Calculus III Lecture 10

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

- Multivariable Chain Rule
- Directional Derivatives via the Chain Rule
- Gradient
- Differential Operators
 - Differential Operators Variable Changes

License to use and redistribute

These lecture slides and their LaTEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

Multivariable Chain Rule Motivation

Recall:

- f, differentiable function,
- $\mathbf{u} = (u_1, u_2, u_3)$, unit vector,
- $P(x_0, y_0, z_0)$, point.

What is the rate of change of f at P in the direction \mathbf{u} ? Directional derivative

$$(D_{\mathbf{u}}f)(P) = \frac{d}{dt}\Big|_{t=0} f(x_0 + tu_1, y_0 + tu_2, z_0 + tu_3)$$

More general, if

- \bullet w = w(x, y, z);
 - x = x(t), y = y(t), z = z(t),

and all the functions are differentiable, how do we compute $\frac{dw}{dt}$?

Chain Rule

Differentials

$$dw = w_x(x, y, z) \frac{dx}{dx} + w_y(x, y, z) \frac{dy}{dy} + w_z(x, y, z) \frac{dz}{dz}$$

and

$$dx = x'(t)dt$$
 $dy = y'(t)dt$ $dz = z'(t)dt$.

Then

$$d(w) = (w_x x'(t) + w_y y'(t) + w_z z'(t)) dt$$

Therefore

$$\frac{d}{dt}(w(x(t),y(t),z(t))) = \frac{\partial w}{\partial x}(x,y,z)\frac{dx}{dt} + \frac{\partial w}{\partial y}(x,y,z)\frac{dy}{dt} + \frac{\partial w}{\partial z}(x,y,z)\frac{dz}{dt}$$

Derivative of composition of functions ⇒ Chain Rule

Algebra of Chain rule - Tree Diagrams

- \bullet W = W(X, Y, Z);
- x = x(t), y = y(t), z = z(t),

$$\frac{dw}{dt}(t) = \frac{\partial w}{\partial x}(x, y, z)\frac{dx}{dt}(t) + \frac{\partial w}{\partial y}(x, y, z)\frac{dy}{dt}(t) + \frac{\partial w}{\partial z}(x, y, z)\frac{dz}{dt}(t)$$

Alternative way of arranging terms - tree diagram:

More General Chain Rule

More general formula:

- w = F(x, y, z);
- x = f(u, v), y = g(u, v), z = h(u, v).w = F(f(u, v), g(u, v), h(u, v)) = G(u, v).

To compute $\frac{\partial w}{\partial u} = \frac{\partial G}{\partial u}$:

• arrange variables in a tree diagram:

Example: powerexponential

Let $f(x) = x^x$. Compute f'(x).

- Calculus I method: logarithmic differentiation or $x^x = e^{x \ln x}$.
- Calculus III method: chain rule.

Let
$$w = w(u, v) = u^{v}$$
 and $u = u(x) = x$, $v = v(x) = x$.

Then
$$f(x) = w(u(x), v(x))$$
 and

Directional Derivatives via the Chain Rule

- Let f differentiable function.
- Let $\mathbf{u} = (u_1, u_2, u_3)$, unit vector,
- Let $P(x_0, y_0, z_0)$, point.

What is the rate of change of f at P in the direction \mathbf{u} ? Answer was studied: directional derivative.

$$(D_{\mathbf{u}}f)_{(x,y,z)=(x_0,y_0,z_0)}=\frac{\mathsf{d}}{\mathsf{d}t}_{|t=0}f(x_0+tu_1,y_0+tu_2,z_0+tu_3)$$

$$(D_{\mathbf{u}}f)(x_0, y_0, z_0) = \frac{d}{dt} \int_{|t=0}^{t} f(x_0 + tu_1, y_0 + tu_2, z_0 + tu_3)$$
Let $w = f(x, y, z)$ and
$$\begin{vmatrix} x & = x_0 + tu_1 \\ y & = y_0 + tu_2 \\ z & = z_0 + tu_3 \end{vmatrix}$$

$$(D_{\mathbf{u}}f)(x_0, y_0, z_0) = \frac{dw}{dt} \int_{|t=0}^{t} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt} \Big|_{t=0}$$

$$= \frac{\partial f}{\partial x} u_1 + \frac{\partial f}{\partial y} u_2 + \frac{\partial f}{\partial z} u_3$$

$$= \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \cdot \mathbf{u} = \nabla f \cdot \mathbf{u}$$

Definition (∇f ("nabla of f"))

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).$$

Example

Find the directional derivative of $f(x, y, z) = \ln(x^2 + 2y^2 - z^2)$ at P(2, 1, -1) in the direction $\mathbf{v} = (-1, 2, 1)$. A unit vector in the direction of \mathbf{v} is

$$\mathbf{u} = \frac{1}{|\mathbf{v}|}\mathbf{v} = \frac{1}{\sqrt{6}}(-1, 2, 1)$$
.

The partial derivatives are

$$\nabla f_{|(x,y,z)=(2,1,-1)} = \left(\frac{4}{5}, \frac{4}{5}, \frac{2}{5}\right)$$

Example

Find the directional derivative of $f(x, y, z) = \ln(x^2 + 2y^2 - z^2)$ at P(2, 1, -1) in the direction $\mathbf{v} = (-1, 2, 1)$. A unit vector in the direction of \mathbf{v} is

$$\mathbf{u} = \frac{1}{|\mathbf{v}|}\mathbf{v} = \frac{1}{\sqrt{6}}(-1, 2, 1)$$
.

$$\nabla f_{|(x,y,z)=(2,1,-1)} = (f_x, f_y, f_z)_{|(x,y,z)=(2,1,-1)} = \left(\frac{4}{5}, \frac{4}{5}, \frac{2}{5}\right)$$
$$(D_{\mathbf{u}}f)_{|(x,y,z)=(2,1,-1)} = \nabla f_{|(x,y,z)=(2,1,-1)} \cdot \mathbf{u} = \frac{\sqrt{6}}{5}$$

 $(D_{\mathbf{u}}f)(2,1,-1) > 0$ implies that if we start at (2,1,-1) and move in the direction \mathbf{u} , then f is increasing.

Gradient

- Let f be a differentiable function.
- At a given point P, in which direction does f increase the fastest?
- What is that maximal rate of increase?
- It can be shown that if the maximal rate of increase is strictly positive, then it is achieved in exactly one direction.

Definition

The *gradient vector* of f at P is the unique vector that has

- magnitude equal to the maximal rate of increase of f at P.
- if the magnitude is not zero, then the direction is the one in which f
 increases the fastest.

Definition

The *gradient vector* of *f* at *P* is the unique vector such that:

- its magnitude equals the maximal rate of increase of f at P;
- if magn. \neq 0, its direction is the one in which f increases fastest.
- Recall that $\nabla f = (f_x, f_y, f_z)$.
- The increase of f in unit direction \mathbf{u} is $D_{\mathbf{u}}f$. We have: $(D_{\mathbf{u}}f) = (\nabla f) \cdot \mathbf{u} = |\nabla f| \cdot |\mathbf{u}| \cos \alpha = |\nabla f| \cos \alpha$, where α is the angle between ∇f and \mathbf{u} .
- If $|\nabla f| \neq 0$, then $(D_{\mathbf{u}}f)$ is maximal when $\cos \alpha = 1$, i.e., $\alpha = 0$.
- Therefore the maximum of $D_{\bf u}f$ is achieved for ${\bf u}=\frac{\nabla f}{|\nabla f|}$.
- The maximum of $D_{\mathbf{u}}f$ is then $|\nabla f| = |(f_x, f_y, f_z)|$.

Theorem (Coordinate Computation of gradient vector)

The gradient vector of f equals $\nabla f = (f_x, f_y, f_z)$.

• In view of preceding thm., the gradient of f is denoted by ∇f .

Covariant Derivative

- *f*: a differentiable function.
- Directional derivative $D_{\mathbf{u}}f$ = rate of change along straight line.
- Let γ : a smooth parametric curve.
- Question: How does f change as we move along γ ?

Definition

The rate of change of $f(\gamma(t))$ with respect to t is called the *covariant derivative* of f along γ and is denoted by $\nabla_{\gamma'}f$.

We can compute the covariant derivative using the chain rule:

$$(\nabla_{\gamma'(t_0)}f)(\gamma(t_0)) = \frac{\mathsf{d}}{\mathsf{d}t}_{|t=t_0}f(\gamma(t)) = (\nabla f)_{\gamma(t_0)} \cdot \gamma'(t_0) .$$

If **u** is a unit vector, $\gamma(t_0) = P$ and $\gamma'(t_0) = \mathbf{u}$, then:

$$(D_{\mathbf{u}}f)(P) = (\nabla f)_P \cdot \mathbf{u} = (\nabla f)_{\gamma(t_0)} \cdot \gamma'(t_0) = \frac{\mathsf{d}}{\mathsf{d}t}_{t=t_0} f(\gamma(t)) \ .$$

Gradient in Polar Coordinates

 $\mathbf{e}_r = \mathbf{e}_r(P)$ and $\mathbf{e}_\theta = \mathbf{e}_\theta(P)$ are the polar fundamental directions at P

$$(\nabla f)_P = a\mathbf{e}_r + b\mathbf{e}_\theta$$

 \mathbf{e}_r and \mathbf{e}_θ perpendicular unit vectors \Longrightarrow

$$a = (\nabla f)_P \cdot \mathbf{e}_r = (D_{\mathbf{e}_r} f)(P)$$

$$b = (\nabla f)_P \cdot \mathbf{e}_\theta = (D_{\mathbf{e}_\theta} f)(P)$$

To compute $(D_{\mathbf{e}_r}f)(P)$ we use the line through $P(r_0, \theta_0)$ with direction \mathbf{e}_r , which in polar coordinates is given by $(r, \theta) = (t, \theta_0)$. Therefore

$$a = (D_{\mathbf{e}_r} f)(P) = \left. \frac{d}{dt} \right|_{t=r_0} f(t, \theta_0) = \frac{\partial f}{\partial r}(P) \ .$$

To compute $(D_{\mathbf{e}_{\theta}}f)(P)$ we use the circle centered at the origin and passing through $P(r_0, \theta_0)$. The polar parametrization of this circle that has *unit*

Application

Let *f* be a function on the plane such that *f* depends only on the distance to a fixed point, *O*.

In a polar coordinate system with origin at O we get f(P) = g(r)

$$\nabla = \mathbf{e}_r \frac{\partial}{\partial r} + \mathbf{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} .$$

$$\nabla f = g'(r) \mathbf{e}_r = g'(r) \, \hat{\mathbf{r}} = \frac{g'(r)}{r} \, \mathbf{r} .$$

Example: $f(P) = |OP|^{-1} = r^{-1} = g(r)$. Then

$$\nabla f = g'(r)\mathbf{e}_r = -r^{-2}\mathbf{e}_r = -\frac{1}{r^3}\mathbf{r}$$

Problem: Let X be a vector field of the form

$$\mathbf{X} = h(r)\mathbf{r}$$

for some continuous function h. Show that **X** is a *gradient field*: there exists a smooth function f such that $\mathbf{X} = \nabla f$.

Gravity and Gradient

- Let an object move along surface z = f(x, y).
- Let gravity **G** be constant, G = -mg k.
- Normal to surface:

$$\mathbf{n} = (-f_x(x_0, y_0), -f_y(x_0, y_0), 1) = -\nabla f + \mathbf{k}$$

Let F be the component of G effectively acting on the object.
 Object is restricted to the surface ⇒ F is the component of G tangent to the surface.

$$\begin{array}{rcl} \mathbf{F} &=& \mathrm{orth}_{n}\mathbf{G} = -mg \ \mathrm{orth}_{n}\mathbf{k} \\ \mathrm{orth}_{n}\mathbf{k} &=& \mathbf{k} - \mathrm{proj}_{n}\mathbf{k} = \mathbf{k} - \frac{\mathbf{k} \cdot \mathbf{n}}{|\mathbf{n}|^{2}} \ \mathbf{n} = \mathbf{k} - \frac{1}{|\mathbf{n}|^{2}} (-\nabla f + \mathbf{k}) \end{array}$$

Horizontal component of F:

$$\frac{mg}{1+|\nabla f|^2}(-\nabla f)$$

Gravity pulls object in the direction of fastest descent.

Differential operators definition

- Let *D* be an open set in the plane.
- Let $C^{\infty}(D)$ denote the set of infinitely differentiable f-ns over D.

Definition

The two-variable differential operators $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ are the maps from $\mathcal{C}^{\infty}(D)$ to $\mathcal{C}^{\infty}(D)$ given by: $\frac{\partial}{\partial x}(f) = \frac{\partial f}{\partial x}$ and $\frac{\partial}{\partial y}(f) = \frac{\partial f}{\partial y}$ for every function $f \in \mathcal{C}^{\infty}(D)$.

• The operator $\frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m}$ is defined via

$$\frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m}(f) = \underbrace{\frac{\partial}{\partial x} \dots \frac{\partial}{\partial x}}_{n \text{ times}} \underbrace{\frac{\partial}{\partial y} \dots \frac{\partial}{\partial y}}_{m \text{ times}}(f)$$

Definition (Smooth finite order differential operators)

A differential operator over D is a map from $\mathcal{C}^{\infty}(D)$ to $\mathcal{C}^{\infty}(D)$ obtained by sums of operators $\frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m}$ with coefficients in $\mathcal{C}^{\infty}(D)$.

Differential operator notation

Definition (Smooth finite order differential operators)

A differential operator over D is a map from $\mathcal{C}^{\infty}(D)$ to $\mathcal{C}^{\infty}(D)$ obtained by sums of operators $\frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m}$ with coefficients in $\mathcal{C}^{\infty}(D)$.

- For n = 0, m = 0, the operator $\frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m}$ is by definition equal to 1.
- A function g in C^{∞} gives rise to a differential operator via multiplication: $(g \cdot f)(x) = (gf)(x) = g(x)f(x)$.
- Functions are by definition zero-order differential operators.
- The number m+n is defined to be the order of the differential operator $\frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial v^m}$.
- The order of a differential operator ξ is the largest order of the differential operators appearing in the expression of ξ via $\frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m}$.
- Analogous definitions exist for functions in n variables.

Recall that
$$\frac{\partial z}{\partial x} = \left(\frac{\partial f}{\partial x}\right)(x,y)$$
 and $\frac{\partial z}{\partial y} = \left(\frac{\partial f}{\partial y}\right)(x,y)$.

Example (Derivatives in polar coordinates)

$$\frac{\partial z}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$$
$$= \cos \theta \frac{\partial z}{\partial x} + \sin \theta \frac{\partial z}{\partial y} .$$

The above is true for all differentiable z = f(x, y), therefore

$$\frac{\partial}{\partial r} = \cos\theta \frac{\partial}{\partial x} + \sin\theta \frac{\partial}{\partial y} \quad .$$

2020 **Todor Milev** Lecture 10

Recall that
$$\frac{\partial z}{\partial x} = \left(\frac{\partial f}{\partial x}\right)(x,y)$$
 and $\frac{\partial z}{\partial y} = \left(\frac{\partial f}{\partial y}\right)(x,y)$.

Example (Derivatives in polar coordinates)

Let
$$x = r \cos \theta$$
, $y = r \sin \theta$ and $z = f(x, y)$.

- Compute $\frac{\partial z}{\partial \theta}$ via $\frac{\partial z}{\partial y}$ and $\frac{\partial z}{\partial y}$.

$$\theta \qquad r \qquad \theta \qquad \theta \qquad \text{Express the differential operator}$$

$$\frac{\partial z}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial f}{\partial x} (-r \sin \theta) + \frac{\partial f}{\partial y} r \cos \theta$$

$$= -r \sin \theta \frac{\partial z}{\partial x} + r \cos \theta \frac{\partial z}{\partial y} \quad .$$

The above is true for all differentiable z = f(x, y), therefore

$$\frac{\partial}{\partial \theta} = -r \sin \theta \frac{\partial}{\partial x} + r \cos \theta \frac{\partial}{\partial y} \quad .$$

Todor Milev Lecture 10 2020

Example (Partial Derivatives in Polar Coordinates)

Express $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ via $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$, where $x = r \cos \theta$, $y = r \sin \theta$. We computed previously that

$$\frac{\partial}{\partial r} = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y} \frac{\partial}{\partial \theta} = -r \sin \theta \frac{\partial}{\partial x} + r \cos \theta \frac{\partial}{\partial y}.$$

This is a linear system in $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$. To solve the system, eliminate $\frac{\partial}{\partial x}$ by multiplying the first equality by $r\sin\theta$, the second by $\cos\theta$ and adding the two. Similarly eliminate $\frac{\partial}{\partial y}$ by multiplying the first equality by $-r\cos\theta$ and the second by $\sin\theta$ and adding the two. Finally:

$$\begin{array}{rcl} \frac{\partial}{\partial x} & = & \cos\theta \frac{\partial}{\partial r} - \frac{1}{r}\sin\theta \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial y} & = & \sin\theta \frac{\partial}{\partial r} + \frac{1}{r}\cos\theta \frac{\partial}{\partial \theta} \end{array}$$

Todor Milev 2020

Example (Partial Derivatives in Polar Coordinates)

Express $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ via $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$, where $x = r \cos \theta$, $y = r \sin \theta$.

Suppose $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Recall that

$$\tan \theta = \frac{r \sin \theta}{r \cos \theta} = \frac{y}{x}$$

$$\theta = \arctan \left(\frac{y}{x}\right)$$

$$r = \sqrt{x^2 + y^2}$$

$$x = \frac{\partial z}{\partial x} \frac{\partial r}{\partial x} + \frac{\partial z}{\partial \theta} \frac{\partial \theta}{\partial x} = \frac{\partial z}{\partial r} \frac{x}{\sqrt{x^2 + y^2}} + \frac{\partial z}{\partial \theta} \left(\frac{-y}{x^2 + y^2}\right)$$

$$= \cos \theta \frac{\partial z}{\partial r} - \frac{\sin \theta}{r} \frac{\partial z}{\partial \theta}$$

$$= \frac{\partial z}{\partial r} \frac{\partial r}{\partial r} + \frac{\partial z}{\partial \theta} \frac{\partial \theta}{\partial x} = \frac{\partial z}{\partial r} \frac{y}{\sqrt{x^2 + y^2}} + \frac{\partial z}{\partial \theta} \frac{x}{x^2 + y^2}$$

$$= \sin \theta \frac{\partial z}{\partial r} + \frac{\cos \theta}{r} \frac{\partial z}{\partial \theta}$$

The above hold for all z, therefore

$$\begin{array}{rcl} \frac{\partial}{\partial x} & = & \cos\theta \frac{\partial}{\partial r} - \frac{1}{r}\sin\theta \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial v} & = & \sin\theta \frac{\partial}{\partial r} + \frac{1}{r}\cos\theta \frac{\partial}{\partial \theta} \end{array}$$

The Laplace Operator

Definition

The *n*-variable Laplace operator is the differential operator:

$$\Delta = \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}} = \frac{\partial^{2}}{\partial x_{1}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{n}^{2}} .$$

In paticular the two-variable Laplace operator is:

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

The Laplace operator is named after Pierre Laplace (1749-1827).

Example

Express the Laplace operator $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ in polar coordinates.

$$\Delta = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} .$$

Harmonic Functions

Recall that
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Definition (Harmonic function definition)

Functions f such that $\Delta f = 0$ are called *harmonic* functions.

Example

The function $f(x,y) = \ln(x^2 + y^2)$ is a harmonic function. Rewrite in polar coordinates: $f(x,y) = g(r,\theta) = \ln(r^2) = 2 \ln r$. Then

$$\begin{split} \Delta g &= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial g}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 g}{\partial \theta^2} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial (2 \ln r)}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 (2 \ln r)}{\partial \theta^2} \\ &= \frac{1}{r} \frac{\partial}{\partial r} \left(r \cdot \frac{2}{r} \right) = \frac{1}{r} \frac{\partial}{\partial r} (2) = 0 \; . \end{split}$$

<u>Fact</u>: The only harmonic functions independent of θ are of the form $g(r,\theta) = c_1 \ln r + c_2$.