

Chap. 9 – Mécanismes réactionnels

1. Mécanisme en une seule étape

a. Ordre de réaction

Si le mécanisme comporte une seule étape, alors la réaction admettra un ordre qui sera l'ordre de l'étape élémentaire.

Par exemple,

- \Rightarrow mécanisme bimoléculaire (dite SN2) : une seule étape de vitese v = k [CH₃S⁻][R-Cl]
- \Rightarrow La vitesse de cette réaction est donc v = k [CH₃S⁻][R-Cl]

1. Mécanisme en une seule étape

a. Ordre de réaction

Attention les ordres partiels peuvent être différents pour chaque réactif :

1. Mécanisme en une seule étape

b. Profil énergétique

L'Etat de transition correspond au maximum sur le profil d'énergie de l'étape élémentaire

C'est un état

<u>instable</u> (sommet d'une « montagne russe ») et <u>transistoire</u> (durée de vie nulle)

A ce stade de la réaction, certaines liaisons sont partiellement cassées, d'autres partiellement formées

2. Réaction équilibrée

2 étapes élémentaires :

A $\xrightarrow{k_1}$ B

De vitesse $v_1 = k$ [A]

B k_{-1} A

De vitesse $v_{-1} = k$ [B]

Si on part de A pur, le système va évoluer jusqu'à atteindre la proportion prévue par la constante d'équilibre K.

Réaction équilibrée

hypothèse: ordre 1 dans les 2 sens

$$\frac{d[A]}{dt} = k_{-1}([A]_0 - [A]) - k_1[A]$$

$$\frac{d[A]}{dt} = k_{-1}[A]_0 - (k_{-1} + k_1)[A]$$

$$[A] = \frac{k_{-1} + k_1 e^{-(k_1 + k_{-1})t}}{k_1 + k_{-1}} [A]_0 \quad \text{(démonstration non exigible)}$$

2. Réaction équilibrée

 $[B]_{eq}$

[A]_{ec}

$$K = \frac{[B]_{eq}}{[A]_{eq}}$$

Que vaut $\frac{d[A]}{dt}$

 $\frac{1[A]}{1}$ à l'équilibre?

2. Réaction équilibrée

A l'équilibre, on ne voit plus d'évolution du système donc

$$\frac{\mathrm{d}[A]}{\mathrm{d}t} = 0$$

Mais, <u>les 2 réactions continuent à se produire dans les 2 sens</u> Les vitesses dans le sens 1 et -1 se compensent :

$$\frac{d[A]}{dt} = v_{-1} - v_1 = 0$$

$$k_{-1}[B]_{eq} = k_1[A]_{eq}$$

$$K = \frac{[B]_{eq}}{[A]_{eq}} = \frac{k_1}{k_{-1}}$$

Au final il y a un lien entre la constante d'équilibre K et les paramètres cinétiques :

3. Réaction en plusieurs étapes

Cas d'une réaction en 2 étapes :

• Profil énergétiques :

Réaction en plusieurs étapes

Un intermédiaire réactionnel est un minimum relatif sur le profil d'énergie potentielle.

Contrairement à l'ET, c'est une espèce

- -que l'on peut observer (par spectroscopie...)
- -que l'on peut isoler

Même si certains intermédiaires ont une durée de vie très courte.

Profil énergétiques :

3. Réaction en plusieurs étapes

$$A \xrightarrow{k_1} I \xrightarrow{k_2} P$$
étapes élémentaires,
Le bilan est A -> P

A intervient seulement dans la première étape

$$\frac{-d[A]}{dt} = vitesse de l'étape 1 = k_1[A]$$

I est produit par la première étapeet consommé par la deuxième étape

$$\frac{d[I]}{dt} = vitesse \ de \ l'étape \ 1 - vitesse \ de \ l'étape \ 2$$
$$= k_1[A] - k_2[I]$$

P intervient seulement dans la première étape

$$\frac{d[P]}{dt} = vitesse \ de \ l'étape \ 2 = k_2[I]$$

3. Réaction en plusieurs étapes

$$A \xrightarrow{k_1} I \xrightarrow{k_2} P$$
étapes élémentaires

(démonstration non exigible)

$$\frac{-\operatorname{d}[A]}{\operatorname{d}t} = k_1[A]$$

$$\frac{\operatorname{d}[I]}{\operatorname{d}t} = k_1[A] - k_2[I]$$

$$\frac{\operatorname{d}[P]}{\operatorname{d}t} = k_2[I]$$

s'intègre en ...
$$[A] = [A]_0 e^{-k_1 t}$$

$$[I] = k_1 \left(\frac{e^{-k_1 t} - e^{-k_2 t}}{k_2 - k_1}\right) [A]_0$$

$$[P] = \left(1 + \frac{k_1 e^{-k_2 t} - k_2 e^{-k_1 t}}{k_2 - k_1}\right) [A]_0$$

3. Réaction en plusieurs étapes

Avec [A]₀ = 1 et des constantes de vitesses quasi égales, 0,1

On trace la courbe suivante

L'intermédiaire se forme, sa concentration atteint un maximum, puis décroit au profit de la formation de P

3. Réaction en plusieurs étapes

Avec $\underline{\mathbf{k}}_{\underline{1}} >> \underline{\mathbf{k}}_{\underline{2}}$

$$[P] = (1 + \frac{k_1 e^{-k_2 t} - k_2 e^{-k_1 t}}{k_2 - k_1})[A]_0$$
négligeable $k_2 - k_1$

$$[P] \approx (1 - e^{-k_2 t})[A]_0$$

3. Réaction en plusieurs étapes

Avec $\underline{\mathbf{k}}_{\underline{1}} >> \underline{\mathbf{k}}_{\underline{2}}$

Etape cinétiquement déterminante (ECD)

$$[P] = (1 + \frac{k_1 e^{-k_2 t} - k_2 e^{-k_1 t}}{k_2 - k_1})[A]_0$$
La vitesse de for

$$[P] \approx (1 - e^{-k_2 t})[A]_0$$

La vitesse de formation de P est fixée par la deuxième étape (l'étape lente)

3. Réaction en plusieurs étapes

Avec $\underline{k}_1 << \underline{k}_2$

$$[P] = (1 + \frac{k_1 e^{-k_2 t} - k_2 e^{-k_1 t}}{k_2 - k_1})[A]_0$$
négligeable

$$[P] \approx (1 - e^{-k_1 t})[A]_0$$

16

3. Réaction en plusieurs étapes

$$[P] = (1 + \frac{k_1 e^{-k_2 t} - k_2 e^{-k_1 t}}{k_2 - k_1})[A]_0$$

La vitesse de formation de P est fixée par $[P] \approx (1 - e^{-k_1 t})[A]_0$ la première étape (l'étape lente)

4. Etape déterminant la vitesse de réaction

La notion d'étape cinétiquement déterminante peut être généralisée à <u>un</u> <u>mécanisme par stade</u> ayant plus de 2 étapes

L'étape la plus lente va fixer la vitesse de réaction soit parce que sa constante k est la plus petite soit parce qu'elle implique une espèce de concentration très faible

L'étape cinétiquement déterminante peut varier au cours de la réaction

4. Etape déterminant la vitesse de réaction

Nous avons appris que cette réaction se déroule en deux étapes (cf vidéo)

- -formation d'un carbocation
- -réaction du carbocation sur HO

En supposant que <u>la formation du carbocation</u> <u>est l'ECD</u> (« étape difficile »)

$$v = v$$
 (étape 1) = $k[^tBuCl]$

car seul ^tBuCl participe à cette étape de molécularité 1

I- Approximation de l'état quasi stationnaire (AEQS)

Soit I un intermédiaire réactionnel :

- I n'intervient pas l'équation-bilan
- I est très réactif (réactivité de I très grande; I facilement consommé et difficilement formé)
- Pour des instants dépassant les premiers instants de la réaction (période d'induction)

Approximation des Etats Quasi-Stationnaires (AEQS) ou Principe de Bodenstein :

Attention, l'AEQS n'est appliquable que si I est un intermédiaire réactionnel très réactif : I doit avoir une durée de vie très courte.

I- Approximation de l'état quasi stationnaire (AEQS)

Méthode AEQS appliquée à l'exemple d'une réaction de type SN1

Equation globale de la réaction <u>de vitesse v</u>: $R - Br + HO \rightarrow R - OH + Br$

Mécanisme :

$$\acute{e}tape~(1)$$
 R − Br \leftrightarrows R⁺ + Br de constantes de vitesse k₁ dans le sens direct et k₋₁ dans le sens inverse $\acute{e}tape~(2)$ R⁺ + HO⁻ \rightarrow R − OH de constante de vitesse k₂

Expression des v_i

$$v_1 = k_1 \cdot [R - Br]$$
 $v_2 = k_2 \cdot [R^+] \cdot [HO^-]$

Expression de la vitesse globale en fonction des v_i :

Choisissons R – OH par exemple car il n'intervient qu'une fois dans l'étape (2) \Rightarrow v = v_2

Inventaire des I_R et AEQS

Un seul
$$I_R : R^+$$

Appliquons A.E.Q.S. à $R^+ \Rightarrow \frac{d[I_R]}{dt} = v_1 - v_{-1} - v_2 = 0$

On remplace $v_1 v_2$ et v_2 par leurs expressions, ce qui donne :

$$[R^+] = \frac{k_1[RBr]}{k_{-1}[Br^-] + k_2[HO^-]}$$

On reporte dans l'expression
$$v = v_2 = k_2 [R^+] [HO^-] \Rightarrow \text{finalement} v = \frac{k_1 k_2 [RBr][HO^-]}{k_{-1} [Br^-] + k_2 [HO^-]}$$