Cours d'électronique : Diagramme de Smith

A. Arciniegas

IUT Cergy-Pontoise, Dep GEII, site de Neuville

Contents

Intérêt

Principe et construction

Utilisation de l'abaque

Rappel

$$\begin{split} \Gamma_L &= \frac{Z_L - Z_C}{Z_L + Z_C} = |\Gamma_L| \mathbf{e}^{j\theta_L} \\ Z(x) &= Z_C \frac{1 + \Gamma_L \mathbf{e}^{-2jkx}}{1 - \Gamma_L \mathbf{e}^{-2jkx}} = Z_C \frac{1 + \Gamma(x)}{1 - \Gamma(x)} \\ \rho &= \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|} \end{split}$$

Rappel

$$\begin{split} \Gamma_L &= \frac{Z_L - Z_C}{Z_L + Z_C} = |\Gamma_L| e^{j\theta_L} \\ Z(x) &= Z_C \frac{1 + \Gamma_L e^{-2jkx}}{1 - \Gamma_L e^{-2jkx}} = Z_C \frac{1 + \Gamma(x)}{1 - \Gamma(x)} \\ \rho &= \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|} \end{split}$$

Dans le cas particulier où l'on se place sur l'impédance de charge :

$$Z_L = Z_C \frac{1 + \Gamma_L}{1 - \Gamma_L}$$

Rappel

$$\begin{split} \Gamma_L &= \frac{Z_L - Z_C}{Z_L + Z_C} = |\Gamma_L|e^{j\theta_L} \\ Z(x) &= Z_C \frac{1 + \Gamma_L e^{-2jkx}}{1 - \Gamma_L e^{-2jkx}} = Z_C \frac{1 + \Gamma(x)}{1 - \Gamma(x)} \\ \rho &= \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|} \end{split}$$

Dans le cas particulier où l'on se place sur l'impédance de charge :

$$Z_L = Z_C \frac{1 + \Gamma_L}{1 - \Gamma_L}$$

On définit les impédances réduites (en divisant les impédances Z par Z_c):

$$z(x) = \frac{1 + \Gamma(x)}{1 - \Gamma(x)}$$
$$z_L = \frac{1 + \Gamma_L}{1 - \Gamma_L}$$

Rappel

$$\begin{split} \Gamma_L &= \frac{Z_L - Z_C}{Z_L + Z_C} = |\Gamma_L|e^{j\theta_L} \\ Z(x) &= Z_C \frac{1 + \Gamma_L e^{-2jkx}}{1 - \Gamma_L e^{-2jkx}} = Z_C \frac{1 + \Gamma(x)}{1 - \Gamma(x)} \\ \rho &= \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|} \end{split}$$

Dans le cas particulier où l'on se place sur l'impédance de charge :

$$Z_L = Z_C \frac{1 + \Gamma_L}{1 - \Gamma_I}$$

On définit les impédances réduites (en divisant les impédances Z par Z_c):

$$z(x) = \frac{1 + \Gamma(x)}{1 - \Gamma(x)}$$
$$z_{L} = \frac{1 + \Gamma_{L}}{1 - \Gamma_{L}}$$

La détermination $|\Gamma_L|$ résulte de la mesure du SWR (ho) :

$$|\Gamma_L| = \frac{\rho - 1}{\rho + 1}$$

Rappel

$$\begin{split} \Gamma_L &= \frac{Z_L - Z_C}{Z_L + Z_C} = |\Gamma_L| e^{j\theta} L \\ Z(x) &= Z_C \frac{1 + \Gamma_L e^{-2jkx}}{1 - \Gamma_L e^{-2jkx}} = Z_C \frac{1 + \Gamma(x)}{1 - \Gamma(x)} \\ \rho &= \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|} \end{split}$$

Dans le cas particulier où l'on se place sur l'impédance de charge :

$$Z_L = Z_C \frac{1 + \Gamma_L}{1 - \Gamma_I}$$

On définit les impédances réduites (en divisant les impédances Z par Z_c):

$$z(x) = \frac{1 + \Gamma(x)}{1 - \Gamma(x)}$$
$$z_{L} = \frac{1 + \Gamma_{L}}{1 - \Gamma_{L}}$$

La détermination $|\Gamma_I|$ résulte de la mesure du SWR (ρ) :

$$|\Gamma_L| = \frac{\rho - 1}{\rho + 1}$$

De même, il est possible de calculer z(x) d'après le coefficient de réflexion Γ . Le **Diagramme de Smith** est un **abaque** d'impédances qui permet, connaissant Γ de déterminer z et inversement.

Principe et construction

Principe

Soit une ligne sans pertes d'impédance caractéristique $Z_{\rm c}$ chargée par $Z_{\rm L}$:

Principe

Soit une ligne sans pertes d'impédance caractéristique Z_c chargée par Z_L :

Coefficient de réflexion en x :

$$\Gamma(x) = |\Gamma_L| e^{j(\theta_L - 2k'x)}$$

Principe

Soit une ligne sans pertes d'impédance caractéristique Z_c chargée par Z_l :

• Coefficient de réflexion en x :

$$\Gamma(x) = |\Gamma_L| e^{j(\theta_L - 2k'x)}$$

• Impédance en x :

$$Z(x) = Z_{c} \frac{1 + \Gamma_{L} e^{-2jk'x}}{1 - \Gamma_{L} e^{-2jk'x}}$$

En utilisant l'impédance réduite z(x):

$$\Gamma(x) = \frac{z(x) - 1}{z(x) + 1}$$
$$z(x) = \frac{1 + \Gamma(x)}{1 - \Gamma(x)}$$

Il est donc équivalent de connaître les deux grandeurs complexes $\Gamma(x)$ ou z(x).

En utilisant l'impédance réduite z(x):

$$\Gamma(x) = \frac{z(x) - 1}{z(x) + 1}$$
$$z(x) = \frac{1 + \Gamma(x)}{1 - \Gamma(x)}$$

Il est donc équivalent de connaître les deux grandeurs complexes $\Gamma(x)$ ou z(x).

Justification

En utilisant l'impédance réduite z(x):

$$\Gamma(x) = \frac{z(x) - 1}{z(x) + 1}$$
$$z(x) = \frac{1 + \Gamma(x)}{1 - \Gamma(x)}$$

Il est donc équivalent de connaître les deux grandeurs complexes $\Gamma(x)$ ou z(x).

Justification

• z(x) peut être représenté $z(x) = r_z + jx_z$ avec $r_z \ge 0$ et $-\infty < x_z < \infty \to$ nécessite l'utilisation d'un demi plan infini;

En utilisant l'impédance réduite z(x):

$$\Gamma(x) = \frac{z(x) - 1}{z(x) + 1}$$
$$z(x) = \frac{1 + \Gamma(x)}{1 - \Gamma(x)}$$

Il est donc équivalent de connaître les deux grandeurs complexes $\Gamma(x)$ ou z(x).

Justification

- z(x) peut être représenté $z(x) = r_z + jx_z$ avec $r_z \ge 0$ et $-\infty < x_z < \infty \to$ nécessite l'utilisation d'un demi plan infini;
- $\Gamma(x)$ peut être représenté $\Gamma(x) = |\Gamma|e^{j\theta} = p + jq \to \text{nécessite l'utilisation d'un disque de rayon unité.$

Construction de l'abaque (1/2)

Recherche des lieux des points correspondant à $r_z=cste$ et $x_z=cste$ dans la représentation polaire de Γ :

$$z(x) = \frac{1 + \Gamma(x)}{1 - \Gamma(x)} \to r_z + jx_z = \frac{1 + p + jq}{1 - p - jq}$$

Construction de l'abaque (1/2)

Recherche des lieux des points correspondant à $r_z = cste$ et $x_z = cste$ dans la représentation polaire de Γ :

$$z(x) = \frac{1 + \Gamma(x)}{1 - \Gamma(x)} \to r_z + jx_z = \frac{1 + \rho + jq}{1 - \rho - jq}$$

En séparant les parties réelle et imaginaire :

$$r_z = \frac{1 - p^2 - q^2}{(1 - p)^2 + q^2}$$
$$x_z = \frac{2q}{(1 - p)^2 + q^2}$$

Les lieux de $r_z = cste$ sont des cercles d'équation :

$$\left(p - \frac{r_z}{r_z + 1}\right)^2 + q^2 = \frac{1}{(r_z + 1)^2}$$

Les lieux de $r_Z=cste$ sont des cercles d'équation :

$$\left(p - \frac{r_z}{r_z + 1}\right)^2 + q^2 = \frac{1}{(r_z + 1)^2}$$

• $r_z = 0 \rightarrow$ Cercle de centre (p = 0, q = 0), correspond à une impédance purement imaginaire;

Les lieux de $r_Z = cste$ sont des cercles d'équation :

$$\left(p - \frac{r_z}{r_z + 1}\right)^2 + q^2 = \frac{1}{(r_z + 1)^2}$$

- $r_z = 0 \rightarrow$ Cercle de centre (p = 0, q = 0), correspond à une impédance purement imaginaire;
- $r_z = 1 \rightarrow \text{correspond à } Z(x) = Z_c$;

Les lieux de $r_z = cste$ sont des cercles d'équation :

$$\left(p - \frac{r_z}{r_z + 1}\right)^2 + q^2 = \frac{1}{(r_z + 1)^2}$$

- $r_z = 0 \rightarrow$ Cercle de centre (p = 0, q = 0), correspond à une impédance purement imaginaire;
- $r_z = 1 \rightarrow \text{correspond à } Z(x) = Z_c;$
- $r_Z = \infty \rightarrow \text{Cercle}$ de centre (p = 1, q = 0), correspond au point de partie réelle 1.

Les lieux de $r_z = cste$ sont des cercles d'équation :

$$\left(p - \frac{r_z}{r_z + 1}\right)^2 + q^2 = \frac{1}{(r_z + 1)^2}$$

- $r_z = 0 \rightarrow$ Cercle de centre (p = 0, q = 0), correspond à une impédance purement imaginaire;
- $r_z = 1 \rightarrow \text{correspond à } Z(x) = Z_C;$
- $r_z = \infty$ Cercle de centre (p = 1, q = 0), correspond au point de partie réelle 1.

$x_7 = cste$

Les lieux de $x_z = cste$ sont des cercles d'équation :

$$(1-p)^2 + \left(q - \frac{1}{x_z}\right)^2 = \frac{1}{x_z^2}$$

Les lieux de $r_z = cste$ sont des cercles d'équation :

$$\left(p - \frac{r_z}{r_z + 1}\right)^2 + q^2 = \frac{1}{(r_z + 1)^2}$$

- $r_z = 0 \rightarrow$ Cercle de centre (p = 0, q = 0), correspond à une impédance purement imaginaire;
- $r_z = 1 \rightarrow \text{correspond à } Z(x) = Z_C;$
- $r_z = \infty$ \rightarrow Cercle de centre (p = 1, q = 0), correspond au point de partie réelle 1.

$x_7 = cste$

Les lieux de $x_7 = cste$ sont des cercles d'équation :

$$(1-p)^2 + \left(q - \frac{1}{x_z}\right)^2 = \frac{1}{x_z^2}$$

- $x_z = 0 \rightarrow$ Cercle de centre ($p = 1, q = \infty$), correspond à une impédance purement réelle :
- $r_z = \infty \rightarrow$ correspond à un Cercle point de centre (p = 1, q = 0).

Présentation du diagramme

Utilisation de l'abaque

Ennoncé

Ennoncé

Une impédance de charge de 130 + j90 Ω ferme une ligne de transmission ($Z_{\rm C}=50~\Omega$) de longueur $\ell=0.3\lambda$. Calculer :

• l'impédance réduite (z_l);

Ennoncé

- l'impédance réduite (z_L);
- le coefficient de réflexion à l'extremité de la ligne (Γ_L) ;

Ennoncé

- l'impédance réduite (z_L);
- le coefficient de réflexion à l'extremité de la ligne (Γ_l) ;
- le coefficient de réflexion à l'entrée de la ligne (Γ_{in}) ;

Ennoncé

- l'impédance réduite (z_L);
- le coefficient de réflexion à l'extremité de la ligne (Γ_l) ;
- le coefficient de réflexion à l'entrée de la ligne (Γ_{in}) ;
- l'impédance à l'entrée de la ligne (Z_{in}) ;

Ennoncé

- l'impédance réduite (z_L);
- le coefficient de réflexion à l'extremité de la ligne (Γ_l) ;
- le coefficient de réflexion à l'entrée de la ligne (Γ_{in}) ;
- l'impédance à l'entrée de la ligne (Z_{in});
- le SWR (ρ);

Ennoncé

- l'impédance réduite (z_L);
- le coefficient de réflexion à l'extremité de la ligne (Γ_l) ;
- le coefficient de réflexion à l'entrée de la ligne (Γ_{in}) ;
- l'impédance à l'entrée de la ligne (Z_{in}) ;
- le SWR (ρ);
- le coefficient de réflexion en dB (return loss, $RL = -20log_{10}|\Gamma|$).

Exercices

- Soit une impédance réduite z=0.5 j0.6 Ω qui ferme une ligne de transmission sans pertes. Déterminer les formes polaire et cartésienne du coefficient de réflexion.
- **2** Soit une ligne 50 Ω fermée sur une impédance $Z_L=25+j75~\Omega$. Déterminer :
 - le coefficient de réflexion (module et phase);
 - le coefficient de réflexion en dB;
 - le SWR;
 - le coefficient de réflexion et l'impédance ramenée en un point à $\lambda/4$ de la charge (Z_{χ_1}) , puis le coefficient de réflexion et l'impédance ramenée d'un point en revenant de $0,1\lambda$ vers la charge (Z_{χ_2}) .