Übungen zur Algebraischen Zahlentheorie II

Sommersemester 2022

Universität Heidelberg Mathematisches Institut DR. K. HÜBNER DR. C. DAHLHAUSEN

Blatt 12

Abgabe: Freitag, 15.07.2022, 09:15 Uhr

Aufgabe 1 (Beweisschritt aus der Vorlesung).

(2 Punkte)

Sei G eine endliche Gruppe und sei \mathbb{Z} mit der trivialen G-Wirkung versehen. Wir betrachten $\chi \in \operatorname{Hom}(G, \mathbb{Q}/\mathbb{Z}) \overset{o}{\to} H^2(G, \mathbb{Z})$, $\Phi \colon G^{ab} \overset{\sim}{\to} H_1(G, \mathbb{Z}) \overset{\sim}{\to} \hat{H}^{-2}(G, \mathbb{Z})$ und $\sigma \in G^{ab}$ Zeigen Sie, dass $\Phi(\sigma) \cup \delta(\chi) = \chi(\sigma)$.

Aufgabe 2 (Reziprozität).

(6 Punkte)

Berechnen Sie die Reziprozitätsabbildung für die zyklotomische Erweiterung $\mathbb{Q}_3(\zeta_{18})/\mathbb{Q}$ (für eine primitive 18-te Einheitswurzel in einem algebraischen Abschluss von \mathbb{Q}_3) und geben Sie die Gitter der Zwischenkörper und deren korrespondierenden Normuntergruppen an.

Aufgabe 3 (Die Hazewinkelabbildung).

(8 Punkte)

Sei L/K eine endliche, rein verzweigte Galoiserweiterung lokaler Körper und sei $L^{\rm nr}/K^{\rm nr}$ die zugehörige Erweiterung der jeweiligen maximalen unverzweigten Erweiterungen, sodass die Einschränkungsabbildung ${\rm Gal}(L^{\rm nr}/K^{\rm nr}) \to {\rm Gal}(L/K)$ ein Isomorphismus ist. Ferner sei M/K die maximale abelsche Zwischenerweiterung von L/K. Zeigen Sie:

- (a) Für $\alpha \in K^{\times} \subset (K^{nr})^{\times}$ existiert ein $\beta \in (L^{nr})^{\times}$ derart, dass $N_{L^{nr}/K^{nr}}(\beta) = \alpha$.
- (b) Es folgt $N_{L^{nr}/K^{nr}}(\varphi_L(\beta) \cdot \beta^{-1}) = \varphi_L(\alpha) \cdot \alpha^{-1} = 1$ für den Frobenius $\varphi_L \in Gal(L^{nr}/L)$.
- (c) Es existiert ein $\sigma \in \operatorname{Gal}(L^{\operatorname{nr}}/K^{\operatorname{nr}})$ derart, dass $\varphi_L(\beta) \cdot \beta^{-1} \equiv \pi \cdot \sigma(\pi)^{-1} \mod U_{L^{\operatorname{nr}}/K^{\operatorname{nr}}}$; siehe Blatt 10, Aufgabe 2 für die Definition von $U_{L^{\operatorname{nr}}/K^{\operatorname{nr}}}$.
- (d) Die Einschränkung $\tilde{\sigma} \in \text{Gal}(M \cdot K^{\text{nr}}/K^{\text{nr}})$ von σ hängt nicht von der Wahl von σ ab.
- (e) Es existiert ein wohldefinierter Gruppenhomomorphismus (Hazewinkelabbildung)

$$\Psi_{L/K} \colon K^{\times}/\mathrm{N}_{L/K}(L^{\times}) \longrightarrow \mathrm{Gal}(L/K)^{\mathrm{ab}}, \quad \alpha \mapsto \tilde{\sigma}|_{M}.$$

Bemerkung: Man kann zeigen, dass die Hazewinkelabbildung invers zur Verabelung

$$\tilde{\Upsilon}^{ab}_{L/K} \colon \operatorname{Gal}(L/K)^{ab} \to K^{\times}/N_{L/K}(L^{\times})$$

der Neukirchabbildung $\tilde{\Upsilon}_{L/K}$: $Gal(L/K) \to K^{\times}/N_{L/K}(L^{\times})$ von Blatt 11, Aufgabe 2 ist. Für rein verzweigte Erweiterungen liefert dies einen alternativen Zugang zur lokalen Klassenkörpertheorie.

Aufgabe 4. Schlagen Sie in einem Wörterbuch die Bedeutung der Subjunktion "sodass" nach und führen Sie sich vor Augen, dass diese nicht dem englischen Ausdruck "such that" entspricht.