

1/32

FIG. 1A

2/32

FIG. 1B

ES clone genotype

FIG. 1C

M +/+ -/- +/ -

3/32

FIG. 1D

FIG. 1E

FIG. 1F

4/32

FIG. 2A**a - KSR +/+****FIG. 2B****b - KSR -/-****FIG. 2C****c - EGFR +/+****FIG. 2D****d - EGFR -/-**

FIG. 3A

6/32

FIG. 3B

FIG. 3C

7/32

FIG. 4A

8/32

FIG. 4B

9/32

FIG. 5A**FIG. 5B****FIG. 5C**

10/32

FIG. 5D**FIG. 5E**

11/32

FIG. 6A

12/32

FIG. 6B

	% G1	% S	% G2
Vector	40.1	45.1	14.8
KSR-S	25.2	60.8	14.0
KSR-AS	16.4	23.2	60.4
DN-KSR	24.2	24.8	51.0

13/32

FIG. 6C

14/32

FIG. 6D

15/32

FIG. 7A

16/32

FIG. 7B

i Vector*ii* KSR-S*iii* KSR-AS*iv* DN-KSR*v*

KSR-AS (x1000)

17/32

18/32

FIG. 8B
FIG. 8C

19/32

FIG. 8D

20/32

Fig. 9A

Fig. 9B

21/32

FIG. 9C

FIG. 9D

FIG. 9E

FIG. 9F

23/32

FIG. 10A

24/32

FIG. 10B

FIG. 10C

25/32

FIG. 10D

A549 tumor

(i)

(ii)

Number of lung metastases foci
(whole lung surface)

Dose of infusion (mg/kg /Day)	Sense-ODNs	AS-ODN	% inhibition
10	7.4 ± 1.4	2.5 ± 0.6	65
25	10.2 ± 1.8	1.4 ± 0.5	86

26/32

☆ ☆ ☆ ☆

Human	MGEK-EGGGGGDAAAEGGAGAAASRALQQCG QLO	34
Mouse	MDRAALRAAA K -- V	

CA1

Human	KLSVAPGERTPELNSYPRFSDWLYTFNVRPEVVQEIPRDLTLDAL	124
Mouse	I SD A I QE	

Human	LEMNEAKVKETLRRCGASGDECGRQLQYALTCLRKVTLGGHEKED	169
Mouse	D A M W T E S O	M

Human SSWSSLDARRESGSGPSTDLSAASLPWPPGSSSQLGRAGNSAQGP **214**
Mouse G I D S -L P M M S----- A T

Human RSISV^SALPASD^SP^TPSF^EC^LS^DT^CIPLHASGRLTP^RALHS^FIT → 259
Mouse V GL S I

CA2

Human PPTTPQLRRHTKLKPPRTPPPPSRKVFOLLPSFPTLTRRKSHESQ 304
Mouse A

Human LGNRIDDVSSMRFDL^SHGSPQMVRD^IGL**SVTHRFSTKSWL**SOVC 349
Mouse TP K E P L

CA3

Human HVCOKSMIFGVKCKHCR~~L~~KCHNKCTKEAPACRISFLPLTRLRRTE 394
Mouse N I A

Human SVPSDINNPVDRAAEPHFGTLPKALTKKEHPPAMNHLDSSSNPSS 439
Mouse -

CA 4

Human TTSSTPSSPAPFPTSSNPSSATTPPNPGORDSRFNFPAAAYFIH 484
Mouse L S -----

Human HROOFIFPDISAFAHAAPLPEAADGTRLDDQPKADVLEAHEAEAE 529
Mouse ----- CSC SST S I GV

Human EPEAGKSEAEDDED-EVDDLPSRRPWRGPISRKASQTSVYLQEWA 573
Mouse ED

Fig. 11-1

27/32

FIG. 11-2

	I	II	
Human	DDIPFEQVELGEPIGQGRWGRVHRGRWHGEVAIRLLEMEDGHNQDH		618
Mouse			
	III	IV	V
Human	LKLFKKEVMNYRQTRHENVVLFMGACMNPPHLAIITSFCKGRTLH		663
Mouse			
	VIA	VIB	
Human	SFVRDPKTSLDINKTRQIAQEIIKGGMGYLHAKGIVHKDLKSKNVF		708
Mouse			
	VII	VIII	
Human	YDNGKVITDFGLFGISGVVREERRENQLKLSHDWLCYLAPEIVR		753
Mouse			
	IX		
Human	EMTPGKDEDQLPFSKAADVYAFGTWWYELQARDWPLKNQAAEASI		798
Mouse	I R	F H P L	
	X	XI	
Human	WQIGSGEGMKRVLTSVSLGKEVSEILSACWAFDLQERPSFSLMD		843
Mouse	VR A G		
Human	MLEKLPKLNRRRLSHPGHFWKSAEL		867
Mouse	R	DINSSKVMRFERFGLGTLESGN	
Mouse	PKM		

28/32

FIG. 12A-1

1 GAATTCCCTC GGGGCTTCC TGCCGAGGCG CCCGTGTCCC CGGGCTCCTC GCCTCGGCC
 61 CCAGCGGCC CGATGCCGAG GCATGGATAG AGCGGCCTTG CGCGCGGCAG CGATGGCGA
 121 GAAAAGGAG GGCGGCGCG GGGCGCCGC GGCGGACGGG GGCGCAGGGG CCGCCGTCAG
 181 CCGGGCGCTG CAGCAGTGC GCGACCAAGT GCTCAGTGTG TAACGACCTC ACACAGCAGG AGATCCGGAC
 241 GCGCGGGCTG CGCACCAAGT GCGACCAAGT GCTCAGTGTG TAACGACCTC ACACAGCAGG AGATCCGGAC
 301 CCTAGAGGCA AAGCTGGTGA AATACATTTG CAAGCAGCAG CAGAGCAAGC TTAGTGTGAC
 361 CCCAAGCGAC AGGACCGCCG AGCTAACAG CTACCCACGC TTCAGTGAAT GGCTGTACAT
 421 CTTCAACGTG AGGCTGAGG TGGTGCAGGA GATCCCCAA GAGTCACAC TGGATGCTCT
 481 GCTGGAGATG GACGAGGCCA AAGCCAAGGA GATGCTGCGG CGCTGGGGGG CCAGCACCGA
 541 GGAGTGCAGC CGCCTACAGC AAGCCCTTAC CTGCCTTCGG AAGGTGACTG GCCTGGGAGG
 601 GGAGCACAAA ATGGACTCAG GTTGGAGTTC AACAGATGCT CGAGACAGTA GCTTGGGGCC
 661 TCCCATGGAC ATGCTTTCT CGCTGGGCAG AGCGGGTGCC AGCACTCAGG GACCCGGTTC
 721 CATCTCCGTG TCCGCCCTGC CTGCCTCAGA CTCTCCGGTC CCCGGCCTCA GTGAGGGCCT
 781 CTCGGACTCC TGTATCCCC CTCGGACTCC TGTATCCCC TGCACACCAAG CCGCCGGCTG ACCCCCCGGG CCCTGCACAG
 841 CTTCATCACG CCCCCCTACCA CACCCCAAGCT ACGACGGCAC GCCAAGCTGA AGCCACCAAG
 901 GACACCCCCA CCGCCAAGCC GCAAGGTCTT CCAGCTGCTC CCCAGCTTCC CCACACTCAC
 961 ACGGAGCAAG TCCCACGAGT CCCAGCTGGG AAACCGAATC GACGACGTCA CCCCCGATGAA
 1021 GTTTGAACCTC CCTCATGGAT CCCCCACAGCT GGTACGAAGG GATATCGGGC TCTCGGTGAC
 1081 GCACAGGTTT TCCACAAAGT CATGGTTGTC ACAGGTGTG AACGTGTGCC AGAAGAGCAT
 1141 GATTTTGCGC GTGAAGTGCA AACACTGCAG GTAAAAATGC CATAACAAGT GCACAAAGGA
 1201 AGCTCCCGCC TGCAGGATCA CTTTCCCTCC ACTGGCCAGG CTTCGGAGGA CAGAGTCTGT
 1261 CCCGTCAAGAT ATCAACAAACC CAGTGGACAG AGCAGCAGAG CCCCCATTTG GAAACCTTCC
 1321 CAAGGCCCTG ACAAAAGAAGG AGCACCCCTCC AGCCATGAAC CTGGACTCCA GCAGCAACCC
 1381 ATCCTCCACC ACGTCCCTCCA CACCCCTCATC GCCGGCACCT TTCCCTGACCT CATCTAATCC
 1441 CTCCAGTGC ACCACGCCCTC CCAACCCGTG ACCTGGCCAG CGGGACAGCA GGTCAGCTT
 1501 CCCAGACATT TCAGCCTGTT CTCAGGCGAG CCCCCATCTC TCGAAAGGCC AGCCAGACCA GCGTTACCT
 1561 GCTCGACGAC CAGCCCCAAA CAGATGTGCT AGGTGTTCAC GAAGCAGAGG CTGAGGAGGC
 1621 TGAGGCTGGC AAGTCAGAGG CAGAGGATGA CGAGGAGGAT GAGGTGGACG ACCTCCCCAG
 1681 CTCCCGCCGG CCCTGGAGGG GCCCCATCTC TCGAAAGGCC AGCCAGACCA GCGTTACCT
 1741 GCAAGAGTGG GACATCCCC TTGAACAGGT GGAACTGGGC GAGCCCATGG GACAGGGTCG
 1801 CTGGGGCCGG GTGCACCGAG GCGCTTGGCA TGGCGAGGTG GCCATTGGC TGCTGGAGAT
 1861 GGACGGCCAC AATCAGGACC ACCTGAAGCT GTTCAAGAAA GAGGTGATGA ACTACCGCA
 1921 GACCGGGCAT GAGAACGTGG TGCTCTTCAT GGGGGCCTGC ATGAACCCAC CTCACCTGGC
 1981 CATTATCACC AGCTTCTGCA AGGGGGGAC ATTGCATTCA TTGGTGAGGG ACCCCAAGAC
 2041 GTCTCTGGAC ATCAATAAGA CTAGGCAGAT CGCCCAGGAG ATCATCAAGG GCATGGGTTA
 2101 TCTTCATGCA AAAGGCATCG TGCAACAAGGA CCTCAAGTCC AAGAATGTCT TCTATGACAA
 2161 CGGCAAAGTG GTCATCACAG ACTTCGGGCT GTTGGGATC TCGGGTGTGG TCCGAGAGGA
 2221 ACGGCGCGAG AACCAACTGA AACTGTACAA TGACTGGCTG TGCTACCTGG CCCCCGAGAT
 2281 CGTACGAGAA ATGATCCCC GGCGGGACGA GGACCAGCTG CCCCTCTCCA AAGCAGCCGA
 2341 TGTCTATGCA TTCGGGACTG TGTGGTATGA ACTACAGGCA AGAGACTGGC CCTTTAAGCA
 2401 CCAGCCTGCT GAGGCCCTGA TCTGGCAGAT TGGAAGTGGG GAAGGAGTAC GGCGCGTCCT
 2461 GGCATCCGTC AGCCTGGGA AGGAAGTCGG CGAGATCCTG TCTGCCTGCT GGGCTTCGA
 2521 TCTGCAGGAG AGACCCAGCT TCAGCCTGCT GATGGACATG CTGGAGAGGC TGCCCAAGCT
 2581 GAACCGGGCGG CTCTCCCACC CTGGGCACCTT TTGGAAGTGC GCTGACATTA ACAGCAGCAA
 2641 AGTCATGCCCG CGCTTTGAAA GGTTTGGCCT GGGGACCCCTG GAGTCCGGTA ATCCAAAGAT

29/32

FIG. 12A-2

2701 GTAGCCAGCC CTGCACGTTTC ATGCAGAGAG TGTCTTCCTT TCGAAAACAT GATCACGAAA
2761 CATGCAGACC ACCACCTCAA GGAATCAGAA GCATTGCATC CCAAGCTGCG GACTGGGAGC
2821 GTGTCTCCTC CCTAAAGGAC GTGCGTGCCT GCCTGCGTGC GTGCGTGCCT GCGTGCCTCA
2881 CCAAGGTGTG TGGAGCTCAG GATCGCAGCC ATACACGCAA CTCCAGATGA TACCACTACC
2941 GCCAGTGTGTT ACACAGAGGT TTCTGCCTGG CAAGCTTGGT ATTTCACAGT AGGTGAAGAT
3001 CATTCTGCAG AAGGGTGCTG GCACAGTGGA GCAGCACGGG TGTCCTCAGC CCCCCTCTG
3061 GAAGACCCCTA CAGCTGTGAG AGGCCAGGG TTGAGCCAGA TGAAAGAAA GCTGCGTGGG
3121 TGTGGGCTGT ACCCGGAAAAA GGGCAGGTGG CAGGAGGTTT GCCTTGGCCT GTGCTTGGC
3181 CGAGAACACAC ACTAAGGAGC AGCAGCCTGA GTTAGGAATC TATCTGGATT ACGGGGATCA
3241 GAGTTCCCTGG AGAGTGGACT CAGTTCTGC TCTGATCCAG GCCTGTTGTG CTTTTTTTT
3301 TTCCCCCTTA AAAAAAAAAGTACAGACA GAATCTCAGC GGCTTCTAGA CTGATCTGAT
3361 GGATCTTAGC CCGGCTTCTA CTGCGGGGGG GAGGGGGGAGG GGGATAGCCA CATATCTGTG
3421 GAGACACCCA CTTCTTTATC TGAGGCCTCC AGGTAGGCAC AAAGGCTGTG GAACTCAGCC
3481 TCTATCATCA GACACCCCCC CCCAATGCCT CATTGACCCCC CTTCCTCCAG AGCCAAGGGC
3541 TAGCCCCATCG GGTGTGTGTA CAGTAAGTTC TTGGTGAAGG AGAACAGGGGAGG CTTGGCAGA
3601 AGCAGTTTGC AGTGGCCCTA GCATCTAAA ACCCATTGTC TGTCACACCA GAAGGTTCTA
3661 GACCTACCAC CACTCCCTT CCCCACATCTCA TGGAAACCTT TTAGCCCATTT TGACCCCTG
3721 TGTGTGCTCT GAGCTCAGAT CGGGTTATGA GACCGCCAG GCACATCAGT CAGGGAGGCT
3781 CTGATGTGAG CCGCAGACCT CTGTGTTCAT TCCTATGAGC TGGAGGGCTT GGACTGGGTG
3841 GGGTCAGATG TGCTTGGCAG GAACTGTCAG CTGCTGAGCA GGGTGGTCCC TGAGCGGAGG
3901 ATAAGCAGCA TCAGACTCCA CAACCAGAGG AAGAAAGAAA TGGGGATGGA GCGGAGACCC
3961 ACGGGCTGAG TCCCGCTGTG GAGTGGCCTT GCAGCTCCCT CTCAGTTAAA ACTCCCAGTA
4021 AAGCCACAGT TCTCCGAGCA CCCAAGTCTG CTCCAGCCGT CTCTTAAAC AGGCCACTCT
4081 CTGAGAAGGA ATTC

30/32

FIG. 12B-1

1 GCGAAGCTGG TCCGTTACAT TTGTAAGCAG AGGCAGTGCA AGCTGAGCGT GGCTCCGGT
61 GAGAGGACCC CAGAGCTAA CAGCTACCCC CGCTTCAGCG ACTGGCTGTA CACTTCAAC
121 GTGAGGCCGG AGGTGGTGCA GGAGATCCCC CGAGACCTCA CGCTGGATGC CCTGCTGGAG
181 ATGAATGAGG CCAAGGTGAA GGAGACGCTG CGGCGCTGTG GGGCCAGCGG GGATGAGTGT
241 GGCCGTCTGC AGTATGCCCT CACCTGCCTG CGGAAGGTGA CAGGCCTGGC TTCATCACCC
301 CGCCCACCAC ACCCCAGCTG CGACGGCACA CCAAGCTGAA GCCACCACGG ACGCCCCCCC
361 CACCCAGCCG CAAGGTCTTC CAGCTGCTGC CCAGCTTCCC CACACTCACC CGGAGCAAGT
421 CCCATGAGTC TCAGCTGGGG AACCGCATTG ATGACGTCTC CTGGATGAGG TGAGTTGGGA
481 GCACGTTCCCT GCACGTGGCT ATGCTGTGGG GCCTCTCTCA TGAGTCAGAG CGGAGGGAGA
541 CAGCTGTGCC TCTGGAGTCT GCTTTTAATT GTCTGGAAAT GCAGAGATGT CTGGTTTTG
601 CCTGAGCAAA ATAGGAGTTT ATTTTTGTAC TATCCCGAGC TGGCTAAGGA GAGTCACGTA
661 GCTGTGGCG GGGTCTTGGG GATGAGGAGG GGTACAGCAG GCAGGGACTA TGCTGAAGTG
721 GAGCTGGCTG TAGGAACCCC AGGGAGGCAC AGGGGGAGCA TGAAGAGGAG CTACACTTCC
781 CTCCCTTAGT GCCCGGGCAG AAACCTCCAG GGCCCTTCAC AGAACCTTGG AGGAACATTC
841 AACACCCCCA TCTCTAGGAC AGCCCCAGCC TTGTCATCCT CCAATTGCTG TGGTAACACG
901 GGGACTGGAG CAGTGAGATT ATTAGGCCTT CAGGGCCAGT GTCTCCATGC AGATCAGATG
961 GAGGCGGTGC TTGGCACATA CACCACCTCA CTGCCCATGC CCCCAGAAGT TGGTGCGAGAT
1021 CATAAGGTGG CTTTGGGGC TAATTGATTG AAGTTCCAAC ATAGTCTGTT TCTCCTAGGC
1081 TGGTAGCTGG CACCTTGGC CCCATGTGTT TTTTAATTAT TTTTCTTTT GAGACGAAAT
1141 CTCGCTCTAT CACCCAGGCT GAAGTGCAGT AGTGAATCT CAGCTCACTG CAGCCTCTGC
1201 CTCCCGGGTT CAAGCAATT CTCCTGCCTCA GCCTCCCGAG TAGCCAGGAT TAAAGGTGCC
1261 TGCCACCACA CATGGCTAAT TTTTGTATTT TTAATAGAGA CGGGGTTTCA CCATGTTAGC
1321 CAGGCTGGTC TCAAACCTCT GACCTCAGGT GATCTTCCTG CCTCAGCCTC CCAAAGTGCT
1381 GGGATTACAG GTGTGAGCCA CTGCGCCAG TCATGCCAT GTGTTTTGGT GGTCTGGCT
1441 GCTGATGGGT GGGGTGAGCC CCAGGAGGAA GTTGGGACAA GTCAACCTCA TGGCAGATGT
1501 GCCAGGGAGA GCTGGGGGTG AGATAGATTG TTCTATCCC CCTCTCCTTG ATGTGGAGG
1561 ACTCAGTACC TCCAGCACAC CCTTCTCATG GAGGTTGGT ATGTGGTACT TGGCCTCAAG
1621 TGAACCAGCA CTTCATGAGT CCAGCTTTGT GCTAGACCAG CACTTGGGAT TGAGGGGGC
1681 AGTGGCCACC CTCGGGGGAC CTTCTGACTC AGAGGACATG AGATGGCCAC ACTCGAGCAC
1741 TGTGTTCTG ACCTTCTGG GTCACAGGTC ACCTTGATGA TTGGATGAAA GTCTTAGATC
1801 TTCTTCCAG AGAAAAGTCT ACAACATTCT ACTGAACCAAG TCCAGAGGGT TCCCAGGACCC
1861 CCGAAGCCCA CCCATGGGCT GGCTCTGGGA GGCAATGGCG CTGAGTATGG GGGCATCTCT
1921 CGCATGGATC CCCACAGATG GTACGGAGGG ATATCGGGCT GTCGGTGACG CACAGGTTCT
1981 CCACCAAGTC CTGGCTGTG CAGGTCTGCC ACGTGTGCCA GAAGAGCATG ATATTGGAG
2041 TGAAGTGCAA GCATTGCAGG TTGAAGTGTCA ACAACAAATG TACCAAAAGAA GCCCCTGCCT
2101 GTAGAAATATC CTTCTGCCA CTAACTCGGC TTCGGAGGAC AGAATCTGTC CCCTCGGACA
2161 TCAACAAACCC GGTGGACAGA GCAGCCGAAC CCCATTGGG AACCCCTCCCC AAAGCACTGA
2221 CAAAGAAGGA GCACCCCTCCG GCCATGAATC ACCTGGACTC CAGCAGCAAC CCTTCCCTCCA
2281 CCACCTCCTC CACACCCCTCC TCACCGGCGC CCTTCCCGAC ATCATCCAAC CCATCCAGCG

31/32

FIG. 12B-2

2341 CCACCACGCC CCCCAACCCC TCACCTGGCC AGCGGGACAG CAGGTTAAC TTCCAGCTG
2401 CCTACTTCAT TCATCATAGA CAGCAGTTA TCTTTCCAGA CATTTCAGCC TTTGCACACG
2461 CAGCCCCGCT CCCTGAAGCT GCCGACGGTA CCCGGCTCGA TGACCAGCCG AAAGCAGATG
2521 TGTTGGAAGC TCACGAAGCG GAGGCTGAGG AGCCAGAGGC TGGCAAGTCA GAGGCAGAAG
2581 ACGATGAGGA CGAGGTGGAC GACTTGCAGA GCTCTCGCCG GCCCTGGCGG GGCCCCATCT
2641 CTCGCAAGGC CAGCCAGACC AGCGTGTACC TGCAGGAGTG GGACATCCCC TTCGAGCAGG
2701 TAGAGCTGGG CGAGCCCCATC GGGCAGGGCC GCTGGGGCCG GGTGCACCGC GGCGCTGGC
2761 ATGGCGAGGT GGCCATTCGC CTGCTGGAGA TGGACGGCCA CAACCAGGAC CACCTGAAGC
2821 TCTTCAAGAA AGAGGTGATG AACTACCGGC AGACGCGGC TGAGAACGTG GTGCTTTCA
2881 TGGGGGCCTG CATGAACCCG CCCCCACCTGG CCATTATCAC CAGCTTCTGC AAGGGCGGA
2941 CGTTGCACTC GTTTGTGAGG GACCCCAAGA CGTCTCTGGA CATCAACAAG ACGAGGCAAA
3001 TCGCTCAGGA GATCATCAAG GGCATGGGAT ATCTTCATGC CAAGGGCATC GTACACAAAG
3061 ATCTCAAATC TAAGAACGTC TTCTATGACA ACGGCAAGGT GGTCACTCACA GACTTCGGGC
3121 TGTTTGGGAT CTCAGGCGTG GTCCGAGAGG GACGGCGTGA GAACCAGCTA AAGCTGTCCC
3181 ACGACTGGCT GTGCTATCTG GCCCCCTGAGA TTGTACGCGA GATGACCCCC GGGAAAGGACG
3241 AGGATCAGCT GCCATTCTCC AAAGCTGCTG ATGTCTATGC ATTTGGGACT GTTTGGTATG
3301 AGCTGCAAGC AAGAGACTGG CCCCCTGAAGA ACCAGGCTGC AGAGGCATCC ATCTGGCAGA
3361 TTGGAAGCGG GGAAGGAATG AAGCGTGTCC TGACTTCTGT CAGCTTGGGG AAGGAAGTCA
3421 GTGAGATCCT GTCGGCCTGC TGGGCTTTCG ACCTGCAGGA GAGACCCAGC TTCAGCCTGC
3481 TGATGGACAT GCTGGAGAAA CTTCCCAAGC TGAACCGGGG GCTCTCCAC CCTGGACACT
3541 TCTGGAAGTC AGCTGAGTTG TAGGCCTGGC TGCCCTGCAT GCACCAGGGG CTTTCTTCCT
3601 CCTAAATCAAC AACTCAGCAC CGTGACTTCT GCTAAAATGC AAAATGAGAT GCGGGCACTA
3661 ACCCAGGGGA TGCCACCTCT GCTGCTCCAG TCGTCTCTCG CGAGGCTACT TCCTTTGCTT
3721 TGTTTTAAAA ACTGGCCCTC TGCCCTCTCC ACGTGGCCTG CATATGCCCA AG

32/32

FIG. 13A

FIG. 13B

