2020 Advanced Mathematics 2 Paper 1

- 1. Which of the followings is NOT a factor of $x^{48} 4x^{12} + 3$? Ans. D [2. Polynomial]
 - A x + 1
- B $x^{2} + 1$
- C $x^3 + 1$ D $x^4 + 1$
- 2. Find the solution set of $\{\sqrt[4]{(m-2)}^4 = m 2\sqrt[6]{(m-5)}^6 = 5 m$ Ans. C [5. Solutions of equations 1
 - A (2, 5]

B $(-\infty, 2] \cup [5, \infty)$

C [2, 5]

- D $(-\infty, 2) \cup [5, \infty)$
- 3. Which of the followings is the graphs of $y = 2^{2-x}$? Ans. B [15. Exponential functions and logarithmic functions]

- 4. Given that the complex number $w = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ satisfies $z^3 1 = 0$.
 - Find $2w^4 11w^3 7w^2 9w + 4$. Ans. B [17. Complex numbers]
 - A -21
- B 0
- C 1
- D 19
- 5. $\sum_{n=1}^{\infty} \frac{1}{9n^2 + 3n 2} = ?$ Ans. C [8. Sequence and series]
 - $A^{\frac{1}{2}}$

- $C\frac{1}{6}$
- D 0
- 6. In $\triangle ABC$, BC = 3, AC = 4 and the area of $\triangle ABC$ is $3\sqrt{3}$. If $\overrightarrow{CB} \bullet \overrightarrow{CA} < 0$, find $\angle ACB$.
 - Ans. C [20. Solution of triangles.]
 - A 30°
- B 60°
- C 120°
- D 150°

7. 10 distinct points lie evenly on the circumference of a circle. Find the total number of acute-angled

triangles and obtuse-angled triangles that have vertices on these points.

Ans. C [9. Permutation and Combination]

A 48

B 56

C 80

D 92

8. Find the general solution of equation $\frac{2tan4\theta}{1+tan^24\theta} = \frac{\sqrt{3}}{2}$. Ans. B [22. Trigonometrical equations]

A $\theta = n\pi + (-1)^n \frac{\pi}{24}, n \in \mathbb{Z}$ B $\theta = \frac{n\pi}{8} + (-1)^n \frac{\pi}{24}, n \in \mathbb{Z}$

 $C \theta = n\pi \pm \frac{1}{8} tan^{-1} \frac{\sqrt{3}}{2}, n \in \mathbb{Z}$ $D \theta = \frac{n\pi}{8} \pm \frac{1}{8} tan^{-1} \frac{\sqrt{3}}{2}, n \in \mathbb{Z}$

9. Given that $sin\alpha + sin\beta = a$, $cos\alpha + cos\beta = b$, and $ab \neq 0$. Find $tan\frac{\alpha + \beta}{2}$.

Ans. C [19. Trigonometric functions of any angle]

A 1

Bab

 $D^{\frac{b}{a}}$

10. How many solution(s) does the equation $tan^2 \frac{x}{5} = 1$ have on the interval [0, 2π]? Ans. C [22. Trigonometrical equations]

A 3 solutions

B 2 solutions

C 1 solution

D No solution

11. Given that $\sin^{-1} a + \sin^{-1} b = \frac{\pi}{2}$. Which of the followings is **TRUE**?

Ans. C [25. Inverse of trigonometrical functions]

A
$$a + b = 1$$

$$B \, a - b = 1$$

$$C a^2 + b^2 = 1$$

D
$$a^2 - b^2 = 1$$

12. Find the equation of the circle centred at (-2, 1) that touches the line 3x - 4y - 5 = 0.

Ans. A [28. The circle]

A
$$(x + 2)^2 + (y - 1)^2 = 9$$

A
$$(x + 2)^2 + (y - 1)^2 = 9$$
 B $(x + 2)^2 + (y - 1)^2 = 45$

$$C(x-2)^2 + (y+1)^2 = 9$$

$$C(x-2)^2 + (y+1)^2 = 9$$
 $D(x-2)^2 + (y-1)^2 = 45$

13. Find the coordinates of $(\sqrt{3}, 1)$ in the new coordinates system after a rotation of the coordinates

axes through $\frac{\pi}{3}$. Ans. D [32. Coordinate transformation]

A
$$(-\sqrt{3}, 1)$$

A
$$(-\sqrt{3}, 1)$$
 B $(-\sqrt{3}, -1)$ C $(-1, \sqrt{3})$

C (- 1,
$$\sqrt{3}$$
)

D
$$(\sqrt{3}, -1)$$

14. The locus of the points of intersection of the lines $x\cos\theta + y\sin\theta = 3$ and $x\sin\theta - y\cos\theta = 4$

Ans. A [34. Parametric equations] [28. The circle]

A a circle

B an ellipse C a parabola

D a hyperbola

15. Given that the foci of the ellipse $17x^2 + 8y^2 = 136$ and the hyperbola $\frac{y^2}{104} - \frac{x^2}{k^2} = \frac{1}{25}$ coincide. Find

the positive number k. Ans. D [31. The hyperbola]

A 3

B 4

C 9

D 11

16. Find $\left(\frac{x+10}{x-1}\right)^x$. Ans. A [35. Limit and Continuity]

A
$$e^{11}$$

 $\mathsf{B}\,e^{10}$

D e^{-11}

17. Which of the following descriptions regarding the inflexion point(s) on the curve $y = x^4 - 4x^3$ Is **TRUE**? Ans. C [37. Applications of differentiation]

A only one inflexion point at x = 0 B only one inflexion point at x = 3

C having two inflexion points

D having three inflexion points

18. On which of the following intervals is $f(x) = 8x^4 + 4x^2 - 2$ increasing? Ans. B [37. Applications of differentiation]

A
$$\left(-\frac{1}{2}, \infty\right)$$
 B $(0, \infty)$ C $\left(-\infty, 0\right)$ D $\left(-\infty, \frac{1}{2}\right)$

19.
$$\int \frac{19-6x}{(5-4x)(2+3x)} dx = ?$$
 Ans. B [38. Indefinite integrals]

A
$$\frac{1}{2}$$
ln $ln |5 - 4x| + ln |2 + 3x| + C$

B
$$-\frac{1}{2}$$
ln $\ln |5 - 4x| + \ln |2 + 3x| + C$

$$C \frac{1}{2} \ln \ln |5 - 4x| - \ln |2 + 3x| + C$$

$$D - \frac{1}{2} \ln \ln |5 - 4x| - \ln |2 + 3x| + C$$

20. Which of the following expresses the area of the region bounded by the curve $y = x^2 - 4$, the x-axis and the lines x=3, x=-3? Ans. D [39. Definite integrals and its application]

$$A \int_{-3}^{3} (4 - x^2) dx$$

B
$$\int_{-3}^{3} (x^2 - 4) dx$$

$$C \left| \int_{-3}^{3} (x^2 - 4) dx \right|$$

D
$$\int_{-3}^{3} |x^2 - 4| dx$$