Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A method of staggering channels in a wireless communications unit comprising:

identifying a first plurality of channels dedicated for wireless communication from the wireless communications unit to one or more remote wireless communications units;

identifying a second plurality of channels dedicated for communication from the one or more remote wireless communications units to the wireless communications unit;

scheduling the first plurality of channels according to a first predetermined cycle; and

scheduling the second plurality of channels according to a second predetermined cycle, wherein each channel in the first and second plurality of channels is dedicated for communication between the wireless communications unit and a single remote wireless communications unit at a predetermined time slot interval and, wherein the second predetermined cycle is out of phase with the first predetermined cycle by less than one time slot interval.

2. (Original) The method of claim 1 wherein the wireless communication unit is a base station processor and the remote wireless communication unit is a subscriber access unit.

3. (Currently amended) A system for allocating wireless channels in a wireless communication network comprising:

a wireless communication unit operable for wireless communication with one or more remote wireless communication units via a first wireless link having a first plurality of channels dedicated for communication from the wireless communication unit to the one or more remote wireless communication units;

at least one remote wireless communication unit operable for wireless communication with the wireless communication unit via a second wireless link having a second plurality of channels dedicated for communication from the remote wireless communication unit to the wireless communication unit;

a local scheduler operable to schedule the first plurality of channels for wireless communication according to a first predetermined cycle; and

a remote scheduler operable to schedule the second plurality of channels according to a second predetermined cycle,

wherein each channel in the first and second plurality of channels is dedicated for communication between the wireless communication unit and a single remote wireless unit at a predetermined <u>time slot</u> interval and, wherein the first predetermined cycle is out of phase with the second predetermined cycle by less than one <u>time slot</u> interval.

- 4. (Previously presented) The system of claim 3 wherein the wireless communication unit is a base station processor and the remote wireless communication unit is a subscriber access unit.
- 5. (Currently amended) A method of allocating wireless channels in a wireless communication network comprising:

identifying a first channel dedicated for wireless communication from a base station processor to a subscriber access unit;

identifying a second channel dedicated for wireless communication from a subscriber access unit to a base station processor;

scheduling the first channel for wireless communication according to a first cycle; and

scheduling the second channel for wireless communication according to a second cycle, wherein each channel is dedicated for communication between the wireless communication unit and a single remote wireless unit at a predetermined <u>time slot</u> interval, and wherein the first cycle is out of phase with the second cycle by less than one <u>time slot</u> interval.

- 6. (Previously presented) The method of claim 5 wherein the first channel is scheduled by a first scheduler in the base station processor, and the second channel is scheduled by a second scheduler in the subscriber access unit.
- 7. (Previously presented) The method of claim 5 wherein the first cycle corresponds to a forward interval, and the second cycle corresponds to a reverse interval.
- 8. (Original) The method of claim 7 wherein the forward interval and the reverse interval are equal.
- 9. (Original) The method of claim 7 wherein the forward interval and the reverse interval correspond to an integral multiple.
 - 10. (Original) The method of claim 7 wherein the forward interval and the

reverse interval are between 26 and 27 ms.

11. (Original) The method of claim 7 wherein the forward interval and the

reverse interval are between 13 and 14 ms out of phase.

12. (Original) The method of claim 7 wherein the forward interval and the

reverse interval are an epoch.

13. (Currently amended) A system for wireless communications

comprising:

a base station processor connected to a public access network and operable

for wireless communication to one or more subscriber access units via a first

plurality of wireless channels;

at least one subscriber access unit in the one or more subscriber access units

operable for wireless communication to the base station processor via a second

plurality of wireless channels;

a scheduler operable to allocate the wireless channels for wireless

communication at a predetermined interval,

wherein each channel in the first and second plurality of channels is

dedicated for communication between the wireless communication unit and a single

remote wireless unit at a predetermined time slot interval and, wherein the

scheduler is further operable to schedule the first wireless channels according to a

forward cycle, and to schedule the second wireless channels according to a reverse

cycle, such that the forward cycle is out of phase with the reverse cycle by less than

one time slot interval.

- 5 -

14. (Original) The system of claim 13 wherein the scheduler further comprises a forward scheduler in the base station processor and a reverse scheduler in the subscriber access unit.

- 15. (Original) The system of claim 13 wherein the forward cycle occurs at a forward interval and the reverse cycle occurs at a reverse interval.
- 16. (Original) The system of claim 15 wherein each of the forward channels and each of the reverse channels is allocated for a predetermined duration based on the forward interval and the reverse interval, respectively.
- 17. (Original) The system of claim 15 wherein the forward interval of the forward cycle and the reverse interval of the reverse cycle are equal in duration.
- 18. (Original) The system of claim 15 wherein the frequency of the forward interval and the frequency of the reverse interval correspond to an integral multiple.
- 19. (Original) The system of claim 15 wherein the duration of the forward interval and the duration of the reverse interval is between 26 and 27 ms.
- 20. (Original) The system of claim 15 wherein the forward interval and the reverse interval are between 13 and 14 ms out of phase.
- 21. (Original) The system of claim 15 wherein the forward interval and the reverse interval are an epoch.

22. (Currently amended) A computer program product including computer program code for allocating wireless channels in a wireless communication network comprising:

computer program code for identifying a first channel dedicated for wireless communication to a subscriber access unit;

computer program code for identifying a second channel dedicated for wireless communication to a base station processor;

computer program code for scheduling the first channel for wireless communication according to a first cycle; and

computer program code for scheduling the second channel for wireless communication according to a second cycle, wherein each channel is dedicated for communication between the wireless communication unit and a single remote wireless unit at a predetermined <u>time slot</u> interval, and wherein the first cycle is out of phase with the second cycle by less than one <u>time slot</u> interval.

23. (Currently amended) A computer data signal for allocating wireless channels in a wireless communication network comprising:

program code for identifying a first channel dedicated for wireless communication to a subscriber access unit;

program code for identifying a second channel dedicated for wireless communication to a base station processor;

program code for scheduling the first channel for wireless communication according to a first cycle; and

program code for scheduling the second channel for wireless communication according to a second cycle, wherein each channel is dedicated for communication

between the wireless communication unit and a single remote wireless unit at a predetermined <u>time slot</u> interval, and wherein the first cycle is out of phase with the second cycle by less than one <u>time slot</u> interval.

24. (Currently amended) A system for allocating wireless channels in a wireless communication network comprising:

means for identifying a first channel dedicated for wireless communication to a subscriber access unit;

means for identifying a second channel dedicated for wireless communication to a base station processor;

means for scheduling the first channel for wireless communication according to a first cycle; and

means for scheduling the second channel for wireless communication according to a second cycle, wherein each channel is dedicated for communication between the wireless communication unit and a single remote wireless unit at a predetermined <u>time slot</u> interval, and wherein the first cycle is out of phase with the second cycle by less than one <u>time slot</u> interval.