1. Reduce this system to upper triangular form by two row operations:

$$2x + 3y + z = 8$$
$$4x + 7y + 5z = 20$$

$$-2v + 2z = 0$$

Circle the pivots. Solve by back-substitution for z, y, x.

2. Solve by elimination and back-substitution:

$$u + w = 4$$
 $v + w = 0$
 $u + v = 3$ and $u + w = 0$

$$u + v + w = 6$$

3. Find the symmetric factorization
$$A = LDL^T$$
 of

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 6 & 4 \\ 0 & 4 & 11 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

4. (a) Ax = b has a solution under what conditions on b, for the following A and b?

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 2 & 4 & 0 & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- (b) Find a basis for the nullspace of A.
- (c) Find the general solution to Ax = b, when a solution exists.
- (d) Find a basis for the column space of A.
- (e) What is the rank of A^T ?

5. Suppose **S** is spanned by the vectors (1,2,2,3) and (1,3,3,2). Find two vectors that span \mathbf{S}^{\perp} . This is the same as solving Ax = 0 for which A?

6. Draw the projection of b onto a and also compute it from $p = \hat{x}$ a:

(a)
$$b = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 and $a = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (b) $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $a = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

7. (a) Write the four equations for fitting y = C + Dt to the data

$$y = -4$$
 at $t = -2$, $y = -3$ at $t = -1$
 $y = -1$ at $t = 1$, $y = 0$ at $t = 2$

Show that the columns are orthogonal.

- (b) Find the optimal straight line, draw its graph, and write E^2 .
- (c) Interpret the zero error in terms of the original system of four equations in two unknowns: The right-hand side (-4, -3, -1, 0) is in the space.
- 8. What is the angle between a = (2, -2, 1) and b = (1, 2, 2)?
- 9. What is the projection p of b = (1,2,2) onto a = (2, -2, 1)?
- 10. Let $A = [3 \ 1 \ 1]$, and let V be the nullspace of A.
 - (a) Find a basis for V and a basis for V^{\perp} .
 - (b) Write an orthonormal basis for V^{\perp} , and find the projection matrix P_1 that projects vectors in \mathbb{R}^3 onto V^{\perp} ?
 - (c) Find the projection matrix P_2 that projects vectors in \mathbb{R}^3 onto \mathbb{V} .
- 11. The distance from a plane $a^T x = c$ (in *m*-dimensional space) to the origin is |c|/||a||. How far is the plane $x_1 + x_2 x_3 x_4 = 8$ from the origin, and what point on it is nearest?