

Polynomial Approximation

By Peter Alexia, Vilau Paul and Tivadar Razvan 12/8

Problem statement

Identification data and validation data for I/O

Finding the best fit for the unknown function

Polynomial Approximator Structure

$$egin{aligned} y(k) &= heta_1 + heta_2 x_1(k) + heta_3 x_2(k) + heta_4 x_1^2(k) + heta_5 x_2^2(k) + heta_6 x_1(k) x_2(k) \ &= egin{bmatrix} 1 & x_1(k) & x_2(k) & x_1^2(k) & x_2^2(k) & x_1(k) x_2(k) \end{bmatrix} egin{bmatrix} heta_1 \ heta_2 \ heta_3 \ heta_4 \ heta_5 \ heta_6 \end{bmatrix} \ &= \phi^ op(x(k)) heta = \phi^ op(k) heta \end{aligned}$$

How to find θ parameters

1. Calculate regressor matrix Φ

$$\phi = \phi(x_1, x_2)$$

2. Calculate θ column vector

$$heta = (\phi^ op \phi)^{-1} \phi^ op Y$$
 or $heta = \phi ackslash Y$

Key features

- Custom polynomial basis expansion
- Adaptive degree selection
- Efficient polynomial generating function

CONCLUSIONS

The optimal degree for the approximator was determined by carefully monitoring the validation error, ensuring that the model was neither too simple (underfitting) nor too complex (overfitting).

Thank you

Code

```
for degree = 1:m
function matrix = Polynomial(x1, x2, m, n)
                                                               R_{deqree} = R(:, 1:(deqree+1)*(deqree+2)/2);
matrix = [];
                                                               Rval_degree = R_val(:, 1:(degree+1)*(degree+2)/2);
for i = 1:n
  for j = 1:n
                                                               theta = R_degree\Y_flat;
     polynomial_terms = 1;
                                                               Y_hat = R_degree*theta;
     for degree = 1:m
                                                               Y_hat_val = Rval_degree*theta;
       for k = 0:degree
          1 = degree - k;
                                                               errors(degree) = mean((Y_flat - Y_hat).^2);
          monomial = x2(i).^k * x1(j).^1;
                                                               errors_val(degree) = mean((Y_val_flat - Y_hat_val).^2);
          polynomial_terms = [polynomial_terms, monomial];
                                                             end
       end
   end
    matrix = [matrix; polynomial_terms];
    end
  end
                                             figure
end
                                             mesh(X_val{1}, X_val{2}, Y_val, 'FaceColor', 'c'); hold on;
                                             colormap(cool)
                                             mesh(X_val\{1\}, X_val\{2\},
                                            Y_hat_val_optimal_reshaped, 'FaceColor', 'interp');
                                             colormap(cool)
                                             title('Validation Data: True vs Predicted');
                                                                                                                 10
                                             legend('True', 'Predicted');
```