

Copyright©2023. Acadential. All rights reserved.

Section 5. 경사 하강 (Gradient Descent)

목차

- 섹션 0. 강의 소개
- 섹션 1. PyTorch 환경 설정
- 섹션 2. 딥러닝이란?
- 섹션 3. 손실 함수 (Loss Function)
- 섹션 4. 손실 함수에 대한 심화 이론 (Advanced Topics on Loss Function)
- 섹션 5. 경사 하강 (Gradient Descent)
- 섹션 6. 경사 하강에 대한 심화 이론 (Advanced Topics on Gradient Descent)

Copyright © 2023. Acadential. All rights reserved.

"Section 2, 3, 4" 에서 배웠던 내용

Recap

Copyright©2023. Acadential. All rights reserved.

Section 2. What is Deep Learning?

• Neural Network가 학습되는 과정 = weight값이 최적화되는 과정

Gradient Descent (경사 하강)을 통한 Loss function (손실 함수) 값을 최소화하도록

weight 값을 최적화하여 점진적으로 모델의 예측 정확도를 높인다.

Recap Section 3. 손실 함수

Copyright © 2023. Acadential. All rights reserved.

Loss Function L (손실 함수) 의 정의

Neural Network 모델이 예측한 값 \hat{Y} 과 원래 정답 Y 간의 차이 (오차)의 지표

손실 함수의 값이 최소화하도록 모델의 weight을 최적화하면 모델의 정확도가 높아진다!

Copyright@2023. Acadential. All rights reserved.

학습목표

Objective

학습 목표

- Gradient Descent (경사하강방법)의 기본 개념 이해
- Gradient (경사)의 의미 이해
- Learning rate (학습률)의 효과와 역할
- Mini-batch Gradient Descent

ACADENTIAL

Copyright © 2023. Acadential. All rights reserved.

5-1. Gradient Descent의 기본 개념

ACADENTIAL

Copyright@2023. Acadential. All rights reserved.

경사하강방법

Gradient Descent 경사하강방법

Gradient Descent 경사하강방법

Copyright©2023. Acadential. All rights reserved.

경사하강방법에서 "경사"는 어떤 걸 의미할까?

다음과 같은 함수 y을 가정:

$$y = y(x)$$

V

ACADENTIAL

"경사 (Gradient)"는 기울기이다!

$$g = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

ACADENTIAL

"경사 (Gradient)"는 기울기이다!

ACADENTIAL

경사 Gradient의 의미

경사 = 기울기
$$g$$

$$g = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

ACADENTIAL

경사 Gradient의 의미

경사 = 기울기
$$g$$

$$g = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

ACADENTIAL

경사 Gradient의 의미

경사 = 기울기
$$g$$

$$g = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

ACADENTIAL

경사 Gradient의 의미

경사 = 기울기 g

$$g = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

g가 양수 (g > 0)이면:

- x가 증가할 때 y도 증가한다.
- *x*가 감소할 때 *y*도 감소한다.

경사 Gradient의 의미

경사
$$=$$
 기울기 g

$$g = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

경사 Gradient의 의미

경사 = 기울기 g

$$g = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

g가 음수 (g < 0)이면

- x가 증가할 때 y는 감소한다.
- x가 감소할 때 y는 증가한다.

Copyright © 2023. Acadential. All rights reserved.

Gradient Descent

경사 Gradient의 의미

g가 양수 (g > 0)이면,

x가 증가할 때 y도 증가한다.

x가 감소할 때 y도 감소한다.

g가 음수 (g < 0)이면,

x가 증가할 때 y는 감소한다.

x가 감소할 때 y는 증가한다.

Copyright © 2023. Acadential. All rights reserved.

Gradient Descent

경사 Gradient의 의미

앞서 살펴본 내용은

$$y$$
에 대한 미분인 $\lim_{\Delta x \to 0} g = \frac{dy}{dx}$

이여도 유효하다!

Copyright © 2023. Acadential. All rights reserved.

Gradient Descent

Gradient와 Loss의 최소화

경사하강방법의 목적:

- Neural Network의 Weight을 어떻게 바꿔야 Loss을 줄일 수 있는가?
- 다음 함수 가정:

$$Loss = L(w)$$

• w: Neural Network의 Weight (변수)

Gradient와 Loss의 최소화

$$g$$
가 양수 ($\frac{dL}{dw}$ > 0)이면,

w가 감소할 때 L도 감소한다.

$$g$$
가 음수 ($\frac{dL}{dw}$ < 0)이면,

w가 증가할 때 L는 감소한다.

ACADENTIAL

Copyright@2023. Acadential. All rights reserved.

$$\rightarrow \quad \Delta w \cdot \frac{dL}{dw} < 0$$

24

F

Copyright © 2023. Acadential. All rights reserved.

Gradient Descent

Gradient와 Loss의 최소화

$$\Delta w \cdot \frac{dL}{dw} < 0$$

$$\Delta w = w_{i+1} - w_i$$

F

$$w_{i+1} = w_i + ?$$

Copyright@2023. Acadential. All rights reserved.

Gradient Descent

Gradient와 Loss의 최소화

$$\Delta w \cdot \frac{dL}{dw} < 0$$

$$\rightarrow \Delta w \propto -\frac{dL}{dw}$$

$$\rightarrow \Delta w = -\lambda \frac{dL}{dw}$$

$$\Delta w = w_{i+1} - w_i$$

Copyright © 2023. Acadential. All rights reserved.

Gradient Descent

Gradient와 Loss의 최소화

$$\Delta w \cdot \frac{dL}{dw} < 0$$

$$\rightarrow \Delta w \propto -\frac{dL}{dw}$$

$$\rightarrow \Delta w = -\lambda \frac{dL}{dw}$$

$$\Delta w = w_{i+1} - w_i$$

F

$$\rightarrow w_{i+1} = w_i + \Delta w$$

Copyright © 2023. Acadential. All rights reserved.

Gradient Descent

Gradient와 Loss의 최소화

$$\Delta w \cdot \frac{dL}{dw} < 0$$

$$\Delta w = w_{i+1} - w_i$$

$$\Rightarrow \Delta w \propto -\frac{dL}{dw}$$

$$\Rightarrow w_{i+1} = w_i + \Delta w$$

$$\Rightarrow w_{i+1} = w_i - \lambda \frac{dL}{dw}$$

$$\Rightarrow \Delta w = -\lambda \frac{dL}{dw}$$

Copyright © 2023. Acadential. All rights reserved.

Gradient Descent

Gradient와 Loss의 최소화

$$w_{i+1} = w_i - \lambda \frac{dL}{dw}$$

$$ightarrow dL$$
 $ightarrow$ 의 **반대 방향**으로 w 을 update하여 Loss을 줄이는 것.

→ 경사 하강 (Gradient Descent)

Copyright © 2023. Acadential. All rights reserved.

Gradient Descent

경사 하강 예시

$$w_{i+1} = w_i - \lambda \frac{dL}{dw} = \Delta w$$

Copyright © 2023. Acadential. All rights reserved.

Gradient Descent

경사 Gradient의 의미

$$w_{i+1} = w_i - \lambda \frac{dL}{dw} = \Delta w$$

(1)의 경우

$$\frac{dL}{dw} < 0 \quad \to \quad \Delta w > 0$$

 w_1 W_2

Loss

Copyright © 2023. Acadential. All rights reserved.

Gradient Descent

경사 하강 예시

$$w_{i+1} = w_i - \lambda \frac{dL}{dw} = \Delta w$$

(1)의 경우

$$\frac{dL}{dw} < 0 \quad \rightarrow \quad \Delta w > 0$$

Copyright © 2023. Acadential. All rights reserved.

Gradient Descent

경사 하강 예시

$$w_{i+1} = w_i - \lambda \frac{dL}{dw} = \Delta w$$

(1)의 경우

$$\frac{dL}{dw} < 0 \quad \to \quad \Delta w > 0$$

(2)의 경우

$$\frac{dL}{dw} > 0 \quad \to \quad \Delta w < 0$$

Copyright © 2023. Acadential. All rights reserved.

Gradient Descent

경사 하강 예시

$$w_{i+1} = w_i - \lambda \frac{dL}{dw} = \Delta w$$

(1)의 경우

$$\frac{dL}{dw} < 0 \quad \to \quad \Delta w > 0$$

(2)의 경우

$$\frac{dL}{dw} > 0 \quad \to \quad \Delta w < 0$$

Gradient Descent 경사 하강 요약

Copyright@2023. Acadential. All rights reserved.

• Gradient Descent (경사 하강)

Loss 가 줄어드는 방향
$$-\lambda \frac{dL}{dw}$$
 으로 Weight을 갱신하는 것.

• Loss가 줄어드는 방향

$$\frac{dL}{dw}$$
의 반대 방향

Gradient Descent의 Update rule:

$$w_{i+1} = w_i - \lambda \frac{dL}{dw}$$

Gradient Descent 경사 하강 요약

Copyright@2023. Acadential. All rights reserved.

• Gradient Descent (경사 하강)

Loss 가 줄어드는 방향
$$-\lambda \frac{dL}{dw}$$
 으로 Weight을 갱신하는 것.

• Loss가 줄어드는 방향

$$\frac{dL}{dw}$$
의 반대 방향 ???

• Gradient Descent의 Update rule:

$$w_{i+1} = w_i - \lambda \frac{dL}{dw}$$

Gradient Descent 경사하강법

Copyright@2023. Acadential. All rights reserved.

$$w \to w - \lambda \cdot \frac{dL}{dw}$$

여기서 λ 은 Learning Rate (학습률) 이다.

5-2. 학습률 (Learning Rate)의 역할과 효과

Gradient Descent

Learning Rate의 효과 및 역할

$$w \to w - \lambda \cdot \frac{dL}{dw}$$

learning rate λ 의 역할은 무엇인가?

ACADENTIAL

Copyright © 2023. Acadential. All rights reserved.

Learning Rate의 역할과 효과

$$w_{i+1} = w_i - \lambda \cdot \frac{dL}{dw}$$

- Learning Rate (학습률) = 학습을 얼마나 빠르게 진행할지를 조절해주는 값
- Weight의 변화량은 Learning Rate에 비례함. $(\Delta w \propto \lambda)$

Copyright © 2023. Acadential. All rights reserved.

Learning Rate의 역할과 효과

$$\Delta w = -\lambda \cdot \frac{dL}{dw}$$

learning rate λ 의 역할은 무엇인가?

너무 작은 Learning Rate λ

너무 큰 Learning Rate λ

적당한 크기의 Learning Rate λ

Learning Rate의 역할과 효과

$$\Delta w = -\lambda \cdot \frac{dL}{dw}$$

learning rate λ 의 역할은 무엇인가?

너무 큰 Learning Rate λ

적당한 크기의 Learning Rate λ

Learning Rate의 역할과 효과

F

 $\Delta w = -\lambda \cdot \frac{dL}{dw}$

learning rate λ 의 역할은 무엇인가?

적당한 크기의 Learning Rate λ

Learning Rate의 역할과 효과

Copyright © 2023. Acadential. All rights reserved.

$$\Delta w = -\lambda \cdot \frac{dL}{dw}$$

learning rate λ 의 역할은 무엇인가?

Learning Rate의 역할과 효과

Copyright@2023. Acadential. All rights reserved.

learning rate λ 의 역할은 무엇인가?

- Learning Rate가 너무 작으면 최저점 (Optimum)에 수렴 (converge) 하는데까지 많은 Gradient Descent step 필요
- Learning Rate가 너무 크면 Optimum에 수렴하지 못하고 발산 (diverge)하게 된다.

Learning Rate의 역할과 효과

Copyright © 2023. Acadential. All rights reserved.

- Learning Rate가 너무 작으면 최저점 (Optimum)에 수렴 (converge) 하는데까지 많은 Gradient Descent step 필요 → 학습 시간이 오래 걸림.
- Learning Rate가 너무 크면 ${f Optimum}$ 에 수렴하지 못하고 발산 ${f (diverge)}
 ightarrow$ 학습 성능이 오히려 저하됨.

Learning Rate의 역할과 효과

Copyright@2023. Acadential. All rights reserved.

- Very large λ: Loss가 Gradient descent을 거듭할 수록 오히려 증가함. (즉, Loss가 발산함.)
- Large λ : Loss가 Gradient descent을 거듭할수록 초반에 빠르게 감소하지만 점차 정체됨.
- Small λ : Loss가 천천히 감소된다.
- Good λ : Small λ 보다 빠르게 Loss가 감소된다. Loss가 수렴했을때 Large λ 보다 더 낮은 Loss 지점에서 수렴하게 된다.

Gradient Descent Steps

Learning Rate의 역할과 효과

Copyright © 2023. Acadential. All rights reserved.

- Neural Network의 최종 학습 성능은 Learning Rate에 의해서도 영향을 받음.
- Learning Rate의 범위: 0.1~1e-05
- Neural Network의 구성과 종류에 따라서 적합한 Learning Rate 값은 다름.
- \rightarrow 초반에 몇 번의 시행 학습 (preliminary runs)들로 적합한 범위의 값을 찾기.
- → 혹은 Hyperparameter Optimization (Grid search, Bayes Optimization 등등)로 적 합한 Learning Rate 찾기.

5-3. Mini-batch Gradient Descent (미니 배치 경사 하강)

Copyright © 2023. Acadential. All rights reserved.

Objective 학습목표

- 다음 개념들에 대해서 이해하기:
 - Stochastic Gradient Descent
 - Full-batch Gradient Descent
 - Mini-batch Gradient Descent

Copyright@2023. Acadential. All rights reserved.

Mini-batch Gradient Descent

Gradient Descent에 대한 Recap

• Neural Net 모델을 학습 데이터에 대해서 Gradient Descent 할시:

$$w_{i+1} = w_i - \lambda \cdot \frac{dL}{dw} \text{ (1-D case)}$$

$$\mathbf{w}_{i+1} = \mathbf{w}_i - \lambda \cdot \nabla_w L$$
 (Multi-D case)

Notation:

• 전체 학습 데이터:

$$X = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_i, y_i), \dots (\mathbf{x}_N, y_N)\}$$

Mini-batch Gradient Descent

Copyright@2023. Acadential. All rights reserved.

Gradient Descent에 대한 Recap

• Neural Net 모델을 학습 데이터에 대해서 Gradient Descent 할시:

$$w \to w - \lambda \cdot \frac{dL}{dw}$$
 (1-D case)

$$\mathbf{w} \to \mathbf{w} - \lambda \cdot \nabla_w L$$
 (Multi-D case)

• ∇L_w 을 정확히 근사하려면 모든 데이터 X 에 대한 Jacobian $|\nabla L_w|_{\mathbf{X}_i}$ 을 구해서 평균을 구해야 한다.

$$\nabla_{w}L \approx \frac{1}{N} \sum_{i=1}^{N} \left. \nabla_{w}L \right|_{\mathbf{x}_{i}}$$

Full-batch Gradient Descent

Mini-batch Gradient Descent

Copyright@2023. Acadential. All rights reserved.

Gradient Descent에 대한 Recap

• ∇L_w 을 정확히 근사하려면 모든 데이터에 대한 Jacobian $|\nabla L_w|_{\mathbf{x}_i}$ 을 구해서 평균을 구해야 한다.

$$\nabla_{w}L \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{w}L \big|_{\mathbf{x}_{i}}$$

Full-batch Gradient Descent

• 하지만 Full-batch Gradient을 계산하는 것은

Computational Cost와 Memory Cost가 크다!

Mini-batch Gradient Descent

Copyright@2023. Acadential. All rights reserved.

Gradient Descent에 대한 Recap

• ∇L_w 을 정확히 근사하려면 모든 데이터에 대한 Jacobian $|\nabla L_w|_{\mathbf{X}_i}$ 을 구해서 평균을 구해야 한다.

$$\nabla_{w}L \approx \frac{1}{N} \sum_{i=1}^{N} \left. \nabla_{w}L \right|_{\mathbf{x}_{i}}$$

Full-batch Gradient Descent

• 하지만 (N이 매우 커서) Full-batch Gradient을 계산하는 것은

Computational Cost와 Memory Cost가 크다!

어떻게 해야할까?

Mini-batch Gradient Descent

Gradient Descent에 대한 Recap

어떻게 해야할까?

• 한 가지 방법:

$$\nabla_w L \approx \nabla_w L |_{\mathbf{x}_i}$$

• 하나의 data-sample \mathbf{x}_i 에 대한 Gradient로 근사하는 것:

Mini-batch Gradient Descent

Gradient Descent에 대한 Recap

어떻게 해야할까?

• 한 가지 방법:

$$\nabla_w L \approx \nabla_w L |_{\mathbf{x}_i}$$

• 하나의 data-sample \mathbf{x}_i 에 대한 Gradient로 근사하는 것:

Stochastic Gradient Descent (SGD)

• 하지만, 하나의 data-sample로 전체 데이터 X을 대변하는 것은 부정확할 수 있다.

어떻게 할까?

Mini-batch Gradient Descent

Gradient Descent에 대한 Recap

어떻게 해야할까?

• 또다른 방법 ($B \ll N$):

$$\nabla_{w}L \approx \frac{1}{B} \sum_{i=1}^{B} \nabla_{w}L \big|_{\mathbf{x}_{i}}$$

하나의 데이터 샘플로 근사하는 것보다는 비교적 더 정확하다

• Random하게 샘플링된 B개의 data-sample들에 대한 Gradient로 근사하는 것:

Mini-batch Stochastic Gradient Descent (Mini-batch SGD)

(Mini-) Batch-size B에 따른 효과

Mini-batch Gradient Descent

Mini-batch 크기의 효과

- Mini-batch의 크기 B가 클수록:
 - 전체 데이터에 대한 Loss Gradient을 더 잘 근사하게 된다.

Copyright@2023. Acadential. All rights reserved.

Mini-batch Gradient Descent Mini-batch 크기의 효과

- Mini-batch의 크기 B가 클수록:
 - 전체 데이터에 대한 Loss Gradient을 더 잘 근사하게 된다.
- Mini-batch 크기 B가 작을수록:
 - Loss Gradient가 더 "noisy"해진다. (Stochasticity 증가)

Mini-batch Gradient Descent

Copyright@2023. Acadential. All rights reserved.

- Mini-batch 크기의 효과
- Mini-batch의 크기 B가 클수록:
 - 전체 데이터에 대한 Loss Gradient을 더 잘 근사하게 된다.
- Mini-batch 크기 B가 작을수록:
 - Loss Gradient가 더 "noisy"해진다. (Stochasticity 증가)
 - Noise은 regularization의 효과를 주고, generalization 성능에 더 도움을 줄 수 있다.
 - Saddle Point에서 벗어나는데 도움을 줄 수 있다.

Mini-batch Gradient Descent

Copyright © 2023. Acadential. All rights reserved.

Regularization

Overfitting

Good Fit

Degree 15

High Variance

- Regularization 정의 = 뉴럴넷 모델이 너무 복잡해지지 않도록 model complexity을 통제하는 방법.
- 왜 필요한가? = 뉴럴넷 모델이 학습되는 과 정에서 학습 데이터셋에 대해서 "overfitting" (과적합)되는 것을 막기 위해 서다.
- 과적합이란? = 뉴럴넷 모델이 학습 데이터에 있는 noise (노이즈)에 대해서도 학습하여 일반화 성능 (generalizability)가 저하되는 현상.

Mini-batch Gradient Descent Saddle Point (안장점)

- Saddle Point (안장점) = 어떤 방향에서 보면 극대 값이지만 다른 방향에서는 극소값을 가지는 지점.
- 안장점에서 Gradient은 0이므로 Gradient Descent은 멈춰버림.
- Mini-batch SGD의 경우, Gradient에 Noise가 포함되어 있어 0이 아닐 수 있음.
 - → 안장점에서 벗어날 수 있다.

ACADENTIAL

Copyright@2023. Acadential. All rights reserved.

Copyright@2023. Acadential. All rights reserved.

Mini-batch Gradient Descent Mini-batch 크기의 효과

- Mini-batch의 크기 B가 클수록:
 - 전체 데이터에 대한 Loss Gradient을 더 잘 근사하게 된다.
- Mini-batch 크기 B가 작을수록:
 - Loss Gradient가 더 "noisy"해진다. (Stochasticity 증가)
 - 더 작은 GPU memory에 mini-batch을 채울 수 있다.

Mini-batch Gradient Descent

Copyright@2023. Acadential. All rights reserved.

SGD-> Mini-batch Gradient Descent

 Mini-batch SGD은 B개의 데이터에 대해서 Loss gradient을 구하니 SGD에 비해서 B배의 시간 (single Gradient Descent step에 소요되는 시간) 이 걸릴까?

Mini-batch:
$$\mathbf{w} \to \mathbf{w} - \lambda \cdot \frac{1}{B} \sum_{i}^{B} \nabla_{\mathbf{w}} L(y_i, \hat{y}_i)$$

SGD:
$$\mathbf{w} \to \mathbf{w} - \lambda \cdot \nabla_{\mathbf{w}} L(y_i, \hat{y}_i)$$

Mini-batch Gradient Descent SGD-> Mini-batch Gradient Descent

Copyright@2023. Acadential. All rights reserved.

Mini-batch Gradient Descent은 B개의 데이터에 대해서 Loss gradient을 구하니 SGD에 비해서 B배의 시간 (single Gradient Descent step에 소요되는 시간) 이 걸릴까?

그렇지 않다!

Mini-batch Gradient Descent

Copyright@2023. Acadential. All rights reserved.

SGD-> Mini-batch Gradient Descent

Mini-batch:
$$\mathbf{w} \to \mathbf{w} - \lambda \cdot \frac{1}{B} \sum_{i}^{B} \nabla_{\mathbf{w}} L(y_i, \hat{y}_i)$$

PyTorch와 TensorFlow와 같은 딥러닝 Framework에서는

한꺼번에 동시에 계신

Mini-batch을 구성하는 각 data sample을 **동시에**, **병렬적**으로 계산한다!

F

그리고 **GPU**와 **TPU**은 이러한 **병렬적 계산에 특화** 되어 있다!

Mini-batch Gradient Descent

Copyright@2023. Acadential. All rights reserved.

SGD-> Mini-batch Gradient Descent

Mini-batch:
$$\mathbf{w} \to \mathbf{w} - \lambda \cdot \frac{1}{B} \sum_{i}^{B} \nabla_{\mathbf{w}} L(y_i, \hat{y}_i)$$

PyTorch와 Tensorflow와 같은 딥러닝 Framework에서는

따라서 Gradient Descent에 걸리는 computational 시간이 Mini-batch B에 비례하지는 않는다.

다만, **데이터 전처리 속도**에 따라 영향을 받을 수 있다.

5-4. Forward Pass와 Backward Pass

Forward Pass vs. Backward Pass Copyright @ 2023. Acadential. All rights reserved.

What is Forward Pass?

- Forward Pass란 무엇인가?
- 예를 들어서,
- \mathbf{x} 을 input으로 가지고 weight parameter W을 가지는 Neural Network $f_{NN}(\mathbf{x};W)$

Forward Pass vs. Backward Pass Copyright © 2023. Acadential. All rights reserved.

What is Forward Pass?

Forward Pass란 무엇인가?

- 예를 들어서,
- \mathbf{x} 을 input으로 가지고 weight parameter W을 가지는 Neural Network $f_{NN}(\mathbf{x};W)$
- Gradient Descent을 하기 위해서는 W에 대한 Loss Gradient $abla_W L(\hat{y}, y)$ 필요.
- Forward pass는 Gradient을 구하기에 앞서서 먼저 미분할 대상 $L(\hat{y},y)$ 을 계산하는 과정 의미!

Forward Pass vs. Backward Pass Copyright @ 2023. Acadential. All rights reserved.

What is Forward Pass?

- Forward pass
 - Inference: predicted output (예측값) $\hat{y} = f_{NN}(\mathbf{x}; W)$ 을 계산.
 - Training: predicted output을 구한 후 Loss $L(\hat{y},y)$ 까지 계산.
- Forward propagation으로도 불림.

Forward Pass vs. Backward Pass Copyright @ 2023. Acadential. All rights reserved.

F

What is Forward Pass?

Single Variate

Input Hidden Output Loss

Forward Pass vs. Backward Pass Copyright @ 2023. Acadential. All rights reserved.

What is Backward Pass?

Backward Pass란 무엇인가?

- Forward pass에서 출력된 값을 Weight parameter에 대해서 미분하는 것!
- 예를 들어서, Loss Gradient $\nabla_W L(\hat{y}, y)$ 을 계산하는 것.
- 참고로 Backward propagation (Back propagation)으로도 불림.

Forward Pass vs. Backward Pass Copyright © 2023. Acadential. All rights reserved.

What is Backward Pass?

Backward pass:

• (엄밀한 정의) Auto Differentiation에서 Reverse Differentiation을 계산하는 과정.

Forward Pass vs. Backward Pass Copyright @ 2023. Acadential. All rights reserved.

What is Backward Pass?

Copyright@2023. Acadential. All rights reserved.

5-5. Section 5 요약

Copyright © 2023. Acadential. All rights reserved.

Objective 학습 목표

- Gradient Descent (경사하강방법)의 기본 개념 이해
- Gradient (경사)의 의미 이해
- Learning rate의 효과와 역할
- Mini-batch Stochastic Gradient Descent
- Forward pass vs. Backward pass

Section Summary 경사하강방법의 기본 개념

Copyright@2023. Acadential. All rights reserved.

Gradient Descent

역할: 손실 함수의 값이 최소화하도록 모델의 weight을 최적화하는 것

원리:

- 경사는 손실함수가 증가하는 방향을 향한다.
- 따라서 경사하강은 경사의 음의 방향으로 모델의 weight을 update해주는 것이다!

$$w_{i+1} = w_i - \lambda \cdot \frac{dL}{dw}$$

Copyright © 2023. Acadential. All rights reserved.

Section Summary

경사 하강 예시

$$w_{i+1} = w_i - \lambda \frac{dL}{dw} = \Delta w$$

(1)의 경우

$$\frac{dL}{dw} < 0 \quad \to \quad \Delta w > 0$$

(2)의 경우

$$\frac{dL}{dw} > 0 \quad \to \quad \Delta w < 0$$

Copyright © 2023. Acadential. All rights reserved.

Section Summary Learning Rate

$\Delta \omega = \frac{dL}{dL}$

Section Summary

Gradient Descent 정리

Full-batch Gradient Descent:

$$\nabla_{w}L \approx \frac{1}{N} \sum_{i=1}^{N} \left. \nabla_{w}L \right|_{\mathbf{X}_{i}}$$

Stochastic Gradient Descent:

$$\nabla_w L pprox \nabla_w L |_{\mathbf{x}_i}$$

• Mini-batch Stochastic Gradient Descent ($B \ll N$):

$$\nabla_{w}L \approx \frac{1}{B} \sum_{i=1}^{B} \nabla_{w}L|_{\mathbf{x}_{i}}$$

ACADENTIAL

Copyright@2023. Acadential. All rights reserved.

Copyright © 2023. Acadential. All rights reserved.

Section Summary

Mini-batch 크기의 효과

- Mini-batch의 크기 B가 클수록:
 - 전체 데이터에 대한 Loss Gradient을 더 잘 근사하게 된다.
- Mini-batch 크기 B가 작을수록:
 - Loss Gradient가 더 "noisy"해진다. (Stochasticity 증가)
 - Noise은 regularization의 효과를 주고, generalization 성능에 더 도움을 줄 수 있다.
 - Saddle Point에서 벗어나는데 도움을 줄 수 있다
 - 더 작은 GPU memory에 mini-batch을 채울 수 있다.

Section Summary

Copyright@2023. Acadential. All rights reserved.

	특징	공식
Full-Batch Gradient Descent	주어진 전체 데이터셋에 대해서 Loss Gradient을 계산. 하지만 Computational Cost와 Memory Cost가 크다.	$\nabla_{w}L \approx \frac{1}{N} \sum_{i=1}^{N} \left. \nabla_{w}L \right _{\mathbf{x}_{i}}$
Stochastic Gradient Descent	하나의 data sample에 대한 Loss Gradient으로 근사. 하지만 하나의 data sample로만 근사하는 것은 부정확, Noisy.	$\nabla_w L pprox \left. abla_w L \right _{\mathbf{x}_i}$
Mini-batch Stochastic Gradient Descent	Random하게 샘플링된 B개의 data sample들로 Loss Gradient으로 근사	$\nabla_{w}L \approx \frac{1}{B} \sum_{i=1}^{B} \left. \nabla_{w}L \right _{\mathbf{x}_{i}}$

Forward Pass vs. Backward Pass Copyright @ 2023. Acadential. All rights reserved.

What is Forward Pass?

Forward pass

Gradient을 구하기에 앞서서 먼저 미분할 대상을 계산하는 과정.

Backward pass

Forward pass에서 출력된 값을 Weight parameter에 대해서 미분하는 것!

Reverse Differentiation을 계산하는 과정.

Copyright@2023. Acadential. All rights reserved.

Next Up!

Copyright © 2023. Acadential. All rights reserved.

Next Up!

Multivariate Input

• 앞서 저희는 variable이 하나이고 weight가 scalar인 간단한 예시를 살펴보았음.

$$w_{i+1} = w_i - \lambda \cdot \frac{dL}{dw}$$

• 즉, 다음과 같은 경우라고 볼 수 있다.

F

Copyright © 2023. Acadential. All rights reserved.

Next Up! Multivariate Input

• 하지만 Input feature가 여러 개 (multi-variate)하거나 Hidden layer가 여러개의 neuron들로 구성되어 있으면 어떻게 할 것인가?

Multi variate

Copyright@2023. Acadential. All rights reserved.

Next Up! Multivariate Input

• 다음 섹션에서는 "Multi-variate"한 경우에 대해서 더 자세히 살펴볼 것이다!

Multi variate

Copyright © 2023. Acadential. All rights reserved.

Next Up!

Automatic Differentiation

• 그렇다면 Gradient Descent은 PyTorch와 같은 Deep Learning framework에서 어떻게 구현되어 있을까?

_

Copyright © 2023. Acadential. All rights reserved.

Next Up!

Automatic Differentiation

- Neural Network의 Gradient을 효과적으로 계산하기 위해서 Deep Learning framework들은 Automatic differentiation에서 "Reverse differentiation" 개념을 사용한다.
- Reverse differentiation이 뭔지 살펴보자!

厚