

Today • Mixture Models • Expectation Maximization 11/25/15 • Raju Vatsavai CSC-591.2

NC STATE The GMM assumption There are k components. The i' th component is called ω_i Component ω_i has an associated mean vector μ_i • μ_2 Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^{\!2}m{I}$ Assume that each datapoint is generated according to the following recipe: Pick a component at random. Choose component i with probability $P(\omega_i)$. Datapoint $\sim N(\mu_{ii} \sigma^2 \mathbf{I})$ Copyright © 2001, 2004, Andrew W. Moore

Acknowledgements

- Andrew Moore, CMU
- C. Fraley, A.E. Raftery Model-based clustering, discriminant analysis, and density estimation
- GX-Means: A model-based divide and merge algorithm for geospatial image clustering. R. Vatsavai, et. al.
- G. Hamerly, C. Elkan Learning the k in kmeans, in: In Neural Information Processing Systems

11/25/15 © Raju Vatsavai CSC-591. 2