<u> Modelação – Parte III</u>

1. Curvas (ou Curves)

- Abrir o Blender e apagar o elemento cube;
- Mudar para o layout Modeling;
- Mudar para a vista de topo ortográfica;
- Arrastar o ficheiro "FCG_02_Modelacao_C_Img1.JPG" para o editor 3D Viewport;
- Corrigir as coordenadas de Location (0,0,0) (**Teclas Alt+G**);
- Ir ao separador Object Data Properties, no editor Properties, e ajustar o valor da Opacity;
- Ao contrário das malhas, que são constituídas por um conjunto de pontos, arestas e faces, as curvas são expressas em termos de funções matemáticas que podem ser definidas através de uma série de pontos de controlo;
- O Blender tem o seguinte conjunto de curvas pré-definidas:
 - o Bézier (ou Bezier) Curva Bézier aberta;
 - o **Círculo (ou Circle)** Curva Bézier fechada (círculo);
 - Curva Nurbs (ou Nurbs Curve) Curva aberta baseada nas fórmulas Nurbs;
 - Círculo Nurbs (ou Nurbs Circle) Curva fechada (círculo) baseada nas fórmulas Nurbs;
 - Caminho (ou Path) Curva que serve para definir um trajeto, tendo adicionado o elemento direção.
- Tal como nas malhas, podem definir-se alguns parâmetros das curvas no painel Adjust Last Operation no momento da sua criação;
- As operações de seleção, eliminação, edição e aplicação de transformações geométricas às curvas, são efetuadas da mesma forma que nas malhas;
- Adicionar uma curva de Bézier;
- No painel Adjust Last Operation (canto inferior esquerdo), que neste caso aparece com o nome de Add Bezier, colocar o raio a 2;
- Entrar em modo de edição (Tecla TAB);
- A curva de Bézier contém dois pontos de controlo (um em cada uma das suas extremidades) e cada ponto de controlo tem dois manipuladores (um de cada lado). É através destes que são formados vetores tangentes à curva que irão controlar a sua forma final;
- Pode criar-se mais pontos de controlo através de:
 - Extrusão de um ponto de controlo previamente selecionado (Tecla
 E);
 - Subdivisão entre dois pontos de controlo previamente selecionados (botão do lado direito do rato → Subdivide).

- É possível fazer com que cada manipulador afete apenas parte da curva. Para tal:
 - Selecionar um ponto de controlo do meio da curva;
 - A partir do Header escolher a opção Control Points→Set Handle
 Type→Vector, ou pressionar o botão direito do rato e selecionar Set
 Handle Type→Vector, ou pressionar a Tecla V e escolher a opção
 Vector;
 - O Desta forma, é possível modelar com linhas quebradas.
- Criar uma curva em forma de coração, seguindo os contornos da imagem de fundo, sem que esta fique fechada;
- Atribuir-lhe o nome de "Coração";
- É possível fechar as curvas, pedindo ao *Blender* para ligar o último ponto de controlo, ao primeiro. Para tal:
 - Selecionar um dos pontos de controlo da extremidade da curva;
 - Escolher a opção Curve→Toggle Cyclic ou pressionar as Teclas ALT+C;
 - o Fechar a curva "Coração".

2. Separador Object Data Properties para curvas

- No editor *Properties*, o separador *Object Data Properties* permite configurar um conjunto de parâmetros para qualquer elemento, seja ele uma malha, uma curva, uma superfície ou um texto;
- No caso das curvas, esses parâmetros podem ser, por exemplo:
 - Definir se a curva é para ser modelada em 2D ou em 3D, usando o respetivo botão no painel Shape;
 - Fazer uma extrusão da curva, definindo a sua altura no campo *Extrude* do painel *Geometry*. De forma a testar este parâmetro:
 - Colocar o seu valor a 0.5 e sair da vista de topo;
 - Tornar invisível o elemento Empty que contém a imagem de referência;
 - Mudar para Object Mode (Tecla TAB) e observar o objeto criado.
 - Definir se a curva tem um aspeto de calha ou tubo, usando os campos
 Depth e *Resolution*, do sub-painel *Bevel*, do painel *Geometry*, e o
 parâmetro *Fill Mode*, do painel *Shape*. De forma a testar esta
 possibilidade, realizar o exercício seguinte.

- Criar uma nova coleção, Collection 2, e esconder os objetos da Collection;
- Na Collection 2, criar uma curva do tipo Nurbs Curve;
- No editor *Outliner*, mudar o nome do objeto para "Tubo";
- No separador Object Data Properties, painel Geometry, subpainel Bevel, mudar o valor de Depth para 0.1 e o de Resolution para 10;
- Verificar que selecionando a opção Half do parâmetro Fill Mode, do painel Shape, se obtém uma calha;
- Observar que, se para o mesmo parâmetro for selecionada a opção *Full*, se obtém um tubo;
- É sempre possível alterar a forma da curva, entrando no modo de edição e manipulando os pontos de controlo. Para o comprovar, efetuar uma extrusão, selecionando um dos pontos de controlo das extremidades da curva.

3. Transformação de curvas em malhas

- Após a criação da curva, pode ser necessário convertê-la numa malha (mesh) para prosseguir com o processo de modelação. Por exemplo, quando se pretende preencher o interior de uma curva 3D, como a do "Coração" modelado anteriormente.
- Para exemplificar esta conversão:
 - Esconder a Collection 2 e tornar visível a Collection;
 - o Em Object Mode, selecionar o objeto "Coração";
 - o Ir ao menu *Object→Convert* e escolher a opção *Mesh*;
 - Outra alternativa, mais rápida, passa por clicar no botão do lado direito do rato e escolher a opção *Convert To→Mesh*;
 - o Entrar em modo de edição e verificar que o objeto agora é uma malha.
- O preenchimento do interior de um objeto deste tipo é feito através da criação de novas faces. Para tal:
 - Selecionar uma aresta do topo do objeto;
 - A partir do Header escolher a opção Select→Select Loops→Edge Loops (ou Alt + botão esquerdo do rato sobre uma aresta);
 - Ligar os vértices selecionados através de faces, escolhendo a opção
 Face→Fill ou premindo as Teclas ALT + F (são criadas várias faces);
 - Repetir o processo para a base do objeto, mas, no último passo, escolher a opção *Vertex-New Edge/Face from Vertices* ou premir a Tecla F (é criada uma única face);
 - Verificar a diferença visual entre o topo e a base do objeto;
 - Sair do modo de edição.

4. Técnica lofting ou lathing

- Esta técnica de modelação usa um caminho 2D e uma seção transversal (também 2D) para criar um objeto 3D, cuja forma é obtida pela repetição da seção transversal ao longo do caminho;
- Para exemplificar o uso desta técnica no Blender:
 - o Criar uma nova coleção, Collection 3, e esconder as restantes
 - Com a nova coleção ativa, adicionar uma curva de Bézier aberta, de raio 1, na posição (-3.0, 0.0, 0.0);
 - Alterar o nome dessa curva para "Perfil";
 - Aplicar uma rotação à curva, no eixo dos XX, de 90⁰ (Tecla R, seguida da Tecla X, de 90 e da Tecla ENTER);
 - o Adicionar um *Nurbs Circle* na origem;
 - Mudar para a vista Front Ortho;
 - No editor *Properties*, separador *Object Data Properties*, painel *Geometry*, sub-painel *Bevel*, clicar em *Object* e, no campo *Object*, colocar a curva de *Bézier* ("Perfil");
 - Verificar que o círculo inicial mudou para uma forma 3D;
 - o Passar para uma visualização Wireframe (Tecla Z);
 - Selecionar a curva de Bézier;
 - Passar para o modo de edição;
 - Selecionar um dos manipuladores;
 - Aplicar uma extrusão (Tecla E);
 - Verificar que o perfil do modelo criado segue a forma da curva "perfil";
 - Experimentar outras alterações à curva e ver as mudanças que ocorrem no objeto;
 - Quando se obtiver a forma final pretendida, voltar ao modo objeto e ao modo de visualização Solid;
 - Transformar o modelo criado em mesh clicando no botão direito do rato e escolhendo Convert To→Mesh;
 - Apagar a curva que serviu de perfil (só agora é que se pode eliminar esta curva).

5. Texto

- Uma das formas de criar um objeto do tipo texto (*Text*), é a seguinte:
 - o Criar uma nova coleção, Collection 4, e esconder as restantes;
 - o Ir ao menu *Add* (ou usar **SHIFT+A**) e escolher a opção *Text*;
 - Como, por omissão, o texto aparece deitado no plano XY, para orientálo de forma a aparecer virado para o utilizador, no painel Add Text (canto inferior esquerdo do editor 3D Viewport), selecionar a opção Align→View.
- Alternativamente, pode usar-se o editor *Text Editor*. Para tal:
 - Subdividir a área do editor 3D Viewport em duas (colocando o cursor do rato no canto superior desta área e, mantendo pressionado o botão esquerdo do rato, ir arrastando até aparecer a nova área);
 - O Na nova área, alterar o tipo para *Text Editor*;
 - Criar um ficheiro de texto premindo o botão *New* e escrever o texto que se pretender;
 - Outra hipótese é abrir um ficheiro de texto já existente, escolhendo a opção *Text→Open* (ou pressionando as *Teclas ALT + O*);
 - o Escolher o ficheiro "FCG 02 Modelacao C Texto.txt".
- Para passar o texto para a cena 3D, aceder ao menu Edit→Text To 3D Object e escolher uma das opções:
 - One Object Caso se pretenda criar apenas um objeto com todo o texto;
 - One Object per Line Caso se queira criar um objeto 3D por cada linha de texto.
 - Criar objetos de texto usando as duas opções.
 - A seleção, eliminação e aplicação de transformações geométricas aos elementos do tipo texto, é feita de igual forma à que se faz quando se trabalha com as malhas ou curvas;
 - O modo de edição para um objeto do tipo texto permite a alteração do que está escrito, funcionando como um editor de texto. Para o verificar:
 - o Entrar em modo de edição (Tecla TAB);
 - Alterar o texto, adicionando / apagando caracteres;
 - o Voltar ao modo objeto (Tecla TAB).

6. Separador Object Data Properties para texto

- Colocar o cursor do rato entre as áreas do editor3D Viewport e Text Editor;
- Pressionar o botão direito do rato;
- Escolher a opção *Join Areas*;
- Pressionar o botão esquerdo do rato quando o cursor estiver sobre a janela do Text Editor;
- Tal como já foi dito para outros casos, o separador Object Data Properties, do editor Properties, permite configurar uma série de parâmetros ligados ao texto. Por exemplo,
 - o Pode mudar-se o tipo de letra no painel *Font*. Para tal:
 - Usar o botão para alterar o tipo de letra para texto normal, itálico, bold ou bold + itálico;
 - Escolher um tipo de fonte (por exemplo, times.ttf) Em sistemas
 Windows as fontes estão na pasta c:\Windows\Fonts.
 - No painel *Paragraph* é possível:
 - Alinhar o texto à esquerda, à direita, centrado, etc. (sub-painel Alignment);
 - Alterar o espaçamento entre caracteres, entre palavras e entre linhas (sub-painel *Spacing*);
 - Modificar estes parâmetros no texto que se inseriu na cena 3D.
 - Além disso, é possível dar profundidade ao texto, tornando-o verdadeiramente 3D. Assim, no painel *Geometry*:
 - Colocar o parâmetro Extrude a 0.2;
 - Colocar o parâmetro *Depth* (sub-painel *Bevel*) a 0.02, para "cortar" as arestas do texto;
 - Confirmar que o parâmetro *Resolution* se encontra a 4, de maneira a arredondar os cortes.

7. Transformação de texto em malhas

- A transformação de um objeto de texto numa malha é feita da mesma forma que no caso das curvas, isto é, no modo objeto.
 - Através do menu *Object→Convert*, escolher a opção *Mesh* ou carregar no botão do lado direito do rato e escolher a opção *Convert To→Mesh*;
 - No modo de edição, verificar que agora as letras são formadas por vértices e que se deixa de ter acesso às propriedades dos objetos de texto;
 - Para selecionar facilmente apenas os vértices que formam uma das letras, pode selecionar-se um conjunto de vértices dessa letra (em modo Wireframe) e aceder à opção do menu Select->Select Linked->Linked (ou Teclas CTRL + L), aproveitando o facto de cada letra ser considerada uma malha separada;
 - Depois de selecionar uma letra, para a tornar num objeto separado, pressionar a Tecla P e escolher a opção Selection;
 - Mudar para o modo objeto e verificar que houve a separação.

8. Modelação de objetos com base em elementos distintos

- Por vezes é necessário usar elementos de tipos distintos para se conseguir a modelação desejada. Um exemplo desta situação é o de querer modelar um texto cujos caracteres devem estar posicionados circularmente. Para o conseguir:
 - Criar uma nova coleção, Collection 5, e esconder as restantes;
 - Com a nova coleção ativa, criar uma curva do tipo Circle e atribuir-lhe o nome de "Forma Texto";
 - Selecionar um objeto do tipo texto (tem mesmo que ser deste tipo), na Collection 4 (onde foi criado);
 - Mudar este objeto para a Collection 5 (Tecla M);
 - No editor *Properties*, separador *Object Data Properties*, no painel *Font* e sub-painel *Transform*, alterar o campo *Text on Curve* para "Forma
 Texto";
 - Colocar a curva em modo edição (TAB) e verificar que quando se altera a curva, o texto muda. É importante perceber que os tamanhos da curva e do texto têm implicações na forma como se dá essa mudança (por exemplo, uma curva pequena num texto grande pode afetar apenas parte do texto).

9. Usar elementos de outros ficheiros com extensão .blend

- O *Blender* permite que se importem modelos a partir de outros ficheiros com extensão ".blend".
- Assim, pode-se criar um objeto, guardá-lo e depois reutilizá-lo noutros projetos.
- Para testar essa possibilidade:
 - Ir ao menu File → Append e procurar o ficheiro do Blender "FCG 02 Modelacao C Append";
 - o Entrar na pasta *Object* (dentro da estrutura do ficheiro aberto);
 - o Selecionar os objetos "Mesa" e "Cadeira".
 - No lado direito da janela, destacam-se as seguintes opções:
 - Select Os objetos importados ficam automaticamente selecionados;
 - Active Collection Os objetos são colocados automaticamente na Collection ativa do projeto que está a importar esses elementos.
 - Clicar no botão Append para importar os objetos;
 - Ir novamente ao File→Append, escolher o mesmo ficheiro e entrar na pasta Object;
 - Selecionar o objeto "Jarra";
 - Desativar o botão Active Collection;
 - Clicar no botão Append;
 - o Foi criada uma nova collection onde se encontra a Jarra.
 - O Colocar a Jarra na collection onde estão a mesa e a cadeira;
 - Mover e redimensionar os objetos importados de modo a adequá-los ao projeto, colocando as letras em cima da mesa.

10. Extrusão a partir de Geometry Nodes

- Os Geometry Nodes permitem alterar a geometria de um objeto com operações baseadas em nós. Podem ser acedidos através da adição de um modificador com o mesmo nome (de forma direta, ou indireta).
- Para testar a sua utilização através de um exercício simples:
 - Criar um novo ficheiro do Blender através de File→New→General e selecionar o workspace Modeling;
 - O Adicionar uma nova área na vertical através da opção *View→Area→Vertical Split* e, no canto superior esquerdo da nova área, mudar o tipo de editor para *Geometry Nodes Editor*;

- Neste editor, adicionar um novo Geometry Node Group pressionando o botão New do Header, ou através do ícone Modifier Properties (no editor Properties), selecionar a opção Add Modifier e escolher o modificador Geometry Nodes da coluna Generate;
- Eliminar o Group Input e adicionar uma curva primitiva do tipo
 Quadrilateral através de SHIFT+A→Curve Primitives→Quadrilateral;
- Ligar a saída Curve do node Quadrilateral à entrada Geometry do node Group Output;
- Adicionar um node do tipo Curve to Mesh através de SHIFT+A→Curve→ Curve to Mesh;
- Ligar a saída *Curve* do *node* Quadrilateral à entrada *Curve* do *node Curve* to *Mesh*, e a saída *Mesh* deste último à entrada *Geometry* do *node Group Output*. Colocando o *node Curve* to *Mesh* entre os outros dois
 nodes estas ligações são feitas automaticamente.
- Ao editar os valores do node Quadrilateral pode-se controlar a largura (weight) e altura (height) da curva primária (quadrado);
- Para atribuir-lhe uma espessura, será necessário adicionar uma nova curva primitiva do tipo *Quadrilateral*. Para tal, no *Geometry Nodes Editor*:
 - Adicionar uma nova curva primitiva do tipo Quadrilateral, através de SHIFT+A→Curve Primitives→Quadrilateral;
 - Ligar a saída Curve do novo node Quadrilateral à entrada Profile Curve do node Curve to Mesh;
 - Ajustar os valores do novo node Quadrilateral para 0.5 m de largura (width) e 3.5 m de altura (height);
 - Para suavizar a geometria no editor 3D Viewport e na renderização, adicionar o node Set Shade Smooth (SHIFT+A→Mesh→Set Shade Smooth) e desativar a opção Shade Smooth;
 - Finalizar, colocando este node entre os nodes Curve to Mesh e Group Output (ligações são estabelecidas automaticamente). O resultado obtido deverá ser semelhante ao da figura 1.

Figura 1: Resultado

11. Exercícios propostos

- **1.** Modelar a cena 3D que se apresenta na *figura 2*, sabendo que esta tem os seguintes objetos:
 - o A base é um cubo redimensionado;
 - O <u>candeeiro</u> é um único objeto composto por uma curva *Bézier* transformada em *mesh* e por um cilindro cortado ao meio;
 - o A jarra é importada do ficheiro "FCG 02 Modelacao C Append";
 - O conjunto de <u>letras</u> é um único objeto de texto, convertido em *mesh*. As letras "F", "u" e "n" foram separadas da malha inicial e movidas de posição;
 - O A folha de papel é uma curva *Bézier* com uma extrusão;
 - O <u>lápis</u> é um único objeto, combinando a malha de um cilindro com a de um cone;
 - O <u>objeto irregular no canto inferior direito</u> é uma curva *Bézier* fechada e preenchida, transformada em *mesh* e à qual foi aplicada uma extrusão para ganhar volume.

Figura 2: Cena 3D a modelar

- **2.** Modelar o copo que foi feito na aula passada (guião *FCG_02_Modelação_B*), usando a técnica de *lofting*.
- **3.** Modelar uma planta (caule e folhas) através do uso de Geometry Nodes, efetuando os passos que se seguem:
 - Criar um novo projeto do Blender (File→New→General) e alterar o workspace para Geometry Nodes;
 - Adicionar um modificador do tipo Geometry Nodes ao cubo, através do editor Properties, separador Modifier Properties, opção Add Modifier, coluna Generate.
 Alternativamente, selecionar a opção New do Header do editor Geometry Nodes.

- Em qualquer das situações, verificar que foi criado um novo *Geometry Node Group*;
- Desfazer a ligação (a verde) entre os nodes Group Input e Group Output –
 pressionando o botão esquerdo do rato sobre a extremidade final da ligação e
 removendo-a;
- Adicionar um node do tipo Quadratic Bezier, através do menu Add (ou Teclas SHIFT+A)→Curve Primitives→Quadratic Bezier;
- Ligar a saída **Curve** do node Quadratic Bezier à entrada **Geometry** do node Group Output;
- Atribuir os seguintes valores aos campos do *node Quadratic Bezier*:
 - Start: 0, 0, 0;
 - o Middle: 0, 0, 0.5;
 - o End: 0, 0, 1.
- Para poder atribuir uma espessura à curva, há que transformá-la em *mesh* através de **SHIFT+A**-> *Curve*-> *Curve* to *Mesh*;
- Ligar a saída *Curve* do *node Quadratic Bezier à entrada Curve do node Curve* to *Mesh*, e a saída *Mesh* deste último, à entrada *Geometry* do node *Group Output*.
- Para criar o caule da planta é necessário que este tenha uma forma circular. Para tal:
 - Adicionar um novo node do tipo Curve Circle, através de SHIFT+A→Curve Primitives→Curve Circle;
 - Ligar a saída Curve do node Curve Circle, à entrada Profile Curve do node Curve to Mesh;
 - Para tornar o raio menor, alterar os valores de *Resolution* e *Radius* do *node Curve Circle* para 12 e 0.02m. Verificar o resultado esperado a partir da
 figura 3.

Figura 3: Geometry Nodes – etapa 1

 De forma a simular as irregularidades de uma planta, adicionar um node do tipo Noise Texture SHIFT+A Texture Noise Texture; Para além deste, adicionar outros *nodes* que serão necessários para manipular corretamente a posição, nomeadamente:

- SHIFT+A→Geometry→Set Position (controla a localização de cada ponto);
- SHIFT+A→Curve→Curve Parameter (gera a distância de um ponto ao longo de uma curva, como um valor entre 0 e 1);
- SHIFT+A→Vector→Vector Math (executa a operação matemática selecionada sobre os valores de entrada. Escolher operação Subtract para subtrair esses valores):
- SHIFT+A→Vector→Vector Math (executa a operação matemática selecionada sobre os valores de entrada. Escolher operação Multiply para multiplicar esses valores);
- Proceder às ligações das entradas/saídas dos nodes, bem como às alterações de parâmetros, de acordo com a figura 4;

Figura 4: Geometry Nodes – etapa 2

- Para adicionar irregularidade ao raio da curva, adicionar o node Set Curve Radius (SHIFT+A→Curve→Set Curve Radius) e inseri-lo entre os nodes Curve to Mesh e Set Position;
- Em seguida, criar uma ligação entre o node Curve Parameter e o novo node Set Curve Radius através do parâmetro Radius. No entanto, com esta configuração, o caule da planta fica com um aspeto exatamente oposto ao que devia ter, uma vez que o valor de saída do node Curve Parameter é 0 no ponto de origem e 1 no topo da curva;

- Para resolver este "problema", adicionar um node Map Range (SHIFT+A
 →Utilities→Map Range), o qual permite inverter os valores
 mencionados (que se pretende que sejam 1 na origem e 0 no final da
 curva). Para tal:
 - Ligar a saída Factor do node Curve Parameter à entrada Value do node MapRange, e a saída Result deste último, à entrada Radius do node Set Curve Radius;
 - Alterar os parâmetros From Min para 1.000 e From Max para 0.000.
- Agora que o caule está pronto, há que adicionar folhas à planta. Para essa finalidade:
 - Através da opção File→Append aceder ao ficheiro "folha.blend";
 - Na pasta *Mesh* selecionar o objeto *Plane* e carregar em *Append*;
 - Verificar que surgiu um novo objeto (com a forma de uma folha) no editor
 3D Viewport;
 - No Outliner, alterar o nome desse objeto para "Folha".
 - Com o caule selecionado, arrastar o objeto "Folha" do Outliner para o Geometry Nodes Editor;
 - Verificar que foi criado um novo node do tipo Object Info com informação da "Folha".
- As instâncias são uma forma rápida de adicionar a mesma geometria a uma cena muitas vezes, sem duplicar os dados subjacentes. No caso da planta, a folha será adicionada um determinado nº repetido de vezes.
 - Adicionar um novo node do tipo Instance on Points (Add→Instances→Instances on Points);
 - Ligar a saída Geometry do node Object Info, à entrada Instance do node Instance on Points;
 - Para controlar o número de folhas, criar um novo node do tipo Resample
 Curve (Add→Curve→Resample Curve);
 - Ligar a saída Curve do node Set Curve Radius à entrada Curve do node Resample Curve, e a saída Curve deste último, à entrada Points do node Instance on Points;
 - De forma a ser possível ligar a saída do node Instance on Points ao Group
 Output, adicionar o node Join Geometry (Add→Geometry→Join
 Geometry);
 - Ligar as saídas Instance e Mesh dos nodes Instance Points e Curve to Mesh, respetivamente, à entrada Geometry do node Join Geometry;
 - Verificar se ligações estão conforme a figura 5.

Figura 5: Geometry Nodes – etapa 3

- No editor *3D Viewport* é possível verificar que as folhas estão na vertical, pelo que é necessário aplicar-lhe uma rotação.
- A alteração dos valores de rotação diretamente no *node Instance Points,* não produz o resultado pretendido (como facilmente poderá constatar). Com efeito, torna-se necessário alinhar o objeto com algo. Para resolver o problema:
 - Adicionar um node do tipo Align Euler to Vector (Add→Utilities→Align Euler to Vector) entre os nodes Object Info e Instance on Points;
 - Ligar a saída Rotation do node Object Info à entrada Rotation do node Align Euler to Vector e a saída Rotation deste último, à entrada Rotation do node Instance on Points;
 - No node Align Euler to Vector, selecionar o eixo Y e manter os valores de Vector com (0,0,1).
- Para que as folhas sigam a irregularidade do caule:
 - Adicionar um node do tipo Curve Tangent (Add→Curve→Curve Tangent);
 - Ligar a saída Tangent (do node Curve Tangent) à entrada Vector (do node Align Euler to Vector);
 - Criar um node do tipo Rotate Instances (Add→Instances→Rotate Instances) para adicionar rotação às folhas, posicionando-o entre os nodes Instance on Points e Join Geometry. Desta forma, as ligações das entradas/saídas, será feita automaticamente.
- O *node Rotate Instances* vai controlar a rotação de todas as folhas, o que torna impossível criar o efeito irregular desejado. Para o obter:
 - O Adicionar um node to tipo Index (Add→Input→Index) que atribui um novo valor a cada ponto e, para conseguir obter um resultado mais controlado, ligar a sua saída ao eixo Y de um node do tipo Combine XYZ

(Add→Vector→Combine XYZ). Por sua vez, ligar a saída deste node à entrada Rotation do node Rotate Instances.

- Para concluir, modificar os valores dos parâmetros de alguns dos nodes, nomeadamente:
 - Colocar o parâmetro Count do node Resample Curve com valor 10 (equivalente a adicionar 10 folhas);
 - Alterar os valores do parâmetro Scale do node Instance on Points para (0.400; -2.000; 0.500);
 - O Alterar o valor do parâmetro X do *node Combine XYZ* para -3.000;

• O resultado final deverá ser semelhante ao da figura 6.

Figura 6: Geometry Nodes - Resultado final