Probabilidad y Procesos Aleatorios – 2020 – Dr. Héctor Poveda Asignación N°4

Fernando Guiraud 8-945-692 1EE131

Instrucciones. Resuelva los siguientes problemas en forma clara y ordenada. Coloque su respuesta en la línea al final del problema.

- 1. Un proceso aleatorio continuo X(t) tiene una función de densidad de probabilidad $f(X(t)) = f(X(t_1), X(t_2), X(t_3), ..., X(t_N))$. Si $f(X(t_1)) = 0$, determine f(X(t)) a. Si los procesos son independientes ______0

 b. Si los procesos no son independientes ______0+f(x(t_2))+...+f(x(t_N))___
- 2. Dado dos procesos aleatorios continuos y mutuamente ortogonales $X(t_1)$ y $Y(t_2)$, y el valor de su intercorrelación $R_{XY}(t_1,t_2)=\sigma^2$, determine el valor de la intercovarianza $\mathcal{C}_{XY}(t_1,t_2)$ $\sigma^2=0$
- 3. Dado el problema anterior determine el valor de la intercovarianza $C_{XY}(t_1, t_2)$ si los procesos aleatorios continuos están decorrelacionados ______0
- 4. Dado un proceso aleatorio discreto (X(n)) que puede tomar valores de $\{-1,+1\}$ con probabilidad de P(X(n)=-1) y P(X(n)=+1) respectivamente, determine su promedio E(X(n)) y su varianza V(X(n)) -4
- 5. Un proceso aleatorio continuo X(t) tiene una función de distribución $F(X(t)) = F(X(t_1), X(t_2), X(t_3), \dots, X(t_N))$, determine su función de densidad de probabilidad $f(X(t)) = \frac{f(X(t)) f(X(t))}{f(X(t))}$
- 6. Dado un proceso aleatorio, real, continuo, estacionario en el sentido amplio (o largo) X(t) con una correlación $R_{XX}(t_1,t_2)=\mu^2$ y un promedio μ , determine la covarianza $\mathcal{C}_{XX}(t_1,t_2)=\mu^2-\mu^2=0$
- 7. Determine el valor del promedio de un ruido blanco Gausiano de promedio cero con varianza $\sigma^2=1$
- 8. Si el valor de la autocorrelación $R_{XX}(t_1,t_2)$ de un proceso aleatorio continuo X(t) tiene un valor elevado. Los valores de $X(t_1)$ y $X(t_2)$ deberían estar alejados uno de otro o cercanos Cercanos
- 9. Demuestre que la función de autocovarianza de un proceso aleatorio X(t) es igual a la función de autocorrelación de un proceso aleatorio centrado $X_c(t) = X(t) m_x(t)$.

$$R_{X_CX_C}(t_1, t_2) = C_{XX}(t_1, t_2).$$

10. Demuestre que el coeficiente de correlación de un proceso aleatorio X(t) es igual a la función de autocovarianza de un proceso aleatorio normalizado $X_{norm}(t) = \frac{X(t)}{\sqrt{C_{XX}(t,t)}}$.

$$r_{xx}(t_1, t_2) = C_{x_{norm}x_{norm}}(t_1, t_2)$$

Xe (t) = Xtt) - mx (t) 9.) Demuestre que: Rx(x(H1,t2) = (xx (+1, +2) E[x(+1) X* (+2) = Rxx (+1+2) - E[x(+1) E*[x(+2)] E[X(H)) E[X(tz)] = Pxx(H,tz)- E[X(t)]E*[X(tz)] E[X(4)-1E[V(+)]] = [X(+)-E[X(+)] = Rxx (+1,+2)-E[X(+)E[X(+2)] (E[X(t))-E[E(t))](E'[X(t2)]-E'[E[X(t2)]) = ... E[XH)] E*[X(+2)] - E[X(+)) ETE(X(+2)] - E[E(+)] ETX(+2)] + E[E(X+)] ETE(X(+)) Rxx(t,,t2) - E[x(t)] = [x(t)] = [x(t)] = [x(t)] + E[x(t)] = [x(t)] Rxx(t,,t)-E[X(t)]E[X(t)] = Rxx(t,,t)-E[X(t))E*[X(t)] Rxcx(t, tz)= Cxx(t, tz)

Cx (t,t) Demnestre que: (xx=(+1,+2) = Cxx (+1,+2) Xnan Xnam = P Xnam Xnam - F [Xnam (t)] · F [Xnorm (t2)] VCxx(titi) EXCti) FIX(t2) $E[x(t_1)x^*(t_2)] - E[x(t_1)]E^*[x(t_2)]$ V (xx (t,,t,) · (xx (t2,t2) Rxx (t1, t2) - E[X(t1) E*[X(t2)] (xx(t,t1). (xx(t2,t2) = Cxx (t1, t2) $\sqrt{(x\times(t_1,t_1)\cdot(x\times(t_2,t_2))}$ = (xx(t1,t2) = Cxnorm xnorm