Thursday, April 5, 2018 8:54 AM

Preliminaries

- Graphs are a "capstone" data structure that often employ several data structures discussed previously in class. Depending on the problem, they may use:
 - o Hash tables,
 - o Priority queues,
 - Vectors
 - o Linked Lists
 - Queues
 - Stacks
- Graphs are just like trees except that they can have multiple paths between any two nodes (vertices)
- Graphs can contain disconnected segments (not every node is reachable from any other node)
- Example graph:

- Unlike trees, graphs vertices can have from 0, 1, ..., |V| paths to each vertex
- All trees are graphs, but not all graphs are trees
- Typically in CS, graph edges are one-way (directional). Graphs with one directional edges are called directed graphs (digraph).
 - This is because pointers can only point to one thing!
- How would we represent a bi-directional edge in CS?
 - With two pointers. A->B; B->A
- By convention, edges without arrows are considered bi-directional

Example Graph

- Unlike a tree, there is no "root" of a graph
- Thus, we need to store the graph as whole (allow access to any vertex in graph immediately)

Vector-based graph implementation (Adjacency Matrix)

- A value of 1 represents connectivity
- Read using row-major order. Rows tell us what the vertex is connected to

	Α	В	С	D	E	F	G
Α	0	0	0	0	0	0	0
В	0	0	1	1	0	0	1
С	0	0	0	0	0	0	1
D	1	0	0	0	1	0	0
E	0	0	0	0	0	1	0
F	0	0	0	0	0	0	1
G	0	1	0	0	0	0	0

Size =
$$\left| \sqrt{2} \right|$$

- PA2 used an adjacency matrix
- Pros
 - Very nice visual representation
 - o Can be a bit more straight forward to work with
- Cons
 - Takes up a lot of space. The only important things to know in the graph are the 1s. The 0s are wasted space.

Linked List Implementation (Edge List)

· Each vertex maintains a list of connected vertices

Vertex	LinkedList <vertex*> connected_vertices</vertex*>
Α	{}
В	D->C->G
С	G
D	A->E
E	F
F	G
G	В

Size = |E|

for all graphs |E| 4 |V2

Choice of which

to use based on

- Pros
 - Takes up less space when the graph is sparse (not a lot of edges in the graph)
 - Can be nicer in recursive situations
- Cons
 - o Overall picture of graph is less clear

For PA #5, our graph is represented in two parts. For the actors: unordered map<string, Actor*>

For movies:

unordered_map<string, Movie*>

Graph Traversals

• Given this social graph:

- We might want to ask whether or not Jill and Sara are in the same social circle.
- When answering this question, we must keep track of visited vertices
- Algorithm:
 - 1. Pick some starting location (e.g. Jill)
 - 2. Put starting vertex into a list of vertices called to_visit
 - 3. While to_visit is not empty:
 - i. Remove *item* from *to_visit*. For each vertex (*v*) in *item*.
 - 1) If **v** not seen before, add to **to_visit**
 - ii. Remember that we've seen item
 - 4. If target is not in our list of seen items, they are not connected

Degrees of separation

- How many degrees of separation are there between Jill and Sara?
 - $\circ\quad \text{I.e.}$ how many edges are there between Jill and Sara
- Uses BFS, Requires an additional counter. Instead of remembering just a name, we must remember a distance as well

- This process creates a tree, which can then be traversed. Not required for PA#5, but it might be helpful (Adam did not do this).
- Steve, 3 Sara, 3

• Trees can also be built from a DFS

DFS trees allow us to find weak points in a graph (articulation points).

• In social graph, if one person were to go away (die), who would no longer be friends?