Limites

Apontamentos sobre a definição de limite, o teorema da unicidade, alguns teoremas, limites infinitos, limites laterais, indeterminações, limites notáveis e regra de cauchy

Page

Conceito intuitivo

- Seja uma função $f: A \subset R \to R$ e um ponto $a \in A$
- Qual o comportamento da função f(x) quando x se aproxima do ponto α ?
- Ou seja, qual o LIMITE da função f(x) quando o x TENDE para a , o que formalmente se escreve $\lim x \to a f(x) = ?$

Definição

Seja uma função num intervalo aberto contendo a, podendo não estar definida em a. O limite de f(x) quando x tende para a será L (lim $x \rightarrow a f(x) = L$), se para todo o $\varepsilon > 0$, existir um $\varepsilon > 0$, tal que:

```
0<|x-a|<\delta \;\; então |f(x)-L|<arepsilon
 \begin{aligned} x \in \mathcal{V}(a) & f(x) \in \mathcal{V}(L) \\ \mathcal{V}(a) &= (a-\delta, a+\delta) & \mathcal{V}(L) &= (L-\varepsilon, L+\varepsilon) \end{aligned}
```

👃 É importante perceber que na definição nada é mencionado sobre o valor da função quando x = a. Isto é, não é necessário que a função esteja definida em x = a para que lim $x \rightarrow a$ f(x) exista. Além disso, mesmo que a função seja definida para x = a, é possível que $\lim x \to a f(x)$ exista sem ter o mesmo valor que f(a)

Teorema da Unicidade

Uma função não pode tender para 2 limites diferentes ao mesmo tempo. Se o limite existir, ele é único

Teoremas

- 1. Se m e b forem constantes quaisquer, $\lim x \to a (mx + b) = ma + b$
- 2. Se c for uma constante, então para qualquer a, $\lim x \to a$ c = c
- 3. $\lim x \rightarrow a(x) = a$
- 4. Se $\lim x \to a f(x) = L$ e $\lim x \to a g(x) = M$, então: $\lim x \to a [f(x) \pm g(x)] = L \pm M$
- 5. $\lim_{x \to a} [f_1(x) \pm f_2(x) \pm ... \pm f_n(x)] = L_1 \pm L_2 \pm ... \pm L_n$
- 6. Se $\lim x \to a f(x) = L$ e $\lim x \to a g(x) = M$, então: $\lim x \to a [f(x) \cdot g(x)] = L \cdot M$
- 7. $\lim_{x \to a} [f_1(x)f_2(x)...f_n(x)] = L_1L_2...L_n$
- 8. Se $\lim x \to a f(x) = L$ e n for um inteiro positivo, então: $\lim x \to a [f(x)]^n = L^n$

$$\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$$

Limites Laterais

• Seja f uma função que está definida em todos os números de algum intervalo aberto (a, c). Então o limite de f(x) quando x tende para a pela direita é L, e escrevemos

$$\lim_{x \to a^+} f(x) = L$$

• Seja f uma função que está definida em todos os números de algum intervalo aberto (d, a). Então o limite de f(x) quando x tende para a pela esquerda é L, e escrevemos

$$\lim_{x \to a^{-}} f(x) = L$$

Teorema: $\lim x \to a \ f(x)$ existe e será igual a L se $\lim x \to a - f(x)$ e $\lim x \to a + f(x)$ existirem e forem iguais a L, ou seja, $\lim x \to a - f(x) = \lim x \to a + f(x) = L$

Limites infinitos

Estudam-se funções cujos valores (y) aumentam ou diminuem sem limitação, quando a variável independente (x) se aproxima cada vez mais de um número

fixo

Teorema

• Se a for um número real qualquer e se $\lim x \to a + f(x) = 0$ e $\lim x \to a + g(x) = c$, onde c é uma constante não nula, então:

Teorema

```
(i) se \lim_{x\to a} f(x) = +\infty e \lim_{x\to a} g(x) = c, onde c é uma constante qualquer, então \lim_{x\to a} [f(x) + g(x)] = +\infty (ii) se \lim_{x\to a} f(x) = -\infty e \lim_{x\to a} g(x) = c, onde c é uma constante qualquer, então \lim_{x\to a} [f(x) + g(x)] = -\infty O tecorma continua válido se "x\to a" for substituído por "x\to a" ou "x\to a".
```

Teorema

```
Se \liminf_{x\to a} (x) = -\infty e \limsup_{x\to a} g(x) = c, onde c é uma constante não-nula, então (i) se c > 0, \liminf_{x\to a} f(x) \cdot g(x) = -\infty; (ii) se c < 0, \liminf_{x\to a} f(x) \cdot g(x) = +\infty.

O teorema permanecerá válido se "x\to a" for substituído por "x\to a" ou "x\to a".
```

Teorema

Teorema

Se r_1 for um inteiro positivo qualquer, então (i) $\lim_{x \to +\infty} \frac{1}{x'} = 0$ (ii) $\lim_{x \to +\infty} \frac{1}{x'} = 0$

(i) se c > 0, $\lim_{x \to c} f(x) \cdot g(x) = +\infty$;

(ii) se c < 0, $\lim_{x \to a} f(x) \cdot g(x) = -\infty$.

Se $\lim_{x \to a} f(x) = +\infty$ e $\lim_{x \to a} g(x) = c$, onde c é uma constante não-nula, então

O teorema continua válido se " $x \to a$ " for substituído por " $x \to a$ " ou

48

Assíntota horizontal

 A reta y = b é denominada uma assíntota horizontal do gráfico da função f, se pelo menos uma das seguintes afirmações for válida:

```
(i) \lim_{x \to +\infty} f(x) = b e para um número N, se x > N, então f(x) \neq b;
(ii) \lim_{x \to +\infty} f(x) = b e para um número N, se x < N, então f(x) \neq b.
```


Indeterminações

Limites Notáveis

$$\lim_{x\to 0} \frac{\sin x}{x} = 1; \qquad \lim_{x\to 0} \frac{\operatorname{tg} x}{x} = 1; \qquad \lim_{x\to 0} \frac{\operatorname{arcsen} x}{x} = 1;$$

$$\lim_{x\to 0} \frac{\operatorname{arctg} x}{x} = 1; \qquad \lim_{x\to 0} \frac{e^x - 1}{x} = 1; \qquad \lim_{x\to \infty} \frac{e^x}{x^p} = +\infty, P \in \mathbb{R};$$

$$\lim_{x\to +\infty} \frac{1}{x^R} = 0, R, n. \, \text{? positivo e inteiro}; \qquad \lim_{x\to 0} \frac{a^x - 1}{x} = \ln a$$

Regra de Cauchy ou Teorema de L'Hôpital

- A regra de Cauchy utiliza derivadas para o levantamento de indeterminações
- Pode ser aplicada em caso de indeterminações 0/0 e ∞/∞

Continuidade