Mathématiques – Première technologique

Corrigés des exercices

Table des matières

1	Proportionnalité	2
2	Droites et suites de nombres	4
3	Études de fonctions	g
4	Tableaux d'effectifs et probabilités conditionnelles	16
5	Taux d'évolution, suites géométriques	18
6	Dérivation et variations des fonctions du 2 nd degré	22
7	Arbres de probabilités	27
8	Suites définies par récurrence	31
9	Dérivation et variations des fonctions du 3e degré	37
10	Variables aléatoires	42
11	Évolutions successives	47

1 Proportionnalité

Exercice 1 1. On complète un tableau de proportionnalité :

Élèves	40	?
Pourcentage	100	70

Il y a $40 \times 70 \div 100 = 28$ garçons dans la classe.

2. On complète un tableau de proportionnalité:

Marins	1760	1 046
Pourcentage	100	?

 $1046 \times 100 \div 1760 \approx 59,43$, donc environ 59,43 % des marins sont tombés malades.

N.B. On fait le calcul et, seulement après, on écrit la réponse avec le symbole %. Rappelons à cette occasion la signification de 59,43 % :

$$59,43\% = \frac{59,43}{100} = 0,5943.$$

Donc dire que 59,43 % des marins sont tombés malades, c'est dire que la proportion de malades est $\frac{59,43}{100}$

3. Le fait que la bouteille soit titrée à 12 % vol. signifie qu'elle contient 12 % d'alcool pur. On complète donc un tableau de proportionnalité :

Volume (en mL)	500	?
Pourcentage	100	12

La bouteille contient $500 \times 12 \div 100 = 60 \text{ mL d'alcool pur.}$

4. Sur 100 personnes de l'entreprise, il y a 56 hommes.

25 % d'entre eux fument, ce qui représente

$$25 \times 56 \div 100 = 14$$
 personnes

(on peut bien sûr faire un tableau de proportionnalité pour obtenir cette réponse).

Conclusion: les hommes fumeurs représentent 14 % du personnel de l'entreprise.

Exercice 2 1.

Nombre de personnes	4	6
Farine (en g)	250	?
Lait (en mL)	500	?
Œufs	4	6

Pour 6 personnes, il faut $250 \times 6 \div 4 = 375$ g de farine, $500 \times 6 \div 4 = 750$ mL de lait et, bien sûr, 6 œufs.

2. Les 6 yaourts pèsent $6 \times 125 = 750$ g.

masse (en g)	1000	750
prix (en €)	2	?

Je payerai $750 \times 2 \div 1000 = 1,5 €$.

Exercice 3 L'énoncé donne les informations recensées dans le tableau ci-dessous et demande de compléter la case (1).

Florins	7	?	1
Pistoles	6	4	2
Deniers	?	5	30

On complète d'abord la case (2) : en échange de 30 deniers, on a $4 \times 30 \div 5 = 24$ pistoles :

Florins	7	?	1
Pistoles	6	4	24
Deniers	?	5	30

On peut alors compléter la case (1): en échange de 30 deniers, on a $7 \times 24 \div 6 = 28$ florins.

Exercice 4 1. Généralement, dans ce type de question, il vaut mieux convertir en minutes ¹.

temps (en min)	60	?
distance (en km)	20	45

On mettra $60 \times 45 \div 20 = 135$ min, soit 2 h 15 min (puisque 135 = 120 + 15).

- 2. On peut se passer d'un tableau de proportionnalité : 1 h = 60 min, donc $0,6 h = 0,6 \times 60 min = 36 min$.
- 3. (a) On complète deux tableaux de proportionnalité (on travaille en min et en km) :

temps (en min)	60	?
distance (en km)	3	0,5

temps (en min)	60	?
distance (en km)	15	5

Stéphane nage $60 \times 0.5 \div 3 = 10$ min, puis il court $60 \times 5 \div 15 = 20$ min.

(b) Stéphane a parcouru un total de 5+0.5=5.5 km, en 10+20=30 min.

temps (en min)	30	60
distance (en km)	5,5	?

La vitesse moyenne de Stéphane sur l'ensemble de son parcours est donc $60 \times 5, 5 \div 30 = 11$ km/h.

Exercice 5 Avant de commencer, il est utile de se rappeler que 10 cm=1 dm; et que 1 ℓ = 1 dm³. Autrement dit, un litre est le volume d'un cube qui mesure 1 dm sur 1 dm, ou encore 10 cm sur 10 cm sur 10 cm (la figure ci-dessous n'est bien sûr pas à l'échelle).

On remplit d'eau un aquarium rectangulaire dont la largeur est 80 cm, la profondeur 30 cm et la hauteur 40 cm. On dispose d'un robinet dont le débit est de 6 litres par minute.

1.

2. Les dimensions de l'aquarium sont :

donc son volume est

$$8 \times 3 \times 4 = 96 \ell$$
.

- 3. On peut se passer d'un tableau de proportionnalité : le débit du robinet est de 6 ℓ /min, donc il faut 96 ÷ 6 = 16 min pour remplir les 96 ℓ de l'aquarium.
- 1. Les calculs ne sont pas toujours plus faciles en minutes qu'en heures, mais c'est généralement le cas.

2 Droites et suites de nombres

Exercice 6 Le tableau suivant donne l'évolution du tirage journalier (en millions d'exemplaires) de la presse quotidienne d'information générale et politique en France.

Année	2010	2011	2012	2013	2014
Numéro année : <i>n</i>	0	1	2	3	4
Tirage : u_n	1,80	1,73	1,60	1,47	1,36

Source: INSEE

On note u_n le tirage journalier en millions d'exemplaires pour l'année numéro n. On a donc :

- u_0 = tirage journalier l'année 0 = 1,80;
- u_1 = tirage journalier l'année 1 = 1,73 ;
- u_4 = tirage journalier l'année 4 = 1,36.

Exercice 7 *u* est la suite des multiples de 4, en partant de $u_0 = 4 \times 0 = 0$.

- 1. $u_1 = 4 \times 1 = 4$;
 - $u_2 = 4 \times 2 = 8$;
 - $u_3 = 4 \times 3 = 12$.
- 2. $u_{20} = 4 \times 20 = 80$.

Exercice 8 u est une suite telle que :

- $u_0 = 2$,
- tout terme de la suite se déduit du précédent en ajoutant 3.
- 1. $u_1 = 3 + 2 = 5$;
 - $u_2 = 5 + 3 = 8$;
 - $u_3 = 8 + 3 = 11$;
 - $u_4 = 11 + 3 = 14$.
- 2. Pour obtenir le tableau avec un tableur, on entre la formule

=B1+1

dans la cellule C1, et la formule

=B2+3

dans la cellule C2. Ensuite on étire vers la droite.

	A	В	С	D	Е	F
1	n	0	=B1+1	•••	•••	•••
2	u_n	2	=B2+3	•••	•••	•••

Exercice 9 Notre objet tombe de:

- 5 m pendant la 1^{re} seconde;
- 15 m pendant la 2e seconde;
- 25 m pendant la 3e seconde;
- 35 m pendant la 4e seconde;
- 45 m pendant la 5e seconde.

Conclusion : pendant les 5 premières secondes, l'objet est tombé de

$$5 + 15 + 25 + 35 + 45 = 125 \text{ m}.$$

Remarque : Les informations de l'énoncé sont imprécises : si l'on néglige la résistance de l'air (frottements), un objet soumis à son propre poids tombe de 4,9 m pendant la 1^{re} seconde, $4,9 \times 3 = 14,7$ m pendant la 2^e , $4,9 \times 5 = 24,5$ m pendant la 3^e , etc. Dans l'exercice, nous avons remplacé 4,9 par 5 pour simplifier les calculs.

Notons par ailleurs que ces résultats doivent être fortement corrigés si l'on veut tenir compte de la résistance de l'air. Par exemple, un adulte en chute libre qui parvient à se mettre « à plat » devrait arrêter d'accélérer après une dizaine de secondes de chute environ, sans dépasser 60 m/s; tandis qu'un chat ne dépassera pas les 20 m/s et pourra survivre à une chute d'une hauteur importante. La vidéo KEZAKO: chute libre explique ce problème en détail.

Exercice 10 On trace les droites $D_1: y = x - 4$, $D_2: y = 2x$, $D_3: y = -2x + 3$ et $D_4: y = -2$ à partir de quatre tableaux de valeurs :

Tracé de D_1 .

х	0	2
у	-4	-2

0-4=-42-4=-2

Tracé de D_2 .

x	0	2
y	0	4

 $2 \times 0 = 2$ $2 \times 2 = 4$

Tracé de D_3 .

х	0	2
у	3	-1

 $-2 \times 0 + 3 = 3$ $-2 \times 2 + 3 = -3$ Tracé de D_4 .

х	0	2
y	-2	-2

On place à chaque fois les deux points en gris, puis on trace les droites en couleur :

 $\textbf{Remarque:} \ \text{La droite} \ D_4 \ \text{est horizontale.} \ \text{C'était prévisible, puis que la valeur de } y \ \ (-2) \ \text{est indépendante de } x.$

Exercice 11 On lit graphiquement les ordonnées à l'origine et les coefficients directeurs des droites :

Exercice 12 Le graphique suivant donne le prix payé dans une pompe à essence en fonction de la quantité de gazole achetée.

Il y a deux méthodes possibles pour répondre à la question :

- **Pointillés rouges :** 4 litres de gazole coûtent $6 \in$, donc le litre coûte $6 \div 4 = 1, 5 \in$.
- Flèches violettes : chaque litre coûte 1,5 \in .

Exercice 13 Dans chaque question, u est une suite arithmétique de raison r.

1.
$$u_0 = 2$$
 et $r = 4$.

$$u_1 = 2 + 4 = 6$$

$$u_2 = 6 + 4 = 10$$

$$u_3 = 10 + 4 = 14$$
.

2. $u_0 = 5$ et r = -2.

$$u_1 = 5 - 2 = 3$$

$$u_2 = 3 - 2 = 1$$

$$u_3 = 1 - 2 = -1$$
.

3. $u_0 = 10$ et r = 1, 5.

Pour obtenir u_6 , on part de $u_0 = 10$ et on rajoute 6 fois 1,5. Donc

$$u_6 = 10 + 6 \times 1, 5 = 10 + 9 = 19.$$

4. $u_0 = 4$ et $u_2 = 10$.

D'après le schéma ci-dessus :

$$r = (10 - 4) \div 2 = 6 \div 2 = 3.$$

On obtient donc le schéma complété:

(On peut aussi obtenir u_4 avec le calcul : $u_4 = 4 + 4 \times 3 = 4 + 12 = 16$.)

5.

D'après le schéma ci-dessus :

$$r = (12, 5 - 5) \div 3 = 7, 5 \div 3 = 2, 5.$$

Exercice 14 Le 01/01/2019, on dépose $300 \in \text{sur un compte en banque}$. Tous les mois à partir de cette date, on déposera $75 \in \text{sur ce compte}$.

On note u_n la somme sur le compte après n mois – on a donc en particulier u_0 = 300.

1. $u_1 = 300 + 75 = 375$, $u_2 = 375 + 75 = 450$.

On aura 375 € le 1^{er} février et 450 € le 1^{er} mars.

- 2. La suite u est arithmétique de raison r = 75.
- 3. La formule à entrer dans la cellule C2 est

=B2+75

4.

5. L'équation de la droite qui passe par tous les points est

$$y = 75x + 300$$

(75 correspond à r, et 300 à u_0).

6. Le 01/01/2020 (donc au bout de 12 mois), on aura

$$75 \times 12 + 300 = 1200$$
 €.

La réponse est confirmée par la construction en pointillés rouges du graphique.

Exercice 15 1.
$$u_1 = 600 - 50 = 550$$
, $u_2 = 550 - 50 = 500$.

- 2. La suite u est arithmétique de raison r = -50.
- 3.

4. L'équation de la droite qui passe par tous les points est

$$y = -50x + 600$$

 $(-50 \text{ correspond à } r, \text{ et } 600 \text{ à } u_0).$

5. Le quota de pêche en 2025 (donc au bout de 10 ans) est

$$-50 \times 10 + 600 = 100$$
 Tonnes.

La réponse est confirmée par la construction en pointillés rouges du graphique.

Exercice 16 On note *S* la somme à calculer, que l'on écrit à l'endroit, puis à l'envers :

$$S = 1$$
 +2 +3 +...+98+99+100
 $S = 100+99+98+...+3+2+1$

On ajoute membre à membre les deux lignes. On remarque que la somme de chaque couple d'une même couleur vaut toujours 101 :

$$S + S = \underbrace{101 + 101 + 101 + \dots + 101 + 101 + 101}_{100 \text{ termes}}.$$

On a donc

$$2S = 100 \times 101$$
 $S = \frac{100 \times 101}{2} = 5050.$

Exercice 17 On construit une pyramide en superposant des carrés : tout en haut, on a $u_0 = 1$ carré, en dessous $u_1 = 3$ carrés, etc.

- 1. À chaque étage de la pyramide, on ajoute deux carrés, donc u est arithmétique de raison r = 2.
- 2. Le nombre de carrés de la 1^{re} rangée est $u_0 = 1$.
 - Le nombre de carrés de la 2^e rangée est $u_1 = 3$.
 - Le nombre de carrés de la 3^e rangée est $u_2 = 5$.
 - ..
 - Le nombre de carrés de la 100° rangée est $u_{99} = 1 + 99 \times 2 = 199$.

 Λ Il y a un décalage : le nombre de carrés de la 100e rangée est u_{99} .

3. Le nombre total de carrés de la 1re à la 100e rangée est

$$1 + 3 + 5 + \cdots + 199$$
.

On calcule cette somme comme dans l'exercice précédent : on note

$$S = 1 + 3 + 5 + \dots + 195 + 197 + 199$$

et on écrit S à l'endroit et à l'envers :

$$S = 1$$
 +3 +5 +...+195 +197 +199
 $S = 199 + 197 + 195 +...+5$ +3 +1

La somme des termes d'une même couleur est toujours égale à 200 et il y a 100 termes (autant que le nombre de rangées). On a donc :

$$2S = 100 \times 200$$
 $S = \frac{100 \times 200}{2} = 10000.$

3 Études de fonctions

Exercice 18 Un voyageur de commerce (= un représentant) fait une note de frais pour chaque jour de travail où il utilise sa voiture. Il reçoit une part fixe de $30 \in$, et une indemnité de $0.5 \in$ /km.

Remarque : On peut penser que l'indemnité kilométrique sert à rembourser les frais de déplacement (par exemple si le représentant utilise sa propre voiture); et que la part fixe sert à payer les repas.

1. S'il fait 120 km dans la journée, le montant de la note de frais est de

$$30 + 120 \times 0, 5 = 30 + 60 = 90 \in$$
.

2. On note x le nombre de km parcourus par le voyageur de commerce, et f(x) le montant de la note de frais. On a alors

$$f(x) = 30 + x \times 0, 5 = 0, 5x + 30.$$

3. La fonction f est affine, puisque f(x) = 0.5x + 30 (c'est bien une fonction de la forme f(x) = ax + b, avec a = 0.5 et b = 30). Sa courbe représentative est donc une droite, que l'on trace à partir d'un tableau de valeurs avec deux valeurs; par exemple :

х	0	120
f(x)	30	90

$$f(0) = 0,5 \times 0 + 30 = 30$$
$$f(120) = 0,5 \times 120 + 30 = 90$$

On place les points de coordonnées (0;30) et (120;90), puis on trace la droite – en réalité un segment, puisqu'on va de 0 à 200 en abscisse.

Remarque : On a choisi les valeurs 0 et 120, mais on peut prendre n'importe quelles valeurs – l'avantage de 0, c'est que le calcul est facile; et l'avantage de 120, c'est qu'on a déjà fait le calcul dans la question 1.

- 4. Le voyageur de commerce a une note de frais de 75 €. Pour déterminer le nombre de km parcourus dans la journée, il y a deux méthodes :
 - **Graphiquement.** On voit qu'il a parcouru 90 km (pointillés rouges) ².
 - **Par le calcul.** On retire les frais fixes : 75 30 = 45 € d'indemnité kilométrique. Puis, comme chaque km compte pour 0,5 €, on divise : 45 ÷ 0,5 = 45 × 2 = 90 km. ³

Exercice 19 1. • Lorsqu'on télécharge 50 Mo, on paye 3 €.

- Lorsqu'on télécharge 150 Mo, les 100 premiers coûtent 3 €; et les 50 suivants coûtent 50 × 0,04 = 2 €. On paye donc au total 3 + 2 = 5 €.
- 2. On complète le tableau de valeurs :

Nombre de Mo	0	50	100	150	200
Prix à payer	3	3	3	5	7

Remarque: jusqu'à 100 Mo, on paye 3 €. Ensuite, chaque nouvelle tranche de 50 Mo est facturée 2 €.

- 3. On construit la courbe qui donne le prix payé en fonction du nombre de Mo téléchargés. Elle est constante sur l'intervalle [0; 100], puis affine sur l'intervalle [100; 200]. Il faut donc utiliser une règle pour effectuer le tracé ⁴.
- 2. La méthode graphique est simple, mais la réponse pourrait être imprécise.
- 3. On peut aussi résoudre l'équation 0,5x + 30 = 75.
- 4. On parle de fonction « affine par morceaux ».

- 4. Il y a deux méthodes:
 - Graphiquement. On voit qu'on a téléchargé 140 Mo (pointillés rouges).
 - **Par le calcul.** J'ai payé 4,60 €, donc 3 + 1,60 €. J'ai donc téléchargé 1,60 ÷ 0,04 = 40 Mo au-delà du 100°. Autrement dit, j'ai téléchargé 140 Mo.

Exercice 20 Pour louer une voiture je dois payer :

- une part fixe de 20 €.
- 0,6 € par km parcouru.
- 1. Pour 100 km, je payerai

$$P(100) = 20 + 100 \times 0, 6 = 80 \in$$
;

et pour 50 km, je payerai

$$P(50) = 20 + 50 \times 0, 6 = 50$$
 €.

2. D'une manière générale, pour x km parcourus je payerai

$$20 + x \times 0,6$$
 €.

Avec les notations de l'énoncé, cela donne

$$P(x) = 0.6x + 20.$$

Exercice 21 1. Comme $120 = 60 + 60 = 60 + 6 \times 10$, le coût pour 120 minutes de location est

$$15 + 6 \times 5 = 45$$
 €.

2. On complète le tableau de valeurs :

Durée	0	20	40	60	80	100	120
Prix	15	15	15	15	25	35	45

3. On construit le graphique :

Exercice 22 Les gares de Calais et de Boulogne-sur-mer sont distantes de 30 km. Un train part à 12 h de Boulogne-sur-mer en direction de Calais et roule à la vitesse de 40 km/h. Un train part de Calais à 12 h 15 et fait route en sens inverse à la vitesse de 60 km/h.

1. Le train qui part à 12 h de Boulogne-sur-mer roule à la vitesse de 40 km/h, donc il parcourt 40 km en 60 min. Pour savoir quand il arrive à Calais, on complète un tableau de proportionnalité :

temps (en min)	60	?
distance (en km)	40	30

Le train mettra $\frac{60 \times 30}{40} = \frac{1800}{40} = 45$ min pour arriver à Calais, donc il y sera à 12 h 45.

Pour le train qui part de Calais, le calcul est plus facile : il roule à 60 km/h, donc parcourt 60 km en 60 min; et ainsi 30 km en 30 min. Comme il part à 12 h 15, il arrive à 12 h 45 lui aussi.

On peut ainsi représenter la marche des deux trains :

2. Nous allons déterminer l'heure de croisement des trains par le calcul. Graphiquement, cela correspond à l'abscisse du point d'intersection des courbes.

À 12h15, le train qui part de Boulogne-sur-mer a parcouru 10 km (facile à vérifier), il est donc à 20 km de Calais. C'est l'heure à laquelle le deuxième train part. Comme l'un roule à 40 km/h et l'autre à 60 km/h, tout se passe comme si un seul train devait parcourir 20 km à la vitesse de 40 + 60 = 100 km/h. On complète un tableau de proportionnalité :

temps (en min)	60	?
distance (en km)	100	20

 $\frac{60\times20}{100} = \frac{1200}{100} = 12$, donc il faudrait 12 min à ce train pour parcourir 20 km. Ainsi, les deux trains se croiseront-ils à

12 h 15 min + 12 min = 12 h 27 min.

Exercice 23

- 1. L'image de 3 par f est 0,5 (pointillés verts).
- 2. Les solutions de l'équation f(x) = 1 sont -2; 4 et 6 (pointillés rouges).

3. Tableau de signe de f:

x	-2		-1		2		6
f(x)		+	0	_	0	+	

- 4. Le maximum de f est 3, son minimum est -1 (points bleus).
- 5. Tableau de variations de $f\,:\,$

x	-2	0	5	6
f(x)	1	-1	3	1

Exercice 24 La fonction f est définie sur l'intervalle [1;5] par $f(x) = 2x + \frac{8}{x} - 10$.

1.

	х	1	1,5	2	2,5	3	3,5	4	4,5	5
Ī	f(x)	0	-1,67	-2	-1,8	-1,33	-0,71	0	0,78	1,6

Détail de deux calculs :

$$f(1) = 2 \times 1 + \frac{8}{1} - 10 = 2 + 8 - 10 = 0$$
$$f(4) = 2 \times 4 + \frac{8}{4} - 10 = 8 + 2 - 10 = 0.$$

2. Courbe représentative :

- 3. Les antécédents de -1 par f sont 1,25 et 3,25 environ (pointillés rouges).
- 4. Tableau de variations:

x	1	2	5
f (x)	0	-2	1.6

5. Tableau de signe :

x	1		4		5
f(x)	0	_	0	+	

Exercice 25 On suppose que le pourcentage de femmes fumant du tabac quotidiennement en fonction de l'âge x (en années), depuis 15 ans jusqu'à 40 ans, est le nombre f(x) donné par la formule suivante :

$$f(x) = -0.05x^2 + 3x - 10.$$

1.

х	15	20	25	30	35	40
f(x)	23,75	30	33,75	35	33,75	30

Détail de deux calculs :

$$f(15) = -0.05 \times 15^2 + 3 \times 15 - 10 = 23.75$$

$$f(40) = -0.05 \times 40^2 + 3 \times 40 - 10 = 30.$$

2.

3. Tableau de variations:

- 4. Le pourcentage de fumeuses est maximal à 30 ans (pointillés verts).
- 5. C'est à partir de 20 ans que plus de 30 % des femmes fument quotidiennement (pointillés rouges).

Exercice 26 Sur route sèche, la distance d'arrêt en mètres d'un véhicule roulant à x km/h est modélisée par la fonction f définie sur [0;120] par

$$f(x) = 0,005x(x+56).$$

1. $f(100) = 0.005 \times 100(100 + 56) = 78$. Cela signifie que la distance d'arrêt d'un véhicule roulant à 100 km/h est 78 m.

2.

x	0	20	40	60	80	100	120
f(x)	0	7,6	19,2	34,8	54,4	78	105,6

3.

4. f(90) = 65,7 et f(80) = 54,4 donc le fait de baisser la vitesse sur les routes de 90 km/h à 80 km/h permet de diminuer la distance d'arrêt de

$$65, 7 - 54 = 11, 7 \text{ m}.$$

L'information de la sécurité routière est donc imprécise selon les données de l'exercice ⁵.

Exercice 27 Le taux d'anticorps (en g/l) présents dans le sang d'un nourrisson en fonction de l'âge (en mois), depuis la naissance jusqu'à l'âge de 12 mois, est donné par la formule suivante :

$$f(x) = 0, 1x^2 - 1, 6x + 12.$$

1. On fait un tableau de valeurs pour f sur [0;12] avec un pas de 2:

х	0	2	4	6	8	10	12
f(x)	12	9,2	7,2	6	5,6	6	7,2

Détail de deux calculs :

- $f(0) = 0, 1 \times 0^2 1, 6 \times 0 + 12 = 12.$
- $f(12) = 0, 1 \times 12^2 1, 6 \times 12 + 12 = 7, 2.$

2.

^{5.} Il est illusoire de penser que tous les conducteurs ont le même temps de réaction et toutes les voitures le même comportement en termes de freinage. Les formules concernant les distances d'arrêt que l'on doit apprendre par cœur au moment de passer le code de la route ne peuvent donc donner que des ordres de grandeur; et la réponse attendue « 13 mètres » est en réalité très proche de la réponse « 11,7 mètres » obtenue avec notre calcul.

- 3. Le taux d'anticorps à la naissance est de $12 \text{ g}/\ell$.
- 4. Tableau de variations:

x	0	8	12
f(x)	12	5.6	7.2

Le taux d'anticorps est minimal à l'âge de 8 mois.

5. D'après le graphique, le taux d'anticorps est inférieur à 6,5 g/ ℓ pendant 6 mois (du 5 $^{\rm e}$ au 11 $^{\rm e}$ mois).

4 Tableaux d'effectifs et probabilités conditionnelles

Exercice 28 1. On traduit les données de l'énoncé par un tableau d'effectifs :

	VTT	VTT	Total
Escalade	3	7	10
Escalade	13	9	22
Total	16	16	32

Remarque : on sait qu'il y a autant d'élèves qui pratiquent le VTT que d'élèves qui ne le pratiquent pas, donc 16 élèves le pratiquent et 16 ne le pratiquent pas.

- 2. (a) Par lecture du tableau : $P(E) = \frac{10}{32}$ et $P(V) = \frac{16}{32}$.
 - (b) On s'intéresse aux trois événements \overline{V} , $V \cap E$ et $V \cup E$:
 - \overline{V} : « l'élève ne pratique pas le VTT ».

$$P\left(\overline{V}\right) = \frac{16}{32}.$$

• $V \cap E$: « l'élève pratique l'escalade **et** le VTT ».

$$P(V \cap E) = \frac{3}{32}.$$

• $V \cup E$: « l'élève pratique l'escalade **ou** le VTT ».

Le calcul de $P(V \cup E)$ est moins évident et peut être mené de plusieurs façons différentes. Par exemple :

- ▶ ajouter ceux qui font du VTT à ceux qui font de l'escalade, puis retrancher les élèves qui pratiquent les deux sports (sinon ils sont comptés deux fois) : 16 + 10 3 = 23.
- ▶ ajouter ceux qui ne font que du VTT, ceux qui ne font que de l'escalade, et ceux qui pratiquent les deux sports : 13+7+3 = 23.
- ▶ remarquer que C est le contraire de B et donc faire le calcul : 32 9 = 23.

Dans tous les cas on obtient $P(V \cup E) = \frac{23}{32}$.

(c) Parmi les 16 élèves qui pratiquent le VTT, 3 pratiquent également l'escalade, donc la probabilité qu'un élève qui pratique le VTT pratique également l'escalade est $\frac{3}{16}$. Avec la notation du cours :

$$P_V(E) = \frac{3}{16}.$$

Exercice 29 1. On représente la situation par un tableau d'effectifs.

	Petit for- mat	Grand format	Total
Couleur	7	18	25
N&B	0	5	5
Total	7	23	30

- (a) $P(G) = \frac{23}{30}$.
 - \overline{C} : « la BD est en N&B ».

$$P\left(\overline{C}\right) = \frac{5}{30} = \frac{1}{6}.$$

(b) • $C \cap G$: « la BD est en couleur **et** en grand format ».

$$P(C \cap G) = \frac{18}{30}.$$

• $C \cup G$: « la BD est en couleur **ou** en grand format ».

C'est le cas de toutes les BD (!), car il n'y en a aucune en N&B et en petit format. Conclusion :

$$P(C \cup G) = \frac{30}{30} = 1.$$

(c) Pierre a choisi une BD en couleur. La probabilité qu'elle soit en grand format est

$$P_C(G) = \frac{18}{25}.$$

(d) • La BD est en grand format. La probabilité qu'elle soit en couleur est

$$P_G(C) = \frac{18}{23}.$$

• La BD est en grand format. La probabilité qu'elle **ne** soit **pas** en couleur est

$$P_G\left(\overline{C}\right) = \frac{5}{23}.$$

Exercice 30 1. Pour compléter le tableau, on calcule :

- 5% de 10 000 valent 500;
- 10000 500 = 9500;
- 4% de 9 500 valent 380;
- on complète le reste du tableau avec des additions/soustractions.

	Animaux sains	Animaux malades	Total
Test positif	380	500	880
Test négatif	9 120	0	9 120
Total	9 500	500	10 000

2. (a) • $P(M) = \frac{500}{10000} = 0,05$ (c'est le 5 % déjà donné par l'énoncé).

•
$$P(\overline{T}) = \frac{9120}{10000} = 0,912.$$

(b) $\overline{M} \cap T$: «l'animal n'est pas malade et son test est positif.»

$$P(\overline{M} \cap T) = \frac{380}{10000} = 0,038.$$

(c) 500 des 880 animaux ayant un test positif sont malades, donc la probabilité qu'un animal ayant un test positif soit malade est

$$P_T(M) = \frac{500}{880} \approx 57\%.$$

(d) Tous les animaux malades ont un test positif, donc la probabilité qu'un animal malade ait un test positif est

$$P_{M}(T) = 1.$$

Exercice 31 1. On traduit les données de l'énoncé par un tableau d'effectifs :

	Abonnés au soir	Pas abonnés au soir	Total
Abonnés au matin	50	20	70
Pas abonnés au matin	50	160	210
Total	100	180	280

- 2. (a) $P(S) = \frac{100}{280}$ et $P(\overline{M}) = \frac{210}{280}$.
 - (b) $S \cap M$: « le pensionnaire est abonné aux deux journaux. »

$$P(S \cap M) = \frac{50}{280}.$$

(c) On choisit au hasard un pensionnaire abonné au Matin. La probabilité qu'il soit aussi abonné au Soir est

$$P_M(S) = \frac{50}{70}.$$

5 Taux d'évolution, suites géométriques

Exercice 32 1. $100 \% + 12.5 \% = 112.5 \% = \frac{112.5}{100} = 1,125$, donc pour augmenter un nombre de 12.5 %, il faut le multiplier par 1,125. On complète donc le schéma :

inscrits décembre

inscrits janvier

??? = 120×1 , 125 = 135, donc il y aura 135 inscrits en janvier.

2. Pour connaître le pourcentage d'augmentation, on complète le schéma :

logements 2007

logements 2015

 $??? = 6065 \div 5812 \approx 1,0435.$

Or $1,0435 = \frac{104,35}{100} = 104,35\% = 100\% + 4,35\%$, donc le nombre de logements a augmenté de 4,35% environ. Autrement dit, le taux d'évolution du nombre de logements est +4,35%.

N.B. Vous n'êtes pas obligés d'écrire le calcul final : vous pouvez passer directement de « 1,0435 » à la réponse « augmentation de 4,35 % ». Notez également qu'il faut prendre 4 chiffres après la virgule pour avoir une réponse finale arrondie à 0,01 % près.

18

3. On rappelle que la TVA (taxe sur la valeur ajoutée) est une taxe sur les produits dont le montant revient à l'État.

Dire qu' « il y a 20 % de TVA » signifie qu'un commerçant qui veut gagner 100 € avec la vente d'un article doit le mettre en vente à 120 € (il ajoute 20 % de la valeur, donc il multiplie par 1,20).

Sur l'article vendu 120 € en magasin, le commerçant gardera 100 € et devra donner 20 € à L'État.

Le prix TTC (toutes taxes comprises) est de 120 €, le prix HT (hors taxe) est de 100 € et le montant de la TVA est de 20 €.

Pour avoir le prix TTC dans notre exemple, il faut compléter le schéma :

??? = 80 × 1,20 = 96, donc le montant TTC est de 96 €.

Remarque: Le montant de la TVA est $96 - 80 = 16 \in$.

Il ne faut pas confondre ce montant (16 €) et le taux de TVA (ici 20 %). Il y a une ambiguïté lorsqu'on parle de « TVA » sans préciser s'il s'agit d'un montant ou d'un taux.

Exercice 33 1. $100 \% - 15 \% = 85 \% = \frac{85}{100} = 0.85$, donc pour diminuer un nombre de 15 %, il faut le multiplier par 0.85. On complète donc le schéma :

??? = $12\,000 \times 0.85 = 10\,200$, donc le prix après remise est de $10\,200$ €.

2. Pour connaître le pourcentage de baisse, on complète le schéma :

 $??? = 228 \div 240 = 0.95.$

Or $0.95 = \frac{95}{100} = 95$ %, donc les émissions ont baissé de 5 %. Autrement dit, le taux d'évolution est -5 %.

∧Ne pas oublier le « – » dans –5 %.

3. $100\% - 25\% = 75\% = \frac{75}{100} = 0,75$, donc la baisse de 25 % équivaut à une multiplication par 0,75 et on peut utiliser le schéma :

??? = $63 \div 0.75 = 84$, donc le prix initial était de $84 \in$.

Exercice 34 Pour obtenir le prix TTC, on augmente le prix HT de 10 %; autrement dit, on le multiplie par 1,10. On peut ainsi compléter le schéma :

Conclusion: ??? = 4,95 ÷ 1,10 = 4,50, donc le prix HT est de 4,50 €; et le montant de la TVA (la somme qui revient à l'État) est

montant TVA = montant TTC – montant HT =
$$4,95 - 4,50 = 0,45 \in$$
.

N.B. Il est totalement faux de prendre 10 % de 4,95 pour obtenir le montant de la TVA. Il faut d'abord se ramener au prix HT, puis prendre 10 % de ce prix HT.

Exercice 35

1. $v_0 = 4$ et q = 5.

$$v_1 = 4 \times 5 = 20$$

 $v_2 = 20 \times 5 = 100$
 $v_3 = 100 \times 5 = 500$.

2. $v_0 = 12$ et q = 0, 5.

$$v_1 = 12 \times 0, 5 = 6$$

 $v_2 = 6 \times 0, 5 = 3$
 $v_3 = 3 \times 0, 5 = 1, 5$.

3. $v_1 = 5$ et $v_2 = 20$.

D'après le schéma ci-dessus :

$$q = 20 \div 5 = 4$$
.

On en déduit :

$$v_3 = 20 \times 4 = 80$$

 $v_0 = 5 \div 4 = 1,25$.

4. $v_0 = 10$ et $v_1 = 6$.

D'après le schéma ci-dessus :

$$q = 6 \div 10 = 0, 6,$$

puis

$$v_2 = 6 \times 0, 6 = 3, 6.$$

Exercice 36 On place $1000 \in \text{sur un compte}$ au taux d'intérêt annuel de 5 %. On note v_n la somme sur le compte après n années – on a donc en particulier $v_0 = 1000$.

1. Augmenter un nombre de 5 % revient à le multiplier par 1,05. On peut donc compléter le schéma :

Conclusion:

- après 1 an, on a 1 050 € sur le compte;
- après 2 ans, on a 1 102,50 € sur le compte.

Avec les notations de l'énoncé :

$$v_0 = 1000$$
 $v_1 = 1050$
 $v_2 = 1102,50$.

2. La suite v est une suite géométrique de raison q = 1,05.

Remarque: À la question « quelle est la nature de la suite? », il faut répondre « arithmétique » ou « géométrique » selon le cas, mais aussi donner sa raison.

3. Dans la cellule C2, il faut rentrer la formule

$$=B2*1.05$$

- 4. On détermine la somme sur le compte après 10 ans de deux façons différentes.
 - Avec le tableur : on étire les cellules C1 et C2 vers la droite jusqu'à L1 et L2, qui correspondent à l'année *n* = 10. On obtient 1 628,89 €.

	A	В	С	•••	K	L
1	n	0	1	•••	9	10
2	v_n	1000	1050	•••	1551,33	1628,89

• Par le calcul : la somme sur le compte après 10 ans est

$$\nu_{10} = 1\,000 \underbrace{\times 1,05 \times 1,05 \times \dots \times 1,05}_{10 \text{ fois}} = 1\,000 \times 1,05^{10} \approx 1\,628,89 \in.$$

Exercice 37 1. 100% - 12% = 88% = 0.88, donc pour diminuer un nombre de 12 %, il faut le multiplier par 0.88.

Pour déterminer le prix du livre en 2010 (donc après 5 ans), on peut utiliser un diagramme :

Le plus rapide cependant, c'est de faire directement le calcul :

$$50 \times 0.88 \times 0.88 \times \cdots \times 0.88 = 50 \times 0.88^5 \approx 26.39$$
€.

Conclusion : le prix du livre en 2010 est 26,39 €.

2. On rentre les valeurs initiales 2005 et 50 dans la colonne B, puis on rentre les formules ci-dessous dans la colonne C, que l'on étire vers la droite.

	A	В	С	•••
1	Année	2005	=B1+1	•••
2	Prix	50	=B2*0,88	•••

On étire jusqu'à obtenir un prix inférieur à 10 € :

	A	В	С	•••	N	0
	Année	2005	2006	•••	2017	2018
2	Prix	50	44	•••	10,78	9,49

Conclusion : c'est en 2018 que le prix du livre descendra pour la première fois en-dessous de 10 €.

Exercice 38 1. 100% - 15% = 85% = 0.85, donc pour diminuer un nombre de 15 %, il faut le multiplier par 0.85. Ainsi, dans le schéma ci-dessous, l'intensité lumineuse est-elle multipliée par 0.85 à chaque nouvelle plaque :

Remarque : Le lumen est une unité de mesure du flux lumineux, utilisée notamment pour indiquer la capacité d'éclairement des ampoules électriques.

- 2. La suite v est une suite géométrique de raison q = 0.85.
- 3. L'intensité lumineuse est divisée par 10 lorsqu'on descend en dessous de $12 \div 10 = 1,2$ lm. Pour savoir le nombre minimal de plaques à superposer pour qu'il en soit ainsi, on rentre les valeurs initiales 0 et 12 dans la colonne B, puis on rentre les formules ci-dessous dans la colonne C, que l'on étire vers la droite jusqu'à obtenir une intensité lumineuse inférieure à 1,2.

	A	В	С	•••	P	Q
1	Nb de plaques	0	=B1+1	•••	14	15
2	Intensité (lm)	12	=B2*0,85	•••	1,23	1,05

Conclusion: il faut superposer au moins 15 plaques pour que l'intensité lumineuse soit divisée par 10.

6 Dérivation et variations des fonctions du 2nd degré

Exercice 39 La fonction f est définie sur l'intervalle [-1;4] par

$$f(x) = 0.5x^2 - 2x + 1.$$

- 1. $f'(x) = 0,5 \times 2x 2 \times 1 + 0 = x 2$.
- 2. La dérivée est du premier degré, donc il faut résoudre une équation, puis regarder le signe de a:

$$x-2=0$$

$$x-\cancel{2}+\cancel{2}=0+2$$

$$x=2.$$

a=1 (puisque x-2 signifie $\frac{1}{2}x-2$), a est \oplus donc le signe est de la forme $\boxed{-\varphi+}$

On en déduit le tableau de signe de f^\prime et le tableau de variations de $f\,$:

Remarque: Pour les trois valeurs aux extrémités des flèches, on utilise le tableau de valeurs de la question suivante.

3. Rappelons la méthode pour obtenir le tableau de valeurs avec une calculatrice :

Calculatrices collège

- MODE ou MENU
- 4: TABLE ou 4: Tableau
 f(X)=0,5X²-2X+1 EXE
 (si on demande g(X)=, ne rien rei

(si on demande $g(\overline{X})$ =, ne rien rentrer)

- Début? –1 EXE
- Fin? 4 EXE
- Pas? 1 EXE

TI graphiques

X s'obtient avec la touche x, t, θ, n

- f(x)
- $Y_1 = 0.5X^2 2X + 1$ EXE
- 2nde déf table
- DébTable=(-)1 EXE
- PasTable=1 EXE ou
- ∆Tbl=1 EXE
- 2nde table

CASIO graphiques

X s'obtient avec la touche X, θ, T

- MENU puis choisir TABLE EXE
- $Y_1: 0.5X^2 2X + 1$ EXE
- F5 (on choisit donc SET)
- Start :(-)1 EXE
- End :4 EXE
- Step :1 EXE
- EXIT
- F6 (on choisit donc TABLE)

Remarque : Les calculatrices NUMWORKS permettent également de faire ces calculs et sont d'un usage beaucoup plus intuitif.

On obtient finalement le tableau:

Ī	х	-1	0	1	2	3	4
I	f(x)	3,5	1	-0,5	-1	-0,5	1

4.

Remarque : La courbe représentative est une parabole, puisque la fonction f est du 2^{nd} degré (de la forme $f(x) = ax^2 + bx + c$). Ce sera le cas dans tous les exercices du chapitre.

Exercice 40 La fonction g est définie sur l'intervalle [0;5] par

$$g(x) = -x^2 + 5x - 2.$$

- 1. $g'(x) = -2x + 5 \times 1 0 = -2x + 5$.
- 2. On résout l'équation :

$$-2x+5=0$$

$$-2x+5-5=0-5$$

$$\frac{2x}{2}=\frac{-5}{-2}$$

$$x=2,5.$$

a = -2, a est Θ donc le signe est de la forme $+ \varphi$

On en déduit le tableau de signe de g' et le tableau de variations de g:

х	0	2.5		5
g'(x)		+ 0	-	
<i>g</i> (<i>x</i>)	-2	4.25		-2

Remarque : Pour compléter les valeurs aux extrémités des flèches, on fait un tableau de valeurs sur [0;5] avec un pas de 0,5. Ce tableau a deux utilités :

- en prenant les valeurs x = 0, x = 2,5 et x = 5, on peut compléter notre tableau de variations;
- en prenant les valeurs x = 0, x = 1, x = 2, x = 3, x = 4 et x = 5, on obtient le tableau de valeurs de la question suivante. Les autres valeurs (x = 0.5, x = 1.5, x = 3.5 et x = 4.5) ne nous servent à rien.

3.

х		0	1	2	3	4	5
g(x	c)	-2	2	4	4	2	-2

4. Pour construire la courbe, on place les points du tableau de valeurs, mais aussi le point obtenu pour x = 2,5 (maximum du tableau de variations).

Exercice 41 On modélise le taux d'anticorps (en g/l) présents dans le sang d'un nourrisson en fonction de l'âge t (en mois), depuis la naissance jusqu'à l'âge de 12 mois, par la formule suivante :

$$f(t) = 0,1t^2 - 1,6t + 12.$$

1. $f'(t) = 0, 1 \times 2t - 1, 6 \times 1 + 0 = 0, 2t - 1, 6$.

Remarque : On traite les « t » comme s'il s'agissait de « x ».

2. On résout l'équation :

$$0.2t - 1.6 = 0$$

$$0.2t - 1.6 + 1.6 = 0 + 1.6$$

$$\frac{0.2t}{0.2} = \frac{1.6}{0.2}$$

$$t = 8.$$

 $a = 0, 2, a \text{ est } \oplus \text{ donc le signe est de la forme } - \phi +$

On en déduit le tableau de signe de f' et le tableau de variations de f:

t	0		8		12
f'(t)		-	0	+	
f(t)	12		5.6		7.2

Remarque : Pour compléter les valeurs aux extrémités des flèches, on fait un tableau de valeurs sur [0;12] avec un pas de 1, en prenant uniquement les valeurs qui nous intéressent.

3. D'après le tableau de variations, le taux d'anticorps est minimal à l'âge de 8 mois.

Exercice 42 On suppose que le pourcentage de femmes fumant du tabac quotidiennement en fonction de l'âge x (en années), depuis 15 ans jusqu'à 40 ans, est le nombre f(x) donné par la formule suivante :

$$f(x) = -0.05x^2 + 3x - 10.$$

24

- 1. $f'(x) = -0.05 \times 2x + 3 \times 1 0 = -0.1x + 3$.
- 2. On résout l'équation :

$$-0.1x + 3 = 0$$

$$-0.1x + 3 - 3 = 0 - 3$$

$$= 0.1x = 0$$

$$= 0.1x = 0$$

$$= 0.1$$

$$x = 30$$

 $a = -0, 1, a \text{ est } \Theta \text{ donc le signe est de la forme} + \phi -$

On en déduit le tableau de signe de f' et le tableau de variations de f:

x	15		30		40
f'(x)		+	0	-	
f(x)	23.75	/	35		30

Remarque : Pour compléter les valeurs aux extrémités des flèches, on fait un tableau de valeurs sur [15;40] avec un pas de 5, en prenant uniquement les valeurs qui nous intéressent.

3. D'après le tableau de variations, c'est chez les femmes de 30 ans que le pourcentage de fumeuses est le plus important.

Exercice 43 On dispose d'une clôture de 100 mètres de long pour délimiter un terrain rectangulaire le long d'une rivière (la clôture est en pointillés — on ne met pas de clôture le long de la rivière). On note x et x' les longueurs des côtés du terrain.

On voudrait délimiter le terrain le plus grand possible.

1. (a) x est une longueur, donc $x \ge 0$. Par ailleurs, la longueur x apparaît deux fois sur la figure, donc x ne peut pas dépasser 50 (car $2 \times 50 = 100$).

Conclusion: on a l'encadrement

$$0 \le x \le 50$$
.

(b) Le périmètre, 100 m, s'obtient en faisant le calcul

$$x + x + x'$$

donc

$$2x + x' = 100$$
;

et donc

$$x' = 100 - 2x$$
.

(c) L'aire du terrain est

$$x \times x' = x \times (100 - 2x)$$
 (car $x' = 100 - 2x$)
= $x \times 100 + x \times (-2x)$ (on développe)
= $100x - 2x^2$.

2. On définit à présent la fonction f sur [0;50] par

$$f(x) = 100x - 2x^2$$
.

Autrement dit, f(x) donne l'aire du terrain pour une valeur donnée de x.

- (a) $f'(x) = 100 \times 1 2 \times 2x = 100 4x$.
- (b) On résout l'équation :

$$100 - 4x = 0$$

$$100 - 4x - 100 = 0 - 100$$

$$\frac{4x}{4} = \frac{-100}{-4}$$

$$x = 25.$$

a = -4 (\triangle on prend le coefficient devant x), a est Θ donc le signe est de la forme $+ \varphi$

On en déduit le tableau de signe de f' et le tableau de variations de f:

x	0		25		50
f'(x)		+	0	-	
f(x)	0		1250		0

Remarque : Pour compléter les valeurs aux extrémités des flèches, on fait un tableau de valeurs sur [0;50] avec un pas de 25.

(c) D'après le tableau de variations, l'aire du terrain est maximale lorsque x = 25.

Remarque : Notons que, dans ce cas, $x' = 100 - 2 \times 25 = 50$. Le terrain d'aire maximale a donc un côté adjacent à la rivière de 25 m de long et un côté parallèle à la rivière de 50 m de long.

Exercice 44 Pour vérifier le fonctionnement de la régulation de la glycémie chez un individu, on lui injecte une quantité importante de glucose : on mesure ensuite la concentration d'insuline plasmatique pendant 70 minutes.

La concentration d'insuline plasmatique (unité non précisée) en fonction du temps x (exprimé en minutes), est donnée par la fonction f définie pour $x \in [0;70]$ par

$$f(x) = -0.1x^2 + 10x + 35.$$

1.

							60	
f(x)	35	125	195	245	275	285	275	245

2.

3.

x	0	50	70
f(x)	35	285	245

- 4. La concentration d'insuline est maximale au bout de 50 min.
- 5. La concentration d'insuline est supérieure à 250 de 32 à 68 min environ (voir pointillés rouges), donc pendant 36 min.
- 6. On reprend les questions 3 et 4 à l'aide de la dérivation :

$$f'(x) = -0, 1 \times 2x + 10 \times 1 + 0 = -0, 2x + 10.$$

On résout l'équation :

$$-0.2x + 10 = 0$$

$$-0.2x + 10 - 10 = 0 - 10$$

$$\frac{-0.2x}{-0.2} = \frac{-10}{-0.2}$$

$$x = 50.$$

a = -0.2, a est Θ donc le signe est de la forme $|+ \varphi -$

On en déduit le tableau de signe de f' et le tableau de variations de f:

x	0	50	70
f'(x)		+ 0 -	
f(x)	35	285	245

La concentration est bien maximale après 50 min.

Arbres de probabilités

1. On part de 100 coyotes. Comme 60 % des coyotes sont malades, on en a 60 malades et 40 en bonne santé. **Exercice 45** Ensuite on calcule:

- 95 % de 60 valent $\frac{60 \times 95}{100} = 57$; 90 % de 40 valent $\frac{40 \times 90}{100} = 36$.

On peut alors compléter le tableau :

	Test ⊕	Test ⊖	Total
Malades	57	3	60
Sains	4	36	40
Total	61	39	100

- 2. $P(M \cap T) = \frac{57}{100} = 0.57$ et $P(T) = \frac{61}{100} = 0.61$.
- 3. On représente la situation par un arbre pondéré:

On en déduit:

- $P(M \cap T) = 0.60 \times 0.95 = 0.57$;
- D'après la formule des probabilités totales, la probabilité que le test soit positif est :

$$P(T) = P(M \cap T) + P(\overline{M} \cap T)$$

= 0,60 \times 0,95 + 0,40 \times 0,10 = 0,61.

On retrouve bien les résultats de la question 2.

Exercice 46 1. On représente la situation par un arbre pondéré :

- 2. P(A∩D) = 0,70 × 0,98 = 0,686;
 d'après la formule des probabilités totales, la probabilité que la pièce ait un défaut est :

$$P(D) = P(A \cap D) + P(\overline{A} \cap D)$$

= 0,70 \times 0,02 + 0,30 \times 0,03 = 0,023.

Exercice 47 1. On rappelle les zones de tir à 2 et 3 points :

On représente la situation par un arbre pondéré :

Remarque : \overline{D} signifie « Stephen Curry tire à 3 points ».

La probabilité que Stephen Curry tire à 2 points et marque est

$$P(D \cap M) = 0,53 \times 0,52 = 0,2756.$$

3. D'après la formule des probabilités totales, la probabilité que Stephen Curry marque est :

$$P(M) = P(D \cap M) + P(\overline{D} \cap M)$$

= 0.53 \times 0.52 + 0.47 \times 0.44 = 0.4824.

4. On sait que Stephen Curry a 52 % de réussite lorsqu'il tire à 2 points, donc

$$P_D(M) = 0.52.$$

Ce nombre est celui qui apparaît sur la branche en haut à droite de l'arbre. Par conséquent, le calcul

$$P(D \cap M) = 0,53 \times 0,52$$

peut se réécrire

$$P(D \cap M) = P(D) \times P_D(M)$$
.

D'une manière générale, un arbre pondéré est toujours de la forme

et l'on a donc toujours $P(A \cap B) = P(A) \times P_A(B)$. On en déduit la relation fondamentale (hors-programme) :

$$P_A(B) = \frac{P(A \cap B)}{P(A)}.$$

5. Pour calculer $P_M(D)$, on utilise la formule encadrée ci-dessus, avec A=M et B=D : 6

$$P_M(D) = \frac{P(M \cap D)}{P(M)} = \frac{0,2756}{0,4824} \approx 0,57.$$

Conclusion : sachant qu'il a marqué, il y a environ 57 % de chances que Stephen Curry ait tiré à 2 points.

Exercice 48 1. On représente la situation par un arbre pondéré :

- 2. $P(D \cap T) = 0.08 \times 0.98 = 0.0784$.
- 3. D'après la formule des probabilités totales, la probabilité que le test soit positif est :

$$P(T) = P(D \cap T) + P(\overline{D} \cap T)$$

= 0,08 × 0,98 + 0,92 × 0,005 = 0,083.

4. On utilise à nouveau la formule encadrée de l'exercice précédent : sachant qu'un athlète présente un test positif, la probabilité qu'il soit dopé est

$$P_T(D) = \frac{P(T \cap D)}{P(T)} = \frac{0,0784}{0,083} \approx 0,94.$$

Exercice 49 1. On commence par faire un arbre pondéré. Comme un appareil en parfait état de fonctionnement est toujours accepté à l'issue du test, il y a un 1 et un 0 sur les branches en haut à droite. Notons par ailleurs que nous sommes obligés de conserver les fractions, parce que les résultats « ne tombent pas juste ».

^{6.} On a déjà calculé $P(M\cap D)$ et P(M) dans les questions précédentes.

On en vient au calcul des probabilités demandé par l'énoncé:

- P(F∩T) = 1/10 × 1/11 = 1/110;
 d'après la formule des probabilités totales:

$$P(T) = P\left(F \cap T\right) + P\left(\overline{F} \cap T\right) = \frac{9}{10} \times 1 + \frac{1}{10} \times \frac{1}{11} = \frac{9}{10} + \frac{1}{110} = \frac{99}{110} + \frac{1}{110} = \frac{100}{110} = \frac{10}{11}.$$

2. Sachant qu'un appareil a été accepté à l'issue du test, la probabilité qu'il ne fonctionne pas parfaitement est

$$P_T\Big(\overline{F}\Big) = \frac{P\Big(T \cap \overline{F}\Big)}{P(T)} = \frac{\frac{1}{110}}{\frac{10}{11}} = \frac{1}{110} \times \frac{11}{10} = \frac{11}{1100} = \frac{1}{100}.$$

Exercice 50 1. On représente la situation par un arbre pondéré. Les probabilités sont les mêmes sur toutes les branches (0,7/0,3), car chaque jour Justin a 70 % de chances d'avoir des spams – et ce indépendamment de ce qu'il s'est passé l'autre jour.

2. • La probabilité que Justin ait des spams lundi et mardi est

$$P(A) = P(L \cap M) = 0,7 \times 0,7 = 0,49.$$

• La probabilité que Justin n'ait des spams qu'une seule fois 7 est

$$P(B) = P(L \cap \overline{M}) + P(\overline{L} \cap M) = 0,7 \times 0,3 + 0,3 \times 0,7 = 0,42.$$

1. On représente la situation par un arbre pondéré, avec de gauche à droite le résultat du 1er tir, du 2e et du 3e. On note R pour « réussi », M pour « manqué ». Comme dans l'exercice précédent, les tirs sont indépendants et Rémy a toujours 80 % de chances de toucher le centre de la cible, donc les probabilités sont les mêmes sur toutes les branches (0,8/0,2).

^{7.} Donc il en a le lundi, mais pas le mardi; ou bien le mardi, mais pas le lundi.

On a indiqué le nombre de tirs réussis à l'extrémité droite de l'arbre, avec une couleur différente en fonction du résultat. Par exemple, lorsqu'on suit le chemin tout en haut, Rémy réussit le 1^{er}, le 2^e et le 3^e tirs, donc on a indiqué 3 tirs réussis.

2. Pour gagner un panda en peluche, Rémy doit toucher 2 fois le centre de la cible. Cela correspond aux trois chemins qui se terminent par 2 tirs réussis. On a donc

$$P(A) = 0.8 \times 0.8 \times 0.2 + 0.8 \times 0.2 \times 0.8 + 0.2 \times 0.8 \times 0.8 = 0.384.$$

8 Suites définies par récurrence

Exercice 52 L'énoncé demande de « calculer les premiers termes », ce qui est imprécis. Dans chaque cas, nous irons jusqu'à u₃.

1. $u_0 = 1$ et

$$u_{n+1} = u_n + 2$$

pour tout entier naturel n.

$$u_0 = 1$$

$$u_1 = 1 + 2 = 3$$

$$u_2 = 3 + 2 = 5$$

$$u_3 = 5 + 2 = 7$$
.

La suite u est arithmétique de raison r = 2.

2. $v_0 = 2$ et

$$v_{n+1} = 3 \times v_n$$

pour tout entier naturel n.

$$v_0 = 2$$

$$v_1 = 3 \times 2 = 6$$

$$v_2 = 3 \times 6 = 18$$

$$v_3 = 3 \times 18 = 54$$
.

La suite v est géométrique de raison q = 3.

3.
$$\begin{cases} w_0 = 2 \\ w_{n+1} = 5 - w_n \text{ pour tout } n \in \mathbb{N}. \end{cases}$$

$$w_0 = 2$$

$$w_1 = 5 - 2 = 3$$

$$w_2 = 5 - 3 = 2$$

$$w_3 = 5 - 2 = 3$$
.

Cela va continuer ainsi indéfiniment : 2, 3, 2, 3, etc. On dit que la suite w est périodique.

4.
$$x_0 = 3$$
 et

$$x_{n+1} = 2 \times x_n - 1$$

pour tout entier naturel n.

$$x_0 = 3$$

$$x_1 = 2 \times 3 - 1 = 5$$

$$x_2 = 2 \times 5 - 1 = 9$$

$$x_3 = 2 \times 9 - 1 = 17.$$

5.
$$y_0 = 4$$
 et

$$y_{n+1} = 10 - y_n$$

pour tout $n \in \mathbb{N}$.

$$y_0 = 4$$

$$y_1 = 10 - 4 = 6$$

$$y_2 = 10 - 6 = 4$$

$$y_3 = 10 - 4 = 6$$
.

La suite *y* est périodique.

6.
$$z_0 = 4$$
 et

$$z_{n+1}=1, 5\times z_n-2$$

pour tout entier naturel n.

$$z_0 = 4$$

$$z_1 = 1,5 \times 4 - 2 = 4$$

$$z_2 = 1, 5 \times 4 - 2 = 4$$

$$z_3 = 1,5 \times 4 - 2 = 4.$$

On dit que la suite *z* est constante.

Exercice 53 1. On ajoute 40 € tous les mois sur un compte en banque.

Cela correspond à une suite arithmétique de raison r = 40.

Si l'on note u_n la somme sur le compte après n mois, la relation de récurrence est

$$u_{n+1}=u_n+40.$$

2. Une population de bactéries augmente de 20 % toutes les minutes.

Pour augmenter un nombre de 20 %, il faut le multiplier par 1,20. Cela correspond donc à une suite géométrique de raison q = 1,20.

Si l'on note v_n la population de bactéries après n minutes, la relation de récurrence est

$$v_{n+1} = v_n \times 1,20.$$

3. La suite est représentée par le nuage de points :

Quand on avance de 1 en abscisse, on monte de 2 en ordonnée, donc cela correspond à une suite arithmétique de raison r = 2.

Si l'on note u la suite des termes, la relation de récurrence est

$$u_{n+1}=u_n+2.$$

4. Pour soigner son cancer de la thyroïde, un patient doit ingérer une petite quantité d'iode 131, dont la masse diminue ensuite de 8 % par jour.

Pour diminuer un nombre de 8 %, il faut le multiplier par 0,92 (car 100 % – 8 % = 92 % = 0,92). Cela correspond donc à une suite géométrique de raison q = 0,92.

Si l'on note v_n la masse d'iode après n minutes, la relation de récurrence est

$$v_{n+1} = v_n \times 0,92.$$

Exercice 54 1. Pour diminuer un nombre de 10 %, il faut le multiplier par 0,90. Sachant cela, il est agréable de présenter la solution avec le schéma:

Calculs utiles:

 $270 \times 0,90 = 243$ $243 \times 0,90 \approx 219$

- 2. La suite p est géométrique de raison q = 0,90.
- 3. La relation de récurrence est

$$p_{n+1} = p_n \times 0,90.$$

4. La formule à entrer dans la cellule C2 est

$$=B2*0,90$$

5. L'année 2021 est l'année n°20. On étire donc vers la droite jusqu'à la colonne V :

	Α	В	С	D	•••	U	V
1	n	0	1	2	• • • •	19	20
2	p_n	270	243	219	•••	36	33

Conclusion: suivant ce modèle, on prévoit 33 pies en 2021.

Remarque: On peut s'en sortir sans le tableur, avec le calcul

$$270 \times 0.90 \times 0.90 \times \cdots \times 0.90 = 270 \times 0.90^{20} \approx 33.$$

Exercice 55 1. Pour davantage de clarté, on laissera apparentes les unités de volume (mL).

• w_0 est la quantité initiale de médicament :

$$w_0 = 10 \text{ mL}.$$

• À la fin de la 1^{re} minute, on a perdu 20 % du médicament (multiplication par 0,80), il en reste donc

$$10 \times 0.80 = 8 \text{ mL}.$$

On en injecte alors 1 mL, on obtient ainsi

$$w_1 = 8 + 1 = 9 \text{ mL}.$$

• À la fin de la 2e minute, on a de nouveau perdu 20 % du médicament, donc il en reste

$$9 \times 0.80 = 7.2 \text{ mL}.$$

On en injecte alors 1 mL; il vient donc

$$w_2 = 7, 2 + 1 = 8, 2 \text{ mL}.$$

• Cela continue ainsi de suite. Pour calculer w_3 , on peut faire les deux opérations en une seule étape :

$$w_3 = 7,2 \times 0,80 + 1 = 6,76$$
 mL.

Comme d'habitude, il est agréable d'utiliser un schéma :

2. La relation de récurrence est

$$w_{n+1} = w_n \times 0,80 + 1.$$

3. On entre les formules

et

$$=B2*0,80+1$$

dans les cellules C1 et C2, puis on étire vers la droite :

	A	В	С	•••
1	Minutes	0	=B1+1	
2	Volume (en mL)	10	=B2*0,80+1	•••

On constate que le volume se stabilise à 5 mL sur le long terme (il est toujours légèrement supérieur à 5, mais semble s'en rapprocher). Voici ce que l'on obtient si l'on affiche trois chiffres après la virgule :

	A	•••	AF	•••	AP	•••	AZ
1	Minutes	•••	30	•••	40	•••	50
2	Volume (en	•••	5,006	•••	5,001	•••	5,000
	mL)						

Exercice 56 Une suite v est définie par $v_0 = 4$ et la relation de récurrence

$$\nu_{n+1}=2\nu_n+2$$

pour tout entier naturel n.

1.

$$v_0 = 4$$

$$v_1=2\times 4+2=10$$

$$v_2 = 2 \times 10 + 2 = 22$$
.

2. Avec un schéma:

Les résultats en rouge (6 et 12) sont différents, donc u n'est pas arithmétique.

Les résultats en vert (2,5 et 2,2) sont différents, donc u n'est pas géométrique.

$$10-4=6$$
, $22-10=12$.

 $10 \div 4 = 2, 5,$

 $22 \div 10 = 2.2$.

Exercice 57 Une suite u est définie par $u_0 = 2$ et la relation de récurrence

$$u_{n+1} = 3u_n - 1$$

pour tout entier naturel n.

1.

$$u_0 = 2$$

$$u_1 = 3 \times 2 - 1 = 5$$

$$u_2 = 3 \times 5 - 1 = 14$$
.

2. Avec un schéma:

Les résultats en rouge (3 et 9) sont différents, donc u n'est pas arithmétique.

Les résultats en vert (2,5 et 2,8) sont différents, donc u n'est pas géométrique.

Calculs utiles:

5-2=3,

14 - 5 = 9.

 $5 \div 2 = 2, 5,$

 $14 \div 5 = 2,8$.

Exercice 58 Le 01/01/2019, on emprunte 10 000 € à la banque au taux d'intérêt mensuel de 2 %. A chaque fin de mois on rembourse 300 €. On voudrait savoir en combien de temps on remboursera le crédit et calculer la somme totale remboursée à la banque.

Comment ça marche?...

Le 01/01/2019 on emprunte 10 000 € au taux d'intérêt de 2 %, donc à la fin du mois de janvier 2019 la somme à rembourser est passée à

$$10000 \times 1,02 = 10200 \in$$
.

A ce moment on rembourse 300 €, donc le 01/02/2019 il reste à rembourser

$$10200 - 300 = 9900 \in$$
.

On note u_n la somme restant à rembourser le 1^{er} jour du n^e mois (en convenant que janvier 2019 est le mois 0, février 2019 le mois 1, etc.). On a donc $u_0 = 10000$ et $u_1 = 9900$.

1. On complète le schéma ci-dessous pour calculer les termes u_1 et u_2 . Les sommes écrites dans chaque case sont les sommes restant à rembourser aux dates indiquées.

Pour passer d'un terme de la suite au terme suivant, on multiplie par 1,02 (ajout des intérêts) puis on retranche 300 (remboursement mensuel). On peut donc continuer plus rapidement :

$$u_3 = 9798 \times 1,02 - 300 = 9693,96$$
 (somme à rembourser le 01/04/19),
 $u_4 = 9693,96 \times 1,02 - 300 = 9587,84$ (somme à rembourser le 01/05/19).

2. La formule de récurrence est

$$u_{n+1} = u_n \times 1,02 - 300.$$

3. On entre les formules

=B1+1

et

$$=B2*1,02-300$$

dans les cellules C1 et C2, puis on étire vers la droite :

	A	В	С	•••
1	Nombre de mois	0	=B1+1	•••
2	Reste à rembourser	10000	=B2*1,02-300	•••

On continue jusqu'à ce que la somme à rembourser soit nulle. En réalité, au bout d'un moment, elle est négative :

	A	•••	BD	BE	BF
1	Nombre de mois	•••	54	55	56
2	Reste à rembourser	•••	432,69	141,35	-155,83

À la fin du 55^e fois, il reste 141,35 € à rembourser; et si on rembourse 300 € au début du 56^e mois, la banque nous devra 155,83 €.

Conclusion:

- le crédit dure 56 mois;
- on rembourse 56 fois 300 €, mais à la fin on a dépassé de 155,83 € ce que l'on devait à la banque;
- · la somme totale remboursée est donc

$$56 \times 300 - 155,83 = 16664,17 \in$$
;

• le « coût du crédit » est la différence entre ce que l'on a remboursé et ce que la banque nous a prêté :

Coût du crédit = Somme remboursée - Somme empruntée = 16664,17 - 10000 = 6664,17 €.

Exercice 59 1. (a) Chaque année, le nombre de poissons diminue de 5 % (multiplication par 0,95), donc

$$v_0 = 12840$$

 $v_1 = 12840 \times 0,95 = 12198$
 $v_2 = 12198 \times 0,95 \approx 11588.$

La suite v est géométrique de raison q = 0,95.

(b) En 2025 (donc au bout de 7 ans), l'aquarium contiendra

$$12840 \times 0.95 \times 0.95 \times 0.95 \times 0.95 = 12840 \times 0.95^7 \approx 8967 \text{ poissons.}$$

Il ne sera donc plus attractif (moins de 9 000 poissons).

2. (a) Chaque année, le nombre de poissons diminue de 5 %, puis 400 nouveaux poissons sont ajoutés pour compenser. On utilise un schéma pour calculer le nombre de poissons début 2018 et début 2019.

Conclusion : $u_1 = 12598$ et $u_2 = 12368$.

(b) La formule de récurrence pour la suite *u* est

$$u_{n+1} = u_n \times 0,95 + 400.$$

(c) On entre les formules

$$=B1+1$$

et

dans les cellules C1 et C2, puis on étire vers la droite :

	A	В	С	•••
1	Années	2018	=B1+1	•••
2	Nombre de poissons	12840	=B2*0,95+400	•••

On obtient:

	A	В	С	•••	I
1	Années	2018	2019	•••	2025
2	Nombre de poissons	12840	12198	•••	11380

Conclusion: il y aura 11 380 poissons dans l'aquarium en 2025.

9 Dérivation et variations des fonctions du 3e degré

Exercice 60 On considère la fonction f définie sur [-2;3] par

$$f(x) = x^3 - 1,5x^2 - 6x + 2.$$

1.

$$f'(x) = 3x^2 - 1, 5 \times 2x - 6 \times 1 + 0 = 3x^2 - 3x - 6.$$

Pour prouver que

$$f'(x) = (3x+3)(x-2),$$

on développe et on réduit le membre de droite :

$$(3x+3)(x-2) = 3x \times x + 3x \times (-2) + 3 \times x + 3 \times (-2)$$
$$= 3x^2 - 6x + 3x - 6$$
$$= 3x^2 - 3x - 6.$$

On retombe bien sur l'expression de f'(x) obtenue ci-dessus.

2. On étudie le signe de f'(x) = (3x+3)(x-2).

$$3x+3=0$$

$$3x+3-3=0-3$$

$$\frac{3}{3}x=\frac{-3}{3}$$

$$x=-1$$

$$a=3 \operatorname{donc} - \phi +$$

$$x-2=0$$

$$x-2+2=0+2$$

$$x=2$$

x	-2	-1		2		3
3x + 3	_	0	+		+	
x - 2	_		_	0	+	
f'(x)	+	0	_	0	+	
f(x)	0	5.5		-8		-2.5

Remarque : Pour compléter l'extrémité des flèches, on demande un tableau de valeurs pour f sur [-2;3] avec un pas de 1 et on ne prend en compte que les valeurs x = -2, x = -1, x = 2 et x = 3.

Exercice 61 On considère la fonction g définie sur [0;5] par

$$g(x) = -0.5x^3 + 3.75x^2 - 6x + 1.$$

1.

$$g'(x) = -0.5 \times 3x^2 + 3.75 \times 2x - 6 \times 1 + 0 = -1.5x^2 + 7.5x - 6.$$

Pour prouver que

$$g'(x) = (-3x+3)(0,5x-2),$$

on développe et on réduit le membre de droite :

$$(-3x+3)(0,5x-2) = (-3x) \times 0,5x + (-3x) \times (-2) + 3 \times 0,5x + 3 \times (-2)$$
$$= -1,5x^2 + 6x + 1,5x - 6$$
$$= -1,5x^2 + 7,5x - 6.$$

On retombe bien sur l'expression de g'(x) obtenue ci-dessus.

2. On étudie le signe de g'(x) = (-3x+3)(0,5x-2).

$$\begin{array}{lll}
-3x + 3 &= 0 & 0,5x - 2 &= 0 \\
-3x + 3 &= 3 & 0,5x - 2 &= 0 \\
3x &= \frac{-3}{3} &= \frac{-3}{-3} & \frac{2}{95} &= \frac{2}{0.5} \\
x &= 1 & a &= -3 \operatorname{donc} + \phi &= 0,5 \operatorname{donc} - \phi &= 0
\end{array}$$

x	0	1		4		5
-3x + 3	+	0	_		-	
0.5x - 2	_		_	0	+	
g'(x)	_	0	+	0	-	
g(x)	1	-1.75		5		2.25

Exercice 62 On considère la fonction f définie sur [5;20] par

$$f(x) = x^3 - 24x^2 + 180x + 250.$$

1.

$$f'(x) = 3x^2 - 24 \times 2x + 180 \times 1 + 0 = 3x^2 - 48x + 180.$$

Pour prouver que

$$f'(x) = (x-10)(3x-18),$$

on développe et on réduit le membre de droite :

$$(x-10)(3x-18) = x \times 3x + x \times (-18) + (-10) \times 3x + (-10) \times (-18)$$
$$= 3x^2 - 18x - 30x + 180$$
$$= 3x^2 - 48x + 180.$$

On retombe bien sur l'expression de f'(x) obtenue ci-dessus.

2. On étudie le signe de f'(x) = (x - 10)(3x - 18).

$$x - 10 = 0$$

$$x - \cancel{\cancel{10}} + \cancel{\cancel{10}} = 0 + 10$$

$$x = 10$$

$$3x - \cancel{\cancel{10}} + \cancel{\cancel{10}} = 0 + 18$$

$$\frac{\cancel{\cancel{10}} x}{\cancel{\cancel{10}} = 1}$$

$$3x - 18 = 0$$

$$3x - \cancel{\cancel{10}} = 0 + 18$$

$$\frac{\cancel{\cancel{10}} x}{\cancel{\cancel{10}} = 1}$$

$$x = 6$$

$$a = 3 \operatorname{donc} - \phi +$$

x	5	6		10		20
x - 10	_		_	0	+	
3x - 18	-	0	+		+	
f'(x)	+	0	_	0	+	
f(x)	675	682		650		2250

3. On voit dans le tableau de variations que la fonction f atteint son minimum pour x = 10, donc il faut fabriquer 10000 emballages pour minimiser le coût – le coût minimal est alors de 650 \in .

Exercice 63 On considère la fonction c définie sur [0;6] par

$$c(x) = x^3 - 12x^2 + 36x.$$

1.

$$c'(x) = 3x^2 - 12 \times 2x + 36 \times 1 - 0 = 3x^2 - 24x + 36.$$

Pour prouver que

$$c'(x) = (3x-6)(x-6),$$

on développe et on réduit le membre de droite :

$$(3x-6)(x-6) = 3x \times x + 3x \times (-6) + (-6) \times x + (-6) \times (-6)$$
$$= 3x^2 - 18x - 6x + 36$$
$$= 3x^2 - 24x + 36.$$

On retombe bien sur l'expression de c'(x) obtenue ci-dessus.

2. On étudie le signe de c'(x) = (3x-6)(x-6).

$$3x-6=0$$

$$3x-\cancel{6}+\cancel{6}=0+6$$

$$\frac{\cancel{3}x}{\cancel{3}} = \frac{6}{3}$$

$$x=2$$

$$a=3 \operatorname{donc} \boxed{-\varphi+}$$

$$x-6=0$$

$$x-\cancel{6}+\cancel{6}=0+6$$

$$x=6$$

$$x=6$$

x	0		2		6
3x-6		-	0	+	
x - 6		-		_	0
c'(x)		+	0	-	0
c(x)	0		32		0

Remarque: Comme le tableau « se termine à x = 6 », il n'y a pas de « + » sur la ligne de x - 6.

3. D'après le tableau de variations, la concentration est maximale après 2 h; elle vaut alors $32 \text{ mg}/\ell$.

Exercice 64 Partie A - Étude des charges

- 1. $C(9) = 2 \times 9^3 23 \times 9^2 + 90 \times 9 + 10 = 415$, donc lorsque l'entreprise produit 9 kilogrammes de safran, le montant des charges est de 415 000 € (confirmation avec les pointillés bleus).
- 2. Pour que le montant des charges soit égal à 200 000 euros, il faut produire 7 kg de safran environ (pointillés rouges).

Partie B - Étude du bénéfice

L'entreprise vend la totalité de sa production. Chaque kilogramme de safran est vendu au prix de 50 milliers d'euros.

1. Chaque kg est vendu 50 milliers d'euros, donc x kg sont vendus $50 \times x$ milliers d'euros. On a donc

$$R(x) = 50x.$$

2. Le bénéfice B(x), en milliers d'euros, réalisé pour la vente de x kilogrammes de safran est :

$$B(x) = \text{Recette} - \text{Coûts}$$

$$= 50x - (2x^3 - 23x^2 + 90x + 10)$$

$$= 50x - 2x^3 + 23x^2 - 90x - 10$$

$$= -2x^3 + 23x^2 - 40x - 10.$$

3.

$$B'(x) = -2 \times 3x^2 + 23 \times 2x - 40 \times 1 - 0 = -6x^2 + 46x - 40.$$

Pour prouver que

$$B'(x) = (2x-2)(-3x+20),$$

on développe et on réduit le membre de droite :

$$(2x-2)(-3x+20) = 2x \times (-3x) + 2x \times 20 + (-2) \times (-3x) + (-2) \times 20$$
$$= -6x^2 + 40x + 6x - 40$$
$$= -6x^2 + 46x - 40.$$

On retombe bien sur l'expression de B'(x) obtenue ci-dessus.

4. On étudie le signe de B'(x) = (2x-2)(-3x+20).

$$2x-2=0$$

$$2x-2+2=0+2$$

$$\frac{2x}{2}=\frac{2}{2}$$

$$x=1$$

$$a=2 \operatorname{donc} - \phi +$$

$$-3x+20=0$$

$$-3x+20-20=0-20$$

$$\frac{2x}{3}=\frac{-20}{-3}$$

$$x=\frac{20}{3}$$

$$a=-3 \operatorname{donc} + \phi -$$

x	0	1		<u>20</u> 3		10
2x-2	_	0	+		+	
-3x + 20	+		+	0	-	
B'(x)	_	0	+	0	_	
B(x)						*

 $5. \ \ On \ calcule \ l'image \ aux \ extrémités \ des \ deux \ flèches \ hautes:$

$$B(0) = -2 \times 0^3 + 23 \times 0^2 - 10 \times 0 - 10 = -10$$
 (on a une perte quand on ne produit rien)

$$B\left(\frac{20}{3}\right) = -2 \times \left(\frac{20}{3}\right)^3 + 23 \times \left(\frac{20}{3}\right)^2 - 10 \times \left(\frac{20}{3}\right) - 10 \approx 153$$

Conclusion : pour maximiser le bénéfice, l'entreprise doit produire $\left(\frac{20}{3}\right)$ kg, soit environ 6,67 kg; elle fait alors un bénéfice de 153 milliers d'euros environ.

10 Variables aléatoires

Exercice 65 1. Il y a 8 pièces en tout dans le porte-monnaie : 2 de 0,50 \in , 3 de 1 \in et 3 de 2 \in . La loi de X est donc donnée par le tableau :

valeurs de X	0,5	1	2
probabilités	<u>2</u> 8	<u>3</u>	<u>3</u> 8

2. L'espérance de X est

$$E(X) = \frac{2}{8} \times 0.5 + \frac{3}{8} \times 1 + \frac{3}{8} \times 2 = 1.25.$$

3. Je suis gagnant, car l'espérance de gain est strictement plus grande que la mise :

J'ai donc intérêt à jouer.

Exercice 66 1. Lorsqu'on tire deux jetons représentant des visages, on gagne $5+5=10 \in$. Lorsqu'on en tire un seul, on gagne $5 \in$; et quand on n'en tire aucun, on ne gagne rien. On obtient donc le tableau avec les gains :

	¢	•	4	©	(3)
¢	0	0	0	5	5
•	0	0	0	5	5
7	0	0	0	5	5
©	5	5	5	10	10
3	5	5	5	10	10

2. Il y a 25 cases en tout dans le tableau : 9 oranges, 12 bleues et 4 rouges. La loi de Y est donc donnée par :

valeurs de Y	0	5	10
probabilités	<u>9</u> 25	12 25	$\frac{4}{25}$

3. L'espérance de Y est

$$E(Y) = \frac{9}{25} \times 0 + \frac{12}{25} \times 5 + \frac{4}{25} \times 10 = 4.$$

L'espérance de gain est égale à la mise (4 €), donc le jeu est équitable : ni le joueur, ni l'organisateur du jeu n'est avantagé.

Exercice 67 1. S est la somme des deux numéros tirés. Il suffit donc de compléter la table d'addition :

+		SA	SAC ROUGE			
		1	2	3		
1	1	2	3	4		
SAC BLEU	3	4	5	6		
SAC	5	6	7	8		

2. Il y a 9 cases dans le tableau : les 2, 3, 5, 7, 8 apparaissent 1 fois ; le 4 et le 6 apparaissent 2 fois. La loi de *S* est donc donnée par :

valeurs de S	2	3	4	5	6	7	8
probabilités	$\frac{1}{9}$	$\frac{1}{9}$	<u>2</u>	$\frac{1}{9}$	<u>2</u>	19	19

3. L'espérance de S est

$$E(S) = \frac{1}{9} \times 2 + \frac{1}{9} \times 3 + \frac{2}{9} \times 4 + \frac{1}{9} \times 5 + \frac{2}{9} \times 6 + \frac{1}{9} \times 7 + \frac{1}{9} \times 8 = \frac{2}{9} + \frac{3}{9} + \frac{8}{9} + \frac{5}{9} + \frac{12}{9} + \frac{7}{9} + \frac{8}{9} = \frac{45}{9} = 5.$$

Exercice 68 1. On traduit les données de l'énoncé par un tableau d'effectif :

	VTT	VTT	Total
Escalade	6	9	15
Escalade	11	4	15
Total	17	13	30

- 2. (a) Les 6 élèves qui font les deux sports payent 30 + 50 = 80 €.
 - Les 9 élèves qui ne font que de l'escalade payent 50 €.
 - Les 11 élèves qui ne font que du VTT payent 30 €.
 - Les 4 élèves qui ne pratiquent aucun des deux sports payent 0 €.

On peut donc résumer la loi de X par le tableau :

valeurs de X	80	50	30	0
probabilités	<u>6</u> 30	9 30	11 30	$\frac{4}{30}$

(b) L'espérance de X est

$$E(X) = \frac{6}{30} \times 80 + \frac{9}{30} \times 50 + \frac{11}{30} \times 30 + \frac{4}{30} \times 0 = 42.$$

Cette espérance est le coût moyen payé par élève (en €).

Exercice 69 1. On traduit les données de l'énoncé par un tableau d'effectif :

	Aller en bateau	Aller en train	Total
Retour en bateau	10	10	20
Retour en train	8	12	20
Total	18	22	40

- 2. (a) Les 10 clients qui ont utilisé deux fois le bateau payent 40 + 40 = 80 €.
 - Les 10+8 = 18 clients qui ont utilisé deux moyens de transport différents payent 40+25 = 65 €.
 - Les 12 clients qui ont utilisé deux fois le train payent 25 + 25 = 50 €.

On peut donc résumer la loi de Z par le tableau :

valeurs de Z	80	65	50
probabilités	10 40	$\frac{18}{40}$	$\frac{12}{40}$

(b) L'espérance de Z est

$$E(Z) = \frac{10}{40} \times 80 + \frac{18}{40} \times 65 + \frac{12}{40} \times 50 = 64,25.$$

Cette espérance est le coût moyen payé par client (en €).

Exercice 70 1. On représente la situation par un arbre pondéré :

Remarques:

- \overline{D} signifie « Stephen Curry tire à 3 points ».
- On a indiqué à l'extrémité droite des branches le nombre de points marqués suivant la situation.
- 2. La probabilité que Stephen Curry tire à 2 points et marque est

$$P(D \cap M) = 0,53 \times 0,52 = 0,2756.$$

3. D'après la formule des probabilités totales, la probabilité que Stephen Curry marque est :

$$P(M) = P(D \cap M) + P(\overline{D} \cap M)$$

= 0.53 \times 0.52 + 0.47 \times 0.44 = 0.4824.

- 4. Les valeurs possibles de X sont 0, 2 et 3. Calculons les probabilités correspondantes :
 - la probabilité que Stéphane Curry marque 3 pts est

$$0,47 \times 0,44 = 0,2068$$
;

• la probabilité que Stéphane Curry marque 2 pts est

$$0,53 \times 0,52 = 0,2756$$

(on l'a déjà calculée dans la question 2);

• la probabilité que Stéphane Curry marque 0 pt est

$$0,53 \times 0,48 + 0,47 \times 0,56 = 0,5176.$$

Remarque: Pour le 3e calcul, on aurait pu utiliser le résultat de la question 3 et faire le calcul

$$1 - 0.4824 = 0.5176$$
.

On aurait aussi pu calculer

$$1 - 0,2068 - 0,2756 = 0,5176.$$

La loi de *X* est donc donnée par le tableau :

valeurs de X	3	2	0
probabilités	0,2068	0,2756	0,5176

5. L'espérance de X est

$$E(X) = 0.2068 \times 3 + 0.2756 \times 2 + 0.5176 \times 0 = 1.1716.$$

En moyenne, Stephen Curry marque 1,1716 point par tir.

Exercice 71

1. On construit un arbre pondéré en indiquant à droite le nombre de boules bleues tirées. On remarque que $\frac{3}{10} = 0.3$ et que $\frac{7}{10} = 0.7$.

Remarque : Les probabilités sont les mêmes sur toutes les branches (0,3/0,7), car on remet la 1^{re} boule dans l'urne avant de tirer la 2^e.

- 2. Les valeurs possibles de *X* sont 0, 1 et 2. Calculons les probabilités correspondantes :
 - la probabilité de tirer 2 boules bleues est

$$0,3 \times 0,3 = 0,09$$
;

• la probabilité de tirer 0 boule bleue est

$$0,7 \times 0,7 = 0,49$$
;

• la probabilité de tirer 1 boule bleue est

$$0,3 \times 0,7 + 0,7 \times 0,3 = 0,42.$$

La loi de *X* est donc donnée par le tableau :

valeurs de X	0	1	2
probabilités	0,49	0,42	0,09

3. L'espérance de X est

$$E(X) = 0,49 \times 0 + 0,42 \times 1 + 0,09 \times 2 = 0,6.$$

Exercice 72 1. On construit un arbre pondéré en indiquant à droite la masse de la dragée.

- 2. Les valeurs possibles de *X* sont 4 et 5. Calculons les probabilités correspondantes :
 - la probabilité de choisir une dragée bleue (donc de masse 5 g) est :

$$0,30 \times 0,40 + 0,70 \times 0,75 = 0,645$$
;

• la probabilité de choisir une dragée rose (donc de masse 4 g) est :

$$0,30 \times 0,60 + 0,70 \times 0,25 = 0,355.$$

La loi de *X* est donc donnée par le tableau :

valeurs de X	5	4
probabilités	0,645	0,355

Enfin, l'espérance de X est

$$E(X) = 0,645 \times 5 + 0,355 \times 4 = 4,645.$$

Remarque: La masse moyenne d'une dragée est de 4,645 g.

Exercice 73 1. On construit un arbre pondéré en indiquant à droite le prix du repas.

- 2. Les valeurs possibles de *X* sont 3 et 5. Calculons les probabilités correspondantes :
 - la probabilité de prendre le menu simple (et donc de payer 3 €) est :

$$0,30 \times 0,50 + 0,70 \times 0,60 = 0,57$$
;

• la probabilité de prendre le menu complet (et donc de payer 5 \in) est :

$$0.30 \times 0.50 + 0.70 \times 0.40 = 0.43$$
.

La loi de X est donc donnée par le tableau :

valeurs de X	3	5
probabilités	0,57	0,43

3. L'espérance de X est

$$E(X) = 0.57 \times 3 + 0.43 \times 5 = 3.86.$$

C'est le prix moyen payé par repas.

Exercice 74 1. On représente la situation par un arbre pondéré, avec de gauche à droite le résultat du 1^{er} lancer, du 2^e et du 3^e. On note 4 pour « le dé tombe sur 4 », et ∮ pour l'événement contraire. À chaque lancer, la probabilité d'obtenir 4 est ¼, donc les probabilités sont les mêmes sur toutes les branches (¼ / ¾). Enfin, on travaille avec des fractions pour éviter d'avoir des résultats avec 6 chiffres après la virgule.

On a indiqué le nombre de 4 obtenus à l'extrémité droite de l'arbre, avec une couleur différente en fonction de la réponse. Par exemple, lorsqu'on suit le chemin tout en haut, on obtient 4 au 1^{er}, au 2^e et au 3^e lancers, d'où l'indication <mark>on a 3 fois le 4</mark> en haut à droite.

- 2. Les valeurs possibles de X sont 0, 1, 2 et 3. Calculons les probabilités correspondantes :
 - la probabilité d'obtenir 3 fois le 4 est :

$$\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{64}$$
;

• la probabilité d'obtenir 2 fois le 4 est :

$$\frac{1}{4} \times \frac{1}{4} \times \frac{3}{4} + \frac{1}{4} \times \frac{3}{4} \times \frac{1}{4} + \frac{3}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{3}{64} + \frac{3}{64} + \frac{3}{64} = \frac{9}{64}$$
;

• la probabilité d'obtenir 1 fois le 4 est :

$$\frac{1}{4} \times \frac{3}{4} \times \frac{3}{4} + \frac{3}{4} \times \frac{1}{4} \times \frac{3}{4} + \frac{3}{4} \times \frac{3}{4} \times \frac{1}{4} = \frac{9}{64} + \frac{9}{64} + \frac{9}{64} = \frac{27}{64}$$
;

• la probabilité d'obtenir 0 fois le 4 est :

$$\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} = \frac{27}{64}$$
.

La loi de *X* est donc donnée par le tableau :

valeurs de X	3	2	1	0
probabilités	$\frac{1}{64}$	<u>9</u> 64	27 64	27 64

3. L'espérance de X est

$$\frac{1}{64} \times 3 + \frac{9}{64} \times 2 + \frac{27}{64} \times 1 + \frac{27}{64} \times 0 = \frac{3}{64} + \frac{18}{64} + \frac{27}{64} = \frac{48}{64} = 0,75.$$

11 Évolutions successives

Exercice 75 1. 100 % - 10 % = 90 % = 0,90 et 100 % + 20 % = 120 % = 1,20, d'où le schéma :

N.B. On obtient les prix 2017 et 2018 en faisant les calculs :

$$85 \times 0,90 = 76,5,$$

 $76,5 \times 1,20 = 91,8.$

2. Pour calculer le taux d'évolution global entre 2016 et 2018, on complète le schéma :

 $91,8 \div 85 = 1,08 = 108 \%$, donc le taux d'évolution des prix entre 2016 et 2018 est +8 %

N.B. On peut obtenir la réponse plus rapidement en faisant le calcul $0.90 \times 1.20 = 1.08$.

Exercice 76 Le tableau ci-dessous donne le prix moyen de l'eau en France entre 2008 et 2010 (Source: ONSEA).

Année	2008	2009	2010
Prix (en €/m³)	1,82		
Taux d'évolution		+5,50 %	+7,81 %

1. Rappelons que 10 cm=1 dm; et que la définition du litre est :

$$1 \ell = 1 \, dm^3$$
.

Autrement dit, un litre est le volume d'un cube qui mesure 1 dm sur 1 dm, ou encore 10 cm sur 10 cm sur 10 cm (la figure ci-dessous n'est bien sûr pas à l'échelle).

Dans 1 m³, on met 10 petits cubes comme celui ci-dessus en largeur, 10 en profondeur et 10 en hauteur, donc

$$1 \text{ m}^3 = 10 \times 10 \times 10 = 1000 \ \ell.$$

On peut aussi se souvenir du tableau de conversion présenté au collège :

m ³			$dm^3 = \ell$
1	0	0	0

2. 100 % + 5,50 % = 105,50 % = 1,055 et 100 % + 7,81 % = 107,81 % = 1,0781 donc pour obtenir le prix du m³ en 2009 et en 2010, on complète le schéma :

N.B. On obtient les prix 2009 et 2010 en faisant les calculs :

$$1,82 \times 1,055 \approx 1,92,$$

 $1,92 \times 1,0781 \approx 2,07.$

On obtient finalement le tableau:

Année	2008	2009	2010
Prix (en €/m³)	1,82	1,92	2,07
Taux d'évolution		+5,50 %	+7,81 %

3. Pour déterminer le taux d'évolution global entre 2008 et 2010, on complète le schéma :

 $2,07 \div 1,82 \approx 1,1374 = 113,74$ %, donc le taux d'évolution du prix entre 2008 et 2010 est +13,74 %

Exercice 77 1. Partons de la valeur 100 et faisons le schéma habituel, sachant qu'une hausse de 16 % revient à faire une multiplication par 1,16 :

Pour déterminer le deuxième taux d'évolution, on calcule :

$$??? = 100 \div 116 \approx 0.8621 = 86.21 \%.$$

Or 100% - 86,21% = 13,79%, donc la hausse de 16% est compensée par une baisse de 13,79% environ.

2. On fait à nouveau un schéma, sachant que 100 % – 36 % = 64 % = 0,64 :

??? = 100 ÷ 64 = 1,5625 = 156,25 %, donc la baisse de 36 % est compensée par une hausse de 56,25 %.

Exercice 78 • On cherche le taux réciproque de +60 %. 100 % + 60 % = 160 % = 1,60, d'où le schéma :

 $??? = 100 \div 160 = 0,625 = 62,5 \%$, et comme 100 % - 62,5 % = 37,5 %, le taux réciproque de +60 % est -37,5 %.

• On cherche le taux réciproque de -15 %.

100 % - 15 % = 85 % = 0,85, d'où le schéma :

Valeur initiale

Après la baisse

Retour à la valeur initiale

??? = $100 \div 85 \approx 1,1765 = 117,65 \%$, donc le taux réciproque de −15 % est +17,65 % environ.

• On cherche le taux réciproque de -50 %. 100 % -50 % = 50 % = 0,50, d'où le schéma :

Valeur initiale

Après la baisse

Retour à la valeur initiale

 $??? = 100 \div 50 = 2 = 200 \%$. Or 200 % = 100 % + 100 %, donc le taux réciproque de -50 % est +100 %.

Remarque: Augmenter un nombre de 100 % revient à le multiplier par 2.

Exercice 79 On cherche le taux moyen:

D'après le schéma, $0.84 = 0.80 \times x \times x$, soit $0.84 = 0.80 \times x^2$.

On résout cette équation :

$$\frac{0.80x^2}{0.80} = \frac{0.84}{0.80}$$

$$x^2 = 1,05$$

$$x = \sqrt{1,05} \approx 1,0247.$$

Conclusion: à chaque étape on a multiplié par 1,0247, donc le taux d'évolution moyen est +2,47 %.

Exercice 80 On cherche le taux moyen:

D'après le schéma, $1,78 = 1,35 \times x \times x$, soit $1,78 = 1,35 \times x^2$.

On résout cette équation :

$$\frac{1.35x^2}{1.35} = \frac{1.78}{1.35}$$

$$x^2 \approx 1.3185$$

$$x = \sqrt{1,3185} \approx 1,1483.$$

Conclusion: à chaque étape on a multiplié par 1,1483, donc le taux d'évolution moyen est +14,83 %.

Exercice 81 Cette fois, il s'agit de l'évolution sur 3 ans :

D'après le schéma, $234475 = 232440 \times x \times x \times x$, soit $234475 = 232440 \times x^3$. On résout cette équation :

$$\frac{232440x^3}{232440} = \frac{234475}{232440} \qquad x^3 \approx 1,0088.$$

De même que la racine carrée permet « d'éliminer les carrés », la racine cubique (touche $\sqrt[3]{}$ située juste au-dessus de $\sqrt[3]{}$ sur la calculatrice collège) permet d'éliminer les cubes :

$$x \approx \sqrt[3]{1,0088} \approx 1,0029.$$

Conclusion : à chaque étape on a multiplié par 1,0029, donc le taux d'évolution moyen est +0,29 %.