Санкт-Петербургский национальный исследовательский университет ИТМО Факультет систем управления и робототехники

Алгоритмы и структуры данных

Отчёт по лабораторной работе №6 (1207)

Преподаватель: Тропченко А. А.

Выполнил: Марухленко Д. С.

Группа: R3235

1. Цель работы

Решить задачу №1207 на платформе Timus Online Judge https://acm.timus.ru/problem.aspx?space=1&num=1207

2. Задача

Условие

На плоскости находятся N точек (N чётно). Никакие три точки не лежат на одной прямой. Ваша задача — выбрать две точки так, что прямая линия, проходящая через них, делит множество точек на две части одинакового размера.

Ограничение времени: 1.0 секунды

Ограничение памяти: 64 МБ

Исходные данные

Первая строка содержит целое число N ($4 \le N \le 10~000$). Каждая из следующих N строк содержит пары целых чисел x_i , y_i ($-10^6 \le x_i$, $y_i \le 10^6$) — координаты i-й точки.

Результат

Выведите номера выбранных точек.

Пример

Исходные данные	Результат
4	1 4
0 0	
10	
0 1	
11	

3. Материалы работы

3.1. Объяснение алгоритма

Для решения задачи представим точки па плоскости. После этого найдём самую «левую» точку и переместим в неё начало координат с сохранением направления и размерности осей. После этого необходимо найти тангенсы углов между прямыми, соединяющей начало координат с каждой из точек, и новой осью. После — необходимо отсортировать структуру массив с точками по тангенсу угла и найти «средний» элемент в массиве. В ответ идёт точка, стоящая в начале координат и найденный элемент.

3.2. Код программы.

```
1. #include <iostream>
2. #include <algorithm>
3. #include <limits>
4. using namespace std;
5.
6. struct Point {
7. int x;
```

```
8.
       int y;
       int number;
9.
       double tang;
10.
11. };
12.
13. bool compare angle (Point p1, Point p2) { return p2.tang > p1.tang; }
15. int main() {
       int n;
       cin >> n;
17.
      Point points[n];
18.
19.
       int minIndex = 0;
       for (int i = 0; i < n; i++) {
20.
           cin >> points[i].x >> points[i].y;
           points[i].number = i + 1;
22.
23.
           if (points[i].x < points[minIndex].x)</pre>
24.
               minIndex = i;
      }
25.
26.
      int min_x = points[minIndex].x;
27.
      int min_y = points[minIndex].y;
      for (int i = 0; i < n; i++) {
28.
29.
           points[i].x = points[i].x - min_x;
           points[i].y = points[i].y - min_y;
if (points[i].x == 0 ) {
30.
31.
32.
               if (points[i].y > 0) {points[i].tang = numeric limits<double>::max();}
               else if (points[i].y < 0) {points[i].tang =</pre>
  numeric_limits<double>::lowest()+0.000000001;}
               else if (points[i].y == 0) {points[i].tang =
  numeric_limits<double>::lowest();}
35.
36.
           else points[i].tang = ((double)points[i].y)/((double) points[i].x);
37.
38.
39.
       sort(points, points+n, compare_angle);
40.
      cout << minIndex+1<< " " << points[n / 2].number << endl;</pre>
41.
42.
       return 0;
43.}
```

4. Результат выполнения и ссылка на репозиторий GitHub

9259038	00:20:56 9 мар 2021	Daniil Marukhlenko	<u>1207</u>	G++ 9.2 x64	Accepted		0.046	636 КБ	
---------	------------------------	--------------------	-------------	-------------	----------	--	-------	--------	--

https://github.com/japersik/algorithms and data structures/

Вывод

Работа выполнена, задача решена с использованием сортировки структур.