

课程回顾

§ 3. 6. 1 误差与稳态误差

误差定义: (1)按输入端定义误差; (2)按输出端定义误差

稳态误差: (1)静态误差; (2)动态误差

- (1) 判定系统的稳定性
- (2) 求误差传递函数
- (3) 用终值定理求稳态误差
- (1) 静态误差系数: Kp, Kv, Ka
- (2) 计算误差方法
 - 1)系统稳定
- (3) 适用条件
- 2) 按输入端定义误差
- 3) r(t)作用,且r(t)无其他前馈通道

自动控制原理

(第12讲)

§ 3 线性系统的时域分析与校正

- § 3.1 概述
- § 3. 2 一阶系统的时间响应及动态性能
- § 3. 3 二阶系统的时间响应及动态性能
- § 3. 4 高阶系统的阶跃响应及动态性能
- § 3.5 线性系统的稳定性分析
- § 3.6 线性系统的稳态误差
- § 3.7 线性系统时域校正

自动控制原理

(第12讲)

§ 3. 6 线性系统的稳态误差

§ 3. 7 线性系统时域校正

§ 3.6.5

动态误差系数法(1)

动态误差系数法

用静态误差系数法只能求出误差的稳态值 $e_{ss} = \lim_{t \to \infty} e^{(t)}$; 而稳态误差随时间变化的规律无法获得。

用动态误差系数法可以研究误差中的 稳态分量 $e_s(t)$ 随时间的变换规律。

§ 3.6.5 动态误差系数法(2)

(1) 动态误差系数法解决问题的思路

$$\Phi_{e}(s) = \frac{E(s)}{R(s)} = \Phi_{e}(0) + \frac{1}{1!}\Phi'_{e}(0)s + \frac{1}{2!}\Phi''_{e}(0)s^{2} + \dots + \frac{1}{i!}\Phi^{(i)}_{e}(0)s^{i} + \dots
\downarrow C_{i} = \frac{1}{i!}\Phi^{(i)}_{e}(0) \qquad i = 0, 1, 2, \dots
= C_{0} + C_{1}s + C_{2}s^{2} + \dots = \sum_{i=0}^{\infty} C_{i}s^{i}$$

$$E(s) = \Phi_{e}(s).R(s)$$

$$= C_0 R(s) + C_1 s R(s) + C_2 s^2 R(s) + \dots + C_i s^i R(s) + \dots$$

$$e_s(t) = C_0 r(t) + C_1 \dot{r}(t) + C_2 \ddot{r}(t) + \dots + C_i r^{(i)}(t) + \dots = \sum_{i=0}^{\infty} C_i r^{(i)}(t)$$

§ 3.6.5 动态误差系数法(3)

(2) 动态误差系数的计算方法 一 ①系数比较法 ②长除法

例1 两系统如图示, 要求在4分钟内误差不超过6m,应选用哪个系统?

已知:
$$r(t) = 2t + t^2/4$$
 R(s) E(s)

$$r''(t) = 2 + t/2$$

$$r'''(t) = 1/2$$

$$r'''(t) = 0$$

$$\Phi_{ae}(s) = \frac{E(s)}{R(s)} = \frac{1}{1 + \frac{1}{s(s+1)}}$$

$$= \frac{s(s+1)}{s^2 + s + 1}$$

 $= s - s^3 + \cdots$

 $= C_0 + C_1 s + C_2 s^2 + \cdots$

§ 3.6.5 动态误差系数法(4)

例1 两系统如图示, 要求在4分钟内系统不超过6m应选用哪个系统?

已知:
$$r(t) = 2t + t^2/4$$

解. ②
$$r'(t) = 2 + t/2$$

 $r''(t) = 1/2$

$$r'''(t) = 0$$

$$\Phi_{be}(s) = \frac{E(s)}{R(s)} = \frac{1}{1 + \frac{1}{s(10s+1)}}$$

$$=\frac{s(10s+1)}{10s^2+s+1}$$

$$= s + 9s^2 - 19s^3 + \cdots$$

$$e_{bs}(t) = C_0 r + C_1 r' + C_2 r'' = 0 + r' + 9r'' = 6.5 + t/2$$

§ 3.6.5

动态误差系数法(5)

$$r(t) = 2t + t^2/4$$

说明: $e_s(t)$ 是 e(t) 中的稳态分量

例2 以例1中系统(1)为例
$$\Phi_{ae}(s) = \frac{s(s+1)}{s^2+s+1}$$

解.
$$E_a(s) = \Phi_{ae}(s).R(s) = \frac{s(s+1)}{s^2+s+1} \left[\frac{2}{s^2} + \frac{1}{2} \cdot \frac{1}{s^3} \right]$$

$$= \frac{(s+1)(4s+1)}{2s^2(s^2+s+1)} = \frac{A_2}{s^2} + \frac{A_1}{s} + \frac{A_3s + A_4}{s^2+s+1}$$

$$A_2 = \lim_{s \to 0} \frac{(s+1)(4s+1)}{2(s^2+s+1)} = \frac{1}{2}$$

$$\begin{cases} A_1 = \frac{1}{1!} \lim_{s \to 0} \frac{d}{ds} \frac{(s+1)(4s+1)}{2(s^2+s+1)} = 2 \end{cases}$$

比较系数得
$$\begin{cases} A_3 = -2 \\ A_4 = -0.5 \end{cases}$$

$$E_a(s) = \frac{0.5}{s^2} + \frac{2}{s} - \frac{2(s+0.5)}{(s+0.5)^2 + \sqrt{0.75}^2} + \frac{0.5}{\sqrt{0.75}} \frac{\sqrt{0.75}}{(s+0.5)^2 + \sqrt{0.75}^2}$$

$$e_a(t) = \underbrace{0.5t + 2}_{0.5t} - 2e^{-0.5t} \cos \sqrt{0.75}t + \underbrace{\frac{0.5}{\sqrt{0.75}}}_{0.75} e^{-0.5t} \sin \sqrt{0.75}t$$

瞬态分量

§3.7 线性系统时域校正(1)

校正:采用适当方式,在系统中加入一些结构和参数可调整的装置(校正装置),用以改善系统性能,使系统满足指标要求。

校正方式: 串联校正, 反馈校正, 复合校正

§ 3.7 线性系统时域校正 (2)

§ 3.7.1 反馈校正 反馈的作用

(3) 局部正反馈可提高环节增益

$$\Phi(s) = \frac{\frac{K}{Ts+1}}{1 - \frac{KK_h}{Ts+1}} = \frac{K}{Ts+1 - KK_h}$$

$$= \frac{\frac{K}{1 - KK_h}}{\frac{T}{1 - KK_h}} = \frac{K'}{T's+1}$$

$$K' = \frac{K}{1 - KK_h} > K \qquad T' = \frac{T}{1 - KK_h} > T$$

§ 3.7.1

反馈校正 (1)

例2 系统结构图如图所示。

$$\begin{array}{c|c}
 & \mathbf{c} \\
\hline
 & \mathbf{c}$$

- (1) $K_{t}=0$ 时系统的性能?
- (2) K_t 时, σ%, ts 变化趋势?

$$\xi=0.707$$
时, σ %, $ts=?$

(3) K_t, r(t)=t, ess变化趋势? ξ=0.707时, ess=?

解. (1)
$$K_t = 0$$
 时

$$(2) \quad K_t > 0$$
 时

$$K_{t} > 0$$
时 -10 0 $K_{t} > 0$ 时 $K_{t} < 2: K_{t} \uparrow \Rightarrow \xi \uparrow \Rightarrow \begin{cases} \sigma \% \downarrow \\ t_{s} = 3.5/\xi \omega_{n} \downarrow \end{cases}$

[s]

$$K_t \geq 2: \quad K_t \uparrow \Rightarrow \begin{cases} \sigma \% = 0 \\ t_s \uparrow \end{cases}$$

$$\begin{cases} \xi = 0.707 \\ K_t = 1.414 \end{cases} \Rightarrow \begin{cases} \sigma \% = 5\%, \\ t_s = 0.495 \end{cases}$$

(3)
$$G(s) = \frac{100}{s(s+10K_t)}$$

$$\begin{cases} K = \frac{10}{K_t} \\ v = 1 \end{cases}$$

$$K = 10/K_t$$
 $K_t \uparrow \Rightarrow e_{ss} = \frac{1}{K} = \frac{K_t}{10} \uparrow$

§ 3.7.2

复合校正

例4 系统结构图如图所示

- (1) 确定 K_1, K_2 , 配置极点于 $\lambda_{1,2} = -5 \pm j5$;
- (2) 设计 $G_1(s)$, 使r(t)=t作用下 $e_{ssr}=0$;
- (3) 设计 $G_2(s)$, 使n(t)作用下 $e_n(t) \equiv 0$ 。

解. (1)
$$\begin{cases} K_1 = 50 \\ K_2 = 0.18 \end{cases}$$

(2)
$$G_1(s) = \frac{s}{K_2 s + 1}$$

$$(3) \Phi_{en}(s) = \frac{E(s)}{N(s)} = \frac{-(K_2s+1) + \frac{K_2s+1}{s}G_2(s)}{1 + \frac{K_1(K_2s+1)}{s(s+1)}} = \frac{-(K_2s+1)(s+1)[s-G_2(s)]}{s(s+1) + K_1(K_2s+1)} = 0$$

$$G_2(s) = s$$

线性系统的肘城分析与校正

第三章小结

时域分析法小结(1)

自动控制原理1~3章测验题

- 一. 单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其题号写入题干的〇内,每小题2分,共32分)
- 1. 适合于应用传递函数描述的系统是

- A. 非线性定常系统; B. 线性时变系统;
- C. 线性定常系统; D. 非线性时变系统。

时城分析法小结(2)

A. 0; B.
$$\infty$$
 ; C. $1/K$; D. A/K^*

3. 动态系统 0 初始条件是指 t<0 时系统的

B

- A. 输入为 0;
- B. 输入、输出以及它们的各阶导数为0;
- C. 输入、输出为 0;
- D. 输出及其各阶导数为0。

时城分析法小结(3)

4. 若二阶系统处于无阻尼状态,则系统的

阻尼比ら应为

- A. $0 < \xi < 1$; B. $\xi = 1$; C. $\xi > 1$; D. $\xi = 0$.
- 5. 在典型二阶系统传递函数 $\Phi(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$
 - 中, 再串入一个闭环零点, 则
 - A. 超调量增大;
 - B. 对系统动态性能没有影响;
 - C. 峰值时间增大;
 - D. 调节时间增大。

附加闭环零、极点对系统动态性能的影响

时城分析法小结(4)

- A. 单位阶跃函数; B. 单位速度函数;
- C. 单位脉冲函数; D. 单位加速度函数。
- 7. 某 I 型单位反馈系统,其开环增益为K,则在 $r(t) = \frac{1}{2}t$ 输入下,系统的稳态误差 A.O; B. ∞ ; C.K; D. $\frac{1}{2K}$ 。

时城分析法小结(5)

8. 典型欠阻尼二阶系统的超调量 $\sigma\% > 5\%$,则其阻尼比的范围为

A.
$$\xi > 1$$
;

B.
$$0 < \xi < 1$$
;

C.
$$0.707 < \xi < 1$$
;

D.
$$0 < \xi < 0.707$$
.

9. 二阶系统的闭环增益加大

A. 快速性越好;

- B. 超调量越大;
- C. 峰值时间提前;
- D. 对动态性能无影响。

时域分析法小结(6)

10. 欠阻尼二阶系统的 ξ , ω_n , 都与

A. σ % 有关; B. σ % 无关;

C. t_P 有关 D. t_P 无关。

11. 典型欠阻尼二阶系统若 ω_n 不变, ξ 变化时

A. 当 $\xi > 0.707$ 时, $\xi \uparrow \rightarrow t_s \downarrow$;

B. 当 $\xi > 0.707$ 时, $\xi \uparrow \rightarrow t_s \uparrow$;

C. 当 $\xi < 0.707$ 时, $\xi \uparrow \rightarrow t_s \uparrow$;

D. 当 $\xi < 0.707$ 时, $\xi \uparrow \rightarrow t_s$ 不变。

时城分析法小结 (7)

12. 稳态速度误差的正确含义为(A为常值):

- A. $r(t) = A \cdot 1(t)$ 时,输出速度与输入速度之间的稳态误差;
- B. $r(t) = A \cdot \mathbf{1}(t)$ 时,输出位置与输入位置之间的稳态误差;
- C. r(t) = A.t 时,输出位置与输入位置之间的稳态误差;
- D. $r(t) = A \cdot t$ 时,输出速度与输入速度之间的稳态误差。
- 13. 某系统单位斜坡输入时 $e_{ss} = \infty$,
 - A. 是0型系统;

- B. 闭环不稳定
- C. 闭环传递函数中至少有一个纯积分
- D. 开环一定不稳定。

时域分析法小结(8)

14. I型单位反馈系统的闭环增益为

- A. 与开环增益有关;
- B. 与的形式有关:
- C.1;
- D. 与各环节的时间常数有关。

15. 闭环零点影响系统的

- A. 稳定性:
- B. 稳态误差;
- C. 调节时间: D. 超调量。

时城分析法小结 (9)

16. 单位反馈系统的闭环传递函数为

$$\Phi(s) = \frac{2}{3s^2 + 5s + 4}, \quad \text{则其闭环增益}_{\Phi}, \\ \xi \qquad \qquad \omega_n$$

阻尼比 和无阻尼自然频率 分别为:

$$2, \frac{5}{6}, \frac{4}{3} \qquad \qquad \frac{1}{2}, \frac{5}{6}, \frac{2}{\sqrt{3}}$$

A.
$$\frac{1}{2}$$
, $\frac{5\sqrt{2}}{12}$, $\sqrt[5]{2}$
B. $\frac{1}{2}$, $\frac{5\sqrt{3}}{12}$, $\frac{2}{\sqrt{3}}$

时域分析法小结(10)

二. 多项选择题(在每小题的五个备选答案中,选出 二至五个正确的答案,将其号码写入题干的 〇〇〇〇〇内,正确答案没有选全、多选或有 选错的,该题无分,每小题 2分,共 14分)

- 1. 减小系统超调量的有效措施有
 - A. 增大闭环增益; B. 引入输出的速度反馈;
 - C. 减小开环增益; D. 增大开环增益;
 - E. 引入误差的比例-微分进行控制。

时城分析法小结(11)

2. 某系统的开环传递函数为
$$G(s) = \frac{K}{s(T_1s+1)(T_2s+1)}$$
,则称该系统是

A. I型系统;

B. II 型系统;

C. 二阶系统;

D. 三阶系统;

E. 一阶无差系统。

时域分析法小结(12)

3. 提高输入作用下控制系统精度的主要措施有

- A. 增大开环增益;
- B. 加比例-微分控制;
- C. 增大系统的型别;
- D. 加测速反馈;
- E. 对干扰进行补偿。

时城分析法小结 (13)

4. 典型二阶系统单位阶跃响应如图所示,

可以确定该系统

A. 是的欠阻尼系统;

B. 开环增益K=2;

C. 超调量 σ %= 40%;

D. 调节时间 $t_s = t_2$;

E. 是0型系统。

时域分析法小结 (14)

- 5. 若系统
 - A. 开环稳定,闭环不一定稳定;
 - B. 开环稳定,闭环一定不稳定;
 - C. 开环不稳定, 闭环一定不稳定;
 - D. 开环不稳定, 闭环不一定不稳定;
 - E. 开环临界稳定,闭环不一定稳定。

时城分析法小结 (15)

- 为能同时减少输入和干扰引起的稳态误差,
 采用的有效措施是
 - A. 增大干扰作用点前的前向通道增益;
 - B. 增加干扰作用点前的前向通道的积分环节的个数;
 - C. 增大干扰作用点到输出的前向通道增益;
 - D. 增大干扰作用点至输出的前向通道的积分环节个数;
 - E. 在反馈通道中增加积分环节。

时域分析法小结 (16)

7. 由以下条件,可以确定闭环 系统的动态性能($\sigma\%$, t_s)

- A. 闭环极点;
- B. 开环零极点;
- C. 闭环零极点;
- D. 开环零极点及开环增益;
- E. 闭环零极点 及闭环增益。

$$G(s) = \frac{M_G}{N_G}, \quad H(s) = \frac{M_H}{N_H}$$

$$G(s)H(s) = \frac{M_G M_H}{N_G N_H}$$

$$\Phi(s) = \frac{G(s)}{1 + G(s)H(s)}$$

$$=\frac{\frac{M_G}{N_G}}{1+\frac{M_GM_H}{N_GN_H}}=\frac{M_GN_H}{N_GN_H+M_GM_H}$$

自动控制原理课程的任务与体系结构

课程的体系结构