Practica 2 - Ejercicio 5 - LFAC

Philips

1er Cuatrimestre 2025

1 Construyendo la unión, intersección y diferencia.

Dados autómatas finitos para \mathcal{L}_1 y \mathcal{L}_2 indicar cómo construir autómatas finitos para los siguientes lenguajes, con las mismas consideraciones que en el ejercicio anterior:

Sean M_1 y M_2 dos AFD.

1.
$$M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$$

2.
$$M_2 = (Q_2, \Sigma, \delta_2, p_0, F_2)$$

I. Sea
$$M_3 = M_1 \cap M_2$$
 y $M_3 = (Q_3, \Sigma, \delta_3, s_0, F_3)$ un AFD:

$$Q_3 = Q_1 x Q_2$$

•
$$\delta_3((q,p),a) = (\delta_1(q,a),\delta_2(p,a))$$

•
$$s_0 = (q_0, p_0)$$

•
$$F_3 = \{(q, p) \in Q_3 \mid q \in F_1 \land p \in F_2\}$$

II. Sea
$$M_3 = M_1 \cup M_2$$
 y $M_3 = (Q_3, \Sigma, \delta_3, s_0, F_3)$ un AFD:

$$Q_3 = Q_1 x Q_2$$

•
$$\delta_3((q,p),a) = (\delta_1(q,a),\delta_2(p,a))$$

•
$$s_0 = (q_0, p_0)$$

•
$$F_3 = \{(q, p) \in Q_3 \mid q \in F_1 \lor p \in F_2\}$$

III. Sea
$$M_3 = M_1 \backslash M_2$$
 y $M_3 = (Q_3, \Sigma, \delta_3, s_0, F_3)$ un AFD:

$$Q_3 = Q_1 x Q_2$$

•
$$\delta_3((q,p),a) = (\delta_1(q,a),\delta_2(p,a))$$

•
$$s_0 = (q_0, p_0)$$

•
$$F_3 = \{(q, p) \in Q_3 \mid q \in F_1 \land p \notin F_2\}$$

2 Construyendo la concatenación.

Sean M_1 y M_2 dos AFD.

1.
$$M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$$

2.
$$M_2 = (Q_2, \Sigma, \delta_2, p_0, F_2)$$

3. Sea
$$M_3 = M_1 \cdot M_2$$
 un AFND- λ

- 4. $M_3 = (Q_3, \Sigma, \delta_3, s_0, F_3)$ donde:
- $Q_3 = Q_1 \biguplus Q_2$ (unión disjunta) \rightarrow Trato a los estados como distintos.
- $\delta_3(s,a)$ mantiene cada transición de M_1 y M_2 agregando una transición vacía λ desde cada $q \in F_1$ hacia p_o . Es decir: $\forall q \in F_1.\delta_3(q,\lambda) = \{p_0\}.$
- $s_0 = q_0 \to$ Empiezo reconociendo cadenas de M_1 .
- $F_3 = F_2 \rightarrow \text{Quiero que } M_3$ acepte cuando termine de reconocer una cadena de M_2 .