

PROBABILISTIC LINEAR MODEL

Why

If we treat the parameters of a linear function as a random variable, an inductor for the predictor is equivalent to an estimator for the parameters.¹

Definition

Let $(\Omega, \mathcal{A}, \mathsf{P})$ be a probability space. Let $x : \Omega \to \mathsf{R}^d$. Define $g : \Omega \to (\mathsf{R}^d \to \mathsf{R})$ by $g(\omega)(a) = a^{\mathsf{T}}x(\omega)$, for $a \in \mathsf{R}^d$. In other words, for each outcome $\omega \in \Omega$, $g_\omega : \mathsf{R}^d \to \mathsf{R}$ is a linear function with parameters $x(\omega)$. g_ω is the function of interest.

Let $a^1, \ldots, a^n \in \mathbb{R}^d$ a dataset with data matrix $A \in \mathbb{R}^{n \times d}$. Let $e: \Omega \to \mathbb{R}^n$ independent of x, and define $y: \Omega \to \mathbb{R}^n$ by

$$y = Ax + e$$
.

In other words, $y_i = x^{\top} a^i + e_i$.

We call (x, A, e) a probabilistic linear model. Other terms include linear model, statistical linear model, linear regression model, bayesian linear regression, and bayesian analysis of the linear model.² We call x the parameters, A a design, e the error or noise vector, and y the observation vector.

One may want an estimator for the parameters x in terms of y or one may be modeling the function g and want to predict g(a) for $a \in A$ not in the dataset.

¹Future editions will offer further discussion.

²The word bayesian is in reference to treating the object of interest—x—as a random variable.

Inconsistency

In this model, the dataset is assumed to be inconsistent as a result of the random errors. In these cases, the error vector e may model a variety of sources of error ranging from inaccuracies in the measurements (or measurement devices) to systematic errors from the "inapproriateness" of the use of a linear predictor.³ In this case the linear part is sometimes called the *deterministic effect* of the response on the input $a \in A$.

Moment assumptions

One route to be more specific about the underlying distribution of the random vector is give its mean and variance. It is common to give the mean of $\mathbf{E}(w)$

Mean and variance

Proposition 1.
$$E(y) = AE(x) + E(w)^4$$

Proposition 2.
$$cov((x,y)) = A cov(x)A^{\top} + cov e^{5}$$

A simple consequence is that, if x and

 $^{^3}$ Future editions will clarify and may excise this sentence.

⁴By linearity. Full account in future editions.

⁵Full account in future editions.

