# g<sub>1</sub><sup>3He</sup>/F<sub>1</sub><sup>3He</sup> Fitting

Michael Lowry

### **DIS Fitting**

 Fit DIS data (W>2 GeV and Q<sup>2</sup>>1 GeV<sup>2</sup>) with neutron form from Xiaochao's thesis

$$g_1^{3He}/F_1^{3He} = (a+bx+cx^2)(1+\frac{\beta}{Q^2})$$

- Parameters a, b, c, and β
- Should have a very minor dependence on Q<sup>2</sup>

### DIS $(W > 2 \text{ GeV}, Q^2 > 1 \text{ GeV}^2)$





- Good fit, very small dependence on Q<sup>2</sup>
- Fitted curve is for constant Q<sup>2</sup> (5 GeV<sup>2</sup>)

$$g_1^{3He}/F_1^{3He} = (a + bx + cx^2)(1 + \frac{\beta}{Q^2})$$

| a                   | b                  | c                | β               |
|---------------------|--------------------|------------------|-----------------|
| $-0.021 \pm 0.0029$ | $-0.055 \pm 0.030$ | $0.17 \pm 0.057$ | $0.11 \pm 0.22$ |

### DIS Fit with Mingyu Data

- Cubic fit with negative trend at high X better fits Mingyu's data than the original quadratic form
- Constrained minimum of quadratic fit to X≈0.2 and g<sub>1</sub>/F<sub>1</sub>≈-0.03



### Resonance Fitting

Should rearrange B-W formula so *k* means the peak height (final slide)

Fit g<sub>1</sub>/F<sub>1</sub> resonance peaks with Breit-Wigner distribution

$$f(E)=rac{k}{\left(E^2-M^2
ight)^2+M^2\Gamma^2}$$

- k is a constant
- T is the width at half max
- *M* is the mass of the resonance
- k,  $\Gamma$  depend on  $Q^2$
- Unsure what the relationship between k, Γ and Q² is
   -> fit for constant Q² and fit the parameters versus Q²

### Resonance (1 GeV < W < 2 GeV)



Delta Peak Fits

- Yellow = fixed M fit
- Red = variable M fit
- Should fit k and Γ from the variable M fits



### M, k, and $\Gamma$ vs Q<sup>2</sup> (floating M Delta fit)



### k and $\Gamma$ vs $Q^2$ (fixed M Delta fit)



### k, $\Gamma$ Global Fits (fixed M)

- Fitted *k* and *Γ* values from "fixed" Delta fit for all bins with cubic spline and "Woods-Saxon" form times quadratic
  - Added extra term
     y<sub>0</sub> for constant
     end behavior for
     the latter
- Set Woods-Saxon
   parameters p<sub>0</sub>, p<sub>1</sub>, p<sub>2</sub> to
   constants and adjusted
   them to get better fits



Should do away with spline and refit (check final slide)

$$k = (a + bx + cx^2) \left(\frac{0.7}{1.0 + e^{(x-1.7)/0.3}}\right) + y_0 \qquad \Gamma = (a + bx + cx^2) \left(\frac{1.3}{1.0 + e^{(x-2.0)/0.5}}\right) + y_0$$
 
$$y = (a + bx + cx^2) \left(\frac{p_0}{1.0 + e^{(x-p_1)/p_2}}\right) + y_0$$
 Woods-Saxon

Fitted curves for spline of k and  $\Gamma$ , quad\*Woods-Saxon fits of k and  $\Gamma$ , and spline of k and Woods-Saxon fit of  $\Gamma$ 

- Spline generally does much better
- Spline of k and quad\*Woods-Saxon fit of Γ seems to be the best approach



## Extended Quadratic and Cubic DIS fits to resonance region

Substituted  $\beta$  from cubic fit into quadratic form to get better behavior in resonance region  $(\beta=0.11059 \rightarrow \beta=0.04469)$ 



### Continuing Work Notes (To Do)

- Change Breit-Wigner so k represents the actual peak height and refit Delta peaks:
  - o substitute with k\_new =  $k/(M^2 * \Gamma^2)$
- Try fitting the varying mass parameters  $(M, k, \Gamma)$  as well
- Fit the four red gamma points (from E94-010) as a constant and add the result (with uncertainty) at high  $Q^2$  to restrict the gamma fit at high  $Q^2$  this is more obvious with the  $\Gamma$  values from the fixed fits, but it should work for the variable mass fits ( $\Gamma$  should become constant)
- For the gamma fit, try the quadratic times woods-Saxon to avoid higher order polynomials at low  $Q^2$ . Try  $p_1=0.5$  and  $p_2=0.1$ 
  - Try to push the jump to lower Q<sup>2</sup>
- Several ideas for connecting DIS fit to resonance:
  - fit the residual between Delta fit and actual points at the middle region (W=1.5) and add to Breit-Wigner fit in order to hit those points
  - Need a smooth function to connect DIS to Breit-Wigner function at W=1.8 maybe linear and add in wiggles for lower Q<sup>2</sup> (Q<sup>2</sup>=0.1 & 0.5) bins which appear to have some structure.