

非线性电子线路 第二次习题课 11.24

- 3.1 如图 E3.1 所示的甲类功率放大器电路中,若不计变压器损耗,且晶体管的 $U_{\text{CES}}=0$, $I_{\text{CEO}}=0$,发射极电阻 R_{E} 上直流压降可忽略不计,放大器输入信号充分激励。
- (1) 若輸出变压器 Tr_2 的匝数比 n=4,放大器实现最佳匹配。求 R_L 所获不失真最大输出功率 P_o 及相应的放大器效率 η_C ; 【Ans. $:P_o=500$ mW, $\eta_C=50\%$ 】
- (2) 在维持 $I_{\rm CQ}$ 不变的条件下,不用变压器,直接将扬声器接到集电极,再求不失真最大输出功率 $P_{\rm o}$ 和 $\eta_{\rm C}$; 【Ans. $:P_{\rm o}=83.3{\rm mW}, \eta_{\rm C}=8.3\%$ 】
 - (3) 在维持 I_{cq} 不变的条件下,将变压器外接负载增大到 16Ω ,求此时的不失真最大输出功率 P_o 和 η_{co}

3.1(1) R'=N" R1=16x8=1280 Vac + Icaki = 2Vcc Ica = Vcc = -93.75mA Po = 1 Ica Vcc = 562-5 mW . Ba= Ica Vcc 1 c = Poc = 50% (2) Po = = = 1 IcaR1 = 35-16 mW 1 c = P. = 3.13% (3) R'= N'RL= 2560 Uz = Ica R' = -24 V. ILA > Nac | . |Vomax = 12 V Po = Vomax 2 = 281-25 mW Jc= Po = 25%

[Ans.: $P_0 = 166.7 \text{mW}$, $\eta_C = 16.7\%$]

图 E3.1

[Ans.: $P_{DC} = 5.01$ W, $\eta_{C} = 70.7\%$]

 $Ans. P_1 = 3.54W$

- 如图 E3.3 所示为互补对称功放电路,设在正弦激励的情况下,负载电流的幅度为 $I_L=0.45A$,求:
- (1) 6 载获得的功率 P_{i} ;

(2) 电源提供的功率 $P_{\rm IC}$ 和放大器的效率 $\eta_{\rm C}$ 。

3.3 (1) PL= \(\frac{1}{2} \text{Link} = 3.54\text{W}\)

(2) Poc= \(\frac{27}{2} \text{Lin} = 5.01\text{W}\)

$$y = \frac{PL}{Bc} = 70.7\%$$

图 E3.3

3.5 如图 E3.5 所示的有输入缓冲级的互补对称乙类放大器,设 $R_1 = R_2 = 2k\Omega$, $R_L = 100\Omega$, 所有晶体管 $\beta = 60$, U_{BE} (npn) = U_{EB} (pnp) = 0.6 V, 计算电流增益,即输出到负载电流 i_0 与缓冲级输入电流 i_1 之比。(提示: VT₁、VT₃, VT₂、VT₄分别组成射极跟随器,因此有 $u_0 \approx u_1$)

3.5 Vi. Vi. -直导通 (交流小信号分析、不用考虑直流压阵) Viro的 VT3号通、VF载让,VT、一个均有作射极强随器 对上等分: (B+1) is + iB3 + 1 = 0 (B+1) iss = 1/2 = Wi io = (B+1) iB3 ii= -2ia (並似处理) >A== 459.33 · ii=-iB1+iB2 = A= 1 = 124.08

[Ans.: $A_1 = 459$]

图 E3.5

3.9 谐振功率放大器工作在临界状态,已知 $V_{cc}=30V$, $-E_{B}=U_{T}=0.6V$, $\zeta=0.96$,临界动态线斜率 $G_{cr}=0.4S$ 。求 η_{C} , P_{o} , R_{T} , P_{C} 值。

[Ans.: $\eta_{\rm C} = 75.4\%$, $P_{\rm o} = 3.456$ W, $R_{\rm T} = 120\Omega$, $P_{\rm C} = 1.128$ W]

3.11 谐振功率放大器原来工作在临界状态,且 $\varphi=70^{\circ}$, $P_{o}=3W$, $\eta_{c}=60\%$ 。后来发现其性能发生变化,发现 P_{o} 减小,而 η_{c} 却增加到 68%,但 V_{CC} 、 U_{c} 、 u_{BEmax} 却保持不变。试问此时放大器工作在什么状态? P_{o} 和 φ 值各为多大? 并分析性能变化的原因。 【Ans. $:\varphi=26.9^{\circ},P_{o}=1.3375W$ 】

- 3.12 已知谐振功率放大器的输出动态特性曲线如图 E3.9 中折线 MNK 所示,求:
- (1) 该放大器工作在什么状态?

【Ans.:欠压状态】

(2) 求 V_{cc}、U_c、φ值;

[Ans. $:V_{CC} = 24V, U_c = 10V, \varphi = 32.86^{\circ}$]

(3) 若保持 V_{cc} 、 U_b 、 $-E_B$ 不变,要增大输出功率,提高转换效率,应如何变化谐振功放负载 R_T ? 所能达到的最大转换效率 η_c 为何值? 【Ans.: $\eta_c = 76.6\%$ 】

图 E3.9

3.13 假设谐振功放的输出动态特性如图 E3.10 中的折线 MNK 所示,试根据此动态特性计算功放的输出功率 $P_{\rm o}$ 和转换效率 $\eta_{\rm C}$ 。 【Ans.: $P_{\rm o}=875.84$ mW, $\eta_{\rm C}=83.7\%$ 】

图 E3.10

- 3.14 按下列要求画出一个谐振功率放大器原理电路。
- (1) 采用 NPN 功率管;
- (2) 两级皆为共射放大器,且共用一个正电源;
- (3) VT1 管集电极用并联谐振回路,串联馈电,基极用分压式偏置;
- (4) VT2 管集电极为并联馈电,采用 L 型匹配网络与天线匹配,基极用自生负偏压电路。

- 3.16 已知如图 E3.12 所示的 T 型匹配网络中,负载电阻为 R_L ,放大器要求的阻抗为 R_T 。
- (1) 设 $Q_{el} = X_{L1}/R_{L}$,且满足 $Q_{el}^{2} > R_{T}/R_{L} 1$,试推导阻抗变换公式;
- (2) 若给定 $R_L = 100\Omega$, $Q_{el} = 4$, f = 50MHz, $R_T = 250\Omega$, 确定 C_1 , C_2 , L_1 的值。

图 E3.12

- 5.1 对图 E5.1 所示的电路,假定所有晶体管的 β 值足够高,恒流源晶体管的 U_{BE} 取为 0.7V。其他参数 如下: $V_{CC1} = 5V$, $V_{CC2} = 12V$, $-V_{EE} = -12V$; $R_C = 910\Omega$, $R_B = 4k\Omega$, $R_E = 1k\Omega$ 。
 - (1) 推导输出电压 u_o(t)的表达式。

[Ans: $u_0 = 1.82(1+0.09\cos 10^3 t)\cos 10^7 t(V)$]

(2) 若 $u_1(t) = 1\cos 10^3 t(V)$, $u_2(t) = 2\cos 10^7 t(V)$, 试画出 $u_o(t)$ 的波形示意图和频谱图。

t-1(1)偏置电路: 月值认为多高. 忽略 La O-REIX-UBE = VEE 3 IX = 2.825mA U. - Ly RB - UBE = - VEE 3 Ly = 11.3+W1 u→i线性支換电路: REIx = 2.835 7±0Ur=1.3 VT. NIZ. RE构成 (i)=a(Ix+ 2) V=1 12 = X([x - 12]) 23 /75. VT6 No= (Vec - 24Rc) - (Vaz - 13Rc) = (13-24) Rc 新电路: i3-i4=- aly tah(以) 23 VT3- VT4 Ui= UBE3 - UBE4 = W/(1/2) = No = Ty R tanh(20) = - [y Reap(4) +1 = - Ty Re in/int = - TyRe in/int = - Ty => U. = - TyRe TxRE = - LIT 113) x 0.91 11.

- 5.1 对图 E5.1 所示的电路,假定所有晶体管的 β 值足够高,恒流源晶体管的 U_{BE} 取为 0.7V。其他参数 如下: $V_{CC1} = 5V$, $V_{CC2} = 12V$, $-V_{EE} = -12V$; $R_C = 910\Omega$, $R_B = 4k\Omega$, $R_E = 1k\Omega$ 。
 - (1) 推导输出电压 u_o(t)的表达式。

[Ans: $u_0 = 1.82(1+0.09\cos 10^3 t)\cos 10^7 t(V)$]

(2) 若 $u_1(t) = 1\cos 10^3 t(V)$, $u_2(t) = 2\cos 10^7 t(V)$, 试画出 $u_o(t)$ 的波形示意图和频谱图。

5.5 试分别求出如图 E5.5(a),(b),(c)所示 3 电路输出电压的表达式。设所有二极管的特性均为从原点出发、斜率为 g_D 的直线。且 $U_L\gg U_S$, $R_L\gg 1/g_D$ 。

5.6 设图 E5.6 所示电路中,场效应管的 $I_{DSS} = 10 \text{mA}$, $U_P = -2 \text{V}$; $R_1 = R_E = 5 \text{k}\Omega$, $R_L = 4 \text{k}\Omega$, $C = 0.25 \mu\text{F}$, $V_{CC} = V_{EE} = 5 \text{V}$; $u_1(t) = 1.2 \cos 10^3 t \cos 10^7 t$, $u_2(t)$ 为图 E5.6(b) 所示方波。设晶体管 β足够大,试求输出电压的表达式及纹波大小(纹波可近似定义为一次高频电压幅度与低频电压幅度之比)。

