Stochastik für Informatiker χ^2 -Tests

Hanno Gottschalk

July 3, 2023

ehrfachvergleiche und Bonferronikorrektur Mehrfachvergleiche	3
Approximative Berechnung des Signifikanzniveaus für den Einzeltest	 . 5
Bonferronikorrektur	
Publication Bias	 . 7
² -Tests	8
Problemstellung	 . 9
Eierklassen — Daten	 10
Wiederholung: Kontingenztabelle	 11
Allgemeiner Fall Kontingenztabelle	
$\hat{\chi}^2$ -Statistik und χ^2 -Verteilung	
Verteilung der Quadratischen Kontingenz	
Testentscheidung im Unabhängigkeits / Homogenitätstest	
Fortsetzung Beispiel Eierklassen	
\sim^2 Appaceungstost	

Inhaltsverzeichnis der Vorlesung

- Mehrfachvergleiche und Bonferroni-Korrektur
- χ^2 -Test

Hanno Gottschalk

Stochastik für Informatiker – 2 / 17

Mehrfachvergleiche und Bonferronikorrektur

3 / 17

Mehrfachvergleiche

Was passiert, wenn man drei oder mehr Gruppen miteinander vergleicht? **Beispiel:**

- Wir vergleichen den Milcheiweissgehalt in der Milch von Berg- (X), Vorgebirgs- (Y), und Talkühen (Z)
- Wir wollen zeigen, dass es Unterschiede gibt
- Die Nullhypothese lautet demnach $\mu_X = \mu_Y = \mu_Z$ zum Signifikanzniveau α
- Wir machen dann drei t-Tests: $H_0: \mu_X = \mu_Y, H_0: \mu_X = \mu_Z, H_0: \mu_Y = \mu_Z$.

Hanno Gottschalk

Stochastik für Informatiker – 4 / 17

Approximative Berechnung des Signifikanzniveaus für den Einzeltest

Welches Signifikanzniveau müssen wir für die einzelnen Tests erreichen, um insgesamt eine signifikante Aussage zu erhalten?

Nehmen wir das Signifikanzniveau $\alpha=0.05$ für jeden einzelnen Test. H_0 wird abgelehnt, falls ein Test zur Verwerfung von H_0 führt. Dann

$$P(H_0|H_0) = (1-\alpha)^3 < 1-\alpha$$
 also wird H_0 zu oft abgelehnt

Hanno Gottschalk

Stochastik für Informatiker - 5 / 17

Bonferronikorrektur

Diesen Sachverhalt berücksichtigt die *Bonferronikorrektur* Falls k unabhängige Tests zum Signifikanzniveau α^* insgesamt ein Signifikanzniveau α ergeben sollen, dann

$$(1-\alpha^*)^k=1-\alpha\Rightarrow\alpha^*pprox \alpha/k$$
 für α klein

Eine genauere Behandlung erfolgt durch die Siebformel von Poincaré-Sylvestre

Hanno Gottschalk

Stochastik für Informatiker – 6 / 17

Publication Bias

Nehmen wir an, auf 1 publizierte Untersuchung aus einem Medizinischen Studienzentrum der Pharamafirma 'Schluckspecht' kommen 19 nicht publizierte.

Die publizierte Studie weist ein Signifikanzniveau von 5% auf.

Auch bei völliger Wirkungslosigkeit der Medikamente von Schluckspecht erwartet man im Schnitt alle 20 Mal ein 5%=1/20-signifikantes Resultat. . .

Hanno Gottschalk

Stochastik für Informatiker - 7 / 17

8 / 17

Problemstellung

Was soll man machen, wenn man Zusammenhänge von Grössen bestimmen soll, die *nicht quantitativ* sind?

Beispiel:

- Hühner legen Eier der Güteklasse A, B oder C
- Sind Eier von freilaufenden Hühnern anders auf A, B, C verteilt, als die von Käfighühnern?

Eierklasse	Α	В	С	Gesamt
Käfighaltung	352	267	125	744
Freilaufend	300	294	110	704
Gesamt	652	561	235	1448

Hanno Gottschalk

Stochastik für Informatiker – 9 / 17

Hanno Gottschalk

Stochastik für Informatiker - 10 / 17

Wiederholung: Kontingenztabelle

Stelle zunächst eine Kontingenztabelle der rel. Hkten auf.

Eierklasse	Α	В	С	Gesamt
Käfighaltung	0.243	0.184	0.086	0.513
Freilaufend	0.207	0.203	0.076	0.487
Gesamt	0.45	0.378	0.162	1

Hanno Gottschalk

Stochastik für Informatiker – 11 / 17

Allgemeiner Fall Kontingenztabelle

Allgemein betrachten wir ein Merkmal X mit den Ausprägungen x_1, \ldots, x_r und ein Merkmal Y mit den Ausprägungen y_1, \ldots, y_s

$$h_{i,j} = n_{i,j}/n$$
=rel. Häufigkeit, dass $X = x_i$ und $Y = y_j$

Merkmal	y_1	y_2		y_s	Gesamt
x_1	$h_{1,1}$	$h_{1,2}$	• • •	$h_{1,s}$	h_1^X
x_2	$h_{2,1}$	$h_{2,2}$	• • •	$h_{2,s}$	h_2^X
:	:		٠	:	:
x_r	$h_{r,1}$	$h_{2,r}$		$h_{r,s}$	h_r^X
Gesamt	h_1^Y	h_2^Y	• • •	h_s^Y	1

Die Spalten "Gesamt" bilden die s ogenannten Randverteilungen

Hanno Gottschalk

Stochastik für Informatiker - 12 / 17

$\hat{\chi}^2$ -Statistik und χ^2 -Verteilung

Perfekte Unabhängigkeit: $h_{ij} = h_i^X h_j^Y$ für alle Paare i und j

$$\hat{\chi}^2 = n \sum_{i} \sum_{j} \frac{(h_{i,j} - h_i^X h_j^Y)^2}{h_i^X h_j^Y}, \quad n = \sum_{i} \sum_{j} n_{ij}$$

 $\hat{\chi}^2$ heißt die quadratische Kontingenz. Sie "misst" die Abhängigkeit zweier Merkmale.

Bei perfekter Unabhängigkeit gilt $\hat{\chi}^2=0$ – dies ist jedoch wegen statistischer Schwankungen nicht zu erwarten

Hanno Gottschalk

Stochastik für Informatiker – 13 / 17

Verteilung der Quadratischen Kontingenz

Falls n genügend groß und $H_0: X$ und Y sind unabhängig

$$\hat{\chi}^2 \sim \chi^2((r-1)(s-1))$$
 (approximativ) (1)

Beachte: $\hat{\chi}^2$ ist zufallsabhängige Statistik. . .

 $\chi^2(k)$ heisst die χ^2 -Verteilung zu k Freiheitsgraden.

Hanno Gottschalk

Stochastik für Informatiker - 14 / 17

Testentscheidung im Unabhängigkeits / Homogenitätstest

 $\chi^2\text{-Homogenitäts/Unabhängigkeitstest zum Signifikanzniveau }\alpha$ r Stichproben mit Umfang $n_1,\ldots n_r,\ n=n_1+\ldots+n_r$ Gesamtstichprobenumfang Y Merkmal mit Werten $\{y_1,\ldots,y_s\}$ Nullhypothese $H_0\colon$ Die Verteilung von Y hängt nicht ab vom Merkmal X Stichprobenwerte: Kontingenztabelle relativer Hkt. (Gesamtstichpr.) $\frac{\text{Merkmal }X/\text{Merkmal }Y}{x_1} \frac{y_1}{y_1} \frac{y_2}{y_2} \ldots \frac{y_s}{y_s} \frac{\text{Summe}}{y_s}$ Summe $\frac{x_1}{x_2} \frac{h_{1,1}}{h_{1,2}} \frac{h_{1,2}}{h_{2,2}} \cdots \frac{h_{1,s}}{h_{2,s}} \frac{h_1^X}{h_2^X}$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$ $\frac{x_r}{x_r} \frac{h_{r,1}}{h_{r,1}} \frac{h_{2,r}}{h_{2,r}} \cdots \frac{h_{r,s}}{h_r^x} \frac{h_r^X}{h_r^x}$ Summe $\frac{h_1^Y}{h_1^Y} \frac{h_2^Y}{h_2^Y} \cdots \frac{h_r^x}{h_r^y} \frac{1}{h_r^x h_j^y}$ Testentscheidung: $K^2 \leq \chi^2_{1-\alpha}((r-1)(s-1))$

 $ightarrow H_0$ annehmen, sonst ablehnen (Hier $\hat{\chi}^2=K^2$)

Hanno Gottschalk

Stochastik für Informatiker – 15 / 17

Fortsetzung Beispiel Eierklassen

- Haben n = 1448, s = 3, r = 2
- X= Haltungsart (Käfig/Frei)
- Y = Eierklasse (A,B,C)

Einsetzen für $\hat{\chi}^2$ liefert die Testentscheidung zum Signifikanzniveau $\alpha=0.05$

 $\hat{\chi}^2 = 5.3032 < \chi^2_{0.95}(2) = 5.9914$ ist richtig, daher H_0 beibehalten.

Der vom Computer berechnete p-Wert ist 7%, also wäre der Test auf Unterschiede signifikant zu $\alpha=10\%.$

Hanno Gottschalk

Stochastik für Informatiker – 16 / 17

χ^2 -Anpassungstest

Anstelle eines Merkmals X über zwei Gruppen $Y=y_1$ $Y=y_2$ kann man das Merkmal in Gruppe $Y=y_2$ auch durch eine vorgegebene Verteilung ersetzten. In diesem Fall spricht man vom χ^2 -Anpassungstest.

$$H_0: P(X=j) = p_j^0 > 0, \ j = 1, \dots, k.$$
 Nullhypothese

Teststatistik

$$\hat{\chi}^2 = n \sum_{j=1}^k \frac{(h_j - p_j^0)^2}{p_j^0} \sim \chi^2(k-1) \ \text{ asymptotisch}.$$

Testentscheidung $\hat{\chi}^2 \leq \chi^2_{1-\alpha}(k-1) \ \Rightarrow \ H_0$ annehmen, sonst H_1

Hanno Gottschalk

Stochastik für Informatiker – 17 / 17