Predicting life expectancy

Project supervised machine learning, 2nd October 2019 Filipa Lopes

Motivation

10 Predictors Target: life expectancy (~2000 entries)

Your:

- yearly income*
- CO2 emissions (tones/person)
- total spending in healthcare*
- Allowance/ government spending in your healthcare*
- food consumption (calories/day)

- sugar consumption (grams/day)
- schooling (years spent on school + university)
- alcohol consumption
- body mass index (BMI)
- fertility (number of children)

Data

- 187 countries, from 2000 till 2010
- ~2000 entries
- Sources: World Health Organization(Kaggle) and gapminder.org

What are the best predictors for life expectancy?

Correlation heatmap

life_exp

1	
0.57	
0.5	
0.52	
0.5	
0.7	
0.68	
0.72	(
0.41	
0.57	
-0.78	(
	0.57 0.5 0.52 0.5 0.7 0.68 0.72 0.41 0.57

Models

Test accuracy

- Linear Regression model: 76.64%
- KNRegression (neighbors=3): 72.04%%
- Decision Tree model: 91.33%

Evaluation of model

How much the model does not match?

Real case scenario

Conclusion (http://filipamiralopes.pythonanywhere.com)