



A right Choice for the Real Aspirant

ICON Central Office - Madhapur - Hyderabad

SEC: Sr.Super60\_NUCLEUS&STERLING\_BT JEE-MAIN Date: 09-01-2023 Time: 09.00Am to 12.00Pm **GTM-04** Max. Marks: 300

#### **KEY SHEET**

### **PHYSICS**

| 1)  | 1  | 2)  | 2  | 3)  | 2 | 4)  | 1  | 5)  | 2 |
|-----|----|-----|----|-----|---|-----|----|-----|---|
| 6)  | 3  | 7)  | 1  | 8)  | 4 | 9)  | 4  | 10) | 1 |
| 11) | 4  | 12) | 3  | 13) | 2 | 14) | 4  | 15) | 2 |
| 16) | 4  | 17) | 1  | 18) | 1 | 19) | 4  | 20) | 3 |
| 21) | 3  | 22) | 2  | 23) | 6 | 24) | 28 | 25) | 3 |
| 26) | 30 | 27) | 72 | 28) | 1 | 29) | 9  | 30) | 6 |

#### **CHEMISTRY**

| 31) | 3 | 32) | 3 | 33) | 2   | 34) | 1  | 35) | 1  |
|-----|---|-----|---|-----|-----|-----|----|-----|----|
| 36) | 3 | 37) | 4 | 38) | 2   | 39) | 4  | 40) | 4  |
| 41) | 2 | 42) | 1 | 43) | 4   | 44) | 1  | 45) | 3  |
| 46) | 1 | 47) | 4 | 48) | 2   | 49) | 1  | 50) | 3  |
| 51) | 5 | 52) | 2 | 53) | 1   | 54) | 10 | 55) | 23 |
| 56) | 2 | 57) | 1 | 58) | 500 | 59) | 2  | 60) | 10 |

# **MATHEMATICS**

| 61) | 3 | 62) | 2 | 63) | 4 | 64) | 3 | 65) | 3 |
|-----|---|-----|---|-----|---|-----|---|-----|---|
| 66) | 2 | 67) | 3 | 68) | 3 | 69) | 1 | 70) | 1 |
| 71) | 3 | 72) | 4 | 73) | 3 | 74) | 1 | 75) | 2 |
| 76) | 2 | 77) | 4 | 78) | 2 | 79) | 3 | 80) | 2 |
| 81) | 6 | 82) | 8 | 83) | 2 | 84) | 5 | 85) | 9 |
| 86) | 4 | 87) | 1 | 88) | 2 | 89) | 3 | 90) | 7 |

# **SOLUTIONS**

## **PHYSICS**

- 1. As  $\lambda$  increases saturation current also increases
- 2. Let x be the depth of point P from surface

App. depth of point P from surface = 
$$\frac{x}{\mu}$$

App. depth of image of P from surface = 
$$\frac{x + 2h}{\mu}$$

So, separation between two 
$$=\frac{x+2h}{\mu} - \frac{x}{\mu} \Rightarrow \frac{2h}{\mu}$$

Velocity of point 'A'  $V_A = \sqrt{V^2 + \omega^2 R^2} = v\sqrt{2}$  Normal acceleration of point A,



$$a_{A}(n) = \omega^{2}R\cos 45^{\circ} + \alpha R\cos 45^{\circ} - a\cos 45^{\circ}, \qquad a_{A(n)} = \frac{\omega^{2}R}{\sqrt{2}} = \frac{V^{2}}{\sqrt{2}R}$$

: radius of curvature of trajectory of point 'A' relative to the ground is

$$r = \frac{(V_A)^2}{a_{A(n)}} = \frac{(V\sqrt{2})^2}{\frac{V^2}{\sqrt{2}R}} = 2\sqrt{2}R$$

- 4. : From ohm's law electric field  $\alpha$  current density
- 5.  $\Delta A = \pi \ell b (2\alpha) T$
- **6.** Conceptual
- 7. Conceptual
- **8.** SOL:

$$V^{2} = \omega^{2} \left( a^{2} - x^{2} \right)$$

$$\Rightarrow V_{1}^{2} = \omega^{2} \left( a^{2} - y_{1}^{2} \right) \dots (1)$$

$$\Rightarrow V_{2}^{2} = \omega^{2} \left( a^{2} - y_{2}^{2} \right) \dots (2)$$

From (1) and (2), we get

$$T = 2\pi \sqrt{\frac{y_1^2 - y_2^2}{v_2^2 - v_1^2}}$$

- **9.** Conceptual
- **10.** Conceptual



#### SRI CHAITANYA IIT ACADEMY, INDIA

- 11. Conceptual
- 12.  $\tan \theta_1 = \frac{\tan \theta}{\cos \alpha}$

and 
$$\tan \theta_2 = \frac{\tan \theta}{\cos(90^0 - \alpha)} = \frac{\tan \theta}{\sin \alpha}$$

$$\Rightarrow \cos\alpha = \frac{\tan\theta}{\tan\theta_1}....(1)$$

and 
$$\sin \alpha = \frac{\tan \theta}{\tan \theta_2}$$
....(2)

Dividing (2)by (1), we have

$$\tan\alpha = \frac{\tan\theta_1}{\tan\theta_2}$$

- 13. Conceptual
- 14.  $I_c = 100 \times 0.04 \,\text{mA} = 4 \,\text{mA}$

$$V_c = 20 - 12 = 8V \Rightarrow R_c = \frac{8}{4 \times 10^{-3}} = 2000\Omega$$

- 15. Conceptual
- 16. Conceptual
- The density of lead is  $1.13 \times 10^4$  kg/m<sup>3</sup>, so we should expect our calculated value to be close to this value. The density of water is  $1.00 \times 10^3$  kg/m<sup>3</sup>, so we see that lead is about 11 times denser than water, which agrees with our experience that lead sinks. Density is defined as  $\rho = m/V$ . We must convert to SI units in the calculation.

$$\rho = \left(\frac{23.94 \text{g}}{2.10 \text{cm}^3}\right) \left(\frac{1 \text{kg}}{1000 \text{g}}\right) \left(\frac{100 \text{cm}}{1 \text{m}}\right)^3$$
$$= \left(\frac{23.94 \text{g}}{2.10 \text{cm}^3}\right) \left(\frac{1 \text{kg}}{1000 \text{g}}\right) \left(\frac{1000 \ 000 \text{cm}^3}{1 \text{m}^3}\right) = 1.14 \times 10^4 \text{kg/m}^3$$

18. I. Induced emf in the rod  $\varepsilon = BIv$ 

Current in the circuit  $I = \frac{\varepsilon}{R} e^{-t/RC} = \frac{BIv}{R} e^{-t/RC}$ 

Since the net force on the rod should be zero, the external force will be equal in magnitude but opposite to the magnetic force.

$$\Rightarrow$$
 F = IIB =  $\frac{B^2I^2V}{R}e^{-t/RC}$ 

- 19. Conceptual
- **20.** SOL: (i), (ii) are true but (iii) is false, as we know that viscosity in gaseous is about 100 times less than viscosity in liquids.
- 21.  $R = \frac{V^2}{gv_0}.V = \frac{V^3}{gV_0};R\alpha V^3$



22. Capacitors are in series therefore

$$\frac{C_1}{C_2} = \frac{V_2}{V_1} = \frac{2}{3}$$

23. Conceptual

24. 
$$\tau_0 = I_0 \alpha \Rightarrow \frac{2}{5} mR\alpha + f = 2mg$$

& 
$$f = ma = maR$$

$$\Rightarrow f = \frac{10}{7} mg \Rightarrow \frac{10}{7} mg \leq \mu N \Rightarrow \frac{10}{7} mg \leq \mu (5mg), \mu \geq \left(\frac{2}{7}\right)$$



- SOL: Required kinetic energy =  $[m(N) + m(n) m(H) m(C)] \times 931 \text{MeV}$ = 2.99 MeV
- **26.** SOL: When the extension is maximum, their velocities are equal. From the law of conservation of Momentum,

$$P_f = p_i \Rightarrow (6)v + (3)v = 6(2) + 3(-1)$$

$$v = 1 \,\mathrm{ms}^{-1}$$

This energy is also conserved

$$E_f = E_i \Rightarrow \frac{1}{2}(6)(1)^2 + \frac{1}{2}(3)(1)^2 + \frac{1}{2}Kx_m^2 = \frac{1}{2}(6)(2)^2 + \frac{1}{2}(3)(1)^2$$

$$3+1.5+\frac{1}{2}(200)x_{\rm m}^2=12+1.5$$

$$100x_{\rm m}^2 = 9 \Rightarrow x_{\rm m}^2 = 0.09 \Rightarrow x_{\rm m} = 0.3m = 30m$$

27.  $A > 2\theta_c$ 

28. 
$$E_2 = \frac{E_1}{R_1 + R_{AB}} \times \frac{31.25 \times 10}{50}$$

**29.** If initial velocities are:  $u_1 = \sqrt{2gh} (\downarrow), u_2 = \sqrt{2gh} (\uparrow)$ 

Then final velocities:  $v_1 = 3\sqrt{2gh}$ ,  $v_2\sqrt{2gh}$ 

By using conservation of momentum and equation of e & m << M.

30. 
$$\beta = 10 \log \frac{I}{I_0}$$
  $3 = \log \frac{I}{10^{-12}}$   $\Rightarrow I = 10^{-9} \text{ W/m}^2$ 

Now, 
$$I = \frac{(\Delta P_0)^2 V}{2B} = \frac{(BAK)^2 V}{2B} = \frac{B\omega^2 A^2}{2V} = \frac{BA^2 4\pi^2 f^2}{2V}$$

$$A = \sqrt{\frac{IV}{B2\pi^2 f^2}} = \sqrt{\frac{I}{\rho v 2\pi^2 f^2}} = 5.55 \text{ A}$$

# **CHEMISTRY**

- 31. Refer NCERT- P -block Group 15, pg-179,180 and solutions, pg-49
- **32.** Refer f block
- 33. Conceptual
- 34. Conceptual
- **35.** NCERT-Hydrogen
- **36.**  $C_5H_{10}$



37. A is  $CH_2 = CHC1$ , B is HC = CH

 $HC \equiv CH$  has active hydrogen so  $CH_4$  is liberated

38.

$$A = \bigcup_{\text{OH}} \bigcup_{\text{NO}_2} \bigcup_$$

 $D = NO_2$ 

E = N

**39.** Solution :

$$\begin{array}{c|c} N_2^+\text{Cl}^- \\ \hline \\ +\text{CH}_3\text{CH}_2\text{OH} \rightarrow \end{array} \\ \begin{array}{c} +\text{CH}_3\text{CHO} + \text{HCl} + \text{N}_2 \\ \hline \end{array}$$

- **40.** Carboxylate ion is more stable than phenoxide ion
- 41.  $CH_3 Cl \xrightarrow{\text{Ethanolic NaCN}} CH_3CN \xrightarrow{H_2/Ni} CH_3 CH_2 NH_2$  compound 'F' is  $CH_3 NH_2$
- 42. Refer NCERT page no -413,414,415  $12^{th}$  class part II
- 43. NCERT, Histamine is used for secretion of pepsin and HCl in stomach



- **45.** textbook pg no . 285,290
- 46. 1.  $Li^+ = (76 \text{ pm}), Mg^{+2} = (72 \text{ pm}) (NCERT pg 304 s block)$ 
  - $2.Cu^{+2} < Zn^{+2}$   $3.Na^+ < F^-$  (Iso electronic)
  - $4. \text{Ce}^{+3} > \text{Pr}^{+3} \left( \text{Lathanoide contraction} \right)$
- 47. Hybridisation of Al is sp<sup>3</sup>d<sup>2</sup>, shape-Octahedral
  - b)Boran is unable to from  $BF_6^{3-}$
  - c)preparation of diborane(ncert)

$$\left[\operatorname{SiF}_{6}\right]^{2-}$$
 is know(ncert)

- 48. ncert
- **49.** NCERT
- 50. % of chlorine =  $\frac{\text{Weight of AgCl} \times 35.5 \times 100}{\text{Weight of substance} \times 143.5}$ =  $\frac{0.7175 \times 35.5 \times 100}{0.3905 \times 143.5} = \frac{5}{1000} \times \frac{1000}{11} \times 100 = 45.45$
- $\Rightarrow$ Radial nodes are obtained for

$$\Rightarrow \left(1 - \frac{13r}{36a_0} + \frac{r^2}{36a_0^2}\right) = 0 \Rightarrow \left(\frac{r}{4a_0} - 1\right) \left(\frac{r}{9a_0} - 1\right) = 0$$

 $\Rightarrow$  r = 4a<sub>0</sub> and r = 9a<sub>0</sub>, Distance between nodes  $\triangle$ r = 5a<sub>0</sub>

52. sol: 
$$\boxed{2} K_p = K_c (RT)^{\triangle ng} \Rightarrow K_c = \frac{47.9}{(0.083 \times 288)^1} \approx 2$$

53. 
$$\frac{\text{Po-Ps}}{\text{Ps}} = i \left( \frac{n_{\text{solute}}}{n_{\text{solvent}}} \right) \Rightarrow \frac{650 - 640}{640} = 1 \times \frac{0.25 \times 78}{\text{m} \times 39} \Rightarrow \text{M(solute)} = 32 \,\text{gm}$$

Now, 
$$\Delta Tf = K_f xm = 5.12 \times \frac{0.25 \times 1000}{32 \times 39} \approx 1$$

Sol: 
$$x = 10$$
,  $E^{\circ} \text{cell} = E^{\circ}_{\text{cathode}} - E^{\circ} \text{anode}$   
 $(E^{\circ} \text{anode})_{R} = E^{\circ}_{\text{In}} 3 + /\text{In}^{+2}, \quad E^{\circ}_{\text{In}} 3 / \text{In}^{+2} = 2E^{\circ} \text{In}^{+3} / \text{In}^{+1} - E^{\circ}_{\text{In}}^{-2} / \text{In}^{+1}$ 

$$E_{In}^{o} + 3 / In + 2 = 2(-0.42) - (-0.4) = -0.44$$
  
 $\Rightarrow E^{\circ} cell = 0.15 - (-0.44) = 0.59$ 



So, 
$$-RT \ln \text{keq} = -\text{nfE}^{\circ} \text{cell} \implies \log \text{keq} = \frac{\text{nf}}{2 - 303RT} \text{E}^{\circ} \text{cell}$$
  
$$\implies \log \text{keq} = \frac{0.59}{0.059} \implies \text{keq} = 10^{10}$$

55. Sol: Y = 23

Unit of k represent first order kinetics  $2N_2O_5 \rightarrow 2N_2O_4 + O_2$ 

t=0 1 0 0  
t=t 1-p p p/2  
⇒1-p+p+p/2=1.45 ⇒P=0.9  

$$t = \frac{2.303}{2K} \times \log \frac{1}{1-P} \Rightarrow t = \frac{2.303}{2 \times 5 \times 10^{-4}} \log \left[ \frac{1}{0.1} \right]$$
⇒ t = 2.303×10<sup>3</sup> sec ⇒ t ≈ 23×10<sup>2</sup> sec

Note: Here '2K' should be considered instead of K because  $\frac{-1}{2} \frac{d[N_2O_5]}{dt} = K$ .

56. Sol: 
$$\boxed{2}$$
 Pv = nRT  

$$\Rightarrow -V = \frac{3.12 \times 0.0821 \times 300}{32 \times 1} = 2.4L \Rightarrow \text{Volume adsorbed per gram} = \frac{2.4}{1.2} = 2$$

57. Sol: 
$$\boxed{1}$$
  
 $2\text{Mno}_{4}^{-} + 5\text{C}_{2}\text{O}_{4}^{2-} + 16\text{H}^{+} \rightarrow 2\text{Mn}^{+2} + 10\text{CO}_{2} + 8\text{H}_{2}\text{O} \Rightarrow (5+16) - (2+10+8) = 1$ 

58. Sol: 
$$\boxed{500}$$

$$\Delta S^{o} = 30 - \left[\frac{1}{2} \times 40 + \frac{3}{2} \times 20\right] = 30 - (50) = -20 \text{JK}^{-1}$$

$$\Rightarrow \text{At equilibrium, } T\Delta S^{o} = \Delta H^{o} \Rightarrow T \times \left(-20 \text{JK}^{-1}\right) = -10 \times 1000 \text{J} \Rightarrow T = 500 \text{K}$$

Sol: 
$$K=2$$

$$x = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2} = \frac{a}{\sqrt{2}}$$

60. Sol: 
$$\boxed{10}$$
 $H_2CO_3 + NaOH \rightarrow NaHCO_3 + H_2O$ 

Millimole  $10$   $10$  - -

At end  $0$   $10+10=20$ .

 $\Rightarrow$  Final mixture has 20 milli moles  $NaHCO_3$  and  $10$  millimoles  $Na_2CO_3$ 
 $P^H = Pka_2 + log \frac{salt}{Acid} [Buffer : Na_2CO_3 + NaHCO_3]$ 

$$\Rightarrow P^{H} = 10.31 + \log\left(\frac{10}{20}\right) \approx 10$$



#### **MATHEMATICS**

**61.** Let the total population of town be x

$$\therefore \frac{25x}{100} + \frac{15x}{100} - 1500 + \frac{65x}{100} = x \Rightarrow \frac{105x}{100} - x = 1500 \Rightarrow x = 30000$$

**62.** Given system has infinitely many solutions

$$\alpha = \frac{k-26}{19}$$
,  $\beta = \frac{11k+18}{19}$  and verify

63. 
$$r = \sqrt{5x^2 - 8x + 14}$$

$$r > 3 \quad \forall x \in \mathbb{R}$$

**64.** : 
$$\frac{h}{y} = \frac{a}{x+y}, \frac{h}{x} = \frac{b}{x+y}$$

$$h = \frac{a}{\frac{x}{y} + 1}; h = \frac{b}{1 + \frac{y}{x}}$$

$$\frac{x}{y} + 1 = \frac{a}{h}$$

$$\frac{x}{y} = \frac{a}{h} - 1$$
  $= \frac{a - h}{h}$ 

$$\frac{y}{x} = \frac{h}{a-h}$$

$$h = \frac{b}{1 + \frac{h}{a - b}} \Rightarrow h = \frac{ab}{a + b}$$





$$r^2 = 4hR - h^2$$
 and  $v = \frac{1}{3}\pi r^2 h$ 

$$\therefore v = \frac{1}{3}\pi \left(4hR - h^2\right)h$$

$$\frac{dv}{dh} = 0 \Rightarrow r = 4$$





**66.** Point of intersection of the given curves is (6, 12)

 $\therefore$  Equation of the normal at P(6, 12) to  $y^2 = 24x$  is x + y - 18 = 0

67. Conceptual

**68.** 
$$9y^2 = x^3$$
....(1)

$$y' = \frac{x^2}{6y} = -1$$
 (Given slope of normal = -1)

$$\Rightarrow$$
 6y =  $x^2$ .....(2)

Solving (1) and (2) we get 
$$P\left(4, \frac{8}{3}\right)$$

 $\therefore$  Equation of tan gent at P is 3x - 3y - 4 = 0

69. Take 
$$\sqrt{x} = t$$

$$\int_{0}^{1} \frac{\sqrt{x}}{(1+x)(3+x)} dx = \int_{0}^{1} \frac{3(1+T^{2}) - (3+T^{2})}{(1+T^{2})(3+T^{2})} dt$$

70. 
$$\left(\frac{dx}{x} - \frac{dy}{y}\right) + \frac{\frac{dy}{y^2} - \frac{dx}{x^2}}{\left(\frac{1}{y} - \frac{1}{x}\right)^2} = 0$$

$$\frac{\mathrm{dx}}{\mathrm{x}} - \frac{\mathrm{dy}}{\mathrm{y}} + \mathrm{d} \left( \frac{1}{\frac{1}{\mathrm{y}} - \frac{1}{\mathrm{x}}} \right) = 0$$

$$\log |x| - \log |y| + \frac{1}{\frac{1}{v} - \frac{1}{x}} = c \text{ (intigrated)}$$

$$\log \left| \frac{x}{y} \right| + \frac{xy}{x - y} = c$$

71. 
$$A = 2 \int_{0}^{2} \left[ (7 - x) - \left( 1 - \frac{x^{2}}{4} \right) \right] dx + 2 \int_{2}^{4} \left[ (7 - x) - \left( \frac{x^{2}}{4} - 1 \right) \right] dx = 32$$





72. 
$$\sin \operatorname{ce} \frac{-\pi}{2} \le \sin^{-1} x_{i} \le \frac{\pi}{2} \text{ and } \sum_{i=1}^{20} \sin^{-1} x_{i} = 10\pi$$

$$\Rightarrow \sin^{-1} x_{i} = \frac{\pi}{2} \forall 1 \le i \le 20$$

$$\therefore x_{i=1}, \quad 1 \le i \le 20$$

$$\therefore \sum_{i=1}^{20} x_i = 20$$

$$\sum_{i=1}^{20} x_i$$

$$\therefore \frac{i=1}{10} = 2$$

73. : Centre of 
$$S_1 = (2,4)$$

Radius of  $S_1$  = radius of  $S_2$  = 4

Centre of circle  $S_2 = (4,2)$ 

$$S_2 = (x-4)^2 + (y-2)^2 = 16$$
  
=  $x^2 + y^2 - 8x - 4y + 4 = 0$ ....(1)

Equation of the circle touching y=x at (1, 1) can be taken as

$$(x-1)^{2} + (y-1)^{2} + \lambda(x-y) = 0.....(2)$$

$$2\left(\frac{\lambda-2}{2}\right)(-4) + 2\left(\frac{-\lambda-2}{2}\right) + 2 = 4+2 \qquad (\therefore 1 \text{ and } 2 \text{ orthogonal})$$

$$\Rightarrow \lambda = 2$$

74. 
$$F(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$\lim_{x \to 0} F(x) = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$

Also 
$$F(0) = 0$$

$$\Rightarrow \lim_{x \to 0} F(x) = F(0)$$

 $\Rightarrow$ F(x)is continuous at x=0

 $\Rightarrow$ F(x) is continuous for all real numbers

Statement-1 is true

$$f_1(x) = x$$

⇒it is continuous on R

$$f_{2}(x) = \begin{cases} \sin\left(\frac{1}{x}\right) &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

 $\lim_{x \to 0} \sin \frac{1}{x}$  does not exist

 $\Rightarrow$  it is not continuous at x=0

 $\Rightarrow$  f<sub>2</sub>(x) is discontinuous on R

Thus statement-2 is false.

75. 
$$\sum_{m=1}^{6} \frac{\sin\left[\left(\theta + m\frac{\pi}{4}\right) - \left(\theta + \frac{(m-1)\pi}{4}\right)\right]}{\sin\left(\theta + \frac{(m-1)\pi}{4}\sin(\theta + \frac{m\pi}{4}\right)} = 4$$

$$\Rightarrow \sum_{m=1}^{6} \left\{\cot\left(\theta + \frac{(m-1)\pi}{4}\right) - \cot\left(\theta + \frac{m\pi}{4}\right)\right\} = 4$$

$$\Rightarrow \cot \theta - \cot \left(\theta + \frac{3\pi}{2}\right) = 4$$

$$\Rightarrow$$
 cot  $\theta$  + tan  $\theta$  = 4

$$\Rightarrow \tan \theta = 2 \pm \sqrt{3}$$

$$\Rightarrow \theta = \frac{\pi}{12}, \frac{5\pi}{12} \ln \left(\theta, \frac{\pi}{2}\right)$$

$$\therefore \frac{\pi}{12} - \frac{\pi}{12} = \frac{\pi}{3}$$

77. 
$$b_3 > 4b_2 - 3b_1$$
  
 $b_1h^2 > 4b_1r - 3b_1$   
 $(r^2 - 4r + 3) > 0$   
 $r < 1 \text{ or } r > 3$ 

**78.** CONCEPTUAL



# SRI C<u>HAITANYA IIT ACADEMY,</u> india

- **79.** USE EXPANSIONS
- **80.** Ans -  $f(3\pi/2) = 2\pi$  $gl(2\pi) = \frac{1}{fl(3\pi/2)} = \frac{3}{7}$

81. 
$$P(x \ge 2) \ge \frac{99}{100} \Rightarrow 1 - P(x = 0) - P(x = 1) \ge \frac{99}{100}$$
$$\Rightarrow \frac{1}{100} \ge \frac{3^{n} + 1}{4^{n}} \Rightarrow n = 6$$

82.



83. Mean = 
$$\frac{12+14}{2} = 13$$
  

$$\alpha^2 = \frac{12^2 + 14^2}{2} - 13^2 = 1 \text{ (variance)}$$

$$\text{mean} = \frac{12+14+\alpha+\beta}{4} = 13$$

$$\alpha+\beta=26.....(1)$$

$$\alpha^2 = \frac{12^2 + 14^2 + \alpha^2 + \beta^2}{4} - 13^2 = 1$$

$$\Rightarrow \alpha^2 + \beta^2 = 340....(2)$$

$$\text{by (1) and (2)}$$

$$|\alpha-\beta|=2$$

84. 
$$\begin{vmatrix} 1 & x-2 & 4 \\ 1 & 0 & -3 \\ 3 & 3 & -2 \end{vmatrix} = 0$$

85. Solution: 
$$2^{m} = 56 + 2^{n}$$
  
 $\Rightarrow 2^{m} - 2^{n} = 56$ 



$$\Rightarrow 2^{n} - (2^{m-n} - 1) = 56$$
  
 $m = 6, n = 3$ 

86. Ans-
$$2f(x^2) + 3f(\frac{1}{x^2}) = x^2 - 1$$

$$2f\left(\frac{1}{x^2}\right) + 3f\left(x^2\right) = \frac{1 - x^2}{x^2}$$

Bysoluvingweget

$$f(x^{2}) = \frac{(1-x^{2})(3+2x^{2})}{5x^{2}}$$

Take 
$$x = \frac{1}{52}$$

87. Ans: 
$$\frac{1+z+z^2}{1-z+z^2} = 1 + \frac{22}{1-z+z^2} \in \mathbb{R}$$

$$\Leftrightarrow \frac{z}{1-z+z^2} \in R$$

$$\Leftrightarrow \frac{1-z+z^2}{z} \in \mathbb{R}$$

$$\Leftrightarrow \frac{1}{z} + z - 1 \in \mathbb{R}$$

$$\Leftrightarrow \frac{1}{z} + z = \frac{1}{2} + 2$$

$$z - \overline{z} = \frac{1}{z} - \frac{1}{z}$$

$$z - \bar{z} = \frac{z - \bar{z}}{\bar{z}}$$

$$\overline{zz} = 1 \Rightarrow |z| = 1 :: z \neq \overline{z}$$

88. Ans- 
$$Put\sqrt{x^2 + 11} = \tau \Rightarrow x^2 = \tau^2 - 11$$

$$\sqrt{t^2 + \tau - 11} + \sqrt{\tau^2 - \tau - 11} = 4 - 1$$

$$Clearly \left(t^2 + t - 11\right) - \left(t^2 - t - 11\right) = 2t \to 2$$

$$\frac{2}{1} = \frac{\left(\tau^2 t - 11\right) - \tau^2 t - 11}{\sqrt{\tau^2 + \tau - 11} + \sqrt{\tau^2 - \tau - 11}} = \frac{\tau}{2}$$

$$\Rightarrow \sqrt{\tau^2 + t - 11} - \sqrt{\tau^2 - \tau - 11} = \frac{T}{2} - 3$$



$$1+2 \Rightarrow \tau^2 + \tau - 11\left(2 + \frac{\tau}{4}\right)^2$$
$$\Rightarrow \tau = 4 \Rightarrow x^2 + 1 = 16$$
$$x^2 = 5$$
$$x \pm \sqrt{5}$$

89. Ans -Let 
$$y = 3^{\log 3}\sqrt{9^{1x-21}}$$
  
 $\Rightarrow y = 3^{1x-21}$   
 $\therefore G.E.is(y+z)^7$   
 $T_6 = {\stackrel{7}{C}}Y^2Z^5$   
 $567 = 21.(3^{2|x-2|})(1.3^{|x-2|} - 9)$   
 $27 = 43^{3|3-2|} - 93^{2|x-2|}$   
 $\Rightarrow 4\tau^3 - 9\tau^2 - 27 = 0 \text{ where } \tau = 3^{|x-2|}$   
 $\therefore \tau = 3 \text{ satisfies}$   
 $z = 7^{\frac{1}{5}} \log_7 \left[ 4.3^{|x-2|} - 9 \right]$   
 $z = (4.3^{|x-2|} - 9)^{11} 5$   
 $3^{|x-2|} = 3$   
 $x = 2 \pm 1$ 

90. Ans -
$$f(x) = \begin{cases}
-x-1, & -1 \le x < 0 \\
0, & x = 0 \\
x, & 0 < x < 1 \\
2x-1, & 1 \le x < 2 \\
x+1 & 2 \le x < 3 \\
5 & x = 3
\end{cases}$$

$$\therefore a = 3, b = 4$$

=3.1