Ordinary Least Squares is an analytical method to find the optimal weight vector \mathbf{w} for linear regression. This method is based on the assumption that the response of a linear function is $\mathbf{y}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \boldsymbol{\varepsilon}$ where the residual error between model predictions and the true response $\varepsilon_i = y_i - \mathbf{w}^T \mathbf{x}_i$ is normally distributed with mean μ and variance σ^2 .

The density function $p(y|x, \mu, \sigma^2)$ is also normally distributed with mean μ and variance σ^2 . μ is a linear function of x: $\mu = \mathbf{w}^T \mathbf{x}_i$. It is reasonable to assume that the noise component, σ^2 , is the same for the entire dataset.

Assuming each training example is independent and identically distributed (*iid*), the likelihood function for the dataset is

$$\mathcal{L}(\mu, \sigma^2) = \prod_{i=1}^m \left[\left(\frac{1}{2\pi\sigma^2} \right)^{\frac{1}{2}} \cdot exp\left(-\frac{(y_i - \mu)^2}{2\sigma^2} \right) \right]$$

The optimal \boldsymbol{w} can be determined by applying MLE to RSS, that is, by setting $\frac{\partial RSS}{\partial \boldsymbol{w}} = 0$ and solving for \boldsymbol{w} . In matrix notation $\boldsymbol{w}_{OLS} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\boldsymbol{y}$. This is also known as the normal equation.

Complete the start-up code to perform the following tasks:

- Apply the normal equation to find $\mathbf{w}_{OLS} = [w_0, w_1]^T$.
- Print the predicted price of a 5000 square foot house. Remember to "normalize" the square footage first.
- Plot the regression line \hat{y}_{OLS} over the training examples. The line is defined by w_{OLS} .

Submit the python code (.ipynb file). Your code must run on Google Colab.