

1 Базовые теоретические вопросы

1.1 Дать определение единичной, нулевой, верхней треугольной и нижней треугольной матрицы.

Единичная матрица - квадратная матрица, для элементов которой выполняется следующее

условие:
$$a_{ij} = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$$

т.е. элементы главной диагонали равны 1, остальные 0.

Обозначение [E]

Нулевая матрица - матрица, все элементы которой равны 0, т.е. $a_{ij}=0, \forall i,j$ Обозначение $[\Theta]$

Верхняя треугольная матрица - квадратная матрица, все элементы под главной диагональю которой равны 0.

Нижняя треугольная матрица - квадратная матрица, все элементы над главной диагональю которой равны 0.

1.2 Дать определение равенства матриц.

Матрицы называются равными, если:

- 1) они имеют одинаковый тип,
- 2) У них совпадают все соответствующие элементы.

Для
$$A=(a_{ij})$$
 и $B=(b_{ij})$ $A=B\iff A,B\in M_{mn}(\mathbb{R})$ и $a_{ij}=b_{ij}$ $\forall ij$

1.3 Дать определение суммы матриц и произведения матрицы на число.

Сумма матриц $A=(a_{ij})$ и $B=(b_{ij})$ одного типа $m\times n$ - матрица $C=(c_{ij})$ того же типа $m\times n$ с элементами $c_{ij}=a_{ij}+b_{ij}$.

Произведение матрицы $A=(a_{ij})$ типа $m\times n$ на число $\alpha\in\mathbb{R}$ - матрица $C=(c_{ij})$ того же типа $m\times n$ с элементами $c_{ij}=\alpha a_{ij}$.

1.4 Дать определение операции транспонирования матриц.

Для матрицы $A=(a_{ij})$ типа $m\times n$ ее транспонированной матрицей называется матрица $A^T=(c_{ij})$ типа $n\times m$ с элементами $c_{ij}=a_{ji}$

При транспонировании матрицы ее строки (столбцы) страновятся столбцами (строками) с теми же номерами.

1.5 Дать определение операции умножения матриц.

Произведением матрицы $A=(a_{ij})$ типа $m\times n$ и матрицы $B=(b_{ij})$ типа $n\times p$ называется матрица $C=(c_{ij})$ типа $m\times p$ с элементами $c_{ij}=\sum\limits_{k=1}^{n}a_{ik}b_{kj}=a_{i1}b_{1j}+...+a_{in}b_{nj}.$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a_{i1}} & \mathbf{a_{i2}} & \dots & \mathbf{a_{in}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \times \begin{pmatrix} b_{11} & \dots & \mathbf{b_{1j}} & \dots & b_{1p} \\ b_{21} & \dots & \mathbf{b_{2j}} & \dots & b_{2p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{n1} & \dots & \mathbf{b_{nj}} & \dots & b_{np} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1j} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2j} & \dots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{i1} & c_{i2} & \dots & \mathbf{c_{ij}} & \dots & c_{ip} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mj} & \dots & c_{mp} \end{pmatrix}$$

 $AB \neq BA$ (как правило).

1.6 Дать определение обратной матрицы.

Пусть A - квадратная матрица порядка n. Матрица B называется **обратной** к матрице A, если:

- 1. Она того же порядка n,
- 2. AB = BA = E, где E единичная матрица.

1.7 Дать определение минора. Какие миноры называются окаймляющими для данного минора матрицы?

Минором порядка k матрицы A типа $m \times n$ называется определитель, который составлен из элементов этой матрицы, стоящих на пересечении любых k строк и k столбцов с сохранением порядка этих строк и столбцов.

Обозначение: минор $M^{j_1...j_k}_{i_1...i_k}$ составлен из элементов, расположенных на пересечении строк $i_1,...,i_k$ и столбцов $j_1,...,j_k$, причем $i_1<...< i_k, j_1<...< j_k$.

Минор M' матрицы A называется **окаймляющим** для минора M, если он получается из M добавлением одной новой строки и одного нового столбца, причем эти строка и столбец входят в матрицу A и не входят в минор M.

1.8 Дать определение базисного минора и ранга матрицы.

Ранг матрицы - число, равное максимальному проядку среди ее ненулевых миноров.

Минор M матрицы A называется **базисным**, если

- 1) он не равен нулю,
- 2) его порядок равен RgA.

У матрицы может быть несколько базисных миноров.

1.9 Дать определение однородной и неоднородной СЛАУ.

Системой линейных алгебраических уравнений называется система вида

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Где $a_{ij}, b_i, x_i \in \mathbb{R}$

Числа a_{ij} называются коэффициентами системы, b_{ij} называется свободными членами.

СЛАУ называется однородной, если все b равны 0, неоднородной, если хотя бы один из b_i не равен 0.

1.10 Дать определение фундаментальной системы решений однородной СЛАУ.

Пусть дана однородная СЛАУ $AX = \Theta$ с n неизвесными $x_1, ..., x_n$, и пусть RgA = r. Фундаментальной системой решений (ФСР) однородной СЛАУ $AX = \Theta$ называется любой набор из k = n - r линейно независимых столбцов $x^{(1)}, ..., x^{(k)}$ является решениями этой системы.

1.11 Записать формулы для нахождения обратной матрицы к произведению двух обратимых матриц и для транспонированной матрицы.

Обратная матрица к произведению двух обратимых матриц: если квадратные матрицы A и B одного порядка и имеют обратные матрицы A^{-1} и B^{-1} , то их произведение AB имеет обратную матрицу AB^{-1} , причем $(AB)^{-1}=B^{-1}A^{-1}$.

Обратная матрица для транспонированной матрицы: если квадратная матрица A имеет обратную матрицу A^{-1} , то транспонированная матрица A^T тоже имеет обратную матрицу $(A^T)^{-1}$, причем $(A^T)^{-1} = (A^{-1})^T$.

1.12 Дать определение присоединённой матрицы и записать формулу для вычисления обратной матрицы.

Присоединеной матрицей для квадратной матрицы A называется матрица $A^* = (A_{ji})$, где (A_{ij}) - матрица из алгебраических дополнений для соответствующих элементов. Формула для вычисления обратной матрицы

$$A^{-1} = \frac{1}{\det A} A^*$$

1.13 Перечислить элементарные преобразования матриц.

Элементарные преобразования матриц

- 1) Умножение строки (столбца) матрицы на число $\lambda \neq 0$:
- 2) Перестановка двух строк (столбцов).
- 2) Добавление к одной строке (столбцу) матрицы другой строки (столбца), умноженной на число.

1.14 Записать формулы Крамера для решения системы линейных уравнений с обратимой матрицей.

СЛАУ AX=B, где A - квадратная и $det A\neq 0$, имеет единственное решение, причем $x_1=\frac{\Delta_1}{\Delta},...,x_n=\frac{\Delta_n}{\Delta}$, где $\Delta=det A$,

$$\Delta_{1} = \begin{vmatrix} b_{1} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n} & a_{n2} & \dots & a_{nn} \end{vmatrix}, \dots, \Delta_{n} = \begin{vmatrix} a_{11} & \dots & a_{1n-1} & b_{1} \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn-1} & b_{n} \end{vmatrix}$$

1.15 Перечислить различные формы записи системы линейных алгебраических уравнений (СЛАУ). Какая СЛАУ называется совместной?

Формы записи СЛАУ:

1. Координатная:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
 $a_{ij}, b_i, x_i \in \mathbb{R}$

2. Векторная:

$$x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{m2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$

или

$$x_1\vec{a_1} + x_2\vec{a_2} + \dots + x_n\vec{a_n} = \vec{b}$$

3. Матричная:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$AX = B \ (A\vec{x} = \vec{b})$$

СЛАУ называется совместной (несовместной), если она имеет (не имеет) решение.

1.16 Привести пример, показывающий, что умножение матриц некоммутативно.

Некомутативность произведение матриц: $AB \neq BA$ (как правило, но бывают исключения)

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} : AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow AB \neq BA$$

$$A = \begin{pmatrix} 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 4 \end{pmatrix} : AB = \begin{pmatrix} 11 \end{pmatrix}, BA = \begin{pmatrix} 3 & 6 \\ 4 & 8 \end{pmatrix} \Rightarrow AB \neq BA$$

1.17 Сформулировать свойства ассоциативности умножения матриц и дистрибутивности умножения относительно сложения.

Свойства умножения матриц:

- 1) Ассоциативность (AB)C = A(BC).
- 2) Дистрибутивность (A + B)C = AC + BC.

1.18 Сформулировать критерий Кронекера — Капелли совместности СЛАУ.

Система AX=B совместна \iff ранг расширенной матрицы равен рангу матрицы, т.е. Rg(A|B)=RgA

1.19 Сформулировать теорему о базисном миноре.

Теорема о базисном миноре:

- 1. Базисные строки (столбцы) матрицы A, соответствующие любому базисному минору M, линейно независимы.
- 2. Любые строки (столбцы) матрицы A, не входящие в базисный минор M, являются линейными комбинациями базисных строк (столбцов).

1.20 Сформулировать теорему о свойствах решений однородной СЛАУ.

Если $X^{(1)},...,X^{(S)}$ - решения однородной СЛАУ, то любая их линейная комбинация $X=\alpha_1X^{(1)}+...+\alpha_sX^{(S)}, \alpha_i\in\mathbb{R}$, тоже является решением.

1.21 Сформулировать теорему о структуре общего решения неоднородной СЛАУ.

Пусть X^0 - некоторое решение неоднородной СЛАУ AX=B,

 $X^{(1)},...,X^{(k)}$ - ФСР соответствующей однородной СЛАУ $AX=\Theta.$

Тогда любое решение X неоднородной СЛАУ AX = B можно представить в виде:

$$X = X^{0} + c_{1}X^{(1)} + \dots + c_{k}X^{(k)},$$

где $c_i \in \mathbb{R}, i = 1, ..., k$.

1.22 Сформулировать теорему о структуре общего решения однородной СЛАУ.

Пусть $X^{(1)},...,X^{(k)}$ - любая ФСР однородной СЛАУ $AX=\Theta$.

Тогда любое решение X этой системы можно представить как линейную комбинацию Φ CP:

$$X = c_1 X^{(1)} + ... + c_k X^{(k)},$$
 где $c_i \in \mathbb{R}$

1.23 Сформулировать теорему об инвариантности ранга при элементарных преобразованиях матрицы.

При элементарных преобразованиях матрицы ее ранг не меняется.

1.24 Сформулировать критерий существования обратной матрицы.

Для квадратной матрицы $A \exists$ обратная матрица $A^{-1} \iff det A \neq 0$ (т.е. когда A - невырожденная матрица).

2 Теоретические вопросы повышенной сложности

2.1 Доказать теорему о связи решений неоднородной и соответствующей однородной СЛАУ и теорему о структуре общего решения неоднородной СЛАУ.

Теорема (о связи решений неоднородной и соответствующей однородной СЛАУ).

Пусть X^0 - некоторое решение неоднородной СЛАУ AX = B, тогда:

X - решение этой же СЛАУ $\iff X = X^0 + Y$, где Y - некоторое решение соответствующей однородной СЛАУ $AX = \Theta$.

Доказательство

 (\Rightarrow)

Пусть X^0 , X - решения неоднородной СЛАУ AX = B. Рассмотрим $Y = X - X^0$ и найдем AY:

$$AY=A(X-X^0)=AX-AX^0=B-B=\Theta,$$
 т.е. $AY=\Theta,$ а значит, Y - решение однородной СЛАУ $AX=\Theta$ и $X=X^0+Y.$

 (\Leftarrow)

Пусть X^0 - решение неоднородной СЛАУ AX = B (т.е. $AX^0 = B$),

а Y - решение однородной СЛАУ $AX = \Theta$ (т.е. $AY = \Theta$).

Рассмотрим $X = X^0 + Y$ и найдем AX:

$$AX = A(X^{0} + Y) = AX^{0} + AY = B + \Theta = B$$
, т.е. X - решение неоднородной СЛАУ $AX = B$.

ЧТД

Теорема (о структуре общего решения неоднородной СЛАУ).

Пусть X^0 - некоторое решение неоднородной СЛАУ AX = B,

 $X^{(1)},...,X^{(k)}$ - ФСР (фундаментальная система решений) соответствующей однородной СЛАУ $AX=\Theta$.

Тогда любое решение X неоднородной СЛАУ AX = B можно представить в виде:

$$X = X^0 + c_1 X^{(1)} + ... + c_k X^{(k)}$$
, где $c_i \in \mathbb{R}, i = 1, ..., k$.

Доказательство

Пусть X^0 - некоторое решение неоднородной СЛАУ AX = B, X - любое решение той же системы.

Тогда по теореме о связи решений неоднородной и соответствующей однородной СЛАУ: $X = X^0 + Y$, где Y - некоторое решение соответствующей однородной СЛАУ.

По теореме о структуре общего решения однородной СЛАУ:

$$Y=c_1X^{(1)}+...+c_kX^{(k)}$$
, где $X^{(1)},...,X^{(k)}$ - ФСР однородной СЛАУ, $c_i\in\mathbb{R}$. Следовательно $X=X^0+c_1X^{(1)}+...+c_kX^{(k)}$.

2.2 Доказать свойства ассоциативности и дистрибутивности умножения матриц.

Свойство ассоциативности умножения матриц: (AB)C = A(BC)

Доказательство

$$\underbrace{(AB)C}_{D} = \underbrace{A(BC)}_{F}$$

Докажем, что матрицы X и Y:

- 1) имеют одинаковый тип,
- 2) их соответствующие элементы равны: $x_{ij}=y_{ij}$

матрицы типа
$$A = (a_{ij}) \quad m \times n$$

$$B = (b_{ij}) \quad n \times k$$

$$D = (d_{ij}) \quad m \times k$$

$$C = (c_{ij}) \quad k \times l$$

$$F = (f_{ij}) \quad n \times l$$

$$X = (x_{ij}) \quad \mathbf{m} \times \mathbf{l}$$

$$Y = (y_{ij}) \quad \mathbf{m} \times \mathbf{l}$$

$$x_{ij} = \sum_{r=1}^{k} d_{ir} c_{rj} = \sum_{r=1}^{k} (\sum_{s=1}^{n} a_{is} b_{sr}) c_{rj} = \sum_{r=1}^{k} (\sum_{s=1}^{n} a_{is} b_{sr} c_{rj}),$$

$$y_{ij} = \sum_{s=1}^{n} a_{is} f_{sj} = \sum_{s=1}^{n} (a_{is} (\sum_{r=1}^{k} b_{sr} c_{rj})) = \sum_{s=1}^{n} (\sum_{r=1}^{k} a_{is} b_{sr} c_{rj}) = \sum_{r=1}^{k} (\sum_{s=1}^{n} a_{is} b_{sr} c_{rj}), \text{ r.e. } x_{ij} = y_{ij}.$$

ЧТД

Свойство дистрибутивности умножения матриц: (A+B)C = AC + BC

Доказательство

$$\underbrace{\overbrace{(A+B)\,C}^Y}_X = \underbrace{(AC)}_Z + \underbrace{(BC)}_W$$
 Докажем, что матрицы Y и $Z+W$:

- 1) имеют одинаковый тип,
- 2) их соответствующие элементы равны: $y_{ij}=z_{ij}+w_{ij}$

матрицы	типа
$A = (a_{ij})$	$m \times n$
$B = (b_{ij})$	$m \times n$
$X = (x_{ij})$	$m \times n$
$C = (c_{ij})$	$n \times k$
$Y = (y_{ij})$	$\mathbf{m} \times \mathbf{k}$
$Z = (z_{ij})$	$\mathbf{m} \times \mathbf{k}$
$W = (w_{ij})$	$\mathbf{m} \times \mathbf{k}$

$$y_{ij} = \sum_{r=1}^{n} x_{ir} c_{rj} = \sum_{r=1}^{n} (a_{ir} + b_{ir}) c_{rj} = \sum_{r=1}^{n} (a_{ir} c_{rj} + b_{ir} c_{rj}) = \sum_{r=1}^{n} a_{ir} c_{rj} + \sum_{r=1}^{n} b_{ir} c_{rj} = z_{ij} + w_{ij}.$$

ЧТД

2.3 Доказать теорему о базисном миноре.

Теорема о базисном миноре

- 1. Базисные строки (столбцы) матрицы A, соответствующие любому базисному минору M, линейно независимы.
- 2. Любые строки (столбцы) матрицы A, не входящие в базисный минор M, являются линейными комбинациями базисных строк (столбцов).

Доказательство (для строк)

Пусть матрица $A=(a_{ij})$ имеет тип $m\times n$, пусть RgA=r и пусть M - базисный минор матрицы A.

Рассмотрим строки, на которых построен M. Это базисные строки матрциы A.

1. Докажем, что базисные строки линейно независимы.

Пусть от противного они линейно зависимы $\stackrel{\text{по критерию}}{\Rightarrow}$ хотя бы одна строка из них в матрице A является линейной комбинацией остальных \Rightarrow в миноре M хотя бы одна строка является линейной комбинацией остальных $\stackrel{\text{по св-ву det}}{\Rightarrow} \det M = 0$,

Противоречие, т.к. M - базисный минор.

2. Докажем, что любая строка матрицы A, не входящая в базисный минор M, является линейной комбинацией базисных строк.

Пусть базисный минор M расположен в верхнем левом углу матрицы A:

$$M = \begin{pmatrix} a_{11} & \dots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{r1} & \dots & a_{rr} \end{pmatrix}$$

Добавим к M любую i-ю **не базисную** строку и любой j-й столбец (возможно даже базисный):

$$\Delta_j = \begin{pmatrix} a_{11} & \dots & a_{1r} & a_{1j} \\ \vdots & & \vdots & \vdots \\ a_{r1} & \dots & a_{rr} & a_{rj} \\ a_{i1} & \dots & a_{ir} & a_{ij} \end{pmatrix}$$

Порядок Δ_j равен r+1, следовательно $\Delta_j=0$

Разложим Δ_i по последнему столбцу:

 $\Delta_j = a_{1j}A_{1j} + ... + a_{rj}A_{rj} + a_{ij}A_{ij} = 0$, где A_{kj} - это алгебраические дополнения элементов a_{kj} в Δ_j .

Заметим, что

1) эти алгебраические дополнения A_{kj} не зависят от номера j, т.к. при их вычислении j-й столбец вычеркивается.

2)
$$A_{ij} = (-1)^{(r+1)+(r+1)}M = (-1)^{2(r+1)}M = M \neq 0$$
,

Выразим элемент a_{ij} :

$$a_{ij} = \underbrace{\frac{-A_{1j}}{M}}_{b_1} a_{1j} - \dots - \underbrace{\frac{-A_{rj}}{M}}_{b_r} a_{rj}, \text{ r.e.}$$

 $a_{ij} = b_1 a_{1j} + ... + b_r a_{rj}$, где $b_1, ..., b_r$ не зависят от номера j.

Если поставить на место j-го столбца в Δ_j его 1-й столбец, то получим

$$\Delta_1 = \begin{pmatrix} a_{11} & \dots & a_{1r} & a_{11} \\ \vdots & & \vdots & \vdots \\ a_{r1} & \dots & a_{rr} & a_{r1} \\ a_{i1} & \dots & a_{ir} & a_{i1} \end{pmatrix}$$

и $\Delta_1 = a_{11}A_{1j} + \dots + a_{r1}A_{rj} + a_{i1}A_{ij}$,

выразим элемент a_{i1} :

$$a_{i1} = \underbrace{\frac{-A_{1j}}{M}}_{b_1} a_{11} - \dots - \underbrace{\frac{-A_{rj}}{M}}_{b_r} a_{r1}, \text{ r.e.}$$

 $a_{i1} = b_1 a_{11} + ... + b_r a_{r1}$, (с теми же коэффициентами $b_1, ..., b_r$).

Аналогично ставим на место j-го столбца в Δ остальные столбцы по очереди и будем получать аналогичные равенства, в частности,

$$a_{ir} = b_1 a_{1r} + \dots + b_r a_{rr}.$$

Следовательно, вся i-я строка матрицы A является линейной комбинацией ее первых r строк (базисных) с коэффициентами $b_1, ..., b_k$.

2.4 Доказать критерий существования обратной матрицы.

критерий существования обратной матрицы

Для квадратной матрицы $A \exists$ обратная матрица $A^{-1} \iff det A \neq 0$ (т.е. когда A - невырожденная матрица).

Доказательство

 (\Rightarrow)

Пусть $\exists A^{-1}$. Докажем, что $det A \neq 0$.

По определению обратной матрицы,

$$AA^{-1} = E.$$

Возьмем det от левой и правой части:

$$det(AA^{-1}) = detE$$

По свойствам det:

$$det A \cdot det A^{-1} = 1,$$

произведение чисел равно $1 \to det A \neq 0$, $det(A^{-1}) \neq 0$.

 (\Leftarrow)

Пусть $det A \neq 0$.

- 1. Построим матрицу A^{-1} :
 - 1) Найдем \forall алгебраические дополнения A_{ij} и составим из них матрицу (A_{ij}) .
 - 2) Транспонируем матрицу (A_{ij}) :

$$(A_{ji}) = (A_{ij})^T$$

- 3) Рассмотрим матрицу $B=(b_{ij})$, где $b_{ij}=\frac{A_{ji}}{det A}$, т.е. $B=\frac{1}{det A}(A_{ji})$
- 2. Проверим, что построенная матрица B и будет A^{-1} .

В самом деле, B - квадратная и осталось проверить, что AB = E (и BA = E).

Обозначим AB через $C = (c_{ik})$

Найдем
$$c_{ik} = \sum_{j=1}^n a_{ij} b_{jk} = \sum_{j=1}^n a_{ij} \frac{A_{kj}}{\det A} = \frac{1}{\det A} \sum_{j=1}^n a_{ij} A_{kj} = \begin{cases} 1, i = k \\ 0, i \neq k \end{cases}$$

т.к.
$$\sum_{j=1} a_{ij} A_{kj} = \begin{cases} det A, i = k \\ 0, i \neq k \text{ (по т. о "фальшивом" разложении определителя*)} \end{cases}$$

Следовательно, C=E, и AB=E. Аналогично показывается, что BA=E. Из $1,2\Rightarrow B$ является A^{-1} для A.

2.5 Доказать критерий Кронекера — Капелли совместности СЛАУ.

Критерий Кронекера — Капелли совместности СЛАУ

Система AX=B совместна \iff ранг расширенной матрицы = рангу матрицы, т.е. Rg(A|B)=RgA

Доказательство

 (\Rightarrow)

Пусть система AX = B совместна. Докажем, что Rg(A|B) = RgA.

- 1) Столбцы матрицы A являются столбцами матрицы $(A|B)\Rightarrow RgA\leqslant Rg(A|B)$
- 2) Докажем, что $RqA \geqslant Rq(A|B)$

Т.к. система AX=B совместна, то \exists ее решение $x_1,...,x_n:x_1\vec{a_1}+...+x_n\vec{a_n}=\vec{b}$

Пусть $\vec{a_1},...\vec{a_k}$ - базисные столбцы в матрице $A \Rightarrow$ по теореме о базисном миноре, столбцы $\vec{a_{k+1}},...,\vec{a_n}$ выражаются через столбцы $\vec{a_1},...\vec{a_k} \Rightarrow$ столбец \vec{b} выражается через $\vec{a_1},...,\vec{a_k} \Rightarrow$ $\vec{a_1},...,\vec{a_k}$ - базисные столбцы в матрице (A|B).

Это означает, что число базисных столбцов в матрице (A|B) не может быть больше числа базисных столбцов в матрице $A \Rightarrow Rg(A|B) \leqslant RgA$.

Из
$$1), 2) \Rightarrow Rg(A|B) = RgA.$$

(⇔)

Пусть Rq(A|B) = RqA.

Докажем, что система AX = B совместна.

Пусть M - базисный минор в A ($M \neq 0$ и максимального порядка) $\Rightarrow M$ будет базисным минором в (A|B).

Пусть M расположен в столбцах $\vec{a_1},...\vec{a_k}$ в $A\Rightarrow\vec{a_1},...\vec{a_k}$, будут базисными столбцами и в A и в (A|B).

Выразим через них столбец \vec{b} (это можно сделать по теореме о базисном миноре):

$$x^0\vec{a_1}+...+x_k^0\vec{a_k}=\vec{b}$$
 (с какими-то $x_1^0,...,x_k^0)$

Дополним это равенство:

$$x^{0}\vec{a_{1}} + \dots + x^{0}_{k}\vec{a_{k}} + 0\vec{a_{k+1}} + \dots + 0\vec{a_{n}} = \vec{b}$$

Эта запись является векторной записью СЛАУ AX = B;

Она означает, что $x_1=x_1^0,...,x_k=x_k^0,x_{k+1}=0,...,x_n=0$ является решением СЛАУ AX=B, т.е. система совместна.

2.6 Доказать теорему о существовании ФСР однородной СЛАУ.

Теорема (о существовании ФСР однородной СЛАУ)

Пусть дана однородная СЛАУ $AX = \Theta$ с n неизвестными $x_1, ..., x_n$, и пусть RgA = r < n. Тогда для нее \exists ФСР (т.е. \exists набор из k = n - r линейно независимых решений $X^{(1)}, ..., X^{(k)}$)

Доказательство

- (1) Построение ФСР
 - 1) Дана система $AX = \Theta$ с n неизвестными $x_1, ..., x_n$, и, RgA = r < n. Можно считать, что базисным минором порядка r является $M_{1...r}^{1...r}$

Строки (r+1)-я, ..., n-я матрицы A являются линейными комбинациями базисных строк 1-й, ..., r-й \Rightarrow уравнения (r+1)-е, ..., n-е можно отбросить.

$$\begin{cases} a_{11}x_1 + \dots + a_{1r}x_r + a_{1r}x_r + a_{1r}x_r + \dots + a_{1n}x_n = 0 \\ \vdots \\ a_{r1}x_1 + \dots + a_{rr}x_r + a_{rr}x_r + \dots + a_{rn}x_n = 0 \end{cases}$$

2) Переменные $x_1, ..., x_r$ - базисные,

 $x_{r+1},...,x_n$ - свободные.

Выразим базисные через свободные:

$$\begin{cases} a_{11}x_1 + \dots + a_{1r}x_r = -a_{1r+1}x_{r+1} - \dots - a_{1n}x_n \\ \vdots \\ a_{r1}x_1 + \dots + a_{rr}x_r = -a_{rr+1}x_{r+1} - \dots - a_{rn}x_n \end{cases}$$

 \forall набора $x_{r+1},...,x_n$ получим СЛАУ из r уравнений с r неизвестными $x_1,...,x_r,$ det системы = $M_{1...r}^{1...r} \neq 0 \Rightarrow$ по теореме Крамера эта система имеет единственное решение.

3) Будем придавать свободным переменным различные значения:

$$x_{r+1} = 1$$
, $x_{r+2} = 0$, ..., $x_n = 0$;
 $x_{r+1} = 0$, $x_{r+2} = 1$, ..., $x_n = 0$;
 \vdots
 $x_{r+1} = 0$, $x_{r+2} = 0$, ..., $x_n = 1$.

Для каждого набора значений свободных переменных найдем базисные, получим решение системы:

$$\begin{pmatrix} x_1^{(1)} \\ \vdots \\ x_r^{(1)} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} x_1^{(2)} \\ \vdots \\ x_r^{(2)} \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, ..., \begin{pmatrix} x_1^{(k)} \\ \vdots \\ x_r^{(k)} \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}, \text{Обозначим их } X^{(1)}, X^{(2)}, ..., X^{(k)}, k = n-r.$$

(2) Покажем, что мы построили именно ФСР

 $X^{(1)},...,X^{(k)}$ - решения (по построению), их k=n-r.

Осталось доказать, что $X^{(1)},...,X^{(k)}$ - линейно независимы.

Рассмотрим линейную комбинацию $\alpha_1 X^{(1)} + ... + \alpha_k X^{(k)} = \Theta$. Из последних строк имеем:

Из
$$(r+1)$$
-й строки: $\alpha_1\cdot 1+\alpha_2\cdot 0+...+\alpha_k\cdot 0=0\Rightarrow \alpha_1=0$

Из
$$(r+2)$$
-й строки: $\alpha_1 \cdot 0 + \alpha_2 \cdot 1 + ... + \alpha_k \cdot 0 = 0 \Rightarrow \alpha_2 = 0$

...

Из
$$(n)$$
-й строки: $\alpha_1 \cdot 0 + \alpha_2 \cdot 0 + ... + \alpha_k \cdot 1 = 0 \Rightarrow \alpha_k = 0$,

Следовательно $X^{(1)},...,X^{(k)}$ линейно независимы. Мы построили Φ СР.

ЧТД

2.7 Вывести формулы Крамера для решения системы линейных уравнений с обратимой матрицей.

Теорема

СЛАУ AX=B, где A - квадратная и $det A\neq 0$, имеет единственное решение, причем $x_1=\frac{\Delta_1}{\Delta},...,x_n=\frac{\Delta_n}{\Delta},\Delta=det A$

$$\Delta_1 = \begin{vmatrix} b_1 & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_n & a_{n2} & \dots & a_{nn} \end{vmatrix}, \dots, \Delta_n = \begin{vmatrix} a_{11} & \dots & a_{1n-1} & b_1 \\ \vdots & \vdots & & \vdots \\ a_{n1} & \dots & a_{nn-1} & b_n \end{vmatrix}.$$

Доказательство

СЛАУ AX=B, где $A-(n\times n), X-(n\times 1), B-(n\times 1)$ является часным случаем матричного уравнения. По условию $det A\neq 0 \Rightarrow \exists A^{-1}\Rightarrow$ решение матричного уровнения однозначно находится $X=A^{-1}B$

Распишем нахождение решения X более подробно: $A^{-1}=\frac{1}{det A}A^*=\frac{1}{\Delta}(A_{ji})$, где A^* - присоединенная матрица.

$$X = A^{-1}B \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \frac{1}{\Delta} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} A_{11}b_1 & A_{21}b_2 & \dots & A_{n1}b_n \\ A_{12}b_1 & A_{22}b_2 & \dots & A_{n2}b_n \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n}b_1 & A_{2n}b_2 & \dots & A_{nn}b_n \end{pmatrix}$$

Следовательно
$$x_1 = \frac{b_1 A_{11} + b_2 A_{21} + \ldots + b_n A_{n1} +}{\Delta} = \frac{\begin{pmatrix} b_1 & a_{12} & \ldots & a_{1n} \\ b_2 & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n2} & \ldots & a_{nn} \end{pmatrix}}{\Delta} = \frac{\Delta_1}{\Delta}, \text{ и тд, } x_n = \frac{\Delta_n}{\Delta}$$

ЧТД

2.8 Доказать теорему о структуре общего решения однородной СЛАУ.

теорема (о структуре общего решения однородной СЛАУ)

Пусть $X_1^{(1)},...,X_k^{(k)}$ - любая ФСР однородной СЛАУ $AX=\Theta$ Тогда любое решение X этой системы можно представить как линейную комбинацию ФСР: $X=c_1X^{(1)}+...+c_kX^{(k)}$, где $c_i\in\mathbb{R}$.

Доказательство

Рассмотрим матрицу B, состоящую из столбцов X и $X^{(1)},...,X^{(k)}$:

$$B = \begin{pmatrix} x_1 & \dots & x_1^{(1)} & \dots & x_1^{(k)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_r & \dots & x_r^{(1)} & \dots & x_r^{(k)} \\ x_{r+1} & \dots & x_{r+1}^{(1)} & \dots & x_{r+1}^{(k)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_n & \dots & x_n^{(1)} & \dots & x_n^{(k)} \end{pmatrix}$$

Напомним, что в системе $AX=\Theta, RgA=r:x_1,...,x_r$ - базисные неизвестные, $x_{r+1},...,x_n$ - свободные

Докажем, что RqB = k.

Тогда, т.к. столбцы $X^{(1)},...,X^{(k)}$ по определению ФСР линейно независимы и их k штук, по следствию 2 из теоремы о базисном миноре (ранг матрицы равен максимальному количеству ее линейно независимых столбцов(строк)) столбцы $X^{(1)},...,X^{(k)}$ являются базисными. Следовательно, по п2 теоремы о базисном миноре, столбец X является их линейной комбинацией. 1) $RgB\geqslant k$, т.к. RgB равен максимальному количеству линейно независимых столбцов(строк) матрицы, а мы знаем, что r столбцов матрицы B линейно независимы.

2) Докажем, что $RqB \leqslant k$.

Для этого с помощью элементарных преобразований получим из B матрицу B' вида

$$B \sim B' = \begin{pmatrix} 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 \\ * & \dots & * & \dots & * \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ * & \dots & * & \dots & * \end{pmatrix} \Rightarrow RgB = RgB' \leqslant k$$

Как получить матрицу B'?

Базисные неизвестные (первые r штук) однозначно выражаются через свободные (последние n-r=k штук). Следовательно в матрице B вся первая строка является линейной комбинацией последних k строк. Вычтем из первой строки линейную комбинацию k последних строк. Получим нулевую строку. Аналогично в матрице B вся вторая строка является линейной комбинацией k последних строк. Вычтем из второй строки линейную комбинацию k последних. Получим нулевую строку. И т.д. до r-ой строки матрицы B. Получили B'. Из 1, 2) $\Rightarrow RgB = k$.

ЧТД