Logik Serie 2

Nikita Emanuel John Fehér, 3793479 Erik Thun, 3794446

 $25.\ \,$ April 2025 Mittwoch 09:15-10:45 Keitsch, Jamie; Gruppe e

H 2-1. Erfüllbarkeit un Co.

a) Kreuzen Sie in der Tabelle an, ob die betreffende Formel erfüllbar, falsifizierbar, unerfüllbar oder tautologisch ist.

Formel	Erfüllbar	Falsifizierbar	Unerfüllbar	Tautologisch
$(A_1 \to A_2) \lor (A_2 \to A_1)$				
$(A_1 \vee A_2) \to A_1$				
$\neg((A_1 \leftrightarrow A_2) \lor (A_1 \leftrightarrow A_3) \lor (A_2 \leftrightarrow A_3))$				

b) In welcher der beiden möglichen Teilmengenbeziehungen stehen die Mengen M und N zueinander? Kurze Begründung.

$$M = \{ \varphi | \varphi \text{ ist tautologisch} \}$$
 $N = \{ \neg \psi | \psi \text{ ist unerfüllbar} \}$

Es gilt $N \subseteq M$, da jedes $\neg \psi \in N$ auch eine Tautologie also $\neg \psi \in M$, nicht jede Tautologie hat $\neg \psi$ als Form.

Bsp.
$$((a \to b) \lor (b \to a)) \in M$$
, aber $\notin N$

H 2-2. Boolsche Funktionen

a) Nachfolgende Tabelle zeigt alle 2-stelligen Boolschen Funktionen

$$f: \{0,1\} \times \{0,1\} \to \{0,1\}$$

$I(\varphi)$	$I(\psi)$	f^1	f_{\wedge}	f^3	f^4	f^5	f^6	f^7	f_{\lor}	f^9	f_{\leftrightarrow}	f^{11}	f^{12}	f^{13}	$f_{ ightarrow}$	f^{15}	f^{16}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
0	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Definieren Sie Formeln ξ_1 , ξ_2 , und ξ_3 unter Verwendung der Formeln φ und ψ sowie der Junktoren \wedge, \vee, \neg , sodass für alle $I \in \mathcal{B}$ gilt:

i)
$$I(\xi_1) = f^6(I(\varphi, I(\psi))$$

Für
$$\xi_1 = \psi$$
 ergibt sich $I(\xi_1) = f^6((I(\varphi), I(\psi))$

ii)
$$I(\xi_2) = f^9(I(\varphi), I(\psi))$$

Für
$$\xi_2 = \neg(\varphi \lor \psi)$$
 ergibt sich $I(\xi_2) = f^9((I(\varphi), I(\psi))$

iii)
$$I(\xi_3) = f^{12}(I(\varphi), I(\psi))$$

Für
$$\xi_3 = \varphi \wedge \neg \psi$$
 ergibt sich $I(\xi_3) = f^{12}((I(\varphi), I(\psi))$

$$Bsp.:$$
 Für $\xi = \neg (\varphi \wedge \psi)$ ergibt sich $I(xi) = f^{15}(I(\varphi), I(\psi))$

H 2-3. Wahrheitswertetabelle

a) Vervollständigen Sie nachfolgende Wahrheitswertetabelle.

A	1	A_2	A_3	$\neg A_2 \lor A_3$	$A_1 \to (\neg A_2 \lor A_3)$
)	0	0	1	1
)	0	1	1	1
)	1	0	0	1
()	1	1	1	1
1		0	0	1	1
1		0	1	1	1
1		1	0	0	0
1		1	1	1	1

b) Ist die Formel $A_1 \to (\neg A_2 \vee A_3)$ falsifizierbar? Falls ja, geben Sie eine entsprechende Belegung an.

Ja die Formel ist falsifizierbar mit $A_1=1, A_2=1, A_3=0$

H 2-4. Modelle und Folgerung

a) Seien $S, T \subseteq F$ Formelmengen. Beweisen Sie die Antimonotonie des Modelloperators:

Falls
$$S \subseteq T$$
, dann $Mod(T) \subseteq Mod(S)$.

Gehen wir von $S \subseteq T$ aus und sei $I \in \operatorname{Mod}(T)$, heißt das I erfüllt alle Formeln aus T. Desweiteren wissen wir jede Formel in S liegt auch in T (durch $S \subseteq T$), also liegt I auch in S, da wir von T bereits wissen das I dort alle Formeln erfüllt und in S eine Teilmenge von T ist erfüllt I auch für S alle Formeln. Also $I \in \operatorname{Mod}(S)$.

- $\implies \operatorname{Mod}(T) \subseteq \operatorname{Mod}(S)$
- b) Seien $\varphi, \psi, \xi \in F$ Formeln mit $\text{Mod}(\varphi) = \{I_1, I_2\}, \text{Mod}(\psi) = \{I_2, I_3\}$ und $\text{Mod}(\xi) = \{I_1, I_2, I_3, I_4\}$. Bestimmen Sie die nachfolgenden Mengen bzw. begründen Sie kurz, ob aufgeführte Folgerungsrelationen gelten:
 - i) $\operatorname{Mod}(\xi \wedge \neg \psi)$

$$\{I_1, I_4\}$$

ii) $\varphi \models \psi$

$$\varphi \models \psi \implies \operatorname{Mod}(\varphi) \subseteq \operatorname{Mod}(\psi)$$

$$\implies \{I_1, I_2\} \subseteq \{I_2, I_3\}$$

$$\implies I_1 \in \{I_2, I_3\}$$

$$\implies f$$

iii) $\xi \models \psi \rightarrow \varphi$

$$\xi \models \psi \to \varphi \implies \operatorname{Mod}(\xi) \subseteq \operatorname{Mod}(\psi \to \varphi)$$
$$\implies \{I_1, I_2, I_3 I_4\} \subseteq \operatorname{Mod}(\neg \psi \lor \varphi)$$
$$\implies \{I_1, I_2, I_3 I_4\} \subseteq \{I_1, I_2, I_3, I_4\}$$

${\bf H}$ 2-5. Semantische Äquivalenz und Normalformen

a) Gegeben die Wahrheitstabelle einer Formel φ mit $s(\psi) = \{A_1, A_2\}.$

0		
A_1	A_2	φ
0	0	0
0	1	1
1	0	1
1	1	1

i) Bestimmen Sie eine zu φ semantisch äquivalente Formel φ_K in KNF.

$$(\neg A_1 \lor A_2) \land (A_1 \lor \neg A_2) \land (A_1 \lor A_2)$$

$$\varphi_K = A_1 \vee A_2$$

ii) Bestimmen Sie eine zu φ semantisch äquivalente Formel φ_D in DNF.

$$\varphi_D = (\neg A_1 \land A_2) \lor (A_1 \land \neg A_2) \lor (A_1 \land A_2)$$

b) Welche der nachfolgenden Formeln sind semantisch äquivalent? Ohne Beweis.

$$\varphi_1 = A_1 \to (A_2 \to A_1)$$
 $\qquad \qquad \varphi_2 = A_1 \to A_1 \qquad \qquad \varphi_3 = A_2 \to (A_1 \to A_1)$

$$\varphi_1 \equiv \varphi_2 \equiv \varphi_3$$

c) Beweisen Sie, dass: $A_1 \to A_2 \equiv \neg (A_1 \land \neg A_2)$

$$\begin{split} A_1 \to A_2 \equiv_{\text{Implikation}} \neg A_1 \lor A_2 \\ \equiv_{\text{doppelte Negation}} \neg \neg (\neg A_1 \lor A_2) \\ \equiv_{\text{de Morgan}} \neg (\neg \neg A_1 \land \neg A_2) \\ \equiv_{\text{Elimination doppelter Negation}} \neg (A_1 \land \neg A_2) \end{split}$$