	Student information	Date	Number of session
Algorithmics	UO: 283928	03/14	Session 3
	Surname: Suárez Losada	Escuela de	

Informática

Activity 1. Tromino times

Name: Gonzalo

Measurements taken on a 16GiB ram PC whose CPU is an intel-i5 10400 @2.9GHz.

size	time (ms)	
16	0	
32	0	
64	. 0	
128	1	
256	0	
512	3	
1024	11	
2048	31	
4096	90	
8192	332	
16384	1294	

Analysis of the theoretical complexity:

This algorithm implements a Divide and Conquer strategy by division. As such, its complexity depends on three variables:

- a: amount of subproblems (4 in this case).
- b: reducing factor (2 as we are splitting by halves).
- k: complexity of the remaining method (O (1)).

Then, as a > b^k , complexity will be $O(n^{logb(a)}) = O(n^{log2(4)}) = O(n^2)$

Checking if the real measurements are close to theoretical values

N1
$$\rightarrow$$
 t1
N2 -> t2 = ?
Then, t2 = t1 * f(n2)/f(n1), being f(n) = n²
Hence, f2 = 4 * t1

For n1 = 4096:

 $T2 = 90 * (2048/1024)^2 = 360$, which is really close to the real value(336)

For n2 = 332:

 $T2 = 336 * (2048/1024)^2 = 1344$, which is really close to the real value(1294)

Then, we can conclude that the real complexity is very close to O(n²)