1 Vatnseldflaug (10 stig)

Í þessu dæmi skoðum við vatnseldflaug. Hægt er að búa til einfalda heimagerða vatnseldflaug með því að taka 2L gosflösku og fylla hana að hluta með vatni.

Lofti er dælt inn í flöskuna í gegnum stútinn þar til þrýstingurinn inni í henni verður nægur til að stúturinn losni þannig að vatnið þrýstist snögglega út, og samkvæmt þriðja lögmáli Newtons skýst eldflaugin upp. Markmið okkar í þessu dæmi verður að meta hversu hátt vatnseldflaugin kemst.

Uppstillingin sem að við höfum í huga er 2 L vatnsflaska með massa $m_{\rm flaska}=45\,{\rm g}$ ásamt 1 L af vatni. Hæð gosflöskunnar er $L=31,5\,{\rm cm}$ og geisli hennar er $R=4,5\,{\rm cm}$. Stúturinn er með geisla $r=1,4\,{\rm cm}$. Þegar flaskan losnar frá stútnum er upphafsþrýstingurinn inni í flöskunni $P_0=5P_a$ þar sem $P_a=1\,{\rm atm}=101,3\,{\rm kPa}$. Eðlismassi vatns er $\rho_v=1000\,{\rm kg/m^3}$ og eðlismassi lofts er $\rho_\ell=1,225\,{\rm kg/m^3}$.

- (a) (0,5 stig) Hvert er rúmmál flöskunnar, V_f , í einingunni m³? Hvert er rúmmál loftsins, V_0 , inni í flöskunni á augnablikinu þegar eldflaugin tekur á loft?
- (b) (0,5 stig) Hver er massi eldflaugarinnar, M_0 , í upphafi og þegar allt vatnið hefur tæmst úr henni, M_f .
- (c) (0,5 stig) Gerum ráð fyrir að loftið inni í flöskunni fylgi jafnhitaferli en það þýðir að T = fasti í ferlinu. Notið gaslögmálið til að ákvarða þrýsting loftsins, P_f , inni í flöskunni á augnablikinu sem að öllu vatninu hefur verið þrýst út úr flöskunni.
- (d) (1,5 stig) Ákvarðið hraða vatnsins, u, út um stút flöskunnar sem fall af þrýsting inni í flöskunni, P(t). Þið megið nota nálgunina $r \ll R$ og gera ráð fyrir að h sé svo lítið að áhrif þrýstings frá vökvasúlunni $(\rho_v g h)$ eru hverfandi.
- (e) (0,5 stig) Hversu miklum massa tapar eldflaugin á tímaeiningu, $\frac{dM}{dt}$, sem fall af u, r og ρ_v .
- (f) (0,5 stig) Krafturinn sem knýr eldflaugina upp er gefinn með $T=u\frac{dM}{dt}$. Notið niðurstöðurnar í liðunum hér á undan til að sýna að til séu fastar α og β þannig að $T=\alpha P+\beta$.
- (g) (1 stig) Notið liðina hér á undan til að ákvarða u_f og T_f þegar vatnið hefur tæmst úr flöskunni.

Með gaslögmálinu má sýna að þrýstingurinn inni í flöskunni fylgir afleiðujöfnunni $\frac{dP}{dt} = -\frac{P^2A}{P_0V_0}\sqrt{\frac{2}{\rho}(P-P_a)}$, þar sem að A er þverskurðarflatarmál stútsins. Einungis er hægt að leysa þessa afleiðujöfnu með tölulegum aðferðum en samt er hægt að nota hana til að ákvarða heildartímann τ sem að líður frá því að vatnseldflaugin fer af stað og þar til að allt vatnið hefur tæmst úr flöskunni:

$$\tau = \frac{V_0}{A} \sqrt{\frac{\rho_v}{2P_a}} \left[\sqrt{-1 + \frac{P_0}{P_a}} - \frac{V_f}{V_0} \sqrt{-1 + \frac{P_0 V_0}{P_a V_f}} \right. \\ \left. + \frac{P_0}{P_a} \arctan \left(\sqrt{-1 + \frac{P_0}{P_a}} \right) - \frac{P_0}{P_a} \arctan \left(\sqrt{-1 + \frac{P_0 V_0}{P_a V_f}} \right) \right].$$

- (h) (1 stig) Reiknið tölulegt gildi á tímanum τ .
- (i) (3 stig) Metið hraða eldflaugarinnar $v(\tau)$ þegar eldsneytið þrýtur.
- (j) (1 stig) Metið hver mesta hæð, h_{\max} , vatnseldflaugarinnar verður. Hunsið loftmótsstöðu.

Lausn á Vatnseldflaug

- (a) Rúmmál flöskunnar er $V_f=2$ L = $2\cdot 10^{-3}$ m³. Rúmmál loftsins er $V_0=V_f-V_{\rm vatn}=1\cdot 10^{-3}$ m³.
- (b) Massi eldflaugarinnar er þá $M_0 = m_f + \rho V_{\text{vatn}} = 1045\,\text{g}$ í lokin er hann $M_f = m_f = 45\,\text{g}$.
- (c) Þá er $P_f V_f = P_0 V_0$ svo $P_f = \frac{P_0 V_0}{V_f} = \frac{1}{2} P_0 = \frac{5}{2} P_a$.
- (d) Samkvæmt lögmáli Bernoulli er þá

$$P_1 + \frac{1}{2}\rho_v v_1^2 + \rho_v g h_1 = P_2 + \frac{1}{2}\rho_v v_2^2 + \rho_v g h_2$$

en hér er $P_1 = P$ og $P_2 = P_a$, $h_1 = h$ og $v_2 = u$ og $h_2 = 0$. Hægt er að ákvarða v_1 sem fall af u með því að nota samfelldnilögmálið en það segir að flæðið sé varðveitt í þeim skilningi að

$$\pi R^2 v_1 = \pi r^2 u \implies v_1 = \left(\frac{r}{R}\right)^2 u$$

Við máttum gera ráð fyrir að bæði $r \ll R$ og að þrýstingurinn vegna þyngdarinnar skipti ekki máli en þá fæst

$$u = \sqrt{\frac{2}{\rho_v}(P - P_a)}.$$

Ef engar nálganir eru notaðar þá er samt hægt að reikna betta og fá

$$u = \frac{\sqrt{\frac{2}{\rho_v}(P - P_a) - 2gh}}{\sqrt{1 - \left(\frac{r}{R}\right)^2}}$$

Framvegis styðjum við okkur við fyrra formið.

- (e) Þá er $\frac{dM}{dt} = \rho_v A u$.
- (f) Par með er $T=u\frac{dM}{dt}=\rho_vAu^2=2A(P-P_a),$ svo $\alpha=2A$ og $\beta=-2AP_a.$
- (g) $u_f = \sqrt{\frac{2}{\rho_v}(P_f P_a)} = \sqrt{\frac{3P_a}{\rho_v}} = 17.4 \,\text{m/s og } T_f = \rho_v A u_f^2 = 187 \,\text{N}.$
- (h) Tölulega gildið er $\tau = 74.8 \,\mathrm{ms}$.
- (i) Við athugum að $a(t) = \frac{T(t)}{M(t)} g$ svo

$$v(\tau) = \int_0^\tau \left(\frac{T(t)}{M(t)} - g\right) dt \approx \left(\frac{T(\tau) + T(0)}{M(\tau) + M(0)} - g\right) \tau = 46.3\,\mathrm{m/s}.$$

Þetta er reyndar nokkuð fjarri réttu gildi, $v(\tau) = 61.7 \,\mathrm{m/s}$.

(j) Þá er $h_f \approx \frac{1}{2}v(\tau)\tau = 1.7 \,\mathrm{m}$ sem gefur því að $h_{max} = h_f + \frac{v(\tau)^2}{2g} = 111 \,\mathrm{m}$.