Selective distillation algorithm to evaluate Deep Material Networks

P. Bhat Keelanje Srinivas^{1,3}, M. Kabel¹, M. Schneider^{1,2}

1 Fraunhofer Institute For Industrial Mathematics, Fraunhofer Platz 1, 67663, Kaiserslautern, Germany

experimental data

2 Institute Of Engineering Mathematics, University of Duisburg-Essen, 45141 Essen, Germany

3 Institute of Engineering Mechanics, Karlsruhe Institute Of Technology (KIT), 76131 Karlsruhe, Germany

Motivation

Problem Real experiments == expensive & sparse. *Strategy*: Calibrated multiscale simulations ⇒ virtual experimental data. [1]

Multiscale simulation model and Deep **Material Network (DMN)**

- Fine scale : cell problem ⇔ Homogenization of properties
- Coarse scale : Global problem

- StateOfArt solution method FFT based homogenization [2]
- Faster Data driven solution Deep Material Network [3].

Intuition for DMN

• Fit Topology like function [6]

Network Structure

- $p_{local} = 2$, $p_{global} = 1$
- $J_{\mathcal{D}} \rightarrow \mathsf{min}_{\mathbf{w},\mathbf{n}}$
- Parameters: w Weights , n Direction of laminate

Basic workflow and steps

DMN with Fiber Orientation

• Parametric network [4].

Numerical setup/ bottlenecks

Model selection challenge

Distillation Algorithm

Plasticity-without Plasticity with **Parameters** distillation distillation Time for one online evaluation 60-90 sec 60-90 sec using DMN Number of epochs 6000 6000 **States storage frequency** Every 50 epochs Every 50 epochs Number of states to be evaluated 120 120 Number of nodes on which 109 109 evaluation is done **Evaluations for orthotropic** 6 load cases 6 load cases boundary conditions $120 \times 109 \times 6 = 78480$ 800x6=4800 Total number of evaluations to validate a DMN training evaluations evaluations Total time taken for full 9-14 days ~15 hours training evaluation

Algorithm takeaways

- Inspired by a physical process & novel.
- Adaptive threshold & robust algorithm.
- 90 percent reduction in number of evaluations.
- Scope to incorporate advanced methods.

Results

Acknowledgement

 The work was also supervised by Dr.Fabian Welschinger during the thesis work at University Of Stuttgart. The online code is also a contribution of Dr. Welschinger.

Contact

Pavan Bhat Keelanje Srinivas MSc

PhD researcher Fraunhofer

pavan.bhat.keelanje.srinivas@itwm.fraunhofer.de

References

- [1] A. P. Dey, F. Welschinger, M. Schneider, S. Gajek, and T. Böhlke, "Rapid inverse calibration of a multiscale model for the viscoplastic and creep behavior of short fiber-reinforced thermoplastics based on Deep Material Networks," IntJPlast, p. 103484, 2022.
- [2] M. Kabel, A. Fink, and M. Schneider, "The composite voxel technique for inelastic problems," CMAME, vol. 322, pp. 396-418, 2017.
- [3] Z. Liu and C. Wu, "Exploring the 3d architectures of deep material network in data-driven multiscale mechanics," JMPS, vol. 127, pp. 20-46, 2019.
- [4] S. Gajek, M. Schneider, and T. Böhlke, "An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components," CMAME, vol. 384, p. 113952, 2021.
- [5] A. P. Dey, F. Welschinger, M. Schneider, S. Gajek, and T. Böh-Ike, "Training deep material networks to reproduce creep loading of short fiber-reinforced thermoplastics with an inelasticallyinformed strategy," AoAM, vol. 92, no. 9, pp. 2733–2755, 2022.
- [6] P. Bhat Keelanje Srinivas, MSc thesis-A data driven efficient multiscale computational tool using hybrid AI modelling framework for short fiber reinforced thermoplastics, University Of Stuttgart, 2022.