CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Sections
Mathematics	205	All
Examination	Date	Pages
Final	April 2012	2
Instructors:	F. Balogh, A. Boyarsky, D. Challita,	Course Examiners
	E. Kritchevsky, H. Proppe	A. Atoyan & H. Proppe
Special Instructions:	Only calculators approved by the Department are allowed. For full marks show your work clearly.	

MARKS

[10] 1. (a) Write in sigma notation the formula for the right Riemann sum R_n of $f(x) = 3 + 2x^2$ on the interval [0,3] partitioned into n subintervals of equal length, and calculate R_6 to approximate the area enclosed by the graph of f and x- axis on that interval by the sum with n = 6.

NOTE: you may need the formula
$$\sum\limits_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$
 .

- (b) Use the Fundamental Theorem of Calculus to calculate the derivative of the function $F(x) = \int_0^{x^2} \frac{t-4}{1+\cos^2(t)} dt$, and find the points x of the local extrema (maximum or minimum) of F.
- [8] 2. Find the antiderivative F(x) of the function f(x) that satisfies the given condition:

(a)
$$f(x) = \sqrt{x} (1 - x^{-1/2})^2$$
, $F(1) = 1$. (b) $f(x) = \frac{5 + \cos^2(x)}{\cos^2(x)}$, $F(0) = 5$.

[12] 3. Calculate the following indefinite integrals:

(a)
$$\int \frac{\sin(x)}{\cos^2(x) + 9} dx$$
, (b) $\int \frac{2^x}{2^x + 1} dx$, (c) $\int \frac{dx}{(x+4)(x-1)}$.

[10] 4. Evaluate the following definite integrals (give the exact answers):

(a)
$$\int_{0}^{4} \frac{t}{\sqrt{1+2t}} dt$$
 (b)
$$\int_{1}^{4} \sqrt{t} \ln(t) dt$$

[8] 5. Evaluate the given improper integral or show that it diverges:

(a)
$$\int_{0}^{4} \frac{1}{x\sqrt{x}} dx$$
 (b) $\int_{0}^{\infty} x e^{-2x^{2}} dx$

- [17] 6. (a) Sketch the curves $y = x^2 2$ and y = |x| and find the area enclosed.
 - (b) Sketch the region enclosed by $f(x) = \cos^2(x)$ and the x-axes on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and find the volume of revolution of this region about the x-axis.
 - (c) Find the average value of the function $f(x) = \cos(x) \sin(2x)$ on the interval $\left[0, \frac{\pi}{2}\right]$.
- [9] 7. Find the limit of the sequence $\{a_n\}$ or explain why the limit does not exist:

(a)
$$a_n = \frac{2^n + 5^{n+2}}{6^n}$$
 (b) $a_n = \frac{\sqrt{n^4 + n^3}}{n + 3n^2}$ (c) $a_n = \frac{n^2 \cos(\pi n)}{1 + n^2}$

[12] 8. Determine whether the series is divergent or convergent, and if convergent, then absolutely or conditionally, and explain why.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{1+2n}$$
 (b) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln(n)}$ (c) $\sum_{n=2}^{\infty} \frac{\sqrt{n+4}}{n^2+4}$

[6] 9. Find the radius and the interval of convergence of the series

$$\sum_{n=1}^{\infty} \frac{(x-3)^{2n}}{n \, 4^n}$$

- [8] 10. (a) Derive the Maclaurin series of $f(x) = x^2 e^{2x}$ (HINT: start with the series for e^z where z = 2x).
 - (b) Use differentiability of power series to find the sum $F(x) = \sum_{1}^{\infty} \frac{(x-1)^n}{n}$ within its radius of convergence.
- [5] **Bonus Question.** Let f be a continuous function on the interval [1,4]. Prove that $\bar{f}_{[1,4]} = \frac{1}{3}\bar{f}_{[1,2]} + \frac{2}{3}\bar{f}_{[2,4]}$, where $\bar{f}_{[1,4]}$, $\bar{f}_{[1,2]}$ and $\bar{f}_{[2,4]}$ are the average values of f on the respective intervals.

