III. "On a Method of Destroying the Effects of slight Errors of Adjustment in Experiments of Changes of Refrangibility due to Relative Motions in the Line of Sight." By E. J. STONE, F.R.S., Director of the Radcliffe Observatory, Oxford. Received January 17, 1881.

Let arrangements be made for the reversion of the prisms without any disturbance of the other optical arrangements, including, of course, the position of the cylindrical lens, if one be used. Any slight errors of adjustment which prevent the light from the star and the comparison light from falling upon the train of prisms under the same optical circumstances, so far as mere direction is concerned, will have opposite effects in the reversed positions of the prisms; but the separation of the emergent lights due to relative motion will remain unchanged by the reversal of the positions of the prisms.

If, therefore, the apparent change of refrangibility due to relative motion remains unchanged by the reversion of the prisms, all doubts about the effects of errors of adjustment will be removed. But if the results in the reversed positions of the prisms sensibly differ, then the existing errors of adjustment must be removed, or their effects allowed for by taking a mean of the results in reversed positions, before any reliance can be fairly placed upon the determination of relative motions in the line of sight.

A reversible spectroscope was arranged by me, and made by Mr. Simms, some years ago, but I have never since had an equatoreal, with a good driving clock, under my control with which the experiment indicated could be properly tried.

With the direct prisms now in use, the required reversion can be easily arranged. I am not likely, for some time, to have the use of a good equatoreal, and I, therefore, publish the plan with the hope that some one more fortunately situated may give it a fair trial.

The experiment is a crucial one, and, in my opinion, should be tried.

IV. "On an Improved Bimodular Method of computing Natural and Tabular Logarithms and Anti-Logarithms to Twelve or Sixteen Places, with very brief Tables." By ALEXANDER J. Ellis, B.A., F.R.S., F.S.A. Received January 17, 1881.

SECTION I .- NATURE OF THE BIMODULAR METHOD AND ITS IMPROVEMENT.

The Bimodulus is a constant, which is exactly double of the modulus of any system of logarithms. The Bimodular Method is derived from 382

the familiar proposition that, when the difference of two numbers is small, the difference of their logarithms is nearly equal to the bimodulus multiplied by the difference and divided by the sum of the numbers themselves. The improvement here for the first time effected, consists in prefixing a brief preparation, which makes the method universally applicable, and subjoining an easy correction depending on the transformation of a well-known series proceeding by the odd powers of the difference divided by the sum of two numbers, whereby the number of places obtained is greatly increased. This method is here applied for finding the natural and tabular logarithms of any number to twelve places of figures by means of a table of two pages for each kind of logarithm, and to sixteen places by help of a sevenplace table of tabular or Briggs's logarithms. An extremely simple rule, which, so far as I know, was never before imagined, enables us to pass from the logarithm to the number, that is, to find antilogarithms from the same tables. Although the method is applicable to any system of logarithms, and was actually first applied by me to the direct calculation of musical logarithms to the bases 2 (octave), $^{12}\sqrt{2}$ (equal semitone), and $81 \div 80$ (comma), and appropriate tables have been constructed, I confine myself for brevity to natural and tabular logarithms. The tables are constructed from existing materials, but the method is capable of constructing them independently.

SECTION II.—PRINCIPLES OF THE BIMODULAR METHOD AND ITS IMPROVEMENT,

Fundamental Relations.—Let n and d be any whole numbers of which d is the smaller, and let $p=d \div n$, a proper fraction. Let

nat.
$$\log (1+p) = y$$
, and $\log (1+p) = My$. . . (1)

where M is the modulus, and hence 2M the bimodulus to any unspecified system of logarithms marked by log. Let

$$\frac{d}{2n+d} = \frac{p}{2+p} = q, \ 2q = x, \ 2Mq = Mx = z \quad . \quad . \quad . \quad (2).$$

In future n and n+d will often be called "the numbers," n "the tabular number," d "the difference," 2Md "the dividend," 2n+d "the sum" or "divisor," and $2Md \div (2n+d)$ "the quotient."

Now it is familiarly known that

$$y = p - \frac{1}{2}p^2 + \frac{1}{3}p^3 - \frac{1}{4}p^4 + \dots$$
 (3)

$$=2(q+\frac{1}{3}q^3+\frac{1}{5}q^5+\ldots). \quad . \quad . \quad . \quad . \quad (4)$$

Putting in (4) the values of q in terms of x and z from (2) we have

1881.] computing Natural and Tabular Logarithms, &c. 383

$$y=x+\frac{1}{12}x^3+\frac{1}{80}x^5+\frac{1}{448}x^7+\ldots=x+c$$
. (5),

$$My = z + \frac{1}{12} \cdot \frac{z^3}{M^2} + \frac{1}{80} \cdot \frac{z^5}{M^4} + \frac{1}{448} \cdot \frac{z^7}{M^6} + \dots = z + Mc$$
 (6).

And putting for x and z their values from (2) we find

$$2p = (2+p)x$$
, $2Mp = (2+p)z$, whence $1+p = \frac{2+x}{2-x} = \frac{2M+z}{2M-z}$. (7),

And by expanding the first of these equations (7)

$$x = p - \frac{1}{2}p^2 + \frac{1}{4}p^3 - \frac{1}{8}p^4 + \dots$$
 (8).

Subtracting (8) from (3), and multiplying by M to find the Mc of (6), we have

$$My-z=Mc=M(\frac{1}{10}p^3-\frac{1}{2}p^4+\frac{1}{10}p^5-\frac{1}{108}p^6+\frac{57}{448}p^7-\dots)$$
 (9)

a converging series of which the limits are the first term and the first two terms.

Preparation.—To insure p being small in all cases, I have invented the rule of preparation, founded on the fact that if N be the number whose logarithm is sought, and a and b any two numbers of which the logarithms are known, such that $Na \div b = n + d$, where n is the next less number to $Na \div b$ in the table, and d, the difference, is less than the difference between two numbers in the table, then $\log N = \log (n+d) + \log b - \log a$. In Tables I and II the difference between two consecutive numbers is 001, and as there are 100 entries, all the numbers lie between 1 and 1·1; so that if $Na \div b$ is less than 1·1, the required reduction is effected.

Preparation is accomplished in two lines of simple multiplication and division, as follows:—

The given number N is divided or multiplied by such a power of 10 as will leave the quotient or product as a decimal fraction between 1 and 10. This is effected by simply shifting the decimal point.

If the first decimal place is less than 3 times the integer (which is always the case when the integer exceeds 3), divide by the integer and divide the quotient by 1·1 or 1·2. The result is less than 1·1.

If the first decimal place is more than twice the integer, then it is always possible, generally in several ways, to find an integer between 1 and 10 which, used as a multiplier, will give a product of which the integer is less than 13, and the first decimal place less than the integer. The following rule embraces every case:—Multiply any of the numbers 1·30 to 1·340 by 4; 1·340 to 1·80 by 7; 1·80 to 1·960 by 5; 1·960 to 1·99 by 6; 2·50 to 2·99 by 4; 3·80 to 3·99 by 3. Then dividing this product by the integer the quotient is less than 1·1.

This preparation is very convenient also for starting Weddle's and

Hearn's processes given by Mr. Peter Gray in the introduction to his Tables for twelve-place logarithms, 1865 (first published in 1845), and is also very much simpler than that proposed by Mons. Thoman in his "Tables de logarithmes à 27 décimales," 1867.

Interpolation.—The finding of log N is thus made dependent on finding log (n+d), where n is a tabular number and d is less than '001. We then find $2Md \div (2n+d)$, which gives the "uncorrected" logarithm of n+d, or the "quotient" x or z. The multiplication $2M \times d$ is effected by the multiples of the bimodulus given in the tables, when M is not 1, the unit place of each multiple of 2M being placed immediately below the determining figure of d, care being taken to preserve as many places as are necessary for the final result. The division is a single contracted division. The resulting x or z has to be "corrected" by the equations (5) and (6), as shown in Section III.

Completion.—Having found $\log (n+d)$, we add the logarithm of the power of 10 by which we first divided, and the logarithm of any other divisor, and the arithmetical complement of the logarithm of the power of 10 or any other multiplier. All these logarithms are given in the table. The result is the complete $\log N$ to the number of decimal places for which the table is adapted.

Anti-Logarithms.—A logarithm being given we have to reduce it to the logarithm of a number between 1 and 1.1. This is most conveniently done by subtracting from it (or adding to it) the logarithm of the largest power of 10, which will make the result lie between 0 and log 10, and afterwards subtracting the next least logarithm of an integer between 1 and 10, and then the next least logarithm of a number between 1.1 and 2. The logarithms of all these numbers are given in the table. The result will be the logarithm of a number less than 1.1. We then subtract the next less logarithm in the table of interpolation, and obtain the equivalent to the corrected quotient x+c or z+Mc of (5) and (6). We find the correction in the same way as for the quotient, and subtract it, thus obtaining x or z. Then we divide the bimodulus increased by this x or z, by the bimodulus decreased by this x or z, as in (7), and thus find 1+p, which is the number corresponding to the "quotient" in the direct method. For "completion" this has to be multiplied by the numbers corresponding to all the logarithms subtracted in the preparation.

SECTION III.—CALCULATION OF THE BIMODULAR CORRECTIONS.

The principal peculiarity of this improved bimodular method consists in the calculation of the corrections and the determination of the number of places which can be trusted in any case, as assigned in the tables.

The repetition of any digit m times within the same number will

be represented by suffixing m to the right of that digit. Thus, $0_m 1$ is a decimal fraction beginning with m zeroes and followed by 1, and nat. $\log 1.0_7 1 = 0_8 9_8 50_7 3_8 083_6 53_7$ to forty-eight places. Other writers have used 0^m in this sense, but it is not applicable to other digits, and conflicts with the usual notation of powers, thus 230^3 looks like $(230)^3 = 12,167,000$, in place of $23,000 = 230_3$.

Write equations (5) and (6) thus—

nat.
$$\log (1+p) = x + c = x + c_1 + c_2 + \dots$$
 (10), tab. $\log (1+p) = z + t = z + t_1 + t_2 + \dots$ (11), where
$$c_1 = \frac{1}{12}x^3 = x^3 \times .0833 \dots, \quad c_2 = \frac{1}{80}x^5 = x^5 \times .0125 \dots$$
 (12), tab. $\log c_1 = 3$ tab. $\log x + .920 + .9125 \times .0125 \dots$ (13), tab. $\log c_2 = 5$ tab. $\log x + .096 + .9100 - 2 \dots$ (14), tab. $\log x = \frac{1}{3}$ tab. $\log c_1 + .359 + .7271 \dots$ (15),
$$t_1 = z^3 \times .441 + .824 + .842 + .539 + .8725 \times .351 + .376 + .544 + .673 + .6825 \times .1663 + .6825 \times .1663 \times .1663$$

By means of these equations the corrections can be calculated from the "quotient" (that is, the approximate values of x and z) either with or without existing tables of logarithms, or the quotient x or z may be calculated to which a particular value of the first correction is due.

From these has been calculated the following table of the critical values of the first and second corrections, upon which the whole practical use of the corrections depends. The quotients were first taken to proceed from 0_m1 to 0_m9 by steps of 0_m1 . Then the values of the quotients were determined, which reduced either of the two first corrections to 0_n1 , n being variable, from which point the suffix of 0, or the number of initial zeroes, changed, giving critical values of the corrections. Such quotients were then inserted in numerical order. The approximate numbers were obtained from the quotients on the supposition that p was small enough to make nat. $\log (1+p) = p$, and tab. $\log (1+p) = Mp$, to three places of significant figures.

The suffix of 0 in the first correction, diminished by 1, shows the number of places which are unaffected by that correction, that is, the number of places in the uncorrected quotient which may be trusted without corrections. The undiminished suffix shows a number of places which cannot be wrong by more than one unit in defect in the

Table of the Critical Values of the Corrections.

	Value of t_2 .	.0 _{5m+5} 352 .0 _{5m+3} 100 .0 _{5m+3} 100	112 636 654 654 001 _{2+mc} 0.	$\begin{array}{c} 0.05 & 0.$	295 590 .0 _{5m} 100 115 207
II. Tabular logarithms.	Value of $t_{ m l}$.	.0 _{3m+3} 442 827 .0 _{3m+2} 100 329	353 .0 _{3m+1} 100 119 165 283	.0 _{3m+1} 361 522 552 954	.0 _{3m} 100 152 208 226 322
II. Tabuk	Exact quotient.	$0_{m}100$ 123 131 195	200 282 300 310 400	.0 _m 434 491 500 600	609 700 778 800 900
	Approximate number.	1 ·0 _m 231 28-4 303 450	462 653 693 713	$ \begin{array}{c} 1.0_{m-1}100 \\ 113 \\ 116 \\ 139 \end{array} $	141 163 179 186 209
	Value of c_2 .	$0_{3m+6}125$ 169 $0_{3m+5}100$.0018∓m20. 904, 904, 100, 100, 100, 100, 100, 100, 100, 1	128 365 391 972	·0 _{5m+2} 100 210 409 738
I. Natural logarithms.	Value of c_1 .	.0 ₃ , +4833 .0 ₃ , +8100 .002 .092 .090	.0 _{3m+2} 100 225 460	533 .0 _{3n+1} 100 104 180	183 285 426 607
I. Natur	Exact quotient.	.0 _n 100 106 152 200 200	229 240 300 381	400 493 500 600	604 700 800 900
	Approximate number.	1.0m100 106 152 200	229 240 300 881	400 493 500 600	604 700 800 900

last place. The suffix of 0 in the second correction, diminished by 1, shows how many places of the quotient, after applying the first correction, are left unaffected by the second correction, that is, how many places can be trusted on applying the first correction only. For natural logarithms it will be seen that this never gives less than 5m+1 places, that is, 2m+1 places in addition to those determined without correction. Thus in Table I, where m is never less than 3, we can always obtain sixteen places. For tabular logarithms, as in Table II, we must first observe a critical value in the numbers themselves. In that table the number 1+p, whose logarithm is finally sought, must be less than 1.001. Hence, while in the upper part of the preceding table of critical values, m will always be 3 or more, in the lower part, m-1 will always be 3 or more, so that m will always be 4 or more. As far then as the quotient 0.3434, the first correction gives only 5.3+1=16 places, and this is the largest quotient that can commence with $\cdot 0_3$. If the significant figures are greater than 434, then m will be 4, and up to the quotient 0_4778 we can trust 5.4=20 places, and beyond it we can even trust 19 places. Observe that 0_49 at the bottom of this table is followed by 0_31 at the top (II, second column), for which, also, the second corrections leave 5.3+4=19 places unaffected.

But in determining the full number of places of the first correction from the uncorrected quotient by equations (12) and (16), we are, of course, obliged to take so many significant places, that on cubing the result and multiplying by the proper coefficient, no error affecting the full number of places should be committed. The number of places required for this purpose is so large that if we calculated the result directly, the present method of correction would be illusory. Hence it is necessary to use common seven-place logarithmic tables which can be trusted to six places. Consequently, we can use only six significant places in the quotient for finding the correction, and we thus introduce an error not exceeding half a unit in the last place in excess or defect. On estimating the limiting effect of this error. I find practically that on using six significant places of the uncorrected quotient to determine the first correction, we may trust all six places of the correction found. The total number of places that can be trusted, when this error is allowed for, depends on the quotient. Let r be the significant places of the quotient converted into a decimal fraction with one unit place. Then the real quotient is $0_m 1 \times r$, but on taking only six significant places, we use as a quotient $0_m 1 \times r +$ $0_{m+6}1 \times 5$, and the error thus made in the correction may be taken as the term involving r^2 in the cube of this number divided by $12M^2$. that is, as $0_{3m+8}1 \times 15r^2 \div 12M^2$. Then, putting $15r^2 \div 12M^2 = 10$ and 100, and finding the corresponding values of r, we obtain the critical values of the quotient where the suffix of 0 in the error of the

Bimodular Table I.—Natural Logarithms.

No.	Natural Logarithm.	No.	Natural Logarithm.
1 .000	.000 000 000 000 000 000	1.050	.048 790 164 169 432 003
1	000 999 500 333 083 533	51	049 742 091 894 814 074
2	001 998 002 662 673 056	$\frac{52}{53}$	050 693 114 315 518 118
$\begin{matrix} 3 \\ 4 \end{matrix}$	·002 995 508 979 798 478 ·003 992 021 269 537 453	54	·051 643 233 151 838 450 ·052 592 450 119 170 584
1.005	004 987 541 511 039 074	1.055	053 540 766 928 029 818
6	005 982 071 677 547 464	56	054 488 185 284 069 731
7	006 975 613 736 425 242	57	055 434 706 888 100 582
8	007 968 169 649 176 874	58	056 380 333 436 107 639
9	008 959 741 371 471 904	59	057 335 066 619 269 407
1.010	009 950 330 853 168 083	1.060	058 268 908 123 975 776
11	010 939 940 038 334 364	$61 \\ 62$	059 211 859 631 846 083
$\frac{12}{13}$	·011 928 570 865 273 802 ·012 916 225 266 546 328	63	'060 153 922 819 747 091 '061 095 099 359 810 876
14	012 910 223 200 940 328	64	062 035 390 919 452 641
1 .015	014 888 612 493 750 655	1.065	062 974 799 161 388 435
16	015 873 349 156 290 149	66	063 913 325 743 652 797
17	016 857 117 066 422 899	67	064 850 972 319 616 314
18	017 839 918 128 331 000	68	065 787 740 538 003 097
19	018 821 754 240 587 761	69	066 723 632 042 908 173
1.020	019 802 627 296 179 713	1.070	067 658 648 473 814 805
$egin{array}{c} 21 \ 22 \end{array}$	·020 782 539 182 528 504 ·021 761 491 781 512 692	$\begin{array}{c} 71 \\ 72 \end{array}$	'068 592 791 465 611 716 '069 526 062 648 610 245
23	021 761 451 781 512 652	73	009 920 002 048 010 249
24	023 716 526 617 316 042	74	071 389 996 086 672 945
1.025	024 692 612 590 371 501	1.075	.072 320 661 579 626 121
26	025 667 746 748 577 792	76	073 250 461 739 592 673
27	026 641 930 946 421 178	77	074 179 398 174 251 512
28	027 615 167 032 973 365	78 79	075 107 472 486 805 412
29	028 587 456 851 912 555		076 034 686 275 997 608
1 ·030 31	029 558 802 241 544 403 030 529 205 034 822 873	1 ·080 81	076 961 041 136 128 325 077 886 538 657 071 225
$\frac{31}{32}$	030 529 203 034 822 873	82	077 886 538 637 671 223
33	032 467 190 137 501 495	83	079 734 968 018 853 559
34	033 434 776 086 237 388	84	080 657 903 017 454 467
1.035	034 401 426 717 332 396	1.085	.081 579 986 992 422 874
36	035 367 143 837 291 316	86	082 501 221 511 743 696
37	036 331 929 247 390 277	87	083 421 608 139 072 391
$\frac{38}{39}$	·037 295 784 743 696 896 ·038 258 712 117 090 341	88 89	.084 341 148 433 750 885 .085 259 843 950 823 419
1.040	039 220 713 153 281 296	1.090	086 177 696 241 052 332
41	040 181 789 632 831 832	91	087 094 706 850 933 767
42	·041 141 943 331 175 177	92	088 010 877 322 713 299
43	042 101 176 018 635 394	93	088 926 209 194 401 509
44	043 059 489 460 446 977	94	089 840 703 999 789 463
1.045	044 016 885 416 774 327	1.095	090 754 363 268 464 143
46	044 973 365 642 731 158	96 97	091 667 188 525 823 792
$\frac{47}{48}$	·045 928 931 888 399 803 ·046 883 585 898 850 420	97 98	·092 579 181 293 093 194 ·093 490 343 087 338 889
			1 000 TOU OTO UU1 000 UU6

	2. For Preparation.					
No.	1	Natur	al Lo	garit	hm.	
1.1	0.095	310	179	804	324	869
1 .2	0.182	321	556	793	954	626
1.3	0.262	364	264	467	491	052
1.4	0.336	472	236	621	212	931
1.5	0.405	465	108	108	164	382
1.6	0.470	003	629	245	735	554
1.7	0.530	628	251	062	170	396
1.8	0.587	786	664	902	119	800
1 .9	0.641	853	886	172	394	776
2.0	0.693	147	180	559	945	309
3.0	1.098	612	288	668	109	691
4.0	1 .386	294	361	119	890	619
5.0	1.609	437	912	434	100	375
6.0	1 .791	759	469	228	055	001
7.0	1 .945	910	149	055	313	305
8.0	2.079	441	541	679	835	928
9.0	2 197	224	577	336	219	383
10.0	2 · 302	585	092	994	045	684
11.0	2 · 397	895	272	798	370	544
12.0	2.484	906	649	788	000	310
	1					

3. Multiples of nat. log 10.

No. of mult.]	Natur	al Lo	garitl	nm.	
1	2:302	585	092	994	045	684
2	4.605	170	185	988	091	368
3	6.907	755	278	982	137	052
4	9 • 210	340	371	976	182	736
5	11.512	925	464	970	228	420
6	13.815	510	557	964	274	104
7	16:118	095	650	958	319	788
8	18 • 420	680	743	952	365	472
9	20.723	265	836	946	411	156
10	23.025	850	929	940	456	840
11	25 .328	436	022	934	502	524
12	27 .631	021	115	928	548	208
13	29 -933	606	208	922	593	892
14	32.236	191	301	916	639	576
15	34 .538	776	394	910	685	260
16	36 .841	361	487	904	730	944

4. For no Corrections.

For Difference, or Quotient,	Trust places, uncorrected,
·0 ₂ 100 ·0 ₃ 493 ·0 ₃ 229 ·0 ₃ 106 ·0 ₄ 493 ·0 ₄ 229 ·0 ₄ 106 ·0 ₅ 193	9 And one place 10 more in each case 11 with a probable 12 error in it of one 13 unit in defect. 14 15 16

For intermediate quotients trust the number of places opposite the next greater in the above table.

5. For Full Corrections, Additive.

Take six significant figures of the quotient, and use six significant figures of the cor. from this formula—

tab. log cor.=3 tab. log quotient+ '920 8188-2. Trust all the places thus corrected, that is—

For Difference, or Quotient,	Trust in result places,
*0 ₂ 100	14 And one place more in each
*0 ₂ 894	15 case with a probable error in it
*03284	16 of one unit in defect.
*03100	17
*04894	18

For intermediate quotients trust the number of places opposite the next greater.

6. For Short Corrections, Additive, giving twelve places.

Work to thirteen places. Possible error on "completion" one unit in the twelfth place. For intermediate quotients use the correction opposite the next less.

Quotnt.	Cor.	Quotnt.	Cor.	Quotnt.	Cor.
·0 ₃ 000 182 262 311 348	*0 ₁₀ 00 1 2 3 4	·0 ₃ 707 715 723 731 738	·0 ₁₀ 30 31 32 33 34	·0 ₃ 894 899 904 909 913	*0 ₁₀ 60 61 62 63 64
$^{\circ}0_{3}378$ $^{\circ}404$ $^{\circ}427$ $^{\circ}448$ $^{\circ}467$	*0 ₁₀ 05 6 7 8 9	${f \cdot}0_3745 \ 752 \ 759 \ 766 \ 773$	·0 ₁₀ 35 36 37 38 39	·0 ₃ 918 923 928 932 937	*0 ₁₀ 65 66 67 68 69
$^{\cdot 0_{3}}485$ 501 517 531 545	*0 ₁₀ 10 11 12 13 14	·0 ₃ 780 786 792 798 805	·0 ₁₀ 40 41 42 43 44	•0 ₃ 941 946 950 952 959	*0 ₁₀ 70 71 72 73 74
*0 ₈ 558 571 583 594 606	·0 ₁₀ 15 16 17 18 19	·0 ₃ 811 817 823 829 835	·0 ₁₀ 45 46 47 48 49	•0 ₃ 963 968 972 976 980	*0 ₁₀ 75 76 77 78 79
$^{\cdot 0}_{3}$ 6 6 6 6 6 6 6 6 6 6	$\begin{array}{c} \cdot 0_{10}20 \\ 21 \\ 22 \\ 23 \\ 24 \end{array}$	·0 ₃ 841 846 852 857 863	•0 ₁₀ 50 51 52 53 54	·0 ₃ 984 989 993 997	*0 ₁₀ 80 81 82 83
*0 ₃ 665 674 683 691 699	0 ₁₀ 25 26 27 28 29	*0 ₃ 868 873 879 884 889	*0 ₁₀ 55 56 57 58 59		

Bimodular Table II.—Tabular Logarithms.

1. Table for Interpolation.				
No.	Tabular Logarithm.	No.	Tabular Logarithm.	
1 ·000	·000 000 000 000 000 000	1 ·050	·021 189 299 069 938 073	
1	·000 434 077 479 318 641	51	·021 602 716 028 242 220	
2	·000 867 721 531 226 912	52	·022 015 739 817 720 259	
3	·001 300 933 020 418 119	53	·022 428 371 185 486 518	
4	·001 733 712 809 000 530	54	·022 840 610 876 527 803	
1.005	·002 166 061 756 507 676	1 ·055	023 252 459 633 711 470	
6	·002 597 980 719 908 592	56	023 663 918 197 793 454	
7	·003 029 470 553 618 007	57	024 074 987 307 426 268	
8	·003 460 532 109 506 486	58	024 485 667 699 166 953	
9	·003 891 166 236 910 522	59	024 895 960 107 485 003	
1.010 11 12 13 14	004 321 373 782 642 574	1.060	025 305 865 264 770 241	
	004 751 155 591 001 063	61	025 715 383 901 340 666	
	005 180 512 503 780 310	62	026 124 516 745 450 260	
	005 609 445 360 280 428	63	026 533 264 523 296 757	
	006 037 954 997 317 171	64	026 941 627 959 029 378	
1 015	006 466 042 249 231 723	1.065	027 349 607 774 756 528	
16	006 893 707 947 900 450	66	027 757 204 690 553 459	
17	007 320 952 922 744 597	67	028 164 419 424 469 893	
18	007 747 778 000 739 942	68	028 571 252 692 537 612	
19	008 174 184 006 426 395	69	028 977 705 208 778 017	
1.020 21 22 23 24	008 600 171 761 917 561 009 025 742 086 910 247 009 450 895 798 693 927 009 875 633 712 160 158 010 299 956 639 811 952	$egin{array}{ccc} 1.070 & 71 & \\ & 72 & \\ & 73 & \\ & 74 & \\ \end{array}$	·029 383 777 685 209 641 ·029 789 470 831 855 634 ·030 194 785 356 751 215 ·030 599 721 965 951 084 ·031 004 281 363 536 802	
1 ·025	·010 723 865 391 773 104	1·075	·031 408 464 251 624 136	
26	·011 147 360 775 797 468	76	·031 812 271 330 370 371	
27	·011 570 443 597 278 197	77	·032 215 703 297 981 585	
28	·011 993 114 659 256 928	- 78	·032 618 760 850 719 897	
. 29	·012 415 374 762 432 929	79	·033 021 444 682 910 673	
1 ·030	012 837 224 705 172 205	1·080	.033 423 755 486 949 702	
31	013 258 665 283 516 547	81	.033 825 693 953 310 343	
32	013 679 697 291 192 549	82	.034 227 260 770 550 632	
33	014 100 321 519 620 579	83	.034 628 456 625 320 360	
34	014 520 538 757 923 700	84	.035 029 282 202 368 120	
1 · 035	·014 940 349 792 936 558	1 ·085	.035 429 738 184 548 315	
36	·015 359 755 409 214 218	86	.035 829 825 252 828 143	
37	·015 778 756 389 040 962	87	.036 229 544 086 294 540	
38	·016 197 353 512 439 047	88	.036 628 895 362 161 100	
39	·016 615 547 557 177 412	89	.037 027 879 755 774 956	
1.040 41 42 43 44	·017 033 339 298 780 355	1·090	037 426 497 940 623 635	
	·017 450 729 510 536 156	91	037 824 750 588 341 878	
	·017 867 718 963 505 669	92	038 222 638 368 718 428	
	·018 284 308 426 530 869	93	038 620 161 949 702 792	
	·018 700 498 666 243 352	94	039 017 321 997 411 969	
1 ·045	019 116 290 447 072 807	1·095	039 414 119 176 137 143	
46	019 531 684 531 255 434	96	039 810 554 148 350 354	
47	019 946 681 678 842 334	97	040 206 627 574 711 132	
48	020 361 282 647 707 846	98	040 602 340 114 073 104	
49	020 775 488 193 557 860	99	040 997 692 423 490 567	

Bimodular Table II.—Tabular Logarithms—continued.

2. For Preparation.

No.		Tabular Logarithm.				
1 · 1	0.041	392	685	158	225	041
1.2	0.079	181	246	047	624	828
1 .3	0.113	943	352	306	836	769
1.4	0.146	128	035	678	238	026
1.5	0.176	091	259	055	681	242
1.6	0 .204	119	982	655	924	781
1 .7	0.230	448	921	378	273	929
1.8	0.255	272	505	103	306	070
1.9	0.278	753	600	952	828	962
2.0	0.301	029	995	663	981	195
3.0	0.477	121	254	719	662	437
4.0	0.602	059	991	327	962	390
5.0	0.698	970	004	336	018	805
6.0	0.778	151	250	383	643	633
7.0	0.845	098	040	014	256	831
8.0	0.903	089	986	991	943	586
9.0	0.954	242	509	439	324	875
10 0	1.000	000	000	000	000	000
11.0	1.041	392	685	158	225	041
12.0	1.079	181	246	047	624	827

3. Multiples of the Bimodulus.

No. of mult.		Valu	e of 1	Multi	ple.	
1	0.868	588	963	806	503	655
$\frac{2}{3}$	1 .737	177	927	613	007	311
3	2.605	766	891	419	510	966
4	3.474	355	855	226	014	621
5	4.342	944	819	032	518	277
6	5.211	533	782	839	021	932
7 8	6.080	122	746	645	525	587
8	6.948	711	710	452	029	242
9	7 .817	300	674	258	532	898

4. For no Corrections.

Differ- ence.	Quotnt.		Trust Places
$0_{2}100$ $0_{3}653$ $0_{3}303$ $0_{3}141$ $0_{4}653$ $0_{4}303$ $0_{4}141$ $0_{5}653$	$ \begin{array}{c} {}^{\bullet}0_{3}434 \\ {}^{\bullet}0_{3}282 \\ {}^{\bullet}0_{3}131 \\ {}^{\bullet}0_{4}609 \\ {}^{\bullet}0_{4}282 \\ {}^{\bullet}0_{4}131 \\ {}^{\bullet}0_{5}609 \\ {}^{\bullet}0_{5}282 \\ \end{array} $	9 10 11 12 13 14 15 16	And one more place in each case with a probable error in it of one unit in defect.

For intermediate Differences and Quotients trust the number of places opposite the next greater.

5. For Full Corrections, Additive.

Take six significant figures of the quotient and use six significant figures of the correction from this formula-

tab. $\log \operatorname{cor.} = 3 \operatorname{tab.} \log \operatorname{quotient} + .645 2501 - 1.$

Differ- ence.	Quotnt.	Trust places
$0_{2}100$ $0_{3}893$ $0_{3}284$ $0_{3}231$ $0_{4}893$	·0 ₃ 434 ·0 ₃ 388 ·0 ₃ 123 ·0 ₃ 100 ·0 ₄ 388	14 And one more place in each 15 case with a probable error in 16 it of one unit in defect. 17

For intermediate Differences and Quotients trust the number of places opposite the next greater.

6. For Short Corrections, Additive, giving twelve places, with a possible error of one unit in the twelfth place on completion.

Quotient.	Correction.	Quotient.	Correction.			
·0 ₃ 000	·0 ₁₀ 00	·0 ₃ 353	.01020			
104	01	359	21			
150	02	365	22			
178	03	371	23			
199	04	376	24			
100	01	910	₩T			
·0 ₃ 217	.01005	·0 ₃ 381	·0 ₁₀ 25			
232	06	386	26			
245	07	391	27			
257	08	396	28			
268	09	401	$\frac{1}{29}$			
·0 ₃ 278	·0 ₁₀ 10	•0,406	.01030			
288	11	410	31			
296	12	415	32			
305	13	419	33			
313	14	423	34			
·0 ₃ 320	·0 ₁₀ 15	.0,427	*0 ₁₀ 35			
327	16	432	36			
334	17					
341	18					
348	19					
0.0	10					
	1	l	I			

For intermediate quotients take the correction opposite the next less.

Note.—The natural logarithms to eighteen places Note.—The natural logarithms to eighteen places in Table I are either taken direct or calculated (by subtracting nat. logs of 1,000 and 10) from "Wolframii Tabula Logarithmorum Naturalium" to forty-eight places, appended to Vega's "Thesaurus Logarithmorum Completus," 1794.

The tabular logarithms to eighteen places in Table II are taken direct from Mr. Peter Gray's "Tables for the formation of Logarithms and Anti-Logarithms to twenty-four places," 1876.

In both tables the arrangement and corrections are original.

2 F VOL. XXXI.

correction changes. The results are given under "5. Full Corrections," in Tables I and II.

But although it is by no means difficult or very troublesome to use the formulæ (13) and (17) for finding the first correction, it is always inconvenient to use two tables. It would be manifestly impossible to give a table of corrections to six figures within reasonable limits. Hence, leaving the "full correction" to be found, when desired, by these formulæ, I append a table of "short corrections," so as to obtain twelve places of the result from Tables I and II at sight. The thirteenth place has been allowed for, so that the result may be thoroughly trusted, but in the "completion" an error of one unit in the twelfth place may easily creep in unless "full corrections" are used. These "short corrections" have been calculated from the formulæ (15) and (19), by assuming successive values of the first correction, as $0_{19}5$, $0_{11}15$, $0_{11}25$ and so on, and calculating the corresponding value of the quotients. But in the table itself these corrections are entered as $0_{11}1$, $0_{11}2$, &c. The limiting correction is reached when the corresponding quotient is the next least to that due to the number 1.001. These twelve places are fully as many as are required for ordinary purposes, and for them only thirteen out of the eighteen places in the tables should be used.

SECTION IV .- BIMODULAR TABLES AND EXAMPLES.

Table I applies to natural logarithms giving from nine to sixteen places, according to circumstances, with no corrections, twelve places with short corrections, and fourteen to sixteen places with full corrections.

Rule to find the logarithm from the number. — Reduce the given number to the form of a decimal fraction with an integer less than 10.

Multiply and divide by such whole numbers less than 13 as will reduce the number to one less than 1.1, as shown in Section II.

Find the next less number in "1. Table for Interpolation," and first subtract it from the reduced number, then omit the decimal point, and multiply by 2, forming the "dividend;" secondly, add this next less number to the reduced number, and then omit the decimal point, forming the "divisor."

Divide the dividend by the divisor by simple contracted division to as many places as are required. Correct the quotient, as may be necessary, by the table or formula of correction, No. 6 or 5.

Add the logarithms of the divisors and the arithmetical complements of the logarithms of the multipliers used in forming the reduced number, to find the full corrected logarithm.

Table II applies to Briggs's or Tabular Logarithms, giving from nine to sixteen places, according to circumstances, with no corrections, twelve places with short corrections, and fourteen to eighteen places with full corrections.

Rule.—Proceed precisely as for natural logarithms, except that instead of multiplying by 2 it is necessary to multiply by the tabular bimodulus, by help of the multiples given in No. 3.

Tables I and II. Rule to find the number from the logarithm.—Subtract the logarithm of the next lower power of 10, and then, in order, the next lower logarithm in the lower, and then that in the upper part of the table "2. For Preparation," and afterwards the next lower logarithm in the table for interpolation.

Considering this as an approximate logarithm of a reduced number, find the correction as if it were a quotient by No. 5 or 6, and *subtract* (instead of adding) the correction, which reduces it to the form of a quotient or approximate logarithm.

Add the resulting number to and subtract it from the bimodulus (which is 2 for natural logarithms) and divide the sum by the difference.

Multiply the quotient in succession by the numbers corresponding to the logarithms subtracted. The result is the number required.

Examples, fully worked out, with explanations.

Let
$$N=192 699 928 576=(76)^6$$
.

Then calculating the value of 6 nat. log 76 from Wolfram's tables appended to Vega's, and multiplying the result by the tabular modulus we find to twenty places—

These numbers serve as checks to the correctness of the following work.

Here a, b, c form the "preparation" of N. As a begins with 1.9, where the first decimal place is more than 3 times the integer, a is multiplied by 6 to produce 11.56..., a decimal fraction of which the integer 11 is less than 13 and more than twice the first integer 5. Both 5 and 4 would have also answered. The divisor 11 is separated off by), and in the quotient c the next less number 1.051 in the table for interpolation is similarly separated. This leaves c-1.051 to the right of), with the decimal point already omitted. Then this difference is multiplied by the bimodulus 2, to obtain the dividend d. The whole of c is added to the separated part 1.051, and then the decimal point is omitted, giving e. As the difference c=0.4905, lies between 0.3106 and 0.4923, we can certainly obtain twelve places without correction (Table I, No. 4), and as it lies between 0.31 and 0.4894 we can obtain seventeen places with full corrections (Table I, No. 5). We

Ex. 1. To Table I.—Find nat. log N to sixteen places. The letters refer to the following explanations. Every figure required by the most moderate calculator is inserted.

	$a = N \div 10^{11}$.	1 .92	699	928	576				a
	b=6a.	11) 56	199	571	456				b
	$c=b\div 11.$	1.05	1)09	051	950	545	454	54	c
e	210 209 051 950 545	$45\overline{4} \ 5\overline{4}$)18	103	901	090	909	09	d
			16	816	724	156	043	63	(8
f	$\overline{000\ 086\ 123\ 318\ 301}$	099	1	287	176	934	865	46	
g	0_{13} 53	233	1	261	254	311	703	27	(6
h	049 742 091 894 814	074	And the second	25	922	623	162	69	
k	2 : 397 895 272 798 370	544		21	020	905	195	05	(1
l	8 208 240 530 771 944	999 - 10		4	901	717	967	$\overline{14}$	
m	25 · 328 436 022 934 502	524		4	204	181	039	01	(2
n	25 984 400 041 717 986	473			697	536	928	13	
					630	627	155	90	(3
	$d=2(c-1.051)\times 10^{19}=$ dividend. 66 909 772 23								
	$e=2(c+1.051) \times 10^{19} = \text{divisor}.$ 63 062 715 59								(3
	$f=d \div e = \text{quotient.}$ 3 847 056 64								
	g=full correction, see below. 2 102 090 64								
	$h = \text{nat.} \log 1.051.$				1	744	966	12	(2
	k = nat. log 11. 1 681 672 41								(8
	<i>l</i> =arithm. comp. of nat. log 6. 63 293 71								
	m=11 nat. log 10. 63 062 72								
n=nat. log N, true to 18 places.								99	(3
		-					210	21	(01
Cal	Calculation of g. Log f, taking six significant places, $\overline{20 78}$							`	
							18	92	(09
$3\log f = 2.805 \ 3618 \ -15$								`	
		8188 —					1	89	(9
$\log g = \log 0_{13}532 \ 329 = 726 \ 1806 \ -14$									

prepare, then, for seventeen places, by carrying the quotient c far enough to allow of obtaining eighteen places, that is, fourteen significant places of the quotient f. As at least 2 digits of the divisor must remain for the last contracted divisor, we shall require only fifteen places of the divisor, and the last five are rejected (shown by drawing a line under them). The successive digits of the quotient are written to the right after ((following Briggs's use), and are collected in f. The rest of the process is evident from the notes

made. The result happens to be correct to eighteen places, in place of the guaranteed seventeen; but this is quite accidental, as the last or eighteenth place of all the logarithms used is always in excess or defect.

 $\it Ex.~2.$ To Table II.—Find tab. log N to twelve places by the short corrections.

				1 "	92	699	928	576		α
				9).	63	499	642	880		b
				1 ·	07 (0)55	515	875	556	c
$lus \times 10$	$)^{10}$.					43	429	44 8	190	d
$\times 10$) ⁹ .					4	342	944	819	
$\times 10$) ⁸ .						434	294	482	
$\times 10$)7.						08	685	890	e
$\times 10$) ⁶ .						4	342	945	
$\times 10$) ⁵ .							694	871	
$\times 10$) 4.							60	801	
$\dot{\times}10$	$)^{3}.$							4	343	
$\times 10$	$)^{2}.$								434	
$\times 10$).								43	
									5	
g	214	055	515	875	556	$(3)\overline{48}$	220	476	823	f
v		• • •	• • •	• • _		- 42	811	103	175	(2
h	.000	225	270	891	2	5	409	373	648	`
k	•011			5		4	281	110	318	(2
m		383	777	685	2	1	128	263	330	
n	$\cdot 954$	242	509	439	3	1	070	277	579	(5
p	.301	029	995	664	0-	$\cdot 1$	57	985	751	
q 1	1 .0						42	811	103	(2
_	1 ·284	881	553	684	7		$\overline{15}$	174	648	,
							14	983	886	(7
$\times 10^{14}$	× bimo	dulu	s=d	ivide	nd.		Name of Street, or other Desires, or other Desir	190	762	·
$\times 10^{14}$	=divis	or.						171	244	(68
ient.								19	518	•
ction fo	r quot	ient	.000	225				19	265	(9
									·	
									214	(1
n=tab. log 9. 214 p=arithm. comp. of tab. log 5. 39									`	
q = 11 tab. log 10. 40								(2		
r=tab. log N, correct to 13 places.									•	
		h 000 k 0_{11} m 029 n 954 p 301 q $11 \cdot 0$ r $11 \cdot 284$ 000	$\begin{array}{c} \times 10^{9}.\\ \times 10^{8}.\\ \times 10^{7}.\\ \times 10^{6}.\\ \times 10^{5}.\\ \times 10^{4}.\\ \times 10^{3}.\\ \times 10^{2}.\\ \times 10.\\ \\ g \\ \hline $	$\begin{array}{c} \times 10^{9}.\\ \times 10^{8}.\\ \times 10^{7}.\\ \times 10^{6}.\\ \times 10^{5}.\\ \times 10^{4}.\\ \times 10^{3}.\\ \times 10^{2}.\\ \times 10.\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} 9) \\ \hline 1 \\ \hline \\ 100 \\ \times 10^{10}. \\ \times 10^{9}. \\ \times 10^{8}. \\ \times 10^{7}. \\ \times 10^{6}. \\ \times 10^{5}. \\ \times 10^{4}. \\ \times 10^{3}. \\ \times 10^{2}. \\ \times 10. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	dus $\times 10^{10}$. $\times 10^{9}$. $\times 10^{8}$. $\times 10^{7}$. $\times 10^{6}$. $\times 10^{5}$. $\times 10^{4}$. $\times 10^{3}$. $\times 10^{2}$. $\times 10$. g 214 055 515 875 556 0 . 0 . 0 00 225 270 891 2 0 0 200 200 200 200 200 200 200 200 200	$\begin{array}{c} 9) \cdot 63 499 \\ \hline 1 \cdot 07 \cdot 0)55 \\ \hline \text{dus} \times 10^{10}. & 43 \\ \times 10^{9}. & 4 \\ \times 10^{8}. & \\ \times 10^{7}. & \\ \times 10^{6}. & \\ \times 10^{5}. & \\ \times 10^{4}. & \\ \times 10^{3}. & \\ \times 10^{2}. & \\ \times 10. & \\ \\ & & & & \\ \hline $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ex. 3. To Table II. Given the tab. log N, to eighteen places of decimals, to find N to the greatest possible number of digits. This process is entirely new, and depends upon Section II, eq. (7).

a = tab. log N. 11.284 881 553 684 748 112	α
$b = \text{tab.} \log 10^{11} + \text{tab.} \log 1.9$. 11.278 753 600 952 828 962	b
$c=a-b$. $\frac{1270}{006}$ 127 952 731 919 150	c
$d = \text{tab. log } 1.014.$ $006 \ 037 \ 954 \ 997 \ 317 \ 171$	d
tab. $\log e = c - d$. $000 \ 089 \ 997 \ 734 \ 601 \ 979$	
f =correction, see below. 0_{12} 322 066	f
tab. $\log e' = \text{tab. } \log e - f$. $000 \ 089 \ 997 \ 734 \ 279 \ 913 \ t$	
h=bimodulus.	h
<i>l</i> ·868 498 966 072 223 742)·868 678 961 540 783 568	k
868 498 966 072 223 742	(1
e 1·000 207 248 915 1(8(7 4 179 995 468 559 826	`
m 10 002 072 489 151 9 173 699 793 214 445	(0002
n 4 000 828 995 660 7 6 295 675,345 381	•
p 1.014 210 150 400 000 (0 6 079 492 762 505	(07
q ·912 789 135 360 000 0 216 182 582 876	•
N 1926 999 285 76·0 000 0 173 699 793 214	(2
42 482 789 662	`
k=h+tab. log e'. 34 739 958 643	(4
$l=h-\text{tab.}\log e'$. 7 742 831 019	•
$e = k \div l$. 6 947 991 728	(8
$m = e \times 01.$ 794 839 291	`
$u = e \times .004$. 781 649 069	(9
$p = e + m + n = e \times 1.014.$ 13 190 222	•
$q = p \times .09$. 8 684 990	(1
$N = (p+q) \cdot 10^{11} = p \times 1 \cdot 09 \times 10^{11}$. 4 505 232	`
4 342 495	(5
Calculation of f — Calculation of f — Calculation of f — Calculation of f — Calculation of f —	•
r =tab. $\log e = .04899 977$ taken as quotient in 86 850	(1
s = tab. log r = .954 2314— 5 Table II, No. 5. 75 887	`
3s = 2.862 6942 - 15 69 480	(8
t = .645 2501 - 1	·
$3s + t = \log f = .507 9443 - 13 \tag{6.079}$	(7
328	·
260	(3
68	

The preparation a, b, c, is similar to that in Ex. 1, but 5 is used as the multiplier by way of variety. The difference c-1.070 being ·0₃55 . . ., which lies between ·0₃653 and ·0₃303, we cannot be certain of more than ten places without correction (Table II, No. 4). As only twelve places are wanted, we use the short corrections and work to thirteen places. The chief peculiarity relates to the multiplication of c-1.070 by the bimodulus by means of the multiples in Table II, No. 3, omitting all the decimal points. The integer of the multiple is placed under the determining figure of the multiplicand, and the multiple is then written out as far as necessary, neglecting the point. but regulating the last figure. It is best to write in the integer 0, as in line e, to preclude error. As the quotient must begin with 0_3 , only ten significant places are wanted, and hence only eleven places in the divisor q, the four underlined 5556 are therefore rejected. correction k is found from Table II, No. 6, as belonging to a quotient between 0_3217 and 0_3232 . The rest is sufficiently explained in the The result is accidentally correct to thirteen places.

Here a is the given tab. log to eighteen places. We first subtract 11 log 10, or the characteristic. Next, if the remainder were greater than any logarithm in the lower part of Table II, No. 2, we should subtract that. But in this case it is not, and hence we proceed to the upper part of No. 2, and subtract the next less, or tab. log 1.9. This completes the preparation, as the difference c=a-b, lies between the tab. logs of 1.014 and 1.015 in No. 1, the table for interpolation. Hence, subtracting tab. log 1.014, we find tab. log e, of which the number e has to be found. Now, the formula (7) applies only to an uncorrected z=tab. log e', which cannot differ from tab. log e in the three first significant figures. In the direct process, tab. log e is found from tab. log e' by adding the correction found by Table II, No. 5. Hence we have only to subtract this correction f, which is calculated from the same first six significant figures in both cases, as shown in the example. Having found this uncorrected tab. log e', we add it to and subtract it from, the bimodulus, obtaining k and l respectively. and thus find $e=k \div l$. Now, tab. $\log e'$ cannot be greater than the greatest difference between two tab. logs in Table II, No. 1, "for interpolation," that is, it cannot be greater than '000 434 077 . . ., and hence than $001 \times \text{modulus}$. Hence the result of this division $k \div l$, must be less in any case than $(2M + .001 \times M) \div (2M - .001 \times M) =$ 1.0010005 . . . , and must be greater than 1, hence it must commence with 1.000. As the modulus divides out, this conclusion holds for all systems of logarithms. As the last divisor in the contracted division must have two digits for safety, it follows that the number of digits in the quotient $k \div l = e$, will be one less than the number of digits in the divisor, that is, than the number of decimal places in the given logarithm. And as the first of these digits is a whole number, it follows that the number of decimal places in the quotient k+l, will be two less than in the given logarithm. Moreover, as the last decimal place is always approximate, it follows that the number e cannot be found with certainty to more than three decimal places less than the number of decimal places in the given tab. logarithm. Hence, in the present case, although tab. $\log e$ is known to eighteen places of decimals, e is known with certainty only to fifteen places of decimals (and sixteen digits). But the error in the next place (or digit) will not probably exceed one unit.

Having found e, we have to multiply it in succession by the numbers corresponding to the logarithms subtracted in the preparations in this example, 1·014, 1·9, and 10¹¹. This is most readily done in the way sufficiently explained by the notes in the example. The resulting number is accidentally correct to seventeen digits, but only sixteen can be used with certainty. Hence, if we use this bimodular method of finding logarithms and anti-logarithms, we should always find the logarithms to two or three places of decimals more than we require digits in the final number to be found.

V. "On the Potential Radix as a Means of Calculating Logarithms to any Required Number of Decimal Places, with a Summary of all Preceding Methods Chronologically Arranged." By Alexander J. Ellis, B.A., F.R.S., F.S.A. Received January 17, 1881.

In the tables attached to my paper "On an Improved Bimodular Method of Computing Logarithms, &c." ("Proc. Roy. Soc.," vol. 31, p. 381), the logarithms used were all taken direct, or immediately calculated, from the tables of Wolframm and Gray. But a complete method of calculating logarithms should be independent of extraneous aid and be applicable to the first construction of tables of logarithms. I shall here show that my improved bimodular method is capable of furnishing a practical means of calculating natural logarithms, and hence logarithms to any base and to any number of places of decimals.

By the term positive numerical radix I shall understand a table of the numbers r, $1 \cdot r$, $1 + \cdot 0_m r$, with their corresponding natural logarithms, where r varies from 1 to 9, 0_m means a series of m zeroes, and m varies from 1 to any required number. The word Radix in this sense is adopted from R. Flower, 1771, mentioned below. By the term negative numerical radix I mean a similar table of $1 - \cdot 0_m r$, and the negatives of their corresponding logarithms. When these radixes (forming an English plural, as radices would be misleading) have been