CS 350 Algorithms and Complexity

Lecture 09 Divide & Conquer, Master Theorem

Paul Doliotis – Adjunct Assistant Professor Portland State University

Solves a problem instance of size *n* by:

1. dividing it into b smaller instances, of size $\sim n/b$

Solves a problem instance of size *n* by:

- 1. dividing it into b smaller instances, of size $\sim n/b$
- 2. solving some or all of them (in general, solving *a* of them), using the same algorithm recursively.

Solves a problem instance of size *n* by:

- 1. dividing it into b smaller instances, of size $\sim n/b$
- 2. solving some or all of them (in general, solving *a* of them), using the same algorithm recursively.
- 3. combining the solutions to the a smaller problems to get the solution to the original problem.

Solves a problem instance of size *n* by:

- 1. dividing it into b smaller instances, of size $\sim n/b$
- 2. solving some or all of them (in general, solving *a* of them), using the same algorithm recursively.
- 3. combining the solutions to the a smaller problems to get the solution to the original problem.

Time taken?

Solves a problem instance of size *n* by:

- 1. dividing it into b smaller instances, of size $\sim n/b$
- 2. solving some or all of them (in general, solving *a* of them), using the same algorithm recursively.
- 3. combining the solutions to the a smaller problems to get the solution to the original problem.

Time taken? T(n) = a*T(n/b) true or false

Solves a problem instance of size *n* by:

- 1. dividing it into b smaller instances, of size $\sim n/b$
- 2. solving some or all of them (in general, solving *a* of them), using the same algorithm recursively.
- 3. combining the solutions to the a smaller problems to get the solution to the original problem.

$$T(n) = a*T(n/b) + T_{split and combine}(n)$$

Divide-and-Conquer

FIGURE 5.1 Divide-and-conquer technique (typical case).

- Lets compute the sum of n elements with divide and conquer
- \diamond a₀, a₁, a₂,...,a_{n-1}, n>1

- Lets compute the sum of n elements with divide and conquer
- $\diamond a_0, a_1, a_2, ..., a_{n-1}, n>1$

$$a_0 + \cdots + a_{n-1} = (a_0 + \cdots + a_{\lfloor n/2 \rfloor - 1}) + (a_{\lfloor n/2 \rfloor} + \cdots + a_{n-1}).$$

- Lets compute the sum of n elements with divide and conquer
- $\diamond a_0, a_1, a_2, ..., a_{n-1}, n>1$

$$a_0 + \cdots + a_{n-1} = (a_0 + \cdots + a_{\lfloor n/2 \rfloor - 1}) + (a_{\lfloor n/2 \rfloor} + \cdots + a_{n-1}).$$

What is the recursive formula for number of additions?

- Lets compute the sum of n elements with divide and conquer
- \diamond a₀, a₁, a₂,...,a_{n-1}, n>1

$$a_0 + \cdots + a_{n-1} = (a_0 + \cdots + a_{\lfloor n/2 \rfloor - 1}) + (a_{\lfloor n/2 \rfloor} + \cdots + a_{n-1}).$$

What is the recursive formula for number of additions?

$$A(n) = 2*A(n/2) + 1$$
, $A(1) = 0$, $n>1$

- Lets compute the sum of n elements with divide and conquer
- $\diamond a_0, a_1, a_2, ..., a_{n-1}, n>1$

$$a_0 + \cdots + a_{n-1} = (a_0 + \cdots + a_{\lfloor n/2 \rfloor - 1}) + (a_{\lfloor n/2 \rfloor} + \cdots + a_{n-1}).$$

What is the recursive formula for number of additions?

$$A(n) = 2*A(n/2) + 1$$
, $A(1) = 0$, $n>1$
 $T(n) = a*T(n/b) + T_{split and combine}(n)$

Master Theorem If $f(n) \in \Theta(n^d)$ where $d \ge 0$ in recurrence (5.1), then

$$T(n) \in \begin{cases} \Theta(n^d) & \text{if } a < b^d, \\ \Theta(n^d \log n) & \text{if } a = b^d, \\ \Theta(n^{\log_b a}) & \text{if } a > b^d. \end{cases}$$

Analogous results hold for the O and Ω notations, too.

Master Theorem If $f(n) \in \Theta(n^d)$ where $d \ge 0$ in recurrence (5.1), then

$$T(n) \in \begin{cases} \Theta(n^d) & \text{if } a < b^d, \\ \Theta(n^d \log n) & \text{if } a = b^d, \\ \Theta(n^{\log_b a}) & \text{if } a > b^d. \end{cases}$$

Analogous results hold for the O and Ω notations, too.

Lets apply Master Theorem to the previous example:

Master Theorem If $f(n) \in \Theta(n^d)$ where $d \ge 0$ in recurrence (5.1), then

$$T(n) \in \begin{cases} \Theta(n^d) & \text{if } a < b^d, \\ \Theta(n^d \log n) & \text{if } a = b^d, \\ \Theta(n^{\log_b a}) & \text{if } a > b^d. \end{cases}$$

Analogous results hold for the O and Ω notations, too.

Lets apply Master Theorem to the previous example:

$$A(n) = 2*A(n/2) + 1$$
, $A(1) = 0$, $n>1$
 $T(n) = a*T(n/b) + T_{split and combine}(n)$

Master Theorem If $f(n) \in \Theta(n^d)$ where $d \ge 0$ in recurrence (5.1), then

$$T(n) \in \begin{cases} \Theta(n^d) & \text{if } a < b^d, \\ \Theta(n^d \log n) & \text{if } a = b^d, \\ \Theta(n^{\log_b a}) & \text{if } a > b^d. \end{cases}$$

Analogous results hold for the O and Ω notations, too.

Lets apply Master Theorem to the previous example:

$$A(n) = 2*A(n/2) + 1$$
, $A(1) = 0$, $n>1$
 $T(n) = a*T(n/b) + T_{split and combine}(n)$
 $a=2$, $b=2$, $d=0$ a

Master Theorem If $f(n) \in \Theta(n^d)$ where $d \ge 0$ in recurrence (5.1), then

$$T(n) \in \begin{cases} \Theta(n^d) & \text{if } a < b^d, \\ \Theta(n^d \log n) & \text{if } a = b^d, \\ \Theta(n^{\log_b a}) & \text{if } a > b^d. \end{cases}$$

Analogous results hold for the O and Ω notations, too.

Lets apply Master Theorem to the previous example: A(n) = 2*A(n/2) + 1, A(1) = 0, n>1 $T(n) = a*T(n/b) + T_{split and combine}(n)$ a=2, b=2, d=0 $a<b^d$ $\Theta(n)$