Verižni ulomki

Gašper Urh

Fakulteta za matematiko in fiziko Univerze v Ljubljani

17. maj 2018

Kazalo

- Osnovni pojmi
- 2 Konvergenti
- Evklidov algoritem in verižni ulomki racionalnih števil
- Postopek za iskanje verižnega ulomka realnega števila
- Verižni ulomek za število e
- 6 Kvadratne iracionale

Osnovni pojmi

Definicija

Verižni ulomek je izraz oblike

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{\dots}}}}$$

pri čemer privzemimo, da so a_n realna števila, ki so za $n \ge 1$ tudi pozitivna. Verižni ulomek je lahko bodisi končen, bodisi neskončen.

Zapišemo ga lahko tudi kot $[a_0, a_1, a_2, a_3, ...]$.

$$[a_0, a_1, ..., a_n, a_{n+1}] = [a_0, a_1, ..., a_n + \frac{1}{a_{n+1}}]$$

$$[a_0, a_1, ..., a_n, a_{n+1}] = [a_0, a_1, ..., a_n + \frac{1}{a_{n+1}}]$$

Definicija

 $[a_0, a_1, a_2, ...]$ je enostaven, če $a_0 \in \mathbb{Z}$ ter $a_1, a_2, ... \in \mathbb{N}$

$$[a_0, a_1, ..., a_n, a_{n+1}] = [a_0, a_1, ..., a_n + \frac{1}{a_{n+1}}]$$

Definicija

 $[a_0,a_1,a_2,...]$ je enostaven, če $a_0\in\mathbb{Z}$ ter $a_1,a_2,...\in\mathbb{N}$

Definicija

Če so števci v verižnem ulomku različni od 1, ta izraz imenujemo posplošeni verižni ulomek.

Zgled

$$[3,6,4]=3+\frac{1}{6+\frac{1}{4}}=\frac{79}{25}$$

Zgled

$$[3,6,4] = 3 + \frac{1}{6 + \frac{1}{4}} = \frac{79}{25}$$

Zgled

Število π lahko zapišemo:

$$\pi = 3 + \cfrac{1}{7 + \cfrac{1}{15 + \cfrac{1}{1 + \cfrac{1}{292 + \cfrac{1}{-}}}}}$$

Konvergenti

Definicija

Naj bo $0 \le n \le m$. Število c_n je n-ti konvergent verižnega ulomka $[a_0, a_1, ..., a_m]$, če je $c_n = [a_0, a_1, ..., a_n]$. Za n < m je to delni konvergent.

Definirajmo dve zaporedji za $-2 \le n \le m$:

$$p_{-2} = 0$$
, $p_{-1} = 1$, $p_0 = a_0$, ..., $p_n = a_n p_{n-1} + p_{n-2}$, ...

$$q_{-2}=1$$
, $q_{-1}=0$, $q_0=1$, ..., $q_n=a_nq_{n-1}+q_{n-2}$, ...

Konvergenti

Definicija

Naj bo $0 \le n \le m$. Število c_n je n-ti konvergent verižnega ulomka $[a_0, a_1, ..., a_m]$, če je $c_n = [a_0, a_1, ..., a_n]$. Za n < m je to delni konvergent.

Definirajmo dve zaporedji za $-2 \le n \le m$:

$$p_{-2}=0, \quad p_{-1}=1, \quad p_0=a_0, \quad \ldots, \quad p_n=a_np_{n-1}+p_{n-2}, \quad \ldots$$

$$q_{-2} = 1$$
, $q_{-1} = 0$, $q_0 = 1$, ..., $q_n = a_n q_{n-1} + q_{n-2}$, ...

Trditev

Naj bo $0 \le n \le m$. Tedaj:

$$c_n = [a_0, ..., a_n] = \frac{p_n}{q_n} = \frac{a_n p_{n-1} + p_{n-2}}{a_n q_{n-1} + q_{n-2}}$$

Zgled

Konvergenti za [2, 2, 3, 4, 2, 6]:

Tabela: Konvergenti

$$2 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2 + \frac{1}{5}}}}}$$

$$p_n q_{n-1} - q_n p_{n-1} = (-1)^{n-1},$$

 $p_n q_{n-2} - q_n p_{n-2} = (-1)^n a_n$

$$p_n q_{n-1} - q_n p_{n-1} = (-1)^{n-1},$$

 $p_n q_{n-2} - q_n p_{n-2} = (-1)^n a_n$
 $\Rightarrow p_n, q_n \text{ sta si tuji.}$

$$p_n q_{n-1} - q_n p_{n-1} = (-1)^{n-1},$$

 $p_n q_{n-2} - q_n p_{n-2} = (-1)^n a_n$
 $\Rightarrow p_n, q_n \text{ sta si tuji.}$

$$\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = (-1)^{n-1} \frac{1}{q_n q_{n-1}},$$

$$\frac{p_n}{q_n} - \frac{p_{n-2}}{q_{n-2}} = (-1)^n \frac{a_n}{q_n q_{n-2}}$$

$$\pi = [3, 7, 15, 1, 292, 1, ...]$$

$$\pi = [3,7,15,1,292,1,\ldots]$$

Konvergenti so:

- $c_0 = 3$
- $c_1 = \frac{22}{7} = 3,1428571$
- $c_2 = \frac{333}{106} = 3,141509434$
- $c_3 = \frac{355}{113} = 3,14159292$
- $c_4 = \frac{103993}{33102} = 3,141592653$
- $c_5 = \frac{104348}{33215} = 3,141592654$
- ...

$$\pi = [3, 7, 15, 1, 292, 1, ...]$$

Konvergenti so:

•
$$c_0 = 3$$

•
$$c_1 = \frac{22}{7} = 3,1428571$$

•
$$c_2 = \frac{333}{106} = 3,141509434$$

•
$$c_3 = \frac{355}{113} = 3,14159292$$

•
$$c_4 = \frac{103993}{33102} = 3,141592653$$

•
$$c_5 = \frac{104348}{33215} = 3,141592654$$

• ...

Ali zaporedje delnih konvergentov konvergira za vsako realno število?

Zaporedje sodih konvergentov je strogo naraščajoče, zaporedje lihih pa strogo padajoče. Za vsak $n, m \in \mathbb{N}$ je $c_{2n} < c_{2m+1}$.

Zaporedje sodih konvergentov je strogo naraščajoče, zaporedje lihih pa strogo padajoče. Za vsak $n, m \in \mathbb{N}$ je $c_{2n} < c_{2m+1}$.

Izrek

Naj bo $[a_0, a_1, ...]$ enostaven verižni ulomek in naj bo za vsak n $c_n = [a_0, a_1, ..., a_n]$ konvergent. Tedaj obstaja

$$\lim_{n\to\infty}c_n$$

Evklidov algoritem in verižni ulomki racionalnih števil

Naj bo $x = \frac{13}{32}$. Kako bi poiskali njegov zapis z verižnim ulomkom?

Evklidov algoritem in verižni ulomki racionalnih števil

Naj bo $x = \frac{13}{32}$. Kako bi poiskali njegov zapis z verižnim ulomkom?

Trditev

Neko število je racionalno \Leftrightarrow njegov zapis z verižnim ulomkom obstaja in je končen. (Euler, 1737)

Evklidov algoritem in verižni ulomki racionalnih števil

Naj bo $x = \frac{13}{32}$. Kako bi poiskali njegov zapis z verižnim ulomkom?

Trditev

Neko število je racionalno \Leftrightarrow njegov zapis z verižnim ulomkom obstaja in je končen. (Euler, 1737)

Trditev

Če lahko neko število zapišemo s končnim verižnim ulomkom, je ta z zahtevo $a_m \neq 1$ enolično določen.

Naj bo $c_n = [a_0, a_1, ..., a_n]$ eden od konvergentov enostavnega verižnega ulomka $c_m = [a_0, a_1, ..., a_m]$. Veljata oceni:

$$|c_n - c_m| < \frac{1}{n^2}$$
 $|c_n - c_m| < \sqrt{2} \cdot 2^{-n}$

Vemo tudi, da c_m vedno leži med c_n in c_{n+1} za vsak $0 \le n < m-1$.

Naj bo $x \in \mathbb{R}$.

Naj bo $x \in \mathbb{R}$.

$$x=a_0+t_0,$$

kjer je $a_0 \in \mathbb{Z}$ ter $t_0 \in [0,1)$.

Naj bo $x \in \mathbb{R}$.

$$x=a_0+t_0,$$

kjer je $a_0 \in \mathbb{Z}$ ter $t_0 \in [0,1)$. Če $t_0 \neq 0$, zapišemo

$$\frac{1}{t_0}=a_1+t_1$$

Naj bo $x \in \mathbb{R}$.

$$x=a_0+t_0,$$

kjer je $a_0 \in \mathbb{Z}$ ter $t_0 \in [0,1)$. Če $t_0 \neq 0$, zapišemo

$$\frac{1}{t_0}=a_1+t_1$$

Postopek z $a_n \in \mathbb{N}$ za $n \geq 1$ ponavljamo, dokler $t_n \neq 0$ (zapis je lahko neskončen).

$$\frac{1}{t_n}=a_{n+1}+t_{n+1}$$

Naj bo $x \in \mathbb{R}$.

$$x=a_0+t_0,$$

kjer je $a_0 \in \mathbb{Z}$ ter $t_0 \in [0,1)$. Če $t_0 \neq 0$, zapišemo

$$\frac{1}{t_0}=a_1+t_1$$

Postopek z $a_n \in \mathbb{N}$ za $n \geq 1$ ponavljamo, dokler $t_n \neq 0$ (zapis je lahko neskončen).

$$\frac{1}{t_n}=a_{n+1}+t_{n+1}$$

Zgled

Razmerje zlatega reza:

$$x = \frac{1 + \sqrt{5}}{2}$$

Izrek

Naj bo $x \in \mathbb{R}$. Tedaj je x vrednost verižnega ulomka, ki ga dobimo z opisanim postopkom.

Izrek

Naj bo $x \in \mathbb{R}$. Tedaj je x vrednost verižnega ulomka, ki ga dobimo z opisanim postopkom.

Trditev

Naj bo $a_0, a_1, a_2, ...$ zaporedje realnih števil, pri čemer je $a_n > 0$ za $n \ge 1$. Naj bo $c_n = [a_0, a_1, a_2, ..., a_n]$. Tedaj obstaja $\lim_{n \to \infty} c_n \Leftrightarrow \sum_{n=0}^{\infty} a_n$ divergira.

Verižni ulomek za število e

e = [2,1,2,1,1,4,1,1,6,1,1,8,...] = [1,0,1,1,2,1,1,4,1,1,6,1,1,8,...] Rekurzija za a_n v verižnem ulomku nam da rekurzivno formulo za števce in imenovalce konvergentov:

$$p_{3n} = 2(2n-1)p_{3n-3} + p_{3n-6}$$
$$q_{3n} = 2(2n-1)q_{3n-3} + q_{3n-6}$$

Uvedemo:

$$x_n = p_{3n}$$

$$y_n = q_{3n}$$

$$T_n = \int_0^1 \frac{t^n(t-1)^n}{n!} e^t dt$$

$$T_n = \int_0^1 \frac{t^n (t-1)^n}{n!} e^t dt$$

Izračunamo:

$$T_0 = \int_0^1 e^t dt = e - 1$$

$$T_1 = \int_0^1 t(t-1)e^t dt = e-3$$

$$T_n = \int_0^1 \frac{t^n (t-1)^n}{n!} e^t dt$$

Izračunamo:

$$T_0 = \int_0^1 e^t dt = e - 1$$

$$T_1 = \int_0^1 t(t-1)e^t dt = e-3$$

In ugotovimo:

$$T_n = y_n e - x_n \Rightarrow \frac{T_n}{y_n} = e - \frac{x_n}{y_n}$$

$$T_n = \int_0^1 \frac{t^n (t-1)^n}{n!} e^t dt$$

Izračunamo:

$$T_0 = \int_0^1 e^t dt = e - 1$$

$$T_1 = \int_0^1 t(t-1)e^t dt = e-3$$

In ugotovimo:

$$T_n = y_n e - x_n \Rightarrow \frac{T_n}{y_n} = e - \frac{x_n}{y_n}$$

$$\lim_{n\to\infty} T_n = 0 = \lim_{n\to\infty} (y_n e - x_n) \Rightarrow \lim_{n\to\infty} \frac{x_n}{y_n} = \lim_{n\to\infty} (e - \frac{T_n}{y_n}) = e$$

Kvadratne iracionale

Definicija

Realno število α je *kvadratna iracionala*, če je iracionalno in rešitev neke kvadratne enačbe s koeficienti iz \mathbb{Q} .

Kvadratne iracionale

Definicija

Realno število α je *kvadratna iracionala*, če je iracionalno in rešitev neke kvadratne enačbe s koeficienti iz \mathbb{Q} .

Definicija

Verižni ulomek $[a_0, a_1, a_2, ...]$ je periodičen, če obstaja tak h, da je

$$a_n = a_{n+h}$$

za vse dovolj velike n.

Zgled

Koliko je [1, 2, 3, 1, 2, 3, ...]?

$$\alpha = 1 + \cfrac{1}{2 + \cfrac{1}{3 + \cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{3 + \cfrac{1}{1}}}}}} = 1 + \cfrac{1}{2 + \cfrac{1}{3 + \cfrac{1}{\alpha}}}$$

$$\alpha = \cfrac{4 + \sqrt{37}}{7}$$

Izrek

 $\it Karakterizacija\ periodičnega\ verižnega\ ulomka$: Realno število $\it lpha$ je kvadratna iracionala \Leftrightarrow njegov zapis z verižnim ulomkom je periodičen.

Zgled

 $[1,\overline{2}]$

Izrek

 $\it Karakterizacija\ periodičnega\ verižnega\ ulomka$: Realno število $\it lpha$ je kvadratna iracionala \Leftrightarrow njegov zapis z verižnim ulomkom je periodičen.

Zgled

$$[1,\overline{2}]=\sqrt{2}$$

