NE697: Introduction to Geant4

Geant4: Basic Event Reconstruction

November 23rd, 2021 Dr. Micah Folsom

THE UNIVERSITY OF TENNESSEE KNOXVILLE

Today's Agenda

Assignment 7 questions?

Scintillation / optics questions?

Event reconstruction

Geant4: Event Reconstruction

- We've covered how to generate data with Geant4 (Hit)
 - We get a **Hit** for every **G4Step** in the volume with the SensitiveDetector attached
 - We must reconstruct what happened at a high level
- It is critically important that you understand the physics!
- How you do this depends on what information you need
- What is the signal that you'll observe experimentally?
 - Electronically induced? Photodetection?
- What goes in Geant4 vs what goes in post-processing?

Geant4: Event Reconstruction

Geant4

- As much of the real-deal physics as you can
- Generates perfect/ground truth information
- Each run has a random number seed → reproducible re-runs
- More data than you think you'll need until you're sure you don't need it

Post-processing

- Any sort of blurring (energy → Gaussian blur, FWHM ~ resolution)
- Uncorrelated backgrounds; even if modeled, it's nice to separate
- Randomness not easy to model in Geant4 (e.g. quantum efficiency)
 - Imagine you need to change it. Rerun the sim (GB++, days)? Bummer!

Geant4: Event Reconstruction

- The Hit class is entirely our own creation
 - G4Track and G4Step have additional information (current kinetic E? at a boundary?)
 - Tried to make something simple but generally useful for this course
- Mold your Hit and SensitiveDetector to your application
 - If you only care about what's happening to "e-", then just track those
- Start verbose and slim it down as you build confidence that it's working
- Test with small-medium #s of events in simple scenarios

Geant4: Spectrum Reconstruction

- [DEMO]
 - Reconstructing energy spectra
 - 50x50x50 cm³ Nal at (0,0,0)
 - Monoenergetic beam capturing all the energy
 - Different energies
 - Cutting on e-
 - Cs-137 ion
 - Take a look at hits.csv can we spot the events we're looking for?
 - How can we use the physics of Cs-137 decay?
 - Add a logic filter to avoid the beta decay

Geant4: Alternative Approach

- It turns out, radioactive decay is kind of complicated
- Much of the time, we really just want the gammas!
- It's fine to use monoenergetic sources for the prominent photopeaks
 - Can do different .mac just use the branching ratios to determine the # of events for each gamma line
 - Add back together in post
 - Saves time (fewer dice to roll, etc)
 - Avoids issue with timestamp precision for very large numbers

Next Class

We'll be doing review

Send me questions before class (in 1 week)

 Otherwise, we can discuss final projects, or anything else we want to touch on before we finish

