NANYANG TECHNOLOGICAL UNIVERSITY

MIDTERM II (CA2)

MH1812 - Discrete Mathematics

April 2018	TIME ALLOWED: 40 minutes	
		1
Name:		
Matric. no.:	Tutor group:	

INSTRUCTIONS TO CANDIDATES

- 1. DO NOT TURN OVER PAPER UNTIL INSTRUCTED.
- 2. This midterm paper contains **THREE** (3) questions.
- 3. Answer **ALL** questions. The marks for each question are indicated at the beginning of each question.
- 4. Candidates can write anywhere on this midterm paper.
- 5. This **IS NOT** an **OPEN BOOK** exam.
- 6. Candidates should clearly explain their reasoning when answering each question.

MH1812

QUESTION 1. (30 marks)

Solve the following linear recurrences, that is, write a_n and b_n in terms of n:

- (a) $a_n = 10a_{n-1} 21a_{n-2}$ for $n \ge 2$, with initial conditions $a_0 = 3$, $a_1 = 5$;
- (b) $b_n = b_{n-1} + 2$ for $n \ge 1$, with initial condition $b_0 = 2$.

Justify your answers.

Solution:

- (a) The recurrence is homogeneous so we can use the characteristic equation method. The characteristic equation is $x^2 10x + 21 = 0$, which has roots $\alpha_1 = 3$ and $\alpha_2 = 7$. Therefore $a_n = u\alpha_1^n + v\alpha_2^n = 3^nu + 7^nv$. Using the initial conditions, we see that u + v = 3 and 3u + 7v = 5. Hence u = 4 and v = -1, and so $a_n = 4 \cdot 3^n 7^n$.
- (b) The recurrence is not homogeneous. Using backtracking, we see that

$$b_n = b_{n-1} + 2 = b_{n-2} + 4 = \dots$$

We guess that $b_n = b_{n-i} + 2i$ for all $i \in \{1, ..., n\}$. Then for i = n, we have $b_n = b_0 + 2n = 2(n+1)$.

Now we prove that $b_n = 2(n+1)$, by induction. Let P(k) be the predicate $b_k = 2(k+1)$. The basis case P(0) is true, since $b_0 = 2$.

Suppose that P(k) is true (the induction hypothesis). We want to prove that P(k+1) is true. The LHS of P(k+1) is $b_{k+1} = b_k + 2$. By the induction hypothesis we have $b_k = 2(k+1)$. Hence $b_k = 2(k+1) + 2 = 2(k+2)$. Therefore P(k+1) is true.

QUESTION 2.

(30 marks)

(a) Prove that

$$\sum_{j=1}^{n} j(3j-1) = n^{2}(n+1), \quad \forall n \in \mathbb{N}.$$

- (b) Let $A = \{0, 1\}$ and $B = \{4, 5\}$.
 - (i) Write out all elements of the set $A \times B$.
 - (ii) What is the cardinality of the power set of $A \times B$?

Solution:

(a) We prove by induction. Let P(k) be the predicate $\sum_{j=1}^{k} j(3j-1) = k^2(k+1)$. Basis case: P(1) has LHS 3-1=2 equal to the RHS 1+1=2. Assume the induction hypothesis that P(k) is true for $k \ge 1$. We want to prove that P(k+1) is true.

The LHS of P(k+1) is

$$\sum_{j=1}^{k+1} j(3j-1) = \sum_{j=1}^{k} j(3j-1) + (k+1)(3(k+1)-1)$$

$$= k^{2}(k+1) + (k+1)(3(k+1)-1)$$

$$= (k+1)(k^{2} + 3(k+1) - 1)$$

$$= (k+1)(k^{2} + 3k + 2)$$

$$= (k+1)^{2}(k+2),$$

which is equal to the RHS of P(k+1).

- (b) Let $A = \{0, 1\}$ and $B = \{4, 5\}$.
 - $(i) \ (0,4), \ (0,5), \ (1,4), \ (1,5).$
 - (ii) 16.

QUESTION 3.

(40 marks)

- (a) Let A, B, and C be sets.
 - (i) Prove that $(\overline{A \cap B}) \cap C = (C A) \cup (C B)$;
 - (ii) Is $(C A) \cup (C B) = C$? If yes, prove it, if no, give a counterexample.
- (b) Let $S = \{3a + 6b \mid a, b \in \mathbb{Z}\}.$
 - (i) Show that $S \subseteq \mathbb{Z}$;
 - (ii) Is $S = \mathbb{Z}$? If yes, prove it, if no, give a counterexample.

Solution:

(a) (i) We prove by using set identities.

$$(\overline{A \cap B}) \cap C = (\overline{A} \cup \overline{B}) \cap C$$
 De Morgan
$$= (\overline{A} \cap C) \cup (\overline{B} \cap C)$$
 Distributivity
$$= (C \cap \overline{A}) \cup (C \cap \overline{B})$$
 Commutativity
$$= (C - A) \cup (C - B)$$

- (ii) No. Counterexample: $A = B = C = \{1\}.$
- (b) (i) Take $x \in S$. We want to show that $x \in \mathbb{Z}$. Since $x \in S$, we must have that x = 3a + 6b for some integers a and b. Since \mathbb{Z} is closed under multiplication and addition we have that $x \in \mathbb{Z}$.
 - (ii) No. $1 \in \mathbb{Z}$ and $1 \notin S$. Indeed, each element of S is an integer that is divisible by 3.