

Richkware

Framework per la creazione di malware per Windows

Obiettivo

Obiettivo

Creazione di una libreria, a scopo didattico, che permetta lo sviluppo di qualsiasi tipo di malware, in modo versatile e semplice.

Sistema operativo target

Sistema operativo target

Il progetto è stato sviluppato per il sistema operativo Microsoft Windows come obiettivo degli attacchi, questo per motivi di quantità di vulnerabilità solitamente presenti in questo sistema durante l'anno, che potrebbero essere sfruttate per ottenere maggiori funzionalità. Inoltre Microsoft Windows risulta essere il sistema operativo più diffuso attualmente, permettendo perciò al malware di raggiungere più persone possibili.

Architettura

Richkware

Cos'è

Libreria di funzioni, relative alla sicurezza del sistema operativo e delle reti, utilizzabili per la creazione di un applicativo malevolo(malware). La composizioni di tali funzioni, secondo diverse logiche permettono all'applicativo di poter assumere comportamenti associabili ai seguenti tipi di malware:

- Virus
- Worm
- Bot
- Spyware
- Keylogger
- Scareware

RMS - Richkware-Manager-Server

Cos'è

Servizio web per la gestione degli host, cioè le varie instanze di Richkware presenti. Memorizza in un database SQL tutte le informazioni relative al malware:

- Name: nome del dispositivo in cui è presente il malware
- **IP**: indirizzo IP da cui si connette il malware, questo dato è particolarmente utile perché fornisce dati sulla connessione utilizzata.
- Server Port: porta TCP aperta per permettere la connessione da remoto e per poter eseguire comandi o altre funzionalità sulla macchina infetta
- Last Connection: ultima data e ora in cui il malware ha contattato il server.
- Encryption Key: chiave di crittografia generata lato server, con cui il malware critterà dati e canali di comunicazione.

RMS - Richkware-Manager-Server

List of Devices

Name	IP	Server Port	Last Connection	Encryption Key		
k	192.168.99.1	none	2017.09.04.11.27.50	uMVBJDFaG8DPRGYA6F8cm7O8S4oTj3Lp	Edit	e
RICHK/Richk	192.168.99.1	6000	2017.09.05.13.27.44	AupMwD0fXbJC5hk1WzNlh3ClzmUjUaDA	Edit	e
у	192.168.99.1	none	2017.09.04.11.27.57	cOe7ABocPRDR7odxPdEHiy4VJe2JJhlP	Edit	е
yo	192.168.99.1	none	2017.09.04.11.28.01	yrTQfscJxv4s2dn7uxVAsSbwElqxW3D6	Edit	е
yop	192.168.99.1	none	2017.09.04.11.28.09	Mrbmall39psUHFsJ6tmuZnAuesPr2an5	Edit	e
yopo	192.168.99.1	none	2017.09.04.11.28.21	MqswVbe1idUoxy2RF0GFwnLLCDvh6BV6	Edit	e
yopoi	192.168.99.1	none	2017.09.04.11.28.26	oZgVGRCiZuHVWVA4xOPyQtQhglwb3a1O	Edit	e
yopoiji	192.168.99.1	none	2017.09.04.11.28.43	gmCMCxmFljaaCUqRWVyH1QsE3ugX4lLU	Edit	е
yopoijiji	192.168.99.1	none	2017.09.04.11.28.47	vGkQARMU0iNICDhN5NRWj1QXRimbfmw4	Edit Remov	re

RMC - Richkware-Manager-Client

Cos'è

Client di Richkware-Manager-Server, ottiene la lista di tutti gli host dal server e permette di inviare comandi da eseguire sulla macchina infetta mediante canale sicuro.

RMC - Richkware-Manager-Client

Crittografia

Utilizzata nella protezione dei **canali di comunicazione** tra Richkware, RMC e RMS, ma anche per la protezione dei **dati conservati** su file o voci di registro da parte di Richkware, infatti qualsiasi informazione salvata nel sistema dall'istanza di Richkware viene crittata.

Cryptography

Crittografia RMS - RMC

Fasi

- RMC genera la sua coppia di chiavi RSA
- RMC invia la sua chiave pubblica RSA a RMS
- RMS
 - genera la sua coppia di chiavi RSA e la chiave AES che verrà utilizzata per crittare i messaggi.
 - firma la chiave AES con la sua chiave privata
 - critta con la chiave pubblica di RMC il pacchetto formato dalla firma e il messaggio(Chiave AES)
 - invia a RMC il pacchetto formato da: chiave pubblica di RMS, e pacchetto crittato contenente la firma e messaggio.
- RMC decritta con la sua privata e verifica il contenuto con la chiave pubblica di RMS.
- RMC può utilizzare la chiave AES per decifrare i dati successivamente ricevuti

Crittografia RMS - RMC


```
GET /Richkware-Manager-Server/DevicesListAJAJ?
encryption=true&Kpub=3082012230.....03010001 HTTP/1.1
User-Agent: Java/1.8.0_91
Host: rms-richk.rhcloud.com
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive
```

Crittografia RMS - Richkware

Per la comunicazione tra Richkware e RMS, si utilizza l'algoritmo RC4, particolarmente veloce e performante. Al primo avvio Richkware utilizza una **chiave hardcoded** al suo interno, appositamente scelta dal creatore dell'istanza di Richkware, quindi presente anche sul server RMS, dopo di che, quando verrà stabilito il contatto tra Richkware e RMS, l'istanza otterrà la chiave di crittografia dal server e utilizzerà sempre quella, salvandola localmente in un file crittato, questo per rendere più sicuro il funzionamento ed evitare attacchi di tipo **disassembling** fatti all'eseguibile dell'istanza di Richkware.

Crittografia RMS - Richkware

Crittografia RMC - Richkware

Crittografia RMS - Richkware

Per la comunicazione tra Richkware e RMC, si utilizza l'algoritmo RC4. Vi è un protocollo di comunicazione alla base della comunicazione tra RMC e Richkware, la crittografia si applica ad ogni pacchetto scambiato nel protocollo, tranne che all'handshake iniziale, appunto per sapere se Richkware supporti o meno la crittografia. Se il canale è insicuro, quindi un utente malevolo volesse inserirsi nella comunicazione e cambiare il messaggio di handshake da canale crittografato a non crittografato, si può impedire tale attacco abilitando la modalità del client "Force Encryption" che permette al client di ignorare l'handshake e procedere con la crittografia in ogni caso. Per utilizzare questa modalita in RMC, il server in Richkware deve aver abilitato la crittografia.

Crittografia RMC - Richkware

Protocollo di comunicazione RMC - Richkware

Protocollo di comunicazione

Il protocollo permette all'utilizzatore di RMC di poter interagire con la macchina dov'è installata l'istanza di Richkware.

Le richieste ricevute dal server in Richkware, presente nella classe Server vengono mandate ad un Dispatcher, che smista la richiesta in base a un certo codice, esegue la richiesta e ritorna la risposta, in modo che il server possa comunicarla al client connesso. Il dispatcher è implementato nel seguente modo:


```
... rimozione delimitatori
switch (commandID) {
        case 0:
                response = "***quit***";
                break:
        case 1:
                response = CodeExecution(command);
                break;
        case 2:
                //...
                break;
        default:
                response = "error: Command ID not found\n";
}
```

Sintassi di una richiesta

La sintassi di una richiesta è la seguente:

[[1]]Is

Il comando precedente, avendo il parametro 1, significa che si richiede l'esecuzione della stringa che segue come un comando da shell, quindi "ls", verrà eseguito dalla shell di Windows e la risposta, cioè quello che verrebbe stampato sulla shell in seguito a quella richiesta viene mandato al client.

Fine

Grazie per l'attenzione

