Schleifen (1)

- Bisher hatten Programme bei jeder Ausführung die selben Schritte. Es war nicht möglich, Abläufe zu wiederholen oder unterschiedliche Abläufe z.B. abhängig von den Eingabedaten auszuführen. Beispiele:
 - Summieren der Zahlen 1 bis n, wobei n eine vorher eingegebene Zahl ist
 - Abfrage, ob eine Eingabe ungleich 0 ist (unbedingt erforderlich, falls durch den Eingabewert geteilt werden soll)
- In Programmiersprachen gibt es deshalb **Schleifen** und **bedingte Anweisungen**. Mit ihnen kann man Anweisungen flexibel wiederholen bzw. Verzweigungen im Programmablauf abhängig von Variablenwerten implementieren.
- Wir führen Schleifen und bedingte Anweisungen zuerst in Pseudocode und als Ablaufdiagramme ein. Diese lassen sich auf alle Programmiersprachen übertragen.
- Erst danach programmieren wir Schleifen und bedingte Anweisungen in Python.

Schleifen (2)

In Pseudocode:

Eingabe: Ganze Zahl n mit n > 0

Ausgabe: Ganze Zahl: Summe der Zahlen von 1 bis n

Berechnung:

- Setze summe = 0
- Setze i = 1
- Solange i ≤ n: summe = summe + i i = i + 1
- Die Ausgabe ist summe

Wertetabelle für n = 7:

summe	i
0	1
0+1=1	2
1+2=3	3
3+3=6	4
6+4=10	5
10+5=15	6
15+6=21	7
21+7=28	8

Schleifen (3)

- Die Bedingung heißt **Schleifenbedingung**.
- Die Schleifenbedingung muss irgendwann falsch werden, sonst bricht die Schleife nie ab!
- Die Anweisungen in der Schleife bilden den Schleifenkörper. ------
- Der Schleifenkörper kann beliebige und beliebig viele Anweisungen enthalten. Insbesondere können innerhalb einer Schleife wieder Schleifen stehen.

Aufgaben

4

Erstellen Sie Ablaufdiagramme für folgende Programme. Die Bedingungen "n > 0" und "n ist ungerade" müssen nicht überprüft werden. Prüfen Sie jedes Ablaufdiagramm durch eine Wertetabelle für ein passend gewähltes n.

- Eingabe: Ganze Zahl n mit n > 0
 Ausgabe: Ganze Zahl : Fakultät n! = 1 · 2 · 3 · ... · n
- 2. <u>Eingabe</u>: Ganze Zahl n mit n > 0 und n ist ungerade

 <u>Ausgabe</u>: Ganze Zahl : Summe 1 1/3 + 1/5 1/7 + ... +- 1/n zur Näherung von π/4
- 3. <u>Eingabe</u>: Ganze Zahl n mit n > 0 <u>Ausgabe</u>: Ganze Zahl : Fibonaccizahl fib(n) mit fib(0) = 0, fib(1) = 1, fib(k) = fib(k-1) + fib(k-2)
- 4. <u>Eingabe</u>: Ganze Zahl n mit n > 0 <u>Ausgabe</u>: Ganze Zahl : n-tes Glied der Zahlenfolge 1, 2, 4, 7, 11, 16, 22, ...

Schleifen (5)

- Die Schleifen im Beispiel und den Aufgaben waren Zählschleifen.
- Eine Zählvariable (im Beispiel: i) wurde von einem Startwert (im Beispiel: 1) bis zu einem Endwert (im Beispiel: n + 1) jeweils um 1 hochgezählt.
- Allgemein:

Hochzählend: Herunterzählend:

i = Startwert i = Startwert

solange i \leq Endwert: solange i \geq Endwert:

Berechnungen Berechnungen

i = i + Schrittweite i = i - Schrittweite

- Bei Schrittweite 1: Wie oft wird die Schleife durchlaufen? Welchen Wert hat i nach der Schleife?
- Zählschleifen heißen auch for-Schleifen. Man schreibt sie auch folgendermaßen:

for i = Startwert to Endwert with +/-Schrittweite do Berechnungen

Schleifen (6)

■ Die bisherigen Schleifen waren **kopfgesteuert** (**while-Schleife**). Befindet sich die Bedingung nach dem Schleifenkörper, heißt die Schleife **fußgesteuert** (**do-while-Schleife**).

Angenommen die Schleifenbedingung ist bereits zu Anfang falsch, was ist der Unterschied zwischen kopfgesteuerter und fußgesteuerter Schleife?

Schleifen (7)

Aufgaben

- 5. Formen Sie das Ablaufdiagramm zur Berechnung der Summe der Zahlen von 1 bis n um
 - a) in eine herunterzählende Schleife mit Schrittweise gleich -1
 - b) in eine fußgesteuerte Schleife

Erstellen Sie dazu jeweils eine Wertetabelle für n = 7.

6. Erstellen Sie ein Ablaufdiagramm für folgendes Programm.

Eingabe: Zeichenkette s

Ausgabe: Zeichenreihe: Bestehend aus jedem dritten Zeichen in s

Schleifen (8)

Neben (herauf- oder herunterzählenden) Zählschleifen gibt es allgemeine Schleifen ohne Zählvariable. Beispiel:

Auch hier ist darauf zu achten, dass sich die Schleifenbedingung ändert und irgendwann falsch wird.

Wertetabelle für s = "Super-Python!":

S	t
"Super-Python!"	""
"er-Python!"	"p"
"Python!"	"p-"
"hon!"	"p-t"
"!"	"p-tn"