Class 3

Shikhar Saxena

January 19, 2023

Contents

Continuous Random Variable	1
Transformation of Random Variables	2
Method of Transform	2
A General Method of Transform	2
Important Probability Distributions	3
Joint R.V.	3
Discrete	3
Continuous	4
Function of two continuous R.V.	5
Covariance and Correlation	5
Covariance	5
Correlation	6
Bivariate Normal	6

Continuous Random Variable

X is continuous if CDF is continuous $\forall x \in R$.

PDF defined as:

$$f_X(x) = \lim_{\Delta \to 0^+} \frac{P(x < X \le x + \Delta)}{\Delta} \tag{1}$$

Also,

$$P(x < X \leq x + \Delta) = F_X(x + \Delta) - F_X(x) \tag{2} \label{eq:2}$$

From, (1) and (2) we have

$$f_X(x) = \frac{dF_X(x)}{dx}$$

- Some Properties of PDF and CDF
- Expectation and Variance for continuous R.V.

Transformation of Random Variables

$$\begin{split} F_Y(y) &= P(Y \leq y) \\ &= P(e^X \leq y) = P(X \leq \ln(y)) \end{split}$$

Method of Transform

- $\circ X$: continuous random variable
- $\circ q: R \to R$
 - \star Assume g to be strictly monotonic differentiable function
- $\circ Y = g(X)$

Example 1. Take X such that $f_X(x) = 4x^3$ when $0 < x \le 1$ and 0 otherwise.

Take $Y = \frac{1}{X}$ which is a strictly decreasing (hence, monotonic) function.

A General Method of Transform

- $\circ X$: continuous random variable
- $\circ \ g:R \to R \ {
 m and} \ Y = g(X)$
- \circ Partition range R_x into finite intervals such that g(x) is strictly monotonic and differentiable in each partition

Example 2. Take
$$X \sim N(0,1)$$
. So, $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

Now, $Y=X^2$. This is strictly decreasing in $(-\infty,0)$ and strictly increasing in $(0,\infty)$. Therefore, we can partition the range and apply the general method of transformation.

$$x^2=y \implies x=\pm \sqrt{y}.$$
 Let $x_1=\sqrt{y}$ and $x_2=-x_1.$

Thus, we obtain:

$$\begin{split} f_Y(y) &= \frac{f_X(\sqrt{y})}{|2\sqrt{y}|} + \frac{f_X(-\sqrt{y})}{|-2\sqrt{y}|} \\ &= \frac{1}{2\sqrt{2\pi y}} [e^{-\frac{y}{2}} + e^{-\frac{y}{2}}] \\ &= \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}} \quad R_y = (0, \infty) \end{split}$$

Important Probability Distributions

- \circ Uniform Distribution U(a,b)
- Normal (Gaussian) Distribution
 - * Standard Normal R.V. $Z \sim N(0,1)$
 - ullet CDF of Z denoted by Φ and it does not have a closed form solution.
 - * General Normal R.V. $X \sim N(\mu, \sigma^2)$
 - Transform to standard normal using $X = \sigma Z + \mu$, $\sigma > 0$
 - PDF given as

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$$

• CDF given as $\Phi\left(\frac{x-\mu}{\sigma}\right)$.

Joint R.V.

Discrete

- \circ Joint PMF $P_{XY}(x,y)$
 - ⋆ Marginal PMF (PDF)
 - ⋆ Joint and Marginal CDF
 - * Independent when $P_{XY}(x,y) = P_X(x)P_Y(y)$. Also holds for joint CDF.
- $\circ~$ Conditional PMF (or PDF) $P_{X|Y}(x|y)$

Continuous JOINT R.V.

- * Conditional Expectation
- * Law of Total probability and total expectation

$$E[X] = \sum_{i} E[X|B_{i}]P(B_{i})$$

where B_i are partitions of sample space.

- Law of Unconscious Statistician
- Law of Iterated Expectation
- Conditional Variance

$$Var(X|Y) = E[X^2|Y] - E[X|Y]^2$$

• Law of Total Variance

$$Var(X) = E[Var(X|Y)] + Var(E[X|Y])$$

Continuous

- Joint and Marginal PMF
- Joint and Marginal CDF

$$\star F_{XY}(\infty,\infty) = 1$$

$$\star \ F_{XY}(-\infty,y) = F_{XY}(x,-\infty) = 0$$

$$\star \ P(x_1 \leq X \leq x_2, \ y_1 \leq Y \leq y_2) = F_{XY}(x_2, y_2) - F_{XY}(x_2, y_1) - F_{XY}(x_1, y_2) + F_{XY}(x_1, y_1)$$

o Conditional PDF (and CDF) and independence

$$\star F_{X|Y}(x|y) = P(X \le x \mid Y = y)$$

Example 3. X is continuous R.V. and event A: a < X < b.

Therefore,

$$F_{X|A}(x) \begin{cases} 1 & x > b \\ \frac{F_X(x) - F_X(a)}{F_X(b) - F_X(a)} & a \le x < b \\ 0 & x < a \end{cases}$$

and

$$f_{X|A}(x) = \begin{cases} \frac{f_X(x)}{P(A)} & a \leq x \leq b \\ 0 & \textit{otherwise} \end{cases}$$

Function of two continuous R.V.

X, Y are jointly cont. R.Vs.

Let $(z,w)=g(x,y)=(g_1(x,y),g_2(x,y))$ where $g:R^2\to R^2$ is a cont. 1-1 invertible function with cont. partial derivatives. Let $h=g^{-1}$.

$$(x,y) = h(z,w) = (h_1(z,w), h_2(z,w))$$

Then z, w are jointly continuous and their joint PDF $f_{ZW}(z, w)$ is given by

$$f_{ZW}(z, w) = f_{XY}(h_1(z, w), h_2(z, w)) | \det J |$$

where J is Jacobian,

$$J = \begin{pmatrix} \frac{\partial h_1}{\partial z} & \frac{\partial h_1}{\partial w} \\ \\ \frac{\partial h_2}{\partial z} & \frac{\partial h_2}{\partial w} \end{pmatrix}$$

Example 4. X, Y are independent standard normal R.V.

$$Z = 2X - Y$$
 and $W = -X + Y$.

$$\implies X = Z + W$$
 and $Y = 2W + Z$

$$f_{XY}(x,y) = \frac{1}{2\pi} \exp\left\{-\frac{x^2 + y^2}{2}\right\}$$

$$\begin{pmatrix} z \\ w \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

We invert this matrix and get h(z, w) (we already found that when we represented X and Y in terms of Z and W).

Computing |J|

$$|J| = \det \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = 1$$

Covariance and Correlation

Covariance

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$$

- $\circ Var(X) = Cov(X, X)$
- Commutative function
- $\circ Cov(aX, Y) = a Cov(X, Y)$

Correlation BIVARIATE NORMAL

$$\begin{array}{l} \circ \ Cov(X+c,Y) = Cov(X,Y) \\ \circ \ Cov(X+Y,Z) = Cov(X,Z) + Cov(Y,Z) \\ \circ \ Var(aX+bY) = a^2 \ Var(X) + b^2 \ Var(Y) + 2ab \ Cov(X,Y) \end{array}$$

Correlation

$$\begin{aligned} & \text{Correlation } \rho_{XY} = \rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)\ Var(Y)}} \\ & \circ \ -1 \leq \rho_{XY} \leq 1. \\ & \circ \ \text{If } \rho = 1 \text{ then } Y = aX + b,\ a > 0 \\ & \circ \ \text{If } \rho = -1 \text{ then } Y = aX + b,\ a < 0 \\ & \circ \ \rho(aX + b, cY + d) = \rho(X,Y)\ a, c > 0 \\ & \circ \ \rho = 0 \text{ then } X,Y \text{ are uncorrelated} \\ & \qquad \star \text{ For uncorrelated, } Var(X + Y) = Var(X) + Var(Y). \\ & \circ \ \rho > 0 \text{ then } X,Y \text{ are positively correlated} \end{aligned}$$

 $\circ \rho < 0$ then X, Y are negatively correlated

Bivariate Normal

X,Y are said to have bivariate normal distribution with parameters $\mu_x,\sigma_x^2,\mu_y,\sigma_y^2$. Their joint PDF is

$$f_{XY} = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}\exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 + \left(\frac{y-\mu_y}{\sigma_y}\right)^2 - 2\rho\frac{(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right]\right\}$$