Data Distribution System (DDS)

Guilherme S. Mazzariol - RA 138466 MO809 - Prof.: L.E. Buzato Novembro/2016

O que é o DDS?

 Protocolo de Middleware e padrão API para conectividade centrata em dados

- Fornece:

- Conectividade de baixa latência
- Confiabilidade
- Arquitetura escalável

Application

Middleware

API

C, C++, Java, C#, ...

PRESENTATION

Data, Topics, Types, Serialization, QoS, Cache, Filtering...

PROTOCOL

Session, Reliability, QoS, Discovery, ...

PLatform

OPERATING SYSTEM

Windows, Unix (Linux, MacOS), VxWorks, Android, ...

NETWORK

UDP, TCP, STCP, ...

LINK / PHYSICAL LAYER Ethernet, IEEE 802.11, 3G, 4G

Centricidade de Dados

- DDS é exclusivamente centrado nos dados
- Essência do "data centricity": o DDS sabe que dados armazenar e controla como compartilhar esses dados
- A maioria dos middlewares funcionam enviando informações entre aplicativos e sistemas
- "Data centricity" assegura que todas as mensagens incluem a informação contextual que uma aplicação necessita compreender nos dados que recebe

- **Domain:** ambiente virtual isolado
- **Topic:** unidade de informação que conecta "publisher" e "subscriber"
- **Domain Participant:** entidade que participa de um domain DDS
- Data Writer: declara a intenção de publicar em um "Topic", enviar dados
- Data Reader: declara a intenção de assinar um "Topic", receber dados
- Publisher: criado por um participante para gerenciar um grupo de "data writers"
- Subscriber: criado por um participante para gerenciar um grupo de "data readers"

Espaço Global de Dados

- DDS lida com dados em movimento
- DDS define um armazenamento virtual de dados chamado "Global Data Space"
- Acessado por aplicativos de plataformas heterogêneas
- Parece com memória nativa acessada por meio de uma API
- Cada aplicativo armazena localmente apenas o que ele precisa e somente durante o tempo necessário
- O espaço de dados global compartilha dados entre aplicativos incorporados

Qualidade de Serviço

- DDS envia exatamente o que precisa
- O middleware implementa a confiabilidade quando necessário:
 - avaliar para onde enviar os dados
 - dados enormes: filtra e envia apenas os dados que cada "endpoint" realmente precisa
- Envio de mensagens multicast (atualizações rápidas)
- Controle das versões usadas por várias partes do sistema
- Aplicações críticas de segurança, o DDS controla o acesso,
 impõe caminhos de fluxo de dados e criptografa dados on-the-fly

Descoberta Dinâmica

- O aplicativo não precisa saber ou configurar os nós de extremidades para as comunicações
- DDS descobre se o nó de extremidade está:
 - publicando dados, assinando dados ou ambos
 - tipo de dados
 - as características de comunicação oferecidas pelo editor
 - as características de comunicação solicitadas pelo assinante
- Os participantes do DDS podem estar na mesma máquina ou em uma rede
- Adicionar um participante é uma tarefa fácil

Arquitetura Escalável

- Arquitetura projetada para ser escalável desde pequenos dispositivos até a "cloud" para sistemas muito grandes
- Fornece:
 - Dados em velocidade ultra-alta
 - Gerenciamento de milhares de objetos de dados
 - Extrema disponibilidade
 - Segurança
- Absorve grande parte da complexidade em uma única camada de comunicação padrão

Vantagens do DDS

Vantagens

- **Facilidade de Integração:** esconde complexidade, definição de modelos de dados comuns
- **Performance, Eficiência e Escalabilidade:** Throughput milhões de dados, latência 30 µsec, escalabilidade linear
- Segurança Avançada: controle ponta a ponta, Service Plugin Interface (SPI), Autenticação padronizada, Criptografia
- Padrão aberto: APIs totalmente abertas
- QoS-Enabled: Pontualidade, Prioridade de tráfego,
 Confiabilidade
- Descoberta escalável: descoberta automática
- Aplicabilidade: móvel, cloud, ...

Outras Vantagens

- Independência da linguagem de programação, do sistema operacional, do transporte e do hardware
- Redundância configurável para operações extremamente confiáveis
- Suporte multicast para entrega de dados escalonáveis
- Seleção e filtragem de dados para garantir o uso eficiente dos recursos da rede e da CPU
- Evolução do tipo de dados extensível para o ciclo de vida prático da arquitetura de longo prazo
- Operação comprovada para construção de sistemas de missão crítica

DDS Vs Outras Tecnologias

	Transport	Paradigm	Scope	Discovery	Content Awareness	Data Centricity	Security	Data Prioritisation	Fault Tolerance
AMQP	TCP/IP	Point-to-Point Message Exchange	D2D D2C C2C	No	None	Encoding	TLS	None	Impl. Specific
СоАР	UDP/IP	Request/ Reply (REST)	D2D	Yes	None	Encoding	DTLS	None	Decentralized
DDS	UDP/IP (unicast + mcast) TCP/IP	Publish/ Subscribe Request/ Reply	D2D D2C C2C	Yes	Content- Based Routing, Queries	Encoding Declaration	TLS, DTLS, DDS Security	Transport Priorities	Decentralized
MQTT	TCP/IP	Publish/ Subscribe	D2C	No	None	Undefined	TLS	None	Broker is the SPoF

TCP: Transmission Control Protocol IP: Internet Protocol D2D: Device-to-Device D2C: Device-to-Cloud C2C: Cloud-to-Cloud TLS: Transport Layer Security DTLS: Datagram Transport Layer Security

Qualitative Comparison of IoT Standards

Aplicação

Control Communications with DDS using IEC61499 Service Interface Function Blocks

Outras aplicações...

Referências

OMG DDS Portal

Control Communications with DDS using IEC61499 Service Interface Function Blocks