Autoencoders for Anomaly Detection in Network Intrusion Detection Systems

A thesis is submitted to the department of

Computer Science & Engineering

of

International Institute of Information Technology Bhubaneswar

in partial fulfilment of the requirements

for the degree of

Bachelor of Technology

by

Penthaa Patel

(Roll - B116033)

under the supervision of

Prof. Jay Bhuyan & Prof. Tushar Ranjan Sahoo

Department of Computer Science and Engineering International Institute of Information Technology Bhubaneswar Bhubaneswar Odisha - 751003, India 2020

International Institute of Information Technology Bhubaneswar

Bhubaneswar Odisha -751 003, India. www.iiit-bh.ac.in

May 24, 2020

Undertaking

I declare that the work presented in this thesis titled "Autoencoders for Anomaly Detection in Network Intrusion Detection Systems", submitted to the Department of Computer Science and Engineering, International Institute of Information Technology, Bhubaneswar, for the award of the Bachelors of Technology degree in Computer Science and Engineering, is my original work. I have not plagiarised or submitted the same work for the award of any other degree. In case this undertaking is found incorrect, I accept that my degree may be unconditionally withdrawn.

Penthaa Patel
B116033

International Institute of Information Technology Bhubaneswar

Bhubaneswar Odisha -751 003, India. www.iiit-bh.ac.in

May 24, 2020

Certificate

This is to certify that the work in the thesis entitled "Autoencoders for Anomaly Detection in Network Intrusion Detection Systems" by Penthaa Patel is a record of an original research work carried out by her under my supervision and guidance in partial fulfillment of the requirements for the award of the degree of Bachelor of Technology in Computer Science & Engineering. Neither this thesis nor any part of it has been submitted for any degree or academic award elsewhere.

Jay Bhuyan

Digitally signed by Jay Bhuyan Date: 2020.05.27 10:27:44 -05'00'

Jay Bhuyan

Professor, Dept. of Computer Science

Tuskegee University

International Institute of Information Technology Bhubaneswar

Bhubaneswar Odisha -751 003, India. www.iiit-bh.ac.in

May 24, 2020

Certificate

This is to certify that the work in the thesis entitled "Autoencoders for Anomaly Detection in Network Intrusion Detection Systems" by Penthaa Patel is a record of an original research work carried out by her under my supervision and guidance in partial fulfillment of the requirements for the award of the degree of Bachelor of Technology in Computer Science & Engineering. Neither this thesis nor any part of it has been submitted for any degree or academic award elsewhere.

Tushar Ranjan Sahoo Professor, Dept. of Computer Science IIIT, Bhubaneswar

Acknowledgment

I would like to express my deep and sincere gratitude to my research guide, Professor Jay Bhuyan, Dept. of Computer Science, Tuskegee University, for giving me the opportunity to pursue this research work and providing invaluable guidance throughout this research.

I would like to express my deepest appreciation to my research co-guide, Professor Tushar Ranjan Sahoo, Dept. of Computer Science, IIIT-Bhubaneswar, for his sincere contributions and many fruitful discussions in the course of preparing this report.

> Penthaa Patel B116033, CSE

Abstract

Emerging technologies are now critical infrastructure that are prone to attacks by unauthorized users. Successful exploitation of vulnerabilities in modern systems can lead an attacker to access critical information stored in them, hence the need arises to flag the attempts to compromise the system. Interconnected networks have attracted the attention of attackers. They may compromise systems remotely by sending in anomalous internet This led to the development of Network Intrusion Detection Systems (NIDS). A NIDS helps security analysts detect network security breaches. NIDS flag attempts made to exploit the systems. This can save critical data from potential misuse by attackers. In this report we implement Autoencoders, which are artificial neural network systems, to detect network-based attacks as anomalies. We compare the performance of nine different models of autoencoders, each with a different set of optimizers and activation functions. Compared performance metrics include accuracy, precision, recall, and F1 score values.

Keywords: Network Intrusion Detection Systems, Artificial Neural Networks, Autoencoders, Cyber Security.

Contents

Intr	oduction xiii			
1.1	Network Intrusion Detection System (NIDS) xiii			
Pro	olem statement xv			
2.1	Anomaly detection xv			
Dat	aset xvi			
3.1	Data Exploration xvi			
3.2	Data Visualization xvi			
	3.2.1 Categorical Features xvi			
3.3	Data Preprocessing xx			
	3.3.1 Categorizing Labels Into Categories of Attack xx			
	3.3.2 Encoding Categorical Features xx			
	3.3.3 Feature Scaling xxi			
	3.3.4 Feature Elimination xxi			
	3.3.5 Summary			
Aut	pencoders xxiv			
4.1	General Structure xxi			
2 Problem statement 2.1 Anomaly detection				
	1.1 Prob 2.1 Data 3.1 3.2 3.3			

	4.3	Deep Autoencoders xxv
5	Me	thodology xxvii
	5.1	Architecture xxvii
	5.2	Loss Function xxix
	5.3	Optimizers xxx
		5.3.1 adam
		5.3.2 sgd xxx
		5.3.3 rmsprop xxxi
	5.4	Activation Function xxxi
		5.4.1 linear
		5.4.2 sigmoid xxxii
		5.4.3 tanh
6	Imp	plementation xxxv
	6.1	Training xxxv
	6.2	Testing xxxvi
	6.3	Performance Evaluation xxxvii
7	Res	ults xxxviii
	7.1	Summary xxxviii
	7.2	Histogram of mean square error xxxix
	7.3	Training Loss xl
	7.4	Training Accuracy xl
	7.5	Validation Loss xli
	7.6	Validation Accuracy xli
	7.7	Precision Recall Curve xlii
	7 8	Performance Metrics vliii

8 Conclusion xliv
Bibliography xlv

List of Figures

1.1	Block diagram for a NIDS	xiii
3.1	List of features in NSL-KDD dataset	xvii
3.2	Protocol Type	xviii
3.3	Service Type	xviii
3.4	Flag Type	xix
3.5	Labels Type	xix
3.6	Attack Type	XX
3.7	Labels Encoded	xxi
3.8	List of features	xxiii
4.1	General structure of an autoencoder	xxiv
5.1	Architecture of implemented model	xxviii
5.2	Plot for linear activation function	xxxii
5.3	Plot for sigmoid activation function	xxxiii
5.4	Plot for tanh activation function	xxxiv
7.1	Histogram of MSE	xxxix
7.2	Plot for training loss	xl
7.3	Plot for training accuracy	xl
7.4	Plot for validation loss	xli

7.5	Plot for validation accuracy						•	xli
7.6	Precision - Recall Curve							xlii
7.7	Plot for performance metrics.							xliii

List of Tables

3.1	Summary of datasets after preprocessing	xxiii
5.1	Summary of autoencoder architecture	xxvii
5.2	Summary of model specifications	xxix
7.1	Summary of nine models.	xxxviii

Chapter 1

Introduction

1.1 Network Intrusion Detection System (NIDS)

Figure 1.1: Block diagram for a NIDS.

NIDS is a network based defensive monitoring tool used to identify potential malicious activity on computer networks. It monitors network traffic and server applications. It can flag an event as an attack if certain conditions are met. Traditional NIDS used signature based methods to distinguish normal network behaviour from possible network intrusions. These had a high false alarm rate and a low accuracy rate. Such NIDS were incapable in flagging new patterns of attacks since they relied on a set of

static rules. Attackers can evade such static rules. Modern NIDS use methods like behavior modelling, data mining, and machine learning algorithms that are dynamic in nature. Such NIDS can evolve with the evolving patterns of network attacks thus protecting the computer systems from new forms of attacks. NIDS are different from intrusion prevention systems. NIDS only flag potential malicious activity, they do not take further action to mitigate a data breach.

Chapter 2

Problem statement

2.1 Anomaly detection

Our aim is to build a robust predictive model using autoencoders that can distinguish between normal and malicious network behaviour and flag potential attempts to attack the system. Any deviation from normal behaviour will be flagged as an anomaly. Our aim is to build a model with high accuracy and low false alarm rate.

Chapter 3

Dataset

The dataset used to build the predictive model is the NSL-KDD dataset [9]. The NSL KDD dataset consists of internet traffic records. It is a benchmark dataset which has been widely used by researchers for developing predictive models for NIDS. The NSL-KDD is a subset of KDD'99 dataset. The KDD'99 dataset was prepared using the network traffic captured by 1998 DARPA IDS evaluation program. This newer version of the dataset is free from duplicate and redundant records. KDDTrain+ and KDDTest+ contain the full NSL-KDD train and test set respectively.

3.1 Data Exploration

There are 125973 instances and 43 features for each instance in KDDTrain+ dataset. It contains 0 duplicate instances.

#	Feature Name	Description	Data Type	Туре
1	duration	Length of time duration of the connection	int64	Continuous
2	protocol_type	Protocol used in the connection	object	Categorical
3	service	Destination network service used	object	Categorical
4	flag	Status of the connection – Normal or Error	object	Categorical
5	src_bytes	Number of data bytes transferred from source to destination in single connection	int64	Continuous
6	dst_bytes	Number of data bytes transferred from destination to source in single connection	int64	Continuous
7	land	If source and destination IP addresses and port numbers are equal then, this variable takes value 1 else 0	int64	Binary
8	wrong_fragment	Total number of wrong fragments in this connection	int64	Discrete
9	urgent	Number of urgent packets in this connection. Urgent packets are packets with the urgent bit activated	int64	Discrete
10	hot	Number of "hot" indicators in the content such as: entering a system directory, creating programs and executing programs	int64	Continuous
11	num_failed_logins	Count of failed login attempts	int64	Continuous
12	logged_in	Login Status: 1 if successfully logged in; 0 otherwise	int64	Binary
13	num_compromised	Number of "compromised" conditions	int64	Continuous
14	root_shell	1 if root shell is obtained; 0 otherwise	int64	Binary
15	su attempted	1 if "su root" command attempted or used; 0 otherwise	int64	Discrete
16	num_root	Number of "root" accesses or number of operations performed as a root in the connection	int64	Continuous
17	num_file_creations	Number of file creation operations in the connection	int64	Continuous
18	num shells	Number of shell prompts	int64	Continuous
19	num_access_files	Number of operations on access control files	int64	Continuous
20	num outbound cmds	Number of outbound commands in an ftp session	int64	Continuous
21	is_host_login	1 if the login belongs to the "hot" list i.e., root or admin; else 0	int64	Binary
22	is guest login	1 if the login is a "guest" login; 0 otherwise	int64	Binary
23	count	Number of connections to the same destination host as the current connection in the past two seconds	int64	Discrete
24	srv_count	Number of connections to the same service (port number) as the current connection in the past two seconds	int64	Discrete
\neg	serror rate	The percentage of connections that have activated the flag (4) s0, s1, s2 or s3, among the connections aggregated in count (23)	float64	Discrete
26	srv_serror_rate	The percentage of connections that have activated the flag (4) s0, s1, s2 or s3, among the connections aggregated in srv_count (24)	float64	Discrete
27	rerror_rate	The percentage of connections that have activated the flag (4) REJ, among the connections aggregated in count (23)	float64	Discrete
28	srv_rerror_rate	The percentage of connections that have activated the flag (4) REJ, among the connections aggregated in srv_count (24)	float64	Discrete
29	same_srv_rate	The percentage of connections that were to the same service, among the connections aggregated in count (23)	float64	Discrete
30	diff_srv_rate	The percentage of connections that were to different services, among the connections aggregated in count (23)	float64	Discrete
31	srv_diff_host_rate	The percentage of connections that were to different destination machines among the connections aggregated in srv_count (24)	float64	Discrete
32	dst_host_count	Number of connections having the same destination host IP address	int64	Discrete
33	dst_host_srv_count	Number of connections having the same port number	int64	Discrete
34	dst_host_same_srv_rate	The percentage of connections that were to different services, among the connections aggregated in dst_host_count (32)	float64	Discrete
35	dst_host_diff_srv_rate	The percentage of connections that were to different services, among the connections aggregated in dst_host_count (32)	float64	Discrete
36	dst_host_same_src_port_rate	The percentage of connections that were to the same source port, among the connections aggregated in dst_host_srv_count (33)	float64	Discrete
37	dst_host_srv_diff_host_rate	The percentage of connections that were to different destination machines, among the connections aggregated in dst_host_srv_count (33)	float64	Discrete
38	dst_host_serror_rate	The percentage of connections that have activated the flag (4) s0, s1, s2 or s3, among the connections aggregated in dst_host_count (32)	float64	Discrete
39	dst_host_srv_serror_rate	The percent of connections that have activated the flag (4) s0, s1, s2 or s3, among the connections aggregated in dst_host_srv_count (33)	float64	Discrete
40	dst_host_rerror_rate	The percentage of connections that have activated the flag (4) REJ, among the connections aggregated in dst_host_count (32)	float64	Discrete
41	dst_host_srv_rerror_rate	The percentage of connections that have activated the flag (4) REJ, among the connections aggregated in dst_host_srv_count (33)	float64	Discrete
42	labels	Classification of the traffic input	object	Categorical
43	score	Difficulty level	int64	Discrete

Figure 3.1: List of features in NSL-KDD dataset.

3.2 Data Visualization

3.2.1 Categorical Features

Feature 'protocol_type' has 3 categories.

Figure 3.2: Protocol Type

Feature 'service' has 70 categories.

Figure 3.3: Service Type

Feature 'flag' has 11 categories.

Figure 3.4: Flag Type

Feature 'labels' has 23 categories.

Figure 3.5: Labels Type

3.3 Data Preprocessing

3.3.1 Categorizing Labels Into Categories of Attack

There are four main categories of attacks, namely: denial-of-service (DOS), Remote-to-Local attacks - (R2L) unauthorized access from a remote machine, User-to-Root attacks(U2R) - unauthorized access to local superuser (root) privileges, and probing. [10]

Figure 3.6: Attack Type

3.3.2 Encoding Categorical Features

Encoding 'labels' into binary values

Since the feature 'labels' contains non-numeric data, it is encoded into binary values where 0 represents a 'normal' connection and 1 represents an 'attack'. After encoding, we observe for KD-

DTrain+ set there are: 67343 instances representing 'normal'. 58630 instances representing 'attack'.

Figure 3.7: Labels Encoded

One-Hot-Encoding

Most machine learning algorithms require numerical data as input to the model, hence the categorical features in our data set must be first converted into some numeric form for the machine learning algorithms to be able to process it. It can be done using label encoding or one-hot-encoding. Label encoding however has a disadvantage, that is, it gives a false sense of natural ordering and the algorithm may assume a false ordering based on assigned orders. This results in poor performance or unexpected results. One-hot-encoding is a widely used technique for creating categor-

ical features. This method creates a new feature per level of the original feature. Hence, we implement the encoding step using the one-hot-encoding method. After replacing all the columns by the derived one-hot encoded columns and adding dummy columns, we obtain 124 columns in the dataset.

3.3.3 Feature Scaling

The NSL KDD dataset includes features that highly vary in magnitudes, units, and range. Feature scaling is an effective means to improve predictive results. It refers to the standardization of independent features in a dataset. This method rescales the values of a feature to fall within a certain range.

Min-Max Scaling

It rescales data to have values between 0 and 1.

$$x' = \frac{x - x_{min}}{x_{max} - x_{min}} \tag{3.1}$$

where:

x' = Normalized Value

3.3.4 Feature Elimination

Eliminating features based on variance

If the variance is low or close to zero, then it can be removed from the dataset. Features with low or zero variance are approximately constant and will not improve the performance of the predictive model. In the NSL KDD dataset, we observe the feature 'num outbound cmds' has a variance of zero, hence it can be dropped from the dataset.

3.3.5 Summary

y_train and y_test contain encoded labels. X_train and X_test contain 122 features as listed in Figure 3.8.

	X_train	y_train	X_test	y_test
Number of rows	125973	125973	22544	22544
Number of columns	122	1	122	1
Data Type	float64	float64	float64	float64

Table 3.1: Summary of datasets after preprocessing.

List of features after one-hot encoding

#	Features	#	Features	#	Features	#	Features	#	Features	#	Features	#	Features	#	Features
•	duration	16	num_access_files	32	dst_host_same_src_port_rate	48	flag_S1	64	service_domain_u	80	service_kshell	96	service_pop_3	112	service_urp_i
:	src_bytes	17	is_host_login	33	dst_host_srv_diff_host_rate	49	flag_S2	65	service_echo	81	service_ldap	97	service_printer	113	service_uucp
;	dst_bytes	18	is_guest_login	34	dst_host_serror_rate	50	flag_S3	66	service_eco_i	82	service_link	98	service_private	114	service_uucp_path
4	land	19	count	35	dst_host_srv_serror_rate	51	flag_SF	67	service_ecr_i	83	service_login	99	service_remote_job	115	service_vmnet
	wrong_fragment	20	srv_count	36	dst_host_rerror_rate	52	flag_SH	68	service_efs	84	service_mtp	100	service_rje	116	service_whois
(urgent	21	serror_rate	37	dst_host_srv_rerror_rate	53	service_IRC	69	service_exec	85	service_name	101	service_shell	117	service_urh_i
7	hot	22	srv_serror_rate	38	score	54	service_X11	70	service_finger	86	service_netbios_dgm	102	service_smtp	118	service_aol
1	num_failed_logins	23	rerror_rate	39	protocol_type_icmp	55	service_Z39_50	71	service_ftp	87	service_netbios_ns	103	service_sql_net	119	service_http_2784
9	logged_in	24	srv_rerror_rate	40	protocol_type_tcp	56	service_auth	72	service_ftp_data	88	service_netbios_ssn	104	service_ssh	120	service_red_i
10	num_compromised	25	same_srv_rate	41	protocol_type_udp	57	service_bgp	73	service_gopher	89	service_netstat	105	service_sunrpc	121	service_http_8001
11	root_shell	26	diff_srv_rate	42	flag_OTH	58	service_courier	74	service_hostnames	90	service_nnsp	106	service_supdup	122	service_harvest
13	su_attempted	27	srv_diff_host_rate	43	flag_REJ	59	service_csnet_ns	75	service_http	91	service_nntp	107	service_systat		
13	num_root	28	dst_host_count	44	flag_RSTO	60	service_ctf	76	service_http_443	92	service_ntp_u	108	service_telnet		
14	num_file_creations	29	dst_host_srv_count	45	flag_RSTOS0	61	service_daytime	77	service_imap4	93	service_other	109	service_tftp_u		
15	num_shells	30	dst_host_same_srv_rate	46	flag_RSTR	62	service_discard	78	service_iso_tsap	94	service_pm_dump	110	service_tim_i		
10	num_access_files	31	dst_host_diff_srv_rate	47	flag_S0	63	service_domain	79	service_klogin	95	service_pop_2	111	service_time		

Figure 3.8: List of features.

Chapter 4

Autoencoders

Autoencoders are artificial neural networks with a symmetric structure. They follow an unsupervised learning approach.

4.1 General Structure

Figure 4.1: General structure of an autoencoder.

An Autoencoder has an input layer, an output layer, and one or more hidden layers. They have an encoder-decoder structure. The middle layer of an autoencoder represents an encoding of the input data. The encoder compresses the input into a latent-space representation. The decoder reconstructs the input from this latent-space representation. These encodings have a much lower dimensionality than the input data. Autoencoders attempt to reconstruct the input. During reconstruction, the output may differ from the original input since they are transformed from a lower dimension to a higher dimension. This difference is quantified in terms of reconstruction error.

4.2 Autoencoders for Anomaly Detection

Autoencoders built for anomaly detection train only on normal instances. During prediction, reconstruction error produced during the decoding phase is used for anomaly detection. Instances with high reconstruction error are identified as outliers, that is, anomalies. Stereotypical instances should have low reconstruction error. A threshold is set to identify anomalies. Any data point in the test set that has reconstructed error greater than threshold error will be marked as an outlier.

4.3 Deep Autoencoders

The encoders and decoders are made up by stacking multiple fully-connected layers of neurons. Multiple layers help the autoencoders learn complex codings.

Chapter 5

Methodology

5.1 Architecture

In our implementation each autoencoder consists of one input, three hidden, and one output layer. The layers are fully connected.

Layer number	Туре	Number of neurons				
Layer 1	Input Layer	122 neurons				
Layer 2	Hidden Layer 1	32 neurons				
Layer 3	Hidden Layer 2	16 neurons				
Layer 4	Hidden Layer 3	32 neurons				
Layer 5	Output Layer	122 neurons				

Table 5.1: Summary of autoencoder architecture

We implemented the model to predict two different types of classes: Normal and anomaly (2-class classification). We study

Figure 5.1: Architecture of implemented model.

and compare how different optimizers and activation functions perform in building a predictive model for anomaly detection using deep autoencoders. We implement, train, and evaluate 9 autoencoder models with the following specifications:

Model number	Number of hidden layers	Neurons	Activation	Optimizer	Loss	Learning rate
1	Three hidden layers	[122,32,16,32,122]	linear	adam	mse	0.001
2	Three hidden layers	[122,32,16,32,122]	sigmoid	adam	mse	0.001
3	Three hidden layers	[122,32,16,32,122]	tanh	adam	mse	0.001
4	Three hidden layers	[122,32,16,32,122]	linear	sgd	mse	0.01
5	Three hidden layers	[122,32,16,32,122]	sigmoid	sgd	mse	0.01
6	Three hidden layers	[122,32,16,32,122]	tanh	sgd	mse	0.01
7	Three hidden layers	[122,32,16,32,122]	linear	rmsprop	mse	0.001
8	Three hidden layers	[122,32,16,32,122]	sigmoid	rmsprop	mse	0.001
9	Three hidden layers	[122,32,16,32,122]	tanh	rmsprop	mse	0.001

Table 5.2: Summary of model specifications

5.2 Loss Function

For all the implemented models, we use Mean Square Error (mse) as the loss function. This measures the difference or the error between the reconstructed and the original input. Our objective is to minimize the mse, and we reach that by using an optimizer.

$$MSE = \frac{1}{n} \sum_{x} (x - z)^2 \tag{5.1}$$

where:

x =original input

z = output obtained by reconstruction

n = number of data points

5.3 Optimizers

5.3.1 adam

Adam stands for Adaptive Moment Estimation. Adam is a popular and robust optimization algorithm that has been designed specifically for training deep neural networks because it achieves good results fast. It is an adaptive learning rate optimization algorithm. For all the models implemented in this report we use the following configuration parameters:

```
learning\_rate = 0.001

beta\_1 = 0.9

beta\_2 = 0.999

epsilon = 1e - 07
```

5.3.2 sgd

SGD stands for stochastic gradient descent. It is a "classical" optimization technique. SGD work on small batches of training data and computes the gradient of the network loss function to update each individual weight in the network. For all the models implemented in this report we use the following configuration parameters:

```
learning\_rate = 0.01
momentum = 0.0
```

5.3.3 rmsprop

RMSprop stands for Root Mean Square Propagation. It is also an adaptive learning rate optimization algorithm. It is an unpublished, yet very widely-known gradient descent optimization algorithm for mini-batch learning of neural networks. This technique was proposed by Geoffrey Hinton at his Neural Networks Coursera course. For all the models implemented in this report we use the following configuration parameters:

```
learning\_rate = 0.001

rho = 0.9

momentum = 0.0

epsilon = 1e - 07
```

5.4 Activation Function

Activation functions take in a real valued number and execute a fixed mathematical operation on it. These functions are attached to each neuron in the neural network, and determine whether the output of the neuron should be transferred to the next layer or not. It enables to create complex mappings between the input and outputs of the neural network by introducing non-linearity into the output of a neuron (when non-linear activation functions like sigmoid, tanh are used).

5.4.1 linear

It is a straight line function where activation is proportional to input. It does not introduce non-linearity into the neural network.

Equation

$$f(x) = x \tag{5.2}$$

Derivative

$$f'(x) = 1 \tag{5.3}$$

Plot

Figure 5.2: Plot for linear activation function.

5.4.2 sigmoid

Sigmoid function is a non-linear activation function which maps input values to be between 0 and 1.

Equation

$$f(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$
 (5.4)

Derivative

$$f'(x) = f(x)(1 - f(x))$$
(5.5)

Plot

Figure 5.3: Plot for sigmoid activation function

5.4.3 tanh

Tanh function is a non-linear activation function which maps input values to be between -1 and 1.

Equation

$$f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 (5.6)

Derivative

$$f'(x) = 1 - f(x)^2 (5.7)$$

Plot

Figure 5.4: Plot for tanh activation function

Chapter 6

Implementation

The source code for training and evaluating the neural models was written using Python and Keras deep learning library [1] with the Tensorflow backend on Google Colaboratory.

6.1 Training

During the training phase, the autoencoder learns the characteristics of normal instances only hence the original X_train dataset was split to contain normal instances only. There were 67343 data points that were categorized as 'normal' in the X_train set, 20% of the instances from this set were used for validation. Hence, the models were trained on 53874 instances and validated on 13469 instances. The batch size was set to 128 and all models were trained for 100 epochs using Mean Squared Error (mse) as the loss function.

Model 1: Linear activation function was used with adam opti-

mizer.

Model 2: Sigmoid activation function was used with adam optimizer.

Model 3: Tanh activation function was used with adam optimizer.

Model 4: Linear activation function was used with sgd optimizer.

Model 5: Sigmoid activation function was used with sgd optimizer.

Model 6: Tanh activation function was used with sgd optimizer.

Model 7: Linear activation function was used with rmsprop optimizer.

Model 8: Sigmoid activation function was used with rmsprop optimizer.

Model 9: Tanh activation function was used with rmsprop optimizer.

6.2 Testing

A reconstruction error is generated upon prediction for each instance in X_test. Higher the reconstruction error, higher the possibility of that instance being an anomaly. This is because the autoencoder was trained on normal instances only and the weights of the autoencoder had been optimized to encode and decode normal instances only. As a result, any anomalous instance will result in a higher magnitude of reconstruction error. A loss threshold is set to distinguish normal and anomalous data instances. If reconstruction error is greater than the set threshold, the data point is classified as an anomaly, else if reconstruction error is less than

the set threshold, it is classified as a normal instance. Testing was carried out on the entire X_test set which contained 22544 data points. A histogram of mean square error for all data points with the threshold value was plotted during the testing phase.

6.3 Performance Evaluation

The following performance metrics were used to evaluate the model - Accuracy, Precision, Recall, F1 score.

Chapter 7

Results

The following results were obtained after successfully implementing nine autoencoder models.

7.1 Summary

Model	activation	optimizer	loss	threshold	TP	FP	TN	FN	Accuracy	Precision	Recall	F1
1	linear	adam	mse	0.001001001001	12224	1443	8268	609	0.9089779986	0.8944172093	0.9525442219	0.9225660377
2	sigmoid	adam	mse	0.001001001001	11814	1204	8507	1019	0.9013928318	0.9075126748	0.9205953401	0.9140071951
3	tanh	adam	mse	0.001001001001	12058	1044	8667	775	0.9193133428	0.9203175088	0.939608821	0.9298631193
4	linear	sgd	mse	0.01601601602	12251	1323	8388	582	0.9154985806	0.9025342567	0.9546481727	0.9278600371
5	sigmoid	sgd	mse	0.01701701702	12473	3003	6708	360	0.8508250532	0.8059576118	0.9719473233	0.8812038574
6	tanh	sgd	mse	0.01601601602	12353	1755	7956	480	0.9008605394	0.875602495	0.9625964311	0.9170409413
7	linear	rmsprop	mse	0.001001001001	12252	1532	8179	581	0.9062721789	0.8888566454	0.9547260968	0.9206146448
8	sigmoid	rmsprop	mse	0.001001001001	12011	1311	8400	822	0.9053850248	0.9015913526	0.9359463882	0.9184477155
9	tanh	rmsprop	mse	0.001001001001	12063	1127	8584	770	0.9158534422	0.9145564822	0.9399984415	0.9271029474

Table 7.1: Summary of nine models.

7.2 Histogram of mean square error

Figure 7.1: Histogram of MSE

7.3 Training Loss

Figure 7.2: Plot for training loss.

7.4 Training Accuracy

Figure 7.3: Plot for training accuracy.

7.5 Validation Loss

Figure 7.4: Plot for validation loss.

7.6 Validation Accuracy

Figure 7.5: Plot for validation accuracy.

7.7 Precision Recall Curve

Figure 7.6: Precision - Recall Curve

7.8 Performance Metrics

Figure 7.7: Plot for performance metrics.

Chapter 8

Conclusion

We implemented nine models of a stacked autoencoder with different activation functions and optimizers for developing an efficient NIDS. We used the benchmark network intrusion dataset - NSL-KDD to evaluate anomaly detection accuracy. We observed that Model-3 with 'tanh' activation function and 'adam' optimizer performed very well compared to the rest of the autoencoder models implemented. A threshold value of 0.001 on mse was set to differentiate between normal and anomalous network connections. An accuracy of 91.93% with an average precision of 0.899 from precision-recall curve was obtained in normal/anomaly detection for Model-3 when evaluated on the test data.

Bibliography

- [1] F. Cholletet al., "Keras," https://github.com/fchollet/keras, 2015.
- [2] F. Chollet, Deep Learning with Python, 1st ed. USA: Manning Publications Co., 2017.
- [3] M. Goldstein and S. Uchida, "A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data," PloS one, vol. 11,no. 4, p. e0152173, 2016.
- [4] A. Gron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 1st ed. O'Reilly Media, Inc., 2017.
- [5] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, "A deep learning approach for network intrusion detection system," in Proceedings of the 9th EAI International Conference on Bioinspired Information and Communications Technologies (formerly BIONETICS), 2016, pp. 21–26.
- [6] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.

- [7] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A detailed analysis of the kdd cup 99 data set," in 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, 2009, pp.1–6.
- [8] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. ScottsValley, CA: CreateSpace, 2009.
- [9] NSL KDD Dataset https://www.unb.ca/cic/datasets/nsl.html
- [10] NSL KDD Attack Types http://kdd.ics.uci.edu/databases/kddcup99/training_attack_types