《微机原理与接口》

第3章 接口概念和原理

教师: 苏曙光

华中科技大学软件学院

- ●第三章 接口概念
 - ■1. 接口/端口定义
 - ■2. 端口访问指令
 - ■3. 接口/端口地址设计
 - ■4. 数据传输方式
 - ■5.8088输入输出综合实例

第1节 接口/端口的定义

第1节接口定义

- ●接口定义
 - ■任何两电路或设备间的连接电路都可称接口。
 - ■接口是一组特殊控制电路,介于CPU与内存、 CPU与外设之间。

● 各种外设都必须通过接口才能和CPU(或总线)相连

■寻址:确定设备的地址,区分不同的设备;

■缓冲:适配外设与CPU的工作速度;

■转换:适配外设与CPU的信息格式、类型、幅度;

■时序:外设与CPU的工作时序。

- ●接口电路的组成:由多类/多个寄存器构成
 - ■数据寄存器,暂存数据
 - 状态寄存器,暂存状态。
 - ■命令寄存器,暂存命令。

定义:

端口:寄存器的另一称呼。

- 端口【PORT】
 - ■端口就是接口中的寄存器CPU,与外设信息交换场所
 - ■端口:可寻址(端口地址)

微机的端口

- 16根I/O线: 地址空间216 = 64K
- IBM: A_{0~9}线有效,地址空间2¹⁰ = 1K: 000H~3FFH;
- PC系统IO端口的分配
 - ■前256个端口: 000h-0FFh, 系统外设占用
 - 后768个端口: 100h-3FFh, 常规外设占用。

微机的端口

●微机的端口分配

I/0芯片名称	端口地址
DMA控制器1	000~01FH
DMA控制器2	0C0∼0DFH
DMA页面寄存器	080∼09FH
中断控制器1	020~03FH
中断控制器2	0A0∼0BFH
定时器	040~05FH
并行接口芯片	060∼06FH
RT/COMS RAM	070∼07FH
协处理器	0F0∼0FFH

表1 系统I/0芯片的端口地址

I/O接口名称	端口地址
游戏控制卡	200~20FH
并行口控制卡1	370∼37FH
并行口控制卡2	270~27FH
串行口控制卡1	3F8∼3FFH
串行口控制卡1	2F0∼2FFH
用户外接插件板	300∼31FH
同步通信卡1	3A0∼3AFH
同步通信卡2	380∼38FH
单显MDA	3B0∼3BFH
彩显CGA	3D0∼3DFH
彩显EGA/VGA	3C0 ∼3CF
硬驱控制卡	1F0∼1FFH
软驱控制卡	3F0∼3F7H
PC网卡	360∼36FH

表2 扩展卡的端口地址

第2节 端口访问指令

2. 端口的访问

- ●端口访问
 - ■端口地址(000h~3FFh)
 - ■端口属性: 只写, 只读, 可读可写
 - ■端口操作:写(OUT指令),读(IN指令)
- ●访问指令
 - ■读(输入): IN
 - ◆从指定端口取信息送入寄存器(AL/AX)。
 - ■写 (输出): OUT
 - ◆把寄存器(AL/AX)的信息送往指定端口。

2. 端口的访问(续)

- 读(输入)指令: IN
 - ■四种形式【PORT:具体的端口地址,DX:寄存器】
 - ◆IN AL, PORT ;数据是单字节;地址单字节
 - ◆IN AX, PORT ;数据是双字节;地址单字节
 - ◆IN AL, DX ;数据是单字节;地址双字节
 - ◆IN AX, DX ;数据是双字节;地址双字节
 - ■例子
 - ◆IN AL, 60H ; 60H为系统板8255的PA端口地址
 - ◆MOV DX, 300H ; 300H为扩展板8255的PA端口地址 IN AL, DX

2. 端口的访问(续)

- ●写(输出)指令: OUT
 - ■四种形式【PORT:端口地址,DX:寄存器】
 - ◆OUT PORT, AL ;数据是单字节; 地址单字节
 - ◆OUT PORT, AX ;数据是双字节; 地址单字节
 - ◆OUT DX, AL ;数据是单字节; 地址双字节
 - ◆OUT DX, AX ;数据是双字节; 地址双字节
 - ■例子
 - ◆OUT 61H, AL ; 61H为系统板8255的PB端口地址
 - ◆MOV DX,301H;301H为扩展板8255的PB端口地址 OUT DX,AL

说明: 所有的I/O指令执行的结果都不影响标志位F。

2. 端口的访问(续)

- ●端口访问和输入/输出两个概念的区别
 - ■对端口的访问仅仅指CPU对端口的读/写
 - ■输入输出一般指以内存RAM为传输目标
 - ■输入输出都会包括端口的访问。
- 输入的例子:

MOV DX, 300H;I/O端口

IN AL, DX ;从端口读数据到AL

MOV [DI], AL ;将数据从AL输入到存储器

第3节 接口/端口地址设计

端口地址设计

- 概念: 给某个端口(接口/设备)设计特定的地址。
 - ■即设计端口译码电路:
 - ◆输入:端口地址(结合IO/M,WR,RD等信号)
 - ◆输出:仅当AB上出现端口地址时,输出低电平。

端口地址设计

- ●设计地址译码电路三个前提
 - ■有效I/O地址线10位: A_{9~0}
 - ■端口读写属性(只读/只写/可读可写)
 - ■考虑DMA操作:地址允许信号AEN(DMAC信号)
 - ◆AEN=0,即非DMA操作时,端口可以访问;
 - ◆AEN=1, 即是DMA操作时,端口不能访问;

译码接口电路的设计例子

● 使用门电路设计端口地址2F8H的只读地址译码电路。

- ●分析
 - ■仅当AB输入2F8H时输出低电平,其它输入则输出高电平。

地址线	0	0	A_9	A_8	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0
十六进制				2				F				8
二进制	0	0	1	0	1	1	1	1	1	0	0	0

端口地址译码

端口地址译码

$\mathbf{F} = \mathbf{A_0} \mathbf{\overline{A_8}} \mathbf{A_7} \mathbf{A_6} \mathbf{A_5} \mathbf{A_4} \mathbf{A_3} \mathbf{\overline{A_2}} \mathbf{\overline{A_1}} \mathbf{\overline{A_0}} \cdot \mathbf{AEN.IOR}$

- 采用芯片设计**2F8** F=(A₉Ā₈A₇A₆A₅A₄A₃Ā₂) +(Ā₁Ā₀.ĀEN.ĪŌR)
 - ■74LS32或门(四2), 74LS04非门(六)
 - ■74LS30与非门(二8), 74LS20与非门(二4)

●通过程序分析端口2F8H的访问

;执行下面的程序:

MOV DX, 2F8H

IN AL, DX ;F = 0, 对应端口被选中

执行下面的程序,能选中2F8端口吗?

MOV DX, 2F8H

OUT DX, AL

端口地址译码(续)

- ●含有多个端口的接口地址译码
 - ■例子: 某接口有4个端口: 384H~387H。
 - ◆1) 画出地址译码电路

■步骤

- ◆第1步: 选中接口(接口译码)
- ◆第2步: 选中接口中的某个端口(端口译码)

- 第1步: 选中接口384H~387H
 - **■** 11 1000 01<mark>00</mark>;
 - **■** 11 1000 01<mark>01</mark>;
 - 11 1000 01<mark>10</mark>;
 - **■** 11 1000 0111;
 - 仅当A₉₋₀ = 11 1000 01XX时译码电路输出低电平。

- 第1步: 选中接口384H~387H
 - 仅当A₉₋₀ = 11 1000 01XX时译码电路输出低电平。

注意: 选中接口时,低位地址A1A0没有参与译码。

端口地址译码

● 第2步: 选中特定端口

端口地址译码(续)[课堂作业]

- ●含有多个端口的接口地址译码
 - ■例子: 某接口有4个端口: 384H~387H。
 - ◆1) 画出地址译码电路【门电路】
 - ◆2) 用74LS04/20/30/32等芯片重新构成电路
 - □74LS32或门(四2), 74LS04非门(六)
 - □74LS30与非门(二8),74LS20与非门(二4)
 - □输入信号: A9-A0, IOM, RD, WR

端口地址译码(续)

- ●含有多个端口的接口地址译码
 - ■例子: 某接口有4个端口: 384H~387H。
 - ◆1) 画出地址译码电路【门电路】
 - ◆2) 用74LS04/20/30/32等芯片重新构成电路
 - ◆3) 用74LS138实现第2级译码(端口译码)

端口地址译码

- 第2步: 选中特定端口(138译码器)
 - ■使用F信号和A1A0两根线继续寻址端口。

端口地址译码

- ●接口地址的构成形式和实现方法
 - ■单端口
 - ◆门电路直接译码
 - ■多端口
 - ◆两级译码
 - □门电路
 - □译码器(简洁,可靠)
 - ■地址可变
 - ◆通过跳线或编程改变端口的地址

● 通过跳线或编程改变端口的地址(2F8h/3F8h)

● 选用I/0端口地址时要注意

- ■已占用地址不能使用;
- ■保留地址不要使用;
- 为避免地址冲突,最好采用地址开关。(地址可变)
- ■用户一般可使用300~31FH地址

端口地址编址方式

- ●两种编址方式
 - ■独立编址(I/O映射方式)
 - ◆端口地址单独编址而不和存储器空间合在一起
 - 统一编址(存储器映射方式)
 - ◆端口地址和存储器地址统一编址

● 两种编址方式

(a)統一編址

(b)独立编址

端口地址编址方式(续)

- 独立编址的端口访问原理
 - ■根据指令(IN/OUT MOV)区分内存和端口。

端口地址编址方式(续)

- 统一编址的端口访问原理
 - ■根据地址区分内存和端口。

端口地址编址方式(续)

- ●独立编址系统的特点
 - ■专用指令: IN指令和OUT指令。
 - ■程序中I/O操作和存储器操作清晰可辨,程序可读性强。
 - I/O端口的读、写操作由IOR和IOW来控制
 - ■微机和大型计算机通常采用这种方式。

第4节 数据传输方式

- 数据传送的控制方式
 - ■无条件传送方式
 - 查询传送方式(条件传送)
 - ■中断传送方式
 - DMA控制方式

- 1. 无条件传送(同步传送)
 - 当需要输入或输出数据时,不查询外设状态,假定外设已经准备就绪,直接使用I/0指令(IN或OUT)与外设传送数据。
 - ■外设准备就绪
 - ◆输入设备:数据已经放入数据端口,CPU可以读取数据;
 - ◆输出设备:数据端口已空,CPU可以向它写入数据。
 - ■由于不查询外设状态,接口电路不需要状态端口
 - ■说明
 - ◆通常接口在硬件上确保端口读/写操作能同步进行。

无条件传送——输入

● IN AL, A0H

● 缓冲器: 例如74LS244/245

无条件传送——输出

• OUT A1H, AL

● 锁存器: 例如74LS373

例: 无条件传送系统

● 输入: 8位开关的状态(KEY₀₋₇), 地址A0h

● 输出: 8位LED的亮/灭(LED₀₋₇), 地址A1h

● 接口芯片:缓冲器74LS244,锁存器74LS373

IN AL, A0H

OUT A1H, AL

查询传送方式(异步传送)

- 传送数据之前先确定外设是否准备好?!
- 传送过程
 - (1) 先获取外设状态: 执行IN指令读取外设状态端口
 - (2) 根据外设状态判断:
 - ◆如果状态是"忙碌"或"未准备就绪",则回到(1);
 - ◆如果状态是"空闲"或"准备已就绪",则continue;
 - (3) 执行数据传送: 对数据端口执行OUT或IN指令。
- ●说明
 - ■查询式接口要有数据端口和状态端口。
 - ■端口一般都是8位,状态端口一般只需其中1位即可。

查询传送方式——输入

● 过程: →读状态端口 →读数据端口。

- ■当REDAY为 1 时,表明输入数据已准备好;
- 当用IN指令完成数据输入后,READY 自动变0。

● 输入过程的典型程序

```
POLL: IN AL, PORT_State ;读状态端口: PORT_State 
TEST AL, 80H ;检查READY位是否为1 
JZ POLL ;未准备好,转POLL
```

IN AL, PORT_Data ;读数据端口: PORT_Data

指令简介:

- (1) TEST: 类同AND指令,不影响操作数,仅影响标志位ZF 若运算结果为0,则ZF=1,否则ZF=0。
- (2) JZ: ZF=1 (即结果为0) 则转移

查询传送方式——输入

POLL: IN AL, A0 ;状态端口 TEST AL, 80H JZ POLL

查询传送方式——输出

● 过程: 读状态端口→读数据端口

- ■EMPTY为1时表明设备缓冲区为空(即空闲),能接收来自CPU的数据。
- ■一旦OUT执行完成,设备完成了数据接收,EMPTY自动变0 (即忙碌)

● 输出过程的典型程序

POLL: IN AL, PORT_State ;输入状态信息

TEST AL, 10H ;检查EMPTY位是否为1

JZ POLL ;外设不空(忙)转POLL

MOV AL, DADA ; DATA是需要输出的数据

OUT PORT_Data, AL ;向数据寄存器中输出数据

指令简介:

- (1) TEST: 类同AND指令,不影响操作数,仅影响标志位ZF 若运算结果为0,则ZF=1,否则ZF=0。
- (2) JZ: ZF=1 (即结果为0) 则转移

查询传送方式——输出

● 输出的电路原理

数据传输方式(续)

- 3. 中断传送方式
- 4. 直接存储器存取方式 (DMA)