EL9343 Homework 1

Due: Jan. 30th 5:00 p.m.

- 1. Prove the following properties of asymptotic notation:
 - (a) $n = \omega(\sqrt{n})$
 - (b) If $f(n) = \Omega(g(n))$, and $h(n) = \Theta(g(n))$, then $f(n) = \Omega(h(n))$
 - (c) f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$ (Transpose Symmetry property)
- 2. Indicate, for each pair of expressions (A,B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \geq 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be **in the form of the table** with "yes" or "no" written in each box.

	A	B	O	0	Ω	ω	Θ
a	$\lg^k n$	n^{ϵ}					
b	n^k	c^n					
c	\sqrt{n}	$n^{\sin n}$					
d	2^n	$2^{n/2}$					
e	$n^{\lg c}$	$c^{\lg n}$					
f	$\lg(n!)$	$\lg(n^n)$					

- 3. You have 5 algorithms, A1 took O(n) steps, A2 took $\Theta(n \log n)$ steps, and A3 took Ωn^2 steps, A4 took $o(n^3)$ steps, A5 took $\omega(n^{3/2})$ steps. You had been given the exact running time of each algorithm, but unfortunately you lost the record. In your messy desk you found the following formulas:
 - (a) $4(5^{3\log_5 n}) + 12n + 9527$
 - (b) $\sqrt[5]{3n!}$
 - (c) $\frac{1}{6}(5^{\log_{16} n})^2 + 4n + 17$
 - (d) $3n \log_3 n + (\log_2 n)^3$
 - (e) $\log_4 \log_2 n + 61$
 - (f) $2^{5 \log_4 n}$
 - (g) $(\log_2 n)^2 + \log_3 \log_3 n$

For each algorithm check all the possible formulas that could be associated with it in the following table. Your submitted answer should be **in the form of the table**.

	G 20 .							
		a	b	c	d	e	f	g
	A1							
	A2							
	A3							
ĺ	A4							
ĺ	A5							

- 4. We want to check if there is an element (called *majority element*) occurs more than $\frac{n}{2}$ times in an array containing n elements, assuming only equality checks are allowed.
 - (a) Algo. 1 is part of the required algorithm. What is the time complexity now?
 - (b) The algorithm shown is incomplete. Please show an example input where the output of the algorithm is not the majority element.
 - (c) Make the algorithm complete by adding a few more lines to substitute the underlined text. Your modification should **NOT** change the time complexity. Be sure to return things as indicated.

```
Algorithm 1 Find majority element in an array
```

```
Input: L[1,...,n] as input list containing n real numbers
Output: True or False. If true, also returning the majority element
1: c = 0, v = L[1]
2: for i = 1, 2, ..., n do
3:
      if c == 0 then
4:
        v = L[i]
      end if
5:
      if v == L[i] then
 6:
        c = c + 1
7:
      \mathbf{else}
8:
        c = c - 1
9:
      end if
11: end for
12:\ Future\ steps
```