Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 5 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i) Die wohl einfachste Methode um eine Formel in eine KNF umzuformen ist per Wahrheitstabelle:

						·
_	Α	В	С	D	φ	
	0	0	0	0	1	
	0	0	0	1	1	
	0	0	1	0	1	
	0	0	1	1	1	
	0	1	0	0	1	
	0	1	0	1	1	
	0	1	1	0	1	
	0	1	1	1	1	$(\neg A \lor \neg B \lor C \lor D) \land (\neg A \lor B \lor \neg C \lor D) = \varphi'$
	1	0	0	0	1	
	1	0	0	1	1	
	1	0	1	0	0	
	1	0	1	1	1	
	1	1	0	0	0	
	1	1	0	1	1	
	1	1	1	0	1	
	1	1	1	1	1	

(ii) Wir wählen $\varphi'' = A$. φ'' ist erfüllbarkeitsäquivalent zu φ' , da beide Formeln erfüllbar sind. Für die Belegung $\gamma(A) = 1$ gilt $[\![\varphi'']\!]^{\gamma} = \top$.

Aufgabe 2

Ansonsten erstmal eine Rechenvorschrift.

Sei φ eine beliebige aussagenlogische Formel, um sie zu einer erfüllbarkeits äquivalenten 3KNF umzuformen, befolge folgende Rechenanleitung:

- 1. Mit Hilfe von deMorgan's Regel werden wir Formeln der Form $\neg(\xi)$ mit $\xi \in AL \setminus VAR$ umformen, sodass alle Negationszeichen an den Variablen stehen. Dieser Vorgang dauert so lange wie die Formel lang ist, kann also mit linear abgeschätzt werden.
- 2. Für jeden Junktor außer der Negation führen wir eine Variable Y_x ein. Wobei der Wurzelknoten der Formel, also falls $\varphi = (\xi' \bullet \xi'')$ mit $\bullet \in \{\lor, \land\}$, \bullet die Variable Y_0 erhalten würde. Mithilfe der Varibale wird jeder solchen Teilformel eine neue Teilformel zugeordnet: $Y_x \leftrightarrow (\xi' \bullet \xi'')$ Alle diese Teilformeln und die Variable des Wurzelknotens (Y_0) werden mit einem \land verknüpft. Diese Formel definieren wir als Ψ . Ψ ist erfüllbarkeitsäquivalent zu φ . Von einer erfüllenden Belegung für φ erhält man eine erfüllende Belegung für Ψ indem man die Belegung übernimmt und die Y-Variablen mit den an den jeweiligen Junktoren resultierenden Wahrheitswerten belegt. Eine erfüllende Belegung von Ψ ist auch trivialerweise auch eine für φ .
- 3. Es gilt: $(Y_x \leftrightarrow (\xi' \bullet \xi'')) \leftrightarrow (Y_x \lor \neg \xi') \land (Y_x \lor \neg \xi'') \land (\neg Y_x \lor \xi' \lor \xi'')$ Die Rechenanleitung erzeugt verundete Disjunktionsklauseln der Größe höchstens 3, was einer 3KNF entspricht. Alle Umformungsschritte können in polynomiellem Aufwand durchgeführt werden.

Aufgabe 3

Es ist zu zeigen, dass $(i) \leftrightarrow (ii)$ gilt. D.h es muss gezeigt werden, dass

1. $(i) \rightarrow (ii)$

2. $(ii) \rightarrow (i)$

Sei Φ eine erfüllbare Formelmenge.

1. $(i) \rightarrow (ii)$

Annahme: Für alle Formeln φ mit $var(\varphi) \subseteq var(\Phi)$ gilt $\Phi \models \varphi$ oder $\Phi \models \neg \varphi$ Sei φ beliebig. Fallunterscheidung über die Anzahl Belegungen von Φ :

- Fall 1: Es gibt genau eine Belegung β , sodass $\beta \models \Phi$ Falls $\beta \models \Phi \land \beta \models \varphi$ folgt direkt $\Phi \models \varphi$, da keine andere Belegung zu überprüfen ist. Falls $\beta \not\models \varphi \land \beta \models \Phi$ ist φ für die einzige Belegung, bei der Φ erfüllt ist, nicht erfüllt. Also ist φ nicht erfüllt wenn Φ erfüllt, formal: $\Phi \models \neg \varphi$
- Fall 2: Es gibt mehr als eine Belegung β , sodass $\beta \models \Phi$ Dann gibt es den Fall, dass für ein β gilt $\beta \models \Phi \land \beta \models \varphi$, aber es kann auch noch ein anderes β' geben mit $\beta' \models \Phi \land \beta' \not\models \varphi$. Damit gilt weder $\Phi \models \varphi$ noch $\Phi \models \neg \varphi$

Da die Aussage nur gilt, wenn Φ genau eine erfüllbare Belegung hat, gilt: $(i) \to (ii)$

 $2. (ii) \rightarrow (i)$

Annahme: Es existiert genau eine Belegung β von var (Φ) mit $\beta \models \Phi$ Sei φ beliebig. Fallunterscheidung über die Anzahl Belegungen von Φ :

- Fall 1: $\beta \vDash \varphi$ Es folgt direkt $\Phi \vDash \varphi$, da keine andere Belegung zu überprüfen ist.
- Fall 2: $\beta \not\models \varphi$ φ ist für die einzige Belegung, bei der Φ erfüllt ist, nicht erfüllt. Also ist φ nicht erfüllt wenn Φ erfüllt, formal: $\Phi \models \neg \varphi$

Daraus folgt, dass $\Phi \vDash \varphi$ oder $\Phi \vDash \neg \varphi$, also $(ii) \rightarrow (i)$

Aus 1. und 2. folgt: $(i) \leftrightarrow (ii)$

Aufgabe 4

(i) ϕ_1 ist in H-Form.

 ϕ_2 ist nicht in H-Form (keine KNF).

 ϕ_3 ist nicht in H-Form (mehr als ein positives Literal).

(ii) Sei ϕ eine beliebige Formel in H-Form. Damit ϕ erfüllt ist, muss jede Klausel erfüllt werden.

Annahmen: $\beta \models \phi$ und $\beta' \models \phi$

Es gibt folgende Fälle für den Aufbau einer Klausel k:

- (a) k = XUm k zu erfüllen muss $\beta(X) = 1$ und $\beta'(X) = 1$. Somit ist per Definiton auch $(\beta \sqcap \beta')(X) = 1$ und $(\beta \sqcap \beta')$ erfüllt diese Klausel.
- (b) $k = \neg X$ Um k zu erfüllen muss $\beta(X) = 0$ und $\beta'(X) = 0$. Somit ist per Definiton auch $(\beta \sqcap \beta')(X) = 0$ und $(\beta \sqcap \beta')$ erfüllt diese Klausel.
- (c) $k = \neg X_1 \lor \neg X_2 \lor \neg X_3 \lor ...$ Um k zu erfüllen muss es ein X_i und X_j geben, sodass $\beta(X_i) = 0$ und $\beta'(X_j) = 0$. i und j können hierbei auch identisch sein. Somit ist per Definiton auch $(\beta \sqcap \beta')(X_i) = 0$ und $(\beta \sqcap \beta')(X_j) = 0$ und $(\beta \sqcap \beta')$ erfüllt diese Klausel.
- (d) $k = X_1 \vee \neg X_2 \vee \neg X_3 \vee ...$

Um diese Formel zu erfüllen gibt es wiederum 4 Fälle:

- (1) $\beta(X_1) = 1$ und $\beta'(X_1) = 1$ Dann gilt $(\beta \sqcap \beta')(X_1) = 1$ und $\beta \sqcap \beta'$ erfüllt die Formel.
- (2) $\beta(X_1) = 1$ und $\beta'(X_i) = 0$ mit i ungleich 1 Dann gilt $(\beta \sqcap \beta')(X_i) = 0$ und $\beta \sqcap \beta'$ erfüllt die Formel.
- (3) $\beta(X_i) = 0$ und $\beta'(X_1) = 1$ mit i ungleich 1 Dann gilt $(\beta \sqcap \beta')(X_i) = 0$ und $\beta \sqcap \beta'$ erfüllt die Formel.

(4)
$$\beta(X_i) = 0$$
 und $\beta'(X_i) = 0$ mit i, j ungleich 1 Dann gilt $(\beta \sqcap \beta')(X_i) = 0$ und $\beta \sqcap \beta'$ erfüllt die Formel.

(iii) Wir wählen $\phi = A \vee B$ als Formel in KNF.

Formte man ϕ in H-Form um, so würde diese ebenfalls nur aus den beiden Variablen A und B bestehen und hätte höchstens 3 verschiedene Klauseln, nämlich $\neg A \lor \neg B$, $\neg A \lor B$, $A \lor \neg B$, da $A \lor B$ nicht der H-Form genügt.

Klauseln, die äquivalent zu \top oder \bot sind oder nur aus einem Literal bestehen, werden ebenfalls nicht betrachtet, da sie trivialerweise nicht äquivalent zu ϕ sein können.

Alle Formeln, die sich aus den 3 Klauseln bilden lassen, sind nicht äquivalent zu ϕ .

- (a) $(\neg A \lor \neg B) \land (\neg A \lor B) \not\equiv \phi$
- (b) $(\neg A \lor \neg B) \land (A \lor \neg B) \not\equiv \phi$
- (c) $(\neg A \lor B) \land (A \lor \neg B) \not\equiv \phi$

Die Fälle, die die 3 Klauseln jeweils mit sich selbst zu verunden, sind trivialerweise nicht äquivalent zu ϕ . Somit gibt es keine äquivalente Formel in H-Form zu ϕ .