## **Z9**-III-1

Skupinka dětí si zorganizovala piškvorkový turnaj. Každý hrál s každým a celkem odehráli 136 zápasů. Z toho právě 66 zápasů bylo typu dívka-dívka nebo chlapec-chlapec. Kolik bylo ve skupině chlapců a kolik dívek?

(Bednářová)

ŘEŠENÍ. Uvažujme skupinu n hráčů. Každý s každým sehraje jedno utkání a nás zajímá celkový počet zápasů. Každý hráč bude hrát s n-1 soupeři, hráčů je n, tedy dohromady  $n \cdot (n-1)$ . Nyní si musíme uvědomit, že jsme každé utkání započítali dvakrát. Tedy jsme dokázali, že celkový počet všech zápasů ve skupině n hráčů je  $\frac{1}{2}n \cdot (n-1)$ .

Vytvoříme tabulku, ze které již snadno určíme řešení.

| počet hráčů $n$ | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15  | 16  | 17  |
|-----------------|---|---|---|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|
| počet zápasů    | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 | 45 | 55 | 66 | 78 | 91 | 105 | 120 | 136 |

Z tabulky je zřejmé, že celkem bylo ve skupině 17 dětí. Nyní už snadno dopočítáme řešení — buď bylo 7 chlapců a 10 dívek, nebo 10 chlapců a 7 dívek.

## **Z9**–**III**–2

Ve Squarelandu žijí pouze čtverce. Až na dvě výjimky tam každý z nich má dva přátele, z nichž jeden má obvod o 8 cm menší a druhý o 8 cm větší. Průměrný obsah squarelandského čtverce je  $116 \, \mathrm{cm}^2$ . Žádné dva čtverce nejsou shodné a obvod nejmenšího čtverce je roven délce strany největšího čtverce. Zjistěte:

- a) počet obyvatel ve Squarelandu,
- b) rozměry největšího a nejmenšího squarelandského čtverce,
- c) průměrnou délku "Squarelanďana".

(Bednářová)

Řešení. Označme a délku strany nejmenšího ze čtverců. Pak délky stran uvažovaných čtverců můžeme označit

$$a, a+2, a+4, \ldots, a+2t.$$

Vzhledem k podmínce

$$4 \cdot a = a + 2t$$

dostáváme

$$3a = 2t$$

neboli a je sudé.

1. a=2. Vypočítáme průměrný obsah (musí být  $116 \,\mathrm{cm}^2$ ).

$$\frac{2^2 + 4^2 + 6^2 + 8^2}{4} \neq 116 \,\mathrm{cm}^2.$$

2. a=4. Vypočítáme průměrný obsah (musí být  $116\,\mathrm{cm}^2$ ).

$$\frac{4^2 + 6^2 + 8^2 + 10^2 + 12^2 + 14^2 + 16^2}{4} = 116 \,\mathrm{cm}^2.$$

3. a = 6. Vypočítáme průměrný obsah (musí být  $116 \,\mathrm{cm}^2$ ).

$$\frac{6^2 + 8^2 + \dots + 22^2 + 24^2}{4} = 258 \,\mathrm{cm}^2.$$

Se zvětšujícím se a roste i průměrný obsah.

Na ostrově žije 7 obyvatel. Strana nejmenšího z nich měří  $4\,\mathrm{cm}$ , největšího  $16\,\mathrm{cm}$  a průměrná délka strany je  $10\,\mathrm{cm}$ .

## **Z9**–III–3

Na svých toulkách přírodou narazil profesor Hmyzík na nový druh brouka. Podle počtu jeho nožiček a tvaru jednotlivých článků ho nazval *Kuličkovec dvanáctinožkový*: každý článek tohoto brouka má tvar kuličky a z každého článku kromě prvního (hlavičky) vyrůstají dva páry nožiček. Navíc každý z článků má o 21 % větší průřez než článek za ním. Zjistěte přesnou délku brouka, pokud víte, že hlavička má poloměr 0,2662 cm.

(Bednářová)

Řešení. Příklad takového živočicha je na obrázku.



Hlavička: poloměr  $r_H=0.266\,2\,\mathrm{cm},$  tedy průměr je  $d_H=0.532\,4\,\mathrm{cm}.$ 

Vypočítejme ještě plochu průřezu hlavičky:

$$S_H = \pi r_H^2 = 0,22251 \,\mathrm{cm}^2.$$

První článek:

$$\begin{split} S_1 &= \frac{S_H}{1,21} = 0.183\,890\,96\,\mathrm{cm}^2, \\ r_1 &= \sqrt{\frac{S_1}{\pi}} = 0.242\,\mathrm{cm}^2, \quad d_1 = 0.484\,\mathrm{cm}. \end{split}$$

Druhý článek:

$$S_2 = \frac{S_1}{1,21} = 0.151\,976\,\text{cm}^2,$$
 
$$r_2 = \sqrt{\frac{S_2}{\pi}} = 0.22\,\text{cm}^2, \quad d_2 = 0.44\,\text{cm}.$$

Třetí článek:

$$S_3 = \frac{S_2}{1,21} = 0.125 \, 6 \, \text{cm}^2,$$
  $r_3 = \sqrt{\frac{S_3}{\pi}} = 0.2 \, \text{cm}, \quad d_3 = 0.4 \, \text{cm}.$ 

Celkovou délku d vypočteme jako součet délek jednotlivých článků:

$$d = d_H + d_1 + d_2 + d_3 = 0.5324 + 0.484 + 0.44 + 0.4 = 1.8564$$
 cm.

Kuličkovec dvanáctinožkový měří 1,8564 cm.

## **Z9-III-4**

Marta třídí trojúhelníky, jejichž strany vyjádřené v centimetrech jsou celá čísla, na vysoké, nízké a ostatní. Vysoký trojúhelník je takový pro který platí, že součet délek některých dvou stran rovná čtyřnásobku délky třetí strany. Nízký trojúhelník je takový v němž je součin délek některých jeho dvou stran dvojnásobkem délky třetí strany. Najděte

- a) všechny vysoké trojúhelníky, jejichž jedna strana měří 6 cm,
- b) všechny nízké trojúhelníky, jejichž jedna strana měří 6 cm,
- c) všechny trojúhelníky, jejichž jedna strana měří  $4\,\mathrm{cm}$  a jsou vysoké a nízké současně. (Dillingerová)

Řešení. a) Hledáme vysoké trojúhelníky (a + b = 4c) se stranou 6 cm.

•  $a = 6 \,\mathrm{cm}$ . Pak platí:

$$6 + b = 4c$$
.

K řešení můžeme použít tabulku (v posledním řádku vždy ověříme platnost trojúhelníkové nerovnosti)

| a        | 6  | 6   | 6  | 6  |    |
|----------|----|-----|----|----|----|
| c        | 2  | 3   | 4  | 5  |    |
| b        | 2  | 6   | 10 | 14 |    |
| výsledek | NE | ANO | NE | NE | NE |

• c = 6 cm. Pak platí:

$$a + b = 4 \cdot 6 = 24$$
.

K řešení můžeme použít tabulku (v posledním řádku vždy ověříme platnost trojúhelníkové nerovnosti)

| a        | 12  | 11  | 10  | 9  |       |
|----------|-----|-----|-----|----|-------|
| b        | 12  | 13  | 14  | 15 | • • • |
| c        | 6   | 6   | 6   | 6  |       |
| výsledek | ANO | ANO | ANO | NE | NE    |

- b) Hledáme nízké trojúhelníky  $(a \cdot b = 2c)$  se stranou 6 cm.
- $a = 6 \,\mathrm{cm}$ . Pak platí:

$$6b = 2c$$
, tj.  $3b = c$ .

K řešení můžeme použít tabulku (v posledním řádku vždy ověříme platnost trojúhelníkové nerovnosti)

| a        | 6  | 6   | 6  | 6  |    |
|----------|----|-----|----|----|----|
| b        | 1  | 2   | 3  | 4  |    |
| c        | 3  | 6   | 9  | 12 |    |
| výsledek | NE | ANO | NE | NE | NE |

•  $c = 6 \, \text{cm}$ .

Pak platí:

$$a \cdot b = 12$$
.

K řešení můžeme použít tabulku (v posledním řádku vždy ověříme platnost trojúhelníkové nerovnosti)

| a        | 1  | 2   | 3   |
|----------|----|-----|-----|
| b        | 12 | 6   | 4   |
| c        | 6  | 6   | 6   |
| výsledek | NE | ANO | ANO |

- c) Hledáme všechny trojúhelníky, jejichž jedna strana měří 4 cm a jsou vysoké a nízké současně.
  - 1. a + b = 4c,  $a \cdot b = 2c$ .
  - $a = 4 \, \text{cm}$ .

Pak platí:

$$4 + b = 4c, \quad 4b = 2c,$$

což nemá celočíselné řešení.

•  $c = 4 \,\mathrm{cm}$ .

Pak platí:

$$a+b=16$$
,  $a \cdot b=8$ ,

což nemá celočíselné řešení.

- 2. a + b = 4c,  $a \cdot c = 2b$ .
- $a = 4 \,\mathrm{cm}$ .

Pak platí:

$$4 + b = 4c, \quad 4c = 2b,$$

což dává řešení  $b=4\,\mathrm{cm},\,c=2\,\mathrm{cm}.$ 

•  $c = 4 \, \text{cm}$ .

Pak platí:

$$a + b = 16, \quad 4a = 2b,$$

což nemá celočíselné řešení.