CABINET: Content Relevance based Noise Reduction for Table Question Answering

ICLR 2024

*Sohan Patnaik^{1,2}, *Heril Changwal^{1,3+}, *Milan Aggarwal¹ Sumit Bhatia¹, Yaman Kumar Singla¹, Balaji Krishnamurthy¹

¹MDSR Lab, Adobe ²IIT Kharagpur ³IIT Roorkee

Part 1. Background

Table Question Answering

Query the table in natural language to extract desired information

Question: What was the reported mainline RPM for American Airlines in 2017?

Table 1.	Year Ended December 31.			
	2017	2016	2015	
Mainline				
Revenue passenger miles $(millions)^{(a)}$	201,351	199,014	199,467	
Available seat miles (millions) ^(b)	243,806	241,734	$239,\!375$	
Passenger load factor (percent) ^(c)	82.6	82.3	83.3	

- Typical transformer-based LLMs
 - Use standard language modeling objectives
 - Do not account for the table structure and underlying compositionality of data
- To close this gap between structured and unstructured data
 - Pre-training on table semantic parsing
 - Table-based Reasoning (In-context Learning)

Part 1. Background

Noise Reduction for Table QA

- Selects relevant tokens in flattened tabular data
 - Pruning score $s_t = \log(P(t|q,T))$ and keep the top-k tokens

Double transformer

Scaled dot product attention 3

Part 1. Background

DATER

- Extract sub-table by GPT-3 based in-context reasoning
- Decompose a complex question into step-by-step sub-questions

Hierarchical semantic parsing method

Evidence Decomposer

Part 2. Introduction

CABINET

- Content Relevance-based Noise Reduction for Table QA
 - Weigh relevant table parts higher without removing content explicitly
 - Parsing statement generator helps unsupervised relevance scorer

Part 2. Introduction

CABINET

- Content Relevance-based Noise Reduction for Table QA
 - Weigh relevant table parts higher without removing content explicitly
 - Parsing statement generator helps unsupervised relevance scorer

Part 3. Method

Unsupervised Relevance Scorer (URS)

Select top-k similar columns by cosine similarity

Input tokens

$$\mathcal{I}_{tokens} = (\mathcal{Q}_{tokens}; \mathcal{T}_{tokens}) \quad Q_{tokens} = \{q_1, q_2, \dots, q_{|Q|}\} \quad T = \{c_{ij} | 1 \leq i \leq N_{row}, 1 \leq j \leq N_{col}\}$$

Question + Flattened Table

$$T_{flattened} = [HEAD] : c_{11} \mid c_{12} \mid \cdots \mid c_{1N_{cot}} \mid [ROW]1 : c_{21} \mid \cdots \mid c_{2N_{cot}} \mid [ROW]2 : \cdots$$

Unsupervised Relevance Score

$$e_{1}^{URS}, e_{2}^{URS}, \cdots, e_{|\mathcal{I}_{tokens}|}^{URS} = Embedding_{URS}(\mathcal{I}_{tokens})$$

$$h_{1}, \cdots, h_{p}, \cdots, h_{|\mathcal{I}_{tokens}|} = TE_{URS}(e_{1}^{URS}, e_{2}^{URS}, \cdots, e_{|\mathcal{I}_{tokens}|}^{URS})$$

$$\underbrace{\text{Embedding}}_{\text{[e_{1}, e_{2}, \dots, e_{p}, \dots]}} \xrightarrow{\text{[e_{1}, e_{2}, \dots, e_{p}, \dots]}} \underbrace{\text{Unsupervised}}_{\text{Relevance}} \xrightarrow{\text{Scorer}} \underbrace{\text{Relevance}}_{\text{Scorer}} \xrightarrow{\text{Scorer}} \underbrace{\text{Scorer}}_{\text{Tokens}}$$

Normalization

$$H_p = \phi_{\mu}(h_p); \ \sigma_p = \phi_{\sigma}(h_p) \quad z_p = \mu_p + s * \sigma_p \quad \eta_p^{uns} = sigmoid(z_p)$$

Method

Unsupervised Relevance Scorer (URS)

T-SNE(T-Stochastic Neighbor Embedding)

Total Loss

$$\mathcal{L} = \mathcal{L}_{CE} + \lambda_{clu} * \mathcal{L}_{clu} + \lambda_{sep} * \mathcal{L}_{sep} + \lambda_{sparse} * \mathcal{L}_{sparse}$$

Separation loss

$$\mathcal{L}_{sep} = 2 - \left| \left| \mu_{relevant}^{clu} - \mu_{irrelevant}^{clu} \right| \right|^2$$

Clustering loss

$$\mathcal{L}_{sep} = 2 - \left| \left| \mu_{relevant}^{clu} - \mu_{irrelevant}^{clu} \right| \right|^2 \qquad \mathcal{L}_{clu} = \frac{1}{B} \sum_{b} KL(Z||Q) = \frac{1}{B} \sum_{b} \sum_{p} \sum_{j} z_{pj} log \frac{z_{pj}}{q_{pj}}$$

Clustering Latent Vectors

$$q_{pj} = \frac{(1 + ||h_p - \mu_j^{clu}||^2/\alpha)^{-\frac{\alpha+1}{2}}}{\sum_{j'} (1 + ||h_p - \mu_{j'}^{clu}||^2/\alpha)^{-\frac{\alpha+1}{2}}}$$

$$q_{pj} = \frac{(1 + ||h_p - \mu_j^{clu}||^2/\alpha)^{-\frac{\alpha+1}{2}}}{\sum_{i'} (1 + ||h_p - \mu_{i'}^{clu}||^2/\alpha)^{-\frac{\alpha+1}{2}}} \qquad \mu_0^{clu} = \mu_{relevant}^{clu} \qquad \mu_1^{clu} = \mu_{irrelevant}^{clu}$$

Target distribution
$$z_{pj} = \frac{q_{pj}^2/f_{pj}}{\sum_{j'} q_{pj'}^2/f_{pj'}}$$

Part 3. Method

Count of Table Tokens

Unsupervised Relevance Scorer (URS)

Ablation Study (Left: Without Loss / Right: With Loss)

Relevance score

0.5

Separation loss

$$\mathcal{L}_{sep} = 2 - \left| \left| \mu_{relevant}^{clu} - \mu_{irrelevant}^{clu} \right| \right|^2$$

Clustering loss

$$\mathcal{L}_{clu} = \frac{1}{B} \sum_{b} KL(Z||Q) = \frac{1}{B} \sum_{b} \sum_{p} \sum_{j} z_{pj} log \frac{z_{pj}}{q_{pj}}$$

Relevance score

0.5

Method

Unsupervised Relevance Scorer (URS)

Get relevance scores Lower for tokens in one cluster

Total Loss

$$\mathcal{L} = \mathcal{L}_{CE} + \lambda_{clu} * \mathcal{L}_{clu} + \lambda_{sep} * \mathcal{L}_{sep} + \lambda_{sparse} * \mathcal{L}_{sparse}$$

Sparsification Los

$$\mathcal{L}_{sparse} = \frac{1}{|\mathcal{T}_{tokens}|} \sum_{p} e^{-z_p^2}; \ |\mathcal{Q}_{tokens}| + 1 \le p \le |\mathcal{Q}_{tokens}| + |\mathcal{T}_{tokens}| \qquad z_p = \mu_p + s * \sigma_p$$

When providing input to QA LLM

$$e_{1}, e_{2}, \cdots, e_{|\mathcal{I}_{tokens}|} = Embedding_{QA}(\mathcal{I}_{tokens})$$

$$e_{p}^{'} = \eta_{p} \odot e_{p}; \quad |\mathcal{Q}_{tokens}| + 1 \leq p \leq |\mathcal{Q}_{tokens}| + |\mathcal{T}_{tokens}|$$

$$h_{1}^{'}, \cdots, h_{|\mathcal{I}_{tokens}|}^{'} = TE_{QA}(e_{1}^{'}, e_{2}^{'}, \cdots, e_{|\mathcal{I}_{tokens}|}^{'})$$

$$a_{1}, a_{2}, \cdots, a_{N} = TD_{QA}(h_{1}^{'}, \cdots, h_{|\mathcal{I}_{tokens}|}^{'})$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Part 3. Method

Unsupervised Relevance Scorer (URS)

Ablation Study (Left: Without Loss / Right: With Loss)

Clustering loss

$$\mathcal{L}_{clu} = \frac{1}{B} \sum_{b} KL(Z||Q) = \frac{1}{B} \sum_{b} \sum_{p} \sum_{j} z_{pj} log \frac{z_{pj}}{q_{pj}}$$

$$z_p = \mu_p + s * \sigma_p$$

Sparsification Loss

$$\mathcal{L}_{sparse} = \frac{1}{|\mathcal{T}_{tokens}|} \sum_{p} e^{-z_p^2};$$

$$|\mathcal{Q}_{tokens}| + 1 \le p \le |\mathcal{Q}_{tokens}| + |\mathcal{T}_{tokens}|$$

$$z_p = \mu_p + s * \sigma_p$$

Part 3. Method

Parsing Statement Generator (PSG)

- Flan T5-xl is pre-trained to WikiTableQuestions (WikiTQ)
 - The most complex QA dataset containing a variety of samples
 - We manually annotate parsing statement
- Pre-trained PSG model is fine-tuend to datasets of each experiments

Cluster	Question	Answer	Parsing Statement
1	how many episodes had a nightly rank of 11?	3	to find number of episodes with nightly rank of 11, we need to look at the column named "nightly rank" and count number of times the value 11 occurs.

Part 3. Method

Cell Highlighting

- Flan T5-xl is fine-tuned to ToTTo
 - Given the parsing statement, predictor generates highlighted cells
- TOTTO
 - Open-domain Controlled generation task
 - Given a Wikipedia table and a set of highlighted cells
 - To produce a single sentence description

$$c_1^{highlighted} \mid\mid \cdots \mid\mid c_M^{highlighted} = Cell_Highlighter_{LLM}(\mathcal{T}, text_{parse})$$

Implementation Details

- Employ OmniTab (Jiang et al., 2022) backbone comprising of BART-Large
- \circ Hidden dimension of TE_{URS} is 1024
- Optimize with cosine annealing through AdamW

Clustering loss

Dataset Statistics

Dataset	# Train samples	# Validation samples	# Test samples
WikiTQ	11321	2831	4344
WikiSQL	56355	8421	15878
FeTaQA	7326	1001	2003

OmniTab (Jiang et al., 2022)

- Employ TAPEX (Liu et al., 2021) backbone comprising of BART-Large
- Pretrain with natural data, synthetic data
- Finetune with limited annotated questions

Title: List of 2002 box office number-one films in the United States

#	Date	Film	Gross
1	January 6, 2002	The Lord of the Rings:	\$23,006,447
1	January 0, 2002	The Fellowship of the Ring	\$23,000,447
5	February 3, 2002	Black Hawk Down	\$11,112,555
6	February 10, 2002	Collateral Damage	\$15,058,432
18	May 4, 2002	Spider-Man	\$114,844,116
20	May 19, 2002	Star Wars Episode II:	80,027,814
20	Way 19, 2002	Attack of the Clones	00,027,014

Input Output

rain	Natural	Spider Man_ with its \$114.8 million mark established a new opening weekend record. [Table]	Spider-Man, \$114.8 million
Preti	Natural Synthetic	SELECT film WHERE gross > (SELECT gross WHERE film = 'Star Wars') Which film has grossed more than Star Wars? [Table 1]	s') able]Spider-Man
		What was the previous film to air before Collateral Damage? [Table]	ack Hawk Down

Experiment

- CABINET achieves SoTA performance
- Metric: Sacre-BLEU (S-BLEU)

Generation Task on FeTaQA

Method	S-BLEU	# params
Fine-tuning Table-specific LLMs		
PeaQA (Pal et al., 2022)	33.5	406 M
TAPEX (Liu et al., 2022)	34.7	406 M
OmniTab (Jiang et al., 2022)	34.9	406 M
Fine-tuning text-based LLMs		
T5-small (Nan et al., 2022)	21.6	60 M
T5-base (Nan et al., 2022)	28.1	222 M
T5-large (Nan et al., 2022)	30.5	738 M
T5-3b (Xie et al., 2022)	33.4	2.9 B
FlanT5-xl	36.2	2.9 B
Few/zero shot Prompting of LLMs		
Codex-COT (Chen, 2023)	27.0	175 B
Codex (Ye et al., 2023)	27.9	175 B
DATER (Ye et al., 2023)	30.9	175 B
CABINET (Ours)	40.5	560 M

Extraction Task on WikiTQ

Method	Acc.	# params
Fine-tuning Table-specific LLMs		
TAPAS (Herzig et al., 2020)	86.4	345 M
GraPPa (Yu et al., 2021)	84.7	355 M
DoT (Krichene et al., 2021)	85.5	299 M
TAPEX (Liu et al., 2022)	86.4	406 M
OmniTab (Jiang et al., 2022)	87.9	406 M
UTP (Chen et al., 2023b)	88.1	345 M
ReasTAP (Zhao et al., 2022)	88.8	406 M
Fine-tuning text-based LLMs		
T5-3b (Xie et al., 2022)	85.9	2.9 B
FlanT5-xl	87.8	2.9 B
Few/zero shot Prompting of LLMs		
ChatGPT (Jiang et al., 2023)	51.6	175 B
StructGPT (Jiang et al., 2023)	54.4	175 B
CABINET (Ours)	89.5	560 M

Robustness to noise and irrelevant information

- Perform four types of perturbations
 - Row Addition (RA), Row Permutation (RP)
 - Column Permutation (CP)
 - Cell Replacement (CR)

Extraction Task on WikiTQ

ethod	Acc.	# params	Fine-tuning text-based LLMs	
Fine-tuning Table-specific LLMs			T5-3b (Xie et al., 2022))	49.3
TAPAS (Herzig et al., 2020)	48.8	345 M	FlanT5-xl (Chung et al., 2022a)	64.4
TaBERT (Yin et al., 2020)	52.3	345 M	T / 1 / D / / 07775	
MATE (Eisenschlos et al., 2021)	51.5	340 M	Few/zero shot Prompting of LLMs	
GraPPa (Yu et al., 2021)	52.7	355 M	Codex (Ye et al., 2023)	47.6
DoT (Krichene et al., 2021)	54.0	299 M	Codex-COT (Chen, 2023)	48.8
TableFormer (Yang et al., 2022)	52.6	345 M	Binder (Cheng et al., 2023)	64.6
ΓΑΡΕΧ (Liu et al., 2022)	55.5	405 M	LEVER (Ni et al., 2023)	65.8
ReasTAP (Zhao et al., 2022)	58.6	406 M	DATER (Ye et al., 2023)	65.9
TaCube (Zhou et al., 2022)	60.8	406 M	ChatGPT (Jiang et al., 2023)	43.3
OmniTab (Jiang et al., 2022)	62.7	406 M	StructGPT (Jiang et al., 2023)	48.4

CABINET (Ours)

560 M

Robustness to noise and irrelevant information

- Perform four types of perturbations
 - Row Addition (RA), Row Permutation (RP)
 - Column Permutation (CP)
 - Cell Replacement (CR)

Relative performance drop with perturbations

(a) WikiTQ

(b) FeTaQA

(c) WikiSQL

Impact of Table Size on Performance

- Entire information is usually not required to answer
- Distracting information causes performance drop

(b) FeTaQA

Experiment

Effect of Clustering Table Tokens

$\overline{\mathcal{L}_{clu}}$	\mathcal{L}_{sep}	\mathcal{L}_{sparse}	WikiTQ	FeTaQA	WikiSQL
×	X	Х	60.8	35.1	86.2
X	X	✓	60.9	35.1	86.3
✓	X	×	62.7	35.0	88.9
✓	X	✓	61.0	35.0	89.5
1	✓	X	61.0	35.1	89.1
✓	✓	✓	65.6	35.8	89.3

$\overline{\lambda_{uns}}$	λ_{cell}	WikiTQ	FeTaQA,	WikiSQL
1	0	65.6	35.8	89.2
0.7	0.3	69.1	40.5	89.2
0.5	0.5	68.6	40.5	88.9
0.3	0.7	67.0	38.9	88.8
0	1	37.6	24.2	34.1

Total Loss

$$\mathcal{L} = \mathcal{L}_{CE} + \lambda_{clu} * \mathcal{L}_{clu} + \lambda_{sep} * \mathcal{L}_{sep} + \lambda_{sparse} * \mathcal{L}_{sparse}$$

Separation loss

$$\mathcal{L}_{sep} = 2 - \left| \left| \mu_{relevant}^{clu} - \mu_{irrelevant}^{clu} \right| \right|^2$$

Clustering loss

$$\mathcal{L}_{sep} = 2 - \left| \left| \mu_{relevant}^{clu} - \mu_{irrelevant}^{clu} \right| \right|^2 \qquad \mathcal{L}_{clu} = \frac{1}{B} \sum_{b} KL(Z||Q) = \frac{1}{B} \sum_{b} \sum_{p} \sum_{j} z_{pj} log \frac{z_{pj}}{q_{pj}}$$

Sparsification Los

$$\mathcal{L}_{sparse} = \frac{1}{|\mathcal{T}_{tokens}|} \sum_{p} e^{-z_p^2}; |\mathcal{Q}_{tokens}| + 1 \le p \le |\mathcal{Q}_{tokens}| + |\mathcal{T}_{tokens}| \qquad z_p = \mu_p + s * \sigma_p$$

Ablation Study

- Unsupervised Relevance Scorer (URS) VS BERT based similarity metric
- With or without highlighted cells

Method	WikiTQ	FeTaQA	WikiSQL
OmniTab	63.1	35.9	85.8
CABINET w parsing statement as input to QA model instead of highlighting corresponding cells	66.2	34.9	85.9
CABINET with BERT based relevance scoring (as discussed above) without cell highlighter	61.8	34.9	83.7
CABINET with BERT based relevance scoring (as discussed above) with cell highlighter	64.5	36.7	85.1
CABINET with question as input to cell highlighter	63.7	34.4	85.7
CABINET with URS only and without cell highlighter	65.6	35.8	89.3
CABINET	69.1	40.5	89.5

Part 5. Conclusion

• CABINET

- Vulnerability to noise, distracting information leads to lower performance
- Weigh the table content based on its relevance to the question
- Outperforms with much larger GPT-3 scale models based in context learning

Cosine annealing learning rate schedule

- · Learning rate changes between cosine maximum and minimum
- Deviate from local minimum
- Improve generalization of model performance

Free-form Table Question Answering

- Both questions and answers is natural and grounded in the context of the entire table
- Retrieving and reasoning over relations of multiple entities

Page Title: Hawaii demographics - ancestry							
Racial composition	1970		2000	2010			
White	38.80%	33.40%	24.30%	24.70%			
Asian			41.60%	38.60%			
Native Hawaiian and other Pacific Islander	57.70%	61.80%	9.40%	10.00%			
Black	1.00%	2.50%	1.80%	1.60%			
Native American and Alaskan 0.10% native		0.50% 0.30%		0.30%			
Q: What ethnic groups are the majorities back in 1970?		of 38.8% wh	aii's population r nite and 57.7% as and other pacific	sian, native			

Dataset	Answer Format	Avg # Words in Answer
SQuAD (Rajpurkar et al., 2016)	Text-span	3.2
HotpotQA (Yang et al., 2018)	Short-form entity	2.2
NarrativeQA (Kočiský et al., 2018)	Free-form text	4.7
ELI5 (Fan et al., 2019)	Free-form text	130.6
WikiTableQuestions (Pasupat and Liang, 2015)	Short-form entity	1.7
SequenceQA (Saha et al., 2018)	Short-form entity	1.2
HybridQA (Chen et al., 2020e)	Short-form entity	2.1
FeTaQA	Free-form text	18.9

WikiTableQuestion (WikiTQ)

- Answer a question using an HTML table as the knowledge source
- For each question, we put one of the 36 generic prompts

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

```
x<sub>1</sub>: "Greece held its last Summer Olympics in which year?"
y<sub>1</sub>: {2004}
x<sub>2</sub>: "In which city's the first time with at least 20 nations?"
y<sub>2</sub>: {Paris}
x<sub>3</sub>: "Which years have the most participating countries?"
y<sub>3</sub>: {2008, 2012}
x<sub>4</sub>: "How many events were in Athens, Greece?"
y<sub>4</sub>: {2}
x<sub>5</sub>: "How many more participants were there in 1900 than in the first year?"
y<sub>5</sub>: {10}
```

WikiSQL

- Inputs consist of a table and a question
- Outputs consist of a SQL query and the result from execution

Table: CFLDraft

Pick #	CFL Team	Player	Position	College
27	Hamilton Tiger-Cats	Connor Healy	DB	Wilfrid Laurier
28	Calgary Stampeders	Anthony Forgone	OL	York
29	Ottawa Renegades	L.P. Ladouceur	DT	California
30	Toronto Argonauts	Frank Hoffman	DL	York

Question:

How many CFL teams are from York College?

SQL:

SELECT COUNT CFL Team FROM
CFLDraft WHERE College = "York"

Result:

