Lecture 6: Transformers, Part I

From Self-Attention to BERT

MIT

6.861*

Yoon Kim, Jacob Andreas, and Chris Tanner

Self [Attention]

-- Mac Miller (2018)

Urgent Care 617-253-1311 Urgent Mental Health Concerns 617-253-2916

ANNOUNCEMENTS

- Website has tons of Research Project info, including examples of good projects
- HW2 is being finalized; will be released later this week

RESEARCH PROJECTS

- Most research experiences/opportunities are "top-down"
- You're all creative and fully capable.
- Allow yourselves to become comfortable with the unknown.

RESEARCH PROJECTS

- We will try to provide feedback about project proposals based on:
 - researchy vs application
 - how grounded/well-reasoned it is
 - technical difficulty (there's a sweet spot)
 - feasibility (e.g., required compute power, data availability, metrics)
 - interestingness / significance

RECAP: L5

seq2seq models

- are a general-purpose <u>encoder-</u> <u>decoder</u> architecture
- can be implemented with RNNs (or Transformers even)
- Allow for $n \rightarrow m$ predictions
- Natural approach to Neural MT
- If implemented end-to-end can be good but slow

RECAP: L5 seq2seq models

It's absurd that the entire "meaning" of the 1st sequence is expected to be packed into this one \hat{y}_2 embedding, and that the encoder then never interacts w/ the decoder again. Hands free. h_2^E h_3^E h_4^E Hidden layer Input layer chien The brun brown dog <s> a couru ran

DECODER RNN

RECAP: L5 seq2seq models

- Attention allows a decoder, at each time step, to focus on (pay "attention" to) a distribution of the encoder's hidden states
- The resulting context vector c_i is used, with the decoder's current hidden state h_i , to predict \hat{y}_i

RECAP: L5 Machine Translation (MT)

$$\operatorname{argmax}_{\mathbf{y}} P(\mathbf{x}|\mathbf{y}) P(\mathbf{y})$$

- Converts text from a source language x to a target language y
- SMT made huge progress but was brittle
- NMT (starting w/ LSTM-based seq2seq models) blew SMT out of the water
- Attention greatly helps LSTM-based seq2seq models
- Next: Transformer-based seq2seq models w/ Self-Attention and Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

Attention (raw scores)

 e_1 1.5

 $e_2 \ 0.9$

 e_3 0.2

 $e_4 - 0.5$

DECODER RNN

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

ENCODER RNN

Attention (raw scores)

$$e_1$$
 1.5

$$e_2 \ 0.9$$

$$e_3$$
 0.2

$$e_4 - 0.5$$

Attention (softmax'd)

$$a_i^1 = \frac{\exp(e_i)}{\sum_i^N \exp(e_i)}$$

DECODER RNN

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

ENCODER RNN

DECODER RNN

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

ENCODER RNN

DECODER RNN

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

For convenience, here's the Attention calculation summarized on 1 slide

Attention output
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t "
$$a_k^{(t)} = \frac{\exp(\operatorname{score}(h_t, s_k))}{\sum_{i=1}^m \exp(\operatorname{score}(h_t, s_i))}, k = 1...m$$
 (softmax)
$$c^{(t)} = \frac{\exp(\operatorname{score}(h_t, s_k))}{\sum_{i=1}^m \exp(\operatorname{score}(h_t, s_i))}, k = 1...m$$
 "attention weight for source token k at decoder step t "
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t "
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t "
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t "
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t "
$$c^{(t)} = a_1^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t "
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t "
$$c^{(t)} = \sum_{k=1}^m a_k^{(t)} s_k + \sum_{k=1}$$

For convenience, here's the Attention calculation summarized on 1 slide

Popular Attention Scoring functions:

CHECKPOINT

- seq2seq doesn't have to use RNNs/LSTMs
- seq2seq doesn't have to be used exclusively for NMT
- NMT doesn't have to use seq2seq
 (but it's natural and the best we have for now)

RECAP SUMMARY

- LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)
- seq2seq+Attention was an even more revolutionary idea (Google Translate used it)
- Attention allows us to place appropriate weight to the encoder's hidden states

But...

RECAP SUMMARY

- LSTMs are sequential in nature (prohibits parallelization). Very wasteful.
- No <u>explicit</u> modelling of long- and short- range dependencies
- Language is naturally sequential, with hierarchical structure of meaning (can we do better than Stacked-LSTMs?)
- Can we apply the concept of Attention to improve our **representations**? (i.e., contextualized representations)

Ashish Vaswani (2019)

Goals

- Each word in a sequence to be transformed into a rich, abstract representation (context embedding) based on the weighted sums of the other words in the same sequence (akin to deep CNN layers)
- Inspired by Attention, we want each word to determine, "how much should I be influenced by each of my neighbors"
- Want positionality

Outline

Self-Attention

Transformer

Self-Attention's goal is to create great representations, z_i , of the input

Self-Attention's goal is to create great representations, z_i , of the input

 z_1 will be based on a weighted contribution of x_1 , x_2 , x_3 , x_4

Self-Attention's goal is to create great representations, z_i , of the input

 z_1 will be based on a weighted contribution of x_1 , x_2 , x_3 , x_4

 a_i^1 is "just" a weight. More is happening under the hood, but it's effectively weighting <u>versions</u> of x_1 , x_2 , x_3 , x_4

Under the hood, each x_i has 3 small, associated vectors. For example, x_1 has:

- Query **q**i
- Key k_i
- Value v_i

Step 1: Our Self-Attention Head has just 3 weight matrices W_q , W_k , W_v in total. These same 3 weight matrices are multiplied by each x_i to create all vectors:

$$q_i = W_q x_i$$
$$k_i = W_k x_i$$
$$v_i = W_v x_i$$

Under the hood, each x_i has 3 small, associated vectors. For example, x_1 has:

- Query q₁
- Key k₁
- Value v₁

Step 2: For word x_1 , let's calculate the scores s_1 , s_2 , s_3 , s_4 , which represent how much attention to pay to each respective "word" v_i

 $s_2 = q_1 \cdot k_2 = 96$

Step 2: For word x_1 , let's calculate the scores s_1 , s_2 , s_3 , s_4 , which represent how much attention to pay to each respective "word" v_i

$$s_1 = q_1 \cdot k_1 = 112$$

$$q_1 \quad k_1 \quad v_1$$

$$q_2 \quad k_2 \quad v_2$$

$$q_3 \quad k_3 \quad v_3$$

$$q_4 \quad k_4 \quad v_4$$

$$q_4 \quad k_4 \quad v_4$$

$$q_5 \quad k_1 \quad v_1$$

$$q_7 \quad k_1 \quad v_1$$

$$q_8 \quad k_2 \quad v_2$$

$$q_8 \quad k_2 \quad v_2$$

$$q_8 \quad k_1 \quad v_4$$

 $s_3 = q_1 \cdot k_3 = 16$

Step 2: For word x_1 , let's calculate the scores s_1 , s_2 , s_3 , s_4 , which represent how much attention to pay to each respective "word" v_i

$$s_2 = q_1 \cdot k_2 = 96$$
 $s_1 = q_1 \cdot k_1 = 112$

The brown x_1 x_2 x_3 x_4

Step 2: For word x_1 , let's calculate the scores s_1 , s_2 , s_3 , s_4 , which represent how much attention to pay to each respective "word" v_i

$$s_4 = q_1 \cdot k_4 = 8$$

 $s_3 = q_1 \cdot k_3 = 16$

$$s_2 = q_1 \cdot k_2 = 96$$

$$s_1 = q_1 \cdot k_1 = 112$$

Step 3: Our scores s_1 , s_2 , s_3 , s_4 don't sum to 1. Let's divide by $\sqrt{len(k_i)}$ and softmax() it

$$s_4 = q_1 \cdot k_4 = 8$$
 $a_4 = \sigma(s_4/8) = 0$ $a_3 = q_1 \cdot k_3 = 16$ $a_3 = \sigma(s_3/8) = .01$ $s_2 = q_1 \cdot k_2 = 96$ $a_2 = \sigma(s_2/8) = .12$ $s_1 = q_1 \cdot k_1 = 112$ $a_1 = \sigma(s_1/8) = .87$ The brown $q_1 \quad k_1 \quad v_1$ $q_2 \quad k_2 \quad v_2$ $q_3 \quad k_3 \quad v_3$ $q_4 \quad k_4 \quad v_4$ The $q_4 \quad k_4 \quad v_4$ $q_5 \quad k_6 \quad k_6 \quad k_6 \quad k_6 \quad k_7 \quad k_8 \quad$

Step 3: Our scores s_1 , s_2 , s_3 , s_4 don't sum to 1. Let's divide by $\sqrt{len(k_i)}$ and softmax() it

$$s_4 = q_1 \cdot k_4 = 8$$

$$s_3 = q_1 \cdot k_3 = 16$$

$$s_2 = q_1 \cdot k_2 = 96$$

$$s_1 = q_1 \cdot k_1 = 112$$

$$a_4 = \sigma(s_4/8) = 0$$

$$a_3 = \sigma(s_3/8) = .01$$

$$a_2 = \sigma(s_2/8) = .12$$

$$a_1 = \sigma(s_1/8) = .87$$

Dot-product of $\mathbf{q}_i \cdot \mathbf{k}_j$ grows large in magnitude; thus, inputs to softmax() can be large, and in turn yield small gradients.

Dividing by $\sqrt{len(k_i)}$ helps.

 X_1

ran x₄

Step 3: Our scores s_1 , s_2 , s_3 , s_4 don't sum to 1. Let's divide by $\sqrt{len(k_i)}$ and softmax() it

$$s_4 = q_1 \cdot k_4 = 8$$

$$s_3 = q_1 \cdot k_3 = 16$$

$$s_2 = q_1 \cdot k_2 = 96$$

$$s_1 = q_1 \cdot k_1 = 112$$

$$\mathbf{a_4} = \boldsymbol{\sigma}(s_4/8) = 0$$

$$a_3 = \sigma(s_3/8) = .01$$

$$a_2 = \sigma(s_2/8) = .12$$

$$a_1 = \sigma(s_1/8) = .87$$

Instead of these $\mathbf{a_i}$ values directly weighting our original $\mathbf{x_i}$ word vectors, they directly weight our $\mathbf{v_i}$ vectors.

 X_4

Step 4: Let's weight our v_i vectors and simply sum them up!

Step 5: We repeat this for all other words, yielding us with great, new z_i representations!

Step 5: We repeat this for all other words, yielding us with great, new z_i representations!

$$z_3 = a_1 \cdot v_1 + a_2 \cdot v_2 + a_3 \cdot v_3 + a_4 \cdot v_4$$

Step 5: We repeat this for all other words, yielding us with great, new z_i representations!

Let's illustrate another example:

Remember, we use the same 3 weight matrices

 W_q , W_k , W_v as we did for computing z_1 .

This gives us q_2 , k_2 , v_2

Step 1: Our Self-Attention Head I has just 3 weight matrices W_q , W_k , W_v in total. These same 3 weight matrices are multiplied by each x_i to create all vectors:

$$q_i = W_q x_i$$

$$k_i = W_k x_i$$

$$v_i = W_v x_i$$

Under the hood, each x_i has 3 small, associated vectors. For example, x_1 has:

- Query q₁
- Key k₁
- Value v₁

Step 2: For word x_2 , let's calculate the scores s_1 , s_2 , s_3 , s_4 , which represent how much attention to pay to each respective "word" v_i

 $s_2 = q_2 \cdot k_2 = 124$

 X_1

Step 2: For word x_2 , let's calculate the scores s_1 , s_2 , s_3 , s_4 , which represent how much attention to pay to each respective "word" vi

$$s_1 = q_2 \cdot k_1 = 92$$

$$q_1 \quad k_1 \quad v_1$$

$$q_2 \quad k_2 \quad v_2$$

$$q_3 \quad k_3 \quad v_3$$

$$q_4 \quad k_4 \quad v_4$$

$$q_4 \quad k_4 \quad v_4$$

$$q_5 \quad k_1 \quad v_1$$

$$q_7 \quad k_2 \quad v_2$$

$$q_8 \quad k_2 \quad v_2$$

$$q_8 \quad k_1 \quad v_4$$

 $s_3 = q_2 \cdot k_3 = 22$

 X_1

Step 2: For word x_2 , let's calculate the scores s_1 , s_2 , s_3 , s_4 , which represent how much attention to pay to each respective "word" vi

$$s_2 = q_2 \cdot k_2 = 124$$
 $s_1 = q_2 \cdot k_1 = 92$

The brown $k_1 = k_2 =$

Step 2: For word x_2 , let's calculate the scores s_1 , s_2 , s_3 , s_4 , which represent how much attention to pay to each respective "word" v_i

$$s_4 = q_2 \cdot k_4 = 8$$

 $s_3 = q_2 \cdot k_3 = 22$
 $s_2 = q_2 \cdot k_2 = 124$
 $s_1 = q_2 \cdot k_1 = 92$

Step 3: Our scores s_1 , s_2 , s_3 , s_4 don't sum to 1. Let's divide by $\sqrt{len(k_i)}$ and softmax() it

$$s_4 = q_2 \cdot k_4 = 8$$
 $a_4 = \sigma(s_4/8) = 0$
 $s_3 = q_2 \cdot k_3 = 22$ $a_3 = \sigma(s_3/8) = .01$
 $s_2 = q_2 \cdot k_2 = 124$ $a_2 = \sigma(s_2/8) = .91$
 $s_1 = q_2 \cdot k_1 = 92$ $a_1 = \sigma(s_1/8) = .08$

The brown $q_2 \quad k_2 \quad v_2$ $q_3 \quad k_3 \quad v_3$ $q_4 \quad k_4 \quad v_4$

The brown $q_1 \quad k_1 \quad v_1 \quad k_2 \quad k_3 \quad k_3 \quad k_4 \quad k$

Step 3: Our scores s_1 , s_2 , s_3 , s_4 don't sum to 1. Let's divide by $\sqrt{len(k_i)}$ and softmax() it

$$s_4 = q_2 \cdot k_4 = 8$$

$$s_3 = q_2 \cdot k_3 = 22$$

$$s_2 = q_2 \cdot k_2 = 124$$

$$s_1 = q_2 \cdot k_1 = 92$$

$$\mathbf{a_4} = \boldsymbol{\sigma}(s_4/8) = 0$$

$$a_3 = \sigma(s_3/8) = .01$$

$$a_2 = \sigma(s_2/8) = .91$$

$$a_1 = \sigma(s_1/8) = .08$$

Instead of these a; values directly weighting our original x_i word vectors, they directly weight our v_i vectors.

 X_2

Step 4: Let's weight our v_i vectors and simply sum them up!

Tada! Now we have great, new representations z_i via a self-attention head

Implementation/technical detail:

All z_i's can be calculated at the same time, via matrix multiplications

Self-Attention may seem strikingly like Attention in seq2seq models

Q: What are the key, query, value vectors in the Attention setup?

$$\mathbf{s}_{4} = h_{1}^{D} * h_{4}^{E}$$
 $\mathbf{a}_{4} = \sigma(s_{4})$
 $\mathbf{s}_{3} = h_{1}^{D} * h_{3}^{E}$ $\mathbf{a}_{3} = \sigma(s_{3})$
 $\mathbf{s}_{2} = h_{1}^{D} * h_{2}^{E}$ $\mathbf{a}_{2} = \sigma(s_{2})$
 $\mathbf{s}_{1} = h_{1}^{D} * h_{1}^{E}$ $\mathbf{a}_{1} = \sigma(s_{1})$

Attention

$$\mathbf{s}_{4} = h_{1}^{D} * h_{4}^{E}$$
 $\mathbf{a}_{4} = \sigma(s_{4})$
 $\mathbf{s}_{3} = h_{1}^{D} * h_{3}^{E}$ $\mathbf{a}_{3} = \sigma(s_{3})$
 $\mathbf{s}_{2} = h_{1}^{D} * h_{2}^{E}$ $\mathbf{a}_{2} = \sigma(s_{2})$
 $\mathbf{s}_{1} = h_{1}^{D} * h_{1}^{E}$ $\mathbf{a}_{1} = \sigma(s_{1})$

We multiply each encoder's hidden layer by its a_i^1 attention weights to create a context vector c_1^D

Attention

$$\mathbf{s}_{4} = h_{1}^{D} * h_{4}^{E}$$
 $\mathbf{a}_{4} = \sigma(s_{4})$
 $\mathbf{s}_{3} = h_{1}^{D} * h_{3}^{E}$ $\mathbf{a}_{3} = \sigma(s_{3})$
 $\mathbf{s}_{2} = h_{1}^{D} * h_{2}^{E}$ $\mathbf{a}_{2} = \sigma(s_{2})$
 $\mathbf{s}_{1} = h_{1}^{D} * h_{1}^{E}$ $\mathbf{a}_{1} = \sigma(s_{1})$

We multiply each encoder's hidden layer by its a_i^1 attention weights to create a context vector c_1^D

$$c_1^D = a_1 \cdot h_1^E + a_2 \cdot h_2^E + a_3 \cdot h_3^E + a_4 \cdot h_4^E$$

Attention

$$s_4 = q_2 \cdot k_4$$
 $a_4 = \sigma(s_4/8)$

$$s_3 = q_2 \cdot k_3$$
 $a_3 = \sigma(s_3/8)$

$$s_2 = q_2 \cdot k_2 \qquad a_2 = \sigma(s_2/8)$$

$$s_1 = q_2 \cdot k_1 \qquad a_1 = \sigma(s_1/8)$$

We multiply each word's value vector by its a_i^1 attention weights to create a better vector z_1

$$z_1 = a_1 \cdot v_1^E + a_2 \cdot v_2^E + a_3 \cdot v_3^E + a_4 \cdot v_4^E$$

Self-Attention

ENCODER RNN

Self- Attention	Attention	Description
q _i	h_i^D	the probe
k _i	h_i^E	item being compared
V _i	h_i^E	item being weighted

vector by its a_i^1 attention weights to create a better vector z_1

$$z_1 = a_1 \cdot v_1^E + a_2 \cdot v_2^E + a_3 \cdot v_3^E + a_4 \cdot v_4^E$$

Self-Attention

ENCODER RNN

More room for rich abstractions.

Outline

Self-Attention

Transformer

Outline

Self-Attention

Transformer

Transformer

CITED BY	YEAR
90141	2017

Q: Do we see any shortcomings with this Self-Attention Head?

A:

- There are only linear interactions; no non-linear relationship captured
- Position agnostic (BoW)

Let's further pass all the \mathbf{z}_{i} 's through a FFNN

Self-Attention + FFNN

Let's further pass all the \mathbf{z}_{i} 's through a FFNN

Let's further pass all the \mathbf{z}_i 's through a FFNN

But first, let's modifier our inputs into the FFNN to help ensure we don't lose precious info and that the values are reasonable (normalized)

Let's further pass all the z_i 's through a FFNN

We concat w/ a residual connection to help ensure relevant info is getting forward passed.

A residual connection (aka skip connection) allows the input x to skip the computation at hand f() and directly contribute to the output

$$f_{residual}(x) = f(x) + x$$

Let's further pass all the \mathbf{z}_i 's through a FFNN

We perform <u>LayerNorm</u> to stabilize the network and allow for proper gradient flow.

Self-Attention + FFNN + x Residual Connections + LayerNorm

Let's further pass all the \mathbf{z}_i 's through a FFNN

We perform <u>LayerNorm</u> to stabilize the network and allow for proper gradient flow.

$$LayerNorm(h) = \frac{h - \hat{\mathbf{u}}}{\sigma}$$

Self-Attention + FFNN + x Residual Connections + LayerNorm

Let's further pass all the z_i 's through a FFNN

We perform <u>LayerNorm</u> to stabilize the network and allow for proper gradient flow.

$$LayerNorm(h) = \frac{h - \hat{\mathbf{u}}}{\sigma}$$

$$h_{pre-norm} = f(LayerNorm(h)) + h$$

$$h_{post-norm} = LayerNorm(f(h) + h)$$

 $h_{pre-norm}$ tends to work better and faster in practice. Xiong et al., 2020

Let's further pass all the \mathbf{z}_i 's through a FFNN

Each z_i can be computed in parallel, unlike LSTMs!

Let's further pass all the z_i 's through a FFNN

We additionally add a Residual Connection and LayerNorm transformation after the FFNN, too.

Yay! Our r_i vectors are our new representations, and this entire process is called a Transformer Encoder

Yay! Our r_i vectors are our new representations, and this entire process is called a **Transformer Encoder**

Problem: there is no concept of positionality. Words are weighted as if a "bag of words"

Yay! Our r_i vectors are our new representations, and this entire process is called a **Transformer Encoder**

Problem: there is no concept of positionality. Words are weighted as if a "bag of words"

Solution: add to each input word x_i a positional encoding such as $\sim \sin(i) \cos(i)$

Position Encodings

Many ways to construct positional embeddings

Key characteristics we want:

- Sequential positioning info (e.g., index 4 is after 3)
- Some aspects of both absolute and relative positioning
- Not susceptible to lengths we saw during training time

$$\widetilde{x}_i = x_i + p_i$$

Usually we <u>add</u> positional embeddings p_i to our inputs x_i , but you could <u>concatenate</u> if you wish

Position Encodings

Can handle repeatability, but these embeddings are hardcoded – ideally would be learnable, too.

Position Encodings

Learnable positional embeddings!

Learn $p \in \mathbb{R}^{dxn}$, where n is the # of positions represented

Each position gets to learn how to best fit/assist the data's representation, but we're limited to a fixed n positions

$$\widetilde{x_i} = x_i + p_i$$

A Self-Attention Head has just one set of query/key/value weight matrices W_q , W_k , W_v

Words can relate in many ways, so it's restrictive to rely on just one Self-Attention Head in the system.

Let's create Multi-headed Self-Attention

Each Self-Attention Head produces a z_i vector.

We can, in parallel, use multiple heads and concat the z_i 's.

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding ri of each word xi

Within each Encoder, we have Positional Embeddings and Multi-Headed Attention

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding ri of each word xi

Within each Encoder, we have Positional Embeddings and Multi-Headed Attention

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding ri of each word xi

Why stop with just 1
Transformer Encoder?
We could stack several!

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding ri of each word xi

Why stop with just 1
Transformer Encoder?
We could stack several!

n = sequence length

d = length of representation (vector)

Q: Is the complexity of self-attention good?

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Important: when learning dependencies b/w words, you don't want long paths. Shorter is better.

Self-attention connects all positions with a constant # of sequentially executed operations, whereas RNNs require O(n).

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

n = sequence length~20 - 70 d = representation dimension. ~1024

k = kernel size of convolutions

What if we don't want to decode/translate?

• Just want to perform a particular task (e.g., classification)

Want even more robust, flexible, rich representation!

• Want positionality to play a more explicit role, while not being restricted to a particular form (e.g., CNNs)

THOUGHT EXERCISE 1

How can we design a Transformer Decoder for seq2seq learning (i.e., N-to-M predictions)?

e.g., machine translation, such as converting English to French

Training data: hundreds of thousands of annotated sentence pairs (English and their French translations)

HINT

The assumptions of Self-Attention

THOUGHT EXERCISE 2

How can we chunk (aka tokenize) our input words such that they are comprised of discrete, meaningful sub-word units?

i.e., akin to syllables

Training data: millions of unannotated, natural sentences found on the Internet

HINT

Remember, NLP has accelerated since the 90s, when the field shifted toward statistical approaches

Summary

- Transformers allow for more complete, free access to everything (unless masked) at once
- It's very useful to pre-train a large unsupervised/self-supervised LM then fine-tune on your particular task (replace the top layer, so that it can work)