

STIC Search Report

Biotech-Chem Library

STIC Database Tracking Number: 1052416

TO: Sarvamangala Devi
Art Unit: 1645
Location: REM 3C18
Serial Number: 10/054536

Tuesday, June 21, 2005

From: Beverly Shears
Location: Biotech-Chem Library
REM 1A54
Phone: 571-272-2528
beverly.shears@uspto.gov

Search Notes

THIS PAGE BLANK (uspto)

157126

Shears, Beverly

From: Devi, Sarvamangala
Sent: Friday, June 17, 2005 7:42 AM
To: Shears, Beverly
Subject: 10/054,536

Beverly:

In application 10/054,536, please perform a sequence search for SEQ ID NO: 2 in commercial and pending databases.

Thanx.

S. DEVI, Ph.D.
AU 1645
Rems - 3C18

BEST AVAILABLE COPY

Date completed:
Searcher: Beverly e 2528
Terminal time:
Elapsed time:
CPU time:
Total time:
Number of Searches:
Number of Databases:

Search Site	Vendors
<input type="checkbox"/> STIC	<input type="checkbox"/> IG
<input type="checkbox"/> CM-1	<input type="checkbox"/> STN
<input type="checkbox"/> Pre-S	<input type="checkbox"/> Dialog
Type of Search	
<input type="checkbox"/> N.A. Sequence	<input type="checkbox"/> APS
<input type="checkbox"/> A.A. Sequence	<input type="checkbox"/> Geninfo
<input type="checkbox"/> Structure	<input type="checkbox"/> SDC
<input type="checkbox"/> Bibliographic	<input type="checkbox"/> DARC/Questel
	<input checked="" type="checkbox"/> Other CGN

THIS PAGE BLANK (USPTO)

10

GenCore version 5.1.6
Copyright (c) 1993 - 2005 CompuGen Ltd.

OM nucleic - nucleic search, using bw model

Run on: June 19, 2005, 15:45:05 ; Search time 3604 Seconds

(without alignments)

10043.298 Million cell updates/sec

Title: US-10-054-536-2

Perfect score: 747
Sequence: 1 atgtccctgtttccatcaact.....tctgtgaggcccataatctga 747

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext. 1.0

Searched: 4708233 seqs, 24227607955 residues

Total number of hits satisfying chosen parameters: 9416466

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : GenEmbl:*

```

1: gb_ba:*
2: gb_htg:*
3: gb_in:*
4: gb_om:*
5: gb_ov:*
6: gb_pat:*
7: gb_ph:*
8: gb_pl:*
9: gb_pr:*
10: gb_ro:*
11: gb_sts:*
12: gb_sy:*
13: gb_un:*
14: gb_vl:*

```

RESULT 1
E27637

LOCUS E27637

DEFINITION Recombinant human mannan binding protein and process for producing the same.

ACCESSION E27637

VERSION E27637.1

KEYWORDS GI:13018239

unidentified

unidentified

unclassified

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	747	100.0	747	E27637	E27637 Recombinant AR182149 Sequence CQ875887 Sequence Y16576 Homo sapien CQ875888 Sequence CQ875891 Sequence CQ875893 Sequence Y16577 Homo sapien Y16580 Homo sapien Y16581 Homo sapien E27636 Recombinant AX411061 Sequence X15422 Human mRNA BC069338 Homo sapi CQ875889 Sequence Y16578 Homo sapien E27636 Recombinant AX411061 Sequence X15422 Human mRNA BC069338 Homo sapi CQ875889 Sequence Y16578 Homo sapien CQ875890 Sequence CQ875892 Sequence Y16579 Homo sapien
2	747	100.0	900	AR182149	
3	747	100.0	1632	CQ875887	
4	747	100.0	1632	Y16576	
5	747	100.0	1638	CQ875888	
6	747	100.0	1638	CQ875891	
7	747	100.0	1638	CQ875893	
8	747	100.0	1638	Y16577	
9	747	100.0	1638	Y16580	
10	747	100.0	1638	Y16581	
11	747	100.0	3605	E27636	
12	747	100.0	3605	AX411061	
13	747	100.0	3605	X15422	
14	745.4	99.8	960	BC069338	
15	745.4	99.8	1632	CQ875889	
16	745.4	99.8	1632	Y16578	
17	745.4	99.8	1638	CQ875890	
18	745.4	99.8	1638	CQ875892	
19	745.4	99.8	1638	Y16579	

Query Match 100.0%; Score 747; DB 6; Length 747;
Best Local Similarity 100.0%; Pred. No. 7.5e-209;
Matches 747; Conservative 0; Mismatches 0;
Indels 0; Gaps 0;

Qy 1 ATGTCCTGTTCCATCACTCCCTCTCCTGAGTGGCAGCGTCTTACTCA 60

source 1. .1632
 /organism="Homo sapiens"
 /mol_type="unassigned DNA"
 /db_xref="taxon:9606".

ORIGIN

Query Match 100.0%; Score 747; DB 6; Length 1632;
 Best Local Similarity 100.0%; Pred. No. 8.2e-209;
 Matches 747; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 886 ATGTCCTGTTCCATCACTCCCTCCTCCCTGCAGTATGGCTGAGCTTACTCA 60
 61 GAAACTGTGACCTGTGAGGTGCCAAAAGACCTGCCCTGCAGTGGCTGAGCTCT 120
 946 GAAACTGTGACCTGTGAGGTGCCCTGCAGTGGCTGAGCTCTGCAGTGGCTCT 1005

Qy 1 ATGTCCTGTTCCATCACTCCCTCCTCCCTGCAGTATGGCTGAGCTTACTCA 945
 Db 98414317

REFERENCE 1
 AUTHORS Madsen, H.O., Satz, M.L., Hogh, B., Svejgaard, A. and Garred, P.
 TITLE Different molecular events result in low protein levels of
 mannan-binding lectin in populations from southeast Africa and
 South America
 J. Immunol. 161 (6), 3169-3175 (1998)

JOURNAL MEDLINE 9743385
 AUTHORS Madsen, H.O.
 TITLE Direct Submission
 JOURNAL Submitted (16-FEB-1998). H.O. Madsen, Department of Clinical
 Immunology, Section 7631, National University Hospital, Tagensvej
 20, DK-2200 Copenhagen, DENMARK
 COMMENT Related sequences X15954, X15955, X15956, X15422.

FEATURES Location/Qualifiers
 source 1. .1632
 /organism="Homo sapiens"
 /mol_type="genomic DNA"
 /db_xref="taxon:9606"
 /chromosome="10"
 /map="10q11.2-q21"
 /note="MBL haplotype LYQA"

variation 273
 /note="polymorphism in different MBL haplotypes"
 variation 396
 /note="polymorphism in different MBL haplotypes"
 variation 474
 /note="polymorphism in different MBL haplotypes"
 variation 487
 /note="polymorphism in different MBL haplotypes"
 variation 596
 /note="polymorphism in different MBL haplotypes"
 gene 739. .1632
 /gene="MBL"
 CAAT_signal 739. .744
 /gene="MBL"
 variation 747
 /gene="MBL"
 gene 739. .1632
 /note="polymorphism in different MBL haplotypes"
 mRNA 780. .785
 /gene="MBL"
 mRNA 817. .>1632
 /product="mannose-binding lectin"
 variation 820
 /gene="MBL"
 /note="polymorphism in different MBL haplotypes"
 CDS 886. .1632
 /gene="MBL"
 /codon_start=1
 /product="mannose-binding lectin"
 protein_id="CAB56044_1"
 /db_xref="GI:5911790"
 /db_xref="GOA:P11226"
 /db_xref="UniProt/Swiss-Prot:P11226"
 /translation="MSLFPSLPLIILSMVAASYSETVCTDAQKTCPPAVIACSSPGIN
 GFPGKDGRDGTGKEKGEPGQGRGLOGPQKGLGPQKGPQKGDGPKSPD
 GDSSLAASERKALQTEMARIKKWLTFLSLQRVGNGKFLLTNGEIMTFEKVKALCVKFOA
 SVATPRNAENGAIQNLIKEAFLGITDETEKGQFVDLTGNRLTYTNNEGEPNNAGS
 DEDCVLILLKNGQMNNDVPCSTSHLAVCEFPIN"

sig_peptide 886. .945
 /gene="MBL"
 variation 1039
 /gene="MBL"
 /note="polymorphism in different MBL haplotypes"
 variation 1046
 /gene="MBL"
 /note="polymorphism in different MBL haplotypes"
 variation 1055
 /gene="MBL"

RESULT 4
 HOSA16576
 LOCUS HOSA16576
 DEFINITION Homo sapiens gene encoding mannose-binding protein, variant LYQA.
 ACCESSION Y16576
 VERSION Y16576.1 GI:5911789
 KEYWORDS mannose-binding lectin; mb1 gene.
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens

/note="polymorphism in different MBL haplotypes"

IGIN Query Match 100.0%; Score 747; DB 9; Length 1632;

Best Local Similarity 100.0%; Pred. No. 8.2e-209; Matches 747; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

886 ATGTCCTGTTCCATCACTCCCTCTCTTCTGAGGTATGGCAGGGRCTACCA 945
61 GAAACTGTGACCTGTGAGGATGCCCAAAGACCTGCCCTGCAGTGATTGCCCTGTAGCTCT 120

946 GAAACTGTGACCTGTGAGGATGCCCAAAGACCTGCCATTGCAGTGATTGCCCTGCTGAGCTCT 1005

121 CCAGGGCATCAACGGCTTCCCAGGCCAAAGATGGCGTGTATGGCACCAAGGGAGAAAAGGGG 180

1006 CCAGGCATCAACGGCTTCCCAGGCCAAGATGGCGGTGATGGCACCAAGGAGAAAAGGGG 1065
181 GAAACCAGGCCAAGGGCTTCAAGGGCCCCCTGGAAAGTTGGGGCCTCCAGGA 240

1066 GAACCAGGCCAAGGGCTCAGAGGCTTACAGGGCCCCCTGGAAAGTTGGGCCTCCAGGA 1125

241 AATCCAGGGCCTTCTGGGTCACCGGACCAAGGCCAAAAGGAGACCCCTGGAAAAAGT 300

1126 AATCCAGGGCCTTCTGGGTCAACGGACCAAGGCCAAAAGGAGACCCTGGAAAAAGT 1185
1127 CGCGCTTCGTATACTGAAAGAAAAGCTCTGCAAACAGAAATGGCA 360

361 CGTATCAAAAGTGGCTGACCTTCTCTGGCAAACAAAGTTCTTCCTG 420

CGTATCAAAAAGTGGCTTGTACCTTCTCTGGCAAACAAAGTTGGAACAAAGTTCCAGGCC 480
CGGATTCGAAATTGACCTTTTGAAAAGTGAAGGCCCTGGTGTCAAGTTCCAGGCC 1305

421 ACCAA^TGG^AGA^AAA^TAA^TGACC^T
1306 ACCAATGGTGA^AATA^TGACC^TTGAAAAGTGAAGGGCTTGTCAGTTCCAGGCC 1365

481 TCTGTGCCACCCCCAGGAATGCTGCAGAGAATGGAGCCATTCAAGAAC 540

541 GAAGCCTTCCGGCATCACTGATGAGAAGACAGAAGGGCAGTTGTGGATCTGACAGGA 1485
1426 GAAGCCTTCCGGCATCACTGATGAGAAGACAGAAGGGCAGTTGTGGATCTGACAGGA 1485

601 AATAGGACTGACCTACACAACCAACTGGAACCGAGGGTGAACCCAAACATGCTGGTTCTGTGAA 660

661 GATTGGTATTGCTACTGAAAATGCCAGTGAAATGACGTCCTGCCCCAT /20
1546 GATTGGTATTGCTACTGAAAATGCCAGTGAAATGACGTCCTGCCCCAT 1605

721 CTGGCCGCTCTGTGAGTTCCTATCTGA 747

1606 CTGGCCGCTCTGTGAGTTCCTATCTGA 1632

RESULT 5

ACCESSION
CQ8/5888
VERSION
CQ875888.1
KEYWORDS
. GI:53789631

ORGANISM **SOURCE** **HOMO SAPIENS** **(HUMAN)**

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

TITLE A method of sepsis prognosis							
JOURNAL Patent: WO 2004065626-A 21 AUG-2004;							
FEATURES Rigshospitalet (DK); Kobenhavns Amt (DK)							
Source		Location/Qualifiers					
1. .1638		Organism="Homo sapiens"					
/mol_type="unassigned DNA"		/db_xref="taxon:9606"					
ORIGIN							
Qy	Query	Match	100.0%	Score 747;	DB 6;	Length 1638;	
Db	Best Local Matches	Similarity 100.0%;	Pred. No. 8.2e-209;	Mismatches 0;	Indels 0.		
Qy	1	ATGTCCTTCCATCACTCCCTCTCCTGAGTATCGTGGCAGCGGT					
Db	892	ATGTCCTTCCATCACTCCCTCTCCTGAGTATCGTGGCAGCGGT					
Qy	61	GAAACTGTGACCTGTTGAGGATGCCAAAAGAACCTGCAGTGATGCCT					
Db	952	GAAACTGTGACCTGTTGAGGATGCCAAAAGAACCTGCCTGAGTGATGCCT					
Qy	121	CCAGGCATCACCGGCTTCCCAGGGCTTACAGGGCCCCCTGGAAAGTGGCACCAAGGGAG					
Db	1012	CCAGGCATCACGGCTTCCCAGGGCTTACAGGGCCCCCTGGAAAGTGGCACCAAGGGAG					
Qy	181	GAACCAGGCCAAGGGCTCAGAGGCTTACAGGGCCCCCTGGAAAGTGGCACCAAGGGAG					
Db	1072	GAACCAGGCCAAGGGCTCAGAGGCTTACAGGGCCCCCTGGAAAGTGGCACCAAGGGAG					
Qy	241	AATCCAGGGCCTTCTGGCTCACCAGGACCAAGGGCCAAAAGGAGACCCCTG					
Db	1132	AATCCAGGGCCTTCTGGCTCACCAGGACCAAGGGCCAAAAGGAGACCCCTG					
Qy	301	CCGGATGGTAGTAGTGGCTGCCTCAGAAAGAAAAGCTCTGCAAACAG					
Db	1192	CCGGATGGTAGTAGTGGCTGCCTCAGAAAGAAAAGCTCTGCAAACAG					
Qy	361	CGTATCAAAAAGTGGCTGACCTTCTGGCAAAACAAGTGGAAACAAGT					
Db	1252	CGTATCAAAAAGTGGCTGACCTTCTGGCAAAACAAGTGGAAACAAGT					
Qy	421	ACCAATGGTGAATAATGACCTTTGAAAAAGTGAAGGCCATTCAAATCTCA					
Db	1312	ACCAATGGTGAATAATGACCTTTGAAAAGTGAAGGCCATTCAAATCTCA					
Qy	481	TCTGTGCCACCCGCCAGGAATGGCTGCAGAGAATGGGCCATTCAAATCTCA					
Db	1372	TCTGTGCCACCCGCCAGGAATGGGCCATTCAAATCTCA					
Qy	541	GAAGCCTTCTGGCATCACTGATGAGAACAGAACGGGCAGTTGGATCTCA					
Db	1432	GAAGCCTTCTGGCATCACTGATGAGAACAGAACGGGCAGTTGGATCTCA					
Qy	601	AATAGACTGACCTACACAAACTGGAACGGGTGAACCCAAATGCTGGCT					
Db	1492	AATAGACTGACCTACACAAACTGGAACGGGTGAACCCAAATGCTGGCT					
Qy	661	GAT'TGTGTATTGCTACTGAAAAATGGCCAGTGGAAATGACGTCCCCTGCTCCA					
Db	1552	GATGTGTATTGCTACTGAAAAATGGCCAGTGGAAATGACGTCCCCTGCTCCA					
Qy	721	CTGGCCGCTGTGAGTTCCCTATCTGA 747					
Db	1612	CTGGCCGCTGTGAGTTCCCTATCTGA 1638					

KEYWORDS	Homo sapiens (human)
ORGANISM	Mammalia; Eutheria; Primates; Mammalia; Eutheria; Craniata; Chordata; Vertebrata; Euteleostomi; Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Homo.
REFERENCE	CQ875893
AUTHORS	Garred, P., Madsen, H.O. and str M.J.
TITLE	A method of sepsis prognosis
JOURNAL	Patent: WO 2004065626-A 24 05-AUG-2004; Rigshospitalet (DK); Kobenhavns Amt (DK)
FEATURES	Location/Qualifiers 1. .1638 /organism="Homo sapiens" /mol_type="unassigned DNA" /db_xref="taxon:9606"
ORIGIN	Query Match 100.0%; Score 747; DB 6; Length 1638; Best Local Similarity 100.0%; Pred. No. 8.2e-209; Matches 747; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
Qy	1 ATGTCCTGTTCCATCACTCCCTCTCCTTGAGTATGGCGAGGTCTACTCA 60
Db	892 ATGTCCTGTTCCATCACTCCCTCTCCTTGAGTATGGCGAGGTCTACTCA 951
Qy	61 GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCAGTGCTGTAGCTCT 120
Db	952 GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCAGTGCTGTAGCTCT 1011
Qy	121 CCAGGCATCAACGGCTTCCCAGGCAAAGGATGGGCGTGTAGGCCACCAAGGGAGAAAAGGGG 180
Db	1012 CCAGGCATCAACGGCTTCCCAGGCAAAGGATGGGCGTGTAGGCCACCAAGGGAGAAAAGGGG 1071
Qy	181 GAAACCAGGCCAAGGGCTCAGAGGCTTACAGGGCCCTGGAAAGTGGGGCTCCAGGA 240
Db	1072 GAAACCAGGCCAAGGGCTCAGAGGCTTACAGGGCCCTGGAAAGTGGGGCTCCAGGA 1131
Qy	241 ATCCAGGGCCTCTGGTCACCAGGACCAAGGGCCAAGGGACCTGGAAAAAGT 300
Db	1132 ATCCAGGGCCTCTGGTCACCAGGACCAAGGGCCAAGGGACCCCTGGAAAAAGT 1191
Qy	301 CCGGATGGTGTAGTAGTAGCCCTGGCTCGAGAACAGAAATGGCA 360
Db	1192 CCGGATGGTGTAGTAGGCCTGGCTCGAGAACAGAAACAGAAATGGCA 1251
Qy	361 CGTATCAAAGTGGCTGACCTTCTCTGGCTCGAGAACAGCTCTGGAAACAGAAATGGCA 420
Db	1252 CGTATCAAAGTGGCTGACCTTCTCTGGCTCGAGAACAGCTCTGGAAACAGAAATGGCA 1311
Qy	421 ACCAATGGTGAATAATGACCTTGAAAGTGAAGGGCTTGTGTCTCCCTG 480
Db	1312 ACCAATGGTGAATAATGACCTTGAAAGTGAAGGCCTTGTGTCTCCAGGCC 1371
Qy	481 TCTGTGGCACCCCCAGGAATGCTGCAGAGAACAGAGGGCATTCAGAATCTCATCAAGGAG 540
Db	1372 TCTGTGGCACCCCCAGGAATGCTGCAGAGAACAGAGGGCATTCAGAATCTCATCAAGGAG 1431
Qy	541 GAAGCCTTCTGGCATCACTGATGAGAACAGAGGGCATTCAGAATCTCATCAAGGAG 600
Db	1432 GAAGCCTTCTGGCATCACTGATGAGAACAGAGGGCATTCAGAATCTCATCAAGGAG 1491
Qy	601 ATAGACTGACCTACACAACTGGAAACTGGCAACCAATGCTGGTTCTGATGAA 660
Db	1492 ATAGACTGACCTACACAAACTGGCAACCAATGCTGGTTCTGATGAA 1551
Qy	661 GATTGTGATTGCTACTGAAAATGGCAACTGGCAAGGGTGAACCCAAACAAATGCTGGTTCTGATGAA 720
Db	1552 GATTGTGATTGCTACTGAAAATGGCAACTGGCAAGGGTGAACCCAAACAAATGCTGGTTCTGATGAA 1611
Qy	721 CTGGCCGCTGTGAGTTCCCTATCTGA 747
Db	1612 CTGGCCGCTGTGAGTTCCCTATCTGA 1638

Db	1552	GATTGTGTTTGTCTACTGAAATAATGGCCAGTGGATGACGCCACCTCCAT	1611	
Qy	721	CTGGCCGTCTGTGAGTTCCCTATCTGA	747	
Db	1612	CTGGCCGTCTGTGAGTTCCCTATCTGA	1638	
RESULT	8			
LOCUS	HOSA16577	1638 bp	DNA linear	PRI 17-SEP-1999
DEFINITION	Homo sapiens gene encoding mannan/mannose-binding protein, variant LYPA.			
ACCESSION	Y16577			
VERSION	Y16577.1	GI:5911791		
KEYWORDS	manno-binding lectin; mbl gene.			
SOURCE	Homo sapiens (human)			
ORGANISM	Homo sapiens			
REFERENCE	1			
AUTHORS	Madsen, H.O., Satz, M.L., Hogh, B., Svejgaard, A. and Garred, P.			
TITLE	Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America			
JOURNAL	J. Immunol.	161 (6), 3169-3175 (1998)		
MEDLINE	98414317			
PUBMED	9743385			
REFERENCE	2 (bases 1 to 1638)			
AUTHORS	Madsen, H.O.			
JOURNAL	Submitted (16-FEB-1998) H.O. Madsen, Department of Clinical Immunology, Section 7631, National University Hospital, Tagensvej 20, DK-2200 Copenhagen, DENMARK			
COMMENT	Related sequences X15954, X15955, X15956, X15422.			
FEATURES	Location/Qualifiers			
source	1..1638			
	/organism="Homo sapiens"			
	/mol_type="genomic DNA"			
	/db_xref="taxon:9606"			
	/chromosome="10"			
	/map="10q11.2-q21"			
	/note="MBL haplotype LYPA"			
variation	273			
	/note="polymorphism in different MBL haplotypes"			
variation	396			
	/note="polymorphism in different MBL haplotypes"			
variation	474			
	/note="polymorphism in different MBL haplotypes"			
variation	487			
	/note="polymorphism in different MBL haplotypes"			
variation	495..500			
	/note="polymorphism in different MBL haplotypes"			
gene	745..1638			
	/gene="MBL"			
CAAT_signal	745..750			
	/gene="MBL"			
variation	753			
	/gene="MBL"			
	/note="polymorphism in different MBL haplotypes"			
TATA_signal	786..791			
	/gene="MBL"			
mRNA	823..1638			
	/gene="MBL"			
	/product="mannose-binding lectin"			
variation	826			
	/gene="MBL"			
	/note="polymorphism in different MBL haplotypes"			
CDS	892..1638			
	/gene="MBL"			
	/codon_start=1			
	/product="mannose-binding lectin"			
	/protein_id="CAB56120.1"			
Qy	601	AATAGACTGACCTACACAACACTGGAACCCAGTGGATCTGCTGGTCTGATGAA	660	
Db	1492	AATAGACTGACCTACACAACACTGGAACCCAGTGGATCTGCTGGTCTGATGAA	155	
Qy	661	GATTGTGTTATTGCTACTGAAATAATGCCAGTGGAAATGAGTCCTCCCAT	720	
Db	1552	GATTGTGTTATTGCTACTGAAATAATGCCAGTGGAAATGAGTCCTCCCAT	161	

Qy 721 CTGGCCGCTCTGTAGTTCCCTATCTGA 747
 Db 1612 CTGGCCGCTCTGTAGTTCCCTATCTGA 1638

RESULT 9
 HOSA16580 HOSA16580 1638 bp DNA linear PRI 17-SEP-1999
 DEFINITION Homo sapiens gene encoding mannose-binding protein, variant
 LXPA.

ACCESSION Y16580
 VERSION Y16580.1 GI:5911797
 KEYWORDS mannose-binding lectin; mbl gene.
 SOURCE Homo sapiens (human)

ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1 Madsen,H.O., Satz,M.L., Hogh,B., Svejgaard,A. and Garred,P.
 AUTHORS Madsen,H.O., Satz,M.L., Hogh,B., Svejgaard,A. and Garred,P.
 TITLE Different molecular events result in low protein levels of
 mannose-binding lectin in populations from southeast Africa and
 South America J. Immunol. 161 (6), 3169-3175 (1998)

JOURNAL MEDLINE
 PUBMED 9743385
 REFERENCE 2 (bases 1 to 1638)
 AUTHORS Madsen,H.O.
 TITLE Direct Submission
 COMMENT Submitted (16-FEB-1998) H.O. Madsen, Department of Clinical
 Immunology, Section 7631, National University Hospital, Tagensvej
 20, DK-2200 Copenhagen, DENMARK
 FEATURES Related sequences X15954, X15955, X15956, X15422.
 source 1. 1638
 /organism="Homo sapiens"
 /mol_type="genomic DNA"
 /db_xref="taxon:9606"
 /chromosome="10"
 /map="10q11.2-q21"
 /note="MBL haplotype LXPA"

variation 273
 /note="polymorphism in different MBL haplotypes"
 variation 396
 /note="polymorphism in different MBL haplotypes"
 variation 474
 /note="polymorphism in different MBL haplotypes"
 variation 487
 /note="polymorphism in different MBL haplotypes"
 variation 495 . 500
 /note="polymorphism in different MBL haplotypes"
 variation 602
 /note="polymorphism in different MBL haplotypes"
 gene 745 . 1638
 /gene="MBL"
 CAAT_signal 745 . 750
 /gene="MBL"
 variation 753
 /gene="MBL"
 TATA_signal 786 . 791
 /gene="MBL"
 mRNA 823 . >1638
 /gene="MBL"
 variation 826
 /product="mannose-binding lectin"
 CDS 892 . 1638
 /gene="MBL"
 /codon_start=1
 /product="mannose-binding lectin"
 /protein_id="CAB56122.1"
 /db_xref="GI:5911798"

sig_peptide 892 . 951
 /gene="MBL"
 variation 1045
 /gene="MBL"
 /note="polymorphism in different MBL haplotypes"
 variation 1052
 /gene="MBL"
 /note="polymorphism in different MBL haplotypes"
 variation 1061
 /gene="MBL"
 /note="polymorphism in different MBL haplotypes"

ORIGIN

Query	1 ATGTCCTGACCTCCATCACTCCCTCCCTGAGTATGGCGAGCTCTACTCA
Best Local Similarity	100.0%
Matches	747
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 GAAACTGTGACCTGTTCCAGGAAAGGCTGCCCTGCAGTATTGGCTTAGCTCT
Best Local Similarity	100.0%
Matches	892
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 CCAGGCATCAACGGCTTCCAGGCTCAGAGGCTTAAGGACCAAGGGAGAAAGGG
Best Local Similarity	100.0%
Matches	121
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 CCAGGCATCAACGGCTTCCAGGCTCAGAGGCTTAAGGACCAAGGGAGAAAGGG
Best Local Similarity	100.0%
Matches	1012
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 GAACCAGGCCAAGGGCTCAGAGGCTTAAGGACCCCTGGAAAGTTGGGGCTCCAGGA
Best Local Similarity	100.0%
Matches	181
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 GAACCAGGCCAAGGGCTCAGAGGCTTAAGGACCCCTGGAAAGTTGGGGCTCCAGGA
Best Local Similarity	100.0%
Matches	1072
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 AATCCAGGGCTTCTGGGTACAGGACCAAGGGCCAAAAGGAGACCCCTGGAAAGT
Best Local Similarity	100.0%
Matches	241
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 AATCCAGGGCTTCTGGGTACAGGACCAAGGGCCAAAAGGAGACCCCTGGAAAGT
Best Local Similarity	100.0%
Matches	1132
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 CGGGATGGTGTAGTAAAGCTCTGGCTCAGAGAAATGGCA 360
Best Local Similarity	100.0%
Matches	1192
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 CGTATCAAAGTGGCTGACCTCTCTGGCTCAGAAAGAAATGGCA 1251
Best Local Similarity	100.0%
Matches	361
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 CGTATCAAAGTGGCTGACCTCTCTGGCTCAGAAAGAAATGGCA 420
Best Local Similarity	100.0%
Matches	1252
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 ACCATGGTGAATAATGACCTTGTGGCTCACGCCATTCAAGGAG 480
Best Local Similarity	100.0%
Matches	1312
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 TCTGGGCCACCCCAAGGAATGTCAGAGAATGGGCAATTCAAGGAG 540
Best Local Similarity	100.0%
Matches	1311
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 541 GAAGGCCCTCCTGGCATCACTGATGAGAGACAAGGGCATTCAAGGAG 600
Best Local Similarity	100.0%
Matches	1432
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 601 AATAGACTGACCTACACAAACTGGAACCCAAATGGCTGGCTCTGTGATGAA 660
Best Local Similarity	100.0%
Matches	1492
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 661 GATTGTGATTGGCTACTGAAAAATGGCCAGTGGAAACCAATGGCTGGCTCTGTGATGAA 720
Best Local Similarity	100.0%
Matches	1552
Conservative	0;
Mismatches	0;
Indels	0;
Gaps	0;

Query	1 721 CTGGCCGCTGTGAGTTCCCTATCTGA 747
-------	--------------------------------------

RESULT 10
 HOSA16581 1638 bp DNA linear PRI 17-SEP-1999
 LOCUS Homo sapiens gene encoding mannan/mannose-binding protein, variant
 DEFINITION HYPA.

ACCESSION Y16581
 VERSION Y16581.1 GI:5911806
 KEYWORD mannose-binding lectin; mbl gene.
 SOURCE Homo sapiens (human)

ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1
 AUTHORS Madsen, H.O., Satz, M.L., Hogh, B., Svejgaard, A. and Garred, P.
 TITLE Different molecular events result in low protein levels of
 mannan-binding lectin in populations from southeast Africa and
 South America
 J. Immunol. 161 (6), 3169-3175 (1998)

MEDLINE 98414317
 PUBMED 9743385
 REFERENCE 2 (bases 1 to 1638)
 AUTHORS Madsen, H.O.

TITLE Direct Submission
 JOURNAL Submitted (16-FEB-1998) H.O. Madsen, Department of Clinical
 Immunology, Section 7631, National University Hospital, Tagensvej
 20, DK-2200 Copenhagen, DENMARK

COMMENT Related sequences X15954, X15955, X154422.

FEATURES Location/Qualifiers
 1..1638
 source /organism="Homo sapiens"
 /mol_type="genomic DNA"
 /db_xref="taxon:9606"
 /chromosome="10"
 /map="10q11.2-q21"
 /note="MBL haplotype HYPA"

variation 273
 /note="polymorphism in different MBL haplotypes"
 396
 /note="polymorphism in different MBL haplotypes"
 474
 /note="polymorphism in different MBL haplotypes"
 487
 /note="polymorphism in different MBL haplotypes"
 495..500
 /note="polymorphism in different MBL haplotypes"
 602
 /note="polymorphism in different MBL haplotypes"
 745..1638
 /gene="MBL"
 753
 /note="polymorphism in different MBL haplotypes"
 gene CAAT_signal
 variation 745..750
 /gene="MBL"
 786..791
 /gene="MBL"
 823..>1638
 /gene="MBL"
 /product="mannose-binding lectin"
 826
 /gene="MBL"
 /codon_start=1
 /product="mannose-binding lectin"
 /protein_id="CAB56123.1"
 /db_xref="GI:5911807"
 /db_xref="GOA:P11226"

RESULT 10
 HOSA16581 1638 bp DNA linear PRI 17-SEP-1999
 LOCUS Homo sapiens gene encoding mannan/mannose-binding protein, variant
 DEFINITION HYPA.

ACCESSION Y16581
 VERSION Y16581.1 GI:5911806
 KEYWORD mannose-binding lectin; mbl gene.
 SOURCE Homo sapiens (human)

ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1
 AUTHORS Madsen, H.O., Satz, M.L., Hogh, B., Svejgaard, A. and Garred, P.
 TITLE Different molecular events result in low protein levels of
 mannan-binding lectin in populations from southeast Africa and
 South America
 J. Immunol. 161 (6), 3169-3175 (1998)

MEDLINE 98414317
 PUBMED 9743385
 REFERENCE 2 (bases 1 to 1638)
 AUTHORS Madsen, H.O.

TITLE Direct Submission
 JOURNAL Submitted (16-FEB-1998) H.O. Madsen, Department of Clinical
 Immunology, Section 7631, National University Hospital, Tagensvej
 20, DK-2200 Copenhagen, DENMARK

COMMENT Related sequences X15954, X15955, X154422.

FEATURES Location/Qualifiers
 1..1638
 source /organism="Homo sapiens"
 /mol_type="genomic DNA"
 /db_xref="taxon:9606"
 /chromosome="10"
 /map="10q11.2-q21"
 /note="MBL haplotype HYPA"

variation 273
 /note="polymorphism in different MBL haplotypes"
 396
 /note="polymorphism in different MBL haplotypes"
 474
 /note="polymorphism in different MBL haplotypes"
 487
 /note="polymorphism in different MBL haplotypes"
 495..500
 /note="polymorphism in different MBL haplotypes"
 602
 /note="polymorphism in different MBL haplotypes"
 745..1638
 /gene="MBL"
 753
 /note="polymorphism in different MBL haplotypes"
 gene CAAT_signal
 variation 745..750
 /gene="MBL"
 786..791
 /gene="MBL"
 823..>1638
 /gene="MBL"
 /product="mannose-binding lectin"
 826
 /gene="MBL"
 /codon_start=1
 /product="mannose-binding lectin"
 /protein_id="CAB56123.1"
 /db_xref="GI:5911807"
 /db_xref="GOA:P11226"

sig_peptide
 variation 1045
 /gene="MBL"
 /note="polymorphism in different MBL haplotypes"
 1052
 /gene="MBL"
 /note="polymorphism in different MBL haplotypes"
 1061
 /gene="MBL"
 /note="polymorphism in different MBL haplotypes"

ORIGIN

Query	Match	Score	DB	Length
		100.0%	9	1638;
		100.0%	No.	8.2e-209;
Qy	Best	1	ATGTCCTGTTCCATCACTCCCTCTCCCTGAGGTATGGCAGCGTCTTACTCA	60
Db	Local	892	ATGTCCTGTTCCATCACTCCCTCTCCCTGAGGTATGGCAGCGTCTTACTCA	951
Qy	Similarity	747	Conservative	0;
Db	Matches	747	Mismatches	0;
Qy	Gaps	0;		
Qy	1	61	GAAACTGTGACCTGAGGATGCCAAAGAACCTGCCCTGAGGTATGGCTTAGCTCT	120
Db	952	952	GAAACTGTGACCTGAGGATGCCAAAGAACCTGCCCTGAGGTATGGCTTAGCTCT	1011
Qy	121	121	CCAGGCATCAACGGCTTCCAGGAAAGATGGCACCAGGGGAAAGGGG	180
Db	1012	1012	CCAGGCATCAACGGCTTCCAGGCAAAGGGAAAGGGG	1071
Qy	181	181	GAACCAAGGCCAAAGGGCTTACAGGGCCCCCTGGAAAGTTGGGCTTCCAGGA	240
Db	1072	1072	GAACCAAGGCCAAAGGGCTTACAGGGCTTACAGGGGAAAGGGTGTGAGTGGC	1131
Qy	241	241	AATCCAGGGCCTTCGGGTACCCAGGACCAAGGGCTTACAGGGCTTACCCAGG	300
Db	1132	1132	AAATCCAGGGCCTTCGGGTACCCAGGACCAAGGGCTTACCCAGGAAAGGGT	1191
Qy	301	301	CGGATGGTGTAGTAGCTGGCTGGCTCAGAAAGAAAGCTCTGCAAACGAAATGGCA	360
Db	1192	1192	CGGATGGTGTAGTAGCTGGCTGGCTCAGAAAGAAAGCTCTGCAAACGAAATGGCA	1251
Qy	361	361	CGTATCAAAGGGCTTACCCAGGACCAAGGGCTTACCCAGGAAAGGGTGTGCAAGT	420
Db	1252	1252	CGTATCAAAGGGCTTACCCAGGACCAAGGGCTTACCCAGGAAAGGGTGTGCAAGT	1311
Qy	421	421	ACCAATGGTGAATAATGACCTTGTGACCTTGTGCTGGCTTCTCTCCCTG	480
Db	1312	1312	ACCAATGGTGAATAATGACCTTGTGCAAGTCCAGGCC	1371
Qy	481	481	TCTGGCCACCCCAAGGAATGGCATTCAAGAATCTCATCAAGGAG	540
Db	1372	1372	TCTGGCCACCCCAAGGAATGGCATTCAAGAATCTCATCAAGGAG	1431
Qy	541	541	GAAGCCTTCCCTGGCATCACTGATGAGAACAGAGGCAAGTTGTGATCTGACAGGA	600
Db	1432	1432	GAAGCCTTCCCTGGCATCACTGATGAGAACAGAGGCAAGTTGTGATCTGACAGGA	1491
Qy	601	601	AATAGACTGACCTACACAAACTGGAAACGAGGGTGAACCCAACAATGCTGGTTCTGTGATGA	1551
Db	1492	1492	AATAGACTGACCTACACAAACTGGAAACGAGGGTGAACCCAACAATGCTGGTTCTGTGATGA	1611
Qy	661	661	GATTGTGTTGCTACTGAAAATGGCCACTGATGAGAACAGAGGCAATGGTGA	720
Db	1552	1552	GATTGTGTTGCTACTGAAAATGGCCAGTGGAAATGCTGGTTCTGTGATGA	747
Qy	721	721	CTGGCCCTGCTGTGAGTTCCCTATCTGA	747

RESULT	14	BC069338	BC069338	960 bp	mRNA	linear	PRI 19-AUG-2004	CDS
LOCUS								
DEFINITION		Homo sapiens mannose-binding lectin (protein C) 2, soluble (opsonic defect), mRNA (cDNA clone MGC:97022 IMAGE:7262231), complete cds.						
ACCESSION		BC069338	GI:46854807					
VERSION		BC069338.1						
KEYWORDS	MGC.	Homo sapiens	(human)					
SOURCE		Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.						
REFERENCE	1	(bases 1 to 960)						
AUTHORS	Strausberg, R.L., Feingold, E.A., Grouse, L.H., Derge, J.G., Klausner, R.D., Altschul, S.F., Zeeberg, B., Wagner, L., Shemesh, C.M., Schuler, G.D., Hopkins, R.F., Jordan, H., Moore, T., Max, S.I., Wang, J., Hsieh, F., Diatchenko, L., Marusina, K., Farmer, A.A., Rubin, G.M., Hong, L., Stapleton, M., Soares, M.B., Bonaldo, M.F., Casavant, T.L., Scheetz, T.E., Brownstein, M.J., Usdin, T.B., Toshiyuki, S., Carninci, P., Prange, C., Raha, S.S., Loquellano, N.A., Peters, G.J., Abramson, R.D., Mullahy, S.J., Bosak, S.A., McEwan, P.J., McKernan, K.J., Malek, J.A., Gunaratne, P.H., Richards, S., Hale, S., Garcia, A.M., Gay, L.J., Hulyk, S.W., Worley, K.C., Villalon, D.K., Muzny, D.M., Sodergren, E.J., Lu, X., Gibbs, R.A., Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodriguez, S., Sanchez, A., Whiting, M., Madan, A., Young, A.C., Shevchenko, Y., Bouffard, G.G., Blakesley, R.W., Touchman, J.W., Green, E.D., Dickson, M.C., Rodriguez, A.C., Grimwood, J., Schmutz, J., Myers, R.M., Butterfield, Y.S., Krzywinski, M.I., Skalska, U., Smailius, D.E., Schnurch, A., Schein, J.E., Jones, S.J. and Marra, M.A.							
TITLE	Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences							
JOURNAL	Proc. Natl. Acad. Sci. U.S.A. 99 (26), 16899-16903 (2002)							
PUBMED	12477932							
REFERENCE	2	(bases 1 to 960)						
AUTHORS	Director MGC Project.							
TITLE	Direct Submission							
JOURNAL	Submitted (29-APR-2004) National Institutes of Health, Mammalian Gene Collection (MGC), Cancer Genomics Office, National Cancer Institute, 31 Center Drive, Room 11A03, Bethesda, MD 20892-2590, USA							
REMARK	NIH-MGC Project URL: http://mgc.nci.nih.gov							
COMMENT	Contact: MGC help desk Email: cgapbs-r@mail.nih.gov							
	Tissue Procurement: Baylor Human Genome Sequencing Center							
	CDNA Library Preparation: Baylor Human Genome Sequencing Center							
	Submitted (29-APR-2004) National Institutes of Health, Mammalian Gene Collection (MGC), Cancer Genomics Office, National Cancer Institute, 31 Center Drive, Room 11A03, Bethesda, MD 20892-2590, USA							
	CDNA Library Arrayed by: The I.M.A.G.E. Consortium (LILNL)							
	DNA Sequencing by: Baylor College of Medicine Human Genome Sequencing Center							
	Center code: BCM-HGSC							
	Web site: http://www.hgsc.bcm.edu/cdna/							
	Contact: amg@bcm.tmc.edu							
	Gunaratne, P.H., Garcia, A.M., Lu, X., Hulyk, S.W., Loulseged, H., Kowis, C.R., Sreed, A.J., Martin, R.G., Muzny, D.M., Nanavati, A.N., Gibbs, R.A.							
	Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LILNL at: http://image.lnl.nih.gov							
	Series: IRBR Plate: 2 Row: d Column: 9.							
FEATURES	source							
	Location/Qualifiers							
	1. 960							
	/organism="Homo sapiens"							
	/mol_type="mRNA"							
	/db_xref="taxon:9606"							
	/clone="MGC:97022 IMAGE:7262231"							
	/tissue type="PCR rescued clones"							
	/clone Lib="NIH MGC 277"							
	/note="Vector: pPCR-Script Amp SK(+) with reversed insert"							
	1. 960							
gene	/gene="MBL2"							

RESULT 15
CQ875889 CQ875889 1632 bp DNA linear PAT 04-OCT-2004
DEFINITION Sequence 22 from Patent WO2004065626.
ACCESSION CQ875889
VERSION CQ875889.1 GI:53789632
KEYWORDS Homo sapiens (human)
ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 Garred, P., Madsen, H.O. and str M.J.
AUTHORS A method of sepsis prognosis
TITLE Patent: WO 2004065626-A 22 05-AUG-2004;
JOURNAL Rigshospitalet (DK); Kobenhavns Amt (DK)
FEATURES Location/Qualifiers
SOURCE 1. 1632
/organism="Homo sapiens"
/mol_type="unassigned DNA"
/db_xref="taxon:9606"
ORIGIN

	Query Match	Score	DB	Length
Qy	Best Local Similarity 99.8%;	745.4	6	1632;
Db	Matches 746; Conservative 0; Mismatches 1;	Pred. No. 2.4e-208;	Indels 0;	Gaps 0;
Qy	1 ATGTCCTGTTCATCACTCCCTCTCCCTTCTCCTGAGTATGGTGGCAGGTCTACTCA	60		
Db	886 ATGTCCTGTTCATCACTCCCTCTCCCTTCTCCTGAGTATGGTGGCAGGTCTACTCA	945		
Qy	61 GAAACTGTGACCTGTGAGGATGCCAAGAACCTGCCCTGCAGTGATTGCTGTAGCTCT	120		
Db	946 GAAACTGTGACCTGTGAGGATGCCAAGAACCTGCCCTGCAGTGATTGCTGTAGCTCT	1005		
Qy	121 CCAGGGCATCAAGGCTTCCCAGGCCAAGATGGGGTGTATGGCACCAAGGGAGAAAAGGG	180		
Db	1006 CCAGGGCATCAAGGCTTCCCAGGCCAAGATGGGGTGTATGGCACCAAGGGAGAAAAGGG	1065		
Qy	181 GAACCAAGGCCAAGGGCTCAGAGGCTTACAGAGGCTTACAGGGCCCTCCAGGA	240		
Db	1066 GAACCAAGGCCAAGGGCTCAGAGGCTTACAGGGCTTACAGGGCCCTCCAGGA	1125		
Qy	241 AATCCAGGGCTTCTGGTCACCGGACCAAGGATGGGGTGTATGGCACCAAGGGAGAAAAGT	300		
Db	1126 AATCCAGGGCTTCTGGTCACCGGACCAAGGAGACCCCTGGAAACAGGAAAGGGAGAAAAGT	1185		
Qy	301 CGGGATGGTGTATAGTAGCCTGGCTGCCCTCAGAAAGAAAGCTCTGCAAACAGAAATGCCA	360		
Db	1186 CGGGATGGTGTATAGTAGCCTGGCTGCCCTCAGAAAGAAAGCTCTGCAAACAGAAATGCCA	1245		
Qy	361 CGTATCAAAGGCTGACT	420		
Db	1246 CGTATCAAAGGCTGACT	1305		
Qy	421 ACCAATGGTGAATAATGACCTTTGAAAAAAGTGAAGGGCCTTGTGTCAAGTTCAGGCC	480		
Db	1306 ACCAATGGTGAATAATGACCTTTGAAAAAAGTGAAGGGCCTTGTGTCAAGTTCAGGCC	1365		
Qy	481 TCTGGGCCACCCCCAGGAATGCTGAGAAGAACCTGAGGCAATTCAAGAATCTCATCAAGGAG	540		
Db	1366 TCTGGGCCACCCCCAGGAATGCTGAGAAGAACCTGAGGCAATTCAAGAATCTCATCAAGGAG	1425		
Qy	541 GAAGCCTTCCTGGGCATCACTGATGAGAAAGACAGAAGGGCAGTTGTGGATCTGACAGGA	600		
Db	1426 GAAGCCTTCCTGGGCATCACTGATGAGAAAGACAGAAGGGCAGTTGTGGATCTGACAGGA	1485		
Qy	601 AATAGACTGACCTACACAACCTGGAACACTGGAACACTGGAACACTGGAACACTGG	660		
Db	1486 AATAGACTGACCTACACAACCTGGAACACTGGAACACTGGAACACTGGAACACTGG	1545		

Search completed: June 20, 2005, 17:02:04
Job time : 3608 secs

GenCore version 5.1.6
(c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: June 19, 2005, 14:00:45 ; Search time 541 Seconds

(without alignments)
8173.839 Million cell updates/sec

Title: US-10-054-536-2

Perfect score: 747
Sequence: 1 atgtccctgtttccatcaact.....tcttgtgaggrrccctatctga 747

Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 4390206 seqs, 2959870667 residues

Total number of hits satisfying chosen parameters: 8780412

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0*
Maximum Match 100*
Listing First 45 summaries

Database : N_Geneseq_16Dec04:
1: geneseqn1980s:
2: geneseqn1990s:
3: geneseqn2000s:
4: geneseqn2001as:
5: geneseqn2001bs:
6: geneseqn2002as:
7: geneseqn2002bs:
8: geneseqn2003as:
9: geneseqn2003bs:
10: geneseqn2003cs:
11: geneseqn2003ds:
12: geneseqn2004as:
13: geneseqn2004bs:
Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	747	100.0	747	2 AAZ07142	Aaz07142 Human man
2	747	100.0	747	1.2 ADI20100	Adi20100 DNA sequ
3	747	100.0	900	6 ABK14771	Abk14771 DNA encod
4	747	100.0	1632	13 ADR29055	Adr29055 Human MBL
5	747	100.0	1638	12 ADP03860	Adp03860 Human mb1
6	747	100.0	1638	13 ADR29056	Adr29056 Human MBL
7	747	100.0	1638	13 ADR29059	Adr29059 Human MBL
8	747	100.0	1638	13 ADR29061	Adr29061 Human MBL
9	747	100.0	3605	2 AAZ07143	Aaz07143 Human man
10	747	100.0	3605	6 ABN97210	Abn97210 Gene #370
11	747	100.0	3605	12 ADI20099	Adi20099 DNA sequ
12	747	100.0	3605	12 ADJ45526	Adj45526 cDNA enco
13	745.4	99.8	1632	13 ADR29057	Adr29057 Human MBL
14	745.4	99.8	1638	13 ADR29058	Adr29058 Human MBL
15	745.4	99.8	1638	13 ADR29060	Adr29060 Human MBL
16	742.2	99.4	3592	2 AAO53529	Aaq53529 Human Man
17	734	98.3	1644	12 ADP03848	Adp03848 Human mb1
18	734	98.3	1644	12 ADP03836	Adp03836 Human mb1
19	734	98.3	1644	12 ADP03840	Adp03840 Human mb1
20	734	98.3	1644	12 ADP03844	Adp03844 Human mb1

21	734	98.3	1644	12 ADP03856	Adp03856 Human mb1
22	734	98.3	1644	12 ADP03852	Adp03852 Human mb1
23	684	91.6	684	2 AAX29295	Aax29295 Mannan-bi
24	673.4	90.1	1143	12 Ado21125	Ado21125 Human car
25	635.8	85.1	963	1 AAN91079	Aan91079 CDNA of h
26	444.6	59.5	1409	6 AAD45344	Aad45344 Human ant
27	395	52.9	1010	3 AAA70738	Aaa70738 Pig serum
28	374	50.1	3336	2 AAQ64652	Aaq64652 Human Man
29	364.6	48.8	1037	6 ABK63803	Abk63803 Rat seque
30	364.6	48.8	1037	10 ADB58487	Adb58487 Toxicity-
31	287.6	38.5	1068	12 ADP71919	Adp71919 Renal tox
32	286	38.3	717	10 ADB58066	Adb58066 Toxicity-
33	286	38.3	717	10 ADB52544	Adb52544 Primary r
34	284.4	38.1	943	4 AAH44805	Aah44805 Murine CD
35	280.6	37.6	1437	4 AAK51894	Aak51894 Human pol
C	274.4	36.7	1662	4 AAK52878	Aak52878 Human pol
C	240.6	32.2	1248	12 Adp28880	Adp28880 Human sec
C	224	30.0	1143	12 ADO21125	Ado21125 Human car
39	222	29.7	419	8 ABX46620	Abx46620 Bovine ES
40	204.4	27.4	1211	6 ABK14789	Abk14789 DNA encod
41	188	25.2	1802	2 AAQ53530	Aaq53530 Human Man
42	186.2	24.9	405	6 ABS66633	Abs66633 Rat PRMBP
43	186	24.9	1802	10 ABX08715	Abx08715 Pathogeni
44	186	24.9	1802	10 ABX08719	Abx08719 Pathogeni
45	186	24.9	1802	10 ABX08711	Abx08711 Pathogeni

ALIGNMENTS

RESULT 1	AAZ07142	standard; cDNA; 747 BP.
ID	AAZ07142	
XX		
AC	AAZ07142;	
XX		
DT	11-OCT-1999	(First entry)
XX		
DE		Human mannan-binding protein encoding cDNA.
XX		
KW		Human; mannan-binding protein; HMMPB; recombinant; inhibition; infection;
KW		HMMPB; haemagglutination; influenza; HIV; primer; ss.
XX		
OS		Homo sapiens.
XX		
PN	WO9937676-A1.	
XX		
PD	29-JUL-1999.	
XX		
PF	23-JUL-1998;	98WO-JP0003311.
XX		
PR	23-JAN-1998;	98JP-00011864.
XX		
XX		
PA	(FUSO) FUSO PHARM IND LTD.	
XX		
PI	Wakamiya N;	
XX		
DR	WPI; 1999-469114/39.	
XX		
DR	P-PSDB; AAY29485.	
XX		
PT	Recombinant human mannan-binding protein expressed using pNOW1 vector.	
XX		
PS	Example 2; Page 74; 91pp; Japanese.	
XX		

The present invention describes recombinant human mannan-binding protein (rhMBP) having a molecular weight range of 1000-1300 or 200-400 kDa (by gel filtration with detection at 280 nm). rhMBP may be used as a component of drug compositions for the inhibition of haemagglutination and prevention of infection by viruses such as influenza and HIV. The present sequence encodes HMMP (human mannan-binding protein).

Sequence 747 BP; 203 A; 187 C; 202 G; 155 T; 0 U; 0 Other; SQ

Db	661	GAACTGTGACCTGTGAGGATGCCAAAGACTGCCCCTGCAGTGAATTGCTCTGCTTAGCTCT	120
Qy	721	CTGGCGTCTGTGAGTTCCAGGCCAGTGGAAATGACGTGGAAATCTGCTCACCTCCCCAT	720
Db	721	GATTGTGATTGCTACTGAAATAATGGCCAGTGGTCTATCTGA	747
Qy	721	CTGGCGTCTGTGAGTTCCAGGCCAGTGGTCTATCTGA	747
Db	186	CCAGGATCAACGGCTTCCAGGCAAGATGGGCTGATGGCACCAAGGAAAGGGG	180
Qy	181	GAACCAGGCCAAGGGCTTACAGGGCTTACAGGGCCCCCTGGAAAGGAGCCTCCAGGA	240
Db	246	CCAGGATCAACGGCTTCCAGGCAAGATGGGCTGATGGCACCAAGGAAAGGGG	245
Qy	181	GAACCAGGCCAAGGGCTTACAGGGCTTACAGGGCCCCCTGGAAAGGAGCCTCCAGGA	240
Db	241	AATCCAGGGCTTCTGGGTACAGGGCTTACAGGGCCCCCTGGAAAGGAGCCTCCAGGA	300
Qy	241	AATCCAGGGCTTCTGGGTACAGGGCTTACAGGGCCCCCTGGAAAGGAGCCTCCAGGA	300
Db	306	CCGGATGGCTTCTGGTCACAGGGCTTACAGGGCCCCCTGGAAAGGAGCCTCCAGGA	365
Qy	301	CCGGATGGCTTCTGGGTACAGGGCTTACAGGGCCCCCTGGAAAGGAGCCTCCAGGA	360
Db	366	CCGGATGGCTTCTGGTCACAGGGCTTACAGGGCCCCCTGGAAAGGAGCCTCCAGGA	425
Qy	361	CGTATCAAAGGGCTTCTGGGTACAGGGCTTACAGGGCCCCCTGGAAAGGAGCCTCCAGGA	420
Db	426	CGTATCAAAGGGCTTCTGGTCACAGGGCTTACAGGGCCCCCTGGAAAGGAGCCTCCAGGA	485
Qy	421	ACCAATGGTGAATAATGACCTTGTGAGGAAATGGGCTTGTGGATCTCATCAAGGAG	480
Db	486	ACCAATGGTGAATAATGACCTTGTGAGGAAATGGGCTTGTGGATCTCATCAAGGAG	545
Qy	481	TCTGTGCCACCCCCAGGAATGCTGCAGAGAATGGGCTTGTGGATCTCATCAAGGAG	540
Db	546	TCTGTGCCACCCCCAGGAATGCTGCAGAGAATGGGCTTGTGGATCTCATCAAGGAG	605
Qy	541	GAAGCCCTCCTGGGCATCATCTGTGAGGAAAGACAAGGGCAGTTGTGGATCTGACAGGA	600
Db	606	GAAGCCCTCCTGGGCATCATCTGTGAGGAAAGACAAGGGCAGTTGTGGATCTGACAGGA	665
Qy	601	AATAGACTGACCTACACAAACTGGGCAACCAACAATGCTGGTTCTGTGATGAA	660
Db	666	AATAGACTGACCTACACAAACTGGGCAACCAACAATGCTGGTTCTGTGATGAA	725
Qy	661	GATTGTATTGGCTACTGAAATAATGGCCAGTGGAAATGACGTGCCACCTCCAT	720
Db	726	GATTGTATTGGCTACTGAAATAATGGCCAGTGGAAATGACGTGCCACCTCCAT	785
Qy	721	CTGGCCGCTGTGAGTTCCCTATCTGA	747
Db	786	CTGGCCGCTGTGAGTTCCCTATCTGA	812
PS	Claim 5; Fig 1; 30pp; English.		
XX	The invention relates to a methylotrophic yeast strain (I) comprising a DNA molecule encoding mannose-binding protein (MBP), protein disulphide isomerase (PDI), heat shock protein 47 (hsp47), and propyl-4-hydroxylase (P4H), where upon culturing (I) produces the MBP, PDI, hsp47 and P4H. (I) is useful for producing MBP comprising culturing (I) under conditions suitable for the secretion of MBP by the yeast where MBP is utilised in disposal of pathogenic organisms by opsonising pathogen or activating complement cascade. The methods utilising (I) result in high yields of MBP without the use of foetal calf serum, in a cost-effective manner. The present sequence relates to the coding sequence of human mannose-binding protein		
XX	Sequence 900 BP; 246 A; 225 C; 228 G; 201 T; 0 U; 0 Other;		
Query Match	100.0%	Score 747; DB 6; Length 900;	
Best Local Similarity	100.0%	Pred. No. 1.2e-207;	
Matches 747; Conservative	0; Mismatches 0;	Indels 0; Gaps 0;	
XX	Human MBP gene with non-structural/variant structural allele (codon 57). Sepsis; septic shock; severe; MBL; mannose binding lectin; SIRS; systemic inflammatory response syndrome; innate immune defence; single nucleotide polymorphism; SNP; structural variant; regulatory prophylaxis; sepsis syndrome; infection susceptibility; multiple organ failure; MOF; multiple organ dysfunction; acute; gene; ds; human.		
XX	Homo sapiens.		
FH	Key variation		Location/Qualifiers
FT			
Qy	1	ATGTCCTGTTCCATCACTCCCTCTCCCTGAGTATGGCAAGCGTCTACTCA	60
Db	66	ATGTCCTGTTCCATCACTCCCTCTCCCTGAGTATGGCAAGCGTCTACTCA	125

```

variation 474
  /*tag= b
  /standard_name= "Single nucleotide polymorphism"
  /note= "Non-structural allele"
variation 487
  /*tag= C
  /standard_name= "Single nucleotide polymorphism"
  /note= "Non-structural allele"
variation 747
  /*tag= d
  /standard_name= "Single nucleotide polymorphism"
  /note= "Non-structural allele"
variation 820
  /*tag= e
  /standard_name= "Single nucleotide polymorphism"
  /note= "Non-structural allele"
variation 1055
  /*tag= f
  /standard_name= "Single nucleotide polymorphism"
  /note= "Variant structural allele"
variation WO2004065626-A2.
variation XX 05-AUG-2004.
variation XX 16-JAN-2004; 2004WO-DK000027.
variation PR 17-JAN-2003; 2003DK-0000042.
variation PR 06-MAR-2003; 2003US-0453272P.
variation XX (RIGS-) RIGSHOSPITALET.
variation PA (KOBE-) KOBENHAVNS AMT.
variation PI Garred P, Madsen HO, Strom J;
variation XX DR; 2004-571694/55.

Predicting whether an individual having Systemic Inflammatory Response Syndrome (SIRS) will develop sepsis, useful for treating sepsis, comprises determining the mannose-binding lectin (MBL) genotype or concentration of MBL.

Disclosure; SEQ ID NO 20; 65pp; English.

```

The invention relates to a method to determine the risk factor of a person for sepsis, severe sepsis or septic shock by correlating MBL (mannose binding lectin) genotype with a predefined risk value. It discloses the connection between the MBL genotype of an individual having SIRS (Systemic Inflammatory Response Syndrome) and the risk of developing sepsis, severe sepsis or septic shock. It shows how a decreased level of MBL and lack of functional MBL are crucial to the development of sepsis and septic shock in an individual having sepsis. A MBL is an important factor in innate immune defence. MBL single nucleotide polymorphism in the form of the structural variant (codon 54, codon 52 and codon 57) and regulatory variant (low expression and high expression) were studied.

This invention discloses that the MBL gene polymorphism's causes a reduction of the MBL level, which is associated with the development and progression of sepsis in adult intensive care patients. The invention offers a service to determine whether an individual belongs to a risk group and it provides the treatment accordingly. There is an increased risk of a fatal outcome of an individual carrying MBL variant alleles. A rapid determination of MBL genotype of patients is important in identifying individuals at risk of developing sepsis, severe sepsis or septic shock. The MBL can be used for a medicament for the prevention and treatment of specified diseases. The MBL variant allele is also associated with an increased risk of death. It raises the prospective that MBL (MBL) substitution can be used in prophylaxis and treatment of sepsis syndrome. The frequency of MBL variant alleles is proportional to the severity of sepsis which indicates lacking buffering capacity of MBL towards initial microbial replication. It is not only associated with susceptibility of infection but also allows activation of host mechanisms central to the pathophysiology of the sepsis syndrome. The invention can also predict the risk for developing multiple organ failure (MOF),

CC multiple organ dysfunction and acute organ dysfunction of an individual having SIRS. The high risk is characterised by the presence of at least one variant structural allele of the MBL gene and or having two low expression regulatory alleles of the MBL gene in a sample. The presented sequence is the human MBL gene with non-structural and variant structural allele (codon 57).

XX Sequence 1632 BP; 447 A; 381 C; 430 G; 374 T; 0 U; 0 Other;

SQ

Query	Match	Score	DB	Length	
	100.0%	747	13	1632	
Best Local Matches	100.0%	Pred. No.	1..6e-207		
Matches	0	Mismatches	0	Gaps	0
Qy	1	ATGTCCTCTGTCTCCATCACTCCCTCTCCTGAGATGGTGGAGCTTACTCA	60		
Db	886	ATGTCCTCTGTCTCCATCACTCCCTCTCCTGAGATGGTGGAGCTTACTCA	945		
Qy	61	GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCAGTGATTGCCCTGTAGCTCT	120		
Db	946	GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCAGTGATTGCCCTGTAGCTCT	1005		
Qy	121	CCAGGCCATCAACGGCTTCCCAGGCCAAAAGATGGCGTGAATGGCACCAAGGGAAAGGG	180		
Db	1006	CCAGGCCATCAACGGCTTCCCAGGCCAAAAGATGGCGTGAATGGCACCAAGGGAAAGGG	1065		
Qy	181	GAACCAAGGCCAAGGGCTCAGGGCTTACAGGGCTTACAGGGCCCCCTGGAAAAGTTGGGGCTCCAGGA	240		
Db	1066	GAACCAAGGCCAAGGGCTTACAGGGCTCAGGGCTTACAGGGCCCCCTGGAAAAGTTGGGGCTCCAGGA	1125		
Qy	241	AATCCAGGGCCCTCTGGGTCACCAGGCCAAAGGGCC2AAAAGGAACCCCTGGAAAAGTTGGGGCTCCAGGA	300		
Db	1126	AATCCAGGGCCCTCTGGGTCACCAGGCCAAAGGGCC2AAAAGGAACCCCTGGAAAAGTTGGGGCTCCAGGA	1185		
Qy	301	CCGGATGGTGATACTGAGCTGGCTTGCCTCAGAAAGAAAAGCTCTGCCAAACAGAAATGGCA	360		
Db	1186	CCGGATGGTGATACTGAGCTGGCTTGCCTCAGAAAGAAAAGCTCTGCCAAACAGAAATGGCA	1245		
Qy	361	CGTATCAAAGTGGTGAACCTTGTGTTGTCAGGCTTCAAGTTCAGGCC 420			
Db	1246	CGTATCAAAGTGGTGAACCTTGTGTTGTCAGGCTTCAAGTTCAGGCC 360			
Qy	421	ACCAATGGTAATAATGACCTTGTGAAAGTGAAGGCCCTGTGTTGTCAGTTCAGGCC 480			
Db	1306	ACCAATGGTAATAATGACCTTGTGAAAGTGAAGGCCCTGTGTTGTCAGTTCAGGCC 1365			
Qy	481	TCTGTGGCACCCTCCAGGAATGGTGAACCTCTCTGGGAACAAAGTCTTCCTG 540			
Db	1366	TCTGTGGCACCCTCCAGGAATGGTGAACCTCTGGGAACAAAGTCTTCCTG 1305			
Qy	541	GAAGGCCTTCCCTGGCATCACTGTGAAAGACAGAAGGCCAGTTGCGATCTGACAGGA 600			
Db	1426	GAAGGCCTTCCCTGGCATCACTGTGAAAGACAGAAGGCCAGTTGCGATCTGACAGGA 1485			
Qy	601	AATAGACTGACCTACACAAACTGGTCAAGTGGTCTGTGATGAA 660			
Db	1486	AATAGACTGACCTACACAAACTGGTCAAGTGGTCTGTGATGAA 1545			
Qy	661	GATTGGTGTATTGCTACTGAAAGATGGCCAGTGGAAATGACGTCCACCTCCCAT 720			
Db	1546	GATTGGTGTATTGCTACTGAAAGATGGCCAGTGGAAATGACGTCCACCTCCCAT 1605			
Qy	721	CTGGCCGTCTGTGAGTTCCCTATCTGA 747			
Db	1606	CTGGCCGTCTGTGAGTTCCCTATCTGA 1632			

RESULT 5
ADP03860
ID ADP03860 standard; DNA; 1638 BP.
XX AC ADP03860;
XX DT 29-JUL-2004 (First entry)

Human mbl2 DNA.	
arteriosclerosis; severe heart disease; coronary heart disease; artery; polymorphism; human; mbl2; Chlamydia pneumoniae infection; mannose-binding lectin antigen; gene therapy; lectin-complement pathway; serine protease; ds; gene.	
Homo sapiens.	
Key variation	Location/Qualifiers replace(273,g) /*tag= a /standard name= "single nucleotide polymorphism" replace(602,c) /*tag= b /standard name= "single nucleotide polymorphism" 821. .1638 /*tag= c /product= "MBL2" replace(826,t) /*tag= d /standard name= "single nucleotide polymorphism" replace(1045,t) /*tag= e /standard name= "single nucleotide polymorphism" /note= "SNP results in an Arg to Cys variation" replace(1052,a) /*tag= f /standard name= "single nucleotide polymorphism" /note= "SNP results in a Gly to Asp variation" replace(1061,a) /*tag= g /standard name= "single nucleotide polymorphism" /note= "SNP results in a Gly to Glu variation"
variation	DE10237393-A1. 11-MAR-2004. 12-AUG-2002; 2002DE-01037393. ·12-AUG-2002; 2002DE-01037393.
variation	(LION-) LIONEX DIAGNOSTICS & THERAPEUTICS GMBH. Fuerst G, Prohaszka Z, Gonczol E, Garred P, Madsen HO, WPI; 2004-258256/25.
	Determining risk of developing arteriosclerosis or coronary artery disease, by detecting both polymorphisms in the mbl2 gene and infection by Chlamydia pneumoniae.
	Claim 2; Fig 1; 45pp; German.
	This invention describes a novel method for determining an indicator of the risk of developing arteriosclerosis and severe heart disease of the coronary artery type by detecting polymorphisms in the human mbl2 gene and the presence of acute, chronic or early Chlamydia pneumoniae infection. The invention comprises detecting a low concentration of the MBL (= mannose-binding lectin) antigen instead of polymorphisms in mbl2, a diagnostic kit for performing the new tests, use of at least one specific polymorphism in mbl2 for determining the risk of arteriosclerosis or severe heart disease, use of recombinant or purified human MBL for treating patients, identified by the new method, who have mbl2 polymorphisms, use of polymorphic mbl2 genes for preparation of the polymorphic isoforms of MBL protein, and use of wild-type mbl2, or its fragments, for gene therapy of subjects who have mbl2 polymorphisms. The polymorphisms are stated as being at positions -551, -221 (the promoter region), +4 (untranslated region of exon 1), +52, +54, +57 or +223 (exon 1), +230 and/or +239 of the sequence deposited as Genbank Y16580. Polymorphisms are detected in genomic DNA, especially isolated from

RESULT 6

ID ADR29056 standard; DNA; 1638 BP.

XX ADR29056;

XX DT 21-OCT-2004 (first entry)

DE Human MBL gene with non-structural/variant structural allele (codon 54).

XX Sepsis; septic shock; severe; MBL; mannose binding lectin; SIRS; systemic inflammatory response syndrome; innate immune defence; single nucleotide polymorphism; SNP; structural variant; regulatory; prophylaxis; sepsis syndrome; infection susceptibility; multiple organ failure; MOF; multiple organ dysfunction; acute; gene; ds; KW human.

XX OS Homo sapiens.

XX Key variation

FEH Location/Qualifiers

FT 273

FT /*tag= a /standard_name= "Single nucleotide polymorphism"

FT /note= "Non-structural allele"

FT variation

FT 396

FT /*tag= b /standard_name= "Single nucleotide polymorphism"

FT /note= "Non-structural allele"

FT variation

FT 474

FT /*tag= c /standard_name= "Single nucleotide polymorphism"

FT /note= "Non-structural allele"

FT variation

FT 487

FT /*tag= d /standard_name= "Single nucleotide polymorphism"

FT /note= "Non-structural allele"

FT mutation

FT 495. .500

FT /*tag= e /note= "Optional deletion in base sequence"

FT variation

FT 602

FT /*tag= f /standard_name= "Single nucleotide polymorphism"

FT /note= "Non-structural allele"

FT variation

FT 753

FT /*tag= g /standard_name= "Single nucleotide polymorphism"

FT /note= "Non-structural allele"

FT variation

FT 826

FT /*tag= h /standard_name= "Single nucleotide polymorphism"

FT /note= "Non-structural allele"

FT variation

FT 1052

FT /*tag= i /standard_name= "Single nucleotide polymorphism"

FT /note= "Variant structural allele"

XX WO2004065626-A2.

XX 05-AUG-2004.

XX 16-JAN-2004; 2004WO-DK000027.

XX PR 17-JAN-2003; 2003DK-00000042.

PR 06-MAR-2003; 2003US-0453272P.

XX (RIGS-) RIGHOSPITALET.

PA (KOBE-) KOBENHAVNS AMT.

XX Garred P, Madsen HO, Strom J;

XX WPI; 2004-571694/55.

Predicting whether an individual having Systemic Inflammatory Response Syndrome (SIRS) will develop sepsis, useful for treating sepsis, comprises determining the mannose-binding lectin (MBL) genotype or concentration of MBL.

The invention relates to a method to determine the risk factor of a person for sepsis, severe sepsis or septic shock by correlating MBL (mannose binding lectin) genotype with a predefined risk value. It discloses the connection between the MBL genotype of an individual having SIRS (Systemic Inflammatory Response Syndrome) and the risk of developing sepsis, severe sepsis or septic shock. It shows how a decreased level of MBL and lack of functional MBL are crucial to the development of sepsis and septic shock in an individual having sepsis. A MBL is an important factor in innate immune defence. MBL single nucleotide polymorphism in the form of the structural variant (codon 54, codon 52 and codon 57) and regulatory variant (low expression and high expression) were studied. This invention discloses that the MBL gene polymorphism's causes a reduction of the MBL level, which is associated with the development and progression of sepsis in adult intensive care patients. The invention offers a service to determine whether an individual belongs to a risk group and it provides the treatment accordingly. There is an increased risk of a fatal outcome of an individual carrying MBL variant alleles. A rapid determination of MBL genotype of patients is important in identifying individuals at risk of developing sepsis, severe sepsis or septic shock. The MBL can be used for a medicament for the prevention and treatment of specified diseases. The MBL variant allele is also associated with an increased risk of death. It raises the prospective that MBL (MBL substitution) can be used in prophylaxis and treatment of sepsis syndrome. The frequency of MBL variant alleles is proportional to the severity of sepsis which indicates lacking buffering capacity of MBL towards initial microbial replication. It is not only associated with susceptibility of infection but also allows activation of host mechanism central to the pathophysiology of the sepsis syndrome. The invention can also predict the risk for developing multiple organ failure (MOF), multiple organ dysfunction and acute organ dysfunction of an individual having SIRS. The high risk is characterised by the presence of at least one variant structural allele of the MBL gene and/or having two low expression regulatory alleles of the MBL gene in a sample. The presented sequence is the non-structural (deletion in position 495-500) and structural allele (in codon 54) of MBL from human.

Sequence 1638 BP; 454 A; 382 C; 430 G; 372 T; 0 U; 0 Other;

Query	Match	Score	DB	Length
Qy	100.0%	747	13	1638;
Db	100.0%	Pred. No. 1.	6e-207;	
Qy	Conservative	0;	Mismatches	0;
Db			Indels	0;
Qy			Gaps	

1 ATGTCCCTGTTCCATCACTCCCTCTCCTGAGTATGGCAGCGTCCTACTCA 60
 892 ATGTCCCTGTTCCATCACTCCCTCTCCTGAGTATGGCAGCGTCCTACTCA 95
 61 GAAACTGTGACCTGCCAAAGACCTGCCCTGCACTGATTGCCTGTAGCTCT 120
 952 GAAACTGTGACCTGTGAGGATGCCAAAGACCTGCCCTGCACTGATTGCCTGTAGCTCT 100
 121 CCAGGCATCAACGGCTTCCAGGCAAAGATGGCGTGTGATGGCACCAAGGGAGAAAAGGGG 180
 1012 CCAGGCATCAACGGCCAAGGATGGCGTGTGATGGCACCAAGGGAGAAAAGGGG 100
 181 GAACCAGGCCAAGGGCTCAGAGGCTTACAGGGCCCCCTGGAAAGTTGGGCCTCCAGGA 240
 1072 GAACCAGGCCAAGGGCTCAGAGGCTTACAGGGCCCCCTGGAAAGTTGGGCCTCCAGGA 170
 241 AATCCAGGGCCTCTGGGTGATAGTAGCCTGGCTGCCTCAGAAAGAAAAGCTCTGCAAACAGAAATGGCA 300
 1132 AATCCAGGGCCTCTGGTGTAGCTGCTGAAACAGAAATGGCA 110
 301 CCGGATGGTGATAGTAGCCTGGCTGCCTCAGAAAGAAAAGCTCTGCAAACAGAAATGGCA 300
 1192 CCGGATGGTGATAGTAGCCTGGCTGCCTGAAACAGAAATGGCA 110

3 61	CGTATCAAAGTGGCTGACCTCTGGCAAAACAAGTTGGAACAAAGTTCTTCCTG	4 20
12 52	CGTATCAAAGTGGCTGACCTCTGGCAAAACAAGTTGGAACAAAGTTCTTCCTG	13 11
4 21	ACCAATGGTGAATAATGACCTTGAAAAAAGTGGAGGCCTTGTGTCAAGTTCCAGGCC	4 80
13 12	ACCAATGGTGAATAATGACCTTGAAAAAAGTGGAGGCCTTGTGTCAAGTTCCAGGCC	13 71
4 81	TCTGTGCCACCCCCAGGAATGCTGCCAGAGAAATGGAGGCCATTAGAAATCTCATCAAGGAG	5 40
13 72	TCTGTGCCACCCCCAGGAATGCTGCCAGAGAAATGGAGGCCATTAGAAATCTCATCAAGGAG	14 31
5 41	GAAGCCTTCCTGGCATCACTGATGAGAAGACAGAAAGGGCAGTTGTGGATCTGACAGGA	6 00
14 32	GAAGCCTTCCTGGCATCACTGATGAGAAGACAGAAAGGGCAGTTGTGGATCTGACAGGA	14 91
6 01	AATAGACTGACCTACACAACTGGAACTGGGTGAACCCAACAATGCTGGTTCTGATGAA	6 60
14 92	AATAGACTGACCTACACAACTGGAAACCTGGGTGAACCCAACAATGCTGGTTCTGATGAA	15 51
6 61	GATTGTGTATTGCTACTGAAATAATGGCCAGTGGATGACGGTCCACCTCCCAT	7 20
15 52	GATTGTGTATTGCTACTGAAATAATGGCCAGTGGATGACGGTCCACCTCCCAT	16 11
7 21	CTGGCCGTCTGTGAGTTCCCTATCTGA	7 47
16 12	CTGGCCGGTCTGTGAGTTCCCTATCTGA	16 38

RESULT 7
ADR29059 standard; DNA; 1638 BP.
ADR29059;
21-OCT-2004 (first entry)
Human MBL gene with high expression regulatory allele (602G).
Sepsis; septic shock; severe; MBL; mannose binding lectin; SIRS; systemic inflammatory response syndrome; innate immune defence; single nucleotide polymorphism; SNP; structural variant; regulatory; prophyllaxis; sepsis syndrome; infection susceptibility; multiple organ failure; MOF; multiple organ dysfunction; acute; gene; ds; human.

Key	Location/Qualifiers
variation	602 /*tag= a /standard_name= "Single nucleotide polymorphism" /note= "High expression regulatory allele"
variation	1045 /*tag= b /standard_name= "Single nucleotide polymorphism" /note= "Normal structural allele"
variation	1052 /*tag= c /standard_name= "Single nucleotide polymorphism" /note= "Normal structural allele"

Sequence 1638 BP; 454 A; 381 C; 431 G; 372 T; 0 U; 0 Other;						
	Query Match	Score	DB	Length	Other	
Best Local Matches	Match 100.0%; Similarity 100.0%; Conservative 0;	747	747; Pred. No. 1.6e-207; Mismatches 0;	13	1638;	
892	ATGTCCCTGTTCCATCACTCCCTCTCCTGCAGTATGGTGGCAGCGTCTTACTCA	60				
61	GAAACTGTGACCTGTGAGGATGCCAAGAACCTGCCCTGCAGTGATTGCCCTGTAGCTCT	120				
952	GAAACTGTGACCTGTGAGGATGCCAAGAACCTGCCCTGCAGTGATTGCCCTGTAGCTCT	951				
121	CCAGGCATCAACGGCTTCCAGGCCAAAGATGGCGTGTGATGGCACCAAGGGAGAAAAGGGG	180				
1012	CCAGGCATCAACGGCTTCCAGGCCAAAGATGGCGTGTGATGGCACCAAGGGAGAAAAGGGG	1071				
181	GAACCAGGCCAACGGCTCAGGGCTTAACAGGGCCCCCTGGAAAAGTGTGGGCCCTCAGGA	240				
1072	GAACCAGGCCAACGGCTCAGGGCTTAACAGGGCCCCCTGGAAAAGTGTGGGCCCTCAGGA	1131				
241	AATCCAGGGCCTTCTGGTCACCAAGGGCCAAAGGAGACCCCTGGAAAAAGT	300				
1132	AATCCAGGGCCTTCTGGTCACCAAGGGCCAAAGGAGACCCCTGGAAAAAGT	1191				

Qy	3 01	CCGGATGGTGTAGTAGCTGCCCTGGCTCAGAACGAAAGCTCTGCACAAACAGAAATGGCA	3 60	DR	WPI; 2004-571694/55.
Db	11 92	CCGGATGGTGTAGTAGCTGCCCTGGCTCAGAACGAAATGGCA	1 251	XX	PT Predicting whether an individual having Systemic Inflammatory Response Syndrome (SIRS) will develop sepsis, useful for treating sepsis, or comprises determining the mannose-binding lectin (MBL) genotype or PT concentration of MBL.
Qy	3 61	CGTATCAAAGTGGCTGACCTTCCTCTGGCAACAAGTTGGAACAAAGTTCTTCTG	4 20	XX	PT
Db	12 52	CGTATCAAAGTGGCTGACCTTCCTCTGGCAACAAGTTGGAACAAAGTTCTTCTG	1 311	XX	PT
Qy	4 21	ACCAATGGTGAATAATGACCTTGTGAAAAGTGAAAGGCCCTTGTGTCAAGTCCAGGCC	4 80	PS	Claim 5; SEQ ID NO 26; 65pp; English.
Db	13 12	ACCAATGGTGAATAATGACCTTGTGAAAAGTGAAAGGCCATTCAAGAATCTCATCAAGGAG	1371	XX	The invention relates to a method to determine the risk factor of a person for sepsis, severe sepsis or septic shock by correlating MBL (mannose binding lectin) genotype with a predefined risk value. It discloses the connection between the MBL genotype of an individual having SIRS (Systemic Inflammatory Response Syndrome) and the risk of developing sepsis, severe sepsis or septic shock. It shows how a decreased level of MBL and lack of functional MBL are crucial to the development of sepsis and septic shock in an individual having sepsis. A MBL is an important factor in innate immune defence. MBL single nucleotide polymorphism in the form of the structural variant (codon 54, codon 52 and codon 57) and regulatory variant (low expression and high expression) were studied. This invention discloses that the MBL gene polymorphism's causes a reduction of the MBL level, which is associated with the development and progression of sepsis in adult intensive care patients. The invention offers a service to determine whether an individual belongs to a risk group and it provides the treatment accordingly. There is an increased risk of a fatal outcome of an individual carrying MBL variant alleles. A rapid determination of MBL genotype of patients is important in identifying individuals' at risk of developing sepsis, severe sepsis or septic shock. The MBL can be used for a medicament for the prevention and treatment of specified diseases. The MBL variant allele is also associated with an increased risk of death. It raises the prospective that MBL (MBL substitution) can be used in prophylaxis and treatment of sepsis syndrome. The frequency of MBL variant alleles is proportional to the severity of sepsis which indicates lacking buffering capacity of MBL towards initial microbial replication. It is not only associated with susceptibility of infection but also allows activation of host mechanisms central to the pathophysiology of the sepsis syndrome. The invention can also predict the risk for developing multiple organ failure (MOF), multiple organ dysfunction and acute organ dysfunction of an individual having SIRS. The high risk is characterised by the presence of at least one variant structural allele of the MBL gene and/or having two low expression regulatory alleles of the MBL gene in a sample. The presented sequence is the low expression regulatory allele (position 602 has a base C substitution) of MBL (mannose binding lectin) gene from human.
Qy	4 81	TCTGTGCCACCCAGGAATGGCTGCCAGAGAAATGGAGCCATTAGAAATCTCATCAAGGAG	5 40	XX	Query Match 100.0%; Score 747; DB 13; Length 1638;
Db	13 72	TCTGTGCCACCCAGGAATGGCTGCCAGAGAAATGGAGCCATTAGAAATCTCATCAAGGAG	1431	XX	Best Local Similarity 100.0%; Pred. No. 1.6e-207; Mismatches 0; Indels 0; Gaps 0;
Qy	5 41	GAAGGCCCTTCCTGGCATCACTGTGATGAGAACAGAACAGGGCAGTTGTGGATCTGACAGGA	6 00	XX	Matches 747; Conservative 0;
Db	14 32	GAAGGCCCTTCCTGGCATCACTGTGATGAGAACAGAACAGGGCAGTTGTGGATCTGACAGGA	1491	XX	Query 1 ATGTCCTGTTCCATCACTCCCTCTGAGTGGCTGAGCTTACTCA 60
Qy	6 01	AATAGACTGACCTACACAAACTGGAAACGAGGGTGAACCCAACAAATGCTGGTTCTGATGAA	6 60	XX	Db 892 ATGTCCTGTTCCATCACTCCCTCTGAGTGGCTGAGCTTACTCA 951
Db	14 92	AATAGACTGACCTACACAAACTGGAAACGAGGGTGAACCCAACAAATGCTGGTTCTGATGAA	1551	XX	Qy 61 GAAACTGTGACCTGTTGAGGATGCCAAGTGGAAATGACGTCCCCTGCTCACCTCCCAT 720
Qy	6 61	GATTGTGTATTGCTACTGTGAAACTGGAAACGAGGGTGAACCAACAAATGCTGGTTCTGATGAA	7 20	XX	Db 952 GAAACTGTGACCTGTTGAGGATGCCAAGTGGAAATGACGTCCCCTGCTCACCTCCCAT 1611
Db	15 52	GATTGTGTATTGCTACTGTGAAACTGGAAACGAGGGTGAACCAACAAATGCTGGTTCTGATGAA	1638	XX	Qy 121 CCAGGCATCAACGGCTTCCAGGGCAAAGATGGGACCTGCCTGAGTGGCACCAAGGGAAAGGGG 180
Qy	7 21	CTGGCCGTCTGTGAGTCCCTATCTGA	7 47	XX	Db 1012 CCAGGCATCAACGGCTTCCAGGGCAAAGATGGGACCTGCCTGAGTGGCACCAAGGGAAAGGGG 1071
Db	16 12	CTGGCCGTCTGTGAGTCCCTATCTGA	1638	XX	Qy 181 GAACCAGGCCAAGGGCTCAGGGCTTACAGGGCCCCCTGGAAAGTTGGGCTCAGGACCAAGGGAAAGGGG 240
RESULT 8				Qy	Db 1072 GAACCAGGCCAAGGGCTCAGGGCTTACAGGGCTTACAGGGCCAAAGATGGGACCTGCCTGGCTCAGGACCAAGGGAAAGGGG 1131
ID	ADR29061	standard; DNA; 1638 BP.		Db	Qy 241 AATCCAGGGCTTCTGGCTCACAGGACCTGCCTGGCTCACAGGGCCAAAGATGGGACCTGCCTGGCTCAGGACCAAGGGAAAGGGG 3 00
AC	ADR29061;			Db	Db 1132 AATCCAGGGCTTCTGGCTCACAGGGCTCACAGGGCCAAAGATGGGACCTGCCTGGCTCAGGACCAAGGGAAAGGGG 1191
XX				Qy	Db 301 CCGGATGGTGTAGTAGCCCTGGCTCACAGAAAGAAAGCTGCTGCCTCACAGGGACCTGGAAATGGCA 3 60
AC	ADR29061;			Db	XX
XX				Qy	
DT	21-OCT-2004	(first entry)		Db	
XX				Qy	
DE	Human MBL low expression regulatory allele (position 602).			Db	
XX				Qy	
KW	sepsis; septic shock; severe; MBL; mannose binding lectin; SIRS; systemic inflammatory response syndrome; innate immune defence; single nucleotide polymorphism; SNP; structural variant; regulatory; prophylaxis; sepsis syndrome; infection susceptibility; multiple organ failure; MOF; multiple organ dysfunction; acute; gene; ds;			Db	
KW				Qy	
KW				Db	
KW				Qy	
KW				Db	
KW				Qy	
KW				Db	
OS	Homo sapiens.			Qy	
XX				Db	
FH	Key variation	Location/Qualifiers		Qy	
FT	602			Db	
FT	/tag= ^a			Qy	
FT	/standard_name= "Single nucleotide polymorphism"			Db	
FT	/note= "Low expression regulatory allele"			Qy	
XX	WO2004065626-A2.			Db	
XX	05-AUG-2004.			Qy	
XX	16-JAN-2004; 2004WO-DK0000027.			Db	
XX	17-JAN-2003; 2003DK-00000042.			Qy	
PR	06-MAR-2003; 2003US-0453272P.			Db	
XX	(RIGS-) RIGSHOSPITALET.			Qy	
PA	(KOB-E-) KOBENHAVNS AMT.			Db	
XX	Garred P, Madsen HO, Strom J;			Qy	
PI	XX				

Db 1192 CCGGATGGTGAATAGTAGCCTGGCTGCCCTCAGAAAGAAAAGCTCTGCAAAATGGCA 1251
 Qy 361 CGTATCAAAGTGGCTGACTTCRTRCTGGCAAAACAAGTTGGAACACAGTTCTTCCTG 420
 Db 1252 CGTATCAAAGTGGCTGACTTCRTRCTGGCAAAACAAGTTCTTCCTG 1311
 Qy 421 ACCAATGGTAAATAATGACTTTGAAAAAGTGAAAGGCCRTGTGTCAAAAGTCCAGGCC 480
 Db 1312 ACCAATGGTAAATAATGACTTTGAAAAAGTGAAAGGCCRTGTGTCAAAAGTCCAGGCC 1371
 Qy 481 TCTGCCCCCAGGAATGGAGATTGCTCATCAAGGAG 540
 Db 1372 TCTGCCCCCAGGAATGGAGATTGCTCATCAAGGAG 1431
 Qy 541 GAAGCCTTCTGGCATCACTGATGAGAACAGAAGGGCAGTTGTGGATCTGACAGGA 600
 Db 1432 GAAGCCTTCTGGCATCACTGATGAGAACAGAAGGGCAGTTGTGGATCTGACAGGA 1491
 Qy 601 AATAGACTGACCTACACAAACTGGAACAGGGTAACAAATGCTGGTTCTGTGAA 660
 Db 1492 AATAGACTGACCTACACAAACTGGAACAGGGTAACAAATGCTGGTTCTGTGAA 1551
 Qy 661 GATTGTGATTGCTACTGAAACAGGGTAACAACTGGAACAGGGTAACAAATGCTGGTTCTGTGAA 720
 Db 1552 GATTGTGATTGCTACTGAAACAGGGTAACAAATGCTGGTTCTGTGAA 1611
 Qy 721 CTGGCGTCTGTGAGTTCCCTATCTGA 747
 Db 1612 CTGGCGTCTGTGAGTTCCCTATCTGA 1638

RESULT 9

AAZ07143 ID AAZ07143 Standard; cDNA; 3605 BP.

XX AC AAZ07143;

XX DT 11-OCT-1999 (first entry)

DE Human mannan-binding protein encoding cDNA.

XX KW Human; mannan-binding protein; hMBP; recombinant; inhibition; infection;

KW rhMBP; haemagglutination; influenza; HIV; primer; ss.

XX OS Homo sapiens.

XX FH Key Location/Qualifiers

FT CDS 66. .812

FT FT /*tag= a

FT FT 66. .125

FT FT /*tag= b

FT FT 126. .809

FT FT /*tag= c

FT FT /product= "mannan-binding protein"

XX PN W09937676-A1.

XX PD 29-JUL-1999.

XX PF 23-JUL-1998; 98WO-JP003311.

XX PR 23-JAN-1998; 98JP-00011864.

XX PA (FUSO) FUSO PHARM IND LTD.

XX PI Wakamiya N;

XX DR WPI: 1999-469114/39.

DR P-PSDB; AAY29485.

XX PT Recombinant human mannan-binding protein expressed using pNOMI vector.

XX PS Disclosure; Page 71-74; 91pp; Japanese.

XX CC The present invention describes recombinant human mannan-binding protein (rhMBP) having a molecular weight range of 1000-1300 or 200-400 kDa (by gel filtration with detection at 280 nm). rhMBP may be used as a component of drug compositions for the inhibition of haemagglutination and prevention of infection by viruses such as influenza and HIV. The present sequence encodes hMBP (human mannan-binding protein)
 XX SQ Sequence 3605 BP; 1055 A; 679 C; 647 G; 1224 T; 0 U; 0 Other;
 Query Match 100.0%; Score 747; DB 2; Length 3605;
 Best Local Similarity 100.0%; Pred. No. 2.3e-207;
 Matches 747; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Db 66 ATGTCCTGTTCCATCACTCCTCTCCCTGAGTATGGTGGCAGGGCTCTACTCA 60
 Qy 1 ATGTCCTGTTCCATCACTCCTCTCCCTGAGTATGGTGGCAGGGCTCTACTCA 60
 Db 126 GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCAAGTGGCTGAGTCT 120
 Qy 61 GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCAAGTGGCTGAGTCT 120
 Db 121 CCAGGCATCAAACGGCTTCCAGGCAAAAGATGGGGGTGATGGCACAAAGGGAGAAAAGGG 180
 Qy 121 CCAGGCATCAAACGGCTTCCAGGCAAAAGATGGGGCTGCTGGCTGAGTGGCTGAGTCT 180
 Db 186 CCAGGCATCAAACGGCTTCCAGGCAAAAGACTGGAACAGGGTGAACGGGAGAAAAGGG 245
 Qy 181 GAACCAGGCCAAGGGCTTACAGGGCTTACAGGGCCCCCTGGAAAGTGGGGCTCCAGGA 240
 Db 246 GAACCAGGCCAAGGGCTTACAGGGCTTACAGGGCCCCCTGGAAAGTGGGGCTCCAGGA 305
 Qy 241 AATCCAGGGCTTCTGGGTCAACAGGACCAAGGGCAAAAGGGCAAAAGGGCAAAAGGG 300
 Db 306 AATCCAGGGCTTCTGGGTCAACAGGACCAAGGGCAAAAGGGCAAAAGGGCAAAAGGG 365
 Qy 301 CCGGATGGTGTAGTAGCTGGCTTCTGCAAAAGAAAGCTCTGCAAAACAGAAATGGCA 360
 Db 366 CCGGATGGTGTAGTAGCTGGCTTCTGCAAAAGAAAGCTCTGCAAAACAGAAATGGCA 425
 Qy 361 CGTATCAAAGTGGCTGACCTCTCTGGCAAAAGGGCAAAAGGGCAAAAGGGCAAAAGGG 420
 Db 426 CGTATCAAAGTGGCTGACCTCTCTGGCAAAAGGGCAAAAGGGCAAAAGGGCAAAAGGG 485
 Qy 421 ACCAATGGTGAATAATGACCTTTGAAAGGTCAAGTTCAGGC 480
 Db 486 ACCAATGGTGAATAATGACCTTTGAAAGGTCAAGTTCAGGC 545
 Qy 481 TCTGTGGCACCCAGGAATGTCAGAGAACGGCATTAGAAATCTCATCAAGGAG 540
 Db 546 TCTGTGGCACCCAGGAATGTCAGAGAACGGCATTAGAAATCTCATCAAGGAG 605
 Qy 541 GAAGCCTCTCTGGGCATCACTGATGAGAACAGAAGGGTGTGGATCTGACAGGA 600
 Db 606 GAAGCCTCTCTGGGCATCACTGATGAGAACAGAAGGGTGTGGATCTGACAGGA 665
 Qy 601 AATAGACTGACCTACACAAACTGGAACAGAAGGGTGTGGATCTGACAGGA 660
 Db 666 AATAGACTGACCTACACAAACTGGAACAGAAGGGTGTGGATCTGACAGGA 725
 Qy 661 GATTGTGATTGCTACTGAAAAAATGGCCAGTGGCTCCCTGCTGCTGGTGTGGATCTGACAGGA 720
 Db 726 GATTGTGATTGCTACTGAAAAAATGGCCAGTGGCTCCCTGCTGCTGGTGTGGATCTGACAGGA 785
 Qy 721 CTGGCCGTCTGTGAGTTCCCTATCTGA 747
 Db 786 CTGGCCGTCTGTGAGTTCCCTATCTGA 812

RESULT 10
 ABN97210
 ID ABN97210 standard; DNA; 3605 BP.
 XX AC ABN97210;
 XX PS ABN97210;

DT	13-AUG-2002	(first entry)	SQ	366	CGGGATGGTGTAGTAGCTGGCTCAGAAAGAACAGAAATGGCA	425
XX	Gene #3708 used to diagnose liver cancer.		QY	361	CGTATCAAAGTGGTGTACCTTCCTGGAAACAGTTCTGCA	420
DE			DB	426	CGTATCAAAGTGGCTGACCTTCCTGGAAACAGTTCTCCTG	485
XX	Gene; liver cancer; ds; hepatocellular carcinoma; hepatotropic;		QY	421	ACCATGGTGAATAATGACCTTGAAAAGTGAAAGGCCCTGAGGCC	480
KW	metastatic liver tumour; cytostatic; expression profile; disease state;		DB	486	ACCAATGGTGAATAATGACCTTGAAAAGTGAAAGGCCCTGAGGCC	545
KW	disease progression; drug toxicity; drug efficacy; drug metabolism.		QY	481	TCTGGGCCACCCCCAGGAATGGAGCATTCAGAATCTCAAGGAG	540
KW			DB	546	TCTGTGGCCACCCCCAGGAATGGAGCATTCAGAATCTCAAGGAG	605
XX	Homo sapiens.		QY	541	GAAGCCTTCTGGCATCACTGATGAGAACAGAAAGGCCAGTGTGACAGGA	600
PN	WO200229103-A2.		DB	606	GAAGCCTTCTGGCATCACTGATGAGAACAGAAAGGCCAGTGTGACAGGA	665
XX	PD 11-APR-2002.		QY	601	ATAGACTGACCTACACAACACTGAAACCAACAAATGCTGGTTCTGATGAA	660
XX	PP 02-OCT-2001; 2001WO-US030589.		DB	666	ATAGACTGACCTACACAACACTGAAACCAACAAATGCTGGTTCTGATGAA	725
PR	02-OCT-2000; 2000US-0237054P.		QY	661	GATTGTGTATTGCTACTGAAAAATGGCCAGTGGAAATGAGTCCTCCACCTCCAT	720
XX	(GENE-) GENE LOGIC INC.		DB	726	GATTGTGTATTGCTACTGAAAAATGGCCAGTGGAAATGAGTCCTCCACCTCCAT	785
PA			QY	721	CTGGCCGTCTGTGAGTTCCTATCTGA	747
PI	Horne D, Alvares C, Peres-Da-Silva S, Vockley JG;		DB	786	CTGGCCGTCTGTGAGTTCCTATCTGA	812
XX	WPI; 2002-426119/45.		QY			
XX	PT Diagnosing and detecting the progression of liver cancer, hepatocellular carcinoma or metastatic liver tumor in a patient, involves detecting the level of expression of two or more genes in a liver tissue sample.		DB			
PT	PT Sequence 1; SEQ ID NO 3708; 298pp; English.		QY			
XX	PS DR 2002-426119/45.		DB			
XX	XX PT		QY			
XX	XX PT		DB			
XX	XX PS		QY			
XX	XX XX		DB			
CC	The invention relates to a novel method for diagnosing and detecting the progression of liver cancer, hepatocellular carcinoma or metastatic liver tumour in a patient, and differentiating metastatic liver cancer from hepatocellular carcinoma in a patient, involving detecting the level of expression of two or more genes represented in ABN93503-ABN97455 in a tissue sample. The method of the invention has hepatotropic, and cytostatic activity. The method is useful for diagnosing and detecting the progression of liver cancer, hepatocellular carcinoma and metastatic liver carcinoma in a patient. The method is useful for identifying expression profiles which serve as useful diagnostic markers as well as markers that can be used to monitor disease states, disease progression, drug toxicity, drug efficacy and drug metabolism. Note: The sequence data for this patent did not form part of the printed specification, but was obtained in electronic format directly from WIPO at ftp.wipo.int/pub/published_pot_sequences		QY			
CC	Sequence 3605 BP; 1055 A; 679 C; 647 T; 1224 G; 0 U; 0 Other;		DB			
CC	SQ	Score 747; DB 6; Length 3605;	QY			
CC	Query Match 100.0%; Best Local Similarity 100.0%; Pred. No. 2.3e-207; Matches 747; Conservative 0; Mismatches 0; Indels 0; Gaps 0;		DB			
CC	PS	08-JAN-2004.	QY			
CC	PS	PD 08-JAN-2004.	DB			
CC	PS	XX 08-JUN-2003; 2003WO-JP008259.	QY			
CC	PS	XX 30-JUN-2003; 2003WO-JP008259.	DB			
CC	PS	XX 28-JUN-2002; 2002JP-00189534.	QY			
CC	PS	XX (FUSO) FUSO PHARM IND LTD.	DB			
CC	PS	XX PA (FUSO) FUSO PHARM IND LTD.	QY			
CC	PS	XX PI Wakamiya N, Ohtani K, Sakamoto T, Kishi H, Kishi Y;	DB			
CC	PS	XX WPI; 2004-082879/08.	QY			
CC	PS	XX DR Anti-human immunodeficiency virus (HIV) agent comprising a mannose binding protein for treatment of HIV infection.	DB			
CC	PS	XX Disclosure; SEQ ID NO 1; 44pp; Japanese.	QY			
CC	PS	XX The present invention relates to anti-human immunodeficiency virus (HIV) agent comprises a mannose binding protein (MBP). For use in the treatment of HIV. The present sequence represents a DNA sequence related to the invention.	DB			
CC	PS	XX Sequence 3605 BP; 1055 A; 679 C; 647 T; 1224 G; 0 U; 0 Other;	QY			
CC	PS	XX SQ 3605 BP; 1055 A; 679 C; 647 T; 1224 G; 0 U; 0 Other;	DB			
CC	PS	XX Query Match 100.0%; Score 747; DB 6; Length 3605;	QY			
CC	PS	DB 66 ATGTCCTGTTCCATCACTCCCTCTCTGAGTATGGCTGAGCTTACTCA	DB			
CC	PS	QY 1 ATGTCCTGTTCCATCACTCCCTCTCTGAGTATGGCTGAGCTTACTCA	QY			
CC	PS	DB 66 ATGTCCTGTTCCATCACTCCCTCTCTGAGTATGGCTGAGCTTACTCA	DB			
CC	PS	QY 61 GAAACTGTGACCTGTGAGGTGCCAAAAGACCTGCCCTGAGTGGCTGTAGCT	QY			
CC	PS	DB 126 GAAACTGTGACCTGTGAGGTGCCAAAAGACCTGCCCTGAGTGGCTGTAGCT	DB			
CC	PS	QY 121 CCAGGGCATCAACGGCTTCCAGGCAAAGATGGCGTGTAGGGCTGTAGCT	QY			
CC	PS	DB 186 CCAGGGCATCAACGGCTTCCAGGCAAAGATGGCGTGTAGGGCTGTAGCT	DB			
CC	PS	QY 181 GAACCAAGGCCAAAGGCCCTACAGGGCTTACAGGGCCCTCCAGGA	QY			
CC	PS	DB 246 GAACCAAGGCCCTACAGGGCTTACAGGGCCCTCCAGGA	DB			
CC	PS	QY 241 AATCAGGGCCTTCTGGGTACCAAGGCCAAAGGCCCTGGAAAGTGGCC	QY			
CC	PS	DB 306 AATCAGGGCCTTCTGGGTACCAAGGCCAAAGGCCCTGGAAAGTGGCC	DB			
CC	PS	QY 301 CCGGATGGTGTAGTAGCTGGCTGCCCTAGAAAAGCTCTGCAAAAGCAATGGCA	QY			

XX
 QY 421 ACCAATGGTGAATAATGACCTTTGAAAAAGTGAAGGCCCTTGTTGTCAGGTTCCAGGCC 480
 DB 486 ACCAATGGTGAATAATGACCTTTGAAAAAGTGAAGGCCCTTGTTGTCAGGTTCCAGGCC 545
 QY 481 TCTGTGGCACCACCCAGGAATGCTGAGAATGGGCAATTCAAAGGAG 540
 DB 546 TCTGTGGCACCACCCAGGAATGCTGAGAATCTCATCAAAGGAG 605
 QY 541 GAAGCCCTCCCTGGCATCACTGTAGAGAACAGAGGGCAGTTGTGGATCTGACAGGA 600
 DB 606 GAAGCCCTCCCTGGCATCACTGTAGAGAACAGAGGGCAGTTGTGGATCTGACAGGA 665
 QY 601 AATAGFACTGACCTACACAACACTGGAAACAAATGCTGGTTCTGTGAA 660
 DB 666 AATAGFACTGACCTACACAACACTGGAAACAAATGCTGGTTCTGTGAA 725
 QY 661 GATTCTGTATTGCTACTGAAAATGGCCAGTGGAAATGACGTCCCCTCACCTCCCAT 720
 DB 726 GATTCTGTATTGCTACTGAAAATGGCCAGTGGAAATGACGTCCCCTCACCTCCCAT 785
 QY 721 CTGGCCGTCTGTGAGTTCCCTATCTGA 747
 DB 786 CTGGCCGTCTGTGAGTTCCCTATCTGA 812

RESULT 13

ADR29057 standard; DNA; 1632 BP.

XX ADR29057;

XX DT 21-OCT-2004 (first entry)

XX Human MBL gene with variant structural allele (in codon 57).
 DE Sepsis; septic shock; severe; MBL; mannose binding lectin; SIRS;
 KW systemic inflammatory response syndrome; innate immune defence;
 KW single nucleotide polymorphism; SNP; structural variant; regulatory;
 KW prophylaxis; Sepsis syndrome; infection susceptibility;
 KW multiple organ failure; MOF; multiple organ dysfunction; acute; gene; ds;
 KW human.
 XX OS Homo sapiens.

XX FH Key

FT variation

FT FT

FT FT

XX PN

XX PD

XX PF

XX PR

XX PA

PA

XX DR

XX PI

XX PS

XX CC The invention relates to a method to determine the risk factor of a person for sepsis, severe sepsis or septic shock by correlating MBL (mannose binding lectin) genotype with a predefined risk value. It discloses the connection between the MBL genotype of an individual having SIRS (Systemic Inflammatory Response Syndrome) and the risk of developing sepsis, severe sepsis or septic shock. It shows how a decreased level of MBL and lack of functional MBL are crucial to the development of sepsis and septic shock in an individual having sepsis. A MBL is an important factor in innate immune defence. MBL single nucleotide polymorphism in the form of the structural variant (codon 54, codon 52 and codon 57) and regulatory variant (low expression and high expression) were studied. This invention discloses that the MBL gene polymorphism's causes a reduction of the MBL level, which is associated with the development and progression of sepsis in adult intensive care patients. The invention offers a service to determine whether an individual belongs to a risk group and it provides the treatment accordingly. There is an increased risk of a fatal outcome of an individual carrying MBL variant alleles. A rapid determination of MBL genotype of patients is important in identifying individuals at risk of developing sepsis, severe sepsis or septic shock. The MBL can be used for a medicament for the prevention and treatment of specified diseases. The MBL variant allele is also associated with an increased risk of death. It raises the prospective that MBL (MBL substitution) can be used in prophylaxis and treatment of sepsis syndrome. The frequency of MBL variant alleles is proportional to the severity of sepsis which indicates lacking buffering capacity of MBL towards initial microbial replication. It is not only associated with susceptibility of infection but also allows activation of host mechanisms central to the pathophysiology of the sepsis syndrome. The invention can also predict the risk for developing multiple organ failure (MOF), multiple organ dysfunction and acute organ dysfunction of an individual having SIRS. The high risk is characterized by the presence of at least one variant structural allele of the MBL gene and/or having two low expression regulatory alleles of the MBL gene in a sample. The presented sequence is the variant structural allele (in codon 57) of MBL (mannose binding lectin) gene from human.

XX Sequence 1632 BP; 448 A; 381 C; 429 G; 374 T; 0 U; 0 Other;

XX SQ Query Match 99.8%; Score 745.4; DB 13; Length 1632;
 XX Best Local Similarity 99.9%; Pred. No. 4.7e-207; Mismatches 0; Indels 0; Gaps 0; Matches 746; Conservative 0;

XX QY 1 ATGTCCTGTTCCATCACTCCCTCTCCCTCTGACTATGGTGGCAGGGCTCTACTCA 60
 DB 886 ATGTCCTGTTCCATCACTCCCTCTCCCTCTGAGGTATGGTGGCAGGGCTCTACTCA 945
 QY 61 GAAACTGTGACCTGTGAGGATGCCAAAGACCTGCCCTGCAGTGATTGGCTTAGCTCT 120
 DB 946 GAAACTGTGACCTGTGAGGATGCCAAAGACCTGCCCTGCAGTGATTGGCTTAGCTCT 1005
 QY 121 CCAGGCATCAACGGCTTCCAGGCCAAAGATGGCTGATGGCACCAGGGAAAGGGG 180
 DB 1006 CCAGGCATCAACGGCTTCCAGGCCAAAGATGGCTGATGGCACCAGGGAAAGGGG 1065
 QY 181 GAACCAAGGCCAAAGGCTTACAGGGCTCACAGGCCAAAGGAGACCTGGCTGAAAGCT 240
 DB 1066 GAACCAAGGCCAAAGGCTTACAGGGCTCACAGGCCAAAGGAGACCTGGCTCCAGGA 1125
 QY 241 AATCCAGGGCTTCTGGGTCAACAGGCCAAAGGAGACCTGGCTGAAAGCTGGCTCCAGGA 300
 DB 1126 AATCCAGGGCTTCTGGGTCAACAGGCCAAAGGAGACCTGGCTCCAGGA 1185
 QY 301 CGGGATGGTGTAGTAAGCTGGCTGCCTCAGAAAGAAGCTCTGGCAAAACGAAATGGCA 360
 DB 1186 CGGGATGGTGTAGTAAGCTGGCTGCCTCAGAAAGAAGCTCTGGCAAAACGAAATGGCA 1245
 QY 361 CGTATCAAAGTGGCTGACCTCTCTGGCAAAACAAAGTGGCAAACTGGCTCTCCCTG 420
 DB 1246 CGTATCAAAGTGGCTGACCTCTCTGGCAAAACAAAGTGGCTCTCCCTG 1305
 QY 421 ACCAATGGTGAATAATGACCTTGAAAAGTGAAGGCCCTGTGTCAAGTCCAGGCC 480
 PT Predicting whether an individual having Systemic Inflammatory Response Syndrome (SIRS) will develop sepsis, useful for treating sepsis,
 PT comprises determining the mannose-binding lectin (MBL) genotype or
 PT concentration of MBL.
 XX Claim 3; SEQ ID NO 22; 65pp; English.

1306	ACCAATGGTGAATAATGACCCTTGAAAGTGAAGGCCTTGTGTCAAGTTCCAGGCC	1365
481	TCTGTGGCACCCCCCAGGAATGCTGCAGAGAATTGGAGCCATTCAAATCTCATCAAAGGAG	540
1366	TCTGTGGCACCCCCCAGGAATGCTGCAGAGAATTCAAATCTCATCAAAGGAG	1425
541	GAAGGCCTTCCTGGCATCACTGATGAGAACAGAACAGAACGGGCAGTTGTGGATCTGACAGGA	600
1426	GAAGGCCTTCCTGGCATCACTGATGAGAACAGAACAGAACGGCAGTTGTGGATCTGACAGGA	1485
601	AATAGACTGACCTACACAAACTGGAACCGAGGGTGAACCAACAAATGCTGGTTCTGATGAA	660
1486	AATAGACTGACCTACACAAACTGGAACCGAGGGTGAACCAACAAATGCTGGTTCTGATGAA	1545
661	GATTGTGTATTGCTACTGAAAAATGGCCAGTGAATGACGTCCTGCTCCACCTCCCAT	720
1546	GATTGTGTATTGCTACTGAAAAATGGCCAGTGAATGACGTCCTGCTCCACCTCCCAT	1605
721	CTGGCCGTCTGTGAGTTCCCTATCTGA	747
1606	CTGGCCGTCTGTGAGTTCCCTATCTGA	1632
RESULT 14		
ADR29058	ID ADR29058 standard; DNA; 1638 BP.	
XX	ADR29058;	
AC		
XX		
DT	21-OCT-2004 (first entry)	
XX	Human MBL gene with variant structural allele (in codon 54).	
DE		
XX		
SW	Sepsis; septic shock; severe; MBL; mannose binding lectin; SIRS;	
SW	systemic inflammatory response syndrome; innate immune defence;	

single nucleotide polymorphism; SNP; structural variant; regulatory; prophylaxis; sepsis syndrome; infection susceptibility; multiple organ failure; MOF; multiple organ dysfunction; acute; gene; ds; human.	Homo sapiens..	
	Key variation	Location/Qualifiers
	1052	/*tag= a /standard name= "Single nucleotide polymorphism" /note= "Variant structural allele"
	WO2004065626-A2.	
	05-AUG-2004 .	
	16-JAN-2004; 2004WO-DK000027.	
	17-JAN-2003; 2003DK-00000042. 06-MAR-2003; 2003US-0453272P.	
	(RIGS-) RIGSHOSPITALET. (KOBE-) KOBENHAVNS AMT.	
	Garred P, Madsen HO, Strom J;	
	WPI; 2004-571694/55.	
	Predicting whether an individual having Systemic Inflammatory Response Syndrome (SIRS) will develop sepsis, useful for treating sepsis, comprises determining the mannose-binding lectin (MBL) genotype or concentration of MBL.	
	Claim 3; SEQ ID NO 23; 65pp; English.	

(mannose binding lectin) genotype with a predefined risk value. It discloses the connection between the MBL genotype of an individual having SIRS (Systemic Inflammatory Response Syndrome) and the risk of developing sepsis, severe sepsis or septic shock. It shows how a decreased level of MBL and lack of functional MBL are crucial to the development of sepsis and septic shock in an individual having sepsis. A MBL is an important factor in innate immune defence. MBL single nucleotide polymorphism in the form of the structural variant (codon 54, codon 52 and codon 57) and regulatory variant (low expression and high expression) were studied. This invention discloses that the MBL gene polymorphism's causes a reduction of the MBL level, which is associated with the development and progression of sepsis in adult intensive care patients. The invention offers a service to determine whether an individual belongs to a risk group and it provides the treatment accordingly. There is an increased risk of a fatal outcome of an individual carrying MBL variant alleles. A rapid determination of MBL genotype of patients is important in identifying individuals at risk of developing sepsis, severe sepsis or septic shock. The MBL can be used for a medicament for the prevention and treatment of specified diseases. The MBL variant allele is also associated with an increased risk of death. It raises the prospective that MBL (MBL substitution) can be used in prophylaxis and treatment of sepsis syndrome. The frequency of MBL variant alleles is proportional to the severity of sepsis which indicates lacking buffering capacity of MBL towards initial microbial replication. It is not only associated with susceptibility of infection but also allows activation of host mechanisms central to the pathophysiology of the sepsis syndrome. The invention can also predict the risk for developing multiple organ failure (MOF), multiple organ dysfunction and acute organ dysfunction of an individual having SIRS. The high risk is characterised by the presence of at least one variant structural allele of the MBL gene and or having two low expression regulatory alleles of the MBL gene in a sample. The presented sequence is human MBL gene with variant structural allele (in codon 54).

Db	1372	TCTGTGCCACCCAGGAATGGAGAACATTAGAATCTCATCAAGGAG	1431	CC (mannose binding lectin) genotype with a predefined risk value. It discloses the connection between the MBL genotype of an individual having SIRS (Systemic Inflammatory Response Syndrome) and the risk of developing sepsis, severe sepsis or septic shock. It shows how a decreased level of MBL and lack of functional MBL are crucial to the development of sepsis and septic shock in an individual having sepsis. A MBL is an important factor in innate immune defence. MBL single nucleotide polymorphism in the form of the structural variant (codon 54, codon 52 and codon 57) and regulatory variant (low expression and high expression) were studied.
Qy	541	GAAGCCCTCCTGGCATCACTGATGAGAACAGAGGGCAGTTGGGATCTGACAGGA	600	CC
Db	1432	GAAGCCCTCCTGGCATCACTGATGAGAACAGAGGGCAGTTGGGATCTGACAGGA	1491	CC
Qy	601	AATAGACTGACCTACACAACCTGGAACAGGGTGAACAAATGCTGGTTCTGTATGAA	660	CC
Db	1492	AATAGACTGACCTACACAACCTGGAACAGGGTGAACAAATGCTGGTTCTGTATGAA	1551	CC
Qy	661	GATTGTGATTGCTACTGAAAAATGGCCAGTGGAAATGACGTCCACCTCCCAT	720	CC
Db	1552	GATTGTGATTGCTACTGAAAAATGGCCAGTGGAAATGACGTCCACCTCCCAT	1611	CC
Qy	721	CTGGCCGTCTGTGAGTCCCTATCTGA	747	CC
Db	1612	CTGGCCGTCTGTGAGTCCCTATCTGA	1638	CC
RESULT 1.5				
ID	ADR29060	standard; DNA; 1638 BP.		
XX				
AC	ADR29060;			
XX				
DT	21-OCT-2004	(first entry)		
XX				
DE		Human MBL gene with non-structural/variant structural allele (codon 52).		
XX				
KW		Sepsis; septic shock; severe; MBL; mannose binding lectin; SIRS;		
KW		systemic inflammatory response syndrome; innate immune defence;		
KW		single nucleotide polymorphism; SNP; structural variant; regulatory;		
KW		prophylaxis; sepsis syndrome; infection susceptibility;		
KW		multiple organ failure; MOF; multiple organ dysfunction; acute; gene; ds;		
KW		human.		
XX				
OS	Homo sapiens.			
XX				
FH	Key	Location/Qualifiers		
FT	variation	273		
FT		/*tag= a		
FT		/standard_name= "Single nucleotide polymorphism"		
FT		/note= "Non-structural allele"		
FT	variation	1045		
FT		/*tag= b		
FT		/standard_name= "Single nucleotide polymorphism"		
FT		/note= "Variant structural allele"		
XX	WO2004065626-A2.			
XX	05-AUG-2004.			
XX	16-JAN-2004;	2004WO-DK0000027.		
XX	17-JAN-2003;	2003DK-0000042.		
PR	06-MAR-2003;	2003US-0453272P.		
XX	(RIGS-)	RIGSHOSPITALT.		
PA	(KOBENHAVNS AMT.			
PI	Garred P,	Madsen HO,	Strom J;	
XX	DR;	2004-571694/55.		
XX	PT	Predicting whether an individual having Systemic Inflammatory Response Syndrome (SIRS) will develop sepsis, useful for treating sepsis, comprises determining the mannose-binding lectin (MBL) genotype or concentration of MBL.		
XX	Claim 3;	SEQ ID NO 25;	65pp;	English.
XX	CC	The invention relates to a method to determine the risk factor of a person for sepsis, severe sepsis or septic shock by correlating MBL		
Qy	361	CGTATCAAAGGTGTAATGACCTTGTGACCTTCTCTGGCTTCAGTCTGGCAACAGAAATGGCAAGTCTTCCTG	420	CC
Db	1252	CCGGATGGCTGATAGTAGCCTGGCTGCCTGAGAAAGCTCTGGCAACAGAAATGGCTTCAGTCCAGGC	1311	CC
Qy	421	ACCAATGGTGAATAATGACCTTGTGAAAGCTTGTGTCAGTCTGGCTTCAGTCCAGGC	480	CC
Db	1312	CGTATCAAAGGTGTAATGACCTTGTGCAAGTCTGGCTTCAGTCCAGGC	1371	CC
Qy	481	TCTGGGCCACCCCAAGGAATGGTGTGAGAGAATGGGCCATTGAGAATTCATCAAGGAG	540	CC

Db	1372	TCTGGCCACCCAGGAATGCTGAGAATGGGCCATTCAAGGAG 1431
Qy	541	GAAGCCTTCCTGGCATCACTGATGAGAACAGAAGAGAAAGGGCAGTTGGATCTGACAGGA 600
Db	1432	GAAGCCTTCCTGGCATCACTGATGAGAACAGAAGAGAAAGGGCAGTTGGATCTGACAGGA 1491
Qy	601	AATAGACTGACCTACACAAACTGGAACCGGGTGAACCAATGCTGGTTCTGATGAA 660
Db	1492	AATAGACTGACCTACACAAACTGGAACGGGTGAACCAATGCTGGTTCTGATGAA 1551
Qy	661	GATTGTATTGCTACTGAAAATGGCAGTGGAACTGGAACGGGTGAACCAACAAATGCTGGTTCTGATGAA 720
Db	1552	GATTGTATTGCTACTGAAAATGGCAGTGGAAATGACGTCCACCTCCAT 1611
Qy	721	CTGGCGCTCTGTGAGTTCCCTATCTGA 747
Db	1612	CTGGCGCTCTGTGAGTTCCCTATCTGA 1638

Search completed: June 20, 2005, 16:01:54
Job time : 545 secs

THIS PAGE BLANK (USPTO)

GenCore version 5.1.6
 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: June 19, 2005, 17:17:35 ; Search time 184 Seconds

(without alignments)
 6642.928 Million cell updates/sec

Title: US-10-054-536-2

Perfect score: 747 1 argtccctgtttccatcaact.....tcttgtaggcccattatctga 747

Sequence: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

Scoring table: 1202784 seqs, 818138359 residues

Total number of hits satisfying chosen parameters:

2405568

Minimum DB seq length: 0
 Maximum DB seq length: 2000000000Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing First 45 summaries

Database : Issued Patents NA:
 1: /cgn2_6/ptodata/1/ina/5A_COMB.seq: *
 2: /cgn2_6/ptodata/1/ina/5B_COMB.seq: *
 3: /cgn2_6/ptodata/1/ina/6A_COMB.seq: *
 4: /cgn2_6/ptodata/1/ina/6B_COMB.seq: *
 5: /cgn2_6/ptodata/1/ina/PCTUS_COMB.seq: *
 6: /cgn2_6/ptodata/1/ina/backfiles1.seq: *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	747	100.0	900	3 US-09-198-603C-1	Sequence 1, Appli
2	747	100.0	1340	4 US-09-949-016-3499	Sequence 3499, Appli
3	747	100.0	3605	4 US-09-949-016-36	Sequence 36, Appli
4	374	50.1	8093	4 US-09-949-016-15241	Sequence 15241, A
5	374	50.1	10320	4 US-09-949-016-11778	Sequence 11778, A
6	204.4	27.4	1211	3 US-09-949-016-603C-25	Sequence 25, Appli
C	7	188	25.2	601	4 US-09-949-016-18336
C	8	188	25.2	601	4 US-09-949-016-124315
C	9	126	16.9	714	3 US-09-198-603C-26
C	10	74	9.9	601	4 US-09-949-016-18337
C	11	74	9.9	601	4 US-09-949-016-124316
C	12	73.4	9.8	1558	3 US-09-198-603C-24
C	13	72	9.6	601	4 US-09-949-016-18342
C	14	72	9.6	601	4 US-09-949-016-124321
C	15	67.6	9.0	885	1 US-08-365-103B-3
C	16	67.6	9.0	924	1 US-08-365-103B-5
C	17	67.6	9.0	1005	1 US-08-365-103B-1
C	18	63.4	8.5	747	4 US-09-949-016-741
C	19	62.8	8.4	369	3 US-09-535-521-24
C	20	62.8	8.4	369	3 US-09-535-521-26
C	21	62.8	8.4	384	3 US-09-535-521-7
C	22	62.8	8.4	384	3 US-09-535-521-9
C	23	62.8	8.4	417	3 US-09-535-521-10
C	24	62.8	8.4	417	3 US-09-535-521-12
C	25	62.8	8.4	423	3 US-09-535-521-13
C	26	62.8	8.4	423	3 US-09-535-521-15
C	27	62.8	8.4	561	3 US-09-535-521-16

ALIGNMENTS

RESULT 1						
US-09-198-603C-1						
;	Sequence 1, Application US/09198603C	;	Patent No. 6337193	;	GENERAL INFORMATION:	
;	;	;	;	;	APPLICANT: TULLY, Raymond E.	
;	;	;	;	;	APPLICANT: CALTAGIRONE, G. Thomas	
;	;	;	;	;	APPLICANT: MOYER, Shawn S.	
;	;	;	;	;	APPLICANT: RONNING, Michael T.	
;	;	;	;	;	TITLE OF INVENTION: EXPRESSION OF MANNOSE-BINDING PROTEIN IN METHYLOTROPHIC YEAST	
;	;	;	;	;	FILE REFERENCE: A7290	
;	;	;	;	;	CURRENT APPLICATION NUMBER: US/09/198,603C	
;	;	;	;	;	CURRENT FILING DATE: 1998-11-24	
;	;	;	;	;	NUMBER OF SEQ ID NOS: 26	
;	;	;	;	;	SOFTWARE: PatentIn Ver. 2.1	
;	;	;	;	;	SEQ ID NO 1	
;	;	;	;	;	LENGTH: 900	
;	;	;	;	;	TYPE: DNA	
;	;	;	;	;	ORGANISM: Human	
;	;	;	;	;	US-09-198-603C-1	

Best Local Similarity 100.0%; Pred. No. 4.8e-108; Matches 374; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 126 GAAACTGTGACCTGTGAGGAACCTGCCAAAAGACATGGCCATTGCTGTAGCTCT 185
 Qy 121 CCAGGCATCAACGGCTTCCAGGCAAAAGATGGGCAACAGGAGAAAAGGG 1.80
 Db 186 CCAGGCATCAACGGCTTCCAGGCAAAAGATGGGCGATGGGCAAAAGGG 2.45
 Qy 181 GAACCAAGGCCAAGGGCTCAGAGGCCCTTACAGGGCCCCCTGAAAGTTGGGCCCTCCAGGA 2.40
 Db 246 GAACCAAGGCCAAGGGCTCAGAGGCCCTAACGGCTTACAGGGCAAAAGTTGGGCCCTCCAGGA 3.05
 Qy 241 AATCCAGGGCCTTCTGGGTACCCAGGACCAAAGGGCCAAAAGGAGACCCCTGGAAAAGT 3.00
 Db 306 AATCCAGGGCCTTCTGGGTACCCAGGACCAAAGGGCCAAAAGGAGACCCCTGGAAAAGT 3.65
 Qy 301 CCGGATGGTGTAGTAGCTAGCCTGGCTGCCCTCAGAAAGAAAGCTCTGCAAACAGAAATGGCA 3.60
 Db 366 CCGGATGGTGTAGTAGCTAGCCTGGCTGCCCTCAGAAAGAAAGCTCTGCAAACAGAAATGGCA 4.25
 Qy 361 CGTATCAAAGTGGCTGACCTTCTCTGGCAAAACAAGGTTGGAAACAAAGTTCCTCTG 4.20
 Db 426 CGTATCAAAGTGGCTGACCTTCTCTGGCAAAACAAGGTTGGAAACAAAGTTCCTCTG 4.85
 Qy 421 ACCATGGTGAATAATGACCTTGTGACCTTCTCTGGCAAAACAAGGTTGGAAACAAAGTTCCTCTG 4.80
 Db 486 ACCATGGTGAATAATGACCTTGTGACCTTCTCTGGCAAAACAAGGTTGGAAACAAAGTTCAGGCC 5.45
 Qy 481 TCTGTGCCACCCCAAGGAATGGCTGTGAGGAATGGCCATTCTAGAAATCTCATCAAGGAG 5.40
 Db 546 TCTGTGCCACCCCAAGGAATGGCTGTGAGGAATGGCCATTCTAGAAATCTCATCAAGGAG 6.05
 Qy 541 GAAGCCTCTGGCATCACTGATGAAAGAGCAAGAGCAAGAGCAAGGGCAGTTGTGGATCTGACAGGA 6.00
 Db 606 GAAGCCTCTGGCATCACTGATGAAAGAGCAAGAGCAAGGGCAGTTGTGGATCTGACAGGA 6.65
 Qy 601 AATAGACTGACCTACACAAACTGGAAAGGGGTGAACCCAACAATGCTGGTTCTGATGAA 6.60
 Db 666 AATAGACTGACCTACACAAACTGGAAAGGGGTGAACCCAACAATGCTGGTTCTGATGAA 7.25
 Qy 661 GATTGGTGTATTGCTACTGAAAAAATGGCCAGTGGAAATGACGTCCACCTCCCAT 7.20
 Db 726 GATTGGTGTATTGCTACTGAAAAAATGGCAAGTGGAAATGACGTCCACCTCCCAT 7.85
 Qy 721 CTGGCCGTCTGTGAGTTCCCTATCTGA 7.47
 Db 786 CTGGCCGTCTGTGAGTTCCCTATCTGA 8.12

RESULT 4
 US-09-949-016-15241
 Sequence 15241, Application US/09949016
 ; GENERAL INFORMATION:
 ; APPLICANT: VENTER, J. Craig et al.
 ; TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
 ; WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF
 ; FILE REFERENCE: CL001307
 ; CURRENT APPLICATION NUMBER: US/09/949, 016
 ; PRIOR APPLICATION NUMBER: 60/12339
 ; PRIOR FILING DATE: 2000-04-14
 ; PRIOR APPLICATION NUMBER: 60/241, 755
 ; PRIOR FILING DATE: 2000-10-20
 ; NUMBER OF SEQ ID NOS: 207012
 ; SOFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO: 11778
 ; LENGTH: 10320
 ; TYPE: DNA
 ; ORGANISM: Human
 ; US-09-949-016-11778

Query Match 50.1%; Score 374; DB 4; Length 10320;
 Best Local Similarity 100.0%; Pred. No. 5.5e-108; Matches 374; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Db 374 GGCTGACCTTCTCTGGCAACAAAGTGGAAACAGTTCTCTGACCAATGGTGA 4.33
 Db 5191 GGCTGACCTTCTCTGGCAACAAAGTGGAAACAGTTCTCTGACCAATGGTGA 5.250
 Qy 434 TAATGACCTTGAAGAAGTGAAGGGCCTTGTGTCAAGTTCCAGGCCACCC 4.93
 Db 5251 TAATGACCTTGAAGAAGTGAAGGGCCTTGTGTCAAGTTCCAGGCCACCC 5.310
 Qy 494 CCAGGAATGCTGCAGAGAATGGAGCCATTCTAGAAATCTCATCAAGGAGAAGCCCTTCCTG 5.53
 Db 5311 CCAGGAATGCTGCAGAGAATGGAGCCATTCTAGAAATCTCATCAAGGAGAAGCCCTTCCTG 5.370

Query Match 50.1%; Score 374; DB 4; Length 8093;

QY 554 GCATCACTGATGAGAACAGAAGGGCAGTTGTGGATCTGACAGGAATAAGTGA
CT 613
Db 5371 GCATCACTGATGAGAACAGAAGGGCAGTTGTGGATCTGACAGGAATAAGTGA
CT 5430

QY 614 ACACAAACTGGAAACGAGGGTGAACCCAATGCTGGTTCTGATGAAGATGGTATTGC 673
Db 5431 ACACAAACTGGAAACGAGGGTGAACCCAATGCTGGTTCTGATGAAGATGGTATTGC 5490

QY 674 TACTGAAAAATGCCAGTGAAATGACGTCCACCTCCATCTGCCGTCCTGTG 733
Db 5491 TACTGAAAAATGCCAGTGAAATGACGTCCACCTCCATCTGCCGTCCTGTG 5555

QY 734 AGTTCCCTATCTGA 747
Db 5551 AGTTCCCTATCTGA 5564

RESULT 6

US-09-198-603C-25
; Sequence 25, Application US/09198603C
; Patent No. 6337193
; GENERAL INFORMATION:
; APPLICANT: TULLY, Raymond E.
; APPLICANT: CALTAGIRONE, G. Thomas
; APPLICANT: MOYER, Shawn S.
; APPLICANT: RONNING, Michael T.
; TITLE OF INVENTION: EXPRESSION OF MANNOSE-BINDING PROTEIN IN METHYLOTROPHIC
; YEAST
; FILE REFERENCE: A7290
; CURRENT APPLICATION NUMBER: US/09/198,603C
; CURRENT FILING DATE: 1998-11-24
; NUMBER OF SEQ ID NOS: 26
; SOFTWARE: Patentin Ver. 2.1
; SEQ ID NO: 25
; LENGTH: 1211
; TYPE: DNA
; ORGANISM: Mouse
; US-09-198-603C-25

Query Match 27.4%; Score 204.4; DB 3; Length 1211;
Best Local Similarity 71.7%; Pred. No. 1.7e-54;
Matches 268; Conservative 0; Mismatches 106; Indels 0; Gaps 0;

QY 374 GGCTGACCTTCTCTGGCAAAACAAAGTGGCAACAAAGTTCTGACCAAATGGTGA
AA 433
Db 576 GGGTGGCTCTCTGAGTGAAGAAGTGGAAAGTGGTAAAAA 635

QY 434 TAATGACCTTGTGAAAGTGAAGGGCTTGTGTCAGTTCCAGGCCTCTGGGCCACCC 493
Db 636 AGATGAGCCTTGATAGAGTGAAGGCCATTCAAGGAAGTGGCTCGAATTCCAGGGCT
CTGTGGCCACTC 695

QY 494 CCAGGAATGCTGGAGAGAATGGAGCCATTCAAGAATCTCATCAAGGGAAGGCC
CTCTGG 553
Db 696 CCAGGGATGCTGAGGAAACTCGGCCATTCAAGAAGTGGCTACTTGG 755

QY 554 GCATCACTGATGAGAACAGAAGGGCAAGTGGTCTGATGAAGGAATAAGACTGA
CCT 613
Db 756 GCATCACAGATGAGGGTGAAGGGAGTTGGATCTGACAGGAAACAGAGTGGCCT 815

QY 614 ACACAAACTGGAAACGAGGGTGAACCCAATGCTGGTTCTGATGAAGATGGTAT
TGC 673
Db 816 ATACTAATTGGAAATGATGGGAGGGCAACACGGGCAAGACTGTGGTGA 875

QY 674 TACTGAAAATGCCAGTGAAATGACGTCCACCTCCATCTGCCGTCCTGTG 733
Db 876 TCTRTGGAAATGCCAAAGTGGAAACGATGTCCTGACTCTGGCAATATGTG 935

QY 734 AGTTCCCTATCTGA 747
Db 936 AATTCTCTGACTGA 949

US-09-949-016-18336/C
; Sequence 18336, Application US/09949016
; Patent No. 6812339
; GENERAL INFORMATION:
; APPLICANT: VENTER, J. Craig et al.
; TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
; WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF
; FILE REFERENCE: CL001307
; CURRENT APPLICATION NUMBER: US/09/949,016
; CURRENT FILING DATE: 2000-04-14
; PRIOR APPLICATION NUMBER: 60/241,755
; PRIOR FILING DATE: 2000-10-20
; NUMBER OF SEQ ID NOS: 207012
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 18336
; LENGTH: 601
; TYPE: DNA
; ORGANISM: Human
US-09-949-016-18336

Query Match 25.2%; Score 188; DB 4; Length 601;
Best Local Similarity 100.0%; Pred. No. 1.9e-49;
Matches 188; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ATGTCCTCTGTTCCATCACTCCCTCTCCTGAGTATGGTGGCAGCGCTTACTCA 60
Db 597 ATGTCCTCTGTTCCATCACTCCCTCTCCTCTCCTGAGTATGGTGGCAGCGCTTACTCA 538

Qy 61 GAAACTGTGACCTGTGAGGATGCCAAAGAACCTGCCCTGCAGTGGCTTAGCTCT 120
Db 537 GAAACTGTGACCTGTGAGGATGCCAAAGAACCTGCCCTGCAGTGGCTTAGCTCT 478

Qy 121 CCAGGCATCAACGGCTTCCAGGAAAGATGGCAACAAAGGAGAAAGGGC 180
Db 477 CCAGGCATCAACGGCTTCCAGGAAAGATGGCAACAAAGGAGAAAGGGC 418

QY 181 GAACCCAGG 188
Db 417 GAACCCAGG 410

RESULT 8

US-09-949-016-124315/C
; Sequence 124315, Application US/09949016
; Patent No. 6812339
; GENERAL INFORMATION:
; APPLICANT: VENTER, J. Craig et al.
; TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
; WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF
; FILE REFERENCE: CL001307
; CURRENT APPLICATION NUMBER: US/09/949,016
; CURRENT FILING DATE: 2000-04-14
; PRIOR APPLICATION NUMBER: 60/241,755
; PRIOR FILING DATE: 2000-10-20
; NUMBER OF SEQ ID NOS: 207012
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 124315
; LENGTH: 601
; TYPE: DNA
; ORGANISM: Human
US-09-949-016-124315

Query Match 25.2%; Score 188; DB 4; Length 601;
Best Local Similarity 100.0%; Pred. No. 1.9e-49;
Matches 188; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ATGTCCTGTTCCATCACTCCCTCTCCTGAGTATGGCAGGGCTTACTCA 60
 Db 597 ATGTCCTGTTCCATCACTCCCTCTCCTGAGTATGGCAGGGCTTACTCA 538

Qy 61 GAAACTGTGACCTGTGAGGTGCCAAAAGACCTGCCATTGATGGCTCT 120
 Db 537 GAAACTGTGACCTGTGAGGTGCCAAAAGACCTGCCATTGATGGCTCT 478

Qy 121 CCAGGCATCAACGGCTTCCCAGGCAAAGATGGCGATGGCACCAAGGG 180
 Db 477 CCAGGCATCAACGGCTTCCCAGGCAAAGATGGCGATGGCACCAAGGG 418

Qy 181 GAACCAAG 188
 Db 417 GAACCAAG 410

Db 721 CT 722
 Qy 694 AT 695

RESULT 9
 US-09-198-603C-26
 ; Sequence 26, Application US/09198603C
 ; Patent No. 6337193
 ; GENERAL INFORMATION:
 ; APPLICANT: TULLY, Raymond E.
 ; APPLICANT: CALTAGIRONE, G. Thomas
 ; APPLICANT: MOYER, Shawn S.
 ; APPLICANT: RONNING, Michael T.
 ; TITLE OF INVENTION: EXPRESSION OF MANNOSE-BINDING PROTEIN IN METHYLOTROPHIC
 ; FILE REFERENCE: A7290.
 ; CURRENT APPLICATION NUMBER: US/09/198, 603C
 ; CURRENT FILING DATE: 1998-11-24
 ; NUMBER OF SEQ ID NOS: 26
 ; SOFTWARE: PatentIn Ver. 2.1
 ; SEQ ID NO 26
 ; LENGTH: 714
 ; TYPE: DNA
 ; ORGANISM: CHICKEN
 ; US-09-198-603C-26

Query Match 16.9%; Score 126; DB 3; Length 714;
 Best Local Similarity 53.0%; Pred. No. 1.2e-29;
 Matches 351; Conservative 0; Mismatches 290; Indels 21; Gaps 3;

Qy 79 GATGCCAAAGACCTGCCCTGGCAGTGATTGGCTCTCCAGGCATCAACGGCTTC 138
 Db 37 GAAGAGAAAATGTATTCTGCCCCATCATTCACTGTTAGTGTCTGGCACTGGATA 96

Qy 139 CCAGGCAAAGATGGCGTGAATGGCACCAAGGGAAACCAAGGGCTC 198
 Db 97 CCAGGCAAGATGGAAAGAGATGGTCCCAAAGGGAAAAGGGAACCCAGGAAGGACTG 156

Qy 199 AGAGGTTACAGGGCCCCCTGGAAAAGTTGGGCCCTCCAGGAATCCGGGCTTCTGGG 258
 Db 157 AGAGGCTGGAGGGTTGCCAGGAAAGCAGGCCAAGGATAAAAGGAGAGGTGGGA 216

Qy 259 TCACCAAGGCCAAGGGCCAAGGGACCGAT 306
 Db 217 CCACCAAGGAGAAAAGGTCAAAAAGGAGAACGTGAAATTGTTGAACTGATGACCTGCAC 276

Qy 307 GGTGATAGTAGCTGGCTGCCTCAGAAAGCTCTGGAAACAGAAATGGCACGTATC 366
 Db 277 CGACAATAACTGATTGGAAAGCAAAATCCGGTAAACGAGCTTAAGGAGATA 336

Qy 367 AAAAGTGGCTGACCTTCTCTGGCAAAACAAGTGGCAACAAAGTCTCTGACCAAT 426
 Db 337 AAAAGCCTTGAGTTAAAGGACGTGTAAACATGGTAAAAAATGTTGTCTCAACT 396

Qy 427 GGTGAAATAATGACCTTTGAAAAAGTGAAAGGCCCTGGCTCAAGTTCCAGGCCTCTGTG 486
 Db 397 GGAAAGAAATAATAATTGAAAGGGAAAATCCCTTGTGCAAAAGTGGAAAGTGTGCTT 456

Qy 487 GCCACCCAGGAATGCTGCAGAGAATGGAGCCATTAGAATCTCATCAAG----GAG 540

RESULT 10
 US-09-949-016-18337/C
 ; Sequence 18337, Application US/09949016
 ; Patent No. 6812339
 ; GENERAL INFORMATION:
 ; APPLICANT: VENTER, J. Craig et al.
 ; TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
 ; WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF
 ; FILE REFERENCE: CL001307
 ; CURRENT APPLICATION NUMBER: US/09/949, 016
 ; CURRENT FILING DATE: 2000-04-14
 ; PRIOR APPLICATION NUMBER: 60/241, 755
 ; PRIOR FILING DATE: 2000-10-20
 ; PRIOR APPLICATION NUMBER: 60/237, 768
 ; PRIOR FILING DATE: 2000-10-03
 ; PRIOR APPLICATION NUMBER: 60/231, 498
 ; PRIOR FILING DATE: 2000-09-08
 ; NUMBER OF SEQ ID NOS: 207012
 ; SOFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO 18337
 ; LENGTH: 601
 ; TYPE: DNA
 ; ORGANISM: Human
 ; US-09-949-016-18337

Query Match 9.9%; Score 74; DB 4; Length 601;
 Best Local Similarity 100.0%; Pred. No. 4e-13;
 Matches 74; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 115 AGCTCTCAGGCCATCAACGGCTTCCCAAGGCAAAGATGGCGTGTGGCACCAAGGGAGA 174
 Db 601 AGCTCTCAGGCCATCAACGGCTTCCCAAGGCAAAGATGGCGTGTGGCACCAAGGGAGA 542

Qy 175 AAGGGGAACCAAG 188
 Db 541 AAGGGGGAAACCAAG 528

RESULT 11
 US-09-949-016-124316/C
 ; Sequence 124316, Application US/09949016
 ; Patent No. 6812339
 ; GENERAL INFORMATION:
 ; APPLICANT: VENTER, J. Craig et al.
 ; TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
 ; WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF
 ; FILE REFERENCE: CL001307
 ; CURRENT APPLICATION NUMBER: US/09/949, 016
 ; CURRENT FILING DATE: 2000-04-14
 ; PRIOR APPLICATION NUMBER: 60/241, 755
 ; PRIOR FILING DATE: 2000-10-20
 ; PRIOR APPLICATION NUMBER: 60/237, 768
 ; PRIOR FILING DATE: 2000-10-03

```

; PRIOR APPLICATION NUMBER: 60/231,498
; PRIOR FILING DATE: 2000-09-08
; NUMBER OF SEQ ID NOS: 207012
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO: 124316
; LENGTH: 601
; TYPE: DNA
; ORGANISM: Human
; US-09-949-016-124316

Query Match 9.9%; Score 74; DB 4; Length 601;
Best Local Similarity 100.0%; Pred. No. 4e-13;
Matches 74; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
Qy 115 AGCTCTCCAGGCATCAACGGGCTTCCAGGCCAAGATGGGGTATGGCACCAAGGGAGAA 174
Db 601 AGCTCTCCAGGCATCAACGGGCTTCCAGGCCAAGATGGGTATGGCACCAAGGGAGAA 542

Query Match 9.9%; Score 175; DB 4; Length 188;
Best Local Similarity 100.0%; Pred. No. 4e-13;
Matches 74; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
Qy 175 AAGGGGAACCAAGG 188
Db 541 AAGGGGAACCAAGG 528

RESULT 12
US-09-198-603C-24
; Sequence 24, Application US/09198603C
; Patent No. 6337193
; GENERAL INFORMATION:
; APPLICANT: TULLY, Raymond E.
; CALTAGIRONE, G. Thomas
; MOYER, Shawn S.
; APPLICANT: RONNING, Michael T.
; TITLE OF INVENTION: EXPRESSION OF MANNOSE-BINDING PROTEIN IN METHYLOTROPHIC
; YEAST
; TITLE OF INVENTION: YEAST
; FILE REFERENCE: A7290
; CURRENT APPLICATION NUMBER: US/09/198,603C
; CURRENT FILING DATE: 1998-11-24
; NUMBER OF SEQ ID NOS: 26
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO: 24
; LENGTH: 1558
; TYPE: DNA
; ORGANISM: RAT
; US-09-198-603C-24

Query Match 9.8%; Score 73.4; DB 3; Length 1558;
Best Local Similarity 77.4%; Pred. No. 1.1e-12;
Matches 89; Conservative 0; Mismatches 26; Indels 0; Gaps 0;
Qy 185 CAGGCCAAGGGCTCAGGGCTTACAGGGCCCCCTGGAAAGTGGGGCTCCAGGAATC 244
Db 1173 CAGGTCAAGGGCTCAGGGCTTGCAGGGCCCTCCAGGGAAACTGGGCTCCAGGAATG 1232

Query Match 9.8%; Score 245; DB 3; Length 299;
Best Local Similarity 77.4%; Pred. No. 1.1e-12;
Matches 89; Conservative 0; Mismatches 26; Indels 0; Gaps 0;
Qy 245 CAGGGCCTTCTGGGTCAACCGGACCCAAGGCCAAAAGGGACCCCTGGAAAAAG 299
Db 1233 TAGGGCCCCCTGGAAGTCAGGGACCAAAGGCCAAAAGGGGATGTGGAGACAG 1287

RESULT 13
US-09-949-016-18342/C
; Sequence 18342, Application US/09949016
; Patent No. 6812339
; GENERAL INFORMATION:
; APPLICANT: VENTER, J. Craig et al.
; TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF
; FILE REFERENCE: CL001307
; CURRENT APPLICATION NUMBER: US/09/949,016
; CURRENT FILING DATE: 2000-04-14
; PRIORITY APPLICATION NUMBER: 60/241,755
; PRIORITY FILING DATE: 2000-10-20
; PRIORITY APPLICATION NUMBER: 60/237,768
; PRIORITY FILING DATE: 2000-10-03
; PRIORITY APPLICATION NUMBER: 60/231,498
; PRIORITY FILING DATE: 2000-09-08
; NUMBER OF SEQ ID NOS: 207012
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO: 124321
; LENGTH: 601
; TYPE: DNA
; ORGANISM: Human
; US-09-949-016-124321

Query Match 9.6%; Score 72; DB 4; Length 601;
Best Local Similarity 93.8%; Pred. No. 1.7e-12;
Matches 75; Conservative 0; Mismatches 5; Indels 0; Gaps 0;
Qy 295 AAAAGTCGGATGGTATAGTAGCTGGCTCAGAAAGCTCTGCACAAACAGAA 354
Db 129 ATTTTCTAGATGGTATAGTAGCTGGCTCAGAAAGCTCTGCACAAACAGAA 70

Query Match 9.6%; Score 355; DB 4; Length 374;
Best Local Similarity 93.8%; Pred. No. 1.7e-12;
Matches 75; Conservative 0; Mismatches 5; Indels 0; Gaps 0;
Qy 355 ATGGCACGTATCAAAGTG 374
Db 69 ATGGCACGTATCAAAGTG 50

RESULT 14
US-09-949-016-124321/C
; Sequence 124321, Application US/09949016
; Patent No. 6812339
; GENERAL INFORMATION:
; APPLICANT: VENTER, J. Craig et al.
; TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF
; FILE REFERENCE: CL001307
; CURRENT APPLICATION NUMBER: US/09/949,016
; CURRENT FILING DATE: 2000-04-14
; PRIORITY APPLICATION NUMBER: 60/241,755
; PRIORITY FILING DATE: 2000-10-20
; PRIORITY APPLICATION NUMBER: 60/237,768
; PRIORITY FILING DATE: 2000-10-03
; PRIORITY APPLICATION NUMBER: 60/231,498
; PRIORITY FILING DATE: 2000-09-08
; NUMBER OF SEQ ID NOS: 207012
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO: 124321
; LENGTH: 601
; TYPE: DNA
; ORGANISM: Human
; US-09-949-016-124321

Query Match 9.6%; Score 72; DB 4; Length 601;
Best Local Similarity 93.8%; Pred. No. 1.7e-12;
Matches 75; Conservative 0; Mismatches 5; Indels 0; Gaps 0;
Qy 295 AAAAGTCGGATGGTATAGTAGCTGGCTCAGAAAGCTCTGCACAAACAGAA 354
Db 129 ATTTTCTAGATGGTATAGTAGCTGGCTCAGAAAGCTCTGCACAAACAGAA 70

Query Match 9.6%; Score 355; DB 4; Length 374;
Best Local Similarity 93.8%; Pred. No. 1.7e-12;
Matches 75; Conservative 0; Mismatches 5; Indels 0; Gaps 0;
Qy 355 ATGGCACGTATCAAAGTG 374
Db 69 ATGGCACGTATCAAAGTG 50

RESULT 15
US-08-365-103B-3
; Sequence 3, Application US/08365103B
; Patent No. 5766943
; GENERAL INFORMATION:
; APPLICANT: Lynch, Richard G.
; APPLICANT: Nunez, Rafael D.
; APPLICANT: Yodoi, Jungi
; TITLE OF INVENTION: DNA Sequences for Soluble Forms of CD23
; TITLE OF INVENTION: Methods of Use for Same
; NUMBER OF SEQUENCES: 14
; CORRESPONDENCE ADDRESS:

```

ADDRESSEE: Zarley, McKee, Thomte, Voorhees & Sease
 STREET: 801 Grand Ave. Suite 3200
 CITY: Des Moines
 STATE: Iowa
 COUNTRY: United States

ZIP: 50309

COMPUTER READABLE FORM:

MEDIUM TYPE: Floppy disk

COMPUTER: IBM PC compatible

OPERATING SYSTEM: PC-DOS/MS-DOS

SOFTWARE: PatentIn Release #1.0, Version #1.25

CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/08/365,103B

FILING DATE: 28-DEC-1994

CLASSIFICATION: 435

ATTORNEY/AGENT INFORMATION:

NAME: Nebel, Heidi S.

REGISTRATION NUMBER: 37,719

REFERENCE/DOCKET NUMBER: Uirf N5-24

TELECOMMUNICATION INFORMATION:

TELEPHONE: (515) 288-3667

TELEFAX: (515) 288-1338

INFORMATION FOR SEQ ID NO: 3:

SEQUENCE CHARACTERISTICS:

LENGTH: 885 base pairs

TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

HYPOTHETICAL: NO

ANTI-SENSE: NO

FEATURE:

NAME/KEY: CDS

LOCATION: 24...884

US-08-365-103B-3

Query Match 9.0%; Score 67.6; DB 1; Length 885;
 Best Local Similarity 55.6%; Pred. No. 5.5e-11;
 Matches 130; Conservative 0; Mismatches 104; Indels 0; Gaps 0;

Qy 484 GTGGCACCCCCAGGAATGCTGCCAGAGAATGGGCCATTCAAGGAGAA 543

Db 567 GTCAGCATCCACGCCAAAGGAACAGGACTTCCTGATGCCAACACATCAAGAAGGAT 626

Qy 544 GCCTTCTGGGCATCACTGATGAGAACAGAAGGGCAGTTGTGGATCTGACAGGAAT 603

Db 627 TCCTGGATTGGCTCCAGGATCTCAAATATGGAGGAGTTGTATGGTGGACGGAGC 686

Qy 604 AGACTGACCTACACAAACTGGAACCGAGGGTGAACCCAACAATGCTGGTTCTGATGAAAGAT 663

Db 687 CCTGTTGGTTATAGCAACTGGAATCCAGGGGAAATAACGGGGCAAGGTGAGGAC 746

Qy 664 TGTGTATTGCTACTGAAAAATGGCCAGTGGAAATGACGTCCCCTGCTCCACCTCC 717

Db 747 TGTGTGATGCGGGATCAGGCCRTGCGCAGCTAC 800

Search completed: June 20, 2005, 17:05:13
 Job time : 185 SECs

THIS PAGE BLANK (USPTO)

SUMMARIES						
Query	Match	Length	DB ID	Description		
Qy	US-10-054-536-2	747	16	US-10-054-536-2	Score 747; DB 16;	Length 747;
		747	22	US-10-500-774-2	Best Local Similarity 100.0%;	Pred. No. 2.9e-234;
		3605	9	US-09-880-107-3705	Matches 747; Conservative 0;	Mismatches 0; Indels 0; Gaps
Db	1 ATGTCCTGTTCCATCACTCCCTCCTGAGTATGGCTTCTGCCTTACTCA	1				
	2 ATGTCCTGTTCCATCACTCCCTCCTGAGTATGGCTTCTGCCTTACTCA	2				

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result Query ~~Correlates~~

LENGTH: 3605
 TYPE: DNA
 ORGANISM: Homo sapiens
 FEATURE:
 OTHER INFORMATION: Genbank Accession No. US20020142981A1 X15422
 US-09-880-107-3705

Query Match 100.0%; Score 747; DB 9; Length 3605;
 Best Local Similarity 100.0%; Pred. No. 6e-234;
 Matches 747; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ATGTCCTGTTCCATCACTCCCTCTCCTGAGTATGGCGAGGCTTACTCA 60
 Db 66 ATGTCCTGTTCCATCACTCCCTCTCCTGAGTATGGCGAGGCTTACTCA 125

Qy 61 GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCACTGATTGCCTGTAGCTCT 120
 Db 126 GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCACTGATTGCCTGTAGCTCT 185

Qy 121 CCAAGGCATCAACGGCTTCCAGGCAAAAGATGGGGGTGATGGCACCAAGGGAGAAAAGGGG 180
 Db 186 CCAGGCATCAACGGCTTCCAGGCAAAAGATGGGGGTGATGGCACCAAGGGAGAAAAGGGG 245

Qy 181 GAACCAGGCCAAGGGCTCAGGGGCCCCCTGGAAAGTGGGGCCTCAGGGA 240
 Db 246 GAACCAGGCCAAGGGCTTCCAGGCTCACAGGGCAAAAGGGAGCTGGAAAGTGGGGCCTCAGGGA 305

Qy 241 AATCCAGGGCCTTCTGGGTCAACAGGACCAAGGGAGACCCCTGGAAAAGT 300
 Db 306 AATCCAGGGCCTTCTGGGTCAACAGGGCAAAAGGGCAAAAGGGAGCTGGAAAGTGGGGCCTCAGGGA 365

Qy 301 CCGGATGGTGTAGTAGCTGGCTGACCTCTCTGGCTGCAAAACAGAAATGGCA 360
 Db 366 CCGGATGGTGTAGTAGCTGGCTGACCTCTCTGGCTGCAAAACAGAAATGGCA 425

Qy 361 CGTATCAAAGTGGCTGACCTCTCTGGCTGCAAAACAGGTGGAAACAAGTGGCTCTCCTG 420
 Db 426 CGTATCAAAGTGGCTGACCTCTCTGGCTGCAAAACAGGTGGAAACAAGTGGCTCTCCTG 485

Qy 421 ACCAATGGTGAATAATGACCTTTGAAAAGTGAAGGGCCTTGAGAATGGCC 480
 Db 486 ACCAATGGTGAATAATGACCTTTGAAAAGTGAAGGGCCTTGAGAATGGCC 545

Qy 481 TCGTGGCCACCCCAAGGAATGCTGCAGAGAATGGAGCCATTCAAGGAG 540
 Db 546 TCGTGGCCACCCCAAGGAATGCTGCAGAGAATGGAGCCATTCAAGGAG 605

Qy 541 GAGGCCTTCTGGCATCACTGATGAGAAGAGACAGAAGGGCAGTTGTGATCTGACAGGA 600
 Db 606 GAGGCCTTCTGGCATCACTGATGAGAAGAGACAGAAGGGCAGTTGTGATCTGACAGGA 665

Qy 601 AATAGACTGACCTACACAACTGGAATGGAGGAATGGAGCCAAACATGCTGGTTCTGATGAA 660
 Db 666 AATAGACTGACCTACACAACTGGAATGGAGGAATGGAGCCAAACATGCTGGTTCTGATGAA 725

Qy 661 GATTGTTGTTGCTACTGAAATGGCCAGTGGAAATGACGTCCCCTCCAT 720
 Db 726 GATTGTTGTTGCTACTGAAATGGCCAGTGGAAATGACGTCCCCTCCAT 785

Qy 721 CTGGCCGTCTGTGAGTTCCCTATCTGA 747
 Db 786 CTGGCCGTCTGTGAGTTCCCTATCTGA 812

RESULT 4
 US-10-054-536-1
 Sequence 1, Application US/10054536-1
 Publication No. US20030162248A1
 GENERAL INFORMATION:
 APPLICANT: Wakamiya, No. US20030162248A1utaka
 TITLE OF INVENTION: RECOMBINANT HUMAN MANNAN-BINDING PROTEINS AND PROCESS
 TITLE OF INVENTION: FOR PRODUCING THE SAME
 FILE REFERENCE: 19036/36614
 721 CTGGCCGTCTGTGAGTTCCCTATCTGA 747

CURRENT APPLICATION NUMBER: US/10/054, 536
 CURRENT FILING DATE: 2002-01-22
 PRIOR APPLICATION NUMBER: PCT/JP98/03311
 PRIOR FILING DATE: 1998-07-23
 PRIOR APPLICATION NUMBER: JP 10-11864
 PRIOR FILING DATE: 1998-01-23
 NUMBER OF SEQ ID NOS: 28
 SOFTWARE: Patentin Ver. 2.0
 SEQ ID NO 1
 LENGTH: 3605
 TYPE: DNA
 ORGANISM: Homo sapiens
 FEATURE:
 NAME/KEY: CDS
 LOCATION: (66) .. (809)
 FEATURE:
 NAME/KEY: mat_peptide
 LOCATION: (126) .. (809)
 US-10-054-536-1

Query Match 100.0%; Score 747; DB 16; Length 3605;
 Best Local Similarity 100.0%; Pred. No. 6e-234;
 Matches 747; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ATGTCCTGTTCCATCACTCCCTCTCCTGAGTATGGCGAGGCTTACTCA 60
 Db 66 ATGTCCTGTTCCATCACTCCCTCTCCTGAGTATGGCGAGGCTTACTCA 125

Qy 61 GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCACTGATTGCCTGTAGCTCT 120
 Db 126 GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCACTGATTGCCTGTAGCTCT 185

Qy 121 CCAAGGCATCAACGGCTTCCAGGCAAAAGATGGGGGTGATGGCACCAAGGGAGAAAAGGGG 180
 Db 186 CCAGGCATCAACGGCTTCCAGGCAAAAGATGGGGGTGATGGCACCAAGGGAGAAAAGGGG 245

Qy 181 GAACCAGGCCAAGGGCTCAGGGGCCCCCTGGAAAGTGGGGCCTCAGGGA 240
 Db 246 GAACCAGGCCAAGGGCTTCCAGGCTCACAGGGCAAAAGGGCAAAAGGGAGCTGGAAAGTGGGGCCTCAGGGA 305

Qy 241 AATCCAGGGCCTTCTGGGTCAACAGGACCAAGGGAGACCCCTGGAAAAGT 300
 Db 306 AATCCAGGGCCTTCTGGGTCAACAGGGCAAAAGGGCAAAAGGGAGCTGGAAAGTGGGGCCTCAGGGA 365

Qy 301 CCGGATGGTGTAGTAGCTGGCTGACCTCTCTGGCTGCAAAACAGAAATGGCA 360
 Db 366 CCGGATGGTGTAGTAGCTGGCTGACCTCTCTGGCTGCAAAACAGAAATGGCA 425

Qy 361 CGTATCAAAGTGGCTGACCTCTCTGGCTGCAAAACAGGTGGAAACAAGTGGCTCTCCTG 420
 Db 426 CGTATCAAAGTGGCTGACCTCTCTGGCTGCAAAACAGGTGGAAACAAGTGGCTCTCCTG 485

Qy 421 ACCAATGGTGAATAATGACCTTTGAAAAGTGAAGGGCCTTGAGAATGGCC 480
 Db 486 ACCAATGGTGAATAATGACCTTTGAAAAGTGAAGGGCCTTGAGAATGGCC 545

Qy 481 TCGTGGCCACCCCAAGGAATGCTGCAGAGAATGGAGCCATTCAAGGAG 540
 Db 546 TCGTGGCCACCCCAAGGAATGCTGCAGAGAATGGAGCCATTCAAGGAG 605

Qy 541 GAGGCCTTCTGGCATCACTGATGAGAAGAGACAGAAGGGCAGTTGTGATCTGACAGGA 600
 Db 606 GAGGCCTTCTGGCATCACTGATGAGAAGAGACAGAAGGGCAGTTGTGATCTGACAGGA 665

Qy 601 AATAGACTGACCTACACAACTGGAATGGAGGAATGGAGCCAAACATGCTGGTTCTGATGAA 660
 Db 666 AATAGACTGACCTACACAACTGGAATGGAGGAATGGAGCCAAACATGCTGGTTCTGATGAA 725

Qy 661 GATTGTTGTTGCTACTGAAATGGCCAGTGGAAATGACGTCCCCTCCAT 720
 Db 726 GATTGTTGTTGCTACTGAAATGGCCAGTGGAAATGACGTCCCCTCCAT 785

Qy 721 CTGGCCGTCTGTGAGTTCCCTATCTGA 747
 Db 786 CTGGCCGTCTGTGAGTTCCCTATCTGA 812

Qy 812 CTGGCCGTCTGTGAGTTCCCTATCTGA 812

Qy 813 CTGGCCGTCTGTGAGTTCCCTATCTGA 813

Qy 814 CTGGCCGTCTGTGAGTTCCCTATCTGA 814

Qy 815 CTGGCCGTCTGTGAGTTCCCTATCTGA 815

Qy 816 CTGGCCGTCTGTGAGTTCCCTATCTGA 816

Qy 817 CTGGCCGTCTGTGAGTTCCCTATCTGA 817

Qy 818 CTGGCCGTCTGTGAGTTCCCTATCTGA 818

Qy 819 CTGGCCGTCTGTGAGTTCCCTATCTGA 819

Qy 820 CTGGCCGTCTGTGAGTTCCCTATCTGA 820

Qy 821 CTGGCCGTCTGTGAGTTCCCTATCTGA 821

Qy 822 CTGGCCGTCTGTGAGTTCCCTATCTGA 822

Qy 823 CTGGCCGTCTGTGAGTTCCCTATCTGA 823

Qy 824 CTGGCCGTCTGTGAGTTCCCTATCTGA 824

Qy 825 CTGGCCGTCTGTGAGTTCCCTATCTGA 825

Qy 826 CTGGCCGTCTGTGAGTTCCCTATCTGA 826

Qy 827 CTGGCCGTCTGTGAGTTCCCTATCTGA 827

Qy 828 CTGGCCGTCTGTGAGTTCCCTATCTGA 828

Qy 829 CTGGCCGTCTGTGAGTTCCCTATCTGA 829

Qy 830 CTGGCCGTCTGTGAGTTCCCTATCTGA 830

Qy 831 CTGGCCGTCTGTGAGTTCCCTATCTGA 831

Qy 832 CTGGCCGTCTGTGAGTTCCCTATCTGA 832

Qy 833 CTGGCCGTCTGTGAGTTCCCTATCTGA 833

Qy 834 CTGGCCGTCTGTGAGTTCCCTATCTGA 834

Qy 835 CTGGCCGTCTGTGAGTTCCCTATCTGA 835

Qy 836 CTGGCCGTCTGTGAGTTCCCTATCTGA 836

Qy 837 CTGGCCGTCTGTGAGTTCCCTATCTGA 837

Qy 838 CTGGCCGTCTGTGAGTTCCCTATCTGA 838

Qy 839 CTGGCCGTCTGTGAGTTCCCTATCTGA 839

Qy 840 CTGGCCGTCTGTGAGTTCCCTATCTGA 840

Qy 841 CTGGCCGTCTGTGAGTTCCCTATCTGA 841

Qy 842 CTGGCCGTCTGTGAGTTCCCTATCTGA 842

Qy 843 CTGGCCGTCTGTGAGTTCCCTATCTGA 843

Qy 844 CTGGCCGTCTGTGAGTTCCCTATCTGA 844

Qy 845 CTGGCCGTCTGTGAGTTCCCTATCTGA 845

Qy 846 CTGGCCGTCTGTGAGTTCCCTATCTGA 846

Qy 847 CTGGCCGTCTGTGAGTTCCCTATCTGA 847

Qy 848 CTGGCCGTCTGTGAGTTCCCTATCTGA 848

Qy 849 CTGGCCGTCTGTGAGTTCCCTATCTGA 849

Qy 850 CTGGCCGTCTGTGAGTTCCCTATCTGA 850

Qy 851 CTGGCCGTCTGTGAGTTCCCTATCTGA 851

Qy 852 CTGGCCGTCTGTGAGTTCCCTATCTGA 852

Qy 853 CTGGCCGTCTGTGAGTTCCCTATCTGA 853

Qy 854 CTGGCCGTCTGTGAGTTCCCTATCTGA 854

Qy 855 CTGGCCGTCTGTGAGTTCCCTATCTGA 855

Qy 856 CTGGCCGTCTGTGAGTTCCCTATCTGA 856

Qy 857 CTGGCCGTCTGTGAGTTCCCTATCTGA 857

Qy 858 CTGGCCGTCTGTGAGTTCCCTATCTGA 858

Qy 859 CTGGCCGTCTGTGAGTTCCCTATCTGA 859

Qy 860 CTGGCCGTCTGTGAGTTCCCTATCTGA 860

Qy 861 CTGGCCGTCTGTGAGTTCCCTATCTGA 861

Qy 862 CTGGCCGTCTGTGAGTTCCCTATCTGA 862

Qy 863 CTGGCCGTCTGTGAGTTCCCTATCTGA 863

Qy 864 CTGGCCGTCTGTGAGTTCCCTATCTGA 864

Qy 865 CTGGCCGTCTGTGAGTTCCCTATCTGA 865

Qy 866 CTGGCCGTCTGTGAGTTCCCTATCTGA 866

Qy 867 CTGGCCGTCTGTGAGTTCCCTATCTGA 867

Qy 868 CTGGCCGTCTGTGAGTTCCCTATCTGA 868

Qy 869 CTGGCCGTCTGTGAGTTCCCTATCTGA 869

Qy 870 CTGGCCGTCTGTGAGTTCCCTATCTGA 870

Qy 871 CTGGCCGTCTGTGAGTTCCCTATCTGA 871

Qy 872 CTGGCCGTCTGTGAGTTCCCTATCTGA 872

Qy 873 CTGGCCGTCTGTGAGTTCCCTATCTGA 873

Qy 874 CTGGCCGTCTGTGAGTTCCCTATCTGA 874

Qy 875 CTGGCCGTCTGTGAGTTCCCTATCTGA 875

Qy 876 CTGGCCGTCTGTGAGTTCCCTATCTGA 876

Qy 877 CTGGCCGTCTGTGAGTTCCCTATCTGA 877

Qy 878 CTGGCCGTCTGTGAGTTCCCTATCTGA 878

Qy 879 CTGGCCGTCTGTGAGTTCCCTATCTGA 879

Qy 880 CTGGCCGTCTGTGAGTTCCCTATCTGA 880

Qy 881 CTGGCCGTCTGTGAGTTCCCTATCTGA 881

Qy 882 CTGGCCGTCTGTGAGTTCCCTATCTGA 882

Qy 883 CTGGCCGTCTGTGAGTTCCCTATCTGA 883

Qy 884 CTGGCCGTCTGTGAGTTCCCTATCTGA 884

Qy 885 CTGGCCGTCTGTGAGTTCCCTATCTGA 885

Qy 886 CTGGCCGTCTGTGAGTTCCCTATCTGA 886

Qy 887 CTGGCCGTCTGTGAGTTCCCTATCTGA 887

Qy 888 CTGGCCGTCTGTGAGTTCCCTATCTGA 888

Qy 889 CTGGCCGTCTGTGAGTTCCCTATCTGA 889

Qy 890 CTGGCCGTCTGTGAGTTCCCTATCTGA 890

Qy 891 CTGGCCGTCTGTGAGTTCCCTATCTGA 891

Qy 892 CTGGCCGTCTGTGAGTTCCCTATCTGA 892

Qy 893 CTGGCCGTCTGTGAGTTCCCTATCTGA 893

Qy 894 CTGGCCGTCTGTGAGTTCCCTATCTGA 894

Qy 895 CTGGCCGTCTGTGAGTTCCCTATCTGA 895

Qy 896 CTGGCCGTCTGTGAGTTCCCTATCTGA 896

Qy 897 CTGGCCGTCTGTGAGTTCCCTATCTGA 897

Qy 898 CTGGCCGTCTGTGAGTTCCCTATCTGA 898

Qy 899 CTGGCCGTCTGTGAGTTCCCTATCTGA 899

Qy 900 CTGGCCGTCTGTGAGTTCCCTATCTGA 900

Qy 901 CTGGCCGTCTGTGAGTTCCCTATCTGA 901

Qy 902 CTGGCCGTCTGTGAGTTCCCTATCTGA 902

Qy 903 CTGGCCGTCTGTGAGTTCCCTATCTGA 903

Qy 904 CTGGCCGTCTGTGAGTTCCCTATCTGA 904

Qy 905 CTGGCCGTCTGTGAGTTCCCTATCTGA 905

Qy 906 CTGGCCGTCTGTGAGTTCCCTATCTGA 906

Qy 907 CTGGCCGTCTGTGAGTTCCCTATCTGA 907

Qy 908 CTGGCCGTCTGTGAGTTCCCTATCTGA 908

Qy 909 CTGGCCGTCTGTGAGTTCCCTATCTGA 909

Qy 910 CTGGCCGTCTGTGAGTTCCCTATCTGA 910

Qy 911 CTGGCCGTCTGTGAGTTCCCTATCTGA 911

Qy 912 CTGGCCGTCTGTGAGTTCCCTATCTGA 912

Qy 913 CTGGCCGTCTGTGAGTTCCCTATCTGA 913

Qy 914 CTGGCCGTCTGTGAGTTCCCTATCTGA 914

Qy 915 CTGGCCGTCTGTGAGTTCCCTATCTGA 915

Qy 916 CTGGCCGTCTGTGAGTTCCCTATCTGA 916

Qy 917 CTGGCCGTCTGTGAGTTCCCTATCTGA 917

Qy 918 CTGGCCGTCTGTGAGTTCCCTATCTGA 918

Qy 919 CTGGCCGTCTGTGAGTTCCCTATCTGA 919

Qy 920 CTGGCCGTCTGTGAGTTCCCTATCTGA 920

Qy 921 CTGGCCGTCTGTGAGTTCCCTATCTGA 921

Qy 922 CTGGCCGTCTGTGAGTTCCCTATCTGA 922

Qy 923 CTGGCCGTCTGTGAGTTCCCTATCTGA 923

Qy 924 CTGGCCGTCTGTGAGTTCCCTATCTGA 924

Qy 925 CTGGCCGTCTGTGAGTTCCCTATCTGA 925

Qy 926 CTGGCCGTCTGTGAGTTCCCTATCTGA 926

Qy 927 CTGGCCGTCTGTGAGTTCCCTATCTGA 927

Qy 928 CTGGCCGTCTGTGAGTTCCCTATCTGA 928

Qy 929 CTGGCCGTCTGTGAGTTCCCTATCTGA 929

Qy 930 CTGGCCGTCTGTGAGTTCCCTATCTGA 930

Qy 931 CTGGCCGTCTGTGAGTTCCCTATCTGA 931

Qy 932 CTGGCCGTCTGTGAGTTCCCTATCTGA 932

Qy 933 CTGGCCGTCTGTGAGTTCCCTATCTGA 933

Qy 934 CTGGCCGTCTGTGAGTTCCCTATCTGA 934

Qy 935 CTGGCCGTCTGTGAGTTCCCTATCTGA 935

Qy 936 CTGGCCGTCTGTGAGTTCCCTATCTGA 936

Qy 937 CTGGCCGTCTGTGAGTTCCCTATCTGA 937

Qy 938 CTGGCCGTCTGTGAGTTCCCTATCTGA 938

Qy 939 CTGGCCGTCTGTGAGTTCCCTATCTGA 939

Qy 940 CTGGCCGTCTGTGAGTTCCCTATCTGA 940

Qy 941 CTGGCCGTCTGTGAGTTCCCTATCTGA 941

Qy 942 CTGGCCGTCTGTGAGTTCCCTATCTGA 942

Qy 943 CTGGCCGTCTGTGAGTTCCCTATCTGA 943

Qy 944 CTGGCCGTCTGTGAGTTCCCTATCTGA 944

Qy 945 CTGGCCGTCTGTGAGTTCCCTATCTGA 945

Qy 946 CTGGCCGTCTGTGAGTTCCCTATCTGA 946

Qy 947 CTGGCCGTCTGTGAGTTCCCTATCTGA 947

Qy 948 CTGGCCGTCTGTGAGTTCCCTATCTGA 948

Qy 949 CTGGCCGTCTGTGAGTTCCCTATCTGA 949

Qy 950 CTGGCCGTCTGTGAGTTCCCTATCTGA 950

Qy 951 CTGGCCGTCTGTGAGTTCCCTATCTGA 951

Qy 952 CTGGCCGTCTGTGAGTTCCCTATCTGA 952

Qy 953 CTGGCCGTCTGTGAGTTCCCTATCTGA 953

Qy 954 CTGGCCGTCTGTGAGTTCCCTATCTGA 954

Qy 955 CTGGCCGTCTGTGAGTTCCCTATCTGA 955

Qy 956 CTGGCCGTCTGTGAGTTCCCTATCTGA 956

Qy 957 CTGGCCGTCTGTGAGTTCCCTATCTGA 957

Qy 958 CTGGCCGTCTGTGAGTTCCCTATCTGA 958

Qy 959 CTGGCCGTCTGTGAGTTCCCTATCTGA 959

Qy 960 CTGGCCGTCTGTGAGTTCCCTATCTGA 960

Qy 961 CTGGCCGTCTGTGAGTTCCCTATCTGA 961

Qy 962 CTGGCCGTCTGTGAGTTCCCTATCTGA 962

Qy 963 CTGGCCGTCTGTGAGTTCCCTATCTGA 963

Qy 964 CTGGCCGTCTGTGAGTTCCCTATCTGA 964

Qy 965 CTGGCCGTCTGTGAGTTCCCTATCTGA 965

Qy 966 CTGGCCGTCTGTGAGTTCCCTATCTGA 966

Qy 967 CTGGCCGTCTGTGAGTTCCCTATCTGA 967

Qy 968 CTGGCCGTCTGTGAGTTCCCTATCTGA 968

Qy 969 CTGGCCGTCTGTGAGTTCCCTATCTGA 969

Qy 970 CTGGCCGTCTGTGAGTTCCCTATCTGA 970

Qy 971 CTGGCCGTCTGTGAGTTCCCTATCTGA 971

Qy 972 CTGGCCGTCTGTGAGTTCCCTATCTGA 972

Qy 973 CTGGCCGTCTGTGAGTTCCCTATCTGA 973

Qy 974 CTGGCCGTCTGTGAGTTCCCTATCTGA 974

Qy 975 CTGGCCGTCTGTGAGTTCCCTATCTGA 975

Qy 976 CTGGCCGTCTGTGAGTTCCCTATCTGA 976

Qy 977 CTGGCCGTCTGTGAGTTCCCTATCTGA 977

Qy 978 CTGGCCGTCTGTGAGTTCCCTATCTGA 978

Qy 979 CTGGCCGTCTGTGAGTTCCCTATCTGA 979

Qy 980 CTGGCCGTCTGTGAGTTCCCTATCTGA 980

Qy 981 CTGGCCGTCTGTGAGTTCCCTATCTGA 981

Qy 982 CTGGCCGTCTGTGAGTTCCCTATCTGA 982

Qy 983 CTGGCCGTCTGTGAGTTCCCTATCTGA 983

Qy 984 CTGGCCGTCTGTGAGTTCCCTATCTGA 984

Qy 985 CTGGCC

Qy 601 AATAGACTGACCTACACAAACTGGAACCGGGTGAACCCAAACAATGGCTGGTTCTGATGAA 660
 Db 666 AATAGACTGACCTACACAAACTGGAACCGGGTGAACCCAAACAATGGCTGGTTCTGATGAA 725

Qy 661 GATTGGTATTGGCTACTGAAATAATGGCAGTGGAAATGACGTCCCCTGCRCCACCTCCCAT 720
 Db 726 GATTGGTATTGGCTACTGAAATAATGGCAGTGGAAATGACGTCCCCTGCRCCACCTCCCAT 785

Qy 721 CTGGCGCTCTGAGAGTTCCCTATCTGA 747
 Db 786 CTGGCGCTCTGAGAGTTCCCTATCTGA 812

RESULT 7
 US-10-844-837-99
 ; Sequence 99, Application US/10844837
 ; Publication No. US20050014932A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Imboden, Michael
 ; APPLICANT: Homan, Jane
 ; APPLICANT: Bremel, Robert D.
 ; TITLE OF INVENTION: Targeted Biocides
 ; FILE REFERENCE: IOPEN-09014
 ; CURRENT APPLICATION NUMBER: US/10/844,837
 ; CURRENT FILING DATE: 2004-05-13
 ; NUMBER OF SEQ ID NOS.: 101
 ; SOFTWARE: PatentIn version 3.2
 ; SEQ ID NO 99
 ; LENGTH: 2159
 ; TYPE: DNA
 ; ORGANISM: Homo sapiens
 ; US-10-844-837-99

Query Match 99.2%; Score 741.2; DB 21; Length 2159;
 Best Local Similarity 99.6%; Pred. No. 3.8e-232; Mismatches 0; Indels 0; Gaps 0;
 Matches 743; Conservative 0; Mismatches 3; Indels 0; Gaps 0;

Qy 1 ATGTCCTTCCATCACTCCCTCTCCTGAGTAGTGGTGGCACGGCTCTTACTCA 60
 Db 679 ATGTCCTTCCATCACTCCCTCTCCTGAGTAGTGGTGGCACGGCTCTTACTCA 738

Qy 61 GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCAGTGCCCTGTAGCTCT 120
 Db 739 GAAACTGTGGCTGTGAGGATGCCAAAAGACCTGCCCTGCAGTGCCCTGTAGCTCT 798

Qy 121 CCAGGCATCAACGGCTTCCAGGGCTCAAGGGCCAAAGGATGGGCCACCAAGGGAGAAAGGG 180
 Db 799 CCAGGCATCAACGGCTTCCAGGGCTCAAGGGCTCAAGGGCTTAAGGGCCAAAGGGGG 858

Qy 181 AAATCCAGGGCTTCTGGGTCAACGGGCCAAAGGGCCAAGGGAGACCTGGAAAAGT 240
 Db 859 AAATCCAGGGCTTCTGGGTCAACGGGCCAAAGGGCCAAGGGAGACCTGGAAAAGT 918

Qy 241 CCGGGATGGTGAATAGTAGCCTGGCTGCCTCAGAAAGAAAAGCTCTGCCAAACAGAAATGCCA 300
 Db 919 AAATCCAGGGCTTCTGGGTCAACGGGCCAAAGGGCCAAGGGAGACCTGGAAAAGT 978

Qy 301 CCGGGATGGTGAATAGTAGCCTGGCTGCCTCAGAAAGAAAAGCTCTGCCAAACAGAAATGCCA 360
 Db 979 CCGGGATGGTGAATAGTAGCCTGGCTGCCTCAGAAAGAAAAGCTCTGCCAAACAGAAATGCCA 1038

Qy 361 CGTATCAAAGTGGCTGACCTCTCTGGCAAAACAAGTTGGAAACAGTTCTCTG 420
 Db 1039 CGTATCAAAGTGGCTGACCTCTCTGGCAAAACAAGTTGGCTGACCTCTGCCAAACAGAAATGCCA 1098

Qy 421 ACCAATGGTGAATAATGACCTTGGCAAAACAAGTTGGCAAAAGTTCTCTG 480
 Db 1099 ACCAATGGTGAATAATGACCTTGGCAAAACAAGTTGGCTGACCTCTGCCAAACAGAAATGCCA 1158

Qy 481 TCTGTGGCCACCCCCCAGGAATGGAGCAATGCTGAGAATGGAGCCATTCAAGGAG 540
 Db 1159 TCTGTGGCCACCCCCCAGGAATGGAGCAATGCTGAGAATGGAGCCATTCAAGGAG 1218

Qy 541 GAAGCCTTCCTGGCATCACTGATGAGAACAGGGCAGTTGTGGATCTGACAGCA 600
 Db 1219 GAAGCCTTCCTGGGTATCACTGATGAGAACAGGGCAGTTGTGGATCTGACAGCA 1278

Qy 601 AATAGACTGACCTACACAAACTGGAACCCAAACAATGGCTGGTCTGATGAA 660
 Db 1279 AATAGACTGACCTACACAAACTGGAACCCAAACAATGGCTGGTCTGATGAA 1338

Qy 661 GATTGGTATTGGCTACTGAAATAATGGCAGTGGAAATGACGTCCCCTGCTCCACCTCCCAT 720
 Db 1339 GATTGGTATTGGCTACTGAAATAATGGCAGTGGAAATGACGTCCCCTGCTCCACCTCCCAT 1398

Qy 721 CTGGCGCTCTGAGAGTTCCCTATCTGA 746
 Db 1399 CTGGCGCTCTGAGAGTTCCCTATCTGA 1424

RESULT 8
 US-09-971-475-2
 ; Sequence 2, Application US/09711475
 ; Publication No. US20020086817A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Kawasaki, Toshiyuki
 ; TITLE OF INVENTION: Anticancer agent
 ; FILE REFERENCE: ADT 308
 ; CURRENT APPLICATION NUMBER: US/09/971,475
 ; CURRENT FILING DATE: 2001-10-04
 ; PRIOR APPLICATION NUMBER: US 09/468,705
 ; PRIOR FILING DATE: 1999-12-21
 ; PRIOR APPLICATION NUMBER: PCT/JP98/03697
 ; PRIOR FILING DATE: 1998-08-19
 ; PRIOR APPLICATION NUMBER: JP 239113/97
 ; PRIOR FILING DATE: 1997-08-21
 ; NUMBER OF SEQ ID NOS: 2
 ; SOFTWARE: PatentIn Ver. 2.0
 ; SEQ ID NO 2
 ; LENGTH: 684
 ; TYPE: DNA
 ; ORGANISM: Homo sapiens
 ; US-09-971-475-2

Query Match 91.6%; Score 684; DB 9; Length 684;
 Best Local Similarity 100.0%; Pred. No. 1.4e-213;
 Matches 684; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 61 GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCAGTAGTGGCTCTGAGCTCT 120
 Db 1 GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCAGTAGTGGCTCTGAGCTCT 60

Qy 121 CCAGGCATCAACGGCTTCCAGGGCTCAAGGGCCAAAGGATGGGCCACCAAGGGAGAAAGGG 180
 Db 61 CCAGGCATCAACGGCTTCCAGGGCTCAAGGGCTCAAGGGCCAAAGGATGGGCCACCAAGGGAGAAAGGG 120

Qy 181 GAACCAGGCCAAGGGCTCAAGGGCTTACAGGGCTTACAGGGCTTACAGGGCTCAAGGGCTCAAGGGCCAAAGGGAGACCTGGAAAAGT 240
 Db 121 GAACCAGGCCAAGGGCTCAAGGGCTTACAGGGCTTACAGGGCTCAAGGGCCAAAGGGAGACCTGGAAAAGT 180

Qy 241 AATCCAGGGCTTCTGGGTCAACGGGCCAAAGGGCCAAGGGAGACCTGGAAAAGT 300
 Db 181 AATCCAGGGCTTCTGGGTCAACGGGCCAAAGGGCCAAGGGAGACCTGGAAAAGT 240

Qy 301 CCGGGATGGTGAATAGTAGCCTGGCTGCCTCAGAAAGAAAAGCTCTGCCAAACAGAAATGCCA 360
 Db 181 AATCCAGGGCTTCTGGGTCAACGGGCCAAAGGGCCAAGGGAGACCTGGAAAAGT 240

Qy 361 CGTATCAAAGTGGCTGACCTCTCTGGCAAAACAAGTTGGAAACAGTTCTCTG 420
 Db 301 CGTATCAAAGTGGCTGACCTCTCTGGCAAAACAAGTTCTCTG 360

Qy 421 ACCAATGGTGAATAATGACCTTGGCAAAACAAGTTGGCAAAAGTTCTCTG 480
 Db 241 CGGGATGGCTTCTGGGTGATAGTAGCCTGGCTGACCTCTGCCAAACAGAAATGCCA 300

Qy 481 TCTGTGGCCACCCCCCAGGAATGGAGCAATGCTGAGAATGGAGCCATTCAAGGAG 540
 Db 361 ACCAATGGTGAATAATGACCTTGGCAAAACAAGTTGGCAAAAGTTCTCTG 420

Qy 541 TCTGTGGCCACCCCCCAGGAATGGAGCAATGCTGAGAATGGAGCCATTCAAGGAG 1218
 Db 361 ACCAATGGTGAATAATGACCTTGGCAAAACAAGTTCTCTG 420

481 TCTGTGCCACCCCAAGGAATGGAGAACATTCAAAGGAG 540
 Qy 295 AAAAGTCCGGATGGTGTAGTAGGCTGGCTCAGAAAGAAAAGCTCTGCAAACAGAA 354
 Db 313 GAAATATGGGTGACTATATTCCGCTGGCTAATCTCAAAGCAACTCTCAAATCTGAA 372

421 TCTGTGCCACCCCAAGGAATGGTGCAGAACATTCAAAGGAG 480
 Db 355 ATGGCACCGTACAAAAGTGGCTGACCTTCTCTGGCAAACAAAGTTGGGAACAAGTTC 414
 Qy 373 TTGAACCAAGATCAAAGACTGGCTAAATCTTCTCTGGAAAAGAGACTGGTGGAAAGGCA 432

541 AAAGCCCTTCCRGGCATCACTGATGAGAACAGAACAGGAGCTTGTGGATCTGACAGGA 600
 Qy 415 TTCCTGACCAATGGTAAATAATGACCTTGAAGGCCTTGTGTGTCAGGTTTC 474
 Db 433 TTTTTACCAATGGTAAAGATGGCTTCAAGGACTCTGTGCAACAGTTC 492

481 AAAGACTGACCTACACAAACTGGAACGAGGGTGAACCCAACAAATGCTGGTCTGTGAA 540
 Qy 475 CAGGCCCTTGTGGCCACCCCCAGGAATGCTGAGAGAAATGGAGCCATTCAAGAACTCATC 534
 Db 493 CAGGGCCGGTGGCCACCCCTATGATGCTGAAGAAACAGGGCCCTCAAGGATTAGTC 552

601 GATTGTGTATTGCTACTGAAAAATGGCCAOAGTGGAAATGACGTCCACCTCCAT 720
 Qy 535 AAGGAGGAAGGCCCTGGCATCACTGATGAGAACAGAACAGGAGCTTGTGGATCTG 594
 Db 613 ACAGGAAAAGGGGTGACCTACCAAAACTGGAAATGATGGCCTAACACGCCCTCTCCT 672

661 GATTGTGTATTGCTGTGAGTCCCTATC 744
 Qy 655 GATGAGAATTGGTGTATTGCTACTGAAAAATGGCCAGTGAAAGGCAAATTGTGGATCTG 612
 Db 673 GGGGAGCACTGTTGACACTCTGTGGAAATTCATGGCTTGGCTTCCGCC 732

601 GATTGTGTATTGCTACTGAAAAATGGCAAGTGGAAATGACGTCCCTGCTCACCTCCAT 660
 Qy 595 ACAGGAAATAGACTGACCTACACAAACTGGAAACGCCAACATGCTGGTTCT 654
 Db 693 TCCCATTCTGGCGTCTGTGAGTTCCCTATCTGA 747

721 CTGGCCGTCTGTGAGTCCCTATC 744
 Qy 715 TCCCATTCTGGCGTCTGTGAGTTCCCTATCTGA 747
 Db 733 TCCCATTCTGGCGTCTGTGAAATTCTCTCTGA 765

RESULT 9
 US-10-076-816-54
 ; Sequence 54, Application US/10076816
 ; Publication No. US20030056244A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Huang, Ning
 ; APPLICANT: Rodriguez, Raymond
 ; APPLICANT: Hagine, Frank E.
 ; TITLE OF INVENTION: Feed Additive Compositions and Methods
 ; FILE REFERENCE: 50665-8021.US00
 ; CURRENT APPLICATION NUMBER: US/10/076, 816
 ; CURRENT FILING DATE: 2002-02-14
 ; PRIOR APPLICATION NUMBER: US 60/269, 188
 ; PRIOR FILING DATE: 2001-02-14
 ; PRIOR APPLICATION NUMBER: US 09/847, 232
 ; PRIOR FILING DATE: 2001-05-02
 ; PRIOR APPLICATION NUMBER: US 60/266, 929
 ; PRIOR FILING DATE: 2001-02-06
 ; PRIOR APPLICATION NUMBER: US 60/201, 182
 ; PRIOR FILING DATE: 2000-05-02
 ; NUMBER OF SEQ ID NOS: 60
 ; SOFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO 54
 ; LENGTH: 1409
 ; TYPE: DNA
 ; ORGANISM: Bos taurus
 ; US-10-076-816-54

Query Match 59.5%; Score 444.6; DB 14; Length 1409;
 Best Local Similarity 76.4%; Pred. No. 8.1e-135;
 Matches 575; Conservative 0; Mismatches 169; Indels 9; Gaps 2;

Qy 1 ATGTCCTTCCATCACTCCCTCTCCTGAGATGGTGGCAGGGTCTT-----55
 Db 16 ATGTCGCTGTTACATCACTCCCTCTCCTGAGATGGTGGCAGGGATCTTGTGCA 75

Qy 56 -ACTAGAAACTGTGACCTGAGGATGCCAAAGAACCTGCTGGCAGTGTGATTGCTGT 114
 Db 76 GACACGAAACAGAAACTGTGAAACATCCGGAAAGACTGGCTCAATGGCATTGGCA 132

Qy 115 AGCTCTCCAGGCATCAACGGTTCCCGAACAGATGGGCTGATGGCACCAAGGGAGAA 174
 Db 133 GGTCCCTCGGGCATCAATGGCATTGGCAAGGGCTCGAAGTGGCTGATGGCA 192

Qy 175 AAGGGGGAAACGGCCAAGGGCTCACAGGCTTCTGGGTCAAGGGCCCT 234
 Db 193 AAGGGAGAACGGTCAAGGACTCGAGGCTCGAAGGGCCCTGGAAAGATGGGCT 252

Qy 235 CCAGGAATCCAGGGCTTCTGGTCACCAGGACCAAGGGCCTGGAA 294
 Db 253 AAAATTCTGGCTTACCTGCAAGTGGTTATGCAAGGGCT 309

Qy 146 AAGATGGGGTGTGATGGCACCAAGGGAACAGGGCAAGGGCTCAGAGGCT 205
 Db 253 CAAGGAACGCCAGGGATCCCTGGGATACCAGGACCAATAGGCCAAAAGGAGACCCCTGGA 312

Db 310 AAGATGGACGTGACGGTCCAAAGGGAGAAAAGGGAGAACCGGGCTCAAGGGCTCAGAGGCT 369 ; PRIOR FILING DATE: 2001-06-19
 Qy 206 TACAGGGCCCCCTGGAAAGTCCAGGAATCCAGGGCTTCAGGGCTCACAG 265 ; PRIOR APPLICATION NUMBER: US 60/303,459
 Db 370 TGCAAGGCCCTCGGAAAGTAGGACTACAGGACCCAGGAATCGGGTTAAAG 429 ; PRIOR FILING DATE: 2001-07-09
 ; NUMBER OF SEQ ID NOS: 1740
 ; SOFTWARE: PatentIn Ver. 2.1
 ; SEQ ID NO: 1710
 ; LENGTH: 1037
 ; TYPE: DNA
 ; ORGANISM: Rattus norvegicus
 ; FEATURE:
 ; OTHER INFORMATION: Genbank Accession No. US20020119462A1 NM_022704
 ; US-09-917-800A-1710

Query Match 48.8%; Score 364.6; DB 9; Length 1037;
 Best Local Similarity 70.7%; Pred. No. 1..3e-108;
 Matches 483; Conservative 0; Mismatches 200; Indels 0; Gaps 0;

Db 386 CTCCTGGCCAAAAGGAGACCCCTGAAAGTCCGGATGGTAGCTGGCTG 325
 Qy 490 ATTCAAGAATTGAGCCCTACAGATCAGAGCTGAGGCCCTGAGAAACTGGGTCTCT 549 ;
 Db 550 CTCTGAGTGAAAGTGGAAAGGAGACCCGTGGGACAGAGCAGAAATTGATACTAGCAGGAAATTG 489 ;
 ; FEATURE:
 ; OTHER INFORMATION: Genbank Accession No. US20020119462A1 NM_022704
 ; US-09-917-800A-1710

Query Match 48.8%; Score 364.6; DB 9; Length 1037;
 Best Local Similarity 70.7%; Pred. No. 1..3e-108;
 Matches 483; Conservative 0; Mismatches 200; Indels 0; Gaps 0;

Db 446 AAAAAGTGAAGGCCCTTGTGTCAAGTCCAGGGCTCTGTGGCCACCCCAAGGAATGGCTG 505
 Qy 610 ACAGAGTGAAGGCCCTGTGTCCGAATCCAGGGCTCTGTGGCCACTCCAGGAATGCTG 669 ;
 Db 506 CAGAGAATGGGGCATTCAAGAATCTCATCAAGGGAGAAAGCCTCCTGGCATCACTGATG 565
 Qy 670 AGGAAAACCTGGCCATCCAGAAAGTGGCCAAGGATATTGCCTACTTGGCATCACAGATG 729 ;
 Db 566 AGAAGACAGAAGGGCAGTTGTGGATCTGACAGGAATAGACTGACCAAACCTGA 625
 Qy 730 TGAGGGTTGAAGGCCAGTTGAGGATCTGACAGGAACAGAGTGGCTATACTAATTGGA 789 ;
 Db 626 ACGGGGGTGAACCCAACAATGCTGGRTCTGATGAAAGATTGTGTTACTGAAAATG 685
 Qy 790 ATGATGGGAGGCCAACACAGGGGATGGGAGACTGTGTGGTGTGATCTGGAAATG 849 ;
 Db 686 GCCAGTGGAAATGAGCTCCATCTGGCCGCTGTGAGTTCCCTATCT 745
 Qy 850 GCAAGTGGAAACGATGTCCCCCTGCTACTTGGCAATTCTGTGAAATTCTCTGACT 909 ;
 Db 746 GA 747
 Qy 910 GA 911 ;
 Db RESULT 11
 ; Sequence 1710, Application US/09917800A
 ; Patent No. US20020119462A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Mendrick, Donna
 ; APPLICANT: Porter, Mark
 ; APPLICANT: Johnson, Kory
 ; APPLICANT: Castle, Arthur
 ; APPLICANT: Elashoff, Michael
 ; APPLICANT: Gene Logic, Inc.
 ; TITLE OF INVENTION: Molecular Toxicology Modeling
 ; FILE REFERENCE: 44921-5038-US
 ; CURRENT APPLICATION NUMBER: US/09/917,800A
 ; CURRENT FILING DATE: 2001-07-31
 ; PRIOR APPLICATION NUMBER: US 60/222,040
 ; PRIOR FILING DATE: 2000-07-31
 ; PRIOR APPLICATION NUMBER: US 60/222,880
 ; PRIOR FILING DATE: 2001-05-11
 ; PRIOR APPLICATION NUMBER: US 60/290,645
 ; PRIOR FILING DATE: 2001-05-15
 ; PRIOR APPLICATION NUMBER: US 60/292,336
 ; PRIOR FILING DATE: 2001-05-22
 ; PRIOR APPLICATION NUMBER: US 60/295,798
 ; PRIOR FILING DATE: 2001-06-06
 ; PRIOR APPLICATION NUMBER: US 60/297,457
 ; PRIOR FILING DATE: 2001-06-13
 ; PRIOR APPLICATION NUMBER: US 60/298,884
 ; RESULT 12
 ; US-10-388-934-107
 ; Sequence 107, Application US/10388934
 ; Publication No. US20040005547A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Boess, Franziska
 ; APPLICANT: Suter-Dick, Laura

APPLICANT: Wolf, Detlef
 TITLE OF INVENTION: BIOMARKERS AND EXPRESSION PROFILES FOR TOXICOLOGY
 FILE REFERENCE: 21199
 CURRENT APPLICATION NUMBER: US/10/388, 934
 CURRENT FILING DATE: 2003-03-14
 PRIOR APPLICATION NUMBER: 02005336.9
 PRIOR FILING DATE: 2002-03-14
 NUMBER OF SEQ ID NOS: 02015657.6
 PRIORITY FILING DATE: 2002-07-17
 SEQ ID NO: 107
 LENGTH: 1068
 TYPE: DNA
 ORGANISM: Rattus sp.
 US-10-388-934-107

Query Match 38.5%; Score 287.6; DB 17; Length 1068;
 Best Local Similarity 68.1%; Pred. No. 2.6e-83;
 Matches 417; Conservative 0; Mismatches 189; Indels 6; Gaps 1;

Qy 142 GGCAAAGATGGCGGTGATGGCACCAAGGGAGAAAAAGGGAAACCAAGGGCTCAGA 201
 Db 64 GGCAAGAGACGGGAAGATGGGCCAAAGGGAGAACAGGTCAAGGGCTCAGG 123
 Qy 202 GGCTTAACAGGGCCCCCTRGAAAAGTGGGGCCTCCAGGAATCCAGGGAAATCAGGTC 261
 Db 124 GGCTTGAGGGCCTCCAGGAAACTGGGGATCAGGAAAGTGGTGTAGTAGGCTG 321
 Qy 262 CCAGGACCAAGGCCAAAAGGAGACCCCTGGAAAAGTCCGGATGGTGTAGTAGGCTG 321
 Db 184 CAAGGACCAAAAGGCCAAAAGGGATCAGGAGACAGCAGAGCCATTGGGTGAAGCTG 243
 Qy 322 GC-----TGCTCAGAAAAGGAAAGCTCTGCCAAAACAGAAATGCCACGTATCAAAAAGTGG 375
 Db 244 GCAAATATGGAGGGCAGAGATAAACACCCTGAAGTCAAACCAAGTTG 303
 Qy 376 CTGACCTCTCTGGCAAAACAAGTTGGAAACAAGTTCTCTGACCAATGGTGAATA 435
 Db 304 CATGCCCTTCTCCATTGGTAAAGTCTGGGAAAGGTCTGGTGTGACCAACCATGAAGG 363
 Qy 436 ATGACCTTTGAAAAGTGAAGGGCATTAGAATCTCATCAAGGAGGAAGGCCTCCTGGC 495
 Db 364 ATGCCCTTTCCAAGGTCAAGGCCCTGTGCTCAGAGCTGGCTATCCC 423
 Qy 496 AGGAATGCTGCAGAGAATGGAGCCATTAGAATCTCATCAAGGAGGAAGGCCTCCTGGC 555
 Db 424 AGGAATGCTGAGGAGAACAGGCATCAAGAAGTGGCTAAACCTCTGGCT 483

RESULT 14
 US-10-450-472-58
 Sequence 58, Application US/10450472
 Publication No. US20040132094A1
 GENERAL INFORMATION:
 APPLICANT: Borean Pharma A/S
 TITLE OF INVENTION: Combinatorial libraries of proteins having the scaffold structure of C-type lectin-like domains
 FILE REFERENCE: BOR00003/WO
 CURRENT APPLICATION NUMBER: US/10/450, 472
 CURRENT FILING DATE: 2003-12-08
 NUMBER OF SEQ ID NOS: 91
 SOFTWARE: PatentIn version 3.2
 SEQ ID NO 58
 LENGTH: 405
 TYPE: DNA
 ORGANISM: Rattus rattus
 FEATURE:
 NAME/KEY: CDS
 LOCATION: (8)..(400)
 OTHER INFORMATION: Rat PrMBP insert

RESULT 13
 US-09-960-352-11785
 Sequence 11785, Application US/09960352
 Patent No. US20020137139A1
 GENERAL INFORMATION:
 APPLICANT: Warren, Wesley C.
 APPLICANT: Tao, Nengbing

Query Match 24.9%; Score 186.2; DB 19; Length 405;
 Best Local Similarity 68.5%; Pred. No. 3.4e-50;
 US-09-960-352-11785

RESULT 15
US-10-070-415A-45
Sequence 45, Application US/10070415A
Publication No. US20040043379A1

GENERAL INFORMATION:

APPLICANT: HASHIMOTO, Koji
APPLICANT: ASHIMOTO, Michie
APPLICANT: MISHIRO, Shunji
APPLICANT: OOTA, Yasuhiko

TITLE OF INVENTION: DETECTION OF NUCLEIC ACID ASSOCIATED WITH DISEASE

FILE REFERENCE: 220633US2SRDPCT

CURRENT APPLICATION NUMBER: US/10/070,415A

CURRENT FILING DATE: 2003-07-23

PRIOR APPLICATION NUMBER: PCT/JP02/02030

PRIOR FILING DATE: 2002-03-05

PRIOR APPLICATION NUMBER: JP 2001-090053

PRIOR FILING DATE: 2001-03-27

PRIOR APPLICATION NUMBER: JP 2001-284112

PRIOR FILING DATE: 2001-09-18

NUMBER OF SEQ ID NOS: 72

SOFTWARE: PatentIn version 3.1

SEQ ID NO 45

LENGTH: 1802

TYPE: DNA

ORGANISM: Homo sapiens

FEATURE:

NAME/KEY: misc_feature

LOCATION: (96)..(96)

OTHER INFORMATION: n is a nucleotide selected from a, g, c, or t

FEATURE:

NAME/KEY: misc_feature

LOCATION: (649)..(649)

OTHER INFORMATION: n is a nucleotide selected from a, g, c, or t

FEATURE:

NAME/KEY: misc_feature

LOCATION: (868)..(868)

OTHER INFORMATION: n is a nucleotide selected from a, g, c, or t

FEATURE:

NAME/KEY: misc_feature

LOCATION: (884)..(884)

OTHER INFORMATION: n is a nucleotide selected from a, g, c, or t

THIS PAGE BLANK (USPTO)

AI876217 uj59d03.y
 AI786738 uj56d08.x
 CB948709 AGENCOURT
 CA478654 AGENCOURT
 CF179019 813103 MA
 BI144334 602908384
 BX526094 BX526094
 BI145807 602909275
 AI097858 ue40g03.y
 CO675645 DG42-1721
 C0775884 ILLUMIGEN
 CA479163 AGENCOURT
 AI118440 ue40g03.x
 BF652528 276116 MA
 CB419261 592111 MA
 CO676106 DG42-184f
 AV649316 AV649316
 CO674631 DG42-144g
 AV649531 AV649531
 CO674696 DG42-146b
 CB947613 AGENCOURT

 664 1 AI876217
 592 1 AI786738
 832 6 CB948709
 957 6 CA478654
 627 7 CF179019
 738 4 BI144334
 540 5 BX526094
 753 4 BI145807
 799 1 AI097858
 653 7 CO675645
 566 7 C0775884
 949 6 CA479163
 677 1 AI118440
 476 2 BF652528
 653 6 CB419261
 605 7 CO676106
 758 1 AV649316
 619 7 CO674631
 393 1 AV649531
 611 7 CO674696
 760 6 CB947613

 256.6 34.4
 256 34.3
 255.6 34.2
 250.2 33.5
 248.4 33.3
 246.2 33.0
 245.8 32.9
 243.4 32.6
 242.6 32.5
 242.2 32.4
 242 32.4
 240.4 32.2
 239.8 32.1
 239.4 32.0
 239 32.0
 236.4 31.6
 236.4 31.6
 235.8 31.6
 234.8 31.4
 234 31.3
 231.6 31.0

Copyright (c) 1993 - 2005 Compugen Ltd.
 DM nucleic - nucleic search, using sw model
 run on: June 20, 2005, 03:04:56 ; Search time 3223 Seconds
 (without alignments)
 8822.218 Million cell updates/sec

title: US-10-054-536-2
 perfect score: 747
 Sequence: 1 atgtccctgtttccatca... .tcttgtagttccctatctga 747

Scoring table: IDENTITY NUC
 Gapop 10_0 , Gapext 1.0

Searched: 34239544 seqs, 19032134700 residues

Total number of hits satisfying chosen parameters: 68479088

Post-processing: Minimum Match 0%		Maximum Match 100%																																																																																																																															
Listing First 45 summaries																																																																																																																																	
EST: *																																																																																																																																	
1:	gb_est1:*																																																																																																																																
2:	gb_est2:*																																																																																																																																
3:	gb_htc:*																																																																																																																																
4:	gb_est3:*																																																																																																																																
5:	gb_est4:*																																																																																																																																
6:	gb_est5:*																																																																																																																																
7:	gb_est6:*																																																																																																																																
8:	gb_gss1:*																																																																																																																																
9:	gb_gss2:*																																																																																																																																
Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.																																																																																																																																	
SUMMARIES																																																																																																																																	
<table border="1"> <thead> <tr> <th>result</th> <th>Query</th> <th>Match</th> <th>Length</th> <th>DB</th> <th>ID</th> <th>Description</th> </tr> <tr> <th>No.</th> <th>Score</th> <th>Match</th> <th>Length</th> <th>DB</th> <th>ID</th> <th></th> </tr> </thead> <tbody> <tr><td>c</td><td>9</td><td>324.8</td><td>43.5</td><td>722</td><td>7</td><td>CK778513</td></tr> <tr><td>c</td><td>10</td><td>303</td><td>40.6</td><td>367</td><td>1</td><td>AV660023</td></tr> <tr><td>c</td><td>11</td><td>302.2</td><td>40.5</td><td>657</td><td>1</td><td>AI255533</td></tr> <tr><td>c</td><td>12</td><td>301.4</td><td>40.3</td><td>1162</td><td>3</td><td>AY325174</td></tr> <tr><td>c</td><td>13</td><td>301.4</td><td>40.3</td><td>1162</td><td>3</td><td>AY325178</td></tr> <tr><td>c</td><td>14</td><td>292.4</td><td>39.1</td><td>869</td><td>1</td><td>AI195233</td></tr> <tr><td>c</td><td>15</td><td>291</td><td>39.0</td><td>367</td><td>1</td><td>AV660367</td></tr> <tr><td>c</td><td>16</td><td>290.4</td><td>38.9</td><td>789</td><td>1</td><td>AI174038</td></tr> <tr><td>c</td><td>17</td><td>283.6</td><td>38.0</td><td>772</td><td>7</td><td>CO812153</td></tr> <tr><td>c</td><td>18</td><td>280.4</td><td>38.9</td><td>1565</td><td>3</td><td>AK034788</td></tr> <tr><td>c</td><td>19</td><td>276</td><td>36.9</td><td>996</td><td>7</td><td>CO809875</td></tr> <tr><td>c</td><td>20</td><td>268.4</td><td>35.9</td><td>557</td><td>2</td><td>BE682267</td></tr> <tr><td>c</td><td>21</td><td>268</td><td>35.9</td><td>788</td><td>4</td><td>BI147944</td></tr> <tr><td>c</td><td>22</td><td>267.6</td><td>35.8</td><td>784</td><td>1</td><td>AI173576</td></tr> <tr><td>c</td><td>23</td><td>258.4</td><td>34.6</td><td>777</td><td>1</td><td>AI194713</td></tr> <tr><td>c</td><td>24</td><td>258.4</td><td>34.4</td><td>956</td><td>6</td><td>CA479090</td></tr> </tbody> </table>				result	Query	Match	Length	DB	ID	Description	No.	Score	Match	Length	DB	ID		c	9	324.8	43.5	722	7	CK778513	c	10	303	40.6	367	1	AV660023	c	11	302.2	40.5	657	1	AI255533	c	12	301.4	40.3	1162	3	AY325174	c	13	301.4	40.3	1162	3	AY325178	c	14	292.4	39.1	869	1	AI195233	c	15	291	39.0	367	1	AV660367	c	16	290.4	38.9	789	1	AI174038	c	17	283.6	38.0	772	7	CO812153	c	18	280.4	38.9	1565	3	AK034788	c	19	276	36.9	996	7	CO809875	c	20	268.4	35.9	557	2	BE682267	c	21	268	35.9	788	4	BI147944	c	22	267.6	35.8	784	1	AI173576	c	23	258.4	34.6	777	1	AI194713	c	24	258.4	34.4	956	6	CA479090
result	Query	Match	Length	DB	ID	Description																																																																																																																											
No.	Score	Match	Length	DB	ID																																																																																																																												
c	9	324.8	43.5	722	7	CK778513																																																																																																																											
c	10	303	40.6	367	1	AV660023																																																																																																																											
c	11	302.2	40.5	657	1	AI255533																																																																																																																											
c	12	301.4	40.3	1162	3	AY325174																																																																																																																											
c	13	301.4	40.3	1162	3	AY325178																																																																																																																											
c	14	292.4	39.1	869	1	AI195233																																																																																																																											
c	15	291	39.0	367	1	AV660367																																																																																																																											
c	16	290.4	38.9	789	1	AI174038																																																																																																																											
c	17	283.6	38.0	772	7	CO812153																																																																																																																											
c	18	280.4	38.9	1565	3	AK034788																																																																																																																											
c	19	276	36.9	996	7	CO809875																																																																																																																											
c	20	268.4	35.9	557	2	BE682267																																																																																																																											
c	21	268	35.9	788	4	BI147944																																																																																																																											
c	22	267.6	35.8	784	1	AI173576																																																																																																																											
c	23	258.4	34.6	777	1	AI194713																																																																																																																											
c	24	258.4	34.4	956	6	CA479090																																																																																																																											
Query Match 90.8%; Score 678; DB 9; Length 747;																																																																																																																																	
Best Local Similarity 90.8%; Pred. No. 1.4e-182;																																																																																																																																	
Matches 678; Conservative 0; Mismatches 69; Indels 0; Gaps 0																																																																																																																																	
Qy 1 ATGTCCTGTTCCATCACTCCCTCTCTGAGTATGGCAGCGTCTTACTCA 60																																																																																																																																	
ALIGNMENTS																																																																																																																																	
RESULT 1																																																																																																																																	
LOCUS AY413286	747 bp DNA VIRTUAL TRANSCRIPT, partial sequence.																																																																																																																																
DEFINITION Homo sapiens MBL2 gene, genomic survey sequence.																																																																																																																																	
ACCESSION AY413286																																																																																																																																	
VERSION AY413286.1	GI:39769248																																																																																																																																
KEYWORDS GSS.																																																																																																																																	
SOURCE Homo sapiens (human)																																																																																																																																	
ORGANISM Homo sapiens																																																																																																																																	
REFERENCE 1 (bases 1 to 747)																																																																																																																																	
AUTHORS Clark,A.G., Glanowski,S., Nielson,R., Thomas,P., Kejariwal,A., Todd,M.A., Tanenbaum,D.M., Civello,D.R., Lu,F., Murphy,B., Ferriera,S., Wang,G., Zheng,X.H., White,T.J., Sninsky,J.J., Adams,M.D. and Cargill,M.																																																																																																																																	
TITLE Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios	Science 302 (5652), 1960-1963 (2003)																																																																																																																																
JOURNAL Science 302 (5652), 1960-1963 (2003)																																																																																																																																	
PUBMED 14671302	2 (bases 1 to 747)																																																																																																																																
REFERENCE 2 (bases 1 to 747)																																																																																																																																	
AUTHORS Clark,A.G., Glanowski,S., Nielson,R., Thomas,P., Kejariwal,A., Todd,M.A., Tanenbaum,D.M., Civello,D.R., Lu,F., Murphy,B., Ferriera,S., Wang,G., Zheng,X.H., White,T.J., Sninsky,J.J., Adams,M.D. and Cargill,M.																																																																																																																																	
TITLE Direct Submission	Submitted (16-NOV-2003) Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA																																																																																																																																
JOURNAL COMMENT This sequence was made by sequencing genomic exons and ordering them based on alignment.																																																																																																																																	
FEATURES Location/Qualifiers																																																																																																																																	
source 1. .747	/organism="Homo sapiens"																																																																																																																																
	/mol_type="genomic DNA"																																																																																																																																
	/db_xref="taxon:9606"																																																																																																																																
gene <1. .>747	/gene="MBL2"																																																																																																																																
	/locus_tag="HCM4840"																																																																																																																																
ORIGIN																																																																																																																																	

AUTHORS	Clark, A.G., Golanowski, S., Nielson, R., Thomas, P., Kejariwal, A., Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B., Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J., Adams, M.D. and Cargill, M.
TITLE	Direct Submission
JOURNAL	Submitted (16-NOV-2003) Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA
COMMENT	This sequence was made by sequencing genomic exons and ordering them based on alignment.
FEATURES	Location/Qualifiers
source	1. >747 /organism="Pan troglodytes" /mol_type="genomic DNA" /db_xref="taxon:9598"
gene	<1. >747 /gene="MBL2"
ORIGIN	Query Match 89.9%; Score 671.6; DB 9; Length 747; Best Local Similarity 90.2%; Pred. No. 9.6e-181; Matches 674; Conservative 0; Mismatches 73; Indels 0; Gaps 0;
Db	QY 1 ATGCCCCCTGGTTCATCACTCCCTCTCCTGAGTATGGTGGCAGGGTACTCA 60 1 ATGCCCCCTGGTTCATCACTCCCTCTCCTGAGTATGGTGGCAGGGTACTCA 60
Db	QY 1 GAAACTGTGACCTGTGAGGTGCCAAAGGGCAAAAGGAGACCCTGGAAAGGT 300 1 GAAACTGTGACCTGTGAGGTGCCAAAGGGCAAAAGGAGACCCTGGAAAGGT 300
Db	QY 1 CGGGATGGTGTAGTAGTAGCTGGCTGCCAGGACCAAGGGCCAAAAGGAGAC 360 1 CGGGATGGTGTAGTAGTAGCTGGCTGCCAGGACCAAGGGCCAAAAGGAGAC 360
Db	QY 1 CGTATCAAAGTGGCTGACCTCTCTGGCAAAACAAGTGGAACAAAGTCTCCTG 420 1 CGTATCAAAGTGGCTGACCTCTCTGGCAAAACAAGTGGAACAAAGTCTCCTG 420
Db	QY 1 ACCAATGGTGAATAATGACCTTTGAAAAGTGAACGGCATTCAGAAAGGAG 540 1 ACCAATGGTGAATAATGACCTTTGAAAAGTGAACGGCATTCAGAAAGGAG 540
Db	QY 1 TCTGTGCCACCCCCAGGAATGCTGAGAGACAGAAGGGCATTCAAGGGAG 480 1 TCTGTGCCACCCCCAGGAATGCTGAGAGACAGAAGGGCATTCAAGGGAG 480
Db	QY 1 GAAGGCCCTCTGGCATCACTGATGAGAGACAGAAGGGCATTCAAGGGAG 540 1 GAAGGCCCTCTGGCATCACTGATGAGAGACAGAAGGGCATTCAAGGGAG 540
Db	QY 1 ACCAATGGCCTACACAACGGGACCAAGGGCCATTCTGGGCTGGCTGGCAAGT 540 1 ACCAATGGCCTACACAACGGGACCAAGGGCCATTCTGGGCTGGCTGGCAAGT 540
Db	QY 1 GAACTGGGCTTCTGGGTCAAGGGCTTACAGGGCTCAGAGGACCAAGGG 540 1 GAACTGGGCTTCTGGGTCAAGGGCTTACAGGGCTCAGAGGACCAAGGG 540
Db	QY 1 CGGGATGGTGTAGTAGTAGCTGGCTGCCTCAGAAAGGAAATGGCA 360 1 CGGGATGGTGTAGTAGTAGCTGGCTGCCTCAGAAAGGAAATGGCA 360
Db	QY 1 CGTATCAAAGTGGCTGACCTCTGGGTCAAGGGCTGGCTGGCAAGGG 360 1 CGTATCAAAGTGGCTGACCTCTGGGTCAAGGGCTGGCTGGCAAGGG 360
Db	QY 1 ACCAATGGTGAATAATGACCTTTGAAAAGTGGAAATGGGCAATTCTG 720 1 ACCAATGGTGAATAATGACCTTTGAAAAGTGGAAATGGGCAATTCTG 720
Db	QY 1 GATTGTGTATTGCTACTGAAAAATGGCCACTACACAACGGGGTGAACGG 720 1 GATTGTGTATTGCTACTGAAAAATGGCCACTACACAACGGGGTGAACGG 720
Db	QY 1 CTGGCCGCTCTGTGAGTTCCCTATCTGA 747 1 CTGGCCGCTCTGTGAGTTCCCTATCTGA 747
Db	QY 1 AY413287 747 bp DNA linear GSS 17-DEC-2003 LOCUS AY413287 Pan troglodytes MBL2 gene, VIRTUAL TRANSCRIPT, partial sequence, genomic survey sequence.
DEFINITION	Pan troglodytes (chimpanzee)
ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Pan.
VERSION	1 (bases 1 to 747)
KEYWORDS	Eu
SOURCE	AY413287
REFERENCE	AY413287
AUTHORS	Clark, A.G., Golanowski, S., Nielson, R., Thomas, P., Kejariwal, A., Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B., Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J., Adams, M.D. and Cargill, M.
TITLE	Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios
JOURNAL	Science 302 (5652), 1960-1963 (2003)
PUBLMED	14671302
PUBNOM	2525031 52747
QY	721 CTGGCCGCTCTGTGAGTTCCCTATCTGA 747

RESULT 3
COS79105

LOCUS COS79105 1000 bp mRNA linear EST 20-JUL-2004

DEFINITION ILLUMIGEN MCQ_50626 Katze_MNLV Macaca nemestrina cDNA clone IBIUW:18533 5' similar to Babes 76 to 977 highly similar to human MBL2 (HS.2314) , mRNA Sequence.

ACCESSION CO579105

VERSION GI:50409981

KEYWORDS EST.

SOURCE Macaca nemestrina (pig-tailed macaque)

ORGANISM Macaca nemestrina

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrini; Cercopitheciidae; Cercopithecinae; Macaca.

REFERENCE Katze,M.G., Thomas,M., Korth,M., Iadonato,S.P. and Magness,C.L.

AUTHORS Large-scale Rhesus Macaque cDNA Sequencing

TITLE Unpublished (2003)

JOURNAL Contact : C. Magness

COMMENT Illumigen Biosciences Inc. Suite 450, Seattle, WA 98134, USA

Tel: 2063780400

Fax: 2063780408

Email: cmagness@illumigen.com

Sequenced on 2004-07-16. 690 Q20 bases. Library Preparation: Prof. Michael Katze Lab at University of Washington DNA Sequencing: Illumigen Biosciences Inc. For further information, see <http://www.macaque.org>

PCR PRIMERS

FORWARD: CCCTCACTAAAGGGAACAAAAA

BACKWARD: CACTATAGGGCGAATTGGGTAA

Insert Length: 1000 Std Error: 0.00

Plate: CL000535 row: B column: 08

Seq primer: CCCTCACTAAAGGGAACAAAAA

POLY=A=Yes

FEATURES source

1. .1000 Location/Qualifiers

/organism="Macaca nemestrina"
/mol_type="mRNA"
/strain="Indian"
/db_xref="taxon:9545"
/clone="IBIUW:18533"
/sex="male"
/lab_host="Electromax DH10B"
/clone_lib="Katze_MNLV"
/note="Organ: liver; Vector: pDONR 222; Site 1: BsrG I;
Site 2: BsrG I; Created from CloneMiner cDNA Library
Construction kit (catalog #18249-029)"

ORIGIN

Query Match 89.5%; Score 668.6; DB 7; Length 1000;
Best Local Similarity 93.4%; Pred. No. 7.6e-180;
Matches 698; Conservative 0; Mismatches 49; Indels 0; Gaps 0;

1 ATGTCCTGTTCCATCACTCCCTCTCCTGAGTGGCAGGGCTTACTCA 60
87 ATGTCCTGTTCCATCACTCACTCTCTCTGAGTGGCAGGGCTTACTCA 146

Qy 61 GAAACTGTGACCTGTGAGGATGCCAAAAGACCTGCCCTGCAGTGCTTAGCTCT 120

Db 147 GAAACTGTGACCTGTGAGGATTCCTCAAAGATCTGCCCTGCGGTGATTGGCTTAACCTC 206

Qy 121 CCAGGCATCAACGGCTTCCAGGCAAAAGATGGGGTGAATGGCCAAGGGAGAAAGGG 180

Db 207 CCAGGCATCAACGGCTTCCAGGCAAAAGATGGGGTGAATGGCCAAGGGAGAAAGGG 266

Qy 181 GAACCAAGGCCAAGGGCTCAGGGCTTAAGGGCCCCCTGGAAAGTTGGGCTCCAGGA 240

Db 267 GAACCAAGGCCAAGGGCTCAGGGCTTACAGGGCTTACAGGGCCCCCTGGAAAGTTGGGCTCCAGGA 326

FEATURES FORWARD: CCCTCACTAAAGGGAACAAAAA
BACKWARD: CACTATAGGGGAATTGGGCTA
Insert Length: 968 Std Error: 0.00
Plate: CL000535 row: B column: 06
Seq primer: CCCTCACTAAAGGGAACAAAAA
POLY=A=No

FEATURES Location/Qualifiers

RESULT 4 -
COS79085

LOCUS COS79085 968 bp mRNA linear EST 20-JUL-2004

DEFINITION ILLUMIGEN MCQ_50641 Katze_MNLV Macaca nemestrina cDNA clone IBIUW:16614 5' similar to Bases 83 to 967 highly similar to human MBL2 (HS.2314) , mRNA Sequence.

ACCESSION COS79085

VERSION COS79085.1 GI:50409957

KEYWORDS EST.

SOURCE Macaca nemestrina (pig-tailed macaque)

ORGANISM Macaca nemestrina

Eukaryota; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrini; Cercopitheciidae; Cercopithecinae; Macaca.

REFERENCE Katze,M.G., Thomas,M., Korth,M., Iadonato,S.P. and Magness,C.L.

AUTHORS Large-scale Rhesus Macaque cDNA Sequencing

TITLE Unpublished (2003)

JOURNAL Contact : C. Magness

COMMENT Illumigen Biosciences Inc. 2203 Airport Way S, Suite 450, Seattle, WA 98134, USA Tel: 2063780400 Fax: 2063780408 Email: cmagness@illumigen.com

Sequenced on 2004-07-16. 683 Q20 bases. Library Preparation: Prof. Michael Katze Lab at University of Washington DNA Sequencing: Illumigen Biosciences Inc. For further information, see <http://www.macaque.org>

PCR PRIMERS

FORWARD: CCCTCACTAAAGGGAACAAAAA
BACKWARD: CACTATAGGGGAATTGGGCTA
Insert Length: 968 Std Error: 0.00
Plate: CL000535 row: B column: 06
Seq primer: CCCTCACTAAAGGGAACAAAAA

LOCUS	COT38739	DEFINITION	SLLE04C21F10F1 squirrel embryo library 1 Spermophilus lateralis mRNA linear EST 29-JUL-2004
VERSION	COT38739	KEYWORDS	Spermophilus lateralis (golden-mantled ground squirrel)
SOURCE	Spermophilus lateralis	ORGANISM	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Sciuridae; Sciurinae; Spermophilus
ACCESSION	CO738739	REFERENCE	1 (bases 1 to 807)
VERSION	EST.	AUTHORS	Williams,D.R., Gracey,A.Y., Martin,S.L., Hughes,M.A., Li,W., Rogers,J. and Cossins,A.R.
KEYWORDS		TITLE	Microarray analysis of transcriptional changes during hibernation in the golden mantled ground squirrel, Spermophilus lateralis
SOURCE		JOURNAL	Unpublished (2004)
ACCESSION		COMMENT	Contact: Andrew R. Cossins Laboratory for Environmental Gene Regulation University of Liverpool School of Biological Sciences, The Biosciences Building, Crown Street, Liverpool, United Kingdom, L69 7ZB Tel: +44 (0) 151-795-4510 Fax: +44 (0) 151-795-4431 Email: cossins@liv.ac.uk
VERSION		FEATURES	Vector has been trimmed from this EST. Plate: 21 row: f column: 10 Seq primer: pflic T7 (5'-AATAGCACTACTATAGGG-3') High quality sequence stop: 807.
KEYWORDS		source	Location/Qualifiers
			1. /organism="Spermophilus lateralis" /mol_type="mRNA" /db_xref="taxon:76772" /clone="21f10" /sex="male and female" /tissue_type="embryo" /dev_stage="embryonic" /lab_host="E.coli Electromax DH10B" /clone_lib="squirrel embryo library 1" /note="Vector: pFLC; Site_1: SalI GTCGAG; Site_2: BamHI GGATCC; Normalized and subtracted cDNA library prepared from embryos"
ORIGIN			Query Match 52.8%; Score 394.4; DB 7; Length 807; Best Local Similarity 73.5%; Pred. No. 2.3e-101; Matches 548; Conservative 0; Mismatches 186; Indels 12; Gaps 3
b			QY 1 ATGTCCCTGTTCCATCACTCCCTCTCCTGAGTATGGCGAGGGCTTACTCA 60 94 ATGTCCCTGTTCCATCACTCCCTCTCCTGAGTGTGGCAACATCTTACTCA 153
b			QY 61 GAAACTGTGACCTGTGAGGATGCCAAAGAACCTGCCCTGCAGTGATTGCTGTAGCTCT 120 154 GAAACTGTGACCTGTGAGGATCCAAAAGATCTGCCCTGCGGTGATTGCTGTAACCTCC 213
b			QY 121 CCAGGCATCACGGCTTCCCAGGCCAAGATGGCGCATGGCACCAAGGGAGAAAGGGG 180 214 CCAGGCATCACGGCTTCCCAGGCCAAGATGGCGATGGCACCAAGGGAGAAAGGGG 273
b			QY 181 GAACCAAGGCCAAGGGCTCAGAGGCTTACAGGGCTTACAGGGCCCCCTGGGA 240 274 GAACCAAGGCCAAGGGCTCAGAGGTTACAGGGCTTACAGGGCCCTCAGGA 333
b			QY 241 AATCCAGGGCCCTTCTGGTCACCGGACCAAGGGCCAAAAAGGAGACCCCTGGAA 300 334 AATCCAGGGCTCTGGTCACCGGACCAAGGGCCAAAAAGGAGACCCCTGGAGAGT 393
b			QY 301 CGGGATGGTGTAGTAGCTGGCTCAGAACAGAAATGGCA 360 394 CCAGATTGTGAGTAGGCTGGCTGCCTCAGAACAGAAATGGCT 453
b			QY 361 CGTATCACAAAAGTGGCTGACCTTCCTGGCAACAGTTGGAACAAAGTTCTCTG 420 454 CGTATCACAAAATGGCTGACCTTCCTGGCAGACAAGTTGGAACAAAGTTCTCTG 513
b			QY 421 ACCAATGGTGAATAATGACCTTGTGAAAAGTGAAGGGCCTTGTGTCAAGTTCCAGGCC 480 514 ACTAATGGTGAATGATGACCTTGTACAAGGTGAAGGCCCTGTGCCGAGTTCAAGGCC 573
b			QY 481 TCTGTGGCCACCCCCAGGAATGCTGGAGGAATGGAGCCATTCAAGATCTCAAGAG 540 574 TCTGTGGCCACCCCCAGGAATGCTGGAGGAACAGGCCATCCAAGATCTCAAGAG 633
b			QY 541 GAAGGCCTTCTGGCATCACTGATGAGAACAGGAAGGGCAGTTGTGGATCTGACAGGA 600 634 GAAGGCCTTCTGGCATCACTGATGAGAACAGGAAGGGGAGTTGTAGATCTGACAGGA 693
b			QY 601 AATAGACTGACCTACACAAACTGGAACAGAACCCAAACAAATGCTGGATCTGACAGGA 660 694 AATAAAACTGACCTACACAAACTGGAACAGAACAGAACGGCCC-ACAATGCTGGATCTAATGAG 752
b			QY 661 GATTGTGTATTGCTACTGAAAATGGCCAGTGGAAATGACGTCCCTGCTCACCTCCAT 720 753 AACTGTGTATTGTTACTG-AAAATGGCAAGTGGAAATGACATCCCTGCTCACCTCCAT 811
b			QY 721 CTGGCCGGCTCTGGTGTGACTTCCCTATCTGA 747 812 CTGGCCCTCTGGATTCCTATCTGA 838
b			QY 238 GAGCCAGGTCAAGGGCTCAGAGTTGAGGTTGGGAAACTGGGGCTCCAGGA 297 301 CCGGATGGCTAGCTGGCTCAGAAACAGAA 354
b			QY 241 ATCCAGGGCTTCTGGTACAGGGCTTACAGGGCCATGGCAAGGGAGACCCCTGGAAAGT 300 298 ATACAGGGGGCTGGCTGGGATCTGGGAGATAGCTGGGAGATCTGGGAGATAGT 357

Qy	334 AGAAAAGCTCTGCAAACAGAAATGGCACGTATAAAGTGGCTGACCTTCTCTGGGC	393	Library made from pooled tissue from marrow, alveolar macrophage, ovary, fetal semitendinosus muscle, and fetal longissimus muscle.
Db	297 ATTGCAAGCCTACGATCAGGCTGAGGCCCTGAGAACAACTGGTGTCTCTCTGAGT	356	ORIGIN
Qy	394 AAACAAGTGGAACAAAGTTCCCTGACCAATGGTAATAATGACCTTGAAAAAGGTG	453	Query Match 43.5%; Score 324.8; DB 7; Length 722;
Db	357 GAAAAGTGGAAAG-TATTGTGAGGAGTGGAGTGGCTTGAAGAGTGGT	415	Best Local Similarity 70.5%; Pred. No. 1.9e-81;
Qy	454 AAGGCCTTGTGTCAGTTCCAGGGCTCTGGCCACCCCCCAGGAATGGTGCAGAGAT	513	Mismatches 0; Conservative 182; Indels 6; Gaps 1;
Db	416 AAGGCCCTGTGCTCCGAATTCCAGG-CCTGTGGCACTCCCAGGAATGGTGGAGT	474	Matches 450;
Qy	514 GGAGCCTTCAAGTTCAGGGCTCTCATCAAGGGAAACTGGTACACTGATGAGAACACA	573	Qy 116 GCTCTCCAGGCATCAACCGGCTTCCAGGCAAAAGTGGCTGACCAAGGGAGAAA 175
Db	475 TCGGCATCCAGAAATTCAGGATCTGGCTACTTGGCATCACAGATGTGAGGGTT	534	Db 721 GCATCCCCGTACCAATGGCACCCAGGGAGATGGGAGATGGGAAAGGGAAA 662
Qy	574 GAAGGGCAGTTCTGAGGATCTGACAGGAATAAGACTGACCTACACAAACTGGAACGGGGT	633	Qy 176 AGGGGGAAACCGGCCAAGGGCTCAGAGGCTTACAGGGCCCCCTGGAAAAGTGGGCTC 235
Db	535 GAAGGCAGTTTGAGGATCTGACAGGAACAGACTGGCTATACTAATTGGAATGTGGG	594	Db 661 AGGGAGAGGCCAGGTCAAAGGGCTTAGAGGTTGCAGGGCCCTGGGGCCCC 602
Qy	634 GAAACCAACAATGCTGGTTCTGATGAGGATTGTGTATTGCTACTGTGAAATAATGGCCAGTGG	693	Qy 236 CAGGAAATCCAGGGCCTTCTGGCTCACAGGGCTTACAGGGCTTACAGGGCTCAGAAAG 295
Db	595 GAGGCCAACAACACGGGATGGGGATGGTGTGATCTGGAAAGACTGTGGTGTGACTGA	654	Db 601 CAGGAAACACAGGGCTCCTGGAAATTCCAGGACCAAGGGACAAAAGGAGATCATGGGG 542
Qy	694 ATGACGTCCCT-GCTCCACCTCCCATTCTGGCCGCTCTGTGAGTTCCCTATCTGA	747	Qy 296 AAAGTCCGGATGGTATAGTAGGCTTCTGGCTTCTGGCTCAGAAAG-----AAAAGCTCTGCAA 349
Db	655 AACGATGTCCTGGCTCTGACTCTGGCAATTCTGTGAATTCTGTGACTGA	709	Db 541 ACAATTCAAGTTGTGAGGCTAAAGCTGAGGACAGCTACAGGGCTGAGAT 482
RESULT 9	CK778513/C	722 bp mRNA linear EST 20-FEB-2004	Qy 350 CAGAAATGGCACGTATCAAAGTGGCTGACCTTCTCTGGCAAACAAGTTGGGAACA 409
LOCUS	965675 MARC 3BOV Bos taurus cDNA 3'	mRNA sequence.	Db 481 CAGAACTGGACCACATGAAAGCTGCAAGGGCTTCTCTGGGAAATAATGGCTGGGAAGA 422
DEFINITION			Qy 410 AGTCTCTGACCAATGGTGAATAATGACCTTTGTAAGTGAAGGGCTTGTGTGTC 469
ACCESSION	CK778513		Db 421 AGCTCTTGTGACCAAGGGTGAAGGTGAGCTGGCTTCTCTGGGCTCTGTGCTG 362
VERSION	GI:42730826		Qy 470 AGTTCAGGGCCCTCTGTGCCACCCCCAGGAATGCTGCAAGAGAATGGCCATTCTGAAATC 529
KEYWORDS	Bos taurus (cow)		Db 361 GGCTCCAGGCCACACTGCTGGCTGCCAGGGTGGCTGACCTACAGGCAATCCAGGATG 302
SOURCE	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Butheria; Cetartiodactyla; Ruminantia; Pecora; Bovidae; Bovinae; Bos.		Qy 530 TCATCAAGGGAGAAATAGACTGACTACACAACACTGATGAGGAAGAGAGAAGGGCTGAGTGG 589
REFERENCE	Smith, T.P.L., Grosse, W.M., Freking, B.A., Roberts, A.J., Stone, R.T., Casas, E., Wray, J.E., White, J., Cho, J., Fahrenkrug, S.C., Bennett, G.L., Heaton, M.P., Laegreid, W.W., Rohrer, G.A., Chitko-McKown, C.G., Pertea, G., Holt, I., Karamycheva, S., Liang, F., Quackenbush, J. and Keele, J.W.		Db 590 ATCTGACAGGAAATAGACTGACTACACAACACTGATGAGGAAGAGAGAAGGGCTGAGTGG 649
AUTHORS	Sequence evaluation of four pooled-tissue normalized bovine cDNA libraries and construction of a gene index for cattle		Db 241 ACGTGACGGGGGGCTGACTACAGCAACTGCTCCCTGGCATCACAGTGAAGGGCTGAGTGG 182
ACCESSION	CK778513.1	EST.	Qy 650 GTTCTGATGAGGATTGTGTATTGTGCTACTGAGGAAATGGCCAGTGGAAATTGGCTCCCTGCT 709
VERSION	CK778513.1.1		Db 181 GTTCAAGGGAGGACTGTGTGATTCCTGTGAGCAATGGCTCTGGATGACATTCCTGGCA 122
KEYWORDS			Qy 710 CCACCTCCCATCTGGCCGCTCTGTGAGTTCCCTATCTGA 747
SOURCE			Db 121 CGGCCTCTACATGCCGTCTGTGAGTTCCCTGGCTGA 84
ORGANISM			
COMMENT	Contact: Smith TPL USDA, ARS, US Meat Animal Research Center PO Box 166, Clay Center, NE 68933-0166, USA Tel: 402 762 4366 Fax: 402 762 4390 Email: smith@email.marc.usda.gov	RESULT 10 AV660023 LOCUS AV660023 DEFINITION AV660023 VERSION AV660023.1 KEYWORDS GI:9881037 SOURCE EST. ORGANISM Homo sapiens (human) REFERENCE (bases 1 to 367) AUTHORS Xu, X., Huang, J., Xu, Z., Qian, B., Zhu, Z., Yan, Q., Cai, T., Zhang, X., Xiao, H., Qu, J., Liu, F., Huang, Q., Cheng, Z., Li, N., Du, J., Hu, W., Shen, K., Lu, G., Yu, G., Zhong, M., Xu, S., Gu, W., Huang, W., Zhao, X., Hu, G., Gu, J., Chen, Z. and Han, Z. TITLE Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver	
FEATURES	source	1. .722 /organism="Bos taurus" /mol_type="mRNA" /db_xref="taxon:9913" /tissue_type="pooled" /lab_host="DH10B" /clone_lib="MARC 3BOV" /note="Vector: pcMV SPORT6; Site_1: NotI; Site_2: SalI;	
MEDLINE	21180013	Plates: 66 row: E Column: 1 Seq primer: GATAATCGACTCACTATAGGG. Location/Qualifiers	
PUBMED	11282978	1. .722	
COMMENT			

TITLE	
JOURNAL	
COMMENT	
The WashU-HMMI Mouse EST Project	
Unpublished (1996)	
Contact: Marra M/Mouse EST Project	
WashU-HMMI Mouse EST Project	
Washington University School of Medicine	
4444 Forest Park Parkway, Box 8501, St. Louis, MO 63108	
Tel: 314 286 1800	
Fax: 314 286 1810	
Email: mouseest@watson.wustl.edu	
This clone is available royalty-free through LLNL; contact the IMAGE Consortium (info@image.llnl.gov) for further information.	
MG1:971304	
Seq primer: custom primer used	
High quality sequence stop: 428.	
Location/Qualifiers	
1. .869	
/organism="Mus musculus"	
/mol_type="mRNA"	
/strain="C57BL"	
/db_xref="taxon:10090"	
/clone="IMAGE:1886980"	
/sex="female"	
/dev_stag="adult"	
/lab_host="DH10B"	
/clone_lib="Sugano mouse liver mlia"	
/note="Organ: liver; Vector: PME18S-FL3; Site:1: DraIII (CACTGTGTTG); Site 2: DraIII (CACCATGTG); 1st strand cDNA was primed with an oligo (dR) primer [ATGTGGCCCTTTTTTTTTT]; double-stranded cDNA was ligated to a DraIII adaptor [TGTTGGCCTACTGG], digested and cloned into distinct DraIII sites of the PME18S-FL3 vector (5' site CACTGTGTTG, 3' site CACCATGTG). XbaI should be used to isolate the cDNA insert. Size selection was performed to exclude fragments <1.5kb. Library constructed by Dr. Sumio Sugano (University of Tokyo Institute of Medical Science). Custom primers for sequencing: 5' end primer CTCCTGCTCTAAAGCTGCG and 3' end primer CGACCTGAGCTCGAGCACA."	
ORIGIN	
Query Match 40.3%; Score 301.4; DB 3; Length 1162;	
Best Local Similarity 70.6%; Pred. No. 1.1e-74;	
Matches 401; Conservative 0; Mismatches 167; Indels 0; Gaps 0;	
5 CTGTGACCTGTGAGGTGCCAAAAGACCTGCCAGCTGATGCCAGTCTCCAG 124	
93 CCGAGACCTTAACCGAAGGGCTCAAAGTAGCTGCCCTGTGATGCCAGTCTCCGG 152	
125 GCATCAACGGCTTCCCAAGCCAAGGCTTACAGGGCCCCCTCCAGGAATC 184	
153 GCCTGAACGGCTTCCCAAGCCAAGGATGGACACGGTGCCTGGAGAAAC 212	
185 CAGGCCAAGGGCTCAGAGGCTTACAGGGCCCCCTCCAGGAATC 244	
213 CGGGATAAGGGCTCAGAGGCTTTCAGGGCCCTCTGGAGGGCCCC 272	
245 ATGGGTGATACTAGCTGGCTGCCCTCAGAAAGGACACCCTGGAAAAACTCCGG 304	
273 CAGGAAATCCTGGTCAAAAGGACAACGGGACCAACGGCAC 332	
305 ATGGGTGATACTAGCTGGCTGCCCTCAGAAAGGACACCCTGGAAAAACTCCGG 364	
333 ATTGTGATACTACCAACATTGATTAGAAATTGAGTAACTGGAGAGCTG 392	
365 TCAAAAGTGGCTGACCTTCTGGCTGCCCTCAGAAAGGACACAAGTGGCAC 424	
393 TGAGAAAGTGGTGTCTCTTCTATGAGTGAAGAAGTACTTCATGAGCA 452	
425 ATGGTGAATAATGACCTTTGAAAAAGTGAAGGGCTTGTGTGTCAGTCCAGGCCTCTG 484	
453 GTGTTAGAAGGGATGCCCTTAACAGGGCAAGGCTCTGCTCCGAACCTCCAGGGCACTG 512	
b	
485 TGGCCACCCAGGAATGGGAAATGGGACAACTGCTGACAGGAAAG 544	
513 TGGCCACTCCAGGAATGGCCAAATGGCCATCCAGAATGGGACATGGTGTG 572	
b	
545 CCTTCTGGCATCACTGATGAGAACAGAACGGCAGTTGGGATCTGACAGGAATA 604	
573 CCTTCTGGCATAACGGACCAAGGACTGAAACGGTGTGAGGACCTGACAGGAACA 632	
b	
605 GACTGACCTACACAACACTGGAAACGGAGGG 632	
633 GACTGCGTACACTGGAAATGAGGG 660	
b	
QY CCAGGAAATCCAGGGCCTCTGGGTCAACGGACCAAGGGCCAAAAGGAGACCCCTGGGA 234	
DB 745 AAGGAAGGAGGCAAGGGCTCAAGTGGCTCAGATGGCTCAGATGGACCTGAGGAGC 686	
QY 685 TACAGGACCCNCAGGGAAATCGGGTAAAGGGAGCAGTGTACCGGAAAGGGTGTG 626	
DB 295 AAAAGTCCGGATGGTGTGATAGTGGCTGGCTGGCTCAGAAAGGAAACAGGCTCTGC 354	
QY 625 GACAGAGGAGAAATTGATTCAAGAAATTGATTCAAGGCTCTGAGTCAAGGAG 566	
Db 355 ATGGCACGTATAAAAGTGGCTGACCTCTCTGGCAAGGGAAACAAGTTGGAAACAAAGTTC 414	
QY 565 CTGAGGAGCCCTGAGAAAGTGGGTAAAGGGTGTGAGTGANAAAG-TGGAAAGAAGTAT 507	
Db 415 TTCTGACCAATGGTGAATAATGACCCCTGGCTGAGGAGCATTCAAGGTTTC 474	
QY 506 TTRGTCAGCAGTGTAAAGATGGCCCTGTCAGAGGTGAAGGGCCCTGTCAGAATCTCATC 447	
QY 475 CAGGCCCTCTGGGCCACCCAGGAATGGCTGAGGAGAATGGCCATTCAAGAATCTCATC 534	
ORGANISM Mus musculus (house mouse)	
SOURCE Mus musculus	
KEYWORDS Eukaryota; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Metazoa; Sciuromorphi; Muridae; Murinae; Mus.	
REFERENCE 1 (bases 1 to 869)	
AUTHORS Marra, M., Hillier, L., Allen, M., Dietrich, N., Dubuque, T., Martin, J., Morris, M., Lacy, M., Kucaba, T., Geisel, S.,	

Db	446	CAGGGCTCTGGCCACTCCAGGAATGCCATTGCTGAGGAAACTCGGCCATTCCAGGACCAAGGGCAAAAGGAGCCTGG 120
Qy	535	AAGGAGGAAGCCTTCTGGCATCACTGATGAGAAGACAGAACGGCAGTTGTGATCTG 594
Db	386	AAAGATATTCGCTACTGGCATCACAGATGTGAAGGCTCTGGCTCAGAAAGAAAGCTCTG 180
Qy	595	ACAGGAATAAGACTGACCTACACAAACTGGAAACGAGGGTGAACCCAACAATGCTGGTTCT 654
Db	326	ACAGGAACAGACTGCGCTATACTAATTGGAATGGATGGGAAACACAGGGCAT 267
Qy	655	GATGAAGATTGCTTATTGCTACTGAAAATGGCCAGTGGAAATGACGTTCCACC 714
Db	266	GGGAAGACTGTGTGGCAATTCTGTGAATTCTGACTGA 207
Qy	715	TCCCCATCTGGCGTCTGTGAGTTCCCTATCTGA 747
Db	206	TCTTTTGGCAATTCTGTGAATTCTGACTGA 174
RESULT 15		
LOCUS	AV660367	AV660367 GLC Homo sapiens cDNA clone GLC00H07 3', mRNA linear EST 16-JAN-2002
DEFINITION	AV660367	Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
ACCESSION	AV660367	
VERSION	AV660367.1	GI:9881381
KEYWORDS	EST.	
SOURCE	Homo sapiens (human)	
ORGANISM	Homo sapiens	
REFERENCE	1	(bases 1 to 367)
AUTHORS	Xu,X., Huang,J., Qu,J., Liu,F., Shen,K., Lu,G., Gu,J.,	Zhu,Z., Qian,B., Huang,Q., Cheng,Z., Li,N., Xu,S., Chen,Z. and Han,Z.
COMMENT		Zhang,T., Zhang,X., Hu,W., Hu,J., Huang,W., Zhao,X.,
JOURNAL	MEDLINE	Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver
PUBMED	21625106	Proc. Natl. Acad. Sci. U.S.A. 98 (26), 15089-15094 (2001)
FEATURES	source	Contact: Zeguang Han Chinese National Human Genome Center at Shanghai 351 Guo Shoujing Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China Tel: 86-21-50801919(ex.45) Fax: 86-21-50801922 Email: hanzg@chgc.sh.cn
		This clone is available at CHGC in Shanghai.
		Location/Qualifiers
		1. .367 /organism="Homo sapiens" /mol_type="mRNA" /db_xref="taxon:9606" /clone="GLC00H07" /tissue_type="corresponding non cancerous liver tissue" /dev_stage="Adult" /lab_host="SOLR" /clone_lib="GLC" /note="Vector: pBluescript sk(-); site_1: EcoRI; site_2: XbaI"
ORIGIN		
Qy	174	AAAGGGGAAACCAAGGGCTCAAGGGCTTACAGGGCTTACAGGGCCCCCTGAAAGTGGGCC 233
Db	1	AAAGGGGAAACCAAGGGCTCAAGGGCTTACAGGGCTTACAGGGCCCCCTGAAAGTGGGCC 60
Qy	234	TCCAGGAAATCCAGGGCCTCTGGCTCACCAGGACCAAGGGCAAAAGGAGCCTGG 293

THIS PAGE BLANK (USPTO)