10. Set Operations & Set Identities

Basics of Set Theory:

- \square set element when two sets are equal
- \square describing a set:

set-builder notation

list notation (order / multiplicity do not affect an element's membership in a set)

- \square when two sets are equal subset proper subset
- \square empty set \varnothing universal set \mathcal{U}
- \square cardinality of a finite set S: |S| power set of a set S: $\mathcal{P}(S)$

SETS OPERATIONS

Venn diagrams are a graphical method for depicting sets and set operations.

Union.

The <u>union</u> of sets A and B, denoted AUB, is the set

$$AUB = \{x : (x \in A) \lor (x \in B)\}$$

Intersection.

The <u>intersection</u> of sets A and B, denoted $A \cap B$, is the set

$$A \cap B = \left\{ x : (x \in A) \wedge (x \in B) \right\}$$

^{*} These notes are solely for the personalisms construction are solely for the personalisms of the solely for the personalism of the solely for the solely for

Complement.

The <u>complement</u> of a set A, denoted \overline{A} , is the set

$$\overline{A} = \{x : (x \in \mathcal{U}) \land (x \notin A)\}$$

Difference.

The <u>difference</u> of sets A and B, denoted A-B, is the set

$$A-B = \{x : (x \in A) \land (x \notin B)\}$$

Symmetric Difference.

The <u>symmetric difference</u> of Sets A and B, denoted $A \oplus B$, is the set

$$A \oplus B = \{x : (x \in A) \oplus (x \in B)\}$$

Example 10.1. Let $A = \{1, 2, 3\}$

 $\mathcal{U} = \{1,2,3,4,5,6,7,8\}.$

$$B \cap C = \{5,7\} = C$$

$$B=\{1,3,5,7\}$$
 $C=\{5,7\}$ be subsets of a universal set

$$A - B = \{2\}$$

 $B - C = \{1,3\}$

Anc =
$$\{\}$$
 = \emptyset

Disjoint Sets.

Sets *A* and *B* are called **disjoint** if $A \cap B = \emptyset$.

EX. A and G are disjoint.

SET IDENTITIES

A **set identity** is an equation involving sets and set operations that is true *no matter what* particular sets we consider.

Example 10.2. For all sets A, B, C, the following equation is true:

Ways to verify set identities

How can we verify that a set identity will be true no matter what the sets *A*, *B*, and *C* are?

 \diamond Recall that two sets S and T are equal if

for all $x \in \mathcal{U}$, the biconditional statement $(x \in S) \leftrightarrow (x \in T)$ is true.

- **1.** We can verify a set identity using a **membership table**.
 - Membership tables are similar to truth tables, but more like attendance sheets.
 - If there are n sets involved in an identity, then the table will have 2^n rows.
 - Each row corresponds to one possible "location" of an element $x \in \mathcal{U}$, relative to the sets in the identity.

Example 10.3. Using a membership table, prove $\overline{A \cup B} = \overline{A} \cap \overline{B}$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

(De Morgan)

AB	AUB	AUB	Ā	B	AOB	
		0	0	0	0	
10		0]]	0	
0 1		0	l	0	0	
00	0	1			1	

Since membership is the same for and $\overline{A} \cap \overline{R}$ it follows that $\overline{AUB} = \overline{A} \cap \overline{R}$

for 2 sets A and B, these 4 rows coverall possible cases for the membership of an arbitrary element x of the universal set relative to A and B.

2. We can verify a set identity using what is called a **rigorous proof** (essentially a *proof of* equivalence of the definition of set equality).

 $\triangleright \triangleright \triangleright$ To prove S = T with a **rigorous proof**, we must prove 2 things:

and

To prove $\overline{A}\overline{B} = \overline{A} \cup \overline{B}$ with a rigorous proof, we must prove $\overline{A}\overline{B} \subseteq \overline{A}\overline{U}\overline{B}$ and $\overline{A}\overline{U}\overline{B} \subseteq \overline{A}\overline{D}\overline{B}$

i. (\subseteq) Let $x \in \mathcal{U}$. Assume $x \in \overline{A \cap B}$.

By def. (of complement), this means that $x \notin A \cap B$.

oo it is not the case that $(x \in A) \land (x \in B)$ we are making use of DeMorgans Law $7((x \in A) \land (x \in B))$ $\equiv 7(x \in A) \lor 7(x \in B)$

By def. of complement, this means that $x \in \overline{A}$ or $x \in \overline{B}$

By def. of union, this means that XEAUB

" We proved that (x∈ANB) → (x∈AUB) is True. Hence, ANB SAUB.

ii. (2) Let xeU. Assume xeĀUB.

Then (by def. of U) xeĀ or xeB

⇒ (by def. of —) x∉A or x∉B

or not being an element of A or not being an element of B is sufficient to guarantee that x is not an element of A AB)

. We proved that (x ∈ ĀUB) → (x ∈ ĀNB) is True. Hence ĀUBSĀNB.

Since $\overline{A}\overline{B} \subseteq \overline{A}\overline{U}\overline{B}$ and $\overline{A}\overline{U}\overline{B} \subseteq \overline{A}\overline{D}\overline{B}$, we have proved that $\overline{A}\overline{D} = \overline{A}\overline{U}\overline{B}$

USING THE TABLE OF SET IDENTITIES

Example 10.5. Let A, B, and C be subsets of a universal set \mathcal{U} .

Using set identities, prove that $\overline{(B \cup C) - A} = (\overline{C} \cap \overline{B}) \cup A$

PROOFS INVOLVING SETS

Example 10.6. Prove the following theorem:

Theorem 10.6. Let *A* and *B* be subsets of the universal set.

Then
$$\overline{A} \subseteq \overline{B}$$
 if and only if $B \subseteq A$.

Note:
$$P$$
 says "for all $x \in \mathcal{U}$, $(x \in \overline{A}) \rightarrow (x \in \overline{B})$ "

Q says "for all
$$x \in \mathcal{U}$$
, $(x \in B) \rightarrow (x \in A)$ "

Equivalently (contrapos):
$$(x \notin A) \rightarrow (x \notin B)$$

Proof of Theorem 11.2 (using a proof of equivalence)

(⇒) We will prove P→Q with a direct proof.

Assume P is True, ie Assume ACB. (goal is to prove Q is True, ie BCA). Let xe U.

Assume X∈B. Then X≠B since X∈B.

⇒ x \(\bar{A} \) since we assumed \(\bar{A} \sigma \bar{B} \). ****

⇒xeA

Thus, we proved (x∈B) → (x∈A) % BSA (ie QisTrue).

Overall, we proved $(\overline{A} \subseteq \overline{B}) \rightarrow (B \subseteq A)$

(←) We will prove Q→P with a direct proof.

Assume Q is True ie Assume BCA (goal is to prove P is True, ie ACB).

Let xe U.

Assume X ∈ Ā. Then x ∉ A sina x ∈ Ā

⇒ x \neq B since we assumed B \subseteq A.

>xer

Thus, we proved $(x \in \overline{A}) \rightarrow (x \in \overline{B})$. $\overline{A} \subseteq \overline{B}$ (ie PisTrue).

Overall, we proved $(B \subseteq A) \rightarrow (\overline{A} \subseteq \overline{B})$

We proved P-Q and Q-P. This document is a vailable free of charge on VERSIBLE OF Rt Q is true.

Exercise 10.7. Give concrete examples of two sets A and B such that $\overline{A} \nsubseteq \overline{B}$.

Let $2 = \{1,2,3,4,5\}$ and let A and B be the following two sets:

Then A = {4,5} B = {1,2}

and so $\overline{A} \not\subseteq \overline{B}$.

Why doesn't this example contradict Theorem 10.6?

Theorem 11.2 does not say that $\overline{A} \subseteq \overline{B}$ for all sets A,B.

Theorem 11.2 says $\overline{A} \subseteq \overline{B}$ if and only if $B \subseteq A$.

It means: ① If A⊆B, then B⊆A and ② If B⊆A, then Ā⊆.B

In our example, B was not a subset of A so the premise of @ was not fulfilled.

STUDY GUIDE

Basic terms and concepts of Set Theory: □ set □ element □ subset □ proper subset □ equality □ cardinality						
	$T \subseteq S$			S = T		
Some important sets:						
Building new sets from old: $\Box \text{ power set of } S \qquad \Box \text{ Cartesian product of two (or more) sets} \\ \mathcal{P}(S) \qquad \qquad S \times T \qquad S_1 \times S_2 \times \cdots \times S_t$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Set identities:						
\square verify using membership tables \square verify using a rigorous proof						
\square prove other identities using the laws from the Table of Important Set Identities						
Exercises Sup.Ex. §4 # 1, 2, 3, 4, 5, 6(use a rigorous proof), 9, 11 Rosen (8th ed.) §2.2 # 1, 3, 4, 5–13(using membership tables or rigorous proofs) 14, 15, 17, 19, 21, 23, 31, 41						

Table of Important Set Identities

1. 2.	$A \cup \emptyset = A$ $A \cap \mathcal{U} = A$	Identity Laws
3.	$A \cup \mathcal{U} = \mathcal{U}$	Domination Laws
4.	$A \cap \emptyset = \emptyset$	
5. 6.	$A \cup A = A$ $A \cap A = A$	Idempotent Laws
7.	$\overline{\left(\overline{A} ight)} = A$	(Double) Complementation Law
8. 9.	$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative Laws
10. 11.	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative Laws
12. 13.	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive Laws
14. 15.	$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's Laws
16. 17.	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption Laws
18. 19.	$A \cup \overline{A} = \mathcal{U}$ $A \cap \overline{A} = \emptyset$	Complement Laws
20.	$A - B = A \cap \overline{B}$	Difference Law
21. 22.	$A \oplus B = (A - B) \cup (B - A)$ $A \oplus B = (A \cup B) - (A \cap B)$	Symmetric Difference Laws