1 Singularities

Theorem 1 (Riemann's Theorem on removeable singularities). f(z) has an isolated singularity at z_0 , bounded in punctured neighborhood of z_0 , then f can be extended to a holomorphic function at z_0 .

Lemma 2. If F(s,z) is continuous in $[0,1] \times \Omega$, such that $\Omega \subset \mathbb{C}$ open, and holomorphic in z, then $\int_0^1 F(s,z) ds$ is holomorphic in Ω

One argument: write integral as a limit of Riemann sums (obviously holomorphic in z) \implies the limit is holomorphic if we can show uniform convergence on compact subsets of Ω

Another argument:

- (1) $\int_0^1 \mathsf{F}(s,z) dz$ continuous in Ω . Choose $\overline{\mathbb{D}}$ such that $z \in \overline{\mathbb{D}} \subset \Omega$. $\mathsf{F}(s,z)$ is uniformly continuous on $[0,1] \times \Omega$. $\forall \varepsilon \exists \delta$ such that if $|z'-z| < \delta$ then $|\mathsf{F}(s,z') \mathsf{F}(s,z)| < \varepsilon \ \forall s \in [0,1] \implies \left| \int_0^1 \mathsf{F}(s,z') \mathsf{F}(s,z) dz \right| \le \int_0^1 |\mathsf{F}(s,z') \mathsf{F}(s,z)| ds < \int_0^1 dz \varepsilon = \varepsilon 0 = \varepsilon \implies \int_0^1 \mathsf{F}(s,z) ds$ continuous in z.
- (2) By Morera's Theorem, it suffices to check $\int_{\mathsf{T}} \left(\int_0^1 \mathsf{F}(s,z) \, \mathrm{d}s \right) \, \mathrm{d}z = 0, \mathsf{T} \subset \Omega$ with its interior. By Frobinius $= \int_0^1 \left(\int_{\mathsf{T}} \mathsf{F}(s,z) \, \mathrm{d}z \right) \, \mathrm{d}s = 0$. Interior integral is zero by Cauchy or Goursat, so entire integral is 0, and f is holomorphic by Morera's.

Corollary 3. z_0 is a pole of $f(z) \iff \lim_{z \to z_0} |f(z)| = \infty$

 z_0 is a pole of $f(z) \implies z_0$ is a zero of $\frac{1}{f(z)} \implies \lim_{z \to z_0} \frac{1}{f(z)} = 0 \implies \lim_{z \to z_0} |f(z)| = \infty$. If $\lim_{z \to z_0} |f(z)| = \infty \implies \lim_{z \to z_0} \left| \frac{1}{f(z)} = 0 \right| \implies \frac{1}{f(z)}$ is bounded near $z_0 \implies \frac{1}{f(z)}$ can be extended to a holomorphic

function at z_0 , all if g(z), $g(z_0) = \lim_{z \to z_0} g(z) = 0 \implies f(z) = \frac{1}{g(z)}$ has a pole at z_0 .

Definition 4. Refined classification of isolated singularities at z_0 .

- (1) removable \iff f(z) is bounded near $z_0 \iff$ f(z) is holomorphic at z_0 (last by Riemann)
- (2) pole \iff $f(z) = \frac{1}{g(z)}$, g(z) is holomorphic, $g(z_0) = 0 \iff \lim_{z \to z_0} |f(z)| = \infty$
- (3) Essential singularities? (holo on deleted neighborhood but not remov sing. or pole)

Example 5. $e^{1/z}$ at z = 0

Theorem 6 (Casorati-Weierstrass). z_0 is an essential singularity of $f(z) \implies f(0 < |z - z_0| < r)$ dense in $\mathbb{C} \forall r$.

Argue by contradiction: suppose $\exists w_0$ and R such that $|f(z) - w_0| > R \forall z$ such that $0 < |z - z_0| < r$ $\frac{1}{f(z) - w_0} < R$ is bounded in same annulus. So by Riemann's Theorem, = g(z), which is holomorphic for $|z - z_0| < r$ (by Riemann's Theorem). So $f(z) = w_0 + \frac{1}{g(z)}$. If $g(z_0) \neq 0$, then f is holomorphic at z_0 . If $g(z_0) = 0 \implies w_0 + \frac{1}{g(z)}$ has a pole at z_0 , which is a contradiction

Theorem 7 (Picard's Theorem). Every $\alpha \in \mathbb{C}$, with at most one exception, belongs to the image $f(0 < |z - z_0| < r) \forall r$, and occurs infinitely many times

Covers all for given r, shrink r, covers all by Picard's, shrink, etc.

"Singularity at ∞": in book

"Riemann Sphere" $S^2 = \mathbb{CP}^1 = \mathbb{C}$ disjoint union $\{\infty\}$.

f(z) has an isolated singularity at $\infty \iff f(\frac{1}{z})$ is holomorphic for $0 < \left|\frac{1}{z}\right| < \frac{1}{R} \iff f(z)$ is holomorphic for |z| > R for some R.

f(z) has a removable singularity at $\infty \iff f(z)$ is bounded for $|z| > R \iff f(\frac{1}{z})$ is holomorphic at $z = 0 \iff f(\frac{1}{z}) = \sum_{n \geqslant 0} a_n \left(\frac{1}{z}\right)^n$ converges for $\frac{1}{z} < r$

f(z) has a pole at $\infty \iff f(\omega)$ has a pole at $0, \omega = 1/z \iff \lim \omega \to 0 |f(\omega)| = \infty \iff \lim_{z \to \infty} |f(z)| = \infty$.

 $f(\omega) = \frac{a_{-n}}{\omega^n} + \ldots + \frac{a_{-1}}{\omega} + H(\omega) \text{ holo at } \omega \iff \text{bounded near 0. } f(z) = a_{-n}z^n + \ldots + a_{-1}z + H(\frac{1}{z}) \text{ bounded at } \infty \text{ (for } |z| > R \text{ for some R)}$

Theorem 3.4.

argument principle

Theorem 8 (Roche Theorem). Suppose f(z) and g(z) are holomorphic in Ω , which contains a simple closed curve γ and its interior. Suppose $|f(z)| > |g(z)| \forall z \in \gamma$. Then f(z) and f(z) + g(z) have the same number of zeros (counted with multiplication) inside γ .

Let $f_s(z) = f(z) + sg(z), s \in [0,1]$. $f_s(z)$ is holomorphic in $\Omega \forall s \in [0,1]$. $\forall z \in \gamma \ |f_s(z)| = |f(z) + sg(z)| \geqslant |f(z) - s|g(z)| \geqslant 0 \implies f_s(z)$ doesn't vanish along $\gamma \implies$ the number of zeros of $f_s(z)$ inside γ (with multiplication) is equal to $= \frac{1}{2\pi} \int_{\gamma} \frac{f'(z) + sg'(z)}{f(z) + sg(z)} dz$. The integral is a continuous function of (z,s) on $\gamma \times [0,1]$ (compact)

 $\implies \frac{1}{2\pi} \int_{\gamma} \frac{f'(z) + sg'(z)}{f(z) + sg(z)} dz \text{ is continuous in S. But it takes integer values} \\ \implies \frac{1}{2\pi} \int_{\gamma} \frac{f'(z) + sg'(z)}{f(z) + sg(z)} dz \text{ is constant in S. In particular, the same for } f(z) \text{ (where } s = 0) \text{ and } f(z) + g(z) \text{ (where } s = 1)$

Example 9. Find the number of zeros inside |z| < 1 of $z^{100} + 4z^3 - z + 1 = f(z) + g(z)$. $f(z) = 4x^3$, with 3 zeros with multiplication, and $g(x) = z^{100} - z + 1$. $|4z^3| = 4$. $|g(x)| \le 3 < 4$.

Theorem 10 (Open Mapping Theorem). *If* f(z) *is holomorphic in connected open* Ω *and nonconstant* \implies $f: \Omega \rightarrow f(\Omega)$ *is an open map (sends open sets to open sets).*

Remark 11. We want connected to avoid something like HW1P4

It suffices to show that $f(\Omega)$ is open. Say $f(z_0) = \omega_0$. Show the image of f contains some neighborhood of ω_0 , or $\exists r > 0$ such that $\{|\omega - \omega_0| < r\} \subset f(\Omega)$. Equivalent to sayint that $f(z) - \omega$ has a root in $\Omega \ \forall \omega$ such that $|\omega - \omega_0| < r$. $f(z) - \omega$ has a solution z_0 . Chose a circle $|z - z_0| = \delta$. $f(z) - w_0$ has a zero inside the circle. Apply Rouche theorem.

We know $\exists \delta$ such that $f(z) - \omega_0 \neq 0$ for some z, $|z - z_0| = \delta$ because roots form discrete set. Take $r = \min |f(z) - \omega_0|$, chain inequalities, apply Rouche Theorem

2 RIEMANN ZETA FUNCTION

Say s > 1, and the sum $\sum \frac{1}{n^s} = \zeta(s)$ converges for $\forall s > 1$. In Calculus, you prove this converges with the integral test.

Theorem 12. $\zeta(s)$ admits an analytic continutation to $\mathbb{C} \setminus 1$ where it has a simple pole

Theorem 13. The only zeros of $\zeta(s)$ outside the "critical strip" $0 \le Re(s) \le 1$ are "trivial zeros": -2, -4,... (simple zeros of Gamma function)

Theorem 14 (Hadamard, Valle Poussin). No zeros exist on the boundary of the critial strip

Theorem 15 (Riemann Hypothesis). *All zeros are in the middle of the strip, along Re*(s) = 1/2.

Definition 16 (Tchebyshev's ψ -function). $\psi(x) = \sum_{p^m \leq X} \log p$, p is prime, $x \in \mathbb{R}$, x > 0.

Definition 17 (Riemann's Explicit Formula). $\psi(x) = x - \sum_{\zeta(\rho)=0} \frac{x^{\rho}}{\rho} - \ln(2\pi) - \frac{1}{2}\ln(1-x^{-2}), \ 0 < \text{Re}(\rho) < 1$

Definition 18 (Wacky Prime Number Theorem). As $x \to \infty$, the last terms just goes away. $\psi(x) \sim X$, or $\lim_{x \to \infty} \frac{\psi(x)}{x} = 1$

If you believe the Riemann hypothesis, $\rho = 1/2$

$$\zeta(s) = \sum \frac{1}{n^s}, \operatorname{Re}(s) > 1$$

Definition 19 (Euler's product expansion). $\zeta(s) = \prod_{p} \frac{1}{1 - \frac{1}{r^s}}$, Re(s) > 1 for p prime

Corollary 20. $\zeta(s)$ has no zeros in Re(s) > 1

Idea:
$$\frac{1}{1 - \frac{1}{p^s}} = 1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots$$

$$\implies \prod_{\mathfrak{p}} \frac{1}{1 - \frac{1}{\mathfrak{p}^s}} = \sum_{\mathfrak{p}} \frac{1}{\mathfrak{p}_{\mathfrak{i}_1}^{k_{\mathfrak{i}_1} s} \cdots \mathfrak{p}_{\mathfrak{i}_r}^{k_{\mathfrak{i}_r}}} = \sum_{\mathfrak{n} \geqslant 1} \frac{\mathfrak{a}(\mathfrak{n})}{\mathfrak{n}^s} \text{ where } \mathfrak{a}(\mathfrak{n}) \text{ is the number of ways to write } \mathfrak{n}$$

Function is holomorphic unless $e^{s \ln p} = 1$, but can't happen since Re(s) > 1. Also, cannot vanish. Product of non-vanishing factors can't vanish (?)

Caution: $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots \rightarrow 0$, so need to justify

$$\prod_{p< N} (1+\frac{1}{p^s}+\ldots+\frac{1}{p^{Ms}}) < 1+\frac{1}{2^s}+\ldots=\zeta(s)$$

send M to infinity, holds, send N to infinity, holds.

Claim:
$$\prod_{p} \frac{1}{1 - \frac{1}{p^s}}$$
 is holomorphic for $\text{Re}(s) > 1$

Proposition 21. Suppose $F_n(z)$ holom. in Ω , $|F_n(z)| \leq c_n$ in Ω and $x \geq c_n < \infty$. Then $\prod_{n \geq 1} (1 + F_n(z))$ converges uniformly in Ω to a holomorphic function in Ω , which is equal to 0 only at zeros of its factors.

As the limit of a sequence of holom. functions converges uniformly on compact sets

In our case: need to show that $\prod (1 - \frac{1}{n^s})$ is holomorphic.

$$\left| \frac{1}{p^s} \right| = \frac{1}{p^{\text{Re}(s)}}.$$

$$\sum \frac{1}{p^{\text{Re}(s)}} < \sum \frac{1}{n^{\text{Re}(s)}} < \infty \text{ since Re}(s) > 1$$

$$\implies \prod (1 = \frac{1}{n^s}) \text{ is holomorphic for Re}(s) < 1$$

doesn't vanish
$$\implies \prod \frac{1}{1 - \frac{1}{p^s}}$$
 is holomorphic for Re(s) > 1

For n>>0, $|F_n(z)|<\frac{1}{2}.$ Let's assume that this is true $\forall n \implies Re(1+F_n(z))>0$

$$\implies \operatorname{Re}(1+\operatorname{F}_{\mathbf{n}}(z)) > 0$$

$$\implies$$
 log(1 + F_n(z)) is defined, where log is standard branch.

Let's show that $\sum \log(1 + F_n(z))$ converges absolutely and uniformly

$$|\log(1+w)| \text{ for } |w| < \frac{1}{2}$$

$$\log(1+w) = w - \frac{w^2}{2} + \frac{w^3}{3} - \cdots$$

$$\implies \log(1+w) = w[1 - \frac{w}{2} + \frac{w^2}{3} - \cdots]$$

$$\implies |\log(1+w)| \le |w|[1 + \frac{|w|}{2} + \frac{|w|^2}{3} + \cdots]$$

$$\Rightarrow |\log(1+w)| \le |w|[1 + \frac{|w|}{2} + \frac{|w|^2}{3} + \cdots]$$

$$\Rightarrow |\log(1+w)| \le |w|[1 + |w| + |w|^2 + \cdots]$$

$$\Rightarrow |\log(1+w)| \le 2|w|$$

$$\prod \frac{1}{1 - \frac{1}{p}} = \infty \text{ because } \le \sum \frac{1}{n} = \infty \Rightarrow \prod (1 - \frac{1}{p})0$$

Why doesn't this contradict the previous theorem?

 $\Rightarrow \sum \frac{1}{p} = \infty$ (b.c otherwise the previous theorem applies as the terms are no zeros) \Rightarrow there are infinitely many primes

Theorem 22. $\zeta(s)$ has no zeros for Re(s) = 1 (assuming $\zeta(s)$ has an analytic continutation into Re(s) > 0 with simple pole at s = 1 and no other poles)

Argue by contradiction, suppose that $\zeta(1+it)=0$

Remark 23. $|\zeta^3(s)\zeta^4(\sigma+it)\zeta(\sigma+2it)| \to 0$ as $\sigma \to 1^+$

Remark 24. $|\zeta^3(s)\zeta^4(\sigma+it)\zeta(\sigma+2it)| \ge 1$ for $\sigma > 1$

Past two remarks give the proof

Remark 25. $\zeta(s)$ has a simple pole at $s=1 \implies \zeta(s)=\frac{1}{s-1}+$ holomorphic near $s=1 \implies |\zeta^3(\sigma)|=\frac{|\alpha|^3}{|\sigma-1|^3}+$ bounded near $\sigma=1$

Last time: if $\zeta(1+it)=0 \implies |\zeta^3(s)\zeta^4(\sigma+it)\zeta(\sigma+2it)| \to 0$ as $\sigma \to 1^+$ assuming $\zeta(s)$ has an analytic continutation to Re(s)>0 with a simple pole at 1 and no other poles along Re(s)=1

$$|\zeta^3(s)\zeta^4(\sigma+it)\zeta(\sigma+2it)|\geqslant 1 \text{ for } \sigma>1$$

 $3\ln|\zeta(s)|+4\ln|\zeta^4(\sigma+it)|+\ln|\zeta(\sigma+2it)|\geqslant 0 \text{ (regular natural logarithm for real numbers)}$

 $Re(1) > 1 \implies \zeta(s) = \prod_{primes} \frac{1}{1-p^{-s}}$, take absolute value of both sides, take logarithm is $\sum_{primes} -ln|1-p^{-s}|$

 $|\mathfrak{p}^{-s}| < 1 \implies$ we can compute principal branch $\log(1-\mathfrak{p}^{-s}) \implies -\ln|1-\mathfrak{p}^{-s}| = \text{Re} - \log(1-\mathfrak{p}^{-s})$

$$|z| < 1 \implies -\log(1-z) = z + \frac{z^2}{2} + \frac{z^3}{3} + \dots \implies -\log(1-p^{-s}) = p^{-s} + \frac{p^{-2s}}{2} + \dots$$

Re(\sum primes ...) [aka ln $|\zeta(s)| = \sum_{n \ge 1} \frac{c_n}{n^s} c_n \ge 0$

2.1 Schwarz function idk where this is going

 $f(x) \in C^{\infty}(\mathbb{R})$ is a Schwarz function if f and all its derivatives decay faster than any 1/polynomial function.

 $|\frac{\partial f}{\partial x^m}x^n < c_{n,m}| \text{ for some } c_{n,m} \text{ Basic example: } e^{-\pi x^2}. \text{ At some point we will assume that } f(x) \text{ is also even.}$

Definition 26. An associated θ function $\theta_f(y) = \sum_{n \in \mathbb{Z}} f(y \cdot n) \; y > 0$

 C^{∞} function

Definition 27. As associated gamma function $\Gamma_f(s) = \int_0^\infty t^s f(t) \frac{dt}{t}$

This function will be analytic if Re(s) > 0

If
$$f(x) = e^{-\pi x^2}$$
 then $\theta_f(y) = \sum_{n \in Z} e^{-\pi n^2 y^2}$

Recall Jacobi theta function $\theta(z) = \sum_{n \in \mathbb{Z}} e^{\pi i n^2 z}$, $z \in \mathbb{C}$.

$$\theta_f(y) = \theta(iy^2)$$

$$\begin{split} \text{"Gamma factor" } & \Gamma_f(s) = \int_0^\infty t^s e^{\pi t^2} \frac{dt}{t} \\ & x = \pi t^2, = x^{1/2} \pi^{-1/2}, dx/x = 2\pi t dt/(\pi t^2) = 2 dt/t \\ & \Longrightarrow \int_0^\infty x^{s/2} \pi^{-s/2} e^{-x} \\ & = \frac{1}{2} \pi^{-s/2} \int_0^\infty x^{s/2} e^{-x} \frac{dx}{x} = \frac{1}{2} \pi^{s/2} \Gamma(s/2) \end{split}$$

Lemma 28. $\theta_f(y) \in C^\infty(\mathbb{R})$ and derivatives can be computed term by term.

Just need to show differentiability (f' is also Schwarz)

Check uniform and absolute convergence (on compact sets)

$$|f(yn)| \leqslant \frac{C}{(yn)^2} = \frac{C}{y^2n^2}$$

$$\sum |f(yn)| \leqslant \frac{C}{v^2} \sum \frac{1}{n^2}.$$
 Absolute convergence