

Partha Pratim Das

Objectives of Outline

Multivalued Dependency

Definition Example Use

Decomposition

Module Summary

Database Management Systems

Module 29: Relational Database Design/9: MVD and 4NF

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Module Recap

Module 29

Partha Pratii Das

Objectives & Outline

Multivalue Dependen Definition Example

Decomposition 4NF

Module Summar

• Using the specification for a Library Information System, we have illustrated how a schema can be designed and then refined for finalization

Module Objectives

Module 29

Partha Pratir Das

Objectives & Outline

Multivalue
Dependence
Definition
Example
Use

Decomposition 4NF

Module Summar

- To understand multi-valued dependencies arising out of attributes that can have multiple values
- To define Fourth Normal Form and learn the decomposition algorithm to 4NF

Module Outline

Module 29

Partha Pratin Das

Objectives & Outline

Multivalue Dependenc

> Example Use

Decomposition 4NF

Module Summary

- Multivalued Dependencies
- Decomposition to 4NF

MVD

Module 29

Partha Pratin

Objectives & Outline

Multivalued Dependency

Example

Theory

Decomposition t

Module Summar

Multivalued Dependency

Partha Pratir Das

Objectives Outline

Multivalued Dependency Definition Example

Decomposition t

Module Summary

Persons(Man, Phones, Dog_Like)

Person:			Meaning of the tuples	
Man(M) Phones(P) Dogs_Like(D)		Dogs_Like(D)	Man M have phones P, and likes the dogs D.	
M1	P1/P2	D1/D2	M1 have phones P1 and P2, and likes the dogs D1 and D2.	
M2	P3	D2	M2 have phones P3, and likes the dog D2.	
Key : MPD				

There are no non trivial FDs because all attributes are combined forming Candidate Key, that is, MDP. In the above relation, two multivalued dependencies exists:

- Man → Phones
- Man → Dogs_Like

A man's phone are independent of the dogs they like. But after converting the above relation in Single Valued Attribute, each of a man's phones appears with each of the dogs they like in all combinations.

Post 1NF Normalization

Man(M)	Phones(P)	Dogs_Likes(D)
M1	P1	D1
M1	P2	D2
M2	P3	D2
M1	P1	D2
M1	P2	D1

Database Management Systems Partha Pratim Das 29.6

Partha Prati Das

Objectives Outline

Multivalued Dependency Definition Example Use Theory

Decomposition to 4NF

Module Summar

• If two or more independent relations are kept in a single relation, then Multivalued Dependency is possible. For example, Let there are two relations :

- Student(SID, Sname) where (SID → Sname)
- Course(CID, Cname) where (CID → Cname)
- There is no relation defined between Student and Course. If we kept them in a single relation named **Student_Course**, then MVD will exists because of m:n Cardinality
- If two or more MVDs exist in a relation, then while converting into SVAs, MVD exists.

Student:		Course:	
SID	Sname	CID	Cname
S1	A	C1	C
S2	В	C2	В

	Sname	CID	Cname	
S1	A	C1	С	
S1	A	C2	В	
S2	В	C1	С	
S2	В	C2	В	
2 MVDs exist: 1. SID →→ CID				

Source: http://www.edugrabs.com/multivalued-dependency-mvd/

MVD (3)

Module 29

Partha Pratir Das

Objectives Outline

Multivalued Dependency Definition Example

Example Use Theory

Decomposition to 4NF

Module Summary

• Suppose we record names of children, and phone numbers for instructors:

- inst_child(ID, child_name)
- inst_phone(ID, phone_number)
- If we were to combine these schema to get
 - inst_info(ID, child_name, phone_number)
 - Example data:

 (99999, David, 512-555-1234)
 (99999, David, 512-555-4321)
 (99999, William, 512-555-1234)
 (99999, William, 512-555-4321)
- This relation is in BCNF
 - O Why?

29 9

Module 29

Partha Pratir Das

Objectives Outline

Multivalued
Dependenc
Definition
Example
Use
Theory

Decomposition to 4NF

Module Summary

• Let R be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$. The multivalued dependency $\alpha \twoheadrightarrow \beta$

holds on R if in any legal relation r(R), for all pairs for tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that:

$$t_{1}[\alpha] = t_{2} [\alpha] = t_{3} [\alpha] = t_{4} [\alpha]$$

$$t_{3}[\beta] = t_{1} [\beta]$$

$$t_{3}[R - \beta] = t_{2}[R - \beta]$$

$$t_{4} [\beta] = t_{2}[\beta]$$

$$t_{4}[R - \beta] = t_{1}[R - \beta]$$

Example: A relation of university courses, the books recommended for the course, and the lecturers who will be teaching the course:

- course → book
- course → lecturer

Test: course → book

Course	Book	Lecturer	Tuples
AHA	Silberschatz	John D	t1
AHA	Nederpelt	William M	t2
AHA	Silberschatz	William M	t3
AHA	Nederpelt	John D	t4
AHA	Silberschatz	Christian G	
AHA	Nederpelt	Christian G	
oso	Silberschatz	John D	
OSO	Silherschatz	William M	

MVD: Example

Module 29

Partha Pratin Das

Objectives Outline

Multivalue Dependence Definition

Use Theory

Decomposition to 4NF

Module Summar

Let R be a relation schema with a set of attributes that are partitioned into 3 nonempty subsets.
 Y. Z. W

• We say that Y \to Z (Y multidetermines Z) if and only if for all possible relations r (R) $< y_1, z_1, w_1 > \in r$ and $< y_1, z_2, w_2 > \in r$ then

$$< y_1, z_1, w_2 > \in r \text{ and } < y_1, z_2, w_1 > \in r$$

Note that since the behavior of Z and W are identical it follows that
 Y ->> Z if Y ->> W

MVD: Example (2)

Module 29

Partha Pratim Das

Objectives Outline

Multivalue Dependence Definition Example Use

Decomposition t 4NF

Module Summar

In our example:

ID → child_name

 $ID \rightarrow phone_number$

- The above formal definition is supposed to formalize the notion that given a particular value of Y(ID) it has associated with it a set of values of Z (child_name) and a set of values of W (phone_number), and these two sets are in some sense independent of each other
- Note:
 - \circ If $Y \to Z$ then $Y \twoheadrightarrow Z$
 - Indeed we have (in above notation) $Z_1 = Z_2$ The claim follows.

MVD: Use

Module 29

Partha Pratin Das

Objectives Outline

Multivalued
Dependenc
Definition
Example
Use
Theory

Decomposition t 4NF

Module Summar

• We use multivalued dependencies in two ways:

- a) To test relations to **determine** whether they are legal under a given set of functional and multivalued dependencies
- b) To specify constraints on the set of legal relations. We shall thus concern ourselves only with relations that satisfy a given set of functional and multivalued dependencies.
- If a relation r fails to satisfy a given multivalued dependency, we can construct a relations r' that does satisfy the multivalued dependency by adding tuples to r.

Partha Pratio

Objectives Outline

Decomposition t 4NF

Module Summar

	Name	Rule
C-	Complementation	If $X \twoheadrightarrow Y$, then $X \twoheadrightarrow (R - (X \cup Y))$.
A-	Augmentation	If $X woheadrightarrow Y$ and $W \supseteq Z$, then $WX woheadrightarrow YZ$.
T-	Transitivity	If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow (Z - Y)$.
	Replication	If $X \to Y$, then $X \twoheadrightarrow Y$ but the reverse is not true.
	Coalescence	If $X \rightarrow Y$ and there is a W such that
		$W\cap Y$ is empty, $W o Z$ and $Y\supseteq Z$, then $X o Z$.

- A MVD X -- Y in R is called a trivial MVD is
 - \circ **Y** is a subset of **X** (**X** \supseteq **Y**) or
 - \circ **X** \cup **Y** = **R**. Otherwise, it is a non trivial MVD and we have to repeat values redundantly in the tuples.

MVD: Theory (2)

Module 29

Partha Pratii Das

Objectives Outline

Multivalue Dependence Definition Example Use

Decomposition t 4NF

Module Summar

• From the definition of multivalued dependency, we can derive the following rule:

- \circ If $\alpha \to \beta$, then $\alpha \twoheadrightarrow \beta$
- That is, every functional dependency is also a multivalued dependency
- The closure D^+ of D is the set of all functional and multivalued dependencies logically implied by D.
 - \circ We can compute D^+ from D, using the formal definitions of functional dependencies and multivalued dependencies.
 - We can manage with such reasoning for very simple multivalued dependencies, which seem to be most common in practice
 - For complex dependencies, it is better to reason about sets of dependencies using a system of inference rules

Partha Pratii Das

Objectives Outline

Multivalue Dependenc

Example

Use

Decomposition to 4NF

Module Summary

Decomposition to 4NF

Database Management Systems Partha Pratim Das 29.15

Fourth Normal Form

Module 29

Partha Pratir Das

Objectives Outline

Multivalued Dependenc Definition Example Use

Decomposition to

Module Summar

• A relation schema R is in **4NF** with respect to a set D of functional and multivalued dependencies if for all multivalued dependencies in D^+ of the form $\alpha \twoheadrightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following hold:

- $\circ \ \alpha \twoheadrightarrow \beta$ is trivial (that is, $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$)
- $\circ \ \alpha$ is a superkey for schema R
- If a relation is in 4NF it is in BCNF

Restriction of Multivalued Dependencies

Module 29

Partha Pratir Das

Objectives Outline

Dependency
Definition
Example

Example Use Theory

Decomposition to 4NF

Module Summar

- The restriction of D to R_i is the set D_i consisting of
 - \circ All functional dependencies in D^+ that include only attributes of R_i
 - All multivalued dependencies of the form

$$\alpha \twoheadrightarrow (\beta \cap R_i)$$

where $\alpha \subseteq R_i$ and $\alpha \twoheadrightarrow \beta$ is in D^+

4NF Decomposition Algorithm

Module 29

Partha Pratin Das

Objectives Outline

Multivalued
Dependence
Definition
Example
Use
Theory

Decomposition to 4NF

Module Summary

- a) For all dependencies A \rightarrow B in D^+ , check if A is a superkey
 - By using attribute closure
- b) If not, then
 - Choose a dependency in F+ that breaks the 4NF rules, say A → B
 - Create R1 = A B
 - Create R2 = (R (B A))
 - Note that: R1 \cap R2 = A and A \twoheadrightarrow AB (= R1), so this is lossless decomposition
- c) Repeat for R1, and R2
 - ullet By defining $D1^+$ to be all dependencies in F that contain only attributes in R1
 - Similarly D2⁺

4NF Decomposition Algorithm

Module 29

Partha Pratir Das

Objectives & Outline

Multivalued Dependency Definition Example Use

Decomposition to 4NF

Module Summan

```
 \begin{split} \textit{result} &:= \{ \mathsf{R} \}; \\ \textit{done} &:= \mathsf{false}; \\ \textit{compute } D^+; \\ \mathsf{Let } D_i \; \mathsf{denote } \mathsf{the } \mathsf{restriction } \mathsf{of } D^+ \; \mathsf{to } R_i \\ \mathsf{while } ( \; \mathsf{not } \; \mathsf{done} ) \\ & \mathsf{if } \; (\mathsf{there } \mathsf{is } \mathsf{a } \mathsf{schema } R_i \; \mathsf{in } \; \mathsf{result } \mathsf{that } \mathsf{is } \mathsf{not } \mathsf{in } \mathsf{4NF} ) \; \mathsf{then } \\ & \mathsf{begin} \\ & \mathsf{let } \alpha \twoheadrightarrow \beta \; \mathsf{be } \mathsf{a } \; \mathsf{nontrivial } \; \mathsf{multivalued } \; \mathsf{dependency } \; \mathsf{that } \; \mathsf{holds} \\ & \mathsf{on } \; R_i \; \mathsf{such } \; \mathsf{that } \; \alpha \rightarrow R_i \; \mathsf{is } \; \mathsf{not } \mathsf{in } \; D_i, \; \mathsf{and } \; \alpha \cap \beta = \phi \; ; \\ & \mathsf{result} := (\mathsf{result} - R_i) \cup (R_i - \beta) \cup (\alpha, \beta); \\ & \mathsf{end} \\ & \mathsf{else } \; \mathsf{done} := \mathsf{true}; \end{split}
```

Note: each R_i is in 4NF, and decomposition is lossless-join

Person_Modify(Man(M), Phones(P), Dog_Likes(D),

Module 29

Decomposition to 4NF

o FDs:

• Example:

Address(A))

▷ FD2 : Man → Dogs_Like

 \triangleright FD3 : Man \rightarrow Address

 \circ Kev = MPD

All dependencies violate 4NF

Man(M)	Phones(P)	Dogs_Likes(D)	Address(A)
M1	P1	D1	49-ABC,Bhiwani(HR.)
M1	P2	D2	49-ABC,Bhiwani(HR.)
M2	P3	D2	36-XYZ,Rohtak(HR.)
M1	P1	D2	49-ABC,Bhiwani(HR.)
M1	P2	D1	49-ABC Bhiwani(HR.)

Post Normalization

In the above relations for both the MVD's -'X' is Man, which is again not the super key. but as $X \cup Y = R$ i.e. (Man & Phones) together make the relation

So, the above MVD's are trivial and in FD 3, Address is functionally dependent on Man. where Man is the key in Person_Address, hence all the three relations are in 4NF

Database Management Systems

Partha Pratim Das

Example of 4NF Decomposition

Module 29

Partha Pratir Das

Objectives Outline

Multivalued
Dependenc
Definition
Example
Use
Theory

Decomposition to 4NF

Module Summars

```
• R =(A, B, C, G, H, I)
F = A -> B
B -> HI
CG -> H
```

- R is not in 4NF since $A \rightarrow B$ and A is not a superkey for R
- Decomposition
 - a) $R_1 = (A, B)$ $(R_1 \text{ is in 4NF})$
 - b) $R_2 = (A, C, G, H, I)$ (R_2 is not in 4NF, decompose into R_3 and R_4)
 - c) $R_3 = (C, G, H)$ (R_3 is in 4NF)
 - d) $R_4 = (A, C, G, I)$ (R_4 is not in 4NF, decompose into R_5 and R_6)
 - \circ A \twoheadrightarrow B and B \twoheadrightarrow HI \rightarrow A \twoheadrightarrow HI, (MVD transitivity), and
 - \circ and hence A \rightarrow I (MVD restriction to R_4)
 - e) $R_5 = (A, I)$ (R_5 is in 4NF)
 - f) $R_6 = (A, C, G)$ ($R_6 \text{ is in 4NF}$)

Module Summary

Module 29

Partha Pratin Das

Objectives Outline

Multivalued
Dependency
Definition
Example
Use
Theory

Decomposition t 4NF

Module Summary

 Understood multi-valued dependencies to handle attributes that can have multiple values

Learnt Fourth Normal Form and decomposition to 4NF

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors.

29.22

Edited and new slides are marked with "PPD".