SMA0355 – Cálculo III

Sexta Lista

- 1. Demonstrar que $\int_{(1,2)}^{(3,4)} (6xy^2 y^3) dx + (6x^2y 3xy^2) dy$ é independente do caminho que liga (1,2) a (3,4).
 - 2. Calcule a integral do item anterior.
- 2. Provar que $\vec{F} = (2xz^3 + 6y)\vec{i} + (6x 2yz)\vec{j} + (3x^2z^2 y^2)\vec{k}$ é um campo conservativo, isto é, \vec{F} provém de um potencial. Calcule $\int_{\gamma} \vec{F} \cdot d\vec{r}$ onde γ é um caminho entre (1, -1, 1) e (2, 1, -1).
- 3. Encontre, caso exista, um potencial para cada campo vetorial abaixo.

1.
$$\vec{F}(x, y) = (3x^2y + 2)\vec{i} + (x^3 + 4y^3)\vec{j}$$

2.
$$\vec{F}(x,y) = (2x \sin y + 4e^x)\vec{i} + (x^2 \cos y + 2)\vec{j}$$

3.
$$\vec{F}(x,y) = -2y^3 \sin x \vec{i} + (6y^2 \cos x + 5)\vec{j}$$

4.
$$\vec{F}(x,y) = (3y + e^{x^2})\vec{i} + (2x - \frac{1}{y^2 + 1})\vec{j}$$

5.
$$\vec{F}(x,y,z) = yze^{xyz}\vec{i} + (xze^{xyz} + z)\vec{j} + (xye^{xyz} + y + 2z)\vec{k}$$

6.
$$\vec{F}(x,y,z) = y\vec{i} + z\vec{j} + y\vec{k}$$

7.
$$\vec{F}(x,y,z) = a(x)\vec{i} + b(y)\vec{j} + c(z)\vec{k}$$
 onde a,b e c são funções contínuas.

4. Seja $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ um campo de classe C^1 definido no paralelepípedo $K = [0, a] \times [0, b] \times [0, c]$. Suponha que rot $\vec{F} = \vec{0}$. Mostre que a função definida em K

$$f(x,y,z) = \int_0^x P(t,0,0)dt + \int_0^y Q(x,t,0)dt + \int_0^z R(x,y,t)dt$$

é um potencial de \vec{F} .

Respostas

- 1. Verifique que em \mathbb{R}^2 , que é simplesmente conexo, vale $\frac{\partial}{\partial y}(6xy^2-y^3)=\frac{\partial}{\partial x}(6x^2y-3)=\frac{\partial}{\partial x}(6x^2y-3)=\frac{\partial}{\partial x}(6x^2y-3)=\frac{\partial}{\partial x}(6x^2y-3)=\frac{\partial}{\partial x}(6xy^2-3)=\frac{\partial}{\partial x}(6xy^2-3)=\frac{\partial}$
 - 2. 236
- 2. Um potencial é $f(x,y,z) = x^2 z^3 + 6xy y^2 z$. $\int_{\gamma} \vec{F} \cdot d\vec{r} = f(2,1,-1) f(1,-1,1)$.
- 3. 1. $f(x,y) = x^3y + 2x + y^4 + C$
 - 2. $f(x,y) = x^2 \sin y + 4e^x + 2y + C$
 - 3. $f(x,y) = 2y^3 \cos x + 5y + C$
 - 4. Não é conservativo

5.
$$f(x,y,z) = e^{xyz} + yz + z^2 + C$$

- 6. Não é conservativo
- 7. f(x,y,z) = A(x) + B(y) + C(z), onde A, B e C são primitivas de a, b e c, respectivamente.
- 4. Calcule o gradiente de f. Você vai precisar derivar sob o sinal de integração.