Конспект по Математическому Анализу.

Чепелин В.А.

Содержание

1 Введение в анализ.
1.1 Основные определения
1.2 Метрические пространства
1.3 Счетные и несчетные множества
2 Последовательности в метричных пространствах.
2.1 Последовательности и все о них
2.2 Линейное пространство. Норма и нормированное пространство
2.3 Супремум и инфинум и не только
2.4 Точки на множестве в метрическом пространстве
3 Вещественные числа.
4 Пределы и непр-сть отображений.
4.1 Предел
4.2 Компактность
4.3 Непрерывные отображения
5 Асимптотические оценки.
5.1 Оценки
5.2 Асимптотическое разложение
6 Дифференциальные исчисления.
6.1 Производные
6.2 Триг. функции
6.3 Теоремы о среднем
6.4 Школьный урок
6.5 Производные ВЫСШЕГО порядка

Математический анализ

Кохась Константин

КТ ИТМО - 1 Семестр

1 Введение в анализ.

1.1 Основные определения.

<u>Множество</u> — неопределяемое понятие. Множества состоят из элементов. А - какое-то множество. Мы умеем понимать:

 $x \in A$ или $x \notin A$

Способы задания:

- 1. $A = \{1,2,3,4,5\}$
- 2. Если есть какое-то известное множество A, то множество B можно задать таким образом: $B := \{x \in A : P(x) = 1\}$, где P(x) булевая функция.

 $X \subset Y$ — мн-во X содержится в Y или по-другому: $\forall x \in X : x \in Y$

 \emptyset — пустое мн-во — мн-во, не содержащее элементов.

 \mho - **универсум** или максимально множество в заданном контексте.

 \forall множества X: $\varnothing \subset X \subset \mho$

Мы можем спокойно работать с множеством натуральных, целых, рациональных, вещественных, иногда комплексных.

Операции на множествах:

 \cap — пересечение. (элемент в обоих множестках).

 \cup — объединение. (элемент только в одном множестве).

$$X \backslash Y = \{ x \in X : x \notin Y \}.$$

 $X^c = \{x \in U : x \notin X\} = U \backslash X$, где U - универсум.

Теорема. Законы Де Моргана $(x_{\alpha})_{\alpha \in A}$ - семейство мн-в, Y - мн-во. Тогда выполнено:

1.
$$Y \setminus (\bigcup_{\alpha \in A} X_{\alpha}) = \bigcap_{\alpha \in A} (Y \setminus X_{\alpha})$$

2.
$$Y \setminus (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (Y \setminus X_{\alpha})$$

3.
$$Y \cap (\bigcup_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (Y \cap X_{\alpha})$$

4.
$$Y \cup (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcap_{\alpha \in A} (Y \cup X_{\alpha})$$

Здравый смысл устает от доказательств этих формул, так что их не будет :(

Отображение:

(f, X, Y) f — отображение, X — откуда, Y — куда.

f:X o Y — f переводит мн-во X в Y. На языке кванторов: $\forall x\in X:f(x)\in Y$.

X — область определений(ия). Y — область значений.

Итак, чтобы задать отображение f множества A в множество B, надо каждому элементу a из A поставить в соответствие один и только один элемент b из B. Если при этом элементу a из A сопоставлен элемент b из B, то b называют образом элемента B, а а - прообразом элемента у при отображении f, что записывается в виде f(a) = b. Образ мн-ва обозначается Im(A). Прообраз мн-ва обозначается f^{-1} .

Из определения отображения f следует, что у каждого элемента а из A образ единственный, однако для элемента b из B прообразов может быть много, а может и вообще не быть. Множество всех прообразов элемента b из B называется его полным прообразом и обозначается через $f^{-1}(y)$. Таким образом:

$$f^{-1}(B) := \{ x \in X : f(x) \in B \}$$

Инъекция. Если $x \neq y$, то $f(x) \neq f(y)$

Сюръекция. $\forall y \in B : \exists x : f(x) = y$

Биекция = Инъекция + Сюръекция = Взаимнооднозначное соотвествие

При этом очень важно на каком множестве действует отображение. Допустим $f(x) = x^2$ дает такую таблтику при разных множествах, на которых происходит отображение:

X	f(X)	инъекция	сюръекция	биекция
\mathbb{R}	\mathbb{R}	-	-	-
\mathbb{R}_{+}	\mathbb{R}_{+}	+	+	+
\mathbb{R}_{+}	\mathbb{R}	+	-	-
\mathbb{R}	\mathbb{R}_{+}	-	+	-

Последовательность $(x_1, x_2, x_3...)$ — отображение, такое, что $a: N \to X$. Другими словами пронумерованный набор каких-либо объектов, среди которых допускаются повторения, причём порядок объектов имеет значение. Нумерация чаще всего происходит натуральными числами.

<u>Двусторонняя последовательность</u> $(...x_{-1}, x_0, x_1...)$, она уже переводит целые числа в элементы множества. Склеить 2 последовательности.

Семейство — некоторая совокупность объектов, каждый из которых ассоциирован с индексом из некоторого индексного множества. Причем индексом может быть так и целое число, так и дробное, так и котик. Есть множество индексов А и мн-во элементов X. И каждому индексу А мы присваиваем какой-то (можно брать тот, что уже взят) элемент множества X

 (x_1,x_2) — упорядоченная пара элементов

<u>Декартово произведение X и Y</u> — обозначается $X \times Y$, на языке кванторов:

$$X \times Y = \{(x, y) : x \in X, y \in Y\}$$

 $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ — декартова плоскость.

$$\mathbb{R}^n = \{x_1, x_2, ..., x_n : \forall i \in [1:n] \in \mathbb{N} : x_i \in \mathbb{R}\}\$$

Также прошу заметить, что $\mathbb{R}^3 \neq \mathbb{R}^2 \times \mathbb{R}$ и тому подобное.

$$f:X o \mathbb{R}^n$$
 — векторнозначная функция.

$$x \mapsto y = f(x) = (f_1(x), f_2(x), ..., f_n(x))$$

 $f_1(x), f_2(x), ..., f_n(x): X \mapsto \mathbb{R}$ — координатные функции.

График отображения.

$$f: X \to Y$$

 $F_f = \{(x,y): y = f(x)\} \subset X \times Y$ - множество пар, удовлетворяющих f(x) = y.

Обратное отображение.

$$f:X o Y,$$
 то f^{-1} - обратное, если

$$f^{-1}:f(X)\to X$$

Композиция отображения.

$$f: X \to Y; g: Y \to Z$$

$$g \circ f = X \to Z$$
, такое что

$$(g \circ f)(x) = g(f(x))$$

Тождественное отображение.

id - такое отображение, что

 $id:X \to X$, где $\mathrm{id}(\mathbf{x}){=}\mathbf{x}$

Сужение — уменьшение области определения

$$f: X \to Y$$

$$A \subset X$$

$$f|_A:A o Y$$
, при этом $orall a\in A:f|_A(a)=f(a)$

 $\mathbf{\Pi}\mathbf{poдлениe}$ — добавление области определения

$$f:X \to Y$$

$$X \subset B$$

$$\widetilde{f}: B \to Y$$
, при этом $\forall x \in X: \widetilde{f}(x) = f(x)$

1.2 Метрические пространства.

Метрическое пространство (X, \rho), где X - множество, ρ - отображение/функция расстояния

$$\rho: X \times X \mapsto \mathbb{R}$$

Аксиомы метрического пространства:

- 1. $\forall x, y : \rho(x, y) \ge 0; \ \rho(x, y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y : \rho(x, y) = \rho(y, x)$
- 3. $\forall x, y, z : \rho(x, y) \leq \rho(x, z) + \rho(y, z)$

Примеры метрич. пространств:

- 1. $\rho(x,y) = \begin{cases} 1, x \neq y \\ 0, x = y \end{cases}$ симплициальная метрика.
- 2. Метрика Хемминга. X = мн-во всех возможных байтов.

$$b = (b_1, ..., b_8)$$

$$\bar{b} = (\bar{b_1}, ..., \bar{b_8})$$

$$\rho(b, \bar{b}) = \#\{i \in [0:8] : b \neq \bar{b}\} = |\{\forall i \in [0:8] : b \neq \bar{b}\}|$$

- 3. $X = \mathbb{R}, \rho(X, y) = |x y|$
- 4. $X = \mathbb{R}^n$

$$x = (x_1, x_2, ..., x_n)$$

$$y = (y_1, y_2, ..., y_n)$$

$$\rho_1 = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$

$$\rho = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$
— Евклидова метрика в \mathbb{R}^n

$$\rho_{\infty} = max(|x_1 - y_1|, |x_2, y_2|, ... |x_n - y_n|)$$

Подпространство — подмножество, на котором мы пользуемся метриками

(Открытый) шар —
$$a \in X, r > 0$$
: $B(a,r) : x \in X : \rho(a,x) < r$

$${f 3}$$
амкнутый шар — $ar{B}(a,r):
ho(a,x) \leq r$

 ε -окрестность $a \in X - B(a, \varepsilon)$. Обозначается U(a).Проколотая окрестность $-B(a, \varepsilon) \setminus \{a\}$.

 $A \subset X - \underline{\text{ограниченное}}$ множество, если существует шар В: $A \subset B$. При чем центр шара можно задавать (пишем нер-во относительно каждой точки и центров

двух окружностей, которые следуют из определения метрич. пространства)

1.3 Счетные и несчетные множества.

Множества **равномощные**, если между ними существует биекция. Это отношение эквивалентности. Будем обозначать ~

Множество а - **счетное**, если оно равномощно \mathbb{N} .

<u>Лемма.</u> Любое бесконечно множество содержит счетное множество Очевидно.

<u>Лемма.</u> Если A - счетно, $B \subset A$, B - беск, тогла B - счетное. Очевидно.

Опр. Не более чем счетное = счетное либо конечное.

Лемма (об опоздавшем шахматисте) К счетному множеству можно добавить конечное кол-во элементов и оно останется счетным. Очевидно (представьте, что у вас отель с бесконечным числом этажей, где живут шахматисты. Переселим всех на 1 вверх и поселим одного в первую комнату и т.д).

Лемма (об опоздавших программистах) Счетное + Счетное = счетное. Очевидно (представьте, что у вас отель с бесконечным числом этажей, где живут шахматисты. Переселим всех из n-ой комнаты в 2n и поселим других в неч комнаты).

<u>Лемма.</u> $N \times N$ - счетно. Представить в виде таблички и нумеровать по диагонали (сначала i+j=2,потом i+j=3 и т.д при этом i - номер строчки j - номер столбца и при одной сумме j убывает).

<u>Лемма.</u> \mathbb{Q} - счетно. Знаменатель числитель очевидно победили(свести к прошлой лемме).

Теорема.

Отрезок [0,1] не счетный (не очев док-во, надо написать)

Назовем этот отрезок **континуум**. Тогда все равномощные отрезку [0,1] будем называть мощностью континуума.

Следствие. А - бесконечное, В - Не более чем счетное, тогда $A{\scriptstyle \sim} A \cup B$

Теорема

- 1. Віп множество всеввозможных последовательностей из единиц и нулей. Віп = $\{(x_n)_{n\in\mathbb{N}}: \forall n: x_n\in\{0,1\}\}$ мощность континуума.
- 2. \mathbb{R}^m и \mathbb{R}^∞ мощности континуума, где $\mathbb{R}^\infty = \{(x_n) : \forall n : x_n \in \mathbb{R}\}.$

Доказательство:

 $\overline{1)} \ x \in Bin. \ x = (x_n) \to 0, x_1x_2 \dots$ - отобразим каждую последовательность в двоичное бинарное число. Но возникает проблема: мы можем, как и в записи

десятичных чисел представлять одно число двумя записями. Множество чисел $x \in [0,1]$, у которых имеется 2 двоичных представления - счетно! так что полученное бинарное число и делю их на 2 группы: проблемные (те у которых с какого-то момента начинаются нули) и остальные. У остальных биекция с отрезком [0,1] (числа с двумя записями попали в проблемное множество). Биекция между $[0,1] \cup P$ и [0,1] очевидна из предыдущих теорем Теперь осталось доказать бесконечное + конечное = бесконечное.

2) **Метод новейших технологий:** Беру $x \in \mathbb{R}^{\infty}$, Зафиксируем биекцию $\varphi : \mathbb{R}$. Преобразую его координаты в bin последовательности. Запишем последовательность последовательность слоями (бесконечная таблица будем ходить по диагоналям так, что $i+j=\mathrm{const}$). R^{∞} могу записать через бинарные последовательности, откуда мы победили

Замечание от Славы. Есть биекция между \mathbb{R} и [0,1], есть биекция между [0,1] и Bin, исходя из предыдущего. Откуда есть какая-то φ , которая является композицией между переводом из \mathbb{R} в [0,1] и [0,1] в Bin.

Замечание от Славы. Как работает док-во второй части теоремы. Я могу взять \mathbb{R}^{∞} , перевести ее в $[0,1]^{\infty}$. Запишу в качестве $N \times N$, и по диагональке начну выписывать бин. последовательности, какк в доказательстве, что $N \times N$ счетно. Осталось доказать биекцию в бин последовательности.

Следствие: \mathbb{R} - имеет мощность континумма.

Доказательство:

Отрезок [0,1] равномощен отрезку (0,1), откуда давайте представим плоскость. На ней проведем прямую y=2 и верхнюю часть окружности $x^2+y^2=1$. Заметим, что, проведя отрезок через любую точку прямой и ноль, он пересечет окружность в какой-то точке (в точности одной). А теперь, если присмотреться, мы построили нужную нам биекцию. Откуда $\mathbb R$ равномощно (0,1).

2 Последовательности в метричных пространствах.

2.1 Последовательности и все о них.

|x-y| — расстояние между х и у

Некоторые свойства модуля:

$$|xy| = |x||y|$$
 If $|x| - |y| \le |x + y| \le |x| + |y|$

 x_n — вещ последовательность $a \in \mathbb{R}$. Пределом \mathbf{x} называется такое \mathbf{a} , что:

$$\forall \varepsilon > 0, \varepsilon \in \mathbb{R} : \exists N \in \mathbb{R} : \forall n > N : |x_n - a| < \varepsilon$$

Если $\exists lim$, то последовательность — сходящаяся, иначе расходящаяся.

Примеры:

- 1. $x_n \equiv a$, $\lim_{n \to \infty} x_n = a$.
- 2. $x_n = \frac{1}{n}$, $\lim_{n \to \infty} x_n = 0$. Докажем:

 $\forall \varepsilon > 0 \exists N : \forall n > N : \frac{1}{n} < \varepsilon$ — должно быть выполнено, чтобы 0 был пределом.

Заметим, что при $N=\frac{1}{\varepsilon}+1$ выполнено.

3. $x_n = (-1)^n$ - нет предела. Докажем:

Пусть такой предел а существует, тогда выполнено:

$$\varepsilon = 1 : \exists N : \forall n > N : |x_n - a| < \varepsilon$$

Заметим, что
$$|x_n-x_{n+1}|=2 \Leftrightarrow 2=|x_n-x_{n+1}+a-a|<|x_n-a|+|x_{n+1}-a|<2$$

Принцип двойной бухгалтерии: нам все равно меньше ли наш модуль ε или 100ε .

Пусть есть $\{x_n\},\{y_n\}:\exists k: \forall n>k: x_n=y_n$. Тогда эти 2 последовательности либо одновременно сходятся и имеют один и тот же предел, либо предела не существует у обоих.

 $U_{\varepsilon}(a)$ — ε -окрестность точки а(окрестность от $(a-\varepsilon,a+\varepsilon)$)

 (x_n) — посл-ть в метрическом пространтсве $(X, \rho), a \in X$

 $x_n \to a =$ предел посл (x_n) равен a.

$$\forall \varepsilon > 0 : \exists N : \forall n > N : \rho(x_n, a) < \varepsilon$$

$$\forall U(a)\exists N: \forall n > N: x_n \in U(a)$$

Заметим, что тогда $\rho(x_n, a) \to 0$

Теорема о единственном пределе.

 x_n - последовательность в метрическом пространстве X.

Если $x_n \to a, x_n \to b,$ тогда a=b.

Доказательство:

Пусть $a \neq b$, тогда $r = \rho(a, b) > 0$.

Возьмем $U(a)=B(r,\frac{r}{10}),\ U(b)=B(r,\frac{r}{10}).$ Заметим, что U(a) и U(b) - не пересекаются, иначе противоречие с правилом треугольника. Тогда:

$$\exists N_a : \forall n > N_a : x_n \in U(a)$$

$$\exists N_b : \forall n > N_b : x_n \in U(b)$$

Тогда с $n > max(N_a, N_b)$. x_n будет лежать и в U(a) и в U(b), что невозможно из-за противоречия правилу треугольника. Q.E.D.

 x_n - ограниченно, если мн-во $\{x_n\}$ - ограниченно (то есть сверху и снизу есть число за которое мы не выходим). Функция ограниченна, если f(x) - огр в Y

Теорема. (ограниченность сходящийся последовательности). $(x_n - \text{посл. в} \times X_n)$. $(x_n - \text{посл. в} \times X_n)$. $(x_n - \text{посл. в} \times X_n)$.

Доказательство:

По опр. Для $\varepsilon = 1 : \exists N : \forall n > N : x_n \leq B(a, 1).$

Тогда $\forall n: x_n \in B(a,R)$, где $R = \max(\rho(x_k,a))_{k \in [0:N]} + 1$. Значит ограниченна. Q.E.D.

Замечание от Славы. Мы берем шар, который покрывает бесконечное кол-во точек. Остается конечно число точек за ним, которые мы будем покрывать по одной. Тк их конечно, то мы можем так сделать. Эта идея будет еще много где играть.

Теорема о предельном переходе в неравенствах.

$$x_n, y_n$$
 - вещ. послед. $a, b \in \mathbb{R}$. $x_n \to a, y_n \to b$.

Пусть известно, что $\exists N : \forall n > N : x_n \leq y_n$. Тогда $a \leq b$.

Доказательство:

Пусть
$$a > b$$
. $r = \frac{a-b}{2}$.

$$U(a) = B(a, \frac{r}{2}), U(b) = B(b, \frac{r}{2}).$$

 $\exists N_a : \forall n > N_a : x_n \in U(a)$, в частности $x_n > a - \frac{r}{2}$.

 $\exists N_b : \forall n > N_b : y_n \in U(b)$, в частности $y_n < b + \frac{r}{2}$

Тогда при $n > max(N_a, N_b, N)$: $y_n < b + \frac{r}{2} \le a - \frac{r}{2} < x_n$. Противоречие. Q.E.D.

Следствие.

Если $x_n \leq b$ и $x_n \rightarrow a$, то $a \leq b$.

Если $x_n \in [a, b]$ и $\exists \lim x_n$, то $\lim x_n \in [a, b]$

Теорема о двух милиционерах (городовых).

 x_n, y_n, z_n вещ. посл. $\exists N : \forall n > N, x_n \leq y_n \leq z_n$. Пусть $\lim x_n = a$ и $\lim z_n = a$, где $a \in \mathbb{R}$. Тогда \exists предел y_n , и он равен a.

Доказательство:

Пусть U(a) - эпсилон окрестности для какого-то ε .

 $\exists N_x : \forall n > N_x : x_n \in U(a)$

 $\exists N_z : \forall n > N_z : z_n \in U(a)$

Тогда с $n > max(N_x, N_z, N)$: $a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon$. Откуда уже очевидно требуемое. Q.E.D.

Следствие.

Даны x_n, y_n - вещ. последовательности и $\exists N : \forall n > N : |y_n| \le x_n$. Пусть $x_n \to 0$. Тогда $y_n \to 0$.

 x_n - вещ. последовательность. $x_n - \underline{\mathbf{бесконечно\ малая}},$ то есть стремится к нулю

Теорема (свойства бесконечно малой последовательности):

 x_n, y_n, a_n - вещ. последовательности.

 $x_n \to 0, y_n \to 0, a_n$ - ограничено в \mathbb{R} . Тогда

1. $x_n + y_n \to 0$.

 $2. x_n \cdot a_n \to 0.$

Доказательство:

 $\forall \varepsilon > 0 \exists N_x : \forall n > N_x : |x_n| < \varepsilon$

 $\forall \varepsilon > 0 \exists N_y : \forall n > N_y : |y_n| < \varepsilon$

 $\exists k : \forall n > 0 : |a_n| < k$

- 1) при $n>\max(N_x,N_y):|x_n+y_n|\leq |x_n|+|y_n|<2\varepsilon$ по принципу двойной бухгалтерии $x_n+y_n\to 0.$
- 2) при $n>\max(N_x,k):|x_na_n|<|x_n||a_n|< k|x_n|< k\varepsilon$ по принципу двойной бухгалтерии $x_na_n\to 0.$ Q.E.D

2.2 Линейное пространство. Норма и нормированное пространство.

 \mathbb{X} — **линейное пространство** над полем \mathbb{R} , если в нем заведены:

 $1) + : \mathbb{X} \times \mathbb{X} \to \mathbb{X}.$

Обозначается a+b.

 $2) \cdot : \mathbb{R} \times \mathbb{X} \to \mathbb{X}.$

Обозначается $a \cdot b$.

И если выполнены данные аксиомы:

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. $\exists \overline{0} \in X : \forall x : \overline{0}x = \overline{0}$
- 4. $(\lambda + \mu)x = \lambda x + \mu x$
- 5. $\lambda(x+y) = \lambda x + \lambda y$
- 6. $\lambda(\mu(x)) = \mu(\lambda(x))$
- 7. $\forall x : 1x = x$

Обозначение x - y = x + (-1)y.

X - линейное пространство над \mathbb{R} . Тогда **норма** - отображение: $x \to ||x||$.

- 1. $\forall x \in X : ||x|| > 0$.
- 2. $\forall \alpha \in \mathbb{R} : \forall x \in X : ||\alpha x|| = |\alpha|||x||$
- $3. ||x + y|| \le ||x|| + ||y||$

Примеры норм в в \mathbb{R}^m :

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_m^2}$$

 $||x||_1 = |x_1| + |x_2| + \dots + |x_m|$

$$||x||_{\infty} = max(|x_k|)$$

 $\rho(x,y) = ||x-y||$ - метрика, порожденная нормой.

Заметим, что не все метрики порожденны нормой, например:

$$\rho(x,y) = \frac{|x - y|}{1 + |x - y|}.$$

Можно через норму задавать определения пределов и т.п.

Нормированное пространство — лин пр-во + норма $(X, ||\cdot||)$.

Теорема. Арифметические свойства предела в нормированном пространстве.

Дано: $(X, ||\cdot||)$ - Норм пространство над \mathbb{R} ;

 x_n, y_n - последовательности в X. λ_n - последовательность множителей.

Пусть $x_n \to x_0, y_n \to y_0$ в X и $\lambda_n \to \lambda_0$ в \mathbb{R} . Тогда:

- 1. $x_n + y_n \to x_0 + y_0$
- 2. $\lambda_n x_n \to \lambda_0 x_0$
- 3. $||x_n|| \to ||x_0||$

Доказательство:

1) $\forall \varepsilon > 0 : \exists N : \forall n > N : ||x_n - x_0|| < \varepsilon$ и $\exists K : \forall n > K : ||y_n - y_0|| < \varepsilon$ из определения предела в понятиях нормы.

Тогда для $\varepsilon: \exists M = max(N,K)$

 $||x_n+y_n-x_0-y_0| \le ||x_n-x_0||+||y_-y_0|| < 2\varepsilon$. По принципу двойной бухгалтерии получаем то, что нам надо.

2) $||\lambda_n x_n - \lambda_0 x_0|| = ||\lambda_n x_n - \lambda_0 x_n + \lambda_0 x_n - \lambda_0 x_0|| \le ||\lambda_n x_n - \lambda_0 x_n|| + ||\lambda_0 x_n - \lambda_0 x_0|| \le ||\lambda_n x_n - \lambda_0 x_0|| + ||\lambda_0 x_n - \lambda_0 x_0|| \le ||\lambda_n x_n - \lambda_0 x_0|| + ||\lambda_0 x_n - \lambda_0 x_0|| \le ||\lambda_n x_n - \lambda_0 x_0|| + ||\lambda_0 x_n - \lambda_0 x_0|| \le ||\lambda_n x_n - \lambda_0 x_0|| + ||\lambda_0 x_n - \lambda_0 x_0|| \le ||\lambda_n x_n - \lambda_0 x_0|| + ||\lambda_0 x_n - \lambda_0 x_0|| \le ||\lambda_n x_n - \lambda_0 x_0|| + ||\lambda_0 x_n - \lambda_0 x_0|| \le ||\lambda_n x_n - \lambda_0 x_0|| + ||\lambda_0 x_n - \lambda_0 x_0|| \le ||\lambda_n x_n - \lambda_0 x_0|| + ||\lambda_0 x_n - \lambda_0 x_0|| \le ||\lambda_n x_n - \lambda_0 x_0|| + ||\lambda_0 x_n - \lambda_0 x_0|| + ||\lambda_0 x_n - \lambda_0 x_0|| \le ||\lambda_0 x_n - \lambda_0 x_0|| + ||\lambda_0$

Заметим, что последовательность $||\lambda_n - \lambda_0||$ - бесконечно малая. $||x_n||$ - ограниченная, так как имеет предел. λ_0 - можно считать ограниченной последовательностью. Последовательность $||x_n - x_0||$ - бесконечно малая. Получаем, что вся последовательность $|\lambda_n - \lambda_0|||x_n|| + |\lambda_0||x_n - x_0||$ - бесконечно малая, то есть стремится к нулю. Ну и по теореме о двух миллиционерах получаем, что последовательность $||\lambda_n x_n - \lambda_0 x_0||$ стремится к нулю Q.E.D.

3) $-||x_n-x_0|| \le ||x_n||-||x_0|| \le ||x_n-x_0||$ по нер-ву треугольника верно, по принципу двух милиционеров верно

Теорема. Арифметические свойства предела последовательность в $\mathbb R$

 x_n,y_n - вещ. последовательности. $x_n o x_0 \ y_n o y_0$ в \mathbb{R} . Тогда верно:

- 1. $x_n + y_n \to x_0 + y_0$
- $2. \ y_n x_n \to x_0 y_0$
- 3. $|x_n| \to |x_0|$
- 4. Пусть $\exists N_1 : \forall n > N_1 : y_n \neq 0$ и пусть $y_0 \neq 0$. Тогда $\frac{x_n}{y_n} \to \frac{x_0}{y_0}$

Доказательство:

1-3 очевидно. Докажем 4-ый пункт. Очевидно, что если мы докажем, что предел $\frac{1}{y_0}$ равен $\frac{1}{y_0}$, то использовав п.2 получим искомое.

$$\left|\frac{1}{y_n} - \frac{1}{y_0}\right| = |y_0 - y_n| \left|\frac{1}{y_0}\right| \left|\frac{1}{y_n}\right|.$$

Раз $y_0 \neq 0$, то возьмем $\varepsilon = \frac{|y_0|}{2}$. Тогда для этого $\varepsilon \exists N : \forall n > N : |y_n - y_0| < \frac{|y_0|}{2} = \varepsilon$. Это значит, что $|y_n| > \frac{|y_0|}{2}$ и тогда $\frac{1}{|y_n|} < \frac{2}{|y_0|}$.

Возьмем $R = \max_{1 \le k \le \max(N,N_1)} (\frac{1}{y_k}) + \frac{2}{y_0} + 1$. Получим, что $|\frac{1}{y_n}|$ - ограниченная. Ост. функции очевидно ограниченные или бесконечно малые, так что произведение стремится к нулю и по теореме о двух милиционерах мы доказали. Q.E.D.

Скалярное произведение. X - лин пр-во над \mathbb{R} . Назовем скалярным произведением функцию:

$$\phi: X \times X \to \mathbb{R}$$

To есть она переводит $(x, y) \to \langle x, y \rangle$.

Аксиомы скалярного произведения.

1. Линейность по 1-ому аргументу

$$\langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle = \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle$$

- 2. $\forall x, y \in X : \langle y, x \rangle = \overline{\langle x, y \rangle}$
- 3. $\forall x \in X : \langle x, x \rangle \ge 0$, причем $\langle x, x \rangle = 0$, при x = 0.

Лемма КБШ

X - лин пр-во со скалярным произведением.

Тогда $\forall x, y \in X : |\langle x, y \rangle|^2 \le \langle y, y \rangle \langle x, x \rangle$

Доказательство:

Пусть $y \neq 0$ (иначе тривиально).

$$f(\lambda) = \langle x + \lambda y, x + \lambda y \rangle \ge 0$$
. Packpoem:

$$f(\lambda) = \langle x, x + \lambda y \rangle + \lambda \langle y, x + \lambda y \rangle.$$

$$f(\lambda) = \langle x, x \rangle + \overline{\lambda} \langle x, y \rangle + \lambda \overline{\langle x, y \rangle} + \lambda \overline{\lambda} \langle y, y \rangle.$$

Подставим $\lambda_i = \frac{-\langle x, y \rangle}{\langle y, y \rangle}$. Получим:

$$f(\lambda_i) = \langle x, x \rangle - \frac{\overline{\langle x, y \rangle} \langle x, y \rangle}{\langle y, y \rangle} - \frac{\overline{\langle x, y \rangle} \overline{\langle x, y \rangle}}{\overline{\langle y, y \rangle}} + \frac{\langle x, y \rangle \overline{\langle x, y \rangle}}{\langle y, y \rangle} = \langle x, x \rangle - \frac{\overline{\langle x, y \rangle} \langle x, y \rangle}{\langle y, y \rangle} \ge 0.$$

Методом смотрения на выражения получаем очев. Q.E.D.

Евклидово скалярное произведение.

$$\langle a,b\rangle = a_1b_1 + \ldots + a_nb_n$$

Лемма.

X - лин. пр-во со скалярным произведением. Тогда $f(x) = \sqrt{\langle x, x \rangle}$ - норма в Y.

Доказательство. Докажем свойства нормы:

- $f(x) \ge 0$ и f(x) = 0, когда x = 0 выполнено.
- 2) $f(\alpha x) = \sqrt{\alpha^2 \langle x, x \rangle} = |\alpha| \sqrt{\langle x, x \rangle}$ выполнено.

$$3) f(x+y) \le f(x) + f(y)$$

$$\sqrt{\langle x+y,x+y \rangle} \leq \sqrt{\langle x,x \rangle} + \sqrt{\langle y,y \rangle}$$
 — возведем в квадрат.

$$\langle x + y, x + y \rangle \le \langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle}$$

$$\langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle + \langle y, y \rangle \le \langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle}$$

$$\langle y,x\rangle+\langle x,y\rangle\leq 2\sqrt{\langle x,x\rangle\langle y,y\rangle}$$
 по двум лемма кбш правда. Q.E.D.

 $f(x) = \sqrt{\langle x, x \rangle}$ — норма, порожденная скалярным произведением.

Лемма (непрерывность скалярного):

X — мн-во со скалярным произведением в \mathbb{R}^m . $x^{(n)} \to x^{(0)}, y^{(n)} \to y^{(0)}$.

Тогда $\langle x^{(n)}, y^{(n)} \rangle \to \langle x^{(0)}, y^{(0)} \rangle$.

Доказательство.

$$\begin{split} &|\langle x^{(n)},y^{(n)}\rangle - \langle x^{(0)},y^{(0)}\rangle| \leq |\langle x^{(n)},y^{(n)}\rangle - \langle x^{(n)},y^{(0)}\rangle| + |\langle x^{(n)},y^{(0)}\rangle - \langle x^{(0)},y^{(0)}\rangle| \leq \\ &\leq ||x^{(n)}||\cdot||y^{(n)}-y^{(0)}||+||x^{(n)}-x^{(0)}||\cdot||y^{(0)}|| - \text{а это стремится к нулю.} \end{split}$$

Значит по теореме о двух милиционерах итоговое тоже стремится к нулю

Замечание от Славы. В конце леммы мы пользуемся двумя неравенсивам КБШ для двух скалярных, а потом пользуемся предыдущей леммой и заменяем на норму.

Лемма (о покоординатной сходимости).

Пусть есть (x^n) - последовательность в \mathbb{R}^m . Тогда равносильно $x^n \to x^0$ (отн. евкидовой нормы) и $\forall k: x_k^n \to x_k^n$. Док-во предельно очевидно (расписать евклидову норму и подумать).

O плотности \mathbb{Q} в \mathbb{R} .

$$\forall (a,b) \subset \mathbb{R}. \ \exists q \in \mathbb{Q}, q \in (a,b).$$

Доказательство:

По аксиоме Архимеда: существует $n > \frac{1}{b-a}$.

Возьму
$$\mathbf{q} = \frac{[an]+1}{n}$$
. Проверим и победили

2.3 Супремум и инфинум и не только.

Ограниченные множества

Непустое мн-во Е в \mathbb{R} называется **ограниченным сверху**, если существует такое число M, что $x \leq M$ при всех $x \in E$

Непустое мн-во Е называется **ограниченным снизу**, если существует такое число M, что $x \ge M$ при всех $x \in E$

Непустое мн-во E называется **ограниченным**, если оно ограниченно и сверху, и снизу.

Введем пару понятий:

Супремум - наименьшая из верхних границ множества E. Обозначается $\sup(E)$.

Инфинум - наибольшая из нижних границ множества Е. Обозначается $\inf(E)$

Свойства супремума:

- 1. $D \subset E \subset \mathbb{R}$. Тогда $\sup(D) \leq \sup(E)$.
- 2. $X \subset \mathbb{R}, \lambda > 0 : \lambda \sup(X) = \sup(\lambda X)$.
- 3. $X \subset \mathbb{R} : \sup(-X) = -inf(X)$

Доказательство очевидно.

Техническое определение супремиума: Если супремум есть, то $\forall \varepsilon > 0$: $\exists x_0 \in B(\sup, \varepsilon)$.

Теорема: (о существовании супремума).

Если существует верхняя граница (огр. сверху), то есть и супремум.

Доказательство:

Возьму $x_0 \in D$ - наше множество. р - граница. Начну делать бин.поиск - брать середину и если справа от нее кто-то есть, то двигать левую, иначе правую. Получаю беск. последовательность вложенных отрезков, что по теореме Кантора будет единственный супремум.

Монотонные последовательности:

Возрастающая, строго возрастающая, убывающая, строго убывающая.

Теорема (об ограниченных монотонных последовательностях)

- 1. Возрастающая ограниченная сверху последовательность сходится.
- 2. Убывающая органиченная снизу последовательность сходится.
- 3. Неограниченная сверху возрастающая последовательность стремится к $+\infty$.
- 4. Неограниченная снизу убывающая последовательность стремится κ - ∞ .

Секретное приложение к теореме:

Оказывается (omg):

- 1. $\lim x_n = \sup(x_n)$
- 2. $\lim x_n = \inf(x_n)$

Доказательство.

1) $L = sup(x_n)$. По определению проверим $x_n \to L$:

$$\forall \varepsilon > 0 : \exists N : \forall n > N : |x_n - L| < \varepsilon$$
. Раскроем:

$$L - x_n < \varepsilon$$

$$L - \varepsilon < x_n \le L$$

Пользуясь знаниями о супремиуме у нас есть n_0 , который попадает на промежуток $L - \varepsilon < L$. Заметим что такой n_0 подходит в качестве N, тк последовательность возрастающая. Определение предела доказано.

Остальное аналогично

Неравенство Бернулли. Пусть x > -1 и $n \in N$. Тогда

$$(1+x)^n \ge 1 + nx$$

Доказательство с помощью индукции очевидно.

Давайте теперь поговорим про число е. Для этого рассмотрим 2 последовательности:

$$x_n = (1 + \frac{1}{n})^n$$
$$y_n = (1 + \frac{1}{n})^{n+1}$$

$$\frac{y_{n-1}}{y_n} = \frac{(1 + \frac{1}{n-1})^n}{(1 + \frac{1}{n})^{n+1}} = (1 + \frac{1}{n^2 - 1})^{n+1} \cdot \frac{n-1}{n} \ge (1 + \frac{n+1}{n^2 - 1}) \cdot \frac{n-1}{n} \ge 1$$

В конце мы использовали нер-во бернулли. Теперь, исходя из этого последовательность убывающая, откуда y_n - имеет предел, равносильно тому, что x_n имеет предел. Обозначим этот предел е. Тогда

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

Лемма (о быстро убывающих последовательностях).

$$x_n > 0$$
. Пусть $\exists \lim \frac{x_{n+1}}{x_n} < 1$. Тогда $\exists \lim x_n = 0$.

Доказательство.

$$a=\lim \frac{x_{n+1}}{x_n}$$
. Пусть $d=\frac{1+a}{2}$. Заметим, что $d>a$.

Возьму $\epsilon=d$. По определению предела: $\exists N:n>N:\frac{x_{n+1}}{x_n}< d$. Тогда:

 $\forall k>0: x_N\cdot d^k\geq x_{N+k}>0.$ У левого выражения предел есть и равен 0, откуда по двум милиционерам есть предел у средней и он тоже равен 0. Q.E.D.

Замечание от Славы. Если не понимаете доказательство, то попытайтесь осознать условие. Типо что значит, что последовательность $\frac{x_{n+1}}{x_n}$ стремится к а. Значит есть окрестность, в которой любой x < d. (Возьмите радиус равный половину $\frac{d-a}{2}$). Вообще в целом советую рисовать все теоремы о пределах.

Следствие.

1.
$$a>1, k\in\mathbb{N}$$
. Тогда $\frac{n^k}{a^n}\to 0$.

2.
$$a > 0$$
. Тогда $\frac{a^n}{n!} \to 0$.

$$3. \ \frac{n!}{n^n} \to 0.$$

2.4 Точки на множестве в метрическом пространстве.

X - м.п (X, ρ) .

 $D \subset X, a \in D$, тогда a — **внутренняя точка D**,если $\exists U(a) : U(a) \subset D$.

 $D \subset X$ - **открытое**, если все его точки внутренние.

Теорема о св-вах открытого множества.

$$(X, \rho)$$
 - м.п.

- 1. Пусть есть семейство открытых множеств. $(G_{\alpha})_{\alpha \in A}$. Тогда $\bigcup_{\alpha \in A} G_{\alpha}$ открыто.
- 2. Пусть есть конечное кол-во открытых множеств. G_1, G_2, \ldots, G_n . Тогда $\bigcap_{k=1}^n G_k$ открыто.

док-во очевидно (рукомахание).

$$X - MH-BO$$

Т — нек-ая совокупность подмножеств Х

1)
$$\varnothing, X \in T$$
.

$$2) \ \forall G_{\alpha} \in T : \bigcup_{\alpha \in A} G_{\alpha} \in T.$$

3)
$$\forall G_1, \dots, G_n \in T : \bigcap_{k=1}^n G_k \in T$$
.

 $D \subset X$. Внутренность D — множество внутренних точек. Обозначение IntD.

Проколотая окрестность $\alpha \in X - U(a)/a$.

 $D \in x, a \in X, a - \underline{\mathbf{npeдельная}}$ точка D, если $\forall U(a)$: проколотая U(a) содержит точки из D.

Св-ва:

- 1. a предельная точка $\forall U(a)$ содержит бесконечно много.
- 2. a предельная точка $D \Leftrightarrow \exists x_n \in D : x_n \to a$

Доказательства этих свойств очевидны из определения.

 $a \in D, a$ — изолированная точка мн-ва D, если $\exists U(a) : U(a) \cap D$ - пустое

 $D\subset X, D-$ **замкнутое** мн-во, если оно содержит все свои предельные точки.

Теорема о связи открытого и закрытого мн-ва.

 $D \subset X$: Тогда экв:

- 1. D замкнутое.
- 2. $D^{c} = X/D$ открытое

Доказательство.

- (a) из первого второе. Надо доказать: $\forall a \in D^c: \exists U(a): U(a) \in D^c.$ От противного, пусть неверно, тогда выполнено:
 - $\forall U(a): U(a) \subset D^c$. Тогда $U(a) \cup D$ не пусто(при чем в пересечении лежит не а). Тогда а предельная и должна лежать в D.
- (b) из второго первое. Надо доказать D замкнутое. От противного. Тогда $\exists x \in D^c$ предельная точка D. $\forall U(x) : U(x) \subset D$ не пустое. Т.е неверно, что $U(a) \subset D^c$.

Замечание от Славы. Тк мы работаем в метрическом пространстве., то все пространствво делится на 2 части: D и D^c . Поэтому, если U(a) не лежит в D^c , то хотя бы что-то есть в D.

Теорема о свойствах замкнутых множеств. Х - мн-во

- 1. $(F_{\alpha})_{\alpha \in A}$ семейство замкнутых, тогда $\bigcap_{\alpha \in A} F_{\alpha}$ замкнуто.
- 2. $F_1,\ldots,F_n\subset X$ замкнутые, тогда $\bigcup_{k=1}^nF_k$ замкнуто.

Доказательство этого столь очевидно, что вы все, очевидно, уснете, пока я говорю его, так что не будем его произносить. (говорить тут про дополнение множеств)

 $\underline{\bf 3амыкание}$ множества D- в D добавляются все пр. точки D. Обозначатся Cl(D).

х — <u>граничная</u> точка, если $\forall U(x): U(x)\cap D, U(x)\cap D^c$ - не пустые. <u>Граница</u> D — мн-во ограниченных точек, обозначается ∂D .

Теорема. (X, ρ) - л.п., (Y, p) - подпространство, $D \subset Y \subset X$

- 1. D откр. в $Y \Leftrightarrow \exists G$ открытый в X: $D = G \cap Y$.
- 2. D замкн в $Y \Leftrightarrow \exists G$ закрытый в X: $D = G \cap Y$.

Доказательство.

1) из первого следует второе: $D=\bigcup_{y_n\in D}B^Y(y_0,r_{y_0})(r_{y_0}$ - такой радиус, что наш шар содержится в Y) и возьмем $G=\bigcup_{y_0\in D}B^X(y_0,r_{y_0}).$

Докажем, что
$$D = G \cap Y$$
. $G \cap Y = (\bigcup_{y_0 \in D} B^X(y_0, r_{y_0})) \cap Y$

$$= \bigcup_{y_0 \in D} (B^X(y_0, r_{y_0}) \cap Y) = \bigcup_{y_n \in D} B^y(y_0, r_{y_0}) \text{ Q.E.D.}$$

из второго следует первое. G - открыто в X. Доказать $D = G \cap Y$ - открытое в Y: $\forall a \subset D, a$ - внутренняя точка. $a \in D = G \cap Y \Rightarrow a \in G \Rightarrow \exists B^X(a,r) \subset G \Rightarrow a \in B^x(a,r) \cap Y \Rightarrow a \in B^Y(a,r) \subset D$.

2) Перейти в дополнение и подумать!

3 Вещественные числа.

Пусть \mathbb{R} — мн-во, в котором выполнены аксиомы I-IV. Тогда \mathbb{R} - множество вещественных чисел.

І. Аксиомы поля.

Зададим 2 операции:

 $1) + : \mathbb{R} \times \mathbb{R} \to \mathbb{R}.$

Обозначается a+b.

 $2) \cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}.$

Обозначается $a \cdot b$.

Для них должны быть выполнены данные аксиомы:

- **1.** $\forall x, y : x + y = y + x$ коммунитативность сложения
- **2.** $\forall x, y : x \cdot y = y \cdot x$ коммунитативность умножения
- **3.** $\forall x, y, z : (x + y) + z = x + (y + z) \underline{\text{ассоциативность сложения}}$
- **4.** $\forall x, y, z : (x \cdot y) \cdot z = x \cdot (y \cdot z)$ ассоциативность умножения
- **5.** $\exists 0 \in \mathbb{R} : \forall x : x + 0 = x$
- **6.** $\exists 1 \in \mathbb{R} : \forall x : x \cdot 1 = x$
- 7. $\forall x : \exists (-x) : x + (-x) = 0$
- **8.** $\forall x : \exists (\frac{1}{x}) : x \cdot (\frac{1}{x}) = 1$
- **9.** $\forall x, y, z : xz + yz = (x + y)z$ дистрибутивность

Примеры:

- 1) $\mathbb{F}_2 = \{0, 1\}$
- $2) \mathbb{R}$
- 3) Q
- 4) $\widetilde{R} = \{\frac{P(x)}{Q(x)}, P, Q$ —многочлены $\}$

II. Отношения порядка.

 $\forall x,y:x\leq y$ или $y\leq x$

Должно быть выполнено:

1. $x \le y, y \le z \Rightarrow x \le z$ — транзитивность

- 2. $x \le y; y \le x \Leftrightarrow x = y$
- 3. Если $x \le y$, то $\forall z : x + z <= z + y$
- 4. Если $0 \le x$ и $0 \le y$, то $0 \le xy$

Отношения порядка дают нам возможность работать на промежутках.

[a,b] — отрезок.

(a.b) — интервал.

 $\langle a,b \rangle$ — нам все равно на знаки.

Означает такая запись: $[a,b]=\{x\in\mathbb{R}:a\leq x\leq b\}$

Введем $\infty, -\infty$, так чтобы было выполнено:

+	$a \in \mathbb{R}$	∞	$-\infty$
$b \in \mathbb{R}$	a+b	∞	$-\infty$
∞	∞	∞	(3)
$-\infty$	$-\infty$	(3)	∞

*	$a \in \mathbb{R} > 0$	∞	$-\infty$
$b \in \mathbb{R} < 0$	ab	$-\infty$	∞
∞	∞	∞	$-\infty$
$-\infty$	$-\infty$	$-\infty$	∞

$$0*\infty=$$

когда-нибудь потом пригодится. Обозначим $\overline{\mathbb{R}}$

III. Аксиома Архимеда.

 $\forall x, y > 0 : \exists n \in \mathbb{N} : nx > y$

Следствие: Существует сколь угодно большие №

Фан факт: мы не ввели N. Но мы с ними работаем:)

IV. Аксиома Кантора.

Пусть дана последовательность вложенных отрезков:

$$[a_1,b_1]\supset [a_2,b_2]\supset \ldots$$

Тогда пересечение этих отрезков не пусто.

Тогда наше \mathbb{R} задается аксиомами I,II,III,IV.

4 Пределы и непр-сть отображений.

4.1 Предел.

 $(X, \rho^x), (Y, \rho^y): D \subset X. f: D \to Y.$

 $a \in X, a$ - предельная точка D, $A \in Y$:

<u>Предел отображения</u> $\lim_{x \to a} f(x) = A$ - если выполнено любое из трех опр.

- 1. $\epsilon \delta$, по Коши: $\forall \epsilon > 0 \exists \delta > 0 : \forall x \in D : \rho^x(x, a) < \delta : \rho^y(f(x), A) < \epsilon$.
- 2. на языке окрестностей: $\forall U(A): \exists V(a): \forall x \in D \cap V(a) \ (V(a) \ в данном контексте проколотая, Кохась решил не говорить об этом): <math>f(x) \in U(A)$.
- 3. по Гейне: $\forall (x_n): x_n \in D, x_n \to a, x_n \neq a: f(x_n) \to A$

Частный случай. $X=Y=\mathbb{R},\, D\subset\mathbb{R}, a\in\mathbb{R}, A\in\mathbb{R}$:

$$\forall \epsilon > 0 : \exists \delta > 0 : \forall x \in D : 0 < |x - a| < \delta : |f(x) - A| < \epsilon$$

Зам:

- 1. Опр. Гейне такие (x_n) существуют по свойствам предельной точки.
- 2. Значение f(a) (если $a \in D$) никак не связана с величиной предела.
- 3. Если $\exists U(a)$ f=g на U(a), то они одновременно имеют общий предел/не имеют предел вовсе.

Теорема. Эквивалентность Коши и Гейне.

Опр. Коши ⇔ Опр. Гейне.

Доказательство.

Докажем \Rightarrow . Берем $x_n \in D, x_n \to a, x_n \neq a$. Проверим по опр. предела последовательности $f(x_n) \to A$.

 $\forall \epsilon > 0 \exists \delta > 0$. Для этого $\delta : \exists N : \forall n > N : \rho(x_n, a) < \delta$. $x_n \in D, x_n \neq a$. Для этих x_n выполнено Коши $\rho(f(x_n), A) < \epsilon$. Откуда выполнено Гейне (пояснение: мы взяли последовательность из опр. Гейне и благодаря определению по Коши нашли предел)

Докажем \Leftarrow . Дано $f(x_n) \to A$ по Гейне. Предположим, что A - не предел по Коши.

 $\exists \epsilon > 0: \forall \delta > 0: \exists x \in D, 0 < p(x,a) < \delta: p(f(x),A) \geq \epsilon.$ Беру $\delta = 1, \exists x_1: \rho(x_1,a) < 1.$ Беру $\delta = \frac{1}{2}, \exists x_2: \rho(x_2,a) < 1.$ Беру $\delta = \frac{1}{n}, \exists x_n: \rho(x_n,a) < 1.$ Заметим, что последовательность x_n удовлетворяет всем критериям Гейны $(x_n \in A)$

 $D, x_n \neq a, x_n \to a$). Для нее $f(x_n) \to A$, тогда $\rho(f(x_n), A) \to 0$. Но у нас $\forall n : \rho(f(x_n), A) \geq \epsilon$. Противоречие.

Модификация определений. $(X,Y=\mathbb{R}\$ или $\overline{\mathbb{R}}.\)$

1)
$$a \in \mathbb{R}, A = +\infty, X = \mathbb{R}, Y = \overline{\mathbb{R}}. \text{ f: } D \to \overline{\mathbb{R}}, \lim_{x \to a} f(x) = +\inf.$$

$$\forall \epsilon \exists \delta > 0 : \forall x \in D, 0 < |x - a| < \delta : f(x) > \epsilon.$$

2) $a=+\inf, A=-\inf. \ f:D\subset\mathbb{R}\to\overline{\mathbb{R}}, +\inf,$ - предельная точка D, $\lim_{x\to a}f(x)=-\inf.$

 $\forall L \in \mathbb{R} : \exists \Delta : \forall x \in D : x > \Delta : f(x) < L.$

Метризуемая топология.

Дана топология T в пр-ве X. (топология - совокупность открытых множеств). T метризуемая, если \exists метрика ρ , которая порождает эту систему открытых множеств.

Теорема (о ед. пределе).

f: $D \subset X \to Y$, а - предельная точка D. $A, B \subset Y$.

$$x_n \to a : f(x) = A, x \to a : f(x) = B,$$
 тогда $A = B.$

Доказательство.

Очевидно по Гейне.

Распишем определение через окрестности и сделаем то же самое, что делали в других док-вах единтсвенности предела.

Теорема (о лок. ограниченности отображения, имеющего предел).

 $f:D\subset X o Y$, а - пр. точка D, $A\in Y,\,x_n o a,f(x_n)=A$. Тогда $\exists V(a):f|_{V(a)}$ - ограничена.

Доказательство.

U(a)=B(A,2025). Тогда $\exists V(a): \forall x\in D\cap V(a): f(x)\in B(A,2025)$. Если $a\in D$, возьму $\mathbf{r}=\max(\rho(A,f(a))+2025,2025)$ и буду делать шар радиуса не 2025, а радиуса R.

Теорема (о стабилизации знака).

 $f:D\subset X o Y,$ а - пр. точка D, $\lim_{x o a}f(x)=A\in Y,$ Пусть $B\in Y,B
eq A.$ Тогда $\exists V(a): \forall x\in D\cap V(a): f(x)\neq B.$

Доказательство.

 $r=rac{1}{2}
ho(A,B)$, для $U(A)=B(A,r)\exists V(a): \forall x\in D\cap V(a): f(x)\in B(A,r)$, а следовательно f(x)
eq B.

Теорема (об арифм. свойствах предела).

X - м.п., Y - норм. $D \subset X, f, g : D \to Y$, а - пр. точка D.

 $A,B\in Y,\,f(x)\to A,\,g(x)\to B,\,\lambda:D\to R:\lambda(x)\to\lambda_0\in\mathbb{R},$ при $x\to a.$

Тогда

- 1. $f + g \rightarrow A + B$, при $x \rightarrow a$.
- 2. $\lambda f \to \lambda_0 A$, при $x \to a$.
- 3. $||f|| \to ||A||$, при $x \to A$.

Доказательство. ПО ГЕЙНЕ ОЧЕВ!!!

Теорема (об арифм. свойствах предела в \mathbb{R}).

 $f:D\subset X o \mathbb{R},$ а - пр. точка D, f,g:D o R. $A,B\in \mathbb{R},$ f(x) o A, g(x) o B, при x o a.

Тогда

- 1. $f + q \rightarrow A + B$, при $x \rightarrow a$.
- 2. $fg \to AB$, при $x \to a$.
- 3. $|f| \to |A|$, при $x \to A$.
- 4. Если $B \neq 0$, то $\frac{f}{g} = \frac{A}{B}$. (Замечание: из-за теоремы о стабилизации знака, это корректно)

Доказательство. Угадайте! По ГЕЙНЕ ОЧЕВИДНО.

Теорема (Предельный переход в неравенствах).

 $f,g:D\subset X o\mathbb{R}.a$ - предельная точка D.

 $f(x) \le g(x)$ в $U(a) \cap D$ (выколотая окрестность).

 $\exists \lim_{x \to a} f(x) = A \in \overline{\mathbb{R}}, \ \exists \lim_{x \to a} g(x) = B \in \overline{\mathbb{R}}.$ Тогда $A \leq B$. Док-во по Гейне очевидно(так сказал Кохась, но мне вообще не очевидно).

Зам. $f(x) \leq g(x) \leq h(x)$.

Если $\exists \lim_{x \to a} f(x) = A \in \overline{\mathbb{R}}$ и $\exists \lim_{x \to a} h(x) = A \in \overline{\mathbb{R}}$.

To g(x) имеет предел и он равен A.

КТ ИТМО - 1 Семестр Математический анализ Кохась Константин

Предел по мн-ве. $f: D \subset X \to Y.$ $D_1 \subset D,$ a - предельная точка D_1 . Предел f при $x \to a$ по мн-ву D_1 : $\lim_{x \to a} f | D_1$

Односторонние пределы в \mathbb{R} .

 $\lim_{a \to 0} f(x)$ - предел правосторонний

 $\lim_{a \to 0} f(x)$ - предел левосторонний

Теорема о пределе монот. f:

f: $D \subset \mathbb{R} \to \mathbb{R}$ монотонная. Пусть есть $a \in \overline{\mathbb{R}}$. $D_1 = (-\infty, a) \cap D$, а -предельная точка.

- 1. f возрастает, огр сверху. Тогда $\exists \lim_{x \to a-0} f(x)$
- 2. f убывает, огр. снизучё. Тогда $\lim_{x \to a-0} f(x)$ существует и конечен.

Доказательство аналогично т.о пределе монотонной послежовательности.

4.2 Компактность.

Лемма Гейне-Борели.

$$[a,b]\subset \bigcup_{i=1}^{\infty}(a_i,b_i)$$
. Тогда \exists кон. число интервалов, что $[a,b]\subset \bigcup_{i=1}^{n}(a_i,b_i)$.

Я не буду доказывать эту лемму, она сама потом докажется

Опр. X - метр. пр-во, $K \subset X$, K - <u>компактно</u> в X, если из любого отрытого покрытия множества K, можно выбрать конечное подпокрытие.

$$\forall (G_{\alpha})_{\alpha \in A}$$
 - откр в X, $K \subset \bigcup_{\alpha \in A} (G_{\alpha})$. \exists конечное $\alpha_1, \ldots, \alpha_n$, что $K \subset \bigcup_{i=1}^n (G_{\alpha_i})$.

Теорема.

$$K \subset Y \subset X \ ((Y, \rho)$$
 - подпространство (X, ρ)).

Тогда, если К компактно в Y, то это равносильно К - компактно в X.

Доказательство.

Докажем в правую сторону. Если K - компактно в Y, то должно быть. что K - в X. Берем произвольное открытое покрытие. (Обознаю G^X_{α} - открытое в X, G^Y_{α} - открытое в Y)

 $K\subset\bigcup_{lpha\in A}(G^X_lpha)$. Хотим доказать, что можно выбрать конечное подпокрытие.

$$K\subset \bigcup_{\alpha\in A}(G^X_\alpha)\cap Y=K\subset \bigcup_{\alpha\in A}(G^X_\alpha\cap Y)$$
. По закону Де-Моргана.

 $K\subset\bigcup_{lpha\in A}(G^X_lpha\cap Y).=K\subset\bigcup_{lpha\in A}(G^Y_lpha)$, для этого покрытия существует конечное, тк K компактно в Y.

 $K\subset \bigcup_{i=1}^n (G^Y_{\alpha_i})\subset \bigcup_{i=1}^n (G^X_{\alpha_i})$. Откуда получаю, что из любого покрытия, можно выбрать конечно подпокрытие, откуда K компактно в X.

Докажем в левую сторону. Дано K компатно в X. Возьму произвольное открытое покрытие. $K \subset \bigcup_{\alpha \in A} (G_{\alpha}^{Y})$, хочу доказать, что можно выбрать конечное подпокрытие.

Каждому G^Y_{α} можно задать G^X_{α} , такой, что $G^Y_{\alpha} = G^X_{\alpha} \cap Y$.

Возьму получившееся семейство. Очевидно, что $K\subset\bigcup_{\alpha\in A}(G_{\alpha}^X),$ по определе-

нию компактности в X есть конечное подпокрытие $K \subset \bigcup_{i=1}^n (G_{\alpha_i}^X)$.

Пересеку его с Ү. Получу $K \subset \bigcup_{i=1}^n (G_{\alpha_i}^X \cap Y) = \bigcup_{i=1}^n (G_{\alpha_i}^Y)$, откуда получаю, что из любого покрытия, я могу выбрать конечное, откуда K компактно в Ү. Q.E.D.

Замечание от Славы: Тк мы доказали предыдущую теорему, то мы можем употреблять компактность без уточнения множества. В дальнейшем, вместо К компактно в X будет употребляться К компактно.

Теорема.

Пусть $(X, \rho), K \subset X$.

- 1. K компактно $\Rightarrow K$ замкнуто и ограниченно.
- 2. X компактно, K замкнуто \Rightarrow K компактно.

Доказательство.

1а) Дано К - компактно. Докажем, что К - замкнуто.

Чтобы доказать, что что-то замкнуто, мы доказываем, что дополнение открыто.

Доказать K^c - открыто, т.е. $\forall a \in K^c$ а должно быть внутренней.

 $K\subset\bigcup_{x\in K}B(x,\frac{1}{10}\rho(a,x)).$ По определению компактности существуют $x_1,\ldots,x_n,$ такие

$$K \subset \bigcup_{i=1}^{n} B(x_i, \frac{1}{10}\rho(a, x_i)).$$

И суть в том, что $B(x_i, \frac{1}{10}\rho(a, x_i))$ и $B(a, \frac{1}{10}\rho(a, x_i))$ не пересекаются!

Возьму $r = min(\frac{1}{10}\rho(x_i,a))$. так как х-ов конечно, то такой минимум есть. Тогда B(a,r) не пересекается с K, откуда он лежит в K^c , откуда дополнение открыто.

Замечание от Славы. Для каждой точки дополнения у нас существует окрестность в которой она лежит, откуда по определению каждая точка дополнения K - внутренняя, откуда дополнение K открыто.

16) Дано К - компактно. Докажем, что К - ограниченно.

Возьму $a\in X$. Тогда $K\subset \bigcup_{n=1}^{\infty}(a,n)=X$. Так как K компактно, то существуют такие $x_1,\ldots,x_n,\, K\subset \bigcup_{i=1}^{l}(a,n_i)=B(a,n_l),$ откуда получаю искомое.

Замечание от Славы. Множество К лежит в шаре $B(a, n_l)$, откуда оно ограниченно этим шаром.

2) Проверим, что К - компактно.

Возьмем какое-то покрытие: $K \subset \bigcup_{\alpha \in A} (G_{\alpha})$, хочу доказать, что можно выбрать конечное подпокрытие.

 $\bigcup_{\alpha \in A} (G_{\alpha}) \cup K^c$. Заметим, что т.к. K - замкнуто, то K^c открыто и является покрытием X.

Так как X компактно, то существуют такие x_1, \ldots, x_n , что $X \subset \bigcup_{i=1}^n G_\alpha \cup K^c$.

$$K \subset X \subset \bigcup_{i=1}^n G_\alpha \cup K^c$$
, но тк K и K^c не пересекаются, то

 $K\subset \bigcup\limits_{i=1}^n G_{\alpha}.$ Откуда получаю, что из любого покрытия, я могу выбрать конечное, откуда K компактно Q.E.D.

Параллелепипед.

 $\{x \in \mathbb{R}^m : \forall k = 1 \dots m : a_k \le x_k \le b_k\}$ — такое множество называется параллеленинедом, обозначается [a, b], где $a, b \in \mathbb{R}^m$.

Лемма(о вложенных параллелепипедах).

Здесь индексы обозначаются сверху.

$$[a^1,b^1]\supset [a^2,b^2]\supset\ldots$$
 — последовательность парал. в \mathbb{R}^m .

Тогда
$$\bigcap_{k=1}^{\infty} [a^k, b^k]$$
 — не пусто.

Доказательство.

как сказал кохась - очевидно.

Используем аксиому Кантора для каждой координаты и получим итоговое.

Лемма.

Дан замкнутый прлп. [a,b] в \mathbb{R}^m . Докажем, что он компактный.

Доказательство.

$$[a^1, b^1] \subset \bigcup_{\alpha \in A} (G_\alpha). \ diam[a^1, b^1] = ||b^1 - a^1||$$

Предположим, что не сущ. конечного подпокрытия. Разобьем мой прпл. на 2^n - половинных прпл. Следовательно найдется половинный прпл. $[a^2,b^2]$, для которого нельзя выбрать конечное подпокрытие.

Давайте теперь продолжу выполнять этот процесс. Найдутся $[a^4,b^4],[a^5,b^5],\ldots$

$$[a^1,b^1]\supset [a^2,b^2]\supset\ldots$$
 — последовательность прпл. в \mathbb{R}^m . $diam[a^k,b^k]=rac{||b^1-a^1||}{2^k}$.

По предыдущей лемме $\exists x \in \bigcap\limits_{k=1}^{\infty} [a^k,b^k] \subset [a^1,b^1].$

 $x\subset\bigcup_{lpha\in A}(G_lpha)$, значит есть какой-то $lpha_0$, что $x\in G_{lpha_0}$. Тогда $\exists r>0 B(x,r)$. И тк

диаметр a^k, b^k стремится к нулю, то в какой-то момент этот шарик покроет прпл. a^l, b^l . Тогда приходим к противоречию. Q.E.D

Замечание от Славы. Мы предполагаем, что нельзя, тогда не должно существовать таких шариков, покрывающих один из бесконечнего кол-ва прпл (которые нельзя покрыть конечным числом шариков), а такой есть.

Теорема (о характеристике компактности в R^m)

Эквиваленты утверждения:

- 1. $K \in \mathbb{R}^{m}$ замкнуто и ограничено.
- $2. \ K$ компактно.
- 3. $K \in \mathbb{R}^m$ секвенциально компактно, т.е. $\forall (x_n)$ посл. в $K, \exists (n_k) : n_1 < n_2 < \ldots$ посл нат чисел, $\exists a \in K : x_{n_k} \to a$.

Доказательство.

Из первого второе.

Пусть $K \in \mathbb{R}^m$ - замкнуто и ограничено. Тогда \exists прпл. [a,b]: $K \subset [a,b]$. причем K - замкнуто. Значит по лемме (см. наверх), наш прпл. компактный, а по теореме(см наверх) значит, что и K - компактно.

Из второго третье.

 x_n - посл. в К. $D = x_n \subset K$, причем в D нет повторений.

Если D конечно, то какое-то значение принимается бесконечное кол-во раз, выберем только их и получим то, что от нас требуется.

Если D бесконечно. Если \exists а - предельная точка D, лежащая в K, тогда такая последовательность строится очевидно.

Если таких нет. Тогда $K\subset\bigcup_{x\in K}B(x,\varepsilon_x)$. Так как никакая из точек в K - не

предельная для D, то каждую точку, я могу окружить шаром, что в нем не будет ни одного элемента D. (ε_x я выбираю именно так).

 $D\subset K\subset \bigcup_{1}^{n}B(x,\varepsilon_{x})$ не более n точек из D. Тогда не существует конечного покрытия. Противоречие.

<u>Из третьего первое.</u> Проверим, что K - замкнуто. Если нет, тогда $\exists a \notin K$, а - предельная точка K. Тогда $\exists (x_n)$ - посл. в K. $x_n \to a$. $\forall (n_k) x_{n_k}$ сходится к $a \in K$, по секвенциальной компактности.

Следствие (Принцип выбора Больцано-Вейерштрасса).

в \mathbb{R}^m x_n - огр. последовательность. $\exists (n_k)$, такое, что x_{n_k} сходится.

Доказательство.

 (x_n) - огр., значит он лежит в каком-то парал [a,b], который компактен, а если он компактен, то по характеристике компактности он секвенциально компактен, откуда и следует искомое. Q.E.D.

Опр. (X, ρ) - м. п, (x_n) - посл-ть в $X(x_n)$ - фундаментальная = после-ть Коши = сходящаяся в себе, если $\forall \varepsilon > 0 : \exists N : \forall m, n > N : \rho(x_m, x_n) < \varepsilon$.

<u>Лемма.</u> (X, ρ) - м. п

- 1. (x_n) посл. Коши, то (x_n) огр.
- 2. (x_n) посл. Коши, $\exists (n_k): x_{n_k}$ возрастающая и сходится, то (x_n) сходится Доказательство.
 - 1) Возьмем $\varepsilon = 1$, $\exists N : \forall m, n > N : \rho(x_m, x_n) < 1$. Возьму $n_0 > N$. Заметим, что $\forall n > N : n \in B(x_{n_0}, 1)$. Возьму $r = \max(\rho(x_{n_0}, x_i))$, где і от 0 до N и сделаю шар радиуса $R = \max(r+1,1)$. Тогда все точки попадут в него откуда (x_n) огр.
 - 2) $\forall \varepsilon > 0 : \exists N : \forall m, n > N \rho(x_m, x_n) < \frac{\varepsilon}{2}$ и также $\exists K : \forall b > K : \rho(x_{n_b}, a) < \frac{\varepsilon}{2}$. Возьмем $M = \max(N,K)$. $\forall m > M \rho(x_m, a) < \rho(x_m, x_{n_m}) + \rho(x_{n_m}, a) < \varepsilon$. Откуда сходится. Q.E.D

Фундоментальная последовательность. (X, ρ) - метрическое пространство, x_n - последовательность в X. Последовательность фундаментальна, если $\forall \varepsilon > 0 \exists N, \forall m, n > N : \rho(x_n, x_m) < \varepsilon$. Такая последовательность называется последовательностью Коши.

Лемма. x_n - посследовательность в (X, ρ) .

- 1. x_n посл. Коши и x_n ограниченно.
- 2. x_n посл Коши и есть x_{n_k} , которое сходится, то x_n сходится.

Доказательство очевидно.

Полное пространство - любая фунд. последовательность в нем сходится.

Антипример: $x_n = \frac{1}{n}$ в $(0, +\infty)$. Пример: R^m .

В полном пространстве: фундоментальная = сходится и наоборот.

Критерий Больцмана-Коши. (существования предела в полном пространстве)

$$\exists \lim_{n \to +\infty} x_n = a \Leftrightarrow \forall \varepsilon > 0 \,\exists N : \forall n, m > N : \rho(x_n, x_m) < \varepsilon$$

Теорема. Критерий Больцмана-Коши для отображений.

Пусть есть $D\subset X o Y$, X,Y - метрические пространства. x_0 - предельная точка D. Y - полное, тогда имеет место:

1.
$$\exists \lim_{x \to x_0} f(x)$$

2.
$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x_1, x_2 \in D \setminus \{x_0\} : \begin{cases} \rho(x_1, x_0) < \delta \\ \rho(x_2, x_0) < \delta \end{cases} \quad \rho(f(x_1), f(x_2)) < \varepsilon$$

Доказательство:

Доказательство в правую сторону очевидно. Доказываем в левую сторону. Воспользуемся **пределом по Гейне**. Возьму $x_n \to x_0$, $x_n \in D$, $x_n \neq x_0$. $f(x_n)$ - фундоментально из правой части (расписать и посмотреть). А так как фундоментально, то значит сходится по Критерию Больцмана-Коши.

4.3 Непрерывные отображения.

 $f:D\in X\to Y, x_0\in D, Y,X$ - метрические пространства. f **непрерывна** в $x_0,$ если выполнено 1 из 4:

- 1. $\exists \lim_{x \to x_0} f(x) = f(x_0)$, либо x_0 изолированная.
- 2. По Коши. $\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in D : \rho(x, x_0) < \delta, \rho(f(x), f(x_0)) < \varepsilon$
- 3. Okp. $\forall U(f(x_0)) : \exists V(x_0) : \forall x \in D \cap V(x_0) : f(x_0) \in U(f(x_0))$
- 4. По Гейне. $\forall (x_n) : x_n \to x_0, x_n \in D : f(x_n) \to f(x_0)$

Случай в $R: \forall \varepsilon > 0: \exists \delta > 0: \forall x \in D: |x - x_0| < \delta: |f(x) - f(x_0)| < \varepsilon.$

Разрывная в x_0 - нет непрерывности. (f терпит разрыв в x_0). В таком случае x_0 - точка разрыва.

Также в \mathbb{R} можно ввести непрерывность **слева** и **справа**. (меняем пределы на левосторонний и правый).

Если функция непрерывна справа и слева от x_0 , то она непрерывна.

Введем обозначение. $f(x \pm 0) = \lim_{x \to x_0 \pm 0} f(x)$.

Если $f(x_0 - 0), f(x_0), f(x_0 + 0)$ не все совпадают(если существуют и конечны), тогда x_0 - точка скачка или разрыва первого рода.

Все другие - разрывы второго рода (не могу вычислить левосторонний предел или правостронний).

Свойства непрерывного отображения.

Арифметические свойства:

Теорема.

f, g: $D \subset X \to Y$, X - метрическое пространство, Y - нормированное, $x_0 \in D$. $\lambda : D \to \mathbb{R}$, f, g, λ - непрерывны в x_0 .

Тогда f+g, λf , ||f|| - непрерывны в x_0 . Доказательство очевидно из арифм. свойств предела.

Теорема.

f, g: $D \subset X \to \mathbb{R}$, X - метрическое пространство, $x_0 \in D$, f,g - непрерывны в x_0 .

Тогда f+g, fg, |f| - непрерывны в x_0 , а также, если $g(x_0) \neq 0$: $\frac{f}{g}$ - непрерывна в x_0 . Доказательство очевидно из арифм. свойств предела в \mathbb{R} .

Стабилизация знака.

 $f:D\subset X\to\mathbb{R}, x_0\in D, f(x_0)\neq 0, f(x)$ непрерывна в x_0 .

Тогда $\exists U(x_0) : \forall x \in U(x_0) : \text{sign } f(x) = \text{sign } f(x_0).$

(Пересказ теоремы о стабилизации знака).

Функция называется **непрерывной**, если она непрерывны в любой своей точке, то есть $f: D \subset X \to Y$, и f непрерывна в D, если $\forall x_0 \in D: f$ непрерывна в x_0 .

Теорема. (непрерывность композиции)

 $f: D \subset X \to Y, g: E \in Y \to Z, f(D) \subset X.$ f - непрерывна в $x_0 \in D,$ g - непрерывна а $f(x_0)$. Тогда g(f(x)) непрерывна в x_0 .

Доказательство:

Доказательство состоит из волшебных слов: по Гейне.

Надо проверить, что $\lim_{x\to x_0} g(f(x)) \to g(f(x))$. Возьмем $x_n \to x_0, x_n \in D.f(x_n) \to f(x_0)$, тк.f непрерывна. Есть некая $f(x_n) \to x_0$. Теперь воспользуемся непрерывности g и получим искомое.

Теорема. (о пределе композиции)

$$f:D\subset X o Y,g:E\in Y o Z,\ f(D)\subset X.\lim_{x o a}f(x)=b,\lim_{y o b}g(y)=L.$$
 Тогда: $\lim_{x o a}g(f(x))=L$

Если выполнено одно из двух:

- 1. g непрерывна в точке b.
- 2. $\exists U(a) : \forall x \in U(a) \cap D : f(x) \neq b$.

Доказательство:

Кохась сказал, что это упражнение. Позже тут появится док-во, честно-честно (док-во вообще следует из прошлой задачи, если я умею думать)

Теорема. (о топ. определении непрерывности)

 $f: X \to Y, X, Y$ - метрическое пространство. Тогда эквивалентно:

- 1. f непрерывно на X
- 2. $\forall G \subset Y, G$ откр в Y: $f^{-1}(G)$ открыто в X.

Доказательство:

Из первого второе. Возьму $G\subset Y$ - открытое. Проверим, что $f^{-1}(G)$ - открытое.

 $\forall x_0 \in f^{-1}(G)$ Проверим, что x_0 - внутренняя точка $f^{-1}(G)$. очевидно. f непрерывно в x_0 , значит, что $\forall K$ - открытой в Y, существует открытая H, $x_0 \in H$: $\forall x \in H \in D : f(x) \in K$. что и доказывает нужное нам.

Из второго первое. Возьму $f(x_0) \in G$. Непрерывность в x_0 означает, что верно ли: $\forall G_1$ - открытой $f(x_0) \in G_1 \exists$ открытая $H, x_0 \in H : H \subset f^{-1}(G_1)$. Исходя из того что дано это выполнено

Теорема. (Вейерштрассса)

 $f: X \to Y$, где X,Y - метрические пространства - непрерывно.

X компактно. Тогда $\mathrm{f}(\mathrm{X})$ - компактно.

Доказательство:

Проверим, что f(X) - компактно.

Возьму любое покрытие $f(X) \subset \bigcup_{\alpha \in A} G_{\alpha}$, где G_{α} - открытое в Y. Надо доказать, что я могу выбрать конечное подпокрытие.

 $X\subset\bigcup_{lpha\in A}f(G_lpha)$. по теореме о топ. определении каждый прообраз открыт.

Откуда, тк X компактно, можно выбрать конечное $X \subset \bigcup_{i=1}^n f^{-1}(G_{\alpha_i})$. Тогда

$$f(X) \subset \bigcup_{i=1}^n G_{\alpha_i}$$
, откуда получаем искомое

Следствие

 $f:X\to Y,f$ - непрерывно на X, X - компактно, тогда f(x) замкнут и ограничен в Y

Следствие (1-ая теорема Вейерштрасса)

 $f:[a,b] \to \mathbb{R}$, непрерывна. Тогда f - огр на [a,b].

Следствие

 $f:X\to\mathbb{R}.$ X - компактен, f - непрерывна. Тогда есть максимум и минимум функции.

Доказательство:

f(X) замкнуто и ограниченно в $\mathbb{R}.\sup(f(x),x\in X)$. Если супремум не бесконечность, но $\sup f(x)\notin f(x)$, тогда $\sup f(x)$ - предельная из технического

описания супремума . А откуда наше множество не замкнуто - Противоречие. Для минимума аналогично.

Следствие (Главная теорема Вейерштрасса)

 $f:[a,b]\to\mathbb{R}$, непрерывная, тогда существует тах и тіп.

ИСПОЛЬЗУЕМ МАТЕМАТИЧЕСКУЮ ТЕРМИНОЛОГИЮ — ЯСЕН ПЕНЬ ОЧЕВИДНО.

 \mathbb{R} - $\varphi:[a,b]\to\mathbb{R}^m$, непрерывное - такое называют путем при течении времени от а до b.

Множество $E \subset \mathbb{R}^n$, называют <u>линейно связным</u>, если любые две точки можно соединить путем.

 $\forall A, B \in E. \exists \varphi : [a, b] \to E$, непрерывно, что $\varphi(a) = A, \varphi(b) = B$.

<u>Связное множество</u> Е в R^m — если его нельзя представить в виде двух непересекающихся открытых в Е множеств и не пустые в пересечении с E.

Утв. Теорема.

 $[a,b]\subset\mathbb{R}$. Тогда [a,b] - связно.

Не существует: G_1, G_2 - открытые в \mathbb{R} , что пересечение не пусто. $G_1 \cap G_2 \neq 0$ и $[a,b] \subset G_1 \cup G_2$

Доказательство:

Докажем от противного. Пусть существует такие G_1, G_2 . Тогда Н.У.О $a \in G_1$ и $b \in G_2$. $s := \sup(x : [a,x] \subset G_1) \le b$. s > a. Куда принадлежит s? Пусть принадлежит G_1 , но тогда s_1 - внутренняя, откуда справа от точки что-то есть, а там ничего нет, потому что она супремум. Пусть s лежит в s0. Тогда супремум чуть левее. Противоречие.

Замечание от Славы. Лучше для понимания верхней штуки порисовкать рисуночки и подумать.

Теорема (Больцмана-Коши о промежуточном значении).

 $f:[a,b] o\mathbb{R}$. f - непрерывная. Тогда $\forall t$ между f(a),f(b), для которой f(c)=t, где $c\in[a,b].$

Доказательство:

Допустим, что не так. Тогда есть какое-то t, которое не представимо(если больше, то более очевидно). Тогда отрезок $[a,b]=f^{-1}((\infty,t))\cup f^{-1}((t,+\infty))$. Получается, что я отрезок a,b представил в виде двух открытых множеств. По прошлой теореме я проиграл.

Пример. Теорема о Бутерброде. Для двух любых открытых множеств в \mathbb{R}^2 . можно провести прямую, которая поделить каждое множество на 2 равных по площади части.

Тут Слава забыл расписать доказательство, я его подменю. Заведите параметр a - угол наклона прямой. Для любого угла наклона можно найти такую прямую, что поделит первое множество пополам (по прошлой теореме). Можно завести отображение $f: a \to \mathbb{R}$ равное площади второго множеста слева от прямой, из которой вычли площадь второго множества справа от прямой (для этого задайти лево и право для прямой). Заметим, что при повороте a с 0 до 180 градусов это непрерывное значение поменяло знак. Снова пользуемся прошлой теоремой (тут нужно сказать, что f непрерывно) и получаем, что существует такое a, при котором оба множества делятся пополам.

Замечание от Кохася: Введем новое обозначение \sqcup - дизъюнктное объединение. Также введем `[a,b]` - отрезок от а до b или от b до а (мы не знаем кто больше)

Теорема (о сохранении промежутка)

 $f:\langle a,b \rangle o \mathbb{R}, f$ - непр. Тогда $f(\langle a,b \rangle)$ - промежуток.

Доказательство:

Давайте возьмем $m = \inf f, M = \sup f$ на промежутке $\langle a, b \rangle$. Достаточно проверить, что $(m, M) \subset f(\langle a, b \rangle)$. Возьмем t на промежутке. m < t, Тогда существует $x_1 \in \langle a, b \rangle : f(x_1) < t$. M > t $x_2 \in \langle a, b \rangle ; f(x_2) > t$. Тогда по теореме Больцмана-Коши существует такое c, что f(c) = t. Q.E.D

Напоминание: $\langle a,b \rangle$ - нам все равно включительно или нет границы.

Лемма. $E \subset \mathbb{R}$ - линейно связно равносильно тому, что E - промежуток.

Доказательство:

Из правого левое - по прошлой теореме.

В обратную сторону. Положим $m=\inf E, M=\sup E$. Закончите сами

Теорема (Больцмана-Коши о сохранении линейной связности).

X—лин. связное м.п., Y - метрическое пространство $f:X \to Y$ - непрерывно. Тогда f(X) - линейно связное множество.

Доказательство:

Беру А, В. f(a) = A, f(b) = B из f(X). $\exists \gamma : [\alpha, \beta] \to X$ - непр. Такое, что. $f \cdot g[a,b] \to Y$ - непрерывно.

Кохась написал что-то странное надо переделать

Теорема (о непрерывности монотонной функции)

 $f:\langle a,b\rangle\to\mathbb{R}$ монотонна.

- 1. Тогда f не имеет разрыва второго рода. Т.е. $\forall x: \exists f(x-0), f(x+0)$ [ну почти]
- 2. f непр $\Leftrightarrow f(\langle a, b \rangle)$ промежуток Волшебное утв.

Доказательство:

- 1) Н.У.О f возрастающая. Тогда фикс. $x \in (a,b)$. Пусть $x_1, x_2 \in (a,b)$: $x_1 < x < x_2$. $f(x-0) = \lim_{x_1 \to x-0} f(x_1)$. По теореме о пределе монотонной функции и при этом предел не превосходит f(x). Аналогично правосторонний
- 2) вправо уже доказывали(см выше). Докажем влево. Берем x_0 на промежутке. Левосторонний равен правостороннему предел, что очевидно из того, что это промежуток.

Следствие. $f:< a,b> \to \mathbb{R}$ - монотон. Тогда число точек разрыва не более чем счетно. (Сделать инъекцию в множество \mathbb{Q} и победили).

Теорема (о сущ. непрерывности обратной функции).

 $f:\langle a,b\rangle\to\mathbb{R}$ непрерывна и строго монотонна.

 $m = \inf f, M = \sup f$. Тогда:

- 1. f обратима. $f^{-1}\langle m, M \rangle \to \langle a, b \rangle$. биекция*
- $2. f^{-1}$ того же вида монотонности, что и f
- 3. f^{-1} непрерывен.

Доказательство:

Пусть f - строго возрастает. $\langle m, M \rangle$, того же вида, что и $\langle a, b \rangle$. $f: \langle a, b \rangle \to \langle m, M \rangle$ — биекция. Второе очевидно. а непрерывна по теореме о непрерывности о монотонной функции.

5 Асимптотические оценки.

5.1 Оценки

Введем обозначения:

 $f,g:D\subset X\to\mathbb{R},x_0$ - предельная точка D.

Если $\exists U(x_0); \exists \varphi : D \to \mathbb{R} : f(x) = \varphi(x)g(x)$:

Если:

- 1. φ ограниченная на $U(x_0) \cap D$, то $f = O(g) (U(x_0))$ вроде выколотая окрестность)
- 2. $\varphi(x) \to 0$, при $x \to x_0$, то f = o(g)
- 3. $\varphi \to 1$, то $f \sim g$ эквивалентность при $x \to x_0$.

 $f,g:D\subset X o\mathbb{R}:\exists c>0: \forall x\in D: |f(x)|\leq cg|(x)|.$ Тогда f=O(g).

f = O(g); g = O(f). Тогда $f \asymp g$, называются **сравнимыми**.

Замечания:

1.
$$\frac{f}{g}$$
 - огр. на $U(x_1) \cap D$. Тогда $f = O(g)$

2.
$$\frac{f}{g} \to 0 \Rightarrow f = o(g)$$
, при $x \to x_0$.

3.
$$\frac{f}{g} \to 1 \Rightarrow f \sim g$$
, при $x \to x_0$.

O(g), o(g) будут использоваться как классы функций (множество).

про что дядя кохась не сказал.

Свойства:

- 1. o(f) + o(f) = o(f). o(f) o(f) = o(f).
- 2. Принцип Тортика. $f \sim g \Leftrightarrow f = g + o(g) \Leftrightarrow f = g + o(f)$.
- 3. $f = o(g) \Rightarrow f = O(g)$.

Кохась ругает нас за работу

Таблица эквивалентности, при $x \to 0$.

- 1. $\sin x \sim x$
- 2. $tg x \sim x$

- 3. $\arcsin x \sim x$
- 4. $arctg x \sim x$
- 5. $\cos x \sim 1$

6.
$$1 - \cos x \sim \frac{x^2}{2}$$

- 7. $e^x 1 \sim x$
- 8. $a^x 1 \sim x \ln a$
- 9. $\ln(1+x) \sim x$
- 10. $(1+x)^{\alpha}-1 \sim \alpha x, \ \alpha \in \mathbb{R}$

Теорема. (о замене на эквивалентное)

 $f, \tilde{f}, g, \tilde{g}: D \subset X \to \mathbb{R},$ X - метрическое пространство. x_0 - предельная точка D. $f \sim \tilde{f}, \ g \sim \tilde{g}.$

Тогда
$$\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} \tilde{f}(x)g(x)$$
 и $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{\tilde{f}(x)}{g(x)}$.

Если x_0 - предельная точка $\frac{f(x)}{g(x)}$ и если существует предел в $\overline{\mathbb{R}}$ в одной части равенства, то существует и в другой, а также они равны

Доказательство:

По определению $\exists U(x_0) : \forall x \in U(x_0) \cap D$. (проколотой).

$$f(x)=lpha(x) ilde{f}(x)$$
 и $g(x)=eta(x) ilde{g}(x),\ lpha(x) o 1,eta(x) o 1,$ при $x o x_0.$

Пусть правая часть (1) корректно определена.

$$\lim_{x\to x_0}fg=\lim_{x\to x_0}\alpha(x)\tilde{f}(x)\beta(x)\tilde{g}(x)=\lim_{x\to x_0}\tilde{f}\tilde{g}$$

Оставшиеся части доказываются аналогично. (нужно доказать еще 3 штучки)

Замечание от Славы. Мы можем смотреть предел на каких-то окрестностях нашей x_0 . В данном случае мы смотрели на такую окрестность U, что в ней наши функции удовлетворяют всему, что нужно.

Очевидно на суммы это не работает.

5.2 Асимптотическое разложение.

Пусть даны функции $g_0, g_1, \ldots : D \in X \to \mathbb{R}$. x_0 - предельная точка. X - метрическое пространство.

$$\forall x \in \mathbb{N} : g_k = o(g_{k-1}), x \to x_0, \text{ a также } \exists U(x_0) \forall x \in U(x_0) \cap D : \forall k : g_k(x) \neq 0.$$

Такой набор функций называется шкалой асимптотического разложения.

 $f: D \to \mathbb{R}$. Выражение $f(x) = c_0 g_0(x) + c_1 g_1(x) + \ldots + c_n g_n(x) + o(g_n(x))$ называется **Асимптотическим разложением**.

Теорема. (о единственности асимптотического разложения)

Пусть даны $f, g_0, g_1, \ldots : D \subset X \to \mathbb{R}, x_0$ - предельная точка D. (g_k) - шкала при $x \to x_0$.

$$f(x) = c_0 g_0(x) + c_1 g_1(x) + \ldots + c_n g_n(x) + o(g_n(x)), x \to x_0$$

$$f(x) = d_0 g_0(x) + d_1 g_1(x) + \ldots + d_m g_m(x) + o(g_m(x)), x \to x_0$$

Тогда $m \leq n, \forall k \in \{0, \dots, m\} : c_k = d_k.$

Доказательство:

Пусть 1 - первый коэффицент, который не совпадает. Тогда:

$$c_l g_l(x) + \ldots + c_n g_n(x) + o(g_n(x)) = d_l g_l(x) + \ldots + d_m g_m(x) + o(g_m(x))$$

Все, что написано после g_l могу обозначить за $o(g_l)$:

$$c_l g_l(x) + o(g_l(x)) = d_l g_l(x) + o(g_l(x))$$

 $(c_l - d_l)g_l(x) = o(g_l(x))$. Такого не может быть (посмотреть на определение о мальнекого), откуда получаем противоречие. Q.E.D.

Небольшое забегание вперед.

Формула Тейлора для многочленов.

$$f(x) = a_0 + a_1 x + \dots a_n x^n.$$

Вопрос: Как разложить многочлен f(x) по степеням $(x-x_0)^k$?

$$f(x) = b_0 + b_1(x - x_0) + \dots + b_n(x - x_0)^n$$

Очевидно, что $f(x_0) = b_0$. Возьму производную. Замечу, что $f'(x_0) = b_1$.

$$b_k = \frac{f^{(k)}(x_0)}{(k!)}$$
. Получаю:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

Теорема. (формула Тейлора с остатком в форме Пеано)

что за f(x), откуда она действует, нам ничего не сказали, угадываем :)

Пусть f - n раз дифференцируема на $\langle a,b \rangle, x_0 \in (a.b)$.

Тогда
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$
, при $x \to x_0$.

Доказательства не будет, оно приняло ислам

1:27 9 лекции, кохась что-то сказал про наклонную асимптоту, но я не вставлю это в конспект, так как там что-то странное

6 Дифференциальные исчисления.

6.1 Производные.

 $f: \langle a, b \rangle \to \mathbb{R}, x_0 \in \langle a, b \rangle.$

f - **дифференцируема** в x_0 , если $\exists A \in \mathbb{R} : \exists$ бесконечно малая $\alpha(x), x \to x_0$.

$$\forall x \in \langle a, b \rangle : f(x) = f(x_0) + A(x - x_0) + \alpha(x)(x - x_0).$$

Число A называют **производной** в точке x_0

По теореме о единственности асимптотического разложения А - корректно определено.

 $f:\langle a,b\rangle \to \mathbb{R}: x_0 \in \langle a,b\rangle: f$ - дифференцируема в точке x_0 , если \exists конечная.

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{(x - x_0)} = A.$$

Замечание от Славы. Первое определение более гибкое, если расширять функцию в \mathbb{R}^m то понятно, как брать производную, когда у нас больше одной переменной (начинаем работать по векторам).

Теорема (о равносильности двух определений).

Oпр $1 \Leftrightarrow$ oпр 2.

Доказательство:

Из первого второе: $f(x) = f(x_0) + A(x - x_0) + \alpha(x)(x - x_0)$.

Выразим
$$A = \frac{f(x) - f(x_0)}{x - x_0} - \alpha(x)$$
. Посмотрю на предел, получу искомое.

Из второго первое: повторите в обратную сторону из первого второе.

$$A = f'(x_0)$$

Замечание. Дифференциал df, $df(x_0, h) - f'(x_0) \cdot h$.

f - как в определении: $df: \mathbb{R} \to \mathbb{R}: h \to f'(x_0) \cdot h$.

Замечание. $f'_+(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} - \underline{\text{правосторонняя производная}}.$

Аналогично левосторонняя.

Если
$$f'_+(x_0), f'_-(x_0) = A \in \mathbb{R}$$
, то f — дифф. в точке x_0 и $f'(x_0) = A$.

Замечание. Если $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = +\infty$, то считаем, что f - **НЕ** Д**ИФФЕ**-**РЕНЦИУЕМА**, но можем говорить, что $f'(x_0) = +\infty$

Замечание. f дифференцируема в x_0 , то f непрерывна в x_0 . Тривиально из определений.

Пример:

$$f(x) = x^2 \sin \frac{1}{x}$$
, при $x \neq 0$, $f(x) = 0$, при $x = 0$.

Хочу посмотреть дифференцируема ли в нуле? Да $f(x) = 0 + 0 \cdot (x - 0) + (x \sin \frac{1}{x})x$.

 $f:\langle a,b\rangle \to \mathbb{R}$. f - **дифференцируема на отрезке**, если она дифф. в каждой точке этого отрезка.

 $f:\langle a,b\rangle \to \mathbb{R}$, пусть f дифф. на отрезке < a,b>. Тогда функция $x\to f'(x)$ производная функции f.

Правила дифференцирования.

Теорема

 $f,g:\langle a,b\rangle\to\mathbb{R}$, дифф.в x_0 . Тогда указанные ниже функции дифф. в x_0 :

- 1. $(f+g)'(x_0) = f'(x_0) + g'(x_0)$
- 2. $\forall \alpha \in \mathbb{R} : (\alpha f)'(x_0) = \alpha f'(x_0)$
- 3. $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- 4. Если $g(x_0) \neq 0$. $(\frac{f}{g})'(x_0) = \frac{f'(x)g(x) g'(x)f(x)}{g^2(x)}$

Доказательство:

1) 2) 3) Упражнение. 4) Используя $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ - немного измененное определение предела докажем. ОЧЕВИДНО (ну там реал просто подставить)

Теорема (дифференцирование композоции)

$$f:\langle a,b\rangle \to \langle c,d\rangle$$
 – дифф. в x_0

$$g:\langle c,d\rangle\to\mathbb{R}$$
 дифф. в $y_0=f(x_0)$.

Тогда
$$g \cdot f$$
 - дифф в x_0 и $(g \cdot f)'(x_0) = g'(f(x_0))f'(x_0)$

Доказательство:

$$\overline{f(x_0+h) = f(x_0)} + f'(x_0) \cdot h + \alpha(x_0+h) \cdot h$$

$$g(y_0+k)=g(y_0)+g'(x_0)\cdot k+\beta(x_0+h)\cdot h$$

$$g(f(x_0+h))=g(f(x_0)+f'(x_0)\cdot h+\alpha(x_0+h)\cdot h)=$$

$$=g(f(x_0))+g'(f(x_0))(f'(x_0)h+\alpha(x_0+h)\cdot h)+\beta(\cdot)(f'(x_0)h+\alpha(x_0+h)\cdot h)=$$

$$g(f(x_0))+g'(f(x_0))f'(x_0)h+(\ldots)-$$
 нужная нам формула

Замечание от Славы. Надо аккуратно посмотреть на то, что находится в скобках и посмотреть на первое определение дифференцируемости

Теорема (о производной обратной функции)

 $f:\langle a,b\rangle \to \mathbb{R}$, - непр, строго монотонная. Дифференцируема в x. Тогда f^{-1} - дифф. в f(x) - $(f^{-1})'(f(x))=\frac{1}{f'(x)}$. (f'(x)!=0)

Доказательство:

Продифференцируйте $f^{-1}(f(x)) = x$. Получите искомое. Только нужно доказать, что $f^{-1}(x)$ в целом дифференцируема. Это доказывается из элементарных соображений о симметрии. (геометрическое доказательство через касательные).

 f^{-1} существует по теореме о непрерывности обратной функции.

Возьму точку (x,f(x)) и точку (x+h,f(x)+k). Заметим, что $h(k)=h=f^{-1}(f(x)+k)-f^{-1}(f(x))$. Чтобы найти производную обратной функции, мы должны найти вот такой предел: $\lim_{k\to 0}\frac{f^{-1}(y+k)-f^{-1}(y)}{k}=\frac{h(k)}{k}$

$$=\lim_{k\to 0}\frac{h(k)}{f(x+h(k))-f(x)}$$
— откуда предел существует, откуда дифф в точке х.

6.2 Триг. функции

В школе мы умели их определять. Пользуемся этими определениями.

Лемма.
$$x \in (0, \frac{\pi}{2})$$
, $\sin x < x < \operatorname{tg} x$.

Доказательство:

Возьмем какую-то точку H так, что $\angle AOB = x$. Посчитаем $S_{\Delta AOB}$. OB = 1. Поэтому $S_{\Delta AOB} = \frac{AH \cdot OB}{2} = \frac{\sin x}{2}$. Посчитаем площадь сегмента. Найду $S_{\text{сегмент}} = \pi r^2 * \frac{x}{2\pi} = \frac{x}{2}$. Дострою за точку A до прямоугольного треугольника. Получу $S_{\Delta} = \frac{\operatorname{tg} x}{2}$, откуда я и получаю нужное мне неравенство.

что же такое эта ваша площадь, узнаете во втором семестре БУ.

Следствие. $\sin x$, $\cos x$ - непр. функции на \mathbb{R}

 $|\sin x - \sin x_0| = |2\sin \frac{x - x_0}{2} \cdot \cos x + x_0/2| \le 2\sin \frac{|x - x_0|}{2} \le \frac{2|x - x_0|}{2}$. То есть предел существует, откуда непрерывна. Ну а косинус — сдвинутый синус.

Следствие. $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Достаточно доказать, что предел с одной стороны.

Доказательство:

При $x \in (0, \frac{\pi}{2})$: $\cos x < \frac{\sin x}{x} < 1$. По принципу двух городовых середина стремится к 1. (Равенство посередине — переписанное равенство сверху).

Следствие. $\sin x$ дифференцируема при всех $x \in \mathbb{R}$, $(\sin x)' = \cos x$.

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{2\sin\frac{h}{2} \cdot \cos(x+\frac{h}{2})}{h} = \lim_{h \to 0} \cos(x+\frac{h}{2}) = \cos x.$$

Откуда производная синуса такая. Кохась: синус найдите сами.

6.3 Теоремы о среднем.

предельно аккуратно со всем. Техал по звуку

<u>Лемма.</u> $f: \langle a, b \rangle \to \mathbb{R}$, функция дифф в $x_0, f'(x_0) > 0$.

Тогда $\exists \varepsilon > 0 : f(x) > f(x_0)$, при $x \in (x_0, x_0 + \varepsilon)$, $f(x) < f(x_0)$, при $x \in (x_0 - \varepsilon, x_0)$

Доказательство:

 $\overline{\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}} = f(x_0) > 0.$ Смотрим на последовательность с правой стороны. По теореме о стабилизации знака, существует ε , такой, что в окрестностях $\overline{\frac{f(x) - f(x_0)}{x - x_0}} = f(x_0) > 0.$ Аналогично и с другой стороны есть такой ε , берем минимум и выигрываем (пристально посмотрите на числитель)

Теорема (Ферма)

Пусть $f:\langle a,b\rangle\to\mathbb{R},\ x_0\in(a,b),\ x_0$ — точка максимума на интервале $(a,b),\ x_0$ – дифференцируема в x_0 . Тогда $f'(x_0)=0$.

Доказательство:

Берем лемму. Если $f'(x_0) > 0$ — сломалось, если $f'(x_0) < 0$ — сломалось по лемме, а откуда $f'(x_0) = 0$

вот как это может быть теорема ферма, когда слово производная придумали в 19 веке, а ферма умер и уже сгнил в гробу тогда.

Теорема (Ролля)

 $f:[a,b] \to \mathbb{R}$, дифф на $(a,b),\, f(a)=f(b),\, f$ непрерывна на [a,b]. Тогда существует $c\in (a,b):f'(c)=0.$

Доказательство:

f - непрерывна на [a,b], откуда [a,b] - компактен, по теореме Вейельштрасса, существует максимум и минимум функции. Если максимум и минимум на концах, тогда скучная ситуация (отрезок). Иначе максимум или минимум есть на (a,b), откуда по теореме Ферма в этой точке будет $f'(x_0)=0$.

 $f: \langle a, b \rangle \to \mathbb{R}$ - многочлен, $x_0 \in \langle a, b \rangle . f(x_0) = 0$. Тогда x_0 называют **корнем кратности k**, если $f(x) = (x - x_0)^k \cdot g(x)$, где $g(x_0) \neq 0$ и g — многочлен.

Зам. Если x_0 корень кратности k многочлена f(x), тогда x_0 корень кратности k-1 у f'(x) — очевидно.

Теорема.

$$L_n(x) = ((x^2 - 1)^n)^{(n)}$$
 — n раз продифф — **Многочлены Лежандра**.

Тогда L_n имееет ровно n вещественных корней на (-1,1).

Доказательство:

(Решали на практиках).

Доказательство очевидно (просто много раз используйте теорему Ролля, а также прошлое замечание)

Теорема (Лагранжа).

 $f:[a,b]\to\mathbb{R}$, дифф. на (a,b) Непрерывна на [a,b].

Тогда
$$\exists c \in (a,b) : \frac{f(b) - f(a)}{b-a} = f'(c)$$

Теорема (Коши).

 $f:[a,b]\to\mathbb{R}$, дифф. на (a,b). Непрерывна на [a,b].

 $g:[a,b]\to\mathbb{R}$, дифф. на (a,b). Непрерывна на [a,b]. $g'\neq 0$ на (a,b).

Тогда
$$\exists c \in (a,b) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Доказательство:

 $\overline{F(x)} = f(x) - kg(x)$. Подберем к так, что F(a) = F(b).

$$f(a) - k \cdot g(a) = f(b) - k \cdot g(b)$$

 $\frac{f(a) - f(b)}{g(a) - g(b)} = k$, при этом, тк $g' \neq 0$ на (a, b), то $g(a) \neq g(b)$ (иначе по теореме Ролля мы проиграем). Значит такое k существует.

Теперь из этого следует, что $\exists c, F'(c) = 0$, то есть. $f'(c) - k \cdot g'(c) = 0$. А это то, что от нас требуют.

Замечание от Славы. Теорема Коши — обобщение теоремы Лагранжа (g(x) = x).

Следствие: $f:\langle a,b\rangle\to\mathbb{R}$ дифф. на (a,b). $\exists M>0: \forall k\in(a,b): |f'(k)|\leq M$.

Тогда для любых $x_0, x_0 + h \in \langle a, b \rangle$: $|f(x_0) - f(x_0 + h)| \le M \cdot |h|$.

Следствие: f — непрерывна на $[x_0, x_0 + h]$, дифференцируема на $(x_0, x_0 + h)$. $\lim_{x \to x_0 + 0} f'(x) = A \in \mathbb{R}$. Тогда $f'_+(x_0) = A$

Доказательство:

 $\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} f'(c)$, где $c = c(x) \in (x_0, x)$, определенно теоремой Лагранжа. Откуда очевидно.

Теорема (Дарбу, о промежуточном значении производной)

 $f:[a,b] \to \mathbb{R}$, дифф. $\to [a,b]$. Тогда $\forall C$ между f'(a),f'(b), существует $c \in (a,b):$ f'(c)=C.

Доказательство:

$$g(x) = f(x) - Cx$$
.

g'(a) и g'(b) что-то больше нуля, что-то меньше нуля. Значит есть точка принимающая ноль - так нельзя, так как про непрерывность производной мы ничего не знаем.

Н.У.О g'(a) > 0, g'(b) < 0. Пусть c - точка максимума g на [a, b], она не может быть крайней по лемме в начале параграфа, откуда g'(c) = 0.

Следствие. Если f дифф на $\langle a,b \rangle$, тогда $f(\langle a,b \rangle)$ — промежуток.

Следствие. f' не имеет разрывов первого рода.

6.4 Школьный урок

 $x^{\alpha}, \alpha \in \mathbb{Q}$. Обозначается $f_{\alpha}(x) = x^{\alpha}$.

 $\alpha = \mathbb{N}$. Очевидно непрерывно на \mathbb{R} . Все понятно

 $\alpha = -\mathbb{N}.$ Обратная, непрерывность и существование везде кроме нуля и монотонно

 $\alpha = 0$. Тождественная единица. $0^0 = 1$ ради непрерывности.

 $\alpha = \frac{1}{n}$. n - нечет., тогда $f_n : \mathbb{R} \to \mathbb{R}$ — непрерывная, строго монотонная, откуда есть обратная. Тогда $f_{\frac{1}{n}} = f_n^{-1}$.

 $\alpha = \frac{1}{n}$. n - чет., тогда $f_n : \mathbb{R} \to \mathbb{R}$ — непрерывная, строго монотонная на $[0, +\infty)$, откуда есть обратная на $[0, +\infty)$. Тогда $f_{\frac{1}{n}} = f_n^{-1}$ на $[0, +\infty)$

$$\alpha \in \mathbb{Q}, \alpha = \frac{p}{q}, (p, q) = 1 \ p \in \mathbb{Z}, q \in \mathbb{N}, f_{\alpha} = f_{\frac{1}{q}} \cdot f_{p}.$$

Теорема.

Число e^2 — иррационально. [e тоже будет рационально :)]

Доказательство:

Пусть
$$e^2 = \frac{2 * k}{n}$$
. $n \cdot e = 2k \cdot e^{-1}$.

$$n(2k-1)!e = (2k)!e^{-1}$$
.

 $n(2k-1)!\cdot(1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{(2k-1)!}+\frac{e^c}{(2k!)}),\,c\in(0,1)$ — воспользовались разложением в форме Лагранжа в 0 и подставили 1.

$$=$$
 целое $+\frac{n}{2k} \cdot e^c =$ целое $+\frac{e^c}{e^2}$.

$$(2k)!(1-1+rac{1}{2}+rac{1}{2k!}-rac{e^c}{(2k+1)!})$$
 — воспользовались разложением в форме Лагранжа в 0 и подставили -1 .

$$=$$
 целое $-\frac{e^c}{(2k+1)}$. И у нас не сходятся дробные части. В первом случае она меньше $\frac{1}{2}$, а во-втором случае больше $\frac{1}{2}$.

Метод Ньютона.

Цель метода: Найти корень на промежутке (a,b). (Мы берем приближение корня)

Беру точку x_n . Беру уравнение касательной в точке x_n и еще точку (x_{n+1}) , в которой эта прямая пересекает ось х. Пусть Ψ — точка в которой находится корень, который мы ищем. Посмотрим, как близко мы к корню.

$$\Psi - x_{n+1} = \Psi - x_n + \frac{f(x_n)}{f'(x_n)} = \frac{f(x_n) + f'(x_n)(\Psi - x_n)}{f'(x_n)}.$$

Посмотрим на разложение в Лагранже:

$$f(\Psi) = f(x_n) + \frac{f'(x_n)}{1!}(\Psi - x_n) + \frac{f''(c)}{2!}(\Psi - x_n)^2 = 0.$$

$$\frac{f(x_n) + f'(x_n)(\Psi - x_n)}{f'(x_n)} = -\frac{1}{2} \cdot \frac{f''(c)(1 - x_n)}{f'(x_n)}.$$

Возьмем $m = \min(f'(x)), M = \max |f''(x)|$. на нашем интервале

$$|\Psi - x_{n+1}| = \frac{1}{2} \cdot \frac{|f''(c)(1 - x_n)|}{|f'(x_n)|} (\Psi - x_n)^2 \le \frac{M}{2m} |\Psi - x_n|^2 \le \frac{M}{2m} (\frac{M}{2m} |\Psi - x_{n-1}|^2)^2 \le \dots \le \frac{M}{2m}^{1+2+\dots+2^{n+1}} |\Psi - x_1|^{2^n} = \frac{2m}{M} (\frac{M}{2m} |\Psi - x_1|)^{2^n}.$$

Метод рабочий, если вам не выбрасывает никуда далеко.(Как я понял тут нет докзаательства)

Замечание от Славы. Буквально записал то, что говорил Кохась. Не могу придумать более адекватного объяснения

Производные ВЫСШЕГО порядка. 6.5

 $f:\langle a,b
angle
ightarrow\mathbb{R}$ — дифф на $\langle a,b
angle$. $x_0\in\langle a,b
angle$, Если функция f'(x) дифф. в x_0 . Тогда назовем $(f'(x_0))'$ — **второй производной** f в точке x_0 .

Если $\forall x_0 \in \langle a, b \rangle$, то f''(x) — функция второй производной.

Аналогично $f^{(n)}(x_0)$, *n*-ая производная.

 $\langle a,b\rangle,$ $C^n(\langle a,b\rangle)$ — множество функций, который п раз дифференцируемы на (a,b)и $f^{(n)}$ непрерывна на $\langle a, b \rangle$

Теорема (Формула Тейлора с остатком в форме Пеано)

 $f: \langle a, b \rangle \to \mathbb{R}.x_0 \in \langle a, b \rangle \ f - (n-1)$ раз дифф. на $\langle a, b \rangle$.

 $\exists f^{(n)}(x_0) \in \mathbb{R}$. Тогда:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n), \ x \to x_0$$

Доказательство:

1) Начну с случая $f(x_0) = f'(x_0) = \dots f^{(n)}(x_0) = 0$. Докажем, что $f(x) = 0 + o((x-x_0)^n), x \to x_0$.

Basa: n = 1. $f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$.

Переход: $n \to n+1$. Видно, что f' удовл предположению индукции. Значит $f'(x) = o(x-x_0)^n, x \to x_0$. По теореме Лагранжа $f(x) - f(x_0) = f'(c)(x-x_0)$, где $c \in (x, x_0)$.

$$\left|\frac{f(x)}{(x-x_0)^{n+1}}\right| = \left|\frac{f(x)-f(x_0)}{(x-x_0)^{n+1}}\right| = \left|\frac{f'(c)(x-x_0)}{(x-x_0)^n}\right| = \left|\frac{f'(c)}{(c-x_0)^n}\right| \cdot \left|\frac{(c-x_0)^n}{(x-x_0)^n}\right| \to 0$$
— победили.

2) Общий случай. Рассмотрим $g(x) = f(x) - T_n(f, x_0) = f(x) - (\sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x-x_0))$ $(x_0)^k$). Заметим, что $g(x_0)=0,\ldots,\,g^{(n)}(x_0)=0.$ Используем частный, откуда и получаем нужное.

Теорема (Формула Тейлора с остатком в форме Лагранжа)

 $f \in C^n(\langle a,b \rangle)$, f - (n+1) раз дифференцируемы на (a+b)

 $x, x_0 \in \langle a, b \rangle$. Тогда $\exists c \in (x, x_0)$.

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Доказательство:

$$\phi(t) = f(x) - \sum_{k=0}^{n} \frac{f^{k}(t)}{k!} (x-t)^{k}$$
. Позамечаем интересные вещи.

 $\phi(x) = 0, \, \phi(x_0) = \text{остаток в формуле Тейлора.}$

$$\phi'(t) = -\frac{f^{n+1}(t)}{n!}(x-t)^n$$

Теорема Коши. $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(x)}{g'(x)}$. $f = \phi$, $g(t) = (x-t)^{n+1}$, $a = x_0$, b = x;

$$\frac{\phi(x) - \phi(x_0)}{g(x) - g(x_0)} = \frac{-R_{n+1}(x_0)}{-(x - x_0)^{n+1}} = \frac{-\frac{f^{(n+1)}(c)}{n!}(x - c)^n}{-(n+1)(x - c)^n}$$

Откуда и получаем наш вид остатка

Замечание от Славы. Кохась вдруг стал обозначать остаток многочлена Тейлора как $R_{n+1}(x_0)$.

Замечание. Пусть $f \in C^{\infty}(\langle a, b \rangle)$. Пусть существует M, A:

 $\forall t \in \langle a, b \rangle : |f^n(t)| \le MA^n.$

Тогда $\forall x.x_0 \in \langle a,b \rangle$. $T_n(f,x_0)(x) \to f(x)$, при $n \to +\infty$. Доказательство это просто аккуратные оценки.

Замечание. $f(x) = x + x^2 + x^3 \cdot \sin(\frac{1}{x^{100}})$, при $x \to 0$ — продифференцируйте и поймите, что с вашей жизнью не так.

Асимптотическое разложение просто опасно дифференцировать.

$$f(x) = a_0 + a_1 x + \ldots + a_n x^n + o(x^n)$$
 — формула Тейлора, $x_0 = 0$.

То $f'(x) = a_1 + 2a_2x + \ldots + na_nx^{n-1} + o(x^{(n-1)})$ — верная формула, так еще и формула тейлора для f'.

Теорема.

Пусть P(x), Q(x) - многочлен, $\deg P(x) < \deg Q(x), P(x), Q(x)$ — взаимнопросты.

$$Q(x) = (x - x_1)^{\alpha_1} \cdot (x - x_2)^{\alpha_2} \dots (x - x_n)^{\alpha_n}$$

Тогда существуют вещественные числа $A_1, A_2, \ldots, A_{\alpha_1}, B_1, \ldots, B_{\alpha_2}, \ldots, D_1, \ldots, D_{\alpha_n}$, что

$$\frac{P(x)}{Q(x)} = \left(\frac{A_1}{x - x_1} + \dots + \frac{A_{\alpha_1}}{(x - x_1)^{\alpha_1}}\right) + \left(\frac{B_1}{x - x_2} + \dots + \frac{B_{\alpha_2}}{(x - x_2)^{\alpha_2}}\right) + \dots + \left(\frac{D_1}{x - x_n} + \dots + \frac{D_{\alpha_n}}{(x - x_n)^{\alpha_n}}\right)$$

Доказательство:

$$\overline{\text{Пусть } F_1(x) = \frac{P(x)}{Q(x)} (x - x_1)^{\alpha_1} = \frac{P(x)}{(x - x_2)^{\alpha_2} \dots (x - x_n)^{\alpha_n}}.$$

Разложим F_1 по формуле Тейлора в точке x_1 :

$$F_1(x) = a_0 + a_1(x - x_1) + \ldots + a_{\alpha_1}(x - x_1)^{\alpha_1} + o((x - x_1)^{\alpha_1}).$$

$$\frac{P(x)}{Q(x)} = \frac{F_1(x)}{(x-x_1)^{\alpha_1}} = \frac{a_0}{(x-x_1)^{\alpha_1}} + \frac{a_1}{(x-x_1)^{\alpha_1-1}} + \dots + \frac{a_{\alpha_1-1}}{(x-x_1)} + a_{\alpha_1} + o(1),$$

 $A_1 = \alpha_1 - 1$ и так далее.

Аналогично с другими B, \ldots, D . Построили. Почему получили то, что надо

$$\frac{P(x)}{Q(x)} - \left(\frac{A_1}{x - x_1} + \dots + \frac{A_{\alpha_1}}{(x - x_1)^{\alpha_1}}\right) - \dots - \left(\frac{D_1}{x - x_n} + \dots + \frac{D_{\alpha_n}}{(x - x_n)^{\alpha_n}}\right).$$

Давайте посмотрим на первую пару. Получается что-то ограниченное при $x \to x_1$. Но как такое может быть, это значит то, что было в знаменателе: $(x-x_1)^{\alpha_1}$ — сократилось! Значит у меня сокращается весь знаменатель, если я вычту все серии.

Значит такая разность на самом деле функция у которой сократился весь знаменатель. Это многочлен. Но как такое может быть $\deg P < \deg Q$. Откуда это просто 0. (тут надо больше аккуратности).

6.6 Показательные функции

Хочу найти все непрерывные функции такие, что $f(x+y)=f(x)\cdot f(y)$. Назову все такие функции **показательными** (игнорирую тождественный ноль и тождественный один).

Свойства.

- 1. $\forall x : f(x) > 0; f(0) = 1$. Очевидно откуда
- 2. $\forall r \in \mathbb{Q} : \forall x : f(rx) = f(x)^r$. Очевидно из определения рациональных степеней.
- 3. Введем число a=f(1), f строго монотонная, более того: $a\neq 1$. Если a>1, то строго возрастает. Если a<1, то строго убывает. Доказательство очевидно.
- 4. Множество значений это $(0, +\infty)$. Очевидно по свойствам степени.
- 5. Зафиксируем функцию. Пусть существует функция \overline{f} , которая в f(1) принимает то же самое значение. Заметим, что $\overline{f} = f$.

Кохась: возьму кредит в виде теоремы.

Теорема.

 $\exists f_0$ - показательная функция, такая что:

$$\lim_{x \to 0} \frac{f_0(x) - 1}{x} = 1$$

Кохась: ну пока пофиг что такая может не существовать. Пока что-нибудь подоказываем

Теорема.

 $\exists \alpha \in \mathbb{R} : \forall x \in \mathbb{R} : f(x) = f_0(\alpha x)$

Доказательство:

$$\overline{f(1) = a > 0; f_0(\alpha) = a, \alpha \neq 0.}$$

Посмотрим на $g(x)=f_0(\alpha x)$ - это показательная функция (удовлетворяет определению). g(1)=a=f(1), откуда по свойству 5 они совпадают.

Что мы только доказали: Любую показательную функцию можно выразить через f_0 .

Следствие: функция из теоремы 2 - единственна (если существует). (От прот.)

Функцию $f_0(x)$ буду называть **экспонентой**. Буду обозначать ее $f_0(x) = exp(x) = e^x$. (пока это не то е, это просто обозначение).

Так как $\frac{e^x-1}{x} \to 1$, откуда $e^x > 1$, при x > 0.

Следствие. $a > 0, a \neq 1$ $\exists !$ показ. функция f(1) = a. Очевидно

Обозначим все наши функции: a^x

Следствие. $\forall x, y : \forall a > 0, a \neq 1 : a^{xy} = (a^x)^y = (a^y)^x$.

 $a>0, a\neq 1, a^x:\mathbb{R}\to (0,+\infty)$ строго монот., непрерывно. Откуда существует обратная. Назовем ее **логарифмом**. $\ln x=\log_e x$.

Замечательный предел. $\lim_{x\to 0} \frac{e^x-1}{x} = 1$

Следствие. $(e^x)' = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x$

Замечательный предел. $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$. Переверните дробь и увидите что-то больно похожее на первый зам. предел.

Следствие.
$$(\ln x)' = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h} = \lim \frac{\ln(1+\frac{h}{x})}{\frac{h}{x}} \cdot \frac{1}{x} = \frac{1}{x}$$

Замечательный предел. $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e.$ $e^{\ln(1+x)\frac{1}{x}} \to e.$

Следствие. Старое е и новое е совпадают, потому что старое е это предел $(1 + \frac{1}{n})^n$.

Замечательный предел. $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha$.

$$\frac{(1+x)^{\alpha}}{x} = \frac{f(x)}{x} = \frac{f(x)}{\ln(f(x)+1)} \cdot \frac{\alpha \ln(1+x)}{x} \to \alpha.$$

6.7 Монотонность и экстремумы.

Теорема (Критерий монотонности)

 $f\subset (\langle a,b\rangle)$, дифф на (a,b). Тогда f возрастает на $\langle a,b\rangle\Leftrightarrow f'\geq 0$ на (a,b)

Доказательство очевидно. (Аналогично убывание)

Следствие. $f:\langle a,b\rangle\to\mathbb{R}$. Тогда $f=const\Leftrightarrow f\in C(\langle a,b\rangle)$ и f - дифф на интервале, f'=0. Очевидно.

Следствие. $f \in C(\langle a, b \rangle)$, дифф на (a, b). Тогда f - строго возрастающая \Leftrightarrow

- 1. $f' \ge 0$ на (a, b).
- 2. ни на каком промежутке $\langle x_1, x_2 \rangle \subset \langle a, b \rangle, f' \neq 0$ на $\langle x_1, x_2 \rangle$. (интервал не из одной точки).

Доказательства очевидное

Следствие. $f,g \in C(\langle a,b \rangle)$, дифф на $\langle a,b \rangle$. Пусть f(a) < g(a), а еще f'(x) < g'(x) на (a,b). Тогда $f(x) \leq g(x)$ на $\langle a,b \rangle$. Доказательство очевидно (Посмотреть на h(x) = g(x) - f(x))

 $f: X \to \mathbb{R}, \ x_0 -$ точка лок. максимума. Существует Окрестность точки $x_0: \forall x \in U(x_0): f(x) \subseteq f(x_0)$. Экстремум.

Теорема (о необходимом и достаточном условии экстремума)

 $f:\langle a,b \rangle o \mathbb{R}.\ x_0 \in (a,b)$. Пусть f - дифф. (a,b). Тогда:

- 1. $x_0 \exists \text{KCTPEMYM} \Rightarrow f'(x_0) = 0.$
- 2. f n раз дифф в x_0 . Пусть $f'(x_0) = f''(x_0) = \ldots = f^{(n-1)}(x_n) = 0$, $f^{(n)} \neq 0$. Если $f^{(n)}(x_0) > 0$, n четная, тогда минимум. Если нечетная, то не экстремум. Если $f^{(n)}(x_0) < 0$, n четная, тогда максимум. Если нечетная, то не экстремум.

Доказательство:

1) Теорема Ферма.

2)
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + o((x-x_0)^n)$$
, при $x \to x_0$ — разложение Тейлора.

$$f(x) - f(x_0) = \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n)$$
 по условию.

$$=\frac{f^n(x_0)}{n!}(x-x_0)^n+(x-x_0)^n\alpha(x),$$
 где $\alpha(x)\to 0$ при $x\to x_0$ - остаток в форме

Пеано.

 $=(rac{f^{(n)}(x_0)}{n!}+lpha(x))(x-x_0)^n$. Откуда уже методом вглядывания получится нужное нам выражение.

6.8 Равномерная непрерывность.

 $f: X \to \mathbb{R}$. X - метрическое пространство.

f - равномерно непрерывно, если

$$\forall \varepsilon > 0 : \exists \delta > 0 \forall x_1, x_2 \in X : \rho(x_1, x_2) < \delta : |f(x_1) - f(x_2)| < |\varepsilon|.$$

 $f: \mathbb{R} \to \mathbb{R}, E \subset \mathbb{R}, f$ - равномерно непрерывно Е.

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x_1, x_2 \in E : |x_1 - x_2| < \delta : |f(x_1) - f(x_2)| < \delta.$$

Замечание. $X \to Y$ м.п.-ства $\rho(f(x_1), f(x_2)) < \varepsilon$. (Можно обобщить).

Теорема (Кантора)

Дано отображение $X \to Y$, X - компактно, f - непр на X.

Тогда f — равномерно непр.

Доказательство:

От противного
$$\exists \varepsilon > 0 : \forall \delta, \delta = \frac{1}{n} \exists x_n, \overline{x_n} < \frac{1}{n} : \rho(f(x_n), f(\overline{x_n})) > \varepsilon.$$

В метрическом пространстве \Leftrightarrow секв. компактно. (почему?)

Возьмем x_n - последовательность. Есть сходящаяся подпоследовательность. Выберем. Тогда для x_n начнет ломаться непрерывность $(x_n$ и $\overline{x_n}$ стремятся к а)

Следствие. $f:[a,b] \to \mathbb{R}$, непр. Тогда f равномерно непрерывно.