Exercícios - Cálculo IV - Aula 2 - Semana 31/8 - 4/9Sequências Numéricas II e Conceitos Básicos de Séries Numéricas

Na Parte 2 da Aula 2, o Prof. Possani estuda a convergência da sequência $(n\alpha^n)$ em termos do número real α . O resumo desse estudo é:

- a) Se $|\alpha| < 1$, então $(n\alpha^n)$ converge e seu limite é zero.
- b) Se $|\alpha| \geq 1$, então $(n\alpha^n)$ diverge.

No que segue, apresentaremos um método prático para obter esses mesmos resultados e que pode ser útil para o estudo de outras sequeñcias.

Teste da Razão para Sequências. Seja (x_n) uma sequência de termos não nulos tal que

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = L.$$

Então,

- 1. Se L < 1, então (x_n) é convergente e $x_n \to 0$, com $n \to \infty$.
- 2. Se L>1 ou $L=\infty$, então $|x_n|\to\infty$, com $n\to\infty$, portanto (x_n) diverge.
- 3. Se L=1, o teste é inconclusivo.

O item (1) significa que os termos da sequência x_n para n grande se comportam como os termos de uma progressão geométrica com razão menor que 1, portanto, $x_n \to 0$, com $n \to \infty$.

Antes de demonstrar o Teste da Razão, vamos aplicá-lo para a sequência $(n\alpha^n)$. Para $\alpha \neq 0$, os termos $x_n = n\alpha^n$ são não nulos e podemos tomar a razão

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)\alpha^{n+1}}{n\alpha^n} = \frac{n+1}{n}\alpha.$$

Fazendo $n \to \infty$, obtemos

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} |\alpha| = |\alpha|.$$

Pelo Teste da Razão, temos

- a) Se $|\alpha| < 1$, então $(n\alpha^n)$ é convergente e $n\alpha^n \to 0$, com $n \to \infty$.
- b) Se $|\alpha| > 1$, então $(n\alpha^n)$ diverge.

O caso inconclusivo $|\alpha|=1$, deve ser estudado como na Aula 2 para obter a divergência da sequência.

Demonstração do Teste da Razão. 1. Suponha que $\lim_{n\to\infty} |a_{n+1}/a_n| = L < 1$. Então existem 0 < r < 1 e $N \in \mathbb{N}$ tais que tais que

$$n > N \Rightarrow \left| \frac{x_{n+1}}{x_n} \right| < r,$$

assim,

$$|x_{N+1}| < r|x_N|,$$

$$|x_{N+2}| < r|x_{N+1}| < r^2|x_N|,$$

$$\vdots$$

$$|x_{N+p}| < r|x_{N+p-1}| < r^2|x_{N+p-2}| < \dots < r^p|x_N|,$$

ou seja,

$$n > N \implies |x_n| < r^{n-N}|x_N| = |x_N|r^{-N}r^n$$

Como $r^n \to 0$ (pois 0 < r < 1), segue do Teorema do Confronto que $|x_n| \to 0$ e, portanto, $x_n \to 0$.

2. Suponha que $\lim_{n\to\infty} |a_{n+1}/a_n| = L > 1$. Então existem r>1 e $N\in\mathbb{N}$ tais que

$$n > N \implies \left| \frac{x_{n+1}}{x_n} \right| > r,$$

ou seja,

$$n > N \Rightarrow |x_{n+1}| > r|x_n|$$
.

Repetindo o argumento usado no item 1, obtemos

$$n > N \implies |x_n| > r^{n-N}|x_N| = |x_N|r^{-N}r^n.$$

Como $r > 1, r^n \to \infty$, com $n \to \infty$, e portanto, $|x_n| \to \infty$, com $n \to \infty$; logo (x_n) diverge.

3. Para mostrar que o teste não conclusivo se L=1, considere as sequências

$$((-1)^n)),$$
 que é divergente, e $(\frac{1}{n}),$ que é convergente,

e note que

$$\lim_{n \to \infty} \left| \frac{(-1)^{n+1}}{(-1)^n} \right| = \lim_{n \to \infty} 1 = 1 \quad \text{e} \quad \lim_{n \to \infty} \left| \frac{\frac{1}{n+1}}{\frac{1}{n}} \right| = \lim_{n \to \infty} \frac{n}{n+1} = 1.$$

Exemplo 1. Na Parte 3 da Aula 2, o Prof. Possani usou um argumento de comparação e o Teorema de Confronto para mostrar que a sequência $\left(\frac{n!}{n^n}\right)$ converge para 0. Vamos obter esse mesmo resultado aplicando o Teste da Razão. De fato,

$$\lim_{n \to \infty} \left| \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} \right| = \lim_{n \to \infty} \frac{(n+1)!}{n!} \frac{n^n}{(n+1)^{n+1}}$$

$$= \lim_{n \to \infty} \frac{(n+1)n!}{n!} \frac{n^n}{(n+1)(n+1)^n}$$

$$= \lim_{n \to \infty} \frac{n^n}{(n+1)^n}$$

$$= \lim_{n \to \infty} \frac{1}{\frac{(n+1)^n}{n^n}}$$

$$= \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n}$$

$$= \frac{1}{e} < 1.$$

Pelo Teste da Razão, a sequência $\left(\frac{n!}{n^n}\right)$ converge para 0.

Discutiremos agora o chamado teste da raiz para sequências, que é um outro instrumento conveniente para estudar o comportamento de convergência de sequências.

Teste da Raiz para Sequências. Seja (x_n) uma sequência tal que

$$\lim_{n \to \infty} \sqrt[n]{|x_n|} = L.$$

Então,

- 1. Se L < 1, então (x_n) é convergente e $x_n \to 0$, com $n \to \infty$.
- 2. Se L>1 ou $L=\infty$, então $|x_n|\to\infty$, com $n\to\infty$, portanto (x_n) diverge.
- 3. Se L=1, o teste é inconclusivo.

Exemplo 2. $\frac{(-2n)^n}{n^{2n}} \to 0$. De fato,

$$L = \lim_{n \to \infty} \sqrt[n]{\left| \frac{(-2n)^n}{n^{2n}} \right|} = \lim_{n \to \infty} \frac{2}{n} = 0.$$

Como L < 1, a sequência dada converge para zero, pelo teste da raiz.

Exemplo 3. $x_n = n \left(\frac{2n-1}{n+4}\right)^n$ diverge. De fato,

$$L = \lim_{n \to \infty} \sqrt[n]{\left| n \left(\frac{2n-1}{n+4} \right)^n \right|} = \lim_{n \to \infty} n^{1/n} \left(\frac{2n-1}{n+4} \right) = 1 \cdot 2 = 2.$$

Temos L > 1, logo a sequência diverge, pelo teste da raiz.

Observação 1. O teste da razão é especialmente útil para manipular sequências cujos termos x_n é dado por uma expressão que envolve produtos, pois a razão x_{n+1}/x_n pode, muitas vezes, ser simplificada por cancelamentos. Por outro lado, o teste da raiz é provavelmente mais útil para tratar sequências em que x_n é complicado, mas $\sqrt[n]{|x_n|}$ é simples, de modo que $\lim_{n\to\infty}\sqrt[n]{|x_n|}$ é fácil de calcular.

Exercício 1. Estude as sequências quanto á convergência ou divergência.

a)
$$\left(\frac{(n!)^2}{(2n)!}\right)$$
.

b)
$$\left(\frac{n^3}{(\ln 2)^n}\right)$$
.

c)
$$\left(\frac{(-1)^n(2n)!}{n^{2n}}\right)$$
.

d)
$$\left(\frac{3 \cdot 5 \cdots (2n+1)}{n!}\right)$$
.

e)
$$\left(e^{2n}\left(\frac{n}{n+1}\right)^{n^2}\right)$$

f)
$$\left(\left(\frac{n+1}{n} \right)^{3n} \frac{1}{(-3)^n} \right)$$

Conceitos Básicos de Séries Numéricas.

Definição. Dada uma sequência numérica a_k , $k \ge 0$, a sequência de termo geral

$$\underline{s_n} = \sum_{k=0}^n a_k, \quad n \ge 0,$$

denomina-se série numérica associada à sequência (a_k) . Os números a_k , $k \ge 0$, são chamados termos da série. Os números s_n são chamados somas parciais de ordem n da série. Se (s_n) for convergente, isto é, $s_n \to s \in \mathbb{R}$, diz-se que a série é convergente. Nesse caso, o limite s é chamado soma da série e escreve-se

$$\sum_{k=0}^{\infty} a_k = s.$$

Quando (s_n) for divergente, diz-se que a série é divergente.

O símbolo $\sum_{k=0}^{\infty} a_k$ foi usado para indicar a soma da série. Por um abuso de notação, tal símbolo também será usado para denotar a própria série. Quando dizermos a série $\sum_{k=0}^{\infty} a_k$, devemos entender que se trata da série cuja soma parcial de ordem n é $s_n = \sum_{k=0}^n a_k$.

Exemplo 4. A série $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ é convergente e sua soma é igual a 1.

De fato, primeiramente note que

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}, \quad \forall k \ge 1.$$

Assim.

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)}$$

$$= \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}.$$

Assim, $\lim_{n\to\infty} s_n = 1$. Portanto, a série em questão é convergente e

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = 1.$$

Exemplo 5. Se $x_k = 1, k = 1, 2, \ldots$, então $\sum_{k=0}^{\infty} x_k = \infty$, isto é, diverge. De fato, sendo $s_n = n$, $n = 1, 2, \ldots$, temos $s_n \to \infty$.

Exemplo 6. A série $\sum_{k=1}^{\infty} (-1)^k$ diverge. De fato, a sequência (s_n) das somas parciais é dada por

$$s_n = \begin{cases} -1, & \text{se } n \text{ \'e impar,} \\ 0, & \text{se } n \text{ \'e par,} \end{cases}$$

e é, portanto, divergente.

Exemplo 6 (Série geométrica). Provavelmente a mais simples e mais importante de todas as séries é a conhecida série geométrica

 $\sum_{k=0}^{\infty} r^k.$

O número r é chamado razão da série geométrica. Nesse caso, a sequência de somas parciais s_n , $n = 0, 1, 2, \ldots$, satisfazem

$$s_n = 1 + r + r^2 + \dots + r^n$$

 $rs_n = r + r^2 + r^3 + \dots + r^{n+1}$

Subtraindo a segunda equação da primeira, vem

$$(1-r)s_n = 1 - r^{n+1},$$

donde, se $r \neq 1$,

$$s_n = \frac{1 - r^{n+1}}{1 - r}.$$

- Se |r| < 1, $\lim_{n \to \infty} r^{n+1} = 0$, portanto, $\lim_{n \to \infty} s_n = \frac{1}{1 r}$.
- Se |r| > 1, (r^{n+1}) diverge e, portanto, (s_n) diverge.
- No caso |r| = 1, os Exemplos 5 e 6 mostram que (s_n) diverge.

Esta análise pode ser resumida da seguinte forma: a série geométrica $\sum_{k=0}^{\infty} r^k$ diverge se $|r| \ge 1$, e

converge, se
$$|r| < 1$$
 e neste caso $\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$.

Exercício 2. Determine a soma das séries

a)
$$5 + \frac{5}{9} + \dots + \frac{5}{9^{k-1}} + \dots$$

b)
$$5 - \frac{5}{9} + \dots + (-1)^{k-1} \frac{5}{9^{k-1}} + \dots$$

Exercício 3. Mostre que a série

$$\sum_{n=0}^{\infty} \sum_{k=0}^{2^n} 2^{-k}$$

é divergente.

O próximo resultado fornece uma condição necessária para que uma série seja convergente.

Teorema. Se
$$\sum_{k=0}^{\infty} a_k$$
 for convergente, então $\lim_{k \to \infty} a_k = 0$.

Demonstração. Seja $s_n = \sum_{k=0}^n a_k$. Sendo a série $\sum_{k=0}^\infty a_k$ convergente, existe $L \in \mathbb{R}$, tal que $\lim_{n \to \infty} s_n = L$. Também, $\lim_{n \to \infty} s_{n-1} = L$. Como $a_n = s_n - s_{n-1}$, resulta

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = L - L = 0.$$

Este teorema fornece um teste de divergência. Para ver isso, vamos escrever sua formulação contrapositiva:

Se
$$a_k \not\to 0$$
 ou $\lim_{k\to\infty} a_k$ não existe, então a série $\sum_{k=0}^{\infty} a_k$ diverge.

Observação 2. A recíproca do teorema não vale, isto é, existem séries $\sum_{k=0}^{\infty} a_k$ divergentes, com

$$\lim_{k\to\infty} a_k = 0$$
. De fato, a série harmônica $\sum_{k=1}^{\infty} \frac{1}{k}$ é divergente, embora $\frac{1}{k} \to 0$.

Exercício 4. Determine se as séries são convergentes ou divergentes.

a)
$$\sum_{k=1}^{\infty} \frac{k^2}{k^2 + 3}$$
.

b)
$$\sum_{k=1}^{\infty} k \sin\left(\frac{1}{k}\right).$$

c)
$$\sum_{k=1}^{\infty} [1 + (-1)^k].$$