### 第六章 方阵的对角化

### 本章主要内容:

- 方阵的特征值、特征向量与特征多项式
- 方阵的相似与可对角化
- 特征值问题的相关MATLAB应用

### § 6.1 方阵的特征值与特征向量

### 本节主要内容:

- 基本概念
- 特征值与特征向量的性质

 $\frac{4}{3}$ 

### 1. 基本概念

### 【问题的提出】

Ax

是什么样,即Ax的计算有什么规律?

### 【问题的分析】

若  $p_1, p_2, \dots, p_n$  为向量空间  $\mathbb{R}^n$  的基,则  $x = a_1 p_1 + a_2 p_2 + \dots + a_n p_n,$   $Ax = a_1 (Ap_1) + a_2 (Ap_2) + \dots + a_n (Ap_n).$ 



因而, 若 $Ap_1$ ,  $Ap_2$ , …,  $Ap_n$  有明确而简单的算法,

$$Ax = a_1(Ap_1) + a_2(Ap_2) + \dots + a_n(Ap_n)$$

就有简单而有规律的算法.

### 【一个合理的期待】

因而,若有常数 ¼, ½, …, ¾, 使得

$$\begin{cases} Ap_1 = \lambda_1 p_1 \\ Ap_2 = \lambda_2 p_2 \\ \dots \\ Ap_n = \lambda_n p_n \end{cases}$$
 (1)

则

$$Ax = a_1(Ap_1) + a_2(Ap_2) + \dots + a_n(Ap_n)$$
  
=  $(a_1\lambda_1)p_1 + (a_2\lambda_2)p_2 + \dots + (a_n\lambda_n)p_n$ .

性 代

数

哈尔滨工程大学

性 代

哈尔滨工程大学

(1)

### 【上述期待的另一个惊喜】

上述(1)式等同于下式

$$A[p_1, \dots, p_n] = [p_1, \dots, p_n] \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}$$
 (2)

(线性变换y = Ax在基 $p_1, \dots, p_n$ 下的矩阵为对角阵)

此时,矩阵  $P = [p_1, \dots, p_n]$ 可逆, (2) 为

$$A = P \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} P^{-1}$$
 (3)

### 【结论】

对于一个n阶(实)方阵A,找到n个线性无关的向量  $p_1, p_2, \dots, p_n$ 和常数 $\lambda_1, \lambda_2, \dots, \lambda_n$ 满足下式是极为重 要的(本章的主题):

$$\begin{cases}
Ap_1 = \lambda_1 p_1 \\
Ap_2 = \lambda_2 p_2 \\
\dots \\
Ap_n = \lambda_n p_n
\end{cases}$$
(1)



(1) 若非零向量  $x_0 \in \mathbb{C}^n$  和数  $\lambda_0 \in \mathbb{C}$  满足

$$Ax_0 = \lambda_0 x_0,$$

则称  $\lambda_0$  为矩阵 A 的 (---) 特征值,同时称这个非 零向量 $x_0$ 为(A的)对应特征值 $\lambda_0$ 的特征向量.

(2) 未定元  $\lambda$  的多项式

$$|\lambda E - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

称为矩阵 4 的特征多项式.



【例1】 对于 $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ ,  $x_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ ,  $x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ :

$$Ax_1 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = x_1,$$

$$Ax_2 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3x_2;$$

1,3为矩阵 A的两个特征值;

x<sub>1</sub>和x<sub>2</sub>为分别对应特征值1和3的特征向量;

矩阵 A的特征多项式是

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3).$$



### 【命题 6.1】

代

- (1)  $\lambda$  为方阵 A的特征值 ⇔ 行列式  $|\lambda E A| = 0$ , 即  $\lambda_0$  为特征多项式  $|\lambda E - A|$  的根.
- (2)  $x_0$  为方阵A的对应特征值 $\lambda_0$ 的特征向量  $\Leftrightarrow x_0$  为 齐次线性方程组 $(λ_0E-A)x=0$ 的非零解.

### 【证明】(1)(⇒)

设 $\lambda$ , 为方阵A的特征值,则存在一个非零向量x。满足  $Ax_0 = \lambda_0 x_0$ :

$$Ax_0 = \lambda_0 x_0 \Rightarrow (\lambda_0 E - A)x_0 = 0 \Rightarrow |\lambda_0 E - A| = 0.$$

- ( $\leftarrow$ ) 反之、若  $|\lambda E A| = 0$ : 存在非零向量 x。満足  $(\lambda_0 E - A)x_0 = 0 \Rightarrow Ax_0 = \lambda_0 x_0 (\lambda_0)$  为特征值).
- (2) 明显.



### 求方阵 A 的特征值和特征向量的步骤:

(1) 先解出方程 $|\lambda E - A| = 0$ 的一切不同的根:

 $\lambda_1, \dots, \lambda_m$ 

- (矩阵的一切不同的特征值);
- (2) 对每个特征值*\(\alphi\_i\)*:
  - 1) 求方程组 $(\lambda_i E A)x = 0$ 的一个基础解系:  $x_1, \dots, x_k;$
  - 2) 当常数  $l_1, \dots, l_k$  不全为 0 时,向量  $l_1 x_1 + \cdots + l_k x_k$ 就是对应特征值心的特征向量的通式.





【例2】 求矩阵 $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ 的特征值和特征向量.

【解】 特征多项式:  $|\lambda E - A| = \begin{vmatrix} \lambda & 1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 + 1;$ 

特征值:  $\lambda_1 = i$ ,  $\lambda_2 = -i$ ;

解方程组  $(\lambda_i E - A)x = 0$ :

$$\begin{bmatrix} i & 1 \\ -1 & i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -i \\ 0 & 0 \end{bmatrix}, \text{ 基础解系 } x_1 = \begin{bmatrix} i \\ 1 \end{bmatrix};$$

对应特征值  $\lambda_1 = i$ 的特征向量:  $k_1x_1$   $(k_1 \neq 0)$ ; 解方程组  $(\lambda_2 E - A)x = 0$ :

$$\begin{bmatrix} -\mathbf{i} & 1 \\ -\mathbf{1} & -\mathbf{i} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \mathbf{i} \\ 0 & 0 \end{bmatrix}, 基础解系 x_2 = \begin{bmatrix} -\mathbf{i} \\ 1 \end{bmatrix};$$

对应特征值 $\lambda_1 = -i$ 的特征向量:  $k_2 x_2 (k_2 \neq 0)$ .



【例3】 求矩阵 $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ 的特征值和特征向量.

【解】 特征多项式:

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -1 \\ 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^2;$$

特征值:  $\lambda_1 = \lambda_2 = 2$ ;

解方程组  $(\lambda_1 E - A)x = 0$ :

$$2E - A = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$$
, 基础解系  $x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ ;

对应特征值2的特征向量:

$$kx = (k, 0)^{\mathrm{T}} (k \neq 0).$$



哈尔滨工程大学

# 【例4】 试将矩阵 $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{bmatrix}$ ,分解成

$$A = P \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} P^{-1},$$

并求 $A^n$ .

### 【解】 特征多项式:

$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & 1 & -1 \\ -1 & \lambda - 3 & 1 \\ -1 & -1 & \lambda - 1 \end{vmatrix} = (\lambda - 1)(\lambda - 2)^{2};$$

特征值:  $\lambda_1 = 1$ ,  $\lambda_2 = \lambda_3 = 2$ ;



### 解方程组 $(\lambda_1 E - A)x = 0$ :

$$(\lambda_1 E - A) = \begin{bmatrix} 0 & 1 & -1 \\ -1 & -2 & 1 \\ -1 & -1 & 0 \end{bmatrix} \xrightarrow{\text{行初等变换}} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix};$$

基础解系 
$$p_1 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$
;

解方程组  $(\lambda_2 E - A)x = 0$ :

$$(\lambda_2 E - A) = \begin{bmatrix} 1 & 1 & -1 \\ -1 & -1 & 1 \\ -1 & -1 & 1 \end{bmatrix} \xrightarrow{\text{行初等变换}} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

基础解系 
$$p_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$
,  $p_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ .



## $4 - \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{bmatrix}, \quad p_1 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \quad p_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad p_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix};$$
$$Ap_1 = p_1, \quad Ap_2 = 2p_2, \quad Ap_3 = 2p_3;$$

$$A[p_1, p_2, p_3] = [p_1, p_2, p_3] \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix};$$

$$A = P\begin{bmatrix} 1 & & \\ 2 & & \\ & 2 \end{bmatrix} P^{-1}, P = [p_1, p_2, p_3];$$

$$A^{n} = P \begin{bmatrix} 1 & & \\ & 2 & \\ & & 2 \end{bmatrix}^{n} P^{-1} = \begin{bmatrix} 1 & 1 - 2^{n} & -1 + 2^{n} \\ -1 + 2^{n} & -1 + 2^{n+1} & 1 - 2^{n} \\ -1 + 2^{n} & -1 + 2^{n} & 1 \end{bmatrix}.$$



哈尔滨工程大学

【例5】 若 $\lambda_0$  是 A 的特征值,则  $\lambda_0^2$  是  $A^2$  的特征值.

【证明】 设x为 A的对应特征值  $\lambda_0$  的特征向量:

$$Ax = \lambda_0 x.$$

$$A^2 x = A(Ax) = A(\lambda_0 x) = A(\lambda_0 x)$$

$$= \lambda_0(Ax) = \lambda_0(\lambda_0 x) = \lambda_0^2 x;$$

 $\lambda_0^2$  是  $A^2$  的特征值.

### 一般形式:

若 $\lambda$ 是A的特征值,则 $f(\lambda) = a_0 + a_1\lambda + \cdots + a_m\lambda^m$ 为矩阵

$$f(A) = a_0 E + a_1 A + \dots + a_m A^m$$

的特征值.



### 2. 特征值与特征向量的性质

【命题 6.2】 对于 n 阶方阵  $A = [a_{ii}]_{n \times n}$ :

- (1)  $|\lambda E A| = \lambda^n (a_{11} + \dots + a_{nn})\lambda^{n-1} + \dots + (-1)^n \cdot |A|$ ;
- (2) 若  $|\lambda E A| = (\lambda \lambda_1) \cdots (\lambda \lambda_n)$ ,则

 $\lambda_1 + \cdots + \lambda_n = a_{11} + \cdots + a_{nn}, \quad \lambda_1 \cdots \lambda_n = |A|.$ 

【证明】(1)由于行列式的定义知,

$$|\lambda E - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

为 λ 的 n 次 多 项 式; 而 且 其 最 高 项 和 次 高 项 都 由



# $(\lambda - a_{11})(\lambda - a_{22})\cdots(\lambda - a_{nn})$ $= \lambda^{n} - (a_{11} + \cdots + a_{nn})\lambda^{n-1} + \cdots + (-1)^{n} a_{11} \cdots a_{nn}$ 产生: $|\lambda E - A| = \lambda^{n} - (a_{11} + \cdots + a_{nn})\lambda^{n-1} + \cdots;$ $|0E - A| = (-1)^{n} \cdot |A|$ 说明: $|\lambda E - A| \text{ 的常数项为} (-1)^{n} \cdot |A|;$ $|\lambda E - A| = \lambda^{n} - (a_{11} + \cdots + a_{nn})\lambda^{n-1} + \cdots + (-1)^{n} \cdot |A|$ (2) $|\lambda E - A| = (\lambda - \lambda_{1}) \cdots (\lambda - \lambda_{n})$ $= \lambda^{n} - (\lambda_{1} + \cdots + \lambda_{n})\lambda^{n-1} + \cdots + (-1)^{n} \lambda_{1} \cdots \lambda_{n}$ $(1) \Rightarrow \lambda_{1} + \cdots + \lambda_{n} = a_{11} + \cdots + a_{nn}, \ \lambda_{1} \cdots \lambda_{n} = |A|$ 【命题 6.3】 若 $\lambda$ 是可逆阵 $\lambda$ 的特征值,则:

(1)  $\lambda \neq 0$ ; (2)  $\lambda^{-1} \neq A^{-1}$  的特征值.

【命题 6.4】 若 $\lambda_1, \dots, \lambda_m$ 是方阵 A的不同的特征值,又  $p_1, \dots, p_m$ 分别为对应它们的特征向量,则向量组  $p_1, \dots, p_m$ 线性无关.

【证明】 m=2的情况:

$$k_1 p_1 + k_2 p_2 = 0$$

用A左乘(1)式的两边得到

$$k_1 \lambda_1 p_1 + k_2 \lambda_2 p_2 = 0$$

用礼左乘(1)式的两边得到

$$k_1 \lambda_2 p_1 + k_2 \lambda_2 p_2 = 0$$

(2)-(3)得到

$$k_1(\lambda_1 - \lambda_2)p_1 = 0 \Rightarrow k_1 = 0 \Rightarrow k_2 = 0.$$



m=3的情况:

$$k_1 p_1 + k_2 p_2 + k_3 p_3 = 0$$

用 A 左乘(1)式的两边得到

$$k_1\lambda_1 p_1 + k_2\lambda_2 p_2 + k_3\lambda_3 p_3 = 0$$

用礼,左乘(1)式的两边得到

$$k_1\lambda_3 p_1 + k_2\lambda_3 p_2 + k_3\lambda_3 p_3 = 0$$

(2)-(3)得到

$$k_1(\lambda_1 - \lambda_3)p_1 + k_2(\lambda_2 - \lambda_3)p_2 = 0.$$

再由m=2的情况知:

$$k_1 = k_2 = 0 \implies k_3 = 0.$$



【命题6.5】 令 $\lambda_1, \dots, \lambda_m$ 是A的不同的特征值:

 $p_1^{(1)}, \dots, p_{k_1}^{(1)}$ 是对应 $\lambda_1$  的线性无关的特征向量;  $p_1^{(2)}, \dots, p_{k_2}^{(2)}$ 是对应 $\lambda_2$  的线性无关的特征向量;

 $p_1^{(m)}, \dots, p_{k_m}^{(m)}$ 是对应 $\lambda_m$  的线性无关的特征向量,则所有这些特征向量线性无关.

【证明】(自我阅读)



数

### 【评注】

对于一个方阵 A, 如何找一组个数最多的线性无关的特征向量?

- (1) 先找到 $\Lambda$ 的所有不同的特征值 $\lambda_1, \dots, \lambda_m$ ;
- (2) 求出每个方程( $\lambda_i E A$ )x = 0的基础解系;

这m个方程组的基础解系拼在一起就是A的一组个数最多的线性无关的特征向量.

由于n+1个n维向量一定线性相关,故这样的一组向量最多有n个:

若这组向量的个数若为n,则矩阵A将有一个重要的特性—可对角化.



### 复数域内多项式的分解

【代数学基本定理】 每个次数大于等于1的复系数 多项式在复数域内至少有一个根.

【定理1】 每个次数大于等于1的复系数多项式  $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$  在复数域内都可分解成一次式的乘积,即  $f(x) = (x-z_1)(x-z_2)\cdots(x-z_n)$ ,

这里的 $z_1, z_2, \dots, z_n$ 为复数.

$$x^{5} - x^{4} + x - 1 = (x - 1)(x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= (x - 1)[x - (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i)][x - (\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i)]$$

$$[x + (\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i)][x + (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i)].$$



【定理2】 设  $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ 为实系数多项式. 若 z = a + bi 为 f(x)的一个复根,则 z 的共轭  $\bar{z} = a - b$ i 也是 f(x)的根,即实系数多项式的虚部不为0的根共轭成对出现.

【证明】  $z^{n} + a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0} = 0;$  $\overline{z^{n} + a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0}} = \overline{0};$  $\overline{z^{n} + \overline{a_{n-1}z^{n-1}} + \dots + \overline{a_{1}z} + \overline{a_{0}} = 0;$  $\overline{z^{n} + \overline{a_{n-1}}\overline{z}^{n-1} + \dots + \overline{a_{1}}\overline{z} + \overline{a_{0}} = 0;$  $\overline{z^{n} + a_{n-1}}\overline{z}^{n-1} + \dots + a_{1}\overline{z} + a_{0} = 0.$ 



### § 6.2 方阵的相似与对角化

### 本节主要内容:

- 两个方阵的相似
- ⋒ 方阵可对角化的充要条件

### 1. 两个方阵的相似

【定义1】 设A, B为两个同阶方阵. 若存在一个可逆矩阵P使

$$P^{-1}AP=B,$$

则称A = B H I I,记为 $A \sim B$ ;由 $A \stackrel{\text{res}}{=} P^{-1} A P$ 的运算也称对A进行相似变换.



$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} :$$

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

【注意】 $A \sim B \Rightarrow A \rightarrow B$ .

lacktriangledown

【命题6.6】 相似的矩阵有相同的特征多项式,从而有相同的特征值,即矩阵在相似变换之下特征多项式不变.

【证明】  $P^{-1}AP = B$ :

$$|\lambda E - B| = |\lambda E - P^{-1}AP| = |P^{-1}(\lambda E - A)P|$$
$$= |P^{-1}| \cdot |\lambda E - A| \cdot |P| = |P^{-1}P| \cdot |\lambda E - A|$$
$$= |\lambda E - A|.$$

【评注】 两矩阵的特征多项式相同, 它们可不相似.



$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
,  $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$  不相似, 但特征多项式相同.

线

性

代

示 
$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
可对角化:  $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ ;

 $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ 不能对角化:

若 $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ 可对角化,则其只能与零矩阵相似:

$$P\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} P^{-1} = 0$$
 (矛盾等式).

【问题】方阵可对角化的条件是什么?



### 2. 方阵可对角化的充要条件

【定理 6.1 】 n 阶方阵 A 可对角化  $\Leftrightarrow$  A 有 n 个线性无 关的特征向量.

【证明】 设 A可对角化:

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & \ddots & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}, P = [p_1, \dots, p_n];$$

$$Ap_1 = \lambda_1 p_1, \dots, Ap_n = \lambda_n p_n;$$

 $p_1, \dots, p_n$ 就是 A 的 n 个线性无关的特征向量. 反之是明显的,因为上面的运算都是双向的.

【问题】 一个n 阶方阵在什么条件下有 n个线性无关的特征向量?



【推论】 有 n 个不同的特征值的 n 阶方阵可对角化.

### 【证明】 每个特征值至少有一个特征向量; 对应不同特征值的特征向量线性无关; 此方阵一定有 n个线性无关的特征向量.

【注意】 此推论是方阵可对角化的充分非必要条件:

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 可对角化,但不同的特征值仅一个1.

【例1】 3阶方阵  $\begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$ 可对角化:

因为 A有三个不同的特征值 1, 2, 3.



【例2】 讨论矩阵 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ 是否能对角化.

【解】 矩阵 A的特征多项式

$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 2)^{2};$$

特征值 $\lambda_1 = 1, \lambda_2 = \lambda_3 = 2; r(E-A) = r(2E-A) = 2.$ 

方程组(E-A)x=0, (2E-A)x=0的基础解系:

都仅有一个向量.

此方阵最多能找到 2个线性无关的特征向量: 此方阵不能对角化.



【例3】 讨论矩阵A=能否对角化. -1 -2 0 -3

【解】 矩阵A的特征值为 $\lambda_1 = \lambda_2 = -3$ ,  $\lambda_3 = \lambda_4 = 5$ ;

$$-3E - A = \begin{bmatrix} -8 & 0 & 0 & 0 \\ 0 & -8 & 0 & 0 \\ -1 & -4 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}, 5E - A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -4 & 8 & 0 \\ 1 & 2 & 0 & 8 \end{bmatrix};$$

$$r(-3E-A) = r(5E-A) = 2.$$

A有4个线性无关的特征向量,可对角化.



性 代 【定理 6.2】 设 $\lambda_1, \dots, \lambda_m$  为n 阶方阵 A 的所有不同 的特征值, 特征多项式

$$|\lambda E - A| = (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdots (\lambda - \lambda_m)^{k_m}$$
:

则

A可对角化 $\Leftrightarrow n-r(\lambda_i E-A)=k_i \ (i=1,2,\cdots,m),$ 

即每个方程组

$$(\lambda_i E - A)x = 0$$

的基础解系中恰有k,个解向量.

【证明】 (⇒) 设矩阵 4可对角化:

示例

每个特征值 $\lambda$ , 至少可找到k, 个线性无关的特征向量. 方程组 $(\lambda_i E - A)x = 0$ 的基础解系中至少有 $k_i$ 解向量:

$$n-r(\lambda_i E-A) \geqslant k_i \quad (i=1,2,\cdots,m).$$



$$\sum_{i=1}^{m} [n - r(\lambda_i E - A)] \geqslant \sum_{i=1}^{m} k_i = n;$$

而由上一节最后的命题知:

$$n \geqslant \sum_{i=1}^{m} [n - r(\lambda_i E - A)];$$

总之, 
$$n-r(\lambda_i E-A)=k_i$$
  $(i=1,2,\cdots,m)$ .

(⇐) 反之, 若上述 m 个等式成立:

A有 $\sum_{i=1}^{m} k_{i} = n$ 个线性无关的特征向量,可对角化.

### 【评注】

若 3 阶方阵A,若特征值为 $\lambda$ 1,  $\lambda$ 2,  $\lambda$ 3:

$$\lambda_1 = \lambda_2 \neq \lambda_3$$
,  $r(\lambda_1 E - A) = 1$ ,

则 4 可对角化.

原因:  $3-r(\lambda_1 E - A) = 2$ ,  $3-r(\lambda_3 E - A) = 1$ .

【例4】 设 $A = \alpha^{T} \alpha$ , 且 $\alpha = (a, b, c) \neq 0$ 为实矩阵, 求证4可对角化.

【证明】 先求 A的所有特征值:

が 
$$A = \begin{bmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{bmatrix} \neq 0, 1 \leqslant r(A) \leqslant r(\alpha) = 1.$$



数

由于相似一定等价,若 A可对角化,其特征值为:  $\lambda_1 = \lambda_2 = 0, \ \lambda_3 \neq 0; \ \lambda_3 = a^2 + b^2 + c^2.$ 

试求 A的非零特征值2:

$$(\boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{\alpha})\boldsymbol{x} = \lambda\boldsymbol{x} (\lambda \neq 0, \boldsymbol{x} \neq 0);$$

$$(\alpha \alpha^{\mathrm{T}})(\alpha x) = \lambda(\alpha x).$$

 $\alpha \alpha^{\mathrm{T}}, \alpha x$ 都是数,且 $\alpha x \neq 0$ :

$$\lambda = \alpha \alpha^{\mathrm{T}} = a^2 + b^2 + c^2;$$

总之,矩阵 A的特征值为

$$\lambda_1 = \lambda_2 = 0, \ \lambda_3 = a^2 + b^2 + c^2 \neq 0.$$

$$r(\lambda E - A) = r(A) = 1$$
 说明  $A$  可对角化.

$$|\lambda E - A| = (\lambda - 2)^{3} (\lambda - 3)^{2};$$

$$A = P \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} P^{-1};$$

$$P = [p_1, p_2, p_3, p_4, p_5].$$

$$Ap_1 = 2p_1, Ap_2 = 2p_2, Ap_3 = 2p_3;$$
  
 $Ap_4 = 3p_4, Ap_5 = 3p_5.$ 

 $p_1, p_2, p_3$ 为特征值2的3个线性无关的特征向量;  $p_4, p_5$ 为特征值3的2个线性无关的特征向量.



性 代

数

● 唯爾濱二姓大學

### 6.4特征值问题的相关 MATLAB应用

### 特征值与特征向量

例 已知向量  $x = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$  ,请分析经过线性变换  $y_i = A_i x$ 

后,向量 $y_i$ 与向量x 的几何关系. 其中  $A_i$ 分别为:

$$A_1 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, A_3 = \begin{bmatrix} 0.5 & 0 \\ 0 & 2 \end{bmatrix},$$

$$A_4 = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}, \left(\alpha = \frac{\pi}{2}\right).$$

# 浅生 七

双 哈尔宾工程

### 习题课六

- 1. 判断下列命题的真假, 并说明理由:
  - (1) 实数矩阵的特征值一定为实数.
  - (2) 矩阵的特征向量是唯一的.
  - (3) 只有对应不同特征值的特征向量才线性无关.
  - (4) 每个方阵都可对角化.
  - (5) 若方阵 A的特征值仅有 0,则 A=0.
  - (6) 若方阵 A的行列式 |A| = 0,则 0是 A的特征值.
  - (7) 若方阵 A 满足  $A^2 = A$ ,则 A 的特征值只能为 0 或 1.



解 (1) 求特征值:

$$|\lambda E - A| = (\lambda + 1)(\lambda - 2)^{2};$$
  
 $\lambda_{1} = -1, \ \lambda_{2} = \lambda_{2} = 2;$ 

(2) 求特征向量:

方程(-E-A)X=0的基础解系:

$$p_1 = (1, 0, 1)^{\mathrm{T}};$$

方程 (2E-A)X=0 的基础解系:

$$p_2 = (0, 1, -1)^{\mathrm{T}}, p_3 = (1, 0, 4)^{\mathrm{T}};$$





 $P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 4 \end{bmatrix}, \quad A = P \begin{bmatrix} -1 & \\ & 2 \\ & & 2 \end{bmatrix} P^{-1};$ 

$$A^{10} = P \begin{bmatrix} 1 & & \\ & 2^{10} & \\ & & 2^{10} \end{bmatrix} P^{-1} = 3^{-1} \begin{bmatrix} 4 - 2^{10} & -1 + 2^{10} & -1 + 2^{10} \\ 0 & 3 \cdot 2^{10} & 0 \\ 4 - 2^{12} & -1 + 2^{10} & -1 + 2^{12} \end{bmatrix}.$$

3. 若 $\lambda$ 为方阵 A的特征值,则  $\lambda$ " 为 A" 的特征值.

证

$$AX = \lambda X (X \neq 0)$$
:

$$A^{2}X = A(AX) = A(\lambda X) = \lambda(AX) = \lambda(\lambda X) = \lambda^{2}X;$$

上式说明 $\lambda^2$ 为 $A^2$ 的特征值;

同理可证明 $\lambda$ "为A"的特征值.





- 4. 设 3 阶方阵A的特征值为 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$ :
  - (1)  $x | \lambda E A | \mathcal{D} | 4E A | \mathcal{D} | 4E + A |$ ;
  - (2) 求  $|\lambda E A^2|$  及  $|16E A^2|$  的值.



(2)  $\lambda_1^2$ ,  $\lambda_2^2$ ,  $\lambda_3^2$  为  $A^2$  的特征值:  $|\lambda E - A^2| = (\lambda - 1)(\lambda - 4)(\lambda - 9);$  $|16E - A^2| = (16-1)(16-4)(16-9) = 1260.$ 



- 5. 设3阶方阵 A的特征值1,2,3对应的特征向量分别为  $\alpha_1 = (1, 1, 1)^T$ ,  $\alpha_2 = (1, 2, 4)^T$ ,  $\alpha_3 = (1, 3, 9)^T$ ; 又 $\beta = (1, 1, 3)^{T}$ .
  - (1) 将 $\beta$ 表示成 $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ 的线性组合;
  - (2) 求A"β (n 为自然数).
- $\mathbf{p}$  (1) 解方程  $\beta = x\alpha_1 + y\alpha_2 + z\alpha_3$ :

$$x = 2$$
,  $y = -2$ ,  $z = 1$ ;  $\beta = 2\alpha_1 - 2\alpha_2 + \alpha_3$ .

(2) 
$$A^{n}\beta = 2A^{n}\alpha_{1} - 2A^{n}\alpha_{2} + A^{n}\alpha_{3}$$
$$= 2\alpha_{1} - 2 \cdot 2^{n}\alpha_{2} + 3^{n}\alpha_{3}$$
$$= \begin{bmatrix} 2 - 2^{n+1} + 3^{n} \\ 2 - 2^{n+2} + 3^{n+1} \\ 2 - 2^{n+3} + 3^{n+2} \end{bmatrix}.$$



哈尔滨工程大学

- - (1) 确定 a, b 及 X 对应的特征值  $\lambda$ ;
  - (2) 问 A 能否对角化? 说明理由.

$$\mathbf{P} (1) \quad (\lambda E - A)X = \begin{bmatrix} \lambda - 2 & 1 & -2 \\ -5 & \lambda - a & -3 \\ 1 & -b & \lambda + 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = 0$$

$$\begin{cases} \lambda - 2 + 1 + 2 = 0 \\ -5 + \lambda - a + 3 = 0 \Rightarrow a = -3, \ b = 0, \ \lambda = -1. \\ 1 - b - \lambda - 2 = 0 \end{cases}$$

(2)  $|\lambda E - A| = (\lambda + 1)^3, \lambda_1 = \lambda_2 = \lambda_3 = -1;$  $3-r(-E-A)=1 \Rightarrow A$  不能对角化.



代

哈尔滨工程大学

7. 设矩阵  $A = \begin{bmatrix} x & 1 & y \\ 1 & 0 & 0 \end{bmatrix}$  可对角化, 求 x 和 y 应满足的

条件.

$$|\lambda E - A| = \begin{vmatrix} \lambda & 0 & -1 \\ -x & \lambda - 1 & -y \\ -1 & 0 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1);$$

$$|\lambda_1 = \lambda_2 = 1, \lambda_3 = -1;$$

A可对角化: 
$$r(E-A) = r\begin{pmatrix} 1 & 0 & -1 \\ -x & 0 & -y \\ -1 & 0 & 1 \end{pmatrix} = 1$$

 $\Rightarrow x + y = 0.$ 



(1) 
$$|E + A| = 1$$
;

(2) 若
$$AB = BA$$
, 则 $|A + B| = |B|$ .

证 (1) 
$$A''' = 0 \Rightarrow A$$
 的特征值都为  $0 \Rightarrow |\lambda E - A| = \lambda^n$ 

$$\Rightarrow |(-1)E - A| = (-1)^n \Rightarrow |E + A| = 1.$$

(2) 
$$B$$
可逆:  $AB = BA \Rightarrow AB^{-1} = B^{-1}A$ ;

$$(AB^{-1})^m = A^m (B^{-1})^m = 0;$$

$$(1) \Rightarrow |E + AB^{-1}| = 1 \Rightarrow |B + A| = |B|.$$

$$B$$
不可逆:  $|B|=0$ , 此时只要说明 $|B+A|=0$ .

$$(A+B)^{m} = A^{m} + C_{m}^{1} A^{m-1} B + \dots + B^{m}$$
  
=  $(C_{m}^{1} A^{m-1} + \dots + B^{m-1}) B = QB$ ,

$$|A+B|^{m} = |Q| \cdot |B| = 0 \Rightarrow |A+B| = 0.$$



9. 设 $\lambda_1, \lambda_2, \lambda_3$ 是方阵 A 的三个互不相同的特征值, $X_1, X_2, X_3$  分别为对应它们的特征向量.令 $Y = X_1 + X_2 + X_3$ ,求证向量组 $Y, AY, A^2Y$ 线性无关.

证

数

哈尔滨工程大学

$$\begin{split} Y &= X_1 + X_2 + X_3, \\ AY &= \lambda_1 X_1 + \lambda_2 X_2 + \lambda_2 X_3, \\ A^2Y &= \lambda_1^2 X_1 + \lambda_2^2 X_2 + \lambda_3^2 X_3. \end{split}$$

由 $aY + bAY + cA^2Y = 0$ , 加 $X_1, X_2, X_3$ , 线性无关得到:

$$\begin{cases} a+b\lambda_1+c\lambda_1^2=0, \\ a+b\lambda_2+c\lambda_2^2=0, \\ a+b\lambda_3+c\lambda_3^2=0. \end{cases}$$

由于 $\lambda_1, \lambda_2, \lambda_3$ 互不相同,由范德蒙行列式知 a = b = c = 0.

结论成立.



### 10. 设A,B为同阶方阵, $\lambda$ 是AB的特征值,求证 $\lambda$ 也是BA的特征值。

是BA的特征值. 证  $\lambda=0$ :  $|AB|=0 \Rightarrow |BA|=0 \Rightarrow 0$ 为BA特征值.

$$\lambda \neq 0$$
:  $\colone{black}{\colone{black}{\mathcal U}}(AB)X = \lambda X, X \neq 0.$ 

$$(AB)X = \lambda X$$

$$\Rightarrow BA(BX) = \lambda(BX).$$

若  $BX \neq 0$ , 上式说明  $\lambda$  为 BA 的特征值;

若 
$$BX = 0$$
, 则  $\lambda X = (AB)X = 0$ :

总之,结论得证.





$$AE = EA: \quad A[e_1, e_2] = [e_1, e_2] \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\Rightarrow \begin{cases} Ae_1 = ae_1 + ce_2 \\ Ae_2 = be_1 + de_2 \end{cases} \Rightarrow \begin{cases} Ae_2 = de_2 + be_1 \\ Ae_1 = ce_2 + ae_1 \end{cases}$$

$$\Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} [e_2, e_1] = [e_2, e_1] \begin{bmatrix} d & c \\ b & a \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} d & c \\ b & a \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1}$$



12. 设n 阶方阵A 满足 $A^2 = A$ ,求证:

- (1) r(E-A)+r(A)=n;
- (2) A与 $\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}$ 相似,这r = r(A).

 $i\mathbb{E}$  (1)  $A^2 = A \Rightarrow A(E - A) = 0$ :  $r(E-A)+r(A) \leq n$ ;  $r(E-A)+r(A) \geqslant r((E-A)+A)=n$ .

(2)  $A^2 = A \Rightarrow A$ 的特征值为 0或1; r(E-A)+r(A)=n $\Rightarrow [n-r(E-A)]+[n-r(A)]=n$  $\Rightarrow A$ 可对角化,  $A \sim \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}$ .



13. 设  $n(n \ge 2)$ 阶方阵 A 的秩为 1, 求证

$$|\lambda E - A| = \lambda^{n-1} [\lambda - (a_{11} + \dots + a_{nn})].$$

r(0E-A)=1:

设 $p_1, p_2, \dots, p_{n-1}$ 为对应特征值0的特征向量.

补 $p_n$ 使 $p_1, p_2, ..., p_{n-1}, p_n$ 线性无关:

$$A[p_{1}, \dots, p_{n-1}, p_{n}] = [p_{1}, \dots, p_{n-1}, p_{n}] \begin{bmatrix} 0 & \dots & 0 & * \\ & \ddots & \vdots & \vdots & \vdots \\ & 0 & * \\ & & k \end{bmatrix};$$

$$|\lambda E - A| = \lambda^{n-1} (\lambda - k)$$

$$= \lambda^{n-1} [\lambda - (a_{11} + \dots + a_{nn})]$$



14. 设 $\alpha = (a, b, c)$ 为非零实向量 $(a \neq 0), A = \alpha^{T} \alpha$ . 求矩阵 A 的特征值和可逆阵使 $P^{-1}AP$ 为对角阵.

### 证 (1) 先求特征值:

令  $A = \alpha^{T} \alpha$  的对角线的元素之和为  $k = a^{2} + b^{2} + c^{2}$ ; 设 $\lambda \neq 0$ 为 $A = \alpha^{T} \alpha$ 的特征值,对应的特征向量为 X:

$$(\alpha^{\mathrm{T}}\alpha X) = \lambda X;$$

$$(\alpha^{\mathsf{T}}\alpha)X = \lambda X \implies (\alpha\alpha^{\mathsf{T}})(\alpha X) = \lambda(\alpha X)$$
$$\implies k(\alpha X) = \lambda(\alpha X)$$

$$\Rightarrow \lambda = k \ (\alpha X \neq 0).$$

$$|\lambda E - A| = \lambda^2 (\lambda - k).$$



### (2) 求特征向量:

对应特征值0的特征向量:

$$(\alpha^{\mathsf{T}}\alpha)X = 0X$$
  
$$\Rightarrow (\alpha\alpha^{\mathsf{T}})(\alpha X) = 0$$

$$\Rightarrow (\alpha \alpha)(\alpha X) = 0$$

$$\Rightarrow k(\alpha X) = 0$$

$$\Rightarrow \alpha X = 0$$

$$\Rightarrow ax_1 + bx_2 + cx_3 = 0.$$

基础解系为:

$$p_1 = \begin{bmatrix} -b \\ a \\ 0 \end{bmatrix}, \ p_2 = \begin{bmatrix} -c \\ 0 \\ a \end{bmatrix};$$



对应特征值  $k = \alpha \alpha^{T}$  的特征向量:

$$(\alpha^{\mathrm{T}}\alpha)X = kX \Rightarrow \alpha^{\mathrm{T}}(\alpha\alpha^{\mathrm{T}}) = k\alpha^{\mathrm{T}};$$

 $p_3 = \alpha^{\mathrm{T}}$ . 基础解系为:

线

代 数

哈尔滨工程大学

$$\diamondsuit P = [p_1, p_2, p_3] = \begin{bmatrix} -b & -c & a \\ a & 0 & b \\ 0 & a & c \end{bmatrix} :$$

$$P^{-1}AP = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & a^2 + b^2 + c^2 \end{bmatrix}.$$

