프로젝트 기술서

2017.3 - 2017.3

프로젝트명	자동주차시스템		
소개	자동차의 주차보조시스템을 모티브로 한 초음파거리센서로 주차 공간을 확인 후		
	스텝모터로 핸들을 돌려 후진하여 주차하는 시스템		
참여 인원	1인		
본인이	아두이노 우노로 센서 제어,		
맡은 부분	안드로이드와 아두이노 블루투스 통신,		
	라즈베리파이와 아두이노 시리얼 통신		
개발 목적	주차에 미숙한 운전자를 위한 주차 시스템		
사용	Raspberry pi, Arduino, Arduino IDE, Android, C		
tool 및 언어			
시연 영상			
및 사진	자동 주차 시연 영상 : https://youtu.be/ffaUuokmC0s		
	주차 시 데이터 흐름 시연 영상 : https://youtu.be/rNSxs4kMd94		
하드웨어 구성	아드이트 오트에 브르트스 통시 ㅁ드 사요.		
아르케어 구경	아두이노 우노에 블루투스 통신 모듈 사용		
	안드로이드로 블루투스 App 사용 라즈베리파이에 초음파 거리 센서2개, 스텝모터, LED 사용		
주요기능	1. 안드로이드로 아두이노와 블루투스 통신을 활용해		
고 진행 순서	지. 전드로이드로 아무이도와 글무구스 중진글 필등에 자동주차 시스템의 시동을 킨다.		
후 현8 문제	2. 아두이노에서 안드로이드로부터 블루투스로 받은		
	Data를 시리얼통신으로 라즈베리파이에 송신(백색 LED 점등)		
	3. 전진을 하며 초음파거리센서 2개로부터 주차공간을 찾는다.(녹색 LED 점등)		
	4. 주차공간을 찾았을 경우 자동차의 크기만큼 전진을 한다.(녹색 LED 깜빡임)		
	4. 구자당신을 갖ᆻ을 경구 자당자의 크기진음 전인을 한다.(즉즉 LED 검족임) 5. 주차하기 위해 핸들을 돌린다(노랑색 LED 점등 및 스텝모터 구동)		
	5. 구자아기 위에 웬들을 들린다(도당적 LED 점등 및 스립모터 구등) 6. 핸들을 전부 돌린 후 후진을 한다(빨간색 LED 점등)		
	· · · · · · · · · · · · · · · · · · ·		
	7. 인터럽트 핀이 다른 물체에 닿을 경우 시동을 끈다(백색 LED 소등)		

2017.6 - 2017.6

프로젝트명	자동차용 개인 비서		
소개	운전 중 안전을 위해 음성인식으로 목적지를 검색,		
	검색하였던 목적지를 조	호회 및 삭제 가능	
참여 인원	3인		
본인이	프로젝트 아이디어 제공	^당 (팀장)	
맡은 부분	서버, DB 구축 및 Andro	oid 코딩(STT, Google Map API 활용 및 Recycler view)	
	Raspberry Pi와 Android	통신, GitHub로 프로젝트 버전 관리	
개발 목적	안전운전을 위해 최소한의 터치로 목적지를 검색		
	최근 목적지 조회 및 삭제		
개발 도구	개발 하드웨어	Raspberry Pi, Android	
	개발 SW 및 언어	Android Studio, Apache, Php, Mysql, Github, JAVA	
	개발 환경	Windows, Linux	
시연 영상			

시연 영상 및 사진

기본 화면 :

목적지 검색 화면 :

2017.7 - 2017.7

프로젝트명	Car In Us(안전 운전 보조 시스템)		
소개	`	으로 어느니? 운전과 주행 중 편의성을 위해 비가 오거나 시야에 불안정한	
	상황에서도 옆 차와의 거리를 알 수 있도록 카메라와 거리센서를 장착하여		
		고 경고를 한다.	
		파 방향지시 등을 키고 차선 변경을 하도록 유도	
		에 강당하게 강을 기고 제는 단당을 하고 F H고 나와의 거리를 기록하여 안전운전을 하였다는 증거(블랙박스)를	
		제출하여 할인을 받을 수 있도록 한다.	
참여 인원	4인	THE STATE CE CE I MIL I CA.	
본인이	프로젝트 아이디어 제공(팀장),		
· 맡은 부분	=모		
	Raspberry Pi와 Arduino 통신, GitHub로 프로젝트 버전 관리		
개발 목적	안전운전을 위해 카메	라와 거리센서로 위험을 경고	
	안전운전 하였다는 증	거를 제출하여 보험 할인을 받을 수 있도록 함	
개발 도구	개발 하드웨어	Raspberry Pi, Android, Arduino Uno	
	개발 SW 및 언어	Mysql, Node.JS, Python, Visual Studio Code, Android Studio,	
		Github, Java, Java Script	
	개발 환경	Windows, Linux	
시연 영상			
및 사진	전체 구성도 :		
	초음파 Arduino	도 F 》 앞쪽 초음파	
	D -	R	
	L 3. 초음파 Raspberry Pi 오른쪽		
	외쪼		
	왼쪽 초음파	○ 本음파	
	4.왼쪽사각지대	5.오른쪽사각지대	
	4.왼쪽사각지대 화면 (Streaming) Raspberry Pi 시그널레버 &	5.오른쪽사각지대 화면 (Streaming)	
	4.왼쪽사각지대 화면 (Streaming) Raspberry Pi 시그널레버 & 핸들(<u>자이로</u>) Arduino	5.오른쪽사각지대 화면 (Streaming) Raspberry Pi Response Request 시리얼통신	
	4.왼쪽사각지대 화면 (Streaming) Raspberry Pi 시그널레버 &	5.오른쪽사각지대 화면 (Streaming) Raspberry Pi Response Request 시리얼통신 측정값	
	4.왼쪽사각지대 화면 (Streaming) Raspberry Pi 시그널레버 & 핸들(<u>자이로</u>) Arduino	5.오른쪽사각지대 화면 (Streaming) Raspberry Pi Response Request 시리얼통신	
	4. 왼쪽사각지대 화면 (Streaming) Raspberry Pi 시그널레버 & 핸들(자이로) Arduino	5.오른쪽사각지대 화면 (Streaming) Raspberry Pi Response Request 시리얼통신 축정값	
	4.왼쪽사각지대 화면 (Streaming) Raspberry Pi 시그널레버 & 핸들(자이로) Arduino	5.오른쪽사각지대 화면 (Streaming) Raspberry Pi Response Request 시리얼통신 측정값 Data 아ㅎ하 USB	
	4. 왼쪽사각지대 화면 (Streaming) Raspberry Pi 시그널레버 & 핸들(자이로) Arduino	5.오른쪽사각지대 화면 (Streaming) Raspberry Pi Response Request 시리얼통신 축정값	
	4. 왼쪽사각지대 화면 (Streaming) Raspberry Pi 시그널레버 & 핸들(자이로) Arduino	5.오른쪽사각지대 화면 (Streaming) Raspberry Pi Response Request 시리얼통신 축정값	
	4. 왼쪽사각지대 화면 (Streaming) Raspberry Pi 시그널레버 & 핸들(자이로) Arduino	5.오른쪽사각지대 화면 (Streaming) Raspberry Pi Response Request 시리얼통신 축정값	

Table 설계:

차간거리

차선변경

저장 프로시저 사용 :

Insert

데이터 통신:

	시연 영상: 스트리밍 영상: <u>https://youtu.be/mZtRV7dNnOs</u> 사이드 미러 영상: https://youtu.be/KNyswvB_xVg		
하드웨어 구성	Android로 Client 구현		
	Raspberry Pi로 Server, DB 구현 및		
	Arduino로 입출력 센서 제어		
주요기능	1. 아두이노에서 초음파거리센서 3개의 값을 각각 받아 시리얼 통신으로 라즈		
및 진행 순서	베리파이와 통신		
	2. 라즈베리 파이에서 받은 데이터를 자료구조 Queue에 쌓는다.		
	3. 3개의 센서 값이 전부 Queue에 쌓이면 Node.js(Rest api)에서 POST메서드		
	로 DB에 Insert한다.		
	4. Rest api에서 GET 메서드를 통해 DB에 있는 Data에 따라 해당 거리를		
	위험, 경고, 안전 등 3가지 케이스로 구분하여 측정 거리에 따른 이미지를		
	디스플레이에 출력한다.		
	5. 핸들과 방향지시등에서의 조작을 DB에 Insert 시켜 방향지시등의 값에 따라		
	내부 디스플레이(Android)에 카메라 영상을 스트리밍 한다.		
	6. DB를 암호화 하여 usb(UUID가 KEY)에 저장한다.		