HARRISON PIELKE-LOMBARDO

Computational Biologist

EXPERIENCE

Computational Biologist			2016 - 2022		
University of Colorado, Anschutz Medical Campus		Aurora, CO			
•	Managed multiple, interconnected computational projects written in	Clojure , Java	, and	Python	across differ-

ent teams resulting in 6 publications, 4 dataset releases, and 5 package releases. • Developed interpretable, symbolic Artificial Intelligence , Machine Learning , and Natural Language Processing methods for identifying drug-targets in text and performing inductive reasoning about drug-disease mechanisms using

a Knowledge Graph constructed from 10 biomedical ontologies and 10 databases containing 1 trillion triples.

IEEE Undergraduate Grant

2015 - 2016 University of Colorado, Boulder Boulder, CO • Used an Aho-Corrasick automata representation of CRISPR-Cas9 binding sites to reduce the complexity of the esti-

mation of binding coverage from $O(4^n)$ (4^3 billion) combinations to a O(1) (constant time statistical approximation when n is large). Implemented mathematical models in Python | and MATLAB | and evaluated using genetic data from the Human Genome Project.

Cancer Center Summer Fellow

University of Colorado, Anschutz Medical Campus

Jun 2015 - Aug 2015

Aurora, CO

 Optimized and evaluated a drug-efficacy scoring algorithm which incorporates multi-omic data including cancer genomes and drug-target profiles. Communicated results with domain experts using heat-map visualizations of kinase scores for selected cancer subtypes.

PROJECTS

Schematization of biological mechanisms using structural, semantic, and causal properties

• Conceptualized and tested algorithmic approaches in Clojure and Python for extending analogical reasoning of complex networks representing biological knowledge. Merged and harmonized large biomedical knowledge graphs represented in RDF |, Datomic |, and SQL | formats.

Knowtator: Concept/relation annotation for Protégé

• Deployed a WYSIWYG Java plugin for ontology development and text annotation that includes interactive graph visualization for textual features. It was used to annotate over 100k concept and relation annotations. Later became a Clojurescript | web application | . CI/CD | : Incorporated user feedback in several feature updates.

Bootstrapped relation extraction using word embeddings and dependency paths

• Automated relation extraction by implementing a novel bootstrapping approach in Clojure that creates humaninterpretable syntax patterns from dependency paths and word embeddings. Performance optimized with GPU accelerated matrix operations. Improved precision for relation extraction for drug-targets from biomedical texts by 10%.

EDUCATION

Master of Science in Biomedical Sciences and Biotechnology **2016 - 2022** University of Colorado, Anschutz Medical Campus Aurora, CO Bachelor of Science in Applied Mathematics **2013 - 2016 University of Colorado** Boulder, CO

SKILLS

- Python
- Java
- JavaScript
- Clojure
- Clojurescript
- C++
- Creativity
- Organization
- NumPy
- Pandas
- Reagent
- Re-frame
- Datascript
- Datomic
- NLTK
- R
- MATLAB
- HTML
- CSS
- Git
- GitHub
- CI/CD
- AWS
- Kubernetes
- Natural language processing
- Statistics
- Machine learning
- Semantic web
- Artificial intelligence
- SQL
- SPARQL
- BigQuery
- Redis
- Communication
- Teamwork

NOTE

References available upon request. Please see my GitHub page (@tuh8888) for my software projects as well as my contributions to various open-source projects.