COURSE 10

5. Numerical methods for solving nonlinear equations in \mathbb{R}

Let $f: \Omega \to \mathbb{R}, \ \Omega \subset \mathbb{R}$. Consider the equation

$$f(x) = 0, \quad x \in \Omega. \tag{1}$$

Example. Kepler's Equation: consider a two-body problem like a satellite orbiting the earth or a planet revolving around the sun. Kepler discovered that the orbit is an ellipse and the central body F (earth, sun) is in a focus of the ellipse. The speed of the satellite P is not uniform: near the earth it moves faster than far away. It is used Kepler's law to predict where the satellite will be at a given time. If we want to know the position of the satellite for t=9 minutes, then we have to solve the equation $f(E)=E-0.8sinE-2\pi/10=0$.

We attach a mapping $F: D \to D, D \subset \Omega^n$ to this equation.

Let $(x_0,...,x_{n-1}) \in D$. Using F and the numbers $x_0,x_1,...,x_{n-1}$ we construct iteratively the sequence

$$x_0, x_1, ..., x_{n-1}, x_n, ...$$
 (2)

with

$$x_i = F(x_{i-n}, ..., x_{i-1}), \quad i = n,$$
 (3)

The problem consists in choosing F and $x_0, ..., x_{n-1} \in D$ such that the sequence (2) to be convergent to the solution of the equation (1).

Definition 1 The procedure of approximation the solution of equation (1) by the elements of the sequence (2), computed as in (3), is called F-method.

The numbers $x_0, x_1, ..., x_{n-1}$ are called **the starting points** and the k-th element of the sequence (2) is called an approximation of k-th order of the solution.

If the set of starting points has only one element then the F-method is **an one-step method**; if it has more than one element then the F-method is **a multistep method**.

Definition 2 If the sequence (2) converges to the solution of the equation (1) then the F-method is convergent, otherwise it is divergent.

Definition 3 Let $\alpha \in \Omega$ be a solution of the equation (1) and let $x_0, x_1, ..., x_{n-1}, x_n, ...$ be the sequence generated by a given F-method. The number p having the property

$$\lim_{x_i \to \alpha} \frac{\alpha - F(x_{i-n+1}, \dots, x_i)}{(\alpha - x_i)^p} = C \neq 0, \quad C = constant,$$

is called the order of the F-method.

We construct some classes of F-methods based on the interpolation procedures.

Let $\alpha \in \Omega$ be a solution of the equation (1) and $V(\alpha)$ a neighborhood of α . Assume that f has inverse on $V(\alpha)$ and denote $g := f^{-1}$. Since

$$f(\alpha) = 0$$

it follows that

$$\alpha = g(0).$$

This way, the approximation of the solution α is reduced to the approximation of g(0).

Definition 4 The approximation of g by means of an interpolating method, and of α by the value of g at the point zero is called **the** inverse interpolation procedure.

5.1. One-step methods

Let F be a one-step method, i.e., for a given x_i we have $x_{i+1} = F(x_i)$.

Remark 5 If p = 1 the convergence condition is |F'(x)| < 1.

If p > 1 there always exists a neighborhood of α where the F-method converges.

All information on f are given at a single point, the starting value \Rightarrow we are lead to Taylor interpolation.

Theorem 6 Let α be a solution of equation (1), $V(\alpha)$ a neighborhood of α , $x, x_i \in V(\alpha)$, f fulfills the necessary continuity conditions. Then we have the following method, denoted by F_m^T , for approximating α :

$$F_m^T(x_i) = x_i + \sum_{k=1}^{m-1} \frac{(-1)^k}{k!} [f(x_i)]^k g^{(k)}(f(x_i)), \tag{4}$$

where $g = f^{-1}$.

Proof. There exists $g = f^{-1} \in C^m[V(0)]$. Let $y_i = f(x_i)$ and consider Taylor interpolation formula

$$g(y) = (T_{m-1}g)(y) + (R_{m-1}g)(y),$$

with

$$(T_{m-1}g)(y) = \sum_{k=0}^{m-1} \frac{1}{k!} (y - y_i)^k g^{(k)}(y_i),$$

and $R_{m-1}g$ is the corresponding remainder.

Since $\alpha = g(0)$ and $g \approx T_{m-1}g$, it follows

$$\alpha \approx (T_{m-1}g)(0) = x_i + \sum_{k=1}^{m-1} \frac{(-1)^k}{k!} y_i^k g^{(k)}(y_i).$$

Hence,

$$x_{i+1} := F_m^T(x_i) = x_i + \sum_{k=1}^{m-1} \frac{(-1)^k}{k!} [f(x_i)]^k g^{(k)}(f(x_i))$$

is an approximation of α , and F_m^T is an approximation method for the solution α . \blacksquare

Concerning the order of the method ${\cal F}_m^T$ we state:

Theorem 7 If $g = f^{-1}$ satisfies condition $g^{(m)}(0) \neq 0$, then $\operatorname{ord}(F_m^T) = m$.

Remark 8 We have an upper bound for the absolute error in approximating α by x_{i+1} :

$$\left|\alpha - F_m^T(x_i)\right| \leq \frac{1}{m!} [f(x_i)]^m M_m g, \quad \text{with } M_m g = \max_{y \in V(0)} \left|g^{(m)}(y)\right|.$$

Particular cases.

1) Case m = 2.

$$F_2^T(x_i) = x_i - \frac{f(x_i)}{f'(x_i)}$$
.

This method is called **Newton's method** (the tangent method). Its order is 2.

2) Case m = 3.

$$F_3^T(x_i) = x_i - \frac{f(x_i)}{f'(x_i)} - \frac{1}{2} \left[\frac{f(x_i)}{f'(x_i)} \right]^2 \frac{f''(x_i)}{f'(x_i)},$$

with $\operatorname{ord}(F_3^T)=3$. So, this method converges faster than F_2^T .

3) Case m = 4.

$$F_4^T(x_i) = x_i - \frac{f(x_i)}{f'(x_i)} - \frac{1}{2} \frac{f''(x_i)f^2(x_i)}{[f'(x_i)]^3} + \frac{\left(f'''(x_i)f'(x_i) - 3[f''(x_i)]^2\right)f^3(x_i)}{3![f'(x_i)]^5}.$$

Remark 9 The higher the order of a method is, the faster the method converges. Still, this doesn't mean that a higher order method is more efficient (computation requirements). By the contrary, the most efficient are the methods of relatively low order, due to their low complexity (methods F_2^T and F_3^T).

5.1.1. Newton's method

According to Remark 5, there always exists a neighborhood of α where the F-method is convergent. Choosing x_0 in such a neighborhood allows approximating α by terms of the sequence

$$x_{i+1} = F_2^T(x_i) = x_i - \frac{f(x_i)}{f'(x_i)}, \quad i = 0, 1, ...,$$

with a prescribed error ε .

If α is a solution of equation (1) and $x_{n+1} = F_2^T(x_n)$, for approximation error, Remark 8 gives

$$\left|\alpha - x_{n+1}\right| \le \frac{1}{2} [f(x_n)]^2 M_2 g.$$

Lemma 10 Let $\alpha \in (a,b)$ be a solution of equation (1) and let $x_n = F_2^T(x_{n-1})$. Then

$$\left|\alpha-x_{n}\right|\leq\frac{1}{m_{1}}\left|f\left(x_{n}\right)\right|,\quad \text{with } m_{1}\leq m_{1}f=\min_{a\leq x\leq b}\left|f'\left(x\right)\right|.$$

Proof. We use the mean formula

$$f(\alpha) - f(x_n) = f'(\xi) (\alpha - x_n),$$

with $\xi \in$ to the interval determined by α and x_n . From $f(\alpha) = 0$ and $|f'(x)| \ge m_1$ for $x \in (a,b)$, it follows $|f(x_n)| \ge m_1 |\alpha - x_n|$, that is

$$|\alpha - x_n| \le \frac{1}{m_1} |f(x_n)|.$$

In practical applications the following evaluation is more useful:

Lemma 11 If $f \in C^2[a,b]$ and F_2^T is convergent, then there exists $n_0 \in \mathbb{N}$ such that

$$|x_n - \alpha| \le |x_n - x_{n-1}|, \quad n > n_0.$$

Proof. We start with Taylor formula

$$f(x_n) = f(x_{n-1}) + (x_n - x_{n-1}) f'(x_{n-1}) + \frac{1}{2} (x_n - x_{n-1})^2 f''(\xi)$$
, where ξ belongs to the interval determined by x_{n-1} and x_n .

Since $x_n = F_2^T(x_{n-1})$, it follows that

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} \iff f(x_{n-1}) + (x_n - x_{n-1}) f'(x_{n-1}) = 0,$$

thus we obtain

$$f(x_n) = \frac{1}{2} (x_n - x_{n-1})^2 f''(\xi)$$
.

Consequently,

$$|f(x_n)| \le \frac{1}{2} (x_n - x_{n-1})^2 M_2 f,$$

and Lemma 10 yields $|\alpha - x_n| \leq \frac{1}{m_1} |f(x_n)|$ so

$$|\alpha - x_n| \le \frac{1}{2m_1} (x_n - x_{n-1})^2 M_2 f.$$

Since F_2^T is convergent, there exists $n_0 \in \mathbb{N}$ such that

$$\frac{1}{2m_1}|x_n - x_{n-1}| M_2 f < 1, \quad n > n_0.$$

Hence,

$$|\alpha - x_n| \le |x_n - x_{n-1}|, \quad n > n_0.$$

Remark 12 The starting value is chosen randomly. If, after a fixed number of iterations the required precision is not achieved, i.e., condition $|x_n - x_{n-1}| \le \varepsilon$, does not hold for a prescribed positive ε , the computation has to be started over with a new starting value.

A modified form of Newton's method: - the same value during the computation of f':

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_0)}, \quad k = 0, 1, \dots$$

It is very useful because it doesn't request the computation of f' at $x_j, j = 1, 2, \ldots$ but the order is no longer equal to 2.

Another way for obtaining Newton's method.

We start with x_0 as an initial guess, sufficiently close to the α . Next approximation x_1 is the point at which the tangent line to f at $(x_0, f(x_0))$ crosses the Ox-axis. The value x_1 is much closer to the root α than x_0 .

We write the equation of the tangent line at $(x_0, f(x_0))$:

$$y - f(x_0) = f'(x_0)(x - x_0).$$

If $x = x_1$ is the point where this line intersects the Ox-axis, then y = 0

$$-f(x_0) = f'(x_0)(x_1 - x_0),$$

and solving for x_1 gives

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

By repeating the process using the tangent line at $(x_1, f(x_1))$, we obtain for x_2

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

For the general case we have

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \ n \ge 0.$$
 (5)

The algorithm:

Let x_0 be the initial approximation.

for n = 0, 1, ..., ITMAX

$$x_{n+1} \leftarrow x_n - \frac{f(x_n)}{f'(x_n)}$$
.

A stopping criterion is:

$$|f(x_n)| \le \varepsilon \text{ or } |x_{n+1} - x_n| \le \varepsilon \text{ or } \frac{|x_{n+1} - x_n|}{|x_{n+1}|} \le \varepsilon,$$

where ε is a specified tolerance value.

Example 13 Use Newton's method to compute a root of $x^3 - x^2 - 1 = 0$, to an accuracy of 10^{-4} . Use $x_0 = 1$.

Sol. The derivative of f is $f'(x) = 3x^2 - 2x$. Using $x_0 = 1$ gives f(1) = -1 and f'(1) = 1 and so the first Newton's iterate is

$$x_1 = 1 - \frac{-1}{1} = 2$$
 and $f(2) = 3$, $f'(2) = 8$.

The next iterate is

$$x_2 = 2 - \frac{3}{8} = 1.625.$$

Continuing in this manner we obtain the sequence of approximations which converges to 1.465571.

5.1.2. Fixed point iteration method (successive approximation method)

Definition 14 The number α is called **a fixed point** of the function g if $g(\alpha) = \alpha$.

Example 15 Find the fixed points of the function $g(x) = x^2 - 2x + 2$.

Sol. A fixed point α of g has the property $\alpha = g(\alpha) = \alpha^2 - 2\alpha + 2$, so $0 = \alpha^2 - 3\alpha + 2 = (\alpha - 1)(\alpha - 2)$. Whence, the fixed points of g are $\alpha_1 = 1$ and $\alpha_2 = 2$.

Geometrically, the fixed points are the intersection points of the graph of the function g and the first bisection line (y = x). (See the following figure.)

Sufficient condition for the existence and uniqueness of a fixed point:

- **Theorem 16** 1. If $g \in C[a,b]$ and $g(x) \in [a,b]$ for any $x \in [a,b]$, then g has at least one fixed point in [a,b]. In fewer words, if $g:[a,b] \to [a,b]$ and $g \in C[a,b]$ then $\exists \alpha \in [a,b]$ fixed point.
 - 2. Moreover, if there exists g'(x) in (a,b) and

$$|g'(x)| < 1, \quad \forall x \in (a,b),$$

then the fixed point is unique in [a,b].

Example 17 Prove that $g(x) = (x^2 - 4)/5$ has a unique fixed point in [-2,2].

Sol. The minimum and maximum of g(x) for $x \in [-2,2]$ are the limits of the interval, or at the points where g'(x) = 0. We have g'(x) = 2x/5, g is continuous and there exists g'(x) in [-2,2]. So, the minimum and maximum of g(x) on [-2,2] are at x=-2, x=0 or x=2. We have g(-2)=0, g(2)=0, g(0)=-4/5, so x=-2 and x=2 are points of absolute maximum and x=0 is a point of absolute minimum in [-2,2]. Moreover,

$$|g'(x)| = \left|\frac{2x}{5}\right| \le \left|\frac{4}{5}\right| < 1, \quad \forall x \in (-2, 2).$$

So, g satisfies the conditions of Theorem 16, so it follows that g has a unique fixed point in [-2,2].

Consider the equation

$$f(x) = 0, (6)$$

where $f:[a,b]\to\mathbb{R}$. Assume that $\alpha\in[a,b]$ is a zero of f(x).

In order to compute α , we transform (6) algebraically into *fixed point* form,

$$x = F(x), \tag{7}$$

where F is chosen so that $F(x) = x \Leftrightarrow f(x) = 0$.

A simple way to do this is, for example, x = x + f(x) =: F(x).

Finding a zero of f(x) in [a, b] is then equivalent to finding a fixed point x = F(x) in [a, b].

The fixed point form suggests the fixed point iteration

$$x_0$$
 - initial guess, $x_{k+1} = F(x_k), k = 0, 1, 2,$

The hope is that iteration will produce a convergent sequence $(x_n) \to \alpha$.

For example, consider

$$f(x) = xe^x - 1 = 0. (8)$$

A first fixed point iteration is obtained rearranging and dividing (8) by e^x : $xe^x = 1 \Rightarrow x = e^{-x}$, so $x = F(x) = e^{-x}$ and

$$x_{k+1} = e^{-x_k}$$
.

With the initial guess $x_0 = 0.5$ we obtain the iterates $x_1 = 0.6065306597$, $x_2 = 0.5452392119$, ..., $x_8 = 0.5664094527$, $x_9 = 0.5675596343$, ..., $x_{28} = 0.56714328$, $x_{29} = 0.56714329$

So x_k seems to converge to $\alpha = 0.5671432...$

A second fixed point form is obtained from $xe^x = 1$ by adding x on both sides: $xe^x + x = 1 + x \Rightarrow x(e^x + 1) = 1 + x \Rightarrow x = \frac{1+x}{e^x+1}$, we get

$$x = F(x) = \frac{1+x}{e^x + 1}$$
.

This time the convergence is much faster (we need only three iterations to obtain a 10-digit approximation of α) : $x_0 = 0.5$, $x_1 = 0.5663110032$, $x_2 = 0.5671431650$, $x_3 = 0.5671432904$.

Another possibility for a fixed point iteration is $x = x + 1 - xe^x$. But this iteration function does not generate a convergent sequence.

Finally we could also consider the fixed point form $x = x + xe^x - 1$. Also this iteration function does not generate a convergent sequence.

The question is: when does the iteration sequence converge?

Answer: when conditions of Theorem 16 are fulfilled.

For this example, we have two cases when |F'(x)| < 1 and the algorithm converges and two cases when |F'(x)| > 1 and the algorithm is not convergent.

A more general statement for the convergence is the theorem of Banach.

Definition 18 A Banach space \mathcal{B} *is a complete normed vector space over some number field* K *such as* \mathbb{R} *or* \mathbb{C} . (Complete *means that every Cauchy sequence converges in* \mathcal{B} .)

Definition 19 Let $A \subset \mathcal{B}$ be a closed subset and $F: A \to A$. F is called **Lipschitz continuous** on A if there exists a constant $L \geq 0$ such that $||F(x) - F(y)|| \leq L ||x - y||$, $\forall x, y \in A$. Furthermore, F is called **a contraction** if L can be chosen such that L < 1.

Theorem 20 (Banach Fixed Point Theorem) Let A be a closed subset of a Banach space \mathcal{B} , and let F be a contraction $F: A \to A$. Then:

a) F has a unique fixed point α , which is the unique solution of the equation x = F(x).

b) The sequence $x_{n+1} = F(x_n)$ converges to α for every initial guess $x_0 \in A$.

c) We have the estimate:
$$||\alpha - x_n|| \le \frac{L^{n-l}}{1-L}||x_{l+1} - x_l||$$
, for $0 \le l \le n$ (or $||\alpha - x_n|| \le \frac{L^n}{1-L}||x_1 - x_0||$)

For practical applications is also useful the following estimation.

Lemma 21 If $||F'(x)|| < L, x \in V(\alpha)$ then

$$||\alpha - x_n|| \le \frac{L}{1 - L} ||x_n - x_{n-1}||.$$

Geometric interpretation of the method: we plot y = F(x) and y = x. The intersection points of the two functions are the solutions of x = F(x). The computation of the sequence $\{x_k\}$ with x_0 chosen initial value, $x_{k+1} = F(x_k), k = 0, 1, 2, ...$ can be interpreted geometrically via sequences of lines parallel to the coordinate axes:

 x_0 start with x_0 on the x-axis $F(x_0)$ go parallel to the y-axis to the graph of $F(x_1)$ move parallel to the x-axis to the graph y=x $F(x_1)$ go parallel to the y-axis to the graph of $F(x_1)$ etc.

Case of convergence |F'(x)| < 1.

Case of divergence |F'(x)| > 1.

