Normalization of DBMS

What is a Normalization?

- Normalization is the process of minimizing redundancy from a relation or set of relations. Redundancy in relation may cause insertion, deletion, and update anomalies. So, it helps to minimize the redundancy in relations. Normal forms are used to eliminate or reduce redundancy in database tables.
- In database management systems (DBMS), normal forms are a series of guidelines that help to ensure that the design of a database is efficient, organized, and free from data anomalies. There are several levels of normalization, each with its own set of guidelines, known as normal forms.

First Normal Form (1NF):

First Normal Form (1NF): This is the most basic level of normalization. In 1NF, each table cell should contain only a single value, and each column should have a unique name. The first normal form helps to eliminate duplicate data and simplify queries.

First normal form (1NF)

Example: Suppose a company wants to store the names and contact details of its employees. It creates a table that looks like this:

emp_id	emp_name	emp_address	emp_mobile
101	Herschel	New Delhi	8912312390
			8812121212
102	Jon	Kanpur	9900012222
103	Ron	Chennai	7778881212
			9990000123
104	Lester	Bangalore	8123450987

emp_id	emp_name	emp_address	emp_mobile
101	Herschel	New Delhi	8912312390
102	Jon	Kanpur	8812121212
102	Jon	Kanpur	9900012222
103	Ron	Chennai	7778881212
104	Lester	Bangalore	9990000123
104	Lester	Bangalore	8123450987

Second Normal Form (2NF):

Second Normal Form (2NF): 2NF eliminates redundant data by requiring that each non-key attribute be dependent on the primary key. This means that each column should be directly related to the primary key, and not to other columns.

Second normal form (2NF)

			teacher_details table:	I
teacher_id	subject	teacher_age	teacher_id	teacher_age
111	Maths	38	111	38
	3	0	222	38
111	Physics	38	333	40
222	Biology	38	teacher_subject table:	
333	Physics	40		
333	Chemistry	40	teacher_id	subject
			111	Maths
			111	Physics
			222	Biology
			333	Physics
			333	Chemistry

Third Normal Form (3NF):

by requiring that all non-key attributes are independent of each other. This means that each column should be directly related to the primary key, and not to any other columns in the same table.

Third Normal form (3NF)

Example: Suppose a company wants to store the complete address of each employee, they create a table named employee_details that looks like this:

emp_name	emp_zip	emp_state	emp_city	emp_district
John	282005	UP	Agra	Dayal Bagh
Ajeet	222008	TN	Chennai	M-City
Lora	282007	TN	Chennai	Urrapakkam
Lilly	292008	UK	Pauri	Bhagwan
Steve	222999	MP	Gwalior	Ratan
	John Ajeet Lora Lilly	John 282005 Ajeet 222008 Lora 282007 Lilly 292008	John 282005 UP Ajeet 222008 TN Lora 282007 TN Lilly 292008 UK	John 282005 UP Agra Ajeet 222008 TN Chennai Lora 282007 TN Chennai Lilly 292008 UK Pauri

employee table:		
emp_id	emp_name	emp_zip
1001	John	282005
1002	Ajeet	222008
1006	Lora	282007
1101	Lilly	292008
1201	Steve	222999

emp_zip	emp_state	emp_city	emp_district
282005	UP	Agra	Dayal Bagh
222008	TN	Chennai	M-City
282007	TN	Chennai	Urrapakkam
292008	UK	Pauri	Bhagwan
222999	MP	Gwalior	Ratan

Boyce-Codd Normal Form (BCNF):

Boyce-Codd Normal Form (BCNF): BCNF is a stricter form of 3NF that ensures that each determinant in a table is a candidate key. In other words, BCNF ensures that each non-key attribute is dependent only on the candidate key.

Boyce Codd normal form (BCNF)

Example: Suppose there is a company wherein employees work in **more than one department**. They store the data like this:

emp_id	emp_nationality	emp_dept	dept_type	dept_no_of_emp
1001	Austrian	Production and planning	D001	200
1001	Austrian	stores	D001	250
1002	American	design and technical support	D134	100
1002	American	Purchasing department	D134	600

emp_nationality table: emp_id emp_nationality 1001 Austrian 1002 American

emp_dept table:

emp_dept	dept_type	dept_no_of_emp
Production and planning	D001	200
stores	D001	250
design and technical support	D134	100
Purchasing department	D134	600

emp_dept_mapping table:

emp_id	emp_dept
1001	Production and planning
1001	stores
1002	design and technical support
1002	Purchasing department
	- 5