LaTeX Course

Mikhail Borisov

HSE

July 2022

Random List

2 Blocks

Table

- Random List
- 2 Blocks

Table

Unordered Lists

- LaTex is pretty cool
- item 2
 - wow, nested item

- Random List
- 2 Blocks
- Table

Blocks

In beamer you can make your text highlighted. As well as create create blocks with texts

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box.

Random List

- 2 Blocks
- Table

Table

	Scaling	Unequal Scaling	Rotation	Horizontal Shear	Hyperbolic Rotation
Illustration		N N N N N N N N N N N N N N N N N N N			
Matrix	$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$	$\begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}$	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} \cosh \varphi & \sin \varphi \\ \sin \varphi & \cosh \varphi \end{bmatrix}$
Characteristic Polynomail	$(\lambda - k)^2$	$(\lambda - k_1)(\lambda - k_2)$	$\lambda^2 - 2\cos\theta\lambda + 1$	$(\lambda-1)^2$	$\lambda^2 - 2\cosh arphi \lambda + 1$
Eigenvalues, λ_i	$\lambda_1 = \lambda_2 = k$	$\lambda_1 = k_1 \\ \lambda_2 = k_2$	$\lambda_1 = e^{i\theta} = \cos \theta + i \sin \theta$ $\lambda_2 = e^{-i\theta} = \cos \theta - i \sin \theta$	$\lambda_1 = \lambda_2 = 1$	$\begin{array}{rcl} \lambda_1 &=& \mathrm{e}^\varphi &=& \cosh\varphi +\\ \sinh\varphi & & \\ \lambda_2 &=& \mathrm{e}^\varphi =& \cosh\varphi -\\ \sinh\varphi & & \end{array}$
Algebraic multiplicity, $\mu_i = \mu(\lambda_i)$	$\mu_1=2$	$\mu_1 = 1$ $\mu_2 = 1$	$\mu_1 = 1$ $\mu_2 = 1$	$\mu_1=1$	$\mu_1 = 1$ $\mu_2 = 1$
Geometric multiplicity, $\gamma_i = \gamma(\lambda_i)$	$\gamma_1=2$	$\begin{array}{c} \gamma_1 = 1 \\ \gamma_2 = 1 \end{array}$	$ \gamma_1 = 1 \\ \gamma_2 = 1 $	$\gamma_1=1$	$ \gamma_1 = 1 \\ \gamma_2 = 1 $
Eigenvectors	All nonzero vectors	$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\mathbf{u}_1 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$ $\mathbf{u}_2 = \begin{bmatrix} 1 \\ +i \end{bmatrix}$	$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

The End

The End