1. IDENTIFICACION.

Materia: INSTRUMENTACION
Códigos: SIRE: 6036 EIQ: IQ-ET09

Prelación: IQ-5027, IQ-5017

Ubicación:ElectivaTPLU:4-0-0-4Condición:Electiva

Departamento: Operaciones Unitarias y Proyectos

2. JUSTIFICACION.

Todo ingeniero relacionado con procesos industriales debe tener conocimientos de cómo medir variables, puesto que esto es necesario para manejar el proceso y para hacer cálculos de tipo económico. Una variable mal medida puede generar grandes pérdidas en una planta.

3. REQUERIMIENTOS.

Se requieren conocimientos básicos adquiridos en todas las materias que conforman el pensum de Ingeniería Química.

4. OBJETIVOS

GENERALES

Introducir al estudiante en las diferentes técnicas que se emplean para medir variables en procesos industriales.

ESPECIFICOS

- Enseñar las técnicas empleadas para medir presión en tanques y en tuberías.
- Enseñar las técnicas empleadas para medir nivel de líquidos en tanques
- Enseñar las técnicas más utilizadas para medir flujo de fluidos en tuberías.
- Enseñar como medir temperatura en procesos industriales.

5. CONTENIDO PROGRAMATICO

CAPITULO 1. FUNDAMENTOS DE MEDICION (8 hr)

Conceptos básicos. Componentes fundamentales de un instrumento de medición.

Características de los instrumentos: de capacidad, estáticas y dinámicas. Clasificación general de los instrumentos. Amplificadores mecánicos usados en instrumentación. Calibración de instrumentos. Ejercicios.

CAPITULO 2. MEDICION DE PRESION (10 hr)

Conceptos básicos. Formas de presión en un fluido en movimiento. Sensores de presión: resorte de Bourdon, fuelle, diagragma. Manómetros mecánicos. Transductores eléctricos de presión: resistivo, magnético, capacitivo, piezoeléctrico, extensómetro. Protección del medidor de presión contra los efectos destructivos del fluido. Ejercicios.

CAPITULO 3. MEDICION DE NIVEL DE LIQUIDOS (10 hr)

Conceptos básicos. Métodos directos y métodos indirectos. Medición directa de nivel: medidor de vara, medidor de tubo de vidrio, medidor de flotador, medidor de electrodos. Medición indirecta de nivel: por presión hidrostática: medidor manométrico, medidor de burbujeo. Por presión diferencial: tanque abierto, tanque cerrado, supresión y elevación de cero, arreglos de tubería. Por fuerza de empuje: medidor de tubo de torsión. Por radiación nuclear: medidor radioactivo. Por ultrasonido: medidor ultrasónico. Ejercicios.

CAPITULO 4. MEDICION DE FLUJO (20 hr)

Conceptos básicos. Medición de flujo volumétrico: medición de flujo por presión diferencial: la placa de orificio, el tubo de Venturi y la Tobera, determinación de la fórmula, presiones diferenciales recomendadas, normas de ubicación del elemento en la tubería, líneas de conexión a la tubería, ejemplos de aplicación. Medición de flujo por variación de área: el rotámetro. Medición de flujo por variación de velocidad: medidor de turbina, medidor ultrasónico. Medición de flujo por tensión inducida: medidor magnético. Medición de flujo másico: por efecto térmico: medidor calorimétrico, el anemómetro. Por efecto de Coriolis: medidor de Coriolis.

CAPITULO 5. MEDICION DE TEMPERATURA (16 hr)

Conceptos básicos. Termómetros de expansión: termómetro bimetálico, termómetro de resorte. Termopares: origen. Relación entre la fuerza electromotriz y la temperatura. Leyes de los circuitos termoeléctricos. Termopares industriales. Cables de conexión. Uso de termopozo circuitos de termopares. Medición de la fuerza electromotriz. Ejemplos de aplicación. Termómetros de resistencia: principio. Coeficiente térmico de resistencia. Bulbos de resistencia industriales. Características de los termómetros de resistencia. Uso de termopozo. Medición de la resistencia.

6. METODOLOGIA.

Clases teóricas y prácticas con exposiciones visuales de equipos.

7.	RECURSOS.
	Tiza, pizarrón, equipos, videos.
8.	EVALUACION
	Continua.
9.	BIBLIOGRAFIA.
	Apuntes del Prof. Benito Barón.
10.	VIGENCIA:
	Desde: Semestre B-2001.