Алгебра 1 семестр ПИ, Лекция, 10/22/21

Собрано 23 октября 2021 г. в 12:53

Содержание

1.	Комплексные числа	1
	1.1. Алгебраическая форма записи комплексного числа	1
	1.2. Геометрическое представление комплексных чисел	2
	1.3. Тригонометрическая форма записи комплексного числа	2
	1.4. Извлечение корней из комплексных чисел	3

Def. 1.0.1. Множество $\{(a,b)|a,b\in\mathbb{R}\}$ называется множество комплексных чисел, если:

1.
$$(a,b) = (c,d) \Leftrightarrow a = c, b = d$$

2.
$$(a,b) + (c,d) = (a+c,b+d)$$

3.
$$(a,b) \cdot (c,d) = (ac - bd, ad + bc)$$

4.
$$a = (a, 0)$$

Проверим корректность:

- $1 \ u \ 4$: $a = b \Leftrightarrow (a, 0) = (b, 0)$
- 2u 4: a + b = (a, 0) + (b, 0) = (a + b, 0) = a + b
- $3 \ u \ 4: a \cdot b = (a,0) \cdot (b,0) = (ab,0) = ab$

Теорема 1.0.2. С образует коммутативное кольцо с единицей.

Доказательство. (0,0) – нейтральный элемент по сложению. (a,b): -(a,b) = (-a,-b) – обратный элемент по сложению. Остальные свойства несложно проверяются.

Def. 1.0.3. Множество K называется полем, если K является коммутативным кольцом c единицей u

$$\forall x \in K^* = K \setminus \{0\} \ \exists x^{-1} \in K : x \cdot x^{-1} = 1$$

Теорема 1.0.4. $\mathbb{Z}_p(p-\text{простое}), \mathbb{Q}, \mathbb{R}, \mathbb{C}-\text{поля}.$

 \mathcal{A} оказательство. \mathbb{Q}, \mathbb{R} – поля.

 \mathbb{Z}_p — коммутативное кольцо с единицей, \mathbb{Z}_p^* — мультипликативная группа $\Rightarrow \mathbb{Z}_p$ — поле.

$$(a,b) \in \mathbb{C}^*, (a,b)^{-1} = \frac{(a,-b)}{a^2+b^2} = \left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right)$$

$$(a,b) \cdot \frac{(a,-b)}{a^2+b^2} = \frac{(a^2+b^2,0)}{a^2+b^2} = (1,0)$$

Def. 1.0.5. (a,b) u (a,-b) – комплексно-сопряженные числа. $|(a,b)| = \sqrt{a^2 + b^2}$ – модуль комплексного числа. Заметим, что $|(a,0)| = \sqrt{a^2 + 0} = \sqrt{a^2} = |a|$ $(a,b)\cdot(a,-b) = a^2 + b^2 = |(a,b)|^2$

1.1. Алгебраическая форма записи комплексного числа

Def. 1.1.1. Положим i = (0,1). Тогда

$$(a,b) = (a,0) + (0,b) = (a,0) \cdot (1,0) + (b,0) \cdot (0,1) = a + bi$$

1.2. Геометрическое представление комплексных чисел

Def. 1.2.1. z = a + bi. Re z = a – вещественная часть числа z, Im z = b – мнимая часть. $z = a + bi \mapsto m$ очка на комплексной плоскости. (a,b) – радиус-вектор OM. $\rho = |z| = \sqrt{a^2 + b^2}$ – длина вектора OM. $\varphi = (\stackrel{\frown}{\operatorname{Re}}, OM)$ – аргумент комплексного числа. $\operatorname{arg} z = \varphi, \varphi = \varphi_0 + 2\pi k, \varphi_0 \in [0; 2\pi)$ или $\varphi_0 \in (-\pi; pi]$.

1.3. Тригонометрическая форма записи комплексного числа

Def. 1.3.1. $a = \rho \cos \varphi, b = \rho \sin \varphi \Rightarrow z = a + bi = \rho(\cos \varphi + i \sin \varphi)$

$$\operatorname{tg} \varphi = \frac{b}{a} \Rightarrow \varphi = \begin{cases} \operatorname{arctg} \frac{b}{a}, z \in I \ u \ II \ \textit{\textit{vemsepmu}} \\ \operatorname{arctg} \frac{b}{a} + \pi, z \in III \ u \ IV \ \textit{\textit{vemsepmu}} \end{cases}$$

Def. 1.3.2 (Неравенство треугольника). $z_1, z_2 \in \mathbb{C}$

1.
$$|z_1 + z_2| \leq |z_1| + |z_2|$$

$$|z_1 - z_2| \geqslant ||z_1| - |z_2||$$

Доказательство. 1. $z_1 = \rho_1(\cos\varphi_1 + i\sin\varphi_1), z_2 = \rho_2(\cos\varphi_2 + i\sin\varphi_2)$

$$|z_1 + z_2|^2 = |\rho_1 \cos \varphi_1 + \rho_2 \cos \varphi_2 + i(\rho_1 \sin \varphi_1 + \rho_2 \sin \varphi_2)|^2 =$$

$$= \rho_1^2 \cos^2 \varphi_1 + 2\rho_1 \rho_2 \cos \varphi_1 \cos \varphi_2 + \rho_2^2 \cos^2 \varphi_2 + \rho_1^2 \sin^2 \varphi_1 + 2\rho_1 \rho_2 \sin \varphi_1 \sin \varphi_2 + \rho_2^2 \sin^2 \varphi_2 =$$

$$= \rho_1^2 + 2\rho_1 \rho_2 \cos(\varphi_1 - \varphi_2) = \rho_2^2 \leqslant \rho_1^2 + 2\rho_1 \rho_2 + \rho_2^2 = (\rho_1 + \rho_2)^2 = (|z_1| + |z_2|)^2$$

2. $|z_1| = |z_1 - z_2 + z_2| \leqslant |z_1 - z_2| + |z_2| \Rightarrow |z_1| - |z_2| \leqslant |z_1 - z_2| \Rightarrow ||z_1| - |z_2|| \leqslant |z_1 - z_2|$

Замечание 1.3.3. $|z_1 + z_2| = |z_1| + z_2| \Leftrightarrow z_1 \parallel z_2$

Теорема 1.3.4 (Умножение комплексных чисел в тригонометрической форме). $z_1 = \rho_1(\cos\varphi_1 + i\sin\varphi_1), z_2 = \rho_2(\cos\varphi_2 + i\sin\varphi_2).$ Тогда

$$z_1 \cdot z_2 = \rho_1 \cdot \rho_2(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

Доказательство. Достаточно перемножить, заметить формулу косинуса суммы и синуса суммы мы

■

Следствие 1.3.5 (Формула Муавра). $z = \rho(\cos\varphi + i\sin\varphi) \Rightarrow z^n = \rho^n(\cos n\varphi + i\sin n\varphi)$

Доказательство. 1. $n \geqslant 0$. По индукции: n = 1 очевидно.

$$n-1 \rightarrow n$$
:

$$z^{n} = z^{n-1} \cdot z = \rho^{n-1}(\cos(n-1)\varphi + i\sin(n-1)\varphi) \cdot \rho(\cos\varphi + i\sin\varphi) = \rho^{n}(\cos n\varphi + i\sin n\varphi)$$

2. n < 0. Пусть n = -m, m > 0. Тогда

$$z^{n} = \frac{1}{z^{m}} = \frac{1}{\rho^{m}(\cos m\varphi + i\sin m\varphi)} = \rho^{-m}\frac{\cos m\varphi - i\sin m\varphi}{1} = \rho^{n}(\cos n\varphi + i\sin n\varphi)$$

1.4. Извлечение корней из комплексных чисел

Def. 1.4.1. Корнем n-й степени из комплексного числа z называется $w \in \mathbb{C}: w^n = z$

Теорема 1.4.2. $\forall z \in \mathbb{C}^* \ \exists n$ корней n-й степени $z_k, k=0,1,...,n-1$

$$z_k = \sqrt[n]{\rho}(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}), z = \rho(\cos\varphi + i\sin\varphi)$$

Доказательство. $w^n = z, w = R(\cos \Theta + i \sin \Theta)$

$$\Rightarrow (w^n = z) : R^n(\cos(n\Theta) + i\sin(n\Theta)) = \rho(\cos\varphi + i\sin\varphi) \Rightarrow$$

$$\Rightarrow R = \sqrt[n]{\rho}, \cos(n\Theta) = \cos\varphi, \sin(n\Theta) = \sin\varphi \Rightarrow$$

$$\Rightarrow n\Theta = \varphi + 2\pi k \Rightarrow \Theta = \frac{\varphi + 2\pi k}{r} \Rightarrow \text{ любой корень имеет вид } z_k$$