

Lecture 4: Circuits & Layout

Assignment for 9/12

- ☐ Complete Lab2
- □ Text book reading sections 1.1 1.5 (28 pages)
- □ Prepare for quiz 2 (based on today's lecture)

Outline

- CMOS Gate Design
- Pass Transistors
- □ CMOS Latches & Flip-Flops
- ☐ Standard Cell Layouts
- ☐ Stick Diagrams

CMOS Gate Design

- ☐ Activity:
 - Sketch a 4-input CMOS NOR gate

Complementary CMOS

- ☐ Complementary CMOS logic gates
 - nMOS pull-down network
 - pMOS pull-up network
 - a.k.a. static CMOS

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Series and Parallel

- nMOS: 1 = ON
- pMOS: 0 = ON
- Series: both must be ON
- Parallel: either can be ON

(b)

$$g1 \longrightarrow g2$$

$$0 \longrightarrow 0$$

$$0 \longrightarrow 1$$

$$0 \longrightarrow 1$$

$$0 \longrightarrow 0$$

$$0 \longrightarrow 1$$

$$0 \longrightarrow 0$$

(c)

Conduction Complement

- ☐ Complementary CMOS gates always produce 0 or 1
- □ Ex: NAND gate
 - Series nMOS: Y=0 when both inputs are 1
 - Thus Y=1 when either input is 0
 - Requires parallel pMOS

- ☐ Rule of Conduction Complements
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel

Compound Gates

- ☐ Compound gates can do any inverting function
- \square Ex: Y = AgB + CD (AND-AND-OR-INVERT, AOI22)

$$A \multimap \Box P B C \multimap \Box P D \longrightarrow A \multimap \Box P B$$
(c)
$$(d)$$

Example: O3AI

$$\Box Y = \overline{(A+B+C)gD}$$

Signal Strength

- ☐ Strength of signal
 - How close it approximates ideal voltage source
- □ V_{DD} and GND rails are strongest 1 and 0
- □ nMOS pass strong 0
 - But degraded or weak 1
- pMOS pass strong 1
 - But degraded or weak 0
- □ Thus nMOS are best for pull-down network

Pass Transistors

☐ Transistors can be used as switches

$$g = 0$$

$$s - \mathbf{v} - \mathbf{d}$$

$$g = 1$$

 $s \rightarrow d$

$$g = 0$$
$$s \longrightarrow d$$

$$g = 1$$
 $s \rightarrow d$

Input
$$g = 1$$
 Output $0 \rightarrow strong 0$

Input
$$g = 0$$
 Output $0 \rightarrow -$ degraded 0

Transmission Gates

- Pass transistors produce degraded outputs
- ☐ Transmission gates pass both 0 and 1 well

$$g = 0$$
, $gb = 1$
 $a - b$

$$g = 1$$
, $gb = 0$
 $a \rightarrow b$

Input Output

$$g = 1$$
, $gb = 0$
 $0 \rightarrow \rightarrow c$ strong 0

Tristates

☐ Tristate buffer produces Z when not enabled

EN	Α	Υ
0	0	
0	1	
1	0	
1	1	

Nonrestoring Tristate

- ☐ Transmission gate acts as tristate buffer
 - Only two transistors
 - But nonrestoring
 - Noise on A is passed on to Y

Tristate Inverter

- ☐ Tristate inverter produces restored output
 - Violates conduction complement rule
 - Because we want a Z output

Multiplexers

☐ 4:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	
0	X	1	
1	0	X	
1	1	X	

Gate-Level Mux Design

- \square $Y = SD_1 + SD_0$ (too many transistors)
- ☐ How many transistors are needed?

Transmission Gate Mux

- Nonrestoring mux uses two transmission gates
 - Only 4 transistors

Inverting Mux

- ☐ Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter

4:1 Multiplexer

- ☐ 4:1 mux chooses one of 4 inputs using two selects
 - Two levels of 4:1 muxes
 - Or four tristates

D Latch

- ☐ When CLK = 1, latch is *transparent*
 - D flows through to Q like a buffer
- When CLK = 0, the latch is opaque
 - Q holds its old value independent of D
- □ a.k.a. transparent latch or level-sensitive latch

D Latch Design

■ Multiplexer chooses D or old Q

D Latch Operation

D Flip-flop

- When CLK rises, D is copied to Q
- □ At all other times, Q holds its value
- □ a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

D Flip-flop Design

☐ Built from master and slave D latches

D Flip-flop Operation

Race Condition

- Back-to-back flops can malfunction from clock skew
 - Second flip-flop fires late
 - Sees first flip-flop change and captures its result
 - Called hold-time failure or race condition

Nonoverlapping Clocks

- Nonoverlapping clocks can prevent races
 - As long as nonoverlap exceeds clock skew
- We will use them in this class for safe design
 - Industry manages skew more carefully instead

Gate Layout

- ☐ Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- □ Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

Example: Inverter

Example: NAND3

- ☐ Horizontal N-diffusion and p-diffusion strips
- □ Vertical polysilicon gates
- ☐ Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- \Box 32 λ by 40 λ

Stick Diagrams

- ☐ Stick diagrams help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers

Wiring Tracks

- ☐ A wiring track is the space required for a wire
 - -4λ width, 4λ spacing from neighbor = 8λ pitch
- ☐ Transistors also consume one wiring track

Well spacing

- \Box Wells must surround transistors by 6 λ
 - Implies 12 λ between opposite transistor flavors
 - Leaves room for one wire track

Area Estimation

- ☐ Estimate area by counting wiring tracks
 - Multiply by 8 to express in λ

Example: O3AI

☐ Sketch a stick diagram for O3AI and estimate area

$$- Y = \overline{(A+B+C)gD}$$

