Практическое занятие 6. Автокорреляция. Критерий Дарбина-Уотсона

До сих пор предполагалось, что значение случайной составляющей \boldsymbol{u} в любом наблюдении определяется независимо от его значений во всех других наблюдениях. Другими словами, мы предполагали, что удовлетворено третье условие Гаусса-Маркова, то есть $cov(u_i,u_j)=0$ при $i\neq j$. Если же это условие не выполняется, то говорят, что имеет место asmokoppensuus.

В случае *автокорреляции* коэффициенты регрессии остаются несмещенными, но становятся неэффективными, и их стандартные ошибки оцениваются неправильно (вероятно, они смещаются вниз, т. е. занижаются).

Автокорреляция обычно встречается только в регрессионном анализе при использовании данных временных рядов. Случайная составляющая \boldsymbol{u} в уравнении регрессии подвергается воздействию тех переменных, влияющих на зависимую переменную, которые не включены в уравнение регрессии. Если значение \boldsymbol{u} в любом наблюдении должно быть независимым от его значения в предыдущем наблюдении, то и значение любой переменной, «скрытой» в \boldsymbol{u} , должно быть некоррелированным \boldsymbol{c} ее значением в предыдущем наблюдении.

Постоянная направленность воздействия не включенных в уравнение переменных является наиболее частой причиной *положительной автокорреляции* — ее обычного для экономического анализа типа. Предположим, что вы оцениваете уравнение спроса на мороженое по ежемесячным данным и что состояние погоды является единственным важным фактором, «скрытым» в *и*. Вероятно, у вас будет несколько последовательных наблюдений, когда теплая погода способствует увеличению спроса на мороженое и, таким образом, *и* положительно, и после этого — несколько последовательных наблюдений, когда ситуация складывается противоположным образом, после чего идет еще один ряд теплых месяцев и т. д.

Если доход постоянно возрастает со временем, схема наблюдений может быть такой, как показано на рис. 7.3. При обозначении объема продаж мороженого через y и дохода через x будет иметь место трендовая зависимость, отражающая рост объема продаж: $y = \alpha + \beta x$. Фактические наблюдения будут в основном сначала находиться выше линии регрессии, затем ниже ее и затем опять выше.

В экономике *отрицательная автокорреляция* встречается относительно редко. Но иногда она появляется при преобразовании первоначальной спецификации модели в форму, подходящую для регрессионного анализа. Мы встретим такой пример в разделе 10.2.

При рассмотрении автокорреляции мы будем предполагать, что имеем дело с данными временного ряда, и поэтому станем ссылаться на наблюдение t, а не i и обозначать размер выборки через T вместо n. Таким образом, базовая модель будет записана в виде:

$$y_t = \alpha + \beta x_t + u_t \tag{7.20}$$

Обнаружение автокорреляции первого порядка: критерий Дарбина—Уотсона

Начнем с частного случая, в котором автокорреляция подчиняется авторегрессионной схеме первого порядка:

$$u_t = \rho u_{t-1} + \varepsilon_t \tag{7.21}$$

Это означает, что величина случайной составляющей в любом наблюдении равна ее значению в предшествующем наблюдении (т.е. ее значению в период t-1), умноженному на ρ , плюс новый ϵ_t . Данная схема оказывается авторегрессионной, поскольку u определяется значениями этой же самой величины с запаздыванием, и схемой первого порядка, потому что в этом простом случае максимальное запаздывание равно единице. Предполагается, что значение ϵ в каждом наблюдении не зависит от его значений во всех других наблюдениях. Если ϵ положительно, то автокорреляция положительная; если ϵ отрицательно, то автокорреляция отрицательная. Если ϵ отрицательно, то автокорреляция отрицательная. Если ϵ отрицательно, то автокорреляция отрицательно.

Широко известная статистика Дарбина-Уотсона *(d)* определяется следующим образом

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2}$$

Можно показать (см. приложение 7.3), что в больших выборках

$$d \to 2 - 2\rho \quad (7.22)$$

Если автокорреляция отсутствует, то $\rho = 0$, и поэтому величина d должна быть близкой к двум. При наличии положительной автокорреляции величина d, вообще говоря, будет меньше двух; при отрицательной автокорреляции она, вообще говоря, будет превышать 2. Так как ρ должно находиться между значениями 1 и —1, то d должно лежать между 0 и 4.

Задание 6. Критерий Дарбина-Уотсона

Если третье условие Гаусса-Маркова (случайные составляющие в разных наблюдениях абсолютно независимы друг от друга) не выполняется, то говорят, что имеет место *автокорреляция*.

Один из наиболее распространенных методов определения автокорреляции – это расчет критерия Дарбина-Уотсона.

Статистика Дарбина-Уотсона (d) определяется следующим образом

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2}$$

Можно показать, что в больших выборках

$$d \to 2 - 2\rho \quad (7.22)$$

Критерий Дарбина-Уотсона d принимает значения от 0 до 4:

Если d=2, то автокорреляция отсутствует

Если d=0, то существует **положительная** автокорреляция

Если d=4, то существует отрицательная автокорреляция

T					D	Автокорреляция
1	-0,51			0,26		
2	-0,25	0,26	0,07	0,06		
3	-0,88	-0,63	0,40	0,77		
4	0,05	0,93	0,86	0,00		
5	-0,35	-0,40	0,16	0,12		
6	-2,19	-1,84	3,39	4,80		
7	1,03	3,22	10,37	1,06		
8	0,31	-0,72	0,52	0,10		
9	2,61	2,30	5,29	6,81		
10	-0,13	-2,74	7,51	0,02		

Сумма	28,56	14,00	2,04	Отсутствует
-------	-------	-------	------	-------------

Вычислить статистику Дарбина-Уотсона *(d)* для следующих данных. Провести анализ полученных результатов.

1-й вариант

T	e	
1	-0,51	
2	-0,25	
3	-0,88	
4	0,05	
5	-0,35	
6	-2,19	
7	1,03	
8	0,31	
9	2,61	
10	-0,13	

T	e	
1	-2,11	
2	-0,66	
3	-0,52	
4	-0,41	
5	-1,11	
6	1,56	
7	1,24	
8	0,74	
9	0,60	
10	1,37	

2-й вариант

T	e	
1	1,62	
2	-0,99	
3	-0,81	
4	-0,25	
5	1,69	
6	0,15	
7	0,07	
8	-0,15	
9	-0,91	
10	1,42	

T	e	
1	1,25	
2	1,46	
3	-0,35	
4	-1,45	
5	-1,35	
6	1,60	
7	0,91	
8	-0,07	
9	-1,81	
10	0,55	

T	e	
1	-0,61	
2	-0,34	

T	e	
1	-2,25	
2	-0,57	

3	-0,75	
4	0,11	
5	-0,54	
6	-2,32	
7	1,23	
8	0,35	
9	2,74	
10	-0,21	

3	-0,48	
4	-0,44	
5	-1,25	
6	1,46	
7	1,32	
8	0,84	
9	0,54	
10	1,73	

T	e	
1	1,55	
2	-0,84	
3	-0,88	
4	-0,24	
5	1,45	
6	0,21	
7	0,01	
8	-0,25	
9	-0,84	
10	1,58	

T	e	
1	1,28	
2	1,56	
3	-0,38	
4	-1,65	
5	-1,12	
6	1,84	
7	0,93	
8	-0,07	
9	-1,74	
10	0,64	

T	e	
1	-0,61	
2	-0,31	
3	-0,94	
4	0,02	
5	-0,35	
6	-2,24	
7	1,14	
8	0,35	

T	e	
1	-2,32	
2	-0,74	
3	-0,52	
4	-0,46	
5	-1,17	
6	1,65	
7	1,28	
8	0,78	

9	2,71	
10	-0,27	

9	0,72	
10	1,45	

T	e	
1	1,54	
2	-0,95	
3	-0,88	
4	-0,27	
5	1,66	
6	0,21	
7	0,03	
8	-0,17	
9	-0,98	
10	1,47	

T	e	
1	1,34	
2	1,67	
3	-0,33	
4	-1,42	
5	-1,31	
6	1,54	
7	0,95	
8	-0,04	
9	-1,32	
10	0,64	

T	e	
1	-0,74	
2	-0,35	
3	-0,97	
4	0,08	
5	-0,33	
6	-2,25	
7	1,41	
8	0,42	
9	2,77	
10	-0,29	

T	e	
1	-2,42	
2	-0,84	
3	-0,41	
4	-0,51	
5	-1,32	
6	1,45	
7	1,32	
8	0,85	
9	0,64	
10	1,35	

T	e	
1	1,45	
2	-0,85	
3	-0,95	
4	-0,35	
5	1,33	
6	0,34	
7	0,05	
8	-0,19	
9	-0,87	
10	1,35	

T	e	
1	1,41	
2	1,56	
3	-0,44	
4	-1,32	
5	-1,24	
6	1,62	
7	0,86	
8	-0,07	
9	-1,32	
10	0,43	

e	
-0,61	
-0,34	
-0,55	
0,11	
-0,54	
-2,32	
2,23	
0,35	
2,74	
-0,21	
	-0,61 -0,34 -0,55 0,11 -0,54 -2,32 2,23 0,35 2,74

T	e	
1	-2,25	
2	-0,57	
3	-0,98	
4	-0,44	
5	-1,25	
6	1,46	
7	1,32	
8	0,84	
9	0,54	
10	3,73	

T	e	
1	0,55	
2	-0,84	
3	-0,88	
4	-0,24	
5	2,45	
6	0,21	

T	e	
1	1,28	
2	1,56	
3	-0,88	
4	-1,65	
5	-1,12	
6	1,84	

7	0,01	
8	-0,25	
9	-0,84	
10	1,58	

7	0,93	
8	-0,07	
9	-1,74	
10	0,64	

T	e	
1	-0,61	
2	-0,31	
3	-0,94	
4	0,02	
5	-0,35	
6	-2,24	
7	1,14	
8	0,35	
9	2,71	
10	-0,27	

T	e	
1	-2,32	
2	-0,74	
3	-0,52	
4	-0,46	
5	-1,17	
6	1,65	
7	1,28	
8	0,78	
9	0,72	
10	1,45	

T	e	
1	1,54	
2	-0,95	
3	-0,88	
4	-0,27	
5	1,66	
6	0,21	
7	0,03	
8	-0,17	
9	-0,98	
10	1,47	

T	e	
1	1,34	
2	1,67	
3	-0,33	
4	-1,42	
5	-1,31	
6	1,54	
7	0,95	
8	-0,04	
9	-1,32	
10	0,64	

T	e	
1	1,62	
2	-0,99	
3	-0,81	
4	-0,25	
5	1,69	
6	0,15	
7	0,07	
8	-0,15	
9	-0,91	
10	1,42	

T	e
1	-2,32
2	-0,74
3	-0,52
4	-0,46
5	-1,17
6	1,65
7	1,28
8	0,78
9	0,72
10	1,45

14-й вариант

T	e	
1	-2,11	
2	-0,66	
3	-0,52	
4	-0,41	
5	-1,11	
6	1,56	
7	1,24	
8	0,74	
9	0,60	
10	1,37	

e
1,25
1,46
-0,35
-1,45
-1,35
1,60
0,91
-0,07
-1,81
0,55

T	e	
1	-2,42	
2	-0,84	
3	-0,41	

T	e
1	1,45
2	-0,85
3	-0,95

4	-0,51	
5	-1,32	
6	1,45	
7	1,32	
8	0,85	
9	0,64	
10	1,35	

4	-0,35
5	1,33
6	0,34
7	0,05
8	-0,19
9	-0,87
10	1,35

T	e	
1	-2,32	
2	-0,74	
3	-0,52	
4	-0,46	
5	-1,17	
6	1,65	
7	1,28	
8	0,78	
9	0,72	
10	1,45	

T	e
1	-0,61
2	-0,31
3	-0,94
4	0,02
5	-0,35
6	-2,24
7	1,14
8	0,35
9	2,71
10	-0,27

e	
1,41	
1,56	
-0,44	
-1,32	
-1,24	
1,62	
0,86	
-0,07	
-1,32	
0,43	
	1,41 1,56 -0,44 -1,32 -1,24 1,62 0,86 -0,07 -1,32

T	e
1	-0,74
2	-0,35
3	-0,97
4	0,08
5	-0,33
6	-2,25
7	1,41
8	0,42
9	2,77
10	-0,29

T	e	
1	-2,42	
2	-0,84	
3	-0,41	
4	-0,51	
5	-1,32	
6	1,45	
7	1,32	
8	0,85	
9	0,64	
10	1,35	

T	e
1	1,34
2	1,67
3	-0,33
4	-1,42
5	-1,31
6	1,54
7	0,95
8	-0,04
9	-1,32
10	0,64

19-й вариант

T	e	
1	1,28	
2	1,56	
3	-0,88	
4	-1,65	
5	-1,12	
6	1,84	
7	0,93	
8	-0,07	
9	-1,74	
10	0,64	

T	e	
1	-2,32	
2	-0,74	
3	-0,52	
4	-0,46	
5	-1,17	
6	1,65	
7	1,28	
8	0,78	
9	0,72	
10	1,45	

T	e	
1	1,54	
2	-0,95	

T	e
1	0,55
2	-0,84

3	-0,88	
4	-0,27	
5	1,66	
6	0,21	
7	0,03	
8	-0,17	
9	-0,98	
10	1,47	

3	-0,88
4	-0,24
5	2,45
6	0,21
7	0,01
8	-0,25
9	-0,84
10	1,58

T	e	
1	1,62	
2	-0,99	
3	-0,81	
4	-0,25	
5	1,69	
6	0,15	
7	0,07	
8	-0,15	
9	-0,91	
10	1,42	

T	e	
1	-2,32	
2	-0,74	
3	-0,52	
4	-0,46	
5	-1,17	
6	1,65	
7	1,28	
8	0,78	
9	0,72	
10	1,45	

T	e	
1	1,54	
2	-0,95	
3	-0,88	
4	-0,27	
5	1,66	
6	0,21	
7	0,03	
8	-0,17	
9	-0,98	

T	e
1	-2,11
2	-0,66
3	-0,52
4	-0,41
5	-1,11
6	1,56
7	1,24
8	0,74
9	0,60

10	1,47	
----	------	--

10	1,37
----	------

T	e	
1	-2,25	
2	-0,57	
3	-0,48	
4	-0,44	
5	-1,25	
6	1,46	
7	1,32	
8	0,84	
9	0,54	
10	1,73	

T	e
1	1,41
2	1,56
3	-0,44
4	-1,32
5	-1,24
6	1,62
7	0,86
8	-0,07
9	-1,32
10	0,43

T	e	
1	1,54	
2	-0,95	
3	-0,88	
4	-0,27	
5	1,66	
6	0,21	
7	0,03	
8	-0,17	
9	-0,98	
10	1,47	

T	e	
1	1,34	
2	1,67	
3	-0,33	
4	-1,42	
5	-1,31	
6	1,54	
7	0,95	
8	-0,04	
9	-1,32	
10	0,64	

$$e_t - e_{t-1}$$

$$(e_t - e_{t-1})^2$$

$$e_t^2$$