Revisited Convergence of a Self-Stabilizing BFS Spanning Tree Algorithm

Karine Altisen, Marius Bozga Pavedys meeting – 13 mai 2025

Distributed Algorithms

- Autonomous Computing Entities
 Local Memory, Local Program
 Communication functions
- Communication Links
- → Solve a common problem despite Distribution

 Asynchrony

 ... and Faults

e.g. Routing data from a process to another

Self-Stabilization

Non-Masking Fault Tolerance

Computational Model = Atomic State Model

communication abstraction

- Locally shared memory model
- Local algorithm = list of guarded actions

Configuration = the state of all processes

Atomic Step

- Each process reads its local and neighbor's variables
 - → Enabled?

K. Altisen

- daemon selection > Set of processes to be executed asynchrony modeling
- Each selected process → Updates its local variables

Execution = stream of configurations

Linked by atomic steps

Maximal = finite iff the last config. is terminal
(= no more node enabled)

Daemon = localization and fairness properties

Self-Stabilizing BFS Spanning Tree

Dolev - Israeli - Moran - 1993

Bidir rooted network

```
Algorithm 1 Algorithm BFS, code for each node p.
```

Constant Local Input: $p.neigh \subseteq Node$; $p.root \in \{t, f\}$ Local Variables: $p.d \in \mathbb{N}$; $p.par \in Node$

Macros:

 $Dist_p = \min\{q.d + 1, q \in p.neigh\}$ $Par_{dist} = \text{fst } \{q \in p.neigh, q.d + 1 = p.d\}$

Algorithm for the root(p.root = true)

Root Action: if $p.d \neq 0$ then p.d is set to 0

Algorithm for any non-root node(p.root = false)

CD Action: if $p.d \neq Dist_p$ then p.d is set to $Dist_p$

CP Action: if $p.d = Dist_p$ and $p.par.d + 1 \neq p.d$ then

p.par is set to Par_{dist}

Example of execution

Context and Contributions

Existing proofs for this algorithm

- Initial proof
- Machine checked proof (PADEC/Coq)

→ under restricted fairness

Assume a cyclic execurion

Unfair daemon, bounded variables d in {0, ..., D}

→ proof by contradiction

Our Contribution

- Unfair daemon
- Unbounded variables d in N
- Constructive and machine-checked proof using PADEC/Coq

PADEC: the PADEC Project

«Preuves d'Algorithmes Distribués En Coq»

"Proofs of Distributed Algorithms using Coq/Rocq"

- Goal: Formal proofs for self-stabilizing algorithms in the Atomic-state Model (ASM) using Coq/Rocq and its libraries
- Challenges: handle every kind of proofs for self-stabilization in the ASM
 - → Correctness and convergence
 - → Quantitative properties
 - → Time complexity

PADEC provides a Coq/Roq library including:

- General tools
- Computational model and specifications
- Lemmas corresponding to common proof patterns

PADEC – Big Picture

Examples

Case studies

PADEC: Short How To

Algorithm 1 Algorithm BFS, code for each node p.

Constant Local Input: $p.neigh \subseteq Node; p.root \in \{t, f\}$

Local Variables: $p.d \in \mathbb{N}$; $p.par \in Node$

Macros:

 $Dist_p = \min\{q.d + 1, q \in p.neigh\}$

 $Par_{dist} = \text{fst } \{q \in p.neigh, q.d + 1 = p.d\}$

Algorithm for the root(p.root = true)

Root Action: if $p.d \neq 0$ then

p.d is set to 0

Algorithm for any non-root node(p.root = false)

CD Action: if $p.d \neq Dist_p$ then

p.d is set to $Dist_p$

CP Action: if $p.d = Dist_p$ and $p.par.d + 1 \neq p.d$ then

p.par is set to Par_{dist}

Instantiate Algorithm:

- State = a record of local var.
- run = a faithful translation

Express Assumption:

- **Daemon** *e.g., unfair*
- **Network**, e.g. rooted, bidir, connected

Express Specification:

Self-stabilizing w.r.t. a problem e.g.,
 BFS spanning tree

Prove it!!

Some Elements of Formalization in PADEC

Configuration γ of type Env := Node -> State

Atomic Step: relation Step:= Env -> Env -> Prop

Execution e of type Exec := Stream Env such as predicate is exec: Exec -> Prop

Self-Stabilization: A is self-stabilizing under (Assume, Daemon) wrt SPEC := exists LC a set of *legitimate* configurations s.t.

forall execution e of A under (Assume, Daemon)

- Closure: if e starts LC in then e remains in LC
- Convergence: e eventually reaches LC
- Specification: if e starts in LC then e satisfies SPEC

```
Algorithm 1 Algorithm BFS, code for each node p.
```

```
Constant Local Input: p.neigh \subseteq Node; p.root \in \{t, f\}
Local Variables: p.d \in \mathbb{N}; p.par \in Node
```

```
Macros:
```

```
A = \{Ap\}
Dist_p = \min\{q.d+1, q \in p.neigh\}
Par_{dist} = \text{fst } \{q \in p.neigh, q.d + 1 = p.d\}
Algorithm for the root(p.root = true)
Root Action: if p.d \neq 0 then
                     p.d is set to 0
```

Algorithm for any non-root node(p.root = false)

```
CD Action: if p.d \neq Dist_n then
               p.d is set to Dist_p
CP Action: if p.d = Dist_p and p.par.d + 1 \neq p.d then
               p.par is set to Par_{dist}
```

Assume = rooted, bidir network **Daemon** = unfair **SPEC** = the algorithm terminates

terminal config. contains a BFS spanning tree

Tools for Convergence

Convergence for this algorithm: every execution is finite

No restriction on the daemon

- → We can directly deal with relation Step
- → Prove that Step is well-founded := WF Step

Fixing an initial configuration γ_0

WF Step := forall γ_0 , Acc Step γ_0

Dealing with union of relations and potential functions

Lemma WF_union: forall γ_0 , A sufficient condition for 2 relations, R1 and R2 being well-founded

Sketch of Frank (Hidden slide)

a. R1 C Potil R. Traws E1

b. WF Potil f. WF RZ

c. Habl a 31 b -> b E1 c -> a Potil c

d. R2 CE1

(WF (R1 UR2))

a R1 UR2 b C(a,b) < (ex(c,d) = a Potil c

va E1 c

va E1 c

va E1 c

va E1 c

2) Prove (a,a) Keex (b,b) is WF
by proving that Kex is WF
in seneral.

Proof Global Schema

Step_par = d unchanged par can change

 \Longrightarrow

WF Step_par

 Step_d = d values update but the root par can change

WF (Step d U Step par)

Uses Lemma WF_union Proof Obligation: provide

- B_{γ_0}
- A potential function and WF order for Step_d
- Potential should not depend on par values

Step_root = the root d value changesother variable can change

WF (Step_root U (Step_d U Step_par))

Apply Lemma WF_union WF Step_root

Proof Obligation: provide

- B $_{\gamma_0}$
- A potential function and WF order for Step_d
- Potential should not depend on par values

 γ_0 and B_ γ_0 are now fixed!

Proof Obligation: provide

- B_{γ_0}
- A potential function and WF order for Step_d
- Potential should not depend on par values

Smooth edge (p, q) = d values at p and q differ by at most 1

No-Smooth edge (p, q) = >= 2

Proof Obligation: provide

- B_{γ_0}
- A potential function and WF order for Step_d
- Potential should not depend on par values

Smooth Steps

i.e. when only smooth edges change in a Step_d

I d increase and d are bounded

with Lexicoscephic order

Proof Obligation: provide

- B_{γ_0}
- A potential function and WF order for Step_d
- Potential should not depend on par values

No-Smooth Steps when at least one non-smooth edge changes during a Step_d

• Rank of an edge
$$(p,q) = min(p.d, q.d)$$

Fig. 2. Possible evolutions of a non-smooth edge $e^* = (p, q)$ with minimal rank k^* : only p executes (ii) only q executes (iii) p and q executes

Comments and Lessons

PADEC Legacy

Faithful to Self-Stabilization

Generic models and tools

Proof simplified using specific proof patterns

A new machine-checked proof for an (old) existing algorithm

Constructiveness

New proof

Better understanding of convergence

Proof assistant is essential

To organize and simplify the proof

To deal with combinatorial explosion of cases

The proof is correct ©

Future work?

use the potential function to obtain complexity in steps

http://www-verimag.imag.fr/PADEC-1063.html

#loc = 96k (spec); 33k (proof); 7k (comments)

Model and General Results about the Model

- · Algorithm: network and algorithm definitions
- RelModel: semantics of the model (relational version)
- · FunModel: semantics of the model (functional version and equivalence wrt relational semantics)
- Exec: execution of the system (type and support)
- · Self_Stabilization: definition of the properties
- Fairness: definition of scheduling assumptions (daemon)

Tool for Termination or Convergence

• P_Q_Termination: tools for proving convergence of an algorithm. Relies on the Dershowitz-Manna order on finite multi-sets to define sufficient conditions on local potentials. In those tools, we use CoLoR Libray.

Tools for Composition

- · Composition: collateral composition definition, proof of correctness under weakly fair assumptions
- . Compo_ex: example on how to use the composition operator, based on "Self-Stabilizing Small k-Dominating Sets"

Tools for Complexity

. Steps: step complexity. Tools to measure stabilization times (and other performances) in steps. Relies on Stream_Length

PhD Position, University of Geneva

The University of Geneva - Computer Science Department offers an opportunity to work as a PhD student on **formal methods and distributed algorithms**, under the supervision of Pr. Karine Altisen. The subject will be focused on impossibility results of distributed algorithms, their formalization and formal proofs, using a proof assistant such as Coq/Rocq.

This position involves serving as a teaching assistant for one course per semester (~2h/week of exercises) and goes over 4 years.

A Master's degree (either already obtained or to be completed within the coming months) in Computer Science is required. A strong affinity for discrete mathematics and algorithms is a plus.

Please submit your application to Karine.Altisen@unige.ch, including a CV and the contact of at least one person who may be contacted to support the application.