

Y = ABCDE + CDE + BCDE + ABCDE

When N = 3, the output will be TRUE when there are exact 1 input is TRUE or all of the three inputs are TRUE

When N = 3, the output will be TRUE when there are exact 1 input is FALSE or TRUE.

prove by truth table, a(boc) = aboac

(a⊕b) ⊕c = a⊕(b⊕c)

A3.3

	n(0)	n(1)	n(2)	n(3)	n(4)	chkdiv3	chkdiv4	chkdiv12(d)
0	0	0	0	0	0	1	1	1
1	0	0	0	0	1	0	0	0
2	0	0	0	1	0	0	0	0
3	0	0	0	1	1	1	0	0
4	0	0	1	0	0	0	1	0
5	0	0	1	0		0	0	
6	0	0	1	1	0	1	0	
7	0	0	1	1	1	0	0	0
8	0	1	0	0	0	0	1	0
9	0	1	0	0	1	1	0	
10	0	1	0	1	0	0	0	
11	0	1	0	1	1	0	0	0
12	0	1	1	0	0	1	1	1
13	0	1	1	0	1	0	0	
14	0	1	1	1	0	0	0	
15	0	1	1	1	1	1	0	0
16	1	0	0	0	0	0	1	0
17	1	0	0	0	1	0	0	
18	1	0	0	1	0	1	0	
19	1	0	0	1	1	0	0	
20	1	0	1	0	0	0	1	0
21	1	0	1	0		1	0	
22	1	0	1	1	0	0	0	
23	1	0	1	1	1	0	0	0
24	1	1	0	0	0	1	1	1
25	1	1	0	0	1	0	0	
26	1	1	0	1	0	0	0	
27	1	1	0	1	1	1	0	0
28	1	1	1	0	0	0	1	0
29	1	1	1	0	1	0	0	
30	1	1	1	1	0	1	0	
31	1	1	1	1	1	0	0	0

From the touth table,

After I decompose these two approaches into two-inputs gates, the first approach using divisible by 12 is equal to both divisible by 3 and 4 has **46** two-inputs gates. If directly write chkdiv12 by its truth table, there are **14** two-inputs gates. Thus, the first approach is more physically larger.

A6. (1)

Output	Next State	В	A	Current State	REPRESENT	STATE
	0000	0	0	0000	FAIL.	0000
	0000	1	0	0000	START	0001
	0000	0	1	0000	S1	0010
	0001	1	1	0000	S2	0011
	0001	0	0	0001	S3	0100
	0000	1	0	0001	S4	0101
	0010	0	1	0001	OPEN	0110
	0001	1	1	0001		
	0010	0	0	0010		
	0011	1	0	0010		
	0101	0	1	0010		
	0001	1	1	0010		
	0011	0	0	0011		
	0000	1	0	0011		
	0100	0	1	0011		
	0001	1	1	0011		
	0100	0	0	0100		
	0110	1	0	0100		
	0000	0	1	0100		
	0001	1	1	0100		
	0000	0	0	0101		
	0011	1	0	0101		
1	0000	0	1	0101		
	0001	1	1	0101		
	0110	0	0	0110		
	0110		0	0110		
	0110	0	1	0110		
	0001	1	1	0110		