Machine numbers: how floating point numbers are stored?

Floating-point number representation

What do we need to store when representing floating point numbers in a computer?

$$x = \pm 1. f \times 2^m$$

Initially, different floating-point representations were used in computers, generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard representation for floating-point number: IEEE (Institute of Electrical and Electronics Engineers) 754 Standard.

Floating-point number representation

Numerical form:

$$x = \pm 1. \mathbf{f} \times 2^{\mathbf{m}}$$

Representation in memory:

Precisions:

$$x = \pm 1. f \times 2^{c-shift}$$

Finite representation: not all numbers can be represented exactly!

IEEE-754 Single precision (32 bits):

$$x =$$

IEEE-754 Double precision (64 bits):

$$x =$$

IEEE-754 Single Precision (32-bit)

IEEE-754 Single Precision (32-bit)

$$x = (-1)^{s} 1.f \times 2^{m}$$

Example: Represent the number x = -67.125 using IEEE Single-Precision Standard

$$67.125 = (1000011.001)_2 = (1.000011001)_2 \times 2^6$$

IEEE-754 Single Precision (32-bit)

$$x = (-1)^{s} 1. f \times 2^{m} = s c f$$
 $c = m + 127$

• Machine epsilon (ϵ_m) : is defined as the distance (gap) between 1 and the next larger floating point number.

• Smallest positive normalized FP number:

Largest positive normalized FP number:

IEEE-754 Double Precision (64-bit)

$$x = (-1)^{s} 1.f \times 2^{m}$$

$$s = 0$$
: positive sign, $s = 1$: negative sign

Reserved exponent number for special cases:

$$c = (00000000000)_2 = 0$$

 $c = (11111111111)_2 = 2047$

Therefore $1 \le c \le 2046$

IEEE-754 Double Precision (64-bit)

$$x = (-1)^{s} 1. f \times 2^{m} = s c f$$
 $c = m + 1023$

• Machine epsilon (ϵ_m) : is defined as the distance (gap) between 1 and the next larger floating point number.

$$(1)_{10} = \begin{bmatrix} 0 & 0111...111 & 000000000000...000000000 \\ 0111...111 & 000000000000...000000000 \\ 0111...111 & 000000000000...000000000 \end{bmatrix}$$

$$\epsilon_m = 2^{-52} \approx 2.2 \times 10^{-16}$$

• Smallest positive normalized FP number:

$$UFL = 2^L = 2^{-1022} \approx 2.2 \times 10^{-308}$$

Largest positive normalized FP number:

$$\mathbf{OFL} = 2^{U+1}(1 - 2^{-p}) = 2^{1024}(1 - 2^{-53}) \approx 1.8 \times 10^{308}$$

Special Values:

$$x = (-1)^{s} 1. f \times 2^{m} = s$$

1) <u>Zero</u>:

$$x = s \quad 000...000 \quad 0000....0000$$

2) Infinity: $+\infty$ (s=0) and $-\infty$ (s=1)

$$x = |s| 111...111 0000....0000$$

3) NaN: (results from operations with undefined results)

$$\chi = |s| 111...111$$
 anything $\neq 00...00$

Subnormal (or denormalized) numbers

- Noticeable gap around zero, present in any floating system, due to normalization
 - \checkmark The smallest possible significand is 1.00
 - \checkmark The smallest possible exponent is L
- Relax the requirement of normalization, and allow the leading digit to be zero, only when the exponent is at its minimum (m=L)

$$x = (-1)^{s} 0.f \times 2^{L}$$

Subnormal (or denormalized) numbers

Another special case:

$$x = s c = 000 \dots 000$$
 f

$$x = (-1)^{s} 0.f \times 2^{L}$$

Note that this is a special case, and the exponent m is not evaluated as m = c - shift = -shift. Instead, the exponent is set to the lower bound, m = L

- PROS: More gradual underflow to zero
- CONS: Computations with subnormal numbers are often slow;
 - Loss of precision

Subnormal (or denormalized) numbers

IEEE-754 Single precision (32 bits):

$$c = (00000000)_2 = 0$$

Exponent set to $m = -126$
Smallest positive subnormal FP number:

IEEE-754 Double precision (64 bits):

 $c = (00000000000)_2 = 0$ Exponent set to m = -1022Smallest positive subnormal FP number:

IEEE-754 Double Precision

Summary for Single Precision

$$x = (-1)^{s} 1.f \times 2^{m} = s$$
 c f $m = c - 127$

Stored binary	Significand	value
exponent (c)	fraction (f)	
00000000	00000000	zero
00000000	$any f \neq 0$	$(-1)^{s} 0.f \times 2^{-126}$
0000001	any f	$(-1)^{s} 1.f \times 2^{-126}$
:	:	:
11111110	any f	$(-1)^{s} 1.f \times 2^{127}$
11111111	$any f \neq 0$	NaN
11111111	00000000	infinity