

VERIFICATION AND ASSESSMENT OF AN OPEN-SOURCE SOLVER FOR THE FILLING STAGE OF THE INJECTION MOULDING PROCESS

OIMUO III – Online international Meeting for Users of OpenFOAM III

JOÃO PEDRO, J. MIGUEL NÓBREGA, CÉLIO FERNANDES

Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal

Outline

- 1. Injection Moulding Process
- 2. Motivation and Objectives
- 3. Background: Mathematical foundation
 - i. Governing equations
 - ii. Volume of fluid (VOF) method

4. Material and models

- i. Constitutive equation
- ii. Equation of state

5. Case Studies

- i. Effects of the compressibility on the filling of a rectangular cavity with a Cross-WLF fluid
- ii. Filling of a tensile test specimen
- 6. Conclusions and future works

1. Injection Moulding Process

gfycat, GIF retrieved on 21 of February from: https://gfycat.com/adventurouscaringcavy

2. Motivation and Objectives

Validation and assessment of openInjMoldSim

N. Mole, K. Krebelj, and B. Stok. Injection molding simulation with solid semi-crystalline polymer mechanical behavior for ejection analysis. International Journal of Advanced Manufacturing Technology, 93:4111{4124, 2017. DOI: https://doi.org/10.1007/s00170-017-0847-3.

3. Background: Mathematical foundation

Governing Equations for *openInjMoldSim* and Moldex3D[®]:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \underline{u}) = 0$$

Mass conservation equation

$$\frac{\partial \left(\rho \underline{u}\right)}{\partial t} + \nabla \cdot \left(\rho \underline{u} \ \underline{u}\right) = -\nabla p + \nabla \cdot \left(\eta \left(\dot{\gamma}, T, p\right) \underline{\underline{D}}\right) + \rho \underline{g}$$

Linear momentum balance equation

$$\rho c_p \left(\frac{\partial T}{\partial t} + \underline{u} \cdot \nabla T \right) = \beta T \left(\frac{\partial p}{\partial t} + \underline{u} \cdot \nabla p \right) + \eta \left(\dot{\gamma}, T, p \right) \dot{\gamma}^2 + k \nabla^2 T$$

Energy conservation equation

Not accounted in Moldex3D®

3. Background: Mathematical foundation

Volume of fluid method (VOF):

Not accounted in Moldex3D®

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \underline{u}) + \nabla \cdot [\alpha (1 - \alpha) \underline{u}_r] = S_p + S_u$$

Interface compression term

The compression velocity \underline{u}_r is given by:

$$\underline{u}_r = \underline{n}_f \min \left[C_\alpha \frac{|\phi|}{|\underline{s}_f|}, \max \left(\frac{|\phi|}{|\underline{s}_f|} \right) \right],$$
 where

$$\underline{n}_f = \frac{(\nabla \alpha)_f}{|(\nabla \alpha)_f + \delta|}.$$

Physical properties are calculated as:

$$\zeta = \zeta_{melt}\alpha + (1 - \alpha)\zeta_{air},$$

where ζ represents either ρ , k, c_P , η .

α distribution in an injection moulding case study.

IC – interface compression;

NIC – no interface compression;

4. Material Models

Material: GPPS – General Purpose Polystyrene Styron 678, from Americas Styrenics.

Constitutive model:

Cross-WLF

$$\eta\left(\dot{\gamma},T,p\right) = \frac{\eta_0\left(T,p\right)}{1 + \left(\frac{\eta_0\left(T,p\right)\dot{\gamma}}{\tau^*}\right)^{n-1}}.$$

where.

$$\eta_0(T, p) = D_1 \exp\left(\frac{-C_1(T - T_0)}{C_2 + T - T_0}\right),$$

and,

$$T_0 = D_2 + D_3 p$$

4. Material Models

Material: GPPS – General Purpose Polystyrene Styron 678, from Americas Styrenics.

Equation of state:

$\widehat{V} = \widehat{V_0} \left[1 - C \ln \left(1 + \left(\frac{p}{B} \right) \right) \right] + \widehat{V_t},$ where

Modified Tait model

$$\widehat{V}_{0} = \begin{cases}
b_{1S} + b_{2S} (T - b_{5}), & \text{if } T \leq T_{t} \\
b_{1L} + b_{2L} (T - b_{5}), & \text{if } T > T_{t}
\end{cases},$$

$$B = \begin{cases}
b_{3S} \exp(-b_{4S} (T - b_{5})), & \text{if } T \leq T_{t} \\
b_{3L} \exp(-b_{4L} (T - b_{5})), & \text{if } T > T_{t}
\end{cases},$$

$$\widehat{V}_{t} = \begin{cases}
b_{7} \exp(b_{8} (T - b_{5}) - b_{9}p), & \text{if } T \leq T_{t} \\
0, & \text{if } T > T_{t}
\end{cases},$$

Compressible and Incompressible formulations 1.20 1.15 -P = 0 MPa P = 50 MPa Specific volume (cm³/g) Incompressible 1.075 cm^3/g 1.05 1.00 0.95 0.90 150 50 100 200 250 300 Temperature (°C)

Average and maximum velocity

Slice	Formulation	Velocity	(mm/s)	Relative differences (%)		
Since	rormulation	$\mathbf{U}_{\mathrm{ave}}$	$\mathbf{U}_{ ext{max}}$	$\mathbf{U}_{ ext{ave}}$	${ m U}_{ m max}$	
C 1	C (ref)	148.2	342.2			
S 1	I	148.5	344.8	0.2	0.8	
S2	C (ref)	232.7	569.6			
32	I	233.5	575.5	0.3	1.0	

Minimum and maximum temperature

Slice	Formulation	Tempera	ture (°C)	Relative differences (%)		
Since		${ m T_{min}}$	T_{max}	\mathbf{T}_{\min}	$\mathbf{T}_{ ext{max}}$	
S1	C (ref)	98.0	230.2			
31	I	94.4	230.4	3.7	0.1	
S2	C (ref)	103.3	230.3			
	I	100.0	230.6	3.2	0.1	

Materials and models

Phase	Constitutive Model	Formulation of Equation of state	
GPPS Styron 678	Cross-WLF	Compressible (C)	
Air	Newtonian $\mu = 0.1 Pa.s$	Ideal Gas	

Outlet

 $p = 1 \times 10^5 Pa$

U = null gradient

T = null gradient

Mesh refinement levels

	Number of cells		Cells along thickness direction	
Mesh	openInjMoldSim	Moldex3D®	openInjMoldSim	Moldex3D®
M1	30 091	29 625	5	2
M2	272 149	272 409	11	5
M3	2 110 987	2 101 139	21	10
M4		15 304 010		21

Temperature contours at switch-over point

Temperature at the switch-over point

36.3	Maximum Temperature (°C)					
Mesh	Moldex3D®	Error (%)	openInjMoldSim	Error (%)		
M1	230.2	0.7	230.0	1.0		
M2	230.3	0.6	232.2	0.1		
M3	230.5	0.5	232.4	0.0		
M4	231.3	0.2				
RE	231.7		232.4			

Velocity contours at the switch-over point

$$Q = 15.7 (cm^3/s) \approx U_{ave} = 40 (cm/s)$$

Velocity at the switch-over point

Magh	Maximum Velocity (mm/s)						
Mesh	Moldex3D®	Error (%)	openInjMoldSim	Error (%)			
M1	2080	14.2	2530	33.2			
M2	1950	19.6	4800	26.7			
M3	1930	20.4	4100	8.2			
M4	2250	7.22					
RE	2430		3790				

Simplified tensile test specimen geometry Velocity contours for Moldex3D® velocity (cm/s) M1M2outlet _65.8 _60.4 walls -54.9 $U \approx 30 \ (cm/s)$ $U \approx 40 (cm/s)$ -49.4 __43.9 __38.4 __32.9 M3 M4 27.4 -21.9 -16.5 -11.0 5.5 0.0 inlet $U \approx 55 (cm/s)$ $U \approx 60 (cm/s)$

Performance and accuracy

Software	Mesh	Errors (%)			Number of	Run Time
Software	IVIESII	p _{max} (inlet)	U_{max} (S1)	T_{max} (S1)	cores	Kun Time
®	M1	43.4	14.2	0.7	1	88 seconds
x3D	M2	34.4	19.6	0.6	1	23 minutes
Moldex3D®	M3	23.8	20.4	0.5	8	3.8 hours
\geq	M4	8.41	7.22	0.2	8	24.5 hours
m	M1	29.6	33.2	1.0	1	12.8 hours
openInjMoldSim	M2	27.8	26.7	0.1	8	41 hours
ıјМо					48	98.5 hours
oenl _r	M3	9.1	8.2	0.0	96	59 hours
lo					192	34 hours

6. Conclusions

- Incompressible formulations might be a good assumption to consider on the filling stage of the injection moulding process;
- *openInjMoldSim* presents a better accuracy than Moldex3D®;
- The velocity contours provided by Moldex3d® require a more detailed analysis;
- In terms of performance Moldex3D® is clearly faster than *openInjMoldSim*;
- If we take the full potential of parallelization power of OpenFOAM®, the open-source solver can match the performance of the proprietary one.

6. Future work

- Experimental assessment of the numerical results obtained;
- Prepare similar studies with other parts and different polymeric materials;
- Implement a fully incompressible formulation for the filling stage of the injection moulding process;
- Improve of the numerical algorithm to make the solver more efficient;
- Perform additional studies to identify the calculation accuracy required in industrial practice;
- Introduce numerical solution for the packing and cooling stages;

Thank you for your attention