TU Berlin Robotics WiSe 18/19 Lab Assignment #2

Figure 1: RRR Puma in zero configuration

Joint:	oint: 1 2		3 4		5	6
$ au_{max}$:	97,6 Nm	156,4 Nm	89,4 Nm	24,2 Nm	20,1 Nm	21,2 Nm

Table 1: torque limits of the PUMA robot

	$\mathbf{A1}$	${\bf A2}$	$\mathbf{A3}$	(A4)	(B1)	$\mathbf{B2}$	C1	C2	C3	C4	C5
Jiaqiao Peng											
Benjamin Oesterle	X	X	X	X	X	X	X	X	X	X	
Botond Péter Sléber	X	X	X	X	X	X					
Dhananjay Mukhedkar	X	X	X		X					X	

Table 2: implementation table

Forward Kinematics ${\bf A}$

Transformation Between Frames

Implemented in: ForwardKinematicsPuma2D::computeTX_Y()

DH-parameters from assignment 1

Homogenous transformations between adjacent links:

$${}_{1}^{0}T = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} s_{2} & c_{2} & 0 & L_{1} \\ -c_{2} & s_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} c_{3} & -s_{3} & 0 & L_{2} \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{E}^{3}T = \begin{bmatrix} 1 & 0 & 0 & L_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward kinematics for the end effector:

$${}_{E}^{0}T = {}_{1}^{0}T \cdot {}_{2}^{1}T \cdot {}_{3}^{2}T \cdot {}_{E}^{3}T = \begin{bmatrix} s_{123} & c_{123} & 0 & c_{1}L_{1} + s_{12}L_{2} + s_{123}L_{3} \\ -c_{123} & s_{123} & 0 & s_{1}L_{1} - c_{12}L_{2} - c_{123}L_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

End Effector Position In Operational Space

Implemented in: ForwardKinematicsPuma2D::computeF()

$$F(q) = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} = \begin{pmatrix} c_1 L_1 + s_{12} L_2 + s_{123} L_3 \\ s_1 L_1 - c_{12} L_2 - c_{123} L_3 \\ q_1 + q_2 + q_3 - \frac{\pi}{2} \end{pmatrix}$$

Compute The End Effector Jacobian

Implemented in: ForwardKinematicsPuma2D::computeJ()

2

$$J(q) = \frac{\partial F(q)}{\partial q} = \begin{bmatrix} -s_1 L_1 + c_{12} L_2 + c_{123} L_3 & c_{12} L_2 + c_{123} L_3 & c_{123} L_3 \\ c_1 L_1 + s_{12} L_2 + s_{123} L_3 & s_{12} L_2 + s_{123} L_3 & s_{123} L_3 \\ 1 & 1 & 1 \end{bmatrix}$$

A4 Understanding The Jacobian Matrix And Pose Singularities

i)
$$q_1 = (0,0,0)^T$$

The robot is **not** in a **singularity**, it can move in x- and y-direction.

ii)
$$q_2 = (\frac{\pi}{2}, -\frac{\pi}{2}, 0)^T$$

The robot is in a singularity, it cannot move in y-direction (all velocities are parallel).

iii)
$$q_3 = (0, \frac{\pi}{2}, 0.01)^T$$

The robot is **close to a singularity**, it barely can move in x-direction anymore (all velocities point in nearly the same direction, there are still small differences though - invisible in the sketch).

B Trajectory Generation In Joint Space

B1 Generation Of Smooth Trajectories With Polynomial Splines

a)

Zero configuration: $q_a = \begin{pmatrix} 0, & 0, & 0 \end{pmatrix}^T$

Intermediate point: $q_b = \begin{pmatrix} -\frac{\pi}{4}, & \frac{\pi}{2}, & 0 \end{pmatrix}^T$

Final configuration: $q_c = \begin{pmatrix} -\frac{\pi}{2}, & \frac{\pi}{4}, & 0 \end{pmatrix}^T$

Two splines:

$$u_1(t) = a_0 + a_1 t_{via} + a_2 t_{via}^2 + a_3 t_{via}^3$$

$$u_2(t) = b_0 + b_1 (t - t_{via}) + b_2 (t - t_{via})^2 + b_3 (t - t_{via})^3$$

Contraints:

$$q(0) = q_0$$

$$q(t_f) = q_f$$

$$\dot{q}(0) = 0$$

$$\dot{q}(t_f) = 0$$

Velocities at the intermediate point:

$$\dot{q}_b(t_f) = \begin{pmatrix} -\frac{\pi}{10}, & 0, & 0 \end{pmatrix}^T \begin{bmatrix} \frac{rad}{s^2} \end{bmatrix}$$

Equations for computing the for the scalar values:

$$a_0 = q_0$$

$$a_1 = \dot{q_0}$$

$$a_2 = \frac{3}{t_{via}^2} (u_{via} - u_0) - \frac{2}{t_{via}} \dot{u}_0 - \frac{1}{t_{via}} \dot{u}_{via}$$

$$a_3 = -\frac{2}{t_{via}^3}(u_{via} - u_0) + \frac{1}{t_{via}^2}(\dot{u}_0 + \dot{u}_{via})$$

$$b_0 = q_{via}$$

$$b_1 = \dot{q}_{via}$$

$$b_2 = \frac{3}{(t_f - t_{via})^2} (u_f - u_{via}) - \frac{2}{t_f - t_{via}} \dot{u}_{via} - \frac{1}{t_f - t_{via}} \dot{u}_f$$

$$b_3 = -\frac{2}{(t_f - t_{via})^3} (u_f - u_{via}) + \frac{1}{(t_f - t_{via})^2} (\dot{u}_{via} + \dot{u}_f)$$

Results:

$a_{10} = 0$	$a_{20} = -\frac{\pi}{4} \approx -0.79$	$b_{10} = 0$	$b_{20} = \frac{\pi}{2} \approx 1.57$
$a_{11} = 0$	$a_{21} = -\frac{\pi}{10} \approx -0.31$	$b_{11} = 0$	$b_{21} = 0$
$a_{12} = -\frac{10\pi}{125} \approx -0.25$	$a_{22} = -\frac{5\pi}{125} \approx -0.13$	$b_{12} = \frac{30\pi}{125} \approx 0.75$	$b_{22} = -\frac{15\pi}{125} \approx -0.38$
$a_{13} = \frac{2\pi}{125} \approx 0.05$	$a_{23} = \frac{2\pi}{125} \approx 0.05$	$b_{13} = -\frac{8\pi}{125} \approx -0.20$	$b_{23} = \frac{4\pi}{125} \approx 0.10$

b)

Figure 2: joint configuration q over time

C Operational Space Control

C3

kp[0]	kp[1]	kp[2]	kv[0]	kv[1]	kv[2]
2500	1500	400	20	100	40

Table 3: our positional and velocity gains after tuning

Figure 3: position error $e = x - x_d$ over time

Figure 4: torque τ over time

Figure 5: angle θ over time

Figure 6: position x and desired position x_d over time

Figure 7: position x in the 2D plane

Figure 8: desired position x_d in the 2D plane

Figure 9: angle β and angular velocity $\dot{\beta}$ over time