Числові ряди

доц. І.В. Орловський

1. Основні поняття

Означення 1

Нехай $\{a_n, \, n \geq 1\}$ – послідовність дійсних чисел. Вираз

$$a_1 + a_2 + \ldots + a_n + \ldots$$

називається числовим рядом і позначається $\sum\limits_{n=1}^{\infty}a_{n}.$ Тобто,

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \ldots + a_n + \ldots$$
 (1)

Числа $a_1, a_2, \dots a_n, \dots$ називають членами ряду, $a_n - n$ -им або загальним членом ряду. Суму перших n членів ряду називають n-тою частковою сумою ряду та позначають

$$S_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k.$$

$$R_n = a_{n+1} + a_{n+2} + \dots = \sum_{k=n+1}^{\infty} a_k,$$

який отримується з ряду (1) відкиданням його перших n членів, називають n-м залишком ряду.

Означення 2

Якщо існу ϵ скінченна границя S послідовності часткових сум $\{S_n, \, n \geq 1\}$ ряду (1):

$$S = \lim_{n \to \infty} S_n,$$

тоді ця границя називається сумою ряду (1), а сам числовий ряд називають збіжним. Записують

$$S = \sum_{n=1}^{\infty} a_n.$$

Якщо ж $\lim_{n \to \infty} S_n$ не існує або дорівнює нескінченності, тоді ряд (1) називають розбіжним.

Основні властивості числових рядів

Якщо ряд $\sum\limits_{n=1}^{\infty}\,a_n$ є збіжним і має суму S, то $orall c\in\mathbb{R}$ ряд

$$\sum_{n=1}^{\infty} ca_n = ca_1 + ca_2 + \ldots + ca_n + \ldots$$

також ϵ збіжним, причому $\sum\limits_{n=1}^{\infty}\,ca_n=cS.$

Доведення

Розглянемо ряд $\sum\limits_{n=1}^{\infty} a_n$ та позначимо через $S_n=a_1+a_2+\ldots+a_n$ – його n-ту

часткову суму. Помітимо, що для часткової суми ряду $\sum\limits_{n=1}^{\infty} ca_n$

$$\tilde{S}_n = ca_1 + ca_2 + \ldots + ca_n = c(a_1 + a_2 + \ldots + a_n) = cS_n,$$

а тому
$$\lim_{n \to \infty} \tilde{S}_n = \lim_{n \to \infty} cS_n = c \lim_{n \to \infty} S_n = cS.$$

Ш

Якщо ряд $\sum\limits_{n=1}^\infty a_n$ є збіжним і має суму S_a , а ряд $\sum\limits_{n=1}^\infty b_n$ є збіжним і має суму S_b , то ряди

$$\sum_{n=1}^{\infty} (a_n \pm b_n) = (a_1 \pm b_1) + (a_2 \pm b_2) + \ldots + (a_n \pm b_n) + \ldots$$

також ϵ збіжними, а їх суми відповідно дорівнюють $S_a \pm S_b$.

Доведення

ДЗ. Довести самостійно

Зауваження

- Сума/різниця збіжного та розбіжного рядів є розбіжним рядом;
- 2 Сума/різниця двох розбіжних рядів може бути як збіжним, так і розбіжним рядом.

Ш

Якщо до ряду $\sum\limits_{n=1}^{\infty}\,a_n$ додати (або відняти) скінченну кількість членів, то отриманий і початковий ряди будуть збігатися та розбігатися одночасно.

Доведення

ДЗ. Довести самостійно (оптимістам)

3. Геометричний ряд

Числовий ряд

$$\sum_{n=1}^{\infty} bq^n = b + bq + bq^2 + \dots + bq^n + \dots$$

називають геометричним рядом.

ДЗ. Записати n-ту часткову суму та дослідити на збіжність в залежності від значень q.

4. Телескопічний ряд

Числовий ряд $\sum\limits_{n=1}^{\infty} a_n$, який можна представити у наступному вигляд $\mathfrak i$

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots = \sum_{n=1}^{\infty} (b_n - b_{n+1}) =$$
$$= (b_1 - b_2) + (b_2 - b_3) + \dots + (b_n - b_{n+1}) + \dots,$$

де $\{b_n,\, n\geq 1\}$ – деяка числова послідовність, називають телескопічним рядом.

Оскільки часткова сума може бути представлена наступним чином

$$S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n (b_k - b_{k+1}) =$$

$$= (b_1 - b_2) + (b_2 - b_3) + \dots + (b_n - b_{n+1}) = b_1 - b_{n+1},$$

то послідовність $\{S_n,\, n\geq 1\}$ збігається, якщо збігається послідовність $\{b_n,\, n\geq 1\}.$

5. Необхідна ознака збіжності числового ряду

Теорема 1 (Необхідна ознака збіжності ряда)

Якщо ряд $\sum_{n=1}^\infty a_n$ збігається, то його n-ий член a_n прямує до нуля при $n o \infty$, тобто

$$\lim_{n \to \infty} a_n = 0.$$

Доведення

Нехай збігається ряд $\sum\limits_{n=1}^{\infty}\,a_n$ і його сума

$$S = \lim_{n \to \infty} S_n.$$

Тоді $\lim_{n \to \infty} S_{n-1} = S$ також.

Використовуючи те, що $a_n=S_n-S_{n-1}$, отримаємо

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0. \quad \blacksquare$$

Наслідок 1 (Достатня умова розбіжності ряда)

Якщо $\lim_{n\to\infty}a_n\neq 0$ або ця границя не інсує, тоді ряд $\sum_{n=1}^\infty a_n$ є розбіжним.

Приклад 1

Дослідити збіжність ряди

1)
$$\sum_{n=1}^{\infty} \frac{2+3n}{6n+1};$$

$$2) \quad \sum_{n=1}^{\infty} n(\sqrt{n+1} - \sqrt{n})$$

3)
$$\left(1+\frac{1}{1}\right)^1+\left(1+\frac{1}{2}\right)^2+\ldots+\left(1+\frac{1}{n}\right)^n+\ldots$$
.

6. Гармонічний ряд

Числовий ряд

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$$

називають гармонічним рядом.

Література

- [1] *Ряди. Функції комплексної змінної. Операційне числення. Конспект лекцій /* Уклад.: В.О. Гайдей, Л.Б. Федорова, І.В. Алєксєєва, О.О. Диховичний. К: НТУУ «КПІ», 2013. 108 с.
- [2] Дубовик В.П., Юрик І.І. *Вища математика*, К.: Вища школа, 1998.
- [3] Письменный Д.Т. Конспект лекций по высшей математике, 2 часть. М.: Рольф, 2000.