AS physics EOS mark scheme

1.

(a)	energy is dissipated in the internal resistance	B1
(b)	E = V + Ir	B1
(c)(i)	(graph shows) maximum value of potential difference is 2.8 (V)	B1
	or	
	(graph shows) when current/I (from battery) is zero, V is 2.8 (V) / E	
(c)(ii)	r = (-)gradient or $r = (E - V)/I$ or substituted values from the graph for E , V and I	C1
	$r=1.4\Omega$	A1
(d)(i)	R = 2.1/0.50	A1
	= 4.2 Ω	
(d)(ii)	number = $0.50/1.60 \times 10^{-19}$ = 3.1×10^{18}	A1
(d)(iii)	energy = EIt	C1
	P=EI and P=W/t G5 EDUCATION	
	$(9.2 - 1.6) \times 10^3 = 2.8 \times 0.50 \times t$	C1
	$t = 5.4 \times 10^3 \mathrm{s}$	A1

- (a) there are no lost volts/energy lost in the battery or there are no lost volts/energy lost in the internal resistance
- (b) the current/I decreases (as R increases) p.d. decreases (as R increases)

or

the parallel resistance (of X and R) increases p.d. across parallel resistors increases, so p.d. (across Y) decreases

(c) (i) current = 2.4 (A) p.d. across AB = 24 - 2.4 × 6 = 9.6 V

or

total resistance = 10Ω (= 24V/2.4A) (parallel resistance = 4Ω), p.d. = $24 \times (4/10) = 9.6 \text{ V}$

(ii) $R \text{ (AB)} = 9.6/2.4 = 4.0 \Omega$ 1/6 + 1/X = 1/4 [must correctly substitute for R] $X = 12 \Omega$

or

$$I_{R} = 9.6/6.0 = 1.6 \text{ (A)}$$

 $I_{X} = 2.4 - 1.6 = 0.8 \text{ (A)}$
 $X = 9.6/0.8 = 12\Omega$

- (iii) power = VI or EI or V^2/R or E^2/R or I^2R = 24×2.4 or $(24)^2/10$ or $(2.4)^2 \times 10$ = 57.6W (allow 2 or more s.f.)
- (d) power decreases

<u>e.m.f.</u> constant or power = $24 \times$ current, and current decreases or <u>e.m.f.</u> constant or power = 24^2 /resistance, and resistance increases

(a)	$I_1 + I_2 = I_3$ [any subject]	B1
(b)	$E_1 + E_3 = I_1R_1 + I_3R_3 + I_3R_4$ [any subject]	B1
(c)	$E_1 - E_2 = I_1 R_1 - I_2 R_2 $ [any subject]	B1

4.

(a)	E = stress/strain or (F/A)/(e/I)
	= [gradient \times 3.5] / [$\pi \times (0.19 \times 10^{-3})^2$]
	e.g. $E = [\{(40-5)/([11.6-3.2] \times 10^{-3})\} \times 3.5]/[\pi \times (0.19 \times 10^{-3})^2]$ or $[4170 \times 3.5]/[\pi \times (0.19 \times 10^{-3})^2]$
	$E = (1.3 \times 10^{11}) = 0.13 \text{ TPa } (allow answers in range 0.120–0.136 TPa)$
(b)	a larger range of F required or range greater than 35 N

5

(a)	k = F/x or $k = gradient$	C1
	e.g. k = 4.0 / 0.050 k = 80 N m ⁻¹	A1
(b)	$E = \frac{1}{2}Ex$ or $E = \frac{1}{2}kx^2$ or $E = \text{area under graph}$	C1
	(Δ) $E = (\frac{1}{2} \times 3.2 \times 0.040) - (\frac{1}{2} \times 1.2 \times 0.015) = 0.055 \text{ J}$ or (Δ) $E = (\frac{1}{2} \times 80 \times 0.040^2) - (\frac{1}{2} \times 80 \times 0.015^2) = 0.055 \text{ J}$ or (Δ) $E = \frac{1}{2} \times (1.2 + 3.2) \times 0.025 = 0.055 \text{ J}$	A1
(c)	$(\Delta)E = mg(\Delta)h$	C1
	= 0.122 × 9.81 × (0.120 – 0.095)	A1
	= 0.030 J	
	or	
	$(\Delta)E = W \times (\Delta)h$	(C1)
	= 1.2 × 0.025	(A1)
	= 0.030 J	

(d)(i)	E = 0.055 - 0.030	A1
	= 0.025 J	
(d)(ii)	$E = \frac{1}{2}mv^2$	C1
	$v = [(2 \times 0.025) / 0.122]^{0.5}$	A1
	= 0.64 m s ⁻¹	

G5 EDUCATION

(a)(i)	p = mv	C1
	= $0.2(00) \times 6.(00) \times \sin 60(.0)^{\circ}$ or $0.2(00) \times 6.(00) \times \cos 30(.0)^{\circ}$	A1
	$= 1.04 \text{ kg m s}^{-1}$	
(a)(ii)	0.300 × v _x × sin 60.0°= 1.04	A1
	$v_{\rm x} = 4.00 \rm m s^{-1}$	
(a)(iii)	$0.30 \times 4.0 \times \cos 60^{\circ}$ or $0.20 \times 6.0 \times \cos 60^{\circ}$ or $(0.30 + 0.20)v$ or $0.50v$	C1
	$0.30 \times 4.0 \times \cos 60^{\circ} + 0.20 \times 6.0 \times \cos 60^{\circ} = (0.30 + 0.20)v$ or $0.50v$	A1
	so $v = 2.4 \mathrm{m}\mathrm{s}^{-1}$	
(b)(i)	$E = \frac{1}{2}mv^2$	C1
	$\frac{1}{2} \times 0.50 \times 2.4^2 = \frac{1}{2} \times 72 \times x^2$	C1
	x = 0.20 m	A1
(b)(ii)	1. straight line from the origin sloping upwards	B1
	2. line drawn from a positive value of E_k at $x = 0$ to a positive value of x at $E_k = 0$	M1
	line has an increasing downwards slope	A1

7.

(a)
$$\frac{V}{t} = \frac{\pi P r^4}{8C l}$$

 $C = [\pi \times 2.5 \times 10^3 \times (0.75 \times 10^{-3})^4] / (8 \times 1.2 \times 10^{-6} \times 0.25)$
 $= 1.04 \times 10^{-3} \text{ N s m}^{-2}$

(b)
$$4 \times \%r$$

 $\%C = \%P + 4 \times \%r + \%V/t + \%t$
 $= 2\% + 5.3\% + 0.83\% + 0.4\% (= 8.6\%)$
 $\Delta C = \pm 0.089 \times 10^{-3} \text{ N s m}^{-2}$

(c)
$$C = (1.04 \pm 0.09) \times 10^{-3} \text{ Ns m}^{-2}$$

G5 EDUCATION

- (a) resistance = potential difference / current
- (b) (i) metal wire in series with power supply and ammeter voltmeter in parallel with metal wire rheostat in series with power supply or potential divider arrangement or variable power supply
 - (ii) 1. intercept on graph
 - 2. scatter of readings about the best fit line
 - (iii) correction for zero error explained use of V and corrected I values from graph resistance = V/I = 22.(2) Ω [e.g. 4.0 / 0.18]
- (c) R = 6.8 / 0.64 = 10.625

$$\%R = \%V + \%I$$

= $(0.1 / 6.8) \times 100 + (0.01 / 0.64) \times 100$
= $1.47\% + 1.56\%$
 $\Delta R = 0.0303 \times 10.625 = 0.32 \Omega$
 $R = 10.6 \pm 0.3 \Omega$

- (a) the point where (all) the weight (of the body) is considered / seems to act
- (b) (i) vertical component of $T = 30 \cos 40^\circ$
 - (ii) the <u>sum</u> of the clockwise moments about a <u>point</u> equals the <u>sum</u> of the anticlockwise moments (about the same point)
 - (iii) (moments about A): 23 × 1.2 (27.58) = 8.5 × 0.60 + 1.2 × W working to show W = 19 or answer of 18.73 (N)
 - (iv) (M = W/g = 18.73/9.81 =) 1.9(09) kg

(a)	$p = 1000 \times 9.81 \times 7.0 \times 10^{-2} \text{ or } 1000 \times 9.81 \times 1.9 \times 10^{-2}$	C1
	$\Delta p = 1000 \times 9.81 \times (7.0 \times 10^{-2} - 1.9 \times 10^{-2}) \text{ or } 686 - 186$	A1
	= 500 Pa	
(b)	$F = pA \text{ or } (\Delta)F = \Delta p \times A$	C1
	upthrust = $500 \times (5.1 \times 10^{-2})^2 = 1.3 \text{ N}$ or upthrust = $(686 - 186) \times (5.1 \times 10^{-2})^2 = 1.3 \text{ N}$ or upthrust = $1000 \times 9.81 \times 5.1 \times 10^{-2} \times (5.1 \times 10^{-2})^2 = 1.3 \text{ N}$	A1
(c)	force = 4.0 – 1.3	A1
	= 2.7 N	

¹ (d)	extension/x/e = 2.7/30	C1
	= 0.09 (m) or 9 (cm)	C1
	height above surface = 9 – 7 = 2 cm	A1
(e)(i)	mass = 4.0/9.81	C1
	acceleration = 2.7/(4.0/9.81) = 6.6 ms ⁻²	A1
(e)(ii)	viscous force increases (and then becomes constant)	M1
	(weight and upthrust constant so) acceleration decreases (to zero)	A1

11.

(a)	force × perpendicular distance (of line of action of force) to/from a point	B1
(b)(i)	$2.4r$ or $(1.2 \times 2r)$ or $(1.2r + 1.2r)$	A1
(b)(ii)	(anticlockwise moment =) $6.0 \times r/2 \times \sin\theta$	C1
	$6.0 \times r/2 \times \sin\theta = 2.4r$	A1
	<i>θ</i> = 53°	
(b)(iii)	6.0 N	A1

12.

(a) work done is force × distance moved in direction of force or no work done along PQ as no displacement/distance moved in direction of force work done is same in vertical direction as same distance moved in direction of force

(b) (i) at maximum height
$$t = 1.5$$
 (s) or $s = \frac{1}{2}(u + v)t$, $s = 11$ m and $t = 1.5$ s
$$V_v = 0 + 9.81 \times 1.5$$

$$= 15 (14.7) \,\text{m s}^{-1}$$

- (ii) straight line from (0,0) to (3.00, 25.5)
- (iii) at maximum height $V_h = 25.5/3 (= 8.5 \,\text{ms}^{-1})$ ratio = $mgh/\frac{1}{2}mv^2$ = $(2 \times 9.81 \times 11.0)/(8.5)^2$ = 3.0 (2.99)
- (iv) deceleration is greater/resultant force (weight and friction force) is greater time is less

