MSO202A COMPLEX ANALYSIS Assignment 3

Exercise Problems:

- 1. (a) The hyperbolic functions $\cosh z$ and $\sinh z$ are defined as $\cos iz$ and $-i\sin iz$, respectively. Show that $\cosh^2 z \sinh^2 z = 1$.
 - (b) Show that $|\cos z|^2 = \cos^2 x + \sinh^2 y$. Conclude that $\cos z$ is not bounded in \mathbb{C} .
 - (c) Show that $\cos z = 0 \iff z = (2n+1)\pi/2$ for $n \in \mathbb{Z}$.
- 2. Find the roots of the equation $\sin z = 2$.
- 3. Express the following complex numbers in the standard form x+iy and find their principal value. (a) i^{-i} (b) $(-1+i\sqrt{3})^i$. (Note: For $c \in \mathbb{C}$, $z^c = e^{c\log z}$, and for principal value of z^c we take $z^c = e^{c\log z}$, where $\log(z) = \ln|z| + i\operatorname{Arg}(z)$, with $\operatorname{Arg}(z) \in (-\pi, \pi]$ and $\log(z) = \log(z) + i2\pi k$.)
- 4. Using the method of parametric representation, evaluate $\oint_C f(z) dz$ for (a) $f(z) = \overline{z}$, (b) $f(z) = z + \frac{1}{z}$, (c) $f(z) = \operatorname{Re} z$ (d) $f(z) = \sin z/z$ and C is the unit circle centered at origin oriented counterclockwise.
- 5. Evaluate the integral $\int_{\Gamma} ze^{z^2} dz$ where Γ is the curve from 0 to 1+i along the parabola $y=x^2$.
- 6. (a) Assign an appropriate meaning to the integral $\int_{-i}^{i} \frac{1}{z} dz$ and find its value.
 - (b) $\int_C \sin^2 z \, dz$, C is the curve from $-\pi i$ to πi along $|z| = \pi$ taken counter-clockwise.

Problem for Tutorial:

- 1. A function $u: U \to \mathbb{R}$ is said to be *harmonic* on an open subset $U \subset \mathbb{R}^2$ if its 1st and 2nd order partial derivatives w.r.t x and y exist, are continuous and satisfy the equation $u_{xx} + u_{yy} = 0$ on U. A harmonic function $v: U \to \mathbb{R}$ is said to be a *harmonic conjugate* of u if the function f(z) := u(x,y) + iv(x,y) is analytic (equivalently, if the CR equations hold for u and v).
 - (a) Let $f: D \subset \mathbb{C} \to \mathbb{C}$ be a twice* continuously differentiable function on a domain D. Then show that
 - (i) u, v are harmonic functions and v is a harmonic conjugate of u;
 - (ii) v is unique upto a constant, *i.*e., if v' is another harmonic conjugate of u then v' = v + c for some $c \in \mathbb{R}$;
 - (iii) further, if u is a harmonic conjugate of v as well, then u and v are constants.
 - (b) Find a harmonic conjugate of $u(x,y) = 3xy^2 x^3$ on \mathbb{C} .
- 2. Show that $u(x,y) := \log(|\sqrt{x^2 + y^2}|)$ is harmonic on $\mathbb{R}^2 \setminus \{0\}$ (i.e., $\mathbb{C} \setminus \{0\}$, also denoted as \mathbb{C}^*) but it does not have any harmonic conjugates there.
- 3. Express i^i in the standard form x + iy and find its principal value.
- 4. Evaluate the following integrals by parametrizing the contour
 - (a) $\int_{\mathcal{C}} Re z \ dz$ where \mathcal{C} is the line segment joining 1 to i.
 - (b) $\int_{\mathcal{C}} (z-1)dz$ where \mathcal{C} is the semicircle (in the lower half plane) joining 0 to 2.
- 5. Let $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}$ and f be analytic on \mathbb{D} . Let $a, b \in \mathbb{D}$ and $\gamma(t) = a + t(b a), t \in [0, 1]$ be the straight line joining a and b.
 - (a) Prove that $\frac{f(b)-f(a)}{b-a} = \int_0^1 f'(\gamma(t))dt$.
 - (b) Using the above, if required, show that if $Re\ f'(z) > 0$ for all $z \in \mathbb{D}$ then f is injective.

^{*}A function that is analytic in a domain is infinitely differentiable.