Real Time Operating System Project

Ammar Hassan Abdelhakim

Table Of Contents:

- Analytical Calculations
- Keil Simulator
- Simso Simulator

Analytical Calculations

1. Hyperperiod

```
Hyperperiod = LCM (Tasks periods)
= LCM (50, 50, 100, 100, 10, 100)
= 100
```

2. CPU Execution Time

• Button 1 Monitor

The execution time is 18 us.

• Button 2 Monitor

The execution time is 18 us.

• Periodic Transmitter

The execution time is 22 us.

Uart Receiver

The execution time is 40 us.

Load 1 Simulation

The execution time is 5 ms.

• Load 2 Simulation

The execution time is 12 ms.

Utililzation = Total_Execution_Time_In_Hyperperiod / Hyperperiod $= \frac{(0.018*2+0.018*2+0.022+0.04+5*10+12)}{100} \times 100 = 62.134\%$

2. System Schedulability

- Is the system schedulable?
 - 1. RMU Schedulability Bound

The system is schedulable if $U \le n \left(2^{\frac{1}{n}} - 1\right)$

In the system U = 62.134% and U_{rm} = 74.48 % So, U < U_{rm} Then the system is schedulable.

2. Time Demand

$$wi(t) = ei + \sum_{k=1}^{i-1} \left[\frac{t}{p_k} \right] e_k \text{ for } 0 < t \le pi$$

Where:

wi is the processor time demand.

 p_k is the periodicity of task k

 e_k is the execution time of task k for all higher priority tasks

1. for load 1 simulation (the task with the highest priority)

$$wi = 5ms + 0 = 5ms < 10ms$$
 (task deadline) then task is schedulable

2. for Button 1 monitor

$$wi = 0.018 + \frac{50}{10} \times 5 = 22.518 < 50$$
ms (task deadline) then the task is schedulable

3. for Button 2 monitor

$$wi = 0.018 + \frac{50}{10} \times 5 + \frac{50}{50} \times 0.018 = 22.536$$
ms < 50ms (task deadline) then the task is schedulable

4. for periodic transmitter

$$wi = 0.022 + \frac{100}{10} \times 5 + \frac{100}{50} \times 0.018 + \frac{100}{50} \times 0.018 = 50.094 < 100$$
ms (task deadline)

Then the task is schedulable

5. for uart receiver

$$wi = 0.04 + \frac{100}{10} \times 5 + \frac{100}{50} \times 0.018 + \frac{100}{50} \times 0.018 + \frac{100}{100} \times 0.022 = 50.134 < 100$$
ms

(task deadline) then the task is schedulable.

6. for load 2 simulation

$$wi = 12 + \frac{100}{10} \times 5 + \frac{100}{50} \times 0.018 + \frac{100}{50} \times 0.018 + \frac{100}{100} \times 0.022 + \frac{100}{100} \times 0.04$$

= 62.134 < 100ms (task deadline) then the task is schedulable.

Keil Simulation

Calculation of cpu total execution time and cpu load using timer 1

The figure here shows the total execution time for each task and total cpu execution time during the T1TC period.

Plotting all tasks and tick using logic analyzer

Simso Simulation

Conclusion

- The system is feasible and schedulable as shown from analytical calculations and keil simulation.
- The analytical calculations and simulation calculations are similar.
- We can notice that tasks don't miss their deadlines.