Семинар 30

Задачи:

- 1. Задачник. §46, задача 46.6 (б, г, е, и).
- 2. Пусть оператор в \mathbb{R}^n задан матрицей A. Определить, найдется ли в \mathbb{R}^n скалярное произведение, относительно которого данный оператор становится ортогональным для следующих матриц:

(a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} 1 & -2 \\ 0 & -1 \end{pmatrix}$$

(d)
$$A = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}$$

(e)
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ & -1 & -2 & -3 \\ & & 1 & 2 \\ & & & -1 \end{pmatrix}$$

- 3. Пусть $\varphi \colon V \to V$ оператор в евклидовом пространстве и e_1, \dots, e_n ортонормированный базис. Покажите, что $\operatorname{tr} \varphi = \sum_{i=1}^n (e_i, \varphi e_i)$.
- 4. Пусть V евклидово пространство, $U\subseteq V$ подпространство и $P\colon V\to V$ оператор ортогонального проектирования на U, т.е. $V=U\oplus U^\perp$ и v=u+u', то Pv=u.
 - (a) Найдите $\operatorname{tr} P$.
 - (b) Найдите $\sum_{i=1}^{n} |Pe_i|^2$, где e_1, \ldots, e_n некоторый ортонормированный базис.
- 5. Пусть $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ ортогональный оператор (скалярное произведение считается стандартным), причем $\operatorname{tr} \phi \notin 2\mathbb{Z}$. Пусть $\psi \colon \mathbb{R}^2 \to \mathbb{R}^2$ другой оператор, коммутирующий с ϕ , т.е. $\phi \psi = \psi \phi$. Покажите, что $\psi = \lambda \rho$, где $\lambda \in \mathbb{R}$ положительное число, а $\rho \colon \mathbb{R}^2 \to \mathbb{R}^2$ оператор поворота.
- 6. Пусть $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ ортогональный оператор (скалярное произведение считается стандартным), причем у ϕ существует только одно вещественное собственное значение. Опишите множество $Z_{\phi} = \{\psi \colon \mathbb{R}^3 \to \mathbb{R}^3 \mid \psi \phi = \phi \psi\}.$
- 7. Пусть $\varphi \colon V \to V$ оператор в векторном пространстве. Предположим, что существует базис e_1, \dots, e_n , в котором матрица φ является симметричной и существует базис f_1, \dots, f_n , в котором матрица φ ортогональна. Докажите, что существует базис, в котором матрица φ одновременно и симметрическая и ортогональная. Опишите действие φ геометрически.
- 8. Пусть V евклидово пространство, $\mathcal{O}(V)$ множество ортогональных операторов на V. Опишите множество $\mathrm{tr}(\mathcal{O}(V))\subseteq\mathbb{R}$, т.е. опишите, какие значения может принимать след ортогонального оператора на V.

1