

Az Rⁿ vektortér

Összeállította: dr. Leitold Adrien egyetemi docens

 R^n vektortér/1

Rendezett szám n-esek

- Rendezett szám n-esek:
 - $\underline{a} = (a_1, a_2, \dots, a_n)$
 - $a_1, a_2, ..., a_n \in R$, a rendezett szám n-es komponensei
- Rⁿ: a valós számokból képezett rendezett szám nesek halmaza
- Két rendezett szám n-es egyenlő, ha a megfelelő komponenseik megegyeznek.

Műveletek rendezett n-esekkel

- Alapműveletek:
 - Két rendezett n-es összege:

Ha
$$\underline{a} = (a_1, a_2, ..., a_n)$$
 és $\underline{b} = (b_1, b_2, ..., b_n) \in R^n$, akkor $\underline{a} + \underline{b} = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$.

Egy rendezett n-es λ-szorosa:

Ha
$$\underline{a} = (a_1, a_2, ..., a_n) \in R^n$$
 és $\lambda \in R$, akkor $\lambda \cdot \underline{a} = (\lambda \cdot a_1, \lambda \cdot a_2, ..., \lambda \cdot a_n)$.

 Két rendezett n-es különbsége: (származtatott művelet)

$$\underline{a} - \underline{b} = \underline{a} + (-1) \cdot \underline{b} = (a_1 - b_1, a_2 - b_2, \dots, a_n - b_n).$$

4

Az alapműveletek tulajdonságai

- Legyenek $\underline{a}, \underline{b}$ és $\underline{c} \in R^n$ tetszőleges rendezett n-esek, valamint $\lambda, \mu \in R$ tetszőleges valós számok. Ekkor:
- 1. $(\underline{a} + \underline{b}) + \underline{c} = \underline{a} + (\underline{b} + \underline{c})$ (asszociativitás)
- 2. $\underline{a} + \underline{b} = \underline{b} + \underline{a}$ (kommutativitás)
- 3. Létezik olyan $\underline{o} \in R^n$ rendezett n-es, hogy bármely $\underline{a} \in R^n$ esetén $\underline{a} + \underline{o} = \underline{a}$. (nullelem létezése)
- 4. Bármely $\underline{a} \in R^n$ esetén létezik olyan $\underline{a}' \in R^n$, hogy $\underline{a} + \underline{a}' = \underline{o}$, ahol $\underline{a}' = (-1) \cdot \underline{a}$, az \underline{a} ellentettje. (ellentett létezése)
- 5. $(\lambda + \mu) \cdot \underline{a} = \lambda \cdot \underline{a} + \mu \cdot \underline{a}$
- **6.** $\lambda \cdot (\underline{a} + \underline{b}) = \lambda \cdot \underline{a} + \lambda \cdot \underline{b}$
- 7. $\lambda \cdot (\mu \cdot \underline{a}) = (\lambda \cdot \mu) \cdot \underline{a}$
- $8. \quad 1 \cdot a = a$

Az Rⁿ vektortér

Megjegyzés:

Mivel az (Rⁿ,+,·) algebrai struktúrában teljesül a vektorterekre jellemző előző nyolc alaptulajdonság (vektortér-axiómák), ezért Rⁿ-t n-dimenziós valós vektortérnek vagy n-dimenziós euklideszi vektortérnek nevezzük, Rⁿ elemeit n-dimenziós vektoroknak hívjuk.

Lineáris kombináció

Vektorok lineáris kombinációja

Legyenek $\underline{a}_1, \underline{a}_2, \ldots, \underline{a}_k$ n-dimenziós vektorok és $\lambda_1, \lambda_2, \ldots, \lambda_k$ skalárok.

Ekkor a $\lambda_1 \cdot \underline{a}_1 + \lambda_2 \cdot \underline{a}_2 + \dots + \lambda_k \cdot \underline{a}_k \in R^n$ vektort az $\underline{a}_1, \dots, \underline{a}_k$ vektorok $\lambda_1, \dots, \lambda_k$ skalárokkal vett lineáris kombinációjának nevezzük.

Triviális lineáris kombináció

Ha a lineáris kombinációban az összes skalár nulla, akkor triviális lineáris kombinációról beszélünk.

Triviális lineáris kombináció eredménye (bármilyen $\underline{a}_1, ..., \underline{a}_k$ vektorok esetén) mindig nullvektor.

Lineáris kombináció geometriai szemléltetése 1.

A $\underline{v} = \lambda \cdot \underline{a}$ alakú vektorok egy origón átmenő \underline{a} irányvektorú egyenesre esnek.

Lineáris kombináció geometriai szemléltetése 2.

A $\underline{v} = \lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b}$ alakú vektorok egy origón átmenő \underline{a} és \underline{b} által kifeszített síkra esnek.

Lineáris kombináció geometriai szemléltetése 3.

 $\dot{A} \underline{v} = \lambda_1 \underline{a} + \lambda_2 \underline{b}$ alakú vektorok egy origón átmenő egyenesre esnek, amelynek az irányvektora az \underline{a} vagy a b vektor.

Lineáris kombináció geometriai szemléltetése 4.

A $\underline{v} = \lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b} + \lambda_3 \cdot \underline{c}$ alakú vektorok kitöltik a teljes teret.

Lineáris kombináció geometriai szemléltetése 5.

A $\underline{v} = \lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b} + \lambda_3 \cdot \underline{c}$ alakú vektorok az origón átmenő a és b által kifeszített síkra esnek.

Lineáris függetlenség és összefüggőség

Lineárisan független vektorok:

Az $\underline{a}_1, ..., \underline{a}_k \in \mathbb{R}^n$ vektorokat lineárisan függetleneknek nevezzük, ha belőlük csak triviális lineáris kombinációval (csupa nulla együtthatóval) állítható elő a nullvektor.

Lineárisan összefüggő vektorok:

Az $\underline{a}_1, ..., \underline{a}_k \in \mathbb{R}^n$ vektorokat lineárisan összefüggőeknek hívjuk, ha belőlük nem triviális lineáris kombinációval is előállítható a nullvektor.

1 vektor esetén

lineárisan független

lineárisan összefüggő

2 vektor esetén

lineárisan független

lineárisan összefüggő

3 vektor esetén

lineárisan független

lineárisan összefüggő

4 vagy több vektor esetén

Az R³ térben 4 vagy több vektor mindig lineárisan összefüggő.

Lin. függetlenség ill. összefüggőség: állítások

- 1. Az $\underline{a}_1, ..., \underline{a}_k \in R^n$ vektorok pontosan akkor lineárisan összefüggőek, ha valamelyikük előáll a többi vektor lineáris kombinációjaként.
- 2. Az $\underline{a}_1, ..., \underline{a}_k \in R^n$ vektorok pontosan akkor lineárisan függetlenek, ha egyikük sem áll elő a többi vektor lineáris kombinációjaként.
- 3. Az $\underline{a}_1, ..., \underline{a}_k \in R^n$ vektorok pontosan akkor lin. függetlenek, ha az R^n vektortér bármely vektora *legfeljebb* csak egy féle képpen áll elő az $\underline{a}_1, ..., \underline{a}_k$ vektorok lin. kombinációjával.
- 4. Ha egy vektorhalmazban szerepel a nullvektor, akkor az lineárisan összefüggő.
- 5. Lin. független vektorhalmaz részhalmaza is lin. független.
- 6. Lin. összefüggő vektorhalmazt bővítve az összefüggőség megőrződik.
- 7. Az Rⁿ vektortérben n+1 db vektor mindig lin. összefüggő.

Vektorhalmaz rangja

• Vektorhalmaz rangja: Az $\{\underline{a}_1, ..., \underline{a}_k\} \subseteq R^n$ vektorhalmaz rangja r, ha a vektorok közül kiválasztható r darab lin. független vektor, de bármely r+1 darab vektor már lin. összefüggő.

Megjegyzések:

- A rang megmutatja, hogy az adott vektorok közül maximálisan hány darab lin. független vektort tudunk kiválasztani.
- Az R^n vektortérben bármely vektorhalmaz rangja kisebb vagy egyenlő, mint n.
- Lineárisan független vektorhalmaz rangja megegyezik a vektorhalmazban lévő vektorok számával.

Vektorhalmaz rangjára vonatkozó állítások

Legyen $H \subseteq R^n$ egy vektorhalmaz.

- 1. Ha a H vektorhalmaz rangja r és az $\underline{a}_1, \ldots, \underline{a}_r \in H$ vektorok lin. függetlenek (azaz egy maximális lin. független részrendszert alkotnak H -ban), akkor a H vektorhalmaz valamennyi vektora előáll az $\underline{a}_1, \ldots, \underline{a}_r$ vektorok lineáris kombinációjával.
- 2. Ha a H vektorhalmaz valamennyi vektora előáll r darab rögzített R^n -beli vektor lin. kombinációjával, akkor a H vektorhalmaz rangja $\leq r$.

Generátorrendszer, bázis

- Generátorrendszer: Legyen $G \subseteq R^n$ egy vektorhalmaz. G generátorrendszer az R^n vektortérben, ha G elemeiből lineáris kombinációval az R^n vektortér bármely vektora előállítható.
- Bázis: Legyen $B \subseteq R^n$ egy vektorhalmaz, amely
 - lineárisan független és
 - generátorrendszer.

Ekkor a B-t az R^n vektortér egy bázisának hívjuk.

A kanonikus (standard) bázis

Példa bázisra

kanonikus (standard) bázis:

$$\underline{e}_1 = (1, 0, \dots, 0), \ \underline{e}_2 = (0, 1, \dots, 0), \dots, \underline{e}_n = (0, 0, \dots, 1)$$

Megjegyzés

Egy $\underline{x} = (x_1, x_2, \dots, x_n) R^n$ -beli vektornak a kanonikus bázisra vonatkozó előállítása:

$$\underline{x} = x_1 \cdot \underline{e}_1 + x_2 \cdot \underline{e}_2 + \dots + x_n \cdot \underline{e}_n$$

A Steiniz-féle kicserélési tétel

A Steiniz-féle kicserélési tétel:

Legyen L egy lin. független vektorhalmaz, G pedig egy generátorrendszer az R^n vektortérben.

Ekkor az L vektorhalmaz minden \underline{v} vektorához található olyan $g \in G$ vektor, hogy a $(L \setminus \{\underline{v}\}) \cup \{g\}$ vektorhalmaz is lineárisan független.

Következmények:

1. *L*-nek legfeljebb annyi vektora lehet, mint *G*-nek:

$$|L| \leq |G|$$
.

2. Ha *L* lin. független vektorhalmaz, *B* bázis, *G* generátorrend-szer *R*ⁿ –ben, akkor

$$|L| \leq |B| \leq |G|$$
.

Bázis, dimenzió, koordináták

Bázisokra vonatkozó állítások:

- 1. Rⁿ-ben minden bázis ugyanannyi vektorból áll.
- 2. R^n -ben minden bázis n darab vektorból áll. Ezt a számot hívjuk az R^n vektortér dimenziójának.
- 3. Rⁿ-ben bármely n darab lineárisan független vektor bázist alkot.
- 4. Legyen $B = \{\underline{b}_1, \dots, \underline{b}_n\}$ bázis R^n -ben . Ekkor bármely $\underline{x} \in R^n$ vektor *egyértelműen* előállítható a bázisvektorok lineáris kombinációjával:

$$\underline{x} = \lambda_1 \underline{b}_1 + \lambda_2 \underline{b}_2 + \dots + \lambda_n \underline{b}_n$$

Ekkor a $\lambda_1, \lambda_2, \dots, \lambda_n$ számokat az \underline{x} vektor B bázisra vonatkozó koordinátáinak nevezzük.

Megjegyzés: Bármely $\underline{x} = (x_1, x_2, \dots, x_n) R^n$ -beli vektornak a kanonikus bázisra vonatkozó koordinátái maguk a vektorkomponensek.

Elemi bázistranszformáció

Elemi bázistranszformáció

Legyen $B = \{\underline{b}_1, \dots, \underline{b}_n\}$ egy bázis R^n -ben, $\underline{c} \in R^n$, $\underline{c} \neq \underline{o}$.

Ekkor a B bázis vektorai között van olyan, amely kicserélhető a \underline{c} vektorral úgy, hogy a vektorcsere után is bázist kapjunk.

Az új bázisra vonatkozó koordináták számolásának algoritmusát elemi bázistranszformációnak nevezzük.

Az új koordináták számolása

Legyen az <u>x</u> vektor B bázisra vonatkozó előállítása:

$$\underline{x} = \lambda_1 \, \underline{b}_1 + \lambda_2 \, \underline{b}_2 + \dots + \lambda_n \, \underline{b}_n$$

Legyen a <u>c</u> vektor <u>B</u> bázisra vonatkozó előállítása:

$$\underline{c} = \gamma_1 \underline{b}_1 + \gamma_2 \underline{b}_2 + \dots + \gamma_n \underline{b}_n$$

Tegyük fel, hogy $\gamma \neq 0$.

Cseréljük ki a B bázisban a \underline{b}_i vektort a \underline{c} vektorral.

Ekkor az <u>x</u> vektor új bázisra vonatkozó koordinátái:

$$egin{aligned} \hat{\lambda}_{j} &= \lambda_{j} - rac{\lambda_{i}}{\gamma_{i}} \cdot \gamma_{j} & j
eq i \ \hat{\lambda}_{i} &= rac{\lambda_{i}}{\gamma_{i}} = \delta \end{aligned}$$

Bázistranszformációs táblázat

A régi és az új koordináták táblázatos elrendezése:

	<u>c</u>	$\frac{\mathcal{X}}{}$		<u>C</u>	$\underline{\mathcal{X}}$
$\overline{\underline{b}_1}$	γ_1	$\lambda_{\rm l}$	$\overline{\underline{b}}_1$	0	$\lambda_1 - \delta \cdot \gamma_1$
\underline{b}_2	γ_2	$\lambda_{_{2}}$	\underline{b}_2	0	$\lambda_2 - \delta \cdot \gamma_2$
•	$egin{array}{c} \gamma_2 \ dots \end{array}$	•	•	•	:
	$\begin{vmatrix} \gamma_i \\ \vdots \end{vmatrix}$		<u>C</u>	1	$\lambda_1 - \delta \cdot \gamma_2$ \vdots δ \vdots
			•	•	:
\underline{b}_n	γ_n	λ_{n}	\underline{b}_n	0	$\lambda_n - \delta \cdot \gamma_n$

A _½ számot generálóelemnek hívjuk.

Alterek az Rⁿ vektortérben

- Altér: A $H \subseteq R^n$ vektorhalmazt altérnek hívjuk az R^n vektortérben, ha bármely $\underline{a}, \underline{b} \in H$ vektorok és bármely $\lambda \in R$ esetén $\underline{a} + \underline{b} \in H$ és $\lambda \cdot \underline{a} \in H$ is teljesül. H zárt a vektorműveletekre.
- Triviális alterek

A $H = \{\underline{o}\}$ és $H = R^n$ esetekben teljesül a fenti definíció, ezeket az altereket az R^n vektortér triviális (nem valódi) altereinek hívjuk.

- Megjegyzések:
 - Rⁿ minden altere tartalmazza a nullvektort.
 - Alterekre is értelmezhető (analóg módon) a bázis és a dimenzió fogalma.

4

Alterek az R³ térben

- $H = \{\underline{o}\}$: 0-dimenziós, triviális altér.
- Legyen $\underline{v} \in R^3$, $\underline{v} \neq \underline{o}$ rögzített. $H = \{\lambda \cdot \underline{v} \mid \lambda \in R \}$: origón átmenő, \underline{v} irányvektorú egyenesre eső vektorok összessége. 1-dimenziós altér.
- Legyen $\underline{a},\underline{b} \in R^3$ két lineárisan független vektor. $H = \{\lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b} \mid \lambda_1, \lambda_2 \in R \}$: origón átmenő, az \underline{a} és \underline{b} vektorok által kifeszített síkra eső vektorok összessége. 2-dimenziós altér.
- $H = R^3$: 3-dimenziós, triviális altér.

Vektorhalmazok összege

Legyen A és B két R^n -beli vektorhalmaz. Ekkor A és B összege:

$$A + B := \{\underline{a} + \underline{b} \mid \underline{a} \in A \text{ \'es } \underline{b} \in B\}$$

Megjegyzés:

A fenti definíció a vektorhalmazok összegére NEM azonos az únió művelettel!

Példa vektorhalmazok összegére I.

$$A = \{ \lambda \underline{a} \mid \lambda \in R \}$$

$$B = \{ \underline{b} \}$$

$$A + B = \{ \lambda \underline{a} + \underline{b} \mid \lambda \in R \}$$

Példa vektorhalmazok összegére II.

$$A = \{ \lambda \underline{a} \mid \lambda \in R \}$$
$$B = \{ \lambda \underline{b}' \mid \lambda \in R \}$$

A + B : a két egyenes által meghatározott síkra eső helyvektorok összessége

Alterekre vonatkozó állítások

- 1. Ha V_1 és V_2 két altér az R^n vektortérben, akkor $V_1 \cap V_2$ és $V_1 + V_2$ is altér R^n -ben.
- 2. Legyenek $\underline{a}_1, \ldots, \underline{a}_k R^n$ —beli vektorok. Ekkor a $V = \{\lambda_1 \cdot \underline{a}_1 + \lambda_2 \cdot \underline{a}_2 + \ldots + \lambda_k \cdot \underline{a}_k \mid \lambda_1, \ldots, \lambda_k \in R \}$ vektorhalmaz altér R^n —ben, mégpedig a legszűkebb olyan altér, amely tartalmazza az $\underline{a}_1, \ldots, \underline{a}_k$ vektorokat.

Megjegyzés:

Ezt a V alteret az $\underline{a}_1, ..., \underline{a}_k$ vektorok generátumának, vagy lineáris lezártjának nevezzük, jelölése: $\mathcal{L}(\underline{a}_1, ..., \underline{a}_k)$.

Alterek direkt összege

Az R^n vektortér direkt összege a V_1, \ldots, V_k altereknek, ha bármely R^n —beli vektor pontosan egy féle képpen írható fel $\underline{v}_1 + \ldots + \underline{v}_k$ alakban, ahol $\underline{v}_1 \in V_1, \ldots, \underline{v}_k \in V_k$. Jelölés: $R^n = V_1 \oplus \ldots \oplus V_k$

Megjegyzés:

azaz, minden R^n -beli vektor egyértelműen felbontható az alterekbe eső összetevőkre.

Példa alterek összegére, direkt összegére I.

 V_1 : origón átmenő sík

 V_2 : origón átmenő egyenes, $V_2 \not\subset V_1$

$$V_1 + V_2 = R^3$$
, $V_1 \oplus V_2 = R^3$

Példa alterek összegére, direkt összegére II.

 V_1 V_2 és V_3 origón átmenő egyenesek, amelyek nincsenek egy síkban

$$V_1 + V_2 + V_3 = R^3$$
 és $V_1 \oplus V_2 \oplus V_3 = R^3$

Példa alterek összegére, direkt összegére III.

 V_1 V_2 és V_3 origón átmenő egyenesek, amelyek egy síkra esnek

$$V_1 + V_2 + V_3 \neq R^3$$
, így $V_1 \oplus V_2 \oplus V_3 \neq R^3$

Példa alterek összegére, direkt összegére IV.

 V_1 és V_2 két egymást metsző, origón átmenő sík

$$V_1 + V_2 = R^3$$
, de $V_1 \oplus V_2 \neq R^3$

Direkt összegre vonatkozó állítások

Legyenek V_1, \ldots, V_k alterek az R^n vektortérben.

- 1. $R^n = V_1 \oplus \ldots \oplus V_k \implies \dim(V_1) + \ldots + \dim(V_k) = n$ Ez az állítás NEM megfordítható, szükséges, de nem elégséges feltétel!
- 2. $R^n = V_1 \oplus \ldots \oplus V_k \Leftrightarrow a V_1, \ldots, V_k$ alterek bázisainak úniója bázist alkot az R^n vektortérben.
- 3. $R^n = V_1 \oplus \ldots \oplus V_k \Leftrightarrow R^n = V_1 + \ldots + V_k$ és bármely $i = 1, \ldots, k$ esetén $V_i \cap (V_1 + \ldots + V_{i-1} + V_{i+1} + \ldots + V_k) = \{\underline{o}\}$.

Speciálisan k = 2-re:

$$R^n = V_1 \oplus V_2 \iff R^n = V_1 + V_2 \text{ és } V_1 \cap V_2 = \{\underline{o}\}.$$

4

Egyenes és hipersík az Rⁿ vektortérben

- Legyenek \underline{a} és $\underline{v} \in \mathbb{R}^n$, $\underline{v} \neq \underline{o}$.
 - A $V = \{\lambda \underline{v} \mid \lambda \in R\}$ alteret origón átmenő, \underline{v} irányvektorú egyenesnek nevezzük.
 - A $V + \{\underline{a}\} = \{\lambda \underline{v} + \underline{a} \mid \lambda \in R\}$ eltolt alteret az \underline{a} ponton átmenő, \underline{v} irányvektorú egyenesnek nevezzük.
- Legyenek \underline{a} és $\underline{v}_1, ..., \underline{v}_k \in R^n$, $\underline{v}_1, ..., \underline{v}_k$ lin. független vektorok.

$$A V = \{\lambda_1 \cdot \underline{v}_1 + \lambda_2 \cdot \underline{v}_2 + \dots + \lambda_k \cdot \underline{v}_k \mid \lambda_1, \dots, \lambda_k \in R \}$$

alteret origón átmenő, k-dimenziós hipersíknak nevezzük.

A
$$V + \{\underline{a}\} = \{\lambda_1 \cdot \underline{v}_1 + \lambda_2 \cdot \underline{v}_2 + \dots + \lambda_k \cdot \underline{v}_k + \underline{a} \mid \lambda_1, \dots, \lambda_k \in R \}$$
 eltolt alteret az \underline{a} ponton átmenő, k -dimenziós hipersíknak nevezzük.