Fine-Tuning BERT to Understand Semantic Textual Relatedness

Justin Liu

Data

- <u>Abdalla et al. (2023)</u>: What Makes Sentences Semantically Related? A Textual Relatedness
 Dataset and Empirical Study
 - 5500 pairs of English sentences, each with a score ranging from 0 (completely unrelated) to 1 (maximally related) indicating how similar the sentences are in meaning (i.e., degree of semantic relatedness)
 - The scores were obtained using comparative annotation (sentence pairs are presented together, and each annotator ranks them from most to least similar)

Score	Sentence 1	Sentence 2	
1.0	No, I really didn't want New York to win.	No I didn't want New York to win	
0.88	Excuse me, but perhaps you misunderstand me.	I'm sorry, but I don't think you understood me	
0.34	Two men standing in grass staring at a car	Two women sitting in chairs in a shop	
0.06	This isn't an English sentence	Life isn't always like that	

Using BERT on its own

- BERT is a popular language model that was released by Google in 2018
- BERT is not specifically made for sentence similarity tasks, so we need to fine-tune it

- However, BERT outputs embeddings, not similarity scores!
 - Without these scores, we can't update the model weights

Solution: Siamese BERT model architecture

- 5) Get a cosine similarity score between
- -1 (very different) and 1 (very similar)
- **4)** The token embeddings are pooled together (usually by taking the mean) to get an overall sentence embedding
- **3)** Each token is turned into a 768-dimensional embedding
- 2) The sentences are tokenized
- 1) 2 sentences are taken as input

Source: The Python Code

Loss function and models

Loss function

 Cosine similarity loss: tries to minimize the error between the predicted and actual similarity scores

Models

- BERT
- Distilbert: smaller version of BERT
- RoBERTa: trained on more data and for more time than BERT
- MiniLM: BERT model pretrained on sentence similarity task (for comparison with the other BERT models)

Source: The Python Code

Fine-tuning the models

- Each model was trained for 10 epochs
 - MiniLM model (pretrained): around 40 minutes
 - BERT models (not pretrained): ranged from 2.5 ~ 5 hours
- Spearman's correlation between predicted and actual similarity scores increased for all models
 - Much bigger difference for BERT models compared to MiniLM

The red line represents a perfect prediction of the data

Results of fine-tuning

- MiniLM performed the best across all metrics
 - This makes sense, given that it was trained for sentence similarity tasks
- However, the fine-tuned BERT models have similar performance
 - This shows that BERT models can also learn this task, given the right model architecture

		BERT	DistilBERT	RoBERTa	MiniLM
	Before training	0.58619	0.62125	0.56774	0.82041
Spearman's ρ	After training	0.83162	0.82300	0.83659	0.85417
	Before training	0.09184	0.13874	0.27248	0.02043
MSE	After training	0.01671	0.01710	0.01650	0.01461
	Before training	0.25653	0.32793	0.47468	0.11252
MAE	After training	0.10302	0.10379	0.10154	0.09795