# Εργαστηριακή Άσκηση 2

## Διαιρέτης Τάσης - Ρεύματος

## 1. Ορισμός κυκλώματος σειράς- Διαιρέτης τάσης

Κύκλωμα σειράς είναι το κύκλωμα που έχει δύο η περισσότερα στοιχεία συνδεδεμένα έτσι ώστε να διαρρέονται από το ίδιο ρεύμα.

Το κύκλωμα του σχήματος 1 παρατηρούμε ότι αποτελείται από 4 αντιστάσεις  $(R_1,R_2,R_3,R_4)$  συνδεδεμένες σε σειρά.



Σχήμα 1: κύκλωμα σειράς

Η ολική αντίσταση  $R_{o\lambda}$  του κυκλώματος είναι ίση με το άθροισμα των επί μέρους αντιστάσεων ( $R_{o\lambda}=R1+R2+R3+R4$ ). Επίσης  $R_{o\lambda}=V_{o\lambda}/I_{o\lambda}$  όπου  $V_{o\lambda}=\eta$  ολική πτώση τάσης του κυκλώματος και  $I_{o\lambda}$  το ρεύμα που διαρρέει το κυκλώμα. Η ολική τάση, είναι το άθροισμα των επιμέρους τάσεων ( $V_1=I_{o\lambda}R_1$ ,  $V_2=I_{o\lambda}R_2$ ,  $V_3=I_{o\lambda}R_3$ ,  $V_4=I_{o\lambda}R_4$ ),  $V_4=V_1+V_2+V_3+V_4$ . Παρατηρώντας το παραπάνω κύκλωμα μπορούμε να συμπεράνουμε ότι κάθε κύκλωμα σειράς αποτελεί έναν διαιρέτη τάσης όπου η ολική τάσης τροφοδοσίας  $V_{\alpha}$  κατανέμεται στις επιμέρους τάσεις:  $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$ , αντίστοιχα. Η απλούστερη μορφή διαιρέτη τάσης αποτελείται από δυο αντιστάσεις εν σειρά όπως φαίνεται στο σχήμα 2.



Σχήμα 2: Κύκλωμα απλού διαιρέτη τάσης

Η τάση V στα άκρα της  $R_2$  δίδεται από τον τύπο:  $V_o = V_{R2} = V_\alpha R_2/(R_1 + R_2)$ 

Αντίστοιχα η τάση στα άκρα της  $R_1$  δίνεται από τον τύπο:  $V_{R1}$  = $V_{\alpha}R_1/(R_1+R_2)$ 

Ένα ποτενσιόμετρο με μεσαία λήψη (σχήμα 3) είναι μια μορφή διαιρέτη τάσης.



Σχήμα 3: Κύκλωμα ποτενσιομέτρου. (Ο διαιρέτης τάσης του χρησιμοποιείται πολύ συχνά για την τροφοδοσία διαφόρων ηλεκτρικών η ηλεκτρονικών κυκλωμάτων. Η τροφοδοτούμενη συσκευή  $R_L$  χαρακτηρίζεται ως φορτίο).

## Διαιρέτης Τάσης με Φορτίο

Έστω το παρακάτω κύκλωμα ενός απλού διαιρέτη τάσης:



Σχήμα 4: Κύκλωμα απλού διαιρέτη τάσης χωρίς φορτίο

H τάση στα άκρα της αντίστασης  $R_2$  είναι:  $V_o = 50 *47/(47+47)$  ή  $V_o = 25V$ 

Προσθέτουμε παράλληλα στα άκρα της  $R_2$  την αντίσταση  $R_L = 47 K\Omega$ , όπως φαίνεται στο παρακάτω σχήμα.



Σχήμα 5: Κύκλωμα απλού διαιρέτη τάσης με φορτίο

Η  $R_2$  και  $R_L$  είναι παράλληλες επομένως ολική αντίσταση  $R_{2,L}$  είναι ίση με  $R_{2,L}=\frac{R_2R_L}{R_2+R_L}$  και κατόπιν αντικαταστάσεως  $R_{2,L}=23,5$ ΚΩ. Η  $R_{2,L}$  είναι σε σειρά με την  $R_1$  του κυκλώματος, άρα η ολική αντίσταση του κυκλώματος είναι  $R_{0\lambda}=R_1+R_{2,L}=47$ ΚΩ +23,5ΚΩ =70,5ΚΩ. Το ολικό ρεύμα είναι:  $I_{0\lambda}=\frac{V_\alpha}{R_{0\lambda}}=\frac{50V}{70.5$ ΚΩ} =0.7mA, και διακλαδίζεται στο σημείο A, σε δυο ίσα ρεύματα τα  $I_1$  και  $I_2$  με  $I_1=I_2=0.35$  mA.

Η πτώση τάσης  $V_{R2}$  του κυκλώματος είναι ίση με  $V_{R2} = I_1 R_2 = 0.35 \text{mA*} 47 \text{K}\Omega = 16,45 \text{V}$ . Παρατηρώντας τα δυο κυκλώματα βλέπουμε ότι η αρχική τιμή της τάσης του κυκλώματος είναι ίση με 25 V ενώ μετά την εφαρμογή του φορτίου  $R_L$  γίνεται ίση με 16.45 V.

#### 2. Ορισμός και χαρακτηριστικά παραλλήλου κυκλώματος-Διαιρέτης ρεύματος

Παράλληλο κύκλωμα είναι το κύκλωμα στο οποίο υπάρχουν δυο ή περισσότεροι κλάδοι και η τάση στα άκρα όλων των στοιχείων του είναι η ίδια όπως φαίνεται στο παρακάτω σχήμα. Το ρεύμα του κάθε κλάδου είναι αντιστρόφως ανάλογο της τιμής της αντίστασης του. Που σημαίνει ότι όσο μεγαλώνει η αντίσταση ενός κλάδου, τόσο μικραίνει το ρεύμα του κλάδου.



Σχήμα 6: Παράλληλο κύκλωμα 3 κλάδων.

Αν γνωρίζουμε την τάση τροφοδοσίας  $V_{\alpha}$  που εφαρμόζεται στο κύκλωμα αυτόματα γνωρίζουμε την τάση οποιουδήποτε κλάδου του παραλλήλου κυκλώματος. Το ολικό ρεύμα ισούται με το άθροισα των ρευμάτων των κλάδων του κυκλώματος δηλαδή,  $I_{o\lambda} = I_1 + I_2 + I_3$ . Η ολική αντίσταση ενός παραλλήλου κυκλώματος, (σχήμα 6), δίδεται από τον τύπο:  $R_{o\lambda} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots + \frac{1}{R_n}}$ . Όπου  $R_1$ ,  $R_2$ ,  $R_3$ ,.... $R_n$  είναι οι αντιστάσεις των επιμέρους κλάδων του κυκλώματος. **Ο γενικός τύπος για να βρούμε το ρεύμα οποιοδήποτε κλάδου του παραπάνω κυκλώματος είναι**  $I_x = \frac{R_{o\lambda}}{R_x} I_{o\lambda}$ , όπου  $I_x$  η τιμή του ρεύματος του κλάδου της αντίστασης  $R_x$  ενώ  $R_{o\lambda}$  και  $I_{o\lambda}$  η ολική αντίσταση και το ολικό ρεύμα του παραλλήλου κυκλώματος. Για την εφαρμογή του τύπου δείτε το παρακάτω σχήμα 7:



Σχήμα 7: Παράλληλο κύκλωμα 3 κλάδων.

Δεδομένα: 
$$R_{o\lambda}$$
 = 0,55KΩ  $I_{o\lambda}$  = 5,5mA έχουμε  $I_{_1} = \frac{R_{_{o\lambda}}}{R_{_1}}I_{_{o\lambda}} = 3mA$   $I_{_2} = \frac{R_{_{o\lambda}}}{R_{_2}}I_{_{o\lambda}} = 1,5mA$   $I_{_3} = \frac{R_{_{o\lambda}}}{R_{_3}}I_{_{o\lambda}} = 1mA$ 

## Απλός Τύπος Διαίρεσης Ρεύματος δύο Κλάδων

Αν υπάρχουν μόνο δύο κλάδοι,(όπως στο σχήμα 8) και γνωρίζουμε το  $I_{\text{ολ}}$  και το  $R_{\text{ολ}}$  μπορούμε να υπολογίσουμε το ρεύμα κάθε κλάδου από τους τύπους:  $I_{\text{1}} = \frac{R_{\text{2}}}{R_{\text{1}} + R_{\text{2}}} I_{\text{ολ}}$  και  $I_{\text{2}} = \frac{R_{\text{1}}}{R_{\text{1}} + R_{\text{2}}} I_{\text{ολ}}$  .



Σχήμα 8: Διαιρέτης ρεύματος με 2 κλάδους

## Άσκηση 1-Διαιρέτης Τάσης

Πραγματοποιήστε το κύκλωμα του παρακάτω σχήματος:



**Α) ΠΡΟΣΟΧΗ: Αρχικά φροντίστε ο δείκτης του ποτενσιόμετρου να είναι περίπου στο μέσον της περιστροφικής διαδρομής.** Ακολούθως, Ρυθμίστε την μεταβλητή αντίσταση του 1ΚΩ ώστε το βολτόμετρο να δείχνει 5V και μετρήστε το ρεύμα Ι<sub>ολ</sub> και τις αντιστάσεις R<sub>1</sub>, R<sub>2</sub>.

- **B)** Συνδέστε μια αντίσταση 470  $\Omega$ , παράλληλα προς την  $R_2$  σημεία (Β,Γ). Παρατηρήστε και σημειώστε τις τιμές ρεύματος και τάσης (ενδείξεις αμπερομέτρου και βολτομέτρου).
- **Γ)** Μεταβάλλετε την μεσαία λήψη της μεταβλητής αντίστασης ώστε το βολτόμετρο να δείξει ξανά 5V. Μετρήστε την τιμή των  $R_1$ ,  $R_2$  αντίστοιχα και καταγράψτε την τιμή του ρεύματος από το αμπερόμετρο.
- Δ) Συγκρίνετε τις τιμές των ερωτημάτων Α, Β, Γ, και αναφέρετε τα συμπεράσματα σας.
- **E)** Αφαιρέστε την αντίσταση των 470  $\Omega$  και ρυθμίστε ξανά την  $R_2$  ώστε το βολτόμετρο να δείξει 5V. Συνδέστε παράλληλα προς την  $R_2$  αντίσταση 560  $K\Omega$  και μετρήστε την τιμή της τάσης του βολτομέτρου.
- **ΣΤ)** Γράψτε και δικαιολογήστε τις παρατηρήσεις σας σχετικά με το τί συμβαίνει όταν συνδέουμε μια μικρή  $(470\Omega)$  ή μία μεγάλη  $(560 \text{K}\Omega)$  αντίσταση παράλληλα στην  $\text{R}_2$

#### Άσκηση 2-Διαιρέτης Ρεύματος

Α) Πραγματοποιήστε το παρακάτω κύκλωμα:



Ακολούθως υπολογίστε το ρεύμα  $I_{\text{ολ}}$  και επαληθεύστε τον υπολογισμό σας με την βοήθεια ενός αμπερομέτρου.

**B)** Υπολογίστε ποια θα πρέπει να είναι η τιμή μιας δεύτερης αντίστασης πού θα συνδεθεί παράλληλα με την  $R_1$  ώστε το ρεύμα  $I_{o\lambda}$  να διπλασιαστεί. Ακολούθως συνδέστε την υπολογισθείσα αντίσταση και μετρήστε το ρεύμα  $I_{o\lambda}$  του νέου κυκλώματος.

#### Συμφωνεί η μέτρηση σας με την υπολογισθείσα τιμή;

**Γ)** (α)Αρχικά πραγματοποιείστε το κύκλωμα του παρακάτω σχήματος χωρίς την  $R_L$ , μετρήστε το  $I_{ολ}$  και υπολογίστε το  $R_{ολ}$  του κυκλώματος.



- (β) Προσθέσετε παράλληλα προς τις  $R_1$ ,  $R_2$ , την αντίσταση  $R_L$ =1ΜΩ, μετρήστε και καταγράψτε το ρεύμα  $I_{ολ}$ . Ακολούθως υπολογίστε την  $R_{ολ}$  του κυκλώματος. Πόσο άλλαξε η τιμή της  $R_{ολ}$  από την περίπτωση (α);
- (γ) Αφαιρέσετε την  $R_L$ = 1ΜΩ, και αντικαταστήσετε την με R= 1ΚΩ μετρήστε το  $I_{o\lambda}$  και υπολογίστε το  $R_{o\lambda}$ . Πόσο άλλαξε η τιμή της  $R_{o\lambda}$  από την περίπτωση (α);
- **Δ)** Συγκρίνετε τις μετρήσεις των ερωτημάτων  $\Gamma(\alpha)$ , με τις μετρήσεις των ερωτημάτων  $\Gamma(\beta)$ , και γράψτε τα συμπεράσματα σας.