	<pre>import matplotlib.pyplot as plot</pre>
	Réseau profond
	Mise en situation Toujours salarié à la poste, préposé aux algorithmes de reconnaissance des codes postaux :)
	90% c'est bien, tentons de faire mieux. Si passer d'un modèle logistique (1 couche) à un réseau de neurones tel qu'on la vu (2 couches) a grandement amélioré le modèle, est-ce qu'on ne pourrait pas faire encore mieux avec des couches en plus ?
	L'apprentissage profond
	Le principe Le principe du <i>Deep Learning</i> , c'est d'entrer plus en profondeur dans l'apprentissage. Ajouter des
	couches de réseau notamment. L'idée est la suivante - pour de la reconnaissance d'images : une première couche va détecter des patterns simples (des lignes par exemple), une seconde couche va détecter des patterns plus complexes
	qui combinent les premiers (des courbes par exemple), une troisième va mixer les précédents pour reconnaître des formes, etc
	Définition formelle des couches On appelle généralement les entrées la première couche, et la sortie la dernière couche. Toutes les couches intermédiaires sont les couches cachées (hidden layers).
	Autrement dit, dans le modèle précédent, il s'agissait sémantiquement parlant d'un réseau à trois couches : l'entrée (qui faisait 28x28), la couche intermédiaire (variable) et la sortie (taille 10).
	Dérivation et propagation du gradient Le calcul de la dérivée va se faire comme précédemment. En gros, si on a une entrée A_{n-1} , des
	paramètres W_n et b_n , et une fonction d'activation $a()$, on a: • Passe en avant :
	$egin{aligned} Z_n &= W_n.A_{n-1} + b_n \ A_n &= a(Z_n) \end{aligned}$
	$ullet$ Passe en arrière : avec en plus dA_n $dZ_n = a'(Z_n) * dA_n$ $dW_n = dZ. \ A_{n-1}^T$
	$egin{aligned} dW_n &= dZ.A_{n-1}\ db_n &= \sum dZ\ dA_{n-1} &= W_n^T.dZ \end{aligned}$
	Implémentation Pour implémenter ça, on va procéder de la manière suivante:
	1. On calcule les différents Z et A pour chaque couche. On gardera les résultats du calcul pour la marche arrière.
	2. On revient en marche arrière, couche par couche aussi3. On applique la descente de gradient
	Les fonctions On commence par implémenter les différentes fonctions. On va aussi en faire un dictionnaire.
In [5]:	<pre># Les différentes fonctions def sigmoid(x) : return 1 / (1 + np.exp(-x)) def tanh(x): return (np.exp(x) - np.exp(-x))/(np.exp(x) + np.exp(-x)) def relu(x): return np.maximum(x, 0)</pre>
	<pre>act_functions = {'sigmoid': sigmoid, 'tanh' : tanh, 'relu' : relu}</pre> <pre>Les dérivées</pre>
In [3]:	Et maintenant les dérivées de ces fonctions. On en fera aussi un dictionnaire. # Leurs dérivées def d sigmoid(x):
	<pre>s = sigmoid(x) return s * (1 - s) def d_tanh(x):</pre>
	<pre>t = tanh(x) return 1 - t**2 def d_relu(x):</pre>
	<pre>return x > 0 act_derivates = {'sigmoid': d_sigmoid, 'tanh' : d_tanh, 'relu' : d_relu}</pre>
	La passe en avant On y va pour le calcul du modèle, et on commence par la passe en avant.
In [11]:	D'après les formules, on a besoin de calculer Z et A pour chaque couche, et au passage on aura besoin des Z et A correspondants lors de la marche arrière. # Passe en avant : 1 couche - on utilise le dictionnaire de fonctions
111 [11].	<pre>def layer_forward_pass(X, W, b, activation): Z = np.dot(W, X) + b A = act_functions[activation](Z) return Z, A</pre>
	<pre># Passe en avant : toutes les couches def model_forward_pass(X, activations, parameters): result = {} result['A0'] = X</pre>
	# Entrée de la première couche: X A = X for i in range(1, len(activations) + 1): # Pour chaque couche, une passe en avant. Les W et b viennent de parameters
	<pre>Z_next, A_next = layer_forward_pass(A, parameters['W' + str(i)], parameters['R' result['Z' + str(i)] = Z_next result['A' + str(i)] = A_next A = A_next return result</pre>
	La passe en arrière
In [12]:	
[12]:	<pre>def layer_backward_pass(dA, Z, A_prev, W, activation): dZ = dA * act_derivates[activation](Z) dW = np.dot(dZ, A_prev.T) db = np.sum(dZ, axis=1, keepdims = True)</pre>
	<pre>dA_prev = np.dot(W.T, dZ) return dW, db, dA_prev # Passe en arrière : toutes les couches def model_backward_pass(dA_last, parameters, forward_pass_results, activations):</pre>
	<pre>gradients = {} dA = dA_last for i in range(len(activations), 0, -1): dW, db, dA_prev = layer_backward_pass(dA,</pre>
	<pre>forward_pass_results['Z' + str(i)], forward_pass_results['A' + str(i-1)], parameters['W' + str(i)], activations[i-1])</pre>
	<pre>gradients['dW' + str(i)] = dW gradients['db' + str(i)] = db dA = dA_prev return gradients</pre>
	Entrainement du modèle Il ne reste plus qu'à faire la descente en elle-même.
	 On initialise tous les W et tous les b On boucle On calcule tous les Z et tous les A
	 On calcule dA final On remonte tous les dZ, dA, dW et dB On descent les gradients dW et dB
In [13]:	<pre>def train_model(X, Y, layer_dimensions, layer_activations,</pre>
	<pre>m = X.shape[1] #Nombre de couches - hors celle des entrées l = len(layer_dimensions)-1</pre>
	<pre># Création de tous les paramètres # A chaque étape, W a pour dimensions "nb neurones de la couche" x "nb entrées" # Et b est un vecteur, une valeur par neurone parameters = {}</pre>
	<pre>for i in range(1, l+1): parameters['W' + str(i)] = np.random.randn(layer_dimensions[i], layer_dimension parameters['b' + str(i)] = np.zeros((layer_dimensions[i], 1))</pre> costs = []
	<pre># Apprentissage for e in range(epochs): for s in range(0, m, batch_size): x_batch = X[:, s:s+batch_size]</pre>
	<pre>y_batch = Y[:, s:s+batch_size] # Passe en avant forward_pass_results = model_forward_pass(x_batch, layer_activations, para</pre>
	<pre># Calcul de la dérivée du coût par rapport au dernier A A_last = forward_pass_results['A' + str(l)] dA_last = -(np.divide(y_batch, A_last) - np.divide(1 - y_batch, 1 - A_last)</pre>
	<pre># Calcul des gradients - passe en arrière gradients = model_backward_pass(dA_last, parameters, forward_pass_results, # Descente de gradient</pre>
	<pre>for i in range(1, l+1): parameters['W' + str(i)] -= learning_rate * gradients['dW' + str(i)] parameters['b' + str(i)] -= learning_rate * gradients['db' + str(i)]</pre> # Un now do dobug
	<pre># Un peu de debug model_result = model_forward_pass(X, layer_activations, parameters)['A' + str cost = np.squeeze(-np.sum(np.log(model_result) * Y + np.log(1 - model_result) costs.append(cost) if show_cost : print('Epoch #%i: %s' % (e+1, cost))</pre>
	Retour à la mise en situation
	Chargement des données On continue avec le dataset de Yann Le Cun http://yann.lecun.com/exdb/mnist/ (images 28x28, 60.000
	données d'entrainement et 10.000 données de validation)
In [15]:	
In [15]:	<pre>return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test , y_test = load('data/d09_test_data.npz')</pre>
In [15]:	<pre>return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test , y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True) sigmas = x_train.std (axis = 0, keepdims = True) + 1e-9</pre>
In [15]:	<pre>return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test , y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True)</pre>
<pre>In [15]:</pre> <pre>In [16]:</pre>	<pre>return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test, y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True) sigmas = x_train.std (axis = 0, keepdims = True) + 1e-9 x_train_norm = (x_train-mus)/sigmas x_test_norm = (x_test -mus)/sigmas y_train_mat = (y_train == np.arange(10)).astype(int) Allez, c'est parti. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. np.random.seed(0) epochs = 30</pre>
	<pre>return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test, y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True) sigmas = x_train.std (axis = 0, keepdims = True) + 1e-9 x_train_norm = (x_train-mus)/sigmas x_test_norm = (x_test -mus)/sigmas y_train_mat = (y_train == np.arange(10)).astype(int) Allez, c'est parti. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. np.random.seed(0)</pre>
	<pre>return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test , y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True) sigmas = x_train.std (axis = 0, keepdims = True) + le-9 x_train_norm = (x_train-mus)/sigmas x_test_norm = (x_test -mus)/sigmas y_train_mat = (y_train == np.arange(10)).astype(int) Allez, c'est parti. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. np.random.seed(0) epochs = 30 activations = ['tanh', 'sigmoid', 'sigmoid'] params, costs = train_model(x_train_norm.T, y_train_mat.T, [28*28, 50, 25, 10], activations epochs = epochs, learning_rate = 0.1, show_cost = True) plot.plot(range(epochs), costs) plot.title('Cost, by epochs') plot.show()</pre>
	<pre>return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test, y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True) sigmas = x_train.std (axis = 0, keepdims = True) + le-9 x_train_norm = (x_train-mus)/sigmas x_test_norm = (x_test -mus)/sigmas y_train_mat = (y_train == np.arange(10)).astype(int) Allez, c'est parti. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. np.random.seed(0) epochs = 30 activations = ['tanh', 'sigmoid', 'sigmoid'] params, costs = train_model(x_train_norm.T, y_train_mat.T, [28*28, 50, 25, 10], active epochs = epochs, learning_rate = 0.1, show_cost = True) plot.plot(range(epochs), costs) plot.title('Cost, by epochs') plot.show() Epoch #1: 2.30543242166822 Epoch #2: 0.8672230396771443 Epoch #3: 0.5402521350775323 Epoch #3: 0.54025213503775323 Epoch #4: 0.4020369615764879 Epoch #5: 0.3275815333298787</pre>
	<pre>return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test , y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True) sigmas = x_train.std (axis = 0, keepdims = True) + le-9 x_train_norm = (x_train-mus)/sigmas x_test_norm = (x_test_nus)/sigmas y_train_mat = (y_train == np.arange(10)).astype(int) Allez, c'est parti. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. np.random.seed(0) epochs = 30 activations = ['tanh', 'sigmoid', 'sigmoid'] params, costs = train_model(x_train_norm.T, y_train_mat.T, [28*28, 50, 25, 10], active_epochs = epochs, learning_rate = 0.1, show_cost = True) plot.plot(range(epochs), costs) plot.title('Cost, by epochs') plot.show() Epoch #1: 2.30543242166822 Epoch #2: 0.8672230396771443 Epoch #3: 0.5402521350775323 Epoch #4: 0.4020369615764879 Epoch #6: 0.27666591760091486 Epoch #7: 0.2396333458387329 Epoch #6: 0.21253026251026488 Epoch #9: 0.19252387304390495</pre>
	return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test , y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True) sigmas = x_train.std (axis = 0, keepdims = True) + le-9 x_train_norm = (x_train-mus)/sigmas x_test_norm = (x_train-mus)/sigmas y_train_mat = (y_train == np.arange(10)).astype(int) Allez, c'est parti. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. np.random.seed(0) epochs = 30 activations = ['tanh', 'sigmoid', 'sigmoid'] params, costs = train_model(x_train_norm.T, y_train_mat.T, [28*28, 50, 25, 10], active.epochs = epochs, learning_rate = 0.1, show_cost = True) plot.plot(range(epochs), costs) plot.title('Cost, by epochs') plot.show() Epoch #1: 2.30543242166822 Epoch #3: 0.402521350775323 Epoch #4: 0.402369515764879 Epoch #5: 0.3275815333298787 Epoch #6: 0.2766591760091486 Epoch #7: 0.2396338458387329 Epoch #8: 0.21253026251026488 Epoch #9: 0.19253387304390495 Epoch #1: 1.016278958540674465 Epoch #1: 1.016278958540674465 Epoch #1: 1.016278958540674465 Epoch #1: 1.016278958540674465 Epoch #1: 0.1488421702617406 Epoch #1: 0.1365402813484844 Epoch #1: 0.12734935170992287
	return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test , y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True) sigmas = x_train.std (axis = 0, keepdims = True) + 1e-9 x_train_norm = (x_train-mus)/sigmas x_test_norm = (x_train-mus)/sigmas y_train_mat = (y_train == np.arange(10)).astype(int) Allez, c'est parti. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. np.random.seed(0) epochs = 30 activations = ['tanh', 'sigmoid', 'sigmoid'] params, costs = train_model(x_train_norm.T, y_train_mat.T, [28*28, 50, 25, 10], active_epochs = epochs, learning_rate = 0.1, show_cost = True) plot.plot(range(epochs), costs) plot.title('Cost, by epochs') plot.show() Epoch #1: 2.30543242166822 Epoch #2: 0.86722230396771443 Epoch #3: 0.5402521350775323 Epoch #3: 0.3278315333298787 Epoch #3: 0.21266591760091486 Epoch #3: 0.21266591760091486 Epoch #1: 0.12523026251026488 Epoch #1: 0.12523026251026488 Epoch #1: 0.1278398540674465 Epoch #1: 0.16278985840674465 Epoch #1: 0.16278985840674465 Epoch #1: 0.16278985840674465 Epoch #1: 0.16278958540674465 Epoch #1: 0.1030037387666043 Epoch #1: 0.103003787666043 Epoch #1: 0.1030037887666043 Epoch #1: 0.0130037887666043 Epoch #1: 0.0130037887666043 Epoch #1: 0.1030037887666043 Epoch #1: 0.1030037887666043 Epoch #1: 0.1030037887666043 Epoch #1: 0.0191990586033537
	return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test , y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True) sigmas = x_train.std (axis = 0, keepdims = True) + le-9 x_train_norm = (x_train-mus)/sigmas x_test_norm = (x_test -mus)/sigmas y_train_mat = (y_train == np.arange(10)).astype(int) Allez, c'est parti. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. mp.random.seed(0) epochs = 30 activations = ['tanh', 'sigmoid', 'sigmoid'] params, costs = train_model(x_train_norm.T, y_train_mat.T, [28*28, 50, 25, 10], active epochs = epochs, learning_rate = 0.1, show_cost = True) plot.plot(range(epochs), costs) plot.title('Cost, by epochs') plot.show() Epoch #1: 2.30543242166822 Epoch #2: 0.8662230396771443 Epoch #3: 0.402231350775323 Epoch #4: 0.4020369615764879 Epoch #5: 0.27666591760091486 Epoch #7: 0.29663848438878729 Epoch #6: 0.227666591760091486 Epoch #9: 0.19252387304390495 Epoch #9: 0.19252387304390495 Epoch #1: 0.162789588340674465 Epoch #1: 0.162789588340674465 Epoch #1: 0.1037387666003 Epoch #1: 0.1037387666003 Epoch #1: 0.10374526001583 Epoch #1: 0.10374526001583 Epoch #1: 0.0917484530788734 Epoch #1: 0.10374526001583 Epoch #1: 0.1037452601583 Epoch #1: 0.1037452601583 Epoch #1: 0.1037452601583 Epoch #1: 0.0937485430784734 Epoch #1: 0.0937485430784734 Epoch #1: 0.0937485430784734 Epoch #1: 0.093748530786733 Epoch #1: 0.093748530786733 Epoch #2: 0.09478317718782729 Epoch #2: 0.07478317718782729
	return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test , y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True) sigmas = x_train.std (axis = 0, keepdims = True) + le-9 x_train_norm = (x_train-mus)/sigmas x_test_norm = (x_train-mus)/sigmas x_test_norm = (x_train = np.arange(10)).astype(int) Allez, c'est parti. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. np.random.seed(0) spochs = 30 activations = ['tanh', 'sigmoid', 'sigmoid'] params, costs = train_model(x_train_norm.T, y_train_mat.T, [28*28, 50, 25, 10], active_epochs = epochs, learning_rate = 0.1, show_cost = True) plot.plot(range(epochs), costs) plot.title('Cost, by epochs') plot.show() Epoch #1: 2.30543242166822 Epoch #3: 0.5402521350775323 Epoch #3: 0.27561533329877 Epoch #5: 0.2253026251026488 Epoch #3: 0.2253026251026488 Epoch #3: 0.1252026251026488 Epoch #3: 0.1252026251026488 Epoch #3: 0.1252036251026488 Epoch #1: 0.12757201648636466 Epoch #1: 0.12757201648636466 Epoch #1: 0.12757201648636466 Epoch #1: 0.12757201648636466 Epoch #1: 0.1275720164863666043 Epoch #1: 0.1030037387666043 Epoch #1: 0.0037389586033537 Epoch #1: 0.0091399568033537 Epoch #1: 0.0091399568033537 Epoch #1: 0.0091399568033537 Epoch #1: 0.0091399568033537 Epoch #2: 0.0478313718782729
	return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test , y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True) signas = x_train.tot (axis = 0, keepdims = True) + le-9 x_train_norm = (x_train-mus)/sigmas x_test_norm = (x_train-mus)/sigmas y_train_mat = (y_train == np.arange(10)).astype(int) Allez, c'est parti. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. np.random.seed(0) epochs = 30 np.random.seed(0) epochs = 30 accivations = ['tanh', 'sigmoid', 'sigmoid'] params, costs = train_model(x_train_norm.T, y_train_mat.T, [28*28, 50, 25, 10], active. epochs = epochs, learning_rate = 0.1, show_cost = True) plot.plot(range(epochs), costs) plot.title('Cost, by epochs') plot.show() Epoch *1: 2.30543242166822 Epoch *2: 0.8672230396771443 Epoch *3: 0.5402521350775323 Epoch *4: 0.225036251350775323 Epoch *4: 0.225036251350775323 Epoch *5: 0.2275815333298787 Epoch *6: 0.2253036510091486 Epoch *7: 0.23963384581837329 Epoch *8: 0.1253046510091486 Epoch *1: 0.1572010468636466 Epoch *1: 0.1572010468636466 Epoch *1: 0.1572010468636466 Epoch *1: 0.168241702617406 Epoch *1: 0.1030037387666043 Epoch *1: 0.09718485430784734 Epoch *1: 0.097184354308615 Epoch *1: 0.097184354308615 Epoch *1: 0.0971843543086163 Epoch *2: 0.005183799178373567 Epoch *2: 0.005084094023103764 Epoch *2: 0.005084094023103766 Epoch *2: 0.0050879959455743 Epoch *2: 0.005084094023103766 Epoch *2: 0.0050879959455743 Epoch *2: 0.005084094023103766 Epoch *2: 0.005084094023103766 Epoch *2: 0.0050879959455743 Epoch *2: 0.00508799595455743 Epoch *2
	return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_teat, y_teat = load('data/d09_test_data.npz') x_teat, y_teat = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True) signas = x_train.std (axis = 0, keepdims = True) + 1e-9 x_train_norm = (x_train-mus)/sigmas x_test_norm = (x_test -mus)/sigmas y_train_mat = (y_train == np.arange(10)).astype(int) Allez, c'est parti. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. np.random.seed(0) epochs = 30 activations = ['tanh', 'sigmoid', 'sigmoid'] params, costs = train_model(x_train_norm.T, y_train_mat.T, (28*28, 50, 25, 10), active_epochs = apochs = epochs, learning_rate = 0.1, show_cost = True) plot.plot(range(epochs), costs) plot.title('Cost, by epochs') plot.show() Epoch #1: 2.30543242166822 Epoch #2: 0.8572230396771443 Epoch #3: 0.40223139775123 Epoch #4: 0.4020369615764879 Epoch #6: 0.27666591760091466 Epoch #1: 0.273633845837329 Epoch #8: 0.212533026251026488 Epoch #9: 0.19253287334390495 Epoch #10: 0.17372010648636466 Epoch #10: 0.17372010648636466 Epoch #11: 0.16278958540674465 Epoch #12: 0.18484823867164 Epoch #14: 0.12734395170992287 Epoch #16: 0.1030307387666043 Epoch #17: 0.103037387666043 Epoch #10: 0.1939386633537 Epoch #10: 0.19393866633537 Epoch #10: 0.103037387666043 Epoch #10: 0.10374854505625 Epoch #12: 0.0637891778373567 Epoch #20: 0.08578637399942 Epoch #20: 0.0858639573959465743 Epoch #20: 0.08578637399942 Epoch #20: 0.08578637399942 Epoch #20: 0.08578637381059922 Epoch #20: 0.08578637381059922 Epoch #20: 0.0857863738105992 Epoch #20: 0.0857863738105992 Epoch #20: 0.0857853738105992 Epoch #20: 0.0857863738105992 Epoch #20: 0.085783738105992 Epoch #20: 0.0857837399942 Epoch #20: 0.0857837399942 Epoch #20: 0.0857837399942
	x_train, y_train = load('data/d09_train_data.npz') x_test, y_test = load('data/d09_test_data.npz') mus = x_train.mean(axis = 0, keepdims = True)
	return data['x'], data['y'] x_train, y_train = load('data/d09_train_data.npz') x_test, y_test = load('data/d09_train_data.npz') mus = x_train.mena(axis = 0, keepdims = True) sigmas = x_train.std (axis = 0, keepdims = True) sigmas = x_train.norm = (x_train-mus)/sigmas x_test_norm = (x_train-mus)/sigmas y_train_mat = (y_train == np.arange(10)).astype(int) Allez, C'est parti. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. np.random.seed(0) epochs = 30 activations = ('tanh', 'sigmoid', 'sigmoid') params, costs = train_model(x_train_norm.T, y_train_mat.T, [28*28, 50, 25, 10], active epochs = epochs, learning_rate = 0.1, show_cost = True) plot.plot(range(epochs), costs) plot.title('Cost, by epochs') plot.show() plot.show() spoch #1: 2.305*43242166822 Epoch #2: 0.8672230396771433 Epoch #3: 0.3402521350775323 Epoch #4: 0.202665217564879 Epoch #6: 0.3275815333298787 Epoch #6: 0.276665917664879 Epoch #6: 0.1253026251026488 Epoch #7: 0.2396338488387329 Epoch #8: 0.125302631026488 Epoch #1: 0.1827493851026488 Epoch #1: 0.1827493851026488 Epoch #1: 0.1827493878766043 Epoch #1: 0.18274958851026488 Epoch #1: 0.182749588540674465 Epoch #1: 0.1827495858540674465 Epoch #1: 0.1827495858540674465 Epoch #1: 0.182749585854067466 Epoch #1: 0.182749585854067466 Epoch #1: 0.103003738766003387 Epoch #1: 0.103003738766003887 Epoch #1: 0.0783877877837567 Epoch #1: 0.0783877877837567 Epoch #1: 0.0783877877837567 Epoch #1: 0.0783877877837567 Epoch #2: 0.078678377837567 Epoch #2: 0.078678377837567 Epoch #2: 0.078678377837567 Epoch #2: 0.0837877783778757 Epoch #2: 0.0837877778377567 Epoch #2: 0.0837877778377577 Ep
	return data(""), data("); x_train, y_train = load('data/d99_train_data.nps'); x_test, y_test = load('data/d99_test_data.nps'); rus = x_train.mean(axis = 0, keepdims = True); rus = x_train.mean(axis = 0, keepdims = True) + le=9; x_train_norm = (x_train-mus)/sigmas x_test_norm = (x_test-russ)/sigmas y_train_norm = (x_test-russ)/sigmas y_train_mat = (y_train == np.arange(10)).astype(int) Allez, c'est part. On va essayer par exemple (au pif) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. np.random.sees(0) epochs = 30 activations = ['tanh', 'sigmoid', 'sigmoid') params, costs = train_modelk(x_train_norm.fx, y_train_mat.fx, [28*28, 50, 25, 10], active epochs = 20 plot.plot(range(epochs), costs) plot.title('Cost, by epochs') plot.abcv() Epoch #1: 2.30543242166822 Epoch #1: 0.4002331336777343 Epoch #3: 0.4002331380775323 Epoch #3: 0.4002331380775323 Epoch #3: 0.4002331380775323 Epoch #4: 0.002308615766879 Epoch #6: 0.3275815333398878 Epoch #6: 0.10233833338453887388 Epoch #10: 0.1575201648636465 Epoch #10: 0.1578501648636465 Epoch #10: 0.0578684680363678 Epoch #20: 0.081839898786803333 Epoch #20: 0.081839898786803333 Epoch #20: 0.081839898786803333 Epoch #20: 0.081839898783367 Epoch #20: 0.08183868033338 Epoch #30: 0.08383868033338 Epoch #30: 0.0838386803338 Epoch #30: 0.0838386803338 Epoch #30: 0
In [16]:	return data("x1", data("y1") x_train, y_train = load('data/000_test_data.nps') mus = x_train.mean(exis = 0, keepdime = True) signas = x_train.mean(exis = 0, keepdime = True) x_train_nean = (x_train=nean(exis = 0, keepdime = True) + 1e-9 x_train_nean = (x_train=nean(exis = 0, keepdime = True) + 1e-9 x_train_nean = (x_train=nean(exis = 0, keepdime = True) + 1e-9 x_train_nean = (x_train=nean(exis = 0, keepdime = True) + 1e-9 x_train_nean = (x_train=nean(exis = 0, keepdime = True) + 1e-9 x_train_nean = (x_train=nean(exis = 0, keepdime = True) + 1e-9 x_train_nean = (x_train=nean(exis = 0, keepdime = True) + 1e-9 x_train_nean(exis = 0, keepdime = 1, keepdime = True) + 1e-9 x_train_nean(exis = 0, keepdime = True) + 1e-9 x_train_nean(e
In [16]:	return data('x'), data('y') %_train, y_train = load('data/000_test_data.nps') %_test, y_test = load('data/000_test_data.nps') **un
In [16]:	return data['*'], data['y'] % test , y_test = load('data/d00_test_data.npg') % test , y_test = load('data/d00_test_data.npg') mus = %_train.nean(axis = 0, deepdims = True) sigmas = %_train.nean(axis = 0, deepdims = True) # test
In [16]:	return data('x'), data('y') x_train, y_train = load('data/d05_test_data.npx') x_test, y_train = load('data/d05_test_data.npx') mus = x_train.nean(axis = 0, keepdims = True) s_train.porm = (x_train.mus/sigmas x_test_norm = (x_train.mus/sigmas) y_train_mat = (y_train = pp.arange(15).astype(int) Alex_c'est_part(.or as essayer par exemple (au pi) "tanh 50 / sigmoid 25 / sigmoid 10" sur 30 époques. mp.traidom.sead(0) epoch= 35 activarions = ['tanh', 'sigmoid', 'sigmoid'] params, costs = train_mode(x_train_norm.T, y_train.mat.T, (25*28, 30, 25, 10), active specific sequences = pp.dot.title'(cost, by epochs) plot.title'(cost, by epochs) plot.title'(cost, by epochs) plot.mboril plot.m
In [16]:	return data("x"), data("y") %_rest, y_train = load('data/609_train_data.mps") %_rest, y_train = load('data/609_train_data.mps") %_rest, y_train.ad (oxis = 0, keepdins = True) %_train_norm = (x_train-mus)/sigmas %_rest_norm = (x_train-mus)/si
In [16]:	retain data[fat], data[fyr] x_train, y_rest = local('data[d0] rest data.npt') x_train, y_rest = local('data[d0] rest data.npt') x_train_nerm = x_rest.mannlance = 0, keepdam = True) x_train_nerm = (x_rest.man(rest) raigman y_train_nerm = (y_train = np.aranga(10)).natype(int) Allex, dest part. On we essayer par exemple (au pit) "tamb 50 / sigmoid 26 / sigmoid 10" sur 30 époques. Op_train_nerm = (y_train = np.aranga(10)).natype(int) Allex, dest part. On we essayer par exemple (au pit) "tamb 50 / sigmoid 26 / sigmoid 10" sur 30 époques. Op_train_nerm = (r_train', 'sigmoid', 'sigmoid') parsens, toese = crain_nouele (a_train_norm.f', y_train_nat.f', (23926, 50, 25, 10), ective epochs = (pochs) plos_stain('craps (spechs), rousts) plos_s
In [16]: In [39]:	return data[16], data[17] Ristin, y test = load('data[45] test data.ops') Ristin, y test = load('data[45] test data.ops') Ristin, y test = load('data[45] test data.ops') Ristin = Ristin, and raid = 0, Respites = True) Ristin = Ristin, and raid = 0, Respites = True) Ristin = Ristin, and raid = Ristin = Ristin = True) Ristin = Ristin, and ristin =
In [16]: In [39]:	return data[181], data[191], data[191] #_train, y_train = load('data[data])
In [16]: In [39]:	returns data[*x*], data[*y*] **** **** **** **** **** **** ****
In [16]: In [39]:	rectain, yit and "cardiffer Assistant State Private Total State Private Pr
In [16]: In [39]:	return duta [12] octol [12] actor [17] actor
In [16]: In [39]:	return data [12], state[12], strates y places = host/charadof teat data.spat; strates y places = host/charadof teat data.spat; strates y places = host/charadof teat data.spat; strates = strates had state = host/charadof teat data.spat; strates = strates had state = host/charadof teat data.spat; strates = strates had state = host/charadof y places = strates had state = host/charadof y places = strates had state = host/charadof y places = strates = strates = strates = host/charadof y places = strates = strates = strates = host/charadof y places = strates = strates = strates = host/charadof strates = strates = strates = strates = host/charadof strates = strates = strates = strates = host/charadof strates = strates = strates = strates = host/charadof strates = strates = strates = strates = host/charadof strates = strates = strates = strates = host/charadof strates = strates = strates = strates = host/charadof strates = strates = strates = strates = host/charadof strates = strates = strates = strates = host/charadof strates = strates = strates = strates = host/charadof strates = strat
In [16]: In [39]:	return data [1], detaily #_retain_v_train_all allocation_train_accounts #_retain_v_train_allocation_train_accounts #_retain_v_train_allocation_train_accounts #_retain_v_train_allocation_train_allocation_train_accounts #_retain_allocation_train_alloca
In [16]: In [39]:	return devel [1], the of [2] Little (
In [16]: In [39]:	returns, values = loud(fate_loud(fate_loud)
In [16]: In [39]:	return data [14], the first of the property of
In [16]: In [39]:	return data [14], dual[15] #_TESSEVILLOUER sociolate(25)_test_access() #_TESSE
In [16]: In [39]:	states of the control
In [16]: In [39]:	returns of the control of the contro
In [39]:	Appelled Continued to Manufacture (1975) Appelled Continued (1975) Appelled
In [39]:	general Constitution and Constitution and Constitution (Constitution of Constitution of Consti
In [39]:	returns the second control of the second con
In [39]:	The control of the co
In [39]:	returns and """, extending and place design and place and a company of the compan
In [39]:	table in the analystic policy of the second decoupt of the color of th
In [39]:	parameters (14.1), constraints (14.1), constra
In [39]:	Extension of the second content of the secon
In [39]:	Extension and the control of the con
In [39]:	restance of the control of the contr
In [39]:	Section 1, 1602 - 1603 (