Mathe Vorkurs 2017

Jonas Otto

September 2017

Inhaltsverzeichnis

1	Elei	mentar	e Logik 2	í
	1.1			
		1.1.1	Definition	,
		1.1.2	Bemerkung	,
		1.1.3	Beispiele	,
		1.1.4	Definition (Junktoren und Wahrheitstabellen)	,
		1.1.5	Beispiel	,
		1.1.6	Satz (De Morgan)	,
		1.1.7	Lemma (Hilfssatz)	,
		1.1.8	Satz (Kontraposition)	
	1.2	Naive	Mengenlehre	
		1.2.1	Definition (Cantor 1845-1918)	
		1.2.2	Bemerkung	
2	Ree	lle Zał	alen 4	
	2.1	Der K	örper der reellen Zahlen	
		2.1.1	Definition	
3	Bev	veismet	thoden 5	,
	3.1	Direkt	er Beweis	,
		3.1.1	Beispiel	,
		3.1.2	Beispiel	,
	3.2	Indirel	ster Beweis	,
		3.2.1	Beispiel	,
	3.3	Beweis	s per Widerspruch	,
		3.3.1	Satz (Euklid 200 v.Chr.) 6	,
		3.3.2	Lemma	,
		3.3.3	Bemerkung	,
	3.4	Vollstä	indige Induktion	,
		3.4.1	Satz	
		3.4.2	Beispiel "Kleiner Gauß"	
		3.4.3	Zusammenfassung	,
		3.4.4	Beispiel	,

		3.4.5	Beispiel			8
		3.4.6	Beispiel Bernoulli-Ungelichung			8
		3.4.7	Bemerkung			8
		3.4.8	Beispiel			8
4	Fun	\mathbf{ktione}	en		;	8
	4.1					8
		4.1.1	Definition			8
		4.1.2	Beispiele			9
		4.1.3	Definition			9
		4.1.4	Beispiel			9
5	Diff	erenzi	ialrechnung		10	0
	5.1	Defini	ition des Integrals		. 1	0
		5.1.1	Definition		. 1	0

1 Elementare Logik

1.1

1.1.1 Definition

Eine Aussage ist ein Satz, der wahr oder falsch sein kann. Zwei Aussagen A, B heißen logisch äquivalent, in Zeichen $A \iff B$, falls sie den selben Wahrheitswert haben.

1.1.2 Bemerkung

- (i) Es muss nicht bekannt sein, ob eine Aussage wahr oder falsch ist.
- (ii) Wahre Aussagen müssen nicht "nützlich" sein und umgekehrt.
- (iii) Äquivalente Aussagen müssen "nichts miteinander zu tun haben".

1.1.3 Beispiele

- (i) A = "Es regnet" (Wahr)
- (ii) B = "x + 2" ist keine Aussage
- (iii) C = "2 + 3 = 5" (Wahr)
- (iv) D= "Jede gerade Zahl außer 2 ist die Summe von zwei Prizahlen" (Unbekannt)
- (v) $E = "\pi = \frac{333}{106}"$ falsch, aber nützlich
- (vi) F= "Meine Hose ist blau" und G= "Ich trinke Kaffee" sind logisch äquivalent

In diesem Abschnitt seien A, B, C stets Aussagen.

1.1.4 Definition (Junktoren und Wahrheitstabellen)

(i) $A \wedge B$ "A und B "

 $A \wedge B$ ist wahr, wenn beide Aussagen A, B wahr sind, sonst ist sie falsch.

A	B	$A \wedge B$
f	f	f
f	\mathbf{W}	f
w	f	f
w	W	W

- (ii) $A \vee B$ "A oder B"
- (iii) $\neg A$ "nicht A"
- (iv) $A \implies B$ "A impliziert B"

$$\begin{array}{cccc} A & B & A \Longrightarrow B \\ \hline f & f & w \\ f & w & w \\ w & f & f \\ w & w & w \\ \end{array}$$

Man sagt, die Aussage A ist hinreichend für B und die Aussage B ist notwendig für A.

(v) $A \iff B$ "Aist äquivalent zu B "

A	B	$A \iff B$
f	f	w
\mathbf{f}	W	f
\mathbf{W}	f	f
W	W	W

1.1.5 Beispiel

- 1.1.6 Satz (De Morgan)
 - (i) $\neg (A \land B) \iff (\neg A) \lor (\neg B)$
- (ii) $\neg (A \lor B) \iff (\neg A) \land (\neg B)$
- 1.1.7 Lemma (Hilfssatz)
 - (i) $\neg(\neg A) \iff A$
 - (ii) $A \lor B \iff B \lor A$ $A \land B \iff B \land A$

(iii)
$$A \lor (B \lor C) \iff (A \lor B) \lor C$$

 $A \land (B \land C) \iff (A \land B) \land C$

(iv)
$$(A \iff B) \iff (A \implies B) \land (B \implies A)$$

1.1.8 Satz (Kontraposition)

$$(A \Longrightarrow B) \iff (\neg B \Longrightarrow \neg A)$$

1.2 Naive Mengenlehre

1.2.1 Definition (Cantor 1845-1918)

Eine Menge ist eine Zusammenfassung von wohlunterscheidbaren Objekten unserer Anschauung oder unseres Denkens zu einem Ganzen.

1.2.2 Bemerkung

- (i) Naiver Mengenbegriff
- (ii) "Russelsche Antinomie" Naiver Mengenbegriff führt zu Widersprüchen!
- (iii) Bei der Bildung von "Mengen aller Mengen" muss man vorsichtig sein!

2 Reelle Zahlen

2.1 Der Körper der reellen Zahlen

2.1.1 Definition

Ein Körper ist eine Menge K mit zwei Verknüpfungen $+,\cdot$, die aus zwei Elementen $a,b\in K$ ein neues Element $(a+b)\in K, (a\cdot b)\in K$ zuordnen und dabei die folgenden Rechenregeln erfüllen.

(A1) Assoziativität von +

$$\forall a,b,c \in K: (a+b)+c=a+(b+c) \text{ kurz } a+b+c$$

(A2) Kommutativität

$$\forall a, b \in K : a + b = b + a$$

(A3) Es gibt ein Element $0 \in K, \forall a \in K : a + 0 = 0 + a = a$

//Todo

3 Beweismethoden

3.1 Direkter Beweis

Wir wollen $A \implies B$ zeigen:

Man nimmt an, dass A wahr ist, und seien A_n, \dots, A_m weitere Aussagen. Dann:

$$A \implies A_1 \implies A_2 \implies \cdots \implies A_n \implies B$$

3.1.1 Beispiel

Sei $n \in \mathbb{N}$ gerade. Dann ist auch n^2 gerade.

Beweis.

A = "n ist gerade"

 $B = "n^2 \text{ ist gerade"}$

Wir wollen $A \implies B$ zeigen.

$$A \implies n = 2k, k \in \mathbb{N} \implies n^2 = (2k)^2 = 4k^2 = 2 \cdot \underbrace{(2k^2)}_{\in \mathbb{N}}$$

 n^2 ist gerade.

3.1.2 Beispiel

Wir betrachten ein 8x8 Schachfeld, bei dem zwei gegenüberliegende Felder entfernt wurden. Wir legen Dominosteine auf das Feld, die jeweils zwei Felder überdecken.

Behauptung: Das ganze Feld kann nicht komplett bedeckt werden.

- 1. Lösungsmöglichkeit: Probiere alle Möglichkeiten durch. Beweis per Fallunterscheidung
- 2. Lösungsmöglichkeit: Direkter Beweis:

Beweis.

- (i) Das Feld hat 64 Felder, davon sind 32 weiß und 32 schwarz. Nach dem Entfernen sind noch 62 Felder übrig.
- (ii) Die entfernten Felder haben beide die Farbe schwarz. Also gibt es noch 32 weiße und 30 schwarze Felder.
- (iii) Ein Dominostein bedeckt immer 2 benachbarte Felder. Diese haben unterschiedliche Farben.
- (iv) Auf das neue Feld passen maximal 31 Steine.
- (v) Nach 30 Steinen bleiben 2 Felder übrig. Nach (iii) bleiben noch zwei weiße Felder übrig. Der letzte Stein müsste dann zwei weiße Felder bedecken. Nach (iii) ist das unmöglich.

Also gibt es keine solche Bedeckung.

3.2 Indirekter Beweis

Wir wollen $A \implies B$ zeigen. Nach dem Prinzip der Kontraposition ist dies äquivalent zu $\neg A \implies \neg B$

3.2.1 Beispiel

Sei $n \in \mathbb{N}$. Wenn 5 die Zahl n nicht teilt, dann teilt auch 10 die Zahl n nicht.

Beweis

A = "5 teilt n nicht"

B = "10 teilt n nicht"

$$\begin{array}{c} A \implies B \\ \neg B \implies \neg A \end{array}$$

 $\neg A =$ "5 teilt n"

 $\neg B =$ "10 teilt n"

Wir nehmen an, dass $\neg B$ wahr ist. Jetzt müssen wir $\neg A$ zeigen.

Da ¬B ist wahr, gilt, folgt
$$\exists k \in \mathbb{N}$$
 mit $n = 10k = 5 \cdot \underbrace{(2k)}_{\in \mathbb{N}}$

 \implies "5 teilt n" = $\neg A$

3.3 Beweis per Widerspruch

Wir wollen $A \Longrightarrow B$ zeigen. Wir nehmen an, dass A gilt, aber dass auch $\neg B$ gilt und führen das zu einem Widerspruch. Also muss $\neg B$ falsch sein, also ist B wahr.

3.3.1 Satz (Euklid 200 v.Chr.)

Es gibt unendlich viele Primzahlen.

Beweis. Wir nehmen an, es gibt nur endlich viele Primzahlen, etwa

 $p_1, p_2, \ldots, p_n \in \mathbb{N}$. Wir führen dies zu einem Widerspruch.

Definiere die Zahl $q = p_1 \cdot p_2 \cdots p_n + 1$.

Beachte: Keine der Zahlen $p_1 \dots p_n$ teilt 1 (es bleibt immer ein Rest 1!). Dies ist ein Widerspruch zu 3.3.2.

Also gibt es unendlich viele Primzahlen.

3.3.2 Lemma

Sei $n \in \mathbb{N}, n > 1$, dann ist n durch eine Primzahl teilbar

Beweis. //Later \Box

3.3.3 Bemerkung

- (i) Ein Paar Primzahlen mit Abstand 2 heißt Primzahl-Zwilling. Etwa: $(3,5), (5,7), (11,13), \dots$ Es ist unbekannt ob es unendlich viele Primzahlzwillinge gibt.
- (ii) Yitang Zhang bewies 14. Mai 2015: Es gibt unendlich viele Paare von Primzahlen mit Abstand 70.000.000.
- (iii) :
- (iv) April 2014: Abstand 246

Vollständige Induktion

Dies ist eine Methode um eine Aussage über alle natürlichen Zahlen zu beweisen.

Satz 3.4.1

Sei für $n \in \mathbb{N}A(n)$ eine Aussage.

- (i) Es gelte A(1) ist wahr. (Induktionsanfang)
- (ii) Es gelte " $A(n) \implies A(n+1)$ " (Induktionsschritt) für $n \in \mathbb{N}$ fest, aber beliebig.

Dann gilt A(n) für alle $n \in \mathbb{N}$

3.4.2 Beispiel "Kleiner Gauß"

Für alle
$$n \in \mathbb{N}$$
 gilt $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$

Beweis.

IA: Sei
$$n=1$$

IA: Sei
$$n = 1$$

$$\sum_{k=1}^{1} k = 1 = \frac{1 \cdot (1+1)}{2} \implies A(1) \text{ ist wahr.}$$

IS: Sei $n \in \mathbb{N}$ beliebig, aber fest.

Angenommen A(n) ist wahr (Induktionshypothese "IH")

Wir zeigen, dass unter dieser Annahme auch A(n+1) wahr ist.

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + n + 1 = \frac{n \cdot (n+1)}{2} + n + 1$$

$$= \frac{n \cdot (n+1)}{2} + \frac{2 \cdot (n+1)}{2}$$

$$= \frac{(n+1) \cdot (n+2)}{2}$$

3.4.3 Zusammenfassung

IA: Die Aussage gilt für n = 1

IH: Wir nehmen an, dass die Aussage für ein festes, aber beliebiges $n \in \mathbb{N}$ gilt

IS: Zeige unter Verwendung von IH dass A für n+1 gilt

3.4.4 Beispiel

//Todo

3.4.5 Beispiel

//Todo

3.4.6 Beispiel Bernoulli-Ungelichung

//Todo

3.4.7 Bemerkung

Der Induktionsanfang muss nocht unbedingt bei n=1 beginnen.

3.4.8 Beispiel

//Todo

4 Funktionen

4.1

4.1.1 Definition

Seien X, Y Mengen.

Eine Funktion f ist eine Vorschrift, die jedem $x \in X$ ein eindeutiges $y \in Y$ zuordnet. Das $x \in X$ zugeordnete $y \in Y$ wird mit y = f(x) bezeichnet. Notation:

$$f: X \to Y$$

 $X \ni x \mapsto f(x)$

Die Menge X heißt Definitionsmenge/-bereich, die Menge Y heißt Zielmenge. Das $x \in X$ zugeordnete $y \in Y, y = f(x)$ heißt Bild von x unter f. Das $x \in X$ mit f(x) = y heißt ein Urbild von y unter f.

I'm not going to draw such a fancy diagram like on the blackboard using \LaTeX two the place in the blackboard using \LaTeX to the place of the blackboard using \LaTeX

4.1.2 Beispiele

- (i) $f: \mathbb{R} \to \mathbb{R}, x \mapsto 2x + 1$ f(x) = 2x + 1
- (ii) $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ $f(x) = x^2$
- (iii) $f: \mathbb{R} \to [0,\infty), x \mapsto x^2$ Hier hat jedes $y \in Y = [0,\infty)$ zwei Urbilder, nämlich $x_1 = \sqrt{y}, x_2 = -\sqrt{y}$
- (iv) $f:[0,\infty)\to[0,\infty), x\mapsto x^2$, dann hat jedes $y\in[0,\infty)$ genau ein Urbild $x\in[0,\infty)$

4.1.3 Definition

Sei $f: X \to Y$ eine Funktion und $X_1 < X, Y_1 < Y$, dann heißt

- (i) $f(X_1) := \{ y \in Y, y = f(x), x \in X_1 \}$ das Bild von X_1 unter f
- (ii) $f^{-1}(Y_1) := \{x \in X, f(x) \in Y_1\}$ das Urbild von Y_1
- (iii) die Funktion f surjektiv, falls f(X) = Y, d.h. das Bild von X ist die gesamte Menge Y f ist surjektiv $\iff \forall y \in Y, \exists x \in X: f(x) = y$
- (iv) die Funktion f injektiv, wenn $x_1, x_2 \in X, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$ $\iff f(x_1) = f(x_2) \implies x_1 = x_2$ \iff Falls $y \in Y$ ein Urbild $x \in X$ hat, fann ist dies eindeutig bestimmt.
- (v) die Funktion f bijektiv, falls sie sowohl injektiv als auch surjektiv ist, d.h. falls jedes Element $y \in Y$ genau ein Urbild $x \in X$ besitzt.

4.1.4 Beispiel

(i) $f: \mathbb{N} \to \mathbb{N}, x \mapsto 2x$

$$X_1 = \{2, 3\}$$
 $Y_1 = \{8, 14, 100\}$
 $f(X_1) = \{4, 6\},$ $f^{-1}(Y_1) = \{4, 7, 50\}$

- (ii) $f: \mathbb{R} \to \mathbb{R}, x \mapsto 2x + 1$ ist bijektiv:
 - a) f ist surjektiv. Sei $y \in \mathbb{R}$ beliebig. Ziel: finde $x \in \mathbb{R}$, f(x) = y

$$f(x) = y$$

$$\iff 2x + 1 = y$$

$$\iff x = \frac{y - 1}{2}$$

$$f(x) = 2(\frac{y-1}{2}) + 1 = y$$

b) f ist injektiv. Seien $x_1, x_2 \in X$ mit

$$f(x_1) = f(x_2) \iff 2x_1 + 1 = 2x_2 + 1$$

 $\iff x_1 = x_2$
 $\implies f \text{ ist injektiv}$

5 Differenzialrechnung

5.1 Definition des Integrals

5.1.1 Definition

Sei $I \subset \mathbb{R}$ ein offenes Intervall und $x_0 \in I$ und $c \in \mathbb{R}, f : I \to \mathbb{R}$

- (i) $\lim_{x \to \infty} f(x) = c$ //Todo (Unleserlich in Mitschrift)
- (ii) f heißt stetig in x_0 falls $\lim_{x \to x_0} = f(x_0)$
- (iii) Wir sagen f ist stetig, falls f in jedem Punkt $x_0 \in I$ stetig ist.
- (iv) f heißt differenzierbar in x_0 falls

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

existiert. In dem Fall heißt $f'(x_0)$ die Ableitung von f in x_0 .

- (v) f heißt differenzierbar in I, falls f in jedem Punkt $x_0 \in I$ differenzierbar ist. In dem Fall heißt $f': I \to R, x_0 \mapsto f'(x_0)$ die Ableitung von f.
- (vi) f heißt stetig differenzierbar in I, falls f differenzierbar ist und f' stetig ist auf I.