Лекція 6. Бутстреп

Данило Тавров

2023-03-15

Вступні зауваги

- Сьогодні ми розглянемо надзвичайно цікавий і потужний статистичний інструментарій **бутстреп** (bootstrap)
 - Етимологія терміна походить з ідіоми «pull oneself up by one's bootstraps»
 - Це можна перекласти як «витягти самого себе за шнурівки»
- Метафора доволі промовиста, адже ми зможемо здійснювати статистичне виведення, не маючи жожного уявлення про теоретичний розподіл аналізованих оцінок!
- Корисними матеріалами є:
 - Фундаментальна книжка *All of Statistics* (Larry Wasserman), розділи 7–8 (викладено на диску в загальному каталозі з літературою)
 - Книжка An Introduction to the Bootstrap (Bradley Efron, R.J. Tibshirani), розділи 2, 4–7, 10, 12 (викладено на диску в загальному каталозі з літературою)

Ідея та призначення бустрепу

- Авторство цієї ідеї належить американському статистику Бредлі Ефрону (Bradley Efron)
 - Він опублікував її в статті Bootstrap methods: Another look at the jackknife (The Annals of Statistics, 7 (1), 1–26) у 1979 р.
- Бутстреп дає змогу виконувати статистичне виведення не за допомогою теоретичних розрахунків, а за допомогою симуляцій
- Зокрема, якби ми мали доступ до DGP і могли генерувати вибірки з його допомогою, ми б могли оцінювати розподіли будь-яких цікавих для нас параметрів за методом Монте-Карло
 - Наприклад, ми маємо монетку, але не знаємо, чи вона правильна
 - Ми можемо підкидати її багато разів, і встановити ймовірність випадку герба як емпіричну частку гербів
 - ЗВЧ гарантує близькість цих двох чисел
- Проте на практиці ми маємо доступ тільки до однієї вибірки, і не можемо генерувати нових
- Використовуючи бутстреп, можна **навіть на основі однієї вибірки** оцінити стандартні похибки, довірчі інтервали оцінок невідомих параметрів, тестувати гіпотези з ними тощо
- Застосування бутстрепу не обмежується теоретичною складністю аналізу властивостей деякої оцінки або припущеннями, які висуваються до DGP
- Навпаки, дослідник може бути агностиком щодо конкретного розподілу, який мають дані, але при цьому здійснювати статистичне виведення

План лекції

Plug-in оцінки

2 Застосування до оцінювання стандартних похибок та зміщень

Застосування до довірчих інтервалів

Емпірична функція розподілу (1)

- Так чи інакше, статистичне виведення передбачає, що існує деякий DGP розподіл \mathbb{P}_X , який мають дані з популяції, та відповідна йому функція розподілу F
- Замість популяції ми спостерігаємо випадкову вибірку $X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim} \mathbb{P}_X$, яку позначатимемо через \mathbf{X}
- ullet На її основі можна визначити **емпіричну функцію розподілу** \hat{F} :

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ X_i \le x \}$$
 (1.1)

- $\bullet\,$ Тобто для кожного x це просто ${\bf часткa}$ всіх спостережень, які не перевищують x
- Тривіальне застосування ЗВЧ дає $\hat{F}(x) \stackrel{p}{\to} F(x)$ Це справді очевидно, адже $\mathbb{E}_F\left[\mathbbm{1}\left\{X_i \leq x\right\}\right] = \mathbb{P}_F\left(X_i \leq x\right) = F(x)$
- Більше того, теорема Гливенка-Кантеллі (Glivenko-Cantelli theorem)¹ каже, що

$$\sup_{x} \left| F(x) - \hat{F}(x) \right| \stackrel{\text{M.H.}}{\to} 0 \tag{1.2}$$

5/79

• Тобто ця збіжність є рівномірною

Данило Тавров Лекція 6. Бутстреп 2023-03-15

¹Валерій Гливенко (1896–1940) — український математик. Франческо Кантеллі (Francesco Paolo Cantelli, 1875–1966) — італійський математик

Емпірична функція розподілу (2)

- \bullet Так само, як F однозначно пов'язана з розподілом \mathbb{P}_X , так і \hat{F} однозначно пов'язана зі своїм розподілом, який позначатимемо $\hat{\mathbb{P}}_X$
- Якщо уважно подивитися, то фактично \hat{F} визначає дискретний рівномірний розподіл $\hat{\mathbb{P}}_X$, тобто $X\sim\hat{\mathbb{P}}_X$, якщо

$$\hat{\mathbb{P}}_{X}\left(X=X_{i}\mid\mathbf{X}\right)=\frac{1}{n}\;,\quad i=1,\ldots,n$$

• Для дискретних величин імовірність A дорівнює сумі ймовірностей елементів A:

$$\widehat{\mathbb{P}}_X \left(X \in A \mid \mathbf{X} \right) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \left\{ X_i \in A \right\}$$

Отже

$$\hat{F}(x) \equiv \hat{\mathbb{P}}_X \left(X \le x \mid \mathbf{X} \right) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \left\{ X_i \le x \right\}$$

• Це те саме, що було на попередньому слайді, тобто $\hat{\mathbb{P}}_X$ справді є дискретний рівномірний

Загальний принцип plug-in оцінок

- Будь-яку характеристику DGP, яку ми хочемо оцінити, можна подати як статистичний функціонал (statistical functional)
 - Ми їх часто називаємо параметрами, хоча ці моделі необов'язково є параметричними
- $\bullet\;$ Це фактично функція від \mathbb{P}_X , яку будемо позначати через $T(\mathbb{P}_X)$
- \bullet Наприклад, сподівання можна записати так: $\mathbb{E}_{\mathbb{P}_X}\left[X\right] = T(\mathbb{P}_X) = \int X\,d\mathbb{P}_X$
 - Тут індекс явно вказує, за яким розподілом ми рахуємо
 Це буде потрібно далі, щоб не плутати позначення
- ullet А медіану як $M=T(\mathbb{P}_X)=F^{-1}(0.5)$, адже F і \mathbb{P}_X пов'язані однозначно
- **Plug-in оцінка** (plug-in estimator) деякого $\theta=T(\mathbb{P}_X)$ полягає в тому, що замість \mathbb{P}_X використовують $\hat{\mathbb{P}}_X$:

$$\hat{\theta} = T\left(\hat{\mathbb{P}}_X\right) \tag{1.3}$$

7/79

 \bullet Наприклад, нехай $\theta = T(\mathbb{P}_X) = \mathbb{E}_{\mathbb{P}_X}\left[h(X)\right]$, тоді

$$\hat{\theta} = T\left(\hat{\mathbb{P}}_X\right) = \mathbb{E}_{\hat{\mathbb{P}}_X}\left[h(X)\right] = \int h(X) \, d\hat{\mathbb{P}}_X = \frac{1}{n} \sum_{i=1}^n h(X_i)$$

- Чому саме так?
- Будь-який дискретний розподіл абсолютно неперервний відносно лічної міри!
- Ми про це говорили в Лекції 3

Приклади plug-in оцінок (1)

• Якщо $\theta=\mathrm{Var}_{\mathbb{P}_X}(X)=\mathbb{E}_{\mathbb{P}_X}\left[X^2\right]-(\mathbb{E}_{\mathbb{P}_X}\left[X\right])^2$, то відповідна plug-in оцінка дорівнює

$$\begin{split} \operatorname{Var}_{\widehat{\mathbb{P}}_{X}}\left(X\right) & \equiv \widehat{\sigma}^{2} = \mathbb{E}_{\widehat{\mathbb{P}}_{X}}\left[X^{2}\right] - (\mathbb{E}_{\widehat{\mathbb{P}}_{X}}\left[X\right])^{2} \\ & = \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} - \left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)^{2} = \frac{1}{n}\sum_{i=1}^{n}\left(X_{i} - \overline{\mathbf{X}}\right)^{2} \end{split}$$

- Зверніть увагу, що це зміщена оцінка
- Зазвичай ми користуємося варіантом із n-1 у знаменнику дробу
- ullet Нехай маємо X із розподілом, який має скінченні сподівання μ та дисперсією σ^2
 - Тоді коефіцієнт асиметрії (skewness) дорівнює

$$\operatorname{Skew}_{\mathbb{P}_{X}}(X) = \mathbb{E}_{\mathbb{P}_{X}}\left[\left(\frac{X-\mu}{\sigma}\right)^{3}\right] = \frac{\int (x-\mu)^{3} d\mathbb{P}_{X}}{\left(\int (x-\mu)^{2} d\mathbb{P}_{X}\right)^{3/2}} \tag{1.4}$$

• Його plug-in оцінкою буде

$$\mathrm{Skew}_{\widehat{\mathbb{P}}_{X}}(X) = \frac{\mathbb{E}_{\widehat{\mathbb{P}}_{X}}\left[\left(X - \mathbb{E}_{\widehat{\mathbb{P}}_{X}}\left[X\right]\right)^{3}\right]}{\left(\mathbb{E}_{\widehat{\mathbb{P}}_{X}}\left[\left(X - \mathbb{E}_{\widehat{\mathbb{P}}_{X}}\left[X\right]\right)^{2}\right]\right)^{3/2}} = \frac{\frac{1}{n}\sum_{i=1}^{n}\left(X_{i} - \overline{\mathbf{X}}\right)^{3}}{\widehat{\sigma}^{3}}$$

Данило Тавров Лекція 6. Бутстреп 2023-03-15 8 / 79

Приклади plug-in оцінок (2)

- ullet Нехай $Z=(X,Y)^{ op}$ і нехай $ho=T(\mathbb{P}_Z)=rac{\mathbb{E}_{\mathbb{P}_Z}[(X-\mu_X)(Y-\mu_Y)]}{\sqrt{\mathrm{Var}_{\mathbb{P}_Z}(X)\cdot\mathrm{Var}_{\mathbb{P}_Z}(Y)}}$ коефіцієнт кореляції
- Цей коефіцієнт можна формально записати як

$$T(\mathbb{P}_Z) = a(T_1(\mathbb{P}_Z), T_2(\mathbb{P}_Z), T_3(\mathbb{P}_Z), T_4(\mathbb{P}_Z), T_5(\mathbb{P}_Z))$$

- $\bullet \ \operatorname{Tyr} T_1(\mathbb{P}_Z) = \mathbb{E}_{\mathbb{P}_Z} \left[X \right]$
- $\bullet \ T_2(\mathbb{P}_Z) = \mathbb{E}_{\mathbb{P}_Z} \left[Y \right]$
- $\bullet \ T_3(\mathbb{P}_Z) = \mathbb{E}_{\mathbb{P}_Z} [XY]$
- $\bullet \ T_4(\mathbb{P}_Z) = \mathbb{E}_{\mathbb{P}_Z} \left[X^2 \right]$
- $T_5(\mathbb{P}_Z) = \mathbb{E}_{\mathbb{P}_Z}[Y^2]$
- $a(t_1, t_2, t_3, t_4, t_5) = \frac{t_3 t_1 t_2}{\sqrt{(t_4 t_1^2)(t_5 t_2^2)}}$
- Замінюючи початковий розподіл на емпіричний, дістаємо таку plug-in оцінку (вибірковий коефіцієнт кореляції):

$$\hat{\rho} = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{\mathbf{X}}\right) \left(Y_{i} - \overline{\mathbf{Y}}\right)}{\sqrt{\sum_{i=1}^{n} \left(X_{i} - \overline{\mathbf{X}}\right)^{2}} \sqrt{\sum_{i=1}^{n} \left(Y_{i} - \overline{\mathbf{Y}}\right)^{2}}}$$

Приклади plug-in оцінок (3)

- \bullet Нарешті, нехай випадкова величина X має строго зростаючу функцію розподілу F зі щільністю f
 - ullet Тоді p-ий квантиль (0 < p < 1) можна визначити як $T(F) = F^{-1}(p)$
 - ullet Відтак plug-in оцінкою буде вибірковий квантиль $T\left(\hat{F}\right)=\hat{F}^{-1}(p)$
 - ullet Якщо \hat{F} не має оберненої, кладуть $\hat{F}^{-1}(p) = \inf \left\{ x : \hat{F}^{-1}(x) \geq p
 ight\}$

Спроможність plug-in оцінок (1)

- Нас цікавить, щоб $\hat{\theta} = \theta(\hat{\mathbb{P}}_X) \overset{p}{\to} \theta(\mathbb{P}_X)$
- ullet Із теореми Гливенка-Кантеллі випливає, що в певному сенсі $\hat{\mathbb{P}}_X$ прямує до \mathbb{P}_X
- Теоретично застосування ТНВ дало б підстави стверджувати, що й $\theta(\hat{\mathbb{P}}_X) \stackrel{p}{\to} \theta(\mathbb{P}_X)$
- Тому проблема може полягати в тому, коли саме відображення θ не ϵ «неперервним» у \mathbb{P}_X
- Розгляньмо простий контрприклад
- ullet Нехай маємо деякий розподіл \mathbb{P}_X
- ullet Для $X_1, X_2 \overset{ ext{i.i.d.}}{\sim} \mathbb{P}_X$ нас цікавить параметр

$$\theta(\mathbb{P}_X) = \mathbb{1}\left\{\mathbb{P}_X\left(X_1 = X_2\right) > 0\right\}$$

- \bullet Вочевидь, якщо \mathbb{P}_X відповідає неперервній випадковій величині, то $\theta(\mathbb{P}_X)=0$ завжди
- ullet Проте $heta(\hat{\mathbb{P}}_X)=1$, якою б великою не була вибірка
- Отже збіжности за ймовірністю в цьому випадку не спостерігатиметься

Данило Тавров Лекція 6. Бутстреп 2023-03-15

Спроможність plug-in оцінок (2)

- ullet Аналогічні проблеми виникають, коли heta лежить на межі деякої области значень
- ullet Наприклад, нехай відомо, що $\mathbb{E}_{\mathbb{P}_X}\left[X
 ight] \geq 0$
- ullet Тоді можна задати $\hat{ heta}=\max{\{\overline{\mathbf{X}},0\}}$, щоб значення не були від'ємні
- Тоді якщо $\theta=0$ насправді, то plug-in оцінка цього параметра не буде спроможною
- Теоретичне доведення доволі складне, але потрібно пам'ятати, що існують такі унікальні ситуації, коли plug-in оцінки не є найліпші

Обчислення стандартних похибок plug-in оцінок

- Інколи ми знаємо, як порахувати стандартну похибку $T\left(\hat{\mathbb{P}}_X\right)$ зі статистичної теорії
 - Наприклад, асимптотично для вибіркових середніх чи дисперсій
- Проте часто це зробити неможливо (розподіл оцінки невідомий)
 - Або принаймні складно (напр., асимптотичний розподіл вибіркових квантилів залежить від невідомої щільности)
- Тоді для оцінювання стандартної похибки plug-in оцінок можна використовувати бутстреп
 - Також бутстреп можна застосовувати відразу до побудови довірчих інтервалів, але про це пізніше

Данило Тавров Лекція 6. Бутстреп 2023-03-15

План лекції

🕕 Plug-in оцінки

Застосування до оцінювання стандартних похибок та зміщень

③ Застосування до довірчих інтервалів

Основна ідея

- Підбиймо проміжні підсумки
- $\bullet\,$ Ми маємо DGP з розподілом \mathbb{P}_X , нас цікавить деякий параметр $\theta=T(\mathbb{P}_X)$
- ullet У нас на руках є деяка вибірка $\mathbf{X}=(X_1,\ldots,X_n)$, $X_i \overset{\mathrm{i.i.d.}}{\sim} \mathbb{P}_X$
- ullet Оцінкою параметра є деяка статистика $\hat{ heta} = \hat{ heta}(\mathbf{X})$
 - ullet Це може бути plug-in оцінка $\hat{ heta} = T\left(\hat{\mathbb{P}}_X\right)$
 - Але необов'язково
- Нас цікавить дисперсія цієї оцінки $\mathrm{Var}_{\mathbb{P}_X}\left(\hat{\theta}(\mathbf{X})\right)$
 - \bullet Ми підкреслюємо, що $\hat{\theta}$ залежить від розподілу \mathbb{P}_X , оскільки $X_i \sim \mathbb{P}_X$
 - ullet Наприклад, для $\hat{ heta}=\overline{\mathbf{X}}$ дисперсія $\mathrm{Var}_{\mathbb{P}_{X}}\left(\overline{\mathbf{X}}
 ight)=rac{\mathrm{Var}_{\mathbb{P}_{X}}(X_{i})}{n}$
- Ідея бутстрепу полягає в тому, що \mathbb{P}_X замінюють на $\hat{\mathbb{P}}_X$ і оцінюють $\mathrm{Var}_{\mathbb{P}_X}\left(\hat{\theta}(\mathbf{X})\right)$ як $\mathrm{Var}_{\hat{\mathbb{P}}_X}\left(\hat{\theta}(\mathbf{X}^*)\right)$
 - ullet Так само, як $X_i \sim \mathbb{P}_X$, так і $X_i^* \sim \hat{\mathbb{P}}_X$ (про це далі)
- ullet Для простих ситуацій на кшталт $\overline{\mathbf{X}}$ цього достатньо:

$$\operatorname{Var}_{\widehat{\mathbb{P}}_{X}}\left(\overline{\mathbf{X}^{*}}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}_{\widehat{\mathbb{P}}_{X}}\left(X_{i}^{*}\right) = \frac{1}{n}\left(\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}^{*} - \overline{\mathbf{X}^{*}}\right)^{2}\right)$$

ullet У загальному випадку $\mathrm{Var}_{\hat{\mathbb{P}}_X}\left(\hat{ heta}(\mathbf{X}^*)
ight)$ наближують за допомогою **симуляції** Монте-Карло (Monte Carlo simulation)

Бутстреп-оцінка дисперсії

- Згідно з ЗВЧ та ТНВ, відомо, що вибіркова дисперсія прямує до популяційної за ймовірністю
- ullet Отже можна апроксимувати $\mathrm{Var}_{\widehat{\mathbb{P}}_X}\left(\widehat{ heta}
 ight)$ у такий спосіб
- f 0 Згенерувати B бутстреп-вибірок $f X_1^*,\dots,f X_{B_1}^*$
 - ullet Кожна вибірка $\mathbf{X}_b^* = (X_{1,b}^*, \dots, X_{n,b}^*)$, $X_{i,b}^* \overset{\text{i.i.d.}}{\sim} \hat{\mathbb{P}}_X$
 - Оскільки $\hat{\mathbb{P}}_X$ є (умовним) дискретним рівномірним розподілом $\hat{\mathbb{P}}_X$ ($X=X_i\mid \mathbf{X})=\frac{1}{n}$, нова вибірка фактично є нічим іншим, як вибіркою n значень із \mathbf{X} із повтореннями
- $m{0}$ Обчислити $\hat{ heta}_b^* = \hat{ heta}(\mathbf{X}_b^*)$, $b=1,\dots,B$
- lacktriangle Оцінити дисперсію $\mathrm{Var}_{\mathbb{P}_X}\left(\widehat{ heta}
 ight)$ як вибіркову дисперсію

$$\operatorname{Var}_{\hat{\mathbb{P}}_{X}}\left(\hat{\theta}(\mathbf{X}^{*})\right) \approx \frac{1}{B-1} \sum_{b=1}^{B} \left(\hat{\theta}_{b}^{*} - \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}_{b}^{*}\right)^{2} \tag{2.1}$$

- Тут pprox використано в тому сенсі, що вираз справа прямує за ймовірністю до виразу зліва
- lacktriangle Оцінити стандартну похибку як $\mathsf{se}_{\mathbb{P}_X}\left(\hat{ heta}
 ight)pprox\sqrt{\mathsf{Var}_{\hat{\mathbb{P}}_X}\left(\hat{ heta}(\mathbf{X}^*)
 ight)}$

 Данило Тавров
 Лекція 6. Бутстреп
 2023-03-15
 16/79

	Реальний світ	Світ бутстрепу
Розподіл	\mathbb{P}_X (невідомий!)	$\hat{\mathbb{P}}_X$ (на основі вибірки \mathbf{X})
Параметр	$ heta = T(\mathbb{P}_X)$ (невідомий!)	$\hat{\theta} = T\left(\hat{\mathbb{P}}_X\right)$
Дані	$\mathbf{X} = (X_1, \dots, X_n)^\top \sim \mathbb{P}_X$	$\mathbf{X}^* = (X_1^*, \dots, X_n^*)^\top \sim \hat{\mathbb{P}}_X$
	(єдина вибірка)	(можемо генерувати до-
		вільну кількість)
Оцінка	$\hat{ heta} = \hat{ heta}(\mathbf{X})$	$\hat{ heta}^* = \hat{ heta}(\mathbf{X}^*)$
Дисперсія	$Var_{\mathbb{P}_X}\left(\widehat{ heta} ight)$	$Var_{\widehat{\mathbb{P}}_X}\left(\widehat{ heta}(\mathbf{X}^*) ight)$
Оцінка дисперсії	$\operatorname{Var}_{\widehat{\mathbb{P}}_X}\left(\widehat{ heta}(\mathbf{X}^*) ight)\stackrel{p}{ ightarrow}$	$rac{1}{B-1}\sum_{b=1}^{B}\left(\widehat{ heta}_{b}^{*}-\overline{\widehat{ heta}^{*}} ight)^{2}\stackrel{p}{ ightarrow}$
	$Var_{\mathbb{P}_X}\left(\widehat{ heta} ight)$	$\operatorname{Var}_{\widehat{\mathbb{P}}_{X}}\left(\widehat{ heta}(\mathbf{X}^{\widehat{*}})\right)$

Данило Тавров Лекція 6. Бутстреп 2023-03-15

Оцінювання зміщення оцінок (1)

• У схожий спосіб можна оцінити **зміщення** (bias) деякої оцінки

$$\operatorname{Bias}_{\mathbb{P}_X}\left(\hat{\theta}(\mathbf{X})\right) = \mathbb{E}_{\mathbb{P}_X}\left[\hat{\theta}(\mathbf{X})\right] - \theta$$

- (Тим більше, що plug-in оцінки часто є зміщені)
- Plug-in оцінкою зміщення в природний спосіб буде величина

$$\operatorname{Bias}_{\widehat{\mathbb{P}}_{X}}\left(\widehat{\theta}(\mathbf{X}^{*})\right) = \mathbb{E}_{\widehat{\mathbb{P}}_{X}}\left[\widehat{\theta}(\mathbf{X}^{*})\right] - T\left(\widehat{\mathbb{P}}_{X}\right) \tag{2.2}$$

- У простих випадках ми можемо порахувати відповідні plug-in оцінки зміщень
- ullet Нехай $heta=\mathbb{E}_{\mathbb{P}_X}\left[X
 ight]$, $X\sim\mathbb{P}_X$, тоді $\hat{ heta}(\mathbf{X})=\overline{\mathbf{X}}$
- Зміщення дорівнює
 Bias $(\hat{\theta}(\mathbf{X})) = \mathbb{F}_{\mathbf{x}} [\hat{\theta}(\mathbf{X})] \theta = \mathbb{F}_{\mathbf{x}}$

$$\operatorname{Bias}_{\mathbb{P}_{X}}\left(\hat{\theta}(\mathbf{X})\right) = \mathbb{E}_{\mathbb{P}_{X}}\left[\hat{\theta}(\mathbf{X})\right] - \theta = \mathbb{E}_{\mathbb{P}_{X}}\left[X_{i}\right] - \mathbb{E}_{\mathbb{P}_{X}}\left[X_{i}\right] = 0$$

- ullet Тоді $\mathrm{Bias}_{\hat{\mathbb{P}}_{X}}\left(\hat{ heta}(\mathbf{X}^{*})
 ight) = \mathbb{E}_{\hat{\mathbb{P}}_{X}}\left[\hat{ heta}(\mathbf{X}^{*})
 ight] \hat{ heta}(\mathbf{X}) = rac{1}{n}\sum_{i=1}^{n}\mathbb{E}_{\hat{\mathbb{P}}_{X}}\left[X_{i}^{*}
 ight] \overline{\mathbf{X}}$
- ullet Оскільки $\hat{\mathbb{P}}_X$ є (умовним) дискретним розподілом, $\mathbb{E}_{\hat{\mathbb{P}}_X}[X_i^*] = rac{1}{n}\sum_{i=1}^n X_i = \overline{\mathbf{X}}$
- ullet Остаточно $\mathrm{Bias}_{\widehat{\mathbb{P}}_{\mathbf{X}}}\left(\widehat{ heta}(\mathbf{X}^*)
 ight)=\overline{\mathbf{X}}-\overline{\mathbf{X}}=0$
- Іншими словами, plug-in оцінка зміщення є нульовою, що не дивно, адже й сама оцінка $\hat{ heta}(\mathbf{X}) = \overline{\mathbf{X}}$ мала нульове зміщення

Оцінювання зміщення оцінок (2)

- Розгляньмо тепер параметр $\theta = \operatorname{Var}_{\mathbb{P}_{\mathbf{Y}}}(X)$
- \bullet Її plug-in оцінкою є $\hat{\theta}(\mathbf{X}) = \operatorname{Var}_{\hat{\mathbb{P}}_{-}}(X) \equiv \hat{\sigma}^2 = \frac{1}{n} \left(X_i \overline{\mathbf{X}} \right)^2$

 - Ми знаємо, що вона зміщена
 $\mathrm{Bias}_{\mathbb{P}_X}\left(\hat{\sigma}^2\right) = -\frac{1}{n}\mathrm{Var}_{\mathbb{P}_X}\left(X\right)$
- ullet Порахуймо тепер оцінку цього зміщення Віаs $_{\hat{\mathbb{P}}_{\mathbf{X}}}\left(\hat{\sigma}^2(\mathbf{X}^*)
 ight)$
- Оскільки \mathbb{P}_{X} є (умовним) дискретним, його дисперсією є

$$\mathrm{Var}_{\widehat{\mathbb{P}}_{X}}\left(X_{i}^{*}\right)=\mathbb{E}_{\widehat{\mathbb{P}}_{X}}\left[\left(X_{i}^{*}\right)^{2}\right]-\left(\mathbb{E}_{\widehat{\mathbb{P}}_{X}}\left[X_{i}^{*}\right]\right)^{2}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-\left(\overline{\mathbf{X}}\right)^{2}=\widehat{\sigma}^{2}$$

- ullet А отже $\mathbb{E}_{\hat{\mathbb{P}}_{Y}}\left[\left(X_{i}^{*}\right)^{2}\right]=\mathrm{Var}_{\hat{\mathbb{P}}_{Y}}\left(X_{i}^{*}\right)+\left(\mathbb{E}_{\hat{\mathbb{P}}_{Y}}\left[X_{i}^{*}\right]\right)^{2}=\hat{\sigma}^{2}+\left(\overline{\mathbf{X}}\right)^{2}$
- ullet Також, через незалежність, маємо ${\sf Cov}_{\hat{\mathbb{P}}_{{f v}}}(X_1^*,X_2^*)=0$
 - Тобто $\mathbb{E}_{\hat{\mathbb{P}}_X}\left[X_1^*X_2^*\right] = \mathbb{E}_{\hat{\mathbb{P}}_Y}\left[X_1^*\right]\mathbb{E}_{\hat{\mathbb{P}}_Y}\left[X_2^*\right] = \left(\overline{\mathbf{X}}\right)^2$
- Тоді можна показати, що

$$\mathbb{E}_{\widehat{\mathbb{P}}_X}\left[\widehat{\sigma}^2(\mathbf{X}^*)\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}_{\widehat{\mathbb{P}}_X}\left[\left(X_i^* - \overline{\mathbf{X}^*}\right)^2\right] = \left(1 - \frac{1}{n}\right)\widehat{\sigma}^2$$

- ullet Відтак Віаs $_{\hat{\mathbb{P}}_{\mathbf{X}}}\left(\hat{\sigma}^2(\mathbf{X}^*)
 ight) = \mathbb{E}_{\hat{\mathbb{P}}_{\mathbf{Y}}}\left[\hat{\sigma}^2(\mathbf{X}^*)
 ight] \hat{\sigma}^2 = -rac{1}{2}\hat{\sigma}^2$
- Це дуже схоже на зміщення початкової оцінки

Оцінювання зміщення оцінок (3)

- ullet У більшості інших випадків обчислити $\mathrm{Bias}_{\hat{\mathbb{P}}_X}\left(\hat{\theta}(\mathbf{X}^*)\right)$ складно
- Тому його апроксимують за допомогою симуляції Монте-Карло бутстреп-вибірок та обчислення відповідного вибіркового середнього:

$$\operatorname{Bias}_{\widehat{\mathbb{P}}_X}\left(\widehat{\theta}(\mathbf{X}^*)\right) \approx \frac{1}{B}\sum_{b=1}^B \widehat{\theta}_b^* - T\left(\widehat{\mathbb{P}}_X\right)$$

- Тут ≈ використано в тому сенсі, що вираз справа прямує за ймовірністю до виразу зліва
- Важливе зауваження: оцінка параметра θ в принципі може бути не plug-in оцінкою (напр., ми оцінюємо дисперсію незміщеною оцінкою)
- ullet Але в (2.2) $\hat{ heta}(\mathbf{X})$ повинна бути **саме plug-in оцінкою**
 - Трішки конкретніше, нехай маємо оцінку $\tilde{\theta}(\mathbf{X})$, яка не є plug-in оцінкою, і оцінку $\hat{\theta}(\mathbf{X})$, яка є plug-in оцінкою
 - Тоді (2.2) матиме вигляд

$$\operatorname{Bias}_{\hat{\mathbb{P}}_X}\left(\tilde{\theta}(\mathbf{X}^*)\right) = \mathbb{E}_{\hat{\mathbb{P}}_X}\left[\tilde{\theta}(\mathbf{X}^*)\right] - \hat{\theta}(\mathbf{X})$$

- ullet Це тому, що ми підставляємо $\hat{\mathbb{P}}_X$ замість \mathbb{P}_X усюди
 - ullet У тому числі в $heta = T(\mathbb{P}_X)$, щоб дістати $\hat{ heta} = T(\hat{\mathbb{P}}_X)$

Данило Тавров Лекція 6. Бутстреп 2023-03-15 20/79

 У будь-якому випадку корекцію зміщення (bias correction) можна виконати, віднявши (оцінку) зміщення від оцінки параметра:

$$\hat{\theta}^{BC} = \hat{\theta}(\mathbf{X}) - \left(\frac{1}{B}\sum_{b=1}^B \hat{\theta}_b^* - \hat{\theta}(\mathbf{X})\right) = 2\hat{\theta}(\mathbf{X}) - \frac{1}{B}\sum_{b=1}^B \hat{\theta}_b^*$$

- Проте потрібно бути дуже акуратними
 - ullet Як відомо, MSE $(\hat{ heta}) = ext{Var}\left(\hat{ heta}\right) + ext{Bias}^2\left(\hat{ heta}\right)$
 - А тому нас цікавить не те, зміщена оцінка чи ні, а наскільки велику МЅЕ вона має
 - ullet Зокрема, $ext{MSE}(\hat{ heta}) = ext{Var}\left(\hat{ heta}
 ight) \left(1 + \left(rac{ ext{Bias}^2(\hat{ heta})}{ ext{Var}(\hat{ heta})}
 ight)^2
 ight)$
 - Тобто головне, щоб зміщення було невеликим відносно стандартної похибки
 - В окремих випадках може так статися, що скоригована оцінка має вищу стандартну похибку

21/79

 Щоб перевірити, чи призводить корекція зміщення до збільшення стандартної похибки, можна застосувати подвійний бутстреп (double bootstrap)

Данило Тавров Лекція 6. Бутстреп 2023-03-15

• Для підрахунку MSE початкової оцінки $\widehat{\theta}$ ми генеруємо бутстреп-вибірки $\mathbf{X}_1^*,\dots,\mathbf{X}_B^*$, рахуємо для кожної з них $\widehat{\theta}_b^*$ і обчислюємо

$$MSE\left(\hat{\theta}\right) = \frac{1}{B}\sum_{b=1}^{B}\left(\hat{\theta}_{b}^{*} - \hat{\theta}(\mathbf{X})\right)^{2}$$

- Для підрахунку MSE скоригованої оцінки $\hat{\theta}^{BC}$ ми B' разів генеруємо бутстреп-вибірки $\mathbf{X}_1^{*,k},\dots,\mathbf{X}_B^{*,k},k=1,\dots,B'$
 - ullet На основі вибірок $\mathbf{X}_1^{*,k},\ldots,\mathbf{X}_B^{*,k}$ обчислюємо $\hat{ heta}_k^{BC}$
 - І тоді

$$MSE\left(\hat{\theta}^{BC}\right) = \frac{1}{B'} \sum_{k=1}^{B'} \left(\hat{\theta}_k^{BC} - \hat{\theta}(\mathbf{X})\right)^2$$

Ілюстрація бутстрепу (1)

- Розгляньмо DGP $\mathbb{P}_X \sim \operatorname{Exp}\left(4\right)$
- ullet Нехай маємо вибірку $X_1,\dots,X_n \overset{\mathrm{i.i.d.}}{\sim} \mathbb{P}_X$
- ullet Нас цікавлять оцінки сподівання та дисперсії \mathbb{P}_X
 - ullet Відомо, що $\mathbb{E}_{\mathbb{P}_X}\left[X
 ight]=rac{1}{4}=0.25$, $\mathrm{Var}_{\mathbb{P}_X}\left(X
 ight)=rac{1}{16}=0.0625$
 - ullet Plug-in оцінками сподівання та дисперсії будуть \overline{X} та $\hat{\sigma}^2$ відповідно
- Розгляньмо вибірку розміру n = 500
- На минулій лекції ми з'ясували, що в цьому випадку розподіли відповідних оцінок будуть майже нормальні
 - Зокрема, $\overline{X} \stackrel{\text{a}}{\sim} N\left(\frac{1}{4}, \frac{1}{16n}\right) = N(0.25, 6.25 \cdot 10^{-5})$
 - $\bullet \ \ {\rm A} \ \hat{\sigma}^2 \overset{\rm a}{\sim} N \left(\frac{n-1}{n} \cdot \frac{1}{16}, \frac{(n-1)^2}{n^2} \cdot \frac{1}{32n} \right) \approx N \left(0.062, 3.12 \cdot 10^{-5} \right)$
- Можемо перевірити, чи буде мати приблизно такий розподіл бутстреп-оцінка для різних B=100,500,1000

Данило Тавров Лекція 6. Бутстреп 2023-03-15

• Генеруємо бутстреп-вибірки та рахуємо вибіркові статистики

```
n <- 100
lambda <- 4
set.seed(100)

x <- rexp(n, rate = lambda)

df <- NULL
for (B in c(100, 500, 1000)) {
    x_ast <- replicate(B, sample(x, replace = TRUE))
    means <- colMeans(x_ast)
    vars <- colSums((x_ast - means)^2 / n)

df <- rbind(df, tibble(mean = means, var = vars, B = B))
}</pre>
```

- Стандартними похибками на основі асимптотичного нормального розподілу є se $(\overline{X}) pprox 0.0079$ і se $(\hat{\sigma}^2) pprox 0.0056$
- Стандартними похибками на основі бутстреп-розподілу є відповідні середньоквадратичні відхилення

• Як можна бачити, ці значення дуже близькі до справжніх

 Зміщеннями на основі бутстреп-розподілу є відповідні різниці між вибірковими середніми та оцінками

- Як можна бачити, у цьому випадку обидві оцінки є фактично незміщені
 - Вибіркове середнє за теорією

3 1000 0 000287 0 000697

ullet Вибіркова дисперсія — тому що $-\frac{1}{n}\hat{\sigma}^2 pprox -5.3 imes 10^{-4}$

Ілюстрація бутстрепу (4) — розподіл \overline{X}

- ullet Можна помітити, що оцінка \overline{X} є незміщеною
 - ullet Справді, відповідні бутстреп-розподіли центровані навколо \overline{X}
 - ullet Яке ϵ справжнім сподіванням для $\hat{\mathbb{P}}_X$
- ullet Також зі збільшенням B підвищується якість гістограм бутстреп-оцінок
- А самі гістограми прямують до нормального розподілу з центром в \overline{X} та дисперсією, дуже подібною на $\mathrm{Var}_{\mathbb{P}_X}(\overline{X})$

Данило Тавров Лекція 6. Бутстреп 2023-03-15

Ілюстрація бутстрепу (5) — розподіл $\hat{\sigma}^2$

• Висновки аналогічні попередньому випадку

- Усі ці розрахунки можна повторити, використовуючи функцію boot із пакету boot
- Спочатку потрібно створити функцію з двома параметрами дані та вектор індексів

```
boot_mean_var <- function(x, indices) {
    n <- length(x)
    return(c(mean(x[indices]), (n - 1)/n * var(x[indices])))
}</pre>
```

• Тепер можемо запустити весь процес

```
n <- 100
Bs <- c(100, 500, 1000)
lambda <- 4
set.seed(100)
x <- rexp(n, rate = lambda)

boot_result_meanvar_1 <- boot(x, statistic = boot_mean_var, R = Bs[1])
boot_result_meanvar_2 <- boot(x, statistic = boot_mean_var, R = Bs[2])
boot_result_meanvar_3 <- boot(x, statistic = boot_mean_var, R = Bs[3])</pre>
```

- Вихідний об'єкт має клас boot і містить, серед іншого, такі корисні поля:
 - t0 значення $\hat{\theta}(\mathbf{X})$
 - ullet t матриця з усіма $\hat{ heta}_b^*$

Ілюстрація бутстрепу з функцією boot (2)

• Так, для нашого прикладу маємо:

Ілюстрація бутстрепу з функцією boot (3)

• Відповідна візуалізація:

- Можна бачити, що розподіли схожі на здобуті вище
- Також можемо бачити, що ці розподіли прямують до нормальних
 - ullet Згадайте, що це розподіли бутстреп-оцінок $\overline{ heta}(\mathbf{X}^*)$, а не наших початкових
- Є підстави вважати, що й розподіли початкових оцінок асимптотично нормальні
 - Це ми знаємо з теорії!
 Данило Тавров

Застосування бутстрепу до багатовимірного розподілу (1)

- До цього моменту ми розглядали ситуацію, коли є наявний деякий DGP \mathbb{P}_X , за допомогою якого згенеровано вибірку X_1,\dots,X_n
 - ullet На основі цієї вибірки ми обчислюємо деяку статистику $\hat{ heta}$
 - За допомогою бутстрепу ми обчислюємо її стандартну похибку
 - ullet Для цього ми замінюємо \mathbb{P}_X на емпіричний аналог $\hat{\mathbb{P}}_X$
 - За допомогою $\hat{\mathbb{P}}_X$ генеруємо B вибірок, для кожної з яких рахуємо значення $\hat{\theta}^*$
 - ullet Середньоквадратичне відхилення $\hat{\sigma}$ для набору значень $\hat{ heta}^*$ вважаємо приблизно рівним $\widehat{\mathrm{se}}_{\mathbb{P}_{Y}}\left(\hat{ heta}\right)$
- У цю ж схему вкладається й обчислення статистик на основі вибірок із багатовимірних розподілів
 - Наприклад, для обчислення кореляції між випадковими величинами X та Y, які утворюють випадковий вектор $(X,Y)^\top$
 - ullet Тоді DGP ϵ **спільний розподіл** \mathbb{P}_{XY} цього вектора

 - $\bullet\;$ Емпіричним аналогом буде розподіл \mathbb{P}_{XY} , який кожному **рядку** матриці зіставляє ймовірність $\frac{1}{n}$

31 / 79

• Тоді генерування бутстреп-вибірок потрібно здійснювати шляхом випадкового вибору **рядків** матриці з повтореннями

Застосування бутстрепу до багатовимірного розподілу (2)

- Розгляньмо бутстреп для вибіркової кореляції для багатовимірного нормального розподілу з кореляцією 0.9
- Оскільки ми не знаємо теоретичного асимптотичного розподілу, то ми його просимулюємо за допомогою методу Монте-Карло

• Як можна бачити, розподіл не є нормальним (скошений уліво)

Ланило Тавров Лекція 6. Бутстрец 2023-03-15

Застосування бутстрепу до багатовимірного розподілу (3)

• Тепер обчислімо бутстреп-кореляції:

- Якщо на вхід boot подати матрицю або датафрейм, то вона сприйматиме кожний рядок як спостереження
 - Це дуже зручно
- Можна вказати аргумент simple = TRUE, щоб генерувати індекси нової вибірки окремо для кожної вибірки
 - ullet Це може зекономити пам'ять, якщо початковий датасет та R дуже великі

Застосування бутстрепу до багатовимірного розподілу (4)

- Можемо порівняти стандартні похибки і зміщення
- На основі Монте-Карло ми бачимо, що «теоретичні» такі значення

```
mean(cors_monte_carlo)
## [1] 0.8987286

sd(cors_monte_carlo)
## [1] 0.0196371
```

- Тобто в принципі оцінка є незміщена
 - А її стандартна похибка приблизно дорівнює 0.02
- На основі бутстреп-розподілу маємо такі результати:

```
df_boot %>% group_by(B) %>% summarize(se_cor = sd(cor), bias_cor = mean(cor) - boot_cor(X))
## # A tibble: 3 x 3
## B se_cor bias_cor
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <br/>## 1 100 0.0109 -0.000222
## 2 500 0.0115 -0.0000594
## 3 1000 0.0114 0.000544
```

Вони дуже подібні до «теоретичних»

Застосування бутстрепу до багатовимірного розподілу (5)

- Тут чорним наведено оцінку щільности розподілу з симуляції Монте-Карло
- Можна бачити, що бутстреп-розподіл подібний до справжнього

Данило Тавров Лекція 6. Бутстреп 2023-03-15

Застосування бутстрепу до складних статистик (1)

- Розгляньмо бутстреп для такої цікавої статистики
- Нехай нас цікавить інвестування фіксованої суми грошей у два фінансові інструменти з прибутковістю X та Y відповідно
 - Х та У випадкові
- $\bullet\;$ В актив X інвестуватимемо частку α коштів, а в актив Y частку $1-\alpha$
- Ми хочемо підібрати таке α , щоб **дисперсію** всього портфеля було **мінімізовано**:

$$\alpha = \mathop{\arg\min}_{a} \mathop{\mathrm{Var}} \left(aX + (1-a)Y \right)$$

• Можна показати², що

$$\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}$$

• Вочевидь, plug-in оцінкою цієї статистики буде

$$\hat{\alpha} = \frac{\hat{\sigma}_Y^2 - \hat{\sigma}_{XY}}{\hat{\sigma}_X^2 + \hat{\sigma}_Y^2 - 2\hat{\sigma}_{XY}}$$

• Цілком очевидно, що розподіл такої статистики є, м'яко кажучи, непростим

²Покажіть, це справді нескладно!

Застосування бутстрепу до складних статистик (2)

• Ми його просимулюємо за допомогою методу Монте-Карло

- Справжнє значення дорівнює $\alpha=1.833$
- Ми використовуємо вбудовані статистики \mathtt{var} та \mathtt{cov} , оскільки коефіцієнт $\frac{n-1}{n}$ усе одно буде скорочено

• Тепер обчислімо значення бутстреп-оцінок:

 На основі Монте-Карло ми бачимо, що «теоретичні» значення стандартних похибок і зміщень такі:

```
mean(alpha_monte_carlo)
## [1] 1.833659
sd(alpha_monte_carlo)
## [1] 0.1016502
```

- Тобто в принципі оцінка є незміщена
- На основі бутстреп-розподілу маємо такі результати:

38 / 79

• Вони дуже подібні до «теоретичних»

Застосування бутстрепу до багатовимірного розподілу (4)

Данило Тавров Лекція 6. Бутстреп 2023-03-15

Особливості застосування бутстрепу для декількох незалежних вибірок (1)

- Нехай тепер стоїть задача оцінити різницю деяких статистик двох (або більше) незалежних вибірок різного розміру
 - Розгляньмо приклад різниці медіан
- ullet У цьому випадку DGP складається з двох **окремих** розподілів, \mathbb{P}_X та \mathbb{P}_Y таких, що $X\sim \mathbb{P}_X, Y\sim \mathbb{P}_Y, X\perp\!\!\!\perp Y$
- Відтак для генерування бутстреп-вибірок потрібно замінити сам такий DGP на емпіричний
 - Тобто розглянути $\hat{\mathbb{P}}_X$ та $\hat{\mathbb{P}}_Y$ як емпіричні аналоги на основі відповідних вибірок ${\bf X}$ та ${\bf Y}$...
 - ...і генерувати нові вибірки X^* і Y^* незалежно одну від одної
 - ullet Але кожну як випадковий вибір із повтореннями з ${f X}$ та ${f Y}$ відповідно

Особливості застосування бутстрепу для декількох незалежних вибірок (2)

- Розгляньмо різницю медіан двох розподілів гамма $X \sim {\sf Gamma}\,(2,2)$ та бета $Y \sim {\sf Beta}\,(2,1)$
 - У цьому випадку справжня різниця двох медіан дорівнює $M_X M_Y \approx 0.132$
- Просимулюймо асимптотичний розподіл за допомогою методу Монте-Карло

```
n <- 200
Bs <- c(100, 500, 1000)
sst.sed(100)
shape <- 2
rate <- 2
    a <- 2
    b <- 1
median_diff_true <- qgamma(0.5, shape = 2, rate = 2) - qbeta(0.5, 2, 1)
boot_median_diff <- function(x, indices){
    n_samplel <- 1:table(x$sample)[1]
    indices_samplel <- indices[n_samplel]
    indices_sample2 <- indices[n_samplel])

m1 <- median(x[indices_sample1, 1])
    m2 <- median(x[indices_sample2, 1])
    return(m1 - m2)
}</pre>
```

Особливості застосування бутстрепу для декількох незалежних вибірок (3)

```
median_diff_monte_carlo <- replicate(
  1000, median(rgamma(n, shape = shape, rate = rate)) - median(rbeta(n, a, b))
}
hist(median_diff_monte_carlo, breaks = 30)</pre>
```

Histogram of median_diff_monte_carlo

- Як можна бачити, розподіл є близький до нормального
- Це очікувано, адже обидві медіани повинні мати асимптотично нормальний розподіл

Особливості застосування бутстрепу для декількох незалежних вибірок (4)

• Тепер обчислімо бутстреп-різниці:

Особливості застосування бутстрепу для декількох незалежних вибірок (5)

- Можемо порівняти стандартні похибки і зміщення
- На основі Монте-Карло ми бачимо, що «теоретичні» такі значення

```
mean(median_diff_monte_carlo)
## [1] 0.1343268
sd(median_diff_monte_carlo)
## [1] 0.06021779
```

- Тобто в принципі оцінка є незміщена
- На основі бутстреп-розподілу маємо такі результати:

```
df boot %>% group by(B) %>%
 summarize (se median diff = sd (median diff),
           bias median diff = mean(median diff) - (median(x) - median(y)))
## # A tibble: 3 x 3
        B se median diff bias median diff
    <db1>
                 <db1>
                           <db1>
  1 100
                 0.0685
                              -0.0157
                0.0697
      500
                             -0.00531
## 3 1000
                0.0707
                               -0.00292
```

Вони дуже подібні до «теоретичних»

Особливості застосування бутстрепу для декількох незалежних вибірок (6)

Мотивація

- До цього ми переважно займалися питаннями бутстреп-оцінювання стандартної похибки деякої оцінки
- Але самі по собі стандартні похибки мають мало користи, адже значно важливіше мати довірчий інтервал
- Звісно, якщо (асимптотичний) розподіл деякої оцінки є нормальний, то стаднартні похибки можна використати для побудови такого інтервалу
- Проте ми вже бачили випадки, коли розподіли оцінок не є нормальними
- Понад те, часто на практиці корисніше бути агностиками і не покладатися на асимптотичні властивості оцінок
- Тому далі розглянемо способи побудови довірчих інтервалів за допомогою бутстрепу

Пивотальні довірчі інтервали (1)

- \bullet Розгляньмо величину $R_n = \hat{\theta}(\mathbf{X}) \theta$
 - Такі величини називають пивотальними (pivotal), оскільки їхні розподіли не залежать від невідомих параметрів
 - ullet Але це не ϵ статистика, бо вона сама залежить від невідомого heta
- ullet Тоді нехай $a=H^{-1}\left(rac{lpha}{2}
 ight), b=H^{-1}\left(1-rac{lpha}{2}
 ight)$
- Легко показати, що довірчий інтервал

$$C_{1-\alpha} = \left[\hat{\theta}(\mathbf{X}) - b; \hat{\theta}(\mathbf{X}) - a\right] \tag{3.1}$$

покриває θ з імовірністю $1-\alpha$

• Справді,

$$\begin{split} \mathbb{P}_{X} \left(\theta \in \left[\hat{\theta}(\mathbf{X}) - b; \hat{\theta}(\mathbf{X}) - a \right] \right) &= \mathbb{P}_{X} \left(a \leq \hat{\theta}(\mathbf{X}) - \theta \leq b \right) \\ &= \mathbb{P}_{X} \left(R_{n} \leq b \right) - \mathbb{P}_{X} \left(R_{n} \leq a \right) \\ &= 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha \end{split}$$

 Данило Тавров
 Лекція 6. Бутстреп
 2023-03-15
 49 / 79

Пивотальні довірчі інтервали (2)

- ullet Проте на практиці ми не знаємо справжнього розподілу H
 - ullet Принаймні тому, що heta невідоме
 - ullet Також можуть бути проблеми, якщо розподіл $\hat{ heta}(\mathbf{X})$ складний або невідомий
- ullet Тоді можна застосувати **бутстреп** і замінити H на \hat{H} :

$$\hat{H}(r) = \hat{\mathbb{P}}_X \left(\hat{\theta}(\mathbf{X}^*) - \hat{\theta}(\mathbf{X}) \leq r \right)$$

- ullet Нехай $r_lpha^* = \hat{H}^{-1}(lpha)$ lpha-квантиль \hat{H}
- Звідси випливає, що $r^*_{\alpha}=q_{\hat{\theta}^*,\alpha}-\hat{\theta}(\mathbf{X})$, де $q_{\hat{\theta}^*,\alpha}-\alpha$ -квантиль **емпіричного** розподілу $\hat{\theta}_1^*,\dots,\hat{\theta}_B^*$
- Звідси

$$\begin{split} \hat{a} &= r^*_{\frac{\alpha}{2}} = q_{\hat{\theta}^*,\frac{\alpha}{2}} - \hat{\theta}(\mathbf{X}) \\ \hat{b} &= r^*_{1-\frac{\alpha}{2}} = q_{\hat{\theta}^*,1-\frac{\alpha}{2}} - \hat{\theta}(\mathbf{X}) \end{split}$$

 І тоді наш пивотальний довірчий інтервал (pivotal confidence interval) дорівнює

$$\hat{C}_{1-\alpha}^P = \left[\hat{\theta}(\mathbf{X}) - \hat{b}; \hat{\theta}(\mathbf{X}) - \hat{a}\right] = \left[2\hat{\theta}(\mathbf{X}) - q_{\hat{\theta}^*, 1-\frac{\alpha}{2}}; 2\hat{\theta}(\mathbf{X}) - q_{\hat{\theta}^*, \frac{\alpha}{2}}\right] \tag{3.2}$$

- Також такі інтервали інколи називають **базовими бутстреп-інтервалами** (basic bootstrap intervals)
- Можна довести, що для «адекватних» $T(\mathbb{P}_X)$ цей інтервал спроможний для $C_{1-\alpha}$ з (3.1)
- Якщо оцінка не є plug-in оцінкою, наприклад, якась $\tilde{\theta}(\mathbf{X})$, то $\hat{H}(r) = \hat{\mathbb{P}}_X \left(\tilde{\theta}(\mathbf{X}^*) T \left(\hat{\mathbb{P}}_X \right) \leq r \right)$ з відповідними наслідками

Студентизовані пивотальні довірчі інтервали (1)

- \bullet Розгляньмо тепер пивотальну величину $Z_n=rac{\theta(\mathbf{X})-\theta}{\sec_{\hat{\mathbb{P}}_X}(\hat{\theta})}$ з (невідомою) функцією розподілу G^3
- Тоді, за аналогією з попереднім випадком, нас повинен цікавити інтервал

$$C_{1-\alpha} = \left[\hat{\theta}(\mathbf{X}) - \mathsf{se}_{\hat{\mathbb{P}}_X} \left(\hat{\theta} \right) \cdot G^{-1} \left(1 - \frac{\alpha}{2} \right) ; \hat{\theta}(\mathbf{X}) - \mathsf{se}_{\hat{\mathbb{P}}_X} \left(\hat{\theta} \right) \cdot G^{-1} \left(\frac{\alpha}{2} \right) \right]$$

• Оскільки G невідомий, ми застосовуємо бутстреп і замінюємо його на емпіричний \hat{G} :

$$\hat{G}(r) = \hat{\mathbb{P}}_X \left(\frac{\hat{\theta}(\mathbf{X}^*) - \hat{\theta}(\mathbf{X})}{\operatorname{se}_{\hat{\mathbb{P}}_X^b} \left(\hat{\theta}(\mathbf{X}^*) \right)} \leq r \right)$$

Данило Тавров Лекція 6. Бутстреп 2023-03-15

 $^{^3}$ Далі вважатимемо, що $\hat{\theta}$ ϵ plug-in оцінкою

Студентизовані пивотальні довірчі інтервали (2)

- \bullet Тут se $_{\hat{\mathbb{P}}_X^b}\left(\hat{\theta}(\mathbf{X}^*)\right)$ є оцінкою стандартної похибки не $\hat{\theta}(\mathbf{X})$, а саме $\hat{\theta}(\mathbf{X}^*)$
 - Тобто в загальному випадку потрібно для кожної бустреп-вибірки $\mathbf{X}_b^*, b=1,\dots,B$ додатково запускати бутстреп
 - Тобто потрібно генерувати нові вибірки $\mathbf{X}_{b,1}^*,\dots,\mathbf{X}_{b,B^*}^*$ шляхом випадкового вибору з повторенням **уже не з X, а з X***
 - Тоді можна обчислити $\sec_{\widehat{\mathbb{P}}_X^b}\left(\widehat{\theta}(\mathbf{X}^*)\right)$ як вибіркове середньоквадратичне відхилення оцінок на нових вибірках
 - ullet Кількість B^* вибірок у «внутрішньому» бутстрепі може бути меншою від B
 - Як правило, для оцінювання квантилів потрібно більше вибірок, ніж для стандартних похибок
- Тоді остаточно

$$\hat{C}_{1-\alpha}^{PS} = \left[\hat{\theta}(\mathbf{X}) - \operatorname{se}_{\hat{\mathbb{P}}_{X}}\left(\hat{\theta}\right) \cdot \hat{G}^{-1}\left(1 - \frac{\alpha}{2}\right); \hat{\theta}(\mathbf{X}) - \operatorname{se}_{\hat{\mathbb{P}}_{X}}\left(\hat{\theta}\right) \cdot \hat{G}^{-1}\left(\frac{\alpha}{2}\right)\right] \quad (3.3)$$

- Можна показати, що цей інтервал також спроможний
- Згідно з An Introduction to the Bootstrap, студентизовані інтервали найліпше працюють для мір центральної тенденції (сподівань, медіан тощо)
 - 3 іншими статистиками потрібно бути обережними

Данило Тавров Лекція 6. Бутстреп 2023-03-15

Персентильні довірчі інтервали (1)

- Проста ідея побудови довірчого інтервалу полягає в таких міркуваннях
- ullet Нехай $\hat{ heta} \stackrel{d}{ o} N\left(heta, \operatorname{Var}\left(\hat{ heta}
 ight)
 ight)$
- ullet Тоді (асимптотичний) довірчий інтервал рівня 1-lpha дорівнює

$$\left[\widehat{\theta}-z_{1-\frac{\alpha}{2}}\cdot\widehat{\operatorname{se}}\left(\widehat{\theta}\right);\widehat{\theta}+z_{\frac{\alpha}{2}}\cdot\widehat{\operatorname{se}}\left(\widehat{\theta}\right)\right]$$

- ullet Розгляньмо випадкову величину $\hat{ heta}^* \sim N\left(\hat{ heta}, ext{Var}\left(\hat{ heta}
 ight)
 ight)$
- Тоді **персентильним довірчим інтервалом** (percentile confidence interval) ϵ

$$C_{1-\alpha}^{Perc} = \left[q_{\hat{\theta}^*, \underline{\alpha}}; q_{\hat{\theta}^*, 1-\underline{\alpha}} \right] \tag{3.4}$$

Персентильні довірчі інтервали (2)

- Якщо розподіл бутстреп-оцінок приблизно нормальний, то персентильний інтвервал не сильно відрізнятиметься від асимптотичного нормального
- Але якщо розподіл бутстреп-оцінок не ϵ нормальним, що да ϵ підстави стверджувати, що персентильний інтервал може бути адекватним?
- - Це відображення нам невідоме
- ullet Нехай $U_b^* = m\left(\hat{ heta}_b^*\right)$
- Тоді, оскільки m монотонне, аналогічне співвідношення існуватиме й між квантилями відповідних розподілів: $q_{U_k^*,\alpha}=m\left(q_{\hat{q}_k^*,\alpha}\right)$
- \bullet А оскільки $U \sim N(m(\theta), c^2)$, маємо, що α -квантилем $\overset{.}{U}$ є величина $m(\theta) z_{\alpha}c$
- \bullet Звідси випливає, що $q_{U_b^*,\frac{lpha}{2}}=m(\theta)-z_{\frac{lpha}{2}}cpprox U-z_{\frac{lpha}{2}}c$
 - A $q_{U_b^*,1-\frac{\alpha}{2}} \approx U + z_{\frac{\alpha}{2}}c$

• Тому остаточно маємо

$$\begin{split} \hat{\mathbb{P}}_{X}\left(C_{1-\alpha}^{Perc}\ni\theta\right) &= \hat{\mathbb{P}}_{X}\left(q_{\hat{\theta}_{b}^{*},\frac{\alpha}{2}}\leq\theta\leq q_{\hat{\theta}_{b}^{*},1-\frac{\alpha}{2}}\right) \\ &= \hat{\mathbb{P}}_{X}\left(m\left(q_{\hat{\theta}_{b}^{*},\frac{\alpha}{2}}\right)\leq m(\theta)\leq m\left(q_{\hat{\theta}_{b}^{*},1-\frac{\alpha}{2}}\right)\right) \\ &= \hat{\mathbb{P}}_{X}\left(q_{U_{b}^{*},\frac{\alpha}{2}}\leq m(\theta)\leq q_{U_{b}^{*},1-\frac{\alpha}{2}}\right) \\ &\approx \mathbb{P}_{X}\left(U-z_{\frac{\alpha}{2}}c\leq m(\theta)\leq U+z_{\frac{\alpha}{2}}c\right) \\ &= \mathbb{P}_{X}\left(-z_{\frac{\alpha}{2}}\leq \frac{U-m(\theta)}{c}\leq z_{\frac{\alpha}{2}}\right) = 1-\alpha \end{split}$$

- ullet Що цікаво в цих викладках нам непотрібно **знати** перетворення m
- Достатньо тільки припускати, що воно в принципі існує

Персентильні довірчі інтервали (4)

- Простий приклад для ілюстрації цих міркувань
- ullet Нехай нам потрібно оцінити $heta=e^\mu$, де μ сподівання нормального розподілу
 - $m{eta}$ Цілком очевидно, що plug-in оцінка $\hat{ heta}=e^{\overline{X}}$ не буде мати нормальний розподіл
 - Тому асимптотичний нормальний інтервал буде неточний
- Проте якщо взяти логаритм: $m\left(\hat{\theta}\right) = \overline{X}$, то відповідні оцінки **будуть** мати нормальний розподіл
- Персентильний довірчий інтервал дає змогу автоматично враховувати перетворення на кшталт m, якщо вони справді існують
- Також інша корисна властивість персентильних інтервалів збереження розмаху
 - ullet Наприклад, ми знаємо, що коефіцієнт кореляції повинен лежати на проміжку [-1;1]
 - Персентильний довірчий інтервал ніколи не вискочить за ці межі
 - ullet (a) оцінка $\hat{
 ho}$ не може за них вискочити
 - (6) межі довірчого інтервалу будуються як квантилі $\hat{
 ho}^*$, тому також не можуть вискочити за межі [-1;1]

- Пивотальні (студентизовані) довірчі інтервали мають добрі теоретичні властивості покриття, але на практиці можуть поводити себе погано
- Персентильні довірчі інтервалі стійкіші в цьому сенсі, але можуть бути занадто консервативні
- Існує ще один популярний метод побудови довірчих бутстреп-інтервалів **метод ВС** $_a$ (від bias-corrected and accelerated)
- Ми не будемо детально розглядати теоретичні засади цього методу
- Якщо коротко, то суть полягає в тому, що потрібно побудувати персентильний інтервал, але вибрати не квантилі $\frac{\alpha}{2}$ і $1-\frac{\alpha}{2}$, а квантилі, які рахують за окремими формулами
- Нові квантилі повинні коригувати зміщення бутстреп-оцінки та швидкість зміни стандартної похибки $\hat{\theta}$ зі зміною параметра θ

- Можна показати, що асимптотичний нормальний, пивотальний і персентильний інтервали ε інтервалами **першого порядку** точности (first-order accurate), а студентизований пивотальний і BC_a **другого** (second-order accurate)
 - Мається на увазі, що зі збільшенням n справжнє покриття інтервалу прямує до α зі швидкістю $O(n^{-1/2})$ для інтервалів першого порядку, і зі швидкістю $O(n^{-1})$ для другого
- Студентизований інтервал, хоча й другого порядку точности, але не є інваріантним до перетворень статистики
 - Якщо будувати інтервал не для $\hat{\theta}$, а для $g\left(\hat{\theta}\right)$, то між цими інтервалами не буде прямого зв'язку
- Персентильний інтервал і BC_a -інтервал ϵ інваріантними до перетворень статистики
 - Інтервал для, скажімо, $\ln\left(\hat{\theta}\right)$ можна дістати застосуванням логаритму до меж інтервалу для $\hat{\theta}$

Рекомендації щодо значення B

- Можна сформулювати такі загальні рекомендації щодо числа бутстреп-вибірок B^4
 - Для оцінювання параметрів достатньо брати B=200
 - Для довірчих інтервалів рівня 0.9 потрібно брати B від 1000 до 2000 Для довірчих інтервалів рівня 0.99 потрібно брати B понад 5000
- У загальному випадку, можна взяти мале B і поступово збільшувати, якщо результати не є задовільні
 - Це цілком допустимо, на відміну від p-hacking!
 - Ми не проводимо жодних додаткових аналізів, ми просто уточнюємо параметри одного й того самого статистичного процесу

Данило Тавров Лекція 6. Бутстреп 2023-03-15

⁴Florent Buisson, Data Analysis with R & Python. Customer-Driven Data for Real Business Results, p. 153

Побудова довірчих бутстреп-інтервалів в R

- Для автоматизації обчислення довірчих інтервалів можна використовувати функцію boot.ci з пакету boot
- На вхід цієї функції потрібно подати такі обов'язкові аргументи:
 - Перший аргумент результат роботи функції boot (об'єкт класу boot)
 - conf рівень інтервалу (за замовчуванням conf = 0.95)
 - Тип інтервалу можна вказувати такі типи:
 - norm асимптотичний нормальний інтервал
 - basic пивотальний інтервал
 - stud студентизований пивотальний інтервал
 - perc персентильний інтервал
 - bca ВС_а-інтервал
 - all усі відразу (значення за замовчуванням)
- Усі інші аргументи можна залишити за замовчуванням, деталі можна знайти в офіційній документації
- Єдиний нюанс для побудови студентизованих пивотальних інтервалів потрібно вказати оцінки стандартних похибок кожної $\hat{\theta}_h^*$
 - Для цього потрібно передбачити, щоб statistic, використана у виклику функції boot, другим результатом повертала цю оцінку, і вказати аргумент index (див. далі)
 - Альтернативно можна вказати аргумент var.t

- Перепишімо нашу функцію для підрахунку середніх і дисперсій, щоб вона повертала оцінку дисперсії
- Для цих статистик дисперсію можна обчислити точно
- Але з педагогічних міркувань ми для всіх наших прикладів оцінку дисперсії $\hat{\theta}_b^*$ робитимемо за допомогою бутстрепу

• Ми використали 200 бутстреп-вибірок для оцінювання стандартної похибки, адже саме так рекомендують у книжці An Introduction to the Bootstrap

• Тепер можемо порахувати всі інтервали

```
n < -200
B <- 2000
lambda <- 4
set. seed (100)
x <- rexp(n, rate = lambda)
boot result meanvar <- boot(x, statistic = boot mean var with sd, R = B)
print ("Довірчі бутстреп-інтервали для середнього:")
## [1] "Довірчі бутстреп-інтервали для середнього:"
boot.ci(boot result meanvar, index = c(1, 2))
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot result meanvar, index = c(1, 2))
## Intervals :
## Level Normal
                               Basic Studentized
## 95% (0.1936, 0.2519) (0.1928, 0.2512) (0.1954, 0.2539)
## Level
           Percentile
                                  BCa
## 95% (0.1932, 0.2516) (0.1964, 0.2566)
## Calculations and Intervals on Original Scale
print ("Асимптотичний нормальний довірчий інтервал для середнього:")
## [1] "Асимптотичний нормальний довірчий інтервал для середнього:"
sd mean <- sqrt(var(x) / n)
c(mean(x) + gnorm(0.025)*sd mean, mean(x) + gnorm(0.975)*sd mean)
## [1] 0.1929040 0.2514982
```

```
print ("Довірчі бутстреп-інтервали для вибіркової дисперсії:")
## [1] "Довірчі бутстреп-інтервали для вибіркової дисперсії:"
boot.ci(boot result meanvar, index = c(3, 4))
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot result meanvar, index = c(3, 4))
## Intervals :
## Level
             Normal
                                 Basic
                                              Studentized
  95% (0.0319, 0.0580) (0.0315, 0.0572) (0.0337, 0.0615)
##
## Level
             Percentile
                                   BCa
       (0.0318, 0.0575) (0.0336, 0.0607)
## Calculations and Intervals on Original Scale
print("Асимптотичний нормальний довірчий інтервал для вибіркової дисперсії:")
## [1] "Асимптотичний нормальний довірчий інтервал для вибіркової дисперсії:"
sd var \leftarrow sgrt((mean((x - mean(x))^4) - var(x)^2) / n)
c(\overline{var}(x) + qnorm(0.025)*sd var, var(x) + qnorm(0.975)*sd var)
## [1] 0.03161860 0.05775564
```

Ілюстрація для прикладу з середніми та вибірковими дисперсіями (4)

- Можемо порівняти (асимптотичне) покриття відповідних довірчих інтервалів
- ullet Для цього здійснімо симуляцію за методом Монте-Карло для T=100
- Генеруємо всі вибірки (код не показано, див. вихідний .rmd-файл)
- Та обчислюємо покриття інтервалу кожного типу

0 98

5 student

```
df mean var %>% group by(type) %>%
 summarise (coverage mean = mean (covered mean),
           coverage var = mean(covered var))
## # A tibble: 5 x 3
    type
           coverage mean coverage var
  <chr>
1 basic
                   <dh1>
                             <dh1>
                  0.99
  2 hca
                   0.96
  3 normal
                  0.98
## 4 percent 0.97
                                0.93
```

ullet Як можна бачити, найліпшими ϵ студентизовані та BC_a інтервали

0 96

- До того ж для вибіркових дисперсій всі інтервали мають гірше покриття, ніж для середніх
 - $\bullet\,$ Це пояснюється недостатньою вибіркою n та недостатнім числом повторень бутстрепу B
 - Але враховуючи, що n=200, що в принципі є дуже малим значенням, результати дуже добрі

Данило Тавров Лекція 6. Бутстреп 2023-03-15 65 / 79

Ілюстрація для прикладу з середніми та вибірковими дисперсіями (4)

• Графічна ілюстрація для середніх

Ілюстрація для прикладу з середніми та вибірковими дисперсіями (5)

• Графічна ілюстрація для вибіркових дисперсій

- Окремі інтервали виявилися доволі асиметричними
 - Це пояснюється тим, що для цих конкретних вибірок розподіл вибіркових дисперсії був далекий від нормального (скошений управо)
 - Особливо це кидається у вічі для студентизованих інтервалів, бо там відбувається ділення на (доволі) малу стандартну похибку

Данило Тавров Лекція 6. Бутстреп 2023-03-15

- Аналогічні ілюстрації можна зробити для інших статистик, що ми розглядали вище
- Перепишімо нашу функцію для підрахунку кореляцій, щоб вона повертала оцінку дисперсії

```
boot_cor_with_sd <- function(X, indices, estimate_var = TRUE){
  cor_bar <- cor(X[indices, ])[1, 2]

if (estimate_var){
  boot_out <- boot(X[indices, ], statistic = boot_cor_with_sd, R = 200, estimate_var = FALSE)

  return(c(cor_bar, var(boot_out$t[, 1])))
}
else {
  return(cor_bar)
}
}</pre>
```

• Тепер можемо порахувати всі інтервали

```
n < -100
B <- 2000
cor true <- 0.9
Sigma <- matrix(c(1, cor true,
                 cor true, 1),
               nrow = 2, ncol = 2, byrow = TRUE)
set.seed(100)
X \leftarrow MASS::mvrnorm(n, mu = c(0, 0), Sigma = Sigma)
boot result cor <- boot (X, statistic = boot cor with sd, R = B)
print ("Довірчі бутстреп-інтервали для вибіркової кореляції:")
## [1] "Довірчі бутстреп-інтервали для вибіркової кореляції:"
boot.ci(boot result cor, index = c(1, 2))
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot result cor, index = c(1, 2))
## Intervals :
## Level Normal
                       Basic Studentized
## 95% (0.9163, 0.9612) (0.9191, 0.9648) (0.9110, 0.9582)
## Level
          Percentile
                                  BCa
## 95% (0.9132, 0.9588) (0.9095, 0.9568)
## Calculations and Intervals on Original Scale
```

Ілюстрація для прикладу з кореляціями (3)

• Порівняймо (асимптотичне) покриття відповідних довірчих інтервалів

```
df cor %>% group by(type) %>%
 summarise (coverage = mean (covered))
## # A tibble: 5 x 2
    type
            coverage
    <chr>
              <db1>
  1 basic
              0.93
               0.97
  2 bca
## 3 normal
             0.94
## 4 percent
            0.97
## 5 student
                0.97
```

• Як можна бачити, найліпшими є студентизовані, персентильні та BC_a інтервали

Данило Тавров Лекція 6. Бутстреп 2023-03-15

Ілюстрація для прикладу з кореляціями (4)

• Графічна ілюстрація для кореляцій

 Перепишімо нашу функцію для підрахунку різниць медіан, щоб вона повертала оцінку дисперсії

• Тепер можемо порахувати всі інтервали

```
n <- 200
B <- 2000
shape <- 2
rate <- 2
a <- 2
h <- 1
median diff true \leftarrow ggamma (0.5, shape = 2, rate = 2) - gbeta (0.5, 2, 1)
set.seed(100)
x <- rgamma(n, shape = shape, rate = rate)
v <- rbeta(n, a, b)
dat \leftarrow cbind(c(x, y), rep(0:1, each = n))
boot result median diff <- boot (dat, statistic = boot median diff with sd.
                               R = B, strata = dat[, 2], n sample1 = n)
print ("Довірчі бутстреп-інтервали для різниці вибіркових медіан:")
## [1] "Довірчі бутстреп-інтервали для різниці вибіркових медіан:"
boot.ci(boot result median diff, index = c(1, 2))
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot result median diff, index = c(1, 2))
## Intervals :
## Level Normal
                                Basic
                                         Studentized
## 95% (-0.0019, 0.2513) (-0.0006, 0.2533) (-0.0112, 0.2527)
## Level Percentile
                                  BCa
## 95% (-0.0102, 0.2436) (-0.0094, 0.2454)
## Calculations and Intervals on Original Scale
```

Ілюстрація для прикладу з різницями медіан (3)

• Порівняймо (асимптотичне) покриття відповідних довірчих інтервалів

```
df median diff %>% group by(type) %>%
 summarise (coverage = mean (covered))
## # A tibble: 5 x 2
    type
            coverage
    <chr>
               <db1>
  1 basic 0.9
  2 bca
               0.95
              0.93
## 3 normal
## 4 percent
            0.95
## 5 student
                0.94
```

• Як можна бачити, найліпшими є студентизовані, персентильні та BC_a інтервали

Данило Тавров Лекція 6. Бутстреп 2023-03-15

Ілюстрація для прикладу з різницями медіан (4)

Бутстреп для даних про пасажирів «Титаніку» (1)

- На попередній лекції нас цікавили різниці у віці між уцілілими пасажирами та загиблими
- Ми встановили, що в даних немає достатньо підстав, щоб відкинути $H_0: \mu_X \mu_Y \leq 0$ vs. $H_1: \mu_X \mu_Y > 0$
- Також ми казали, що якби гіпотеза була «дорівнює 0» vs. «не дорівнює 0», то ми її відкинули б
- Ми можемо перевірити це, побудувавши довірчі інтервали за допомогою бутстрепу

• Спочатку напишімо відповідну функцію

• А тепер порахуймо самі інтервали

```
set.seed(100)
B <- 2000
dat <- as.matrix(passengers %>% filter(!is.na(Age)) %>% select(Age, Survived) %>%
                  arrange (Survived))
boot result mean diff <- boot (dat, statistic = boot mean diff with sd,
                             R = B, strata = dat[, 2], n sample1 = sum(dat[, 2] == 0))
print ("Довірчі бутстреп-інтервали для різниці вибіркових середніх:")
## [1] "Довірчі бутстреп-інтервали для різниці вибіркових середніх:"
boot.ci(boot result mean diff, index = c(1, 2))
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
## CALL :
## boot.ci(boot.out = boot result mean diff, index = c(1, 2))
## Intervals .
## Level
          Normal
                               Basic
                                                 Studentized
## 95% (0.109, 4.382) (0.091, 4.414) (0.193, 4.266)
## Level
            Percentile
                                  BCa
## 95% (0.151, 4.474) (0.089, 4.310)
## Calculations and Intervals on Original Scale
```

• Можемо це порівняти з результатом застосування функції t.test

```
t.test(Age ~ Survived, data = passengers)
##
## Welch Two Sample t-test
##
## data: Age by Survived
## t = 2.046, df = 598.84, p-value = 0.04119
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.09158472 4.47339446
## sample estimates:
## mean in group 0 mean in group 1
## 30.62618 28.34369
```

- ullet Бачимо, що в цьому прикладі метод ВС $_a$ дав найліпший результат
 - Як і звичайний базовий, як і асимптотичний нормальний
 - Бо статистика доволі «проста»
- Але якщо згадати, що мова про вік, який переважно вимірюється цілими числами, то стає зрозуміло, що ці різниці не дуже суттєві
- Принаймні нуль точно не входить у жодний інтервал
- Отже різниця у віці статистично значуща