Московский физико-технический институт (государственный университет)

На правах рукописи УДК 519.254

Исаченко Роман Владимирович

Выбор модели декодирования сигналов в пространствах высокой размерности

05.13.17 — Теоретические основы информатики

Диссертация на соискание ученой степени кандидата физико-математических наук

Научный руководитель: д.ф.-м.н. В. В. Стрижов

Оглавление

\mathbf{C}'	Tp.
Введение	4
Глава 1. Постановка задачи декодирования	6
1.1. Основные определения	6
1.2. Задача восстановления регрессии	6
1.2.1. Задача декодирования	7
1.2.2. Метод Главных Компонент (РСА)	9
1.2.3. PLS	9
1.2.4. CCA	10
1.2.5. Deep CCA	11
1.3. Метод проекции в скрытое пространство	12
1.4. Вычислительный эксперимент	17
Глава 2. Выбор признаков	20
2.1. Выбор признаков с помощью квадратичного программирования	22
2.2. Многоиндексный метод выбора признаков	24
2.2.1. Агрегация релевантностей целевых переменных	24
2.2.2. Симметричный учёт значимости признаков и целевых переменных	25
2.2.3. Минимаксная постановка задачи выбора признаков	27
2.2.4. Несимметричный учёт значимостей признаков и целевых переменных	29
2.3. Вычислительный эксперимент	32
Глава 3. Выбор параметров нелинейных моделей	38
3.1. Выбор параметров для обучения моделей	38
3.2. Метод Ньютона решения задачи настройки параметров	39
3.3. Метод Ньютона с выбором параметром с помощью квадратичного	
программирования	42

3.4. Вычислительный эксперимент	44
Глава 4. Метрические методы	48
4.1. Метрическое обучение в задачах кластеризации временных рядов	48
4.2. Алгоритм адаптивного метрического обучения	49
4.3. Постановка задачи	52
4.3.1. Выравнивание временных рядов	53
4.3.2. Метрическое обучение	55
4.3.3. Классификация временных рядов	56
4.4. Вычислительный эксперимент	57
4.5. Вычислительный эксперимент	58
Глава 5. Порождение признаков с помощью метамоделей	65
5.1. Постановка задачи	65
5.2. Порождение признаков	66
5.3. Классификация временных рядов	69
5.4. Вычислительный эксперимент	71
Глава 6. Анализ прикладных задач	77
Ввеление	78

Введение

Диссертационная работа посвящена построению математических моделей машинного обучения в пространствах высокой размерности. Разработанные методы позволяют учесть зависимости, имеющиеся в исходных данных, с целью построения простой и устройчивой модели.

Актуальность темы.

В работе исследуется задача декодирования сигналов. При построении машинного обучения возникает необходимость построения низкоразмерного признакого пространства. Требуется по входному исходному сигналу предсказать отклик на этот сигнал.

Сложностью задачи является избыточность исходного описания данных. Исходное признаковое пространство является мультикоррелированным. Финальная предсказательная модель оказывается неустойчивой. Для построения простой, устойчивой модели применяются методы снижения размерности пространства [1, 2] и выбора признаков [3, 4].

В работе рассматриваются задачи с векторной целевой переменной. При предсказании векторной целевой переменной возникает необходимости в анализе структуры целевого пространства. Целевое пространство содержит зависимости. В работе предлагаются методы, которые позволяют учесть зависимости как в исходном пространстве объектов, так и в пространстве целевой переменной.

параграф про снижение размерности параграф про выбор признаков параграф про метрическое обучение

Цели работы.

Задачи работы.

Основные положения, выносимые на защиту.

1. Метод снижения размерности пространства, отображающий независимую

и целевую переменные в единое скрытое низкоразмерное представление.

2. Методы выбора признаков для задач с многомерной целевой переменной,

учитывающие структуры пространств.

3. Алгоритм выбора наиболее влиятельных параметров для оптимизации

нелинейной модели.

4. Алгоритм метрического обучения для временных рядов с процедурой их

выравнивания.

5. Программный комплекс, включающий прогностические модели для вы-

сокоразмерных данных. Проведены вычислительные эксперименты, под-

тверждающие адекватность методов.

Методы исследования.

Научная новизна.

Теоретическая значимость.

Практическая значимость.

Степень достоверности и апробация работы.

Публикации по теме диссертации.

Структура и объем работы.

Личный вклад. Все приведенные результаты, кроме отдельно оговорен-

ных случаев, по- лучены диссертантом лично при научном руководстве д.ф.-

м.н. В. В. Стрижова.

Краткое содержание работы по главам.

Глава 1

Постановка задачи декодирования

1.1. Основные определения

Задача декодирования формулируется следующим образом. Требуется найти зависимость между двумя наборами данных **X** и **Y**. Предполагается, что данные имеют высокую избыточную размерность. Модель машинного обучения, построенная на таких данных, оказывается неустойчивой. Зависимости в данных могут быть как линейными, так и существенно нелинейными.

Формализуем описанную задачу.

Определение 1. Назовём примером пару (\mathbf{x}, \mathbf{y}) , состоящую из объекта $\mathbf{x} \in \mathbb{R}^n$ и ответа $\mathbf{y} \in \mathbb{R}^r$. В случае задачи построения прогностической регрессионной модели \mathbf{x} является независимой переменной, \mathbf{y} – целевой переменной. При r=1 имеем стандартную постановку задачи линейной регрессии.

Определение 2. Выборкой $\mathcal{D} = (\mathbf{X}, \mathbf{Y})$ будем называть заданное множество примеров $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$. Здесь $\mathbf{X} \in \mathbb{R}^{m \times n}$ – матрица объектов, $\mathbf{Y} \in \mathbb{R}^{n \times k}$ – матрица ответов:

$$\mathbf{X} = \left[\mathbf{x}_1, \dots, \mathbf{x}_m \right]^{^{\mathsf{T}}} = \left[oldsymbol{\chi}_1, \dots, oldsymbol{\chi}_n
ight]; \quad \mathbf{Y} = \left[\mathbf{y}_1, \dots, \mathbf{y}_m
ight]^{^{\mathsf{T}}} = \left[oldsymbol{
u}_1, \dots, oldsymbol{
u}_r
ight].$$

Столбцы $\chi_j, j=1,\dots,n$ матрицы ${\bf X}$ являются признаками объекта, столбцы ${m
u}_j, j=1,\dots,r$ матрицы ${\bf Y}$ являются целевыми столбцами.

Рассмотрим постановку задачи многомерной линейной регрессии.

1.2. Задача восстановления регрессии

Предполагается, что между объектами ${\bf x}$ и ответами ${\bf y}$ существует зависимость

$$\mathbf{y} = f(\mathbf{x}, \mathbf{\Theta}) + \boldsymbol{\varepsilon},\tag{1.1}$$

где $f: \mathbb{R}^m \to \mathbb{R}^r$ — параметрическая функция регрессионной зависимости, $\pmb{\varepsilon}$ — вектор регрессивных остатков. Необходимо восстановить зависимость f по заданной наблюдаемой выборке \mathcal{D} .

Предположим, что зависимость $f(\mathbf{x}, \mathbf{\Theta})$ линейная:

$$\mathbf{y} = f(\mathbf{x}, \mathbf{\Theta}) + \boldsymbol{\varepsilon} = \mathbf{\Theta}\mathbf{x} + \boldsymbol{\varepsilon},$$
 (1.2)

где $\mathbf{\Theta} \in \mathbb{R}^{r \times n}$ — матрица параметров модели.

Необходимо найти матрицу параметров модели Θ при известном наборе данных (\mathbf{X},\mathbf{Y}) . Оптимальные параметры Θ определяются минимизацией функции ошибки. Примером такой функции является квадратичная функция потерь:

$$\mathcal{L}(\mathbf{\Theta}, \mathbf{X}, \mathbf{Y}) = \left\| \mathbf{Y}_{m \times r} - \mathbf{X}_{m \times n} \cdot \mathbf{\Theta}^{\mathsf{T}} \right\|_{2}^{2} \to \min_{\mathbf{\Theta}}.$$
 (1.3)

Решением (1.3) является следующая матрица:

$$\boldsymbol{\Theta} = \mathbf{Y}^{\mathsf{T}} \mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1}.$$

Наличие линейной зависимости между столбцами матрицы \mathbf{X} приводит к неустойчивому решению задачи оптимизации (1.3). Если существует вектор $\boldsymbol{\alpha} \neq \mathbf{0}_n$ такой, что $\mathbf{X}\boldsymbol{\alpha} = \mathbf{0}_m$, то добавление $\boldsymbol{\alpha}$ к любому столбцу матрицы $\boldsymbol{\Theta}$ не меняет значение функции потерь $\mathcal{L}(\boldsymbol{\Theta},\mathbf{X},\mathbf{Y})$. В этом случае матрица $\mathbf{X}^\mathsf{T}\mathbf{X}$ близка к сингулярной и не обратима. Чтобы избежать сильной линейной зависимости между признаками, используются методы снижения размерности и выбора признаков.

1.2.1. Задача декодирования

Для борьбы с линейной зависимостью используются методы снижения размерности, путем перехода в низкоразмерное латентное пространство.

Определение 3. Функция $\varphi_1: \mathbb{R}^m \to \mathbb{R}^p$, переводящая исходных данных в латентное пространство, называется функций кодирования.

Определение 4. Функция $\varphi_2 : \mathbb{R}^k \to \mathbb{R}^p$, переводящая данные из латентного пространства в исходное, называется функций декодирования.

Определение 5. Функция $g: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, связывающая два низкоразмерных латентных представления, называется функций согласования.

Общая схема модели выглядит следующим образом:

где $\varphi_1: \mathbb{R}^m \to \mathbb{R}^p$ — функция кодирования объектов; $\psi_1: \mathbb{R}^k \to \mathbb{R}^p$ — функция кодирования ответов; $\varphi_2: \mathbb{R}^p \to \mathbb{R}^m$ — функция декодирования объектов; $\psi_2: \mathbb{R}^p \to \mathbb{R}^k$ — функция декодирования ответов; $\mathbf{T} = [\varphi_1(\mathbf{x}_1), \cdots, \varphi_1(\mathbf{x}_n)]^\mathsf{T} \in \mathbb{R}^{n \times p}$ и $\mathbf{U} = [\psi_1(\mathbf{y}_1), \cdots, \psi_1(\mathbf{y}_n)]^\mathsf{T} \in \mathbb{R}^{n \times p}$ — матрицы представлений данных в латентном пространстве низкой размерности; $g: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ — функция согласования.

Оптимальные параметры $\theta_{\varphi_1}^*, \theta_{\psi_1}^*$ для функций кодирования φ_1 и ψ_1 находятся из следующей задачи параметрической оптимизации:

$$(\theta_{\varphi_1}^*, \theta_{\psi_1}^*) = \underset{(\theta_{\varphi_1}, \theta_{\psi_1})}{\operatorname{arg\,max}} [g(\varphi_1(\mathbf{X}; \theta_{\varphi_1}), \psi_1(\mathbf{Y}; \theta_{\psi_1})))]. \tag{1.5}$$

Так как параметры функции кодирования подбирались из условия максимизации функции согласования (1.5), то после перехода в латентное пространство между ${\bf T}$ и ${\bf U}$ существует зависимость

$$\mathbf{U} = h(\mathbf{T}) + \boldsymbol{\eta},\tag{1.6}$$

где $h: \mathbb{R}^{n \times p} \to \mathbb{R}^{n \times p}$ – функция регрессионной зависимости, η – матрица регрессивных ошибок.

Оптимальная h находится минимизацией функции ошибки. Используем квадратичную функцию ошибки потерь $\mathcal L$ на $\mathbf T$ и $\mathbf U$:

$$\mathcal{L}(h|\mathbf{T}, \mathbf{U}) = \left\| \mathbf{U}_{n \times p} - h(\mathbf{T}_{m \times p}) \right\|_{2}^{2} \to \min_{h}.$$
 (1.7)

Финальная прогностическая модель имеет вид: $\hat{\mathbf{y}} = \psi_2(h(\varphi_1(\mathbf{x})))$, то есть

$$f = \psi_2 \circ h \circ \varphi_1 \tag{1.8}$$

1.2.2. Метод Главных Компонент (РСА)

PCA – способ уменьшения размерности данных, сохраняющий максимальную дисперсию. PCA представляет собой ортогональное линейное преобразование исходного признакового пространства в новое пространство меньшей размерности. Первый базисный вектор строится так, чтобы выборочная дисперсия данных вдоль него была максимальной:

$$\mathbf{p}_1 = \underset{\|\mathbf{p}\|_2=1}{\arg\max}[var(\mathbf{X}\mathbf{p})], \tag{1.9}$$

где $var(\mathbf{X}\mathbf{p}) = \frac{1}{n}(\mathbf{X}\mathbf{p})^{\mathsf{T}}\mathbf{X}\mathbf{p}$ обозначает выборочную дисперсию.

Функция кодирования $\varphi_1: \mathbb{R}^m \to \mathbb{R}^p$ примет вид:

$$\varphi_1(\mathbf{x}) = \mathbf{P}^{\mathsf{T}} \mathbf{x},\tag{1.10}$$

где $\mathbf{P} = [\mathbf{p}_1, \dots, \mathbf{p}_p].$

PCA не согласует объекты и ответы. Из-за этого некоторые зависимости могут быть не учтены.

1.2.3. PLS

PLS - алгоритм для моделирования связи между двумя наборами данных ${\bf X}$ и ${\bf Y}$. Алгоритм проецирует ${\bf X}$ и ${\bf Y}$ на латентное пространство \mathbb{R}^p меньшей

размерности. PLS находит матрицы исходных данных ${\bf X}$ и ${\bf Y}$ в латентном пространстве ${\bf T}$ и ${\bf U}$ соответственно.

Матрица объектов \mathbf{X} и целевая матрица \mathbf{Y} проецируются на латентное пространство следующим образом:

$$\mathbf{X}_{n \times m} = \mathbf{T}_{n \times p} \cdot \mathbf{P}^{\mathsf{T}}_{p \times m} + \mathbf{F}_{n \times m},\tag{1.11}$$

$$\mathbf{Y}_{n \times k} = \mathbf{U}_{n \times p} \cdot \mathbf{Q}^{\mathsf{T}} + \mathbf{E}_{n \times k}, \tag{1.12}$$

где ${\bf T}$ и ${\bf U}$ - матрицы описания объектов и исходов в латентном пространстве; ${\bf P}$ и ${\bf Q}$ - матрицы перехода из латентного пространства в исходное; ${\bf F}$, ${\bf E}$ - матрицы остатков.

Для PLS функции кодирования имеют вид:

$$\varphi_1(\mathbf{x}) = \mathbf{W}_{\mathbf{x}}^{\mathsf{T}} \mathbf{x}, \quad \psi_1(\mathbf{Y}) = \mathbf{W}_{\mathbf{v}}^{\mathsf{T}} \mathbf{y},$$
 (1.13)

где матрицы весов $\mathbf{W}_{\mathbf{x}} \in \mathbb{R}^{m \times p}, \mathbf{W}_{\mathbf{y}} \in \mathbb{R}^{k \times p}$. Столбцы матриц весов $\mathbf{w}_{\mathbf{x}}^*$ и $\mathbf{w}_{\mathbf{y}}^*$ находятся путем максимизации функции согласования $g(\mathbf{X}\mathbf{w}_{\mathbf{x}}, \mathbf{Y}\mathbf{w}_{\mathbf{y}}) = cov(\mathbf{X}\mathbf{w}_{\mathbf{x}}, \mathbf{Y}\mathbf{w}_{\mathbf{y}})^2$:

$$(\mathbf{w}_{\mathbf{x}}^*, \mathbf{w}_{\mathbf{y}}^*) = \underset{\|\mathbf{w}_{\mathbf{y}}\|_2 = \|\mathbf{w}_{\mathbf{y}}\|_2 = 1}{\arg \max} [cov(\mathbf{X}\mathbf{w}_{\mathbf{x}}, \mathbf{Y}\mathbf{w}_{\mathbf{y}})^2]$$
(1.14)

где $cov(\mathbf{X}\mathbf{w_x}, \mathbf{Y}\mathbf{w_y})$ – выборочная ковариация между векторами.

Функции декодирования принимают следующий вид:

$$\varphi_2(\mathbf{t}) = \mathbf{Pt}, \ \psi_2(\mathbf{u}) = \mathbf{Qu}.$$
 (1.15)

1.2.4. CCA

Канонический корреляционный анализ (ССА) находит два набора базисных векторов $\{\mathbf{w}_{\mathbf{x}_i}\}_{i=1}^p,\ \mathbf{w}_{\mathbf{x}}\in\mathbb{R}^m$ и $\{\mathbf{w}_{\mathbf{y}_i}\}_{i=1}^p,\ \mathbf{w}_{\mathbf{y}}\in\mathbb{R}^k$, один для \mathbf{X} и другой для \mathbf{Y} , так что коэффициент корреляция между проекциями переменных на эти

базисные векторы была максимальной. Функция согласования для ССА

$$g(\mathbf{X}\mathbf{w}_{\mathbf{x}}, \mathbf{Y}\mathbf{w}_{\mathbf{y}}) = corr(\mathbf{X}\mathbf{w}_{\mathbf{x}}, \mathbf{Y}\mathbf{w}_{\mathbf{y}}), \tag{1.16}$$

где $corr(\mathbf{X}\mathbf{w_x}, \mathbf{Y}\mathbf{w_y})$ – коэффициент корреляции между векторами.

Таким образом, функии кодирования

$$\varphi_1(\mathbf{x}) = \mathbf{W}_{\mathbf{x}}^{\mathsf{T}} \mathbf{x}, \quad \psi_1(\mathbf{Y}) = \mathbf{W}_{\mathbf{y}}^{\mathsf{T}} \mathbf{y},$$
 (1.17)

где первые столбцы матриц весов находится, как вектора максимизирующие функцию согласования g. Далее ищутся вектора, максимизирующие g, но с ограничением, что они не коррелируют с первой парой векторов. Процедура продолжается до тех пор, пока количество векторов не станет равным p.

1.2.5. Deep CCA

Deep CCA — нелинейной модификация CCA. DCCA преобразует исходные данные с помощью многослойной нейронной сети таким образом, что результирующее представление становится согласованным. Предполагается, что есть d слоев нейроной сети.

Выходом первого слоя для экземпляра \mathbf{x} будет $\mathbf{h}_1 = s(\mathbf{W}_{\mathbf{x}}^1\mathbf{x} + \mathbf{b}_{\mathbf{x}}^1) \in \mathbb{R}^{c_1}$, где $\mathbf{W}_{\mathbf{x}}^1 \in \mathbb{R}^{c_1 \times m}$ – матрица весов, $\mathbf{b}_x^1 \in \mathbb{R}^{c_1}$ – вектор смещения, $s: \mathbb{R} \to \mathbb{R}$ – нелинейная функция, которая действует покомпонентно. Далее выход первого слоя используется для вычисления выхода второго слоя $\mathbf{h}_2 = s(\mathbf{W}_{\mathbf{x}}^2\mathbf{h}_1 + \mathbf{b}_{\mathbf{x}}^2) \in \mathbb{R}^{c_2}$ и так далее до тех пор пока не будет найдено конечное представление $\varphi_1(\mathbf{x}) = s(\mathbf{W}_{\mathbf{x}}^d\mathbf{h}_{d-1} + \mathbf{b}_{\mathbf{x}}^d) \in \mathbb{R}^p$. Аналогично находится представление для \mathbf{y} : $\psi_1(\mathbf{y}) = s(\mathbf{W}_{\mathbf{y}}^d\mathbf{h}_{d-1} + \mathbf{b}_{\mathbf{y}}^d) \in \mathbb{R}^p$.

Обозначим $\theta_{\mathbf{x}}$, $\theta_{\mathbf{y}}$ — параметры для функций кодирования, то есть матрицы весов и векторы смещений. Оптимальные параметры $\theta_{\mathbf{x}}^*$, $\theta_{\mathbf{y}}^*$ находятся из задачи оптимизации:

$$(\theta_{\mathbf{x}}^*, \theta_{\mathbf{y}}^*) = \underset{(\theta_{\mathbf{x}}, \theta_{\mathbf{y}})}{\operatorname{arg max}} [g(\varphi_1(\mathbf{X}; \theta_{\mathbf{x}}), \psi_1(\mathbf{Y}; \theta_2))] = \underset{(\theta_{\mathbf{x}}, \theta_{\mathbf{y}})}{\operatorname{arg max}} [corr(\varphi_1(\mathbf{X}; \theta_{\mathbf{x}}), \psi_1(\mathbf{Y}; \theta_2))].$$

$$(1.18)$$

1.3. Метод проекции в скрытое пространство

Для устранения линейной зависимости и снижения размерности входного пространства объектов широко используется метод главных компонент (PCA). Метод PCA находит низкоразмерное представление матрицы $\mathbf{X} = \mathbf{TP}^\mathsf{T}$, такое что новое представление $\mathbf{T} \in \mathbb{R}^{m \times l}$ содержит максимальную долю дисперсии исходной матрицы. Основным недостатком метода PCA является отсутствие учёта взаимосвязи между признаками χ_j и целевыми векторами ν_j . Алгоритм частичных наименьших квадратов проецирует матрицу плана \mathbf{X} и целевую матрицу \mathbf{Y} в скрытое пространство малой размерностью l (l < n). Алгоритм PLS находит в скрытом пространстве матрицы $\mathbf{T}, \mathbf{U} \in \mathbb{R}^{m \times l}$, которые лучше всего описывают оригинальные матрицы \mathbf{X} и \mathbf{Y} . При этом PLS максимизирует взаимосвязь между \mathbf{T} и \mathbf{U} .

Матрица плана ${\bf X}$ и целевая матрица ${\bf Y}$ проецируются в скрытое пространство следующим образом:

$$\mathbf{X}_{m \times n} = \mathbf{T}_{m \times l} \cdot \mathbf{P}^{\mathsf{T}}_{l \times n} + \mathbf{F}_{m \times n} = \sum_{k=1}^{l} \mathbf{t}_{k} \cdot \mathbf{p}_{k}^{\mathsf{T}} + \mathbf{F}_{m \times n}, \tag{1.19}$$

$$\mathbf{Y}_{m \times r} = \mathbf{U}_{m \times l} \cdot \mathbf{Q}_{l \times r}^{\mathsf{T}} + \mathbf{E}_{m \times r} = \sum_{k=1}^{l} \mathbf{u}_{k} \cdot \mathbf{q}_{k}^{\mathsf{T}} + \mathbf{E}_{m \times r}.$$
 (1.20)

Здесь ${\bf T}$ и ${\bf U}$ – образы исходных матриц в скрытом пространстве, причём столбцы матрицы ${\bf T}$ ортогональны; ${\bf P}$ и ${\bf Q}$ – матрицы перехода; ${\bf E}$ и ${\bf F}$ – матрицы остатков. Алгоритм PLS максимизирует линейную зависимость между столбцами матриц ${\bf T}$ и ${\bf U}$

$$\mathbf{U} \approx \mathbf{TB}, \quad \mathbf{B} = \operatorname{diag}(\beta_k), \quad \beta_k = \mathbf{u}_k^{\mathsf{T}} \mathbf{t}_k / (\mathbf{t}_k^{\mathsf{T}} \mathbf{t}_k).$$

Псевдокод метода регрессии PLS приведен в алгоритме 1. Алгоритм итеративно на каждом из l шагов вычисляет по одному столбцу \mathbf{t}_k , \mathbf{u}_k , \mathbf{p}_k , \mathbf{q}_k матриц \mathbf{T} , \mathbf{U} , \mathbf{P} , \mathbf{Q} соответственно. После вычисления следующего набора векторов из матриц \mathbf{X} , \mathbf{Y} вычитаются очередные одноранговые аппроксимации. При этом

предполагается, что исходные матрицы ${\bf X}$ и ${\bf Y}$ нормированы (имеют нулевое среднее и единичное среднее отклонение).

Algorithm 1 Алгоритм PLS

 \mathbf{B} ход: $\mathbf{X}, \mathbf{Y}, l;$

Выход: T, P, Q;

- 1: нормировать матрицы ${f X}$ и ${f Y}$ по столбцам
- 2: инициализировать ${\bf u}_0$ (первый столбец матрицы ${\bf Y}$)

3:
$$X_1 = X; Y_1 = Y$$

4: для
$$k = 1, \dots, l$$

5: ПОВТОРЯТЬ

6:
$$\mathbf{w}_k := \mathbf{X}_k^{\mathsf{T}} \mathbf{u}_{k-1} / (\mathbf{u}_{k-1}^{\mathsf{T}} \mathbf{u}_{k-1}); \quad \mathbf{w}_k := \frac{\mathbf{w}_k}{\|\mathbf{w}_k\|}$$

7:
$$\mathbf{t}_k := \mathbf{X}_k \mathbf{w}_k$$

8:
$$\mathbf{c}_k := \mathbf{Y}_k^{\mathsf{T}} \mathbf{t}_k / (\mathbf{t}_k^{\mathsf{T}} \mathbf{t}_k); \quad \mathbf{c}_k := \frac{\mathbf{c}_k}{\|\mathbf{c}_k\|}$$

9:
$$\mathbf{u}_k := \mathbf{Y}_k \mathbf{c}_k$$

10: пока \mathbf{t}_k не стабилизируется

11:
$$\mathbf{p}_k := \mathbf{X}_k^{\mathsf{T}} \mathbf{t}_k / (\mathbf{t}_k^{\mathsf{T}} \mathbf{t}_k), \, \mathbf{q}_k := \mathbf{Y}_k^{\mathsf{T}} \mathbf{t}_k / (\mathbf{t}_k^{\mathsf{T}} \mathbf{t}_k)$$

12:
$$\mathbf{X}_{k+1} := \mathbf{X}_k - \mathbf{t}_k \mathbf{p}_k^{\mathsf{T}}$$

13:
$$\mathbf{Y}_{k+1} := \mathbf{Y}_k - \mathbf{t}_k \mathbf{q}_k^{\mathsf{T}}$$

Вектора \mathbf{t}_k и \mathbf{u}_k из внутреннего цикла алгоритма 1 содержат информацию о матрице объектов \mathbf{X} и матрице ответов \mathbf{Y} соответственно. Блоки из шагов (6)-(7) и шагов (8)-(9) — аналоги алгоритма РСА для матриц \mathbf{X} и \mathbf{Y} [5]. Последовательное выполнение блоков позволяет учесть взаимную связь между матрицами \mathbf{X} и \mathbf{Y} .

Теоретическое обоснование алгоритма PLS следует из следующих утверждений.

Утверждение 1. Максимизации ковариации между векторами \mathbf{t}_k и \mathbf{u}_k сохраняет дисперсию матриц \mathbf{X} и \mathbf{Y} и учитывает их линейную зависимость.

Доказательство. Утверждение следует из равенства

$$cov(\mathbf{t}_k, \mathbf{u}_k) = corr(\mathbf{t}_k, \mathbf{u}_k) \cdot \sqrt{var(\mathbf{t}_k)} \cdot \sqrt{var(\mathbf{u}_k)}.$$

Максимизация дисперсий векторов \mathbf{t}_k и \mathbf{u}_k отвечает за сохранение информации об исходных матрицах, корреляция между векторами отвечает взаимосвязи между \mathbf{X} и \mathbf{Y} .

Во внутреннем цикле алгоритма вычисляются нормированные вектора весов \mathbf{w}_k и \mathbf{c}_k . Из данных векторов строятся матрицы весов \mathbf{W} и \mathbf{C} соответственно. Утверждение 2. В результате выполнения внутреннего цикла вектора \mathbf{w}_k и \mathbf{c}_k будут собственными векторами матриц $\mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k \mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k$ и $\mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k \mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k$, соответствующими максимальным собственным значениям.

$$\mathbf{w}_k \propto \mathbf{X}_k^{\mathsf{T}} \mathbf{u}_{k-1} \propto \mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k \mathbf{c}_{k-1} \propto \mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k \mathbf{Y}_k^{\mathsf{T}} \mathbf{t}_{k-1} \propto \mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k \mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k \mathbf{w}_{k-1},$$
 $\mathbf{c}_k \propto \mathbf{Y}_k^{\mathsf{T}} \mathbf{t}_k \propto \mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k \mathbf{w}_k \propto \mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k \mathbf{X}_k^{\mathsf{T}} \mathbf{u}_{k-1} \propto \mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k \mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k \mathbf{c}_{k-1},$

где символ \propto означает равенство с точностью до мультипликативной константы.

Доказательство. Утверждение следует из того факта, что правила обновления векторов \mathbf{w}_k , \mathbf{c}_k совпадают с итерацией алгоритма поиска максимального собственного значения. Данный алгоритм основан на следующем факте.

Если матрица ${\bf A}$ диагонализуема, ${\bf x}$ — некоторый вектор, то

$$\lim_{k \to \infty} \mathbf{A}^k \mathbf{x} = \lambda_{\max}(\mathbf{A}) \cdot \mathbf{v}_{\max},$$

где $\lambda_{\max}(\mathbf{A})$ — максимальное собственное значение матрицы \mathbf{A} , \mathbf{v}_{\max} — собственный вектор матрицы \mathbf{A} , соответствующий $\lambda_{\max}(\mathbf{A})$.

Утверждение 3. Обновление векторов по шагам (6)–(9) алгоритма 1 соответствует максимизации ковариации между векторами \mathbf{t}_k и \mathbf{u}_k .

Доказательство. Максимальная ковариация между векторами \mathbf{t}_k и \mathbf{u}_k равна максимальному собственному значению матрицы $\mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k \mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k$:

$$\begin{aligned} \max_{\mathbf{t}_k, \mathbf{u}_k} \mathrm{cov}(\mathbf{t}_k, \mathbf{u}_k)^2 &= \max_{\substack{\|\mathbf{w}_k\| = 1 \\ \|\mathbf{c}_k\| = 1}} \mathrm{cov} \left(\mathbf{X}_k \mathbf{w}_k, \mathbf{Y}_k \mathbf{c}_k \right)^2 = \max_{\substack{\|\mathbf{w}_k\| = 1 \\ \|\mathbf{c}_k\| = 1}} \mathrm{cov} \left(\mathbf{c}_k^{\mathsf{T}} \mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k \mathbf{w}_k \right)^2 = \\ &= \max_{\|\mathbf{w}_k\| = 1} \mathrm{cov} \left\| \mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k \mathbf{w}_k \right\|^2 = \max_{\|\mathbf{w}_k\| = 1} \mathbf{w}_k^{\mathsf{T}} \mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k \mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k \mathbf{w}_k = \\ &= \lambda_{\max} \left(\mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k \mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k \right), \end{aligned}$$

где $\lambda_{\max}(\mathbf{A})$ — максимальное собственное значение матрицы \mathbf{A} . Применяя утверждение 2, получаем требуемое.

После завершения внутреннего цикла на шаге (11) вычисляются вектора \mathbf{p}_k , \mathbf{q}_k проецированием столбцов матриц \mathbf{X}_k и \mathbf{Y}_k на вектор \mathbf{t}_k . Для перехода на следующий шаг необходимо вычесть из матриц \mathbf{X}_k и \mathbf{Y}_k одноранговые аппроксимации $\mathbf{t}_k \mathbf{p}_k^{\mathsf{T}}$ и $\mathbf{t}_k \mathbf{q}_k^{\mathsf{T}}$

$$\mathbf{X}_{k+1} = \mathbf{X}_k - \mathbf{t}_k \mathbf{p}_k^{^{\mathsf{T}}} = \mathbf{X} - \sum_k \mathbf{t}_k \mathbf{p}_k^{^{\mathsf{T}}}, \ \mathbf{Y}_{k+1} = \mathbf{Y}_k - \mathbf{t}_k \mathbf{q}_k^{^{\mathsf{T}}} = \mathbf{Y} - \sum_k \mathbf{t}_k \mathbf{q}_k^{^{\mathsf{T}}}.$$

При этом каждый следующий вектор \mathbf{t}_k оказывается ортогонален всем векторам $\mathbf{t}_i, i=1,\ldots,k$.

На Рис. 1.1 продемонстрирован результат работы алгоритма PLS для случая, когда размерности пространств объектов, ответов и латентного пространства равны 2 (n=r=l=2). Синими и зелёными точками изображены объекты \mathbf{x}_i и целевые переменные \mathbf{y}_i . Точки сгенерированы из нормального распределения с нулевым матожиданием. Красным контуром показаны линии уровня матриц ковариаций распределений. Черным изображены единичные окружности. Красные стрелки соответствуют главным компонентам матриц \mathbf{X} и \mathbf{Y} . Черные стрелки соответствуют векторам матриц \mathbf{W} и \mathbf{C} алгоритма PLS. Вектора \mathbf{t}_k и \mathbf{u}_k — проекции матриц \mathbf{X}_k и \mathbf{Y}_k на вектора \mathbf{w}_k и \mathbf{c}_k соответственно и изображены черными плюсами. Учёт взаимной связи между матрицами \mathbf{X} и \mathbf{Y}

отклоняет вектора \mathbf{w}_k и \mathbf{c}_k от направления главных компонент. Вектора \mathbf{w}_k отклоняются незначительно. На первой итерации \mathbf{c}_1 близок к pc_1 , но вектора \mathbf{c}_k , найденные на следующих итерациях могут оказаться сильно коррелированными. Это происходит в следствие того, что из матрицы \mathbf{Y} на каждом шаге вычитается одноранговая аппроксимация, найденная в пространстве матрицы \mathbf{X}_k .

Рис. 1.1: Иллюстрация алгоритма PLS

Для получения прогнозов модели и нахождения параметров модели домножим справа формулу (1.19) на матрицу \mathbf{W} . Строки матрицы невязок \mathbf{E} ортогональны столбцам матрицы \mathbf{W} , поэтому

$$XW = TP^{\mathsf{T}}W.$$

Линейное преобразование между объектами в исходном и латентном пространстве имеет вид

$$\mathbf{T} = \mathbf{X}\mathbf{W}^*,\tag{1.21}$$

где $\mathbf{W}^* = \mathbf{W}(\mathbf{P}^{^\mathsf{T}}\mathbf{W})^{-1}$.

Матрица параметров модели ?? находится из уравнений (1.20), (1.21)

$$\mathbf{Y} = \mathbf{TQ}^{^\mathsf{T}} + \mathbf{E} = \mathbf{XW}^*\mathbf{Q}^{^\mathsf{T}} + \mathbf{E} = \mathbf{X}\boldsymbol{\Theta} + \mathbf{E}.$$

Таким образом, параметры модели (??) равны

$$\mathbf{\Theta} = \mathbf{W}(\mathbf{P}^{\mathsf{T}}\mathbf{W})^{-1}\mathbf{Q}^{\mathsf{T}}.\tag{1.22}$$

Финальная модель (1.3.) является линейной, низкоразмерной в скрытом пространстве. Это снижает избыточность данных и повышает стабильность модели.

1.4. Вычислительный эксперимент

Временные ряды электроэнергии состоят из почасовых записей (52512 наблюдений). Строка матрицы \mathbf{X} — локальная история сигнала за одну неделю $n=24\times 7$. Строка матрицы \mathbf{Y} — локальный прогноз потребления электроэнергии в следующие 24 часа r=24. В этом случае матрицы \mathbf{X} и \mathbf{Y} являются авторегрессионными матрицами.

Вычислительный эксперимент также проводился на данных электрокортикограмм (ECoG) из проекта NeuroTycho [6]. Данные ECoG состоят из 32-канальных сигналов напряжения, снятых с головного мозга. Цель состоит в предсказании по входному сигналу ECoG 3D позиции рук в последующие моменты времени. Исходные сигналы напряжения преобразуются в пространственно-временное представление с помощью вейвлет-преобразования с материнским вейвлетом Морле. Процедура извлечения признаков из исходных данных подробно описана в [7, 8]. Описание исходного сигнала в каждый момент времени имеет размерность 32 (каналы) \times 27 (частоты) = 864. Каждый объект представляет собой локальный отрезок времени длительностью $\Delta t = 1s$. Временной шаг между объектами $\delta t = 0.05s$. Матрицы имеют размеры $\mathbf{X} \in \mathbb{R}^{18900 \times 864}$ и $\mathbf{Y} \in \mathbb{R}^{18900 \times 3k}$, где k - число отсчётов времени прогнозирования. Данные разбиты на тренировочную и тестовую части в соотношении 0,67. Пример исходных сигналов мозга и соответствующей траектории руки показан на рисунке ??.

Рис. 1.2: Сигналы мозга (левый график) и 3D координаты руки (правый график)

Введём среднеквадратичную ошибку для некоторых матриц $\mathbf{A}=[a_{ij}]$ и $\mathbf{B}=[b_{ij}]$

$$MSE(\mathbf{A}, \mathbf{B}) = \sum_{i,j} (a_{ij} - b_{ij})^2.$$

Для оценивания качества аппроксимации вычисляется значение нормированной среднеквадратичной ошибки

$$NMSE(\mathbf{Y}, \hat{\mathbf{Y}}) = \frac{MSE(\mathbf{Y}, \hat{\mathbf{Y}})}{MSE(\mathbf{Y}, \bar{\mathbf{Y}})},$$
(1.23)

где $\hat{\mathbf{Y}}$ — прогноз модели, $\bar{\mathbf{Y}}$ — константный прогноз средним значением по столбцам матрицы.

Данные потребления электроэнергии

Для нахождения оптимальной размерности l латентного пространства все данные потребления электроэнергии были разбиты на обучающую и валидационную части. Обучающая выборка состоит из 700 объектов, валидационная из 370. Зависимость нормированной квадратичной ошибки (1.23) от размерности l латентного пространства представлена на Рис. 1.3. Сначала ошибка резко падает при увеличении размерности скрытого пространства, а затем стабилизируется.

Рис. 1.3: Прогноз потребления электроэнергии алгоритмом PLS при размерности латентного пространства $l{=}14$

Минимальная ошибка наблюдается при l=14. Построим прогноз потребления электроэнергии при данном l. Результат аппроксимации изображен на Рис. 1.4. Алгоритм PLS восстановил авторегрессионную зависимость и обнаружил дневную сезонность.

Данные электрокортикограммы

На Рис. 1.5 представлена зависимость нормированной квадратичной ошибки (1.23) от размерности латентного пространства. Ошибка аппроксимации меняется незначительно при l>5. Таким образом совместное описание пространственно-временного спектрального представления объектов и пространственного положения руки может быть представлено вектором размерности $l\ll n$. Зафиксируем l=5. Пример аппроксимации положения руки изображен на Рис. 1.6. Сплошными линиями изображены истинные координаты руки по всем осям, пунктирными линиями показана аппроксимация методом PLS.

Рис. 1.4: Зависимость ошибки от размерности латентного пространства для данных потребления электроэнергии

Глава 2 Выбор признаков

Задача выбора признаков заключается в поиске оптимального подмножества признаков \mathcal{A} среди всех возможных 2^n-1 вариантов. Существует взаимооднозначное отображение между подмножеством \mathcal{A} и булевым вектором $\mathbf{a} \in \{0,1\}^n$, компоненты которого указывают, выбран ли признак. Для нахождения оптимального вектора \mathbf{a} введем функцию ошибки выбора признаков $S(\mathbf{a}, \mathbf{X}, \mathbf{Y})$. Проблема выбора признаков принимает вид:

$$\mathbf{a} = \underset{\mathbf{a}' \in \{0,1\}^n}{\min} S(\mathbf{a}', \mathbf{X}, \mathbf{Y}). \tag{2.1}$$

Целью выбора признаков является построение функции $S(\mathbf{a}, \mathbf{X}, \mathbf{Y})$. Конкретные примеры данной функции для рассматриваемых алгоритмов выбора признаков приведены ниже и обобщены в таблице 2.1.

Задача (2.1) имеет дискретную область определения $\{0,1\}^n$. Для решения данной задачи применяется релаксация задачи (2.1) к непрерывной области

Рис. 1.5: Зависимость ошибки от размерности латентного пространства для данных ECoG

определения $[0,1]^n$. Релаксированная задача выбора функции имеет следующий вид:

$$\mathbf{z} = \operatorname*{arg\,min}_{\mathbf{z}' \in [0,1]^n} S(\mathbf{z}', \mathbf{X}, \mathbf{Y}). \tag{2.2}$$

Здесь, компоненты вектора \mathbf{z} — значения нормированных коэффициентов значимости признаков. Сначала решается задача (2.2), для получения вектора значимостей \mathbf{z} . Затем решение (2.1) восстанавливается с помощью отсечения по порогу следующим образом:

$$\mathbf{a} = [a_j]_{j=1}^n, \quad a_j = \begin{cases} 1, & z_j > \tau; \\ 0, & \text{в противном случае.} \end{cases}$$
 (2.3)

au – гиперпараметр, который может быть подобран вручную или выбран с помощью кросс-валидации.

Как только решение \mathbf{a} задачи (2.1) получено, задача (1.3) принимает вид:

$$\mathcal{L}(\boldsymbol{\Theta}_{\mathcal{A}}, \mathbf{X}_{\mathcal{A}}, \mathbf{Y}) = \left\| \mathbf{Y} - \mathbf{X}_{\mathcal{A}} \boldsymbol{\Theta}_{\mathcal{A}}^{^{\mathsf{T}}} \right\|_{2}^{2} \rightarrow \min_{\boldsymbol{\Theta}_{\mathcal{A}}},$$

где индекс ${\cal A}$ обозначает подматрицу со столбцами, индексы которых содержатся в ${\cal A}$.

Рис. 1.6: Прогноз движения руки данных ECoG алгоритмом PLS при размерности латентного пространства l=5

2.1. Выбор признаков с помощью квадратичного программирования

Если между столбцами матрицы плана ${\bf X}$ существует линейная зависимость, то решение задачи линейной регрессии

$$\|\boldsymbol{\nu} - \mathbf{X}\boldsymbol{\theta}\|_2^2 \to \min_{\boldsymbol{\theta} \in \mathbb{R}^n}.$$
 (2.4)

оказывается неустойчивым. Методы выбора признаков находят подмножество $\mathcal{A} \in \{1, \dots, n\}$ оптимальных столбцов \mathbf{X} .

Алгоритм QPFS выбирает некоррелированные признаки, релевантные целевому вектору $\boldsymbol{\nu}$. Чтобы формализовать этот подход, введем две функции: $\mathrm{Sim}(\mathbf{X})$ и $\mathrm{Rel}(\mathbf{X},\boldsymbol{\nu})$. $\mathrm{Sim}(\mathbf{X})$ контролирует избыточность между признаками, $\mathrm{Rel}(\mathbf{X},\boldsymbol{\nu})$ содержит релевантности между каждым признаком и целевым вектором. Мы хотим минимизировать функцию Sim и максимизировать Rel одно-

временно.

QPFS предлагает явный способ построения функций Sim и Rel. Алгоритм минимизирует следующую функцию ошибки

$$\underbrace{\mathbf{z}^{\mathsf{T}}\mathbf{Q}\mathbf{z}}_{\mathrm{Sim}} - \alpha \cdot \underbrace{\mathbf{b}^{\mathsf{T}}\mathbf{z}}_{\mathrm{Rel}} \to \min_{\substack{\mathbf{z} \in \mathbb{R}^{n}_{+} \\ \|\mathbf{z}\|_{1} = 1}}.$$
 (2.5)

Элементы матрицы $\mathbf{Q} \in \mathbb{R}^{n \times n}$ содержат коэффициенты попарного сходства между признаками. Вектор $\mathbf{b} \in \mathbb{R}^n$ выражает сходство между каждым признаком и целевым вектором $\boldsymbol{\nu}$. Нормированный вектор \mathbf{z} отражает значимость каждого признака. Функция ошибки (2.5) штрафует зависимые признаки функцией Sim и штрафует признаки, не релевантные к целевой переменной функцией Rel. Параметр α позволяет контролировать компромисс между Sim и Rel. Авторы оригинальной статьи QPFS [9] предложили способ выбора α , чтобы уравновесить вклад членов Sim(\mathbf{X}) и Rel($\mathbf{X}, \boldsymbol{\nu}$)

$$\alpha = \frac{\overline{\mathbf{Q}}}{\overline{\mathbf{Q}} + \overline{\mathbf{b}}}, \quad \text{где } \overline{\mathbf{Q}} = \text{mean}(\mathbf{Q}), \ \overline{\mathbf{b}} = \text{mean}(\mathbf{b}).$$

Чтобы выделить оптимальное подмножество признаков, применяется отсечение по порогу (2.3).

Для измерения сходства используется выборочный коэффициент корреляции Пирсона между парами признаков для функции Sim, и между признаками и целевым вектором для функции Rel:

$$\mathbf{Q} = \left[|\operatorname{corr}(\boldsymbol{\chi}_i, \boldsymbol{\chi}_j)| \right]_{i, i=1}^n, \quad \mathbf{b} = \left[|\operatorname{corr}(\boldsymbol{\chi}_i, \boldsymbol{\nu})| \right]_{i=1}^n.$$
 (2.6)

Здесь

$$\operatorname{corr}(\boldsymbol{\chi}, \boldsymbol{\nu}) = \frac{\sum_{i=1}^{m} (\boldsymbol{\chi}_i - \overline{\boldsymbol{\chi}}) (\boldsymbol{\nu}_i - \overline{\boldsymbol{\nu}})}{\sqrt{\sum_{i=1}^{m} (\boldsymbol{\chi}_i - \overline{\boldsymbol{\chi}})^2 \sum_{i=1}^{m} (\boldsymbol{\nu}_i - \overline{\boldsymbol{\nu}})^2}}.$$

Другие способы определения \mathbf{Q} и \mathbf{b} рассматриваются в [10]. В работе [10] показано, что алгоритм QPFS превосходит многие существующие алгоритмы выбора функций на различных критериях качества.

Задача (2.5) является выпуклой, если матрица \mathbf{Q} является неотрицательно определенной. В общем случае это не всегда верно. Чтобы удовлетворить этому условию спектр матрицы \mathbf{Q} смещается, и матрица \mathbf{Q} заменяется на $\mathbf{Q} - \lambda_{\min} \mathbf{I}$, где λ_{\min} является минимальным собственным значением \mathbf{Q} .

2.2. Многоиндексный метод выбора признаков

В данном разделе описаны предлагаемые методы выбора признаков для случая нескольких многомерной целевой переменной. В этом случае компоненты целевой переменной могут коррелировать между собой. Предлагаются алгоритмы, учитывающие зависимости как во входном, так и в целевом пространствах.

2.2.1. Агрегация релевантностей целевых переменных

В работе [11], чтобы применить алгоритм QPFS к многомерному случаю (r > 1), релевантности признаков агрегируются по всем r компонентам. Член $\mathrm{Sim}(\mathbf{X})$ остаётся без изменений, матрица \mathbf{Q} определяется как (2.6). Вектор \mathbf{b} агрегируется по всем компонентам целевой переменной и определяется как

$$\mathbf{b} = \left[\sum_{k=1}^r |\mathrm{corr}(oldsymbol{\chi}_i, oldsymbol{
u}_k)|
ight]_{i=1}^n.$$

Недостатком такого подхода является отсутствие учёта зависимостей в столбцах матрицы \mathbf{Y} . Рассмотрим следующий пример:

$$\mathbf{X} = [\boldsymbol{\chi}_1, \boldsymbol{\chi}_2, \boldsymbol{\chi}_3], \quad \mathbf{Y} = [\underbrace{\boldsymbol{\nu}_1, \boldsymbol{\nu}_1, \dots, \boldsymbol{\nu}_1}_{r-1}, \boldsymbol{\nu}_2].$$

Пусть матрица ${\bf X}$ содержит 3 столбца, матрица ${\bf Y}-r$ столбцов, где первые r-1 компонент целевой переменной идентичны. Попарные сходства признаков задаются матрицей ${\bf Q}$. Матрица ${\bf B}$ содержит попарные сходства признаков и целевых столбцов. Вектор ${\bf b}$ получен суммированием матрицы ${\bf B}$ по столбцами

$$\mathbf{Q} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0.8 \\ 0 & 0.8 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0.4 & \dots & 0.4 & 0 \\ 0.5 & \dots & 0.5 & 0.8 \\ 0.8 & \dots & 0.8 & 0.1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} (r-1) \cdot 0.4 + 0 \\ (r-1) \cdot 0.5 + 0.8 \\ (r-1) \cdot 0.8 + 0.1 \end{bmatrix}.$$
(2.7)

Пусть необходимо выбрать только 2 признака. В данном случае оптимальным подмножеством признаков является $[\chi_1, \chi_2]$. Признак χ_2 предсказывает второй целевой столбец ν_2 , комбинация признаков χ_1, χ_2 прогнозирует первый целевой столбец ν_1 . Алгоритм QPFS для r=2 дает решение $\mathbf{z}=[0.37, 0.61, 0.02]$. Это совпадает с описанным решением. Однако, если добавить коллинеарные столбцы в матрицу \mathbf{Y} и увеличить r до 5, то решением QPFS будет $\mathbf{z}=[0.40, 0.17, 0.43]$. Здесь потерян признак χ_2 и выбран избыточный признак χ_3 . В следующих подразделах предлагаются обобщения алгоритма QPFS, которые позволяют бороться с проблемой данного примера.

2.2.2. Симметричный учёт значимости признаков и целевых переменных

Чтобы учесть зависимости в столбцах матрицы \mathbf{Y} , обобщим функцию QPFS (2.5) для многомерного случая (r>1). Добавим член $\mathrm{Sim}(\mathbf{Y})$ и изменим член $\mathrm{Rel}(\mathbf{X},\mathbf{Y})$ следующим образом:

$$\alpha_{1} \cdot \underbrace{\mathbf{z}_{x}^{\mathsf{T}} \mathbf{Q}_{x} \mathbf{z}_{x}}_{\operatorname{Sim}(\mathbf{X})} - \alpha_{2} \cdot \underbrace{\mathbf{z}_{x}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{y}}_{\operatorname{Rel}(\mathbf{X}, \mathbf{Y})} + \alpha_{3} \cdot \underbrace{\mathbf{z}_{y}^{\mathsf{T}} \mathbf{Q}_{y} \mathbf{z}_{y}}_{\operatorname{Sim}(\mathbf{Y})} \to \min_{\substack{\mathbf{z}_{x} \geqslant \mathbf{0}_{n}, \mathbf{1}_{n}^{\mathsf{T}} \mathbf{z}_{x} = 1 \\ \mathbf{z}_{y} \geqslant \mathbf{0}_{r}, \mathbf{1}_{r}^{\mathsf{T}} \mathbf{z}_{y} = 1}}.$$

$$(2.8)$$

Определим элементы матриц $\mathbf{Q}_x \in \mathbb{R}^{n \times n}$, $\mathbf{Q}_y \in \mathbb{R}^{r \times r}$ и $\mathbf{B} \in \mathbb{R}^{n \times r}$ следующим образом:

$$\mathbf{Q}_x = \begin{bmatrix} |\operatorname{corr}(\boldsymbol{\chi}_i, \boldsymbol{\chi}_j)| \end{bmatrix}_{i,j=1}^n, \quad \mathbf{Q}_y = \begin{bmatrix} |\operatorname{corr}(\boldsymbol{\nu}_i, \boldsymbol{\nu}_j)| \end{bmatrix}_{i,j=1}^r, \quad \mathbf{B} = \begin{bmatrix} |\operatorname{corr}(\boldsymbol{\chi}_i, \boldsymbol{\nu}_j)| \end{bmatrix}_{i=1,\dots,n}^n$$

Вектор \mathbf{z}_x содержит коэффициенты значимости признаков, \mathbf{z}_y – коэффициенты значимости целевых столбцов. Коррелированные целевые столбцы штрафуются членом $\mathrm{Sim}(\mathbf{Y})$ и получают более низкие значения значимости.

Коэффициенты α_1 , α_2 , и α_3 контролируют влияние каждого члена на функцию (2.8) и удовлетворяют следующим условиям:

$$\alpha_1 + \alpha_2 + \alpha_3 = 1$$
, $\alpha_i \geqslant 0$, $i = 1, 2, 3$.

Утверждение 4. Баланс между $Sim(\mathbf{X})$, $Rel(\mathbf{X}, \mathbf{Y})$ и $Sim(\mathbf{Y})$ в задаче (2.8) достигается при:

$$\alpha_1 \propto \overline{\mathbf{Q}}_y \overline{\mathbf{B}}; \quad \alpha_2 \propto \overline{\mathbf{Q}}_x \overline{\mathbf{Q}}_y; \quad \alpha_3 \propto \overline{\mathbf{Q}}_x \overline{\mathbf{B}}.$$
 (2.9)

Доказательство. Значения α_1 , α_2 , и α_3 получаются путем решения следующих уравнений:

$$\alpha_1 + \alpha_2 + \alpha_3 = 1;$$

 $\alpha_1 \overline{\mathbf{Q}}_x = \alpha_2 \overline{\mathbf{B}} = \alpha_3 \overline{\mathbf{Q}}_y.$

Здесь $\overline{\mathbf{Q}}_x$, $\overline{\mathbf{B}}$ и $\overline{\mathbf{Q}}_y$ соответствующих матриц \mathbf{Q}_x , \mathbf{B} и \mathbf{Q}_y - средние значения членов $\mathrm{Sim}(\mathbf{X})$, $\mathrm{Rel}(\mathbf{X},\mathbf{Y})$ и $\mathrm{Sim}(\mathbf{Y})$.

Для изучения зависимости $Sim(\mathbf{Y})$ на функцию (2.8), зафиксируем соотношение между α_1 и α_2 :

$$\alpha_1 = \frac{(1 - \alpha_3)\overline{\mathbf{B}}}{\overline{\mathbf{Q}}_x + \overline{\mathbf{B}}}; \quad \alpha_2 = \frac{(1 - \alpha_3)\overline{\mathbf{Q}}_x}{\overline{\mathbf{Q}}_x + \overline{\mathbf{B}}}; \quad \alpha_3 \in [0, 1].$$
 (2.10)

Применим предложенный алгоритм к приведенному примеру (2.7). Матрица \mathbf{Q} соответствует матрице \mathbf{Q}_x . Определим матрицы \mathbf{Q}_y как $\mathrm{corr}(\boldsymbol{\nu}_1,\boldsymbol{\nu}_2)=0.2$, а все остальные элементы зададим 1. Рисунок 2.1 показывает значение векторов значимостей признаков \mathbf{z}_x и целевых векторов \mathbf{z}_y в зависимости от значения коэффициента α_3 . Если α_3 мало, значимости всех целевых векторов не различимы и значимость признака $\boldsymbol{\chi}_3$ выше значимости признака $\boldsymbol{\chi}_2$. При увеличении α_3 до 0.2, коэффициент значимости $\mathbf{z}_{y,5}$ целевого вектора $\boldsymbol{\nu}_5$ увеличивается наряду со значимостью признака $\boldsymbol{\chi}_2$.

Рис. 2.1: Значимости признаков \mathbf{z}_x и целевых векторов \mathbf{z}_y в зависимости от α_3 для рассмотренного примера

2.2.3. Минимаксная постановка задачи выбора признаков

Функция (2.8) является симметричной по отношению к \mathbf{z}_x и \mathbf{z}_y . Она штрафует признаки, которые коррелированы и не имеют отношения к целевым векторам. Кроме того, она штрафует целевые вектора, которые коррелированы между собой и недостаточно коррелируют с признаками. Это приводит к малым значениям значимостей для целевых векторов, которые слабо коррелируют с признаками, и большим значениям для целевых векторов, которые сильно коррелируют с признаками. Этот результат противоречит интуиции. Цель — предсказать все целевые вектора, особенно те, которые слабо коррелируют с признаками. Сформулируем две взаимосвязанные задачи:

$$\alpha_1 \cdot \underbrace{\mathbf{z}_x^{\mathsf{T}} \mathbf{Q}_x \mathbf{z}_x}_{\operatorname{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\mathbf{z}_x^{\mathsf{T}} \mathbf{B} \mathbf{z}_y}_{\operatorname{Rel}(\mathbf{X}, \mathbf{Y})} \to \min_{\substack{\mathbf{z}_x \geqslant \mathbf{0}_n, \\ \mathbf{1}_n \mathbf{z}_x = 1}}; \tag{2.11}$$

$$\alpha_3 \cdot \underbrace{\mathbf{z}_y^{\mathsf{T}} \mathbf{Q}_y \mathbf{z}_y}_{\mathrm{Sim}(\mathbf{Y})} + \alpha_2 \cdot \underbrace{\mathbf{z}_x^{\mathsf{T}} \mathbf{B} \mathbf{z}_y}_{\mathrm{Rel}(\mathbf{X}, \mathbf{Y})} \to \min_{\substack{\mathbf{z}_y \geqslant \mathbf{0}_r, \\ \mathbf{1}_r^{\mathsf{T}} \mathbf{z}_y = 1}}.$$
 (2.12)

Разница между (2.11) и (2.12) заключается в знаке перед членом Rel. В пространстве входных объектов нерелевантные признаки должны иметь меньшие значения значимости. В то же время целевые вектора, не релевантные призна-

кам, должны иметь большую значимость. Задачи (2.11) и (2.12) объединяются в совместную минимакс или максмин постановку

$$\min_{\substack{\mathbf{z}_x \geqslant \mathbf{0}_n \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_x = 1}} \max_{\substack{\mathbf{I}_r^\mathsf{T} \mathbf{z}_y = 1}} f(\mathbf{z}_x, \mathbf{z}_y), \quad \left(\text{или } \max_{\substack{\mathbf{z}_y \geqslant \mathbf{0}_r \\ \mathbf{1}_r^\mathsf{T} \mathbf{z}_y = 1}} \min_{\substack{\mathbf{I}_r^\mathsf{T} \mathbf{z}_x = 1}} f(\mathbf{z}_x, \mathbf{z}_y) \right), \tag{2.13}$$

где

$$f(\mathbf{z}_x, \mathbf{z}_y) = \alpha_1 \cdot \underbrace{\mathbf{z}_x^{\mathsf{T}} \mathbf{Q}_x \mathbf{z}_x}_{\mathrm{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\mathbf{z}_x^{\mathsf{T}} \mathbf{B} \mathbf{z}_y}_{\mathrm{Rel}(\mathbf{X}, \mathbf{Y})} - \alpha_3 \cdot \underbrace{\mathbf{z}_y^{\mathsf{T}} \mathbf{Q}_y \mathbf{z}_y}_{\mathrm{Sim}(\mathbf{Y})}.$$

Теорема 1. Для положительно определенной матрицы \mathbf{Q}_x и \mathbf{Q}_y , максмин и минимакс задачи (2.13) имеют одинаковое оптимальное значение.

Доказательство. Введём обозначения

$$\mathbb{C}^n = \{ \mathbf{z} : \mathbf{z} \geqslant \mathbf{0}_n, \ \mathbf{1}_n^{\mathsf{T}} \mathbf{z} = 1 \}, \quad \mathbb{C}^r = \{ \mathbf{z} : \mathbf{z} \geqslant \mathbf{0}_r, \ \mathbf{1}_r^{\mathsf{T}} \mathbf{z} = 1 \}.$$

Множества \mathbb{C}^n и \mathbb{C}^r - компактные и выпуклые. Функция $f:\mathbb{C}^n\times\mathbb{C}^r\to\mathbb{R}$ является непрерывной. Если \mathbf{Q}_x и \mathbf{Q}_y положительно определенны, функция f выпукло-вогнутая. Т. е., $f(\cdot,\mathbf{z}_y):\mathbb{C}^n\to\mathbb{R}$ выпуклая при фиксированном \mathbf{z}_y , а $f(\mathbf{z}_x,\cdot):\mathbb{C}^r\to\mathbb{R}$ вогнута при фиксированном \mathbf{z}_x . В этом случае по теореме Неймана о минимаксе

$$\min_{\mathbf{z}_x \in \mathbb{C}^n} \max_{\mathbf{z}_y \in \mathbb{C}^r} f(\mathbf{z}_x, \mathbf{z}_y) = \max_{\mathbf{z}_y \in \mathbb{C}^r} \min_{\mathbf{z}_x \in \mathbb{C}^n} f(\mathbf{z}_x, \mathbf{z}_y).$$

Для решения минимакс задачи (2.13), зафиксируем некоторый $\mathbf{z}_x \in \mathbb{C}^n$. Для фиксированного вектора \mathbf{z}_x решаем задачу

$$\max_{\mathbf{z}_y \in \mathbb{C}_r} f(\mathbf{z}_x, \mathbf{z}_y) = \max_{\substack{\mathbf{z}_y \geqslant \mathbf{0}_r \\ \mathbf{1}_r^\mathsf{T} \mathbf{z}_y = 1}} \left[\alpha_1 \cdot \mathbf{z}_x^\mathsf{T} \mathbf{Q}_x \mathbf{z}_x - \alpha_2 \cdot \mathbf{z}_x^\mathsf{T} \mathbf{B} \mathbf{z}_y - \alpha_3 \cdot \mathbf{z}_y^\mathsf{T} \mathbf{Q}_y \mathbf{z}_y \right]. \tag{2.14}$$

Лагранжиан для данной задачи:

$$L(\mathbf{z}_x, \mathbf{z}_y, \lambda, \boldsymbol{\mu}) = \alpha_1 \cdot \mathbf{z}_x^{\mathsf{T}} \mathbf{Q}_x \mathbf{z}_x - \alpha_2 \cdot \mathbf{z}_x^{\mathsf{T}} \mathbf{B} \mathbf{z}_y - \alpha_3 \cdot \mathbf{z}_y^{\mathsf{T}} \mathbf{Q}_y \mathbf{z}_y + \lambda \cdot (\mathbf{1}_r^{\mathsf{T}} \mathbf{z}_y - 1) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{z}_y.$$

Здесь вектор множителей Лагранжа μ , который соответствует ограничениям на неравенства $\mathbf{z}_y \geqslant \mathbf{0}_r$, является неотрицательным. Двойственной задачей является

$$\min_{\lambda, \, \boldsymbol{\mu} \geqslant \mathbf{0}_r} g(\mathbf{z}_x, \lambda, \boldsymbol{\mu}) = \min_{\lambda, \, \boldsymbol{\mu} \geqslant \mathbf{0}_r} \left[\max_{\mathbf{z}_y \in \mathbb{R}^r} L(\mathbf{z}_x, \mathbf{z}_y, \lambda, \boldsymbol{\mu}) \right]. \tag{2.15}$$

Для задачи квадратичного программирования (2.14) с положительно определенными матрицами \mathbf{Q}_x и \mathbf{Q}_y выполняются условия сильной двойственности. Таким образом, оптимальное значение (2.14) равно оптимальному значению (2.15). Это позволяет перейти от решения задачи (2.13) к решению задачи

$$\min_{\mathbf{z}_x \in \mathbb{C}^n, \lambda, \boldsymbol{\mu} \geqslant \mathbf{0}_r} g(\mathbf{z}_y, \lambda, \boldsymbol{\mu}). \tag{2.16}$$

Полагая градиент $\nabla_{\mathbf{z}_y} L(\mathbf{z}_x, \mathbf{z}_y, \lambda, \boldsymbol{\mu})$ равным нулю, получим оптимальное значение \mathbf{z}_y :

$$\mathbf{z}_{y} = \frac{1}{2\alpha_{3}} \mathbf{Q}_{y}^{-1} \left(-\alpha_{2} \cdot \mathbf{B}^{\mathsf{T}} \mathbf{z}_{x} + \lambda \cdot \mathbf{1}_{r} + \boldsymbol{\mu} \right). \tag{2.17}$$

Двойственная функция принимает вид

$$g(\mathbf{z}_{x}, \lambda, \boldsymbol{\mu}) = \max_{\mathbf{z}_{y} \in \mathbb{R}^{r}} L(\mathbf{z}_{x}, \mathbf{z}_{y}, \lambda, \boldsymbol{\mu}) = \mathbf{z}_{x}^{\mathsf{T}} \left(-\frac{\alpha_{2}^{2}}{4\alpha_{3}} \cdot \mathbf{B} \mathbf{Q}_{y}^{-1} \mathbf{B}^{\mathsf{T}} - \alpha_{1} \cdot \mathbf{Q}_{x} \right) \mathbf{z}_{x}$$
$$-\frac{1}{4\alpha_{3}} \lambda^{2} \cdot \mathbf{1}_{r}^{\mathsf{T}} \mathbf{Q}_{y}^{-1} \mathbf{1}_{r} - \frac{1}{4\alpha_{3}} \cdot \boldsymbol{\mu}^{\mathsf{T}} \mathbf{Q}_{y}^{-1} \boldsymbol{\mu} + \frac{\alpha_{2}}{2\alpha_{3}} \lambda \cdot \mathbf{1}_{r}^{\mathsf{T}} \mathbf{Q}_{y}^{-1} \mathbf{B}^{\mathsf{T}} \mathbf{z}_{x}$$
$$-\frac{1}{2\alpha_{3}} \lambda \cdot \mathbf{1}_{r}^{\mathsf{T}} \mathbf{Q}_{y}^{-1} \boldsymbol{\mu} + \frac{\alpha_{2}}{2\alpha_{3}} \cdot \boldsymbol{\mu}^{\mathsf{T}} \mathbf{Q}_{y}^{-1} \mathbf{B}^{\mathsf{T}} \mathbf{z}_{x} + \lambda. \quad (2.18)$$

Тем самым задача (2.16) является квадратичной задачей с n+r+1 переменными.

2.2.4. Несимметричный учёт значимостей признаков и целевых переменных

Естественным способом преодоления проблемы алгоритма SymImp является добавление штрафа для целевых векторов, которые коррелируют с признаками.

Добавим линейный член $\mathbf{b}^{\mathsf{T}}\mathbf{z}_{y}$ в член $\mathrm{Rel}(\mathbf{X},\mathbf{Y})$ следующим образом:

$$\alpha_{1} \cdot \underbrace{\mathbf{z}_{x}^{\mathsf{T}} \mathbf{Q}_{x} \mathbf{z}_{x}}_{\operatorname{Sim}(\mathbf{X})} - \alpha_{2} \cdot \underbrace{\left(\mathbf{z}_{x}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{y} - \mathbf{b}^{\mathsf{T}} \mathbf{z}_{y}\right)}_{\operatorname{Rel}(\mathbf{X}, \mathbf{Y})} + \alpha_{3} \cdot \underbrace{\mathbf{z}_{y}^{\mathsf{T}} \mathbf{Q}_{y} \mathbf{z}_{y}}_{\operatorname{Sim}(\mathbf{Y})} \to \min_{\mathbf{z}_{x} \geqslant \mathbf{0}_{n}, \mathbf{1}_{n}^{\mathsf{T}} \mathbf{z}_{x} = 1}_{\mathbf{z}_{y} \geqslant \mathbf{0}_{r}, \mathbf{1}_{r}^{\mathsf{T}} \mathbf{z}_{y} = 1}.$$

$$(2.19)$$

Утверждение 5. Пусть вектор **b** равен

$$b_j = \max_{i=1,\dots n} [\mathbf{B}]_{i,j}.$$

Тогда значение коэффициентов значимостей вектора \mathbf{z}_y будут неотрицательными в $\operatorname{Rel}(\mathbf{X}, \mathbf{Y})$ для задачи (2.19).

Доказательство. Утверждение следует из факта

$$\sum_{i=1}^{n} z_i b_{ij} \leqslant \left(\sum_{i=1}^{n} z_i\right) \max_{i=1,\dots,n} b_{ij} = \max_{i=1,\dots,n} b_{ij},$$

где
$$z_i\geqslant 0$$
 и $\sum_{i=1}^n z_i=1.$

Следовательно, функция (2.19) штрафует в меньшей мере признаки, которые имеют отношение к целевым векторам, и целевые вектора, которые недостаточно коррелированы с признаками.

Утверждение 6. Баланс между членами $Sim(\mathbf{X})$, $Rel(\mathbf{X}, \mathbf{Y})$ и $Rel(\mathbf{X}, \mathbf{Y})$ для задачи (2.19) достигается при следующих коэффициентах:

$$\alpha_1 \propto \overline{\mathbf{Q}}_y \left(\overline{\mathbf{b}} - \overline{\mathbf{B}} \right); \quad \alpha_2 \propto \overline{\mathbf{Q}}_x \overline{\mathbf{Q}}_y; \quad \alpha_3 \propto \overline{\mathbf{Q}}_x \overline{\mathbf{B}}.$$

Доказательство. Необходимые значения α_1 , α_2 , и α_3 являются решением следующей системы уравнений:

$$\alpha_1 + \alpha_2 + \alpha_3 = 1; \tag{2.20}$$

$$\alpha_1 \overline{\mathbf{Q}}_x = \alpha_2 \overline{\mathbf{B}}; \tag{2.21}$$

$$\alpha_2 \left(\overline{\mathbf{b}} - \overline{\mathbf{B}} \right) = \alpha_3 \overline{\mathbf{Q}}_y. \tag{2.22}$$

Здесь, в (2.21) уравновешены $Sim(\mathbf{X})$ с первым слагаемым $Rel(\mathbf{X}, \mathbf{Y})$, а в (2.22) уравновешены $Sim(\mathbf{Y})$ с $Rel(\mathbf{X}, \mathbf{Y})$.

Утверждение 7. Для случая r=1, предложенные функции (2.8), (2.13) и (2.19) совпадают с оригинальным алгоритмом QPFS (2.5).

 \mathcal{A} оказательство. Если r равно 1, то $\mathbf{Q}_y=q_y$ - скаляр, $\mathbf{z}_y=1$ и $\mathbf{B}=\mathbf{b}$. Задачи (2.8),~(2.13) и (2.19) принимают вид

$$\alpha_1 \cdot \mathbf{z}_x^{\mathsf{T}} \mathbf{Q}_x \mathbf{z}_x - \alpha_2 \cdot \mathbf{z}_x^{\mathsf{T}} \mathbf{b} \to \min_{\mathbf{z}_x \geqslant \mathbf{0}_n, \mathbf{1}_n^{\mathsf{T}} \mathbf{z}_x = 1}.$$

При $\alpha = \frac{\alpha_2}{\alpha_1 + \alpha_2}$ последняя задачи принимает вид (2.5).

Таблица 2.1 демонстрирует основные идеи и функции ошибок для каждого алгоритма. RelAgg является базовой стратегией и не учитывает корреляции в целевом пространстве. SymImp штрафует попарные корреляции между целевыми векторами. МіпМах более чувствителен к целевым векторам, которые трудно предсказать. Стратегия Аsymimp добавляет линейный член к функции SymImp, чтобы сделать вклад признаков и целевых векторов асимметричным.

Таблица 2.1: Обзор предлагаемых обобщений многомерного QPFS алгоритма

Алгоритм	Идея	Функция ошибки $S(\mathbf{z} \mathbf{X},\mathbf{Y})$		
RelAgg	$\min \left[\operatorname{Sim}(\mathbf{X}) - \operatorname{Rel}(\mathbf{X}, \mathbf{Y}) \right]$	$\min_{\mathbf{z}_x} \left[(1 - \alpha) \cdot \mathbf{z}_x^T \mathbf{Q}_x \mathbf{z}_x - \alpha \cdot \mathbf{z}_x^T \mathbf{B} 1_r \right]$		
SymImp	$\min \left[\operatorname{Sim}(\mathbf{X}) - \operatorname{Rel}(\mathbf{X}, \mathbf{Y}) + \operatorname{Sim}(\mathbf{Y}) \right]$	$\min_{\mathbf{z}_x, \mathbf{z}_y} \left[\alpha_1 \cdot \mathbf{z}_x^T \mathbf{Q}_x \mathbf{z}_x - \alpha_2 \cdot \mathbf{z}_x^T \mathbf{B} \mathbf{z}_y + \alpha_3 \cdot \mathbf{z}_y^T \mathbf{Q}_y \mathbf{z}_y \right]$		
MinMax	$\min \left[\operatorname{Sim}(\mathbf{X}) - \operatorname{Rel}(\mathbf{X}, \mathbf{Y}) \right]$ $\max \left[\operatorname{Rel}(\mathbf{X}, \mathbf{Y}) + \operatorname{Sim}(\mathbf{Y}) \right]$	$\min_{\mathbf{z}_x} \max_{\mathbf{z}_y} \left[\alpha_1 \cdot \mathbf{z}_x^{T} \mathbf{Q}_x \mathbf{z}_x - \alpha_2 \cdot \mathbf{z}_x^{T} \mathbf{B} \mathbf{z}_y - \alpha_3 \cdot \mathbf{z}_y^{T} \mathbf{Q}_y \mathbf{z}_y \right]$		
AsymImp	$\min \left[\operatorname{Sim}(\mathbf{X}) - \operatorname{Rel}(\mathbf{X}, \mathbf{Y}) \right]$ $\max \left[\operatorname{Rel}(\mathbf{X}, \mathbf{Y}) + \operatorname{Sim}(\mathbf{Y}) \right]$	$\min_{\mathbf{z}_x, \mathbf{z}_y} \left[\alpha_1 \cdot \mathbf{z}_x^T \mathbf{Q}_x \mathbf{z}_x - \alpha_2 \cdot \left(\mathbf{z}_x^T \mathbf{B} \mathbf{z}_y - \mathbf{b}^T \mathbf{z}_y \right) + \alpha_3 \cdot \mathbf{z}_y^T \mathbf{Q}_y \mathbf{z}_y \right]$		

2.3. Вычислительный эксперимент

Для оценки предложенных алгоритмов выбора признаков, введём критерии оценки качества выбранного количества признаков. Определим коэффициент мультикорреляции как среднее значение коэффициента множественной корреляции следующим образом:

$$R^2 = \frac{1}{r} \operatorname{tr} \left(\mathbf{C}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{C} \right); \quad \text{where } \mathbf{C} = [\operatorname{corr}(\boldsymbol{\chi}_i, \boldsymbol{\nu}_j)]_{\substack{i=1,\ldots,n\\j=1,\ldots,r}}, \ \mathbf{R} = [\operatorname{corr}(\boldsymbol{\chi}_i, \boldsymbol{\chi}_j)]_{\substack{i,j=1\\i\neq 1,\ldots,r}}^n.$$

Этот коэффициент принимает значение между 0 и 1. Большее значение R^2 соответствует лучшему подмножеству признаков.

Нормированный среднеквадратичная ошибка (sRMSE) отображает качество прогнозирования модели. Оценка sRMSE считается на тренировочной и тестовой выборке.

$$sRMSE(\mathbf{Y}, \widehat{\mathbf{Y}}_{\mathbf{a}}) = \sqrt{\frac{MSE(\mathbf{Y}, \widehat{\mathbf{Y}}_{\mathbf{a}})}{MSE(\mathbf{Y}, \overline{\mathbf{Y}})}} = \frac{\|\mathbf{Y} - \widehat{\mathbf{Y}}_{\mathbf{a}}\|_{2}}{\|\mathbf{Y} - \overline{\mathbf{Y}}\|_{2}}.$$

Здесь $\widehat{\mathbf{Y}}_{\mathbf{a}} = \mathbf{X}_{\mathbf{a}} \boldsymbol{\Theta}_{\mathbf{a}}^{\mathsf{T}}$ – предсказание модель, $\overline{\mathbf{Y}}$ – предсказание константной модели, полученное усреднением целевой переменной по всем объектам. Данный показатель на тестовой выборке необходимо минимизировать.

Байесовский информационный критерий (BIC) – компромисс между качеством предсказания и размером выбранного подмножества признаков $\|\mathbf{a}\|_0 = \#\{j: a_j \neq 0\} = \sum_{j=1}^n a_j$:

BIC =
$$m \ln \left(\text{MSE}(\mathbf{Y}, \widehat{\mathbf{Y}}_{\mathbf{a}}) \right) + \|\mathbf{a}\|_0 \cdot \ln m,$$

Чем меньше значение BIC, тем лучше набор признаков.

Данные

Вычислительный эксперимент проводился на данных электрокортикограмм. Описание данных приведено в Главе 1. На Рис. 2.2 показаны матрицы корреляций для исходных матриц \mathbf{X} и \mathbf{Y} данных ECoG. Частоты в матрице \mathbf{X} сильно коррелированы. В целевой матрице \mathbf{Y} корреляции между осями несущественны по сравнению с корреляциями между последовательными моментами времени и эти корреляции спадают со временем.

Рис. 2.2: Матрицы корреляций для матрицы плана ${\bf X}$ и целевой матрицы ${\bf Y}$ для данных ECoG

Результаты

Применим алгоритм SymImp QPFS для различных значений коэффициента α_3 согласно формуле (2.10). Зависимость значимости целевых векторов \mathbf{z}_y относительно коэффициента α_3 для различных значений k показана на Puc. 2.3. Значимости целевых векторов почти одинаковы для всех координат запястья при прогнозировании одного отсчёта времени (k=1), что отражает независимость между координатами x, y и z. Для k=2 и k=3 значимости некоторых целевых векторов становится нулевой при увеличении α_3 . Вертикальные линии соответствуют оптимальному значению α_3 , вычисленному по (2.9). При этом значении α_3 значимости компонент \mathbf{z}_y совпадают. Таким образом, алгоритм не учитывает различия между целевыми векторами для k=1,2,3.

Рис. 2.3: Значимости целевых векторов \mathbf{z}_y в зависимости от α_3 для алгоритма SymImp QPFS

Предлагаемые алгоритмы многомерного QPFS, приведенные в таблице 2.1 применяются для набора данных ECoG. Решим задачу выбора признаков для каждого из алгоритмов, чтобы получить вектора значимостей признаков. Отсортируем по убыванию признаки по значению их значимостей. Обучим линейную модель, постепенно добавляя в неё признаки. Исследуются значения описанных критериев качества при увеличении количества отобранных признаков. На Рис. 2.4 показаны результаты прогнозирования для случая прогнозирования k=30 отсчётов времени. Порог значимости признаков τ обозначен цветными тиками. Пороговые значения τ для предлагаемых методов больше, чем для базового алгоритма RelAgg. Алгоритм SymImp имеет большой порог, не позволяя получить малый набор признаков. Однако алгоритм SymImp обладает

наилучшей предсказательной способностью с точки зрения sRMSE на тестовых данных. Второй по качеству результат по sRMSE показал алгоритм AsymImp. Все предложенные алгоритмы достигают меньшей ошибки на тестовой выборке по сравнению с алгоритмом RelAgg. Критерий устойчивости также выше для предложенных алгоритмов. Алгоритм AsymImp показывает лучшие результаты с точки зрения качества прогнозирования и размера выбранного подмножества признаков.

Рис. 2.4: Сравнение предложенных алгоритмов выбора признаков для данных ECoG при прогнозировании k=30 отсчётов времени

Чтобы сравнить структуру выбранных подмножеств признаков и исследовать стабильность процедуры выбора признаков, используется метод генерации данных с помощью бутстрепа. Генерируется множество подвыборок, выбирая объекты по одному с возвращениями. Затем решается задачу выбора признаков для каждой пары матрицы плана bX и целевой матрицы \mathbf{Y} . Сравниваются

полученные вектора значимостей для различных подвыборок данных. В качестве меры стабильности работы алгоритмов вычисляется средний попарный коэффициент корреляции Спирмена и попарное ℓ_2 расстояние. В таблице 2.2 показана средняя ошибка sRMSE, размер подмножества признаков и описанные статистики для каждого алгоритма. Ошибка считалась на обученной линейной модели с использованием 50 признаков с наибольшими значениями значимостей. Азутітр дает наименьшую ошибку на тестовой выборке. Размер выбранных подмножеств объектов завышен при использовании порогового значения $\tau=10^{-4}$. Оптимальное значение τ может быть подобрано с помощью процедуры кросс валидации.

Таблица 2.2: Стабильность предложенных алгоритмов выбора признаков

	sRMSE	$\ \mathbf{a}\ _0$	Spearman ρ	ℓ_2
RelAgg	0.965 ± 0.002	26.8 ± 3.8	0.915 ± 0.016	0.145 ± 0.018
SymImp	0.961 ± 0.001	224.4 ± 9.0	0.910 ± 0.017	0.025 ± 0.002
MinMax	0.961 ± 0.002	101.0 ± 2.1	0.932 ± 0.009	0.059 ± 0.004
AsymImp	0.955 ± 0.001	85.8 ± 10.2	0.926 ± 0.011	0.078 ± 0.007

Для того, чтобы сравнить методы снижения размерности и выбора признаков, используется модель PLS. На Puc. 2.5 показана ошибка sRMSE на тренировочной и тестовой выборках в зависимости от размерности скрытого пространства l. Ошибка на тестовой выборке достигает минимума при l=11. Алгоритм PLS является более гибким подходом по сравнению с линейной моделью, построенной на подмножестве признаков, так как использует все исходные признаки. Это приводит к меньшей ошибке, но модель не является разреженной.

На рис. 2.6 проведено сравнение 3 моделей: линейной регрессии и регрессии PLS, построенной на 100 признаках QPFS, и регрессии PLS со всеми признаками. Линейная регрессия со всеми признаками не рассматривается, так как ее результаты близки к константному прогнозу. На рисунке также приведены

результаты алгоритмов lasso и elastic net, которые широко используются для выбора признаков. В данном эксперименте использовался алгоритм Asymimp QPFS. Размерность скрытого пространства PLS l=15. Результаты регрессии PLS значительно лучше, линейной регрессии с признаками QPFS. Это означает, что последняя модель не является достаточно гибкой. Тем не менее, лучший результат показывает модель PLS, построенная на признаках QPFS. Данная модель является разреженной, так как использует только 100 исходных признаков. Способность модели PLS находить оптимальное скрытое представление данных улучшает предсказательную способность модели.

Рис. 2.5: sRMSE на тестовой выборке для модели PLS

Рис. 2.6: Диаграммы размаха значений sRMSE на тестовой выборке для рассматриваемых моделей

Глава 3

Выбор параметров нелинейных моделей

3.1. Выбор параметров для обучения моделей

Модель $f(\mathbf{x}, \boldsymbol{\theta})$ с параметрами $\boldsymbol{\theta} \in \mathbb{R}^p$ предсказывает целевую переменную $y \in \mathbb{Y}$ по объекту $\mathbf{x} \in \mathbb{R}^n$. Пространство \mathbb{Y} представляет собой бинарные метки классов $\{0,1\}$ для задачи двухклассовой классификации и \mathbb{R} для задачи регрессии. Даны матрица плана $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_m]^\mathsf{T} \in \mathbb{R}^{m \times n}$ и целевой вектор $\mathbf{y} = [y_1, \dots, y_m]^\mathsf{T} \in \mathbb{Y}^m$. Цель состоит в нахождении оптимальных параметров $\boldsymbol{\theta}^*$. Параметры $\boldsymbol{\theta}$ вычисляются минимизацией функции ошибки:

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \mathcal{L}(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}). \tag{3.1}$$

В качестве функции ошибки $\mathcal{L}(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})$ рассматриваются квадратичная ошибка для задачи регрессии:

$$\mathcal{L}(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) = \frac{1}{2} \|\mathbf{y} - \mathbf{f}(\mathbf{X}, \boldsymbol{\theta})\|_{2}^{2} = \frac{1}{2} \sum_{i=1}^{m} (y_{i} - f(\mathbf{x}_{i}, \boldsymbol{\theta}))^{2},$$
(3.2)

и функция кросс-энтропии для задачи бинарной классификации:

$$\mathcal{L}(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) = \sum_{i=1}^{m} [y_i \log f(\mathbf{x}_i, \boldsymbol{\theta}) + (1 - y_i) \log (1 - f(\mathbf{x}_i, \boldsymbol{\theta}))].$$
(3.3)

Задача (3.1) решается с помощью итеративной процедуры оптимизации. Для получения параметров на шаге k текущие параметры $\boldsymbol{\theta}^{k-1}$ обновляются по следующему правилу:

$$\boldsymbol{\theta}^k = \boldsymbol{\theta}^{k-1} + \Delta \boldsymbol{\theta}^{k-1}. \tag{3.4}$$

Авторы используют метод оптимизации Ньютона для выбора вектора обновлений $\Delta \boldsymbol{\theta}$.

Метод Ньютона нестабилен и вычислительно сложен. В данной статье предлагается стабильный алгоритм Ньютона. Перед шагом градиента предлагается

выбрать подмножество активных параметров модели, которые оказывают наибольшее влияние на функцию ошибки $\mathcal{L}(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})$. Обновление параметров производится только для отобранного множества индексов $\mathcal{A} = \{j : a_j = 1, \mathbf{a} \in \{0, 1\}^p\}$

$$egin{aligned} oldsymbol{ heta}_{\mathcal{A}}^k &= oldsymbol{ heta}_{\mathcal{A}}^{k-1} + \Delta oldsymbol{ heta}_{\mathcal{A}}^{k-1}, & oldsymbol{ heta}_{\mathcal{A}} &= \{ heta_j : j \in \mathcal{A} \}; \ oldsymbol{ heta}_{ar{\mathcal{A}}}^k &= \mathbf{w}_{ar{\mathcal{A}}}^{k-1}, & oldsymbol{ heta}_{ar{\mathcal{A}}} &= \{ heta_j : j \notin \mathcal{A} \}. \end{aligned}$$

Чтобы выбрать оптимальное подмножество индексов \mathcal{A} , из всех возможных 2^p-1 подмножеств, вводится функция ошибки

$$\mathbf{a} = \operatorname*{arg\,min}_{\mathbf{a}' \in \{0,1\}^p} S(\mathbf{a}', \mathbf{X}, \mathbf{y}, \boldsymbol{\theta}), \tag{3.5}$$

аналогичная функции ошибки (2.1) для задачи выбора признаков. Задача (3.5) решается на каждом шаге k процесса оптимизации для текущих параметров $\boldsymbol{\theta}^k$.

Алгоритм QPFS используется для решения задачи (3.5). QPFS выбирает подмножество параметров **a** для вектора обновлений $\Delta \theta$, которые оказывают наибольшее влияние на вектор остатков и являются попарно независимыми. Функция ошибки (2.5) соответствует функции ошибки $S(\mathbf{a}, \mathbf{X}, \mathbf{y}, \boldsymbol{\theta})$

$$\mathbf{a} = \underset{\mathbf{a}' \in \{1,0\}^p}{\operatorname{arg max}} S(\mathbf{a}', \mathbf{X}, \mathbf{y}, \boldsymbol{\theta}) \Leftrightarrow \underset{\mathbf{a} \in \mathbb{R}^p_+, \|\mathbf{a}\|_1 = 1}{\operatorname{arg min}} \left[\mathbf{a}^{\mathsf{T}} \mathbf{Q} \mathbf{a} - \alpha \cdot \mathbf{b}^{\mathsf{T}} \mathbf{a} \right]. \tag{3.6}$$

В работе показано, что для модели нелинейной регрессии с квадратичной функцией ошибки (3.2) и для модели логистической регрессии с кроссэнтропией (3.3), каждый шаг оптимизации эквивалентен задаче линейной регрессии (2.4).

3.2. Метод Ньютона решения задачи настройки параметров

Метод Ньютона использует условие оптимизации первого порядка для задачи (3.1) и линеаризует градиент $S(\boldsymbol{\theta})$

$$\nabla S(\boldsymbol{\theta} + \Delta \boldsymbol{\theta}) = \nabla S(\boldsymbol{\theta}) + \mathbf{H} \cdot \Delta \boldsymbol{\theta} = 0,$$

$$\Delta \boldsymbol{\theta} = -\mathbf{H}^{-1} \nabla S(\boldsymbol{\theta}).$$

где $\mathbf{H} = \nabla^2 S(\boldsymbol{\theta})$ является Гессианом матрицы функции ошибки $S(\boldsymbol{\theta})$.

Итерация (3.4) метода Ньютона имеет вид

$$\boldsymbol{\theta}^k = \boldsymbol{\theta}^{k-1} - \mathbf{H}^{-1} \nabla S(\boldsymbol{\theta}).$$

Каждая итерация инвертирует матрицу Гессиана. Мерой плохой обусловленности для матрицы Гессиана **H** является число обусловленности

$$\varkappa(\mathbf{H}) = \frac{\lambda_{\max}(\mathbf{H})}{\lambda_{\min}(\mathbf{H})},$$

где $\lambda_{\max}(\mathbf{H}), \lambda_{\min}(\mathbf{H})$ являются максимальным и минимальным собственными значениями \mathbf{H} . Большое число обусловленности $\varkappa(\mathbf{H})$ приводит к нестабильности процесса оптимизации. Предложенный алгоритм уменьшает размер матрицы Гессиана \mathbf{H} . В наших экспериментах это приводит к меньшему числу обусловленности $\varkappa(\mathbf{H})$.

Размер шага метода Ньютона может быть чрезмерно большим. Для управления размером шага обновлений добавим параметр η в правило обновления (3.4)

$$\boldsymbol{\theta}^k = \boldsymbol{\theta}^{k-1} + \eta \Delta \boldsymbol{\theta}^{k-1}, \quad \eta \in [0, 1].$$

Для выбора соответствующего размера шага η используется правило Армихо. Выбирается максимальное η так, чтобы выполнялось следующее условие

$$S(\boldsymbol{\theta}^{k-1} + \eta \Delta \boldsymbol{\theta}^{k-1}) < S(\boldsymbol{\theta}^{k-1}) + \gamma \eta \nabla S^{\mathsf{T}}(\boldsymbol{\theta}^{k-1}) \boldsymbol{\theta}^{k-1}, \quad \gamma \in [0, 0.5].$$

Модель нелинейной регрессии

Предположим, что модель $f(\mathbf{x}, \boldsymbol{\theta})$ близка к линейной в окрестности точки $\boldsymbol{\theta} + \Delta \boldsymbol{\theta}$

$$f(X, \theta + \Delta \theta) \approx f(X, \theta) + J \cdot \Delta \theta$$

где $\mathbf{J} \in \mathbb{R}^{m \times p}$ является матрицы Якоби

$$\mathbf{J} = \begin{pmatrix} \frac{\partial f(\mathbf{x}_1, \boldsymbol{\theta})}{\partial \theta_1} & \cdots & \frac{\partial f(\mathbf{x}_1, \boldsymbol{\theta})}{\partial \theta_p} \\ \cdots & \cdots & \cdots \\ \frac{\partial f(\mathbf{x}_m, \boldsymbol{\theta})}{\partial \theta_1} & \cdots & \frac{\partial f(\mathbf{x}_m, \boldsymbol{\theta})}{\partial \theta_p} \end{pmatrix}. \tag{3.7}$$

В соответствии с этим предположением градиент $\nabla S(\boldsymbol{\theta})$ и Гессиан матрицы **H** функции ошибки (3.2) равняются

$$\nabla S(\boldsymbol{\theta}) = \mathbf{J}^{\mathsf{T}}(\mathbf{y} - \mathbf{f}), \quad \mathbf{H} = \mathbf{J}^{\mathsf{T}}\mathbf{J}. \tag{3.8}$$

Это приводит к методу Гаусса-Ньютона и правилу обновления (3.4)

$$\boldsymbol{\theta}^k = \boldsymbol{\theta}^{k-1} + (\mathbf{J}^{\mathsf{T}}\mathbf{J})^{-1}\mathbf{J}^{\mathsf{T}}(\mathbf{f} - \mathbf{y}).$$

Вектор обновления $\Delta \boldsymbol{\theta}$ является решением задачи линейной регрессии

$$\|\mathbf{e} - \mathbf{F}\Delta\boldsymbol{\theta}\|_2^2 \to \min_{\Delta\boldsymbol{\theta} \in \mathbb{R}^p},$$
 (3.9)

где $\mathbf{e} = \mathbf{f} - \mathbf{y}$ и $\mathbf{F} = \mathbf{J}$.

В качестве нелинейной модели рассматривается модель двухслойной нейронной сеть. В этом случае модель $f(\mathbf{x}, \boldsymbol{\theta})$ задается следующим образом:

$$f(\mathbf{x}, \boldsymbol{\theta}) = \sigma(\mathbf{x}^{\mathsf{T}} \mathbf{W}_1) \mathbf{w}_2.$$

Здесь $\mathbf{W}_1 \in \mathbb{R}^{m \times h}$ – это матрица весов, которые соединяют исходные признаки с h скрытыми нейронами. Функция нелинейности $\sigma(\cdot)$ применяется поэлементно. Веса $\mathbf{w}_2 \in \mathbb{R}^{h \times 1}$ соединяют скрытые нейроны с выходом. Вектор параметров модели $\boldsymbol{\theta}$ представляет собой объединение векторизованных матриц \mathbf{W}_1 , \mathbf{w}_2 .

Модель логистической регрессии

Для логистической регрессии модель имеет вид $f(\mathbf{x}, \boldsymbol{\theta}) = \sigma(\mathbf{x}^{\mathsf{T}} \boldsymbol{\theta})$ с сигмоидной функцией активации $\sigma(\cdot)$. Градиент и Гессиан функции ошибки (3.3) равны

$$\nabla S(\boldsymbol{\theta}) = \mathbf{X}^{\mathsf{T}}(\mathbf{f} - \mathbf{y}), \quad \mathbf{H} = \mathbf{X}^{\mathsf{T}} \mathbf{R} \mathbf{X},$$
 (3.10)

где \mathbf{R} – это диагональная матрица с диагональными элементами $f(\mathbf{x}_i, \boldsymbol{\theta}) \cdot (1 - f(\mathbf{x}_i, \boldsymbol{\theta}))$.

Правило обновления (3.4) в этом случае

$$\boldsymbol{\theta}^k = \boldsymbol{\theta}^{k-1} + (\mathbf{X}^{^\mathsf{T}} \mathbf{R} \mathbf{X})^{-1} \mathbf{X}^{^\mathsf{T}} (\mathbf{y} - \mathbf{f}).$$

Этот алгоритм известен как итеративный алгоритм взвешенных наименьших квадратов (IRLS). Вектор обновлений $\Delta \mathbf{w}$ является решением задачи линейной регрессии

$$\|\mathbf{e} - \mathbf{F}\Delta\boldsymbol{\theta}\|_2^2 \to \min_{\Delta\boldsymbol{\theta} \in \mathbb{R}^p},$$
 (3.11)

где $\mathbf{e} = \mathbf{R}^{-1/2}(\mathbf{y} - \mathbf{f})$ и $\mathbf{F} = \mathbf{R}^{1/2}\mathbf{X}$.

3.3. Метод Ньютона с выбором параметром с помощью квадратичного программирования

Предлагается реализовать алгоритм QPFS для решения задач (3.9) и (3.11). QPFS матрица ${\bf Q}$ и вектор ${\bf b}$ имеют вид

$$\mathbf{Q} = \mathrm{Sim}(\mathbf{F}), \quad \mathbf{b} = \mathrm{Rel}(\mathbf{F}, \mathbf{e}).$$

Выборочный коэффициент корреляции равен нулю для ортогональных векторов. Покажем, что в оптимальной точке θ^* вектор \mathbf{e} ортогонален столбцам матрицы \mathbf{F} . В этом случае вектор $\mathbf{b} = \mathrm{Rel}(\mathbf{F}, \mathbf{e})$ равен нулю. Это означает, что член, учитывающий релевантность, в данном случае исключается. Условие оптимизации первого порядка гарантирует это свойство для модели нелинейной регрессии

$$\mathbf{F}^{\mathsf{T}} \mathbf{e} = \mathbf{J}^{\mathsf{T}} (\mathbf{f} - \mathbf{y}) = -\nabla S(\boldsymbol{\theta}^*) = \mathbf{0},$$

и для модели логистической регрессии

$$\mathbf{F}^{\mathsf{T}}\mathbf{e} = \mathbf{X}\mathbf{R}^{-1/2}\mathbf{R}^{1/2}(\mathbf{y} - \mathbf{f}) = \mathbf{X}^{\mathsf{T}}(\mathbf{y} - \mathbf{f}) = \nabla S(\boldsymbol{\theta}^*) = \mathbf{0}.$$

Псевдокод предлагаемого алгоритма приведён в алгоритме 2.

Algorithm 2 QPFS + Ньютон алгоритм

```
Вход: \varepsilon – допустимое отклонение;
                  	au – пороговое значение;
                  \gamma — параметр правила Армихо.
Выход: \theta^*;
     инициализировать \boldsymbol{\theta}^0;
     k := 1;
     повторять
           вычислить \mathbf{e} и \mathbf{F} для (3.9) или (3.11);
           \mathbf{Q} := \operatorname{Sim}(\mathbf{F}), \ \mathbf{b} := \operatorname{Rel}(\mathbf{F}, \mathbf{e}), \ \alpha = \frac{\overline{\mathbf{Q}}}{\overline{\mathbf{Q}} + \overline{\mathbf{b}}};
           \mathbf{a} := \underset{\mathbf{a} \geqslant 0, \|\mathbf{a}\|_1 = 1}{\arg\min} \, \mathbf{a}^{\mathsf{T}} \mathbf{Q} \mathbf{a} - \alpha \cdot \mathbf{b}^{\mathsf{T}} \mathbf{a};
           \mathcal{A} := \{j : a_j = 1\};
           вычислить \nabla S(\boldsymbol{\theta}^{k-1}), H для (3.8) или (3.10);
           \Delta \boldsymbol{\theta}^{k-1} = -\mathbf{H}^{-1} \nabla S(\boldsymbol{\theta}^{k-1});

\eta := \operatorname{ArmijoRule}(\boldsymbol{\theta}^{k-1}, \gamma);

          \boldsymbol{\theta}_{\mathcal{A}}^{k} = \boldsymbol{\theta}_{\mathcal{A}}^{k-1} + \eta \Delta \boldsymbol{\theta}_{\mathcal{A}}^{k-1};
           k := k + 1;
     пока \frac{\| \pmb{\theta}^k - \pmb{\theta}^{k-1} \|}{\| \pmb{\theta}^k \|} < arepsilon
```


Рис. 3.1: Ландшафт функции ошибкиРис. 3.2: Релевантности параметров для логистической регрессии для логистической регрессии

3.4. Вычислительный эксперимент

Целью вычислительного эксперимента является исследование свойств предложенного алгоритма и сравнение его с другими методами.

Исследована зависимость параметров алгоритма QPFS для задач (3.9), (3.11). Предположим, что вектор параметров $\boldsymbol{\theta}^0$ лежит вблизи оптимального вектора параметров $\boldsymbol{\theta}^*$. Рассмотрим отрезок

$$\boldsymbol{\theta}_{\beta} = \beta \boldsymbol{\theta}^* + (1 - \beta) \boldsymbol{\theta}^0; \ \beta \in [0, 1].$$

Сгенерируем синтетический набор данных с 300 объектами и 7 признаками для задачи логистической регрессии. Ландшафт функции ошибки (3.3) на сетке двух случайно выбранных параметров показан на рис. 3.1. Поверхность функции ошибки выпуклая с вытянутыми линиями уровня вдоль некоторых параметров модели. Добавим случайный шум к оптимальным параметрам θ^* , чтобы получить точку θ^0 . Поведение вектора \mathbf{b} на отрезке между θ^0 и θ^* показано на рис. 3.2. Компоненты \mathbf{b} начинают резко уменьшаться, приближаясь к оптимальной точке.

Для модели нелинейной регрессии используется классический набор данных Boston Housing с 506 объектами и 13 признаками. Для простоты нейронная сеть

Рис. 3.4: Релевантности параметров Рис. 3.3: Ландшафт функции ошибки первого слоя для модели нейронной седля нейронной сети

содержит два скрытых нейрона. Ландшафт функции ошибок для модели нейронной сети является более сложным. Он не выпуклый и может содержать несколько локальных минимумов. Двумерный ландшафт функции ошибок для этого набора данных показан на рис. 3.3. Сетка строится для двух случайных весов из матрицы \mathbf{W}_1 . Мы используем ту же стратегию для исследования того, как вектор \mathbf{b} изменяется от $\boldsymbol{\theta}^0$ до $\boldsymbol{\theta}^*$. Результат показан на рис. 3.4. Компоненты вектора \mathbf{b} становятся близки к нулю вблизи оптимума. При достижении оптимального значения различные веса влияют на остатки модели \mathbf{e} .

На рис. 3.5 показан процесс оптимизации для предложенного алгоритма в случае логистической регрессии с двумя параметрами модели. Даже для двумерной задачи решение метода Ньютона нестабильно и число обусловленности матрицы Гессиана **H** может быть чрезвычайно большим. На каждом шаге алгоритма процедура QPFS выбирает параметры для оптимизации. В данном примере предложенный алгоритм выбирает и обновляет только один параметр на каждой итерации на первых шагах. Это делает алгоритм более устойчивым.

На рис. 3.6 показаны наборы активных параметров на итерациях для набора данных Boston Housing и нейронной сети с двумя скрытыми нейронами. Темные

Рис. 3.5: Оптимизационный процесс предложенного алгоритма QPFS+Ньютон для модели логистической регрессии

ячейки соответствуют активным параметрам, которые мы оптимизируем.

Рис. 3.6: Множества активных параметров на протяжении оптимизационного процесса

В рассмотренных примерах число обусловленности $\varkappa(\mathbf{H})$ для метода Ньютона на некоторых итерациях было чрезвычайно большим. Выбор активных параметров позволил значительно сократить число обусловленности.

Мы сравнили предложенный алгоритм с существующими методами, а имен-

но градиентным спуском (GD), моментом Нестерова, Adam и оригинальным алгоритмом Ньютона. Проведены эксперименты для моделей нелинейной и логистической регрессий. Наборы данных были выбраны из репозитория UCI [12]. Результаты показаны в таблицах 3.1 и 3.2. Для каждого набора данных две строки содержат ошибки для тренировочной (первая строка) и тестовой (вторая строка) выборок. В таблице 3.1 приведена квадратичная ошибка, в таблице 3.2 – кросс-энтропия. Чтобы найти среднюю ошибку и ее стандартное отклонение использовалась процедура кросс валидации на 5 фолдов. Предложенный алгоритм показывает меньшую ошибку на трех из четырех наборов данных для нелинейной регрессии и среди двух из трех наборов данных для логистической регрессии.

Таблица 3.1: Средняя квадратичная ошибка на тренировочной и тестовой выборках для модели нелинейной регрессии

Выборка	m n	GD	Нестеров	ADAM	Ньютон	QPFS+Ньютон
Boston House	506	27.2 ± 4.6	46.0 ± 11.0	35.4 ± 2.5	22.1 ± 15.2	20.9 ± 10.4
Prices	13	32.4 ± 5.6	53.3 ± 11.5	37.8 ± 7.0	28.9 ± 13.6	24.5 ± 9.4
Communities	1994	48.0 ± 6.4	31.4 ± 2.8	23.3 ± 3.7	18.3 ± 3.4	26.7 ± 3.1
and Crime	99	$47,5 \pm 6.5$	32.9 ± 4.3	$28,1\pm4.5$	28.8 ± 3.6	28.4 ± 3.0
Forest	517	18.9 ± 0.4	1.83 ± 0.4	1.81 ± 0.6	17.7 ± 0.4	17.9 ± 0.4
Fires	10	20.0 ± 2.1	20.2 ± 2.2	20.0 ± 2.0	20.6 ± 1.4	20.2 ± 2.2
Residential	372	51.6 ± 17.7	32.6 ± 19.5	30.0 ± 24.8	35.5 ± 24.7	30.3 ± 10.7
Building	103	53.7 ± 13.9	34.1 ± 13.6	34.1 ± 19.4	35.0 ± 15.6	30.9 ± 5.3

Таблица 3.2: Среднее значение кросс-энтропии на тренировочной и тестовой выборках для модели логистической регрессии

Выборка	n	GD	Нестеров	ADAM	Ньютон	QPFS+Ньютон
Breast	569	0.6 ± 0.1	0.4 ± 0.1	0.8 ± 0.2	0.3 ± 0.1	0.2 ± 0.1
Cancer	30	$\boldsymbol{0.9 \pm 0.2}$	1.0 ± 0.7	1.2 ± 0.2	1.0 ± 0.2	1.1 ± 0.3
Cardiotocography	2126	11.5 ± 4.7	11.5 ± 4.7	8.8 ± 4.4	11.5 ± 5.7	7.7 ± 4.2
	21	11.6 ± 5.8	11.5 ± 5.7	9.0 ± 2.6	11.5 ± 4.7	$\textbf{7.7} \pm \textbf{4.7}$
Climate Model	540	1.2 ± 0.1	1.0 ± 0.2	1.5 ± 0.2	1.0 ± 0.5	0.8 ± 0.3
Simulation Crashes	18	1.4 ± 2.0	1.3 ± 0.7	1.8 ± 0.3	1.2 ± 0.5	$\boldsymbol{1.1 \pm 0.4}$

Глава 4 Метрические методы

связать все определения

4.1. Метрическое обучение в задачах кластеризации временных рядов

Пусть $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_m]^{\mathsf{T}} \in \mathbb{R}^{m \times n}$ — матрица плана. Объект $\mathbf{x}_i = [x_i^1, \dots, x_i^n]^{\mathsf{T}}$ задан в виде вектора в пространстве признаков. Требуется выявить кластерную структуру данных и разбить множество объектов \mathbf{X} на множество непересекающихся кластеров, т. е. построить отображение

$$f: \mathbf{X} \to \{1, \dots, r\}.$$

Обозначим $y_i = f(\mathbf{x}_i), y_i \in \{1, \dots, r\}$, — метка кластера объекта \mathbf{x}_i . Необходимо выбрать метки кластеров $\{y_i\}_{i=1}^m$ таким образом, чтобы расстояния между кластерами были максимальными. Центроид $\boldsymbol{\mu}$ множества объектов \mathbf{X} и центроиды кластеров $\{\boldsymbol{\mu}_j\}_{j=1}^r$ вычисляются по формулам:

$$\boldsymbol{\mu} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i; \quad \boldsymbol{\mu}_j = \frac{\sum_{i=1}^{m} [y_i = y_j] \mathbf{x}_i}{\sum_{i=1}^{m} [y_i = y_j]}.$$
 (4.1)

Введем на множестве объектов Х расстояние Махаланобиса

$$\rho_{\mathbf{A}}(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(\mathbf{x}_i - \mathbf{x}_j)^{\top} \mathbf{A}^{-1} (\mathbf{x}_i - \mathbf{x}_j)}, \qquad (4.2)$$

где ${f A}$ — это матрица ковариаций множества ${f X}$

$$\mathbf{A} = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^{\mathsf{T}}.$$
 (4.3)

Определение 6. Функцией ошибки кластеризации назовем межкластерное расстояние:

$$\mathcal{L}(\{\boldsymbol{\mu}_j\}_{j=1}^r, \mathbf{X}, \mathbf{y}) = -\sum_{j=1}^r N_j \rho_{\mathbf{A}}^2(\boldsymbol{\mu}_j, \boldsymbol{\mu}), \qquad (4.4)$$

где $N_j = \sum_{i=1}^m [y_i = y_j]$ — число объектов в кластере j.

Поставим задачу кластеризации как задачу минимизации функции ошиб-ки (4.4)

$$(\{\boldsymbol{\mu}_j\}_{j=1}^r, \mathbf{X}, \mathbf{y}) \to \min_{\boldsymbol{\mu}_j \in \mathbb{R}^\mathsf{T}}.$$
 (4.5)

Для решения этой задачи предлагается применить метод метрического обучения к ковариационной матрице **A**. Найдем такую матрицу **A**, для которой функционал качества принимает максимальное значение:

$$\mathbf{A}^* = \operatorname*{arg\,min}_{\mathbf{A} \in \mathbb{R}^{n \times n}} S\left(\{\boldsymbol{\mu}_j^*\}_{j=1}^r, \mathbf{X}, \mathbf{y}\right), \tag{4.6}$$

где $\{\boldsymbol{\mu}_j^*\}_{j=1}^r$ — решение задачи кластеризации (4.5).

4.2. Алгоритм адаптивного метрического обучения

Для решения задач (4.5), (4.6) используется алгоритм адаптивного метрического обучения. Предлагается понизить размерность пространства объектов \mathbf{X} с помощью линейного ортогонального преобразования $\mathbf{P} \in \mathbb{R}^{n \times l}$, $\mathbf{P^TP} = \mathbf{I}$, где новая размерность l < n

$$\mathbf{t}_i = \mathbf{P}\mathbf{x}_i \in \mathbb{R}^l, \quad i = 1, \dots, m.$$

Центроид $\hat{\boldsymbol{\mu}}$ множества объектов $\{\mathbf{t}_i\}_{i=1}^m$ вычисляется по формуле (4.1). Расстояния между объектами вычисляются по формуле (4.2), где в качестве матрицы $\hat{\mathbf{A}}$ используется матрица ковариаций (4.3) множества объектов $\{\hat{\mathbf{x}}_i\}_{i=1}^m$

$$\hat{\mathbf{A}} = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{t}_i - \hat{\boldsymbol{\mu}}) (\mathbf{t}_i - \hat{\boldsymbol{\mu}})^{\mathsf{T}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{P} (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} = \mathbf{P} \mathbf{A} \mathbf{P}^{\mathsf{T}}.$$

Определение 7. Индикаторной матрицей назовем матрицу $\mathbf{Y} = \{y_{ij}\} \in \mathbb{R}^{m \times r},$ где

$$y_{ij} = \begin{cases} 1, & \text{если } f(\mathbf{x}_i) = y_j; \\ 0, & \text{если } f(\mathbf{x}_i) \neq y_j. \end{cases}$$

Определение 8. Взвешенной индикаторной матрицей назовем матрицу $\mathbf{L} = \mathbf{Y}(\mathbf{Y}^{\mathsf{T}}\mathbf{Y})^{-1/2} = \{l_{ij}\} \in \mathbb{R}^{m \times r}$, элементы которой равны:

$$l_{ij} = \begin{cases} rac{1}{\sqrt{N_j}}, & \text{если } f(\mathbf{x}_i) = y_j; \\ 0, & \text{если } f(\mathbf{x}_i) \neq y_j. \end{cases}$$

Теорема 2. С использованием данных обозначений задача кластеризации (4.5) и задача метрического обучения (4.6) сводятся к общей задаче минимизации функции ошибки [13]

$$\mathcal{L} = -\frac{1}{m} \operatorname{trace}(\mathbf{L}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} \hat{\mathbf{A}}^{-1} \mathbf{P} \mathbf{X} \mathbf{L}) = -\frac{1}{m} \operatorname{trace}(\mathbf{L}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} (\mathbf{P} \mathbf{A} \mathbf{P}^{\mathsf{T}})^{-1} \mathbf{P} \mathbf{X} \mathbf{L}) \to \min_{\mathbf{P}, \mathbf{L}}.$$
(4.7)

Для решения задачи (4.7) используется ЕМ алгоритм. На каждом шаге итеративно вычисляются текущие оптимальные значения матриц \mathbf{P} и \mathbf{L} . На E-шаге необходимо найти матрицу \mathbf{L} , которая является решением оптимизационной задачи (4.7) при фиксированной матрице \mathbf{P} . В качестве начального приближения получим взвешенную индикаторную матрицу \mathbf{L} с помощью алгоритма кластеризации k-средних с евклидовой метрикой. На M-шаге производится нахождение оптимального значения матрицы \mathbf{P} при фиксированной матрице \mathbf{L} . Алгоритм завершается при стабилизации функционала \mathcal{L} на последовательности итераций.

Алгоритм k-средних

В данной работе базовым алгоритмом для сравнения является алгоритм k-средних. На первом шаге алгоритм выбирает из множества \mathbf{X} случайным образом r объектов $\{\boldsymbol{\mu}_j\}_{j=1}^r$ — начальные центроиды кластеров. Для каждого объекта \mathbf{x}_i вычисляется расстояние (4.2) до каждого центроида кластера $\boldsymbol{\mu}_j$ с единичной матрицей трансформаций \mathbf{A} . Объект \mathbf{x}_i относится к кластеру, расстояние до которого оказалось наименьшим. Далее производится вычисление новых центроидов кластеров по формуле (4.1). Алгоритм завершается, если значения центроидов кластеров стабилизируются.

Оптимизация матрицы Р с фиксированной матрицей L

Для любых двух квадратных матриц \mathbf{A} и \mathbf{B} справедливо $\mathrm{trace}(\mathbf{A}\mathbf{B}) = \mathrm{trace}(\mathbf{B}\mathbf{A})$. Данное свойство позволяет переформулировать задачу (4.7) следующим образом:

$$\mathcal{L} = -\frac{1}{m} \operatorname{trace}(\mathbf{L}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} (\mathbf{P} \mathbf{A} \mathbf{P}^{\mathsf{T}})^{-1} \mathbf{P} \mathbf{X} \mathbf{L}) = -\frac{1}{m} \operatorname{trace}((\mathbf{P} \mathbf{A} \mathbf{P}^{\mathsf{T}})^{-1} \mathbf{P} \mathbf{X} \mathbf{L} \mathbf{L}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{P}^{\mathsf{T}}).$$

Теорема 3. Обозначим $\mathbf{B} = \mathbf{X} \mathbf{L} \mathbf{L}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}}$. Обозначим через $\mathbf{P} = [\mathbf{v}_1, \dots, \mathbf{v}_r]^{\mathsf{T}}$ матрицу, состоящую из r собственных векторов матрицы $\mathbf{A}^{-1} \mathbf{B}$, отвечающих наибольшим собственным значениям. Тогда решением (4.7) является ортогональная матрица, полученная QR-разложением матрицы \mathbf{P}^{T} .

 \mathcal{A} оказательство. Функция ошибки \mathcal{L} зависит только от матрицы \mathbf{P} . Обозначим

$$s(\mathbf{P}) = \operatorname{trace}((\mathbf{P}\mathbf{A}\mathbf{P}^{\mathsf{T}})^{-1}\mathbf{P}\mathbf{B}\mathbf{P}^{\mathsf{T}}).$$

На данном шаге задача (4.7) принимает вид:

$$\mathbf{P}^* = \operatorname*{arg\,max}_{\mathbf{P} \in \mathbb{R}^{n \times l}} s(\mathbf{P}); \tag{4.8}$$

$$\mathbf{PP}^{\mathsf{T}} = \mathbf{I}.\tag{4.9}$$

Ранг произведения матриц не превосходит рангов сомножителей, поэтому ранг матрицы \mathbf{B} не превосходит r. Решением (4.8) является матрица $\mathbf{P} = [\mathbf{v}_1, \dots, \mathbf{v}_r]^\mathsf{T}$, состоящая из r собственных векторов матрицы $\mathbf{A}^{-1}\mathbf{B}$, отвечающих наибольшим собственным значениям. Таким образом, размерность нового пространства объектов будет равна количеству кластеров r.

В общем случае матрица ${\bf P}$ не является ортогональной. Заметим, что для любой невырожденной матрицы ${\bf P}$ верно $s({\bf P})=s({\bf MP})$. Для учета условия ортогональности (4.9) найдем QR-разложение матрицы ${\bf P}$. Тогда ортогональная матрица ${\bf Q}$ является оптимальным значением ${\bf P}^*$.

Оптимизация матрицы L с фиксированной матрицей P

Теорема 4. Обозначим $\hat{\mathbf{K}} = (1/N)\mathbf{X}^{\mathsf{T}}\mathbf{P}^{\mathsf{T}}\hat{\mathbf{A}}^{-1}\mathbf{P}\mathbf{X}$. Тогда задача (4.7) эквивалентна задаче кластеризации k-средних с заданным ядром $\hat{\mathbf{K}}$ [14].

При фиксированной матрице Р задача (4.7) принимает вид:

$$\operatorname{trace}(\mathbf{L}^{\top}\hat{\mathbf{K}}\mathbf{L}) \to \max_{\mathbf{L} \in \mathbf{R}^{m \times r}}.$$

Матрица $\hat{\mathbf{K}}$ является симметричной и неотрицательно определенной, тем самым может быть выбрана в качестве ядра.

4.3. Постановка задачи

Пусть объект $\mathbf{x}_i \in \mathbb{R}^n$ — временной ряд, последовательность измерений некоторой исследуемой величины в различные моменты времени. Пусть \mathbf{X} — множество всех временных рядов фиксированной длины $n, Y = \{1, \dots, K\}$ — множество меток классов. Пусть задана выборка $\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{\ell}$ — множество объектов с известными метками классов $y_i \in Y$.

Требуется построить точную, простую, устойчивую модель классификации

$$a: \mathbf{X} \to Y$$
.

Данную модель представим в виде суперпозиции

$$a(\mathbf{x}) = b \circ \mathbf{f} \circ G(\mathbf{x}, \{\mathbf{c}_e\}_{e=1}^K), \tag{4.10}$$

где G — процедура выравнивания временных рядов относительно центроидов классов $\{\mathbf{c}_e\}_{e=1}^K$, \mathbf{f} — алгоритм метрического обучения, b — алгоритм многоклассовой классификации.

4.3.1. Выравнивание временных рядов.

Для повышения качества и устойчивости алгоритма классификации предлагается провести выравнивание временных рядов каждого класса относительно центроида.

Пусть \mathbf{X}_e — множество объектов обучающей выборки \mathfrak{D} , принадлежащих одному классу $e \in \{1,\ldots,K\}$. Центроидом множества объектов $\mathbf{X}_e = \{\mathbf{x}_i|y_i=e\}_{i=1}^\ell$ по расстоянию ρ назовем вектор $\mathbf{c}_e \in \mathbb{R}^n$ такой, что

$$\mathbf{c}_e = \underset{\mathbf{c} \in \mathbb{R}^n}{\operatorname{argmin}} \sum_{\mathbf{x}_i \in \mathbf{X}_e} \rho(\mathbf{x}_i, \mathbf{c}). \tag{4.11}$$

Для нахождения центроида предлагается в качестве расстояния между временными рядами использовать путь наименьшей стоимости [?], найденный методом динамической трансформации времени. Псевдокод решения оптимизационной задачи (4.11) приведен в алгоритме 3.

$\overline{\text{Algorithm 3}}$ Нахождение центроида DBA(\mathbf{X}_e , n iter)

Вход: \mathbf{X}_e — множество временных рядов, принадлежащих одному и тому же классу, n_iter — количество итераций алгоритма.

Выход: \mathbf{c} — центроид множества \mathbf{X}_e .

1: задать начальное приближение приближение центроида ${f c}$;

2: для
$$i = 1, ..., n_{iter}$$

- 3: для $\mathbf{x} \in \mathbf{X}_e$
- 4: вычислить выравнивающий путь между \mathbf{c} и \mathbf{x} alignment(\mathbf{x}) := DTWalignment(\mathbf{c}, \mathbf{x});
- объединить поэлементно множества индексов для каждого отсчета времени

$$alignment := \bigcup_{\mathbf{x} \in \mathbf{X}_e} alignment(\mathbf{x});$$

6: $\mathbf{c} = \text{mean(alignment)}$

$\mathbf{DTWalignment}(\mathbf{c},\,\mathbf{x})$

 \mathbf{B} ход: \mathbf{c}, \mathbf{x} — временные ряды.

Выход: alignment — выравнивающий путь. // каждый индекс временного ряда ${\bf x}$ поставлен в однозначное соответствие индексу временного ряда ${\bf c}$

- 1: построить $n \times n$ -матрицу деформаций DTW $cost := DTW(\mathbf{c}, \mathbf{x});$
- 2: вычислить выравнивающий путь по матрице деформаций alignment := DTWpath(cost);

Общая процедура выравнивания имеет следующий вид:

- 1) построить множество центроидов классов $\{\mathbf{c}_e\}_{e=1}^K;$
- 2) по множеству центроидов найти пути наименьшей стоимости между каждым временным рядом \mathbf{x}_i и центроидом его класса \mathbf{c}_{y_i} ;
- 3) по каждому пути восстановить выравненный временной ряд;
- 4) привести множества выравненных временных рядов к нулевому среднему и нормировать на дисперсию.

Результатом выравнивания должно стать множество выравненных временных рядов.

4.3.2. Метрическое обучение.

Введем на множестве выравненных временных рядов расстояние Махаланобиса

$$d_{\mathbf{A}}(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(\mathbf{x}_i - \mathbf{x}_j)^{\mathsf{T}} \mathbf{A} (\mathbf{x}_i - \mathbf{x}_j)},$$

где матрица трансформаций $\mathbf{A} \in \mathbb{R}^{n \times n}$ является симметричной и неотрицательно определенной ($\mathbf{A}^\mathsf{T} = \mathbf{A}, \, \mathbf{A} \succeq 0$). Представим матрицу \mathbf{A} в виде разложения $\mathbf{A} = \mathbf{L}^\mathsf{T} \mathbf{L}$. Матрица $\mathbf{L} \in \mathbb{R}^{p \times n}$ — матрица линейного преобразования, где p задает размерность преобразованного пространства. Если параметр p < n, то происходит снижение размерности признакового пространства.

Расстояние $d_{\mathbf{A}}(\mathbf{x}_i, \mathbf{x}_j)$ есть евклидово расстояние между $\mathbf{L}\mathbf{x}_i$ и $\mathbf{L}\mathbf{x}_j$:

$$d_{\mathbf{A}}(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(\mathbf{x}_i - \mathbf{x}_j)^\mathsf{T} \mathbf{L}^\mathsf{T} \mathbf{L} (\mathbf{x}_i - \mathbf{x}_j)} = \sqrt{(\mathbf{L}(\mathbf{x}_i - \mathbf{x}_j))^\mathsf{T} (\mathbf{L}(\mathbf{x}_i - \mathbf{x}_j))} = \|\mathbf{L}(\mathbf{x}_i - \mathbf{x}_j)\|_2$$

В качестве алгоритма метрического обучения в данной работе был выбран алгоритм LMNN. Данный алгоритм сочетает в себе идеи метода k ближайших соседей. Первая идея заключается в минимизации расстояний между k ближайшими объектами, находящимися в одном классе. Запишем функционал качества в виде

$$Q_1(\mathbf{L}) = \sum_{j \leadsto i} \|\mathbf{L}(\mathbf{x}_i - \mathbf{x}_j)\|^2 \to \min_{\mathbf{L}},$$

где $j \leadsto i$ означает, что \mathbf{x}_j является одним из k ближайших соседей для \mathbf{x}_i . Вторая идея состоит в максимизации расстояния между каждым объектом и его объектами-нарушителями. Объектом-нарушителем для \mathbf{x}_i назовем объект \mathbf{x}_l такой, что

$$\|\mathbf{L}(\mathbf{x}_i - \mathbf{x}_l)\|^2 \le \|\mathbf{L}(\mathbf{x}_i - \mathbf{x}_j)\|^2 + 1$$
, где $j \leadsto i$. (4.12)

Таким образом, необходимо минимизировать следующий функционал:

$$Q_2(\mathbf{L}) = \sum_{j \leadsto i} \sum_{l} (1 - y_{il}) \left[1 + \|\mathbf{L}(\mathbf{x}_i - \mathbf{x}_j)\|^2 - \|\mathbf{L}(\mathbf{x}_i - \mathbf{x}_l)\|^2 \right]_+ \to \min_{\mathbf{L}},$$

где $y_{il} = 1$, если $y_i = y_l$, и $y_{il} = 0$ в противном случае. Положительная срезка позволяет штрафовать только те объекты, которые удовлетворяют условию (4.12).

Задача метрического обучения состоит в нахождении линейного преобразования $\mathbf{f}(\mathbf{x}) = \mathbf{L}\mathbf{x}$, то есть нахождении матрицы \mathbf{L} в виде решения оптимизационной задачи

$$Q(\mathbf{L}) = \mu Q_1(\mathbf{L}) + (1 - \mu)Q_2(\mathbf{L}) \to \min_{\mathbf{L}}, \tag{4.13}$$

где $\mu \in (0,1)$ — весовой параметр, определяющий вклад каждого из функционалов. Задача (4.13) представляет собой задачу полуопределенного программирования [?] и может быть решена существующими оптимизационными пакетами.

4.3.3. Классификация временных рядов.

Пусть $\mathbf{x} \in \mathbf{X}$ — неразмеченный временной ряд. Выравниваем временной ряд \mathbf{x} относительно всех центроидов классов

$$\hat{\mathbf{x}}_e = G(\mathbf{x}, \mathbf{c}_e),$$
 где $e = \{1, \dots, K\}.$

Отнесем временной ряд к классу, для которого минимально расстояние до соответствующего центроида. В качестве расстояния используем обученную метрику Махаланобиса с фиксированной матрицей ${\bf A}$

$$\hat{y} = \underset{e \in \{1, \dots, K\}}{\operatorname{argmin}} d_{\mathbf{A}}(\hat{\mathbf{x}}_e, \mathbf{c}_e).$$

После нахождения оптимальных центроидов классов и нахождения оптимальной матрицы трансформаций процедура классификации заключается в измерении расстояния между найденными центроидами и новыми неразмеченными объектами.

Для оценки качества работы алгоритма будем вычислять ошибку классификации как долю неправильно классифицированных объектов тестовой выборки **!**:

error =
$$\frac{1}{|\mathfrak{U}|} \sum_{i=1}^{|\mathfrak{U}|} [a(\mathbf{x}_i) \neq y_i].$$

4.4. Вычислительный эксперимент

В целях проверки работоспособности предложенного подхода проведен вычислительный эксперимент на модельных данных. Сгенерирована выборка объектов, принадлежащих одному из двух классов, в двумерном пространстве. Каждый объект принадлежит многомерному нормальному распределению. На рис. 1 показано истинное распределение объектов, черным цветом выделены истинные центры классов и линии уровня функции распределения.

Применим к данной выборке базовый алгоритм k-средних. Результат кластеризации показан на рис. 2, где черным цветом выделены найденные центры классов и линии уровня функции распределения, построенной по выборочной ковариационной матрице.

Взяв за начальное приближение результаты работы алгоритма k-средних, проведем кластеризацию с помощью алгоритма адаптивного метрического обучения. Результаты работы алгоритма продемонстрированы на рис. 3.

На рисунках заметно улучшение результатов кластеризации. Измеренная точность кластеризации алгоритма k-средних составила 0.76, алгоритма адаптивного метрического обучения — 0.94, что говорит о работоспособности данного подхода.

Таблица 4.1 показывает результаты вычислительного эксперимента на ре-

Рис. 4.1: Истинное распределение двумерных модельных данных

альных данных. Алгоритм был применен к 5 выборкам, взятых из репозитория UCI [12]. Оценкой качества кластеризации служит число правильно кластеризованных объектов. При кластеризации объектов на более чем два класса возникает проблема соотнесения истинных классов с полученными кластерами. Данная проблема была формализована в виде задачи о назначениях и решена с помощью венгерского алгоритма. Вычислительный эксперимент на реальных данных показал увеличение точности кластеризации при использовании метрического обучения.

4.5. Вычислительный эксперимент

Цель вычислительного эксперимента — проверить работоспособность предложенного подхода. Предполагается, что построенный алгоритм мультиклассовой классификации способен определить тип активности человека по форме сигнала акселерометра мобильного телефона.

Для проведения базового вычислительного эксперимента были подготов-

Рис. 4.2: Результат кластеризации алгоритмом k-средних

Рис. 4.3: Результат кластеризации алгоритмом адаптивного метрического обучения

Таблица 4.1: Результаты кластеризации

Выборка	Качество кластеризации			
	<i>k</i> -средних	AML		
Letter Recognition	0,356	0,428		
Optical Recognition of Handwritten Digits	0,758	0,790		
Seeds	0,833	0,881		
Image Segmentation	0,545	0,737		
Breast Cancer Wisconsin	0,960	0,956		

лены синтетические временные ряды, принадлежащие двум классам. Первый класс — синусы вида sin(x+b), где параметр b определяет сдвиг каждого временного ряда. Второй класс — пилообразные функции с различными сдвигами по временной шкале. На каждый временной ряд был наложен нормальный шум. Число временных рядов каждого класса = 60. Длина каждого временного ряда n=50.

Построенные центроиды классов проиллюстрированы на рис. 4.4. Из рисунка видно, что процедура корректно определяет сдвиги временных рядов.

Рис. 4.4: Центроиды синтетических временных рядов

Для того чтобы убедиться в целесообразности применения метрического обучения, данные временные ряды классифицировались в пространстве с евклидовой метрикой и в пространстве с метрикой Махаланобиса. Число ближайших соседей k=5, размерность преобразованного пространства p=40. Полученные ошибки классификации составили:

евклидова метрика — 27%

метрика Махаланобиса — 6%.

Реальные данные [15] представляли собой временные ряды акселерометра мобильного телефона. Каждый из шести классов соответствовал определенной физической активности испытуемых. Для проведения вычислительного эксперимента было выбрано по 200 объектов каждого класса. Длина каждого временного ряда равнялась n=128 отсчетам времени.

Построенные центроиды классов изображены на рис. 4.5. Найденные центроиды обладают периодичностью, свойственной временным рядам показаний активности человека. На рис. 4.6 показаны примеры временных рядов каждого

Рис. 4.5: Центроиды временных рядов акселерометра

класса. Эти же временные ряды после процедуры выравнивания относительно построенных центроидов изображены на рис. 4.7.

Ошибка классификации без использования метрического обучения составила 37,5%. Алгоритм LMNN позволяет настроить параметры: число ближайших соседей k, размерность преобразованного евклидова пространства p. Для выбора оптимальных параметров воспользуемся процедурой кросс-проверки. На

Рис. 4.6: Временные ряды акселерометра

Рис. 4.7: Выравненные временные ряды акселерометра

рис. 4.8 цветом показана ошибка классификации алгоритма в зависимости от его параметров. На данной выборке алгоритм LMNN оказывается слабо чувствителен к числу ближайших соседей, и при уменьшении размерности пространства объектов ошибка классификации растет.

Настроим алгоритм LMNN со следующими параметрами: число ближай- ших соседей k=30, размерность выходного пространства p=128. Ошибка

Рис. 4.8: Ошибка классификации в зависимости от параметров

классификации составила 17,25%, что вдвое меньше ошибки классификации с использованием евклидовой метрики.

Таблица 4.2: Матрицы несоответствий

(;	a)	Евклидова	метрика
----	----	-----------	---------

	Ис	Истинные метки классов									
	1	2	3	4	5	6					
1	80	0	5	0	0	0					
2	4	56	33	0	0	0					
3	5	5	86	0	0	0					
4	7	8	5	168	4	21					
5	51	61	57	12	192	11					
6	53	70	14	20	2	168					

(b) Метрика Махаланобиса

	И	Истинные метки классов										
	1	2	3	4	5	6						
1	151	12	13	0	0	0						
2	10	142	14	0	0	0						
3	9	10	171	0	0	0						
4	10	7	0	173	9	21						
5	2	11	0	12	186	9						
6	18	18	2	15	5	170						

В табл. 4.2 представлены матрицы несоответствий результатов классификации при использовании евклидовой метрики и метрики Махаланобиса. Столбцы соответствуют истинным меткам классов объектов, строки — предсказан-

ным меткам. Диагональное преобладание матрицы несоответствий указывает на высокую предсказательную способность алгоритма.

В табл. 4.3 продемонстрировано увеличение точности классификации при использовании в качестве меры расстояния метрики Махаланобиса. Пересечение i-го столбца и j-й строки отвечает изменению доли объектов класса i, отнесенных к классу j. Положительное суммарное значение диагональных элементов таблицы соответствует увеличению качества классификации. Значительное улучшение предсказания происходит при классификации первых трех классов. Данные классы соответствуют следующим видам физической активности: ходьба, ходьба вверх, ходьба вниз.

Таблица 4.3: Увеличение точности классификации при использовании адекватной оценки матрицы трансформаций

		Истинные метки классов											
	1	2	3	4	5	6							
1	0,355	0,06	0,04	0	0	0							
2	0,03	0,43	-0,095	0	0	0							
3	0,02	0,025	0,425	0	0	0							
4	0,015	-0,005	-0,025	0,025	0,025	0							
5	-0,245	-0,25	-0,28	0	-0,03	-0,01							
6	-0,175	-0,26	-0,06	-0,025	0,005	-0,01							

Глава 5

Порождение признаков с помощью метамоделей

5.1. Постановка задачи

Временные ряды акселерометра образуют множество $\mathcal S$ сегментов s фиксированной длины T:

$$s = [x_1, \dots, x_T]^T \in \mathbb{R}^T. \tag{5.1}$$

Необходимо построить модель классификации $f: \mathbb{R}^T \to Y$, которая будет ставить в соответствие каждому сегменту из множества $\mathcal S$ метку класса из конечного множества Y. Обозначим за

$$\mathcal{D} = \{(s_i, y_i)\}_{i=1}^m \tag{5.2}$$

исходная выборка, где $s_i \in \mathcal{S}$ и $y_i = f(s_i) \in Y$.

Авторы предлагают построить модель f в в де суперпозиции $f = f(\mathbf{g})$. Функция $\mathbf{g}: \mathbb{R}^T \to \mathbb{R}^n$ является отображением из пространства \mathbb{R}^T в признаковое пространство $G \subset \mathbb{R}^n$. Имея функцию порождения признаков \mathbf{g} , преобразуем исходную выборку (5.2) в

$$\mathcal{D}_G = \{(\mathbf{g}_i, y_i)\}_{i=1}^m,$$

где $\mathbf{g}_i = \mathbf{g}(s_i) \in G$.

Модель классификации $f=f(\mathbf{g},\theta)$ параметризована вектором $\boldsymbol{\theta}$. Оптимальные параметры $\hat{\theta}$ определяются оптимизацией функции ошибки классификации

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} L(\theta, \mathcal{D}_G, \mu). \tag{5.3}$$

Вектор μ является внешним параметром для заданной модели классификации. Примеры таких параметров и функций ошибки для различных моделей классификации приведены ниже.

Чтобы сравнить качество классификации с прошлыми результатами [16, 17], в качестве метрики качества используется точность классификации:

accuracy =
$$\frac{1}{m} \sum_{i=1}^{m} \left[f\left(\mathbf{g}(s_i), \hat{\theta}\right) = y_i \right].$$
 (5.4)

5.2. Порождение признаков

Цель данной работы — провести сравнение различных подходов к генерации признаков. В этом разделе проводится анализ рассматриваемых методов.

Экспертные функции. В качестве базового подхода будем использовать экспертные функции как функции порождения признаков. Экспертные функции — это некоторые статистики g_j , где $g_j: \mathbb{R}^T \to \mathbb{R}$. Признаковым описанием $\mathbf{g}(s)$ объекта s являются значения заданных экспертных статистик для данного объекта

$$\mathbf{g}(s) = [g_1(s), \dots, g_n(s)]^{\mathsf{T}}.$$

В работе [18] авторы предлагают использовать экспертные функции, приведенные в таблице 5.1. Такая процедура порождения признаков генерирует признаковое описание временного ряда $\mathbf{g}(s) \in \mathbb{R}^{40}$.

Таблица 5.1: Expert functions

Function description	Formula
Mean	$\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x_t$
Standard deviation	$\sqrt{\frac{1}{T}\sum_{t=1}^{T}(x_t-\bar{x})^2}$
Mean absolute deviation	$\frac{1}{T} \sum_{t=1}^{T} x_t - \bar{x} $
Distribution	Histogram values with 10 bins

Авторегрессионная модель. Авторегрессионная модель [19] порядка n использует параметрическую модель для аппроксимации временного ряда

s. Каждое значение временного ряда приближается линейной комбинацией предыдущих n-1 значений

$$x_t = w_0 + \sum_{j=1}^{n-1} w_j x_{t-j} + \varepsilon_t,$$

где ε_t — регрессионные остатки. Оптимальные параметры $\hat{\mathbf{w}}$ авторегрессионной модели используются как признаки $\mathbf{g}(s)$. Данные параметры минимизируют квадратичную ошибку аппроксимации временного ряда и предсказания модели

$$\mathbf{g}(s) = \hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{arg\,min}} \left(\sum_{t=n}^T \|x_t - \hat{x}_t\|^2 \right). \tag{5.5}$$

Задача (5.5) эквивалентна задаче линейной регрессии. Поэтому для каждого временного ряда s необходимо решить задачу линейной регрессии размера n. Пример аппроксимации временного ряда авторегрессионной моделью представлен на Рис. 5.1.

Рис. 5.1: Time series approximation using autoregressive model with order n=20

Анализ сингулярного спектра. Альтернативной гипотезой порождения признакового пространства для временного ряда является анализ сингулярного спектра (Singular Spectrum Analysis, SSA) [20]. Для каждого временного

ряда s из выборки \mathcal{D} строится траекторная матрица:

$$\mathbf{X} = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ x_2 & x_3 & \dots & x_{n+1} \\ & & & & \\ x_{T-n+1} & x_{T-n+2} & \dots & x_T \end{pmatrix}.$$

Здесь ширина окна n является внешним структурным параметром. Сингулярное разложение матрицы $\mathbf{X}^{\mathsf{T}}\mathbf{X}$:

$$X^{\mathsf{T}}X = U\Lambda U^{\mathsf{T}}$$

где \mathbf{U} — унитарная матрица и $\Lambda = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$ причём λ_i собственные значения $\mathbf{X}^\mathsf{T} \mathbf{X}$. Признаковое описание объекта s задаётся спектром матрицы $\mathbf{X}^\mathsf{T} \mathbf{X}$:

$$\mathbf{g}(s) = \left[\lambda_1, \dots, \lambda_n\right]^{\mathsf{T}}.$$

Spline Approximation. Предлагаемый метод аппроксимирует временные ряды с помощью сплайнов [21]. Сплайн определяется его параметрами: узлами и коэффициентами. Предполагается, что узлы сплайна $\{\xi_\ell\}_{\ell=0}^M$ равномерно распределены по временной оси. Кусочные модели, построенные на отрезках $[\xi_{\ell-1};\xi_\ell]$, заданы коэффициентами $\{\mathbf{w}_\ell\}_{\ell=1}^M$. Оптимальные параметры сплайна

Рис. 5.2: Time series approximation using three order splines

являются решением системы с дополнительными условиями равенства произ-

водных до второго порядка включительно на концах отрезков. Обозначим каждый отрезок-сегмент $p_i(t)$ $i=1,\ldots,M$ и весь сплайн S(t). Тогда система уравнений принимает вид

$$S(t) = \begin{cases} p_1(t) = w_{10} + w_{11}t + w_{12}t^2 + w_{13}t^3, & t \in [\xi_0, \xi_1], \\ p_2(t) = w_{20} + w_{21}t + w_{22}t^2 + w_{23}t^3, & t \in [\xi_1, \xi_2], \\ \dots & \dots \\ p_M(t) = w_{L0} + w_{M1}t + w_{M2}t^2 + w_{M3}t^3, & t \in [\xi_{M-1}, \xi_M], \end{cases}$$

$$S(\xi_t) = x_t, \quad t = 0, \dots, M,$$

$$p'_i(\xi_i) = p'_{i+1}(\xi_i), p''_i(\xi_i) = p''_{i+1}(\xi_i), \quad i = 1, \dots, M-1,$$

$$p_i(\xi_{i-1}) = x_{i-1}, p_i(\xi_i) = x_i, \quad i = 1, \dots, M.$$

Объединение всех параметров сплайна задаёт признаковое описание временного ряда:

$$\mathbf{g}(s) = \left[\mathbf{w}_1, \dots, \mathbf{w}_M\right]^{\mathsf{T}}.$$

Рис. 5.2 показывает аппроксимацию временного ряда с использованием модели сплайнов. По сравнению с авторегрессионной моделью сплайны строят более гладкую аппроксимацию, используя такое же количество параметров.

5.3. Классификация временных рядов

Для классификации временных рядов будем использовать подход один против всех. Для каждого класса обучается бинарный классификатор, и на стадии предсказания объект классифицируется согласно наиболее уверенному классификатору. Использовались три модели классификации: логистическая регрессия, SVM и случайный лес.

Логистическая регрессия. Оптимальные параметры модели $\hat{\mathbf{w}}, \hat{b}$ в случае логистической регрессии определяются минимизацией функции ошиб-

ки (5.3)

$$L(\theta, \mathcal{D}_G, \mu) = \sum_{i=1}^m \log(1 + \exp(-y_i[\mathbf{w}^\mathsf{T} \mathbf{g}_i + b])) + \frac{\mu}{2} ||\mathbf{w}||^2, \text{ where } \theta = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}.$$

Решающее правило $f(\mathbf{g}, \theta)$ — знак линейной комбинации описания объекта \mathbf{g} и параметров $\hat{\theta}$

$$\hat{y} = f(\mathbf{g}, \hat{\theta}) = \operatorname{sgn}(\mathbf{g}^{\mathsf{T}} \hat{\mathbf{w}} + \hat{b}).$$

SVM. Оптимизационная задача метода SVM имеет вид

$$\hat{\theta} = \begin{pmatrix} \hat{\mathbf{w}} \\ \hat{b} \\ \hat{\xi} \end{pmatrix} = \underset{\mathbf{w}, b, \xi}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{w}\|^2 + \mu \sum_{i=1}^{m} \xi_i, \text{ s.t. } y_i \left(\mathbf{w}^{\mathsf{T}} \mathbf{g}_i + b\right) \geqslant 1 - \xi_i,$$
$$\xi_i \geqslant 0, \quad 1 \leqslant i \leqslant m.$$

Целевая функция соответствует функции ошибки классификации $L(\theta, \mathcal{D}_G, \mu)$. Предсказание для нового объекта вычисляется аналогично $\hat{y} = \operatorname{sgn}(\mathbf{g}^{\mathsf{T}}\hat{\mathbf{w}} + \hat{b})$.

Случайный лес. Случайный лес использует идею бэггинга. Идея состоит в построении многих слабых, неустойчивых классификатов на подвыборках с возвращениями и усреднения их предсказаний. Метод предполагает использование в качестве базовых классификаторов моделей с низким смещением и высокой дисперсией. Усреднение позволяет уменьшить дисперсию. В случае случайного леса базовой моделью выступают решающие деревья. Идея бэггинга используется не только для самих объектов, но и для множества признаков. В данном случае предсказание для нового объекта получается усреднением всех предсказаний отдельных деревьев:

$$\hat{y} = \operatorname{sgn}\left(\frac{1}{B}\sum_{i=1}^{B}\operatorname{pred}(\mathbf{g}_i)\right),$$

где B — количество деревьев в композиции.

5.4. Вычислительный эксперимент

В данной работе эксперименты проводились на двух датасетах временных рядов акселерометра мобильного телефона: WISDM [15] и USC-HAD [22]. Акселерометр мобильного телефона проводит измерение ускорения по трём осям с частотой 100 Hz. Данные WISDM содержат 4321 временной ряд. Каждый временной ряд прнадлежит к одному из 6 классов. Данные USC-HAD содержат 13620 временных рядов, принадлежащих одному из 12 классов. В таблице 5.2 представлено распределение временных рядов по классам для каждого датасета. Длина временного ряда равна 200. На рис. 5.3 представлен пример одного из временных рядов.

Таблица 5.2: Distributions of the classes

(a) WISDM

Activity # objects Standing 5.30 % 229 1 Walking 44.36 % 1917 Upstairs 466 10.78 % 6.41 %4 Sitting 277 24.88 %Jogging 1075 Downstairs 357 8.26 % Total 4321

(b) USC-HAD

	Activity	# objects	
1	Standing	1167 8.57	%
2	Elevator-up	764 5.61	%
3	Walking-forward	1874 13.76	%
4	Sitting	1294 9.50	%
5	Walking-downstairs	951 6.98	%
6	Sleeping	1860 13.66	%
7	Elevator-down	763 5.60	%
8	Walking-upstairs	1018 7.47	%
9	Jumping	495 3.63	%
10	Walking-right	1305 9.58	%
11	Walking-left	1280 9.40	%
12	Running	849 6.23	%
	Total	13620	

Рис. 5.3: Time series example

 ${\it Puc.}$ 5.4: Multiclass accuracy score

В эксперименте для каждого датасета были порождены признаки одним из методов: экспертные функции, авторегрессионная модель, SSA и сплайны. Для каждой процедуры порождения признаквого описания настроивались три мо-

дели классификации: логистическая регрессия, SVM и случайный лес. Внешние структурные параметры (длина авторегрессионной модели n, ширина окна SSA n, число узлов сплайна M) настраивались процедурой кросс-валидации:

$$CV(K) = \frac{1}{K} \sum_{k=1}^{K} L(f_k, \mathcal{D} \setminus \mathcal{C}_k), \tag{5.6}$$

где $C_k - \frac{K-1}{K}$ доля от всей выборки, используемая для обучения модели f_k . Гиперпараметры $\pmb{\mu}$ моделей классификации были настроаны той же процедурой кросс-валидации.

Первый подход к порождению признаков временных рядов —экспертные функции. Основной недостаток такого подхода необходимость экспертного задания функций и возможности вычисления их для конкретного датасета.

Авторегрессионная модель требует задания параметра длины модели n. Процедура кросс-валидации дала наибольшее качество при n=20 для обоих датасетов.

Модель SSA была настроена аналошгичной процедурой выбора оптимальных гиперпараметров. Конечная модель имела ширину окна n=20.

Для аппроксимации временных рядов кубическими сплайнами [21] использовалась библиотека scipy. Узлы сплайнов $\{\xi_\ell\}_{\ell=1}^M$ были распределены равномерно по временной оси. Значение параметра M было подобрано на кроссвалидации.

Для обоих датасетов процедуры порождения признаковых описаний дали следующие количества признаков: экспертные функции -40; авторегрессионная модель -60; анализ сингулярного спектра -60; сплайны -33.

На рис. 5.4 показано качество классификации (5.4) для двух датасетов. Для данных WISDM сплайны дали самое слабое качество классификации. Результаты для экспертных функций, авторегрессионной модели и SSA схожи. Для данных USC-HAD результат более восприимчив к выбору модели классификации. Для обоих датасетов логистическая регрессия продемонстрировала наименьшее качество, SVM и случайный лес показали почти одинаковое качество.

Рис. 5.5: Accuracy scores of classification of each class using all features

Для датасета USC-HAD модель с использованием аппроксимации сплайнами показала сравнимое с другими методами качество.

В Табл. 5.3 и Табл. 5.4 представлены результаты классификации (5.4) для

Таблица 5.3: Binary accuracy scores for WISDM using different feature generation methods: EX — Expert, AR — Auto-Reg, SSA and SPL for Splines

	Logistic Regression				Random Forest				SVM			
	EX	AR	SSA	SPL	EX	AR	SSA	SPL	EX	AR	SSA	SPL
All	0.85	0.91	0.84	0.58	0.93	0.93	0.92	0.79	0.93	0.95	0.95	0.77
Standing	0.99	0.98	1.00	0.95	1.00	0.99	1.00	0.99	0.99	0.98	1.00	0.96
Walking	0.91	0.96	0.86	0.61	0.96	0.97	0.95	0.86	0.96	0.98	0.98	0.84
Upstairs	0.91	0.95	0.91	0.89	0.96	0.96	0.96	0.90	0.96	0.98	0.97	0.89
Sitting	0.99	0.98	1.00	0.99	1.00	0.99	1.00	1.00	0.99	0.98	1.00	1.00
Jogging	0.98	0.99	0.99	0.80	0.99	0.99	0.99	0.92	0.99	0.99	0.99	0.93
Downstairs	0.93	0.96	0.94	0.92	0.96	0.97	0.96	0.92	0.96	0.98	0.97	0.92

Таблица 5.4: Binary accuracy scores for USC-HAD using different feature generation methods: EX — Expert, AR — Auto-Reg, SSA and SPL for Splines

	Logistic Regression			Random Forest			SVM					
	EX	AR	SSA	SPL	EX	AR	SSA	SPL	EX	AR	SSA	SPL
All	0.67	0.65	0.64	0.41	0.87	0.70	0.84	0.74	0.80	0.65	0.82	0.74
Standing	0.94	0.94	0.92	0.89	0.98	0.94	0.97	0.98	0.95	0.94	0.97	0.96
Elevator-up	0.94	0.94	0.93	0.92	0.95	0.95	0.95	0.95	0.93	0.94	0.94	0.93
Walking-forward	0.87	0.87	0.89	0.70	0.97	0.89	0.96	0.88	0.95	0.87	0.97	0.91
Sitting	0.98	0.95	0.94	0.96	0.99	0.96	0.98	0.99	0.98	0.96	0.99	0.99
Walking-downstairs	0.95	0.93	0.93	0.90	0.99	0.96	0.98	0.95	0.98	0.93	0.98	0.96
Sleeping	1.00	0.98	0.99	1.00	1.00	0.98	1.00	1.00	1.00	0.98	1.00	1.00
Elevator-down	0.94	0.94	0.94	0.91	0.95	0.95	0.95	0.95	0.93	0.94	0.94	0.93
Walking-upstairs	0.94	0.95	0.93	0.92	0.98	0.95	0.98	0.96	0.98	0.95	0.98	0.96
Jumping	0.99	0.99	1.00	0.97	1.00	0.99	1.00	0.99	1.00	0.99	0.97	0.99
Walking-right	0.91	0.90	0.91	0.86	0.97	0.92	0.96	0.92	0.96	0.90	0.97	0.93
Walking-left	0.89	0.91	0.90	0.88	0.97	0.93	0.97	0.93	0.95	0.91	0.97	0.93
Running	0.99	0.99	0.99	0.92	1.00	0.99	1.00	0.97	1.00	1.00	0.95	0.98

каждого класса в отдельности. Первая строка в обеих таблицах демонстрирует точность по всем классам для каждой модели и процедуры генерации признаков. Следующие строки соответствуют бинарным точностям по каждому из классов. Для данных WISDM лучшее качество имеют наименее активные классы, такие как Standing и Sitting. Для USC-HAD заметного выделения качества

для определенных классов не наблюдается.

Также был проведён эксперимент с использованием объединённого множества всех 193 сгенерированных признаков. Результаты представлены на Рис. 5.5. Соответствие между номера классов и видами активности приведено в Табл. 5.2. Объединение признаков для обучения одной модели позволило увеличить качество. Для данных WISDM все точности классификации по классам больше 97%, а для USC-HAD выше 93%.

Глава 6 Анализ прикладных задач

Заключение

Литература

- 1. Hyonho Chun and Sündüz Keleş. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 72(1):3–25, 2010.
- 2. Tahir Mehmood, Kristian Hovde Liland, Lars Snipen, and Solve Sæbø. A review of variable selection methods in partial least squares regression. *Chemometrics and Intelligent Laboratory Systems*, 118:62–69, 2012.
- 3. A. M. Katrutsa and V. V. Strijov. Stress test procedure for feature selection algorithms. *Chemometrics and Intelligent Laboratory Systems*, 142:172–183, 2015.
- 4. Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and Huan Liu. Feature selection: A data perspective. *ACM Computing Surveys (CSUR)*, 50(6):94, 2017.
- 5. Paul Geladi. Notes on the history and nature of partial least squares (PLS) modelling. *Journal of Chemometrics*, 2(January):231–246, 1988.
- 6. Kentaro Shimoda, Yasuo Nagasaka, Zenas C Chao, and Naotaka Fujii. Decoding continuous three-dimensional hand trajectories from epidural electrocorticographic signals in japanese macaques. *Journal of neural engineering*, 9(3):036015, 2012.
- 7. Zenas C Chao, Yasuo Nagasaka, and Naotaka Fujii. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey. *Frontiers in neuroengineering*, 3:3, 2010.
- 8. Andrey Eliseyev and Tetiana Aksenova. Penalized multi-way partial least squares for smooth trajectory decoding from electrocorticographic (ecog) recording. *PloS one*, 11(5):e0154878, 2016.
- 9. Irene Rodriguez-Lujan, Ramon Huerta, Charles Elkan, and Carlos Santa Cruz. Quadratic programming feature selection. *Journal of Machine Learning Research*, 11(Apr):1491–1516, 2010.

- 10. Alexandr Katrutsa and Vadim Strijov. Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria. Expert Systems with Applications, 76:1–11, 2017.
- 11. Anastasia Motrenko and Vadim Strijov. Multi-way feature selection for ecogbased brain-computer interface. *Expert Systems with Applications*, 2018.
- 12. Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.
- 13. Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. In *Proc. SIAM Data Mining Conf*, 2005.
- 14. John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge university press, 2004.
- 15. The wisdm dataset. http://www.cis.fordham.edu/wisdm/dataset.php.
- 16. M.E. Karasikov and V.V. Strijov. Feature-based time-series classification.

 Intelligence, 24(1):164–181, 2016.
- 17. M.P. Kuznetsov and N.P. Ivkin. Time series classification algorithm using combined feature description. *Machine Learning and Data Analysis*, 1(11):1471–1483, 2015.
- 18. Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recognition using cell phone accelerometers. *ACM SigKDD Explorations Newsletter*, 12(2):74–82, 2011.
- 19. Yu P Lukashin. Adaptive methods of short-term forecasting of time series. *M.:* Finance and statistics, 2003.
- 20. Hossein Hassani. Singular spectrum analysis: methodology and comparison. Journal of Data Science, 5(2):239–257, 2007.
- 21. Carl De Boor. A practical guide to splines, volume 27. Springer-Verlag, 1978.
- 22. The usc human activity dataset. http://www-scf.usc.edu/ mizhang/datasets.html.