CODED INEQUALITIES

Directions(1-5): In the following questions, the symbols @, #, %, \$ and * are used with the following meaning as illustrated below.

'A @ B' means 'A Is not smaller than B'

'A # B' means 'A is neither smaller than nor equal to B'

'A % B' means 'A is neither smaller than nor greater than B'

'A \$ B' means 'A is not greater than B'

'A * B' means 'A is neither greater than nor equal to B'

1) **Statements** : T @ V, V # M, M % F

Conclusions : a) T # M

b) T @ F

2) **Statements** : L \$ N, N * F, R % L

Conclusions : a) F # R

b) R \$ N

3) **Statements** : H # I, I @ J, J \$ P

Conclusions : a) H # J

b) H # P

4) **Statements** : L * D, D # K, K \$ J

Conclusions : a) L * K

b) D \$ J

5) **Statements** : Q \$ W, W % E, E @ K

Conclusions : a) Q K

b) W @ K

Now in each of the following the questions assuming the given statements to be true, find which of the two conclusions a and b given below is/are definitely true?

Give answer a): If only conclusion a is true

Give answer b): If only conclusion b is true

Give answer c): If either conclusion a or b is true

Give answer d): If neither conclusion a nor b is true

Give answer e): If both conclusions a and b are true (Options are same for all

questions (1-15))

Explanation:

'A @ B' means 'A Is not smaller than B' $\rightarrow A \ge B$

'A # B' means 'A is neither smaller than nor equal to B' \rightarrow A > B

'A % B' means 'A is neither smaller than nor greater than $B' \rightarrow A = B$

'A \$ B' means 'A is not greater than B' \rightarrow A \leq B

'A * B' means 'A is neither greater than nor equal to B' \rightarrow A < B

1) Answer: a): If only conclusion a is true

Explanation: $T @ V, V \# M, M \% F \rightarrow T \ge V, V > M, M = F \rightarrow T \ge V > M = F$

Conclusion a \rightarrow T # M \rightarrow T > M

The relation between T and M in the statement $T \ge V > M = F : T > M$. So, it is true.

Conclusion $b \to T @ F \to T \ge F$

The relation between T and F in the statement $T \ge V > M = F$: T > F. So, it is not true.

$$(T > M = F \rightarrow T > F)$$

2) Answer: e): If both conclusions a and b are true

Explanation: $L \$ N, N * F, R \% L \rightarrow L \le N, N < F, R = L \rightarrow \mathbf{R} = \mathbf{L} \le \mathbf{N} < \mathbf{F}$

Conclusion $a \rightarrow F \# R \rightarrow F > R$

The relation between F and R in the statement $\mathbf{R} = \mathbf{L} \leq \mathbf{N} < \mathbf{F}$: R < F. So, it is true.

$$(R \le N < F \rightarrow R < F)$$

Conclusion $b \to R \ \ N \to R \le N$

The relation between R and N in the statement $\mathbf{R} = \mathbf{L} \leq \mathbf{N} < \mathbf{F}$: $\mathbf{R} \leq \mathbf{N}$. So, it is true.

3) Answer: a): If only conclusion a is true.

Explanation: H # I, I @ J, J \$ P \rightarrow H > I, I \geq J, J \leq P \rightarrow H > I \geq J \leq P

Conclusion a \rightarrow H # J \rightarrow H > J

The relation between H and J in the statement $H > I \ge J \le P$: H > J. So, it is true.

Conclusion $b \rightarrow H \# P \rightarrow H > P$

The relation between H and P in the statement $H > I \ge J \le P : H > P$ or H < P or H = P. So, it is not true

4) Answer: d): If neither conclusion a nor b is true.

Explanation: L*D, D # K, K \$ J \rightarrow L < D, D > K, K \leq J \rightarrow L < D > K \leq J

Conclusion $a \rightarrow L * K \rightarrow L < K$

The relation between L and K in the statement $L < D > K \le J$: L = K or L > K or L < K. So, it is not

true.

Conclusion $b \rightarrow D \ \ \ J \rightarrow D \le J$

The relation between D and J in the statement $L < D > K \le J$: D = J or D > J or D < J. So, it is not true.

5) Answer: b): If only conclusion b is true.

Explanation : Q \$ W, W % E, E @ K \rightarrow Q \leq W, W = E, E \geq K \rightarrow Q \leq W = E \geq K Conclusion a \rightarrow Q \$ K \rightarrow Q \leq K

The relation between Q and K in the statement $\mathbf{Q} \leq \mathbf{W} = \mathbf{E} \geq \mathbf{K}$: Q = K or Q > K or Q < K. So, it is not true.

Conclusion $b \to W @ K \to W \ge K$

The relation between W and K in the statement $Q \le W = E \ge K$: $W \ge K$. So, it is true.

Directions(6-10): In the following questions, the symbols @, #, \$, @ and % are used with the following meaning as illustrated below.

'P @ Q' means 'P is not smaller than Q'

'P # Q' means 'P is not greater than Q'

'P \$ Q' means 'P is neither greater than nor equal to Q'

'P © Q' means 'P is neither smaller than nor equal to Q'

'P % Q' means 'P is neither greater than nor smaller than Q'

6) Statements : V \$ W, W @ T, T # H

Conclusions : a) $V \otimes T$

b) H % W

7) **Statements** : H © M, M @ E, E \$ C

Conclusions : a) C © M

b) H © E

8) Statements : N @ J, J % R, R \odot H

Conclusions : a) R # N

b) N © H

9) **Statements** : L @ K, K © A, A \$ W

Conclusions : a) W \$ L

b) L # W

10) **Statements** : J # R, R © D, D @ F

Conclusions : a) F \$ R

b) F % R

Explanation:

'P @ Q' means 'P is not smaller than Q'

 $\rightarrow P \ge Q$

'P # Q' means 'P is not greater than Q'

 \rightarrow **P** \leq **Q**

'P \$ Q' means 'P is neither greater than nor equal to Q'

 \rightarrow P < Q

'P © Q' means 'P is neither smaller than nor equal to Q' \rightarrow P > Q

'P % Q' means 'P is neither greater than nor smaller than Q' \rightarrow P = Q

6) Answer: d): If neither conclusion a nor b is true.

Explanation: $V \otimes W, W \otimes T, T \# H \rightarrow V < W, W \ge T, T \le H \rightarrow V < W \ge T \le H$

Conclusion $a \rightarrow V \odot T \rightarrow V > T$

The relation between V and T in the statement $V < W \ge T \le H$: V = T or V > T or V< T. So, it is not true.

Conclusion $b \rightarrow H \% W \rightarrow H = W$

The relation between H and W in the statement $V < W \ge T \le H \rightarrow H = W$ or H > Wor H < W. So, it is not true.

7) Answer: b): If only conclusion b is true.

Explanation: H © M, M @ E, E \otimes C \rightarrow H > M, M \otimes E, E \otimes C \rightarrow H > M \otimes E \otimes C

Conclusion $a \rightarrow C \odot M \rightarrow C > M$

The relation between C and M in the statement $H > M \ge E < C \rightarrow M > C$. So, it is not true.

Conclusion $b \rightarrow H \otimes E \rightarrow H > E$

The relation between H and E in the statement $H > M \ge E < C \rightarrow H > E$. So, it is true.

8) Answer: e): If both conclusions a and b are true.

Explanation: N @ J, J % R, R © H \rightarrow N \geq J, J = R, R > H \rightarrow N \geq J = R > H

Conclusion $a \rightarrow R \# N \rightarrow R \leq N$

The relation between R and N in the statement $N \ge J = R > H$: $N \ge R$. So, it is true.

Conclusion $b \rightarrow N \otimes H \rightarrow N > H$

The relation between N and H in the statement $N \ge J = R > H$: N > H. So, it is true.

9) Answer: d): If neither conclusion a nor b is true.

Explanation: L@K, K@A, A\$W \rightarrow L \geq K, K > A, A < W \rightarrow L \geq K > A < W

Conclusion $a \rightarrow W \ L \rightarrow W < L$

The relation between W and L in the statement $L \ge K > A < W$: W = L or W > L or W < L . So, it is not true.

Conclusion $b \rightarrow L \# W \rightarrow L \leq W$

The relation between L and W in the statement $L \ge K > A < W$: L = W or L < W or L > W. So, it is not true.

10) Answer: a): If only conclusion a is true.

Explanation: $J \# R, R @ D, D @ F \rightarrow J \le R, R > D, D \ge F \rightarrow J \le R > D \ge F$

Conclusion $a \rightarrow F \$ R \rightarrow F < R$

The relation between F and R in the statement $J \le R > D \ge F$: R > F. So, it is true.

Conclusion $b \rightarrow F \% R \rightarrow F = R$

The relation between F and R in the statement $J \le R > D \ge F$: R > F. So, it is not true.

Directions(11-15): In the following questions, the symbols @, @, %, \$ and # are used with the following meaning as illustrated below.

- 'P % Q' means 'P is either smaller than or equal to Q'
- 'P © Q' means 'P is grater than Q'
- 'P # Q' means 'P is neither greater than nor smaller than Q'
- 'P \$ Q' means 'P is smaller than Q'
- 'P @ O' means 'P is either greater than or equal to O'
- 11) **Statements** : B # F, F \$ H, H © K

Conclusions :a) H @ B

b) K \$ B

- 12) **Statements** : H @ T, T © N, N \$ W
 - **Conclusions** : a) N \$ H

b) W \$ H

13) **Statements** : H \$ F, F % M, M © J

Conclusions : a) J \$ F

b) M © H

14) **Statements** : $M \ T, T \% R, M \odot N$

Conclusions : a) M \$ R

b) N \$ T

15) **Statements** : D \$ T, T % B, B @ F

Conclusions : a) D # T

b) D @ F

Explanation:

- 'P % Q' means 'P is either smaller than or equal to Q' $\rightarrow P \leq Q$
- 'P © Q' means 'P is greater than Q'

 \rightarrow **P** > **Q**

- 'P # Q' means 'P is neither greater than nor smaller than Q' \rightarrow P = Q
- 'P \$ Q' means 'P is smaller than Q'

 \rightarrow **P** < **Q**

'P @ Q' means 'P is either greater than or equal to Q' $\rightarrow P \ge Q$

11) Answer: d): If neither conclusion a nor b is true.

Explanation: B # F, F \$ H, H © K \rightarrow B = F, F < H, H > K \rightarrow B = F < H > K Conclusion a \rightarrow H @ B \rightarrow H \geq B

The relation between H and B in the statement $\mathbf{B} = \mathbf{F} < \mathbf{H} > \mathbf{K}$: B < H. So, it is not true.

Conclusion $b \rightarrow K \$ B \rightarrow K < B$

The relation between K and B in the statement $\mathbf{B} = \mathbf{F} < \mathbf{H} > \mathbf{K}$: K = B or K > B or K < B. So, it is not true.

12) Answer: a): If only conclusion a is true.

Explanation : H @ T, T © N, N \$ W \rightarrow H \geq T, T > N, N < W \rightarrow H \geq T > N < W Conclusion a \rightarrow N \$ H \rightarrow N < H

The relation between N and H in the statement $H \ge T > N < W$: H > N. So, it is true.

Conclusion $b \rightarrow W \ H \rightarrow W < H$

The relation between W and H in the statement $H \ge T > N < W : W = H$ or W > H or W < H. So, it is not true.

13) Answer: b): If only conclusion b is true.

Explanation : H \$ F, F % M, M © J \rightarrow H < F, F \leq M, M > J \rightarrow H < F \leq M > J Conclusion a \rightarrow J \$ F \rightarrow J < F

The relation between J and F in the statement $\mathbf{H} < \mathbf{F} \le \mathbf{M} > \mathbf{J}$: J = F or J < F or J > F. So, it is not true.

Conclusion $b \rightarrow M \odot H \rightarrow M > H$

The relation between M and H in the statement $\mathbf{H} < \mathbf{F} \le \mathbf{M} > \mathbf{J} : M > H$. So, it is true.

14) Answer: e): If both conclusions a and b are true.

Explanation : M \$ T, T % R, M © N \rightarrow M < T, T \leq R, M > N \rightarrow N < M < T \leq R Conclusion a \rightarrow M \$ R \rightarrow M < R

The relation between M and R in the statement $N < M < T \le R$: M < R. So, it is true. Conclusion $b \to N \ T \to N < T$

The relation between N and T in the statement $N < M < T \le R : N < T$. So, it is true.

15) Answer: d): If neither conclusion a nor b is true.

Explanation : D \$ T, T % B, B @ F \rightarrow D < T, T \leq B, B \geq F \rightarrow D < T \leq B \geq F Conclusion a \rightarrow D # T \rightarrow D = T

The relation between D and T in the statement $\mathbf{D} < \mathbf{T} \le \mathbf{B} \ge \mathbf{F}$: D < T. So, it is not true. Conclusion $b \to D$ @ F $\to D \ge F$

The relation between D and F in the statement $D < T \le B \ge F$: D < F. So, it is not true.