Problem Set #2

Quiz, 5 questions

1 point

1.

Consider a directed graph with distinct and nonnegative edge lengths and a source vertex s. Fix a destination vertex t, and assume that the graph contains at least one s-t path. Which of the following statements are true? [Check all that apply.]

The shortest (i.e., minimum-length) $s\text{-}t$ path might have as many as $n-1$ edges, where n is the number of vertices.
The shortest s - t path must include the minimum-length edge of G .
There is a shortest s - t path with no repeated vertices (i.e., a "simple" or "loopless" such path).
The shortest s - t path must exclude the maximum-length edge of G .

1 of 4 3/31/2018, 2:39 PM

Problem Set #^{point}

Quiz, 5 questions

2.

Consider a directed graph G with a source vertex s, a destination t, and nonnegative edge lengths. Under what conditions is the shortest s-t path guaranteed to be unique?

When all edges lengths are distinct positive integers and the graph *G* contains no directed cycles.

When all edge lengths are distinct positive integers.

None of the other options are correct.

When all edge lengths are distinct powers of 2.

1 point

3.

Consider a directed graph G=(V,E) and a source vertex s with the following properties: edges that leave the source vertex s have arbitrary (possibly negative) lengths; all other edge lengths are nonnegative; and there are no edges from any other vertex to the source s. Does Dijkstra's shortest-path algorithm correctly compute shortest-path distances (from s) in this graph?

Only if we add the assumption that G contains no directed cycles with negative total weight.

Never

Always

Maybe, maybe not (depends on the graph)

2 of 4 3/31/2018, 2:39 PM

Problem Set #^{point}

Quiz, 5 questions

4.

Consider a directed graph G and a source vertex s. Suppose G has some negative edge lengths but no negative cycles, meaning G does not have a directed cycle in which the sum of the edge lengths is negative. Suppose you run Dijkstra's algorithm on G (with source S). Which of the following statements are true? [Check all that apply.]

1173
It's impossible to run Dijkstra's algorithm on a graph with negative edge lengths.
Dijkstra's algorithm might loop forever.
Dijkstra's algorithm always terminates, but in some cases the paths it computes will not be the shortest paths from s to all other vertices.
Dijkstra's algorithm always terminates, and in some cases the paths it computes will be the correct shortest paths from s to all other vertices.

3 of 4 3/31/2018, 2:39 PM

Problem Set #2

Quiz, 5 questions

5.

Consider a directed graph G and a source vertex s. Suppose G contains a negative cycle (a directed cycle in which the sum of the edge lengths is negative) and also a path from s to this cycle. Suppose you run Dijkstra's algorithm on G (with source s). Which of the following statements are true? [Check all that apply.]

	Submit Quiz
	Learn more about Coursera's Honor Code
I, David Bai , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.	
	It's impossible to run Dijkstra's algorithm on a graph with a negative cycle.
	Dijkstra's algorithm always terminates, but in some cases the paths it computes will not be the shortest paths from s to all other vertices.
	Dijkstra's algorithm might loop forever.
	paths it computes will be the correct shortest paths from <i>s</i> to all other vertices.

凸

4 of 4