Unitary Group Approach

Takahiro Yamamoto

April 23, 2021

1 Gel'fand-Tsetlin basis

Define the composite creation operators $X_k^{\dagger}(n_k)$,

$$X_k^{\dagger}(n_k) = \begin{cases} I, & \text{if } n_k = 0\\ a_{k\mu}^{\dagger}, & \text{if } n_k = 1\\ a_{k\uparrow}^{\dagger} a_{k\downarrow}^{\dagger}, & \text{if } n_k = 2. \end{cases}$$
 (1)

The electronic Gel'fand-Tsetlin state is obtained by sequentially coupling the orbital level 0, 1 or 2-particle states,

$$|\psi\rangle = \sum_{\{M_k\}} \sum_{\{\mu_k\}} \prod_{k=1}^n \langle S_{k-1} M_{k-1} s_k \mu_k | S_k M_k \rangle X_k^{\dagger}(n_k) |0\rangle, \qquad (2)$$

where $|0\rangle$ is the physical vacuum state, $\langle S'M'S''M''|SM\rangle$ are the Clebsch-Gordan coefficient, S_k are the intermediate spin quantum numbers, and M_k the corresponding magnetic quantum numbers (s_z) , and $s_k = \mu_k = 0$ if $n_k = 0, 2$, while $s_k = 1/2, \mu_k = \pm 1/2$ if $n_k = 1$. The summation extends over all μ_k (k = 1, 2, ..., n) and M_k (k = 1, ..., n - 1) while $S_0 = M_0 = 0, S_n = S$, $M_n = M$.