

Laboratory of Electronics Antennas and Telecommunications

LP-WAN technology for Smarter Things: The antenna challenge

Fabien Ferrero

Outline

- LP-WAN Motivation
- Why antenna is important? A practical example
- Antenna key parameters
- Low-cost Antenna Open Source project
- Micro-tracker Antenna Industrial project
- Da Nang/UCA : research perspectives
- Next Smart Campus Campaign

IoT opportunities: Potential market

IoT opportunities : Potential market

Sizing the IoT market opportunity

300 million utility meters

83.1 million millennials in the US⁶

100 million street lights

150 million unconnected passenger cars

1 million vineyard acres

\$75 billion counterfeit drugs

Source: Verizon data

IoT opportunities : Potential market

LP-WAN to improve energy and water access

Source: GSMA, "Sustainable Energy & Water Access through M2M Connectivity. http://www.gsma.com/mobilefordevelopment/wp-content/uploads/2013/01/Sustainable-Energy-and-Water-Access-through-M2M-Connectivity.pdf.

IoT opportunities: Hype cycle

LP-WAN technologies opportunities

LP-WAN provides new capabilities :

Low-power and long communication range

LP-WAN technologies opportunities

LPWAN - Low Power Wide Area Network

LP-WAN ISM bands

LP-WAN technologies comparison

	Loor	SIGFOX One network A billion dreams	NB-IoT 3
Range (km)	10km (suburban) 3-6km (urban)	30km (Rural) 10km (urban)	
Frequency Band (MHz)	Sub GHz (ISM)	868-900MHz (ISM)	Licensed LTE bands
Max. Coupling Loss	155dB		164dB
Modulation type	Chirp Spread Spectrum (CSS)	Ultra narrow band / GFSK / BPSK	LTE - OFDMA / SC-FDMA
Bandwidth	125 – 500 kHz	100 Hz	180 kHz
Datarate	300 bps – 50 kbps	100 bps	Up to 250 kbps (UL) – low latency
Max /message / day (Uplink)	Unlimited*	140 msg/day – 12bytesmax/msg	Unlimited (lice. Spectrum)
Max /message / day (Downlink)	Unlimited*	4 msg/day (8bytes max/msg)	Unlimited (lice. Spectrum)
Network density	+++ (ADR)	+	+++
Battery peak current	< 50 mA (14dBm)	< 50 mA (14dBm)	~300mA (@23dBm)
Average sensor autonomy	+++ (ADR)	++	+
Interference immunity	high	Low	Sensitive to downlink jamming
Native payload encryption	Yes	Proprietary	Yes
Able to create private networks	Yes	No	No
Location (w/o GPS)	Yes	No	M1 only, not deployed ^(**)
Commercial availability	Now	Now	Starting in 2017

LP-WAN network

Outline

- LP-WAN Motivation
- Why antenna is important? A practical example
- Antenna key parameters
- Low-cost Antenna Open Source project
- Micro-tracker Antenna Industrial project
- Da Nang/UCA : research perspectives
- Conclusion and perspectives

Antenna is important for communication range

- Smart Farming project in Pakistan
- Humidity sensors in a corn field
- Quart-wave antenna placed on a mast
- Communication range limited to 1 km ...

project WaterSense UPPA/Nestlé

Antenna is important for communication range

Quarter-wave antenna need a ground plane

EM simulation to analyse the radiation pattern

Antenna is important for communication range

- Nulls in the radiation pattern
- Reduced Gain in the direction of the gateway (-14 dBi)
- Caused by current flowing on the shield on the coaxial cable
- The cable+antenna form an antenna array with destructive interference toward the horizon.
- Need to use a balanced antenna with a balun like a sleeve dipole

Total Gain Elevation plane

Outline

- LP-WAN Motivation
- Why antenna is important? A practical example
- Antenna key parameters
- Low-cost Antenna Open Source project
- Micro-tracker Antenna Industrial project
- Da Nang/UCA : research perspectives
- Conclusion and perspectives

Antenna performance indicator

Definition :

- P_s: Power from the source
- P_{ref}: Power reflected by the antenna
- P_{rad} power radiated by the antenna

- Reflection coefficient
 - S₁₁ is usually plotted in dB scale
 - S₁₁ criteria from -10 dB to -6dB (90% to 75% transmitted power)
- Total Efficiency
 - Include matching and radiation loss
 - Can be plotted in linear or dB scale
 - 30-70% classically observed
- Gain
 - Include matching, radiation loss and directivity
 - Plotted in dBi
 - $U(\theta, \varphi)$ is the radiation intensity in a given direction

$$|S_{11}|^2 = P_{ref}/P_s$$

$$\eta_t = P_{rad}/P_s$$

$$G(\theta, \varphi) = \frac{U(\theta, \varphi)}{P_S/4\pi}$$

Antenna key parameters

• Antenna is a resonnant structure :

- Input impedance is changing with frequency
- Limited frequency bandwidth
- Miniature antenna can have a low efficiency due to metallic or dielectric losses

Antenna is an open structure

- Compare to electronic components, antenna is strongly influenced by its surrounding environment
- For integrated antenna, the electromagnetic wave is generated by the antenna <u>and</u> by the terminal ground plane
- Small antenna has to be carefully tuned

Effect of terminal chassis

Antennas can be:

- Dual-pole : 2 parts will contribute to the radiation
- Single-pole with a large ground plane

Effect of terminal chassis

• In most of the case, you will have a dual-pole antenna

Effect of terminal chassis

Smart geolocation technology

LoRa (868MHz) and GPS (1575MHz) antenna on small terminal

Effect of the environment

Antenna are strongly influenced by the close environment like the battery or the terminal casing

Effect of the environment

Antenna are also influenced by the surrounding environment

Antenna measurement

- Reliable antenna measurement is not an easy task
- Very hard to test antennas in a non-anechoic environment
- Cables have a large influence on the measurement
- Only Total Radiated Power (TRP) measurement can be trusted

Outline

- LP-WAN Motivation
- Why antenna is important? A practical example
- Antenna key parameters
- Low-cost Antenna Open Source project
- Micro-tracker Antenna Industrial project
- Da Nang/UCA : research perspectives
- Conclusion and perspectives

Design of cost efficient antenna @868MHz

LoRa collar for Cattle Rustling applications

- Cost reduction
 - Remove RF connectors (a SMA connector is 4\$)
 - Avoid external antenna (cost between 2 and 8 \$)
 - A PCB is needed for component integration
 - The cost for an extension of the PCB is negligible, so
 PCB integrated antenna is very cost efficient

UCA Antenna layout

- Miniaturized Printed Antenna(low cost)
- Based on a meandered Inverted
 F Antenna (IFA) Structure
- Mounted on a 80*34mm
 0.8mm-thick FR4 PCB
- Performance equivalent to a classical printed antenna in this area

UCA Antenna tuned for EU band

- Antenna simulation
 - Matched to 50 ohm
 - Bw = 30MHz (@-6dB)
 - -1.2 dB radiation efficiency (75%)
 - Dipole radiation pattern
 - 2.1 dBi peak directivity
 - 0.9 dBi peak Gain

UCA Antenna tuned for EU band

- Miniature antenna
 - Limited frequency bandwidth
 - If the antenna is matched for European band, the antenna has poor radiation performance in US and ASIA bands

Antenna design

- The antenna shape can be easily tuned to different frequencies
 - The top line can be cut at different position to change the antenna trace length
 - T_ant parameter can be tuned from 0 to 34mm
 - Antenna resonance frequency can be tuned from 845 to 950MHz

UCA Antenna tuning: Reflection coefficient

UCA Antenna: Linear Total Rad. Efficiency

Comparison with on-the-shelf antenna

Comparison with on-the-shelf antenna

- Measurement on Satimo Starlab station
 - Continuous wave with 14 dBm power from RFM95W module
 - Efficiency calculated from the 3D antenna measurement

Antenna structure	EIRP (dBm)	Total efficiency	Max Dimension
Small monopole	14.7	74%	105 mm
Quarter-wave monop.	15.7	94%	170 mm
Half-wave dipole	13.9	61%	280 mm
UCA untuned	13.8	60%	80mm
UCA after tuning	14.8	76%	80mm

Terminal Autonomy with a battery

- With a single AA Lithium battery
 - Measurement each 6mn (100mA peak)
 - Deep sleep between (10uA)
- Life time
 - 5 years
 - Parameters can be updated with downlink

Outline

- LP-WAN Motivation
- Why antenna is important? A practical example
- Antenna key parameters
- Low-cost Antenna Open Source project
- Micro-tracker Antenna Industrial project
- Da Nang/UCA : research perspectives

- Specs
 - LoRa 868 or 915MHz
 - WiFi/BLE (2.4GHz)
 - GPS L1
 - Terminal size: 50*28mm²
- Proposed solution
 - **Dual-band LoRa/GPS**
 - SP4T to switch between LoRa Rx/Tx/Txboost and GPS.
 - WiFi/BLE antenna (2.4-2.48 GHz)

- Total Efficiency LoRa -4 dB (40%)
- Total Efficiency GPS -1.5 dB (70%)
- Total Efficiency WiFi/BLE -1.5 dB (70%)

Radiation pattern

Measurements:

- LoRa : Peak Gain -1.5dBi
- BLE/WiFi : Peak Gain 0.5 dBi
- GPS: Estimated at 0dB from anechoic chamber measurement with GPS protocol tester.

Outline

- LP-WAN Motivation
- Why antenna is important? A practical example
- Antenna key parameters
- Low-cost Antenna Open Source project
- Micro-tracker Antenna Industrial project
- Da Nang/UCA : research perspectives

LoRaWAN in Da Nang

- Installation of LoRaWAN gateways in DUT and DNIIT
- Creation of a The Things Network Community

Da Nang/UCA: research perspectives

- Power management & Energy Harvesting
- Low-cost and low-power localization
- Advanced sensors for advanced applications
- Mix of LoRa, Bluetooth, Wifi, RFID, NFC, etc ...
- Communication robustness and security

PAPIoT project -> MAVAK (MAng VAt-the Ket-noi)

REFERENCES

- C. Pham, F. Ferrero, M. Diop, L. Lizzi, O. Dieng, O. Thiaré, "<u>Low-cost Antenna Technology for LPWAN IoT in Rural Applications"</u>, Proceedings of the 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI'17), Vieste, Italy, June 15-16, 2017.
- F. Ferrero, L. Lizzi, C. Danchesi and S. Boudaud, "Environmental sensitivity of miniature antennas for IoT devices," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, 2016, pp. 1749-1750.
- H. Berrada, F. Ferrero, L. Lizzi, C. Danchesi and S. Boudaud, "Characterization of miniature antenna for sub-GHz on-body applications," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, 2017, pp. 2001-2002.
- Juan Nogueira Nine, Stephane Boudaud, Fabien Ferrero and Leonardo Lizzi, "LPWAN as Enabler for Widespread Geolocation Solutions", Embedded World 2017, Nuremberg, Germany

Thanks to Cong Duc Pham for sharing the nice pictures and use cases

Thanks to Christophe Danchesi and Stephane Boudaud from Abeeway for sharing the micro-tracker pictures

Thanks to Juan Nogueira for the nice pictures from Flex

And Thanks to Leonardo Lizzi from UCA for contributing on most on this work

DANANG INTERNATIONAL INSTITUED OF TECHNOLOGY

Smart Campus of Danang

Laboratory of Electronics Antennas and Telecommunications

fabien.ferrero@unice.fr

leat.unice.fr

