INa	me: Student ID:				
CONVEXITY PROBLEM SHEET					
1					
(a)	a) Starting from the definition of a convex function				
	$f(ax + (1-a)y) \le af(x) + (1-a)f(y) \tag{1}$				
	Let $a=\epsilon/(x-y)$ and rearrange the inequality to give				
	$(x-y)\left(\frac{f(y+\epsilon)-f(y)}{\epsilon}\right)$				
	on the left-hand side. Taking the limit $\epsilon \to 0$ show that the function $f(x)$ lies above the tangent line $t(x)=f(y)+(x-y)f'(y)$ going through the point y . [4 marks]				

 $\overline{1}$

 $\overline{1}$

(b) Sketch the tangent line, t(x), at the point y in the graph shown below. [1 mark]

(c) Starting from the inequality for a convex function

$$f(x) \ge f(y) + (x - y)f'(y)$$
 (2)

consider the case $y = x + \epsilon$, then by Taylor expanding $f(x + \epsilon)$ and $f'(x + \epsilon)$ around x and keeping all terms up to order ϵ^2 show that for a convex function $f''(x) \ge 0$. [4 marks]

(d) Prove that $l_{am}(m)$ is convey up for $m > 0$	[1 mark]

(d) Prove that $-\log(x)$ is convex-up for x > 0. [1 mark]

End of question 1

(a)
$$\frac{}{4}$$
 (b) $\frac{}{1}$ (c) $\frac{}{4}$ (d) $\frac{}{1}$ Total $\frac{}{10}$

(a)	If $\ x\ $ is a proper norm use the triangular inequality $(\ x+y\ \le \ x\ + \ y\)$, linearity of a norm $(\ ax\ = a\ x\)$ and the definition of convexity, to show that the norm is convex. [5 marks]

-5

$$L(\boldsymbol{x}, y, \boldsymbol{\theta}) = -\sum_{c \in \mathcal{C}} [y = c] \log (\hat{f}_c(\boldsymbol{x}|\boldsymbol{\theta})),$$

show that the expected loss over inputs and parameters can be written as the expected loss of the mean machine plus a second loss. Use Jensen's inequality $(\mathbb{E}\left[\log(X)\right] \leq \log\left(\mathbb{E}\left[X\right]\right))$ to show the second term is positive. [5 marks]

 $\frac{1}{5}$

End of question 2

(a)
$$\frac{}{5}$$
 (b) $\frac{}{5}$ Total $\frac{}{10}$