

Inclusion-Exclusion Oberseminar

Sebastian Berndt

- ► Endliche Menge *M*
- ▶ Prädikate $P_1, ..., P_n$ mit $P_i : M \rightarrow \{T, F\}$

- ► Endliche Menge M
- ▶ Prädikate $P_1, ..., P_n$ mit $P_i : M \rightarrow \{T, F\}$
- $X(I) = \{ m \in M \mid P_i(m) = F \ \forall i \in I \}$

- ► Endliche Menge M
- ▶ Prädikate $P_1, ..., P_n$ mit $P_i : M \rightarrow \{T, F\}$
- $X(I) = \{ m \in M \mid P_i(m) = F \ \forall i \in I \}$
- $\blacktriangleright M_T = \{m \in M \mid P_i(m) = T \ \forall i \in [n]\}$

- Endliche Menge M
- ▶ Prädikate $P_1, ..., P_n$ mit $P_i : M \rightarrow \{T, F\}$
- $X(I) = \{ m \in M \mid P_i(m) = F \ \forall i \in I \}$
- $\blacktriangleright M_T = \{m \in M \mid P_i(m) = T \ \forall i \in [n]\}$

Frage

Wie groß ist M_T ?

Satz

$$|M_T| = \sum_{I \subseteq [n]} (-1)^{|I|} |X(I)|$$

Satz

$$|M_T|=\sum_{I\subseteq [n]}(-1)^{|I|}|X(I)|$$

Anwendung

1. Bestimme M

Satz

$$|M_T| = \sum_{I \subseteq [n]} (-1)^{|I|} |X(I)|$$

Anwendung

- 1. Bestimme M
- 2. Bestimme |X(I)| für festes I

Satz

$$|M_T| = \sum_{I \subseteq [n]} (-1)^{|I|} |X(I)|$$

Anwendung

- 1. Bestimme M
- 2. Bestimme |X(I)| für festes I
- 3. Bestimme $|M_T|$

Satz

$$|M_T| = \sum_{I \subseteq [n]} (-1)^{|I|} |X(I)|$$

Anwendung

- 1. Bestimme M
- 2. Bestimme |X(I)| für festes I
- 3. Bestimme $|M_T|$
- 4. Laufzeit: $\mathcal{O}^*(2^n)$

Ein Beispiel: Hamiltonpfad

Problemstellung (Hamiltonpfad)

Gegeben Gerichteter Graph G = (V, E), $V = \{s, t, v_1, ..., v_n\}$

Gesucht Anzahl der s-t-Pfade, die jeden Knoten genau einmal enthalten

Ein Beispiel: Hamiltonpfad

Problemstellung (Hamiltonpfad)

Gegeben Gerichteter Graph G = (V, E), $V = \{s, t, v_1, ..., v_n\}$

Gesucht Anzahl der s-t-Pfade, die jeden Knoten genau einmal enthalten

Satz (Karp 1971)

Das Finden eines Hamiltonpfades ist \mathcal{NP} -schwer.

Ein Beispiel: Hamiltonpfad

Problemstellung (Hamiltonpfad)

Gegeben Gerichteter Graph
$$G = (V, E),$$

 $V = \{s, t, v_1, ..., v_n\}$

Gesucht Anzahl der s-t-Pfade, die jeden Knoten genau einmal enthalten

Satz (Karp 1971)

Das Finden eines Hamiltonpfades ist \mathcal{NP} -schwer.

Algorithmus

Ausprobieren aller Pfade: $\mathcal{O}^*(n!)$

▶ Definiere $M = \{\Pi_1, ..., \Pi_k\}$

- ▶ Definiere $M = \{\Pi_1, ..., \Pi_k\}$
- ightharpoonup Π_i ist s-t-Weg der Länge <math>n+1

- ▶ Definiere $M = \{\Pi_1, ..., \Pi_k\}$
- ightharpoonup Π_i ist s-t-Weg der Länge n+1
- $\blacktriangleright P_i(\Pi) = T \Leftrightarrow v_i \in \Pi$

- ▶ Definiere $M = \{\Pi_1, ..., \Pi_k\}$
- ightharpoonup Π_i ist s-t-Weg der Länge n+1
- $\blacktriangleright P_i(\Pi) = T \Leftrightarrow v_i \in \Pi$
- ▶ Π ist Hamiltonpfad $\Leftrightarrow \bigwedge_{j=1}^n P_j(\Pi) = T$

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller *s-t*-Wege der Länge n+1, die nicht über v_i gehen.

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller s-t-Wege der Länge n+1, die nicht über v_i gehen.

Satz

Sei A[G] Adjazenzmatrix zu G. Dann enthält $A[G]^k$ die Anzahl der Wege der Länge k+1 zwischen zwei Knoten.

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller s-t-Wege der Länge n+1, die nicht über v_i gehen.

Satz

Sei A[G] Adjazenzmatrix zu G. Dann enthält $A[G]^k$ die Anzahl der Wege der Länge k+1 zwischen zwei Knoten.

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller s-t-Wege der Länge n+1, die nicht über v_i gehen.

Satz

Sei A[G] Adjazenzmatrix zu G. Dann enthält $A[G]^k$ die Anzahl der Wege der Länge k+1 zwischen zwei Knoten.

Satz

$$|X(I)| = (A[G \setminus I]^{n+1})_{st}$$

Algorithmus

Satz (Kohn, Gottlieb, Kohn 1969)

Anzahl der Hamiltonpfade eines Graphen berechenbar in Zeit $\mathcal{O}^*(2^n)$

Ein Beispiel: Perfekte Matchings

Problemstellung

Perfekte Matchings

Gegeben Bipartiter Graph G = (V, E)Gesucht Anzahl perfekter Matchings von G

Ein Beispiel: Perfekte Matchings

Problemstellung

Perfekte Matchings

Gegeben Bipartiter Graph G = (V, E)Gesucht Anzahl perfekter Matchings von G

Erinnerung

Perfektes Matching deckt *alle* Knoten ab

Lösungsansatz

Stelle G als vereinfachte Adjazenzmatrix $A[G] = (a_{ij})$ dar.

Lösungsansatz

Stelle *G* als vereinfachte Adjazenzmatrix $A[G] = (a_{ij})$ dar.

Beobachtung

 $S = \{\{x_1, y_{\pi(1)}\}, \dots, \{x_n, y_{\pi(n)}\}\} \text{ ist perfektes Matching gdw.}$

$$\prod_{i=1}^n a_{i\pi(i)} = 1$$

Lösungsansatz

Stelle G als vereinfachte Adjazenzmatrix $A[G] = (a_{ij})$ dar.

Beobachtung

 $S = \{\{x_1, y_{\pi(1)}\}, \dots, \{x_n, y_{\pi(n)}\}\} \text{ ist perfektes Matching gdw.}$

$$\prod_{i=1}^{n} a_{i\pi(i)} = 1$$

Satz

Anzahl der perfekten Matchings ist:

$$\sum_{n \in S} \prod_{i=1}^{n} a_{i\pi(i)} =: \operatorname{perm}(A)$$

Laufzeit: $\mathcal{O}^*(n!)$

Schwierigkeiten

Satz (Valiant 1979) perm(A) zu bestimmen ist $\#\mathcal{P}$ -vollständig.

Schwierigkeiten

Satz (Valiant 1979)

 $\mathsf{perm}(A) \, \mathsf{zu} \, \mathsf{bestimmen} \, \mathsf{ist} \, \# \mathcal{P}\text{-}\mathsf{vollst\"{a}ndig}.$

Erinnerung

 $\#\mathcal{P}$ ist Menge aller Funktionen, die Läufe nichtdeterministischer TMs zählen.

▶ Definiere $M = \{S_1, ..., S_k\}$

- ▶ Definiere $M = \{S_1, ..., S_k\}$
- ▶ $S_i = \{e_1, ..., e_n\}$ mit $\{x_1, ..., x_n\} \subseteq \bigcup_{j=1}^n e_j$

- ▶ Definiere $M = \{S_1, ..., S_k\}$
- $\triangleright S_i = \{e_1, \ldots, e_n\} \text{ mit } \{x_1, \ldots, x_n\} \subseteq \bigcup_{j=1}^n e_j$
- ▶ $P_j(S) = T \Leftrightarrow y_j$ kommt in S vor

- ▶ Definiere $M = \{S_1, ..., S_k\}$
- $\blacktriangleright S_i = \{e_1, \ldots, e_n\} \text{ mit } \{x_1, \ldots, x_n\} \subseteq \bigcup_{j=1}^n e_j$
- ▶ $P_j(S) = T \Leftrightarrow y_j$ kommt in S vor
- S ist perfektes Matching $\Leftrightarrow \bigwedge_{j=1}^n P_j(S) = T$

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller S, so dass kein y_i in S auftaucht.

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller S, so dass kein y_i in S auftaucht.

Satz

$$|X(I)| = \prod_{i=1}^n \sum_{j \notin I} a_{ij}$$

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller S, so dass kein y_i in S auftaucht.

$$|X(I)| = \prod_{i=1}^n \sum_{j \notin I} a_{ij}$$

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller S, so dass kein y_i in S auftaucht.

$$|X(I)| = \prod_{i=1}^n \sum_{j \notin I} a_{ij}$$

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller S, so dass kein y_i in S auftaucht.

$$|X(I)| = \prod_{i=1}^n \sum_{j \notin I} a_{ij}$$

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller S, so dass kein y_i in S auftaucht.

$$|X(I)| = \prod_{i=1}^n \sum_{j \notin I} a_{ij}$$

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller S, so dass kein y_i in S auftaucht.

$$|X(I)| = \prod_{i=1}^n \sum_{j \notin I} a_{ij}$$

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller S, so dass kein y_i in S auftaucht.

$$|X(I)| = \prod_{i=1}^n \sum_{j \notin I} a_{ij}$$

Algorithmus

Satz (Ryser 1963)

$$\operatorname{perm}(A) = \sum_{I \subseteq [n]} (-1)^{|I|} \prod_{i=1}^{n} \sum_{j \notin I} a_{ij}$$

Algorithmus

Satz (Ryser 1963)

$$perm(A) = \sum_{l \subseteq [n]} (-1)^{|l|} \prod_{i=1}^{n} \sum_{j \notin l} a_{ij}$$

Laufzeit: $\mathcal{O}^*(2^n)$

Zusammenfassung

Noch ein Beispiel: Überdeckungen

Problemstellung

k-Überdeckungsproblem

Gegeben Universum
$$\mathcal{U} = \{u_1, ..., u_n\}$$
,
Familie $\mathcal{S} = \{S_1, ..., S_m\}$ mit
 $S_i \subseteq \mathcal{U}$
Gesucht $S_{i_1}, ..., S_{i_k}$ mit $\bigcup_{j=1}^k S_{i_j} = \mathcal{U}$

Noch ein Beispiel: Überdeckungen

Problemstellung

k-Überdeckungsproblem

Gegeben Universum
$$\mathcal{U} = \{u_1, ..., u_n\}$$
,
Familie $\mathcal{S} = \{S_1, ..., S_m\}$ mit
 $S_i \subseteq \mathcal{U}$
Gesucht $S_{i_1}, ..., S_{i_k}$ mit $\bigcup_{j=1}^k S_{i_j} = \mathcal{U}$

Satz (Karp 1971)

Das k-Überdeckungsproblem ist \mathcal{NP} -schwer für $k \geq 3$.

Graphen färben

Gegeben Graph G = (V, E)Gesucht Färbung von G mit $\chi(G)$ Farben

Graphen färben

Gegeben Graph G = (V, E)Gesucht Färbung von G mit $\chi(G)$ Farben

Satz Die Bestimmung von $\chi(G)$ ist \mathcal{NP} -schwer.

Graphen färben

Gegeben Graph G = (V, E)Gesucht Färbung von G mit $\chi(G)$ Farben

Satz Die Bestimmung von $\chi(G)$ ist \mathcal{NP} -schwer.

Und nun? Bestimme k-Überdeckung von (V, \mathcal{IS}) \mathcal{IS} ist Menge aller unabhängigen Mengen

Notation

• $c_k(\mathcal{U}, \mathcal{S}) = \#$ geordneter k-Überdeckungen von $(\mathcal{U}, \mathcal{S})$.

Notation

- ▶ $c_k(\mathcal{U}, \mathcal{S}) = \#$ geordneter k-Überdeckungen von $(\mathcal{U}, \mathcal{S})$.
- ▶ Für $I \subseteq [n]$ ist $\mathcal{U}[I] = \bigcup_{i \in I} \{u_i\}$

Notation

- ▶ $c_k(\mathcal{U}, \mathcal{S}) = \#$ geordneter k-Überdeckungen von $(\mathcal{U}, \mathcal{S})$.
- ▶ Für $I \subseteq [n]$ ist $\mathcal{U}[I] = \bigcup_{i \in I} \{u_i\}$

Notation

- ▶ $c_k(\mathcal{U}, \mathcal{S}) = \#$ geordneter k-Überdeckungen von $(\mathcal{U}, \mathcal{S})$.
- ▶ Für $I \subseteq [n]$ ist $\mathcal{U}[I] = \bigcup_{i \in I} \{u_i\}$

Beobachtung

k-Überdeckungen von $(\mathcal{U}, \mathcal{S})$ ist $\frac{c_k(\mathcal{U}, \mathcal{S})}{k!}$

▶ Definiere $M = \{O_1, ..., O_t\}$

- ▶ Definiere $M = \{O_1, ..., O_t\}$
- $ightharpoonup O_i \in \mathcal{S}^k$

- ▶ Definiere $M = \{O_1, ..., O_t\}$
- $ightharpoonup O_i \in \mathcal{S}^k$
- ▶ $P_j(O) = T \Leftrightarrow u_j \in \bigcup O$

- ▶ Definiere $M = \{O_1, ..., O_t\}$
- $ightharpoonup O_i \in \mathcal{S}^k$
- ▶ $P_j(O) = T \Leftrightarrow u_j \in \bigcup O$
- ▶ *O* ist *k*-Überdeckung $\Leftrightarrow \bigwedge_{j=1}^{n} P_{j}(O) = T$

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller O, so dass kein u_i in $\bigcup O$ auftaucht.

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller O, so dass kein u_i in $\bigcup O$ auftaucht.

Berechnung von |X(I)|

▶ $g_j(I) = \# \text{ von } S \in \mathcal{S} \text{ mit } S \subseteq \mathcal{U} \setminus \mathcal{U}[I] \text{ und } \mathcal{U}[j+1..n] \setminus \mathcal{U}[I] \subseteq S$

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller O, so dass kein u_i in $\bigcup O$ auftaucht.

Berechnung von |X(I)|

- ▶ $g_j(I) = \# \text{ von } S \in \mathcal{S} \text{ mit } S \subseteq \mathcal{U} \setminus \mathcal{U}[I] \text{ und } \mathcal{U}[j+1..n] \setminus \mathcal{U}[I] \subseteq S$
- ▶ $g_n(I) = \# \text{ von } S \in S \text{ mit } S \subseteq U \setminus U[I]$

Beobachtung

Für $I \subseteq [n]$ ist X(I) Menge aller O, so dass kein u_i in $\bigcup O$ auftaucht.

Berechnung von |X(I)|

- ▶ $g_i(I) = \# \text{ von } S \in S \text{ mit } S \subseteq \mathcal{U} \setminus \mathcal{U}[I] \text{ und } \mathcal{U}[j+1..n] \setminus \mathcal{U}[I] \subseteq S$
- ▶ $g_n(I) = \# \text{ von } S \in S \text{ mit } S \subseteq U \setminus U[I]$
- $|X(I)| = g_n(I)^k$

Dynamische Programmierung

▶ $g_0(I) \approx \operatorname{lst} \mathcal{U} \setminus \mathcal{U}[I] \in \mathcal{S}$?

Dynamische Programmierung

▶ $g_0(I) \approx \operatorname{Ist} \mathcal{U} \setminus \mathcal{U}[I] \in \mathcal{S}$?

$$g_{j+1}(I) = \begin{cases} g_j(I) & j \in I \\ g_j(I \cup \{j+1\}) + g_j(I) & \text{sonst} \end{cases}$$

Dynamische Programmierung

▶ $g_0(I) \approx \operatorname{Ist} \mathcal{U} \setminus \mathcal{U}[I] \in \mathcal{S}$?

$$g_{j+1}(I) = \begin{cases} g_j(I) & j \in I \\ g_j(I \cup \{j+1\}) + g_j(I) & \text{sonst} \end{cases}$$

Dynamische Programmierung

▶ $g_0(I) \approx \operatorname{Ist} \mathcal{U} \setminus \mathcal{U}[I] \in \mathcal{S}$?

$$g_{j+1}(I) = \begin{cases} g_j(I) & j \in I \\ g_j(I \cup \{j+1\}) + g_j(I) & \text{sonst} \end{cases}$$

Alle $g_j(I)$ berechenbar in Zeit und Platz $\mathcal{O}^*(2^n)$

Algorithmus

Satz (Björklund & Husfeldt, Koivisto 2006)

Anzahl k-Überdeckungen berechenbar in Zeit $\underline{und\ Platz}\ \mathcal{O}^*(2^n)$