Tarea II

Entrega lunes 12 de octubre

- 1. Encuentra los diferentes puntos en el plano dados por las coordenadas: P=(3,2), Q=(-1,5), ${\bf u}=(0,-4)$, ${\bf v}=(-1,-2)$ y ${\bf x}=(1/2,-3/2)$).
- 2. Identifica los cuadrantes del plano cartesiano donde las parejas tienen signos determinados.
- 3. Encuentra las coordenadas polares del punto (en coordenadas cartesianas) P=(1,1).
- 4. ¿Puedes dar las coordenadas de los vértices de un triángulo equilátero centrado en el origen de lado 2? Dibújalo.
- 5. Sean $\mathbf{v}_1=(2,3)$, $\mathbf{v}_2=(-1,2)$, $\mathbf{v}_3=(3,-1)$ y $\mathbf{v}_4=(1,-4)$.
 - 1. Calcula y dibuja: $2\mathbf{v}_1 3\mathbf{v}_2$; $2(\mathbf{v}_3 \mathbf{v}_4) \mathbf{v}_3 + 2\mathbf{v}_4$; $2\mathbf{v}_1 3\mathbf{v}_3 + 2\mathbf{v}_4$.
 - 2. ¿Qué vector $\mathbf{x} \in \mathbb{R}^2$ cumple que $2\mathbf{v}_1 + \mathbf{x} = 3\mathbf{v}_2; 3\mathbf{v}_3 2\mathbf{x} = \mathbf{v}_4 + \mathbf{x}?$
 - 3. ¿Puedes encontrar $r,s\in\mathbb{R}$ tales que $r\mathbf{v}_2+s\mathbf{v}_3=\mathbf{v}_4$?
- 6. Dibuja el origen y tres vectores cualesquiera \mathbf{u} , \mathbf{v} y \mathbf{w} en un papel. Con un par de escuadras encuentra los vectores $\mathbf{u} + \mathbf{v}$, $\mathbf{v} + \mathbf{w}$ y $\mathbf{w} + \mathbf{u}$.
- 7. Demuestra que si el vector $\mathbf{x}\in\mathbb{R}^3$ y el escalar $t\in\mathbb{R}$ son tales que $t\mathbf{x}=0$ entonces t=0 o $\mathbf{x}=0$. ¿Y para \mathbb{R}^n ?
- 8. Demuestra que si el vector $\mathbf{x}\in\mathbb{R}^n$ es distinto de 0, y $t,s\in\mathbb{R}$ son tales que $t\mathbf{x}=s\mathbf{x}$, entonces t=s . (Es decir, si $\mathbf{x}\neq 0$ está permitido *cancelarlo* aunque sea vector.)