PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-239036

(43)Date of publication of application: 25.09.1989

(51)Int.CI.

CO3C 3/093

(21)Application number: 63-062970

(71)Applicant:

F G K:KK

(22)Date of filing:

16.03.1988

(72)Inventor:

MORISANE TOSHIMICHI

(54) HIGH-STRENGTH GLASS

(57) Abstract:

PURPOSE: To contrive improvement in safety and rigidity, increase in density and decrease in hygroscopicity and enable reduction in sheet thickness, by constituting high-strength glass of SiO2, Al2O3, R2O, ZnO and B2O3 at a specific composition

CONSTITUTION: Glass is subjected to chemical strengthening by carrying out prescribed ion exchange in glass with a treating solution consisting of, e.g., 100wt.% KNO3 or 60wt.% KNO3 and 40wt.% NaNO3, for the chemical strengthening and regulating the composition so as to provide 60.0-70.0wt.% SiO2, 0.5-14.0wt.% Al2O3, 10.0-32.0wt.% R2O (R is alkaline metal), 1.0-15.0wt.% ZnO and 0.5-14.0wt.% B2O3.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

Best Available Copy

(1) Ji - 239036, A

⑲ 日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A) 平1-239036

③Int. Cl. ⁴

識別記号

庁内整理番号

43公開 平成1年(1989)9月25日

C 03 C 3/093

6570-4G

審査請求 有 請求項の数 2 (全8頁)

会発明の名称

高強度ガラス

②特 顯 昭63-62970

②出 願 昭63(1988) 3月16日

@発 明 者

実 敏

東京都練馬区羽沢 2-26-12

の出 顧 人 株式会社エフ・ジー・

神奈川県横浜市緑区川和町1523

ケー

個代 理 人 弁理士 菅 直 人 外1名

明 細 書

1. 発明の名称

高強度ガラス

2. 特許請求の範囲

(1) 重量に基づき、SiOz60.0~70.0%、AlzO,0.5~14.0%、RzO(ただしRはアルカリ金属)10.0~32.0%、ZnO1.0~15.0%、BzO,0.5~14.0%から成る高強度ガラス。

(2) (イ) 重量に基づき、SiO: 60.0 ~70.0%、Al: O: 1.0~14.0%、 R: O(ただしRはアルカリ金属)10.0~3 2.0%、ZnO1.0~15.0%、B:O: 0.5~12.0%から成る基本成分88%以上 と、

(ロ) 重量に基づき、PbO、BaO、ZrO、、TiO、、As、O、、Sb、O、、MgO、SrOの、任意成分の中から選ばれた少なくとも1種の添加成分12%以下を含む高強度ガラス。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、電気部品、電子部品、磁気記録・光記録・光磁気記録装置およびそれらの再生装置、特に上記磁気・光・光磁気装置の貯蔵素子となるメモリーディスク、すなわち、磁気ディスク、光ボィスク、光磁気ディスク用基板等に使用する高密度記録用ディスク基板、並びに樹脂成形体、特に眼鏡用樹脂レンズモールド(型)のような強度が必要でしかも高精度の仕上げを必要とする透明製品、および紫外線硬化型樹脂成形用の型に用いる材料に関する。

〔従来の技術〕

高密度記録用のディスク基板としては、プラスチックおよび無機ガラスが検討されている。しかしプラスチックは吸湿性が高いのが最大の弱点である。従ってその欠陥を補うため記録膜の耐湿改良および基板材料の改良が検討課題となっている。ところが経時変化に見られるように、長期の信頼性を得るには不安定要素が多い。

従来のソーダ石灰ガラス、ソーダアルミノ 珪酸ガラス、硼珪酸塩ガラス等を化学強化したものに見られるような、それ自身単体使用の場合は、自然破壊の確率は低いが、記録膜との接合によるマイグレーション(イオン移動・拡散)によって生じる引張応力因子によって爆発的破壊につながる確率が高い。

従って合わせ条件で使用する場合は、結晶化構 造を持つガラスセラミックスが最適と考えられる。

上記自然破壊および割れ現象の内容について詳細に述べる。

化学強化ガラスの場合、基板ガラスー化学強化 個一記録膜(無機質・有機質)の組合せは、基板 ガラスに対して化学強化層は圧縮応力強化層に対 して記録膜とかその他の合わせ材料が引張応力と なるような関係が必要条件となる。

正合結合的には合わせ材料としてはカラス基板よりも融点の低いことが理想の組合わせであるが、合わせ条件の技術は上記のみに限られるものではなく、もちろんわずかではあるが例外もある。

られる.

従ってガラスの表面に一様に圧縮応力が加えられている場合には、外部からの張力は圧縮応力を 打消すために使われるので、その分だけガラスは 強化される。これが化学強化現象であるが、マイ グレーションにより化学強化層(圧縮応力強化 層)がなくなり、引張り応力が直接加わった場合 について考慮しなければならない。

〔発明が解決しようとする問題点〕

最近のエレクトロニクス技術、特にコンピュータに代表される情報関連技術の進展に伴って、より本格的な情報化社会への対応がすでに始まっている。

半導体レーザを用いて文書・データ・写真・TV画像等の情報を迅速に記録再生できる光ディスクメモリーは、従来の磁気メモリーと比較して記録密度が50~500倍あり、大量の情報を蓄積できる装置として追記型の光ディスクメモリーが実用化されている。

上記光ディスクメモリーの特徴として光メモリ

化学強化されたガラスの場合、組成系によっては、特に化学強化層が深く入り過ぎた場合、剝離現象あるいは収縮方向に割れが生じる。又合わせる材料との複合体の場合、ベースとなる基板ガラスと合わせ材料との熱膨張係数を一致させることが必要である。

しかしながら合わせ材料が無機質であるか有機 質であるかを問わずマイグレーションなどの現象 が起こり、合わせ面を通して何らかの形で引張応 力が生じた場合、環境条件により多少の差異はあ るが、爆発的な破壊現象を起こすことがある。

このように化学強化ガラスは、場合によって非常に危険を伴うものであり、ガラス単体で使用する以外は不可能な場合が多い。

表面圧縮応力に対して未処理のガラス部分は、 急冷強化法、化学強化法であってっも3 m/m以 上の板厚を必要とするのは常法である。

現有の高密度記録用ディスク基板の場合、板厚 2 m/m以下の規格が多く、今後更に高密度化されるのに伴って板厚はますます増えるものと考え

ーはCD(コンパクトディスク)やVD(ビデオディスク)から、CD-ROM(CD-ReadOnly Memory)、追記型(DRAW:Direct Read After Write)ディスクと発展し、消去再生書込み可能な光磁気型(EDRAW);Erasable Direct Read After Write)ディスクの登場も間近いものとみられている。光ディスクメモリーの特徴としては下記の通りである。

- 1. 非接触で記録再生が可能である。
- 2. ランダムアクセスが可能である。
- 3. 複製品が廉価である。
- 4. 高密度・高容量化が可能である。

以上の様な特徴を生かしながら、光ディスクは CD、VD等の民生用から映像ファイリング、文 ヴファイリング等のオフィスオートメーション機 器、情報処理機器へと用途が拡大し、今後は電子 計算機へ用途を拡大するために、より高い信頼性、 高速転送レート、高速検索技術の開発が課題とな っている.

これらの光ディスクの基板の材料としては、現在のところプラスチックが圧倒的に多く使用されており、一部の追記大型コードデータ用光ディスクには化学強化ガラス(ソーダ石灰ガラス、ソーグアルミノ珪酸ガラス、硼珪酸塩ガラス)がテスト使用されている。

しかし従来のプラスチック基板は熱による変形、 復屈折性、吸湿による反り等の欠陥があることが 指摘されている。また従来の化学強化ガラスは、 基板自体の見掛け上の強度は向上するが、記録膜 と合わせた場合、マイグレーション等の現象によって化学強化層が没食され、強度が低下する。更 に基板ガラスに対して記録膜に引張応力が発生し た場合には爆発的に破壊が起こり、周囲の機器に 損傷を及ぼす。

以上のように、光ディスクメモリーの基板材料 としてのプラスチックおよび化学強化ガラスは、 それぞれ一長一短があり、用途に応じた使い方が なされていくであろうが、これから先、高性能化

- 2. 複屈折がほとんどない。
- 3. 吸湿による反りが起こらない。
- 4. 剛性が高いため、回転中の変形がない。
- 5. 加工特度が高く、偏心面振れが起こりにくい。

以上のように本発明の高強度ガラスを用いた基 板は、従来の基板の欠点を克服しており、全く理 想的なガラス組成である。

今後の技術動向および要求特性と本発明の高強 度がラスの特性として、光ディスク、光磁気ディ スクにおいては、光スポット位置の制御が電子光 学的に行われるが、この制御には物理的な範囲の 制約があるので、ディスク基板自体の機械的特性 も十分良好でなければならない。円周方向にうね りがあると、または素材に配向性(ガラス成形工 程による)があると、回転時の抵抗摩擦で発生す る熱によって面張れを生じ、反りが大きいとレン ス面に接触する底もある。

偏心が大きいと動作が不安定になる。従って基板 の平坦度、同心度が特に重要な因子となるディス が要求される基板材料としては対応しきれるもの ではない。

光ディスク、光磁気ディスク等の基板としては、耐熱性、機械的強度、高加工特度を有し、また複屈折性の少ない性質を持ち、マイグレーションの少ない圧縮応力層が緩やかに拡散している Zn Oを含有していることを特徴とする本発明の高強度ガラス製の基板が必要となる。

化学強化ガラスは、強化されてはいるものの前記のように割れることがあり、また高価である等の欠点が指摘されている。しかし本発明の高強度ガラスは、記録膜の貼合わせによっても高い機械的強度を示し、また記録密度が向上することから単位メモリー当たりのコストはかえって割安にな

従って本発明の化学強化されたガラスによる基 板の特徴は下記のように表現することができる。 すなわち

1. 空気中の酸素や水分を通さないため記録膜の劣化を防げる。

ク基板は記録膜の保護も兼ねているので、基板材料は、温度、温度、機械的強度などの環境条件に対して強いことが望まれる。

光学的特性については、レーザー出力と媒体感度の関係から、カラス基板の透過率が高いほどよい。また複屈折が大きいと、光検出器のレベル変動を生じたり、レーザーへの戻り光量が増してノイズが発生しやすくなる。

特に光磁気ディスクの場合は、光の偏波面の回転を利用して信号を検出するので、ディスク基板の復屈折の存在は大きな障害となる。また基板の傾きや厚さの変化は光学的収差の原因となる。

いずれにしても本発明の高強度ガラスを用いた 基板は、アルミニウム製・プラスチック製の基板 に比べて表面平滑性がよく、それに加えて高強度 であるため肉厚をより薄くすることができて記録 密度の向上が可能である。曲げ強度・固さも重要 なポイントであるが、従来の技術より 1 レベル高い特度を実現し、面粗さは 1 5~2 0 Å、平坦度 (5.25 インチディスクの場合) 2 μ m 以下の

データを得た。

(問題点を解決するための手段)

本発明は、化学強化ガラスであるにもかかわら ず自然破壊を起こさない安全性の高いガラスを提 供するものである。

すなわち本発明高強度ガラスは、重量に基づき、SiO: 60.0~70.0%、Al:O:0.5~14.0%、R:O(ただしRはアルカリ金属)10.0~32.0%、ZnO1.0~15.0%、B:O:0.5~14.0%から成ることを特徴とする。

また(イ) 重量に基づき、SiO₂60.0~70.0%、Al₂O₃1.0~14.0%、R₂O(ただしRはアルカリ金属)10.0~32.0%、ZnO1.0~15.0%、B₂O₃0.5~12.0%から成る基本成分88%以上と、

(ロ) 重量に基づき、PbO、BaO、ZrO:、TiO:、As:O:、Sb:O:、MgO、SrOの、任意成分の中から選ばれた少なくとも1種の添加成分12%以下を含むことを特

本発明高強度ガラスの化学強化に使用する処理 液には次の3種類が適している。

- 1. KNO.
- 100%(重量%)
- 2. KNO, 60%+NaNO, 40% (重量%)

(特にLi。 〇を含有する場合に有効)

3. KNO, 99. 5%+H₂ SiO, 0. 5 % (類量%)

上記処理液によってガラス中のLi・およびNa・イオンが処理液中のNa・およびK・イオンと交換される。同時に2種類のイオン交換がおこなわれるため、優れた強化特性を呈する。

組成1 (重量%)

S i O : 6 4 . 0

A & O , 8.5

Na. O 8. 0

K 2 O 7 . 0

Z n O 2.7

Liz 0 1.0

B a O 1.0

B 2 O 2 2 0

TiO: 1.0

ZrO: 4.5

As 2 O 3 O . 3

組成2 (重量%)

做とするもので、マイグレーションによりガラス 衷面に圧縮応力を生じ、それが冷却後のガラス衷 面に残留することによってガラスが強化される強 化特性に優れた高強度ガラスを得ることができる。

上記本発明のガラスの組成は、特に厚さ3m/m以下の薄いガラス板の化学強化に最適であり、 表面をほとんど損なうことなく応力層を緩徐に深 部まで拡散し、すなわち層状態ではなくイオン拡 散するため、自然破壊もなく、また化学強化後、 精密研磨仕上げを行っても強化度の変化はない。

化学強化は、ガラスの転移点(マイナス100 で付近)以下の温度で、ガラス中に含まれるアルカリイオンと、これより大きいイオン半径を持つアルカリイオンを含むアルカリ溶融塩中にガラスを浸漬することによりイオン交換を行う。

上記イオン交換の結果、アルカリイオンの占有 容積の差によってガラス 衷面に圧縮応力が発生し、 その応力が冷却後ガラスの表面に残留するため強 化される。

(実施例)

Si 0 2 6 2 . 4 A & 2 . 0 , 2 . 9

Na 2 O 9, 0

K z O 9 . 1

C a O 0.1

MgO 2.8

Z n O 11.5

B: 0, 1.1

T i O: 0.6

As 2 0 , 0 . 2

S b 2 O 3 O . 3

上記組成例1および2の各例によって得られた 化学強化の処理時間と抗折強度およびシャルピー 強度、応力歪層の厚さの関係を下記表1に示す。 組成例1および2の差はほとんどない。

に基づき60.0~70.0%必要である。この 量が60.0%未満では化学的耐久性が劣化する し、70%より多いと溶融困難となり作業性が低 下する。

次にA ℓ : O : は、化学的耐久性向上および溶融ガラスの粘性調節などのために使用されるが、この量が 0 . 5 %未満ではこれらの効果は不十分であるし、また 1 4 . 0 %より多くなると必要以上にガラスの粘性が増して取扱いが困難になるので好ましくない。

更に、R:O(アルカリ金属酸化物例えばNa:O6.0~14.0%、Li:O0~5.0%、K:O4.0~13.0%)はガラスの粘性、イオン交換成分、熱膨張係数の調節、溶融温度の低下を目的として、重量に基づきR:Oとして10.0~32.0%の範囲で用いられる。この量が10.0%未満ではガラスが難溶性となり、また化学強化は不可能となる。また32%より多くなると、ガラスの粘性低下、屈折率の低下、化学的耐久性の劣化、ガラスの化学強化による強度に悪影

上記2例のガラスは粉末状混合物を閉口るつぼに入れ、1450~1500℃に加熱溶融し、4~12時間この温度に保ち、清澄後4時間かけて徐冷したものである。

なお構造上の均質性から、完全に除登したのち、 化学強化処理を施すことが安定した化学強化法で ある。従って構造上の不均質(登その他)、成形 上の配向性がある場合、曲がり・ねじれ等が発生 する。

表面応力計による検査結果においては、通常の ソーダ石灰ガラス、ソーダアルミノ珪酸ガラス、 硼珪酸塩ガラスよりも化学強化層が緩徐に拡散し ており自然破壊につながることはない。

本発明の課題は、前述のように記録膜との接合によって生じるマイグレーションなどの反応現象で引張応力が起き、自然破壊、あるいは複合時点で破壊を起こさないガラス組成を得ることにあるもので、本発明高強度ガラス(屈折率1.510~1.535 アッペ数63.0~50.0の範囲として)の基本成分中のSi0ょは、全重量

響を来すため好ましくない。

本発明の高強度ガラスは、上記の成分に加えて ZnO1.0~15.0%の基本成分が必要である。この成分は化学的耐久性、屈折率の維持に必要である。また化学強化ガラスに発生する破壊に つながる現象を防止する。すなわちイオン交換が ソーダアルミノ珪酸ガラス、ソーダ石灰ガラス、 硼珪酸塩ガラス等に見られるような顕著な強化層を示さず、イオンの拡散が設徐に行われるため、 化学強化層は層状に明確に現れない。そのため記録 ほ 化 の 合わせ 材料 との 反応拡散によるマイグレーションがなく、破壊につながることはない。

本発明の高強度ガラスは、以上の基本成分に加えて更にB₂O₃、P_bO、B_aO、Z₁O₂、T_iO₂、L_i2O、M_gO、C_aO、A_s2O 、S_b2O₃の中から選ばれた少なくとも1種 の任意成分を含有させることができる。

これらはガラスの溶融性、泡切れ性、すなわち 清澄などを改善するために加えられるが、重量に 基づき B。 O 。については 1 2 . 0 %以下、 Z r

▲開平1-239036(6)

あれば問題は生じな

下記表2に前記組成1による本発明高強度ガラスの特性値を、表3に、その他の各種組成によって作った本発明高強度ガラスの特性値を示す。

更に本発明においては、前記の基本成分または任意成分に加えて、紫外線透過の必要のない場合(NiO、CoO系着色剤は別)、通常の着色ガラスの製造の際に慣用されている着色成分を含有させることができる。

このような著色成分としては、例えばSe、CuO、Cu:O、Cr:O,、Nd:O,、NiO、CoO、MnO:(MnO)、Fe:O。(FeO)などの金属酸化物を挙げることができる。これらは単独で用いてもよいし、2種以上併用してもよい。これらの着色成分は、その合計量が本発明高強度ガラスの全重量当たり3%以下で

		<u>.</u>	=
	おじ扱係数(α	(x/t-01x) (
	- 3	2 0 2 + 2 0	8 2
£.	1 0	0~300 c	6
٠	1 0	$0 \sim 2 \ 0 \ 0$	
£		J1SR3502 (C)	
	熱伝導率	(cal/7C · SBC · cm)	
靯	ひずみ点	(2)	
	近先卷	(2)	5 4 2
Ħ	配移点	(2.)	5 2 7
	屈伏点	(a)	5 8 6
	軟化点	(a)	7 1 4
52	ビッカース硬度	IIV(100gf)	0 1 9
**	ヌープ硬度	HK(100gf)	6 7 5
哥	ヤング係数	(kg/mm²)	1 0 × 1 0
**	抗折強度	(kg/cm [‡])	0 0
<u>.</u>	シャルピー強硬		6.9
	モース硬度		7 <

5 0 ~ 1 0 0	(50)	(10)	1. 523		57±0.5	2.57		0.02[1]	0, 01[1]	0 2
(kg/m²)	(" ")		(P.N.)		(p ')	(8/cm ³)	(光四四)			JISR3502 (mgNaro)
表面圧縮強さんでもなり	の高いで、高い高いのでは、高いいのでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	(応力層)	屈折爭		アッベ数	出度	粉末法	1. 耐水性	2. 耐酸性	アルカリ溶出量
	3 力		*	本	A	3)	排	老	#	夏

. 2 2

特開平1-239036(ア)

•				•	•	a 1	4),u							_
1 0.	62.66	0.71	9.46	4.21			2,00%	8.		0.53			11.38			
9.	63.88	0.37	10.28	6.76			5.12	4.85		0.37			8.39			
8.	68.33	2.01	13.21	2.59			3.59	2.36		0.30		6.20				
۲.	66.42	1.00	8.16	12.88	6.25		3.24	2.60		0.45						
9	69.40	0.50	9.00	9.30			10.50			0.30		1.00				
5.	65.90	0.70	12.10	5.20			2.10			0.30		11.80		2.00		
4	67.22	3.60	6.13				1.00			0.35			9.20			
3.	64.00	11.50	9.50		2.20	2.60	2.00	3.00		0.20	0.50				4.40	
2.	61.00	8.00	11.50	6.60	1.10	1.20	2.70	3.50	0.20	0.60	07.0	1.00	0.20	1.80	2.20	
	62.40	2.90	9.0	9.10	0.10	2.80	11.50	1.10	09.0	0.20	0.30					
	\$10,	A & 3 O 3	Na r O	К, О	Ca0	MBO	0 u Z	B, 0,	T i 0,	As: 0:	S b , 0,	Pbo	ВаО	2 1 01	L1:0	
			Ŕ		ı.		К	;	=		녗	(田)	18) 		

1.531 69 23 8 ŝ 2.61 8 5 8 င္ထ 33 262 88 쯇 88 2.54 21 23 22 1.523 8 33 8 ය 怒 55 220 83 23 88 8 82 265 92, 8 ું 1.526 2 2 21 ಜ္ထ 651 Ç 33 8 8 ಽ 엻 621 1.530 88 ೫ 295 ಜ 35 687 1.523 2.57 23 88 9 23 522 2.61 22 8 83 98 38 5. / . . 01× 100~300 ×10. 8/cm3 ပ္ ပ္ 屈伏点 以化点 后位点 华 뻔 生 ₽

(発明の効果)

本発明高強度ガラスは、前記特許請求の範囲記 数の組成によって構成したものであるから、化学 強化されたにもかかわらず自然破壊を起こすこと がなくて安全性が高く、板厚をより薄くすること ができる。従って光ディスク、光磁気ディスク等 の基板材料に適しており、本発明のガラスで上記 記録用基板を作ると、記録膜の劣化を防げる、複 屈折がほとんどない、吸湿による反りを生じない、 高剛性のため回転中の変形がない、加工精度が高 くて偏心面ふれが起こりにくい等の効果が得られ る。

特許出願人 株式会社エフ・ジー・ケー 代 理 人 弁理士 菅 直 人 弁理士 高 橋 隆 二 (自発)手 統 補 正 書

昭和63年11月 8日

特許庁長官 吉田文毅 殿

事件の表示昭和63年 特 許 願第 62970号

2. 発明の名称

高強度ガラス

3. 補正をする者事件との関係 特許出願人名称 株式会社エフ・ジー・ケー

4. 代理人

住所 東京都渋谷区代々木2丁目11番12号 木村ビル 6階

電話 03(378)1711

氏名 (7558) 弁理士 营 直 人

(外1名)

(1.15. 補正の対象 明細書「特許請求の範囲」の欄。 63.1 f. (補正の内容

(1)特許請求の範囲を別紙の通り補正する。

(1) 重量に基づき、SiO: 60.0~70.
 0%、Al: O: 0.5~14.0%、R: O
 (ただしRはアルカリ金属)10.0~32.0
 %、ZnO1.0~15.0%、B: O: 0.5
 ~14.0%から成る高強度ガラス。

(2) (1) 重量に基づき、SiO: 60.0 ~70.0%、Al:O:1.0~14.0%、 R:O(ただしRはアルカリ金属)10.0~3 2.0%、ZnO1.0~15.0%、B:O: 0.5~12.0%から成る基本成分88%以上 と、

(ロ) 重量に基づき、PbO、BaO、ZrO2、TiO2、As2O3、Sb2O3、MgO、SrO、<u>CaO</u>の、任意成分の中から選ばれた少なくとも1種の添加成分12%以下を含む

高強度ガラス。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.