4 | Dependence on the Basepoint

4.1 Proposition. Let X be a space, let $x_0 \in X$, and let $Y \subseteq X$ be the path connected component of x_0 . If $i \colon Y \to X$ is the inclusion map then the induced homomorphism

$$i_*: \pi_1(Y, x_0) \to \pi_1(X, x_0)$$

is an isomorphism of groups.

Proof. Exercise. □

4.2 Proposition. Let X be a space and let $x_0, x_1 \in X$. For any path $\tau: [0,1] \to X$ such that $\tau(0) = x_0$ and $\tau(1) = x_1$ the function

$$s_{\tau} \colon \pi_1(X, x_0) \to \pi_1(X, x_1)$$

given by $s_\tau([\omega]) = [\overline{\tau} * \omega * \tau]$ is an isomorphism of groups.

Proof. Exercise.

4.3 Corollary. If X is a space and $x_0, x_1 \in X$ are points than belong to the same path connected component of X then $\pi_1(X, x_0) \cong \pi_1(X, x_1)$.

4.6 Proposition. Let $x_0, x_1 \in X$ and let $f: X \to Y$ be a continuous function. Given a path τ in X such that $\tau(0) = x_0$ and $\tau(1) = x_1$ consider the isomorphisms $s_\tau \colon \pi_1(X, x_0) \to \pi_1(X, x_1)$ and $s_{f\tau} \colon \pi_1(Y, f(x_0)) \to \pi_1(Y, f(x_1))$ defined as in Proposition 4.2. Then following diagram commutes:

$$\pi_{1}(X, x_{0}) \xrightarrow{f_{*}} \pi_{1}(Y, f(x_{0}))$$

$$\downarrow s_{\tau} \qquad \qquad \simeq \qquad \qquad \simeq \qquad \downarrow s_{f\tau}$$

$$\pi_{1}(X, x_{1}) \xrightarrow{f_{*}} \pi_{1}(Y, f(x_{1}))$$

Proof. Exercise.

4.7 Corollary. Let X be a path connected space, $x_0, x_1 \in X$, and let $f: X \to Y$ be a continuous function. The homomorphism $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ is an isomorphism (or is the trivial homomorphism or is 1–1 or onto) if and only if the homomorphism $f_*: \pi_1(X, x_1) \to \pi_1(Y, f(x_1))$ has the same property.

Fundamental groupoid $\Pi_1(X)$ **4.10 Corollary.** The assignments $X \mapsto \Pi_1(X)$ and $f \mapsto f_*$ define a functor $\Pi_1 \colon \textbf{Top} \to \textbf{Cat}$ from the category of unpointed topological spaces to the category of small categories

Proof. Exercise.