

Trench™ HiperFET™ Power MOSFETs

IXFT150N20T IXFH150N20T

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Symbol	Test Conditions	Maximum	Ratings
V _{DSS}	T _J = 25°C to 150°C	200	V
V _{DGR}	$T_J = 25$ °C to 150°C, $R_{GS} = 1M\Omega$	200	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C	150	A
I _{DM}	$T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $T_{_{\rm JM}}$	375	Α
I _A E _{AS}	$T_c = 25^{\circ}C$ $T_c = 25^{\circ}C$	75 1.5	A J
P_{D}	T _c = 25°C	890	W
dv/dt	$I_{\rm S} \le I_{\rm DM}, V_{\rm DD} \le V_{\rm DSS}, T_{\rm J} \le 150^{\circ}{\rm C}$	20	V/ns
T _J		-55 to +150	°C
T_JM		+150	°C
T _{stg}		-55 to +150	°C
T _L	1.6mm (0.063in) from Case for 10s	300	°C
T _{SOLD}	Plastic Body for 10s	260	°C
M _d	Mounting Torque (TO-247)	1.13/10	Nm/lb.in.
Weight	TO-268 TO-247	4 6	g g

Symbol (T _J = 25°C,	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic	c Value Max	
BV _{DSS}	$V_{GS} = 0V, I_{D} = 1mA$	200			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4mA$	3.0		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			25	μΑ
	$T_J = 125^{\circ}C$			1.5	mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			15	mΩ

 $V_{DSS} = 200V$ $I_{D25} = 150A$ $R_{DS(on)} \le 15m\Omega$

G = Gate D = DrainS = Source Tab = Drain

Features

- International Standard Packages
- Avalanche Rated
- High Current Handling Capability
- Fast Intrinsic Rectifier
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

•			cteristic Values		
$(1_{J} = 25)$	o°C, U	Inless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}		$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$	66	112	S
C _{iss})			11.7	nF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1250	pF
\mathbf{C}_{rss}	J			162	pF
t _{d(on)})	Resistive Switching Times		43	ns
t _r		$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{DSS}$		12	ns
$\mathbf{t}_{d(off)}$	7	$v_{GS} = 10V$, $v_{DS} = 0.35$ v_{DSS} , v_{DSS} , v_{DSS}		45	ns
t _f)	n _G = 252 (External)		12	ns
Q _{g(on)})			177	nC
Qgs	}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		70	nC
\mathbf{Q}_{gd}	J			44	nC
R _{thJC}					0.14 °C/W
$\mathbf{R}_{\mathrm{thCS}}$		TO-247		0.21	°C/W

Source-Drain Diode

Symb	nbol Test Conditions CI		haracteristic Values		
$(T_J = 1)$	25°C, Unless Otherwise Specified)	Min.	Тур.	Max.	
Is	$V_{GS} = 0V$			150	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			600	Α
V _{SD}	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ {\rm Note} \ 1$			1.4	V
t _{rr} I _{RM} Q _{RM}	$ \begin{cases} I_F = 75A, -di/dt = 100A/\mu s, \\ V_R = 75V, V_{GS} = 0V \end{cases} $		100 8.0 0.4		ns A µC

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-268 Outline

Terminals: 1 - Gate 2,4 - Drain 3 - Source

MYZ	INCHES		MILLIMETERS	
2114	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
A1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
b	.045	.057	1.15	1.45
b2	.075	.083	1.90	2.10
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.488	.500	12.40	12.70
E	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215	.215 BSC 5.45 BS		BSC
Н	.736	.752	18.70	19.10
Ĺ	.094	.106	2.40	2.70
L1	.047	.055	1.20	1.40
L2	.039	.045	1.00	1.15
L3	.010 BSC		0.25 BSC	
L4	.150	.161	3.80	4.10

Terminals: 1 - Gate 2 - Drain 3 - Source

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A_1	2.2	2.54	.087	.102
A_2	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b,	2.87	3.12	.113	.123
C	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 2. Extended Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 3. Output Characteristics @ $T_J = 125^{\circ}C$

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 75A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 75A$ Value vs.

Fig. 6. Maximum Drain Current vs.

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs.

Drain Current

Fig. 15. Resistive Turn-on Switching Times vs.
Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs.

Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs.

Drain Current

Fig. 18. Resistive Turn-off Switching Times vs.
Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance

