CS3110 Formal Language and Automata

Tingting Chen
Computer Science
Cal Poly Pomona

Chapter 4. Properties of regular languages

- What happens when we perform operations on regular languages?
 - E.g., if we concatenate two regular languages, is the resulting language also regular?
- Can we decide whether a given language has a certain property or not?
 - E.g., Can we tell if a certain language is finite or not?
- Can we tell whether a given language is regular or not?

Closure properties of regular languages

- Definition: A regular language is any language that is accepted by a finite automaton
- Theorem 4.1: The class of regular languages is closed under the following operations (that is, performing these operations on regular languages creates other regular languages)
 - Union
 - Concatenation
 - Kleene star
 - Complement
 - Intersection
 - Difference

Using same NFA constructions as in the proof showing regular expressions correspond to regular languages

Unions, Intersections and Difference

Key idea of proof: construct FA that accepts intersections /complements

Suppose that

 $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ accepts language L_1 , and

 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ accepts language L_2

Let M be an FA defined by M = (Q, Σ , δ , q₀, F) where

$$Q = Q_1 \times Q_2$$

$$q_0 = (q_1, q_2)$$

and the transition function δ is defined by:

$$\delta((p, q), a) = (\delta_1(p, a), \delta_2(q, a)),$$

for any $p \in Q_1$, $q \in Q_2$, and $a \in \Sigma$

Unions, Intersections and Difference:

Then:

- 1. If $F = \{(p, q) \mid p \in F_1 \text{ or } q \in F_2\}$, M accepts the language $L_1 \cup L_2$
- 2. If $F = \{(p, q) \mid p \in F_1 \text{ and } q \in F_2\}$, M accepts the language $L_1 \cap L_2$
- 3. If $F = \{(p, q) \mid p \in F_1 \text{ and } q \notin F_2\}$, M accepts the language $L_1 L_2$

Complement

Consider the special case in which L_1 is Σ^* . Here, $L_1 - L_2$ is actually L_2 ' (the complement of L_2)

Membership Question

Question: Given regular language L and string w, how can we check if $w \in L$?

Answer: Take the DFA that accepts L and check if w is accepted.

L is empty?

Question: Given regular language L, how can we check if L is empty: (L=f)?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state.

L is finite?

Question: Given regular language L, how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state.

Regular Languages and non-regular Languages

- Regular Languages
 - {a}*
 - L(b*c+a)
 - ...

- Non-regular languages
 - {aⁿbⁿ: n≥0}
 - $\{vv^R: v \in \{a,b\}^*\}$
 - •

Prove a Language is Not Regular

- How can we prove that a language L is not regular?
 - Prove that there is no DFA that accepts
 - This is not easy to prove...

Solution: the pumping Lemma!