

Numerische Darstellung und Codes (üb. NUM)

Übungslösungen Digitales Design

2	Zahlensysteme		
2.1	Bestimmen Sie, bis zu welchem Wert man zählen kann, mit Zahlen codiert auf:		
	a) 0 to 15	d) 0 to 65535	
	b) 0 to 255	e) 0 to 4'294'967'295 (4 Gbit)	
	c) 0 to 1023		
2.2	Bestimmen Sie, bis zu welchem Wert man zählen kann, mit Hexadezimalzahlen codiert auf:		
	a) 0 to 65535	b) 0 to 4'294'967'295 (4 Gbit)	
3	Umwandlung von Zahle	nsystemen	
3.1	Führen Sie die Umwandlung folgender reiner Binärzahlen im Dezimalformat durch:		
	a) 6 ₁₀	d) 11 ₁₀	
	b) 15 ₁₀	e) 255 ₁₀	
	c) 74 ₁₀		
3.2	Führen Sie die Umwandlung folgender Dezimalzahlen im Binärformat durch:		
	a) 111'1101 ₂	d) 1'0000'0000 ₂	
	b) 1'0000 ₂	e) 1001 ₂	
	c) 1111'1110'0101'1001 ₂		
3.3	Führen Sie die Umwandlung	folgender Hexadezimalzahlen im Binärformat durch:	

a)	11102
b)	1'0101'1100 ₂

c) 1010'1011'0011'1101₂

d) 1001'1111'0111₂

e) 10'0011'0100'0110₂

3.4 Führen Sie die Umwandlung folgender Binärzahlen im Hexadezimalformat durch:

a)	A_{16}

b) 6₁₆

c) EB₁₆

- d) $2F_{16}$
- e) C_{16}

3.5 Führen Sie die Umwandlung folgender Hexadezimalzahlen im Dezimalformat durch:

- a) 13₁₀
- b) 348₁₀
- c) 564₁₀

- d) 254₁₀
- e) 42681₁₀

3.6 Führen Sie die Umwandlung folgender Dezimalzahlen im Hexadezimalformat durch:

- a) 80₁₆
- b) 10₁₆
- c) $FE59_{16}$

- d) D1₁₆
- e) 9_{16}

4 Operationen auf Logikzahlen

4.1 Führen Sie im Binärsystem folgende Additionen durch:

a) 0010'1010₂

c) 1011'0011₂

b) 0110'1001₂

d) 1000'0000₂

4.2 Führen Sie im Binärsystem folgende Substraktionen durch:

a) 0011'1010₂

c) 0000'1100₂

b) 0011¹1010₂

d) 0111'1111₂

4.3 Führen Sie im Binärsystem folgende Multiplikationen durch:

a) 0011'1100₂

c) 0011'0000₂

b) 0011'1100₂

d) 0110'0010₂

- 4.4 Führen Sie im Hexadezimalsystem folgende Additionen durch:
 - a) 1300₁₆
 - b) 8984₁₆

- c) 1333₁₆
- d) 13534₁₆
- 4.5 Bestimmen Sie den Binärwert von:
 - a) 1001₂
 - b) 110001₂

- c) 11100001₂
- d) 111110000001_2 ; $(2^{n-1}-1)*2^{n+1}+1$

- 5 Codes
- 5.1 Führen Sie folgende Additionen auf BCD-codierte Zahlen durch:
 - a) $0100'0100'0100_{BCD}$
 - b) 0110'0011'0011_{BCD}

- c) 1001'0010_{BCD}
- d) 0001'0000'0000_{BCD}
- 5.2 Führen Sie die Umwandlung des Gray-Codes 1001_{Gray} mit Hilfe der Rekursionsformel im Skript durch.

 1110_{2}

- 6 Darstellung von Arithmetischen Zahlen
- 6.1 Stellen Sie folgende Dezimal- und reine Binärzahlen mit den Verfahren Vorzeichen-Grösse, Einer-Komplement und Zweierkomplement auf 8 Bits codiert dar:
 - a) $0001'0010_s$ $0001'0010_{1cl}$ $0001'0010_{2cl}$
 - b) 1000'0011_s 1111'1100_{1cl} 1111'1101_{2cl}
 - c) $0000'0000_s;1000'0000_s$ $0000'0000_{1cl};1111'1111_{1cl}$ $0000'0000_{2cl}$

- d) 0001'1010_s 0001'1010_{1cl} 0001'1010_{2cl}
- e) 0000'1010_s 0000'1010_{1c/} 0000'1010_{2c/}
- f) 1110'0100_s 1001'1011_{1cl} 1001'1100_{2cl}
- 6.2 Führen Sie eine Zeichenänderung auf die folgenden, im Zweierkomplement codierten Zahlen durch:

- a) 1111'1111₂
- b) 1000'1000₂
- c) 0001'0000₂

- d) FF₁₆
- e) BC_{16}
- f) 7F₁₆
- 6.3 Gegeben sind die Zahlen 0001_2 und 1001_2 , ausgedrückt als Zweierkomplement auf 4 Bits codiert. Stellen Sie dieselben Zahlen als Zweierkomplement auf 8 Bits codiert dar.

0000'0001;1111'1001