Semantic Segmentation with **Generative Models:** Semi-Supervised Learning and Strong Out-of-Domain Generalization

Semantic Segmentation Challenges

- Very time consuming
- Expensive domain experts
- Bad Out-of-domain generalization

Solutions

- Learn and model *joint* image-label distribution
- Fully generative approach (StyleGAN2)
- Using Unlabeled data

Formel definition

- ullet Traditional: $f:\mathcal{X} o \mathcal{Y}$ maximize p(y|x)
- ullet Generative approach: p(z) $G(z): \mathcal{Z} \stackrel{f}{
 ightarrow} (\mathcal{X},\mathcal{Y})$

Generator - StyleGan2

Generator - StyleGan2

 $G: \mathbb{Z} \to \mathcal{W} \to (\mathcal{X}, \mathcal{Y})$ output images $x \in \mathcal{X}$, pixel-wise labels $y \in \mathcal{Y}$

Discriminators

He et al.: Deep Residual Learning for Image Recognition. CVPR, 2016.

$$D_r: \mathcal{X} \to \mathbb{R}$$

Discriminators

He et al.: Deep Residual Learning for Image Recognition. CVPR, 2016.

$$D_r: \mathcal{X} \to \mathbb{R}$$
 $D_m: (\mathcal{X}, \mathcal{Y}) \to \mathbb{R}$

Generator and Discriminator

Encoder

Richardson, Elad, et al. "Encoding in style: a stylegan encoder for image-to-image translation." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.

 $ightarrow \mathcal{W}^+$

Inference

Training - Datasets

- Unlabeled: $D_u = \{x_1, \dots, x_n\}$
- $\bullet \quad \text{Labeled:} \quad D_l = \{(x_1,y_1),\ldots,(x_k,y_k)\}$
- $k \ll n$

Training Generator and Discriminators - Loss Functions

• $L_{D_r} = \mathbb{E}_{x_r \sim D_u} [\log D_r(x_r)] + \mathbb{E}_{(x_f, \cdot) = G(z), z \sim p(z)} [\log(1 - D_r(x_f))]$

Training Generator and Discriminators - Loss Functions

- $L_{D_r} = \mathbb{E}_{x_r \sim D_u} [\log D_r(x_r)] + \mathbb{E}_{(x_f,\cdot) = G(z), z \sim p(z)} [\log(1 D_r(x_f))]$
- $L_{D_m} = \mathbb{E}_{(x_r, y_r) \sim D_l} [\log D_m(x_r, y_r)] + \mathbb{E}_{(x_f, y_f) = G(z), z \sim p(z)} [\log (1 D_m(x_f, y_f))]$

Training Generator and Discriminators - Loss Functions

- $L_{D_r} = \mathbb{E}_{x_r \sim D_u}[\log D_r(x_r)] + \mathbb{E}_{(x_f,\cdot) = G(z), z \sim p(z)}[\log(1 D_r(x_f))]$
- $L_{D_m} = \mathbb{E}_{(x_r, y_r) \sim D_l} [\log D_m(x_r, y_r)] + \mathbb{E}_{(x_f, y_f) = G(z), z \sim p(z)} [\log (1 D_m(x_f, y_f))]$
- $L_G = \mathbb{E}_{(x_f,\cdot)=G(z),z\sim p(z)}[\log(1-D_r(x_f))] + \mathbb{E}_{(x_f,y_f)=G(z),z\sim p(z)}[\log(1-D_m(x_f,y_f))]$

Training Generator and Discriminators

Training Encoder - Loss Functions

•
$$\mathcal{L}_E = \mathcal{L}_s + \mathcal{L}_u$$

Training Encoder - Loss Functions

- $\mathcal{L}_E = \mathcal{L}_s + \mathcal{L}_u$
- $\mathcal{L}_s = \mathbb{E}_{(x,y)\sim D_l}\mathbf{H}(y,G_y(E(x))) + \mathbf{DC}(y,G_y(E(x)))$

Training Encoder - Loss Functions

- $\mathcal{L}_E = \mathcal{L}_s + \mathcal{L}_u$
- $\mathcal{L}_s = \mathbb{E}_{(x,y)\sim D_l}\mathbf{H}(y,G_y(E(x))) + \mathbf{DC}(y,G_y(E(x)))$
- $\mathcal{L}_u = \mathbb{E}_{x \sim D_1 \cup D_2} \mathcal{L}_{LPIPS}(x, G_x(E(x))) + \lambda_1 ||x G_x(E(x))||_2^2$

Training Encoder

Inference - test-time optimization

- ullet given target image x^* find optimal pixel-wise labels y^*
- $w^* = \underset{w^+ \in \mathcal{W}^+}{\min} [\mathcal{L}_{\text{reconst}}(x^*, G_x(w^+)) + \lambda_2 ||w^+ E(G(w^+))||_2^2]$

Chest X-ray Lung Segmentation

Method	Trained with 9 labeled data samples				Trained with 35 labeled data samples				Trained with 175 labeled data samples			
	JSRT	NLM	NIH	SZ	JSRT	NLM	NIH	SZ	JSRT	NLM	NIH	SZ
U-Net	0.9318	0.8605	0.6801	0.9051	0.9308	0.8591	0.7363	0.8486	0.9464	0.9143	0.7553	0.9005
DeepLab	0.9006	0.6324	0.7361	0.8124	0.9556	0.8323	0.8099	0.9138	0.9666	0.8175	0.8093	0.9312
MT	0.9239	0.8287	0.7280	0.8847	0.9436	0.8239	0.7305	0.8306	0.9604	0.8626	0.7893	0.8846
AdvSSL	0.9328	0.8500	0.7720	0.8901	0.9552	0.8191	0.5298	0.8968	0.9684	0.8344	0.7627	0.8846
GCT	0.9235	0.6804	0.6731	0.8665	0.9502	0.8327	0.7527	0.9184	0.9644	0.8683	0.7981	0.9393
Ours-NO	0.9464	0.9303	0.9097	0.9334	0.9471	0.9294	0.9223	0.9409	0.9465	0.9232	0.9204	0.9403
Ours	0.9591	0.9464	0.9133	0.9362	0.9668	0.9606	0.9322	0.9485	0.9669	0.9509	0.9294	0.9469

Chest X-ray Lung Segmentation

Method	Trained	with 9 lab	eled data	samples	Trained with 35 labeled data samples				Trained with 175 labeled data samples			
	JSRT	NLM	NIH	SZ	JSRT	NLM	NIH	SZ	JSRT	NLM	NIH	SZ
U-Net	0.9318	0.8605	0.6801	0.9051	0.9308	0.8591	0.7363	0.8486	0.9464	0.9143	0.7553	0.9005
DeepLab	0.9006	0.6324	0.7361	0.8124	0.9556	0.8323	0.8099	0.9138	0.9666	0.8175	0.8093	0.9312
MT	0.9239	0.8287	0.7280	0.8847	0.9436	0.8239	0.7305	0.8306	0.9604	0.8626	0.7893	0.8846
AdvSSL	0.9328	0.8500	0.7720	0.8901	0.9552	0.8191	0.5298	0.8968	0.9684	0.8344	0.7627	0.8846
GCT	0.9235	0.6804	0.6731	0.8665	0.9502	0.8327	0.7527	0.9184	0.9644	0.8683	0.7981	0.9393
Ours-NO	0.9464	0.9303	0.9097	0.9334	0.9471	0.9294	0.9223	0.9409	0.9465	0.9232	0.9204	0.9403
Ours	0.9591	0.9464	0.9133	0.9362	0.9668	0.9606	0.9322	0.9485	0.9669	0.9509	0.9294	0.9469

Chest X-ray Lung Segmentation

Number of Labeled vs Unlabeled Examples

	J	Jnlabele	d						
	3K 10K 28								
3 30	0.6786	0.6845	0.6902						
<u>2</u> 150	0.7046	0.7438	0.7600						
<u>\$\frac{1500}{}</u>	0.7566	0.7710	0.7810						

(a) CelebA-Mask (In-Domain)

	Ţ	Jnlabele	d
	28K		
ਲ 30	0.5410	0.5799	0.5883
	0.5871		
<u></u> 1500	0.6011	0.6204	0.6633

(b) MetFaces-40 (Out-Domain)

	Trainec	l with 8 labe	led examples	Trained	d with 20 lab	eled examples	Trained with 118 labeled examples		
Method	CT	MRI T1-in	MRI T1-out	CT	MRI T1-in	MRI T1-out	CT	MRI T1-in	MRI T1-out
U-Net	0.7610	0.2568	0.3293	0.8229	0.3428	0.2310	0.8680	0.4453	0.4177
Ours-NO	0.8036	0.4811	0.5135	0.8462	0.5538	0.4511	0.8603	0.5055	0.5633
Ours	0.8747	0.5565	0.5678	0.8961	0.4989	0.4575	0.9169	0.5097	0.5243

	Trainec	with 8 labe	led examples	Trainec	with 20 lab	eled examples	Trained with 118 labeled examples			
Method	CT	MRI T1-in	MRI T1-out	CT	MRI T1-in	MRI T1-out	CT	MRI T1-in	MRI T1-out	
U-Net	0.7610	0.2568	0.3293	0.8229	0.3428	0.2310	0.8680	0.4453	0.4177	
Ours-NO	0.8036	0.4811	0.5135	0.8462	0.5538	0.4511	0.8603	0.5055	0.5633	
Ours	0.8747	(0.5565)	0.5678	0.8961	0.4989	0.4575	0.9169	0.5097	0.5243	

	Trained with 8 labeled examples			Trainec	d with 20 lab	eled examples	Trained with 118 labeled examples			
Method	CT	MRI T1-in	MRI T1-out	CT	MRI T1-in	MRI T1-out	CT	MRI T1-in	MRI T1-out	
U-Net	0.7610	0.2568	0.3293	0.8229	0.3428	0.2310	0.8680	0.4453	0.4177	
Ours-NO	0.8036	0.4811	0.5135	0.8462	0.5538	0.4511	0.8603	0.5055	0.5633	
Ours	0.8747	(0.5565)	0.5678	0.8961	0.4989	0.4575	0.9169	(0.5097)	0.5243	

	Trainec	with 8 labe	led examples	Trainec	d with 20 lab	eled examples	Trained with 118 labeled examples		
Method	CT	MRI T1-in	MRI T1-out	CT	MRI T1-in	MRI T1-out	CT	MRI T1-in	MRI T1-out
U-Net	0.7610	0.2568	0.3293	0.8229	0.3428	0.2310	0.8680	0.4453	0.4177
Ours-NO Ours	0.8036 0.8747		0.5135 0.5678	0.8462 0.8961	0.5538 0.4989	0.4511 0.4575	0.8603 0.9169		0.5633 0.5243

Conclusion

- Really good Out-of-Domain Performance
- Computationally expensive
 - Training
 - Inference

Hackathon

Setup

- No models published used in this paper
- Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation
- Pretrained pSp Encoder/StyleGAN2
- Test-time optimization experiments with Adam (Ir=0.01)

Test-time optimazaiton GT Step 0 Step 100

Sources

KARRAS, Tero, et al. Analyzing and improving the image quality of stylegan. In: *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2020. S. 8110-8119.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017

run1

run2

run3

