

Understanding the TCP/IP Internet Layer

Network Layer

Network Process to Applications

Data Representation

Interhost Communication

End-to-End Connections

Data Delivery

- Routes data packets
- Selects best path to deliver data
- Provides logical addressing and path selection

301P_058

Internet Protocol Characteristics

- Operates at network layer of OSI
- Connectionless protocol
- Packets treated independently
- Hierarchical addressing
- Best-effort delivery
- No data-recovery features

Why IP Addresses?

- They uniquely identify each device on an IP network.
- Every host (computer, networking device, peripheral) must have a unique address.
- Host ID:
 - Identifies the individual host
 - Is assigned by organizations to individual devices

Network.Host

IP PDU Header

IP Address Format: Dotted Decimal Notation

	Example			
An IP address is a 32-bit binary number	10101100	00010000	10000000	00010001
For readability, the 32-bit binary number can be divided into four 8-bit octets	10101100	00010000	10000000	00010001
Each octet (or byte) can be converted to decimal	172	16	128	17
The address can be written in dotted decimal notation	172.	16.	128.	17

The binary-to-decimal and decimal-tobinary conversion will be detailed later in this course.

IP Address Classes: The First Octet

A B C ... Easy as 1 2 3

Class A ... First 1 bit fixed

 $0 \times \times \times \times \times \times$

Host

Host

Host

Class B ... First 2 bits fixed

10xxxxxx

Network . Host

Host

Class C ... First 3 bits fixed

110xxxxx

Network . Network

Host

IP Address Ranges

IP Address Class	First Octet Binary Value	First Octet Decimal Value	Possible Number of Hosts
Class A	1-126	<u>0</u> 0000001 to <u>0</u> 1111110*	16,777,214
Class B	128-191	10000000 to 10111111	65,534
Class C	192-223	11000000 to 11011111	254

^{*127 (01111111)} is a Class A address reserved for loopback testing and cannot be assigned to a network.

Reserved Address

Public IP Addresses

Class	Public IP Ranges
Α	1.0.0.0 to 9.255.255.255 11.0.0.0 to 126.255.255.255
В	128.0.0.0 to 172.15.255.255 172.32.0.0 to 191.255.255.255
С	192.0.0.0 to 192.167.255.255 192.169.0.0 to 223.255.255.255

Private IP Addresses

Class	Private Address Range
А	10.0.0.0 to 10.255.255.255
В	172.16.0.0 to 172.31.255.255
С	192.168.0.0 to 192.168.255

LAN Connections

Constructing a Network Addressing Scheme

Flat Topology

Problems

- All devices share the same bandwidth.
- All devices share the same broadcast domain.
- It is difficult to apply a security policy.

Subnetworks

- Smaller networks are easier to manage.
- Overall traffic is reduced.
- You can more easily apply network security policies.

What a Subnet Mask Does

- Tells the router the number of bits to look at when routing
- Defines the number of bits that are significant
- Used as a measuring tool, not to hide anything

Possible Subnets and Hosts for a Class C Network

Network . Network . Network . Bits to Borrow

Number of Bits Borrowed (s)	Number of Subnets Possible ^(2^s)	Number of Bits Remaining in Host ID (8 - s = h)	Number of Hosts Possible Per Subnet (2 ^h - 2)
1	2	7	126
2	4	6	62
3	8	5	30
4	16	4	14
5	32	3	6
6	64	2	2
7	128	1	2

Possible Subnets and Hosts for a Class B Network

Network . Network . Bits to Borrow

Number of Bits Borrowed (s)	Number of Subnets Possible ^(2^S)	Number of Bits Remaining in Host ID (16 - s = h)	Number of Hosts Possible Per Subnet (2 ^h - 2)
1	2	15	32,766
2	4	14	16,382
3	8	13	8,190
4	16	12	4,094
5	32	11	2,046
6	64	10	1,022
7	128	9	510
			P0. 90%

Possible Subnets and Hosts for a Class A Network

Number of Bits Borrowed (s)	Number of Subnets Possible (2 ⁸)	Number of Bits Remaining in Host ID (24 - s = h)	Number of Hosts Possible Per Subnet (2 ^h - 2)
1	2	23	8,388,606
2	4	22	4,194,302
3	8	21	2,097,150
4	16	20	1,048,574
5	32	19	524,286
6	64	18	262,142
7	128	17	131,070

End System Subnet Mask Operation

How Routers Use Subnet Masks

Applying the Subnet Address Scheme

Octet Values of a Subnet Mask

128	64	32	16	8	4	2	1		
1	0	0	0	0	0	0	0	=	128
1	1	0	0	0	0	0	0	=	192
1	1	1	0	0	0	0	0	=	224
1	1	1	1	0	0	0	0	=	240
1	1	1	1	1	0	0	0	=	248
1	1	1	1	1	1	0	0	=	252
1	1	1	1	1	1	1	0	=	254
1	1	1	1	1	1	1	1	=	255 791 dzzo

Subnet masks, like IP addresses, are represented in the dotted decimal format like 255.255.255.0

Default Subnet Masks

Example Class A address (decimal): 10.0.0.0

Default Class A mask (decimal): 255.0.0.0

Default classful prefix length: /8

Example Class B address (decimal): 172.16.0.0

Default Class B mask (decimal): 255.255.0.0

Default classful prefix length: /16

Example Class C address (decimal): 192.168.42.0

Example Class C address (binary): 11000000.10101000.00101010.000000000

Default Class C mask (decimal): 255.255.255.0

Default classful prefix length: /24

Procedure for Implementing Subnets

- 1. Determine the IP address assigned by the registry authority.
- 2. Based on the organizational and administrative structure, determine the number of subnets required.
- 3. Based on the address class and required number of subnets, determine the number of bits you need to borrow from the host ID.
- 4. Determine the binary and decimal value of the subnet mask.
- 5. Apply the subnet mask to the network IP address to determine the subnet and host addresses.
- 6. Assign subnet addresses to specific interfaces.

Eight Easy Steps for Determining SubnetAddresses

IP Address: 192.168.221.37 Subnet Mask /29

Step	Description	Example
1.	Write the octet that is being split in binary.	Fourth octet: 00100101
2.	Write the mask or classful prefix length in binary.	Assigned mask: 255.255.255.248 (/29) Fourth octet: 11111000
3.	Draw a line to delineate the significant bits in the assigned IP address. Cross out the mask so you can view the significant bits in the IP address.	Split octet (binary): 00100100 Split mask (binary): 11111000

Eight Easy Steps for Determining Subnet Addresses (Cont.)

Step	Description	Example
4.	Copy the significant bits four times.	00100 000 (network address) 00100 001 (first address in subnet)
5.	In the first line, define the network address by placing all zeros in the significant bits.	00100 110 (last address in subnet) 00100 111 (broadcast address)? Completed Subnet Addresses
6.	In the last line, define the broadcast address by placing all ones in the significant bits.	Network address: 192.168.221.32 Subnet mask: 255.255.255.248 First subnet: 192.168.221.32 First host address: 192.168.221.33 Last host address: 192.168.221.38
7.	In the middle lines, define the first and last host number.	Droodoost addroos: 102 169 221 3
8.	Increment the subnet bits by one.	0010 <mark>1</mark> 000 (next subnet)

Example: Applying a Subnet Mask for a Class C Address

IP Address 192.168.5.139 Subnet Mask 255.255.255.224

IP Address	192	168	5	139	
IP Address	11000000	10101000	00000101	100 <mark>01011</mark>	
Subnet Mask	11111111	11111111	11111111	111 <mark>00000</mark>	/27
Subnetwork	11000000	10101000	00000101	10000000	
Subnetwork	192	168	5	128	
First Host	192	168	5	10000001=129	
Last Host	192	168	5	10011110=158	
Directed Broadcast	192	168	5	10011111=159	
Next Subnet	192	168	5	1010000	0=160

Example: Applying a Subnet Mask for a Class B Address

IP Address 172.16.139.46 Subnet Mask /20

IP Address	172	16	139	46	
IP Address	10101100	00010000	1000 <mark>1011</mark>	00101110	
Subnet Mask	11111111	11111111	1111 <mark>0000</mark>	00000000	/20
Subnetwork	10101100	00010000	10000000	00000000	
Subnetwork	172	16	128	0	
First Host	172	16	10000000	0000001=	128.1
Last Host	172	16	10001111 11111110=143		143.254
Directed Broadcast	172	16	10001111 11111111=		43.255
Next Subnet	172	16	10010000	00000000=	144.0

Example: Applying a Subnet Mask for a Class A Address

IP Address 10.172.16.211 Subnet Mask /18

IP Address	10	172	16	211	
IP Address	00001010	10101100	00010000	11010011	
Subnet Mask	11111111	11111111	11000000	00000000	/18
Subnetwork	00001010	10101100	00000000	00000000	
Subnetwork	10	172	0	0	
First Host	10	172	00000000	00000001=0.1	
Last Host	10	172	00111111	11111110=63.254	
Directed Broadcast	10	172	00111111	11111111=63.255	
Next Subnet	10	172	01000000	00000000=	64.0

Summary

- IP network addresses consist of two parts: the network ID and the host ID.
- IPv4 addresses have 32 bits that are divided into octets and are generally shown in dotted decimal form (for example, 192.168.54.18).
- When written in a binary format, the first bit of a Class A address is always 0, the first 2 bits of a Class B address are always 10, and the first 3 bits of a Class C address are always 110.

Summary (Cont.)

Follow these steps to determine the subnetwork and host addresses using a subnet mask:

- 1. Write the octet being split in binary.
- 2. Write the mask in binary and draw a line to delineate the significant bits.
- 3. Cross out the mask so you can view the significant bits.
- 4. Copy the subnet bits four times.
- 5. Define the network address by placing all zeroes in the host bits.
- 6. Define the broadcast address by placing all ones in the host bits.
- 7. Define the first and last host numbers.
- 8. Increment the subnet bits by one.

#