

TAGADA

A pipeline for flexible and scalable quantification and annotation of transcripts

Cervin Guyomar, Cyril Kurylo, Sarah Djebali, Sylvain Foissac

The good old "Central dogma of molecular biology"

Reference annotations are critical

- Ensembl
- RefSeq (NCBI)
- UCSC

We developed DRAGIBUS, a set of metrics to evaluate the quality of a gtf/gff file

- Syntax / consistency check
- Number of genes/transcripts/exons
- Proportion of monoexonic transcripts
- Splice sites canonicity
- Occurences of polyA signals in 3' UTRs

Number of genes/transcripts

	NCBI RefSeq	ENSEMBL	UCSC known genes	UCSC reference genes
galGal6	24K genes	24K genes	-	7K genes
(chicken)	62K transcripts	39K transcripts		7K transcripts
mm10	36K genes	43K genes	129K genes	25K genes
(mouse)	107K transcripts	104K transcripts	142K transcripts	44K transcripts
hg38	54K genes	64K genes	214K genes	28K genes
(human)	191K transcripts	208K transcripts	248K transcripts	78K transcripts

Proportion of monoexonic transcripts

	NCBI RefSeq	ENSEMBL	UCSC known genes	UCSC reference genes
galGal6 (chicken)	3.3%	7.4%	-	15.7%
oviAri3 (sheep)	3.5%	20.8%	-	14.3%

Transcripts with polyA signal support

	NCBI RefSeq	ENSEMBL	UCSC known genes	UCSC reference genes
mm10 (mouse)	52.2%	34.0%	32.4%	69.5%
hg38 (human)	45.4%	28.7%	29.7%	65.6%

Comparing annotation versions

Number of genes/transcripts

	ce6	ce11	bosTau6	bosTau9
	(flatworm)	(flatworm)	(cow)	(cow)
ENSEMBL	28K genes	47K genes	25K genes	28K genes
	35K transcripts	61K transcripts	27K transcripts	44K transcripts

Comparing species

Proportion of canonical splice sites

	hg38 (human)	mm10 (mouse)	bosTau9 (cow)	susScr11 (pig)	susScr3 (pig)
NCBI RefSeq	99.8%	99.8%	99.7%	99.4%	98.4%
ENSEMBL	99.8%	99.3%	99.5%	97.1%	89.5%

- Iterations of reference annotations are very labile
- Reference annotation pipelines are not explicitlyly documented and reproducible

Gene annotation in Ensembl

Gene annotation is the plotting of genes onto genome assemblies, and indexing their genomic coordinates.

Gene annotation provided by Ensembl includes automatic annotation, ie genome-wide determination of transcripts. For selected species (ie human, mouse, zebrafish, rat), gene annotation may also include manual curation, ie reviewed determination of transcripts on a case-by-case basis. Furthermore, Ensembl imports annotation from FlyBase, WormBase and SGD.

Ensembl transcripts displayed on our website are products of the Ensembl automatic gene annotation system (a collection of gene annotation pipelines), termed the Ensembl annotation process. All Ensembl transcripts are based on experimental evidence and thus the automated pipeline relies on the mRNAs and protein sequences deposited into public databases from the scientific community. Manually-curated transcripts are produced by the HAVANA group.

An Ensembl gene (with a unique ENSG... ID) includes any spliced transcripts (ENST...) with overlapping coding sequence, with the exception of manually annotated readthrough genes which are annotated as a separate locus. Transcripts from the Ensembl annotation process, the Havana/Vega set and the Consensus Coding Sequence (CODS project) set may all be clustered into the same gene. Transcripts that belong to the same gene ID may differ in transcription start and end sites, splice events and exons, and can give rise to very different proteins. Transcript clusters with no overlapping coding sequence are annotated as separate genes. Two transcripts may overlap in non-coding sequence (ie intronic sequence or UnTranslated Region (UTR), and be classified under two separate genes. After the Ensembl gene and transcript sequences are defined, the gene and transcript names are assigned.

The image below shows a cartoon of a gene ("GENE") with five transcripts, some coding (red) and non-coding (blue).

The sequence of any gene or transcript shown in Ensembl is the sequence in the underlying genome assembly, where the sequence of any protein is the translated genomic sequence. This is to prevent any mismatch between the genes and the genome. For this reason, sequences of genes, transcripts and proteins in Ensembl may differ from other databases, who may use sequence from other individuals than were used to produce the genome.

Find out more about the different types of gene annotation used by Ensembl, and where we get our data from:

- Automatic annotation of coding genes.
- · Automatic annotation of non-coding genes.
- · Annotation of immunoglobulin and T-cell receptor genes.
- Automatic annotation using RNA-seq data.
- Manual gene annotation by Havana.
- The Ensembl and Havana merge.
- . MANE (Matched annotation between NCBI and EBI.
- · CCDS.
- · Gene annotation of low quality assemblies.
- Sources of data for gene annotation.
- · Gene naming.
- Transcript tags.
- · Gene and transcript types.
- External references.

Annotation projects in our group

- FR-AgENCODE project (V2): 4 species, 4 animals, ~10 tissues
- GENE-SWitCH project: 2 species, 4 animals, 3 stages, ~7 tissues

Functional annotation of 7 tissues during development

The TAGADA pipeline

TAGADA: all the goodness of nextflow

Portable

Docker + Singularity

Scalable

Slurm, Kubernetes....

Modular

DSL2 processes

Reproducible

nextflow run FAANG/analysis-TAGADA \
 -profile test, docker \
 -revision 2.1.3 --output directory

TAGADA: the pipeline

Flexible replicate management

Merging annotations

Merging annotations

Non redundant set of transcript models

Additional features:

- expression-based filtering
- consistency-based filtering
- reference annotation inclusion

LncRNA annotation

TAGADA features vs nf-core

GENESWItCH TAGADA results

- Gene/transcript quantification
- Novel gene/transcript annotation

GENESWItCH data

- * 84 experiments (7 tissues x 3 developmental stages x 4 animals) per species:
 - Polya+ RNAs
 - Directional, PE 150 sequencing
 - +100-150 million PE reads / experiment
- <u>Reference genomes and gene annotations:</u>
 - Chicken:
 - Galgal6, ensembl v102
 - Pig:
 - Sscrofa11.1, ensembl v102

Clustering of reference genes quantification (pig)

Tissue specific genes using the Tau index

$$\tau = \frac{\sum_{i=1}^{n} (1 - \widehat{x_i})}{n-1}; \ \widehat{x_i} = \frac{x_i}{\max_{1 \le i \le n} (x_i)}.$$

Functional annotation of tissue specific genes

Novel genome annotation

# reference genes	# TAGADA genes	# reference transcripts	# TAGADA transcripts
24,356	34,712	39,288	138,272
31,908	51,171	63,041	197,396

What are the new transcripts - structure

What are the new transcripts - coding status

TAGADA genes are:

- Known coding genes with novel transcripts
- Novel non coding genes

DRAGIBUS evaluation of TAGADA transcripts

Gene annotation	canonical splice sites	TSS with ATAC-seq support	internal exons > 500bp	TTS with polyA site
TAGADA	99.5%	73.9%	6.1%	34.7%
ensv102	98.3%	67.0%	2.4%	43.0%
TAGADA	98.9%	63.6%	8.3%	32.5%
ensv102	97.1%	64.0%	5.1%	42.8%
	TAGADA ensv102 TAGADA	TAGADA 99.5% ensv102 98.3% TAGADA 98.9%	TAGADA 99.5% 73.9% ensv102 98.3% 67.0% TAGADA 98.9% 63.6%	Gene annotation Canonical splice sites ATAC-seq support exons > 500bp TAGADA 99.5% 73.9% 6.1% ensv102 98.3% 67.0% 2.4% TAGADA 98.9% 63.6% 8.3%

Bonus feature: Combine long-read annotation and RNA-seq

Species	Annotation	TSS ATAC-seq support
	ensv102	67.0%
chicken	Tagada on ensv102	73.9%
	Tagada on long reads	78.6%
	ensv102	64.0%
pig	Tagada on ensv102	63.6%
	Tagada on long reads	67.8%

Take-Home messages

- TAGADA is fast and easy to use pipeline to annotate and quantify transcripts
- TAGADA was applied on the GENE-SWItCH RNA-seq data to produce a transcriptome profiling and an extended annotation with good properties
- TAGADA can integrate RNA-seq reads with an long-read annotation, improving the resulting annotation

Thank you for your attention

INRAE/INSERM Toulouse

- Sarah Djebali
- Sylvain Foissac
- Cyril Kurylo

Roslin Institute

- Sebastien Guizard

GENE-SwitCH

- Hervé Acloque
- Alan Archibald
- Elisabetta Giuffra

