Apuntes

"MAT2505 - Ecuaciones Diferenciales Parciales"

Docente: Carlos Román

Apuntes: Sebastián Sánchez

Índice

1.	Preliminares: Teoría de medida	1
2.	Preliminares: Cálculo Multivariable 2.1. Fórmula de Green-Gauss	3
3.	Distribuciones	4
4.	Ecuación de Laplace	6
	4.1. Solución Fundamental	6
	4.2. Propiedades de Funciones Armónicas	10
	4.3. Regularidad	15
	4.4. Función de Green	17
	4.5. Función de Green para el semiespacio	19
	09 de Marzo, 20	23

1. Preliminares: Teoría de medida

Para un conjunto X, decimos que una colección de subconjuntos M de X es una sigma álgebra si contiene a X y es cerrado bajo complementos y uniones numerables. En símbolos:

$$X \in M; \quad A \in M \Longrightarrow A^c \in M; \quad A_1, A_2, \dots, M \Longrightarrow \bigcup_{n \geq 1} A_n \in M.$$

El par (X, M) se dice *espacio medible* y los elementos de M son los *conjuntos medibles*.

Los espacios topológicos tienen una sigma álgebra inducida por sus abiertos (la sigma álgebra más pequeña que contiene a todos los abiertos), llamada σ -álgebra de Borel y denotada por $\mathcal{B}(X)$. Para X,Y espacios topológicos con sus respectivas sigma álgebras, decimos que $f:X\to Y$ es una función medible si $f^{-1}(A)$ es un conjunto medible para todo A abierto.

Decimos que $m: X \to \mathbb{R}_{\geq 0}$ es una *función de medida* si el vacío tiene medida cero y la medida de una unión (numerable) disjunta de conjuntos medibles es la suma de la medida de los conjuntos. En símbolos:

$$m(\varnothing) = 0$$
 y $m\left(\bigcup_{n\geq 1} A_i\right) = \sum_{n\geq 1} m(A_i) \operatorname{con} A_1, A_2, \dots$ disjuntos.

A la tripleta (X, M, m) se le dice *espacio de medida*.

Casi siempre trabajaremos en \mathbb{R}^n y la medida estándar para esta será la medida de Lebesgue. Esta le asigna a los intervalos su largo (en \mathbb{R}) y se extiende a \mathbb{R}^n como la medida que le asigna a los n-cubos su volumen.

Decimos que un conjunto es despreciable si tiene medida nula. Cuando una propiedad se cumple salvo un conjunto de medida nula, decimos que la propiedad se cumple casi en todas partes o *m*-ctp.

Una función indicatriz $\chi_A \colon X \to [0,1]$ se define por

$$\chi_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}.$$

Una función simple es una combinación lineal finita de funciones indicatrices:

$$s = \sum_{n=1}^{N} a_n \chi_{A_n}(x), \quad A_n \in M, a_n \in \mathbb{R}_{\geq 0}.$$

Definimos la integral de una función simple como

$$\int s \, \mathrm{d}m = \sum_{n=1}^{N} a_n m(A_n).$$

Para una función positiva f la integral se define por

$$\int f \, \mathrm{d}m = \sup_{s \le f} \int s \, \mathrm{d}m,$$

donde el supremo se toma sobre todas las funciones simples menores a f.

Para una función con signo f definimos $f^+=\max\{0,f\}$ y $f^-=\max\{0,-f\}$, de esta forma, $f=f^+-f^-$ y la integral de f es

$$\int f \, \mathrm{d}m = \int f^+ \, \mathrm{d}m - \int f^- \, \mathrm{d}m.$$

Obsérvese que $|f| = f^+ + f^-$. Decimos que una función es integrable si $\int |f| < \infty$.

Al conjunto de funciones integrables lo denotamos por L^1 y en general el conjunto L^p se define como

$$L^p := \left\{ f \colon X \to \mathbb{R} \mid \left(\int |f|^p \, \mathrm{d}m \right)^{1/p} < \infty \right\}.$$

2. Preliminares: Cálculo Multivariable

Empezaremos fijando notación. Para $\Omega \subset \mathbb{R}^n$ abierto decimos que $\partial \Omega$ es de clase \mathscr{C}^k si para todo $x_0 \in \partial \Omega$ existe un r > 0 y una función $\gamma \colon \mathbb{R}^{n-1} \to \mathbb{R}$ de clase \mathscr{C}^k tal que

$$\Omega \cap B(x_0, r)$$

$$\|$$

$$\{(x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : x_n > \gamma(x')\} \cap B(x_0, r).$$

Es decir, Ω localmente se ve como la región sobre el grafo de una función k-veces continuamente diferenciable.

Si $\partial\Omega$ es de clase \mathscr{C}^1 podemos definir su vector normal exterior unitario mediante la fórmula:

$$\hat{\mathbf{n}}(x_0) = \frac{1}{\sqrt{|\nabla \gamma(x')| + 1}} \begin{pmatrix} \nabla \gamma(x') \\ -1 \end{pmatrix}.$$

Para funciones $u \in \mathcal{C}^1(\overline{\Omega})$ definimos su derivada normal por

$$\partial_{\hat{\mathbf{n}}} u(x) := \nabla u(x) \cdot \hat{\mathbf{n}}(x), \quad x \in \partial \Omega.$$

2.1. Fórmula de Green-Gauss

Recordaremos algunas fórmulas del cálculo multivariable que usaremos durante el curso. En particular a continuación se muestra el Teorema de la divergencia, la fórmula de integración por partes y las fórmulas de Green. Todas estas integrales relacionan la densidad de flujo de un campo vectorial con la integral sobre el contorno de una región.

Teorema de la divergencia: (1) Si $u \in \mathscr{C}^1(\overline{\Omega})$, entonces

$$\int_{\Omega} \partial_{x_i} u = \int_{\partial \Omega} u \, \hat{\mathbf{n}}^i.$$

donde $\hat{\mathbf{n}}^i$ es la iésima coordenada del vector normal.

(2) Si
$$F \in \mathscr{C}^1(\overline{\Omega}, \mathbb{R}^n)$$
 entonces

$$\int_{\Omega} \nabla \cdot F = \int_{\partial \Omega} F \cdot \hat{\mathbf{n}}.$$

Como consecuencia del Teorema de la Divergencia tenemos la fórmula de **Integración por partes**: Si u y v son funciones en $\mathscr{C}^1(\overline{\Omega})$, entonces

$$\int_{\Omega} \partial_{x_i} u \, v = -\int_{\Omega} u \, \partial_{x_i} v + \int_{\partial \Omega} u \, v \, \hat{\mathbf{n}}^i.$$

Para funciones $u \in \mathcal{C}^2(\overline{\Omega})$. definimos el Laplaciano como:

$$\Delta u = \nabla^2 u = \nabla \cdot \nabla u = \sum_{i=1}^n \partial_{x_i}^2 u.$$

De las fórmulas anteriores obtenemos las **Fórmulas de Green**: Para $u, v \in \mathscr{C}^2(\overline{\Omega})$ se tiene que la **primera fórmula de Green**:

$$\int_{\Omega} \nabla^2 u = \int_{\partial \Omega} \partial_{\hat{\mathbf{n}}} u.$$

Además, la fórmula de integración por partes se cumple con gradientes, esto se conoce como segunda fórmula de Green:

$$\int_{\Omega} \nabla u \nabla v + u \Delta v = \int_{\partial \Omega} u \, \partial_{\hat{\mathbf{n}}} v.$$

Más aún, tenemos la tercera fórmula de Green.

$$\int_{\Omega} u \, \Delta v - v \, \Delta u = \int_{\partial \Omega} u \, \partial_{\hat{\mathbf{n}}} v - v \, \partial_{\hat{\mathbf{n}}} u.$$

En coordenadas polares tenemos que, para $f \colon \mathbb{R}^n \to \mathbb{R}$ una función continua y Riemann-integrable se cumple

$$\int_{\mathbb{R}^n} f = \int_0^\infty \int_{\partial B(0,r)} f \, dS.$$

En particular,

$$\frac{\mathrm{d}}{\mathrm{d}r} \int_{B(x_0,r)} f = \int_{\partial B(x_0,r)} f \, \mathrm{d}S.$$

3. Distribuciones

Sea Ω un abierto en \mathbb{R}^n y sea \mathscr{D} la familia de funciones suaves con soporte compacto sobre Ω . En símbolos,

$$\mathscr{D} := \{ \varphi \colon \Omega \to \mathbb{R} \mid \varphi \in \mathscr{C}^{\infty}_{C}(\Omega) \}.$$

Intuitivamente, estas son las funciones que se hacen cero al infinito. Además, definimos las funciones **localmente integrables** como:

$$L^1_{\mathrm{loc}} \coloneqq \left\{ f \colon \Omega o \mathbb{R} \mid orall K \subset \Omega ext{ compacto, se tiene que } \int_K |f| < \infty
ight\}.$$

La gracia de las funciones localmente integrables es que nos permitimos trabajar con funciones sin mucha regularidad. En este mismo sentido viene la siguiente definición.

Definición 1: Derivada parcial débil

Decimos que $f \in L^1_{\mathrm{loc}}$ tiene una derivada parcial débil si existe $g \in L^1_{\mathrm{loc}}$ tal que

$$\forall \psi \in \mathscr{D} \text{ se tiene que } \int_{\Omega} f \partial_{x_i} \psi = - \int_{\Omega} g \psi.$$

Denotamos a g por $\partial_{x_i} f$.

Para funciones diferenciables la derivada débil coincide con la derivada usual casi en todas partes. Entenderemos de aquí en adelante que cuando hablemos de derivadas siempre nos referiremos a las derivadas en el sentido débil.

Definición 2: Distribución

Una distribución es un funcional lineal $u \colon \mathscr{D} \to \mathbb{R}$ que es continuo en el sentido siguiente: En todo compacto K de Ω existe un entero no negativo j y un real no negativo C tal que para toda función φ en \mathscr{D} con supp $(\varphi) \subset K$ se cumple que

$$|u(\varphi)| \le C \sup_{|\alpha| < j} |\partial^{\alpha} \varphi(x)|$$

donde $\pmb{\alpha}=(\pmb{\alpha}_1,\ldots,\pmb{\alpha}_n)\in\mathbb{Z}^n_{\geq 0}$ es un multi-índice con $|\pmb{\alpha}|=\pmb{\alpha}_1+\cdots+\pmb{\alpha}_n$ y

$$\partial^{\alpha} = \partial_{x_1}^{\alpha_1} \partial_{x_2}^{\alpha_2} \cdots \partial_{x_n}^{\alpha_n}$$

Anotamos $u(\varphi) = \langle u, \varphi \rangle$. Además, decimos que j es el orden de la distribución.

EJEMPLO 1: Algunas distribuciones

1. Toda función f localmente integrable define una distribución u_f definida por:

$$u_f(\boldsymbol{\psi}) = \langle u_f, \boldsymbol{\psi} \rangle = \int_{\Omega} f \boldsymbol{\psi}.$$

En efecto, para K un compacto en Ω que contiene al soporte de una función $\psi \in \mathscr{D}$ se tiene que

$$|\langle u_f, \psi \rangle| \leq \int_{\Omega} |f \psi| \leq \underbrace{\int_{K} |f| \sup_{K} |\psi|}_{K}.$$

Notando que $\psi = \partial^0 \psi$ tenemos la fórmula de la definición. Además, vemos que esta distribución tiene orden cero.

Cada función $u \in L^1_{loc}$ define un única distribución (única en el sentido de medida, es decir, ctp). Así que por abuso del lenguaje a veces se hablamos de u refiriéndonos a la distribución que induce.

2. Para un punto a de Ω definimos el funcional lineal δ_a como la evaluación. En símbolos:

$$\delta_a(\psi) = \langle \delta_a, \psi \rangle = \psi(a) \quad \forall \psi \in \mathscr{D}.$$

La distribución δ_a se conoce como **delta de dirac**. Para ver que es distribución, notemos que si K es un compacto en Ω que contiene al soporte de $\psi \in \mathcal{D}$ entonces

$$|\langle \delta_a, \psi \rangle| \leq \sup_K |\psi|.$$

5

Esta distribución también es de orden cero.

3. Similar al anterior, definimos $\partial_{x_i} \delta_a$ como (menos) la evaluación de la derivada en el punto a. En símbolos:

$$\partial_{x_i}\delta_a(\psi)=\langle\partial_{x_i}\delta_a,\psi\rangle=-\langle\delta_a,\partial_{x_i}\delta_a\rangle=-\partial_{x_i}\psi.$$

El menos sale porque en la igualdad de enmedio usamos integración por partes. Para ver que es distribución, sea K un compacto en Ω que contenga al soporte de $\psi \in \mathcal{D}$. Luego,

$$|\langle \partial_{x_i} \delta_a, \psi \rangle| \leq \sup_{\kappa} |\partial_{x_i} \psi|.$$

Vemos que esta distribución es de orden uno.

Definimos el **espacio de distribuciones** \mathcal{D}' en Ω como la colección de funcionales lineales continuos sobre \mathcal{D} i.e. El espacio dual de \mathcal{D} .

Proposición 1.

Si u es una distribución en Ω , entonces $\partial_{x_i}u$ también lo es, donde $\partial_{x_i}u$ se define como

$$\langle \partial_{x_i} u, \psi \rangle := -\langle u, \partial_{x_i} \psi \rangle \quad \forall \phi \in \mathscr{D}.$$

Y en general, se tiene que $\partial^{\alpha} u \in \mathcal{D}'$ con

$$\langle \partial^{\alpha} u, \psi \rangle := (-1)^{|\alpha|} \langle u, \partial^{\alpha} \psi \rangle \quad \forall \phi \in \mathscr{D}.$$

4. Ecuación de Laplace

En esta sección estudiaremos la ecuación de Laplace,

$$\Delta u = 0. \tag{1}$$

donde $u \in \mathscr{C}(\overline{\Omega})$ con Ω un abierto en \mathbb{R}^n . Esta ecuación es un caso particular de la *ecuación de Poisson*

$$-\Delta u = f$$
.

Las soluciones a la ecuación de Laplace se conocen como funciones armónicas. Notése que el gradiente de *u* define un campo vectorial donde a cada punto del espacio se le asocia un vector que apunta en la dirección de máximo cambio. Ahora, que este campo tenga divergencia nula en todo punto nos dice que el campo *u* en cada punto tiene un valor muy parecido al promedio de los valores de los puntos cercanos.

4.1. Solución Fundamental

Primero analizaremos la estructura de las soluciones, dígase, si u es solución de (1) entonces ¿qué podemos decir de u?

Simetrías Con simetrías nos referimos a aquellos invariantes bajo cambios en el dominio. Por ejemplo, tenemos que *u* es invariante bajo dilataciones/contracciones (siempre y cuando sigan en el dominio):

$$\Delta u(\lambda x) = \lambda^2 \partial_{x_1}^2 u(\lambda x) + \lambda^2 \partial_{x_2}^2 u(\lambda x) = 0, \quad x \in \Omega.$$

Más especificamente, si A es una transformación lineal ortogonal de Ω en Ω tendremos que

$$\Delta u(\lambda Ax) = \lambda^2 A^2 \partial_{x_1}^2 u(\lambda Ax) + \lambda^2 A^2 \partial_{x_2}^2 u(\lambda Ax) = 0, \quad x \in \Omega.$$

Con esta idea en mente buscaremos soluciones radiales, es decir, supondremos que u es de la forma:

$$u(x) = v(||x||) = v(r),$$

para alguna función *v* de una variable. Ahora necesitamos expresar la ecuación de Laplace en términos de la nueva función. Por la regla de la cadena,

$$\partial_{x_i} v(||x||) = \partial_{x_i} r \partial_r v(r).$$

Como $r = \sqrt{x_1^2 + \dots + x_n^2}$ tenemos que $\partial_{x_i} r = x_i/r$. Derivando de nuevo,

$$\partial_{x_i}^2 v(\|x\|) = \partial_{x_i} \left(\frac{x_i}{r} \partial_r v \right) = \frac{1}{r} v' - \frac{x_i^2}{r^3} v' + \frac{x_i^2}{r^2} v''.$$

Así que la ecuación de Laplace se lee,

$$\Delta u(x) = 0 \iff \sum_{i=1}^{n} \frac{1}{r} v' - \frac{x_i^2}{r^3} v' + \frac{x_i^2}{r^2} v'' = 0 \iff (n-1) \frac{v'}{r} + v'' = 0.$$

La EDO es separable así que nos queda,

$$\frac{v''}{v'} = \frac{1-n}{r} \implies v' = c_0 r^{1-n} \implies v = \begin{cases} c_1 \log r + c_2 & , n = 2\\ \frac{c_1}{(n-2)r^{n-2}} + c_2 & , n \ge 3 \end{cases}.$$

A modo de resumen, tenemos que para cualquier elección de constantes c_1, c_2 la función v(r) satisface $\Delta v(r) = 0$.

Proposición 2.

Podemos elegir las constantes tal que $-\Delta v = \delta_0$.

DEMOSTRACIÓN Notése que el lado derecho y el lado izquierdo son objetos distintos, por lo que esta igualdad la entenderemos en el sentido de distribuciones. Este es el abuso de notación que mencionamos antes.

Para facilitar los cálculos, primero "normalizamos" v,

$$\Phi(r) = \begin{cases} -\frac{1}{2\pi} \log r &, n = 2\\ \frac{1}{n\alpha(n)(n-2)r^{n-2}} &, n \geq 3 \end{cases}$$

donde $\alpha(n)$ es el volumen de la bola unitaria en \mathbb{R}^n .

La afirmación es equivalente a probar que $-\Delta_x \Phi = \delta_0$. Primero probaremos que Φ está en L^1_{loc} y luego mostraremos que la distribución inducida se comporta como δ_0 .

 $\Phi \in L^1_{loc}$: Primero veamos el caso $n \ge 3$. La función Φ se va a cero en el infinito y de hecho está bien acotada para $r \ge 1$, por lo que el posible problema está cerca del origen. Así que acotando eso estamos listos.

$$\int_{B(0,1)} \Phi(|x|) dx = \int_0^1 \int_{\partial B(0,r)} \Phi(r) dS dr$$
$$= n\alpha(n) \int_0^1 \Phi(r) r^{n-1} dr$$
$$= \frac{1}{(n-2)} \int_0^1 \frac{1}{r} dr < \infty$$

Puesto que $f(x) = 1/|x|^{\alpha}$ es convergente en la bola unitaria si y solo si $\alpha < n$.

Para n=2: Si $r\geq 1$ estamos lidiando con una función continua así que es localmente integrable. Por lo tanto, el problema está cerca del cero.

$$\left| \int_{B(0,1)} \Phi(|x|) \, dx \right| = \left| \int_0^1 \int_{\partial B(0,1)} \Phi(r) \, dS \, dr \right|$$
$$= \left| 2\pi \int_0^1 \Phi(r) r \, dr \right|$$
$$= \left| -\int_0^1 \log(r) r \, dr \right| < \infty$$

 $-\Delta u_{\Phi} = \delta_0$: Ya que Φ es localmente integrable induce una distribución u_{Φ} dada por:

$$\langle u_{\Phi}, \psi \rangle = \int_{\mathbb{R}} \Phi \psi \qquad \forall \psi \in \mathscr{D}.$$

En particular tenemos que $\Delta_x u_{\Phi}$ es una distribución actuando de la siguiente forma:

$$\langle -\Delta u_{\Phi}, \psi \rangle = -\langle u_{\Phi}, \Delta \psi \rangle = \int_{\mathbb{R}^n} \Phi \Delta \psi \qquad \forall \psi \in \mathscr{D}.$$

Notemos que

$$-\Delta_{x}\Phi = \delta_{0} \iff \langle -\Delta u_{\Phi}, \psi \rangle = \langle \delta_{0}, \psi \rangle$$
$$\iff -\int_{\mathbb{R}^{n}} \Phi \Delta \psi = \psi(0).$$

Por lo tanto, debemos probar esto último. De nuevo tenemos que separar los casos entre n=2 y $n\geq 3$.

Para n=2: Como cero es un punto problemático, separaremos la integral entre la bola de radio ε y el resto. Es decir,

$$\int_{\mathbb{R}^n} \Phi \Delta \psi = \underbrace{\int_{B} \Phi \Delta \psi}_{I_1} + \underbrace{\int_{\mathbb{R}^n \setminus B} \Phi \Delta \psi}_{I_2},$$

donde B es la bola centrada en el origen de radio ε . Para I_1 tenemos que

$$\begin{aligned} |I_1| &\leq \|\Delta \psi\|_{\infty} \left| \int_B u \right| \\ &\leq \|\Delta \psi\|_{\infty} \left| \int_0^{\varepsilon} \log(r) r dr \right| \\ &\leq \|\Delta \psi\|_{\infty} \varepsilon^2 |\log \varepsilon| \xrightarrow{\varepsilon \to 0} 0. \end{aligned}$$

Para I_2 : Consideremos $R \gg 1$ tal que $\operatorname{supp}(\Delta \psi) \subset B(0,R) =: B_R$. Luego,

$$I_2 = \int_{B_R \setminus B_{\mathcal{E}}} \Phi \Delta \psi = \int_{B_R \setminus B_{\mathcal{E}}} (\Delta \Phi) \psi + \int_{\partial B_R \setminus B_{\mathcal{E}}} (\Phi \partial_{\hat{\mathbf{n}}} \psi - \psi \partial_{\hat{\mathbf{n}}} \Phi).$$

Como Φ es armónica lejos de cero nos queda

$$I_2 = \underbrace{-\int_{\partial B_R \setminus B_{arepsilon}} \psi \partial_{\hat{\mathbf{n}}} \Phi}_{J_1} + \underbrace{\int_{\partial B_R \setminus B_{arepsilon}} \Phi \partial_{\hat{\mathbf{n}}} \psi}_{J_2}.$$

Para J_2 : Notemos que

$$|J_2| \leq \|\partial_{\hat{\mathbf{n}}}\psi\|_{\infty} \left| \int_{\partial B_{\mathcal{E}}} \Phi \right| \leq \|\partial_{\hat{\mathbf{n}}}\psi\|_{\infty} egin{cases} |\log {arepsilon}| arepsilon &, n=2 \ arepsilon &, n\geq 3 \end{cases}.$$

Para $J_1 \colon \text{Notemos que } \hat{\mathbf{n}}(x) = -x/|x|$ y por lo tanto

$$\partial_{\hat{\mathbf{n}}}\Phi = \nabla\Phi \cdot \hat{\mathbf{n}} = \frac{1}{n\alpha(n)|x|^{n-1}}.$$

Luego,

$$J_1 = -\frac{1}{n\alpha(n)|x|^{n-1}} \int_{\partial B_{\varepsilon}} \psi = -\int_{\partial B_{\varepsilon}} \psi \xrightarrow{\varepsilon \to 0} -\psi(0).$$

Con esto probamos que $\Delta_x \Phi = \delta_0$ en el sentido de las distribuciones.

20 DE MARZO, 2023

Teorema 1.

Para $f \in \mathscr{C}^2_C(\mathbb{R}^n)$, definimos su convolución como

$$\Phi * f(x) := \int_{\mathbb{R}^n} \Phi(x - y) f(y) \, dy,$$

donde Φ es la solución fundamental de la ecuación de Laplace. Entonces,

1.
$$\Phi * f \in \mathscr{C}^2(\mathbb{R}^n)$$
 y

$$2. -\Delta(\Phi * f) = f.$$

DEMOSTRACIÓN Pongamos $u = \Phi * f$. Haciendo un cambio de variables tenemos que

$$u(x) = \int_{\mathbb{R}^n} \Phi(y) f(x - y) \, dy.$$

Luego,

$$\partial_{x_i} u(x) = \lim_{h \to 0} \int_{\mathbb{R}^n} \Phi(y) \left[\frac{f(x - y + he_i) - f(x - y)}{h} \right] dy.$$

Como $f \in \mathscr{C}^2_C$, se cumplen las hipótesis del Teorema de Convergencia Dominada (TCD). Explícitamente,

$$f_n(x) = \frac{f(x + (1/n)e_i) - f(x)}{1/n}$$

converge puntualmente a $\partial_{x_i} f(x)$ que es continua. Además, $f_n(x)$ es acotada y tiene soporte compacto, así que $|f_n(x)| < C1_K(x)$ donde K es un compacto que contiene al soporte de $f_n(x)$, 1_K es la función indicatriz de K y C una constante positiva. Como $C1_K(x)$ es integrable y domina a la sucesión, sigue que,

$$\partial_{x_i} u(x) = \int_{\mathbb{R}^n} \Phi(y) \partial_{x_i} f(x - y) \, dy.$$

Análogamente obtenemos que

$$\partial_{x_i}^2 u(x) = \int_{\mathbb{R}^n} \Phi(y) \partial_{x_i}^2 f(x - y) \, dy.$$

El lado derecho es continuo para cada $i=1,\ldots,n$, así que $u\in\mathscr{C}^2$. Más aún, $\Delta u(x)$ se ve como es una distribución de Φ y probamos anteriormente que actúa como δ_0 , así que,

$$\Delta u(x) = \int_{\mathbb{R}^n} \Phi(y) \Delta_x f(x - y) \, dy = -f(x).$$

4.2. Propiedades de Funciones Armónicas

Para una función u en B(x,r) definimos

$$\oint_{B(x,r)} u(y) \, dy := \frac{1}{|B(x,r)|} \int_{B(x,r)} u(y) \, dy = \frac{1}{\alpha(n)r^n} \int_{B(x,r)} u(y) \, dy.$$

De manera análoga, si u está definida sobre $\partial B(x,r)$ definimos

$$\int_{\partial B(x,r)} u(y) \, dS(y) := \frac{1}{|\partial B(x,r)|} \int_{\partial B(x,r)} u(y) \, dS(y) = \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B(x,r)} u(y) \, dS(y).$$

Teorema 2: Fórmula de la Media

Sea Ω un abierto en \mathbb{R}^n . Si $u \in \mathscr{C}^2(\Omega)$ es armónica, entonces para toda bola $\overline{B(x,r)} \subset \Omega$ se tiene que

$$u(x) = \int_{\partial B(x,r)} u(y) \, dS(y) = \int_{B(x,r)} u(y) \, dy.$$

Además, si pedimos que u también sea continua en la clausura de Ω podemos tomar bolas abiertas $B(x,r) \subset \Omega$.

DEMOSTRACIÓN Sea $x \in \Omega$. Para r > 0 denotamos por B_r a la bola centrada en x de radio r. Definimos

$$\phi(r) = \begin{cases} \oint_{\partial B_r} u(y) \, dS(y) & , r \neq 0 \\ u(x) & , r = 0. \end{cases}$$

Nótese que ϕ es continua. Haremos un cambio de variables para que la integral esté sobre la bola unitaria. Consideremos $T: \partial B(0,1) \to \partial B_r$ dado por $z \mapsto x + rz$. El Jacobiano es

$$|\det DT(z)| = \begin{vmatrix} r & 0 & \cdots & 0 \\ 0 & r & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r \end{vmatrix} = r^{n-1}.$$

Luego,

$$\phi(r) = \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B_r} u(y) dS(y)$$

$$= \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B(0,1)} u(x+rz)r^{n-1} dS(z)$$

$$= \oint_{\partial B(0,1)} u(x+rz) dS(z).$$

Ahora probaremos que $\phi(r)$ es constante, y por lo tanto $\phi(r) = \phi(0) = u(x)$. Vamos a ello.

$$\phi'(r) \stackrel{TCD}{=} \int_{\partial B(0,1)} \nabla u(x+rz) \cdot z \, dS(z)$$

$$= \int_{\partial B_r} \nabla u(y) \cdot \frac{y-z}{r} \, dS(y)$$

$$= \int_{\partial B_r} \nabla u(y) \cdot \hat{\mathbf{n}} \, dS(y)$$

$$\stackrel{2.1}{=} \frac{1}{|\partial B_r|} \int_{B_r} \nabla^2 u(y) \, dS(y) = 0.$$

Ahora, esto nos da la igualdad sobre las fronteras. Para pasar a la integral sobre el volumen notemos que

$$\int_{B_r} u(y) \, dS(y) = \frac{1}{|B_r|} \int_{B_r} u(y) \, dS(y)
= \frac{1}{|B_r|} \int_0^r \int_{\partial B(x,t)} u(y) \, dS(y) \, dt
= \frac{1}{|B_r|} \int_0^r u(x) |\partial B(x,t)| \, dt = u(x).$$

Concluyéndose la demostración.

21 DE MARZO, 2023

Teorema 3: Caracterización de Funciones Armónicas

Si $u \in \mathscr{C}^2(\Omega)$ satisface la propiedad de la media, entonces es armónica.

DEMOSTRACIÓN

Teorema 4: Principio del Máximo

Sea Ω un subconjunto de \mathbb{R}^n abierto y acotado. Si $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}(\overline{\Omega})$ es una función armónica, entonces

1. El máximo de la función se alcanza en la frontera.

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

2. Si además Ω es conexo y el máximo se alcanza dentro de Ω , entonces u es constante.

$$\exists x \in \Omega \mid u(x) = \max_{\overline{\Omega}} u \implies u(x) = c \qquad c \in \mathbb{R}.$$

El primer punto es el principio débil y el segundo el fuerte. Nótese que el segundo vale incluso si Ω no es acotado.

DEMOSTRACIÓN Primero veamos que el principio fuerte implica el débil. En efecto, si no fuera así, se tendría que $\max_{\overline{\Omega}} u > \max_{\partial\Omega} u$. Es decir, existiría un $x_0 \in \Omega$ tal que $u(x_0) = \max_{\overline{\Omega}}$. Consideremos Ω_0 la componente conexa que contiene a x_0 . Luego, por el principio del máximo fuerte

$$\max_{\overline{\Omega}} u = \max_{\overline{\Omega}_0} u = \max_{\partial \Omega_0} u \leq \max_{\partial \Omega} u,$$

donde la última igualdad se debe a que la frontera es conexa. Tenemos una contradicción, por lo tanto el Ppio fuerte implica el débil.

Ahora queda probar el Ppio fuerte. Sea $x_0 \in \Omega$ tal que $u(x_0) = \max_{\overline{\Omega}} u =: M$. Consideremos el conjunto

$$A := \{x \in \Omega \mid u(x) = M\}.$$

Vamos a probar que $A = \Omega$ mostrando que es abierto y cerrado (relativamente a Ω).

<u>A cerrado:</u> Basta notar que $A = u^{-1}(M)$ y u es continua, así que A es cerrado.

A abierto: Sea $x \in A$. Como u es armónica, satisface la propiedad de la media. Se sigue que

$$M = u(x) = \int_{B(x,r)} u(y) \, dy, \quad \forall r > 0 \mid \overline{B(x,r)} \subset \Omega.$$

Luego,

$$\int_{B(x,r)} (M - u(y)) \, dy = 0$$

Por lo tanto u(y)=M para todo $y\in B(x,r)$. Se sigue que $B(x,r)\subset A$ y por lo tanto A es abierto.

Corolario 1.: (Unicidad en Poisson para dominios acotados con datos de borde)

Si $\Omega \subset \mathbb{R}^n$ abierto y acotado, entonces existe a lo más una solución $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}(\Omega)$ del problema

$$\begin{aligned}
-\Delta u &= f &, \text{ en } \Omega \\
u &= g &, \text{ en } \partial \Omega
\end{aligned}$$

donde f y g son funciones continuas en Ω y $\partial \Omega$ respectivamente.

DEMOSTRACIÓN Supongamos que u_1, u_2 son dos soluciones, entonces $v = u_1 - u_2$ es armónica en Ω y v = 0 en $\partial \Omega$. Por el Ppio del máximo, v = 0 en Ω .

EJEMPLO 2

1. En $\Omega = \mathbb{R}^n \setminus \overline{B(0,1)}$, el problema

$$\Delta u = 0$$
 , en Ω
 $u = 0$, en $\partial \Omega$,

No tiene solución única. En efecto, u = 0 y

$$u(x) = \begin{cases} \log 1/|x| &, n = 2\\ 1/|x|^{n-2} - 1, n \ge 3 \end{cases},$$

son dos soluciones.

2. En
$$\Omega = \mathbb{R}^n_+ := \{(x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}_+\}$$
, el problema

$$\Delta u = 0$$
, en Ω
 $u = 0$, en $\partial \Omega$,

tampoco tiene solución única, pues u = 0 y $u = x_n$ son solución.

Teorema 5: de Liouville

Si $u \colon \mathbb{R}^n \to \mathbb{R}$ es una función armónica y acotada, entonces es constante.

DEMOSTRACIÓN Asumimos que $u \in \mathscr{C}^{\infty}(\mathbb{R}^n)$. Obsérvese que las derivadas parciales de u son armónicas, pues

$$\Delta(\partial_{x_i}u)=\partial_{x_i}\Delta u=0.$$

Veremos que las derivadas son nulas y por lo tanto u será constante.

Aplicando la propiedad de la media a cada derivada parcial y usando el Teorema de la Divergencia, tenemos que

$$\partial_{x_i}u(x_0) = \int_{B(x_0,r)} \partial_{x_i}u(x) dx = \frac{1}{\alpha(n)r^n} \int_{\partial B(x_0,r)} u(x) \hat{\mathbf{n}}^i(x) dx.$$

Y entonces

$$|\partial_{x_i}u(x_0)| \leq ||u||_{L^{\infty}} \frac{|\partial B(x_0,r)|}{\alpha(n)r^n} \leq ||u||_{L^{\infty}} \frac{n}{r}.$$

Tomando $r \to \infty$ se concluye que $\partial_{x_i} u(x) = 0$ para todo i = 1, ..., n y para todo $x \in \mathbb{R}^n$. Por lo tanto u es constante.

Corolario 2.

Para $n \ge 3$ y $f \in \mathscr{C}^2_C(\mathbb{R}^n)$, se tiene que toda solución acotada u del problema

$$-\Delta u = f$$
.

es de la forma $u(x) = \Phi * f(x) + C$.

DEMOSTRACIÓN Sabemos que $\Phi * f$ es solución del problema. Dado que

$$|\Phi * f(x)| \le ||f||_K \int_K \Phi(x-y) \, dy < \infty$$
 supp $f \subset K$ compacto,

se tiene que es acotada. Luego, si u es otra solución acotada, la función $v = \Phi * f - u$ es armónica en \mathbb{R}^n y acotada. Por Liouville, es constante. Es decir, $u = \Phi * f + C$ con $C \in \mathbb{R}$.

23 DE MARZO, 2023

4.3. Regularidad

Convolución y Regularización

Para $\Omega \subset \mathbb{R}^n$ abierto, definimos el conjunto

$$\Omega_{\varepsilon} := \{ x \in \Omega \mid \operatorname{dist}(x, \partial \Omega) > \varepsilon \}, \quad \varepsilon > 0.$$

Además, definimos $\eta \in \mathscr{C}^\infty_C(\mathbb{R}^n)$ como

$$\eta(x) := \begin{cases} C \exp(\frac{1}{|x|^2 - 1}, |x| < 1) \\ 0, |x| \ge 1 \end{cases},$$

donde C es una constante tal que

$$\int_{\mathbb{R}^n} \eta(x) = 1.$$

Con esto definimos la función regularizante

$$\eta_{\varepsilon}(x) := \frac{1}{\varepsilon^n} \eta(\frac{x}{\varepsilon}), \quad \varepsilon > 0.$$

La gracia de la función regularizante es que supp $\eta_{\varepsilon} = \overline{B(0, \varepsilon)}$ y $\int_{\mathbb{R}^n} \eta_{\varepsilon} = 1$. Para una función $f \in L^1_{\mathrm{loc}}(\Omega)$ y $x \in \Omega_{\varepsilon}$, definimos

$$f_{\varepsilon}(x) = \eta_{\varepsilon} * f(x) = \int_{\mathbb{R}^n} \eta_{\varepsilon}(x - y) f(y) dy.$$

la regularización de f en Ω_{ε} . Para la regularización, se cumple que

- 1. $f_{\varepsilon} \in \mathscr{C}^{\infty}(\Omega_{\varepsilon});$
- 2. $f_{\varepsilon} \to f$ cuando $\varepsilon \to 0$ ctp;
- 3. Si $f \in \mathscr{C}(\Omega)$, f_{ε} converge uniformemente a f sobre compactos;
- 4. Si $f \in L^p_{\text{loc}}(\Omega)$ con $1 \le p \le \infty$, entonces $f_{\mathcal{E}} \to f$ en L^p_{loc} .

Teorema 6: Regularidad de funciones armónicas

Si $u \in \mathscr{C}(\Omega)$ y satisface la propiedad de la media para toda bola $\overline{B(x,r)} \subset \Omega$, entonces u es $\mathscr{C}^{\infty}(\Omega)$.

DEMOSTRACIÓN Vamos a probar que $u=u_{\varepsilon}$ en Ω_{ε} .

$$u_{\varepsilon}(x) = \int_{\mathbb{R}^{n}} \eta_{\varepsilon}(x - y)u(y) \, dy$$

$$= \frac{1}{\varepsilon^{n}} \int_{B(x,\varepsilon)}^{\varepsilon} \eta\left(\frac{x - y}{\varepsilon}\right) u(y) \, dy$$

$$= \frac{1}{\varepsilon^{n}} \int_{0}^{\varepsilon} \int_{\partial B(x,r)} \eta\left(\frac{x - y}{\varepsilon}\right) u(y) \, dS(y) \, dr$$

$$= \frac{1}{\varepsilon^{n}} \int_{0}^{\varepsilon} \eta\left(\frac{r}{\varepsilon}\right) \underbrace{\int_{\partial B(x,r)} u(y) \, dS(y) \, dr}_{u(x)|\partial B(x,r)|}$$

$$= \frac{u(x)}{\varepsilon^{n}} \int_{0}^{\varepsilon} \eta\left(\frac{r}{\varepsilon}\right) |\partial B(x,r)| \, dr$$

$$= \frac{u(x)}{\varepsilon^{n}} \int_{0}^{\varepsilon} \int_{\partial B(x,r)} \eta\left(\frac{r}{\varepsilon}\right) \, dS(y) \, dr$$

$$= \frac{u(x)}{\varepsilon^{n}} \int_{B(x,\varepsilon)} \eta\left(\frac{x - y}{\varepsilon}\right) \, dy$$

$$= u(x) \underbrace{\int_{\mathbb{R}^{n}} \eta_{\varepsilon}(x - y) \, dy}_{=1} = u(x).$$

Como u_{ε} es $\mathscr{C}^{\infty}(\Omega_{\varepsilon})$, también lo es u.

Teorema 7.

Las funciones armónicas son analíticas.

Teorema 8: Desigualdad de Harnack

Sea $U \subset \mathbb{R}^n$ abierto y V un dominio compactamente contenido en U. Si u es una función armónica no negativa en U, entonces

$$\sup_{V} u \leq C \inf_{V} u.$$

donde la constante C no depende de u. En particular, se tiene que

$$\frac{1}{C}u(y) \le u(x) \le Cu(y) \quad \forall x, y \in V.$$

DEMOSTRACIÓN Vamos a probar la última desigualdad. Sea $r = \operatorname{dist}(V, \partial U)$. Como \overline{V} es compacto si cubrimos con bolas de radio r/2, existe un cubrimiento B_1, \ldots, B_N finito, tal que $V \subset B_1 \cup \cdots \cup B_N$. Además, como V es conexo, se tiene (renombrando de ser necesario) que $B_{i-1} \cap B_i \neq \emptyset$ para todo $i = 2, \ldots, N$.

Denotemos por x_1, \ldots, x_N a los centros de B_1, \ldots, B_N respectivamente. Como u es armónica, vale la propiedad de la media, así que

$$u(x_i) = \int_{B(x_i,r)} u(y) \, dy = \frac{1}{|B(x_i,r)|} \int_{B(x_i,r)} u(y) \, dy \quad \forall i = 1, \dots, N.$$

Ahora, por la elección del cubrimiento, se tiene que

$$u(x_1) = \frac{1}{|B(x_1, r)|} \int_{B(x_1, r)} u(y) \, dy$$

$$\geq \frac{1}{|B(x_1, r)|} \int_{B(x_2, r/2)} u(y) \, dy = \frac{1}{2^n} \int_{B(x_2, r/2)} u(y) \, dy = \frac{1}{2^n} u(x_2).$$

Se sigue que $u(x_1) \ge \frac{1}{2^{n(N-1)}}u(x_N)$. Si $x, y \in V$, entonces SPG $x \in B_i$ y $y \in B_j$ para algún par $i \le j$. Bajo el procedimiento anterior en x tenemos $u(x) \ge \frac{1}{2^n}u(x_i)$ y aplicando el procedimiento en x_j da que $u(x_j) \ge \frac{1}{2^n}u(y)$. Luego,

$$u(x) \ge \frac{1}{2^n} u(x_i) \ge \frac{1}{2^{nN}} u(x_j) \ge \frac{1}{2^{n(N+1)}} u(y).$$

Las desigualdades en la otra dirección son análogas. Con esto queda demostrado el resultado.

28 DE MARZO, 2023

4.4. Función de Green

En esta sección buscaremos una representación para la solución al problema de Poisson

$$\begin{cases} -\Delta u = f &, \text{ en } \Omega \\ u = g &, \text{ en } \partial \Omega \end{cases}, \tag{P}$$

donde $\Omega \subset \mathbb{R}^n$ es abierto y acotado con frontera suave.

Supongamos que $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}(\overline{\Omega})$ es solución de (P). Sea $x \in \Omega$ y $0 < \varepsilon \ll 1$ tal que $B(x, \varepsilon) \subset \Omega$. Apliquemos una de las fórmulas de integración por partes con $u(\cdot)\Phi(\cdot - x)$ en $\Omega_{\varepsilon} := \Omega \setminus \overline{B(x, \varepsilon)}$.

$$\begin{split} &\int_{\Omega_{\mathcal{E}}} \left(u(y) \Delta \Phi(y-x) - \Phi(y-x) \Delta u(y) \right) \, dy \\ & \text{II} \\ &\int_{\partial \Omega_{\mathcal{E}}} \left(u(y) \partial_{\hat{\mathbf{n}}(y)} \Phi(y-x) - \Phi(y-x) \partial_{\hat{\mathbf{n}}(y)} u(y) \right) \, dS(y). \end{split} \tag{H}$$

Nótese que la integral sobre el borde considera el borde de Ω y el borde de $B(x, \varepsilon)$. Mirando este último, notamos que

$$\int_{\partial B(x,\varepsilon)} u(y) \, \partial_{\hat{\mathbf{n}}(y)} \Phi(y-x) \, dS(y) = \int_{\partial B(x,\varepsilon)} u(y) \, dS(y) \xrightarrow{\varepsilon \to 0} u(x)$$

y

$$\left| \int_{\partial B(x,\varepsilon)} \Phi(y-x) \partial_{\hat{\mathbf{n}}(y)} u(y) \, dS(y) \right| \leq C\varepsilon |\log \varepsilon| \xrightarrow{\varepsilon \to 0} 0.$$

Por lo que cuando $\varepsilon \to 0$ nos queda

que despejando nos da

$$u(x) = -\int_{\Omega} \Phi(y - x) \Delta u(y) \, dy + \int_{\partial \Omega} (\Phi(y - x) \partial_{\hat{\mathbf{n}}} u(y) - u(y) \partial_{\hat{\mathbf{n}}} \Phi(y - x)) \, dS(y)$$
$$= \int_{\Omega} \Phi(y - x) f(y) \, dy + \int_{\partial \Omega} (\Phi(y - x) \partial_{\hat{\mathbf{n}}} u(y) - g(y) \partial_{\hat{\mathbf{n}}} \Phi(y - x)) \, dS(y)$$

En la expresión para u necesitamos remover el $\partial_{\hat{\mathbf{n}}}u$, puesto que queremos una representación de u que no dependa directamente de u. Para lidiar con este problema introducimos el concepto de **función correctora**, esta función la denotaremos por φ^x y pediremos que resuelva el siguiente problema

$$\begin{cases} \Delta \varphi^x = 0 & , \text{ en } \Omega \\ \varphi^x = \Phi(y - x) & , \text{ en } \partial \Omega \end{cases} . \tag{FC}$$

Suponiendo que tenemos tal solución, al aplicar la fórmula de integración por partes tenemos que

$$\int_{\Omega} u(y) \Delta \varphi^{x}(y) - \varphi^{x}(y) \Delta u(y) \, dy$$

$$\parallel$$

$$\int_{\partial \Omega} u(y) \partial_{\hat{\mathbf{n}}} \varphi^{x}(y) - \varphi^{x}(y) \partial_{\hat{\mathbf{n}}} u(y) \, dS(y)$$

Como $\Delta \varphi^x = 0$ en Ω y $\varphi^x(\cdot) = \Phi(\cdot - y)$ en la frontera, nos queda que

$$\int_{\Omega} -\boldsymbol{\varphi}^{x}(y)\Delta u(y) \, dy = \int_{\partial \Omega} u(y) \, \partial_{\hat{\mathbf{n}}} \boldsymbol{\varphi}^{x}(y) - \Phi(y - x) \, \partial_{\hat{\mathbf{n}}} u(y) \, dS(y)$$

y por lo tanto

$$\int_{\partial\Omega} \Phi(y-x) \partial_{\hat{\mathbf{n}}} u(y) dS(y) = \int_{\Omega} \varphi^{x}(y) \Delta u(y) dy + \int_{\partial\Omega} u(y) \partial_{\hat{\mathbf{n}}} \varphi^{x}(y) dS(y).$$

El término de la izquierda es precisamente el término que queremos remover de la expresión de *u*, así que reemplazando obtenemos que

$$u(x) = \int_{\Omega} f(y)(\Phi(x - y) - \varphi^{x}(y)) dy - \int_{\partial \Omega} g(y) \partial_{\hat{\mathbf{n}}} (\Phi(y - x) - \varphi^{x}(y)) dS(y)$$
$$= \int_{\Omega} f(y)G(x, y) dy - \int_{\partial \Omega} g(y) \partial_{\hat{\mathbf{n}}(y)} G(x, y) dS(y).$$

Definición 3: Función de Green

La función de Green en Ω se define como:

$$G(x, y) = \Phi(x - y) - \varphi^{x}(y) \qquad x \neq y.$$
 (2)

y satisface

$$\begin{cases} -\Delta_y G(x,y) = \delta_x &, \text{ en } \Omega \\ G(x,y) = 0 &, \text{ en } \partial \Omega \end{cases}.$$

Además, toda solución $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}(\overline{\Omega})$ del problema de Poisson (P) se puede expresar como:

$$u(x) = \int_{\Omega} f(y)G(x,y) \, dy - \int_{\partial \Omega} g(y) \, \partial_{\mathbf{\hat{n}}(y)} G(x,y) \, dS(y).$$

Nótese que la definición anterior depende fuertemente de que el problema (FC) tenga solución.

Teorema 9: La función de Green es simétrica

La función de Green es simétrica en el sentido siguiente:

$$\forall x \neq y \in \Omega$$
 se tiene que $G(x, y) = G(y, x)$.

30 DE MARZO, 2023

4.5. Función de Green para el semiespacio

Como dijimos antes, definir la función de Green depende de que podamos resolver el problema corrector. En esta subsección resolveremos tal problema para el semiespacio

$$\mathbb{R}^n_+ := \{ (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^n \colon x_n > 0 \} \quad n \ge 3.$$

Concretamente, debemos resolver, para $x \in \mathbb{R}^n_+$ el problema

$$\begin{cases} \Delta \varphi^{x}(y) = 0 & , y \in \mathbb{R}^{n}_{+} \\ \varphi^{x}(y) = \Phi(y - x) & , y \in \partial \mathbb{R}^{n}_{+} \end{cases}.$$

Lo natural viendo las condiciones de borde, sería querer que $\varphi^x(\cdot) = \Phi(\cdot - x)$, y de hecho, tenemos que

$$\Delta_{\mathbf{y}}\Phi(\mathbf{y}-\mathbf{x})=0,$$

siempre y cuando $y \neq x \in \mathbb{R}^n_+$. El problema aquí es que nos falta un punto y nuestra función debe estar definida sobre todo el semiespacio. Por otro lado, la función Φ no tiene más singularidades, así que

$$\Delta_{\mathbf{y}} \Phi(\mathbf{y} - \tilde{\mathbf{x}}) = 0, \quad \forall \tilde{\mathbf{x}} \notin \overline{\mathbb{R}_{+}^{n}}.$$

Así, si podemos encontrar un \tilde{x} tal que se satisfagan las condiciones de borde habremos resuelto el problema. Y en efecto, usando las simetrías del semiespacio, se nota que si $y \in \partial \mathbb{R}^n_+$ entonces los puntos $x = (x', x_n) \in \mathbb{R}^n_+$ y $\tilde{x} = (x', -x_n) \in \mathbb{R}^n_-$ están a la misma distancia y por lo tanto

$$\varphi^{x}(y) = \Phi(y - x) = \Phi(y - \tilde{x}).$$

Definimos entonces $\varphi^x(y) = \Phi(y - \tilde{x})$, y por lo tanto la fórmula de Green se lee

$$G(x,y) = \Phi(y-x) - \Phi(y-\tilde{x}). \tag{GS}$$

Más aún, por la fórmula de representación, cualquier solución u del problema

$$\begin{cases}
-\Delta u = 0 & \text{, en } \mathbb{R}^n_+ \\
u = g & \text{, en } \partial \mathbb{R}^n_+
\end{cases}$$
(PS)

se escribe como

$$u(x) = -\int_{\partial \mathbb{R}^n_+} g(y) \partial_{n(y)} G(x, y) dS(y) = \int_{\partial \mathbb{R}^n_+} g(y) \frac{2x_n}{n\alpha(n)|x - y|^n} dS(y).$$
 (FPS)

Esta fórmula es conocida como **fórmula de Poisson** para el semiespacio, además, el **kernel de Poisson** se define como:

$$k(x,y) := \frac{2x_n}{n\alpha(n)} \frac{1}{|x-y|^n}, \quad y \in \partial \mathbb{R}^n_+, x \in \mathbb{R}^n_+.$$
 (KPS)

Vamos a comprobar que (FPS), en efecto, resuelve el problema (PS).

Teorema 10.

Si $g \in \mathscr{C}(\mathbb{R}^{n-1}) \cap L^{\infty}(\mathbb{R}^{n-1})$ y u está dado por (FPS), entonces

- 1. $u \in \mathbb{C}^{\infty}(\mathbb{R}^n_+) \cap L^{\infty}(\mathbb{R}^n_+);$
- 2. $\Delta u = 0$ en el semiespacio; y
- 3. Si $x_0 \in \partial \mathbb{R}^n_+$ entonces

$$\lim_{\mathbb{R}^n\to x\to x_0}u(x)=g(x_0).$$

DEMOSTRACIÓN Sabemos que G(x,y) es tal que $\Delta_y G(x,y) = 0$. Ahora, como G(x,y) es simétrica, se sigue que $\Delta_x G(x,y) = 0$. Luego,

$$\begin{split} \Delta_{x}u(x) &= \Delta_{x} - \int_{\partial\mathbb{R}^{n}_{+}} g(y)\partial_{n(y)}G(x,y) \, dS(y) \\ &= - \int_{\partial\mathbb{R}^{n}_{+}} g(y)\Delta_{x}\partial_{n(y)}G(x,y) \, dS(y) \\ &= - \int_{\partial\mathbb{R}^{n}_{+}} g(y)\partial_{\hat{\mathbf{n}}(y)} \underbrace{\Delta_{x}G(x,y)}_{=0} \, dS(y) = 0. \end{split}$$

Por lo tanto $\Delta u = 0$ en el semiespacio y por lo tanto también es \mathscr{C}^{∞} . Para ver que es integrable, basta ver que $\partial_{\hat{\mathbf{n}}(y)} G(x,y)$ es integrable. Vamos a ello.

Sea $x \in \mathbb{R}_+^n$. Tomemos $R \gg 1$ tal que $x \in B(0,R)$ y $\varepsilon \ll 1$ tal que $B(x,\varepsilon) \subset B(0,R) \cap \mathbb{R}_+^n$. Miremos la región $\Theta_{R,\varepsilon} := B(0,R) \cap (\mathbb{R}_+^n \setminus B(x,\varepsilon))$. Sabemos que

$$0 = \int_{\Theta_{R,\varepsilon}} \Delta_{y} G(x,y) \, dS(y)$$

Llamemos Γ_R^2 a la superficie de la bola que está en el semiespacio y Γ_R^1 a la que toca el borde del subespacio. Por el Teorema de la divergencia, la expresión anterior se lee

$$0 = \int_{\Gamma_R^2} \partial_{\mathbf{\hat{n}}(y)} G(x, y) \, dS(y) + \int_{\Gamma_R^1} \partial_{\mathbf{\hat{n}}(y)} G(x, y) \, dS(y) + \int_{\partial B(x, \varepsilon)} \partial_{\mathbf{\hat{n}}(y)} G(x, y) \, dS(y)$$

Tomando $R \to \infty$ y $\varepsilon \to 0$ notamos que

(1)
$$\int_{\Gamma_R^1} \partial_{\hat{\mathbf{n}}(y)} G(x, y) \, dS(y) = \int_{\partial \mathbb{R}^n_+} k(x, y) \, dS(y)$$

(2)
$$\left| \int_{\Gamma_R^2} \partial_{\hat{\mathbf{n}}(y)} G(x, y) \, dS(y) \right| \le C/R \to 0$$

$$(3) \int_{\partial B(x,\varepsilon)} \partial_{\hat{\mathbf{n}}(y)} G(x,y) \, dS(y) = \underbrace{\int_{\partial B(x,\varepsilon)} \partial_{\hat{\mathbf{n}}(y)} \Phi(y-x) \, dS(y)}_{\rightarrow -1} + \underbrace{\int_{\partial B(x,\varepsilon)} \partial_{\hat{\mathbf{n}}(y)} \Phi(y-\tilde{x}) \, dS(y)}_{\rightarrow 0}$$

Así que

$$\int_{\partial \mathbb{R}^n_{\perp}} k(x, y) \, dS(y) = 1,\tag{3}$$

y por lo tanto $u \in L^{\infty}(\mathbb{R}^n_+)$.

Finalmente, probaremos el tercer punto. Sea $x_0 \in \partial \mathbb{R}^n_+$ y $x \in \mathbb{R}^n_+$. Por (3) y (FPS) tenemos que

$$g(x_0) - u(x) = g(x_0) - \int_{\partial \mathbb{R}^n_+} g(y)k(x, y) \, dS(y)$$
$$= \int_{\partial \mathbb{R}^n_+} (g(x_0) - g(y))k(x, y) \, dS(y).$$

Sea $\varepsilon > 0$ y tomemos $\delta > 0$ tal que

$$|x_0 - y| < \delta \implies |g(x_0) - g(y)| < \varepsilon \qquad y \in \partial \mathbb{R}^n_+.$$

Sea $x \in B(x_0, \delta/2) \cap \mathbb{R}^n_+$. Entonces

$$|g(x_0) - u(x)| = \left| \int_{\partial \mathbb{R}^n_+} (g(x_0) - g(y))k(x, y) \, dS(y) \right|$$

$$\leq \int_{\partial \mathbb{R}^n_+} |g(x_0) - g(y)||k(x, y)| \, dS(y)$$

$$= \underbrace{\int_{\partial \mathbb{R}^n_+ \cap B(x_0, \delta)} |g(x_0) - g(y)||k(x, y)| \, dS(y)}_{I}$$

$$+ \underbrace{\int_{\partial \mathbb{R}^n_+ \setminus \overline{B(x_0, \delta)}} |g(x_0) - g(y)||k(x, y)| \, dS(y)}_{I}.$$

Por la continuidad de g y (3), tenemos que $I \leq \varepsilon \xrightarrow{\varepsilon \to 0} 0$. Por otro lado, para estimar J, notemos que

$$|x - x_0| \le \delta/2 \implies |y - x| \ge \frac{1}{2}|y - x_0|.$$

De esta forma,

$$J \leq 2\|g\|_{L^{\infty}} \int_{\partial \mathbb{R}^n_+ \setminus \overline{B(x_0, \delta)}} k(x, y) dS(y) \leq \frac{2^{n+2}}{n\alpha(n)} \|g\|_{L^{\infty}} x_n \int_{\partial \mathbb{R}^n_+ \setminus \overline{B(x_0, \delta)}} |y - x_0|^{-n} dS(y),$$

y por lo tanto $J \to 0$ cuando $x_n \to 0$.