FEAL-NX SPECIFICATIONS

1 Introduction

1.1 Outline of the FEAL-NX cipher

FEAL, the Fast Data Encipherment Algorithm, is a 64-bit block cipher algorithm that enciphers 64-bit plaintexts into 64-bit ciphertexts and vice versa.

FEAL has three options: key length, round number and key parity. The key length selects either 64-bit key or 128-bit key, the round number (N) specifies the internal iteration number for data randomization, and the key parity option selects either the use or non-use of parity bits in a key block.

One subset of FEAL, called FEAL-NX, is N round FEAL using a 128-bit key without key parity.

1.2 FEAL-NX options

FEAL-NX options are defined below.

(1) Round number (N)

Determines the round number (N) for FEAL data randomization, where $N \ge 32$ and even.

1.3 Definitions and explanations

1.3.1 Definitions

(1) key-block: 128-bit.

- (2) key: Key information used for enciphering/deciphering.
- (3) round number (N): the internal iteration number for FEAL data randomization.
- (4) extended key: 16-bit blocks, K_i , which are a randomized and extended form of the key, are output from FEAL key schedule, where i=0, 1, ..., (N+7).

1.3.2 Conventions and Notations

- (1) A, A_r,...: blocks (The lengths of blocks are defined in each section)
- (2) (A, B,...): concatenation in this order
- (3) $A \oplus B$: exclusive-or operation of A and B
- (4) ♦ : zero block, 32-bits long
- (5) = : Transfer from right side to left side
- (6) Bit position: 1, 2, 3,.... count from the first left side bit (MSB) in a block towards the right.

2 Enciphering algorithm

2.1 Computation stages

The extended key K_i used in this enciphering procedure is generated by the key schedule described in clause 4. Similarly, function f used here is defined in clause 5. The computation stages, specified more fully in subclauses 2.2 to 2.4, shall be as follows (see also Figure 1):

- a) Pre-processing (see 2.2)
- b) Iterative calculation (see 2.3)
- c) Post-processing (see 2.4)

2.2 Pre-processing

Plaintext P is separated into L_0 and R_0 of equal lengths (32 bits), i.e., $(L_0,R_0)=P$.

First,

$$(L_0, R_0) = (L_0, R_0) \oplus (K_N, K_{N+1}, K_{N+2}, K_{N+3})$$

Next,

$$(L_0, R_0) = (L_0, R_0) \oplus (\phi, L_0)$$

2.3 Iterative calculation

Input $(L_0, \ R_0)$, and calculate the equations below for r from 1 to N iteratively,

$$\begin{split} R_r &= L_{r\text{-}1} \oplus f \; (R_{r\text{-}1}, \; K_{r\text{-}1}) \\ L_r &= R_{r\text{-}1} \end{split}$$

Output of the final round is (L_N, R_N) .

2.4 Post-processing

Interchange the final output of the iterative calculation, (L_N , R_N), into (R_N , L_N).

Next calculate:

$$(R_N, L_N)=(R_N, L_N) \oplus (\phi, R_N)$$

Lastly,

$$(R_N, L_N) = (R_N, L_N) \oplus (K_{N+4}, K_{N+5}, K_{N+6}, K_{N+7})$$

Ciphertext is given as (R_N, L_N) .

3 Deciphering algorithm

3.1 Computation stages

The extended key K_i used in this deciphering procedure is generated by the

key schedule described in clause 4. Similarly, function f used here is defined in clause 5. The computation stages, specified more fully in subclauses 3.2 to 3.4, shall be as follows (see also Fig. 1):

- a) Pre-processing (see 3.2)
- b) Iterative calculation (see 3.3)
- c) Post-processing (see 3.4)

3.2 Pre-processing

Ciphertext (R_N, L_N) is separated into R_N and L_N of equal lengths.

First,

$$(R_N \text{ , } L_N) \text{= } (R_N, \, L_N) \, \oplus \, (K_{N+4}, \, K_{N+5}, \, K_{N+6}, \, K_{N+7})$$

Next.

$$(R_N, L_N) = (R_N, L_N) \oplus (\phi, R_N)$$

3.3 Iterative calculation

Input $(R_N \ , \ L_N)$, and calculate the equations below for r from N to 1 iteratively,

$$\begin{split} L_{r\text{-}1} &= R_r \oplus f \; (L_r, \; K_{r\text{-}1}) \\ R_{r\text{-}1} &= L_r \end{split}$$

Output of the final round is (R_0, L_0) .

3.4 Post-processing

Change the final output of the iterative calculation, $(R_0,\,L_0)$, into $(L_0,\,R_0)$. Next calculate:

$$(L_0, R_0) = (L_0, R_0) \oplus (\phi, L_0)$$

Lastly,

$$(L_0, R_0) = (L_0, R_0) \oplus (K_N, K_{N+1}, K_{N+2}, K_{N+3})$$

Plaintext is given as (L_0, R_0) .

4 Key schedule

4.1 Key schedule of FEAL-NX

First , the key schedule of FEAL-NX is described (see also Fig. 2), where the functions used here are defined in Clause 5. The key schedule yields the extended key K_i (i=0, 1, 2, 3..., N+7) from the 128-bit key.

4.1.1 Definition of left key K_L and right key K_R

Input 128-bit key is equally divided into a 64-bit left key, K_L , and a 64-bit right key, K_R . (K_L , K_R) is the inputted 128-bit key.

4.1.2 Iterative calculation

(1) Processing of the right key K_R

 K_R is divided into left K_{R1} and right K_{R2} half , (i. e., $(K_{R1}, K_{R2}) = K_R$) and the temporary variable, Q_r , is defined as:

$$\begin{split} Q_r &= K_{R1} \oplus K_{R2} & \text{for } r = 1,\, 4,\, 7..., & (r = 3i+1;\, i = 0,\, 1,\, ...) \\ Q_r &= K_{R1} & \text{for } r = 2,\, 5,\, 8..., & (r = 3i+2;\, i = 0,\, 1,\, ...) \\ Q_r &= K_{R2} & \text{for } r = 3,\, 6,\, 9..., & (r = 3i+3;\, i = 0,\, 1,\, ...) \\ &\text{where } 1 & r & (N/2)+4,\, (N & 32,\, N;\, even). \end{split}$$

(2) Processing of the left key K_L

Let A_0 be the left half of K_L and let B_0 be the right half, i.e., $(A_0, B_0)=K_L$. Set $D_0=\phi$,

then calculate K_i (i=0 to N+7) for r =1 to (N/2)+4.

$$\begin{array}{ll} D_r &= A_{r\text{-}1} \\ A_r &= B_{r\text{-}1} \\ B_r &= f_K(\alpha,\,\beta) \\ &= f_K\left(A_{r\text{-}1},\, (B_{r\text{-}1} \oplus D_{r\text{-}1}) \oplus Q_r)\right) \\ K_{2(r\text{-}1)} &= (B_{r0},\,B_{r1}) \\ K_{2(r\text{-}1)+1} &= (B_{r2},\,B_{r3}) \end{array}$$

 A_r , B_r , D_r and Q_r are auxiliary variables, where $(B_{r0}, B_{r1}, B_{r2}, B_{r3}) = B_r$, B_{rj} (j=0 to 3) 8-bits long, and r = 1 to (N/2)+4.

5 Functions

This clause describes functions used in clauses 2, 3 and 4.

5.1 Function f (see also Fig. 3)

f (α, β) is shortened to f. α and β are divided as follows $(\alpha_i$ and β_i are 8-bits long).

Functions S_0 and S_1 are defined in clause 5.3.

$$\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3), \beta = (\beta_0, \beta_1).$$

 $(f_0, f_1, f_2, f_3) = f$ are calculated in sequence.

$$f_1 = \alpha_1 \oplus \beta_0$$

$$f_2 = \alpha_2 \oplus \beta_1$$

$$f_1=f_1\oplus\alpha_0$$

$$f_2=f_2\oplus\alpha_3$$

$$f_1 = S_1 \ (f_1, \ f_2 \)$$

$$f_2 = S_0 (f_2, f_1)$$

$$f_0 = S_0 (\alpha_0, f_1)$$

$$f_3 = S_1 (\alpha_3, f_2)$$

Example in hex:

Inputs: $\alpha = 00$ FF FF 00, $\beta = \text{FF}$ FF, Output: f = 10 04 10 44

5.2 Function f_K (see also Fig. 4)

 $f_K(\alpha, \beta)$ is shortened to f_K , and α are divided as follows (α_i and β_i are 8-bits long).

Functions S_0 and S_1 are defined in clause 5.3.

$$\alpha=(\alpha_0,\,\alpha_1,\,\alpha_2,\,\alpha_3),\quad \beta=(\,\beta_0,\,\beta_1,\,\beta_2,\,\beta_3).$$

 $(f_{K0}, f_{K1}, f_{K2}, f_{K3}) = f_K$ are calculated in sequence.

$$f_{K1} = \alpha_1 \oplus \alpha_0$$

$$f_{K2} = \alpha_2 \oplus \alpha_3$$

$$f_{K1} = S_1 (f_{K1}, (f_{K2} \oplus \beta_0))$$

$$f_{K2}=S_0$$
 ($f_{K2},$ ($f_{K1}\oplus\beta_1$))

$$f_{K0} = S_0 (\alpha_0, (f_{K1} \oplus \beta_2))$$

$$f_{K3} = S_1 (\alpha_3, (f_{K2} \oplus \beta_3))$$

Example in hex:

Inputs: α = 00 00 00 00, β = 00 00 00 00, Output: f = 10 04 10 44

5.3 Function S

 S_0 and S_1 are defined as follows:

$$S_0(X_1, X_2)=Rot2((X_1 + X_2) \mod 256)$$

 $S_1(X_1, X_2)=Rot2((X_1 + X_2 + 1) \mod 256)$

where X_1 and X_2 are 8-bit blocks and Rot2(T) is the result of a 2-bit left rotation operation on 8-bit block, T.

Example:

Given
$$X_1 = 00010011$$
, $X_2 = 11110010$ then
$$T = (X_1 + X_2 + 1) \mod 256 = 00000110$$

$$S_1 (X_1, X_2) = Rot2(T) = 00011000$$

6 Example of working data

Working data are shown in bit sequence and in hexadecimal (hex).

6.1 FEAL-NX options (see clause 1.2)

In this example, the following FEAL options are selected:

(1) Round number: N=32

6.2 Input data

Input data are the key-block and the plaintext block.

The key-block K is given as:

The plaintex P is:

P = 00 00 00 00 00 00 00 00 in hex

6.3 The key schedule (see clause 4)

Consider first the generation of the extended keys, K_0 , K_1 , K_2 , ..., K_{39} , each consisting of 16 bits generated from the key-block K.

6.3.1 Iterative calculation (see 4.1.2)

Let A_0 be the left half of K_L and let B_0 be the right half of K_L , i.e.,

(A_0 , B_0) = K_L and D_0 = ϕ . Thus:

 $A_0 = 0000 \ 0001 \ 0010 \ 0011 \ 0100 \ 0101 \ 0110$ in bit sequence

= 01 23 45 67 in hex

 $B_0 = 1000 \ 1001 \ 1010 \ 1011 \ 1100 \ 1101 \ 1111$ in bit sequence

= 89 AB CD EF in hex

= 00 00 00 00 in hex

 $Q_1 = 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000$ in bit sequence

= 88 88 88 88 in hex

 Q_2 = 0000 0001 0010 0011 0100 0101 0110 0111 in bit sequence

= 01 23 45 67 in hex

 \mathbf{Q}_3 = 1000 1001 1010 1011 1100 1101 1110 1111 in bit sequence

= 89 AB CD EF in hex

Calculate D_1 , A_1 , B_1 , K_0 and K_1 as:

 $D_1 = A_0 =$ 0000 0001 0010 0011 0100 0101 0110 0111 in bit sequence

= 01 23 45 67 in hex

If this procedure is continued it will be found that the extended key K_i is given, in hex, by:

$$K_0 = 75 \ 19$$
 $K_1 = 71 \ F9$ $K_2 = 84 \ E9$ $K_3 = 48 \ 86$ $K_4 = 88 \ E5$ $K_5 = 52 \ 3B$ $K_6 = 4E \ A4$ $K_7 = 7A \ DE$ $K_8 = FE \ 40$ $K_9 = 5E \ 76$ $K_{10} = 98 \ 19$ $K_{11} = EE \ AC$ $K_{12} = 1B \ D4$ $K_{13} = 24 \ 55$ $K_{14} = DC \ A0$ $K_{15} = 65 \ 3B$ $K_{16} = 3E \ 32$ $K_{17} = 46 \ 52$ $K_{18} = 1C \ C1$ $K_{19} = 34 \ DF$ $K_{20} = 77 \ 8B$ $K_{21} = 77 \ 1D$ $K_{22} = D3 \ 24$ $K_{23} = 84 \ 10$ $K_{24} = 1C \ A8$ $K_{25} = BC \ 64$ $K_{26} = A0 \ DB$ $K_{27} = BD \ D2$ $K_{28} = 1F \ 5F$ $K_{29} = 8F \ 1C$ $K_{30} = 6B \ 81$ $K_{31} = B5 \ 60$ $K_{32} = 19 \ 6A$ $K_{33} = 9A \ B1$ $K_{34} = E0 \ 15$ $K_{35} = 81 \ 90$ $K_{36} = 9F \ 72$ $K_{37} = 66 \ 43$ $K_{38} = AD \ 32$ $K_{39} = 68 \ 3A$ where:
$$Q_1 = Q_4 = Q_7 = Q_{10} = Q_{13} = Q_{16} = Q_{19} \ ,$$
 $Q_2 = Q_5 = Q_8 = Q_{11} = Q_{14} = Q_{17} = Q_{20} \ ,$
 $Q_3 = Q_6 = Q_9 = Q_{12} = Q_{15} = Q_{18} \ .$

6.4 The Enciphering algorithm (see clause 2)

6.4.1 Pre-processing (see 2.2)

P = 00 00 00 00 00 00 00 00 in hex

P is separated into L_0 and R_0 both 32-bits long.

First,

= 19 6A 9A B1 E0 15 81 90 in hex

Next,

Output of this processing stage is:

6.4.2 Iterative calculation (see 2.3)

.

6.4.2.1 Calculation of R_0 and L_0 at the first stage

First, calculate $f(R_0, K_0)$ as:

$$f(R_0,\,K_0) \qquad = \qquad \text{0101 0101 0101 1100 1111 1101 0111}$$
 1100

in bit sequence

Details are described in clause 6.4.2.2.

$$L_0 \oplus f(R_0, K_0) = 4C \ 36 \ 67 \ CD$$
 in hex

Output of first stage of the iterative calculation is:

$$L_1 = R_0 = \\ & \text{in bit sequence} \\ = & \text{F9 7F 1B 21} \\ & \text{in hex} \\ R_1 = & \text{0100 1100 0011 0110 0111 1100 1101} \\ & \text{in bit sequence} \\ = & \text{4C 36 67 CD} \\ & \text{in hex} \\ \\ \end{array}$$

6.4.2.2 Calculation f of the first stage

In the calculation of f (R₀, K₀), shown below, f (R₀, K₀) is shortened to f, and α and β are defined as:

$$\alpha = (\alpha_0, \, \alpha_1, \, \alpha_2, \, \alpha_3) = R_0$$
 = 1111 1001 0111 1111 0001 1011 0010 0001 in bit sequence = F9 7F 1B 21 in hex

$$\beta$$
 = $(\beta_0, \beta_1) = K_0$ = 0111 0101 0001 1001 in bit sequence

= 75 19 in hex

 $(f_0, f_1, f_2, f_3) = f$ are calculated by the sequence:

$$f_1 = \alpha_1 \oplus \beta_0 = 0000 \ 1010 = 0A$$
 in hex

$$f_2 = \alpha_2 \oplus \beta_1 = \texttt{0000 0010} = \texttt{02} \quad in \ hex$$

$$f_1 = f_1 \oplus \alpha_0 = 1111 \text{ 0011} = \text{F3} \text{ in hex}$$

$$f_2 = f_2 \oplus \alpha_3 = 0010 \ 0011 = 23 \ in hex$$

$$f_1 = S_1 (f_1, f_2) = 0101 1100 = 5C in hex$$

$$f_2 = S_0 (f_2, f_1) = 1111 \ 1101 = FD \ in hex$$

$$f_0 = S_0 (\alpha_0, f_1) = 0101 \ 0101 = 55 \ in hex$$

$$f_3 = S_1 (\alpha_3, f_2) = 0111 \ 1100 = 7C \ in hex$$

6.4.2.3 Continued calculations

If the above calculations are continued it will be found that L_i and R_i etc. are as given in hex. (only i in decimal)

The Process stages

				O	
i	L_{i}		R_{i}	K_{i-1}	f(R _{i-1} , K _{i-1})
	19 6A 9A				
1	F9 7F 1B	21 4C	36 67 CD	75 19	55 5C FD 7C
2	4C 36 67	CD DE	02 58 65	71 F9	27 7D 43 44
3	DE 02 58	65 06	82 45 EF	84 E9	4A B4 22 22
4	06 82 45	EF 69	E5 14 95	48 86	B7 E7 4C F0
5	69 E5 14	95 3E	27 61 05	88 E5	38 A5 24 EA
6	3E 27 61	05 DA	4B 20 7D	52 3B	B3 AE 34 E8
7	DA 4B 20	7D 3B	40 E0 FA	4E A4	05 67 81 FF
8	3B 40 E0	FA 83	50 5F 94	7A DE	59 1B 7F E9
9	83 50 5F	94 9E	A6 25 93	FE 40	A5 E6 C5 69
10	9E A6 25	93 6B	CC 2E 80	5E 76	E8 9C 71 14
11	6B CC 2E	80 B7	79 7F FC	98 19	29 DF 5A 6F
12	B7 79 7F	FC 88	8D EF 7A	EE AC	E3 41 C1 FA
13	88 8D EF	7A 93	F8 74 E6	1B D4	24 81 0B 1A
14	93 F8 74	E6 37	D1 63 B7	24 55	BF 5C 8C CD
15	37 D1 63	в7 44	46 BC E4	DC A0	D7 BE C8 02
16	44 46 BC	E4 FA	FE 29 0B	65 3B	CD 2F 4A BC
17	FA FE 29	0B D8	6B 48 E4	3E 32	9C 2D F4 00
18	D8 6B 48	E4 54	2D 6E BB	46 52	AE D3 47 B0
19	54 2D 6E	BB 2C	82 BF 2A	1C C1	F4 E9 F7 CE
20	2C 82 BF	2A 5B	BA E9 71	34 DF	0F 97 87 CA
21	5B BA E9	71 38	28 49 8B	77 8B	14 AA F6 A1
22	38 28 49	8B 0E	A7 1A 8C	77 1D	55 1D F3 FD

23	0E	Α7	1A	8C	33	9C	D0	13	D3	24	0B	В4	99	98
24	33	9C	D0	13	C6	58	51	F1	84	10	C8	FF	4B	7D
25	С6	58	51	F1	ΕO	В2	08	38	1C	A8	D3	2E	D8	2В
26	ΕO	В2	08	38	71	55	D4	0B	ВС	64	D7	0D	85	FA
27	71	55	D4	0B	BE	94	A0	EA	A0	DB	5E	26	A8	D2
28	BE	94	A0	EA	88	95	В5	3A	BD	D2	F9	C0	61	31
29	88	95	В5	3A	E1	DB	DC	34	1F	5F	5F	4F	7C	DE
30	E1	DB	DC	34	Аб	3F	CF	84	8F	1C	2E	AA	7A	BE
31	A6	3F	CF	84	93	2D	DF	16	6В	81	72	F6	03	22
32	93	2D	DF	16	03	E9	32	D4	В5	60	A5	D6	FD	50

6.4.3 Post processing (see 2.4)

First, interchanging L_{32} and R_{32} yields:

0010

in bit sequence

= 03 E9 32 D4 90 C4 ED C2 in hex.

Lastly,

0011 1101 1111 0110 1000 0101 1111

1000

in bit sequence

= 9C 9B 54 97 3D F6 85 F8 in hex.

Ciphertext is given as (R_{32}, L_{32}) .

The final result (ciphertext) is :

 \mathbf{C} = 1001 1100 1001 1011 0101 0100 1001 0111 0011 1101 1111 0110 1000 0101 1111 1000

in bit sequence

= 9C 9B 54 97 3D F6 85 F8 in hex.

Fig. 1 Data randomization of FEAL-NX (Ciphering/Deciphering algorithm)

Fig. 2 Key schedule of FEAL-NX

 $Y = S_0(X_1, X_2) = \text{Rot2}((X_1 + X_2) \mod 256)$ $Y = S_1(X_1, X_2) = \text{Rot2}((X_1 + X_2 + 1) \mod 256)$ $Y : \text{ output (8 bits)}, X_1 / X_2 : \text{ inputs (8 bits)},$ Rot2(Y) : a 2-bit left rotation on 8-bit data Y

Fig. 3 f-function of FEAL-NX

Note : S_0/S_1 are the same as S_0/S_1 in f-function.

Fig. 4 f_K -function of FEAL-NX