Board I/O

Chapter 6 & 7

Board I/O

- System is a body, board is the head, CPU is the brain, and IO is the eyes, mouth, and limbs.
- Input
 - Bring information from an input device to the processor
- Output
 - Take information out of the processor to an output device
- Topics
 - Interface
 - Performance

I/O Devices

- Networking I/O
 - NICs
- Input
 - Keyboard, mouse, remote, switch
- Graphics
 - Touch screen, printer, LED, LCD
- Storage
 - Hard drive, CD/DVDROM, flash driver
- Debugging and program loading
 - JTAG, UISP, GDB
- Others
 - ADC, DAC

I/O Hardware Model

- Transmission medium
 - Wired or wireless or light or sound
 - Between IO devices and IO ports
- Communication port
 - COM/UART, USB
- Communication interface
 - Between CPU and I/O ports
- I/O Controller
 - Slave I/O processor

I/O Hardware Model

- Simple example,
 - Figure 6-3b
 - Direct connection from CPU to LED
 - No controller, no port
- Complex example
 - Figure 6-3a
 - Monitor display
 - Video control and video port

CPU Control

- No port, no controller
 - Driver and control (API) over the device
 - Data format and transmission with the device
- Have port, but no controller
 - Driver and control (API) over the port
 - Data format and transmission through the port
- Have both port and controller
 - Driver and control (API) over the controller
 - Data format and transmission with the controller

I/O Hardware

- Features
 - Expandability
 - Functionality
 - EM compatibility
 - Power consumption
 - Performance
 - Reliability
 - Throughput
 - Response

Serial I/O

- Communication mode
 - Simplex : Figure 6-4a
 - One direction only
 - Examples ?
 - Half duplex : Figure 6-4b
 - Two direction over time
 - One direction on any particular time point
 - Full duplex : Figure 6-4c
 - Two direction on any time point
 - How about an Ethernet NIC? (UTP vs. Co-axial)

Serial I/O

- Communication type
 - Synchronous
 - One: sender and receiver are using the same clock.
 - Two: sender and receiver are using the same states.
 - Asynchronous
 - One: sender and receiver are using different clocks.
 - Two: sender and receiver are using different states.
 - Example : UART
 - Same clock? Same state?

Serial I/O Protocol

- UART protocol, Figure 6-5
 - Universal Asynchronous Receiver/Transmitter
 - Idle state : voltage ? logic ?
 - Start bit : voltage ? logic ?
 - Stop bits
 - Parity bit
 - Data size
 - Data rate
 - Baud rate: raw data rate, including control and data bits
 - Bit rate: actual data rate, including only data bits
 - Frame vs bits

Serial I/O Protocol

- UART protocol
 - If a sender uses a clock of 1MHz
 - If a receiver uses a clock of 1.2MHz, but thinks it is using a clock of 1MHz
 - How can they communicate at 10Kbps?
 - $|t^*f_s t^*f_r| < 1 \Rightarrow t < 1/|f_s f_r|$
 - frame_size = $t*f_s < f_s/|f_s-f_r|$
 - Generally, what is the allowed difference of their clocks?
 - frame_size < $f/|\Delta f|$
 - $|\Delta f|/f < 1/\text{frame_size}$

Serial I/O Protocol

- SPI protocol
 - Serial Peripheral Interface
 - Master provides
 - Clock (clock is synced)
 - Slave selection (state is synced)
 - Master output/slave in
 - Slave output/master in
 - Example : AD7476
 - Who is master or slave?

¹ADDITIONAL PINS OMITTED FOR CLARITY

Serial I/O Example

- RS232
 - OSI model
 - Medium (PHY)
 - Interface (control or signalling, PHY and MAC)
 - UART (data format, PHY)
 - DTE (Data Terminal Equipment): sender
 - DCE (Data Circuit-terminating Equipment): receiver
 - DB9 connector : at the DTE side, output is italic
 - 1. Carrier Detect (phone), 2. Received Data, 3.
 Transmitted Data, 4. DTE Ready, 5. Common Ground,
 6. DCE Ready, 7. Request To Send, 8. Clear To Send, 9.
 Ring Indicator (modem)

RS232

- Communication process
 - Start from power on (DTE -> DCE) :
 - Simple mode
 - 4->, 6<-, 3->
 - Handshaking mode
 - 4->, 6<-, 7->, 8<-, 3->
 - Data transmission
 - UART
 - What is control logic?

Serial I/O Example

- Small communication range
- 802.15.1 : Bluetooth
- 802.15.4 : Zigbee
 - 10-meter communication range
 - Lower data rate than WiFi : 20, 40, 100, 250 kbps
 - Simpler than Bluetooth
 - 30 channels in 902-928 MHz
 - Point-to-point or star networks
 - Coordinator: full-function device (FFD)
 - Peers: reduced-function devices (RFD)

Another Serial I/O Example

- Ethernet
 - IEEE 802.3/u/z
 - Thick or thin coax: 500 meters or 200 meters
 - 10Base-5 or 10Base-2 : 10Mbps
 - Twisted pair
 - 10Base-T or 100Base-F: 10Mbps or 100Mbps
 - CSMA/CD
 - OSI model and Ethernet controller

Parallel I/O

- Transmit multiple-bit data in parallel
- I/O hardware model
 - Transmission medium
 - Communication parallel port
 - Communication parallel interface
 - I/O Controller

Parallel I/O Example

- IEEE 1284
 - LPT (Line Print Terminal): printers
 - Enhanced Parallel Port (EPP), Extended Capability
 Port (ECP): half-duplex, bi-directional
 - Data rate: 2-2.5Mbps
 - Port: DB-25, Micro ribbon (36 pins)
 - 8-bit data pins and other signalling pins

Parallel I/O Example

Pin schematics

USB

- Replace all types of serial and parallel IOs
- Extended to support multiple devices (physical and logical)
- USB 1.0: 12Mbps; USB 2.0: 480Mbps; USB 3.0: 5.0Gbps
- Pins: 1 VCC, 2 data+, 3 data-, 4 GND
- Cable length : <5meter for 1500ns RTT
- More details are online.

I/O Controller and CPU

- An ability of the master CPU to initialize and monitor the I/O controller
 - Registers in I/O controller
 - Control register for configuration
 - Status register for monitoring
- A way for the master CPU to request I/O
 - Signalling registers
 - Signalling instructions, not data instructions

I/O Controller and CPU

- A way for the I/O controller to contact the master CPU
 - Interrupt
 - Data cache in I/O controller
- A mechanism for both to exchange data
 - Data I/O instructions and data registers
 - Memory-mapped
- Check the manual of I/O controller

I/O Performance

- Performance factors
 - The data rates of the I/O devices
 - Variety of I/O speeds
 - The speed of the master processor
 - Possible application bottleneck in embedded system
 - Communication between them
 - Data loss or hang or interrupt priority ...
- Performance metrics
 - Throughput
 - Processing time
 - Response time

Bus

- Master and slave devices
 - Master : can initiate a bus transaction
 - Slave : can only respond to a master's request
- Buses
 - System bus: specific to CPU and memory
 - Backplane bus : shared with on board components
 - IO bus: extended to external components

Bus

- Bus and bus bridges: north and south
 - Bridge: connection among buses
 - Northbridge: connect faster buses
 - memory controller hub
 - handle communications among CPU, memory, video cards, and southbridge
 - Southbridge : connect slower buses
 - I/O controller Hub
 - handle communications among slower devices (IO) on the motherboard

Bus

- Arbitration
 - Dynamic central parallel, Fig. 7-3a
 - FIFO
 - Priority-based
 - Centralized serial, Fig. 7-4
 - Daisy chain
 - Distributed, Fig. 7-5

Bus Example: PCI

- Peripheral Component Interconnection
 - Data size: 32-bit or 64-bit
 - Data rate: 33MHz or 66 MHz or 133MHz

PCI

- Dynamic centralized parallel arbitration
- Five steps
 - Request to the central arbitrator
 - Be granted
 - Send address and set transfer type
 - Transfer data and set transfer status
 - Terminate