Podstawy fizyki kwantowej

Lista zadań 2 – Bariery, studnie i tunelowanie

Andrzej Więckowski

- 1. Pokazać, że $\frac{d}{dt}\langle A\rangle = i\langle [\hat{H},A]\rangle + \langle \dot{A}\rangle$.
- 2. Twierdzenie Ehrenfesta—pokazać, że (dla cząstki o masie m w polu $\vec{F} = -\nabla V$):
 - (a) $\frac{d}{dt}\langle \vec{r}\rangle = \frac{1}{m}\langle \vec{p}\rangle;$
 - (b) $\frac{\mathrm{d}}{\mathrm{d}t}\langle \vec{p}\rangle = -\langle \nabla V \rangle$.
- 3. Równanie Schrödingera
 - (a) Rozseparować równanie: $i\frac{\partial}{\partial t}\psi(\vec{r},t)=\frac{p^2}{2m}\psi(\vec{r},t)+V(\vec{r})\psi(\vec{r},t)$, na część czasową i część przestrzenną $[\psi(\vec{r},t)=u(\vec{r})f(t)]$.
 - (b) Rozwiązanie części czasowej: $f(t) = Ce^{-iEt}$.
 - (c) Pokazać, że $\psi(\vec{r},t)$ to rozwiązanie stacjonarne i $|\psi(\vec{r},t)|^2$ nie zależy jawnie od czasu.
- 4. Nieskończona bariera potencjału—znaleźć rozwiązania równania $\psi(x,t)$ dla cząstki o masie m w potencjale $V(x) = \begin{cases} 0, & x < 0 \\ V_0, & x > 0 \end{cases}$, dla $V_0 \to \infty$.
- 5. Nieskończona studnia potencjału—znaleźć rozwiązania równania $\psi_n(x,t)$ dla cząstki o masie m w potencjale $V(x) = \begin{cases} 0, & 0 < x < L \\ V_0, & L < x < 0 \end{cases}$, dla $V_0 \to \infty$. Dla cząstki w stanie $|\psi\rangle = |\psi_n\rangle$ znaleźć:
 - (a) poziomy energetyczne E_n ,
 - (b) średnie położenie $\langle x \rangle$,
 - (c) średni pęd $\langle p \rangle$, (czy możemy policzyć $\langle p \rangle$ znając tylko $\langle x \rangle$?),
 - (d) powtórzyć podpunkty (b), (c) dla cząstki w stanie $|\psi\rangle=\frac{1}{\sqrt{2}}(|\psi_n\rangle+i|\psi_m\rangle)$ dla $n\neq m$.
- 6. Tunelowanie, przejście przez "krawężnik"—znaleźć rozwiązania równania $\psi(x,t)$ dla cząstki o masie m w potencjale $V(x) = \begin{cases} 0, & L < x < 0 \\ V_0, & 0 < x < L \end{cases}$, dla $V_0 > 0$. Rozważyć dwa przypadki $E < V_0$ oraz $E > V_0$. Jak wyraża się transmisja $T = \frac{|\psi_{\text{tran}}|^2}{|\psi_{\text{in}}|^2}$ dla tych przypadków (ψ_{tran} część po przejściu, a ψ_{in} część padająca)?

1