OM-S20-07: LP Relaxation

C. V. Jawahar

IIIT Hyderabad

28 Jan 2020

Review

- LP and IP formulations
- Graphical Method to solve
- Branch and Bound for IP
- Bala's Method for BIP

Graph Problems (Revisit)

Maximum weight bipartite matching Given a bipartite graph G(V,E) with |X| = |Y|

$$\max\sum_{e\in E}w_ex_e$$
 Subject to
$$\sum_{v\in e}x_e=1 \forall v\in V; x_e\in\{0,1\} \forall e\in E$$

Min Vertex Cover Find $min|V'|, V' \subset V$ such that $\forall (u, v) \in e, e \in E$, either $u \in V'$ or $v \in V'$ or both.

$$\min \sum_{v \in V} x_v \quad \text{Subject to}$$

$$x_u + x_v \ge 1 \forall (u, v) \in E; x_u \in \{0, 1\}$$

Maximum Independent Set $\max_{v \in V} x_v$ such that $x_u + x_v \le 1 \forall (u,v) \in E$, $x_u \in \{0,1\}$ ie Maximum size set such that no two vertices in it are connected by an edge.

LP Relaxation

- Convert IP to LP.
- Call this as LP relaxation of original problem.
- $opt(LP) \leq opt(IP)$ (for a minimization problem).
- If $x_{LP} \in Z$ then we got lucky and in this case both opt(LP) and opt(IP) are same.
- Formulate a rounding procedure that transforms x_{LP} into an integral solution x' such that $cost(x') \le c * cost(x_{IP})$.
- Then we say x' is a c-approximate optimal solution to the original problem.
- We give our final answer as x'.
- It's crucial to be able to get x', given x_{LP} and it is important that we understand how good the approximation is (c value)
- In case LP is infeasible, what does this tell us about feasibility of IP?

Rounding in BPG Matching

- What does it mean if infeasible? bound?
- Assume LP gives you $x_e \in [0,1]$
- If an edge is not in $\{0,1\}$, then there should be another edge in every vertex with the same situation.
- If we round 0.9 to 1.0, there there should be another edge that needs to reduce by 0.1 at the vertex.
- Let the edges change by ϵ , $x_i^* + \epsilon$, there will be a $x_j^* \epsilon$
- There are cycles of such non-saturated edges. Let the new weights be
- $w(y) = w(x^*) + \epsilon \sum_{i} (-1)^{i} w_{e_i} = w(x^*) + \epsilon \Delta$
- Where Δ is $\sum_{i=1}^{t} (-1)^{i} w_{e_{i}}$
- Since x^* is optimal, Δ has to be zero.
- Repeat this for all cycles. We will reach integer solution!!

Rounding for Other Two Problems

Minimum Vertex Cover

$$S_{LP} = \{ v \in V | x_v^* \ge \frac{1}{2} \}$$

$$|S_{LP}| = \sum_{v \in S_{LP}} 1 \le \sum_{v \in S_{LP}} 2.x_v^* \le \sum_{v \in V} 2.x_v^* \le 2 \sum_{v \in V} y_v = 2|S_{OPT}| \quad (1)$$

Therefore,

$$|S_{OPT}| \le |S_{LP}| \le 2|S_{OPT}| \tag{2}$$

- •
- Maximum Independent Set
 - No useful bounds !!