Dispatching of Autonomous Cargo Transport Rovers

August Soderberg

Problem

World or map

Stochastic →

Warehouses

Food Delivery

People Movers

Warehouses

Food Delivery

People Movers

Warehouses

Food Delivery

People Movers

Warehouses

Food Delivery

People Movers

Prior Work

Efficient Ridesharing Order Dispatching with Mean Field Multi-Agent Reinforcement Learning

Minne Li, Zhiwei (Tony) Qin, Yan Jiao, Yaodong Yang, Zhichen Gong, Jun Wang, Chenxi Wang, Guobin Wu, Jieping Ye Prior Work

Grid Based Simulation

Coordinate Based Simulation

 $\Gamma = \langle S, P, A, R, O, N, \gamma \rangle$

S: sets of states

P: transition probability functions

A: sets of joint actions

R: reward functions

O: sets of private observations

N: number of agents

y: discount factor

Configurable Manifest

Graph of Nodes and Edges

Tasks

Configurable Manifest

Graph of Nodes and Edges

Tasks

Configurable Manifest

Graph of Nodes and Edges

Tasks

Configurable Manifest

Graph of Nodes and Edges

Tasks

Graph of Nodes and Edges

Nodes Charging and standard
Task spawning probability
No capacity

Edges Fixed traversal time
Black box

Tasks

Definition Origin and Destination

: C → E

Behavior -

Agents have 1 task capacity
No choice during task completion

Decisions

Choices -

Perform task

Charge

Visit other nodes?

Safety No unsafe decisions allowed

Reinforcement learning

Stochastic complex task

Continuation of prior work

Simulatable as a Markov Game

Game state knowledge

Agents -

Available agents

Charge value

Distance to nearest charger

Game state knowledge

Agents -

Available agents

Charge value

Distance to nearest charger

Game state knowledge

Agents -

Available agents

Charge value

Distance to nearest charger

Game state knowledge

Agents -

Available agents

Charge value

Distance to nearest charger

Game state knowledge

Agents -

Available agents

Charge value

Distance to nearest charger

Game state knowledge

Tasks -

Age

Charge after completion (always safe)

Distance from destination to charger

Game state knowledge

Tasks -

Age

Charge after completion (always safe)

Distance from destination to charger

Game state knowledge

Tasks -

Age

Charge after completion (always safe)

Distance from destination to charger

Game state knowledge

Tasks -

Age

Charge after completion (always safe)

Distance from destination to charger

Game state knowledge

Tasks -

Age

Charge after completion (always safe)

Distance from destination to charger

Markov game reward Completing task
Task spawning adjacency
Charging station adjacency

Markov game reward
Completing task

Task spawning adjacency

Charging station adjacency

Markov game reward Completing task

Task spawning adjacency
Charging station adjacency

Markov game reward Completing task
Task spawning adjacency
Charging station adjacency

Rewards

Markov game reward Completing task
Task spawning adjacency
Charging station adjacency

Conclusion

Questions

Can this be solved by machine learning?

Is reinforcement learning the right choice?

Anything I'm missing?