### 4.12.8

AI25BTECH11003 - Bhavesh Gaikwad

September 5,2025

## Question

Distance of the point  $(\alpha, \beta, \gamma)$  from y-axis is

- a)  $\beta$
- b)  $|\beta|$
- c)  $|\beta + \gamma|$ d)  $\sqrt{\alpha^2 + \gamma^2}$

#### Theoretical Solution

Let 
$$\mathbf{A} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

Let **B** be an arbitrary point on the y-axis.

Equation of y-axis: 
$$\mathbf{r} = t\mathbf{e_2} \ OR \ \mathbf{r} = t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 (1)

$$\therefore \mathbf{B} = \begin{pmatrix} 0 \\ t \\ 0 \end{pmatrix} \tag{2}$$

For minimum distance from y-axis: (A - B) should be perpendicular to  $e_2$ 

OR

#### Theoretical Solution

$$(\mathbf{A} - \mathbf{B})^T \mathbf{e_2} = 0 \Rightarrow \begin{pmatrix} \alpha \\ \beta - t \\ \gamma \end{pmatrix}^T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0$$
 (4)

Therefore, from Equation 4,

$$t = \beta \tag{5}$$

Therefore the distance between y-axis and **A** is:

$$\|\mathbf{B} - \mathbf{A}\| = \left\| \begin{pmatrix} \alpha \\ 0 \\ \gamma \end{pmatrix} \right\| = \sqrt{\alpha^2 + \gamma^2} \tag{6}$$

Therefore, Option D is Correct.

(7)

# **I**mage

