

Databases – Database Design & E-R Model (Chapter 6)

Jaeyong Choi
Dept. of Software, Gachon University

Schedule

Week	Торіс	Chapter	Note
1	Introduction to DBMS, Relational Model	1	
2	Relational Algebra : - Concept of Key - Relational algebra operators - Relational algebra expressions	2	추석
3	Introduction to SQL	3	
4	Advanced SQL : - Advanced expression of SQL - Nested SQL queries	4, 5	МООС
5	Entity/Relationship Model	6	
6	Relational Database Design 1 Relational Database Design 2 (추석보강)	7	МООС
7	Storage and File Structure	12, 13	
8	Mid-term Exam		

Databases – Introduction to Relational Model (Chapter 2)

Jaeyong Choi
Dept. of Al-Software, Gachon University

Equivalent Queries

- There is more than one way to write a query in relational algebra.
- Example: Find instructors in the Physics department with salary greater than 90,000
- Query 1

Query 2

$$\sigma_{\text{dept_name}=\text{"Physics"}}$$
 ($\sigma_{\text{salary} > 90.000}$ (instructor)

ID	пате	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Databases – Database Design & E-R Model (Chapter 6)

Jaeyong Choi
Dept. of Software, Gachon University

Database Design Overview

Overview of Design Process (1/3)

Design phases

- Characterize fully the data needs of the prospective database users
 - Outcome → specification of user requirements
- Choose a data model and translate these requirements into a conceptual schema of the database
 - Entity-Relationship model → conceptual design
- Conceptual schema also indicates the functional requirements of the enterprise
 - Specification of functional requirements describe the kinds of operations (or transactions) that will be performed on the data

Overview of Design Process (2/3)

Design phases cont'd

- Logical design deciding on the database schema
 - Database design requires a "good" collection of relation schemas
 - Business decision What attributes should we record in the database?
 - Computer science decision What relation schemas should we have and how should the attributes be distributed among the various relation schemas?
- Physical design deciding on the physical layout of the database

Real World to Computer World (1/3)

Real World to Computer World (2/3)

Real World to Computer World (3/3)

Overview of Design Process (3/3)

Design approaches

- Entity-relationship Model
 - Models an enterprise as a collection of entities and relationships
 - Entity: a "thing" or "object" distinguishable from others; described by a set of attributes
 - Relationship: an association among several entities
 - Represents diagrammatically by an entity-relationship diagram
- Normalization (Chapter 7)
 - Formalizes what designs are bad, and test for them

Entity-Relationship Model

E-R model – database modeling

- Facilitates database design by allowing specification of an enterprise schema that represents the overall logical structure of a database
- Very useful in mapping the meanings and interactions of <u>real-world enterprises onto a conceptual schema</u>
- Employs three basic concepts:
 - Entity sets
 - Relationship sets
 - Attributes
- Has an associated diagrammatic representation, the E-R diagram, which can express the overall logical structure of a database graphically

Entity sets

- An entity is an object that exists and is distinguishable from other objects
 - E.g., specific person, company, event, plant
- An entity set is a set of entities of the same type that share the same properties
 - E.g., set of all persons, companies, trees, holidays
- An entity is represented by a set of attributes; i.e., descriptive properties of all members of an entity set
 - E.g., instructor = (ID, name, street, city, salary)
- A subset of attributes form a primary key of the entity set;
 i.e., uniquely identifying each member of the set

Entity sets: instructor and student

instructor

<u>ID</u>
name

 76766
 Crick

 45565
 Katz

 10101
 Srinivasan

 98345
 Kim

 76543
 Singh

 22222
 Einstein

student

<u>ID</u>
name

 98988
 Tanaka

 12345
 Shankar

 00128
 Zhang

 76543
 Brown

 76653
 Aoi

 23121
 Chavez

 44553
 Peltier

student

Relationship sets

A relationship is an association among several entities

□ A relationship set is a mathematical relation among
 n ≥ 2 entities, each taken from entity sets

$$\{(e_1, e_2, \dots, e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

■ E.g., $(44553,22222) \in advisor$

Relationship set: αdvisor

student

<u>ID</u>

name

Relationship sets (cont'd)

- An attribute can also be associated with a relationship set
- E.g., *advisor* relationship set may have an attribute *date* when the student was associated with the advisor

Degree of a relationship set

- Binary relationship
 - □ Involves two entity sets (or degree two)
 - Most relationship sets in a database system are binary
- Relationships between more than two entity sets are rare
 - E.g., <u>students</u> work on <u>research projects</u> under the guidance of an instructor

Employee

 Relationship proj_guide is a ternary relationship between instructor, student, and project

Department

works

Attribute type 1 :

- Simple and composite attributes
 - Simple : have not been divided into subparts
 - Composite : can be divided into subparts

composite attributes

Attribute type 2:

- Single valued and multivalued attributes
 - E.g., single valued attribute: student_ID
 - E.g., multivalued attribute: phone_numbers

Single valued attributes

multivalued attributes

■ Attribute type 3:

- Derived attributes
 - Can be computed from other attributes
 - E.g., *age*, given *date_of_birth*
 - Derived attribute = age
 - Base / Stored attribute = date_of_birth

Derived attributes

Domain:

- A set of possible values for an attribute (the type of the attribute)
- Examples
 - The domain of customer name might be strings of some fixed length
 - The domain of social security number might be 9 digit positive integers
 - SSN: XXX XX XXXX

Constraints

- Mapping cardinality constraints
 - Express the number of entities to which another entity can be associated via a relationship set
 - Most useful in describing binary relationship sets
 - For a binary relationship set, the mapping cardinality must be one of the following types:
 - One-to-one
 - One-to-many, many-to-one
 - Many-to-many

Mapping cardinalities

Note: some elements in A and B may not be mapped to any elements in the other set

Figure 7.5 Mapping cardinalities. (a) One-to-one. (b) One-to-many.

Mapping cardinalities cont'd

Figure 7.6 Mapping cardinalities. (a) Many-to-one. (b) Many-to-many.

Basic structure

- Entities are represented graphically as follows:
 - Rectangles represent entity sets
 - Attributes listed inside entity rectangle
 - Underline indicates primary key attributes
- Relationship sets
 - Diamonds represent relationship sets

Roles: function that an entity plays in a relationship

- Since entity sets participating in a relationship set are generally distinct, roles are implicit & not usually specified.
- What if the meaning of a relationship needs clarification?
- The same entity set participates in a relationship set more than once, in different roles.
- Example
 - Roles are represented with the labels "course_id" and "prereq_id"
 - One course (C2) is a prerequisite for another course (C1) we have relationship set *prereq* that is modeled by ordered pairs of course entities. (C1, C2) pairs

course id

title

prereq

prereq_id

Cardinality constraints

Expressed by drawing either a directed line (→), signifying "one", or an undirected line (—), signifying "many", between the relationship set and the entity set

One-to-one relationship

 A student is associated with at most one instructor via the relationship advisor

Exercise

One-to-many relationship

- An instructor is associated with several (possibly o) students via advisor
- A student is associated with at most one instructor

Many-to-many relationship

- An instructor is associated with several (possibly o) students via advisor
- A student is associated with several (possibly o) instructors
 via advisor

In ER diagram, many notations are used to express the cardinality.

Total and partial participation

- Total participation (indicated by a double line)
 - Every entity in the entity set participates in at least one relationship in the relationship set
 - E.g., participation of student in advisor relation is total; every student must have an associated instructor
- Partial participation
 - Some entities may not participate in any relationship in the relationship set
 - E.g., participation of instructor in advisor is partial

Expressing more complex constraints

- A line may have an associated minimum and maximum cardinality, shown in the form l..h, where l is the minimum and h the maximum cardinality
 - A minimum value of lindicates total participation
 - A maximum value of indicates that the entity participates in at most one relationship
 - A maximum value of * indicates no limit

□ Weak entity set

Weak entity set cont'd

- An entity set that does not have sufficient attributes to form a primary key
 - cf. strong entity set: an entity set that has a primary key
 - The *discriminator* of a weak entity set is a set of attributes that make distinction among all weak entities
- It must be associated with another (strong) entity set, called the identifying entity set
 - Every weak entity must be associated with an identifying entity
 - The weak entity set is said to be *existence dependent* on the identifying entity set
 - The relationship associating the weak entity set with the identifying entity set is called the *identifying relationship*

Expressing weak entity sets

- We underline the discriminator of a weak entity set with a dashed line
- The relationship set connecting the weak entity set to the identifying entity set is depicted by a double diamond
- Primary key of a weak entity set is: primary key of identifying entity set + discriminator of weak entity set
 - E.g., section (course_id, sec_id, semester, year)

Entity with complex attributes

```
instructor
ID
name
                     Composite attribute
  first_name
  middle_initial
  last_name
address
  street
     street_number
     street_name
     apt_number
  city
  state
                     multivalued attribute
  zip
{ phone_number }
date_of_birth
age()
```

derived attribute

Let's design university enterprise

How to design a database using the E-R model

- We usually start by identifying those entity sets that should be included
 - Entity sets as student, instructor, etc.
- We must choose the appropriate attributes.
 - The entity set *instructor* includes the attributes *ID*, *name*, *dept_name*, *salary*, *phone number*, *office number*, *home page*, etc. with *ID* forming the primary key.
 - The entity set department includes the attributes dept_name, building, and budget, with dept_name forming the primary key.
- The relationship sets among the various entities are formed
 - The attribute *dept_name* appears in both entity sets. Since it is the primary key for the entity set *department*, it is redundant in the entity set *instructor* and needs to be removed.

E-R diagram for a university enterprise

Data schema for a university enterprise

Let's make Relational Schemas using ER model

Reduction to relation schemas

(ER 모델을 Relation Schema로 만드는 방법)

- A database which conforms to an E-R diagram can be represented by a collection of relation schemas
- For each entity set and relationship set, there is a unique schema that is assigned the name of the corresponding entity set or relationship set
- Each schema has a number of columns (generally corresponding to attributes), which have unique names

Representing entity sets

- A strong entity set reduces to a schema with the same attributes
 - E.g., student (ID, name, tot_cred)
- A weak entity set becomes a table that includes a column for the primary key of the identifying strong entity set
 - E.g., section (course_id, sec_id, semester, year)

Entity sets with composite attributes

- Composite attributes are flattened out by creating a separate attribute for each component attribute
 - E.g., the schema corresponding to instructor has two attributes name_first_name and name_last_name
 - Prefix omitted if no ambiguity; i.e., name_first_name could be first_name
- Extended instructor schema is:
 - instructor (ID, first_name, middle_initial, last_name, street_number, street_name, apt_number, city, state, zip, date_of_birth)

instructor

```
ID
пате
  first_name
   middle_initial
   last name
address
   street
      street number
      street name
      apt number
   city
   state
   zip
{ phone_number }
date_of_birth
age()
```


- Entity sets with multivalued attributes
 - A multivalued attribute M of an entity set E is represented
 by a separate schema EM
 - Schema EM has attributes corresponding to the primary key of E and an attribute corresponding to multivalued attribute M
 - E.g., multivalued attribute *phone_number* of *instructor* is represented by a schema *inst_phone* (ID, phone_number)
 - Each value of the multivalued attribute maps to a separate tuple of the relation on schema EM
 - E.g., an *instructor* entity with primary key 22222 and phone numbers 456-7890 and 123-4567 maps to two tuples:
 (22222, 456-7890) and (22222, 123-4567)

Representing relationship sets

- A many-to-many relationship set is represented as a schema with attributes for the primary keys of the two participating entity sets, and any descriptive attributes of the relationship set
- E.g., advisor (s_id, i_id)

Many-to-one relationship

- Sets that are total on the many-side can be represented by adding an extra attribute to the many-side, containing the primary key of the one-side
- □ E.g.,
 - case 1: creating a schema for relationship set inst_dept
 - Case2: add an attribute dept_name to the schema arising from entity set instructor

Many-to-one relationship

- Primary key field in the Customers table, Customer ID, is designed to contain unique values.
- The foreign key field in the Orders table, Customer ID, is designed to allow multiple instances of the same value.

One-to-one relationship

- Either side can be chosen to act as the many-side
 - That is, an extra attribute can be added to either of the tables corresponding to the two entity sets
- If participation is partial on the many-side, replacing a schema by an extra attribute in the schema corresponding to the many-side could result in null values

One-to-one relationship

- The key field in each table, Student ID, is designed to contain unique values
- In the Students table, the Student ID field is the primary key
- In the Contact Info table, the Student ID field is a foreign key.

Many-to-many relationship

- An instructor is associated with several (possibly o) students via advisor
- A student is associated with several (possibly o) instructors
 via advisor
- RDB usually don't allow you to implement a direct manyto-many relationship between two tables.
 - → You can break the many-to-many relationship into two one-to-many relationships by using a third table, called a *join table*.

Many-to-many relationship

- A student can register for many classes, and a class can include many students.
- Students table contains a record for each student.
- Classes table contains a record for each class.
- A join table, Enrollments, creates two one-to-many relationships—one between each of the two tables.

Entity-Relationship Design Issues

Entities vs. attributes

 Using phone as an entity allows extra information about phone numbers (plus multiple phone numbers)

Entities vs. relationship sets

- If other information is associated with a courseregistration record, it might be best to make it an entity
- Possible guideline is to designate a relationship set to describe an αction that occurs between entities

Create EER diagram in workbench

Click on Database -> Reverse Engineer.

Create EER diagram in workbench

Select your stored connection (for connecting to your MySQL Server in which database is present) from the dropdown. Then click Next.

raye 50

Create ERD in workbench

 \blacksquare

1:1

Add table 1 and table 2

Catalog Tree

▼ 🧐 mydb

Tables

Views

Routine Groups

Click table twice and add attributes

Add relationship

Convert ER model to schema

Click! \rightarrow NEXT \rightarrow click! \rightarrow NEXT \rightarrow ...

ER modeling tools

- Online ER modeling
 - https://online.visualparadigm.com/drive/#diagramlist:proj=o&new=ERDiagra m
- Erwin
 - https://go.erwin.com/request-erwin-EDGE-trial-or-demo