Το Μοντέλο SIR

Δημήτρης Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

SIR Μοντέλο

- (Κομψό) μαθηματικό μοντέλο για διάδοση μεταδοτικών ασθενειών (γρίπη, ευλογιά, corona, κλπ.)
 - Προτάθηκε από Kermack και McKendrick (1927).
 - Εφαρμόζεται όταν αναρρώσαντες έχουν μόνιμη ανοσία.
 - Μπορεί να γενικευθεί, λαμβάνοντας υπόψη χωρικά χαρακτηριστικά και κοινωνικό δίκτυο.
- Διαμέριση πληθυσμού σε τρεις κατηγορίες:
 - Σύνολο S: ἀτομα που είναι ευάλωτα (susceptible).
 - Σύνολο Ι: ἀτομα που ἐχουν προσβληθεί και μεταδίδουν την ασθένεια (infectious).
 - Σύνολο R: ἀτομα που έχουν αναρρώσει (recovered).

SIR Μοντέλο – Εξισώσεις

- Έστω N ο συνολικός πληθυσμός.
 - S_t, I_t και R_t πλήθος Susceptible, Infectious και Recovered τη χρονική στιγμή t (π.χ., 6ώρο, ημέρα, 3μέρο, εβδομάδα).
 - Προφανώς, $S_+ + I_+ + R_+ = N$, για κάθε t.
 - β ο ρυθμός μετάδοσης
 - 1/γ χρονικό διάστημα που άτομο παραμένει infectious.
- Για κάθε χρονική στιγμή t,
 - $S_0 = N k$, $I_0 = k$, $R_0 = 0$
 - β S_t / N: πόσους «κολλά» κάθε infectious σε κάθε χρονική στιγμή.
 - Υ I_t: πόσοι infectious γίνονται «καλά» σε κάθε χρονική στιγμή.

$$S_{t+1} = S_t - \frac{\beta S_t}{N} I_t$$

$$I_{t+1} = I_t - \gamma I_t + \frac{\beta S_t}{N} I_t$$

$$R_{t+1} = R_t + \gamma I_t$$

SIR Moντέλο - Εξέλιξη

Για κάθε χρονική στιγμή t,
$$S_{t+1} = S_t - rac{eta S_t}{N} I_t$$

$$I_{t+1} = I_t - \gamma I_t + \frac{\beta S_t}{N} I_t$$

Basic reproduction ratio $R_0 = \beta / \gamma$

Ρυθμός εξάπλωσης της νόσου και βαθμός διάδοσής της στον

πληθυσμό.

 $'O\sigma o N / S_t < R_0$ εξάπλωση.

Όταν $N / S_t > R_0$ συρρίκνωση.

SIR Μοντέλο – Έλεγχος Διάδοσης

Για κάθε χρονική στιγμή t,
$$S_{t+1} = S_t - rac{eta S_t}{N} I_t$$
 $I_{t+1} = I_t - \gamma I_t + rac{eta S_t}{N} I_t$

- Μέθοδοι ελέγχου διάδοσης:
 - Εμβόλιο: εμβολιασμένος πληθυσμός αφαιρείται από S και προστίθεται σε R_∩.
 - Φάρμακα μειώνουν διάστημα 1 / γ που κάποιος παραμένει infectious, άρα αυξάνουν γ.
 - Καραντίνα / social distancing μειώνουν επαφές μεταξύ infectious και susceptible, άρα μειώνουν β.

SIR Μοντέλο - Ισορροπία

 \square Σε συνθήκες ισορροπίας, $S = S - \frac{\beta S}{N}I$ πρέπει να ισχύει ότι:

$$S = S - \frac{\beta S}{N}I$$
$$I = I - \gamma I + \frac{\beta S}{N}I$$

- □ Άρα πρέπει β S I = 0 και β S I = γ N I.
 - β S I = γ N I: av S = 0, τότε και I = 0.
- □ I = 0 ικανοποιεί σχέσεις ισορροπίας χωρίς περιορισμό σε S.
 - Επιδημία σταματά μόνο όταν δεν υπάρχουν άλλοι infectious!