PRACTICA 7. DÍODES: CARACTERÍSTIQUES I APLICACIONS

Abans d'anar al laboratori

- 1 Estudieu l'apartat 1 sobre el fonament teòric d'aquesta pràctica.
- 2 Resoleu els exercicis plantejat a l'apartat 2. La resolució l'haureu de lliurar al professor del laboratori a l'inici de la pràctica.
- 3 Mireu els apèndixs A, B i C sobre el tauler de connexions i el funcionament del polímetre i l'oscil·loscopi.
- 4 Llegiu l'apartat 2 sobre el procediment de mesura que seguireu durant la realització d'aquesta pràctica.

Objectius:

- a) Veure les corbes característiques d'un díode d'unió i d'un díode Zener.
- b) Visualitzar la rectificació d'una ona amb un díode d'unió i un pont de díodes.
- c) Muntar un circuit limitador de tensió amb un díode Zener.

1 Fonament teòric

1.1 Descripció d'un díode

Un díode és un dispositiu format per la unió d'un semiconductor de tipus p i un tipus n.

Si s'aplica als seus extrems una tensió $V_{AK} = V_A - V_K$, s'observa que la intensitat que hi circula no és lineal amb la tensió, de manera que només hi ha circulació apreciable de corrent quan V_{AK} és superior a un determinat valor que depèn dels materials semiconductors. Per tensions negatives el díode pràcticament no condueix. La gràfica que ens dóna la relació existent entre I i V_{AK} s'anomena **corba** característica del díode i té la forma indicada a la Figura 1. La tensió V_{γ} , a partir de la qual I augmenta notablement, s'anomena tensió llindar o potencial de contacte. En aquesta pràctica aplicarem el criteri de que V_{γ} és el valor de V_{AK} pel que I = 1 mA. El símbol del díode indica el sentit permès de pas del corrent.

Hi ha un tipus especial de díode que permet la conducció quan està polaritzat

inversament. Aquest díode s'anomena **díode Zener**, i la seva corba característica és com la representada a la Figura 2. La tensió V_Z , a partir de la qual el díode condueix estant polaritzat inversament, s'anomena **tensió Zener**. Una propietat important del díode Zener és que, quan condueix polaritzat inversament, encara que augmenti molt la intensitat que hi circula, les variacions de la tensió són molt petites i pot considerar-se que aquesta es manté pràcticament constant i igual a V_Z .

El símbol del díode Zener és

Polarització inversa Polarització directa

1.2 Aplicacions

D'entre les moltes aplicacions dels díodes, en aquesta pràctica en veurem les següents: la rectificació de mitja ona, la rectificació d'ona completa i l'estabilització d'una tensió no constant.

1.2.1 Rectificació de mitja ona

A la Figura 3 veiem una resistència R_C connectada a una tensió alterna $V(t)=V\sin(\omega t)$ (línia contínua). En aquest circuit la intensitat I(t) (línia discontínua) està en fase amb el voltatge V(t).

Figura 3: Circuit de corrent altern sense rectificar

La Figura 4 mostra el circuit de la Figura 3 al qual se li ha incorporat el díode. En aquest cas, els semiperíodes negatius de I(t) desapareixen.

Figura 4: Circuit de corrent altern rectificat amb un díode

1.2.2 Rectificació d'ona completa

Les Figures 5a i 5b representen un pont de díodes. Quan $V_a - V_b$ és positiu, D_1 i D_4 estan polaritzats directament i deixen passar el corrent (Figura 5a). Quan $V_a - V_b$ és negatiu, llavors el corrent circula per D_3 i D_2 (Figura 5b). En ambdós casos, el corrent sempre circula per R_C en el mateix sentit.

Així, si s'aplica una tensió sinusoïdal V(t) entre els punts a i b, la intensitat I(t) que circula per R_C (que és proporcional a $V_c - V_d$) és com la indicada a la Figura 6.

El circuit de la Figura 6 també pot esquematitzar-se considerant el pont de díodes com

Figura 6 Circuit de corrent altern rectificat amb un pont de díodes

una capsa negra, que rep un senyal d'entrada (V_a-V_b) i dóna un senyal rectificat (V_c-V_d) , connectada a la resistència R_C (Figura 7).

1.2.3 Estabilització d'una tensió no constant

Si a la sortida del pont de díodes es connecta un condensador en paral·lel, el procés de càrrega i descàrrega del condensador esmorteeix les oscil·lacions del corrent rectificat (Figura 8), de manera que es quasi continu al voltant d'un valor mitjà V_m (a la figura és la línia discontínua). Cal dir que si la capacitat del condensador és prou gran s'obté un senyal continu (a la figura és la línia contínua).

Si, com s'indica a la Figura 9, el condensador té prou capacitat perquè el senyal sigui continu i a més a més, s'hi introdueix un díode Zener de tensió V_Z , la tensió a la sortida (en aquest cas a la resistència R_C) serà V_Z si el valor mitjà $V_m \ge V_Z$.

1.2.4 Circuit limitador de tensió

A la Figura 2, on es mostra la corba característica d'un díode Zener, s'observa que quan el díode condueix en polarització inversa el voltatge es manté pràcticament constant $(V=-V_Z)$ per a qualsevol valor de la intensitat. Aquest comportament suggereix l'ús d'un díode Zener en un limitador de tensió, que és un circuit elèctric format per resistències i díodes especialment dissenyat per protegir un circuit extern de tensions que el podrien malmetre. Cal dir que en polarització directa la tensió no es manté tan constant pel valor $V=V_T$ com en polarització inversa.

L'esquema d'un circuit limitador de tensió és el que es mostra a la Figura 10a. Aquest circuit és equivalent al de la Figura 10b que correspon al circuit equivalent Thévenin entre *F* i *C* quan no hi ha el díode connectat en sèrie amb al díode

 ε_{Th} és la tensió $V_{FC} = V_F - V_C$ quan pel díode del circuit de la Figura 10a no circula corrent i $I = I_C = \varepsilon/(R + R_C)$. Aleshores $\varepsilon_{Th} = R_C \varepsilon/(R + R_C)$. Si

$$\varepsilon_{Th} = R_C \frac{\varepsilon}{R + R_C} \ge V_Z \quad \rightarrow \quad \varepsilon \ge \frac{R + R_C}{R_C} V_Z$$

pel díode passa corrent i el valor de ε a partir del qual el **díode comença a conduir** és:

$$\varepsilon_{\min Z} = \frac{R + R_C}{R_C} V_Z \qquad (1)$$

Un criteri bastant estès per mesurar V_Z consisteix en utilitzar el valor de V_{FC} per al qual $I_Z = 1$ mA (veure Figura 11).

La **potència dissipada per un díode** és el producte de V_{FC} per I_Z . Si el díode està en polarització inversa i condueix, $V_{FC} \approx V_Z$ i la potència és $P_Z = V_Z I_Z$.

Al circuit limitador de tensió de la Figura 10 es pot plantejar una equació de balanç energètic, en què la potència subministrada pel generador εI es dissipa a les resistències i al díode:

$$\varepsilon I = RI^2 + R_C I_C^2 + V_{EC} I_Z \qquad (2)$$

2 Exercicis previs

2.1 Corba característica d'un díode

A la figura 12 es mostra la corba característica d'un díode 1N4007, connectat en sèrie

amb una resistència de 100 Ω (veure figura 1), determinada amb un oscil·loscopi de doble canal en mode X-Y. A l'eix representa horitzontal es diferència de potencial al díode V_d i al vertical la de la resistència V_R és proporcional (que intensitat). L'origen s'ha situat al punt O. Si els coeficients de deflexió de l'eix horitzontal (canal I) i vertical (canal II) valen respectivament 0.2 V/div i 0.5 V/div, determineu el valor del potencial de contacte V_{γ} del díode, aplicant el criteri de que és el valor V_d pel que $V_R = 0.1$ V. Observeu que, com la resistència és de 100Ω , això equival a dir que la intensitat que circula pel circuit és de 1 mA.

Figura 12

2.2 Circuit limitador de tensió

Al circuit de la Figura 13, $R_1 = 100 \Omega$, $R_2 = R_3 = 200 \Omega$ i $R_4 = 50 \Omega$, i les tensions característiques del Zener són $V_Z = 6 \text{ V i } V_{\gamma} = 0.6 \text{ V}$.

- a) Quin és valor de ε_{minZ} a partir del qual el díode Zener comença a conduir?
- b) Determineu V_{FC} , I, I_C i I_Z per als valors de $\varepsilon = 10$ V i $\varepsilon = 20$ V. Comproveu que en cada cas la potència subministrada pel generador és igual a la dissipada al díode més la dissipada a les resistències.

Figura 13

c) Si $\varepsilon = 30$ V, quins dels valors de V_{FC} , I, I_C i I_Z canvien respecte al cas $\varepsilon = 20$ V?

3 Procediment de mesura

3.1 Corbes característiques dels díodes

3.1.1 Comproveu que en el lloc de treball teniu:

- 1 generador de funcions.
- 1 oscil·loscopi de doble canal.
- 1 díode 1N4007 i 1 díode Zener DZ6V2.
- 1 pont de díodes.
- 1 resistència de 100 Ω i 1 de1 k Ω .
- 1 condensador de 1 μF i un altre de 47 μF.

- 3 cables BNC-banana
- Cables de connexió.

3.1.2 Visualització amb l'oscil·loscopi de les corbes característiques:

1. Munteu el circuit de la figura 14 amb el díode 1N4007 i la resistència de 100 Ω . Connecteu un dels cables BNC-banana entre la sortida de 50 Ω del generador de funcions i la part p (o ànode) del díode (banana vermella) i la resistència (banana negra). Per mesurar la diferència de potencial del díode V_d al canal I de l'oscil·loscopi, connecteu un altre cable BNC-banana entre l'entrada del canal I i els extrems del díode, amb la banana vermella al ànode i la negra al càtode (o part n). Per determinar la caiguda de tensió a la resistència V_R al canal II, connecteu l'altre cable BNC-banana entre l'entrada del canal II i els extrems de

Figura 14

la resistència, de manera que la banana negra estigui connectada a l'extrem de la resistència que està més a prop del càtode. Observeu que els borns negres dels cables connectats a l'oscil·loscopi estan en contacte, però no ho estan amb el del generador. De fet, això últim no és cap problema, ja que en realitat el generador de funcions està connectat a la xarxa elèctrica amb un endoll sense connexió a terra.

- 2. Poseu en marxa el generador de funcions i l'oscil·loscopi. Comproveu que tots els botons de l'oscil·loscopi no estan pitjats i que els diferents controls del generador de funcions, com el DC OFFSET i el SYM, estan en posició OFF. Apliqueu al generador de funcions un senyal **triangular** de **50 Hz** i doneu una mica de tensió amb el comandament AMPLITUDE. Premeu el **botó X-Y** de l'oscil·loscopi, i poseu ambdós canals en la posició GD o GND. A la pantalla ha d'aparèixer un punt que cal centrar a l'origen de coordenades amb els comandaments X-POS i Y-POS II (o X-POSITION i POSITION 2). Un cop centrat el punt, poseu els dos canals de l'oscil·loscopi en **posició DC** i torneu a prémer els botons GD dels dos canals per desactivar-los. Situeu el coeficient de deflexió del **canal I en 0.2 V/div**, i el del **II en 0.5 V/div**. Premeu **el botó INV del canal II**. Modifiqueu l'amplitud de sortida del generador amb el comandament AMPLITUDE fins que a la pantalla aparegui la corba característica del díode (veure figura 1).
- 3. Determineu el valor del **potencial de contacte** V_{γ}^{oscil} , aplicant el criteri de que és el valor de V_d pel que $V_R = 0.1$ V. Observeu que, com la resistència és de 100Ω , això equival a dir que la intensitat és de 1 mA.
- 4. Substituïu el díode 1N4007 pel **Zener DZ6V2**. Per determinar el potencial de contacte llindar V_{γ}^{oscil} seguiu el procediment anterior.

5. Per determinar la tensió Zener V_Z^{oscil} poseu el coeficient de deflexió del **canal 1** en **2** V/div i el de l'altre en **0.5** V/div. Premeu els botons GD d'ambdós canals i moveu l'origen al centre de la pantalla de l'oscil·loscopi amb els botons X-POS i Y-POS II (o X-POSITION i POSITION 2). Torneu a prémer els botons GD dels dos canals per desactivar-los. Si cal, augmenteu l'amplitud de sortida del generador fins que observeu la conducció inversa indicada a la figura 2.

MOSTREU AL PROFESSOR ELS RESULTATS OBTINGUTS

3.2 Rectificació

3.2.1 Rectificació de mitja ona

1. Amb el díode 1N4007 i la resistència de 1 k Ω feu el muntatge descrit a la Figura 15.

És a dir, connecteu un dels cables BNCbanana entre la sortida de 50 Ω del generador de funcions i la part p (o ànode) del díode (banana vermella) i la resistència (banana negra). Com ara al canal I visualitzarem el senyal d'entrada, connectarem un altre cable BNC-banana entre l'entrada d'aquest canal i els dos punts anteriors amb la mateixa disposició de colors de les bananes (vermell amb vermell i negre amb negre). Per visualitzar al canal II la caiguda de tensió a la resistència V_R , connecteu l'altre cable BNC-banana entre l'entrada del canal II i els extrems de la resistència, de manera que la banana negra estigui connectada amb les altres dues bananes negres i la vermella amb les altres dues vermelles.

2. Apliqueu **un senyal sinusoïdal** de 500 Hz.

- 3. Comproveu que tots els botons de l'oscil·loscopi no estan pitjats. Premeu el botó DUAL (i en el model HM400 el XY deixarà d'estar il·luminat) i en el HM303-6 despremeu el botó X-Y. En aquesta situació el canal 1 ens mostra la tensió original (alterna) i l'altre la rectificada (els semiperíodes negatius queden suprimits).
- 4. Poseu ambdós canals en la posició GD (o GND). A la pantalla han d'aparèixer dues rectes horitzontals que cal centrar sobre l'eix de les x amb els comandaments Y-POS I i II (o POSITION 1 i 2).
- 5. Despremeu el botó GD (o GND) i poseu el canal 1 en AC i el 2 en DC.
- 6. Poseu la base de temps en 0.5 ms/div i situeu els coeficients de deflexió d'ambdós canals en 2 V/div. Si cal, reguleu el comandament AMPLITUDE del generador fins que el senyal de la pantalla sigui semblant al de la figura 4.

MOSTREU AL PROFESSOR LES CORBES OBTINGUDES

3.2.2 Rectificació d'ona completa

1. Amb el pont de díodes i la resistència de càrrega $R_C = 1 \text{ k}\Omega$ munteu el circuit que s'esquematitza a la figura 16. **No us oblideu de treure el cable que connecta el generador de senyals i el canal 1 de l'oscil·loscopi**. I poseu l'oscil·loscopi per visualitzar només el canal 2, per a la qual cosa en el HM303-6 cal prémer el botó CH I/II (i en el HM400 cal pitjar el botó CH 2 que hi ha just al costat de la pantalla perquè s'il·lumini).

Figura 16

- 2. Apliqueu un senyal sinusoïdal de 500 Hz.
- 3. Poseu el canal 2 en la posició DC i visualitzeu aquest canal. Ajusteu la base de temps a 0.5 ms/div i el coeficient de deflexió corresponent en 2 V/div.
- 4. Gireu convenientment el comandament AMPLITUDE del generador de funcions per tal de veure la tensió rectificada com la de la intensitat I(t) a la Figura 6.

3.2.3 Amortiment de les oscil·lacions del corrent rectificat

- 1. Connecteu un condensador de 1 μ F en paral·lel a la resistència. Heu d'observar un senyal semblant al de la Figura 8. Reguleu l'amplitud del senyal del generador per tal que el valor mitjà V_m del senyal sigui d'uns 2 V.
- 2. Repetiu el mateix amb un condensador de 47 μ F (amb el signe + al born vermell). Heu d'observar que el senyal és pràcticament continu.

MOSTREU AL PROFESSOR LA FIGURA OBTINGUDA

3. Respecte el muntatge anterior, i tal i com es mostra a la figura 9, afegiu el díode Zener en polarització inversa i la resistència $R = 100 \,\Omega$. La resistència de càrrega continua essent $R_C = 1 \,\mathrm{k}\Omega$. Observeu com arriba un moment en que per molt que s'augmenti la tensió d'entrada, a la sortida s'obté un senyal continu amb una tensió màxima igual a V_Z , ja que el díode Zener limita la tensió a aquest valor. Observeu també que si poseu el díode en polarització directa el valor del senyal a la sortida serà V_R . Visualitzeu el que passa si es substitueix el Zener pel díode d'unió 1N4007 en polarització directa i inversa. En aquest darrer cas veureu que el circuit no es comporta com un limitador de tensió.

3.3 Circuit limitador de tensió

3.3.1 Comproveu que en el lloc de treball teniu:

- 1 tauler de connexions.
- 1 font de tensió.
- 1 díode Zener.
- Resistències de valors nominals $R_1 = 100 \Omega$, $R_2 = R_3 = 200 \Omega$ i $R_4 = 50 \Omega$.
- 2 polímetres.
- 6 cables de connexió banana-banana.
- 1 joc de connectors en forma de pont

3.3.2 Comproveu del bon estat dels fils de connexió i de les resistències

- 1. Mesureu el valor real de totes les **resistències** connectant-les, com es mostra a la Figura 17, directament al polímetre funcionant com a **ohmímetre** (vegeu l'Apèndix B). En el model HM303-6 pitgeu el botó blau perquè a la pantalla aparegui AUTO.
- 2. Comproveu que tots els **cables de connexió** estan en bon estat. Per fer-ho mesureu la resistència de cada cable connectant un born a l'entrada COM i l'altre a la $V\Omega$. Si la resistència és mes gran que $1~\Omega$ o varia quan sacsegem el cable, aquest està en mal estat i cal canviar-lo.

Figura 17

3.3.3 Mesures

1. Amb les resistències i el díode Zener munteu en el tauler de connexions un circuit limitador de tensió com els de les Figures 13 i 18.

Figura 18

- 2. Com que mesurarem les intensitats que circulen per les diferents resistències convé que poseu ponts a fi de deixar espai per fer les connexions en sèrie amb l'amperímetre (vegeu l'Apèndix B).
- 3. Connecteu la font de tensió entre els punts A i B del circuit tenint en compte les **polaritats** a fi que el díode estigui en **polarització inversa**, és a dir amb el born positiu (vermell) de la font a $R_1 = 100 \Omega$, i el negatiu (negre) a $R_2 = 200 \Omega$.
- 4. Connecteu els dos polímetres a fi de mesurar simultàniament la intensitat que circula pel díode Zener i la tensió V_{FC} en mesures de corrent continu (vegeu l'Apèndix B). En el polímetre PROMAX que funcionarà com amperímetre poseu el selector a la

posició 400 mA, i en el METRIX a la de mA i pitjant el botó RANGE feu que a la pantalla es vegi l'escala amb només dos decimals.

- 5. Utilitzeu la fórmula (1) amb els valors $R = R_1 + R_2$ i $R_C = R_3 + R_4$, i el valor de V_Z mesurats a la primera part de la pràctica, per calcular el valor teòric de $\varepsilon_{\min Z}$ a partir del qual el díode Zener comença a conduir.
- 6. Mesureu la intensitat I_Z i la tensió del díode Zener V_{FC} per a valors de la fem de 5, 10, 15, 20 i 25 V. Observeu com el **díode condueix** per a valors de ε superiors al calculat a l'apartat anterior, i que quan condueix la tensió V_{FC} és manté pràcticament constant igual a V_Z . A mida que augmenteu el valor de la fem de la font, fixeu-vos per a quin valor concret de ε la intensitat I_Z mesurada amb l'amperímetre comença a ser diferent de zero ($\varepsilon_{\min Z}^{mesurada}$) i anoteu-la al full de pràctiques.
- 7. Varieu la fem de la font i mesureu el valor de V_{FC} per al qual $I_Z = 1$ mA. Aquest serà el valor de $V_Z^{(1 \text{ mA})}$. Compareu aquest valor amb el que heu mesurat anteriorment amb l'oscil·loscopi (V_Z^{oscil}).
- 8. Per al valor de la fem ε de 20 V mesureu els valors de V_{FC} , I, I_Z i I_C . Amb aquests valors comproveu que **la potència subministrada per la font és igual a la potència dissipada a les resistències** i al díode. Utilitzeu la fórmula 2 i tingueu en compte que $R = R_1 + R_2$ i $R_C = R_3 + R_4$. Compareu els valors mesurats amb els que heu calculat teòricament a l'exercici 2.2.

Díodes: Característiques i aplicacions Data: Grup: Cognoms: Lloc de treball (A1,B2,...): Nom: Qualificació:

1. Tensions característiques dels díodes:

Díode 1N4007:

 $V_{\gamma} =$

Díode Zener DZ6V2:

 $V_{z}^{oscil} =$

 $V_{\nu}^{oscil} =$

2. Rectificació

(Els espais buits a continuació són pel vist i plau del professor)

Rectificació de mitja ona				
Rectificació d'ona completa				
Amortiment de les oscil·lacions				

3. Circuit limitador de tensió en polarització inversa

Mesura del valor real de les resistències

$ \frac{R_2 (200 \Omega) =}{R_3 (200 \Omega) =} \\ R_C = R_3 + R_4 = \\ R_C = R_4 + R_5 + R_5 = \\ R_C = R_5 + R_5 + R_5 + R_5 = \\ R_C = R_5 + R_5 + R_5 + R_5 = \\ R_C = R_5 + R_5 +$	$R_1 (100 \Omega) =$	$R = R_1 + R_2 =$	
$R_{3} (200 \Omega) = R_{3} + R_{4} = R_{3} + R_{4} = R_{5} + R_{4} = R_{5} + R_{4} = R_{5} + R_{4} = R_{5} + R_{5$	$R_2 (200 \Omega) =$	$\Lambda - \Lambda_1 + \Lambda_2 -$	$c^{teorica} - \frac{R + R_C}{V^{oscil}} -$
	$R_3 (200 \Omega) =$	$D_{-} = D_{-} + D_{-} =$	R_C
	R_4 (50 Ω) =	RC = R3 + R4 =	

Mesures de tensió i intensitat

${\cal E}$	V_{FC}	I_Z
5 V		
10 V		
15 V		
20 V		
25 V		

$\mathcal{E}_{\min Z}^{mesurada}$	=
minZ	

Mesura de la tensió Zener: $V_Z^{(1\text{mA})} = V_{FC}(I_Z = 1 \text{ mA}) = V_Z^{oscil} = V_Z^{oscil}$

Balanc energètic

valors	ε	V_{FC}	I_Z	I_C	I	εI	$RI^2 + R_C I_C^2 + V_{FC} I_Z$
mesurats							
teòrics	20 V						