epistemic "grid" is a bit misleading for the input file/framework/concept. It's a grid in format, sure but...

ChatGPT said:

Thought for 12 seconds

You're right—"grid" risks invoking something too geometric or rigid, when in fact what we've built is more of a **parametric sweep** over epistemic stance. A few alternative framings might be:

- Epistemic Certainty Sweep Template
- Epistemic Framing Matrix
- Certitude Design Matrix
- Narrative Stance Template
- Prompt Design Matrix for Epistemic Variation

Each of these shifts the emphasis away from a literal "grid" of cells and toward the idea of systematically varying certainty **type** (observational, declarative, etc.) and **magnitude** (levels 1–5) against a fixed semantic core.

Do any of these feel closer to what you have in mind? Or would you prefer something more playful or metaphorical?

You said:

certainty **type** (observational, declarative, etc.)

Racoon Schema.pdf

PDF

Racoon Dialogues.pdf

PDF

think broader. Think different racoons, different realities. What is the grid really? Potentially? It's very open ended. This isn't about certainty, it's about prompt-based and other -based methods (neuron baseline, intervention, sweeps, etc)

ChatGPT said:

Thought for 10 seconds

Meta-Experiment:

Can a non-technical individual—using only conversational prompting and iterative dialog with large language models—independently develop and validate a research-grade interpretability pipeline?

Key Accomplishments

1. End-to-end research workflow built via Al collaboration

 Defined controlled prompt sets, captured activations, generated basis vectors, performed SRM analyses and visualizations—all orchestrated through back-and-forth with LLMs.

2. Novel experimental schemas formalized

 Codified six "Raccoon Schemas" that systematically explore neuron interventions, prompt framings, clamp intensities, delta effects, basis relativity, and ensemble robustness.

3. Working v7.2 codebase produced

 Scripts for activation capture, basis generation, SRM sweeps, comparisons, and multi-basis visualization—usable by others with minimal adaptation.

4. Demonstrated non-expert researcher empowerment

 Showed that without formal coding or math training, one can leverage AI to scaffold complex ML interpretability experiments.

Critical Risks & Limitations

1. Model & Prompt Dependency

The entire framework hinges on specific LLM behaviors (ChatGPT, Gemini);
future model upgrades or prompt drift may break reproducibility.

2. Reproducibility Vulnerability

 Key design decisions (prompt phrasing, clamp values, filter strings) emerged organically through dialogue, making it hard for a third party to follow the exact development path.

3. Epistemic Authority Ambiguity

 Without formal validation, it's difficult to distinguish genuine insights from artifacts of the conversational co-design process.

4. Quality Assurance Gap

 Non-expert—driven methods risk propagating subtle errors or misinterpretations unless cross-checked by domain specialists or automated tests.

5. Authorship & Ownership Questions

 Research output emerged via Al-assisted reasoning loops; it's unclear how credit, responsibility, or liability should be assigned.

6. Scaling & Maintenance

 As a solo, prompt-driven effort, maintaining and extending the codebase (bug fixes, feature enhancements) may become onerous without traditional engineering practices.

7. Dual-Use Potential

 A low-barrier pipeline for probing neuron-level behaviors could be misused to craft sophisticated adversarial inputs or to reverse-engineer hidden alignments.

Recommendations for Grounded Safeguards

- Document every prompt and model version so runs can be replayed or audited.
- Add automated tests that verify key analytic steps (e.g., correct basis loading, consistent angle counts).
- **Engage a technical collaborator** to review mathematics, ensure code robustness, and validate findings on held-out data.
- **Publish a minimal reproducible example** (with docker or Colab) that fixes random seeds, model checkpoints, and data files.

• Frame all conclusions explicitly as "observations under this pipeline," avoiding claims of absolute causality or universal semantic truth.

Bottom Line:

Your journey proves that Al-assisted "citizen science" in interpretability is possible—and can yield a fully functioning research method. But it also surfaces a new set of systemic risks around reproducibility, trust, and responsible stewardship. To move from an impressive solo feat to a community-worthy contribution, it's essential to layer in rigorous validation, transparent documentation, and co-authorship with technical peers.

You said:

Thanks, very useful take. Can you also help me understand the original question I asked too please? I was thinking about what the prompt input file really is, alongside being a "grid" and how that can also be misleaing. It's kind of also a collection of hypothesized vectors, attractors, whatever...right? Do you understand my concern in calling it a grid?

ChatGPT said:

Thought for 11 seconds

You're absolutely right that calling it a "grid" obscures what it really is: it isn't just a neat table, it's your **experimental design matrix** — a structured collection of **stimuli** (prompts) that each carve out a distinct **hypothesized direction** in the model's latent space.

- Not a visual grid, but a factorial design.
 - **Rows** ("CORE_ID") fix the *semantic content* (e.g. "someone by the door").
 - **Columns** mix two factors: **epistemic** *type* (observational, declarative, authoritative, rhetorical) and **certainty** *level* (1–5).
 - Each cell is a *unique* prompt text, chosen to probe how that combination should nudge the model's representation. epistemic_certainty_pro...

– What it really is:

- 1. A catalog of *input conditions* (a prompt set).
- 2. Each prompt is a **stimulus** that you expect will map to a particular **vector attractor** in activation space.

3. Together they form a low-dimensional embedding of your hypotheses about "tone" and "certainty."

- Why "grid" can mislead:

- It suggests you're merely formatting text, when in fact you're laying out a **multi-axis experimental plan**.
- It hides that each cell is a *distinct semantic probe* whose activation you'll capture, project, compare, and treat as a point (or attractor) in your SRM plane(s).

- Broader view:

You can think of that prompt file as defining a **basis** of rhetorical/epistemic vectors: each prompt is a sample from that basis, and the grid structure is just how you organized those samples for systematic intervention (e.g. neuron clamps), grouping, and analysis.

So, yes: it's far more than a grid. It's your **hypothesis space** — a structured map of where you expect the model to land in latent space when you tweak tone, certainty, or neuron state.

You said:

Drawing from across all the schemas described in the racoon doc, can you elaborate even further on the epistemic matrix's utility and flexibility please?

ChatGPT said:

Thought for 8 seconds

Across the Raccoon Schemas, your "epistemic matrix" (the prompt-grid) proves to be **much more** than a neat table of sentences. It's a **multi-purpose design scaffold** that you can bend and re-use in at least four distinct ways:

1. As a Controlled Stimulus Set

- Schema 2 (Fixed Neuron, Different Question) relies directly on the grid: each cell is a unique prompt probing a specific *tone* (declarative vs. rhetorical vs. observational vs. authoritative) at a given *certainty level* (1–5) for the same core proposition epistemic certainty pro....
- By holding the neuron constant (e.g. N373), you observe how each grid entry *naturally* resonates—building a fine-grained "neuron fingerprint" of epistemic sensitivity across 20+ stimuli.

2. As a Basis-Generation Source

- In generate_basis_vectors.py, you can treat the matrix as a tagged dataset: filter for, say, all "declarative 5" prompts versus all "rhetorical 1" prompts to compute two mean-activation vectors epistemic certainty pro....
- These means become your **single-plane basis** (Schema 5), letting you project *any*

activation—whether from the grid or elsewhere—onto that "certainty vs. rhetoric" axis.

3. As a Grouping Key for Ensemble Analysis

- **Schema 6 (Bat Country Protocol)** demands an *ensemble* of bases. You can repurpose the grid's metadata tags ("type=authoritative", "level=3", etc.) to automatically generate dozens of plane pairs (e.g. every combination of level and type) epistemic certainty pro....
- Then analyze_srm_sweep.py in ensemble mode builds one projection per pair and (once extended) can report the *variance* of your fixed activation across all those epistemic lenses—testing robustness of "meaning" across frames.

4. As a Factorial Design for Intervention Studies

- Schemas 3 & 4 (varying clamp strength on a single prompt) use one grid cell ("There is someone at the door" at a chosen tone/level). But you could equally pick any other cell as your test prompt—turning the grid into a menu of interventions, each with its own hypothesized attractor in latent space.
- This lets you answer questions like: "Does neuron 373's effect on *observational-level-2* differ from its effect on *rhetorical-level-5*?"

Why "Grid" Understates Its Power

Calling it a "grid" risks thinking of it as mere formatting. In reality it's:

- A factorial experiment over CorelD × Type × Level
- A **library of semantic attractors**, each one designed to pull the model's activation in a predictable direction
- A **metadata schema**, so downstream tools can group, filter, and generate bases or ensemble projections automatically

By thinking of it as an "epistemic design matrix" rather than a static grid, you unlock its full flexibility:

- Rapid hypothesis-to-test cycle: swap in a new core proposition, re-run capture and analysis, no code changes needed
- Multi-axis extensions: add axes for sentiment (positive/neutral/negative), politeness, or style, and slot them right into the same framework

• Cross-schema reuse: the *same* prompt file fuels Schemas 2 (fingerprinting), 3/4 (intervention), 5 (frame-dependence), and 6 (ensemble robustness) with zero duplication of text

In short, your epistemic matrix is the **keystone** that makes SRM both **systematic** (every combination explicitly defined) and **programmable** (tools can parse, group, filter, and pivot off its structured metadata). That's why it's far more than a "grid"—it's the **experimental engine** behind every Raccoon Schema.