BME2322 – Logic Design

The Instructors:

Dr. Görkem SERBES (C317)

gserbes@yildiz.edu.tr

https://avesis.yildiz.edu.tr/gserbes/

Lab Assistants:

Nihat AKKAN

nakkan@yildiz.edu.tr

https://avesis.yildiz.edu.tr/nakkan

LECTURE 12

Sequential circuit design

- In sequential circuit design, we turn some description into a working circuit
 - We first make a state table or diagram to express the computation
 - Then we can turn that table or diagram into a sequential circuit

Pattern or Sequence Detectors

- A sequence detector is a special kind of sequential circuit that looks for a special bit pattern in some input.
- The detector circuit has only one input, X
 - One bit of input is supplied on every clock cycle
 - This is an easy way to permit arbitrarily long input sequences
- There is one output, Z, which is 1 when the desired pattern is found
- Our example will detect the bit pattern "1001":

Inputs: 11100110100100110...
Outputs: 0000010000100100...

 A sequential circuit is required because the circuit must "remember" the inputs from previous clock cycles, in order to determine whether or not a match was found

Design Procedure

The basic sequential circuit design procedure:

- 1. Define the problem. Draw a state diagram which describes the behavior of the circuit that is to be designed.
- 2. Do the state assignments and define flip-flop requirements.
- 3. Obtain the state table.
- 4. Derive the circuit excitation table for used flip-flops.
- 5. Use the present states, next states, and flip-flop excitation tables to find the flip-flop input values and circuit output.
- 6. Write simplified equations for the flip-flop inputs and circuit outputs.
- 7. Implement the circuit.

Step 1: Obtain the state diagram

- What states do we need for the sequence detector?
 - We have to "remember" inputs from previous clock cycles
 - For example, if the previous three inputs were 100 and the current input is 1, then the output should be 1
 - In general, we will have to remember occurrences of parts of the desired pattern—in this case, 1, 10, and 100
- We'll start with a basic state diagram:

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
С	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Overlapping occurrences of the pattern

- What happens if we're in state D (the last three inputs were 100), and the current input is 1?
 - The output should be a 1, because we've found the desired pattern
 - But this last 1 could also be the start of another occurrence of the pattern! For example, 1001001 contains two occurrences of 1001
 - To detect overlapping occurrences of the pattern, the next state should be B

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
	We've already seen the first two bits (10) of the desired pattern.
	We've already seen the first three bits (100) of the desired pattern.

Full Diagram

- Two outgoing arrows for each node, to account for the possibilities of X=0 and X=1
- The remaining arrows we need are shown in blue. They also allow for the correct detection of overlapping occurrences of 1001.

State	Meaning						
	None of the desired pattern (1001) has been input yet.						
В	We've already seen the first bit (1) of the desired pattern.						
	We've already seen the first two bits (10) of the desired pattern.						
D	We've already seen the first three bits (100) of the desired pattern.						

State diagram to state table

Remember how the state diagram arrows correspond to rows of the state table:

Present		Next	
State	Input	State	Output
Α	0	Α	0
Α	1	В	0
В	0	С	0
В	1	В	0
C	0	D	0
C	1	В	0
D	0	Α	0
D	1	В	1

Step 2-3: Complete State Table

- There are four states named as 'ABCD', so we need at least two flipflops Q1Q0
- The easiest thing to do is represent state A with Q1Q0 = 00, B with 01,
 C with 10, and D with 11

Present State	Input	Next State	Output
Α	0	Α	0
Α	1	В	0
В	0	С	0
В	1	В	0
С	0	D	0
С	1	В	0
D	0	Α	0
D	1	В	1

	Present State		Input	Ne Sto		Output
	Q_1	Q_0	X	Q_1	Q_0	Z
	0	0	0	0	0	0
	0	0	1	0	1	0
	0	1	0	1	0	0
٠	0	1	1	0	1	0
	1	0	0	1	1	0
	1	0	1	0	1	0
	1	1	0	0	0	0
	1	1	1	0	1	1

Step 4: Excitation tables

Excitation table of JK flip-flop

Q_n	Q_{n+1}	J	<u> </u>
0	0	0	X
0	1	1	X
1	0	Χ	1
1	1	Χ	0

Excitation table of D flip-flop

Q_n	Q_{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

An excitation table shows what flip-flop inputs are required in order to make a desired state change

Step 5: Finding flip-flop input values

- We have to figure out how to make the flip-flops change from their present state into the desired next state
- This depends on what kind of flip-flops we use!
- First, we'll use two JKs. For each flip-flip Q_i, look at its present and next states, and determine what the inputs J_i and K_i should be in order to make that state change.

Present			Next						
State		Input	Sto	State		Flip flop inputs		s	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	K_0	Z
0	0	0	0	0					0
0	0	1	0	1					0
0	1	0	1	0					0
0	1	1	0	1					0
1	0	0	1	1					0
1	0	1	0	1					0
1	1	0	0	0					0
1	1	1	0	1					1

Step 5: Finding flip-flop input values cont.

Use the JK excitation table on the right to find the correct values for each flip-flop's inputs, based on its present and next states.

Q_n	Q_{n+1}	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	X	0

Present State I		Input	Next State		Flip flop inputs				Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	\mathbf{J}_0	K_0	Z
0	0	0	0	0	0	×	0	х	0
0	0	1	0	1	0	×	1	×	0
0	1	0	1	0	1	×	×	1	0
0	1	1	0	1	0	×	×	0	0
1	0	0	1	1	×	0	1	×	0
1	0	1	0	1	×	1	1	×	0
1	1	0	0	0	×	1	×	1	0
1	1	1	0	1	×	1	×	0	1

Step 6: Find equations for the FF inputs and output

- Now you can make K-maps and find equations for each of the four flipflop inputs, as well as for the output Z.
- These equations are in terms of the present state and the inputs
- The advantage of using JK flip-flops is that there are many don't care conditions, which can result in simpler MSP equations

Pres	sent		Ne	ext					
Sto	ate	Input	Sto	ate	FI	Flip flop inputs		Output	
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	K_0	Z
0	0	0	0	0	0	×	0	×	0
0	0	1	0	1	0	×	1	×	0
0	1	0	1	0	1	×	×	1	0
0	1	1	0	1	0	×	×	0	0
1	0	0	1	1	×	0	1	×	0
1	0	1	0	1	×	1	1	×	0
1	1	0	0	0	×	1	×	1	0
1	1	1	0	1	×	1	×	0	1

Step 6: Find equations for the FF inputs and output cont.

Pres	sent		Ne	ext					
Sto	ate	Input	Sto	ate	F	lip flo	p input	s	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	K_0	Z
0	0	0	0	0	0	×	0	х	0
0	0	1	0	1	0	×	1	×	0
0	1	0	1	0	1	×	х	1	0
0	1	1	0	1	0	×	×	0	0
1	0	0	1	1	×	0	1	×	0
1	0	1	0	1	×	1	1	×	0
1	1	0	0	0	×	1	x	1	0
1	1	1	0	1	×	1	×	0	1

$$K_1 = X + Q_0$$

Step 6: Find equations for the FF inputs and output cont.

Pres	ent		Ne	ext						
Sto	ate	Input	Sto	ate	F	lip flo	p <u>inp</u> u	ıts	Output	
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	$\left(\mathbf{K}_{0}\right)$	Z	
0	0	0	0	0	0	×	0	х	0	
0	0	1	0	1	0	×	1	×	0	
0	1	0	1	0	1	×	×	1	0	
0	1	1	0	1	0	×	×	0	0	
1	0	0	1	1	×	0	1	x	0	
1	0	1	0	1	×	1	1	×	0	
1	1	0	0	0	×	1	×	1	0	
1	1	1	0	1	×	1	x	0	1	

$$J_0 = Q_1 + X$$

Q	₀₀ X	01	11	10
Q ₁ 0	0	0	0	0
1	0	0		0

$$Z = Q_1 Q_0 X$$

Step 7: Implement the circuit

Lastly, we use these simplified equations to build the completed circuit

$$J_1 = Q_0.\overline{X}$$
 $J_0 = Q_1 + X$ $Z = Q_1Q_0X$ $K_1 = X + Q_0$ $K_0 = \overline{X}$

Same Circuit by using D flip-flops

- What if you want to build the circuit using D flip-flops instead?
- We already have the state table and state assignments, so we can just start from Step 5, finding the flip-flop input values
- D flip-flops have only one input, so our table only needs two columns for D1 and D0

Pres	sent		Next		Flip-flop		
State		Input	State		inputs		Output
Q_1	Q_0	X	Q_1	Q_0	D_1	D_0	Z
0	0	0	0	0			0
0	0	1	0	1			0
0	1	0	1	0			0
0	1	1	0	1			0
1	0	0	1	1			0
1	0	1	0	1			0
1	1	0	0	0			0
1	1	1	0	1			1

Same Circuit by using D flip-flops cont.

Use the D excitation table on the right to find the correct values for each flip-flop's inputs, based on its present and next states.

Excitation table of D flip-flop

_	Q_n	Q_{n+1}	D
	0	0	0
	0	1	1
	1	0	0
	1	1	1

Present			Next		Flip flop		
Sto	ate	Input	Sto	ate	inputs		Output
Q_1	Q_0	X	Q_1	\mathbf{Q}_0	D_1	D_0	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

Same Circuit by using D flip-flops cont.

Present			Next		Flip	flop	
Sto	ite	Input	State		inputs		Output
Q_1	Q_0	X	Q_1	Q_0	D_1	D_0	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

$$D_1 = \overline{Q_1}. Q_0. \overline{X} + Q_1. \overline{Q_0}. \overline{X}$$

$$Q_1$$
 Q_0
 Q_1
 Q_1
 Q_1
 Q_2
 Q_3
 Q_4
 Q_5
 Q_6
 Q_6
 Q_7
 Q_7

$$D_0 = X + Q_1.\overline{Q_0}$$

$$Z = Q_1 Q_0 X$$

Same Circuit by using D flip-flops cont.

$$D_1 = \overline{Q_1}. Q_0. \overline{X} + Q_1. \overline{Q_0}. \overline{X}$$

$$Z = Q_1 Q_0 X$$

$$D_0 = X + Q_1. \overline{Q_0}$$

Summary

- The basic sequential circuit design procedure:
 - Make a state table and, if desired, a state diagram. This step is usually the hardest
 - Assign binary codes to the states if you didn't already
 - Use the present states, next states, and flip-flop excitation tables to find the flip-flop input values and output value
 - Write simplified equations for the flip-flop inputs and outputs
 - Build the circuit