Algorytmy i struktury danych Lista 3

Zadanie 1.

Podaj algorytm scalający k posortowanych list tak aby powstała jedna posortowana lista nb (liczba wszystkich elementów na listach to n) działający w czasie $O(n \log k)$.

Zadanie 2.

Zdefiniujmy algorytm k-MergeSort jako uogólnienie algorytmu sortowania przez scalanie. Różni się od omawianego na wykładzie algorytmu sortowania przez scalanie tym, że dzieli sortowana tablice rekurencyjnie na k równych części (zakładamy, że liczba elementów w tablicy jest potęgą k ($n=k^l$)). Używając wyniku z zadania 1 proszę wykazać dla jakiego k algorytm ma najmniejsza asymptotyczną złożoność obliczeniową liczby porównań (górne ograniczenie O()).

Zadanie 3.

Załóżmy że tablica $A = [a_1, \dots, a_n]$ jest do pewnego momentu k posortowana malejąco i dalej rosnąco (tzn. dla $\forall i \leq k \quad a_i > a_{i+1}$ oraz dla $\forall i \geq k \quad a_i < a_{i+1}$). Zaprojektuj algorytm znajdujący minimalny element w tablicy A, którego złożoność obliczeniowa będzie wynosić $O(\log n)$. Udowodnij poprawność działania zaproponowanego algorytmu.

Zadanie 4.

Zdefiniujmy liczbę

$$G_n = \begin{cases} 0 & \text{if} \quad n = 0\\ 1 & \text{if} \quad n = 1\\ 1 & \text{if} \quad n = 2\\ G_{n-1} + G_{n-2} + G_{n-3} & \text{if} \quad n \ge 3 \end{cases}$$

Zaprojektuj macierzowy algorytm wyliczania liczby G_n w czasie $O(\log n)$. Udowodnij poprawność działania zaproponowanego algorytmu.

Zadanie 5.

Pokaż, że czas działania algorytmu Quicksort jest $\Theta(n \lg n)$ gdy wszystkie elementy sortowanej tablicy są takie same.

Zadanie 6.

Załóżmy, że procedura Partition dzieli tablice zawsze w proporcjach $1-\alpha$ do α , gdzie $0 \le \alpha \le \frac{1}{2}$ jest stałą. Pokaż, że minimalna głębokość liścia w drzewie rekursji wynosi $-\frac{\lg n}{\lg \alpha}$, a maksymalna głębokość liścia wynosi $-\frac{\lg n}{\lg(1-\alpha)}$. Odpowiedź uzasadnij.

Zadanie 7.

Załóżmy, że masz do wyboru jeden z trzech algorytmów rozwiązujących postawiony Ci problem wielkości n:

- Algorytm A: rozwiązuje problem dzieląc go rekurencyjnie na 5 pod-problemów o połowę mniejszych i scalając ich rozwiązania w czasie $O(n \log(n))$.
- Algorytm B: rozwiązuje problem dzieląc go rekurencyjnie na 2 pod-problemy rozmiaru n-1 i scala ich rozwiązania w czasie stałym.

• Algorytm C: rozwiązuje problem dzieląc go rekurencyjnie na 9 pod-problemów rozmiaru $\frac{n}{3}$ i scalając ich rozwiązania w czasie $O(n^2)$.

Jaka jest złożoność obliczeniowa tych algorytmów? Który z nich byś wybrał? Odpowiedź uzasadnij.

Zadanie 8.

Powiedzmy, że masz do wykonania n zadań, gdzie każde z nich wymaga t_j minut pracy. Chcesz wykonań wszystkie zadania maksymalizując zadowolenie przełożonego poprzez minimalizację średniego czasu zakończenia każdego zadania. Uzasadnij w jakiej kolejności powinieneś wykonywać zadania.

Zadanie 9.

Stwórz algorytm znajdujący najczęściej powtarzający się element w n elementowej tablicy, mający złożoność $O(n \log n)$.

Zadanie 10.

Doktor Freud ma wahania nastrojów, które zapisuje sobie ilustrując nastrój danego dnia nieujemną liczbą całkowitą. Po n dniach zgromadził tablicę n liczb opisujących swój nastrój i postanowił znaleźć (spójny) przedział czasu (dni), w których był najszczęśliwszy. Doktor Freud zdefiniował sobie szczęśliwość przedziału czasu jako sumę wartości występujących w dniach tego przedziału przemnożony przez najmniejszą wartość występującą w zadanym przedziałe. Stwórz algorytm D&C znajdujący najszczęśliwszy przedział w złożoności $O(n\log n)$

Zadanie 11.

Wykaż, że nie istnieje algorytm sortujący, który działa w czasie liniowym dla co najmniej połowy z n! możliwych danych wejściowych długości n. Czy odpowiedź ulegnie zmianie jeśli zapytamy o ułamek $\frac{1}{n}$ lub $\frac{1}{2^n}$ wszystkich permutacji?

Zadanie 12.

Zaprojektuj algorytm, który sortuje n liczb całkowitych z przedziału od 1 do n^2 w czasie O(n).