# 1) Sens de variations

## 1 - 1) Interpréter une courbe

## <u>Vocabulaire</u>:

| Géométrique                                                     | Algébrique                                                                  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| la courbe $C_f$ monte quand on la parcourt de gauche à droite   | la fonction $f$ est strictement croissante sur l'intervalle correspondant   |
| la courbe $C_f$ descend quand on la parcourt de gauche à droite | la fonction $f$ est strictement décroissante sur l'intervalle correspondant |
| la courbe $C_f$ est parallèle à l'axe des abscisses             | la fonction $f$ est <b>constante</b> sur l'intervalle correspondant         |

Une fonction est  ${\bf monotone}$  sur un intervalle I lorsqu'elle ne change pas de sens de variation sur I.

#### Décrire le sens de variation

Pour décrire le sens de variation par une phrase, on donne son sens de variation sur chaque intervalle de  $\mathcal{D}_f$ .

### REMARQUES:

- C'est la fonction f qui est croissante/décroissante, pas la courbe  $\mathcal{C}_f$ , ni le nombre f(x).
- Dire que f est (dé)croissante ne veut rien dire. Il faut toujours préciser  $\mathbf{SUR}$  un intervalle.

#### EXEMPLE:



A l'aide de cette représentation graphique, on peut dire que :

- la fonction f est décroissante sur [-1,5;0,1] et sur [2,5;4]
- la fonction f est croissante sur [0, 1; 2, 5]

## 1 - 2) Tableau de variations

On peut décrire le sens de variation d'une fonction dans un tableau :

- Une ligne « x » qui correspond à l'ensemble de définition.
- Une ligne « f(x) » qui décrit par une flèche le sens de variation.
  - vers le haut : strictement croissant ;
  - horizontale : constante ;
  - vers le bas : strictement décroissante.

#### EXEMPLE:



| x    | -1, 5 |   | 0,1  |   | 2,5 |   | 4  |
|------|-------|---|------|---|-----|---|----|
|      | 0,8   |   |      |   | 0,1 |   |    |
| f(x) |       | V |      | 7 |     | > |    |
|      |       |   | -0,6 |   |     |   | -1 |

Tableau de variations de la fonction f

Représentation graphique de la fonction f

# 2) Extremum d'une fonction

# 2 - 1) Définir et modéliser

f est une fonction définie sur un intervalle I.

### Définition 1 : majorant

 $M \in \mathbb{R}$  est un **majorant** de f sur I lorsque, pour tout  $x \in I$ ,  $f(x) \leq M$ 

#### Définition 2: minorant

 $m \in \mathbb{R}$  est un **minorant** de f sur I lorsque, pour tout  $x \in I$ ,  $f(x) \ge m$ 

## Définition 3: maximum

 $M \in \mathbb{R}$  est un **maximum** de f sur I lorsque

- M est un majorant
- il existe  $x \in I$  tel que f(x) = M

# Définition 4 : minimum

 $m \in \mathbb{R}$  est un **minimum** de f sur I lorsque

- -m est un minorant
- il existe  $x \in I$  tel que f(x) = m

#### EXEMPLE:

A l'aide de la représentation graphique cicontre :

- \* 3 est un majorant de f; 10 également.
- \* -1 est un minorant de f; -25 également.

Par rapport aux extremum:

- \* le maximum de f sur  $\mathcal{D}_f$  est 0,8, atteint en -1,5; il est représenté par le point M(-1,5;0,8)
- \* le minimum de f sur  $\mathcal{D}_f$  est -1, atteint en 4; il est représenté par le point m(4;-1)



## 2 - 2) Utiliser

Méthode 1 : On repère facilement les extremums dans un tableau de variation (pas de justification nécessaire).

### EXEMPLE:

A l'aide du tableau de variations cicontre :

- \* 3 est un majorant de f; 10 également.
- \* -1 est un minorant de f; -25 également.

Par rapport aux extremum:

- \* le maximum de f sur  $\mathcal{D}_f$  est 0,8, atteint en -1,5
- \* le minimum de f sur  $\mathcal{D}_f$  est -1, atteint en 4

| x    | -1, 5 |            | 0,1  |   | 2,5 |            | 4  |
|------|-------|------------|------|---|-----|------------|----|
|      | 0,8   |            |      |   | 0,1 |            |    |
| f(x) |       | $\searrow$ |      | 7 |     | $\searrow$ |    |
|      |       |            | -0,6 |   |     |            | -1 |

Tableau de variations de la fonction f

# 3) Fonctions affines

## 3 - 1) Définition

**Définition 5**: fonction affine

Une fonction affine f est définie sur  $\mathbb{R}$  par f(x) = ax + b, où a et b sont deux nombres réels.

### REPRÉSENTATION GRAPHIQUE:

La représentation graphique de la fonction affine f(x) = ax + b est l'ensemble des points M(x; y) qui vérifient : y = f(x).

C'est la droite (d) d'équation y = ax + b

- Comme f(0) = b, le point de coordonnées (0; b) appartient à la droite (d); c'est pour cela qu'on nomme b l'ordonnée à l'origine.
- Si deux points  $A(x_A; y_A)$  et  $B(x_B; y_B)$  sont sur la droite (d), alors on a la relation :  $a = \frac{y_B y_A}{x_B x_A}$ ; la valeur de a donne la direction de la droite (d); c'est pour cela qu'on nomme a coefficient directeur.

## 3 - 2) Sens de variation et signe d'une fonction affine

**Propriété 1**: soit f la fonction affine  $x \mapsto ax + b$  (avec a et b deux nombres réels)

Si a >0, f est strictement croissante sur  $\mathbb{R}$ 



Si a < 0, f est strictement décroissante sur  $\mathbb{R}$ 



## Signe d'une fonction affine

### **EXEMPLES**:

Fonction affine de coefficient directeur positif:

$$f(x) = 2x - 5$$

a=2>0, la fonction f est strictement

Comme  $f\left(\frac{5}{2}\right) = 0$ , on en déduit que :

\* 
$$f(x) < 0 \text{ si } x < \frac{5}{2}$$
  
\*  $f(x) > 0 \text{ si } x > \frac{5}{2}$ 

\* 
$$f(x) > 0 \text{ si } x > \frac{5}{2}$$



Fonction affine de coefficient directeur négatif :

$$f(x) = -\frac{1}{3}x + 1$$

 $a = -\frac{1}{3} < 0$ , la fonction f est strictement décroissante.

Comme f(3) = 0, on en déduit que :

\* 
$$f(x) > 0$$
 si  $x < 3$ 

\* 
$$f(x) < 0 \text{ si } x > 3$$

