Parallel Sorting

CS121 Parallel Computing Spring 2020

Outline

- Radix sort
- Merge sort
- Bitonic sort
- Sample sort

Radix sort

- Sort digit by digit, going from the least to most significant digit.
- Sort must be stable. If there's tie on current digit, must preserve order from previous digits.
 - Ex When sorting 100s digit, there's a tie on value 3. Preserve earlier order, i.e. 362 before 397.
- Sorting each digit (or group of digits) highly parallel.
- Radix sort is typically one of the fastest sorts in practice.

362	291	207	2 07
436	36 <mark>2</mark>	436	2 53
291	25 <mark>3</mark>	2 <mark>5</mark> 3	2 91
487	436	362	3 62
207	487	487	3 97
253	207	291	436
397	397	397	487

Radix sort and prefix sum

- We'll sort the last digits of a set of binary numbers in a stable way.
 - □ Call elements ending in 0 0-vals, the rest1-vals.
- Goal is to put the 0-vals before the 1-vals in a stable way.
 - □ 0-val at index i goes to (# 0-vals before i).
 - □ 1-val at index i goes to (total # 0-vals) + (# 1-vals before i) = (total # 0-vals) + (i # 0-vals before i).
- Use prefix sum to count # 0-vals up to every index.

100	111	010	110	011	101	001	000
0	1	0	0	1	1	1	0
1	0	1	1	0	0	0	1
0	1	1	2	3	3	3	3

Input Array

least significant bit

e = flip the bits

f = prefix sum

Total # 0's =
$$e[n-1] + f[n-1]$$

$$t = index - f + total # 0's$$

$$d = b?t:f$$

Scatter input using d as scatter address

http://www.seas.upenn.edu/~cis565/LECTURE20 10/CUDALibariesandTools.ppt

Parallel mergesort

- Divide and conquer sort in which subproblems can be solved in parallel.
- There are log n divide stages, followed by log n merge stages.
- Each merge stage takes O(n) sequential time.
- We'll do each merge stage in O(log n) parallel time with n processors.
- So O(log² n) time to sort n numbers with n processors.
- Assume for simplicity all values are unique.

https://en.wikipedia.org/wiki/Merge_sort

Parallel merge

- $rank(x,S) = |\{y \le x \mid y \in S\}| = number of values in S less than or equal to x.$
 - \square Ex rank(8,A)=2, rank(8,B)=3, rank(20,A)=4.
- Claim Let $x \in A \cup B$, then $rank(x, A \mid B) = rank(x,A) + rank(x,B)$.
 - \square Ex rank(8, A | B) = 5 = rank(8,A)+rank(8,B) = 2+3.
 - \square Ex rank(20, A | B) = 8 = rank(20,A)+rank(20,B) = 4+4.
- Proof Say x∈A.
 - □ There are rank(x,A) elements \leq x in A, including x itself, and rank(x,B) elements \leq x in B, so a total of rank(x,A)+rank(x,B) elements \leq x in A \cup B.

Parallel merge

- If S is sorted array of size n, can compute rank(x,S) in O(log n) sequential time.
 - □ Do binary search for x in S.
 - □ Say search ends at index i. If S[i]=x, return i+1, else return i.
 - \square Ex x=11, S=[4,5,7,20], search ends at index 3, so rank(x,S)=3.

20

Parallel merge

- Let A, B be sorted arrays with n elements each.
- We compute A | B using 2n processor in O(log n) time.
- Output stored in array C of size 2n.
- ❖ For $1 \le i \le n$, processor i computes $r_i = rank(A[i],B)$.
 - ❖ Write A[i] to C(i+r_i).
- ❖ For $1 \le j \le n$, proc j+n computes r_j =rank(B[j],A).
 - ❖ Write B[j] to C(j+r_i).

M

Bitonic sort

- A bitonic sequence is one that
 - ☐ First increases, then decreases.
 - ☐ Or is the rotation of a sequence of the first kind.
- Ex [1,3,4,7,8,5,2,1,0] is a bitonic sequence
- Ex [7,8,5,2,1,0,1,3,4] is a bitonic sequence, because it's a rotation of the first example.
- Lemma Let [a₀,a₁,...,a_{n-1}] be a bitonic sequence, and let
 - $S_1 = [\min(a_0, a_{n/2}), \min(a_1, a_{n/2+1}), \dots, \min(a_{n/2-1}, a_{n-1})]$
 - $S_2 = [\max(a_0, a_{n/2}), \max(a_1, a_{n/2+1}), \dots, \max(a_{n/2-1}, a_{n-1})]$
 - Then S_1 and S_2 are both bitonic sequences, and all elements of S_1 are \leq all elements of S_2 .
- This operation is called bitonic split.

20

Proof of lemma

M

Bitonic merge

- Bitonic merge takes a bitonic sequence and converts it to a sorted one using a sequence of bitonic splits.
- Given a bitonic sequence S, a bitonic split "sorts" S in the sense that the first half of S is ≤ the second half of S after the split.
- Now we can split each half recursively, to sort more finely, into quarters.
- Finally, after we split down to sequences of size 1, the entire sequence is sorted in nondecreasing order.

3	5	8	9	10	12	14	20	95	90	60	40	35	23	18	0
C0000000000000000000000000000000000000							0								
3	5	8	0	10	12	14	9	35	23	18	20	95	90	60	40
							12								
0	3	5	8	9	10	12	14	18	20	23	35	40	60	90	95

Merging network

- The split operation only requires finding max and min of two values. Can do this using a max or min comparator.
- Can implement a split in parallel using multiple comparators.
- Can implement a merge of a size n bitonic sequence using log n stages of split. So bitonic merge takes O(log n) time.

Bitonic sort

- Bitonic merge can produce either an increasing or decreasing sequence.
 - □ Call these BM⊕ and BM⊖.
- To sort an arbitrary size n sequence
 - □ First, convert it to a bitonic sequence, with each part of size n/2.
 - □ Do bitonic merge on the sequences.
- To convert the sequence to a bitonic one
 - ☐ Divide the sequence in half.
 - Sort the first half in increasing order.
 - □ Sort the second half in decreasing order.
 - □ Each sort is done recursively.
 - □ When we reach sequence of size 2, it's automatically bitonic.

M

Bitonic sort network

- There are log n bitonic merges.
- Each bitonic merge takes ≤ log n time.
- Bitonic merge takes O(log² n) parallel time total.
- Not work efficient, since total work is O(n log² n).
- Work efficient sorting networks exist, e.g. the AKS network, but have high constant factors and aren't practical.

Sample sort

- Sample sort is often used in distributed memory setting.
- Given p processors to sort n numbers, ideally each processor sorts n/p numbers.
- To do this, pick p-1 pivots, say $t_1 < t_2 < ... < t_{p-1}$. Let $t_0 = m$ and $t_p = M$, where m and M are min and max inputs.
 - □ Form p buckets, where i'th bucket contains all inputs between t_{i-1} and t_i.
 - □ i'th processor sorts i'th bucket sort locally.
 - □ If S is the max bucket size, sorting takes O(S log S) parallel time.
- Main problem with this approach is buckets are unlikely to be balanced.
 - □ For example, if we pick pivots randomly, it's likely $S = \Theta(n \log n / p)$, so sorting takes $\Theta(n \log^2 n / p)$ instead of the optimal $\Theta(n \log n / p)$.

М.

Sample sort

- Sample sort evens out the bucket sizes, so S = Θ(n / p) with high probability.
 - □ Sample $r = \lambda p$ random elements, for $\lambda > 1$ given later.
 - \square Sort the sampled elements and pick every λ 'th sample as a pivot, producing p pivots.
 - □ Use the pivots to form buckets, as earlier.
- Thm If λ =12 ln(n), then no bucket is larger than 4n/p with probability at least 1-1/n².
 - Proof based on Chernoff bound, which bounds probability a sum of independent random variables deviates substantially from its expectation.
- Sample sort runs in Θ (n log n / p) with high probability.
- It also has low communication complexity, since it only needs to broadcast the pivots and communicate to form the buckets.

Sample sort algorithm

- Each processor starts with n/p values.
- Each processor picks λ random values and sends them to processor 1.
- Processor 1 sorts λp values sequentially.
 - \square Choose set S with every λ 'th value as pivots.
- Processor 1 broadcasts S to all other processors.
- Each processor uses S to form p buckets for its values.
- Each processor sends values from the i'th bucket to the i'th processor.
- Each processor sorts the values it receives sequentially.

Example

16 17 20

Final element assignment

selection