LRC - Annexe $n^{\circ}7$

M1 ANDROIDE M1 DAC

Logiques de description

Ce document récapitule la syntaxe de \mathcal{FL}^- , \mathcal{ALC} et des principales extensions de cette dernière. Pour ceux approfondir le sujet, il est possible de se référer à http://dl.kr.org/ qui centralise un certain nombre de ressources sur le sujet, dont en particulier http://www.cs.man.ac.uk/~ezolin/dl/ qui donne les différentes extensions de \mathcal{ALC} et les résultats de complexité qui s'y rapportent.

$1 \quad \mathcal{F} \mathcal{L}^-$

1.1 Alphabet

• Concepts atomiques : A, B, C, \dots

• Rôles atomiques : R, S, U, V, \dots

• Symboles : $\{ \sqcap, \exists, \forall, . \}$

• Instances de concepts : a, b, \ldots

1.2 Base de connaissances

• TBox - Axiomes terminologiques :

Définitions : $C \equiv D$ Subsomptions : $C \sqsubseteq D$

• ABox - Assertions :

Assertions de concepts : a : CAssertions de rôles : $\langle a, b \rangle : R$

1.3 Grammaire

```
\begin{array}{ll} concept ::= & \langle concept \ atomique \rangle \\ & | \langle concept \rangle \ \sqcap \ \langle concept \rangle \\ & | \ \exists \ \langle r\^{o}le \ atomique \rangle \\ & | \ \forall \ \langle r\^{o}le \ atomique \rangle . \langle concept \rangle \\ & | \ \forall \ \langle r\^{o}le \ atomique \rangle . \langle instance \rangle \end{array}
```

1.4 Sémantique de \exists et \forall

Etant donné une interprétation $\mathcal{I} = (\Delta^{\mathcal{I}}, .^{\mathcal{I}})$, on a :

- $(\exists R)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \exists y, (x, y) \in R^{\mathcal{I}} \}$ Exemple - avoir au moins un enfant : $\exists \mathtt{a_enfant}$
- $(\forall R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \forall y, (x,y) \in R^{\mathcal{I}} \to y \in C^{\mathcal{I}}\}$ Exemple - avoir uniquement des enfants humains (mais ne pas nécessairement en avoir) : \forall a_enfant.Humain

$2 \quad \mathcal{ALC}$

2.1 Alphabet

On a joute les symboles \sqcup, \neg, \top et \bot

- Concepts atomiques : A, B, C, \dots
- Rôles atomiques : R, S, U, V, \dots
- Symboles : $\{ \sqcup, \sqcap, \exists, \forall, \neg, \top, \bot, . \}$
- Instances de concepts : a, b, \ldots

2.2 Grammaire

```
\begin{array}{ll} concept ::= & \langle concept \ atomique \rangle \\ & | \ \top \\ & | \ \bot \\ & | \ \neg \langle concept \rangle \\ & | \ \langle concept \rangle \ \sqcap \ \langle concept \rangle \\ & | \ \langle concept \rangle \ \sqcup \ \langle concept \rangle \\ & | \ \exists \ \langle r\^{o}le \rangle. \langle concept \rangle \\ & | \ \forall \ \langle r\^{o}le \rangle. \langle concept \rangle \end{array}
```

2.3 Sémantique de \exists et \forall

Etant donné une interprétation $\mathcal{I} = (\Delta^{\mathcal{I}}, \mathcal{I})$, on a :

- $(\exists R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \exists y, (x, y) \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}} \}$
 - Exemple 1 avoir au moins un enfant qui est humain : ∃a_enfant.Humain
 - Exemple 2 ne pas avoir d'enfants qui sont humains (on peut toutefois en avoir qui ne soient pas humains) : $\neg \exists a_enfant.Humain$
- $(\forall R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \forall y, (x,y) \in R^{\mathcal{I}} \to y \in C^{\mathcal{I}} \}$, comme pour \mathcal{FL}^- Exemple 1 - avoir uniquement des enfants humains (mais ne pas nécessairement en avoir) : \forall a_enfant.Humain

Exemple 2 - ne avoir pas uniquement des enfants humains (ie avoir au moins un enfant qui ne soit pas humain) : $\neg \forall a_enfant.Humain$

3 Quelques extensions de \mathcal{ALC}

3.1 Rôles inverses \mathcal{I}

Grammaire : Si R est un rôle, R^{-1} est un rôle.

Sémantique : $(R^{-1})^{\mathcal{I}} = \{(x, y) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}, (y, x) \in R^{\mathcal{I}}\}$

Exemple - avoir uniquement des parents humains (mais ne pas nécessairement en avoir) :

 $\forall \texttt{a_enfant}^{-1}.\texttt{Humain}$

3.2 Restrictions de cardinalité \mathcal{N}

Grammaire : Si R est un rôle, $\geq n$ R et $\leq n$ R sont des concepts.

Note: $\geq n R$, resp. $\leq n R$, est la notation de http://www.cs.man.ac.uk/~ezolin/dl/. On peut aussi le noter $\exists^{\geq n}$, resp. $\exists^{\geq n} R$, comme dans le cours.

Sémantique:

Exemple 1 - avoir moins de 3 enfants (ie 3 ou -) : \leq 3 a_enfant

Exemple 2 - avoir plus de 2 enfants (ie 2 ou +) : ≥ 2 a_enfant

3.3 Restrictions de cardinalité qualifiées Q

Grammaire : Si C est un concept et R est un rôle, $\geq n$ R.C et $\leq n$ R.C sont des concepts. Sémantique :

$$\begin{array}{l} - (\geq n \ R)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | Card(\{y \in \Delta^{\mathcal{I}}, (x, y) \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\} \geq n\} \\ - (\leq n \ R)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | Card(\{y \in \Delta^{\mathcal{I}}, (x, y) \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\} \leq n\} \\ \end{array}$$

Exemple 1 - avoir plus de 2 filles (enfants qui sont des femmes) : ≥ 2 a_enfant.Femme Exemple 2 - avoir moins de 3 filles (mais on peut avoir aucun fils) : ≤ 3 a_enfant.Femme

3.4 Concepts nominaux \mathcal{O}

Grammaire : Si a_1, \ldots, a_n sont des instances de concept (ou constantes), $\{a_1, \ldots, a_n\}$ est un concept.

Sémantique :

$$-\{a_1,\ldots,a_n\}^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \exists i \in \{1,\ldots,n\}, x = a_i^{\mathcal{I}}\}$$

Exemple 1 - les parents de Robert (avoir Robert comme enfant) : a_enfant.{Robert}

Exemple 2 - les parents de Robert ou d'Alex (avoir Robert ou Alex comme enfant) : a_enfant.{Robert, Alex}

Exemple 3 - les parents de Robert et d'Alex (avoir Robert et Alex comme enfant) : $a_enfant.{Robert} \sqcap a_enfant.{Alex}$

3.5 Nomenclature

- \mathcal{ALCI} : \mathcal{ALC} avec rôles inverses
- $\mathcal{ALCN}: \mathcal{ALC}$ avec restrictions de cardinalité non qualifiées
- \mathcal{ALCIN} : \mathcal{ALC} avec rôles inverses et restrictions de cardinalité non qualifiées
- ALCQ: ALC avec restrictions de cardinalité qualifiées
- ALCIQ : ALC avec rôles inverses et restrictions de cardinalité qualifiées
- \mathcal{ALCO} : \mathcal{ALC} avec concepts nominaux
- \mathcal{ALCOI} : \mathcal{ALCO} avec rôles inverses
- ALCON : ALCO avec restrictions de cardinalité non qualifiées
- ALCOIN : ALCO avec rôles inverses et restrictions de cardinalité non qualifiées
- ALCOQ: ALCO avec restrictions de cardinalité qualifiées
- ALCOIQ: ALCO avec rôles inverses et restrictions de cardinalité qualifiées

4 Algorithme tableau pour \mathcal{ALC}

4.1 Règles de réécriture

Etant donné un ensemble de formules \mathcal{F} écrites en \mathcal{ALC} sous forme normale négative,

```
si \mathcal{F} contient ajouter à \mathcal{F}

a:C\sqcap D a:C et a:D

a:\forall R.C et \langle a,b\rangle:R b:C

a:\exists R.C \langle a,b\rangle:R et b:C, où b est un nouvel objet

a:\neg A et a:\neg A a:\bot

a:C\sqcup D a:C ou a:D
```

4.2 Principe de l'algorithme

L'algorithme consiste à développer l'arbre en appliquant récursivement les règles précédentes.

Une branche est dite fermée si elle contient une assertion du type $a: \bot$.

Une branche est dite complète si plus aucune règle ne s'appliqué.

L'algorithme s'applique si toutes les branches sont fermées ou si une branche est complète.

L'ensemble de formules \mathcal{F} est insatisfiable si et seulement si toutes les branches de l'arbre sont fermées.