Лабораторная работа №3 Численные методы анализа, методы минимизации

Студенты: Нимеева Ангелина Борисовна 466898 Шумбалов Айдар Мухамбеткалиевич 489607 Степанов Виктор Михалыч 467592

01.06.2025

Содержание

1	Визуализация данных	2
	1.1 Описание исходного ряда	2
	1.2 Разностные ряды	2
2	Автокорреляционная функция (АКФ)	3
	2.1 Методика	3
	2.2 Анализ	
3	Тест стационарности АDF	5
	3.1 Метод Dickey-Fuller	5
	3.2 Выводы	5
4	Экспоненциальное сглаживание	5
	4.1 Реализация	5
	4.2 Интерактивная визуализация	5
5	Заключение	6

1 Визуализация данных

1.1 Описание исходного ряда

Для анализа был загружен валютный курс EUR/USD за период 01.01.2020—01.01.2023 с использованием API yfinance. В качестве временного ряда взята цена закрытия (Close).

Рис. 1: Kypc EUR/USD (2020–2022)

1.2 Разностные ряды

Для устранения тренда и потенциальной нестационарности были построены ряды первой и второй разности.

Рис. 2: Первая и вторая разности исходного ряда

2 Автокорреляционная функция (АКФ)

2.1 Методика

Автокорреляционная функция $(AK\Phi)$ показывает зависимость значений ряда от его прошлых значений. Для построения $AK\Phi$ использован метод plot_acf из statsmodels.

Рис. 3: АКФ

2.2 Анализ

- \bullet Высокие значения АКФ на больших лагах указывают на наличие тренда (нестационарность).
- После первой разности большинство коэффициентов попадают в доверительный интервал, что свидетельствует о снижении автозависимости.
- Сезонных пиков не выявлено.

3 Тест стационарности ADF

3.1 Метод Dickey–Fuller

Tect Augmented Dickey–Fuller проверяет нулевую гипотезу о наличии единичного корня (нестационарность).

Серия	Статистика ADF	<i>p</i> -value
Исходный ряд Первая разность	$-0.579 \\ -16.842$	$0.874 \\ 0.000$

Таблица 1: Результаты теста Дики-Фуллера

3.2 Выводы

- p-value исходного ряда $> 0.05 \Rightarrow$ ряд нестационарен.
- p-value первой разности $< 0.05 \Rightarrow$ ряд становится стационарным после первой разности.

4 Экспоненциальное сглаживание

4.1 Реализация

Алгоритм реализован вручную по формуле:

$$S_t = \alpha X_t + (1 - \alpha) S_{t-1}, \qquad 0 < \alpha < 1.$$

4.2 Интерактивная визуализация

C помощью ipywidgets реализован ползунок для подбора параметра сглаживания α .

Рис. 4: Пример экспоненциального сглаживания при $\alpha=0.3$

5 Заключение

В ходе лабораторной работы:

- 1. Построены графики исходного и разностных рядов, выявлена трендовая компонента.
- 2. С помощью $AK\Phi$ и ADF-теста показано, что исходный ряд нестационарен, но становится стационарным после первой разности.
- 3. Реализован и протестирован метод экспоненциального сглаживания; продемонстрирована возможность визуального выбора параметра α .