

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS PO Box 1430 Alexasdra, Virginia 22313-1450 www.nepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/705,874	11/13/2003	Tian-Li Wang	001107.00391	8148
23907 7590 03/31/2998 BANNER & WITCOFF, LTD. 1100 13th STREET, N.W.			EXAMINER	
			MITCHELL, LAURA MCGILLEM	
SUITE 1200 WASHINGTON, DC 20005-4051		ART UNIT	PAPER NUMBER	
			1636	
			MAIL DATE	DELIVERY MODE
			03/31/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/705.874 WANG ET AL. Office Action Summary Examiner Art Unit LAURA M. MITCHELL 1636 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 31 December 2007. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 90 and 92-110 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 90, 92-110 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Imformation Disclosure Statement(s) (PTC/G5/08)
 Paper No(s)/Mail Date ______.

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

Notice of Informal Patent Application

Art Unit: 1636

DETAILED ACTION

It is noted that claim 90 has been amended, claims 1-89 and 91 are cancelled and claims 92-110 have been added in the response filed 12/31/2007. Claims 90, 92-110 are under examination. In the previous Office action mailed 8/30/2008, claim 90 was indicated as allowed. However, on further consideration new grounds of rejection have been applied below.

Claim Rejections - 35 USC § 112

The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

It is noted that claims 22 and 39 have been cancelled; therefore the rejection of claims 22 and 39 under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement is moot.

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claims 92-96 and 104-108 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. This is a NEW rejection.

Claims 92-95 and 104-108 are vague and indefinite because they each recite the phrase "pieces within the window map within...kb" and appear to limit a specific window

Art Unit: 1636

(the window) to a particular size. The claims are dependent on claim 90 or 99 which recite "a plurality of windows of fixed size". It is not clear to what specific window the claims refer.

Claims 96 and 108 are vague and indefinite because they each recite the phrase "the piece is defined by" and appear to limit a specific piece of the genomic sequence. The claims are dependent on claim 90 or 99 which recites "pieces of the genome" and "pieces". It is not clear to what specific piece the claims refer.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.

Claims 90, 92 -95, 97-107 and 109-110 are rejected under 35 U.S.C. 102(a) as being anticipated by Bensimon et al (US Patent App. Pub. No. 2002/0048767, 4/25/2002). This is a NEW rejection.

It is noted that claims 90 and 99 recite the phrases "pieces within a plurality of windows of fixed size of the genome" and "each window comprises a plurality of pieces and the pieces within a window are genomically clustered". It is noted that the terms "pieces" and "window" have not been given limiting definitions in the specification, especially regarding the size of the "pieces" and "windows". Therefore, the terms and phrases will be given the broadest reasonable interpretation.

Art Unit: 1636

Claims 90 and 99 recite the phrase "windows of fixed size". It is noted that the instant disclosure does not specify a specific size or a limiting definition of the term "fixed size". The term "fixed size" can be given the broadest reasonable interpretation regarding how the size of the window would be "fixed" or designated. In addition, as the claim is written it does not require that one window of "fixed size" is the same "fixed size" of another window in the recited plurality of windows.

Bensimon et al teach methods of detecting changes in a genome including deletion or translocation, or changes in **number of copies** of certain sequences and teach methods which allow genes to be located and mapped rapidly (see paragraph 0005).

Bensimon et al in particular uses a method known as molecular combing to anchor and stretch DNA molecules by the end to produce DNA molecules aligned in a parallel manner. Bensimon et al teach that the DNA can be of any size, and includes genomic DNA extracted from human cells (see paragraph 0036, for example), which meets the limitation of a genome of a test eukaryotic cell.

Bensimon et al teach that the method comprises attaching and combing a DNA B to a combing surface, reacting the DNA B combing product with one or more labeled probes bound to a DNA A. Bensimon et al teach that this method can determine information about the position of the probes on the sample DNA B, the distance between the probes and the size of the probes in order to determine the presence, location and quantity of sequences of DNA A (see paragraphs 0043-0047).

Art Unit: 1636

Bensimon et al teach a method to search for genes involved in particular pathologies in an affected target population using DNA. Bensimon et al teach that known genetic markers and probability analysis are used to narrow genetic locations on one or more chromosomes. Several human DNA library clones that contain relevant genetic markers are obtained. Bensimon et al teach that a region of interest can be precisely mapped using clones of decreasing size. Bensimon et al teach that any of several known molecular techniques can be used to assign a coding sequence to one or more of the clones selected in the preceding steps (see paragraphs 0027-0031 and 0152, for example), which meets the limitation of identifying pieces of the genome of a test eukaryotic cell by determining nucleotide sequence of said pieces.

Absent evidence to the contrary, pieces of DNA sequence in a DNA library clone would be genomically clustered.

Bensimon et al incorporate molecular combing techniques in which the combed DNA is denatured and hybridized with fluorescent probe fragments. Bensimon et al teach that the size of the hybridized probe fragments can be precisely determined by measurement of the lengths of the fluorescent fragments (see paragraphs 0037-0040). Bensimon et al teach that probes are polynucleotide sequences containing at least 20 nucleotides, a genomic DNA fragment and a contig. Bensimon et al teach that a contig is a set of probes which are contiguous, or overlap and cover the region of interest, or comprises several separate probes. Bensimon et al teach an embodiment in which the length of the probes is between 5 kb -50 kb (see paragraph 0052 and 0054, for example). Bensimon et al teach that this method will provide information about the

Art Unit: 1636

position of the probes, the distance between the probes and the size of the probes that are hybridized to the sample DNA. The denatured combed genomic DNA sequence to which a probe hybridizes, meets the limitation of a **piece of a genome**. Bensimon et al disclose embodiments in which the probe contigs are contiguous, or overlap to cover the region of interest or are several separate probes for the region of interest, which meets the limitation of multiple **pieces of a genome within a window**. Bensimon et al teach that determination of total sum of the sizes of the probes make it possible to quantify the number of hybridized probes to deduce the quantity of the genes or sequence of the specific test DNA A (see paragraph 0044-0047).

Bensimon et al teach an embodiment in which the method is practiced to determine the position of potential genome break points associated with a genetic pathology where the position of a genomic probe of known size is determined in the region of a desired gene (see paragraph 0059, for example). Since "windows of a fixed size" can be given the broadest reasonable interpretation, a genomic window that contains a sequence that can hybridize to a probe of a known size would meet the limitation of a window of fixed size.

Bensimon et al also teach that it is important to have a large number of hybridized probes, and several types of control and target probes (see paragraph 0102, for example). Bensimon et al teach that the data can be expressed in a histogram so that the number of clones having defined probe length is evaluated (see paragraph 0068, for example). Bensimon et al exemplify simultaneous hybridizations of two cosmids on human genomic DNA separated by a gap of several tens of kb and found

Art Unit: 1636

that it was possible to measure about eighty coupled signals (see Example 1 paragraph 0311, for example). Therefore, Bensimon et al contemplate enumerating pieces within a plurality of windows of fixed size wherein each window comprises a plurality of pieces and the pieces within a window are genomically clustered.

Bensimon et al teach that if a sufficient density of combed DNA molecules is available, detection of relatively small sequence deletions is possible. Bensimon et al teach that it is particularly advantageous to use at least about ten copies of the genome in the combing method (see paragraphs 0100 and 0245, for example).

Therefore, Bensimon et al also contemplate performing a plurality of comparisons for the plurality of windows.

Bensimon et al teach that the break points consist of points in the genetic sequence whose surroundings change over several kilobases in a diseased subject when compared to a healthy subject (see paragraph 0059, for example). Bensimon et al present histograms illustrating data from an abnormal allele after subtraction of data obtained from a normal allele (see paragraph 0170 for example), which meets the limitation of a method step of comparison of a first number of pieces counted within windows for a genome of a test eukaryotic cell compared to a second number of pieces counted within the windows for a genome of a reference (i.e. normal) cell where a difference indicates a karyotypic difference between the test and the reference genome of the eukaryotic cell (claim 90).

Bensimon et al teach that this method can be used to determine change in gene copy number which can be used to detect the absence of a portion of the genome(see

Art Unit: 1636

paragraphs 0112 and 0099, for example), which meets the limitation of a method of determining changes in copy number of portions of a genome of a test eukaryotic cell, wherein a first number of pieces counted within windows for a genome of a test eukaryotic cell compared to a second number of pieces counted within the windows for a genome of a reference (i.e. normal) cell where a difference indicates a changes in copy number of a portion of the genome between the test and the reference genome of the eukaryotic cell (claim 99).

Bensimon et al exemplify hybridization of probes over a distance of about 120 kb (see paragraph 0311, for example), which meet the limitation of a method wherein the pieces within the windows map to within 200 kb (claims 93 and 105). Bensimon et al teach embodiments in which the lengths of the probes used in the method are between 5 kb -50 kb but may also consist of the entire combed genome (see paragraph 0054, for example). Bensimon et al teach that it is possible to detect genomic deletions of the size of a cosmid clone (30-50kb) or greater. Therefore Bensimon et al meet the limitation of a method wherein the pieces within the windows map to within 40 kb (claims 92 and 104). Bensimon et al teach embodiments in which the lengths of the probes used in the method may also consist of the entire combed genome (see paragraph 0054, for example), which absent evidence to the contrary meets the limitation of a method wherein the pieces within the windows map to within 600kb (claims 94 and 106) or to within 4Mb (claims 95 and 107).

Bensimon et al contemplate detection of genomic deletions and insertions of substantial portions of chromosomes (see paragraphs 0014, 0071 and 0079-0083),

Art Unit: 1636

which meets the limitations of a method wherein the change in copy number is due to an interstitial deletion (claim 103) or loss of a chromosomal arm (claim 101). Bensimon et al contemplate detection of duplication of several copies of all or part of genomic region (see paragraphs 0084), which meets the limitations of a method wherein the change in copy number is due to an interstitial amplification (claim 102). Bensimon et al contemplate detection of major duplications such as those of the trisomy disorders where the sequence represents the whole of a chromosome (see paragraph 0084 and 0006, for example), which meets the limitations of a method wherein the change in copy number is due to gain of a whole chromosome (claim 100).

Bensimon et al exemplify a combing method for human genomic DNA comprising hybridization of two cosmids over a distance of about 120 Kb (see paragraph 0311, for example). Absent evidence to the contrary 120 kb represents less than 15% of the human genome. Therefore, Bensimon et al meet the limitation of a method for karyotyping a eukaryotic genome wherein pieces representing less than 15% of the human genome of the eukaryotic cell are enumerated in the step of enumerating (claim 98). Bensimon et al also meet the limitation of a method for detecting changes in copy number of portions of a genome of a test eukaryotic cell wherein pieces representing less than 15% of the human genome of the eukaryotic cell are enumerated in the step of enumerating (claim 110).

Bensimon et al teach embodiments of calculation of changes in copy number relative to a control sequence. Bensimon et al teach that a ratio of control to test of close to 1.5 will indicate a trisomic genotype (see paragraphs 0089-0090 and 0093 in

Art Unit: 1636

particular), which meets the limitation of a method comprising the step of identifying aneuploidy if the pieces of one or more autosomes are determined to be present in the test eukaryotic cell relative to the reference eukaryotic cell at a ratio of 1.5 or greater or less than 0.7 (claims 97 and 109).

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 96 and 108 are rejected under 35 U.S.C. 103(a) as being unpatentable over Bensimon et al (US Patent App. Pub. No. 2002/0048767, 4/25/2002) in view of Kong et al (US Patent No. 5,200,336, 4/6/1993). This is a NEW rejection.

Applicants claim a method of karyotyping a genome of a test eukaryotic cell or determining changes in copy number of portions of the genome, wherein the pieces of the genome are defined by the presence of a Bcgl restriction endonuclease recognition site flanked by 12 nucleotides at either end.

The teaching of Bensimon et al is detailed in the rejection above. In particular, Bensimon et al teach that known genetic markers and probability analysis are used to narrow genetic locations on one or more chromosomes. Several human DNA library clones are obtained and a number of clones that contain relevant genetic markers are

Art Unit: 1636

obtained. Bensimon et al teach that a region of interest can be precisely mapped using clones of decreasing size (see paragraphs 0027-0031 and 0152, for example).

Bensimon et al teach an embodiment of the method comprising a step of mapping restriction fragments of combed DNA instead of mapping subclones in order to produce a physical map of the restriction fragments with sufficient accuracy to allow a reconstitution of a final sequence. Bensimon et al teach that the applicability of this technique is dependent on adequate size of the main genomic fragments and on subsequent subcloning of the DNA into small size vectors after additional enzymatic restriction for sequencing (see paragraphs 0340-0342, in particular). Bensimon et al does not specifically teach a method where pieces of the genome are defined by the presence of a Bcgl restriction endonuclease recognition site flanked by 12 nucleotides at either end.

Kong et al teach a Type II restriction endonuclease known as Bcgl. Kong et al teach the recognition sequence of Bcgl:

and teaches that it enzymatically cleaves at both ends outside of its recognition sequence.

Kong et al teach that Bcgl digestion of DNA produces a 34 base pair fragment (see abstract and column 1, lines 60-65 and column 6, lines 16-20, in particular). Since the recognition sequence is centrally located and has 10-12 variable nucleotides on either side, presence of the recognition sequence would define a genomic sequence

Art Unit: 1636

piece which is flanked by 12 nucleotides on either end. Kong et al teach that Bcgl can be used in a method of mapping DNA by forming a DNA library from fragments that result from digesting the DNA with Bcgl, separating the individual clones and using them as probes for target DNA. Kong et al teach that the probes would contain sufficiently unique DNA to allow identification of large regions of DNA from which they were obtained. Kong et al teach that when Bcgl is used, the individual cloned 32 base pair fragments uniquely identify and tag a larger DNA sequence. Kong et al teach that the overlap of two larger fragments could be readily established (see column 7, lines 19-40, in particular).

It would be obvious to the skilled artisan at the time the invention was made to modify the method taught by Bensimon et al and define a piece of the eukaryotic genome with a Bcgl recognition site when preparing human DNA library clones for mapping and subsequent detection of gene copy number because Bensimon et al teach steps of mapping restriction segments and Kong et al teach that Bcgl can be used to create probes with unique identifiable DNA. The motivation to use Bcgl as the enzyme to create restriction fragments for cloning and mapping is the expected benefit of being able to produce a DNA library with unique DNA that would hybridize specifically to unique positions in chromosomal DNA as taught by Kong et al (see column 9, lines 20-25, for example) and Kong et al teach that Bcgl would be particularly useful in mapping human chromosomal DNA (see column 7, lines 19-40, in particular). There is a reasonable expectation of success to define pieces of genomic DNA by the presence of Bcgl in a method for determining karyotypic differences or changes in copy number of

Art Unit: 1636

portions of the genome because Kong et al used Bcgl to enzymatically digest chromosomal DNA. Given the teachings of the prior art and the level of skill of the ordinary skilled artisan at the time the invention was made, it must be considered that said ordinary skilled artisan would have had a reasonable expectation of success in practicing the claimed invention. Therefore, Bensimon et al in view of Kong et al render obvious a method of karyotyping a genome of a test eukaryotic cell or determining changes in copy number of portions of the genome, wherein the portion of the genome are defined by the presence of a Bcgl restriction endonuclease recognition site flanked by 12 nucleotides at either end (claims 96 and 108).

It is noted that claims 6-9, 21, 43-46 and 56 have been cancelled; therefore the rejection of claims 6-9, 21, 43-46 and 56 under 35 U.S.C. 103(a) as being unpatentable over Velculescu et al (US Patent No. 6,498,013) in view of Dunn et al as evidenced by Yoshida et al (US Patent App. Pub No. 20020147549) is moot.

It is noted that claims 16 and 53 have been cancelled; therefore the rejection of claims 16 and 53 under 35 U.S.C. 103(a) as being unpatentable over Velculescu et al (US Patent No. 6,498,013) in view of Dunn et al and further in view of Mohammed et al (US Patent App. Pub No. 20030124584) is moot.

It is noted that claims 17 and 54 have been cancelled; therefore the rejection of claims 17 and 54 under 35 U.S.C. 103(a) as being unpatentable over Velculescu et al (US Patent No. 6,498,013) in view of Dunn et al and further in view of Davis et al (US Patent No. 5,391,480) is moot.

Art Unit: 1636

It is noted that claims 19 and 55 have been cancelled; therefore the rejection of claims 19 and 55 under 35 U.S.C. 103(a) as being unpatentable over Velculescu et al (US Patent No. 6,498,013) in view of Dunn et al and further in view of Winkfein et al (US Patent No. 5,663,048) is moot.

It is noted that claims 22 and 39 have been cancelled; therefore the rejection of claims 22 and 39 under 35 U.S.C. 103(a) as being unpatentable over Velculescu et al (US Patent No. 6,498,013) in view of Dunn et al and further in view of Israel et al (US Patent No. 5,981,190) is moot.

Conclusion

No claims are allowed.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to LAURA M. MITCHELL whose telephone number is (571)272-8783. The examiner can normally be reached on M-F 8:00-5:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Joseph Woitach can be reached on (571) 272-0739. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. Application/Control Number: 10/705,874 Page 15

Art Unit: 1636

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Laura McGillem Mitchell Examiner 3/27/2008

/Celine X Qian Ph.D./ Primary Examiner, Art Unit 1636