CS 536: Decision Trees

1. For a given value of k, m, (number of features, number of data points), write a function to generate a training data set based on the above scheme.

```
def get_data(k, m, save = False):
    # input args:
    # k: number of features
    # m: number of data points
    X = np.zeros((m, k))
    Y = np.zeros((m, 1))
    w = np.zeros(k)
    denom = 0.9 * 10 * (1 - (0.9 ** (k - 1)))
    for j in range(m):
        s = 0
        if np.random.rand() >= 0.5:
            X[j][0] = 1
        for i in range(1, k):
            if np.random.rand() >= 0.75:
                X[j][i] = X[j][i - 1]
            else:
                X[j][i] = 1 - X[j][i - 1]
            w[i] = (0.9 ** i) / denom
            s += w[i] * X[j][i]
        if s >= 0.5:
            Y[j] = X[j][0]
        else:
            Y[j] = 1 - X[j][0]
    if save == True:
        save_arr(np.concatenate((X, Y), axis = 1))
    return X, Y
```

2. Given a data set, write a function to fit a decision tree to that data based on splitting the variables by maximizing the information gain. Additionally, return the training error of this tree on the data set, $err_{train}(\hat{f})$. It may be useful to have a function that takes a data set and a variable, and returns the data set partitioned based on the values of that variable.

```
import numpy as np
eps = 1e-5

class Node:
    x_id = None
    y = None
```

```
equals_zero = None
    equals_one = None
    def __init__(self, x_id):
        self.x_id = x_id
class DecisionTree:
    root = None
    def __init__(self):
        self.root = Node(None)
def entropy(P, P_y0):
    if P < eps or P > 1 - eps or P_y0 < eps or P_y0 > 1 - eps:
        return 0
    return -P * np.log(P) - P_y0 * np.log(P_y0)
def IC(X, Y):
    m = X.shape[0]
    x_1 = np.count_nonzero(X)
    if x_1 == 0 or x_1 == m:
        return 0
    c_{00} = 0
    c_01 = 0
    c_10 = 0
    c_{11} = 0
    for x, y in zip(X, Y):
        if x < eps:
            if y < eps:
                c_00 += 1
            else:
                c_01 += 1
        else:
            if y < eps:
                c_{10} += 1
            else:
                c_{11} += 1
    P_x = x_1 / m
    P_{00} = c_{00} / (c_{00} + c_{01})
    P_01 = c_01 / (c_00 + c_01)
    P_10 = c_10 / (c_10 + c_11)
    P_{11} = c_{11} / (c_{10} + c_{11})
    return P_x * entropy(P_11, P_10) + (1 - P_x) * entropy(P_01, P_00)
def fit_decision_tree(X, Y, node, p_vis):
```

```
m, k = X.shape
P_y = np.count_nonzero(Y) / m
H_y = entropy(P_y, 1 - P_y)
maxx = 0
max_id = -1
vis = np.copy(p_vis)
for i in range(k):
    if vis[i] == 1:
        continue
    IG = H_y - IC(X[:, i], Y)
    if IG > maxx:
        maxx = IG
        max_id = i
if max_id != -1:
    vis[max_id] = 1
    new_X_0 = np.copy(X)
    new_X_1 = np.copy(X)
    new_Y_0 = np.copy(Y)
    new_Y_1 = np.copy(Y)
    for i in range(m - 1, -1, -1):
        if new_X_0[i][max_id] > 1 - eps:
            new_X_0 = np.delete(new_X_0, i, axis = 0)
            new_Y_0 = np.delete(new_Y_0, i, axis = 0)
        if new_X_1[i][max_id] < eps:</pre>
            new_X_1 = np.delete(new_X_1, i, axis = 0)
            new_Y_1 = np.delete(new_Y_1, i, axis = 0)
    node.x_id = max_id
    if new_X_0.shape[0] > 0:
        node.equals_zero = Node(None)
        fit_decision_tree(new_X_0, new_Y_0, node.equals_zero, vis)
    if new_X_1.shape[0] > 0:
        node.equals_one = Node(None)
        fit_decision_tree(new_X_1, new_Y_1, node.equals_one, vis)
else:
    if P_y >= 0.5:
        node.y = 1
    else:
        node.y = 0
```

3. For k = 4 and m = 30, generate data and fit a decision tree to it. Does the ordering of the variables in the decision tree make sense, based on the function that defines Y? Why or why not? Draw the tree.

Solution:

The generated data looks like this:

$X = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$	Y = 0		
$\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$	1		
$\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$	0		
$\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$	Ő		
$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$	1		
$\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$	0		
$[0 \ 1 \ 1 \ 0]$	0		
$[0 \ 1 \ 0 \ 0]$	1		
$[0 \ 0 \ 1 \ 0]$	1		
$[0 \ 0 \ 1 \ 0]$	1		
$\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$	0		
$[0 \ 1 \ 1 \ 0]$	0		
$\begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}$	1		
[1 0 1 1]	1		
[1 0 0 1]	0		
[0 1 0 1]	0		
[0 1 0 0]	1		
[0 1 0 1]	0		
$[0 \ 0 \ 0 \ 1]$	1		
$\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$	0		
$\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$	0		
$\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$	0		
$\begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}$	1		
$\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$	0		
$\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$	0		
$\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$	0		
$\begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}$	1		
$\begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}$	1		
$\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$	0		
[0 1 0 1]	0		

I think the ordering of variables of this decision tree kind of makes sense. Because the generation of X_i heavily depends on the previous value X_{i-1} , it's intuitive to split the data in the order of X_0, X_1, X_2, X_3 . Note that if the data point have more 1s, the sum of $w_2X_2 + w_3X_3 + \cdots + w_kX_k$ would be relatively large. Thus, the leaves nodes with a path of more 1s are likely to have the different value than X_0 , and vice versa.

4. Write a function that takes a decision tree and estimates its typical error on this data $err(\hat{f})$; i.e., generate a lot of data according to the above scheme, and find the average error rate of this tree over that data.

```
def predict(node, x):
    if node == None:
        return 1 # No data captured
    if node.y != None:
        return node.y
    if x[node.x_id] < eps:
        return predict(node.equals_zero, x)
    else:
        return predict(node.equals_one, x)

def get_err(tree, X, Y):
    s = 0
    m, k = X.shape
    for i in range(m):
        prediction = predict(tree.root, X[i])</pre>
```

```
if prediction != Y[i]:
    s += 1
print('Training error is: %f' % (1.0 * s / m))
return 1.0 * s / m
```

I generated data of m = 10,000 and used the decision tree I got in the previous question to predict Y and get the error. I did this for 50 times and then got the average error: 0.046790.

5. For k = 10, estimate the value of $|err_{train}(\hat{f}) - err(\hat{f})|$ for a given m by repeatedly generating data sets, fitting trees to those data sets, and estimating the true and training error. Do this for multiple m, and graph this difference as a function of m. What can you say about the marginal value of additional training data?

Figure 1: Differnt errors versus different ms

I did this experiment for m = 30, 100, 300, 1000, 3000, 10000. For every m, I generated 10 different training sets and fitted decision trees on these training sets, tested these decision trees on 10 different test sets of m = 10,000 and got the average errors. (100 tests for every m)

The average errors are: 0.396951, 0.262908, 0.133341, 0.051315, 0.016886, 0.003579, respectively.

Note that $2^k = 2^{10} = 1024$, the larger the m is, the more likely we have got all possible combinations of X.

From the 5 we can see, the line tend to level out after $m \ge 3000$, thus I guess the marginal value of m is around 3000.

6. Design an alternative metric for splitting the data, not based on information content / information gain. Repeat the computation from (5) above for your metric, and compare the performance of your trees vs the ID3 trees.

Solution:

I designed a pretty greedy yet simple metric: find the X that agrees on Y the most, i.e.

$$\arg\max_{i} \max(\sum_{j=1}^{m} \mathbb{1}X_{i}^{j} = Y^{j}, \sum_{j=1}^{m} \mathbb{1}X_{i}^{j} \neq Y^{j})$$

The results are actually pretty good as 6 shows.

Figure 2: Comparison