

Scheduling

Dr. Geoffrey Nelissen

Courtesy of Prof. Dr. Johan Lukkien and Dr. Tanir Ozcelebi

Interconnected Resource-aware Intelligent Systems

Technische Universiteit Eindhoven University of Technology

Where innovation starts

A single process (thread) may not use the system resources efficiently

Only **one task** can use a resource (e.g. processor, memory page, device) **at any given time instant**.

A task does not use a resource constantly during its execution

→ We must schedule the access to resources

Agenda

- Resource scheduling
- CPU scheduling
- Common scheduling algorithms
- Priority inversion

Resource scheduling (allocation)

- Assignment of resources to tasks
 - Schedule S is a function that maps a time and a resource to a <u>task</u>: S(t,r) = P means that task P is allocated resource r at time t
 - Definition of a <u>task</u> is context dependent
 - e.g. a process, a thread of execution, I/O operation (e.g., the reading of a disk block), servicing an interrupt, etc.
 - To define a schedule we must decide
 - When: to change the allocation of a resource
 - Usually when there is a change in the system state
 - processor: e.g. process added into ready queue; end of time slice; process yielding (e.g. blocked, waiting for I/O or for child process to terminate)
 - memory: e.g. memory management call; replacement policy by memory subsystem; process termination
 - How: what decision procedures are used to allocate the resource when in decision mode

Example schedule

- P0, P1, P2: tasks (processes, jobs)
- *t0, t1,....*: scheduling points
 - system is in decision mode
 - scheduling decisions are taken
 - scheduling points may differ per resource (not shown here)

- processor resource: PROC
 - S([t0..t1), PROC) = P0,S([t1..t2), PROC) = P1, etc.
- a memory page frame: *m*23
 - S([t0..t4), m23) = P0, etc.
- another memory page frame: *m56*
 - S([t3..t6), m56) = P2, etc.

Scheduling policies and mechanisms

- Scheduling policy represents the strategy for allocating a resource to a task while in decision mode.
 - policy: an algorithm that decides based on scheduling criteria....
 - task attributes (deadline, response time, ...)
 - current state (the set of ready processes, available and required resources, ...)
 -or based on a pre-computed lookup table

Agenda

- Resource scheduling
- CPU scheduling
 - metrics, task attributes
 - a framework for scheduling
- Common scheduling algorithms
- Priority inversion

Metrics for the quality of CPU scheduling

Scheduling Criteria

Metric: observed property, result of applying scheduling policy

- CPU utilization
 - keep the CPU as busy as possible
- Throughput
 - # of processes that complete their execution per time i
- number of deadline misses (real-time scheduling)
- turnaround time
 - time to execute a particular process
- waiting time
 - time a process has been waiting in the ready queue

new

I/O or event completion

Basis for our comparisons of different scheduling schemes in this slide set

admitted

- response time
 - time it takes from when a request was submitted until the first response is produced → not the
 entire output (suitable for time-sharing interactive environment)
 - most texts: response time is defined as the time elapsing from arrival to completion (in our textbook this is called: turnaround time)

terminated

running

I/O or event wait

scheduler dispatch

Time attributes of a task

A task has fixed time attributés and ...

•	a name (the j^{th} task)	τ_i
•	a period, sometimes	${T}_i$
•	a (worst case) execution time	$ {C}_i$
•	a relative deadline, sometimes	$\vec{\mathcal{D}_{j}}$

- ... dynamic time attributes (*i*th instance or occurrence)
 - an arrival time
 an absolute deadline, sometimes (add D_i to arrival time)
 - a start time (or beginning time) of execution

 $a_{j,i}$

 $e_{i,i}$

- a departure time, also called **end**, finish or completion time
- (book) Response time: $s_{j,i}$ $a_{j,i}$
- (book) Turnaround time: $e_{j,i}$ $a_{j,i}$

CPU scheduling

- Scheduling framework defines 3 things
 - When to schedule?
 - = decision mode
 - Priority function (priority scheduling)
 - What task to schedule based on priority?
 - Arbitration rule
 - who to schedule in case of equal priority?
- Managed by 2 different OS modules (jointly called the scheduler)
 - Process scheduler
 - policies to determine which task to execute next
 - Process dispatcher
 - actual binding of selected task to a processor (switching context, switching to user mode, jumping to the proper location in the program)

Decision mode: Activating process scheduler

- Decision mode defines the conditions for activating the process scheduler.
 - Upon activation
 - Task scheduler selects one ready task for execution
- Scheduler can be invoked (decision mode), e.g.:
 - 1. Periodically
 - 2. when a **process** switches **from running to waiting state** (e.g. wait for child to terminate)
 - 3. when a **process** switches **from running to ready state** (e.g. through an interrupt)
 - 4. when a **process** switches **from waiting to ready** (e.g. i/o completion)
 - 5. when a **process terminates**
- If scheduling takes place ONLY under 2 & 5 (active process voluntarily yields) → non-preemptive decision mode
 otherwise → preemptive decision mode

