

DS-GA 1007 Programming for Data Science

Lecture 10 pandas I - Operations on Tables

Package that combines array operations and queries on tabular data

DS-GA 1007 Programming for Data Science

Lecture 10 pandas I - Operations on Tables

Announcements

- Homework 7 due Sunday November10 at 11:59pm
- Survey 3 due Sunday November 10 at 11:59pm
- Project
 - Milestone due ThursdayNovember 28 at 11:59pm
 - ▶ Background
 - ▶ Plans
 - ► Some Components of the Software
 - ► Some Relevant Datasets and Approaches

Announcements

- Homework 7 due Sunday November10 at 11:59pm
- Survey 3 due Sunday November 10 at 11:59pm
- Project
 - Milestone due ThursdayNovember 28 at 11:59pm
 - ▶ Background
 - ▶ Plans
 - ► Some Components of the Software
 - ► Some Relevant Datasets and Approaches

- Review
 - numpy
 - matplotlib
- Lesson
 - notebooks and scripts
 - pandas
- ▶ Readings
 - ► Python for Data Analysis by Wes McKinney
 - ► http://pandas.pydata.org/pandas-docs/stable/index.html

- ► How can we perform operations on arrays?
- ► How can we choose appropriate charts for data types?
- Is it possible to link notebook and scripts?
- How can we arrange rows and columns of a table?

- ▶ Review
 - numpy
 - ▶ matplotlib
- Lesson
 - notebooks and scripts
 - pandas
- Readings
 - ► Python for Data Analysis by Wes McKinney
 - http://pandas.pydata.org/pandas-docs/stable/index.html

- ▶ Dimensions, Shape and Data Type
- Retrieving Data
 - ► Access, Iterate
 - ► Slice, Mask
- Broadcasting
- Views vs Copies

- Review
 - numpy
 - ▶ matplotlib
- Lesson
 - ▶ notebooks and scripts
 - pandas
- Readings
 - ► Python for Data Analysis by Wes McKinney
 - ▶ http://pandas.pydata.org/pandas-docs/stable/index.html

import numpy
import numpy as np
from numpy import *

- Dimensions, Shape and Data Type
- Retrieving Data
 - ► Access, Iterate
 - ► Slice, Mask
- Broadcasting
- Views vs Copies

Dimension, Shape and Data Type

- ▶ Dimension
 - ► Number of nested arrays
 - ► Each array dimension called *axis*
 - ► Axes start at 0
 - ▶ Number of Axes is *rank*
 - ▶ ndarray.ndim

Dimension, Shape and Data Type

- Shape
 - ► Tuple of integers indicating size of each axis
 - ► *Size* of array is total number of elements
 - ▶ ndarray.shape
 - ► ndarray.size

Dimension, Shape and Data Type

- Data Type
 - ► The package will try to detect the data type from the entries
 - Many data types and precision supported
 - ► float32
 - ▶int8
 - ► complex64
 - ► ndarray.dtype

- Access
 - Arrays indexed by tuple of integers
 - ► Use brackets to get entries
 - ► Negative indices are supported
 - ► x[i,j] or x[(i,j)]

- ▶ Iterate
 - ► In loops iteration performed over first axes
 - ► Can convert from two dimensional to one dimensional in row major or column major order

- ➤ Slicing
 - Specified by start, end and stride
 - ► Omitting an index means from the beginning, to the end or default stride
 - ► A slice is a *view* of the original array. Views are like references

- Slicing
 - Specified by start, end and stride
 - ► Omitting an index means from the beginning, to the end or default stride
 - ► A slice is a *view* of the original array. Views are like references
- Fancy Indexing
 - Passing multiple pairs of indices

- Slicing
 - Specified by start, end and stride
 - ► Omitting an index means from the beginning, to the end or default stride
 - ► A slice is a *view* of the original array. Views are like references
- Fancy Indexing
 - Passing multiple pairs of indices

```
traversing an array block

[[ 6 8 10]
 [ 2 3 4]]

traversing a subset of rows

[[ 1 3 5 7 9 11]
 [ 0 1 2 3 4 5]]

traversing a subset of columns

[[ 1 5 11]
 [ 2 6 12]
 [ 0 2 5]]

traversing a subset of array elements

[1 6 5]
```

- Masking
 - Array of True and False useful to select elements in another array
 - ► Can make assignments using True and False

```
x = np.arange(18).reshape(3,6)
print(x)
mask = (x > 7)
print(mask)
print(x[mask])
x[mask]=0
print(x)
  0 1 2 3 4 5]
[67891011]
[12 13 14 15 16 17]]
[[False False False False False]
 [False False True True True]
 [ True True True True True]]
 8 9 10 11 12 13 14 15 16 17]
[[0 1 2 3 4 5]
 [6 7 0 0 0 0]
 [0 0 0 0 0 0]]
```

Views vs Copies

- Slicing an array gives a view
 - ► Like a reference to part to an array
 - ► Changing elements of the view will change the original array
- Accessing an array through indexing gives a copy
- ► Use *copy.deepcopy* to avoid side-effects

```
x = np.arange(18).reshape(3,6)
print(x)
mask = (x > 7)
print(mask)
print(x[mask])
x[mask]=0
print(x)
  0 1 2 3 4 5]
 [6 7 8 9 10 11]
 [12 13 14 15 16 17]]
[[False False False False False]
 [False False True True True]
 [ True True True True True]]
 8 9 10 11 12 13 14 15 16 17]
[[0 1 2 3 4 5]
 [6 7 0 0 0 0]
 [0 0 0 0 0 0]]
```

Broadcasting

- Allows for element by element operations on arrays with different sizes
 - ▶ Package transforms arrays so that they all have the same size

Broadcasting

- The two arrays must be compatible for broadcasting
 - ▶ the axis lengths match, or
 - either of the lengths is 1
- Broadcasting is then performed over the missing and/or length 1 dimensions

```
v = np.arange(5)
print(v.shape)
w = np.arange(3).reshape(3,1)
print(w.shape)
Z = V + W
print(v,'\n')
print(w,'\n')
print(Z)
(5,)
(3, 1)
[0 1 2 3 4]
[[0]]
 [1]
 [2]]
[[0 1 2 3 4]
 [1 2 3 4 5]
 [2 3 4 5 6]]
```

Broadcasting

- ► The two arrays must be compatible for broadcasting
 - ▶ the axis lengths match, or
 - either of the lengths is 1
- Broadcasting is then performed over the missing and/or length 1 dimensions

$$Z = v + w$$

$$\downarrow$$

$$\begin{bmatrix} 0 & 1 & 2 & 3 & 4 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \end{bmatrix}$$

- Repeated operations in loops are slow
- Package supports C extensions that allow for execution across arrays element by element
- Processing concurrently instead of sequentially saves time

```
import numpy as np
np.random.seed(0)

def compute_reciprocals(values):
    output = np.empty(len(values))
    for i in range(len(values)):
        output[i] = 1.0 / values[i]
    return output

values = np.random.randint(1, 10, size=5)
compute_reciprocals(values)
```

- Repeated operations in loops are slow
- Package supports C extensions that allow for execution across arrays element by element
- Processing concurrently instead of sequentially saves time

```
import numpy as np
np.random.seed(0)

def compute_reciprocals(values):
    output = np.empty(len(values))
    for i in range(len(values)):
        output[i] = 1.0 / values[i]
    return output

values = np.random.randint(1, 10, size=5)
compute_reciprocals(values)
```

```
big_array = np.random.randint(1, 100, size=1000000)
%timeit compute_reciprocals(big_array)

1 loop, best of 3: 2.91 s per loop
```

- Repeated operations in loops are slow
- Package supports C extensions that allow for execution across arrays element by element
- Processing concurrently instead of sequentially saves time

- Repeated operations in loops are slow
- Package supports C extensions that allow for execution across arrays element by element
- Processing concurrently instead of sequentially saves time

```
%timeit (1.0 / big_array)

100 loops, best of 3: 4.6 ms per loop
```

- Possible to create your own operations through the *numba* package
 - Write a function meant for numbers
 - Decorate the function indicating data types
 - ► Call the function on arrays

```
from numba import vectorize, float64
@vectorize([float64(float64, float64)])
def f(x, y):
    return x + y
```

- Possible to create your own operations through the *numba* package
 - Write a function meant for numbers
 - Decorate the function indicating data types
 - ► Call the function on arrays

```
from numba import vectorize, float64

@vectorize([float64(float64, float64)])

def f(x, y):
    return x + y
```

```
>>> a = np.arange(6)
>>> f(a, a)
array([ 0,  2,  4,  6,  8, 10])
```

- Possible to create your own operations through the *numba* package
 - Write a function meant for numbers
 - Decorate the function indicating data types
 - ► Call the function on arrays

```
from numba import vectorize, float64

@vectorize([float64(float64, float64)])

def f(x, y):
    return x + y
```

```
>>> a = np.arange(6)
>>> f(a, a)
array([ 0,  2,  4,  6,  8, 10])
```

- ▶ Review
 - numpy
 - matplotlib
- Lesson
 - notebooks and scripts
 - pandas
- ▶ Readings
 - ▶ Python for Data Analysis by Wes McKinney
 - http://pandas.pydata.org/pandas-docs/stable/index.html

- What are different data types? How can we choose appropriate charts for data types?
- ► What are good practices for visualization
 - Conditioning
 - Scale
 - Jiggling Baseline
 - **▶** Transformation

- ▶ Review
 - numpy
 - matplotlib
- Lesson
 - ► notebooks and scripts
 - pandas
- ▶ Readings
 - ▶ Python for Data Analysis by Wes McKinney
 - ► http://pandas.pydata.org/pandas-docs/stable/index.html

import matplotlib as mpl
import matplotlib.pyplot as plt

- What are different data types? How can we choose appropriate charts for data types?
- What are good practices for visualization
 - Conditioning
 - Scale
 - ▶ Jiggling Baseline
 - Transformation

► Why visualization?

Property	Value	Accuracy
Mean of x	9	exact
Sample variance of x	11	exact
Mean of y	7.50	to 2 decimal places
Sample variance of y	4.125	±0.003

▶ Data Types

► One Quantitative Variable

► One Quantitative Variable

▶ One Quantitative Variable

► One Qualitative Variable

▶ One Qualitative Variable and One Quantitative Variable

▶ One Qualitative Variable and One Quantitative Variable

► Multiple Qualitative Variables

- ► Multiple Quantitative Variables
- ► Check out sns.pairplot!

► Multiple Quantitative Variables

Agenda

- Review
 - numpy
 - ▶ matplotlib
- Lesson
 - notebooks and scripts
 - pandas
- Readings
 - ► Python for Data Analysis by Wes McKinney
 - ▶ http://pandas.pydata.org/pandas-docs/stable/index.html

Objectives

- What are the advantages and disadvantages of scripts and notebooks?
- Is it possible to link notebook and scripts?
- What are the command line tools to convert between scripts and notebooks?

Jupytext

- ▶ Notebooks
 - ► Advantages
 - ► Combine text, code and charts
 - ► Support multiple languages including Python and R

Jupytext

- ▶ Notebooks
 - ► Advantages
 - ► Combine text, code and charts
 - ► Support multiple languages including Python and R
 - ▶ Disadvantages
 - ▶ JSON format makes version control difficult
 - ► Lacking debugger to determine errors
 - ► Refactoring difficult across multiple cells which may not reflect logical order of program

Jupytext

- ▶ Notebooks
 - ► Advantages
 - ► Combine text, code and charts
 - ► Support multiple languages including Python and R
 - ▶ Disadvantages
 - ▶ JSON format makes version control difficult
 - ► Lacking debugger to determine errors
 - ► Refactoring difficult across multiple cells which may not reflect logical order of program

import pandas as pd

Agenda

- Review
 - numpy
 - ▶ matplotlib
- Lesson
 - notebooks and scripts
 - pandas
- ▶ Readings
 - ► Python for Data Analysis by Wes McKinney
 - http://pandas.pydata.org/pandas-docs/stable/index.html

Objectives

- What are the components of pandas for storing data?
 - Series
 - DataFrame
- How can we access data in a table?

pandas

- ► Tabular data consisting of rows and columns common in data analysis
 - Rows are observations in sample
 - ► Columns are features of the data
- Often panel data with rows consisting of timestamps

pandas

- ► Tabular data consisting of rows and columns common in data analysis
 - Rows are observations in sample
 - Columns are features of the data
- Often panel data with rows consisting of timestamps

- pandas packages takes data structures and operations from languages like R and SQL
- ▶ Built on top of
 - numpy
 - scipy
 - some components of matplotlib

pandas

- ► Tabular data consisting of rows and columns common in data analysis
 - Rows are observations in sample
 - Columns are features of the data
- Often panel data with rows consisting of timestamps

- pandas packages takes data structures and operations from languages like R and SQL
- ▶ Built on top of
 - numpy
 - scipy
 - some components of matplotlib

Series

- One-dimensional object containing
 - ▶ Data
 - ► Labels (called *index*)
- ► Like array in numpy

```
# Creating a series
index = ['a','b','c','d','e']
series = pd.Series(np.arange(5), index=index)
print(series)

a    0
b    1
c    2
d    3
e    4
dtype: int64
```

Series

- One-dimensional object containing
 - ▶ Data
 - ► Labels (called *index*)
 - ▶ Default index is range(N) where N is the length
- ► Index used for
 - ▶ lookups
 - ▶ aligning tables
 - supports hierarchical indexes, where each label is a tuple

```
# Creating a series
index = ['a','b','c','d','e']
series = pd.Series(np.arange(5), index=index)
print(series)

a    0
b    1
c    2
d    3
e    4
dtype: int64
```

DataFrame

- Two-dimensional object containing
 - ▶ Data
 - ► Labels (called *index*)
 - ► Columns (ordered)
- ► Like a dictionary of Series where all Series have the same index

```
# Creating a dataframe with a dictionary
d = {'state' : ['FL', 'FL', 'GA', 'GA', 'GA'],
     'year': [2010, 2011, 2008, 2010, 2011],
     'pop': [18.8, 19.1, 9.7, 9.7, 9.8]}
df d = pd.DataFrame(d)
print(df d)
   pop state year
0 18.8
              2010
1 19.1
         FL 2011
  9.7
          GA 2008
   9.7
          GA 2010
   9.8
          GA 2011
```

Input and Output

- We can store tabular data in many formats
 - Comma Separated Values (CSV)
 - ► Tab Separated Values (TSV)
- Note that these file formats are not nested
 - Each row and column contains one entry

```
# the first row becomes the column indices
df = pd.read_csv('simple.csv')
print(df)

print(df.columns.values)

a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
['a' 'b' 'c' 'd' 'message']
```

Demo

Take-Aways

- ▶ What is Series
- ▶ What is DataFrame
- ► How does pandas support operations like numpy?
- ► How does pandas support operations like query languages?

Summary

- ▶ Review
 - ▶ numpy
 - ▶ matplotlib
- Demos
 - ► notebooks and scripts
 - pandas
- ▶ Readings
 - http://wiki.scipy.org/Tentative_NumPy_Tutorial
 - http://matplotlib.org/Matplotlib.pdf