Ecole polytechnique de Louvain

LINMA1510 - Automatique linéaire

Laboratoire 3 - Régulation de la tension aux bornes d'un circuit électrique à l'aide d'un régulateur industriel

GROUPE 62 Antoine Paris Philippe Verbist 30 avril 2016

1 Fonctions de transfert en boucle ouverte

Minimum de phase Le système nous est donné :

$$\dot{x}_1 = -a_{11}x_1 + a_{12}x_2 + bu + dv$$

$$\dot{x}_2 = a_{21}x_1 - a_{22}x_2$$

$$y = 10x_2$$

On trouve rapidement les fonctions de transfert

$$G_A(s) = \frac{0.08792}{s^2 + 1.161s + 0.09353} = \frac{0.08792}{(s + 1.073)(s + 0.08714)}$$

$$H_A(s) = \frac{9.751}{s^2 + 1.161s + 0.09353} = \frac{9.751}{(s + 1.073)(s + 0.08714)}$$

Non-minimum de phase Le système est le même que précédemment, sauf que :

$$y = -10x_1 + 20x_2$$

On trouve rapidement les fonctions de transfert

$$G_B(s) = \frac{-0.9091s + 0.08792}{s^2 + 1.161s + 0.09353} = \frac{-0.90909(s - 0.09671)}{(s + 1.073)(s + 0.08714)}$$

$$H_B(s) = \frac{-100.8s + 9.751}{s^2 + 1.161s + 0.09353} = \frac{-100.83(s - 0.09671)}{(s + 1.073)(s + 0.8714)}$$

Ajouter les fonctions de transfert de Matlab. Attention de bien mettre les valeurs des composants en kiloohms et en millifarads comme

conseillé

Groupe 1

2 Fonctions de transfers en boucle fermée

Idem.

Minimum de phase

$$T_{v,A} = \frac{H}{1 + CG} = \frac{0.09751s}{s^3 + 1.161s^2 + s(0.09353 + \frac{8.792}{PB}) + \frac{8.792}{PBT_i}}$$

Le dénominateur est du $3^{\text{ème}}$ degré. Pour le simplifier, nous allons réaliser un placement de pôle au niveau du pôle le plus lent, à savoir 11.5 s. En outre, pour supprimer un degré del iberté, nous allons tenter d'obtenir un pôle double en a. Nous voulons donc obtenir un dénominateur de la forme

$$D(s) = (s + 0.087)(s + a)^{2}$$

= $s^{3} + s^{2}(2a + 0.087) + s(a^{2} + 0.174a) + 0.087a^{2}$

Il ne reste plus qu'à identifier les coefficients, et on trouve

$$a = 0.537$$

$$PB = 30.5$$

$$T_i = 11.5$$

Non-minimum de phase Si on calcule directement la fonction de transfert en boucle fermée, on obtient une fonction du $4^{\text{ème}}$ ordre, ce qui n'est pas très commode.

Nous allons commencer par caluler la fonction de transfert sans tenir compte du retour unitaire en sortie

$$C \cdot G = \frac{100}{sPB}(s + \frac{1}{T_i}) \cdot \frac{-0.90909(s - 0.09671)}{(s + 1.073)(s + 0.08714)}$$

Nous allons nous arranger pour simplifier le pôle le plus lent (il ne s'agit pas d'un pôle et d'un zéro instables, on peut donc faire légitimement la simplification), parce que "its action is leading".

$$\frac{1}{T_i} = 0.08714$$
$$T_i = 11.5 \ s$$

Calculons maintenant la fonction de transfert en boucle fermée

$$T_{r,B} = \frac{\frac{-91}{PB}(s - 0.09671)}{s^2 + s(1.073 - \frac{91}{PB}) + \frac{8.8}{PB}}$$

En comparant le dénominateur à la forme canonique, on trouve

$$\omega_n = \sqrt{\frac{8.8}{PB}}$$

$$2\zeta\omega_n = 1.073 - \frac{91}{PB}$$

Calculer $T_{v,B}$, et remplacer les valeurs PB et T_i .

On pose $\zeta = 1.1$ pour ne pas avoir de dépassement, sans être "borderline". On trouve alors

$$PB = 162.$$
 (2.1)

La fonction de transfert de perturbation est

$$T_{v,B} = \frac{-100.83s(s - 0.09671)}{s^3 + s^2(1.16014 - \frac{90.909}{PB}) + s(0.0935 + \frac{8.8853}{PB} + -\frac{90.909}{PBT_i}) + \frac{8.79}{PBT_i}}$$

$$= \frac{-100.83s(s - 0.09671)}{(s - 1.74)(s - 0.1668)(s + 0.08634)}$$
 (Cas 1)
$$= \frac{-100.83s(s - 0.09671)}{(s + 0.3573)(s + 0.1582)(s + 0.0835)}$$
 (Cas 2)

Dans le premmier cas, un des zéros est du côté positif, il n'est donc pas étonnant que la fonction de transfert soit instable.

3 Mesure des temps d'établissement

Les réponses normalisées à la pertubation des deux systèmes sont reprises sur la figure 3.1. Comme attendu, les temps d'établissement sont identiques dans les deux cas

$$t_R = 45 \,\mathrm{s.}$$
 (3.1)

Calculer $T_{v,B}$, et remplacer les valeurs PB et T:

Groupe 1 3

Figure 3.1 – Mesure des temps d'établissement.

Groupe 1 4