Cantor-Schroeder-Bernstein Theorem (CSB)

A and B are two sets You have two <u>injective</u> functions $f:A \rightarrow B$ and $g:B \rightarrow A$ CSB says you can find a <u>bijective</u> function $h:A \leftrightarrow B$

For the <u>finite</u> case this is easy: injection $f: A \rightarrow B \Rightarrow |A| \leq |B| \} \Rightarrow |A| = |B| \Rightarrow \text{ bijection } h: A \leftrightarrow B \text{ injection } g: B \rightarrow A \Rightarrow |B| \leq |A| \}$

But for <u>infinite</u> case we don't get that because "injection from X to Y implies $|X| \le |Y|$ " was proven by induction. You <u>cannot</u> induct all the way to infinity

So we need to be a bit more clever for the infinite case....

