Advance Data Science

October 21, 2025

Submitted by: Sucharitha Kondaparthi

Enrollment number: 2503B05108

1. Given the following data of Temperature (°C) and Power Consumption (kWh):

Temperature (°C) (X)	Power Consumption (kWh) (Y)			
10	300			
12	310			
14	320			
16	330			
18	345			
20	360			
22	370			
24	390			
26	420			
28	450			

Solution:

X	Y	X ² XY	
10	300	100	3000
12	310	144	3720
14	320	196	4480
16	330	256	5280
18	345	324	6210
20	360	400	7200
22	370	484	8140
24	390	576	9360
26	420	676	10920
28	450	784	12600
$\Sigma X=190$	ΣY=3595	$\Sigma X^2 = 3940$	ΣXY=70910

Therefore,

Number of observations, n = 10

 $\Sigma X = 190$

 $\Sigma Y = 3595$

 $\Sigma XY = 70910$

 $\Sigma X^2 = 3940$

Mean = Sum of Observations
Total number of Observations

Mean of X = 19

Mean of Y = 359.5

(a). Derivation of Regression Equation

By Using Least Squares Method,

For a simple regression equation Y=a+bX

$$b = (n*\Sigma XY - \Sigma X*\Sigma Y) / (n*\Sigma X^2 - (\Sigma X)^2)$$

Computing Numerator,

Numerator =
$$n*\Sigma XY - \Sigma X*\Sigma Y$$

= $10*70910-(190*3595)$
= $709100-683050$
= 26050

Computing Denominator,

Denominator =
$$n*\Sigma X^2 - (\Sigma X)^2$$

= $10*3940 - (190)^2$
= $39400 - 36100$
= 3300

b = numerator/ denominator

= 26050/3300

=7.893939

$$a = (mean of Y) - b*(Mean of X)$$

$$=359.5 - (7.893939)*19$$

$$=359.5 - 149.984841$$

=209.515159

Therefore the regression equation is

$$Y = (209.515159) + (7.893939)X$$

(b). Computation of R²

X (°C)	Y (Actual)	$\hat{\mathbf{Y}} = 208.7879 + 7.9848\mathbf{X}$	(Y-Ŷ)	$(Y-\hat{Y})^2$
10	300	288.64	11.36	129.1
12	310	304.61	5.39	29.0
14	320	320.58	-0.58	0.34
16	330	336.55	-6.55	42.9
18	345	352.52	-7.52	56.5
20	360	368.50	-8.50	72.3
22	370	384.47	-14.47	209.5
24	390	400.44	-10.44	108.9
26	420	416.41	3.59	12.9
28	450	432.38	17.62	310.5
				$\sum (Y-Y^{^{2}})^{2}=971.9$

Sum of Squares (Residual)

$$SS_{res} = \sum (Y - Y^{\hat{}})^2$$

= 971.9

Total Sum Of Squares

$$SS_{tot} = \sum (Y - Y^{-})^{2}$$

=21530.7

$$R^{2} = 1 - (SS_{res}/SS_{tot})$$
$$= 1 - 0.0451$$
$$= 0.9549$$

Therefore,

$$R^2 = 0.9549 = 0.955$$
(approx.)

2.

- (a) Use Python (statsmodels) to fit model and compare.
- (b) Interpret results (positive/negative slope, accuracy).

Regression Equation

$$\hat{\mathbf{Y}} = 209.5152 + 7.8939\mathbf{X}$$

Using stats model the findings are:

Code:

import pandas as pd

import statsmodels.api as sm

Given data

temperature = [10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

power = [300, 310, 320, 330, 345, 360, 370, 390, 420, 450]

Create DataFrame

df = pd.DataFrame({'Temperature': temperature, 'Power_Consumption': power})

Define dependent and independent variables

X = df[Temperature']

Y = df['Power_Consumption']

Add constant term for intercept

 $X = sm.add_constant(X)$

Build the model

model = sm.OLS(Y, X).fit()

Display the summary

print(model.summary())

OLS Regression Results

Dep. Variable:	Powe	r_Consumption	R-squared:			0.955
Model:		OLS	Adj. R-squared:			0.950
Method:		Least Squares	F-statistic:			171.6
Date:	Wed	, 22 Oct 2025	Prob (Prob (F-statistic):		1.10e-06
Time:		18:46:21	Log-Li	kelihood:		-37.005
No. Observation	ns:	10	AIC:			78.01
Df Residuals:		8	BIC:			78.61
Df Model:		1				
Covariance Type	e:	nonrobust				
=======================================			=======			
	coef	std err	t	P> t	[0.025	0.975]
const	 209 . 5152	11.962	17.515	0.000	181.931	237.100
Temperature		0.603	13.099	0.000	6.504	9.284
Omnibus:	=======	1.026	Durhir	======== -Watson:	=======	0.581
Prob(Omnibus):		0.599		e-Bera (JB):		0.781
Skew: 0.568			Prob(JB):		0.677	
Kurtosis:		2.236	. `	,		68.7
==========		=========	=======	:========	:=======	=======

Key findings are:

- ➤ The Fitted Linear model has positive slope which indicates, higher temperatures are associated with the higher power consumption.
- > The regression Equation is:

$$\hat{\mathbf{Y}} = 209.5152 + 7.8939\mathbf{X}$$

- ightharpoonup R2 = 0.955 which indicates the proportion of variance in Y explained by X
- > Therefore, the slope is positive which means power consumption increases with temperature in this dataset

3. Using Python, perform Linear Regression on the dataset attached in excel format.

Step 1: Import necessary libraries

import pandas as pd

import numpy as np

from sklearn.linear model import LinearRegression

from sklearn.metrics import mean_absolute_error, mean_squared_error

import matplotlib.pyplot as plt

```
# Step 2: Load dataset
#  Replace with your actual file path
file path = r"/content/drive/MyDrive/ADS/ASS 1/Experience Salary.xlsx"
df = pd.read excel(file path)
# Step 3: Separate variables
X = df[['Experience Years']] # Independent variable
Y = df['Salary USD']
                             # Dependent variable
# Step 4: Create and train model
model = LinearRegression()
model.fit(X, Y)
# Step 5: Get regression parameters
a = model.intercept_
b = model.coef_[0]
print(f'Intercept (a): {a:.2f}")
print(f"Slope (b): {b:.2f}")
# Step 6: Predictions
Y \text{ pred} = \text{model.predict}(X)
# Step 7: Model accuracy (R<sup>2</sup>)
r2 = model.score(X, Y)
print(f''R² (Coefficient of Determination): {r2:.4f}")
# Step 8: Error metrics
mae = mean absolute error(Y, Y pred)
```

```
mse = mean_squared_error(Y, Y_pred)
rmse = np.sqrt(mse)
print(f'Mean Absolute Error (MAE): {mae:.2f}")
print(f'Mean Squared Error (MSE): {mse:.2f}")
print(f"Root Mean Squared Error (RMSE): {rmse:.2f}")
# Step 9: Add predictions and residuals to dataframe
df['Predicted Salary'] = Y pred
df['Residuals'] = Y - Y pred
# Step 10: Plot Regression Line
plt.figure(figsize=(7,5))
plt.scatter(X, Y, color='blue', label='Actual Data')
plt.plot(X, Y pred, color='red', label='Regression Line')
plt.xlabel('Experience (Years)')
plt.ylabel('Salary (USD)')
plt.title('Experience vs Salary (Linear Regression)')
plt.legend()
plt.show()
# Step 11: Residual vs Fitted (Predicted) Plot
plt.figure(figsize=(7,5))
plt.scatter(Y pred, df['Residuals'], color='purple')
plt.axhline(y=0, color='black', linestyle='--')
plt.xlabel('Predicted (Fitted) Values')
plt.ylabel('Residuals (Y - \hat{Y})')
plt.title('Residuals vs Predicted Values')
plt.show()
```

Output:

Intercept (a): 31180.95

Slope (b): 2785.71

R² (Coefficient of Determination): 0.9987

Mean Absolute Error (MAE): 345.40

Mean Squared Error (MSE): 191746.03

Root Mean Squared Error (RMSE): 437.89

