

Physical Science

Logan Saar

Motivation and Goals

Composition - Property Relationships

Optimize Performance → Properties → Composition

Composition - Property Relationships

Optimize Performance → Properties → Composition

The Large Number Problem

The Large Number Challenge

The Large Number Challenge

Binary: ~ 7,000
Tertiary: ~ 250,000
Quaternary: ~ 7.6 million

Automated

Robot **executes** tasks

Robot **reacts** to input

Automated

Robot **executes** tasks

Autonomous SURF

Robot **reacts** to .. gathered data

ACTIVE LEARNING

A mobile robotic chemist

Burger et al., Nature 583, 237 (2020)

Beyond Ternary OPV: High-Throughput Experimentation and Self-Driving Laboratories Optimize Multicomponent Systems

- Blending/mixing or polymers/organic molecules
- Number of experiments can be significantly reduced

Low Cost Autonomous Physical Science System

Active Learning Closed Loop System

Our Mission

Composition Space

Weak Acid - Acetic Acid - 1 M Conjugate Base - Sodium Acetate Solution - 1 M

Goal

Recover Henderson-Hasselbalch Equation.

Henderson-Hasselbalch (HH) Equation:

Our Mission

$${
m pH} = {
m p}K_{
m a} + {
m log}_{10}igg(rac{
m [Base]}{
m [Acid]}igg)$$

Sample Synthesis

X - Y - Z mobility

Syringe for sample collection / deposition (volume controlled)

Measurement

Arduino electrochemical pH probe (voltage readings)

Setup

Python Script

Arduino pH meter/USB

PC/Robot BT connection

Acid and base reservoirs

DI water (probe cleaning)

Plastic sample wells

Statistical Methods and Results

Normal distribution of predicted pH for each potential % Acid composition

Active Learning:

- → Acquisition Function
- → argmax (variance)

GP flexibility - (Gaussian Process)

HH equation relies on assumptions

- → No self-ionization of water
- → Valid only in certain composition range
- → Our pKa ~ 4.7

GP flexibility - (Gaussian Process)

↑↑ % error in HH simplification ...

HH equation relies on assumptions

- → No self-ionization of water
- → Valid only in certain composition range
- → pKa ~ 4.7

Summary

Closed Loop Autonomous Science System

- → Educational Tool
- → Low-cost
- → Modular
- → Materials Exploration

Used Gaussian Processes to explore pH as function of composition

- → Flexible model
- → Explore other active learning methods ...

Acknowledgments

Dr. Gilad Kusne, PhD

Dr. Ichiro Takeuchi, PhD

Dr. Austin McDannald, PhD

Alex Wang

Haotong Liang

Questions

References

Burger, B., Maffettone, P.M., Gusev, V.V. *et al.* A mobile robotic chemist. *Nature* 583, 237–241 (2020). https://doi.org/10.1038/s41586-020-2442-2

De Levie, R. (2003). The Henderson-hasselbalch equation: Its history and limitations. Journal of Chemical Education, 80(2), 146. https://doi.org/10.1021/ed080p146

Gerber, L. C., Calasanz-Kaiser, A., Hyman, L., Voitiuk, K., Patil, U., & Riedel-Kruse, I. H. (2017). Liquid-handling Lego robots and experiments for STEM education and research. PLOS Biology, 15(3), e2001413. https://doi.org/10.1371/journal.pbio.2001413

Appendix

The Next Steps:

For pH Measurement Setup

- → Parameter Refinement
- → Hypothesis Testing
 - → Bayesian methods
 - → Filter between candidate functions

Other Applications (Educational Tool)

- → Camera attachment
 - Learn color mixing trends

Brief Overview - Bayesian Machine Learning

Probabilistic interpretation ... quantifying **uncertainty** (how confident are we?)

Bayes Theorem P (model | data) = $P(\text{data} \mid \text{model}) P(\text{model})$ P(data)

Brief Overview - Bayesian Machine Learning

Probabilistic interpretation ... quantifying **uncertainty** (how confident are we?)

Bayes Theorem

Our confidence in this model being "correct" given the data (what we want to know) Our confidence in this model being "correct" before getting data (assumption)

Brief Overview - Bayesian Machine Learning

New data alters our prior beliefs → posterior beliefs

Assume the model has a certain form

Create parametric model with **model parameters** ... (ex: model = A + B * x)

Problem: How to identify combination of parameters where posterior probability for model is greatest (i.e. best model?)

Solution: Sample posterior distribution in parameter space using Markov Chain Monte Carlo (**MCMC**) method

MCMC samples parameter space to find maxima in posterior (best model)

Produces **posterior distributions** for each **model parameter**

Example:

Represent confidence in parameter values

Active learning: [Parameter Refinement] → argmax (variance in model)

Prior: Assume model has logarithmic form (pH = A + B*log(C*x))

→ A, B, C are our model parameters

Posterior: Probability of this model and its model parameters given the data

Autonomous Results - (Bayesian Inference)

Autonomous Results - (Bayesian Inference)

