1 13.6: Cylinders and Quadric Surfaces

Definition. (Trace)

A **trace** of a surface is the set of points at which the surface intersects a plane that is parallel to one of the coordinate planes. The traces in the coordinate planes are called the xy-trace, the yz-trace, and the xz-trace (Figure 13.80).

Name	Standard Equation	Features	Graph
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	All traces are ellipses.	a b y
Elliptic paraboloid	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	Traces with $z = z_0 > 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are parabolas.	y
Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ are ellipses for all z_0 . Traces with $x = x_0$ or $y = y_0$ are hyperbolas.	z z y
Hyperboloid of two sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ with $ z_0 > c $ are ellipses. Traces with $x = x_0$ and $y = y_0$ are hyperbolas.	x y
Elliptic cone	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$	Traces with $z = z_0 \neq 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are hyperbolas or intersecting lines.	y
Hyperbolic paraboloid	$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$	Traces with $z=z_0\neq 0$ are hyperbolas. Traces with $x=x_0$ or $y=y_0$ are parabolas.	z y