EXERCISE 2

SGN-1156 Signal Processing Techniques
http://www.cs.tut.fi/courses/SGN-1156/ex9/
Department of Signal Processing
Tampere University of Technology

November 11, 2009

PROBLEM 1: Determine the DTFT of each of the following sequences:

(a)
$$x_a[n] = \mu[n] - \mu[n-5]$$

(b)
$$x_b[n] = \alpha^n (\mu[n] - \mu[n-8])$$
 $|\alpha| < 1$

(c)
$$x_c[n] = (n+1)\alpha^n \mu[n]$$
 $|\alpha| < 1$

PROBLEM 2: (problem 3.41 from the book) Let $G_1(e^{j\omega})$ denote the discrete-time Fourier transform of the sequence $g_1[n]$ shown in the figure below. Express the DTFTs of $g_2[n]$, $g_3[n]$ and $g_4[n]$ in terms of $G_1(e^{j\omega})$. Do not evaluate $G_1(e^{j\omega})$.

PROBLEM 3: (problem 3.34 from the book) Let $X(e^{j\omega})$ denote the DTFT of a complex sequence x[n]. Determine the DTFT $Y(e^{j\omega})$ of the sequence $y[n] = x[n] * x^*[-n]$ in terms of $X(e^{j\omega})$, and show that it is a real-valued function of ω .

PROBLEM 4: Consider the following interconnection of linear shift-invariant systems:

Express the frequency response of the overall system $H(e^{j\omega})$ in terms of the frequency responses of the subsystems $H_1(e^{j\omega})$, $H_2(e^{j\omega})$, and $H_3(e^{j\omega})$.

PROBLEM 5. Consider the following interconnection of LTI systems:

Express the frequency response of the overall system $H(e^{j\omega})$ in terms of the frequency responses of the subsystems depicted in the diagram.

PROBLEM 6. Consider the interconnection of linear shift-invariant systems in the figure below:

- (a) Express the frequency response of the overall system $H(e^{j\omega})$ in terms of the frequency responses of the subsystems $H_1(e^{j\omega})$, $H_2(e^{j\omega})$ and $H_3(e^{j\omega})$.
- (b) Determine the frequency response $H(e^{j\omega})$ of the overall system if:

$$h_1[n] = \frac{\sin(\frac{\pi}{3}n)}{\pi n}$$

 $h_2[n] = (0.3)^n \mu[n]$
 $h_3[n] = \delta[n-2]$

PROBLEM 7 (problem 3.59 from the book): An LTI IIR discrete-time system is described by the difference equation

$$y[n] + a_1y[n-1] = b_0x[n] + b_1x[n-1]$$

where the input is x[n], the output is y[n], and the constants a_1 , b_0 and b_1 are real. Determine the expression for its frequency response. For what values of b_0 and b_1 will the magnitude response be a constant for all values of ω ?

PROBLEM 8: Consider the system defined by the difference equation

$$y[n] = ay[n-1] + bx[n] + x[n-1]$$

where a and b are real, and |a| < 1. Find the relationship between a and b that must exist if the frequency response is to have a constant magnitude for all ω , that is $|H(e^{j\omega})| = 1$.