DS4400 Final Project: Airbnb Modeling

December 7, 2018

1 Collect Data

Here, all necessary data is retrieved and aggregated. The resulting dataframes are then engineered as necessary and exported as csv files for later use.

1.1 Load Packages and define utility functions

```
In [13]: import numpy as np
         import pandas as pd
         from pathlib import Path
         from sklearn.metrics import accuracy_score
         from sklearn.preprocessing import LabelEncoder
         import datetime
         import requests
         pd.options.display.max_columns = 100
         pd.options.display.max_rows = 1000
In [14]: # utility functions
         # returns the time difference between now and a date given as a string
         def host_dur(t):
             if str(t) == "nan":
                return np.nan
             t = np.datetime64(str(t))
             delt = np.datetime64(datetime.datetime.now()) - t
             delt_int = np.timedelta64(delt, 'D').astype(int)
             return delt_int
```

1.2 Generate urls and read in all data

Note: All data is collected from insideairbnb.com. Only data from Boston is used for this project.

```
list_urls = list(map(lambda d: start + d + list_end, dates))
         cal_urls = list(map(lambda d: start + d + cal_end, dates))
In [16]: # read in, append data, and write full tables to csv
         all_listings = []
         all_calendar = []
         print("Reading listing urls...")
         for l in list_urls:
             data = pd.read_csv(1)
             all_listings.append(data)
         print("Reading calendar urls...")
         for c in cal_urls:
             data = pd.read_csv(c)
             all_calendar.append(data)
         print("Concatenating data...")
         list_df = pd.concat(all_listings, axis=0, ignore_index=True, sort=True)
         cal_df = pd.concat(all_calendar, axis=0, ignore_index=True, sort=True)
         print("Done")
Reading listing urls...
Reading calendar urls...
Concatenating data...
Done
```

1.3 Clean and engineer data

Generated features include: * is_professional -- whether or not a host is a professional host * n_amenities -- the number of amenities a listing has * occ_rate -- the occupancy rate of a listing during the year that it was scraped from * host_dur -- the length of time that a listings host has been a host * n_pchange -- the number of price changes of a listing during the year that it was scraped from

```
In [19]: print("Cleaning and engineering listing features...")

# engineer feature 'is_professional'
list_df['is_professional'] = 0
list_df.is_professional.loc[list_df["host_total_listings_count"] > 1] = 1

# engineer feature 'number of amenities'
list_df['n_amenities'] = list_df.amenities.map(lambda x: len(x))

# clean columns by removing '$'
list_df['cleaning_fee'] = list_df['cleaning_fee'].str.replace('$', '').apply(pd.to_numelist_df['extra_people'] = list_df['extra_people'].str.replace('$', '').apply(pd.to_numelist_df['extra_people'] = list_df['extra_people'].str.replace('$', '').apply(pd.to_numelist_df['extra_people'] = list_df['extra_people'].str.replace('$', '').apply(pd.to_numelist_df['extra_people'] = list_df['extra_people'].str.replace('$', '').apply(pd.to_numelist_df['extra_people']).
```

```
list_df['monthly_price'] = list_df['monthly_price'].str.replace('$', '').str.replace(',
         list_df['price'] = list_df['price'].str.replace('$', '').str.replace(',', '').apply(pd.
         list_df['weekly_price'] = list_df['weekly_price'].str.replace('$', '').str.replace(',',
         list_df['security_deposit'] = list_df['security_deposit'].str.replace('$', '').str.repl
         # convert percentage to decimal
         list_df['host_acceptance_rate'] = list_df['host_acceptance_rate'].str.replace('%', '').
         list_df['host_response_rate'] = list_df['host_response_rate'].str.replace('\', '').appl
         # engineer feature 'host_length'
         list_df['host_dur'] = list_df.host_since.map(lambda x: host_dur(x))
         # change zipcode feature
         list_df['zipcode'] = list_df['zipcode'].apply(str)
         # add year feature
         list_df['year'] = list_df.last_scraped.map(lambda x: x[0:4]).astype(int)
         # rename listing id feature
         list_df['listing_id'] = list_df['id']
         list_df = list_df.drop(['id'], axis=1)
         # drop unwanted columns
         bad_features = ['license', 'security_deposit', 'square_feet', 'last_scraped', 'weekly_r
         list_df = list_df.drop(bad_features, axis=1)
         list_df = list_df.dropna()
         print("Done")
Cleaning and engineering listing features...
Done
In [9]: # NOTE: takes a while
        print("Cleaning calendar data...")
        # remove $ from price column
        cal_df['price'] = cal_df['price'].str.replace('$', '').str.replace(',','').apply(pd.to_n
        cal_df['available'] = cal_df['available'].str.replace('f', '0').str.replace('t', '1').as
        # make a copy before engineering
        cal_raw = cal_df.copy(deep=True)
        print("Engineering calendar features...")
        # generate occupancy rate
        cal_df['year'] = cal_df.date.map(lambda x: x[0:4])
        cal_count = cal_df.groupby(['listing_id', 'year']).count()
        cal_count['occ_rate'] = cal_count.price / cal_count.available
```

```
cal_count = cal_count.reset_index()
        print("Generating price changes...")
        # generate price changes
        cal_nunique = cal_df.groupby(['listing_id', 'year']).nunique()
        print("Reformatting calendar dataframe...")
        # reformat dataframe
        cal_df = pd.DataFrame(data={'listing_id': cal_count['listing_id'].values,
                                'year': cal_count['year'].values,
                                'occ_rate': cal_count['occ_rate'].values,
                                'n_pchange':cal_nunique['price'].values})
        cal_df['year'] = cal_df['year'].astype(int)
        print("Done")
Cleaning calendar data...
Engineering calendar features...
Generating price changes...
Reformatting calendar dataframe...
Done
1.4 Merge dataframes and write to .csv
In [10]: print("Merging dataframes...")
         # merge dataframes
         df = list_df.merge(cal_df, on=['listing_id', 'year'], how='left')
         print("Changing year column...")
         # change year column to year since
         df['year_since'] = df['year'] - df['year'].min()
         df = df.drop('year', axis=1)
         print("Done")
Merging dataframes...
Changing year column...
Done
In [11]: dir = str(Path().resolve())
         df.to_csv(dir + "/../data/listings.csv", index=False)
         list_df.to_csv(dir + "/../data/list_df.csv", index=False)
         cal_raw.to_csv(dir + "/../data/cal_df.csv", index=False)
  [T1]fontenc mathpazo
  graphicx caption nolabel
```

adjustbox xcolor enumerate geometry amsmath amssymb textcomp upquote eurosym [math-letters]ucs [utf8x]inputenc fancyvrb grffile hyperref longtable booktabs [inline]enumitem [normalem]ulem

visualizations verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in

2 Explore Data

In this section, data is explored by viewing feature distributions and relationships between different variables

2.1 Import packages and load data

```
In [1]: import numpy as np
  import pandas as pd
  from pathlib import Path
  from sklearn.metrics import accuracy_score
  from sklearn.preprocessing import LabelEncoder
  import datetime
  import seaborn as sns
  pd.options.display.max_columns = 100
  pd.options.display.max_rows = 1000
In [11]: # import data
    dir = str(Path().resolve())
    df = pd.read_csv("/Users/cccdenhart/Documents/ds4400/project/data/listings.csv")
In [12]: # impute bedroom values of 0.0 with 1.0
    df.loc[df.bedrooms==0.0,['bedrooms']] = 1.0
In [13]: # engineer feature price_per_bed
   df['price_per_bed'] = df.price / df.bedrooms
In [14]: # scatterplot price_per_bed with host_listing_count
    plt = sns.scatterplot(x=df.calculated_host_listings_count, y=df.price_per_bed)
    fig = plt.get_figure()
    fig.savefig("/Users/cccdenhart/Documents/ds4400/project/plots/list_vs_price.png")
```



```
In [15]: # barplot price_per_bed by neighborhood
    by_neigh = df.groupby(['neighbourhood_cleansed']).mean().reset_index()
    sns.set(rc={'figure.figsize':(11.7,8.27)})
    plt = sns.barplot(y=by_neigh.neighbourhood_cleansed, x=by_neigh.price_per_bed)
    fig = plt.get_figure()
    fig.savefig("/Users/cccdenhart/Documents/ds4400/project/plots/neigh_vs_price.png")
```



```
In [16]: # plot occupancy rate vs host duration
    plt = sns.scatterplot(x=df.number_of_reviews, y=df.price_per_bed)
    fig = plt.get_figure()
    fig.savefig("/Users/cccdenhart/Documents/ds4400/project/plots/numrev_vs_price.png")
```



```
In [17]: # plot occupancy rate vs host duration
   plt = sns.distplot(df.price_per_bed)
   fig = plt.get_figure()
   fig.savefig("/Users/cccdenhart/Documents/ds4400/project/plots/price_hist.png")
```



```
In [18]: # plot occupancy rate vs host duration
   plt = sns.distplot(df.occ_rate)
   fig = plt.get_figure()
   fig.savefig("/Users/cccdenhart/Documents/ds4400/project/plots/occ_hist.png")
```


[T1]fontenc mathpazo graphicx caption nolabel

adjustbox xcolor enumerate geometry amsmath amssymb textcomp upquote eurosym [math-letters]ucs [utf8x]inputenc fancyvrb grffile hyperref longtable booktabs [inline]enumitem [normalem]ulem

review_scores verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in

3 Predict Review Scores

Here, I try to predict the average review score of a listing using linear regressions and a radial SVR

3.1 Import packages and load in data

```
In [1]: import numpy as np
    import pandas as pd
    from pathlib import Path
    from sklearn.metrics import accuracy_score
    from sklearn.model_selection import train_test_split
    from sklearn.decomposition import PCA
    from sklearn.preprocessing import normalize
    from sklearn.linear_model import LinearRegression, Ridge
```

```
from sklearn.svm import SVR
        from sklearn.metrics import explained_variance_score, mean_squared_error, r2_score
        import seaborn as sns
        import math
        pd.options.display.max_columns = 100
        pd.options.display.max_rows = 1000
In [2]: # import data
       dir = str(Path().resolve())
        df = pd.read_csv(dir + "/../data/listings.csv")
3.2 Prepare data
In [3]: # average all reviews to generate average_score feature and drop excess review features
        df['average_score'] = (df.review_scores_accuracy + df.review_scores_checkin + df.review_
        df = df.drop(['review_scores_accuracy', 'review_scores_checkin', 'review_scores_cleanling
In [4]: # split into X and Y
        X = df.drop('average_score', axis=1)
        y = df['average_score']
        # convert objects to dummy variables
        X = pd.get_dummies(X)
        # split into training and testing data
        X_train, X_test, y_train, y_test = train_test_split(X, y)
3.3 Train models
In [5]: # NOTE: takes a long time
        # train models
        print("Training linear regression...")
        lm = LinearRegression().fit(X_train, y_train)
        print("Training linear reg with ridge regularization")
        reg = Ridge(alpha=.5).fit(X_train, y_train)
        print("Training radial kernel SVR...")
        rad = SVR(gamma="auto", kernel="rbf").fit(X_train, y_train)
        print("Done")
Training linear regression...
Training linear reg with ridge regularization
Training radial kernel SVR...
/Users/cccdenhart/miniconda3/lib/python3.7/site-packages/sklearn/linear_model/ridge.py:125: LinA
Ill-conditioned matrix detected. Result is not guaranteed to be accurate.
Reciprocal condition number3.765920e-19
  overwrite_a=True).T
```

In [6]: # get predictions

MSE: 0.28368482487039837

```
print("Generating predictions...")
        lm_pred = lm.predict(X_test)
        reg_pred = reg.predict(X_test)
        rad_pred = rad.predict(X_test)
        print("Done")
Generating predictions...
Done
3.4 View results
In [7]: # display evaluations
        print("Linear Model Results:")
        print("Explained Variance: " + str(explained_variance_score(y_test, lm_pred)))
        print("MSE: " + str(mean_squared_error(y_test, lm_pred)))
        print("R2: " + str(r2_score(y_test, lm_pred)))
        print()
        # display evaluations
        print("Ridge Regularization Results:")
        print("Explained Variance: " + str(explained_variance_score(y_test, reg_pred)))
        print("MSE: " + str(mean_squared_error(y_test, reg_pred)))
        print("R2: " + str(r2_score(y_test, reg_pred)))
        print()
        print("Linear Model with Regularization:")
        print("Radial Kernel SVR Results:")
        print("Explained Variance: " + str(explained_variance_score(y_test, rad_pred)))
        print("MSE: " + str(mean_squared_error(y_test, rad_pred)))
        print("R2: " + str(r2_score(y_test, rad_pred)))
Linear Model Results:
Explained Variance: 0.1434287737138703
MSE: 0.34507206786518557
R2: 0.1430113908638756
Ridge Regularization Results:
Explained Variance: 0.14379407926425725
MSE: 0.3449246444374958
R2: 0.14337751785593122
Linear Model with Regularization:
Radial Kernel SVR Results:
Explained Variance: 0.2965080758246498
```

3.5 Discussion

3.5.1 Why are results so bad?

- Large left skew (histogram 1)
- Tried applying log transform to data --> still large skew (histogram 2)

In [10]: sns.distplot(df.average_score)

/Users/cccdenhart/miniconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarnin return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1c22b58470>

In [12]: sns.distplot(df.average_score.apply(math.log))

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x1c26871978>

[T1]fontenc mathpazo graphicx caption nolabel

adjustbox xcolor enumerate geometry amsmath amssymb textcomp upquote eurosym [math-letters]ucs [utf8x]inputenc fancyvrb grffile hyperref longtable booktabs [inline]enumitem [normalem]ulem

prof_status verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in

4 Predict Host Professional Status

In this section, I attempt to predict whether a host is a professional or not. Note that a host is considered professional if they list more than one unit on Airbnb, as justified by previous literature. Logistic regression, a decision tree, and AdaBoost are all used to classfy host status.

4.1 Import packages and load data

```
In [1]: import numpy as np
    import pandas as pd
    from pathlib import Path
    from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_auc_score
    from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import AdaBoostClassifier
    from sklearn.model_selection import train_test_split
    import seaborn as sns
```

```
pd.options.display.max_columns = 100
        pd.options.display.max_rows = 1000
In [2]: # import data
       dir = str(Path().resolve())
        df = pd.read_csv(dir + "/../data/listings.csv")
4.2 Prepare data
In [3]: # split into X and y
        X = df.drop('is_professional', axis=1)
        y = df['is_professional']
        # drop host listing count
        X = X.drop(['calculated_host_listings_count', 'host_total_listings_count', 'host_listing
        # get dummies
        X = pd.get_dummies(X)
        # split into train and test
        X_train, X_test, y_train, y_test = train_test_split(X, y)
4.3 Train models
In [4]: # train models
        print("Training logistic regression...")
        log = LogisticRegression().fit(X_train, y_train)
        print("Training decision tree...")
        dec = DecisionTreeClassifier().fit(X_train, y_train)
        print("Training AdaBoost...")
        ada = AdaBoostClassifier(n_estimators=50).fit(X_train, y_train)
        print("Done")
Training logistic regression...
/Users/cccdenhart/miniconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: F
 FutureWarning)
Training decision tree...
Training AdaBoost...
Done
In [5]: # get predictions
       print("Getting predictions...")
        log_pred = log.predict(X_test)
        dec_pred = dec.predict(X_test)
```

```
ada_pred = ada.predict(X_test)
# add in adaboost
print("Done")

Getting predictions...
Done
```

4.4 View results

```
In [6]: # display performance metrics
        print("Logistic Regression Results:")
        print("accuracy: " + str(accuracy_score(y_test, log_pred)))
        print("precision: " + str(precision_score(y_test, log_pred)))
        print("recall: " + str(recall_score(y_test, log_pred)))
        print("auc: " + str(roc_auc_score(y_test, log_pred)))
        print()
        print("Decision Tree Results:")
        print("accuracy: " + str(accuracy_score(y_test, dec_pred)))
        print("precision: " + str(precision_score(y_test, dec_pred)))
        print("recall: " + str(recall_score(y_test, dec_pred)))
        print("auc: " + str(roc_auc_score(y_test, dec_pred)))
        print()
        print("AdaBoost Results:")
        print("accuracy: " + str(accuracy_score(y_test, ada_pred)))
        print("precision: " + str(precision_score(y_test, ada_pred)))
        print("recall: " + str(recall_score(y_test, ada_pred)))
        print("auc: " + str(roc_auc_score(y_test, ada_pred)))
Logistic Regression Results:
accuracy: 0.7376577728071577
precision: 0.7376577728071577
recall: 1.0
auc: 0.5
Decision Tree Results:
accuracy: 0.9012621824572615
precision: 0.9277005347593583
recall: 0.9393545592376001
auc: 0.8667540153069851
AdaBoost Results:
accuracy: 0.8041220642275124
precision: 0.8370105346849533
recall: 0.9120641108945202
auc: 0.7063365621464075
```

4.5 Discussion

4.5.1 Why are Logistic Reg results odd?

• All prediction probabilities are > .5

/Users/cccdenhart/miniconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarnin return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[41]: <matplotlib.axes._subplots.AxesSubplot at 0x1a2b05be10>

[T1]fontenc mathpazo graphicx caption nolabel

adjustbox xcolor enumerate geometry amsmath amssymb textcomp upquote eurosym [math-letters]ucs [utf8x]inputenc fancyvrb grffile hyperref longtable booktabs [inline]enumitem [normalem]ulem

neighborhood

verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in

5 Neighborhood prediction

In this section, the neighborhood of a given listing is predicted using KNN, Naive-Bayes, and a random forest.

5.1 Import packages and read in data

```
In [2]: import numpy as np
        import pandas as pd
        from pathlib import Path
        from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_auc_score
        from sklearn.preprocessing import LabelEncoder
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive_bayes import GaussianNB
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.model_selection import train_test_split
        import math
        import seaborn as sns
        pd.options.display.max_columns = 100
        pd.options.display.max_rows = 1000
In [3]: # import data
        dir = str(Path().resolve())
        df = pd.read_csv(dir + "/../data/listings.csv")
5.2 Prepare data
In [4]: \# split into X and y
        X = df.drop('neighbourhood_cleansed', axis=1)
        y = LabelEncoder().fit_transform(df['neighbourhood_cleansed'])
        # get dummies
        X = pd.get_dummies(X)
        # split into train and test
        X_train, X_test, y_train, y_test = train_test_split(X, y)
5.3 Train models
In [52]: # train models
         print("Training KNN...")
         knn = KNeighborsClassifier(n_neighbors=5).fit(X_train, y_train)
         print("Training decision tree...")
         nb = GaussianNB().fit(X_train, y_train)
         print("Training random forest...")
         rf = RandomForestClassifier(n_estimators=int(math.sqrt(X.shape[1])), max_depth=10).fit(
         print("Done")
Training KNN...
Training decision tree...
Training random forest...
Done
```

```
In [53]: # get predictions
         print("Generating predictions...")
         knn_pred = knn.predict(X_test)
         nb_pred = nb.predict(X_test)
         rf_pred = rf.predict(X_test)
         print("Done")
Generating predictions...
Done
5.4 View results
In [55]: # display performance metrics
         print("KNN Results:")
         print("accuracy: " + str(accuracy_score(y_test, knn_pred)))
         print("precision: " + str(precision_score(y_test, knn_pred, average="macro")))
         print("recall: " + str(recall_score(y_test, knn_pred, average="macro")))
         # print("auc: " + str(roc_auc_score(y_test, knn_pred)))
         print()
         print("Naive Bayes Results:")
         print("accuracy: " + str(accuracy_score(y_test, nb_pred)))
         print("precision: " + str(precision_score(y_test, nb_pred, average="macro")))
         print("recall: " + str(recall_score(y_test, nb_pred, average="macro")))
         #print("auc: " + str(roc_auc_score(y_test, nb_pred)))
         print("Random Forest Results:")
         print("accuracy: " + str(accuracy_score(y_test, rf_pred)))
         print("precision: " + str(precision_score(y_test, rf_pred, average="macro")))
         print("recall: " + str(recall_score(y_test, rf_pred, average="macro")))
         #print("auc: " + str(roc_auc_score(y_test, rf_pred)))
KNN Results:
accuracy: 0.777760025563189
precision: 0.7721725205515614
recall: 0.7237850559072051
Naive Bayes Results:
accuracy: 0.11199872184054961
precision: 0.05855255442334741
recall: 0.07022498947156558
Random Forest Results:
accuracy: 0.9129253874420834
precision: 0.8929981744782387
```

recall: 0.7782661572565764

```
/Users/cccdenhart/miniconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py:1143:
    'precision', 'predicted', average, warn_for)
/Users/cccdenhart/miniconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py:1143:
    'precision', 'predicted', average, warn_for)

[T1]fontenc mathpazo
```

adjustbox xcolor enumerate geometry amsmath amssymb textcomp upquote eurosym [math-letters]ucs [utf8x]inputenc fancyvrb grffile hyperref longtable booktabs [inline]enumitem [normalem]ulem

```
price_changes
verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in
```

6 Generate Price Change Data

graphicx caption nolabel

In this section, daily price data about listings is reshaped in order to convey more information about how price changes of a given listing impact property performance. Price changes for each listing are extracted and for each price change, the change in average daily revenue resulting from the price change is calculated.

6.1 Import packages and load in data

```
In [6]: import numpy as np
        import pandas as pd
        from pathlib import Path
        from sklearn.model_selection import train_test_split
        import datetime
        import seaborn as sns
        pd.options.display.max_columns = 100
        pd.options.display.max_rows = 1000

In [2]: # import data
        dir = str(Path().resolve())
        cal_df = pd.read_csv(dir + "/../data/cal_df.csv")
        cal_df['date'] = df['date'].apply(lambda x: datetime.date(int(x[0:4]), int(x[5:7]), int(x[5:7]))
```

6.2 Define functions to be used to extract average daily revenues

```
In [123]: # find the difference between each sequential value in the given list
    def get_diff(arr):
        if len(arr) > 0:
            diff = [arr.pop(0)]
            for index in range(len(arr)):
                  diff.append(arr[index] - arr[index - 1])
            return diff
        else:
            return arr
```

```
In [94]: # Array[float] -> Array[float]
         # given an array of prices, finds the average daily revenue (adr) changes between every
         def get_adr(prices):
             adr = []
             pc = []
             ind = []
             cur_p = prices[0]
             start_index = 0
             revenue = 0
             for index, p in enumerate(prices):
                 if not np.isnan(p):
                     if p == cur_p:
                         revenue += p
                     else:
                         adr.append(revenue / (index - start_index))
                         pc.append(p - cur_p)
                         ind.append(index)
                         cur_p = p
                         start_index = index
                         revenue = 0
             return get_diff(adr), pc, ind
```

6.3 Implement functions to find average daily revenue changes per price change per listing

```
In [124]: # find adr changes for each listing
          ids = cal_df.listing_id.unique()
          all_dfs = []
          for i in ids:
              print(i)
              1 = cal_df.loc[cal_df.listing_id==i,:].sort_values(by='date', ascending=True)
              adr, pc, ind = get_adr(l.price.values)
              dates = 1.date.iloc[ind]
              id = [1.listing_id.values[0]] * len(adr)
              all_dfs.append(pd.DataFrame(data={'id': id, 'date' : dates, 'revenue_change': adr,
1810172
6976
3075044
4283698
4085362
225834
7252607
1936861
225979
2583074
6933545
5434353
```

.

5.0020

.....

.

_ _ _ _ _ _ _

.

0.4040

11/0101

.

.

.

.

.

10/10/10

4.405.400.4

.----

. - - - - - -

. . –

.

. - . . - . . .

.

. - - - - - -

......

. - . - . - .

.

. - - - - - -

.

100/0402

_

21 10 10 10

2 1000000

.

0000004.4

_

1 1000 10

210025-0

_

_ . . _ _

- - - - - - - -

.__...

2001 1020

201 10110

201 10000

_

_ _ _ _ _ _ _

.

.

_ - - - - - - - - -

_ . _ _

_. _....

2.00021.

200 100 10

.

```
29186224
29189657
29122035
```

6.4 Engineer and export resulting dataset

```
In [148]: # group all dataframes from adr change results
          df = pd.concat(all_dfs, axis=0, ignore_index=True, sort=True)
In [149]: # engineer dataframe before writing
          df = df.dropna()
          df['year'] = df.date.apply(lambda x: x.year)
          year_start = df.date.apply(lambda x: datetime.date(int(x.year), 1, 1))
          df['days_since'] = (df.date - year_start).apply(lambda x: int(x.days))
          df = df.drop('date', axis=1)
In [150]: df.to_csv(dir + "/../data/price_changes.csv", index=False)
   [T1]fontenc mathpazo
   graphicx caption nolabel
   adjustbox xcolor enumerate geometry amsmath amssymb textcomp upquote eurosym [math-
letters]ucs [utf8x]inputenc fancyvrb grffile hyperref longtable booktabs [inline]enumitem [nor-
malem]ulem
   optimal_price
   verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in
```

7 Predict Price Change Effects

Using the reshaped listing price data, the average daily revenue change resulting from a price change is predicted using KNN, a random forest, and a feed-forward neural network.

7.1 Import packages and load in data

```
In [11]: import numpy as np
    import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.feature_selection import SelectKBest, f_classif
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_auc_score
    from keras.models import Sequential
    from keras.layers.core import Dense, Dropout, Activation
    from keras.layers import Conv2D, MaxPooling2D, Flatten
    from keras.losses import categorical_crossentropy
    from keras.optimizers import SGD
    from keras.utils import np_utils
    import keras.callbacks as cb
```

```
from pathlib import Path
     pd.options.display.max_columns = 100
     pd.options.display.max_rows = 1000
In [2]: # import data
   dir = str(Path().resolve())
    pc_df = pd.read_csv(dir + "/../data/price_changes.csv")
    list_df = pd.read_csv(dir + "/../data/list_df.csv")
7.2 Prepare data
In [3]: # rename listing id column
    list_df['id'] = list_df['listing_id']
    list_df = list_df.drop('listing_id', axis=1)
In [4]: print("Merging dataframes...")
    # merge dataframes
    df = pc_df.merge(list_df, on=['id', 'year'], how='left')
    print("Done")
Merging dataframes...
Done
In [5]: # remove rows with missing values
   df = df.dropna()
    # drop listing id
    df = df.drop('id', axis=1)
In [21]: print("df shape: ", df.shape)
df shape: (5230391, 43)
In [6]: def bin_adr(x):
        if x > 0.0:
           return 0
        elif x < 0.0:
           return 1
        else:
           return 2
In [7]: # bin revenue
    df['revenue_change'] = df.revenue_change.apply(bin_adr)
In [8]: print("Splitting into X and y...")
    # split into X and y
   y = df['revenue_change']
```

```
X = df.drop('revenue_change', axis=1)
   print("Getting dummy values...")
    # get dummy values
   X = pd.get_dummies(X)
   print("Selecting features...")
    # select 20 best features
    X = pd.DataFrame(SelectKBest(score_func=f_classif, k=20).fit_transform(X, y.values))
    print("Splitting into train and test...")
    # split into training and testing data
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    print("Done")
Splitting into X and y...
Getting dummy values...
Selecting features...
/Users/cccdenhart/miniconda3/lib/python3.7/site-packages/sklearn/feature_selection/univariate_se
UserWarning)
/Users/cccdenhart/miniconda3/lib/python3.7/site-packages/sklearn/feature_selection/univariate_se
f = msb / msw
Splitting into train and test...
Done
7.3 Train models
In [12]: print("Training KNN...")
     knn = KNeighborsClassifier(n_neighbors=10).fit(X_train, y_train)
     print("Predicting KNN...")
     knn_pred = knn.predict(X_test)
Training KNN...
Predicting KNN...
In [13]: print("Training random forest...")
     rf = RandomForestClassifier(n_estimators=50).fit(X_train, y_train)
     print("Predicting random forest...")
     rf_pred = rf.predict(X_test)
Training random forest...
Predicting random forest...
```

```
In [15]: # convert y values
     nn_train = np_utils.to_categorical(y_train, 3)
     nn_test = np_utils.to_categorical(y_test, 3)
     # initialize feed-forward neural network
     print("Initializing network...")
     ffnn = Sequential()
     ffnn.add(Dense(units=12, activation='relu', input_dim=20))
     ffnn.add(Dropout(0.2))
     ffnn.add(Dense(units=10, activation='exponential'))
     ffnn.add(Dropout(0.2))
     ffnn.add(Dense(units=8, activation='sigmoid'))
     ffnn.add(Dropout(0.2))
     ffnn.add(Dense(units=3, activation='relu'))
     # compile model
     print("Compiling model...")
     ffnn.compile(loss=categorical_crossentropy, optimizer=SGD(lr=0.01, momentum=0.9, nesterov=T
     # fit model
     print("Fitting model...")
     ffnn.fit(X_train, nn_train, epochs=10, batch_size=128, verbose=2)
Initializing network...
Compiling model...
Fitting model...
Epoch 1/10
- 59s - loss: nan
Epoch 2/10
- 63s - loss: nan
Epoch 3/10
- 59s - loss: nan
Epoch 4/10
- 60s - loss: nan
Epoch 5/10
- 68s - loss: nan
Epoch 6/10
- 68s - loss: nan
Epoch 7/10
- 58s - loss: nan
Epoch 8/10
- 57s - loss: nan
Epoch 9/10
- 58s - loss: nan
Epoch 10/10
- 63s - loss: nan
```

Out[15]: <keras.callbacks.History at 0x1a1d88ce10>

```
In [16]: # get ffnn predictions
    ffnn_preds = ffnn.predict_classes(X_test)
```

7.4 View results

```
In [19]: print("KNN Results:")
     print("accuracy: " + str(accuracy_score(y_test, knn_pred)))
    print("precision: " + str(precision_score(y_test, knn_pred, average=None)))
    print("recall: " + str(recall_score(y_test, knn_pred, average=None)))
    print()
    print("RF Results:")
    print("accuracy: " + str(accuracy_score(y_test, rf_pred)))
    print("precision: " + str(precision_score(y_test, rf_pred, average=None)))
    print("recall: " + str(recall_score(y_test, rf_pred, average=None)))
    print()
    print("FFNN Results:")
    print("accuracy: " + str(accuracy_score(y_test, ffnn_preds)))
    print("precision: " + str(precision_score(y_test, ffnn_preds, average=None)))
    print("recall: " + str(recall_score(y_test, ffnn_preds, average=None)))
KNN Results:
accuracy: 0.6353007575722814
precision: [0.50947136 0.50497735 0.70702975]
recall: [0.46252035 0.39264124 0.78957387]
RF Results:
accuracy: 0.6187023840660508
precision: [0.49549426 0.47101407 0.69487956]
recall: [0.43826491 0.38092479 0.77402013]
FFNN Results:
accuracy: 0.2137705931027732
precision: [0.21376999 1.
                                  0.
recall: [1.0000000e+00 3.5984167e-06 0.0000000e+00]
```

7.5 Discussion

One contribution to the mediocre results could be the fact that there are significantly more "no change" observations than the other two.

```
In [18]: np.bincount(y_train.values)
Out[18]: array([ 839331, 833825, 2249637])
```