Zavod za elektroniku, mikroelektroniku računalne i inteligentne sustave

Arhitektura računala 2

Međuispit, problemski dio (60% bodova)

1. (10 bodova) Skiciraj sadržaj korisničkog stoga u točkama A, B i C ako je poznato i) da se navedeni program u C-u izvodi na 32-bitnoj arhitekturi, te ii) da se parametri potprograma prenose preko stoga.

```
void* alociraj(int n){
  void * buf=malloc(n);
  memset(buf, Oxff, n);
  // B
  return buf;
}
int main(){
  // A
  alociraj(20);
  // C
}
```

- 2. (10 bodova) Pretpostavimo da modelu 8-instrukcijskog procesora želimo dodati jedan registar opće namjene (registar B) koji bi trebao biti u potpunosti ravnopravan registru A. Pokaži koje promjene je potrebno provesti u instrukcijskoj arhitekturi, na putu podataka te u upravljačkoj jedinici kako bi se postigao taj cilj.
- 3. (10 bodova) Prikažite sadržaj relevantnog dijela memorije i nacrtajte stanje na vanjskim sabirnicama pojednostavnjenog modela mikroprocesora tijekom izvođenja sljedećeg programskog odsječka:

```
$0100: lda #0
add $0200
dec $0200
bne $0100
...
$0200: $03
```

Instrukcija 1da (op. kod: \$95) učitava 8-bitnu konstantu u akumulator. Instrukcija add (op. kod: \$b1) dodaje operand akumulatoru. Instrukcija dec (op. kod: \$12) umanjuje operand za jedan. Instrukcija bne (op. kod: \$48) grana na zadanu adresu ako je rezultat prethodne operacije bio različit od nule.

- 4. (10 bodova) Na raspolaganju su memorijski moduli sa sljedećim važnim priključcima: A0-A8, D0-D7, R/W*, CS0, CS1, CS2*.
 - (a) Odredite kapacitet pojedinačnih modula.
 - (b) Nacrtajte shemu priključenja triju modula na 16-bitnu adresnu i 8-bitnu podatkovnu sabirnicu, ako moduli trebaju zauzeti kontinuirani adresni potprostor (raspon adresa) počevši od adrese \$fa00 (koristiti potpuno dekodiranje adrese).
 - (c) Koji adresni potprostor zauzimaju moduli ako ih spojimo prema prethodnom podzadatku?
- 5. (10 bodova) Za model mikroprogramiranog procesora koji je zadan slikom i formatom mikroriječi, napisati mikroprogram i odrediti sadržaj mikroprogramske memorije za fazu izvrši instrukcije swap A,B, koja zamjenjuje sadržaje u registrima A i B.

Neka je operacijski kod instrukcije \$bc, a početna adresa mikroprograma za fazu PRIBAVI je \$f0.

6. (10 bodova) Procesor MC68000 poziva potprogram instrukcijom \$2300: jsr \$3200. Pretpostaviti da operacijski kod odnosno operand instrukcije zauzimaju ukupno 6 bajta. Neka se parametri potprograma ne prenose preko stoga, te neka potprogram koristi dvije memorijske lokalne varijable širine po jedan bajt.

Neposredno nakon izvršavanja instrukcije potprograma \$3300: move d5,d3 procesor prima zahtjev za prekid te se poziva prekidni potprogram na adresi \$fe080.

Skicirati stanja stogova procesora prije poziva potprograma, neposredno prije primanja prekida, tijekom obrade prekida, nakon povratka iz prekidnog potprograma, te nakon povratka u glavni program.

Slika uz zadatak 2: organizacija osaminstrukcijskog procesora

Slika uz zadatak 5: organizacija mikroprogramiranog procesora

31	29	26	24	22	19	17	15	13		7	0
CA	СВ	COP	CSH	CMB	CAB	CBB	CST		CNA	CEM	

CA	СВ	COP	CSH
00 L ← PR	000 R ← 0	00 suma uz C=0	00 MB ← S
$01 \dots L \leftarrow [0, F(CEM)]$	001 R ← B	$01 \dots \text{ suma uz C} = 1$	$01 \dots MB \leftarrow shr S$
$10 \dots L \leftarrow [F(CEM), 0]$	010 R ← B*	10 ne koristi se	$10 \dots MB \leftarrow shl S$
11 L ← A	$011 \dots R \leftarrow PC$	11 ne koristi se	$11 \dots MB \leftarrow IN$
	$100 \dots R \leftarrow SR$		
CMB	CAB	CBB	CST
000 nema prijenosa	$00 \dots H(1) \leftarrow 0$	$00 \dots H(0) \leftarrow 0$	00 SR se ne mijenja
001 A ← MB	$01 \dots H(1) \leftarrow 1$	$01 \dots H(0) \leftarrow 1$	$01 \dots SR(0) \leftarrow ZT$
010 B ← MB	$10 \dots H(1) \leftarrow SR(0)$	$10 \dots H(0) \leftarrow SR(1)$	$10 \dots SR(1) \leftarrow MB(15)$
011 PC ← MB	$11 \dots H(1) \leftarrow MB(0)$	$11 \dots H(0) \leftarrow MB(15)$	$11 \dots SR(0) \leftarrow ZT$
$100 \dots SR \leftarrow MB$			$SR(1) \leftarrow MB(15)$
101 OUT \leftarrow MB			
110 $PR \leftarrow MB$			

Slika uz zadatak 5: format mikroinstrukcijske riječi