

BACHELOR THESIS Soheil Nazari

Erhöhung der Korrektheit des States in Frontend Webapplikationen mit Strikten Übergängen

FAKULTÄT TECHNIK UND INFORMATIK Department Informatik

Faculty of Engineering and Computer Science Department Computer Science

Soheil Nazari

Erhöhung der Korrektheit des States in Frontend Webapplikationen mit Strikten Übergängen

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung im Studiengang Bachelor of Science Wirtschaftsinformatik am Department Informatik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Stefan Sarstedt Zweitgutachter: Prof. Dr.-Ing. Lars Hamann

Eingereicht am: 13. Januar 2025

Soheil Nazari

Thema der Arbeit

Erhöhung der Korrektheit des States in Frontend Webapplikationen mit Strikten Übergängen

Stichworte

State-Management, Webapplikationen, Frontend

Kurzzusammenfassung

Frontend Applikationen sind ein wesentlicher Bestandteil jeder Webapplikation und sind für Teile der Geschäftslogik und die UI verantwortlich. Steigende Anfordungen in Geschwindigkeit, Responsiveness und Features erhöhen die Komplexität enorm. Um ein Teil dieser Komplexität zu verwalten, kommen State Management Lösungen zum Einsatz. Diese übernehmen wichtige Aufgaben wie beispielsweise das Data Fetching, Datentransformation und die Datenspeicherung. Fehler im State kann daher einen verhältnismäßig großen Einfluss auf das Nutzererlebnis und das operative Geschäft haben. Damit Fehler und Defekte in diesem Bereich reduziert und schnell erkannt werden, wird eine strikte Erweiterung für State Management im Allgemeinen vorgestellt und mit dem normalen Ansatz verglichen.

Soheil Nazari

Title of Thesis

Increasing Correctness in State of Frontend Web Applications with Strict Transitions

Keywords

State Management, Web Applications, Frontend

Abstract

Frontend applications are an essential part of any web application and are responsible for parts of the business logic and the UI. Increasing demands for speed, responsiveness,

and features significantly raise complexity. To manage part of this complexity, state management solutions are used. These handle important tasks such as data fetching, data transformation, and data storage. Errors in the state can therefore have a relatively large impact on the user experience and operational business. To reduce and quickly detect errors and defects in this area, a strict extension for state management in general is introduced and compared to the conventional approach.

Inhaltsverzeichnis

A	bbild	lungsverzeichnis	vii
Ta	abelle	enverzeichnis	viii
A	bkür	zungen	ix
1	Ein	leitung	1
	1.1	Die Rolle des State-Managements in Frontend Webapplikationen	1
	1.2	Ziel der Arbeit	1
	1.3	Aufbau	2
2	Ver	wandte Arbeiten	3
3	Met	thodologie	4
	3.1	Aufbau	4
		3.1.1 Quantitative Methoden	
		3.1.2 Qualitative Methoden	5
	3.2	Code Ausschnitte	5
4	Stat	te-Management Ansätze	6
	4.1	Redux	6
		4.1.1 Actions	6
		4.1.2 Reducer	7
		4.1.3 Definition und Interaktion mit dem Store	8
	4.2	Pinia	9
		4.2.1 State	9
		4.2.2 Action	10
		4.2.3 Definition eines Stores	10
		4.2.4 Interaktion mit dem Store	10

5	Strict Transitions					
	5.1	Steiger	nde Robustheit durch TypeScript	12		
	5.2	Fehlde	ende Garantie für Korrektheit des States	13		
	5.3	Korrel	ttere Zustandsübergänge	14		
		5.3.1	Vorteile	15		
		5.3.2	Nachteile	16		
	5.4	Imple	mentierung	16		
		5.4.1	Redux	16		
		5.4.2	Pinia	19		
6	Ver	gleich	der Ansätze	22		
	6.1	Quant	ifizierbare Aspekte	22		
		6.1.1	Lines of Code	22		
		6.1.2	Bundle Size	22		
		6.1.3	Performance	23		
	6.2	Qualit	ative Aspekte	24		
		6.2.1	Developer Experience	24		
		6.2.2	Fehleranfälligkeit	24		
		6.2.3	Lesbarkeit	25		
		6.2.4	Wartbarkeit	25		
7	Fazit 20					
	7.1	Beanty	wortung der Forschungsfragen	26		
		7.1.1	Reduzierung von Fehlern	26		
		7.1.2	Developer Experience	27		
		7.1.3	Lesbarkeit und Wartbarkeit	27		
	7.2	Ausbli	ck	27		
Li	terat	urverz	eichnis	29		
Α	Anł	nang		31		
		O	spezifikation und Versionen der verwendeten Technologien	31		
	A.2		ele für Implementierung des ST-Ansatzes	31		
	A.3	-	rgleich genutzte Projekte	32		
			ndete Hilfsmittel	32		
G ^			keitserklärung	33		
	10000	Januarg	nomon mai ung	90		

Abbildungsverzeichnis

4.1	Redux Datenfluss	9
5.1	Prozentuale Nutzung von JavaScript und TypeScript unter professionellen	
	Entwicklern von 2018 bis 2024	12

Tabellenverzeichnis

6.1	Statische Analyse bei Redux und Pinia mit und ohne ST	23
6.2	Bundle Size Analyse bei Redux und Pinia mit und ohne ST $\dots \dots$	23
6.3	Performance Analyse Redux und Pinia mit und ohne ST	24
A.1	Gerätspezifikation und Versionen der verwendeten Technologien	31
A.2	Verwendete Hilfsmittel und Werkzeuge	32

Abkürzungen

DX Developer Experience.

JS JavaScript.

LOC Lines of Code.

POJO Plain Old JavaScript Object.

SM State Management.

SPA Single Page Application.

ST Strict Transitions.

TS TypeScript.

tsc TypeScript Compier.

1 Einleitung

1.1 Die Rolle des State-Managements in Frontend Webapplikationen

Moderne Webseiten folgen dem Single Page Application Ansatz. Dem nach bleibt die gleiche Instanz der Webapplikation solange der Nutzer auf der Webseite ist, bestehen. In der Regel sind mehrere Teile einer Applikation, beispielsweise bei der Komponenten-Architektur, von gleichen Daten abhängig. Außerdem werden die Daten basierend auf Interaktionen des Benutzers modifiziert. Änderungen in den Daten müssen den betroffenen Komponenten mitgeteilt werden. In einigen Fällen ist die Synchronisierung der Daten im Frontend mit den Daten des Servers erforderlich. Um HTTP Aufrufe zu sparen, können verschiedene Mechanismen, wie beispielsweise Caching oder Debouncing verwendet werden. Diese Faktoren erhöhen, die ohnehin schon hohe Komplexität und Fehleranfälligkeit zusätzlich.

Um diese Komplexität effizient zu verwalten, werden State Management Lösungen wie Redux, NgRx, Zustand oder Pinia verwendet. Mit Hilfe dieser Open Source JavaScript Bibliotheken, können Daten beim Bedarf von einer API abgerufen, transformiert und gespeichert werden. Die meisten State Management Bibliotheken sind eng mit einem UI-Framework gekoppelt. Aus diesem Grund sind sie ein fundamentaler Baustein jeder größeren Frontend Webapplikation.

1.2 Ziel der Arbeit

Mit der Komplexität erhöht sich auch die Fehleranfälligkeit. Fehler im Zustand, also Daten der Applikation, haben einen direkten Einfluss auf das Angezeigte. Wenn die Applikation sich in einem inkorrekten Zustand befindet und es keine Laufzeitfehler gab,

können die Verantwortlichen (in der Regel, die Entwickler) unter Umständen, nicht darüber informiert sein. Dies führt zu langlebigen Bugs.

Ziel dieser Arbeit ist es, einen Ansatz zu erarbeiten, bei dem die Möglichkeit eines Befindens in einem inkorrekten Zustand eliminiert wird. Dazu wird jeder zusammenhänge Teil des Zustands als ein Deterministischer endlicher Automat abgebildet. Dahingehend wird jede Änderung in diesem Zustand wie ein Übergang bei einem endlichen Automaten behandelt. Es wird vorgeschlagen die beliebten State Management Lösungen um *strikte* Übergänge (ST), wie bei einem Deterministischer endlicher Automat, zu erweitern. Auf diesem Wege wird eine Reduzierung von Bugs in größeren Applikationen bestrebt. Dabei wird insbesondere auf die Lesbarkeit und Wartbarkeit des Quellcodes und die Developer Experience geachtet.

Folgende Forschungsfragen werden behandelt:

- 1. Können Bugs, die Aufgrund eines falschen Zustandes entstehen, mit Hilfe von Strict Transitions reduziert werden?
- 2. Steigt oder sinkt die DX durch die Einführung von Strict Transitions?
- 3. Steigt oder sinkt die Lesbarkeit und Wartbarkeit des Codes durch die Einführung von Strict Transitions?

1.3 Aufbau

In dieser Arbeit werden die bestehende SM Ansätze um Übergänge wie bei einem DFA erweitert. Um dies zu erreichen, ist es notwendig die Funktionsweise bestehender Ansätze zu kennen. Diese werden im Kapitel 4 aufgeführt. Anschließend werden die Deterministischer endlicher Automat-Übergänge angepasst auf Anwendungfall einschließlich der JavaScript API zur Definition im Kapitel 5 dargestellt. Die Erkenntnisse aus Kapitel 4 und 5 werden kombiniert, um zwei konkrete Implementierungen für Redux und Pinia zu zeigen. Danach wird der ST Ansatz im Kapitel 6 mit dem normalen Ansatz verglichen. Bei dem Vergleich werden die quantitative und qualitative Aspekte analysiert. Wobei die Bewertung der qualitativen Aspekte auf die üblichen Coding Standards, Konventionen und Konzepte basieren. Abschließend werden die oben aufgeführten Forschungsfragen im Kapitel 7 basierend auf den Vergleich beantwortet und ein Fazit gezogen.

2 Verwandte Arbeiten

Im Bereich State Management gibt es viele Arbeiten, die meistens in Form von konkreten Implementierungen sind. Trotzdem gibt es kaum Arbeiten, die sich mit Erhöhung der Korrektheit im SM beschäftigen.

Die bekannteste dieser Arbeiten ist die XState Bibliothek. Diese verwendet unter anderem Konzepte aus event-basierter Programmierung und endlichen Automaten, um die Korrektheit des Applikationszustands zu gewährleisten. Genauso wie bei einem Deterministischer endlicher Automat, gibt es eine Übergangsfunktion und unerlaubte Übergänge werden blockiert. Es handelt sich um eine framework-agnostische Lösung mit hauptsächlichem Fokus auf React. Um die Developer Experience zu erhöhen wird zusätzlich noch ein visueller Editor zur Verfügung gestellt.[11]

Weitere relevante Arbeiten ergaben sich bei der Recherche nicht.

3 Methodologie

In dieser Arbeit kamen quantitative Methoden für Analyse von LOC, Bundle Size und Performance zum Einsatz. Für Analyse der Developer Experience, Fehleranfälligkeit, Lesbarkeit und Wartbarkeit wurden hingegen qualitative Methoden verwendet. Die drei Aspekte Fehlerquote, DX, Lesbarkeit und Wartbarkeit, mit denen sich die Forschungsfragen beschäftigen, sind weitgehend mit Hilfe von qualitativen Methoden beantwortbar. Da der quantitative Aspekt der LOC auch zur den genannten qualitativen Aspekten beiträgt, wird er in dieser Arbeit inkludiert. Die ebenfalls berücksichtigte quantitative Merkmale der Performance und Bundle Size, sind vorallem im Web von hoher Bedeutung und korrelieren mit wichtigen wirtschaftlichen Kennzahlen, wie der Conversion Rate.[1]

3.1 Aufbau

Damit der Vergleich realitätsnah ist, wurde eine Webapplikation mit üblichen Anforderungen wie Data-Fetching und Filterung gebaut. Die Applikation besteht aus einer Seite, welche eine Liste von 194 Produkten und Filteroptionen beinhaltet. Die Applikation fetcht und speichert die Produktdaten im Store. Die Filteroptionen sind: Titel, Preisobergrenze, Mindestbewertung, Verfügbarkeit und Kategorie.

Die Applikation wurde in React mit Redux und analog in Vue mit Pinia gebaut. Anschließend wurden die beiden Implentierungen kopiert und die Kopien um Strict-Transitions erweitert.

Das öffentliche Github Repository mit allen Applikationen ist im Anhang A.3 verlinkt.

3.1.1 Quantitative Methoden

Die quantitative Kennzahlen wurden mit Hilfe der Unix-Utility wc word count für LOC, Playwright und Chrome Profiling für Performance und Vite Build-Tool für Bundle Size

gesammelt. Das Ergebnis der Analysen sind die relative und absolute Veränderungen der Kennzahlen.

3.1.2 Qualitative Methoden

Die qualitative Analyse basiert auf weitverbreiteten Code Konventionen, Pattern und Empfehlungen, die zur Lesbarkeit und Wartbarkeit des Quellcodes beitragen und die Produktivität des Entwicklers oder der Entwicklering und die Fehlerquote der Applikation unmittelbar beeinflussen. Es ist wichtig zu erwähnen, dass die Schlussfolgerungen hierbei nicht vollständig von Subjektivität befreit sind.

3.2 Code Ausschnitte

TypeScript wird benutzt, um Aufbau von Objekten oder Funktionen zu beschreiben. Längere Strukturen werden mit Hilfe von Code-Bespielen veranschaulicht. Hierfür wird ebenfalls TypeScript verwendet. An viele Stellen wird auf Type-Annotationen verzichtet, damit die Beispiele leicht lesbar bleiben.

4 State-Management Ansätze

Bei den populären SM Lösungen folgt Redux und NgRx dem Flux-Pattern[9][6], wobei Zustand und Pinia einen anderen, Framework-nahen Ansatz verfolgen. Im Folgenden wird die Funktionsweise und die Eigenschaften von Redux und Pinia näher beschrieben. Da diese grundlegend unterschiedliche Ansätze verfolgen und andere SM Lösungen sich einem der beiden ähneln.

4.1 Redux

Redux definiert sich durch folgenden vier Eigenschaften:

- 1. Unveränderlichkeit (Immutability): Änderung am State sind ausschließlich über die APIs von Redux unter Beachtung der Unveränderlichkeit möglich.
- 2. Zentralisierung des Zustandes: Der gesamte Applikationszustand lebt in einem zentralen JavaScript Objekt.
- 3. Nachvollzierbarkeit (Traceability): Während der gesamten Lebensdauer der Applikation, sind Änderungen am Zustand auf deren Ursprung verfolgbar.
- 4. Event basiert: Es wird das Beobachter-Muster (Observer Pattern) verwendet.

Das Verhalten des Stores wird durch actions und reducer definiert.

4.1.1 Actions

Eine Aktion (Action) beschreibt eine Änderung oder Interaktion in und mit der Applikation. Beispielsweise könnte eine *counter-clicked* Action versendet (dispatch) werden, wenn der Nutzer auf den Zähler erhöhen Button drückt. Oder, wenn der Nutzer sich

erfolgreich angemeldet hat, kann eine entsprechende Action versendet werden. Intern ist eine Action ein POJO.[10]

Es wird folgende Struktur für Actions empfohlen:

```
type Action<T> = {
  type: string,
  payload?: T
}
```

Das Feld type beschreibt die Action und das optionale Feld payload enthält weiterführende Daten

4.1.2 Reducer

Ein Reducer ist für die Initialisierung und Aktualisierung des Zustandes zuständig. Ein Reducer wird als eine Pure-Function mit zwei Parametern definiert. Der erste Parameter ist das Zustandsobjekt und der zweite die versendete Action. Der Rückgabewert dieser Funktion ist das neue Zustandsobjekt. Da es sich hier um eine Pure-Funtion handelt, dürfen es hier keine Seiteneffekte stattfinden. Wie anfangserwähnt, ist der Zustand Unveränderlich, daher dürfen hier keine direkten Veränderungen des Zustandes stattfinden. Es wird lediglich ein neues Objekt zurückgegeben. Fall es keine Veränderungen stattfinden sollen, kann das ursprüngliche Objekt aus dem ersten Parameter unverändert zurückgegeben werden.[10]

Es wird folgende Struktur für Reducer empfohlen:

```
case 'user-logged-out':
    return {
        ...state,
        user: null,
    }
    default:
        return state
}
```

Es wird die *Spread Syntax:* ... aus ECMAScript 6 genutzt, um as ursprüngliche Zustandsobjekt zu klonen.[5]

4.1.3 Definition und Interaktion mit dem Store

Der Store wird mit Hilfe der *createStore* API erstellt. Als Parameter wird die Reducer-Function übergeben. Der Rückgabewert ist das Store-Objekt. Dieses bietet Zugang zu unteranderem *dispatch* und *getState* Methoden. Mit diesen kann jeweils Actions versendet und aus dem Store gelesen werden.

```
import { createStore } from 'redux'
const store = createStore(reducer)
store.dispatch(action)
const user = store.getState().user
```


Abbildung 4.1: Redux Datenfluss

4.2 Pinia

Pinia ist sehr eng gekoppelt mit dem Vue Framework und nutzt dessen Mechanismen der Reaktivität zu Datenhaltung. Das führt dazu, dass Pinia selbst minimal bleibt und die Daten ohne weiteres reaktiv sind. Im Gegensatz zu Redux und NgRx setzt diese Store Lösung nicht das Flux-Pattern um. Dank dieser Praxis, ist weniger Code nötig um einen Store zu definieren. Außerdem folgt Pinia nicht den Single-Store-Ansatz, bei dem alle Daten in einem zentralen Objekt leben. Sondern sind für Teile der Daten eigenständige Store-Instanzen zuständig. Pinia bietet zwei verschiedene APIs zu Definition von Stores an. In dieser Arbeit wird die *Options API* verwendet. Die Konzepte lassen sich auch auf die *Composition API* übertragen.[8] Die zwei essentiellen Konzepte sind *State* und *Action*.

4.2.1 State

State ist eine Funktion, die ein Objekt zurückgibt. Dieses enthält den Zustand.

4.2.2 Action

Eine Action ist eine Methode, die den State verändert und in einem actions Objekt definiert wird.

4.2.3 Definition eines Stores

Zu Definition eines Stores wird die defineStore API genutzt. Als Parameter wird ein eindeutiger Name und eine Beschreibung des Stores in Form eines Objekts übergeben. In dem zweiten Parameter werden die Felder state und actions definiert.

```
const useUserStore = defineStore('user-store', {
   state: () => {
     user: null
   },
   actions: {
     updateUser(newUser) {
      this.user = newUser
     }
   }
}
```

Auf die Felder in dem State-Objekt wird in einer Action mit *this* zugegriffen. Das State-Objekt wird seitens Pinia intern jeder Action gebunden.

4.2.4 Interaktion mit dem Store

Der Store kann in einer belibiegen Vue-Komponente importiert werden. Die Felder des Objekts, das von der state Funktion zurückgegeben wird, werden automatisch zu Feldern des Store Objekts. Genauso werden auch die Methoden des Actions-Objekts auch zu Member des Store Objekts.

```
const userStore = useUserStore()

// userStore.user

// userStore.updateUser
```

Die State im oberen Beipiel ist reaktiv und kann als userStore.user im Template der Komponente referenziert werden. Die Desktrukturierung (destructuring) des Store-Objekts, im oberen Beispiel userStore, führt zur Verlust der Reaktivität. Aus diesem Grund wird die Punktnotation empfohlen.[8]

5 Strict Transitions

5.1 Steigende Robustheit durch TypeScript

TypeScript verfügt, im Gegensatz zu JavaScript, über statische Typisierung. Dank der statischen Typisierung sind statische Typeanalysen und Operationen wie Go to Definition und Go to Implementations der Entwicklungsumgebungen (IDE) möglich. Diese Eigenschaften reduzieren Fehler im Zusammenhang mit falschen Typen erheblich. Wie in 5.1 abgebildet, wird TypeScript von immer mehr Entwicklern genutzt, während die JavaScript Nutzung abnimmt. 5.1 beinhaltet die tatsächliche Nutzung von TS nicht. Der TypeScript Compier ist in den meisten modernen IDEs, wie Visual Studio Code und den JetBrains IDEs wie IntelliJ IDEA und WebStorm integriert. Dies führt dazu, dass man auch beim JavaScript Code einige Vorteile von TypeScript bekommt.[7]

Abbildung 5.1: Prozentuale Nutzung von JavaScript und TypeScript unter professionellen Entwicklern von 2018 bis 2024

5.2 Fehldende Garantie für Korrektheit des States

Der TypeScript-Faktor macht Webapplikationen, somit auch State Management auf Typ-Ebene robuster und weniger fehleranfällig. Allerdings ist es für die Applikation immer noch möglich in einem falschen Zustand zu sein. Gegeben sei ein Redux Store, der für das Speichern einer Liste von *items* zuständig ist. Definiert wird der Store wie folgt:

```
type FetchAction = {
  type: 'fetch'
type FetchSuccessfulAction = {
 type: 'fetch-successful',
 payload: Array<any>
}
type FetchFailedAction = {
 type: 'fetch-failed',
 payload: Error
type Action =
 | FetchAction
  | FetchSuccessfulAction
  | FetchFailedAction
function reducer (
  state = { items: 'not-fetched' },
  action: Action
  switch (action.type) {
    case 'fetch':
      return {
        ...state,
        items: 'fetching'
    case 'fetch-successful':
      return {
        ...state,
        items: action.payload
```

Es ist erlaubt, die FetchSuccessfulAction Aktion zu versenden, ohne voher die Fetch Aktion versendet zu haben. Das heißt: "items wurden erfolgreich abrufen", ohne die Anfrage zuvor gemacht zuhaben. Seitens Redux ist das Versenden einer Aktion immer, unbeachtet des aktuellen Zustandes, erlaubt. Dieser Faktor spricht gegen die Nachvollziehbarkeit und gilt für alle populäre SM Lösungen.

5.3 Korrektere Zustandsübergänge

Es wird vorgeschlagen den Applikationszustand wie ein Zustand eines Deterministischer endlicher Automats zu behandeln. Im Falle von Redux werden die Aktionen als Übergänge und der Reducer als die Übergangsfunktion eines Deterministischer endlicher Automats gesehen. Restliche Eigenschaften des Quintupels eines Deterministischer endlicher Automats werden hierbei ignoriert.

Um die Übergangsfunktion zu definieren, wird pro Zustand eine Übergangsliste aller Aktionen benötigt, die bei diesem Zustand erlaubt sind. Ein Problem hierbei ist allerdings, dass die Identifizierbarkeit der einzelnen Zustände nicht garantiert ist. Abweichend von Deterministischer endlicher Automats, sind die Zustände in Webapplikationen nicht immer serialisierbar. Nicht serialisierbare Objekte sind nicht immer identifizierbar. Im oberen Beispiel, sind die Zustände 'not-fetched' und 'fetching' vom Typ String und somit serialisierbar, allerdings sind die restlichen Zustände nicht serialisierbar (Zustand vom Typ Error und Array<any>). Um dieses Problem zu umgehen, wird eine Identitätsfunktion emfohlen, um zwischen verschiedenen Zuständen zu unterscheiden. Sie akzeptiert als Paramter den aktuellen Zustand und gibt ein Boolean zurück.

```
type IdentityFn<S> = (state: S) => boolean
```

Mit dieser Funktion, kann der Anwender für die Indentifizierbarkeit der Zustände sorgen. Bei JavaScript Klassen, kann der *instanceof* Operator genutzt werden, um auf die Instanz einer Klasse wie *Error* zu prüfen.[4] Desweiteren, können bei Objekten auf eindeutige Eigenschaften, wie die Präzens eines Feldes per *in* Operator geprüft werden.[3] Bei Arrays kann die *Array.isArray* Funktion verwendet werden.[2] Durch die Kombinition dieser und weiteren Funktionen und Operatoren können weitere Datentypen und Fälle identifiziert werden.

Die Übergangsliste lässt sich in einer Map wie folgt speichern:

```
type TransitionMap<S extends IdentityFn<S>, A> = Map<S, Array<A>>
```

Für die Transition Map gilt: Identitätsfunktion ist der Schlüssel, während Liste von Aktionen der Wert ist.

In der Übergangsfunktion wird der Zustandswechsel mit einer Validierungsfunktion validiert. Diese prüft mit Hilfe der Transition Map auf die Gültigkeit des Übergangs und wirft einen Laufzeitfehler bei ungültigen Aufrufen. Falls der Übergang gültig ist, wirft sie keinen Fehler und der Zustandswechsel kann stattfinden. Gültig ist der Übergang, wenn es für den aktuellen Zustand eine Identitätsfunktion gibt, die wahr zurückgibt und die aktuelle Aktion in der zugehörigen Liste enthalten ist. In allen anderen Fällen ist der Übergang ungültig. Der Laufzeitfehler sorgt dafür, dass der ungültige Aufruf berichtet wird und sich nicht zu einem langlebigen Bug entwicklen kann.

Die Validerungsfunktion V ist wie folgt definiert:

```
type ValidationFn<S, A> = (
    transitionMap: Map<S, A>,
    state: S,
    action A
) => boolean
```

5.3.1 Vorteile

1. Übersichtlichkeit: Damit die Validierung funktioniert, ist der Entwickler gezwungen die Transition Map zu definieren. So können fehlerhafte und überflüssige Übergänge schneller erkannt und korrigiert werden.

2. Erkennung von Bugs: Bei fehlgeschlagener Übergangsvalidierung wird ein Laufzeitfehler geworfen, der über die Monitoringsysteme die Entwickler über einen Bug informieren kann. Ebenfalls möglich ist es, die falschen Übergänge lediglich zu loggen. Auf diesem Wege können die Entwickler ebenfalls über den Bug in Kenntnis gesetzt werden. Die letztere Strategie erlaubt jedoch im Worst-Case Weiterausführung falscher Geschäftslogik.

5.3.2 Nachteile

- Mehr Aufwand: Damit der Ansatz funktioniert muss die Transition Map definiert werden. Diese Voraussetzung kostet zusätzliche Aufwand.
- 2. Erhöhte Ausfürungszeit: Außerdem erhöht sich Ausführungszeit der gesamten Applikation durch die Validerung bei jedem Zustandswechsel. Diese hinzukommende Zeit ist jedoch zuvernachlässigen, wenn die Identitätsfunktion effizient ist und keine Nebeneffekte erzeugt, also eine pure function ist.

5.4 Implementierung

5.4.1 Redux

Im folgenden wird die Implementierung der obengenannten Funktionen und Konzepte für redux gezeigt.

Die Transition Map ist die Grundlage des Ansatzes. Mit Blick auf die Developer Experience und die Lesbarkeit wird die Transition Map als ein Array von Objekten mit zwei Feldern definiert. Nämlich *identityFn* und *actionTypes*:

```
type Transition<S> = {
  identityFn: (state: S) => boolean
  actionTypes: string[]
}
type Transitions<S> = Transition<S>[]
```

Im folgenden Beispiel wird die TransitionMap definiert.

```
type State = 'not-fetched' | 'fetching' | string[] | Error
type Action =
  | {
     type: 'fetch'
   }
  | {
     type: 'fetch-successful'
     payload: string[]
  | {
      type: 'fetch-failed'
     payload: Error
    }
const transitions = [
   identityFn: (state) => state === 'not-fetched',
    actionTypes: ['fetch'],
 },
    identityFn: (state) => state === 'fetching',
    actionTypes: ['fetch-successful', 'fetch-failed'],
 } ,
]
Der Reducer kann wie von redux vorgegeben definiert werden:
function reducer(state = 'not-fetched', action) {
  switch (action.type) {
    case 'fetch':
      return 'fetching'
    case 'fetch-successful':
     return action.payload
    case 'fetch-failed':
      return action.payload
    default:
     return state
 }
```

Die definierten Übergänge werden mit Hilfe der folgenden Validierungsfunktion validiert:

```
function validateTransition(state, action, transitions) {
  for (const transition of transitions) {
    if (transition.identityFn && transition.identityFn(state)) {
      if (transition.actionTypes.includes(action.type)) {
        return
      }

      throw new IllegalTransitionError(state, action.type)
    }
}

throw new TransitionNotFoundError(state)
}
```

Die deiden Laufzeitfehler IllegalTransitionError und TransitionNotFoundError erben von der Error Klasse und dienen der Unterscheidbarkeit.

Damit die Validerungsfunktion bei jedem Zustandswechsel ausgeführt wird, muss die Übergangsfunktion, bei redux *Store.dispatch*, überschrieben werden.

```
function dispatchTransition(this, action) {
  validateTransition(this.getState(), action, this.transitions)
  this.dispatch(action)
}
```

Es wird eine Proxy für *createStore* eingeführt, die wie folgt implementiert ist:

```
function createTransitionStore<S>(
   transitions: Transitions<S>,
   ...args: Parameters<typeof createStore>
): TransitionStore<S> {
   const store = createStore(...args)

   Object.defineProperty(store, 'transitions', {
     value: transitions,
   })

   Object.defineProperty(store, 'validateTransition', {
```

```
value: validateTransition,
})

Object.defineProperty(store, 'dispatchTransition', {
   value: dispatchTransition,
})

return store as TransitionStore<S>
}
```

Die createTransitionStore API mit dem zusätzlichen TransitionsMap Parameter erstellt einen Store mit der createStore API von redux und fügt dem Store drei neue Felder, die TransitionMap, Validierungsfunktion und die dispatchTransition Methode hinzu.

```
type TransitionStore<S, A> = {
  validateTransition: (
    state: S,
    action: A,
    transitions: Transitions<S>
  ) => void
  transitions: Transitions<S>
  dispatchTransition: (
    this: TransitionStore<S, A>,
    action: BasicAction
  ) => void
} & Store
```

Der TransitionStore kann per create TransitionStore erstellt werden. Die Actions werden per TransitionStore.dispatchTransition(action) dispatched. Mit dieser Implementierung bleiben die APIs zum Lesen und Manipulierung des Stores identisch. Lediglich nimmt der Funktion zur Erstellung eines Stores einen zusätzlichen TransitionMap Parameter.

5.4.2 Pinia

Pinia verfügt über ein Plugin System. Über dieses bekommt man unter anderem Zugriff auf den Zustand und Actions der aktiven Stores. Die Plugins werden beim Start der Applikation über die *Pinia.use* API registriert.

Die Transition Map hat die gleiche Struktur wie die bei Redux. Allerdings wird das Feld action Types zu action umbenannt und steht für den Namen der Action in dem actions Objekt.

Das Plugin wird mit der *transitions* Funktion instaniziert, diese nimmt eine Map mit der ID des Stores als Schlüssel und die Transition Map als Wert für den jeweiligen Store:

```
type PiniaUseCallback =
   Parameters<ReturnType<typeof createPinia>['use']>[0]

type transitions<S> = (
   transitionsByStoreId: TransitionsByStoreId<S>
) => PiniaUseCallback

type TransitionsByStoreId<S> = {
   [storeId: string]: Transitions<S>
}
```

Die transitions Funktion gibt eine Anonymefunktion zurückt, diese bekommt ein Objekt als Parameter. In diesem befindet sich unter anderem das Store Objekt. Über die Store. Son Action Methode kann eine Callbackfunktion als Preprocessor für Actions registriert werden. Die Callbackfunktion bekommt ein Objekt als Parameter. In diesem sind unter anderem der Name der aktuellen Action und der aktuelle Zustand. In dem Preprocessor wird die Validierungsfunktion aufgerufen.

```
type PiniaUseCallbackArgs = Parameters<PiniaUseCallback>[0]

function transitions<S>(
    transitionsByStoreId: TransitionsByStoreId<S>
): PiniaUseCallback {
    return ({ store }: PiniaUseCallbackArgs) => {
        const transitions = transitionsByStoreId[store.$id]

    if (transitions) {
        store.$onAction(({ name, store }) => {
            // name ist der Name der aktuellen Action
            validateTransition(store.$state, name, transitions)
        })
     }
    }
}
```

Die Validerungsfunktion ist auf die leichtgeänderte Struktur der Actions angepasst:

```
function validateTransition<S, A extends string>(
   state: S,
   action: A,
   transitions: Transitions<S>
): void {
   for (const transition of transitions) {
      if (transition.identityFn && transition.identityFn(state)) {
        if (transition.actions.includes(action)) {
            return
        }
        throw new IllegalTransitionError(state, action)
      }
   }
   throw new TransitionNotFoundError(state)
}
```

Das Plugin wird im Bootstrap Schritt der Vue-Applikation registiert:

```
const app = createApp(App)
const pinia = createPinia()

pinia.use(stateTransitions({
    [itemStoreId]: itemStoreTransitions
}))

app.use(pinia)
app.mount('#app')
```

Im Gegensatz zum TransitionStore für Redux, ändern sich bei Pinia, dank des Plugin-Systems die APIs zur Erstellung, Lesen und Manipulierung der Stores nicht.

6 Vergleich der Ansätze

Der in vorangegangen Kapiteln vorgestellte Strict Transitions Ansatz, erweitert die interne Funktionsweise einer State Management Lösung. Er erfordert die zusätzliche Definition einer TransitionMap und es werden leicht geänderte APIs dem Benutzer zur Verfügung gestellt. In diesem Kapitel werden die Standard Stores (unveränderte) zu den mit Strict Transitions verglichen. Es werden die quantifizierbare Kennzahlen Lines of Code, Bundle Size und Performance untersucht. Außerdem werden die Aspekte Developer Experience, Fehleranfälligkeit, Wartbarkeit und Lesbarkeit analysiert.

6.1 Quantifizierbare Aspekte

6.1.1 Lines of Code

Bei React wurden die .js, .ts, .tsx und bei Vue die .ts und .vue Dateien untersucht. Alle anderen Dateitypen wurden ignoriert, da diese weder für die Geschäfslogik noch für die UI verantwortlich sind.

Der relative Anstieg in LOC beträgt bei React $\sim 6\%$ und bei Vue $\sim 12\%$. Darüber hinaus beträgt der absolute Anstieg jeweils 28 Lines und 32 Lines. Siehe (Tab. 6.1)

6.1.2 Bundle Size

Analysiert wurden die Production Bundles der Applikationen. Diese wurden mit dem Build-Tool Vite erstellt. Alle Applikationen nutzen ausschließlich Client Side Rendering. Daher ist es wichtig, dass die Bundles klein wie möglich bleiben.

Der relative Anstieg beträgt bei React $\sim 0,6\%$ und bei Vue $\sim 1\%$. Darüber hinaus beträgt der absolute Anstieg jeweils 0,98kB und 0,73kB. Der Anstieg in Bundle Size ist vernachlässigbar. Siehe (Tab. 6.2)

Tabelle 6.1: Statische Analyse bei Redux und Pinia mit und ohne ST

Dateityp	Anzahl	LOC	Szenario
js	1	25	React ohne ST
ts	14	256	React ohne ST
tsx	5	187	React ohne ST
js	1	25	React mit ST
ts	17	284	React mit ST
tsx	5	187	React mit ST
ts	5	140	Vue ohne ST
vue	5	133	Vue ohne ST
ts	5	172	Vue mit ST
tsx	5	133	Vue mit ST

Tabelle 6.2: Bundle Size Analyse bei Redux und Pinia mit und ohne ST

Size in kB	Gziped	Szenario
156,26	51,22	React ohne ST
157,24	51,54	React mit ST
70,43	28,23	Vue ohne ST
71,16	28,5	Vue mit ST

6.1.3 Performance

Um den Unterschied in Performance zu messen, wurde das Testing Tool Playwright verwendet. Mit Hilfe von Playwright wurde ein Szenario definiert. In diesem wurden alle Features der Webseite verwendet, welche Actions in Stores verursachen. Das Szenario wurde pro Applikation 20 Mal ausgeführt. Es lief im Chrome Browser und wurde mit Hilfe des Performance Tabs in den Chrome DevTools analysiert. Es wurden die Mittelwerte für Ausführungszeit in Millisekunden für die Browsertasks Scripting, Painting und Rendering ermittelt.

In allen Browsertasks, ausgenommen Scripting bei React, kann ein Rückgang in der Ausführungszeit beobachtet werden. Allerdings ist der Unterschied vernachlässigbar, da dieser sehr gering ist. Auch der Anstieg im Scripting bei React ist mit 0,89% ebenfalls vernachlässigbar. Siehe (Tab. 6.3)

Task ms ohne ST mit ST Delta Library Scripting 1.111,45 1.121,35 +0.89%Redux 858,05 841,05 -1,98% Redux Painting Rendering 613,25 611,05 -0,36% Redux Scripting 1.680,15 1.677,95 -0,13% Pinia 777,65 Pinia Painting 763,65 -1.80%Rendering 651,65 642,9 -1,34% Pinia

Tabelle 6.3: Performance Analyse Redux und Pinia mit und ohne ST

Die Gerätspezifikation und Versionen der verwendeten Technologien sind aus der Tabelle A.1 im Anhang zu entnehmen.

6.2 Qualitative Aspekte

6.2.1 Developer Experience

Die DX wird durch die zusätzliche Aufgabe der Definition einer Transition Map beeinflusst. Sie führt zu mehr Code und somit zu zusätzlicher Aufwand.

6.2.2 Fehleranfälligkeit

Vorausgesetzt die Transition Map bildet die zulässigen Übergänge vollständig und korrekt ab, kann sich die Applikation nicht in einem unzulässigen Zustand befinden. Obwohl sich hiermit die Fehlerstelle verlegt, ist diese Zentral und nicht an vielen Orten verteilt. Falls sich die Applikation in einem falschen Zustand befindet, ist die Transition Map an einem zentralen Ort zu überprüfen statt die ausgelösten Actions an vielen Orten.

Darüber hinaus bildet die Transition Map die Abläufe in der Applikation ab und kann für eine bessere Nachvollziehbarkeit sorgen. Außerdem ist die Transition Map ein POJO und kann somit ohne weiteres Mocking getestet werden.

6.2.3 Lesbarkeit

Die Lesbarkeit des gesamten Applikationscodes bleibt unverändert, ausgenommen ist die hinzukommende Transition Map. Die Lesbarkeit der Transition Map wird hauptsächlich durch die enthaltene Identitätsfunktionen beeinflusst. Für diese wird der Einsatz von Pure Functions mit geringen Abzweigungen und Funktionsaufrufen empfohlen. Wenn dies eingehalten wird, ist die zyklomatische Komplexität gering, was in der Regel eine bessere Lesbarkeit impliziert. Jedoch hängt die Lesbarkeit stark von den Konventionen und dem Code Style des Authors ab.

6.2.4 Wartbarkeit

Jede hinzukommende Action oder State muss in der Transition Map berücksichtigt werden. Daher steigt die Wartbarkeit.

7 Fazit

7.1 Beantwortung der Forschungsfragen

Der Hauptgegenstände des Strict Transitions Ansatzes sind die Erhöhung der Produktivität des Entwicklers oder der Entwicklerin und das Erkennen von Bugs in frühen Phasen der Entwicklung und des Testing im Umgang mit dem Applikationszustand. Um diese Ziele zu erreichen, werden die Zuständsübergänge übersichtlicher an einem zentralen Ort definiert und Laufzeitfehler bei Verstößen geworfen. Die Definition der Zuständsübergänge ist inspiriert von der Übergangsfunktion eines DFAs. Das liegt an der intuitiven Natur der DFAs und der starken Übereinstimmung im Aufbau mit dem Zustand eines Web Frontends.

Die drei zentralen Fragen, mit denen sich diese Arbeit beschäftigt sind:

- 1. Können Bugs, die Aufgrund eines falschen Zustandes entstehen, mit Hilfe von Strict Transitions reduziert werden?
- 2. Steigt oder sinkt die DX durch die Einführung von Strict Transitions?
- 3. Steigt oder sinkt die Lesbarkeit und Wartbarkeit des Codes durch die Einführung von Strict Transitions?

7.1.1 Reduzierung von Fehlern

Damit Fehler im Zustand auf ein Minimum reduziert werden, ist die Definition der zulässigen Zustandsübergänge (Transition Map) erforderlich. Folgend können, keine unerlaubten, also undefinierten Zuständsübergänge stattfinden. Allerdings ist der ST Ansatz ungeschützt vor fehlerhaften oder unvollständigen Definitionen. Eine Applikation mit einer Transition Map, die die gültigen Geschäfsprozesse und Nutzerinteraktionen nicht widerspiegelt, ist anfällig für Bugs, die im Zusammenhang mit dem State stehen. Diesem Faktor kann die leichte Testbarkeit der Transition Maps entgegenwirken. Trotz der erhöhten Übersichtlichkeit aufgrund der Aufbau der Transition Maps, sind Fehler nach wie vor möglich, auch wenn potenziell im geringeren Umfang. Aus diesem Grund kann keine definitive Antwort auf diese Frage mit Methoden dieser Arbeit geliefert werden. Eine zutreffendere Antwort sollte auf den Einsatz des ST in realen Applikationen und umfangreiches Testen basieren.

7.1.2 Developer Experience

Im ersten Blick kann von einer Verschlechterung der DX ausgegangen werden. Der Grund hierfür ist die zusätzliche Aufgabe der Definition der Transition Map. Diese zusätzliche Aufwand kann jedoch potenziell zukünftige Bugs verhindern und somit die Gesamtaufwand für Bugfixes reduzieren. Jedoch kann auch bei diesem Punkt keine definitive Schlussfolgerung mit den Methoden dieser Arbeit gezogen werden.

7.1.3 Lesbarkeit und Wartbarkeit

Die Lesbarkeit und Wartbarkeit der gesamten Applikation bleibt unverändert. Die Lesbarkeit und Wartbarkeit der Transition Map ist hoch, da es sich hierbei um ein einfachtestbares POJO handelt. Jeder dazukommende State muss in der Transition Map ergänzt werden, und genauso muss jeder entfernte State aus der Transition Map gelöscht werden.

7.2 Ausblick

Um die ersten beiden Forschungsfragen endgültig zu beantworten, sollte es eine weitreichendere Analyse und Umfragen stattfinden.

Die DX kann durch Linting Rules, z.B. für ESLint gesteigert werden. So könnte beispielsweise darauf überprüft werden, dass jede definitierte Action in mindestens einer Transition Map referenziert wird. Außerdem könnte mit Hilfe eines Language Servers darauf überprüft werden, dass jeder State mindestens einer Identitätsfunktion zugeordnet werden kann. Ein visueller Editor für die Transition Map, könnte die Nachvollziehbarkei zusätzlich erhöhen und wenn es um die Geschäftsprozesse geht, als eine Diskutionshilfe zwischen den Entwicklern und Product-Managern / Product-Ownern dienen.

Im Rahmen dieser Arbeit wurden drei Implementierungen für die Libraries Redux, NgRx und Pinia entwickelt. Diese Auswahl könnte um Libries wie Zustand und Redux Toolkit erweitert werden.

Literaturverzeichnis

- [1] DANIEL AN, Google: Find out how you stack up to new industry benchmarks for mobile page speed. (2018). URL https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
- [2] MDN, Joshua Chen (Josh-Cena): Array.isArray(). 2023. URL https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/isArray. official documentation
- [3] MDN, Joshua Chen (Josh-Cena): in. 2024. URL https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/in. official documentation
- [4] MDN, Joshua Chen (Josh-Cena): instanceof. 2024. URL https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof. official documentation
- [5] MDN, Joshua Chen (Josh-Cena): Spread syntax (...). 2024. URL https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax. official documentation
- [6] NGRX, Brandon Roberts (.: Getting Started. 2024. URL https://ngrx.io/guide/store. official documentation
- [7] ORIGINS, OfferZen: TypeScript Origins: The Documentary. 2023. URL https://youtu.be/U6s2pdxebSo?si=BKrgCSGIzmSf4GeB. Documentary with creators of TypeScript at Microsoft
- [8] Pinia, Eduardo San Martin Morote (.: *Defining a Store*. 2024. URL https://pinia.vuejs.org/core-concepts/. official documentation

- [9] REDUX, Eng Zer Jun (.: A (Brief) History of Redux. 2023. URL https://redux.js.org/understanding/history-and-design/history-of-redux. official documentation
- [10] REDUX, Mark Erikson (.: Redux Fundamentals, Part 3: State, Actions, and Reducers. 2024. URL https://redux.js.org/tutorials/fundamentals/part-3 state-actions-reducers. official documentation
- [11] XSTATE, David Khourshid (.: XState. 2024. URL https://stately.ai/docs/xstate. official documentation

A Anhang

A.1 Gerätspezifikation und Versionen der verwendeten Technologien

Tabelle A.1: Gerätspezifikation und Versionen der verwendeten Technologien

Gerät	Apple Macbook Pro 2023 mit M3 CPU und 24GB Speicher		
Betriebssystem	MacOS 15.3		
Docker	27.4.1		
OrbStack	1.9.5		
Nginx	1.27.3		
Chrome Canary	134.0.6994.0		
Playwright	1.50.0		
Node	20.17.0		
Vite	6.0.5		
React	18.3.1		
Redux	5.0.1		
React Redux	9.2.0		
Vue	3.5.13		
Pinia	2.3.1		

A.2 Beispiele für Implementierung des ST-Ansatzes

Im Rahmen dieser Arbeit resultierten zwei Implementierung des ST-Ansatzes. Eine für Redux und andere für Pinia. Diese sind im öffentlichen Repository auf Github unter https://github.com/s0h311/strict-transitions zu finden.

A.3 Im Vergleich genutzte Projekte

Die, im Vergleich genutzten React und Vue Projekte sind im öffentlichen Repository auf Github unter https://github.com/s0h311/strict-transitions-benchmark zu finden.

A.4 Verwendete Hilfsmittel

In der Tabelle A.2 sind die im Rahmen der Bearbeitung des Themas der Bachelorarbeit verwendeten Werkzeuge und Hilfsmittel aufgelistet.

Tabelle A.2: Verwendete Hilfsmittel und Werkzeuge

Tool	Verwendung
IAT _E X	Textsatz- und Layout-Werkzeug verwendet zur Erstellung dieses Dokuments

Erklärung zur selbständigen Bearbeitung

Ort	Datum	Unterschrift im C)riginal	
gemacht.				
nach aus anderen v	CIRCII CHUHOHIIIICHC	brenen sind unter Ang	abe dei Quenei	i Kellilolleli
nach aus anderen W	Verken entnommene	Stellen sind unter Ang	ahe der Quellei	n kenntlich
verfasst und nur di	ie angegebenen Hil	fsmittel benutzt habe.	Wörtlich oder	dem Sinn
Hiermit versichere	ich, dass ich die ve	orliegende Arbeit ohne	fremde Hilfe s	selbständig