MATH 405: Exam 2

Micah Sherry

April 18, 2025

- 1. Consider $R = \mathbb{Z}_4[x]$ And the Ideal $J = \langle x^2 \rangle$ Now consider the quotient ring $\mathbb{Z}_4[x]/\langle x^2 \rangle$.
 - (a) Explain how many elements are in $\mathbb{Z}_4[x]/\langle x2\rangle$. $\mathbb{Z}_4[x]/\langle x2\rangle = \{a+bx+\langle x^2\rangle|a,b\in\mathbb{Z}_4\}$ Since \mathbb{Z}_4 has 4 elements, $\mathbb{Z}_4[x]/\langle x2\rangle$ has 16 (4 choices for each a and b)
 - (b) give the multiplication table for $\mathbb{Z}_4[x]/\langle x2\rangle$ See last page.
 - (c) indicate for each element of $\mathbb{Z}_4[x]/\langle x2\rangle$ if it is a unit, zero divisor or neither

None
unit
zero divisor
unit

2. Recall we have shown that for $R = \mathbb{R}[x]$ every ideal is principal. That is if J is an ideal of $\mathbb{R}[x]$, then $J = \langle g(x) \rangle = \{f(x)g(x)|f(x) \in \mathbb{R}[x]\}$ for some polynomial g(x).

Let
$$J = \langle 2x^2 + 3x + 1, 10x^2 + x - 2 \rangle = \{ (2x^2 + 3x + 1)f(x) + (10x^2 + x - 2)g(x)|f(x), g(x) \in \mathbb{R}[x] \}.$$

Now J is a principal ideal so every element of J is expressible as a factor of one polynomial, find a h(x) such that $J = \langle h(x) \rangle$

h(x) can be found by using the Euclidean algorithm algorithm for polynomial over $\mathbb{R}[x]$

$$10x^{2} + x - 2 = 5(2x^{2} + 3x + 1) - 14x - 7$$
$$2x^{2} + 3x + 1 = (-\frac{1}{7}x - \frac{1}{7})(-14x - 7) + 0$$

Therefore the gcd of $2x^2 + 3x + 1$ and $10x^2 + x - 2$ is -14x - 7. Thus, $J = \langle -14x - 7 \rangle$

1

3. Let R be a commutative ring and J be an ideal of R. Define the relationship congruence $\mod J$ on R as follows: For $r, s \in R$, $r \equiv_J s$ if and only if $r - s \in J$. Show that the relation congruence $\mod J$ is an equivalence relation

Proof. Let $x \in R$, Notice $x-x = O_R$ which is an element of J. Therefore equivalence mod J is reflexive.

Let $x, y \in R$ with $x \equiv_J y$. So, x - y = j for some $j \in J$. Notice $y - x = -1(j) \in J$ (by absorption property of J). Therefore equivalence $\mod J$ is symmetric.

let $x, y, z \in R$ with $x \equiv_J y$ and $y \equiv_J z$. $x - y \in J$ and $y - z \in J$ now consider $(x - y) + (y - z) = x - z \in J$ (by closure of J under addition). Therefore equivalence mod J is transitive. Since equivalence mod J is reflexive, symmetric, and transitive it is an equivalence relation

4. Recall we have shown that for $R=\mathbb{Z}$ every ideal is principal. That is if J is an ideal of \mathbb{Z} , then $J=\langle k\rangle=\{kn|n\in\mathbb{Z}\}$ for some positive integer k. Define an ideal M of a commutative ring R to be maximal if $M\neq R$ and if J is an ideal with $M\subseteq J\subseteq R$, then either J=M or J=R. Prove an ideal M of \mathbb{Z} is maximal if and only if $M=\langle p\rangle$ for some prime number p.

Proof. (\Rightarrow) Assume for the sake of contradiction that $M = \langle p \rangle$ Is Maximal and p is not prime. So, $p = p_1p_2$ for some $p_1, p_2 > 1 \in \mathbb{Z}$. Let $x \in \langle p \rangle$, So $x = pn = p_1(p_2n)$ for some $n \in \mathbb{Z}$. Notice $p_2n \in \mathbb{Z}$, So $x \in \langle p_1 \rangle$, which implies $\langle p \rangle \subseteq \langle p_1 \rangle \subseteq \mathbb{Z}$. Since $\langle p_1 \rangle \neq \langle p \rangle$ and $\langle p_1 \rangle \neq \mathbb{Z}$, $\langle p \rangle$ is Not a maximal ideal contradicting the assumption. So if ideal $M = \langle p \rangle$ of \mathbb{Z} is maximal then p is a prime number.

- (\Leftarrow) let p be a prime number and let $j \in \mathbb{Z}$ such that $\langle p \rangle \subseteq \langle j \rangle \subseteq \mathbb{Z}$. Notice $p \in \langle p \rangle$ and $p \in \langle j \rangle$. So, p = jk for some $k \in \mathbb{Z}$, which implies that j|p and since p is prime j = 1 or j = p. If j = 1 then $\langle j \rangle = \mathbb{Z}$ and if j = p then $\langle j \rangle = \langle p \rangle$. So, if p is prime then $\langle p \rangle$ is maximal. This completes the proof.
- 5. Let G be a group (not necessarily commutative). Recall the center of the group is $Z(G) = \{g \in G | g \circ h = h \circ g \text{ for all } h \in G\}$. Prove that a group G is commutative if and only if Z(G) = G.

Proof. (\Rightarrow) Let G be a commutative group, let $g, h \in G$, Since G is commutative $g \circ h = h \circ g$ so, $g \in Z(G)$. Thus Z(G) = G.

(\Leftarrow) Let Z(G) = G and let $g \in G$. Since $g \in Z(G)$, $g \circ h = h \circ g$ for all $h \in G$, Therefore G is commutative. This completes the proof. □