EE2000 Logic Circuit Design

Lecture 7 – Latch and Flip-Flop Circuits

Two Classes of Logic Circuits

Combinational logic circuit

Output depends only on the inputs (As discussed in previous lectures)

Sequential logic circuit

Output depends on present input + past history

Memory circuit (to store previous STATE information)

is required

Sequential Logic Circuit

Vending Machine Food/ drink / MTR tickets

Latches and Flip-Flops are building blocks of sequential logic circuit

7.2 Flip-Flops

- Flip-Flop: A clocked binary storage device that the change of output state is controlled by the clock signal (synchronized)
- We will discuss the following four types of FF
 - Set-Reset FF (SR FF)
 - Data/Delay FF (D FF)
 - Jack Kilby FF (JK FF)
 - Toggle FF (T FF)

Set-Reset FF

A clocked signal is connected to the Enable input of a gated latch

С	S	R	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	Х	Х	Q_t	$\overline{Q_t}$	Hold
1	0	0	Q_t	$\overline{Q_t}$	Hold
1	0	1	0	1	Reset
1	1	0	1	0	Set
1	1	1	0	0	Undefined

Logic symbol

Data/Delay FF

A clocked signal is connected to the Enable input of a D latch

С	D	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	Х	Q_t	$\overline{Q_t}$	Hold
1	1	1	0	Set
1	0	0	1	Reset

Jack-Kilby FF

Refined SR FF whereby the undetermined state of SR FF is defined; **J** is set and **K** is reset

С	J	K	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	Х	Х	Q_t	$\overline{Q_t}$	Hold
1	0	0	Q_t	$\overline{Q_t}$	Hold
1	0	1	0	1	Reset
1	1	0	1	0	Set
1	1	1	$\overline{Q_t}$	Q_t	Toggle

С	J	K	Q_t	$\overline{Q_t}$	Q_{t+1}	$\overline{Q_{t+1}}$
1	1	1	0	1	1	0
1	1	1	1	0	0	1

Toggle FF

Output state changes for each clock pulse when **T** is in its active state

С	T	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	Х	Q_t	$\overline{Q_t}$	Hold
1	0	Q_t	$\overline{Q_t}$	Hold
1	1	$\overline{Q_t}$	Q_t	Toggle

С	T	Q_t	$\overline{Q_t}$	Q_{t+1}	$\overline{Q_{t+1}}$
1	1	0	1	1	0
1	1	1	0	0	1

Table Given (Test and Exam)

S	R	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	0	Q_t	$\overline{Q_t}$	Hold
0	1	0	1	Reset
1	0	1	0	Set
1	1	1	1	Undefined

J	K	Q_{t+1} $\overline{Q_{t+1}}$		State
0	0	Q_t	$\overline{Q_t}$	Hold
0	1	0	1	Reset
1	0	1	0	Set
1	1	$\overline{Q_t}$	Q_t	Toggle

D	Q_{t+1}	$\overline{Q_{t+1}}$	State
1	1	0	Set
0	0	1	Reset

T	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	Q_t	$\overline{Q_t}$	Hold
1	$\overline{Q_t}$	Q_t	Toggle

Transparency & Glitch

- FF is activated when C is HIGH (Pulse or Level triggered)
- Transparency: Input passes through directly to output
- Glitch: Undesired signal

Race Around Condition

- When both J and K are HIGH, the output toggles continuously (racing) and becomes uncertain
- Unless propagation delay of the gates larger than the pulse width $(\Delta au > t_p)$

7.4 Edge-triggered Flip-Flop

- Use one of the edges of the clock signal to read the input values
 - either positive or negative transition
 - triggering edge
- The response to the triggering edge at the output of the flip-flop is almost immediate
- The flip-flops remains unresponsive to the input change until the next triggering edge

Triggering edge

- Triggered only during a signal transition from 0 to 1 (or from 1 to 0) on the clock
 - Positive (rising, leading) edge-triggering: 0-to-1 transition

Negative (falling, trailing) edge-triggering: 1-to-0 transition

Additional circuit is included to ensure it will only response to the input at the transition edge of the clock pulse

Positive-Edge-Triggered D-FF

Timing Diagram

Timing Diagram of PET *D* FF (if no output delay)

Timing Diagram of PET D FF

Negative-Edge-Triggered D-FF

Timing Diagram

Timing Diagram of NET D FF (if no output delay)

Timing Diagram of NET D FF

Logic Symbols

Assume all FFs are initially 0 and no propagation delay, work out the timing diagram of the output of each FF (A, B, C).

19

$$T = x + C$$
 $S = A$ $R = A'$
 $J = K = B$

$$x = x + C$$

$$x = x + C$$

$$x = x + C$$

$$x = x + C = 0$$

$$T = x + C$$
 $S = A$ $R = A'$
 $J = K = B$

$$x \longrightarrow x, A, B, C = 0$$

$$A \longrightarrow T = x + C = 0 \text{ (HOLD STATE)}$$

$$S = A = 0, R = A' = 1 \text{ (RESET STATE)}$$

$$J = K = B = 0 \text{ (HOLD STATE)}$$

$$T = x + C$$
 $S = A$ $R = A'$
 $J = K = B$

$$x = 1; A, B, C = 0$$

$$T = x + C = 1 \text{ (TOGGLE STATE)}$$

$$S = A = 0, R = A' = 1 \text{ (RESET STATE)}$$

$$J = K = B = 0 \text{ (HOLD STATE)}$$

$$T = x + C$$
 $S = A$ $R = A'$
 $J = K = B$

$$x = 1; A, B, C = 0$$

$$T = x + C = 1 \text{ (TOGGLE STATE)}$$

$$S = A = 0, R = A' = 1 \text{ (RESET STATE)}$$

$$J = K = B = 0 \text{ (HOLD STATE)}$$

$$T = x + C$$
 $S = A$ $R = A'$
 $J = K = B$

$$x$$

$$Clk$$

$$A = I; x, B, C = 0$$

$$T = x + C = 0 \text{ (HOLD STATE)}$$

$$S = A = 1, R = A' = 0 \text{ (SET STATE)}$$

$$J = K = B = 0 \text{ (HOLD STATE)}$$

$$T = x + C$$
 $S = A$ $R = A'$
 $J = K = B$

$$x \longrightarrow T$$

$$A = I; x, B, C = 0$$

$$T = x + C = 0 \text{ (HOLD STATE)}$$

$$S = A = 1, R = A' = 0 \text{ (SET STATE)}$$

$$J = K = B = 0 \text{ (HOLD STATE)}$$

$$T = x + C$$
 $S = A$ $R = A'$
 $J = K = B$
 Clk
 Clk

$$T = x + C$$
 $S = A$ $R = A'$
 $J = K = B$

$$x = A$$

$$Clk$$

$$Clk$$

$$Clk$$

$$A$$

$$B$$

$$C = 0; x, A, B = 1$$

$$T = x + C = 1 \text{ (TOGGLE STATE)}$$

$$S = A = 1, R = A' = 0 \text{ (SET STATE)}$$

$$J = K = B = 1 \text{ (TOGGLE STATE)}$$

7.5 Synchronous & Asynchronous Inputs

- Inputs of flip-flops are categorized into two types
- Synchronous: Only affect the output in conjunction with a clock pulse (all inputs to FFs presented so far)
- Asynchronous: Inputs that can affect the output state independent of the clock pulse

Asynchronous Inputs

- The output will respond to the sync. inputs only if all async. inputs are inactive
- Particularly useful for bringing an FF into a desired initial state before normal clocked operation
- Preset (denoted by PRE) and Clear (denoted CLR) - Used to forcibly set and reset the state of flip-flop

Example

The corresponding function table

	Inp	uts		Outputs			
PRE'	CLR'	CIk	D	Next Q	Next Q'	Meaning	
0	1	X	Х	1	0	Preset	
1	0	Х	Х	0	1	Clear	
0	0	Х	Х	1*	1*	Undefined	
1	1	1	Х	D	D'	Set / Reset	
1	1	↓ ,0,1	Х	Q	Q'	Hold	

*Unpredictable behavior will result if both *PRE*' and *CLR*' set to 0 simultaneously

The same behaviors as *D* flip-flops

Example

The function table of an negative-edge-triggered *JK* flip-flop with asynchronous preset and clear inputs

	ı	Inputs			Output	S	
PRE'	CLR'	CIk	J	K	Next Q	Next Q'	Meaning
L	Н	Х	Х	Х	Н	L	Preset
Н	L	Х	Х	Х	L	Н	Clear
L	L	Х	X	X	H*	H*	Undefined
Н	Н	\downarrow	L	L	Q	Q'	Hold
Н	Н	\downarrow	Н	Г	Н	L	Set
Н	Н	\downarrow	L	Π	L	Н	Reset
Н	Н	1	Н	Н	Q'	Q	Toggle
Н	Н	1,0,1	X	Х	Q	Q'	Hold

The same behaviors as *JK* flip-flops

Timing Diagram

Timing Diagram of PET *T* FF with asynchronous preset and clear inputs (if no output delay)

Work out the timing diagram for the state of each flip-flop and the output (q_1, q_2, z) . (Ignore delay)

Work out the timing diagram for the state of each flip-flop and the output (q_1, q_2, z) . (Ignore delay)

7.3 Master-Slave Flip-Flop

- A combination of two flip-flops together in a series configuration
- At any time, only one flip-flop is enabled

How Does It Work?

Timing Diagram

Initial inputs: S and R are LOW Initial state of Y and Q unknown

- 1 Clk switches to 1; master FF enabled; S = 1, R = 0, $\therefore Y = 1$
- 2 Clk switches to 0; slave FF enabled; Y = 1, $\therefore Q = 1$
- 3 Clk switches to 1; master FF enabled; S = 0, R = 0, HOLD
- $4S = 0, R = 1, \therefore Y = 0$ 5 Clk switches to 0; slave FF enabled; $Y = 0, \therefore Q = 0$
- \bigcirc Clk is 0; master FF disabled; no change on Y.
- 7 Clk switches to 1; master FF enabled; S = 1, R = 0, $\therefore Y = 1$
- (8) Clk switches to 0; slave FF enabled; Y = 1, $\therefore Q = 1$

Characteristics

- Y is updated when Clk goes to and remains at 1
- Q is updated when Clk goes to 0 and remains unchanged until the next pulse

Therefore,

- For each clock pulse, Q only changes state at most once
- > State change only occurs during the transition of Clk from 1 to 0

Inputs		Outputs			
D	CIk	Next Q	Next Q'	Meaning	
Х	0	Q	Q'	Hold	
Х		D	D'	Set / Reset	

- Two JK FFs connected in series
- Outputs are fedback to Master's inputs $Q \rightarrow K \& \bar{Q} \rightarrow J$
- *J* is SET and *K* is RESET
- Y is connected to SET of slave FF

①
$$J = 1, K = 0,$$

 $S_m = \overline{Q} = 1, R_m = 0$ (SET)
∴ $Y = 1$

2
$$Y(S_s) = 1, \overline{Y}(R_s) = 0$$
 (SET)

$$\therefore Q = 1$$

$$3J = 0, K = 0(HOLD)$$
∴ $Y = 1$

$$(4) Y(S_S) = 1, \overline{Y}(R_S) = 0 \text{ (SET)}$$

$$\therefore Q = 1$$

$$(5) J = 0, K = 1 (RESET)$$
∴ $Y = 0$

7
$$J = 1, K = 1$$

 $S_m = \overline{Q} = 1, R_m = 0 \text{(SET)}$
 $\therefore Y = 1 \text{ at the point C} \rightarrow 0$

$$\begin{array}{c} \text{(8)} \ Y(S_S) = 1, \overline{Y}(R_S) = 0 \\ \text{(SET)} \\ \therefore \ Q = 1 \end{array}$$

Inputs			Outputs			
J	Κ	Clk	Next Q	Next Q'	Meaning	
Х	Х	0	Q	Q'	Hold	
0	0	J	Q	Q'	Hold	
0	1	J	0	1	Reset	
1	0	J	1	0	Set	
1	1		Q'	Q	Toggle	

The same behaviors as master-slave *SR* flip-flop

Eliminated the undefined state

Master-Slave Toggle Flip-Flop

Inputs		Outputs			
T	CIk	Next Q	Next Q'	Meaning	
Х	0	Q	Q'	Hold	
0	J	Q	Q'	Hold	
1	J	Q'	Q	Toggle	

Problem

- For the presented MSFF, master is enabled during the period when the clock pulse is 1 (Level triggered
- Undesired behavior produced when inputs values of S and R (or J, K, D, T) change at that period, especially just before the clock pulse changes to 0
- Undesired output due to glitch could not be fully avoided
- Better solution: Edge-triggered FFs

Summary

- ➤ Latches & Flip-Flops: Basic building block (Memory) of Sequential system
- > Flip-Flop (FF): One FF can store 1-bit data
 - Types: SR, D, JK, T, Master-Slave
 - Control inputs to change, set, reset or hold the value of Q
 - Triggering: Pulse vs Edge
 - Asynchronous inputs