# Rich feature hierarchies for accurate object detection and semantic segmentation (R-CNN)

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik
UC Berkeley

# **Computer Vision Task**



## Structure of R-CNN

#### R-CNN: Regions with CNN features



- 1. Generating around 2000 category-independent region proposals.
- 2. Extracting a fixed-length feature vector from each proposal using a CNN
- 3. Classify each region with category-specific linear SVMs.

#### Three modules



proposals (~2k)

Module 1 (Region Proposals)

Generating category-independent region proposals.



Module 2 (Feature Extraction)

Large convolutional neural network that extracts a fixed-length feature vector from each region

# 3. Compute CNN features



Module 3

A set of class-specific linear SVMs.

# Region Proposals (Selective search)







가능한 많은 수의 초기영역 설정 (모든 객체에 박스가 그려질 수 있도록)



Input Image Initial Se



Initial Segmentation



After some iterations



After more iterations







유사도 큰 영역끼리 통합을 해 나간다.

#### **Feature Extraction**



<Structure of AlexNet>

구성 : 5 Conv layer + 2 FC layer

입력: mean-subtracted 227x227 RGB



Region proposals를 227x227 Image로 변형시키기 전, bounding box를 키워서 bounding box영역이 tight하지 않게 만들어준다. P(pixel: 0-16사이로 조절)

### **Test-time Detection**



1. Region proposals을 CNN을 통과시키고 SVM을 이용하여 나온 feature vector를 이용하여 scoring(점수를 매김)한다.

2. Greedy non-maximum suppression을 각 클래스에 대하여 독립적으로 실행하여 하나의 region proposal만을 남긴다.

# **Greedy non-maximum suppression**

NMS? : mAP올리고 연산량을 줄이기 위해서

- 1. Score가 제일 높은 region proposal 을 ground truth로 설정
- 2. 나머지 region proposal에 대해서 loU를 구하고 threshold이상의 값을 가진다면 제거.



# **Training**

#### Supervised pre-training

ImageNet2012 데이터를 이용하여 트레이닝 하는데 box label is not available (단순 classification을 하여 가중치를 초기설정 해놓는 과정이라 생각)

#### **Domain-specific fine-tuning**

새로운 task (detection)가 주어지는데 warped proposal window만을 이용하여 CNN의 SGD train을 한다. (여기서 FCL 마지막 단을 randomly initialized [N+1]개로 replace해서 사용 / ILSVRC2013에서 N = 200즉, N은 클래스 개수를 의미한다. +1 == BG)

Ground-truth box에 대해 IoU overlap은 0.5 이상인 데이터 만을 positive로 그 이하는 negative 즉, BG(background)로 한다.

SGD learning rate=0.001로 (pre-train에선 0.01) 이게 fine-tuning이 initialization을 clobbering 하는 것을 방지

각 SGD iteration 마다 32개 p-w / 96개 b-w로 mini-batch 128로 맞추고, positive window가 훨씬 적기때문에 이 쪽으로 편향

# **Training**



# **Bounding box regression**

Each function  $d_{\star}(P)$  (where  $\star$  is one of x, y, h, w) is modeled as a linear function of the pool<sub>5</sub> features of proposal P, denoted by  $\phi_5(P)$ . (The dependence of  $\phi_5(P)$  on the image data is implicitly assumed.) Thus we have  $d_{\star}(P) = \mathbf{w}_{\star}^{\mathsf{T}}\phi_5(P)$ , where  $\mathbf{w}_{\star}$  is a vector of learnable model parameters. We learn  $\mathbf{w}_{\star}$  by optimizing the regularized least squares objective (ridge regression):

$$\{(P^i, G^i)\}_{i=1,...,N}, \text{ where } P^i = (P^i_x, P^i_y, P^i_w, P^i_h)$$

$$G = (G_x, G_y, G_w, G_h)$$

$$\mathbf{w}_{\star} = \operatorname*{argmin}_{\hat{\mathbf{w}}_{\star}} \sum_{i}^{N} (t^i_{\star} - \hat{\mathbf{w}}_{\star}^{\mathsf{T}} \boldsymbol{\phi}_5(P^i))^2 + \lambda \|\hat{\mathbf{w}}_{\star}\|^2.$$



$$\hat{G}_x = P_w d_x(P) + P_x$$

$$\hat{G}_y = P_h d_y(P) + P_y$$

$$\hat{G}_w = P_w \exp(d_w(P))$$

$$\hat{G}_h = P_h \exp(d_h(P)).$$

$$t_x = (G_x - P_x)/P_w$$

$$t_y = (G_y - P_y)/P_h$$

$$t_w = \log(G_w/P_w)$$

$$t_h = \log(G_h/P_h).$$

# **Bounding box regression**

#### Two subtle issues

- 1. Regularization이 굉장히 중요 lamda = 1000
- 2. (P, G)가 잘 선택되어야 함 → 만약 뽑힌 P가 모든 G로부터 멀면 이 Task가 의미가 없어서 P가 적어도 한 개의 G box 근처에 있을 때만 only learning(기준은 maximum IoU Overlap 기준으로 0.6이 Threshold 이하는 모두 버림.)

#### **Review of the Structure**



#### Results

| VOC 2007 test              | aero | bike | bird | boat | bottle | bus  | car  | cat  | chair | cow  | table | dog  | horse | mbike | person | plant | sheep | sofa | train | tv   | mAP  |
|----------------------------|------|------|------|------|--------|------|------|------|-------|------|-------|------|-------|-------|--------|-------|-------|------|-------|------|------|
| R-CNN pool <sub>5</sub>    | 51.8 | 60.2 | 36.4 | 27.8 | 23.2   | 52.8 | 60.6 | 49.2 | 18.3  | 47.8 | 44.3  | 40.8 | 56.6  | 58.7  | 42.4   | 23.4  | 46.1  | 36.7 | 51.3  | 55.7 | 44.2 |
| R-CNN fc <sub>6</sub>      | 59.3 | 61.8 | 43.1 | 34.0 | 25.1   | 53.1 | 60.6 | 52.8 | 21.7  | 47.8 | 42.7  | 47.8 | 52.5  | 58.5  | 44.6   | 25.6  | 48.3  | 34.0 | 53.1  | 58.0 | 46.2 |
| R-CNN fc7                  | 57.6 | 57.9 | 38.5 | 31.8 | 23.7   | 51.2 | 58.9 | 51.4 | 20.0  | 50.5 | 40.9  | 46.0 | 51.6  | 55.9  | 43.3   | 23.3  | 48.1  | 35.3 | 51.0  | 57.4 | 44.7 |
| R-CNN FT pool <sub>5</sub> | 58.2 | 63.3 | 37.9 | 27.6 | 26.1   | 54.1 | 66.9 | 51.4 | 26.7  | 55.5 | 43.4  | 43.1 | 57.7  | 59.0  | 45.8   | 28.1  | 50.8  | 40.6 | 53.1  | 56.4 | 47.3 |
| R-CNN FT fc6               | 63.5 | 66.0 | 47.9 | 37.7 | 29.9   | 62.5 | 70.2 | 60.2 | 32.0  | 57.9 | 47.0  | 53.5 | 60.1  | 64.2  | 52.2   | 31.3  | 55.0  | 50.0 | 57.7  | 63.0 | 53.1 |
| R-CNN FT fc7               | 64.2 | 69.7 | 50.0 | 41.9 | 32.0   | 62.6 | 71.0 | 60.7 | 32.7  | 58.5 | 46.5  | 56.1 | 60.6  | 66.8  | 54.2   | 31.5  | 52.8  | 48.9 | 57.9  | 64.7 | 54.2 |
| R-CNN FT fc7 BB            | 68.1 | 72.8 | 56.8 | 43.0 | 36.8   | 66.3 | 74.2 | 67.6 | 34.4  | 63.5 | 54.5  | 61.2 | 69.1  | 68.6  | 58.7   | 33.4  | 62.9  | 51.1 | 62.5  | 64.8 | 58.5 |
| DPM v5 [20]                | 33.2 | 60.3 | 10.2 | 16.1 | 27.3   | 54.3 | 58.2 | 23.0 | 20.0  | 24.1 | 26.7  | 12.7 | 58.1  | 48.2  | 43.2   | 12.0  | 21.1  | 36.1 | 46.0  | 43.5 | 33.7 |
| DPM ST [28]                | 23.8 | 58.2 | 10.5 | 8.5  | 27.1   | 50.4 | 52.0 | 7.3  | 19.2  | 22.8 | 18.1  | 8.0  | 55.9  | 44.8  | 32.4   | 13.3  | 15.9  | 22.8 | 46.2  | 44.9 | 29.1 |
| DPM HSC [31]               | 32.2 | 58.3 | 11.5 | 16.3 | 30.6   | 49.9 | 54.8 | 23.5 | 21.5  | 27.7 | 34.0  | 13.7 | 58.1  | 51.6  | 39.9   | 12.4  | 23.5  | 34.4 | 47.4  | 45.2 | 34.3 |

Table 2: Detection average precision (%) on VOC 2007 test. Rows 1-3 show R-CNN performance without fine-tuning. Rows 4-6 show results for the CNN pre-trained on ILSVRC 2012 and then fine-tuned (FT) on VOC 2007 trainval. Row 7 includes a simple bounding-box regression (BB) stage that reduces localization errors (Section C). Rows 8-10 present DPM methods as a strong baseline. The first uses only HOG, while the next two use different feature learning approaches to augment or replace HOG.

| VOC 2007 test  | aero | bike | bird | boat | bottle | bus  | car  | cat  | chair | cow  | table | dog  | horse | mbike | person | plant | sheep | sofa | train | tv   | mAP  |
|----------------|------|------|------|------|--------|------|------|------|-------|------|-------|------|-------|-------|--------|-------|-------|------|-------|------|------|
| R-CNN T-Net    | 64.2 | 69.7 | 50.0 | 41.9 | 32.0   | 62.6 | 71.0 | 60.7 | 32.7  | 58.5 | 46.5  | 56.1 | 60.6  | 66.8  | 54.2   | 31.5  | 52.8  | 48.9 | 57.9  | 64.7 | 54.2 |
| R-CNN T-Net BB | 68.1 | 72.8 | 56.8 | 43.0 | 36.8   | 66.3 | 74.2 | 67.6 | 34.4  | 63.5 | 54.5  | 61.2 | 69.1  | 68.6  | 58.7   | 33.4  | 62.9  | 51.1 | 62.5  | 64.8 | 58.5 |
| R-CNN O-Net    | 71.6 | 73.5 | 58.1 | 42.2 | 39.4   | 70.7 | 76.0 | 74.5 | 38.7  | 71.0 | 56.9  | 74.5 | 67.9  | 69.6  | 59.3   | 35.7  | 62.1  | 64.0 | 66.5  | 71.2 | 62.2 |
| R-CNN O-Net BB | 73.4 | 77.0 | 63.4 | 45.4 | 44.6   | 75.1 | 78.1 | 79.8 | 40.5  | 73.7 | 62.2  | 79.4 | 78.1  | 73.1  | 64.2   | 35.6  | 66.8  | 67.2 | 70.4  | 71.1 | 66.0 |

Table 3: Detection average precision (%) on VOC 2007 test for two different CNN architectures. The first two rows are results from Table 2 using Krizhevsky et al.'s architecture (T-Net). Rows three and four use the recently proposed 16-layer architecture from Simonyan and Zisserman (O-Net) [43].

# Thanks