

Esercitazione II Amplificatore operazionale

Misure Meccaniche e Termiche prof. Stefano Rossi

Indice

1.	Amr	olificatore ua741	2			
2.	•	citazione				
	2.1	Amplificatore in configurazione invertente				
_	2.2	Filtro attivo passa alto in configurazione non invertente				
3.	3. Quesiti3					
3	3.1	Amplificatore in configurazione invertente	3			
3	3.2	Filtro attivo passa basso in configurazione non invertente	3			

1. Amplificatore ua741

GENERAL PURPOSE SINGLE OPERATIONAL AMPLIFIER

- LARGE INPUT VOLTAGE RANGE
- NO LATCH-UP
- HIGH GAIN
- SHORT-CIRCUIT PROTECTION
- NO FREQUENCY COMPENSATION
- REQUIRED
- SAME PIN CONFIGURATION AS THE UA709

DESCRIPTION

The UA741 is a high performance monolithic operational amplifier constructed on a single silicon chip. It is intented for a wide range of analog applications.

- Summing amplifier
- Voltage follower
- Integrator
- Active filter
- Function generator

The high gain and wide range of operating voltages provide superior performances in integrator, summing amplifier and general feedback applications. The internal compensation network (6dB/octave) insures stability in closed loop circuits.

ORDER CODE

Part Number	Temperature Range	Package			
Part Number		N	D		
UA741C	0°C, +70°C	•	•		
UA741i	-40°C, +105°C	•	•		
UA741M	-55°C, +125°C	•	•		
Example : UA741CN					

N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT)

PIN CONNECTIONS (top view)

- 1 Offset null 1
- 2 Inverting input
- 3 Non-inverting input
- 4 V_{CC}*
- 5 Offset null 2
- 6 Output
- 7 V_{CC}+
- 8 N.C.

2. Esercitazione

L'esercitazione consiste nel realizzare due circuiti utilizzando l'amplificatore operazionale UA741:

- 1. Amplificazione del segnale in ingresso in configurazione non invertente;
- 2. Realizzazione di un filtro attivo passa basso.

2.1 Amplificatore in configurazione invertente

Realizzare un circuito in grado di amplificare il segnale in ingresso con guadagno teorico G=2,2 utilizzando una resistenza sul ramo di controreazione pari a 2,2 k Ω . Applicare una sinusoide di frequenza pari a 4 kHz e ampiezza picco picco di 4 V.

2.2 Filtro attivo passa alto in configurazione non invertente

Realizzare un filtro attivo passa alto utilizzando un condensatore C_1 =0,1 μ F, R_1 =1 k Ω , una resistenza di controreazione R_f =1 k Ω e una resistenza sul ramo invertente pari a R=1 k Ω .

- 1. Fornire al circuito una sinusoide di ampiezza picco picco pari a 4 V e con frequenza di 10 kHz.
- 2. Fornire 6 frequenze, 4 minori e 4 maggiori della frequenza di taglio nominale.

3. Quesiti

Nelle figure il segnale in ingresso all'amplificatore è CH2 (blu) ed il segnale uscente dall'amplificatore è CH3 (verde).

3.1 Amplificatore in configurazione invertente

- 1. Determinare sperimentalmente il guadagno (figura 1).
- 2. Per quale ampiezza teorica l'amplificatore va in saturazione? Confrontare con il valore sperimentale, calcolando l'errore percentuale.

3.2 Filtro attivo passa alto in configurazione non invertente

- 1. Calcolare la frequenza di taglio teorica.
- 2. Calcolare l'amplificazione relativa al punto 1 e confrontarla con quella teorica (figura 2).
- 3. Calcolare per ogni grafico nelle figure 3-10 la frequenza del segnale in ingresso
- 4. Costruire il grafico guadagno/frequenza relativo al punto 2 e calcolare graficamente la frequenza di taglio sperimentale (figure 3-10).