RV College of Engineering *

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi Anc

DEPARTMENT OF MATHEMATICS

Course: Fundamentals of Linear Algebra, Calculus and Statistics	CIE-I (QUIZ & TEST)	Maximum marks: 10+50=60
Course code: 22MA11C		Time: 9.15am to 11.15am Date: 17-01-2023

Instructions to candidates:

i. Part A must be answered within the first two pages of the Booklet.

ii. Answer all questions.

	Answer an questions.				
Q.No	PART- A	M	BT	СО	
1.1	The rank of the Matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$ for $a = b \neq c$ is	2	2	1	
1.2	1.2 The value of p for which the following set of equations will have no solution is $2x + 3y = 5$ 3x + py = 10				
1.3	If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, then eigenvalues of A^{-1} are				
1.4	The transformation of the Lemniscate $r^2 = 2\cos 2\theta$ in cartesian system is				
1.5	If $x = at^2$ and $y = 2at$, then the radius of curvature ρ for the given curve is				

Q.No	PART -B	M	BT	CO			
1	Test the consistency of the following system	10	3	1			
	$3.0x_1 + 2.0x_2 + 2.0x_3 - 5.0x_4 = 8.0$						
	$0.6x_1 + 1.5x_2 + 1.5x_3 - 5.4x_4 = 2.7$ $1.2x_1 - 0.3x_2 - 0.3x_3 + 2.4x_4 = 2.1.$						
	Solve if the system is consistent.						
2	The currents i_1 , i_2 , i_3 in the paths of an electrical network follow the linear equations	10	3	4			
	$i_1 - i_2 + i_3 = 0$, $3i_1 + 2i_2 = 7$, $2i_2 + 4i_3 = 8$. Determine i_1 , i_2 , i_3 using Gauss-Jordan elimination method.						
	Employ the Rayleigh's Power method to estimate the dominant eigenvalue and its associated	10	2	2			
3	eigen vector for the matrix $A = \begin{bmatrix} 3 & 2 & 3 \\ 2 & 6 & 6 \\ 3 & 6 & 3 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ as initial eigenvector. Perform	6	3	3			
4 (a)	c						
4(b)	Show that the curves $r = a\theta$ and $r = \frac{a}{\theta}$ intersect orthogonally.	4	2	2			
5	Find the circle of curvature of $b^2x^2 + a^2y^2 = a^2b^2$ at a point of its intersection with the						
	y-axis. Townsomy CO-Course Outcomes, M-Marks						

		BT-Bl	ooms Ta	konomy,	CO-Cour	Se Outco					
Marks Distribution	Particulars	CO1	CO2	CO3	CO4	Ll	1.2	L3	L4	L5	L6
	Test Max Marks	14	20	16	10	2	32	26		-	Part of the second