Teoria Local das Curvas Parametrizadas por Comprimento de Arco

Kelvyn Welsch

Junho 2019

1 Triedro e Equações de Frenet

Seja $\gamma: I \subset \mathbb{R} \to \mathbb{R}^3$, I intervalo, uma curva parametrizada regular de classe C^{∞} (em geral, os resultados obtidos aqui pedem condições mais fracas, por exemplo, classe C^3).

Convém trabalharmos com curvas parametrizadas por comprimento de arco. Para tanto, devemos reparametrizar γ . Seja $t_0 \in \mathbb{R}$ fixado e $\sigma: I \to \mathbb{R}$ definida por:

$$s = \sigma(t) = \int_{t_0}^t ||\gamma'(u)|| du \tag{1}$$

Note que $s = \sigma(t)$ é o comprimento de imagem de γ , de t_0 a t. Usando agora o segundo teorema fundamental do Cálculo, obtemos:

$$\sigma'(t) = ||\gamma'(t)|| \tag{2}$$

Observe que a função $\sigma': I \to \mathbb{R}$ não depende da escolha de t_0 . $\sigma'(t)$ é usualmente chamada de velocidade escalar e denotada por v, enquanto que $\gamma'(t)$ é chamada de velocidade vetorial e denotada por \vec{v} . Assim, (2) apenas diz que $v = ||\vec{v}||$.

Por definição, $\sigma'(t) \geq 0$, $\forall t \in I$. Como estamos supondo que γ é regular, na verdade $\sigma'(t) > 0$, $\forall t \in I$. Isto implica que $\sigma(t)$ é estritamente crescente, portanto, $\sigma: I \to \sigma[I]$ é invertível. Denote a inversa por $\sigma^{-1}: \sigma[I] \to I$. Daí $t = \sigma^{-1}(s)$. Teremos:

$$(\sigma^{-1})'(s) = \frac{1}{\sigma'(t)} = \frac{1}{||\gamma'(t)||} \tag{3}$$

Considere agora $\alpha = \gamma \circ \sigma^{-1}$. Tal α será uma curva cujo traço empata com o de γ , mas é parametrizada por s (comprimento de arco). Tanto σ^{-1} quanto α dependem da escolha de t_0 . Usando a regra da cadeia:

$$\alpha'(s) = \gamma'(\sigma^{-1}(s))(\sigma^{-1})'(s) = \frac{\gamma'(t)}{||\gamma'(t)||} \Rightarrow ||\alpha'(s)|| = 1$$
(4)

Veja que $\alpha'(s)$ não depende de t_0 . Definimos $T: \sigma[I] \to \mathbb{R}^3$, $T(s) = \alpha'(s)$ o chamado vetor tangente unitário a γ . Ao mudar a orientação de α , T muda de sentido. Para demonstrar isso, considere uma curva β tal que $\beta(-s) = \alpha(s)$, ou seja, β é uma reparametrização de α , com uma mudança de orientação. Observe que $\alpha = \beta \circ I$, onde I é a função definida por x = I(s) = -s. Usando a regra da cadeia:

$$\alpha'(s) = \beta'(x)I'(s) \implies \alpha'(s) = -\beta'(-s) \implies \beta'(-s) = -T'(s)$$
(5)

Como $T(s) \cdot T(s) = 1 \Rightarrow 2(T'(s) \cdot T(s)) = 0$, daí vem que T'(s) é sempre ortogonal a T(s). Em geral, $||T'(s)|| \neq 1$, daí definimos $\kappa(s) = ||T'(s)|| \quad (= ||\alpha''(s)||)$ e chamamos de *curvatura de* α *em* s. A curvatura não depende da orientação da curva. Não é difícil demonstrar (por derivação e integração) que $\kappa(s) = 0$ se e somente se $\alpha(s)$ for uma reta. De agora em diante, consideraremos apenas os casos interessantes, isto é, aqueles em que $\kappa(s) \neq 0$. Nestes casos, fica bem definida tal função:

$$N(s) := \frac{T'(s)}{||T'(s)||} \Rightarrow \boxed{T'(s) = \kappa(s)N(s)}$$
(6)

N é chamado de vetor normal unitário a γ . Como T e N são sempre L.I., estes determinam sempre um plano em \mathbb{R}^3 , chamado de plano osculador. Da forma em que foi definida, κ é sempre positiva, podendo N assumir diferentes sentidos. Entretanto, caso a curva seja plana (ou seja, caso esteja contida em um único plano osculador), é possível fixar um sentido para N, de forma que κ tenha sinal (possa também ser negativa). O sentido de N é determinado pela orientação do plano em que se encontra a curva.

Em geral, podemos associar um vetor normal ao plano osculador, que será dado pela seguinte relação:

$$B(s) = T(s) \land N(s) \tag{7}$$

Note que ||B(s)|| = 1. B é chamado de vetor binormal a γ . Para todo s, a tripla ordenada (T, N, B) define uma base ortonormal positivamente orientada de \mathbb{R}^3 . Esta base é chamada de <u>Triedro de Frenet</u>.

Nosso objetivo agora será o de escrever os vetores T'(s), N'(s), B'(s) em termos dos vetores da base (T, N, B). As fórmulas resultantes são chamadas de <u>Fórmulas de Frenet</u>. Observe que uma destas fómulas já foi deduzida, e se encontra na equação (6).

Vamos agora encontrar B'(s) em termos de (T, N, B). Note que $B(s) \cdot B(s) = 1 \Rightarrow 2(B'(s) \cdot B(s)) = 0 \Rightarrow B(s) \perp B'(s)$. Além do mais:

$$B'(s) = T'(s) \wedge N(s) + T(s) \wedge N'(s) = T(s) \wedge N'(s)$$

$$\tag{8}$$

Pois N(s) e T'(s) são paralelos. Da equação acima segue que B'(s) é ortogonal a T(s), e portanto paralelo a N(s). Disso, podemos escrever:

$$B'(s) = \tau(s)N(s) \tag{9}$$

Para alguma função τ . Uma interpretação para esta função é a seguinte: como B(s) é unitário, $||B'(s)|| = |\tau(s)|$ mede a taxa de variação do ângulo do plano osculador em s com os planos osculadores vizinhos. Em outras palavras, esta função indica quão rapidamente a curva se afasta, em uma vizinhança de s, do plano osculador. Por este motivo, $\tau(s)$ é chamado de torção $de \gamma$ em s.

Note que, diferentemente de $\kappa(s)$, $\tau(s)$ pode assumir valores negativos. Alguns autores, inclusive, definem τ com sinal oposto ao usado aqui. É fácil ver que, por definição, B(s) troca de sentido por uma mudança de orientação na parametrização da curva, porém tal não ocorre com B'(s) e, consequentemente, com a torção. Em resumo, $\kappa(s)$ e $\tau(s)$ são invariantes por mudança de orientação. Vale que (se $\kappa(s) \neq 0$) a curva é plana (isto é, $\alpha[\sigma(I)]$ está contido num plano) se e somente se $\tau=0$

Resta agora determinar N'(s). Para tanto, reescreveremos N(s):

$$N(s) = B(s) \wedge T(s) \tag{10}$$

Que pode ser facilmente verificada com a regra da mão direita. Disto, segue:

$$N'(s) = B'(s) \wedge T(s) + B(s) \wedge T'(s) = \tau(s)(N(s) \wedge T(s)) + \kappa(s)(B(s) \wedge N(s))$$

$$\tag{11}$$

$$\Rightarrow N'(s) = -\tau(s)B(s) - \kappa(s)T(s)$$
(12)

As três equações dentro dos retângulos são justamente as fórmulas de Frenet. Perceba que a derivada do vetor normal, diferentemente da derivada dos outros dois vetores, não nos forneceu outro parâmetro além dos que já eram conhecidos. Isto parece indicar que a curvatura e a torção de uma curva constituem-se como conjunto de informação suficiente para conhecer completamente o comportamento de uma curva na vizinha de um ponto. Esta afirmação de fato se verifica, e é enunciada formalmente no seguinte:

Teorema 1. (Teorema Fundamental da Teoria das Curvas): $Sejam \ \kappa: I \to [0, +\infty), \ \tau: I \to \mathbb{R}$, $funções de classe <math>C^{\infty}$, $com \ I$ intervalo. Então existe uma curva parametrizada regular $\alpha: I \to \mathbb{R}^3$ tal que $s \in I$ é o comprimento de arco, $\kappa(s)$ e $\tau(s)$ são respectivamente a curvatura e a torção de α , $\forall s \in I$. Além disso, α é única, a menos de movimentos rígidos.

A demonstração deste teorema exige alguns passos, e será o objetivo da próxima seção. Antes disso, iremos voltar nossa atenção para a distinção da aceleração vetorial $(\vec{a} = \gamma''(t))$ e aceleração escalar $(a = \sigma''(t))$. Veremos que, em geral, não vale que $a = ||\vec{a}||$. Para tanto, derivemos com respeito a t a expressão $\gamma'(t) = \sigma'(t)T(\sigma(t))$, que pode ser facilmente deduzida a partir da definição de T:

$$\gamma''(t) = \sigma''(t)T(\sigma(t)) + (\sigma')^2(t)T'(\sigma(t)) \tag{13}$$

Como T(s) e T'(s) são ortogonais e T(s) é paralelo a $\gamma'(t)$, teremos que: $\kappa(s) \neq 0 \implies T'(s) \neq 0 \iff \gamma''(t)$ e $\gamma'(t)$ são L.I. Reescrevendo a relação acima a partir da primeira equação de Frenet:

$$\gamma''(t) = \sigma''(t)T(\sigma(t)) + (\sigma')^2(t)\kappa(\sigma(t))N(\sigma(t)) \quad (\vec{a} = aT + v^2\kappa N)$$
(14)

Isso nos mostra que a aceleração vetorial possui duas componentes, sendo uma delas tangente ao movimento e com norma igual a aceleração escalar, e outra normal ao movimento com norma $(\sigma')^2(t)\kappa(\sigma(t))$. Podemos também definir:

$$R(s) := \frac{1}{\kappa(s)}$$

2

De forma que a norma da parte normal ao movimento ficará:

$$\frac{(\sigma')^2(t)}{R(\sigma(t))} \quad \left(=\frac{v^2}{R}\right)$$

Tal função R é chamada de raio de curvatura, enquanto a componente da aceleração vetorial que é normal ao movimento é chamada de aceleração centrípeta.

Podemos obter uma expressão para $\sigma''(t)$ multiplicando a equação (14) escalarmente por T(s). Vem:

$$\sigma''(t) = \frac{\gamma''(t) \cdot \gamma'(t)}{||\gamma'(t)||}$$
(15)

De semelhante modo, podemos obter κ , N, B e τ apenas em termos de γ e suas derivadas. Isto é muito útil, pois torna desnecessário reparametrizações por comprimento de arco (que na prática, é, em geral, bem complicado). Multiplicando vetorialmente a equação (14) por $\gamma'(t) = \sigma'(t)T(\sigma(t))$:

$$\gamma'(t) \wedge \gamma''(t) = (\sigma')^3(t)\kappa(\sigma(t))(T(s) \wedge N(s)) \implies ||\gamma'(t) \wedge \gamma''(t)|| = (\sigma')^3(t)\kappa(\sigma(t)) \tag{16}$$

Pois $T \wedge N = B$, que é unitário. Usando, por fim, a equação (2), concluiremos:

$$\kappa = \frac{||\gamma' \wedge \gamma''||}{||\gamma'||^3} \tag{17}$$

Diretamente por (14):

$$N = \frac{\gamma''(t) - \sigma''(t)T(\sigma(t))}{(\sigma')^2(t)\kappa(\sigma(t))}$$

Multiplicando o numerador e o denominador por $||\gamma'(t)||$ e usando (16):

$$N = \frac{||\gamma'||\gamma'' - \sigma''\gamma'}{||\gamma' \wedge \gamma''||} \tag{18}$$

Onde σ'' é dado por (15):

$$N = \frac{||\gamma'||^2 \gamma'' - (\gamma'' \cdot \gamma') \gamma'}{||\gamma'||||\gamma' \wedge \gamma''||}$$
(19)

2 O Teorema Fundamental

Definição 1. Uma função $M: \mathbb{R}^3 \to \mathbb{R}^3$ é dita ser um movimento rígido se existem funções $U: \mathbb{R}^3 \to \mathbb{R}^3$ e $T: \mathbb{R}^3 \to \mathbb{R}^3$ tais que U seja uma transformação linear ortogonal (isto é, $\langle U(v), U(w) \rangle = \langle v, w \rangle, \forall v, w \in \mathbb{R}^3$) cuja matriz possui determinante positivo, T seja uma translação (isto é, existe $p \in \mathbb{R}^3$ tal que $T(v) = v + p, \forall v \in \mathbb{R}^3$) e tal que $M = A \circ U$

Lema 2. Sejam $M: \mathbb{R}^3 \to \mathbb{R}^3$, $M = A \circ U$ um movimento rígido e $f: D \subset \mathbb{R} \to \mathbb{R}^3$ uma função diferenciável. Então $(M \circ f)' = U \circ f'$

Demonstração. $M \circ f$ é diferenciável. Usando a regra da cadeia (versão com matrizes jacobianas);

$$(M \circ f)'(x) = J_A(U(f(x)))J_U(f(x))J_f(x)$$
(20)

Onde as matrizes são escritas com relação a base canônica do \mathbb{R}^3 . Teremos que $J_A(p) = Id_3$ e que $J_U(p) = M_U$, $\forall p \in \mathbb{R}^3$, pois U é linear, onde M_U é a matriz que representa U. Daí, e identificando $J_f(x)$ com f'(x):

$$(M \circ f)'(x) = M_U f'(x) = U(f'(x)) = (U \circ f')(x)$$
(21)

Corolário 3. Sejam $\gamma: I \to \mathbb{R}^3$, I intervalo, uma curva parametrizada regular de classe C^{∞} e M um movimento rígido. Então o comprimento de arco, a curvatura e a torção de γ e $\tilde{\gamma} = M \circ \gamma$ são idênticos.

Demonstração. Primeiro, tome $f = \gamma$. Daí, pelo lema teremos que

$$(M \circ \gamma)' = U \circ \gamma' \implies ||(M \circ \gamma)'|| = ||U(\gamma'(t))|| = ||\gamma'(t)||$$

$$\implies \int_{t_0}^t ||(M \circ \gamma)'(u)|| du = \int_{t_0}^t ||\gamma'(u)|| du = s \tag{22}$$

(Pois U é ortogonal e portanto preserva normas). Que mostra que o comprimento de arco é invariante. Reparametrizando $M\circ\gamma$ por comprimento de arco:

$$(M \circ \gamma) \circ \sigma^{-1} = M \circ (\gamma \circ \sigma^{-1}) = M \circ \alpha$$

Com α definido como acima e pela associatividade da composição de funções. Novamente usando o lema (agora $f = \alpha$):

$$(M \circ \alpha)' = U \circ \alpha' = U \circ T \implies \tilde{T} = U \circ T \tag{23}$$

Além do mais, considerando $f = \alpha'$

$$(M \circ \alpha)'' = (U \circ \alpha')' = U \circ \alpha'' \implies \tilde{T}' = U \circ T'$$
(24)

$$\implies \widetilde{\kappa} = ||\widetilde{T}'|| = ||U \circ T'|| = ||T'|| = \kappa \tag{25}$$

O que prova que a curvatura é invariante por movimentos rígidos. Unindo os dois resultados:

$$\tilde{N}(s) = \frac{\tilde{T}'(s)}{||\tilde{T}'(s)||} = \frac{1}{||T'(s)||} U(T'(s))$$
(26)

Como U é linear:

$$\widetilde{N}(s) = U\left(\frac{T'(s)}{||T'(s)||}\right) = U(N(s)) \implies \widetilde{N} = U \circ N$$
 (27)

Agora, considere no lema f = N, daí:

$$N' = (U \circ N)' = U \circ N' \tag{28}$$

Por fim, note que

$$\tilde{B'} = \tilde{\tau}\tilde{N} \implies \tilde{\tau} = \tilde{B'} \cdot \tilde{N} = (\tilde{T} \wedge \tilde{N'}) \cdot \tilde{N}$$

Substituindo tudo:

$$\widetilde{\tau}(s) = [U(T(s)) \wedge U(N'(s))] \cdot U(N(s)) \tag{29}$$

Considerando que vale a relação $U(v) \wedge U(w) = U(v \wedge w)$ (pois U é ortogonal e det U > 0, teremos:

$$\widetilde{\tau}(s) = U(T(s) \land N'(s)) \cdot U(N(s)) = (T(s) \land N'(s)) \cdot N(s) = \tau(s)$$
(30)

Que completa a demonstração. A identidade usada acima será demonstrada no próximo lema:

Lema 4. Seja $v, w \in \mathbb{R}^3$ e U uma transformação linear ortogonal com determinante positivo (igual a 1) então vale que $U(v) \wedge U(w) = U(v \wedge w)$

Demonstração. Nesta demonstração será usado extensivamente que o produto interno é invariante por U, sem declarar explicitamente.

- a) (norma) Sendo θ o ângulo entre v e w, temos que $||v \wedge w|| = ||v||||w||sen\theta \implies ||v \wedge w||^2 = ||v||^2||w||^2(1-\cos^2\theta) = \langle v,v\rangle\langle w,w\rangle \langle v,w\rangle \implies ||U(v\wedge w)|| = ||v\wedge w|| = \sqrt{\langle v,v\rangle\langle w,w\rangle \langle v,w\rangle^2} = \sqrt{\langle U(v),U(v)\rangle\langle U(w),U(w)\rangle \langle U(v),U(w)\rangle^2} = ||U(v)\wedge U(w)||.$
- b) (sentido) Observe que $U(v \wedge w)$ é ortogonal a ambos U(v) e U(w), pois $\langle U(v \wedge w), U(v) \rangle = \langle v \wedge w, v \rangle = 0$ e $\langle U(v \wedge w), U(w) \rangle = \langle v \wedge w, w \rangle = 0$, já que o produto vetorial de v e w é ortogonal a ambos v e w. Assim, $U(v \wedge w)$ tem a mesma direção de $U(v) \wedge U(w)$, faltando apenas checar o sentido. Para tal, defina a função $f: \mathbb{V}^3 \to \mathbb{R}$ por

$$f(a,b,c) = det(U(a), U(b), (U(c)))$$

Onde $\mathbb{V} = \mathbb{R}^3$ Sendo $\lambda \equiv f(e_1, e_2, e_3)$, onde e_i é o i-ésimo vetor unitário da base canônica de \mathbb{R}^3 , note que vale que $g(a,b,c) = \lambda.det(a,b,c)$ é uma forma trilinear alternada cujo valor em (e_1,e_2,e_3) é igual ao valor de f na mesma tripla. Como formas trinileares alternadas são univocamente determinadas pelo seu valor em algum vetor da base canônica, deve ser f = g, e portanto vale $det(U(a),U(b),(U(c)) = \lambda det(a,b,c)$. Pondo $a = e_1,b = e_2$ e $c = e_3$,

vem que deve ser $\lambda = det(U)$, da onde, finalmente, det(U(a), U(b), U(c)) = det(U)det(a, b, c) = det(a, b, c), já que det(U) = 1, por hipótese.

Finalmente, note que a base $(U(v \land w), U(v), U(w))$ é positiva, pois $det(U(v \land w), U(v), U(w)) = det(v \land w, v, w) > 0$, já que $(v \land w, v, w)$ é uma base positiva. Isso prova que $U(v \land w) = U(v) \land U(w)$, pois a base dada é positiva e a sua norma é igual à norma de $U(v) \land U(w)$. A asserção segue diretamente da definição do produto vetorial.

A seguir demonstraremos a unicidade do teorema fundamental:

Demonstração. Queremos provar que, dadas funções κ e τ satisfazendo as hipóteses do teorema (1), então haverá apenas uma função cuja curvatura e torção as satisfaça, a menos de um movimento rígido. Mais precisamente, iremos demonstrar que, se houver duas curvas (α e β) satisfazendo as funções, então existirá um movimento rígido M tal que $M \circ \beta = \alpha$. (Note que estamos supondo a existência de no mínimo uma α . A demonstração de tal existência exige o Teorema de Picard e será tratada adiante).

Seja s_0 um ponto de I, com I intervalo e domínio de α e β . Agora, seja U uma transformação linear ortogonal de determinante positivo tal que leve o triedro de Frenet de β em s_0 para o triedro de Frenet de α em s_0 , (T_0, N_0, B_0) . Tal U existe. Além disso, defina $A: \mathbb{R}^3 \to \mathbb{R}^3$, $A(x) = x + \alpha(s_0) - U(\beta(s_0))$. A função A é uma translação e note que $A(U(\beta(s_0))) = \alpha(s_0)$. Isto é, definindo $M := A \circ U$ e $\widetilde{\alpha} := M \circ \beta$, valerá:

$$M \circ \beta(s_0) = \widetilde{\alpha}(s_0) = \alpha(s_0) \tag{31}$$

$$\widetilde{T}(s_0) = T(s_0) \tag{32}$$

$$\widetilde{N}(s_0) = N(s_0) \tag{33}$$

$$\widetilde{B}(s_0) = B(s_0) \tag{34}$$

Dadas estas relações como hipóteses, nosso objetivo agora é provar que $M \circ \beta(s) = \alpha(s) \forall s \in I$.

Para tanto, utilizaremos as equações de Frenet de α e $\widetilde{\alpha}$. A partir daqui iremos escrever todas as funções relacionadas com a curva $\widetilde{\alpha}$ com \sim , para diferenciar das funções relacionadas a curva α Pelo Lema 2, teremos que $\widetilde{s} = s$, $\widetilde{\kappa} = \kappa$, $\widetilde{\tau} = \tau$, o que nos permite escrever:

$$T' = \kappa N \qquad \qquad \widetilde{T}' = \kappa \widetilde{N}$$

$$N' = -\kappa T - \tau B \qquad \widetilde{N}' = -\kappa \widetilde{T} - \tau \widetilde{B}$$

$$B' = \tau N \qquad \qquad \widetilde{R}' = \tau \widetilde{N}$$
(35)

Tendo tais relações em vista, teremos:

$$\begin{split} \frac{1}{2}\frac{d}{ds}\left(||T-\widetilde{T}||^2+||N-\widetilde{N}||^2+||B-\widetilde{B}||^2\right) \\ &=\langle T-\widetilde{T},T'-\widetilde{T}'\rangle+\langle N-\widetilde{N},N'-\widetilde{N}'\rangle+\langle B-\widetilde{B},B'-\widetilde{B}'\rangle \\ &=\kappa\langle T-\widetilde{T},N-\widetilde{N}\rangle+\tau\langle B-\widetilde{B},N-\widetilde{N}\rangle-\kappa\langle N-\widetilde{N},T-\widetilde{T}\rangle-\tau\langle N-\widetilde{N},B-\widetilde{B}\rangle \end{split}$$

Pela simetria do produto interno, tal derivada se iguala a zero, para todo s, donde vem que a expressão dentro dos parênteses é constante. Para sabermos qual é essa a constante, precisamos saber seu valor em um ponto. Ora, das equações 29 a 31 vemos que para $s=s_0$ teremos que a função assume o valor zero, logo, é identicamente nula. Segue daí que os triedros de Frenet de α e $\widetilde{\alpha}$ serão sempre iguais, mais explicitamente: $T(s) = \widetilde{T}(s)$, $N(s) = \widetilde{N}(s)$, $B(s) = \widetilde{B}(s)$, $\forall s \in I$. Agora basta ver que estas igualdades implicam que α e $\widetilde{\alpha}$ sejam de fato idênticas.

Considere a seguinte derivada:

$$\frac{d}{ds}(\alpha - \widetilde{\alpha}) = \frac{d}{ds}\alpha - \frac{d}{ds}\widetilde{\alpha} = T - \widetilde{T}$$

Como provado acima, $T = \widetilde{T}$, donde a derivada acima é nula e a função $\alpha - \widetilde{\alpha}$ é constante. Analisando esta função no ponto s_0 , sabemos que $\alpha(s_0) = \widetilde{\alpha}(s_0) \implies \alpha(s_0) - \widetilde{\alpha}(s_0) = 0$. Segue então que $\alpha(s) = \widetilde{\alpha}(s_0), \forall s \in I$, como queríamos demonstrar.

Lema 5. (ponto fixo de Banach) Seja (M,d) um espaço métrico completo (e não-vazio). Seja $f: M \to M$ uma aplicação tal que exista uma constante $c \in [0,1[$ de forma que valha a relação:

$$d(f(x), f(y)) < cd(x, y), \forall x, y \in M$$

 $(tal\ função\ \'e\ dita\ ser\ uma\ contração\ uniforme).\ Então,\ existe\ um\ \'unico\ ponto\ x^*\in M\ tal\ que\ f(x^*)=x^*$

$$Demonstração$$
.