MACHINE LEARNING ENGINEERING

ML: The ability to Learn, Predict & Find Ways to Improve the Performance

Types of Machine Learning

Unsupervised Reinforecement

MACHINE LEARNING WORK FLOW

BEST PRACTICES TO MAKE A MODEL

STAGE 1- ALL ABOUT DATA

Process	Challenges to Overcome	Best Practice
Data collection (web scraping, from Database, User input & more)	 Uncleaned Data(need to clean) Finding relevant data Curse of Dimensionality Baised Data Incomplete data, Sparsity Data Quality issue & many more 	 Enrich the Data Using data-related Key Performance Indicators (KPIs) to understand the Data Dimension-reduction techniques Data Modification Data representation
Untidy Data	Matching proper Rows and columnMultiple variables in same column	Restructure the data to be fit & tidy by using cast techniques
Missing Data	Information LossBias	 Central tendency Imputation Tree-Based Modeling techniques Apply best missing technique accoring to dataset(more than 20+ ways there)
Outliers	 Undue influence on Squared loss function Unknown categorical data 	 Winsorizing Capping Robust techniques and 10+ effective techniques availabe
EDA	Unstable parameter estimationNon-determinism on colinearlty	 Use Profiling process Use statical approcah and graphical representation

BEST PRACTICES TO MAKE A MODEL

STAGE 2- TRAING & TESTING (MODEL BUILDING

Process	Challenges to Overcome	Best Practice
Overfitting & Underfitting	 High variance and Low Bias (Not a Generalize model) 	 Regularization Noise reduction Cross validation Removing features Ensembling & many more techniques
Hyperparameter Tuning	 Combinatorial explosion of hyperparameters in convetional algorithms 	Parameter estimationGridsearchCvRandomsearchcv & many more
Ensemble models	 Single models that fail to provide adequate High-variance and low-bias models that fail to generalize well 	 Powerful ensemble model like (bagging & boosting) Custom combinations of predictions
Model Interpretation & Validation	 Imperfections in the Algorithm When Data Grows Nonrepresentative training data. 	 Variable selection by regularization (e.g. L1) Surrogate Models Partial dependency plots & variable dependency measures
Model deployment & Decay	Trained modellogic must be transferred from a development environment to an operational computing system to assit	Database, web scoring

decission making process

MACHINE LEARNING LIFE CYCLE

On an Average a Data scientist spends Time

