Estruturas de Dados - Heap

- Heap: ideia de árvore aplicada a um vetor
- Especificamente, trabalharemos a ideia de árvore binária
 - cada nó tem apenas dois filhos
 - apesar disso, também podemos montar heaps com mais!
- Novamente, trabalharemos com um vetor de inteiros
- Características de uma árvore binária:
 - cada nó tem um pai
 - cada nó tem dois filhos, esq e dir

- Cada nó tem um pai e dois filhos
- Portanto, dado um nó, devemos saber quem é seu pai e quem são os seus filhos
 - obs: a raiz não tem pai, e há nós sem filhos, ou apenas um filho
 - seu pai e seus filhos, caso existam, estão armazenados em posições do vetor
- Como fazer isso em um vetor?

- Maneira eficiente: checar pai e filhos a partir do índice no vetor
- Note que para um nó na posição (índice) i, o pai e os filhos são sempre os mesmos:
 - seu pai está na posição $\left\lfloor \frac{i-1}{2} \right\rfloor$
 - ullet seu filho esquerdo está na posição 2i+1
 - seu filho direito está na posição 2i + 2
- Criaremos funções PAI(i), Esq(i) e DIR(i) a partir disto!
- Obs: vamos simplificar estas ideias, ignorando os casos onde os nós não tem pai ou não tem um dos filhos

Heap: pai, filho esquerdo e filho direito

Algoritmo: Pai(i)

Entrada: índice i

Saída: índice do pai do nó i

1 retorne $\left| \frac{i-1}{2} \right|$

Algoritmo: Esq(i)

Entrada: índice i

Saída: índice do filho esquerdo do nó i

1 retorne 2i + 1

Algoritmo: Dir(i)

Entrada: índice i

Saída: índice do filho direito do nó i

1 retorne 2i + 2

- Dois tipos de heap
 - Heap de máximo (ou Max Heap):
 - a raiz é o maior elemento do vetor
 - cada nó é maior que os seus filhos
 - Heap de mínimo (ou Min Heap):
 - a raiz é o menor elemento do vetor
 - cada nó é menor que os seus filhos
- Trabalharemos com métodos voltados ao Max Heap
- Estrutura de um heap:
 - H: heap (vetor) com n posições
 - H.max: quantidade máxima de elementos no heap
 - H.pos: próxima posição disponível no vetor
- ullet Obs: as folhas estarão nos índices de $\left\lfloor \frac{H.pos}{2} \right
 floor$ a H.pos-1

Heap: criar

```
Algoritmo: CriaHeap(n)
```

Entrada: tamanho *n* do heap

Saída: heap H

1 criar novo heap H com um vetor de n posições

2 H.max = n

3 H.pos = 0

4 retorne H

Complexidade: O(1)

- Ao inserirmos um elemento em um heap, devemos inserir na posição H.pos
 - *H.pos* representa ao mesmo tempo a quantidade de elementos no heap, e a próxima posição livre para inserirmos no heap
 - mesma ideia de cardinalidade!
- Porém, ao inserirmos, devemos verificar se estamos quebrando a propriedade de heap
 - sempre inserimos na posição H.pos
 - é possível que um elemento inserido em H[H.pos] seja maior que o seu pai
- Portanto, a cada inserção devemos fazer uma verificação
 - se a propriedade de heap continua válida, ok
 - senão, devemos trocar elementos de posição para satisfaze-la

ED - Heap 9 /

Exemplo: inserir valores 4, 2, 3 e 6, nesta ordem, num heap inicialmente vazio

ED - Heap 10 / 1

Inserir 4

ED - Heap 11 / 1

Inserir 2

ED - Heap 12 / 1

Inserir 3

ED - Heap 13 / 1

Inserir 6

ED - Heap 14 / 1

Problema: quebramos a propriedade de heap

Como resolver este problema?

ED - Heap 15 / 1

- A cada inserção, devemos analisar se a propriedade de heap foi quebrada
 - obs: a propriedade a ser analisada é a de Max Heap
 - para todo nó, seu pai é maior do que ele
- Ou seja, a cada novo elemento inserido, devemos analisar se o elemento inserido é maior do que o seu pai
 - se ele não for maior, ok
 - se ele for maior, devemos trocar os dois de posição
- Obs: uma única troca pode não ser o bastante
 - devemos continuar trocando enquanto o pai for menor que o filho, ou até chegarmos na posição zero

ED - Heap 17 / 1

ED - Heap 18 / 1

19 / 1

20 / 1

Inserir 5

ED - Heap 21 / 1

ED - Heap 22 / 1

ED - Heap 23 / 1

25 / 1

Inserir 7

ED - Heap 26 / 1

ED - Heap 27 / 1

28 / 1

29 / 1

30 / 1

Heap: inserir

Complexidade: $O(\log n)$

```
Algoritmo: InserirHeap(H, x)
 Entrada: heap H, valor x
 Resultado: x inserido em H mantendo a propriedade de heap
1 se H.pos == H.max então
retorne "Erro: heap cheio!"
i = H.pos
4 H[H.pos] = x;
5 H.pos = H.pos + 1
6 enquanto i > 0 e H[i] > H[Pai(i)] faça
    trocar H[i] com H[Pai(i)]
  i = Pai(i)
```

ED - Heap 31 / 1

- E se tivermos um vetor (já preenchido) e quisermos transformá-lo em um heap?
- Uma opção é criar um heap e inserir cada um dos elementos do vetor
 - porém, não é eficiente quanto à memória
- Podemos aproveitar o espaço alocado do vetor, e reposicionar os elementos para torná-lo um heap
 - para um dado elemento, ele deve ser maior que os seus filhos
- Objetivo: colocarmos um certo elemento de uma posição i no seu lugar no heap
- Para um certo elemento, verificamos se algum dos seus filhos é maior do que ele
 - se não, então ele está na posição correta
 - se sim, então devemos trocar com o major dos filhos
 - além disso, devemos repetir recursivamente para a posição do filho que foi trocado, já que pode haver alterações

32 / 1

Exemplo: encontrar a posição correta para o valor 3

ED - Heap 33 / 1

Exemplo: encontrar a posição correta para o valor 3

Exemplo: encontrar a posição correta para o valor 3

Exemplo: encontrar a posição correta para o valor 3

Exemplo: encontrar a posição correta para o valor 3

ED - Heap 37 / 1

Exemplo: encontrar a posição correta para o valor 3

Heap: heapify

```
Algoritmo: Heapify(S, n, i)
  Entrada: vetor S, quantidade n de elementos no vetor, índice i
  Resultado: "descer" o elemento na posição i até o seu lugar no heap
1 e = Esq(i)
2 d = Dir(i)
3 maior = i
4 se e < n e S[e] > S[maior] então
5 maior = e
6 se d < n e S[d] > S[maior] então
7 maior = d
8 se maior \neq i então
    trocar S[i] com S[maior]
   Heapify(S, n, maior)
```

Complexidade: $O(\log n)$

Exemplo 1: encontrar a posição correta para o valor 2 (raiz do heap)

Exemplo 1: encontrar a posição correta para o valor 2 (raiz do heap)

ED - Heap 41 / 1

Exemplo 1: encontrar a posição correta para o valor 2 (raiz do heap)

ED - Heap 42 / 1

Exemplo 1: encontrar a posição correta para o valor 2 (raiz do heap)

43 / 1

Exemplo 1: encontrar a posição correta para o valor 2 (raiz do heap)

ED - Heap 44 / 1

Exemplo 1: encontrar a posição correta para o valor 2 (raiz do heap)

ED - Heap 45 / 1

Não é um heap!

Exemplo 2: encontrar a posição correta para o valor 7 (raiz do heap)

ED - Heap 47 / 1

Não é um heap!

- Nota: uma única execução do Heapify sobre a raiz (posição 0) não é o bastante para transformarmos um vetor em um heap
 - há a possibilidade de sequer trocarmos elementos de posição
- Porém, uma aplicação sobre a raiz funciona caso os filhos da raiz sejam heaps!
- Portanto, temos que transformar cada filho possível desse vetor em um heap
- Para isso, podemos usar nossa função Heapify!

- Obs: podemos ignorar as folhas, já que elas individualmente já são um heap
 - índices das folhas: de $\left| \frac{H.pos}{2} \right|$ a H.pos-1
- ullet Portanto, devemos transformar em heap dos índices 0 a $\left\lfloor \frac{H.pos}{2} \right
 floor 1$
- Importante: devemos fazer na ordem inversa!
 - começar aplicando Heapify sobre o índice $\left\lfloor \frac{H.pos}{2} \right\rfloor 1$ e decrescer até chegar a 0
 - ou seja, a raiz é a última a aplicarmos o Heapify
 - justificativa: só depois de aplicarmos Heapify sobre todos os outros, é que temos os dois filhos da raiz como heaps

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕 Q ○ ○

ED - Heap 50 /

Heap: construir heap

```
Algoritmo: BuildHeap(S, n)
```

Entrada: vetor S, quantidade n de elementos no vetor

Resultado: reposicionar elementos de S formando um heap

1 para
$$i = \left\lfloor \frac{n}{2} \right\rfloor - 1$$
 até 0 faça

Heapify(S, n, i)

Complexidade: $O(n \log n)$

ED - Heap 51 /

- A partir destes métodos, podemos desenvolver um método de ordenação!
- Considere que temos um vetor arbitrário com n elementos
- Como fazer?
 - 1 construímos um Max Heap
 - 2 o maior elemento do heap estará na posição 0
 - 3 trocamos os valores da posição 0 e n-1 (última posição do vetor)
 - 4 decrementamos o n
 - ullet ou seja, não trabalharemos mais com a posição n-1
 - 5 repetimos os passos 1 a 4 até que só haja um elemento
 - ullet quando n=1 há só um elemento

ED - Heap 52 / 1

Heap: Heap Sort

```
Algoritmo: HeapSort(S, n)

Entrada: vetor S, quantidade n de elementos no vetor

Resultado: ordenar os elementos de S em ordem crescente

1 BuildHeap(S, n)

2 para i = n - 1 até 1 faça

3 | trocar S[0] com S[i]

4 | BuildHeap(S, i)
```

- Problema: complexidade
 - uma execução de BuildHeap no início do método
 - \bullet n-1 execuções de BuildHeap no loop do método
 - complexidade do BuildHeap: $O(n \log n)$
 - complexidade do método: $O(n^2 \log n)$
- Esperávamos um $O(n \log n)$
- Como fazer melhor?

- Solução: em vez de usar BuildHeap várias vezes, utilizamos Heapify!
- BUILDHEAP(S, n):
 - Transformar um vetor em um heap: $O(n \log n)$
- Heapify(S, n, i)
 - "Descer" um elemento até o seu lugar no heap: $O(\log n)$
- Por que isto funciona?
 - primeiro, construímos um heap
 - após construirmos, temos certeza de que cada sub-árvore é um heap
 - se trocamos os elementos das posições 0 e n-1, temos a certeza de que a nova raiz (o novo elemento na posição 0) está fora de posição
 - além disso, as duas sub-árvores desta raiz são heaps!
 - portanto, em vez de construirmos um novo heap, basta procurarmos a posição correta para a nova raiz!

ED - Heap 55 / 1

- Solução: em vez de usar BuildHeap várias vezes, utilizamos Heapify!
- A partir disto, podemos desenvolver um método de ordenação de complexidade $O(n \log n)!$
- Considere que temos um vetor arbitrário com *n* elementos
- Como fazer?
 - 1 construímos um Max Heap
 - 2 o maior elemento do heap estará na posição 0
 - 3 trocamos os valores da posição 0 e n-1 (última posição do vetor)
 - 4 decrescemos o n
 - ullet ou seja, não trabalharemos mais com a posição n-1
 - 5 executamos Heapify sobre a posição 0 para descermos o elemento até o seu lugar no heap
 - 6 repetimos os passos 2 a 5 até que só haja um elemento
 - quando n=1 há só um elemento

ED - Heap 56 / 1

Heap: Heap Sort

```
Algoritmo: HeapSort(S, n)

Entrada: vetor S, quantidade n de elementos no vetor Resultado: ordenar os elementos de S em ordem crescente 1 BuildHeap(S, n)

2 para i = n - 1 até 1 faça

3 | trocar S[0] com S[i]

4 | Heapify(S, i, 0)
```

Heap Sort

- Vantagens:
 - complexidade $O(n \log n)$ no pior caso
 - pouco uso de memória auxiliar
 - não usa vetores auxiliares, só uma quantidade constante
- Desvantagens:
 - não é estável
 - há como fazer uma versão estável, mas é complicado
 - implementação um pouco complicada
 - o laço do algoritmo é complexo
 - caso trabalhemos com poucos elementos, este algoritmo é complicado demais para ter um ganho muito pequeno

Ordenar o vetor 1, 5, 2, 7, 4, 3, 6 (n = 7 elementos)

Transformar em um heap (aplicando BuildHeap) n = 7

60 / 1

Trocar S[0] com S[n-1] e decrementar nn=7-1=6

ED - Heap 61 / 1

Encontrar a posição correta para a nova raiz (aplicando Heapify) n = 6

ED - Heap 62 / 1

Trocar S[0] com S[n-1] e decrementar nn=5

ED - Heap 63 / 1

Encontrar a posição correta para a nova raiz (aplicando Heapify) n=5

Trocar S[0] com S[n-1] e decrementar nn=5-1=4

65 / 1

Encontrar a posição correta para a nova raiz (aplicando Heapify) n=4

Trocar S[0] com S[n-1] e decrementar nn=4-1=3

Encontrar a posição correta para a nova raiz (aplicando Heapify) n=3

Trocar S[0] com S[n-1] e decrementar nn=3-1=2

4

5

6

7

Encontrar a posição correta para a nova raiz (aplicando Heapify) n=2

70 / 1

Trocar S[0] com S[n-1] e decrementar nn=2-1=1

1

2

_

)

- 4 ロ ト 4 個 ト 4 重 ト 4 重 - 夕 Q ()

Condição de parada atingida: n = 1 Vetor ordenado:

ED - Heap 72 / 1