Pumping Lemma for Context-free Languages

Take an infinite context-free language

Generates an infinite number of different strings

Example:
$$S oup ABE \mid bBd$$
 $A oup Aa \mid a$
 $B oup bSD \mid cc$
 $D oup Dd \mid d$
 $E oup eE \mid e$

In a derivation of a "long" enough string, variables are repeated

A possible derivation:

$$S \Rightarrow ABE \Rightarrow AaBE \Rightarrow aaBE$$

$$\Rightarrow aabSDE \Rightarrow aabbBdDE \Rightarrow$$

$$\Rightarrow aaabbccdDE \Rightarrow aabbccddE$$

$$\Rightarrow aabbccddeE \Rightarrow aabbccddee$$

$B \Rightarrow bSD \Rightarrow bbBdD \Rightarrow bbBdd$

 $B \Rightarrow bbBdd$

$S \Rightarrow ABE \Rightarrow AaBE \Rightarrow aaBE \Rightarrow aaBeE \Rightarrow aaBee$

 $B \Rightarrow cc$

Putting all together $S \Rightarrow aaBee$ $B \Rightarrow bbBdd$

We can remove the middle part

$$S \Rightarrow aa(bb)^{0}cc(dd)^{0}ee$$

 $S \Rightarrow aaBee$

 $B \Rightarrow bbBdd$

 $B \Rightarrow cc$

$$S \Rightarrow aaBee \Rightarrow aaccee = aa(bb)^0 cc(dd)^0 ee$$

$$aa(bb)^{0}cc(dd)^{0}ee \in L(G)$$

We can repeated middle part two times

 $S \Rightarrow aa(bb)^2 cc(dd)^2 ee$

*

 $S \Rightarrow aaBee$

 $B \Rightarrow bbBdd$

 $B \Rightarrow cc$

*

 $S \Rightarrow aaBee \Rightarrow aabbBddee$

*

 $\Rightarrow aa(bb)^2 B(dd)^2 ee \Rightarrow aa(bb)^2 cc(dd)^2 ee$

 $aa(bb)^2cc(dd)^2ee \in L(G)$

We can repeat middle part three times

 $S \Rightarrow aa(bb)^{3}cc(dd)^{3}ee$

 $S \Rightarrow aaBee$

 $B \Rightarrow bbBdd$

 $B \Rightarrow cc$

$$S \Rightarrow aa(bb)^3 cc(dd)^3 ee \in L(G)$$

$$\in L(G)$$

Repeat middle part i times

$$S \Rightarrow aaBee$$

$$B \Rightarrow bbBdd$$
 $B \Rightarrow cc$

$$B \Rightarrow cc$$

$$* S \Rightarrow aa(bb)^{i}cc(dd)^{i}ee \in L(G)$$

For any $i \ge 0$

From Grammar

and given string

$$S \rightarrow ABE \mid bBd$$

$$A \rightarrow Aa \mid a$$
 $aabbccddee \in L(G)$

$$B \rightarrow bSD \mid cc$$

$$D \to Dd \mid d$$

$$E \rightarrow eE \mid e$$

We inferred that a family of strings is in L(G)

$$S \Rightarrow aa(bb)^i cc(dd)^i ee \in L(G) \text{ for any } i \ge 0$$

Arbitrary Grammars

Consider now an arbitrary infinite context-free language $\,L\,$

Let G be the grammar of $L-\{\lambda\}$

Take G so that it has no unit-productions and no λ -productions

(remove them)

Let r be the number of variables

Let t be the maximum right-hand size of any production

Example:
$$S \rightarrow ABE \mid bBd$$
 $r = 5$
 $A \rightarrow Aa \mid a$
 $B \rightarrow bSD \mid cc$
 $D \rightarrow Dd \mid d$
 $E \rightarrow eE \mid e$

Claim:

Take string $W \in L(G)$ with $|W| > t^r$. Then in the derivation tree of Wthere is a path from the root to a leaf where a variable of G is repeated

Proof:

Proof by contradiction

Derivation tree of w

 $|w| \ge m$ We will show: some variable is repeated

First we show that the tree of w has at least r+2 levels of nodes

Maximum number of nodes per level

The maximum right-hand side of any production

Maximum number of nodes per level

Maximum number of nodes per level

At most r+1 Levels Level $i:t^i$ nodes

Maximum possible string length $= \max \text{ nodes at level } r = t^r$

Therefore, maximum length of string $w: |w| \leq t^r$

However we took, $|w| > t^r$

Contradiction!!!

Therefore, the tree must have at least r+2 levels

Thus, there is a path from the root to a leaf with at least r+2 nodes

 $V_1 = S$ (root) At least r+2r+1 Variables Levels

Since there are at most r different variables, some variable is repeated

END OF CLAIM PROOF

Take H to be the deepest, so that only H is repeated in subtree

y = dd z = eeB correspond s to H

$$z = ee$$

$$S \Rightarrow aaBee$$

$$B \stackrel{*}{\Rightarrow} bbBdd$$

$$B \Rightarrow cc$$

Yield:
$$uxz = uv^0xy^0z$$

$$S \stackrel{*}{\Rightarrow} uHz \stackrel{*}{\Rightarrow} uxz = uv^0xy^0z \in L(G)$$

Repeat Middle part two times

$$S \Rightarrow uHz$$

$$H \Rightarrow vHy$$

*

$$H \Rightarrow x$$

*

$$S \Rightarrow uHz \Rightarrow uvHyz \Rightarrow uvvHyyz$$

$$\overset{*}{\Rightarrow} uvvxyyz = uv^2xy^2z \in L(G)$$

Repeat Middle part i times

$$s \Rightarrow uHz$$

$$H \Rightarrow vHy$$

*

$$H \Rightarrow x$$

$$S \stackrel{*}{\Rightarrow} uHz \stackrel{*}{\Rightarrow} uvHyz \stackrel{*}{\Rightarrow} uvvHyyz \stackrel{*}{\Rightarrow}$$

$$\Rightarrow \dots$$

$$\stackrel{*}{\Rightarrow} uv^{i}Hy^{i}z \stackrel{*}{\Rightarrow} uv^{i}xy^{i}z \in L(G)$$

Therefore,

$$|w| \ge t^r$$

If we know that: $w = uvxyz \in L(G)$

then we also know: $uv^i xy^i z \in L(G)$

For all $i \ge 0$

$$Since \\ L(G) = L - \{\lambda\}$$

$$uv^i xy^i z \in L$$

Observation 1:

$$|vy| \geq 1$$

Since G has no unit and λ -productions

At least one of V or Y is not λ

Observation 2:

$$|vxy| \leq t^{r+1}$$

since in subtree only variable H is repeated

subtree of H

Explanation follows....

$$vxy = s_1 s_2 \cdots s_k$$

$$|s_j| \le t^r$$
 since no variable is repeated in T_j

$$|vxy| = \sum_{j=1}^{\kappa} |s_j| \le \kappa \cdot t^r \le t \cdot t^r = t^{r+1}$$

Maximum right-hand side of any production

Thus, if we choose critical length

$$\mathbf{m} = \mathbf{t}^{r+1} > \mathbf{t}^r$$

then, we obtain the pumping lemma for context-free languages

The Pumping Lemma:

For any infinite context-free language L there exists an integer $\,m\,$ such that

for any string $w \in L$, $|w| \ge m$

we can write w = uvxyz

with lengths $|vxy| \le m$ and $|vy| \ge 1$

and it must be that:

 $uv^i xy^i z \in L$, for all $i \ge 0$

Applications of The Pumping Lemma

Non-context free languages

$$\{a^n b^n c^n : n \ge 0\}$$

$$\{a^nb^n: n \ge 0\}$$

Theorem: The language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^n b^n c^n : n \ge 0\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^n b^n c^n : n \ge 0\}$$

Let m be the critical length of the pumping lemma

Pick any string $w \in L$ with length $|w| \ge m$

We pick: $w = a^m b^m c^m$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

From pumping lemma:

we can write: w = uvxyz

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = u \quad b \quad c$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Pumping Lemma says:

$$uv^i xy^i z \in L$$
 for all $i \ge 0$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

We examine <u>all</u> the possible locations of string vxy in w

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1:
$$vxy$$
 is in a^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $k_1 + k_2 \ge 1$

$$m + k_1 + k_2$$
 m m
 $a ... aa ... aa ... aa ... aa ... aa bbb ... bbb ccc ... ccc$
 $u v^2 x y^2$ z

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$m \quad m$$

 $|vxy| \leq m$

$$w = a^m b^m c^m$$

$$w = uvxyz$$

$$|vy| \ge 1$$

From Pumping Lemma: $uv^2xy^2z \in L$

$$k_1 + k_2 \geq 1$$

However:
$$uv^2xy^2z = a^{m+k_1+k_2}b^mc^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$vxy$$
 is in b^m

Similar to case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$m \quad m$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

Case 3:
$$vxy$$
 is in c^m

Similar to case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4:
$$vxy$$
 overlaps a^m and b^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Sub-case 1: v contains only a y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz | vxy | \le m$$

$$|vy| \ge 1$$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

From Pumping Lemma: $uv^2xy^2z \in L$

$$k_1 + k_2 \ge 1$$

However:
$$uv^2xy^2z = a^{m+k_1}b^{m+k_2}c^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Sub-case 2: v contains a and b y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

By assumption

$$\mathbf{v} = a^{k_1}b^{k_2} \qquad \mathbf{y} = a^{k_3}$$

$$k_1, k_2 \geq 1$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

 $\mathbf{v} = \mathbf{a}^{k_1} \mathbf{b}^{k_2} \qquad \mathbf{y} = \mathbf{a}^{k_3}$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

 $k_{1}, k_{2} \geq 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

From Pumping Lemma: $uv^2xy^2z \in L$

$$k_{1},k_{2} \ge 1$$
However: $uv^{2}xy^{2}z = a^{m}b^{k_{2}}a^{k_{1}}b^{m+k_{3}}c^{m} \notin L$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Sub-case 3:
$$v$$
 contains only a y contains a and b

Similar to sub-case 2

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 5:
$$vxy$$
 overlaps b^m and c^m

Similar to case 4

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \leq m$$

 $|vy| \ge 1$

Case 6: vxy overlaps a^m , b^m and c^m

Impossible!

m m m m
aaa...aaa bbb...bbb ccc...ccc
u vxy z.

In all cases we obtained a contradiction

Therefore: the original assumption that

$$L = \{a^n b^n c^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free