Permit Number 80892

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No.	Source Name (2)	Air Contaminant Name (3)	Emission Rates (6)	
(1)			lbs/hour	TPY (4)
WBLR	Wood-Fired CHP Boiler (211 MMBtu/hr - approximately 3.8 MW)	NO _X	25.32	85.00
		со	84.40	125.00
		SO ₂	585.00	189.00
		VOC	4.22	14.50
		РМ	10.55	36.00
		PM (SS)	16.55	-
		PM ₁₀	10.55	36.00
		PM ₁₀ (SS)	16.6	-
		PM _{2.5}	10.55	36.00
		PM _{2.5} (SS)	16.6	-
		H ₂ SO ₄	26.80	5.80
		NH ₃	1.54	4.00
		HCI	12.13	9.02
		Pb	0.02	0.04
NG-FUG	Natural Gas Fugitives (5)	VOC	<0.01	0.02
LVST	Steam Turbine 1 Lube Oil Vent	voc	<0.01	0.02
T-ACID	Acid Storage Tank	H ₂ SO ₄	0.01	0.01
T-NAOH	Caustic Storage Tank	NaOH	0.01	0.01
T-NH₃	Ammonia Handling Piping Components	NH₃	0.03	0.13

Project Number: 265048

TRK-FUG and TRK-BAG	Truck Receiving Hopper Transfer	РМ	0.01	0.01
	Baghouse Stack	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
TR-1	Wood From Receiving to	РМ	0.01	0.01
	Conveyor 1 (C-1)	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
TR-2	Transfer of Wood Chips from C-1 to C-	РМ	0.01	0.01
	2	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
SCN-1	Wood Screen (5)	РМ	0.06	0.07
		PM ₁₀	0.02	0.02
		PM _{2.5}	0.01	0.01
HOG-1	Hogger/Slicer (5)	РМ	0.03	0.03
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
TR-3	Wood from Hogger and Screen to	РМ	0.01	0.01
	Conveyor C-3)	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
TR-4	Wood from Conveyor C-3 to C-4	РМ	0.01	0.01
	Conveyor C-3 to C-4	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
TR-5	Wood from Conveyor C-4 and	РМ	<0.01	0.01
	C-9 to Conveyor C-5	PM ₁₀	<0.01	<0.01
		PM _{2.5}	0.01	<0.01
STORE-1	Wood Storage Pile (5)	РМ	0.03	0.14

to Fuel Reclaim Conveyor C-6 PM ₁₀		1			
TR-6 Wood from Storage to Fuel Reclaim Conveyor C-6 Wood from Storage to Fuel Reclaim Conveyor C-6 PM ₁₀ PM _{2.5}			PM ₁₀	0.02	0.07
TR-7 Wood from Storage to Boiler Feed Conveyor C-7 Wood to Fuel Distribution Conveyor C-7 to C-8 Wood to Fuel Overfeed Conveyor C-9 to			PM _{2.5}	0.01	0.03
Conveyor C-6	TR-6		РМ	<0.01	<0.01
TR-7 Wood from Storage to Boiler Feed Conveyor C-7 PM ₁₀ PM _{2.5} Vood to Fuel Distribution Conveyor C-7 to C-8 Wood to Fuel Overfeed Conveyor C-9 to C-8 Wood to Fuel Overfeed Conveyor C-9 to C-8 Wood to Fuel Overfeed Conveyor C-9 to C-8 MSS-FUG General MSS Emissions (7) PM CO PM CO CO CO CO CO CO PM CO CO CO CO CO CO CO CO CO C			PM ₁₀	<0.01	<0.01
to Boiler Feed Conveyor C-7 to Boiler Feed Conveyor C-7 PM ₁₀ PM _{2.5}			PM _{2.5}	<0.01	<0.01
Conveyor C-7 PM ₁₀ <0.01 <0.01 PM _{2.5} <0.0	TR-7		РМ	<0.01	0.01
TR-8 Wood to Fuel Distribution Conveyor C-7 to C-8 PM PM PM PM PM PM PM PM PM P			PM ₁₀	<0.01	<0.01
Distribution Conveyor C-7 to C-8 PM ₁₀ <0.01 <0.01 PM _{2.5} <0.01 <0.01			PM _{2.5}	<0.01	<0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TR-8		РМ	<0.01	<0.01
TR-9 Wood to Fuel Overfeed Conveyor C-9 to C-8 PM PM ₁₀ PM _{2.5} Ocol PM _{2.5} Wood to Fuel Overfeed Conveyor C-9 to C-8 PM ₁₀ PM _{2.5} NO _x CO			PM ₁₀	<0.01	<0.01
Overfeed Conveyor C-9 to C-8 PM ₁₀ PM _{2.5} Overfeed Conveyor C-9 to C-8 PM ₁₀ PM _{2.5} Overfeed Conveyor C-9 to C-8 PM ₁₀ PM _{2.5} Overfeed Conveyor C-9 to C-8 PM ₁₀ NO _x Overfeed Conveyor C-9 to C-8 NO _x CO Overfeed Conveyor C-9 NO _x CO Overfeed Conveyor C-9 NO _x Overfeed Conveyor C-9 NO _x CO Overfeed Conveyor C-9 NO _x Overfeed Conveyor C-9 NO _x CO Overfeed Conveyor C-9 NO _x Overfeed Co			PM _{2.5}	<0.01	<0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TR-9		РМ	<0.01	<0.01
MSS-FUG		C-9 to C-8	PM ₁₀	<0.01	<0.01
Emissions (7) CO			PM _{2.5}	<0.01	<0.01
CO <0.01 <0.01 PM 0.26 <0.01 PM ₁₀ 0.26 <0.01	MSS-FUG		NO _x	<0.01	<0.01
PM ₁₀ 0.26 <0.01		Lillissions (1)	со	<0.01	<0.01
			РМ	0.26	<0.01
DM 0.26 <0.01			PM ₁₀	0.26	<0.01
FIVI2.5 U.20 < U.01			PM _{2.5}	0.26	<0.01

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. . For fugitive sources, use area name or fugitive source name.

(3) NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide CO - carbon monoxide

VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

PM - particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}.

 PM_{10} - particulate matter equal to or less than 10 microns in diameter $PM_{2.5}$ - particulate matter equal to or less than 2.5 microns in diameter

 H_2SO_4 - sulfuric acid mist NaOH - sodium hydroxide

Project Number: 265048

NH₃ - ammonia

HCI - hydrogen chloride

Pb - lead

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period. Annual emission rates for EPN WBLR include planned startup and shutdown emissions.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Planned startup and shutdown (SS) lbs/hr emissions for all pollutants are authorized even if not specifically identified as SS. During any clock hour that includes one or more minutes of planned SS activities, that pollutant's maximum hourly emission rate shall apply during that clock hour. This limit only applies for up to two clock hours after startup for EPN WBLR.
- (7) Inherently low emitting (ILE) activities