Laboratorio de Computación II

Clase 02:

Punteros

Punteros

Un puntero es un tipo de variable que puede almacenar la dirección de memoria de otra variable. Para hacerlo hay que garantizar las siguientes reglas:

- Un puntero debe declararse de un tipo de dato en concreto
 - Un puntero debe apuntar a una variable de su mismo tipo (salvo punteros void)

Operadores de dirección e indirección

Para trabajar con punteros es necesario hacer uso de dos operadores especiales.

Operador de dirección: &

Permite obtener la dirección de memoria de una variable.

Operador de indirección *

Permite acceder al contenido de una dirección de memoria.

Operador de dirección

Permite obtener la dirección de memoria a partir de una variable

Ejemplo

```
int mi_variable = 10;
cout << mi_variable;
cout << &mi_variable;</pre>
```


Operador de indirección

Permite acceder al contenido a partir de una dirección de memoria

Ejemplo

```
int mi_variable = 10;
int *mi_puntero;
mi_puntero = &mivariable;
cout << *mi_puntero;</pre>
```

contenido	contenido		
10 mi_variable	0x1000 mi_puntero		
0x1000	0x2000		
dirección	dirección		

Ventajas

- Enviando la dirección de una variable a una función, permite que la misma modifique su contenido de forma permanente.
- Necesarios para hacer uso de Asignación dinámica de memoria.
- Al usarlos bien hacen felices a los profesores de Laboratorio II.

Punteros y vectores

Un puntero puede apuntar a la dirección de inicio de un vector de su mismo tipo y ser de utilidad para acceder a todas sus posiciones.

```
int mi_vector[10]={};
int *mi_puntero;
mi_puntero = mi_vector;
mi_puntero[4] = 100;

Recordar que el nombre de un vector es un puntero constante a la dirección donde inicia el vector.
¿Y el operador de indirección? El uso de corchetes indirecciona un puntero
```

en la posición indicada. Es equivalente

a: *(mi_puntero+4) = 100

Aritmética de punteros

La notación *(mi_puntero+4) corresponde a la aritmética de punteros. Es decir, aplicar operaciones matemáticas a punteros.

vec \rightarrow &vec[0] \rightarrow 0x100 vec+0 \rightarrow &vec[0] \rightarrow 0x100 vec+1 \rightarrow &vec[1] \rightarrow 0x10C	Elemento	Contenido	Dirección
	vec[0]	100	0x100
vec+N → &vec[N]	vec[1]	200	0x104
$*(vec) \rightarrow *(\&vec[0]) \rightarrow 100$ $*(vec+0) \rightarrow *(\&vec[0]) \rightarrow 100$ $*(vec+1) \rightarrow *(\&vec[1]) \rightarrow 200$	vec[2]	300	0x10C
	vec[3]	400	0x110
*(vec+N) → *(&vec[N]) →	vec[4]	500	0x114

vec|N|

Aritmética de punteros

No quiero asustarlos pero **también aplica a matrices** de N dimensiones.

Actividad

Hacer una función que permita cargar un vector de 10 elementos y otra que permita obtener el máximo valor de un vector de 10 elementos. Usar aritmética de punteros.