

We'll Be Starting Shortly!

To help us run the workshop smoothly, kindly:

- Submit all questions using the Q&A function
- If you have an urgent request, please use the "Raise Hand" function

Using Zoom: Viewing Mode

Side-By-Side Mode

- When sharing screen (slide share)
- With small thumbnails of people on the sidebar

STEPS:

- 1. View Options
- 2. Side-By-Side Mode

Sentiment Analysis With Tensorflow

Tom Huynh, 2021

Meet Tom Huynh

- Director of Machine Learning at Coderschool
- Former Head of Web Development at Weboptimizers, Melbourne
- Google Certified Tensorflow Developer for Deep Learning/Machine Learning
- Master of Al/Machine Learning, UNSW, Sydney
- Bachelor of Computer Science, University of Melbourne, Australia
- Winners and Runner-ups of multiple Startup/AI/Tech Hackathons

Who is Coderschool?

• CoderSchool is an organization that drives frontier technologies in Vietnam through education.

 Provide both online and offline coding courses, mentorship, and job placement for our students and alumni.

Kick-start Your Tech Journey With Us!

For Machine Learning lovers:

- Machine Learning & Data Science (online/offline and full-time/part-time)
- Data Analysis (part-time)

For aspiring Web Developers:

Full Stack Web Development (online/offline and full-time/part-time)

100% Job Guarantee for beginners with no coding experience:

For more information, please contact us!

Are you ready?

Email us at apply@coderschool.vn

Or call us at (+84) 984 326 569

Our client base

What I hope you take away from this

CODE LEAGUE 2021

- 1. What is Sentiment Analysis
- 2. Why it is very important to business and society
- 3. What is the general pipeline for preprocess text
- 4. How to represent words for computer to process (Tokenization)
- 5. What is Word Embedding Vector
- 6. Basic understanding of deep neural network
- 7. Build a deep learning model using Tensorflow (lab)

Let's think about a scenario

Text: "My beanie is amazing!..."

Length: 120 words

Text: "My shirt got wrong color!..."

Length: 300 words

Text: "The size of the shirt is really odd!..."

Length: 20 minutes

Text: "The new beanie feel really warm!..."

Length: 40 words

CoderSchool

Sentiment Analysis

1111111

The process of determining the opinion or feeling of a piece of text (positive, negative or neutral.)

Why is Sentiment Analysis important?

- Brand Reputation & Product/Service Monitoring
- Customer Service
- Market Research
- Social Purposes

Examples

1111111

Replying to @AirbnbHelp

@airbnbhelp @airbnb I've had multiple conversations with your customer support team and they are absolutely worthless. No one has been able to address my issue or process the refund I was promised.

The process of sentiment analysis

IMDB Movie Review Dataset

label

text

Text (corpus):

25,000 movie reviews from IMDB website

Label (expected output):

0 means negative sentiment1 means positive sentiment

Split Training/Test:

25,000 for training 25,000 for testing

0	This was an absolutely terrible movie. Don't be lured in by Christopher Walken or Michael Ironside.
(neg)	Both are great actors, but this must simply be their worst role in history. Even their great acting coul
	not redeem this movie's ridiculous storyline. This movie is an early nineties US propaganda piece.
	The most pathetic scenes were those when the Columbian rebels were making their cases for
	The most pathetic scenes were those when the Columbian rebels were making their cases for

The most pathetic scenes were those when the Columbian rebels were making their cases for revolutions. Maria Conchita Alonso appeared phony, and her pseudo-love affair with Walken was nothing but a pathetic emotional plug in a movie that was devoid of any real meaning. I am disappointed that there are movies like this, ruining actor's like Christopher Walken's good name. I could barely sit through it.

This is the kind of film for a snowy Sunday afternoon when the rest of the world can go ahead with (pos) its own business as you descend into a big arm-chair and mellow for a couple of hours. Wonderful performances from Cher and Nicolas Cage (as always) gently row the plot along. There are no rapids to cross, no dangerous waters, just a warm and witty paddle through New York life at its best. A family film in every sense and one that deserves the praise it received.

How do we turn sentences into number? (Tokenization)

How can a text be understood by a computer?

There are two main ways to tokenize a text:

- Each letter
- Each word

Tokenize a letter

 Let's start with a very naive way to tokenize a letter to be understood by a computer

A	В	C	D	E	F	G	H	I	J	K	L	M
1	1	1	1	1	1	1	1	1	1	1	1	1
65	66	67	68	69	70	71	72	73	74	75	76	77
N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
1	1	1	1	1	1	1	1	1	1	1	1	1
78	79	80	81	82	83	84	85	86	87	88	89	90

Table 1: ASCII encodings of English capital letters.

Example tokenize letter using ASCII

1111111

A	В	C	D	Ε	F	G	Н	I	J	K	L	M
1	1	1	1	1	1	1	1	1	1	1	1	1
65	66	67	68	69	70	71	72	73	74	75	76	77
N	0	P	Q	R	S	Т	U	V	W	Х	Y	Z
1	1	1	1	1	1	1	1	1	1	1	1	1
78	79	80	81	82	83	84	85	86	87	88	89	90

Table 1: ASCII encodings of English capital letters.

Example tokenize letter using ASCII

1111111

Α	В	C	D	Ε	F	G	Н	I	J	K	L	M
1	1	1	1	1	1	1	1	1	1	1	1	1
65	66	67	68	69	70	71	72	73	74	75	76	77
N	0	P	Q	R	S	Т	U	V	W	Х	Y	Z
1	1	1	1	1	1	1	1	1	1	1	1	1
78	79	80	81	82	83	84	85	86	87	88	89	90

Table 1: ASCII encodings of English capital letters.

Problems of Letter Tokenization

1111111

Tokenize a word

Tokenize a word

Tokenize a word - not enough? Problem?

Word Embedding Vector

"Okie but Unexciting!" - Tom

Simple Word Embedding Vectors

93	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.70	0.69	0.03	-0.02
Food	0.09	0.01	0.02	0.01	0.95	0.97

Relationships from Embedding Vectors

1111111

What is king + man - woman?

Relationships in Word Embedding

Male-Female

Verb Tense

Country-Capital

Embedding Vectors of 10,000 words for 200 dimensions

Word Embedding Space in Sentiment Analysis

- wonderful
- wonderfully

1111111

horrible

Word Embedding in general data

Word Embedding in general data

The Pipeline of Tokenization and Embedding Layer

Machine Learning Model

1111111

The Rise of Deep Neural Network since 2010

1111111

Deep Learning

Figure 10-2. Multiple layers in a biological neural network (human cortex)⁶

An Simple Example of Neural Network

1111111

Neural Network in Action

CoderSchool

Hand-on Lab Link

1111111

https://bit.ly/3ezu6IP

1111111

or Shift + Enter

Runtime — Change Runtime Type
Hardware Accelerator — GPU

Thank you for your listening

Extra Datasets to play around

- Twitter airline sentiment on Kaggle: https://www.kaggle.com/crowdflower/twitter-airline-sentiment
- Amazon Product Reviews for Sentiment Analysis: https://www.kaggle.com/bittlingmayer/amazonreviews
- Product Reviews: https://www.kaggle.com/bittlingmayer/amazonreviews
- IMDB Movie Reviews:
 https://www.kaggle.com/lakshmi25npathi/sentiment-analysis-of-imdb-movie-reviews
- Amazon Fine Food Reviews:
 https://www.kaggle.com/snap/amazon-fine-food-reviews

Extra Materials to learn NLP on Tensorflow

- Word Embedding: https://www.tensorflow.org/tutorials/text/word-embeddings
- Word2Vec: https://www.tensorflow.org/tutorials/text/word2vec
- Text Classification with RNN:
 https://www.tensorflow.org/tutorials/text/text_classification_rnn

Your Feedback Matters!

