EE 315 HW#1 Solutions A+3V (20mA) + Vio 5 10052 0.21 peak (+) peak = (20mA) P = 48.4 m W $P_0 = \sqrt{D^2}$ $\sqrt{3^2} = 100(48.4 \times 10^{-3})$ Vo = 2.2 V io = 100 - 22.0mA

a)
$$Av = \frac{v_0}{v_i} = \frac{2.2}{0.2} = 11 \frac{v}{v}$$
 or $20.83dB$

$$Ai = \frac{10}{100} = \frac{22\times10^{-3}}{1\times10^{-3}} = 22A$$

U 26.85 aB

$$n = 20.1770$$

DC input at output
$$K = 200^{\circ}N$$
 supplies eupping at dipping

 $+ 2V + 8.5mV$
 $V_0 = \pm 1.7V$
 $V_0 = \pm 1.7V$

So: for
$$\pm 2V$$
, $-1.7V \leq v_0 \leq 1.7V$
 $\pm 5V$, $-4.3V \leq v_0 \leq 4.3V$
 $\pm 10V$, $-8.5V \leq v_0 \leq 8.5V$

$$R_{S} = 200 \text{ kg}$$
 $R_{i} = 1 \text{ mg}$ $R_{L} = 150 \text{ g}$
 $N_{S} = 2 \text{ V peak}$ $R_{0} = 40 \text{ g}$ $A_{V_{0}} = 1 \text{ V/V}$

$$V_0 = \frac{R_L}{R_L + R_0} (A_{vo}v_i)$$

$$R_L + R_0$$

$$V_i = \frac{R_i}{R_i + R_s}$$

$$Ap = \frac{Po}{Ps} = \frac{V_0 i_0}{V_s i_s} = \frac{(1.315)(8.77 \times 10^{-3})}{(2)(1.67 \times 10^{-6})}$$

$$Ap = 3.45 \times 10^{3} \frac{W}{W}$$

$$91 35.38 dB$$

$$I would also except:$$

$$Ap = \frac{Po}{Ii} = \frac{V_0 i_0}{(Ri)} = \frac{(1.315)(8.77 \times 10^{-3})}{(1.67 \times 10^{-6})^2(1 \times 10^{-6})}$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

$$Ap = 4.14 \times 10^{3} \frac{W}{W} \text{ or } 36.16 dB$$

Ai =
$$\frac{io}{ii} = \frac{4.63 \times 10^{-3}}{9.09 \times 10^{-8}}$$

= 5.09×10^{4} A/A

Ap = $\frac{Po}{Ps} = \frac{v_{0}i_{0}}{v_{0}i_{0}} = 1.18 \times 10^{6}$ W

NOW, let's switch the order:

i looks 202 10 ks

The switch the order:

Amplifier 2 1000 \(\frac{10 \text{ Now is 3}}{100 \text{ Now is 3}} \)

Amplifier 2 Amplifier 1

\[
\frac{\text{To}}{V_{0}} = \frac{50}{50 + 10 \text{ Now is 3}} \)

= $(0.005)(100)(0.998)(2)(0.5)$

It depends, I could make an argument for both.

Ampl, Ampl: good Ar but very high Pi & Apcan the load handle it?

Amp2, Amp1: Av is small - maybe too small depending on the application but Ai + Ap are pretty geod.

my point here is that there is no "right" answer - it depends on the application and what is needed at the load.

And - don't simply pick a stage based on one factor. Based on sectures, you might have been tempted to just go w/ the high Ri as Amp stage 1 and low Ro as Amp stage 2,

that design plan is never a good ene! Set used to this! We are not in EE 213 land anymore!