A tutorial primer for getting started with RL in a seamless way RL Bootcamp 2025

Thomas Gallien^{1,2}

¹Institute for Robotics and Flexible Production JOANNEUM RESEARCH

> ²RL Community Al Austria

18.09.2025

Batch Size vs. Learning Rate for Stochastic Gradient Decent

- ▶ We use stochastic gradient optimization, hence:
 - parameters are updated with unbiased gradient estimates
 - ▶ this is still a random variable ⇒ noisy!
 - variance of the gradient estimate is indirectly proportional to the **batch size**.
 - the larger the batch size, the fewer updates per epoch
 - tradeoff noise suppression and number updates
- Recommendation
 - keep batch size either default or at "usual" values (64,128,256)
 - adjust learning rate during hyperparameter search
 - reduces one dimension in search space

The Impact of the Trust Region

TRPO Objective:

$$\begin{split} \hat{\theta'} &= \arg\max_{\theta'} \, \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \pi_{\theta}} \left[\frac{\pi_{\theta'}(\mathbf{a}|\mathbf{s})}{\pi_{\theta}(\mathbf{a}|\mathbf{s})} A^{\pi_{\theta}}(\mathbf{s}, \mathbf{a}) \right] \\ &\text{subject to} \\ &\mathbb{E}_{\mathbf{s}} \left[D_{\mathsf{KL}} \left(\pi_{\theta}(\mathbf{a}|\mathbf{s}) || \pi_{\theta'}(\mathbf{a}|\mathbf{s}) \right) \right] \leq \underline{\delta} \end{split}$$

Analytical Solution:

$$\Deltaoldsymbol{ heta}_{\mathsf{TRPO}} = \sqrt{rac{2oldsymbol{\delta}}{\mathbf{g}^{T}\mathbf{F}_{oldsymbol{\pi}_{oldsymbol{ heta}}\mathbf{g}}}}\mathbf{F}_{oldsymbol{\pi}_{oldsymbol{ heta}}}^{-1}\mathbf{g}$$

- ► Parameter Update: $\Delta\theta \propto \alpha\sqrt{\delta}$ (α ... learning rate)

^{1.} image credit: https://jonathan-hui.medium.com/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeee9

Composition of Stable Baselines 3's PPO

- Rollout Buffer:
 - stores observations, actions, rewards, values and logprobs
 - calculates advantages via generalized advantage estimation
- Policy:
 - defines value and policy networks
 - defines model distribution (Gaussian, Categorical or state dependent Exploration (Gaussian))
- Methods:
 - learn(): main interface method
 - collect_rollouts(): interfaces with the environment and buffers trajectories, rewards, values and logprobs
 - train(): core method to update network parameters

ALAUSTRIA RICOMMUNITY

Looking under the Hood: Policy

- Feature Extractor:
 - neural network(s) processing observations and outputs intermediate feature representations
 - if share_features_extractor=True only one network is used
- MLP Extractor:
 - some simple dense layers producing intermediate latent space
- value_net/action_net: final value and (mean) action heads
- log_std: free running parameter representing the logarithm of the standard deviation

Rollout buffer

Generalized Advantage Estimator:

$$egin{aligned} \hat{A}_t^{\mathsf{GAE}(oldsymbol{\gamma},oldsymbol{\lambda})} &= \sum_{l=0}^{\infty} (oldsymbol{\gamma}oldsymbol{\lambda})^l \, \delta_{t+l}, \ \delta_t &= r_t + \gamma \, V(s_{t+1}) - V(s_t) \end{aligned}$$

- lacktriangle Discounting γ controls how "farsighted" the agent behaves
- \triangleright λ controls how long past TD errors remain eligible
- Recommendation;
 - ► Start with defaults values for both hyper-parameters
 - \triangleright Modify γ (gamma) to improve credit assignment
 - ▶ Touch λ (gae_lambda) only if you really know what you are doing

How the Value Estimator Should Behave

train/explained_variance tag: train/explained_variance

PPO Objective:

$$\mathcal{L}(\boldsymbol{\theta'}) = \mathbb{E}_{t} \left[\min \left(\frac{\pi_{\boldsymbol{\theta'}}(\mathbf{a}|\mathbf{s})}{\pi_{\boldsymbol{\theta}}(\mathbf{a}|\mathbf{s})} \underbrace{\mathbf{A^{\pi_{\boldsymbol{\theta}}}}}, \text{clip} \left(\frac{\pi_{\boldsymbol{\theta'}}(\mathbf{a}|\mathbf{s})}{\pi_{\boldsymbol{\theta}}(\mathbf{a}|\mathbf{s})}, 1 - \epsilon, 1 + \epsilon \right) \underbrace{\mathbf{A^{\pi_{\boldsymbol{\theta}}}}} \right) \right]$$

- apparently, policy updates heavily depend on advantage estimates
- Value estimator is required to converge fast
- per default we use share the feature extractor for both networks, so
 - take care the losses are somehow balances
 - if unbalanced, the value loss usually "overwhelms" gradients for the policy
 - mitigation: downscale value loss parameter (vf_coef) or clip the value estimator (clip_range_vf)

Policy Loss

train/policy_gradient_loss tag: train/policy_gradient_loss

train/clip_fraction

Early stage:

- policy loss tends to be more negative (large improvement signals)
- KL-divergence is less sensitive due to larger entropy
- consequently, important ratios less affected by clipping
- ▶ ⇒ less regularized and more natural policy gradient
- Mid to late stage:
 - policy loss magnitude decreases
 - clipping signifies due to decreasing entropy
 - ➤ ⇒ more and more regularized policy updates

Managing the Mess

- ► Fun fact: writing the code isn't the hardest part
 - Managing your experiments is because:
 - hierarchical configuration is challenging
 - code dependencies are hard to manage
 - managing hyperparameter search is challenging
 - · ...
- Suggestion:
 - keep your code base clean (avoid bugs at any cost)
 - prefer established code bases over your own
 - it's a good idea to write your own algorithm to learn
 - it's a very bad idea to actually solve a practical problem
 - take leverage of configuration management systems
 - take leverage of plugins like launchers or hyperparameter samplers
 - hydra solve the majority of our problems

