1. Exercise 1:

- (a) Let $X \sim \mathcal{N}(-1, 0.01)$, 0.01 being the variance. Compute:
 - i. $P(X \le -0.98)$
 - ii. $P(X \le -1.02)$
 - iii. $P(X \ge -0.82)$
 - iv. $P(X \in [-1.22; -0.96])$
- (b) Let $X \sim \mathcal{N}(0,1)$. Determine t such that:
 - i. $P(X \le t) = 0.9$
 - ii. $P(X \le t) = 0.2$
 - iii. $P(X \in [-t, t]) = 0.95$

2. Exercise 2:

- (a) Give the definition of a density function f
- (b) Let θ_n an estimator of a parameter θ . Give the definition of θ_n an unbiased estimator of θ .
- (c) Let X_1, \ldots, X_n a n-sample. We denote by μ the expectation of X_1 and σ^2 its variance. Let \bar{X}_n the empirical mean associated. Compute the expectation and the variance of \bar{X}_n .
- (d) Let X_1, \ldots, X_n a n-sample with a $\mathcal{N}(\mu, \sigma^2)$ distribution. Give an unbiased estimator of σ^2 when we assume that μ is unknown. Prove the fact that it is unbiased.

3. Exercise 3:

Let consider the observations that are in the file dataexam.txt. Those observations are the times where an event succeed.

- (a) Make a test to show that those times are distributed according to a uniform distribution.
- (b) Now if we consider the time between two events, how can you modelize this distribution?
- (c) Guess the value of the parameter and compute a confidence interval for it.

4. Exercise 4:

Let X be a random variable whose distribution is an exponential with parameter $\lambda > 0$

(a) We define the conditional probability P(A|B) by:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

if $P(B) \neq 0$.

Prove that the exponential random variable is with no memory which means:

$$\forall s, t > 0, \quad P(X > t + s | X > t) = P(X > s)$$

(b) Let consider Y = E(X) + 1 where E(x) is the biggest integer smaller or equal to x. Determine the distribution of Y.