CS1200 Module-2: Logic & Proofs Quicle Recap: We have seen our first nontrivial proof. Theorem: Let G be a graph. If each vertex (of G) has degree at least two then or has a cycle. Graph) as a subgraph We wrote a proof I same as with lots of details & G is NOT a forest. explanations. Here is the same proof with very few details/explanations: Proof: (NOT acceptable for CS1200) Consider a longest path P, and let v denote an end of P. Observe that there is an edge of RE(P) incident at vertex v. Now we have a cycle. Subject on you consider this?

Subject of the consider of the consideration where? provided Rule of Thumb (for (51200): when in doubt (to explain or NOT to explain), NOT a cceptable explain! in CS1200 Same theorem stated differently: Theorem: Every forest has a vertex of degree at most one. DIY: A vertex of degree one (in a tree forest) means zero or one, right? Theorem: Every forest with at least one edge Cordbary: Every tree except Ki has a leat. is called a LEAF.

CS1200 Module-2: Logic & Proof: (72)
Corollary: Every tree except K1 DIY: has a leaf. O prove this corollary directly using same/similar ideas wing same/similar ideas is it possible to prove something stronger?
consequence or result.
Next Goal: We will find this fact Generalize "everything" extremely we ful in a few weeks.
to digraphs.
Directed walk: defined on Assignment - 1 Directed trail: a directed walk but No repetition of arcs allowed Directed path: a directed walk but No repetition of directed walk but No repetition of allowed walk but No repetition of arcs allowed, right?) (So, no repetition of arcs allowed, right?)
(so, no referred)
Directed cycle: same as directed path EXCEPT first vertex = last vertex (aka) same as
diayde) Same as Directed paths: 0,000,0000,0000, Directed ydes: Q, Q, Q, , of ALL.

Module - 2: Logic & Proofs. labeled (73) Subdigraph: A'digraph F is a subdigraph of a digraph D if F can be obtained from D by deleting vertices and/or DIY: Define isomorphism for digraphs. Subdigraph (unlabeled version): A digraph F is a subdigraph of a digraph D if some digraph isomorphic to F can be obtained from D by deleting vertices and for arcs. Recall; A graph G is a forest if it is means does NOT contain any cycle (graph) So, forest are also called Tacyclic graphs. Las a subgraph generally & let us do the same for digraphs DAGIS (Directed Acyclic Craphs): A directed graph D is a DAG if it is acyclic. does NOT contain any divyde as a subdigraph

We also discussed adjacenty & incidence matrices for digraphs but these appear earlier in the notes: see adjacency & incidence matrices for undirected graphs.