

Introduction to Aerospace Engineering AS2101: Laboratory Portion

Bharath Govindarajan • M Ramakrishna July 2021 • Department of Aerospace Engineering

Course Information

- Objectives: To develop basic computer skills and reporting skills essential for an engineer. To introduce different aircraft and components; history of flight and Indian aerospace activities.
- Prerequisites: None
- Instructors: Bharath Govindarajan (bharath@ae.iitm.ac.in)
 M Ramakrishna (krishna@ae.iitm.ac.in)
- Lectures: July 3rd July 31st
 - Classroom: meet.iitm.ac.in
 - Hours: 1400-1630 Saturdays
- Course URL: Moodle

Course Evaluation

- Assessment Method
 - Theory: 50 %
 - We have already had 7 quizzes
 - Laboratory: 50%
 - Four graded assignments (equal weightage)
- Attendance Policy
 - None
- Examination Policy
 - Assignments to be turned in on the due-date
 - Late submissions will not be graded

Reference Material

- Introduction to Aviation Science, J. W. Benkert
- Above and Beyond: Encyclopedia of Aviation and Space Sciences,
 W. B. Black and J. F. Blashfield
- Jane's All the World's Aircraft, Jane Information Group
- The Not So Short Introduction to LaTeX, Tobias Oetiker
- Practical Physics, G. L. Squires
- The World-Wide-Web ...

Course Outline

Theory

- History of aviation and space flight
- Classification of aircraft and space vehicles
- Functions of major components of airplane and space vehicles
- Subdivisions of aerospace engineering: elements of aerodynamics, propulsion,
 structures, systems, flight mechanics and controls
- Indian aerospace activities

Laboratory

- LaTeX: Scientific document preparation, report writing and standardization;
- Programming Tools: Python and Octave
- Graphing Techniques
- Basic scientific computing
- Statistical treatment of data and curve fitting.

Required Tools

Python3 (min version 3.8)

- High-level programming language available on Windows and UNIX platforms
- Source: https://www.python.org/downloads/
- Many integrated development environments (IDEs) are available

Octave (min version 5.2)

- Open-source scientific programming platform similar to MatLab
- Source: https://www.gnu.org/software/octave/
- Available on Windows and UNIX platforms

LaTeX

- Scientific document preparation and report writing
- Source: https://www.latex-project.org/
- Available on Windows and UNIX platforms

Learning Outcomes

- Thorough understanding of the fundamentals governing the underlying principles of aerospace engineering
- Ability to write precise and concise scientific documents in LaTeX
- Basic programming ability using Python and Octave to analyze and solve scientific problems
- Basic understanding of curve fitting and associated errors
- Inculcate "good practices" for plots, writing and reporting
- Develop an appreciation for the simplicity and complexity of the tenets of aerospace engineering
- This course is part of the core foundation for understanding flying vehicles (structures, flight control, propulsion)

Google Meet Sessions

Google Meet Links	
Lecture	meet.google.com/hsx-njaj-nvr
Room 1 (Vizan)	meet.google.com/rvm-yztz-ivu
Room 2 (Rushikesh)	meet.google.com/nyk-ufon-bcg
Room 3 (Suraj)	meet.google.com/cyo-shrm-smw
Room 4 (Kamal)	meet.google.com/nxj-mbzm-fob
Room 5 (Ananth)	meet.google.com/xdk-mebr-sag

- Room 1: AE18B<all>, AE19B001 008
- Room 2: AE19B009 022
- Room 3: AE19B023 038
- Room 4: AE19B039 053, AE19B101
- Room 5: AE19B102 109, ED19B<all>

Task 1

- Ensure all tools work!
- Write a script in Python to generate an plot and save the image
- Write a script in Octave to create a plot and save the same
- Include both figures in a Latex document, write the equations used to create them and write a small paragraph that explains the figure.
- Create a folder with <roll_number>. Submit the PDF, *.py, *.m, and *.tex in the appropriate folder:

https://drive.google.com/drive/folders/15A4ZJFH0ie9M_k9OGuVVnoS6k9DT7 c9z?usp=sharing

