Theorem 0.1. For any joint distribution P of (X, S, Y), any $\sigma > 0$, as well as the base quantile estimator $\hat{q}_{\alpha} : \mathbb{R}^p \times [K] \to \mathbb{R}$ constructed on labeled data, the estimator \hat{g}_{α} defined in Eq. (8) satisfies

$$(\hat{g}_{\alpha}(X,S) \mid S=s) \stackrel{d}{=} (\hat{g}_{\alpha}(X,S) \mid S=s') \quad \forall s,s' \in [K].$$

1 Appendix

1.1 Proof of Thereom 0.1

Before showing the exact DP guarantee, we utilize Lemma 1.1 (stated in Lemma 3) from Chzhen & Schreuder (2022).

Lemma 1.1. Let $V_1, \ldots, V_n, V_{n+1}, n \geq 1$ be exchangeable real-valued random variables and U distributed uniformly on [0,1] be independent from $V_1, \ldots, V_n, V_{n+1}$, then the constructed location statistic

$$T(V_1, \dots, V_n, V_{n+1}, U) = \frac{1}{n+1} \sum_{i=1}^n \mathbb{I} \{V_i < V_{n+1}\}$$
$$+ \frac{1}{n+1} U \left(1 + \sum_{i=1}^n \mathbb{I} \{V_i = V_{n+1}\} \right)$$

is distributed uniformly on [0,1], where \mathbb{I} is the indicator function.

The proof of Theorem 0.1 is a direct adaptation of quantile demographic parity guarantee from Liu et al. (2022), Chzhen & Schreuder (2022) for the Therom 2 and therom 7.2.

Proof of Theorem 0.1. To prove the claimed DP guarantee for fixed quantile level $\alpha \in \{\alpha_{\text{lo}}, \alpha_{\text{hi}}\}$, we will show that the Kolmogorov-Smirnov distance between $\nu_{\hat{g}_{\alpha}|s}$ and $\nu_{\hat{g}_{\alpha}|s'}$ equals to zero for any $s \neq s' \in [K]$. Note that, according to the formulation of \hat{g}_{α} in Eq. (12), we have for any $(x, s) \in \mathbb{R}^p \times [K]$,

$$\hat{g}_{\alpha}(x,s) = \sum_{s'=1}^{K} \hat{p}_{s'} \hat{F}_{2,q_{\alpha}|s'}^{-1} \circ \hat{F}_{1,q_{\alpha}|s} \circ \tilde{q}_{\alpha}(x,s).$$

Denote by $\hat{Q}(t) = \sum_{s'=1}^K \hat{p}_{s'} \hat{F}_{2,q_{\alpha}|s'}^{-1}$. Note that we use the training set to estimate the location statistic for the new test point, $\hat{Q}(t)$ is independent from $\hat{F}_{1,q_{\alpha}|s} \circ \tilde{q}_{\alpha}(x,s)$ for each $s \in [K]$. Since the test point belongs to group S = s for some fixed $s \in [K]$ and, for all $i = 1, \ldots, |\mathcal{I}_1^s|$, set $V_i = \tilde{q}_{1,i}^s$ with $V_{N_s+1} \stackrel{d}{=} (\tilde{q}_{\alpha}(x,s))$ independent from $(V_i)_{i=1,\ldots,|\mathcal{I}_1^s|}$. Since the random variables $V_1, \ldots, V_{N_s}, V_{N_s+1}$ are exchangeable (more ideally, independent), Lemma 1.1 implies that for all $s \in [K]$, the location statistic $\hat{F}_{1,q_{\alpha}|s} \circ \tilde{q}_{\alpha}(x,s)$ is distributed

uniformly on [0,1]. Thus for all $s, s' \in [K]$, we have

$$KS \left(\nu_{\hat{g}_{\alpha}|s}, \nu_{\hat{g}_{\alpha}|s'}\right) = \sup_{t \in \mathbb{R}} |P\left(\hat{g}_{\alpha} \leq t \mid S = s\right) - P\left(\hat{g}_{\alpha} \leq t \mid S = s'\right)|$$

$$= \sup_{t \in \mathbb{R}} |P\left(\hat{F}_{1,q_{\alpha}|s} \circ \tilde{q}_{\alpha}(x,s) \leq \hat{Q}^{-1}(t) \mid S = s\right)$$

$$-P\left(\hat{F}_{1,q_{\alpha}|s} \circ \tilde{q}_{\alpha}(x,s) \leq \hat{Q}^{-1}(t) \mid S = s'\right)|$$

$$= \sup_{t \in \mathbb{R}} |E\left[\hat{Q}^{-1}(t) \mid S = s\right] - E\left[\hat{Q}^{-1}(t) \mid S = s'\right]| = 0.$$

The first equality uses the definition of \hat{g}_{α} ; the second uses the fact that \hat{Q} is monotone; finally since the independence of \hat{Q} is independent from $\hat{F}_{1,q_{\alpha}|s} \circ \tilde{q}_{\alpha}(x,s)$ conditionally on S = s for any $s \in [K]$, also \hat{Q} remains independent from S. The exact DP is concluded.

References

Chzhen, E. & Schreuder, N. (2022), 'A minimax framework for quantifying risk-fairness trade-off in regression', *The Annals of Statistics* **50**(4), 2416–2442.

Liu, M., Ding, L., Yu, D., Liu, W., Kong, L. & Jiang, B. (2022), 'Conformalized fairness via quantile regression', Advances in Neural Information Processing Systems 35, 11561–11572.