# **LOI BINOMIALE – TP CALCULATRICE :** X suit $\mathcal{B}(n; p)$ :

$$p(X=k) = \binom{n}{k} p^k q^{n-k} = \frac{n!}{k!(n-k)!} p^k q^{n-k}$$
 avec  $0 \le k \le n$ 

- I. Exemples.
- **1.1 Exemple 1**: X suit  $\mathcal{B}(10;0,3)$ , combien vaut P(X=4)?
- Par le calcul:  $p(X = 4) = {10 \choose 4} 0.3^4 \times 0.7^{10-4} \approx 0.2001$
- > Avec le menu statistique :

Menu STAT; DIST; BINM; Bpd et on saisit l'écran suivant :



qui donne

| Binomial P.D<br>p=0.20012094 |
|------------------------------|
|                              |
|                              |

- **1.2 Exemple 2 :** X suit  $\mathcal{B}(10;0,3)$ , combien vaut P(X < 4) ?
- ➤ Par le calcul: p(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) $p(X < 4) = {10 \choose 0} 0,3^{0} \times 0,7^{10} + {10 \choose 1} 0,3^{1} \times 0,7^{9} + {10 \choose 2} 0,3^{2} \times 0,7^{8} + {10 \choose 3} 0,3^{3} \times 0,7^{7}$   $p(X < 4) \approx 0,6496$
- > Avec le menu statistique :

Menu STAT; DIST; BINM; Bcd et on saisit l'écran suivant :



qui donne



- **1.3 Exemple 3**: X suit  $\mathcal{B}(10;0,3)$ , combien vaut  $P(2 \le X \le 5)$ ?
- Par le calcul:  $p(2 \le X \le 5) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$   $p(2 \le X \le 5) = {10 \choose 2} 0.3^2 \times 0.7^8 + {10 \choose 3} 0.3^3 \times 0.7^7 + {10 \choose 4} 0.3^4 \times 0.7^5 + {10 \choose 5} 0.3^5 \times 0.7^5$  $p(2 \le X \le 5) \approx 0.8033$
- ➤ 1<sup>ère</sup> méthode : dans une cellule vide ; OPTN ; F6 ; F6 ; STAT ; DIST ; BINM ; Bcd et on saisit la formule suivante : BinomialCD(5,10,0.3)- BinomialCD(1,10,0.3)

BinomialCD(1,10,0.3) correspond à  $p(X \le 1)$  et  $p(2 \le X \le 5) = p(X \le 5) - p(X \le 1)$ 

#### https://github.com/KELLERStephane/QCM-maths-physique-chimie



➤ 2<sup>ème</sup> méthode : avec le menu statistique :

On saisit les valeurs de  $x_i$  dans la liste 1 :



Menu STAT; DIST; BINM; Bpd et on saisit l'écran suivant:



qui donne



**Exit**; on se place dans une cellule de la liste 3; **OPTN**; **LIST**; **F6**; **Sum**; **List**; **2**; **EXE**.





> 3<sup>ème</sup> méthode : avec le menu statistique :

Menu STAT; DIST; BINM; Bcd et on saisit les écrans suivants:







| cup | LiSt      | ı  | LiSt | 2   | LiSt          | 3  | LiSt | 4         |
|-----|-----------|----|------|-----|---------------|----|------|-----------|
| SUB | 0.95      | 26 | 0.14 | 193 | 1.80          | ŧΕ |      | ٦         |
| 3   | 20, 10, 1 |    |      |     | 7,7370.0      |    |      |           |
| 4   |           |    | _ e  |     | 3 <u>03</u> : | 34 | 266  | <u>67</u> |
| GRI | H CA      | Щ  | TES  | Ų   | NTR.          | 01 | D C  | D_        |

- II. Loi de distribution et fonction de répartition de X.
- 2.1 Loi de distribution de X.

## https://github.com/KELLERStephane/QCM-maths-physique-chimie

Menu  $\overline{STAT}$ ; Saisir les valeurs de 0 à 5 dans la liste 1 ou alors utiliser la fonction SEQ (OPTN LIST – SEQ) : SEQ(X,X,0,5,1) en se plaçant en haut de la liste 1.



Sous-menu  $\boxed{\text{DIST}}$  ;  $\boxed{\text{BINM}}$  ;  $\boxed{\text{Bpd}}$  ; on saisit les valeurs cicontre ;  $\boxed{\text{EXE}}$ .



On obtient les résultats suivants.



Tous les résultats sont stockés, dans ce cas-là, dans les listes 1 et 2.



## 2.2 Fonction de répartition de X.

Sous-menu DIST; BINM; Bcd; on saisit les valeurs ci-contre; EXE.



On obtient les résultats qui sont stockés, dans ce cas-là, dans les listes 1 et 3.

#### 2.3 Tracé de la loi de distribution de X.

Sous-Menu GRPH; SET; on saisit les paramètres cicontre; EXE; GPH1.



On saisit les paramètres ci-contre



On obtient le graphique suivant.

