Stručné shrnutí semináře 4

Histogram je odhadem hustoty pravděpodobnosti dané náhodné proměnné.

Pokud histogram normujeme, tak že výšky sloupečků jednotlivých binů N_i vydělíme celkovým počtem naměřených hodnot N a šířkou binu Δ_i , je normovaný histogram $\xi_i = \frac{N_i}{N\Delta_i}$ roven hustotě pravděpodobnosti v limitě, kdy šířka binu jde k nule a počet naměřených hodnot k nekonečnu.

E[] je operátor očekávané hodnotv.

Pro diskrétní náhodnou proměnnou znamená aplikace operátoru E[] výpočet váženého průměru, kde váhy P_i jsou pravděpodobnosti i-tého výsledku $E[x] = \sum_{i=1}^{N} x_i P_i$. Pro spojitou náhodnou proměnnou znamená aplikace operátoru E[

] integrál přes všechny možné výsledky x násobené hustotou pravděpodobnosti $E[x] = \int_{-\infty}^{\infty} x f(x) dx$.

Pro libovolnou funkci g náhodné proměnné x je

 $E[g(x)] = \sum_{i=1}^{N} g(x_i) P_i$ pro diskrétní náhodnou proměnnou

 $E[g(x)] = \int_{-\infty}^{\infty} g(x)f(x)dx$ pro spojitou náhodnou proměnnou

E[] je lineární operátor. Pro libovolné konstanty a,b a náhodnou proměnnou x tedy platí E[ax + b] = aE[x] + b.

n-tý moment rozdělení náhodné proměnné x je $\mu_n = E[x^n]$ **n-tý centrální moment** rozdělení náhodné proměnné x je $\mu_n' = E[(x-\mu)^n]$

Očekávaná hodnota μ náhodné proměnné x je první moment $\mu = E[x]$.

Očekávaná hodnota σ^2 náhodné proměnné x je druhý centrální moment $\sigma^2 = E[(x - \mu)^2]$, což lze vyjádřit také jako $\sigma^2 = E[x^2] - \mu^2$.

Standardní odchylka σ je odmocnina z rozptylu $\sigma = \sqrt{E[(x-\mu)^2]}$

Nejstručnější a ještě smysluplnou informaci o náhodné proměnné podáme uvedením očekávané hodnoty μ (míra polohy) a standardní odchylky σ (míra velikosti fluktuací)

Šikmost $\gamma_3 = \frac{\mu_3}{\sigma^3}$ je mírou asymetrie rozdělení.

Špičatost $\gamma_4 = \frac{\mu_4'}{\sigma^4}$ je mírou toho, jak často se v rozdělení vyskytují extrémní hodnoty (tj. hodnoty velmi vzdálené od průměru).