Como w_1 y w_2 están en V', sus extremos formarán partes de los vértices de H^* y en particular el extremo que comparten también. Luego, w_1 y w_2 tienen un extremo en común en H^* .

H es grafo de linea; ser de linea es una propiedad hereditaria.

3.2. Apartado B

Sea G un grafo de línea. Voy a suponer, sin perder generalidad, que es conexo (en caso de no serlo, podemos aplicar el razonamiento siguiente sobre sus componentes conexas) y tiene al menos tres vértices (en el caso de un solo vértice, la partición deseada será el conjunto vacío; en el caso de dos vértices unidos por un arista, la partición deseada será la única arista)

Para formar una partición de E(G), considero el grafo G^* . Por cada vértive $v \in V(G^*)$, defino el conjunto de todas las aristas incidentes en él:

$$I_v = \{e \in E(G^*) \mid e \text{ es incidente en } v\} \subseteq V(G).$$

Todas esas aristas, vistas como vértices de G, inducen un subgrafo $G(I_v)$ en G. Notaré como E_v al conjunto de aristas de este subgrafo:

$$E_v = E(G(I_v))$$

Propongo $\mathcal{P} = \{E_v \mid v \in V(G^*) \land E_v \neq \emptyset\}$ como la partición buscada. Informalmente, \mathcal{P} se forma tomando cada vértice v en G^* , considerando todas las aristas que inciden en él -viéndolas como conjunto de vértices en G- y agregando el conjunto de las aristas que unen estos vértices de G como un elemento de la partición.

Para completar el ejercicio debo probar:

- 1. \mathcal{P} es efectivamente una partición de E(G)
- 2. Cada conjunto de \mathcal{P} es una clique en G
- 3. Cada vértice en G pertence a lo sumo a dos de las cliques definidas por \mathcal{P} .
- 1. Veamos que \mathcal{P} es una partición de E(G).
- $E_i \neq \emptyset$: En la definición de \mathcal{P} pedimos expresamente que sus elementos sean no vacíos. Esto es porque si $v \in V(G^*)$ es un vértice colgante, E_v será vacío.
- $\bigcup_{E_i \in \mathcal{P}} E_i = E(G)$: Para esto veamos que todo elemento $e \in E(G)$ pertenece a algún E_i .

$$e \in E(G)$$

$$\Rightarrow e = v_1v_2 \quad v_2v_3$$

$$\Rightarrow v_1v_2, \ v_2v_3 \ son \ aristas \ incidentes \ a \ v_2 \ en \ G^*$$

$$\Rightarrow v_1v_2, \ v_2v_3 \in I_{v_2}$$

$$\Rightarrow e = v_1v_2 \quad v_2v_3 \in E_{v_2} \in \mathcal{P}$$

• $v_i \neq v_j \Rightarrow E_{v_i} \cap E_{v_j} = \emptyset$: Supongamos:

$$\begin{split} E_{v_i} \cap E_{v_j} &\neq \varnothing \\ \Rightarrow & \exists \ e \mid e \in E_{v_i} \land \ e \in E_{v_j} \\ \Rightarrow & \exists \ e \mid e = v_i u \ v_i w \land \ e \in E_{v_j} \\ \Rightarrow & \exists \ e \mid e = v_i v_j \ v_i v_j \end{split}$$

Esto es absurdo pues un arista de G no puede tener esa forma, ya que $v_i v_j$ no es adyacente a si misma en G^* .

- 2. Veamos que cada conjunto E_{v_i} de la partición es una clique en G. Para ello tomamos dos vértices $v_i u$, $v_i w \in E_{v_i}$. Como ambos vértices corresponden a aristas de G^* que comparten el extremo v_i , serán adyacentes en G.
- 3. Consideremos un vértice $a=uv\in V(G)$. ¿A cuántas de cliques de las cliques definidas por \mathcal{P} puede pertenecer como máximo?

Recordemos que ese vértice a corresponde a un arista en G^* de extremos u y v. Entonces, a puede estar a lo sumo en I_v y en I_u y en ningún otro I_i (pues toda arista tiene dos extremos). Consecuentemente, a solo podrá estar en $G(I_v)$ o (inclusivo) en $G(I_u)$.

3.3. Apartado C

Este ejercicio lo escaneé en papel porque necesitaba hacer muchos dibujos.