Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

учебный центр общей физики фтф

Группа: <u>R3137</u>	К работе допущен: .	
Студент: Нестеров И.А.	Работа выполнена <u>:</u>	
Преподаватель: Крылов В.А.	Отчет принят:	

Рабочий протокол и отчет по лабораторной работе № 4.10. «Поляризация света. Законы Малюса и Брюстера».

1. Цель работы.

- 1. Изучить поляризацию света, проверить экспериментально законы Малюса и Брюстера
- 2. Задачи, решаемые при выполнении работы.

Исследование характера поляризации лазерного излучения Экспериментальная проверка законов Малюса и Брюстера

3. Объект исследования.

Лазерное излучение

4. Метод экспериментального исследования.

Наблюдение

5. Рабочие формулы и исходные данные.

Степень поляризации:
$$P=\frac{I_{max}-I_{min}}{I_{max}+I_{min}}, P=\frac{(n^2-1)^2}{2\cdot(n^2+1)^2-(n^2-1)^2}$$
 Относительная интенсивность: $I_{\rm OTH}=\frac{I_{\rm cp}}{I_{max}}$ Коэффициенты пропускания: $k_{\parallel}=\frac{I_{max}}{I_0}, \quad k_{\perp}=\frac{I_{min}}{I_0}$ Показатель преломления: $n_{21}=\tan\alpha_{\rm Ep}=\frac{n_2}{n_1}$

6. Измерительные приборы.

№ п/п	Наименование	Цена деления	Предел измерений	Δ_{H}	
1	Шкала измерения угла	5 °	150 °	2,5 °	
2	Датчик относительной интенсивности	0,001 Вт/м ²	2 Вт/м ²	$0,0005 \; \mathrm{Bt/m^2}$	

7. Схема установки

Рис. 4. Схема экспериментальной установки

- 1. Блок осветителей
- 2. Турель, на которой смонтированы объекты исследования для работ по интерференции и дифракции.
 - 3. Защитный экран
 - 4. Поляризатор
 - 5. Двулучепреломляющий одноосный образец
 - 6. Блок для измерения угла Брюстера
 - 7. Анализатор
 - 8. Стойка
- 9. Стеклянная пластинка с поворотным устройством и отсчетной вертикальной шкалой
 - 10. Основание блока
 - 11. Электронный блок
 - 12. Индикатор измерений блока амперметра-вольтметра
- 13. Индикатор режима измерений блока амперметравольтметра
 - 14. Индикаторы включенного источника
 - 15. Регулятор накала белого осветителя
- 16. Кнопка переключения режима измерений блока амперметра-вольтметра
 - 17. Кнопка включения лазера
 - 18. Ручка установки относительной интенсивности «J/J0»
 - 19. Кнопка переключения фотоприемников
 - 20. Индикатор относительной интенсивности излучения
- 21. Индикаторы включенного фотоприемника
- 22. Кнопка «Сеть»
- 23. Окно фотоприемников белого осветителя
- 24. Окно фотоприемника лазерного излучения
- 25. Кнопка включения лампы.

8. Результаты прямых измерений и их обработки.

Таблица 1	Таблица 2
$I_0 = 1,530 \mathrm{BT/m^2}$	$I_0' = 1,550 \mathrm{BT/m^2}$

9. Результаты косвенных измерений и их обработки:

1) Опыт Малюса

Таблица 1. Проверка закона Малюса, лазер

№ п.п	φ,°	$I_{\rm cp}$, Вт/м ² $I_{\rm отh}$		$\cos^2(\phi - \phi_m)$	
1	150	0,836	0,727	0,750	
2	140	0,625	0,543	0,587	
3	130	0,462	0,401	0,413	
4	120	0,277	0,241	0,250	
5	110	0,123	0,107	0,117	
6	100	0,039	0,033	0,030	
7	90	0,007	0,006	0,000	
8	80	0,040	0,034	0,030	
9	70	0,127	0,110	0,117	
10	60	0,294	0,255	0,250	
11	50	0,509	0,442	0,413	
12	40	0,742	0,645	0,587	
13	30	0,919	0,799	0,750	
14	20	1,086	0,944	0,883	
15	10	1,127	0,980	0,970	
16	0	1,150	1,000	1,000	

№ п.п	φ,°	I _{ср} , Вт/м ²	I_{oth}	$\cos^2(\phi - \phi_m)$	
17	-10	0,932	0,810	0,970	
18	-20	0,683	0,594	0,883	
19	-30	0,416	0,362	0,750	
20	-40	0,3	0,261	0,587	
21	-50	0,148	0,129	0,413	
22	-60	0,058	0,050	0,250	
23	-70	0,008	0,006	0,117	
24	-80	0,026	0,022	0,030	
25	-90	0,112	0,097	0,000	
26	-100	0,206	0,179	0,030	
27	-110	0,387	0,337	0,117	
28	-120	0,597	0,519	0,250	
29	-130	0,787	0,684	0,413	
30	-140	0,957	0,832	0,587	
31	-150	1,067	0,928	0,750	

 $I_{max}=$ 1,150 Вт/м 2 (при угле $arphi_m=0^\circ$), : $I_{min}=$ 0,008 Вт/м 2

Таблица 2. Проверка закона Малюса, белый свет

№ Π. Π	φ,°	<i>I</i> ₁ , Вт/м ²	I_2 , Вт/м 2	<i>I</i> _{ср} , Вт∕м	$I_{\text{отн}}$	№ п.п	φ,°	<i>I</i> ₁ , Вт/м ²	<i>I</i> ₂ , Вт/м ²	<i>I</i> _{ср} , Вт/м ²	$I_{\text{отн}}$
1	150	0,369	0,367	0,3680	0,3680	16	0	0,405	0,404	0,4045	0,9746
2	140	0,370	0,368	0,3690	0,3690	17	-10	0,414	0,416	0,4150	1
3	130	0,377	0,376	0,3765	0,3765	18	-20	0,411	0,412	0,4115	0,9915
4	120	0,384	0,383	0,3835	0,3835	19	-30	0,401	0,400	0,4005	0,9650
5	110	0,365	0,364	0,3645	0,3645	20	-40	0,389	0,391	0,3900	0,9397
6	100	0,366	0,365	0,3655	0,3655	21	-50	0,324	0,326	0,3250	0,7831
7	90	0,355	0,355	0,3550	0,3550	22	-60	0,353	0,351	0,3520	0,8481
8	80	0,350	0,350	0,3500	0,3500	23	-70	0,335	0,334	0,3345	0,8060
9	70	0,356	0,352	0,3540	0,3540	24	-80	0,332	0,333	0,3325	0,8012
10	60	0,345	0,343	0,3440	0,3440	25	-90	0,343	0,344	0,3435	0,8277
11	50	0,362	0,362	0,3620	0,3620	26	-100	0,364	0,364	0,3640	0,8771
12	40	0,397	0,396	0,3965	0,3965	27	-110	0,380	0,380	0,3800	0,9156
13	30	0,409	0,407	0,4080	0,4080	28	-120	0,391	0,392	0,3915	0,9433
14	20	0,413	0,415	0,4140	0,4140	29	-130	0,404	0,404	0,4040	0,9734
15	10	0,388	0,390	0,3890	0,3890	30	-140	0,408	0,409	0,4085	0,9843
						31	-150	0,400	0,400	0,4000	0,9638

$$I_{min} = 0.3250 \, \mathrm{Bt/m^2}$$
 , $I_{max} = 0.4150 \, \mathrm{Bt/m^2}$

Расчёт средней интенсивности:

$$I_{\rm cp} = \frac{I_1 + I_2}{2} = \frac{0.836 + 0.625}{2} = 0.7305 \text{ BT/M}^2$$

Расчёт относительной интенсивности для занесения соответствующих значений в таблицу:

$$I_{\text{oth}} = \frac{I_{\text{cp}}}{I_{max}} = \frac{0.7305}{1.150} = 0.6352$$

Расчёт косинуса для занесения соответствующих значений в таблицу:

$$\cos^2(\varphi - \varphi_m) = \cos^2(150 - 0) = 0,750$$

Расчёт степени поляризации лазерного излучения:

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{1,150 - 0,008}{1,150 + 0,008} = 0,9861$$

Расчёт коэффициентов пропускания:

$$k_{\parallel} = \frac{I_{max}}{I_0} = \frac{1,150}{1,530} = 0,7516 = 0,75$$

 $k_{\perp} = \frac{I_{min}}{I_0} = \frac{0,008}{1,530} = 0,005138 = 0,0051$

Расчёт степени поляризации белого источника:

$$P_{11} = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{0.415 - 0.325}{0.415 + 0.325} = 0.121 = 0.12$$

2) Опыт Брюстера

Таблица 3. Проверка закона Брюстера

9 п.п	φ,°	I ₁ , Вт/м ²	I ₂ , Вт/м ²	I _{ср} , Вт/м ²	. п.п	φ,°	I_1 , Вт/м 2	I_2 , Вт/м 2	$I_{ m cp}$, Вт/м 2
1	30	0,369	0,367	0,3680	10	48	0,233	0,234	0,2335
2	32	0,370	0,365	0,3675	11	50	0,228	0,227	0,2275
3	34	0,365	0,363	0,3640	12	52	0,222	0,222	0,2220
4	36	0,356	0,357	0,3565	13	54	0,178	0,176	0,1770
5	38	0,350	0,350	0,3500	14	56	0,069	0,068	0,0685
6	40	0,337	0,334	0,3355	15	58	0,029	0,028	0,0285
7	42	0,315	0,314	0,3145	16	60	0,022	0,022	0,0220
8	44	0,275	0,274	0,2745	17	62	0,018	0,018	0,0180
9	46	0,251	0,253	0,2520	18	64	0,013	0,012	0,0125

$$\alpha_{\rm Bp} = 55^{\circ}$$

Максимальная интенсивность: $I_{max} = 0.3680 \; \mathrm{Bt/m^2}$

Минимальная интенсивность: $I_{min} = 0.0125 \, \text{Bt/m}^2$

Расчёт показателя преломления стекла:

$$n = \tan \alpha_{\rm Bp} = \tan(55^{\circ}) = 1,428 \approx n_{{\rm Ta6}\pi}, \qquad n_{{\rm Ta6}\pi} = 1,5$$

Расчёт степени поляризации света:

$$P_0 = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{0.3680 - 0.0125}{0.3680 + 0.0125} = 0.934297 = 0.934$$

Расчёт степени поляризации белого света:

$$P_{1} = \frac{(n^{2} - 1)^{2}}{2 \cdot (n^{2} + 1)^{2} - (n^{2} - 1)^{2}} = \frac{(1,428^{2} - 1)^{2}}{2 \cdot (1,428^{2} + 1)^{2} - (1,428^{2} - 1)^{2}} = 0,0620871 = 0,6$$

$$P_{2} = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{0,125 - 0,005}{0,125 + 0,005} = 0,923 = 0,9$$

$$P_{11} = P_{1} \approx P_{2}$$

10. Окончательные результаты.

Степень поляризации лазера: P = 1,0

Показатель преломления стекла: n = 1,4

Степень поляризации белого света: P = 0.6

Коэффициенты пропускания: $k_\parallel=$ 0,7, $k_\perp=$ 0,005

11. Выводы и анализ результатов работы.

В ходе выполнения данной лабораторной работы был проведен опыт Малюса, в результате которого были получены графики $I(\varphi)$ и $\cos^2(\varphi-\varphi_m)(\varphi)$ в полярных координатах. Кроме того, были рассчитаны коэффициенты пропускания (k_\parallel,k_\perp) , являющиеся показателями степени поляризации. Проведенный же опыт Брюстера дал показатель преломления стекла n=1,4. Однако же табличное значение $n_{\text{табл}}=1,5$. нет точного совпадения, на мой взгляд, в силу человеческого фактора, к примеру, сложно было точно менять угол φ ровно на 10 градусов при проведении измерений. Не способствует повышению точности и проведение измерений в темноте, а также опаска за соседствующие с лазером глаза. Совокупность всех этих факторов, на мой взгляд, и привела к искажению табличного значения на ~0.1.