Claims

1. Receiver antenna system (1) of broad bandwidth consisting of several active, vertical individual antennae $(2_1, 2_2, ..., 2_N)$ with an electrically-active antenna height adapted to the respective received frequency range,

characterized in that

the mutual electromagnetic coupling between the individual antennae $(2_1, 2_2, ..., 2_N)$, which are positioned at a small spacing distance, is minimized.

 Receiver antenna system according to claim 1, characterized in that

the mutual coupling between the individual antennae $(2_1, 2_2, ..., 2_N)$ is minimised by optimization of the individual mechanical and electrically-active antenna heights, the individual antenna diameters, the spacing distances between individual antennae and the input impedances of the active base-point electronics $(7_1, 7_2, ..., 7_N)$ associated with the individual active antennae $(2_1, 2_2, ..., 2_N)$.

 Receiver antenna system according to claim 2, characterized in that

the respective electrically-active antenna height is optimized by an optimized arrangement of several impedance elements $(Z_{\mu,\nu})$ in the respective individual antennae $(2_1, 2_2, \ldots, 2_N)$ and their optimized interconnection.

 Receiver antenna system according to claim 3, characterized in that the optimized arrangement of the impedance elements $(Z_{\mu,\nu})$ relative to one another takes place both within one individual antenna $(2_1, 2_2, ..., 2_N)$ and also between the individual antennae $(2_1, 2_2, ..., 2_N)$.

Receiver antenna system according to claim 4,
characterized in that

the printed-conductor portions $(l_{\mu,\nu})$ between the intermittent impedance elements $(Z_{\mu,\nu})$ of each individual antenna $(2_1, 2_2, ..., 2_N)$ are of a shorter length with increasing distance from the base point $(5_1, 5_2, ..., 5_N)$.

6. Receiver antenna system according to any one of claims 3 to 5, characterized in that

the interconnection of the impedance elements $(Z_{\mu,\nu})$ provides a low impedance in the case of low received frequencies, and provides a high impedance in the case of high received frequencies.

7. Receiver antenna system according to claim 6, characterized in that

the interconnection of the impedance elements $(Z_{\mu,\nu})$ consists of a parallel circuit comprising an inductance $(L_{\mu,\nu})$ and an ohmic resistor $(R_{\mu,\nu})$ or annular or tubular ferrite cores fitted onto the printed conductor portions.

8. Receiver antenna system according to any one of claims 2 to 7, characterized in that

the input impedance $(10_1, 10_2, ..., 10_N)$ of the active base-point electronics $(7_1, 7_2, ..., 7_N)$ provides a high-resistance input impedance in those of the individual antennae $(2_1, 2_2, ..., 2_N)$, which are determined for the reception of low-frequency transmission signals.

Receiver antenna system according to claim 8,
characterized in that

the input impedance $(10_1, 10_2, ..., 10_N)$ of the active base-point electronics $(7_1, 7_2, ..., 7_N)$ consists of a parallel circuit comprising a high-resistance resistor $(R_{E1}, R_{E2}, ...)$ and a low-capacity capacitor $(C_{E1}, C_{E2}, ...)$ in those of the individual antennae $(2_1, 2_2, ..., 2_N)$, which are determined for the reception of low-frequency transmission signals.

10. Receiver antenna system according to any one of claims 2 to 9, characterized in that

the input impedance $(10_1, 10_2, ..., 10_N)$ of the active base-point electronics $(7_1, 7_2, ..., 7_N)$ in those of the individual antennae $(2_1, 2_2, ..., 2_N)$, which are determined for the reception of relatively high-frequency transmission signals, is designed to be of low-resistance for low-frequency transmission signals and to be at the base-point impedance of the passive antenna region $(6_1, 6_2, ..., 6_N)$ of the respective individual antenna $(2_1, 2_2, ..., 2_N)$ for relatively high-frequency transmission signals.

Receiver antenna system according to claim 10,
characterized in that

the input impedance $(10_1, 10_2, ..., 10_N)$ of the active base-point electronics $(7_1, 7_2, ..., 7_N)$ in those of the individual antennae $(2_1, 2_2, ..., 2_N)$, which are determined for the reception of relatively high-frequency transmission signals, consists of a parallel circuit comprising a resistor $(..., R_{En-1}, R_{En})$ and an inductance $(..., L_{En-1}, L_{En})$.

12. Receiver antenna system according to any one of claims 8 to 12, characterized in that

the input impedance $(10_1, 10_2, ..., 10_N)$ of the active base-point electronics $(7_1, 7_2, ..., 7_N)$ is additionally mismatched in a targeted manner preferably outside the useful frequency range to the base-point impedance of the passive antenna region $(6_1, 6_2, ..., 6_N)$ of the respective individual antenna $(2_1, 2_2, ..., 2_N)$.

13. Receiver antenna system according to any one of claims 2 to 12, characterized in that the received frequency ranges of the individual antennae (2₁, 2₂,..., 2_N) adjoin one another and form a complete received frequency range.

Receiver antenna system according to claim 13,
characterized in that

phase matching networks $(8_1, 8_2,..., 8_N)$ for phase matching of the received transmission signals and a crossover network (9) for combining the individual received transmission signals are connected to the passive antenna regions $(6_1, 6_2,..., 6_N)$ for the reception of transmission signals and to the base-point

electronics $(7_1, 7_2, ..., 7_N)$ for the amplification and filtering of the received transmission signals.