CS 302 Automata Theory Fall 2024

Text:

Introduction to Automata Theory, Languages and Computation

Third edition, Pearson 2006

Instructor:

Kemal İnan, inan@sabanciuniv.edu

PREMODERN AUTOMATION

James Watt's Governor (Speed regulator) 1788

Almost a century later: James Clerk Maxwell's famous paper (1868): On Governors

First mathematical treatment of stability

Classical Example of Negative Feedback

Automation examples using arithmetic error | Automation examples using linguistic

1- fast : seconds ; game theoretic

2- slow: minutes; temperature control

error = desired - actual (room temperature)

thermostat to monitor; heater to control

3- super slow: months; inflation control

error = desired - actual (price levels)

sampling prices to monitor;

monetary or fiscal policy to control

2 – manouvering in heteregenous environments

monitor shelves in a store and automatically renew commercial items of varying shape and size bringing them from the storage space meanwhile keeping the statistics of both the shelves and the storage area

Topic of the Course \rightarrow modern: Linguistic based automation

CS 302 Fall 2024 4

Definition of a Language

(1) A finite set Σ , called the **alphabet** set.

(2) A **set** of strings with elements in Σ is called a

language over Σ

CS 302 Fall 2024 5

Formal Definition of a Language $L \subseteq \Sigma^*$ where :

String Operations and Terminology

String concatenation notation : $u.v \in \Sigma^*$ where $u \in \Sigma^*$, $v \in \Sigma^*$

A nonempty string $v \in \Sigma^+$ is called:

a substring of s if s = u.v.w, where $u,w \in \Sigma^*$

a prefix of s if s = v.w, where $w \in \Sigma^*$

a postfix of s if s = u.v where $u \in \Sigma^*$

 s^n denotes a string s concatenated with itself n times

length(s) = # characters in s = |s|

How can we define a language L?

$$L := (s \in \Sigma^* | F(s))$$

A logical condition on s; F is a truth valued function

There is a problem in this definition:

Is **F** computable?

What does computable mean?

Two possibly computable tools are introduced:

(1) Grammars; (2) Automata

Examples of languages:

- (1) Natural Languages; strings of characters from a keyboard that are syntactically correct in English e.g. The chair ate the elephant is a syntactically correct string (sentence) in the English language; The ate elephant chair the is not syntactically correct!
- (2) Formal (Computer) Languages: i.e. strings of symbols that are syntactically correct; such as a C++ program for which the compiler does not give a syntax error

Simple examples of formal languages

(3) Well-defined expressions. eg. arithmetic expressions using the operators + and \times and nonnegative integers

Operation not specified

 $(32+560)\times(3+54\times7)$ is correct whereas $32(+0.56\times7)(3)$ is not correct

integer cannot start with a 0

- (4) Problems: encoding? of decision? problems
- Examples:
- (i) Decision problem:

$$E = \{ (n, m, k) \in Z \times Z \times Z \mid n+m=k? \}; E \subseteq Z^3$$

(ii) Encoding of a graph **G** that solves the decision problem of connectedness!

Context Free Grammars

Finite set of production rules $P \subseteq (V-T) \times V^*$

Example: generation of integers in decimal notation

-108970 and +67 and 564 are legitimate strings but 034

and 1-3 and 90+1 are not!

Find a grammar that generates integers in decimal notation!

(Deterministic Finite) Automata over a set $\Sigma = \{a, b, c, \dots\}$

Simple way to define is by directed graphs where edges are labeled by symbols in Σ

In CS 302 we use Automata as a language acceptor (or generator)

But there are other uses in modeling real systems:

(1) Coffee & Chocolate Machine

(2) Digital Integrated Circuits with input and output

