

Università degli Studi di Venezia Dipartimento di Scienza Ambientali, Informatiche e Statistiche

Corso di Laurea in Informatica

Tesi di laurea

Titolo

Sottotitolo

Candidato: Matteo Scarpa Matricola 845087

Relatore: Claudio Silvestri

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

 $\label{eq:local_local_local} \mbox{Lorem ipsum dolor sit amet, consectetuer adipiscing elit.} \\ --- \mbox{Oscar Wilde}$

Dedicata a tutti quelli che mi sono stati vicini nelle giornate no.

Indice

$D\epsilon$	escrizione approfondita dell'argomento
1.1	Problema da risolvere
1.2	QGis
	1.2.1 Descrizione dei tipi di dati supportati
	1.2.2 Architettura di QGis
	1.2.3 Sistema dei plugin
Re	ealizzazione
2.1	Librerie scelte
	2.1.1 Qt4
	2.1.2 Grass
	2.1.3 Osgeo
2.2	Interfaccia grafica
	2.2.1 Scelte implementative
2.3	Gestione input
	2.3.1 Scelte implementative
2.4	Gestione dati
	2.4.1 Scelte implementative
2.5	Gestione output
	2.5.1 Scelte implementative
Ar	opendice
-	Strutturare un plugin
Riblic	ografia

Elenco delle figure

Elenco delle tabelle

Introduzione

In questa tesi viene spiegato come è stato realizzato un plugin per QGis per il calcolo del terreno eroso avendo dei dati geomorfici legati al territorio scelto. Questi dati comprendono la conformazione del terreno, le precipitazioni registrate nell'area, il tipo di copertura della vegetazione e il numero di anni per cui questa previsione viene eseguita.

Questo plugin è stato scritto in Python e implementa il plugin ipotizzato nella tesi [Zen13] che, anche se la tesi è legata all'area geografica del Veneto, risulta essere indipendente e utilizzabile per il calcolo su una qualunque area geografica di cui si hanno i dati richiesti.

Capitolo 1

Descrizione approfondita dell'argomento

1.1 Problema da risolvere

Lo scopo di questa tesi è quello di calcolare in modo corretto l'erosione del territorio nell'area geografica indicata. Questo è stato fatto utilizzando un modello RUSLE basato sull'equazione¹

$$A = R * K * LS * C * P \tag{1.1}$$

in cui

- A corrispondente alla perdita di suolo annua
- ullet R erosività delle precipitazioni
- K erodibilità del suolo
- LS rapporto lunghezza pendenza
- C fattore di copertura del suolo
- P misure di prevenzione dell'erosione

Questo modello è stato quindi applicato utilizzando i dati in formato di layer raster attraverso l'applicativo QGis. Questo viene fatto in quanto lo standard *de facto* per questa tipologia di dato è il layer raster.

In particolare questo modello viene utilizzato per calcolare anno per anno l'erosione del territorio interessato avendo variazioni di dati in base all'anno o assumendo come invarianti negli anni i dati inseriti in imput.

1.2 QGis

QGis si definisce come "Un Sistema di Informazione Geografica Libero e Open Source" [Sita] ovvero è un software che gestisce, elabora e visualizza dati geomorfici

 $^{^1}$ Il modello proposto è quello indicato in [Zen13, p. 37]

e georeferenziati, completamente gratuito e modificabile in ogni sua parte(è limitato dalla licenza utilizzata nello sviluppo del software [Sitb]). Questo ha permesso la creazione di una community intorno a questo programma che sviluppa il programma in ogni sua parte e sostiene una struttura di plugin che aumenta le potenzialità del programma senza appesantirlo. Infatti questo meccanismo da la possibilità di avere una base su cui strutturare un applicativo che esegua un determinato compito utile per un determinato lavoro ma non necessario in un uso generico del programma.

In oltre questo programma è stato sviluppato in C, C++ e Python. Questo comporta la portabilità di questo programma su tutti i maggiori sistemi operativi esistenti² e obbliga i plugin a essere anche loro stessi a essere indipendenti dal sistema operativo usato venendo sviluppati, a loro volta, i linguaggi C, C++ e Python.

- 1.2.1 Descrizione dei tipi di dati supportati
- 1.2.2 Architettura di QGis
- 1.2.3 Sistema dei plugin

 $^{^2 \}mathrm{Supporta}$ Linux, Mac, Windows e Android

Capitolo 2

Realizzazione

- 2.1 Librerie scelte
- 2.1.1 Qt4
- 2.1.2 Grass
- 2.1.3 Osgeo
- 2.2 Interfaccia grafica
- 2.2.1 Scelte implementative
- 2.3 Gestione input
- 2.3.1 Scelte implementative
- 2.4 Gestione dati
- 2.4.1 Scelte implementative
- 2.5 Gestione output
- 2.5.1 Scelte implementative

Appendice A

Appendice

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

A.1 Strutturare un plugin

Bibliografia

- [Lut11] Mark Lutz. Programming Python. A cura di O'Reilly. O'Reilly, 2011.
- [Pan09] Lorenzo Pantieri. L'arte di gestire la bibliografia con LATEX. 2009. URL: http://www.lorenzopantieri.net/LaTeX_files/Bibliografia.pdf.
- [PG11] Lorenzo Pantieri e Tommaso Gordini. L'arte di scrivere con LATEX. 2011. URL: http://www.lorenzopantieri.net/LaTeX_files/ArteLaTeX.pdf.
- [Sita] URL: http://www.qgis.org/it/.
- [Sitb] URL: http://creativecommons.org/licenses/by-sa/3.0/.
- [Zen13] Michele Zen. "Metodi e strumenti per la costruzione di territori virtuali per l'applicazione di modelli e di scenari ambientali". Tesi di laurea mag. Università Ca Foscari Venezia, 2013/2014.

Dichiarazione

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

 Lorenzo Pantieri	_