## Module-Test-4 (Physics)

## January 1, 2023

1. The velocity of a projectile at the initial point A is  $(2\hat{i}+3\hat{j})$  m s<sup>-1</sup>. Its velocity (in m s<sup>-1</sup>) at point B is



- a)  $-2\hat{i} 3\hat{j}$
- c)  $2\hat{i}-3\hat{j}$  Ans.

- b)  $-2\hat{i} + 3\hat{j}$
- d)  $2\hat{i} + 3\hat{j}$
- 2. A body is projected with an angle  $\theta$ . The maximum height reached is h. If the time of flight is 4s and  $g = 10\,\mathrm{m\,s^{-2}}$ , then value of h is



a) 40 m

b) 20 m *Ans*.

c) 5 m

- d) 10 m
- 3. The velocity vector of the motion described by the position vector of a particle  $\vec{r} = 2t \hat{i} + t^2 \hat{j}$  is given by
  - a)  $\vec{v} = 2\hat{i} + 2t\hat{j}$  Ans.

b)  $\vec{v} = 2t \hat{i} + 2t \hat{j}$ 

c)  $\vec{v} = t \hat{i} + t^2 \hat{j}$ 

- d)  $\vec{v} = 2\hat{i} + t^2\hat{j}$
- 4. What is the range of a projectile thrown with velocity 98 m s<sup>-1</sup> with angle 30° from horizontal?
  - a)  $490\sqrt{3}$  m Ans.

b)  $245\sqrt{3}\,\text{m}$ 

c)  $980\sqrt{3}$  m

- d) 100 m
- 5. Two bullets are fired horizontally and simultaneously towards each other from roof tops of two buildings 100 m apart and of same height of 200 m with the same velocity of  $25\,\mathrm{m\,s^{-1}}$ . When and where will the two bullets collides? (Take,  $g=10\,\mathrm{m\,s^{-2}}$ )
  - a) After 2s at a height of 180 m Ans.
- b) After 2s at a height of 180 m Ans.

c) After 4s at a height of 120 m

d) They will not collide

- 6. The quantity  $\int_{t_1}^{t_2} \vec{V} dt$  represents:
  - a) Distance travelled during  $t_1$  to  $t_2$
  - b) Displacement during  $t_1$  to  $t_2$  Ans.
  - c) Average acceleration during  $t_1$  to  $t_2$
  - d) None of these

- 7. An open lift is coming down from the top of a building at a constant speed v = 10m/s. A boy standing on the lift throws a stone vertically upwards at a speed of 30m/s w.r.t. himself. The time after which he will catch the stone is:
  - a) 4s

b) 6s Ans.

c) 8s

- d) 10s
- 8. A body is thrown up from a lift with velocity *u* relative to lift. If its time of flight with respect to lift is *t* then acceleration of the lift is:
  - a)  $\frac{(u-gt)}{t}$  upwards

b)  $\frac{(u-gt)}{t}$  downwards

c)  $\frac{(2u-gt)}{t}$  upwards Ans.

- d)  $\frac{(2u-gt)}{t}$  downwards
- 9. The motion of a body falling from rest in a resisting medium is described by the equation  $\frac{dv}{dt} = A Bv$ , where *A* and *B* are constants. Then:
  - a) maximum possible velocity is  $\frac{A}{B}m/s$  Ans.
  - b) initial acceleration is  $Am/s^2$  Ans.
  - c) velocity at any time t is  $v = \frac{A}{B}(1 e^{-Bt})$  Ans.
  - d) velocity at any time t is  $v = \frac{A}{B}(1 e^{-At})$
- 10. The acceleration of gravity can be measured by projecting a body upward and measuring the time that it takes to pass two given lines in both directions (upward motion and downward motion). If the time the body takes to pass a horizontal line A in both direction (from  $A_1$  to  $A_2$ ) is  $T_A$ , and the time to go by a second line B in both directions is (from  $B_1$  to  $B_2$ )  $T_B$ , then assuming that the acceleration due to gravity to be constant, its value is:



a)  $\frac{8h}{T_A^2 - T_B^2}$  Ans.

b)  $\frac{8h}{T_1^2 + T_2^2}$ 

c)  $\frac{8h}{T_A^2 T_R^2}$ 

- d)  $\frac{8hT_AT_B}{T_A^2T_B^2}$
- 11. A particle is projected vertically upwards in absence of air resistance with a velocity u from a point O. When it returns to the point of projection:
  - a) its average velocity is zero Ans.
- b) its displacement is zero Ans.
- c) its average speed is u/2 Ans.
- d) its average speed is *u*
- 12. A smooth inclined plane is inclined at an angle  $\theta$  with the horizontal. A body starts from rest and slides down the inclined surface. The time taken by the body to reach the bottom is:



- a)  $\sqrt{\frac{2h}{g}}$
- c)  $\frac{1}{\sin \theta} \sqrt{\frac{2h}{g}}$  Ans.

- b)  $\sqrt{\frac{2l}{g}}$
- d)  $\sqrt{\frac{2l}{g\sin\theta}}$  An

- 13. A man can row a boat  $4 \,\mathrm{km} \,h^{-1}$  in still water. If he is crossing a river of width  $4 \,\mathrm{km}$  where the current is  $2 \,\mathrm{km} \,h^{-1}$ , and he wants to cross the river in shortest time. What would be the drift of the boat after reaching the other side of the river?
  - a) 2km Ans.

b) 4km

c) 6km

- d) 8km
- 14. A man wants to reach point B on the opposite bank of a river flowing at a speed *u* as shown in the figure. What minimum speed relative to water should the man have so that he can reach point B? In which direction should he swim?



a)  $v = \frac{u}{\sqrt{3}}$  at  $\theta = 45^{\circ}$ 

b)  $v = \frac{u}{\sqrt{5}}$  at  $\theta = 45^\circ$ 

c)  $v = \frac{u}{\sqrt{2}}$  at  $\theta = 45^{\circ}$  Ans.

- d) None of these
- 15. If a boat can have a speed of 4km/h in still water, for what values of speed of river flow, it can be managed to row the boat right across the river, without any drift?
  - a)  $\geq 4km/h$

b) > 0 but < 4km/h

c) Only 4km/h

- d) None of these Ans.
- 16. A river is flowing with the velocity of  $2\sqrt{3}m/s$ . A boat has to move from A to B. Find the minimum velocity of boat in still water.



a)  $3 \,\mathrm{m} \,\mathrm{s}^{-1}$  *Ans*.

b)  $4 \,\mathrm{m}\,\mathrm{s}^{-1}$ 

c)  $5 \,\mathrm{m \, s^{-1}}$ 

- d) None of these
- 17. A boat is moving with velocity of  $3\hat{i} + 4\hat{j}$  in river and water is moving with a velocity of  $-3\hat{i} 4\hat{j}$  with respect to ground. Relative velocity of boat with respect to water is
  - a)  $-6\hat{i} 8\hat{j}$

b)  $6\hat{i} + 8\hat{j}$  Ans.

c)  $8\hat{i}$ 

- d)  $6\hat{i}$
- 18. If *R* is the range of a projectile on a horizontal plane and *h* its maximum height, then maximum horizontal range with the same speed of projection is :
  - a) 2h

b)  $\frac{R^2}{8h}$ 

c)  $2R + \frac{h^2}{9R}$ 

- d)  $2h + \frac{R^2}{8h}$  Ans.
- 19. An object is thrown horizontally from a tower H meter high with a velocity of  $\sqrt{2gH}m/s$ . Its speed on striking the ground will be :
  - a)  $\sqrt{2gH}$

b)  $\sqrt{6gH}$ 

c)  $2\sqrt{gH}$  Ans.

d)  $2\sqrt{2gH}$ 

| a) 1:1                                                                                                                                                                                                                     | b) $\tan \theta : 1$ <i>Ans.</i>                                                                                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| c) $1: \tan \theta$                                                                                                                                                                                                        | d) $\tan^2 \theta : 1$                                                                                                  |  |
| 21. A particle is projected from a point $O$ with a velocity $u$ in a direction making an angle $\alpha$ upward with the horizontal. At $P$ it is moving at right angles to its initial direction. Its velocity at $P$ is: |                                                                                                                         |  |
| a) $u \tan \alpha$                                                                                                                                                                                                         | b) $u \cot \alpha$ Ans.                                                                                                 |  |
| <ul><li>c) uα</li></ul>                                                                                                                                                                                                    | d) $u \sec \alpha$                                                                                                      |  |
| 22. Suppose a player hits several baseballs. Which baseballs will be in the air for the longest time?                                                                                                                      |                                                                                                                         |  |
| a) The one with the farthest range.                                                                                                                                                                                        |                                                                                                                         |  |
| b) The one which reaches maximum height. <i>Ans.</i>                                                                                                                                                                       |                                                                                                                         |  |
| c) The one with the greatest initial velocity.                                                                                                                                                                             |                                                                                                                         |  |
| d) The one leaving the bat at 45° with respect to th                                                                                                                                                                       | e ground.                                                                                                               |  |
| 23. The velocity at the maximum height of a projectile is initial velocity is $u$ , its range on the horizontal plane in the projection $u$ .                                                                              |                                                                                                                         |  |
| a) $\frac{\sqrt{3}u^2}{2g}$ Ans.<br>c) $\frac{3u^2}{2g}$                                                                                                                                                                   | b) $\frac{u^2}{}$                                                                                                       |  |
| 2g                                                                                                                                                                                                                         | b) $\frac{u^2}{2g}$ d) $\frac{3u^2}{g}$                                                                                 |  |
| c) $\frac{3u^2}{2\pi}$                                                                                                                                                                                                     | d) $\frac{3u^2}{a}$                                                                                                     |  |
| 28                                                                                                                                                                                                                         | g                                                                                                                       |  |
| 24. A projectile is fired with a velocity <i>u</i> making an angle in velocity when it is at the highest point?                                                                                                            | heta with the horizontal. What is the magnitude of change                                                               |  |
| a) $u\cos\theta$                                                                                                                                                                                                           | b) <i>u</i>                                                                                                             |  |
| c) $u \sin \theta$ Ans.                                                                                                                                                                                                    | d) $u\cos\theta - u$                                                                                                    |  |
| 25. A point moves in a straight line, so that its displacement $x$ at time $t$ is given by $x^2 = t^2 + 1$ . Its acceleration is                                                                                           |                                                                                                                         |  |
| a) $\frac{1}{x}$ c) $-\frac{1}{x^2}$                                                                                                                                                                                       | b) $\frac{1}{x^3}$ Ans.                                                                                                 |  |
|                                                                                                                                                                                                                            | d) $-\frac{1}{x^3}$                                                                                                     |  |
| $c_1 - \frac{1}{x^2}$                                                                                                                                                                                                      | $\frac{dy}{x^3}$                                                                                                        |  |
| 26. A point initially at rest moves along X-axis. Its acceleration varies with time as $a = (6t + 5) \mathrm{ms^{-2}}$ . If it starts from origin, then the distance covered in 2s is                                      |                                                                                                                         |  |
| a) 20 m                                                                                                                                                                                                                    | b) 18 m Ans.                                                                                                            |  |
| c) 16 m                                                                                                                                                                                                                    | d) 25 m                                                                                                                 |  |
| 27. A particle moves along a straight line. Its position at a and $t$ is in second. Find the acceleration of the partic                                                                                                    | ny instant is given by $x = 32t - \frac{8t^3}{4}$ , where $x$ is in metre le at the instant when particle is at rest.   |  |
| a) $-16 \mathrm{m}\mathrm{s}^{-2}$                                                                                                                                                                                         | b) $-27.6 \mathrm{m}\mathrm{s}^{-2}$ Ans.                                                                               |  |
| c) $32 \mathrm{m}\mathrm{s}^{-2}$                                                                                                                                                                                          | d) $16 \mathrm{m}\mathrm{s}^{-2}$                                                                                       |  |
| 28. The displacement of a particle is given by $x = (t-2)^2$ , where $x$ is in metre and $t$ in second. The distance covered by the particle in first 4 seconds is                                                         |                                                                                                                         |  |
| a) 4 m                                                                                                                                                                                                                     | b) 8m Ans.                                                                                                              |  |
| c) 12 m                                                                                                                                                                                                                    | d) 16 m                                                                                                                 |  |
| 29. The position <i>x</i> of a particle with respect to time <i>t</i> alc and <i>t</i> in second. What will be the position of this parti                                                                                  | ong X-axis is given by $x = 9t^2 - t^3$ , where $x$ is in metres icle when it achieves maximum speed along the positive |  |

20. Two bullets are fired at angles  $\theta$  and  $90^{\circ} - \theta$ , the ratio of their time of flights is:

 $x\hbox{-}direction\,?$ 

| a) 24 m                                                             |                        | b) 32 m                                                       |                                                                          |
|---------------------------------------------------------------------|------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|
| c) 54 m <i>Ans</i> .                                                |                        | d) 81 m                                                       |                                                                          |
| 30. It is possible to project a pasame range <i>R</i> . The product |                        |                                                               | possible ways so as to have the                                          |
| a) $\frac{R}{g}$ c) $\frac{R}{2g}$                                  |                        | b) $\frac{2R}{g}$ Ans.                                        |                                                                          |
| c) $\frac{R}{2g}$                                                   |                        | d) None of these                                              |                                                                          |
|                                                                     |                        |                                                               | es time $t_1$ to reach a point B, but om point B. Then height of point   |
| a) $\frac{1}{2}g(t_1+t_2)^2$                                        |                        | b) $g t_1 t_2$                                                |                                                                          |
| c) $\frac{1}{8}g(t_1+t_2)^2$                                        |                        | d) $\frac{1}{2}gt_1t_2$ Ans.                                  |                                                                          |
|                                                                     | rojected from the floo | or of the lift with a speed of                                | $2m/s^2$ . At the instant when its $4m/s$ relative to the floor at an    |
| a) $\frac{1}{2}s$                                                   |                        | b) $\frac{1}{3}s$ Ans.                                        |                                                                          |
| c) $\frac{1}{4}s$                                                   |                        | d) 1s                                                         |                                                                          |
| 33. A body freely falling from t down for its velocity to bec       |                        | u after it falls through a heiş                               | ght $h$ . The distance it has to fall                                    |
| a) 2 <i>h</i>                                                       |                        | b) 4 <i>h</i> Ans.                                            |                                                                          |
| c) 6 <i>h</i>                                                       |                        | d) 8 <i>h</i>                                                 |                                                                          |
| 34. A ball is thrown vertically u of 4s. The ball was thrown        |                        | nd. It crosses a point at the h                               | eight of $25m$ twice at an interval                                      |
| a) $20m/s$                                                          |                        | b) $25m/s$                                                    |                                                                          |
| c) $30m/s$ Ans.                                                     |                        | d) $35m/s$                                                    |                                                                          |
|                                                                     |                        | eration of $4.9m/s^2$ releases a round reached by the ball is | ball 2s after the balloon is let go $(g = 9.8m/s^2)$                     |
| a) 14.7 <i>m</i> Ans.                                               |                        | b) 19.6 <i>m</i>                                              |                                                                          |
| c) 9.8 <i>m</i>                                                     |                        | d) 24.5 <i>m</i>                                              |                                                                          |
|                                                                     | Se                     | ction-B                                                       |                                                                          |
| 1. A particle is projected with distance 20 <i>m</i> from each of   |                        |                                                               | equal height $10m$ , which are at a                                      |
| (a) 2s Ans.                                                         | (b) $2\sqrt{10}s$      | (c) $10\sqrt{2}s$                                             | (d) 1/2s                                                                 |
|                                                                     |                        |                                                               | $0ms^{-1}$ and at a height of $500m$ . en it reaches the ground. Neglect |

3. A rescue plane is flying horizontally at a speed of 30m/s and at an altitude of 125m when it drops a warning flare. Neglecting air resistance and assuming that the plane doesn't change its course, speed, altitude, how far from the plane is the flare when it hits the ground?

(c) -45°

(d) 53°

(b)  $tan^{-1}(1/2)$ 

air resistance.

(a)  $\tan^{-1}(-2)$  *Ans*.

4. Two particles are simultaneously projected in opposite directions horizontally from a given point in space where gravity 'g'' is uniform. If  $u_1$  and  $u_2$  be their initial speeds then the time t after which their velocities are mutually perpendicular is given by:

(a)  $\frac{\sqrt{u_1 u_2}}{g}$  Ans. (b)  $\frac{\sqrt{u_1^2 u_2^2}}{g}$ 

 $(c) \frac{\sqrt{u_1(u_1+u_2)}}{g}$ 

(d)  $\frac{\sqrt{u_2(u_1+u_2)}}{\tilde{}}$ 

- 5. A ball is projected from a point at two different angles with same speed u and land at same point in both the cases:
  - (a) the difference between two angles of projection is 90°
  - (b) the maximum height attained by the ball in both the cases is equal
  - (c) the sum of maximum heights for the two cases is  $u^2/(2g)$  Ans.
  - (d) the maximum height attained by the ball in one case must be twice of the maximum height attained by the ball in second case
- 6. An arrow is shot into air. Its range is 200 m and its time of flight is 5 s. If  $g = 10 \,\mathrm{m \, s^{-2}}$ , then horizontal component of velocity and the maximum height will be respectively

a)  $20 \,\mathrm{m}\,\mathrm{s}^{-1}$ ,  $62.50 \,\mathrm{m}$ 

b)  $40 \,\mathrm{m \, s^{-1}}$ ,  $31.25 \,\mathrm{m}$  Ans.

c)  $80 \,\mathrm{m \, s^{-1}}$ ,  $62.5 \,\mathrm{m}$ 

d) None of these

7. A body is projected from the ground with a velocity  $\vec{v} = (3\hat{i} + 10\hat{j}) \,\mathrm{m\,s^{-1}}$ . The maximum height attained and the range of the body respectively are (Take,  $g = 10 \,\mathrm{m \, s^{-2}}$ )

a) 5 m and 6 m Ans.

b) 3 m and 10 m

c) 6m and 5m

d) 3 m and 5 m

8. A particle moves along a parabolic path  $y = -9x^2$  in such a way that the x-component of velocity remains constant and has a value  $\frac{1}{3}$  m s<sup>-1</sup>. The acceleration of the particle is

a)  $\frac{1}{3}$  m s<sup>-2</sup>

b)  $3 \,\mathrm{m}\,\mathrm{s}^{-2}$ 

c)  $\frac{2}{3}$  m s<sup>-2</sup>

d)  $2 \,\mathrm{m}\,\mathrm{s}^{-2}$  Ans.

9. A projectile can have same range from two angles of projection with same initial speed. If  $h_1$  and  $h_2$  be the maximum heights, then

a)  $R = \sqrt{h_1 h_2}$ 

b)  $R = \sqrt{2h_1h_2}$ 

c)  $R = 2\sqrt{h_1 h_2}$ 

- d)  $R = 4\sqrt{h_1 h_2}$  Ans.
- 10. A boy can throw a stone up to a maximum height of 10 m. The maximum horizontal distance that the boy can throw the same stone up to will be

a)  $20\sqrt{2}$  m

b) 10 m

c)  $10\sqrt{2} \, \text{m}$ 

d) 20 m Ans.

11. If the instantaneous velocity of a particle projected as shown in figure by  $\vec{v} = a\hat{i} + (b - ct)\hat{j}$ . Where a, b and c are positive constants, the range on the horizontal plane will be



12. A particle is projected from the ground at an angle  $\theta$  with the horizontal with an initial speed u. Time after which velocity vector of the projectile is perpendicular to the initial velocity.



- d)  $2u \tan \theta$
- $13. \ \ A \ particle \ is \ projected \ from \ horizontal \ making \ an \ angle \ of \ 53^{\circ} \ with \ initial \ velocity \ of \ 100 \ m \ s^{-1}. \ The \ time \ taken$ by the particle to make angle 45° from horizontal is
  - a) 14 s

b) 2s

c) Both (a) and (b) Ans.

- d) None of these
- 14. A large number of bullets are fired in all directions with same speed  $\nu$ . What is the maximum area on the ground on which these bullets will spread?

b)  $\frac{\pi v^4}{g^2}$  Ans. d)  $\frac{\pi^2 v^2}{g^2}$ 

- 15. A bomber plane moves horizontally with a speed of 500 m s<sup>-1</sup> and a bomb released from it, strikes the ground in 10 s. Angle at which it strikes the ground will be (Take,  $g = 10 \,\mathrm{m \, s^{-2}}$ )
  - a)  $tan^{-1}\left(\frac{1}{5}\right)$

b)  $\tan^{-1}\left(\frac{1}{2}\right)$ 

c)  $tan^{-1}(1)$ 

d)  $tan^{-1}(5)$