

Понятие машинного обучения

- Машины не учатся
- Классическое машинное обучение = поиск математических формул, которые при применении к набору входных данных дают желаемые результаты
- Артур Сэмюэл (Arthur Samuel), американский пионер в области компьютерных игр и искусственного интеллекта, придумал термин «Машинное обучение» в 1959 году, когда работал в IBM.

16.01.2023

Машинное обучение

Использование математических моделей данных, которые помогают компьютеру обучаться без непосредственных инструкций.

С помощью алгоритмов выявляются закономерности в данных. На основе этих закономерностей создается модель данных.

Способ обучать компьютеры без программирования и явных инструкций, используя только шаблоны и логические выводы.

16.01.2023

Преимущества машинного обучения

Получение аналитических сведений

• помогает определять закономерности или структуры на основе как структурированных, так и неструктурированных данных

Расширение возможностей пользователей

• Адаптивные интерфейсы, целевое содержимое, чат-боты и виртуальные помощники с поддержкой голоса

Прогнозирование поведения клиентов

• можно выполнять интеллектуальный анализ данных, связанных с клиентами

Повышение уровня целостности данных

• идеальный вариант для интеллектуального анализа данных, повышающий его точность и расширяющий его возможности с течением времени

Уменьшение риска

• ПОЗВОЛЯЕТ ОТСЛЕЖИВАТЬ И ОПРЕДЕЛЯТЬ НОВЫЕ ПРИЕМЫ ЗЛОУМЫШЛЕННИКОВ

Алгоритм применения машинного обучения

Шаг 1 Сбор и подготовка данных

Шаг 2 Обучение модели (настройка модели)

Шаг 3 Проверка модели

Шаг 4 Интерпретация результатов

Машинное обучение

Глубокое обучение

Классическое Обучение

10.01.2020

Источник: https://vas3k.ru/blog/machine_learning

Размеченные (labelled) и неразмеченные (unlabelled) данные

Размеченные (labelled) и неразмеченные (unlabelled) данные

Размеченные

Неразмеченные

unlabeled

Типы задач машинного обучения

Классификация — это задача автоматического определения метки для неразмеченного образца.

Регрессия — это задача прогнозирования метки с действительным значением (часто называют также целевым значением) для образца без метки.

Кластеризация - задача разбиения заданной выборки объектов на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались.

Примеры задач регрессии

- Предсказание стоимости жилья для риэлторской компании
- Предсказание времени доставки
- Предсказание спроса на такси в конкретном районе в конкретный час завтрашнего дня.
- Предсказание ключевых точек лица
 т.н. дескрипторов

Примеры задач классификации

- Предсказание оттока клиентов / сотрудников на основе их поведения.
- **Классификация клеток ткани** на здоровые и опухолевые
- Детекция объектов на фото.

Примеры задач кластеризации

- **Сегментация аудитории** для таргетирования рекламы
- **Идентификация типов клеток** в образце данных секвенирования
- Поиск сообществ в социальном графе (из соцсети или из инсайдерской информации о структуре организации)
- Задача разделения смеси распределений

Недообучение

• это **неспособность модели** более или менее точно **предсказывать метки** данных, на которых она **обучалась**.

Причины:

- ∘ модель слишком проста для данных;
- спроектированные признаки недостаточно информативны.

Переобучение

• Переобученная модель слишком хорошо предсказывает обучающие данные, но плохо — данные из обеих контрольных выборок или хотя бы из одной из них.

Причины

- Модель слишком сложна для данных
- Слишком много признаков, но мало обучающих данных.

Борьба => Регуляризация – позволяет алгоритмам обучения строить менее сложные модели

Библиотеки для машинного обучения

Pandas

• Исследование и подготовка данных

NumPy

• Многомерные массивы

Scikit-learn

• Создание моделей машинного обучения

SciPy

• Предназначена для проведения научных исследований

Seaborn

• Визуализация

Библиотека Scikit-learn

Разработанна Дэвидом Курнапо в рамках программы Google Summer of Code в 2010 году.

