N-Glycopeptide Feature Identification by Revealing Trends Between Analyte Composition and Compensation Field Through FAIMS-Coupled MS Platform

Daniel Graham Delafield University of Oklahoma

US HUPO, Minneapolis 2018

Implications of Glycosylation

Function

- Cellular communication and immune response
- Extrinsic and intrinsic signaling pathways
- Impact protein folding

Disease

- Target of foreign invasion and tolerance
- Indicators of autoimmune diseases such as RA
- Glycan patterns associated with type 2 diabetes
- 1. Varki, A., Essentials of glycobiology. 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, N.Y., 2009; p xxix, 784 p.
- 2. Arnold, J. N.; Wormald, M. R.; Sim, R. B.; Rudd, P. M.; Dwek, R. A., Annu Rev Immunol 2007, 25, 21-50.
- 3. Lemmers, R. F. H.; Vilaj, M.; Urda, D.; Agakov, F.; Šimurina, M.; Klaric, L.; Rudan, I.; Campbell, H.; Hayward, C.; Wilson, J. F.; Lieverse, A. G.; Gornik, O.; Sijbrands, E. J. G.; Lauc, G.; van Hoek, M., *Biochimica et Biophysica Acta (BBA) General Subjects* **2017**, *1861* (9), 2240-2249.

Understanding Intact Glycopeptides

Limitations of Convention

- No universal separation approach
- Glycopeptides are often low in abundance and need enrichment
- Heterogeneity makes glycoform separation difficult

Additional dimension of gas-phase separation could provide complementary information

Leveraging Ion Mobility

Glycoform Separation

- IMS proven useful for glycoform analysis
- Systematic drift time changes indicate glycosylation patterns
- Demonstrated improved resolution with increase charge state

Leveraging Ion Mobility

Database Compilation

- Demonstrated unique trends for:
 - Permethylated Glycans
 - Glycopeptides
 - Non-glycosylated peptides
- Collection of CCS values makes feature identification possible
- Trends are clear, but would benefit from clearer separation

Differential Ion Mobility - FAIMS

Planar FAIMS courtesy of Heartland Mobility

Differential Ion Mobility - FAIMS

Demonstrated success in separating:

- Site specific modifications
- Peptide Sequence Isomers
- Cis/Trans isomers
- Proteoforms (middle down)

Advantages

- Separation based on dipole allignment
- Good orthogonality to MS

Utilizing FAIMS could provide discrimination of modified and unmodified peptides and offer possible separation of isobaric species.

^{1.} Shvartsburg, A. A.; Singer, D.; Smith, R. D.; Hoffmann, R., Analytical Chemistry 2011, 83 (13), 5078-5085.

^{2.} Shvartsburg, A. A.; Creese, A. J.; Smith, R. D.; Cooper, H. J., Analytical chemistry 2011, 83 (18), 6918-6923.

^{3.} Shliaha, P. V.; Baird, M. A.; Nielsen, M. M.; Gorshkov, V.; Bowman, A. P.; Kaszycki, J. L.; Jensen, O. N.; Shvartsburg, A. A., Anal. Chem. (Washington, DC, U. S.) 2017, Ahead of Print.

Proposed Workflow

Online Oxonium Ion Monitoring

- 20 confidently assigned glycopeptides
- Targeted intact glycopeptide enrichment through online oxonium ion monitoring

RPLC separation

FAIMS separation (60% He)

RPLC separation

FAIMS separation (60% He)

Separation of heterogenous intact glycoforms with the same peptide backbone

FAIMS under different helium conditions

RPLC separation

Differentiation in Trend

Glycoforms of varying peptide backbone are greatly differentiated

RPLC separation

FAIMS separation (60% He)

Glycopeptides demonstrate strong correlation, regardless of composition

Differentiating Non-Glycopeptides

FAIMS separation (60% He)

Charge State Evaluation

Antibody Application

Conclusion

- Concurrent fractionation method can be universally applied for glycopeptide enrichment
- FAIMS demonstrates resolving power for:
 - Variable backbone glycoforms
 - Unique peptides with different glycans
 - Optimized resolution for given gas composition
 - Increased separation with change in charge state
- Multifaceted, tunable method that may provide additional information for gas-phase glycopeptide studies

Acknowledgements

Wu Group

Dr. Si Wu Lushuang Huang

Zhe Wang Dahang Yu

Hongyan Ma Morgan Mann

Wichita State University

Dr. Alexandre Shvartsburg Matt Baird

This work is supported by

OU startup grant (Wu)
OCAST (Wu)
NIGMS R01 (Liu)
NIAID CSGADP Pilot Project (Wu)

