第七章练习题答案(部分)

一 填空题

1
$$\alpha = 0$$
. 2 $(\sigma^2 + \sigma)(x^2 + x) = 2x + 3$. 3 $A^2 + AB + B^2$. 4 $C^{-1}X$, $C^{-1}AX$, $C^{-1}AC$.

5
$$a^{-1}$$
. 9 $|g(A)| = g(\lambda_1)g(\lambda_2)g(\lambda_3)$. $g(\lambda_1), g(\lambda_2), g(\lambda_3)$. 10 $P^{-1}X$. 13 $-5, -5, 0$.

19
$$a \neq b$$
. 20 $r(AB-A) = r(A(B-E)) = r(B-E) = r(A-E)$.

二 计算题(最终结果自己完成)

$$1 \ (1) \quad \sigma \varepsilon_1 = \sigma(1,0,0) = (2,0,1) = (\varepsilon_1,\varepsilon_2,\varepsilon_3) \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \\ \sigma \varepsilon_2 = (\varepsilon_1,\varepsilon_2,\varepsilon_3) \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \\ \sigma \varepsilon_3 = (\varepsilon_1,\varepsilon_2,\varepsilon_3) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

则
$$\sigma(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}_{=A}$$
 ,

(2)
$$(\eta_1, \eta_2, \eta_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}_{=C}$$
 ,则 σ 在基 η_1, η_2, η_3 下的矩阵为 $C^{-1}AC$

$$(3) \quad \alpha = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \sigma \alpha = \sigma(\varepsilon_1, \varepsilon_2, \varepsilon_3) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = (\varepsilon_1, \varepsilon_2, \varepsilon_3) A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},$$

$$\sigma\alpha = (\varepsilon_1, \varepsilon_2, \varepsilon_3) A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = (\eta_1, \eta_2, \eta_3) C^{-1} A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

$$2 \quad A(\alpha_1,\alpha_2,\alpha_3) = (\alpha_1,\alpha_2,\alpha_3) \begin{pmatrix} 4 & -6 & 0 \\ -4 & -1 & 0 \\ 3 & 1 & 0 \end{pmatrix}_{=_B}, (\alpha_1,\alpha_2,\alpha_3)$$
 是可逆阵, $A 与 B$ 相似,特征值相同,求 B 的对

应特征值 λ 的特征向量 $X=(k_1,k_2,k_3)^T$,则 $k_1\alpha_1+k_2\alpha_2+k_3\alpha_3$ 就是A的对应特征值 λ 的特征向量.

3 取基
$$\varepsilon_1 = (1,0,0), \varepsilon_2 = (0,1,0), \varepsilon_3 = (0,0,1), 求 \sigma(\varepsilon_1,\varepsilon_2,\varepsilon_3) = (\varepsilon_1,\varepsilon_2,\varepsilon_3) \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix}_{=A}$$

(1)
$$A$$
 初等行变换化为阶梯形: $\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 秩为 2 ,前两列是极大无关组,则 σ 的值域

的维数为2,一组基为 $\sigma\varepsilon_1,\sigma\varepsilon_2$.

(2) 若向量 $\alpha \in \sigma^{-1}(0)$, 设 $\alpha = (\varepsilon_1, \varepsilon_2, \varepsilon_3)X$, 则 $\sigma \alpha = \sigma(\varepsilon_1, \varepsilon_2, \varepsilon_3)X = (\varepsilon_1, \varepsilon_2, \varepsilon_3)AX = 0$,即 AX = 0,故核中的向量在 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的坐标是线性方程组 AX = 0的解,求 AX = 0的基础解系 $X_1 = (3, -1, 1)^T$,则

$$\alpha = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$$
 $\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$ 就是核的一组基.

- 4(1) σ 在基 $1, x, x^2$ 的矩阵为A,证明 σ 可逆,只要证明A 可逆. σ^{-1} 在基 $1, x, x^2$ 下的矩阵为 A^{-1} .
- (2) 判断相似对角化是计算 A 的特征值和特征向量,每个特征值的代数重数和几何重数是否相等.

$$5 \ A = \begin{pmatrix} 0 & a_1 & 0 & \cdots & 0 \\ 0 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$
可相似对角化当且仅当每个特征值的代数重数和几何重数相等.

特征值为0(n重),故r(0E-A)=r(A)=n-n=0, A 可相似对角化当且仅当 $a_1=\cdots=a_{n-1}=0$.

6 $|\lambda E - A| = (\lambda - 6)^2 (\lambda + 2)$,则特征值 6 对应的线性无关的特征向量有 2 个,即 r(6E - A) = 1,求 a.

三 证明题:

1 证明: (1) 设 $\sigma \xi = \lambda \xi$,则 $\sigma^2 \xi = id\xi$,即 $\lambda^2 \xi = \xi$,从而 $\lambda = 1$ 或 $\lambda = -1$.

(2) 任取 $\alpha \in V_1 \cap V_{-1}$,则 $\sigma \alpha = \alpha$ 且 $\sigma \alpha = -\alpha$,故 $\alpha = 0$,得 $V_1 \cap V_{-1} = \{0\}$,即 $V_1 + V_{-1}$ 是直和.

任给 $\alpha \in V$,假设 $\alpha = \alpha_1 + \alpha_2$,其中 $\alpha_1 \in V_1$, $\alpha_2 \in V_2$,则 $\sigma \alpha = \sigma \alpha_1 + \sigma \alpha_2 = \alpha_1 - \alpha_2$,

求得
$$\alpha_1 = \frac{1}{2}(\alpha + \sigma\alpha), \alpha_2 = \frac{1}{2}(\alpha - \sigma\alpha),$$
即 $\alpha = \frac{1}{2}(\alpha + \sigma\alpha) + \frac{1}{2}(\alpha - \sigma\alpha),$ 从而 $V = V_1 \oplus V_{-1}$.

(3) 由(2), $V=V_1\oplus V_{-1}$,故 V_1 的一组基和 V_{-1} 的一组基合起来是V的一组基,设 V_1 的基 $\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_m$,

$$V_{-1}$$
的基 $\varepsilon_{m+1}, \varepsilon_{m+2}, \cdots, \varepsilon_n$,其中 $n = \dim V$,而 $\sigma \varepsilon_i = \begin{cases} \varepsilon_i, & i = 1, 2, \cdots, m \\ -\varepsilon_i, i = m+1, m+2, \cdots, n \end{cases}$,计算可得

3 证明: 任给 n 维线性空间 V ,任取一组基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$,存在线性变换 σ 使得在 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的矩阵为

$$N$$
 , $\mathbb{P} \sigma(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$, $\mathbb{P} \sigma(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$

 $\sigma(\varepsilon_{\scriptscriptstyle 1})=0, \sigma(\varepsilon_{\scriptscriptstyle 2})=\varepsilon_{\scriptscriptstyle 1}, \sigma(\varepsilon_{\scriptscriptstyle 3})=\varepsilon_{\scriptscriptstyle 2}, \cdots, \sigma(\varepsilon_{\scriptscriptstyle n})=\varepsilon_{\scriptscriptstyle n-1}, \ \text{m}\ \varepsilon_{\scriptscriptstyle n}, \varepsilon_{\scriptscriptstyle n-1}, \cdots, \varepsilon_{\scriptscriptstyle 2}, \varepsilon_{\scriptscriptstyle 1}$ 也是线性空间的一组基,

$$\sigma(\varepsilon_n, \varepsilon_{n-1}, \dots, \varepsilon_2, \varepsilon_1) = (\varepsilon_{n-1}, \varepsilon_{n-2}, \dots, \varepsilon_1, 0) = (\varepsilon_n, \dots, \varepsilon_2, \varepsilon_1) \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{pmatrix}, \text{ 即线性变换 } \sigma$$
 在

 $\mathcal{E}_n, \mathcal{E}_{n-1}, \cdots, \mathcal{E}_2, \mathcal{E}_1$ 下的矩阵为 N^T ,故 $N 与 N^T$ 是线性变换 σ 在不同基下的矩阵,相似.

4.
$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} C \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = A, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} C \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = B$$

6 证明: 设A的n个特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$,并设 $\sigma \xi_i = \lambda_i \xi_i, i = 1, 2, \cdots, n$,特征值互不相同,则对应的特征子空间 V_{λ_i} 都是一维子空间,且 ξ_i 就是 V_{λ_i} 的一组基.

⇒ 假若 AB = BA,任给 ξ_i $AB\xi_i = BA\xi_i = B\lambda_i \xi_i = \lambda_i B\xi_i$,故 $B\xi_i \in V_{\lambda_i}$ (若 $B\xi_i = 0$, 显然,若 $B\xi_i \neq 0$, 则 $AB\xi_i = \lambda_i B\xi_i$ 表明 $B\xi_i$ 是 A 的属于 λ_i 的一个特征向量), V_{λ_i} 是一维的, ξ_i 是基,故存在数 μ_i ,使得 $B\xi_i = \mu_i \xi_i$,即 A 的特征向量是 B 的特征向量.

$$P = (\xi_1, \xi_2, \cdots, \xi_n)$$
,则 $AP = P \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$, $BP = P \begin{pmatrix} \mu_1 & & & \\ & \mu_2 & & \\ & & \ddots & \\ & & & \mu_n \end{pmatrix}$,故

$$AB = P \begin{pmatrix} \lambda_1 \mu_1 & & & \\ & \lambda_2 \mu_2 & & \\ & & \ddots & \\ & & & \lambda_n \mu_n \end{pmatrix} P^{-1} = BA$$

7 证明: A + B + AB = 0, (E + A)(E + B) = E, (E + B)(E + A) = E, A + B + BA = 0, A + B + BA =

(1) 假设 $B\alpha = \lambda \alpha$,则 $(A + B + AB)\alpha = A\alpha + B\alpha + AB\alpha = A\alpha + \lambda \alpha + \lambda A\alpha = 0$,即

$$(\lambda+1)A\alpha = -\lambda\alpha$$
,其中 $\lambda \neq -1$ (若 $\lambda = -1$,则 $(\lambda+1)A\alpha = -\lambda\alpha$ 即为 $0 = \alpha$),故 $A\alpha = -\frac{\lambda}{\lambda+1}\alpha$,

B 的特征向量是A 的特征向量.同理应用A+B+BA=0,可得A 的特征向量是B 的特征向量.

- (2) 由(1), A = B 的特征向量是公共的, A 相似于对角阵当且仅当 A 有 n 个线性无关的特征向量当且仅当 B 有 n 个线性无关的特征向量当且仅当 B 相似于对角阵.
- (3) 由 (E+B)(E+A) = E,可知 E+B, E+A 都可逆. A+B+AB = 0 可得 A(E+B) = -B, 秩相等.
- 8. V 是 n 维线性空间, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k$ 是线性变换 σ 的特征子空间 V_{λ_0} 的一组基,将它扩充为 V 的一组基 $\varepsilon_1, \dots, \varepsilon_k, \varepsilon_{k+1}, \dots, \varepsilon_n$,
- (1) 求 σ 在V的此组基下的矩阵.
- (2) 证明 $\dim V_{\lambda_0} \leq \lambda_0$ 的代数重数(即 λ_0 作为特征多项式的根的重数).

$$(1) \quad \sigma\varepsilon_{i} = \begin{cases} \lambda_{0}\varepsilon_{i}, i = 1, 2, \cdots, k \\ \sigma\varepsilon_{i}, i = k + 1, k + 2, \cdots, n \end{cases}, 从而 \sigma 在 \varepsilon_{1}, \cdots, \varepsilon_{k}, \varepsilon_{k+1}, \cdots, \varepsilon_{n}$$
 下的矩阵为 $B = \begin{pmatrix} \lambda_{0}E_{k} & B_{1} \\ 0 & B_{2} \end{pmatrix}.$

(2) λ_0 是 σ 的一个特征值,设 λ_0 的代数重数为s,则 σ 的特征多项式 $f(\lambda) = (\lambda - \lambda_0)^s g(\lambda)$,其中

$$(\lambda - \lambda_0) \nmid g(\lambda)$$
,由(1), σ 在 $\varepsilon_1, \dots, \varepsilon_k, \varepsilon_{k+1}, \dots, \varepsilon_n$ 下的矩阵为 $B = \begin{pmatrix} \lambda_0 E_k & B_1 \\ 0 & B_2 \end{pmatrix}$,由 B 求 σ 的特征多

项式
$$\left|\lambda E - B\right| = \begin{vmatrix} (\lambda - \lambda_0)E_k & -B_1 \\ 0 & \lambda E - B_2 \end{vmatrix} = (\lambda - \lambda_0)^k \left|\lambda E - B_2\right|$$
,这两个特征多项式是相等的,故

$$(\lambda - \lambda_0)^k |\lambda E - B_2| = (\lambda - \lambda_0)^s g(\lambda)$$
,比较两边 $\lambda - \lambda_0$ 的方幂次数,可知 $k \leq s$.