INATEL – Instituto Nacional de Telecomunicações

ECO17 – Redes Neurais EPC2 – Redes *Adaline*

ALUNO: DATA:

Utilizando o Open Office, escreva as respostas das questões. Inicie sempre com a palavra Resp: em vermelho, seguida do número da questão. No caso das respostas que envolvem resultados na tela, imagens ou gráficos, copiar a tela (Alt+PrntScr) e colar no documento. Quando terminar, converta o arquivo para PDF e envie por email para o professor/monitor. Colocar no título do email [EC017] <matricula><nome do aluno>.

A partir da análise de uma amostra de sangue observou-se que determinada doença poderia ser classificada em dois tipos {TIPO A e TIPO B}, de acordo a medição de três características presentes no sangue $\{x_1, x_2 \in x_3\}$. A equipe de médicos e engenheiros desenvolveu um novo equipamento capaz de analisar as características da amostra de sangue. Com os valores lidos pelo equipamento, a equipe responsável pelo projeto gostaria que fosse exibido uma classificação automática do tipo da doença. Para isso pretende-se desenvolver um software que será integrado ao equipamento contendo um *Perceptron* para executar a classificação automática destas duas classes.

O projeto de implementação do *Perceptron* é composto de 4 fases:

- A. Formar o conjunto para treinamento;
- B. Desenvolver o *Perceptron* em alguma linguagem de programação;
- C. Treinar o *Perceptron* utilizando o conjunto de treinamento;
- D. Testar o software com um conjunto de testes.

Utilizando o algoritmo supervisionado baseado na regra Delta (Adaline) para classificação de padrões, e assumindo-se a taxa de aprendizagem igual a 0.01 e um limiar de parada de 0.001, faça as seguintes atividades:

- 1) Baseado no estudo da doença formou-se um conjunto de treinamento em anexo, tomando por convenção o valor -1 para o TIPO A e o valor +1 para o tipo B. Defina os conjuntos entrada e saida de acordo com os valores estudados pela equipe do projeto e pelos valores de entrada da rede.
- 2) Execute 5 treinamentos para a rede perceptron, inicializando-se o vetor de pesos em cada treinamento com valores aleatórios entre 0 e 1. Registre os resultados de cada treinamento na tabela a seguir:

Treinamento	Vetor de Pesos Inicial			Vetor de Pesos Final			Número de épocas		
Tremamento	W ₀	w_1	W ₂	W ₃	W ₀	W_1	W ₂	W ₃	
1° (T1)									
2° (T2)									
3° (T3)									
4° (T4)									
5° (T5)									

3) Após o treinamento do perceptron, aplique-o na classificação automática de novas amostras de sangue, indicando na tabela os resultados das saídas (tipo da doença) referentes aos cinco processos de treinamento realizados no item 1.

Amostra	\mathbf{x}_1	\mathbf{x}_2	X 3	y	y	y	y	У
				(T1)	(T2)	(T3)	(T4)	(T5)
1	-0.3565	0.0620	5.9891					
2	-0.7842	1.1267	5.5912					
3	0.3012	0.5611	5.8234					
4	0.7757	1.0648	8.0677					
5	0.1570	0.8028	6.3040					
6	-0.7014	1.0316	3.6005					
7	0.3748	0.1536	6.1537					

8	-0.6920	0.9404	4.4058			
9	-1.3970	0.7141	4.9263			
10	-1.8842	-0.2805	1.2548			

- 4) Explique porque o número de épocas de treinamento varia cada vez que se executa o treinamento do perceptron.
- 5) Utilizando como base as amostras a seguir, avalie o grau de acerto da aplicação criada.

Amostra	X ₁	X ₂	X ₃	Tipo
1	0.3957	0.1076	5.6623	A
2	-0.1013	0.5989	7.1812	A
3	2.4482	0.9455	11.2095	В
4	2.0149	0.6192	10.9263	A
5	0.2012	0.2611	5.4631	В

ANEXO - Conjunto de Treinamento.

Amostra	X ₁	X ₂	X ₃	Tipo
01	-0.6508	0.1097	4.0009	-1.0000
02	-1.4492	0.8896	4.4005	-1.0000
03	2.0850	0.6876	12.0710	-1.0000
04	0.2626	1.1476	7.7985	1.0000
05	0.6418	1.0234	7.0427	1.0000
06	0.2569	0.6730	8.3265	-1.0000
07	1.1155	0.6043	7.4446	1.0000
08	0.0914	0.3399	7.0677	-1.0000
09	0.0121	0.5256	4.6316	1.0000
10	-0.0429	0.4660	5.4323	1.0000
11	0.4340	0.6870	8.2287	-1.0000
12	0.2735	1.0287	7.1934	1.0000
13	0.4839	0.4851	7.4850	-1.0000
14	0.4089	-0.1267	5.5019	-1.0000
15	1.4391	0.1614	8.5843	-1.0000
16	-0.9115	-0.1973	2.1962	-1.0000
17	0.3654	1.0475	7.4858	1.0000
18	0.2144	0.7515	7.1699	1.0000
19	0.2013	1.0014	6.5489	1.0000
20	0.6483	0.2183	5.8991	1.0000
21	-0.1147	0.2242	7.2435	-1.0000
22	-0.7970	0.8795	3.8762	1.0000
23	-1.0625	0.6366	2.4707	1.0000

24	0.5307	0.1285	5.6883	1.0000
25	-1.2200	0.7777	1.7252	1.0000