

Arbiter PUF implementation on FPGA

Prof. Christiancarmine Esposito

Salvatore Ruocco Mat. 05121 15080

Crittografia e sicurezza

Leggere chiavi private su un dispositivo

PUF

Una soluzione al problema

FPGA

Dove ho implementato e testato la PUF

Conclusione

Analisi dei risultati ottenuti

Contenuti

E' una tecnica usata per rendere le informazioni illeggibili a chi non ha il permesso di leggerle.

E' una tecnica usata per rendere le informazioni illeggibili a chi non ha il permesso di leggerle.

Caro Babbo Natale

E' una tecnica usata per rendere le informazioni illeggibili a chi non ha il permesso di leggerle.

Caro Babbo Natale

E' una tecnica usata per rendere le informazioni illeggibili a chi non ha il permesso di leggerle.

Caro Babbo Natale

gchdsjvkbshdbc rhejvbehrejvbhj

Che cos'è una chiave crittografica?

Che cos'è una chiave crittografica?

E una sorta di PASSWORD

A cosa serve?

Email or Phone

Password

2018

90%

PROCESSORI

Che cos'è una PUF?

Physical Unclonable Function

Che cos'è una PUF?

Physical Unclonable Function

Ottenere chiavi crittografiche quando ne abbiamo bisogno, senza salvarle su un dispositivo.

Che cos'è una PUF?

Physical Unclonable Function

Sfruttano imperfezioni fisiche presenti sui chip per generare randomicità.

Come funziona una PUF?

CHALLENGE → | PUF | → RESPONSE

010101010010110010...

Proprietà fondamentali di una PUF

Senza le quali una PUF non può essere definita tale

Proprietà fondamentali di una PUF

Senza le quali una PUF non può essere definita tale

Senza le quali una PUF non può essere definita tale

Diversi tipi di PUF

Arbiter PUF

Che cos'è un FPGA?

Field
Programmable
Gate
Array

Che cos'è un FPGA?

Field
Programmable
Gate
Array

Nexys A7 di Xilinx

Che cos'è un FPGA?

Arbiter PUF implementation on FPGA

Arbiter PUF implementation on FPGA

Arbiter PUF implementation

on FPGA

Uniformità

Calcolare la proporzione di 0 e 1 in più response. Idealmente dovrebbe essere vicina al 50%

Uniformità

Calcolare la proporzione di 0 e 1 in più response. Idealmente dovrebbe essere vicina al 50%

Esempio 001110

Numero di 0: 3

Numero di 1: 3

Uniformità = 50%

Uniformità

Calcolare la proporzione di 0 e 1 in più response. Idealmente dovrebbe essere vicina al 50%

Esempio 001110

Numero di 0: 3

Numero di 1: 3

Uniformità = 50%

47%

Stabilità

Dare in input alla PUF la stessa challenge e verificare che produca la stessa response. La percentuale deve essere il più vicino possibile al 100%

97,99%

Randomicità

Dare in input challenge simili ma diverse per assicurarci che le responses non si assomiglino.

99,01%

Grazie!

