K-Means Clustering

- K-Means clustering is an unsupervised iterative clustering technique.
- It partitions the given data set into **K** predefined distinct clusters.
- A cluster is defined as a collection of data points exhibiting certain similarities.

Before K-Means

After K-Means

It partitions the data set such that-

- Each data point belongs to a cluster with the nearest mean.
- Data points belonging to one cluster have high degree of similarity.
- Data points belonging to different clusters have high degree of dissimilarity.

Example Question:

Cluster the following five points into two clusters:

A1(2, 1), A2(3 2), A3(1, 2), A4(2, 2), A5(3, 3)

Solution:

Here, K = 2;

So we need to identify two random points as initial clusters.

Lets the initial clusters are A1(2,1) and A5(3,3)

<u>Step 1:</u>

Now we calculate the centroids via "Euclidean Distance" formula.

Euclidean Distance (d) =
$$\sqrt{((x_1-x_2)^2 + (y_1-y_2)^2 + ... + ...)}$$

$$d(C1,A1) = \sqrt{((x_1-x_2)^2 + (y_1-y_2)^2)}$$

$$= \sqrt{((2-2)^2 + (1-1)^2)}$$

$$= 0$$

$$d(C1,A2) = \sqrt{((x_1-x_2)^2 + (y_1-y_2)^2)}$$

$$= \sqrt{((2-3)^2 + (1-2)^2)}$$

$$= \sqrt{2}$$

...

...

$$d(C2,A1) = \sqrt{((x_1-x_2)^2 + (y_1-y_2)^2)}$$
$$= \sqrt{((3-2)^2 + (3-1)^2)}$$
$$= \sqrt{5}$$

• • •

. . .

	A1(2,1)	A2(3,2)	A3(1,2)	A4(2,2)	A(3,3)
C1: (2,1)	0	√2	√2	√1	√5
C2: (3,3)	√5	√1	√5	√2	0
	C1	C2	C1	C1	C2

New C1 (x,y),

$$x = (2+1+2) \div 3$$

 $= 1.67$
 $y = (1+2+2) \div 3$
 $= 1.67$
So, C1 => (1.67, 1.67)
New C2 (x,y),
 $x = (3+3) \div 2$
 $= 3$
 $x = (2+3) \div 2$
 $= 2.5$
So, C2 => (3, 2.5)

<u>Step 2:</u>

	A1(2,1)	A2(3,2)	A3(1,2)	A4(2,2)	A(3,3)
C1: (1.67, 1.67)	0.71	1.3	0.74	0.46	1.8
C2: (3, 2.5)	1.8	0.5	2.0	1.1	0.5
	C1	C2	C1	C 1	C2

Here we see that the group/cluster of step 1 and step 2 are same. So we can stop the iteration.

So the final clusters/groups are:

Group 1: (2,1), (1,2) and (2,2)

Group 2: (3,2) and (3,3)