

Bellman-Ford Algorithm

- Relaxation algorithm
- "Smart" order of edge relaxations
- Label edges e_1, e_2, \dots, e
- Relax in this order: $e_1, e_2, ..., e_m;; e_1, e_2, ..., e_m$

|V| - 1 repetitions

Bellman-Ford Algorithm

```
for v in V:
  v.d = \infty
  v.\pi = None
s.d=0
for i from 1 to |V| - 1:
  for (u, v) in E:
     relax(u, v):
        if v. d > u. d + w(u, v):
           v.d = u.d + w(u,v)
           v.\pi = u
```


Bellman-Ford Example

edges ordered right to left

Bellman-Ford Example

edges ordered left to right

Bellman-Ford Example

Bellman-Ford in Practice

- Distance-vector routing protocol
 - Repeatedly relax edges
 until convergence –
 Relaxation is local!
- On the Internet:
 - Routing InformationProtocol (RIP)

- Interior Gateway Routing Protocol (IGRP)

Bellman-Ford Algorithm with Negative-Weight Cycle Detection

```
for \nu in V:
  v.d = \infty
  v.\pi = None
s,d=0
for i from 1 to |V| - 1:
                                   u.d.
  for (u, v) in E:
                                            w(u, v)
     relax(u, v)
for (u, v) in E:
  if v.d > u.d + w(u,v):
     report that a negative-weight cycle exists
```


Bellman-Ford Analysis

```
for v in V:
   v.d = \infty
   v.\pi = None
s,d=0
for i from 1 to |V| - 1:
for (u, v) in E:
relax(u, v) \{0(1)
for (u, v) in E:
   if v. d > u. d + w(u, v):
       report that a negative-weight cycle exists
```


Recall: Relaxing Is Safe

- <u>Lemma:</u> The relaxation algorithm maintains the invariant that $v.d \ge \delta(s,v)$ for all $v \in V$.
- Proof: By induction on the number of steps.
 - Consider relax(u, v)
 - By induction, $u, d \ge \delta(s, u)$
 - By triangle inequality,

$$\delta(s,v) \le \delta(s,u) + \delta(u,v)$$

$$\le u.d + w(u,v)$$

– So setting v.d = u.d + w(u, v) is "safe" ■

- Claim: After iteration i of Bellman-Ford, is v.d to v.d using at most i edges, for all $v \in V$.
- <u>Proof:</u> By induction on *i*.
 - Before iteration $i, v, d \leq \min\{w(p) : (p) \leq i 1\}$
 - Relaxation only decreases v.d's \Rightarrow remains true

edges

- Iteration considers all paths with edges when relaxing 's incoming edges'

at most the weight of every path from

• Theorem: If G = (V, E, w) has no negativeweight cycles, then at the end of Bellman-Ford, $v \cdot d = \delta(s, v)$ for all $v \in V$.

• Proof:

- Without negative-weight cycles, shortest paths are always simple
- Every simple path has $\leq |V|$ vertices, so

$$\leq |V| - 1 \text{ edges}$$
 — Claim
 $\Rightarrow |V| - 1 \text{ iterations}$ make $v \cdot d \leq \delta(s, v)$
 $\Rightarrow v \cdot d \geq \delta(s, v)$ — Safety

- <u>Theorem:</u> Bellman-Ford correctly reports negative-weight cycles reachable from *s*.
- Proof:
 - If no negative-weight cycle, then previous theorem

```
implies v \cdot d = \delta(s, v), and by triangle \delta(s, v) \leq \delta(s, u) + w(u, v) inequality, so Bellman-Ford won't incorrectly report a negative-weight cycle.
```

If there's a negative-weight cycle, then one of its edges can always be relaxed (once one of its dvalues becomes finite), so Bellman-Ford reports.

Computing $\delta(s, v)$

```
for v in V:
  v.d = \infty
   v.\pi = None
s.d = 0
for i from 1 to |V| - 1:
  for (u, v) in E:
      relax(u, v)
for j from 1 to |V|:
  for (u, v) in E:
      if v. d > u. d + w(u, v):
         v.d = -\infty
         v.\pi = u
```


Correctness of $\delta(s, v)$

- Theorem: After the algorithm, for all $v \in V$.
- Proof:
 - As argued before, after i loop, every negative weight (u, v) cycle has a relaxable edge
- $v.d = \delta(s, v)$ (u, v)
 - Setting $v.d = -\infty$ takes limit of relaxation
 - All reachable nodesalso have, $x = -\infty$
 - Path from original to any vertex $\delta(s,x) = -\infty$ |V|
 - (including u) with has at mpst edges

– (So relaxation is impossible after loop.)