381 A Proofs for the iSAEM Algorithm

382 A.1 Proof of Lemma 2

Lemma. Assume A3, A4. For all $s \in S$,

$$v_{\min}^{-1} \langle \nabla V(\mathbf{s}) \, | \, \mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \rangle \ge \|\mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))\|^2 \ge v_{\max}^{-2} \|\nabla V(\mathbf{s})\|^2, \tag{16}$$

Proof Using A3 and the fact that we can exchange integration with differentiation and the Fisher's identity, we obtain

$$\nabla_{\mathbf{s}} V(\mathbf{s}) = \mathbf{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})^{\top} \left(\nabla_{\boldsymbol{\theta}} \, \mathbf{r}(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \nabla_{\boldsymbol{\theta}} \mathsf{L}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \right)$$

$$= \mathbf{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})^{\top} \left(\nabla_{\boldsymbol{\theta}} \psi(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \nabla_{\boldsymbol{\theta}} \, \mathbf{r}(\overline{\boldsymbol{\theta}}(\mathbf{s})) - \mathbf{J}_{\boldsymbol{\phi}}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top} \overline{\boldsymbol{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \right)$$

$$= \mathbf{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})^{\top} \mathbf{J}_{\boldsymbol{\phi}}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top} (\mathbf{s} - \overline{\boldsymbol{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))) ,$$

$$(17)$$

386 Consider the following vector map:

$$|\mathbf{s} \to \nabla_{\boldsymbol{\theta}} L(\mathbf{s}, \boldsymbol{\theta})|_{\boldsymbol{\theta} = \overline{\boldsymbol{\theta}}(\mathbf{s})} = \nabla_{\boldsymbol{\theta}} \psi(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \nabla_{\boldsymbol{\theta}} r(\overline{\boldsymbol{\theta}}(\mathbf{s})) - J_{\phi}^{\boldsymbol{\theta}} (\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top} \mathbf{s} .$$

Taking the gradient of the above map w.r.t. s and using assumption A_3 , we show that:

$$\mathbf{0} = -\operatorname{J}_{\phi}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \left(\underbrace{\nabla_{\boldsymbol{\theta}}^{2}(\psi(\boldsymbol{\theta}) + \operatorname{r}(\boldsymbol{\theta}) - \langle \phi(\boldsymbol{\theta}) \, | \, \mathbf{s} \rangle)}_{=\operatorname{H}_{L}^{\boldsymbol{\theta}}(\mathbf{s};\boldsymbol{\theta})} |_{\boldsymbol{\theta} = \overline{\boldsymbol{\theta}}(\mathbf{s})}\right) \operatorname{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s}).$$

388 The above yields

$$\nabla_{\mathbf{s}} V(\mathbf{s}) = \mathrm{B}(\mathbf{s})(\mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))) ,$$

- where we recall $B(\mathbf{s}) = J_{\phi}^{\theta}(\overline{\theta}(\mathbf{s})) \Big(H_{L}^{\theta}(\mathbf{s}; \overline{\theta}(\mathbf{s})) \Big)^{-1} J_{\phi}^{\theta}(\overline{\theta}(\mathbf{s}))^{\top}$. The proof of (16) follows directly from the assumption A4.
- 391 A.2 Proof of Theorem 1
- 392 Beforehand, We present two intermediary Lemmas important for the analysis of the incremental
- update of the iSAEM algorithm. The first one gives a characterization of the quantity $\mathbb{E}[ilde{S}^{(k+1)} -$
- 394 $\hat{\mathbf{s}}^{(k)}$
- Lemma. Assume A1. The update (1) is equivalent to the following update on the resulting statistics

396

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1} (\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}).$$

397 Also:

$$\mathbb{E}[\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}] = \mathbb{E}[\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}] + \left(1 - \frac{1}{n}\right) \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right] + \frac{1}{n} \mathbb{E}[\eta_{i_{k}}^{(k+1)}],$$

398 where $ar{\mathbf{s}}^{(k)}$ is defined by (3) and $au_i^k = \max\{k': i_{k'}=i,\ k'< k\}$.

399 **Proof** From update (1), we have:

$$\begin{split} \tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)} &= \tilde{S}^{(k)} - \hat{\mathbf{s}}^{(k)} + \frac{1}{n} \left(\tilde{S}_{i_k}^{(k+1)} - \tilde{S}_{i_k}^{(\tau_i^k)} \right) \\ &= \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)} + \tilde{S}^{(k)} - \overline{\mathbf{s}}^{(k)} - \frac{1}{n} \left(\tilde{S}_{i_k}^{(\tau_i^k)} - \tilde{S}_{i_k}^{(k+1)} \right) \; . \end{split}$$

400 Since $\tilde{S}_{i_k}^{(k+1)}=\overline{\mathbf{s}}_{i_k}(\pmb{\theta}^{(k)})+\eta_{i_k}^{(k+1)}$ we have

$$\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)} = \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)} + \tilde{S}^{(k)} - \overline{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}_{i_k}(\boldsymbol{\theta}^{(k)}) + \frac{1}{n} \eta_{i_k}^{(k+1)}.$$

Taking the full expectation of both side of the equation leads to:

$$\mathbb{E}[\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}] = \mathbb{E}[\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}] + \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right] - \frac{1}{n}\mathbb{E}[\mathbb{E}[\tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}_{i_{k}}(\boldsymbol{\theta}^{(k)})|\mathcal{F}_{k}]] + \frac{1}{n}\mathbb{E}[\eta_{i_{k}}^{(k+1)}].$$

- Since we have $\mathbb{E}[\tilde{S}_i^{(\tau_i^k)}|\mathcal{F}_k] = \frac{1}{n}\sum_{i=1}^n \tilde{S}_i^{(\tau_i^k)}$ and $\mathbb{E}\left[\bar{\mathbf{s}}_{i_k}(\boldsymbol{\theta}^{(k)})|\mathcal{F}_k\right] = \bar{\mathbf{s}}^{(k)}$, we conclude the proof 402 of the Lemma. 403
- We also derived the following auxiliary Lemma which sets an upper bound for the quantity 404 $\mathbb{E}[\|\tilde{S}^{(k+1)} - \hat{s}^{(k)}\|^2]$: 405
- **Lemma 7.** For any $k \ge 0$ and consider the iSAEM update in (1), it holds that 406

$$\mathbb{E}[\|\tilde{S}^{(k+1)} - \hat{s}^{(k)}\|^2] \le 4\mathbb{E}[\|\overline{s}^{(k)} - \hat{s}^{(k)}\|^2] + \frac{2L_{\mathbf{s}}^2}{n^3} \sum_{i=1}^n \mathbb{E}\left[\|\hat{s}^{(k)} - \hat{s}^{(t_i^k)}\|^2\right] + 2\frac{c_{\eta}}{M_k} + 4\mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^n \tilde{S}_i^{(\tau_i^k)} - \overline{\mathbf{s}}^{(k)}\right\|^2\right].$$

Proof Applying the iSAEM update yields:

$$\begin{split} \mathbb{E}[\|\tilde{S}^{(k+1)} - \hat{s}^{(k)}\|^2] = & \mathbb{E}[\|\tilde{S}^{(k)} - \hat{s}^{(k)} - \frac{1}{n} \left(\tilde{S}^{(\tau_i^k)}_{i_k} - \tilde{S}^{(k)}_{i_k}\right)\|^2] \\ \leq & 4\mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^n \tilde{S}^{(\tau_i^k)}_i - \overline{\mathbf{s}}^{(k)}\right\|^2\right] + 4\mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\|^2] \\ & + \frac{2}{n^2}\mathbb{E}[\|\overline{\mathbf{s}}^{(k)}_{i_k} - \overline{\mathbf{s}}^{(t^k_{i_k})}_{i_k}\|^2] + 2\frac{c_{\eta}}{M_k} \; . \end{split}$$

The last expectation can be further bounded by 408

410

$$\frac{2}{n^2}\mathbb{E}[\|\overline{s}_{i_k}^{(k)} - \overline{s}_{i_k}^{(t_{i_k}^k)}\|^2] = \frac{2}{n^3}\sum_{i=1}^n\mathbb{E}[\|\overline{s}_i^{(k)} - \overline{s}_i^{(t_i^k)}\|^2] \overset{(a)}{\leq} \frac{2\operatorname{L}_{\mathbf{s}}^2}{n^3}\sum_{i=1}^n\mathbb{E}[\|\hat{s}^{(k)} - \hat{s}^{(t_i^k)}\|^2]\;,$$

where (a) is due to Lemma 1 and which concludes the proof of the Lemma. 409

Theorem. Assume A1-A5. Consider the iSAEM sequence $\{\hat{\mathbf{s}}^{(k)}\}_{k>0} \in \mathcal{S}$ obtained with $\rho_{k+1} = 1$ 411

for any $k \leq K_m$ where K_m is a positive integer. Let $\{\gamma_k = 1/(k^a \alpha c_1 \overline{L})\}_{k>0}$, where $a \in (0,1)$, be a sequence of stepsizes, $c_1 = v_{\min}^{-1}$, $\alpha = \max\{8, 1 + 6v_{\min}\}$, $\overline{L} = \max\{L_{\mathbf{s}}, L_V\}$, $\beta = c_1 \overline{L}/n$. Then:

$$\upsilon_{\max}^{-2} \sum_{k=0}^{\mathsf{K_m}} \tilde{\alpha}_k \mathbb{E}[\|\nabla V(\hat{\pmb{s}}^{(k)})\|^2] \leq \mathbb{E}[V(\hat{\pmb{s}}^{(0)}) - V(\hat{\pmb{s}}^{(\mathsf{K_m})})] + \sum_{k=0}^{\mathsf{K_m}-1} \tilde{\Gamma}_k \mathbb{E}[\|\eta_{i_k}^{(k)}\|^2] \; .$$

Proof Under the smoothness of the Lyapunov function V (cf. Lemma 1), we can write:

$$V(\hat{\mathbf{s}}^{(k+1)}) \leq V(\hat{\mathbf{s}}^{(k)}) + \gamma_{k+1} \langle \tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)} | \nabla V(\hat{\mathbf{s}}^{(k)}) \rangle + \frac{\gamma_{k+1}^2 L_V}{2} ||\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}||^2.$$

Taking the expectation on both sides yields:

$$\mathbb{E}\left[V(\hat{\boldsymbol{s}}^{(k+1)})\right] \leq \mathbb{E}\left[V(\hat{\boldsymbol{s}}^{(k)})\right] + \gamma_{k+1}\mathbb{E}\left[\left\langle \tilde{S}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} \mid \nabla V(\hat{\boldsymbol{s}}^{(k)})\right\rangle\right] + \frac{\gamma_{k+1}^2 \operatorname{L}_V}{2}\mathbb{E}\left[\|\tilde{S}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2\right].$$

416 Using Lemma 3, we obtain:

$$\begin{split} & \mathbb{E}\left[\left\langle \tilde{S}^{(k+1)} - \hat{s}^{(k)} \,|\, \nabla V(\hat{s}^{(k)})\right\rangle\right] \\ = & \mathbb{E}\left[\left\langle \overline{s}^{(k)} - \hat{s}^{(k)} \,|\, \nabla V(\hat{s}^{(k)})\right\rangle\right] + \left(1 - \frac{1}{n}\right) \mathbb{E}\left[\left\langle \frac{1}{n} \sum_{i=1}^{n} \tilde{S}^{(\tau_{i}^{k})}_{i} - \overline{s}^{(k)} \,|\, \nabla V(\hat{s}^{(k)})\right\rangle\right] \\ & + \frac{1}{n} \mathbb{E}\left[\left\langle \eta_{i_{k}}^{(k)} \,|\, \nabla V(\hat{s}^{(k)})\right\rangle\right] \\ \stackrel{(a)}{\leq} - v_{\min} \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\|^{2}] + \left(1 - \frac{1}{n}\right) \mathbb{E}\left[\left\langle \frac{1}{n} \sum_{i=1}^{n} \tilde{S}^{(\tau_{i}^{k})}_{i} - \overline{\mathbf{s}}^{(k)} \,|\, \nabla V(\hat{s}^{(k)})\right\rangle\right] \\ & + \frac{1}{n} \mathbb{E}\left[\left\langle \eta_{i_{k}}^{(k)} \,|\, \nabla V(\hat{s}^{(k)})\right\rangle\right] \\ \stackrel{(b)}{\leq} - v_{\min} \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\|^{2}] + \frac{1 - \frac{1}{n}}{2\beta} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}^{(\tau_{i}^{k})}_{i} - \overline{\mathbf{s}}^{(k)}\right\|^{2}\right] \\ & + \frac{\beta(n-1)+1}{2n} \mathbb{E}\left[\left\|\nabla V(\hat{s}^{(k)})\right\|^{2}\right] + \frac{1}{2n} \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}] \\ \stackrel{(a)}{\leq} \left(v_{\max}^{2} \frac{\beta(n-1)+1}{2n} - v_{\min}\right) \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\|^{2}] + \frac{1 - \frac{1}{n}}{2\beta} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}^{(\tau_{i}^{k})}_{i} - \overline{\mathbf{s}}^{(k)}\right\|^{2}\right] \\ & + \frac{1}{2n} \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}] \;, \end{split}$$

where (a) is due to the growth condition (2) and (b) is due to Young's inequality (with $\beta \to 1$). Note $a_k = \gamma_{k+1} \left(v_{\min} - v_{\max}^2 \frac{\beta(n-1)+1}{2n} \right)$ and

$$a_{k}\mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}] \leq \mathbb{E}\left[V(\hat{\mathbf{s}}^{(k)}) - V(\hat{\mathbf{s}}^{(k+1)})\right] + \frac{\gamma_{k+1}^{2} L_{V}}{2} \mathbb{E}\left[\|\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}\|^{2}\right] + \frac{\gamma_{k+1}(1 - \frac{1}{n})}{2\beta} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right\|^{2}\right] + \frac{\gamma_{k+1}}{2n} \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}].$$
(18)

We now give an upper bound of $\mathbb{E}\left[\|\tilde{S}^{(k+1)}-\hat{s}^{(k)}\|^2\right]$ using Lemma 7 and plug it into (18):

$$(a_{k} - 2\gamma_{k+1}^{2} L_{V}) \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}]$$

$$\leq \mathbb{E}\left[V(\hat{\mathbf{s}}^{(k)}) - V(\hat{\mathbf{s}}^{(k+1)})\right]$$

$$+ \gamma_{k+1} \left(\frac{1}{2\beta}(1 - \frac{1}{n}) + 2\gamma_{k+1} L_{V}\right) \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}\right\|^{2}\right]$$

$$+ \gamma_{k+1} \left(\gamma_{k+1} L_{V} + \frac{1}{2n}\right) \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}]$$

$$+ \frac{\gamma_{k+1}^{2} L_{V} L_{\mathbf{s}}^{2}}{n^{3}} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(\tau_{i}^{k})}\|^{2}].$$
(19)

Next, we observe that

$$\frac{1}{n} \sum_{i=1}^n \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^{k+1})}\|^2] = \frac{1}{n} \sum_{i=1}^n \left(\frac{1}{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2] + \frac{n-1}{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2]\right),$$

where the equality holds as i_k and j_k are drawn independently. For any $\beta > 0$, it holds

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] \\ = & \mathbb{E}\left[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2 + 2\langle\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} \,|\, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\rangle\right] \\ = & \mathbb{E}\left[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2 - 2\gamma_{k+1}\langle\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k+1)} \,|\, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\rangle\right] \\ \leq & \mathbb{E}\left[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2 + \frac{\gamma_{k+1}}{\beta}\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k+1)}\|^2 + \gamma_{k+1}\beta\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2\right], \end{split}$$

where the last inequality is due to Young's inequality. Subsequently, we have

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(\tau_{i}^{k+1})}\|^{2}] \\ \leq &\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] + \frac{n-1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}\Big[(1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_{i}^{k})}\|^{2} + \frac{\gamma_{k+1}}{\beta}\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k+1)}\|^{2}\Big] \;. \end{split}$$

423 Observe that $\hat{s}^{(k+1)}-\hat{s}^{(k)}=-\gamma_{k+1}(\hat{s}^{(k)}-\tilde{S}^{(k+1)}).$ Applying Lemma 7 yields

$$\begin{split} &\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)}-\hat{\boldsymbol{s}}^{(\tau_{i}^{k+1})}\|^{2}]\\ \leq &(\gamma_{k+1}^{2}+\frac{n-1}{n}\frac{\gamma_{k+1}}{\beta})\mathbb{E}\Big[\|\tilde{\boldsymbol{S}}^{(k+1)}-\hat{\boldsymbol{s}}^{(k)}\|^{2}\Big]+\sum_{i=1}^{n}\mathbb{E}\Big[\frac{1-\frac{1}{n}+\gamma_{k+1}\beta}{n}\|\hat{\boldsymbol{s}}^{(k)}-\hat{\boldsymbol{s}}^{(\tau_{i}^{k})}\|^{2}\Big]\\ \leq &4\big(\gamma_{k+1}^{2}+\frac{\gamma_{k+1}}{\beta}\big)\mathbb{E}\Big[\|\overline{\boldsymbol{s}}^{(k)}-\hat{\boldsymbol{s}}^{(k)}\|^{2}\Big]+2\big(\gamma_{k+1}^{2}+\frac{\gamma_{k+1}}{\beta}\big)\mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}]\\ &+4\big(\gamma_{k+1}^{2}+\frac{\gamma_{k+1}}{\beta}\big)\mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^{n}\tilde{\boldsymbol{S}}_{i}^{(\tau_{i}^{k})}-\overline{\boldsymbol{s}}^{(k)}\right\|^{2}\right]\\ &+\sum_{i=1}^{n}\mathbb{E}\Big[\frac{1-\frac{1}{n}+\gamma_{k+1}\beta+\frac{2\gamma_{k+1}}{n^{2}}\frac{\mathbf{L}_{s}^{2}}{n^{2}}\big(\gamma_{k+1}+\frac{1}{\beta}\big)}{n}\|\hat{\boldsymbol{s}}^{(k)}-\hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2}\Big]\;. \end{split}$$

424 Let us define

$$\Delta^{(k)} := \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(\tau_i^k)}\|^2].$$

425 From the above, we get

$$\Delta^{(k+1)} \leq \left(1 - \frac{1}{n} + \gamma_{k+1}\beta + \frac{2\gamma_{k+1} L_{\mathbf{s}}^{2}}{n^{2}} (\gamma_{k+1} + \frac{1}{\beta})\right) \Delta^{(k)} + 4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \mathbb{E} \left[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2} \right] + 2(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \mathbb{E} \left[\|\eta_{i_{k}}^{(k)}\|^{2} + 4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \mathbb{E} \left[\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)} \|^{2} \right] \right].$$

Setting $c_1=v_{\min}^{-1}$, $\alpha=\max\{8,1+6v_{\min}\}$, $\overline{L}=\max\{\mathrm{L_s},\mathrm{L}_V\}$, $\gamma_{k+1}=\frac{1}{k\alpha c_1\overline{L}}$, $\beta=\frac{c_1\overline{L}}{n}$, 427 $c_1(k\alpha-1)\geq c_1(\alpha-1)\geq 6$, $\alpha\geq 8$, we observe that

$$1 - \frac{1}{n} + \gamma_{k+1}\beta + \frac{2\gamma_{k+1}L_{\mathbf{s}}^2}{n^2}(\gamma_{k+1} + \frac{1}{\beta}) \le 1 - \frac{c_1(k\alpha - 1) - 4}{k\alpha nc_1} \le 1 - \frac{2}{k\alpha nc_1},$$

which shows that $1-\frac{1}{n}+\gamma_{k+1}\beta+\frac{2\gamma_{k+1}\operatorname{L}_{\mathbf{s}}^2}{n^2}(\gamma_{k+1}+\frac{1}{\beta})\in(0,1)$ for any k>0. Denote $\Lambda_{(k+1)}=\frac{1}{n}-\gamma_{k+1}\beta-\frac{2\gamma_{k+1}\operatorname{L}_{\mathbf{s}}^2}{n^2}(\gamma_{k+1}+\frac{1}{\beta})$ and note that $\Delta^{(0)}=0$, thus the telescoping sum yields:

$$\Delta^{(k+1)} \leq 4 \sum_{\ell=0}^{k} \prod_{j=\ell+1}^{k} \left(1 - \Lambda_{(j)} \right) \left(\gamma_{\ell+1}^{2} + \frac{\gamma_{\ell+1}}{\beta} \right) \mathbb{E}[\| \overline{\mathbf{s}}^{(\ell)} - \hat{\mathbf{s}}^{(\ell)} \|^{2}]$$

$$+ 2 \sum_{\ell=0}^{k} \prod_{j=\ell+1}^{k} \left(1 - \Lambda_{(j)} \right) \left(\gamma_{\ell+1}^{2} + \frac{\gamma_{\ell+1}}{\beta} \right) \mathbb{E} \left[\left\| \eta_{i_{\ell}}^{(\ell)} \right\|^{2} \right]$$

$$+ 4 \sum_{\ell=0}^{k} \prod_{j=\ell+1}^{k} \left(1 - \Lambda_{(j)} \right) \left(\gamma_{\ell+1}^{2} \right)$$

$$+ \frac{\gamma_{\ell+1}}{\beta} \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{\ell})} - \overline{\mathbf{s}}^{(\ell)} \right\|^{2} \right] .$$

Note $\omega_{k,\ell} = \prod_{j=\ell+1}^k \left(1 - \Lambda_{(j)}\right)$ Summing on both sides over k=0 to $k=\mathsf{K_m}-1$ yields:

$$\sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Delta^{(k+1)} \\
= 4 \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \left(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta} \right) \omega_{k,1} \mathbb{E} [\| \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)} \|^{2}] + 2 \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \left(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta} \right) \omega_{k,1} \mathbb{E} \left[\left\| \eta_{i_{\ell}}^{(k)} \right\|^{2} \right] \\
+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} 4 \left(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta} \right) \omega_{k,1} \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)} \right\|^{2} \right] \\
\leq \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{4 \left(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta} \right)}{\Lambda_{(k+1)}} \mathbb{E} [\| \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)} \|^{2}] + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{2 \left(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta} \right)}{\Lambda_{(k+1)}} \mathbb{E} \left[\left\| \eta_{i_{\ell}}^{(k)} \right\|^{2} \right] \\
+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{4 \left(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta} \right)}{\Lambda_{(k+1)}} \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)} \right\|^{2} \right] . \tag{20}$$

We recall (19) where we have summed on both sides from k = 0 to $k = K_m - 1$:

$$\sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \left(a_{k} - 2\gamma_{k+1}^{2} \, \mathcal{L}_{V} \right) \mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}]$$

$$\leq \mathbb{E} \left[V(\hat{\mathbf{s}}^{(0)}) - V(\hat{\mathbf{s}}^{(K)}) \right]$$

$$+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \gamma_{k+1} \left(\frac{1}{2\beta} (1 - \frac{1}{n}) + 2\gamma_{k+1} \, \mathcal{L}_{V} \right) \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)} \right\|^{2} \right]$$

$$+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \gamma_{k+1} \left(\gamma_{k+1} \, \mathcal{L}_{V} + \frac{1}{2n} \right) \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}]$$

$$+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{\gamma_{k+1}^{2} \, \mathcal{L}_{V} \, \mathcal{L}_{\mathsf{s}}^{2}}{n^{2}} \Delta^{(k)} .$$

$$(21)$$

Plugging (20) into (21) results in:

$$\sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \tilde{\alpha}_{k} \mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \tilde{\beta}_{k} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right\|^{2}\right] \\ \leq \mathbb{E}\left[V(\hat{\boldsymbol{s}}^{(0)}) - V(\hat{\boldsymbol{s}}^{(K)})\right] + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \tilde{\Gamma}_{k} \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}],$$

433 where

$$\begin{split} \tilde{\alpha}_k &= a_k - 2\gamma_{k+1}^2 \, \mathcal{L}_V - \frac{\gamma_{k+1}^2 \, \mathcal{L}_V \, \mathcal{L}_\mathbf{s}^2}{n^2} \, \frac{4 \left(\gamma_{k+1}^2 + \frac{\gamma_{k+1}}{\beta} \right)}{\Lambda_{(k+1)}} \;, \\ \tilde{\beta}_k &= \gamma_{k+1} \left(\frac{1}{2\beta} (1 - \frac{1}{n}) + 2\gamma_{k+1} \, \mathcal{L}_V \right) - \frac{\gamma_{k+1}^2 \, \mathcal{L}_V \, \mathcal{L}_\mathbf{s}^2}{n^2} \, \frac{4 \left(\gamma_{k+1}^2 + \frac{\gamma_{k+1}}{\beta} \right)}{\Lambda_{(k+1)}} \;, \\ \tilde{\Gamma}_k &= \gamma_{k+1} \left(\gamma_{k+1} \, \mathcal{L}_V + \frac{1}{2n} \right) + \frac{\gamma_{k+1}^2 \, \mathcal{L}_V \, \mathcal{L}_\mathbf{s}^2}{n^2} \, \frac{2 \left(\gamma_{k+1}^2 + \frac{\gamma_{k+1}}{\beta} \right)}{\Lambda_{(k+1)}} \;, \end{split}$$

434 and

$$a_{k} = \gamma_{k+1} \left(v_{\min} - v_{\max}^{2} \frac{\beta(n-1)+1}{2n} \right) ,$$

$$\Lambda_{(k+1)} = \frac{1}{n} - \gamma_{k+1} \beta - \frac{2\gamma_{k+1} L_{\mathbf{s}}^{2}}{n^{2}} (\gamma_{k+1} + \frac{1}{\beta}) ,$$

$$c_{1} = v_{\min}^{-1}, \alpha = \max\{8, 1 + 6v_{\min}\}, \overline{L} = \max\{L_{\mathbf{s}}, L_{V}\}, \gamma_{k+1} = \frac{1}{k\alpha c_{1} \overline{L}}, \beta = \frac{c_{1} \overline{L}}{n} .$$

When, for any k > 0, $\tilde{\alpha}_k \ge 0$, we have by Lemma 2 that:

$$\sum_{k=0}^{\mathsf{K}_{\mathsf{m}}} \tilde{\alpha}_k \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^2] \leq \upsilon_{\max}^2 \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}} \tilde{\alpha}_k \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^2] \;,$$

which yields an upper bound of the gradient of the Lyapunov function V along the path of the iSAEM update and concludes the proof of the Theorem.

438 B Proofs for the vrTTEM and the fiTTEM Algorithms

- 439 B.1 Proofs of Auxiliary Lemmas (Lemma 4, Lemma 5 and Lemma 6)
- **Lemma.** Consider the vrTTEM update (2) with $\rho_k = \rho$, it holds for all k > 0

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k+1)}\|^2] \leq 2\rho^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] + 2\rho^2 L_{\mathbf{s}}^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] + 2(1-\rho)^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{((k))} - \tilde{S}^{(k)}\|^2] + 2\rho^2 \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2],$$

- where we recall that $\ell(k)$ is the first iteration number in the epoch that iteration k is in.
- **Proof** Beforehand, we provide a rewiriting of the quantity $\hat{s}^{(k+1)} \hat{s}^{(k)}$ that will be useful throughout this proof:

$$\hat{\mathbf{s}}^{(k+1)} - \hat{\mathbf{s}}^{(k)} = -\gamma_{k+1} (\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k+1)})
= -\gamma_{k+1} (\hat{\mathbf{s}}^{(k)} - (1 - \rho) \tilde{S}^{(k)} - \rho \mathbf{S}^{(k+1)})
= -\gamma_{k+1} \left((1 - \rho) \left[\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)} \right] + \rho \left[\hat{\mathbf{s}}^{(k)} - \mathbf{S}^{(k+1)} \right] \right) .$$
(22)

We observe, using the identity (22), that

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k+1)}\|^2] \le 2\rho^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] + 2\rho^2 \mathbb{E}[\|\overline{\boldsymbol{s}}^{(k)} - \boldsymbol{\mathcal{S}}^{(k+1)}\|^2] + 2(1-\rho)^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{((k))} - \tilde{\boldsymbol{S}}^{(k)}\|^2]. \tag{23}$$

For the latter term, we obtain its upper bound as

$$\begin{split} & \mathbb{E}[\|\overline{\boldsymbol{s}}^{(k)} - \boldsymbol{\mathcal{S}}^{(k+1)}\|^2] \\ = & \mathbb{E}\Big[\|\frac{1}{n}\sum_{i=1}^n \left(\overline{\boldsymbol{s}}_i^{(k)} - \tilde{\boldsymbol{S}}_i^{\ell(k)}\right) - \left(\overline{\boldsymbol{s}}_{i_k}^{(k)} - \tilde{\boldsymbol{S}}_{i_k}^{(\ell(k))}\right)\|^2\Big] \\ \stackrel{(a)}{\leq} & \mathbb{E}[\|\overline{\boldsymbol{s}}_{i_k}^{(k)} - \overline{\boldsymbol{s}}_{i_k}^{(\ell(k))}\|^2] + \mathbb{E}[\|\boldsymbol{\eta}_{i_k}^{(k+1)}\|^2] \stackrel{(b)}{\leq} & \mathbf{L}_{\mathbf{s}}^2 \, \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] + \mathbb{E}[\|\boldsymbol{\eta}_{i_k}^{(k+1)}\|^2] \;, \end{split}$$

- where (a) uses the variance inequality and (b) uses Lemma 1. Substituting into (23) proves the lemma.
- **Lemma.** Consider the fiTTEM update (3) with $\rho_k = \rho$. It holds for all k > 0 that

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k+1)}\|^2] \leq 2\rho^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] + 2\rho^2 \frac{\mathcal{L}_{\mathbf{s}}^2}{n} \sum_{i=1}^n \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] + 2(1-\rho)^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{((k))} - \tilde{S}^{(k)}\|^2] + 2\rho^2 \mathbb{E}[\|\eta_{i,\cdot}^{(k+1)}\|^2],$$

- where L_s is the smoothness constant defined in Lemma 1.
- Proof Beforehand, we provide a rewiriting of the quantity $\hat{s}^{(k+1)} \hat{s}^{(k)}$ that will be useful throughout this proof:

$$\hat{\mathbf{s}}^{(k+1)} - \hat{\mathbf{s}}^{(k)} = -\gamma_{k+1}(\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k+1)})
= -\gamma_{k+1}(\hat{\mathbf{s}}^{(k)} - (1 - \rho)\tilde{S}^{(k)} - \rho \mathbf{S}^{(k+1)})
= -\gamma_{k+1} \left((1 - \rho) \left[\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)} \right] + \rho \left[\hat{\mathbf{s}}^{(k)} - \mathbf{S}^{(k+1)} \right] \right)
= -\gamma_{k+1} \left((1 - \rho) \left[\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)} \right] + \rho \left[\hat{\mathbf{s}}^{(k)} - \overline{\mathbf{S}}^{(k)} - (\tilde{S}^{(k)}_{i_k} - \tilde{S}^{(t_{i_k}^k)}_{i_k}) \right] \right) .$$
(24)

We observe, using the identity (24), that

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k+1)}\|^2] \le 2\rho^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] + 2\rho^2 \mathbb{E}[\|\overline{\boldsymbol{s}}^{(k)} - \boldsymbol{\mathcal{S}}^{(k+1)}\|^2] + 2(1-\rho)^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{((k))} - \tilde{\boldsymbol{S}}^{(k)}\|^2] . \tag{25}$$

For the latter term, we obtain its upper bound as

$$\begin{split} \mathbb{E}[\|\overline{\boldsymbol{s}}^{(k)} - \boldsymbol{\mathcal{S}}^{(k+1)}\|^2] &= \mathbb{E}\Big[\|\frac{1}{n}\sum_{i=1}^n \left(\overline{\boldsymbol{s}}_i^{(k)} - \overline{\boldsymbol{\mathcal{S}}}_i^{(k)}\right) - \left(\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}\right)\|^2\Big] \\ &\stackrel{(a)}{\leq} \mathbb{E}[\|\overline{\boldsymbol{s}}_{i_k}^{(k)} - \overline{\boldsymbol{s}}_{i_k}^{(\ell(k))}\|^2] + \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2] \;, \end{split}$$

where (a) uses the variance inequality. We can further bound the last expectation using Lemma 1:

$$\mathbb{E}[\|\overline{\mathbf{s}}_{i_k}^{(k)} - \overline{\mathbf{s}}_{i_k}^{(t_{i_k}^k)}\|^2] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[\|\overline{\mathbf{s}}_i^{(k)} - \overline{\mathbf{s}}_i^{(t_i^k)}\|^2] \overset{(a)}{\leq} \frac{\mathbf{L}_{\mathbf{s}}^2}{n} \sum_{i=1}^n \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_i^k)}\|^2] \;.$$

Substituting into (25) proves the lemma.

Lemma. Considering a decreasing stepsize $\gamma_k \in (0,1)$ and a constant $\rho \in (0,1)$, we have

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}\|^2] \le \frac{\rho}{1 - \rho} \sum_{\ell=0}^{k} (1 - \gamma_{\ell})^2 (\boldsymbol{\mathcal{S}}^{(\ell)} - \tilde{S}^{(\ell)}) ,$$

where $\mathcal{S}^{(k)}$ is defined either by Line 2 (vrTTEM) or Line 3 (fiTTEM).

458 **Proof** We begin by writing the two-timescale update:

$$\tilde{S}^{(k+1)} = \tilde{S}^{(k)} + \rho \left(\mathbf{S}^{(k+1)} - \tilde{S}^{(k)} \right),
\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1} (\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}),$$
(26)

where $\mathbf{\mathcal{S}}^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(t_{i}^{k})} + \left(\tilde{S}_{i_{k}}^{(k)} - \tilde{S}_{i_{k}}^{(t_{i_{k}}^{k})}\right)$ according to (3). Denote $\delta^{(k+1)} = \hat{\mathbf{s}}^{(k+1)} - \tilde{S}^{(k+1)}$.

Then from (26), doing the subtraction of both equations yields:

$$\delta^{(k+1)} = (1 - \gamma_{k+1})\delta^{(k)} + \frac{\rho}{1 - \rho}(1 - \gamma_{k+1})(\boldsymbol{\mathcal{S}}^{(k+1)} - \tilde{\boldsymbol{\mathcal{S}}}^{(k+1)}) \ .$$

Using the telescoping sum and noting that $\delta^{(0)}=0$, we have

$$\delta^{(k+1)} \le \frac{\rho}{1-\rho} \sum_{\ell=0}^{k} (1-\gamma_{\ell+1})^2 (\mathcal{S}^{(\ell+1)} - \tilde{S}^{(\ell+1)}) .$$

462

463 B.2 Additional Intermediary Result

Lemma 8. At iteration k+1, the drift term of update (3), with $\rho_{k+1}=\rho$, is equivalent to the following:

$$\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k+1)} = \rho(\hat{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}^{(k)}) + \rho \eta_{i_k}^{(k+1)} + \rho \left[\left(\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)} \right) - \mathbb{E}[\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}] \right] + (1 - \rho) \left(\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)} \right) ,$$

where we recall that $\eta_{i_k}^{(k+1)}$, defined in (12), which is the gap between the MC approximation and the expected statistics.

Proof Using the fiTTEM update $\tilde{S}^{(k+1)} = (1-\rho)\tilde{S}^{(k)} + \rho \mathcal{S}^{(k+1)}$ where $\mathcal{S}^{(k+1)} = \overline{\mathcal{S}}^{(k)} + (\tilde{S}^{(k)}_{i,k} - \tilde{S}^{(k)}_{i,k})$ $\tilde{S}_{i_{k}}^{(t_{i_{k}}^{k})}$ leads to the following decomposition:

$$\begin{split} &\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)} \\ = & (1 - \rho)\tilde{S}^{(k)} + \rho \left(\overline{\mathcal{S}}^{(k)} + \left(\tilde{S}^{(k)}_{i_k} - \tilde{S}^{(t^k_{i_k})}_{i_k} \right) \right) - \hat{\mathbf{s}}^{(k)} + \rho \overline{\mathbf{s}}^{(k)} - \rho \overline{\mathbf{s}}^{(k)} \\ = & \rho(\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}) + \rho(\tilde{S}^{(k)}_{i_k} - \overline{\mathbf{s}}^{(k)}_{i_k}) + (1 - \rho) \left(\tilde{S}^{(k)} - \hat{\mathbf{s}}^{(k)} \right) + \rho \left(\overline{\mathcal{S}}^{(k)} - \overline{\mathbf{s}}^{(k)} + \left(\overline{\mathbf{s}}^{(k)}_{i_k} - \tilde{S}^{(t^k_{i_k})}_{i_k} \right) \right) \\ = & \rho(\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}) + \rho \eta^{(k+1)}_{i_k} - \rho \left[\left(\overline{\mathbf{s}}^{(k)}_{i_k} - \tilde{S}^{(t^k_{i_k})}_{i_k} \right) - \mathbb{E}[\overline{\mathbf{s}}^{(k)}_{i_k} - \tilde{S}^{(t^k_{i_k})}_{i_k}] \right] \\ + & (1 - \rho) \left(\tilde{S}^{(k)} - \hat{\mathbf{s}}^{(k)} \right) \,, \end{split}$$

- where we observe that $\mathbb{E}[\overline{\mathbf{s}}_{i_k}^{(k)} \tilde{S}_{i_k}^{(t_{i_k}^k)}] = \overline{\mathbf{s}}^{(k)} \overline{\boldsymbol{\mathcal{S}}}^{(k)}$ and which concludes the proof.
- Important Note: Note that $\bar{\mathbf{s}}_{i_k}^{(k)} \tilde{S}_{i_k}^{(t_{i_k}^k)}$ is not equal to $\eta_{i_k}^{(k+1)}$, defined in (12), which is the gap 471
- between the MC approximation and the expected statistics. Indeed $\tilde{S}_{i_k}^{(t_{i_k}^k)}$ is not computed under the 472
- same model as $\bar{\mathbf{s}}_{i,k}^{(k)}$. 473
- B.3 Proof of Theorem 2 474
- **Theorem.** Assume A1-A5. Consider the vrTTEM sequence $\{\hat{\mathbf{s}}^{(k)}\}_{k>0} \in \mathcal{S}$ for any $k \leq \mathsf{K}_{\mathsf{m}}$ where 475
- K_m is a positive integer. Let $\{\gamma_{k+1}=1/(k^a\overline{L})\}_{k>0}$, where $a\in(0,1)$, be a sequence of stepsizes, $\overline{L}=\max\{L_s,L_V\}$, $\rho=\mu/(c_1\overline{L}n^{2/3})$, $m=nc_1^2/(2\mu^2+\mu c_1^2)$ and a constant $\mu\in(0,1)$. Then:

$$\mathbb{E}[\|\nabla V(\hat{\pmb{s}}^{(K)})\|^2] \leq \frac{2n^{2/3}\overline{L}}{\mu\mathsf{P}_{\mathsf{m}}v_{\min}^2v_{\max}^2} \left(\mathbb{E}[\Delta V] + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \tilde{\eta}^{(k+1)} + \chi^{(k+1)}\mathbb{E}[\|\hat{\pmb{s}}^{(k)} - \tilde{S}^{(k)}\|^2] \right) \; .$$

Proof Using the smoothness of V and update (2), we obtain:

$$V(\hat{s}^{(k+1)}) \leq V(\hat{s}^{(k)}) + \langle \hat{s}^{(k+1)} - \hat{s}^{(k)} | \nabla V(\hat{s}^{(k)}) \rangle + \frac{L_{V}}{2} \| \hat{s}^{(k+1)} - \hat{s}^{(k)} \|^{2}$$

$$\leq V(\hat{s}^{(k)}) - \gamma_{k+1} \langle \hat{s}^{(k)} - \tilde{S}^{(k+1)} | \nabla V(\hat{s}^{(k)}) \rangle + \frac{\gamma_{k+1}^{2} L_{V}}{2} \| \hat{s}^{(k)} - \tilde{S}^{(k+1)} \|^{2}.$$
(27)

Denote $H_{k+1} := \hat{s}^{(k)} - \tilde{S}^{(k+1)}$ the drift term of the fiTTEM update in (7) and $h_k = \hat{s}^{(k)} - \overline{s}^{(k)}$. Taking expectations on both sides show that

$$\mathbb{E}[V(\hat{s}^{(k+1)})] \\
\stackrel{(a)}{\leq} \mathbb{E}[V(\hat{s}^{(k)})] - \gamma_{k+1}(1-\rho)\mathbb{E}\Big[\left\langle \hat{s}^{(k)} - \tilde{S}^{(k)} \mid \nabla V(\hat{s}^{(k)})\right\rangle \Big] - \gamma_{k+1}\rho\mathbb{E}\Big[\left\langle \hat{s}^{(k)} - \mathcal{S}^{(k+1)} \mid \nabla V(\hat{s}^{(k)})\right\rangle \Big] \\
+ \frac{\gamma_{k+1}^{2} L_{V}}{2} \mathbb{E}[\|\mathbf{H}_{k+1}\|^{2}] \\
\stackrel{(b)}{\leq} \mathbb{E}[V(\hat{s}^{(k)})] - \gamma_{k+1}\rho\mathbb{E}\Big[\left\langle \mathbf{h}_{k} \mid \nabla V(\hat{s}^{(k)})\right\rangle \Big] - \gamma_{k+1}(1-\rho)\mathbb{E}\Big[\left\langle \hat{s}^{(k)} - \tilde{S}^{(k)} \mid \nabla V(\hat{s}^{(k)})\right\rangle \Big] \\
- \gamma_{k+1}\rho\mathbb{E}\Big[\left\langle \eta_{i_{k}}^{(k+1)} \mid \nabla V(\hat{s}^{(k)})\right\rangle \Big] + \frac{\gamma_{k+1}^{2} L_{V}}{2}\mathbb{E}[\|\mathbf{H}_{k+1}\|^{2}] \\
\stackrel{(c)}{\leq} \mathbb{E}[V(\hat{s}^{(k)})] - \left(\gamma_{k+1}\rho v_{\min} + \gamma_{k+1}v_{\max}^{2}\right)\mathbb{E}\Big[\|\mathbf{h}_{k}\|^{2}\Big] + \frac{\gamma_{k+1}^{2} L_{V}}{2}\mathbb{E}[\|\mathbf{H}_{k+1}\|^{2}] \\
- \gamma_{k+1}\rho\mathbb{E}\Big[\|\eta_{i_{k}}^{(k+1)}\|^{2}\Big] - \gamma_{k+1}(1-\rho)\mathbb{E}\Big[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^{2}\Big], \tag{28}$$

- where we have used (22) in (a) and $\mathbb{E}\left[\mathbf{\mathcal{S}}^{(k+1)}\right] = \overline{\mathbf{s}}^{(k)} + \mathbb{E}[\eta_{i_k}^{(k+1)}]$ in (b), the growth condition in
- Lemma 2 and Young's inequality with the constant equal to 1 in (c).
- Furthermore, for $k+1 \le \ell(k) + m$ (i.e., k+1 is in the same epoch as k), we have

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] = \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} + \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] \\ = & \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2 + \|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + 2\big\langle\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\,|\,\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\big\rangle\Big] \\ = & \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2 + \gamma_{k+1}^2\|\mathbf{H}_{k+1}\|^2 \\ & -2\gamma_{k+1}\big\langle\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\,|\,\rho(\mathbf{h}_k - \eta_{i_k}^{(k+1)}) + (1-\rho)(\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)})\big\rangle\Big] \\ \leq & \mathbb{E}\Big[(1+\gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2 + \gamma_{k+1}^2\|\mathbf{H}_{k+1}\|^2 + \frac{\gamma_{k+1}\rho}{\beta}\|\mathbf{h}_k\|^2 \\ & + \frac{\gamma_{k+1}\rho}{\beta}\|\eta_{i_k}^{(k+1)}\|^2 + \frac{\gamma_{k+1}(1-\rho)}{\beta}\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\|^2\Big]\;, \end{split}$$

- where we first used (22) and the last inequality is due to Young's inequality.
- 485 Consider the following sequence

$$R_k := \mathbb{E}[V(\hat{s}^{(k)}) + b_k || \hat{s}^{(k)} - \hat{s}^{(\ell(k))} ||^2],$$

where $b_k := \overline{b}_{k \mod m}$ is a periodic sequence where:

$$\bar{b}_i = \bar{b}_{i+1}(1 + \gamma_{k+1}\beta + 2\gamma_{k+1}^2\rho^2 L_s^2) + \gamma_{k+1}^2\rho^2 L_V L_s^2, \ i = 0, 1, \dots, m-1 \text{ with } \bar{b}_m = 0.$$

Note that \bar{b}_i is decreasing with i and this implies

$$\bar{b}_i \leq \bar{b}_0 = \gamma_{k+1}^2 \rho^2 \, \mathcal{L}_V \, \mathcal{L}_s^2 \, \frac{(1 + \gamma_{k+1} \beta + 2 \gamma_{k+1}^2 \rho^2 \, \mathcal{L}_s^2)^m - 1}{\gamma_{k+1} \beta + 2 \gamma_{k+1}^2 \rho^2 \, \mathcal{L}_s^2}, \ i = 1, 2, \dots, m$$

For $k+1 \le \ell(k) + m$, we have the following inequality

$$\begin{split} R_{k+1} & \leq \mathbb{E} \Big[V(\hat{\pmb{s}}^{(k)}) - \left(\gamma_{k+1} \rho \upsilon_{\min} + \gamma_{k+1} \upsilon_{\max}^2 \right) \| \mathbf{h}_k \|^2 + \frac{\gamma_{k+1}^2 \, \mathbf{L}_V}{2} \| \mathbf{H}_{k+1} \|^2 \Big] \\ & + \gamma_{k+1} \mathbb{E} \left[\rho \left\| \eta_{i_k}^{(k+1)} \right\|^2 - (1-\rho) \| \hat{\pmb{s}}^{(k)} - \tilde{S}^{(k)} \|^2 \right] \\ & + b_{k+1} \mathbb{E} \left[(1+\gamma_{k+1}\beta) \| \hat{\pmb{s}}^{(k)} - \hat{\pmb{s}}^{(\ell(k))} \|^2 + \gamma_{k+1}^2 \| \mathbf{H}_{k+1} \|^2 + \frac{\gamma_{k+1}\rho}{\beta} \| \mathbf{h}_k \|^2 \right] \\ & + b_{k+1} \mathbb{E} \left[\frac{\gamma_{k+1}\rho}{\beta} \| \eta_{i_k}^{(k+1)} \|^2 + \frac{\gamma_{k+1}(1-\rho)}{\beta} \| \hat{\pmb{s}}^{(k)} - \tilde{S}^{(k)} \|^2 \right] \; . \end{split}$$

489 And using Lemma 4 we obtain:

$$\begin{split} R_{k+1} & \leq \mathbb{E} \Big[V(\hat{\boldsymbol{s}}^{(k)}) - \left(\gamma_{k+1} \rho v_{\min} + \gamma_{k+1} v_{\max}^2 - \gamma_{k+1}^2 \rho^2 \operatorname{L}_V \right) \| \mathbf{h}_k \|^2 + \gamma_{k+1}^2 \rho^2 \operatorname{L}_V \operatorname{L}_{\mathbf{s}}^2 \| \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))} \|^2 \Big] \\ & + b_{k+1} \mathbb{E} \left[(1 + \gamma_{k+1} \beta + 2 \gamma_{k+1}^2 \rho^2 \operatorname{L}_{\mathbf{s}}^2) \| \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))} \|^2 + (\frac{\gamma_{k+1} \rho}{\beta} + 2 \gamma_{k+1}^2 \rho^2) \| \mathbf{h}_k \|^2 \right] \\ & + \gamma_{k+1} \mathbb{E} \left[(\rho + \rho^2 \gamma_{k+1} \operatorname{L}_V) \left\| \eta_{i_k}^{(k+1)} \right\|^2 - (1 - \rho - (1 - \rho)^2 \gamma_{k+1} \operatorname{L}_V) \| \hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)} \|^2 \right] \\ & + b_{k+1} \mathbb{E} \left[(\frac{\gamma_{k+1} \rho}{\beta} + 2 \gamma_{k+1}^2 \rho^2) \| \eta_{i_k}^{(k+1)} \|^2 + (\frac{\gamma_{k+1} (1 - \rho)}{\beta} + 2 \gamma_{k+1}^2 (1 - \rho)^2) \| \hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)} \|^2 \right] \; . \end{split}$$

490 Rearranging the terms yields:

$$\begin{split} R_{k+1} & \leq \mathbb{E}[V(\hat{\pmb{s}}^{(k)})] - \gamma_{k+1} \left(\rho v_{\min} + v_{\max}^2 - \gamma_{k+1} \rho^2 \operatorname{L}_V - b_{k+1} (\frac{\rho}{\beta} + 2\gamma_{k+1} \rho^2)\right) \mathbb{E}[\|\mathbf{h}_k\|^2] \\ & + \left(\underbrace{b_{k+1} (1 + \gamma \beta + 2\gamma^2 \rho^2 \operatorname{L}_{\mathbf{s}}^2) + \gamma^2 \rho^2 \operatorname{L}_V \operatorname{L}_{\mathbf{s}}^2}_{=b_k \text{ since } k+1 \leq \ell(k) + m} \right) \mathbb{E}[\|\hat{\pmb{s}}^{(k)} - \hat{\pmb{s}}^{(\ell(k))}\|^2] + \tilde{\eta}^{(k+1)} + \tilde{\chi}^{(k+1)}, \end{split}$$

where

$$\tilde{\eta}^{(k+1)} = \left(\gamma_{k+1}(\rho + \rho^2 \gamma_{k+1} L_V) + b_{k+1} \left(\frac{\gamma_{k+1} \rho}{\beta} + 2\gamma_{k+1}^2 \rho^2\right)\right) \mathbb{E}\left[\left\|\eta_{i_k}^{(k+1)}\right\|^2\right]$$

$$\chi^{(k+1)} = \left(b_{k+1} \left(\frac{\gamma_{k+1}(1-\rho)}{\beta} + 2\gamma_{k+1}^2 (1-\rho)^2\right) - \gamma_{k+1} (1-\rho - (1-\rho)^2 \gamma_{k+1} L_V)\right)$$

$$\tilde{\chi}^{(k+1)} = \chi^{(k+1)} \mathbb{E}\left[\left\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\right\|^2\right].$$

This leads, using Lemma 2, that for any γ_{k+1} , ρ and β such that $\rho v_{\min} + v_{\max}^2 - \gamma_{k+1} \rho^2 L_V - b_{k+1} (\frac{\rho}{\beta} + 2\gamma_{k+1} \rho^2) > 0$,

$$\begin{split} & v_{\max}^2 \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^2] \leq \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] \\ \leq & \frac{R_k - R_{k+1}}{\gamma_{k+1} \left(\rho v_{\min} + v_{\max}^2 - \gamma_{k+1} \rho^2 \operatorname{L}_V - b_{k+1} (\frac{\rho}{\beta} + 2\gamma_{k+1} \rho^2)\right)} \\ & + \frac{\tilde{\eta}^{(k+1)} + \tilde{\chi}^{(k+1)}}{\gamma_{k+1} \left(\rho v_{\min} + v_{\max}^2 - \gamma_{k+1} \rho^2 \operatorname{L}_V - b_{k+1} (\frac{\rho}{\beta} + 2\gamma_{k+1} \rho^2)\right)} \ . \end{split}$$

We first remark that

$$\gamma_{k+1} \left(\rho v_{\min} + v_{\max}^2 - \gamma_{k+1} \rho^2 L_V - b_{k+1} \left(\frac{\rho}{\beta} + 2\gamma_{k+1} \rho^2 \right) \right)$$

$$\geq \frac{\gamma_{k+1} \rho}{c_1} \left(1 - \gamma_{k+1} c_1 \rho L_V - b_{k+1} \left(\frac{c_1}{\beta} + 2\gamma_{k+1} \rho c_1 \right) \right) ,$$

where $c_1 = v_{\min}^{-1}$. By setting $\overline{L} = \max\{L_s, L_V\}$, $\beta = \frac{c_1\overline{L}}{n^{1/3}}$, $\rho = \frac{\mu}{c_1\overline{L}n^{2/3}}$, $m = \frac{nc_1^2}{2\mu^2 + \mu c_1^2}$ and $\{\gamma_{k+1}\}$ any sequence of decreasing stepsizes in (0,1), it can be shown that there exists $\mu \in (0,1)$,

such that the following lower bound holds

$$1 - \gamma_{k+1}c_1\rho \,\mathcal{L}_V - b_{k+1}\left(\frac{c_1}{\beta} + 2\gamma_{k+1}\rho c_1\right)$$

$$\geq 1 - \frac{\mu}{n^{\frac{2}{3}}} - \overline{b}_0\left(\frac{n^{\frac{1}{3}}}{\overline{L}} + \frac{2\mu}{\overline{L}n^{\frac{2}{3}}}\right)$$

$$\geq 1 - \frac{\mu}{n^{\frac{2}{3}}} - \frac{\mathcal{L}_V \,\mu^2}{c_1^2 n^{\frac{4}{3}}} \frac{(1 + \gamma\beta + 2\gamma^2 \,\mathcal{L}_\mathbf{s}^2)^m - 1}{\gamma\beta + 2\gamma^2 \,\mathcal{L}_\mathbf{s}^2} \left(\frac{n^{\frac{1}{3}}}{\overline{L}} + \frac{2\mu}{\overline{L}n^{\frac{2}{3}}}\right)$$

$$\stackrel{(a)}{\geq} 1 - \frac{\mu}{n^{\frac{2}{3}}} - \frac{\mu}{c_1^2} (\mathbf{e} - 1) \left(1 + \frac{2\mu}{n}\right) \geq 1 - \mu - \mu (1 + 2\mu) \frac{\mathbf{e} - 1}{c_1^2} \stackrel{(b)}{\geq} \frac{1}{2} ,$$

where the simplification in (a) is due to

$$\frac{\mu}{n} \le \gamma \beta + 2 \gamma^2 \operatorname{L}_{\mathbf{s}}^2 \le \frac{\mu}{n} + \frac{2\mu^2}{c_1^2 n^{\frac{4}{3}}} \le \frac{\mu c_1^2 + 2\mu^2}{c_1^2} \frac{1}{n} \text{ and } (1 + \gamma \beta + 2 \gamma^2 \operatorname{L}_{\mathbf{s}}^2)^m \le \mathrm{e} - 1.$$

- and the required μ in (b) can be found by solving the quadratic equation. 499
- Finally, these results yield: 500

$$\upsilon_{\max}^2 \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \gamma_{k+1} \mathbb{E}[\|\nabla V(\hat{\mathbf{s}}^{(k)})\|^2] \leq \frac{2(R_0 - R_{\mathsf{K}_{\mathsf{m}}})}{\upsilon_{\min}\rho} + 2 \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{\tilde{\eta}^{(k+1)} + \tilde{\chi}^{(k+1)}}{\upsilon_{\min}\rho} \; .$$

Note that $R_0 = \mathbb{E}[V(\hat{s}^{(0)})]$ and if K_m is a multiple of m, then $R_{\max} = \mathbb{E}[V(\hat{s}^{(K_m)})]$. Under the latter

$$\sum_{k=0}^{\mathsf{K_m}-1} \gamma_{k+1} \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^2] \leq \frac{2n^{2/3}\overline{L}}{\mu \upsilon_{\min}^2 \upsilon_{\max}^2} \mathbb{E}[V(\hat{\boldsymbol{s}}^{(0)}) - V(\hat{\boldsymbol{s}}^{(\mathsf{K_m})})] + \frac{2n^{2/3}\overline{L}}{\mu \upsilon_{\min}^2 \upsilon_{\max}^2} \sum_{k=0}^{\mathsf{K_m}-1} \left[\tilde{\eta}^{(k+1)} + \tilde{\chi}^{(k+1)}\right] \; .$$

This concludes our proof.

504

505 B.4 Proof of Theorem 3

Theorem. Assume A1-A5. Consider the fiTTEM sequence $\{\hat{\mathbf{s}}^{(k)}\}_{k>0} \in \mathcal{S}$ for any $k \leq \mathsf{K}_{\mathsf{m}}$ where

507 K_m be a positive integer. Let $\{\gamma_{k+1} = 1/(k^a \alpha c_1 \overline{L})\}_{k>0}$, where $a \in (0,1)$, be a sequence of

positive stepsizes, $\alpha = \max\{2, 1 + 2v_{\min}\}$, $\overline{L} = \max\{L_s, L_V\}$, $\beta = 1/(\alpha n)$, $\rho = 1/(\alpha c_1 \overline{L} n^{2/3})$

509 and $c_1(k\alpha - 1) \ge c_1(\alpha - 1) \ge 2$, $\alpha \ge 2$. Then:

$$\mathbb{E}[\|\nabla V(\hat{\pmb{s}}^{(K)})\|^2] \leq \frac{4\alpha \overline{L} n^{2/3}}{\mathsf{P}_{\mathsf{m}} v_{\min}^2 v_{\max}^2} \left(\mathbb{E}\big[\Delta V\big] + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Xi^{(k+1)} + \Gamma^{(k+1)} \mathbb{E}[\|\hat{\pmb{s}}^{(k)} - \tilde{S}^{(k)}\|^2] \right) \; .$$

Proof Using the smoothness of V and update (3), we obtain:

$$V(\hat{s}^{(k+1)}) \leq V(\hat{s}^{(k)}) + \langle \hat{s}^{(k+1)} - \hat{s}^{(k)} | \nabla V(\hat{s}^{(k)}) \rangle + \frac{\mathcal{L}_{V}}{2} \| \hat{s}^{(k+1)} - \hat{s}^{(k)} \|^{2}$$

$$\leq V(\hat{s}^{(k)}) - \gamma_{k+1} \langle \hat{s}^{(k)} - \tilde{S}^{(k+1)} | \nabla V(\hat{s}^{(k)}) \rangle + \frac{\gamma_{k+1}^{2} \mathcal{L}_{V}}{2} \| \hat{s}^{(k)} - \tilde{S}^{(k+1)} \|^{2}.$$
(29)

Denote $\mathsf{H}_{k+1} \coloneqq \hat{s}^{(k)} - \tilde{S}^{(k+1)}$ the drift term of the fiTTEM update in (7) and $\mathsf{h}_k = \hat{s}^{(k)} - \overline{\mathbf{s}}^{(k)}$.

512 Using Lemma 8 and the additional following identity:

$$\mathbb{E}\left[\left(\bar{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}\right) - \mathbb{E}[\bar{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}]\right] = 0,$$
(30)

513 we have:

$$\begin{split} & \mathbb{E}[V(\hat{s}^{(k+1)})] \\ \leq & \mathbb{E}[V(\hat{s}^{(k)})] - \gamma_{k+1} \rho \mathbb{E}[\left\langle \mathsf{h}_k \,|\, \nabla V(\hat{s}^{(k)}) \right\rangle - \gamma_{k+1} \mathbb{E}\left[\left\langle \rho \mathbb{E}[\eta_{i_k}^{(k+1)} | \mathcal{F}_k] + (1-\rho) \mathbb{E}[\hat{s}^{(k)} - \tilde{S}^{(k)}] \,|\, \nabla V(\hat{s}^{(k)}) \right\rangle \right] \\ & \quad + \frac{\gamma_{k+1}^2 \, \mathcal{L}_V}{2} \|\mathsf{H}_{k+1}\|^2 \\ \stackrel{(a)}{\leq} & -v_{\min} \gamma_{k+1} \rho \mathbb{E}[\|\mathsf{h}_k\|^2] - \gamma_{k+1} \mathbb{E}\left[\left\| \nabla V(\hat{s}^{(k)}) \right\|^2 \right] - \frac{\gamma_{k+1} \rho^2}{2} \xi^{(k+1)} - \frac{\gamma_{k+1} (1-\rho)^2}{2} \mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^2] \\ & \quad + \frac{\gamma_{k+1}^2 \, \mathcal{L}_V}{2} \|\mathsf{H}_{k+1}\|^2 \\ \stackrel{(b)}{\leq} & -(v_{\min} \gamma_{k+1} \rho + \gamma_{k+1} v_{\max}^2) \mathbb{E}[\|\mathsf{h}_k\|^2] - \frac{\gamma_{k+1} \rho^2}{2} \xi^{(k+1)} - \frac{\gamma_{k+1} (1-\rho)^2}{2} \mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^2] \\ & \quad + \frac{\gamma_{k+1}^2 \, \mathcal{L}_V}{2} \|\mathsf{H}_{k+1}\|^2 \;, \end{split}$$

514 where $\xi^{(k+1)} = \mathbb{E}[\|\mathbb{E}[\eta_{i_k}^{(k+1)}|\mathcal{F}_k]\|^2].$

Bounding $\mathbb{E}\left[\|\mathsf{H}_{k+1}\|^2\right]$ Using Lemma 5, we obtain:

$$\gamma_{k+1}(v_{\min}\rho + v_{\max}^2 - \gamma_{k+1}\rho^2 L_V) \mathbb{E}[\|\mathbf{h}_k\|^2] \\
\leq \mathbb{E}\left[V(\hat{\mathbf{s}}^{(k)}) - V(\hat{\mathbf{s}}^{(k+1)})\right] + \tilde{\xi}^{(k+1)} + \left((1-\rho)^2 \gamma_{k+1}^2 L_V - \frac{\gamma_{k+1}(1-\rho)^2}{2}\right) \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^2] \\
+ \frac{\gamma_{k+1}^2 L_V \rho^2 L_{\mathbf{s}}^2}{n} \sum_{i=1}^n \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_i^k)}\|^2], \tag{31}$$

sie where $\tilde{\xi}^{(k+1)} = \gamma_{k+1}^2 \rho^2 L_V \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2] - \frac{\gamma_{k+1}\rho^2}{2} \xi^{(k+1)}$. Next, we observe that

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^{k+1})}\|^2] = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2] + \frac{n-1}{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] \right), \tag{32}$$

where the equality holds as i_k and j_k are drawn independently. Then,

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] \\ & = \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + 2\langle \hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} \, | \, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)} \rangle \Big] \;. \end{split}$$

Note that $\hat{s}^{(k+1)} - \hat{s}^{(k)} = -\gamma_{k+1}(\hat{s}^{(k)} - \tilde{S}^{(k+1)}) = -\gamma_{k+1}\mathsf{H}_{k+1}$ and that in expectation we recall that $\mathbb{E}[\mathsf{H}_{k+1}|\mathcal{F}_k] = \rho\mathsf{h}_k + \rho\mathbb{E}[\eta_{i_k}^{(k+1)}|\mathcal{F}_k] + (1-\rho)\mathbb{E}[\tilde{S}^{(k)} - \hat{s}^{(k)}]$ where $\mathsf{h}_k = \hat{s}^{(k)} - \overline{\mathbf{s}}^{(k)}$. Thus, for any $\beta > 0$, it holds

519 that
$$\mathbb{E}[H_{k+1}|\mathcal{F}_k] = \rho h_k + \rho \mathbb{E}[\eta_k^{(k+1)}|\mathcal{F}_k] + (1-\rho) \mathbb{E}[\tilde{S}^{(k)} - \hat{s}^{(k)}]$$
 where $h_k = \hat{s}^{(k)} - \bar{s}^{(k)}$. Thus,

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] \\ = & \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + 2\big\langle \hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} \,|\, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\big\rangle\Big] \\ \leq & \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + (1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\|\mathbf{h}_k\|^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\mathbb{E}\Big[\|\boldsymbol{\eta}_{i_k}^{(k+1)}\|^2\Big] \\ & + \frac{\gamma_{k+1}(1-\rho)^2}{\beta}\mathbb{E}\big[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\|^2\big]\Big]\;, \end{split}$$

where the last inequality is due to Young's inequality. Plugging this into (32) yields:

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] \\ = & \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + 2\big\langle \hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} \, | \, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)} \big\rangle \Big] \\ \leq & \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + (1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\|\mathbf{h}_k\|^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\mathbb{E}\Big[\Big\|\boldsymbol{\eta}_{i_k}^{(k+1)}\Big\|^2\Big] \\ & + \frac{\gamma_{k+1}(1-\rho)^2}{\beta}\mathbb{E}\Big[\Big\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\Big\|^2\Big]\Big] \; . \end{split}$$

Subsequently, we have

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_{i}^{k+1})}\|^{2}] \\ \leq &\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] + \frac{n-1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}\Big[(1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\|\mathbf{h}_{k}\|^{2} \\ &+ \frac{\gamma_{k+1}\rho^{2}}{\beta} \mathbb{E}[\left\|\eta_{i_{k}}^{(k+1)}\right\|^{2}] + \frac{\gamma_{k+1}(1-\rho)^{2}}{\beta} \mathbb{E}\left[\left\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\right\|^{2}\right]\Big]\Big] \;. \end{split}$$

We now use Lemma 5 on $\|\hat{s}^{(k+1)} - \hat{s}^{(k)}\|^2 = \gamma_{k+1}^2 \|\hat{s}^{(k)} - \tilde{S}^{(k+1)}\|^2$ and obtain:

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{s}^{(k+1)} - \hat{s}^{(t_{i}^{k+1})}\|^{2}] \\ &\leq \left(2\gamma_{k+1}^{2} \rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right) \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\|^{2}] \\ &+ \sum_{i=1}^{n} \left(\frac{\gamma_{k+1}^{2} \rho^{2} \, \mathbf{L}_{\mathbf{s}}^{2}}{n} + \frac{(n-1)(1+\gamma_{k+1}\beta)}{n^{2}}\right) \mathbb{E}\left[\|\hat{s}^{(k)} - \hat{s}^{(t_{i}^{k})}\|^{2}\right] \\ &+ \gamma_{k+1}(1-\rho)^{2} \left(2\gamma_{k+1} + \frac{1}{\beta}\right) \mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^{2}] + \left(2\gamma_{k+1}^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right) \mathbb{E}[\|\eta_{i_{k}}^{(k+1)}\|^{2}] \\ &\leq \left(2\gamma_{k+1}^{2} \rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right) \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\|^{2}] + \sum_{i=1}^{n} \left(\frac{1 - \frac{1}{n} + \gamma_{k+1}\beta + \gamma_{k+1}^{2}\rho^{2} \, \mathbf{L}_{\mathbf{s}}^{2}}{n}\right) \mathbb{E}\left[\|\hat{s}^{(k)} - \hat{s}^{(t_{i}^{k})}\|^{2}\right] \\ &+ \gamma_{k+1}(1-\rho)^{2} \left(2\gamma_{k+1} + \frac{1}{\beta}\right) \mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^{2}] + \left(2\gamma_{k+1}^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right) \mathbb{E}[\|\eta_{i_{k}}^{(k+1)}\|^{2}] \,. \end{split}$$

Let us define

$$\Delta^{(k)} := \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{s}^{(k)} - \hat{s}^{(t_i^k)}\|^2].$$

From the above, we get

$$\Delta^{(k+1)} \leq \left(1 - \frac{1}{n} + \gamma_{k+1}\beta + \gamma_{k+1}^2 \rho^2 L_{\mathbf{s}}^2\right) \Delta^{(k)} + \left(2\gamma_{k+1}^2 \rho^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\right) \mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^2] + \gamma_{k+1}(1 - \rho)^2 \left(2\gamma_{k+1} + \frac{1}{\beta}\right) \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^2] + \gamma_{k+1} \left(2\gamma_{k+1} + \frac{\rho^2}{\beta}\right) \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2].$$

Setting $c_1 = v_{\min}^{-1}$, $\alpha = \max\{2, 1 + 2v_{\min}\}$, $\overline{L} = \max\{L_s, L_V\}$, $\gamma_{k+1} = \frac{1}{k}$, $\beta = \frac{1}{\alpha n}$, $\rho = \frac{1}{\alpha c_1 \overline{L} n^{2/3}}$, $c_1(k\alpha - 1) \ge c_1(\alpha - 1) \ge 2$, $\alpha \ge 2$, we observe that

$$1 - \frac{1}{n} + \gamma_{k+1}\beta + \gamma_{k+1}^2\rho^2 L_{\mathbf{s}}^2 \le 1 - \frac{1}{n} + \frac{1}{\alpha kn} + \frac{1}{\alpha^2 c_1^2 k^2 n^{\frac{4}{3}}} \le 1 - \frac{c_1(k\alpha - 1) - 1}{k\alpha nc_1} \le 1 - \frac{1}{k\alpha nc_1}$$

which shows that $1-\frac{1}{n}+\gamma_{k+1}\beta+\gamma_{k+1}^2\rho^2\operatorname{L}_{\mathbf{s}}^2\in(0,1)$ for any k>0. Denote $\Lambda_{(k+1)}=\frac{1}{n}-1$

$$\Delta^{(k+1)} \leq \sum_{\ell=0}^{k} \omega_{k,\ell} \left(2\gamma_{\ell+1}^{2} \rho^{2} + \frac{\gamma_{\ell+1}^{2} \rho^{2}}{\beta} \right) \mathbb{E} \left[\left\| \bar{\mathbf{s}}^{(\ell)} - \hat{\mathbf{s}}^{(\ell)} \right\|^{2} \right]$$

$$+ \sum_{\ell=0}^{k} \omega_{k,\ell} \gamma_{\ell+1} (1 - \rho)^{2} \left(2\gamma_{\ell+1} + \frac{1}{\beta} \right) \mathbb{E} \left[\left\| \tilde{S}^{(\ell)} - \hat{\mathbf{s}}^{(\ell)} \right\|^{2} \right] + \sum_{\ell=0}^{k} \omega_{k,\ell} \gamma_{\ell+1} \tilde{\epsilon}^{(\ell+1)} ,$$

where $\omega_{k,\ell} = \prod_{j=\ell+1}^k \left(1 - \Lambda_{(j)}\right)$ and $\tilde{\epsilon}^{(\ell+1)} = \left(2\gamma_{k+1} + \frac{\rho^2}{\beta}\right) \mathbb{E}[\left\|\eta_{i_k}^{(k+1)}\right\|^2]$.

Summing on both sides over k=0 to $k={\rm K_m}-1$ yields:

$$\begin{split} \sum_{k=0}^{\mathsf{K_m}-1} \Delta^{(k+1)} &\leq \sum_{k=0}^{\mathsf{K_m}-1} \frac{2\gamma_{k+1}^2 \rho^2 + \frac{\gamma_{k+1}\rho^2}{\beta}}{\Lambda_{(k+1)}} \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^2] \\ &+ \sum_{k=0}^{\mathsf{K_m}-1} \frac{\gamma_{k+1} (1-\rho)^2 \left(2\gamma_{k+1} + \frac{1}{\beta}\right)}{\Lambda_{(k+1)}} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^2] + \sum_{k=0}^{\mathsf{K_m}-1} \frac{\gamma_{k+1}}{\Lambda_{(k+1)}} \tilde{\epsilon}^{(k+1)} \;. \end{split}$$

We recall (31) where we have summed on both sides from k = 0 to $k = K_m - 1$:

$$\mathbb{E}\big[V(\hat{\mathbf{s}}^{(\mathsf{K}_{\mathsf{m}})}) - V(\hat{\mathbf{s}}^{(0)})\big]$$

$$\leq \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \left\{ \gamma_{k+1} \left(-(v_{\min}\rho + v_{\max}^{2}) + \gamma_{k+1}\rho^{2} \, \mathcal{L}_{V} \right) \mathbb{E}[\|\mathbf{h}_{k}\|^{2}] + \gamma^{2} \, \mathcal{L}_{V} \, \rho^{2} \, \mathcal{L}_{\mathbf{s}}^{2} \, \Delta^{(k)} \right\} \\
+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \left\{ \tilde{\xi}^{(k+1)} + \left((1-\rho)^{2} \gamma_{k+1}^{2} \, \mathcal{L}_{V} - \frac{\gamma_{k+1} (1-\rho)^{2}}{2} \right) \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^{2}] \right\} \\
\leq \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \left\{ \left[-\gamma_{k+1} (v_{\min}\rho + v_{\max}^{2}) + \gamma_{k+1}^{2} \rho^{2} \, \mathcal{L}_{V} + \frac{\rho^{2} \gamma_{k+1}^{2} \, \mathcal{L}_{V} \, \mathcal{L}_{\mathbf{s}}^{2} \left(2\gamma_{k+1}^{2} \rho^{2} + \frac{\gamma_{k+1} \rho^{2}}{\beta} \right)}{\Lambda_{(k+1)}} \right] \mathbb{E}[\|\mathbf{h}_{k}\|^{2}] \right\} \\
+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Xi^{(k+1)} + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Gamma^{(k+1)} \mathbb{E}\left[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^{2} \right] , \tag{33}$$

where

$$\Xi^{(k+1)} = \tilde{\xi}^{(k+1)} + \frac{\gamma_{k+1}^3 L_V \rho^2 L_s^2}{\Lambda_{(k+1)}} \tilde{\epsilon}^{(k+1)}$$

and

$$\Gamma^{(k+1)} = \left((1-\rho)^2 \gamma_{k+1}^2 \, \mathcal{L}_V - \frac{\gamma_{k+1} (1-\rho)^2}{2} \right) + \frac{\gamma_{k+1}^3 \, \mathcal{L}_V \, \rho^2 \, \mathcal{L}_s^2 (1-\rho)^2 \left(2\gamma_{k+1} + \frac{1}{\beta} \right)}{\Lambda_{(k+1)}} \, .$$

533 We now analyse the following quantity

$$-\gamma_{k+1}(v_{\min}\rho + v_{\max}^{2}) + \gamma_{k+1}^{2}\rho^{2} L_{V} + \frac{\rho^{2}\gamma_{k+1}^{2} L_{V} L_{s}^{2} \left(2\gamma_{k+1}^{2}\rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right)}{\Lambda_{(k+1)}}$$

$$= \gamma_{k+1} \left[-(v_{\min}\rho + v_{\max}^{2}) + \gamma_{k+1}\rho^{2} L_{V} + \frac{\rho^{2}\gamma_{k+1} L_{V} L_{s}^{2} \left(2\gamma_{k+1}^{2}\rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right)}{\Lambda_{(k+1)}} \right] . \tag{34}$$

Furthermore, we recall that $c_1 = v_{\min}^{-1}$, $\alpha = \max\{2, 1 + 2v_{\min}\}$, $\overline{L} = \max\{L_{\mathbf{s}}, L_V\}$, $\gamma_{k+1} = \frac{1}{k}$, 535 $\beta = \frac{1}{\alpha n}$, $\rho = \frac{1}{\alpha c_1 \overline{L} n^{2/3}}$, $c_1(k\alpha - 1) \ge c_1(\alpha - 1) \ge 2$, $\alpha \ge 2$. Then,

$$\gamma_{k+1}\rho^{2} L_{V} + \frac{\rho^{2}\gamma_{k+1} L_{V} L_{s}^{2} \left(2\gamma_{k+1}^{2}\rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right)}{\frac{1}{n} - \gamma_{k+1}\beta - \gamma_{k+1}^{2}\rho^{2} L_{s}^{2}} \\
\leq \frac{1}{k\alpha^{2}c_{1}^{2}\overline{L}n^{4/3}} + \frac{\overline{L}(k\alpha^{2}c_{1}^{2}n^{4/3})^{-1}\left(\frac{2}{k^{2}\alpha^{2}c_{1}^{2}\overline{L}^{2}n^{4/3}} + \frac{1}{k\alpha c_{1}^{2}\overline{L}^{2}n^{1/3}}\right)}{\frac{1}{n} - \frac{1}{k\alpha n} - \frac{1}{k^{2}\alpha^{2}c_{1}^{2}\overline{L}^{2}n^{4/3}}} \\
= \frac{1}{k\alpha^{2}c_{1}^{2}\overline{L}n^{4/3}} + \frac{\overline{L}(\frac{2}{k^{2}\alpha^{2}c_{1}^{2}\overline{L}^{2}n^{4/3}} + \frac{1}{k\alpha c_{1}^{2}\overline{L}^{2}n^{1/3}})}{(k\alpha c_{1}n^{1/3})(k\alpha - 1)c_{1} - 1} \\
\leq \frac{1}{k\alpha^{2}c_{1}^{2}\overline{L}n^{4/3}} + \frac{1}{\frac{k\alpha c_{1}^{2}\overline{L}n^{1/3}}{2(\alpha c_{1}n^{1/3}) - 1}} \\
\leq \frac{1}{k^{2}\alpha c_{1}^{2}\overline{L}n^{4/3}} + \frac{1}{4k\alpha^{2}c_{1}^{3}\overline{L}n^{2/3}} \\
\leq \frac{3/4}{\alpha c_{1}^{2}\overline{L}n^{2/3}} ,$$
(35)

where (a) is due to $c_1(k\alpha-1) \ge c_1(\alpha-1) \ge 2$ and $k\alpha c_1 n^{1/3} \ge 1$. Note also that

$$-(v_{\min}\rho + v_{\max}^2) \le -\rho v_{\min} = -\frac{1}{\alpha c_1^2 \overline{L} n^{2/3}}$$

which yields that

$$\left[-(v_{\min}\rho + v_{\max}^2) + \gamma_{k+1}\rho^2 L_V + \frac{\rho^2 \gamma_{k+1} L_V L_s^2 \left(2\gamma_{k+1}^2 \rho^2 + \frac{\gamma_{k+1}\rho^2}{\beta} \right)}{\Lambda_{(k+1)}} \right] \le -\frac{1/4}{\alpha c_1^2 \overline{L} n^{2/3}}$$

Using the Lemma 2, we know that $v_{\max}^2 \|\nabla V(\hat{s}^{(k)})\|^2 \le \|\hat{s}^{(k)} - \overline{s}^{(k)}\|^2$ and using (35) on (33) yields:

$$\begin{split} &v_{\max}^2 \sum_{k=0}^{\mathsf{K_m}-1} \gamma_{k+1} \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^2] \\ \leq & \frac{4\alpha \overline{L} n^{2/3}}{v_{\min}^2} \big[V(\hat{\mathbf{s}}^{(0)}) - V(\hat{\mathbf{s}}^{(\mathsf{K_m})}) \big] \\ &+ \frac{4\alpha \overline{L} n^{2/3}}{v_{\min}^2} \sum_{k=0}^{\mathsf{K_m}-1} \Xi^{(k+1)} + \sum_{k=0}^{\mathsf{K_m}-1} \Gamma^{(k+1)} \mathbb{E}\left[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}\|^2 \right] \;, \end{split}$$

proving the bound on the second order moment of the gradient of the Lyapunov function:

$$\begin{split} \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \gamma_{k+1} \mathbb{E}[\|\nabla V(\hat{\mathbf{s}}^{(k)})\|^2] &\leq \frac{4\alpha \overline{L} n^{2/3}}{v_{\min}^2 v_{\max}^2} \big[V(\hat{\mathbf{s}}^{(0)}) - V(\hat{\mathbf{s}}^{(\mathsf{K}_{\mathsf{m}})}) \big] \\ &+ \frac{4\alpha \overline{L} n^{2/3}}{v_{\min}^2 v_{\max}^2} \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Xi^{(k+1)} + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Gamma^{(k+1)} \mathbb{E}\left[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^2 \right] \;. \end{split}$$

540 C Practical Implementations of Two-Timescale EM Methods

541 C.1 Application on GMM

542 C.1.1 Explicit Updates

We first recognize that the constraint set for θ is given by

$$\Theta = \Delta^M \times \mathbb{R}^M$$
.

- Using the partition of the sufficient statistics as $S(y_i,z_i)=$ $(S^{(1)}(y_i,z_i)^\top,S^{(2)}(y_i,z_i)^\top,S^{(3)}(y_i,z_i))^\top\in\mathbb{R}^{M-1}\times\mathbb{R}^{M-1}\times\mathbb{R}$, the partition $\phi(\boldsymbol{\theta})=(\phi^{(1)}(\boldsymbol{\theta})^\top,\phi^{(2)}(\boldsymbol{\theta})^\top,\phi^{(3)}(\boldsymbol{\theta}))^\top\in\mathbb{R}^{M-1}\times\mathbb{R}^{M-1}\times\mathbb{R}$ and the fact that $\mathbb{1}_{\{M\}}(z_i)=1-\sum_{m=1}^{M-1}\mathbb{1}_{\{m\}}(z_i)$, the complete data log-likelihood can be expressed as in (2) with
 - $s_{i,m}^{(1)} = \mathbb{1}_{\{m\}}(z_i), \quad \phi_m^{(1)}(\boldsymbol{\theta}) = \left\{ \log(\omega_m) \frac{\mu_m^2}{2} \right\} \left\{ \log(1 \sum_{j=1}^{M-1} \omega_j) \frac{\mu_M^2}{2} \right\},$ $s_{i,m}^{(2)} = \mathbb{1}_{\{m\}}(z_i)y_i, \quad \phi_m^{(2)}(\boldsymbol{\theta}) = \mu_m, \quad s_i^{(3)} = y_i, \quad \phi^{(3)}(\boldsymbol{\theta}) = \mu_M,$ (36)
- and $\psi(\boldsymbol{\theta}) = -\left\{\log(1-\sum_{m=1}^{M-1}\omega_m) \frac{\mu_M^2}{2\sigma^2}\right\}$. We also define for each $m\in \llbracket 1,M
 rbracket$, $j\in \llbracket 1,3
 rbracket$,
- $s_m^{(j)} = n^{-1} \sum_{i=1}^n s_{i,m}^{(j)}$. Consider the following latent sample used to compute an approximation of the conditional expected value $\mathbb{E}_{\theta}[\mathbbm{1}_{\{z_i=m\}}|y=y_i]$:

$$z_{i,m} \sim \mathbb{P}\left(z_i = m | y_i; \boldsymbol{\theta}\right)$$
 (37)

- where $m \in [1, M]$, $i \in [n]$ and $\boldsymbol{\theta} = (\boldsymbol{w}, \boldsymbol{\mu}) \in \Theta$.
- In particular, given iteration k+1, the computation of the approximated quantity $\tilde{S}_{i_k}^{(k)}$ during lncremental-step updates, see (8) can be written as

$$\tilde{S}_{i_{k}}^{(k)} = \left(\underbrace{\mathbb{1}_{\{1\}}(z_{i_{k},1}), \dots, \mathbb{1}_{\{M-1\}}(z_{i_{k},M-1})}_{:=\tilde{s}_{i_{k}}^{(1)}}, \underbrace{\mathbb{1}_{\{1\}}(z_{i_{k},1})y_{i_{k}}, \dots, \mathbb{1}_{\{M-1\}}(z_{i_{k},M-1})y_{i_{k}}}_{:=\tilde{\mathbf{s}}_{i_{k}}^{(3)}(\boldsymbol{\theta}^{(k)})}, \underbrace{y_{i_{k}}}_{:=\tilde{\mathbf{s}}_{i_{k}}^{(3)}(\boldsymbol{\theta}^{(k)})}\right)^{\top}.$$
(38)

Recall that we have used the following regularizer:

$$r(\boldsymbol{\theta}) = \frac{\delta}{2} \sum_{m=1}^{M} \mu_m^2 - \epsilon \sum_{m=1}^{M} \log(\omega_m) - \epsilon \log\left(1 - \sum_{m=1}^{M-1} \omega_m\right), \tag{39}$$

556 It can be shown that the regularized M-step evaluates to

$$\overline{\theta}(s) = \begin{pmatrix}
(1 + \epsilon M)^{-1} \left(s_1^{(1)} + \epsilon, \dots, s_{M-1}^{(1)} + \epsilon\right)^{\top} \\
\left(\left(s_1^{(1)} + \delta\right)^{-1} s_1^{(2)}, \dots, \left(s_{M-1}^{(1)} + \delta\right)^{-1} s_{M-1}^{(2)}\right)^{\top} \\
\left(1 - \sum_{m=1}^{M-1} s_m^{(1)} + \delta\right)^{-1} \left(s^{(3)} - \sum_{m=1}^{M-1} s_m^{(2)}\right)
\end{pmatrix} = \begin{pmatrix}
\overline{\omega}(s) \\
\overline{\mu}(s) \\
\overline{\mu}(s)
\end{pmatrix} .$$
(40)

where we have defined for all $m \in [\![1,M]\!]$ and $j \in [\![1,3]\!]$, $s_m^{(j)} = n^{-1} \sum_{i=1}^n s_{i.m}^{(j)}$.

558 C.1.2 Model Assumptions (GMM example)

- We use the GMM example to illustrate the required assumptions.
- Many practical models can satisfy the compactness of the sets as in Assumption A1 For instance,
- the GMM example satisfies (11) as the sufficient statistics are composed of indicator functions and
- observations as defined Section C.1 Equation (36).

Assumptions A2 and A3 are standard for the curved exponential family models. For GMM, the following (strongly convex) regularization $r(\theta)$ ensures A3:

$$r(\boldsymbol{\theta}) = \frac{\delta}{2} \sum_{m=1}^{M} \mu_m^2 - \epsilon \sum_{m=1}^{M} \log(\omega_m) - \epsilon \log\left(1 - \sum_{m=1}^{M-1} \omega_m\right),$$

- since it ensures $\theta^{(k)}$ is unique and lies in $int(\Delta^M) \times \mathbb{R}^M$. We remark that for A2, it is possible to 563
- define the Lipschitz constant L_p independently for each data y_i to yield a refined characterization. 564
- Again, A4 is satisfied by practical models. For GMM, it can be verified by deriving the closed form 565
- expression for B(s) and using A1. 566
- Under A1 and A3, we have $\|\hat{s}^{(k)}\| < \infty$ since S is compact and $\hat{\theta}^{(k)} \in \text{int}(\Theta)$ for any k > 0 which 567
- thus ensure that the EM methods operate in a closed set throughout the optimization process. 568

C.1.3 Algorithms updates 569

- In the sequel, recall that, for all $i \in [n]$ and iteration k, the computed statistic $\tilde{S}_{i_k}^{(k)}$ is defined by (38). At iteration k, the several E-steps defined by (1) or (2) and (3) leads to the definition of the quantity
- 571
- $\hat{\mathbf{s}}^{(k+1)}$. For the GMM example, after the initialization of the quantity $\hat{\mathbf{s}}^{(0)} = n^{-1} \sum_{i=1}^{n} \overline{\mathbf{s}}_{i}^{(0)}$, those 572
- E-steps break down as follows: 573
- **Batch EM (EM):** for all $i \in [n]$, compute $\overline{\mathbf{s}}_i^{(k)}$ and set

$$\hat{\mathbf{s}}^{(k+1)} = n^{-1} \sum_{i=1}^{n} \overline{\mathbf{s}}_{i}^{(k)} .$$

where $\bar{\mathbf{s}}_i^{(k)}$ are computed using the exact conditional expected balue $\mathbb{E}_{\boldsymbol{\theta}}[\mathbb{1}_{\{z_i=m\}}|y=y_i]$:

$$\widetilde{\omega}_m(y_i; \boldsymbol{\theta}) := \mathbb{E}_{\boldsymbol{\theta}}[\mathbb{1}_{\{z_i = m\}} | y = y_i] = \frac{\omega_m \exp(-\frac{1}{2}(y_i - \mu_i)^2)}{\sum_{j=1}^M \omega_j \exp(-\frac{1}{2}(y_i - \mu_j)^2)},$$

Incremental EM (iEM): draw an index i_k uniformly at random on [n], compute $\overline{\mathbf{s}}_{i_k}^{(k)}$ and set

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \frac{1}{n} (\bar{\mathbf{s}}_{i_k}^{(k)} - \bar{\mathbf{s}}_{i_k}^{(\tau_i^k)}) = n^{-1} \sum_{i=1}^n \bar{\mathbf{s}}_i^{(\tau_i^k)}.$$

batch SAEM (SAEM): draw an index i_k uniformly at random on [n], compute $\bar{\mathbf{s}}_{i_k}^{(k)}$ and set

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} (1 - \gamma_{k+1}) + \gamma_{k+1} \tilde{S}^{(k)} .$$

- where $=\frac{1}{n}\sum_{i=1}^{n}\tilde{S}_{i}^{(k)}$ with $\tilde{S}_{i}^{(k)}$ defined in (38).
- Incremental SAEM (iSAEM): draw an index i_k uniformly at random on [n], compute $\bar{\mathbf{s}}_{i_k}^{(k)}$ and set

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} (1 - \gamma_{k+1}) + \gamma_{k+1} (\tilde{S}^{(k)} + \frac{1}{n} (\tilde{S}^{(k)}_{i_k} - \tilde{S}^{(\tau_i^k)}_{i_k})).$$

- Variance Reduced Two-Timescale EM (vrTTEM): draw an index i_k uniformly at random on [n],
- compute $\overline{\mathbf{s}}_{i_k}^{(k)}$ and set 581

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)}(1 - \gamma_{k+1}) + \gamma_{k+1} \big(\tilde{S}^{(k)}(1 - \rho) + \rho \big(\tilde{S}^{(\ell(k))} + \big(\tilde{S}^{(k)}_{i_k} - \tilde{S}^{(\ell(k))}_{i_k} \big) \big) \big) \; .$$

Fast Incremental Two-Timescale EM (fiTTEM): draw an index i_k uniformly at random on [n], compute $\bar{\mathbf{s}}_{i_k}^{(k)}$ and set 583

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} (1 - \gamma_{k+1}) + \gamma_{k+1} (\tilde{S}^{(k)} (1 - \rho) + \rho (\overline{\mathbf{S}}^{(k)} + (\tilde{S}^{(k)}_{i_k} - \tilde{S}^{(t_{i_k}^k)}_{i_k})).$$

Finally, the *k*-th update reads $\hat{\theta}^{(k+1)} = \overline{\theta}(\hat{\mathbf{s}}^{(k+1)})$ where the function $s \to \overline{\theta}(s)$ is defined by (40).

585 C.2 Deformable Template Model for Image Analysis

586 C.2.1 Model and Updates

The complete model belongs to the curved exponential family, see [2], which vector of sufficient statistics $S = (S_1(z), S_2(z), S_3(z))$ read:

$$S_{1}(z) = \frac{1}{n} \sum_{i=1}^{n} S_{1}(y_{i}, z_{i}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{K}_{p}^{z_{i}})^{\top} y_{i} ,$$

$$S_{2}(z) = \frac{1}{n} \sum_{i=1}^{n} S_{2}(y_{i}, z_{i}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{K}_{p}^{z_{i}})^{\top} (\mathbf{K}_{p}^{z_{i}}) ,$$

$$S_{3}(z) = \frac{1}{n} \sum_{i=1}^{n} S_{3}(y_{i}, z_{i}) = \frac{1}{n} \sum_{i=1}^{n} z_{i}^{t} z_{i} ,$$

$$(41)$$

where for any pixel $u \in \mathbb{R}^2$ and $j \in [1, k_q]$ we denote:

$$\mathbf{K}_p^{z_i}(x_u,j) = \mathbf{K}_p^{z_i}(x_u - \phi_i(x_u,z_i), p_j).$$

Finally, the Two-Timescale M-step yields the following parameter updates:

$$\bar{\theta}(\hat{s}) = \begin{pmatrix} \beta(\hat{s}) = \hat{s}_2^{-1}(z)\hat{s}_1(z) \\ \Gamma(\hat{s}) = \frac{1}{n}\hat{s}_3(z) \\ \sigma(\hat{s}) = \beta(\hat{s})^{\top}\hat{s}_2(z)\beta(\hat{s}) - 2\beta(\hat{s})\hat{s}_1(z) \end{pmatrix} , \tag{42}$$

where $\hat{s} = (\hat{s}_1(z), \hat{s}_2(z), \hat{s}_3(z))$ is the vector of statistics obtained via the SA-step (7) and using the MC approximation of the sufficient statistics $(S_1(z), S_2(z), S_3(z))$ defined in (41).

593 C.2.2 Numerical Applications

- For the inference of the template, we use the Matlab code (online SAEM) used in [24] and implement our own batch, incremental, Variance reduced and Fast Incremental variants. The hyperparameters are kept the same and reads as follows M=400, $\gamma_k=1/k^{0.6}$ and p=16. The number of landmarks for the template is $k_p=15$ points and for the deformation $k_g=6$ points. Both have Gaussian kernels with respectively standard deviation of 0.12 and 0.3. The standard deviation of the measurement errors is set to 0.1.
- For the simulation part, we use the Carlin and Chib MCMC procedure, see [9]. Refer to [24] for more details.

D Additional Experiment: Pharmacokinetics (PK) Model with Absorption Lag Time

This numerical example was conducted in order to characterize the pharmacokinetics (PK) of orally administered drug to simulated patients, using a population pharmacokinetics approach. M=50 synthetic datasets were generated for n=5000 patients with 10 observations (concentration measures) per patient. The goal tis to model the evolution of the concentration of the absorbed drug using a nonlinear and latent variable model.

Model and Explicit Updates: We consider a one-compartment PK model for oral administration 609 with an absorption lag-time (T^{lag}), assuming first-order absorption and linear elimination processes. 610 The final model includes the following variables: ka the absorption rate constant, V the volume of 611 distribution, k the elimination rate constant and T^{lag} the absorption lag-time. We also add several 612 covariates to our model such as D the dose of drug administered, t the time at which measures 613 are taken and the weight of the patient influencing the volume V. More precisely, the log-volume 614 $\log(V)$ is a linear function of the log-weight $lw70 = \log(wt/70)$. Let $z_i = (T_i^{\text{lag}}, ka_i, V_i, k_i)$ be the 615 vector of individual PK parameters, different for each individual i. The final model reads: 616

$$y_{ij} = f(t_{ij}, z_i) + \varepsilon_{ij}$$
 where $f(t_{ij}, z_i) = \frac{D k a_i}{V(k a_i - k_i)} \left(e^{-k a_i (t_{ij} - T_i^{\text{lag}})} - e^{-k_i (t_{ij} - T_i^{\text{lag}})} \right)$, (43)

where y_{ij} is the j-th concentration measurement of the drug of dosage D injected at time t_{ij} for patient i. We assume in this example that the residual errors ε_{ij} are independent and normally distributed with mean 0 and variance σ^2 . Lognormal distributions are used for the four PK parameters.

Lognormal distributions are used for the four PK parameters:

604

605

606

608

629

630

631

632

$$\log(T_i^{\text{lag}}) \sim \mathcal{N}(\log(T_{\text{pop}}^{\text{lag}}), \omega_{T^{\text{lag}}}^2), \log(ka_i) \sim \mathcal{N}(\log(ka_{\text{pop}}), \omega_{ka}^2), \\ \log(V_i) \sim \mathcal{N}(\log(V_{\text{pop}}), \omega_V^2), \log(k_i) \sim \mathcal{N}(\log(k_{\text{pop}}), \omega_k^2).$$

We recall that the complete model (y, z) defined by (43) belongs to the curved exponential family, which vector of sufficient statistics $S = (S_1(z), S_2(z), S_3(z))$ read:

$$S_1(z) = \frac{1}{n} \sum_{i=1}^n z_i, \quad S_2(z) = \frac{1}{n} \sum_{i=1}^n z_i^\top z_i, \quad S_3(z) = \frac{1}{n} \sum_{i=1}^n (y_i - f(t_i, z_i))^2$$
(44)

where we have noted y_i and t_i the vector of observations and time for each patient i. At iteration k, and setting the number of MC samples to 1 for the sake of clarity, the MC sampling $z_i^{(k)} \sim p(z_i|y_i,\theta^{(k)})$ is performed using a Metropolis-Hastings procedure detailed in Algorithm 2. The quantities $\tilde{S}^{(k+1)}$ and $\hat{s}^{(k+1)}$ are then updated according to the different methods. Finally the maximization step yields:

$$\overline{\theta}(s) = \begin{pmatrix} \hat{\mathbf{s}}_1^{(k+1)} \\ \hat{\mathbf{s}}_2^{(k+1)} - \hat{\mathbf{s}}_1^{(k+1)} \left(\hat{\mathbf{s}}_1^{(k+1)} \right)^\top \\ \hat{\mathbf{s}}_3^{(k+1)} \end{pmatrix} = \begin{pmatrix} \overline{z_{\mathbf{pop}}} (\hat{\mathbf{s}}^{(k+1)}) \\ \overline{\omega_z} (\hat{\mathbf{s}}^{(k+1)}) \\ \overline{\sigma} (\hat{\mathbf{s}}^{(k+1)}) \end{pmatrix} . \tag{45}$$

where z_{pop} denotes the vector of fixed effects $(T_{\text{pop}}^{\text{lag}}, ka_{\text{pop}}, V_{\text{pop}}, k_{\text{pop}})$.

Metropolis Hastings algorithm. During the simulation step of the MISSO method, the sampling from the target distribution $\pi(z_i, \theta) := p(z_i|y_i, \theta)$ is performed using a Metropolis Hastings (MH) algorithm [27] with proposal distribution $q(z_i, \delta)$ where $\theta = (z_{\text{pop}}, \omega_z)$ and δ is the vector of parameters of the proposal distribution. Commonly they parameterize a Gaussian proposal. The MH algorithm is summarized in 2.

Algorithm 2 MH aglorithm

```
1: Input: initialization z_{i,0} \sim q(z_i; \boldsymbol{\delta})
 2: for m = 1, \dots, M do
 3:
           Sample z_{i,m} \sim q(z_i; \boldsymbol{\delta})
           Sample u \sim \mathcal{U}(\llbracket 0, 1 \rrbracket)
 4:
           Calculate the ratio r=rac{\pi(z_{i,m};\pmb{\theta})/q(z_{i,m});\pmb{\delta})}{\pi(z_{i,m-1};\pmb{\theta})/q(z_{i,m-1});\pmb{\delta})}
 5:
           if u < r then
 6:
 7:
               Accept z_{i,m}
 8:
           else
 9:
               z_{i,m} \leftarrow z_{i,m-1}
10:
           end if
11: end for
12: Output: z_{i,M}
```

Monte Carlo study: We conduct a Monte Carlo study to showcase the benefits of our scheme. M =634 50 datasets have been simulated using the following PK parameters values: $T_{\text{pop}}^{\text{lag}} = 1$, $ka_{\text{pop}} = 1$, 635 $V_{\rm pop}=8,\,k_{\rm pop}=0.1,\,\omega_{T^{\rm lag}}=0.4,\,\omega_{ka}=0.5,\,\omega_{V}=0.2,\,\omega_{k}=0.3$ and $\sigma^{2}=0.5$. We define 636 the mean square distance over the M replicates $E_k(\ell) = \frac{1}{M} \sum_{m=1}^M \left(\theta_k^{(m)}(\ell) - \theta^*\right)^2$ and plot it against the analysis (as a small ℓ). 637 against the epochs (passes over the data) Figure 4. Note that the MC-step (5) is performed using a 638 Metropolis Hastings procedure since the posterior distribution under the model θ noted $p(z_i|y_i,\theta)$ 639 is intractable due to the nonlinearity of the model (43). Figure 4 shows clear advantage of variance 640 reduced methods (vrTTEM and fiTTEM) avoiding the twists and turns displayed by the incremental 641 and the batch methods. 642

Figure 4: Precision $|ka^{(k)} - ka^*|^2$ per epoch