IOS MOBILE APP

IOS GEOTHERMAL APP:
UPDATING THE WORLD'S
FIRST PRE-DESIGN TOOL FOR
GEOTHERMAL SYSTEMS

TEAM IO-REDBACK

Yuwei Gu Yuntian Wan Haoyuan He Ruiqi Pang Yichen Liu

CLIENT

SUPERVISOR

Guillermo Narsilio Ferrero

Luka Rosa

Project detail

Background Description:

Nowadays, the construction industry is increasingly focused on sustainable development and environmental protection. Geothermal systems, as an effective renewable energy technology, have been widely used worldwide. They can provide efficient heating and cooling for residential and commercial buildings while reducing energy costs and carbon emissions. By utilizing geothermal applications, engineers and architects can optimize the design and performance of geothermal systems and improve heating and cooling efficiency. At the same time, this approach meets the demands of sustainable development and environmental protection and promotes the development of the construction industry towards a more energy-efficient and environmentally friendly direction.

Fourth Element Energy Pty Ltd is an Australian company that is devoted to developing and commercializing clean energy solutions, particularly in the area of shallow geothermal, which is efficient heating and cooling using thermal energy from the ground. With the continuous development of the market and technology, the current iOS Geothermal app which was published in 2016 is laggard to the latest App Store version. Further, some functions that are out of date bring some inconvenience to the users and can not help with user stickiness. To meet the mass-market demand, the company has decided to update this iOS App.

Motivation:

Geothermal systems, as a clean, sustainable, and reliable energy source, have numerous benefits:

- · Significantly reducing carbon emissions: Geothermal energy is a renewable resource with minimal greenhouse gas emissions.
- · Lowering energy costs: Geothermal systems have lower operation and maintenance costs, which can lead to long-term energy savings.
- Improving energy efficiency: Geothermal systems are highly efficient, utilizing constant underground temperatures to convert energy, and can
 convert low-temperature heat into high-temperature heat through heat pump technology.

Geothermal applications can also provide engineers, architects, and property owners with more efficient, accurate, and cost-effective geothermal system design and implementation solutions, driving the industry towards further advancement. The development of geothermal applications is of paramount importance.

Project Overview:

Our team, IO-Redback, will collaborate with client Guillermo Narsilio Ferrero to implement this app's updated version with the help of our supervisor Luke Rosa. The estimated duration of this project is 3 months and we will use the Agile management method to ensure the successful completion of this project.

Client goals(Objectives and Scopes):

With the continuous development of the market and technology, users' requirements for the design and performance of geothermal systems are also continuously improving. Therefore, geothermal applications need to be updated in a timely manner to adapt to market changes and technological development, improve heating and cooling efficiency, reduce costs, and lower carbon emissions. Specifically, updating geothermal applications may include the following scopes:

- Fix known vulnerabilities and issues
- Update the iOS version to maintain compatibility with the latest operating system version.
- Enhance the user experience, such as customizing colors, optimizing the user interface, and improving interaction. Improve user satisfaction and experience, making it easier for users to find the tools and information they need.
- Provide multiple language options to attract more users and promote the market expansion of geothermal applications.
- Add a new input unit method. Update the front-end to obtain inputs in different formats, which can be converted in the back-end and then
 calculated.

Challenges

For this project, we also faced several challenges:

- · Neither of us has a lot of experience in iOS programming, and the project updates require a deep understanding of swift
- · We need to meet frequently with clients, supervisors and team members, and communication issues are also a challenge
- · We have not used software such as Confluence before, we need to adapt and learn

DO-BE-FEEL List

WHO(Role:Who achieves goals)	DO(Functional Goal: What it sh	ould do)	BE(Quality Goal:How it should be)	FEEL(Emotional Goal: How it should feel)	
Architect	Make sure the security of app and data due to Apple Store guidelines	Signature Terms &Condition	Comprehensive	Relieved	
Student		Automatic unit conversions			
		Automatic fill in default input values			
		Set constraints and adjust the outcome results	User-friendly,High-efficiency,Aesthetic		
		Change to multiple languages		Convenient, Useful	
	Use app bringing excellent user experience	Change to several theme colors			
Architect, Student, Installer, Junior Engineer		Fit all screen sizes			
		Use app with excellent UI/UX			
		Download this app with latest App Store			
Junior Engineer		Enter input with two types of units			

Goal Model

Technical details

1.Programming languages:

SWIFT is an open source programming language that can run on multiple platforms (including operating systems such as Linux, Windows, and Android) and is specifically used to develop iOS, iPadOS, watchOS, tvOS, and macOS applications.

2. IDE :

Xcode is the main IDE for iOS application development, providing many functions:

- Source Code Editor: The editor supports functions such as automatic code completion, syntax highlighting, intelligent prompts, and error checking, which can help developers write and debug code more quickly;
- Debugger: Support breakpoint debugging, variable monitoring, console output, and memory monitoring functions, which can help developers
 debug and optimize applications;
- Automated build tools: Developers can use Xcode's build system to create and manage build configurations, including compilation options, code signatures, and application versions;
- · Version control: Developers can use Xcode to manage code versions, view history, compare different versions of code, and more;
- User interface design tools: Developers can use Xcode's interface designer to drag and drop controls, layout the interface, set properties, and create connections.

3. IOS SDK:

The iOS SDK is the foundation for iOS application development, providing developers with the necessary tools, frameworks, and APs, including:

- Xcode IDE :used to create, debug, and deploy iOS applications;
- The iOS Simulator :used to test the performance of iOS applications on different devices;
- The iOS SDK Frameworks: includes multiple frameworks, including UIKit, Core Data, Core Location, MapKit, and others, can help developers
 create user interfaces for applications, process data, and manage location information;
- Instruments: Help developers analyze application performance issues and optimize application performance;
- iOS Dev Center: Provide development documentation, sample code, tools, and resources to help developers develop iOS applications more quickly.

By using these components, developers can develop and test iOS applications more efficiently, and achieve better performance and user experience.

4. Application programming interface (API):

APIs are commonly utilized in the development of iOS apps, as they offer a vast array of features that can enhance app functionality. In our scenario, UIKit could be employed to construct a user interface that meets the client's expectations for a positive user experience. Specifically, the built-in tool named Interface Builder, which is available in Xcode, can assist developers in designing and previewing the interface.

5. App store guidelines and deployment :

The client's ultimate objective is to have the application published on the App Store. As a result, the app must meet the requirement with Apple's App Store guidelines. Additionally, developers must register for the Apple Developer Program and have an account linked to the App Store. Fortunately, the client already has an Apple developer account and can grant us access to it.

6. Test and debug:

Before being released, all programming projects must undergo testing and debugging to guarantee a satisfactory user experience and meet Apple's App Store guidelines.

- · Xcode incorporates several built-in debugging tools;
- Apple offers automated testing tools like XCTest;
- The client will supply us with some test cases.

Personas

After further discussions with our clients, we have finally identified four different types of personas:

• Junior Engineer

The primary target user of this app is the junior geothermal engineer. This app aims to provide guidance for the engineers with limited work experience who are not yet familiar with geothermal system design, simplifying their workflow and enabling them to complete system designs more efficiently.

Architect

Architects are also among the target users of this app. They often lack technical knowledge about geothermal systems and may face difficulties in practice. Using this app will help them understand the structure and cost of geothermal systems more easily, making it convenient for them to incorporate geothermal systems into their building designs.

Student

This app can assist students in infrastructure engineering and other related majors in learning the structure and design methods of geothermal systems. It can help them gain a better insight of geothermal systems.

Installers

This app enables installers to better understand the design specifications of geothermal systems, assisting them in completing the installation of geothermal systems.

The specific persona information is shown in the chart below.

Туре	Bio	Goals	Frustration
Junior Engineer	Ethan Jackson is a 25-year-old entry-level geothermal system engineer. He recently graduated with a degree in infrastructure engineering and has been working in a company that specializes in geothermal systems for 6 months. He has a basic understanding of geothermal systems and is able to complete the geothermal system design under the guidance of senior professionals. He is eager to learn more and gain practical experience in designing efficient and cost-effective geothermal systems for buildings.	Use the app to design geothermal systems individually and improve his business skills. Quickly gain a solid understanding in geothermal systems and their components. Stay up-to-date with the latest industry trends and guidelines.	It would be time consuming to complete the entire system design independently at his current level. He finds it challenging to understand some technical abbreviations and calculations. He needs to use multiple tools for the designing and calculating of geothermal systems.
Architect	Rachel Williams is a 35-year-old architect who works for a large architecture firm. She has ten years of experience in designing sustainable buildings. She works for a large architecture firm. She is interested in collaborating with engineers to incorporate geothermal systems into her building designs. She wants to use the app to get accurate estimates of feasibility and cost of a geothermal system.	Integrate geothermal systems into energy-efficient building designs. Use the app to get the accurate estimates of feasibility and cost of a geothermal system. Collaborate with geothermal engineers on system design.	She doesn't have much background knowledge in geothermal systems. She is struggling to find some reliable and and up-to-date resources of geothermal information. It can be difficult to communicate effectively with geothermal engineers sometimes.
Infrastructure Engineering Student	Samantha Lee is a 21-year-old infrastructure engineering student who has developed an interest in sustainable energy solutions. She aims to become a geothermal engineer after graduation and is seeking a comprehensive resource to learn more about it. She wants to use the app to gain a better understanding of how geothermal systems work.	Gain a thorough understanding of geothermal systems and their components. Learn more about the topic without affecting her coursework. Stay updated on industry trends to help her make future career choices.	She has limited access to user-friendly and comprehensive educational resources on geothermal systems. It is difficult to balance heavy course load while trying to learn about a new and complex topic. She has some difficulty in finding real-world examples and case studies to supplement her learning.
Geothermal Products Installer	Robert Davis is a 45-year-old experienced installer who has been working in the HVAC industry for 15 years. In recent years, with more and more buildings adopting geothermal systems, he has also received more work orders for installing geothermal systems. He is keen to expand his expertise in this area.	Install geothermal systems efficiently according to design specifications. Ensure the systems are functioning optimally after installation. Stay updated on the latest installation techniques and best practices.	He has some difficulty in interpreting complex design specifications due to lack of technical knowledge. He is struggling to find accurate and up-to-date information on system components and installation techniques.

NAME

Ethan Jackson

MARKET SIZE

Junior Engineer

Bio

Ethan Jackson is a 25-year-old entry-level geothermal system engineer. He recently graduated with a degree in infrastructure engineering and has been working in a company that specialises in geothermal systems for 6 months. He has a basic understanding of geothermal systems and is able to complete the geothermal system design under the guidance of senior professionals. He is eager to learn more and gain practical experience in designing efficient and cost-effective geothermal systems for buildings.

Quote

66

Empower me to design a greener tomorrow.

77

Demographic

o ⁿ	Male		25	years
•	Australia			
	Geotherma	al s	ystem	
	engineer			

Goals

- Use the app to design geothermal systems individually and improve his business skills.
- Quickly gain a solid understanding in geothermal systems and their components.
- · Stay up-to-date with the latest industry trends and guidelines.

Frustrations

- It would be time consuming to complete the entire system design independently at his current level.
- He finds it challenging to understand some technical abbreviations and calculations.
- He needs to use multiple tools for the designing and calculating of geothermal systems.

NAME

Rachel Williams

MARKET SIZE

Architect

Bio

Rachel Williams is a 35-year-old architect who works for a large architecture firm. She has ten years of experience in designing sustainable buildings. She works for a large architecture firm. She is interested in collaborating with engineers to incorporate geothermal systems into her building designs. She wants to use the app to get accurate estimates of feasibility and cost of a geothermal system.

Quote

44

Blending architecture with sustainability.

22

Demographic

Pemale	35	years
Australia		
Architect		

Goals

- Integrate geothermal systems into energy-efficient building designs.
- Use the app to get the accurate estimates of feasibility and cost of a geothermal system.
- Collaborate with geothermal engineers on system design.

Frustrations

- . She doesn't have much background knowledge in geothermal systems.
- She is struggling to find some reliable and and up-to-date resources of geothermal information.
- $\bullet \ \ \text{It can be difficult to communicate effectively with geothermal engineers sometimes}.$

MARKET SIZE

Student

TYPE

Samantha Lee

Bio

Samantha Lee is a 21-year-old infrastructure engineering student who has developed an interest in sustainable energy solutions. She aims to become a geothermal engineer after graduation and is seeking a comprehensive resource to learn more about it. She wants to use the app to gain a better understanding of how geothermal systems work.

Quote

Unlocking the potential of geothermal energy.

Demographic

🔎 Female	21	years
O Australia		
Student		

Goals

- · Gain a thorough understanding of geothermal systems and their components.
- · Learn more about the topic without affecting her coursework.
- Stay updated on industry trends to help her make future career choices.

Frustrations

- She has limited access to user-friendly and comprehensive educational resources on geothermal systems.
- It is difficult to balance heavy course load while trying to learn about a new and complex
- She has some difficulty in finding real-world examples and case studies to supplement her learning.

TYPE

Robert Davis

13 %

Installer

Bio

Robert Davis is a 45-year-old experienced installer who has been working in the HVAC industry for 15 years. In recent years, with more and more buildings adopting geothermal systems, he has also received more work orders for installing geothermal systems. He is keen to expand his expertise in this area.

Quote

Efficiency and expertise in every installation.

Demographic

Gender years

Australia

HVAC installer

Goals

- · Install geothermal systems efficiently according to design specifications.
- · Ensure the systems are functioning optimally after installation.
- · Stay updated on the latest installation techniques and best practices.

Frustrations

- He has some difficulty in interpreting complex design specifications due to lack of technical knowledge.
- He is struggling to find accurate and up-to-date information on system components and installation techniques.
- The "market size" item in the persona represents the estimated portion of the overall market that this particular persona represents. Market size estimates are based on our assumptions and may not be entirely accurate, but they can still be a useful tool for understanding the potential impact that designing for this user group could have on the overall success of the product.

Versions

VersionID	Description	Date
1.0	Initialise personas based on the discussions with the client and our current understanding of requirements.	2023-03-23
2.0	Change some persona details and add description of the market size item based on the feedback of sprint 1.	2023-04-28

User stories

We measure our workload by using low, medium and high to describe our workload, we think the workload for low generally takes 1 to 2 days, medium takes about 2 to 3 days, high takes 3 to 5 days to complete, and at the same time the priority is also divided according to low, medium and high, low we think is low is not urgent and unimportant, the medium is not urgent but important, high is urgent and important. We will arrange for the next work to be determined by a combination of workload and priority assessment.

Although we are asked to use chatGPT for some of the user stories, we have analysed the current requirements to produce user stories that the client is happy with, so we don't think we need its help at this stage.

· As an engineer, I want to enter my measurements in international units so that I can check the accuracy of the data

workload: low Priority: medium

· As a student, I would like to enter the data units based on my existing measurements, so that I don't need to spend extra time on unit conversions

workload: low Priority: medium

As an engineer, I want to fix one of the outcome values, so that I can find the most logical way to build a pipe.

workload: low Priority: medium

As an installer, I want to get results based on the constraints of the house so that I can offer the most cost-effective installation solution to my

clients.

workload: low Priority: medium

As a student/engineer/installer/architect, I want to use my own language to navigate the application so that I can understand the content faster.

workload: medium Priority: high

• As a student/engineer/installer/architect , I want to have access to the terms and conditions so that I can have a clear understanding of my rights,

responsibilities, and privacy policies that are applicable to the application.

Workload: low Priority: high

· As a student/engineer/installer/architect, I want to change the theme color, so that I can choose the theme that I like and that makes me feel

comfortable using this application.

Workload: low Priority: medium

As a student/engineer/installer/architect, I want the application to be able to fit different screen sizes so that it can provide the same experience
and information on different hardware.

Workload: high Priority: high

As a student, I want the application to be able to provide default input values so that when I have some unknown value I can have a default

number to avoid inputting some invalid value.

Workload: medium Priority: high

Sprint Plans

Project Name: IO-Redback

Project Objective: To develop a user-friendly iOS application that allows users to design geothermal systems effectively.

Sprint 2: Implementation of Basic Features (Duration: 4 weeks)

1.Task Breakdown:

ID	Item	Task estimation	Task assignment
US001/US002	Conversion between metric and imperial units	1 to 2 days	Yichen Liu
US003/US004	Allow users to set constraints or fix one of the outcome calculations	1 to 2 days	Yuwei Gu
US005	Multi-language support	2 to 3 days	Yuntian Wan
US006	Provide a link to terms and conditions	1 to 2 days	Haoyuan He
US007	Change theme color	1 to 2 days	Ruiqi Pang
US008	Adapt to different devices and system versions	3 to 5 days	Haoyuan He, Yuntian Wan
US009	Provide default input values	2 to 3 days	Ruiqi Pang

2. Weekly meetings:

- Client meetings: Once per week, depending on client's availability.
 Supervisor meetings: 30 minutes per week, every Thursday at 12:30 PM.
- 3. Team member meetings: 2-3 times per week.

3.Code Reviews: Weekly on Fridays, 2 hours per session.

4.Testing: Ongoing unit testing and integration testing throughout the sprint.

Sprint 3(updated on 30th Apr): Optimization and Extension of Features (Duration: 4 weeks)

1.Task breakdown

ID	Item	Description	Task estimation	Task assignment
US0 05	Multi-language	Switchable system language, including English, Chinese and Spanish.	2 to 3 days	Yuntian Wan, Haoyuan He
US0 07	Support light/dark mode	System mode can be switched between light and dark.	1 to 2 days	Ruiqi Pang
-	Fix all issues found in week 8 code review	Based on the feedback from the ChatGPT code review, we will fix all the identified issues, including variable and function naming and time complexity and so on.		
-	User Experience Improvements	Based on client feedback and testing results, make necessary adjustments to enhance the user experience.	2 to 3 days	Yichen Liu, Haoyuan He
-	Documentation	Write detailed development documents, including architecture design and user manuals.	1 to 2 days	Yuwei Gu
-	Integration and System Testing	Ensure all modules and functionalities work correctly within the entire system and meet performance and stability requirements.	1 to 2 days	Yuntian Wan
-	Deployment and Release Preparation	Perform pre-deployment tasks, including configuration management, data migration, and version control.	1 to 2 days	Haoyuan He
-	Retrospective Meeting	At the end of the sprint, organize a retrospective meeting to summarize the lessons learned from this sprint and continuously improve in subsequent sprints.	1 days	All

2. Weekly Meetings:

- Client Meetings: Once per week, depending on the client's availability.
- Supervisor Meetings: 30 minutes per week, every Thursday at 12:30 PM.

- Team Member Meetings: 2-3 times per week.
- 3. Code Review:

Peer-to-peer code review will be conducted in week 10.

4. Testing:

On the testFlight, the client will provide some test cases.

Digital prototype

Link: https://www.figma.com/proto/9IfdWogTQMAccDvjWzxHBI/IO---Redback?node-id=1-2&scaling=scale-down&page-id=0%3A1&starting-point-node-id=1%3A2

• Home page

GEOTHERMAL

V 1.0.1

Theme Light Dark

I ACCEPT THE TERMS AND CONDITIONS

START

COPYRIGHT © 2016 UNIVERSITY OF MELBOURNE. ALL RIGHTS RESERVED.

Method selection

✓ Home

Method

IGSHPA

The International Ground Source
Heat Pump Association (IGSHPA)
provides pre-design calculation
methods for vertically bored,
horizontally bored and horizontally
trenched systems. Their methods
are based on the assumption that
the ground, from which heat is
exchanged, has a constant
temperature at certain depths
below the surface.

SELECT

ASHRAE

The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) method used in this iOS application has been recast by Philippe et al. (2010) and is used for vertical systems. This method is derived from the assumption that heat transfer in the ground only occurs by conduction and that moisture evaporation or underground water movement is not significant.

SELECT

✓ Method IGSHPA System Setting

Vertically - Bored

Vertically bored systems are commonly used in both residential and commercial buildings as this configuration requires minimal land to be available to install. However, this system can be significantly expensive as a result of the cost of drilling and therefore both vertical and horizontal systems should be considered to determine the most viable configuration.

SELECT

Horizontally - Bored

Horizontally bored systems are a common configuration for properties that have large areas of earth to utilize. The benefit of using this configuration is that extensive excavation is not required. Depending on the property, the cost of damaging and replacing what currently occupies the land can exceed the cost of the drilling, making this an optimal setup.

SELECT

Horizontally - Trenched

Horizontally trenched systems are typically the cheapest installation of the three systems because no drilling is required. However, these systems require large areas of available land to excavate in order to be installed and even when enough land is available, the cost of removing and replacing what is currently there can in itself be

• Data Input

Setting IGSHPA VB Data Input

COP(D) ①	3.63	
EER(D) ①	14.5	
HC(D) ①	14	kW >
TC(D) ①	14	kW >
HEAT PUMP DESIG	N CONDITIONS	
EWT(min) ①	-1.11	°C >
LWT(min) ①	14.5	°C>
EWT(max) ①	14	°C >
LWT(max) ①	14	°C >
RT(CLG) ①	476.2	hr
RT(HTG) ①	476.2	hr
GROUND PROPER	TIES	
k(G) ①	1.471	W/m °C >
T(G) ①	0.556	°C >
D(G,O) ①	4.572	m >
BOREHOLE PARAM	IETERS	
D(B) ①	0.128	m >
	0.022	m >
D(p,i) ①		
D(p,i) ① k(Grout) ①	0.692	W/m °C >
10.41.04.000	0.692	W/m °C >

CALCULATE

Setting IGSHPA HB Data Input

COP(D) ①	3.63	
EER(D) ①	14.5	
HC(D) ①	14	kW 3
TC(D) ①	14	kW 2
HEAT PUMP DESIGN	N CONDITIONS	
EWT(min) ①	-1.11	°C >
LWT(min) ①	14.5	°C 2
EWT(max) ①	14	°C :
LWT(max) ①	14	°C >
RT(CLG) ①	476.2	h
RT(HTG) ①	476.2	h
GROUND PROPERT	TES	
T(M) ①	5.56	°C :
A(S) ①	0.556	°C 2
k(G) ①	1.471	W/m °C
D(G,O) ①	4.572	m 2
α ①	0.056	m²/day
BOREHOLE PARAM	ETERS	
D(B) ①	0.128	m 3
D(P,O) ①	0.027	m 2
D(p,i) ①	0.022	m 2
k(Grout) ①	0.692	W/m °C
k(p) ①	0.4	W/m °C
RT(d) ①	4.572	m 3
BOREHOLE CONFIG	GURATION (OPT	TONAL)
Number ①		

Method

ASHRAE Data Input

4.44 0.074 s 0.068 2.25 12.41 14 476.2	°C kg/s kW m²/day W/m K °C kW	2
0.068 2.25 12.41	m²/day W/m K	3
0.068 2.25 12.41 14	W/m K	,
2.25 12.41 14	W/m K	,
12.41 14	°C	*
14		
	kW	**
476.2		
	kW	1
-392.25	kW	* *
ERS		
6.1	m	2
120		
1.2		
0.054	m	,
1.73	W/m k	,
0.0471	m	1
0.0137	m	3
0.0167	m	
0.45	W/m K	,
0.0471	W/m K	,
RATION (OPT)	ONAL)	
	6.1 120 1.2 0.054 1.73 0.0471 0.0137 0.0167 0.45	6.1 m 120 1.2 0.054 m 1.73 W/m k 0.0471 m 0.0137 m 0.0167 m 0.45 W/m K

CALCULATE

Setting IGSHPA HT Data Input

HEAT PUMP SPECIF	FICATION		
COP(D) ①	3.63		
EER(D) ①	14.5		
HC(D) ①	14	kW)
TC(D) ①	14	kW	>
HEAT PUMP DESIG	N CONDITIONS		
EWT(min) ①	-1.11	°C)
LWT(min) ①	14.5	°C	>
EWT(max) ①	14	°C)
LWT(max) ①	14	°C	>
RT(CLG) ①	476.2		hi
RT(HTG) ①	476.2		hi
GROUND PROPERT	TIES		
T(M) ①	5.56	°C	7
A(S) ①	0.556	°C	3
R(S) ①	4.74	m °C/W	>
α ①	0.047	m²/day	>
BOREHOLE PARAM	ETERS		
D(P,O) ①	0.027	m	*
D(p,i) ①	0.022	m	>
k(p) ①	0.4	W/m °C	>
d ①	2.438	m	>
S(M) ①	1.1		
P(M) ①	1		
TRENCH CONFIGUR	RATION (OPTIO	NAL)	
Trenches ①			
Pipes / trench ①			
Length (1)		m	3

Result page

IGSHPA VB Result

INPUT DATA			
COP(D)	3.63	EER(D)	3.63
HC(D)	3.63	TC(D)	3.63
EWT(min)	3.63	LWT(min)	3.63
EWT(max)	3.63	LWT(max)	3.63
RT(CLG)	3.63	RT(HTG)	3.63
k(G)	3.63	T(G)	3.63
D(G,O)	3.63	D(B)	3.63
D(P,O)	3.63	D(p,i)	3.63
K(Grout)	3.63	K(p)	3.63
CALCULATED F	RESULT		
R(G)	3.63	S(B)	3.63
R(PP)	3.63	G(Grout)	3.63
R(B)	3.63		3.63
F(H)	3.63	F(C)	3.63
L(H,T)	3.63	L(C,T)	3.63
RECOMMENDE	D SETUP		
Number of	f Borehole :		
Minimum	Borehole Le	ength:	
Configurat	ion:		

SHARE

•	Inni	rt.
•	III IP	и.

IGSHPA VB Result

Ср	3.63	T(inHP)	3.63
m(fls)	3.63	k	3.63
α	3.63	Tg	3.63
q(y)	3.63	q(m)	3.63
q(h)	3.63	В	3.63
NG	3.63	Α	3.63
k(Grout)	3.63	r(bore)	3.63
Lu	3.63	r(p,in)	3.63
k(pipe)	3.63	r(p,ext)	3.63
h(conv)	3.63		

CALCULATED RESULT

T(outHHP)	3.63	T(outCHP)	3.63
T(mc)	3.63	T(mh)	3.63
T(pc)	3.63	T(ph)	3.63
In(t/ts)	3.63	F	3.63
R ₁₀ y	3.63	R₁m	3.63
R₅h	3.63	Rconv	3.63
Rp	3.63	Rg	3.63
Rb	3.63		
L(CU)	3.63	L(HU)	3.63
L(CT)	3.63	L(HT)	3.63

RECOMMENDED SETUP

Number of Borehole:

Minimum Borehole Length:

Configuration:

SHARE

Insut IGSHPA HR Popult

INPUT DATA			
COP(D)	3.63	EER(D)	3.63
HC(D)	3.63	TC(D)	3.63
EWT(min)	3.63	LWT(min)	3.63
EWT(max)	3.63	LWT(max)	3.63
RT(CLG)	3.63	RT(HTG)	3.63
T(M)	3.63	A(S)	3.63
K(G)	3.63	D(G,O)	3.63
а	3.63	D(B)	3.63
D(P,O)	3.63	D(p,i)	3.63
k(Grout)	3.63	k(p)	3.63
d	3.63		
R(G) R(PP)	3.63	S(B)	3.63
CALCULATED F		- (=)	
R(PP)	3.63	G(Grout)	3.63
R(B)	3.63		3.63
F(H)	3.63	F(C)	3.63
T(S,L)	3.63	T(S,H)	3.63
L(H,T)	3.63	L(C,T)	3.63
RECOMMENDE	D SETUP		
	f Borehole :		
	Borehole Le	ength:	

SHARE

IGSHPA HT Result

COD(D)	0.60	EED/D)	262
COP(D)	3.63	EER(D)	3.63
TC(D)	3.63	HC(D)	3.63
EWT(min)	3.63	LWT(min)	3.63
EWT(max)	3.63	LWT(max)	3.63
RT(CLG)	3.63	RT(HTG)	3.63
T(M)	3.63	AS	3.63
α	3.63	R(S)	3.63
D(P,O)	3.63	D(p,i)	3.63
d	3.63	K(p)	3.63
S(M)	3.63	P(M)	3.63
CALCULATED R	ESULT		
F(H)	3.63	F(C)	3.63
T(S,L)	3.63	T(S,H)	3.63
R()P	3.63		3.63

RECOMMENDED SETUP

Number of Trenches:

Minimum Trench Length:

Number of Pipes in Each Trench:

Configuration:

SHARE

Product backlog

product backlog

1.Features

ID	User Stories	Prio rity	Estim ate	Status
US 001	As an Ethan Jackson (Junior Engineer), I want to enter my measurements in international units to check the accuracy of the data.	Me dium	1 to 2 days	Finish ed
US 002	As a Samantha Lee(Infrastructure Engineering Student), I would like to enter the data units based on my existing measurements, so that I don't need to spend extra time on unit conversions.	Me dium	1 to 2 days	Finish ed
US 004	As a Robert Davis (Geothermal Products Installer), I want to get results based on the constraints of the house so that I can offer the most cost-effective installation solution to my clients.	High	2 to 3 days	Finish ed
US 005	As with all personas (student/engineer/installer/architect), I want to use my own language to navigate the application so that I can understand the content faster.	Me dium	3 to 5 days	Not started
US 006	As with all personas (student/engineer/installer/architect), I want access to the terms and conditions so that I can have a clear understanding of my rights, responsibilities, and privacy policies applicable to the application.	High	1 to 2 days	In progr ess
US 009	As a Samantha Lee(Infrastructure Engineering Student), I want the application to be able to provide default input values so that when I have some unknown value I can have a default number to avoid inputting some invalid value.	Me dium	1 to 2 days	Finish ed
US 007	As with all personas (student/engineer/installer/architect), I want to change the theme color, so that I can choose the theme that I like and that makes me feel comfortable using this application.	Me dium	2 to 3 days	Finish ed

2. Enhancement

ID	Description	Priority	Estimate	Status
1	The entire original code was changed to be built using Swiftui to provide a better experience for the user	High	7-8 days	Finished
2	Change the layout of the welcome page so that more settings can be put in without affecting the aesthetics	medium	2 days	Finished
3	Present terms and conditions as a link to the user	medium	1 day	In progress

3. Bug fixed

ID	Description	Priority	Estimate	Status
1	Modifying unit conversion issues	High	1 to 2 days	Finished
2	Fixing an issue where modules on the welcome page were overlapping each other and affecting the display	Medium	1 day	Finished
3	Fix the page jumping to the wrong page	High	1 day	Finished
4	Fix items layout. Align the elements of each line in the input views	Medium	1 day	Finished
5	Fix button size. Buttons on the Method selection are sized so that they are of equal length and can display the text in its entirety	Medium	1 day	Finished
6	Repair the problem of not popping up when clicking the information button	Medium	1 day	Finished

Week 8 - ChatGPT

Our team was tasked with conducting a code review for ChatGPT in week 8. Following the provided instructions, we attempted to access the ChatGPT code review API, stored the ChatGPT key as a secret on Github settings, granted the corresponding permissions, and added the workflow configuration page. After satisfying all pre-requirements, we initiated some pull requests, but unfortunately, some of them failed with the error message "expected string or bytes-like object," as displayed in the accompanying screenshot.

Despite our attempts to resolve this issue, we were unable to do so. Therefore, we opted to manually perform the ChatGPT code review by providing the code review format and code to ChatGPT. Fortunately, this alternative approach was approved by Eduardo.

On April 28th, Yichen Liu and Yuwei Gu contributed feedback from ChatGPT, and on April 29th, all group members participated in reviewing the feedback. The main issues we identified were as follows, and the entire ChatGPT code review can be accessed via the Github link(https://github.com/COMP90082-2023-SM1/IO-Redback/blob/main/docs/Chatgpt%20Code%20review-week%208.pdf):

Documentation defects:

- Several code files had variable and function name issues, with some not being descriptive, thereby reducing readability.
- Some comments were missing.

Visual representation defects:

- Some files lacked proper indentation, which reduced readability.
- Some code statements were excessively long.

Logic defects:

- Edge cases were not handled correctly.
- Sometimes complexity was inefficient.

New functionality:

- Some single-purpose code statements could be replaced with standardized approaches.

Check defects:

- Input values were not properly checked before use.

Overall, the code quality was acceptable, but the main issues centered on naming, with some variables and functions lacking meaningful names, making it challenging to understand their functions. Our plan is to address all the identified issues in sprint 3.