

PATENT ABSTRACTS OF JAPAN

(11) Publication number : **2000-147241**
 (43) Date of publication of application : **26.05.2000**

(51) Int.CI. G02B 5/20
 B41J 2/21
 G02F 1/1335

(21) Application number : **11-248650**
 (22) Date of filing : **02.09.1999**

(71) Applicant : **CANON INC**
 (72) Inventor : **AKAHIRA MAKOTO
 WADA SATOSHI
 OGUSHI TAKAHIRO
 YAMAGUCHI HIROMITSU**

(30) Priority

Priority number : **10247919** Priority date : **02.09.1998** Priority country : **JP**

(54) MANUFACTURE OF COLOR FILTER AND LIQUID CRYSTAL ELEMENT AND INK JET HEAD USING COLOR FILTER MANUFACTURED BY THE MANUFACTURING METHOD

(57) Abstract:

PROBLEM TO BE SOLVED: To reduce uneven coloring in a manufacturing method for an ink jet type color filter.

SOLUTION: In color scanning for a scanning area 4a by using an ink jet head 2 having plural nozzles 13a to 13h prepared in each color, every three ink drops are applied to a part 11 to be colored in the 1st scanning and the head 2 is shifted by one nozzle in the 2nd scanning to apply every three drops to the part 11 to be colored. Similarly the head 2 is further shifted by one nozzle to execute the 3rd scanning. In a scanning area 4b also, scanning is executed three times, and the colored part of an overlapped area 5a is colored by the color scanning of the scanning area 4a and that of the scanning area 4b.

LEGAL STATUS

[Date of request for examination] **05.12.2003**

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

*** NOTICES ***

**JPO and NCIP are not responsible for any
damages caused by the use of this translation.**

- 1.This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The manufacture approach of the color filter characterized by having the part which said scan field overlaps mutually in the manufacture approach of a color filter of dividing the coloring field on a substrate into two or more scan fields, and an ink jet method coloring each scan field one by one, and manufacturing a color filter.

[Claim 2] The manufacture approach of a color filter according to claim 1 of performing coloring of said scan field by coloring the covering color part in said scan field.

[Claim 3] The manufacture approach of a color filter according to claim 2 of performing coloring of said one covering color part using the nozzle from which an ink jet head differs.

[Claim 4] The manufacture approach of the color filter according to claim 3 using said different nozzle by shifting said ink jet head to the longitudinal direction of an ink jet head.

[Claim 5] The manufacture approach of a color filter according to claim 1 of preparing an ink absorbing layer on said substrate, and coloring said ink absorbing layer.

[Claim 6] The manufacture approach of a color filter according to claim 5 of making the ink absorptivity of said ink absorbing layer producing a difference, and coloring the high part of ink absorptivity relatively.

[Claim 7] The manufacture approach of a color filter according to claim 1 of coloring opening which prepared the septum member on said substrate and was surrounded by said septum member.

[Claim 8] The manufacture approach of a color filter according to claim 1 that the difference of the ink discharge quantity of a nozzle located in both ends colors using the ink jet head which is 20% or less.

[Claim 9] The ink jet head to which the difference of the ink discharge quantity of a nozzle located in both ends is characterized by being 20% or less in the ink jet head which is used for manufacture of a color filter, and which has two or more nozzles.

[Claim 10] The liquid crystal device characterized by having the color filter substrate manufactured by the manufacture approach of claim 1, the opposite substrate which countered said color filter substrate and was formed, and the liquid crystal enclosed among both [these] substrates.

[Translation done.]

*** NOTICES ***

JPO and NCIPPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the liquid crystal device and ink jet head using the color filter by the manufacture approach and this manufacture approach of the color filter which gives ink with an ink jet method and forms the coloring section.

[0002]

[Description of the Prior Art] In recent years, it is in a liquid crystal display, especially the inclination which the need of a color liquid crystal display increases with development of a personal computer, especially development of a portable personal computer. However, for the further spread, a cost cut is required, and the demand to the cost cut of the color filter with large specific gravity in cost is increasing especially.

[0003] Although various approaches are tried in order to reply to the above-mentioned demand from the former, satisfying the demand characteristics of a color filter, the method of still satisfying all demand characteristics is not established. Each approach is explained below.

[0004] The primary method used is a staining technique. [most] After a staining technique forms first the layer of the water soluble polymer ingredient which is an ingredient for dyeing on a glass substrate and carries out patterning of this to a desired configuration according to a photolithography process, it obtains the pattern which was immersed in the dyeing bath in the obtained pattern, and was colored. The color filter layer of R (red), G (green), and B (blue) is formed by repeating this 3 times.

[0005] The second approach is a pigment-content powder method, and is replaced for a staining technique in recent years. This approach forms first the photopolymer layer which distributed the pigment on a substrate, and obtains a monochromatic pattern by carrying out patterning of this. By furthermore repeating this process 3 times, the color filter layer of R, G, and B is formed.

[0006] There is an electrodeposition process as the third approach. This approach is first immersed in the electropainting liquid which carried out patterning of the transparent electrode on the substrate, and entered [electrolytic solution / a pigment, resin,], and electrodeposits the first color. This process is repeated 3 times, the color filter layer of R, G, and B is formed, and it calcinates at the end.

[0007] As the fourth approach, the resin of a heat-curing mold is made to distribute a pigment, and after distinguishing R, G, and B by different color with by repeating printing 3 times, a coloring layer is formed by carrying out heat curing of the resin. Moreover, it is common to form a protective layer on a coloring layer also in which approach.

[0008] The point common to the above-mentioned conventional manufacture approach is repeating the same process 3 times, in order to color three colors of R, G, and B, and becoming cost quantity. Moreover, it has the problem that a yield falls, so that there are many processes. Furthermore, in an electrodeposition process, since the pattern configuration which can be formed is limited, application is difficult for the active-matrix type which used TFT (thin film transistor) with the present technique, and the so-called TFT mold. Moreover, since definition of print processes is bad, they are unsuitable for formation of the pattern of a fine pitch.

[0009] The proposal is made by JP,59-75205,A, JP,63-235901,A, JP,1-217302,A, the JP,4-123005,A official report, etc. as the manufacture approach of the color filter using the ink jet method in order to compensate the fault of the above-mentioned conventional manufacture approach. Unlike said conventional approach, these give the ink of each color of R, G, and B to the position on a transparency substrate from an ink jet head, dry this ink on a substrate, and make the coloring section form. Since according to this approach the coloring section of each color of R, G, and B can be formed at once and futility is not further produced in the amount of the ink used, either, effectiveness, such as improvement in large productivity and

a cost cut, can be acquired.

[0010] In order to color a large coloring field as the manufacture approach of a color filter of having used the ink jet method, these people divided the coloring field into two or more scan fields, moved the ink jet head and indicated how to carry out sequential coloring of each scan field, to JP,9-138306,A. By this approach, it was easy to generate an irregular color near the boundary of a scan field. For this reason, the need [of managing coloring conditions severely so that an irregular color may not occur] *****.

[0011] These people performed the coloring scan of multiple times to the same scan field, and also proposed the approach of forming each coloring section in the ink breathed out from two or more nozzles, by the ability shifting the location of an ink jet head in each coloring scan. An example is given to drawing 14 - drawing 16, and the concrete coloring process of the proposal concerned is explained to them. In addition, although a color filter comes to carry out the sequential array of the coloring section of three colors of R, G, and B, for convenience, it illustrates the condition that the coloring section of the same color was located in a line, and is usually explained.

[0012] First, as shown in drawing 14, the coloring field on the substrate 1 which forms a color filter is divided into two or more scan fields 90a-90f corresponding to the die length of the ink jet head 2. Drawing 15 shows the example which colors the scan fields 90a-90c which consist of six covering color parts 11, respectively with the ink jet head 2 which has eight nozzles 13a-13h. First, where it has arranged the ink jet head 2 so that Nozzles 13a-13f may be equivalent to each covering color part 11 of scan field 90a located in a space left end, and the ink regurgitation from Nozzles 13g and 13h is stopped. The regurgitation of the liquid ink drop is intermittently carried out to the covering color part 11 from each nozzles 13a-13f, scanning this ink jet head 2 in the direction of a long picture of the covering color part 11 (drawing 15 (a)).

[0013] Next, the ink jet head 2 can be shifted by one nozzle, where the ink regurgitation from Nozzles 13a and 13h is stopped, the 2nd scan is performed and the regurgitation of the liquid ink drop is intermittently carried out to the covering color part 11 from Nozzles 13b-13g (drawing 15 (b)).

[0014] Furthermore, the ink jet head 2 can be shifted by one nozzle, where the ink regurgitation from Nozzles 13a and 13b is stopped, the 3rd scan is performed and the regurgitation of the liquid ink drop is intermittently carried out to the covering color part 11 from Nozzles 13c-13h (drawing 15 (c)).

[0015] By three above-mentioned scans, the coloring scan of scan field 90a is completed. Then, as shown in drawing 16, a coloring scan is performed by performing a multiple-times scan like the coloring scan of the above-mentioned scan field 90a about scan field 90b, being able to shift one nozzle to be used at a time.

[0016] The coloring unevenness by the regurgitation unevenness between nozzles is reduced by giving the liquid ink drop breathed out from two or more nozzles to each covering color part as mentioned above.

[0017]

[Problem(s) to be Solved by the Invention] However, although the coloring unevenness in the same scan field is reduced when an approach as shown in the above-mentioned drawing 14 -16 is used, a muscle-like irregular color is easy to be observed [near the boundary of an adjoining scan field].

[0018] In the coloring approach of drawing 14 -16, it is possible that the coloring sections near [concerned] the boundary (boundary section) differ in the coloring section of the center of a scan field, and the following points as a cause which an irregular color tends to generate near the boundary of an adjoining scan field.

[0019] (1) In the boundary section, the time lag which the covering color part of a different field is colored is large.

[0020] (2) In the covering color part of the boundary section, since the location of the nozzle which gives ink is greatly separated within the ink jet head (nozzle of both ends), the difference between a liquid ink drop measure and the physical quantity of an impact location etc. which carries out the regurgitation tends to become large from the approaching nozzles.

[0021] The purpose of this invention is to offer the liquid crystal device and ink jet head using the manufacture approach of a color filter that the color filter of high quality without an irregular color can be manufactured at a simple process with an ink jet method, and the color filter manufactured by this manufacture approach.

[0022]

[Means for Solving the Problem] The manufacture approach of the color filter of this invention divides the coloring field on a substrate into two or more scan fields, colors each scan field with an ink jet method one by one, manufactures a color filter, and is characterized by having the part which said scan field overlaps mutually.

[0023] Moreover, the liquid crystal device of this invention is characterized by having the color filter substrate manufactured by the above-mentioned manufacture approach, the opposite substrate which

countered said color filter substrate and was formed, and the liquid crystal enclosed among both [these] substrates.

[0024] Furthermore, the ink jet head of this invention is [which has two or more nozzles] for color filter manufacture, and the difference of the ink discharge quantity of a nozzle located in both ends is characterized by being 20% or less.

[0025]

[Embodiment of the Invention] As the manufacture approach of the color filter using an ink jet method, it roughly divides and there are two kinds. The approach of giving ink to the resin constituent layer which has ink absorptivity the first, coloring this resin constituent layer, and making it into the coloring section, and the second are the approaches of giving ink to the opening field surrounded by the septum member, hardening this ink itself, and making it into the coloring section. In each approach, the mechanism from which the difference arising from the location of a nozzle causes an irregular color is presumed as follows.

[0026] (The 1st approach)

(a) Since the scan field which carried out the coloring scan previously has the time amount longer than the next scan field which results in the following process (the desiccation process of ink, and hardening process of a resin constituent layer), distribution of a coloring matter differs and affect observation by viewing.

[0027] (b) Permeate even the covering color part of the scan field where the component of ink adjoins across a boundary with time amount progress from the coloring section of the scan field which carried out the coloring scan previously, give effect to the coloring matter distribution at the time of this covering color part being colored, and with the coloring section of the scan field carried out the coloring scan previously as a result, the coloring matter distribution in coloring circles differs, and give effect to observation by viewing.

[0028] (c) The difference in the impact location of a liquid ink drop affects coloring matter distribution of coloring circles, and affects observation by viewing.

[0029] (The 2nd approach)

(d) It becomes the difference in the thickness of the coloring section, and the difference in the amount of ink given produces a concentration difference, and affects observation by viewing.

[0030] (e) The difference in the impact location of a liquid ink drop produces the bias of thickness in coloring circles, produces a concentration difference, and affects observation by viewing.

[0031] Then, this invention person etc. attained a header and this invention for the irregular color in the above-mentioned boundary section being reduced by preparing the covering color part to which a scan field is not completely divided into as shown in drawing 14, but is made to overlap in part, and ink is given from the nozzle of both ends. Hereafter, this invention is explained concretely.

[0032] In the manufacture approach of the color filter of this invention, an ink jet method gives two or more liquid ink drops to a predetermined covering color part, and it colors. This drop is given at this time, shifting an impact location along the direction of a long picture of a covering color part. Moreover, the irregular color between the different coloring sections by the discharge quantity unevenness of a nozzle is prevented as an ink jet head using what has two or more nozzles for every color by carrying out the regurgitation of the ink from a different nozzle to one covering color part. Concrete technique is explained below. In addition, although it usually consists of the coloring sections of two or more colors which added W (white) to R, G, B, or this, in the following explanation, for convenience, a color filter illustrates the condition that the coloring section of the same color was located in a line, and is explained.

[0033] The coloring field in the manufacture approach of this invention is shown in drawing 1. One in drawing is a substrate, 2 is an ink jet head, and six nozzles 3 are formed in the head concerned. Since the color filter of drawing 1 has the wide width of face of a coloring field, a coloring field is divided into two or more scan fields 4a-4d. Each scan fields 4a-4d overlap in adjoining scan fields, and 5a-5c are duplication fields. In addition, it is a fictitious duplication field with the fictitious scan field contiguous to the space top right-hand side of 4d of scan fields, and since the ink of an initial complement is not given, the field concerned is made into the outside of a viewing area, or the field concerned is not prepared, but 5d is set up so that the nozzle corresponding to the field concerned may be controlled and ink may not be given. In scan field 4a, the fictitious duplication field located in space left-hand side is not prepared substantially.

[0034] Next, 1 operation gestalt is mentioned and drawing 2 and drawing 3 explain the grant process of concrete ink. 11 have a covering color part with an ink jet head among drawing, and 2 has eight nozzles 13a-13h. Here, the width of face of each scan field is ten covering color parts (about scan field 4a at the left end of space, since it does not have a left-hand side duplication field, it becomes few eight pieces by two pieces). With this configuration, three coloring scans are performed about each scan field, and ink is given from three different nozzles for every covering color part.

[0035] First, about scan field 4a, the Nozzles [13g and 13h] ink regurgitation is stopped, the ink jet head 2 is scanned along the direction of a long picture of the covering color part 11, and it gives the covering color part which opens two drops and corresponds a liquid ink drop from Nozzles 13a-13f intermittently (drawing 2 (a)).

[0036] Then, the ink jet head 2 is scanned and it gives the covering color part [dot / which gave the liquid ink drop previously from each nozzle every two pieces again / ink] shifted 1 dot in the location which was able to shift the ink jet head 2 by one nozzle to the longitudinal direction of a head (drawing 2 (b)). A head 2 can be further shifted by one nozzle to the longitudinal direction of a head, and the ink jet head 2 is scanned similarly (drawing 2 (c)).

[0037] Next, the coloring scan of scan field 4b is performed. As shown in drawing 3 (a), the ink jet head 2 is moved so that nozzle 13h of a left end may be corresponded to the covering color part at the left end of duplication field 5a, like the process of drawing 2 , the ink jet head 2 can be shifted by one nozzle, a liquid ink drop is scanned 3 times for every discharge and scan every two pieces, in one scan, and the field concerned is colored.

[0038] In addition, in the above-mentioned operation gestalt, although the ink jet head was able to be shifted to the longitudinal direction of an ink jet head by one nozzle for every scan, two or more pieces can be shifted and width of face of a duplication field may be made large. Moreover, what is necessary is to open, for example by four drops, to be made to carry out two drop continuation grant, and just to set up the continuous number of drops suitably, although the liquid ink drop ended by two drops in each scan and it had given one drop at a time intermittently. Moreover, what is necessary is just to also set up suitably the number of the nozzle which an ink jet head has. Furthermore, the count of a scan of each scan field can also be set up suitably.

[0039] Other examples of the color filter manufacture approach of this invention are shown in drawing 4 and drawing 5 .

[0040] The ink jet head 2 has ten nozzles 13a-13j among drawing 4 . Here, the width of face of each scan field is 14 covering color parts (about scan field 4a at the left end of space, since it does not have a left-hand side duplication field, it becomes few ten pieces by four pieces). With this configuration, five coloring scans are performed about each scan field, and ink is given from five different nozzles for every covering color part.

[0041] First, about scan field 4a, the ink regurgitation of Nozzles 13g and 13j is stopped, the ink jet head 2 is scanned along the direction of a long picture of the covering color part 11, and it gives the covering color part which opens four drops and corresponds a liquid ink drop from Nozzles 13a-13f intermittently (drawing 4 (a)).

[0042] Then, the ink jet head 2 is scanned and it gives the covering color part which shifted one liquid ink drop from each nozzle every four pieces again in the location which was able to be shifted by one nozzle (drawing 4 (b)). Similarly, it can shift by one nozzle further and the ink jet head 2 is scanned (drawing 4 (c)). This actuation is repeated twice [further] (drawing 4 (d) and (e)).

[0043] Next, the coloring scan of scan field 4b is performed. The ink jet head 2 is moved so that left end nozzle 13j may be corresponded to the covering color part at the left end of duplication field 5a, like the process of drawing 4 , the ink jet head 2 can be shifted by one nozzle, a liquid ink drop is scanned 5 times for every discharge and scan every four pieces, in one scan, and the field concerned is colored. (drawing 5 (a) - (e))

[0044] All scan fields are colored as mentioned above.

[0045] The example of further others of the color filter manufacture approach of this invention is shown in drawing 6 and drawing 7 .

[0046] The ink jet head 2 has ten nozzles 13a-13j among drawing 6 . Here, the width of face of each scan field is 14 covering color parts (about scan field 4a at the left end of space, since it does not have a left-hand side duplication field, it becomes few ten pieces by four pieces). With this configuration, five coloring scans are performed about each scan field, and ink is given from five different nozzles for every covering color part.

[0047] First, about scan field 4a, the ink regurgitation of Nozzles 13g-13j is stopped, the ink jet head 2 is scanned along the direction of a long picture of the covering color part 11, and it gives the covering color part which opens four drops and corresponds a liquid ink drop from Nozzles 13a-13f intermittently (drawing 6 (a)).

[0048] Then, the ink jet head 2 is scanned and it gives the covering color part which shifted one liquid ink drop from each nozzle every four pieces again in the location which was able to be shifted by three nozzles

(drawing 6 (b)). Similarly, it returns by two nozzles further and the ink jet head 2 is scanned (drawing 6 (c)). Furthermore, it shifts by three nozzles and the ink jet head 2 is scanned (drawing 6 (d)). Finally it returns by two nozzles and the ink jet head 2 is scanned (drawing 6 (e)).

[0049] Next, the coloring scan of scan field 4b is performed. The ink jet head 2 is moved so that left end nozzle 13j may be corresponded to the covering color part at the left end of duplication field 5a, like the process of drawing 6, in one scan, a liquid ink drop can be shifted every four pieces, the ink jet head 2 can be shifted for every discharge and scan, it scans 5 times, and the field concerned is colored.

[0050] All scan fields are colored as mentioned above.

[0051] As mentioned above, the coloring unevenness by the difference of the discharge quantity between nozzles can be reduced by giving ink from a nozzle which is different in one covering color part. By preparing a duplication field between the scan fields which adjoin coincidence, and giving ink to the covering color part of the duplication field concerned from the nozzle of the both ends of an ink jet head, the difference in a nozzle which was described above and which was left is offset, and the irregular color in the boundary section of an adjoining scan field can be prevented.

[0052] Furthermore, in the manufacture approach of this invention, although the ink regurgitation from the nozzle shifted was stopped from the scan field by the approach shown in drawing 15 and drawing 16, since it is possible to make ink breathe out from all nozzles, the time amount which requires for breadth and coloring the width of face of the field which can be substantially colored by one scan can be shortened.

[0053] Furthermore, although the nozzle of the both ends of the ink jet head which stops the ink regurgitation intermittently differs in operating frequency greatly from the other nozzle, consequently it was easy to produce change of ink discharge quantity with time by the approach shown in drawing 15 and drawing 16, since there is almost no difference of operating frequency between the nozzles used in this invention, a change with time is also equivalent and it is hard the to be influenced.

[0054] In addition, in the above-mentioned explanation, although the configuration which the coloring section of the same color followed was illustrated and the manufacture approach of this invention was explained, each coloring section in which the color filter added W to R, G, B, or this is usually arranged the shape of a stripe, and in the shape of a dot one by one. Therefore, in an actual coloring process, it is necessary to constitute and scan an ink jet head and its nozzle corresponding to a predetermined coloring pattern. Moreover, in the above-mentioned explanation, although the gestalt which scans an ink jet head explained, an ink jet head shall be fixed, a transparency substrate shall be made to scan to an ink jet head, and the gestalt concerned shall also be included in this invention.

[0055] Next, the process of the whole manufacture approach of the color filter of this invention is explained. There is the 2nd approach of the manufacture approach of this invention giving ink to the resin constituent layer which has ink absorptivity, giving ink to the 1st approach of coloring this resin constituent layer and making it into the coloring section and the field surrounded in the septum section, and hardening this ink itself, as described above, and making it into the coloring section. Below, the desirable example of each approach is given and explained.

[0056] (The 1st approach) As the 1st approach, more specifically The resin constituent layer to which ink absorptivity increases or falls by an optical exposure or an optical exposure, and heat treatment on a transparency substrate is formed, and optical exposure or optical exposure, and heat treatment are performed to the predetermined field of this resin constituent layer. The high covering color part of ink absorptivity, The method of forming the low non-coloring section of ink absorptivity, an ink jet method giving ink to the above-mentioned covering color part, coloring this covering color part, forming the coloring section, and making the whole resin constituent layer perform and harden an optical exposure or heat treatment is more desirable than this covering color part. The example is explained along with drawing 10.

[0057] Drawing 10 is process drawing at the time of using the resin constituent to which ink absorptivity falls by an optical exposure or an optical exposure, and heat treatment (or disappearance). Hereafter, each process is explained. In addition, (a) - (f) of drawing 10 is a cross section corresponding to following process (a) - (f), respectively.

[0058] Process (a)

The black matrix 62 is formed on a substrate 61. Although a glass substrate is generally used as a substrate 61, if it has need properties, such as transparency as a color filter, and a mechanical strength, it will not be limited to a glass substrate.

[0059] Moreover, even if it forms a black matrix on this resin layer after coloring the resin constituent layer 63 after it forms the resin constituent layer 63 mentioned later or, there is especially no problem. Moreover, although the approach of forming a metal thin film by the spatter or vacuum evaporationo, and carrying out

patterning according to a FOTORISO process as the formation approach is common, it is not limited to it.
[0060] Process (b)

On a substrate 61, it hardens by an optical exposure or an optical exposure, and heat treatment, and the resin constituent with which the ink absorptivity of an optical exposure part falls is applied, it prebakes if needed, and the resin constituent layer 63 is formed.

[0061] As base material resin of such a resin constituent, although resin, such as acrylic, an epoxy system, and an amide system, is used, it is not limited to especially these. In order to advance crosslinking reaction according to concomitant use of light or light, and heat by these resin, it is also possible to use a photoinitiator (cross linking agent). As a photoinitiator, dichromate, a bis-azide compound, a radical system initiator, a cation system initiator, an anion system initiator, etc. are usable. Moreover, these photoinitiators can be mixed or it can also be used combining other sensitizers. Furthermore, it is also possible to use together photo-oxide generating agents, such as onium salt, with a cross linking agent. In addition, in order to advance crosslinking reaction more, you may heat-treat after an optical exposure.

[0062] Moreover, the methods of application, such as a spin coat, a roll coat, a bar coat, a spray coat, and a DIP coat, can be used for formation of the resin constituent layer 63, and it is not especially limited to it.

[0063] Process (c)

By performing pattern exposure in the resin constituent layer of the field shaded by the black matrix 62 using a photo mask 64, it is made to harden, ink absorptivity is reduced and the non-coloring section 65 is formed. In the field which was not exposed, ink absorptivity serves as the covering color part 66 high. Since the low non-coloring section 65 of ink absorptivity intervenes between the adjoining covering color parts 66, the color mixture between the adjoining coloring sections is prevented by this non-coloring section 65.

Although what has opening for stiffening the protection-from-light part by the black matrix 62 is used for the photo mask 64 used here, in order that it may prevent the color omission in the part which touches the black matrix 62, when it takes into consideration that it is necessary to give more ink, it is desirable to use the mask which has opening narrower than the protection-from-light width of face of a black matrix.

[0064] Process (d)

From the ink jet head 67, the ink 68 of each color of R, G, and B is given to the covering color part 66 according to a predetermined coloring pattern. At this time, as described above, ink is given from two or more different nozzles using the ink jet head which has two or more nozzles for every color, and each covering color part 66 is colored.

[0065] As ink used for coloring, it is possible to use a pigment system and a pigment system, and although liquefied ink and solid ink are usable, when using water color ink, it is desirable to form the resin constituent layer 63 with the high resin constituent of absorptivity. Moreover, it is ink solidified in ordinary temperature less than [not only the thing of a liquid but a room temperature, or it], and since a temperature control is performed for ink itself within the limits of 30 degrees C - 70 degrees C and the viscosity of ink is controlled by the thing to soften at a room temperature, the thing which is a liquid, or the usual ink jet method in the stable range, that to which ink makes the shape of liquid is suitably used at the time of the ink regurgitation.

[0066] Furthermore, as an ink jet method, the bubble jet type which used the electric thermal-conversion object as an energy generation component, or the piezo jet type using a piezoelectric device is usable, and coloring area and a coloring pattern can be set as arbitration.

[0067] In this invention, coloring unevenness can be further reduced in the process concerned by making into **20% or less the difference in the ink discharge quantity of the nozzle which gives ink to the covering color part of a duplication field explained previously. Drawing 8 and drawing 9 explain the operation. In addition, in order to clarify an operation of this configuration, the case where the non-coloring section is not formed in drawing 8 and drawing 9 is mentioned as an example, and is explained.

[0068] As shown in drawing 8 (a), the liquid ink drop 41 may be given shifting an impact location in the direction of a long picture of a covering color part. The given ink spreads gradually and forms the coloring section 42 colored homogeneity as shown in a resin constituent layer at penetration and drawing 8 (b).

[0069] Except a duplication field, since the drop of ink is continuously given also in which covering color part, this drop is connected promptly, spreads in homogeneity and colors a covering color part the appearance shown in drawing 8 (b). However, in a duplication field, after ink is given by the coloring scan of the scan field which a scan precedes before ink is given by the coloring scan of the next scan field, it takes time amount too many. Therefore, the ink given by the coloring scan of the once preceded scan field like drawing 8 (c) -> (d) spreads, and desiccation precedes. Although it can spread in homogeneity like drawing 8 (b) if equivalent to the amount of drops of the ink in the coloring scan which the amount of drops

of the ink given by the coloring scan of the next scan field preceded here When too few (drawing 8 (e)), it cannot fully spread (drawing 8 (f)), but when it sees with the whole color filter, heterogeneity arises between scan fields other than a duplication field, and a duplication field, and it becomes gently-sloping unevenness and is recognized. Moreover, also when there are too many amounts of drops in the next coloring scan conversely, it becomes like drawing 9 (a) -> (b), and heterogeneity arises between scan fields other than a duplication field, and a duplication field, and it becomes gently-sloping unevenness and is recognized.

[0070] In (e) of drawing 8 , in the liquid ink drop part given later, a white omission occurs, or concentration becomes thin and it is easy to generate an irregular color in the coloring department. Moreover, in the case of drawing 9 (a), in the liquid ink drop part given later, concentration becomes deep, and it is easy to generate an irregular color in coloring circles.

[0071] this invention person etc. found out that the unevenness by the difference of the liquid ink drop measure in the above-mentioned duplication field was substantially suppressed by making the difference of the amount of drops into **20% or less. That is, the effectiveness can be acquired by making into 20% or less the difference of the discharge quantity of the ink from the nozzle which gives ink to a duplication field. That is, coloring unevenness can be further reduced by using the ink jet head whose discharge quantity difference of the ink of the nozzle of both ends is 20% or less.

[0072] Process (e)

After drying ink if needed, an optical exposure is carried out all over a substrate, and the coloring section 69 is stiffened. You may heat-treat instead of an optical exposure.

[0073] Process (f)

A protective layer 70 is formed if needed. It is usable, if the inorganic film formed of a resin layer a photo-curing type, a heat-curing type, or light-and-heat concomitant use type, vacuum evaporationo, a spatter, etc. can be used as a protective layer 70, it has the transparency at the time of considering as a color filter and a subsequent ITO formation process, an orientation film formation process, etc. can be borne.

[0074] When using the resin constituent which ink absorptivity increases by an optical exposure or an optical exposure, and heat treatment (or manifestation) as a resin constituent, moreover, as such a resin constituent The system which specifically uses the reaction by chemistry magnification is desirable. As base material resin Hydroxypropylcellulose, By a thing or an acetyl group etc. which esterified the hydroxyl group of celluloses, such as hydroxyethyl cellulose What was blocked ; Novolak resin, such as a thing (example: compound of polyvinyl acetate system etc.); cresol novolak blocked by a thing or an acetyl group etc. which esterified the hydroxyl group of giant-molecule alcohol, such as polyvinyl alcohol, and those derivatives, (Example: Compound of an acetic-acid cel roll system etc.) Although what blocked PORIPARA hydroxystyrene and the hydroxyl group of those derivatives for example, by the trimethylsilyl radical is used, this invention is not limited to these.

[0075] In this invention, in order to make ink absorptivity produce a substantial difference by exposure, it is desirable that the conversion rate to the hydrophilic group of a functional group convertible into a hydrophilic group is generally 30% or more. As hydrophilic-group assay in this case, analyses of a spectrum, such as IR and NMR, are effective.

[0076] Moreover, what is necessary is not to be limited to these and just to consist of a presentation which the ink absorptivity of an optical exposure part increases by an optical exposure or an optical exposure, and heat treatment as a result as a photoinitiator, although halogenation organic compounds, such as onium salt, such as triphenylsulfonium hexafluoroantimonate, and TORIKURORO methyl triazine, naphthoquinonediazide, or its derivative is used suitably.

[0077] Moreover, when such a resin constituent is used, the black matrix formed on the transparence substrate can be used as a mask, and it can also expose except the field shaded by the black matrix by exposing from a rear face.

[0078] (The 2nd approach) Drawing 12 is process drawing of the 2nd approach, gives the same sign to the same member as drawing 10 , and omits explanation. Moreover, (a) - (d) of drawing 12 is a cross section corresponding to following process (a) - (d).

[0079] Process (a)

First, a septum member is formed on a substrate 61. When a septum member gave the ink mentioned later, it is a member for avoiding color mixture with the ink of an adjoining different color, and was made into the black matrix 82 which served as the protection-from-light layer with this operation gestalt. As the black matrix 82 concerned, patterning is preferably carried out by the general photolithography method using a black pigment content resist. This black matrix 82 gives ink repellency preferably, in order to prevent that

adjoining different ink is mixed, when the ink mentioned later is given. When the thickness of the black matrix 82 takes into consideration the above-mentioned septum operation and a protection-from-light operation in this invention, 0.5 micrometers or more are desirable. Moreover, opening of this black matrix 82 is a covering color part concerning this invention.

[0080] Process (b)

From the ink jet head 67, the ink 83 of each color of R, G, and B is given according to a predetermined coloring pattern so that opening of the black matrix 82 may be buried. At this time, as described above, ink is given to opening from two or more different nozzles using the ink jet head which has two or more nozzles for every color.

[0081] The ink used by this invention is hardened by energy grant, and consists of a resin constituent which usually contains a coloring matter. A color and a pigment common as the above-mentioned coloring matter can be used, for example, anthraquinone dye, azo dye, triphenylmethane dye, and Pori methine dye ***** can be used as a color.

[0082] Moreover, as resin used for ink, the resin hardened by heat treatment or optical exposure isoenergetic grant is used. Specifically, the combination of a well-known resin and a well-known cross linking agent can be used as heat-curing mold resin. For example, acrylic resin, melamine resin, a hydroxyl group or a carboxyl group content polymer and a melamine, a hydroxyl group or a carboxyl group content polymer, a polyfunctional epoxy compound and a hydroxyl group or a carboxyl group content polymer, a fibrin reaction type compound and an epoxy resin, resol mold resin and an epoxy resin, amines and an epoxy resin, a carboxylic acid or an acid anhydride, an epoxy compound, etc. are mentioned. Moreover, as photo-curing mold resin, a well-known thing, for example, commercial negative resist, is used suitably.

[0083] Various solvents can also be added to the above-mentioned ink. Especially, the mixed solvent of water and a water-soluble organic solvent is preferably used from the field of the dischargeability in an ink jet method.

[0084] Furthermore, in order to give the desired property other than the above-mentioned component if needed, a surfactant, a defoaming agent, antiseptics, etc. can be added and commercial water soluble dye etc. can be added further.

[0085] Moreover, if the regurgitation is possible also for what is not dissolved in water or a water-soluble organic solvent among the above-mentioned light or heat-curing mold resin to stability, it will not matter even if it uses solvents other than water or a water-soluble organic solvent. Moreover, when using the monomer of the type which carries out a polymerization especially by light, it can also consider as the non-solvent type which dissolved the color in the monomer.

[0086] Process (c)

The ink 83 given to opening of the black matrix 82 is stiffened by heat treatment, an optical exposure, or its both, and the coloring section 84 is formed.

[0087] Process (d)

A protective layer 70 is formed if needed.

[0088] Next, an operation gestalt is mentioned and explained to drawing 11 and drawing 13 about the liquid crystal device constituted using the color filter of this invention. Drawing 11 is the process of drawing 10 and drawing 13 is the cross section of the operation gestalt of the active matrix liquid crystal component incorporating the color filter formed at the process of drawing 12, respectively. In drawing 11, as for a common electrode and 73, the orientation film and 78 are liquid crystal compounds, and the orientation film and 75 gave [72 / a substrate and 76 / a pixel electrode and 77] the same sign to the same member as drawing 10 and drawing 12.

[0089] The liquid crystal device of color display sets the TFT substrate (75) which generally counters a color filter substrate (61) and a color filter substrate, and is formed by enclosing the liquid crystal compound 78 among both substrates. Inside one substrate of a liquid crystal device, TFT (un-illustrating) and the transparent pixel electrode 76 are formed in the shape of a matrix. Moreover, inside another substrate 61, a color filter layer is installed so that each coloring sections 69 and 84 of R, G, and B may arrange in the location which counters the pixel electrode 76, and the transparent common electrode 72 is formed on it at the whole surface. Although the black matrices 62 and 82 are usually formed in a color filter side, they may be formed in a TFT substrate side in a BM on-array type liquid crystal device. Furthermore, the orientation film 73 and 77 is formed in the field of both substrates, and a liquid crystal molecule can be made to arrange in the fixed direction by carrying out rubbing processing of these.

[0090] A polarizing plate (un-illustrating) pastes the outside of substrates 61 and 75, respectively, and it displays by generally operating a liquid crystal compound as an optical shutter to which the permeability of

back light light is changed, using the combination of a fluorescent lamp (un-illustrating) and a scattered plate (un-illustrating) as a back light.

[0091] In the liquid crystal device of this invention, the material, process, etc. can apply the technique of the conventional liquid crystal device about other configuration members that what is necessary is just to constitute using the color filter of this invention.

[0092]

[Effect of the Invention] While the irregular color in a scan field is prevented according to this invention in case a viewing area is divided into two or more scan fields and it colors as explained above, the irregular color between adjoining scan fields is also prevented, there is no irregular color at the whole viewing area, it can provide with a sufficient yield at the simple process which shortened the quality color filter more, and the liquid crystal device which was excellent in the color display property using this color filter can be offered cheaply.

[Translation done.]

* NOTICES *

JPO and NCIPPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. *** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Drawing 2]

[Drawing 9][Drawing 3]

- 走査領域 4a の着色走査での液滴
- 走査領域 4b の着色走査での液滴

[Drawing 4]

[Drawing 11]

[Drawing 12]

[Drawing 5]

○走査部4aの着色走査での操作
◎走査部4bの着色走査での操作

[Drawing 6]

[Drawing 13]

[Drawing 14]

[Drawing 7]

[Drawing 8]

[Drawing 10]

[Drawing 15]

○ 1走査目の液滴
 ▨ 2走査目の液滴
 ● 3走査目の液滴

[Drawing 16]

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

6,394,578

(11)特許出願公開番号

特開2000-147241

(P2000-147241A)

(43)公開日 平成12年5月26日(2000.5.26)

(51)Int.Cl.
G 0 2 B 5/20
B 4 1 J 2/21
G 0 2 F 1/1335

識別記号
1 0 1
5 0 5

F I
G 0 2 B 5/20
G 0 2 F 1/1335
B 4 1 J 3/04

テーマコード(参考)

(21)出願番号 特願平11-248650
(22)出願日 平成11年9月2日(1999.9.2)
(31)優先権主張番号 特願平10-247919
(32)優先日 平成10年9月2日(1998.9.2)
(33)優先権主張国 日本 (JP)

審査請求 未請求 請求項の数10 O.L (全13頁)
(71)出願人 000001007
キヤノン株式会社
東京都大田区下丸子3丁目30番2号
(72)発明者 赤平 賢
東京都大田区下丸子3丁目30番2号キヤノン株式会社内
(72)発明者 和田 智
東京都大田区下丸子3丁目30番2号キヤノン株式会社内
(74)代理人 100090538
弁理士 西山 恵三 (外3名)

最終頁に続く

(54)【発明の名称】 カラーフィルタの製造方法、この製造方法で製造されたカラーフィルタを用いた液晶素子及びインクジェットヘッド

(57)【要約】

【課題】 インクジェット方式によるカラーフィルタの製造方法において、着色むらを低減する。

【解決手段】 色毎に複数個のノズル13a～13hを有するインクジェットヘッド2を用い、走査領域4aの着色走査において、1回目の走査では2個おきにインク液滴を被着色部11に付与し、2回目の走査ではノズルを1個分インクジェットヘッド2をずらして2個おきにインク液滴を被着色部11に付与し、同様にノズル1個分インクジェットヘッド2をさらにずらして3回目の走査を行ない、同様にして、走査領域4bについても3回走査を行ない、重複領域5aの被着色部については、走査領域4aの着色走査と走査領域4bの着色走査で着色する。

(2)

1

【特許請求の範囲】

【請求項1】 基板上の着色領域を複数の走査領域に分割し、各走査領域を順次インクジェット方式により着色してカラーフィルタを製造するカラーフィルタの製造方法において、前記走査領域が互いに重複する部分を有することを特徴とするカラーフィルタの製造方法。

【請求項2】 前記走査領域の着色を、前記走査領域内の被着色部を着色することにより行う請求項1に記載のカラーフィルタの製造方法。

【請求項3】 1つの前記被着色部の着色を、インクジェットヘッドの異なるノズルを用いて行う請求項2に記載のカラーフィルタの製造方法。

【請求項4】 前記インクジェットヘッドをインクジェットヘッドの長手方向にずらすことにより、異なる前記ノズルを用いる請求項3に記載のカラーフィルタの製造方法。

【請求項5】 前記基板上にインク受容層を設け、前記インク受容層を着色する請求項1に記載のカラーフィルタの製造方法。

【請求項6】 前記インク受容層のインク吸収性に差異を生じさせ、相対的にインク吸収性の高い部分を着色する請求項5に記載のカラーフィルタの製造方法。

【請求項7】 前記基板上に隔壁部材を設け、前記隔壁部材で囲まれた開口部を着色する請求項1に記載のカラーフィルタの製造方法。

【請求項8】 両端に位置するノズルのインク吐出量の差が、20%以下であるインクジェットヘッドを用いて着色を行う請求項1に記載のカラーフィルタの製造方法。

【請求項9】 カラーフィルターの製造に使用する、複数のノズルを有するインクジェットヘッドにおいて、両端に位置するノズルのインク吐出量の差が、20%以下であることを特徴とするインクジェットヘッド。

【請求項10】 請求項1の製造方法で製造されたカラーフィルタ基板と、前記カラーフィルタ基板に対向して設けられた対向基板と、これら両基板の間に封入された液晶とを有することを特徴とする液晶素子。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、インクジェット方式によりインクを付与して着色部を形成するカラーフィルタの製造方法、該製造方法によるカラーフィルタを用いた液晶素子及びインクジェットヘッドに関する。

【0002】

【従来の技術】近年、パーソナルコンピュータの発達、特に携帯用パーソナルコンピュータの発達に伴い、液晶ディスプレイ、特にカラー液晶ディスプレイの需要が増加する傾向にある。しかしながら、さらなる普及のためにはコストダウンが必要であり、特にコスト的に比重の大きいカラーフィルタのコストダウンに対する要求が高

2

まっている。

【0003】従来から、カラーフィルタの要求特性を満足しつつ上記の要求に答えるべく種々の方法が試みられているが、いまだ全ての要求特性を満足する方法は確立されていない。以下にそれぞれの方法について説明する。

【0004】最も多く用いられている第一の方法は染色法である。染色法は、先ずガラス基板上に染色用の材料である水溶性高分子材料の層を形成し、これをフォトリソグラフィ工程により所望の形状にパターニングした後、得られたパターンを染色浴に浸漬して着色されたパターンを得る。これを3回繰り返すことによりR(赤)、G(緑)、B(青)のカラーフィルタ層を形成する。

【0005】第二の方法は顔料分散法であり、近年染色法にとって代わりつつある。この方法は、先ず基板上に顔料を分散した感光性樹脂層を形成し、これをパターニングすることにより単色のパターンを得る。さらにこの工程を3回繰り返すことにより、R、G、Bのカラーフィルタ層を形成する。

【0006】第三の方法としては電着法がある。この方法は、先ず基板上に透明電極をパターニングし、顔料、樹脂、電解液等の入った電着塗装液に浸漬して第一の色を電着する。この工程を3回繰り返してR、G、Bのカラーフィルタ層を形成し、最後に焼成する。

【0007】第四の方法としては、熱硬化型の樹脂に顔料を分散させ、印刷を3回繰り返すことによりR、G、Bを塗り分けた後、樹脂を熱硬化させることにより着色層を形成するものである。また、いずれの方法においても着色層上に保護層を形成するのが一般的である。

【0008】上記従来の製造方法に共通している点は、R、G、Bの3色を着色するために同一の工程を3回繰り返す必要があり、コスト高になることである。また、工程が多い程歩留が低下するという問題を有している。さらに、電着法においては、形成可能なパターン形状が限定されるため、現状の技術ではTFT(薄膜トランジスタ)を用いたアクティブマトリクスタイプ、いわゆるTFT型には適用困難である。また、印刷法は、解像性が悪いためファインピッチのパターンの形成には不向きである。

【0009】上記従来の製造方法の欠点を補うべく、インクジェット法を用いたカラーフィルタの製造方法として、特開昭59-75205号公報、特開昭63-235901号公報、特開平1-217302号公報、特開平4-123005号公報等に提案がなされている。これらは、前記従来の方法とは異なり、R、G、Bの各色のインクを透明基板上の所定の位置にインクジェットヘッドより付与し、該インクを基板上で乾燥させて着色部を形成させるものである。この方法によれば、R、G、Bの各色の着色部の形成を一度に行なうことができ、さら

(3)

3

にインクの使用量にも無駄を生じないため、大幅な生産性の向上、コストダウン等の効果を得ることができる。

【0010】本出願人は、インクジェット法を用いたカラーフィルタの製造方法として、広い着色領域を着色するために、着色領域を複数の走査領域に分割し、インクジェットヘッドを移動させて各走査領域を順次着色するという方法を、特開平9-138306号に記載した。この方法では、走査領域の境界付近で色むらが発生し易かつた。このため、色むらが発生しないように着色条件を厳しく管理する必要があった。

【0011】本出願人は、同じ走査領域に複数回の着色走査を行ない、各着色走査においてインクジェットヘッドの位置をずらせることにより各着色部を複数のノズルから吐出したインクで形成するという方法も提案した。当該提案の具体的な着色工程を図14～図16に具体例を挙げて説明する。尚、通常カラーフィルタはR、G、Bの3色の着色部を順次配列してなるが、便宜上、同色の着色部が並んだ状態を例示して説明する。

【0012】先ず、図14に示すように、カラーフィルタを形成する基板1上の着色領域をインクジェットヘッド2の長さに対応して複数の走査領域90a～90fに分割する。図15は、それぞれ6本の被着色部11からなる走査領域90a～90cを8個のノズル13a～13hを有するインクジェットヘッド2で着色する例を示す。先ず、紙面左端に位置する走査領域90aの各被着色部11にノズル13a～13fが対応するようにインクジェットヘッド2を配置し、ノズル13g、13hからのインク吐出を停止した状態で、該インクジェットヘッド2を被着色部11の長尺方向に走査しながら、各ノズル13a～13fよりインク液滴を被着色部11に断続的に吐出する（図15（a））。

【0013】次に、ノズル1個分インクジェットヘッド2をずらせ、ノズル13aと13hからのインク吐出を停止した状態で、2回目の走査を行ない、ノズル13b～13gからインク液滴を被着色部11に断続的に吐出する（図15（b））。

【0014】さらに、ノズル1個分インクジェットヘッド2をずらせ、ノズル13aと13bからのインク吐出を停止した状態で、3回目の走査を行ない、ノズル13c～13hからインク液滴を被着色部11に断続的に吐出する（図15（c））。

【0015】上記3回の走査で、走査領域90aの着色走査が完了する。引き続き、図16に示すように、走査領域90bについて、上記走査領域90aの着色走査と同様に、使用するノズルを1個ずつずらせながら複数回走査を行なうことにより、着色走査を行なう。

【0016】上記のようにして、各被着色部に複数のノズルから吐出したインク液滴を付与することにより、ノズル間の吐出むらによる着色むらが低減される。

【0017】

4

【発明が解決しようとする課題】しかしながら、上記図14～16に示したような方法を用いた場合、同じ走査領域内での着色むらは低減されるものの、隣接する走査領域の境界近傍において筋状の色むらが観察され易い。

【0018】図14～16の着色方法において、隣接する走査領域の境界近傍で色むらが発生し易い原因として、当該境界近傍（境界部）の着色部が走査領域の中央の着色部と以下の点において異なることが考えられる。

【0019】（1）境界部において、異なる領域の被着色部が着色される時間的ずれが大きい。

【0020】（2）境界部の被着色部においては、インクを付与するノズルの位置がインクジェットヘッド内で大きく離れているため（両端のノズル）、近接するノズル同士よりも、吐出するインク液滴量と着弾位置などの物理量の違いが大きくなり易い。

【0021】本発明の目的は、インクジェット方式により簡易な工程で色むらのない高品質のカラーフィルタを製造することができるカラーフィルタの製造方法、この製造方法により製造されたカラーフィルタを用いた液晶素子及びインクジェットヘッドを提供することにある。

【0022】

【課題を解決するための手段】本発明のカラーフィルタの製造方法は、基板上の着色領域を複数の走査領域に分割し、各走査領域を順次インクジェット方式により着色してカラーフィルタを製造するもので、前記走査領域が互いに重複する部分を有することを特徴とするものである。

【0023】また本発明の液晶素子は、上記の製造方法で製造されたカラーフィルタ基板と、前記カラーフィルタ基板に対向して設けられた対向基板と、これら両基板の間に封入された液晶とを有することを特徴とするものである。

【0024】さらに本発明のインクジェットヘッドは、複数のノズルを有するカラーフィルタ製造用のもので、両端に位置するノズルのインク吐出量の差が、20%以下であることを特徴とするものである。

【0025】

【発明の実施の形態】インクジェット方式を用いたカラーフィルタの製造方法としては、大きく分けて2種類有る。第一は、インク吸収性を有する樹脂組成物層にインクを付与して該樹脂組成物層を着色して着色部とする方法、第二は、隔壁部材で囲まれた開口領域にインクを付与し、該インク自体を硬化して着色部とする方法である。それぞれの方法において、ノズルの位置による違いが、色むらの原因となるメカニズムは以下のように推定される。

【0026】（第1の方法）

（a）先に着色走査した走査領域は、次の走査領域よりも次の工程（インクの乾燥工程や樹脂組成物層の硬化工程）に至る時間が長いため、着色材の分布が異なり、目

50

(4)

5

視による観察に影響を与える。

【0027】(b) 先に着色走査した走査領域の着色部から、インクの成分が時間経過とともに境界を超えて隣接する走査領域の被着色部にまで浸透し、該被着色部が着色された際の着色材分布に影響を与え、結果として先に着色走査した走査領域の着色部とは着色部内での着色材分布が異なり、目視による観察に影響を与える。

【0028】(c) インク液滴の着弾位置の違いが、着色部内の着色材分布に影響を与え、目視による観察に影響を与える。

【0029】(第2の方法)

(d) 付与されるインク量の違いが着色部の厚みの違いとなり、濃度差を生じて目視による観察に影響を与える。

【0030】(e) インク液滴の着弾位置の違いが、着色部内に厚みの偏りを生じ、濃度差を生じて目視による観察に影響を与える。

【0031】そこで、本発明者等は、走査領域を図14に示すように完全に分割するのではなく、一部重複させて両端部のノズルからインクを付与される被着色部を設けることにより、上記境界部における色むらが低減されることを見出し、本発明を達成した。以下、本発明を具体的に説明する。

【0032】本発明のカラーフィルタの製造方法においては、インクジェット方式により所定の被着色部に複数のインク液滴を付与して着色する。この時、該液滴は被着色部の長尺方向に沿って着弾位置をずらしながら付与される。また、インクジェットヘッドとして、各色毎に複数のノズルを有するものを用い、1つの被着色部に対して異なるノズルからインクを吐出することにより、ノズルの吐出量むらによる異なる着色部間での色むらを防止する。以下に具体的な手法について説明する。尚、カラーフィルタは通常、R、G、B或いはこれにW(白)を加えた複数色の着色部から構成されるが、以下の説明においては、便宜上、同色の着色部が並んだ状態を例示して説明する。

【0033】図1に本発明の製造方法における着色領域を示す。図中1は基板、2はインクジェットヘッドであり、当該ヘッドには6個のノズル3が設けられている。図1のカラーフィルタは、着色領域の幅が広いため、着色領域を複数の走査領域4a～4dに分割する。各走査領域4a～4dは、隣接する走査領域同士で重複しており、5a～5cが重複領域である。尚、5dは、走査領域4dの紙面上右側に隣接する架空の走査領域との架空の重複領域であり、必要量のインクが付与されないため、当該領域を表示領域外とするか、或いは当該領域を設けず、当該領域に対応するノズルを制御してインクを付与しないように設定する。走査領域4aでは紙面左側に位置する架空の重複領域を実質的に設けていない。

【0034】次に、具体的なインクの付与工程を一実施

6

形態を挙げて図2、図3により説明する。図中、11は被着色部、2はインクジェットヘッドで8個のノズル13a～13hを有している。ここで、各走査領域の幅は、被着色部10個分である(紙面左端の走査領域4aについては、左側の重複領域を持たないため、2個分少ない8個分となる)。本構成では、各走査領域について3回の着色走査を行ない、被着色部毎に、3個の異なるノズルよりインクを付与する。

【0035】先ず、走査領域4aについて、ノズル13g、13hのインク吐出を停止してインクジェットヘッド2を被着色部11の長尺方向に沿って走査し、液滴2個分をあけて断続的にノズル13a～13fよりインク液滴を対応する被着色部に付与する(図2(a))。

【0036】続いて、インクジェットヘッド2をヘッドの長手方向にノズル1個分ずらせた位置で、インクジェットヘッド2を走査し、再び2個おきに各ノズルよりインク液滴を、先に付与したインクドットから1ドットずれた被着色部に付与する(図2(b))。同様に、さらにヘッド2をヘッドの長手方向にノズル1個分ずらせてい20インクジェットヘッド2を同様に走査する(図2(c))。

【0037】次に、走査領域4bの着色走査を行なう。図3(a)に示すように、左端のノズル13hを重複領域5aの左端の被着色部に対応するようにインクジェットヘッド2を移動させ、図2の工程と同様に、1走査において2個おきにインク液滴を吐出し、走査毎にノズル1個分インクジェットヘッド2をずらせ、3回走査して当該領域を着色する。

【0038】尚、上記実施形態においては、1走査毎にノズル1個分インクジェットヘッドをインクジェットヘッドの長手方向にずらしていたが、2個以上ずらせて、重複領域の幅を広くしても良い。また、各走査においてインク液滴は液滴2個分あけて断続的に1滴ずつ付与していたが、例えば液滴4個分あけて液滴2個連続付与するようにしても良く、連続する液滴数は適宜設定すれば良い。またインクジェットヘッドの有するノズルの個数も適宜設定すれば良い。さらに、各走査領域の走査回数も適宜設定することができる。

【0039】図4及び図5に、本発明のカラーフィルタ製造方法の他の例を示す。

【0040】図4中、インクジェットヘッド2は、10個のノズル13a～13jを有している。ここで、各走査領域の幅は、被着色部14個分である(紙面左端の走査領域4aについては、左側の重複領域を持たないため、4個分少ない10個分となる)。本構成では、各走査領域について5回の着色走査を行ない、被着色部毎に、5個の異なるノズルよりインクを付与する。

【0041】先ず、走査領域4aについて、ノズル13g、13jのインク吐出を停止してインクジェットヘッド2を被着色部11の長尺方向に沿って走査し、液滴4

(5)

7

個分をあけて断続的にノズル 13a～13f よりインク液滴を対応する被着色部に付与する（図 4（a））。

【0042】続いて、ノズル 1 個分ずらせた位置で、インクジェットヘッド 2 を走査し、再び 4 個おきに各ノズルよりインク液滴を 1 個ずれた被着色部に付与する（図 4（b））。同様に、さらにノズル 1 個分ずらせてインクジェットヘッド 2 を走査する（図 4（c））。この操作を更に 2 回くり返す（図 4（d）及び（e））。

【0043】次に、走査領域 4b の着色走査を行なう。左端のノズル 13j を重複領域 5a の左端の被着色部に対応するようにインクジェットヘッド 2 を移動させ、図 4 の工程と同様に、1 走査において 4 個おきにインク液滴を吐出し、走査毎にノズル 1 個分インクジェットヘッド 2 をずらせ、5 回走査して当該領域を着色する。（図 5（a）～（e））

【0044】以上のようにして、全ての走査領域を着色する。

【0045】図 6 及び図 7 に、本発明のカラーフィルタ製造方法の更に他の例を示す。

【0046】図 6 中、インクジェットヘッド 2 は、10 個のノズル 13a～13j を有している。ここで、各走査領域の幅は、被着色部 14 個分である（紙面左端の走査領域 4a については、左側の重複領域を持たないため、4 個分少ない 10 個分となる）。本構成では、各走査領域について 5 回の着色走査を行ない、被着色部毎に、5 個の異なるノズルよりインクを付与する。

【0047】先ず、走査領域 4a について、ノズル 13g～13j のインク吐出を停止してインクジェットヘッド 2 を被着色部 11 の長尺方向に沿って走査し、液滴 4 個分をあけて断続的にノズル 13a～13f よりインク液滴を対応する被着色部に付与する（図 6（a））。

【0048】続いて、ノズル 3 個分ずらせた位置で、インクジェットヘッド 2 を走査し、再び 4 個おきに各ノズルよりインク液滴を 1 個ずれた被着色部に付与する（図 6（b））。同様に、さらにノズル 2 個分もとしてインクジェットヘッド 2 を走査する（図 6（c））。さらにノズル 3 個分ずらしてインクジェットヘッド 2 を走査する（図 6（d））。最後にノズル 2 個分もとしてインクジェットヘッド 2 を走査する（図 6（e））。

【0049】次に、走査領域 4b の着色走査を行なう。左端のノズル 13j を重複領域 5a の左端の被着色部に対応するようにインクジェットヘッド 2 を移動させ、図 6 の工程と同様に、1 走査において 4 個おきにインク液滴を吐出し、走査毎にインクジェットヘッド 2 をずらせ、5 回走査して当該領域を着色する。

【0050】以上のようにして、全ての走査領域を着色する。

【0051】上記のように、1 つの被着色部に異なるノズルからインクを付与することによって、ノズル間での吐出量の差による着色むらを低減することができる。同

8

時に、隣接する走査領域間で重複領域を設け、当該重複領域の被着色部にはインクジェットヘッドの両端のノズルからインクを付与することにより、前記したような、離れたノズルにおける違いが相殺され、隣接する走査領域の境界部における色むらを防止することができる。

【0052】さらに、図 15、図 16 に示した方法では走査領域からはずれたノズルからのインク吐出を停止していたが、本発明の製造方法においては、全てのノズルからインクを吐出させることができるのであるため、実質的に 1 回の走査で着色し得る領域の幅が広がり、着色にかかる時間を短縮することができる。

【0053】またさらに、図 15、図 16 に示した方法では、断続的にインク吐出を停止するインクジェットヘッドの両端部のノズルとそれ以外のノズルとで使用頻度が大きく異なり、その結果、経時的なインク吐出量の変化を生じ易かったが、本発明においては使用するノズル間で使用頻度の差がほとんどないため、経時的な変化も同等でその影響を受けにくい。

【0054】尚、上記説明においては、同色の着色部が連続した構成を例示して本発明の製造方法を説明したが、通常、カラーフィルタは R、G、B 或いはこれに W を加えた各着色部が順次ストライプ状或いはドット状に配置される。従って、実際の着色工程においては、所定の着色パターンに対応してインクジェットヘッドやそのノズルを構成し、走査する必要がある。また、上記説明においては、インクジェットヘッドを走査する形態で説明したが、インクジェットヘッドを固定して透明基板をインクジェットヘッドに対して走査させる場合もあり、本発明においては、当該形態も含むものとする。

【0055】次に、本発明のカラーフィルタの製造方法の全体の工程について説明する。前記したように、本発明の製造方法は、インク吸収性を有する樹脂組成物層にインクを付与して該樹脂組成物層を着色して着色部とする第 1 の方法、及び、隔壁部で囲まれた領域にインクを付与し、該インク自身を硬化して着色部とする第 2 の方法がある。以下に、それぞれの方法の好ましい例を挙げて説明する。

【0056】（第 1 の方法）第 1 の方法としては、より具体的には、透明基板上に、光照射或いは光照射と熱処理によりインク吸収性が増加或いは低下する樹脂組成物層を形成し、該樹脂組成物層の所定の領域に光照射または光照射と熱処理を施してインク吸収性の高い被着色部と、該被着色部よりはインク吸収性の低い非着色部を形成し、上記被着色部にインクジェット方式によりインクを付与して該被着色部を着色して着色部を形成し、樹脂組成物層全体に光照射或いは熱処理を施して硬化させる方法が好ましい。その一例を図 10 に沿って説明する。

【0057】図 10 は、光照射或いは光照射と熱処理によってインク吸収性が低下（或いは消失）する樹脂組成物を用いた場合の工程図である。以下、各工程について

(6)

9

説明する。尚、図10の(a)～(f)は以下の工程(a)～(f)にそれぞれ対応する断面模式図である。

【0058】工程(a)

基板61上にブラックマトリクス62を形成する。基板61としては一般にガラス基板が用いられるが、カラー・フィルタとしての透明性、機械的強度等の必要特性を有するものであればガラス基板に限定されるものではない。

【0059】また、ブラックマトリクスは後述する樹脂組成物層63を形成した後、或いは樹脂組成物層63を着色後に該樹脂層上に形成したものであっても特に問題はない。またその形成方法としては、スペッタもしくは蒸着により金属薄膜を形成し、フォトリソ工程によりパターニングする方法が一般的であるが、それに限定されるものではない。

【0060】工程(b)

基板61上に、光照射或いは光照射と熱処理によって硬化し、光照射部分のインク吸収性が低下する樹脂組成物を塗布し、必要に応じてプリベークを行なって、樹脂組成物層63を形成する。

【0061】このような樹脂組成物の基材樹脂としては、アクリル系、エポキシ系、アミド系などの樹脂が用いられるが、特にこれらに限定されるものではない。これらの樹脂で、光或いは光と熱の併用によって架橋反応を進行させるために、光開始剤(架橋剤)を用いることも可能である。光開始剤としては、重クロム酸塩、ビスマジド化合物、ラジカル系開始剤、カチオン系開始剤、アニオン系開始剤等が使用可能である。また、これらの光開始剤を混合して、或いは他の増感剤と組み合わせて使用することもできる。さらに、オニウム塩などの光酸発生剤を架橋剤と併用することも可能である。尚、架橋反応をより進行させるために、光照射後に熱処理を施しても良い。

【0062】また、樹脂組成物層63の形成には、スピノコート、ロールコート、バーコート、スプレーコート、ディップコート等の塗布方法を用いることができ、特に限定されるものではない。

【0063】工程(c)

フォトマスク64を用いて、ブラックマトリクス62で遮光される領域の樹脂組成物層にパターン露光を行なうことにより、硬化させてインク吸収性を低下させ、非着色部65を形成する。露光されなかつた領域はインク吸収性が高く被着色部66となる。隣接する被着色部66間にインク吸収性の低い非着色部65が介在するため、該非着色部65によって、隣接する着色部間での混色が防止される。ここで用いるフォトマスク64は、ブラックマトリクス62による遮光部分を硬化させるための開口部を有するものを使用するが、ブラックマトリクス62に接する部分での色抜けを防止するために、多めのインクを付与する必要があることを考慮すると、ブラック

10

マトリクスの遮光幅よりも狭い開口部を有するマスクを用いることが好ましい。

【0064】工程(d)

インクジェットヘッド67より、被着色部66にR、G、Bの各色のインク68を所定の着色パターンに応じて付与する。この時、前記したように、各色毎に複数のノズルを有するインクジェットヘッドを用い、異なる複数のノズルからインクを付与して各被着色部66を着色する。

【0065】着色に用いるインクとしては、色素系、顔料系共に用いることが可能であり、また、液状インク、ソリッドインク共に使用可能であるが、水性インクを用いる場合には、樹脂組成物層63を吸水性の高い樹脂組成物で形成しておくことが好ましい。また、常温で液体のものに限らず、室温やそれ以下で固化するインクであって、室温で軟化するもの、もしくは液体であるもの、或いは通常のインクジェット方式ではインク自体を30℃～70℃の範囲内で温度調整を行ってインクの粘性を安定な範囲に制御していることから、インク吐出時にインクが液状をなすものが好適に用いられる。

【0066】さらに、インクジェット方式としては、エネルギー発生素子として電気熱変換体を用いたパブルジェットタイプ、或いは圧電素子を用いたピエゾジェットタイプ等が使用可能であり、着色面積及び着色パターンは任意に設定することができる。

【0067】本発明においては、当該工程において、先に説明した重複領域の被着色部にインクを付与するノズルのインク吐出量の差異を±20%以下とすることによってさらに着色むらを低減することができる。その作用を図8、図9により説明する。尚、本構成の作用を明確にするため、図8、図9においては非着色部を形成していない場合を例に挙げて説明する。

【0068】図8(a)に示したように、インク液滴41は被着色部の長尺方向に着弾位置をずらしながら付与される。付与されたインクは次第に広がって、樹脂組成物層内にしみ込み、図8(b)に示すように均一に着色された着色部42を形成する。

【0069】重複領域以外ではいずれの被着色部においてもインクの液滴が連続して付与されるため、該液滴は速やかにつながって、図8(b)に示した様に、均一に広がって被着色部を着色する。しかしながら、重複領域では、走査が先行する走査領域の着色走査でインクが付与されてから次の走査領域の着色走査でインクが付与されるまでに余計に時間がかかる。そのため、図8(c)→(d)のように、一旦先行する走査領域の着色走査で付与されたインクが広がって乾燥が先行する。ここで、次の走査領域の着色走査で付与されたインクの液滴量が先行した着色走査でのインクの液滴量と同等であれば、図8(b)のように均一に広がることができるが、少なすぎた場合(図8(e))には、十分に広がることがで

(7)

11

きず（図8（f））、カラーフィルタ全体で見た場合、重複領域以外の走査領域と重複領域との間で不均一性が生じ、なだらかなむらとなって認識される。また、逆に次の着色走査での液滴量が多すぎた場合にも、図9

（a）→（b）のようになり、重複領域以外の走査領域と重複領域との間で不均一性が生じ、なだらかなむらとなって認識される。

【0070】図8の（e）の場合には、後から付与されたインク液滴部分において白抜けが発生したり、濃度が薄くなつて着色部内で色むらが発生しやすい。また、図9

（a）の場合には、後から付与されたインク液滴部分において濃度が濃くなつて着色部内において色むらが発生しやすい。

【0071】本発明者等は、上記重複領域でのインク液滴量の差によるむらが、液滴量の差を±20%以下とすることにより、実質的に抑えられることを見出した。即ち、重複領域にインクを付与するノズルからのインクの吐出量の差を20%以下とすることによってその効果を得ることができる。つまり、両端のノズルのインクの吐出量差が20%以下であるインクジェットヘッドを用いることにより、更に着色むらを低減することができる。

【0072】工程（e）

必要に応じてインクの乾燥を行なつた後、基板全面に光照射して着色部6.9を硬化させる。光照射の代わりに熱処理を施しても良い。

【0073】工程（f）

必要に応じて保護層7.0を形成する。保護層7.0としては、光硬化タイプ、熱硬化タイプ或いは光熱併用タイプの樹脂層や、蒸着、スパッタ等によって形成される無機膜等を用いることができ、カラーフィルタとした場合の透明性を有し、その後のITO形成プロセス、配向膜形成プロセス等に耐え得るものであれば使用可能である。

【0074】また、樹脂組成物として、光照射または光照射と熱処理によりインク吸収性が増加（或いは発現）する樹脂組成物を用いる場合、このような樹脂組成物としては、具体的には化学增幅による反応を利用する系が好ましく、基材樹脂としては、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体の水酸基をエステル化したもの或いはアセチル基等によってブロックしたもの（例：酢酸セルロール系の化合物など）；ポリビニルアルコール等の高分子アルコール及びこれらの誘導体の水酸基をエステル化したもの或いはアセチル基等でブロックしたもの（例：ポリ酢酸ビニル系の化合物など）；クレゾールノボラック等のノボラック樹脂、ポリバラヒドロキシスチレン及びこれらの誘導体の水酸基を例えばトリメチルシリル基でブロックしたもの等が用いられるが、本発明がこれらに限定されるものではない。

【0075】本発明において、露光によりインク吸収性に実質的な差を生じさせるためには、一般的には親水基

12

に変換可能な官能基の親水基への変換率が30%以上であることが好ましい。この場合の親水基定量法としては、IR、NMR等のスペクトル分析が有効である。

【0076】また、光開始剤としては、トリフェニルスルホニウムヘキサフルオロアンチモネート等のオニウム塩、トリクロロメチルトリアジン等のハロゲン化有機化合物、或いはナフトキノンジアジド或いはその誘導体が好適に用いられるが、これらに限定されるものではなく、結果的に光照射或いは光照射と熱処理によって光照射部分のインク吸収性が増加する組成からなるものであれば良い。

【0077】また、このような樹脂組成物を用いた場合には、透明基板上に形成したブラックマトリクスをマスクとして利用し、裏面より露光することによりブラックマトリクスで遮光された領域以外を露光することもできる。

【0078】（第2の方法）図12は第2の方法の工程図であり、図10と同じ部材には同じ符号を付して説明を省略する。また、図12の（a）～（d）は下記工程（a）～（d）に対応する断面模式図である。

【0079】工程（a）

先ず、基板6.1上に隔壁部材を形成する。隔壁部材は後述するインクを付与した際に、隣接する異なる色のインクとの混色を避けるための部材であり、本実施形態では遮光層を兼ねたブラックマトリクス8.2とした。当該ブラックマトリクス8.2としては、好ましくは黒色顔料含有レジストを用い、一般的なフォトリソグラフィ法によりパターニングする。該ブラックマトリクス8.2は後述するインクを付与した際に、隣接する異なるインク同士が混じりあうのを防止するために、好ましくは撥インク性を付与しておく。本発明においてブラックマトリクス8.2の厚さは上記隔壁作用及び遮光作用を考慮すると0.5μm以上が好ましい。また、該ブラックマトリクス8.2の開口部が本発明にかかる被着色部である。

【0080】工程（b）

インクジェットヘッド6.7より、R、G、Bの各色のインク8.3をブラックマトリクス8.2の開口部を埋めるように所定の着色パターンに従って付与する。この時、前記したように、各色毎に複数のノズルを有するインクジェットヘッドを用い、異なる複数のノズルから開口部にインクを付与する。

【0081】本発明で用いられるインクは、エネルギー付与により硬化し、通常着色材を含有する樹脂組成物からなる。上記着色材としては一般の染料や顔料を用いることができ、例えば染料としては、アントラキノン染料、アゾ染料、トリフェニルメタン染料、ポリメチン染料等などを用いることができる。

【0082】またインクに用いる樹脂としては、熱処理や光照射等エネルギー付与によって硬化する樹脂を用いる。具体的には、熱硬化型樹脂として、公知の樹脂と架

(8)

13

橋剤との組み合わせが使用できる。例えば、アクリル樹脂、メラミン樹脂、水酸基或いはカルボキシル基含有ポリマーとメラミン、水酸基或いはカルボキシル基含有ポリマーと多官能エポキシ化合物、水酸基或いはカルボキシル基含有ポリマーと繊維素反応型化合物、エポキシ樹脂とレゾール型樹脂、エポキシ樹脂とアミン類、エポキシ樹脂とカルボン酸又は酸無水物、エポキシ化合物などが挙げられる。また、光硬化型樹脂としては、公知のもの、例えば市販のネガ型レジストが好適に用いられる。

【0083】上記インクには、種々の溶媒を加えることでもできる。特に、インクジェット方式での吐出性の面から、水及び水溶性有機溶剤の混合溶媒が好ましく用いられる。

【0084】さらに、上記成分の他に必要に応じて所望の特性を持たせるために、界面活性剤、消泡剤、防腐剤等を添加することができ、さらに、市販の水溶性染料なども添加することができる。

【0085】また、上記した光或いは熱硬化型樹脂のうち、水或いは水溶性有機溶剤に溶解しないものでも安定に吐出可能なものであれば、水や水溶性有機溶剤以外の溶媒を用いても構わない。また、特に光により重合するタイプのモノマーを用いる場合には、染料をモノマーに溶解した無溶剤タイプとすることもできる。

【0086】工程 (c)

ブラックマトリクス82の開口部に付与したインク83を熱処理或いは光照射、或いはその両者によって硬化させ、着色部84を形成する。

【0087】工程 (d)

必要に応じて保護層70を形成する。

【0088】次に、本発明のカラーフィルタを用いて構成した液晶素子について、図11、図13に実施形態を挙げて説明する。図11は図10の工程で、図13は図12の工程でそれぞれ形成したカラーフィルタを組み込んだアクティブマトリクス型液晶素子の実施形態の断面模式図である。図11において、72は共通電極、73は配向膜、75は基板、76は画素電極、77は配向膜、78は液晶化合物であり、図10及び図12と同じ部材には同じ符号を付した。

【0089】カラー表示の液晶素子は、一般的にカラーフィルタ基板(61)とカラーフィルタ基板に対向するTFT基板(75)とを合わせ、両基板間に液晶化合物78を封入することにより形成される。液晶素子の一方の基板の内側に、TFT(不図示)と透明な画素電極76がマトリクス状に形成される。また、もう一方の基板61の内側には、画素電極76に対向する位置にR、G、Bの各着色部69、84が配列するようにカラーフィルタ層が設置され、その上に透明な共通電極72が一面に形成される。ブラックマトリクス62、82は、通常カラーフィルタ側に形成されるが、BMオンアレイタイプの液晶素子においては、TFT基板側に形成される

14

場合もある。さらに、両基板の面内には配向膜73、77が形成されており、これらをラビング処理することにより液晶分子を一定方向に配列させることができる。

【0090】基板61、75の外側にはそれぞれ偏光板(不図示)が接着され、バックライトとして一般的に蛍光灯(不図示)と散乱板(不図示)の組み合わせを用い、液晶化合物をバックライト光の透過率を変化させる光シャッターとして機能させることにより表示を行なう。

【0091】本発明の液晶素子においては、本発明のカラーフィルタを用いて構成していれば良く、他の構成部材については、その素材や製法等、従来の液晶素子の技術を適用することが可能である。

【0092】

【発明の効果】以上説明したように、本発明によると、表示領域を複数の走査領域に分割して着色する際に、走査領域内での色むらが防止されると同時に、隣接する走査領域間での色むらも防止され、表示領域全体で色むらがなく、高品質なカラーフィルタをより短縮した簡素な工程で歩留良く提供することができ、該カラーフィルタを用いてカラー表示特性に優れた液晶素子を安価に提供することができる。

【図面の簡単な説明】

【図1】本発明の製造方法にかかる着色領域を示す図である。

【図2】本発明の製造方法における1つの走査領域を着色する着色工程の工程図である。

【図3】本発明の製造方法における別の走査領域を着脱する着色工程の工程図である。

【図4】本発明の製造方法における着色工程の他の例を示す図である。

【図5】本発明の製造方法における着色工程の他の例を示す図である。

【図6】本発明の製造方法における着色工程の更に他の例を示す図である。

【図7】本発明の製造方法における着色工程の更に他の例を示す図である。

【図8】被着色部を複数のインク液滴で着色する工程の一例を示す模式図である。

【図9】被着色部を複数のインク液滴で着色する工程の他の例を示す模式図である。

【図10】本発明の製造方法の一例の工程図である。

【図11】本発明の液晶素子の一例の断面模式図である。

【図12】本発明の製造方法の他の例の工程図である。

【図13】本発明の液晶素子の他の例の断面模式図である。

【図14】本出願人が先に提案した製造方法における着色領域を示す図である。

【図15】本出願人が先に提案した製造方法における着

(9)

15

色工程の工程図である。

【図16】本出願人が先に提案した製造方法における着色工程の工程図である。

【符号の説明】

- 1 基板
- 2 インクジェットヘッド
- 3 ノズル
- 4 a～4 d 走査領域
- 5 a～5 d 重複領域
- 11 被着色領域
- 13 a～13 h ノズル
- 41 インク液滴
- 42 着色部
- 6 1 基板
- 6 2 ブラックマトリクス
- 6 3 樹脂組成物層
- 6 4 フォトマスク

16

- 6 5 非着色部
- 6 6 被着色部
- 6 7 インクジェットヘッド
- 6 8 インク
- 6 9 着色部
- 7 0 保護層
- 7 2 共通電極
- 7 3 配向膜
- 7 5 基板
- 7 6 画素電極
- 7 7 配向膜
- 7 8 液晶化合物
- 8 2 ブラックマトリクス
- 8 3 インク
- 8 4 着色部
- 9 0 a～9 0 f 走査領域

【図1】

【図9】

【図2】

(10)

【図3】

【図4】

【図11】

【図12】

(11)

【図5】

【図6】

[図 1-3]

[図 14]

(12)

【図7】

【図8】

【図10】

(13)

【図15】

【図16】

フロントページの続き

(72)発明者 大串 卓広
東京都大田区下丸子3丁目30番2号キヤノン株式会社内

(72)発明者 山口 裕充
東京都大田区下丸子3丁目30番2号キヤノン株式会社内

整理番号 J0087592
発送番号 410056
発送日 平成18年 9月12日

拒絶理由通知書

特許出願の番号 特願2001-294727
起案日 平成18年 9月 8日
特許庁審査官 川俣 洋史 9410 2000
特許出願人代理人 上柳 雅彦（外 2名）様
適用条文 第29条第2項

この出願は、次の理由によって拒絶をすべきものである。これについて意見があれば、この通知書の発送の日から60日以内に意見書を提出して下さい。

理 由

この出願の下記の請求項に係る発明は、その出願前に日本国内又は外国において頒布された下記の刊行物に記載された発明又は電気通信回線を通じて公衆に利用可能となった発明に基いて、その出願前にその発明の属する技術の分野における通常の知識を有する者が容易に発明をすることができたものであるから、特許法第29条第2項の規定により特許を受けることができない。

記 （引用文献等については引用文献等一覧参照）

- ・請求項1、2、3、4、7、9、10、11、12、13、14、15、16、17、18、21、22及び23 引用文献1ないし3
例えば引用文献2の【0046】～【0048】欄に記載されたノズル〇個分おきにノズルを操作することもグループ化の一種である。また、EL装置にカラーフィルターを用いる点はこの出願前に周知技術（引用文献3等参照）である。
- ・請求項5、6、19及び20 引用文献1ないし4
ノズル列の両端部分の数個のノズルからはインクを吐出させないことはこの出願前に周知技術（引用文献4等参照）である。
- ・請求項8 引用文献1ないし5
引用文献5には、インクジェットヘッドに複数のノズル列が設けられるとともに、ノズル列からは互いに異なる色のフィルタ材料を吐出する点が記載されている。（図9等参照。）

この拒絶理由通知書中で指摘した請求項以外の請求項に係る発明については、現時点では、拒絶の理由を発見しない。拒絶の理由が新たに発見された場合には拒絶の理由が通知される。

引 用 文 献 等 一 覧

1. 特開平10-151755号公報
2. 特開2000-147241号公報
3. 特開平11-248927号公報
4. 特開平02-165962号公報
5. 特開平09-300664号公報

先 行 技 術 文 献 調 査 結 果 の 記 録

- ・調査した分野 IPC G02B 5/20
DB名

・先行技術文献

この先行技術文献調査結果の記録は拒絶理由を構成するものではありません。

この拒絶理由通知書に不明な点がある場合、または、この案件について面接を希望する場合は、特許審査第一部光学装置 川俣（TEL 03-3581-1101 内線 3271, FAX 03-3501-0478）までご連絡下さい。