

VERSION 2 NOV 08, 2023

OPEN BACCESS

Protocol Citation: Elisabeth Rebboah 2023. Protocol to isolate and fix nuclei from flash frozen mouse kidneys for IGVF. protocols.io https://protocols.io/view/prot ocol-to-isolate-and-fix-nucleifrom-flash-frozc4pvyvn6Version created by Elisabeth Rebboah

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Nov 07, 2023

Last Modified: Nov 08,

2023

Protocol to isolate and fix nuclei from flash frozen mouse kidneys for IGVF V.2

Elisabeth Rebboah¹

¹University of California, Irvine

Elisabeth Rebboah University of California, Irvine

ABSTRACT

This protocol describes isolation of nuclei from left **and** right 10 week old mouse kidneys (tissue ID: 09) from 8 founder strains (B6J, AJ, 129S1J, NZOJ, WSBJ, NODJ, PWKJ, and CASTJ), preparation of a single nucleus suspension, and fixation for 1. single nucleus RNA-seq using the Parse Biosciences protocol (Split-seq) and 2. single nucleus RNA-seq + ATAC-seq using the SHARE-seq protocol. We process 1 rep from each strain per day; e.g. female rep 1 across all 8 strains. For 8 samples, this protocol takes about 3.5 hours from start to finish.

The results are 2 aliquots of fixed single-nucleus suspensions for Parse per each of the 8 samples at >= 2,500 nuclei/ul, and 1 fixed nuclei pellet pooled across all 8 strains for SHARE-seq, all stored at -80C.

The first part of the protocol describes tissue lysis and nuclei extraction using Miltenyi Biotec's gentleMACS Octo Dissociator with accessories. When nuclei are extracted and counted, we determine whether we have enough to fix for Split-seq and SHARE-seq and set aside 4 million and 1 million, respectively. Ideally, the second and third parts of this protocol are performed in parallel by at least two technicians to save time. The second part describes nuclei fixation using Parse Biosciences Evercode Nuclei Fixation Kit with v2 reagents (see attachment for original version). The third part describes nuclei fixation using a modified version of the SHARE-seq fixation protocol (see attachment for original version). Any remaining nuclei are flash-frozen as a dry pellet and stored at -80C.

ATTACHMENTS

2022_07_15_GRO_nuclei_ S0+10122022_Evercode+ prep_combo.docx Fixation+v2.0.2+User+Man ual.pdf

GUIDELINES

- We recommend using a 5 ml pipette for aspirations and resuspensions > 1 ml.
- Record everything in the <u>IGVF spreadsheet</u>, "Samples into experiment" tab.

MATERIALS

PROTOCOL integer ID:

90581

Keywords: Fixation, Nuclei fixation, Split-seq, SHARE-seq, Evercode, snRNA-seq, Parse Biosciences, Nuclei isolation, UCI, Mortazavi, IGVF, Mouse, Kidney, Kidneys

Name	Manufacturer	Cat #
Nuclei Fixation Kit v2	Parse Biosciences	ECF2003
Nuclei Extraction Buffer	Miltenyi Biotec	130-128-024
RNase Inhibitor, murine	New England Biolabs	M0314L
PBS	HyClone	SH30256.02
7.5% BSA	Life Technologies	15260037
1 M HEPES pH 7.3	Sigma	H0887-100ml
NaCl	Fisher	BP358-1
MgCl2	Fisher	AA12315A7
Tween-20	Fisher	BP337-500
5% digitonin	Promega	G944A
Enzymatics RI	Enzymatics	Y9240L
SUPERase RI	Invitrogen	AM2696
Yeast tRNA	Invitrogen	AM7119
Glycine	Fisher	BP381-500
1M Tris pH 8.0	Thermo	AM9855G
Formaldehyde (methanol-free)	EMS	15710
gentleMACS C Tube	Miltenyi Biotec	130-093-237
gentleMACS Octo Dissociator	Miltenyi Biotec	130-095-937
MACS SmartStrainers (70 um)	Miltenyi Biotec	130-110-916
MACS SmartStrainers (30 um)	Miltenyi Biotec	130-098-458
NucBlue Fixed Cell ReadyProbes	Thermo Fisher	R37606
Hemacytometer	Fisher Scientific	02-671-51B
Mr. Frosty	Sigma-Aldrich	635639

Reagents/equipment, manufacturer and catalog number

Name	reagent	Volume for 8 samples	Final concentration
Lysis buffer	Nuclei Extraction Buffer	40 ml	NA
	40 U/ul RNase inhibitor	200 ul	0.2 U/ul
_ NB-BSA +	Nuclei Buffer (Parse Biosciences)	3.15 ml	NA
RNase inhibitor	7.5% BSA	350 ul	0.75%
(make 2 aliquots)	RNase inhibitor (Parse Biosciences)	44.1 ul	
	PBS	42 ml	
RSB	7.5% BSA	560 ul	0.1%
	RNase inhibitor	210 ul	0.2 U/ul
	1 M HEPES pH 7.3	150 ul	10 mM
	5 M NaCl	30 ul	10 mM
	1 M MgCl2	45 ul	3 mM
	10% Tween- 20	150 ul	0.1%
SHARE-RSB	H20	14.625 ml	
	7.5% BSA	80.26 ul	0.04%
	5% digitonin	30 ul	0.01%
	Enzymatics RI	37.5 ul	0.1 U/ul
	SUPERase RI	18.75 ul	0.025 U/ul
	Yeast tRNA	150 ul	100 ug/ml

Buffers

Setup

1 Coat SHARE-seq nuclei prep tubes with BSA. Fill 8 1.5 ml tubes with **1.5 ml 1% BSA** in H2O and incubate for **30 minutes**. After incubation, aspirate BSA solution and dry for **30 minutes**. Store at 4C.

2	Label tubes.
3	Pre-chill centrifuge to 4C .
4	Prepare ice buckets.
5	Prepare 40 ml lysis buffer in a 50 ml conical tube on ice. Distribute 2.5 ml into 8 gentleMACS C Tubes on ice. Add 200 ul RNase inhibitor to the lysis buffer aliquot the day of the experiment.
6	Prepare 42 ml RSB in a 50 ml conical tube on ice. Add 210 ul RNase inhibitor the day of the experiment.
7	Prepare 2 aliquots of 3.5 ml NB + BSA . Add 44.1 ul RNase inhibitor included in Parse Biosciences fixation kit the day of the experiment to each aliquot.
8	Prepare 2.5 ml nuclei buffer + RNase inhibitor for final resuspension. Add 31.5 ul RNase inhibitor to 2.5 ml nuclei buffer .
9	Prepare 15 ml SHARE-RSB in a 50 ml conical tube at room temperature. To SHARE-RSB, add 30 ul digitonin , 37.5 ul Enzymatics Rl , 18.75 ul SUPERase Rl , and 150 ul yeast tRNA fresh the day of the experiment.
10	Thaw components of 2 Parse Biosciences Nuclei Fixation v2 kits at room temperature, then place on ice.

Distribute **20 ul** NucBlue Fixed Cell ReadyProbes into 16 PCR strip tubes for cell counting. Need 8 tubes for counting after nuclei extraction, and another 8 tubes for final fixed nuclei.

Tissue lysis and nuclei extraction

12	Keep flash frozen tissue samples on dry ice until lysis.
13	Drop whole frozen tissue into a chilled gentleMACS C Tube with 2.5 ml lysis buffer . Close tubes firmly and invert immediately, ensuring tissue is not stuck to the bottom or side. Keep tubes on ice and proceed immediately to dissociation. There should be 2 kidneys.
14	Run the gentleMACS Program 4C_nuclei_1 on the Octo Dissociator (~ 5 minutes).
15	Remove tubes, ensuring tissue did not get stuck on the sides, and spin down in a 4C centrifuge for ~10 seconds to bring liquid to the bottom, then place tubes back on ice.
16	Filter nuclei suspension through 70 um MACS SmartStrainer into a 5 ml tube. Fit a tube rack in ice for extra stability while filtering.
17	Wash 70 um MACS SmartStrainer with 2 ml additional lysis buffer . Add 2 ml to C tubes, cap, and swish to recover any nuclei stuck to the sides and cap of the C tubes, then wash the strainer.
18	Discard strainer and centrifuge the 4.5 ml nuclei suspension at 4C , 350g for 5 minutes .

19	Discard supernatant and resuspend nuclei pellet in 3 ml RSB .
20	Filter nuclei suspension through 30 um MACS SmartStrainer into a 5 ml tube.
21	Dilute some nuclei 1:10 by adding 200 ul nuclei to 1.8 ml RSB in a new 5 mL tube. This should help the concentration reach around 4 million per ml.
22	Count 1:10 diluted nuclei. Use 1:11 dilution factor, 2 ul + 20 ul dye. Final dilution factor = 1:110.
	Parse nuclei fixation
23	Set aside 4 million nuclei in RSB in a new 5 ml tube and spin down at 4C , 350g for 5 minutes .
24	Remove supernatant and and resuspend nuclei in 750 ul NB-BSA + RNase inhibitor and filter through a 40 um strainer (provided in Parse Biosciences kit) into a new 5 ml tube.
25	Add 250 uL Nuclei Fixation Solution and mix 3 times. Do not over-mix.
26	Incubate nuclei for 10 minutes on ice. Set 1 P200 pipette to 80 ul and keep the P1000 at 250 ul.
27	Add 80 uL Nuclei Permeabilization Solution and mix by pipetting 3 times with the P1000 still set to 250 uL. Do not over-mix.

SHARE-seq nuclei fixation

- 37 Set aside 1 million nuclei for each of the 8 samples in RSB and spin down at 4C, 750g for 5 minutes.
- Remove supernatant and resuspend nuclei pellet in **1 ml room temperature SHARE-RSB.** Transfer tube to a room temperature rack.
- At RT, add **13.34 ul of methanol-free formaldehyde** (16% stock solution). Final concentration for nuclei: 0.2%. Close tube and nutate cells at **RT** for **5 minutes**.
- To quench fixation, per reaction, add **56.1 ul fresh 2.5M Glycine** (0.94g per 5 ml stock), **50 ul of 1M Tris pH 8.0**, **13.3ul of 7.5% BSA**, and mix using a pipette. Incubate on ice for **10 minutes**.
- 41 Spin **750g**, **4C**, **5 minutes**. Gently remove supernatant.
- 42 Add 200 ul of SHARE-RSB and gently resuspend pellet. Store on ice until all samples are completed.
- **Pool** 200 ul of resuspended nuclei from all 8 founders into 1 labeled 2 ml tube.
- Spin **1,000g**, **4C**, **10 minutes**. Gently remove supernatant. Remove all fluid and freeze at **-80C** as a **dry pellet**.

Storage of leftover nuclei

- 45 Move remaining nuclei in RSB on ice to labeled 2 ml tubes.
- **46** Spin **750g**, **4C**, **5 minutes**.
- Remove all supernatant and flash-freeze nuclei as a dry pellet in liquid nitrogen. Store at -80C.
- 0