Amendment to the claims:

1. (currently amended) A method for isolating DNA from a biological sample, said biological sample comprising: eukaryotic cells, a physiological fluid, and/or an animal tissue; said method comprising the following sequential steps:

- (a) separating the biological material comprising DNA from the remainder of the biological sample;
- (b) contacting the separated biological material comprising DNA of step (a) with a hypertonic, high salt reagent <u>having a concentration of salt therein</u> so as to form a suspension of said biological material containing DNA;
- (c) contacting the suspension of step (b) with a lysis reagent so as to lyse the biological material containing DNA to form a lysate comprising DNA and non-DNA biological components released from the biological material, wherein the hypertonic, high salt reagent in step (b) comprises salt in an amount effective to precipitate proteins out of the lysate; and
- (d) separating the DNA from the non-DNA biological components in the lysate of step(c) to yield isolated DNA.
- 2. (currently amended) A method for isolating DNA from a biological sample <u>said</u> biological sample comprising: eukaryotic cells, a physiological fluid, and/or an animal tissue; said <u>method comprising biological material comprising DNA</u> comprising the following sequential steps:
 - (a) contacting the biological material comprising DNA with a hypertonic, high salt reagent <u>having a concentration of salt therein</u> so as to form a suspension of the biological material comprising DNA;
 - (b) contacting the suspension of step (a) with a lysis reagent so as to lyse the biological material containing DNA to form a lysate comprising DNA and non-DNA biological components released from the biological material, wherein the hypertonic, high salt reagent in step (a) comprises salt in an amount effective to precipitate proteins out of the lysate; and

(c) separating the DNA from the non-DNA biological components in the lysate of step

(c) to yield isolated DNA.

3. (currently amended) The method of claim 1 or 2, wherein the biological sample is

selected from the group consisting of plant tissue, animal tissue, cultured plant cells, cultured

animal cells, blood cells, and body fluids.

4. (Previously presented) The method of claim 1 or 2, wherein the biological sample

comprises a virus.

5. (Previously presented) The method of claim 1 or 2, wherein the biological sample is a

bone marrow sample.

6. (Previously presented) The method of claim 1 or 2, wherein the biological sample is

whole blood.

7. (Previously presented) The method of claim 1 or 2, where the non-DNA biological

component is selected from the group consisting of proteins, lipids, RNA, and carbohydrates.

8. (Cancelled).

9. (Cancelled).

10. (Previously presented) The method of claim 1 or 2, wherein the salt is selected from the

group consisting of soluble sodium, ammonium, or potassium salts.

11. (Previously presented) The method of claim 1 or 2, wherein the concentration of the salt

is greater than 1 M.

12. (Previously presented) The method of claim 1 or 2, wherein the concentration of the

salt is greater than 2 M.

3

Application No. 10/075,593 HEATH, Ellen M. et al.

Docket No.: 2902162-017000 Client Ref.: PA 207-US

13. (Previously presented) The method of claim 1 or 2, wherein the lysis reagent comprises a detergent.

- 14. (Previously presented) The method of claim 1 or 2, wherein the lysis reagent comprises an anionic detergent.
- 15. (Previously presented) The method of claim 14, wherein the anionic detergent is chosen from the group consisting of sodium, potassium, and lithium salts of dodecyl sulfate.
- 16. (Currently amended) The method of claim 14, wherein the concentration of the anionic detergent is greater than 0.1 % w/v based on the volume of the lysis reagent.
- 17. (Previously presented) The method of claim 1 or 2, wherein the lysis reagent further contains an RNase solution.
- 18. (Cancelled).
- 19. (Previously presented) The method of claim 1 or 2, wherein the step of separating the DNA from the lysate further comprises physically precipitating non-DNA biological components from the lysate without the use of any additional reagents, to yield a non-DNA precipitate, and a solution containing DNA.
- 20. (Previously presented) The method of claim 19, wherein the step of separating the DNA from the lysate further comprises centrifuging the lysate.
- 21. (Previously presented) The method of claim 19, further comprising contacting said solution containing DNA with an alcohol to yield a precipitate comprising isolated DNA.
- 22 (Previously presented) The method of claim 21 further comprising contacting the isolated DNA with a wash solution.

Application No. 10/075,593 HEATH, Ellen M. et al.

Docket No.: 2902162-017000 Client Ref.: PA 207-US

23. (Previously presented) The method of claim 21, wherein the isolated DNA is treated with a hydration reagent.

- 24. (currently amended) A method for isolating DNA from a biological sample comprising animal cells comprising the following sequential steps:
 - (a) separating the cells comprising DNA from the remainder of the biological sample;
 - (b) contacting the separated cells comprising DNA of step (a) with a hypertonic, high salt reagent having a concentration of salt therein so as to form a suspension of said biological cells;
 - (c) contacting the suspension of step (b) with a lysis reagent so as to lyse the biological material containing DNA to form a lysate comprising DNA and non-DNA biological components of the biological material, wherein the hypertonic, high salt reagent in step (b) comprises salt in an amount effective to precipitate proteins out of the lysate; and
 - (d) separating the DNA from the non-DNA biological components of the lysate of step (c) to yield isolated DNA.
- 25. (currently amended) The method of claim 24, wherein the biological sample is selected from the group consisting of plant tissue, animal tissue, cultured plant cells, cultured animal cells, blood cells, and body fluids.
- 26. (Previously presented) The method of claim 24, wherein the biological sample is a bone marrow sample.
- 27. (Previously presented) The method of claim 24, wherein the biological sample is whole blood.
- 28. (Previously presented) The method of claim 24, where the non-DNA biological component is selected from the group consisting of proteins, lipids, RNA, and carbohydrates.

Application No. 10/075,593 HEATH, Ellen M. *et al.*

Docket No.: 2902162-017000 Client Ref.: PA 207-US

- 29 (Cancelled).
- 30. (Cancelled).
- 31. (Previously presented) The method of claim 24, wherein the salt is selected from the group consisting of soluble sodium, ammonium, or potassium salts.
- 32. (Previously presented) The method of claim 24, wherein the concentration of the salt is greater than 1 M.
- 33. (Previously presented) The method of claim 24, wherein the concentration of the salt is greater than 2 M.
- 34. (Previously presented) The method of claim 24, wherein the lysis reagent comprises a detergent.
- 35. (Previously presented) The method of claim 24, wherein the lysis reagent comprises an anionic detergent.
- 36. (Previously presented) The method of claim 35, wherein the anionic detergent is chosen from the group consisting of sodium, potassium, and lithium salts of dodecyl sulfate.
- 37. (Currently amended) The method of claim 35, wherein the concentration of the anionic detergent is greater than 0.1 % w/v based on the volume of the lysis reagent.
- 38. (Previously presented) The method of claim 24, wherein the lysis reagent further contains an RNase solution.
- 39. (Cancelled).
- 40. (Previously presented) The method of claim 24, wherein the step of separating the

DNA from the lysate further comprises physically precipitating non-DNA biological components from the lysate without the use of any additional reagents, to yield a non-DNA precipitate, and a solution containing DNA.

- 41. (Previously presented) The method of claim 40, wherein the step of separating the DNA from the lysate further comprises centrifuging the lysate.
- 42. (Previously presented) The method of claim 40, further comprising contacting said solution containing DNA with an alcohol to yield a precipitate comprising isolated DNA.
- 43. (Previously presented) The method of claim 42 further comprising contacting the isolated DNA with a wash solution.
- 44. (Previously presented) The method of claim 42, wherein the isolated DNA is treated with a hydration reagent.
- 45. (Currently amended) A method for isolating DNA from a biological sample comprising red blood cells and white blood cells comprising the following sequential steps:
 - (a) contacting the biological sample with a red blood lysis reagent to lyse the red blood cells;
 - (b) separating the white blood cells from the lysed red blood cells;
 - (c) contacting the white blood cells with a hypertonic, high-salt reagent <u>having a concentration of salt therein</u> to suspend the white blood cells in a solution of said hypertonic, high-salt reagent;
 - (d) subsequently contacting the white blood cells of step (c) with a lysis reagent so as to lyse the biological material containing DNA to form a lysate containing DNA and non-DNA cellular material, wherein the hypertonic, high salt reagent in step (c) comprises salt in an amount effective to precipitate proteins out of the lysate; and
 - (e) separating the DNA from non-DNA cellular material of the lysate to yield isolated DNA.

46. (Previously presented) The method of claim 45, wherein the biological sample is selected from the group consisting of blood cells and body fluids.

- 47. (Previously presented) The method of claim 45, wherein the biological sample is a bone marrow sample.
- 48. (Previously presented) The method of claim 45, wherein the biological sample is whole blood.
- 49. (Previously presented) The method of claim 45, where the non-DNA biological component is selected from the group consisting of proteins, lipids, RNA, and carbohydrates.
- 50. (Cancelled).
- 51. (Cancelled).
- 52. (Previously presented) The method of claim 45, wherein the salt is selected from the group consisting of soluble sodium, ammonium, or potassium salts.
- 53. (Previously presented) The method of claim 45, wherein the concentration of the salt is greater than 1 M.
- 54. (Previously presented) The method of claim 45, wherein the concentration of the salt is greater than 2 M.
- 55. (Previously presented) The method of claim 45, wherein the lysis reagent comprises a detergent.
- 56. (Previously presented) The method of claim 45, wherein the lysis reagent comprises an anionic detergent.

57. (Previously presented) The method of claim 56, wherein the anionic detergent is chosen from the group consisting of sodium, potassium, and lithium salts of dodecyl sulfate.

- 58. (Currently amended) The method of claim 56, wherein the concentration of the anionic detergent is greater than 0.1 % w/v based on the volume of the lysis reagent.
- 59. (Previously presented) The method of claim 45, wherein the lysis reagent further contains an RNase solution.
- 60. (Cancelled).
- 61. (Previously presented) The method of claim 45, wherein the step of separating the DNA from the lysate further comprises physically precipitating non-DNA biological components from the lysate without the use of any additional reagents, to yield a non-DNA precipitate, and a solution containing DNA.
- 62. (Previously presented) The method of claim 61, wherein the step of separating the DNA from the lysate further comprises centrifuging the lysate.
- 63. (Previously presented) The method of claim 61, further comprising contacting said solution containing DNA with an alcohol to yield a precipitate comprising isolated DNA.
- 64. (Previously presented) The method of claim 63 further comprising contacting the isolated DNA with a wash solution.
 - 65.(Previously presented) The method of claim 63, wherein the isolated DNA is treated with a hydration reagent.
 - 66. (new) A method of claim 1, wherein said biological sample is a physiological sample.
 - 67. (new) A method of claim 1, wherein said biological sample is selected from the group consisting of animal tissues, animal cells, body fluids, and gram negative bacteria cultures.

68. (new) A method of claim 1 wherein said biological sample is selected from the group consisting of animal tissues, animal cells and body fluids.

- 69. (new) A method of claim 1, wherein said biological sample comprises blood cells.
- 70. (new) A method of claim 69, wherein said blood cells comprise whole blood, dried blood, marrow, plasma and/or serum.