XVIII Espaces vectoriels

9 juin 2017

Dans tout ce chapitre, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . L'important est que \mathbb{K} soit un corps, mais le programme se limite à $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1. Espaces vectoriels et combinaisons linéaires

1.1. Définitions

Définition 1.1.1.

On appelle \mathbb{K} -espace vectoriel ou espace vectoriel $sur \mathbb{K}$ (noté \mathbb{K} -ev) tout triplet $(E,+,\cdot)$ où E est un ensemble muni d'une loi interne + appelée addition et d'une loi externe \cdot , i.e. une application $\cdot : \mathbb{K} \times E \to E$, vérifiant :

- (i) (E, +) est un groupe commutatif dont le neutre est noté 0;
- (ii) En notant 1 (ou $1_{\mathbb{K}}$) le neutre de \mathbb{K} pour la multiplication, on a : $\forall x \in E \ 1 \cdot x = x$;
- (iii) $\forall (\lambda, \mu) \in \mathbb{K}^2 \quad \forall x \in E \quad (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x \text{ (distributivit\'e à droite)};$
- (iv) $\forall \lambda \in \mathbb{K} \quad \forall x, y \in E \quad \lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$ (distributivité à gauche);
- (v) $\forall \lambda, \mu \in \mathbb{K} \quad \forall x \in E \quad (\lambda \times \mu) \cdot x = \lambda \cdot (\mu \cdot x)$ (associativité mixte).

Les éléments de E sont appelés vecteurs, et ceux de $\mathbb K$ sont appelés scalaires.

Remarque 1.1.2.

Les vecteurs mathématiques étant des objets mathématiques comme les autres, on ne les marquera plus d'une flèche comme c'est traditionnellement l'usage dans les petites classes (cet usage est d'ailleurs réservé à la géométrie euclidienne, alors qu'on verra de nombreux exemples d'espaces vectoriels où les vecteurs ne sont ni ceux du plan, ni ceux de l'espace euclidien).

Remarque 1.1.3.

On ommet souvent, pour alléger les notations, de noter le \cdot de la multiplication scalaire. Ainsi, on pourra écrire λx au lieu de $\lambda \cdot x$, pour un scalaire λ et un vecteur x.

- **Exemple 1.1.4.** 1. L'ensemble des vecteurs du plan euclidien, celui des vecteurs de l'espace euclidien, ou de façon équivalente $(\mathbb{R}^2, +, \cdot)$ et $(\mathbb{R}^3, +, \cdot)$, d'où les mots «vecteur» et «scalaire». De manière générale, tous les \mathbb{R}^n .
 - 2. $(\mathbb{R}, +, \times)$ est un \mathbb{R} -espace vectoriel. Remarquez que la loi \times est à la fois loi interne et externe sur \mathbb{R} (c'est aussi un \mathbb{Q} -espace vectoriel).
 - 3. $(\mathbb{C}, +, \times)$ est à la fois un \mathbb{C} -espace vectoriel et un \mathbb{R} -espace vectoriel (et également un \mathbb{Q} -espace vectoriel).
 - 4. \mathbb{N} , \mathbb{Z} et \mathbb{Q} ne sont pas des espaces vectoriels ni sur \mathbb{R} ni sur \mathbb{C} avec les opérations usuelles ².
 - 5. $\mathbb{R}[X]$, $\mathbb{C}[X]$, $\mathbb{R}(X)$ et $\mathbb{C}(X)$ sont des espaces-vectoriels (sur quels corps?)
 - 6. $\mathcal{M}_{n,p}(\mathbb{K})$ est un \mathbb{K} -ev.

Remarque 1.1.5.

Tout \mathbb{C} -espace vectoriel est aussi un \mathbb{R} -espace vectoriel. La réciproque fausse : \mathbb{R} n'est pas un \mathbb{C} -espace vectoriel, du moins pas avec les lois usuelles 3

Dans toute la suite, $(E, +, \cdot)$ désigne un \mathbb{K} -ev.

1.2. Règles de calcul

Théorème 1.2.1 (Règles de calcul). Soit $\lambda \in \mathbb{K}$ et $x \in E$.

- (i) $\lambda \cdot x = 0_E \Leftrightarrow \lambda = 0_{\mathbb{K}}$ ou $x = 0_E$ et, en particulier, $0_{\mathbb{K}} \cdot x = 0_E$ et $\lambda \cdot 0_E = 0_E$.
- (ii) $-x = (-1) \cdot x$ (l'opposé de x dans (E, +) est égal à l'opposé de 1 dans $(\mathbb{K}, +, \times)$ multiplié par x).

^{1.} Il conviendrait, en anticipant un peu, de dire plutôt : «de façon isomorphe».

^{2.} En fait, c'est même vrai quelle que soit la loi qu'on essaie d'y définir. Pourquoi ?

^{3.} Il y aurait moyen d'en définir une, qui serait complètement «tordue» en utilisant le fait que $\mathbb R$ et $\mathbb C$ peuvent être mis en bijection mais ça n'aurait vraisemblablement aucun intérêt.

Démonstration. (i) a) Remarquons tout d'abord qu'on a $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$ et donc par simplification dans (E, +), donc $0 \cdot x = 0$.

- b) Remarquons ensuite qu'on a $\lambda \cdot 0 = \lambda(0+0) = \lambda \cdot 0 + \lambda \cdot 0$, d'où $\lambda \cdot 0 = 0$.
- c) On en déduit $\lambda = 0_{\mathbb{K}}$ ou $x = 0_E \Rightarrow \lambda \cdot x = 0_E$.
- d) Réciproquement, supposons $\lambda \cdot x = 0$. Alors, si $\lambda \neq 0$, on a $x = 1 \cdot x = \left(\lambda \times \frac{1}{\lambda}\right) \cdot x = \frac{1}{\lambda} \cdot (\lambda \cdot x) = \frac{1}{\lambda} \cdot 0 = 0$
- (ii) On a $x+(-1)\cdot x=1\cdot x+(-1)\cdot x=(1-1)\cdot x=0\cdot x=0.$ Donc $(-1)\cdot x$ est bien l'opposé de x dans (E,+).

1.3. Exemples

Théorème 1.3.1 (Espace vectoriel produit). Soient $n \in \mathbb{N}^*$ et $(E_1, +_1, \cdot_1) \dots (E_n, +_n, \cdot_n)$ des \mathbb{K} ev. On considère l'ensemble produit $E = E_1 \times \dots \times E_n$ que l'on munit des deux lois $+ : E \times E \to E$ et $\cdot : \mathbb{K} \times E \to E$ définies, par les relations suivantes pour toutes familles $(x_k)_{k \in [\![1,n]\!]}$ et $(y_k)_{k \in [\![1,n]\!]}$ et tout $\lambda \in \mathbb{K}$:

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 +_1 y_1, \dots, x_n +_n y_n)$$

 $\lambda \cdot (x_1, \dots, x_n) = (\lambda \cdot_1 x_1, \dots, \lambda \cdot_n x_n)$

Alors, $(E, +, \cdot)$ est un \mathbb{K} -ev appelé $espace\ vectoriel\ produit.$

Démonstration.

Il suffit de vérifier les 5 points de la définition d'espace vectoriel :

- (i) (E, +) est un groupe (cf. exercices sur les groupes produits vu en TD), et commutatif car tous les E_i le sont.
- (ii) Soit $(x_1, \ldots, x_n) \in E$, on a $1 \cdot (x_1, \ldots, x_n) = (1 \cdot_1 x_1, \ldots, 1 \cdot_n x_n) = (x_1, \ldots, x_n)$.
- (iii) Soit $(\lambda, \mu) \in \mathbb{K}^2$, $(x_1, \dots, x_n) \in E$. En posant

$$z = (\lambda + \mu) \cdot (x_1, \dots, x_n)$$

on a successivement :

$$z = ((\lambda + \mu) \cdot_1 x_1, \dots, (\lambda + \mu) \cdot_n x_n)$$

= $(\lambda \cdot_1 x_1 + \mu \cdot_1 x_1, \dots, \lambda \cdot_n x_n + \mu \cdot_n x_n)$
= $(\lambda \cdot_1 x_1, \dots, \lambda \cdot_n x_n) + (\mu \cdot_1 x_1, \dots, \mu \cdot_n x_n)$
= $\lambda \cdot (x_1, \dots, x_n) + \mu \cdot (x_1, \dots, x_n).$

(iv) Soit $\lambda \in \mathbb{K}$, $(x_1, \dots, x_n) \in E$ et $(y_1, \dots, y_n) \in E$. En posant

$$z = \lambda \cdot (x_1 +_1 y_1, \dots, x_n +_n y_n)$$

on a successivement :

$$z = (\lambda \cdot (x_1 + 1 y_1), \dots, \lambda \cdot (x_n + n y_n))$$

$$= (\lambda \cdot_1 x_1 +_1 \lambda \cdot_1 y_1, \dots, \lambda \cdot_n x_n +_n \lambda \cdot_n y_n)$$

$$= (\lambda \cdot_1 x_1, \dots, \lambda \cdot_n x_n) + (\lambda \cdot_1 y_1, \dots, \lambda \cdot_n y_n)$$

$$= \lambda \cdot (x_1, \dots, x_n) + \lambda \cdot (y_1, \dots, y_n).$$

(v) Soit $(\lambda, \mu) \in \mathbb{K}^2$ et $(x_1, \dots, x_n) \in E$. On a successivement :

$$(\lambda \times \mu) \cdot (x_1, \dots, x_n) = ((\lambda \times \mu) \cdot_1 x_1, \dots, (\lambda \times \mu) \cdot_n x_n)$$

$$= (\lambda \cdot_1 (\mu \cdot_1 x_1), \dots, \lambda \cdot_n (\mu \cdot_n x_n))$$

$$= \lambda \cdot (\mu \cdot_1 x_1, \dots, \mu \cdot_n x_n)$$

$$= \lambda \cdot [\mu \cdot (x_1, \dots, x_n)].$$

Remarque 1.3.2.

Cas particuliers:

- 1. Déjà vu : \mathbb{R}^2 .
- 2. Se généralise à tous les \mathbb{R}^n , $n \in \mathbb{N}^*$. Exemple de calcul dans \mathbb{R}^6 .

Théorème 1.3.3 (Espaces d'applications). Soit X un ensemble non vide et E un \mathbb{K} -ev. On considère $\mathscr{F} = E^X$, que l'on munit de deux lois :

$$+: \left\{ \begin{array}{ccc} \mathscr{F} \times \mathscr{F} & \longrightarrow & \mathscr{F} \\ (f,g) & \longmapsto & \left\{ \begin{array}{ccc} X & \to & E \\ x & \mapsto & f(x) + g(x) \end{array} \right. \end{array} \right.$$

et

$$\cdot : \left\{ \begin{array}{ccc} K \times \mathscr{F} & \longrightarrow & \mathscr{F} \\ (\lambda, f) & \longmapsto & \left\{ \begin{array}{ccc} X & \to & E \\ x & \mapsto & \lambda \cdot (f(x)) \end{array} \right. \end{array} \right.$$

Alors $(\mathcal{F}, +, \cdot)$ est un \mathbb{K} -ev.

Démonstration.

Il suffit de vérifier les 5 points de la définition d'ev. On a déjà vu que $(E^X, +)$ était un groupe commutatif. Le lecteur saura vérifier les points (ii) à (v).

Exemple 1.3.4. 1. Soit I un intervalle, alors $(\mathbb{R}^I, +, \times)$ est un \mathbb{R} -espace vectoriel, $(\mathbb{C}^I, +, \times)$ est à la fois un \mathbb{R} -espace vectoriel et un \mathbb{C} -espace vectoriel.

2. L'ensemble des suites à valeurs réelles $\mathbb{R}^{\mathbb{N}}$ est un \mathbb{R} -espace vectoriel, celui des suites à valeurs complexes est à la fois un \mathbb{R} -espace vectoriel et un \mathbb{C} -espace vectoriel.

1.4. Combinaisons linéaires

Définition 1.4.1.

Soient u_1, \ldots, u_n des vecteurs de E, avec $n \in \mathbb{N}$. On appelle combinaison linéaire de u_1, \ldots, u_n tout vecteur de la forme $u = \sum_{k=1}^n \lambda_k \cdot u_k = \lambda_1 \cdot u_1 + \ldots + \lambda_n \cdot u_n$, avec $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$.

Par convention la combinaison linéaire de 0 vecteur vaut $\mathbf{0}_E.$

- **Exemple 1.4.2.** 1. 0 est toujours combinaison linéaire de deux vecteurs quelconques u et v car $0_E = 0_{\mathbb{K}}u + 0_{\mathbb{K}}v$.
 - 2. Décomposition dans une base dans le plan ou l'espace.

Remarque 1.4.3.

Attention : il n'y a pas nécessairement unicité des λ_i . Exemple :

$$(1,1) = 1 \cdot (1,0) + 1 \cdot (1,3) + 1 \cdot (-1,-2)$$
$$(1,1) = \frac{1}{2} \cdot (1,0) + 0 \cdot (1,3) - \frac{1}{2} \cdot (-1,-2)$$

Exemple 1.4.4.

Exemples menant, comme souvent, à la résolution d'un système :

- 1. (3, -3, 0) est-il combinaison linéaire de (1, 0, 0), (0, -1, 2) et (1, 0, -3) ?
- 2. (-1,2,3) est-il combinaison linéaire de (1,1,0) et (-1,1,3) ?

Remarque 1.4.5.

Pour la deuxième question, on sait y répondre avec le déterminant. Pour l'instant ce n'est possible que pour les vecteurs du plan mais bientôt... (à suivre).

On peut généraliser la définition précédente au cas des familles quelconques.

Définition 1.4.6.

Soit I un ensemble $(x_i)_{i\in I}$ une famille de vecteurs indexées par I. On appelle combinaison linéaire de la famille $(x_i)_{i\in I}$ tout vecteur de la forme

$$\sum_{i \in I} \lambda_i \cdot x_i$$

où $(\lambda_i)_{i\in I}$ est une famille de scalaire à **support fini** c'est-à-dire telle que l'ensemble des $i\in I$ tels que $\lambda_i\neq 0$ **soit fini**.

Exemple 1.4.7.

Quelles sont les combinaisons linéaires de la famille $\left(X^k\right)_{k\in\mathbb{N}}$ dans $\mathbb{R}[X]$? et de la famille $\left(X^{2k}\right)_{k\in\mathbb{N}}$ dans $\mathbb{R}[X]$?

- Remarque 1.4.8. 1. La somme de deux combinaisons linéaires d'une même famille est encore une combinaison linéaire de cette famille.
 - 2. Le produit par un scalaire d'une combinaison linéaire d'une famille est encore une combinaison linéaire de cette famille.

2. Sous-espaces vectoriels

Dorénavant, nous ommetrons d'écrire le \cdot de la multiplication scalaire.

2.1. Définitions

Définition 2.1.1.

Soit $F \subset E$. On dit que F est un sous-espace vectoriel (sev) de E si :

- (i) $0 \in F$;
- (ii) F est stable par combinaisons linéaires quelconques de deux vecteurs, *i.e.* pour tout $\lambda, \mu \in \mathbb{K}$, et pour tous $x, y \in F, \lambda x + \mu y \in F$.

Remarque 2.1.2.

Il est clair que tout sous-espace vectoriel est stable par multiplication externe ainsi que par l'addition.

Par récurrence, on en déduit que, pour tout $n \in \mathbb{N}$, toute combinaison linéaire de n vecteurs d'un sous-espace vectoriel appartient encore à ce sous-espace vectoriel. Donc tout sous-espace vectoriel est stable par toute combinaison linéaire de ses vecteurs.

Proposition 2.1.3.

Soit $F \subset E$. Toutes les propositions suivantes sont équivalentes :

- (i) F est un sous-espace vectoriel de E;
- (ii) F est non vide, stable par addition et par multiplication externe;
- (iii) F est un sous-groupe de E stable par multiplication externe ;
- (iv) F est non vide et $\forall \lambda, \mu \in \mathbb{K} \quad \forall (x, y) \in F^2 \quad \lambda x + \mu y \in F$;
- (v) $O_E \in F$ et $\forall \lambda, \mu \in \mathbb{K} \quad \forall (x, y) \in F^2 \quad \lambda x + \mu y \in F$;

Remarque 2.1.4.

On remplace aussi parfois les propositions (iv) et (v) par, respectivement,

 $F \neq \emptyset$ et $\forall \lambda \in \mathbb{K}$ $\forall (x,y) \in F^2$ $\lambda x + y \in F$

ainsi que

 $0_E \in F \text{ et } \forall \lambda \in \mathbb{K} \quad \forall (x,y) \in F^2 \quad \lambda x + y \in F.$

Démonstration.

On remarque successivement :

- (i) \Rightarrow (ii) Il suffit de prendre $\lambda=1$ pour la stabilité par addition et y=0 pour la stabilité par multiplication externe.
- (ii) \Rightarrow (iii) Supposons (ii). Alors F est stable par multiplication externe, donc en particulier $\forall x \in E$ $(-1).x \in E$. Donc F est stable par opposé. Par ailleurs, F est non vide et stable par addition, c'est donc un sousgroupe de E.
- (iii) \Rightarrow (iv) Supposons (iii). Alors F est un sous-groupe donc n'est pas vide. Soit $\lambda, \mu \in \mathbb{K}$ et $(x,y) \in F^2$. F est stable par multiplication externe, donc $\lambda x \in F$ et $\mu \in F$. F est un sous-groupe de E, donc $\lambda x + \mu y \in F$.
- (iv) \Rightarrow (v) Supposons (iv). Alors F est non vide et contient donc un élément x_0 , donc contient 0_E car $0_E = (-1) \cdot x_0 + x_0$. On en déduit (v).

(v) \Rightarrow (i) Supposons (v). Alors, pour tout $(x,y) \in F^2$, x+y=1x+1y donc F est stable par addition. Et pour tout $x \in E$ et tout $\lambda \in \mathbb{K}$, $\lambda x = \lambda x + 0 \cdots 0_E$, donc F est stable par multiplication externe. On en déduit (i).

Remarque 2.1.5.

En pratique pour montrer qu'un sous-ensemble de E est un sous-espace vectoriel, on utilisera (iv) ou (v), qui est généralement le plus rapide à démontrer.

Exemple 2.1.6.

E et $\{0\}$ sont des sev de E, dits triviaux.

Exemple 2.1.7.

L'ensemble des solutions d'une équation différentielle linéaire homogène dont la variable est une fonction de I dans \mathbb{R} est un sev de \mathbb{R}^I .

Théorème 2.1.8.

Soit F un sous-ensemble de E. Alors F muni des lois induites de E est un \mathbb{K} -espace vectoriel si et seulement si F est un sous-espace vectoriel de E.

- $\begin{array}{lll} \textbf{D\'{e}monstration.} & & \text{Supposons que } F \text{ muni des lois} \\ \text{de } E \text{ soit un } \mathbb{K}\text{-espace vectoriel. Alors } (F,+) \text{ est un} \\ \text{groupe ab\'elien donc c'est un sous-groupe de } (F,+). \\ \text{De plus, } F \text{ est stable par multiplication externe,} \\ \text{donc c'est bien un sous-espace vectoriel de } F. \\ \end{array}$
 - Réciproquement, si F est un sous-espace vectoriel de E, on sait qu'il s'agit d'un sous-groupe de (E, +), donc (F, +) est un groupe abélien. De plus, F est stable par multiplication externe, donc la multiplication externe de E induit bien une multiplication externe sur F. On peut aisément vérifier que les propriétés (ii) à (v) des espaces vectoriels sont alors vérifiées par les lois induites sur F.

Remarque 2.1.9.

En pratique, pour montrer qu'un ensemble est un espace vectoriel, il est plus rapide de montrer que c'est un sous-espace vectoriel d'un espace vectoriel plus gros : on le fera donc quasiment **TOUJOURS**, et l'on ne reviendra presque **JA-MAIS** à la définition complète.

2.2. Exemples

Exemples géométriques :

Droites dans \mathbb{R}^2 Soient $(a,b,c) \in \mathbb{R}^3$, avec $(a,b) \neq (0,0)$. À quelle condition la droite d'équation ax + by = c est-elle un sous-espace vectoriel de \mathbb{R}^2 ?

Plans dans \mathbb{R}^3 Même question pour un plan d'équation ax + by + cz + d = 0.

Cercles dans \mathbb{R}^2 Même question pour un cercle dans le plan.

Exemples avec polynômes et fractions rationnelles : quels sont les liens entre \mathbb{R} , \mathbb{C} , $\mathbb{R}[X]$, $\mathbb{C}[X]$, $\mathbb{R}(X)$ et $\mathbb{C}(X)$?

2.3. Opérations sur les sous-espaces vectoriels

Dans toute la suite du chapitre, F et G sont deux sous-espaces vectoriels de E.

a. Intersection

Théorème 2.3.1. 1. $F \cap G$ est un sous-espace vectoriel de E.

2. $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.

Démonstration. 1. On a évidemment $0 \in F \cap G$. On vérifie aisément que pour tout $(x,y) \in (F \cap G)^2$ et tout $\lambda \in \mathbb{K}$, on a $\lambda x + y \in F \cap G$.

2. Si un des deux espaces vectoriels est inclus dans l'autre, alors $F \cup G$ est trivialement un sous-espace vectoriel de E.

Supposons à l'inverse qu'aucun des deux sous-espaces vectoriels ne soit inclus dans l'autre et montrons qu'alors $F \cup G$ n'est pas un sous-espace vectoriel. $F \setminus G$ contient au moins un élément x, et $G \setminus F$ au moins un élément y. Posons alors z = x + y. Si z appartenait à F, on aurait $y = z - x \in F$ ce qui n'est pas le cas. De même, on ne peut avoir $z \in G$. Donc $z \notin F \cup G$, donc $F \cup G$ n'est pas stable par addition.

Exemple 2.3.2.

Dans l'espace, toute droite passant par 0 est l'intersection de deux plans passant par 0, donc est un sous-espace vectoriel.

Cette propriété se généralise en fait à une intersection d'une famille quelconque de sous-espaces vectoriels :

Théorème 2.3.3.

Soit $(F_i)_{i\in I}$ (resp. \mathscr{F}) une famille (resp. un ensemble) de sous-espaces vectoriels de E. Alors

$$\bigcap_{i \in I} F_i \quad \text{resp.} \quad \bigcap_{F \in \mathscr{F}} F$$

est un sous-espace vectoriel de E.

Démonstration.

Remarquons que le cas de l'intersection d'un ensemble se traite comme le cas particulier d'une famille : il s'agit de l'intersection de la famille des $(F_i)_{F\in I}$ où $I=\mathscr{F}$ et pour tout $G\in I,\, F_G=G$.

La démonstration s'effectue alors comme la précédente. Notons F l'intersection des F_i pour $i \in I$.

- 1. On a évidemment $0 \in F_i$ pour tout $i \in I$, donc $0 \in F$.
- 2. Pour tout $(x,y) \in \mathbb{F}^2$ et tout $\lambda \in \mathbb{K}$, on a successivement :

$$\forall i \in I \quad (x,y) \in F_i^2$$

$$\forall i \in I \quad \lambda x + y \in F_i^2$$

$$\lambda x + y \in \bigcap_{i \in I} F_i$$

Un exemple important d'intersection a priori infinie est donnée dans la partie suivante.

b. Sous-espace vectoriel engendré par une partie

Définition 2.3.4 (Sous-espace vectoriel engendré par une partie).

Soit X une partie (quelconque) du \mathbb{K} -espace vectoriel E. On appelle \mathbb{K} -sous-espace vectoriel engendré par X et on note $\mathrm{Vect}_{\mathbb{K}}(X)$ (ou $\mathrm{Vect}(X)$ lorsqu'il n'y a pas d'ambiguïté) le plus petit sous-espace vectoriel de E contenant X (« plus petit » est à entendre au sens de l'inclusion).

Démonstration.

Cette définition présuppose qu'un tel sous-espace existe et

qu'il est unique. L'unicité sous réserve d'existence du plus petit élément d'un ensemble muni d'une relation d'ordre est connue. Montrons l'existence.

Notons ${\mathscr F}$ l'ensemble des F tels que :

- 1. F est un sous-espace vectoriel de E;
- 2. et $X \subset F$.

On veut montrer que cet ensemble ${\mathscr F}$ possède un plus petit élément pour l'inclusion.

Posons alors

$$V = \bigcap_{F \in \mathscr{F}} F$$

et montrons que V est ce plus petit élément.

Pour cela montrons tout d'abord $V \in \mathscr{F}$.

Pour tout $F \in \mathcal{F}$, on a $X \subset F$, donc

$$X\subset \bigcap_{F\in \mathscr{F}}F=V$$

De plus, V est une intersection de sous-espaces vectoriels de E donc c'est un sous-espace vectoriel de E.

Donc on a $V \in \mathscr{F}$.

Il suffit donc maintenant de montrer que V est un minorant de $\mathscr{F},$ c'est-à-dire que pour tout $F\in\mathscr{F},$ on a $V\subset F.$

Soit $F \in \mathscr{F}$. On a

$$V = \bigcap_{G \in \mathscr{F}} G$$

donc tout élément de V appartient à tout élément de $\mathscr{F},$ donc en particulier à F. On a donc $V\subset F.$

V minore donc $\mathscr F$ pour l'inclusion.

V est donc un élément de ${\mathscr F}$ qui minore ${\mathscr F}:$ c'est donc son plus petit élément. $\hfill\Box$

Remarque 2.3.5. 1. Tout sous-espace vectoriel de E contenant X contient donc Vect(X).

2. Si F est un sous-espace vectoriel de E, alors F est le plus petit sous-espace vectoriel contenant F, donc Vect(F) = F.

Remarque 2.3.6.

Soit I un ensemble et $(x_i)_{i\in I}$ une famille de vecteurs de E. On notera $\text{Vect}((x_i)_{i\in I})$ le sous-espace $\text{Vect}(\{x_i \mid i \in I\})$. En particulier si I est de la forme [1, n], on notera $\text{Vect}(x_1, \ldots, x_n)$ le sous-espace $\text{Vect}(\{x_1, \ldots, x_n\})$.

Le procédé de construction de $\operatorname{Vect}(X)$ présenté plus haut est très élégant et peut s'utiliser dans de nombreuses situations. En revanche, il est assez peu concret. Heureusement, le théorème suivant nous dit très précisément ce que contient $\operatorname{Vect}(X)$.

Théorème 2.3.7.

Soit X une partie de E. Alors Vect(X) est exactement l'ensemble de toutes les combinaisons linéaires d'éléments de X. Autrement dit :

- 1. Pour tout $n \in \mathbb{N}$, toute combinaison linéaire d'éléments de X appartient à $\operatorname{Vect}(X)$.
- 2. Pour tout élément x de $\mathrm{Vect}(X)$, il existe une famille de coefficients $(\lambda_{\alpha})_{\alpha \in X}$ à support fini telle qu'on a

$$x = \sum_{\alpha \in X} \lambda_{\alpha} \alpha.$$

Dit autrement : il existe un entier $n \in \mathbb{N}$, des vecteurs u_1, \ldots, u_n de X ($\forall k \in [1, n], u_k \in X$) et des scalaires $\lambda_1, \ldots, \lambda_n$ tels qu'on a

$$x = \sum_{k=1}^{n} \lambda_k u_k.$$

Démonstration.

Notons V l'ensemble des combinaisons linéaires d'éléments de X.

Pour montrer V = Vect(X), nous allons montrer que V est le plus petit sous-espace vectoriel de E contenant X.

- 1. V est un sous-espace vectoriel de E. En effet :
 - a) il contient 0_E (combinaison linéaire de 0 vecteur de X);
 - b) il est stable par addition car la somme d'une combinaison linéaire de p vecteurs de X et d'une combinaison linéaire de q vecteurs de X est une combinaison linéaire (d'au plus) p+q vecteurs de X;
 - c) il est stable par multiplication par un scalaire car le produit par un scalaire λ d'une combinaison linéaire de n vecteurs de X est la combinaison linéaire de ces mêmes vecteurs où les coefficients ont tous été multiplié par λ .
- 2. V contient X. En effet pour tout $x \in X$, x est la combinaison linéaire $1 \cdot x$, donc appartient à V. Donc $X \subset V$.
- V minore l'ensemble des sous-espaces vectoriels de E contenant X. En effet, soit F un sous-espace vectoriel de E contenant X. Montrons V ⊂ F.

Soit $x \in V$ alors x est combinaison linéaire d'éléments de X. Or F contient X et est un sous-espace-vectoriel donc est stable par combinaison linéaire. Il contient donc x en particulier. On a donc $\forall x \in V \quad x \in F$.

Donc $V \subset F$.

Donc V est le plus petit sous-espace vectoriel de E contenant X.

Remarque 2.3.8.

En particulier, pour toute famille de vecteurs finie de x_1, \ldots, x_n , Vect (x_1, \ldots, x_n) est l'ensemble

$$\left\{ \left. \sum_{k=1}^{n} \lambda_k x_k \right| (\lambda_1, \dots, \lambda_k) \in \mathbb{K}^n \right\}.$$

Exemple 2.3.9. 1. Pour $\alpha \in \mathbb{R}$, on note

$$f_{\alpha}: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \mathrm{e}^{\,\alpha x} \end{array} \right.$$

Alors $\operatorname{Vect}\left((f_{\alpha})_{\alpha\in\mathbb{R}}\right)$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ qui contient les fonctions sh, ch mais pas sin ni th (indication : il suffit de remarquer que les seules fonctions bornées de ce sous-espace vectoriel sont les fonctions constantes).

- 2. En géométrie dans \mathbb{R}^2 , si $(\overrightarrow{\imath}, \overrightarrow{\jmath})$ est une base, tout vecteur de \mathbb{R}^2 est combinaison linéaire de $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$, donc $\mathbb{R}^2 = \text{Vect}(\overrightarrow{\imath}, \overrightarrow{\jmath})$.
- 3. Dans \mathbb{R}^3 , si \mathscr{D} est une droite vectorielle de vecteur directeur u, alors $\mathscr{D} = \{ \lambda u \mid u \in \mathbb{K} \} = \text{Vect}(u)$. Si \mathscr{P} est un plan vectoriel de vectoriel

teurs directeurs
$$u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 et $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$,

alors en écrivant une équation paramétrique de \mathscr{P} , on voit que tout point P de l'espace est dans \mathscr{P} si et seulement s'il existe $t_1, t_2 \in \mathbb{R}$ tel que $P = t_1 u + t_2 v$, donc $\mathscr{P} = \operatorname{Vect}(u, v)$. Exemple avec 2x - y + z = 0.

- 4. $\mathbb{R} = \operatorname{Vect}_{\mathbb{R}}(1)$ et $\mathbb{C} = \operatorname{Vect}_{\mathbb{C}}(1) = \operatorname{Vect}_{\mathbb{R}}(1, i)$.
- 5. $E = (\mathscr{F}(\mathbb{R}, \mathbb{R}), +, .)$ est un ev. On note les fonctions suivantes, définies sur \mathbb{R} par exp: $x \mapsto e^x$; $\exp : x \mapsto e^{-x}$; $f : x \mapsto x\sin(2x)$ et $g : x \mapsto x\sin(3x)$. Avec $F = \text{Vect}(\exp, \exp)$ et G = Vect(f, g), on a ch $\in F$ mais $\sin \notin G$.
- 6. L'ensemble des solutions de l'équation différentielle y'' + y' 2y = 0 est Vect(f, g) avec $f : \mathbb{R} \to \mathbb{R}, x \mapsto e^{-2x}$ et $g = \exp$.

Proposition 2.3.10.

Soit X et Y deux parties de E. Alors :

- 1. $X \subset Y \Rightarrow \operatorname{Vect}(X) \subset \operatorname{Vect}(Y)$;
- 2. Vect(Vect(X)) = Vect(X).

Démonstration. 1. Supposons $X \subset Y$. Alors $X \subset Y \subset \operatorname{Vect}(Y)$. Donc $\operatorname{Vect}(Y)$ est un sous-espace vectoriel de E contenant X donc contient $\operatorname{Vect}(X)$.

2. Posons F = Vect(X). F est un sous-espace vectoriel de E. Donc d'après la remarque faite plus haut, Vect(F) = F.

c. Somme

Définition 2.3.11.

On appelle $somme\ de\ F\ et\ G$ l'ensemble de E noté F+G défini par $F+G=\{\ x+y\mid x\in F, y\in G\ \}.$

Théorème 2.3.12. (i) F + G est un sev de E;

(ii) F + G est le plus petit sev qui contient F et $G: F + G = \text{Vect}(F \cup G)$.

Démonstration. (i) Immédiat.

(ii) Montrons d'abord que $F\subset F+G$: soit $f\in F$. alors f=f+0, et $0\in G$, donc $f\in F+G$. On montre bien sûr de même que $G\subset F+G$. On a donc $(F\cup G)\subset (F+G)$.

Il suffit ensuite de montrer que pour tout sous-espace vectoriel H de E contenant $F \cup G$, on a $(F+G) \subset H$. Soit H un sous-espace vectoriel de E. Supposons $F \subset H$ et $G \subset H$. Montrons $(F+G) \subset H$.

Soit $z \in F + G$. Alors il existe $x \in F$ et $y \in G$ vérifiant z = x + y. On a alors $x \in H$ et $y \in H$ donc $x + y \in H$, donc $z \in H$.

Donc $F + G \subset H$.

Remarque 2.3.13.

Si A = F + G et $a \in A$, il n'y a pas forcément unicité de la décomposition a = f + g, avec $f \in F$ et $g \in G$, loin de là ! Considérer par exemple le cas F + F.

Exemple 2.3.14.

Si $F \subset G$, alors F + G = G.

Exemple 2.3.15.

Soit \mathscr{D} et \mathscr{D}' deux droites du plan passant par 0 et non confondues. Alors $\mathbb{R}^2 = \mathscr{D} + \mathscr{D}'$.

Proposition 2.3.16. 1. Soit X et Y desparties de E. Alors $\text{Vect}(X) + \text{Vect}(Y) = \text{Vect}(X \cup Y)$.

- 2. Étant donnés deux sous-espaces vectoriels F_1 et F_2 de E, on a $F_1 + F_2 = F_2 + F_1 = \text{Vect}(F_1 \cup F_2)$.
- 3. Étant donnés trois sous-espaces vectoriels F_1 , F_2 et F_3 de E, on a $F_1 + (F_2 + F_3) = (F_1 + F_2) + F_3 = \text{Vect}(F_1 \cup F_2 \cup F_3)$
- 4. Étant donnés $n \in \mathbb{N}^*$ et F_1, \ldots, F_n des sousespaces vectoriels de E, la façon de parenthéser l'expression de $F_1 + \ldots + F_n$ n'a pas d'importance et

$$F_1 + \ldots + F_n = \text{Vect}(F_1 \cup \ldots \cup F_n).$$

Démonstration. 1. $\operatorname{Vect}(X \cup Y)$ est un espace vectoriel contenant $X \cup Y$, donc contient X. Or tout espace vectoriel contenant X contient $\operatorname{Vect}(X)$, donc $\operatorname{Vect}(X \cup Y)$ contient $\operatorname{Vect}(X)$. De même, il contient $\operatorname{Vect}(Y)$. $\operatorname{Vect}(X \cup Y)$ est donc un espace vectoriel contenant les deux sous-espaces vectoriels $\operatorname{Vect}(X)$ et $\operatorname{Vect}(Y)$, donc il contient leur somme. On a donc $\operatorname{Vect}(X) + \operatorname{Vect}(Y) \subset \operatorname{Vect}(X \cup Y)$.

Par ailleurs, $\operatorname{Vect}(X) + \operatorname{Vect}(Y)$ contient $\operatorname{Vect}(X)$, donc contient X. De même, il contient Y. Il contient donc $X \cup Y$. Or $\operatorname{Vect}(X) + \operatorname{Vect}(Y)$ est un sous-espace vectoriel, donc il contient $\operatorname{Vect}(X \cup Y)$. On a donc $\operatorname{Vect}(X \cup Y) \subset \operatorname{Vect}(X) + \operatorname{Vect}(Y)$.

On a donc $Vect(X \cup Y) = Vect(X) + Vect(Y)$.

2. En remarquant que $Vect(F_i) = F_i$ pour i = 1, 2, on a ·

$$F_1 + F_2 = \text{Vect}(F_1) + \text{Vect}(F_2)$$

$$= \text{Vect}(F_1 \cup F_2)$$

$$= \text{Vect}(F_2 \cup F_1)$$

$$= F_2 + F_1.$$

3. De même:

$$F_1 + (F_2 + F_3) = \text{Vect}(F_1) + \text{Vect}(F_2 \cup F_3)$$

$$= \text{Vect}(F_1 \cup F_2 \cup F_3)$$

$$= \text{Vect}(F_1 \cup F_2) + \text{Vect}(F_3)$$

$$= (F_1 + F_2) + F_3.$$

4. Ce point se démontre par récurrence sur le nombre de sous-espaces vectoriels considérés. On sait déjà $\operatorname{Vect}(F_1) = F_1$, ce qui montre la propriété dans le cas où n=1 (on aurait même pu commencer à zéro, en considérant que la somme de 0 sev est $\{0_E\}$ qui est aussi $\operatorname{Vect}(\varnothing)$).

La propriété d'hérédité se montre en posant $S=F_1+\ldots+F_n+F_{n+1}$ et en écrivant

$$S = \operatorname{Vect}(F_1 \cup \ldots \cup F_n) + \operatorname{Vect}(F_{n+1})$$
$$= \operatorname{Vect}(F_1 \cup \ldots \cup F_n \cup F_{n+1}).$$

d. Somme directe

Étant donné des sous-espaces vectoriels F_1, \ldots, F_n de $E, F_1 + \ldots + F_n$ est l'ensemble des vecteurs x de E pouvant s'écrire au moins d'une façon sous la forme $x_1 + \ldots + x_n$ avec, pour tout $i \in [1, n], x_i \in F_i$. On va s'intéresser ici au cas où, pour tout x, la décomposition est unique.

Définition 2.3.17 (Somme directe).

Étant donnés $n \in \mathbb{N}^*$ et F_1, \ldots, F_n des sousespaces vectoriels de E, on dit que F_1, \ldots, F_n sont en somme directe ou que la somme $F_1 + \ldots + F_n$ est directe si tout élément x de $F_1 + \ldots + F_n$ se décompose de manière unique sous la forme $x_1 + \ldots + x_n$ avec, pour tout $i \in [1, n], x_i \in F_i$.

Dans ce cas, le sous-espace vectoriel $F_1 + \ldots + F_n$ est noté

$$F_1 \oplus \ldots \oplus F_n$$

ou

Dans la suite de cette partie, n désigne un entier naturel et F_1, \ldots, F_n des sous-espaces vectoriels de E.

Proposition 2.3.18.

Les propositions suivantes sont équivalentes.

- (i) F_1, \ldots, F_n sont en somme directe.
- (ii) La seule décomposition possible du vecteur nul sous la forme $x_1 + \ldots + x_n$ avec $x_i \in F_i$ pour $i \in [1, n]$ est la décomposition triviale $0 + \ldots + 0$.
- (iii) Tout élément de E s'écrit au plus d'une façon sous la forme $x_1 + \ldots + x_n$ avec $x_i \in F_i$ pour $i \in [1, n]$.
- **Démonstration.(i)** \Rightarrow **(ii)** Supposons que F_1, \ldots, F_n sont en somme directe. Le vecteur nul appartient à $F_1 \oplus \ldots \oplus F_n$, donc se décompose d'une et une seule façon comme somme d'éléments de F_1, \ldots, F_n . Or il s'écrit sous la forme $0 + \ldots + 0$, qui est donc la seule décomposition possible de x.
- (ii) \Rightarrow (iii) Supposons que la seule décomposition du vecteur nul sous la forme d'une somme d'éléments de F_1, \ldots, F_n soit sous la forme $0 + \ldots + 0$.

Soit alors x un élément de E. Supposons que x s'écrive à la fois $x_1 + \ldots + x_n$ et sous la forme $y_1 + \ldots + y_n$ où, pour tout $i \in [1, n]$ $x_i \in F_i$ et $y_i \in F_i$. Alors on a

$$0 = x - x = (x_1 - y_1) + \ldots + (x_n - y_n).$$

Or pour tout $i \in [1, n]$, $x_i - y_i \in F_i$, donc on a trouvé une décomposition du vecteur nul. Or on sait que cette décomposition est nécessairement la décomposition triviale, donc pour tout $i \in [1, n]$, on a $x_i - y_i = 0$.

On a donc $x_i = y_i$ pour tout $i \in [1, n]$, c'est-à-dire $(x_1, \ldots, x_n) = (y_1, \ldots, y_n)$.

Donc x se décompose d'au plus une façon.

Donc tout élément de E s'écrit au plus d'une façon sous la forme $x_1 + \ldots + x_n$ avec $x_i \in F_i$ pour $i \in [1, n]$.

(iii) \Rightarrow (i) Supposons (iii) et montrons (i). Soit $x \in F_1 + \ldots + F_n$. Alors x se décompose d'au moins une façon comme sous la forme $x_1 + \ldots + x_n$ avec, pour tout $i \in [\![1,n]\!], x_i \in F_i$.

De plus, d'après (iii), x se décompose au plus d'une façon sous cette forme.

 Π se décompose donc de façon unique sous cette forme.

Donc la somme $F_1 + \ldots + F_n$ est directe.

Remarque 2.3.19.

La somme $F_1 + \cdots + F_n$ est donc directe si et seulement si l'application $F_1 \times \cdots F_n \rightarrow$

 $E, (x_1, \ldots, x_n) \mapsto x_1 + \cdots + x_n$ est injective. C'est évidemment un morphisme (de groupes, mais aussi d'ev. comme nous le verrons plus tard). La proposition précédente revient à étudier le noyau de ce morphisme.

Proposition 2.3.20 (Somme directe de deux sous-espaces vectoriels).

Soit F et G deux sous-espaces vectoriels.

Alors la somme F+G est directe si et seulement si $F \cap G = \{ 0_E \}$.

Démonstration.

Montrons la double implication.

Sens direct Supposons F+G en somme directe. Comme $F\cap G$ est un espace vectoriel, on a évidemment $\{\ 0_E\ \}\subset F\cap G$. Il suffit donc de montrer $F\cap G\subset \{\ 0_E\ \}$ pour conclure qu'on a $F\cap G=\{\ 0_E\ \}$. Soit $x\in F\cap G$. On a alors $0_E=x+(-x)$ et $x\in F$ et

Soit $x \in F \cap G$. On a alors $0_E = x + (-x)$ et $x \in F$ et $-x \in G$. Or F et G sont en somme directe donc cette décomposition est nécessairement la décomposition nulle : on a donc (x, -x) = (0, 0) donc x = 0.

Sens indirect Supposons $F \cap G = \{ 0_E \}$. Alors montrons que 0 a la décomposition triviale pour seule décomposition comme somme d'un élément de F et de G. Supposons que 0 s'écrive sous la forme x+y avec $x \in F$ et $y \in G$. Alors $x=-y \in G$, donc $x \in F \cap G = \{ 0 \}$, donc x=0 et y=-x=0.

 ${\bf 0}$ admet donc pour seule décomposition la décomposition triviale.

Remarque 2.3.21.

Ce résultat n'est valable que pour la somme de deux sous-espaces vectoriels, pas plus.

Exercice 2.3.22.

Trouver trois sous-espaces vectoriels F, G, H de \mathbb{R}^2 tels qu'on a $F \cap G \cap H = \{0\}$ (ou même tels que $F \cap G = G \cap H = H \cap F = \{0\}$) bien que F, G et H ne soient pas en somme directe.

En revanche, on a le résultat suivant :

Proposition 2.3.23.

Soit $p \in \mathbb{N}^*$ et $q \in \mathbb{N}^*$ et F_1, \ldots, F_p et $G_1, \ldots G_q$

respectivement p et q sous-espaces vectoriels de E. On pose $F=F_1+\ldots+F_p$ et $G=G_1+\ldots+G_q$. Alors la somme $F_1+\ldots+F_p+G_1+\ldots+G_q$ est directe si et seulement si les trois conditions suivantes sont vérifiées :

- 1. la somme $F_1 + \ldots + F_p$ est directe;
- 2. la somme $G_1 + \ldots + G_q$ est directe;
- 3. la somme F + G est directe.

Démonstration.

Montrons la double implication.

Sens direct Supposons que la somme $F_1 + \ldots + F_p + G_1 + \ldots + G_q$ est directe. Alors

1. Montrons que la somme $F_1 + \ldots + F_p$ est directe. Considérons une décomposition du vecteur nul sous la forme $x_1 + \ldots + x_p$ où $x_i \in F_i$ pour $i \in [\![1,p]\!]$. En posant, pour $i \in [\![1,q]\!]$, $y_i = 0$, on a

$$0 = x_1 + \ldots + x_p + y_1 + \ldots + y_q.$$

Or la somme $F_1 + \ldots + F_p + G_1 + \ldots + G_q$ est directe, donc pour tout $i \in [1, p]$, $x_i = 0$ et pour tout $i \in [1, q]$, $y_i = 0$.

- 2. De même, la somme $G_1 + \ldots + G_p$ est directe.
- 3. Montrons que la somme F+G est directe. Supposons que 0 s'écrive sous la forme x+y avec $x \in F$ et $y \in G$. On a $x \in F$, donc x s'écrit sous la forme $x_1 + \ldots + x_p$ où $x_i \in F_i$ pour $i \in [\![1,p]\!]$. De même y s'écrit sous la forme $y_1 + \ldots + y_q$ où $y_i \in G_i$ pour $i \in [\![1,q]\!]$.

On a donc

$$0 = x_1 + \ldots + x_p + y_1 + \ldots + y_q.$$

Or la somme $F_1 + \ldots + F_p + G_1 + \ldots + G_q$ est directe, donc pour tout $i \in [1, p]$, $x_i = 0$ et pour tout $i \in [1, q]$, $y_i = 0$. Donc x = 0 et y = 0.

La seule décomposition de 0 comme somme d'un élément de F et d'un élément de G est donc la décomposition triviale. Donc la somme F+G est directe.

Sens indirect Supposons que les trois conditions sont vérifiées et montrons que la somme $F_1 + \ldots + F_p + G_1 + \ldots + G_q$ est directe.

Considérons une décomposition de 0 sous la forme

$$0 = x_1 + \ldots + x_p + y_1 + \ldots + y_q,$$

où $x_i \in F_i$ pour tout $i \in [\![1,p]\!]$ et $y_i \in G_i$ pour tout $i \in [\![1,q]\!]$.

Alors, en posant $x = x_1 + \ldots + x_p$ et $y = y_1 + \ldots y_q$, on a 0 = x + y et $x \in F$ et $y \in G$. Or F et G sont en somme directe donc x = 0 et y = 0. On a donc

$$0 = x_1 + \ldots + x_p.$$

Or F_1, \ldots, F_p sont en somme directe donc pour tout $i \in [1, p]$, $x_i = 0$. De même pour tout $i \in [1, q]$, $y_i = 0$.

Donc 0 admet la décomposition triviale pour seule décomposition comme somme d'éléments de $F_1, \ldots, F_p, G_1, \ldots, G_q$. Donc la somme $F_1 + \ldots + F_p + G_1 + \ldots + G_q$ est directe.

Corollaire 2.3.24.

Soit $n \in \mathbb{N}^*$ et F_1, \ldots, F_{n+1} n+1 sous-espaces vectoriels de E. Alors les trois conditions suivantes sont équivalentes :

- 1. la somme $F_1 + \ldots + F_{n+1}$ est directe ;
- 2. la somme $F_1 + \ldots + F_n$ est directe et la somme de $F_1 \oplus \ldots \oplus F_n$ et de F_{n+1} est directe ;
- 3. la somme $F_1 + \ldots + F_n$ est directe et $(F_1 \oplus \ldots \oplus F_n) \cap F_{n+1} = \{0\}.$

Démonstration.

L'équivalence des deux premiers points découle de la propriété précédente (avec p=n et q=1). Celle des deux derniers, de la caractérisation de la somme directe de deux sous-espaces vectoriels.

Définition 2.3.25.

On dit que F est un supplémentaire de G (ou que F et G sont supplémentaires) si

$$E = F \oplus G$$
,

i.e. si les deux conditions suivantes sont remplies :

- 1. la somme F + G est directe;
- 2. E = F + G.

Proposition 2.3.26.

F et G sont supplémentaires si et seulement si tout élément de E s'écrit de manière unique comme somme d'un élément de F et d'un élément de G.

Démonstration.

Direct d'après les définitions.

Exemple 2.3.27.

Montrons que dans \mathbb{R}^2 , deux droites passant par 0 et non confondues sont toujours supplémentaires.

Exercice 2.3.28.

Dans \mathbb{R}^2 , on note \mathscr{D} : $x+y=0, \mathscr{D}'$: x-y=0 et \mathscr{D}'' : x-2y=0.

- 1. Montrer $\mathbb{R}^2 = \mathscr{D} \oplus \mathscr{D}'$
- 2. Montrer $\mathbb{R}^2 = \mathscr{D} \oplus \mathscr{D}''$

Remarquez qu'il n'y a donc pas unicité du supplémentaire (croire le contraire est une faute classique et très grave !).

Remarque 2.3.29.

On peut montrer de même que dans \mathbb{R}^3 , un plan et une droite passant par 0 et tel que le plan ne contienne pas la droite sont toujours supplémentaires.

Exemple 2.3.30.

 $\mathscr{P}: x-y+z=0 \text{ et } \mathscr{D}: x=t+1, y=0, z=2t+2.$ On montre que $(\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$ est une base de \mathbb{R}^3 , avec \overrightarrow{I} vecteur directeur de \mathscr{D} et $(\overrightarrow{J}, \overrightarrow{K})$ base de \mathscr{P} .

Exemple 2.3.31.

 \mathbb{R} et $i\mathbb{R}$ dans \mathbb{C} .

Exercice 2.3.32.

On note E l'ensemble des applications de \mathbb{R} dans \mathbb{R} , I celui des applications impaires, et P celui des applications paires.

Montrer $E = I \oplus P$.

3. Translations, sous-espaces affines

Les sous-espaces affines (sea) généralisent la notion de sev, en s'affranchissant de la contrainte « passer par 0 ». Ainsi, dans la théorie des ev, un sev passe toujours par 0.

Là encore on pourra identifier points et vecteurs, mais on essaiera de noter les points avec des majuscules et les vecteurs avec des minuscules, comme en géométrie, mais nous passerons souvent d'un point de vue à l'autre.

Définition 3.0.33.

Soit $A, B \in E$, on note $\overrightarrow{AB} = B - A$.

Remarque 3.0.34.

La loi + des ev permet de donner un sens à B - A, vus comme points, qui vaut alors $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$.

3.1. Translations

Définition 3.1.1.

Soit un vecteur $u \in E$. On appelle translation de vecteur u l'application $E \rightarrow E$.

 $x \mapsto x + u$

3.2. Sous-espaces affines

Définition 3.2.1.

On appelle sous-espace affine de E toute partie de E qui est le translaté d'un sev de E, i.e. toute partie $\mathscr F$ de la forme $\mathscr F=u+F=\{\,u+x\mid x\in F\,\}$, où F est un sev de E et u est un vecteur de E, ensemble que l'on note aussi u+F.

L'ensemble $\{b-a \mid (a,b) \in \mathcal{F}^2\}$ est appelé la direction de \mathcal{F} et ses éléments sont appelés les vecteurs directeurs de \mathcal{F} .

Proposition 3.2.2.

Soit $u \in E$, F un sous-espace vectoriel de E. Alors la direction du sous-espace affine u + F est F. En particulier cette direction est un espace vectoriel.

Démonstration.

Notons D la direction de u + F.

On a

$$D = \{ b - a \mid (a, b) \in \mathscr{F}^2 \}$$

= \{ (u + x) - (u + y) \| (x, y) \in F^2 \}
= \{ x - y \| (x, y) \in F^2 \}.

Or on a évidemment

$$F \subset \left\{ \left. x - 0 \right. \middle| \left. x \in F^2 \right. \right\} \subset \left\{ \left. x - y \right. \middle| \left. \left(x, y \right) \in F^2 \right. \right\} \subset F,$$
 donc $D = F$.

Remarque 3.2.3.

Notation fréquente : \mathscr{F} étant un sea de E, on note F ou \overrightarrow{F} sa direction.

Exemple 3.2.4.

Tout sev est un sea.

Exemple 3.2.5.

Dessin dans l'espace.

Exemple 3.2.6.

 $E=\mathbb{R}^{\mathbb{R}}$. On considère l'équation différentielle $y'+3y=x^2$ (E). Montrer que l'ensemble \mathscr{S}_0 des solutions de l'équation homogène forme un sev de E, et l'ensemble \mathscr{S} des solutions de (E) forme un sea de direction \mathscr{S}_0 .

Lemme 3.2.7.

Soit F un sous-espace vectoriel de E, a et b deux éléments de E. Alors on a équivalence entre les assertions suivantes :

(i)
$$b-a \in F$$
;

(v)
$$a \in b + F$$
;

(ii)
$$b \in a + F$$
;

(vi)
$$a+F \subset b+F$$
;

(iii)
$$b+F \subset a+F$$
;
(iv) $a-b \in F$;

(vii)
$$a + F = b + F$$
.

Démonstration.(i) \Rightarrow (ii) Supposons $b-a \in F$, alors $a+(b-a) \in a+F$, donc $b \in a+F$.

- (ii) \Rightarrow (iii) Supposons $b \in a + F$, alors b s'écrit sous la forme a + u où $u \in F$. Donc pour tout $v \in F$, on a $b + v = a + (u + v) \in a + F$. Donc on a (iii).
- (iii) \Rightarrow (i) Supposons $b+F\subset a+F$. Alors comme $b\in b+F$, on a $b\in a+F$, donc b s'écrit sous la forme a+u où $u\in F$. Donc $b-a=u\in F$.
- (iv), (v) et (vi) sont équivalents C'est exactement la même chose que ce qui précède, en échangeant le rôle de a et b.
- (i)<=>(iv) F étant un sous-espace vectoriel de E, on a $b-a \in F$ si et seulement si $-(b-a) \in F$. Or -(b-a) = a-b, c'est donc évident.
- (i) ⇒ (vii) Si on a (i), d'après ce qui précède toutes les assertions (i) à (vi) sont vraies, en particulier on a (iii) et (vi). On a donc immédiatement (vii).
- (vii)⇒(vi) C'est évident.

Théorème 3.2.8.

Soit \mathscr{F} un sea de direction F.

- (i) \mathscr{F} est le translaté de sa direction par n'importe lequel de ses points : $\forall a \in \mathscr{F}$ $\mathscr{F} = a + F$.
- (ii) Soit $a \in \mathscr{F}$ et $b \in E$. Alors on a

$$b \in \mathscr{F} \iff a - b \in F$$
.

Démonstration.

 \mathscr{F} est de la forme c+F, où $c\in E$.

- (i) Soit $a \in \mathscr{F}$. On a alors $a \in c+F$, donc d'après le lemme, on a $a+F=c+F=\mathscr{F}$.
- (ii) On a donc $\mathscr{F} = a + F$. Or d'après le lemme, on a $b \in a + F \iff a b \in F$.

Remarque 3.2.9.

Tout sea contenant 0 est donc un sev.

Corollaire 3.2.10.

Deux sea sont égaux si et seulement s'ils ont même direction et un point en commun.

Démonstration.

 \Rightarrow : évident.

 \Leftarrow : soient \mathscr{F}_1 et \mathscr{F}_2 de même direction F et $a \in \mathscr{F}_1 \cap \mathscr{F}_2$. Alors d'après le th., $\mathscr{F}_1 = a + F = \mathscr{F}_2$.

Définition 3.2.11.

Soient \mathscr{F} et \mathscr{G} deux sea de directions F et G.

- (i) On dit que \mathscr{F} est parallèle à \mathscr{G} si $F \subset G$.
- (ii) On dit que \mathscr{F} et \mathscr{G} sont parallèles si F = G.

Vocabulaire : « être parallèle à » n'est pas une relation symétrique.

Exemple 3.2.12.

Une droite est parallèle à un plan, mais certainement pas l'inverse.

Théorème 3.2.13 (Intersections de sea).

Soient \mathscr{F} et \mathscr{G} deux sea de directions F et G. Si $\mathscr{F} \cap \mathscr{G} \neq \varnothing$, alors on dit que \mathscr{F} et \mathscr{G} sont concourants ou sécants, et dans ce cas $\mathscr{F} \cap \mathscr{G}$ est un sea de direction $F \cap G$.

Démonstration.

Supposons $\mathscr{F}\cap\mathscr{G}\neq\varnothing$, alors il existe $a\in\mathscr{F}\cap\mathscr{G}$. Donc $\mathscr{F}=a+F$ et $\mathscr{G}=a+G$.

Montrons alors que $\mathscr{F} \cap \mathscr{G} = a + F \cap G$:

Soit $b \in E$. On a successivement :

$$\begin{array}{ccc} b \in \mathscr{F} \cap \mathscr{G} & \Longleftrightarrow & b \in \mathscr{F} \text{ et } b \in \mathscr{G} \\ & \Longleftrightarrow & b - a \in F \text{ et } b - a \in G \\ & \Longleftrightarrow & b - a \in F \cap G \\ & \Longleftrightarrow & b \in a + F \cap G \end{array}$$

D'où le résultat.

Théorème 3.2.14 (Parallélisme et intersection). Si \mathscr{F} est parallèle à \mathscr{G} , alors soit $\mathscr{F} \cap \mathscr{G} = \varnothing$, soit $\mathscr{F} \subset \mathscr{G}$.

En particulier si \mathscr{F} et \mathscr{G} sont parallèles, alors soit $\mathscr{F} \cap \mathscr{G} = \varnothing$, soit $\mathscr{F} = \mathscr{G}$.

Démonstration.

Supposons $F \subset G$. Si $\mathscr{F} \cap \mathscr{G} \neq \varnothing$, alors il existe $a \in \mathscr{F} \cap \mathscr{G}$, donc $\mathscr{F} = a + F$, or $F \subset G$, donc $a + F \subset a + G = \mathscr{G}$.

Dans le cas particulier où \mathscr{F} et \mathscr{G} sont parallèles, on a $\mathscr{F} \subset \mathscr{G}$ et $\mathscr{G} \subset \mathscr{F}$, d'où $\mathscr{F} = \mathscr{G}$.

3.3. Barycentres (hors programme)

Le barycentre est maintenant hors-programme. Cette partie ne sera pas nécessairement traitée en cours mais est laissée :

- à titre culturel;
- parce qu'elle peut être utile en sciences physiques.

Définition 3.3.1.

• On appelle système pondéré toute famille de la forme $((A_1, \lambda_1), \ldots, (A_n, \lambda_n))$, où chaque élément (A_i, λ_i) est appelé point pondéré, avec $n \in \mathbb{N}^*$, A_1, \ldots, A_n n points de E, et $\lambda_1, \ldots, \lambda_n$ n scalaires de \mathbb{K} .

- Avec les notations précédentes, on pose $\Lambda = \sum_{k=1}^{n} \lambda_k$.
 - (i) Si $\Lambda = 0$, alors le vecteur $\sum_{k=1}^{n} \lambda_k \overrightarrow{MA_k}$ ne dépend pas du point M.
 - (ii) Si $\Lambda \neq 0$, il existe un unique point G tel que $\sum_{k=1}^{n} \lambda_k \overrightarrow{GA_k} = 0$. Ce point est appelé le barycentre du système pondéré $(A_i, \lambda_i)_{i \in [\![1,n]\!]}$ et il vérifie $G = \frac{1}{\Lambda} \sum_{k=1}^{n} \lambda_k A_k$.

Démonstration. (i) Supposons $\Lambda = 0$. Soit $(M, N) \in E^2$. On a

$$\sum_{k=1}^{n} \lambda_k \overrightarrow{MA_k} = \sum_{k=1}^{n} \lambda_k \overrightarrow{MA_k} + \sum_{k=1}^{n} \lambda_k \overrightarrow{NM}$$
$$= \sum_{k=1}^{n} \lambda_k (\overrightarrow{NM} + \overrightarrow{MA_k})$$
$$= \sum_{k=1}^{n} \lambda_k \overrightarrow{NA_k}$$

(ii) Supposons $\Lambda \neq 0$. On a successivement :

$$\sum_{k=1}^{n} \lambda_k \overrightarrow{GA_k} = 0 \Leftrightarrow \sum_{k=1}^{n} \lambda_k (A_k - G) = 0$$
$$\Leftrightarrow \sum_{k=1}^{n} \lambda_k A_k - \left(\sum_{k=1}^{n} \lambda_k\right) G = 0$$
$$\Leftrightarrow G = \frac{1}{\Lambda} \sum_{k=1}^{n} \lambda_k A_k$$

Définition 3.3.2.

Soit I un ensemble. On appelle partition finie de I tout k-uplet, pour $k \in \mathbb{N}$, (I_1, \ldots, I_k) où les I_i sont des ensembles vérifiant $I_j \cap I_i = \emptyset$ si $i \neq j$ et $\bigcup_{1 \leqslant i \leqslant k} I_i = I$. Autrement dit, une partition

est un ensemble de parties de I deux à deux disjointes, dont la réunion est I (on parle aussi de recouvrement de I par des parties deux à deux disjointes).

- Exemple 3.3.3. La partition de l'Europe par le traité de Verdun en 843 est une partition à trois éléments de l'ensemble des points de l'empire de Charlemagne.
 - Notons C_0 , C_1 et C_2 les parties de \mathbb{Z} contenant respectivement les entiers congrus à 0, 1 et 2 modulo 3. Alors (C_0, C_1, C_2) est une partition de \mathbb{Z} .

Théorème 3.3.4 (Associativité du barycentre). Soient I un ensemble non vide, $(A_i, \lambda_i)_{i \in I}$ un système de points pondérés de somme non-nulle, et soit (I_1, \ldots, I_n) une partition de I. Pour tout $k \in [\![1,n]\!]$, on note $\Lambda_k = \sum_{i \in I_k} \lambda_i$, on suppose que Λ_k est non-nul et on note alors G_k le barycentre

du système pondéré $(A_i, \lambda_i)_{i \in I_k}$.

Alors le barycentre G de $(A_i, \lambda_i)_{i \in I}$ est aussi le barycentre du système pondéré $(G_k, \Lambda_k)_{k \in [1,n]}$.

Démonstration. On sait que
$$G = \frac{1}{\Lambda} \sum_{i \in I} \lambda_i A_i$$
 et $\Lambda_k G_k = \sum_{i \in I_k} \lambda_i A_i$, donc

$$G = \frac{1}{\Lambda} \sum_{k=1}^{n} (\sum_{i \in I_k} \lambda_i A_i) = \frac{1}{\Lambda} \sum_{k=1}^{n} \Lambda_k G_k, \text{ et } \Lambda = \sum_{k=1}^{n} \Lambda_k. \quad \Box$$

Exercice 3.3.5.

En déduire :

- 1. que les médianes d'un triangle sont concourantes au centre de gravité;
- 2. que droites reliant les milieux des arêtes opposées d'un tétraèdre et les droites reliant les centre de gravité des faces au sommet opposé sont toutes concourantes en un même point qu'on précisera.

Centre de gravité d'un triangle (ABC)= isobarycentre. Si I est le milieu de [A, B], alors G = bar((C, 1), (I, 2)).

Théorème 3.3.6.

Un sea contient tous les barycentres obtenus à partir de ses points.

Démonstration.

Soit \mathscr{F} un sea, $A_1 \dots A_n$ n points de \mathscr{F} , et $\lambda_1 \dots \lambda_n$ les poids correspondants, $\Lambda = \sum_{k} \lambda_{k} \neq 0$. On note G = $bar((A_k, \lambda_k)).$ Or $G - A_1 = \frac{1}{\Lambda} \sum_{k=1}^{n} \lambda_k (A_i - A_1)$, et tous les membres de

Théorème 3.3.7.

Réciproquement, tout sous-ensemble non vide de E stable par barycentre (et même seulement par barvcentre de deux points) est un sea.

Démonstration.

Soit \mathscr{F} un sous-ensemble non vide de E et a un de ses points. Posons $F = \{ b - a \mid b \in \mathcal{F} \}$. On a $\mathcal{F} = a + F$, il suffit donc de montrer que F est un sous-espace vectoriel $\mathrm{de}\ E$.

F est une partie de E non vide car $0 \in F$.

Soit $x \in F$ et $\lambda \in \mathbb{K}$. Alors a+x et a sont deux éléments de \mathscr{F} , donc leur barycentre $\lambda(a+x)+(1-\lambda)a$ appartient aussi à \mathscr{F} . Or ce barycentre est $a + \lambda x$, donc $\lambda x \in F$. Fest donc stable par multiplication externe.

Soit $(x,y) \in F$. Alors, \mathscr{F} étant stable par barycentre, $\frac{1}{2}((a+x)+(a+y))\in \mathscr{F},$ donc $a+\frac{1}{2}(x+y)\in \mathscr{F},$ donc $\frac{1}{2}(x+y)\in F.$ D'après ce qui précède, on a alors x+y= $\tilde{2} \times \frac{1}{2}(x+y) \in F$. Donc F est stable par addition

Donc F est un sous-espace vectoriel de E. Donc \mathscr{F} est un sous-espace affine de E.

3.4. Convexité (hors programme)

Cette partie est laissée à titre culturel mais ne sera pas nécessairement traitée en cours.

Dans ce paragraphe, on prend $\mathbb{K} = \mathbb{R}$.

Définition 3.4.1.

On appelle segment de E tout ensemble de la forme $\{\lambda A + (1 - \lambda)B, \lambda \in [0, 1]\}$ avec $A, B \in E$. Ce segment est noté [AB] ou [A, B].

Remarque 3.4.2.

[AB] est l'ensemble des barycentres de A et Bavec des poids positifs (facultatif: dont la somme est 1). Faire un dessin.

Définition 3.4.3.

Soit $\mathscr P$ une partie de E. On dit que $\mathscr P$ est convexe si $\forall (A,B) \in \mathscr P^2 \quad [AB] \subset \mathscr P$.

Exemple 3.4.4.

Faire des dessins dans \mathbb{R}^2 , puis dans \mathbb{R}^3 .

Théorème 3.4.5.

Tout sea est convexe.

Démonstration.

Immédiat avec le théorème 3.3.6.

Exemple 3.4.6.

On reprend un exemple ancien : pour montrer qu'un cercle n'est pas un sea (ou un sev), on peut montrer qu'il n'est pas convexe.

La réciproque est fausse, même si le convexe contient 0. Par exemple, considérons [-1,1] dans \mathbb{R} .

Exemple 3.4.7.

Dans \mathbb{C} , tout disque (fermé ou ouvert) est convexe. Se fait avec inégalité triangulaire en revenant à la définition.

Théorème 3.4.8.

Toute intersection de convexes est convexe.

Démonstration.

Soit I un ensemble et $(\mathscr{P}_i)_{i\in I}$ une famille de convexes. Posons $\mathscr{P}=\bigcap_{i\in I}\mathscr{P}_i$ l'intersection de cette famille et montrons qu'elle est convexe, c'est-à-dire

$$\forall (A,B) \in \mathscr{P}^2 \quad [AB] \subset \mathscr{P}$$

Soit $(A, B) \in \mathscr{P}^2$. Il suffit de montrer que pour tout $i \in I$, $[AB] \subset \mathscr{P}_i$.

Soit $i\in I$. On a $A\in \mathscr{P},$ donc $A\in \mathscr{P}_i.$ De même $B\in \mathscr{P}_i.$ Donc $[AB]\subset \mathscr{P}_i.$

On a donc $\forall i \in I \quad [AB] \subset \mathscr{P}_i$, donc $[AB] \in \bigcap_{i \in I} \mathscr{P}_i$.

4. Applications linéaires

Soient E_1 et E_2 deux \mathbb{K} -ev ($\mathbb{K}=\mathbb{R}$ ou \mathbb{C}).

4.1. Définitions

Définition 4.1.1.

On appelle application linéaire (ou morphisme d'espaces vectoriels) de E_1 dans E_2 toute application $\varphi: E_1 \to E_2$ vérifiant

$$\forall (x,y) \in E_1^2, \ \forall (\lambda,\mu) \in \mathbb{K}^2$$
$$\varphi(\lambda x + \mu y) = \lambda \varphi(x) + \mu \varphi(y). \quad (1)$$

Autrement dit, l'image d'une combinaison linéaire est la combinaison linéaire des images : une application linéaire préserve les combinaisons linéaires.

- L'ensemble des applications linéaires de E_1 dans E_2 est noté $\mathcal{L}(E_1, E_2)$.
- Une application linéaire de E_1 dans E_1 est appelé endomorphisme. On note $\mathcal{L}(E_1, E_1) = \mathcal{L}(E_1)$.
- Une application linéaire bijective est appelée *isomorphisme*. L'ensemble des isomorphismes de E_1 dans E_2 est noté $\mathscr{GL}(E_1, E_2)$, appelé groupe linéaire.
- Un automorphisme est un endomorphisme qui est aussi un isomorphisme, on note $\mathscr{GL}(E_1) = \mathscr{GL}(E_1, E_1)$ l'ensemble des automorphismes de E_1 .
- Une application linéaire de E_1 dans \mathbb{K} est une forme linéaire.

Remarque 4.1.2.

Une application linéaire φ de E_1 dans E_2 est un morphisme de groupes de $(E_1, +)$ dans $(E_2, +)$, avec une propriété supplémentaire vis-à-vis de la loi externe.

Remarque 4.1.3.

La propriété fondamentale des applications linéaires se généralise aux combinaisons linéaires d'un nombre quelconque de vecteurs : si $x_1, \ldots, x_n \in E$ et $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ et $f \in \mathscr{L}(E, F)$, alors $f\left(\sum_{k=1}^n \lambda_i x_i\right) = \sum_{k=1}^n \lambda_i f(x_i)$.

De manière plus générale, pour toute famille

 $(x_i)_{i\in I}$ et toute famille à support fini $(\lambda_i)_{i\in I}$, on a

$$f\left(\sum_{i\in I}\lambda_i x_i\right) = \sum_{i\in I}\lambda_i f(x_i)$$

Remarque 4.1.4 (Très utile en pratique).

La propriété fondamentale des applications linéaires (1) est équivalente à

$$\forall (x,y) \in E_1^2, \ \forall \lambda \in \mathbb{K}$$

$$\varphi(\lambda x + y) = \lambda \varphi(x) + \varphi(y) \quad (2)$$

ainsi qu'à

$$\forall (x,y) \in E_1^2, \varphi(x+y) = \varphi(x) + \varphi(y)$$

et $\forall (\lambda, x) \in \mathbb{K} \times E_1, \varphi(\lambda x) = \lambda \varphi(x).$

La démonstration est analogue à celle pour les sev.

Exemple 4.1.5.

• Soit $u \in \mathbb{R}^3$. Alors $\varphi : \mathbb{R}^3 \to \mathbb{R}$ est une $v \mapsto u \cdot v$

forme linéaire (on dit que le produit scalaire est linéaire à droite).

• Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. Alors φ : $\mathcal{M}_{q,n}(\mathbb{K}) \to \mathcal{M}_{q,p}(\mathbb{K})$ estlinéaire (on dit $B \mapsto BA$

que le produit matriciel est linéaire à gauche).

Exemple 4.1.6.

$$\varphi: \mathbb{R}^3 \to \mathbb{R}^3 \quad \text{est} \quad \\ (x,y,z) \mapsto (3x+y,2z,x-y+z) \quad \\ \text{un endomorphisme.} \quad$$

Remarque 4.1.7.

Toute application polynomiale (en plusieurs variables) faisant intervenir des termes de degrés différents de 1 n'est pas linéaire.

Exemple 4.1.8.

$$\varphi: \mathbb{R}^2 \to \mathbb{R}$$
 n'est pas une application $(x,y) \mapsto xy$

linéaire, idem avec x^2 et 3x + 2y + 2.

Exemple 4.1.9.

On note $\ell_{\mathbb{N}}(\mathbb{R})$ l'ensemble des suites réelles convergentes, c'est un sev de $\mathbb{R}^{\mathbb{N}}$, et l'application φ : $\ell_{\mathbb{N}}(\mathbb{R}) \to \mathbb{R}$ est une forme linéaire. $(u_n) \mapsto \lim_{n \to +\infty} u_n$

Exemple 4.1.10.

Soit $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$ et $a \in \mathbb{R}$.

L'application $\operatorname{ev}_a: E \to \mathbb{R}$ est une forme $f \mapsto f(a)$

linéaire appelée évaluation en a.

Proposition 4.1.11.

Si $\varphi \in \mathcal{L}(E_1, E_2)$, alors $\varphi(0_{E_1}) = 0_{E_2}$.

Démonstration.

Comme pour les morphismes de groupes : $\varphi(0_{E_1}) = \varphi(0_{E_1} + 0_{E_1}) = \varphi(0_{E_1}) + \varphi(0_{E_1})$.

4.2. Opérations sur les applications linéaires

Dans toute la suite, E_1 , E_2 et E_3 sont des \mathbb{K} -ev.

Théorème 4.2.1. 1. $\mathcal{L}(E_1, E_2)$ est un sev de $(\mathcal{F}(E_1, E_2), +, \cdot)$.

- 2. Si $f \in \mathcal{L}(E_1, E_2)$ et $g \in \mathcal{L}(E_2, E_3)$, alors $g \circ f \in \mathcal{L}(E_1, E_3)$.
- 3. Soit $f \in \mathcal{L}(E_1, E_2)$. Alors les applications

$$\varphi: \left\{ \begin{array}{ccc} \mathscr{L}(E_2, E_3) & \longrightarrow & \mathscr{L}(E_1, E_3) \\ g & \longmapsto & g \circ f \end{array} \right.$$

et

$$\psi: \left\{ \begin{array}{ccc} \mathscr{L}(E_3, E_1) & \longrightarrow & \mathscr{L}(E_3, E_2) \\ g & \longmapsto & f \circ g \end{array} \right.$$

sont linéaires.

Démonstration.

Élémentaire.

Remarque 4.2.2.

Ces résultats montrent, avec $E_1 = E_2 = E_3$, que $(\mathcal{L}(E_1), +, \circ)$ est un anneau.

En général, cet anneau n'est pas commutaif.

Exemple 4.2.3.

On pose $E_1 = \mathscr{C}^{+\infty}(\mathbb{R}, \mathbb{R})$: c'est un sev de $\mathscr{F}(\mathbb{R}, \mathbb{R})$ (le montrer). On note

$$\varphi: E_1 \to E_1 \text{ et } \psi: E_1 \to E_1$$

$$f \mapsto f'$$

$$f \mapsto \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto xf(x) \end{cases}$$

On constate alors que $\psi \circ \varphi \neq \varphi \circ \psi$.

4.3. Noyau et image

Théorème 4.3.1.

Soit $\varphi \in \mathcal{L}(E_1, E_2)$, A un sev de E_1 et B un sev de E_2 .

- 1. L'image directe de A par φ est un sev de E_2 .
- 2. L'image réciproque de B par φ est un sev de $E_1.$

Démonstration. 1. On a bien $\varphi(A) \subset E_2$ ainsi que $0_{E_2} \in \varphi(A)$, car $\varphi(0_{E_1}) = 0_{E_2}$ et $0_{E_1} \in A$.

Soit $(y_1, y_2) \in \varphi(A)^2$, soit $\lambda \in \mathbb{K}$ et soit $(x_1, x_2) \in A^2$ vérifiant $y_1 = \varphi(x_1)$ et $y_2 = \varphi(x_2)$. Alors, comme A est un sev de E_1 , on a $x_1 + \lambda x_2 \in A$ et donc, par linéarité de φ , on a $y_1 + \lambda y_2 = \varphi(x_1) + \lambda \varphi(x_2) = \varphi(x_1 + \lambda x_2) \in \varphi(A)$. Ainsi, $\varphi(A)$ est un sev de E_2 .

2. On a bien $\varphi^{-1}(B) \subset E_1$ ainsi que $0_{E_1} \in \varphi^{-1}(B)$, car $\varphi(0_{E_1}) = 0_{E_2}$ et $0_{E_2} \in B$. Soit $(x_1, x_2) \in \varphi^{-1}(B)^2$, $\lambda \in \mathbb{K}$. Alors, $\varphi(x_1) \in B$ et $\varphi(x_2) \in B$ et, par linéarité de φ , $\varphi(x_1 + \lambda x_2) = \varphi(x_1) + \lambda \varphi(x_2) \in B$, car B est un sev de E_2 . Ainsi,

 $x_1 + \lambda x_2 \in \varphi^{-1}(B)$ et donc $\varphi^{-1}(B)$ est un sev de E_1 .

Définition 4.3.2.

Soit $\varphi \in \mathcal{L}(E_1, E_2)$.

- 1. On appelle noyau de φ noté Ker φ , l'ensemble $\{ x \in E_1 \mid \varphi(x) = 0_{E_2} \}$
- 2. On appelle image de φ et on note Im φ , l'ensemble { $\varphi(x) \mid x \in E_1$ }.

Remarque 4.3.3.

Le théorème 4.3.1 assure ainsi que $\operatorname{Ker} \varphi$ et $\operatorname{Im} \varphi$ sont des sev.

Remarque 4.3.4.

Pour montrer qu'un ensemble est muni d'une structure d'ev, on essaiera TOUJOURS de l'identifier comme noyau ou image d'une application linéaire. Sinon, on essaiera de l'identifier directement comme sev. d'un ev. de référence.

Rappel : on ne revient JAMAIS à la définition générale d'un ev.

Théorème 4.3.5.

Soit $\varphi \in \mathcal{L}(E_1, E_2)$.

- 1. φ est injective si et seulement si Ker $\varphi = \{0\}$.
- 2. φ est surjective si et seulement si $\operatorname{Im} \varphi = E_2$.

Démonstration. 1. Deux méthodes : refaire comme la démo analogue pour les morphismes de groupes, ou utiliser directement ce théorème : on choisit la deuxième méthode. Il suffit alors remarquer que $\operatorname{Ker} \varphi$ est le même que l'on adopte le point de vue «groupe» ou le point de vue «espace vectoriel».

On peut aussi refaire la première méthode pour s'entraîner.

Remarque 4.3.6.

Les calculs de noyaux et d'images se ramènent souvent à des résolutions de systèmes linéaires.

Exemple 4.3.7.

Déterminer $\operatorname{Ker} \varphi$ et $\operatorname{Im} \varphi$, avec

$$\varphi: \left\{ \begin{array}{cccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \longmapsto & \begin{pmatrix} x & + & 2y & + & 5z \\ & - & y & - & z \\ -x & + & y & - & 2z \end{pmatrix} \right.$$

Exemple 4.3.8.

Soit φ : $\mathbb{R}^{\mathbb{R}} \to \mathbb{R}^{\mathbb{R}}$. On montre que φ est $f \mapsto f \times \sin$

linéaire, puis que φ n'est pas injective, en trouvant une fonction f non nulle dans $\operatorname{Ker} \varphi$. Par exemple f(x)=0 si $x\neq 0$ et f(0)=1.

On montre enfin que $\psi = \varphi|_{\mathscr{C}^0(\mathbb{R})}$ est injective, en montrant que son noyau est réduit à $\{0\}$.

On peut maintenant unifier les résultats sur les structures des solutions de nombreux problèmes linéaires étudiés auparavant (systèmes linéaires, équations différentielles linéaires).

Proposition 4.3.9.

Soit $f \in \mathcal{L}(E_1, E_2)$ et $a \in E_2$. Alors $f^{-1}(\{a\})$ est soit vide, soit un sea de E_1 de direction Ker f.

Remarque 4.3.10.

 $f^{-1}(\{a\})$ est l'ensemble des solutions de l'équations f(x) = a, avec $x \in E_1$.

Démonstration.

Reprendre chaque preuve effectuée lorsque l'on a rencontré ce type de structure de solution. $\hfill\Box$

Exemple 4.3.11.

L'ensemble des suites réelles $(u_n)_{n_i n\mathbb{N}}$ vérifiant pour tout $n \in \mathbb{N}$, $u_{n+2} = 3u_{n+1} - 2u_n - 4$ est le sea de direction $\text{Vect}((2^n)_{n \in \mathbb{N}}, 1)$ et passant par $(4n)_{n \in \mathbb{N}}$.

Remarque 4.3.12.

On retrouve ainsi que l'ensemble des solutions d'un système linéaire est soit vide soit un sea.

4.4. Isomorphismes

Un isomorphisme transporte la structure d'ev, comme pour les groupes.

Dire que E_1 et E_2 sont isomorphes ne signifie pas que toute application linéaire de E_1 dans E_2 est un isomorphisme. On peut donner un exemple : $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x,0)$.

Théorème 4.4.1.

Soit $\varphi \in \mathscr{L}(E_1, E_2)$.

- 1. Si φ est un isomorphisme, alors φ^{-1} aussi.
- 2. Une composée d'isomorphismes est un isomorphisme : si $\varphi \in \mathscr{GL}(E_1, E_2)$ et $\psi \in \mathscr{GL}(E_2, E_3)$, alors $\psi \circ \varphi \in \mathscr{GL}(E_1, E_3)$.
- 3. $(\mathscr{GL}(E_1), \circ)$ est un groupe appelé groupe linéaire (groupe des automorphismes).

Démonstration. 1. Soit $(y_1, y_2) \in E_2^2$, soit $\lambda \in \mathbb{K}$ et soit $(x_1, x_2) \in E_1^2$ vérifiant $x_1 = \varphi^{-1}(y_1)$ et $x_2 = \varphi^{-1}(y_2)$. On a alors, par linéarité de φ , $\varphi(x_1 + \lambda x_2) = \varphi(x_1) + \lambda \varphi(x_2) = y_1 + \lambda y_2$, donc $\varphi^{-1}(y_1 + \lambda y_2) = \varphi^{-1}(y_1) + \lambda \varphi^{-1}(y_2)$. Ainsi, φ^{-1} est linéaire.

- 2. On a déjà vu que $\psi\circ\varphi$ est bijective et linéaire $\,:$ c'est fini !
- 3. Montrons que c'est un sous-groupe du groupe des permutations de $E_1:(S_{E_1},\circ)$. L'application identité est bijective et linéaire, donc $\mathrm{Id}_{E_1}\in\mathscr{GL}(E_1)$. Les deux résultats précédents montrent que $\mathscr{GL}(E_1)$ est stable par passage à l'inverse et composition, ce qui permet de conclure.

Remarque 4.4.2.

Notation : Si $n \in \mathbb{N}^*$, $\mathscr{GL}(\mathbb{K}^n)$ est noté $\mathscr{GL}_n(\mathbb{K})$.

Exemple 4.4.3.

$$\varphi: \mathbb{R}^2 \to \mathbb{R}^2 \in \mathscr{GL}_2(\mathbb{R})$$
$$(x,y) \mapsto (x-y,x+2y)$$

On résout le système $\varphi(x,y)=(a,b)$, et cela montre que φ est bijective, et donne l'expression de φ^{-1} .

5. Familles de vecteurs

Dans cette partie, sauf mention expresse du contraire, I désigne un ensemble et $(x_i)_{i\in I}$ une famille de vecteurs de E indexée par cet ensemble.

Définition 5.0.4.

Étant donné deux familles de vecteurs $(x_i)_{i\in I}$ et $(y_j)_{j\in J}$, on note $(x_i)_{i\in I} \uplus (y_j)_{j\in J}$ leur concaténation.

Remarque 5.0.5.

Ce n'est pas une notation officielle et nous ne définirons pas formellement cette notion. On pourra aussi utiliser le symbole $\biguplus_{i=1}^n$ pour écrire la concaténation de n familles de vecteurs de E.

Exemple 5.0.6.

 $(x_1, x_2, x_3) \uplus (y_1, y_2) = (x_1, x_2, x_3, y_1, y_2).$

5.1. Image du sous-espace vectoriel engendré par une famille de vecteurs.

On utilisera beaucoup le résultat suivant.

Proposition 5.1.1.

Soit E et F deux espaces vectoriels. Soit $(x_i)_{i\in I}$ une famille de vecteurs d'un espace vectoriel E et $f: \mathcal{L}(E,F)$. Alors l'image directe du sous-espace de E engendré par la famille $(x_i)_{i\in I}$ est le sous-espace de F engendré par la famille $(f(x_i))_{i\in I}$:

$$f(\operatorname{Vect}((x_i)_{i\in I})) = \operatorname{Vect}((f(x_i))_{i\in I})$$

Démonstration.

Posons $V = \operatorname{Vect}\left((x_i)_{i \in I}\right)$. f(V) est un sous-espace vectoriel de F. Comme V contient tous les x_i pour $i \in I$, f(V) contient tous les $f(x_i)$ pour $i \in I$. Donc il contient le sous-espace engendré par les $f(x_i)$: $\operatorname{Vect}\left((f(x_i))_{i \in I}\right) \subset f(V)$.

Réciproquement, soit y un élément de f(V). y est l'image d'un élément x de V. Alors x est une combinaison linéaire $\sum_{i\in I} \lambda_i x_i$ (où la famille $(\lambda_i)_{i\in I}$) est à support fini), donc on a

$$y = f(x)$$

$$= f\left(\sum_{i \in I} \lambda_i x_i\right)$$

$$= \sum_{i \in I} \lambda_i f(x_i)$$

$$\in \text{Vect}\left(\left(f(x_i)\right)_{i \in I}\right)$$

Donc $f(V) \subset \operatorname{Vect} ((f(x_i))_{i \in I}).$

Exemple 5.1.2.

Soit $\varphi: \mathbb{R}_3[X] \to \mathbb{R}_2[X]$. Donner $\operatorname{Im} \varphi$. $P \mapsto P' + XP''$

5.2. Sev engendré par une famille finie

Dans cette sous-partie, on s'intéressera exclusivement au cas où I = [1, n]. La famille $(x_i)_{i \in I}$ est donc le n-uplet (x_1, \ldots, x_n) .

Proposition 5.2.1.

 $\operatorname{Vect}(x_1,\ldots,x_n) = \operatorname{Im} \psi$ où ψ est l'application linéaire de \mathbb{K}^n dans E

$$\psi: \mathbb{K}^n \to E$$

$$(\lambda_1, \dots, \lambda_n) \mapsto \sum_{k=1}^n \lambda_k x_k$$

Proposition 5.2.2. 1. Vect $(x_1, ..., x_n)$ n'est pas modifié si l'on permute deux vecteurs de $(x_1, ..., x_n)$.

- 2. si pour un $i \in [1, n]$ on a x_i qui est combinaison linéaire des autres vecteurs (en particulier, si $x_i = 0$), alors $\text{Vect}(x_1, \dots, x_n) = \text{Vect}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$, c'est-à-dire que l'on peut ôter x_i de la famille sans modifier le sev engendré.
- 3. Vect (x_1, \ldots, x_n) n'est pas modifié si l'on remplace un des x_i par une combinaison linéaire en x_1, \ldots, x_n dont le coefficient en x_i est non nul.

Démonstration. 1. C'est une conséquence directe du fait que Vect $(x_1, \ldots, x_n) = \text{Vect } \{x_1, \ldots, x_n\}$.

- 2. C'est une conséquence du fait que pour toutes parties X et Y de E, si $X \subset Y \subset \operatorname{Vect}(X)$, alors $\operatorname{Vect}(X) \subset (Y) \subset \operatorname{Vect}(\operatorname{Vect}(X)) = \operatorname{Vect}(X)$
- 3. Quitte à permuter les vecteurs, on peut supposer que i=n. Considérons un vecteur x' obtenu par combinaison linéaire des x_k pour $k\in \llbracket 1,n\rrbracket$ dont le coefficient de x_n est non nul. Posons $V=\mathrm{Vect}(x_1,\ldots,x_n)$ et $V'=\mathrm{Vect}(x_1,\ldots,x_{n-1},x')$ et montrons V=V'. Posons $V''=\mathrm{Vect}(x_1,\ldots,x_{n-1},x_n,x')$. x' étant combinaison linéaire des x_k pour $k\in \llbracket 1,n\rrbracket$, on a V''=V d'après le point précédent.

De plus, le coefficient de x_n dans cette combinaison linéaire est non nul, donc x_n peut s'exprimer comme combinaison linéaire de x_1, \ldots, x_{n-1} et x'. Donc, toujours d'après le point précédent, V'' = V'. On a donc V = V'' = V'.

Remarque 5.2.3.

 0_E est toujours combinaison linéaire de toute famille de vecteurs : on peut donc « l'enlever » d'une famille sans modifier le sev engendré par cette famille.

Exemple 5.2.4.

Dans \mathbb{R}^3 , avec $u_1 = (1,0,0)$, $u_2 = (0,1,0)$ et $u_3 = (1,1,0)$.

- 1. Vect (u_1, u_2, u_3) = Vect (u_1, u_2) = Vect (u_1, u_3) .
- 2. Déterminer une CNS sur $w \in \mathbb{R}^3$ pour que Vect $(u_1, u_2, u_3, w) \neq \text{Vect } (u_1, u_2, u_3)$.

Exemple 5.2.5.

On veut construire une base à partir de la base canonique : $\operatorname{Vect}((1,0),(0,1)) = \operatorname{Vect}((2,3),(0,1)) = \operatorname{Vect}((2,3),(1,2)) : \operatorname{la}$ famille ((2,3),(1,2)) est donc une base de \mathbb{R}^2 . C'est l'autre sens qui est le plus souvent utilisé, et qui fait apparaître un pivot de Gauss (encore et toujours) : $\operatorname{Vect}((3,4),(1,5)) = \operatorname{Vect}((0,-11),(1,5)) = \operatorname{Vect}((0,1),(1,5)) : \operatorname{la}$ famille ((3,4),(1,5)) est donc une base de \mathbb{R}^2 .

5.3. Familles génératrices

Définition 5.3.1.

On dit que la famille $(x_i)_{i\in I}$ est génératrice ou qu'elle engendre le \mathbb{K} -espace vectoriel E si $E = \operatorname{Vect}_{\mathbb{K}}((x_i)_{i\in I})$.

Remarque 5.3.2.

Ainsi, dans le cas où $I = [1, n], (x_i)_{i \in I}$ est génératrice si et seulement si l'application ψ de la proposition 5.2.1 est surjective.

Proposition 5.3.3.

La famille $(x_i)_{i\in I}$ est *génératrice* si et seulement si tout élément de E peut s'écrire comme une combinaison linéaire des vecteurs de cette famille.

Démonstration.

On a $\mathrm{Vect}_{\mathbb{K}}\left((x_i)_{i\in I}\right)\subset E$ puisque tous les éléments de $(x_i)_{i\in I}$ appartiennent à E. On a donc

$$E = \operatorname{Vect}_{\mathbb{K}} ((x_i)_{i \in I}) = E \iff E \subset \operatorname{Vect}_{\mathbb{K}} ((x_i)_{i \in I})$$

Qui est exactement ce que dit la proposition. \Box

Exemple 5.3.4. 1. Dans
$$\mathbb{R}^3$$
,
$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ est génératrice}$$

$$\operatorname{car} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = xe_1 + ye_2 + ze_3. \text{ Se généralise à}$$

$$\mathbb{R}^n \text{ avec base canonique.}$$

- 2. Dans \mathbb{C} considéré comme un \mathbb{R} -ev, une famille génératrice est $\{1, i\}$.
- 3. Dans \mathbb{C} considéré comme un \mathbb{C} -ev, une famille génératrice est $\{z\}$, pour n'importe quel $z \neq 0$. On peut noter $\mathbb{C} = \text{Vect}_{\mathbb{R}}(1, i) = \text{Vect}_{\mathbb{C}}(z)$.
- 4. Dans le \mathbb{R} -espace vectoriel $\mathbb{R}[X]$, la famille $\left(X^k\right)_{k\in\mathbb{N}}$ est une famille génératrice de $\mathbb{R}[X]$. Dans le \mathbb{C} -espace vectoriel $\mathbb{C}[X]$, la famille $\left(X^k\right)_{k\in\mathbb{N}}$ est une famille génératrice de $\mathbb{C}[X]$. En revanche, dans le \mathbb{R} -espace vectoriel $\mathbb{C}[X]$, la famille $\left(X^k\right)_{k\in\mathbb{N}}$ n'est pas génératrice de $\mathbb{C}[X]$ (car $\mathrm{Vect}_{\mathbb{R}}\left(\left(X^k\right)_{k\in\mathbb{N}}\right)=\mathbb{R}[X]\neq\mathbb{C}[X]$.
- 5. Dans le \mathbb{C} -espace vectoriel $\mathbb{C}(X)$, d'après le cours sur la décomposition en élément simple, on obtient une famille génératrice de $\mathbb{C}(X)$ en regroupant les familles $\left(X^k\right)_{k\in\mathbb{N}}$ et $\left(\frac{1}{(X-\alpha)^k}\right)_{(\alpha,k)\in\mathbb{R}\times\mathbb{N}}$.

Remarque 5.3.5.

On a aussi la notion de famille génératrice d'un sev F de E.

Remarque 5.3.6.

On appelle droite vectorielle tout sev engendré par un seul vecteur (non nul), qui est alors vecteur directeur. Correspond bien à ce qui se passe dans \mathbb{R}^2 et \mathbb{R}^3 .

Idem avec plan vectoriel et deux vecteurs.

Proposition 5.3.7.

Soit E, F deux \mathbb{K} -espaces-vectoriels, $f \in \mathcal{L}(E,F)$, soit $(x_i)_{i\in I}$ une famille génératrice de E. Alors, $(f(x_i))_{i\in I}$ est une famille génératrice de $\operatorname{Im} f$.

Démonstration.

C'est juste une réécriture de la proposition 5.1.1

Corollaire 5.3.8.

Soit E et F deux K-espaces vectoriels, $f \in$

 $\mathcal{L}(E, F)$ avec f surjective et $(x_i)_{i \in I}$ génératrice. Alors l'image de cette famille par f est génératrice.

Démonstration.

C'est une conséquence directe de la proposition 5.1.1 :

$$\begin{split} F &= f(E) & \text{par surjectivit\'e de } F \\ &= f\left(\operatorname{Vect}\left((x_i)_{i \in I}\right)\right) & \operatorname{car}\left(x_i\right)_{i \in I} \text{ g\'en\'eratrice} \\ &= \operatorname{Vect}\left(\left(f(x_i)\right)_{i \in I}\right) & \text{par prop. 5.1.1} \end{split}$$

Exemple 5.3.9.

Soit

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 3x - y \\ 2x + y + z \\ x + 3y + 2z \end{pmatrix}$$

Alors,

$$\begin{split} \operatorname{Im}(f) &= \operatorname{Vect}(f(1,0,0),f(0,1,0),f(0,0,1)) \\ &= \operatorname{Vect}((3,2,1),(-1,1,3),(0,1,2)) \\ &= \operatorname{Vect}((0,5,10),(-1,1,3),(0,1,2)) \\ &= \operatorname{Vect}((-1,1,3),(0,1,2)). \end{split}$$

- **Proposition 5.3.10.** 1. Une famille génératrice à laquelle on ajoute des vecteurs est toujours génératrice.
 - 2. On peut retirer tout vecteur qui est combinaison linéaire des autres vecteurs de la famille (c'est une condition suffisante mais elle est en fait aussi nécessaire).
- **Démonstration.** 1. Découle du fait que l'inclusion de deux parties implique l'inclusion des sous-espaces engendrés.
 - 2. Découle du fait que pour toutes parties X et Y de E, $X\subset Y\subset {\rm Vect}(X)$ implique ${\rm Vect}(X)={\rm Vect}(Y)$.

Exemple 5.3.11. 1. Dans \mathbb{R}^4 , on considère \mathscr{P} l'ensemble de \mathbb{R}^4 défini par

$$\mathscr{P} : \left\{ \begin{array}{ll} x - y + 2t & = & 0 \\ x + y - z & = & 0 \end{array} \right.$$

où (x, y, z, t) sont les coordonnées dans \mathbb{R}^4 . On trouve

$$\mathscr{P} = \text{Vect}((1,0,1,-1/2),(0,1,1,1/2))$$

donc c'est bien un plan.

2. On considère l'ensemble S des suites réelles vérifiant $u_{n+2} + 2u_{n+1} - 3u_n = 0$. S est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$ (le vérifier). On veut en donner une famille génératrice. On résout comme dans le cours, on trouve deux vecteurs générateurs. Ça marcherait pareil avec les solutions d'une équation différentielle.

Théorème 5.3.12.

Soient F et G deux sous-espaces vectoriels de E. Alors toute concaténation d'une famille génératrice de F et d'une famille génératrice de G est une famille génératrice de F + G.

Démonstration.

Soit $(x_i)_{i\in I_1}$ une famille génératrice de F et $(x_i)_{i\in I_2}$ une famille génératrice de G. Notons $(x_i)_{i\in I}=(x_i)_{i\in I_1} \uplus (x_i)_{i\in I_1}$ Toute combinaison linéaire d'éléments de la famille $(x_i)_{i\in I}$ est dans F+G.

Réciproquement, tout élément de F+G s'écrit comme somme d'un élément de F et d'un élément de G. Le premier est une combinaison linéaire d'éléments de la famille $(x_i)_{i\in I_1}$ et le second de la famille $(x_i)_{i\in I_2}$. Donc leur somme est une combinaison linéaire d'éléments de la famille $(x_i)_{i\in I}$

5.4. Familles libres et liées

Définition 5.4.1.

On dit que la famille $(x_i)_{i\in I}$ est *libre* si toute combinaison linéaire d'éléments de $(x_i)_{i\in I}$ dont la valeur est 0_E est la combinaison triviale, c'est-à-dire n'a que des coefficients nuls. Formellement, la famille est libre si et seulement si, pour toute famille de scalaires $(\lambda_i)_{i\in I}$ à support fini, on a

$$\sum_{i \in I} \lambda_i x_i = 0 \Rightarrow \forall i \in I \ \lambda_i = 0$$

Dans le cas où I = [1, n], cette condition s'écrit : pour tout n-uplet $(\lambda_1, \ldots, \lambda_n)$ de scalaires, on a

$$\sum_{i=1}^{n} \lambda_i x_i = 0 \Rightarrow (\lambda_1, \dots, \lambda_n) = (0, \dots, 0)$$

Une famille non libre est dite liée.

- Remarque 5.4.2. Une famille est donc liée si et seulement s'il existe une combinaison linéaire de valeur nulle à coefficients non tous nuls.
 - Si l'un des x_i est nul, la famille est liée.
 - Si la famille comporte deux fois le même vecteur, elle est liée.

Remarque 5.4.3.

Ainsi, dans le cas où $I = [1, n], (x_i)_{i \in I}$ est libre si et seulement si l'application ψ de la proposition 5.2.1 est injective.

Proposition 5.4.4.

La famille $(x_i)_{i\in I}$ est libre si et seulement si tout élément x de E s'écrit d'au plus une façon comme combinaison linéaire (à coefficients non nuls) d'éléments de E.

Démonstration.Sens direct Supposons que la famille $(x_i)_{i\in I}$ est libre et montrons que tout élément x de E s'écrit d'au plus une façon comme combinaison linéaire (à coefficients non nuls) d'éléments de E.

Soit x un élément de E. Supposons qu'il s'écrive à la fois $\sum_{i\in I} \lambda_i x_i$ et $\sum_{i\in I} \mu_x x_i$ où $(\lambda_i)_{i\in I}$ et $(\mu_i)_{i\in I}$ sont des familles de scalaires à support fini.

Alors on a

$$0 = x - x = \sum_{i \in I} (\lambda_i - \mu_i) x_i$$

Or la famille $(x_i)_{i\in I}$ est libre, donc pour tout $i\in I$, on a $\lambda_i-\mu_i=0$.

Donc tout élément de E s'écrit d'au plus une façon comme combinaison linéaire (à coefficients non nuls) d'éléments de E.

Sens indirect Supposons que tout élément de E s'écrit d'au plus une façon comme combinaison linéaire (à coefficients non nuls) d'éléments de E et montrons que la famille $(x_i)_{i\in I}$ est libre.

Soit $(\lambda_i)_{i\in I}$ une famille de scalaires à support fini vérifiant.

$$\sum_{i \in I} \lambda_i x_i = 0$$

Alors en posant $\mu_i = 0$ pour tout $i \in I$, on a aussi

$$\sum_{i \in I} \mu_i x_i = 0$$

0 s'écrit donc de deux façons comme combinaison linéaire de la famille $(x_i)_{i\in I}$: les deux familles $(\lambda_i)_{i\in I}$ et $(\mu_i)_{i\in I}$ sont donc la même famille :

$$\forall i \in I \quad \lambda_i = 0$$

La famille $(x_i)_{i\in I}$ est donc libre.

Proposition 5.4.5.

La famille $(x_i)_{i\in I}$ est libre si et seulement si aucun élément de cette famille ne peut s'exprimer comme combinaison linéaire des autres éléments de la famille.

Démonstration.

On fera ici la démonstration dans le cas où $I=\llbracket 1,n \rrbracket$ qui est le cas qu'on rencontrera le plus fréquemment par la suite. La démonstration n'est pas plus compliquée dans le cas général.

Montrons que la famille considérée est liée, c'est-à-dire qu'il existe une combinaison linéaire non triviale valant 0, si et seulement si au moins un élément de la famille s'écrit comme combinaison linéaire des autres éléments de la famille.

Sens indirect Supposons qu'il existe une combinaison linéaire non triviale de (x_1, \ldots, x_n) valant 0. Notons $\lambda_1, \ldots, \lambda_n$ ses coefficients. L'un d'eux au moins étant non-nul, on peut supposer $\lambda_1 \neq 0$, quitte à permuter les vecteurs. Alors on a

$$\sum_{k=1}^{n} \lambda_k x_k = 0$$

donc

$$x_1 = \sum_{k=2}^{n} \left(-\frac{\lambda_k}{\lambda_1} \right) x_k$$

Donc x_1 est combinaison linéaire des autres vecteurs de la famille.

Sens direct Supposons que x_1 s'écrive

$$x_1 = \sum_{k=2}^{n} \lambda_k x_k$$

où x_2, \ldots, x_n sont d'autres éléments de la famille et $\lambda_1, \ldots, \lambda_k$ sont des scalaires. Alors, en posant $\lambda_1 = -1$, on a

$$\sum_{k=1}^{n} \lambda_k u_k = 0$$

Et cette combinaison linéaire n'est pas triviale puisque λ_1 n'est pas nul, donc la famille est liée.

(le cas général fonctionne de même).

- **Exemple 5.4.6.** 1. Dans \mathbb{R}^2 : une famille de deux vecteurs est liée si et seulement si les deux vecteurs sont colinéaires, donc une famille de deux vecteurs est libre si et seulement si c'est une base.
 - 2. Dans \mathbb{R}^3 , une famille de 3 vecteurs est liée si et seulement si les 3 vecteurs sont coplanaires, donc une famille de trois vecteurs est libre si et seulement si c'est une base.

Remarque 5.4.7.

Dans \mathbb{R}^n , si on utilise la définition pour chercher si une famille est libre, on est ramené à la résolution d'un système linéaire (une fois de plus).

Exemple 5.4.8.

- \bullet Montrer que ((1,0),(-1,2),(2,4)) est liée dans \mathbb{R}^2
- Montrer que ((1,0,0),(0,-1,1),(1,0,2)) est libre dans \mathbb{R}^3 .
- $(x \mapsto \sin x, x \mapsto \sin 2x, x \mapsto \sin 3x)$ est libre.

Définition 5.4.9.

Soit x, y deux vecteurs de E. On dit que

- x est colinéaire à y s'il existe $\lambda \in \mathbb{K}$ tel que $x = \lambda y$;
- x et y sont colinéaires s'il existe $\lambda \in \mathbb{K}^*$ tel que $x = \lambda y$.

Remarque 5.4.10. • La relation « sont colinéaires » est une relation d'équivalence sur E, pas « est colinéaire à ».

 Si x et y sont tous les deux non nuls, x est colinéaire à y si et seulement si x et y sont colinéaires.

Proposition 5.4.11.

Soit x et y deux vecteurs de E. Alors (x, y) est libre si et seulement si aucun de ces vecteurs n'est colinéaire à l'autre.

Démonstration.

Élémentaire : à vous de le faire.

Proposition 5.4.12.

Soit E et F deux \mathbb{K} -espaces vectoriels, $f \in \mathcal{L}(E,F)$ avec f injective et $(x_i)_{i\in I}$ une famille libre de E. Alors l'image de cette famille par f est libre.

Démonstration.

Soit $(\lambda_i)_{i\in I}$ une famille de scalaires à support fini tel que

$$\sum_{i \in I} \lambda_i f(x_i) = 0$$

Alors, par linéarité de f,

$$\sum_{i \in I} f(\lambda_i x_i) = 0.$$

Or f est injective donc

$$\sum_{i \in I} \lambda_i x_i = 0$$

Or $(x_i)_{i\in I}$ est libre, donc pour tout $i\in I$, $\lambda_i=0$.

Définition 5.4.13.

Soit $(x_i)_{i\in I}$ une famille de vecteurs de E. Pour tout $J\subset I$, on dit que $(x_i)_{i\in J}$ est une sous-famille de $(x_i)_{i\in I}$ et que $(x_i)_{i\in I}$ est une sur-famille de $(x_i)_{i\in J}$.

Théorème 5.4.14. 1. Toute sur-famille d'une famille liée est liée.

2. Toute sous-famille d'une famille libre est libre.

3. Si (x_1, \ldots, x_n) est une famille libre, alors $(x_1, \ldots, x_n, x_{n+1})$ est libre si et seulement si x_{n+1} n'est pas combinaison linéaire des x_1, \ldots, x_n .

Démonstration. 1. Il existe une combinaison linéaire nulle non triviale de la sous-famille. Il suffit de la compléter par des 0 pour en obtenir une pour la sur-famille.

- 2. C'est la contraposée du point précédent.
- 3. Le sens direct est évident. Pour l'autre sens, par contraposée supposons que (x_1,\ldots,x_n,x_{n+1}) est liée. Alors il existe une combinaison linéaire nulle non triviale de $x_1,\ldots x_n,\,x_{n+1}$. Si le coefficient de x_{n+1} est nul, il s'agit d'une combinaison linéaire des x_1,\ldots,x_n . Sinon, on peut exprimer x_n comme combinaison linéaire de x_1,\ldots,x_n .

Exemple 5.4.15.

Dans \mathbb{R}^2 , toute famille de trois vecteurs ou plus est liée : si les deux premiers vecteurs sont liés, la famille l'est aussi. Sinon, le troisième vecteur est combinaison linéaire des deux premiers, car les deux premiers forment une base.

Idem dans \mathbb{R}^3 avec les familles de plus de 4 vecteurs.

Proposition 5.4.16.

Soient F_1, \ldots, F_n des sev d'un \mathbb{K} -ev E, et pour tout $i \in [1, n]$, soit \mathscr{F}_i une famille libre de F_i .

Si les F_i sont en somme directe, alors $\biguplus_{i=1}^n \mathscr{F}_i$ est une famille libre.

Enfin, terminons par un résultat bien pratique:

Définition 5.4.17.

Soit $n \in \mathbb{N}^*$ et $E = \mathbb{K}^n$. Soit $p \in [1, n]$ et (v_1, \dots, v_p) une famille de vecteurs de E. Pour tout $i \in [1, p]$, notons $(v_{i,j})_{j \in [1,n]}$ les coordonnées du vecteur v_i . On dit que la famille (v_1, \dots, v_p) est échelonnée si :

1. pour tout $i \in \llbracket 1, p \rrbracket$ il existe $r_i \in \llbracket 0, n \rrbracket$ tel que $v_{i,r_i} \neq 0$ et pour tout $j \in \llbracket 1, n \rrbracket$ tel que $j > r_i, \, v_{i,j} = 0$;

2. la suite des r_i est strictement croissante.

Exemple 5.4.18.

Dans
$$\mathbb{R}^5$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 2 \\ 0 \\ -3 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \\ -5 \end{pmatrix}$ est une

famille échelonnée.

La famille
$$\begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 0 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \\ -5 \end{pmatrix}$$
 n'er

est pas une.

П

Remarque 5.4.19.

Avec les mêmes notations, si $0 \le k < i \le p$, alors $v_{k,r_i} = 0$.

Proposition 5.4.20.

Toute famille échelonnée sans vecteur nul est libre.

Démonstration.

Soit $n \in \mathbb{N}^*$ et $E = \mathbb{K}^n$. Soit $p \in [1, n]$ et (v_1, \dots, v_p) une famille échelonnée de vecteurs de E.

Le résultat est assez intuitif et se voit facilement, par

exemple en considérant le système
$$\sum_{i=1}^{p} \lambda_i v_i = 0$$
. En écri-

vant le système, on se rend compte qu'en remontant les lignes, les coefficients λ_i s'annulent les uns après les autres (le faire sur un exemple).

Donnons tout de même une démonstration propre, par récurrence sur le nombre de vecteurs. Pour tout $p \in [\![1,n]\!]$, posons (H_p) : toute famille échelonnée de E ayant p vecteurs non nuls est libre.

Un vecteur non nul formant à lui seul une famille libre, (H_1) est immédiate.

Soit $p \in [1, n-1]$ tel que (H_p) soit vraie. Soit (v_1, \dots, v_{p+1}) une famille échelonnée à vecteurs non nuls. Définissons les r_i comme dans la définition 5.4.17. Soit $\lambda_1, \dots, \lambda_{p+1}$

des scalaires tels que $\sum_{i=1}^{p+1} \lambda_i v_i = 0$. La r_{p+1} -ème ligne de

ce système s'écrit $\lambda_{p+1}v_{p+1,r_{p+1}}=0$, puisque pour tout $i\leqslant p,\ v_{i,r_{p+1}}=0$, par définition d'une famille échelonnée. Mais comme $v_{p+1,r_{p+1}}\neq 0$, alors $\lambda_{p+1}=0$. Il reste alors

$$\sum_{i=1}^{r} \lambda_i v_i = 0$$
. Mais (v_1, \dots, v_p) est échelonnée, donc par

hypothèse de récurrence elle est libre, ce qui implique que tous les λ_i sont nuls, d'où (H_{p+1}) .

Remarque 5.4.21.

Par abus, les familles de vecteurs présentant des blocs de zéros dans d'autres « coins » que le « coin inférieur gauche » peuvent aussi être dites échelonnées. En tout cas, avec la même démonstration, elles sont également libres. Par exemple les familles $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, sont libres.

5.5. Bases

Définition 5.5.1.

Une famille $((x_i)_{i\in I})$ est une base de E si elle est libre et génératrice.

Remarque 5.5.2.

Ainsi, dans le cas où $I = [1, n], (x_i)_{i \in I}$ est une base si et seulement si l'application ψ de la proposition 5.2.1 est un isomorphisme.

Exemple 5.5.3.

Les bases canoniques des \mathbb{R}^n .

Remarque 5.5.4.

On a aussi la notion de base d'un sev de E.

Remarque 5.5.5.

Comme pour les familles libres et génératrices, on peut permuter l'ordre des vecteurs d'une base, et on a toujours une base.

Proposition 5.5.6.

Soit $\mathscr{B} = (x_i)_{i \in I}$ une famille de E. Alors \mathscr{B} est une base si et seulement si pour tout $y \in E$, il existe une unique famille de scalaires $(\lambda_i)_{i \in I}$ à support fini telle que

$$y = \sum_{i \in I} \lambda_i x_i.$$

En particulier dans le cas où I = [1, n], \mathcal{B} est une base si et seulement si pour tout $y \in E$, il existe

un unique *n*-uplet $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ tel que

$$y = \sum_{k=1}^{n} \lambda_k x_k.$$

Démonstration.

On a déjà vu que cette famille de scalaires existe si et seulement si $(x_i)_{i\in I}$ est génératrice et est unique sous réserve d'existence si et seulement si $(x_i)_{i\in I}$ est libre. On en déduit le résultat.

Définition 5.5.7.

Soit $\mathscr{B} = (x_i)_{i \in I}$ une base de E et $y \in E$. Alors l'unique famille de scalaire (à support fini) $(\lambda_i)_{i \in I}$ telle que $y = \sum_{i \in I} \lambda_i x_i$ est appelé famille des coordonnées de y dans \mathscr{B} .

Dans le cas où I = [1, n], cette famille est un n-uplet, appelé n-uplet des coordonnées.

Exemple 5.5.8.

Classique: montrer que ((1,0,1),(2,-1,0),(0,1,1)) est une base de \mathbb{R}^3 , donner les coordonnées d'un vecteur dans cette base (mais attention, les coordonnées des vecteurs dans cette base et dans la base canonique ne sont pas les mêmes !).

Exemple 5.5.9.

Donner une base de $\mathscr{P} \subset \mathbb{R}^3$ où $\mathscr{P} = \{ (x, y, z) \in \mathbb{R}^3 \mid x + 2y - z = 0 \}.$

On a $(x, y, z) \in \mathscr{P}$ si et seulement si x = x, y = y et z = x + 2y si et seulement s'il existe $\alpha, \beta \in \mathbb{R}$ tel que $(x, y, z) = \alpha(1, 0, 1) + \beta(0, 1, 2)$ si et seulement si $(x, y, z) \in \text{Vect}((1, 0, 1), (0, 1, 2))$. Et ces deux vecteurs sont libres.

Exemple 5.5.10.

Trouver une base de

$$\mathscr{E} = \left\{ (u_n) \in \mathbb{R}^{\mathbb{N}} \mid u_{n+2} + u_{n+1} - 2u_n = 0 \right\}.$$

Le polynôme caractéristique est $X^2 + X - 2$ de racine 1 et -2. Donc tout élément de \mathscr{E} est combinaison linéaire de la suite $(v_n) = (1)$ et $(w_n) = ((-2)^n)$. Donc $((u_n), (v_n))$ est génératrice. On montre qu'elle est aussi libre.

Remarque 5.5.11.

Si E est un \mathbb{K} -ev admettant une base \mathscr{B} à n vecteurs, alors l'application qui à un vecteur de E associe le n-uplet de ses coordonnées dans la base \mathscr{B} est un ismorphisme de E dans \mathbb{K}^n . L'injectivité découle de l'unicité du n-uplet des coordonnées dans une base donnée.

Il est alors fréquent d'identifier un vecteur de E au n-uplet de ses coordonnées, et donc de l'identifier à un vecteur de \mathbb{K}^n . La proposition qui suit en est une illustration classique :

Proposition 5.5.12.

Une famille de polynômes non nuls de degrés distincts deux à deux est libre.

Démonstration.

Ce résultat peut très bien se démontrer en n'utilisant que des considérations de degré : c'est un bon exercice, classique, et laissé au lecteur.

Mais démontrons-le en utilisant des coordonnées.

Soit \mathscr{F} une telle famille. Nous pouvons toujours supposer que les polynômes de cette famille sont classés de telle sorte que la suite de leurs degrés soit strictement croissante. Notons n le degré maximum de ces polynômes. Cette famille est donc une famille de $\mathbb{K}_n[X]$, dont $\mathscr{B} = (1, X, X^2, \cdots, X^n)$ est une base. La famille des (n+1)-uplets des coordonnées des polynômes de \mathscr{F} dans la base \mathscr{B} est donc une famille échelonnée de \mathbb{K}^{n+1} : elle est donc libre. Par conséquent, \mathscr{F} aussi.

Proposition 5.5.13.

L'image d'une base par une application linéaire injective est une base de l'image.

L'image d'une base par un isomorphisme est une base de l'espace d'arrivée.

Démonstration.

Vient directement des résultats des parties précédentes. \Box

Théorème 5.5.14.

Soient E_1 et E_2 deux ev, et soient $(f_i)_{i\in I}$ une base de E_1 et $(g_i)_{i\in I}$ une famille **quelconque** de E_2 . Alors il existe une **unique** application linéaire $\varphi: E_1 \to E_2$ telle que pour tout $i \in [1, n]$, $\varphi(f_i) = g_i$.

Démonstration.Analyse Soit φ une telle application. Soit $x \in E$. Alors x s'écrit $\sum_{i \in I} \lambda_i f_i$, donc

$$\varphi(x) = \sum_{i \in I} \lambda_i \varphi(f_i)$$
$$= \sum_{i \in I} \lambda_i g_i$$

où $(\lambda_i)_{i\in I}$ est la famille des coordonnées de x dans la base $(f_i)_{i\in I}.$

 $\varphi(x)$ est donc déterminé de façon unique.

Donc φ est déterminée de façon unique.

Synthèse Considérons l'application qui à tout élément x de E associe $\sum_{i\in I} \lambda_i g_i$, où $(\lambda_i)_{i\in I}$ est la famille des coordonnées de x dans la base $(f_i)_{i\in I}$.

On montre que φ est une application linéaire. De plus on peut montrer qu'elle vérifie les conditions demandées : $\forall i \in I \ f(f_i) = g_i$.

Conclusion Il existe bien une unique application répondant à la question posée.

Exemple 5.5.15.

Montrer qu'il existe une unique application linéaire $\varphi: \mathbb{R}_2[X] \to \mathbb{R}^2$ vérifiant les conditions suivantes :

$$\varphi(1) = (1, 2)$$
$$\varphi(X + 1) = (2, 3)$$
$$\varphi(X^2 + 1) = (0, 1)$$

Théorème 5.5.16.

Soient F_1, \ldots, F_n des sev d'un \mathbb{K} -ev E, et pour tout $i \in [1, n]$, soit \mathcal{B}_i une base de F_i .

Alors les F_i sont en somme directe si et seulement si $\biguplus_{i=1}^n \mathscr{B}_i$ est une base de $F_1 + \ldots + F_n$.

En particulier, les F_i sont supplémentaires si et seulement si $\biguplus_{i=1}^n \mathscr{B}_i$ est une base de E.

Démonstration. (\Rightarrow) Supposons que les F_i sont en somme directe. Alors, comme chaque \mathscr{B}_i engendre F_i , leur union engendre $F_1+\cdots+F_n$. Notons, avec un léger abus de notation, pour tout i, $\mathscr{B}_i=(x_i^j)_j$ et montrons donc que $\biguplus_{i=1}^n \mathscr{B}_i$ est libre. Soit une famille (λ_i^j) telle que $\sum_{i,j} \lambda_i^j x_i^j = 0_E$. Notons, pour tout i,

$$u_i = \sum_j \lambda_i^j x_i^j \in F_i$$
. Donc, $u_1 + \dots + u_n = 0_E$ et

donc, comme les F_i sont en somme directe, pour tout $i,\ u_i=0_E.$ Par liberté de chaque famille $\mathscr{B}_i,$

la famille
$$(\lambda_i^j)$$
 est nulle, donc $\biguplus_{i=1}^n \mathscr{B}_i$ est libre.

$$(\Leftarrow)$$
 Si $\biguplus_{i=1}^{n} \mathscr{B}_{i}$ est une base de $F_{1} + \ldots + F_{n}$, soit $(y_{1}, \ldots, y_{n}) \in E_{1} \times \cdots \times E_{n}$ tel que $y_{1} + \cdots + y_{n} = 0_{E_{n}}$

$$(y_1, \ldots, y_n) \in E_1 \times \cdots \times E_n$$
 tel que $y_1 + \cdots + y_n = 0_E$.
Notons, pour chaque i , $(\lambda_i^j)_j$ les coordonnées de y_i

dans
$$\mathcal{B}_i = (x_i^j)$$
. On a alors $\sum_{i,j} \lambda_i^j x_i^j = 0_E$. $\biguplus_{i=1}^n \mathcal{B}_i$

étant une base, la famille $(\lambda_i^j)_{i,j}$ est nulle, et donc a fortiori les $(y_i)_i$ le sont. Donc $F_1 + \cdots + F_n$ est directe.

5.6. Repère affine

On peut maintenant faire le lien entre les notions de base et de coordonnées vues dans les espaces vectoriels, et les notions géométriques de repère et de coordonnées dans un repère utilisées dans les petites classes.

Soit \mathscr{F} un sous-espace affine de E, de direction F.

Définition 5.6.1.

Un repère de \mathscr{F} est un couple (O, \mathscr{B}) , où $O \in F$ et \mathscr{B} est une base de F. Les coordonnées d'un point $x \in \mathscr{F}$ dans le repère (O, \mathscr{B}) sont les coordonnées de x - O dans la base \mathscr{B} (de F).

Remarque 5.6.2.

On dit souvent que O est l'origine du repère (O, \mathcal{B}) .

Remarque 5.6.3.

À repère fixé, tout point de \mathscr{F} est caractérisé par ses coordonnées (affines).

Exemple 5.6.4.

Revenir sur les études des solutions d'équations différentielles linéaires.

6. Endomorphismes particuliers

6.1. Homothéties

Définition 6.1.1.

Soit E un \mathbb{K} -ev. Soit $\lambda \in \mathbb{K}^*$. On appelle homothétie de rapport λ l'application

$$h_{\lambda} = \lambda \operatorname{Id}_{E}: E \rightarrow E$$

 $x \mapsto \lambda x$

Remarque 6.1.2.

Cas particuliers : $\lambda=1$: identité ; $\lambda=-1$, symétrie de centre 0.

Théorème 6.1.3.

Toute homothétie est un automorphisme de E, et $(h_{\lambda})^{-1} = h_{\lambda^{-1}} = h_{1/\lambda}$.

Démonstration.

- Linéarité : simple.
- Bijectivité et réciproque : calculer $h_{\lambda} \circ h_{\lambda^{-1}}$ et $h_{\lambda^{-1}} \circ h_{\lambda}$.

Proposition 6.1.4.

Soit $\mathcal{H}(E)$ l'ensemble des homothéties de E. Alors $(\mathcal{H}(E), \circ)$ est un sous-groupe de $\mathcal{GL}(E)$.

Démonstration.

- $\mathcal{H}(E) \subset \mathcal{GL}(E)$ d'après le théorème précédent.
- $\mathrm{Id} \in \mathscr{H}(E)$.
- Stable par passage à l'inverse d'après le théorème précédent
- et on remarque que pour tout $\lambda, \mu \in \mathbb{K}^*$, $h_{\mu} \circ h_{\lambda} = h_{\mu\lambda}$, donc on a la stabilité par produit.

Remarque 6.1.5.

 $\mathscr{GL}(E)$ n'est pas un sous-groupe commutatif, mais $\mathscr{H}(E)$ l'est. En fait il est isomorphe à \mathbb{K}^* via $\lambda \mapsto h_{\lambda}$.

6.2. Projecteurs

Dans toute la suite, on suppose que F et G sont deux sev supplémentaires, i.e. $E = F \oplus G$.

Définition 6.2.1.

On appelle projection sur F parallèlement à G l'endomorphisme p_F de $\mathcal{L}(E)$ défini par :

$$\forall y \in F, \ \forall z \in G \quad p_F(y+z) = y.$$
 (3)

Remarque 6.2.2.

Voir le dessin sur la figure 1. Exemple dans \mathbb{R}^3 avec $F = \{x = 0\}$ et $G = \{x + y = 0, y + z = 0\}$.

Démonstration.

Il convient de montrer que cette définition est correcte, c'est-à-dire qu'il existe une unique application vérifiant les conditions demandées.

Analyse Soit p_F un endomorphisme vérifiant les conditions demandées. Alors pour tout $x \in E$, $p_F(x) = y$ où (y, z) est l'unique couple 4 de $F \times G$ tel que x = y + z. p_F est donc déterminé.

Synthèse Soit p_F l'application associant à tout $x \in E$ l'unique valeur $y \notin F$ et $y \in G$.

La proposition (3) est manifestement vérifiée. On peut par ailleurs montrer que p_F est une application linéaire

Conclusion Il existe une unique application vérifiant les conditions demandées

Théorème 6.2.3.

 $p_F \in \mathcal{L}(E)$, $\operatorname{Ker} p_F = G$, $\operatorname{Im}(p_F) = F$.

Démonstration.

- \bullet Linéarité : élémentaire.
- Soit $x=y+z\in E,\,y\in F,\,z\in G,$ donc $x\in \operatorname{Ker} p_F$ si et seulement si y=0 si et seulement si x=z si et seulement si $x\in G.$

 $x \in \operatorname{Im} p_F$ si et seulement si il existe x' = y' + z' tel que x = y' si et seulement si $x \in F$.

- 4. Il existe et est unique puisque $E = F \oplus G$.
- 5. Voir remarque précédente.

Remarque 6.2.4.

- Cas particuliers : $F = \{0_E\}$ et G = E : $p_F = 0_{\mathscr{L}(E)}$.
- $G = \{0_E\}$ et F = E : $p_F = \text{Id}$. Hormis ce dernier cas, une projection n'est jamais injective, ni surjective.
- $p_F + p_G = \text{Id}, p_F|_G = 0, p_F|_F = \text{Id}_F.$

Définition 6.2.5.

On appelle projecteur tout endomorphisme f tel que $f \circ f = f$.

Théorème 6.2.6.

Toute projection est un projecteur.

Démonstration.

Il s'agit essentiellement d'utiliser que si x = y + z $p_F(p_F(x)) = p_F(y) = p_F(y + 0_E) = y$.

Théorème 6.2.7 (Réciproque).

Soit f un projecteur. Alors $\operatorname{Ker} f \oplus \operatorname{Im} f = E$, et f est la projection sur $\operatorname{Im} f$ parallèlement à $\operatorname{Ker} f$.

Démonstration.

Soit $x \in \text{Ker } f \cap \text{Im } f$. Alors il existe y tel que x = f(y). Or f(x) = 0 mais f(x) = f(f(y)) = f(y) = x, donc x = 0. Ker f et Im f sont donc en somme directe.

Montrons que $E = \operatorname{Ker} f + \operatorname{Im} f$.

Analyse: soient $y \in \text{Im } f$ et $z \in \text{Ker } f$ tels que x = y + z. Alors il existe u tel que y = f(u). Donc f(x) = f(f(u)) + f(z) = f(f(u)) = f(u) = y. Donc on a y = f(x) et donc z = x - f(x).

Synthèse : on pose y=f(x) et z=x-f(x). Alors on a bien x=y+z. de plus f(y)=f(f(x))=f(x)=y, donc $y\in {\rm Im}\, f,$ et f(z)=f(x-f(x))=f(x)-f(f(x))=f(x)-f(x)=0, et ainsi $z\in {\rm Ker}\, f.$ On a bien le résultat voulu.

Mais si l'on note x = y + z la décomposition associée à Ker $f \oplus \text{Im } f = E$, alors $\forall x, f(x) = y$, donc f est bien la projection sur Im f parallèlement à Ker f.

Remarque 6.2.8. 1. Si f est un projecteur, alors $\operatorname{Im} f = \operatorname{Ker}(f - \operatorname{Id})$: on utilise que $x \in \operatorname{Im} f$ si et seulement si f(x) = x si et seulement si $f(x) - x = 0_E$ si et seulement si $(f - \operatorname{Id})(x) = 0_E$.

2. Si $E = F \oplus G$, alors $p_F + p_G = \text{Id}$, et $p_F \circ p_G = p_G \circ p_F = 0_{\mathscr{L}(E)}$. En effet, si x = y + z, alors $p_F(x) = y$ et $p_G(x) = z$. Et $p_F(z) = p_G(y) = 0_E$.

Exercice 6.2.9.

Montrer que l'ensemble des fonctions paires et celui des fonctions impaires sont supplémentaires dans $\mathbb{R}^{\mathbb{R}}$. Donner l'expression des projections sur l'un de ces deux ensembles parallèlement au second.

6.3. Symétries

Définition 6.3.1.

On appelle symétrie par rapport à F et parallèlement à G l'application $s_F: E = F \oplus G \rightarrow E$. $x = y + z \mapsto y - z$

Remarque 6.3.2.

Voir le dessin sur la figure 1. Même exemple que pour la projection.

Théorème 6.3.3.

 $s_F \in \mathscr{GL}(E)$, et on a $s_F = s_F^{-1}$: on dit que s_F est une involution linéaire.

Démonstration.

- Linéarité : élémentaire.
- $\bullet \ s_F(s_F(y+z)) = s_F(y-z) = y+z.$

Théorème 6.3.4 (Réciproque).

Toute involution linéaire est une symétrie, plus précisément, si f est une involution linéaire, on a :

- 1. $\operatorname{Ker}(f \operatorname{Id}) \oplus \operatorname{Ker}(f + \operatorname{Id}) = E$.
- 2. f est la symétrie par rapport à Ker(f Id) parallèlement à Ker(f + Id).

Démonstration. 1. • Soit $x \in \text{Ker}(f-\text{Id}) \cap \text{Ker}(f+\text{Id})$. Alors f(x) = x et f(x) = -x, donc x = -x donc x = 0.

- $\begin{array}{l} \bullet \text{ Analyse } : \text{si } x = y + z \text{ avec } y \in \operatorname{Ker}(f \operatorname{Id}) \text{ et} \\ z \in \operatorname{Ker}(f + \operatorname{Id}), \text{ alors } f(y) = y \text{ et } f(z) = -z. \text{ Donc} \\ f(x) = y z. \text{ D'où } : f(x) + x = 2y \text{ et } f(x) x = 2z. \\ \operatorname{Donc } y = \frac{1}{2}(f(x) + x) \text{ et } z = \frac{1}{2}(f(x) x). \end{array}$
- Synthèse.
- 2. On vient de voir que si la décomposition de x dans $\operatorname{Ker}(f-\operatorname{Id}) \oplus \operatorname{Ker}(f+\operatorname{Id}) \ x=y+z,$ alors f(x)=y-z. CQFD.

Remarque 6.3.5.

On peut aussi montrer que $Ker(s_F-Id) = Im(s_F+Id)$ et $Ker(s_F+Id) = Im(s_F-Id)$. Montrons la première égalité :

- $x \in \text{Im}(s_F + \text{Id}) \Rightarrow x = s_F(x') + x'$. Donc $(s_F - \text{Id})(x) = s_F(s_F(x') + x') - s_F(x') - x' = x' + s_F(x') - s_F(x') - x' = 0$.
- $x \in \text{Ker}(s_F \text{Id}) \Rightarrow s_F(x) = -x$. On pose alors $x' = (s_F \text{Id})(-1/2x)$. Alors $x' = -\frac{1}{2}(-x x) = x$, donc x' = x, or $x' \in \text{Im}(s_F \text{Id})$.

Remarque 6.3.6.

On peut enfin montrer que $s_G + s_F = 0_{\mathscr{L}(E)}$, $s_F \circ s_G = -\mathrm{Id} = s_G \circ s_F$, et $p_F = \frac{1}{2}(s_F + \mathrm{Id})$. Faire un dessin.

FIGURE 1 – Représentation de la projection et de la symétrie sur F, parallèlement à G.