Primary Source Projects (PSPs) Available for Classroom Use from TRIUMPHS (TRansforming Instruction in Undergraduate Mathematics via Primary Historical Sources)

Descriptions of all TRIUMPHS PSPs available at: https://nscoville.github.io/website/TRIUMPHS project descriptions.pdf
Classroom ready versions of the PSPs themselves can be download at: https://digitalcommons.ursinus.edu/triumphs/
The Notes to Instructors section at the end of each provides detailed information about its goals and implementation guidance.
The time needed to implement the full-length PSPs in the first list below ranges from 3 classroom days to several weeks; the "mini-PSPs" in the second list can be implemented in 1–2 classroom days with some advance reading and homework.
To obtain further information about TRIUMPHS or the PSPs in the collection, contact: janet.barnett@csupueblo.edu

* indicates a PSP that is suitable for use in History of Mathematics Courses and/or Capstone Courses for Pre-service Secondary Teachers.

Full-PSPs (numbers correlate with posted PSP Descriptions)	Intended Course(s)	Author
F 01. A Genetic Context for Understanding the Trigonometric Functions (Also available as six independent mini-versions; see M 41–M 46.)	Pre-calculus /Trigonometry*	Danny Otero
F 02. Determining the Determinant	Linear Algebra	Danny Otero
F 03. Solving a System of Linear Equations Using the Ancient Chinese Methods	Linear Algebra *	Mary Flagg
F 04. Investigating Difference Equations	Discrete Mathematics	Dave Ruch
F 05. Quantifying Certainty: the p-value	Statistics	Dominic Klyve
F 06. Pythagorean Theorem and Exigency of Parallel Postulate	Geometry *	Jerry Lodder
F 07. Failure of the Parallel Postulate	Geometry	Jerry Lodder
F 08. Dedekind and the Creation of Ideals	Abstract Algebra	Janet Barnett
F 09. Primes, Divisibility & Factoring	Number Theory *	Dominic Klyve
F 10. The Pell Equation in Indian Mathematics	Number Theory *	Toke Knudsen & Keith Jones
F 11. Greatest Common Divisor: Algorithm and Proof	Introduction to Proof / Number Theory/ Discrete Mathematics /Abstract Algebra	Mary Flagg
F 12. The Möbius Function and Möbius Inversion	Number Theory	Carl Lienert
F 13. Bolzano on Continuity and the Intermediate Value Theorem	Introductory Analysis	Dave Ruch
F 14. Rigorous Debates over Debatable Rigor in Analysis: Monster Functions in Introductory Analysis	Introductory Analysis	Janet Barnett
F 15. An Introduction to Algebra and Geometry in the Complex Plane	Complex Variables	Diana White & Nick Scoville
F 16. Nearness without Distance	Topology	Nick Scoville
F 17. Connectedness - Its Evolution and Applications	Topology	Nick Scoville
F 18. Construction of Figurate Numbers	General Education *	Jerry Lodder
F 19. Pascal's Triangle and Mathematical Induction	General Education *	Jerry Lodder
F 20. The French Connection: Borda, Condorcet and the Mathematics of Voting Theory	Math for Liberal Arts / General Education *	Janet Barnett
F 21. An Introduction to a Rigorous Definition of Derivative	Introductory Analysis	Dave Ruch
F 22. Investigations into Bolzano's Bounded Set Theorem	Introductory Analysis	Dave Ruch

Full-PSPs (numbers correlate with posted PSP Descriptions)	Intended Course(s)	Author
F 23. The Mean Value Theorem	Introductory Analysis	Dave Ruch
F 24. Abel and Cauchy on a Rigorous Approach to Infinite Series	Introductory Analysis	Dave Ruch
F 25. The Definite Integrals of Cauchy and Riemann	Introductory Analysis	Dave Ruch
F 26. Gaussian Integers and Dedekind Ideals: A Number Theory Project	Number Theory *	Janet Barnett
F 27. Otto Hölder's Formal Christening of the Quotient Group Concept	Abstract Algebra	Janet Barnett
F 28. Roots of Early Group Theory in the Works of Lagrange	Abstract Algebra	Janet Barnett
F 29. Radius of Curvature According to Christiaan Huygens	Vector Calculus	Jerry Lodder
F 30. Why Square Root of 2 is a Friendlier Number than e: Irrational Adventures with Aristotle, Fourier, and Liouville (Also available in a mini-version; see M 12.)	Calculus 2 *	Kenneth Monks
F 31. Cross Cultural Comparisons: The Art of Computing the Greatest Common Divisor	Elementary Education Courses	Mary Flagg
F 32. A Look at Desargues' Theorem from Dual Perspectives	Geometry / Introduction to Proof	Carl Lienert
F 33. Solving Equations and Completing the Square: From the Roots of Algebra (Also available in a mini-version; see M 28.)	Pre-calculus *	Danny Otero
F 34. Argand's Development of the Complex Plane	Complex Variables *	Diana White & Nick Scoville
F 35. Riemann's Development of the Cauchy-Riemann Equations	Complex Variables	Dave Ruch
F 36. Gauss and Cauchy on Complex Integration	Complex Variables	Dave Ruch
F 37. Representing and Interpreting Data with Playfair (Also available as three independent mini-versions; see M 31–M 33.)	Statistics *	Diana White, River Bond, Joshua Eastes & Negar Janani
F 38. Runge-Kutta 4 (and Other Numerical Methods for ODE's)	Differential Equations	Adam Parker
F 39. Stitching Dedekind Cuts to Construct the Real Numbers	Introductory Analysis	Michael Saclolo
F 40. The Fermat-Torricelli Point and Cauchy's Method of Gradient Descent	Multivariable Calculus	Kenneth Monks
F 41. Stained Glass, Windmills and the Edge of the Universe: An Exploration of Green's Theorem	Multivariable Calculus	Abe Edwards
F 42. Finding Exact Sums of Infinite Series (Available in two versions, a shorter version more suitable for Calculus 2 and a two-week version suitable for a capstone course.)	Calculus 2; Capstone/enrichment courses *	Danny Otero & James Sellers
F 43. Lagrange Study of Wilson's Theorem (Also available as three independent mini-versions; see M 47–M49.)	Number Theory / Abstract Algebra / Intro to Proof	Carl Lienert
F 44. Fourier's Heat Equations and the Birth of Fourier Series (Also available in a mini-version; see M 40.)	Differential Equations / Multivariable Calculus	Kenneth Monks
F 45. Gauss and the First Rigorous Proof of	Introduction to Proof /	Sarah Hagen
the Fundamental Theorem of Algebra	Complex Variables	& Alan Kappler
F 46. Three Hundred Years of Helping Others: Maria Gaetana Agnesi on Precalculus (Also available as three independent mini-versions; see M 50–M 52.)	Pre-calculus *	Kenneth Monks
F 47. Understanding Compactness through Primary Sources–Early Work: Uniform Continuity to the Heine-Borel Theorem	Introductory Analysis	Naveen Somasunderam

^{*} indicates a PSP that is suitable for use in History of Mathematics Courses and/or Capstone Courses for Pre-service Secondary Teachers.

Mini-PSPs (numbers correlate with posted PSP Descriptions)	Intended Course(s)	Author
M 01.Babylonian Numeration	General Education / Elementary Education Courses *	Dominic Klyve
M 02. L'Hôpital's Rule	Calculus *	Danny Otero
M 03. Derivatives of The Sine and Cosine Function	Calculus 1 *	Dominic Klyve
M 04. Beyond Riemann Sums: Fermat's Method of Integration	Calculus 1 *	Dominic Klyve
M 05. Fermat's Method for Finding Maxima and Minima	Calculus 1 *	Kenneth Monks
M 06. Euler's Calculation of the Sum of the Reciprocals of Squares	Calculus 2 *	Kenneth Monks
M 07. Braess' Paradox in City Planning: An Application of Multivariable Optimization	Multivariable Calculus	Kenneth Monks
M 08. The Origin of the Prime Number Theorem	Number Theory	Dominic Klyve
M 09. How to Calculate π: Machin's Inverse Tangents	Calculus 2 *	Dominic Klyve
M 10. How to calculate π: Buffon's Needle (Two versions available, one with no calculus pre-requisite.)	Calculus 2 ; Precalculus / Courses for Middle School Teachers*	Dominic Klyve
M 11. Bhāskara's Approximation and Mādhava's Infinite Series for Sine	Calculus 2 *	Kenneth Monks
M 12. Fourier's Infinite Series Proof of the Irrationality of <i>e</i> (Also available in a full-length version; see F 30.)	Calculus 2 *	Kenneth Monks
M 13. Gaussian Guesswork: Elliptic Integrals and Integration by Substitution	Calculus 2	Janet Barnett
M 14. Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate Curve	Calculus 2	Janet Barnett
M 15. Gaussian Guesswork: Sequences & the Arithmetic-Geometric Mean	Calculus 2	Janet Barnett
M 16. The logarithm of –1	Complex Variables	Dominic Klyve
M 17.Why be so critical? Origins of Analysis in 19th Century Mathematics	Introductory Analysis *	Janet Barnett
M 18. Topology from Analysis: Making the Connection	Topology / Introductory Analysis	Nick Scoville
M 19. Connecting Connectedness	Topology	Nick Scoville
M 20. The Cantor Set before Cantor	Topology	Nick Scoville
M 21. A Compact Introduction to a Generalized Extreme Value Theorem	Topology	Nick Scoville
M 22. From Sets to Metric Spaces to Topological Spaces	Topology	Nick Scoville
M 23. The Closure Operation as the Foundation of Topology	Topology	Nick Scoville
M 24. Euler's Rediscovery of <i>e</i>	Introductory Analysis / Calculus 2	Dave Ruch
M 25. Henri Lebesgue and the Integral Concept	Introductory Analysis	Janet Barnett
M 26. Generating Pythagorean Triples via Gnomons (Two versions available, one more open-ended.)	Number Theory / Elementary Education Courses	Janet Barnett
M 27. Seeing and Understanding Data	Statistics /General Education / Elementary Education Courses *	Beverly Wood & Charlotte Bolch
M 28. Completing the Square: From the Roots of Algebra	Pre-calculus *	Danny Otero

Mini-PSPs (numbers correlate with posted PSP Descriptions)	Intended Course(s)	Author
M 29. Euler's Square Root Laws for Negative Numbers	Complex Variables *	Dave Ruch
M 30. Investigations Into d'Alembert's Definition of Limit (Two versions available, one lower-division, one upper-division.)	Calculus 2 / Introductory Analysis	Dave Ruch
M 31. Playfair's Introduction of Bar and Pie Charts to Represent Data	Statistics *	Diana White, River Bond, Joshua Eastes & Negar Janani
M 32. Playfair's Introduction of Time Series to Represent Data	Statistics *	Diana White, River Bond, Joshua Eastes & Negar Janani
M 33. Playfair's Novel Visual Displays of Data	Statistics *	Diana White, River Bond, Joshua Eastes & Negar Janani
M 34. Regression to the Mean	Statistics *	Dominic Klyve
M 35. Solving Linear First Order Differential Equations: Gottfried Leibniz' Change of Variables	Differential Equations	Adam Parker
M 36. Solving Linear First Order Differential Equations: Johann Bernoulli's Variation of Parameters	Differential Equations	Adam Parker
M 37. Solving Linear First Order Differential Equations: Leonard Euler's Integrating Factor	Differential Equations	Adam Parker
M 38. Wronskians and Linear Independence: A Theorem Misunderstood by Many	Differential Equations	Adam Parker
M 39. Leonhard Euler and Johann Bernoulli on Solving Higher Order Differential Equations with Constant Coefficients	Differential Equations	Adam Parker
M 40. Fourier's Heat Equation and the Birth of Modern Climate Science (Also available in a full-length version; see F 44.)	Differential Equations / Multivariable Calculus	Kenneth Monks
M 41. The Trigonometric Functions Through Their Origins: Babylonian Astronomy and Sexagesimal Numeration (See also F 01.)	Pre-calculus /Trigonometry *	Danny Otero
M 42. The Trigonometric Functions Through Their Origins: Hipparchus' Table of Chords (See also F 01.)	Pre-calculus /Trigonometry *	Danny Otero
M 43. The Trigonometric Functions Through Their Origins: Ptolemy Finds High Noon in Chords of Circles (See also F 01.)	Pre-calculus /Trigonometry *	Danny Otero
M 44. The Trigonometric Functions Through Their Origins: Varāhamihira and the Poetry of Sines (See also F 01.)	Pre-calculus /Trigonometry *	Danny Otero
M 45. The Trigonometric Functions Through Their Origins: Al-Bīrūnī Does Trigonometry in the Shadows (See also F 01.)	Pre-calculus /Trigonometry *	Danny Otero
M 46. The Trigonometric Functions Through Their Origins: Regiomontanus and the Beginnings of Modern (See also F 01.)	Pre-calculus /Trigonometry *	Danny Otero
M 47. Lagrange Proves Wilson's Theorem – and More! (See also F 43.)	Number Theory / Abstract Algebra / Intro to Proof	Carl Lienert
M 48. Lagrange's Proof of the Converse of Wilson's Theorem (See also F 43.)	Number Theory / Abstract Algebra / Intro to Proof	Carl Lienert
M 49. Lagrange's Alternate Proof of Wilson's Theorem (See also F 43.)	Number Theory / Abstract Algebra / Intro to Proof	Carl Lienert
M 50. Three Hundred Years of Helping Others: Maria Gaetana Agnesi on Exponents (See also F 46.)	Pre-calculus *	Kenneth Monks
M 51. Three Hundred Years of Helping Others: Maria Gaetana Agnesi on the Rational Root Test (See also F 46.)	Pre-calculus *	Kenneth Monks
M 52. Three Hundred Years of Helping Others: Maria Gaetana Agnesi on Simplifying Radicals (See also F 46.)	Pre-calculus *	Kenneth Monks
M 53. Three Hundred Years of Helping Others: Maria Gaetana Agnesi on the Product Rule	Calculus 1 *	Kenneth Monks

^{*} indicates a PSP that is suitable for use in History of Mathematics Courses and/or Capstone Courses for Pre-service Secondary Teachers.