Yapay Zeka

Ders 3 - Bölüm 1

Doç. Dr. Mehmet Dinçer Erbaş Bolu Abant İzzet Baysal Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

Etmen yapısı

- Yapay zekanın amacı etmen fonksiyonu gerçekleştiren etmen programını oluşturmaktır.
 - Algıları aksiyonları eşleştirme.
- Bu programın fiziksel algılayıcı ve eyleyicileri içeren bir sistem üzerinde çalıştığını farzedeceğiz. Bu sisteme donanım diyeceğiz.
 - \tilde{E} tmen = donanım + program
- Tabii ki donanım ile program uyumlu olmalıdır.
 - Örneğin program yürüme aksiyonunu önerecekse, donanımda bacaklar bulunmalıdır.
- Donanım gelen olarak algılayıcıdan gelen algıları programa gönderir, programı çalıştırır ve programın seçtiği aksiyonları eyleyicilere yollar.
- Dersin geri kalanında etmen programının oluşturulması konusundan bahsedeceğiz.

- Etmen programi
 - Algılayıcılardan şu anki algıları alır.
 - Eyleyicilere gerçekleştirilecek aksiyonu gönderir.
- Daha önce belirttiğimiz üzere etmen fonksiyonu karar verirken algı sıralamasının tamamını kullanabilir.
 - Etmen programı ise sadece şu anki algıyı alır çünkü şu an çevrenin sağladığı tek bilgi budur.
- Etmen programı karar vermek için algı geçmişine ihtiyaç duyuyor ise etmen sıralaması algıları hatırlamalıdır.

- Tablo kontrollü etmen
 - Basit bir etmen programı içerir: Algı sırasını takip eder. Algı sırasına göre tabloya bakar ve tabloda belirtilen aksiyonu gerçekleştirir.
 - Bu şekilde kontrol edilen rasyonel bir etmen oluşturabilmek için,

fonksiyon TABLO-KONROLLU-AJAN (algı) dönüş bir aksiyon girdiler: algılar, algı sıralaması, başlangıçta boş bir liste tablo, algı sıralaması indeks olarak kullanılan aksiyonlar tablosu

yeni algı'yı algılar listesine ekle aksiyon <== TabloyaBak(algılar, tablo) return aksiyon

- Tablo kontrollü etmen
 - Sorunlar
 - Tablo büyüklüğü fazla olabilir (P^T, P: olası algılar, T: yaşam süresi)
 - Tabloyu saklamak için gereken alan
 - Tabloyu oluşturma süresi fazla olabilir.
 - Bu şekilde oluşturulan etmen otonom olmaz.
 - Öğrenme olsa bile tablonun içersinin dolması oldukça fazla süre alabilir.
 - Bu sorunlar nedeniyle, cevap vermek istediğimiz soru: tablo kullanmak yerine daha ufak bir programla rasyonel davranışa ulaşabilir miyiz?
 - Bu soru YZ'nin zorlu görevlerinden biridir.

- Dört farklı basit etmen programı tipi birçok akıllı sistemlerde kullanılır
 - Basit refleks etmenler (simple reflex agent)
 - Model tabanlı refleks etmenler (model based reflex agent)
 - Hedef tabanlı etmenler (goal-based agent)
 - Yarar tabanlı etmenler (utility based agent)

- Basit refleks etmeni
 - En basit etmen türüdür.
 - Algı geçmişini görmezden gelerek sadece şu anki algılara göre hamle yapar.
 - Örnek: Basit refleks elektrip süpürgesi etmeni

fonksiyon REFLEKS-SUPURGE-AJANI ([lokasyın, durum]) return bir aksiyon

if durum = Kirli then return Temizle else if lokasyon = A then return Saga_git else if lokasyon = B then return Sola_git

Bu etmenın kararı tamamiyle bulunduğu lokasyın ve bu lokasyonu kirli veya temiz olma durumuna bağlıdır.

- Basit refleks etmen
 - Basit refleks davranışlar daha karmaşık ortamlarda da gözlemlenebilir.
 - Otonom taksi sürücüsü programını düşünelim
 - Öndeki araba yavaşlamaya başlarsa, stop lambaları yanacaktır ve etmenin bunu farkedip frene basması gerekir.
 - Bu tür bağlantıları koşul-aksiyon kuralı olarak adlandırıyoruz.
 - if ondeki-araba-fren-yapıyor then fren-yap.

- Basit refleks etmen
 - Önceki slayttaki elektrik süpürgesi programı sadece belirli bir çevrede çalışabilir.
 - Daha genel bir basit refleks etmenı şu şekilde oluşturulabilir.

fonksiyon REFLEKS-SUPURGE-AJANI (*algı*) **dönüş** bir aksiyon **girdi**: *kurallar*, belli sayıda koşul-aksiyon kuralı

durum <== ALGI-YORUMLA(algı)
kural <== KURAL-ESLE(durum, kurallar)
aksiyon <== kural.AKSIYON
return aksiyon</pre>

Basit refleks etmen

- Yukardaki figür basit refleks etmenlerin şematik diyagramını göstermektedir.
 - Görüldüğü üzere etmen koşul-aksiyon kurallarını kullanarak, algı ile aksiyon arasında bağlantı kurar.

- Basit refleks etmenleri basit olmaları güzel bir özellikleridir.
 - Ancak sahip oldukları yapay zeka sınırlıdır.
- Önceki slaytta gösterilen etmen programı sadece doğru karar o anki algıya dayanarak verilebiliyorsa çalışır.
 - Bu da ancak tam gözlemlenebilir çevrelerde mümkündür.
 - Az da olsa gözlemlenemeyen faktörler var ise, önemli sorunlar ortaya çıkabilir.

- Model tabanlı refleks etmen programı
 - Kısmi gözlemlenebilirlik durumunda, etmen şu anda göremediği faktörleri kayıt altına alabilir.
 - Bu durumda etmen algı geçmişine dayanan bir içsel durum bilgisi saklar ve böylece şu anki durumun gözlemlenemeyen faktörleri hakkında bilgi edinir.
 - Örneğin şerit değiştiren bir otonom sürücü etmeni, diğer arabaların görece pozisyonlarını saklamalıdır.
 - İç durum bilgisini zaman geçtikçe güncelleyebilmek için etmen programı içersinde iki farklı bilgi tipi kodlanmalıdır.
 - Etmenden bağımsız olarak çevrenin ne şekilde değiştiği hakkında bilgi
 - Etmenin aksiyonları etkisiyle çevrenin ne şekilde değiştiği hakkında bilgi.
 - Çevrenin değişimi hakkında bilgiler çevre modeli ismiyle adlandılır.
 - Bu tür bir model kullanan etmenlere model tabanlı etmen denir.

Model tabanlı refleks etmen

- Hedef tabanlı etmenler (ing: goal-based agent)
 - Çevrenin şu anki durumunu bilmek karar vermek için yeterli olmayabilir.
 - Örneğin bir yol ayrımında, araba sola, sağa dönebilir veya düz gidebilir.
 - Etmen böyle durumlarda istenilen durumu tanımlayan hedef bilgisine ihtiyaç duyar.
 - Etmen programı hedef bilgisi ile yapılabilecek aksiyonları birleştirerek hedefe ulaşmak için gerekli aksiyonları seçebilir.

Hedef tabanlı etmenler

- Hedef tabanlı etmenler
 - Bazı durumlarda hedefe ulaşmak direk olarak mümkündür.
 - Örneğin hedefe ulaşmak tek hamle ile mümkünse
 - Bazı durumlarda ise etmen hedefe ulaşmak için birçok farklı hamle yapmalıdır.
 - Bu durumda genellikle arama ve planlama yapmak gerekir.
 - Bu tip etmenlerin karar verme şekli daha önce gösterilen koşulaksiyon tipi kurallardan faklıdır. Aşağıda belirtilen şekilde geleceğe dair olgular göz önünde tutulur.
 - <<Şu-ve-şu aksiyonları yaparsam gelecekte ne olacak?>>
 - <<Bu durum beni mutlu edecek mi?>>
 - Refleks etmenlerde ise bu tür bilgiler ayrıca belirtilmez, çünkü tanımlanan kurallar algıları aksiyonlara eşler.

- Yarar tabanlı etmen (ing: utility based agent)
 - Çoğu çevrede yüksek kalitede davranış göstermek sadece hedeflerin bilinmesi ile mümkün değildir.
 - Örneğin otonom sürücü birçok farklı yoldam hedefe ulaşabilir, ancak bu yolların bazıları hızlı, güvenli, güvenilir ve daha ucuz olacaktır.
 - Hedefler sadece mutlu ve mutsuz durumlar arasında ikili bir ayrım sağlar.
 - Daha genel bir performans ölçüsü farklı durumların sağladığı mutluluğu ölçebilmelidir.
 - YZ açısından baktığımızda mutluluk = yarar olarak tanımlanabilir.
 - Daha önce öğrendiğimiz üzere performans ölçüsü her çevre durumu sıralamasına bir değer verebilir.
 - Bu sayede arabanın hedefe giderken takip edebileceği farklı yolları karşılaştırabiliriz.
 - Bir etmenın yarar fonksiyonu, performans ölçüsünün içselleştirilmiş halidir.

Model tabanlı ve yarar tabanlı etmen

- Turing daha önce bahsettiğimiz ünlü makalesinde şöyle bir fikir ileri sürer:
 - Akıllı makineleri elle programlamak çok zor olacaktır.
 - Bunun yerine öğrenen makineler geliştirmeli ve onlara istediklerimizi öğretmeliyiz.
- Yapay zekanın birçok alanında günümüzde tercih edilen yaklaşım budur.
- Öğrenme sayesinde etmen başlangıçta bilinmeyenlerle dolu bir çevrede, başta sahip olduğu bilginin izin vereceği seviyeden daha yetkin hale gelebilir.

- Öğrenen etmenler dört farklı kavramsal elemana ayrılabilir:
 - Öğrenme elemanı, gelişimden sorumludur.
 - Performans elemanı dışsal aksiyonların seçiminden sorumludur.
 - Eleştirici etmenin davranışını inceler ve etmenin aksiyonlarını iyileştirmek için performans elemanının gelecekte ne şekilde değiştirilmesi gerektiğini belirler. Bu amaçla öğrenme elemanına geri dönüş sağlar.
 - Problem oluşturucu, etmeni yeni ve bilgi sağlayan tecrübelere yönlendirmek için aksiyonlar önerir (araştırmaya yönelten aksiyonlar önerir).

Öğrenen etmenler

Performans standartları

- Bir örnek üzerinden önceki slaytta gösterilen etmeni inceleyelim.
- Otonom sürücü örneği
 - Performans elemanı etmenın sahip olduğu bilgi ve fonksiyonları içerir
 - Performans elemanı kontrolünde etmen yola çıkar ve sürüş yapar.
 - Eleştirici dünyayı gözlemler ve öğrenme elemanına bilgi sağlar.
 - Örneğin üç şeritli bir yolsa sürücü kontrolsüz şekilde sol şeride geçerse, etraftaki sürücülerin tepkilerini gözlemler.
 - Bu tecrübe sayesinde bu hareketin doğru olmadığını belirten bir kural oluşturulur.
 - Performs elemanı bu kural ile güncellenir.
 - Problem oluşturucu geliştirilmesi uygun görülen belli davranış alanları belirler ve bazı deneylerin yapılmasını önerebilir.
 - Örneğin farklı yol yüzeylerinde ve farklı koşullarda frenleme yaparak frenlerin uygun kullanımı öğrenilebilir.

- Ayrıca öğrenme için dışsal performans standartları kullanılabilir.
 - Örneğin aracı aşırı hızlı kullanan etmenler, müşterilerden bahşiş alamıyor olsun.
 - Bu durumda bahşiş alamama durumu etmenin elde ettiği yararı azaltır ve aşırı hızlı kullanımdan kaçınması gerektiği eleştirici tarafından tespit edilebilir.
 - Bu şekilde performans standartları kullanarak elde edilen algıların sağladığı ödül ve ceza tespit edilir ve etmenın davranışları düzeltilebilir.
- Akıllı etmenlerde öğrenmeyi her bir bileşenin daha uyumlu ve efektif hale getirilmesi ve bu sayede etmenın genel performansının geliştirilmesi olarak özetleyebiliriz.