Teoretične osnove računalništva _{Zapiski predavanj 2010/2011}

23. februar 2011

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

Kazalo

1	Tur	ringov Stroj	2
	1.1	Zgodovina	2
	1.2	Definicija Turingovega stroja	3
		1.2.1 Trenutni opis	3
		1.2.2 Relacija	
		1.2.3 Tranzitivna ovojnica \vdash^* relacije $\vdash \dots $	
	1.3	Jezik Turingovega stroja	3
		1.3.1 Ugotavljanje pripadnosti besed Turingovemu jeziku	4

Poglavje 1

Turingov Stroj

1.1 Zgodovina

Eden izmed Hilbertovih problemov (deseti po vrsti), je vprašanje, ali obstaja postopek, ki pove, če je neka poljubna diofantska enačba rešljiva - torej ali lahko ugotovimo, če ima polinom $P(x_1, x_2, ..., x_n) = 0$ celoštevilsko rešitev.

Matematiki so se precej ukvarjali s tem problemom in kmalu ugotovili, da pojem postopka oz. algoritma ni bil dovolj dobro definiran.

Osnovna intuitivna definicija se glasi nekako tako:

Def.: Algoritem je zaporedje ukazov, s katerimi se v končnem številu korakov opravi neka naloga.

Ostaja pa še kar nekaj odprtih vprašanj, npr.:

- Kakšni naj bodo ukazi?
 - Osnovni algoritem ima veliko korakov
 - Kompleksni algoritem nalogo reši v enem koraku
- Koliko ukazov naj bo?
 - Končno ali je s tako množico res mogoče rešiti vsako nalogo?
 - Neskončno kakšen izvajalec je sposoben uporabljati neskončno ukazov?
- So ukazi zvezni ali diskretni?
- V kakšnem pomnilniku so ukazi shranjeni?
 - Končnem
 - Neskončnem

Nekateri zgodnji poskusi formalizacije pojma algoritma:

- GK (Kurt Gödel, Stephen Kleene)
- HG (Jacques Herbrand, Kurt Gödel)
- (Andrey Markov),
- Produkcijski sistem (Emil Post),
- Lambda račun (Alonso Church, 1936)
- Turingov stroj (Alan Turing, 1936)

1.2 Definicija Turingovega stroja

Def.: Turingov stroj je sedmerka $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ kjer je:

- Q končna množica stanj
- $-\Sigma$ končna množica vhodnih simbolov, $Q \cap \Sigma = \emptyset$
- Γ končna množica tračnih simbolov, $\Sigma \subset \Gamma$
- δ funkcija prehodov: $Q \times \Gamma \to Q \times \Gamma \times \{L, D\}$, kjer L in D označujeta premik levo ali desno
- $-q_0$ začetno stanje, $q_0 \in Q$
- -B prazen simbol, $B \in \Gamma$
- Fmnožica končnih stanj, $F\subseteq Q$

1.2.1 Trenutni opis

Def.: $TO = \Gamma^* \times Q \times \Gamma^*$ je množica vseh trenutnih opisov.

Nek trenutni opis (α_1, q, α_2) , ali krajše $\alpha_1 \ q \ \alpha_2$ opisuje konfiguracijo Turingovega stroja.

Iz α_1 in α_2 , lahko razberemo:

- -če je $\alpha_1=\varepsilon,$ je okno skrajno levo
- če je $\alpha_2 = \varepsilon$, je okno nad B in so naprej sami B-ji

1.2.2 Relacija ⊢

Def.: Če sta u, v trenutna opisa, ter v neposredno sledi iz u v enem koraku Turingovega stroja, tedaj pišemo $u \vdash v$.

Naj bo $x_1 \dots x_{i-1} \ q \ x_i \dots x_n$ trenutni opis:

- če je $\delta(q, x_i) = (p, Y, D)$:
- $x_1 \ldots x_{i-1} \ q \ x_i \ldots x_n \vdash x_1 \ldots x_{i-1} \ Y \ p \ x_{i+1} \ldots x_n$
- če je $\delta(q, x_i) = (p, Y, L)$:
 - * če je okno na robu (i = 1), se Turingov stroj ustavi, ker je trak na levi omejen.
 - * če okno ni na robu (i > 1), potem: $x_1 \dots x_{i-1} \ q \ x_i \dots x_n \vdash x_1 \dots \ p \ x_{i-1} \ Y \ x_{i+1} \dots x_n$

1.2.3 Tranzitivna ovojnica \vdash^* relacije \vdash

Def.: $u \vdash^* v$, če obstaja tako zaporedje $x_i, (i \in [0,1,\ldots,k], k \geq 0)$, da velja $u = x_0, v = x_k$ in $x_0 \vdash x_1 \land x_1 \vdash x_2 \land \cdots \land x_{k-1} \vdash x_k$

Torej, trenutni opis v sledi iz u, v k korakih Turingovega stroja.

1.3 Jezik Turingovega stroja

Def.: Jezik Turingovega stroja je definiran kot:

$$L(M) = \{ w \mid w \in \Sigma^* \land q_0 w \vdash^* w_1 \ q \ w_2 \land w_1, w_2 \in \Gamma^* \land q \in F \}$$

Z besedami to pomeni, da je L(M) množica besed $w \in \Sigma^*$, ki če jih damo na vhod stroju M, povzročijo, da se stroj M v končno mnogo korakih znajde v končnem stanju.

Def.: Jezik L je Turingov jezik, če obstaja Turingov stroj M, tak, da je L = L(M).

1.3.1 Ugotavljanje pripadnosti besed Turingovemu jeziku

Pri vprašanju ali je neka beseda v jeziku, Turingove jezike ločimo na:

- Odločljive obstaja algoritem, s katerim se lahko za poljubno besedo odločimo, ali pripada jeziku.
- Neodločljive v splošnem ni algoritma, ki bi za poljubno vhodno besedo z DA ali NE odgovoril na vprašanje pripadnosti.
 - če je odgovor DA, to ugotovimo v nekem končnem številu korakov.
 - če je odgovor NE, pa ni nujno, da se bo stroj kdaj ustavil.