Design based inference

Week 2 (2.2)

Stat 260, St. Clair

Content:

- Small example
- Comparing estimators
- Notation

Suppose we have N=3 lakes in a town. We are asked to estimate the total number residents who like around the lakes.

Sampling Design: We are going to compare three different designs where

- Population = three lakes
- Sampling unit = Observation unit = lake
- Measurement = y_i is the number of people who reside around lake i
- Parameter of interest = $t = \sum_{i=1}^3 y_i$ total number of residents around all three lakes

We want to estimate t using a sample of size n=2 lakes. Why does it make sense to use

$$\hat{t} = 3 ar{y}$$

as an estimator of t where \bar{y} is our average response in our sample?

Design-based idea

What is the sampling distribution of \hat{t} under a particular sampling design?

- 1. List out all possible samples of n sampling units from a population of size N.
- 2. For each set of sampled units S:
 - Compute the probability of each sample based on your chosen sampling design
 - \circ Compute the estimator value \hat{t}

Design-based idea

Step (2) generates the **sampling distribution** for \tilde{t} .

Properties:

- Expected value: $E(\hat{t})$ (on ang., what value of \hat{t})?

 Bias: $bias(\hat{t})$ systematically over funder estimating t• SD: $SD(\hat{t})$ variability of \hat{t} around $E(\hat{t})$ Mean Square Error: $MSE(\hat{t})$ variability \hat{t} around t

Different sampling designs will yield different sampling distributions and different estimator properties.

Design 1: Roll a 6-sided die twice.

- A 1 or 2 samples unit 1
- a 3 or 4 samples unit 2
- a 5 or 6 samples unit 3

Use this same scheme to sample two lakes (with replacement so repeats are possible!)

What samples are possible?
$$l = lake 1$$
 $2 = lake 2$ $3 = lake 3$

$$S = unorder list of lake 3$$

$$S_1 = \{1,1\} S_2 \{1,2\} \{1,3\}$$

$$\{2,2\} \{2,3\} \{3,3\}$$

Design 1: Roll a 6-sided die twice.

- A 1 or 2 samples unit 1 = $\frac{1}{2}$
- a 3 or 4 samples unit 2 = $\frac{2}{6}$
- a 5 or 6 samples unit 3 = $\frac{2}{6}$

What is the probability of each sample?

$$S_{1}=7(,17)$$

$$|S_{1}=7(,17)|$$

$$|S_{1}=17(,17)|$$

$$|S_{1}=17(,17)$$

$$S_{2} = \{(1,2)\}$$
 $P(\{1,2\}) = \{(1,2\})$
 $P(\{1,2\}) = \{(1,2\})$
 $P(\{1,2\}) = \{(1,2\})$
 $P(\{1,2\}) = \{(1,3\})$
 $P(\{1,3\})$
 $P(\{1,3\})$
 $P(\{1,3\})$
 $P(\{1,3\})$

火

No.	Sample	D1: $P(\mathcal{S}_i)$	Data	$ar{y}_s$	$\hat{t}=3ar{y}_s$
1	$\mathcal{S}_1 = \{1,1\}$	1/9	?	?	?
2	$\mathcal{S}_2 = \{1,2\}$	2/9	?	?	?
3	$\mathcal{S}_3=\{1,3\}$	2/9	?	?	?
4	$\mathcal{S}_4=\{2,2\}$	1/9	?	?	?
5	$\mathcal{S}_5=\{2,3\}$	2/9	?	?	?
6	$\mathcal{S}_6=\{3,3\}$	1/9	?	?	?

We can't fill in the table (with numbers) unless we know what the lake responses y_i are.

$$pop.total$$
 $t = (0 + 8 + 12 = 30)$

Suppose our population looks like:

$\overline{ \text{lake } i }$	1	2	3		1 45	ín	Day la Arlen
y_i	10	8	12	—)	derta	171	population

then:

			X			*
	No.	Sample	D1: $P(\mathcal{S}_i)$	Data	$ar{y}_s$	$\hat{t}=3{ar{y}}_s$
_	1	$\mathcal{S}_1 = \{1,1\}$	1/9	10,10	10	30
	2	$\mathcal{S}_2 = \{1,2\}$	2/9	10,8	9	27
	3	$\mathcal{S}_3=\{1,3\}$	2/9	10,12	11	33
	4	$\mathcal{S}_4=\{2,2\}$	1/9	8,8	8	24
~	5	$\mathcal{S}_5=\{2,3\}$	2/9	8,12	10	30
	6	$\mathcal{S}_6=\{3,3\}$	1/9	12,12	12	36

Under **design 1**, the sampling distribution of \hat{t} is the following **discrete probability model**:

 $\frac{1}{29}$ $\frac{1}{29}$ $\frac{1}{20}$ $\frac{1}{20}$

Under **design 1**, the (estimator) bias of \hat{t} is

• Expected value
$$E(\hat{t}) = \sum_{\text{all value}} \hat{t} P(\hat{t}) = 24(\frac{1}{9}) + 27(\frac{2}{9}) + 30(\frac{3}{9}) + \dots$$

$$= \frac{30}{12}$$

$$= \frac{30}{12}$$

$$= \frac{30}{12}$$

$$= \frac{30}{12} - \frac{30}{12} = \frac{0}{12}$$
No boas
Under design $1 = 3$ $\frac{1}{2}$ $\frac{1}{2}$ is unbiased

Under design 1, the SD of
$$\hat{t}$$
 is
$$SD(\hat{t}) = \int Var(\hat{t}) = \int Z (\hat{t} - E(\hat{t}))^{2} P(\hat{t})$$

$$= \int (24 - 30)^{2} (\frac{1}{4}) + (27 - 30)^{2} (\frac{2}{8}) + \cdots$$

$$= \int (24 - 30)^{2} (\frac{1}{4}) \times 3.5$$

Under **design 1**, the MSE of \hat{t} is

Under design 1, the MSE of
$$t$$
 is

$$MSE(\hat{t}) = Var(\hat{t}) + \begin{bmatrix} Bias(\hat{t}) \end{bmatrix}^{2}$$

$$SO(\hat{t})^{2}$$

$$= 12 + 0 = \begin{bmatrix} 12 \\ 12 \end{bmatrix}$$

Design 2: Toss two darts at a map of the town where

- lakes 1 and 2 are the same area and
- lake 3 is three times the area of 1 and 2.

Use this same scheme to sample two lakes (with replacement so repeats are possible!)

No.	Sample	Data	$ar{y}_s$	$\hat{t}=3ar{y}_s$	D1: $P(\mathcal{S}_i)$	D2: $P(\mathcal{S}_i)$
1	$\mathcal{S}_1 = \{1,1\}$	10,10	10	30	1/9	?
2	$\mathcal{S}_2 = \{1,2\}$	10,8	9	27	2/9	?
3	$\mathcal{S}_3=\{1,3\}$	10,12	11	33	2/9	?
4	$\mathcal{S}_4=\{2,2\}$	8,8	8	24	1/9	?
5	$\mathcal{S}_5=\{2,3\}$	8,12	10	30	2/9	?
6	$\mathcal{S}_6=\{3,3\}$	12,12	12	36	1/9	?

Design 2: Toss two darts at a map of the town where

- lakes 1 and 2 are the same area and => 1/5
- lake 3 is three times the area of 1 and 2. $\Rightarrow \frac{3}{5}$

$$p = P(lake1) = P(lake2)$$
 L1 L2 L3
 $P(lake3) = 3P$ $1 = P+P+3p$
 $P = \frac{1}{5}$

Design 2: Toss two darts at a map of the town where

• lakes 1 and 2 are the same area and

• lake 3 is three times the area of 1 and 2.

				*		<u> </u>
No.	Sample	Data	${ar y}_s$	$\hat{t}=3ar{y}_s$	D1: $P(\mathcal{S}_i)$	D2: $P(\mathcal{S}_i)$
1	$\mathcal{S}_1 = \{1,1\}$	10,10	10	30	1/9	1/25
2	$\mathcal{S}_2 = \{1,2\}$	10,8	9	27	2/9	2/25
3	$\mathcal{S}_3=\{1,3\}$	10,12	11	33	2/9	6/25
4	$\mathcal{S}_4=\{2,2\}$	8,8	8	24	1/9	1/25
5	$\mathcal{S}_5=\{2,3\}$	8,12	10	30	2/9	6/25
6	$\mathcal{S}_6=\{3,3\}$	12,12	12	36	1/9	9/25

Design 2: Toss two darts at a map of the town where

- lakes 1 and 2 are the same area and
- lake 3 is three times the area of 1 and 2.

Sampling distribution of \hat{t} under design 2

\hat{t}	24	27	30	33	36
Probability	1/25	2/25	7/25	6/25	9/25

- ullet Expected value: $E(\hat{t}\,)=32.4$
- Bias: $Bias(\hat{t}\,)=2.4$
- SD: $SD(\hat{t})pprox 3.39$
- MSE: $MSE(\hat{t}\,) pprox 17.28$

Design 3: Put three pieces of paper in a hat labeled 1-3, draw 2 pieces at random, without replacement.

No.	Sample	Data	$ar{y}_s$	$\hat{t}=3ar{y}_s$	D1: $P(\mathcal{S}_i)$	D2: $P(\mathcal{S}_i)$	D3:	$\overline{P(\mathcal{S}_i)}$
1	$\mathcal{S}_1 = \{1,1\}$	10,10	10	30	1/9	1/25	?	0
2	$\mathcal{S}_2=\{1,2\}$	10,8	9	27	2/9	2/25	?	1/3
3	$\mathcal{S}_3=\{1,3\}$	10,12	11	33	2/9	6/25	?	1/3
4	$\mathcal{S}_4=\{2,2\}$	8,8	8	24	1/9	1/25	?	0
5	$\mathcal{S}_5=\{2,3\}$	8,12	10	30	2/9	6/25	?	113
6	$\mathcal{S}_6 = \{3,3\}$	12,12	12	36	1/9	9/25	?	D

Design 3: Put three pieces of paper in a hat labeled 1-3, draw 2 pieces at random, without replacement.

Design 3: Put three pieces of paper in a hat labeled 1-3, draw 2 pieces at random, without replacement.

No.	Sample	Data	$ar{y}_s$	$\hat{t}=3ar{y}_s$	D1: $P(\mathcal{S}_i)$	D2: $P(\mathcal{S}_i)$	$oxed{ extbf{D3:} P(\mathcal{S}_i)}$
1	$\mathcal{S}_1 = \{1,1\}$	10,10	10	30	1/9	1/25	0
2	$\mathcal{S}_2=\{1,2\}$	10,8	9	27	2/9	2/25	1/3
3	$\mathcal{S}_3=\{1,3\}$	10,12	11	33	2/9	6/25	1/3
4	$\mathcal{S}_4=\{2,2\}$	8,8	8	24	1/9	1/25	0
5	$\mathcal{S}_5=\{2,3\}$	8,12	10	30	2/9	6/25	1/3
6	$\mathcal{S}_6 = \{3,3\}$	12,12	12	36	1/9	9/25	0

PAUSE: Write down the sampling distribution of \hat{t} under design 3 and computed the expected value, bias, SD and MSE.

Which design is "better"?

					_		
	design				_	· i_th	realbromant
ر	1 (die)					WITH	replacement
	2 (darts	2.4	3.39	17.28			
	3 (srs) (0)	2.45	6			•
		1	<u></u>	smal	- \		
	Bio	, 5 = C)	,	-		