

A Primary Standardization of ⁵⁵Fe by Isothermal Microcalorimetry

(and its use for a NIST SRM calibration & in the BIPM intercomparison)

R. Collé

(assisted by P. Volkovitsky & L. Laureano-Perez)

Radioactivity Group Ionizing Radiation Division Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8462 USA

Comparisons and Uncertainties Workshop Bureau International des Poids et Mesures Pavillon de Breteuil Sèvres, FRANCE 18 september 2008

BLACK BOX METROLOGY

Basic relationship between

Activity A

is
$$dH/dt = P = A \hat{E}$$

 \hat{E} = average energy per decay

³ H / ⁵⁵ Fe	0.9 μ W ⋅ GBq -1
¹⁰³ Pd / ¹²⁵	9.
³² P	111.
⁹⁰ Sr- ⁹⁰ Y	181.
²²⁶ Ra	4338.

```
Assumes absorb & measure
ALL ionizing radiation (no
losses)
Iosses)
And no "heat defect" effects
And no chemistry)
(I.e., no chemistry)
```

CSC "Isothermal Microcalorimeter (IMC)"

port assemblies -- source (absorbers) holders & cells

$$P = V^2/R$$

embedded in source-holder cell

$$P = V^2/R$$

mean (P) = 1/2 mean $(P_{+V}) + 1/2$ mean (P_{-V})

var
$$(P) = 1/2 \text{ var } (P_{+V}) + 1/2 \text{ var } (P_{-V}) + \text{covar } (P_{+V}, P_{-V})$$

+ autocorr (P_{+V}) + autocorr (P_{-V})

So, the calibration data kind of looks like this ...

Run 132 (55Fe) -calibration 4

Two cases

(with different measurement requirements)

- -- for decaying short-lived nuclides
- -- for long-lived nuclides (need baseline determinations)

...and source "heat defect / heat excess" precautions

Historic measurement & calibration data illustrate these

IMC Lab Book II, p.79

IMC Lab Book II, p.97

combusted ³²P balloon "A"

uncombusted ³²P balloon "C"

Radiance 32P balloon "A" (combusted)

Get $P_{\rm B}$ and $P_{\rm 0}$ from "fit" $P = P_{\rm B} + P_{\rm 0} \exp(-\lambda t)$

Novoste 90 Sr-90 Y new seeds (16)

requires baseline $P_{\rm B}$ measurement

⁵⁵Fe

pure EC decay

For calorimetry, we only need 2 pieces of nuclear/atomic data

Half-life:

Average energy per decay:

(5.87 + 0.02) keV -- M.M. Bé (sept. 2004)

$$T_{1/2} = (2.737 \pm 0.011) \text{ a}$$
3/2-
% $\epsilon = 100$
55**Fe**

$$Q = (231.21 \pm 0.18) \text{ keV}$$

ENSDF (2001) Audi (2003)

$$\hat{E} = (5.87 \pm 0.02) \text{ keV/decay}$$
 $B\acute{e} (2004)$

THE PLAN:

Get a 1 Ci (37 GBq) supply of activity ...

Make a solid source for the calorimetry

Use part of the supply to make solutions that would be gravimetrically linked to the calorimetry source ...

USEFUL ADVICE:

Don't change your **plan** just before starting your work ..!

$$Fe^{+3} + OH^{-} \rightarrow Fe(OH)_{3} \rightarrow Fe_{2}O_{3}$$

messy & quantifiability (?)

$$Fe^{+3} + H_2S^- \rightarrow Fe_2S_3$$

Smelly, toxic (& wasn't arranged in my absence)

$$Fe^{+3} + 3Cl^- \rightarrow FeCl_3$$

Lattice energy

Time / days

Typical run data

Typical (in)stability

baseline & calibration reproduction -- in support slides

run	temp C	date	days	net P	unc
130	23	18-Aug-04	7	25.156	0.64
131	23	25-Aug-04	9	25.641	0.289
132	23	3-Sep-04	7	25.990	0.451
134	23	14-Sep-04	23	25.584	0.088
135	23	7-Oct-04	8	25.555	0.119
136	23	15-Oct-04	7	25.746	0.253
137	23	22-Oct-04	7	25.334	0.098
139	23	5-Nov-04	13	25.326	0.317
140	23	18-Nov-04	8	25.478	0.137
141	23	26-Nov-04	8	25.661	0.159
142	23	3-Dec-04	12	25.402	0.124
150	23	17-Mar-05	31	25.822	0.154
152	23	5-May-05	26	25.675	0.186

Results of 13 insertion trials

vary conditions of absorbers, calibrations, water levels, etc...

$$T_0 = 1200 EST 1 July 2004$$

Mean P = $25.567 \mu W(w/ 998.9 d)$

Corrected **P = 25.562 \muW** (w/ 1001.1 d)

% sdm = 0.25 %

additional runs mar-apr 2006

NIST Uncertainty Analysis for ⁵⁵Fe Microcalorimetric Standardization of NIST Solution Standards

			Relative standard uncertainty
Item	Uncertainty component	Assessment	contribution on massic
item	Checitainty component	Type	activity of 55Fe (%)
1	Measurement precision for 13 independent	1 ypc	activity of Te (78)
	calorimetric determinations of the power of	A	0.25
	solid source C; includes precision in the	Α	0.23
	calibrations & baseline measurements for each		
	determination; std. dev mean for v=12 degrees		
	freedom (passes Normal test)		
2	Gravimetric (mass) linkage of source C to		
	NIST standard solutions	В	0.07
3	Activity loss in source C preparation	В	0.07
4	Power calibration of calorimeter, includes any	ь	0.13
4	systemic heat losses	В	0.05
5	Possible heat defect / excess effects	В	****
6		В	0.1
0	55Fe decay corrections during calorimetric		0.02
	measurements	В	0.02
7	55Fe decay corrections from calorimetric	В	0.08
_	reference time to BIPM reference time.		
8	Average energy per decay for 55Fe (to convert		
	calorimetric power to activity)	В	0.17
	COMPANIES OF LASS INC. INC.	0.20	
	COMBINED STANDARD UNCERTAINT	Y	0.39

Nuclide	Method	relative standard uncertaint y	Confirmatory Measurement	Difference (%)
55Fe (NIST solution)	4π calorimetry	0.39 %	4π LS TDCR (Polatom) 4π LS TDCR (LNHB)	-0.87 -0.43
55Fe (BIPM solution)	4π calorimetry (linked by LS)	0.68 %	weighted mean value of 15 NMI labs unweighted mean of 15 NMI labs (all methods $n = 24$)	-0.37 -0.02

3 LS counters

LS Counters

	LS spectrometer model	Sum-coincidence pulse spectrum & ADC	Other stuff
system B2	Beckman LS 6500	Logarithmic ? 32K analyzer / variable (0.06 keV per channel)	H # with ¹³⁷ Cs unknown resolving time 5.6% - 2.5 keV - ²⁰⁹ Po ce(γ) about 50% - ⁵⁵ Fe
system P	Packard Tri-carb A2500TR	Linear 2048 channels (linear) (1 keV per channel)	tSIE with ¹³³ Ba 12 μs (fixed) ? 5.2% - 2.5 keV - ²⁰⁹ Po ce(γ) about 40% - ⁵⁵ Fe
system W	Wallac 1414 Winspectral	Logarithmic (1-2000 keV)	SQP(E) with ¹⁵² Eu unknown resolving time 5.1% - 2.5 keV - ²⁰⁹ Po ce(γ) about 40% - ⁵⁵ Fe

Scintillants

Commercial scintillant	Acronym descriptor	Manufacturer	Composition
Ready Safe	RS	Beckman	Alkylated benzene 1-Phenyl-1-Xylylethane (PXE) 50% to 80%; Alkylphenol Ethoxylate 20% to 50%
OptiPhase HiSafe 3	HS	Wallac	DIN based Di-isopropylnaphthalene > 60%; Poly(ethyleneglycol) mono(4- nonylphenyl)ether 25% to 30%
Insta Gel Plus	IG	Perkin Elmer	Pseudocumine based 1,2,4-trimethylbenzene 40% to 60%; Ethoxylated alkylphenol 40% to 60%;

Cocktail Compositions

Series	Scintillant	Solutions	Water fraction	Aliquant (mg) / Fe mass (mg)
1	RS, HS	BIPM, SRM, Calorimetry	0.10	15 – 80 / 19 – 22
2	RS, HS, IG	BIPM, SRM, Calorimetry	0.10	11 – 47 / 0.2 – 0.8
3	RS, HS, IG	SRM	0.005 – 0.10	50 / 0.1
4	RS, HS, IG	BIPM, SRM, Calorimetry	0.04 – 0.10	44 – 70 / 8 – 20
5	IG	BIPM, SRM, Calorimetry	0.06 – 0.30	30 – 275 / 12 – 60

Calorimetry

13 independent determinations

LS intercomparisons

776 activity ratios; variables include:

- 3 counters
- 3 scintillators
- 44 matched cocktails
- 4 distinct aq. fraction (+Fe) compositions
- 2 NIST solution dilutions
- 97 days of aging

Normality

BIPM/CAL

SRM/CAL

BIPM

cal soln S

 $T_0 = 30 \text{ november } 2005$

522.6 kBq/g

$$U(k=1) = 0.66 \%$$

 $T_0 = 1$ july 2004

78.78 kBq/g

SRM 4929F

 $T_0 = 30 \text{ november } 2005$

58.43 kBq/g

$$U(k=2) = 1.7 \%$$

- 4π(PC)β,x-γ coinc. count. eff. tracing;
- 4π(PC)β,x-γ anticoinc. count. eff. tracing
- $4\pi(PPC)\beta_{,x-\gamma}$ coinc. count. eff. tracing; $4\pi(PPC)e_{A}$ -x counting; * $4\pi(MPPC)e_{A}$ -x counting
- CN method with ³H as a tracer;

 CN method with ⁵⁴Mn as a tracer; □ TDCR method
- 4π(LS) eff. tracing with ⁵⁴Mn as a tracer; Δ 4π(LS) eff. tracing with TDCR and using ⁵⁴Mn as a tracer
- Microcalorimetry;
 x-ray at defined solid angle;
 x-ray at defined solid angle with a Si(Li) detector

Item	Uncertainty component	Assessment Type	Relative standard uncertainty contribution on massic activity of 55Fe (%)
1	LS measurement precision; reproducibility in		
	activity ratio w/ 44 ⁺ sets of cocktails of matched		
	composition; std. dev mean for $v = 765$ degrees	A	0.26
	freedom (passes Normal test)		
2	LS cocktail stability and composition mismatch		
	effects; std dev mean for v_{eff} =11 effective		
	degrees freedom (3 scintillants; 4 aqueous	A	0.47
	fractions; 2 dilutions); passes Normal test		
3			
	wholly embodied in items 1 & 2		
4	LS counter (energy threshold) dependencies	A	0.06
5	Scintillator dependencies; wholly embodied in	A	
	items 1 & 2		
6	6 Gravimetric (mass) measurements for LS		0.05
	sources		
7	Gravimetric (mass) measurements for dilutions	B B	0.07
8	8 Livetime determinations for LS counting time		0.06
	intervals; includes uncorrected deadtime effects		
9	Decay corrections for 55Fe (assumed half-life	В	0.012
	unc.)		
10	Limit for photon-emitting impurities	В	0.11
11	Calorimetric primary standardization of NIST	В	0.39
	55Fe solutiuons (see ATTACHMENT # 6)		
	COMBINED STANDARD UNCERTAINT	T Y	0.68

NIST Uncertainty Analysis for ⁵⁵Fe Massic Activity for the BIPM International Comparison

Uncertainty for the ⁵⁵Fe SRM is comparable;

$$U(k=2) = 1.7 \%$$

Nuclide	Method	relative standard uncertainty	Confirmatory Measurement	Difference (%)
⁵⁵ Fe (NIST solution)	4π calorimetry	0.39 %	4π LS TDCR (Polatom) 4π LS TDCR (LNHB)	-0.87 -0.43
⁵⁵ Fe (BIPM solution)	4π calorimetry (linked by LS)	0.68 %	weighted mean value of 15 NMI labs (one value per lab)	-0.37
			unweighted mean of 15 NMI labs (all methods n = 24)	-0.02

13 calorimetric determinations

(u = 0.39%)

(u = 0.68 %)

Some support slides follow, if needed

typical calibration data set

Filliben normality test for calibration data (Novoste seeds)

Novoste 90 Sr new seeds (Z1+Z2)

¹⁰³Pd data

1st & 2nd insertions (brass)

Runs 73 & 74

So... How good is calorimetry?

Typically, better than 1 % agreement w/ LS-based standardizations of ³²P and ⁹⁰Sr/⁹⁰Y (ion chamber transfer)

Power calibrations (for n>20 determinations) has typical s.d.m. < 0.1 %

Replicate measurement uncertainty (s.d.) is about 1 % (s.d.m = s.d./ \sqrt{n}) if can get P_B by fit with decay or if one has sufficient replications to get ΔP (with little decay)

run 132

Baseline	Pb1
reproduction	Pb2
•	Pb3
	Ph4

	_
Pb1	0.0203
Pb2	0.1359
Pb3	0.1391
Pb4	0.6878
Pb5	0.6880
Pb6	0.6359

Calibration reproduction

Run 131	S cell (+)	R cell (-)
Pc1	5963	
Pc2		6051
Pc3	5979	
Pc4		6032
Pc5	5954	
Pc6		6055

Compare prior run

Run 130	S cell (+)	R cell (-)
Pc1	5979	
Pc2		6045
Pc3	5922	
Pc4		6031

S/R cell difference was new!

Power measurement reproducibility (with run)

Run 131	P(5952) at t0
Ps1	25.562
Ps2	25.629
Ps3	25.637
mean	25.609
sd (%)	0.16
sdm (%)	0.093

Run 130	P(5952) at t0
Ps1	25.399
Ps2	25.200
Ps3	25.212
mean	25.270
sd (%)	0.440
sdm(%)	0.250

Cocktail Stability

LS intercomparisons -- 776 activity ratios

variables included:

- 3 counters
- 3 scintillators
- 44 matched cocktails
- 4 distinct aq. fraction (+Fe)
- compositions
- 2 NIST solution dilutions
- 97 days of aging

I guess I am supposed to have a conclusion.

So...

Calorimetry is SLOW

needs long time to thermally stabilize typically need multiple determinations different / absorbers / Monte Carlo calc. verifications

- **Calorimetry NOT Necessarily Non-Destructive method**
- NOW, uncertainty is in range of ± 0.5 % or so Largely due to baseline instabilities and uncertainties in establishing baselines to get ΔP
- Power may be measured very accurately

 But still need average energy per decay to get Activity