11 класс

Задача 1. Два цилиндра

Внутрь закреплённого цилиндра радиуса R, ось O которого горизонтальна, помещают легкий цилиндр вдвое меньшего радиуса. Ось C меньшего цилиндра также горизонтальна. На поверхности меньшего цилиндра закреплено маленькое тело массы m. Меньший цилиндр удерживают так, что тело находится на оси бо́льшего цилиндра, а плоскость OC (в которой лежат оси обоих цилиндров) составляет угол α с вертикалью (рис. 11).

Рис. 11

- 2. Определите ускорение и скорость тела в момент времени, когда плоскость OC вертикальна. Считайте, что до этого момента движение шло без проскальзывания.
- 3. Определите минимальное значение коэффициента трения между цилиндрами μ , при котором возможно движение без проскальзывания до момента, когда плоскость OC займёт положение симметричное начальному по отношению к вертикали.
- 4. Определите скорость тела в момент начала проскальзывания, если коэффициент трения между цилиндрами задан и равен μ .

Задача 2. Вещества Х и Ү

В двух одинаковых сосудах с поршнем при одинаковых давлении p_A и температуре T_A находятся одинаковые смеси равных масс m жидкой и твердой фаз вещества X. При этом плотность твердой фазы на 20% больше плотности жидкой фазы $\rho_{\rm X}$. Не изменяя внешнего давления, к первому сосуду медленно подводят известное количество теплоты Q_1 . В этом процессе масса твердой фазы уменьшается вдвое. Затем, обеспечив надежную теплоизоляцию сосуда, немного увеличивают внешнее давление. Обозначим это состояние «В».

Внешние воздействия на второй сосуд проводят в обратном порядке: сначала увеличивают давление, а затем, поддерживая его постоянным, подводят необходимое для перевода в то же состояние B количество теплоты Q_2 .

1. Какое количество теплоты больше, Q_1 или Q_2 ?

- 2. Определите давление p_B в состоянии B.
- 3. Определите температуру T_B в состоянии B.

Этот же эксперимент с двумя сосудами был проведен со смесями равных масс m жидкой и твердой фаз другого вещества Y, у которого в начальном состоянии C плотность твердой фазы на 20% меньше плотности жидкой фазы ρ_Y . Оказалось, что для изобарического плавления половины твердой фазы Y при переходе из состояния (p_C, T_C) потребовалось подвести количество теплоты Q_3 , а для перехода в конечное состояние D во втором сосуде — количество Q_4 .

- 4. Какое количество теплоты больше, Q_3 или Q_4 ?
- 5. Определите давление p_D в состоянии D.
- 6. Определите температуру T_D в состоянии D.

Задача 3. Зачем нужны диоды

Электрическая схема состоит из трех конденсаторов C_1 , C_2 , C_3 одинаковой емкости C, катушки с индуктивностью L, двух идеальных диодов, источника постоянного напряжения U_0 , ключа K (рис. 12). Первоначально перед замыканием ключа конденсаторы не заряжены. Затем ключ переводят в положение 1, и, после установления равновесия, переключают в положение 2.

- 1. Чему равны напряжения на конденсаторах U_1 , U_2 и U_3 перед переключением ключа в положение 2?
- 2. Чему равно максимальное значение I_D тока через диоды после переключения ключа в положение 2?

Рис. 12

- 3. В каких пределах ($\left[U_1^{\min},\,U_1^{\max}\right],\,\left[U_2^{\min},\,U_2^{\max}\right]$ и $\left[U_3^{\min},\,U_3^{\max}\right]$) изменяются напряжения на конденсаторах после переключения ключа в положение 2?
- 4. Качественно изобразите график зависимости сила тока I, протекающего через индуктивность, от времени.
- 5. Чему равен период колебаний T тока I?

Активным сопротивлением индуктивности и проводов можно пренебречь.

Задача 4. Магнитный шнур

Тонкий, однородный нерастяжимый гибкий шнур длины l изготовлен из ферромагнетика, причем магнитный момент каждого его маленького элемента направлен вдоль шнура.

Один конец шнура удерживают на расстоянии l_1 ($l_1>l$) от бесконечного прямого провода, по которому течет электрический ток силой I (рис. 13). Пренебрегая силой тяжести и собственным магнитным полем шнура

Рис. 13

- 1. найдите расстояние между концами шнура в состоянии равновесия;
- 2. на каком расстоянии от провода окажется свободный конец шнура?

 $\mathit{Указаниe}.$ Энергия маленького элемента шнура длиной Δl во внешнем магнитном поле с индукцией \vec{B} определяется выражением

$$\Delta W = -kB\Delta l\cos\varphi,$$

где φ — угол между \vec{B} и направлением шнура, а k — постоянный коэффициент.

Задача 5. Русалочка

В открытом море вода совсем синяя, как лепестки самых красивых васильков, и прозрачная, как чистое стекло, — но зато и глубоко там! Ни один якорь не достанет до дна; на дно моря пришлось бы поставить одну на другую много-много колоколен, только тогда бы они могли высунуться из воды. На самом дне живут русалки.

Г.Х. Андерсен.

Рис. 14

Ясной ночью принц, ростом H=1,8 м, мечтал на берегу спокойного Тихого океана и смотрел на лунную дорожку, которая начиналась от него на расстоянии $D_{\Pi}=5$ м по горизонтали и имела длину $L_{\Pi}=50$ м. В это же самое время у берега под водой на глубине H лежала Русалочка, тоже о чем-то мечтая.

- 1. На каком расстоянии $D_{\rm P}$ от себя (тоже по горизонтали) лунную дорожку будет видеть Русалочка?
- 2. Какой длины $L_{\rm P}$ будет эта дорожка?

Считайте, что легкий бриз создает мелкую одинаковую рябь по всей поверхности океана. Показатель преломления морской воды n=1,35. Угловым размером Луны можно пренебречь.

Указание.

- \bullet Бриз, -а, м. Слабый береговой ветер, дующий днём с моря на сушу, а ночью с суши на море.
- Рябь, -и, *ж*.
 - 1. Мелкое волнение водной поверхности. Озеро подёрнулось рябью.
 - 2. Ощущение в глазах пестроты, множества разноцветных точек. В глазах p.

С.И. Ожегов и Н.Ю. Шведова Толковый словарь русского языка