4.11 (Països autosuficients)

Una solució

L'entrada són els n països $\{p_1, \ldots, p_n\}$ amb la informació del seu superàvit pressupostari $\{s_1, \ldots, s_n\}$ corresponent. També són d'entrada les dades corresponents a les exportacions entre tots els països.

Definim el següent graf dirigit G=(V,E), on V té un vèrtex v_i per cada pais p_i , una font s i un sumider t. Les arestes de G es formen de la següent manera: Per cada parell de països p_i, p_j amb $e_{i,j}>0$ hi ha un arc (p_i,p_j) amb capacitat $c(p_i,p_j)=e_{i,j}>0$. A més, si p_i té $s_i\geq 0$, posem un arc (s,p_i) amb capacitat $c(s,p_i)=s_i$; en canvi, si p_i té $s_i<0$ posem un arc (p_i,t) amb capacitat $c(p_i,t)=-s_i$.

Considerem un tall (S,T) de G, i definim els conjunts $A = S - \{s\}$ i $B = T - \{t\}$. Sigui $N = \sum_{i:s_i>0} s_i$.

$$c(S,T) = \sum_{i \in B, s_i > 0} s_i + \sum_{i \in A, s_i < 0} -s_i + \sum_{i \in A, j \in B} e_{ij}$$

$$= \left(N - \sum_{i \in A, s_i > 0} s_i\right) - \sum_{i \in A, s_i < 0} s_i + \sum_{i \in A, j \in B} e_{ij}$$

$$= N - \left(\sum_{i \in A} s_i - \sum_{i \in A, j \in B} e_{ij}\right).$$

Notem que la darrera expressió entre els parèntesis és exactament la definició que hem donat d'autosuficient. Per tant, existeix un conjunt autosuficient $R \neq \emptyset$ si, i només si, existeix a min-cut (S,T) a G tal que la capacitat del tall sigui $\leq N$ i que $|S-\{s\}| \geq 1$ (s no és un país i $s \notin R$). Per a comprovar si $(\{s\}, V - \{s\})$ és el mínim tall hem de mirar si tots els altres nodes p_i (que són diferents a s) tenen un camí $p_i \sim t$ al graf residual final a l'algorisme de Ford-Fulkerson.