

Resolução abreviada do 2º Teste

Versão 1

- 1. Considere a amostra aleatória (X_1, X_2, \dots, X_n) de uma população com distribuição $N(2\mu; 1)$.
- (0.4) (a) O estimador $\hat{\mu} = \frac{\overline{X}}{2}$ é centrado para μ .
- (0.4) (b) Dada a amostra (0.5, 3.2, 1.8, 1.7, 2.8), uma estimativa pontual de μ resultante de $\hat{\mu} = \frac{\overline{X}}{2}$, é?
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) Nenhuma das anteriores
- $\boxed{\mathbb{V}}$ Considere-se a população X de onde é proveniente a amostra aleatória. Como $X \sim N(2\mu;1)$ então sabe-se que $E[X]=2\mu$.

O estimador $\hat{\mu}$ será estimador centrado para μ se $E[\hat{\mu}] = \mu$. Como,

$$E[\hat{\mu}] = E\left[\frac{\bar{X}}{2}\right] = \frac{E[\bar{X}]}{2} = \frac{E[X]}{2} = \frac{2\mu}{2} = \mu,$$

uma vez que é conhecido que $E[\bar{X}] = E[X]$ (ver Exemplo 5.11, pag. 39 do texto de apoio), pelo que o estimador $\hat{\mu}$ é centrado.

A Para a amostra considerada, teremos que $\bar{x} = \frac{0.5 + 3.2 + 1.8 + 1.7 + 2.8}{5} = 2$, logo obteremos como estimativa de μ , o valor

$$\hat{\mu} = \frac{\bar{x}}{2} = \frac{2}{2} = 1.$$

- 2. Considere-se uma população com distribuição normal de variância 36. Recolhida uma amostra de dimensão n=25 dessa população, obteve-se $\bar{x}=50$.
- (0.4) (a) O intervalo de 95% de confiança para o valor médio da população é (com valores arredondados a 3 casas decimais):
 - (A)]48.026; 51.974[
- (B)]47.648; 52.352[
- (C)]47.947; 52.053[
- (D) [47.523; 52.477]
- (0.4) Qual deve ser a dimensão da amostra para que a amplitude do intervalo de 95% de confiança para o valor médio da população seja inferior a 2:
 - (A) n = 54
- (B) n = 98
- (C) n = 106
- (D) n = 139
- (E) Nenhuma das anteriores

Informação populacional: $X \sim N\left(\mu,\sigma^2\right), \ \mu \equiv E\left(X\right) =?, \quad \sigma^2 \equiv V\left(X\right) = 36$ Informação amostral: $n=25, \ \bar{x}=50$

- Estatística pivot: $Z = \sqrt{n} \frac{\overline{X} \mu}{\sigma} \sim N(0, 1)$
- Determinação da constante \underline{c} que garante que $P\left(-c < Z < c\right) = 0.95$ $c = z_{0.05/2} = z_{0.025} = 1.96$
- $-1.96 < \sqrt{n} \frac{\overline{X} \mu}{\sigma} < 1.96 \Leftrightarrow \overline{X} 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}$
- $IC_{95\%}\left(\mu\right) \equiv \left]\overline{X} 1.96\frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96\frac{\sigma}{\sqrt{n}}\right[$
- Estimativa por intervalo de 95% de confiança para μ $IC_{95\%}(\mu) = \left| 50 1.96 \frac{6}{5}, 50 + 1.96 \frac{6}{5} \right| =]47.648; 52.352[$
- D Como a amplitude do intervalo de confiança a 95% é dada por $2 \times 1.96 \times \frac{6}{\sqrt{n}}$ então queremos determinar n tal que:

$$2 \times 1.96 \times \frac{6}{\sqrt{n}} < 2 \Leftrightarrow 1.96 \times 6 < \sqrt{n} \Rightarrow n > (1.96 \times 6)^2 \Rightarrow n > 138.2976 \Rightarrow n = 139$$

- 3. As classificações do 2º teste de IPEIO têm distribuição normal de valor médio desconhecido. Recolhida uma amostra de dimensão n=20, obteve-se s=1.5.
- (0.4) (a) Para o teste de hipóteses $H_0:\sigma\geq 2$ vs $H_1:\sigma<2$, a região de rejeição para um nível de 5% de significância é:
 - (A) $R_{0.05} = 30.143; +\infty$
- (B) $R_{0.05} =]0;30.143[$
- (C) $R_{0.05} =]0; 10.117[$
- (D) $R_{0.05} =]10.117; +\infty[$
- (0.4) (b) Se num determinado teste de hipóteses a decisão é de rejeitar a hipótese nula para um nível de significância $\alpha = 5\%$, então também se rejeita a hipótese nula para um nível de significância $\alpha = 10\%$.
 - C A estatística de teste é:

$$X^2 = \frac{(n-1)S^2}{2^2} \underset{sob\ H_0}{\sim} \chi_{n-1}^2.$$

Como o teste é unilateral esquerdo, e n=20 a região de rejeição é $R_{0.05}=]0,x_{19;0.95}^2[$ com $x_{19;0.95}^2=10.117.$

 $\boxed{\mathbb{V}}$ Se a hipótese nula é rejeitada para um nível de significância de $\alpha=5\%$, então o valor observado da estatística encontra-se nessa região de rejeição $(R_{0.05})$. Como, mantendo todas as outras condições, teremos que $R_{0.05}\subseteq R_{0.10}$ então o valor observado da estatística encontra-se também na região de rejeição de 10%, pelo que se rejeita a hipótese nula para um nível de significância $\alpha=10\%$.

4. Num determinado curso de àgua, pretende-se modelar a concentração Y de um certo poluente (em gr/m^3), em função da distância x à fonte poluidora, em Km. Para tal, registaram-se os dados relativos a 15 localizações.

Distância, x	1	2	3	4	6	8	10	12	14	16	18	20	22	25	30
Concentração, Y															

Resolva as questões com base nos resultados do R:

Coefficients: Std. Error Estimate t value Pr(>|t|)1.0028 2e-16 (Intercept) 51.5511 51.41 -1.12290.0651 -17.252.44e-10Residual standard error: 2.185 on 13 degrees of freedom Multiple R-squared: 0.9581, Adjusted R-squared: 0.9549

Assumindo que existe uma relação linear entre as variáveis x e Y:

- (0.4) (a) Escreva a expressão da reta de regressão linear estimada e comente a qualidade do ajustamento.
- (0.4) (b) Qual o valor estimado da variância dos erros do modelo de regressão linear simples?
- (0.4) (c) Qual prevê que seja a concentração de poluente a uma distância da fonte de poluição de 15Km? E a uma distância de 40Km?
- (0.4) (d) Teste para um nível de significância de 5%, a hipótese de o verdadeiro declive da recta de regressão ser nulo, indicando:
 - Hipóteses:
 - Decisão(justifique):
 - (a) A reta estimada é:

$$\hat{Y} = 51.5511 - 1.1229x$$

e como o coeficiente de determinação vale

$$R^2 = 0.9581 \ge 0.8$$
,

a qualidade do ajustamento é "'razoável"'.

- (b) O valor estimado da variância dos erros do modelo de regressão linear, $\hat{\sigma}^2 = 2.185^2 = 4.774225$
- (c) Para x=15Km temos o valor previsto de concentração de poluente:

$$\hat{Y}(15) = 51.5511 - 1.1229 \times 15 = 34.7076.$$

Para x = 40Km não se pode fazer previsão pois $40 \notin [\min(x_i), \max(x_i)] \equiv [1, 30]$ e nada sabemos sobre o ajustamento do modelo fora deste intervalo.

- (d) Como o verdadeiro declive da reta de regressão é β_1 , temos as hipóteses: $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$.
 - Utilizando o valor p, que para este teste vale $valor p = 2.44 \times 10^{-10}$ e ao ser menor que o nível de significância de 5%, permite-nos rejeitar H_0 ao nível de significância de 5%.

Observação: Tomamos a mesma decisão se realizarmos o teste seguindo os passos tradicionais.

- Região de rejeição para $\alpha = 0.05$: $t_{13:0.025} = 2.160$ e $R_{0.05} =]-\infty, -2.160[\cup]2.160, +\infty[$
- Valor observado da estatística de teste: $t_{obs} = -17.25$, dado pelo output do R
- Decisão: $t_{obs} \in R_{0.05}$ logo rejeitamos H_0 ao nível de significância de 5%.

Duração: 0h45

Resolução abreviada do 2º Teste

Versão 2

- 1. Considere a amostra aleatória (X_1, X_2, \dots, X_n) de uma população com distribuição $N(4\mu; 16)$.
- (a) O estimador $\hat{\mu} = \frac{X}{4}$ é centrado para μ . (0.4)
- (b) Dada a amostra (2.0, 12.8, 7.2, 6.8, 11.2), uma estimativa pontual de μ resultante de $\hat{\mu} = \frac{\overline{X}}{4}$, é? (0.4)
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) Nenhuma das anteriores
- $\boxed{\mathbb{V}}$ Considere-se a população X de onde é proveniente a amostra aleatória. Como $X \sim N(4\mu; 1)$ então sabe-se

O estimador $\hat{\mu}$ será estimador centrado para μ se $E[\hat{\mu}] = \mu$. Como,

$$E[\hat{\mu}] = E\left[\frac{\bar{X}}{4}\right] = \frac{E[\bar{X}]}{4} = \frac{E[X]}{4} = \frac{4\mu}{4} = \mu,$$

uma vez que é conhecido que $E[\bar{X}] = E[X]$ (ver Exemplo 5.11, pag. 39 do texto de apoio), pelo que o estimador $\hat{\mu}$ é centrado.

 \blacksquare Para a amostra considerada, teremos que $\bar{x} = \frac{2.0 + 12.8 + 7.2 + 6.8 + 11.2}{5} = 8$, logo obteremos como estimativa de μ , o valor

$$\hat{\mu} = \frac{\bar{x}}{4} = \frac{8}{4} = 2.$$

- 2. Considere-se uma população com distribuição normal de variância 25. Recolhida uma amostra de dimensão n=25 dessa população, obteve-se $\bar{x}=50$.
- (a) O intervalo de 95% de confiança para o valor médio da população é (com valores arredondados a 3 casas (0.4)decimais):
 - (A)]47.936; 52.064[
- (B)]48.289; 51.711[
- (C) [48.355; 51.645]
- (D) [48.040; 51.960]
- (0.4)(b) Qual deve ser a dimensão da amostra para que a amplitude do intervalo de 95% de confiança para o valor médio da população seja inferior a 2:
 - (A) n = 54
- (B) n = 68
- (C) n = 74
- (D) n = 97
- (E) Nenhuma das anteriores

 \square Represente-se por X a população.

Informação populacional: $X \sim N(\mu, \sigma^2), \ \mu \equiv E(X) =?, \quad \sigma^2 \equiv V(X) = 25$ Informação amostral: $n=25, \bar{x}=50$

- Estatística pivot: $Z = \sqrt{n} \frac{\overline{X} \mu}{\sigma} \sim N(0, 1)$
- Determinação da constante \underline{c} que garante que $P\left(-c < Z < c\right) = 0.95$ $c = z_{0.05/2} = z_{0.025} = 1.96$
- $-1.96 < \sqrt{n} \frac{\overline{X} \mu}{\sigma} < 1.96 \Leftrightarrow \overline{X} 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}$
- $IC_{95\%}(\mu) \equiv \left| \overline{X} 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}} \right|$
- Estimativa por intervalo de 95% de confiança para μ $IC_{95\%}(\mu) = \left[50 1.96\frac{5}{5}, 50 + 1.96\frac{5}{5}\right] =]48.040; 51.960[$
- \square Como a amplitude do intervalo de confiança a 95% é dada por $2 \times 1.96 \times \frac{5}{\sqrt{n}}$ então queremos determinar n tal que:

$$2 \times 1.96 \times \frac{5}{\sqrt{n}} < 2 \Leftrightarrow 1.96 \times 5 < \sqrt{n} \Rightarrow n > (1.96 \times 5)^2 \Rightarrow n > 96.04 \Rightarrow n = 97$$

- 3. As classificações do 2º teste de IPEIO têm distribuição normal de valor médio desconhecido. Recolhida uma amostra de dimensão n=20, obteve-se s=3.5.
- (0.4) (a) Para o teste de hipóteses $H_0:\sigma\leq 3$ vs $H_1:\sigma>3$, a região de rejeição para um nível de 5% de significância é:

(A)
$$R_{0.05} =]30.143; +\infty[$$

(B)
$$R_{0.05} =]0;30.143[$$

(C)
$$R_{0.05} =]0; 10.117[$$

(D)
$$R_{0.05} =]10.117; +\infty[$$

- (0.4) (b) Se num determinado teste de hipóteses a decisão é de não rejeitar a hipótese nula para um nível de significância $\alpha = 5\%$, então também não se rejeita a hipótese nula para um nível de significância $\alpha = 1\%$.
 - A estatística de teste é:

$$X^{2} = \frac{(n-1)S^{2}}{3^{2}} \underset{sob\ H_{0}}{\sim} \chi_{n-1}^{2}.$$

Como o teste é unilateral direito, e n=20 a região de rejeição é $R_{0.05}=]x_{19;0.05}^2,+\infty[$ com $x_{19;0.05}^2=30.143$.

 $\boxed{\mathbb{V}}$ Se a hipótese nula não é rejeitada para um nível de significância de $\alpha=5\%$, então o valor observado da estatística encontra-se fora da região de rejeição $(R_{0.05})$. Como, mantendo todas as outras condições, teremos que $R_{0.01}\subseteq R_{0.05}$ então o valor observado da estatística encontra-se também fora da região de rejeição de 1%, pelo que não se rejeita a hipótese nula para um nível de significância $\alpha=1\%$.

4. Num determinado curso de àgua, pretende-se modelar a concentração Y de um certo poluente (em gr/m^3), em função da distância x à fonte poluidora, em Km. Para tal, registaram-se os dados relativos a 15 localizações.

Distância, x	1	2	3	4	6	8	10	12	14	16	18	20	22	25	30
Concentração, Y															

Resolva as questões com base nos resultados do R:

Coefficients: Std. Error Estimate t value Pr(>|t|)1.0028 2e-16 (Intercept) 51.5511 51.41 -1.12290.0651 -17.252.44e-10Residual standard error: 2.185 on 13 degrees of freedom Multiple R-squared: 0.9581, Adjusted R-squared: 0.9549

Assumindo que existe uma relação linear entre as variáveis x e Y:

- (0.4) (a) Escreva a expressão da reta de regressão linear estimada e comente a qualidade do ajustamento.
- (0.4) (b) Qual o valor estimado da variância dos erros do modelo de regressão linear simples?
- (0.4) (c) Qual prevê que seja a concentração de poluente a uma distância da fonte de poluição de 15Km? E a uma distância de 40Km?
- (0.4) (d) Teste para um nível de significância de 5%, a hipótese de o verdadeiro declive da recta de regressão ser nulo, indicando:
 - Hipóteses:
 - Decisão(justifique):
 - (a) A reta estimada é:

$$\hat{Y} = 51.5511 - 1.1229x$$

e como o coeficiente de determinação vale

$$R^2 = 0.9581 \ge 0.8$$
,

a qualidade do ajustamento é "'razoável"'.

- (b) O valor estimado da variância dos erros do modelo de regressão linear, $\hat{\sigma}^2 = 2.185^2 = 4.774225$
- (c) Para x=15Km temos o valor previsto de concentração de poluente:

$$\hat{Y}(15) = 51.5511 - 1.1229 \times 15 = 34.7076.$$

Para x = 40Km não se pode fazer previsão pois $40 \notin [\min(x_i), \max(x_i)] \equiv [1, 30]$ e nada sabemos sobre o ajustamento do modelo fora deste intervalo.

- (d) Como o verdadeiro declive da reta de regressão é β_1 , temos as hipóteses: $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$.
 - Utilizando o valor p, que para este teste vale $valor p = 2.44 \times 10^{-10}$ e ao ser menor que o nível de significância de 5%, permite-nos rejeitar H_0 ao nível de significância de 5%.

Observação: Tomamos a mesma decisão se realizarmos o teste seguindo os passos tradicionais.

- Região de rejeição para $\alpha = 0.05$: $t_{13:0.025} = 2.160$ e $R_{0.05} =]-\infty, -2.160[\cup]2.160, +\infty[$
- Valor observado da estatística de teste: $t_{obs} = -17.25$, dado pelo output do R
- Decisão: $t_{obs} \in R_{0.05}$ logo rejeitamos H_0 ao nível de significância de 5%.