Section 5.3

Best Approximations

Objectives

- What is a Least Squares solution ?
- How to find the best approximate solution to inconsistent system?

An application of orthogonality

Discussion 5.3.1

Finding the "best approximation" of a vector from a subspace

Nearest point

p: projection of **u** onto the line

We say: **p** is the best approximation of **u** in the line

shortest distance from u to the plane

Example 5.3.3

 \boldsymbol{p} : projection of \boldsymbol{u} onto the plane

We say: **p** is the best approximation of **u** in the plane

Finding the "best approximation" of a vector from a subspace

Theorem 5.3.2

V: subspace in \mathbb{R}^n and $\mathbf{u} \in \mathbb{R}^n$. need not be a line or plane

24

 \boldsymbol{p} : projection of \boldsymbol{u} onto V

Then $d(\boldsymbol{u}, \boldsymbol{p}) \leq d(\boldsymbol{u}, \boldsymbol{v})$ for any vector \boldsymbol{v} in V

i.e. p is the best approximation of u in V.

Finding the "best approximation" of a vector from a subspace

Theorem 5.3.2

V: subspace in \mathbb{R}^n and $\mathbf{u} \in \mathbb{R}^n$. need not be a line or plane

 \boldsymbol{p} : projection of \boldsymbol{u} onto V

Then $d(\boldsymbol{u}, \boldsymbol{p}) \leq d(\boldsymbol{u}, \boldsymbol{v})$ for any vector \boldsymbol{v} in V

$$||\boldsymbol{n}|| \leq ||\boldsymbol{x}||$$

$$||n|| \le ||x||$$
 $||x||^2 = ||n + w||^2$
= $||n||^2 + ||w||^2$

$$\geq ||\boldsymbol{n}||^2$$
 (see Ex 5 Q9)

25

Chapter 5 Orthogonality

Inconsistent system

$$t = cr^2 + ds + e$$

Example 5.3.5

experimental errors

6 equations 3 unknowns c, d, e

system
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \\ 4 & 1 & 1 \\ 4 & 2 & 1 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 0.5 \\ 1.6 \\ 2.8 \\ 0.8 \\ 5.1 \\ 5.9 \end{pmatrix}$$

This system is inconsistent $Ax - b \neq 0$

$$Ax - b \neq 0$$

Find the best approximate solution see example 5.3.11.2

Find x_0 such that $||Ax_0 - b||$ is the smallest

 $\sqrt{\text{sum of squares}}$ Such an \mathbf{x}_0 is called a least squares solution to the system Ax = b.

What is a least squares solution?

Definition 5.3.6

A least squares solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ (A: m×n)

is a vector \mathbf{u} in \mathbf{R}^n that minimize $||\mathbf{b} - \mathbf{A}\mathbf{x}||$

i.e. $||\boldsymbol{b} - \boldsymbol{A}\boldsymbol{u}|| \le ||\boldsymbol{b} - \boldsymbol{A}\boldsymbol{v}||$ for all \boldsymbol{v} in \mathbf{R}^n

good for intuition, but not finding this approximation.

working definition

new linear system

 \rightarrow is an actual solution of $\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{A}^{\mathsf{T}} \mathbf{b}$

Theorem 5.3.10

Finding least squares solution

Exercise 5 Q24

$$\begin{cases} x + y + z = 1 \\ y + z = 1 \\ x - y - z = 1 \\ z = 1 \end{cases} \quad \mathbf{A}x = \mathbf{b} \quad \text{inconsistent}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad \mathbf{A}^T = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & 1 & -1 & 1 \end{pmatrix}$$

$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 4 \end{pmatrix} \quad \mathbf{A}^T \mathbf{b} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \quad \mathbf{A}^T \mathbf{A}x = \mathbf{A}^T \mathbf{b} \quad \text{consistent}$$
Theorem 5.3.10
$$\mathbf{U} = \begin{pmatrix} 1 \\ -\frac{2}{3} \\ 1 \end{pmatrix} \quad \mathbf{A}^T \mathbf{b} = \begin{pmatrix} 1 \\ -\frac{2}{3} \\ 1 \end{pmatrix}$$

u gives the least squares solution of Ax = b

30

Projection of **b** onto the column space of **A**

Discussion 5.3.7

Find least squares solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$

Find \boldsymbol{u} that minimize $||\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}||$

the projection **p** of **b** onto the column space of **A**

Find \mathbf{u} such that $\mathbf{A}\mathbf{u} = \mathbf{p}$

This system is always consistent

$$\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3)$$
 \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 : columns of \mathbf{A} $\mathbf{x} = \begin{pmatrix} c \\ d \\ e \end{pmatrix}$ $\Rightarrow \mathbf{A}\mathbf{x} = c\mathbf{u}_1 + d\mathbf{u}_2 + e\mathbf{u}_3$ linear comb of columns of \mathbf{A} All $\mathbf{A}\mathbf{x}$ belong to column space of \mathbf{A} Discussion 4.1.16

Chapter 5 Orthogonality 31

Least squares solutions and projection

Theorem 5.3.8

 \boldsymbol{u} is a least squares solution of $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$

 \Leftrightarrow **u** is a solution of Ax = p

p: projection of **b** onto the column space of **A**

 $\Leftrightarrow Au = p$

Alternative way to find least squares solution:

If we know

the projection of **b** onto the column space of **A**, then

we can find the least squares solution of Ax = b.

Use projection to find least squares solution

Example 5.3.9

A(least squares solution) = projection

Find the least squares solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 Solve $\mathbf{A}\mathbf{x} = \mathbf{p}$

column space of A

$$V = span \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

projection of **b** onto the column space of **A**

$$\mathbf{p} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$
 see example 5.3.3

33

Chapter 5 Orthogonality

Use least squares solution to find projection

Example 5.3.11, A(least squares solution) = projection

Find the projection of (1,1,1,1) onto

$$V = span\{(1,-1,1,-1), (1,2,0,1), (2,1,1,0)\}$$

Form matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$

First find the least squares solution of Ax = b

Solve
$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$$
 Theorem 5.3.10

$$\mathbf{X} = \begin{pmatrix} -t + \frac{2}{5} \\ -t + \frac{4}{5} \\ t \end{pmatrix} \longrightarrow \mathbf{Take} \quad \mathbf{u} = \begin{pmatrix} \frac{2}{5} \\ \frac{4}{5} \\ 0 \end{pmatrix} \longrightarrow \mathbf{Au} = \begin{pmatrix} \frac{6}{5} \\ \frac{6}{5} \\ \frac{2}{5} \\ \frac{2}{5} \end{pmatrix}$$
Orthogonality

Orthogonality Chapter 5

Solution of $\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{A}^{\mathsf{T}} \mathbf{b} \Leftrightarrow \text{least squares solution of } \mathbf{A} \mathbf{x} = \mathbf{b}$

Theorem 5.3.10

V = column space of A

$$\mathbf{A} = (\mathbf{a}_1 \quad \mathbf{a}_2 \quad \mathbf{a}_3)$$

35

u is the least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$

if and only if \mathbf{u} is a solution of $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$

- $\rightarrow \Leftrightarrow Au$ is the projection of **b** onto V
 - \Leftrightarrow **b Au** is orthogonal to V
 - \Leftrightarrow **b Au** is orthogonal to a_1, a_2, a_3

$$\Leftrightarrow \mathbf{b} - \mathbf{A}\mathbf{u} \text{ is orthogonal to } \mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}^{\mathsf{T}}$$

$$\Leftrightarrow \mathbf{A}^{\mathsf{T}}(\mathbf{b} - \mathbf{A}\mathbf{u}) = \begin{pmatrix} \mathbf{a_1}^{\mathsf{T}} \\ \mathbf{a_2}^{\mathsf{T}} \\ \mathbf{a_3}^{\mathsf{T}} \end{pmatrix} (\mathbf{b} - \mathbf{A}\mathbf{u}) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \mathbf{A}^{\mathsf{T}}\mathbf{b} - \mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{u} = \mathbf{0}$$

$$\Leftrightarrow A^Tb - A^TAu = 0$$

$$\Leftrightarrow A^T A u = A^T b$$

Solution of $\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{A}^{\mathsf{T}} \mathbf{b} \Leftrightarrow \text{least squares solution of } \mathbf{A} \mathbf{x} = \mathbf{b}$

Theorem 5.3.10

always exists

- \boldsymbol{u} is the least squares solution to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$
- \Leftrightarrow **u** is a solution of $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ always consistent
- \Leftrightarrow **u** is a solution of Ax = p always consistent

where \boldsymbol{p} is the projection of \boldsymbol{b} onto column space of \boldsymbol{A}

Theorem 5.3.8

Section 5.4

Another usage of "orthogonal"

Orthogonal Matrices

Objective

- What is an orthogonal matrix?
- How is orthogonal matrix related to orthonormal basis?
- How is transition matrix related to orthogonal matrix?

What is an orthogonal matrix?

Definition 5.4.3 & Remark 5.4.4

A square matrix **A** is called an orthogonal matrix

if
$$A^{-1} = A^{T}$$

Equivalently (and more easily),

if
$$\mathbf{A}\mathbf{A}^T = \mathbf{I}$$
 (or $\mathbf{A}^T\mathbf{A} = \mathbf{I}$).

See Ex 2.12

All orthogonal matrices are invertible.

What is an orthogonal matrix?

Example 5.4.5

These are orthogonal matrices

$$\begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

rotation anticlockwise through angle θ

$$egin{pmatrix} \cos(heta) & -\sin(heta) \ \sin(heta) & \cos(heta) \end{pmatrix}$$

inverse of each other (multiply them to check)

Their transposes:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

rotation clockwise through angle θ $(\cos(\theta) \sin(\theta)) - \sin(\theta) \cos(\theta)$

Their transposes are also orthogonal matrices

Orthogonal matrix vs orthonormal basis for \mathbf{R}^n

Theorem 5.4.6

Let \mathbf{A} be a square matrix of order n.

The following statements are equivalent:

- 1. **A** is an orthogonal matrix.
- 2. The rows of \mathbf{A} form an orthonormal basis for \mathbf{R}^n .
- 3. The columns of \mathbf{A} form an orthonormal basis for \mathbf{R}^n .

Shall prove
$$(1) \Leftrightarrow (2)$$
 and $(1) \Leftrightarrow (3)$

- 1. **A** is orthogonal
- 2. The rows of **A** form an orthonormal basis for \mathbb{R}^n

Theorem 5.4.6 $(1 \Leftrightarrow 2)$

For i = 1, 2, ..., n, let $\boldsymbol{a_i}$ be the *i*th row of \boldsymbol{A} .

$$\mathbf{A} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix} \mathbf{a}_{3}$$

$$\mathbf{A}^{T} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\mathbf{a}_{1}^{T} \mathbf{a}_{2}^{T} \mathbf{a}_{3}^{T}$$

$$\begin{pmatrix}
\mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0}
\end{pmatrix} = \mathbf{A} \mathbf{A}^{T} = \begin{pmatrix}
\mathbf{a}_{1} \mathbf{a}_{1}^{T} & \mathbf{a}_{1} \mathbf{a}_{2}^{T} & \mathbf{a}_{1} \mathbf{a}_{3}^{T} \\
\mathbf{a}_{2} \mathbf{a}_{1}^{T} & \mathbf{a}_{2} \mathbf{a}_{2}^{T} & \mathbf{a}_{2} \mathbf{a}_{3}^{T} \\
\mathbf{a}_{3} \mathbf{a}_{1}^{T} & \mathbf{a}_{3} \mathbf{a}_{2}^{T} & \mathbf{a}_{3} \mathbf{a}_{3}^{T}
\end{pmatrix} = \begin{pmatrix}
\mathbf{a}_{1} \cdot \mathbf{a}_{1} & \mathbf{a}_{1} \cdot \mathbf{a}_{2} & \mathbf{a}_{1} \cdot \mathbf{a}_{3} \\
\mathbf{a}_{2} \cdot \mathbf{a}_{1} & \mathbf{a}_{2} \cdot \mathbf{a}_{2} & \mathbf{a}_{2} \cdot \mathbf{a}_{3} \\
\mathbf{a}_{3} \cdot \mathbf{a}_{1} & \mathbf{a}_{3} \cdot \mathbf{a}_{2} & \mathbf{a}_{3} \cdot \mathbf{a}_{3}
\end{pmatrix}$$
orthogonal orthogonal

$$a_i \cdot a_i = 1$$
 for all $i \Leftrightarrow ||a_i|| = 1$
 $a_i \cdot a_j = 0$ for $i \neq j \Leftrightarrow a_i$ and a_j orthogonal $\{a_1, a_2, ..., a_n\}$ is an orthonormal basis for \mathbb{R}^n

Chapter 5 Orthogonality 10

Theorem 5.4.6

- 1. \mathbf{A} is an orthogonal matrix. $\Leftrightarrow \mathbf{A}^{\mathsf{T}}$ is orthogonal matrix
- 2. The rows of \mathbf{A} form an orthonormal basis for \mathbf{R}^n .
- 3. The columns of \mathbf{A} form an orthonormal basis for \mathbf{R}^n .

We have proven $(1) \Leftrightarrow (2)$

Use \mathbf{A}^{T} to derive (1) \Leftrightarrow (3)

Transition matrix revisited

Discussion 5.4.1

Let $S = \{ \mathbf{u_1}, \mathbf{u_2}, ..., \mathbf{u_k} \}$ and $T = \{ \mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_k} \}$ be two bases for a vector space V.

Procedure to compute transition matrix P from S to T:

- (i) write each u_i as a linear combination of $v_1, v_2, ..., v_k$.
- (ii) use the coordinate vector $[\mathbf{u}_i]_T$ as the i th column \mathbf{P} .

$$\boldsymbol{P} = ([\boldsymbol{u_1}]_T [\boldsymbol{u_2}]_T \cdots [\boldsymbol{u_k}]_T)$$

For any vector \mathbf{w} in V, $[\mathbf{w}]_T = \mathbf{P}[\mathbf{w}]_S$.

13

Example 5.4.2

$$S = \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$$
: the standard basis for \mathbb{R}^3
 $\mathbf{e_1} = (1, 0, 0)$ $\mathbf{e_2} = (0, 1, 0)$ $\mathbf{e_3} = (0, 0, 1)$

 $T = \{u_1, u_2, u_3\}$: orthonormal basis for \mathbb{R}^3

$$\mathbf{u_1} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$
 $\mathbf{u_2} = (\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}})$ $\mathbf{u_3} = (\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})$

Transition matrix from T to S

Chapter 5

Example 5.4.2

$$S = \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$$
: the standard basis for \mathbb{R}^3
 $\mathbf{e_1} = (1, 0, 0)$ $\mathbf{e_2} = (0, 1, 0)$ $\mathbf{e_3} = (0, 0, 1)$

$$T = \{u_1, u_2, u_3\}$$
: orthonormal basis for \mathbb{R}^3

$$\mathbf{u_1} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$
 $\mathbf{u_2} = (\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}})$ $\mathbf{u_3} = (\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})$

Transition matrix from S to T

Transition matrix from
$$S$$
 to I

$$\begin{cases}
\mathbf{e_1} \cdot \mathbf{u_1} & \mathbf{e_1} \cdot \mathbf{u_2} & \mathbf{e_1} \cdot \mathbf{u_3} \\
\mathbf{e_1} \cdot \mathbf{u_1} & + \frac{1}{\sqrt{2}} \mathbf{u_2} & + \frac{1}{\sqrt{6}} \mathbf{u_3} \\
\mathbf{e_2} & = \frac{1}{\sqrt{3}} \mathbf{u_1} & - \frac{2}{\sqrt{6}} \mathbf{u_3} \\
\mathbf{e_3} & = \frac{1}{\sqrt{3}} \mathbf{u_1} & - \frac{1}{\sqrt{2}} \mathbf{u_2} & + \frac{1}{\sqrt{6}} \mathbf{u_3} \\
\text{Theorem 5.2.8.2}
\end{cases}$$

Orthogonality

Example 5.4.2

Transition matrix from T to S

$$P = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix}$$

$$\mathbf{u}_{1}^{T} \quad \mathbf{u}_{2}^{T} \quad \mathbf{u}_{3}^{T}$$

Transition matrix from *S* to *T*

$$Q = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{pmatrix} \mathbf{u}_{1}$$

By theorem 3.7.5
$$Q = P^{-1}$$

 $Q = P^{T}$

S: orthonormal basis

So **P** is an orthogonal matrix

T: orthonormal basis

Theorem 5.4.7

S and T: two orthonormal bases for a vector space.

The transition matrix **P** from S to T is orthogonal.

So P^T is the transition matrix from T to S.

Example 5.4.8.2

S:
$$\mathbf{u}_1 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$
 $\mathbf{u}_2 = (\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}})$ $\mathbf{u}_3 = (\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})$

$$T: \mathbf{v}_1 = (0, 0, 1) \quad \mathbf{v}_2 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0) \quad \mathbf{v}_3 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$$

transition matrix

from S to T

$$\mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{2} & \frac{3}{\sqrt{12}} \\ \frac{2}{\sqrt{6}} & \frac{1}{2} & -\frac{1}{\sqrt{12}} \end{pmatrix}$$

transition matrix from T to S

$$\mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{2} & \frac{3}{\sqrt{12}} \\ \frac{2}{\sqrt{6}} & \frac{1}{2} & -\frac{1}{\sqrt{12}} \end{pmatrix} \text{ take transpose } \mathbf{P}^T = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{\sqrt{6}} & \frac{3}{\sqrt{12}} & -\frac{1}{\sqrt{12}} \end{pmatrix}$$

17

Theorem 5.4.7

S and T are orthonormal bases

18

Let $S = \{u_1, u_2, ..., u_k\}$ and $T = \{v_1, v_2, ..., v_k\}$. By Theorem 5.2.8.2

$$\begin{cases} \mathbf{u}_1 &= & (\mathbf{u}_1 \cdot \mathbf{v}_1) \mathbf{v}_1 + (\mathbf{u}_1 \cdot \mathbf{v}_2) \mathbf{v}_2 + \dots + (\mathbf{u}_1 \cdot \mathbf{v}_k) \mathbf{v}_k \\ \mathbf{u}_2 &= & (\mathbf{u}_2 \cdot \mathbf{v}_1) \mathbf{v}_1 + (\mathbf{u}_2 \cdot \mathbf{v}_2) \mathbf{v}_2 + \dots + (\mathbf{u}_2 \cdot \mathbf{v}_k) \mathbf{v}_k \\ &\vdots \\ \mathbf{u}_k &= & (\mathbf{u}_k \cdot \mathbf{v}_1) \mathbf{v}_1 + (\mathbf{u}_k \cdot \mathbf{v}_2) \mathbf{v}_2 + \dots + (\mathbf{u}_k \cdot \mathbf{v}_k) \mathbf{v}_k \end{cases}$$

The transition matrix from S to T is

$$\mathbf{P} = \begin{pmatrix} \mathbf{u}_1 \cdot \mathbf{v}_1 & \mathbf{u}_2 \cdot \mathbf{v}_1 & \dots & \mathbf{u}_k \cdot \mathbf{v}_1 \\ \mathbf{u}_1 \cdot \mathbf{v}_2 & \mathbf{u}_2 \cdot \mathbf{v}_2 & \dots & \mathbf{u}_k \cdot \mathbf{v}_2 \\ \vdots & \vdots & & \vdots \\ \mathbf{u}_1 \cdot \mathbf{v}_k & \mathbf{u}_2 \cdot \mathbf{v}_k & \dots & \mathbf{u}_k \cdot \mathbf{v}_k \end{pmatrix}$$

Chapter 5 Orthogonality

Theorem 5.4.7

S and T are orthonormal bases

Let $S = \{u_1, u_2, ..., u_k\}$ and $T = \{v_1, v_2, ..., v_k\}$. By Theorem 5.2.8.2

The transition matrix from T to S is

$$\mathbf{Q} = \begin{pmatrix} \mathbf{v}_1 \cdot \mathbf{u}_1 & \mathbf{v}_2 \cdot \mathbf{u}_1 & \cdots & \mathbf{v}_k \cdot \mathbf{u}_1 \\ \mathbf{v}_1 \cdot \mathbf{u}_2 & \mathbf{v}_2 \cdot \mathbf{u}_2 & \cdots & \mathbf{v}_k \cdot \mathbf{u}_2 \\ \vdots & \vdots & & \vdots \\ \mathbf{v}_1 \cdot \mathbf{u}_k & \mathbf{v}_2 \cdot \mathbf{u}_k & \cdots & \mathbf{v}_k \cdot \mathbf{u}_k \end{pmatrix}$$

Chapter 5 Orthogonality

Theorem 5.4.7

S and T are orthonormal bases

Let
$$S = \{u_1, u_2, ..., u_k\}$$
 and $T = \{v_1, v_2, ..., v_k\}$.

transition matrix from *S* to *T*

inverse of each other

transition matrix from T to S

$$m{P} = egin{pmatrix} m{u}_1 \cdot m{v}_1 \ m{u}_1 \cdot m{v}_2 \ dots \ m{u}_1 \cdot m{v}_k \end{pmatrix}$$

$$egin{aligned} oldsymbol{u}_2 & \cdot oldsymbol{v}_1 & \cdots \ oldsymbol{u}_2 & \cdot oldsymbol{v}_2 & \cdots \ & dots \ oldsymbol{u}_2 & \cdot oldsymbol{v}_k & \cdots \end{aligned}$$

$$egin{aligned} oldsymbol{u_k} & \cdot oldsymbol{v_1} \ oldsymbol{u_k} & \cdot oldsymbol{v_2} \ & dots \ oldsymbol{u_k} & \cdot oldsymbol{v_k} \end{aligned}$$

$$\mathbf{Q} = \begin{bmatrix} \mathbf{v}_1 \cdot \mathbf{u}_1 & \mathbf{v}_2 \cdot \mathbf{u}_1 & \cdots & \mathbf{v}_k \cdot \mathbf{u}_1 \\ \mathbf{v}_1 \cdot \mathbf{u}_2 & \mathbf{v}_2 \cdot \mathbf{u}_2 & \cdots & \mathbf{v}_k \cdot \mathbf{u}_2 \\ \vdots & \vdots & & \vdots \\ \mathbf{v}_1 \cdot \mathbf{u}_k & \mathbf{v}_2 \cdot \mathbf{u}_k & \cdots & \mathbf{v}_k \cdot \mathbf{u}_k \end{bmatrix}$$

20

We have $\mathbf{Q} = \mathbf{P}^T$

We also have $\mathbf{Q} = \mathbf{P}^{-1}$

So $P^{-1} = P^{T}$, i.e. P is orthogonal.

Rotation of *xy*-coordinates

Example 5.4.8.1

23

new x'y'-coordinate system

What is the coordinate of \mathbf{v} w.r.t. the new coordinate system? Ans: $[\mathbf{v}]_T$

What is the transition matrix between S and T?

Rotation of *xy*-coordinates

Example 5.4.8.1

$$\mathbf{u}_1 = (\cos(\theta), \sin(\theta))$$

 $\mathbf{u}_2 = (-\sin(\theta), \cos(\theta))$

24

$$S = \{e_1, e_2\}$$
 the standard basis

transition matrix from *T* to *S*

$$\mathbf{P} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

 $T = \{ \boldsymbol{u_1}, \, \boldsymbol{u_2} \}$ an orthonormal basis

transition matrix from *S* to *T*

$$\mathbf{P}^{T} = egin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

What is the coordinate of **v** w.r.t. the new coordinate system?

$$[\mathbf{v}]_{\mathsf{T}} = \mathbf{P}^{\mathsf{T}}[\mathbf{v}]_{\mathsf{S}}$$

coordinates of **v** in the new x'y'-coordinate system

usual coordinates of **v**

Rotation of *xy*-coordinates

Quiz Time

Same effect as fixing the xy-coordinate and rotate the vector clockwise by 60°.

Section 6.1

Eigenvalues and Eigenvectors

Objectives

- What are Eigenvalues, Eigenvectors and Eigenspace?
- How to find eigenvalues and eigenvectors of a matrix?
- How is eigenvalue related to invertibility of matrix?

Google page rank

Google ranks webpages according to "hyperlinks"

e.g. we want to rank 4 webpages: A, B, C, D

Form a 4x4 matrix:

A B C D

A
$$\begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ 1 & \frac{1}{3} & 0 & \frac{1}{2} \\ 0 & \frac{1}{3} & \frac{1}{2} & 0 \end{pmatrix}$$

eigenvector

O.446

O.743

O.743

O.446

D.446

A has a link to C, but not to B and D B has a link to A, C, D

Power of matrices revisited

Example 6.1.1

$$\mathbf{A} = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix} \mathbf{A}^n = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix}^n$$

"Factorize" A

 $= PD^{n}P^{-1}$

$$A = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0.95 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix}^{-1}$$

$$A = PDP^{-1} \qquad P \qquad D \qquad P^{-1}$$

$$A^{n} = (PDP^{-1})^{n} \neq P^{n}D^{n}P^{-n}$$

$$= (PDP^{-1})(PDP^{-1})(PDP^{-1}) \cdots (PDP^{-1}) \quad (n \text{ times})$$

$$= PD D \cdots DP^{-1}$$

Power of matrices revisited

$\mathbf{A}^n = \mathbf{P} \mathbf{D}^n \mathbf{P}^{-1}$

Example 6.1.1

$$\mathbf{D}^{n} = \begin{pmatrix} 1 & 0 \\ 0 & 0.95 \end{pmatrix}^{n} = \begin{pmatrix} 1^{n} & 0 \\ 0 & 0.95^{n} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0.95^{n} \end{pmatrix}$$

$$A^{100} = PD^{100}P^{-1}$$

$$= \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0.95^{100} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 0.2047 & 0.1988 \\ 0.7953 & 0.8012 \end{pmatrix}$$

Diagonalizing a matrix

Remark 6.1.2

$$\mathbf{A} = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0.95 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix}^{-1}$$

This is called "diagonalizing" a square matrix.

We need the concept of eigenvalues and eigenvectors.

What are eigenvalue and eigenvector?

Definition 6.1.3

Let \mathbf{A} be a square matrix of order n.

Let x be a nonzero (column) vector in \mathbb{R}^n

If Ax = scalar multiple of x and x = scalar multiple of x

= λx for some scalar λ lambda

relation?

then x is called an eigenvector of A

The scalar λ is called an eigenvalue of \boldsymbol{A} and \boldsymbol{x} is said to be an eigenvector of \boldsymbol{A} associated with the eigenvalue λ .

Chapter 6 Diagonalization

What are eigenvalue and eigenvector?

Example 6.1.4.1

$$A = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix}$$
 $x = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ $y = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\mathbf{Ax} = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \mathbf{x}$$
 is an eigenvector of \mathbf{A} with the eigenvalue $\mathbf{1}$.

$$\mathbf{Ay} = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0.95 \\ -0.95 \end{pmatrix} = 0.95 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \mathbf{0.95y}$$

y is an eigenvector of A with the eigenvalue 0.95.

$$\begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0.95 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix}^{-1}$$

What are eigenvalue and eigenvector?

Example 6.1.4.2

$$\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \mathbf{y} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \quad \mathbf{z} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

$$\mathbf{Bx} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \mathbf{3x}$$
 is an eigenvector associated with eigenvalue 3

$$\mathbf{B(2x)} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \\ 6 \end{pmatrix} = 3 \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} = 3(2x)$$
2x is an eigenvector

associated with eigenvalue 3

$$\mathbf{B}(k\mathbf{x}) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} k \\ k \\ k \end{pmatrix} = 3 \begin{pmatrix} k \\ k \\ k \end{pmatrix} = 3(k\mathbf{x})$$
 kx is an eigenvector associated with eigenvalue 3

$$\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1 \end{pmatrix}^{-1}$$
Example 6.1.4.2

$$\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \mathbf{y} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \quad \mathbf{z} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

$$\mathbf{B}\mathbf{X} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3\mathbf{X}$$
 is an eigenvector associated with eigenvalue 3

$$\textbf{By} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \textbf{0y} \quad \textbf{y} \text{ is an eigenvector associated with eigenvalue } 0$$

$$\mathbf{Bz} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 0\mathbf{z} \quad \mathbf{z} \text{ is an eigenvector associated with eigenvalue } 0$$

Chapter 6 Diagonalization

Eigenvalues of triangular matrices

Theorem 6.1.9 & Example 6.1.10

If \mathbf{A} is a triangular matrix, in particular, diagonal matrix the eigenvalues of \mathbf{A} are the diagonal entries of \mathbf{A} .

The eigenvalues are -1, 5 and 2.

The eigenvalues are -2, 0 and 10.

The proof

Theorem 6.1.9

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ 0 & & & a_{nn} \end{pmatrix} \lambda \mathbf{I} - \mathbf{A} = \begin{pmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ & \lambda - a_{22} & \cdots & -a_{2n} \\ & & \ddots & \vdots \\ 0 & & & \lambda - a_{nn} \end{pmatrix}$$

characteristic polynomial of A

$$\det(\lambda \mathbf{I} - \mathbf{A}) = (\lambda - a_{11})(\lambda - a_{22})\cdots(\lambda - a_{nn})$$
this polynomial is completely factorized

roots of the polynomial: a_{11} , a_{22} , ..., a_{nn}

eigenvalues of **A** diagonal entries of **A**

Diagonalization Chapter 6

How to find eigenvalues?

$(\lambda - A) x = 0$

16

Remark 6.1.5

Let \mathbf{A} be a square matrix of order n.

- $\longrightarrow \lambda$ is an eigenvalue of A
- $\Leftrightarrow Ax = \lambda x$ for some nonzero column vector x
- $\Leftrightarrow \lambda x Ax = 0$ for some nonzero column vector x
- \Leftrightarrow $(\lambda I A) x = 0$ for some nonzero column vector x homog. system has non-trivial solutions
- $\Rightarrow \det(\lambda \mathbf{I} \mathbf{A}) = 0$ Solve this equation to find the eigenvalues of \mathbf{A}

a polynomial in λ

How to find eigenvalues?

Example 6.1.7.1

$$\mathbf{A} = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix}$$
 The eigenvalues of \mathbf{A} are 1 and 0.95.
$$\det(\lambda \mathbf{I} - \mathbf{A}) = \det \begin{pmatrix} \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix} \end{pmatrix} = \begin{vmatrix} \lambda - 0.96 & -0.01 \\ -0.04 & \lambda - 0.99 \end{vmatrix}$$

$$= (\lambda - 0.96)(\lambda - 0.99) - (-0.01)(-0.04)$$

$$= \lambda^2 - 1.95\lambda + 0.95$$
 polynomial of degree 2

=
$$(\lambda - 1)(\lambda - 0.95)$$
 factorize the polynomial

$$det(\lambda \mathbf{I} - \mathbf{A}) = 0$$
 if and only if $\lambda = 1$ or 0.95

Chapter 6 Diagonalization

What is characteristic polynomial?

Definition 6.1.6

Let \mathbf{A} be a square matrix of order n.

The polynomial $det(\lambda \mathbf{I} - \mathbf{A})$ degree n is called the characteristic polynomial of \mathbf{A} .

 λ is an eigenvalue of $\mathbf{A} \Leftrightarrow \det(\lambda \mathbf{I} - \mathbf{A}) = 0$

 $\Leftrightarrow \lambda$ is a root of the characteristic polynomial

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n1} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

Finding eigenvalues from characteristic polynomial

Example 6.1.7.3

$$\boldsymbol{C} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$
 The eigenvalues of \boldsymbol{C} are 1 , $\sqrt{2}$ and $-\sqrt{2}$
$$\det(\lambda \boldsymbol{I} - \boldsymbol{C}) = \begin{vmatrix} \lambda & 1 & 0 \\ 0 & \lambda & -2 \\ -1 & -1 & \lambda - 1 \end{vmatrix}$$
 characteristic polynomial of \boldsymbol{C}
$$= \lambda^3 - \lambda^2 - 2\lambda + 2$$
 one factor is $(\lambda - 1)$
$$= (\lambda - 1)(\lambda^2 - 2)$$
 guess one root
$$\lambda = 1$$

 $\det(\lambda \boldsymbol{I} - \boldsymbol{C}) = 0$ if and only if $\lambda = 1$, $\sqrt{2}$ or $-\sqrt{2}$

Chapter 6 Diagonalization

A very³ important theorem (revisited)

Theorem 6.1.8

1,2,3,4,5,6,7,8

20

The following statements are equivalent:

- 1. **A** is invertible.
- 2. The linear system Ax = 0 has only the trivial solution.
- 3. The reduced row-echelon form of **A** is **I**.
- 4. A can be expressed as a product of elementary matrices.
- 5. $det(A) \neq 0$.
- **6.** The rows of \mathbf{A} form a basis for \mathbf{R}^n .
- 7. The columns of \mathbf{A} form a basis for \mathbf{R}^n .
- 8. $\operatorname{rank}(\mathbf{A}) = n$.
- 9. 0 is not an eigenvalue of **A**.

- 5. $\det(\mathbf{A}) \neq 0$
- 9. 0 is not an eigenvalue of **A**

Theorem 6.1.8

We are going to show " $5 \Leftrightarrow 9$ ".

Statement 9 0 is not an eigenvalue of **A**

- \Leftrightarrow 0 is not a root of the char. poly. det($\lambda \mathbf{I} \mathbf{A}$)
- \Leftrightarrow det($0\mathbf{I} \mathbf{A}$) $\neq 0$
- \Leftrightarrow det(- \mathbf{A}) \neq 0
- \Leftrightarrow $(-1)^n \det(\mathbf{A}) \neq 0$
- \Leftrightarrow det(\mathbf{A}) \neq 0 Statement 5

How to find eigenvectors?

Remark 6.1.5

eigenvector

Let \mathbf{A} be a square matrix of order n.

is an eigenvalue of A

- $\Leftrightarrow Ax = \lambda x$ for some nonzero column vector x
- $\Leftrightarrow \lambda x Ax = \emptyset$ for some nonzero column vector x
- $\Leftrightarrow (\lambda \mathbf{I} \mathbf{A}) \mathbf{x} = \mathbf{0}$ for some nonzero column vector \mathbf{x}

homog. system has non-trivial solutions

 $\Leftrightarrow \det(\lambda \mathbf{I} - \mathbf{A}) = 0$

by solving this linear system its solution space contains all the eigenvectors associated to λ Diagonalization

What is an eigenspace of a matrix?

Definition 6.1.11 (Eigenspace)

 \mathbf{A} : square matrix of order n

 λ : an eigenvalue of **A**

The solution space of the linear system

$$(\lambda \mathbf{I} - \mathbf{A}) \mathbf{x} = 0$$

is called the eigenspace of ${\bf A}$ has nontrivial solutions associated with the eigenvalue λ denoted by ${\bf E}_{\lambda}$

If \boldsymbol{u} is a nonzero vector in E_{λ} , then \boldsymbol{u} is an eigenvector of \boldsymbol{A} associated with the eigenvalue λ .

Eigenspace of a matrix

Example 6.1.12.1

$$\mathbf{A} = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix}$$

By Example 6.1.8.1, the eigenvalues of \boldsymbol{A} are $\boldsymbol{1}$ and $\boldsymbol{0.95}$.

A has two eigenspaces E_1 and $E_{0.95}$

How to find eigenspace?

Example 6.1.12.1 (Find E_1)

For
$$\lambda = 1$$
,
 $(\lambda \mathbf{I} - \mathbf{A}) \mathbf{x} = 0 \Leftrightarrow \begin{pmatrix} 1 - 0.96 & -0.01 \\ -0.04 & 1 - 0.99 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

General solution

$$\begin{pmatrix} x \\ y \end{pmatrix} = t \begin{pmatrix} 0.25 \\ 1 \end{pmatrix} \qquad t \quad \text{an arbitrary parameter}$$

$$E_1 = \operatorname{span} \left\{ \begin{pmatrix} 0.25 \\ 1 \end{pmatrix} \right\}$$

 $E_1 = \operatorname{span} \left\{ \begin{pmatrix} 0.25 \\ 1 \end{pmatrix} \right\} \quad \text{any non-zero scalar multiple of } \begin{pmatrix} 0.25 \\ 1 \end{pmatrix}$ is an eigenvector of \boldsymbol{A} associated with the eigenvalue 1

31

Basis for the eigenspace E_1

How to find eigenspace?

Example 6.1.12.1 (Find $E_{0.95}$)

For
$$\lambda = 0.95$$
,
 $(\lambda \mathbf{I} - \mathbf{A}) \mathbf{x} = 0 \Leftrightarrow \begin{pmatrix} 0.95 - 0.96 & -0.01 \\ -0.04 & 0.95 - 0.99 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

General solution

$$\begin{pmatrix} x \\ y \end{pmatrix} = t \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 t an arbitrary parameter

$$E_{0.95} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$$

any non-zero scalar multiple of $\binom{-1}{1}$ is an eigenvector of \boldsymbol{A} associated with the eigenvalue 0.95

Basis for the eigenspace $E_{0.95}$

Eigenspace of a matrix

Example 6.1.12.2

$$m{B} = egin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix}$$

By Example 6.1.8.2, the eigenvalues of **B** are 3 and 0.

B has two eigenspaces E_3 and E_0

33

How to find eigenspace?

Example 6.1.12.2 (Find E_0)

For
$$\lambda = 0$$
, $(\lambda I - B)x = 0 \Leftrightarrow \begin{pmatrix} 0 - 1 & -1 & -1 \\ -1 & 0 - 1 & -1 \\ -1 & -1 & 0 - 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

General solution

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
 s, t are arbitrary parameters

$$E_0 = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\} \quad \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \text{ is an eigenvector of } \mathbf{B} \text{ associated with the}$$

any non-zero linear combination of

$$\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ is an eigenvector

of **B** associated with the

eigenvalue 0

Basis for the eigenspace E_0 Chapter 6 Diagonalization