COINTEGRATION

Date: MARCH 07, 2018

JEN-WEN LIN, PhD, CFA

REVIEW I(D) PROCESS

- In econometrics, a time series z_t is said to be an integrated process of order one, that is, an I(1) process, if $(1 B)z_t$ is stationary and invertible.
 - A stationary and invertible time series is said to be an I(0) process.
- In general, a univariate time series z_t is an I(d) process if $(1-B)^d z_t$ is stationary and invertible, where d>0 and order d is referred to as the order of integration or the multiplicity of a unit root.

MOTIVATION OF COINTEGRATION

- It is incorrect to analyze nonstationary time serie using standard statistical inference techniques.
- In this course, we have learned that the Box-Jenkins approach uses differencing to solve the problem.
- Cointegration is another technique to model nonstationary (multivariate) time series.
- What is the intuition behind cointegration?
 - 1. Balance of the (linear) regression equation
 - 2. If time series share the same source of the I(1)'ness, or time series move together in the long-run.

COINTEGRATION

- Consider a multivariate time series z_t . If $z_{it} \, \forall i$ are I(1) processes but a nontrivial linear combination $\beta' z_t$ is I(0), then z_t is said to be cointegrated of order one.
 - The linear combination vector $\boldsymbol{\beta}$ is called a cointegrating vector.
- In general, if z_{it} are I(d) nonstationary and $\beta' z_t$ is I(h) with h < d, then z_t is cointegrated. In practice, the case of d = 1 and h = 0 is of major interest.
- Thus, cointegration often means that a linear combination of individually unit-root nonstationary time series becomes a stationary and invertible series.

USEFUL RESULTS FOR THE LINEAR COMBINATION OF STOCHASTIC PROCESS

Linear combinations of I(0) and I(1) processes

1.
$$X_t \to I(0) \Rightarrow a + bX_t \to I(0)$$

 $X_t \to I(1) \Rightarrow a + bX_t \to I(1)$

2.
$$X_t, Y_t \rightarrow I(0) \Rightarrow aX_t + bY_t \rightarrow I(0)$$

3.
$$X_t \rightarrow I(0), Y_t \rightarrow I(1) \Rightarrow aX_t + bY_t \rightarrow I(1)$$

4.
$$X_t, Y_t \rightarrow I(1) \Rightarrow aX_t + bY_t \rightarrow I(1)$$
, in general

COMMON TRENDS

- The idea of Stock and Watson (1988) provides a very useful way to understand cointegration relationships.
 - Cointegrated variables sharing common stochastic trends
- A naive example: X_t and Y_t are I(1) processes and satisfy: $X_t \equiv \alpha(W_t) + \widetilde{X}_t$

$$Y_t \equiv W_t + \widetilde{Y}_t$$

 X_t and Y_t share the same nonstationary sources W_t --an ARIMA(p,1,q) process, or I(1) process Stationary ARMA(p,q) process, or I(0) process

COMMON TRENDS

- X_t and Y_t have a common I(1) trend, W_t .
- Consider a linear combination Z_t as follows:

$$Z_{t} \equiv X_{t} - \alpha \cdot Y_{t} = \alpha \cdot W_{t} + \widetilde{X}_{t} - \alpha \cdot \widetilde{Y}_{t} - \alpha \cdot \widetilde{Y}_{t}$$

$$Z_{t} \equiv \widetilde{X}_{t} - \alpha \cdot \widetilde{Y}_{t} \rightarrow I(0) \quad \text{(rule 2)}$$

If two I(1) process have a common I(1) trend (factor) and I(0) idiosyncratic components, then they are cointegrated.

In the case, we say that $(1,-\alpha)$ as the cointegrating vector.

MORE COMMON TRENDS

Example 1.
$$Y_t \equiv W_t + u_t \\ X_t \equiv W_t + v_t \\ W_t \rightarrow I(1) \quad u_t, v_t, s_t \rightarrow I(0) \\ Z_t \equiv W_t + s_t$$

1 common stochastic trend $\rightarrow W_t$

2 cointegrating vectors: (1 -1 0)' (0 1 -1)'

Example 2.
$$Y_t \equiv W_t + u_t$$

$$X_t \equiv W_t + R_t + v_t$$

$$Z_t \equiv R_t + s_t$$

$$W_t, R_t \rightarrow I(1) \quad u_t, v_t, s_t \rightarrow I(0)$$

2 common stochastic trends $\rightarrow W_t, R_t$

1 cointegrating vector: (1 -1 1)'

ERROR CORRECTION MODEL

- •Let $z_t = Y_t aX_t$ denote the deviation from the long-run equilibrium.
- •If the system is going to return to long-run equilibrium, the shortrun movements of the variables (at least some of them) must be respond to the magnitude of disequilibrium.
- •Hence, the path of a cointegrated system is influenced by the extend of deviation from the long-run equilibrium.

ERROR CORRECTION MODEL

Consider the example in <u>"Applied Econometric Time Series"</u>

$$\Delta r_{S,t} = a_{10} + \alpha_s (r_{L,t-1} - \beta \cdot r_{S,t-1}) + \sum_{i=0}^{\infty} a_{1i}(i) \Delta r_{S,t-i} + \sum_{i=0}^{\infty} a_{12}(i) \Delta r_{L,t-i} + \varepsilon_{S,t}$$

$$\Delta r_{L,t} = a_{20} - \alpha_L (r_{L,t-1} - \beta \cdot r_{S,t-1}) + \sum_{i=0}^{\infty} a_{2i}(i) \Delta r_{S,t-i} + \sum_{i=0}^{\infty} a_{2i}(i) \Delta r_{L,t-i} + \varepsilon_{L,t}$$

$$\alpha_s, \alpha_L > 0, \quad \varepsilon_{i,t} \sim WN(0, \sigma_i^2), \quad i = s, L$$

- This two variable error-correction model is a bivariate VAR in first differences augmented by the error-correction terms. Need to understand the following concepts
 - 1. Speed of adjustment parameters
 - 2. Granger representation theorem
 - 3. Co-integration coefficient restrictions in a VAR model

GRANGER REPRESENTATION THEOREM AND ECM

Granger Representation Theorem: If X_t and Y_t are cointegrated, then there exists an ECM representation. Cointegration is a necessary condition for ECM and vice versa.

- 1. Vector autoregressions on differenced I(1) processes will be a misspecification if the component series are cointegrated.
- 2. Engle and Granger (1987) showed that an equilibrium specification is missing from a VAR representation.
- 3. However, when lagged disequilibrium terms are included as explanatory variables, the model becomes well specified.
- 4. Such a model is called an error correction model (ECM) because the model is structured so that short-run deviation from the long-run equilibrium will be corrected.

THE PROCEDURE OF ENGLE AND GRANGER (1987)

- 1) Test wherer X_t and Y_t are I(1) using a unit root test.
- 2) If both series are I(1), regress one series against the other using least squares.
- 3) Run a unit root test on regression residuals. If residuals are stationary, these two series are cointegrated.
 - The regression line indicates the long-run equilibrium relationship between two variables. The disequilibrium term is simply the regression residuals.
- 4) Finally, we consider the following ECM

$$\Delta X_{t} = c_{1} + \rho_{1}(Y_{t-1} - \hat{\alpha}X_{t-1}) + \beta_{x1}\Delta X_{t-1} + \dots + \beta_{y1}\Delta Y_{t-1} + \dots + \varepsilon_{xt}$$

$$\Delta Y_{t} = c_{2} + \rho_{2}(Y_{t-1} - \hat{\alpha}X_{t-1}) + \gamma_{x1}\Delta X_{t-1} + \dots + \gamma_{y1}\Delta Y_{t-1} + \dots + \varepsilon_{yt}$$

WHY USE ENGLE-GRANGER METHOD

- It is very straightforward to implement and to interpret the Engle-Granger procedure.
- From the risk management point of view, the Engle-Granger criterion that minimizes variance is usually more important than the Johansen criterion that maximizes stationarity.
- Sometimes there is a natural choice of dependent variables in the cointegrating regressions, for example, in equity index tracking.

REMARKS

- What's the assumption implicitly imposed in this approach?
 - The Engle-Granger procedure is only applicable to systems with more than two variables in a very special circumstances.--Carol Alexander (2001)
- Question: Is there another way to test (model) cointegration?
 - The Johansen procedure (1988) seeks the linear combination which is most stationary whereas the Engle-Granger tests seek the linear combination having minimum variance.
 - The Johansen tests are a multivariate generalization of the unit root tests.
- The presence of change points will affect the effectiveness of cointegration analysis.

PAIRS TRADING BASED ON COINTEGRATION

- If two asset prices are cointegrated, the value of a wisely built portfolio (spread) between these 2 assets is stationary/ mean-reversion
- What should we do if something is mean-reverting?
 - Buy low and sell high (above its mean)
 - Pairs trading is executed when spread diverges too much from its mean
- Warning: Cointegration is the long-run relationship so the constructed spread may diverge substantially from these relationship in the short run

STOCK PRICE MOVEMENT IS HARD TO PREDICT

RANDOM WALK AND MAKET EFFICIENT

• What do we know about a random walk process?

$$X_t = X_{t-1} + a_t, \quad a_t \sim WN(0, \sigma^2)$$

- What's the best forecast of X_{t+1} at original t?
- The best forecast about tomorrow's price is today's price

Unpredictability

PAIRS TRADING IN STOCKS

- Construct a portfolio consisting of two stocks, S1 and S2
- The value of such a portfolio may be referred to as
- Spread= $S1 b \cdot S2$
- Avoid guessing trends and explore the market inefficiency in a statistical sense
- Different methods for constructing spreads are summarized in the supplement course note

MOVEMENTS OF SPREADS

MEAN REVERSION

TRADING THRESHOLD

WHAT IS A GOOD SPREAD

- It is is mean-reversion.
 - 1. There exists a constant mean
 - 2. A good spread is bounded.
 - Some people think that mean-reversion requires the second moments of the spread process to be a finite constant. (e.g. Carol Alexander, 2001)
- What does this sound like?

WEAK STATIONARITY

PAIRS TRADING

- Find pairs of stocks
- Determine the trading signal
- Determine how to size your position (as well as portfolio construction.
- Risk management and capital management (positon sizing)
- Take into account the transaction costs
- Backtest if your strategy works
- The better implementations and less assumptions used by your model, the more successful your trading strategy.
- Warning: Even though you carry out perfect analysis, you could lose money using statistical arbitrage.

