

CSE5014 CRYPTOGRAPHY AND NETWORK SECURITY

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

Private-key schemes

- We have seen how to construct schemes based on various lower-level primitives
 - Stream ciphers / PRGs
 - Block ciphers / PRFs
 - Hash functions
- How do we construct these primitives?

Two approaches

- Construct from even lower-level assumptions
 - Can prove secure (given lower-level assumption)
 - Typically inefficient

Two approaches

- Construct from even lower-level assumptions
 - Can prove secure (given lower-level assumption)
 - Typically inefficient

- Build directly
 - Much more efficient!
 - Need to assume security, but
 - We have formal definitions to aim for
 - We can concentrate our analysis on these primitives
 - We can develop/analyze various design principles

Terminology

- Init algorithm
 - Takes as input a key + initialization vector (IV)
 - Outputs initial state
- GetBits algorithm
 - Takes as input the current state
 - Outputs next bit/byte/chunk and updated state
 - Allows generation of as many bits as needed

Security requirements

- If there is no IV, then (for a uniform key) the output of GetBits should be indistinguishable from a uniform, independent stream of bits
- If there is an *IV*, then (for a uniform key) the output of *GetBits* on multiple, uniform *IV*s should be indistinguishable from multiple uniform, independent streams of bits
 - Even if the attacker is given the IVs

LFSRs

- Degree $n \Rightarrow n$ registers
- State: bits s_{n-1}, \ldots, s_0 (contents of the registers)
- Feedback coefficients c_{n-1}, \ldots, c_0 (view as part of state; do not change)
- State updated and output generated in each "clock tick"

Example

- Assume initial content of registers is 0100
- First 4 state transitions: $0100 \rightarrow 1010 \rightarrow 0101 \rightarrow 0010 \rightarrow \dots$
- First 3 output bits: 0 0 1 . . .

LFSRs as stream ciphers

- Key + IV used to initialize the state of the LFSR (possibly including feedback coefficients)
- One bit of output per clock tick
 - State updated

LFSRs as stream ciphers

- Key + IV used to initialize the state of the LFSR (possibly including feedback coefficients)
- One bit of output per clock tick
 - State updated
- State (and output) "cycles" if state ever repeated
- Maximal-length LFSR cycles through all $2^n 1$ nonzero states
 - Known how to set feedback coefficients so as to achieve maximal length

LFSRs as stream ciphers

- Key + IV used to initialize the state of the LFSR (possibly including feedback coefficients)
- One bit of output per clock tick
 - State updated
- State (and output) "cycles" if state ever repeated
- Maximal-length LFSR cycles through all $2^n 1$ nonzero states
 - Known how to set feedback coefficients so as to achieve maximal length
- Maximal-length LFSRs have good statistical properties, but they are not cryptographically secure!

If feedback coefficients known ,the first n output bits directly reveal the initial state!

- If feedback coefficients known ,the first n output bits directly reveal the initial state!
- Even if feedback coefficients are unknown, can use linear algebra to learn everything from 2n consecutive output bits (Berlekamp-Massey algorithm)

- If feedback coefficients known ,the first n output bits directly reveal the initial state!
- Even if feedback coefficients are unknown, can use linear algebra to learn everything from 2n consecutive output bits (Berlekamp-Massey algorithm)

$$y_i = s_{i-1}^{(0)}, i = 1, ..., n$$

 $y_i = \bigoplus_{j=0}^{n-1} c_j y_{i-n+j-1}, i > n$

- If feedback coefficients known ,the first n output bits directly reveal the initial state!
- Even if feedback coefficients are unknown, can use linear algebra to learn everything from 2n consecutive output bits (Berlekamp-Massey algorithm)

$$y_{i} = s_{i-1}^{(0)}, i = 1, ..., n$$
 $y_{i} = \bigoplus_{j=0}^{n-1} c_{j}y_{i-n+j-1}, i > n$
 $y_{n+1} = c_{n-1}y_{n} \oplus \cdots \oplus c_{0}y_{1}$
 \vdots
 $y_{2n} = c_{n-1}y_{2n-1} \oplus \cdots \oplus c_{0}y_{n}$

- If feedback coefficients known ,the first n output bits directly reveal the initial state!
- Even if feedback coefficients are unknown, can use linear algebra to learn everything from 2n consecutive output bits (Berlekamp-Massey algorithm)

$$y_{i} = s_{i-1}^{(0)}, i = 1, ..., n$$
 $y_{i} = \bigoplus_{j=0}^{n-1} c_{j}y_{i-n+j-1}, i > n$
 $y_{n+1} = c_{n-1}y_{n} \oplus \cdots \oplus c_{0}y_{1}$
 \vdots
 $y_{2n} = c_{n-1}y_{2n-1} \oplus \cdots \oplus c_{0}y_{n}$

Linearity is bad for cryptography (because linear algebra is so powerful)

9 - 5

Nonlinear FSRs

- Add nonlinearity to prevent attacks
 - Nonlinear feedback
 - Output is a nonlinear function of the state
 - Multiple (coupled) LFSRs
 - or any combination of the above

Nonlinear FSRs

- Add nonlinearity to prevent attacks
 - Nonlinear feedback
 - Output is a nonlinear function of the state
 - Multiple (coupled) LFSRs
 - or any combination of the above

Still want to preserve statistical properties of the output, and long cycle length

Example: Trivium

- Designed by De Canniere and Preneel in 2006 as part of eSTREAM competition
- Intended to be simple and efficient (especially in hardware)
- Essentially no attacks better than brute-force search are known

Example: Trivium

■ Three FSRs of degree 93, 84, and 111

Example: Trivium

- Three FSRs of degree 93, 84, and 111
- Initialization:
 - 80-bit key in left-most registers of first FSR
 - 80-bit IV in left-most registers of second FSR
 - Remaining registers set to 0, except for three right-most registers of third FSR
 - Run for 4×288 clock ticks

Block ciphers

Want keyed permutation

$$F: \{0,1\}^n \times \{0,1\}^\ell \rightarrow \{0,1\}^\ell$$

- $n = \text{key length}, \ \ell = \text{block length}$

Want F_k (for *uniform*, unknown key k) to be indistinguishable from a *uniform* permutation over $\{0,1\}^{\ell}$

Block ciphers

Want keyed permutation

$$F: \{0,1\}^n \times \{0,1\}^\ell \rightarrow \{0,1\}^\ell$$
 $-n = \text{key length}, \ \ell = \text{block length}$

Want F_k (for *uniform*, unknown key k) to be indistinguishable from a *uniform* permutation over $\{0,1\}^{\ell}$

The security provided by an algorithm is the most important factor.

... Algorithms will be judged on the following factors ...

• The extent to which the algorithm output is indistinguishable from a random permutation . . .

- Nevertheless, some of the terminology used in the same (for historical reasons)
 - "known-plaintext attack": attacker given $\{x, F_k(x)\}$ for random x (outside control of the attacker)

- Nevertheless, some of the terminology used in the same (for historical reasons)
 - "known-plaintext attack": attacker given $\{x, F_k(x)\}$ for random x (outside control of the attacker)
 - "chosen-plaintext attack": attacker can query $F_k(\cdot)$ (this is the default model we have been using)

- Nevertheless, some of the terminology used in the same (for historical reasons)
 - "known-plaintext attack": attacker given $\{x, F_k(x)\}$ for random x (outside control of the attacker)
 - "chosen-plaintext attack": attacker can query $F_k(\cdot)$ (this is the default model we have been using)
 - "chosen-ciphertext attack": attacker can query $F_k(\cdot)$ and $F_k^{-1}(\cdot)$

Concrete security

- As in the case of stream ciphers, we are interested in concrete security for a given key length n
 - Best attack should take time $\approx 2^n$
 - If there is an attack taking time $2^{n/2}$ then the cipher is considered *insecure*

Concrete security

- As in the case of stream ciphers, we are interested in concrete security for a given key length n
 - Best attack should take time $\approx 2^n$
 - If there is an attack taking time $2^{n/2}$ then the cipher is considered *insecure*
- Designing block ciphers: Want F_k (for uniform, unknown key k) to be *indistinguishable* from a uniform permutation over $\{0,1\}^{\ell}$. If x and x' differ in one bit, what should be the relation between $F_k(x)$ and $F_k(x')$?

Concrete security

- As in the case of stream ciphers, we are interested in concrete security for a given key length n
 - Best attack should take time $\approx 2^n$
 - If there is an attack taking time $2^{n/2}$ then the cipher is considered *insecure*
- Designing block ciphers: Want F_k (for uniform, unknown key k) to be *indistinguishable* from a uniform permutation over $\{0,1\}^{\ell}$. If x and x' differ in one bit, what should be the relation between $F_k(x)$ and $F_k(x')$?
 - How many bits should change (on average)?
 - Which bits should change?
 - How to achieve this?

Confusion/diffusion

- "Confusion"
 - Small change in input should result in local, "random" change in output

- "Diffusion"
 - Local change in input should be propagated to entire output

- Two design paradigms
 - Substitution-permutation networks (SPNs)
 - Feistel networks

- Two design paradigms
 - Substitution-permutation networks (SPNs)
 - Feistel networks
- SPNs: build "random-looking" permutation on large input from random permutations on small inputs

- Two design paradigms
 - Substitution-permutation networks (SPNs)
 - Feistel networks
- SPNs: build "random-looking" permutation on large input from random permutations on small inputs
 - E.g., assume 8-byte block length $F_k(x) = f_{k_1}(x_1) f_{k_2}(x_2) \cdots f_{k_8}(x_8)$, where each f is a random permutation
 - How long is k?

- Two design paradigms
 - Substitution-permutation networks (SPNs)
 - Feistel networks
- SPNs: build "random-looking" permutation on large input from random permutations on small inputs

Is this a pseudorandom function?

SPN

- This has confusion but no diffusion
 - Add a mixing permutation

- This has confusion but no diffusion
 - Add a mixing permutation

- This has confusion but no diffusion
 - Add a mixing permutation

Note that the structure is *invertible* (given the key) since the f's are permutations

- Mixing permutation is public
 - Chosen to ensure good diffusion

- Mixing permutation is public
 - Chosen to ensure good diffusion

Does this give a pseudorandom function?

- Mixing permutation is public
 - Chosen to ensure good diffusion
- Does this give a pseudorandom function?
- What if we repeat for another round (with independent, random functions)?
 - What is the *minimal* # of rounds we need?
 - Avalanche effect

- Mixing permutation is public
 - Chosen to ensure good diffusion
- Does this give a pseudorandom function?
- What if we repeat for another round (with independent, random functions)?
 - What is the *minin*
 - Avalanche effect

- Using random f's is not practical
 - Key would be too large

- Using random f's is not practical
 - Key would be too large
- Instead, use f's of a particular form
 - $-f_{k_i}(x) = S_i(k_i \oplus x)$, where S_i is a public permutation
 - $-S_i$ are called "S-boxes" (substitution boxes)
 - XORing the key is called "key mixing"
 - Note that this is still invertible (given the key)

Avalanche effect

- Design S-boxes and mixing permutation to ensure avalanche effect
 - Small differences should eventually propagate to entire output

Avalanche effect

- Design S-boxes and mixing permutation to ensure avalanche effect
 - Small differences should eventually propagate to entire output
- S-boxes: 1-bit change in input causes ≥ 2-bit change in output
 - Not so easy to ensure!

Avalanche effect

- Design S-boxes and mixing permutation to ensure avalanche effect
 - Small differences should eventually propagate to entire output
- S-boxes: 1-bit change in input causes ≥ 2-bit change in output
 - Not so easy to ensure!
- Mixing permutation
 - Each bit output from a given S-box should feed into a different S-box in the next round

- One round of an SPN involves
 - Key mixing
 - Ideally, round keys are independent
 - In practice, derived from a master key via key schedule
 - Substitution (S-boxes)
 - Permutation (mixing permutation)

- One round of an SPN involves
 - Key mixing
 - Ideally, round keys are independent
 - In practice, derived from a master key via key schedule
 - Substitution (S-boxes)
 - Permutation (mixing permutation)
- lacktriangright r-round SPN has r rounds as above, plus a final key-mixing step
 - Why?

- One round of an SPN involves
 - Key mixing
 - Ideally, round keys are independent
 - In practice, derived from a master key via key schedule
 - Substitution (S-boxes)
 - Permutation (mixing permutation)
- lacktriangright r-round SPN has r rounds as above, plus a final key-mixing step
 - Why?
- Invertible regardless of how many rounds

Key-recovery attacks

- Key-recovery attacks are even more damaging than distinguishing attacks
 - As before, a cipher is *secure* only if the best key-recovery attack takes time $\approx 2^n$
 - A fast key-recovery attack represents a "complete attack" of the cipher

- Consider first the case where there is no final key-mixing step
 - Possible to get the key immediately!

- Consider first the case where there is no final key-mixing step
 - Possible to get the key immediately!
- What about a full 1-round SPN?
 - Attack 1: for each possible 1^{st} -round key, get corresponding 2^{nd} -round key
 - Continue process of elimination
 - Complexity $\approx 2^{\ell}$ for key of length 2ℓ

- Consider first the case where there is no final key-mixing step
 - Possible to get the key immediately!
- What about a full 1-round SPN?
 - Attack 1: for each possible 1^{st} -round key, get corresponding 2^{nd} -round key
 - Continue process of elimination
 - Complexity $\approx 2^{\ell}$ for key of length 2ℓ
- Better attack: work S-box-by-S-box
 - Assume 8-bit S-box
 - For each 8 bits of 1^{st} -round key, get corresponding 8 bits of 2^{nd} -round key
 - Continue process of elimination

- Consider first the case where there is no final key-mixing step
 - Possible to get the key immediately!
- What about a full 1-round SPN?
 - Attack 1: for each possible 1^{st} -round key, get corresponding 2^{nd} -round key
 - Continue process of elimination
 - Complexity $\approx 2^{\ell}$ for key of length 2ℓ
- Better attack: work S-box-by-S-box
 - Assume 8-bit S-box
 - For each 8 bits of 1^{st} -round key, get corresponding 8 bits of 2^{nd} -round key
 - Continue process of elimination

Feistel networks

- Build (invertible) permutation from non-invertible components
- One round:
 - Keyed round function $f\colon \{0,1\}^n imes \{0,1\}^{\ell/2} o \{0,1\}^{\ell/2}$
 - $-F_{k_1}(L0, R0) \to (L1, R1)$ where L1 = R0; $R1 = L0 \oplus f_{k_1}(R0)$
- Always invertible!

Luby-Rackoff construction

This is so-called Luby-Rackoff construction, using several rounds of Feistel Transformation.

We build a PRP p on 2n bits from three PRFs $f_{s_1}, f_{s_2}, f_{s_3}$ on n bits by letting

$$p_{s_1,s_2,s_3}(x_1,x_2)=(z_1,y_2)$$
 where $y_1=x_1\oplus f_{s_1}(x_2)$, $y_2=x_2\oplus f_{s_2}(y_1)$, and $z_1=f_{s_3}(y_2)\oplus y_1$.

Security

Security of 1-round Feistel?

Security of 2-round Feistel (with independent keys)?

Security of 3/4-round Feistel?

Security

Security of 1-round Feistel?

Security of 2-round Feistel (with independent keys)?

Security of 3/4-round Feistel?

Lindell & Katz p.216-218

Data Encryption Standard (DES)

- Standardized in 1977
- 56-bit keys, 64-bit block length
- 16-round Feistel network
 - Same round function in all rounds (but different sub-keys)
 - Basically an SPN design!

DES mangler function

DES mangler function

- S-boxes
 - Each S-box is 4-to-1
 - Changing 1 bit of input changes at least 2-bits of output

- Mixing permutation
 - The 4 bits of output from any S-box affect the input to
 6 S-boxes in the next round

Key schedule + Avalanche effect

- 56-bit master key, 48-bit subkey in each round
 - Each subkey takes 24 bits from the left half of the master key, and 24 bits from the right half of the master key

Key schedule + Avalanche effect

- 56-bit master key, 48-bit subkey in each round
 - Each subkey takes 24 bits from the left half of the master key, and 24 bits from the right half of the master key

- Consider 1-bit difference in left half of input
 - After 1 round, 1-bit difference in right half
 - S-boxes cause a 2-bit difference, implying a 3-bit difference overall after 2 rounds
 - Mixing permutation spreads differences into different S-boxes

Security of DES

- DES is extremely well-designed
 - Except for some attacks that require large amounts of plaintext, no attacks better than brute-force are known

Security of DES

- DES is extremely well-designed
 - Except for some attacks that require large amounts of plaintext, no attacks better than brute-force are known

- But, parameters are too small!
 - I.e., brute-force search is feasible

56-bit key length

- A concern as soon as DES was released
- Brute-force search over 2⁵⁶ keys is possible
 - 1997: 1000s of computers, 96 days
 - 1998: distributed.net, 41 days
 - 1999: Deep Crack (\$250,000), 56 hours
 - Today: 48 FPGAs, about 1 day

64-bit block length

- Birthday collisions relatively likely
- E.g., encrypt 2^{30} (≈ 1 billion) records using CTR mode; chances of a collision are

$$\approx 2^{60}/2^{64} = 1/16$$

Increasing key length?

- DES has key that is too short
- How to fix?
 - Design new cipher
 - Tweak DES so that it takes a larger key
 - Build new cipher using DES as a black box

Double encryption

Let $F: \{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}^\ell$ - i.e., n = 56, $\ell = 64$ for DES

Double encryption

- Let $F: \{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}^\ell$ - i.e., n = 56, $\ell = 64$ for DES
- Define $F^2: \{0,1\}^{2n} \times \{0,1\}^\ell \to \{0,1\}^\ell$ as follows: $F_{k_1,k_2}^2(x) = F_{k_1}(F_{k_2}(x))$ (still invertible)

Double encryption

- Let $F: \{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}^\ell$ - i.e., n = 56, $\ell = 64$ for DES
- Define $F^2: \{0,1\}^{2n} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ as follows: $F_{k_1,k_2}^2(x) = F_{k_1}(F_{k_2}(x))$ (still invertible)
- If best attack on F takes time 2^n , is it reasonable to assume that the best attack on F^2 takes time 2^{2n} ?

Meet-in-the-middle attack

- \blacksquare No! There is an attack taking 2^n time
 - And 2^n memory

Meet-in-the-middle attack

- \blacksquare No! There is an attack taking 2^n time
 - And 2^n memory

The attack applies any time a block cipher can be "factored" into 2 independent components

Triple encryption

Define $F^3: \{0,1\}^{3n} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ as follows: $F^3_{k_1,k_2,k_3}(x) = F_{k_1}(F_{k_2}(F_{k_3}(x)))$

What is the best attack now?

Triple encryption

Define $F^3: \{0,1\}^{3n} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ as follows: $F^3_{k_1,k_2,k_3}(x) = F_{k_1}(F_{k_2}(F_{k_3}(x)))$

- What is the best attack now?
- Best attacks take time 2^{2n} optimal given the key length!

This approach is taken by triple-DES

Advanced encryption standard (AES)

- Public design competition run by NIST
- Began in Jan 1997
 - 15 algorithms submitted

Advanced encryption standard (AES)

- Public design competition run by NIST
- Began in Jan 1997
 - 15 algorithms submitted
- Workshops in 1998, 1999
 - Narrowed to 5 finalists

Advanced encryption standard (AES)

- Public design competition run by NIST
- Began in Jan 1997
 - 15 algorithms submitted
- Workshops in 1998, 1999
 - Narrowed to 5 finalists
- Workshop in early 2000; winner announced in late 2000
 - Factors besides security taken into account

AES

- 128-bit block length
- 128-, 192-, and 256-bit key lengths

AES

- 128-bit block length
- 128-, 192-, and 256-bit key lengths
- Basically an SPN structure!
 - 1-byte S-box (same for all bytes)
 - Mixing permutation replaced by invertible linear transformation
- No attacks better than brute-force known

Rijndael: Key and Block Size

Key Size (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Plaintext block size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Number of rounds	10	12	14
Round key size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Expanded key size (words/bytes)	44/176	52/208	60/240

AES Encryption & Decryption

AES Round Function

Key and State Bytes in Rectangular Arrays

k _{0,0}	k _{0,1}	k _{0,2}	k _{0,3}	k _{0,4}	k _{0,5}	k _{0,6}	k _{0,7}
k _{1,0}		1					
k _{2,0}		l	l				
k _{3,0}							

Variable key size: 16/24/32 bytes

Variable State size: 16/24/32 bytes

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}	a _{0,5}	a _{0,6}	a _{0,7}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}	a _{1,6}	a _{1,7}
					a _{2,5}		
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}	a _{3,5}	a _{3,6}	a _{3,7}

AES Round Function: ByteSub

ByteSub acts on individual bytes of the State (only 1 S-box 8×8)

AES Round Function: ByteSub

ByteSub acts on individual bytes of the State (only 1 S-box 8×8)

ByteSub is a (the only) non-linear byte substitution by the composition of two transformations:

- 1. take *multiplicative inverse* in \mathbb{F}_{2^8} $(0 \mapsto 0)$
- 2. apply an *affine* (over \mathbb{F}_2) mapping to each byte.

AES Round Function: ShiftRow

b _{0,0}	b _{0,1}	b _{0,2}	b _{0,3}	no shift	b _{0,0}	b _{0,1}	b _{0,2}	b _{0,3}
b _{1,0}	b _{1,1}	b _{1,2}	b _{1,3}	cyclic shift by 3	b _{1,1}	b _{1,2}	b _{1,3}	b _{1,0}
b _{2,0}	b _{2,1}	b _{2,2}	b _{2,3}	cyclic shift by 2	b _{2,2}	b _{2,3}	b _{2,0}	b _{2,1}
b _{3,0}	b _{3,1}	b _{3,2}	b _{3,3}	cyclic shift by 1	b _{3,3}	b _{3,0}	b _{3,1}	b _{3,2}

ShiftRow operates on the rows of the State

Purpose: inter-column diffusion

AES Round Function: MixColumn

MixColumn is implemented using XOR operations. The columns of the State are considered as polynomials of degree 3 over \mathbb{F}_{2^8} and multiplied modulo $x^4 + 1$ with a fixed polynomial c(x): $c(x) = 03x^3 + 01x^2 + 01x + 02$.

AES Round Function: MixColumn

MixColumn is implemented using XOR operations. The columns of the State are considered as polynomials of degree 3 over \mathbb{F}_{2^8} and multiplied modulo $x^4 + 1$ with a fixed polynomial c(x): $c(x) = 03x^3 + 01x^2 + 01x + 02$.

Purpose: inter-byte *diffusion*. Together with ShiftRow, it ensures that after a few rounds, all output bits depend on all input bits.

AES Round Function: MixColumn

MixColumn is implemented using XOR operations. The columns of the State are considered as polynomials of degree 3 over \mathbb{F}_{2^8} and multiplied modulo $x^4 + 1$ with a fixed polynomial c(x): $c(x) = 03x^3 + 01x^2 + 01x + 02$.

Purpose: inter-byte *diffusion*. Together with ShiftRow, it ensures that after a few rounds, all output bits depend on all input bits.

AES Round Function: AddRoundKey

d _{0,0}	d _{0,1}	d _{0,2}	d _{0,3}
d _{1,0}	d _{1,1}	d _{1,2}	d _{1,3}
d _{2,0}	d _{2,1}	d _{2,2}	d _{2,3}
d _{3,0}	d _{3,1}	d _{3,2}	d _{3,3}

k _{0,0}	k _{0,1}	k _{0,2}	k _{0,3}
k _{1,0}	k _{1,1}	k _{1,2}	k _{1,3}
k _{2,0}	k _{2,1}	k _{2,2}	k _{2,3}
k 3,0	k _{3,1}	k _{3,2}	k _{3,3}

e _{0,0}	e _{0,1}	e _{0,2}	e _{0,3}
e _{1,0}	e _{1,1}	e _{1,2}	e _{1,3}
e _{2,0}	e _{2,1}	e _{2,2}	e _{2,3}
e _{3,0}	e _{3,1}	e _{3,2}	e _{3,3}

In AddRoundKey, the Round Key is bitwise XORed to the State.

AES Round Function: AddRoundKey

d _{0,0}	d _{0,1}	d _{0,2}	d _{0,3}
d _{1,0}	d _{1,1}	d _{1,2}	d _{1,3}
d _{2,0}	d _{2,1}	d _{2,2}	d _{2,3}
d _{3,0}	d _{3,1}	d _{3,2}	d _{3,3}

e _{0,0}	e _{0,1}	e _{0,2}	e _{0,3}
e _{1,0}	e _{1,1}	e _{1,2}	e _{1,3}
e _{2,0}	e _{2,1}	e _{2,2}	e _{2,3}
e _{3,0}	e _{3,1}	e _{3,2}	e _{3,3}

In AddRoundKey, the Round Key is bitwise XORed to the State.

Purpose: makes round function key-dependent.

AES Round Function: AddRoundKey

d _{0,0}	d _{0,1}	d _{0,2}	d _{0,3}
d _{1,0}	d _{1,1}	d _{1,2}	d _{1,3}
d _{2,0}	d _{2,1}	d _{2,2}	d _{2,3}
d _{3,0}	d _{3,1}	d _{3,2}	d _{3,3}

k _{0,0}	k _{0,1}	k _{0,2}	k _{0,3}
k _{1,0}	k _{1,1}	k _{1,2}	k _{1,3}
k _{2,0}	k _{2,1}	k _{2,2}	k _{2,3}
k _{3,0}	k _{3,1}	k _{3,2}	k _{3,3}

e _{0,0}	e _{0,1}	e _{0,2}	e _{0,3}
e _{1,0}	e _{1,1}	e _{1,2}	e _{1,3}
e _{2,0}	e _{2,1}	e _{2,2}	e _{2,3}
e _{3,0}	e _{3,1}	e _{3,2}	e _{3,3}

In AddRoundKey, the Round Key is bitwise XORed to the State.

Purpose: makes round function key-dependent.

Key-XORing with plaintext or ciphertext is called whitening. This is a cheap way of adding to the security of cipher by preventing the collection of plaintext-ciphertext pairs.

AES Round Function: Key Expansion

- 1. One-byte circular left shift by a word: $[b_0, b_1, b_2, b_3] \rightarrow [b_1, b_2, b_3, b_0]$
- 2. Byte substitution using S-box
- 3. $\angle XOR 1 \& 2$ with a round constant (breaks symmetry)

AES Round Function: Key Expansion

- 1. One-byte circular left shift by a word: $[b_0, b_1, b_2, b_3] \rightarrow [b_1, b_2, b_3, b_0]$
- 2. Byte substitution using S-box
- 3. XOR 1 & 2 with a round constant (breaks symmetry) 50 2

Block cipher competition

.关于公布全国密码算法设计竞赛 第一轮算法评选结果的通知

时间: 2019年09月27日 来源: 中国密码学会

根据全国密码算法设计竞赛工作安排,经公开评议、检测评估和专家评选,全国密码算法设计竞赛第一轮算法评选结果 已经揭晓,现公布《全国密码算法设计竞赛分组算法第二轮入选名单》(见附件1)和《全国密码算法设计竞赛公钥算法第 二轮入选名单》(含公钥加密算法、数字签名算法、密钥交换算法,见附件2)。

本次公布的密码算法可在2019年10月20日前完成非框架性修改。修改完善并按要求提交后,将在学会网站统一发布。欢 迎密码科技工作者、密码研究爱好者积极参与评议。

■ 附件1: 全国密码算法设计竞赛分组算法第二轮入选名单.docx ■ 附件2: 全国密码算法设计竞赛公钥加密算法第二轮入选名单.docx

Block cipher competition

全国密码算法设计竞赛分组算法第二轮入选名单。

⊕

1					_
	排名↩	算法名称。	第一设计者。	参与设计者。	÷
	1.	<u>uBlock</u>	吴文玲(中国科学院 软件研究所)。	张 蕾(中国科学院软件研究所)↓ 郑雅菲(中国科学院软件研究所)↓ 李灵琛(中国科学院软件研究所)↓	4
	2₽	Ballet	崔婷婷(杭州电子科 技大学)。	王美琴 (山东大学) ↓ 樊燕红 (山东大学) ↓ 胡 凯 (山东大学) ↓ 付 勇 (山东大学) ↓ 黄鲁宁 (山东大学) ↓	4
	3.0	<u>FESH</u>	贾珂婷(清华大学)。	董晓阳(清华大学) → 魏淙洺(清华大学) → 魏淙洺(清华大学) → 李 铮(山东大学) → 周海波(山东大学) → 丛天倾(清华大学) →	47

Next Lecture

Hash, RO model, Finite field ...

