Path Detection: A Quantum Computing Primitive

Shelby Kimmel

University of Maryland

Things Quantum Computers are Good at:

- Factoring
 - Exponential speed-up over known classical algorithms
 - Can be used to break most commonly used public key crypto systems
- Simulating chemistry
 - Exponential speed-up over known classical algorithms
 - Useful for drug development, better carbon sequestration

Need quantum algorithmic primitives

- Need quantum algorithmic primitives
 - I. Apply to a wide range of problems
 - 2. Easy to understand and analyze (without knowing quantum mechanics)

- Need quantum algorithmic primitives
 - I. Apply to a wide range of problems
 - 2. Easy to understand and analyze (without knowing quantum mechanics)
 - Ex: Searching unordered list of n items
 - Classically, takes O(n) time
 - Quantumly, takes $O(\sqrt{n})$ time

- Need quantum algorithmic primitives
 - I. Apply to a wide range of problems
 - 2. Easy to understand and analyze (without knowing quantum mechanics)
 - Ex: Searching unordered list of n items
 - Classically, takes O(n) time
 - Quantumly, takes $O(\sqrt{n})$ time
- New primitive: *st*-connectivity

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Applies to a wide range of problems
 - 2. Easy to understand (without knowing quantum mechanics)

st-connectivity

st-connectivity: is there a path from s to t?

st-connectivity

st-connectivity: is there a path from s to t?

Black Box Model

Figure of Merit

- Query Complexity
 - Number of uses (queries) of the black box
 - All other operations are free
 - Always a lower bound on time complexity (situation when other operations are not free)
 - Often (but not always) a good proxy for time complexity
- Under mild assumption, for our algorithm, quantum query complexity \cong quantum time complexity
- In query model it is easier to prove
 - Quantum-to-classical speed-ups
 - Optimality

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Applies to a wide range of problems
 - 2. Easy to understand (without knowing quantum mechanics)

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Applies to a wide range of problems
 - Evaluating Boolean formulas reduces to st-connectivity
 - 2. Easy to understand (without knowing quantum mechanics)

Boolean Formula Applications

- Logic
- Designing electrical circuits
- Game theory (deciding who will win a game)
- Combinatorics and graph problems
- Linear programming
- Testing potential solution to an NP-complete problem

s and t are connected if all subgraphs are connected

AND: outputs 1 if all input subformulas have value 1

Outline:

- A. Introduction to Quantum Algorithms and st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Applies to a wide range of problems
 - Evaluating Boolean formulas reduces to st-connectivity
 - 2. Easy to understand (without knowing quantum mechanics)

Planar Graph

Not Planar

Planar Graph including (s, t) Edge

Can add an edge from s to t and graph is still planar

Planar Graph including (s, t) Edge

Can add an edge from s to t and graph is still planar

Graph created during reduction from Boolean formula problem has this property by construction.

Valid flow:

- 1 unit in at s
- 1 unit out at t
- At all other nodes, zero net flow

Flow energy:

$$\sum_{edges} (flow on edge)^2$$

Flow energy:

$$\sum_{edges} (flow on edge)^2$$

Effective Resistance: $R_{s,t}(G)$ Smallest energy of any valid flow from sto t on G.

Flow energy:

$$\sum_{edges} (flow on edge)^2$$

Effective Resistance: $R_{s,t}(G)$ Smallest energy of any valid flow from sto t on G.

Properties of $R_{s,t}(G)$

- Small if many short paths from s to t
- Large if few long paths from s to t
- Infinite if s and t not connected

Algorithm Performance:

Planar graph[†] st-connectivity algorithm complexity =

$$O\left(\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G \in \mathcal{H}: not\ connected} R_{s',t'}(G')}\right)$$

 \dagger with (s, t) added also planar

• If an edge is not present in G, it is present in G'

If there is an st-path, S there is no s't'-path. If there is an s't'-path, there is no st-path. 3

Algorithm Performance:

Planar graph[†] st-connectivity algorithm complexity =

$$O\left(\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G \in \mathcal{H}: not \ connected} R_{s',t'}(G')}\right)$$

 \dagger with (s, t) added also planar

What is quantum complexity of deciding $AND(x_1, x_2, ..., x_N)$, promised

- All $x_i = 1$, or
- At least \sqrt{N} input variables are 0.

What is quantum complexity of deciding $AND(x_1, x_2, ..., x_N)$, promised

- All $x_i = 1$, or
- At least \sqrt{N} input variables are 0.

- s and t are connected, or
- At least \sqrt{N} edges are missing

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G \in \mathcal{H}: not \ connected} R_{s',t'}(G')}$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G \in \mathcal{H}: not \ connected} R_{s',t'}(G')}$$

$$\max_{G \in \mathcal{H}: connected} R_{s,t}(G) = N$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G \in \mathcal{H}: not \ connected} R_{s',t'}(G')}$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G \in \mathcal{H}: not \ connected} R_{s',t'}(G')}$$

$$\max_{G \in \mathcal{H}: not \ connected} R_{s,t}(G') = 1/\sqrt{N}$$

What is quantum complexity of deciding if

- s and t are connected, or
- At least \sqrt{N} edges are missing

Quantum complexity is $O(N^{1/4})$

What is quantum complexity of deciding if

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G \in \mathcal{H}: not \ connected} R_{s',t'}(G')}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$N \qquad \qquad 1/\sqrt{N}$$

Quantum complexity is $O(N^{1/4})$

Randomized classical complexity is $\Omega(N^{1/2})$

Algorithm Performance:

Planar graph[†] st-connectivity algorithm complexity =

$$O\left(\sqrt{\max_{G\in\mathcal{H}:connected}R_{s,t}(G,w)}\sqrt{\max_{G\in\mathcal{H}:not\ connected}R_{s',t'}(G',w)}\right)$$

 \dagger with (s, t) added also planar

- Improvement over previous quantum st —connectivity algorithm
 - Find a family of graphs with N edges such that our algorithm uses O(1) queries, previous best algorithm uses $O(N^{1/4})$ queries

- Improvement over previous quantum st —connectivity algorithm
 - Find a family of graphs with N edges such that our algorithm uses O(1) queries, previous best algorithm uses $O(N^{1/4})$ queries
 - Balloon graph: our algorithm uses $O(N^{1/2})$ queries, previous best algorithm uses O(N) queries

- Improvement over previous quantum st —connectivity algorithm
 - Find a family of graphs with N edges such that our algorithm uses O(1) queries, previous best algorithm uses $O(N^{1/4})$ queries
 - Balloon graph: our algorithm uses $O(N^{1/2})$ queries, previous best algorithm uses O(N) queries

- Series-parallel graphs, our algorithm uses $O(N^{1/2})$ queries, previous best algorithm uses O(N) queries

- Comparison to previous Boolean formula algorithm
 - Match celebrated result that $O(\sqrt{N})$ queries required for total read-once Boolean formulas, but proof is simple!
 - Extend super-polynomial quantum to classical speed-up for families of NAND-trees [ZKH'12, K'13]

Open Questions

- When is our algorithm optimal for Boolean formulas? (Especially partial/read-many formulas)
- Can we extend these ideas to non-planar graphs? (Yes!)
- Are there other problems that reduce to st-connectivity?
- What is the classical time/query complexity of st-connectivity in the black box model?
- Does our reduction from formulas to connectivity give good classical algorithms too?
- Can we use this graph dual idea to improve other quantum algorithms?

arXiv:1704.00765, with Stacey Jeffery

Other interests

- Statistical inference and machine learning applied to quantum characterization problems
- Quantum complexity theory, especially quantum versions of NP

