Aspects of Differential Geometry in HoTT

Felix Wellen

Differential Geometry of what?

Differential Geometry of what?

 ${\sf Smooth\ Manifolds} \buildrel {\sf Smooth\ Sets} = {\sf Sh}(\{\mathbb{R}^n \times \mathbb{D} | n \in \mathbb{N}\})$

 $\mathsf{Schemes} \overset{\longleftarrow}{\longrightarrow} \mathsf{Zariski\text{-}sheaves} \quad = \quad \operatorname{Sh}(\operatorname{Rings}^{\mathrm{op}})$

Differential Geometry of what?

 ${\sf Smooth\ Manifolds} \ {\hookrightarrow} \ {\sf Formal\ Smooth\ Sets} = {\sf Sh}(\{\mathbb{R}^n \times \mathbb{D} | n \in \mathbb{N}\})$

Schemes
$$\hookrightarrow$$
 Zariski-sheaves = $Sh(Rings^{op})$

Where " Sh " means the topos of set- or ∞ -groupoid-valued sheaves on:

- 1. $\mathbb{R}^n \times \mathbb{D}$ with smooth open good covers (ignoring the \mathbb{D} s).
- 2. Commutative, unital rings with jointly surjective inclusions of Zariski-open affine subsets.

By modalities!

By modalities!

Left exact reflections on the model induce modalities.

By modalities!

Left exact reflections on the model induce modalities.

 $L\colon \mathrm{Sh}(...)\to S$ is a reflection, if it is left adjoint to a fully faithful inclusion $S\subseteq \mathrm{Sh}(...).$

By modalities!

Left exact reflections on the model induce modalities.

 $L \colon \mathrm{Sh}(...) \to S$ is a reflection, if it is left adjoint to a fully faithful inclusion $S \subseteq \mathrm{Sh}(...)$.

Left exact reflections induce compatible reflections on all slices.

By modalities!

Left exact reflections on the model induce modalities.

 $L \colon \mathrm{Sh}(...) \to S$ is a reflection, if it is left adjoint to a fully faithful inclusion $S \subseteq \mathrm{Sh}(...)$.

Left exact reflections induce compatible reflections on all slices.

 \Rightarrow Applicable in any context.

On Zariski sheaves, we have the functor \Im , given by

$$\Im(\mathcal{F})(\operatorname{Spec}(A)) \coloneqq \mathcal{F}(\operatorname{Spec}(A_{\operatorname{red}}))$$

On Zariski sheaves, we have the functor \Im , given by

$$\Im(\mathcal{F})(\operatorname{Spec}(A)) \coloneqq \mathcal{F}(\operatorname{Spec}(A_{\operatorname{red}}))$$

 $\Im(\mathcal{F})$ is called the infinitesimal shape, coreduction or de Rham stack of $\mathcal{F}.$

On Zariski sheaves, we have the functor \mathfrak{I} , given by

$$\Im(\mathcal{F})(\operatorname{Spec}(A)) \coloneqq \mathcal{F}(\operatorname{Spec}(A_{\operatorname{red}}))$$

 $\Im(\mathcal{F})$ is called the infinitesimal shape, coreduction or de Rham stack of $\mathcal{F}.$

Let us see, what this functor does to a sheaf S, representing a k-Scheme:

 $\{\mathsf{Tangent}\ \mathsf{vectors}\ \mathsf{at}\ k\mathsf{-points}\} \cong S(\mathrm{Spec}(k[X]/(X^2)))$

On Zariski sheaves, we have the functor \Im , given by

$$\Im(\mathcal{F})(\operatorname{Spec}(A)) \coloneqq \mathcal{F}(\operatorname{Spec}(A_{\operatorname{red}}))$$

 $\Im(\mathcal{F})$ is called the infinitesimal shape, coreduction or de Rham stack of $\mathcal{F}.$

Let us see, what this functor does to a sheaf S, representing a k-Scheme:

$$\{\mathsf{Tangent}\ \mathsf{vectors}\ \mathsf{at}\ k\mathsf{-points}\} \cong S(\mathrm{Spec}(k[X]/(X^2)))$$

But $(k[X]/(X^2))_{\mathrm{red}}$ is just k, so the tangent vectors at k-points of $\Im(S)$ are just the k-points:

$$\Im(S)(\operatorname{Spec}(k[X]/(X^2))) = S(\operatorname{Spec}(k[X]/(X^2))_{\operatorname{red}}) = S(\operatorname{Spec}(k))$$

So: \Im removes all differential geometric information!

The category of smooth manifolds may be extended to admit an \Im -functor.

The category of smooth manifolds may be extended to admit an \Im -functor.

Note that

$$\mathcal{C}^\infty\colon \{\mathbb{R}^n|n\in\mathbb{N}\}^{\mathrm{op}}\to\mathbb{R}\text{-algebras}$$

is fully faithful and let us write Spec for the inverse on its image.

The category of smooth manifolds may be extended to admit an \Im -functor.

Note that

$$\mathcal{C}^{\infty} \colon \{\mathbb{R}^n | n \in \mathbb{N}\}^{\mathrm{op}} \to \mathbb{R}$$
-algebras

is fully faithful and let us write Spec for the inverse on its image. For all nilpotent $\mathbb R\text{-algebra}\ V,$ formally extend the left category by

$$\mathbb{R}^n \times \mathbb{D}_V = \operatorname{Spec}(\mathcal{C}^\infty(\mathbb{R}^n) \otimes (\mathbb{R} \oplus V))$$

and call this category FC.

The category of smooth manifolds may be extended to admit an \Im -functor.

Note that

$$\mathcal{C}^{\infty} \colon \{\mathbb{R}^n | n \in \mathbb{N}\}^{\mathrm{op}} \to \mathbb{R}$$
-algebras

is fully faithful and let us write Spec for the inverse on its image. For all nilpotent $\mathbb R\text{--algebra}\ V$, formally extend the left category by

$$\mathbb{R}^n \times \mathbb{D}_V = \operatorname{Spec}(\mathcal{C}^\infty(\mathbb{R}^n) \otimes (\mathbb{R} \oplus V))$$

and call this category FC. For any k, we can restrict the order:

$$\mathrm{FC}_k \coloneqq \{\mathcal{C}^\infty(\mathbb{R}^n) \otimes (\mathbb{R} \oplus V) | n \in \mathbb{N}, V^{k+1} = 0 \}^\mathrm{op} \subseteq \mathbb{R} - \mathrm{algebras}^\mathrm{op}$$

Now, define
$$\Im\colon\mathrm{Sh}(\mathrm{FC}) o\mathrm{Sh}(\mathrm{FC})$$
 by
$$\Im(\mathcal{F})(\mathbb{R}^n\times\mathbb{D}_V)\coloneqq\mathcal{F}(\mathbb{R}^n)$$

Now, define $\mathfrak{I} \colon \mathrm{Sh}(\mathrm{FC}) \to \mathrm{Sh}(\mathrm{FC})$ by

$$\Im(\mathcal{F})(\mathbb{R}^n\times\mathbb{D}_V)\coloneqq\mathcal{F}(\mathbb{R}^n)$$

and, respectively $\mathfrak{I}_k \colon \mathrm{Sh}(\mathrm{FC}_k) \to \mathrm{Sh}(\mathrm{FC}_k)$ by the same equation

$$\mathfrak{I}_k(\mathcal{F})(\mathbb{R}^n\times \mathbb{D}_V)\coloneqq \mathcal{F}(\mathbb{R}^n)$$

Let M be a sheaf in $\mathrm{Sh}(\mathrm{FC}_1)$ representing a smooth manifold.

Let M be a sheaf in $\mathrm{Sh}(\mathrm{FC}_1)$ representing a smooth manifold. For any point $x\in M$, the tangent space is given as a pullback

Let M be a sheaf in $\mathrm{Sh}(\mathrm{FC}_1)$ representing a smooth manifold. For any point $x \in M$, the tangent space is given as a pullback

The tangent bundle is also given as a pullback:

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation.

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation. And we always assume a modality called \mathfrak{I} ,

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation. And we always assume a modality called \Im , i.e. we assume the following:

1. For any type A, $\Im A$ is a type and we have a map $\iota_A\colon A\to \Im A$.

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation. And we always assume a modality called \Im , i.e. we assume the following:

- 1. For any type A, $\Im A$ is a type and we have a map $\iota_A:A\to \Im A.$
- 2. $(A \text{ is coreduced}) :\equiv (A \text{ is an equivalence})$

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation. And we always assume a modality called \Im , i.e. we assume the following:

- 1. For any type A, $\Im A$ is a type and we have a map $\iota_A \colon A \to \Im A$.
- 2. $(A \text{ is coreduced}) :\equiv (A \text{ is an equivalence})$
- 3. For any type A, $\Im A$ is coreduced.

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation. And we always assume a modality called \mathfrak{I} , i.e. we assume the following:

- 1. For any type A, $\Im A$ is a type and we have a map $\iota_A\colon A\to \Im A$.
- 2. $(A \text{ is coreduced}) :\equiv (A \text{ is an equivalence})$
- 3. For any type A, $\Im A$ is coreduced.
- 4. For any $B\colon \Im A \to \mathcal{U}$, such that $\prod_{a\colon \Im A} B(a)$ is coreduced, a section $s\colon \prod_{a\colon \Im A} B(a)$ is defined by $s_0\colon \prod_{a\colon A} B(\iota_A(a))$.

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation. And we always assume a modality called \mathfrak{I} , i.e. we assume the following:

- 1. For any type A, $\Im A$ is a type and we have a map $\iota_A \colon A \to \Im A$.
- 2. $(A \text{ is coreduced}) :\equiv (A \text{ is an equivalence})$
- 3. For any type A, $\Im A$ is coreduced.
- 4. For any $B\colon \Im A \to \mathcal{U}$, such that $\prod_{a:\Im A} B(a)$ is coreduced, a section $s\colon \prod_{a:\Im A} B(a)$ is defined by $s_0\colon \prod_{a:A} B(\iota_A(a))$.
- 5. Coreduced types have coreduced identity types.

Internal geometric notions

Internal geometric notions

Definition

For any point $x \colon A$, \mathbb{D}_x is defined by

and called formal disk at x.

Internal geometric notions

Definition

For any point $x \colon A$, \mathbb{D}_x is defined by

and called formal disk at x.

The formal disk bundle over A, $T_{\infty}A$ is defined by the pullback

Definition

A left invertible H-space is a type \boldsymbol{X} together with

Definition

A left invertible H-space is a type X together with

- 1. *e*: *X*
- 2. $\mu \colon X \times X \to X$

Definition

A left invertible H-space is a type X together with

- 1. *e*: *X*
- 2. $\mu: X \times X \to X$
- 3. Proof that the unit is a left and right unit, i.e. a term in each of

$$\prod_{x:X}\mu(e,x)=x \text{ and } \prod_{x:X}\mu(x,e)=x.$$

Definition

A left invertible H-space is a type X together with

- 1. *e*: *X*
- 2. $\mu: X \times X \to X$
- 3. Proof that the unit is a left and right unit, i.e. a term in each of

$$\prod_{x:X} \mu(e,x) = x \text{ and } \prod_{x:X} \mu(x,e) = x.$$

4. Proof that for any $a\!:\!X$ the right-translation $x\mapsto \mu(x,a)$ is an equivalence, i.e. there is a term of type

$$\prod_{a \in X} (x \mapsto \mu(x, a)) \text{ is an equivalence.}$$

The triviality theorem

The triviality theorem

Theorem

Let V be a left invertible H-space and $\mathbb D$ the formal disk at the unit in V, then:

Differential structure preserving morphisms

Differential structure preserving morphisms

Definition

A map $f \colon A \to B$ is called *formally étale* if the naturality square

is a pullback square.

Differential structure preserving morphisms

Definition

A map $f\colon A\to B$ is called *formally étale* if the naturality square

is a pullback square.

Remark

For smooth manifolds formally étale maps correspond to local diffeomorphisms.

For noetherian schemes, they correspond to étale maps.

Structured spaces

Structured spaces

Definition

Let V be a left invertible H-space. A type M is called a V-Manifold, if there is a span of formally étale maps

Structured spaces

Definition

Let V be a left invertible H-space. A type M is called a V-Manifold, if there is a span of formally étale maps

Theorem (needs Univalence)

Any $V\operatorname{-Manifold}$ has a locally trivial formal disk bundle witnessed by a classifying map

$$\chi_M \colon M \to \mathrm{BAut}(\mathbb{D}_V)$$

Cartan Geometry

Cartan Geometry

Remark

If we have a delooping BG of a group G with a map $\varphi\colon BG\to \mathrm{BAut}(\mathbb{D}_V)$, we can ask if there is a lift:

Cartan Geometry

Remark

If we have a delooping BG of a group G with a map $\varphi\colon BG\to \mathrm{BAut}(\mathbb{D}_V)$, we can ask if there is a lift:

For example, such a lift for G = O(n) together with another condition is a Pseudo-Riemannian structure on M.