L-functions for 1111 - motives

General theory

L-functions

X: Calabi-Yau-threefold defined over \mathbb{Z} , smooth over \mathbb{Q} with Hodge numbers h^{30} , h^{12} , h^{21} , $h^{03}=1$; Then $H^3X:=H^3_{et}(\overline{X},\mathbb{Q}_l)$ is a four-dimensional symplectic $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ representation.

• General Euler factors:

 $Q_p(T) := \det\left(1 - T \cdot \operatorname{Frob}_p \mid H^3 X^{I_p}\right)$

L-function:

$$L(H^3X,s) = \prod_{n} Q_p(p^{-s})^{-1}.$$

• Special form in our case with α_p and β_p :

$$Q_{\nu}(T) = 1 + \alpha_{\nu}T + \beta_{\nu}pT^{2} + \alpha_{\nu}p^{3}T^{3} + p^{6}T^{4}.$$

Conductor:

Integer N such that $L(H^3X, s)$ satisfies the functional equation.

• Functional equation:

The completed *L*–function

$$\Lambda(s) = \left(\frac{N}{\pi^4}\right)^{s/2} \Gamma\left(\frac{s-1}{2}\right) \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) L(H^3X,s)$$

admits analytic continuation and satisfies

$$\Lambda(s) = +\Lambda(4-s).$$

Differential operators

Calabi-Yau manifolds with $h^{12}=1$ vary in a one-dimensional moduli space, and usually occur as members of a pencil $\mathcal{X} \longrightarrow \mathbf{P}^1$ defined over \mathbb{Q} . In such a situation on can find a Picard-Fuchs operator $L \in \mathbb{Q}\langle t, \frac{d}{dt} \rangle$ describing the variations of cohomology.

• Calabi-Yau operator:

Picard-Fuchs Operator of order 4 from the AESZ-list written in the general form

$$L: P_0(t)\theta^4 + P_1(t)\theta^3 + P_2(t)\theta^2 + P_3(t)\theta + P_4(t)$$

where $\theta = t \frac{d}{dt}$ and the $P_i(t)$ are polynomials. Let $\Delta(t) = P_0(t)$.

Frobenius base:

The operators from AESZ have a MUM-point at 0 and we have a Frobenius base of solutions around 0:

$$\begin{split} f_0 &= A(t), \\ f_1 &= f_0(t) \log(t) + B(t), \\ f_2 &= \frac{1}{2} f_0(t) \log(t)^2 + 2 f_1(t) \log(t) + C(t), \\ f_3 &= \frac{1}{6} f_0(t) \log(t)^3 + \frac{1}{2} f_1(t) \log(t)^2 + f_2(t) \log(t) + D(t), \end{split}$$

where $A(t) \in \mathbb{Q}[|t|]$, B(t), C(t), $D(t) \in t\mathbb{Q}[|t|]$.

Fundamental solution matrix:

$$F(t) = \begin{pmatrix} f_0 & \theta f_0 & \theta^2 f_0 & \theta^3 f_0 \\ f_1 & \theta f_1 & \theta^2 f_1 & \theta^3 f_1 \\ f_2 & \theta f_2 & \theta^2 f_2 & \theta^3 f_2 \\ f_3 & \theta f_3 & \theta^2 f_3 & \theta^3 f_3 \end{pmatrix}$$

and modified fundamental solution matrix with log-terms removed:

$$E(t) := \begin{pmatrix} A & \theta(A) & \theta^{2}(A) & \theta^{3}(A) \\ B & A + \theta(B) & 2\theta(A) + \theta^{2}(B) & 3\theta^{2}(A) + \theta^{3}(B) \\ C & B + \theta(C) & A + 2\theta(B) + \theta^{2}(C) & 3\theta(A) + 3\theta^{2}(B) + \theta^{3}(C) \\ D & C + \theta(D) & B + 2\theta(C) + \theta^{2}(D) & 3\theta(B) + 3\theta^{2}(C) + \theta^{3}(D) \end{pmatrix}$$

Frobenius method by Dwork, Candelas, de la Ossa, van Straten

• $U_p(0)$:

Limit Frobenius matrix:

$$U_p(0) := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p^2 & 0 \\ p^3 \cdot x_p & 0 & 0 & p^3 \end{pmatrix},$$

 x_p conjecturally equal to $r \cdot \zeta_p(3)$, $r \in \mathbb{Q}$ some rational.

• $U_n(t)$:

Dwork's Frobenius matrix:

$$U_p(t) := E(t^p)^{-1} \cdot U_p(0) \cdot E(t) \in \text{Mat}(4, 4, \mathbb{Q}[[t]]).$$

Conjecturally one has

$$U_n(\text{teich}(t)) \stackrel{?}{=} \text{Matrix of Frob}_n : H^3 X_t \to H^3 X_t$$

and

$$Q_{v,t}(T) = \det(1 - U(\operatorname{teich}(t))T),$$

 $teich(t) \in \mathbb{Z}_p$ Teichmüller lift of $t \in \mathbb{F}_p$.

p-adic expansion:

The matrix U(t) has the p-adic expansion

$$U_p(t) = \frac{V_0(t)}{\Delta(t)^{p\cdot\delta_0}} + p\cdot\frac{V_1(t)}{\Delta(t)^{p\cdot\delta_1}} + p^2\frac{V_2(t)}{\Delta(t)^{p\cdot\delta_2}} + p^3\cdot\frac{V_3(t)}{\Delta(t)^{p\cdot\delta_3}} + p^4\cdot\frac{V_4(t)}{\Delta(t)^{p\cdot\delta_4}} + p^5\cdot\frac{V_5(t)}{\Delta(t)^{p\cdot\delta_5}} + \dots,$$

with $V_i(t) \in Mat(4, 4, \mathbb{Q}[t])$.

• Weil bounds:

For the zeros z_1, \dots, z_4 of $Q_p(T)$ we have:

$$|z_i| = p^{-3/2}$$
.

So for α_p and β_p in $Q_p(T)$ it is enough to compute up to $\mod p^4$ and adjust the result such that the zeros fulfill the Weil bounds:

$$U_p(t) \mod p^4 \equiv \frac{V_0(t)}{\Delta(t)^{p \cdot \delta_0}} + p \cdot \frac{V_1(t)}{\Delta(t)^{p \cdot \delta_1}} + p^2 \frac{V_2(t)}{\Delta(t)^{p \cdot \delta_2}} + p^3 \cdot \frac{V_3(t)}{\Delta(t)^{p \cdot \delta_3}} \mod p^4.$$

Implemented functions

Differential operators

	CY-operator as array of the form
aap stored in the file order4	$[cX^4, (a_4X^4+\cdots+a_0), \ldots, (b_4X^4+\cdots+b_0)]$
	where X stands for θ .
delta	
Input: operator aap	Output: The discriminant $P_0(t)$ of the operator aap
degreeCY	
Input: operator aap	Output: The degree r of the operator aap which is the
	degree of delta(aap)
coeffT	
	Output: A polynomial of the form
Input: operator aap,	$a_n + Tb_n + T^2c_n + T^3d_n$
integer n	where a_n, b_n, c_n, d_n are the <i>n</i> -th coefficients of
	A(t), B(t), C(t), D(t).
an_vec	
Input: operator aap,	Output: vector of length N of coefficients of the Frobenius
integers N , i	base a_n if $i = 1$, b_n if $i = 2$, c_n if $i = 3$, d_n if $i = 4$.

Computing Euler factors with Frobenius method by Dwork, Candelas, de la Ossa, van Straten

Esols	
Input: operator aap,	Output: The matrix $E(t) \in Q[t]$ with power series entries
integer N	truncated at N
UU	
Input: matrix $E(t)$,	Output: The matrix $U_p(t) \in Q[t]$ with power series entries
prime p , integer N	truncated at N
Umake	
Input: operator aap,	Output: The matrix $U_p(t) \mod p^4 \in Q[t]$ which has
prime p	polynomial entries
Triple	
Input: operator aap,	Output: The coefficients of $Q_p(T)$ as triple
prime p , rational t	$(p, \alpha_p(t), \beta_p(t))$
ListOfTriples	
Input: operator aap, lower and upper bound $pmine$ and $pmax$ for list, rational t	Output: List of triples $[(pmin, \alpha_{pmax}(t), \beta_{pmin}(t), \dots, (pmax, \alpha_{pmax}(t), \beta_{pmax}(t)]$