Soft-DTW: a Differentiable Loss Function for Time-Series

Jingchang Liu

July 20, 2017

University of Science and Technology of China

Table of Contents

A brief introduction to DTW(Dynamic time warping)

Soft-DTW

Experiments

Q & A

A brief introduction to

DTW(Dynamic time warping)

Background

- Application: discrepancy of two time series.
- Motivation: Align different indexes of two time series. The length of the sequence can different.

Figure 1: Diagram of DTW

Warping path

- $x = (x_1, x_2, \cdots, x_n) \in \mathbb{R}^{p \times n}, y = (y_1, y_2, \cdots, y_m) \in \mathbb{R}^{p \times m}$
- Warping path: $W = w_1 w_2 \cdots w_N$, $w_k = (i, j)$
- $w_k = (i,j) \rightarrow w_{k+1} = (i+1,j)$ or $w_{k+1} = (i,j+1)$ or $w_{k+1} = (i+1,j+1)$

Figure 2: Diagram of warping path

Formulations

- Cost matrix: $\triangle(x, y) := [\delta(x_i, y_j)]_{ij} \in \mathbb{R}^{n \times m}$
- Set of binary alignment matrices: $A_{n,m} \subset \{0,1\}^{n \times m}$
- Formulation: $DTW(x, y) := \min_{A \in \mathcal{A}_{n,m}} \langle A, \triangle(x, y) \rangle$
- $r_{ij} = DTW(x_{1:i}, y_{1:j})$

Figure 3: Diagram of iteration

Iteration

$$r_{i,j} := \delta_{i,j} + \min\{r_{i-1,j-1}, r_{i-1,j}, r_{i,j-1}\}$$

Algorithm 1 Calculate DTW

```
Require: x = (x_1, x_2, \cdots, x_n), \ y = (y_1, y_2, \cdots, y_m)

Ensure: r \in \mathbb{R}^{n \times m}

1. r := [0..n, 0..m]

2. for i := 1 to n do

3. for j := 1 to m do

4. r_{i,j} := \delta_{i,j} + min(r_{i,j}, r_{i,j-1}, r_{i-1,j-1})

5. end for

6. end for
```

Warp window

• alignment path is unlikely to very far from the diagonal.

Figure 4: Diagram of warp window

Soft-DTW

Background

Averaging

- y_1, \dots, y_n : A family of N times series , m_i : length of y_i , x: a single barycenter time seies.
- $\min_{x \in \mathbb{R}^{p \times n}} \sum_{i=1}^{N} \frac{\lambda_i}{m_i} DTW(x, y_i)$

Time series prediction

- $\min_{\theta \in \Theta} \sum_{i=1}^{N} DTW\left(f_{\theta}\left(x_{i}^{1,t}\right), x_{i}^{t+1,n}\right)$
- f_{θ} : Prediction function, $x_i^{t+1,n}$: prediction sequence,

7

Generalized min operator

Generalized min operator:

$$\min^{\gamma} \left\{ a_1, a_2, \cdots, a_n \right\} := \left\{ \begin{array}{l} \min_{i \leq n} a_i, \gamma = 0, \\ -\gamma \log \sum_{i=1}^n e^{-a_i/\gamma}, \gamma > 0 \end{array} \right.$$

•

$$DTW_{\lambda}(x,y) = \min^{\gamma} \{ \langle A, \triangle(x,y) \rangle, A \in \mathcal{A}_{n,m} \}$$

•

$$\nabla_{x}DTW_{\gamma}(x,y) = \left(\frac{\partial \triangle(x,y)}{\partial x}\right)^{T} \frac{\partial DTW_{\lambda}(x,y)}{\partial \triangle(x,y)}$$

$$e_{i,j} := \frac{\partial r_{n,m}}{\partial r_{i,j}}$$

•

$$\frac{\partial r_{n,m}}{\partial \delta_{i,j}} = \frac{\partial r_{n,m}}{\partial r_{i,j}} \frac{\partial r_{i,j}}{\partial \delta_{i,j}} = e_{i,j}$$

Dynamic programming to derivative

Chain rule

$$\underbrace{\frac{\partial r_{n,m}}{\partial r_{i,j}}}_{e_{i,j}} = \underbrace{\frac{\partial r_{n,m}}{\partial r_{i+1,j}}}_{e_{i+1,j}} \underbrace{\frac{\partial r_{i+1,j}}{\partial r_{i,j}}}_{e_{i,j+1}} + \underbrace{\frac{\partial r_{n,m}}{\partial r_{i,j+1}}}_{e_{i,j+1}} \underbrace{\frac{\partial r_{n,m}}{\partial r_{i+1,j+1}}}_{e_{i+1,j+1}} \underbrace{\frac{\partial r_{n,m}}{\partial r_{i+1,j+1}}}_{\partial r_{i,j}}$$

Calculate $\frac{\partial r_{i+1,j}}{\partial r_{i,j}}$

1.

$$\begin{array}{ll} r_{i+1,j} & = & \delta_{i+1,j} + \min^{\lambda} \left\{ r_{i,j-1}, r_{i,j}, r_{i+1,j-1} \right\} \\ & = & \delta_{i+1,j} - \gamma \log \left(e^{-r_{i,j-1}/\gamma} + e^{-r_{i,j}/\gamma} + e^{-r_{i+1,j-1}/\gamma} \right) \end{array}$$

2.
$$\frac{\partial r_{i+1,j}}{\partial r_{i,j}} = e^{-r_{i,j}/\gamma} / \left(e^{-r_{i,j-1}/\gamma} + e^{-r_{i,j}/\gamma} + e^{-r_{i+1,j-1}/\gamma} \right)$$

Derivation

•

$$\gamma \log \frac{\partial r_{i+1,j}}{\partial r_{i,j}} = \min^{\gamma} \left\{ r_{i,j-1}, r_{i,j}, r_{i+1,j-1} \right\} - r_{i,j}$$
$$= r_{i+1,j} - r_{i,j} - \delta_{i+1,j}$$

•

$$\gamma \log \frac{\partial r_{i,j+1}}{\partial r_{i,j}} = r_{i,j+1} - r_{i,j} - \delta_{i,j+1}$$

•

$$\gamma \log \frac{\partial r_{i+1,j+1}}{\partial r_{i,j}} = r_{i+1,j+1} - r_{i,j} - \delta_{i+1,j+1}$$

Figure 5: Iteration of derivative

```
1: Inputs: \mathbf{x}, \mathbf{y}, smoothing \gamma > 0, distance function \delta.
 2: \Delta = [\delta(x_i, y_i)]_{i,j}.
 3: r_{0,0} = 0; r_{i,0} = r_{0,i} = \infty; i \in [n], j \in [m].
 4: for j = 1, ..., m do
                                                                                                                                                     for i = 1, \ldots, n do
          r_{i,i} = \delta_{i,i} + \min^{\gamma} \{r_{i-1,i-1}, r_{i-1,i}, r_{i,i-1}\}
           end for
 8: end for
 9: \delta_{i,m+1} = \delta_{n+1,i} = 0, i \in [n], j \in [m]
10: e_{i,m+1} = e_{n+1,i} = 0, i \in [n], i \in [m]
11: r_{i,m+1} = r_{n+1,i} = -\infty, i \in [n], j \in [m]
12: \delta_{n+1,m+1} = 0, e_{n+1,m+1} = 1, r_{n+1,m+1} = r_{n,m}
13: for i = m, ..., 1 do

    Backward recursion

           for i = n, \dots, 1 do
14.
         a = \exp \frac{1}{2} (r_{i+1,j} - r_{i,j} - \delta_{i+1,j})
          b = \exp \frac{1}{2} (r_{i,j+1} - r_{i,j} - \delta_{i,j+1})
          c = \exp \frac{i}{2} (r_{i+1,j+1} - r_{i,j} - \delta_{i+1,j+1})
            e_{i,j} = e_{i+1,j} \cdot a + e_{i,j+1} \cdot b + e_{i+1,j+1} \cdot c
18:
           end for
19.
20: end for
21: Output: dtw_{\gamma}(\mathbf{x}, \mathbf{y}) = r_{n,m}
                    \nabla_{\mathbf{x}} \operatorname{\mathbf{dtw}}_{\gamma}(\mathbf{x}, \mathbf{y}) = \left(\frac{\partial \Delta(\mathbf{x}, \mathbf{y})}{\partial \mathbf{x}}\right)^T E
22:
```

Figure 6: Computes $DTW_{\gamma}(x, y)$ and $\nabla_{x}DTW_{\gamma}(x, y)$

Experiments

Averaging experiment

Figure 7: Comparison between our proposed soft barycenter and the barycenter obtained by DBA and the subgradient method, on the ECG200 dataset

Figure 8: Herring

Averaging experiment II

Figure 9: Medical Images

Figure 10: Synthetic Control

Prediction experiments

Dataset	Soft-DTW loss $\gamma = 1$	$\gamma = 0.1$	$\gamma = 0.01$	$\gamma = 0.001$	Euclidean loss
50words	6.473	4.921	4.999	6.489	18.734
Adiac	0.094	0.074	0.078	0.109	0.103
ArrowHead	1.851	1.708	1.933	1.909	2.073
Beef	12.229	8.688	10.244	9.126	22.228
BeetleFly	35.037	25.439	27.588	23,494	50.610
BirdChicken	31.878	19.914	25.100	14.981	30.693
CBF	10.802	9.263	9.595	10.151	12.868
Car	1.724	2.307	2.202	1.318	1.588
ChlorineConcentration	7.876	2.108	2.331	1.735	0.769
CinC_ECG_torso	45.675	26.337	23.567	24.550	48.171
Coffee	0.914	0.727	1.662	1.883	0.660
Computers	92.584	84.723	78.953	75.435	235.208
Cricket_X	9.394	8.042	7.123	7.226	12.080
Cricket_Y	11.989	9.643	9.534	9.545	15.002
Cricket_Z	9.161	6.889	6.585	7.200	11.003
DiatomSizeReduction	1.182	0.922	0.820	0.897	1.203
DistalPhalanxOutlineAgeGroup	0.426	0.291	0.541	0.496	0.231
DistalPhalanxOutlineCorrect	0.494	0.476	0.564	0.591	0.351
DistalPhalanxTW	0.441	0.330	0.305	1.214	0.231
ECG200	1.874	1.716	1.884	1.734	1.905
ECG5000	4.895	4.705	4.543	4.441	5.463
ECGFiveDays	1.834	1.944	1.699	1.642	2.220
Earthquakes	74.738	59.973	60.877	57.827	147.980
ElectricDevices	20.186	15.125	15.218	15.287	37.121
FISH	0.464	0.429	0.354	0.459	0.462
FaceAll	9.317	7.451	7.902	7.276	10.716
FaceFour	19.564	20.881	28.150	28.839	46.841
FacesUCR	15.359	14.643	16.143	17.428	28.576
Gun_Point	0.896	0.805	0.923	0.834	0.858
Ham	20.154	17.931	17.786	17.413	24.340

Figure 11: Time-series prediction: DTW loss achieved when using random init

Prediction experiments

Dataset	Soft-DTW loss $\gamma = 1$	$\gamma = 0.1$	$\gamma = 0.01$	$\gamma = 0.001$	Euclidean loss
50words	6.330	5.628	4.885	4.553	18.734
Adiac	0.082	0.076	0.064	0.079	0.103
ArrowHead	1.823	2.016	1.762	2.106	2.073
Beef	7.250	6.940	7.146	3.757	22.228
BeetleFly	32.430	26.600	27.199	29.003	50.610
BirdChicken	24.952	22.600	19.914	20.540	30.693
CBF	10.744	8.978	9.215	8.398	12.868
Car	0.906	0.812	0.709	0.740	1.588
ChlorineConcentration	6.018	0.979	0.695	0.698	0.769
CinC_ECG_torso	29.892	18.638	19.635	19.191	48.171
Coffee	0.870	0.582	0.511	0.496	0.660
Computers	86.619	79.250	82.215	81.417	235.208
Cricket_X	10.954	8.200	7.932	8.296	12.080
Cricket_Y	11.901	10.150	10.265	9.574	15.002
Cricket_Z	9.714	7.760	7.544	8.041	11.003
DiatomSizeReduction	0.964	0.852	0.874	0.869	1.203
DistalPhalanxOutlineAgeGroup	0.403	0.206	0.175	0.177	0.231
DistalPhalanxOutlineCorrect	0.515	0.310	0.300	0.262	0.351
DistalPhalanxTW	0.468	0.228	0.186	0.178	0.231
ECG200	1.907	1.541	1.565	1.536	1.905
ECG5000	4.737	4.190	4.398	4.148	5.463
ECGFiveDays	1.584	1.396	1.322	1.335	2.220
Earthquakes	71.461	55.819	56.504	57.153	147.980
ElectricDevices	19.499	15.045	14.999	15.228	37.121
FISH	0.439	0.353	0.319	0.318	0.462
FaceAll	9,309	8.687	7.803	7.853	10.716
FaceFour	20.483	20.411	21.259	21.444	46,841
FacesUCR	14.984	14.530	14.403	14.729	28.576
Gun_Point	0.447	0.368	0.300	0.297	0.858
Ham	16.152	14.717	12.252	13.424	24.340
Haptics	15.177	14.275	12.394	11.931	23,130
Herring	0.310	0.305	0.292	0.249	0.865
InsectWingbeatSound	3.104	2.346	2.186	2.036	5.437
ItalyPowerDemand	0.802	0.595	0.623	0.654	0.881
LargeKitchenAppliances	61.531	63.834	59.116	57.219	266.853
Lighting2	65,602	62.240	61.561	60.826	147,668
5:5::::::82		17.712	11.221	22.022	

Figure 12: Time-series prediction: DTW loss achieved when using Euclidean init

Q & A