Convex Functions and Sets

Chee Wei Tan

Convex Optimization and its Applications to Computer Science

Outline

- Convex sets and examples
- Separating and supporting hyperplanes
- Convex functions and examples
- Conjugate functions

Convex Set

Set C is a convex set if the line segment between any two points in C lies in C, ie, if for any $x_1, x_2 \in C$ and any $\theta \in [0, 1]$, we have

$$\theta x_1 + (1 - \theta)x_2 \in C$$

Convex hull of C is the set of all convex combinations of points in C:

$$\left\{ \sum_{i=1}^{k} \theta_i x_i | x_i \in C, \theta_i \ge 0, i = 1, 2, \dots, k, \sum_{i=1}^{k} \theta_i = 1 \right\}$$

Can generalize to infinite sums and integrals

Examples

Examples of Convex Sets

• Hyperplane in \mathbf{R}^n is a set: $\{x|a^Tx=b\}$ where $a\in\mathbf{R}^n, a\neq 0, b\in\mathbf{R}$ Divides \mathbf{R}^n into two halfspaces: eg, $\{x|a^Tx\leq b\}$ and $\{x|a^Tx>b\}$

 Polyhedron is the solution set of a finite number of linear equalities and inequalities (intersection of finite number of halfspaces and hyperplanes)

Examples of Convex Sets

• Euclidean ball in \mathbb{R}^n with center x_c and radius r:

$$B(x_c, r) = \{x | ||x - x_c||_2 \le r\} = \{x_c + ru | ||u||_2 \le 1\}$$

Verify its convexity by triangle inequality

Generalize to ellipsoids:

$$\mathcal{E}(x_c, P) = \{x | (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

P: symmetric and positive definite. Lengths of semi-exes of $\mathcal E$ are $\sqrt{\lambda_i}$ where λ_i are eigenvalues of P

Convexity-Preserving Operations

- Intersection.
- Example: $S = \left\{ x \in \mathbf{R}^m | |p(t)| \le 1 \text{for} |t| \le \frac{\pi}{3} \right\}$ where $p(t) = \sum_{k=1}^m x_k \cos kt$.
- Since $S = \bigcap_{|t| \leq \frac{\pi}{3}} S_t$, where $S_t = \{x | -1 \leq (\cos t, \dots, \cos mt)^T x \leq 1\}$, S is convex

Convexity-Preserving Operations

• Linear-fractional functions: $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d}$$
, $\mathbf{dom} f = \{x | c^T x + d > 0\}$

- ullet If set C in $\operatorname{dom} f$ is convex, image f(C) is also convex set
- Example: $p_{ij} = \mathbf{Prob}(X = i, Y = j), q_{ij} = \mathbf{Prob}(X = i | Y = j).$ Since

$$q_{ij} = \frac{p_{ij}}{\sum_{k} p_{kj}},$$

if C is a convex set of joint prob. for (X,Y), the resulting set of conditional prob. of X given Y is also convex

Separating Hyperplane Theorem

• C and D: non-intersecting convex sets, i.e., $C \cap D = \phi$. Then there exist $a \neq 0$ and b such that $a^Tx \leq b$ for all $x \in C$ and $a^Tx \geq b$ for all $x \in D$.

Separating Hyperplane Theorem: Application

• Theorem of alternatives for strict linear inequalities:

$$Ax \prec b$$

are infeasible if and only if there exists $\lambda \in \mathbf{R}^m$ such that

$$\lambda \neq 0, \ \lambda \geq 0, \ A^T \lambda = 0, \ \lambda^T b \leq 0.$$

Supporting Hyperplane Theorem

• Given a set $C \in \mathbf{R}^n$ and a point x_0 on its boundary, if $a \neq 0$ satisfies $a^Tx \leq a^Tx_0$ for all $x \in C$, then $\{x|a^Tx = a^Tx_0\}$ is called a supporting hyperplane to C at x_0

• For any nonempty convex set C and any x_0 on boundary of C, there exists a supporting hyperplane to C at x_0 , i.e., there is a vector $a \in \mathbb{R}^n, a \neq 0$, such that

$$\sup_{z \in C} a^T z \le a^T x_0.$$

Convex Functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is a convex function if $\operatorname{dom} f$ is a convex set and for all $x,y \in \operatorname{dom} f$ and $\theta \in [0,1]$, we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

f is strictly convex if strict inequality above for all $x \neq y$ and $0 < \theta < 1$

f is concave if -f is convex

Affine functions are convex and concave

Conditions of Convex Functions

1. For differentiable functions, f is convex iff

$$f(y) - f(x) \ge \nabla f(x)^T (y - x)$$

for all $x, y \in \operatorname{dom} f$, and $\operatorname{dom} f$ is convex

- $f(y) \ge \tilde{f}_x(y)$ where $\tilde{f}_x(y)$ is first order Taylor expansion of f(y) at x.
- Local information (first order Taylor approximation) about a convex function provides global information (global underestimator).
- If $\nabla f(x) = 0$, then $f(y) \geq f(x), \ \forall y$, thus x is a global minimizer of f

Conditions of Convex Functions

2. For twice differentiable functions, f is convex iff

$$\nabla^2 f(x) \succeq 0$$

for all $x \in \operatorname{dom} f$ (upward slope) and $\operatorname{dom} f$ is convex

3. f is convex iff for all $x \in \operatorname{dom} f$ and all v,

$$g(t) = f(x + tv)$$

is convex on its domain $\{t \in \mathbf{R} | x + tv \in \mathbf{dom} f\}$

Examples of Convex or Concave Functions

- e^{ax} is convex on **R**, for any $a \in \mathbf{R}$
- x^a is convex on \mathbf{R}_{++} when $a \geq 1$ or $a \leq 0$, and concave for $0 \leq a \leq 1$
- $|x|^p$ is convex on **R** for $p \ge 1$
- $\log x$ is concave on \mathbf{R}_{++}
- $x \log x$ is strictly convex on \mathbf{R}_{++}
- Every norm on \mathbb{R}^n is convex
- $f(x) = \log \sum_{i=1}^{n} e^{x_i}$ is convex on \mathbf{R}^n

Convexity-Preserving Operations

- $f = \sum_{i=1}^{n} w_i f_i$ convex if f_i are all convex and $w_i \geq 0$
- g(x) = f(Ax + b) is convex iff f(x) is convex
- $f(x) = \max\{f_1(x), f_2(x)\}$ convex if f_i convex, e.g., sum of r largest components is convex
- f(x) = h(g(x)), where $h : \mathbf{R}^k \to \mathbf{R}$ and $g : \mathbf{R}^n \to \mathbf{R}^k$. If k = 1: $f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$. So

f is convex if h is convex and nondecreasing and g is convex, or if h is convex and nonincreasing and g is concave ...

• $g(x) = \inf_{y \in C} f(x, y)$ is convex if f is convex and C is convex

Conjugate Function

Given $f: \mathbb{R}^n \to \mathbb{R}$, conjugate function $f^*: \mathbb{R}^n \to \mathbb{R}$ defined as:

$$f^*(y) = \sup_{x \in \mathbf{dom} f} (y^T x - f(x))$$

with domain consisting of $y \in \mathbf{R}^n$ for which the supremum is finite

- \bullet $f^*(y)$ always convex: it is the pointwise supremum of a family of affine functions of y
- Fenchel's inequality: $f(x) + f^*(y) \ge x^T y$ for all x, y (by definition)
- $f^{**} = f$ if f is convex and closed
- Useful for Lagrange duality theory

Examples of Conjugate Functions

- f(x) = ax + b, $f^*(a) = -b$
- $f(x) = -\log x$, $f^*(y) = -\log(-y) 1$ for y < 0
- $f(x) = e^x$, $f^*(y) = y \log y y$
- $f(x) = x \log x$, $f^*(y) = e^{y-1}$
- $f(x) = \frac{1}{2}x^TQx$, $f^*(y) = \frac{1}{2}y^TQ^{-1}y$ (Q is positive definite)
- $f(x) = \log \sum_{i=1}^n e^{x_i}$, $f^*(y) = \sum_{i=1}^n y_i \log y_i$ if $y \succeq 0$ and $\sum_{i=1}^n y_i = 1$ $(f^*(y) = \infty$ otherwise)

Log-convex and Log-concave Functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is log-convex if f(x) > 0 and $\log f$ is convex:

$$f(\theta x + (1-\theta)y) \le f(x)^{\theta} f(y)^{1-\theta}$$
 for $0 \le \theta \le 1$

A log-convex function is convex (Prove it)

 $f: \mathbf{R}^n \to \mathbf{R}$ is log-concave if f(x) > 0 and $\log f$ is concave

Many probability distributions are log-concave: Cumulative distribution function of Gaussian density, Multivariate normal distribution, Exponential distribution, Uniform distribution, Wishart distribution

Summary

- Definitions of convex sets and convex functions
- Convexity-preserving operations
- Global information from local characterization: Supporting Hyperplane Theorem
- Convexity is the watershed between 'easy' and 'hard' optimization problems. Recognize convexity. Utilize convexity.

Reading assignment: Chapters 1, 2 and 3 of textbook.