

Bond Valuation and Analysis

The Fixed Income Market Is Large...

Sources: Bond data from the Securities Industry and Financial Markets Association; Stock data from the World Bank.

Layout of the Course

- Chapter 1: Bond Valuation
- Chapter 2: Estimating Yield to Maturity
- Chapter 3: Duration and Convexity
- Chapter 4: Comprehensive Example

What You Should Know

- Introduction to R
- Intermediate R
- No prior experience with financial analysis necessary!

About me

- Advise clients on valuation and other financial issues primarily related to litigation
- Previously taught investments, investment management, and corporate finance
- Author of Analyzing Financial Data and Implementing Financial Models Using R

See you in the course!

Welcome to the Course!

About me

 Advise clients on valuation and other financial issues related to litigation

Author of Analyzing
 Financial Data and
 Implementing Financial
 Models Using R

Bonds

- Debt instrument
- Repay borrowed amount + interest
- Allows us to focus on fundamental concepts of bond valuation

Characteristics of a Bond - I

- Issuer: The entity that borrows the money
 - Corporations
 - Governments
 - Municipalities
- Principal: The amount borrowed
 - Also called par value or face value

Characteristics of a Bond - II

- Coupon Rate: The amount of interest issuer agrees to pay
 - Annually, semi-annually, or quarterly
 - Fixed or floating rate
- Maturity Date: Date when principal amount is returned to investor
 - Some bonds do not mature

Characteristics of a Bond - III

- Embedded Options
 - Could affect bond's cash flow profile i.e., can change amount and timing of
 cash flow
 - For example, callable bond
 - Issuer can buyback bond earlier than maturity at a pre-agreed price
 - More complex analysis required

The Bond We Will Use

- Annual coupons
- Fixed rate
- Fixed maturity
- No embedded options

Price vs. Value

- We will use the terms "price" and "value" interchangeably, but there are distinctions:
 - Price: Amount paid to acquire asset
 - Value: How much the asset is worth
- For actively traded assets, price may be considered the best estimate of value

Let's practice!

Time Value of Money

Time Value of Money (TVM)

- \$1 today is worth more than \$1 tomorrow
- Suppose you won \$10,000 in a game, what would you choose?
 - Receive the \$10,000 today?
 - Receive the \$10,000 one year from now?

Future Value

- The future value is the value of \$1 at some point in the future
- Prefer \$1 today, so would have to be compensated to agree to receive the cash flow in the future
- Future value (fv) one and two years from now can be calculated as:

```
interest rate
> fv1 <- pv * (1 + r)
> fv2 <- pv * (1 + r) * (1 + r)

present value</pre>
```


Present Value

- Reverse logic of future values
- The value of \$1 in the future is worth less today
- So you will be willing to take less than \$1 today instead of waiting to receive \$1 one or two years from now
- This can be calculated as follows:

```
> pv <- fv1 / (1 + r)
> pv <- fv2 / ((1 + r) * (1 + r))
```


TVM Applied To Bonds

- We can apply this Time Value of Money concept to bonds
- Example:
 - \$100 par value, 5% coupon rate (= \$5),
 5 years to maturity
 - Price = \$100 today

Bond Investors' Trade-Off

Comparing Cash Flows

Let's practice!

Bond Valuation

Bond Valuation

- In this course, we will consider the following simple bond:
 - Fixed Annual Coupon Rate
 - Fixed Maturity Date
 - Option-free

Value of an Asset

- The value of an asset = present value of expected future cash flows
- Cash flows: discounted at the appropriate risk-adjusted discount rate

$$V = \sum_{t=1}^{T} \frac{CF_t}{(1+y)^t}$$
Discount Rate

Laying Out a Bond's Cash Flows

Prior to maturity, the investor receives coupon payments

Coupon Payment

$$V = \sum_{t=1}^{T-1} \frac{C_t}{(1+y)^t} + \frac{C_T + P}{(1+y)^T}$$

Discount Rate or Yield

Principal Repayment

At maturity, the investor receives the last coupon payment <u>and</u> the par value

Creating a Cash Flow Vector

$$V = \sum_{t=1}^{T-1} \frac{C_t}{(1+y)^t} + \frac{C_T + P}{(1+y)^T}$$

Converting to Data Frame

- So we can add additional columns, we need to convert the cash flow vector into a data frame
- Use the data.frame() command

```
> cf <- data.frame(cf)</pre>
```


Creating a Time Index

- Each cash flow occurs at a certain period of time
 - The unit of the periods will be in years
- We create a variable that creates a time index

```
> cf$t <- c(1, 2, 3, 4, 5, . . . )
```


Calculating the PV Factors

- To discount the cash flows, we need a "discount rate"
 - For bonds, the discount rate is called a "yield"
- We create a present value factor used for discounting

```
> cf$pv_factor <- 1 / (1 + y)^cf$t
```

```
> pv_factor <- 1 / (1 + .10)^2
> pv_factor
[1] 0.8264463
```


PV of Cash Flows

• We calculate each cash flow's present value

```
> cf$pv <- cf$cf * cf$pv_factor
```

• The sum of the present values of the bond's cash flow is equal to the bond's value

```
> sum(cf$pv)
```


Let's practice!

Converting Your Code Into Function

Bond Valuation Function

- We will value many bonds in this course
- Steps described in prior chapter will be repeated
- We will create the bondprc() function to simplify calculations

Steps in Bond Valuation - I

- Generalize these inputs:
 - p for par value,
 - r for coupon rate,
 - ttm for time to maturity,
 - y for yield
- We also make some of the code more generic

Steps in Bond Valuation - II

```
> cf <- c(rep(p * r, ttm - 1), p * (1 + r))
```

- rep(x, y) repeats y times the value of x
 - x = p * r = coupon payment
 - y = ttm 1 = bond's time to maturity
 minus one year
- p * (1 + r) = principal + final couponpayment

Steps in Bond Valuation - III

```
> cf <- data.frame(cf)</pre>
```

 Convert to data frame so we can add variables to the data (same as last section)

```
> cf$t <- as.numeric(rownames(cf))</pre>
```

- Create time index used for discounting
 - rownames() of "cf" vector is equal to 1, 2, 3, 4, until the "ttm" of bond
 - as.numeric() needed to ensure values are read as numbers

Steps in Bond Valuation - IV

```
> cf$pv_factor <- 1 / (1 + y)^cf$t</pre>
```

Calculate PV Factor

```
> cf$pv <- cf$cf * cf$pv_factor
```

Calculate PV of each cash flow

```
> sum(cf$pv)
```

Sum PV to arrive at bond's value

Wrap the Code

- Create the bondprc() function
- This will take as inputs p, r, ttm, and y

```
bondprc <- function(p, r, ttm, y){
  cf <- c(rep(p * r, ttm - 1), p * (1 + r))
  cf <- data.frame(cf)
  cf$t <- as.numeric(rownames(cf))
  cf$pv_factor <- 1 / (1 + y)^cf$t
  cf$pv <- cf$cf * cf$pv_factor
  sum(cf$pv)
}</pre>
```


Let's practice!