WO 2005/070943 PCT/US2005/002262

CLAIMS

The invention claimed is:

- 1. A method for separation of α -penta-O-galloyl-D-glucose (PGG) from a mixture of α -PGG- and β -PGG or analogues thereof comprising the steps of:
- a) adding water to a PGG mixture containing 50% or more α -PGG and 50% or less β -PGG;
 - b) mixing the PGG and water to dissolve the PGG;
 - c) filtering out any undissolved particles; and
 - d) allowing the filtered solution to stand undisturbed until crystals form

wherein the crystals comprise the α -PGG or α -PGG analogue.

- 2. The method of claim 1 wherein double distilled water is used in step (a).
- 3. The method of claim 1 wherein the water to PGG ratio is about 20 mL of water for about 1 g of PGG.
- 4. The method of claim 1 wherein the mixing step is done for about 5 minutes.
- 5. The method of claim 1 wherein the mixing step is done at an elevated temperature.
- 6. The method of claim 5 wherein the mixing step is done at 80°C.
- 7. The method of claim 1 wherein the filtering step is done using a 45 μm filter.
- 8. The method of claim 1 wherein the filtered solution of step (d) is allowed kept at a temperature lower than room temperature.
- 9. The method of claim 1 wherein the α and β analogues of PGG are selected from analogues in which the glucose of the PGG is substituted by a hexose, pentose, or tetrose.
- 10. The method of claim 1 wherein the α and β analogues of PGG are selected from analogues in which the ring oxygen of the glucose or other hexose, pentose or tetrose is substituted by carbon, nitrogen, or sulfur.
- 11. The method of claim 1 wherein the α and β analogues of PGG are selected from analogues in which the gallic acid portion of the PGG is substituted by other phenols.
- 12. The method of claim 1 wherein the purity of the α -PGG or α -PGG analogue is 95% or greater.
- 13. A method for separation of β -PGG or an analogue thereof from a mixture of α -PGG and β -PGG or analogues thereof comprising the steps of
- a) adding acetone to a mixute of PGG containing 50% or more β -PGG and 50% or less α -PGG;
 - b) mixing the PGG and acetone to dissolve the PGG;
 - c) filtering out any undissolved particles; and
- d) allowing the filtered solution to stand undisturbed until crystals form wherein the crystals comprise the β -PGG or β -PGG analogue.
- 14. The method of claim 13 wherein the acetone is added to the PGG at a ratio of about 5 mL acetone for about 1 g PGG.
- 15. The method of claim 13 wherein the mixing in mixing in step (b) is done for about 5 minutes.

WO 2005/070943 PCT/US2005/002262

16. The method of claim 13 wherein the mixing step (b) may be done at an elevated temperature.

- 17. The method of claim 16 wherein the mixing step (b) is carried out at 80°C.
- 18. The method of claim 13 wherein the filtering step (c) is done through filter paper.
- 19. The method of claim 13 wherein step (d) is done at a temperature lower than room temperature.
- 20. The method of claim 13 wherein the α and β analogues of PGG are selected from analogues in which the glucose of the PGG is substituted by a hexose, pentose, or tetrose.
- 21. The method of claim 13 wherein the α and β analogues of PGG are selected from analogues in which the ring oxygen of the glucose or other hexose, pentose or tetrose is substituted by carbon, nitrogen, or sulfur.
- 22. The method of claim 13 wherein the α and β analogues of PGG are selected from analogues in which the gallic acid portion of the PGG is substituted by other phenols.
- 23. The method of claim 13 wherein the purity of the α -PGG or α -PGG analogue is 95% or greater.
- 24. A method for preparing single crystal α -PGG or an analogue thereof comprising the steps of:
 - a) adding water to a sample of α -PGG having a purity of 95% or greater;
 - b) mixing the α -PGG and water to dissolve the α -PGG;
- c) filtering out any undissolved particles and placing the filtered solution in a clean vessel; and
 - d) maintaining the filtered solution undisturbed until α -PGG crystals appear.
- 25. The method of claim 24 wherein the water is added to the α -PGG at a ratio of about 100 mL of water for about 1.0 g α -PGG.
- 26. The method of claim 24 wherein step (d) is carried out for about 15 days.
- 27. A method for preparing single crystal β -PGG comprises the steps of
 - a) adding acetone to a sample of β -PGG having a purity of 95% or greater;
 - b) mixing the β -PGG and acetone to dissolve the β -PGG;
- c) filtering out any undissolved particles, placing the filtered solution in a clean vessel; and
 - d) maintaining the filtered solution undisturbed until crystals appear.
- 28. The method of claim 27 wherein ratio of acetone to PGG is about 50 mL of acetone per about 1.0 g β -PGG.
- 29. The method of claim 27 wherein step (d) is carried out for about 20 days.