WassersteinQA

An Exploration of Generalization using Wasserstein distance

Matteo Donati

Amir Ghomeshi

Neil Leiser

Zacharie Rozenberg

Background:

- Popularity of Optimal Transport (OT) in Machine Learning (Vision)
- Efficiency and potential of OT distances in NLP
- Alvarez-Melis and Fusi 2020, ...

Motivation:

- Applicability of Wasserstein distance to language (in particular : Q&A datasets)
- Use for improving generalization/transfer learning

$$W_{\epsilon}(\mathbb{P}_x, \mathbb{P}_y) = \min_{\pi \in \Pi(\mathbb{P}_x, \mathbb{P}_y)} \mathbb{E}_{(x,y) \sim \pi} c(x, y) - \epsilon h(\pi)$$

Wasserstein distance - 20 NewsGroups Dataset

Dataset to distribution

- Objective : converting dataset to matrix
 - Embedding instances to vectors
- Issue : Q&A instance = context + question
- 2 different approaches :
 - Averaging contextual word embeddings (based on BERT)
 - Sentence embeddings (based on SBERT)

<u>Approach 1: Averaging contextual word embeddings</u>

- Averaging word embeddings to represent document
- Embedding context and question together using BertForQuestionAnswering
- BERT provides good **contextual** embeddings
- Each instance (question + context) to 1024vector

Andreas Poyiatzis, "Extract contextualized word embeddings from BERT", 2019

<u>Approach 2 : Sentence embeddings</u>

- Split each dataset into contexts and question
- Split each context into sentences
- Feed questions and sentences into sentence_transformers
- Compute the Wasserstein distance between each dataset:

$$W_{i,j} = \frac{sinkhorn(S_i, S_j) + sinkhorn(Q_i, Q_j)}{2}$$

Experiments & Results

- Computing distances between 10 QA datasets
- Datasets sharing similar features tend to cluster
- For both approaches :

Efficient computation time for datasets embedding + distance calculation

Wasserstein distance for generalization of Q&A tasks

- Comparing results with Talmor and Berant 2019
 - Lower Wasserstein distance = good generalization performance
 - Clear correlation for 50% of the datasets

Many possible research direction to improve results

	CQ	cwq	ComQA	Wikihop	Drop	SQuAD	NewsQA	SearchQA	TriviaQA	HotpotQA
SQuAD	23.6	12	20	4.6	5.5	-	<mark>31.8</mark>	8.4	33.4	<mark>11.8</mark>
NewsQA	24.1	12.4	18.9	7.1	4.4	<mark>60.4</mark>	-	10.1	28.4	8.0
SearchQA	<mark>30.3</mark>	<mark>18.5</mark>	<mark>25.8</mark>	12.4	2.8	23.3	12.7	-	<mark>35.4</mark>	5.2
TriviaQA	30.3	16.5	23.6	12.6	5.1	35.5	19.4	27.8	-	8.7
HotpotQA	27.7	15.5	22.1	10.2	<mark>9.1</mark>	54.5	25.6	19.6	34.9	-

 $Talmor\ and\ Berant.\ "An\ Empirical\ Investigation\ of\ Generalization\ and\ Transfer\ in\ Reading\ Comprehension",\ 2019$

Minimal distance

Most successful
generalization

Conclusion

- Promising approach for identifying Q&A datasets similarities efficiently
- Method can be related to generalization (zero-shot transfer learning)
- Several improvements possible:
 - Embedding approach
 - Considering labels (answers)
 - Modifying cost function of Wasserstein