Tarea 2

Victor Gandica, David Tellez

1. Sea L un cuerpo.

- a) Sea v una vaulación sobre L y sea O_v su anillo de valuación. Muestre que para todo $x \in L$ si $x \notin O_v$ entonces $x^{-1} \in O_v$.
- b) Muestre que el converso del anterior se tiene. Es decir, muestre que si O es un subanillo de L tal que para todo $x \in L$, si $x \notin O$ entonces $x^{-1} \in O$, entonces O es el anillo de valuación de alguna valuación v sobre L.

- 2. Sea R un domino, $P\subseteq R$ un ideal primo y sea L un cuerpo tal que $R\subseteq L$. El proposito de este problema es mostrar que existe una valuación v sobre L tal que si O_v es el anillo de valuación y M_v es su ideal maximal entonces $R\subseteq O_v$ y $R\cup M_v=P$
 - a) Muestre, que reemplazando (R,P) por (R_P,P_P) se puede asumir que R es local con ideal maximal P.
 - b) Considere la colección Σ de parejas (O,M) tales que $R\subseteq O\subseteq L$ es un anillo, $M\subseteq O$ un ideal propio y $P=R\cup M$. Muestre que Σ puede ser dotado de un orden parcial, vía contenencia, y que Σ tiene elementos maximales.
 - c) Sea (O, M) un elemento maximal de Σ . Muestre que M es maximal. Más aún muestre que O es local.
 - d) Sea (O, M) como en el punto anterior. Muestre que para todo $x \in L$ si $x \notin O$, entonces $x^{-1} \in O$. Concluya del punto anterior el resultado.

- 3. Sea K un cuerpo de números y O_K su anillo de enteros.
 - a) Si $p \in Z$ un primo, muestre que existe un ideal maximal $M \subseteq O_K$ tal que $M \cup Z = pZ$.
 - b) Suponga que la extensión K/Q es de Galois con grupo de Galois G. Muestre que O_K es invariante bajo G. Sea $p \in Z$ un primo y Σ_p el conjunto de ideales maximales M en O_K tales que $p \in M$. Muestre que G actua sobre el conjunto Σ_p .
 - c) Sean G, p y Σ_p como en el inciso anterior y sea $M \in \Sigma_p$. Se definen el subgrupo de descomposición de M como

$$D_M := Stab_G(M)$$

y el subgrupo de inercia de M como

$$I_M := \sigma \in G : \sigma(x) - x \in M, \forall x \in O_K$$

Muestre que $I_M \leq D_M \leq G$ y que D_M/I_M es un grupo cíclico.

d) Suponga que $K=\mathbb{Q}(i)$. Para cada primo $p\in\mathbb{Z}$ y para cada $M\in\Sigma_p$ encuentre los grupos I_M y D_M . ¿Para cuáles primos p se tiene que I_M es no trivial, y para cuáles D_M es trivial?