## 1 Day 2

**Definition 1.** A ring is a commutative ring with unity.

**Definition 2.** A field is a ring where every non-zero element has a multiplicative inverse

The first ring we'll examine is  $\mathbb{Z}$ , which is the ring of integers

**Definition 3.** Let R be a ring, with  $a, b \in R$ . We say that a divides b if,

$$c * a = b$$

and introduce the following notation,

- Transitivity: This satisfies transitivity as, a divides b and b divides c implies that a divides c.
- Note:

$$\begin{array}{l} a|a\\ a|b \wedge a|(b+c) \implies a|c\\ a|b \wedge b|a \implies a=b \end{array}$$

**Definition 4.** Let  $p \in \mathbb{Z}$ , p is called prime if p > 0 and the divisors of p are 1 and p, with  $1 \neq p$ 

Fact:  $\forall n \geq 2, \exists p_1, \dots, p_k$ , where  $p_1, \dots, p_k$  are prime, such that  $n = p_1 p_2 \dots p_k$ 

 $\textit{Proof.} \ \ \text{If} \ n \ \text{is prime, then we are done.}$ 

If n is not prime, then it follows that,

$$a|n \implies n = ab$$

$$\implies a, b < n$$

$$\implies a = p_1 p_2 \dots p_k$$

$$\implies b = q_1 q_2 \dots q_k$$

$$\implies n = p_1 p_2 \dots p_k q_1 q_2 \dots q_k$$

**Theorem 1.** There are infinitely many primes.

*Proof.* Assume that there are finitely many primes,  $p_1, \ldots, p_k$ . Suppose, towards contradiction that we have  $n=p_1p_2\ldots p_k+1$ . Then there exists a prime q|n, but  $p_i\neq q$  since every  $p_i$  division leaves a remainder.

An alternative approach can be seen,

Proof.

$$2 < 3 < 5 < 7 < 11 < \dots < p < \dots < q < \dots$$

$$p_1 < p_2 < p_3 < \dots$$

$$\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} + \dots + \frac{1}{p_k} = \infty$$

Which somehow follows from,

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots = \infty$$

Beats me.

<u>Fact:</u>  $\forall N \in \mathbb{N}$  there exists a prime p, such that q-p>N where q is <u>the next</u> prime. (We can make this claim about there being a next prime, thanks to the well ordering principle, where any non-empty subset of  $\mathbb{N}$  has a smallest element.)

★ There exist composite numbers (non-primes),

$$n, n+1, \dots, n+L, L \ge N$$
  
 $(L+1)! + 2, (L+2)! + 3, \dots, (L+1)! + L, (L+1)! + (L+1)$ 

(This baffles me.)

<u>Conjecture:</u> The <u>Twin-prime conjecture</u> suggests that there are infinitely many pairs of primes of the form p,p+2

**Definition 5.** Given  $a, b \in \mathbb{Z}$ , the Greatest Common Divisor is defined as such,

gcd(a,b) := The largest common divisor, thanks goobz

The Euclidean Algorithm is as such,

$$\exists a, b \in \mathbb{Z}, \ b \neq 0$$
$$\nexists y, r, \ s.t. \ a = qb + r, 0 \le r \le |b|$$

*Proof.* Without loss of generalty, b > 0,

## Number line, with b on it

•  $\{a-qb: q\in \mathbb{Z}\}$  contains non-negative integers. Looking at the subset of non-negatives, or  $\{a-qb|q\in \mathbb{Z},\ a-q\geq 0\}$  we can select a smallest element, thanks to the well ordering principle. We'll call this r, giving

$$a - qb = r$$
$$a = qb + r$$

• Algorithm for finding gcd(a, b),

$$a = q_1 b + r_1$$

if  $r_1 = 0$  then gcd(a, b) = |b|. If  $r_1 \neq 0$ , then,

$$b = q_2 r_1 + r_2 r_1 = \dots$$

Apparently, we know this. Great. It has been proven. Libtards(me) owned by facts and logic.

Theorem 2.

$$gcd(a,b) = xa + yb$$
, for some  $x,y \in \mathbb{Z}$ 

Example:

$$\begin{split} gcd(18,22) &= 2 \\ &= x*18 + y*22 \\ &= (x+22)*18 + (y-18)*22 \\ &= 5*18 + (-4)*22 \end{split}$$

Fact:

$$a_1, a_2, \ldots, a_n \in \mathbb{Z}$$
, where not all are 0

Then,

$$gcd(a_1, ..., a_n) = x_1 a_1 + \dots + x_n a_n$$
  
=  $gcd(gcd(a_1, ..., a_{n-1})a_n)$   
=  $min(x_1 a_1 + \dots + x_n a_n | x_1, ..., x_n \in \mathbb{Z}, x_1 a_1 + \dots + x_n a_n > 0)$ 

## 2 Day 3

**Theorem 3.** Every natural number  $n \geq 2$  factors uniquely into primes, or,

$$\exists p_1,\ldots,p_k\; p_i 
eq p_j orall i, j ext{ (all primes)}$$
  $\exists a_1,\ldots,a_k$   $n=p_1{}_1^a\ldots p_k{}_k^a$ 

Moreover if

$$n = q_1^{b_1} \dots q_l^{b_l}$$

where  $q_i$ -primes  $(q_i \neq q_i)$ . Then k = l and there is a permutation,

$$(i_1, \ldots, i_k)$$
 of  $\{1, \ldots, n\}$ 

with

$$a_t = b_i t$$

$$p_t = q_i t$$

## 2.1 Extension to rings:

Let R be a commutative ring with unity.  $p \in R$  is prime. If p = ab, the following is implied

- a is invertible in R
- ab is invertible in R

**Definition 6.** A ring, R is a <u>Unique Factorization Domain</u> (U.F.D) if every  $a \in R$  with  $a \neq 0$ , factors into primes,

$$a = p_1 \dots p_k$$

and for any other factorization,

$$a = q_1 \dots q_l$$

we have k = l and, up to enumeration  $p_i = u_i q_i$  for some  $u_i$  invertible in R

**Definition 7.**  $\mathbb{Z}[i]$  is the smallest ring containing both  $\mathbb{Z}$  and i

*Proof.* Let  $\mathbb{Z}_{\geq 0} = \{0, 1, \dots\}$ 

$$\bigoplus_{i=1}^\infty \mathbb{Z}_{\geq 0} = \{(a_1,a_2,\dots)|a_i \in \mathbb{Z}_{\geq 0}, \text{ (finitely many are non-zero)}\}$$
 
$$\alpha,\beta \in \bigoplus_{i=1}^\infty \mathbb{Z}_{\geq 0}, \ \alpha+\beta = (a_1+b_1,a_2+b_2,\dots)$$

Where  $\alpha=(a_1,a_2,\dots)$  and  $\beta=(b_1,b_2,\dots)$ . We can totally order  $\bigoplus_{i=1}^\infty \mathbb{Z}_{\geq 0}$  i.e. we can introduce a relation with,  $\leq$  between the  $\bigoplus_{i=1}^\infty \mathbb{Z}_{\geq 0}$ 

- 1.  $\alpha < \alpha$
- **2.**  $\alpha < \beta \& \beta < \alpha \implies \alpha = \beta$
- 3.  $\alpha \leq \gamma \implies \alpha \leq \gamma$
- **4.**  $\alpha \leq \beta$ ,  $\forall \gamma$ ,  $\alpha + \gamma \leq \beta + \gamma$
- 5.  $\forall \alpha, \beta, \alpha < \beta \text{ or } \beta < \alpha$

$$n \cdot m \longmapsto \log(n \cdot m) = \log(n) + \log(m)$$

$$\mathbb{N} \xrightarrow{\underset{\log}{\approx}} \bigoplus_{i=1}^{\infty} \mathbb{Z}_{\geq 0}$$

$$n \longmapsto (a_1, a_2, \ldots, a_k, 0, \ldots)$$

$$n = 2^{a_1} 3^{a_2} \dots p^{a_k}$$

Since we've proven existence, now we need to prove uniqueness.

$$a \ge 2$$
  
$$a = p_1 \dots_k = q_1 \dots q_l$$

Note(Should be separate lemma):

$$p|nm \implies p|n \text{ or } p|m$$

It is easy to show if you assume that p does not divide n, which implies that  $\gcd(n,p)=1$ , which gives

$$xp + yn = 1$$
$$mxp + ynm = \implies p|m$$

Which, without loss of generality, gives

$$p_1 \dots p_k = q_1 \dots q_l$$