Electronics Semester 5

Ahmad Abu Zainab

Contents

15

Chapter 1	Amplifiers	Page 3
1.1	Gain of Amplifiers	3
1.2	Equivalent Circuit of an Amplifier	3
1.3	Cascade Amplifiers	4
Chapter 2	Diodes	Page 5
2.1	The Ideal Diode	5
	Simple Application: The Half-Wave Rectifier — 5	
2.2	Terminal Characteristics of Junction Diodes	6
2.3	The Forward Bias Region	6
2.4	Real Diode Models	6
	The Exponential Model — 6 • The Constant Voltage Model — 6	
2.5	Zener Diodes	6
2.6	Diode Rectifiers The Half-Wave Rectifier — 7 • Full-Wave Rectifier — 7 • The Bridge Rectifier — 8	7
	The fran-wave flectimes — 7 • Fun-wave flectimes — 7 • The Bridge flectimes — 8	
Chapter 3	BJTs	Page 9
3.1	BJT Current-Voltage Relationships in the Active Mode	9
3.2	BJT in DC	9
3.3	Small Signal Model of a BJT	10
	The Hybrid- π Model — 10 • The T Model — 10	
Chapter 4	MOSFETs	Page 12
4.1	MOSFET Modes of Operation	12
	Cut-off — 12 • Triode — 12 • Saturation — 13	
4.2	Small Signal Model of a MOSFET	13
	The Hybrid- π Model — 13 • The T Model — 13	
Chapter 5	Operational Amplifiers	Page 14
5.1	Inverting Configuration	14
F 0	The Summing Amplifier — 14	15
5.2	Non-Inverting Configuration	15
5.3	Difference Amplifier	15

5.4 Integrator

5.5 Differentiator

Amplifiers

1.1 Gain of Amplifiers

$$\begin{aligned} \text{Voltage Gain} &= \frac{v_{out}}{v_{in}} \\ \text{Current Gain} &= \frac{i_{out}}{i_{in}} \\ \text{Power Gain} &= \frac{P_{out}}{P_{in}} \end{aligned}$$

In decibels, the gain is given by

$$\begin{aligned} & \text{Voltage Gain} = 20 \log \left(\frac{v_{out}}{v_{in}} \right) \\ & \text{Current Gain} = 20 \log \left(\frac{i_{out}}{i_{in}} \right) \\ & \text{Power Gain} = 10 \log \left(\frac{P_{out}}{P_{in}} \right) \end{aligned}$$

1.2 Equivalent Circuit of an Amplifier

1.3 Cascade Amplifiers

In the above circuit, the output voltage is given by

$$\begin{split} v_L &= 10 \cdot \frac{1 \, \mathrm{M}\Omega}{1 \, \mathrm{M}\Omega + 100 \, \mathrm{k}\Omega} \cdot 100 \cdot \frac{100 \, \mathrm{k}\Omega}{100 \, \mathrm{k}\Omega + 1 \, \mathrm{k}\Omega} \cdot 1 \cdot \frac{10 \, \mathrm{k}\Omega}{10 \, \mathrm{k}\Omega + 1 \, \mathrm{k}\Omega} \cdot \frac{100 \, \Omega}{100 \, \Omega + 10 \, \Omega} \cdot v_i. \\ A_v &= \frac{v_L}{v_i} = 743.876 \, \mathrm{V/V}. \end{split}$$

Diodes

2.1 The Ideal Diode

The ideal diode is a two terminal device that allows current to flow in one direction only.

2.1.1 Simple Application: The Half-Wave Rectifier

2.2 Terminal Characteristics of Junction Diodes

The characteristic curve of a diode consists of three regions:

- 1. The forward bias region, where the diode conducts current. $v_D > 0$.
- 2. The reverse bias region, where the diode blocks current. $v_D < 0$.
- 3. The breakdown region, where the diode conducts current in the reverse direction. $v_D < -V_{ZK}$.

2.3 The Forward Bias Region

In the forward bias region, the diode conducts current. The current is given by

$$i=I_S\left(e^{v/V_T}-1\right).$$

Where I_S is the reverse saturation current, and $V_T \approx 25\,\mathrm{mV}$ is the thermal voltage.

2.4 Real Diode Models

2.4.1 The Exponential Model

The exponential model of a diode is given by

$$I_D = I_S e^{v_D/V_T}.$$

2.4.2 The Constant Voltage Model

This model assumes that the diode voltage is constant in the forward bias region at $V_{\gamma} = 0.7 \,\mathrm{V}$.

2.5 Zener Diodes

A Zener diode is a diode that is designed to operate in the breakdown region.

$$I_Z - V_Z + V_Z$$

For currents $I_Z > 0$, the characteristic curve of a Zener diode is almost vertical.

$$V_Z = V_{Z0} + r_z I_Z.$$

2.6 Diode Rectifiers

When selecting a diode for a rectifier, the following parameters should be considered:

- 1. The current rating of the diode determined by the maximum current that the diode can handle.
- 2. The peak inverse voltage (PIV) rating of the diode determined by the maximum reverse voltage that the diode can handle.

2.6.1 The Half-Wave Rectifier

$$v_{\rm out} = \begin{cases} v_{\rm in} - V_{D0} & \text{if } v_{\rm in} \geq V_{D0} \\ 0 & \text{if } v_{\rm in} < V_{D0} \end{cases}.$$

 $PIV = V_S$ (input voltage swing) and the diode breakdown voltage is selected to be 50% higher.

2.6.2 Full-Wave Rectifier

 $\mathrm{PIV} = 2V_S - V_D.$

2.6.3 The Bridge Rectifier

The difference between the bridge rectifier and the full-wave rectifier is that the bridge rectifier does not require a center-tapped transformer and requires more turn on voltage $2V_D$.

$$\mathrm{PIV} = V_S - V_D.$$

BJTs

A BJT is a Bipolar Junction Transistor. It is a current controlled device. It has three terminals: the base, the collector, and the emitter. The BJT is a three-layer, two-junction semiconductor device.

npn BJT

 $\operatorname{pnp}\,\operatorname{BJT}$

3.1 BJT Current-Voltage Relationships in the Active Mode

npn Transistor	pnp Transistor	Global
$i_C = I_S e^{v_{BE}/V_T}$	$i_C = I_S e^{v_{EB}/V_T}$	$i_E = i_C + i_B$
$i_B = \frac{i_C}{\beta}$	$i_B = \frac{i_C}{\beta}$	$\alpha = \frac{\beta}{\beta + 1}$
$i_E = \frac{i_C}{\alpha}$	$i_E = \frac{i_C}{\alpha}$	$\beta = \frac{\alpha}{1 - \alpha}$

3.2 BJT in DC

- 1. Cut-off mode:
 - $i_E = i_C = i_B = 0$
 - $v_{BE} < 0.5 \,\mathrm{V}$ and $v_{BC} < 0.4 \,\mathrm{V}$
- 2. Saturation mode:
 - $v_{BE}=0.7\,\mathrm{V}$ and $i_B:i_C:i_E=1:\beta:\beta+1$
 - $v_{CE} > 0.3 \, \text{V}$
- 3. Active mode:
 - $v_{BE} = 0.7 \,\mathrm{V}$ and $v_{CE} = 0.2 \,\mathrm{V}$
 - $ic/i_B = \beta_{\text{forced}} < \beta$

3.3 Small Signal Model of a BJT

The transconductance of a BJT is given by

$$g_m = \frac{\partial i_C}{\partial v_{BE}} \bigg|_{i_C = I_C} = \frac{I_C}{V_T}.$$

$$r_\pi = \frac{\beta}{g_m} = \frac{V_T}{I_B}$$

$$r_e = \frac{\alpha}{g_m} = \frac{V_T}{I_E}$$

$$r_0 = \frac{V_A}{I_C}$$

3.3.1 The Hybrid- π Model

3.3.2 The T Model

MOSFETs

A MOSFET is a Metal Oxide Semiconductor Field Effect Transistor. It is a voltage controlled device. It has three terminals: the gate, the source, and the drain.

4.1 MOSFET Modes of Operation

$$\mathbf{G}$$
 \mathbf{V}_{DS}
 \mathbf{V}_{DS}

4.1.1 Cut-off

In this mode, the MOSFET is off $(i_D=0)$. The MOSFET is in cut-off when $v_{GS} \leq V_{th}$. Where V_{th} is the threshold voltage of the MOSFET.

4.1.2 Triode

In this mode, the MOSFET is on $(i_D \neq 0)$. The MOSFET conducts current from the drain to the source. The MOSFET is in triode when $v_{GS} > V_{th}$ and $v_{DS} < v_{GS} - V_{th}$.

$$i_D = \mu_n C_{ox} \frac{W}{L} \left[(v_{GS} - V_{th}) v_{DS} - \frac{v_{DS}^2}{2} \right]. \label{eq:ideal}$$

4.1.3 Saturation

In this mode, the MOSFET is on $(i_D \neq 0)$. The MOSFET conducts current from the drain to the source. The MOSFET is in saturation when $v_{GS} > V_{th}$ and $v_{DS} > v_{GS} - V_{th}$.

$$i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_{th})^2. \label{eq:ideal}$$

4.2 Small Signal Model of a MOSFET

$$g_m = \frac{2I_D}{V_{GS} - V_{th}}$$

$$r_o = \frac{V_A}{I_D} = \frac{1}{\lambda I_D}$$

4.2.1 The Hybrid- π Model

4.2.2 The T Model

Operational Amplifiers

An operational amplifier is a high gain differential amplifier. It has two inputs: the inverting input and the non-inverting input. It has one output.

5.1 Inverting Configuration

5.1.1 The Summing Amplifier

5.2 Non-Inverting Configuration

5.3 Difference Amplifier

5.4 Integrator

5.5 Differentiator

