I - réseau

FIGURE 1 – Changement de densité de traits(Lazer)

C'est le cas d'un incidence normale, par la formule des réseaux, on a donc $p\lambda_0 = a\sin\theta_p$. où θ_p est l'angle associé avec la maxima principal d'ordre p.

On a donc $\left[p \frac{\lambda_0}{a} = \sin \theta_p \sim \theta_p \right]$ lorsque l'on fait l'observation dans les conditions de Gauss.

Alors

▶ si λ_0 et a sont constants, θ_p augment avec p

▶ si λ_0 et p sont constants, θ_p diminue avec a

▶ si a et p sont constants, θ_p augment avec λ_0

Si on fixe $\theta_p = 138^{\circ}41'$ (voir Figure 1)s, on a $\lambda_l = \frac{\theta_p a}{p}$, avec $\frac{a}{p} = \frac{1}{1200} * 10^{-3} = 8.33 * 10^{-7} m$.

A.N. $\lambda_l = 2.02 * 10^{-6} m$, soit 202 nm pour un Lazer

Et pour la lumière d'une lampe de Na, on a $\lambda_{Na} = \frac{\theta_p a'}{p}$, avec $\frac{a'}{p} = \frac{1}{1200} * 10^{-3} = 8.33 * 10^{-7} m$

A.N. $\lambda_{Na} = \frac{134^{\circ}58'}{180^{\circ}} * \pi * 8.33 * 10^{-7} = 1.96 * 10^{-6} m$, soit 196 nm, plus court que celle d'un lazer.

FIGURE 2 – Changement de densité de traits(Na)

On sait que le nombre d'ordres de diffraction observables est donné par $n=1+2\lfloor\frac{a}{\lambda_0}\rfloor$. Si on prend $a=8.33*10^{-7}\,m,~\lambda_0=2.02*10^{-6}\,m$ (voir la figure au-dessous), on a $n=1+\lfloor\frac{8.33*10^{-7}}{2.02*10^{-6}}\rfloor=1$, mais on peut observer 3 ordres de diffraction sur la figure.

Donc la valeur obtenue n'est pas cohérente avec le nombre d'ordres de diffraction observables

Figure $3 - a = 8.33 * 10^{-7} m$ pour un lazer $(\lambda_0 = 2.02 * 10^{-6} m)$