3.1 Б – сплайн функции. Основни свойства

Нека са дадени реалните числа u_0 , u_1 , u_2 , ..., u_{m-1} , u_m $(m \in N)$, които принадналежат на интервала [0,1]. Тези числа ще наричаме възли.

Възлите, които са m+1 на брой, ако се обединят в една ненамаляваща числова редица, като записваме:

$$U = \{ u_0, u_1, u_2, \dots, u_{m-1}, u_m \}, u_i \in [0,1]$$

а U наричаме възлов вектор (възлова редица).

- Ако някой възел u_i участва само веднъж във възловия вектор U , то той има кратност k=1 и се нарича *прост* или *еднократен възел* .
- В случай, че кратността на възела u_i е $k \ge 2$, то той се нарича *многократен* (k- кратен) възел и записваме във възловия вектор u_i [k].

$$U = \{ u_0, u_1, u_2, ..., u_i[k], ..., u_{m-1}, u_m \}$$

Една Б — сплайн функция $N_{i,p}(u)$ от степен p над възловия вектор U се дефинира чрез формулите на Kokc - de Boop по следния начин:

 \blacktriangleright Ако функцията е от нулева степен, т.е. при p=0 , тя се определя от формула:

(3.1)
$$N_{i,0}(u) = \begin{cases} 1, & u \in [u_i, u_{i+1}) \\ 0, & u \notin [u_i, u_{i+1}) \end{cases},$$

а ако тя е от по- висока степен $p \ge 1$, се пресмята чрез:

$$(3.2) N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)$$

Важни свойства на Б – сплайн функции

- Реалният произволен параметър (*аргумент*) u се изменя в интервала [0,1].
- \blacktriangleright Ako B $[u_i, u_{i+1})$ $u_i \equiv u_{i+1}$, t.e. $\nexists u \in [u_i, u_{i+1}) \Rightarrow N_{i,0}(u) \equiv 0$.
- \triangleright За произволно $u_0 \in [0,1]$ сумата от всички F сплайн функции $N_{i,p}(u)$ от степен p е равна на единица.

 3.2^* / стр. 44 Изчислете посочената Б — сплайн функция $N_{i,p}(u)$ при съответния възлов вектор и начертайте графиката й.

a)
$$N_{1,2}(u)$$
, $U = \{0; 0.25; 0.4; 0.6; 1\}$.

 $\underline{Peшениe}$: Посочените пет възли ги подреждаме в таблица. Търсим явния вид на посочената \mathbf{F} — сплайн функция $N_{1,2}(u)$ и после чертаем нейната графика.

 $\begin{vmatrix} u_0 \\ 0 \end{vmatrix} \begin{vmatrix} u_1 \\ 0,25 \end{vmatrix} \begin{vmatrix} u_2 \\ 0,4 \end{vmatrix} \begin{vmatrix} u_3 \\ 0,6 \end{vmatrix} \begin{vmatrix} u_4 \\ 1 \end{vmatrix} \Rightarrow$ всички възли ги разпределяме в последователни интервали:

1.
$$N_{1,0}(u) = \begin{cases} 1 \ , & u \in [0,25; 0,4) \\ 0 \ , & u \notin [0,25; 0,4) \end{cases}$$
 , $N_{2,0}(u) = \begin{cases} 1 \ , & u \in [0,4; 0,6) \\ 0 \ , & u \notin [0,4; 0,6) \end{cases}$
$$N_{3,0}(u) = \begin{cases} 1 \ , & u \in [0,6; 1) \\ 0 \ , & u \notin [0,6; 1) \end{cases}$$

2. $N_{1,1}(u) = ?$, $N_{2,1}(u) = ?$ като функции на аргумента u.

$$N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)$$

$$N_{1,1}(u) = \frac{u - u_1}{u_2 - u_1} N_{1,0}(u) + \frac{u_3 - u}{u_3 - u_2} N_{2,0}(u) = \frac{u - 0.25}{0.4 - 0.25} N_{1,0}(u) + \frac{0.6 - u}{0.6 - 0.4} N_{2,0}(u)$$

$$N_{1,1}(u) = \frac{5}{3} (4u - 1) N_{1,0}(u) + (3 - 5u) N_{2,0}(u)$$

$$N_{1,1}(u) = \begin{cases} \frac{5}{3}(4u - 1), u \in [0,25; 0,4) \\ (3 - 5u), u \in [0,4; 0,6) \\ 0, u \notin [0,25; 0,6) \end{cases}$$

$$N_{2,1}(u) = \frac{u - u_2}{u_3 - u_2} N_{2,0}(u) + \frac{u_4 - u}{u_4 - u_3} N_{3,0}(u) = \frac{u - 0.4}{0.6 - 0.4} N_{2,0}(u) + \frac{1 - u}{1 - 0.6} N_{3,0}(u)$$

$$N_{2,1}(u) = (5u - 2)N_{2,0}(u) + \frac{5}{2}(1 - u)N_{3,0}(u)$$

$$N_{2,1}(u) = \begin{cases} (5u - 2), u \in [0,4; 0,6) \\ \frac{5}{2}(1 - u), u \in [0,6;1] \\ 0, u \notin [0,4;1] \end{cases}$$

3. $N_{1,2}(u) = ?$ като функция на аргумента u .

$$N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)$$

$$N_{1,2}(u) = \frac{u - u_1}{u_3 - u_1} N_{1,1}(u) + \frac{u_4 - u}{u_4 - u_2} N_{2,1}(u) = \frac{u - 0,25}{0,6 - 0,25} N_{1,1}(u) + \frac{1 - u}{1 - 0,4} N_{2,1}(u)$$

$$N_{1,2}(u) = \frac{5}{7} (4u - 1) N_{1,1}(u) + \frac{5}{2} (1 - u) N_{2,1}(u)$$

$$N_{1,2}(u) = \begin{cases} \frac{25}{21} (4u - 1)^2, u \in [0,25; 0,4) \\ *, u \in [0,4;0,6) \\ \frac{25}{4} (1 - u)^2, u \in [0,6; 1] \\ 0, u \notin [0,25; 1] \end{cases}$$

$$*=\frac{5}{7}(4u-1)(3-5u)+\frac{5}{2}(1-u)(5u-2)$$

 $3ada4a\ 3.3\ /\ cmp.\ 45$ Нека $U=\{0\ ;0,2\ ;0,4\ ;0,5\ ;0,8\ ;0,9\ ;1\}$ е даден възлов вектор. Намерете стойностите на ненулевите основни B- сплайн функции от втора степен $N_{i,2}(u)$ и тяхната сума при:

б)
$$u_0 = 0.6$$

Решение: Посочените 7 възли ги подреждаме в таблица.

 $\begin{vmatrix} u_0 \\ 0 \end{vmatrix} \begin{vmatrix} u_1 \\ 0,2 \end{vmatrix} \begin{vmatrix} u_2 \\ 0,4 \end{vmatrix} \begin{vmatrix} u_3 \\ 0,5 \end{vmatrix} \begin{vmatrix} u_4 \\ 0,8 \end{vmatrix} \begin{vmatrix} u_5 \\ 0,9 \end{vmatrix} \begin{vmatrix} u_6 \\ 1 \end{vmatrix} \Rightarrow$ всички възли ги разпределяме в последователни интервали (всички функции $N_{i,j}(u_0) \equiv 0$):

$$[u_{0}, u_{1}) \equiv [0; 0,2) \rightarrow N_{0,0}$$

$$[u_{1}, u_{2}) \equiv [0,2; 0,4) \rightarrow N_{1,0}$$

$$[u_{2}, u_{3}) \equiv [0,4; 0,5) \rightarrow N_{2,0}$$

$$N_{1,1}$$

$$N_{1,1}$$

$$N_{2,1}$$

$$N_{1,2}$$

$$N_{2,1}$$

$$N_{2,1}$$

$$N_{2,2}$$

$$N_{3,1}$$

$$N_{2,2}$$

$$N_{3,1}$$

$$N_{3,2}$$

$$N_{4,1}$$

$$N_{3,2}$$

$$N_{4,1}$$

$$N_{3,2}$$

$$N_{4,1}$$

1.
$$N_{3,0}(0,6) \equiv 1, u \in [0,5;0,8)$$

$$N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)$$

2.
$$N_{2,1}(0,6) = \frac{u_4 - 0,6}{u_4 - u_3} N_{3,0}(0,6) = \frac{0,8 - 0,6}{0,8 - 0,5} \cdot 1 = \frac{2}{3}$$

 \triangleright За произволно $u_0 \in [0,1]$ сумата от всички F — сплайн функции $N_{i,p}(u)$ от степен p е равна на единица.

$$N_{2,1}(0,6) + N_{3,1}(0,6) = 1 \implies N_{3,1}(0,6) = 1 - \frac{2}{3} = \frac{1}{3}$$

3.
$$N_{1,2}(0,6) = \frac{u_4 - 0.6}{u_4 - u_2} N_{2,1}(0,6) = \frac{0.8 - 0.6}{0.8 - 0.4} \cdot \frac{2}{3} = \frac{2.2}{4.3} = \frac{1}{3}$$

$$N_{3,2}(0,6) = \frac{0.6 - u_3}{u_5 - u_3} N_{3,1}(0,6) = \frac{0.6 - 0.5}{0.9 - 0.5} \cdot \frac{1}{3} = \frac{1.1}{4.3} = \frac{1}{12}$$

$$N_{1,2}(0,6) + N_{2,2}(0,6) + N_{3,2}(0,6) = 1 \Rightarrow N_{2,2}(0,6) = 1 - \left(\frac{1}{3} + \frac{1}{12}\right) = \frac{7}{12}$$

3.2 Б – сплайн криви. Основни свойства

Една Б — сплайн крива C(u) , $u \in [0,1]$ с дадена степен p , е дефинирана чрез възлов вектор

$$U = \{ \ u_0, u_1, u_2, \dots, u_m \ \}$$
 , $\ u_i \in [0,1]$ и контролни точки $\ P_0$, $P_1, P_2, P_3, \dots, P_n$.

Общото уравнение на тази крива се определя от равенството:

(3.13)
$$C(u) = \sum_{i=0}^{n} N_{i,p}(u) \cdot P_i = N_{0,p}(u) \cdot P_0 + N_{1,p}(u) \cdot P_1 + \dots + N_{n,p}(u) \cdot P_n ,$$

където m=p+n+1 , т.е. степента на кривата + броя на контролните точки = броят на възлите -1 .

Основни свойства на Б – сплайн кривите

ho Силно свойство на изпъкналата обвивка: Дъгата от кривата, дефинирана в интервала $[u_i, u_{i+1})$ се съдържа в изпъкналата обвивка на контролните точки P_i , P_{i-1} , P_{i-2} , ..., P_{i-p} , т.е. тези точки се наричат засегнати.

$$u_0 \in [u_i, u_{i+1}) \to P_i, P_{i-1}, P_{i-2}, ..., P_{i-p}, p-$$
 степен на кривата

 $3a\partial a ua \ 3.7 \ / \ cmp. \ 49$ Дадена е Б — сплайн кривата C(u) от втора степен, дефинирана чрез контролни точки $P_0(-2,-2),\ P_1(-2,0),\ P_2(0,4),\ P_3\ (4,4)$ и възлов вектор $U=\{0\ ; 0,2\ ; 0,4\ ; 0,5\ ; 0,8\ ; 0,9\ ; 1\}$. Намерете точката от кривата, съответстваща на $u_0=0,6$.

<u>Решение</u>:

Броят на контролните точки е *четири*, а степента на кривата е p=2 . Възлите са cedem, а от тук следва, че m-1=6 .

степента на кривата + броя на контролните точки = броят на възлите -1 . 2+4=6

$$u_0=0.6\in [\,u_3\,,u_4\,)\equiv [0.5\,;0.8)\,\, o\,\,P_3\,,P_2,P_1\,-\,\,$$
 засегнати

Само те участват в общото уравнение на тази крива, и в случая използваме формула (3.13):

$$C(u) = N_{3,2}(u) \cdot P_3 + N_{2,2}(u) \cdot P_2 + N_{1,2}(u) \cdot P_1$$

$$C(0,6) = N_{3,2}(0,6) \cdot P_3 + N_{2,2}(0,6) \cdot P_2 + N_{1,2}(0,6) \cdot P_1$$

$$C(0,6) = \frac{1}{12}(4,4) + \frac{7}{12}(0,4) + \frac{1}{3}(-2,0) = (\frac{1}{3} - \frac{2}{3}; \frac{1}{3} + \frac{7}{3}) = (-\frac{1}{3}; \frac{8}{3})$$