

FORMALE SYSTEME

ÜBUNG 8

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 10. Dezember 2021

ÜBUNGSBLATT 8

Aufgabe 1:

Kellerautomaten

Aufgabe 2

Permutationssprache kontextfrei?

Aufgabe 3

Deterministische Kellerautomaten

Aufgabe 4
Wiederholung

Aufgabe 1:

Kellerautomaten

Geben Sie einen Kellerautomaten \mathcal{M}_i für die Sprachen L_i ($i=1,\ldots,4$) sowie eine akzeptierende Folge von Konfigurationsübergängen für die gegebenen Wörter w.

(a)
$$L_0 = L(\mathcal{M}_0) = \{a^i b^j c^k \mid i = j \text{ oder } j = k \text{ mit } i, j, k \ge 1\}$$

 $w = aaabbcc$

(b)
$$L_1 = L(\mathcal{M}_1) = \{a^n b^m \mid n, m \ge 0, n = 3m\}$$

 $w = aaab$

(c)
$$L_2 = L(\mathcal{M}_2) = \{ w \in \{a, b\}^{\cdot} \mid |w|_a = |w|_b \}$$

 $w = aabbba$

(d)
$$L_3 = L(\mathcal{M}_3) = \{(ab)^n (ba)^n \mid n \ge 0\}$$

 $w = ababbaba$

Permutationssprache kontextfrei?

Aufgabe 2

ABSCHLUSS FÜR KONTEXTFREIE SPRACHEN

Satz: Wenn L, L_1 und L_2 kontextfreie Sprachen sind, dann beschreiben auch die folgenden Ausdrücke kontextfreie Sprachen:

- (1) $L_1 \cup L_2$ (Abschluss unter Vereinigung)
- (2) L₁ o L₂ (Abschluss unter Konkatenation)
- (3) L* (Abschluss unter Kleene-Stern)

Aber:

Satz: Es gibt kontextfreie Sprachen L, L_1 und L_2 , so dass die folgenden Ausdrücke keine kontextfreien Sprachen sind:

- (1) L₁ ∩ L₂ (Nichtabschluss unter Schnitt)
- (2) **L** (Nichtabschluss unter Komplement)

Beweisen oder widerlegen Sie folgende Aussage.

Ist $L \subseteq \Sigma$ eine kontextfreie Sprache, so ist auch

$$\pi(L) = \left\{ a_1 \dots a_n \in \Sigma^{\cdot} : \begin{array}{l} \text{ex. Permutation } (i_1 \dots i_n) \text{ von } (1 \dots n), \\ \text{sodass } a_{i_1} \dots a_{i_n} \in L \end{array} \right\}$$

kontextfrei.

Deterministische Kellerautomaten

Aufgabe 3

Gegeben sei die Sprache $L=\{w\in \Sigma^{\cdot}\mid |w|_{\mathfrak{a}}+|w|_{\mathfrak{b}}=|w|_{\mathfrak{c}}\}$ über dem Alphabet $\Sigma=\{a,b,c\}$, wobei $|w|_{\mathfrak{a}}$ der Anzahl der Vorkommen von a in w entspricht.

- (a) Entwerfen Sie einen Kellerautomaten \mathcal{M} mit $L(\mathcal{M}) = L$, der mittels Finalzustand akzeptiert.
- (b) Welcher andere Akzeptanzbegriff für Kellerautomaten ist laut Anmerkung in der Vorlesung auch möglich?
- (c) Wann ist eine Sprache deterministisch kontextfrei? Ist *L* deterministisch kontextfrei?

Aufgabe 4

Wiederholung

Welche der folgenden Aussagen sind wahr und welche nicht? Begründen Sie Ihre Antworten – dabei dürfen Sie den gesamten Stoff und alle Resultate der Vorlesung und Übung verwenden.

- (a) Es gibt eine Sprache, die von einem nichtdeterministischen Kellerautomaten erkannt wird, nicht aber von einem deterministischen Kellerautomaten.
- (b) Mithilfe des Pumping-Lemmas für kontextfreie Sprachen kann bewiesen werden, dass eine Sprache *L* kontextfrei ist.
- (c) Für eine beliebige Sprache L gilt: L ist regulär, wenn es eine natürliche Zahl $n_0 \ge 1$ gibt, so dass sich jedes Wort $w \in L$ mit $|w| \ge n_0$ zerlegen lässt in w = xyz mit $y \ne \varepsilon, xy^kz \in L$ für alle $k \ge 0$.