ARS Manual

December 10, 2013

ARSpackage: an Adaptive Rejection Sampler

Description

Final project for Statistics 243, an R package that performs adaptive rejection sampling, first proposed by Gilks and Wild in 1992.

Details

Package: ARSpackage Type: Package Version: 1.0 Date: 2013-12-13

Depends: methods, numDeriv

Collate: 'adapt_reject.r', 'ars_methods.r'

Author(s)

J. Bladen, L. Felberg, H.W. Tsao, S. Tu

References

Gilks, Wild, 1992. http://faculty.chicagobooth.edu/hedibert.lopes/teaching/ccis2010/1992GilksWild.pdf.

See Also

https://bitbucket.org/lfelberg/stat243_final_proj
https://github.com/paciorek/stat243-fall-2013/tree/master/project

2 a_r_s

Cadapt_reject_sample The adapt_reject class

Description

This class contains all the methods used to perform an AR sampling.

Slots

n: Variable of class "numeric", n, containing the number of points to sample, taken as user input.

 f_x : Function of class "function", containing the f(x) to sample from, taken as user input.

bounds: Variable of class "numeric", n, containing the bounds of the function, taken as user input.

output: Variable of class "vector", containing sampled points to return to user.

 h_at_x : Variable of class "vector", containing computed log(f(x)) values at all x values

 $hprime_at_x$: Variable of class "vector", containing computed derivative of log(f(x)) values at all x values

z: Variable of class "vector", containing abscissae of upper bound function.

samples: Variable of class "vector", containing random numbers generated by s(x) and unif.

x: Variable of class "vector", containing x values used in ARS.

weights: Variable of class "vector", containing sampled points to return to user.

output: Variable of class "numeric", containing sampled points to return to user.

 ${\sf mat_sorted:}$ Variable of class "matrix", containing x values, their corresponding h and h prime values, sorted by increasing x.

a_r_s

The adapt_reject function

Description

This calls the class Cadapt_reject_sample and its methods. The vector of samples is accessible via ans output.

Usage

```
a_r_s(n_samples, fx, bounds = c(-Inf, Inf), ...)
```

Arguments

n_samples: Number of samples desired from distribution

fx: Function to sample from

bounds: Bounds of function of interest. The default is an unbounded function

Value

 $S4 \ \mathsf{adapt_reject_sample} \ object; \ a \ vector \ containing \ n \ points \ sampled \ from \ the \ f(x) \ distribution$

ev_h 3

ev_h	Cadapt_reject_sample ev_h
------	---------------------------

Description

Cadapt_reject_sample ev_h

Arguments

gen_x Cadapt_reject_sample generating first two points

Description

Cadapt_reject_sample generating first two points

Arguments

object Cadapt_reject_sample object

initialize Cadapt_reject_sample initialization: method to intialize the ARS class

for sampling. Will store values input from user and will also initialize

empty arrays for all other slots.

Description

Cadapt_reject_sample initialization: method to intialize the ARS class for sampling. Will store values input from user and will also initialize empty arrays for all other slots.

Arguments

object Cadapt_reject_sample object

n numeric determining the number of samples to obtain

f_x function for distribution to sample from

bounds vector of distribution bounds

4 show

lower Cad	lapt_reject_sample lower
-----------	--------------------------

Description

This calculates the lower hull for x^* which we sample from the sampling method for adapt/reject.

Arguments

object	Cadapt_reject_sample object
X	vector that we have evaluated h_x for
x_star	numeric random number for adapt/reject

Value

 l_x_{star} numeric the lower hull for x^*

 s_x Cadapt_reject_sample s(x)

Description

Function to normalize the upper bounds of log(f(x))

Arguments

object Cadapt_reject_sample object

 $sampling \hspace{1cm} \textit{Cadapt_reject_sample} \hspace{1cm} \textit{Sample} \\$

Description

Cadapt_reject_sample sample

Arguments

show Cadapt_reject_sample show

Description

Cadapt_reject_sample show

Arguments

object Cadapt_reject_sample object

update 5

update	Cadapt reject	_sample update
upuate	Caaapi_rejeei_	_витри прише

Description

Cadapt_reject_sample update

Arguments

. 1	0 - 1 4	2.2		. 1
obiect	Cadapt_r	PIPCT	samnıe	Ontect

upper Cadapt_reject_sample upper	_sample upper
----------------------------------	---------------

Description

This calculates the upper hull for x^* which we sample from the sampling method for adapt/reject.

Arguments

object	Cadapt_reject_sample object
Х	vector that we have evaluated h_x for
x_star	numeric random number for adapt/reject
Z	vector abscissa of all points

Value

 u_x_{star} numeric the upper hull for x^*

validity_ars	Validity checks for S4 adapt_reject_sample object: want to ensure
	at creation that the number of samples desired is a positive integer

Description

Validity checks for S4 adapt_reject_sample object: want to ensure at creation that the number of samples desired is a positive integer

Usage

```
validity_ars(object)
```

Arguments

```
object An adapt_reject_sample object
```

Index

```
*Topic package, rejection sampling
ARSpackage, 1

a_r_s, 2
ARSpackage, 1

Cadapt_reject_sample, 2, 3-5

ev_h, 3

gen_x, 3

initialize, 3

lower, 4

s_x, 4

sampling, 4

show, 4

update, 5

upper, 5

validity_ars, 5
```