1 Mouvements

1.1 Mouvement Rectiligne

Mouvement d'un corps sur une trajéctoire réctiligne.

Uniforme (MRU)

$$\begin{cases} v = \text{const} \\ x = x_0 + v \cdot t \end{cases}$$

- x Position [m] x_0 Position initiale [m] t Temps [s]

Uniformément Accéléré (MRUA)

$$\begin{cases} a = \text{const} \\ v(t) = v_0 + a \cdot t \\ x(t) = x_0 + v_0 \cdot t + \frac{a \cdot t^2}{2} \end{cases}$$

- a Accélération $[m/s^2]$ v_0 Vitesse initiale [m/s]

Mouvement Circulaire

Mouvement d'un corps autour d'un point de rotation (trajectoire circulaire).

Uniforme (MCU)

$$\begin{cases} \omega = \text{const} \\ \omega = \frac{\Delta \theta}{\Delta t} \\ \theta = \omega \cdot t + \theta_0 \end{cases}$$

- $\begin{array}{c|c} \omega & \text{Vitesse angulaire } [rad/s] \\ \theta & \text{Angle } [rad] \\ \theta_0 & \text{Angle initial } [rad] \\ t & \text{Temps } [s] \end{array}$

Uniformément Accéléré (MCUA)

$$\begin{cases}
\alpha = \text{const} \\
\omega = \omega_0 + \alpha \cdot t
\end{cases}$$

$$\theta = \theta_0 + \omega \cdot t + \frac{\alpha \cdot t^2}{2}$$

$$V = \omega \cdot r$$

$$a_c = \frac{V^2}{r} \text{ OU } \omega^2 \cdot r$$

$$F_c = m \cdot a_c$$

- r Rayon [m]
- α Accélération angulaire $[rad/s^2]$
- ω_0 Vitesse angulaire initiale [rad/s]
- Vitesse tangantielle [m/s]
- a_c Accélération centripète $[m/s^2]$
- Force centripète [N]

Balistique 2

Au sommet de la courbe: $v_y(t) = 0$

2.1 Equations du mouvement

Acceleration

$$\begin{cases} a_x = 0 \\ a_y = -g \end{cases}$$

Vitesse

$$\begin{cases} v_x(t) = v_0 \cdot \cos \alpha \\ v_y(t) = v_0 \cdot \sin \alpha + a_y \cdot t \end{cases}$$

Position

$$\begin{cases} x(t) = x_0 + v_0 \cdot \cos \alpha \cdot t \\ y(t) = y_0 + v_0 \cdot \sin \alpha \cdot t + \frac{a \cdot t^2}{2} \end{cases}$$

Equations annexes

A utiliser avec précautions, ne s'appliquent pas dans tous les cas.

Portée

rtée
$$\begin{cases} p = \frac{v_0^2 \cdot \sin(2 \cdot \alpha)}{a_y} & \text{Si } y_0 = 0 \\ p = \text{résoudre } \begin{cases} y(t) = 0 \\ x(t) = n \end{cases} \text{pour } n & \text{Si } y_0 \neq 0 \end{cases}$$
 Vitesse Résultante
$$v_i(t) = \sqrt{v_y(t)^2 + v_x(t)^2}$$

$$y_{\text{max}} = \frac{(v_0 \cdot \sin \alpha)^2}{2 \cdot a_y} + y_0$$

$$v_i(t) = \sqrt{v_y(t)^2 + v_x(t)^2}$$

Les unités sont identiques aux unités de la section MRUA

3 Newton

3.1 Lois de Newton

1^{ere} loi de Newton

Tout corps dont la somme des forces est nulle est soit au repos, soit animé d'un mouvement rectiligne uniforme non accéléré.

2^{ème} loi de Newton

L'altération du mouvement est proportionnelle à la force qui lui est imprimée ; et cette altération se fait en ligne droite dans la direction de la force.

$$F = m \cdot a$$
$$a = \frac{\sum F}{\sum m}$$

3^{ème} loi de Newton

Pour chaque action, il existe une réaction égale et opposée.

$$\sum \overrightarrow{F} = 0$$

Lois dérivées

Tirer un objet sur une pente

Système de poulies

Forces de retenue et de traction

$$\frac{\sum F_t - \sum R_r - F_g}{\sum m} \left| F_g = m \cdot g \cdot \sin \alpha \right|$$

notes

$$\alpha = \tan^{-1}(\text{pente}_{\text{en }\%})$$

$$a = \frac{\sum F_n - \sum R_n}{\sum m_n}$$

$$= \frac{g \cdot (m_1 + m_2 - m_5) - R_3}{|m_1| + |m_2| + |m_3| + |m_4| + |m_5|}$$

Variables

$$F_n = m_n \cdot g$$

$$R_n = \text{Résistance sur la masse } n$$

notes

 F_n est nulle si l'objet n'est pas en suspension (ex m_4) Les masses qui ne sont pas en suspension et qui n'exercent pas de frottent sont tout de même comptées dans la somme des masses $(\sum m_n)$

$$F_t - F_g - F_r = \sum_{m \cdot a} m \cdot a$$
$$F_g = \sum_{m \cdot g} m \cdot g \cdot \sin \alpha$$

notes

La somme des masses est dépendant du sous-système choisi.

3.2 Gravitation Universelle

Loi de la Gravitation universelle

Deux corps quelconques s'attirent de manière proportionelle à leur masse et inversément proportionnelle au carré de leur distance.

$$F_G = G \cdot \frac{m_1 \cdot m_2}{d^2}$$

 F_G Force de gravitation [N]

G Gravitation universelle $[N/m^2/kg]$

 6.67×10^{-11}

 m_i Masse [Kg]

d Distance entre des corps [Km]

Gravitation d'un corps

Cette loi peut être dérivée lorsqu'un objet est suffisamment proche d'un corps de masse et taille beaucoup plus importantes. Le corps plus petit devient donc insignifiant.

$$F_G = G \cdot \frac{m}{r^2}$$

Attraction entre deux champs de gravité

Une autre dérivation de cette loi peut s'appliquer lorsqu'un objet est soumis à deux champs de gravité distincts. Cette dérivation permet d'obtenir la direction et la vitesse avec laquel le corps au milieu se dirige.

$$\begin{cases} F = G \cdot \left(\frac{m_1 \cdot m_2}{d_1^2} - \frac{m_3 \cdot m_2}{d_2^2}\right) \\ F = m_2 \cdot a \end{cases}$$

Équilibre d'attraction

Lorsque l'objet se trouve à l'équilibre, l'accélération vaut 0. La formule peut donc être modifiée.

$$\frac{m_1 \cdot m_2}{d_1^2} = \frac{m_3 \cdot m_2}{d_2^2}$$

Rapport des distances et des masses

$$\frac{d_1^2}{d_2^2} = \frac{m_1}{m_3}$$

3.3 Mise en orbite

Pour qu'un objet soit en orbite géosynchrone la force de gravité doit être égale à la force centripète.

$$F_g = F_c$$

$$\omega = \frac{\text{Angle parcouru [rad]}}{\text{Temps [s]}}$$

Generalisation

$$G \cdot \frac{M_p \cdot M_o}{d^2} = M_o \cdot \omega^2 \cdot d$$
$$G \cdot M_p = \omega^2 \cdot d^3$$
$$d = r_p + alt$$

 M_p Masse de la planète [Kg]

 M_o Masse de l'objet [Kg]

d Distance entre les corps [m]

 r_p Rayon de la planète [m]

alt Altitude [m]

notes

 ω est equivalent a celui de la planète en orbite dans le cas d'une orbite géosynchrone

Nombre de passages au dessus d'un point pour une période donnée

$$\omega_0 = \frac{2\pi \cdot (n \pm 1)}{t}$$

$$= \omega_p \cdot (n \pm 1) \tag{1}$$

 ω_o Vitsees angulaire de l'objet [rad/s]

 $\omega_p \quad \omega$ de la planète [rad/s]

n Nombre de tours

t Temps [s]

Sens identiques: n+1Sens contraires: n-1

notes

(1) Passage sur un point

4 Statique

La statique est l'étude des forces sur un système à l'équilibre, la somme de ses forces est donc nulle.

$$\sum \vec{F} = 0$$

Les forces sont considérées comme des vecteurs est s'additionnenet donc comme tels.

4.1 Moment de Force

Lorsqu'une force est appliquée sur un corps attaché à un axe de rotation, cette force produit un moment de force dont l'effet est propotionnel à la distance par rapport au centre de rotation et est mitigé par l'angle en fonction du corps.

$$\begin{cases} F_{\perp} = F \cdot \sin \alpha \\ M = F_{\perp} \cdot d \end{cases}$$

$$\sum M = 0$$

M Moment de force

 F_{\perp} Force perpendiculaire [N]

 \overline{F} Force [N]

 α Angle de la force [deg]

4.2 Système de forces

Equilibre

$$\begin{cases} R_x = \sum F_n \cdot \cos \alpha_n \\ R_y = \sum F_n \cdot \sin \alpha_n \end{cases}$$

R Force résultante F_n Force en jeu

4.3 Centre de gravité

$$m = S \cdot d \tag{1}$$

$$p = \sum m$$

$$G_x = \frac{\sum (m_n \cdot x_n)}{p}$$

$$G_y = \frac{\sum (m_n \cdot y_n)}{p}$$

m Masse [Kg]

Surface $[m^2]$

d Masse superficique $[Kg/m^2]$

p Masse du système [Kg]

 G_x et G_y Coordonnée du centre de gravité [m]

notes

(1) Le calcul $m = S \cdot d$ n'est pas applicable dans toutes les situations.

5 Energie & Puissance

5.1 Energie mécanique

Travail de force

$$\begin{split} W &= F \cdot \ell \\ &= F_{\parallel} \cdot \ell \\ &= F \cdot \sin \alpha \cdot \ell \\ &= F \cdot \cos \beta \cdot \ell \end{split}$$

W Travail de force [J]

F Force [N]

 ℓ Distance [m]

 $\alpha \beta$ Angle [Deg]

Formules dérivées

Tavail de force sur une pente

$$h = \sin \alpha \cdot d$$

$$W = h \cdot m \cdot g$$

$$d$$
 Distance [m]

m Masse du corps [kg]

5.2 Energie Cynétique & Potentielle

Théorème de l'énergie Cynétique

$$E_{\text{cin}_T} = \frac{1}{2} \cdot m \cdot v^2$$
$$\sum W_{AB} = E_{\text{cin}_B} - E_{\text{cin}_A}$$

$$E_{\text{cin}_T}$$
 Energie cinetique de translation [J]
 m Masse [N]
 W_{AB} Energie cynétique [N]

Energie Potentielle

$$E_{\text{pot}_G} = m_o \cdot g \cdot h$$

$$E_{\text{pot}_G} = -G \cdot m_p \cdot m_o \cdot \frac{1}{\Delta h} \quad (1)$$

 E_{pot_G} Energie potentielle de gravitation [J] m_o Masse objet [Kg] m_p Masse planète [Kg]

 Δh Diff. d'altitude [m] **notes**

(1) voir: Intégrations

Différence de potentiel

$$\Delta E_{\text{pot}_{AB}} = E_{\text{pot}_{B}} + E_{\text{pot}_{A}}$$

Intégrations

$$F(h) = G \cdot \frac{m_p \cdot m_o}{h^2}$$

$$E_{\text{pot}_G} = \int F(h) \, dh$$

$$\Delta E_{\text{pot}_{AB}} = \int_A^B F(h) \, dh$$

5.3 Puissance

Théorème

$$P = \frac{E}{t}$$
$$= \frac{F \cdot d}{t}$$
$$= F \cdot v$$

P Puissance [J/s = W(atts)]

E Energie [J]

 $t ext{ Temps [s]}$

F Force [N]

v Vitesse [m/s]

Rendement

$$Rendement = \frac{E_{\text{Utile}}}{E_{\text{Fournie}}} = \frac{P_{\text{Utile}}}{P_{\text{Fournie}}}$$

$$\begin{aligned} \text{Perte} &= E_{\text{Fournie}} - E_{\text{Utile}} \\ &= P_{\text{Fournie}} - P_{\text{Utile}} \end{aligned}$$

Sonique 6

Intensité et Décibels 6.1

$$\beta = 10 \cdot \log_{10} \left(\frac{I}{I_0} \right)$$

Décibels [db] Intensité $[W/m^2]$ Seuil d'audition (10^{-12}) $[W/m^2]$

6.2Relations avec la pression

$$I = \frac{(\Delta p)^2}{2 \cdot \rho \cdot V_{\text{son}}}$$
$$\beta = 20 \cdot \log_{20} \left(\frac{\Delta p}{\Delta p_0}\right)$$

Amplitude (différence) de pression [Pa]

Masse volumique du milieu $[kg/m^3]$

Vitesse du son (dans l'air: 344 [m/s])

Décibels [db]

Intensité $[W/m^2]$

Autre formules

$$\frac{I_2}{I_1} = 10^{\frac{\beta_2 - \beta_1}{10}}$$
$$\Delta\beta = 10 \cdot \log_{10}(\Delta n)$$

Diffèrence de décibels

Nombre de sources supplémentaires

6.3 Dispersion sans amortissement

Vue latéral

$$I_1 \cdot S_1 = I_2 \cdot S_2$$
$$I_1 \cdot r_1^2 = I_2 \cdot r_2^2$$

$$\frac{I_2}{I_1} = \frac{S_1}{S_2}$$

$$\frac{I_2}{I_1} = \left(\frac{r_1}{r_2}\right)^2$$

Intensité $[W/m^2]$

Surface de dispersion $[m^2]$

Rayon de dispersion [m]

7 Transfert de chaleur

Théorème

$$\sum Q = 0$$

$$Q_n = m \cdot c \cdot \Delta \theta$$
 Ch. température
= $m \cdot L$ Ch. état

 Q_n Energie [J]

 $\Delta \theta$ Diff. de temperature [°C]

m Masse [kg]

c Chaleur specifique [J/kg/°C]

L Chaleur latente de transformation [J/kg]

7.1 Formules dérivées

Equilibre de temperature

Pour obtenir un équilibre de température, il faut que l'énergie cédée par les corps chauds soit absorbée par les corps froids.

$$\sum$$
énergie cédée = \sum énergie absorbée

Source d'énergie externe

Lorsqu'un système est alimenté par une source d'énergie externe, il l'absorbe entièrement excepté les éventuelles pertes.

$$\sum E_{\rm reçue} - \sum E_{\rm perte} = \sum Q$$

Changement d'etat

 T_1 Température initiale [°C]

 T_2 Température finale [°C]

$$\Delta Q = m \cdot [c_{\text{glace}} \cdot (0 - \theta_1) + L_{\text{fusion}} + c_{\text{eau}} \cdot (\theta_2 - 0)]$$

Contents

1	Mouvements 1.1 Mouvement Rectiligne	1 1 1
2	Balistique 2.1 Equations du mouvement	2
3	Newton3.1 Lois de Newton3.2 Gravitation Universelle3.3 Mise en orbite	3 5 7
4	Statique4.1 Moment de Force4.2 Système de forces4.3 Centre de gravité	8 9 10
5	5.1 Energie mécanique	11 12 13
6	6.1 Intensité et Décibels	14 14 14 14
7		1 5 15

Contributeurs

Jeremy David

sti34a 2013, http://github.com/ltouroumov, ltouroumov@gmail.com

Kevin Wenger

sti34a 2013, http://github.com/sudei

Timothée Moulin

sti34a 2013, http://github.com/tehem

Vincent Kobel

sti34a 2013