Praktikum 1 STK331-Analisis Regresi

Pengenalan Analisis Regresi

Aturan Praktikum

Asisten:

Nabil Bintang Prayoga

Farik Firsteadi Haristiyanto

Jadwal Praktikum:

Selasa, 13:00 - 15:00

Asynchronous/Synchronous

Aturan:

- Kehadiran praktikum 100%
- Usahakan hadir tepat waktu
- Presensi IPB Mobile & TTD Basah
- Proporsi Nilai Praktikum: (10%)
 - Kuis
 - Tugas
 - Keaktifan
- Kuis praktikum dilaksanakan 1x per sesi (UTS/UAS)

- R merupakan serangkaian fasilitas *software* yang terintergasi untuk memanipulasi data, perhitungan, dan tampilan grafik.
- Open source
- Analisis statistika di R berupa serangkaian steps dengan hasil yang disimpan dalam suatu objek

Objek Data dalam R

- Vektor
- Matriks
- Array
- Factor
- List
- Data Frame

OBJEK DATA

Vektor

```
Vektor merupakan tipe sederhana dari objek dan setiap elemen memiliki mode yang sama.
Contoh:
a < -c(2, 4)
b <- c("laki-laki", "perempuan")
Perintah dalam vektor:
  rep (pengulangan)
   rep(a,2) \to 2 \ 4 \ 2 \ 4
   rep(a, each=2) \rightarrow 2 2 4 4
  seq (membuat suatu urutan)
   seq(from=3, to=1)\rightarrow 3 21
   seq(from=1, to=2, by=0.5) \rightarrow 1 1.5 2
  is.vector (memeriksa suatu objek termasuk dalam vektor)
  as.vector (merubah objek menjadi vector)
  operator (+, -, /, ^, %, dll)
```

OBJEK DATA

```
Akses elemen ke i dalam suatu vektor

Contoh:
angka<-c(2,3,4,1)
name(angka)<-c("a", "b", "c", "d")
Untuk mengakses 2 dapat menggunakan syntax angka["a"] atau angka[1]

angka[2:3]
angka[c(1,4)]
angka[angka<2]
angka[-2]
```

OBJEK DATA

Matriks

```
Matriks umumnya dibuat melalui vektor
```

Contoh:

Perintah dalam vektor:

```
dim (mengetahui ukuran matriks) rbind (menggabungkan terhadap baris)
```

```
a < -c(2,3,4) [,1] [,2] [,3] b < -c(1,0,1) a 2 3 4 rbind(a,b) b 1 0 1
```

cbind (menggabungkan terhadap kolom)

$$a < -c(2,3,4)$$
 a b $[1,]$ 2 1 $[2,]$ 3 0 rbind(a,b) $[3,]$ 4 1

OBJEK DATA

Akses elemen dalam suatu matriks

Contoh:

```
Data<-matrix(c(1,2,1,100,102,103), nrow = 2, ncol = 3, byrow = FALSE, dimnames = list(c("row1", "row2"), c("C.1", "C.2", "C.3")))
```

```
Data[1,3]
Data[,1]
Data[-1,-2]
```

```
c.1 c.2 c.3
row1 1 102
row2 2 100 103
```

OBJEK DATA

Faktor

Fator merupakan bentuk khusus dari vektor dengan elemen kategorik dan memiliki level .

Perintah dalam vektor:


```
x <- c("apple", "banana", "apple", "orange")
factor_x <- factor(x, levels = c("apple", "banana", "orange"), labels = c("A", "B", "C"))
print(factor_x)
[1] A B A C
Levels: A B C</pre>
```

```
x <- c("apple", "banana", "apple", "orange")
factor_x <- as.factor(x)
print(factor_x)
[1] apple banana apple orange
Levels: apple banana orange</pre>
```

```
# Membuat vektor karakter
colors <- c("red", "green", "blue")

# Memeriksa apakah objek adalah faktor
is_colors_factor <- is.factor(colors)
print(is_colors_factor) # Output: FALSE</pre>
```

Konversi & mengatur level dan label

Konversi vektor menjadi faktor

Mengecek data apakah faktor

OBJEK DATA

List

List merupakan struktur data yang dapat menyimpan berbagai jenis data dalam satu wadah

OBJEK DATA

Data Frame

Merupakan bentuk khusus dari list untuk menyimpan data dari berbagai tipe dalam bentuk matriks. Perintah yang umum digunakan dalam data frame:

data.frame() → Membuat data frame baru dari vektor atau list

as.data.frame() → Mengkonversi objek menjadi data frame

read.table() → Membaca data dari file teks

OBJEK DATA

Data Frame

Contoh:

```
dtf<-data.frame(Mahasiswa=c("Amir","Budi", "Citra"), JK=c("L","L","P") )
dtf <- rbind(dtf, data.frame(Mahasiswa="Intan", JK="P"))</pre>
```

```
Mahasiswa JK
1 Amir L
2 Budi L
3 Citra P
```

```
Mahasiswa JK
1 Amir L
2 Budi L
3 Citra P
4 Intan P
```

colnames(dtf) → untuk mengetahui nama-nama kolom

```
[1] "Mahasiswa" "JK"
```

length(dtf) atau dim(dtf) → untuk mengetahui jumlah kolom atau dimensi

[1] 2

[1] 4 2

OBJEK DATA

Data Frame

dtf[2] atau dtf["JK"] atau dtf\$JK \rightarrow untuk mengakses semua elemen JK dtf[1,] \rightarrow untuk mengakses baris ke-1 semua kolom dtf[2,1]<-"Bambang"

```
Mahasiswa JK

Amir L

Budi L

Citra P

Mahasiswa JK

Amir L

Bambang L

Citra P
```

names(dtf)[1]<="Nama" \rightarrow mengganti nama kolom ke-1

```
Mahasiswa JK

1 Amir L

2 Bambang L

3 Citra P

Nama JK

1 Amir L

2 Bambang L

3 Citra P
```

INPUT DATA DALAM R

File .txt

```
data<-read.table("E:/..../namadata.txt", header=TRUE)

Jika pemisah antar kolom (delimiter) bukan spasi maka dapat menggunakan syntax berikut data<- read.delim("E:/..../namadata.txt", header = TRUE, sep = ";")
```

File .csv

```
data <- read.csv("E:/..../namadata.txt", header = TRUE)
Jika menggunakan delimiter ";" maka menggunakan read.csv2
```

File .xlsx

```
library(readxl)
data<- read_excel(path = "data/namadata.xlsx", col_names = TRUE)</pre>
```

Korelasi dan Regresi

KORELASI	REGRESI	
Mengukur kekuatan atau derajat hubungan antara dua peubah	Menduga rata-rata satu peubah atas dasar nilai yang tetap dari peubah-peubah lain	
Dua peubah ini diperlakukan secara simetri	Ada asimetri bagaimana peubah tak bebas dan peubah bebas diperlakukan	

Koefisien Korelasi Populasi

$$\rho = \frac{\text{cov}(X, Y)}{\sqrt{\{\text{var}(X) \text{var}(Y)\}}} = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y}$$

Koefisien Korelasi Sampel

$$r = \frac{\sum x_{i} y_{i}}{\sqrt{(\sum x_{i}^{2})(\sum y_{i}^{2})}}$$

$$= \frac{n \sum X_{i} Y_{i} - (\sum X_{i})(\sum Y_{i})}{\sqrt{[n \sum X_{i}^{2} - (\sum X_{i})^{2}][n \sum Y_{i}^{2} - (\sum Y_{i})^{2}]}}$$

- Mengukur keeratan hubungan linier antara dua peubah metrik
- Tidak harus menggambarkan hubungan sebab-akibat
- $-1 \leqslant r \leqslant 1$
- r mendekati 1 atau -1, semakit erat hubungan linearnya

Kelemahan Koefisien Korelasi:

- Sangat peka terhadap pencilan (outlier)
- o Tidak dapat mendeteksi hubungan non linear

4		
Harga Rumah	Luas Lantai	
(Rp.juta)	(m2)	
(y)	(x)	
245	1400	
312	1600	
279	1700	
308	1875	
199	1100	
219	1550	
405	2350	
324	2450	
319	1425	
255	1700	

#Input data

```
harga <- c(245, 312, 279, 308, 199, 219,
405, 324, 319, 255)
luas <- c(1400, 1600, 1700, 1875, 1100, 1550,
2350, 2450, 1425, 1700)
```

#Membuat Scatterplot

```
plot (x = luas, y = harga,
main = "Scatterplot Harga vs Luas Lantai",
xlab = "Luas Lantai (m^2)",
ylab = "Harga Rumah (Rp.Juta)")
```


#Koefisien Korelasi

cor(luas, harga, method = "pearson")

```
> cor(luas, harga, method = "pearson")
[1] 0.7621137
```

#Matriks Korelasi

df <- data.frame(luas, harga)
korelasi <- cor(df)
korelasi</pre>

```
luas harga
luas 1.0000000 0.7621137
harga 0.7621137 1.0000000
```

#install.packages("corrplot")
library(corrplot)
corrplot(corr = korelasi, method = "number", type = "upper")

#Uji Signifikansi Koefisien Korelasi

```
#Hipotesis H0: rho = 0 vs H1: rho ≠ 0

cor.test(x = luas, y = harga, alternative = "two.sided",

method = "pearson",

exact = NULL, conf.level = 0.95)
```

<u>Hipotesis statistik:</u>

 H_0 : $\rho = 0$ (tidak ada korelasi)

 H_1 : $\rho \neq 0$ (ada korelasi)

Statistik uji:

$$Z = \frac{\sqrt{n-3}}{2} \ln \left[\frac{(1+r)(1-\rho)}{(1-r)(1+\rho)} \right]$$

Keputusan:

Tolak H_0 jika $|Z| > critical value <math>Z_{\alpha/2}$

α	Z _{n/2}	
1%	2.575	
5%	1.960	
10%	1.645	

Nilai p (p-value = 0.01039): Karena nilai p < 0.05, kita menolak hipotesis nol dan menyimpulkan bahwa ada korelasi yang signifikan antara Luas Lantai dan Harga Rumah

Analisis Regresi

Model Deterministik vs Stokhastik

Y= f(X) = 1 + 2 X

Berapa Y jika X=2 ? → pasti Y=5 Berapa Y jika X=3 ? → pasti Y=7

100% kita percaya bahwa nilai Y=5 dan Y=7 adalah satu-satu-nya nilai untuk X=2 dan X=3

- □ Y nilainya pasti, bebas dr eror
- ☐ Y bukan peubah acak

MODEL DETERMINISTIK

Analisis Regresi

Untuk setiap dosis pupuk yg dicobakan, banyaknya padi yang dihasilkan diamati sebanyak 3 kali. Hasilnya pd tabel di samping.

Ternyata hasilnya		
(Y) tidak pasti. →mengandung eror		
→Y Peubah Acak		

3,4 2,8 5,4 3 7,3 3 6,6 3 4 9,3 4 8,5 MODEL STOKHASTIK

X

 $Y = 1 + 2x + \varepsilon$, $\varepsilon = \text{eror}$ $y_t = 1 + 2x_t + \varepsilon_t$, $\varepsilon = \text{eror ke - i}$

Analisis Regresi

Latihan

Diduga ada hubungan antara jumlah halaman buku yang digunakan dengan harga jual bukunya. Untuk menjawab dugaan tersebut dipilih sampel dari delapan buku yang dijual di toko tersebut.

Pertanyaan:

- 1. Buatlah scatterplot dan hitung koefisien korelasinya!
- 2. Apakah korelasi tersebut signifikan? Jelaskan!

Teknis:

- Kerjakan secara individu
- Disubmit ke https://ipb.link/tugas-prak-anreg1 dengan format NIM_Tugas1.pdf
- Deadline Jumat (24 Jan 2025), pukul 23.59

Book	Page	Price (\$)
Intro to History	500	84
Basic Algebra	700	75
Intro to Psyc	800	99
Intro to Sociology	600	72
Bus. Mngt	400	69
Intro to Biology	500	81
Fund. of Jazz	600	63
Princ. of Nursing	800	93