Homework 4

CSCI 2897 - Calculating Biological Quantities - Larremore - Spring 2021

Notes: Remember to (1) familiarize yourself with the collaboration policies posted on the Syllabus, and (2) turn in your homework to Canvas as a **single PDF**. Hand-writing some or most of your solutions is fine, but be sure to scan and PDF everything into a single document. Unsure how? Ask on Slack!

Hamstring curls

Compute the following, supposing that $a=\begin{pmatrix}1\\3\\2\end{pmatrix}$, $b=\begin{pmatrix}1\\4\\3\end{pmatrix}$, and $c=\begin{pmatrix}0\\1\\1\end{pmatrix}$.

- 1. a + b + c =
- 2. $a^{T}b =$
- 3. a + 2b + 3c =
- 4. $ab^{T} =$

Calf raises

Using the same a, b, and c as above, and with $D=\begin{pmatrix}1&0&0\\0&1&2\\1&-1&1\end{pmatrix}$, solve the following, or explain why they cannot be solved. 1

5.
$$Da + c =$$

6.
$$a^T D + c =$$

7.
$$D^2 =$$

8.
$$D^9a - D^9b + D^9c =$$

9.
$$(a^T b)c =$$

10.
$$a^{T}(bc) =$$

¹Note: just like with regular multiplication, squaring a matrix means multiplying the matrix by itself!

Reasoning about matrices

- 11. Suppose you know that A is a symmetric $n \times n$ matrix. Let the matrix $B = A A^T$. Let x be a $n \times 1$ vector. Let y = Bx. What is the **dimension** of y? What is y?
- 12. Let matrix P have dimensions 5×2 , Q have dimensions 3×2 , and R have dimensions 3×5 . What is the dimension of RPQ^T ? What about QQ^TR ?
- 13. In reference to the previous problem, write out *three* different ways that you could multiply the matrices P,Q,R or their transposes to creates a 5×5 matrix. You may use each matrix at most two times in each multiplication.
- 14. Suppose that I hand you two square $n \times n$ matrices, X and Y. You multiply them and find that XY = I, where I is the identity matrix. How and X and Y related?
- 15. Compute the *trace* of (XYX)(YX)(YXYXY).

Computing with matrices

- 16. Let $A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 9 \\ 5 \end{pmatrix}$. Knowing that Ax = b, solve for the vector x.
- 17. What is the determinant of A?
- 18. Let $M = \begin{pmatrix} -2 & 1 \\ \alpha & -1 \end{pmatrix}$. Knowing that Mx = d, where $d = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, solve for the vector x.
- 19. The solution to the previous question fails to exist at a particular value of α . What is this value? Explain why the solution ceases to exist at that value.
- 20. Extra credit: Make up a 2×2 matrix in Python, call it L. Make up a 2×1 vector in Python too, and call it x. Now do the following: (i) Compute y = Lx. (ii) Compute x = y/||y||, where ||y|| is the same as numpy.linalg.norm(y). (iii) Repeatedly do (i) and (ii) 100 times by using x to compute y and then using y to get a new x, over and over. What do you notice? Start with a few new initial x vectors and repeat this process. What do you find? Explore changing L and x and write up some of your findings in under one page with some examples.