Gramáticas Livres de Contexto

1

EDUARDO FREIRE NAKAMURA

Instituto de Computação Universidade Federal do Amazonas nakamura@icomp.ufam.edu.br

Introdução

2

- O estudo de Linguagens Livres de Contexto pode ser abordado através dos formalismos:
 - Reconhecedor (Autômato de pilha)
 - Gerador (Gramática Livre de Contexto)

 Gramáticas livres de contexto (GLC) foram desenvolvidas por linguistas para representar linguagens naturais:

 Entretanto, descobriu-se que GLC não são adequadas para linguagens como o inglês

 Em paralelo, cientistas da computação desenvolviam a notação de Backus e Naur (BNF), para descrever linguagens de programação, equivalente às GLC

Classe das linguagens livres de contexto

- Compreende um universo mais amplo de linguagens do que a classe das linguagens regulares
- Os algoritmos reconhecedores são relativamente simples e eficientes
- Aplicação
 - Analisadores sintáticos
 - Tradutores de linguagens e
 - Processadores de textos em geral

Gramáticas livres de contexto

5

 As linguagens livres de contexto têm uma grande importância para definir a sintaxe de linguagens de programação.

 As gramáticas livres de contexto são as gramáticas que geram linguagens livres de contexto.

 Estruturas de bloco bem balanceadas (como begin e end associados) ou parênteses aninhados, não podem ser escritos com linguagens regulares, e sim com linguagens livres de contexto.

Gramática livre de contexto

- Uma GLC é uma gramática $G = (V, \Sigma, R, P)$
 - *V* Conjunto de variáveis
 - \circ Σ alfabeto
 - R conjunto de regras
 - P variável de partida
- Com a restrição de que
 - \circ Toda produção é da forma $A \rightarrow \alpha$
 - \circ A é uma variável e α pode conter variáveis ou terminais, em qualquer ordem
- Uma linguagem é dita Linguagem Livre de Contexto (LLC) se for gerada por uma Gramática Livre de Contexto

Exemplo 1

• Duplo balanceamento: $L_1 = \{ a^n b^n \mid n >= 0 \}$

○
$$G_1 = (\{ S \}, \{ a, b \}, R, S),$$

 $R = \{ S \rightarrow aSb \mid \lambda \}$

 Exemplo: geração da palavra aabb

$$S \Rightarrow aSb$$

$$\Rightarrow aaSbb$$

$$\Rightarrow aa\lambda bb$$

$$\Rightarrow aabb$$

- O duplo balanceamento é um exemplo clássico no estudo das LLCs, pois permite a implementação de estruturas balanceadas como:
 - a) blocos do tipo BEGIN END
 - Arr S → begin S end | L | λ, onde L gera uma lista de comandos por exemplo
 - b) Linguagens com parênteses balanceados na forma ()
 - × $S \rightarrow (S) \mid E \mid \lambda$, onde E gera uma expressão aritmética por exemplo

8

Livre de Contexto – razão?

Ex: Dada a cadeia aaSbb, obtida no passo 2 da derivação de aabb:

A regra S → aSb diz que podemos substituir S pela cadeia aSb, independentemente das cadeias que a envolvem → independentemente do contexto de S.

G = ({ P }, { +, *, (,), x }, R, P),onde R:

$$\circ$$
 P \rightarrow P+P | P*P | (P) | x

 Como podemos gerar a expressão (x+x)*x ?

$$P \Rightarrow P^*P$$

$$\Rightarrow (P)^*P$$

$$\Rightarrow (P+P)^*P$$

$$P \rightarrow (P)$$

$$\Rightarrow (P+P)^*P$$

$$P \rightarrow P+P$$

$$\Rightarrow (x+P)^*P$$

$$P \rightarrow X$$

$$\Rightarrow (x+x)^*P$$

$$P \rightarrow X$$

$$P \rightarrow X$$

 Base para as gramáticas de operandos e expressões como

- P → P and P | P or P | not P |(P) | X
- X → E > E | E < E | E = E | E <> E
 | True | False
- \circ E \rightarrow E+E | E*E | (E) | x

Considere as regras

$$\circ$$
 E \rightarrow E+E | E-E | (E) | C

○ $C \rightarrow CC \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6$ $\mid 8 \mid 7 \mid 9$

Derivação de (10 - 2) + 3

$$E \Rightarrow E+E \qquad E \rightarrow E+E$$

$$\Rightarrow (E)+E \qquad E \rightarrow (E)$$

$$\Rightarrow (E-E)+E \qquad E \rightarrow E-E$$

$$\Rightarrow (C-E)+E \qquad E \rightarrow C$$

$$\Rightarrow (CC-E)+E \qquad C \rightarrow CC$$

$$\Rightarrow (CC-C)+E \qquad E \rightarrow C$$

$$\Rightarrow (CC-C)+C \qquad E \rightarrow C$$

$$\Rightarrow (1C-C)+C \qquad C \rightarrow 1$$

$$\Rightarrow (10-C)+C \qquad C \rightarrow 2$$

$$\Rightarrow (10-2)+3 \qquad C \rightarrow 3$$

Exercícios

11

Construa GLC para as linguagens

1.
$$L = \{0^n 1^{n+3}, n \ge 0\}$$

2.
$$L = \{0^n 1^{2n}, n \ge 0\}$$

3.
$$L = \{0^m 1^n, m > n\}$$

4.
$$L = \{0^m 1^n, m \le n \le 2m\}$$

5.
$$L = \{ ww^R : w \in \{ a,b \}^* \}$$

6.
$$L = \{ w \in \{0,1\}^* \mid w = w^R \}$$

Árvore de derivação

- É conveniente representar a derivação de palavras em uma árvore de derivação, onde:
 - A raiz é a variável de partida da gramática;
 - Os vértices interiores obrigatoriamente são variáveis;
 - Se A é um vértice interior e X_1 , X_2 ,..., X_n são os filhos de A, então A \rightarrow X_1X_2 ... X_n é uma derivação da gramática
 - O Um vértice folha é um símbolo terminal ou a palavra vazia λ (neste caso, λ é filho único)

Árvore de derivação

Fundamentos de Teoria da Computação

Eduardo Freire Nakamura (nakamura@icomp.ufam.edu.br)

Derivação mais à esquerda (DME)

- 14
- É a sequência de derivação aplicada sempre à variável mais à esquerda
- Regras
 - \circ E \rightarrow E+E | E-E | (E) | C
 - $C \rightarrow CC \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6$ $\mid 8 \mid 7 \mid 9$

• DME para (10-2)+3

$$E \Rightarrow E+E$$

$$\Rightarrow$$
 (E)+E

$$\Rightarrow$$
 (E-E)+E

$$\Rightarrow$$
 (C-E)+E

$$\Rightarrow$$
 (CC-E)+E

$$\Rightarrow$$
 (1C-E)+E

$$\Rightarrow$$
 (10-E)+E

$$\Rightarrow$$
 (10-2)+3

Derivação mais à direita(DMD)

- 15
- É a sequência de derivação aplicada sempre à variável mais à direita
- Regras
 - \circ E \rightarrow E+E | E-E | (E) | C
 - $C \rightarrow CC \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6$ $\mid 8 \mid 7 \mid 9$

• DMD para (10-2)+3

$$E \Rightarrow E+E$$

$$\Rightarrow$$
 E+3

$$\Rightarrow$$
 (E)+3

$$\Rightarrow$$
 (E-E)+3

$$\Rightarrow$$
 (E-C)+3

$$\Rightarrow$$
 (E-2)+3

$$\Rightarrow$$
 (C-2)+3

$$\Rightarrow$$
 (CC-2)+3

$$\Rightarrow$$
 (C0-2)+3

$$\Rightarrow$$
 (10-2)+3

Ambiguidade

16

 Uma Gramática Livre do Contexto é dita uma Gramática Ambígua, se existe uma palavra que possua duas ou mais árvores de derivação

 Uma forma equivalente de definir ambiguidade de uma gramática é a existência de uma palavra com duas ou mais derivações mais à esquerda (direita) G = ({ P }, { +, *, (,), x }, R, P),onde R:

$$\circ$$
 P \rightarrow P+P | P*P | (P) | x

 Como podemos gerar a expressão x+x*x ? Possibilidades de DME para x+x*x

Ambiguidade

18

Linguagem inerentemente ambígua

19

Uma linguagem é Inerentemente Ambígua se qualquer
 Gramática Livre de Contexto que a define é ambígua

• Exemplo:{ $w \mid w = a^n b^n c^m d^m$ ou $w = a^n b^m c^m d^n$, $n \ge 1$, $m \ge 1$ }

Eliminando Regras λ

20

Para qualquer GLC, existe uma GLC equivalente cuja única regra
λ, se houver, é P → λ, sendo P o símbolo de partida

Eliminando Regras λ

21

Exemplo

 $P \rightarrow APB \mid C$

 $A \rightarrow AaaA \mid \lambda$

 $B \rightarrow BBb \mid C$

 $c \rightarrow cC \mid \lambda$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

 $P \rightarrow APB \mid C$

 $A \rightarrow AaaA \mid \lambda$

 $B \rightarrow BBb \mid C$

 $c \rightarrow cC \mid \lambda$

22

Exemplo

 $P \rightarrow APB \mid C$

 $A \rightarrow AaaA \mid \lambda$

 $B \rightarrow BBb \mid C$

 $c \rightarrow cC \mid \lambda$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

 $P \rightarrow APB \mid C$

 $A \rightarrow AaaA \mid \lambda$

 $B \rightarrow BBb \mid C$

 $c \rightarrow cC \mid \lambda$

 $A \rightarrow \lambda$ (regra a ser eliminada)

Eliminando Regras λ

23

Exemplo

$$P \rightarrow APB \mid C$$

$$A \rightarrow AaaA \mid \lambda$$

$$B \rightarrow BBb \mid C$$

$$c \rightarrow cC \mid \lambda$$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

$$P \rightarrow APB \mid C$$

$$A \rightarrow AaaA \mid \lambda$$

$$B \rightarrow BBb \mid C$$

$$c \rightarrow cC \mid \lambda$$

 $A \rightarrow \lambda$ (regra a ser eliminada)

Eliminando Regras λ

Exemplo

$$P \rightarrow APB \mid C$$

$$A \rightarrow AaaA \mid \lambda$$

$$B \rightarrow BBb \mid C$$

$$c \rightarrow cC \mid \lambda$$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

$$P \rightarrow APB \mid PB \mid C$$

$$B \rightarrow BBb \mid C$$

$$c \rightarrow cC \mid \lambda$$

 $A \rightarrow \lambda$ (regra a ser eliminada)

Exemplo

 $P \rightarrow APB \mid C$

 $A \rightarrow AaaA \mid \lambda$

 $B \rightarrow BBb \mid C$

 $c \rightarrow cC \mid \lambda$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

 $P \rightarrow APB \mid PB \mid C$

 $A \rightarrow AaaA \mid Aaa \mid aaA \mid aa$

 $B \rightarrow BBb \mid C$

 $c \rightarrow cC \mid \lambda$

 $C \rightarrow \lambda$ (regra a ser eliminada)

Exemplo

$$P \rightarrow APB \mid C$$

$$A \rightarrow AaaA \mid \lambda$$

$$B \rightarrow BBb \mid C$$

$$c \rightarrow cC \mid \lambda$$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

$$P \rightarrow APB \mid PB \mid C$$

$$A \rightarrow AaaA \mid Aaa \mid aaA \mid aa$$

$$B \rightarrow BBb \mid C$$

$$c \rightarrow cC \mid \lambda$$

 $C \rightarrow \lambda$ (regra a ser eliminada)

27

Exemplo

 $P \rightarrow APB \mid C$

 $A \rightarrow AaaA \mid \lambda$

 $B \rightarrow BBb \mid C$

 $c \rightarrow cC \mid \lambda$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

 $P \rightarrow APB \mid PB \mid C \mid \lambda$

 $A \rightarrow AaaA \mid Aaa \mid aaA \mid aa$

 $B \rightarrow BBb \mid C \mid \lambda$

 $c \rightarrow cC \mid c$

 $C \rightarrow \lambda$ (regra a ser eliminada)

28

Exemplo

$$P \rightarrow APB \mid C$$

$$A \rightarrow AaaA \mid \lambda$$

$$B \rightarrow BBb \mid C$$

$$c \rightarrow cC \mid \lambda$$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

$$P \rightarrow APB \mid PB \mid C \mid \lambda$$

$$A \rightarrow AaaA \mid Aaa \mid aaA \mid aa$$

$$B \rightarrow BBb \mid C \mid \lambda$$

$$c \rightarrow cC \mid c$$

 $B \rightarrow \lambda$ (regra a ser eliminada)

Eliminando Regras λ

Exemplo

$$P \rightarrow APB \mid C$$

$$A \rightarrow AaaA \mid \lambda$$

$$B \rightarrow BBb \mid C$$

$$c \rightarrow cC \mid \lambda$$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

$$P \rightarrow APB \mid PB \mid C \mid \lambda$$

$$A \rightarrow AaaA \mid Aaa \mid aaA \mid aa$$

$$B \rightarrow BBb \mid C \mid \lambda$$

$$c \rightarrow cC \mid c$$

 $B \rightarrow \lambda$ (regra a ser eliminada)

Exemplo

$$P \rightarrow APB \mid C$$

$$A \rightarrow AaaA \mid \lambda$$

$$B \rightarrow BBb \mid C$$

$$c \rightarrow cC \mid \lambda$$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

$$P \rightarrow APB \mid PB \mid AP \mid C \mid \lambda$$

$$A \rightarrow AaaA \mid Aaa \mid aaA \mid aa$$

$$B \rightarrow BBb \mid Bb \mid b \mid C$$

$$c \rightarrow cC \mid c$$

 $B \rightarrow \lambda$ (regra a ser eliminada)

31

Exemplo

$$P \rightarrow APB \mid C$$

$$A \rightarrow AaaA \mid \lambda$$

$$B \rightarrow BBb \mid C$$

$$c \rightarrow cC \mid \lambda$$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

$$P \rightarrow APB \mid PB \mid AP \mid C \mid \lambda$$

$$A \rightarrow AaaA \mid Aaa \mid aaA \mid aa$$

$$B \rightarrow BBb \mid Bb \mid b \mid C$$

$$c \rightarrow cC \mid c$$

$$P \rightarrow \lambda$$
 (regra a ser substituída)

Eliminando Regras λ

32

Exemplo

$$P \rightarrow APB \mid C$$

$$A \rightarrow AaaA \mid \lambda$$

$$B \rightarrow BBb \mid C$$

$$c \rightarrow cC \mid \lambda$$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

$$P \rightarrow APB \mid PB \mid AP \mid C \mid \lambda$$

$$A \rightarrow AaaA \mid Aaa \mid aaA \mid aa$$

$$B \rightarrow BBb \mid Bb \mid b \mid C$$

$$c \rightarrow cC \mid c$$

 $P \rightarrow \lambda$ (regra a ser substituída)

33

Exemplo

$$P \rightarrow APB \mid C$$

$$A \rightarrow AaaA \mid \lambda$$

$$B \rightarrow BBb \mid C$$

$$c \rightarrow cC \mid \lambda$$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

$$P \rightarrow APB \mid PB \mid AP \mid AB \mid A \mid B \mid C \mid \lambda$$

$$A \rightarrow AaaA \mid Aaa \mid aaA \mid aa$$

$$B \rightarrow BBb \mid Bb \mid b \mid C$$

$$c \rightarrow cC \mid c$$

$$P \rightarrow \lambda$$
 (regra a ser substituída)

Eliminando Regras λ

Exemplo

 $P \rightarrow APB \mid C$

 $A \rightarrow AaaA \mid \lambda$

 $B \rightarrow BBb \mid C$

 $c \rightarrow cC \mid \lambda$

Acrescentar regras substituindo X recursivamente, se existir " $X \rightarrow \lambda$ "

 $P \rightarrow APB \mid PB \mid AP \mid AB \mid A \mid B \mid C \mid \lambda$

A → AaaA | Aaa | aaA | aa

 $B \rightarrow BBb \mid Bb \mid b \mid C$

 $c \rightarrow cC \mid c$

Forma Normal de Chomsky

- Uma GLC G = (V, Σ, R, P) é dita estar na forma normal de Chomsky (FNC) se todas as suas regras estão nas formas
 - \circ P \rightarrow λ , se λ pertence à L(G)
 - \circ X \rightarrow YZ para Y, Z pertencentes a V
 - \circ X \rightarrow a para a pertencente a Σ
- Para toda GLC G, existe uma GLC na FNC equivalente à G

Forma Normal de Chomsky

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

Eliminar regras λ

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

Eliminar regras λ

$$P \rightarrow 0A1 \mid 01$$

$$A \rightarrow AB \mid B$$

$$B \rightarrow 2 \mid P$$

Exemplo

$P \rightarrow 0A1$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

$$P \rightarrow 0A1 \mid 01$$

$$A \rightarrow AB \mid B$$

$$B \rightarrow 2 \mid P$$

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

$$P \rightarrow 0A1 \mid 01$$

$$A \rightarrow AB \mid B$$

$$B \rightarrow 2 \mid P$$

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

$$P \rightarrow 0A1 \mid 01$$

$$A \rightarrow AB \mid B$$

$$B \rightarrow 2 \mid 0A1 \mid 01$$

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

$$P \rightarrow 0A1 \mid 01$$

$$A \rightarrow AB \mid B$$

$$B \rightarrow 2 \mid 0A1 \mid 01$$

Exemplo

$P \rightarrow 0A1$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

$$P \rightarrow 0A1 \mid 01$$

$$A \rightarrow AB \mid 2 \mid 0A1 \mid 01$$

$$B \rightarrow 2 \mid 0A1 \mid 01$$

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

Criar regras para terminais, caso não existam

$$P \rightarrow 0A1 \mid 01$$

$$A \rightarrow AB \mid 2 \mid 0A1 \mid 01$$

$$B \rightarrow 2 \mid 0A1 \mid 01$$

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

Criar regras para terminais, caso não existam

$$P \rightarrow 0A1 \mid 01$$

$$A \rightarrow AB \mid 2 \mid 0A1 \mid 01$$

$$B \rightarrow 2 \mid 0A1 \mid 01$$

$$z \rightarrow 0$$

$$U \rightarrow 1$$

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

Substituir terminais

$$P \rightarrow 0A1 \mid 01$$

$$A \rightarrow AB \mid 2 \mid 0A1 \mid 01$$

$$B \rightarrow 2 \mid 0A1 \mid 01$$

$$z \rightarrow 0$$

$$U \rightarrow 1$$

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

Substituir terminais

$$P \rightarrow ZAU \mid ZU$$

$$A \rightarrow AB \mid 2 \mid ZAU \mid ZU$$

$$B \rightarrow 2 | ZAU | ZU$$

$$z \rightarrow 0$$

$$U \rightarrow 1$$

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

"Fracionar" regras com mais de duas variáveis e substituí-las

$$P \rightarrow ZAU \mid ZU$$

$$A \rightarrow AB \mid 2 \mid ZAU \mid ZU$$

$$B \rightarrow 2 | ZAU | ZU$$

$$Z \rightarrow 0$$

$$U \rightarrow 1$$

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

"Fracionar" regras com mais de duas variáveis e substituí-las

$$P \rightarrow ZAU \mid ZU$$

$$A \rightarrow AB \mid 2 \mid ZAU \mid ZU$$

$$B \rightarrow 2 | ZAU | ZU$$

$$X \rightarrow AU$$

$$Z \rightarrow 0$$

$$U \rightarrow 1$$

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

"Fracionar" regras com mais de duas variáveis e substituí-las

$$P \rightarrow ZX \mid ZU$$

$$A \rightarrow AB \mid 2 \mid ZX \mid ZU$$

$$B \rightarrow 2 \mid ZX \mid ZU$$

$$X \rightarrow AU$$

$$Z \rightarrow 0$$

$$U \rightarrow 1$$

Exemplo

$$P \rightarrow 0A1$$

$$A \rightarrow AB \mid \lambda$$

$$B \rightarrow 2 \mid P$$

"Fracionar" regras com mais de duas variáveis e substituí-las

$$P \rightarrow ZX \mid ZU$$

$$A \rightarrow AB \mid 2 \mid ZX \mid ZU$$

$$B \rightarrow 2 \mid ZX \mid ZU$$

$$X \rightarrow AU$$

$$z \rightarrow 0$$

$$U \rightarrow 1$$

Gramática na Forma Normal de Chomsky

- Uma GLC $G = (V, \Sigma, R, P)$ é dita estar na forma normal de Greibach (FNG) se todas as suas regras estão nas formas
 - \circ P \rightarrow λ , se λ pertence à L(G)
 - $X \rightarrow ay$ para a pertencente a Σ e y pertencente a V^*
- Para toda GLC G, existem uma GLC na FNG equivalente à G

- Transformando uma GLC FNC em FNG
- Exemplo

$$P \rightarrow AC \mid BB$$

$$B \rightarrow b \mid PB$$

$$A \rightarrow b$$

$$c \rightarrow a$$

FNC

$$P = A$$

$$A = A_2$$

$$C = A_3$$

$$B = A_4$$

Novos rótulos

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow b \mid A_1 A_4$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

FNC atualizada

$$A_{1} \rightarrow A_{2}A_{3} \mid A_{4}A_{4}$$

$$A_{4} \rightarrow A_{1}A_{4} \mid b$$

$$A_{2} \rightarrow b$$

$$A_{3} \rightarrow a$$

Passo 1: $A_i \rightarrow A_j X_k \quad i > j, X_k$ pertence a V^*

$$A_{1} \rightarrow A_{2}A_{3} \mid A_{4}A_{4}$$

$$A_{4} \rightarrow A_{1}A_{4} \mid b$$

$$A_{2} \rightarrow b$$

$$A_{3} \rightarrow a$$

Passo 1:
$$A_i \rightarrow A_j X_k \quad i > j, X_k$$
 pertence a V^*

$$\begin{array}{ccccc} A_1 & \rightarrow & A_2A_3 \mid A_4A_4 \\ A_4 & \rightarrow & A_1A_4 \mid b \\ A_2 & \rightarrow & b \\ A_3 & \rightarrow & a \end{array}$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

Passo 1:
$$A_i \rightarrow A_j X_k \quad i > j, X_k$$
 pertence a V^*

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_2A_3A_4 \mid A_4A_4A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

Passo 1:
$$A_i \rightarrow A_j X_k \quad i > j, X_k$$
 pertence a V^*

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_2A_3A_4 \mid A_4A_4A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_{1} \rightarrow A_{2}A_{3} \mid A_{4}A_{4}$$

$$A_{4} \rightarrow A_{1}A_{4} \mid b$$

$$A_{2} \rightarrow b$$

$$A_{3} \rightarrow a$$

Passo 1:
$$A_i \rightarrow A_j X_k \quad i > j, X_k \text{ pertence a } V^*$$

$$A_{1} \rightarrow bA_{3} \mid A_{4}A_{4}$$

$$A_{4} \rightarrow bA_{3}A_{4} \mid A_{4}A_{4}A_{4} \mid b$$

$$A_{2} \rightarrow b$$

$$A_{3} \rightarrow a$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_4 \rightarrow A_4 A_4 A_4$$

$$A_1 \rightarrow bA_3 \mid A_4A_4$$

$$A_4 \rightarrow bA_3A_4 \mid A_4A_4A_4 \mid b$$

$$A_3 \rightarrow a$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_4 \rightarrow A_4 A_4 A_4$$

$$A_1 \rightarrow bA_3 \mid A_4A_4$$

$$A_4 \rightarrow bA_3A_4 \mid A_4Z \mid b$$

$$Z \rightarrow A_4A_4 \mid A_4A_4Z$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_4 \rightarrow A_4 A_4 A_4$$

$$A_1 \rightarrow bA_3 \mid A_4A_4$$

$$A_4 \rightarrow bA_3A_4 \mid A_4Z \mid b$$

$$Z \rightarrow A_4A_4 \mid A_4A_4Z$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow c$$

$$A_1 \rightarrow bA_3 \mid A_4A_4$$

$$A_4 \rightarrow bA_3A_4 \mid bA_3A_4Z \mid bZ \mid b$$

$$Z \rightarrow A_4A_4 \mid A_4A_4Z$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_4 \rightarrow A_4 A_4$$

$$A_1 \rightarrow bA_3 \mid A_4A_4$$

$$A_4 \rightarrow bA_3A_4 \mid bA_3A_4Z \mid bZ \mid b$$

$$Z \rightarrow A_4A_4 \mid A_4A_4Z$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_4 \rightarrow A_4 A_4$$

$$A_1 \rightarrow bA_3 \mid bA_3A_4A_4 \mid bA_3A_4ZA_4 \mid bZA_4 \mid bA_4$$

$$A_4 \rightarrow bA_3A_4 \mid bA_3A_4Z \mid bZ \mid b$$

$$Z \rightarrow A_4A_4 \mid A_4A_4Z$$

$$A_2 \rightarrow b$$

$$A_2 \rightarrow a$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow c$$

$$Z \rightarrow A_4 A_4$$

$$A_1 \rightarrow bA_3 \mid bA_3A_4A_4 \mid bA_3A_4ZA_4 \mid bZA_4 \mid bA_4$$

$$A_4 \rightarrow bA_3A_4 \mid bA_3A_4Z \mid bZ \mid b$$

$$Z \rightarrow A_4A_4 \mid A_4A_4Z$$

$$A_2 \rightarrow b$$

$$A_2 \rightarrow a$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$Z \rightarrow A_4 A_4$$

$$A_1 \rightarrow bA_3 \mid bA_3A_4A_4 \mid bA_3A_4ZA_4 \mid bZA_4 \mid bA_4$$

$$A_4 \rightarrow bA_3A_4 \mid bA_3A_4Z \mid bZ \mid b$$

$$Z \rightarrow bA_3A_4A_4 \mid bA_3A_4ZA_4 \mid bZA_4 \mid bA_4 \mid A_4A_4Z$$

$$A_2 \rightarrow b$$

$$A_2 \rightarrow a$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$Z \rightarrow A_4A_4Z$$

$$A_1 \rightarrow bA_3 \mid bA_3A_4A_4 \mid bA_3A_4ZA_4 \mid bZA_4 \mid bA_4$$

$$A_4 \rightarrow bA_3A_4 \mid bA_3A_4Z \mid bZ \mid b$$

$$Z \rightarrow bA_3A_4A_4 \mid bA_3A_4ZA_4 \mid bZA_4 \mid bA_4 \mid A_4A_4Z$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow c$$

$$Z \rightarrow A_4A_4Z$$

$$A_1 \rightarrow bA_3 \mid bA_3A_4A_4 \mid bA_3A_4ZA_4 \mid bZA_4 \mid bA_4$$

$$A_4 \rightarrow bA_3A_4 \mid bA_3A_4Z \mid bZ \mid b$$

$$Z \rightarrow bA_3A_4A_4 \mid bA_3A_4ZA_4 \mid bZA_4 \mid bA_4 \mid bA_3A_4A_4Z \mid bA_3A_4ZA_4Z \mid bZA_4Z \mid bA_4Z \mid$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

$$A_4 \rightarrow A_1A_4 \mid b$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

Gramática na Forma Normal de Greibach

$$A_1 \rightarrow bA_3 \mid bA_3A_4A_4 \mid bA_3A_4ZA_4 \mid bZA_4 \mid bA_4$$

$$A_4 \rightarrow bA_3A_4 \mid bA_3A_4Z \mid bZ \mid b$$

$$Z \rightarrow bA_3A_4A_4 \mid bA_3A_4ZA_4 \mid bZA_4 \mid bA_4 \mid bA_3A_4A_4Z \mid bA_3A_4ZA_4Z \mid bZA_4Z \mid bA_4Z$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

GLCs e APs

69

Para qualquer GLC G, existe um AP que reconhece L(G)

• Para qualquer AP M, existe uma GLC que gera L(M)

Transformando uma GLC em um AP

Para qualquer GLC G, existe um AP que reconhece L(G)

- Algoritmo GLC → AP
 - O Dada uma GLC $G = (V, \Sigma, R, P)$, na forma normal de Greibach, um AP que reconhece a linguagem L(G) é dado por

 λ , P/λ , se $P \rightarrow \lambda$ pertence a R a, X/ω , para toda $X \rightarrow a\omega$ pertencente a R

Transformando uma GLC em um AP

71

Exemplo

$$P \rightarrow 0PUP \mid 1PZP \mid \lambda$$

$$U \rightarrow 1$$

$$Z \rightarrow 0$$

Transformando uma GLC em um AP

72

Exemplo

73

Exemplo

 $\begin{array}{cccc} P & \rightarrow & OPUP \mid 1PZP \mid \lambda \\ U & \rightarrow & 1 \\ Z & \rightarrow & 0 \end{array}$

Exemplo

Exemplo

Exemplo

λ, P/λ
0, P/PUP
1, P/PZP
1, U/λ
0, Z/λ

Exemplo

 λ , P/λ , se $P \rightarrow \lambda$ pertence a R $a, X/\omega$, para toda X $\rightarrow a\omega$ pertencente a R $\lambda, \lambda/P$

1, U/λ

 $0, Z/\lambda$

Exercícios

Considere as duas gramáticas abaixo

$$P \rightarrow BPA \mid A$$

$$A \rightarrow aA \mid \lambda$$

$$B \rightarrow Bba \mid \lambda$$
(a)

$$P \rightarrow AB$$

$$A \rightarrow aAb \mid c$$

$$B \rightarrow bBc \mid a$$
(b)

- 1. Encontre a FNC para (a) e (b)
- 2. Encontre a FNG para (a) e (b)
- 3. Converta as gramáticas (a) e (b) em APs

- Modelo de autômatos com pilha:
 - Adequado para estudos aplicados e formais
 - Pilha é adequada para implementação em computadores
 - Poucas modificações na definição determinam significativas alterações no poder computacional
 - Principais estudos de linguagens e computabilidade podem ser desenvolvidos usando-se exclusivamente AP
 - Variando o número de pilhas
 - Com ou sem não-determinismo

80

- Autômato com Pilha, sem usar a estrutura de pilha:
 - O Estados: única forma de memorizar informações passadas
 - Muito semelhante ao autômato finito
 - O APs, sem usar a pilha, com ou sem não-determinismo

Reconhecem a Classe das Linguagens Regulares

- Autômato com Pilha determinístico
 - Aceita a Classe das Linguagens Livres do Contexto Determinísticas
 - importante subconjunto próprio da Classe das LLC
 - facilita o desenvolvimento de analisadores sintáticos

- Autômato com (uma) Pilha Não-Determinístico
 - Aceita exatamente a Classe das LLC
- Autômato com Duas Pilhas
 - O Mesmo poder computacional da Máquina de Turing
 - considerada o dispositivo mais geral de computação
 - Se existe um algoritmo para resolver um problema
 - pode ser expresso como um autômato com duas pilhas
 - Não-determinismo não aumenta o poder computacional

- Autômato com Múltiplas Pilhas
 - Poder computacional de um autômato com mais de duas pilhas
 - × equivalente ao do autômato com duas pilhas

- Se um problema é solucionado por um autômato com múltiplas pilhas
 - pode ser solucionado por um autômato com duas pilhas

Exercícios

- Coloque a seguinte gramática na Forma Normal de Chomsky
 G = ({L,S,E}, {a, (,)}, P, L) e P é composta pelas seguintes regras
 - $-L \rightarrow (S)$
 - $-S \rightarrow SE \mid \lambda$
 - $E \rightarrow a \mid L$
- Coloque a seguinte gramática na Forma Normal de Greibach
 G é composta pelas seguintes regras e converta G para um AP
 - $-S \rightarrow ABb \mid a$
 - A → aaA | B
 - $-B \rightarrow bAb$