- 5. Sean dos matrices $A, B \in \mathbb{R}^{n \times n}$. Probar que:
 - a) A es inversible y sus valores singulares son iguales si y solo si es múltiplo de una matriz ortogonal.
- a)

QVQ A inversible y valores singulares todos iguales \Rightarrow A = $\propto Q$

 $A = U \Sigma V^T$ con $\Sigma = \begin{bmatrix} \sigma \\ \sigma \end{bmatrix}$ σ único valor singular

A inversible \Rightarrow rango(A) = n \Rightarrow n valores singulares $\neq 0$ Como los valores singulares son todos ≠ o y a su vez todos iquales entonces resulta $\Sigma \in \mathbb{R}^{n \times n}$ inversible.

También vale porque si el único valor singular fuese o, enfonces $\Sigma = 0 \Rightarrow A = U \Sigma V^T = U O V^T = 0$ que no es inversible y eso es absurdo porque A es inversible por hipótesis.

Dado que E es una matriz diagonal cuadrada con o en la diagonal podemos escribirla como $\Sigma = \sigma I$. Notar que $\Sigma = \Sigma^T$

Para ver que A es múltiplo de una matriz ortogonal basta ver que A = XQ con Q ortogonal y X EIR

 $A = U \Sigma V^T = U \sigma \Sigma V^T = \sigma U V^T$

Tomamos x=0 y Q=UVT que es ortogonal por ser producto de matrices ortogonales

:. A = our con o to único valor singular y ur ortogonal.

QVQ A = $AQ \Rightarrow A$ inversible y valores singulares to des ignales. A = La es una matriz ortogonal porque a es ortogonal. Luego A es inversible porque toda matriz ortogonal lo es. Buscamos los valores singulares de A = &Q. Para eso vemos los autovalores de AAT. $AA^{T} = \alpha Q (\alpha Q)^{T} = \alpha^{2} QQ^{T} = \alpha^{2} I$ $det(AA^T - \lambda I) = det(\alpha^2 I - \lambda I) = (\alpha^2 - \lambda)^n = 0 \iff \lambda = \alpha^2$ Los valores singulares de A son unicamente $\sigma^2 = \alpha^2 \Rightarrow \sigma = \alpha$. : Todos los valores singulares de A son iguales. En particular son to porque: Hay n valores singulares en total pues A EIRn×n A inversible => rango (A) = $n \Rightarrow hay n valores singulares \neq 0$.. Todos los valores singulares de A son ≠0

	onces existe una matriz ortog	AQ = AQ = B. Be estratégicas a partir de saber	r que $AA^t = BB^t$.
$AA^{T} = BB^{T} \Rightarrow$	Tienen la misma	smos valores singular Z en sus descompo misma U porque la	siciones SVD.
$\begin{cases} A = U \Sigma V_A^T \\ B = U \Sigma V_B^T \end{cases}$	u ₁ u _n son los a	cutovectores de AAT:	= BB ^T .
Buscamos Qeli $A = U \Sigma V_A^T$	2nxn ortogonal tq /		
A - UZVA		$U \ge V_B^T$ $CON Q = V_A V_B^T$	