华东师范大学期末考试试卷(B)卷 2017-2018学年 第二学期

	课程名	名称: 概率论与数理	里统计 课	程性质:	学科基础课	
	专	<u> </u>	年	级/班级	:	
	姓	名:	学	号	:	
—— ★ 答	案请写在	E答题纸上.			试题共5页,	, 含3页统计表.
–.	判断题	i(正确打√,错误打∑	×; 每题2分, 共1	.0分)		
1.	. 若随相	机变量(X, Y)的分布	函数为 $F(x,y)$,见	P(X>a)	(a, Y > b) = 1 - F(a, b).	()
2.	. 随机	事件A和B相互独立	当且仅当A和B	互不相容	٤,	()
3.	多项分	分布的边际分布为	二项分布.			()
4.	. 在假证	设检验中, 当原假设	bH_0 为真时, 若根	提搭样本持	拒绝了H ₀ ,则犯了第一类错	诗. ()
5.	. 离散	型随机变量的分布的	函数一定不是连	续函数.		()
=.	填空题	[(无需过程, 只写最	最后答案即可; 每	题3分,	共30分)	
6.		机变量 X_1, X_2 独立同明参数).]分布,都服从指	数分布E	$Exp(1)$, 则随机变量 X_1+X_2	服从分
7.					知. 设 X_1,\ldots,X_n 是来自该总则则随机变量 $lpha$ 的矩估计为。	
8.	. 正态分	分布N(10,4)的0.97:	5分位数为x _{0.975}	=		
9.	. 设随村	机变量X的概率密度	達函数为p(x) = 1	max{1 –	x , 0}, 则方差VarX =	
10.		机变量 X 与 Y 的方象 $rr(X + Y, X - Y) = -$		= 2, Var	Y = 4,相关系数 $Corr(X,$	$Y) = \frac{\sqrt{2}}{4},$
11.	. 设随相	机变量X服从正态分	分布 $N(\theta, \theta^2)$,记 Z	$X^- = -m$	nin{X,0}, 则数学期望EX- =	=(用 <i>0</i> ,

 π , e 和 Φ 表示).

- 12. 设 $X_1, ..., X_n$ 是来自均匀分布总体 $U[0, \theta]$ 的简单随机样本, 其中 θ 未知. 设 cY_n 是 θ 的极大似然估计, 其中 $Y_n = \max\{X_1, ..., X_n\}$, 则c = ...
- 13. 设总体X的均值为 θ , θ 未知, X_1 , X_2 , X_3 是来自总体X的一个样本, 则下面 θ 的估计中,

$$\hat{\theta}_1 = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3, \qquad \hat{\theta}_2 = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3, \qquad \hat{\theta}_3 = \frac{2}{3}X_1 + \frac{1}{6}X_2 + \frac{1}{6}X_3$$

最有效的是......

- 14. 设 X_1, \ldots, X_{15} 是来自正态总体 $N(0, \sigma^2)$ 的简单随机样本,则 $\frac{X_1^2 + \cdots + X_{10}^2}{2(X_{11}^2 + \cdots + X_{15}^2)}$ 服从____分 布(注明参数).
- 15. 设 X_1, \dots, X_n 是来自两点分布b(1, p)总体的一个样本,参数p未知,则 X_1X_2 是参数____的无偏估计.
- 三. 解答题 (必须给出必要的解题过程; 第16-19题每题10分, 第20题20分, 共60分)

- 17. 重复地掷一枚不均匀的硬币. 设在每次试验中出现正面的概率p未知. 试利用中心极限定理估计要掷多少次才能使正面出现的频率与p相差不超过 $\frac{1}{100}$ 的概率达到0.95以上?
- 18. 用天平称量某物体质量25次, 计算得平均质量为15.4克, 已知天平称量结果为正态分布, 标准差为0.1克. 求该物体质量的置信度为0.95的置信区间(结果保留至小数点后两位).
- 19. 测定某种溶液中的水分, 它的10个测定值给出 $\bar{x}=0.452\%$, s=0.037%, 设测定值总体为正态分布, μ 为总体均值. 试在水平5% 下检验假设 $H_0: \mu \geq 0.5\%$; $H_1: \mu < 0.5\%$.

20. 设随机变量(*X*, *Y*)的概率密度函数为
$$p(x,y) = \begin{cases} 3x, & \text{ 若} 0 < y < x < 1; \\ 0, & \text{ 其他.} \end{cases}$$

- (1)概率 $P(X + Y \ge 1)$,
- (2)随机变量Y的概率密度函数 $p_Y(y)$,
- (3)随机变量T = Y X的概率密度函数 $p_T(t)$,
- (4)随机变量X与Y的相关系数Cov(X,Y).

附表1 标准正态分布函数表

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

x	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.877	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9990	0.9990	0.9990

附表2 t分布 $1-\alpha$ 分位数表 $P(t > t_{1-\alpha}(n)) = \alpha$

n	0.005 0.0		0.025 0.05		0.10	0.25
1	63.6567	31.8205	12.7062	6.3138	3.0777	1.000
2	9.9248	6.9646	4.3027	2.92	1.8856	0.8165
3	5.8409	4.5407	3.1824	2.3534	1.6377	0.7649
4	4.6041	3.7469	2.7764	2.1318	1.5332	0.7407
5	4.0321	3.3649	2.5706	2.015	1.4759	0.7267
6	3.7074	3.1427	2.4469	1.9432	1.4398	0.7176
7	3.4995	2.998	2.3646	1.8946	1.4149	0.7111
8	3.3554	2.8965	2.306	1.8595	1.3968	0.7064
9	3.2498	2.8214	2.2622	1.8331	1.383	0.7027
10	3.1693	2.7638	2.2281	1.8125	1.3722	0.6998
11	3.1058	2.7181	2.201	1.7959	1.3634	0.6974
12	3.0545	2.681	2.1788	1.7823	1.3562	0.6955
13	3.0123	2.6503	2.1604	1.7709	1.3502	0.6938
14	2.9768	2.6245	2.1448	1.7613	1.345	0.6924
15	2.9467	2.6025	2.1314	1.7531	1.3406	0.6912
16	2.9208	2.5835	2.1199	1.7459	1.3368	0.6901
17	2.8982	2.5669	2.1098	1.7396	1.3334	0.6892
18	2.8784	2.5524	2.1009	1.7341	1.3304	0.6884
19	2.8609	2.5395	2.093	1.7291	1.3277	0.6876
20	2.8453	2.528	2.086	1.7247	1.3253	0.687
21	2.8314	2.5176	2.0796	1.7207	1.3232	0.6864
22	2.8188	2.5083	2.0739	1.7171	1.3212	0.6858
23	2.8073	2.4999	2.0687	1.7139	1.3195	0.6853
24	2.7969	2.4922	2.0639	1.7109	1.3178	0.6848
25	2.7874	2.4851	2.0595	1.7081	1.3163	0.6844
26	2.7787	2.4786	2.0555	1.7056	1.315	0.684
27	2.7707	2.4727	2.0518	1.7033	1.3137	0.6837
28	2.7633	2.4671	2.0484	1.7011	1.3125	0.6834
29	2.7564	2.462	2.0452	1.6991	1.3114	0.683
30	2.75	2.4573	2.0423	1.6973	1.3104	0.6828
31	2.744	2.4528	2.0395	1.6955	1.3095	0.6825
32	2.7385	2.4487	2.0369	1.6939	1.3086	0.6822
33	2.7333	2.4448	2.0345	1.6924	1.3077	0.682
34	2.7284	2.4411	2.0322	1.6909	1.307	0.6818
35	2.7238	2.4377	2.0301	1.6896	1.3062	0.6816
36	2.7195	2.4345	2.0281	1.6883	1.3055	0.6814
37	2.7154	2.4314	2.0262	1.6871	1.3049	0.6812
38	2.7116	2.4286	2.0244	1.686	1.3042	0.681
39	2.7079	2.4258	2.0227	1.6849	1.3036	0.6808
40	2.7045	2.4233	2.0211	1.6839	1.3031	0.6807

附表3 χ^2 分布 $1 - \alpha$ 分位数表 $P(\chi^2 > \chi^2_{1-\alpha}(n)) = \alpha$

n	0.005	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99	0.995
1	7.8794	6.6349	5.0239	3.8415	2.7055	0.0158	0.0039	0.0010	0.0002	0.0000
2	10.5966	9.2103	7.3778	5.9915	4.6052	0.2107	0.1026	0.0506	0.0201	0.0100
3	12.8382	11.3449	9.3484	7.8147	6.2514	0.5844	0.3518	0.2158	0.1148	0.0717
4	14.8603	13.2767	11.1433	9.4877	7.7794	1.0636	0.7107	0.4844	0.2971	0.2070
5	16.7496	15.0863	12.8325	11.0705	9.2364	1.6103	1.1455	0.8312	0.5543	0.4117
6	18.5476	16.8119	14.4494	12.5916	10.6446	2.2041	1.6354	1.2373	0.8721	0.6757
7	20.2777	18.4753	16.0128	14.0671	12.0170	2.8331	2.1673	1.6899	1.2390	0.9893
8	21.9550	20.0902	17.5345	15.5073	13.3616	3.4895	2.7326	2.1797	1.6465	1.3444
9	23.5894	21.6660	19.0228	16.9190	14.6837	4.1682	3.3251	2.7004	2.0879	1.7349
10	25.1882	23.2093	20.4832	18.3070	15.9872	4.8652	3.9403	3.2470	2.5582	2.1559
11	26.7568	24.7250	21.9200	19.6751	17.2750	5.5778	4.5748	3.8157	3.0535	2.6032
12	28.2995	26.2170	23.3367	21.0261	18.5493	6.3038	5.2260	4.4038	3.5706	3.0738
13	29.8195	27.6882	24.7356	22.3620	19.8119	7.0415	5.8919	5.0088	4.1069	3.5650
14	31.3193	29.1412	26.1189	23.6848	21.0641	7.7895	6.5706	5.6287	4.6604	4.0747
15	32.8013	30.5779	27.4884	24.9958	22.3071	8.5468	7.2609	6.2621	5.2293	4.6009
16	34.2672	31.9999	28.8454	26.2962	23.5418	9.3122	7.9616	6.9077	5.8122	5.1422
17	35.7185	33.4087	30.1910	27.5871	24.7690	10.0852	8.6718	7.5642	6.4078	5.6972
18	37.1565	34.8053	31.5264	28.8693	25.9894	10.8649	9.3905	8.2307	7.0149	6.2648
19	38.5823	36.1909	32.8523	30.1435	27.2036	11.6509	10.1170	8.9065	7.6327	6.8440
20	39.9968	37.5662	34.1696	31.4104	28.4120	12.4426	10.8508	9.5908	8.2604	7.4338
21	41.4011	38.9322	35.4789	32.6706	29.6151	13.2396	11.5913	10.2829	8.8972	8.0337
22	42.7957	40.2894	36.7807	33.9244	30.8133	14.0415	12.3380	10.9823	9.5425	8.6427
23	44.1813	41.6384	38.0756	35.1725	32.0069	14.8480	13.0905	11.6886	10.1957	9.2604
24	45.5585	42.9798	39.3641	36.4150	33.1962	15.6587	13.8484	12.4012	10.8564	9.8862
25	46.9279	44.3141	40.6465	37.6525	34.3816	16.4734	14.6114	13.1197	11.5240	10.5197
26	48.2899	45.6417	41.9232	38.8851	35.5632	17.2919	15.3792	13.8439	12.1981	11.1602
27	49.6449	46.9629	43.1945	40.1133	36.7412	18.1139	16.1514	14.5734	12.8785	11.8076
28	50.9934	48.2782	44.4608	41.3371	37.9159	18.9392	16.9279	15.3079	13.5647	12.4613
29	52.3356	49.5879	45.7223	42.5570	39.0875	19.7677	17.7084	16.0471	14.2565	13.1211
30	53.6720	50.8922	46.9792	43.7730	40.2560	20.5992	18.4927	16.7908	14.9535	13.7867

参考答案

- 1-5. \times \times \checkmark \checkmark
 - 6. Ga(2,1)
 - 7. $\frac{n}{n-1} \frac{\overline{X}^2}{S^2}$
 - 8. 13.92
 - 9. 1/6
- 10. $-\sqrt{2}/4$
- 11. $\theta \left(\frac{1}{\sqrt{2\pi e}} \Phi(-1) \right)$
- 12. 1
- 13. $\hat{\theta}_1$
- 14. F(10,5)
- 15. p^2
- 16. 显见, X的可能取值有-1,0,1,3,且

$$P(X = -1) = F(-1) - F(-1 - 0) = 0.2 - 0 = 0.2,$$

$$P(X = 0) = F(0) - F(0 - 0) = 0.6 - 0.2 = 0.4,$$

$$P(X = 1) = F(1) - F(1 - 0) = 0.9 - 0.6 = 0.3,$$

$$P(X = 3) = F(3) - F(3 - 0) = 1 - 0.9 = 0.1.$$

故X的分布列为 $\frac{X}{P}$ 0.2 0.4 0.3 0.1

17. 假设要掷n次才能满足要求,令 X_n 表示n次中正面向上的次数,则 X_n 服从二项分布b(n,p). 由中心极限定理,

$$P(\left|\frac{X_n}{n} - p\right| < \frac{1}{100}) = 2\Phi\left(\frac{\sqrt{n}}{100\sqrt{p(1-p)}}\right) - 1$$

因为 $p(1-p) \le \frac{1}{4}$,故只需n满足

$$2\Phi\left(\frac{\sqrt{n}}{50}\right) - 1 \ge 0.95$$

1

即可. 查表解得,n ≥ 9604.

18. 由于总体标准差 $\sigma=0.1$ 已知, 故总体均值 μ 的置信水平为 $1-\alpha$ 的置信区间为

$$\left(\overline{X}-u_{1-\alpha/2}\cdot\frac{\sigma}{\sqrt{n}},\overline{X}+u_{1-\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}\right).$$

查表得 $u_{0.975} = 1.96$, 将 $\bar{x} = 15.4$, $\sigma = 0.1$, n = 25代入计算得置信区间为

$$\left(15.4 - 1.96 \cdot \frac{0.1}{\sqrt{25}}, 15.4 + 1.96 \cdot \frac{0.1}{\sqrt{25}}\right) = (15.36, 15.44).$$

19. 原假设 $H_0: \mu \ge \mu_0 = 0.5\%$, 对立假设 $H_1: \mu < \mu_0$, 参数 σ^2 未知, 故用t检验. 设

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}},$$

则显著性水平为α的检验的拒绝域为

$$\{t \le t_{\alpha}(n-1)\}.$$

查表得,

$$t_{0.05}(9) = -1.8331$$

故拒绝域为

$$\{T \le -1.8331\}.$$

由样本求得,

$$t = \frac{0.452\% - 0.5\%}{0.037\% / \sqrt{10}} = -4.10$$

落在拒绝域内, 故拒绝原假设 H_0 .

20. $idD^* = \{(x, y) : 0 < y < x < 1\}.$ (1) $idD = \{(x, y) : x + y \ge 1\},$ idg

$$D \cap D^* = \left\{ (x, y) : \frac{1}{2} \le x < 1, 1 - x \le y < x \right\}.$$

故所求概率为

$$P(X + Y \ge 1) = P((X, Y) \in D) = \iint_{D} p(x, y) dxdy = \iint_{D \cap D^{*}} 3x dxdy$$
$$= \iint_{1/2} dx \int_{1-x}^{x} 3x dy = \frac{5}{8}.$$

(2)当0 < y < 1时,p(x,y)作为x的函数为 $p(x,y) = \begin{cases} 3x, & y < x < 1, \\ 0, & x \le y$ 或 $x \ge 1$. 当 $y \le 0$ 或 $y \ge 1$ 时,p(x,y)作为x的函数为p(x,y) = 0. 故Y的概率密度函数为

(3)由卷积公式, T = Y - X的概率密度函数为

$$p_T(t) = \int p(x, t + x) \mathrm{d}x.$$

上述积分中被积函数p(x,t+x)的非零区域为

$$\{(x,t): 0 < t + x < x < 1\} = \{(x,t): -1 < t < 0, -t < x < 1\}.$$

故T = X - Y的概率密度函数为

$$p_T(t) = \int p(x, t + x) dx = \begin{cases} \int_{-t}^1 3x dx, & -1 < t < 0, \\ 0, & t \ge 0 \text{ if } t \le -1 \end{cases} = \begin{cases} \frac{3}{2} (1 - t^2), & -1 < t < 0, \\ 0, & t \ge 0 \text{ if } t \le -1. \end{cases}$$

(4)由数学期望的定义和性质,

$$EX = \iint xp(x, y) dxdy = \iint_{D^*} x \cdot 3x dxdy = \int_0^1 dx \int_0^x x \cdot 3x dy = 3/4,$$

$$EY = \iint yp(x, y) dxdy = \iint_{D^*} y \cdot 3x dxdy = \int_0^1 dx \int_0^x y \cdot 3x dy = 3/8,$$

$$EXY = \iint xyp(x, y) dxdy = \iint_{D^*} xy \cdot 3x dxdy = \int_0^1 dx \int_0^x xy \cdot 3x dy = 3/10.$$

于是,协方差

$$Cov(X, Y) = EXY - EXEY = 3/10 - 3/4 \cdot 3/8 = 3/160.$$