M378K: Jan	uary 29th	, 2025.			
Continuous					
Example.		,			
		a 6			
	Imagine	a (v.)	on [0,1]	7	
				ling between	a and b
Y=y			b < 1 i		
1				[a,b]] = b-c	
y > Y and ysY	Note: P	[Y=4] =	0 for d	U 4€[0.17]	Choose
Defn. A	random 1	variable	Y is said	d to be condi	nuous 7
Tu					
		•	→ [o,∞)		
	Σ	Such 5			
<u>"</u>	1Y€[a,	6]]=];	fy(y) dy	for all a	2 & b
The	Punction	a for in	called the)_	
,,,,	Juneilar	onhohil	tu don si	by Granting (od() od Y
D	P			by function (po f) of 1.
Roperties:	· fr(y)	tor jor	au yerk		
	· Sfrly?) dy = 1			
	-00				
Q: Is it	possible d	for a pm	f py to h	rave ay such	that
				$2\gamma(y) > 1$?	

Q: Is it possible for a pdf of to have a y such that $f_{\gamma}(y) > 1$? Yes! P[Y∈[y,y+Ay]] = fx(y) Dy = fx(y) dy Caveat: There are r.v.s that are neither discrete nor continuous. Example. Y is uniformly distributed between 0 and 44 $\int_{Y} (y)^{2} \begin{cases} c & \text{for } y \in [0, \frac{1}{4}] \\ 0 & \text{otherwise} \end{cases}$ We introduce, for any subset ASR $\underline{A}_{A}: \mathbb{R} \longrightarrow \mathbb{R}$ as $\underline{A}_{A}(y) = \begin{cases}
1 & \text{if } y \in A \\
0 & \text{if } y \notin A
\end{cases}$ This f'tion is called the indicator function. $f_{Y}(y) = c \cdot 1_{[0,4]}(y)$ BTW C=4

M378K Introduction to Mathematical Statistics

Problem Set #5

Continuous distributions.

Problem 5.1. Source: Sample P exam, Problem #33.

The lifetime of a machine part has a continuous distribution on the interval (0,40) with probability density function f_X , where

 $f_X(x) \propto \frac{1}{(10+x)^2}$

on the interval.

Calculate the probability that the lifetime of the machine part is less than 6.

$$\int_{X} (x) = X \cdot \frac{1}{(40+x)^{2}} \frac{1}{100} \log(x)$$
We know:
$$\int_{0}^{40} \int_{X} (x) dx = 1$$

$$\int_{0}^{40} (10+x)^{-2} dx = \frac{(40+x)^{-1}}{-1} \Big|_{X=0}^{40} = \frac{1}{40+x} \Big|_{X=0}^{40}$$

$$= \frac{1}{40} - \frac{1}{50} = \frac{5-1}{50} = \frac{2}{25} \Rightarrow X = \frac{25}{2}$$

$$= \int_{0}^{6} \int_{X} (x) dx = \frac{25}{2} \int_{0}^{6} (40+x)^{-2} dx$$

$$= \frac{25}{2} \left(\frac{1}{40} - \frac{1}{46} \right) = \frac{25}{2} \cdot \frac{8-5}{80} = \frac{45}{32}$$

Example. $Y \sim U(L, r)$ $P[Y \in [a,b]] = \frac{b-a}{r-l} \quad \text{for } l \leq a \leq b \leq r$ $f_{\gamma}(y) = \frac{1}{r-l} \quad 1[\ell,r](y)$