成都外国语学校 2019-2020 学年度 10 月月考高一数学试题卷

第 I 卷 (选择题)

一、选择题(本大题共 12 小题,每小题5 分,共 60 分,在每小题给出的四个选项 中,只有一个选项是符合题意的)

1. 已知全集 $U = \{1, 2, 3, 4\}$,集合 $A = \{1, 2\}$, $B = \{2, 3\}$,则 $C_U(A \cup B) = ($

- A. $\{1, 3, 4\}$
- B. {3, 4} C. {3}
- $D. \{4\}$

2. 集合 {1, 2, 3} 的所有真子集的个数为()

A. 3

- B. 6
- C. 7
- D. 8

3. 设函数 $f(x) = \begin{cases} -x, x \le 0 \\ x^2 + 1, x > 0 \end{cases}$, 则 f(f(-1)) 的值为

- A. -2
- B. 2
- C. 1 D. -1

4. 下列各组函数中,表示同一函数的是()

- A. $f(x) = t + 1 \frac{1}{2}g(x) = \frac{x^2 + x}{x}$ B. $f(x) = \frac{x^2}{(\sqrt{x})^2} \frac{1}{2}g(x) = x$
- C. $f(x) = |x| g(x) = \sqrt[3]{x^3}$ D. $f(x) = x g(t) = \frac{t^3 + t}{t^2 + 1}$

5. 某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快, 后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函 数关系图象正确的是(

6. 函数 $f(x) = \sqrt{x^2 - 3x + 2}$ 的单调递增区间是

A. $\left(-\infty,\frac{3}{2}\right)$	B. $(2,+\infty)$	C. (1,+∞)	D. $(-\infty,1)$
7. 已知函数 $f(2x-1)=4x+3(x \in \mathbb{R})$,若 $f(a)=15$,则实数 a 之值为()			
A. 2	B. 3	C. 4	D. 5
8. 若函数 y = x ² -	-3x+4的定义域为	$[0,m]$,值域为 $\left[\frac{7}{4}\right]$,4],则m的取值范围是()
A. (0,4]	B. $\left[\frac{3}{2},4\right]$	C. $\left[\frac{3}{2},3\right]$	D. $\left[\frac{3}{2}, +\infty\right)$
9. 已知函数 $f(x)$ 是定义在 $(0,+\infty)$ 上的单调函数,则对任意 $x \in (0,+\infty)$ 都有			
$f(f(x) + \frac{2}{x}) = -1$	\underline{Y} , $\mathbb{N} f(1) = ($)	
A1	В. –4	С3	D. 0
10. 已知函数 $y = f(x)$ 在定义域 $(-1,1)$ 上是减函数,且 $f(2a-1) < f(1-a)$,则实数 a 的			
取值范围是()		
A. $\left(\frac{2}{3}, +\infty\right)$	B. $\left(\frac{2}{3},1\right)$	C. (0,2)	D. $(0,+\infty)$
11. 己知对任意 $x \in (-\infty, +\infty)$ 均有 $f(x) = -f(-x)$,且对任意 $x_1, x_2 \in \mathbf{R}(x_1 \neq x_2)$ 都满足			
$\frac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}<0,$,若方程 $f(x^2+m)$	+ f(1-x)=0 只有-	一个实数根,则实数 m 的取值为
()			
A. $-\frac{3}{4}$	B. $-\frac{7}{8}$	C. $\frac{1}{4}$	D. $\frac{1}{8}$
12. 已知函数 f	$f(x) = \begin{cases} -(x-1)^2 + 1, & x < 1\\ \frac{1}{2}f(x-2), & x \ge 1 \end{cases}$	≈ 2 , 函数 $F(x) = f(x)$	(x)-mx, 若方程 F(x)=0 有 4
个根,则实数 m 的取值范围是()			
A. $\left(\frac{5}{2} - \sqrt{6}, \frac{1}{6}\right)$			

第Ⅱ卷(非选择题)

- 二、填空题(本大题共4小题,每小题5分,共20分)
- 14. 若函数 f(x) 的定义域为(-1,2),则函数 f(2x+1)的定义域为 ______.
- 15. 已知函数 $f(x) = \frac{x+3}{x+1}$, 记

$$f(1) + f(2) + f(4) + f(8) + f(16) = m, f(\frac{1}{2}) + f(\frac{1}{4}) + f(\frac{1}{8}) + f(\frac{1}{16}) = n, \text{ [II] } m + n = \underline{\qquad}$$

16. 已知函数 $f(x) = \begin{cases} -x^2 + ax, x \le 1 \\ ax - 1, x > 1 \end{cases}$,若 $\exists x_1, x_2 \in \mathbb{R}$, $x_1 \ne x_2$, 使得 $f(x_1) = f(x_2)$ 成立,

则 a 的取值范围是 .

- 三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)
- 17. (本小题满分 10 分) 已知集合 $A = \{x | x \le -3$ 或 $x \ge 4\}$, $B = \{x | 4a \le x \le a + 3\}$.
 - (1) 若a=-1, 求 $A\cap B$, $A\cup B$
- 18. (本小题满分 12 分) (1) 求函数 $f(x) = x + \sqrt{1-2x}$ 的值域;
- (2) 已知 $f(x)+2f\left(\frac{1}{x}\right)=3x-2$,求f(x)的解析式.
- 19. (本小题满分 12 分)已知函数 $f(x) = \frac{x+1}{x-1}$
 - (1) 证明:函数f(x)在区间 $(1,+\infty)$ 内单调递减;
- (2) 求函数 $y = \frac{x+1}{x-1}$, $x \in [3,5]$ 的最小值.

- 20. (本小题满分 12 分)函数 f(x) 对任意的 $m,n \in \mathbb{R}$ 都有 f(m+n) = f(m) + f(n) 1, 并且 x > 0 时,恒有 f(x) > 1.
- (1). 求证: f(x) 在 R 上是增函数:
- (2), 若f(3) = 4解不等式 $f(a^2 + a 5) < 2$
- 21. (本小题满分 12 分)大邑县某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价 f(t)与上市时间 t 的关系为
- $f(t) = \begin{cases} 300 t, 0 \le t \le 200, t \in N \\ 2t 300, 200 < t \le 300, t \in N \end{cases}$; 西红柿的种植成本 g(t)与上市时间 t 的关系为 $g(t) = \frac{1}{200}(t 150)^2 + 100, (0 \le t \le 300, t \in N)$.认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?最大收益是多少?(注:市场售价和种植成本的单位:元/ $10^2 kg$,时间单位:天)
- 22. (本小题满分 12 分)对于定义域为I 的函数,若果存在区间 $[m, n] \subseteq I$,同时满足下列条件: ① f(x) 在区间 [m, n] 上是单调的; ②当定义域是 [m, n]时, f(x) 的值域也是 [m, n]. 则称 [m, n] 是函数 y = f(x) 的一个"优美区间".
 - (1) 证明: 函数 $y=3-\frac{4}{x}(x>0)$ 不存在"优美区间".
 - (2) 已知函数 $y = x^2 2x + 2$ 在 R 上存在"优美区间",请求出它的"优美区间".
- (3) 如果 [m, n] 是函数 $y = \frac{(a^2 + a)x 1}{a^2x} (a \neq 0)$ 的一个"优美区间",求n m的最大值.