Decision trees and Random Forests

Al for ecologists

Paul Tresson

20/05/25

Introduction

Motivation

Motivation

Motivation

Decision Trees

Simple example

Disturbance	Habitat	Avg. temp.	Presence
Yes	Shrubs	10	0
Yes	Forests	12	0
No	Shrubs	18	1
No	Shrubs	25	1
Yes	Shrubs	28	1
Yes	Forests	30	0
No	Forests	33	0

Adapted from StatQuest

Simple example

Disturbance	Habitat	Avg. temp.	Presence
Yes	Shrubs	10	0
Yes	Forests	12	0
No	Shrubs	18	1
No	Shrubs	25	1
Yes	Shrubs	28	1
Yes	Forests	30	0
No	Forests	33	0

$$\sum_{i=1}^J \left(
ho_i \sum_{k
eq i}
ho_k
ight) = 1 - \sum_{i=1}^J
ho_i^2$$

$$1 - (\frac{1}{1+3})^2 - (\frac{3}{1+3})^2 = 0.375$$

Leaf Gini =
$$(\frac{4}{4+3})0.375$$

$$1 - (\frac{0}{0+1})^2 - (\frac{1}{0+1})^2 = 0$$

Building the tree

Disturbance	Habitat	Avg. temp.	Presence
Yes	Shrubs	10	0
Yes	Forests	12	0
No	Shrubs	18	1
No	Shrubs	25	1
Yes	Shrubs	28	1
Yes	Forests	30	0
No	Forests	33	0

Regression trees

Adapted from sklearn documentation

Regression trees

Non-linear data, multiple outputs!

Figure from sklearn documentation

Random Forests

Advantages

different inputs

Advantages

- different inputs
- different outputs

Advantages

- different inputs
- different outputs
- \approx explainable

Advantages

- different inputs
- different outputs
- \approx explainable
- pretty fast

Advantages

- different inputs
- different outputs
- \approx explainable
- pretty fast
- seasonned

Advantages

- different inputs
- different outputs
- \approx explainable
- pretty fast
- seasonned

Drawbacks

need to test hyper-parameters

Advantages

- different inputs
- different outputs
- \approx explainable
- pretty fast
- seasonned

- need to test hyper-parameters
- need for rich descriptors

Decendants

- Gradient Boosting
- XGBoost

Usefull ressources

- scikit-learn docs!
- StatQuest

Thanks for you attention!

Let's practice!

References i