Investigating Language Universal and Specific Properties in Word Embeddings

Authors: Peng Qian, Xipeng Liu & Xuanjing Huang Speaker: Yupei Du

Outline

- Embedding Models
- Motivations
- Experiment Design
- Results
- Further Analysis

Embedding Models

- Word Embedding: represent words in vectors
- C&W Model: keep the context words and their word order information(CW)
- Skip-gram Model: keep the context words information but ignore the word order information(SG)
- Character-Based Model: keep word form information(AE)

C&W Model

- Compute score of sequence $f(w_{t-m}...w_{t}...w_{t+m})$
- Substitute the center word w_t with different words w_i
- Max the difference between scores
- Loss function: $J(\theta) = \sum_{x \in X} \sum_{w \in V} max\{0, 1 f_{\theta}(x) + f_{\theta}(x^{(w)})\}$

Skip-gram Model

Predict context words given target(position independent)

Skip-gram Model

• Objective function: $J^{'}(\theta) = \prod_{t=1}^{T} \prod_{-m \leq j \leq m}^{j \neq 0} p(w_{t+j}|w_t;\theta)$

• Which equals to: $J(\theta) = \sum_{t=1}^T \sum_{-m \leq j \leq m}^{j \neq 0} log(p(w_{t+j}|w_t;\theta))$

• Compute probability: $p(o|c) = \frac{e^{u_0^{\dagger} v_c}}{\sum\limits_{w=1}^{v} e^{u_w^T v_c}}$

Character-based Models

- Character-based LSTM autoencoder: Takes the character sequence of word as input and reconstruct the input sequence
- Take the hidden layer as word embeddings
- Take the advantage of pure word form instead of the context

Outline

- Embedding Models
- Motivations
- Experiment Design
- Results
- Further Analysis

Motivations

- whether embedding models are immune to the diversity of languages
- Former work: empirically interpreting word embedding and exploring the intrinsic and extrinsic factors in learning process
- Understanding model behaviors towards language typological diversity and the utility of context and form for different languages

Topics

- How do typological differences of language structure influence a word embedding model?
- Is word form a more efficient predictor of a certain grammatical function than word context for specific languages?
- How do the neurons of a model respond to linguistic features?

Outline

- Embedding Models
- Motivations
- Experiment Design
- Results
- Further Analysis

Experiments Design

- Hypothesis: If word embedding implicitly encode sufficient information, there exist a linear/non-linear map between a word representation x and a high-level sparse feature vector y
- Example: dětem(Czech)

Experiments Design

 4 series of experiments to compare different models on different languages

ID	Category	Attribute			
1	Syntax	Part-of-Speech			
2	Syntax	Dependency Relation			
3	Morphology	Gender/Number/Case/Animacy/Definite/Person/Tense/ Aspect/Mood/Voice/Pronoun Type/verb form			
4	Semantics	Sentiment Score			

Experiments Design

Maps:

Linear: least L2 error

Non-Linear: 4 hidden layers MLP(50*80*80*50)

- Syntactic & Morphological Normalized label frequency distribution of linguistic attribute a for the word w
- Sentiment feature manual collected data transformed to [0,1]

Source

- Universal Dependencies (Version 1.2) and Chinese Treebank (CTB 7.0) for Syntax and Morphology tasks
- Manually annotated data collected by Dodds et al. (2015) native speakers' rates on feelings towards 10000 frequent words

Evaluation

- Emotion Score:
 - Regress the representation to emotion score.
 - Spearman correlations
- Other experiments:
 - predicted tag equals & most probable correct one

$$acc = \frac{1}{|W|} \sum_{i}^{|W|} \Delta(\hat{y}_{W_i}^a, y_{W_i}^a)$$
 (1)

$$\Delta(\hat{y}_{W_i}^a, y_{W_i}^a) = \begin{cases} 1 & \hat{y}_{W_i}^a = y_{W_i}^a \\ 0 & \text{otherwise} \end{cases}$$
 (2)

Outline

- Embedding Models
- Motivations
- Experiment Design
- Results
- Further Analysis

Part-of-Speech

- Context-based embeddings performs better (CW > SG)
- AE performs good on languages employ affix makers to indicate POS category(Russian, Czech and Indonesian)
- CW perform similar on languages of same type of word orders

Dependency Relation

- Overall performance is worser than POS
- CW achieve best performance

Morphological Features

- Split into 2 kinds, 5 nominal features (gender, number, case, animacy, definiteness) and 7 verbal features (person, tense, aspect, voice, pronoun type, verb form)
- All 3 models give perfect performance on verbal features

Gender

- Partially based on semantics and agreements between noun and determiners but also expressed via declension and umlaut
- Romance language employ regular rules to judge, Slavic language have nonlinear feature hard to tackle

Number

- Linguistic abstraction of objects' quantities
- Inflectional feature of parts of speech
- All 3 perform well, AE perform as good as CW and SG on English, Spanish and Portuguese

Case

	Language	V	C&W	SG	AE	# Case
Analy.	Danish	372	0.947	0.946	1.000	3
nal	Swedish	5893	0.995	0.990	0.981	2
Aı	Bulgarian	104	0.636	0.546	0.818	4
It.	Finnish	21094	0.868	0.871	0.908	15
slu	Hungarian	4536	0.852		0.901	22
Agglut.	Tamil	1144	0.896	_	0.835	7
$lack {f A}$	Basque	8020	0.761	_	0.857	15
	Hindi	10682	0.712	0.704	0.646	7
	Czech	38666	0.788	0.776	0.663	7
113	Polish	13715	0.828	0.785	0.636	7
Fusional	Slovenian	15150	0.796	0.768	0.617	6
Ju.	Croatian	9945	0.807	0.789	0.628	7
1	Greek	5790	0.841	0.851	0.774	5
	Latin	4773	0.674	_	0.636	7

Case

- Relational morpheme explicitly reflects semantic role of noun with inflection
- Swedish have only 2 cases: nominal and genitive
- in AE, fusional languages perform worse than agglutinative languages
- Case system is simplified in analytic languages
- Cases are special semantic relations around target

Animacy

Determine animate objects from inanimate ones.

Lexical semantic feature

Emotion Score

 Emotions usually come from the context and can hardly get from the word form

Outline

- Embedding Models
- Motivations
- Experiment Design
- Results
- Further Analysis

Typology vs. Phylogeny

 Cluster languages with model performance variation

(a) Hierarchical tree based on model performances

(b) WALS Genus Tree

- Word order is vital to syntactic information but kind of noise to semantic information
- Word form could be cue to decode morphological features

- Autoencoder on shuffled character-based word representation
- Word form is necessary for learning grammatical function

POS tag

Lan	Raw	Shuffled
Russian	0.906	0.671
Slovenian	0.800	0.653

- Many languages share similar phonographic writing system
- Finnish-English / Arabic-Persian(Urdu)

Source Language	Arabic		Finnish		
Target Language	fa	ud	en	shuf en	rand
Bigram type overlap.	0.176	0.761	0.891	0.864	0.648
Bigram token overlap.	0.689	0.881	0.999	0.993	0.650
Trigram type overlap.	0.523	0.522	0.665	0.449	0.078
Trigram token overlap.	0.526	0.585	0.978	0.796	0.078
Reconstruction Acc.	0.586	0.689	0.95	0.83	0.22

- Phonological structures in writing system
- Character-based Model memorize the grapheme or phoneme clusters of words
- Models trained on Finnish increase accuracy of POS tag task.

Neuronal Activation Pattern

- Grandmother neuron
- Selectivity P

$$c_{f,t} = rac{N_{f,t}^+}{N_f}, c_{\lnot f,t} = rac{N_{\lnot f,t}^+}{N_{\lnot f}},$$

$$Selectivity = p_{f,t} = rac{2 imes c_{f,t} imes c_{\neg f,t}}{c_{f,t} + c_{\neg f,t}}$$

Neuronal Activation Pattern

- Character-based model capture more morphological information
- Word-based model capture both semantic and morphological information

Thank you!