DIGITAL ELECTRONICS AND LOGIC DESIGN [EC-207]

Date:

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT ELECTRONICS ENGINEERING DEPARTMENT

Expt. No: 3

Half Adder and Half Subtractor

AIM: To design and implement Half Adder and Half Subtractor Circuits.

SOFTWARE TOOLS / OTHER REQUIREMENTS:

1. Multisim Simulator

27/08/2020

2. Logic Gates (AND, NOT and EX-OR)

THEORY:

HALF ADDER:

Adders/Subtractors are important in computers and also in other types of digital systems in which numerical data are processed. An understanding of the basic adder/subtractor operation is fundamental to the study of digital systems.

Figure (a) below shows the logic symbol of a half-adder. As seen from this figure, we find that the half-adder accepts two binary digits on its inputs and produces two digits on its outputs: a sum bit (S) and a carry bit (Cout). Fig (b) shows the truth table for the half-adder.

(a) logic symbol

Inputs		Outputs	
A	В	S	C out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(b) truth table

The half-adder follows the basic rules of binary addition:

$$0+1 = 0$$

$$0+1 = 1$$

$$1+0 = 1$$

$$1+1 = 0$$
 with a carry of 1

The Boolean expression for the sum output (S) can be expressed by the equation.

$$S = AB + AB$$

$$= A \oplus B$$

and the Boolean expression for the carry output by,

$$C_{ont} = AB$$

The above two equations can be implemented by a logic circuit shown in Fig below. As seen from this figure, the sum output (S) is obtained from an excluse-OR gate while the carry output (Cout) is the output of a two-input AND gate.

HALF SUBTRACTOR:

Fig. (a) below shows the logic symbol of a half-subtractor. As seen from this figure, we find that the half-subtractor accepts two binary digits on its inputs and produce two digits on it outputs: a difference bit (D) and a borrow bit (Bor). Fig (b) shows the truth table for the half-subtractor.

Inputs		Outputs	
A	В	D	Bor
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

(a) logic symbol

(b) truth table

The half-subtractor follows the basic rules for binary subtraction:

$$0-0 = 0$$

 $0-1 = 1$ with a borrow of 1
 $1-0 = 1$
 $1-1 = 0$

The Boolean expression for the difference bit (D) can be expressed by the equation.

$$D = A\overline{B} + \overline{A}B$$
$$= A \oplus B$$

and the Boolean expression for the borrow bit,

Bor =
$$\overline{A}B$$

DIGITAL ELECTRONICS AND LOGIC DESIGN [EC-207]

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT ELECTRONICS ENGINEERING DEPARTMENT

The above two expressions can be implemented by a logic circuit shown in Fig. below. As seen from this figure, the difference output (D) is obtained from an exclusive-OR gate while the borrow bit (Bor) is the output of a two-input AND gate.

HALF ADDER: CIRCUIT/CONNECTION DIAGRAMS (FROM MULTISIM)

HALF ADDER: OUTPUT PLOTS/WAVEFORMS (FROM MULTISIM):

HALF SUBTRACTOR: CIRCUIT/CONNECTION DIAGRAMS (MULTISIM)

HALF SUBTRACTOR: OUTPUT PLOTS/WAVEFORMS (MULTISIM)

CONCLUSIONS

- 1.) The Results obtained from the <u>Truth Table</u> from Half-Adder Circuit and <u>Grapher Image</u> [Waveform Simulation] are *Equal*, Hence the Circuit is verified to be Half-Adder.
- 2.) The Results obtained from the <u>Truth Table</u> from Half-Subtractor Circuit and <u>Grapher Image</u> [Waveform Simulation] are Equal, Hence the Circuit is verified to be Half-Subtractor.
- 3.) Hence, Half Adder and Half Subtractor Circuit have been Implemented Successfully in Multisim.

ASSIGNMENT-3

U19CS012

Design and verify their functionality of below circuits with the help of Multisim.

- 1. Design and implement Half Adder and Half Subtractor (Single Circuit) using Mode Control 'M'.
- a.) Implement the circuit in Multisim online

b.) Timing Graph

c.) Truth Table:

When Mode = 1, Circuit Behaves as Half Subtractor Circuit

Borrow Out, Bout= A' . B Difference, $D = A \oplus B$

DIGITAL ELECTRONICS AND LOGIC DESIGN [EC-207]

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT ELECTRONICS ENGINEERING DEPARTMENT

Α	В	B _{out}	D
0	0	0	0
0	1		
I	0	0	
I	I	0	0

When Mode = 0, Circuit Behaves as Half Adder Circuit Sum, $S = A \oplus B$ Carry, $C = A \cdot B$

Α	В	C	S
0	0	0	0
0	I	0	I
I	0	0	I
I	I	I	0

The Same Truth Table is Followed for Next 2 Questions as well.

Conclusion:

We can observe from Above Table, Both the *Theoretical* and *Multisim* Values of <u>Given Circuit</u> are **Equal**.

Hence, Experiment is Performed Successfully (without any Error).

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT ELECTRONICS FNCINEEDING Day . --

2. Design and implement the circuit in question '1' by using least number of NAND gates only.

Minimum NAND Gates Required = 9

a.) Implement the circuit in Multisim online

b.) Timing Graph

Conclusion:

We can observe from Above Table, Both the *Theoretical* and *Multisim* Values of Given Circuit are **Equal**.

Hence, Experiment is Performed Successfully (without any Error).

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT ELECTRONICS FNCINEEDING Day . --

3. Design and implement the circuit in question '1' by using least number of NOR gates only.

Minimum NOR Gates Required = 10

a.) Implement the circuit in Multisim online

b.) Timing Graph

Conclusion:

We can observe from Above Table, Both the *Theoretical* and *Multisim* Values of <u>Given Circuit</u> are **Equal**.

Hence, Experiment is Performed Successfully (without any Error).