Data Structure

Trees

Shin Hong

28 Apr 2023

DS&A. Chapter 7. Trees

Motivation

Tree

- A tree is a finite set of one or more nodes such that:
 - there exists a specifically designated node called the root, and
 - the remaining nodes are partitioned into disjoint sets T_1 , T_2 , ..., T_n , where each of these sets is a tree (subtree)

Terminologies

- Node: the item of information
- Branch (edge): links between two nodes (a parent and a child)
- Degree of a node: the number of subtrees
 - Degree of a tree
- Leaf (terminal, external) node: node with degree zero
 - non-terminal (internal) nodes
- Children, Parent, Siblings, Ancestors
- Level of a node
 - depth of a node is the number of the ancestors
- Height of a tree

Ordered Tree

- A tree is ordered if there is a linear ordering defined for children of each node
 - an ordering determines how the tree is used

Tree Representation

- List representation
 - Data, or (Data $(T_1, T_2, ..., T_N)$)
 - E.g., (A(B(E(K,L),F),C(G),D(H(M),I,J)))

Tree Representation

Left child-right sibling representation

Tree Traversal

- A traversal of a tree is a systematic way of accessing (visiting) all nodes
- preorder traversal: visit the root node first, and then visit the sub-trees recursively
- postorder traversal: recursively visit the sub-tree first, and then visit the root node

Binary Tree

- A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees
 - A binary tree is a tree with a degree 2
 - each node may have a left child and a right child
- The definition of binary tree differs from the standard notion of a tree
 - no tree with zero node, but there's an empty binary tree
 - no ordering in children in a tree, but a binary has

Terminologies (1/2)

 A full binary tree of depth k is a binary tree of depth k having 2^k - 1 nodes

Terminologies (2/2)

- A binary tree with n nodes and depth k is **complete** if and only if its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k
- The highest of a complete binary tree with n nodes is $\lceil \log_2(n+1) \rceil$
- A tree is called skewed if nodes are skewed at left or right subtrees

Representation: with array

- If a complete binary with n nodes is represented sequentially, then for any n ode with index i, the following properties hold
 - 1. parent(i) is at index floor $\lfloor i/2 \rfloor$ except the root node (i is 1)
 - 2. left_child(*i*) is at 2*i*
 - 3. right_child(i) is at 2i + 1

Representation: linked list

```
struct tree {
int data ;
struct tree * left;
struct tree * right;
 root
                                root
                                 A
             0 H
                       0
                 0
 0 \mid E \mid 0
```