Computational Structural Analysis 2D Direct Stiffness Code

Enis BAHADIR

10545700

June 19, 2017

1 Benchmarks

The accuracy and robustness of the code is tested by solving some sample problems, the exact solutions of which were computed apriori via the classical beam theory. The results are presented in this section using the following scheme:

- Demonstration of the problem
- Input file that addresses the problem
- Output file generated by the program after analysis
- Diagrams obtained by postprocessing
- Comparison of the results of numerical and analytical solutions

Each problem considered in the first part comprise a single or continuous beam subjected to a certain external loading and support condition. The second part deals with a one-bay one-storey frame under different loads and restraints, and the third and final part is devoted to problems involving a prestressed beam, with each problem having different tendon layouts and/or support conditions.

The error in each numerical solution is presented by using the true percent relative error according to the following definition:

$$\epsilon_{r,t} = \frac{|exact\ value - numerical\ value|}{|exact\ value|} \times 100$$

1.1 Single Beam Under Various Loading and Support Conditions

1.1.1 Problem 1: Simple Beam - Uniformly Distributed Load

```
2DSTIFF - INPUT FILE
[kN/m/C]

# NODES <number of nodes> <x coord, y coord>
3
0.0 0.0
5.0 0.0
10.0 0.0
# ELEMENTS <number of elements> <start node, end node>
2
1 2
2 3
```


Figure 1: Problem 1: Loading, geometry and supports

```
# SECTIONS <number of sections> <A, I, h, X>
0.32 0.017066666666666 0.8 0.0
# SECTION INCIDENCES
# MATERIALS <number of materials> <E, v, alpha, gamma>
30.e6 0.2 0.0 0.0
# MATERIAL INCIDENCES
# RESTRAINTS <number of restraints> <node number, direction>
1 1
1 2
3 1
# LINKS <number of links> <master node, slave node, direction>
# ELASTIC RESTRAINTS <number of el. restraints> <node number, direction, k>
# ELASTIC LINKS <number of links> <node1, node2, direction, k>
# NODAL LOADS <number of nodal loads> <node, direction, magnitude>
# ELEMENT LOADS <number> <Element, Px, Py, Py2, DTtop, DTbottom>
1 0.0 -25.0 -25.0 0.0 0.0
2 0.0 -25.0 -25.0 0.0 0.0
# PRESTRESSING <number> <Element, e1, em, e2, P>
```

()
:	

0						
=======	=======			======		=======
	OUTPUT FILE					
[kN/m/C]						
# NODE COO	RDINATES					
Node	x-coord	y-coord				
1	0.00	0.00				
2	5.00	0.00				
3	10.00	0.00				
# SECTIONS			-		•	**
Sec.No	A	. 00	I		h	X
1	.3200D	+00	.1707D-01		0.8000	0.0000
# MATERIAL	S					
Mat.No	E		v		alpha	gamma
1	.3000D-	+08	0.20		0000D+00	0.0000
# ELEMENTS						
El.No	Start Node	End No		tion	Material	
1	1	2		1	1	
2	2	3		1	1	
# RESTRAIN	TC					
Restraint		Node	Direction	n		
1		1	1	11		
2		1	2			
3		3	1			
4		3	2			
# LINKS						
Link No	Maste	er Node	Slave No	de	Direction	
# ELASTIC		1	D		77	
E. Restr.	NO NO	ode	Direction	n	K	
# ELASTIC	LINKS					
E. Link. No		de 1	Node 2		Direction	K
_,					2120001011	
# NODAL LO	ADS					
Node	Direction	n Ma	ngnitude			
# ELEMENT 1						
Element	Px	Py1	Py2	DTtop	DTbottom	
1	0.00	-25.00 -25.00	-25.00 -25.00	0.00	0.00	
/	(7. (70)	-70.00	= 7(1), U/U	(1 (1()	(1 (1()	

PRESTRESSING

0.00

-25.00

-25.00

0.00

0.00

Figure 2: Problem 1, Deformed Shape

Shear force diagram

Figure 3: Problem 1, Shear Force Diagram

Figure 4: Problem 1, Bending Moment Diagram

	Exact Expression	Exact Value	Computed Value	% RE
V	$\frac{\omega l}{2}$	125.00	125.00	0.0%
M_{max}	$\frac{\omega l^2}{8}$	312.50	312.50	0.0%
δ_{max}	$\frac{5\omega l^4}{384EI}$	0.6357828776E-02	0.6357828776E-02	0.0%

1.1.2 Problem 5: Simple Beam - Load Increasing Uniformly To One End

Figure 5: Problem 5: Loading, geometry and supports

```
2DSTIFF - INPUT FILE
[kN/m/C]
_____
# NODES <number of nodes> <x coord, y coord>
2
0.0 0.0
10.0 0.0
# ELEMENTS <number of elements> <start node, end node>
1
1 2
# SECTIONS <number of sections> <A, I, h, X>
0.32 0.0170666666666667 0.8 0.0
# SECTION INCIDENCES
# MATERIALS <number of materials> <E, v, alpha, gamma>
30.e6 0.2 0.0 0.0
# MATERIAL INCIDENCES
# RESTRAINTS <number of restraints> <node number, direction>
1 1
1 2
2 1
```

```
2 2
# LINKS <number of links> <master node, slave node, direction>
# ELASTIC RESTRAINTS <number of el. restraints> <node number, direction, k>
# ELASTIC LINKS <number of links> <node1, node2, direction, k>
# NODAL LOADS <number of nodal loads> <node, direction, magnitude>
# ELEMENT LOADS <number> <Element, Px, Py, Py2, DTtop, DTbottom>
1 0.0 0.0 -25.0 0.0 0.0
# PRESTRESSING <number> <Element, e1, em, e2, P>
______
2DSTIFF - OUTPUT FILE
[kN/m/C]
_____
# NODE COORDINATES
Node
     x-coord
                   y-coord
                  0.00
          0.00
 1
 2
         10.00
                    0.00
# SECTIONS
            Α
Sec.No
                             I
                                           h
                                                          X
          .3200D+00
                         .1707D-01
                                                         0.0000
 1
                                          0.8000
# MATERIALS
Mat.No
             E
                             v
                                          alpha
                                                         gamma
1
           .3000D+08
                            0.20
                                         .0000D+00
                                                         0.0000
# ELEMENTS
                   End Node
El.No Start Node
                              Section
                                           Material
                                1
# RESTRAINTS
Restraint No
               Node
                           Direction
                 1
                              1
 2
                 1
                               2
 3
                 2
                               1
                               2
                  2
# LINKS
Link No
      Master Node
                            Slave Node
                                     Direction
# ELASTIC RESTRAINTS
                                              K
E. Restr. No Node
                            Direction
# ELASTIC LINKS
```


Figure 6: Problem 5, Deformed Shape

Shear force diagram

Figure 7: Problem 5, Shear Force Diagram

Figure 8: Problem 5, Bending Moment Diagram

	Exact Expression	Exact Value	Computed Value	% RE
V_A	$\frac{\omega l}{6}$	41.67	41.67	0.0%
V_B	$\frac{\omega l}{3}$	83.33	41.67	0.0%
M_{max}	$\frac{\omega l^2}{9\sqrt{3}}$	160.37	160.37	0.0%

1.1.3 Problem 6: Simple Beam - Load Increasing Uniformly To Center

Figure 9: Problem 6: Loading, geometry and supports

```
2DSTIFF - INPUT FILE
[kN/m/C]
______
# NODES <number of nodes> <x coord, y coord>
3
0.0 0.0
5.0 0.0
10.0 0.0
# ELEMENTS <number of elements> <start node, end node>
2
1 2
2 3
# SECTIONS <number of sections> <A, I, h, X>
0.32 0.0170666666666667 0.8 0.0
# SECTION INCIDENCES
1
# MATERIALS <number of materials> <E, v, alpha, gamma>
30.e6 0.2 0.0 0.0
# MATERIAL INCIDENCES
```

```
# RESTRAINTS <number of restraints> <node number, direction>
1 1
1 2
3 1
# LINKS <number of links> <master node, slave node, direction>
# ELASTIC RESTRAINTS <number of el. restraints> <node number, direction, k>
# ELASTIC LINKS <number of links> <node1, node2, direction, k>
# NODAL LOADS <number of nodal loads> <node, direction, magnitude>
# ELEMENT LOADS <number> <Element, Px, Py, Py2, DTtop, DTbottom>
1 0.0 0.0 -25.0 0.0 0.0
2 0.0 -25.0 0.0 0.0 0.0
# PRESTRESSING <number> <Element, e1, em, e2, P>
2DSTIFF - OUTPUT FILE
[kN/m/C]
# NODE COORDINATES
                       y-coord
Node
            x-coord
 1
             0.00
                       0.00
 2
             5.00
                         0.00
 3
            10.00
                         0.00
# SECTIONS
Sec.No
                                    Ι
                                                    h
                                                                       Χ
             .3200D+00
                              .1707D-01
                                                   0.8000
                                                                      0.0000
# MATERIALS
                E
Mat.No
                                    v
                                                   alpha
                                                                      gamma
                                  0.20
              .3000D+08
                                                  .0000D+00
                                                                      0.0000
# ELEMENTS
El.No Start Node
                         End Node
                                      Section
                                                    Material
                           2
                                                       1
 1
             1
                                         1
  2
              2
                           3
                                          1
                                                       1
# RESTRAINTS
                   Node
                                  Direction
Restraint No
 1
                    1
                                     1
  2
                                      2
                     1
  3
                     3
```

4 3 2 # LINKS Link No Master Node Slave Node Direction # ELASTIC RESTRAINTS E. Restr. No Node Direction K # ELASTIC LINKS E. Link. No Node 1 Node 2 Direction # NODAL LOADS Node Direction Magnitude # ELEMENT LOADS Element Px Py1 Py2 DTtopDTbottom 0.00 0.00 0.00 0.00 -25.00 0.00 -25.00 0.00 0.00 0.00 # PRESTRESSING e2 Р ______ ANALYSIS RESULTS >> NODAL DISPLACEMENTS DY Node DXPHI 0.00000000D+00 -0.1271565755D-02 0.0000000000D+00 0.1271565755D-02 0.000000000D+00 1 2 0.000000000D+00 -0.4069010417D-02 3 0.000000000D+00 0.000000000D+00 0.1271565755D-02 >> MEMBER END FORCES Member N1 T1 M1 N2 T2 M2 0.00 62.50 -0.00 208.33 1 0.00 0.00 -208.33 0.00 0.00 0.00 62.50 0.00

Toggle Diagrams 1: Original configuration 2: Deformed shape 3: Axial force 4: Shear force 5: Bending moment f. Fill diagram v: Show values r. Reset camera 188 Displacement Scale

Figure 10: Problem 6, Deformed Shape

Figure 11: Problem 6, Shear Force Diagram

	Exact Expression	Exact Value	Computed Value	% RE
V	$\frac{\omega l}{4}$	62.50	62.50	0.0%
M_{max}	$\frac{\omega l^2}{12}$	208.33	208.33	0.0%
δ_{max}	$\frac{\omega l^4}{120EI}$	0.4069010417E-02	0.4069010417E-02	0.0%

Figure 12: Problem 6, Bending Moment Diagram

1.1.4 Problem 9: Simple Beam - Two Equal Concentrated Loads Symmetrically Placed

Figure 13: Problem 9: Loading, geometry and supports

```
______
2DSTIFF - INPUT FILE
[kN/m/C]
______
# NODES <number of nodes> <x coord, y coord>
0.0 0.0
2.5 0.0
5.0 0.0
7.5 0.0
10.0 0.0
# ELEMENTS <number of elements> <start node, end node>
1 2
2 3
3 4
4 5
# SECTIONS <number of sections> <A, I, h, X>
0.32 0.0170666666666667 0.8 0.0
# SECTION INCIDENCES
1
1
1
1
```

```
# MATERIALS <number of materials> <E, v, alpha, gamma>
30.e6 0.2 0.0 0.0
# MATERIAL INCIDENCES
1
# RESTRAINTS <number of restraints> <node number, direction>
1 1
1 2
5 1
# LINKS <number of links> <master node, slave node, direction>
# ELASTIC RESTRAINTS <number of el. restraints> <node number, direction, k>
# ELASTIC LINKS <number of links> <node1, node2, direction, k>
# NODAL LOADS <number of nodal loads> <node, direction, magnitude>
22 - 15.0
4 2 -15.0
# ELEMENT LOADS <number> <Element, Px, Py, Py2, DTtop, DTbottom>
# PRESTRESSING <number> <Element, e1, em, e2, P>
______
2DSTIFF - OUTPUT FILE
[kN/m/C]
______
# NODE COORDINATES
    x-coord y-coord
 1
           0.00
                    0.00
                    0.00
 2
           2.50
           5.00
 3
                     0.00
 4
           7.50
                     0.00
          10.00
                     0.00
# SECTIONS
Sec.No
                                                             X
              Α
                                             h
          .3200D+00
                        .1707D-01
                                          0.8000
                                                            0.0000
 1
# MATERIALS
                                                            gamma
                                            alpha
Mat.No
              Ε
                              v
                           0.20
 1
            .3000D+08
                                           .0000D+00
                                                            0.0000
# ELEMENTS
```

El.No	Start	Node I	End N	ode	Sectio	n	Material	
1	1		2		1		1	
2	2		3		1		1	
3	3		4		1		1	
4	4		5		1		1	
# RESTRAIN	ITS							
Restraint		Node		Direc	tion			
1	NO	Node 1		1				
2		1		2				
3								
		5		1				
4		5		2				
# LINKS								
Link No		Master Node)	Slave	Node		Direction	
# ELASTIC		INTS Node		Direc	.		17	
E. Restr.	NO	Node		Direc	tion		K	
# ELASTIC	LINKS							
E. Link. N	Го	Node 1		Nod	.e 2		Direction	K
# NODAL LO	DADS							
Node	Dire	ection	M	agnitude				
2		2	-	15.00				
4		2	-	15.00				
# ELEMENT	בחאחפ							
Element	Px	Py:	L	Py2		DTtop	DTbottom	
DI OMOITO	1 11	- y -	-	1) 2		БТООР	D100000	
# PRESTRES	SING							
Element	e1	er	n	e2		P		
ANALYSIS F		:======		=======	=====	======	=========	=======
========	:======	.=======		=======	=====	======	=========	
>> NODAL D	ISPLACE	EMENTS						
	_			D17			DIIT	
Node	1	X		DY			PHI	
1 0	0,00000	0000D+00	0	.000000000	0D+00	-0.	2746582031D-03	
		00000D+00		.610351562			1831054687D-03	
		00000D+00		.839233398			5421010862D-19	
		0000D+00		.610351562			1831054687D-03	
5 C		00000D+00	U	.000000000	טט+עט+	0.	2746582031D-03	
>> MEMBER	END FOR	RCES						
M =1-	NT4	m.4		M4	**	.0	TO.	MO
Member	N1	T1		M1		2	T2	M2
1	0.00	15.00		0.00	0	.00	-15.00	37.50

2	0.00	-0.00	-37.50	0.00	0.00	37.50	
3	0.00	0.00	-37.50	0.00	-0.00	37.50	
4	0.00	-15.00	-37.50	0.00	15.00	-0.00	

Figure 14: Problem 9, Deformed Shape

Figure 15: Problem 9, Shear Force Diagram

Figure 16: Problem 9, Bending Moment Diagram

	Exact Expression	Exact Value	Computed Value	% RE
V	Р	15.00	15.00	0.0%
M_{max}	Pa	37.50	37.50	0.0%
δ_{max}	$\frac{Pa}{24EI}(3l^2 - 4a^2)$	0.8392333984E-03	0.8392333984E-02	0.0%