EE6101 DIGITAL COMMUNICATION SYSTEMS PART III – ERROR CORRECTION CODES

Assoc Prof Erry Gunawan

Tel: 6790 5392

Office: S1-B1c-80

E-mail: egunawan@ntu.edu.sg

Error Correction Coding

- 1. LINEAR BLOCK CODES
- 2. CYCLIC CODES
- 3. CONVOLUTIONAL CODES
- 4. INTEGRATED CODING MODULATION TECHNIQUES (will not be examined)
- 5. TURBO CODES

References

- E. R. BERLEKAMP
 "Algebraic Coding Theory", McGraw-Hill, 1968.
- W. W. PETERSON and E. J. WELDON "Error-Correcting Codes", MIT Press, 1972.
- 3. S. LIN, D. J. COSTELLO "Error Control Coding: Fundamentals and Applications", Prentice-Hall, 1983.
- 4. G. C. Jr. CLARK and J. B. CAIN "Error-Correction Coding for Digital Communication", Plenum Press, 1981.
- 5. A. J. VITERBI and J. K. OMURA "Principles of Digital Communication and Coding", McGraw-Hill, 1979.
- 6. P. SWEENEY "Error Control Coding: An Introduction", Prentice-Hall, 1991.

TEXT BOOK:

Bernard Sklar, "Digital Communications: Fundamentals and Applications," Second Edition, 2001, Prentice-Hall.

Purpose of Channel Coding

TO IMPROVE COMMUNICATIONS PERFORMANCE BY ENABLING THE TRANSMITTED SIGNALS TO BETTER WITHSTAND THE EFFECTS OF VARIOUS CHANNEL IMPAIRMENTS: NOISE, FADING, JAMMING, ETC.

Application of Sequence Coding

COMPACT DISC.

CODING IS USED FOR THE DIGITIZED AUDIO WAVEFORM STORED IN THE DISC. PHILIPS' AND SONY'S STANDARD USES: CROSS-INTERLEAVE REED-SOLOMON CODE (CIRC).

NASA DEEP SPACE AND SATELLITE APPLICATION.

CONVOLUTIONAL CODE IS USED IN INTELSAT, EUTELSAT AND OTHER SATELLITE SERVICES.

THE CONSULTATIVE COMMITTEE FOR SPACE DATA SYSTEMS (CCSDS) STANDARD USES:

(255, 223) REED-SOLOMON CONCATENATED WITH ½-RATE, CONSTRAINT LENGTH 7, CONVOLUTIONAL CODE.

- COMPUTER APPLICATIONS.
 - COMPUTER MEMORY.
 IBM 7030 USES HAMMING CODE.
 - DISK STORAGE.
 IBM 3370, IBM 3375, IBM 3380E USE: REED-SOLOMON CODES.
 - MAGNETIC TAPE STORAGE.
 IBM 3850 MASS STORAGE SYSTEM (MSS) USES (15, 13) BCH CODE.

Types of Error Control

- 1. ERROR DETECTION ONLY AND RETRANSMISSION.
 - FOR FULL-DUPLEX OR HALF-DUPLEX AND REQUIRES ARQ.
 - SIMPLER DECODING AND LESS REDUNDANCY THAN FEC.
- 2. ERROR DETECTION AND CORRECTION: FORWARD ERROR CORRECTION (FEC).

FOR:

- SIMPLEX CONNECTIVITY ONLY OR DELAY WITH ARQ IS EXCESSIVE
- REAL TIME DATA TRANSMISSION
- NOISY CHANNEL WHERE ARQ WILL BE EXCESSIVE.

MORE COMPLEX DECODING AND REDUNDANCY.

Terminal Connectivity Classifications

SIMPLEX

HALF-DUPLEX

FULL-DUPLEX

Automatic Repeat Request (ARQ)

Channel Models

1. DISCRETE MEMORYLESS CHANNEL (DMC)

⇒ DISCRETE OUTPUT ALPHABET, Z

⇒ A SET OF CONDITIONAL PROBABILITY

$$P(\mathbf{Z}|\mathbf{U}) = \prod_{m=1}^{N} P(z_m | u_m)$$

WHERE

$$\mathbf{U} = u_1, u_2, \dots, u_m, \dots, u_N$$

 $\mathbf{Z} = z_1, z_2, \dots, z_m, \dots, z_N$

INDEPENDENT

MEMORYLESS MEANS THE EVENTS ARE MUTUALLY EXCLUSIVE, HENCE THE COMPOUND PROBABILITY OF THE TOTAL SEQUENCE IS JUST A MULTIPLICATION OF THE INDIVIDUAL ELEMENT PROBABILITY

2. BINARY SYMMETRIC CHANNEL (BSC)

A SPECIAL CASE OF DMC WHERE THE INPUT AND OUTPUT ALPHABET SETS CONSISTS OF BINARY ELEMENT (0 AND 1)

3. ADDITIVE WHITE GAUSSIAN NOISE CHANNEL (AWGN)

- GENERALIZE DEFINITION OF DMC CONTINUOUS CHANNEL
- NOISE CAN BE ADDED TO THE SIGNALS

EXAMPLE: CHANNEL WITH DISCRETE INPUT ALPHABET AND A CONTINUOUS OUTPUT ALPHABET OR IN PRACTICE THIS CONTINUOUS OUTPUT USUALLY IS ITS QUANTIZED APPROXIMATION

DECODING WITH GAUSSIAN CHANNEL IS CALLED SOFT-DECISION DECODING

Figure 5.12 Coded versus uncoded bit error performance for coherent PSK with various (n, k) codes.

Linear Block Codes

- ENCODER TRANSFORMS BLOCK OF k SUCCESSIVE BINARY DIGITS INTO LONGER BLOCK OF n (n > k) BINARY DIGITS
- CALLED AN (n, k) CODE
- REDUNDANCY = $\frac{n-k}{k}$; CODE RATE R = $\frac{k}{n}$
- THERE ARE 2^k POSSIBLE MESSAGES
- THERE ARE 2^k POSSIBLE CODE WORDS CORRESPONDING TO THE MESSAGES
- CODE WORD (or code vector) IS AN n-TUPLE FROM THE SPACE V_n OF ALL n-TUPLES
- STORING THE 2^k CODE VECTORS IN A DICTIONARY IS PROHIBITIVE FOR LARGE k

Coding Idea

TAKE 3-BIT MESSAGES:

- THE INFORMATION CONTAINED IN EACH SEQUENCE IS 3 BITS BECAUSE ALL THE BITS CARRY INFORMATION (MESSAGE) → NO REDUNDANCY.
- ▼ REDUNDANCY IS NEEDED:

 IF WE REPRESENT THE SEQUENCE OF DIGITS AS A VECTOR WHICH OCCUPIES A SPACE, THEN THIS MEANS WE NEED A LARGER SPACE THAN THE SPACE OCCUPIED BY THE MESSAGE SEQUENCES.

WE HAVE NOW THE PROBLEM OF MAPPING: HOW TO MAP THE 2^k SET OF MESSAGES TO A LARGER 2^n SET OF SEQUENCES SUCH THAT THE REDUNDANCY CAN PROVIDE EXTRA INFORMATION FOR DETECTING OR CORRECTING ERRORS.

Mapping Problem and Rules

- THIS WAY OF MAPPING DOES NOT PRODUCE REDUNDANCY THAT GIVES EXTRA INFORMATION FOR DETECTING/CORRECTING OF ERRORS.
- → HENCE, THERE ARE 3 FUNDAMENTAL PROBLEMS FACED BY THE DESIGNER OF ERROR
 DETECTION/CORRECTION (EDC) SYSTEMS:
 - 1. TO SYNTHESISE A CODE WITH THE DESIRED REDUNDANCY OR EDC PROPERTIES,
 - 2. TO FIND A REASONABLY SIMPLE DECODER, AND
 - 3. TO MAKE THE OVERALL CODING SYSTEM AS EFFICIENT AS POSSIBLE, SO THAT THE MINIMUM AMOUNT OF REDUNDANT INFORMATION IS TRANSMITTED.

Finite Field Number System

☞ NORMAL NUMBERING SYSTEM:

THE FIELD OF THIS SYSTEM IS FROM $+\infty$ TO $-\infty$ (INIFINITE FIELD).

☞ GALOIS FIELD NUMBER SYSTEM:

IS A FINITE FIELD ELEMENTS NUMBERING SYSTEM

- GF(2) HAS 2 ELEMENTS ONLY (0 AND 1)
 - RESULTS OF ALL OPERATIONS (ADDITION AND MULTIPLICATION) MUST BE IN THE SAME FIELD:

- GF(3) HAS 3 ELEMENTS (0, 1, AND 2)
 - RESULTS OF ALL OPERATIONS MUST BE IN THE SAME FIELD:

Vector Spaces and Subspaces

- THE SET OF ALL BINARY N-TUPLES, V_n, IS CALLED A VECTOR SPACE OVER GF (2)
- TWO OPERATIONS ARE DEFINED

ь 1

- ADDITION: $V + U = v_1 + u_1, v_2 + u_2, \dots, v_n + u_n$
- SCALAR MULTIPLICATION: $a\underline{V} = av_1$, av_2 , $\cdots av_n$
- EXAMPLE: VECTOR SPACE V_A

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

$$(0101) + (1110) = (0+1, 1+1, 0+1, 1+0) = 1011$$

1 · $(0101) = (1 \cdot 0, 1 \cdot 1, 1 \cdot 0, 1 \cdot 1) = 0101$

- A SUBSET S OF V_n IS A SUBSPACE IF
 - THE ALL-ZERO VECTOR IS IN S
 - THE SUM OF ANY TWO VECTORS IN S IS ALSO IN S

CONDITIONS FOR LINEAR BLOCK CODES

• EXAMPLE OF S:
$$\underline{V}_0 = 0000$$

 $\underline{V}_1 = 0101$
 $\underline{V}_2 = 1010$
 $\underline{V}_3 = 1111$

Mapping Rules (cont'd)

SUMMARISING THE RULES OF MAPPING:

FROM k-TUPLE MESSAGES TO k-DIMENSIONAL SUBSPACE OF n-TUPLE VECTOR SPACE

"MAGE

- 1. THE ALL-ZERO VECTOR IS IN THE SUBSPACE
- 2. THE SUM OF ANY TWO VECTORS IN THE SUBSPACE IS ALSO IN THE SUBSPACE
- WHEN K IS SMALL, THE MAPPING CAN BE DONE USING TABLE LOOK UP. BUT FOR LARGE K. THE SIZE OF THE REQUIRED MEMORY WILL BE THE LIMITATION.
- → HOWEVER, WE DO NOT NEED THE WHOLE k-DIMENSIONAL SUBSPACE CODEWORD VECTORS TO BE STORED IN MEMORY TO DO THE MAPPING. RULE 2 STATES THAT ALL OTHER VECTORS IN THE SUBSPACE CAN BE OBTAINED FROM CERTAIN VECTORS IN THIS SUBSPACE → VECTORS WHICH ARE LINEARLY INDEPENDENT FROM EACH OTHER.
- THIS LINEARLY INDEPENDENT SET CHOSEN FROM ALL THE VECTORS IN THE k-DIMENSIONAL SUBSPACE WILL THEN BE A GENERATOR FOR THE OTHER CODEWORD VECTORS.

Reducing Encoding Complexity

- KEY FEATURE OF LINEAR BLOCK CODES: THE 2^k CODE VECTORS FORM A k-DIMENSIONAL SUBSPACE OF ALL n-TUPLES
- EXAMPLE: k = 3, $2^k = 8$, n = 6, (6, 3) CODE

MESSAGE	CODE WORD	ı
0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1	0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1	A 3-DIMENSIONAL SUBSPACE OF THE VECTOR SPACE OF ALL 6-TUPLES

- IT IS POSSIBLE TO FIND A SET OF k LINEARLY INDEPENDENT n-TUPLES \underline{v}_1 , \underline{v}_2 , . . . , \underline{v}_k SUCH THAT EACH n-TUPLE OF THE SUBSPACE IS A LINEAR COMBINATION OF \underline{v}_1 , \underline{v}_2 , . . . , \underline{v}_k
- CODE WORD $\underline{\mathbf{u}} = \mathbf{m}_{1}, \underline{\mathbf{v}}_{1} + \mathbf{m}_{2}, \underline{\mathbf{v}}_{2} + \dots + \mathbf{m}_{k}, \underline{\mathbf{v}}_{k}$

Generator Matrix

$$G = \begin{bmatrix} \frac{v}{1} \\ \frac{v}{2} \\ \vdots \\ \frac{v}{k} \end{bmatrix} = \begin{bmatrix} v_{11} & v_{12} & v_{13} & \cdots & v_{1n} \\ v_{21} & v_{22} & v_{23} & \cdots & v_{2n} \\ \vdots & & & & & \\ v_{k1} & v_{k2} & v_{k3} & \cdots & v_{kn} \end{bmatrix} \xrightarrow{k \times n} GENERATOR MATRIX$$

- THE 2 CODE VECTORS CAN BE DESCRIBED BY A SET OF K LINEARLY INDEPENDENT **CODE VECTORS**
- LET $\underline{m} = [m_1, m_2, \dots, m_k]$ BE A MESSAGE (row vectors are standard in the

• LET
$$\underline{m} = [m_1, m_2, \dots, m_k]$$
 BE A MESSAGE (row vectors are standard in the coding literature)

• CODE WORD CORRESPONDING TO MESSAGE $m: \underline{u} = \underline{m} G$

$$\underline{u} = [m_1, m_2, \dots, m_k] \begin{bmatrix} \underline{v}_1 \\ \underline{v}_2 \\ \vdots \\ \underline{v}_k \end{bmatrix}$$

$$\underline{u} = m_1 \underline{v}_1 + m_2 \underline{v}_2 + \dots + m_k \underline{v}_k$$

Generator Matrix

(cont'd)

- STORAGE IS GREATLY REDUCED
- \bullet THE ENCODER NEEDS TO STORE THE k ROWS OF G INSTEAD OF THE $2^{\mbox{\scriptsize K}}$ CODE VECTORS OF THE CODE

EXAMPLE

LET G =
$$\begin{bmatrix} \underline{y}_1 \\ \underline{y}_2 \\ \underline{y}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \quad \text{AND } \underline{m} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

THEN

$$\underline{\mathbf{u}} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \underline{\mathbf{v}}_1 \\ \underline{\mathbf{v}}_2 \\ \underline{\mathbf{v}}_3 \end{bmatrix} = \begin{bmatrix} 1 & \cdot \underline{\mathbf{v}}_1 + 1 \cdot \underline{\mathbf{v}}_2 + 0 \cdot \underline{\mathbf{v}}_3 \\ = 1 \cdot \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$= 1 \cdot \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Systematic Code

THE ENCODING PROBLEM: FORM THE REDUNDANT DIGITS

$$G = \begin{bmatrix} p_{11}^{'} & p_{12} & \dots & p_{1, n-k} & 1 & 0 & 0 & \dots & 0 \\ p_{21} & p_{22} & \dots & p_{2, n-k} & 0 & 1 & 0 & 0 & \dots & 0 \\ p_{31} & p_{32} & \dots & p_{3, n-k} & 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & & \vdots & & \vdots \\ p_{k1} & k_{k2} & p_{k, n-k} & 0 & 0 & 0 & 0 & \dots & 1 \end{bmatrix} WHERE p_{ij} = 0 OR 1$$

$$AND I_{k} IS THE k x k$$

$$IDENTITY MATRIX$$

Systematic Code

(cont'd)

$$G = [P I_k]$$
 GENERATOR MATRIX $u = m G$

$$\begin{bmatrix} u_1, u_2, \dots u_n \end{bmatrix} = \begin{bmatrix} m_1, m_2, \dots, m_k \end{bmatrix} \begin{bmatrix} p_{11} p_{12} \dots, p_{1, n-k} & 1000 \dots \\ p_{21} p_{22} \dots, p_{2, n-k} & 0100 \dots \\ p_{31} p_{32} \dots, p_{3, n-k} & 0010 \dots \\ \vdots & \vdots & \vdots \end{bmatrix}$$

•
$$u_i = m_1 p_{1i} + m_2 p_{2i} + \dots + m_k p_{ki}$$

FOR $i = 1, \dots, n-k$

• THE LAST k DIGITS OF THE CODE WORD ARE THE DATA DIGITS

Systematic Code (cont'd)

☞ IF WE EXPRESS THE SYSTEMATIC CODE VECTOR AS:

 $\underline{U} = p_1, p_2, \dots, p_{n-k}, m_1, m_2, \dots, m_k$

THEN

 $\begin{aligned} p_1 &= m_1 p_{11} + m_2 p_{21} + \dots + m_k p_{k1} \\ p_2 &= m_1 p_{12} + m_2 p_{22} + \dots + m_k p_{k2} \\ \vdots &\vdots &\vdots \\ p_{n-k} &= m_1 p_{1, (n-k)} + m_2 p_{2, (n-k)} + \dots + m_k p_{k, (n-k)} \end{aligned}$

Systematic Code

(cont'd)

 STORAGE REQUIREMENTS FURTHER REDUCED: STORE k x (n-k) DIGITS OF THE P MATRIX INSTEAD OF k x n DIGITS OF THE G MATRIX

EXAMPLE: (6, 3) CODE

$$\underline{u} = [u_1, u_2, \dots, u_6]$$

$$\underline{u} = [m_1, m_2, m_3] \qquad \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\underline{P} \qquad I_k$$

$$\underline{u} = m_1 + m_3, m_1 + m_2, m_2 + m_3, m_1, m_2, m_3$$

$$\underline{u}_1 \qquad \underline{u}_2 \qquad \underline{u}_3 \qquad \underline{u}_4 \qquad \underline{u}_5 \qquad \underline{u}_6$$

Parity Check

- FIT IS DESIRED TO HAVE A METHOD OF CHECKING THE CORRECTNESS OF THE PARITY BITS IN THE MESSAGE RECEIVED IN THE RECEIVER.
- $\ensuremath{\text{\#}}$ LET U BE THE VALID CODEWORD GENERATED BY G, THEN IT IS OBVIOUS THAT IF WE CAN FIND A VECTOR/MATRIX V SUCH THAT

$$U.V = 0$$

$$U'.V \neq 0$$

F THE PARITY CHECK MATRIX CAN BE FOUND AS FOLLOWS:

$$\mathbf{U}.\mathbf{V}=\mathbf{m}.\mathbf{G}.\mathbf{V}=\mathbf{0}$$

OR

$$G.V = 0$$

BUT

$$G = [P I_k]$$

HENCE

$$V = H^T = \begin{bmatrix} I_{n-k} \\ P \end{bmatrix}$$
 OR $H = \begin{bmatrix} I_{n-k} & P^T \end{bmatrix}$

Parity Check Matrix and Syndrome

• IN A SYSTEMATIC CODE WITH G = [P Ik]

$$H = \left[I_{n-k} P^{T}\right]$$

• SYNDROME OF r USED FOR ERROR DETECTION AND CORRECTION

$$\underline{s} = \underline{r} H^{\mathsf{T}}$$

- SYNDROME \underline{s} $\left\{ \begin{array}{ll} \bullet & \underline{O} \\ \neq & \underline{O} \end{array} \right.$ IF \underline{r} IS A CODE VECTOR OTHERWISE
- $\underline{s} = \underline{r} \underline{H}^{T} = (\underline{U} + \underline{e}) \underline{H}^{T} = \underline{U} \underline{H}^{T} + \underline{e} \underline{H}^{T}$ BUT $\underline{U} \underline{H}^{T} = \underline{0}, \text{ HENCE}$ $\underline{s} = \underline{r} \underline{H}^{T} = \underline{e} \underline{H}^{T}$

A Standard Array for the (6, 3) Code

	SET ADER							
000	0000	110100	011010	101110	, · 101001	011101	110011	000111
000	0001	110101	011011	101111	101000	011100	110010	000110
000	010	110110	011000	101100	101011	011111	110001	000101
000	0100	110000	011110	101010	101101	011001	110111	000011
00:	1000	111100	010010	100110	100001	010101	111011	001111
010	0000	100100	001010	111110	111001	001101	100011	010111
100	0000	010100	111010	001110	001001	111101	010011	100111
010	0001	100101	001011	111111	111000	001100	100010	010110
		1						

[•] THE 2^{n-k} COSET LEADERS ARE THE CORRECTABLE ERROR PATTERNS

[•] THE DECODING IS CORRECT IF AND ONLY IF THE ERROR PATTERN CAUSED BY THE CHANNEL IS A COSET LEADER

[•] THE 2^k n-TUPLES OF A COSET HAVE THE SAME SYNDROME. THE SYNDROME FOR DIFFERENT COSETS ARE DIFFERENT

Procedure for Error Correction Decoding

CALCULATE SYNDROME

$$S = r.H^T$$

- ${\bf \mbox{\it \mbox{\it T}}}$ LOCATE THE ERROR PATTERN, e_{j^t} WHOSE SYNDROME IS $S=r.{\bf H}^T$
- THE CORRECTED RECEIVED VECTOR OR CODE VECTOR IS

$$U = r + e_{j}$$

Error Correction Example

		[110100]		100101
G :		011010	H =	010110
	101001		001011	

COSET LEADER	SYNDROME
000000	0 0 0
000001	1 0 1
000010	0 1 1
000100	1 1 0
001000	0 0 1
010000	0 1 0
100000	100
010001	1 1 1

- ASSUME \underline{v} = 1 0 1 1 1 0 IS TRANSMITTED AND \underline{r} = 0 0 1 1 1 0 IS RECEIVED
- THE SYNDROME IS: rHT = 100
- THE COSET LEADER IS: 100000
- THEREFORE THE CORRECTED RECEIVED VECTOR IS:

001110 + 100000 = 101110

Weight and Distance of Binary Vectors

HAMMING WEIGHT OF A VECTOR

W (v) = NUMBER OF NON-ZERO COMPONENTS IN THE VECTOR

• HAMMING DISTANCE BETWEEN 2 VECTORS

FOR EXAMPLE

$$\underline{u} = 10010110001$$

 $v = 11001010101$

$$d(\underline{u}, \underline{v}) = 5$$

- $\bullet u + v = 01011100100$
- d (\underline{u} , \underline{v}) = w (\underline{u} + \underline{v}) THE HAMMING DISTANCE BETWEEN 2 VECTORS IS EQUAL TO THE HAMMING WEIGHT OF THEIR . VECTOR SUM
- THE STRENGTH OF A CODE DEPENDS ON THE DISTANCES (HAMMING DISTANCE FOR BINARY CODES) BETWEEN EACH OF THE CODE VECTORS

Minimum Distance of a Linear Code

- THE SET OF ALL CODE VECTORS OF A LINEAR CODE FORM A SUBSPACE OF THE n-TUPLE SPACE
- IF \underline{u} AND \underline{v} ARE 2 CODE VECTORS, THEN \underline{u} + \underline{v} MUST ALSO BE A CODE VECTOR (closure property)
- THEREFORE, THE DISTANCE d (u, v) BETWEEN 2 CODE VECTORS EQUALS THE WEIGHT OF A THIRD

$$d(\underline{u}, \underline{v}) = w(\underline{u} + \underline{v}) = w(\underline{w})$$

- THUS, THE MINIMUM DISTANCE OF A LINEAR CODE EQUALS THE MINIMUM WEIGHT OF ITS CODE VECTORS
- ◆ A CODE WITH MINIMUM DISTANCE d_{min} CAN BE SHOWN TO HAVE ERROR-CORRECTING CAPABILITY (d_{min} 1)/2 OR ERROR-DETECTING CAPABILITY (d_{min} 1)

Decoding Strategy

Maximum Likelihood Decoding

CHOOSE THE MOST LIKELY = MAXIMUM PROBABILITY:

$$P(\mathbf{Z}|\mathbf{U}^{(m')}) = \max_{all\mathbf{U}^{(m)}} P(\mathbf{Z}|\mathbf{U}^{(m)})$$

WHERE $Z = (Z_1, Z_2, ..., Z_i)$ IS THE RECEIVED SEQUENCE

 $\mathbf{U}^{(m)} = (\mathbf{U}_1^{(m)}, \mathbf{U}_2^{(m)},, \mathbf{U}_i^{(m)}) \text{ IS ONE OF THE POSSIBLE TRANSMITTED SEQUENCES}.$

(HENCE, IF THERE IS N-BIT CODEWORD SEQUENCE { i = N}, THEN THERE ARE 2^N POSSIBLE SEQUENCES FOR $\mathbf{U}^{(m)}$.)

FOR **MEMORYLESS** CHANNEL:

$$P(\mathbf{Z}|\mathbf{U}^{(m)}) = \prod_{i=1}^{N} P(Z_i|U_i^{(m)})$$

$$\log P(Z|U^{(m)}) = \sum_{i=1}^{N} \log P(Z_{i}|U_{i}^{(m)})$$

Why Hamming Distance for BSC Channel?

RECALL:

$$P(\mathbf{Z}|\mathbf{U}^{(m')}) = \max_{all\mathbf{U}^{(m)}} P(\mathbf{Z}|\mathbf{U}^{(m)})$$

WHERE $P(\mathbf{Z}|\mathbf{U}^{(m)})$ IS THE PROBABILITY OF RECEIVING \mathbf{Z} SEQUENCE WHEN THE POSSIBLE TRANSMITTED SEQUENCE IS $\mathbf{U}^{(m)}$.

IF Z AND $\mathbf{U}^{(m)}$ ARE EACH N-BIT LONG AND DIFFER IN d_m POSITIONS, THEN

$$P(\mathbf{Z}|\mathbf{U}^{(m)}) = p^{d_m}(1-p)^{N-d_m}$$

OR

$$\log P(\mathbf{Z}|\mathbf{U}^{(m)}) = -d_m \log \left(\frac{1-p}{p}\right) + N \log(1-p)$$
$$= -A.d_m - B$$

HENCE,

$$Max[\log P(\mathbf{Z}|\mathbf{U}^{(m)})] = -A \times Min[d_m] - B$$

AND d_m IS THE HAMMING DISTANCE BETWEEN Z AND $\mathbf{U}^{(m)}$.

CONCLUSION: FOR BSC CHANNEL THE MAXIMUM PROBABILITY IS INVERSELY PROPORTIONAL TO THE DISTANCE BETWEEN Z AND $\mathbb{U}^{(m)}$:

DECIDE IN FAVOUR OF $\mathbf{U}^{(m')}$ IF

$$d(\mathbf{Z}, \mathbf{U}^{(m')}) = \frac{Min}{all\mathbf{U}^{(m)}} d(\mathbf{Z}, \mathbf{U}^{(m)})$$

Relation of Minimum Distance to Parity Check Matrix

$$\text{IF } \mathbf{c} = (\mathbf{c}_0, \ \mathbf{c}_1, \ \dots, \ \mathbf{c}_{\mathbf{n}-\mathbf{l}}) \text{ IS A CODEWORD, AND } \mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1n} \\ h_{21} & h_{22} & \cdots & h_{2n} \\ \vdots & \vdots & & \vdots \\ h_{n-k,1} & h_{n-k,2} & \cdots & h_{n-k,n} \end{bmatrix} \text{ IS THE PARITY }$$

CHECK MATRIX, THEN

$$\mathbf{cH^{T}} = (c_{0} \quad c_{1} \quad \cdots \quad c_{n-1}) \begin{bmatrix} h_{11} & h_{21} & \cdots & h_{n-k,1} \\ h_{12} & h_{22} & \cdots & h_{n-k,2} \\ \vdots & \vdots & & \vdots \\ h_{1n} & h_{2n} & \cdots & h_{n-k,n} \end{bmatrix}$$

$$= (c_0 h_{11} + c_1 h_{12} + \dots + c_{n-1} h_{1n}, \dots, c_0 h_{n-k,1} + c_1 h_{n-k,2} + \dots + c_{n-1} h_{n-k,n}) = \mathbf{0}$$

HENCE,

$$\begin{aligned} c_0h_{11} + c_1h_{12} + & \dots + c_{n-1}h_{1n} = 0 \\ & \vdots \\ c_0h_{n-k,1} + c_1h_{n-k,2} + & \dots + c_{n-1}h_{n-k,n} = 0 \end{aligned}$$

THIS SHOWS THAT THE COLUMN VECTORS OF II IS LINEARLY DEPENDENT.

IF c IS A MINIMUM WEIGHT CODEWORD WITH WEIGHT, $w_{\min} = m$, THEN THERE ARE m NON-ZERO COMPONENTS, AND (n-m) ZERO COMPONENTS:

$$c_j, c_{j+1}, \ldots, c_{j+m-1} = 1$$

AND

$$h_{1,j+1} + h_{1,j+2} + \dots + h_{1,j+m} = 0$$

$$\vdots$$

 $h_{n-k,j+1} + h_{n-k,j+2} + \dots + h_{n-k,j+m} = 0$

OR

$$\begin{pmatrix} h_{1,j+1} \\ h_{2,j+1} \\ \vdots \\ h_{n-k,j+1} \end{pmatrix} + \begin{pmatrix} h_{1,j+2} \\ h_{2,j+2} \\ \vdots \\ h_{n-k,j+2} \end{pmatrix} + \dots + \begin{pmatrix} h_{1,j+m} \\ h_{2,j+m} \\ \vdots \\ h_{n-k,j+m} \end{pmatrix} = \mathbf{0}$$

SINCE $w_{\min} = d_{\min}$, THE POSSIBLE MINIMUM DISTANCE OF A CODE CAN BE DETERMINED BY COUNTING THE MINIMUM NUMBER OF LINEARLY DEPENDENT COLUMNS OF H.

EXAMPLE:

THE MINIMUM DISTANCE OF A CODE WITH PARITY CHECK MATRIX:

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

IS THREE.

THE LINEARLY DEPENDENT COLUMNS ARE COLUMNS 1, 2, 6 OR COLUMNS 3, 6, 7, ETC.

NO LESS THAN THREE COLUMNS ARE LINEARLY DEPENDENT.

Bit Error Probability

CONSIDER A CODE WITH:

n=6

t=2 (TWO BIT ERROR CORRECTABLE)

SO THE DECODER WILL MAKE ERRONEOUS DECODING WHEN IT RECEIVES ERRORS MORE THAN t:

(t+1) TO n BITS

USING BINOMIAL DISTRIBUTION: THE PROBABILITY OF 3 BIT ERRORS IN 6 BIT CODE IS

$$\binom{6}{3} p^3 (1-p)^{6-3}$$

WHERE p = PROBABILITY OF CHANNEL ERROR (1 BIT)

HENCE, PROBABILITY THAT n-BIT BLOCK IS DECODED IN ERROR IS

$$P_M \le \sum_{j=t+1}^n \binom{n}{j} p^j (1-p)^{n-j}$$

BIT-ERROR-PROBABILITY OF THE DECODER CAN BE APPROXIMATED AS:

$$P_{B} \approx \frac{1}{n} \sum_{j=t+1}^{n} j \binom{n}{j} p^{j} (1-p)^{n-j}$$

Example of 8 Codewords in a 6-Tuple Space

Binary Cyclic Codes

Limitations of Linear Block Codes

- THE GENERATOR MATRIX COULD BE VERY LARGE.
 FOR (127, 92) CODE, WE NEED TO GENERATE 92x127 MATRIX
 TO GET A GOOD PERFORMANCE CODE, WE USUALLY NEED A VERY LARGE n AND k
- DIFFICULT TO IMPLEMENT IN HARDWARE

Binary Cyclic Codes

- A SUBCLASS OF LINEAR BLOCK CODES
- EASILY IMPLEMENTED VIA FEEDBACK SHIFT REGISTERS
- SYNDROME CALCULATION EASILY ACCOMPLISHED WITH FB SHIFT REGISTER
- ALGEBRAIC STRUCTURE LENDS ITSELF TO EFFICIENT DECODING METHODS

Description of Cyclic Codes

IF AN n-TUPLE

$$V = (v_0, v_1, v_2, \dots, v_{n-1}) \qquad \text{IS A CODE VECTOR OF C,}$$
 THEN
$$V^{(1)} = (v_{n-1}, v_0, v_1, \dots, v_{n-2}) \text{ IS ALSO A CODE VECTOR OF C}$$
 OR, IN GENERAL:
$$V^{(i)} = (v_{n-i}, v_{n-i+1}, \dots, v_{n-1}, v_0, v_1, \dots, v_{n-i-1}) \text{ IS A CODE VECTOR OF C}$$

Cyclic Codes (Cont'd)

THE COMPONENTS OF A CODE VECTOR CAN BE TREATED AS THE COEFFICIENTS OF A POLYNOMIAL AS FOLLOWS:

$$V = (v_0, v_1, v_2, \dots, v_{n-1}) \iff V(X) = v_0 + v_1 X + v_2 X^2 + \dots + v_{n-1} X^{n-1}$$

IN GENERAL, THE CODE POLYNOMIAL CORRESPONDING TO THE CODE VECTOR $V^{(i)}$ IS:

$$V^{(i)}(X) = v_{n-i} + v_{n-i+1} X + v_{n-i+2} X^{2} + \dots + v_{n-1} X^{i-1}$$

$$+ v_{0} X^{i} + v_{1} X^{i+1} + \dots + v_{n-i+1} X^{n-1}$$

Cyclic Codes (Cont'd)

IT CAN BE SHOWN THAT
$$V^{(i)}(x)$$
 IS THE REMAINDER RESULTING FROM DIVIDING $X^i \vee (X)$ BY $X^n + 1$

OR $X^i \vee (X) = q(X)(X^n + 1) + v^{(i)}(X)$

EXAMPLE

LET $V = 1101(n = 4)$
 $V(X) = 1 + X + X^3$

POLYNOMIAL IS WRITTEN LOW-ORDER TO HIGH-ORDER

LET $i = 3$; $X^3 \vee (X) = X^3 + X^4 + X^6$

DIVIDE BY $X^4 + 1$:

$$X^4 + 1 \longrightarrow X^6 + X^2 \longrightarrow X^4 + X^3 \longrightarrow X^4 + X^4 \longrightarrow X^4 + X^4 \longrightarrow X^4 + X^4 \longrightarrow X^4 \longrightarrow$$

Cyclic Code Properties

- IN AN (n, k) CYCLIC CODE THERE EXISTS ONE, AND ONLY ONE GENERATOR POLYNOMIAL g(X) OF DEGREE n - k
- COEFFICIENT g_0 OF g(X) MUST = 1
- V IS A CODEWORD iff g(X) DIVIDES INTO V(X) WITHOUT A REMAINDER

$$V(X) = m(X) g(X)$$

 $V(X) = (m + m X + m X^2 + ... + m)$

$$V(X) = (m_0 + m_1 X + m_2 X^2 + \dots + m_{k-1} X^{k-1}) g(X)$$

- g(X) IS A FACTOR OF Xⁿ + 1 Xⁿ + 1 = g(X) h(X) WHERE h(X) IS THE PARITY CHECK POLYNOMIAL
- IF g(X) IS A POLYNOMIAL OF DEGREE n k AND IS A FACTOR OF Xⁿ + 1, THEN g(X) GENERATES AN (n, k) CYCLIC CODE

Cyclic Code Example

- g(X) IS A FACTOR OF $X^{n} + 1$ $X^{7} + 1 = (X^{3} + X + 1) (X^{4} + X^{2} + X + 1)$
- USING $g(X) = X^3 + X + 1$ A POLYNOMIAL OF DEGREE n kWE CAN GENERATE AN (n, k) = (7, 4) CYCLIC CODE
- OR, USING $g(X) = X^4 + X^2 + X + 1$ WE CAN GENERATE A (7, 3) CYCLIC CODE

Encoding in Systematic Form

```
MESSAGE POLYNOMIAL:
      m(X) = m_0 + m_1 X + m_2 X^2 + \cdots + m_{\nu-1} X^{\nu-1}
\frac{\text{MULTIPLY ING } \ m(X) \ BY \ X^{n-k}}{X^{n-k} \ m(X) \ - \ m_n X^{n-k} + \ m_1 X^{n-k+1} + \cdots + \ m_{k-1} X^{n-1}}
DIVIDING X^{n-k}m(X) BY g(X)

X^{n-k}m(X) = g(X)g(X) + r(X)
      WHERE r(X) = r_0 + r_1 X + r_2 X^2 + \cdots + r_{n-k-1} X^{n-k-1}
      r(X) + X^{n-k} m(X) = q(X) g(X)
       A MULTIPLE OF q(X) WITH DEGREE n - 1 OR LESS
       HENCE, A CODE POLYNOMIAL GENERATED BY g(X)
r(X) + X^{n-k} m(X) = r_0 + r_1 X + ... + r_{n-k-1} X^{n-k-1} + m_0 X^{n-k} + m_1 X^{n-k+1} + ... + m_{k-1} X^{n-1}
CORRESPONDS TO CODE WORD:
            (r_0, r_1, \dots, r_{n-k-1}, m_0, m_1, \dots, m_{k-1})
               n-k PARITY k INFORMATION
              CHECK DIGITS,
                                       DIGITS
```

Example: (7,4) Cyclic Code in Systematic Form

LET
$$g(X) = 1 + X + X^{3}$$

 $\underline{m} = 1011$

THEN $m(X) 1 + X^{2} + X^{3}$
 $\frac{DIVIDE\ X^{n-k}\ m(X)\ BY\ g(X)}{1 + X + X^{3}} = \frac{X^{3} + X^{5} + X^{6}}{1 + X + X^{3}}$
 $q(X) = 1 + X + X^{2} + X^{3}$ (quotient)

 $r(X) = 1$ (remainder)

 $V(X) = r(X) + X^{3}\ m(X)$
 $V(X) = 1 + X^{3} + X^{5} + X^{6}$
 $\underline{V} = \underbrace{100}_{PARITY\ MESSAGE}$

Polynomial Divisor Circuit

LET

$$V(X) = v_0 + v_1 X + v_2 X^2 + \dots + v_m X^m$$

$$g(X) = g_0 + g_1 X + g_2 X^2 + \dots + g_r X^r$$

WE WANT TO

$$\frac{V(X)}{g(X)} = q(X) + \frac{r(X)}{g(X)}$$

USE CIRCUIT:

NOTE:

REPRESENTS EITHER CONNECTION OR NO CONNECTION DEPENDING ON g_r IN THE POLYNOMIAL g(X) EITHER A 1 OR 0 RESPECTIVELY.

AT THE LAST SHIFT OF V(X) BITS INTO THE SHIFT REGISTERS, THE CONTENTS OF THE SHIFT REGISTERS ARE THE REMAINDER r(X).

EXAMPLE:

$$V(X) = X^3 + X^5 + X^6$$
 (V = 0001011)
 $g(X) = I + X + X^3$

g(X) IS OF DEGREE 3, SO WE NEED 3 REGISTERS:

PROBLEM WITH THIS CONFIGURATION:

THE FIRST 3 SHIFTS ARE JUST TO FILL THE 3 REGISTERS WITH THE FIRST 3 BITS OF V(X). WE DO NOT HAVE ANY FEEDBACK HERE.

TO SHORTEN THE SHIFTING CYCLE:

THIS WORK PROVIDED:

$$g_0 = 1$$

$$g_r = 1$$

Encoding with an (n-k) Stage Shift Register

 ENCODING HAS BEEN SHOWN TO BE THE REMAINDER OF DIVIDING Xn-k m(X) BY g(X)

• THIS IS ACCOMPLISHED BY A DIVIDING CIRCUIT (FB shift register)

 THE FEEDBACK CONNECTIONS CORRESPOND TO THE GENERATOR POLYNOMIAL

$$g(X) = 1 + g_1 X + g_2 X^2 + ... + g_{n-k-1} X^{n-k-1} + X^{n-k}$$

Encoding with an (n-k) Stage Shift Register

- WITH GATE ON, THE K INFORMATION
 DIGITS ARE SHIFTED INTO THE REGISTER
 AND SIMULTANEOUSLY TO THE OUTPUT
- THE GATE IS TURNED OFF (feedback disabled)
- THE CONTENTS OF THE SHIFT REGISTER ARE SHIFTED TO THE OUTPUT
- THE OUTPUT CODE POLYNOMIAL IS: $V(X) = r(X) + X^{n-k} m(X)$

Example: Encoding a (7,4) Code with an (n-k) Stage Shift Register

THE OUTPUT CODEWORD IS: $1 \ 0 \ 0 \ 1 \ 0 \ 1$ THE CODE POLYNOMIAL IS: $1 + x^3 + x^5 + x^6$

Example: Syndrome Calculation with an (n-k) Shift Register

AFTER THE ENTIRE RECEIVED VECTOR HAS BEEN ENTERED INTO THE SHIFT REGISTER, THE FINAL VALUE IS THE SYNDROME

WELL KNOWN BLOCK CODES

HAMMING CODES

(N, K) =
$$(2^M - 1, 2^M - 1 - M)$$
, where M = 2, 3, ..., AND D_{MIN} = 3
P_B = P - P(1 - P)^{N-1}, where P is the probability of channel symbol error

EXTENDED GOLAY CODE

(N, K) = (24, 12), WHERE $D_{MIN} = 8$ FORMED BY ADDING A PARITY BIT TO THE PERFECT GOLAY (23, 12) CODE

$$P_{B} = \frac{1}{24} \sum_{j=4}^{24} J {24 \choose J} P^{J} (1 - P)^{24-J}$$

BCH_CODES

FOR ANY POSITIVE INTEGERS M AND t, WHERE M \geq 3, AND t \leq 2^M-1, THERE EXISTS A BCH CODE WITH N = 2^M - 1, (N - K) \leq Mt, AND $D_{MIN} \geq$ 2t + 1

REED-SOLOMON CODES

$$(N, K) = (2^M - 1, 2^M - 1 - 2t), WHERE M = 3, 4, ...$$

 $D_{MIN} = N - K + 1$

$$P_{E} = \frac{1}{N} \sum_{J=t+1}^{N} J {N \choose J} P^{J} (1 - P)^{N-J}$$

Generators of Primative BCH Codes

n	k	t	g (x)	n	k	t	g (x)
7 15	.4	1	13	255	171	11	15416214212342356077061630637
10	11	1	23.		163	12	7500415510075602551574724514601
	5	2 3	721 2467		155	13	3757513005407665015722506464677633
31	26	Ιĭ			147	14	1642130173537165525304165305441011711
	21	2	3551		139 131	15	461401732060175501570722730247453567445
	16	3	107657		131	18	2157133314715101512612502774421420241 65471
	11	5	5423325		123	19	1206140522420660037172103265161412262
40	.6	7	313365047			""	72506267
63	57 51	1	103 12471		115	21	6052660557210024726363640460027635255
	45	2	12471 1701317				6313472737
	39	4	160623567		107	22	2220577232200625631241730023534742017
	36	5	1033500423		99	23	6574750154441 1065666725347317422274141620157433225
1	30	6	157464165547		""	43	2411076432303431
l	24	7	17323200404441		91	25	6750265030327444172723631724732511075
	18	10	1363026512351725		· ·	1	550762720724344561
	16 10	11 13	6331141367235453		87	26	1101367634147432364352316343071720462
	17	15	472622305527250155 5231045543503271737		l		06722545273311721317
127	120	ı"	211		79	27	6670003563765750002027034420736617462
	l iīš l	2	41567		71	20	1015326711766541342355 2402471052064432151555417211233116320
	106	3	11554743		''	20	5444250362557643221706035
	99	4	3447023271		63	30	1075447505516354432531521735770700366
	92	5	624730022327		1	"	6111726455267613656702543301
	85 78	6	130701476322273		55	31	7315425203501100133015275306032054325
	71	7	26230002166130115		Į.		414326755010557044426035473017
	64	10	6255010713253127753 1206534025570773100045		47	42	2533542017062646563033041377406233175
	57	iĭ	335265252505705053517721		٠		123334145446045005066024552543173
	50	13	54446512523314012421501421		45	43	1520205605523416113110134637642370156 3670024470762373033202157025051541
	43	14	17721772213651227521220574343		37	45	5136330255067007414177447245437530420
	36	15	3146074066522075044764574721735		1 *	٠٠ ا	735706174323432347644354737403014003
	29 22	21 23	403114461367670603667530141176155		29	47	3025715536673071465527061012361377115
	15	2.3	123376070404722522435445626637647043		'		34224232420117411406025475741040356
	'ă	31	22057042445604554770523013762217604353 7047264052751030651476224271567733130217			1	5037
255	247	"i l	435		21	55	1256215257060332656001773153607612103 22734140565307454252115312161446651
	239	ž	267543		1	i	22734140565307454252115312161446651 3473725
	231	3	156720665		13	59	4641732005052564544426573714250066004
	223	4	75026041375			""	33007744547656140317467721357026134
	215	5	23157564726421				460500547
	207 199	6 7	16176560567636227 7633031270420722341		9	63	1572602521747246320103104325535513461
	191	á	7633031270420722341 2663470176115333714567		ļ		41623672120440745451127661155477055
	187	Š	52755313540001322236351	i			61677516057
- 1	l ižu l	10 1	22624710717340432416200466		'	, ,	

Bit Error Probability vs Channel Error Probability for Several Block Codes

1, 1

SPECIFICATIONS OF THE CROSS-INTERLEAVE RIEED-SOLOMON CODE (CIRC)

ERROR CONTROL PROCEDURES:

- ERROR-CORRECTION
- ERASURE CORRECTION
- INTERPOLATION
- MUTING

MAXIMUM CORRECTABLE
 BURST LENGTH

~ 4000 BITS (2.5 MM TRACK LENGTH ON THE DISC)

MAXIMUM INTERPOLATABLE
 BURST LENGTH

~ 12,000 BITS (8 MM)

- SAMPLE INTERPOLATION RATE
- ONE SAMPLE EVERY 10 HOURS AT $P_B = 10^{-4}$ 1000 SAMPLES PER MINUTE AT $P_R = 10^{-3}$
- UNDETECTED ERROR SAMPLES
 (CLICKS)
- LESS THAN ONE VERY 750 HOURS AT P $_B$ = 10^{-3} NEGLIGIBLE AT P $_R \leq 10^{-4}$
- NEW DISCS ARE CHARACTERIZED BY $P_B = 10^{-4}$

Summary of Linear Block Codes

- RULES OF MAPPING:
 - CHOOSE THE n-TUPLES THAT SATISFY THE FOLLOWING:
 - 1. THE ALL-ZEROS n-TUPLE
 - 2. THE SUM OF ANY TWO n-TUPLE CODEWORDS MUST ALSO BE ANOTHER n-TUPLE CODEWORD
 - THERE ARE ONLY 2^k n-TUPLES CHOSEN FROM TOTAL OF 2ⁿ n-TUPLES BECAUSE THERE ARE ONLY 2^k MESSAGES
- TO GENERATE ALL THESE CODEWORDS, WE ONLY NEED TO HAVE THE LINEARLY INDEPENDENT n-TUPLE CODEWORDS (TOTAL NUMBER NEEDED IS k CODEWORDS). AND THE REST OF THE CODEWORDS ARE OBTAINED AS THE SUMS OF ANY 2 OF THESE.
- THESE LINEARLY INDEPENDENT CODEWORDS IS CALLED THE GENERATOR MATRIX:

$$G = [P I_k]$$

THE PARITY CHECK MATRIX II:

$$\mathbf{H} = [\mathbf{I}_{\mathbf{n-k}} \ \mathbf{P^T}]$$

CONDITION: $GH^T = 0$

Summary of Cyclic Codes

- CAN REPRESENT THESE CODES USING POLYNOMIAL
- GENERATOR POLYNOMIAL:

$$g(X) = I + g_1 X + g_2 X^2 + \dots + g_{n-k} X^{n-k}$$
 is a factor of X^n + 1

- SINCE CYCLIC CODES ARE BLOCK CODES, THEY SATISFY THE MAPPING RULES JUST DESCRIBED
- \mathcal{F} CAN REPRESENT g(X) IN MATRIX FORM G IN THE FOLLOWING WAY:
 - 1. GENERATE ALL CODEWORD: U(X) = m(X).g(X)
 - 2. CHOOSE THOSE LINEARLY INDEPENDENT