

Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de Matemática

VII Semana da Matemática 10 anos do PPGMAT

UMA DEMONSTRAÇÃO ELEMENTAR DA IRRACIONALIDADE DE π

BRITO JÚNIOR, Juarez Cavalcante (Bolsista PET); DE MORAIS FILHO, Daniel Cordeiro (Orientador)

Universidade Federal de Campina Grande juarez@dme.ufcg.edu.br; daniel@dme.ufcg.edu.br

INTRODUÇÃO

A constante mais badalada da história da matemática, o famoso e mundialmente conhecido número π (pi), razão entre o perímetro da circunferência e seu diâmetro , já era utilizado há milhares de anos, notadamente em grandes construções e planejamentos de obras de

Engenharia ([1]). Essa constante, inclusive, aparece em passagens da Bíblia: "Fez também um mar de fundição de dez côvados, duma borda à outra, redondo em toda a volta; a sua profundidade era de 5 côvados, e cingia-o um cordão de trinta côvados" (I Reis, 7:23).

Certamente, todas as pessoas com conhecimento básico em matemática, já ouviram falar que π = 3,1415926... É um número irracional, isto é, não pode ser escrito na forma $\frac{a}{b}$, com a e b inteiros.

Muitos repetem e conhecem esse fato, que permeia os livros desde o Ensino Médio, mas, incrivelmente, poucos viram sua demonstração, mesmo alunos que terminam cursos de matemática.

OBJETIVOS

Este trabalho tem como principal objetivo, apresentar uma clássica e brilhante demonstração da irracionalidade de π , extremamente construtiva, feita pelo matemático Ivan Niven (foto) (1914 – 1999). A demonstração usa ideias básicas de Cálculo Diferencial e Integral e é uma das demonstrações mais elementares da irracionalidade de π .

METODOLOGIA

Para a realização deste trabalho, que foi orientado pelo Prof. Dr. Daniel Cordeiro de Morais Filho, foram realizadas, além de exposições orais por semana, pesquisas em livros, periódicos matemáticos e também na Internet.

DEMONSTRAÇÃO

Suponhamos, por absurdo, que π é um número racional, ou seja, $\pi=\frac{a}{b}$, com a e b inteiros positivos.

Consideremos agora os polinômios

$$f(x) = \frac{x^n (a - bx)^n}{n!}$$
 e
$$F(x) = f(x) - f^{(2)}(x) + f^{(4)}(x) - \dots + (-1)^n f^{(2n)}(x)$$

 $n \in \mathbb{N}$ e $f^{(i)}(x)$ com $i=1,2,\ldots,2n$ são as i-ésimas derivadas de f(x) e o valor de n sendo escolhido posteriormente.

Como $n! f(x) = n! \cdot \frac{x^n (a - bx)^n}{n!} = x^n (a - bx)^n$ tem coeficientes inteiros e os termos em x são de grau igual ou superior a n, f(x) e suas derivadas $f^{(i)}(x)$ possuem valores inteiros para x = 0 e também para $x = \pi = \frac{a}{b}$ uma vez que $f(x) = f\left(\frac{a}{b} - x\right)$.

Por meio de cálculos, facilmente vê-se que $f^{(i)}(0) = 0$ e $f^{(i)}(\pi) = 0$.

Sendo

$$F(x) = f(x) - f^{(2)}(x) + f^{(4)}(x) - \dots + (-1)^n f^{(2n)}(x) \text{, temos}$$

$$F^{"}(x) = f^{(2)}(x) - f^{(4)}(x) + f^{(6)}(x) - \dots + (-1)^n f^{2n+2}(x)$$

e
$$F(x) + F''(x) = f(x)$$
.

Assim, pelo Cálculo:

$$\frac{d}{dx}\{F'(x)\sin x - F(x)\cos x\} = \frac{d}{dx}\{F'(x)\sin x\} - \frac{d}{dx}\{F(x)\cos x\} = \frac{d}{dx}\{F'(x)\cos x\} = \frac{d}{$$

$$= F''(x)\sin x + F'(x)\cos x - (F'(x)\cos x - F(x)\sin x) =$$

$$= F''(x)\sin x + F(x)\sin x = [F''(x) + F(x)]\sin x = f(x)\sin x$$

pelo Teorema Fundamental do Cálculo,

(*)
$$\int_0^{\pi} f(x) \sin x \, dx = \left[F'(x) \sin x - F(x) \cos x \right]_0^{\pi} =$$

$$= [F'(\pi)\sin \pi - F(\pi)\cos \pi] - [F'(0)\sin 0 - F(0)\cos 0]$$
$$= F(\pi) + F(0)$$

Note que $F(\pi)+F(0)$ é um inteiro, uma vez que $f^{(i)}(\pi)$ e $f^{(i)}(0)$ são inteiros.

Para $0 < x < \pi$, prova-se que

$$0 < f(x) \sin x < \left(\frac{a\pi}{4}\right)^n \frac{1}{n!} (**)$$

Essa desigualdade é verificada através do cálculo dos pontos críticos da função $f(x)\sin x$, que são x=0, $x=\pi e$ $x=\frac{\pi}{2}$, este último sendo ponto de máximo da função.

Como a integral em (*) é positiva, usando (**), se considerarmos um valor de n suficientemente "grande", encontraremos um número inteiro entre 0 e 1. Absurdo! Logo, provamos que π é um número irracional.

REFERÊNCIAS

[1] EVES, Howard. *Introdução à História da Matemática*. Campinas, SP: Editora da Unicamp, 2004.

[2] FIGUEIREDO, D. G. *Números Irracionais e Transcendentes*. Rio de Janeiro, RJ: Sociedade Brasileira de Matemática, 3 ed., 2002.

[3] NIVEN, Ivan, "A simple proof that π is irrational", Bulletin of the American Mathematical Society53 (6): 509, 1947.

[4] THOMAS, G. B. Cálculo. São Paulo, SP: Addison Wesley, Volume I, 2009.