CONJUNTO DE EJERCICIOS

1. Use el método de Euler para aproximar las soluciones para cada uno de los siguientes problemas de valor inicial.

a.
$$y' = te^{3t} - 2y$$
, $0 \le t \le 1$, $y(0) = 0$, con $h = 0.5$

b.
$$y' = 1 + (t - y)^2, 2 \le t \le 3, y(2) = 1, \cos h = 0.5$$

c.
$$y' = 1 + \frac{y}{t}$$
, $1 \le t \le 2$, $y(1) = 2$, con $h = 0.25$

d.
$$y' = \cos 2t + \sin 3t$$
, $0 \le t \le 1$, $y(0) = 1$, $\cos h = 0.25$

2. Las soluciones reales para los problemas de valor inicial en el ejercicio 1 se proporcionan aquí. Compare el error real en cada paso.

a.
$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}$$

b.
$$y(t) = t + \frac{1}{1-t}$$

$$c. y(t) = t \ln t + 2t$$

b.
$$y(t) = t + \frac{1}{1-t}$$

d. $y(t) = \frac{1}{2} \operatorname{sen} 2t - \frac{1}{3} \cos 3t + \frac{4}{3}$

3. Utilice el método de Euler para aproximar las soluciones para cada uno de los siguientes problemas de valor inicial.

a.
$$y' = \frac{y}{t} - \left(\frac{y}{t}\right)^2$$
, $1 \le t \le 2$, $y(1) = 1$, con $h = 0.1$

b.
$$y' = 1 + \frac{y}{t} + (\frac{y}{t})^2$$
, $1 \le t \le 3$, $y(1) = 0$, con $h = 0.2$

b.
$$y' = 1 + \frac{y}{t} + (\frac{y}{t})^2$$
, $1 \le t \le 3$, $y(1) = 0$, $\cos h = 0.2$
c. $y' = -(y+1)(y+3)$, $0 \le t \le 2$, $y(0) = -2$, $\cos h = 0.2$
d. $y' = -5y + 5t^2 + 2t$, $0 \le t \le 1$, $y(0) = \frac{1}{3}$, $\cos h = 0.1$

d.
$$y' = -5y + 5t^2 + 2t$$
, $0 \le t \le 1$, $y(0) = \frac{1}{3}$, con $h = 0.1$

4. Aquí se dan las soluciones reales para los problemas de valor inicial en el ejercicio 3. Calcule el error real en las aproximaciones del ejercicio 3.

a.
$$y(t) = \frac{t}{1 + \ln t}$$

b.
$$y(t) = t \tan(\ln t)$$

a.
$$y(t) = \frac{t}{1+\ln t}$$

c. $y(t) = -3 + \frac{2}{1+e^{-2t}}$

d.
$$y(t) = t^2 + \frac{1}{3}e^{-5t}$$

Utilice los resultados del ejercicio 3 y la interpolación lineal para aproximar los siguientes valores de y(t). Compare las aproximaciones asignadas para los valores reales obtenidos mediante las funciones determinadas en el ejercicio

a.
$$y(0.25)$$
 y $y(0.93)$

b.
$$y(t) = y(1.25) y y(1.93)$$

c.
$$y(2.10)$$
 y $y(2.75)$

b.
$$y(t) = y(1.25) \text{ y } y(1.93)$$

d. $y(t) = y(0.54) \text{ y } y(0.94)$

6. Use el método de Taylor de orden 2 para aproximar las soluciones para cada uno de los siguientes problemas de

a.
$$y' = te^{3t} - 2y$$
, $0 \le t \le 1$, $y(0) = 0$, con $h = 0.5$

b.
$$y' = 1 + (t - y)^2, 2 \le t \le 3, y(2) = 1, \cos h = 0.5$$

c. $y' = 1 + \frac{y}{t}, 1 \le t \le 2, y(1) = 2, \cos h = 0.25$

c.
$$v' = 1 + \frac{y}{t}$$
, $1 < t < 2$, $v(1) = 2$, con $h = 0.2$

d.
$$y' = \cos 2t + \sin 3t$$
, $0 \le t \le 1$, $y(0) = 1$, $\cos h = 0.25$

7. Repita el ejercicio 6 con el método de Taylor de orden 4