hw8_GohBram

Bram Goh

2024-12-02

Table of contents

Research Question	1
Variables Data Import	2
Variable Summary	
Model Analysis	3
Results	3
<pre>library(here) library(readxl) # for reading excel files library(modelsummary) # for summarizing data library(cmdstanr) # use two cores library(posterior) library(bayesplot) library(brms)</pre>	
library(tidyverse)	

Research Question

Do statistical regularities in language production (specifically, content word ratio and combination ratio) predict performance on high predictability SPiN items?

Table 1: Descriptive statistics

_
in_trials
=)

0.04

0.01

1

1

0.09

Variables

Highspin_successes

Highspin_trials

- Highspin_successes: grouped number of successes on high predictability SPiN trials.
- Highspin_trials: number of high predictability SPiN trials
- content_word_ratio: average ratio of content words (nouns, verbs, adjective, and adverbs) to total words per sentence
- combination_ratio: average ratio of trigrams to total words per sentence

-0.21

-0.04

Data Import

```
frog <- read.csv("processed_frog_data_ver2.csv")
frog[1] <- NULL
frog <- frog %>% select(c(qualtrics_id, content_word_ratio, combination_ratio, Highspin_success.)
```

Variable Summary

Table Table 1 shows the summary statistics for and Pearson's correlations between the variables of interest.

```
datasummary_skim(frog)
datasummary_correlation(frog)
```

Model

Let $Y_i = {\tt Highspin_successes}, \, N_i = {\tt Highspin_trials}, \, X_1 = {\tt content_word_ratio}, \, X_2 = {\tt combination_ratio}$

Model:

$$\begin{aligned} Y_i \sim Bin(N_i, \mu_i) \\ log(\frac{\mu_i}{1-\mu_i}) = \eta_i \\ \eta_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 \times X_2 \end{aligned}$$

Prior:

$$\begin{split} \beta_0 &\sim t_4(0,1) \\ \beta_1 &\sim t_4(0,1) \\ \beta_2 &\sim t_4(0,1) \\ \beta_3 &\sim t_4(0,1) \end{split}$$

Analysis

We used 4 chains, each with 4,000 iterations (first 2,000 as warm-ups).

Results

As shown in the rank histogram in Figure 1 below, the chains mixed well.

```
as_draws(m_logitlink) |>
    mcmc_rank_hist(pars = c("b_Intercept", "b_content_word_ratio", "b_combination_ratio", "b_
```


Figure 1: Rank histogram of the posterior distributions of model parameters.

Table 3 shows the summary output for β_0 , β_1 , β_2 , and β_3 , as well as model performance statistics.

Warning:

`modelsummary` uses the `performance` package to extract goodness-of-fit statistics from models of this class. You can specify the statistics you wish to compute by supplying a `metrics` argument to `modelsummary`, which will then push it forward to `performance`. Acceptable values are: "all", "common", "none", or a character vector of metrics names. For example: `modelsummary(mod, metrics = c("RMSE", "R2")` Note that some metrics are computationally expensive. See `?performance::performance` for details.

This warning appears once per session.

```
pp_check(m_logitlink)
```

Table 2: Posterior summary of the model with convergence statistics.

m_logitlink

Family: binomial
 Links: mu = logit

Formula: Highspin_successes | trials(Highspin_trials) ~ content_word_ratio * combination_rat

Data: frog (Number of observations: 211)

Draws: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;

total post-warmup draws = 8000

Regression Coefficients:

	Estimate	${\tt Est.Error}$	1-95% CI	u-95% CI Rhat
Intercept	2.00	1.16	-0.17	4.38 1.00
content_word_ratio	-2.94	1.83	-6.73	0.57 1.00
combination_ratio	0.94	1.27	-1.64	3.46 1.00
${\tt content_word_ratio:combination_ratio}$	-1.36	2.03	-5.39	2.78 1.00
	${\tt Bulk_ESS}$	Tail_ESS		
Intercept	3075	3472		
content_word_ratio	2921	3271		
combination_ratio	2915	3059		
<pre>content_word_ratio:combination_ratio</pre>	2860	2977		

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Table 3: Posterior summary of the model estimates.

	(1)
b_Intercept	1.97 [-0.17, 4.38]
b_content_word_ratio	-2.87 [-6.73 , 0.57]
b_combination_ratio	0.96 [-1.64, 3.46]
b_content_word_ratio \times combination_ratio	-1.37 [-5.39 , 2.78]
Num.Obs.	211
R2	0.044
ELPD	-707.8
ELPD s.e.	38.3
LOOIC	1415.7
LOOIC s.e.	76.7
WAIC	1415.6
RMSE	4.20

The analysis showed that on average, the content word ratio (M = -2.87, 90% CI [-6.73, 0.57])

and combination ratio (M = 0.96, 90% CI [-1.64, 3.46]) were not significantly associated with performance on high predictability SPiN items. The interaction effect was also non-significant (M = -1.37, 90% CI [-5.39, 2.78]).