PULSE SEQUENCES IN K-SPACE

& SAMPLING RERUIREMENTS

MORE ON THE FOURIER INTERPRETATION OF THE SIGNAL ERIN.

LAST TIME, WE OBLIVED THE MR SIENAL EQUATION:

$$S(t) = \int \int m(x,y)e^{-j2\pi \left(k_{r}(t)x+k_{y}(t)y\right)} dx dy$$

$$\frac{1}{2\pi} \int k_{x}(t) = \frac{x}{2\pi} \int k_{x}(t) dt$$

$$\frac{1}{2\pi} \int k_{y}(t) dt = \frac{x}{2\pi} \int k_{y}(t) dt$$

WE MENTIONED THAT:

s(t) = M(kx(t), ky(t)) where:

M(Exity) is THE ZOFT OF m(x,y).

MR IMAGE ACQUITION CAN BE THOUGHT OF AS TRAVERSING K-SPACE USING OUR GRANIENTS G, (+) AND Gylt), GATHERING SAMPLES OF M(KL, Ky) FROM OUR TIME SIGNAL SH).

HOW WE TRAVERSE K-SPACE IS ENTRECY A FUNCTION OF WHAT WE DO WITH OUR GRAWIENTS OVER TIME. OUR POSITION IN TIME IS SIMPLY A FUNCTION OF THE TIME INTEGER OF OUR GRAWIENTS!

DESIGNANT THESE GRANIENT TRATECTORIES TO GIVE US A FULL SET OF SAMPLES OF M(Kx, Ky) IS A FUNDAMENTAL PACELEM IN MRT PULSE SEQUENCE DESIGN.

LET'S TAKE A LOOK AT SOME COMMON K-SPAZE
TRAJECTORES.

AUTERNATELY, WE COULD DO THE FOLLOWING:

MON-CARTESIANU

TRAJECTORY => REQUIRES

EMER GANDING OR

BALLPROTECTION FOR RECON!

WHAT WOULD MY GRAVIENTS MED TO LOOK LIKE?

THEORETICALLY, IF M(x,y) IS A REAL FUNCTION, THEN $M(k_x,k_y)$ IS HERMITIAN. THAT IS: $M(-k_x,-k_y) = M^*(k_x,k_y)$

THUS, QUADRANT I CAN BE USED TO FIND QUADRANT III, AND
IN PRACTICE, HOWEVER, M(x,y) IS USUALLY NOT REAL VALUED
(DUE TO PHASE SHIFTS FROM A VARIETY OF SOURCES) AND THE
HERMITIAN ASSUMPTION BREAKS DOWN.

HOWERS, WE CAN GET AWAY WITH GOME REDUCTIONS, IN SAMPLING THAT WE WILL DISCUSS LATER.

MONG Ky

IN THE SPECIFIC CASE OF 20FT IMAGING:	
FOV = 1 = 1 Ald SAMPLING RATE FOV y = 1 ENGTH OF TIME PHASE E CHOIRM IS ON WHAT IF WE UMFR SAMPLE? INCREMENTAL GRADIENT AMPLITURE BETWEEN PHASE ENCORE SHOW ALIASED IMAGE FROM POINT.	NCORING
WERSAMOUND BY A FACTOR OF 2 IN X-DIRECTION	
SPATIAL RESOLUTION: - CAN WE DO THAT IN KY?	RIN K,
-SPATIAL RESOLUTION CORRESPONDS TO HOW FAR OUT IN K-SPACE WE GO: KY	SE
WHY DOES THIS MAKE SENISE? HAT CYCLE WIDTH IS PIXEL WIDTH!	

EXAMPLE:

WE WANT: FOV x = FOV y = 25.4 cm.

AND:
$$\delta_x = \delta_y = 0.1 \text{ cm } (1 \text{ mm})$$

=> THAT MEANS OUR K-SPACE DATA MATRIX WILL BE 256 x 256 SAMPLING RATE? POINTS.

$$FoV_{x} = \frac{1}{\frac{x}{2\pi}G_{xx}} gt$$

For
$$=$$
 $\frac{x}{2\pi}G_{xy}$ ot $\int_{0}^{x} dt = 730.58 \text{ ms}$ $\int_{0}^{1} dt = 732.7 \text{ kHz}$

READOUT TIME

$$\delta_{x} = \frac{1}{\frac{x}{2\pi}} \delta_{xr} \tau_{x}$$

$$\tau_{x} = \frac{7.83 \text{ ms}}{4}$$

THIS OKAY FROM

A TZ DECAY