# Comment and Working Paper Figures and Tables not created elsewhere

### 0 Basic statistics

Share of reported mu / sigma, t, p and CI

| report       | n     | share     |
|--------------|-------|-----------|
| ci           | 23    | 0.0010580 |
| p            | 1014  | 0.0466421 |
| $\mathbf{S}$ | 19618 | 0.9023919 |
| t            | 1085  | 0.0499080 |

# 1 The rounding problem and our solution in the pooled data

Figure 1 Combined in Two panels



Figure 2: Number of included observations



Share of obs with z==2 in smallest window

```
sum(dat$z==2, na.rm=TRUE)

## [1] 260
d = filter(dat, abs(z-1.96)<=0.05)
sum(d$z==2, na.rm=TRUE)

## [1] 260
sum(d$z==2, na.rm=TRUE) / NROW(d)

## [1] 0.3790087</pre>
```

## Table of significant digits of standard error

## alternative hypothesis: true correlation is not equal to 0

#### Share digits

| subset     | obs | $single\_signif\_sd$ | $single\_or\_double\_signif\_sd$ |
|------------|-----|----------------------|----------------------------------|
| z is 2     |     | 68.6%                | 97.7%                            |
| z is not 2 |     | 17.2%                | 59.8%                            |

#### Correlation s $\leq$ 37 and z

## 95 percent confidence interval:

```
cor.test(dat$z, 1L*(!dat$keep.obs))

##

## Pearson's product-moment correlation
##

## data: dat$z and 1L * (!dat$keep.obs)
## t = -0.77946, df = 21738, p-value = 0.4357
```

```
## -0.018578286 0.008006953
## sample estimates:
##
## -0.005286601
dat.omit = dat %>% select(mu,z, sigma) %>% filter(is.finite(z), is.finite(sigma))
cor.test(dat.omit$z, dat.omit$sigma)
##
##
   Pearson's product-moment correlation
##
## data: dat.omit$z and dat.omit$sigma
## t = -0.025255, df = 20608, p-value = 0.9799
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.01382844 0.01347666
## sample estimates:
##
## -0.0001759225
dat.omit = filter(dat.omit,z >0, sigma > 0)
cor.test(log(dat.omit$z), dat.omit$sigma)
##
##
   Pearson's product-moment correlation
##
## data: log(dat.omit$z) and dat.omit$sigma
## t = 0.13898, df = 20395, p-value = 0.8895
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.01275066 0.01469661
## sample estimates:
            cor
## 0.0009731582
```

#### Table of omitted obs

| group          | count | share.omit |
|----------------|-------|------------|
| z=2            | 260   | 87.3%      |
| other bunching | 4212  | 81.1%      |
| no bunching    | 17268 | 26.6%      |

| count | share.omit |
|-------|------------|
| 21740 | 37.9%      |

```
## Loading required package: stringr
##
## Attaching package: 'stringtools'
## The following objects are masked from 'package:RoundingMatters':
##
## str.between, str.left.of, str.right.of
```



Table of most common bunched z-values

## Counts by method

| method | total.obs | obs.with.z2 | share.z2.in.window |
|--------|-----------|-------------|--------------------|
| DID    | 5853      | 115         | 50.0               |
| IV     | 5170      | 28          | 16.6               |
| RCT    | 7569      | 83          | 39.9               |
| RDD    | 3148      | 34          | 43.0               |

# RCT shares of significant tests in window for caliper tests

Used for last line in Caliper table.

```
rct = filter(dat, method=="RCT", keep.obs)
rct %>% filter(abs(z-1.96)<=0.5) %>% summarize( mean(z >= 1.96))
```

$$\frac{\text{mean}(z >= 1.96)}{0.4687225}$$

rct %>% filter(abs(z-1.96)<=0.35) %>% summarize( mean(z >= 1.96))

$$\frac{\text{mean(z} >= 1.96)}{0.477684}$$

rct %>% filter(abs(z-1.96)<=0.2) %>% summarize( mean(z >= 1.96))

$$\frac{\mathrm{mean(z>=1.96)}}{0.4850299}$$

# Power analyis: size of confidence intervals

|        | Average width of 95% C1 |                 | Average width |
|--------|-------------------------|-----------------|---------------|
|        | original sample         | adjusted sample | increase      |
| Pooled | 0.046                   | 0.059           | 25.4%         |
| DID    | 0.085                   | 0.118           | 36.5%         |
| IV     | 0.093                   | 0.103           | 11.3%         |
| RCT    | 0.084                   | 0.109           | 27.4%         |
| RDD    | 0.136                   | 0.183           | 32.5%         |

## Increases for DID sample for all h

## Adding missing grouping variables: `method`

| method | h     | ci.width  | ci.inc    | obs  |
|--------|-------|-----------|-----------|------|
| DID    | 0.050 | 0.1056704 | 0.0000000 |      |
| DID    | 0.050 | 0.1256724 | 0.0000000 | 230  |
| DID    | 0.050 | 0.2011946 | 0.6009456 | 101  |
| DID    | 0.075 | 0.1120792 | 0.0000000 | 292  |
| DID    | 0.075 | 0.1663656 | 0.4843569 | 148  |
| DID    | 0.100 | 0.0992274 | 0.0000000 | 382  |
| DID    | 0.100 | 0.1368463 | 0.3791173 | 217  |
| DID    | 0.200 | 0.0786914 | 0.0000000 | 636  |
| DID    | 0.200 | 0.1003751 | 0.2755538 | 397  |
| DID    | 0.300 | 0.0651333 | 0.0000000 | 930  |
| DID    | 0.300 | 0.0825598 | 0.2675509 | 584  |
| DID    | 0.400 | 0.0581670 | 0.0000000 | 1161 |
| DID    | 0.400 | 0.0743031 | 0.2774105 | 720  |
| DID    | 0.500 | 0.0531007 | 0.0000000 | 1391 |
| DID    | 0.500 | 0.0675363 | 0.2718545 | 869  |