

Universidad Nacional de Río Negro Ingeniería Electrónica — Ingeniería de Software

Trabajo Práctico – Ensamblador y Simulador de procesador

Este trabajo práctico consiste en la programación en C++ (utilizando clases, objetos y todos los conceptos vistos) de dos programas.

Primer programa: Ensamblador

Este programa debe tomar como entrada un archivo de texto, que contendrá el código asembler, y traducirlo a código de máquina, generando un archivo binario con las instrucciones en formato de código ejecutable de nuestro procesador.

Segundo programa: Simulador de procesador

Este programa deberá tomar como entrada un archivo binario con las instrucciones en formato de código ejecutable, y ejecutarlas. Deberá tener dos modos.

Modo debugging

muestra paso a paso cada instrucción ejecutada

Modo normal

ejecuta el programa sin hacer nada en especial

Arquitectura

Nuestro procesador es de 32 bits, big endian. El primer byte tiene el código de instrucción, y los tres bytes restantes el operando asociado a la instrucción. Si la instrucción no tiene operandos, los últimos tres bytes deben ir en cero.

El procesador sólo tiene un registro, el acumulador, y una salida a pantalla LED que puede mostrar números (solo utilice *cout*).

Instrucciones

Instrucción	Código	Ejemplo en assembler	Ejemplo en código	Ejecución
LOAD	1	LOAD 7	0x01.00.00.07	ACC = 1
ADD	2	ADD 2	0x02.00.00.02	ACC += 2
PRINT	3	PRINT	0x03.00.00.00	Imprime ACC

Tener en cuenta números negativos. Ejemplo: 0x01.FF.FF.FF carga -1 en el acumulador. Ejemplo, 0x02.FF.FF.F0 suma -16 en el acumulador.