Операционное исчисление

Темплин Константин

Апрель 2020

1 Введение

Суть операционного исчисления состоит в том, чтобы функции f(t) действительного переменного t поставить в соответствие функцию F(p) комплексной переменной p.

При некоторых условиях такое отображение будет биекцией.

Оказывается, что операциям дифференцирования и интегрирования функций f(t) соответствуют операции умножения и деления функций F(p) на переменную p.

Таким образом становится возможным свести более трудную задачу (например решение системы ОДУ) к более простой алгебраической задаче.

2 Оригинал и изображение

Определение. *Оригиналом* назовём такую функцию f(t), которая соответствует следующим условиям:

- 1. Определена на \mathbb{R} и $f(t) \equiv 0$ при t < 0
- 2. Кусочно-непрерывна на любом конечном интервале
- 3. $\exists M>0, s_0\geq 0$, такие что $\forall t>0 \ |f(t)|\leq M\cdot e^{s_0t}$. Говорят, что функция имеет ограниченный рост.

Определение. *Изображением* оригинала f(t) назовём функцию:

$$F(p) = \int_{0}^{+\infty} f(t)e^{-pt}dt$$

В правой части этого равенства стоит так называемый **Интеграл Лапласа**. Данное преобразование называются **преобразованием Лапласа**. Его обозначают:

$$f(t) \doteqdot F(p)$$

Такое отображение также называют L-отображением.

Теорема. Теорема существования Для всякого оригинала f(t) существует изображение F(p), определенное в полуплоскости $s=\Re(p)>s_0$, где s_0 – показатель роста оригинала. В этой полуплоскости функция F(p) является аналитической, имеет производную любого порядка в кажедой точке полуплоскости и кроме того, если $\Re(p)=s\to +\infty \implies F(p)\to 0$

Доказательство

По предположению f(t) - оригинал, а значит $|f(t)| \leq Me^{s_0t}$. Оценим интеграл Лапласа:

$$\left| \int_{0}^{+\infty} f(t)e^{-pt} \right| \le \int_{0}^{+\infty} |f(t)||e^{-pt}| \le \int_{0}^{+\infty} Me^{s_0t}e^{-st} = \frac{M}{s - s_0}$$

Видно, что при $s-s_0>0$ интеграл ограничен по модулю. Следовательно, он сходится абсолютно. Это означает, что изображение оригинала существует при $s>s_0$. И более того $F(p)\leq \frac{M}{s-s_0}$. Отсюда видно, что $F(p)\to 0$ при $s=\Re(p)\to +\infty$

Теорема. Теорема единственности Если F(p) является изображением двух оригиналов $f_1(t)$ и $f_2(t)$, то эти оригиналы совпадают во всех точках, в которых они непрерывны.

3 Свойства оригиналов и изображений