# PageRank (Additional Materials)

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — <a href="https://chato.cl/teach">https://chato.cl/teach</a>



#### Sources

- D. Easley and J. Kleinberg (2010): Networks, Crowds,
  and Markets Chapter 14
- Fei Li's lecture on PageRank (2011)
- Evimaria Terzi's lecture on link analysis (2013)
- URLs in the footer of specific slides

### Variant: personalized PageRank

Modify R(i) according to users' tastes
 (e.g. user interested in sports vs politics)



# PageRank and internal linking

- A website has a maximum amount of Page Rank that is distributed between its pages by internal links [depends on internal links]
- The maximum amount of Page Rank in a site increases as the number of pages in the site increases.
- By linking poorly, it is possible to fail to reach the site's maximum Page Rank, but it is not possible to exceed it.

## PageRank Implementation

- Suppose there are n pages and m links
- Trivial implementation of PageRank requires O(M+N) memory

**Streaming** implementation requires O(N) memory ... how? "Streaming" means the graph is never held on memory

# Liquid democracy

# PageRank as a form of actual voting (liquid democracy)

- If  $\alpha = 1$ , we can implement liquid democracy
  - In liquid democracy, people chose to either vote or to delegate their vote to somebody else
- If  $\alpha < 1$ , we have a sort of "viscous" democracy where delegation is not total

#### PageRank as a form of liquid democracy





These two graphs have different alpha (0.2 and 0.9)

Which one is which?



# Summary

#### Things to remember

- Personalized PageRank
- Liquid democracy example, will help you understand the role of the parameter alpha