- #paper/to-read ~ Computer Vision
 - https://arxiv.org/abs/1409.4842
 - Sequel papers:
 - Inception-v2 and Inception-v3
 - Inception-v4 and Inception-ResNet
 - Xception
 - Mentioned papers:
 - Provable Bounds for Deep Representations
 - Network In Network
 - R-CNN
 - Scalable Object Detection
 - Mentioned topics:
 - Hebbian Theory
 - Jaccard Index
 - Polyak Averaging
 - Superpixel
 - Generalized Linear Model, GLM
 - https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202

Summary

• Since salient parts in an image can be very different in size, an inception module uses convolutions (and pooling filters) of different

sizes on the same level.

- 1×1 convolutions reduce the number of input channels to prevent the explosion of required compute in the higher inception modules.
 - Note that for Max Pooling, the 1×1 convolution goes after it. Otherwise the max pooling operation would be in vain.
- The main idea behind this pattern is based on finding how an optimal local sparse structure can be approximated with dense components.
 - Units from earliest layers correspond to some region of the input image and these units are grouped into Filter Banks.
 - Later on, features from these units are aggregated by 1×1 convolutions.
 - These convolutions also serve as Non-linearity providers.
- The second (and necessary) idea is to apply Dimensionality Reduction whenever computational Complexity would increase too much otherwise.
 - The paper mentions occasional Max Pooling layers with stride 2 that halve the resolution.
- GoogLeNet as the main example in the paper.
 - It employs **auxiliary Loss** after some of the inception modules in the middle of the architecture, that mitigates the Vanishing

Questions

 May there be any obstacles for mixing this architectural approach with Depthwise Separable Convolutions from MobileNets?

Ideas

- What if we create sparse convolutions of the size $N \times N$ where N is big enough and each convolution is randomly masked with the Probability of p?
 - Seems that it was used widely for some time since this paper was published.
 - This raises the question whether there is any hope for a next, intermediate step: an architecture that makes use of the extra sparsity, even at filter level, as suggested by the theory, but exploits our current hardware by utilizing computations on dense matrices.