Listing of Claims:

1. (currently amended) A circuit for connecting to a power supply having power supply noise, the circuit for amplifying an input signal from a photodetector comprising:

a transimpedance amplifier (TIA) circuit for operating in a differential manner and having a gain and a first input port for receiving the input signal from the photodetector, a second input port and an output port, the TIA circuit for providing a TIA circuit output signal comprising a voltage ripple signal dependent on the power supply noise and an amplified signal dependent on the input signal and the gain of the TIA circuit;

a first biasing circuit coupled to the second input port for providing a first bias signal thereto, the first bias signal including the voltage ripple signal dependent on the power supply noise; and,

a filter circuit coupled to the output port of the TIA <u>circuit</u> for filtering the TIA <u>circuit</u> output signal to form a filtered signal, the filter circuit for filtering the TIA <u>circuit</u> output signal in dependence upon an other than DC <u>a time varying</u> component of the first bias signal and for providing the filtered signal to a filter output port thereof.

- 2. (original) A circuit according to claim 1 wherein the filter circuit comprises a high pass filter circuit for attenuating low frequency components of the voltage ripple signal provided to the filter output port.
- 3. (currently amended) A circuit according to claim 1 wherein the filter circuit comprises a low pass filter for attenuating high frequency components of the TIA <u>circuit</u> output signal provided to the filter output port.
- 4. (currently amended) A circuit according to claim 1 comprising a differential amplifier having a positive input port for receiving the TIA <u>circuit</u> output signal and having a negative input port for receiving the filtered signal, the differential amplifier having a two output ports for providing a differential output signal therefrom, the differential output

U.S. Application Serial No. 10/654,969 Response to Office Action dated February 14, 2006 Amendment filed April 13, 2006

signal representative of an amplified difference between the TIA <u>circuit</u> output signal and filtered signal, and an attenuated other than difference between the TIA <u>circuit</u> output signal and filtered signal[s].

- 5. (original) A circuit according to claim 4 comprising a unity gain buffer disposed between the negative input port of the differential amplifier and the filter output port for reducing a DC voltage level offsets for input signals received between the two input ports of the differential amplifier.
- 6. (currently amended) A circuit according to claim 4 wherein the first biasing circuit other than comprises a dummy TIA <u>circuit</u> for DC biasing of one of the negative input port and the positive input port of the differential amplifier.
- 7. (currently amended) A circuit according to claim 1 wherein the biasing circuit comprises:
- a first current source for providing a portion of a first current to the second input port of the TIA circuit and another portion of the first current to the filter circuit.
- 8. (currently amended) A circuit according to claim 7 wherein the biasing circuit comprises:
- a first resistor disposed between a first voltage input port for receiving a positive voltage and the positive input port of the TIA <u>circuit</u>.
- 9. (original) A circuit according to claim 8 wherein the biasing circuit comprises: a first capacitor disposed in parallel with the first current source, the first capacitor for reducing the thermal noise contributions of the first resistor.
- 10. (original) A circuit according to claim 7 wherein the biasing circuit comprises: circuitry generating a bias signal including the voltage ripple signal dependent on the power supply noise wherein the circuitry is other than a resistor potential divider circuit.

U.S. Application Serial No. 10/654,969 Response to Office Action dated February 14, 2006 Amendment filed April 13, 2006

circuit;

- 11. (currently amended) A circuit according to claim 1 wherein the TIA <u>circuit</u> comprises circuitry for operating as a unity gain voltage amplifier.
- 12. (currently amended) A circuit according to claim 1 wherein the TIA circuit comprises electrical circuitry for providing a high differential gain and a high common mode rejection when amplifying the TIA circuit input signals to provide the TIA circuit output signal.
- 13. (currently amended) A method of performing power supply noise rejection for providing an output signal comprising the steps of:
 providing a TIA <u>circuit</u> having two input ports;
 providing an input signal for amplification to a negative input port of the TIA <u>circuit</u>;
 providing a first bias signal having a voltage ripple to a positive input port of the TIA

amplifying the input signal to form a portion of an amplified signal, the amplified signal comprising a noise signal representative of power supply noise and an amplified version of the input signal;

filtering the amplified signal to form a filtered signal comprised of power supply noise; differentially amplifying the filtered signal and the amplified signal to provide an output signal from the TIA circuit having an amplified version of the input signal and an attenuated version of the power supply noise.

- 14. (original) A method according to claim 13 wherein a magnitude of the voltage ripple provided in the amplified signal is of an approximately same magnitude as the voltage ripple provided at the output port of the filter circuit.
- 15. (currently amended) A method according to claim 13 wherein the TIA <u>circuit</u> amplifies the input signal and first bias signal in a differential manner.

U.S. Application Serial No. 10/654,969 Response to Office Action dated February 14, 2006 Amendment filed April 13, 2006

16. (currently amended) A method according to claim 13 wherein the negative input port of the TIA <u>circuit</u> is a low impedance input port.

17. (currently amended) A method according to claim 13 wherein the positive input port of the TIA <u>circuit</u> is a high impedance input port for providing DC bias to the negative positive input port.

18. (currently amended) A single ended to dual conversion circuit comprising:

a transimpedance amplifier (TIA) circuit for operating in a differential manner and having a gain and a first input port for receiving an input signal from the photodetector, a second input port and an output port, the TIA <u>circuit</u> for providing a TIA <u>circuit</u> output signal comprising a voltage ripple signal dependent on a power supply noise and an amplified signal dependent on the input signal and the gain of the TIA circuit;

a first biasing circuit coupled to the second input port for providing a first bias signal thereto, the first bias signal comprising the voltage ripple signal dependent on the power supply noise;

a filter circuit coupled to the output port of the TIA <u>circuit</u> for filtering the TIA <u>circuit</u> output signal to form a filtered signal, the filter circuit for filtering the TIA <u>circuit</u> output signal in dependence upon an other than DC a time varying component of the first bias signal and for providing the filtered signal to a filter output port thereof; and a differential amplifier having a positive input port for receiving the TIA <u>circuit</u> output signal and having a negative input port for receiving the filtered signal, the differential amplifier having a two output ports for providing a differential output signal therefrom, the differential output signal representative of an amplified difference between the TIA <u>circuit</u> output signal and filtered signal, and an attenuated other than difference between the TIA <u>circuit</u> output signal and filtered signal.