

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Carry-lookahead and Prefix adders - 1

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Carry-lookahead and Prefix adders - 1

Reetinder Sidhu

Department of Computer Science and Engineering

CARRY-LOOKAHEAD AND PREFIX ADDERS - 1

Course Outline

- Digital Design
 - Combinational logic design
 - Sequential logic design
 - Carry-lookahead and Prefix adders 1
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

- Adder Performance Evaluation
- Carry-Lookahead Adder

CARRY-LOOKAHEAD AND PREFIX ADDERS - 1

Preliminaries

- We evaluate the preformance of various adder types by estimating their area and time requirements
 - Area is estimated by number of logic gates required
 - Time is estimated based on critical path delay
- We assume that all two input AND, OR and XOR gates:
 - Occupy area a_g
 - ightharpoonup Have a propagation delay t_g
 - Somewhat simplifying, but realistic assumption
- How about gates with more than two inputs? For a k-input AND/OR/XOR gate:
 - ▶ Its area is estimated to be $(k-1)a_g$
 - \star Since a k input AND/OR/XOR can be constructed using k-1 two input gates of the type
 - ▶ Its propagation delay is estimated to be $\lceil (\log_2 k) \rceil t_d$
 - \star Shortest delay above obtained when the k-1 gates are arranged in a "tree-like" fashion
- No inverters in adder designs considered
 - ▶ If present, can be ignored in initial analysis

CARRY-LOOKAHEAD AND PREFIX ADDERS - 1 Ripple Carry Adder Area and Time

- Area requirements:
 - Each full adder contains five two input gates (for carry) and one three input gate (for sum)
 - ▶ So each full adder occupies $7a_g$ area
- An n-bit ripple carry adder thus occupies 7nag area

- Time requirements: For an n-bit ripple carry adder, critical path delay is composed of:
 - ▶ Propagation delay from c_0 to c_{n-1}
 - ★ Signal passes through two gates in each of the n − 1 stages
 - ★ $2(n-1)t_g$ time required
 - Sum computation
 - ★ 2t_g time required for three input XOR gate
- An n-bit ripple carry adder thus occupies $2nt_g$ time

CARRY-LOOKAHEAD AND PREFIX ADDERS - 1 The Carry Chain Problem

- Time requirement for addition increases linearly with number of bits to be added
 - ▶ If 16-bit addition requires x time, 64-bit addition will require 4x time
- Same for subtraction, increment and decrement
- For such a fundamental operation faster solutions are required
- Speed can be improved by eliminating the carry chain

• Compute carry (c_i) directly from inputs $(a_i \text{ and } b_i)$:

- Compute carry (c_i) directly from inputs $(a_i \text{ and } b_i)$:
 - $c_1 = a_0b_0 + b_0c_0 + c_0a_0$

- Compute carry (c_i) directly from inputs $(a_i \text{ and } b_i)$:
 - $c_1 = a_0b_0 + b_0c_0 + c_0a_0 = a_0b_0 + (a_0 + b_0)c_0$

- Compute carry (c_i) directly from inputs $(a_i \text{ and } b_i)$:
 - $c_1 = a_0b_0 + b_0c_0 + c_0a_0 = a_0b_0 + (a_0 + b_0)c_0$
 - $c_2 = a_1b_1 + (a_1 + b_1)c_1$

- Compute carry (c_i) directly from inputs $(a_i \text{ and } b_i)$:
 - $c_1 = a_0b_0 + b_0c_0 + c_0a_0 = a_0b_0 + (a_0 + b_0)c_0$
 - $c_2 = a_1b_1 + (a_1 + b_1)c_1$ $= a_1b_1 + (a_1 + b_1)(a_0b_0 + (a_0 + b_0)c_0)$

- Compute carry (c_i) directly from inputs $(a_i \text{ and } b_i)$:
 - $c_1 = a_0b_0 + b_0c_0 + c_0a_0 = a_0b_0 + (a_0 + b_0)c_0$
 - $c_2 = a_1b_1 + (a_1 + b_1)c_1$ $= a_1b_1 + (a_1 + b_1)(a_0b_0 + (a_0 + b_0)c_0)$ $= a_1b_1 + (a_1 + b_1)a_0b_0 + (a_1 + b_1)(a_0 + b_0)c_0$

- Compute carry (c_i) directly from inputs $(a_i \text{ and } b_i)$:
 - $c_1 = a_0b_0 + b_0c_0 + c_0a_0 = a_0b_0 + (a_0 + b_0)c_0$
 - $c_2 = a_1b_1 + (a_1 + b_1)c_1$ $= a_1b_1 + (a_1 + b_1)(a_0b_0 + (a_0 + b_0)c_0)$ $= a_1b_1 + (a_1 + b_1)a_0b_0 + (a_1 + b_1)(a_0 + b_0)c_0$
- Lots of terms of type a_ib_i and $(a_i + b_i)$. So to make the formulas simpler, we substitute:

- Compute carry (c_i) directly from inputs $(a_i \text{ and } b_i)$:
 - $c_1 = a_0b_0 + b_0c_0 + c_0a_0 = a_0b_0 + (a_0 + b_0)c_0$
 - $c_2 = a_1b_1 + (a_1 + b_1)c_1$ $= a_1b_1 + (a_1 + b_1)(a_0b_0 + (a_0 + b_0)c_0)$ $= a_1b_1 + (a_1 + b_1)a_0b_0 + (a_1 + b_1)(a_0 + b_0)c_0$
- Lots of terms of type a_ib_i and $(a_i + b_i)$. So to make the formulas simpler, we substitute:
 - $ightharpoonup g_i = a_i b_i$
 - $\triangleright p_i = a_i + b_i$

• Compute carry (c_i) directly from inputs $(a_i \text{ and } b_i)$:

$$c_1 = a_0b_0 + b_0c_0 + c_0a_0 = a_0b_0 + (a_0 + b_0)c_0$$

$$c_2 = a_1b_1 + (a_1 + b_1)c_1$$

$$= a_1b_1 + (a_1 + b_1)(a_0b_0 + (a_0 + b_0)c_0)$$

$$= a_1b_1 + (a_1 + b_1)a_0b_0 + (a_1 + b_1)(a_0 + b_0)c_0$$

• Lots of terms of type a_ib_i and $(a_i + b_i)$. So to make the formulas simpler, we substitute:

$$ightharpoonup g_i = a_i b_i$$

$$\triangleright p_i = a_i + b_i$$

- Above substitution yields:
 - $c_1 = g_0 + p_0 c_0$

- Compute carry (c_i) directly from inputs $(a_i \text{ and } b_i)$:
 - $c_1 = a_0b_0 + b_0c_0 + c_0a_0 = a_0b_0 + (a_0 + b_0)c_0$
 - $c_2 = a_1b_1 + (a_1 + b_1)c_1$ $= a_1b_1 + (a_1 + b_1)(a_0b_0 + (a_0 + b_0)c_0)$ $= a_1b_1 + (a_1 + b_1)a_0b_0 + (a_1 + b_1)(a_0 + b_0)c_0$
- Lots of terms of type a_ib_i and $(a_i + b_i)$. So to make the formulas simpler, we substitute:
 - $ightharpoonup g_i = a_i b_i$
 - $\triangleright p_i = a_i + b_i$
- Above substitution yields:
 - $c_1 = g_0 + p_0 c_0$
 - $c_2 = g_1 + p_1g_0 + p_1p_0c_0$

• Compute carry (c_i) directly from inputs $(a_i \text{ and } b_i)$:

$$c_1 = a_0b_0 + b_0c_0 + c_0a_0 = a_0b_0 + (a_0 + b_0)c_0$$

$$c_2 = a_1b_1 + (a_1 + b_1)c_1$$

$$= a_1b_1 + (a_1 + b_1)(a_0b_0 + (a_0 + b_0)c_0)$$

$$= a_1b_1 + (a_1 + b_1)a_0b_0 + (a_1 + b_1)(a_0 + b_0)c_0$$

• Lots of terms of type a_ib_i and $(a_i + b_i)$. So to make the formulas simpler, we substitute:

$$ightharpoonup g_i = a_i b_i$$

$$\triangleright p_i = a_i + b_i$$

Above substitution yields:

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1g_0 + p_1p_0c_0$$

$$c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$$

• Compute carry (c_i) directly from inputs $(a_i \text{ and } b_i)$:

$$c_1 = a_0b_0 + b_0c_0 + c_0a_0 = a_0b_0 + (a_0 + b_0)c_0$$

$$c_2 = a_1b_1 + (a_1 + b_1)c_1$$

$$= a_1b_1 + (a_1 + b_1)(a_0b_0 + (a_0 + b_0)c_0)$$

$$= a_1b_1 + (a_1 + b_1)a_0b_0 + (a_1 + b_1)(a_0 + b_0)c_0$$

• Lots of terms of type a_ib_i and $(a_i + b_i)$. So to make the formulas simpler, we substitute:

$$ightharpoonup g_i = a_i b_i$$

$$ightharpoonup p_i = a_i + b_i$$

Above substitution yields:

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

$$c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$$

$$c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$$

CARRY-LOOKAHEAD AND PREFIX ADDERS - 1 4-bit Carry-Lookahead Adder

4-bit Carry-Lookahead Adder

- All gates mentioned below are two input gates
- From the carry formulas, we see that for a carry-lookahead adder:

- All gates mentioned below are two input gates
- From the carry formulas, we see that for a carry-lookahead adder:
 - For c_1 4 gates are required

- All gates mentioned below are two input gates
- From the carry formulas, we see that for a carry-lookahead adder:
 - \triangleright For c_1 4 gates are required
 - ▶ For c_i number of gates required is 2i + 2 greater than gates required for c_{i-1}

- All gates mentioned below are two input gates
- From the carry formulas, we see that for a carry-lookahead adder:
 - \triangleright For c_1 4 gates are required
 - ▶ For c_i number of gates required is 2i + 2 greater than gates required for c_{i-1}
 - ▶ So i(i + 3) gates are required for c_1 to c_i

- All gates mentioned below are two input gates
- From the carry formulas, we see that for a carry-lookahead adder:
 - \triangleright For c_1 4 gates are required
 - For c_i number of gates required is 2i + 2 greater than gates required for c_{i-1}
 - ▶ So i(i + 3) gates are required for c_1 to c_i
 - Each three input XOR gate (for sum) would count as two gates

- All gates mentioned below are two input gates
- From the carry formulas, we see that for a carry-lookahead adder:
 - \triangleright For c_1 4 gates are required
 - For c_i number of gates required is 2i + 2 greater than gates required for c_{i-1}
 - ▶ So i(i + 3) gates are required for c_1 to c_i
 - ► Each three input XOR gate (for sum) would count as two gates
- So an *n*-bit carry-lookahead adder would require $n^2 + 5n$ gates

- Carry formulas for 4-bit carry-lookahead adder:
 - $c_1 = g_0 + p_0 c_0$
 - $c_2 = g_1 + p_1g_0 + p_1p_0c_0$
 - $c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$
 - $c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$

- Carry formulas for 4-bit carry-lookahead adder:
 - $c_1 = g_0 + p_0 c_0$
 - $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$
 - $ightharpoonup c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$
 - $c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$
- Critical path delay for a carry-lookahead adder is composed of:

- Carry formulas for 4-bit carry-lookahead adder:
 - $c_1 = g_0 + p_0 c_0$
 - $c_2 = g_1 + p_1g_0 + p_1p_0c_0$
 - $c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$
 - $c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$
- Critical path delay for a carry-lookahead adder is composed of:
 - p and g computation
 - ★ t_g time required required for two input AND/OR gate

- Carry formulas for 4-bit carry-lookahead adder:
 - $c_1 = g_0 + p_0 c_0$
 - $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$
 - $c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$
 - $c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$
- Critical path delay for a carry-lookahead adder is composed of:
 - p and g computation
 - ★ t_g time required required for two input AND/OR gate
 - carry computation delay
 - \star time required for c_i depends on i

- Carry formulas for 4-bit carry-lookahead adder:
 - $c_1 = g_0 + p_0 c_0$
 - $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$
 - $c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$
 - $c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$
- Critical path delay for a carry-lookahead adder is composed of:
 - p and g computation
 - ★ t_g time required required for two input AND/OR gate
 - carry computation delay
 - \star time required for c_i depends on i
 - sum computation
 - ★ $2t_{\sigma}$ time required for three input XOR

Carry-Lookahead Adder Time Estimate

- Carry formulas for 4-bit carry-lookahead adder:
 - $c_1 = g_0 + p_0 c_0$
 - $c_2 = g_1 + p_1g_0 + p_1p_0c_0$
 - $ightharpoonup c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$
 - $c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$
- Critical path delay for a carry-lookahead adder is composed of:
 - p and g computation
 - ★ t_g time required required for two input AND/OR gate
 - carry computation delay
 - \star time required for c_i depends on i
 - sum computation
 - ★ $2t_{\sigma}$ time required for three input XOR

 Carry computation delay: for an n-bit carry-lookahead adder, longest delay is for c_{n-1}, which is composed of:

- Carry formulas for 4-bit carry-lookahead adder:
 - $c_1 = g_0 + p_0 c_0$
 - $c_2 = g_1 + p_1g_0 + p_1p_0c_0$
 - $ightharpoonup c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$
 - $c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$
- Critical path delay for a carry-lookahead adder is composed of:
 - p and g computation
 - ★ t_g time required required for two input AND/OR gate
 - carry computation delay
 - \star time required for c_i depends on i
 - sum computation
 - ★ $2t_{\sigma}$ time required for three input XOR

- Carry computation delay: for an *n*-bit carry-lookahead adder, longest delay is for c_{n-1}, which is composed of:
 - Delay for the minterm

$$p_{n-2}p_{n-3}\dots p_0c_0$$

* n input AND gate requires $\lceil \log_2(n-1) \rceil t_g$ time

- Carry formulas for 4-bit carry-lookahead adder:
 - $c_1 = g_0 + p_0 c_0$
 - $c_2 = g_1 + p_1g_0 + p_1p_0c_0$
 - $ightharpoonup c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$
 - $c_4 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_0$
- Critical path delay for a carry-lookahead adder is composed of:
 - p and g computation
 - ★ t_g time required required for two input AND/OR gate
 - carry computation delay
 - \star time required for c_i depends on i
 - sum computation
 - ★ $2t_{\sigma}$ time required for three input XOR

- Carry computation delay: for an *n*-bit carry-lookahead adder, longest delay is for c_{n-1}, which is composed of:
 - ▶ Delay for the minterm $p_{n-2}p_{n-3}\dots p_0c_0$
 - ★ n input AND gate requires $\lceil \log_2(n-1) \rceil t_g$ time
 - Delay for the OR of all minterms
 - ★ OR of *n* inputs requires $\lceil \log_2(n-1) \rceil t_g$ time

- Carry formulas for 4-bit carry-lookahead adder:
 - $c_1 = g_0 + p_0 c_0$
 - $c_2 = g_1 + p_1g_0 + p_1p_0c_0$
 - $c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$
 - $c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$
- Critical path delay for a carry-lookahead adder is composed of:
 - p and g computation
 - ★ t_g time required required for two input AND/OR gate
 - carry computation delay
 - \star time required for c_i depends on i
 - sum computation
 - ★ $2t_{\sigma}$ time required for three input XOR

- Carry computation delay: for an *n*-bit carry-lookahead adder, longest delay is for c_{n-1}, which is composed of:
 - ▶ Delay for the minterm $p_{n-2}p_{n-3}\dots p_0c_0$
 - ★ n input AND gate requires $\lceil \log_2(n-1) \rceil t_g$ time
 - Delay for the OR of all minterms
 - ★ OR of *n* inputs requires $\lceil \log_2(n-1) \rceil t_g$ time
- So total time required (critical path delay) for an *n*-bit carry-lookahead adder: $2\lceil \log_2(n-1)\rceil t_{\sigma} + 3t_{\sigma}$

CARRY-LOOKAHEAD AND PREFIX ADDERS - 1 Performance Comparison

• Area and time estimates for *n*-bit adders:

	Area	Time
Ripple carry	7na _g	$2nt_g$
Carry-lookahead	$(n^2+5n)a_g$	$2\lceil \log_2(n-1)\rceil t_g + 3t_g$

- Compared to the ripple carry adder's linear delay increase with size, the carry-lookahead adder delay increase only logarithmically, resulting in dramatically faster adders
- However, the area of the carry-lookahead adder increase qudratically with size
- Is there an adder design that retains the carry-lookahead adder's speed but has significantly lesser area?