

Ferienkurs

${\bf Experimental physik} \ {\bf 2}$

SS 2018

Aufgabenblatt 3

Hagen Übele Maximilian Ries

Aufgabe 1 (Leiterrahmen in Feld)

Eine kreisförmige Leiterschleife mit der Radius r wird mit der Geschwindigkeit v in ein Magnetfeld mit der Flussdichte B eingetaucht. Bestimmen sie die induzierte Spannung U in Abhängigkeit von der Zeit t, wenn diese zum Zeitpunkt t=0 in das B Feld eintaucht.

Aufgabe 2 (Tiefpass)

Der in der Abbildung dargestellte Tiefpass enthält den Wirkwiderstand $R=10\mathrm{k}\Omega$ und einen Kondensator mit der Kapazität C=120 nF. Bei welcher Frequenz f ist die Ausgangspannung U_2 um den Faktor 10 kleiner als die Eingangsspannung U_1 ?

Aufgabe 3 (Schwingkreis)

Der in der Abbildung dargestellte Schwingkreis liegt an einer Spannung U_1 mit veränderbarer Frequenz. Die mit L_1 gekennzeichnete Spule hat die Induktivität L_1 = 15 mH. Die Kapazität C und die Induktivität L_2 sollen gewählt werden, dass bei der Frequenz $f_1 = 3.5$ kHz das Spannungsverhältnis $U_2/U_1 = 0$ sein.

Geben sie L_2 in Abhängigkeit von C an.

Aufgabe 4 (Mehrfachfilter)

Berechnen Sie für die abgebildete Schaltung die Transmission $|U_2|/|U_1|$ und $|I_2|/|I_1|$ bei einer Eingangsspannung $U_1=U_0\cos\omega t$ für L=0.1 H, $C=100\mu\mathrm{F}$, $\mathrm{R}=50~\Omega,~\omega=300~\mathrm{s}^{-1}$.

Aufgabe 5 (Selbstinduktion)

Berechnen Sie die Selbstinduktion pro Meter eines Kabels aus zwei konzentrischen Leiterrohren für Hin und Rückfluss des Stromes, wenn die Rohrradien R_1 und R_2 sind. Wie groß ist die magnetische Energiedichte zwischen den Rohren, wenn der Strom I fließt?

$$R_1 = 1 \text{mm}$$
 $R_2 = 5 \text{mm}$ $I = 10 \text{ A}$

Aufgabe 6 (Zuggleis)

Die beiden Schienen eines Eisenbahngleises mit der Spurweite $l=1435\,\mathrm{mm}$ seien voneinander isoliert und mit einem Spannungsmesser verbunden. Welche Spannung U_i zeigt das Instrument an, wenn ein Zug mit der Geschwindigkeit $v=100\,\mathrm{\frac{km}{h}}$ über die Strecke fährt?

Verwenden Sie $B_v = 45 \,\mu\text{T}$ als den Betrag der magnetischen Flussdichte der Vertikalkomponente des Erdmagnetfelds.

Aufgabe 7 (Wechselstromkreis)

- a) Für den in Abbildung 1 gezeigten Wechselstromkreis ist die Stromstärke $I_{\rm eff}$, die durch den Strommesser fließt, zu berechnen. Der geringe Innenwiderstand des Messgeräts soll vernachlässigt werden.
- b) Wie groß ist die Wirkleistung P_W ?
- c) Welche Wärme Q wird in einer Minute von diesem Stromkreis an seine Umgebung abgegeben?

Abbildung 1: Schaltplan zur Aufgabe "Wechselstromkreis"

Aufgabe 8 (Rotierende Leiterschleife)

Eine rechteckförmige Spule mit der Länge $l=52\mathrm{mm}$, der Höhe (dem Durchmesser) $d=55\mathrm{mm}$ und N=100 Windungen wird von der dargestellten Lage aus ($\alpha=35^\circ$) in einem homogenen Magnetfeld gedreht. Die Drehzahl beträgt $n=50\,\mathrm{1/s}$. Die Drehung erfolgt wie in der Abbildung dargestellt - entgegengesetzt dem Uhrzeigersinn. Das Magnetfeld hat die Flussdichte $B=0.12\,\mathrm{T}$. Es ist die in der Spule induzierte Spannung U in Abhängigkeit von der Zeit t zu ermitteln.

Aufgabe 9 (Kupfer Kreisscheibe)

In einem homogenen Magnetfeld (Flussdichte B) rotiert eine Kupferscheibe (Radius r_0) mit der Winkelgeschwindigkeit ω . Wie groß ist die zwischen den Schleifkontakten gemessene Spannung?

Abbildung 2: Schematische Zeichnung der Kreisscheibe und der relevanten Größen