a)

i. Η εξίσωση (1) παριστάνει ευθεία για όλες τις πραγματικές τιμές του μ , εκτός από αυτές για τις οποίες είναι: $\begin{cases} \mu+1=0\\ \mu+2=0 \end{cases} \Leftrightarrow \begin{cases} \mu=-1\\ \mu=-2 \end{cases}$

Το παραπάνω σύστημα είναι αδύνατο, ως εκ τούτου η εξίσωση (1) παριστάνει ευθεία για κάθε $\mu \in \mathbb{R}$.

ii. Το σημείο O(0,0) επαληθεύει την (1), επομένως όλες οι ευθείες διέρχονται από την αρχή των αξόνων.

β)

i. Αν $\mu = -1$, η (1) γράφεται y = 0, έχει συντελεστή διεύθυνσης 0 και εκφράζει τον άξονα x'x.

ii. Αν $\mu=-2$, η (1) γράφεται x=0, δεν ορίζεται συντελεστής διεύθυνσης και εκφράζει τον άξονα y'y.

γ) Μία ευθεία (ε) σχηματίζει γωνία 45° με τον άξονα x'x όταν $\lambda_\varepsilon=\varepsilon \varphi 45^\circ=1$.

Αν $\mu + 2 = 0 \Leftrightarrow \mu = -2$, η ευθεία έχει εξίσωση x = 0, παριστάνει τον άξονα y'y και σχηματίζει γωνία 90° με τον άξονα x'x.

Επομένως, πρέπει $\mu \neq -2$ οπότε ορίζεται συντελεστής διεύθυνσης με $\lambda_{\varepsilon} = -\frac{\mu+1}{\mu+2}$

Tότε, είναι: $1=-\frac{\mu+1}{\mu+2} \Leftrightarrow \mu+2=-\mu-1 \Leftrightarrow \mu=-\frac{3}{2}$.

Από (1)
$$\stackrel{\mu=-\frac{3}{2}}{\Longrightarrow}$$
 $-\frac{1}{2}x+\frac{1}{2}y=0 \Leftrightarrow y=x.$