Qualitative Inorganic Analysis Online Lab Submission

Name: Kevin Zhang

Class: Chem 1212

Section: Mondays, 10:30 AM - 1:25 PM

Report Sheet

Solution Letters	V	E	G	Z	R	M
V	X	Pale / Blue	Pale / Blue	Milky White	Clouded White	Milky White
Е	X	X	NR	NR	Bubbles	NR
G	X	X	X	NR	Milky White	NR
Z	X	X	X	X	Clouded White	NR
R	X	X	X	X	X	Bubbles
M	X	X	X	X	X	X

Net Ionic Equations

$$\begin{split} &1.\,\mathrm{Ca^{2+}} + \mathrm{CO_3^{2-}} \to \mathrm{CaCO_3} \\ &2.\,\mathrm{Ba^{2+}} + \mathrm{CO_3^{2-}} \to \mathrm{BaCO_3} \\ &3.\,\mathrm{2Ag^+} + \mathrm{CO_3^{2-}} \to \mathrm{Ag_2CO_3} \\ &4.\,\mathrm{2H^+} + \mathrm{CO_3^{2-}} \to \mathrm{H_2O} + \mathrm{CO_2} \\ &5.\,\mathrm{Ca^{2+}} + 2\mathrm{NO_3^{-}} \to \mathrm{Ca(NO_3)_2} \\ &6.\,\mathrm{H^+} + \mathrm{NO_3^{-}} \to \mathrm{HNO_3} \\ &7.\,\mathrm{4H^+} + \mathrm{NO_3^{-}} + 3\mathrm{Cl^{-}} \to \mathrm{Cl_2} + \mathrm{NOCl} + \mathrm{H_2O} \end{split}$$

Identification

$$R - Na_2CO_3$$

$$V - CaCl_2$$

$$E - HNO_3$$

G -
$$Ba(NO_3)_2$$

Z - $AgNO_3$
M - HCl

Pre-Lab Questions

1.		$\mathrm{Na_{2}CO_{3}}$	CaCl_2	$\mathrm{Ba}(\mathrm{NO}_3)_2$	AgNO_3	HCl	HNO
-	$ m Na_2CO_3$	X	NaCl + CaCO ₃	BaCO ₃ + NaNO ₃	NaNO ₃ + Ag ₂ CO ₃	NaCl + H ₂ O + CO ₂	NaNC + H ₂ O - CO ₂
	CaCl_2	X	X	BaCl ₂ + Ca(NO ₃) ₂	AgCl + Ca(NO ₃	NR	HCl + Ca(No 3)2
	$\mathrm{Ba(NO_3)_2}$	X	X	X	NR	HNO ₃ + BaCl ₂	NR
	${ m AgNO_3}$	X	X	X	X	AgCl + HNO ₃	NR
	HCl	X	X	X	X	X	H ₂ O - Cl ₂ + NOCl
	HNO_3	X	X	X	X	X	X

- 2. All chemicals go into the beaker labelled WASTE SOLUTIONS
- 3. Barium Nitrate is toxic when ingested. Silver Nitrate is toxic and corrosive, and may stain skin
- 4. Solution A: FeCl₂ Solution B: HCl Solution C: K₂CO₃ Solution D: AgNO₃ Solution E: NaCl

Post-Lab Questions

- 1. A precipitate may form, or a gas may be formed during a reaction.
- 2. Spectator ions are ions that do not directly take part in a reaction, such that they remain dissolved in the solution, even after the reaction has taken place. 3. $Na^+ + SO_4^{2-} Co^{2+} + Cl^- Li^+ + CO_3^{2-}$
- 4. Ba(NO $_3$) $_2 + {\rm K}_2{\rm SO}_4 \rightarrow 2{\rm KNO}_3 + {\rm BaSO}_4$ Ba $^{2+} + {\rm SO}_4^{2-} \rightarrow {\rm BaSO}_4$ $\mathrm{K_{2}CO_{3}} + 2\mathrm{HNO_{3}} \rightarrow \mathrm{H_{2}O} + \mathrm{CO_{2}} + 2\mathrm{KNO_{3}} \ \mathrm{CO_{3}^{-}} + 2\mathrm{H^{+}} \rightarrow \mathrm{H_{2}O} + \mathrm{CO_{2}}$

5. It contains Cu^{2+} The reason is that Na^+ wouldn't react with NaOH, and Pb^{2+} is not electonegative enough to take split LiCl.