Robinson Arithmetic Notes

Bob Davis

November 27, 2018

1 Definition of Q

Explicit connectives	\rightarrow , \forall , \exists
Implicit connectives	Г
Constants	0
Operations	$s/1, +/2, \times/2$
Relations	=/2, 2</td

- $Q_1 \quad \forall x \forall y, ((\mathbf{s}x) = (\mathbf{s}y) \to x = y)$
- $Q_2 \quad \forall x, 0 \neq (\mathbf{s}x)$
- $Q_3 \quad \forall x, (x \neq 0 \rightarrow \exists y, x = (\mathbf{s}y))$
- $Q_4 \quad \forall x, (x+0) = x$
- $Q_5 \quad \forall x \forall y, (x + (\mathbf{s}y)) = \mathbf{s}(x + y)$
- $Q_6 \quad \forall x, (x \times 0) = 0$
- $Q_7 \quad \forall x \forall y, (x \times (\mathbf{s}y)) = ((x \times y) + x)$
- $Q_8 \quad \forall x \forall y, (x < y \leftrightarrow \exists z, ((\mathbf{s}z) + x) = y)$

 Q_8 seems unnecessary. It is if we just say x < y by saying $\exists z, ((\mathbf{s} \ z) + x) = y$

Q shouldn't be able to define transitive closure though. Yet, $\mathbf{FOL}\{\mathbb{N}, +, =\}$ can define < as the transitive closure of \mathbf{s} .

2 Redefining Q

Operations of arity n represented as relations of arity n + 1.

Equality x = y represented as $(+ x \ 0 \ y)$

Less than, x < y represented as $\exists zz', (\mathbf{s} \ z \ z') \land (+ x \ z' \ y)$

Explicit connectives	$\neg, \land, \rightarrow, \forall, \exists$
Implicit connectives	None
Constants	0
Operations	None
Relations	$s/2, +/3, \times/3$

- $Q_1' \quad \forall x \forall y, ((\exists z, (\mathbf{s} \ x \ z) \land (\mathbf{s} \ y \ z)) \rightarrow (+ \ x \ 0 \ y))$
- $Q_2' \quad \forall x, \neg (\mathbf{s} \ x \ 0)$
- $Q_3' \quad \forall x, (\neg(+x\ 0\ 0) \rightarrow \exists y, \mathbf{s}\ y\ x)$
- $Q_4' \quad \forall x, (+x \ 0 \ x)$
- $Q_5' \quad \forall x \forall y, \exists y'zz', ((\mathbf{s}\ y\ y') \land (+\ x\ y\ z) \land (\mathbf{s}\ z\ z')) \rightarrow (+\ x\ y'\ z')$
- $Q_6' \quad \forall x, (\times x \ 0 \ 0)$
- $Q_7' \quad \forall x \forall y, \exists y'zz', ((\mathbf{s}\ y\ y') \land (\times\ x\ y\ z) \land (+\ z\ x\ z')) \rightarrow (\times\ x\ y'\ z')$

Question: are these two systems equivalent?

What deductive system?

First-order logic: any complete deductive system.

 $Q'_8, \forall x, \exists y, \mathbf{s} x y$

Remove axiom 4 due to redundancy?

 $\forall x, (+ x \ 0 \ x)$

Assume an object x, then we seek to prove $+ x \cdot 0 \cdot x$ from the axioms.

By axiom 1:

$$\forall x \forall y ((\exists z, (\mathbf{s} \ x \ z) \land (\mathbf{s} \ y \ z)) \rightarrow (+ \ x \ 0 \ y))$$

By applying to x:

$$\forall y((\exists z, (\mathbf{s} \ x \ z) \land (\mathbf{s} \ y \ z)) \rightarrow (+ \ x \ 0 \ y))$$

By applying to x

$$(\exists z, (\mathbf{s} \ x \ z) \land (\mathbf{s} \ x \ z)) \rightarrow (+ \ x \ 0 \ x)$$

By axiom Q_8'

$$\forall x, \exists z, (\mathbf{s} \ x \ z)$$

By applying to x

 $\exists z, \mathbf{s} \ x \ z$

So,
$$\exists z, (\mathbf{s} \ x \ z) \land (\mathbf{s} \ x \ z)$$

So,
$$\forall x, (+x \ 0 \ x)$$

3 Version 3

Curry the \land s into \rightarrow s Remove Q_4' and add Q_8'

Explicit connectives	$\neg, \rightarrow, \forall, \exists$
Implicit connectives	None
Constants	0
Operations	None
Relations	$s/2, +/3, \times/3$

```
\forall x, \exists y, \mathbf{s} \ x \ y
```

$$Q_2'$$
 $\forall x \forall y \forall z, (\mathbf{s} \ x \ z) \rightarrow (\mathbf{s} \ y \ z) \rightarrow (+ \ x \ 0 \ y)$

$$Q_3' \quad \forall x, \neg (\mathbf{s} \ x \ 0)$$

$$Q_4' \quad \forall x, (\neg(+x\ 0\ 0) \rightarrow \exists y, \mathbf{s}\ y\ x)$$

$$\begin{array}{ll} Q_4' & \forall x, (\neg(+x\ 0\ 0) \rightarrow \exists y, \mathbf{s}\ y\ x) \\ Q_5' & \forall x \forall y \forall y' \forall z \forall z', (\mathbf{s}\ y\ y') \rightarrow (+x\ y\ z) \rightarrow (\mathbf{s}\ z\ z') \rightarrow (+x\ y'\ z') \end{array}$$

$$Q_6' \quad \forall x, (\times x \ 0 \ 0)$$

$$Q_7' \quad \forall x \forall y \forall y' \forall z \forall z', (\mathbf{s} \ y \ y') \to (\times \ x \ y \ z) \to (+ \ z \ x \ z') \to (\times \ x \ y' \ z')$$

Zero function zero(x) = 0

zero
$$x y = \times x 0 y$$

Successor function suc(x) = x + 1

$$suc \ x \ y = \mathbf{s} \ x \ y$$

Projection function $P_i^n(x_0,...,x_{n-1})=x_i$ is represented by: $P_i^n\ x_0\ ...\ x_{n-1}\ y=+\ x_i\ 0\ y$

$$P_i^n x_0 \dots x_{n-1} y = + x_i 0 y$$

Characteristic function of =,

$$X(x_0, x_1) = 1$$
 if $x_0 = x_1$, 0 otherwise $((+x_0 \ 0 \ x_1) \land (+y \ 0 \ 1)) \lor (\neg(+x_0 \ 0 \ x_1) \land (+y \ 0 \ 0))$

Composition

Regular minimization

Version 4

 $\neg(+x\ 0\ 0)$ to be represented as $\exists yy', (\mathbf{s}\ y\ y') \land (+y'\ 0\ x)$. Only one negation operation used in the axioms

Explicit connectives	$\neg, \rightarrow, \forall, \exists$
Implicit connectives	None
Constants	0
Operations	None
Relations	$s/2, +/3, \times/3$

^{*} By Q_6' and the assumption that \times is a function.

^{*} By the assumption that s is a function

^{*} Other assumptions?

```
\begin{array}{lll} Q_1' & \forall x, \exists y, \mathbf{s} \ x \ y \\ Q_2' & \forall x \forall y \forall z, (\mathbf{s} \ x \ z) \rightarrow (\mathbf{s} \ y \ z) \rightarrow (+ \ x \ 0 \ y) \\ Q_3' & \forall x, \neg (\mathbf{s} \ x \ 0) \\ Q_4' & \forall x, ((\exists yy', (\mathbf{s} \ y \ y') \land (+ \ 0 \ y' \ x)) \rightarrow \exists z, \mathbf{s} \ z \ x) \\ Q_5' & \forall x \forall y \forall y' \forall z \forall z', (\mathbf{s} \ y \ y') \rightarrow (+ \ x \ y \ z) \rightarrow (\mathbf{s} \ z \ z') \rightarrow (+ \ x \ y' \ z') \\ Q_6' & \forall x, (\times x \ 0 \ 0) \\ Q_7' & \forall x \forall y \forall y' \forall z \forall z', (\mathbf{s} \ y \ y') \rightarrow (\times x \ y \ z) \rightarrow (+ \ z \ x \ z') \rightarrow (\times x \ y' \ z') \end{array}
```

Note that we can't do the same with $Q_3' = \forall x, \neg(\mathbf{s}\ x\ 0)$ as this is what's keeping $\exists yy', (\mathbf{s}\ y\ y') \land (+\ y'\ 0\ x)$ sound as the property of $x \neq 0$.

```
Can we show that Q_4' is redundant?  \forall x, ((\exists yy', (\mathbf{s}\ y\ y') \land (+\ 0\ y'\ x)) \rightarrow \exists z, \mathbf{s}\ z\ x)  Assume an object x  ((\exists yy', (\mathbf{s}\ y\ y') \land (+\ 0\ y'\ x)) \rightarrow \exists z, \mathbf{s}\ z\ x)  Assume ((\exists yy', (\mathbf{s}\ y\ y') \land (+\ 0\ y'\ x))  Prove \exists z, \mathbf{s}\ z\ x)   (+\ y'\ 0\ x)   \mathbf{s}..x
```

5 Version 5

Explicit connectives	$\neg, \land, \rightarrow, \forall, \exists$
Implicit connectives	None
Constants	0
Operations	None
Relations	$s/2, +/3, \times/3$

 $\begin{array}{lll} Q_1' & \forall x, \exists y, \mathbf{s} \ x \ y \\ Q_2' & \forall x \forall y \forall z, (\mathbf{s} \ x \ z) \rightarrow (\mathbf{s} \ y \ z) \rightarrow (+ \ x \ 0 \ y) \\ Q_3' & \forall x, \neg (\mathbf{s} \ x \ 0) \\ Q_4' & \forall x, ((\exists y y', (\mathbf{s} \ y \ y') \land (+ \ 0 \ y' \ x)) \rightarrow \exists z, \mathbf{s} \ z \ x) \\ Q_5' & \forall x \forall y \forall y' \forall z, (\mathbf{s} \ y \ y') \rightarrow (+ \ x \ y \ z) \rightarrow \exists z', (+ \ x \ y' \ z') \land (\mathbf{s} \ z \ z') \\ Q_6' & \forall x, (\times \ x \ 0 \ 0) \\ Q_7' & \forall x \forall y \forall y' \forall z, (\mathbf{s} \ y \ y') \rightarrow (\times \ x \ y \ z) \rightarrow \exists z', (\times \ x \ y' \ z') \land (+ \ z \ x \ z') \end{array}$

- 6 Simulating primitive recursion with composition and regular minimization
- 7 A function is representable in Q if and only if it is computable
- 8 Decidability
- 9 References

[1] http://openlogicproject.org/files/2017/02/phil479-screen.pdf

 $^{[2] \} https://math.stackexchange.com/questions/873489/the-undecidability-of-robinson-arithmetic-without-multiplication$