Análise descritiva de uma base de dados

Otto Tavares

2023-02-13

Introdução

Na Aula 7, temos o objetivo de abrir uma base de dados e dar os primeiros passos em análise estatística dessa base.

Como sempre, o primeiro passo é importar as bibliotecas que serão utilizadas para análise, como tydiverse, summarytools e dlookr.

```
library(tidyverse)
```

```
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
             1.1.4
                                    2.1.5
                        v readr
             1.0.0
## v forcats
                        v stringr
                                    1.5.1
## v ggplot2 3.5.1
                       v tibble
                                    3.2.1
## v lubridate 1.9.4
                        v tidyr
                                    1.3.1
## v purrr
              1.0.4
## -- Conflicts -----
                                        ------tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
```

library(dlookr)

```
## Registered S3 methods overwritten by 'dlookr':
     method
                     from
##
##
     plot.transform scales
##
     print.transform scales
##
## Attaching package: 'dlookr'
## The following object is masked from 'package:tidyr':
##
##
       extract
##
## The following object is masked from 'package:base':
##
##
       transform
```

library(summarytools)

```
##
## Attaching package: 'summarytools'
##
## The following object is masked from 'package:tibble':
##
## view

library(readxl)
library(knitr)

#crimes.furtos %>% dplyr::filter(mes_ano == "2022m12") %>% diagnose()
#crimes.furtos %>% dplyr::filter(mes_ano == "2022m12") %>% dfSummary() %>% view()
```

A base trabalhada nesta aula, será a base de dados hipotética disponbilizada no livro texto dos autores Bussab e Moretim. Vamos importá-la e imprimir as primeiras observações para conhecimento das variáveis.

```
salarios <- readxl::read_excel("dados_auxiliares/dados_bussab_m.xlsx")</pre>
```

kable(head(salarios))

n	estado_civil	$Grau_de_instrucao$	n_filhos	salario	$idade_anos$	$idade_meses$	regiao
1	solteiro	ensino fundamental	NA	4.00	26	3	interior
2	casado	ensino fundamental	1	4.56	32	10	capital
3	casado	ensino fundamental	2	5.25	36	5	capital
4	solteiro	ensino médio	NA	5.73	20	10	outra
5	solteiro	ensino fundamental	NA	6.26	40	7	outra
6	casado	ensino fundamental	0	6.66	28	0	interior

Identificando os tipos de cada variável na base

Para identificar os tipos de cada variável na base, vamos utilizar a função diagnose do pacote dlookr e reportar o tipo de cada um para melhor trabalharmos os dados.

```
salarios %>% dlookr::diagnose() %>% kable()
```

types	$missing_count$	$missing_percent$	$unique_count$	unique_rate
numeric	0	0.00000	36	1.0000000
character	0	0.00000	2	0.0555556
character	0	0.00000	3	0.0833333
numeric	16	44.44444	6	0.1666667
numeric	0	0.00000	36	1.0000000
numeric	0	0.00000	24	0.6666667
numeric	0	0.00000	12	0.3333333
character	0	0.00000	3	0.0833333
	numeric character character numeric numeric numeric numeric	numeric 0 character 0 character 0 numeric 16 numeric 0 numeric 0 numeric 0	numeric 0 0.00000 character 0 0.00000 character 0 0.00000 numeric 16 44.44444 numeric 0 0.00000 numeric 0 0.00000 numeric 0 0.00000 numeric 0 0.00000	numeric 0 0.00000 36 character 0 0.00000 2 character 0 0.00000 3 numeric 16 44.44444 6 numeric 0 0.00000 36 numeric 0 0.00000 24 numeric 0 0.00000 12

É fácil ver que na base há três variáveis qualitativas, sendo as variáveis Estado Civil e região nominais, enquanto a variável Grau de Instrução é ordinal.

Sobre as variáveis quantitativas, temos número de filhos e idade com variáveis discretas, equanto a variável salário é contínua.

##Análise de frequências de variáveis qualitativas

A variável região é uma das variáveis qualitativas nominais da base, sendo uma variável interessante para extraírmos as frequências. Para esse caso, vamos utilizar a função freq() do pacote summarytools

```
salarios %>% dplyr::select(regiao) %>% summarytools::freq(., style = 'rmarkdown') %>% kable()
```

setting plain.ascii to FALSE

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
capital	11	30.55556	30.55556	30.55556	30.55556
interior	12	33.33333	63.88889	33.33333	63.88889
outra	13	36.11111	100.00000	36.11111	100.00000
	0	NA	NA	0.00000	100.00000
Total	36	100.00000	100.00000	100.00000	100.00000

Nas colunas Freq, temos a frequência absoluta, mostrando um grau de bastante homogeneidade entre as classes. Padrão esse, que é confirmado com a coluna Valid, que apresenta as frequências relativas de cada opção de região.

Podemos fazer a mesma análise para os dados de estado civil, os quais podemos estar interessados em buscar evidência se há mais funcionários casados ou solteiros na empresa. A seguir, temos a tabela destas proporções, onde é perceptível que há maior proporção de funcionários casados.

```
salarios %>% dplyr::select(estado_civil) %>% summarytools::freq(., style = 'rmarkdown') %>% kable()
```

setting plain.ascii to FALSE

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
casado	20	55.55556	55.55556	55.55556	55.55556
solteiro	16	44.44444	100.00000	44.44444	100.00000
	0	NA	NA	0.00000	100.00000
Total	36	100.00000	100.00000	100.00000	100.00000

É importante destacar, que lemos a coluna Valid sem nos preocupar nestes casos, pois não há dados faltantes para nenhumas das duas variáveis.

Por fim, podemos criar tabelas de frequências para uma variável quantitativa discreta, como é o caso do número de filhos dos funcionários da empresa.

```
salarios %>% dplyr::select(n_filhos) %>% summarytools::freq(., style = 'rmarkdown') %>% kable()
```

setting plain.ascii to FALSE

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
0	4	20	20	11.111111	11.11111
1	5	25	45	13.888889	25.00000
2	7	35	80	19.444444	44.44444
3	3	15	95	8.333333	52.77778
5	1	5	100	2.777778	55.55556
	16	NA	NA	44.444444	100.00000
Total	36	100	100	100.000000	100.00000

Como há dados faltantes para essa variável, é importante o analista determinar qual o espaço amostral está interessado em focar sua análise.

A fim de ser comparável às análises pregressas, é importante que as frequências absoluta e relativa do total de dados seja considerada, isto é, leitura da coluna Total, a fim de manter o mesmo espaço amostral.

Caso, ele esteja interessado em analisar apenas os dados válidos, ele pode redefinir o espaço amostral, ler apenas a coluna Valid, porém recalculando as tabelas anteriores, considerando os indivíduos apenas com dados preenchidos para a variável filhos.

##Análise descritiva e de histogramas de uma variável contínua

Já para a variável salários, podemos analisar a centralidade dos dados, dipersão, assimetria, bem como suas estatísticas de ordem, a fim de checar se há presença de outliers.

Para realizar essa análise, podemos utilizar a função descr do pacote summarytools, e posteriormente realizar a leitura desses dados.

salarios %>% dplyr::select(salario) %>% summarytools::descr(., style = 'rmarkdown') %>% kable()

	salario
Mean	11.1222222
Std.Dev	4.5874575
Min	4.0000000
Q1	7.5150000
Median	10.1650000
Q3	14.2700000
Max	23.3000000
MAD	4.7220810
IQR	6.5075000
CV	0.4124587
Skewness	0.5997938
SE.Skewness	0.3925439
Kurtosis	-0.3291263
N.Valid	36.0000000
Pct.Valid	100.0000000

```
salarios %>% summarytools::dfSummary()
```

Data Frame Summary

salarios

Dimensions: 36 x 8

* No *	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid
; ; 1 ; ; ; ;	n [numeric]	Mean (sd) : 18.5 (10.5) min < med < max: 1 < 18.5 < 36 IQR (CV) : 17.5 (0.6)	36 distinct values		36 (100.0
‡ 2 ‡	estado_civil [character]	 casado solteiro 	20 (55.6%) 16 (44.4%)	IIIIIIIIII	36 (100.0
; ; ;	Grau_de_instrucao [character]	 ensino fundamental ensino médio superior 	12 (33.3%) 18 (50.0%) 6 (16.7%)	III IIIIIIII IIIIII	36 (100.0
+ + 4 + + + + +	n_filhos [numeric]	Mean (sd) : 1.6 (1.3) min < med < max: 0 < 2 < 5 IQR (CV) : 1 (0.8)	0 : 4 (20.0%) 1 : 5 (25.0%) 2 : 7 (35.0%) 3 : 3 (15.0%) 5 : 1 (5.0%)	I IIII IIIII IIII IIII	20 (55.6%
; 5 ; ; ;	salario [numeric]	Mean (sd) : 11.1 (4.6) min < med < max: 4 < 10.2 < 23.3 IQR (CV) : 6.5 (0.4)	36 distinct values	. : : : . : : : : : : : : : : : : : : .	36 (100.0
# 6 # # #	idade_anos [numeric]	Mean (sd) : 34.6 (6.7) min < med < max: 20 < 34.5 < 48 IQR (CV) : 10 (0.2)	24 distinct values	: .::: :::::::::::::::::::::::::::::::	36 (100.0
; 7 ; ; ; ;	idade_meses [numeric]	Mean (sd) : 5.6 (3.3) min < med < max: 0 < 6 < 11 IQR (CV) : 4.2 (0.6)	12 distinct values	: : : : : : : : : : : : : : : :	36 (100.0
; ; 8 ;	regiao [character]	 capital interior outra 	11 (30.6%) 12 (33.3%) 13 (36.1%)	IIIIIII IIIIIII	36 (100.0

Análise visual da distribuição dos indivíduos por idade

Com o boxplot

Com o violino

salarios %>% dplyr::select(Grau_de_instrucao, salario) %>% ggplot(aes(x=Grau_de_instrucao, y = salario)

Com o dotplot

```
salarios %>% dplyr::select(Grau_de_instrucao, salario) %>% ggplot(aes(x=Grau_de_instrucao, y = salario))
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## 'binwidth'.
```


Unindo o dotplot com o box ou violin para melhor ilustrar a análise

```
salarios %>% dplyr::select(Grau_de_instrucao, salario) %>% ggplot(aes(x=Grau_de_instrucao, y = salario)
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## 'binwidth'.
```


Análise visual da variável salário

Utilizando o número de bins indicado pelos autores do livro, bins igual a 5.

```
salarios %>% dplyr::select(salario) %>% ggplot(aes(x=salario))+geom_histogram(aes(y = after_stat(densit
```


###Adicionando a densidade estimada via kernel à visualização

salarios %>% dplyr::select(salario) %>% ggplot(aes(x=salario))+geom_histogram(aes(y = after_stat(density))

##Análise visual da variável salário, utilizando a binarização a partir de uma função customizada

Definindo as funções gerais para criação de bins

```
#Freedman-Diaconis
fd_bins <- function(x)
{
    bins <- 2*IQR(x)/((length(x))^(1/3))
    return(bins)
}

#Sturge
s_bins <- function(x)
{
    bins <- 3.49*sd(x)/((length(x))^(1/3))
    return(bins)
}</pre>
```

Cálculo do número de bins a partir da função de Freedman-Diaconis

```
salarios %>% dplyr::select(salario) %>% ggplot(aes(x=salario))+geom_histogram(aes(y = after_stat(densit))
```

