بسم الله الرحمن الرحيم

تكنولوژي كامپيوتر

جلسهی بیست و سوم پردازش جریان

جلسه گذشته

جلسهی جدید

Polling for changes...

مفاهیم

Topic

- a "stream" refers to data that is incrementally made available over time.
- In a stream processing context, a record is more commonly known as an event, but it is essentially the same thing: a small, selfcontained, immutable object containing the details of something that happened at some point in time.
- Each group of related events is called a topic

Producer

■ Publisher or sender

Consumer

Subscribers or recipients

انواع جریانهای ایونت

Messaging Systems

■ A common approach for notifying consumers about new events is to use a messaging system.

Two question for design choice

- What happens if the producers send messages faster than the consumers can process them?
 - Drop
 - Buffer
 - Backpressure

Two question for design choice

■ What happens if nodes crash or temporarily go offline—are any messages lost?

Direct messaging from producers to consumers

- UDP/TCP multicast
- UDP messages
- Direct HTTP or RPC / Webhooks

Message brokers (Message queue)

Handling Multiple consumers

- Load balancing
- Fan-out

Handling Multiple consumers

Figure 11-1. (a) Load balancing: sharing the work of consuming a topic among consumers; (b) fan-out: delivering each message to multiple consumers.

Acknowledgments and redelivery

Acknowledgments and redelivery

Ordering Is

Figure 11-2. Consumer 2 crashes while processing m3, so it is redelivered to consumer 1 at a later time.

Partitioned Logs

- Append new event to file
- Offset
- Partition logs

Figure 11-3. Producers send messages by appending them to a topic-partition file, and consumers read these files sequentially.

Logs compared to traditional messaging

Consumer offsets

Disk space usage

Handling disk usage

- Circular buffer
- Delete old segment
- Compaction

پردازش جریان و پایگاه دادهها

Keeping Systems in Sync

- Assume you have a OLTP database + Search Index (two databases)
 - Dual writes

Keeping Systems in Sync

Figure 11-4. In the database, X is first set to A and then to B, while at the search index the writes arrive in the opposite order.

Change Data Capture

Figure 11-5. Taking data in the order it was written to one database, and applying the changes to other systems in the same order.

Implementing change data capture

- Like one leader
- Capture changes
 - SQL Trigger
 - Read logical replication log

Reconstruct the state from logs

- Initial snapshot
- Log compaction

API Support for change streams

- Some databases like RethinkDB
- Kafka Connect

Event sourcing

- A technique in Domain Driven Design community
- Event Sourcing Vs. Change data capture
- Event as source of truth
 - Then transform it into application state
- Event vs Commands

PROCESSING STREAMS

Options in Stream Processing

- You can take the data in the events and write it to a database, cache, search index, or similar storage system, from where it can then be queried by other clients.
- You can push the events to users in some way, for example by sending email alerts or push notifications
- You can process one or more input streams to produce one or more output streams. Streams may go through a pipeline consisting of several such processing stages before they eventually end up at an output (option 1 or 2).

Stream analytics

Reasoning About Time

- the average over the last five minutes.
- the last five minutes

■ Event time versus processing time

Reasoning About Time

Figure 11-7. Windowing by processing time introduces artifacts due to variations in processing rate.

Calculating events on a given window?

■ you can never be sure when you have received all of the events for a particular window, or whether there are some events still to come.

Calculating events on a given window?

Options:

- Ignore the straggler events, as they are probably a small percentage of events in normal circumstances. You can track the number of dropped events as a metric, and alert if you start dropping a significant amount of data.
- Publish a correction, an updated value for the window with stragglers included. You may also need to retract the previous output.

Whose clock should be used?

- To adjust for incorrect device clocks, one approach is to log three timestamps:
 - The time at which the event occurred, according to the device clock
 - The time at which the event was sent to the server, according to the device clock
 - The time at which the event was received by the server, according to the server clock

Types of window

- Tumbling window
- Hopping window
- Sliding window
- Session window

Stream Joins

- Stream-stream join (window join)
- Stream-table join (stream enrichment)
- Table-table join (materialized view maintenance)

Problem: Time-dependence of joins

Fault Tolerance

■ What should we do when streaming job failed?

Fault Tolerance

■ Microbatching and checkpointing

Fault Tolerance - External side effects

■ Atomic commit and distributed transaction

Fault Tolerance - External side effects

Idempotence

Fault Tolerance

■ Problem: Rebuilding state after a failure