Exercises: Vector Spaces

Problem 1. Let V be the set of vectors [2x - 3y, x + 2y, -y, 4x] with $x, y \in \mathbb{R}^2$. Addition and scalar multiplication are defined in the same way as on vectors. Prove that V is a vector space. Also, point out a basis of it.

Problem 2. For each of the following sets, indicate whether it is a vector space. If so, point out a basis of it; otherwise, point out which vector-space property is violated.

- 1. The set V of vectors $[2x, x^2]$ with $x \in \mathbb{R}^2$. Addition and scalar multiplication are defined in the same way as on vectors.
- 2. The set V of vectors $[x, y, z] \in \mathbb{R}^3$ satisfying x + y + z = 3 and x y + 2z = 6. Addition and scalar multiplication are defined in the same way as on vectors.
- 3. The set V of symmetric 2×2 matrices. Addition and scalar multiplication are defined in the same way as on matrices.
- 4. The set V of 2×2 matrices $[a_{ij}]$ with $a_{11} + a_{22} = 0$. Addition and scalar multiplication are defined in the same way as on matrices.

Problem 3. Determine if the following transformation from \mathbb{R}^2 to \mathbb{R}^2 has a reverse transformation. If so, give the reverse transformation.

$$y_1 = 3x_1 + 2x_2 y_2 = 4x_1 + x_2$$

Problem 4. Determine if the following transformation from \mathbb{R}^3 to \mathbb{R}^3 has a reverse transformation. If so, give the reverse transformation.

$$y_1 = 3x_1 + 2x_2 + x_3$$

$$y_2 = x_1 + x_2 - x_3$$

$$y_3 = 5x_1 + 4x_2 - x_3$$

Problem 5. Consider the following linear system about x

$$Ax = 0$$

where \mathbf{A} is an $m \times n$ coefficient matrix, and \mathbf{x} an $n \times 1$ matrix. Let V be the set of all such \mathbf{x} satisfying the system. Suppose that the rank of \mathbf{A} is r. Prove that V is a vector space of dimension n-r (addition and scalar multiplication are defined in the same way as on vectors).

1