Содержание

1	Эксперимент	2
2	Эксперимент	3
3	Эксперимент	4
4	Эксперимент 4.1 Часть 4.2 Часть	5 5
5	Эксперимент 5.1 Часть 5.2 Часть	7 7
6	Эксперимент	9
7	Эксперимент	10

Все ниже перечисленные реакции относятся к типу реакций замещения. В ходе данных реакций к металлы Br, Na, K замещаются металлами более реакционным металлами Ag, Pl.

$$NaCl|KBr|KI + AgNO_3 \rightarrow AgCl|Br|I \downarrow + NaNO_3$$
 (1.1)

$$2NaCl|2KBr|2KI + Pb(NO_3)_2 \rightarrow PbCl_2|Br_2|I_2 \downarrow +2KNO_3 \tag{1.2}$$

В образоващейся смеси соли $PbCl_2|Br_2|I_2 \wedge AgCl|Br|I$ являются нерастворимыми, поэтому они выпадут в виде осадка.

Compound	Color	Transparency
AgCl	Светло серый → белоснежный	Непрозрачный
AgBr	Бело-желтовытый	Непрозрачный
AgI	Желтый	Непрозрачный
$PbCl_2$	Белый	Непрозрачный
$PbBr_2$	Бледно-желтый	Непрозрачный
PbI_2	Желтый	Непрозрачный

Рис. 1. AgCl, AgI, AgBr

Рис. 2. $PbCl_2, PbBr_2, PbI_2$

Правило Бертоли в каждой реакции можно найти такое соединение которое не растоворяется в воде тогда все реакции сотоятся:

$$ZnCl_2 + Na_2S \rightarrow ZnS \downarrow +2NaCl$$
 (2.1)

$$CuSO_4 + Na_2S \rightarrow CuS \downarrow + Na_2SO_4 \tag{2.2}$$

$$Pb(NO3)_2 + Na_2S \rightarrow PbS \downarrow +2NaNO_3$$
 (2.3)

$$MnCl_2 + Na_2S \rightarrow MnS \downarrow +2NaCl$$
 (2.4)

Все выше перечисленные реакции называются реакциями замещения.

Compound	Color	Transparency
ZnS	Белый	Непрозрачный
CuS	Черный	Непрозрачный
PbS	Серый	Непрозрачный
MnS	Черный	Непрозрачный

Прибавим соляную кислоту:

$$ZnS + 2NaCl + 2HCl \rightarrow ZnCl2 \downarrow + Na2S + H2O$$
 (2.5)

$$CuS + Na2SO4 + 4HCl \rightarrow CuSO4 \downarrow +2NaCl + H2S$$
 (2.6)

$$PbS + 2NaNO3 + 6HCl \rightarrow PbCl2 \downarrow + 2NaNO3 + H2S$$
 (2.7)

$$MnS + 2NaCl + 2HCl \rightarrow MnCl2 \downarrow + Na2S + H2O$$
 (2.8)

Compound	Color	Transparency
$ZnCl_2$	Белый	Непрозрачный
$CuSO_4$	Черный	Непрозрачный
$Pb(NO_3)_2$	Черный	Непрозрачный
$MnCl_2$	Бледный бело-желтый	Непрозрачный

$$Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow +2NaCl$$
 (3.1)

$$Na^{2+} + SO_4^{2-} + Ba^{2+} + 2Cl^{-} \rightarrow BaSO_4 + 2NaCl$$
 (3.2)

$$CaCl_2 + Na_2SO_4 \rightarrow CaSO_4 + 2NaCl$$
 (3.3)

$$CaCl_2 + Na_2SO_4 \rightarrow CaSO_4 + 2NaCl$$
 (3.3)
 $Na^{2+} + SO_4^{2-} + Ca^{2+} + 2Cl^- \rightarrow CaSO_4 + 2NaCl$ (3.4)

Добавим HCl

$$BaSO_4 + 2NaCl + HCl \rightarrow BaCl_2 + Na_2SO_4 + H_2O$$

$$(3.5)$$

$$Ba^{2+} + SO_4^{2-} + 2Na^+ + 2Cl^- + H^+ \rightarrow BaCl_2 + Na_2SO_4 + H_2O$$
 (3.6)

$$CaSO_4 + 2NaCl + HCl \rightarrow CaCl_2 + Na_2SO_4 + H_2O$$

$$(3.7)$$

$$Ca^{2+} + SO_4^{2-} + 2Na^+ + 2Cl^- + H^+ \rightarrow CaCl_2 + Na_2SO_4 + H_2O$$
 (3.8)

Compound	Color	Transparency
$BaCl_2$	Белый	Прозрачный
$\cdot CaCl_2$	Темно-синий	Прозрачный

4.1. Часть

$$NH_4Cl + NaOH \rightarrow NaCl + H_2O + NH_3 \uparrow$$
 (4.1)

Классический пример реакции нейтрализации, кислота реагирует с основанием в результае образуется раствор соли. Аммиак являющийся основанием, испаряется в следствии чего лакмусовая бумага меняет свой цвет. В моем случае окарс сответстовал $pH \approx 6-7$.

Рис. 3. Степень pH

4.2. Часть

$$NH_4Cl \xrightarrow{Heat} NH_3 \uparrow +HCl \uparrow$$
 (4.2)

Реакция эндотермическая, но в резульмтате хлорид амония разлогается на летучие газы $NH_3 \wedge HCl$.

Рис. 4. Степень pH

5.1. Часть

$$CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$$
(5.1)

$$CoCl_2 + 2NaOH \rightarrow Co(OH)2 + 2NaCl$$
 (5.2)

Это реакции осаждения в ходе котрой образовалось растоворимое вещество. Поэтому растоворы данных рекций прозрачны.

Рис. 5. Реакции первого этапа с $CoCl_2 \wedge CuSO_4$

Соединяем с раствором аммиака.

$$CoCl_2 + 2NaOH + 2NH_3 \rightarrow Co(OH)_2 \downarrow + 2NaCl + 2NH_4Cl$$

$$(5.3)$$

$$Cu(OH)_2 + Na_2SO_4 + 4NH_3 \rightarrow Cu(NH_3)_4 \downarrow + H_2O + Na_2O + SO_4$$
 (5.4)

5.2. Часть

Если добавит растовор аммиака в подготовленный нами растрворы из эексперемента 1 то ничго не происходит.

(b) $Co(OH)_2 + 2NaCl$

Рис. 6. Реакции первого этапа с $CoCl_2 \wedge CuSO_4$

Реакций тут не происходит, но при нагревании но происходящее описывется так. Не растворимы в обычных условиях PbI_2 при награвнии начинаект рассторятья. Потом расвор достигает максимальной концентации. Во время остывание весь растворившийся йодид свинца снова выпадат в виде осдка, но на этот раз в виде золотистых крислов.

Рис. 7. Кристализованный йодид свинца