Fundamentos Teóricos da Computação

CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. João Paulo Aramuni

Sumário

- * Autômatos Finitos Não Determinísticos
 - * Exemplo de AFN
 - Definição
 - * Equivalência entre AFNs e AFDs

Autômatos Finitos Não Determinísticos

* Autômatos Finitos Não Determinísticos

Autômatos Finitos Não Determinísticos

- * Como vimos anteriormente, o fato de que, para cada par (estado, símbolo) há transição para um único estado, confere um caráter determinístico às computações do autômato.
- * Se essa restrição for eliminada, ou seja, se para algum par (estado, símbolo) houver transições para dois ou mais estados, tem-se o que se denomina autômato finito não determinístico (AFN).

Autômatos Finitos Não Determinísticos

- * O que é autômato finito não determinístico?
- * Os componentes de um AFN são basicamente os de um AFD, exceto que um AFN pode ter mais de um estado inicial e que a função de transição dá, para cada par (estado, símbolo), um conjunto de estados.

* Exemplo de AFN

- * O não determinismo é devido à indecisão associada ao estado e1.
 - * Sob o símbolo 0 pode-se permanecer no próprio estado e1 ou ir para o estado e2.
 - * Exemplo: Existem 3 computações possíveis para a palavra "1010", uma que a consome e termina em estado final, uma que a consome e não termina em estado final e uma que não a consome.

- * Como se determina se um AFN reconhece uma palavra?
 - * se a palavra termina em "1", <u>não existe</u> computação que a consome e termina em um estado final; e
 - * se a palavra termina em "0", <u>existe</u> computação que a consome e termina em um estado final, embora existam outras computações que não a consomem ou não terminam em estado final.

Critério de reconhecimento para AFNs

- * O critério de reconhecimento para AFNs é justamente:
 - * "uma palavra é reconhecida se, e somente se, existe uma computação que a consome e termina em estado final".
 - * Dessa forma, o exemplo anterior reconhece o conjunto das palavras de $\{0,1\}^*$ que terminam em 0.

Definição

* Definição

Definição de AFN's

- * Um AFN é uma quíntupla: $(E, \Sigma, \delta, I, F)$ em que:
 - * E é um conjunto finito de um ou mais estados;
 - * Σ é um alfabeto;
 - * δ : E x Σ -> P(E) é a função de transição, uma função total;
 - * I, um subconjunto de E, é o conjunto não vazio dos estados iniciais;
 - * F, um subconjunto de E, é o conjunto dos estados finais.
 - * Neste caso, a função de transição especifica o conjunto de estados para os quais há transição de e sob a

* $M = (\{e1, e2\}, \{0,1\}, \delta, \{e1\}, \{e2\})$

* Ø: como se houvesse uma transição para um estado de erro (Não existe diagrama de estados simplificado para AFNs)

Função de Transição Estendida

* Seja um AFN $M=(E, \Sigma, \delta, I, F)$. A função de transição estendida para $M, \hat{\delta}: E \times \Sigma^* -> P(E)$, é definida recursivamente como:

- * $\hat{\delta}(\emptyset, w) = \emptyset$, para todo $w \in \Sigma^*$;
- $*\hat{\delta}(A,\lambda) = A$, para todo $A \subseteq E$;
- $*\hat{\delta}(A, ay) = \hat{\delta}(\bigcup_{e \in A} \delta(e, a), y), \text{ para } A \subseteq E, a \in \Sigma \text{ e } y \in \Sigma^*.$

Exemplo 1 Função de Transição Estendida

 Processar a palavra 1010 a partir do estado inicial para a tabela da função de transição do AFN anterior

$$\hat{\delta}(\{e_1\}, 1010) = \hat{\delta}(\delta(e_1, 1), 010) \text{ pela definição}$$

$$= \hat{\delta}(\{e_1\}, 010) \text{ por } \delta$$

$$= \hat{\delta}(\delta(e_1, 0), 10) \text{ pela definição}$$

$$= \hat{\delta}(\{e_1, e_2\}, 10) \text{ por } \delta$$

$$= \hat{\delta}(\delta(e_1, 1) \cup \delta(e_2, 1), 0) \text{ pela definição}$$

$$= \hat{\delta}(\{e_1\} \cup \emptyset, 0) \text{ por } \delta$$

$$= \hat{\delta}(\{e_1\}, 0)$$

$$= \hat{\delta}(\delta(e_1, 0), \lambda) \text{ pela definição}$$

$$= \hat{\delta}(\{e_1, e_2\}, \lambda) \text{ por } \delta$$

$$= \{e_1, e_2\} \text{ pela definição}$$

Linguagem Reconhecida

- * Utilizando-se $\hat{\delta}$, pode-se definir a linguagem reconhecida por um AFN
 - * A linguagem reconhecida por um AFN $M = (E, \Sigma, \delta, I, F)$ é o conjunto $L(M) = \{ w \in \Sigma^* \mid \hat{\delta}(I, w) \cap F \neq \emptyset \}$. Uma determinada palavra $w \in \Sigma^*$ é dita ser reconhecida, ou aceita por M se, e somente se $\hat{\delta}(I, w) \cap F \neq \emptyset$.
 - * Uma palavra é reconhecida se o conjunto de estados alcançados por ela contém, ao menos, um estado final

Equivalência entre AFNs e AFDs Por que AFNs?

- * AFNs não são tão facilmente implementáveis computacionalmente como os AFDs
- * Para todo AFN existe um AFD equivalente
- * Então, por que usar AFNs??
 - * AFNs podem ser mais facilmente construídos do que AFDs em certos casos
 - * AFNs podem ser mais simples do que AFDs

- * Exemplo 2
- * AFN e AFD para reconhecer a linguagem $L = \{0,1\} * \{1010\}$

- * Exemplo 2
- * AFN e AFD para reconhecer a linguagem $L = \{0,1\} * \{1010\}$

- * Exemplo 2
- * AFN e AFD para reconhecer a linguagem $L = \{0,1\} * \{1010\}$

- * Exemplo 3
- * AFN e AFD para reconhecer a linguagem $L = \{0,1\} * \{1\} \{0,1\} \{0,1\}$

- * Exemplo 3
- * AFN e AFD para reconhecer a linguagem $L = \{0,1\} \times \{1\} \{0,1\} \{0,1\}$

- * Exemplo 3
- * AFN e AFD para reconhecer a linguagem $L = \{0,1\} * \{1\} \{0,1\} \{0,1\}$

- * Construa AFNs para as seguintes linguagens sobre {0,1}:
 - 1) o conjunto das palavras com, no mínimo, três ocorrências de "01";
 - 2) o conjunto das palavras com sufixo "01" ou "10";
 - 3) o conjunto das palavras em que o último símbolo seja idêntico ao primeiro.

* 1) $L = \{0,1\} * \{01\} \{0,1\} * \{01\} \{0,1\} * \{01\} \{0,1\} *$

* 2)
$$L_1 = \{0,1\} * \{01\}$$

* 2)
$$L_2 = \{0,1\} * \{10\}$$

* 2) *L*1 U *L*2

* Outra forma: $L = \{0,1\} * \{01,10\}$

* 3) $L = \{w \in \{0,1\}^* | |w| >= 2$ e w começa e termina com o mesmo símbolo}

* 3) $L = \{w \in \{0,1\}^* | |w| >= 2$ e w começa e termina com o mesmo símbolo}

Obrigado.

joaopauloaramuni@gmail.com joaopauloaramuni@fumec.br

