Scientific Visualization Part 4: Multidimensional Data

John Keyser

Multidimensional Data

- Scientific data often has many dimensions
 - Can be both scalar and vector
 - Or Tensor data (higher order than vector)
- Presents an additional level of challenge on top of existing issues like interpolation, occlusion
- Because of the geometric component, other methods for multidimensional data are not applicable
 - Radar charts, parallel coordinates, scatter plot matrices, etc.

Fundamental Limitations

- We will have a limitation on how many dimensions can be reasonably shown
- Limitations on how our visual system in terms of low-level signaling
- Each additional dimension will add to cognitive load
- We can present more data, but will not be intuitive to really understand patterns and relationships

Principles

- Combining multiple approaches together
- We can combine various visual channels
 - Color: Hue, Saturation, Intensity
 - Texture/Pattern: Type, orientation, frequency
 - Glyphs/Streamlines
 - Time
 - Height (if data is 2D to start)
- We can potentially convey more information in glyphs
 - Especially common for tensor data visualization

Haber Glyph for Tensors

For visualizing stress tensor

Cylinder and elliptical disk

Orientation of major axis

Amount of major, middle

minor axes

Kindlmann Superquadric Tensor Glyph

 Some glyphs can appear ambiguous depending on view

- Appear same if different
- Appear different when same
- Superquadric gives less ambiguity

de Lueew and van Wijk Glyphs

Steinke/publication/2724879_Visualization_of_Vector_Fields_in_Quantum_Chemistry/links/0c96051a4767952a28000000/Visualization-of-Vector-Fields-in-Quantum-

Chemistry.pdf?_tp=eyJjb250ZXh0ljp7lmZpcnN0UGFnZSl6ll9kaXJlY3QiLCJwYWdlljoicHVibGljYXRpb24iLCJwcmV2aW91c1BhZ2UiOiJfZGlyZWN0In19

Glyphs for Multivariate Data

- A wide variety of different approaches to glyphs have been used to convey more information
 - Continues to be a topic of active research
- The way the glyphs are laid out is also important.
 - Easy to have occlusion of glyphs
 - Slicing into 3D data, projecting onto 2D are common
 - Using a glyph as a "probe" to find values at a point (esp. if interactive view/movement of probe)

A Last Comment

- Though we have discussed grids, scientific data is sometimes projected/displayed on other 3D geometry
 - Blood vessels
 - Surface of a vehicle
 - Topographical Map
- All the methods discussed still apply, but the mapping usually requires a 3D visualization