

RECEIVED

NOV 0 8 2002

SEQUENCE LISTING

TECH CENTER 1600/2900

```
<110> KAZAZIAN, HAIG H.
     BOEKE, JEF D.
     MORAN, JOHN V.
     DOMBROSKI, BETH A.
<120> COMPOSITIONS AND METHODS OF USE OF MAMMALIAN RETROTRANSPOSONS
<130> 9596-23U3 (053893-5006-02)
<140> 09/653,812
<141> 2000-09-01
<150> US 08/847,844
<151> 1997-04-28
<150> US 08/749,805
<151> 1996-11-15
<150> US 60/006,831
<151> 1995-11-16
<160> 152
<170> PatentIn version 3.1
<210> 1
<211> 14
<212> PRT
<213> Neurospora crassa
<400> 1
Met Val Gln Leu Lys Ile Leu Tyr Trp Asn Val Gly Lys Ser
                                   10
<210> 2
<211> 10
<212> PRT
<213> Neurosporá crassa
<400> 2
Tyr Asp Ile Val Ala Ile Gln Glu Pro Gly
                                   10
               5
<210> 3
<211> 10
<212> PRT
<213> Neurospora crassa
<400> 3
Lys Gly Arg Ala Val Ile Tyr Val Asn Lys
```

10

```
<210> 4
<211> 13
<212> PRT
<213> Neurospora crassa
<400> 4
Pro Thr Thr Val Tyr Ser Ile Tyr Ser Pro Ile Leu Thr
<210> 5
<211> 16
<212> PRT
<213> Neurospora crassa
<400> 5
Asn Leu Val Ala Val Gly Asp Leu Asn Leu His His Pro Asp Trp Asp
               5
                                  10
<210> 6
<211> 16
<212> PRT
<213> Neurospora crassa
<400> 6
Gly Glu Pro Thr Arg Leu Gly Asn Ala Thr Arg Gly Glu Arg Asp Gly
<210> 7
<211> 13
<212> PRT
<213> Neurospora crassa
<400> 7
Gly Ser Asp His Cys Pro Gln Glu Ile Trp Val Gln Val
<210> 8
<211> 19
<212> PRT
<213> Trypanosoma cruzi
<400> 8
Asp Ile Glu Gln Asn Pro Gly Pro Ile Ala Val Leu Gln Met Asn Val
Ser Cys Leu
<210> 9
<211> 10
<212> PRT
```

```
<213> Trypanosoma cruzi
<400> 9
Ala Asp Ile Ile Ala Ile Gln Glu Thr Trp
<210> 10
<211> 10
<212> PRT
<213> Trypanosoma cruzi
<400> 10
Gly Gly Val Ala Val Leu Val Arg Lys
<210> 11
<211> 13
<212> PRT
<213> Trypanosoma cruzi
<400> 11
Asp Leu Ile Val Ala Ser Ala Tyr Met Arg Pro Pro
<210> 12
<211> 16
<212> PRT
<213> Trypanosoma cruzi
<400> 12
Pro Leu Leu Cys Gly Asp Phe Asn Met His His Pro Gln Trp Glu
                                   10
<210> 13
<211> 21
<212> PRT
<213> Trypanosoma cruzi
<400> 13
Gly Glu Ile Thr Thr Ala Arg Gly Thr Arg Glu Arg Ser Cys Ile Asp
               5
                                  10
Leu Thr Trp Ser Lys
           20
<210> 14
<211> 13
<212> PRT
<213> Trypanosoma cruzi
<400> 14
```

```
Leu Ser Asp His Tyr Val Leu Thr Phe Thr Leu His Gln
               5
<210> 15
<211> 17
<212> PRT
<213> Bombyx mori
<400> 15
Met Asp Ile Arg Pro Arg Leu Pro Ile Gly Gln Ile Asn Leu Gly Gly
Ala
<210> 16
<211> 10
<212> PRT
<213> Bombyx mori
<400> 16
Leu Asp Ile Val Leu Val Gln Glu Gln Tyr
               5
<210> 17
<211> 10
<212> PRT
<213> Bombyx mori
<400> 17
Lys Ala Gly Val Tyr Ile Arg Asn Arg Val
               5
<210> 18
<211> 13
<212> PRT
<213> Bombyx mori
<400> 18
Asp Leu Tyr Met Val Ser Ala Tyr Phe Gln Tyr Ser Asp
                                   10
<210> 19
<211> 16
<212> PRT
<213> Bombyx mori
<400> 19
Arg Val Val Ile Cys Ala Asp Thr Asn Ala His Ser Pro Leu Trp His
               5
                                   10
```

```
<210> 20
<211> 21
<212> PRT
<213> Bombyx mori
<400> 20
Gly His Leu Pro Thr Phe Ser Thr Ala Asn Gly Glu Ser Tyr Val Asp
                5
                                    10
Val Thr Leu Ser Thr
            20
<210> 21
<211> 13
<212> PRT
<213> Bombyx mori
·<400> 21
Ser Ser Asp His Arg Leu Ile Val Phe Gly Val Gly Gly
                5
<210> 22
<211> 15
<212> PRT
<213> Drosophila melanogaster
<400> 22
Ile Met Ala Thr Leu Phe Ile Ala Thr Trp Asn Ala Asn Gly Val
                                    10
<210> 23
<211> 10
<212> PRT
<213> Drosophila melanogaster
<400> 23
Ile Asp Val Met Leu Leu Ser Glu Thr His
                5
<210> 24
<211> 10
<212> PRT
<213> Drosophila melanogaster
<400> 24
His Gly Gly Thr Ala Ile Leu Ile Arg Asn
                5
<210> 25
<211> 13
<212> PRT
<213> Drosophila melanogaster
```

```
<400> 25
Leu Leu Thr Leu Ala Ala Val Tyr Cys Pro Pro Arg Phe
<210> 26
<211> 16
<212> PRT
<213> Drosophila melanogaster
<400> 26
His Phe Ile Ala Ala Gly Asp Tyr Asn Ala Lys His Thr His Trp Gly
<210> 27
<211> 24
<212> PRT
<213> Drosophila melanogaster
<400> 27
Pro Gly Ser Pro Thr Tyr Trp Pro Ser Asp Leu Asn Lys Leu Pro Asp
                                   10
Leu Ile Asp Phe Ala Val Thr Lys
           20
<210> 28
<211> 13
<212> PRT
<213> Drosophila melanogaster
<400> 28
Ser Ser Asp His Ser Pro Val Leu Ile His Leu Arg Arg
<210> 29
<211> 15
<212> PRT
<213> Drosophila melanogaster
<400> 29
Met Gln Ile Ser Leu Asn Ile Val Phe Trp Asn Ala Asn Gly Leu
               5
                                   10
                                                       15
<210> 30
<211> 10
<212> PRT
<213> Drosophila melanogaster
<400> 30
```

```
Ile Asp Ile Leu Leu Val Ser Glu Ser His
               5
<210> 31
<211> 10
<212> PRT
<213> Drosophila melanogaster
<400> 31
Arg Gly Gly Ala Ala Met Leu Ile Lys Ser
<210> 32
<211> 13
<212> PRT
<213> Drosophila melanogaster
<400> 32
Asp Ile Thr Val Gly Ala Val Tyr Pro Arg His Glu Phe
               5
<210> 33
<211> 16
<212> PRT
<213> Drosophila melanogaster
<400> 33
Arg Phe Ile Ala Ala Gly Asp Phe Asn Ala Lys His Ser Trp Trp Gly
<210> 34
<211> 24
<212> PRT
<213> Drosophila melanogaster
<400> 34
Thr Gly Glu Pro Thr His Trp Pro Ser Asp Pro Ser Lys Gln Pro Asp
               5
                                   10
Leu Leu Asp Ile Ala Ile Cys Lys
           20
<210> 35
<211> 13
<212> PRT
<213> Drosophila melanogaster
<400> 35
Val Ser Asp His Ser Ala Val Asn Leu Leu Leu Asn Ile
               5
```

```
<210> 36
<211>
      16
<212>
      PRT
<213> Drosophila melanogaster
<400> 36
Met Thr Gln Pro Thr Leu Lys Ile Gly Leu Trp Asn Ala Arg Gly Leu
               5
<210> 37
<211> 10
<212> PRT
<213> Drosophila melanogaster
<400> 37
Ile Asp Val Met Leu Thr Thr Glu Thr His
<210> 38
<211> 10
<212> PRT
<213> Drosophila melanogaster
<400> 38
Arg Gly Gly Ser Ala Val Ile Ile Lys Ser
<210> 39
<211> 13
<212> PRT
<213> Drosophila melanogaster
<400> 39
Thr Val Thr Val Ala Ala Val Tyr Leu 'Pro Pro Ala Glu
               5
<210> 40
<211> 16
<212> PRT
<213> Drosophila melanogaster
<400> 40
Lys Phe Ile Ala Gly Gly Asp Tyr Asn Ala Lys His Ala Trp Trp Gly
                                   10
<210> 41
<211> 24
<212> PRT
<213> Drosophila melanogaster
<400> 41
```

```
Thr Gly Glu Pro Thr Phe Tyr Ser Tyr Asn Pro Leu Leu Thr Pro Ser
                          10
        5
Ala Leu Asp Phe Phe Ile Thr Cys
           20
<210> 42
<211> 13
<212> PRT
<213> Drosophila melanogaster
<400> 42
Ser Ser Asp His Leu Pro Ile Leu Ala Val Leu His Ala
    5
<210> 43
<211> 13
<212> PRT
<213> Drosophila teissieri
<400> 43
Met Ser Leu Thr Val Ile Gln Trp Asn Leu Lys Gly Tyr
<210> 44
<211> 10
<212> PRT
<213> Drosophila teissieri
<400> 44
Pro His Ile Ile Ser Leu Gln Glu Thr His
               5
<210> 45
<211> 10
<212> PRT
<213> Drosophila teissieri
<400> 45
Phe Gly Gly Val Arg Ile Leu Val His Lys
<210> 46
<211> 13
<212> PRT
<213> Drosophila teissieri
<400> 46
Lys Leu Asn Ile Phe Ser Thr Tyr Ile Ser Pro Thr Lys
               5
```

```
<210> 47
<211>
      16
<212>
      PRT
<213> Drosophila teissieri
<400> 47
Pro Ser Leu Ile Thr Gly Asp Phe Asn Gly Trp His Pro Ser Trp Gly
               5
                                 10
<210> 48
<211> 16
<212> PRT
<213> Drosophila teissieri
<400> 48
Asp Lys Ser Pro Thr His Phe Ser Thr His Asn Thr Tyr Ser His Ile
<210> 49
<211> 13
<212> PRT
<213> Drosophila teissieri
<400> 49
Gly Ser Asp His Phe Pro Ile Ile Thr Thr Leu Phe Pro
               5
<210> 50
<211> 18
<212> PRT
<213> Homo sapiens
<400> 50
Met Thr Gly Ser Asn Ser His Ile Thr Ile Leu Thr Leu Asn Ile Asn
    5
                                  10
Gly Leu
<210> 51
<211> 10
<212> PRT
<213> Homo sapiens
<400> 51
Pro Ser Val Cys Cys Ile Gln Glu Thr His
               5
<210> 52
<211> 10
<212> PRT
<213> Homo sapiens
```

```
<400> 52
Lys Ala Gly Val Ala Ile Leu Val Ser Asp
<210> 53
<211> 13
<212> PRT
<213> Homo sapiens
<400> 53
Glu Leu Thr Ile Leu Asn Ile Tyr Ala Pro Asn Thr Gly
<210> 54
<211> 16
<212> PRT
<213> Homo sapiens
<400> 54
His Thr Leu Ile Met Gly Asp Phe Asn Thr Pro Leu Ser Thr Leu Asp
<210> 55
<211> 22
<212> PRT
<213> Homo sapiens
<400> 55
Thr Glu Tyr Thr Phe Phe Ser Ala Pro His His Thr Tyr Ser Lys Ile
               5
                                                      15
Asp His Ile Val Gly Ser
           20
<210> 56
<211> 13
<212> PRT
<213> Homo sapiens
<400> 56
Leu Ser Asp His Ser Ala Ile Lys Leu Glu Leu Arg Ile
               5
<210> 57
<211> 13
<212> PRT
<213> Xenopus laevis
<400> 57
```

```
Met Ala Leu Ser Ile Ser Thr Leu Asn Thr Asn Gly Cys
1 5
<210> 58
<211> 10
<212> PRT
<213> Xenopus laevis
<400> 58
Tyr Ser Val Ser Phe Leu Gln Glu Thr His
<210> 59
<211> 10
<212> PRT
<213> Xenopus laevis
<400> 59
Ser Cys Gly Val Val Thr Leu Phe Ser Asp
               5
<210> 60
<211> 13
<212> PRT
<213> Xenopus laevis
<400> 60
Thr Tyr Asn Leu Met Asn Val Tyr Ala Pro Thr Thr Gly
<210> 61
<211> 16
<212> PRT
<213> Xenopus laevis
<400> 61
Ala Leu Ile Ile Gly Gly Asp Phe Asn Tyr Thr Leu Asp Ala Arg Asp
                                  10
<210> 62
<211> 24
<212> PRT
<213> Xenopus laevis
<400> 62
Val Ala Phe Thr Tyr Val Arg Val Arg Asp Gly His Val Ser Gln Ser
                                   10
Arg Ile Asp Arg Ile Tyr Ile Ser
           20
```

```
<210> 63
  <211> 13
  <212> PRT
  <213> Xenopus laevis
  <400> 63
  Phe Ser Asp His Asn Cys Val Ser Leu Arg Met Ser Ile
                  5
  <210> 64
  <211> 19
  <212> PRT
  <213> Zea mays
  <400> 64
  Gly Tyr Tyr Pro Met Asn Thr Asn Cys Cys Ile Phe Ser Trp Asn Val
                                    10
  Arg Gly Leu
  <210> 65
  <211> 10
  <212> PRT
  <213> Zea mays
  <400> 65
  Ala Thr Ser Val Cys Leu Gln Glu Thr Lys
  <210> 66
  <211> 10
  <212> PRT
  <213> Zea mays
<400> 66
  Gly Ala Ser Gly Gly Ile Leu Ile Ala Cys
                 5
  <210> 67
  <211> 13
  <212> PRT
  <213> Zea mays
  <400> 67
  Val Trp Asp Leu Thr Ala Val Tyr Gly Pro Gln Gln Glu
  <210> 68
  <211> 16
  <212> PRT
  <213> Zea mays
```

```
<400> 68
Glu Trp Leu Ile Leu Gly Asp Phe Asn Met Ile Arg Arg Val Gly Glu
                                  10
<210> 69
<211> 23
<212> PRT
<213> Zea mays
<400> 69
Lys Lys Phe Thr Trp Ser Asn Glu Gln Asp Asp Pro Thr Met Ser Arg
Ile Asp Arg Leu Met Ala Thr
           20
<210> 70
<211> 13
<212> PRT
<213> Zea mays
<400> 70
Thr Ser Asp His Ser Pro Leu Leu Met Gln Gly His Ser
    5
<210> 71
<211> 19
<212> PRT
<213> Dictyostelium discoideum
<400> 71
Asn Lys Thr Ile Lys Lys Asn Thr Ile Arg Ile Gly Val Trp Asn Val
                                                      15
Gln Gly Ser
<210> 72
<211> 10
<212> PRT
<213> Dictyostelium discoideum
<400> 72
Leu Asp Ala Ala Leu Leu Thr Glu Thr Asn
<210> 73
<211> 10
<212> PRT
<213> Dictyostelium discoideum
```

```
<400> 73
Gln Gly Val Ser Gln Ile Ile Ile Asn Thr
        5
<210> 74
<211> 13
<212> PRT
<213> Dictyostelium discoideum
<400> 74
Gln Ile Lys Cys Thr Thr Ile Tyr Ala Pro Ala Lys Ser
<210> 75
<211> 16
<212> PRT
<213> Dictyostelium discoideum
<400> 75
Ser Asp Ile Ile Thr Gly Asp Phe Asn Val Asp Cys Ser Val Asp Asn
               5
<210> 76
<211> 18
<212> PRT
<213> Dictyostelium discoideum
<400> 76
Asn Gly Ile Thr Phe Pro Arg Asn Lys Ser Thr Ile Asp Arg Val Phe
               5
                                   10
Val Ser
<210> 77
<211> 13
<212> PRT
<213> Dictyostelium discoideum
<400> 77
Lys Ser Asp His Asn Met Val Ile Ile Glu Leu Lys Ile
               5 .
<210> 78
<211> 19
<212> PRT
<213> Homo sapiens
<400> 78
```

```
Ser Pro Ser Gly Lys Pro Ala Thr Leu Lys Ile Cys Ser Trp Asn Val
                                    . 15
                          10
Asp Gly Leu
<210> 79
<211> 10
<212> PRT
<213> Homo sapiens
<400> 79
Pro Asp Ile Leu Cys Leu Gln Glu Thr Lys
1 5
<210> 80
<211> 10
<212> PRT
<213> Homo sapiens
<400> 80
Gly Tyr Ser Gly Val Gly Leu Leu Ser Arg
<210> 81
<211> 13
<212> PRT
<213> Homo sapiens
<400> 81
Ser Phe Val Leu Val Thr Ala Tyr Val Pro Asn Ala Gly
              5
<210> 82
<211> 16
<212> PRT
<213> Homo sapiens
<400> 82
Pro Leu Val Leu Cys Gly Asp Leu Asn Val Ala His Glu Glu Ile Asp
<210> 83
<211> 24
<212> PRT
<213> Homo sapiens
<400> 83
Thr Phe Trp Thr Tyr Met Met Asn Ala Arg Ser Lys Asn Val Gly Trp
               5
```

```
Arg Leu Asp Tyr Phe Leu Leu Ser
      20
<210> 84
<211> 13
<212> PRT
<213> Homo sapiens
<400> 84
Gly Ser Asp His Cys Pro Ile Thr Leu Tyr Leu Ala Leu
<210> 85
<211> 12
<212> PRT
<213> Bos taurus
<400> 85
Met Leu Lys Ile Ala Ala Phe Asn Ile Arg Thr Phe
              5
<210> 86
<211> 10
<212> PRT
<213> Bos taurus
<400> 86
Tyr Asp Ile Val Leu Ile Gln Glu Val Arg
        5
<210> 87
<211> 16
<212> PRT
<213> Bos taurus
<400> 87
Asp Val Met Leu Met Gly Asp Phe Asn Ala Asp Cys Ser Tyr Val Thr
              5
                                  10
<210> 88
<211> 9
<212> PRT
<213> Bos taurus
<400> 88
Cys Ala Tyr Asp Arg Ile Val Val Ala
    5
<210> 89
<211> 12
<212> PRT
<213> Bos taurus
```

<400>	89	
Ile Ser 1	r Asp His Tyr Pro Val Glu Val Thr Leu Thr 5 10	
<211> <212>	90 164 DNA Artificial	
<220> <223>	pBS plasmid cleavage hotspots	
	90 agga teteaagaag ateetttgat ettttetaeg gggtetgaeg eteagtggaa	60
cgaaaac	ctca cgttaaggga ttttggtcat gagattatca aaaaggatct tcacctagat	120
cctttta	aaat taaaaatgaa gttttaaatc aatctaaagt atat	164
<211> <212>	91 220 DNA Artificial	
<220> <223>	K-DNA cleavage hotspots	
	91	60
	taaa attccaaccg aaaatcgcga ggttactttt ttggagcccg aaaaccaccc	
aaaatca	aagg aaaaatggcc aaaaaatgcc aaaaaatagc gaaaataccc cgaaaattgg	120
caaaaat	ttaa caaaaaatag cgaatttccc tgaattttag gcgaaaaaac ccccgaaaat	180
ggccaaa	aaac gcactgaaaa tcaaaatctg aacgtctacg	220
<212>	92 19 DNA Homo sapiens	
	92 aaaa aaattgttt	19
<211> <212>	93 13 DNA Homo sapiens	
<400> tttttt	93 taac aaa	13

<210><211><212><212><213>	94 22 RNA Homo sapiens	
<400>	94 . aaaa aaaaaaaa aa	22
<212>	14	
<400>	95 tcat gacc	14
<212>	14 DNA	
<400>	Homo sapiens 96 taat ttaa	14
<210> <211> <212>	14	
<400>	Homo sapiens 97 ttaa ttta	14
<210> <211> <212>	98 14 DNA	
<213>	Homo sapiens	
	cctt aacg	14
<210> <211> <212> <213>	14 DNA	
<400> aagatc	99 cttt ttga	14
<210> <211>	100 14	

<212> <213>	DNA Homo sapiens	
	100 tcgt tcca	1
gagili	ccg: ccca	1
<210> <211>	101 14	
<212>	DNA	
<213>	Homo sapiens	
<400>	101	-
aggatc	tcaa gaag	1
<210>	102	
<211> <212>	14	
	Homo sapiens	
<400>	102	1
aagttt	taaa tcaa	1
<210>		
<211> <212>	14 DNA	
	Homo sapiens	
<400>	103	
gaagtt	ttaa atca	1
<210>	104	
<211> <212>	14	
	DNA Homo sapiens	
<400>	104	
<400> tccttt	taaa ttaa	1
<210>	105	
<211> <212>	15 DNA	
<213>	Homo sapiens	
<400>	105	
agataa	tcaa aaaag	1
<210>	106	
<211>	14	
<212> <213>	DNA Homo sapiens	

<400> 106 tcaatctaaa gtat	14
<210> 107 <211> 23 <212> DNA <213> Homo sapiens	
<400> 107 ctttttaaaa aaattgtttg aat	23
<210> 108 <211> 27 <212> DNA <213> Homo sapiens	
<400> 108 catctctttg ttaaagacaa acaaaac	27
<210> 109 <211> 19 <212> DNA <213> Homo sapiens	
<400> 109 attaatgttt ccttcttt	19
<210> 110 <211> 21 <212> DNA <213> Homo sapiens	
<400> 110 gcagttaaat catctgctgc t	21
<210> 111 <211> 16 <212> DNA <213> Homo sapiens	
<400> 111 ggaattaaga ataatg	16
<210> 112 <211> 17 <212> DNA <213> Homo sapiens	
<400> 112 ttttttaatg tcaactc	17

<210>	113	
<211>	18	
<212>	DNA	
	Homo sapiens	
\213/	nomo saprens	
<400>	113	
tctatta	aaaa aggaaaaa	18
<210>.	111	
<211>	19	
<212>		
<213>	Homo sapiens	
<400>	114	
	aat tttctttt	19
aayaate	aac ccccccc	17
<210>	115	
<211>	21	
<212>		
	Homo sapiens	
(213)	HOMO Sapiens	
<400>	115	
agtggtg	gaaa gtgggcattc	t
<210>	116	
<211>	21	
<212>		
<213>	Homo sapiens	
<400>	116	
	aga tcacaccact	g 21
egagee	augu coucucouoc	- -
<210>	117	
<211>	20	
<212>	DNA	
	Homo sapiens	
	cap-one	
<400>	117	
		20
gtgttt	aaa cttagtaaca	20
<210>	118	
<211>	19	
<212>	DNA	
<213>		
/TT2>	Homo sapiens	
<400>	118	
tctgata	aaga ataatagga	19
<210>	119	
<211>		
	1.7	

<212> <213>	DNA Homo sapiens	
	119	
gtattta	aaaa aa	12
<210>	120	
<211>	20	
<212>	DNA Homo sapiens	
\ 2137	nomo sapiens	
<400>	120	
atatata	aaga ggattaccag	20
<210>	121	
<211>	26	
<212>		
<213>	Homo sapiens	
<400>	121	
	aaat ttggacccaa agagag	26
<210>	122	
	12	
<212>		
<213>	Homo sapiens	
<400>	122	
	aaaa aa	12
<210>	123	
	23	
	DNA	
<213>	Homo sapiens	
<400>	123	
tgactta	agaa gtccatgaat cca	23
<210>	124	
<211>	23	
<212>	DNA	
<213>	Homo sapiens	
<400>	124	
tgcctta	aaga aggtcaaagg cag	23
<210>	125	
<211>	12	
<212>	DNA	
<213>	Homo sapiens	

<400> aaaaac	125 aaaa aa	12
<210> <211> <212>	18 DNA	
<213>	Homo sapiens	
<400> aaaatt	126 aaaa attgtgat	18
<210> <211> <212> <213>	20	
<400>		
ggggtt	aaga ttgaagaatg	20
<210><211><211><212><213>	22	
	128	
<400> ggattc	aaaa ggagttattg at	22
<210><211><211><212><213>	18	
	129	
<400> tcttat	aaaa agtaaact	18
<210><211><211><212><213>		
<400>	130	
Ala Cy 1	s Asp Glu Phe Gly 5	
<210> <211> <212> <213>	PRT	
<400>	131	

Ala Cy 1	s Asp His Ile Lys 5	
<210><211><211><212><213>	132 25 DNA Homo sapiens	
	132 gaca ggatcaaatt cacac	25
<210> <211> <212> <213>	133 28 DNA Homo sapiens	
<400> gcccat	133 ggca atcctgagtt ctagtttg	28
<210> <211> <212> <213>	DNA	
	134 ctac ggggtctg	18
<210> <211> <212> <213>	DNA	
	135 acta tggatgaa	18
<210> <211> <212> <213>	17 DNA	
<400> aatacg	136 actc actatag	17
<210> <211> <212> <213>	22 DNA	
<400>	137 ttag gtgacactat ag	22

```
<210> 138
<211> 5
<212> PRT
<213> Artificial
<220>
<223> Wild type L1.2mneoI construct
<400> 138
Glu Glu Arg Val Ser
<210> 139
<211> 4
<212> PRT
<213> Artificial
<220>
<223> Wild type L1.2mneoI construct
<400> 139
Arg Glu Lys Gly
<210> 140
<211> 3
<212> PRT
<213> Artificial
<220>
<223> Wild type L1.2mneoI construct
<400> 140
Ala Arg Arg
<210> 141
<211> 6
<212> PRT
<213> Artificial
<220>
<223> Wild type L1.2mneoI construct
<400> 141
Tyr Pro Ala Lys Leu Ser
<210> 142
<211> 4
<212> PRT
<213> Artificial
```

```
<220>
<223> Wild type L1.2mneoI construct
<400> 142
Phe Ala Asp Asp
<210> 143
<211> 4
<212> PRT
<213> Artificial
<220>
<223> Wild type L1.2mneoI construct
<400> 143
His Met Lys Lys
<210> 144
<211> 4
<212> PRT
<213> Artificial
<220>
<223> Wild type L1.2mneoI construct
<400> 144
Cys Ser Ser Ser
<210> 145
<211> 5
<212> PRT
<213> Artificial
<220>
<223> Wild type L1.2mneoI construct
<400> 145
Cys Trp Trp Asp Cys
<210> 146
<211> 4
<212> PRT
<213> Artificial
<220>
<223> Mutant L1.2mneoI construct
<400> 146
```

```
Ala Ala Ala Ala
<210> 147
<211> 3
<212> PRT
<213> Artificial
<220>
<223> Mutant L1.2mneoI construct
<400> 147
Ala Ala Ala
<210> 148
<211> 6
<212> PRT
<213> Artificial
<220>
<223> Mutant L1.2mneoI construct
<400> 148
Ala Ala Ala Leu Ser
<210> 149
<211> 4
<212> PRT
<213> Artificial
<220>
<223> Mutant L1.2mneoI construct
<400> 149
Phe Ala Tyr Asp
<210> 150
<211> 4
<212> PRT
<213> Artificial
<220>
<223> Mutant L1.2mneoI construct
<400> 150
Ala Ala Ala Ala
<210> 151
<211> 3
```

```
<212> PRT
<213> Artificial

<220>
<223> Mutant L1.2mneoI construct

<400> 151

Ala Ala Ala
1

<210> 152
<211> 5
<212> PRT
<213> Artificial

<220>
<223> Mutant L1.2mneoI construct

<400> 152

Ser Trp Trp Asp Ser
1 5
```