Master's Thesis

Bounded Clustering Approach to Global Minimum Variance Portfolio (GMVP)

Jinwoo Park

HCC Lab

2019.12.30

- HUMAN
- CENTERED
- COMPUTING
- LABORATORY

Table of Contents

1.	Introduction ·····	3
2.	Related Works ·····	9
3.	Method & Experiments · · · · · · · · · · · · · · · · · · ·	13
4.	Results ·····	20
5.	Discussion ·····	24
6.	Appendix	32

1. Introduction

- \mathbf{H} U M A N
- \mathbf{c} ENTERED
- **C** O M P U T I N G
- $\textbf{L} \hspace{0.1cm} \textbf{A} \hspace{0.1cm} \textbf{B} \hspace{0.1cm} \textbf{O} \hspace{0.1cm} \textbf{R} \hspace{0.1cm} \textbf{A} \hspace{0.1cm} \textbf{T} \hspace{0.1cm} \textbf{O} \hspace{0.1cm} \textbf{R} \hspace{0.1cm} \textbf{Y}$

Safe Investment with a GMVP

- Return & risk is a trade-off relationship
 : a portfolio with diversified assets can lower the risk without damaging return
- Recent stock market crashes arouse interests in 'safe investment'
 : Global Minimum Variance Portfolio (GMVP) serves the need
- GMVP : targets to take as little volatility as possible without considering return¹)
 → Needs only covariance matrix of return of assets as the input

Estimating the population covariance matrix

- The population covariance matrix : unknown in practice
 - → needs to be estimated from historical data
- Sample covariance matrix commonly used: an unbiased estimator

Sample covariance matrix computed from daily return of stocks

Problem: High Estimation Error

- Estimation error can be high in the sample covariance matrix & its inverse
 Especially when number of assets is comparable to number of observation
- Estimation error cause problems
 - : 1) Out-of-sample risk much higher than in-sample counterpart
 - 2) Worse out-of-sample performance than not optimized portfolio result

Baseline Model: Clustering Stocks

- **Divide and conquer** (Two-stage portfolio optimization)
 - : Clustering stocks for less number of features in a covariance matrix
- Stock clustering methods that have been proposed:
 - 1. Non-price information: accounting figures, Industry sectors
 - 2. Price: daily returns of stocks

Research Goal

Motivation

- Clustering based on non-price information (industry sector, etc)
 - : Does not need to be related with stock price
 - → Clustering quality deteriorates
- Clustering based on price
 - : Too many stocks might be grouped in one cluster
 - → Estimation error can still remain high after clustering
- Research Goal
 - Find a price-based clustering algorithm to improve the portfolio performance more than methods already proposed
 - Should take care of both estimation error and clustering quality

```
H U M A N
C E N T E R E D
C O M P U T I N G
L A B O R A T O R Y
```

2. Related Works

- \mathbf{H} U M A N
- CENTERED
- COMPUTING
- LABORATORY

1. Global Minimum Variance Portfolio (GMVP)

- Introduced as a portfolio for taking least amount risk (H. Markowitz 1952)
 - Only covariance matrix used, so less problematic to estimate (Merton, 1980)
 - Volatility of financial data shows a similar patter as it has historically (Engle 1982, Bollerslev 1986)
- Better out-of-sample performance than optimized for return (Jorion 1991, Chopra and Ziemba 1993)
- Due to the estimation error of covariance matrix, GMVP might fail
 - GMVP might not outperform randomly selected portfolio (Frankfurter et al, 1971)
 - A naïve equally weighted portfolio might outperform GMVP (DeMiguel et al, 2009)

2. Attempts to Decrease Estimation Error

- Single or multi-factor models: Structured but can be biased heavily (W. Sharpe 1963, E.F. Fama and et al. 1993)
- Shrinkage estimator: 'Compromise' between the unbiased and structured (Ledoit and Wolf 2003, Bodnar et al 2014)
- Clustering approach: 'Divide and conquer'
 - Non-price information
 - Accounting figures (K. Marvin, 2015)
 - Industry sectors (M. Claeson, 2017)
 - Price
 - Same cluster if Pearson correlation coefficient of returns > 0.2
 (Z. Ren, 2005)
 - K-means clustering on daily return of stocks (S.R. Nanda et al., 2010)

```
H U M A N
C E N T E R E D
C O M P U T I N G
L A B O R A T O R Y
```

3. Clustering Algorithms

- Roughly divided into partitioning and hierarchical clustering
 - 1. Partitioning clustering: K-means clustering (J.B. Macqueen 1966)
 - 2. Hierarchical clustering: Agglomerative hierarchical clustering (Y. Rani 2013)
- Constrained clustering on size
 - K-means clustering with minimum cluster size (P.S. Bradley 2000)
 - K-means clustering with maximum cluster size (N. Ganganath et al. 2014)

3. Method & Experiment

- $H \cup M \wedge N$
- CENTERED
- COMPUTING
- LABORATORY

Experiment Overview

Compare the portfolio performance of each portfolio optimization method

Portfolio Performance Measures

- Adjusted return
 - **1. Sharpe ratio**: Reward to risk (standard deviation) ratio.
 - 2. Sortino ratio: Reward to risk (downside standard deviation) ratio
- Risk
 - 3. Standard deviation: volatility of return
 - 4. Downside Standard deviation: standard deviation of return below threshold
 - 5. Maximum Drawdown: Maximum loss from a peak to a trough of a portfolio
 - **6. Conditional Value at Risk**: Weighted average of the extreme losses in the tail of the distribution of possible or historical returns

Experiment Flowchart

Portfolio rebalancing every quarter

Experiment procedure

- Scaling: Euclidean distance used in clustering algorithm
 - As such, clustering algorithm might perform when all features contribute equally (Standard scaling)

Dimensionality reduction:

- PCA: To reduce the noise of data
- t-sne : To add non-linearity while reducing the dimensions

Clustering algorithm:

- K-means clustering / Hierarchical clustering
- Bounded K-means clustering

Scaling

- Standard Scaling (Normalization)
- None

- PCA
- t-sne
- None

Clustering

- K-means Clustering
- Hierarchical Clustering
- Bounded K-means Clustering

Dataset

- Data: daily returns of 590 companies in Russel 1000 stocks (which do not have missing values)
- Data period : 1999.11.02 ~ 2019.11.29
- Daily returns are split and dividend adjusted.
- Industry composition of 590 stocks is similar to that of S&P 500.

Industries of stocks used for experiment

real_estate 8% health 12% financials 16% discretionary 12% discretionary 12%

Industries of S&P 500

How to Feed Data for Portfolio Rebalancing

How to handle data while optimizing a portfolio optimization

: 12 month-long period for figuring out the relationship between stocks

: 3 month-long period to make investment in stocks

4. Results

- HUMAN CENTERED
- C O M P U T I N G
- LABORATORY

Result Summary (1): Comparison of Models

- Standard deviation of portfolio daily returns (annualized) Validation std Test std Clustering pre-processing Scaling method GMVP on individual stocks 0.1075 0.0946 0.0845 GMVP on industry sectors 0.0913 Standard Scaled 0.1009 0.0954 Not used Raw data 0.1902 0.2053 K-means Standard Scaled 0.0989 0.0911 PCA Clustering Raw data 0.2205 0.1916 Standard Scaled 0.0935 0.0825 t-sne Raw data 0.0967 0.0829 Standard Scaled 0.1197 0 1019 Not used Raw data 0.1084 0.0973 Standard Scaled Hierarchical 0.1235 0 1067 Clustering Raw data 0.1313 0.1032 Standard Scaled 0.0948 0.0838 t-sne Raw data 0.0954 0.0864 Standard Scaled 0.0906 0.0825 Not used 0.0886 Raw data 0.0798 Bounded Standard Scaled 0.0906 0.0822 K-means 0.0900 0.0805 Raw data Clustering Standard Scaled 0.0925 0.0872 t-sne Raw data 0.0905 0.0862

Models with the best performance

: Bounded K-means clustering with raw-data without using dimensionality reduction

Result Summary (2): Estimation Error

Comparison of in-sample performance and out-of-sample performance

- Portfolio estimation error (annualized)

	In-sample Std	Out-of-sample Std	Difference
stock-based GMVP	0.0489	0.0946	93.51%
Industry-based GMVP	0.046	0.0846	83.79%
Cluster-based GMVP	0.0462	0.0798	72.73%

- In-sample Std: the mean of standard deviations of Train data
- Out-of-sample Std: the mean of standard deviations of Test data

Result Summary (3): Portfolio Performance

Comparison of out-of-sample portfolio performance

- Portfolio performance (annualized)

	Sharpe Ratio	Sortino Ratio	Std	Downside Std	Maximum DrawDown	CVaR
stock-based GMVP	0.8963	1.2915	0.0946	0.0686	-15.69%	-1.12%
Industry-based GMVP	1.8232	2.5207	0.0848	0.0637	-9.36%	-0.97%
Cluster-based GMVP	1.8316	2.5726	0.0803	0.0608	-8.21%	-0.93%

Cumulative wealth graph

5. Discussion

- HUMAN
- \mathbf{c} ENTERED
- **C** O M P U T I N G
- $\textbf{L} \hspace{0.1cm} \textbf{A} \hspace{0.1cm} \textbf{B} \hspace{0.1cm} \textbf{O} \hspace{0.1cm} \textbf{R} \hspace{0.1cm} \textbf{A} \hspace{0.1cm} \textbf{T} \hspace{0.1cm} \textbf{O} \hspace{0.1cm} \textbf{R} \hspace{0.1cm} \textbf{Y}$

Three Points Related with the Experiment

- 1. Trade-off between 'estimation error' and 'correlation between clusters'
 - Maximum cluster size can control these two values
- 2. Both affects the portfolio optimization performance
 - Need to find where to compromise for the best portfolio performance
 - Implies that bounded clustering algorithm is needed
- 3. Dimensionality reduction and scaling improves portfolio performance
 - Improvement comes from decreased estimation error

```
H U M A N
C E N T E R E D
C O M P U T I N G
L A B O R A T O R Y
```

1. Trade-off Relationship Found in Clustering

Found a trade-off caused by maximum cluster size
 : estimation error of covariance matrix and clustering quality

- As the maximum cluster size increases,
 - The dimensionality of covariance matrix increases → Bigger estimation error
 - The clustering quality improves → Smaller correlation between clusters

2. Where to Set the Maximum Cluster Size

Out-of-sample performance is decided both by these two components

Experimented with raw data without dimensionality reduction

- Need to find where to set the maximum cluster size for the best performance
- Need to use clustering methods where maximum clustering size can be manually controlled to find the compromise

Clustering Without the Maximum Size Constraint

- Unbounded clustering algorithms focus only on clustering quality
- Better clustering quality, but poor portfolio performance due to estimation error

The estimation error offsets benefits coming from better clustering quality

3. Impact of Dimensionality Reduction

Clustering with t-sne performs better than others

Clustering	pre-processing	Scaling method	Validation std	Test std
	Not used	Standard Scaled	0.1009	0.0954
	NOT USED	Raw data	0.1902	0.2053
K-means	PCΔ	Standard Scaled	0.0989	0.0911
Clustering		Raw data	0.2205	0.1916
		Standard Scaled	0.0935	0.0825
		Raw data	0.0967	0.0829

t-sne creates more balanced cluster size → less estimation error

Experimented with K-means clustering with raw data

Impact of Scaling method

Clustering with standard scaling performs better than raw-data

Clustering	pre-processing	Scaling method	Validation std	Test std
	Not used	Standard Scaled	0.1009	0.0954
	NOT USED	Raw data	0.1902	0.2053
K-means	-means PCA	Standard Scaled	0.0989	0.0911
Clustering	PCA	Raw data	0.2205	0.1916
	t-sne	Standard Scaled	0.0935	0.0825
		Raw data	0.0967	0.0829

Standard scaling creates more balanced cluster size → less estimation error

Experimented with K-means clustering without dimensionality reduction

Conclusion

- To improve the performance of GMVP, estimation error needs to be reduced
- When applying clustering approach to GMVP,
 - Trade-off between estimation error and correlation between clusters
 - Both affects the portfolio performance, so needs to be controlled
- Bounded K-means clustering can find a compromise for the best performance
 - Improves the out-of-sample portfolio performance by controlling the trade off
 - Allows better prediction of out-of-sample volatility by decreasing the gap between the out-of-sample risk and in-sample counterpart
- Scaling and dimensionality reduction methods can improve the performance, but better if we can control the maximum clustering size more precisely

```
H U M A N
C E N T E R E D
C O M P U T I N G
L A B O R A T O R Y
```

6. Appendix

- **H** U M A N **C** E N T E R E D
- **C** O M P U T I N G
- $\textbf{L} \hspace{0.1cm} \textbf{A} \hspace{0.1cm} \textbf{B} \hspace{0.1cm} \textbf{O} \hspace{0.1cm} \textbf{R} \hspace{0.1cm} \textbf{A} \hspace{0.1cm} \textbf{T} \hspace{0.1cm} \textbf{O} \hspace{0.1cm} \textbf{R} \hspace{0.1cm} \textbf{Y}$

Global Minimum Variance Portfolio

 Finding the asset weights that minimize the portfolio variance (risk), given the covariance matrix of assets.

$$W_{GMV} = \underset{w}{\operatorname{argmin}} \{W^{T} \Sigma W ; W^{T} \cdot 1_{N} = 1\}$$
$$= \frac{\Sigma^{-1} 1_{N}}{1_{N}^{T} \Sigma^{-1} 1_{N}}$$

- * W_{GMV} is an asset allocation vector that we try to find.
- * $\mathbf{W} = (w_1, ..., w_n)^T$ is a vector of portfolio weights
- * Σ is a variance covariance matrix of assets (stocks)
- * 1_N is a N dimensional vector of ones