ANOVA

- ANOVA
 - compare means of two or more groups
 - factors (variables)
 - * ex. dosage
 - levels
 - * ex. mq of dosage
- Types of ANOVA
 - One way ANOVA
 - * one factor with at least two levels, levels are independent
 - Repeated-Measures ANOVA
 - * one factor with at least two levels, levels are dependent
 - * notes on Independent and Dependent Samples
 - Factorial ANOVA
 - * two or more factors (each of which with at least two levels), levels can be either independently dependent, or both (mixed)
- Assumptions in ANOVA
 - 1. Normality of Sampling Distribution of Means
 - The distribution of sample means is normally distributed.
 - 2. Independence of Errors
 - Errors between cases are independent of one another.
 - 3. Absence of Outliers
 - Outlying scores have been removed from the data set.
 - 4. Homoegeneity of Variance
 - Population variances in different levels of each independent variable are equal.
- Hypotheses in ANOVA
 - ANOVA with one factor ("A", three levels):
 - * ka

Independent and Dependent Variables

- Variable: property that can take on many values
 - in a situation with multiple variables:
 - * independent variable: any variable that is being manipulated
 - * dependent variable: any variable that is being measured

Independent and Dependent Samples

- One-Sample and Two-Sample Methods
 - 1-sample
 - * one sample compared to population
 - 2-sample
 - * samples are being compared to other samples
- Independent and dependent samples
 - samples are *independent* if members of one sample are *unrelated* to members of the other sample
 - samples are dependent if members of one sample are related to members of the other sample

– examples:

- * before and after <- dependent
- * two different test subjects from two different groups <- independent