APPEAL BRIEF EXAMINING GROUP 1742 Patent Application Docket No. CRX.106XC1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Examiner

Patrick Neal Butler

Art Unit

1742

Applicant

Albert E. Ortega

Serial No.

10/662,492

Filed

September 15, 2003

Conf. No.

9209

For

Method of Reducing Static in a Spunbond Process

Mail Stop APPEAL BRIEF-PATENTS Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313

APPEAL BRIEF

I hereby certify that this correspondence is being electronically transmitted to the United States Patent and Trademark Office on the date shown below:

Louis C. Frank, Patent Attorney, Reg. No. 60,034

TABLE OF CONTENTS

1.	REAL PAR	TY IN INTEREST	•••••••••••••••••••••••••••••••••••••••	1
II.	RELATED	APPEALS AND INTER	RFERENCES	1
III.	STATUS O	F CLAIMS		1
IV.	STATUS O	F AMENDMENTS		1
V.	SUMMARY	Y OF CLAIMED SUBJE	ECT MATTER	1
VI.	GROUNDS	OF REJECTION TO B	E REVIEWED ON APPEAL	3
VII.	ARGUMEN	√T		4
	A.	Claims 1-5, 10, 11, 1	3-20, 25, 26, 28, and 35-40 comply	
	With	the written description	requirement	4
	В.	Claims 1-5, 10, 11, 1	3-20, 25, 26, 28, and 35-40 particularl	y point
	out a	subject matter regarded as the invention	n5	
	C.	Claims 37-40 are pate	entable because Gillespie does not	
	discl	ose the claimed invention	on	6
	D.	Claims 1-5, 13-15, 17	7-20, 25, 26, and 35-40 are patentable	because
	the e	xaminer has not establis	hed a prima facie case of obviousness	10
	E.	Claims 1-5, 10, 11, 1	3-20, 25, 26, 28, and 35-40 are patenta	ble because
	the examiner has not established a <i>prima facie</i> case of obviousness19			
	F.	Conclusion	•••••••	29

I. REAL PARTY IN INTEREST

The real party in interest is Cerex Advanced Fabrics, Inc., located at 610 Chemstrand Road, Cantonment, FL 32533.

II. RELATED APPEALS AND INTERFERENCES

Appellant is unaware of any related appeals or interferences.

III. STATUS OF CLAIMS

Claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 were finally rejected in the Office Action of March 31, 2011 under 35 U.S.C. §103(a), as well as under 35 U.S.C. §112, first and second paragraphs. Claims 37-40 were also finally rejected under 35 U.S.C. §102(b). Claims 7-9, 22, 23, and 27 are withdrawn. All rejections of claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 are appealed herein.

IV. STATUS OF AMENDMENTS

There have been no amendments after the final Office Action of March 31, 2011.

V. SUMMARY OF CLAIMED SUBJECT MATTER

The independent claims involved in this appeal are claims 1, 17, 35, and 37.

Claim 1 is directed to a method of producing a spunbonded nonwoven fabric (page 2, lines 28-30). The method comprises the steps of: forming, in an extruder, a melt blend of at least one polymer and, additionally, at least one antistatic agent (page 8, lines 4-19) present in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch (page 9, lines 10-15); extruding said blend in the form of a plurality of filaments, directing the filaments through the slot attenuation device, drawing the filaments to orient them, depositing the filaments onto a collection surface to form a web, and bonding the filaments of the web (page 8, lines 7-10 and 15-19). The filaments of the web are bonded at a temperature of between 180°C and about 250°C (page 8, lines 1-3), and the static level measured at about one half inch below the outlet of the slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch (page 9, lines 10-15). Without addition of the at least one antistatic agent, a static level measured at about one

half inch below the outlet of the slot attenuation device is greater than 2 kilovolt per inch or less than -2 kilovolt per inch (page 7, lines 1-4; page 9, lines 10-15; Tables 1 and 3; and the Examples). The at least one antistatic agent does not cause a defect in the spunbonded nonwoven fabric (page 3, lines 30-31).

Claim 17 is directed to a method of producing a spunbonded nonwoven fabric (page 2, lines 28-30). The method comprises the steps of: forming one or more melt blends of polymer and, additionally, one or more antistatic agents either in a master batch or a base resin (page 8, lines 4-19) present in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch (page 9, lines 10-15); extruding said blend or blends through separate extruders into the form of a plurality of multicomponent filaments with the blend or blends of polymer and one or more antistatic agents forming a portion of the surface of the filaments; directing the filaments through the slot attenuation device; drawing the filaments to orient them; depositing the filaments onto a collection surface to form a web; and bonding the filaments of the web (page 8, lines 7-10 and 15-19). The filaments of the web are bonded at a temperature of between 180 °C and about 250 °C (page 8, lines 1-3), and the static level measured at about one half inch below the outlet of the slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch (page 9, lines 10-15). Without addition of the at least one antistatic agent, a static level measured at about one half inch below the outlet of the slot attenuation device is greater than 2 kilovolt per inch or less than -2 kilovolt per inch (page 7, lines 1-4; page 9, lines 10-15; Tables 1 and 3; and the Examples). The at least one antistatic agent does not cause a defect in the spunbonded nonwoven fabric (page 3, lines 30-31).

Claim 35 is directed to a method of producing a spunbonded nonwoven fabric (page 2, lines 28-30). The method comprises the steps of: forming, in an extruder, a melt blend of at least one polymer; extruding said blend in the form of a plurality of filaments; directing the filaments through the slot attenuation device and drawing the filaments to orient them; depositing the filaments onto a collection surface to form a web; and bonding the filaments of the web (page 8, lines 7-10 and 15-19). The filaments of the web are bonded at a temperature of between 180°C and about 250°C (page 8, lines 1-3), wherein the method further comprises adding to the melt blend, before extruding said blend, at least one antistatic agent in an amount sufficient to reduce the static level measured at about one half inch below the outlet of the slot attenuation device

from greater than 2 kilovolt per inch or less than -2 kilovolt per inch to between-2 kilovolt per inch and 2 kilovolt per inch (page 7, lines 1-4; page 9, lines 10-15; Tables 1 and 3; and the Examples). The at least one antistatic agent does not cause a defect in the spunbonded nonwoven fabric (page 3, lines 30-31).

Claim 37 is directed to a method of reducing the static level of a spunbond process having a static level measured at the outlet of a slot attenuation device of greater than 2 kilovolt per inch or less than -2 kilovolt per inch (page 2, lines 28-30; page 7, lines 1-4; page 9, lines 10-15; Tables 1 and 3; and the Examples). The method comprises adding at least one antistatic agent to a melt blend of the spunbond process, before extruding the melt blend, in an amount sufficient such that the static level measured at about one half inch below the outlet of the slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch (page 9, lines 10-15). The at least one antistatic agent does not cause a defect in a spunbonded nonwoven fabric produced by the spunbond process (page 3, lines 30-31).

VI. GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL

Claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 have been rejected under 35 U.S.C. §112, first paragraph, as failing to comply with the written description requirement. Claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 have been rejected under 35 U.S.C. §112, second paragraph, as being indefinite. Claims 37-40 have been rejected under 35 U.S.C. §102(b) as being anticipated by Gillespie (U.S. Patent No. 5,783,503) as evidenced by Tortora (*Understanding Textiles*, pages 38, 39 and 401). Claims 1-5, 13-15, 17-20, 25, 26, and 35-40 have been rejected under 35 U.S.C. §103(a) as being unpatentable over Gillespie in view of Tortora. Claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 have been rejected under 35 U.S.C. §103(a) as being unpatentable over Gillespie in view of Tortora and in further view of either Warburton (U.S. Patent No. 4,081,383) or George (U.S. Patent No. 4,167,464).

VII. ARGUMENT

A. Claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 comply with the written description requirement.

Claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 have been rejected under 35 U.S.C. §112, first paragraph, as failing to comply with the written description requirement. Appealed claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 stand or fall together for purposes of the Appeal of this rejection under 35 U.S.C. §112, first paragraph.

Independent claims 1, 17, 35, and 37 each recite that the at least one antistatic agent does not cause a defect in a spunbonded nonwoven fabric. The final Office Action of March 31, 2011 (hereinafter referred to as "the Action") asserts that the specification does not provide support for this recitation, stating that the specification does not discuss providing a process that eliminates defects in a process having an antistatic agent. However, claims 1, 17, 35, and 37 do not require the elimination of any or all defects that may be present in a process for the production of a spunbonded nonwoven fabric. Rather, claims 1, 17, 35, and 37 require that the antistatic agent does not cause a defect in the spunbonded nonwoven fabric. That is, the inclusion of the antistatic agent does not cause any defects itself.

A person of ordinary skill in the art would understand that the inventor had possession of the claimed invention at the time the application was filed. As discussed in paragraph 2 of the signed Expert Declaration Under 37 C.F.R. §1.132 of Albert E. Ortega (executed December 2, 2010; submitted with the Amendment filed December 6, 2010 and entered into the record; hereinafter referred to as "the December 2010 Ortega Declaration"), it would be understood from the original specification that the described method, including addition of an antistatic agent to the melt blend, does not cause any defects in the fabric. For example, the specification discloses that the described method reduces fabric defects (see, e.g., page 3, lines 30-31). A person of ordinary skill in the art would understand that, while the claimed method does not necessarily eliminate all defects in a produced fabric, it is implicit from the disclosure in the original specification that the addition of the antistatic agent does not cause any (additional) defects in a fabric.

Thus, the original specification provides adequate written description to demonstrate to a person of ordinary skill in the art that the inventor had possession of the claimed invention at the time the application was filed. Accordingly, claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 comply with the written description requirement under 35 U.S.C. §112, first paragraph.

B. Claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 particularly point out and distinctly claim the subject matter regarded as the invention.

Claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 have been rejected under 35 U.S.C. §112, second, as being indefinite for failing to particularly point out and distinctly claim the subject matter regarded as the invention. Appealed claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 stand or fall together for purposes of the Appeal of this rejection under 35 U.S.C. §112, second paragraph.

Independent claims 1, 17, 35, and 37 each recite that the at least one antistatic agent does not cause a defect in a spunbonded nonwoven fabric. The Action asserts that it is unclear as to what would constitute a defect. However, as the Action itself admits at page 3, a defect is an undesired result. A person of ordinary skill in the art of producing spunbond fabrics would understand what an undesirable result would be in the production of a spunbond fabric, just as an artisan skilled in the production of a semiconductor would understand what an undesirable result would be when a semiconductor is produced. For example, a person of ordinary skill in the art would recognize that color pollution, or changing the desired color of a fabric, is a defect in the production of a spunbond fabric (see also lines 2-5 of paragraph 1 of the December 2010 Ortega Declaration).

The Action also states at page 3 that a defect being an undesired result "requires the desired result to not be met." However, this is not a complete statement. While a defect, or undesired result, means that a desired result was not achieved, it does not necessarily mean that no desired result was achieved. For example, a produced fabric could have the correct thickness (desired result) while having color pollution giving a black fabric instead of a white fabric (undesired result). Thus, the implication in the Action that the undesired result or defect must be a static level outside the described ranges is not correct. Though an undesired static level could

result in one or more defects, other defects may also result during a spunbond process, such as color pollution.

Again, a person of ordinary skill in the art of producing spunbond fabrics would understand what would constitute an undesirable result in the production of a spunbond fabric. Thus, the claims particularly point out and distinctly claim the subject matter regarded as the invention. Accordingly, claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 comply with 35 U.S.C. §112, second paragraph.

C. Claims 37-40 are patentable because Gillespie does not disclose the claimed invention.

Claims 37-40 have been rejected under 35 U.S.C. §102(b) as being anticipated by Gillespie (U.S. Patent No. 5,783,503) as evidenced by Tortora (*Understanding Textiles*, pages 38, 39 and 401). Appealed claims 37-40 do not stand or fall together for purposes of the Appeal of this rejection under 35 U.S.C. §102(b).

Claim 37

Independent Claim 37 is directed to a method of reducing the static level of a spunbond process having a static level measured at the outlet of a slot attenuation device of greater than 2 kilovolt per inch or less than -2 kilovolt per inch. The method comprises adding at least one antistatic agent to a melt blend of the spunbond process, before extruding the melt blend, in an amount sufficient such that the static level measured at about one half inch below the outlet of the slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch. The at least one antistatic agent does not cause a defect in a spunbonded nonwoven fabric produced by the spunbond process.

The Action states at page 5 that Gillespie would necessarily teach the claimed "results" of having a static level measured at about one half inch below the slot attenuation device of -2 to 2 kilovolt per inch "principally because Gillespie teaches each of the claimed process steps." However, this is not true. The claimed method requires the step of adding at least one antistatic agent to a melt blend in an amount sufficient such that the static level measured at about one half

inch below the outlet of a slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch. Gillespie includes no disclosure of adding any component as an antistatic agent and, even assuming for the sake of argument that nylon is an antistatic agent, there is plainly no contemplation in Gillespie of adding it in an amount sufficient to lead to the claimed static level range. Thus, Gillespie <u>fails</u> to <u>disclose all of the claimed method steps</u> and would <u>not</u> necessarily have the claimed static level.

Moreover, the Action cites nylon or polyester as an antistatic agent, but the applicant does not necessarily agree that this is the case. As discussed in paragraph 3 of the December 2010 Ortega Declaration, it is not necessarily the case that addition of nylon or polyester has an antistatic effect. Thus, nylon and polyester are not necessarily antistatic agents as the Action alleges.

In addition, the claimed method is drawn to a method for reducing the static level of a spunbond process having a static level measured at the outlet of a slot attenuation device of greater than 2 kilovolt per inch or less than -2 kilovolt per inch. Gillespie includes no discussion of static levels at the outlet of a slot attenuation device, so it is not even completely clear that this initial limitation is met.

It is a basic premise of patent law that in order to anticipate, a single reference must disclose within the four corners of the document each and every element and limitation contained in the rejected claim. *Scripps Clinic & Research Foundation v. Genentech Inc.*, 18 U.S.P.Q.2d 1001, 1010 (Fed. Cir. 1991). As discussed above, Gillespie, even when considered in conjunction with the teachings of Tortora, fails to disclose certain elements of the claimed method. For example, there is no teaching of adding at least one antistatic agent to a melt blend in an amount sufficient such that the static level is in the claimed range.

Accordingly, claim 37 is patentable because Gillespie does not disclose the claimed invention.

Claim 38

Claim 38 is directed to the method of claim 37, wherein the method comprises adding the at least one antistatic agent to the melt blend of the spunbond process in an amount sufficient

such that the static level measured at about one half inch below the outlet of the slot attenuation device is between -1 kilovolt per inch and 1 kilovolt per inch.

The deficiencies of Gillespie with respect to claim 37 have been discussed above. Claim 38 provides further distinction over Gillespie. Claim 38 requires the step of adding at least one antistatic agent to a melt blend in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -1 kilovolt per inch and 1 kilovolt per inch. Gillespie includes no disclosure of adding any component as an antistatic agent and, even assuming for the sake of argument that nylon is an antistatic agent, there is plainly no contemplation in Gillespie of adding it in an amount sufficient to lead to the claimed static level range. Thus, Gillespie fails to disclose all of the claimed method steps and would not necessarily have the claimed static level.

It is basic premise of patent law that, in order to anticipate, a single prior art reference must disclose within its four corners, each and every element of the claimed invention. *Scripps, supra*. As noted above, Gillespie fails to teach the method of claim 37, as well as the additional features of claim 38.

Accordingly, claim 38 is patentable because Gillespie does not disclose the claimed invention.

Claim 39

Claim 39 is directed to the method of claim 37, wherein the static level of the spunbond process being reduced, measured at the outlet of a slot attenuation device, is greater than 4 kilovolt per inch or less than -4 kilovolt per inch.

The deficiencies of Gillespie with respect to claim 37 have been discussed above. Claim 39 provides further distinction over Gillespie. Claim 39 requires that the static level of the spunbond process being reduced, measured at the outlet of a slot attenuation device, is greater than 4 kilovolt per inch or less than -4 kilovolt per inch. Gillespie includes no discussion of static levels at the outlet of a slot attenuation device, so it is not clear that this initial limitation is met.

It is basic premise of patent law that, in order to anticipate, a single prior art reference must disclose within its four corners, each and every element of the claimed invention. *Scripps*,

supra. As noted above, Gillespie fails to teach the method of claim 37, as well as the additional features of claim 39.

Accordingly, claim 39 is patentable because Gillespie does not disclose the claimed invention.

Claim 40

Claim 40 is directed to the method of claim 39, wherein the method comprises adding the at least one antistatic agent to the melt blend of the spunbond process in an amount sufficient such that the static level measured at about one half inch below the outlet of the slot attenuation device is between -1 kilovolt per inch and 1 kilovolt per inch.

The deficiencies of Gillespie with respect to claim 39 have been discussed above. Claim 40 provides further distinction over Gillespie. Claim 40 requires the step of adding at least one antistatic agent to a melt blend in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -1 kilovolt per inch and 1 kilovolt per inch. Gillespie includes no disclosure of adding any component as an antistatic agent and, even assuming for the sake of argument that nylon is an antistatic agent, there is plainly no contemplation in Gillespie of adding it in an amount sufficient to lead to the claimed static level range. Thus, Gillespie fails to disclose all of the claimed method steps and would not necessarily have the claimed static level.

It is basic premise of patent law that, in order to anticipate, a single prior art reference must disclose within its four corners, each and every element of the claimed invention. *Scripps, supra*. As noted above, Gillespie fails to teach the method of claim 39, as well as the additional features of claim 40.

Accordingly, claim 40 is patentable because Gillespie does not disclose the claimed invention.

D. Claims 1-5, 13-15, 17-20, 25, 26, and 35-40 are patentable because the Examiner has not established a *prima facie* case of obviousness.

Claims 1-5, 13-15, 17-20, 25, 26, and 35-40 have been rejected under 35 U.S.C. §103(a) as being unpatentable over Gillespie in view of Tortora. Appealed claims 1-5, 13-15, 17-20, 25, 26, and 35-40 do not stand or fall together for purposes of the Appeal of this rejection under 35 U.S.C. §103(a).

Claims 1-5, 14, 15, 17-19, 26, and 35

Independent claim 1 is directed to a method of producing a spunbonded nonwoven fabric. The method comprises the steps of: forming, in an extruder, a melt blend of at least one polymer and, additionally, at least one antistatic agent present in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch; extruding said blend in the form of a plurality of filaments, directing the filaments through the slot attenuation device, drawing the filaments to orient them, depositing the filaments onto a collection surface to form a web, and bonding the filaments of the web. The filaments of the web are bonded at a temperature of between 180°C and about 250°C, and the static level measured at about one half inch below the outlet of the slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch. Without addition of the at least one antistatic agent, a static level measured at about one half inch below the outlet of the slot attenuation device is greater than 2 kilovolt per inch or less than -2 kilovolt per inch. The at least one antistatic agent does not cause a defect in the spunbonded nonwoven fabric.

Independent claim 17 is directed to a method of producing a spunbonded nonwoven fabric. The method comprises the steps of: forming one or more melt blends of polymer and, additionally, one or more antistatic agents either in a master batch or a base resin present in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch; extruding said blend or blends through separate extruders into the form of a plurality of multicomponent

filaments with the blend or blends of polymer and one or more antistatic agents forming a portion of the surface of the filaments; directing the filaments through the slot attenuation device; drawing the filaments to orient them; depositing the filaments onto a collection surface to form a web; and bonding the filaments of the web. The filaments of the web are bonded at a temperature of between 180 °C and about 250 °C, and the static level measured at about one half inch below the outlet of the slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch. Without addition of the at least one antistatic agent, a static level measured at about one half inch below the outlet of the slot attenuation device is greater than 2 kilovolt per inch or less than -2 kilovolt per inch. The at least one antistatic agent does not cause a defect in the spunbonded nonwoven fabric.

Independent claim 35 is directed to a method of producing a spunbonded nonwoven fabric. The method comprises the steps of: forming, in an extruder, a melt blend of at least one polymer; extruding said blend in the form of a plurality of filaments; directing the filaments through the slot attenuation device and drawing the filaments to orient them; depositing the filaments onto a collection surface to form a web; and bonding the filaments of the web. The filaments of the web are bonded at a temperature of between 180°C and about 250°C, wherein the method further comprises adding to the melt blend, before extruding said blend, at least one antistatic agent in an amount sufficient to reduce the static level measured at about one half inch below the outlet of the slot attenuation device from greater than 2 kilovolt per inch or less than -2 kilovolt per inch to between–2 kilovolt per inch and 2 kilovolt per inch. The at least one antistatic agent does not cause a defect in the spunbonded nonwoven fabric.

The Action states at page 6 that Gillespie teaches addition of an antistatic agent by disclosing that nylon or polyester can be used. The Action also asserts at pages 7-8 that Gillespie in view of Tortora would necessarily teach the claimed result of reducing the static level because Gillespie teaches each of the claimed process steps. However, this is not true. The claimed method requires the step of adding at least one antistatic agent to a melt blend in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch. Gillespie includes no disclosure of adding any component as an antistatic agent and, even assuming for the sake of argument that nylon is an antistatic agent, there is plainly no contemplation in Gillespie of

adding it in an amount sufficient to lead to the claimed static level range. Thus, there is in fact no teaching or suggestion of this step in the cited references.

Moreover, the claimed invention requires that the filaments of the web are bonded at a temperature of between 180 °C and about 250 °C. As discussed in paragraph 4 of the December 2010 Ortega Declaration, the melting point of polyolefins is much lower than that of nylon. Polyolefin fabric, as in the type used in Gillespie, would completely melt if a bonding temperature of between 180 °C and about 250 °C were used. This point is emphasized in Gillespie (column 8, lines 40-52) and in U.S. Patent Application Publication No. 2003/0181112 (submitted with the Amendment of December 6, 2010 and included in the Evidence Appendix). Thus, a polyolefin fabric would completely melt, potentially destroying the spunbonding equipment, if a bonding temperature of between 180 °C and about 250 °C were used. A person of ordinary skill in the art would not have found a reason to use such a bonding temperature with the Gillespie process.

The Action at page 7 refers to the statement of Tortora that "spunbonding is necessarily done by bonding the filaments while they [are] partially molten." However, this statement of Tortora is incorrect. In a spunbonding process, after the filaments are extruded, they are quenched (cooled), drawn, and laid on a web before being bonded. The filaments may be molten when they are bonded (for example, by being melted again in a calendar), but they are not necessarily at the same temperature at which they are extruded. In the signed Declaration Under 37 C.F.R. 1.132 of Dr. Billie Collier (executed November 5, 2009; submitted with the Amendment filed November 6, 2009 and entered into the record; hereinafter referred to as "the Collier Declaration"), Dr. Collier clarifies that the description of the spunbonding process given in the first paragraph of page 330 of the Tortora reference is incomplete. Dr. Collier is one of the co-authors of the Tortora reference and has no financial interest in the subject application. As discussed in paragraph 2 of the Collier Declaration, in the most recent edition (seventh edition, 2009) of *Understanding Textiles*, the description has been expanded upon to include description of the cooling, drawing, and depositing that takes place between the extrusion and the bonding. This is also discussed in paragraph 1 of the signed Declaration Under 37 C.F.R. 1.132 of Albert Ortega (executed November 6, 2009; submitted with the Amendment filed November 6, 2009 and entered into the record; hereinafter referred to as "the November 2009 Ortega Declaration"). Thus, as demonstrated by paragraph 1 of the November 2009 Ortega Declaration and paragraphs

1 and 2 of the Collier Declaration, a person of ordinary skill in the art would readily understand that bonding does not necessarily take place at the same temperature as extrusion.

Additionally, the Action at page 7 refers to Tortora's bicomponent fibers containing metal or carbon as antistatic agents and asserts that it would have been obvious to include these in the Gillespie process in order to control electrical properties (referring to column 5, lines 35-42 of Gillespie) and because Gillespie teaches producing a desired product by combining polymers in the melt blend. However, a very high amount of carbon black is required to see any appreciable antistatic effect (see, e.g., U.S. Patent Nos. 2,845,962 and 5,277,855 submitted with the Amendment of April 24, 2008 and included in the Evidence Appendix). For example, U.S. Patent No. 2,845,962 discusses that a proportion of carbon black of around 25% should be used in an antistatic fabric (column 1, line 64 to column 2, line 5). Also, as discussed in paragraph 1 of the signed Declaration Under 37 C.F.R. 1.132 of Albert Ortega (executed October 11, 2007; submitted with the Amendment filed October 12, 2007 and entered into the record; hereinafter referred to as "the October 2007 Ortega Declaration"), it is well-known in the art that using carbon black in the melt stream of a polymer, especially in high proportions, would severely plug filters and packs. The amount of carbon black or metal that would be required to be present in the melt in order to be sufficient to reduce a static level as claimed would be so high that a skilled artisan would not have had a reasonable expectation of success in being able to complete the process (especially the extruding). A reasonable expectation of success is necessary for a prima facie case of obviousness. In re Rinehart, 531 F.2d 1048, 189 USPQ 143 (CCPA 1976); In re Merck & Co., Inc., 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986); Ex parte Erlich, 3 USPQ2d 1011 (Bd. Pat. App. & Inter. 1986); MPEP §2143.02.

Moreover, as discussed in paragraph 1 of the December 2010 Ortega Declaration, using bicomponent fibers containing metal or carbon in a spunbond process is very expensive, plugs filters and packs, and changes the natural color of the fabric being produced. If metal or carbon were used as an antistatic agent in a spunbond process, the unintended consequence of changing the color would be considered by a skilled artisan as causing a <u>defect</u> in the spunbonded fabric. In addition, the high amount of metal and/or carbon that would be required to be added in order to reduce the static level measured at about one half inch below the outlet of the slot attenuation device from greater than 2 kilovolt per inch or less than -2 kilovolt per inch to between -2

kilovolt per inch and 2 kilovolt per inch would <u>significantly</u> change the natural color of the spunbonded fabric being produced.

Furthermore, as discussed in paragraphs 5 and 6 of the December 2010 Ortega Declaration, Gillespie's comments regarding controlling electrical properties are not related to minimizing static issues but rather producing a splittable filament. Gillespie teaches that "[a] triboelectric charge can be developed in the filaments to promote separation... [a] nylon component can develop such a static charge... (and) [a]n external electric field can be applied to the filaments... to augment the separation" (column 9, lines 53-63). Thus, addition to the melt blend, in the Gillespie process, of additives that would lower the static level at the outlet of an attenuation device, would inhibit separation of the filaments, in direct contrast to the goal of the Gillespie process (see, e.g., paragraph 6 of the December 2010 Ortega Declaration). A proposed modification cannot render (purported) prior art unsatisfactory for its intended purpose or change the principle of operation of a reference. *In re Gordon*, 733 F.2d 900, 221 USPQ 1125 (Fed. Cir. 1984); *In re Ratti*, 270 F.2d 810, 123 USPQ 349 (CCPA 1959); MPEP §2143.01(V and VI).

When determining whether a claim is obvious, an examiner must make "a searching comparison of the claimed invention - including all its limitations - with the teaching of the prior art." In re Ochiai, 71 F.3d 1565, 1572 (Fed. Cir. 1995) (emphasis added). Thus, "obviousness requires a suggestion of all limitations in a claim." CFMT, Inc. v. Yieldup Intern. Corp., 349 F.3d 1333, 1342 (Fed. Cir. 2003) (citing In re Royka, 490 F.2d 981, 985 (CCPA 1974)). Moreover, as the Supreme Court recently stated, "there must be some articulated reasoning with some rational underpinning to support the legal conclusion of obviousness." KSR Int'l v. Teleflex Inc., 127 S. Ct. 1727, 1741 (2007) (quoting In re Kahn, 441 F.3d 977, 988 (Fed. Cir. 2006) (emphasis added). The combination of cited references fails to teach or suggest the claimed method, including adding at least one antistatic agent to a melt blend in an amount sufficient such that the static level is in the claimed range. Also, a skilled artisan would not have found a reason to bond at the claimed temperature range as such high temperatures would cause the polyolefins to melt, potentially ruining the process equipment. In addition, the bicomponent fibers of Tortora would not be used as antistatic agents because they would cause multiple problems, including color defects. The claimed method requires that the addition of an antistatic agent does not cause any defects.

Accordingly, the Examiner has not established a *prima facie* case of obviousness for claims 1-5, 14, 15, 17-19, 26, and 35.

Claim 37

Independent claim 37 is directed to a method of reducing the static level of a spunbond process having a static level measured at the outlet of a slot attenuation device of greater than 2 kilovolt per inch or less than -2 kilovolt per inch. The method comprises adding at least one antistatic agent to a melt blend of the spunbond process, before extruding the melt blend, in an amount sufficient such that the static level measured at about one half inch below the outlet of the slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch. The at least one antistatic agent does not cause a defect in a spunbonded nonwoven fabric produced by the spunbond process.

The Action states at page 6 that Gillespie teaches addition of an antistatic agent by disclosing that nylon or polyester can be used. The Action also asserts at pages 7-8 that Gillespie in view of Tortora would necessarily teach the claimed result of reducing the static level because Gillespie teaches each of the claimed process steps. However, this is not true. The claimed method requires the step of adding at least one antistatic agent to a melt blend in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch. Gillespie includes no disclosure of adding any component as an antistatic agent and, even assuming for the sake of argument that nylon is an antistatic agent, there is plainly no contemplation in Gillespie of adding it in an amount sufficient to lead to the claimed static level range. Thus, there is in fact no teaching or suggestion of this step in the cited references.

Additionally, the Action at page 7 refers to Tortora's bicomponent fibers containing metal or carbon as antistatic agents and asserts that it would have been obvious to include these in the Gillespie process in order to control electrical properties (referring to column 5, lines 35-42 of Gillespie) and because Gillespie teaches producing a desired product by combining polymers in the melt blend. However, a very high amount of carbon black is required to see any appreciable antistatic effect (see, e.g., U.S. Patent Nos. 2,845,962 and 5,277,855). For example, U.S. Patent No. 2,845,962 discusses that a proportion of carbon black of around 25% should be

used in an antistatic fabric (column 1, line 64 to column 2, line 5). Also, as discussed in paragraph 1 of the October 2007 Ortega Declaration, it is well-known in the art that using carbon black in the melt stream of a polymer, especially in high proportions, would severely plug filters and packs. The amount of carbon black or metal that would be required to be present in the melt in order to be sufficient to reduce a static level as claimed would be so high that a skilled artisan would not have had a reasonable expectation of success in being able to complete the process (especially the extruding). A reasonable expectation of success is necessary for a *prima facie* case of obviousness. *In re Rinehart*, *supra*.; *In re Merck & Co., Inc., supra.*; *Ex parte Erlich*, *supra.*; MPEP §2143.02.

Moreover, as discussed in paragraph 1 of the December 2010 Ortega Declaration, using bicomponent fibers containing metal or carbon in a spunbond process is very expensive, plugs filters and packs, and changes the natural color of the fabric being produced. If metal or carbon were used as an antistatic agent in a spunbond process, the unintended consequence of changing the color would be considered by a skilled artisan as causing a <u>defect</u> in the spunbonded fabric. In addition, the high amount of metal and/or carbon that would be required to be added in order to reduce the static level measured at about one half inch below the outlet of the slot attenuation device from greater than 2 kilovolt per inch or less than -2 kilovolt per inch to between -2 kilovolt per inch and 2 kilovolt per inch would <u>significantly</u> change the natural color of the spunbonded fabric being produced.

Furthermore, as discussed in paragraphs 5 and 6 of the December 2010 Ortega Declaration, Gillespie's comments regarding controlling electrical properties are not related to minimizing static issues but rather producing a splittable filament. Gillespie teaches that "[a] triboelectric charge can be developed in the filaments to promote separation... [a] nylon component can develop such a static charge... (and) [a]n external electric field can be applied to the filaments... to augment the separation" (column 9, lines 53-63). Thus, addition to the melt blend, in the Gillespie process, of additives that would lower the static level at the outlet of an attenuation device would inhibit separation of the filaments, in direct contrast to the goal of the Gillespie process (see, e.g., paragraph 6 of the December 2010 Ortega Declaration). A proposed modification cannot render (purported) prior art unsatisfactory for its intended purpose or change the principle of operation of a reference. *In re Gordon, supra.*; *In re Ratti, supra.*; MPEP \$2143.01(V and VI).

When determining whether a claim is obvious, an examiner must make "a searching comparison of the claimed invention — *including all its limitations* — with the teaching of the prior art." *In re Ochiai, supra.* (emphasis added). Thus, "obviousness requires a suggestion of all limitations in a claim." *CFMT, Inc. v. Yieldup Intern. Corp., supra.*) (*citing In re Royka, supra.*). Moreover, as the Supreme Court recently stated, "there must be some articulated reasoning with some rational underpinning to support the legal conclusion of obviousness." *KSR Int'l v. Teleflex Inc., supra.* (quoting *In re Kahn, supra.* (emphasis added)). The combination of cited references fails to teach or suggest the claimed method, including adding at least one antistatic agent to a melt blend in an amount sufficient such that the static level is in the claimed range. Also, a skilled artisan would not have found a reason to bond at the claimed temperature range as such high temperatures would cause the polyolefins to melt, potentially ruining the process equipment. In addition, the bicomponent fibers of Tortora would not be used as antistatic agents because they would cause multiple problems, including color defects. The claimed method requires that the addition of an antistatic agent does not cause any defects.

Accordingly, the Examiner has not established a *prima facie* case of obviousness for claim 37.

Claims 13, 25, 36, and 38

Claims 13, 25, 36, and 38 each require that the static level measured at about one half inch below the outlet of the slot attenuation device is between about –1 kilovolt per inch and about 1 kilovolt per inch.

The deficiencies of the combination of Gillespie and Tortora with respect to claims 1, 17, 35, and 37 have been discussed above. Claims 13, 25, 36, and 38 each provide further distinction over the combination of Gillespie and Tortora. The claimed method requires the step of adding at least one antistatic agent to a melt blend in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -1 kilovolt per inch and 1 kilovolt per inch. Gillespie includes no disclosure of adding any component as an antistatic agent and, even assuming for the sake of argument that the cited combination does disclose addition of antistatic agent, there is no teaching or suggestion of adding such an agent in an amount sufficient to lead to the claimed static level range.

Accordingly, the Examiner has not established a *prima facie* case of obviousness for claims 13, 25, 36, and 38.

Claims 20 and 39

Claims 20 and 39 each require that the static level of the spunbond process being reduced, measured at the outlet of a slot attenuation device, is greater than 4 kilovolt per inch or less than -4 kilovolt per inch.

The deficiencies of the combination of Gillespie and Tortora with respect to claims 17 and 37 have been discussed above. Claims 20 and 39 each provide further distinction over the combination of Gillespie and Tortora. Gillespie includes no discussion of static levels at the outlet of a slot attenuation device, so it is not clear that this initial limitation is met.

Accordingly, the Examiner has not established a *prima facie* case of obviousness for claims 20 and 39.

Claim 40

Claim 40 is directed to the method of claim 39, wherein the method comprises adding the at least one antistatic agent to the melt blend of the spunbond process in an amount sufficient such that the static level measured at about one half inch below the outlet of the slot attenuation device is between -1 kilovolt per inch and 1 kilovolt per inch.

The deficiencies of the combination of Gillespie and Tortora with respect to claim 39 have been discussed above. Claim 40 provides further distinction over the combination of Gillespie and Tortora. The claimed method requires the step of adding at least one antistatic agent to a melt blend in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -1 kilovolt per inch and 1 kilovolt per inch. Gillespie includes no disclosure of adding any component as an antistatic agent and, even assuming for the sake of argument that the cited combination does disclose addition of antistatic agent, there is no teaching or suggestion of adding such an agent in an amount sufficient to lead to the claimed static level range.

Accordingly, the Examiner has not established a *prima facie* case of obviousness for claim 40.

E. Claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 are patentable because the Examiner has not established a *prima facie* case of obviousness.

Claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 have been rejected under 35 U.S.C. §103(a) as being unpatentable over Gillespie in view of Tortora and in further view of either Warburton (U.S. Patent No. 4,081,383) or George (U.S. Patent No. 4,167,464). Appealed claims 1-5, 10, 11, 13-20, 25, 26, 28, and 35-40 do not stand or fall together for purposes of the Appeal of this rejection under 35 U.S.C. §103(a).

Claims 1-5, 14, 15, 17-19, 26, and 35

Independent claim 1 is directed to a method of producing a spunbonded nonwoven fabric. The method comprises the steps of: forming, in an extruder, a melt blend of at least one polymer and, additionally, at least one antistatic agent present in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch; extruding said blend in the form of a plurality of filaments, directing the filaments through the slot attenuation device, drawing the filaments to orient them, depositing the filaments onto a collection surface to form a web, and bonding the filaments of the web. The filaments of the web are bonded at a temperature of between 180°C and about 250°C, and the static level measured at about one half inch below the outlet of the slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch. Without addition of the at least one antistatic agent, a static level measured at about one half inch below the outlet of the slot attenuation device is greater than 2 kilovolt per inch or less than -2 kilovolt per inch. The at least one antistatic agent does not cause a defect in the spunbonded nonwoven fabric.

Independent claim 17 is directed to a method of producing a spunbonded nonwoven fabric. The method comprises the steps of: forming one or more melt blends of polymer and, additionally, one or more antistatic agents either in a master batch or a base resin present in an amount sufficient such that the static level measured at about one half inch below the outlet of a

slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch; extruding said blend or blends through separate extruders into the form of a plurality of multicomponent filaments with the blend or blends of polymer and one or more antistatic agents forming a portion of the surface of the filaments; directing the filaments through the slot attenuation device; drawing the filaments to orient them; depositing the filaments onto a collection surface to form a web; and bonding the filaments of the web. The filaments of the web are bonded at a temperature of between 180 °C and about 250 °C, and the static level measured at about one half inch below the outlet of the slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch. Without addition of the at least one antistatic agent, a static level measured at about one half inch below the outlet of the slot attenuation device is greater than 2 kilovolt per inch or less than -2 kilovolt per inch. The at least one antistatic agent does not cause a defect in the spunbonded nonwoven fabric.

Independent claim 35 is directed to a method of producing a spunbonded nonwoven fabric. The method comprises the steps of: forming, in an extruder, a melt blend of at least one polymer; extruding said blend in the form of a plurality of filaments; directing the filaments through the slot attenuation device and drawing the filaments to orient them; depositing the filaments onto a collection surface to form a web; and bonding the filaments of the web. The filaments of the web are bonded at a temperature of between 180°C and about 250°C, wherein the method further comprises adding to the melt blend, before extruding said blend, at least one antistatic agent in an amount sufficient to reduce the static level measured at about one half inch below the outlet of the slot attenuation device from greater than 2 kilovolt per inch or less than -2 kilovolt per inch to between–2 kilovolt per inch and 2 kilovolt per inch. The at least one antistatic agent does not cause a defect in the spunbonded nonwoven fabric.

The deficiencies of the combination of Gillespie and Tortora have been discussed above in Subsection D, and that discussion is incorporated herein by reference in its entirety. The Appellant will now address specific points related to the combination of Gillespie and Tortora with either Warburton or George.

The Action states at page 12 that Gillespie teaches to incorporate into the polymer melt components to control electrical properties, citing column 5, lines 35-42. However, as discussed above and in paragraphs 5 and 6 of the December 2010 Ortega Declaration, Gillespie is primarily concerned with producing splittable filaments (see, e.g., column 5, lines 38-39), and the only

additives to control electrical properties contemplated by Gillespie are those that might <u>increase</u> static buildup at the outlet of an attenuation device. As Gillespie teaches at column 9, lines 53-63, "[a] triboelectric charge can be developed in the filaments to <u>promote separation</u>... [a] nylon component can develop such a <u>static</u> charge... (and) [a]n external electric field can be applied to the filaments... to <u>augment the separation</u>" (emphasis added). Thus, Gillespie teaches away from any additives that would <u>lower</u> the static level at the outlet of an attenuation device since that would inhibit separation of the filaments, in direct contrast to the goal of the Gillespie process.

The Action also asserts that it would have been obvious to use the copolymer composition of Warburton in the extrusion of Gillespie in order to provide the product with better anti-soiling properties and to control the anti-soiling treatment's polymer particle size. Warburton disclose an aqueous dispersion (column 1, lines 45-47), including a polymeric material, as an anti-soiling treatment for carpets and carpet yarns. A person of ordinary skill in the art would recognize that addition of water, such as with the aqueous dispersion of Warburton, into an extruder would cause problems since it could lead to depolymerization of polymers typically used in melt blends (see also paragraph 4 of the November 2009 Ortega Declaration). Also, a person of ordinary skill in the art would not have been motivated to use any individual components of the aqueous dispersion of Warburton to attempt to impart anti-soiling properties to any fabric; rather the entire dispersion (including the water), would be used, as taught by Warburton (see also paragraph 6 of the November 2009 Ortega Declaration).

Moreover, as discussed in paragraph 5 of the November 2009 Ortega Declaration, since the aqueous dispersion of Warburton is applied directly to carpets and/or carpet yarns, a person of ordinary skill in the art would not have had a reasonable expectation of success that the addition of this dispersion to a melt blend (before extrusion, quenching, drawing, web formation, and bonding), would impart any anti-soiling properties to a spunbonded nonwoven fabric like it does when applied directly to a carpet or carpet yarn. A reasonable expectation of success is necessary for a prima facie case of obviousness. In re Rinehart, supra.; In re Merck & Co., Inc., supra.; Ex parte Erlich, supra.; MPEP §2143.02. Nor would a skilled artisan have expected any other advantageous properties of Warburton's aqueous dispersion (intended for direct application to carpets and/or carpet yarns), such as any possible reduction in static build-up (column 6, lines 34-37), to be imparted to a spunbonded nonwoven fabric, when added to a melt blend (before

extrusion, quenching, drawing, web formation, and bonding). Any component added to a melt blend will be subjected to high temperatures, so it would not be expected that the same properties would be imparted as in the case when Warburton's aqueous dispersion is applied directly to a carpet and/or carpet yarn. It would only make sense to apply the aqueous dispersion of Warburton to the <u>finished fabric</u> of Gillespie since then a skilled artisan could ensure that the Warburton dispersion would retain its properties (even though it's not clear if such properties would even be imparted to a spunbonded fabric). The claimed invention requires actually bonding the filaments at a temperature between 180 °C and 250 °C.

With respect to George, the Action asserts that it would have been obvious to include George's copolymer composition in the extrusion of Gillespie in order to provide the product with better absorption of water and other bodily fluids. However, the highest temperature any of the compounds in George is subjected to is about 50 °C (column 7, lines 64-65). A person of ordinary skill in the art would not have reasonably expected any advantageous properties of George's interpolymer (only subjected to low temperatures), including water absorbency, to be imparted to a spunbonded nonwoven fabric when added to a melt blend, before extrusion, quenching, drawing, web formation, and bonding (see also paragraph 8 of the November 2009 Ortega Declaration). A reasonable expectation of success is necessary for a prima facie case of obviousness. In re Rinehart, supra.; In re Merck & Co., Inc., supra.; Ex parte Erlich, supra.; MPEP §2143.02. Any component added to a melt blend will be subjected to high temperatures (much higher than 50 °C), so it would not be expected that the same properties would be imparted after melting the interpolymer and mixing with several other components in a melt blend (see also paragraph 8 of the November 2009 Ortega Declaration). It would only make sense to apply the film coating of George to the finished fabric of Gillespie since then a person of ordinary skill in the art could ensure that the George compound would retain its properties (even though it's not clear if such properties would even be imparted to a spunbonded fabric). The claimed invention requires actually bonding the filaments at a temperature between 180 °C and 250 °C.

Furthermore, George discloses the preparation of water absorbent films and fibers by photopolymerizing various compounds. As discussed in paragraph 7 of the November 2009 Ortega Declaration, all of the films and fibers of George contain water (column 7, line 45 through column 8, line 10; Tables 1 and 2). A skilled artisan would recognize that addition of

water into an extruder would cause problems since it could cause depolymerization of polymers typically used in melt blends. Additionally, a skilled artisan would not have been motivated to use any individual components of the George composition to attempt to impart water absorbency properties to any fabric; rather the entire composition (including the water) would be used, as taught by George (see also paragraph 9 of the November 2009 Ortega Declaration).

As discussed above, a person of ordinary skill in the art would not have had a reason to include, or a reasonable expectation of success in doing so, any of the substances taught by Warburton or George in the melt blend of Gillespie. Even assuming for the sake of argument that one of these substances was actually included in Gillespie's melt blend, absent the Appellant's disclosure, there would have been no reason to include such a substance in an amount sufficient to give a reduction in the static level as claimed.

Accordingly, the Examiner has not established a *prima facie* case of obviousness for claims 1-5, 14, 15, 17-19, 26, and 35.

Claim 37

Independent claim 37 is directed to a method of reducing the static level of a spunbond process having a static level measured at the outlet of a slot attenuation device of greater than 2 kilovolt per inch or less than -2 kilovolt per inch. The method comprises adding at least one antistatic agent to a melt blend of the spunbond process, before extruding the melt blend, in an amount sufficient such that the static level measured at about one half inch below the outlet of the slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch. The at least one antistatic agent does not cause a defect in a spunbonded nonwoven fabric produced by the spunbond process.

The deficiencies of the combination of Gillespie and Tortora have been discussed above in Subsection D, and that discussion is incorporated herein by reference in its entirety. The Appellant will now address specific points related to the combination of Gillespie and Tortora with either Warburton or George.

The Action states at page 12 that Gillespie teaches to incorporate into the polymer melt components to control electrical properties, citing column 5, lines 35-42. However, as discussed above and in paragraphs 5 and 6 of the December 2010 Ortega Declaration, Gillespie is primarily

concerned with producing splittable filaments (see, e.g., column 5, lines 38-39), and the only additives to control electrical properties contemplated by Gillespie are those that might <u>increase</u> static buildup at the outlet of an attenuation device. As Gillespie teaches at column 9, lines 53-63, "[a] triboelectric charge can be developed in the filaments to <u>promote separation</u>... [a] nylon component can develop such a <u>static</u> charge... (and) [a]n external electric field can be applied to the filaments... to <u>augment the separation</u>" (emphasis added). Thus, Gillespie teaches away from any additives that would <u>lower</u> the static level at the outlet of an attenuation device since that would inhibit separation of the filaments, in direct contrast to the goal of the Gillespie process.

The Action also asserts that it would have been obvious to use the copolymer composition of Warburton in the extrusion of Gillespie in order to provide the product with better anti-soiling properties and to control the anti-soiling treatment's polymer particle size. Warburton disclose an aqueous dispersion (column 1, lines 45-47), including a polymeric material, as an anti-soiling treatment for carpets and carpet yarns. A person of ordinary skill in the art would recognize that addition of water, such as with the aqueous dispersion of Warburton, into an extruder would cause problems since it could lead to depolymerization of polymers typically used in melt blends (see also paragraph 4 of the November 2009 Ortega Declaration). Also, a person of ordinary skill in the art would not have been motivated to use any individual components of the aqueous dispersion of Warburton to attempt to impart anti-soiling properties to any fabric; rather the entire dispersion (including the water), would be used, as taught by Warburton (see also paragraph 6 of the November 2009 Ortega Declaration).

Moreover, as discussed in paragraph 5 of the November 2009 Ortega Declaration, since the aqueous dispersion of Warburton is applied directly to carpets and/or carpet yarns, a person of ordinary skill in the art would <u>not</u> have had a reasonable expectation of success that the addition of this dispersion to a melt blend (before extrusion, quenching, drawing, web formation, and bonding), would impart any anti-soiling properties to a spunbonded nonwoven fabric like it does when applied directly to a carpet or carpet yarn. A reasonable expectation of success is necessary for a *prima facie* case of obviousness. *In re Rinehart, supra.*; *In re Merck & Co., Inc., supra.*; *Ex parte Erlich, supra.*; MPEP §2143.02. Nor would a skilled artisan have expected any other advantageous properties of Warburton's aqueous dispersion (intended for <u>direct application</u> to carpets and/or carpet yarns), such as any possible reduction in static build-up (column 6, lines

34-37), to be imparted to a spunbonded nonwoven fabric, when added to a melt blend (before extrusion, quenching, drawing, web formation, and bonding). Any component added to a melt blend will be subjected to high temperatures, so it would not be expected that the same properties would be imparted as in the case when Warburton's aqueous dispersion is applied directly to a carpet and/or carpet yarn. It would only make sense to apply the aqueous dispersion of Warburton to the <u>finished fabric</u> of Gillespie since then a skilled artisan could ensure that the Warburton dispersion would retain its properties (even though it's not clear if such properties would even be imparted to a spunbonded fabric).

With respect to George, the Action asserts that it would have been obvious to include George's copolymer composition in the extrusion of Gillespie in order to provide the product with better absorption of water and other bodily fluids. However, the highest temperature any of the compounds in George is subjected to is about 50 °C (column 7, lines 64-65). A person of ordinary skill in the art would not have reasonably expected any advantageous properties of George's interpolymer (only subjected to low temperatures), including water absorbency, to be imparted to a spunbonded nonwoven fabric when added to a melt blend, before extrusion, quenching, drawing, web formation, and bonding (see also paragraph 8 of the November 2009 Ortega Declaration). A reasonable expectation of success is necessary for a prima facie case of obviousness. In re Rinehart, supra.; In re Merck & Co., Inc., supra.; Ex parte Erlich, supra.; MPEP §2143.02. Any component added to a melt blend will be subjected to high temperatures (much higher than 50 °C), so it would not be expected that the same properties would be imparted after melting the interpolymer and mixing with several other components in a melt blend (see also paragraph 8 of the November 2009 Ortega Declaration). It would only make sense to apply the film coating of George to the finished fabric of Gillespie since then a person of ordinary skill in the art could ensure that the George compound would retain its properties (even though it's not clear if such properties would even be imparted to a spunbonded fabric).

Furthermore, George discloses the preparation of water absorbent films and fibers by photopolymerizing various compounds. As discussed in paragraph 7 of the November 2009 Ortega Declaration, all of the films and fibers of George contain water (column 7, line 45 through column 8, line 10; Tables 1 and 2). A skilled artisan would recognize that addition of water into an extruder would cause problems since it could cause depolymerization of polymers typically used in melt blends. Additionally, a skilled artisan would not have been motivated to

use any individual components of the George composition to attempt to impart water absorbency properties to any fabric; rather the entire composition (including the water) would be used, as taught by George (see also paragraph 9 of the November 2009 Ortega Declaration).

As discussed above, a person of ordinary skill in the art would not have had a reason to include, or a reasonable expectation of success in doing so, any of the substances taught by Warburton or George in the melt blend of Gillespie. Even assuming for the sake of argument that one of these substances was actually included in Gillespie's melt blend, absent the Appellant's disclosure, there would have been no reason to include such a substance in an amount sufficient to give a reduction in the static level as claimed.

Accordingly, the Examiner has not established a *prima facie* case of obviousness for claim 37.

Claims 10, 11, 16, and 28

The deficiencies of the combination of Gillespie, Tortora, and either Warburton or George, with respect to claims 1 and 17, have been discussed above. Claims 10, 11, 16, and 28 each recite specific materials for the antistatic agent. The Action cites Warburton or George for allegedly disclosing the materials of claims 10, 11, 16, and 28, and asserts that it would have been obvious to include these materials in the Gillespie/Tortora process. As discussed above, a person of ordinary skill in the art would not have had a reason to include, or a reasonable expectation of success in doing so, any of the substances taught by Warburton or George in the melt blend of Gillespie. Thus, there is no teaching or suggestion in the combination of cited references of the methods of claims 1 or 17, including the specific materials recited in claims 10, 11, 16, or 28.

Accordingly, the Examiner has not established a *prima facie* case of obviousness for claims 10, 11, 16, and 28.

Claims 13, 25, 36, and 38

Claims 13, 25, 36, and 38 each require that the static level measured at about one half inch below the outlet of the slot attenuation device is between about –1 kilovolt per inch and about 1 kilovolt per inch.

The deficiencies of the combination of Gillespie, Tortora, and either Warburton or George, with respect to claims 1, 17, 35, and 37, have been discussed above. Claims 13, 25, 36, and 38 each provide further distinction over the combination of Gillespie, Tortora, and Warburton or George. The claimed method requires the step of adding at least one antistatic agent to a melt blend in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -1 kilovolt per inch and 1 kilovolt per inch. Gillespie includes no disclosure of adding any component as an antistatic agent and, even assuming for the sake of argument that the cited combination does disclose addition of antistatic agent, there is no teaching or suggestion of adding such an agent in an amount sufficient to lead to the claimed static level range.

Accordingly, the Examiner has not established a *prima facie* case of obviousness for claims 13, 25, 36, and 38.

Claims 20 and 39

Claims 20 and 39 each require that the static level of the spunbond process being reduced, measured at the outlet of a slot attenuation device, is greater than 4 kilovolt per inch or less than -4 kilovolt per inch.

The deficiencies of the combination of Gillespie, Tortora, and either Warburton or George, with respect to claims 17 and 37, have been discussed above. Claims 20 and 39 each provide further distinction over the combination of Gillespie, Tortora, and Warburton or George. Gillespie includes no discussion of static levels at the outlet of a slot attenuation device, so it is not clear that this initial limitation is met.

Accordingly, the Examiner has not established a *prima facie* case of obviousness for claims 20 and 39.

Claim 40

Claim 40 is directed to the method of claim 39, wherein the method comprises adding the at least one antistatic agent to the melt blend of the spunbond process in an amount sufficient such that the static level measured at about one half inch below the outlet of the slot attenuation device is between -1 kilovolt per inch and 1 kilovolt per inch.

The deficiencies of the combination of Gillespie, Tortora, and either Warburton or George, with respect to claim 39, have been discussed above. Claim 40 provides further distinction over the combination of Gillespie, Tortora, and Warburton or George. The claimed method requires the step of adding at least one antistatic agent to a melt blend in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -1 kilovolt per inch and 1 kilovolt per inch. Gillespie includes no disclosure of adding any component as an antistatic agent and, even assuming for the sake of argument that the cited combination does disclose addition of antistatic agent, there is no teaching or suggestion of adding such an agent in an amount sufficient to lead to the claimed static level range.

Accordingly, the Examiner has not established a *prima facie* case of obviousness for claim 40.

F. Conclusion

In view of the foregoing, the Appellant urges the Board to reverse the outstanding rejections under 35 U.S.C. §112, first paragraph, 35 U.S.C. §112, second paragraph, 35 U.S.C. §102(b), and 35 U.S.C. §103(a), and pass this application to issuance.

Respectfully submitted,

Louis C. Frank Patent Attorney

Registration No. 60,034

Phone No.: 352-375-8100 Fax No.: 352-372-5800

Address: Saliwanchik, Lloyd & Eisenschenk

A Professional Association

P.O. Box 142950

Gainesville, FL 32614-2950

LCF/la

VIII. CLAIMS APPENDIX

1. A method of producing a spunbonded nonwoven fabric comprising the steps of:

forming, in an extruder, a melt blend of at least one polymer and, additionally at least one antistatic agent present in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch,

extruding said blend in the form of a plurality of filaments,

directing the filaments through the slot attenuation device,

drawing the filaments to orient them,

depositing the filaments onto a collection surface to form a web, and

bonding the filaments of the web;

wherein the filaments of the web are bonded at a temperature of between 180°C and about 250°C;

wherein the static level measured at about one half inch below the outlet of the slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch;

wherein, without addition of the at least one antistatic agent, a static level measured at about one half inch below the outlet of the slot attenuation device is greater than 2 kilovolt per inch or less than -2 kilovolt per inch; and

wherein the at least one antistatic agent does not cause a defect in the spunbonded nonwoven fabric.

- 2. The method, according to claim 1, wherein the filaments comprise nylon, polyester, acrylic, polyethylene, polypropylene, polybutylene terephthalate, poly(trimethylene terephthalate), or polylactic acid polymers; or a combination of these polymers.
- 3. The method, according to claim 2, wherein the filaments comprise nylon 6; nylon 6,6; nylon 6,10; nylon 6,12; nylon 11; nylon 12; or nylon copolymers; or a combination of these nylon polymers.
- 4. The method, according to claim 1, wherein said method utilizes two or more melt blends of polymer.

5. The method, according to claim 1, wherein, without addition of the at least one antistatic agent, a static level measured at about one half inch below the outlet of the slot attenuation device is greater than 4 kilovolt per inch or less than -4 kilovolt per inch.

Claim 6 was canceled by Amendment dated June 17, 2010.

7 (withdrawn). The method, according to claim 1, wherein said method utilizes an antistatic material comprising an agent selected from the group consisting of: saccharine; quarternary ammonium salts; homo- and co-polymers of epihalohydrin; N,N,-Bis(hydroxyethyl) alkylamine; chain extended polyoxiranes; aromatic sulfanomides; styrene polymers; the copolymerization product of ethylene oxide with a heterocyclic monomer or vinyl type monomer; low molecular weight polyether oligomers; carbon particles; trineoalkoxy amino zirconate; trineoalkoxy sulfonyl zirconate; and compounds of the general formula

$$R - CH_2 - CH_$$

wherein R is a C_{1-9} alkyl group or hydrogen, Z is a diffunctional chain modifier group, R' is a C_{1-4} alkyl group or hydrogen and x and y are between about 10 and about 50.

8 (withdrawn). The method, according to claim 7, wherein R is a C_{1-5} alkyl group or hydrogen, Z is a diffunctional chain modifier group, R' is a C_{1-4} alkyl group or hydrogen and x and y are each between about 20 and about 40.

9 (withdrawn). The method, according to claim 1, wherein said antistatic agent comprises ethylene oxide and at least one heterocyclic co-monomer.

- 10. The method, according to claim 1, wherein said antistatic agent comprises at least one polar organic compound having at least 5 carbon atoms and a compound having at least 3 heteroatoms.
- 11. The method, according to claim 10, wherein the antistatic agent comprises one or more of the group consisting of polyethers, crown ethers, polyols, polyimines, polyamines, polymers derived from pyridine, macrocyclic aza compounds, polysulfides and polyphosphines, and salts of protic acids that are solvated or complexed in a polar organic compound.

Claim 12 was canceled by Amendment dated May 26, 2009.

- 13. The method, according to claim 1, wherein the static level measured at about one half inch below the outlet of the slot attenuation device is between about –1 kilovolt per inch and about 1 kilovolt per inch.
- 14. The method, according to claim 1, wherein at least about 5% of the surface area of each filament is made of a nylon polymer.
- 15. The method, according to claim 1, wherein at least about 5% of the total surface area of all filaments is made of a nylon polymer.
- 16. The method, according to claim 1, wherein said antistatic agent comprises polycaprolactum, a sulfonic acid, a C_{10} - C_{18} alkane, and sodium salts.
 - 17. A method of producing a spunbonded nonwoven fabric comprising the steps of:

forming one or more melt blends of polymer and, additionally, one or more antistatic agents either in a master batch or a base resin present in an amount sufficient such that the static level measured at about one half inch below the outlet of a slot attenuation device is between-2 kilovolt per inch and 2 kilovolt per inch,

extruding said blend or blends through separate extruders into the form of a plurality of multicomponent filaments with the blend or blends of polymer and one or more antistatic agents forming a portion of the surface of the filaments,

directing the filaments through the slot attenuation device,

drawing the filaments to orient them,

depositing the filaments onto a collection surface to form a web, and

bonding the filaments of the web;

wherein the filaments of the web are bonded at a temperature of between 180 °C and about 250 °C;

wherein the static level measured at about one half inch below the outlet of the slot attenuation device is between-2 kilovolt per inch and2 kilovolt per inch;

wherein, without addition of the at least one antistatic agent, a static level measured at about one half inch below the outlet of the slot attenuation device is greater than 2 kilovolt per inch or less than -2 kilovolt per inch; and

wherein the at least one antistatic agent does not cause a defect in the spunbonded nonwoven fabric.

- 18. The method according to claim 17, wherein the filaments comprise nylon, polyester, acrylic, polybutylene terephthalate polyethylene, polypropylene, ethylene vinyl alcohol, polyvinyl alcohol, vinyl acetate, poly(trimethylene terephthalate), or polylactic acid polymers; or a combination of these polymers.
- 19. The method, according to claim 17, wherein the filaments comprise nylon 6; nylon 6,6; nylon 6,10; nylon 6,12; nylon 11; nylon 12; or nylon copolymers; or a combination of these nylon polymers.
- 20. The method, according to claim 17, wherein, without addition of the at least one antistatic agent, a static level measured at about one half inch below the outlet of the slot attenuation device is greater than 4 kilovolt per inch or less than -4 kilovolt per inch.

Claim 21 was canceled by Amendment dated June 17, 2010.

22 (withdrawn). The method, according to claim 17, wherein said method utilizes an antistatic material comprising an agent selected from the group consisting of: saccharine; quarternary ammonium salts; homo- and co-polymers of epihalohydrin; N,N,-Bis(hydroxyethyl) alkylamine; chain extended polyoxiranes; aromatic sulfanomides; styrene polymers; the copolymerization product of ethylene oxide with a heterocyclic monomer or vinyl type monomer; low molecular weight polyether oligomers; carbon particles; trineoalkoxy amino zirconate; trineoalkoxy sulfonyl zirconate; and compounds of the general formula

$$R - - CH_2 - - N - CH_2CH_2O(C_2H_4O)_y(C_3H_6O)_xZR'$$

$$CH_2CH_2O(C_2H_4O)_y(C_3H_6O)_xZR'$$

wherein R is a C_{1-9} alkyl group or hydrogen, Z is a diffunctional chain modifier group, R' is a C_{1-4} alkyl group or hydrogen and x and y are between about 10 and about 50.

23 (withdrawn). The method, according to claim 22, wherein R is a C_{1-5} alkyl group or hydrogen, Z is a difunctional chain modifier group, R' is a C_{1-4} alkyl group or hydrogen and x and y are each between about 20 and about 40.

Claim 24 was canceled by Amendment dated May 26, 2009.

25. The method, according to claim 17, wherein the static level measured at about one half inch below the outlet of the slot attenuation device is between about –1 kilovolt per inch and about 1 kilovolt per inch.

26. The method, according to claim 17, wherein at least about 5% of the surface area of each filament is made of a nylon polymer.

27 (withdrawn). The method, according to claim 22, wherein at least about 5% of the total surface area of all filaments is made of a nylon polymer.

28. The method, according to claim 17, wherein said antistatic agent comprises polycaprolactum, a sulfonic acid, a C_{10} - C_{18} alkane, and sodium salts.

Claims 29-32 were canceled by Amendment dated June 17, 2010.

Claim 33 was canceled by Amendment dated September 22, 2006.

Claim 34 was canceled by Amendment dated November 6, 2009.

35. A method of producing a spunbonded nonwoven fabric comprising the steps of: forming, in an extruder, a melt blend of at least one polymer extruding said blend in the form of a plurality of filaments,

directing the filaments through the slot attenuation device and drawing the filaments to orient them,

depositing the filaments onto a collection surface to form a web, and bonding the filaments of the web;

wherein the filaments of the web are bonded at a temperature of between 180°C and about 250°C;

wherein the method further comprises adding to the melt blend, before extruding said blend, at least one antistatic agent in an amount sufficient to reduce the static level measured at about one half inch below the outlet of the slot attenuation device from greater than 2 kilovolt per inch or less than -2 kilovolt per inch to between–2 kilovolt per inch and 2 kilovolt per inch; and

wherein the at least one antistatic agent does not cause a defect in the spunbonded nonwoven fabric.

- 36. The method according to claim 35, wherein the at least one antistatic agent is added in an amount sufficient to reduce the static level measured at about one half inch below the outlet of the slot attenuation device from greater than 4 kilovolt per inch or less than -4 kilovolt per inch to between -2 kilovolt per inch and 2 kilovolt per inch.
- 37. A method of reducing the static level of a spunbond process having a static level measured at the outlet of a slot attenuation device of greater than 2 kilovolt per inch or less than 2 kilovolt per inch, wherein the method comprises:

adding at least one antistatic agent to a melt blend of the spunbond process, before extruding the melt blend, in an amount sufficient such that the static level measured at about one half inch below the outlet of the slot attenuation device is between -2 kilovolt per inch and 2 kilovolt per inch;

wherein the at least one antistatic agent does not cause a defect in a spunbonded nonwoven fabric produced by the spunbond process.

- 38. The method according to claim 37, wherein the method comprises adding the at least one antistatic agent to the melt blend of the spunbond process in an amount sufficient such that the static level measured at about one half inch below the outlet of the slot attenuation device is between -1 kilovolt per inch and 1 kilovolt per inch.
- 39. The method according to claim 37, wherein the static level of the spunbond process being reduced, measured at the outlet of a slot attenuation device, is greater than 4 kilovolt per inch or less than -4 kilovolt per inch.
- 40. The method according to claim 39, wherein the method comprises adding the at least one antistatic agent to the melt blend of the spunbond process in an amount sufficient such that the static level measured at about one half inch below the outlet of the slot attenuation device is between -1 kilovolt per inch and 1 kilovolt per inch.

IX. EVIDENCE APPENDIX

The following pieces of evidence have been submitted during the course of prosecution of the subject application and are provided in this appendix. Each has been fully considered by the examiner.

- 1) Declaration Under 37 C.F.R. §1.132 of Albert E. Ortega, executed October 11, 2007. This Declaration was submitted with the Amendment of October 12, 2007. It was fully considered and entered into the record by the examiner, as indicated at page 12 of the Office Action of July 24, 2008.
- 2) U.S. Patent No. 2,845,962, submitted with the Amendment of April 24, 2008. It was fully considered by the examiner, as indicated at page 16 of the Office Action of February 26, 2009.
- 3) U.S. Patent No. 5,277,855, submitted with the Amendment of April 24, 2008. It was fully considered by the examiner, as indicated at page 16 of the Office Action of February 26, 2009.
- 4) Declaration Under 37 C.F.R. §1.132 of Albert E. Ortega, executed November 6, 2009. This Declaration was submitted with the Amendment of November 6, 2009. It was fully considered and entered into the record by the examiner, as indicated at page 18 of the Office Action of March 17, 2010.
- 5) Declaration Under 37 C.F.R. §1.132 of Dr. Billie Collier, executed November 5, 2009. This Declaration was submitted with the Amendment of November 6, 2009. It was fully considered and entered into the record by the examiner, as indicated at page 17 of the Office Action of March 17, 2010.
- 6) BASF methacrylic acid reference sheet, submitted with the Amendment of May 26, 2009. It was fully considered by the examiner, as indicated at page 17 of the Office Action of August 6, 2009.
- 7) Declaration Under 37 C.F.R. §1.132 of Albert E. Ortega, executed December 2, 2010. This Declaration was submitted with the Amendment of December 6, 2010. It was fully considered and entered into the record by the examiner, as indicated at page 17 of the Office Action of March 31, 2011.

- 8) Federova *et al.* article (Strength Optimization of Thermally Bonded Spunbond Nonwovens, 2007), submitted with the Amendment of December 6, 2010. It was fully considered by the examiner, as indicated at page 25 of the Office Action of March 31, 2011.
- 9) U.S. Patent Application Publication No. 2003/0181112, submitted with the Amendment of December 6, 2010. It was fully considered by the examiner, as indicated at page 25 of the Office Action of March 31, 2011.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Examiner

Patrick Butler

Art Unit

1732

Applicant

Albert E. Ortega

Serial No.

10/662,492

Conf. No.

9209

:

Filed

September 15, 2003

For

Method of Reducing Static in a Spunbond Process

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

EXPERT DECLARATION OF ALBERT E. ORTEGA UNDER 37 CFR §1.132

Sir:

I, Albert E. Ortega, hereby declare:

THAT, I have reviewed the above-referenced patent application, including the claims;

THAT, I have reviewed the Office Action mailed December 12, 2006, along with the references cited therein;

THAT, I have extensive experience in the field of spunbond processes;

And being thus duly qualified, do further declare as follows:

- 1. Using bicomponent fibers containing metal or carbon in a spunbond causes color pollution, is very expensive, and inserts a yarn or filaments with different orientation or physical properties than that of the filaments created by the spunbonded equipment. Color pollution is a serious problem because the color of the product in spunbonded processes is very important. Additionally, using bicomponent fibers containing metal or carbon introduces particulate matter into the melt stream. The addition of particulate matter in the melt stream shortens polymer filter life and pack life. Slot draw lines have very large packs. Changing and cleaning them is very expensive so using solid particulate matter like metals or carbon is not desirable.
- 2. Regarding which nylon to use in the process disclosed in the Gillespie reference, nylon 6,6 is preferred over nylon 6 from a compatibility point of view and is the more likely initial choice. Additionally, fabric properties, including tenacity, are determined by several factors, such as polymer type, the spunbond process settings, the polymer additives, and the fabric construction parameters. Fabric construction, in many instances, can impact strength more so than fiber properties.
- 3. Spunbonding of polyester, nylon 6, and nylon 6,6 must be accomplished above the melt point of the polymers. All three have melt points above 200 °C, and nylon spinning processes sometimes reach temperatures above 300 °C. Further, it is important that the polymer that has the antistatic agent must be present at the surface of the filament to achieve the desired reduction in static buildup.
- 4. The problem of high static levels at an attenuator exit in spunbond processes has been known for years. Before the invention in the referenced patent application, Cerex Advanced Fabrics presented two leading equipment suppliers of spunbonding equipment with the challenge to reduce or eliminate static buildup in a spunbond process. Both suppliers had pilot facilities and had done extensive research regarding spunbond processes utilizing polyester, polyethylene, and polypropylene fibers. Despite being skilled in the art, neither supplier arrived at the method claimed in the referenced patent application.

I hereby further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

NO K

1

2,845,962

ANTISTATIC FABRICS

Douglas Bulgin, Erdington, Birmingham, England, assignor to Dunlop Rubber Company Limited, London, England, a British company

No Drawing. Application June 28, 1954 Serial No. 439,917

Claims priority, application Great Britain July 14, 1953

18 Claims. (Cl. 139-420)

This invention relates to the production of fabrics hav- 15 ing antistatic electrical properties.

The conductivity that is desirable in an antistatic fabric depends on the application for which the fabric is intended. An antistatic fabric which is to be used in circumstances in which the risks arising from the generation of 20 static electrical charges are not very serious may quite satisfactorily have a relatively high resistance, that is to say, a resistance up to about 100,000 megohms per unit square. A lower resistance of the order of magnitude of 10 to 100 megohms per unit square is desirable in a fabric 25 which is intended for use in the presence of inflammable vapours, e. g. in operating theatres, where it is a matter of vital importance that no static electrical charges should be generated. Megohms per unit square is the resistance in megohms to the passage of electricity on or parallel 30 to a surface between two electrodes placed to form opposite sides of a square and is independent of the dimensions of the square. Otherwise stated, if the length of two parallel electrodes is always equal to the distance between them it is immateral what the length of these elec- 35 trodes is as the resistance increases directly proportional to the distance between the electrodes and inversely proportional to the length of the electrodes, that is, to the width of the electrical path.

For this reason only cotton and viscose rayon are generally considered suitable for use in operating theatres, but even these materials are likely to be unsuitable in dry weather or conditions of low relative humidity. Experience has shown that the relative humidity of air should not be lower than 65% for safe use of cotton and viscose rayon fabrics. It is of course not always possible to keep the relative humidity of the atmosphere above 65%, and accordingly there is a need for a fabric in which there can be virtually no generation of static charges by movement at any atmospheric humidity. It is among the objects of the present invention to provide such a fabric.

According to the invention, an antistatic fabric is made up of fibrous material containing electrically conductive carbon black and fibrous material free from such black in such proportions that the electrical resistance of the fabric as a whole is less than 100,000 megohms per unit square at all humidities.

Carbon black is a product resulting from the incomplete combustion of hydrocarbon gas such as acetylene or natural gas and is generally deposited by actual contact of a flame upon a metallic surface. Normally carbon black is a non-conductor of electricity but is made conductive by treatment for that purpose and is known in the trade as electrically conductive carbon black.

Normal fibrous material free from carbon black, such as viscose rayon or cotton, has a high electrical resistance at low relative humidity and a lower resistance at high relative humidity. It has been found that, whereas fibrous material containing a relatively small proportion of carbon black has the same characteristic, fibrous material containing more than a certain critical proportion

5

of carbon black has a resistance which varies to a very much smaller extent with humidity and which in any case does not rise as its humidity falls. In the case of acetylene black this critical proportion is usually around 25%, but it varies somewhat with the particular fibres used.

The fabrics of the present invention, i. c. fabrics having a resistance less than 100,000 megohms per unit square at all humidities, may be satisfactorily produced using a fibrous material containing a proportion of carbon black that is not less than the critical proportion referred to above. Even if only a small proportion of the black-containing fibrous material is used, it is this material rather than the fibrous material free from black which makes the more important contribution to the conductivity of the fabric as a whole, and it is therefore possible to make the resistance of the present fabrics more or less independent of humidity by using a suitable proportion of the black-containing fibrous material. In general the use of about 10% of the black-containing fibrous material referred to gives the fabric a resistance which is substantially independent of humidity, that is to say, a resistance which does not, at any humidity, depart from its means value by any factor greater than about ten. Such a substantially constant resistance may be contrasted with the resistances of fabrics free from black, which at certain humidities may depart from their mean values by factors as great as ten thousand.

In general the proportion of black-containing fibrous material used in the present fabrics is not substantially less than 2%. Preferably the proportion used is from 5 to 20%. If the fabric has substantially less than 2% of the black-containing fibrous material, its resistance will be undesirably high; while if it has substantially more than 20% the resistance will (at some humidities at least) be undesirably low, and a fire risk and also an electric-shock risk may be introduced if the fabric is to be used in proximity to apparatus connected with the electric means for instance. With higher proportions of black-containing material, moreover, the mechanical strength of the fabric is impaired appreciably, a fibre containing carbon black being much weaker than a similar fibre free from black.

The proportion of black-containing fibrous material and the proportion of black in this material do not by themselves exclusively determine the resistance-humidity characteristics of the fabrics. Other factors which affect these characteristics are the denier of the fibres, their lengths (if they are used in staple form), and the nature of the weave.

The fabric may be woven from a mixed yarn spun from the two fibrous materials together, or it may be woven from two types of yarn, one of the two types being spun from the fibrous material free from black and the other being spun from the fibrous material containing electrically conductive carbon black. In the latter case the fabric may be so woven as to have a fine black-and-white chequered pattern, which by virtue of its distinctive appearance facilitates identification of the fabric.

It is not essential, where one yarn containing black and another yarn free from black are used, that the fabric should have both black-containing warp threads and black-containing weft threads. Even if the black-containing threads do not cross each other, the antistatic properties of the fabric may be entirely satisfactory, provided the black threads are reasonably close together.

A number of suitable types of conductive carbon black are available including acetylene black, which is generally known as Shawinigan black; reinforcing furnace black, for example those commercially available under the names Philblack 0, Vulcan 3, and Vulcan XXX; channel black for example Spheron C; and channel black that has been submitted to heat treatment, e. g. at 1000° C.

The fibrous material that contains the carbon black may be a regenerated cellulose, such as a viscose rayon obtained by extruding a solution of cellulose xanthate in aqueous sodium hydroxide containing dispersed carbon black into a coagulating bath of a suitable aqueous mineral acid, e. g. sulphuric acid.

Instead of a regenerated cellulose containing carbon black, there may be used such other fibrous materials as nylon or polyester fibres spun from a nylon or polyester melt in which carbon black has been incorporated.

The fibrous material free from black may be a cellulosic fibrous material such as cotton or viscose rayon. Other materials which may be used include nylon and polyester fibrous materials. A mixture of fibrous materials free from black may be used.

As an example of a particularly suitable fabric having the desired antistatic properties reference is made to a fabric containing 10% by weight of threads of viscose rayon containing 30% of Shawinigan black together with 90% of viscose rayon threads free from carbon black and having a resistance not less than 0.5 megohm per unit square not greater than 5 megohms per unit square at any humidity. This fabric may be contrasted with a 25 yarns made up of from 2% to 20% of fibres having similar fabric free from black, whose resistance varies with humidity between 0.5 and 106 megohms per unit

The fabrics of the present invention are valuable not only for use in goods intended to be employed in operating theatres and the like; examples of other applications are their use in the manufacture of transmission belting and conveyor belting, and, after proofing, in the

production of garments of various kinds. Having now described my invention, what I claim is:

1. An antistatic fabric made up of fibrous material having electrically conductive carbon black dispersed throughout the fibre and fibrous material free from such black in such proportions that the electrical resistance of the fabric as a whole is less than 100,000 megohms per 40 unit square at all humidities.

2. A fabric according to claim 1, in which the fibrous material having electrically conductive carbon black dispersed throughout the fibre is fibrous regenerated cellulose.

3. A fabric according to claim 1, in which the fibrous material free from black is a cellulosic fibrous material.

4. A fabric according to claim 1 in which the weight of the fibrous material having electrically conductive carbon black dispersed throughout the fibre is at least 2% of the total weight of the fabric.

5. A fabric according to claim 4, in which the weight of the fibrous material containing electrically conductive carbon black is from 5% to 20% of the total weight of the fabric

6. A fabric according to claim 1, in which the two $_{55}$ fibrous materials are present in such proportions that the electrical resistance of the fabric as a whole is substantially independent of its humidity.

7. A fabric according to claim 1, in which the fibrous material containing electrically conductive carbon black 60 contains such a proportion of the black that its resistance does not rise as its humidity falls.

8. A fabric according to claim 1, in which the electrically conductive carbon black present is acetylene black.

9. A fabric according to claim 1, in which the weight of the electrically conductive carbon black is 25% or more of the total weight of the fibrous material in which it is present.

10. A fabric according to claim 1, which is woven from a mixed yarn spun from the two fibrous materials together.

11. A fabric according to claim 1, which is woven from two types of yarn, one of the two types being spun from the fibrous material free from black and the other being spun from the fibrous material containing electrically conductive carbon black.

12. A fabric according to claim 11, which is so woven as to have a fine black-and-white chequered pattern.

13. An antistatic fabric which contains about 90% by weight of viscose rayon free from carbon black and correspondingly about 10% by weight of viscose rayon containing about 30% by weight of electrically conductive acetylene black.

14. An antistatic fabric made of fibrous yarns, said electrically conductive carbon black dispersed throughout the fibres, the balance of the fibres of the yarn being substantially without electrically conductive carbon black.

15. An antistatic fabric made of fibrous yarns, from 2% to 20% of said yarns having electrically conductive carbon black dispersed throughout the fibres, the balance of the yarns being substantially without electrically conductive carbon black.

16. An antistatic fabric made of woven yarns, the yarns woven in one direction containing from 2% to 20% of fibres having electrically conductive carbon black dispersed throughout the fibres, the balance of the fibres of said fabric being substantially without electrically conductive carbon black.

17. An antistatic fabric having an electric surface resistance not less than 0.5 megohm per unit square nor greater than 5 megohms per unit square at any humidity which contains about 90% by weight of viscose rayon free from carbon black and correspondingly about 10% 45 by weight of viscose rayon containing about 30% by weight of electrically conductive acetylene black.

18. An antistatic fabric having an electrical resistance less than 100,000 megohms per unit square at any atmospheric humidity comprising from 5 to 20 percent by weight of artificial fibrous material containing not less than 25 percent by weight of electrically conductive carbon black dispersed throughout the fibers, said fibers being woven with a fibrous material free from carbon black.

References Cifed in the file of this patent UNITED STATES PATENTS

2,078,886	Weinberg Apr.	27,	1937
2,302,003	Cadwell Nov.	17,	1942
2,443,782	Barnard et al June	22,	1948

US005277855A

United States Patent [19]

Blackmon et al.

[11] Patent Number:

5,277,855

[45] Date of Patent:

Jan. 11, 1994

[54]	PROCESS FOR FORMING A YARN HAVING AT LEAST ONE ELECTRICALLY CONDUCTIVE FILAMENT BY SIMULTANEOUSLY COSPINNING CONDUCTIVE AND NON-CONDUCTIVE FILAMENTS	
[76]	Inventors: Lawrence E. Blackmon, P.O. Box 1034, Foley, Ala. 36535; John D. Forster, 8010 Tower Ter., Pensacola, Fla. 32505; Walter J. Nunning, 4600 Avenida Marina, Pensacola, Fla. 32504	
[21]	Appl. No.: 956,214	
[22]	Filed: Oct. 5, 1992	
[51]	Int. Cl. ⁵	. [
[52]	D01F 8/04; D02G 3/12 U.S. Cl	i
[58]	264/211; 264/211.12 Field of Search	,
[56]	References Cited	5
	U.S. PATENT DOCUMENTS	(
3	3.771.307 11/1973 Petrille	

3,900,676	8/1975	Alderson	264/210.8 X
3,969,559	7/1976	Boe	
3,971,202	7/1976	Windley	57/205
4,045,949	9/1977	Paton et al	57/244
4,085,182	4/1978	Kato	264/171
4,129,677	12/1978	Boe	
4,207,376	6/1980	Nagayasu et al	
4,216,264	8/1980	Naruse et al	428/397
4,309,479	1/1982	Naruse et al	428/397
4,369,622	1/1983	Teed	57/315
4,612,150	9/1986	De Howitt	264/103
4,617,235	10/1986	Ohe et al	428/374
4,756,969	7/1988	Takeda	428/372
4,771,596	9/1988	Klein	
4,824,623	4/1989	Rambosek	264/60
4.900.495	2/1990	Lin	

Primary Examiner-Leo B. Tentoni

[57] ABSTRACT

The present invention is directed to a process for forming a yarn having at least one conductive filament wherein the conductive and nonconductive filaments which make up the yarn are simultaneously co-spun. The present process can be performed at spinning speeds of above about 3500 meters per minute to produce a yarn useful in antistatic carpet production.

11 Claims, 1 Drawing Sheet

PROCESS FOR FORMING A YARN HAVING AT LEAST ONE ELECTRICALLY CONDUCTIVE FILAMENT BY SIMULTANEOUSLY COSPINNING CONDUCTIVE AND NON-CONDUCTIVE FILAMENTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is directed to a process for forming a yarn useful in forming antistatic carpet. More specifically, the present invention is directed to a process for forming a yarn which includes a plurality of nonconductive filaments and at least one conductive filament. Most specifically, the present invention is 15 directed to a process for forming a yarn wherein the conductive filament or filaments are simultaneously co-spun with the nonconductive filaments.

2. Description of the Prior Art

It is well known that static electricity may be generated when a person walks across a conventional carpet formed from synthetic fibrous materials such as nylon, acrylics, polyester, and the like. The discharge of the static electricity when a person is grounded subsequent to walking across such a carpet can be annoying if not 25 discomforting.

One solution to this problem has been to incorporate electrically conductive fibers (hereinafter referred to simply as conductive fiber) into yarns which are subsequently incorporated into carpets to dissipate static 30 electric charges. These conductive fibers typically include a non-conductive fiber-forming polymer as their major component and a conductive material, usually a dispersion of a conductive particulate material in a polymeric carrier.

The prior art has provided a number of methods for incorporating such a conductive fiber into a yarn to impart antistatic properties. For example, U.S. Pat. No. 4,612,150, to De Howitt, discloses a process for combining antistatic filaments and nylon filaments wherein 40 separately spun conductive bicomponent filaments are pneumatically introduced into a freshly spun nonconductive threadline within the quench chimney. U.S. Pat. No. 4,900,495 to Lin discloses a similar antistatic yarn production process wherein a previously formed 45 conductive filament is combined with freshly spun, nonconductive filaments.

Although these processes are useful in producing acceptable products, they have a number of serious drawbacks. First, this procedure is quite expensive, as 50 the separate formulation of the conductive fiber and its subsequent addition in the threadline can add a significant amount to the end product cost. Also, as the addition of the previously formed conductive filament is at the periphery of the nonconductive threadline, inter- 55 mingling of the conductive filament with the nonconductive filaments is limited. This limited intermingling can have a negative effect on the subsequent processing of the resulting yarn and can result in severe color pollution (due to visibility of conductive filament). Fur- 60 ther, since the conductive filaments and nonconductive filaments were separately formed and have different thermal histories, their individual properties, such as shrinkage and crystalline structure are different. These differences can cause breakage of one or more of the 65 conductive filaments during processing. More specifically, it is noted in the description of the '150 patent found in the '495 patent that the spinning and winding

speed of the nonconductive filaments are established so that the conductive filaments will not break when they are drawn at the same ratio as is required for the nonconductive filaments.

A need, therefore, exists for an improved antistatic yarn production process which overcomes these and other deficiencies which are inherent in the prior art processes.

SUMMARY OF THE INVENTION

The present invention provides a process for forming a yarn having at least one electrically conductive filament wherein the conductive filament(s) of the yarn are simultaneously co-spun with the nonconductive filaments of the yarn. More specifically, the process includes the following steps:

(a) passing a plurality of molten streams downward into a quenching zone, said streams including at least one first stream comprising an electrically conductive material dispersed in a polymeric matrix and at least one second stream consisting essentially of a nonconductive, fiber-forming polymer;

(b) solidifying said molten streams to form a plurality of filaments including at least one conductive filament and at least one nonconductive filament; and

(c) converging said nonconductive filament(s) and said conductive filament(s) to form a yarn.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a side elevation view of the spinning equipment utilized in performing the process of the present invention;

FIG. 2 (a) is a cross-sectional view of a representative first stream of a first preferred embodiment of the present invention with cross-section taken transversely across the longitudinal axis of the stream;

FIG. 2 (b) is a cross-sectional view of a representative first stream of a second preferred embodiment of the present invention with the cross-section taken transversely across the longitudinal axis of the stream;

FIG. 3 is a cross-sectional view, taken along line 3—3 of FIG. 1, of a portion of a first preferred embodiment of the spinning equipment of the present invention; and

FIG. 4 is a cross-sectional view, taken along line 3—3 of FIG. 1, of a portion of a second preferred embodiment of the spinning equipment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As referenced above and shown in FIG. 1, the first step in the process of the present invention includes passing a plurality of molten streams 10 into a quenching zone 20. The molten streams 10 include at least one first stream, representatively shown as 25, and at least one second stream, representatively shown as 30. First stream 25 includes an electrically conductive material dispersed in a polymeric matrix. As shown in FIGS. 2(a) and 2(b) first stream 25 preferably includes a first component 35 of a polymeric, fiber forming material coextensive with a second component 40 which includes an electrically conductive material dispersed in a polymeric matrix. First component 35 and second component 40 may be arranged in a "sheath/core" arrangement as shown in FIG. 2 (a) and disclosed U.S. Pat. No. 3,803,453 to Hull, the disclosure of which is incorporated herein by reference, or in a "side-by-side" ar-

rangement as shown in FIG. 2 (b) and disclosed in U.S. Pat. No. 3,969,559 to Boe, the disclosure of which is incorporated herein by reference. The polymeric matrix of the second component 40 is most preferably formed from nylon-6 but may also be formed from other poly- 5 meric materials including nylon 66, polyester, propypropylene and the like, while the conductive material is most preferably particulate carbon black but may be other conductive materials including TiO2 coated with a conductive material. The amount of conductive mate- 10 rial in the conductive filament is preferably from 10 to 50% by weight of the second component based on the total weight of the second component. The first component 35 is most preferably nylon 6,6 but may be formed from other materials including nylon 6, polyester, poly- 15 propylene, and the like.

Spinning equipment useful in forming the molten streams 10 is shown in FIGS. 1, 3 and 4. The equipment includes a spinneret 45 having a plurality of capillaries 47 from which molten streams 10 flow to quenching 20 zone 20. At least one first component material passageway 49 is separate from second component material passageways 51 except at least at one counterbore 53 of one cospinning capillary 48 where at least one first stream 25 is formed. Although one such counterbore is 25 shown as being representative, it is to be understood that one such capillary 48 will be used for each first stream desired; preferably, 1 to 5 first streams are to be produced.

At this capillary, a stream of first component passage- 30 way 49 merges with a stream of second component in passageway 51 with the first component passageways 49 intersecting with the second component passageway 51.

In a first preferred embodiment, these passageways 35 intersect as shown in FIG. 3 to form a "sheath/core" arrangement between the first component 40 and the second component 35 of the first stream 25. Specifically, the second component material passageway 51 terminates at counterbore 53 at a location along the 40 central longitudinal axis of the capillary 48 while the first component material passageway 49 extends circumferentially around the second component material passageway 51 at counterbore 53. The resulting flow pattern in capillary 48 is a centrally located "core" of 45 quenching and cutting the mixture by conventional second component 40 surrounded by coextensive, circumferential "sheath" of first component 35.

In a second preferred embodiment, the passageways intersect as shown in FIG. 4 to form a "side-by-side" arrangement between the first component 35 and the 50 second component 40 of the first stream. Specifically, the second component material passageway 51 terminates at counterbore 53 immediately adjacent the first component material passageway 49. The resulting flow pattern in cospinning capillary 48 consists of adjacent, 55 coextensive streams of first component 35 and second component 40.

Although "sheath/core" and "side-by-side" arrangements for the first stream 25 are preferred, other arrangements for first stream 25 are within the scope of 60 nonconductive polymer except for the counterbore at the present invention.

Molten streams 10 pass through quench zone 20 where streams are quenched to form filaments 60 by conventional means such as a cross-flow of quenching air (not shown). Each first stream 25 will solidify to 65 form first filament 65 while each second stream 30 will solidify to form second filaments 70. As each first stream 25 includes conductive material, each first fila-

ment 65 is conductive, while each second filament 70 formed from a nonconductive second stream 30 are correspondingly nonconductive. Filaments 65 are of sheath-core structure when first stream 25 is as shown in FIG. 2(a) and are of side-by-side structure when first stream 25 is as shown in FIG. 2(b). Filaments 60 may be of any cross-sectional shape, including round, trilobal, pentalobal and the like; however, round is preferred. The shape of spinneret capillaries 47 and 48 should be selected to provide the desired filament cross-sections, and may be the same or different within each spinneret. For example, capillaries 47 may be trilobal while cospinning capillaries 48 may be round.

Preferably, filaments 60 are withdrawn by conventional means such as a godet after solidifying preferably so that first filaments 65 and second filaments 70 are withdrawn at the same take-up velocity or spinning speed which is defined as the speed of the first godet. This spinning speed may be above 6000 mpm with the actual speed depending on the specific yarn being produced (i.e. feedstock for subsequent drawing, spin oriented carpet yarn, etc.). While the process of the present invention is useful in processes having a variety of spinning speeds, its advantages are most pronounced in processes having spinning speeds of above 1500 meters per minute, particularly above 2500 mpm. Most preferably, both first and second filaments, after withdrawing, have a denier of about 6 to about 60.

Subsequent to filament formation, the filaments are converged to form a yarn by conventional means, such as a ceramic convergence guide, with the yarn comprising at least 40 filaments about 1 to about 5 of which are first filaments. The denier of the yarn is preferably between 300 and 4000.

The following example, while given to illustrate the process of the present invention, is not intended to limit its scope. All percentages are by weight unless otherwise indicated.

EXAMPLE 1

Conductive polymer chips were produced by combining 33% carbon black and 67% molten nylon-6 in a conventional compounding machine and extruding, means. Nonconductive nylon-6,6 chips were separately but similarly produced by extruding, quenching and cutting the material by conventional means.

A single screw plasticating extruder was used to melt the conductive polymer chips and pump the molten conductive polymers to a standard polymer gear pump which delivered the polymer to a spinneret used to extrude 60 trilobal carpet yarn filaments. The nonconductive nylon 6,6 pellets were melted in another extruder and the molten nonconductive polymer was delivered to a gear-type pump which delivered the nonconductive polymer to the spinneret.

Passageways were provided in the spinning equipment to keep the conductive polymer separate from the one of the 60 spinneret capillaries. At this counterbore, where a stream of conductive polymer merged with a stream of nonconductive polymer, the conductive polymer passageway intersected with the nonconductive polymer passageways in a position where, due to twophase laminar fluid flow in the counterbore and capillary, the conductive polymer was extruded as a continuous strip at the tip of one lobe of a trilobal fiber.

Ę

A yarn was formed from these filaments in accordance with the process disclosed in U.S. Pat. No. 4,975,325 to McKinney et al, which is incorporated herein by reference, except that the yarn was passed through a jet-texturing device prior to winding. Yarn 5 take-up velocity was 4000 meters per minute (mpm) and denier was about 1250.

The resulting yarn consisted of 59 filaments of 100% nonconductive nylon 6,6 and one conductive bicomponent filament including about 5% conductive polymer 10 and about 95% nonconductive nylon-6,6. The conductive polymer was a dispersion of 33% carbon black in 67% nylon-6.

Visual examination of Example 1 yarn showed that the conductive filament was entangled with the remain- 15 ing filaments in the yarn to the same extent as any of the other filaments was entangled with the remaining filaments. This is a significant improvement over what is observed when solidified conductive yarn (one or more filaments) are withdrawn from yarn packages and sepa- 20 rately inserted into the non-conductive filament spinline as in the prior art. In this prior art process, the conductive filaments are (1) generally observed to be entangled with the non-conductive filaments of the yarn to a lesser degree than non-conductive filaments are entangled 25 with each other and (2) generally appear shorter than the non-conductive filaments. This apparent length difference is attributed to differences in the contraction (or growth) of the fibers after the yarn has passed the first spinning godet.

One end of each yarn of Example 1 was cabled with the other end of the same yarn using a Volkman cabler to produce a cabled yarn having about 3.7 ply-twist turns per inch. The gathering of wads of non-conductive filaments at guides, which is observed when cabling yarns having conductive filaments that were inserted via the prior art process in the spinline at high speed was not observed when cabling the yarn of Example 1.

Carpet samples were then produced using typical carpet construction techniques for making a Saxony cut-pile carpet. The following conditions were used:

Pile Face Weight	26 oz./sq. yd.
Pile Height	5/8 in.
Tuft Gauge	5/32 in.

EXAMPLE 2

A control yarn was prepared for comparison with the yarn formed in Example 1. Specifically, nylon 6,6 pellets were produced by conventional extruding, quenching and cutting means and the pellets were melted in a single screw plasticating extruder. The melt was delivered by a gear-type pump to a conventional 60-capillary spinneret where the polymer was extruded into filaments. These filaments were formed into yarn and the yarn was cabled by the processes set forth in Example 1. Carpet samples having the same parameters as the Example 1 samples were then produced using conventional techniques for making a saxony cut-pile carpet. 60

Testing of Anti-Static Properties

Samples of the carpets from Examples 1 and 2 were then tested for resistance to build-up of static electrical charge according to AATCC Test Method 134-1979. 65 This test procedure yields an electrical voltage which is an indicator of static propensity of the carpet under the conditions of the test. This test yields high voltages for

carpets having poor resistance to static charge build-up and yields low voltages for carpets having good resistance to static charge build-up. Carpets that exhibit readings of less than 4 kilo-volts i test are considered to have acceptable resistance to static electric charge build-up.

Data in Table 1 below indicate that the control carpet of Example 2 exhibited unacceptable resistance to static charge build-up (>4 kilo-volts); however carpet made from the yarn produced by the process of the present invention (Example 1) exhibited acceptable resistance (<4 kilo-volts). This demonstrates that while the invention improves the processing of yarn containing conductive filament(s), the invention also provides for acceptable resistance to static electric charge for carpets produced from the yarn.

TABLE 1

)			BUILD RIC CH LO-VOL	ARGE	STATIC	
	EX- AMPLE	CONDUCTIVE FILAMENT	DAY 1	DAY 2	DAY 3	AVER-
5	1	Yes (co-spinning)	0.8	1.0	1.0	0.9
,	2	none	9.0	7.5	8.0	8.2

Although the process of the present invention has been described with detail in this specification, it is to be understood that various modifications and changes may be made to the present process without departing from the spirit and scope thereof. More specifically, the cospinning process of the present invention is operative within various types of spinning process performed at various spinning speeds. For example, the present cospinning process may be (a) a part of a conventional process for producing as-spun filament yarns. Typically, such a process operates at spinning speeds of about 300-700 meters per minute (mpm); (b) as part of a so-called "spin-draw" BCF production process which can operate at spinning speeds of above about 1500 mpm, wherein the spinning speed is defined as above the spinning speed of the first godet, and which is generally illustrated in U.S. Pat. No. 4,612,150; or (c) as part of a process such as that described in U.S. Pat. No. 4,975,325 to McKinney et al which operates at spinning speeds above about 3500 meters per minute, wherein the spinning speed is defined as the speed of the first godet.

The above-mentioned as-spun yarns may be further processed in a conventional manner is subsequent operations to provide staple yarns or filament yarns. Normally, as-spun yarns intended for conversion to staple are produced at a spinning speed of between 300 and 500 pm.

We claim:

 A process for forming a yarn having at least one electrically conductive filament comprising:

(a) passing a plurality of molten streams downwardly from spinning equipment including a spinneret into a quenching zone, said streams including at least one first stream comprising an electrically conductive material dispersed in a polymeric matrix and at least one second stream consisting essentially of a nonconductive, fiber-forming polymeric component;

(b) solidifying said molten streams in said quenching zone to form a plurality of filaments including at

- least one conductive filament and a remaining plurality of nonconductive filaments;
- (c) converging nonconductive filaments and said conductive filament(s) to form a yarn; and
- (d) withdrawing said nonconductive filaments and said conductive filament at the same take-up velocity;

wherein said conductive filament(s) are entangled with 10 said nonconductive filaments to the same extent as any of said nonconductive filaments are entangled with said nonconductive filaments.

2. The process of claim wherein said first stream(s) consist essentially of a fiber-forming polymeric first component coextensive with a second component of an electrically conductive material dispersed in a poly- 20 posed of at least 40 filaments. meric matrix.

- 3. The process of claim 1 wherein said nonconductive filaments, after withdrawing, have a denier of from about 6 to about 24.
- 4. The process of claim 2 wherein said yarn is com-5 posed of at least 40 filaments.
 - 5. The process of claim 4 wherein the nonconductive filaments are of a nonround cross-section.
 - 6. The process of claim 5 wherein said conductive material is electrically conductive carbon black.
 - 7. The process of claim 2 wherein from 1 to 5 of the filaments of said antistatic yarn are conductive fila-
 - 8. The process of claim 2 wherein said velocity is above 1500 meters per minute.
 - 9. The process of claim 8 wherein said velocity is above 2500 meters per minute.
 - 10. The process of claim 9 wherein said velocity is above 3500 meters per minute.
 - 11. The process of claim 7 wherein said yarn is com-

25

30

35

45

50

55

60

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. :

5,277,855

DATED

1/11/94

INVENTOR(S):

Lawrence E. Blackmon, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 6, line 55, delete "pm" and insert --mpm--.

Column 7, line 16, add --1-- after the word "claim".

Column 8, line 11, delete "antistatic".

Signed and Sealed this Second Day of August, 1994

Attest:

BRUCE LEHMAN

Bince Tehran

Attesting Officer

Commissioner of Patents and Trademarks

Patent Application Docket No. CRX.106XC1 Serial No. 10/662,492

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Examiner

Patrick Butler

Art Unit

1732

Applicant

Albert E. Ortega

Serial No.

10/662,492

Conf. No.

9209

Filed

September 15, 2003

For

Method of Reducing Static in a Spunbond Process

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

EXPERT DECLARATION OF ALBERT E. ORTEGA UNDER 37 CFR §1.132

Sir:

I, Albert E. Ortega, hereby declare:

THAT, I have reviewed the above-referenced patent application, including the claims;

THAT, I have reviewed the Office Action mailed August 6, 2009, along with the references cited therein;

THAT, I have extensive experience in the field of spunbond processes;

And being thus duly qualified, do further declare as follows:

1. The Action dated August 6, 2009 discusses at page 3 the temperatures at which components are extruded in Gillespie (U.S. Patent No. 5,783,503) and then asserts that bonding must be done at these extrusion temperatures because "spunbonding is necessarily done by bonding the filaments while they are still molten." In support of this assertion, the Action refers to the Tortora reference ("Understanding Textiles," Fifth Edition, page 330, first paragraph), which states that:

"Spunbonded fabrics are manufactured from synthetic filament fibers. Continuous filaments are formed by extrusion through spinnerets, and the filaments are blown onto a moving belt where they form a web. As the still hot and partially molten filaments touch, they bond."

However, as would be understood by a skilled artisan, this description in Tortora is incomplete. As is known in the art, in a spunbonding process, after the filaments are extruded, they are quenched (cooled), drawn, and laid on a web before being bonded. The filaments may be molten when they are bonded (for example, in a calendar), but they are not necessarily at the same temperature at which they are extruded.

2. The Action dated August 6, 2009 states at page 3 that "Gillespie teaches that a blend of nylon and polyolefins is able to be extruded at about 250 °C," referring to column 8, lines 45-53 of Gillespie. However, Gillespie actually teaches that nylon can be extruded in one extruder, polyethylene and polypropylene can be extruded in a second extruder (the two extruders are reference numerals 46 and 48 in Figure 4 of Gillespie), and then "the polymers come together in the spin pack at the same capillary temperature of about 250 degrees Centigrade." Thus, Gillespie does not teach that a blend of nylon and polyolefins is able to be extruded at about 250 °C, but rather that such a blend can come together in a spin pack at this temperature. As is known in the art, coming together in a spin pack is not the same as being extruded.

Docket No. CRX.106XC1 Serial No. 10/662,492

- 3
- 3. The Action dated August 6, 2009 states at page 2 that "nylon's or polyester's additional presence acts as antistatic agents to the polyester or olefins in the blend" due to their standard moisture regain. However, this is not a complete picture of the effects of the presence of these components in the blend with respect to static levels at the exit of an attenuation device. For example, this statement neglects to take into consideration the triboelectric charge, as discussed at column 9, lines 53-55 of Gillespie. The development of the triboelectric charge in the filaments would result in an increase in the static level at the exit of an attenuation device. Additionally, nylon filaments develop a large amount of static when air is used to draw these filaments, as in the process of Gillespie. Thus, including nylon or polyester in the blend of Gillespie would not result in a static level at the exit of an attenuation device of between about -2 kilovolt per inch and about 2 kilovolt per inch.
- 4. The Warburton reference (U.S. Patent No. 4,081,383) discloses an aqueous dispersion (column 1, lines 45-47), including a polymeric material, as an anti-soiling treatment for carpets and carpet yarns. A skilled artisan would recognize that addition of water into an extruder would cause problems since it could cause depolymerization of polymers typically used in melt blends (for example, nylon 6,6).
- 5. Since the aqueous dispersion of Warburton is applied directly to carpets and/or carpet yarns, a skilled artisan would not have reasonably expected the addition of this dispersion to a melt blend (before extrusion, quenching, drawing, web formation, and bonding), to impart any anti-soiling properties to a spunbonded nonwoven fabric like it does when applied directly to a carpet or carpet yarn. Nor would a skilled artisan have expected any other advantageous properties of Warburton's aqueous dispersion (intended for direct application to carpets and/or carpet yarns) to be imparted to a spunbonded nonwoven fabric, when added to a melt blend (before extrusion, quenching, drawing, web formation, and bonding). Any component added to a melt blend will be subjected to high

temperatures, so it would not be expected that the same properties would be imparted as in the case when Warburton's aqueous dispersion is applied directly to a carpet and/or carpet yarn.

- 6. A skilled artisan would not have been motivated to use any individual components of the aqueous dispersion of Warburton to attempt to impart anti-soiling properties to any fabric; rather the entire dispersion would be used, as taught by Warburton.
- 7. The George reference (U.S. Patent No. 4,167,464) discloses the preparation of water absorbent films and fibers by photopolymerizing various compounds. All of the films and fibers of George contain water (column 7, line 45 through column 8, line 10; Tables 1 and 2). A skilled artisan would recognize that addition of water into an extruder would cause problems since it could cause depolymerization of polymers typically used in melt blends (for example, nylon 6,6).
- 8. The highest temperature any of the compounds in George is subjected to is about 50 °C (column 7, lines 64-65). A skilled artisan would not have reasonably expected any advantageous properties of George's interpolymer (only subjected to low temperatures), including water absorbency, to be imparted to a spunbonded nonwoven fabric when added to a melt blend (before extrusion, quenching, drawing, web formation, and bonding). Any component added to a melt blend will be subjected to high temperatures (much higher than 50 °C), so it would not be expected that the same properties would be imparted after melting the interpolymer and mixing with several other components in a melt blend.
- 9. A skilled artisan would not have been motivated to use any individual components of the George composition to attempt to impart water absorbency properties to any fabric; rather the entire composition would be used, as taught by George.

C:\Documents and Settings\aortega.CEREX\Local Settings\Temporary Internet Files\OLK9C\Declaration-Ortega2.doc/lef

10. I would understand from the original specification of the subject application (serial number 10/662,492) that the method of producing a spunbonded nonwoven fabric can include forming, in an extruder, a melt blend of at least one polymer and, additionally at least one antistatic agent present in an amount sufficient such that the static level measured at about one half inch below the outlet of the slot attenuation device is between about –2 kilovolt per inch and about 2 kilovolt per inch.

I hereby further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Albert E. Ortega

Date: 11/6/2009

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Examiner :

Patrick Butler

Art Unit

1732

Applicant

Albert E. Ortega

Serial No.

10/662,492

Conf. No.

9209

Filed

September 15, 2003

For

Method of Reducing Static in a Spunbond Process

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

DECLARATION OF DR. BILLIE COLLIER UNDER 37 CFR §1.132

Sir:

I, Dr. Billie Collier, hereby declare:

THAT, I am Dean of the College of Human Sciences, and Professor of Textiles and Consumer Sciences, at Florida State University;

THAT, I previously held the position of Director of the Textiles and Nonwovens Development Center (TANDEC) at the University of Tennessee from 2002-2005;

THAT, I am a co-author, along with Phyllis Tortora, of the book "Understanding Textiles," Fifth Edition (Prentice-Hall, 1997);

And being thus duly qualified, do further declare as follows:

2

Docket No. CRX.106XC1 Serial No. 10/662,492

1. In the fifth edition of "Understanding Textiles," at page 330, the Spunbonding section states:

"Spunbonded fabrics are manufactured from synthetic filament fibers. Continuous filaments are

formed by extrusion through spinnerets, and the filaments are blown onto a moving belt where they

form a web. As the still hot and partially molten filaments touch, they bond." However, this

description of the spunbonding process is not complete.

2. In the seventh edition of "Understanding Textiles, published in 2009, the section on

nonwovens has been revised. The description of the spunbonding process has been expanded upon

since the fifth edition. In the seventh edition, the description of spunbonding (pp. 349-350) reads:

"Spunbonded fabrics are manufactured from synthetic filament fibers. The polymer is melted

in an extruder, and the melt is pumped through a rectangular spinneret with thousands of

holes, called a die. Upon exiting the die, the fibers enter a chimney where turbulent air cools

and entangles the filaments, which are then deposited in a random pattern on a moving belt...

To complete the operation, the spun-laid web is passed through heated rolls to bond the

fibers, giving the fabric more integrity."

I hereby further declare that all statements made herein of my own knowledge are true and

that all statements made on information and belief are believed to be true; and further that these

statements were made with the knowledge that willful false statements and the like so made are

punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States

Code, and that such willful false statements may jeopardize the validity of the application or any

patent issued thereon.

Pate: 11-5-05

Billie Collier

Methacrylic Acid, Glacial

January 1997

Formula:	C ₄ H ₆ O ₂
Molecular Weight:	152.2
Product Number:	008371
CAS Registry Number:	

Description

Glacial methacrylic acid is a clear, colorless liquid (above 16°C) with a penetrating odor.

Safety

The normal precautions relating to handling chemicals and local regulations on industrial hygiene must be observed. Measures must be taken to avoid inhalation and contact with the skin or mucous membranes.

The consequences of swallowing methacrylic acid glacial are burns in the oral mucous membranes and intestinal tract.

LD50 oral (rats): 1600 - 2200 mg/kg

Methacrylic acid glacial causes skin burns. Consequently, all forms of skin contact must be avoided with the product and its solutions, e.g. protective gloves must be worn. Clothing splashed with methacrylic acid must be immediately changed, and splashes on the skin must be removed with copious water. Methacrylic acid glacial involves the risk of absorption through the skin and causes contact dermatitis.

Product Specifications	Value	Test Method
Assay, % minimum	99.5	G.C., ex works
Water, % maximum	0.2	Karl Fischer
Color, APHA maximum	20	Pt/Co, ex works
Stabilizer ± 20 ppm MEHQ	200	

	Physical Properties	
	Freezing point, °C (approx.)	
	Boiling point, °C	
	Density @ 20°C, g/cm ³	2
	Flash point, °C, Abel-Pensky	}
	Ignition temperature, °C	Ś
	Refractive index, n _D @ 20°C	
i	Specific heat (liquid; 20°C), kJ/kg K	;
	Viscosity @ 20°C, mPa•s	١.
	@ 40°C, mPa•s 1.0	
	@ 80°C, mPa•s	3 -
	Latent heat of evaporation @ 90°C, kJ/kg	3
	Heat of polymerization, kJ/kg	3
	Caloric value @ 25°C, kJ/kg)
	Heat of neutralization, kJ/kg (approx.))
	Dissociation constant @ 25°C	j,
	Vapor pressure @ 20°C, mbar	}
	@ 40°C, mbar	j
	@ 60°C, mbar)
	@ 100°C, mbar	
	@ 120°C, mbar	-
	Explosion limits, % volume @ 65°C, lower	ì
	Explosion limits, % volume @ 65°C, upper 8.1	
	Permitted temperature range for use in electrical equipment	-

Methacrylic acid glacial causes mucous membrane and eye burns, and safety precautions must be adopted to avoid this, e.g. safety goggles should be worn. If splashes enter the eyes, the eyelids must be spread wide apart, and the eyes must be thoroughly irrigated with water for 15 minutes. Afterwards an ophthalmologist should be consulted.

Methacrylic acid vapor causes burns in the respiratory tract to an extent that depends on the amount and concentration, and steps must therefore be taken to avoid its inhalation. Fresh air breathing equipment should be worn if necessary.

Always refer to the Material Safety Data Sheet (MSDS) for detailed information on safety.

Applications

Methacrylic acid, glacial can be readily polymerized, its presence in copolymers reduces the softening temperature and the hardness and improves the adhesion of surface coatings and adhesives. Since it is a carboxylic acid, it can be converted by conventional methods into

(continued on reverse side)

methacrylates, methacrylamide, Nsubstituted methacryl amides, and acryloyl chloride.

Polymers containing methacrylic acid are used in a number of applications including:

- surface coatings
- auxiliaries for the leather and textile industries
- flocculants
- ion exchangers

soil improvers (poly-electrolytes)

Packaging

Available in bulk and 463 lb (net weight) plastic drums.

Storage & Handling

In order to avoid premature polymerization, methacrylic acid glacial must be stabilized and kept under a blanket of air (not of an inert gas). The storage temperature must not exceed 40°C. When properly stored in a protected storage area, the product can have a shelf life of about 1 year from date of manufacture. The temperature must also not be allowed to fall below 18°C owing to the risk of freezing. If the permissible storage time or storage temperature is significantly exceeded, the product may polymerize spontaneously.

Methacrylic acid glacial polymerizes very readily. In fact, if it is not stabilized, the polymerization reaction can proceed explosively. For this reason, the product is supplied only in the stabilized form. The usual stabilizer is hydroquinone monoethyl ether (MEHQ) in proportions of 200 ppm. As a rule, it is not necessary to remove the stabilizer before polymerization commences. If necessary, its effect can be compensated by an excess of polymerization initiator.

If methacrylic acid glacial has frozen, it must not be reliquefied unless certain precautionary measures are taken. For instance, it may be allowed to thaw in heated rooms in which the temperature does not exceed 40°C. If the necessary facilities are available, warm water may also be used for thawing, but its temperature must not be allowed to exceed 45°C. The use of steam must be avoided under all circumstances.

During and after thawing, it is absolutely essential that the product is kept thoroughly mixed to ensure uniform distribution of the stabilizer and that it is kept saturated with oxygen.

The manufacturer of the methacrylic acid glacial must be immediately consulted if large amounts are frozen.

Although methacrylic acid glacial is not a flammable liquid in the sense of the UNO "Orange Book", it may form explosive mixtures with air at elevated temperatures. For this reason, we recommend that regulations on explosion prevention be observed during storage and processing.

According to the Enclosure I to the EEC Guideline on hazardous industrial substances, methacrylic acid glacial requires a hazard warning label. Hazard warning symbol C.

Always refer to the Material Safety Data Sheet (MSDS) for detailed information on handling and disposal.

IMPORTANT: While the descriptions, designs, data and information contained herein are presented in good faith and believed to be accurate, it is provided for your guidance only. Because many factors may affect processing or application/use, we recommend that you make tests to determine the suitability of a product for your particular purpose prior to use. NO WAR-RANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE RE-GARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH, OR THAT THE PRODUCTS, DE-SIGNS, DATA OR INFORMATION MAY BE USED WITHOUT INFRINGING THE INTEL-LECTUAL PROPERTY RIGHTS OF OTHERS. IN NO CASE SHALL THE DE-SCRIPTIONS, INFORMATION, DATA OR DESIGNS PROVIDED BE CONSIDERED A PART OF OUR TERMS AND CONDITIONS OF SALE. Further, you expressly understand and agree that the descriptions, designs, data and information furnished by BASF hereunder are given gratis and BASF assumes no obligation or liability for the description, designs, data and information given or results obtained, all such being given and accepted at your risk.

© 1997 BASF Corporation

Customer Service:

EAST 1-800-426-8696 WEST 1-800-543-1740 BASF Corporation Chemicals Division 3000 Continental Drive - North Mount Olive, New Jersey 07828-1234 World Wide Web: http://www.basf.com

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Examiner

Patrick Butler

Art Unit

1732

Applicant

Albert E. Ortega

Serial No.

10/662,492

Conf. No.

9209

Filed

September 15, 2003

For

the statement are visited and when

Method of Reducing Static in a Spunbond Process

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

EXPERT DECLARATION OF ALBERT E. ORTEGA UNDER 37 CFR §1.132

Sir:

I, Albert E. Ortega, hereby declare:

THAT, I have reviewed the above-referenced patent application, including the claims;

THAT, I have reviewed the Office Action dated August 6, 2010, along with the references cited therein;

THAT, I have extensive experience in the field of spunbond processes;

And being thus duly qualified, do further declare as follows:

- 1. Using bicomponent fibers containing metal or carbon in a spunbond process is very expensive, plugs filters and packs, and changes the natural color of the fabric being produced. If metal or carbon were used as an antistatic agent in a spunbond process, as suggested at page 5 of the Action of August 6, 2010, the unintended consequence of changing the color would be considered by a skilled artisan as causing a defect in the spunbonded fabric. In addition, the high amount of metal and/or carbon that would be required to be added in order to reduce the static level measured at about one half inch below the outlet of the slot attenuation device from greater than 2 kilovolt per inch or less than -2 kilovolt per inch to between -2 kilovolt per inch and 2 kilovolt per inch would significantly change the natural color of the spunbonded fabric being produced.
- 2. I would understand from the original specification of the subject application (serial number 10/662,492) that the described method of producing a spunbonded nonwoven fabric, including the addition of an antistatic agent to the melt blend, does not cause any defects in the fabric. For example, the specification discloses on multiple occasions that the described method reduces fabric defects (e.g., page 3, lines 30-31).
- 3. The Action of August 6, 2010 states at page 2 that "Gillespie [U.S. Patent No. 5,783,503] teaches using combinations including nylon and polyester (see Gillespie, col. 4, lines 66—col 5, line 25). Increases in moisture absorbency increase fiber conductivity, which is antistatic since it limits static buildup, and nylon's or polyester's presence would improve fiber conductivity, which is antistatic since it limits static buildup, and nylon's or polyester's presence would improve the absorbency of the blend since they have 0.4-4.5% standard moisture regain." This seems to imply that, as the nylon content (compared to the polyolefin content) increases, the static dissipation in a spunbond process should improve, such that a 100% nylon process would have dramatically improved static dissipation properties over a 100% polyolefin process. However, this is not the case. A slot spunbond polyolefin process does not generate near the static at the exit of an attenuation device that a nylon slot spunbond process does. Also, in the nylon process, the polymer exits the

spinneret with little to no moisture since the moisture is removed by drying the resin or flashed off during spinning. One possible explanation for the fact that the presence of nylon does not reduce the static in practice is that the amount of time between the exit of the spinneret and the exit of the slot may not be sufficient for the nylon to absorb enough water to make an impact.

- 4. The Action of August 6, 2010 at pages 2-4 discusses spinning nylon along with polyolefins. referencing Gillespie and Tortora (Understanding Textiles). However, the melting point of polyolefin is much lower than nylon. Commonly used polyolefins melt around 160 to 170 °C where nylon 6 melts at 228 °C and nylon 6,6 at 269 °C. Polyolefin fabric would completely melt if a bonding temperature of between 180 °C and about 250 °C were used. Also, the nylon spinning process would not allow the processing of polyolefins; it is just too hot. Gillespie makes this point in column 8, lines 40 -52, stating that "[t]he polymers should be selected to have melting temperatures and should be spun at a polymer throughput that enables the spinning of the components through a common capillary at substantially the same temperature without degrading one of the components. For example, nylon is typically extruded at a temperature of approximately 250 to 270 degrees Centigrade. Polyethylene and polypropylene typically are extruded at a temperature of approximately 200 to 230 degrees Centigrade. The polymers come together in the spin pack at the same capillary at a temperature of about 250 degrees Centigrade and are spun at a polymer throughput that avoids degradation of the lower melting component." This point is also emphasized in U.S. Patent Application Publication No. 2003/0181112 which discloses a spunbonded nonwoven fabric which is made of a polyolefin resin. The melt point of the polyethylene resin is "in the range of 100 to 140 °C (page 4, paragraph [0061]). This emphasizes that a polyolefin fabric would completely melt, potentially destroying the spunbonding equipment, if a bonding temperature of between 180 °C and about 250 °C were used.
- 5. The Action of August 6, 2010 at page 5 states that "Gillespie does teach to incorporate into the polymer melt components to control electrical properties (forming in an extruder) (see col.5, lines

35-42)." However, Gillespie's' comments regarding controlling electrical properties are not related to minimizing static issues but rather producing a splittable filament. Gillespie discloses that "[t]he properties of a single polymer can be manipulated by the addition of various modifiers to, in effect, create polymers of suitably different properties that do not adhere well to each other for use in the practice of the invention. For example, a single polymer can be used for first and second components with suitable additives to control the surface free energy, electrical properties or crystallization so as to produce a splittable filament" (column 5, lines 32-39). Gillespie does not discuss using an antistatic agent but instead discusses the use of additives to facilitate making a splittable fiber.

- 6. Gillespie teaches that "[a] triboelectric charge can be developed in the filaments to promote separation... [a] nylon component can develop such a static charge... (and) [a]n external electric field can be applied to the filaments... to augment the separation" (column 9, lines 53-63). Thus, addition to the melt blend, in the Gillespie process, of additives that would lower the static level at the outlet of an attenuation device would inhibit separation of the filaments, in direct contrast to the goal of the Gillespie process.
- 7. The Action of August 6, 2010 states at page 6 that "[i]t would have been obvious to one of ordinary skill in the art at the time of the invention to select nylon 6 as the nylon to use in Gillespie in order to have greater tenacity." Although nylon 6 has greater yarn tenacity, it is not necessarily true that nylon 6 has greater fabric tenacity. Fabric tensile strength is a function of many things and is not limited to just yarn tenacity. The bond area of the calender, the calender temperature and pressure, and the line speed are just a few of the variables that impact fabric strength.

5

I hereby further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

By: __(__(___

Albert E. Ortega

Date: $\underline{/Z} - \overline{Z} - \underline{/Q}$

Strength Optimization of Thermally Bonded Spunbond Nonwovens

Nataliya Fedorova, Ph.D.¹, Svetlana Verenich, Ph.D.¹, Behnam Pourdeyhimi, Ph.D.¹

North Carolina State University, Nonwovens Cooperative Research Center, Raleigh, NC, USA

Correspondence to:

Nataliya Fedorova, Ph.D. email: natasha fedorova@yahoo.com

ABSTRACT

Recent research on all aspects of thermally point bonded nonwovens has led to considerable improvements in the understanding of material requirements for these nonwovens, the changes that occur during bonding and the resultant deterioration of the mechanical properties of the nonwoven materials. This paper addresses how one may use a bicomponent fiber technology to overcome the shortcomings of the thermal bonding and obtain high strength spunbond fabrics. In particular, we present the utility of islands-in-the-sea (I/S) bicomponent fibers for optimizing the strength of thermally bonded fabrics. To examine the role of various bonding temperatures on the fabric performance, preconsolidated webs were formed and subsequently, thermally bonded. Thus, any influence introduced by potential variations in the structure was minimized. Point-bonded bicomponent samples made up of nylon-6 (N6) as the islands and low density polyethylene (PE) as the sea showed great promise with respect to their mechanical properties, suggesting that the use of bicomponent fibers can be beneficial for strength optimization of thermally bonded spunbond nonwovens.

INTRODUCTION

Thermal calender bonding is one of the most economical and widely used techniques in nonwoven fabric manufacturing [1]. In this process, a preconsolidated web is passed through the nip of two rolls pressed against each other at a desired pre-set pressure and heated internally to a desired temperature. Often, one of these rolls has an engraved pattern on its surface that leads to fiber-tofiber bonding locally at the points of the intersection of the engraved pattern with the smooth roll [2]. This type of bonding results in the formation of bonding "points" or "spots" on the fabric and is referred to as point-bonding. Bonding with this technique is achieved by the direct conduction of heat. The nip pressure of the calender brings the fibers together to cause fusion of filaments/fibers at their cross-over

points [2]. Overall, point-bonding is accomplished through three critical steps: 1) heating the web to partially melt the crystalline regions, 2) diffusion of the newly released chain segments across the fiber-fiber interface, and 3) subsequent cooling of the web to cause its re-solidification and to trap the diffused chain segments [3, 4]. The degree of fiber-to-fiber fusion in the bonding spots determines the final strength of the bond and ultimate properties of the fabric.

Many studies have been conducted to determine the optimal conditions for calendering to enhance the performance of bonded fabrics [1-10]. It has been shown that point-bonded spunbond nonwovens are typically not very strong and that bonding temperature at a constant line speed or line speed at a constant bonding temperature has a profound effect on the tensile properties of these fabrics. Typically, with an increase in the bonding temperature or time, the strength of the fabric improves until it reaches a maximum. Any further increase in the temperature or bonding time results in a web lower strength [1-4, 8-9]. At the bonding conditions below the peak, fabric failure occurs by bond disintegration because of insufficient fiber fusion or "under-bonding". At temperatures above the maximum optimal bonding temperature, the failure occurs by fiber breakage at the bond periphery, leaving the bonds intact [1-4, 8, 10]. The fabrics bonded at the high and optimal temperatures are referred to as over-bonded and wellbonded, respectively.

Several explanations of the failure mechanism of over-bonded and well-bonded nonwovens have been provided in literature. One possible cause of such failure mechanism is that the fibers are "crushed" by the calender rolls and thus weakened at the bond edge. However, Chidambaram et al. [5] showed that this factor accounted for only a small portion of the loss of the web strength. Wang et al. [4, 10] studied thermally bonded isotactic polypropylene (iPP) and poly(ethylene terephthalate) (PET) nonwovens and

found a reduction in birefringence (molecular orientation) of the fibers at the bond spot and in its vicinity compared to the original, unbonded fibers. The molecular orientation of the fibers entering the bond spot decreased significantly over a distance of 30-40 microns from the bond edge, implying a large decline in the fiber modulus in this region. The change in the fiber morphology was influenced by bonding conditions and it was significantly smaller in samples bonded at lower temperatures or for shorter times. The properties of bridging fibers at locations greater than 30-40 microns from the bond edge were unchanged from the original fibers. Similar results were observed by Dharmadhikary et al. [6] for PP nonwovens. Chidambaram et al. [5] reported that the large reduction of the fiber birefringence leads to a significant decrease in the fiber strength. Thus, the fibers, having the same diameter along their entire length, are expected to fail where their molecular orientation is the smallest. The birefringence of the fibers is low within the bond and at its edge, but the cross-sectional area of the bond is much larger than that of the fibers, thus the fibers at the bond periphery would fail predominantly [4, 10]. Because the change in the fiber morphology is influenced by bonding conditions, over-bonded webs demonstrate a larger loss of mechanical properties of the fibers entering the bond compared to well-bonded webs [3, 4]. This allows for fabrics bonded at the optimal temperature to show superior mechanical performance over the webs bonded at higher temperatures. Nevertheless, even well-bonded nonwovens demonstrate premature failure at the bond periphery as a result of the partial loss of the fiber strength brought about by the thermal bonding process. It has been hypothesized that if the bridging fibers of well-bonded nonwovens would have the same strength over their entire length, including the region at the bond periphery, it would lead to better load sharing and would potentially result in a stronger web [3].

Our hypothesis is that improved bonding and higher fabric strength could be achieved through the use of bicomponent fibers, such as sheath-core or islands-in-the-sea (I/S) fibers, in which numerous small filaments of one polymer – islands – are placed in a matrix of another polymer – sea. However, the island (core) and sea (sheath) components must have certain characteristics. The island polymer should have higher strength and lower elongation at break than the sea component, and the sea should have a lower melting temperature than the island to allow the bonding of the structure without adversely affecting the islands. Moreover, only in the presence of a strong interface between the island and sea polymers, the mechanical stresses could be transferred between

weak sea and strong islands. If the sea and island materials comply with all previously mentioned requirements, then it is probable that the thermal bonding process would not influence the morphology and the strength of the islands in the vicinity of the bond spots; whereas the sea could be completely melted acting as a binder and transferring the stress to stronger island fibers under the load. This could be a simple way to enhance the properties of the calendered fabrics.

In this paper, we present a study where the effectiveness of the I/S fibers in the optimization of the mechanical performance of thermally bonded spunbond nonwovens was explored.

EXPERIMENTAL

Materials

Ultramid BS 700 nylon-6 (N6) (BASF) was used as the island polymer. The same was also utilized in the production of homo-component fibers and fiber webs. ASPUN 6811A polyethylene (PE) (Dow Chemical Company) and poly (lactic) acid (PLA) (NatureWorks, LLC) were used as the sea. Some of the properties of the polymers are summarized in *Table 1*.

TABLE I. Properties of the island and sea polymers

Polymer		Melting Density,	Specific	B^{1} ,	
Island	Sea	Temperature T _n , °C	g/cm³	Heat, J/kg-K	K
N6	-	220	1.14	1600	6064
-	PLA	173	1.25	1800	9128
-	PE	125	0.94	2200	2727

Keys: ¹Polymer characteristic found experimentally by using inversion procedure and Arrhenius type equation

$$\ln \eta_0 = \ln A + (B/T_f)$$
 where T_f is the polymer

temperature measured in K; η_o is the polymer zero shear

viscosity measured at
$$T_f$$
 , $B=\frac{E_a}{R}$ where E_a and R are

the polymer activation energy and universal gas constant

Methods

Sample preparation

Bicomponent and homo-component pre-consolidated spunbond webs were produced at the Nonwovens Cooperative Research Center (NCRC) Partners' Pilot facilities located at North Carolina State University.

TABLE II. Description of the nonwoven sample processing and bonding conditions

Sample Abbreviation	№ of Polymer Ratio, %		Processing and Bonding Conditions
	Islands	Island Sea Island Sea	Quenching air Spinning Bonding velocity, m/s speed, m/s
100 % N6	0	- N6 - 100	1.7 45.5 C at 170°C - 200 °C
100 % PE	0	- PE - 100	1.0 36.6 -
100% PLA	0	- PLA - 100	0.5
108 I/S 25/75 N6/PE	108	N6 PE 25 75	1.7
108 I/S 50/50 N6/PE	108	N6 PE 50 50	1.7 41.9 -
108 I/S 75/25 N6/PE	108	N6 PE 75 25	1.7 40.0 ¹ C at 125°C - 155°C
108 I/S 75/25 N6/PLA	108	N6 PLA 75 25	1.7
		Keys: ¹ C - Calendering.	

The fiber processing and bonding conditions are listed in Table 2. All fibers were quenched at the same cooling temperature of 12.8 °C. The extrusion temperatures of the 100% N6, 100% PE, and 100% PLA fibers were 274, 216, and 227 °C, respectively. In the case of 108 I/S N6/PE fibers, N6 and PE were extruded at 266 and 227 °C, respectively. The extrusion temperatures of N6 and PLA polymers composing 108 I/S N6/PLA fibers were 274 and 227°C, respectively. Calender bonding for all samples was conducted at a speed of 10 m/min with a nip pressure of 70 kN/m (400 pounds per linear inch). The basis weight of fabrics was maintained constant at about 0.2 kg/m². Both free-fall (undrawn) and drawn fibers were collected to examine their properties.

Mechanical properties

The tensile properties of the homo-component and bicomponent fibers were examined according to ASTM D3822-01. Twelve specimens of each sample were used to determine an average breaking force and elongation at break.

The tensile properties such as breaking force and elongation at break for all fabrics were determined according to ASTM D5034. Six specimens (100 x 150 mm) of each sample were tested in machine cross-machine directions. (MD) and (CD). respectively. The tear strength of the fabrics was examined according to ASTM D 2261. specimens (75 x 200 mm) of each sample were tested in MD and CD, respectively, and their average values of strength were then calculated. All samples were conditioned at 65%±2% relative humidity and temperature of 21±1 °C prior to each test.

Scanning electron microscopy

The bonding spots and fiber failure mechanisms were examined by Scanning Electron Microscopy (SEM).

Scanning electron micrographs were obtained on a Hitachi S-3200N microscope. Before each measurement, the specimens were coated with a layer of AuPd using a Denton Vacuum Sputter Coater.

Thermal analysis

Thermal analysis was carried out to determine the degree of crystallinity of the bicomponent and homocomponent fibers by differential scanning calorimetry (DSC) using a PerkinElmer DSC 7 calorimeter. Standard indium sample was used to calibrate the DSC. Fibers weighing 3 to 4 mg were cut into thin pieces and dried overnight at 40 °C. Samples were scanned at a heating rate 20 °C /min between 25 °C and 250 °C.

RESULTS AND DISCUSSION

Prior to detailed investigation of the applicability of the I/S fibers to the strength optimization of the thermally bonded nonwovens, a study was conducted to determine the influence of the island count on the mechanical properties of bicomponent fibers. Our study revealed that the I/S N6/PE fibers consisting of 108 islands displayed the best and the most consistent performance. Therefore, the 108 I/S N6/PE fibers were used further in the strength optimization study.

Fiber properties

Before the discussion of the mechanical properties of the I/S bicomponent spunbond fabrics, the properties of homo-component and bicomponent fibers with different ratios of island and sea polymers were examined.

N6 and PE were selected as the island and sea polymers, respectively, because N6 homo-component fibers had significantly higher tenacity, modulus and lower elongation at break than PE filaments (*Table 3*). As it was mentioned earlier in the paper, these differences may facilitate transfer of shear and tensile stresses through the weaker sea component to the

stronger internal phase, i.e. to N6, thus enhancing the strength of the N6/PE filaments. However, such stress transfer may be possible only in the presence of a strong interface between the polymers, as it has been shown by various researchers [11-13]. A weak interface would not allow any substantial stress transfer between the matrix (sea) and the island fibers due to debonding of the islands from the sea and sliding of the islands relative to the weaker matrix.

Such sliding typically results in an abrupt drop in the strength as a consequence of low levels of normal stress acting across the interface [11]. Thus, a weak interface would result in the fiber fracture by phase debonding and relatively low fiber strengths. On the other hand, a strong interface typically leads to fiber failure as a result of crack propagation through the weak phase [13].

TABLE III. Properties of the homo- and bicomponent filaments

№ of Islands	Composition Strain at Break,	Tenacity,	Initial Modulus, Diameter,	Denier
1900	70	g/den	g/den μm	
0	100 % PE 83.8 (σ=6.9)	1.0 (σ=0.1)	$13.9 (\sigma=2.01)$ $19.3 (\sigma=2.0)$	2.5 (σ=0.2)
0	100 % N6 52.9 (σ=6.2)	$7.2 (\sigma = 0.8)$	178.7 (σ =18.2) 15.7 (σ =1.9)	2.0 (σ=0.2)
0	100 % PLA 12.4 (σ =1.3)	$3.9 (\sigma = 0.4)$	154.8 (σ =16.3) 13.1 (σ =1.3)	1.5 (σ=0.1)
108	25/75 N6/PE 10.6 (σ=3.1)	$2.1 (\sigma = 0.5)$	41.97 (σ =4.7) 17.6 (σ =1.1)	2.2 (σ=0.3)
108	50/50 N6/PE 33.5 (σ=5.2)	$2.9 (\sigma = 0.2)$	51.27 (σ=5.3) 17.2 (σ=1.0)	2.2 (σ=0.3)
108	75/25 N6/PE 26.2 (σ=4.3)	$3.6 (\sigma = 0.5)$	78.5 (σ =8.0) 17.1 (σ =1.6)	2.3 (σ=0.3)
108	75/25 N6/PLA 12.4 (σ=0.1)	$3.2 (\sigma = 0.4)$	104.6 (σ =10.7) 15.2 (σ =1.0)	1.9 (o=0.1)

Finally, the melting temperature of PE was about 95°C lower than that of N6 (*Table 1*). Thus, PE could act as a "binder" for the bicomponent N6/PE spunbond web during calendering, which in turn, could decrease the risk of thermal damaging of the N6 islands and reducing the ultimate fabric strength.

The diameter of the N6/PE bicomponent fibers was in between that of single component N6 and PE fibers (Table 3). According to Lin et al. [14], such observation may be an indication of a similarity in the component drawing behavior and may point out to a strong interface between the components and their sufficient attenuation in the spunbond bicospinline without sliding or debonding of the polymers on their interface. Because we believe that N6/PE fibers had a relatively strong interface and PE demonstrated a higher elongation at break than N6, it is possible that stress would be transferred between the strong N6 islands and weak PE phase during mechanical testing. This could explain the performance of the N6/PE composite fibers, which was better than that of PE, but worse than the performance of N6 homo-component fibers (Table 3). Our hypothesis about the stress transfer between stronger N6 islands and weaker PE sea through a strong interface between the polymers was also confirmed with a help of SEM analysis of the 108 I/S N6/PE fibers fractured in the Instron testing machine (Figure 1). The figure indicates a strong interface between the components of the bicomponent N6/PE fibers.

FIGURE 1, 108 I/S 75/25 N6/PE (left) and 108 I/S 75/25 N6/PLA (right) fiber fracture under the load: the scale bars correspond to 50 (left) and 200 (right) microns

The hypothesis of the stress transfer between island and sea materials can also be illustrated via comparison to other bicomponent filaments, in which the sea had lower elongation at break than the island and the interface between the sea and island was not as strong as in the case of the N6/PE fibers. Table 3 shows that the bicomponent filaments made up of 25% of PLA and 75% of N6 had the tenacity and elongation of nearly pure PLA filaments. This may indicate that the fracture of PLA sea initiated the failure of the bicomponent fiber; or in other words, there was no stress transfer between weak PLA and strong N6 islands due to a weak interface between N6 and PLA polymers and lower elongation at break of the PLA component. Moreover, SEM analysis of the N6/PLA fiber fracture indicated the failure path by mostly debonding in the N6/PLA fibers (Figure 1). Once debonding occurred, the stress transfer between PLA and N6 became impossible.

Our data also showed that the N6/PE filaments with 75% of N6 as the island had the highest values of strength and modulus. Therefore, the composition 75/25 N6/PE was used in our further study.

<u>Homo- and bicomponent substrates –</u> performance at different bonding temperatures

To evaluate the effectiveness of the I/S bicomponent fibers in thermal bonding, the 108 I/S 75/25 N6/PE and 100% N6 pre-consolidated webs were calendered at bonding temperatures ranging from 125 °C to 155 °C and 170 °C to 200 °C, respectively (*Table 2*). For these series of samples the tongue tear and grab tensile strength values were obtained and plotted as a function of the bonding temperature (*Figures 2 and 3*)

FIGURE 2. Tongue tear strength of the 108 I/S 75/25 N6/PE (left) and N6 (right) sample series as a function of the bonding temperature: solid lines - MD; dash-dot lines - CD.

FIGURE 3. Grab tensile strength of the 108 I/S 75/25 N6/PE (left) and N6 (right) sample series as a function of the bonding temperature: solid lines - MD; dash-dot lines - CD.

As can be seen from these figures, the bicomponent fabric bonded at 145 °C and N6 fabric bonded at 200 °C showed the maximum tensile strength in both directions and the highest tear strength only in CD. The MD tongue tear data demonstrated peak values at 135 °C and 190 °C for bicomponent and homocomponent sample series, respectively. Because the tensile properties of the bicomponent fabric started to deteriorate after 145 °C, this temperature was

considered to be optimal for bicomponent sample series under the conditions used. The most favorable bonding temperature for the N6 samples was considered to be 200 °C because webs bonded at this temperature demonstrated no delaminating during testing in contrast to other N6 nonwovens bonded at lower temperatures.

Overall, all I/S bicomponent sample series showed considerably better performance than the 100 % N6 homo-component nonwovens. For comparison, the 108 I/S 75/25 N6/PE fabric, bonded at its optimum bonding temperature (145 °C), had a tongue tear strength about three to four times higher than that of the homo-component N6 fabric bonded at 200 °C. The grab tensile strength of the same bicomponent fabric was more than three times higher in the MD and more than two times higher in the CD than the tensile strength of the N6 fabric. These data demonstrate the effectiveness of the I/S bicomponent fibers in improving the performance of these fabrics.

<u>Homo- and bicomponent substrates – difference in</u> the bonding mechanisms

The difference in the bonding mechanisms of homoand bicomponent fabrics can be seen from the appearance of the fibers in the bond spot and at the bond periphery of these fabrics (*Figures 4 and 5*).

FIGURE 4. Bond spots of 100 % N6 fabric bonded at 200 °C: the scale bar corresponds to 500 microns.

As can be noted from Figure 4, the homo-component N6 fibers in the bond spot and its vicinities were damaged; they became flat and also lost their definition. This could mean that N6 fibers within and in the vicinities of the bond spots endured significant macro and micro morphological changes, in comparison to the original, un-bonded fibers, and possibly became weaker due to the loss of their molecular orientation as a result of heat diffusion. Thus, in the presence of the strong thermal bonds, the failure in the calendered fabric is expected to propagate along the weak bridging fibers entering the bond spots, as was reported before [1-4, 8, 10]. If this is true, then the comparison of the performance of the mechanically bonded webs consisting of original, undamaged N6 fibers to a thermally bonded fabric, in

which N6 fibers supposedly lost their strength, would show that the mechanically bonded webs perform significantly better than the thermally bonded ones. To prove the point, three N6 sample series were examined: calendered only, hydroentangled only, and calendered after hydroentangling (Table 4). Hydroentangling was chosen because it is a mechanical bonding process, in which the web of loose fibers is entangled by multiple rows of fine, high pressure water jets. Thus, because no fiber melting is involved in this bonding process, hydroentangling should not affect fiber morphology or strength. Indeed, the hydroentangled N6 spunbonded fabrics were stronger than their thermally bonded counterparts and hydroentangled structures lost their properties after being calendered. This confirms that thermal bonding of homo-component N6 webs causes irreversible morphological changes in the N6 fibers entering the bond spots, leading to a lower performance.

FIGURE 5. Bond spot (left) and the fibers in the bond spot (right) of the 108 I/S 75/25 N6/PE fabric bonded at 145 °C: the scale bars correspond to 500 (left) and 50 (right) microns.

TABLE IV. Tensile and tear strength of the N6 homo-component fabrics

-	Bonding Method	Tensile Strength, N	Tear Strength, N	
		MD CD	MD	CD
	Calendering at 200 °C	446,4 328.6 (σ=30,4)	53.0	49.1
		(o=20.6)	(o=8.8)	(o=3.9)
	1 pass of hydroentangling	758.3 412.0 (σ=23.5)	75.5	87.3
		(o=23.5)	$(\sigma = 2.9)$	$(\sigma = 9.8)$
	1 pass of hydroentangling + Calendering at 200 °C	701.4 362.0 (σ=28.5)	40.2	64.8
		(o=30.4)	$(\sigma = 12.8)$	(σ=2.9)

In the case of the 108 I/S N6/PE point-bonded fabrics, the N6 islands were enwrapped by the completely molten PE sea, but the fibrous structures of the islands remained intact along their entire length (Figure 5). This could mean that the bonding temperature of 145 °C was too low to cause a significant change in the morphology or the strength of the N6 islands along their entire length, including the region at the bond periphery, which is known to be the weakest link in well-bonded webs [1-4, 8, 10]. At the same time, the temperature of 145 °C caused complete melting of PE sea, leading to formation of solid, unfailing bonds. If strong bonds are formed, then the fabric failure would be expected to occur in the bridging fibers at the bond edge [1-4, 8, 10].

N6 polymer has higher activation energy of elongational viscosity and lower specific heat than PE (Table 1), thus under the same quenching conditions the N6 islands comprising the bicomponent fibers would be expected to solidify earlier in the spunbond spin-line than the PE sea. Therefore, the islands should experience higher elongational stresses than the sea [15-20]. According to Kikutani et al. [16], if one component solidifies while the other is still in a low viscous state, the elongational stress experienced by the latter vanishes instantly and stress relaxation could occur in the second component leading to its molecular orientation relaxation. Hence, during the N6/PE I/S fiber spinning we could expect simultaneous development and suppression of the molecular orientation in the N6 islands and PE sea, respectively. If the PE sea was indeed initially poorly orientated,

then very little loss of its molecular orientation or strength would be expected during the thermal bonding process of the I/S webs [3]. At the same time, because of supposedly intact islands, the strength of the bridging bicomponent fibers, including the region at the bond periphery, in the thermally bonded N6/PE nonwovens should not differ essentially from the strength of the original, unbonded N6/PE I/S fibers. If this is true, then due to the strong thermal bonds formed and intact bridging fibers the thermally bonded bicomponent I/S nonwovens would be expected to perform significantly better than their mechanically bonded counterparts because thermal bonds involve fiber interfusion rather than interlocking and they are typically much stronger than mechanical bonds.

To confirm this hypothesis, three N6/PE sample series were examined calendered only. hydroentangled only, and calendered after hydroentangling (Table 5). The hydroentanglement produced nonwovens having the lowest values of the tensile and tear strength. These values were comparable to those obtained for the hydroentangled homo-component N6 fabrics with the exception of the tensile strength in MD direction. After being calendered, the 108 I/S 75/25 N6/PE hydroentangled fabrics showed an increase in the tensile and tear properties, unlike N6 hydroentangled webs. However, the highest values of the strength were demonstrated by the nonwovens calendered at optimal temperature of the bonding.

TABLE V. Tensile and tear strength of the 108 I/S 75/25 N6/PE bicomponent fabrics

Bonding Method	Tensile Strength, N	Tear Strength, N		
	MD CD	MD	CD	
Calendering at 145°C	1435.2 779.9 (σ=30.4)	175.6	178.5	
	(σ=75.5)	$(\sigma=13.7)$	(σ=13.7)	
1 pass of hydroentangling	263.9 $431.6 (\sigma=10.8)$	71.6	69.7	
	(σ=7.9)	$(\sigma = 5.9)$	$(\sigma = 9.8)$	
I pass of hydroentangling + Calendering at 145 °C	1029.1 570.9 (σ =17.7)	169,7	126.6	
	(σ=38.3)	(σ=13.7)	(σ=2.9)	

These results show that the thermal bonding of the I/S N6/PE structures leads to the improved performance of the calendered spunbonds due to formation of the strong bonds without adversely affecting the bicomponent fiber strength. The data also may be considered as a circumstantial proof of the low degree of molecular orientation developed in PE sea as a result of the bico-spinning of essentially incompatible polymers, such as N6 and PE.

<u>Homo- and bicomponent substrates – crystallinities</u>

To examine the morphological changes in the homocomponent and bicomponent fibers after thermal bonding, the 100% N6 and 108 I/S 75/25 N6/PE fibers before and after calendering at the temperatures 200 °C and 145 °C, respectively, were analyzed by using DCS. The results are listed in *Table 6*.

As may be seen from this *Table 6*, crystallinity of both 100% N6 and N6/PE I/S fibers, entering the bond spots, reduced after thermal bonding; however, this reduction was insignificant for the components comprising the N6/PE filaments. This, in turn, confirms our previous statements that calendering of N6 homo-component webs caused significant changes in the morphology and thus strength of the bridging fibers at the bond spots. On the other hand, the morphology or strength of the N6/PE bridging fibers, entering the bond spots, in the calendered webs was almost unchanged. Therefore, we believe that the significant loss of the fiber strength at the bond periphery of the thermally bonded N6 webs, in contrast to a little loss of the fiber strength at the bond edge of the N6/PE thermally bonded nonwovens, were responsible for the poor performance of the N6 fabrics in comparison to the performance of the N6/PE sample series.

TABLE VI. Values of the heat of fusion (ΔH) and crystallinity (χ) obtained from the DSC thermograms of the N6 homo-component and N6/PE bicomponent fibers before and after calendering

Composition	Sample Description	ΔΗ _{N6} , J/g	ΔH _{PE} , J/g	% N6 % PE % %
100% N6	Fibers before bonding	75.8	**	32.91
100% N6 Br	0.0	59.4 ¹	-	25.81
75/25 N6/PE	Fibers before bonding	49.8^{2}	28.4^{3}	21.6^2 9.7^3
75/25 N6/PE Br	idging fibers at the bond edge after	48.1 ²	23.5^{3}	20.9^2 8.0^3
	100% N6 100% N6 Br 75/25 N6/PE	100% N6 Fibers before bonding 100% N6 Bridging fibers at the bond edge after bonding 75/25 N6/PE Fibers before bonding	100% N6 Fibers before bonding 75.8 ¹ 100% N6 Bridging fibers at the bond edge after 59.4 ¹ bonding 75/25 N6/PE Fibers before bonding 49.8 ² 75/25 N6/PE Bridging fibers at the bond edge after 48.1 ²	100% N6 Fibers before bonding 75.8\frac{1}{2} - \frac{100\% N6}{2} \text{Bridging fibers at the bond edge after bonding} 59.4\frac{1}{2} - \frac{1}{2} - \frac

Keys: The heat of fusion and crystallinity of the N6 homo-component fibers; The heat of fusion and crystallinity of the N6 island component comprising the N6/PE I/S fibers; The heat of fusion and crystallinity of the PE sea component composing the N6/PE I/S fibers.

Optimization study - polymer ratios and number of islands

Although the results of the mechanical testing of the I/S N6/PE fibers indicated that the fibers made up of 75% of N6 showed the best performance, the

influence of the polymer ratio on the fabric mechanical properties was also investigated. Preconsolidated spunbond webs made up of fibers with 85%, 75%, and 50 % of N6 were calendered at 145 °C and their mechanical properties were determined (Figure 6).

FIGURE 6 Tear (left) and tensile (right) strength of 108 1/S N6/PE fabric as a function of polymer ratios; solid lines - MD; dash-dot lines - CD.

As can be seen from the figure, the fabric containing 75% of N6 had the highest tear strength in both directions and the highest tensile strength in CD. When using nylon ratios higher than 75%, it is

probable that the amount of the sea polymer was not sufficient to completely bind the structure together and consequently, the web properties deteriorated.

FIGURE 7. Tear (left) and tensile (right) strength of the bicomponent 75/25 N6/PE fabric as a function of the number islands; solid lines - MD; dash-dot lines - CD.

To determine the effect of the number of islands on the mechanical properties of the calendered bicomponent nonwoven fabrics, pre-consolidated spunbond webs made up of fibers with 1, 18, and 108 islands were calendered at 145 °C and tested for their tear and grab tensile strength. The results of the tests are presented in Figure 7. The figure shows that the 18 I/S N6/PE fabric had the highest tensile strength, whereas the 108 I/S N6/PE fabric demonstrated the highest tear strength in both directions. The latter may be explained by the fact that when tear propagates through the 108 I/S N6/PE fabric, a larger number of the islands are released and bunch together, absorbing significant tearing energy. Therefore, the 108 I/S N6/PE webs demonstrated tear performance superior to that of other nonwovens made up of smaller number of islands.

Note, however, that all I/S structures performed significantly better than N6 homocomponent sample series. This confirms again the fact that in contrast to the thermal bonding of 100% N6 webs, calendering of the N6/PE bicomponent structures allowed formation of the strong, unfailing bonds without damaging of the bicomponent fiber strength.

CONCLUSIONS

In this paper, we have demonstrated that by using bicomponent islands-in-the-sea fiber technology it is possible to overcome the shortcomings of the thermal bonding process and produce nonwovens with significantly higher strength. Our study has revealed that the strength of a calendered fabric could be improved significantly with the use of the I/S fibers, such as N6/PE, which have a relatively strong

interface between the polymers and sufficient differences in the properties of the island and sea components. In the N6/PE fibers, the N6 islands had higher strength, modulus, and melting temperature and lower strain at break than the PE sea. The thermal bonding process caused complete melting of the PE sea, leaving the islands intact along their entire length. Moreover, it is possible that the unoriented and weaker PE phase endured very little, if any, change in the morphology or strength during the thermal bonding process. Therefore, the strength of the bridging bicomponent N6/PE fibers, including the region at the bond periphery, in the thermally bonded nonwovens did not differ from those of the original. un-bonded N6/PE I/S fibers. During mechanical testing, the weaker PE acted as a matrix that held the structure together and helped transfer the stress to the stronger, oriented islands via a strong interface between the sea and islands. This led to the superior performance of the calendered N6/PE fabrics over that of the calendered N6 webs, in which fibers in the bond spots and their vicinities underwent sufficient loss of the molecular orientation or strength. Among different number of islands and polymer ratios, nonwovens containing filaments with 18 and 108 I/S and composed of 75% of N6 and 25% of PE demonstrated the best tensile and tear strength, respectively.

Although calendering of the N6/PE sample series at the temperature of 145 °C seemed to result in the fabrics having superior performance over that of the samples bonded at other temperatures or by other methods, the high strength of the examined nonwovens was achieved at the cost of their

flexibility and permeability. To enhance these properties of the bicomponent fabrics without damaging their strength, other bonding possibilities need to be considered. These include through air thermal bonding, hydroentangling or needlepunching prior calendering or through air bonding, etc.

This paper was focused on the mechanisms and the differences brought about by using the I/S fibers, such as N6/PE, to achieve higher strengths in thermally bonded substrates. Although substantial experiments were conducted, much remains to be done to develop a full and complete understanding of the underlying material-process-property interactions. These include a detailed investigation of the failure mechanism of the thermally bonded I/S fabrics and the study of the influence of various polymer combinations, on the performance of the thermally bonded I/S fabrics. Some of these factors will be addressed in a subsequent paper.

ACKNOWLEDGEMENTS

This work was supported by a grant from the Nonwovens Cooperative Research Center, and a grant from the Air Force Research Laboratory, Airbase Technologies Division, Deployed Base Systems Branch, Fire Research Group, Tyndall AFB, FL 32403. Their generous support is gratefully acknowledged.

REFERENCES

- [1] Bhat, G. S., Jangala, P. K. and Spruiell, J. E.; Thermal bonding of polypropylene nonwovens: effects of bonding variables on the structure and properties of the fabrics, J. Appl. Polym. Sci.; vol. 92, pp. 3593-3600, 2004.
- [2] Bhat, G. S. and Malkan, S. R.; Extruded continuous filament nonwovens: advances in scientific aspects, J. Appl. Polym. Sci.; vol. 83(3), pp. 572-585, 2002.
- [3] Michielsen, S., Pourdeyhimi, B. and Desai, P.; Review of thermally point-bonded nonwovens: materials, processes, and properties, J. Appl. Polym. Sci.; vol. 99(5), pp. 2489-2496, 2006.
- [4] Wang, X. and Michielsen, S.; Morphology gradients in thermally point-bonded poly(ethylene terephthalate) nonwovens, Textile Res. J.; vol. 72(5), pp. 394-398, 2002.

- [5] Chidambaram, A., Davis, H. and Batra, S. K.; Strength loss in thermally bonded polypropylene fibers, Intl. Nonwovens J.; vol. 9(3), pp. 27-36, 2000.
- [6] Dharmadhikary, R. K. et al.; Influence of fiber structure on properties of thermally point bonded polypropylene nonwovens, Textile Res. J.; vol. 69, pp. 725-734, 1999.
- [7] Kim, H. S. et al.; Characterizing structural changes in point-bonded nonwoven fabrics during load-deformation experiments, Tex. Res. J.; vol. 71(2), pp. 157-164, 2001.
- [8] Kim, H. S. and et al.; Anisotropy in the mechanical properties of thermally spotbonded nonwovens: experimental observations, Tex. Res. J.; vol. 71(11), pp. 965-976, 2001.
- [9] Kim, H. S. and et al.; Effect of bonding temperature on load-deformation structural changes in point-bonded nonwoven fabrics, Tex. Res. J.; vol. 72(7), pp. 645-653, 2002.
- [10] Wang, X. and Michielsen, S.; Morphology gradients in thermally point-bonded polypropylene nonwovens, Textile Res. J.; vol. 71(6), pp. 475-480, 2001.
- [11] Li, Z. and et al.; Dynamic fiber debonding and frictional push-outs in the model composite systems: experimental observations, Experimental Mechanics; vol. 42 (3), pp. 417-425, 2002.
- [12] Schadler, L. S., Giannaris, S. C. and Ajayan, P. M.; Load transfer in carbon nanotube epoxy composites, Appl. Phys. Letters; vol. 73(26), pp. 3842-3844, 1998.
- [13] Stamhuis, J. E.; Mechanical properties and morphology of polypropylene composites. III. Short glass fiber reinforced elastomer modified polypropylene, Polymer Composites; vol. 9(4), pp. 280-284, 1988.
- [14] Lin, X. D. and et al.; Study on Poly (ethylene terephthalate)/Polypropylene Microfibrillar composites. II. Solid state drawing behavior, J. Appl. Polym. Sci.; vol. 93, pp.1989-2000, 2004.
- [15] Choi, Y. B. and Kim, S. Y.; Effects of interface on the dynamic mechanical properties of PET/Nylon 6 bicomponent fibers, J. Appl. Polym. Sci.; vol. 74, pp. 2083-2093, 1999.

- [16] Kikutani, T. and et al.; High-speed melt spinning of bicomponent fibers; mechanism of fiber structure development in poly(ethylene terephthalate)/Polypropylene system, J. Appl. Polym. Sci.; vol. 62, pp. 1913-1924, 1996.
- [17] El-Salmawy, A., Miyamoto, M. and Kimura, Y.; Preparing a core-sheath bicomponent fiber of poly(butylene terephthalate). Poly(butylenes succinate-co-L-lactide), Tex. Res. J; vol. 70(11), pp. 1011-1018, 2000.
- [18] Cho, H. H. and et al.; Fine structure and physical properties of Polyethylene/Poly(ethylene terephthalate) bicomponent fibers in high-speed spinning. I. Polyethylene sheath / Poly(ethylene terephthalate) core fibers, J. Appl. Polym. Sci.; vol. 77, pp. 2254-2266, 2000.
- [19] Rwei, S. P., Jue, Z. F. and Chen, F. L.; PBT/PET conjugated fibers: melt spinning, fiber properties and thermal bonding, Polymer engineering and science; vol. 44(2), pp. 331-344, 2004.
- [20] 20. Yoshimura, M. and et al.; Structure formation of blend and sheath/core conjugated fibers in high-speed spinning of PET, including a small amount of PMMA, J. Macr. Sci.: Part B Physics; vol. B42 (2), pp. 325-339, 2003.

AUTHORS' ADDRESS

Nataliya Fedorova, Ph.D., Svetlana Verenich, Ph.D., Behnam Pourdeyhimi, Ph.D.
North Carolina State University
Nonwovens Cooperative Research Center
College of Textiles
2401 Research Drive
Raleigh, NC, 27695-8301
USA

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2003/0181112 A1 Ishikawa et al.

(43) Pub. Date:

Sep. 25, 2003

SPUNBONDED NONWOVEN FABRIC AND ABSORBENT ARTICLE

(76) Inventors: Masahide Ishikawa, Chiba (JP); Akihiko Kurahashi, Chiba (JP)

Correspondence Address: OBLON, SPIVAK, MCCLELLAND, MAIER & NEUSTADT, P.C. 1940 DUKE STREET ALEXANDRIA, VA 22314 (US)

10/297,596 (21) Appl. No.:

(22) PCT Filed: Jun. 13, 2001

PCT/JP01/04984 (86) PCT No.:

(30)Foreign Application Priority Data

Jun. 13, 2000	(JP)	2000-176508
Jun. 23, 2000	(JP)	2000-188726
Jul. 26, 2000	(JP)	2000-225657

Publication Classification

(51)	Int.	Cl. ⁷	ВЗ2В	5/22; B32B 3/00; B32B 5/02;
				D04H 5/00; D04H 13/00;
				DOAL 2/00, D22D 0/00

ABSTRACT (57)

A spunbonded nonwoven fabric which is made of a polyolefin resin and has an average fiber diameter of 5 to 60 μ m, METSUKE of 5 to 200 g/m², and a coefficient of static friction of 0.1 to 0.4; or a spunbonded nonwoven fabric which is made of a polypropylene resin and has a stiffness [sum of the values for the longitudinal and transverse directions as obtained according to JIS L 1096, 6.19.1, method A (45° cantilever method)] of 70 to 120 mm and a coefficient of static friction of 0.1 to 0.4.

FIG.1

SPUNBONDED NONWOVEN FABRIC AND ABSORBENT ARTICLE

TECHNICAL FIELD

[0001] The present invention relates to a nonwoven polyolefin resin fabric and an absorbent article used this. In particular, the present invention relates to a nonwoven fabric which has good flexibility, feeling and touch to the skin, and excellent strength, bending rigidity and post-processability, and is capable of using suitably as a material for absorbent article such as disposable diaper and the like.

BACKGROUND OF THE INVENTION

[0002] A nonwoven thermoplastic resin long fiber fabric has been used in many fields, since it has characteristics such as mechanical property like tensile strength, bending rigidity, gas permeability and the like, and at the same time it has excellent continuous spinability and productivity. The thermoplastic resins used to these nonwoven long fiber fabric have been used polyamide resins and polyester resins from melt spinability, fiber characteristic and the like, however polyolefin resins such as polypropylene, polyethylene and the like, which are general purpose resin, have been much used.

[0003] Among the nonwoven fabric comprising these polyolefin resins, for example, the polypropylene resin comprises many resins having different degree of crystallinity, even though in homopolymers of propylene, and also it is known that there are many resins having different crystallinity, and also resins having various characteristics such as melting point, strength, elastic modulus and the like by means of copolymers of propylene with ethylene, butene-1 or the like. The nonwoven fabric used such polypropylene resins has good spinability in the ease of resin having high degree of crystallinity, however it has problem of poor flexibility and feeling. And moreover, in the case of polypropylene resins having low degree of crystallinity or low melting point, it has flexibility, however there are problems of slimy feeling, and large friction resistance between fibers, fiber and other metal and the like at the time of spinning, and become very worse in the spinability, or usage feeling is poor in articles contacting to the skin such as the absorbent article.

[0004] Further, in the case of resins having approximate 90 mol % of isotactic pentad fraction, there are problem that characteristics such as strength, rigidity or the like, and also spinability are relatively favorable, however in the case of used to absorbent articles such as disposable diaper, sanitary napkin, incontinent pad and the like, the obtained nonwoven fabric has not always sufficient using feel such as feeling, touch to the skin and the like.

[0005] Various improvements with the spunbonded non-woven fabric composed of the polypropylene resin long fiber have been proposed. For example, (1) Japanese Patent Laid Open No. 13238/1996 disclosed polypropylene resin compositions for fiber containing crystalline polypropylene resins having ratio (Mw/Mn) of mass average molecular weight (Mw) to number average molecular weight (Mn) of 2 to 15, and isotactic pentad fraction of 96% or more of 100 mass parts, and fatty acid amide compounds of 0.01 to 1 mass parts.

[0006] This official gazette intends to improve poor drawing by fuzzing at the drawing time, by adding lubricants to improve drawability and luster in manufacturing of high strength fibers by high draw ratio of 6 times or more, used high crystalline polypropylene resins. That is, this proposal describes only that the resin differ from the range of crystallinity much used in nonwoven polypropylene resin fabrics, and it is not always favorable in flexibility, feeling and touch to the skin, and it is used suitably to industrial material such as nonwoven fabrics, and it is not nonwoven fabrics for the absorbent article, and it relates to fibers for special use which intended improvement of strength and the like.

[0007] On one hand, various methods are proposed to improve feeling, touch to the skin, flexibility and like as nonwoven fabrics used to the absorbent article. First of all, melt blown nonwoven fabric which has fiber diameter of several µm has point of advantage that feeling is soft. However, on the other hand, it is actual circumstances that the melt blown nonwoven fabric is almost not used to the absorbent by itself, since problem of characteristic such as that the nonwoven fabric is low in strength, very low in bending rigidity, fuzzing is occur, threads are easily drawn, incidental looping is easily occurred at the spinning time, rough feeling exist and this stimulate the skin and the like, or productivity is low, thus cost become higher.

[0008] On account of this, various laminated nonwoven fabric which are composite feeling of the melt blown nonwoven fabric and respective characteristic such as strength, bending rigidity, productivity and the like of the spunbonded nonwoven fabric are proposed. For example, (2) Japanese Patent Laid Open No. 88056/1990 proposed laminated nonwoven fabrics which specified laminating condition, and (3) Japanese Patent Laid Open No. 143853/ 1997 proposed a laminated nonwoven fabrics which comprises a composite spunbonded nonwoven fabric composed of two kind of resins having difference of melting points of 10° C. or more and superposed thereon two kind of meltblown nonwoven fabric having difference of melting points of 10° C. or more, and fused a resin with a nonwoven fabric having low melting point. However, the feeling in this case is carried by the melt-blown nonwoven fabric, the above described problem which is characteristic of the surface of the melt-blown nonwoven fabric is not still dissolved. And also, the composite nonwoven fabric makes complex the manufacturing apparatus, and melting points between the composite resins and fluidity are different, thus spinning is difficult in some case.

[0009] On account of this, methods to improve feeling and the like of the spunbonded nonwoven polypropylene fabric having excellent strength and productivity are requested. As the improving method of feeling of the spunbonded nonwoven fabric, first of all to make fine the fiber diameter is considered. However, when the fiber diameter is make too fine, strength is lowered, and also bending rigidity, that is, sturdiness of the nonwoven fabric is decreased, in the manufacturing of the absorbent article such as disposable diaper and the like by post processing, in process of sending out of the nonwoven fabric, sealing and the like, it becomes problem that automation and high speed manufacturing becomes difficult, and large amount and low cost product is not obtained, therefore putting the nonwoven fabric to practical becomes difficult in some case.

[0010] On account of this, there is a method using copolymers of propylene with the other olefin. However, also in this case, though feeling is improved considerably, this is due to lowering of bending rigidity (softening of the raw material resin, that is lowering of elastic modulus), lowering of post processability is not changed. And also, spinability is lowered.

[0011] Further, (4) Japanese Patent Laid Open No. 88459/1998 proposed a long fiber nonwoven fabric composed of a heat fusible conjugate long fiber which comprises at least one kind of low melting point or low softening point resin selected from olefinic copolymer and olefinic terpolymer as the first component, and a crystalline thermoplastic resin as the second component, in which a hydrocarbon based lubricant is contained in at least the first component, and content of the above described hydrocarbon based lubricant is 2 to 20 mass % as the concentration in the fiber.

[0012] That is, this proposal intend to improve lowering of spinability caused by using a low melting point of soft propylene random copolymer as polypropylene resins for improvement of flexibility or touch to the skin of the nonwoven fabric, by adding of the hydrocarbon based lubricant. Consequently, characteristics such as heat resistance, strength, bending rigidity and the like, which are essentially afforded to polypropylene resins, especial polypropylene homopolymer, are lost and also the copolymer further contains relatively large amount of the hydrocarbon based lubricant having low molecular weight and low meting point, for example, lowering of heat sealing property, adhesive property and the like of the nonwoven fabric by bleeding of these lubricants is afraid.

[0013] Moreover, it is known that a conjugate nonwoven fabric made by conjugate spinning with core sheath structure or side-by-side structure of two kind of resins having different kind and melting point, as described in the above described Japanese Patent Laid Open No. 88459/1998 as the nonwoven fabric. However, although this conjugate fiber nonwoven fabric is improved heat fusibility, in the case of increasing proportion of a comonomer in the low melting point of polypropylene resin, there is slimy feeling of the surface as the nonwoven fabric, dry feeling as the surface material of absorbent article such as disposable diaper, napkin or the like is lowered, and give discomfort feeling in some case.

[0014] (5) Japanese Patent Laid Open No. 290381/1999 disclosed a back sheet for the absorptive article which comprises a laminate layered alternately layers composed of polypropylene melt-blown nonwoven fabric and layers composed of polypropylene wet process nonwoven fabric in which one side surface layer of the laminate comprises the polypropylene wet process nonwoven fabric layer. That is, by adopting a short fiber wet process nonwoven fabric, it is intended to secure slipping property of the surface and liquid barrier property. However, the diameter of the fiber of the wet process nonwoven fabric is relatively finer, bending rigidity is lowered, there is a problem of causing complex in the manufacturing method and also lowering the post processability.

[0015] Further, (6) Japanese Patent Laid Open No. 293554/1999 disclosed a heat fused nonwoven fabric which comprises conjugate short fibers having fiber diameter of 10 to 15 μ m on at least surface layer, in which a coefficient of

friction (MIU) of the nonwoven fabric is 0.25 or less, and reflectance per unit area is 1.2% or more. However, only a nonwoven fabric composed of conjugate short fibers having a fiber diameter of 13 μ m and a fiber length of 45 mm, which having a core sheath structure of high density polyethylene as the sheath component and polyester as the core component is disclosed concretely in examples.

[0016] Furthermore, as improvement of feeling in a spunbonded nonwoven fabric, (7) Japanese Patent Laid Open No. 92856/1996 disclosed a manufacturing method of a nonwoven fabric having excellent flexibility and touch to the skin, in which a propylene ethylene block copolymer having ethylene content of 0.5 to 8 mass % was used, filament groups having knot on the surface were obtained, thereafter corona treated and thermocompression bonded with heating rolls. However, this method has problem in the production cost and the like, and also has great restriction, which cannot applicate to most general polypropylene homopolymer.

[0017] Still more, (8) Japanese Patent Laid Open No. 160463/2000 disclosed a flexible nonwoven fabric containing filers composed of polyolefin thermoplastic resin containing olefinic clastomer. And also at the same time, a fabric and a multi layer nonwoven fabric composed of a side-byside type fiber used the above-described resin and a core sheath type conjugate fiber used the above described resin as core is disclosed. However, the polyolefin thermoplastic resin composing of the fiber of the nonwoven fiber is an object by commonplace way of thinking so as to improve flexibility of the nonwoven fabric, by combining the olefinic elastomer as the soft component, as the result the fiber itself become flexible, sturdiness as the nonwoven fabric is greatly decreased, and post processability is lowered.

[0018] As described above, the conventional improving technique of flexibility, feeling, touch to the skin and the like of the spunbonded nonwoven polyolefin resin fabric is not held characteristic of the spunbonded nonwoven polypropylene fabric itself. That is, the technique abandon characteristic of the spunbonded nonwoven fabric which it can be manufactured with good productivity and low cost, and has excellent strength, bending rigidity and post processability, it is owing to only making the fiber diameter into fine, adopting of the soft resin, making short fiber, conjugate spinning, or laminating of these with the spunbonded nonwoven fabric and the like.

[0019] Consequently, especially, from post processability such as spinability, bending rigidity or the like, as to the nonwoven fabric, it is actual circumstance that the spunbonded nonwoven polypropylene fabric is used still in spite of poor feeling, touch to the skin or the like.

[0020] On account of this, it is strongly excepted improvement of the problem such as flexibility, feeling, touch to the skin and the like, while maintaining strength, gas permeability, especially bending rigidity of the polypropylene spunbonded nonwoven fabric from producer and user of the absorbent article such as disposable diaper.

[0021] An object of the present invention is to provide a nonwoven polyolefin fabric and an absorbent article which capable of using suitably for the absorbent article especially such as the disposable diaper, the sanitary napkin and the like, while holding substantially characteristic such as heat resistance, strength, bending rigidity, or the like, which the

spunbonded nonwoven polypropylene resin fabric has substantially, and also having excellent flexibility, feeling, touch to the skin or the like.

DISCLOSURE OF THE INVENTION

[0022] The present inventors investigate wholeheartedly as to the polyolefin resin, especially the spunbonded nonwoven polypropylene fabric while making the most of function such as gas permeability, flexibility, strength, bending rigidity, heat resistance, post processability, automation suitability and the like afforded to the spunbonded nonwoven polypropylene resin fabric, and also feeling of use, which requested to the end product of the nonwoven fabric, especially the absorbent article, such as spinability, feeling, touch to the skin and the like of the obtained nonwoven fabric. As the result, it is found that feeling of use such as flexibility, feeling, touch to the skin and the like can greatly improved, even though in the spunbonded nonwoven fabric composed of the same fiber diameter, the same METSUKE and the same resin, by controlling its friction characteristic, and the present invention is completed based on this knowl-

[0023] That is, the present invention provides

[0024] (1) A spunbonded nonwoven fabric which comprises a spunbonded nonwoven fabric composed of a polyolefin resin and has an average fiber diameter of 5 to 60 μ m, METSUKE of 5 to 200 g/m² and a coefficient of static friction of 0.1 to 0.4.

[0025] (2) The spunbonded nonwoven fabric according to the above described (1), wherein the nonwoven fabric contains a lubricant.

[0026] (3) The spunbonded nonwoven fabric according to the above described (1) or (2), wherein the lubricant is a fatty acid amide compound, and its content is 0.05 to 1.0 mass %.

[0027] (4) The spunbonded nonwoven fabric according to any one of the above described (1) to (3), wherein the polyolefin resin is polypropylene resin.

[0028] (5) The spunbonded nonwoven fabric according to any one of the above described (1) to (4), wherein the fiber is hydrophilicity imparting treated.

[0029] And also, the present invention provides

[0030] (6) A spunbonded nonwoven fabric which comprises a spunbonded nonwoven polypropylene resin fabric having stiffness (bending resistance), which is the sum of the values for the longitudinal and transverse directions as obtained according to JIS L1096 6.19.1, method A that is 45° cantilever method, of 70 to 120 mm, and a coefficient of static friction of 0.1 to 0.4.

[0031] (7) The spunbonded nonwoven fabric according to the above described (1), wherein the nonwoven fabric has the average fiber diameter of 10 to 30 μ m, and METSUKE of 10 to $30g/m^2$.

[0032] (8) The spunbonded nonwoven fabric according to the above described (7) or (8), wherein the nonwoven fabric contains the lubricant of 0.15 to 1.0 mass %.

[0033] (9) The spunbonded nonwoven fabric according to the above described (8), wherein the lubricant is a fatty acid amide compound.

[0034] (10) The spunbonded nonwoven fabric according to any one of the above described (6) to (9), wherein the fiber constituting of the nonwoven fabric is hydrophilicity imparting treated.

[0035] Further, the present invention provides

[0036] (11) An absorbent article made by using the non-woven fabric according to any one of the above described (1) to (10).

[0037] (12) The absorbent article according to the above described (11), wherein the absorbent article is a disposable diaper, a sanitary napkin or incontinence pad.

BRIEF DESCRIPTION OF DRAWING

[0038] FIGURE 1 is an illustration view of relation of degree of bending rigidity and coefficient of static friction of the spunbonded nonwoven fabric in examples of the present invention and comparative example.

BEST MODE TO CARRYING THE INVENTION

[0039] In the following description, the present invention will be described in further detail.

[0040] [The First Embodiment]

[0041] The nonwoven polyolefin resin fabric of the present invention comprises the spunbonded nonwoven fabric having the average fiber diameter of 5 to 60 μ m, METSUKE of 5 to 200 g/m², and the coefficient of static friction of 0.1 to 0.4. The nonwoven fabric of the present invention may be any object satisfying the range of the coefficient of static friction of 0.1 to 0.4 as the nonwoven fabric, its means to control the coefficient of static friction may be optional, and is considered adoption of various means. However, the reason why the spunbonded nonwoven fabric of the present invention has excellent flexibility and feeling is considered an effect by improvement of slipping property among long fibers, so that it is preferred a material which improves slipping property of not only fibers on the surface part of the nonwoven fabric, but also fibers as whole the nonwoven fabric, as the result, and a coefficient of static friction as the surface characteristic become in a specific range.

[0042] (Basic Characteristic of Nonwoven Fabric)

[0043] The fiber diameter of the fiber composing the spunbonded nonwoven fabric is 5 to 60 μ m, preferably 5 to 40 μ m, and 15 to 30 μ m for especially the absorptive article such as the disposable diaper or the like. Here, in the case of 5 μ m or less, strength and bending rigidity are insufficient, and also in the some case post processability is lowered, and at the same time the using field is greatly limited. Moreover, in the case of 60 μ m or more, flexibility is lowered, characteristics as the nonwoven fabric is lost, and also in the some case especially application to the absorptive article, various clothes becomes difficult.

[0044] Moreover, METSUKE of the spunbonded non-woven fabric of the present invention is in the range of 5 to 200 g/m², preferably 7 to 60 g/m², especially 10 to 30 g/m² for the absorbent article such as the disposable diaper or the like. Here, in the case of METSUKE of 5 g/m² or less, in some case strength is insufficient, bending rigidity (sturdiness) is lower, and post processability is fallen. Moreover, in

the case of 200 g/m² or more, flexibility, gas permeability or the like is lowered, thus characteristics as the nonwoven fabric are lost, and in some case usage becomes difficult due to use.

[0045] The spunbonded nonwoven fabric can select/combine properly the resin, the fiber diameter, METSUKE and the like, based on the use of the nonwoven fabric, required property, gas permeability, non-water permeability or the like.

[0046] The spunbonded nonwoven polyolefin resin fabric of the present invention is not especially restricted as far as it is the spunbonded nonwoven fabric, and it can produce by various manufacturing process. Moreover, the bonding form can adopt embossing, calendaring, heat adhesion such as hot air or the like, mechanical entangling such as needle punching, water punching and the like. However, heat adhesion by embossing is preferred from productivity.

[0047] (Coefficient of Static Friction)

[0048] The characteristic of the present invention is that the nonwoven fabric of the spunbonded nonwoven fabric comprising conventional well known polyolefin resin has the coefficient of static friction of 0.1 to 0.4, preferably 0.12 to 0.35. Here, in the case of the coefficient of static friction is 0.1 or less, processability is lowered by over slippage in the post processability, and at the same time the usage amount of additives or surface treatment agent adopted general is necessary due to lowering of the coefficient of static friction, in some case economic performance is fallen. Further, in some case thermal sealing at the time of post processing, conjugation property by adhesives and the like is trended toward poor, thus such case is not preferred. Moreover, in the case of 0.4 or more, improving effect of feel of usage such as flexibility, feeling, touch to the skin become insufficient.

[0049] (Measurement of Coefficient of Static Friction)

[0050] The coefficient of the spunbonded nonwoven fabric of the present invention can determine according to ASTM-D 1894. Concretely, based on measuring conditions of:

[0051] Measuring machine of a coefficient of static friction: made of Toyo Seiki Seisakusho Co. Ltd., AN type

[0052] Loading plate: 63.6 mm×102.2 m×19.4 mn (height)

[0053] Load: 8.87N of iron plate

[0054] Incline speed: 2.7 degree/second

[0055] sliding angle θ was determined by piling up measuring surfaces of the nonwoven fabric, $\tan \theta$ was obtained, and made it the coefficient of static friction. The smaller the numerical value the better the slipping property.

[0056] (Polypropylene Resin)

[0057] The polyolefin resin used in the spunbonded non-woven polyolefin resin fabric of the present invention is not especially restricted, it can include a homopolymer of propylene, copolymer of propylene with at least one of α -olefin such as ethylene, butene-1, 4-methyl-pentene-1, hexane-1, octen-1 or the like. These polypropylene resins are selected properly from those that having difference of various crystallinity, molecular weight and distribution of molecular

weight from selection of catalysts at the time of polymerization, polymerization condition or the like, based on the property required in the nonwoven fabric. This selection is examined from the points of strength, bending rigidity, use and the like, but from spinability, vending rigidity, slimy feeling or the like as described above, using of the homopolymer of propylene or the polypropylene copolymer with low ratio of copolymerization is preferred.

[0058] Here, crystallinity is selected from a range from 88 to 95 mol %, preferably 89 to 93 mol % in the isotactic pentad fraction in the case of using the nonwoven fabric as the disposable diaper and the like. Here, the isotactic pentad fraction (IPF) is an isotactic fraction in the pentad unit in the polypropylene molecular chain, which is measured by using nuclear magnetic resonance spectrum (¹³C-NMR) by an isotope carbon for example described in Macromolecules. vol. 28, No16, pp5403 (1995).

[0059] Moreover, melt flow rate (MFR) [according to JIS K 7210, measuring temperature: 230° C., measuring load: 21.18N] of the polypropylene resin is in the range of 5 to 200 g/10 min, preferably 10 to 100 g/10 min. In particular, those that in the range of 30 to 80 g/10 min is suitable for the absorptive material.

[0060] (Polyethylene Resin)

[0061] Next, polyethylene resins include a homopolymer of ethylene, copolymers of ethylene with α-olefin having 3 to 10 carbon atoms such as propylene, butene-1, 4-methylpentene1, hexane-1, octane-1 or the like, and copolymers of ethylene with a polymerizable monomer such as vinyl acetate, acrylic acid or the like. In particular, the above described ethylene-α-olefin copolymer having density of 880 to 960 kg/m³, preferably 900 to 950 kg/m³, melting point in the range of 100 to 140° C., preferably 110 to 130° C., and melt flow rate (MFR) [according to JIS K 7210, measuring temperature: 190° C., measuring load: 21.18N] of 5 to 60 g/10 min, preferably 10 to 50 g/10 min is used preferably from points of spinability, melting point, bending rigidity.

[0062] Moreover, these polypropylene resins and polyethylene resins may be mixtures of two kind or more respectively, and can use as resin compositions containing other ethylene resin, propylene resin, thermoplastic elastomer or the like of less than 50 mass %.

[0063] (Controlling Method of Coefficient of Static Friction)

[0064] Next, means to obtain the spunbonded nonwoven fabric having the coefficient of static friction in the range of 0.1 to 0.4 are not restricted especially, and various means are included. Concretely, it can exemplify roughly divided to (1) melt spinning process by combining a lubricant into a polyolefin resin for spinning, and (2) surface treating process to the fiber after spinning.

[0065] (Lubricant)

[0066] Here, the lubricant is not especially restricted, and include fatty acid amide compound, fatty acid compound, paraffin and hydrocarbon resin, silicone compound, silicone polymer, fluorine compound, fluorine polymer such as copolymer of tetrafluoroethylene with propylene, copolymer of vinylidene fluoride with hexafluoroethylene or the like, or these mixture. Among them the fatty acid amide compound is preferably used.

[0067] The fatty acid amide compound include fatty acid monoamide compound, fatty acid diamide compound, saturated fatty acid monoamide compound, unsaturated fatty acid diamide compound. Concretely, it includes amide laurate, amide myristate, amide palmitate, amide stearate, amide behenate, amide oleate, amide crucate, amide montanate, amide N,N'-methylene-bis-laurate, amide N,N'-methylene-bis-palmitate, amide N,N'-methylene-bis-behenate, amide N,N'-methylene-bis-oleate, amide N,N'-methylene-bis-crucate, amide N,N'-ethylene-bis-oleate, amide N,N'-ethylene-bis-crucate and the like, and also these can be used by combining plural kind of substances.

[0068] Among these fatty acid amide compounds, amide erucate, which is an unsaturated fatty acid monoamide compound, is preferably used. The reason why it is used is they are suitable to decrease the coefficient of static friction of the nonwoven fabric, by decreasing of spinability by exposing unnecessarily the fatty acid amide on the surface at the time of spinning of the fiber of the nonwoven fabric, and ageing of the nonwoven fabric containing the fatty acid amide compound described below. Content of the fatty acid amide compound in the polyolefin resin is in the range of 0.05 to 1 mass %, preferably 0.1 to 0.5 mass %. This content is decided by judging synthetically kind of the polyolefin resin, the resin characteristics such as crystallinity, MFR and the like, kind of the fatty acid amide compound, required property of the obtained nonwoven fabric, ageing condition and the like.

[0069] Consequently, for example, in the case of using amide erucate in the homopolymer of propylene having isotactic pentad fraction of around 90 mol %, it is preferred in the range of 0.1 to 0.5 mass %, especially 0.2 to 0.4 mass %. In this case, although it depends on ageing treatment condition, if it is 0.2 mass % or less, in some cases it is difficult to control the coefficient of static friction of the nonwoven fabric in the range of 0.1 to 0.4, and if it is 0.4 mass % or more, in some cases the amount of the amide erucate on the surface of the nonwoven fabric is much, it becomes cause of worse of appearance such as generation of white powder or the like, or lowering of heat fusion property and post processability.

[0070] Further, the spunbonded nonwoven polyolefin resin fabric of the present invention can be added well-known additives component used generally in the nonwoven fabric for use or imparting characteristic or the like. These well known additives components include neutralizating agents such as calcium stearate, hydrotalcite or the like, antioxidants such as phenol based, phosphorus based, silfer, antioxidants such as phenol based, phosphorus based, silfer, UV absorbers, light stabilizers, antistatic agents, flame retardants, pigments, dyes, or inorganic powders such as silica, tale, calcium carbonate, calcium oxide, magnesium oxide or the like.

[0071] (Melt Spinning)

[0072] The spunbonded nonwoven polyolefin resin fabric of the present invention make a spunbonded primary non-woven fabric by melt spinning a mixture which is dry blended fixed amount of lubricant such as fatty acid amide or the like and additives component added as the need arises to a polyolefin resin.

[0073] Here, the spunbonded nonwoven fabric can be obtained, for example, a primary nonwoven fabric by well

known method which comprises melt extruding the raw material polyolefin resin having the above described combination, spinning it from a spinneret for spinning, taking up the spun fiber with an airborne tracking apparatus such as air sucker or the like, opening as the need arises, collecting fibers with air flow by a web collecting apparatus such as a net conveyer or the like, partial fusing with heating means such as heated air, heating roll or the like, thereafter winding up.

[0074] Further, this spunbonded nonwoven polyolefin resin fabric is a nonwoven fabric comprising ordinarily polyolefin resin alone, but it may be a conjugate fiber nonwoven fabric comprising a polyolefin resin of at least 50% on the surface of the fiber.

[0075] These composite fiber nonwoven fabric may be used the composite fiber having core-sheath structure composing of a polyolefin resin as the sheath component and a resin having higher melting point than the sheath component resin excepting the polyolefin resin such as a polyamide resin, polyester resin or the like as the core component, or the conjugate fiber having side-by-side structure which comprises the polyolefin resin of ordinarily 50 mass % or more of fibers and the other resin in the rest. Further, this core-sheath structure conjugate fiber and side-by-side structure conjugate fiber may be, of course, combination of two kind of different polyolefin resins among polyolefin resins.

[0076] (Ageing Processing)

[0077] Thus obtained spunbonded primary nonwoven fabric is excellent in spinability, however in some cases the coefficient of static friction specified by the nonwoven fabric of the present invention is not expressed by itself, by the kind of the lubricant, especially in the case of the fatty acid amide compound. In this case, to make the spunbonded nonwoven polyolefin resin fabric of the present invention, by only after ageing this primary nonwoven fabric under heating, it can be the range of the coefficient of static friction which is specified by the present invention. In the conventional nonwoven fabric manufacturing apparatus, such ageing apparatus is not included, generally ageing was not performed.

[0078] Here, ageing condition is differed due to kind of the polyolefin resin, resin characteristic such as degree of crystallinity, density, melting point or the like, kind and melting point of contained the fatty acid amide compound and solubility to the polyolefin resin or the like. Consequently, by considering characteristic of the polyolefin resin which is the raw material of the nonwoven fabric, or characteristic of the fatty acid amide compound as the lubricant, and by considering the range of the coefficient of static friction in the range of 0.1 to 0.4, required characteristic such as flexibility, feeling, touch to the skin or the like required to the end product, concretely the treating condition is decided experimentally.

[0079] For example, the spunbonded nonwoven polyolefin resin fabric of the present invention is obtained by ageing a spunbonded nonwoven fabric made by melt spinning the polyolefin resin which containing the fatty acid amide compound at a temperature of 30 to 60° C. for around 1 to 50 hours. For example, in the homopolymer of polypropylene, as a concrete example in the case of that having isotactic pentad fraction of around 90 mol % and content of amide erucate of 0.3 mass %, the following ageing treatment condition can set up.

[0080] In the case of the ageing temperature of 40° C., the ageing time is 5 to 50 hours, preferably about 8 to 12 hours. Moreover, in the case of the ageing time is 24 hours, the ageing temperature is 32 to 50° C., preferably about 33 to 40° C. When the ageing condition is milder than the range described above, lowering of the coefficient of static friction requires longer time, in some cases productivity is lowered. Further, when the ageing condition is severer than the above described range, in some cases the coefficient of static friction become higher reversely, thus it is not preferred.

[0081] This ageing treatment can ordinarily carried out in an ageing room which heated air is circulated, by arranging core pipes in the state of winding the nonwoven fabric in roll form. When this ageing is performed, even though the nonwoven fabric is wound state in roll form, the nonwoven fabric is obtained approximate uniform effect of ageing treatment due to gas permeability of the nonwoven fabric. Further, ageing can also carried out by roll heating and/or heated air, the nonwoven fabric is not wound state, but while it is running between rolls.

[0082] (Surface Treatment)

[0083] Next, the other method to give the coefficient of static friction of the nonwoven fabric of the present invention is a method by surface treatment of the fiber of the nonwoven fabric obtained by spinning. As the surface treating agent, for example, a pollution of dimethyl siloxane, methyl hydrogen polysiloxane, compound containing fatty acid amide can be used. However, this surface treatment has problem that cannot treat into inner pert in some cases, due to wet eating process, drying process and thickness of the nonwoven fabric. Therefore, in many cases the methods by melt blending of the lubricant described above is preferred, due to form, use, range of the coefficient of static friction or the like of the nonwoven fabric.

[0084] The spunbonded nonwoven fabric comprising the polyolefin resin of the present is generally hydrophobicity, owing to use of the absorptive articles and the like, for example, in the case of using as the top material of the disposable diaper or sanitary napkin or the like, in some cases hydrophobicity of at least water or the like permeable is required. In this case the nonwoven fabric can do hydrophobicity imparting treatment.

[0085] This hydrophobicity imparting treatment include introduction of hydrophilic groups such as carboxyl group or the like by ozone treatment, or surface treatment by hydrophilic compounds, however treatment by solution of hydrophilic compounds is preferred in the point of the effect. As the treating method, spraying method, coating method, immersing method and the like can be exemplified. Moreover, the hydrophilic compound can be exemplified, for example, alkyl-ester such as polyalcohol having 8 to 26 carbon atoms containing polyoxyethylene, alkyl-ether, polyether containing fatty acid amide group, fatty acid monoglyceride, sorbitol ester derivative, alkyl phosphate metal salt, polyoxyethylene alkyl ether sulfate metal salt, alkyl sulfosuccinate metal salt, sugar derivative having glucose ring and the like.

[0086] The spunbonded nonwoven fabric composed of the polyolefin resin of the present invention is maintained essential characteristic of the nonwoven fabric which has the polyolefin resin itself, by lowering of the coefficient of static

friction by the ageing treatment or the surface treatment, and flexibility, feeling, touching feel such as touch to the skin, and usage feel are improved markedly. Consequently, it can be used as materials for various absorbent article (such as sanitary material and the like), various clothing materials, material for medical treatment, material for wrapping and the like.

[0087] (Forming of Multilayer)

[0088] The spunbonded nonwoven fabric can make a multilayer material with other nonwoven fabric, thermoplastic resin film, paper or the like. However, in the case of used as multilayer object, at least one side of the nonwoven fabric is used the nonwoven fabric of the present invention which satisfy the above described characteristics such as the coefficient of static friction of 0.1 to 0.4. And, the other nonwoven fabric in the case of using the spunbonded nonwoven polyolefin resin fabric in the multilayer nonwoven fabric may be a nonwoven fabric which composed of not the polyolefin resin but the polyamide resin or the polyester resin.

[0089] The characteristic related to feel of the nonwoven fabric is the problem on the surface of the nonwoven fabric material, to improve the characteristics such as strength, moisture permeability, gas permeability, powder barrier property, heat fusibility and the like, it can also be made the multilayer material with general polyolefin resin nonwoven fabric containing no the fatty acid amide compound, other thermoplastic resin nonwoven fabric, the moisture permeable film, water resistant film, water-proofing film or the like.

[0090] In this case, usually the spunbonded nonwoven polyolefin resin fabric after the above described ageing treatment is laminated so as to exposure on at least one side. However, owing to the case, it can also be ageing treated after lamination with other nonwoven fabric or film or the like. The other nonwoven fabric in this case include the melt-blown nonwoven fabric, short fiber nonwoven fabric or the like. For example, a laminating method where the melt-blown nonwoven fabric is spun on the spunbonded nonwoven fabric, and further spunbonded nonwoven fabric is manufactured in multi-step and continuously thereon, a multi-layer nonwoven fabric is previously manufactured by containing fatty acid amide into a polyolefin resin for at least one side of spunbonded nonwoven fabric, and then this multi-layer nonwoven fabric is ageing treated is given.

[0091] Here, the nonwoven fabric except the polyolefin resin can include a nonwoven fabric, for example, of the polyester resin, the polyamide resin, especially having melting point of 150° C. or more, particularly 150 to 300° C. Here, the polyester resin can include homopolyester such as polyethylene terephthalate, polybutylene terephthalate, polytimethylene terephthalate, polynaphthalene terephthalate and the like, and copolyester which copolymerized with other component, in which the homopolyester is main component unit, and further these blended polyester.

[0092] The polyamide resin can exemplify nylon 6 (polycaprolactamide), nylon 6,6 (polyhexamethylene adipamide), nylon 6,10 (polyhexamethylene sebacamide), nylon 11 (polyundecane amide), nylon 7 (poly-ω-aminoheptanic acid), nylon 9 (poly-ω-aminononaic acid), nylon 12 (polylauric amide) and the like. Among them, nylon 6 and nylon 6,6 are used preferably.

[0093] As the laminating means to form his multilayer nonwoven fabric, various laminating means such as heat adhesion, adhesion with adhesives and the like is given. However, simple and low cost laminate heat adhesion means, especially heat embossing roll method can be adopted. This embossing roll method can laminate by using well-known laminating apparatus with an embossing roll and a flat roll. Here, the embossing roll can adopt various shape embossing pattern, there are lattice state in which each fused part is continued, independent lattice state, optional distribution and the like. Moreover, emboss area fraction is in the range of approximate 5 to 40%.

[0094] Further, the spunbonded nonwoven polyolefin resin fabric can also make the mutilayer material with moisture permeable resin layer (film), the water resistant resin layer (film), and the water-proofing resin layer (film) in addition to lamination with the other nonwoven fabric. In this case, an extruding laminating method, a heat embossing roll method, a dry laminating method and the like can adopt

[0095] The heat embossing roll lamination condition is different by melting point of the spunbonded nonwoven fabric or the other nonwoven fabric, and making either layer of other film the emboss side, the condition is selected properly by taking respective factor into consideration. These emboss pattern, emboss area fraction, temperature, pressure and the like can be properly selected depending on the fiber diameter, thickness, METSUKE, gas permeability, processing speed of each nonwoven fabric, and further melting point, thickness and the like of other nonwoven fabric film or the like.

[0096] The spunbonded nonwoven fabric is used for, including the disposable diaper, sanitary napkin or incontinence pad, medical treatment, clothing and wrapping.

[0097] [Examples Based on the First Embodiment]

[0098] In the following, the present invention will be illustrated in further detail based on the manufacturing examples of the spunbonded nonwoven fabric based on the first embodiment. However, the present invention is not limited by these examples.

EXAMPLE 1

[0099] To a crystalline polypropylene resin [isotactic pentad fraction: 91 mol %, MFR: 60 g/10 min, melting point: 160° C.] 100 mass parts, a phenol based antioxidant (made of Ciba Special Chemical Company, Irganox 1010): 0.035 mass parts, phosphorus based antioxidant (made of Sando Company, Sandostab P-EPQ): 0.035 mass parts, a neutralizer (made of Kyodo Yakuhin Co. Ltd., calcium stearate) 0.025 mass parts and amide crucate: 0.3 mass parts were dry blended with a super-mixer, thereafter melt kneading at 220° C. by using 65 mm \$\phi\$ extruder, and melt spun by extruding from the spinneret. The spinneret in this case was diameter of hole of the spinneret: 0.3 mm, and numbers of it in width direction: 200, and extrusion direction: 15.

[0100] Then, the spun fiber group were introduced into an air sucker and tracked and drawn, and collected on a belt having a suction apparatus, and then it was sent to heated embossing rolls [an embossing roll at 140° C./a flat roll at 140° C.] and partly adhered, and then rolled it onto a paper tube, thus a primary nonwoven fabric was obtained. The obtained rolled nonwoven fabric was ageing treated in an

ageing condition of 40° C. 24 hours to obtain a spunbonded nonwoven polyolefin resin fabric of the present invention. The obtained nonwoven fabric had an average fiber diameter: $16 \mu m$, METSUKE: 20 g/m^2 , a coefficient of static friction: 0.19, degree of bending rigidity: 5.3 cm, touch to the skin: \odot , feeling: \odot . and end breakage or jogging in the spinning process was not observed, and it can spun stably.

[0101] Further, evaluation of the nonwoven fabric was performed based on the following description.

[0102] (1) Coefficient of Static Friction

[0103] Measurement was performed according to the measuring method of the coefficient of static friction of ASTM-D 1894. And, the detail was described above.

[0104] (2) Degree of Bending Rigidity [Longitudinal Direction] (cm)

[0105] Measurement was performed according to JIS L 1096 (45° cantilever method).

[0106] (3) Touch to the skin feeling

[0107] A functional test by touch to the skin handle by 20 monitors was performed, and evaluation of \odot , \bigcirc and Δ was performed.

EXAMPLE 2

[0108] An experiment was performed according to example 1 except that changing the content of amide erucate to 0.4 mass parts, the aperture of spinneret to 0.3 mm, extruding speed and belt speed. The obtained nonwoven fabric had an average fiber diameter: $24 \, \mu m$, METSUKE: $20 \, \text{g/m}^2$, a coefficient of static friction: 0.19, of stiffness: 5.3 cm, touch to the skin: \odot , feeling: \odot . And end breakage or jogging in the spinning process was not observed, and it can spun stably.

[0109] [The Second Embodiment]

[0110] A spunbonded nonwoven polypropylene resin fabric of the present invention is a spunbonded nonwoven fabric which has stiffness [sum of the value for the longitudinal and transverse directions as obtained according to JIS L 1096, 6.19 1, method A (45° cantilever method)] of 70 to 120 mm and a coefficient of static fiction of 0.1 to 0.4.

[0111] (Stiffness)

[0112] That is, spunbonded nonwoven fabric has, first of all, has stiffness [sum of the values for the longitudinal and transverse directions as obtained according to JIS L 1096, 6.19.1, method A (45° cantilever method)] of 70 to 120 mm. As the item of evaluation of performance of the spunbonded nonwoven fabric is considered feeling together with strength and the like as important. This feeling is considered as combination of softness, hardness, resiliency, restitution property, feeling of cold temperature, luster, draping property and the like, and it is well known that feeling is different greatly by the manufacturing method, especially adhesion method.

[0113] Among these properties, degree of bending rigidity by the evaluation test of flexibility, which is index of softness, is standardized various test method depending to characteristic of the nonwoven fabric. The spunbonded nonwoven fabric of the present invention is specified by the measuring value by the above described 45° cantilever

method, which is suited to evaluation of flexibility of the most general nonwoven fabric. The stiffness of the spunbonded nonwoven fabric is usually observed difference of stiffness, in flow direction (longitudinal) and direction at right to flow (transverse) in the manufacturing process of the nonwoven fabric. Consequently, in the spunbonded nonwoven fabric of the present invention, to make the average this property of direction, stiffness was specified with sum of stiffness in longitudinal-transverse direction. (In the following, sum of values of stiffness far the longitudinal and transverse direction is used as the stiffness as far as especially not making any comment.

[0114] The stiffness of the spunbonded nonwoven polypropylene resin fabric, which is general purpose article having the fiber diameter of approximate 20 μ m and MET-SUKE of 20 g/m², is approximate 70 to 120 mm. It is said that the stiffness is desirable low for feeling. As means to lower stiffness, it has been investigated means which to finer the fiber diameter, to decrease METSUKE, to adopt low crystalline resin as the polypropylene resin, and further to lower elastic modulus of the polypropylene resin by combining soft resin or thermoplastic elastomer to the polypropylene resin and the like.

[0115] However, the spunbonded nonwoven polypropylene resin fabric require not only feeling but also balance of synthetic properties. The method to improve feeling by lowering the degree of stiffness described above is that to soften the polypropylene resin itself, or to decrease fiber diameter or METSUKE. This can to say improving means that sacrifice strength and moderate flexibility, which are fundamental special character of the spunbonded nonwoven polypropylene resin fabric.

[0116] Consequently, at manufacturing time of the spunbonded nonwoven fabric or, especially, in processing into the end product such as disposable diaper, stabilization of the nonwoven fabric at the post processing time such as sending out of the nonwoven fabric, heat sealing and the like is not maintained, from point of stabilization of quality, productivity and the like, there is limit in technique to only lower the stiffness. Consequently, the spunbonded nonwoven polypropylene resin fabric, which is much consumed, has been used that having stiffness of 70 to 120 mm in spite of existing dissatisfaction in feeling, touch to the skin and the like. And also, for example, even though a spunbonded nonwoven fabric which combined a thermoplastic elastomer of 10 mass % into a polypropylene resin, decreasing of the stiffness is slight, and when combining amount of the thermoplastic elastomer make more much, not only the post processability decrease but also spinability lower.

[0117] (Coefficient of Static Friction)

[0118] Moreover, by investigation of the inventors of the present invention, it was found that the numerical value of the stiffness itself do not showed directly feeling of the spunbonded nonwoven polypropylene resin fabric as described above. That is, it was found that feeling which feel on hand or skin of human can not evaluated by the numerical value of the stiffness alone.

[0119] The spunbonded nonwoven polypropylene resin of the present invention has characteristic which satisfy in addition to the stiffness of 70 to 120 mm, preferably 75 to 115 mm as the first, and the coefficient of static friction in

the range of 0.1 to 0.4, preferably 0.12 to 0.36 as the second. Although the reason why the coefficient of static friction of the spunbonded nonwoven fabric relates greatly to feeling of the nonwoven fabric is not always clear, it is considered that slippage between fibers which constitute the nonwoven fabric become favorable in the case of touching to the hand or skin, and the whole nonwoven fabric become easy deformable. On account of this, evaluation of feeling of the spunbonded nonwoven fabric is difficult by only the stiffness, it became clear that even though the equal stiffness, it was different greatly by the coefficient of static friction.

[0120] The coefficient of static friction of the spunbonded nonwoven polypropylene resin fabric of the present invention may be controlled into 0.1 to 0.4, the means is optional, and is concerned adoption of various means. However, it is considered that the reason why the spunbonded nonwoven fabric of the present invention has excellent flexibility and feeling is the effect by improving of slipping property between the above described long fibers, therefore not only slipping property of the fiber of the surface part of the nonwoven fabric, but also slipping property of the fiber as the whole nonwoven fabric are improved, as the result the coefficient of static friction as the surface characteristic is in the specific range.

[0121] The characteristic of the present invention is that a spunbonded nonwoven fabric is in addition to having specific range of stiffness which secure strength, sturdiness, post processability and the like as conventional well-known spunbonded nonwoven polypropylene resin nonwoven fabric, having the above described coefficient of static friction of 0.1 to 0.4, preferably 0.12 to 0.36. Here, when the coefficient of static friction is 0.1 or less, in addition to lower processability reversely by over-slippage in the post processing, owing to lowering the coefficient of static friction, it require more much usage amount of additives or surface treating agent adopted generally, thus it becomes worse economically in some case Further, there is trend to lower conjugativity by heat sealing, adhesives and the like at the time of post processing, and it is not preferred in some case. And, when the coefficient of static friction is 0.4 or more, the improving effect of usage feel such as flexibility, feeling, touch to the skin becomes insufficient.

[0122] Moreover, measurement of the coefficient of static friction is as described in paragraph of "measurement of a coefficient of static friction" in the first embodiment described above.

[0123] (Basic Characteristic of Nonwoven Fabric)

[0124] The spunbonded nonwoven polypropylene resin fabric has preferably an average fiber diameter of 10 to 30 μ m and METSUKE of 10 to 30 g/m², and more preferably the average fiber diameter of 10 to 25 μ m and METSUKE of 15 to 25 g/m². Here, when the average fiber diameter is 10 μ m or less and METSUKE is 10 g/m² or less, securing the range of strength and stiffness is difficult, as the result post processability become lower. And, when the average fiber diameter is 30 μ m or more and METSUKE is 30 g/m², securing of stiffness and feeling is difficult in some case. And flexibility become lower, characteristics as the nonwoven fabric is decreased, especially application to the absorbent article and the like is difficult in some case, and its using field is restricted greatly.

[0125] The spunbonded nonwoven polypropylene resin fabric of the present invention can select/combine properly

resin, fiber diameter, METSUKE and the like based on the use of the nonwoven fabric, required property, gas permeability, non-water permeability and the like.

[0126] The nonwoven polyopropylene resin fabric used in the present invention is not especially restricted as far as it is the spunbonded nonwoven fabric, and it can produce by various manufacturing process. Moreover, the bonding form can adopt embossing, calendaring, heat adhesion such as hot air or the like, mechanical entangling such as needle punching, water punching and the like. However, heat adhesion by using heat embossing method is preferred from securing of productivity stiffness and the like.

[0127] This heat embossing roll method is performed by using well-known laminating apparatus having an embossing roll and a flat roll. Here, the embossing roll can adopt various shape embossing pattern, there are lattice state in which each fused part is continued, independent lattice state, optional distribution and the like. And, emboss area fraction is in the range of approximate 5 to 40%. Here, when emboss area fraction is 5% or less, it come off the lower limit of the rang of stiffness, and when the emboss area fraction is 40% or more, it come off the upper limit of stiffness, and at the same time flexibility is easily decreased in some case. And, when embossing pressure is low, usage feel such as flexibility, feeling, touch to the skin is favorable, however reversely stiffness is lowered, and post processability is decreased markedly, thus it is not practical. Consequently, condition of heat embossing method is selected properly by taking shape of embossing part, pitch between emboss adhering parts, roll temperature and the like, and stiffness into consideration.

[0128] (Polypropylene Resin)

[0129] In this embodiment, the spunbonded nonwoven fabric used the polypropylene resin described in previously in the first embodiment is suitable. Since the propylene resin is as described previously, redundant explanation is omitted.

[0130] These polypropylene resins may be mixtures of two kind or more, and can use as resin compositions containing other ethylene resin, propylene resin, thermoplastic elastomer or the like of less than 30 mass % according to necessity.

[0131] (Method for Control Coefficient of Static Friction)

[0132] In this embodiment, the coefficient of static friction is controlled by applying the lubricant to the fiber of the nonwoven fabric as same as the first embodiment described above. Since the "lubricant", "melt spinning", "ageing" and "surface treatment" is as described previously in explanation of the first embodiment, redundant explanation is omitted here.

[0133] (Formation of Multilayer)

[0134] Moreover, in this embodiment, the nonwoven fabric may be made the multiplayer nonwoven fabric as same as the first embodiment described previously. With regard to formation of multiplayer, since it is as described previously in the paragraph of "formation of multilayer", redundant explanation is omitted here.

[0135] [Examples Based on the Second Embodiment]

[0136] In the following, the present invention will be illustrated in further detail based on manufacturing examples

of the spunbonded nonwoven fabric based on the second embodiment. However, the present invention is not limited by these examples.

EXAMPLE 3 to 4 , and Comparative Example 1 to 5

[0137] To a crystalline polypropylene resin [isotactic pentad fraction: 91 mol %, MFR: 60 g/10 min, melting point: 160° C.] 100 mass parts, a phenol based antioxidant (made of Ciba Special Chemical Company, Irganox 1010): 0.035 mass parts, phosphorus based antioxidant (made of Sando Company, Sandostab P-EPQ): 0.035 mass parts, a neutralizer (made of Kyodo Yakuhin Co. Ltd., calcium stearate) 0.025 mass parts and amide erucate: [mass parts listed in Table 1] were dry blended with a super-mixer, thereafter melt kneading at 220° C. by using 65 mm \$\phi\$ extruder, and melt spun by extruding from the spinneret. The spinneret in this case was diameter of orifice of the spinneret in example 1, 2 and comparative example 1 to 4: 0.4 mm, and in comparative example 5: 0.3 mm, and numbers of it in width direction: 200, and extrusion direction: 15.

[0138] Then, the spun fiber group were introduced into an air sucker and tracked and drawn, and collected on a belt having a suction apparatus, and then it was sent to heated embossing rolls [the condition listed in Table 1] and partly adhered, and then rolled it onto a paper tube, thus a primary nonwoven fabric was obtained. By alternating manufacturing condition of the nonwoven fabric, nonwoven fabric having different average fiber diameter, METSUKE and degree of adhesion were obtained.

[0139] The obtained rolled nonwoven fabric was ageing treated in an ageing condition of 40° C. 24 hours to obtain a spunbonded nonwoven polypropylene resin fabric. The average fiber diameter, METSUKE, the coefficient of static friction, stiffness, feeling, post processability and result of spinability of the obtained nonwoven fabric are listed in Table 2.

[0140] Further, evaluation of the nonwoven fabric was performed based on the following description.

[0141] (1) Coefficient of Static Friction

[0142] Measurement was performed according to the measuring method of the coefficient of static friction of ASTM-D 1894. And, the detail was described above.

[0143] (2) Stiffness [Sun of the Values for the Longitudinal and Transverse Directions]

[0144] Measurement was performed according to JIS L 1096 6.19.1, method A (45° cantilever method).

[0145] (3) Feeling

[0146] A functional test by touch to the skin handle by 20 monitors was performed, and evaluation of \odot , \bigcirc and Δ was performed.

[0147] (4) Post Processability

[0148] To the spunbonded nonwoven fabric, by using a nozzle discharge system fiber spray die, an ethylene-vinyl acetate based hotmelt adhesive H-6805 [made of Nitta Findorei Co. Ltd.,] was sprayed so as to be coating amount of 4 g/m² in fibrous state. And then, it was superposed thereon a drawn PE film containing inorganic filler "Poram

PU35" (thickness 35 μ m) made of Tokuyama and laminated together to obtained a nonwoven fabric laminate. When this lamination, those that got wrinkle-meander-neck-in made Δ , and that laminated without trouble made \odot .

TABLE 1

			embossing condition				
	amide ecrucate mass parts	ageing do or don't	area fraction %	pressure N/cm	temperature (° C) emboss side/ flat side	spin- ability	
example	0.2	do	20	500	135/135	0	
example 4	0.2	do	20	500	1351135	0	
compar- ative example	No	don't	20	500	135/135	, O	
comparative example	0.1	do	20	500	135/135	0	
comparative example	No	don't	20	500	1351135	0	
comparative example	0.4	do	10	300	100/10	0	
compar- ative example 5	No	don't	20	500	130/130	Δ.	

[0149]

nonwoven fabric, and it is especially favorable in flexibility, feeling, touch to the skin, and is excellent in strength, bending rigidity and post processability, and it is usable suitably to various use, especially as the material for the absorbent article such as disposable diaper and the like.

- 1. A spunbonded nonwoven fabric which comprises a spunbonded nonwoven fabric made of a polyolefin resin and has an average fiber diameter of 5 to $60 \mu m$, METSUKE of 5 to 200 g/m^2 and a coefficient of static friction of 0.1 to 0.4.
- 2. The spunbonded nonwoven fabric according to claims 1, wherein the nonwoven fabric contains a lubricant.
- 3. The spunbonded nonwoven fabric according to claims 1 or 2, wherein the lubricant is a fatty acid amide compound, and its content is 0.05 to 1.0 mass %.
- 4. The spunbonded nonwoven fabric according to any one of claims 1 to 3, wherein the polyolefin resin is a polypropylene resin.
- 5. The spunbonded nonwoven fabric according to any one of claims 1 to 4, wherein the fiber is hydrophlicity imparting treated.
- 6. A spunbonded nonwoven fabric which comprises a spunbonded nonwoven polypropylene resin fabric having stiffness, which is the sum of the values for the longitudinal and transverse directions as obtained according to IIS L1096 6.19.1, method Λ that is 45° cantilever method, of 70 to 120 mm, and a coefficient of static friction of 0.1 to 0.4.
- 7. The spunbonded nonwoven fabric according to claim 6, wherein the nonwoven fabric has the average fiber diameter of 10 to 30 μ m, and METSUKE of 10 to 30 g/m².
- 8. The spunbonded nonwoven fabric according to claims 6 or 7, wherein the nonwoven fabric contains the lubricant of 0.15 to 1.0 mass %.
- 9. The spunbonded nonwoven fabric according to claim 8, wherein the lubricant is a fatty acid amide compound.

TABLE 2

	fiber		static	Stiffness (mm)		Post
	diameter M	METSUKE (g/cm ²⁾	friction coefficient	Longi- Trans- tudinal verse	sum feeling	Process- ability
example 3	18	20	0.18	53 37	90 🔘	0
example 4	18	20	0.28	59 38	97 🔘	0
comparative example 1	18	20	0.65	64 39	103 Δ	0
comparative	18	20	0.45	60 38	98 Δ	③
example 2 comparative	18	18	0.62	57 38	95 Δ	0
example 3 comparative example 4	18	20	0.15	39 31	65 ③	Δ
comparative example 5	14	17	0.55	43 20	63 💿	Δ

[0150] Further, the relation between the coefficient of static friction and stiffness of spunbonded nonwoven fabric of examples of the present invention and comprative examples is shown in FIGURE 1. It is clear that spunbonded nonwoven fabric of the present invention (in the range of dotted line) is different markedly from conventional nonwoven fabric.

[0151] Industrial Availability

[0152] The present invention is usable as the nonwoven polyolefin resin fabric and the absorbent article used this

- 10. The spunbonded nonwoven fabric according to any one of claims 6 to 9, wherein the fiber constituting of the nonwoven fabric is hydrophilicity imparting treated.
- 11. An absorbent article made by using the nonwoven fabric according to any one of claims 1 to 10.
- 12. The absorbent article according to claim 11, wherein the absorbent article is a disposable diaper, a sanitary napkin or incontinence pad.

* * * * *

X. RELATED PROCEEDINGS APPENDIX

None.