$\mathbf{Y21} ext{-}\mathbf{T6}-$ Керлинг

A1^{0.50} Покажите, что суммарная сила, действующая на кольцо, определяется выражением:

$$\vec{F}_{tot} = -\mu mg \cdot f\left(\frac{v(t)}{\omega(t) r}\right) \hat{x},$$

где

$$f(a) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{a - \sin \theta}{\sqrt{1 + a^2 - 2a \sin \theta}} d\theta$$

Обозначим скорость кусочка, видимого из центра кольца под углом $d\theta$ как \vec{u} . Так как тело движется, а коэффициент трения не зависит от направления движения, то сила трения, действующая на выбранный кусочек, направлена противоположно его скорости. Тогда её можно записать в таком виде:

$$d\vec{F}_{fric} = -\frac{\vec{u}}{u}\mu \, dN = -\frac{(v - \omega r \sin \theta)\hat{x} + (\omega r \cos \theta)\hat{y}}{\sqrt{v^2 + (\omega r)^2 - 2v\omega r \sin \theta}}\mu mg \, \frac{d\theta}{2\pi}$$

Полная сила трения получается при интегрировании выражения вдоль всего кольца, т. е. в диапазоне углов от 0 до 2π .

Несложно заменить, что $F_{tot\,y}=0$, так как всё выражение меняет знак при замене $\theta\to\pi-\theta$. Физически это соответствует тому, что силы, действующие на кусочки, симметричные относительно оси ОХ, проходящей через центр кольца, компенсируют у-составляющие друг друга.

Разделив числитель и знаменатель на ωr , приходим к искомому выражению.

 $\mathbf{A2^{0.50}}$ Покажите, что суммарный момент, действующий на кольцо, равен:

$$\tau_{tot} = -\mu mgrf\left(\frac{\omega(t)r}{v(t)}\right)$$

$$d\vec{\tau} = \left[\vec{r} \times d\vec{F}_{fric}\right] = -\frac{\left[\vec{r} \times \vec{u}\right]}{u} \mu g \ dm$$

В векторное произведение входит только компонента \vec{u} , перпендикулярная радиусу, т. е. $u_{\tau} = \omega r - v \sin \theta$. подставляя всё в итоговое выражение, получим:

$$\vec{\tau} = -\mu mgr \int_{0}^{2\pi} \frac{\omega r - v \sin \theta}{\sqrt{v^2 + (\omega r)^2 - 2v\omega r \sin \theta}} \frac{d\theta}{2\pi},$$

откуда после сокращения на v получится искомая формула.

А3^{0.10} Докажите, что уравнения движения имеют вид:

$$\dot{v} = -\mu g \cdot f\left(\frac{v}{\omega r}\right) \dot{\omega} r = -\mu g \cdot f\left(\frac{\omega r}{v}\right)$$

Векторная сумма сил всегда сонаправлена скорости, поэтому $|\dot{\vec{v}}| = |\dot{v}|$, то есть тангенциальное ускорение равно нулю. Тогда уравнения движения примут вид:

$$m\dot{v} = -\mu mgf\left(\frac{v}{\omega r}\right)m\dot{\omega}r^2 = -\mu mgrf\left(\frac{\omega r}{v}\right),$$

откуда после сокращения на m и mr соответственно получатся искомые равенства.

В1^{0.50} Докажите: а) $f(0) = 0, \ f(1) = \frac{2}{\pi}, \ f(\infty) = 1$ b) f(a) строго возрастает при $a \geqslant 0$

a)

$$f(0) = \frac{1}{2\pi} \int_{0}^{2\pi} -\sin\theta d\theta = 0 \\ f(1) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1 - \sin\theta}{\sqrt{2 - 2\sin\theta}} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \sqrt{\frac{1 - \sin\theta}{2}} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sin\left(\frac{\theta}{2} - \frac{\pi}{4}\right) \right| d\theta = \frac{1}{\pi} \int_{0}^{\pi} \sin\theta d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sin\left(\frac{\theta}{2} - \frac{\pi}{4}\right) \right| d\theta = \frac{1}{\pi} \int_{0}^{\pi} \sin\theta d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sin\left(\frac{\theta}{2} - \frac{\pi}{4}\right) \right| d\theta = \frac{1}{\pi} \int_{0}^{\pi} \sin\theta d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sin\left(\frac{\theta}{2} - \frac{\pi}{4}\right) \right| d\theta = \frac{1}{\pi} \int_{0}^{\pi} \sin\theta d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sin\left(\frac{\theta}{2} - \frac{\pi}{4}\right) \right| d\theta = \frac{1}{\pi} \int_{0}^{\pi} \sin\theta d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sin\left(\frac{\theta}{2} - \frac{\pi}{4}\right) \right| d\theta = \frac{1}{\pi} \int_{0}^{\pi} \sin\theta d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sin\left(\frac{\theta}{2} - \frac{\pi}{4}\right) \right| d\theta = \frac{1}{\pi} \int_{0}^{\pi} \sin\theta d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sin\left(\frac{\theta}{2} - \frac{\pi}{4}\right) \right| d\theta = \frac{1}{\pi} \int_{0}^{\pi} \sin\theta d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \sin\theta d\theta = \frac{1}{2\pi}$$

B2^{0.30} Рассмотрим поведение параметра $a(t) = \frac{v(t)}{\omega(t)r}$. Покажите, что происходит с a(t) (растёт/уменьшается/остаётся неизменным) в каждом из следующих случаев:

- а) в некоторый момент a(t) = 1
- b) в некоторый момент a(t) < 1
- с) в некоторый момент a(t) > 1

$$\dot{a} = \frac{d}{dt} \left(\frac{v}{\omega r} \right) = \frac{\dot{v} \, \omega r - v \, \dot{\omega} r}{(\omega r)^2} = -\frac{\mu m g}{\omega r} \left(f(a) - a f \left(\frac{1}{a} \right) \right)$$

Анализируя данное выражение, получаем:

$$f(a) - af\left(\frac{1}{a}\right) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{a - \sin\theta - a(1 - a\sin\theta)}{\sqrt{1 + a^2 - 2a\sin\theta}} d\theta = \frac{a^2 - 1}{2\pi} \int_{0}^{2\pi} \frac{\sin\theta}{\sqrt{1 + a^2 - 2a\sin\theta}} d\theta$$

В области отрицательных значений подынтегральной функции знаменатель больше, чем в области положительных, поэтому интеграл всегда положителен. Таким образом:

$$sign(\dot{a}) = sign(1-a); \dot{a} = 0 \Rightarrow a = 1.$$

Заметим, что ответ можно было бы получить и из более простых логических соображений

Ответ: а) a=1 \Rightarrow a- постоянна; b) a<1 \Rightarrow a- возрастает; c) a>1 \Rightarrow a- убывает.

B3^{0.60} Нарисуйте качественно на графике, осями которого являются v и ωr , траектории, отображающие разное движение кольца, то есть при заданных v_0 и $\omega_0 r$ нарисуйте, как они будут изменяться с течением времени.

Необходимо нарисовать хотя бы одну траекторию на каждый пункт предыдущего задания. Кроме того, нарисуйте траекторию, проходящую через точку $(v_0,0)$ и еще одну, начинающуюся в точке $(0,\omega_0 r)$

Подпишите оси графика и укажите направления движения системы для каждой нарисованной траектории

Как можно было заметить из предыдущего пункта, все траектории асимптотически стремятся к единице. При этом, $\dot{v}<0$ и $\dot{\omega}r<0$. Приведём искомый график:

Страница 2 из 6

Рис. 1: Семейство траекторий движения системы в плоскости $(v, \omega r)$

Ответ: < div class="kt-section $_{info}$ " style="text-align:center;" Семействотраекторийдвижения системыв плоскости ($v, \omega r$) < /div>

B4^{0.10} Вычислите мгновенную мощность, которая расходуется, когда есть только угловая скорость ω (v=0), и отдельно, когда присутствует только линейная v ($\omega=0$).

В случае отсутствия вращательного движения сила трения, действующая на каждый кусочек, направлена против оси Х. Тогда:

$$P_v = -F_{tot}v = -\mu mg v$$

В случае отсутствия поступательного движения

$$P_{\omega} = -\tau_{tot}\omega = -\mu mg \,\omega r$$

Более строгие рассуждения будут приведены в пункте В5.

Ответ:

$$P_v = -\mu mg \, v P_\omega = -\mu mg \, \omega r$$

В5^{0.60} Для заданных v и ω вычислите мгновенную мощность P, которая расходуется на трение в данный момент времени. Дайте ответ в виде интеграла с безразмерной переменной.

$$P = \int \vec{u} \cdot d\vec{F}_{fric} = -\mu mg \int_{0}^{2\pi} \vec{u} \cdot \frac{\vec{u}}{u} \frac{d\theta}{2\pi} = -\mu mg \omega r \int_{0}^{2\pi} \frac{u}{\omega r} \frac{d\theta}{2\pi}$$

Подставляя выражение для скорости кусочка \vec{u} :

Ответ:

$$P = -\mu mg \,\omega r \int_{0}^{2\pi} \sqrt{1 + \left(\frac{v}{\omega r}\right)^2 - 2\left(\frac{v}{\omega r}\right)\sin(\theta)} \,\frac{d\theta}{2\pi}$$

B6^{1.20} Предположим, что кольцу придали определённую начальную кинетическую энергию E_0 . Каково должно быть соотношение $a_0 = \frac{v_0}{\omega_0 r}$, при котором кольцо будет двигаться максимальное время?

Подсказка: Постарайтесь дать ответ на предыдущий пункт при помощи только E_0 и a_0 (и других данных из этого пункта), исключив из уравнения v и ω

Воспользуемся подсказкой:)

$$E = \frac{m}{2} \left[v^2 + (\omega r)^2 \right] = \frac{m}{2} (\omega r)^2 (a^2 + 1) m \omega r = \sqrt{2mE} \cdot \frac{1}{\sqrt{1 + a^2}} P(a, E) = -\mu g \sqrt{2mE} \cdot \int_0^{2\pi} \sqrt{1 - \frac{2a}{1 + a^2} \sin(\theta)} \frac{d\theta}{2\pi} e^{-\frac{a^2}{2\pi} \frac{1}{2} \sin(\theta)} \frac{d\theta}{2\pi} e^{-\frac{a^$$

Анализировать последнее выражение можно несколькими способами. Например, взяв частную производную по а

$$\frac{\partial}{\partial a} \Big(P(a, E) \Big) = \mu g \sqrt{2mE} \frac{1 - a^2}{1 + a^2} \cdot \int_{0}^{2\pi} \frac{\sin \theta}{\sqrt{1 + a^2 - 2a \sin \theta}} \frac{d\theta}{2\pi}$$

где интеграл в правой части совпадает с интегралом в B2 и имеет положительные значения при любых a. Так как при a<1 функция P убывает, а при a>1— возрастает, то её минимум реализуется в $a_0=1$. Из того факта, что мощность P всегда отрицательна и стремится к $P\to 0$ только при $E\to 0$ очевидно, что движение может закончиться только при E=0. Также, следует заметить, что движение с параметром a=1 устойчиво, а значит, при $a_0=1$ всё движение будет происходит с минимально возможной мощностью, т. е. пройдет максимально возможное время при заданной начальной энергии $E=E_0$

Ответ:

$$a_0 = 1$$

 ${f B7^{0.50}}$ Каково максимальное время движения при начальной энергии E_0 ?

Как мы выяснили в предыдущем пункте, движение, продолжающееся максимальное время происходит при a=1. Тогда время можно найти из уравнения:

$$\dot{E} = P(1, E) = -\mu g \sqrt{2mE} \cdot \int_{0}^{2\pi} \sqrt{1 - \sin(\theta)} \frac{d\theta}{2\pi}$$

Интеграл вычисляется аналогично пункту B1 с помощью тригонометрической замены, указанной в условии.

$$\int_{0}^{2\pi} \sqrt{1 - \sin(\theta)} \, \frac{d\theta}{2\pi} = \frac{\sqrt{2}}{\pi} \int_{0}^{\pi} \sin\left(\frac{\theta}{2}\right) d\left(\frac{\theta}{2}\right) = \frac{2\sqrt{2}}{\pi}$$

Разделяя переменные, получим

$$\int_{E_0}^{0} \frac{dE}{\sqrt{E}} = -\mu g \sqrt{m} \cdot \frac{4}{\pi} \int_{0}^{\tau} dt$$

Из чего несложно выразить ответ.

Ответ:

$$\tau = \frac{\pi}{2\mu q} \sqrt{\frac{E_0}{m}}$$

Страница 4 из 6 🖘

C1^{0.60} Напишите заново уравнения движения из пункта А3 таким образом, чтобы они подходили под новое условие.

Вывод уравнения для величины силы трения и момента силы трения остаётся тем же, однако, теперь полная реакция опоры равна $N=mg\cos\alpha$. Таким образом, суммарный момент, действующий на кольцо, просто умножится на $\cos\alpha$. С уравнениями для проекций сил, лежащих в плоскости движения немного сложнее: суммарная сила теперь не сонаправлена со скоростью кольца. Обозначив $\cos\varphi=(\widehat{\vec{v}},\widehat{\vec{g}_{\tau}})$, где \vec{g}_{τ} — составляющая вектора \vec{g} , лежащая вдоль плоскости, получим уравнения:

Ответ:

$$\dot{v} = -\mu g f\left(\frac{v}{\omega r}\right) \cos \alpha + g \sin \alpha \cos \varphi \dot{\omega} r = -\mu g f\left(\frac{\omega r}{v}\right) \cos \alpha$$

С2^{2.00} При заданных начальных ω_0 и $v_0=0$ нарисуйте все возможные семейства траекторий движения кольца в координатах $(v,\omega r)$ (для каждого типа кривых нарисуйте свой график). Укажите следующие составляющие:

- а) соответствующие значения параметров;
- b) конечные точки (в которые траектории приходят за конечное или бесконечное время) в плоскости $(v,\omega r)$. Здесь достаточно написать для каждой составляющей, что она стремится к нулю/ стремится к бесконечности/ равна или стремится к какой-то положительной величине.

Подпишите оси графика и укажите направления движения системы для каждой нарисованной траектории

Так как при начале движения кольцо имеет нулевую скорость $v_0=0$, то в предыдущем уравнении на протяжении всего движения $\cos\varphi=0$. $\dot{\omega}<0$, т.е. $\omega\to0$. В зависимости от величины $\tan\alpha$ возможны различные случаи: $v\to0$, $v\to const$ и $v\to\infty$. Выбор одного из этих случаев определяется знаком \dot{v} при $\frac{v}{\omega r}\to\infty$. Искомые траектории приведены на рисунках.

Рис. 2: Траектории при μqt ; tan α

Страница 5 из 6 🖘

Рис. 3: Траектории при $\tan \alpha = \mu$

Рис. 4: Траектории при $\tan \alpha gt; \mu$