電子システム工学基礎実験 報告書

		グ	ルー	プ:			A						
実験題目 _							変位	電流					
報告者	第 _ 1	班-		学生	番号	2	112100	1	氏名 _	ì	浅井 雅史	i -	
	メールフ	アドレ	/ス				b	112100)1@edu.l	it.ac.jp			
	共同実験者			学生番号		21	21121002 E		氏名	浅岡	浅岡 駿介		
				学生	番号	21	121007		氏名	伊藤	大智		
				学生	番号	21	121008		氏名	井上	翔陽		
				学生	番号				氏名				
実験実施日	2022	年	12	月	01	目	天候	曇り	温度	10 °C	湿度	55	%
報告書提出	(第1回	回目)	2	022	年	12	月	07	_ 目 ⇒		/ 要再	是出	_
	(第2回	回目)			年		_ 月		_ _ 日 ⇒	受理 /	夕 要再	是出	
報告書受理日	(最終)				年		月		日				
報告書提出者	≸の自己チュ	⊏ック橺	引(でき	ていれ	ば口に	ニチェッ?	クせよ)						
☑ ₹	実験結果は 考察は十分 ノポートとし	こなさ	れてい	るか?					方・まとめ はできている	方は適切か か?	?		

[注意]

・自己チェック欄が未記入のレポートは内容を見ずに返却する・自己チェック欄と内容に相違があるものは、その程度に応じて減点する

[報告書に対する教員の所見]	[所見に対する報告者の回答]
□図表の体裁に不備がある	
(
□実験結果のまとめ方が適切でない	
(
口結果に対する考察が不足している	
(
□演習問題が解答されていない	
(
ロレポートとしての体裁が整っていない	
(
京 了 1-44 /	京 フレ4+ノ
裏面に続く	裏面に続く

1 目的

アンペア・マクスウェルの法則に関する実験を行い、変位電流 (密度) の理解を深める.

2 原理

変位電流密度 $\vec{i_d}$ とは電東 \vec{D} の時間変化であり,以下の式で与えられる.

$$\vec{i_d} = \frac{\partial \vec{D}}{\partial t}$$

また,平行平板への電圧限として交流を与え場合について考える.微小区間 Δx 離れた二点での電位を測定すると電場は, $|\vec{E}|=\frac{\Delta V}{\Delta x}$ で計算でき,電東密度を $\vec{E}=\epsilon\vec{D}$ と仮定できる.したがって,変位電流密度 $\vec{i_d}$ は以下の式で与えられる.

$$|\vec{i_d}| = |\frac{\partial \vec{D}}{\partial t}| = \epsilon |\frac{\partial}{\partial t} (\frac{\Delta V}{\Delta x})| = \frac{\epsilon}{\Delta x} |\frac{\partial}{\partial t} (\Delta V)|$$

ここで,平行平板に印加する V の角周波数を ω とすると, $V \propto \sin \omega t$ と書けるので,平行平板電極の面積を S. 二点での電位をそれぞれ $V_1 = A \sin \omega t$, $V_2 = B \sin \omega t$ とすると変位電流の大きさ I_{dmax} は以下の式で求められる.

$$|I_{dmax}| = \frac{\epsilon}{\Delta x} |(A - B)\omega|$$

また,ロゴスキーコイルにおいてロゴスキーコイルの両端に現れる誘導電圧を $V_e(t) = C \sin \omega t$ とすると,変位電流の大きさ I_d は以下の式で求められる.

$$|I_{dmax}| = -|\frac{l}{\mu_0 NS} \int_{\frac{\pi}{2}}^{\pi} V_e(t) dt| = \frac{l}{\mu_0 NS} \cdot \frac{C}{\omega}$$

3 実験

3.1 実験装置及び器具

木製台,プローブ支持台,ガラス製水槽,平行平板電極,静電プローブ,METRONIX MTR18-1 交流定電圧定電流電源、TEKTRONIX TBS1022 オシロスコープ,ロゴスキーコイル,抵抗 (220k Ω),セメント抵抗 (1Ω)

3.2 セットアップ

図1のように平行平板電極を水に入れた水槽の外側に配置し、電極板に交流を印加する.

図1 平行平板を水槽の外に配置した場合の実験配置図

3.3 二本のプローブによる測定

- 1. 図 2 のように水槽に二本のプローブを差し込む. 一つはプローブ支持台を用いて固定し、もう一つはテープで固定する. その間隔 Δx は ~ 1 cm 程度に保ち、 Δx の値を測定しておく.
- 2. 発振周波数は最も高い周波数 (1 MHz) からスタートし、徐々に $(50 \text{k} \sim 100 \text{kHz})$ 列みで500 kHzくらいまで) 周波数を下げながら実施し、それぞれの周波数における波形を記録する.

図 2 二本プローブによる変位電流測定実験配置

3.4 ロゴスキーコイルによる測定

- 1. 図 3 に示すように、水槽と電極板の間にロゴスキーコイルが入る程度のスペースを作り、そこにロゴスキーコイルを挿入する.
- 2. 実験課題 1 と同様に発振器の周波数 ω を変化させながら,セメント抵抗の両端とロゴスキーコイル からの出力波形を記録する.

図3 ロゴスキーコイルによる変位電流測定実験配置

4 結果

4.1 実験課題1

各周波数 f における測定結果を以下の図 4~図 9 に示す.また, Δx は $10.0\,[\mathrm{mm}]$ に調整した.

図 4 $f=1 \mathrm{MHz}$ のときの測定結果

図 5 f = 900 kHz のときの測定結果

図 6 $f=800 \mathrm{kHz}$ のときの測定結果

図 7 $f = 700 \mathrm{kHz}$ のときの測定結果

図 8 $f=600 \mathrm{kHz}$ のときの測定結果

図 9 $f=500 \mathrm{kHz}$ のときの測定結果

4.2 実験課題 2

各周波数 f における測定結果を以下の図 10~図 15 に示す.

図 10 f=1MHz のときの測定結果

図 11 $f = 900 \mathrm{kHz}$ のときの測定結果

図 12 $f=800 \mathrm{kHz}$ のときの測定結果

図 13 $f = 700 \mathrm{kHz}$ のときの測定結果

図 14 $f=600 \mathrm{kHz}$ のときの測定結果

図 15 $f = 500 \mathrm{kHz}$ のときの測定結果

5 データ解析と考察

1. 実験課題 1 について,二本のプローブを用いて得られた電位差 ΔV の時間変化データ $\Delta V(t)$ と Δx より,それぞれの発振周波数における I_d の値を求め,表にして示せ.

算出した変位電流 I_d を表 1 に示す。ただし,テキスト p234 より真空の誘電率は 8.854×10^{-12} [F/m] であり,p38 より水の比誘電率は 80.4 (20°C) なので, $\epsilon=7.11862\times 10^{-10}$ [F/m] として算出する.

f [kHz]	$\Delta V [V]$	$I_{dmax}\left[\mathrm{A}\right]$					
1000	0.044	0.00028339					
900	0.048	0.00027824					
800	0.052	0.00026794					
700	0.052	0.00023444					
600	0.064	0.00024733					
500	0.068	0.00021899					

表 1 実験課題 1 における変位電流 I_d

2. 実験課題 2 において,それぞれの発振周波数におけるロゴスキーコイルの出力から I_d を算出し,表にして示せ.

算出した変位電流 I_d を表 2 に示す。また, $\mu_0=0.000001257\,[\mathrm{H/m}]$,N=211, $l=2\pi\times0.1095=0.688\,[\mathrm{m}]$, $S=\pi\times0.0100^2=0.000314\,[\mathrm{m}^2]$ である.

表 2 実験課題 2 における変位電流 Id

$f [\mathrm{kHz}]$	A[V]	$I_{dmax}\left[\mathbf{A}\right]$
1000	0.105	0.13805
900	0.085	0.12418
800	0.080	0.13148
700	0.065	0.12209
600	0.055	0.12052
500	0.045	0.11833

3. 二本のプローブを用いて得られた I_d とロゴスキーコイルから得られた I_d の値を比較検討せよ.

二本のプローブを用いて測定した変位電流 I_d は,誘電率 $80.4(20^{\circ}\mathrm{C})$ の誘電体 (水) の内部の電東密度から生じる.その一方で,ロゴスキーコイルを用いて測定した変位電流 I_d は,誘電率 1.00 の誘電体 (空気) の内部の電東密度から生じる.

$$\vec{i_d} = \frac{\partial \vec{D}}{\partial t}$$

より,プローブを用いて測定した変位電流 I_d のほうがロゴスキーコイルを用いて測定した変位電流 I_d より 80.4 倍大きいと考えられる.また,水の誘電率は温度が低くなるにつれ上がり, $10\,^\circ\mathrm{C}$ では 84.14 になる.このことから,水の誘電率の温度依存性によって 84.14/80.4 $\simeq 1.05$ 倍されたと考えられる.

表3 実験課題1,2それぞれで求められた変位電流の比

f [kHz]	変位電流 (実験課題 1)[A]	変位電流 (実験課題 2)[A]	比
1000	0.00028339	0.13805	487.1465605
900	0.00027824	0.12418	446.2884911
800	0.00026794	0.13148	490.7153997
700	0.00023444	0.12209	520.7591997
600	0.00024733	0.12052	487.3076539
500	0.00021899	0.11833	540.3642519

4. 実験課題 2 について,ロゴスキーコイルから得られた I_d と,セメント抵抗の両端の電圧波形から得られる I_F の位相の相対関係を示せ.

平行平板に印加する V の角周波数を ω とし,V が $\sin \omega t$ に比例する場合,オームの法則 $V=I_FR$ より以下の関係が成り立つ.

 $I_F \propto \cos \omega t$

 $|\vec{i_d}|=rac{\epsilon}{\Delta x}|rac{\partial}{\partial t}(\Delta V)|$ となるので、 I_d は以下の関係が成り立つ.

$I_d \propto \sin \omega t$

したがって、ロゴスキーコイルから得られた I_d と、セメント抵抗の両端の電圧波形から得られる I_F の位相は π ずれる。

5. コンデンサーを含む回路では, I_F と I_d が閉ループを作るために, I_F+I_d はどのような面を取っても, $I_F+I_d=$ 一定 となる.この予測が正しいかどうか得られた実験データに基づいて判定せよ. 実験結果より算出した I_F+I_d とそのデータ処理を表 4 に示す.相対誤差率は $-10\%\sim16\%$ となっているので,「 $I_F+I_d=$ 一定となる」とは言えない.

表 4 $I_F + I_d$ とそのデータ処理

	$f [\mathrm{kHz}]$	$I_d\left[\mathrm{A} ight]$	$I_F\left[\mathrm{A} ight]$	$I_F + I_d [A]$	相対誤差率 [%]
	1000	0.1380544747	0.0425	0.1805544747	16.52985447
	900	0.1241759826	0.0375	0.1616759826	4.345675992
	800	0.1314804521	0.03	0.1614804521	4.219480651
	700	0.1220889913	0.025	0.1470889913	-5.068767911
	600	0.1205237478	0.02	0.1405237478	-9.305975924
	500	0.1183324069	0.02	0.1383324069	-10.72026728
平均				0.1549426759	

6 宿題

1. $\nabla \times \vec{H} = (i + \frac{\partial \vec{D}}{\partial t})$ の両辺の発散をとることで、この式が電荷保存則 $\frac{\partial \rho}{\partial t} + \nabla \cdot i = 0$ を確かに満たしていることを示せ.

両辺の発散をとると、任意のベクトル \vec{A} に関して、 $\operatorname{div}(\operatorname{rot} \vec{A})$ となることから、

$$\nabla \cdot (\nabla \times \vec{H}) = \nabla \cdot \left(i + \frac{\partial \vec{D}}{\partial t}\right) = \nabla \cdot i + \frac{\partial (\nabla \cdot \vec{D})}{\partial t} = 0$$

となる. ここで, ガウスの法則より $\mathrm{div}\vec{D}=\rho$ であるので, 以下の式が成り立ち, 題意は示された.

$$\nabla \cdot i + \frac{\partial (\nabla \cdot \vec{D})}{\partial t} = \frac{\partial \rho}{\partial t} + \nabla \cdot i = 0$$

参考文献

- [1] 電子システム工学基礎実験テキスト
- [2] Properties of Water http://www.isc.meiji.ac.jp/~nkato/Useful_Info.files/water.html