The Riemann-Stieltjes Integral

Aditya Dwarkesh

April 2021

Answer 2. If $f(x) = \epsilon > 0$ at some point $x = x_0$, then by continuity, there exists an $\delta > 0$ such that $f(x) > \frac{\epsilon}{2}$ for $x \in (x_0 - \delta, x_0 + \delta)$.

 $\int_a^b f(x) dx \ge L(P, f) \ge \frac{\epsilon \delta}{2} > 0$ for any partition P, contradicting the fact that the integral equals 0. Thus, f(x) = 0 for all $x \in [a, b]$.

Answer 4. It is clear that L(P,f)=0 for all partitions P. We need to show that there exists an $\epsilon>0$ such that $U(P, f) > \epsilon$ for all partitions P.

By the Archimedean property, sup f(x) = 1 for any interval. Thus, $U(P, f) = (b - a) > \frac{b - a}{2} > 0$, and we are done.

Answer 5. No. For a counterexample, we may construct f(x) = -1 for all irrational x, f(x) = 1 for all rational x. This is not Riemann integrable as shown above, but $f^2(x) = 1$ everywhere, and is thus

Taking $\phi(x) = x^{\frac{1}{3}}, h(x) = f^3(x) \implies \phi(h(x)) = f(x)$. Since $\phi(x)$ is continuous and h(x) is Riemann integrable, f(x) is Riemann integrable.

Answer 8. Note that, since f is monotonically decreasing, $f(n+1) \le f(x) \le f(n) \implies f(n+1) \le f(n+1) \le$

Therefore, $\sum_{n=1}^{N} f(n) \le \sum_{n=1}^{N} \int_{n}^{n+1} f(x) dx \le \sum_{n=1}^{N} f(n) \implies \sum_{n=2}^{N+1} f(n) \le \int_{1}^{N+1} f(x) dx \le \int_{1$

Letting $N \to \infty$ gives us the required bi-implication.