$$\dot{x} = 1 - x^2$$

$$f(x) = 1 - x^2$$

4:
$$f(x) = 0$$
 $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$

$$\eta_{\Lambda}^* = -\Lambda \; , \quad \eta_{2}^* = \Lambda$$

$$f'(x) = -2x$$

$$f'(\eta_1^*) = f'(-1) = (-2) \cdot (-1) = 270 \Rightarrow \eta_1^*$$
 is a repeller

$$f'(\eta_1^*) = f'(1) = -2 < 0 \Rightarrow \eta_2^*$$
 is an attractor

(
$$\eta^*$$
 is an equil. print if $\varphi(t,\eta^*)=\eta^*$, $\forall t \in \mathbb{R}$)

$$\varphi(1,\eta^*)=\eta^*$$
, $\forall t \in \mathbb{R}$

$$0 \le C \le 1$$
 $\dot{x} = x(1-x) - Cx$

$$f(x) = x(1-x) - cx = x - x^2 - cx = (1-c)x - x^2$$

$$(1-c)x-x^{2}=0$$

ex:
$$f(x)=0$$
 $(1-c)x-x^2=0$ (1) $z_1=0$ $z_2=1-c$

$$x \left[1-c-x\right] = 0$$

$$x \left[1-c-x \right] = 0 \qquad \eta_2^* = 1-c > 0$$

$$f'(x) = 1-C-2x$$
 $f'(0) = 1-C 70 \Rightarrow 9_1^{+}=0 \text{ is a repulle}$
 $f'(1-c) = (1-9-2(1-c) = 0)$

 $=-(1-c)<0 \Rightarrow$

= n= 1-c is an attractor

x(t) is density of fish in a lake C70 the fishing rate

if the initial dentity x(0) is smaller show 1-C, then the density increases, but till fre volue 1-c

increases, but till the value 1-c 1(0) > 1-C, then the density discreases, but till 1-c. if Also, the equilibrium ralue, I-C is légger if the fishing rate is smaller. $\varphi(t,\eta)$ the got of the int $\int x = x(1-x) - cx$ $\chi(x) = \eta$ if oly < 1-c => q(t, y) is increasing and lin q(t, y) = 1-c 971-C => - . \ - decreasing and line \q(t, y) = 1-c the ep. $\eta^* = 1-c$ increoses when the parameter c decreoses. $\int y' = 1 + xy^2$, $x \in [0,1]$ h = 0.02 stepsite (yo) =0 Denote by $\varphi(x)$ the exact solution. voite the Euler's numerical formula. $n = \frac{1}{2} = \frac{1}{0.02} = \frac{1}{2} = \frac{100}{2} = 50$ 50 the number of sleps to surise to 1. $\chi_{50} = 1$ 26 = kh, k=0,50 $y_{\mathbf{k}} \approx \varphi(x_{\mathbf{k}})$ y'(x) = f(x, y(x)) y = y + h f(26, y6), k=0,50 $f(x,y) = 1 + xy^2$ That = ye + h (1+ xe. ye), &= 0,50 Yh+ = Yh + h (1+ k.h. ye), k=0,50 R=0.02

$$2g = k \cdot h$$
, $k = 0.50$ $q(0.5)$ $2g = 0.5$ $k \cdot h = 0.5 \Rightarrow$

$$R = \frac{0.5}{0.02} = \frac{5}{10} \cdot \frac{\log x}{12} = 25 \text{ Alegs}.$$

$$Q(A) \qquad 50 \text{ Alegs}.$$