Goodness of Fit Tests and Categorical Data Analysis

Mahbub Latif, PhD

May 2023

Plan

- Goodness of fit tests when all parameters are specified
- Goodness of fit tests when all parameters are unspecified
- Tests of independence in contingency tables

An experiment with rolling a dice

• Outcome of rolling a dice 120 times

```
## 3 3 2 6 4 4 1 3 2 6 2 5 3 4 1 2 6 3 3 2 

## 4 1 4 1 4 6 1 5 2 3 4 5 3 5 2 5 6 2 5 6 

## 3 1 1 1 2 4 1 5 6 3 3 6 3 3 2 3 6 3 2 3 

## 4 2 5 5 6 2 1 3 3 1 5 3 3 4 5 4 4 6 6 1 

## 4 2 5 5 6 2 1 3 3 1 5 3 3 4 5 4 4 6 6 1 

## 3 4 6 3 2 2 5 2 6 4 1 1 6 3 5 6 5 1 6 1
```

• Is the dice biased?

Frequency distribution

*j	X
1	19
2	22
3	26
4	19
5	16
6	18

Goodness of fit tests when all parameters are specified

- ullet Let Y_1,\ldots,Y_n be a random sample, where $Y_j\in\{1,\ldots,k\}$ and $P(Y_j=i)=p_i$
- ullet Let X_i be number of Y's that are equal to $i\ (i=1,\ldots,k)$ and $X_i\sim B(n,p_i)$
- ullet To test $H_0: P(Y_j=i)=p_i \; orall i$, where $\sum_{i=1}^k p_i=1$ and $\sum_{i=1}^k X_i=n$
- The test statistic

$$T = \sum_{i=1}^k rac{ig[X_i - E(X_i)ig]^2}{E(X_i)} = \sum_{i=1}^k rac{ig(X_i - np_iig)^2}{np_i} = \sum_{i=1}^k rac{X_i^2}{np_i} - n \sim \chi_{k-1}^2$$

 $\circ~$ At lpha level of significance, reject H_0 if $T \geq \chi^2_{k-1,lpha}$ and $p = P(T \geq t)$, where $T \sim \chi^2_{k-1}$

Test whether a dice is biased or not

ullet Let a dice is rolled n times and Y_j be the outcome of the jth roll

$$\circ \ Y_j \in \{1,\ldots,6\}$$
 and $p_i = P(Y_j = i)$, $i = 1,\ldots,6$

- ullet Let X_i be the number of face value i in n rolls of a dice and $\sum_{i=1}^6 X_i = n$
 - $\circ \:$ Assume $X_i \sim B(n,p_i)$, and $E(X_i) = np_i$
 - \circ Under $H_0: p_i = 1/6 = p_0 \ orall i$, the test statistic

$$T = \sum_{i=1}^6 rac{(X_i - np_0)^2}{np_0} \sim \chi_5^2$$

 $\circ~$ We reject H_0 at lpha level of significance if $T \geq \chi^2_{5,lpha}$

Problem 1

- According to the Mendelian theory of genetics, a certain garden pea plant should produce either white, pink, or red flowers, with respective probabilities 1/4, 1/2, 1/4.
- To test this theory, a sample of 564 peas was studied with the result that 141 produced white, 291 produced pink, and 132 produced red flowers.
- Using the chi-square approximation, what conclusion would be drawn at the 5 percent level of significance?

Goodness of fit tests when all parameters are unspecified

- In some problems, category-specific probabilities may not be specified by the null hypothesis and these probabilities need to be estimated from the data
- **Example 11.3a**: Suppose the weekly number of accidents over a 30-week period is available.
 - \circ Test the hypothesis that the number of accidents in a week X has a Poisson distribution, i.e. $X \sim Po(\lambda)$
 - Test statistic

$$T=\sum_{i=1}^krac{(X_i-n{\hat p}_i)^2}{n{\hat p}_i}\sim \chi^2_{k-1-m}$$

no. of weeks
6
5
4
4
4
2
1
2
1
1

no. of accidents, Y	Category, j	no. of weeks
0	1	6
1	2	5
2	3	4
3	3	4
4	4	4
5	4	2
7	5	1
8	5	2
9	5	1
12	5	1

$$\hat{\lambda} = \frac{95}{30} = 3.17$$

•
$$P(j=1) = P(Y=0)$$

•
$$P(j=2) = P(Y=1)$$

•
$$P(j=3) = P(Y=2) + P(Y=3)$$

•
$$P(j=4) = P(Y=4) + P(Y=5)$$

•
$$P(j = 5) = P(Y > 5)$$

Υ	Cat	Χ	prob
0	1	6	0.042
1	2	5	0.133
2	3	4	0.211
3	3	4	0.223
4	4	4	0.177
5	4	2	0.112
7	5	1	0.027
8	5	2	0.011
9	5	1	0.004
12	5	1	0.061

Cat	Χ	р	e=np	(x-e)^2	(x-e)^2/e
1	6	0.042	1.26	22.468	17.832
2	5	0.133	3.99	1.020	0.256
3	8	0.434	13.02	25.200	1.935
4	6	0.289	8.67	7.129	0.822
5	5	0.103	3.09	3.648	1.181

$$T=22.026~and~\chi^2_{3,.05}=7.8$$

Reject the null hypothesis, i.e., data don't follow a Poisson distribution

Tests of independence in contingency tables

- Suppose each member of a population can be classified according to two distinct characteristics:
 - X-characterics and Y-characteristics
- ullet The probability that a randomly selected member of the population will have X-characteristic i and Y-characteristic j is defined as

$$P_{ij} = P(X = i, Y = j), i = 1, \dots, r, \ \ j = 1, \dots, s$$

We can also define

$$p_i = P(X=i) = \sum\limits_{j=1}^s P_{ij} ~~and ~~ q_j = P(Y=j) = \sum\limits_{i=1}^r P_{ij}$$

Tests of independence in contingency tables

• We are interested in the null hypothesis that X-characteristic and Y-characteristic are independent, i.e.

$$H_0: P_{ij} = p_i q_j \;\; against \;\; H_1: P_{ij}
eq p_i q_j$$

• Suppose a sample n obserbations have N_{ij} subjects corresponds to the X-characteristic i and Y-characteristic j, and

$$N_i = \sum\limits_{j=1}^s N_{ij} ~~and ~~ M_j = \sum\limits_{i=1}^r N_{ij}$$

We can estimate the marginal probabilities

$$\hat{p}_i = rac{N_i}{n} \;\; and \;\; \hat{q}_j = rac{M_j}{n} \;\; .$$

Tests of independence in contingency tables

- ullet Expected frequency $e_{ij}=E(N_{ij})=nP_{ij}$
- ullet Expected frequency under $H_0: P_{ij} = p_i q_j$

$$e_{ij} = E(N_{ij}) = nP_{ij} = np_iq_j \Rightarrow \hat{e}_{ij} = n\hat{p}_i\hat{q}_j = rac{N_iM_j}{n}$$

The test statistic

$$T = \sum_{i=1}^{r} \sum_{j=1}^{s} rac{(N_{ij} - \hat{e}_{ij})^2}{\hat{e}_{ij}} \sim \chi^2_{(r-1)(s-1)}$$

 $\circ \,$ Reject H_0 if $t>\chi^2_{lpha,(r-1)(s-1)}$

Problem 19

• An experiment is designed to study the relationship between hypertension and cigarette smoking from the following data.

	Nonsmoker	Moderate smoker	Heavy smoker
Hypertension	20	38	28
No hypertension	50	27	18

• Test the hypothesis that whether or not an individual has hypertension is independent of how much that person smokes

Problems

• 1-23