

Podstawy topologii algebraicznej

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów

matematyka

Ścieżka

MATEMATYKA TEORETYCZNA

Jednostka organizacyjna

Wydział Matematyki i Informatyki

Poziom kształcenia

drugiego stopnia

Forma studiów

studia stacjonarne

Profil studiów

ogólnoakademicki

Obligatoryjność

obowiązkowy

Cykl kształcenia

2021/22

Kod przedmiotu

UJ.WMIMATMatTeoS.210.5cb87abbe8252.21

Języki wykładowe

Polski

Dyscypliny

Matematyka

Klasyfikacja ISCED

0541 Matematyka

Kod USOS

Koord	lynat	tor
przed	miot	u

Wojciech Kucharz

Prowadzący zajęcia

Wojciech Kucharz

Okres	
Semestr	1

Forma weryfikacji uzyskanych efektów uczenia się

egzamin

Sposób realizacji i godziny zajęć

wykład: 30, ćwiczenia: 30

Liczba punktów ECTS

6.0

Cele kształcenia dla przedmiotu

C1 zapoznanie studentów z podstawowymi pojęciami i twierdzeniami z topologii algebraicznej

Efekty uczenia się dla przedmiotu

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
Wiedzy -	- Student zna i rozumie:		
W1	I I I I I I I I I I I I I I I I I I I		egzamin ustny, zaliczenie na ocenę
Umiejętı	ności - Student potrafi:		
U1	podawać przykłady zastosowań twierdzeń poznanych podczas wykłady, wymienionych w polu Treść sylabusa	MAT_K2_U01	egzamin ustny, zaliczenie na ocenę
U2	precyzyjnie przekazywać treści matematyczne w zakresie wymienionym w polu Treść sylabusa	MAT_K2_U02, MAT_K2_U03	egzamin ustny, zaliczenie na ocenę
Kompete	encji społecznych - Student jest gotów do:		
K1			egzamin ustny, zaliczenie na ocenę
K2	krytycznej analizy przedstawianych twierdzeń, uwag i wniosków	MAT_K2_K02, MAT_K2_K06	egzamin ustny, zaliczenie na ocenę

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć	
wykład	30	
ćwiczenia	30	
przygotowanie do ćwiczeń	90	
przygotowanie do egzaminu	29	
uczestnictwo w egzaminie	1	
Łączny nakład pracy studenta	Liczba godzin 180	ECTS 6.0
Liczba godzin kontaktowych	Liczba godzin 60	ECTS 2.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp.	Treści programowe	Efekty uczenia się dla przedmiotu
-----	-------------------	--------------------------------------

1.	Pojęcie homotopii odwzorowań i homotopijnej równoważności przestrzeni topologicznych. 2. Homologia singularna. 3. Zerowa grupa homologii. 4. Pierwsza grupa hologii i jej związek z grupą fundamentalną. 5. Podstawowe twierdzenia (twierdzenie o homotopii, twierdzenie o wycinaniu). Homotopy of maps and homotopy equivalence of topological spaces. Singular homology. 3. The 0th homology group. 4. The first homology group and its connectin with the fundamental group.	W1, U1, K1
2.	 Podstawowe twierdzenia z homologii singularnej (twierdzenie o homotopii, twierdzenie o wycinaniu). 6. Ciąg dokładny Mayera-Vietorisa. 7. Obliczanie grup homologii pewnych przestrzeni. 8. CW kompleksy. 9. Homologia komórkowa. 10. Charakterystyka Eulera. 11. Zastosowania. 12. Słynne twierdzenia (twierdzenie Brouwera, Twierdzenie Jordana, twierdzenie Borsuka-Ulama, twierdzenie o niezmienniczości wymiaru. twierdzenie o zachowniu obszaru). Basic theorems of singular homology (homotopy theorem, excision theorem). 6. The Mayer-Vietoris sequence. 7. Computation of the homology groups of some spaces. 8. CW complexes. 9. Cellular homology. 10. The Euler characteristic. 11. Applications. 12. Famous theorems (Brouwer fixed point theorem, Jordan separation theorem, Borsuk-Ulam theorem, invariance of dimension theorem, invariance of domain theorem) 	W1, U1, U2, K1, K2

Informacje rozszerzone

Metody nauczania:

wykład konwencjonalny, rozwiązywanie zadań

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin ustny	pozytywna ocena z egzaminu
ćwiczenia	zaliczenie na ocenę	aktywność na zajęciach poprzez rozwiązywanie zadań domowych lub referat na zwiazany z wykładem temat

Wymagania wstępne i dodatkowe

podstawowe pojecia z topologii i algebry; przedmiot może być wykładany w języku angielskim

Literatura

Obowiązkowa

- 1. G.B. Bredon, Topology and Geometry, Springer
- 2. M. Greenberg and J. Harper, Algebraic Topology: A First Course, Benjamin/Cummings
- 3. E.H. Spanier, Algebraic Topology, Springer

Dodatkowa

- 1. A. Hatcher, Algebraic Topology, Cambridge University Press
- 2. T. tom Dieck, Algebraic Topology, European Mathematical Society

Kierunkowe efekty uczenia się

Kod	Treść
MAT_K2_W04	Absolwent zna i rozumie specjalistyczne zagadnienia z wybranej dziedziny matematyki
MAT_K2_U01	Absolwent potrafi konstruować rozumowania matematyczne takie, jak dowodzenie twierdzeń lub obalanie hipotez (poprzez konstrukcje i dobór kontrprzykładów)
MAT_K2_U02	Absolwent potrafi wyrażać treści matematyczne w mowie i na piśmie, w tekstach matematycznych o różnym charakterze
MAT_K2_U03	Absolwent potrafi sprawdzać poprawność wnioskowań w budowaniu dowodów formalnych
MAT_K2_K01	Absolwent jest gotów do dalszego samokształcenia
MAT_K2_K02	Absolwent jest gotów do precyzyjnego formułowania pytań służących pogłębieniu własnego zrozumienia danego tematu lub odnalezieniu brakujących elementów rozumowania
MAT_K2_K06	Absolwent jest gotów do prezentowania krytycznej postawy wobec twierdzeń, uwag i wniosków, zwłaszcza tych, które nie są poparte logicznym uzasadnieniem