

@nhihin Alzheimer's disease drug trials:

Cortical thickness

Altered iron homeostasis?

Glucose metabolism

FDG-PET

Young adults with familial Alzheimer's disease

RNA-seq analysis on whole-brains

Wild-type psen1+/+

familial Alzheimer's-like psen1^{Q96_K97del/+}

Experimental Design

Experimental Design

- Libraries prepared with whole-brains
- polyA-enriched
- single-end 75bp reads, Illumina NextSeq
- Quality trimmed
- Aligned to GRCz11with STAR
- FeatureCounts

1. Early changes in the brain before Alzheimer's disease?

- *limma-voom* workflow
- mroast, camera,
 and fgsea for
 gene set analysis
- 50 Hallmark gene sets from MSigDB
- FDR adj. *p* < 0.05

INFLAMMATORY RESPONSE

↓ Cortical thickness

MRI

2. Altered iron homeostasis?

Young adults with familial Alzheimer's disease

↓ Glucose metabolism

FDG-PET

Searching for genes responding to disrupted iron homeostasis

Extract 3' and 5' UTR sequences From GRCz11

Zebrafish 3'
IRE gene set
(1,207 genes)

Zebrafish 5' IRE gene set (393 genes)

Zebrafish 5' IRE gene set (393 genes)

Gene set
enrichment testing
mroast, camera, and
fgsea, combined with
Wilkinson's method
and FDR adj. *p* < 0.05

Zebrafish 5' IRE gene set (393 genes)

Gene set
enrichment testing
mroast, camera, and
fgsea, combined with
Wilkinson's method
and FDR adj. *p* < 0.05

Brain aging:
3' and 5' IRE gene set significantly enriched

Zebrafish 5' IRE gene set (393 genes)

Gene set
enrichment testing
mroast, camera, and
fgsea, combined with
Wilkinson's method
and FDR adj. *p* < 0.05

Hypoxia (oxygen deficiency):
3' and 5' IRE gene set significantly enriched

Zebrafish 5' IRE gene set (393 genes)

Gene set
enrichment testing
mroast, camera, and
fgsea, combined with
Wilkinson's method
and FDR adj. *p* < 0.05

Alzheimer's-like

Mutation:

3' IRE gene set significantly enriched

Expression of 1,207 3' IRE genes across all samples

Expression of 1,207 3' IRE genes across all samples

Expression of 1,207 3' IRE genes across all samples

Hypoxia?

Principal Component 2 (8.4%)

Genotype and Age

- Q96_K97del/+, 24 months
- Q96_K97del/+, 6 months
- +/+, 24 months
- +/+, 6 months

Oxygen Level

- Normoxia
- Hypoxia

Principal Component 1 (26.1%)

All genes

Principal Component 1 (19.15%)

Genotype and Age

- Q96_K97del/+, 24 months
- Q96_K97del/+, 6 months
- +/+, 24 months
- +/+, 6 months

Oxygen Level

- Normoxia
- Hypoxia

Other gene sets from MSigDB with sig. overlap with IRE gene sets (Fisher's exact test over-representation FDR p-value < 0.1)

Hallmark
Heme
Metabolism
(200 genes)

1,207 genes with 3' IREs

Summary

- RNA-seq analysis in a zebrafish model of familial Alzheimer's disease has given us insight into potential early disease-causing changes in the brain.
- Genes with Iron Responsive Elements can give us more information about iron homeostasis than existing gene sets.
 - Revealing possibly shared mechanisms in familial Alzheimer's disease and hypoxia

Supervisors Michael Lardelli Stephen Pederson

University of Adelaide
Alzheimer's Disease

Genetics Laboratory

Michael Lardelli

Morgan Newman

Lachlan Baer

Karissa Barthelson

Yang Dong

Aoya Chen

Ewan Gerken

Jiayu Ruan

Syahida Ahmed

Tanya Jayne

University of Adelaide

Bioinformatics Hub

Stephen Pederson

Jimmy Breen

Dan Kortschak

Dave Adelson

Nathan Watson-Haigh

Rick Tearle

Mark Armstrong

Lachlan Baer

Alastair Ludington

Chelsea Matthews

Melanie Smith

Charlotte Sai

Jacqueline Rehn

James Galbraith

Justin Bogias

Luan Zhong

Ning Liu

Oscar Estrada

Pan Zhang

Qianhui Wan

Jun Wei

Sabrina Ng

+ Sebastian Parkitny, Arwa Nawas