lodométrie

Matériel

- Béchers
- Burette
- Pipette et poire propipette
- Agitateur magnétique
- Solutions diverses

Objectifs du TP

- Savoir préparer une solution aqueuse de diiode avec de l'iodure de potassium.
- Connaître la technique du dosage en retour.

I. Quelques notions théoriques

1.1. Rappels

$$\underbrace{\alpha Ox}_{oxydant} + ne^{-\overbrace{Caydation}_{Réduction}} \underbrace{\beta Red}_{Réduction}$$

On définit un couple redox : Ox/Red

D'où par définition

Oxydation = perte d'électrons

Réduction = gain d'électrons

- ⇒ Un oxydant capte des électrons et est réduit.
- ⇒ Un réducteur cède des électrons et est oxydé.

1.2. Espèces redox du soufre

Le soufre intervient avec divers degrés d'oxydation dans les espèces suivantes, et donne lieu à des couples différents.

- Ferrire les demi-réactions redox des couples suivants :

 - Sulfate / sulfite : SO_4^{2-} / SO_3^{2-} en milieu acide, E°(SO_4^{2-} / SO_3^{2-}) = 0.17V

1.3. Principe de l'iodométrie

<u>lodométrie</u>: technique de dosage d'oxydoréduction pour lequel le diiode I₂ est l'oxydant. En effet, le diiode est un halogène, il est très réactif (capte facilement un électron) C'est donc un puissant oxydant.

Le diiode est solide à température ambiante (solide gris foncé-noir), il sublime en un gaz violet si on le chauffe un peu (sans passer par une phase liquide!)

- → Attention, le diiode réagit avec la peau et les muqueuses : **EVITER TOUT CONTACT AVEC LA PEAU.** En cas de contact, mettre un peu de solution de thiosulfate diluée à 1% puis rincer à l'eau.

1.4. Normalité d'une solution

Normalité: c'est le nombre de moles d'électrons que peut capter (ou libérer) un litre de solution. Une solution N /10 est une solution de normalité 1/10^{iem} donc une solution pour laquelle 0,1 mole d'électrons peuvent être captés (ou cédés) par litre.

Ainsi les demi-réactions redox permettent de mettre en relation la concentration du composé et sa normalité

Application

- Calculer la normalité d'une solution de thiosulfate à 0,1 mol/l.
- Cette solution est-elle oxydante ou réductrice ?

II. Préparation de la solution de diiode I2

2.1. Problème expérimental

Problème : le diiode est très peu soluble dans l'eau

<u>Solution</u>: Le diiode forme un complexe I_3 très stable dans l'eau. Il a les mêmes propriétés oxydantes que le diiode. On fabrique donc une solution de KI + I_2 . En effet par complexation le diiode est très soluble dans une solution concentrée en iodure de potassium.

- © Combien y-a-t-il de mole de KI dans 10 g de cristaux d'iodure de potassium ?
- $\ensuremath{\mathscr{F}}$ Monter qu'il faut dissoudre m = 1,27 g de diiode solide dans 100 ml de solution d'iodure de potassium pour avoir une solution N/ 10.

2.2. Réalisation pratique de la solution de I₂ dans KI

- → Peser environ 10g de KI sur un morceau de papier filtre.
- Pourquoi environ?
- → Dans un bécher de 250 cm³ dissoudre complètement les 10g d'iodure de potassium dans environ 25 cm³ d'eau distillée.
- → Utiliser une baguette en verre pour écraser les cristaux.
- \rightarrow Mettre de côté environ 5 cm 3 de cette solution, elle servira à divers rinçage.
- → Peser avec précision m = 1,27g de diiode, dans un verre de montre.
- Pourquoi avec précision ?
- \rightarrow Dissoudre totalement ce diiode dans la solution d'iodure de potassium précédente, sans perdre le moindre cristal de I_2 , on rincera la coupelle avec les 5 cm³ mis de côté.
- → Verser la solution obtenue dans une fiole jaugée de 100 ml. La fermer avec un bouchon de caoutchouc.
- ightarrow Agiter, ajuster avec l'eau distillée jusqu'au trait de jauge et agiter à nouveau.

On a alors une solution de I₂ dans KI de normalité N/10.

III. Dosage du thiosulfate de sodium Na₂S_éO₃ par I₂

3.1. Réaction de dosage

Deux couples redox interviennent : couple I_2 / $I^ E^\circ = 0,62 \text{ V}$ Couple $S_4O_6^{2-}$ / $S_2O_3^{2-}$ $E^\circ = 0,09 \text{V}$

- \rightarrow On montre que la constante de cet équilibre est K $\approx 10^{17}$.
- → Conclusion.

A l'équivalence le nombre d'électrons cédés par le réducteur correspond au nombre d'électrons captés par l'oxydant.

3.2. Dosage expérimental (on ne réalisera ce dosage qu'en fin de TP s'il reste du temps)

- → ATTENTION il y a deux solutions de thiosulfate :
 - l'une diluée à 1% pour rincer ou nettoyer
 - l'autre de normalité N_t pour le dosage.
- \rightarrow Prélever 20 cm³ de solution de thiosulfate de sodium Na₂S₂O₃ de normalité N_t, et les verser dans un bécher.
- \rightarrow Remplir la burette de solution de diiode.
- → Réaliser le dosage.
- A l'équivalence il y a apparition d'une couleur jaune. A quoi est-elle due ?
- Déduire de ce dosage la normalité du thiosulfate.

3.3. Autre méthode de dosage plus précise.

La couleur jaune qui apparaît à l'équivalence est un peu trop pâle pour permettre de déterminer l'équivalence avec précision. On utilise donc de l'empois d'amidon, qui se colore en bleu violacé en présence de diiode.

- → Mettre dans la burette le thiosulfate de sodium à doser.
- → Prélever 20 cm³ de diiode, et les verser dans un bécher. Ajouter environ 50 cm³ d'eau.
- \rightarrow Verser Na₂S₂O₃ de façon à décolorer sensiblement la solution de diiode. Celle-ci devient jaune pâle.
- ightarrow Mettre quelques gouttes seulement d'empois d'amidon, la solution se colore en bleu ou brunâtre.
- → On peut alors verser précisément la quantité de Na₂S₂O₃ qui permet de décolorer la solution.
- Noter le volume de thiosulfate versé.
- Déduire de ce dosage la normalité du thiosulfate.

IV. Dosage en retour du sulfite disodique Na₂SO₃

4.1. Principe du dosage en retour

Le but de ce dosage est de déterminer la normalité d'une solution de sulfite disodique grâce à un dosage par une solution de diiode.

Dans un vase à réaction, on met une quantité connue de sulfite disodique (2Na+, SO₃²⁻) soit n₁ moles

Principe du dosage en retour :

- \rightarrow On oxyde tous les ions sulfite SO_3^{2-} en ions sulfate SO_4^{2-} grâce à un excès de diiode I_2 soit I_2 moles. La quantité de diiode qui n'a pas été versée est parfaitement connue.
- La solution prend une teinte jaune pourquoi ?
- Ecrire la réaction qui a lieu et faire un bilan de matière après réaction (réactifs : I₂, SO₃²-)
- → On dose alors la quantité de diiode en excès par du thiosulfate.
- En déduire la composition de la solution à l'équivalence.
- → Par différence, on connaît donc la quantité de diiode qui a été nécessaire pour oxyder les ions sulfite.

4.2. Dosage expérimental

- \rightarrow Mettre dans un bécher 10 cm³ de sulfite Na₂SO₃ et 20 cm³ de la solution de diiode I₂ N/10.
- \rightarrow ATTENTION Ne pas confondre la solution de sulfite Na₂SO₃ avec celle de thiosulfate Na₂S₂O₃.
- ightarrow Doser l'excès de diiode par le thiosulfate. On utilisera de l'empois d'amidon pour colorer I_2 au voisinage de l'équivalence.
- Indiquer le volume de thiosulfate versé :
- Déduire de ce dosage la normalité du sulfite.