MAT-266: Análisis de Regresión

Certamen 1. Julio 25, 2022

Tiempo: 70 minutos Profesor: Felipe Osorio

1. (35 pts) Considere el modelo,

$$Y = X\beta + \epsilon, \qquad \epsilon \sim N(0, \sigma^2 W^{-1}),$$

Nombre: _

donde ${\pmb W}={\rm diag}(1,\dots,1,\omega,1,\dots,1)$ con $\omega>0$ en el *i*-ésimo elemento de la diagonal de ${\pmb W}.$ Muestre que

$$\widehat{\boldsymbol{\beta}}(\omega) = \widehat{\boldsymbol{\beta}} - \frac{(1-\omega)e_i}{1-(1-\omega)h_{ii}} (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{x}_i,$$

 $\operatorname{con}\,\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}(1).$

2. (35 pts) Suponga el estimador

$$\widehat{\boldsymbol{\beta}}_G(k) = (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{G}^{\top} \boldsymbol{G})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{Y} + k \boldsymbol{G}^{\top} \boldsymbol{g}), \qquad k \leq 0,$$

para $G \in \mathbb{R}^{q \times p}$ con rango fila completo y $g \in \mathbb{R}^q$. Muestre que

$$\lim_{k\to\infty}\widehat{\boldsymbol{\beta}}_G(k) = \widehat{\boldsymbol{\beta}} - (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top}[\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top}]^{-1}(\boldsymbol{G}\widehat{\boldsymbol{\beta}} - \boldsymbol{g}).$$

3. (30 pts) Desde el ajuste de todas las regresiones posibles a un conjunto de 13 datos y 4 regresores, se obtuvo la siguiente información:

RSS_p	R_p^2	\widehat{eta}_0	\widehat{eta}_1	\widehat{eta}_2	\widehat{eta}_3	\widehat{eta}_4
2715.764	0.000	95.42				
1265.687	0.534	81.48	1.87			
906.336	0.666	57.42		0.79		
1939.401	0.286	110.21			-1.26	
883.867	0.675	117.57				-0.74
57.905	0.979	52.58	1.47	0.66		
1227.072	0.548	72.35	2.31		0.49	
74.762	0.972	103.10	1.44			-0.61
415.442	0.847	72.08		0.73	-1.01	
868.880	0.680	94.16		0.31		-0.46
175.738	0.935	131.28			-1.20	-0.72
48.111	0.982	48.19	1.70	0.66	0.25	
47.973	0.982	71.65	1.45	0.42		-0.24
50.836	0.981	203.64		-0.92	-1.45	-1.56
73.815	0.973	111.68	1.05		-0.41	-0.64
47.864	0.982	62.41	1.55	0.51	0.10	-0.14

Encuentre el mejor subconjunto de regresores usando los criterios $R^2_{\sf adj},\, s^2_p,\, C_p$ y Akaike.