<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

Plataformas IoT

v 1.2.1 Diciembre 2021

Introducción

- o loT es la interconexión de objetos a través de Internet
- o Se necesita de uno o más sistemas centralizados que permitan dicha conexión
 - A veces **los objetos necesitan consumir datos** de algún sitio para realizar su función o conectarse con otros objetos
- Hay **muchas plataformas de loT** para interconectar nuestros objetos
 - Ofrecen grandes, muchas y muy diversas funcionalidades
 - Pero el propósito final de ellas y el como un usuario define las interconexiones entre sus objetos, difiere bastante
- Por eso, se pueden clasificar estas plataformas en **cuatro grupos** [42]
 - Negocio, investigación, estado beta y código abierto

Tipos de plataformas loT

Plataformas de loT existentes

- 4 grupos [42]
 - Negocio

Investigación

Estado beta

Código abierto

Plataformas IoT de negocios

- o Plataformas loT con una clara orientación al mundo de los negocios
 - Solo venden servicios
- En este grupo podemos encontrar **nueve plataformas**
 - Xively (Google Cloud IoT) [77], Carriots (Altair SmartWorks) [78], Exosite [79], SensorCloud [80], Etherios [81], ThingWorx [82], Azure IoT Suit [83], Amazon Web Services [84] e IBM Internet of Things [85].

Plataformas de investigación

- Aquellas plataformas que son usadas por investigadores para investigar en el campo de Internet de las Cosas
- o Alguna plataforma está todavía en estado beta
- o Todas ellas tienen información publicada en diferentes artículos y conferencias
- Estas plataformas IoT son
 - Midgar, Paraimpu [86], SloT [87], SenseWeb [88], [89] y QuadraSpace [90] y Vitruvius

Plataformas en estado beta

- o Las plataformas en estado beta ofrecen
 - La **posibilidad de usarlas**, pero **necesitas de una invitación** para ello debido a que, según lo que explican, **se encuentran en estado beta**
 - o O bien, solo permiten ver la plataforma sin poder interaccionar con ella
- Este es el caso de las siguientes plataformas loT
 - Open.Sen.se [91], Sensorpedia [92], [93] y Evrythng [94].

Plataformas de loT de código abierto

- o Plataformas loT que **permiten crear una red loT basada en su software por un usuario cualquier en su propio servidor**
- Estas plataformas son
 - ThingSpeak [95], Nimbits [96] y Kaa [97]

Plataformas IoT

Google Cloud IoT

- Previamente conocida Xively, antes COSM y antes como Pachube
 - Comprada por Google en marzo 2018
- Plataforma IoT **de negocios**
- Configuración mediante formularios webs
- Muchas estadísticas
- https://cloud.google.com/solutions/iot

Altair SmartWorks

Previamente Carriots

- carriots
- o 2018 estuvo portando al nuevo negocio
- Plataforma IoT **de negocios**
- Ofrece una solución tipo Plataforma como un Servicio (PaaS) para construir aplicaciones para IoT
- o Provee de una API REST para manejar casi toda interacción con el servicio
 - o (CRUD) Crear, mostrar, actualizar y borrar dispositivos
- MQTT
- https://www.altairsmartworks.com/

Paraimpu

- Plataforma de loT de investigación
 - Actualmente vende servicios
 - Fue utilizada previamente en muchas investigaciones [54], [98]-[100]
- o Ofrece una API curl para interconectar los dispositivos con la plataforma
 - o Por ello, se debe de añadir toda la lógica en los diferentes dispositivos
 - http://www.paraimpu.com/

Social Internet of Things

- Plataforma de loT de investigación
- Red IoT enmarcada en lo que se conoce como IoT Social
 - Utilizada anteriormente en diferentes propuestas de investigación [51], [52], [101]
- o F∪e construida sobre el núcleo de ThingSpeak
- SloT es una aplicación RESTful
- Ofrece soporte para los formatos CSV, JSON y XML
- Usa métodos GET y POST
- La principal meta es permitir la creación de listas de amigos con otros objetos para crear sus relaciones
- Actualmente permite la descarga de la red para poder montarte una red loT en tu propio servidor
- Involucrada en proyectos Horizon2020
- http://www.social-iot.org/

Open.Sen.se Beta

Open.sen.se

- Plataforma loT en beta
- Necesita una invitación para permitir usarla
- Ofrece soporte para diferentes protocolos
 - HTTP, XMPP, CoAP, ...
- o Ofrece diferentes gráficas sobre los valores de los objetos
 - Visualizar en el portal web o compartir en otras páginas
- Solo permite crear interconexiones entre objetos y servicios web
- o Desapareció en 2017
 - URL anterior: http://open.sen.se/

ThingSpeak

- o Plataforma loT de código abierto
- Comprada por MathWorks
- Pasos
 - Subir los datos de diferentes objetos
 - Visualizar los datos en diferentes gráficas
- Otros
 - o Integración con Twitter
 - Permite visualizar gráficas
 - Crear «canales» (datos de los objetos) públicos o privados
 - https://thingspeak.com/channels/9
 - Aplicar análisis con Matlab
- ThingSpeak nos obliga a bajar estos datos en un fichero en bruto, lo que implica
 - La descarga continua de datos en el objeto
 - Programar en el objeto las condiciones
 - Realizar el procesamiento en él
- https://thingspeak.com/

Nimbits

- Plataforma de software abierto
- o Dice que soluciona el dilema de Edge Computing aplicado a loT
 - Trasladar la computación de nodo centralizados al extremo de la red, haciendo que esta se encuentra en los dispositivos de los extremos, que son aquellos que generan la información
- Para desplegar Nimbits
 - Descargar el fichero WAR (Web Application Archive) de la aplicación y desplegarlo en un servidor

Funcionalidad

- Se basa en el uso de formularios para establecer alarmas, filtros y cálculos entre otras opciones
- Nos limita los disparadores a solo tres parámetros

o Desapareció en 2018

- URL anterior: https://www.nimbits.com/
- NodeRed: https://nodered.org/ (similar o basado en Nimbits)

Kaa

- Plataforma loT de código abierto
- Permite conectar tu aplicación con otros objetos utilizando como middleware el servidor Kaa para crear los endpoints
 - Middleware: software para intercambiar datos entre aplicaciones hetrogéneas
 - Endpoint: punto de acceso a una aplicación, servicio o proceso
- o Tiene integración con sistemas de gestión de datos y sistemas de análisis
- Hay que programar la aplicación que debe funcionar en los diferentes objetos y conectarse con el servidor Kaa
- https://www.kaaproject.org/

Midgar I

- o Plataforma loT de investigación
- Permite
 - Crear objetos y registrarlos
 - Crear la interconexión entre objetos para interconectarlos
 - Enviar datos y mensajes ente objetos
- **DSL textual** basado en XML
- DSL gráfico que se basa en el DSL textual
- o Gracias al uso de MDE es
 - Ampliable
 - Reutilizable
 - Mantenible
- o La inteligencia se encuentra en la red
 - Basada en árboles de decisión creados por los usuarios
 - Fue siendo ampliada en los diferentes prototipos
- o Plataforma de mensajes segura en entornos inseguros
 - Criptografía híbrida

Midgar II – MOISL I

- Añade a Midgar el DSL MOISL
 - Interconectar objetos
 - o Definir reglas de interconexión
 - Inserta reglas al demonio

Midgar II – MOISL II

<pre><application name="MIDGARTest"></application></pre>
<pre><service initialtime="5000" lifeservice="true"></service></pre>
<pre><ifcondition condition="higher" data1="serviceId:e6644a22aae2cec 6-2" data2="8"></ifcondition></pre>
<action actiontoexecute="2" destinationservice="c3b9f28c24f2 be8b-0" message="This action is a popup"></action>

Sintaxis abstracta	Sintaxis con	ereta
Jimidais avoitatid	DSL Textual	DSL Gráfico
Application	<application></application>	
Service	<service></service>	
Condition	<ifcondition></ifcondition>	If
For	<forloop></forloop>	For
While	<whileloop></whileloop>	White
Sleep	<sleep></sleep>	Zz
Action	<action></action>	₽ ₀
Source	<java></java>	

Midgar III – MOCSL

- Añade a Midgar el DSL MOCSL
 - Genera el software de los Smart Objects
 - Arduino y Android
 - Define los sensores y actuadores a utilizar
 - Inserta toda la información para que se conecten a la red IoT
 - Sistema de mensajes, URIs, etc.

Midgar III – MOCSL

	Minibloq	Bitbloq	AppsGeyser	AppsBuilder	Infinite Monkeys	MOCSL
¿Necesita habilidad de desarrollo?	X Sí	X sí	No	No	No	No
Arduino	Sí	Sí	No	No No	≫ No	Sí
Mobile	No	No	Sí	Sí	Sí	Sí
Sensores y actuadores	Sí	Sí	No	No No	No	Sí
Servicios Web	No	No	No	No	₩ No	Sí
¿Se puede modificar el código?	No	No	No	No No	No	Sí

Midgar IV – Canon

- o Añade a Midgar el módulo de Visión por Computador
 - Permite tratar las fotos como sensores
 - Analiza las fotos en busca de lo especificado

Midgar V – Manchester

- Sustituye en Midgar el DSL MOISL por MUCSL
 - o Definir reglas de interconexión
 - Transformar casos de uso en las aplicaciones finales
 - If [the] B8AC6F48E370-0 [is] greater than 49 then C3b9f28c24f2be8b-0 [to] 'fire'
 - When [the] B8AC6F48E370-0 [is] equal or less than 30 and C3b9f28c24f2be8b-0 [is] equal or less than 20 then [the] D4az78t31y7ghu8p-0 else [the] D4az78t31y7ghu8p-1

Midgar VI – Michu

	Se	nsors
	Bite Kiss Laydown Nap_Getup Serach_for_food Happyness Bered Angry SND:Tu no mami SND:Moo SND:Excited SND:Prrr	
	SHOSHIL	
Asistente persor	MiBot al automatizado programable mediante el uso de Internet de las Cosas	
	age MindStorm Plea Contact GENERATE XML	
ect device type: Pleo • 1aT Ne delect exactly Pleo type: Pleo 2009	-	
Munn	Actions Personalities: Halloosea Hallidge Love-Struck Pisesanna. Res Watchdog Note: Personalities have to be copied	
Hight Log Tuo	to the 50 Card and card connect Pieo to the Hidgar platform The Hidgar platform Float Sensor Mouth Youch Left English Sensor	

Referencias

Referencias

- o Todo el contenido pertenece a
 - González García, C., 2017. MIDGAR: Interoperabilidad de objetos en el marco de Internet de las Cosas mediante el uso de Ingeniería Dirigida por Modelos. University of Oviedo. doi:10.13140/RG.2.2.26332.59529
 - https://www.researchgate.net/publication/314188769_MIDGAR_interoperabilidad_de_objetos_en_el_marco_de_Internet_de_las_Cosas_mediante_el_uso_de_Ingenieria_Dirigida_por_Modelos_
 - González García, C., García-Bustelo, C.P., Espada, J.P., Cueva-Fernandez, G., 2014. Midgar: Generation of heterogeneous objects interconnecting applications. A Domain Specific Language proposal for Internet of Things scenarios. Comput. Networks 64, 143–158. doi:10.1016/j.comnet.2014.02.010
 - González García, C., Espada, J.P., Valdez, E.R.N., García-Díaz, V., 2014. Midgar: Domain-Specific Language to Generate Smart Objects for an Internet of Things Platform, in: 2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing. IEEE, Birmingham, United Kingdom, pp. 352–357. doi:10.1109/IMIS.2014.48
 - Gonzalez Garcia, C., Zhao, L., & Garcia-Diaz, V. (2019). A User-Oriented Language for Specifying Interconnections Between Heterogeneous Objects in the Internet of Things. IEEE Internet of Things Journal, 6(2), 3806–3819. https://doi.org/10.1109/JIOT.2019.2891545

<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

Plataformas IoT

v 1.2.1 Diciembre 2021