

Einführung in die künstliche Intelligenz EKI03 – ML Regression

Prof. Dr. A. del Pino

Bild: https://en.wikipedia.org/wiki/Machine_learning#/media/File:Anatomy-1751201_1280.png

Aufbau

- Überblick
- ML Validierung
- Beispiel zu Regression: Ticketverkauf-Vorhersage mit TMDB
- Cheat sheets
- Mini-Test

Die KI-Landkarte

Bildquelle: B. Humm "Applied Artificial Intelligence", S. 4

Kategorien von ML Aufgaben

Bildquelle: B. Humm "Applied Artificial Intelligence", S. 15

Aufgaben des Überwachten Lernens (supervised learning)

Klassifikation

- Gegeben: Datensätze als Eingabe für das Training, welche in zwei oder mehrere Klassen ("Kategorien") eingeteilt sind.
- Ziel: Ein Modell erzeugen, welches neue, bisher unbekannte Datensätze klassifizieren kann.
- Beispiele: Spam-Filter, Fraud-Detection,...

Regression

- Gegeben: Datensätze als Eingabe für das Training, welche einen numerischen Ausgabewert besitzen.
- Ziel: Ein Modell erzeugen, welches für neue, bisher unbekannte Datensätze den Ausgabewert vorhersagen kann.
- Beispiel: Aktienkurs-Vorhersage

Aufbau

- Überblick
- ML Validierung
- Beispiel zu Regression: Ticketverkauf-Vorhersage mit TMDB
- Cheat sheets
- Mini-Test

Woher weiss man, ob das ML Modell gut genug ist?

Bildquelle: https://cdn.pixabay.com/photo/2015/11/03/08/56/question-mark-1019820_960_720.jpg

Der ML Entwicklungsprozess: Training und Validierung vor dem produktiven Einsatz

Bildquelle: B. Humm "Applied Artificial Intelligence", S. 28

Validierung der Klassifikation: Konfusionsmatrix (confusion matrix)

Beispiel: Klassifikation von medizinischen Daten, ob eine bestimmte Krankheit vorliegt oder nicht.

Vorhersage der Klassifikation: KRANK

Vorhersage der Klassifikation: **GESUND**

Treffergenauigkeit (accuracy)

Definition:
$$Treffergenauigkeit = \frac{Anzahl der korrekten Vorhersagen}{Gesamtanzahl der Vorhersagen}$$

Bei binärer Klassifikation (2 Klassen) ergibt sich:
$$Treffergenauigkeit = \frac{TP+TN}{TP+TN+FP+FN}$$

Beispiel: Klassifikation von Tumorbildern als bösartig (positiv) oder gutartig (negativ)

TP= True positi		FP=1 False positive
FN= False negati	9	TN=90 True negative

Treffergenauigkeit =
$$\frac{TP+TN}{TP+TN+FP+FN} = \frac{1+90}{1+90+1+8} = 0.91$$

Quelle: https://developers.google.com/machine-learning/crash-course/classification/accuracy

Positiver Vorhersagewert (precision, positive predictive value, PPV)

Anteil der Personen, die als krank klassifiziert wurden und auch tatsächlich krank sind.

$$precision = \frac{TP}{TP + FP}$$

TP=1 True positive	FP=1 False positive
FN=8	TN=90
False	True
negative	negative

Im Beispiel:

$$precision = \frac{TP}{TP + FP} = \frac{1}{1+1} = 0.5$$

D.h. jede(r) zweite wird als krank klassifiziert, obwohl es tatsächlich nur (!) 9/100 Kranke gibt. Konsequenz=?

Trefferquote (recall, true positive rate, TPR)

Mit welcher Wahrscheinlichkeit wird ein Kranker auch erkannt?

$$recall = \frac{TP}{TP + FN}$$

TP=1	FP=1
True	False
positive	positive
FN=8	TN=90
False	True
negative	negative

Im Beispiel:

$$recall = \frac{TP}{TP + FN} = \frac{1}{1+8} = 1/9 = 0.111$$

D.h. nur jede(r) neunte Kranke wird auch als krank klassifiziert. Konsequenz = ?

F Score

Der F-Score (manchmal auch: F₁ Score) verbindet *precision* und *recall* durch das harmonische Mittel.

$$FScore = \frac{2}{\left(\frac{1}{precision}\right) + \left(\frac{1}{recall}\right)} = 2 * \frac{precision * recall}{precision + recall}$$

TP=1 True positive	FP=1 False positive
FN=8 False negative	TN=90 True negative

Im Beispiel:

$$FScore = 2*\frac{precision*recall}{precision+recall} = \frac{0.5*0.111}{0.5+0.111} = 0.181$$

Der niedrige F Score (0.18) reflektiert in diesem Fall die schlechte Qualität des Klassifikators weitaus besser als seine gute Treffergenauigkeit (0.91).

Achtung! Benutzen Sie die Treffergenauigkeit nur bei ausgewogenen Datensätzen

- Tumor-Klassifikations-Beispiel: Treffergenauigkeit = 0.91
- Das sieht auf dem ersten Blick gut aus aber 8 aus 9 Fälle werden falsch klassifiziert. Das ist also sehr schlecht!
- Der F Score (manchmal auch F₁ Score genannt) ist für nicht ausgewogene Datensätze besser geeignet.
- Je nach Anwendung gibt es weitere Scores, siehe auch https://en.wikipedia.org/wiki/Confusion_matrix

Negative Predictive Value NPV =
$$\frac{TN}{FN + TN}$$

TP=1	FP=1
True	False
positive	positive
FN=8	TN=90
False	True
negative	negative

$$specificity = \frac{TN}{FP + TN}$$

TP=1 True positive	FP=1 False positive
FN=8 False negative	TN=90 True negative

Validierung der Regression: MAE, MSE, RMSE

• Validierung der Regression mit Hilfe der vorhergesagten Werte \hat{f}_i und den tatsächlichen (erwarteten) Werten y_i

$$MAE = \frac{1}{n} \cdot \sum_{i=1}^{n} |\hat{f}_i - y_i|$$
 Mean Absolute Error

$$MSE = \frac{1}{n} \cdot \sum_{i=1}^{n} (\hat{f}_i - y_i)^2$$
 Mean Squared Error

$$RMSE = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (\hat{f}_i - y_i)^2}$$
 Rooted MSE

Validierung der Regression

Achtung! Regressionen müssen einen Sinn ergeben, eine gute Validierung alleine ist nicht ausreichend!

Quelle: https://www.researchgate.net/publication/247907373 Stupid Data Miner Tricks Overfitting the SP 500

K-fache Kreuzvalidierung (k fold cross validation)

- 1. Spalte den Datensatz in k Teildatensätze auf, z.B. k=5
- 2. Führe das Training mit k-1 Teildatensätzen durch und benutze 1 Teildatensatz für die Validierung
- 3. Iteriere *k* mal mit jeweils einem anderen Teildatensatz für die Validierung
- 4. Berechne das durchschnittliche Ergebnis von allen Iterationen

Bildquelle: B. Humm "Applied Artificial Intelligence", S. 35

Kreuzvalidierung mit scikit-learn

```
from sklearn.model_selection import cross_val_score
```

```
# Evaluiere das Modell
scores = cross_val_score(model, X, y)
print(f'Accuracy: {scores.mean()}')
```

Führt eine Kreuzvalidierung mit dem Modell, dem Datensatz X und den Labels y durch.
Default: accuracy, k=5
Viele andere Optionen möglich

Formatierte Ausgabe: Gebe den mean der resultierenden scores aus

Quelle: https://scikit-learn.org/stable/modules/generated/sklearn.model selection.cross val score.html

Aufbau

- Überblick
- ML Validierung
- Beispiel zu Regression: Ticketverkauf-Vorhersage mit TMDB
- Cheat sheets
- Mini-Test

Kaggle Wettbewerb zu Regression: TMDB Box Office Prediction

Quelle: https://www.kaggle.com/c/tmdb-box-office-prediction

Trainingsdaten: Merkmale (features) und Ziel (target)

Fehlende Werte

Quelle: https://saicharanars.medium.com/tmdb-box-office-prediction-fb9ac6371603

Format der Einreichung in den Kaggle Wettbewerb

	Α	В	
1	id	revenue	
2	3001	15339775.0916079	
3	3002	17437353.8394148	
4	3003	12356487.361688	
5	3004	14928576.6293748	
6	3005	14288547.2801949	
7	3006	16727556.0869667	
8	3007	16729628.7974298	
9	3008	14125483.3840709	
10	3009	15064986.9095512	
11	3010	12043777.9266763	
12	3011	14666377.4588518	
13	3012	14510651.7069058	
14	3013	14325339.6364499	
15	3014	16205363.2200799	
16	3015	15138516.4545314	
17	3016	13787177.4175561	
18	3017	14632605.741609	
19	3018	16562329.0352228	
20	3019	14129622.1219946	
21	3020	16392099.8046748	
22	3021	17119993.3656217	
23	3022	13206085.2248491	
24	3023	15110069.4993374	
25	3024	13368591.8081153	
26	3025	14769735.4214566	
27	3026	15127844.8605547	
28	3027	14691436.1069797	
29	3028	17161238.3840275	
30	3029	13611696.9311902	
< =	2020	15001701 0100056	
M	$+ \rightarrow \rightarrow$	+ sample_submission	

DataFrame aus einer CSV-Datei laden

Liest eine CSV-Datei (relativer Pfad zum Notebook) und speichert es in einem pd.DataFrame. Viele optionale Parameter z.B. encoding, delimiter, quotechar,...

import pandas as pd

```
train_data = pd.read_csv('data/train.csv')
test_data = pd.read_csv('data/test.csv')
```

Quelle: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

Datenvorverarbeitung: Extrahieren der relevanten Spalten

Extrahieren das Regressionsziel

```
# Labels extrahieren
y = train_data ["revenue"]

# Relevante Spalten (features) extrahieren (wird später erweitert...)
features = ["budget"]
X = train_data [features]
```

Extrahieren der relevanten Features

Andere Ideen für die Datenvorverarbeitung?

Bildquelle: https://cdn.pixabay.com/photo/2015/11/03/08/56/question-mark-1019820_960_720.jpg

ML Training

from sklearn.svm import SVR

Gewählter ML Ansatz: Support Vector Regression

```
# Erzeuge mittles ML ein Regressionsmodell
```

```
model = SVR()
```

Trainiere das Regressionsmodell

model.fit(X, y)

Training ("fitting") des gewählten ML Modells mit den Merkmalen (X) und Zielen (y)

Quelle: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

Ideen für weitere ML Ansätze: Das ML algorithm cheat sheet

Quelle:https://scikit-learn.org/stable/tutorial/machine learning map/index.html

Validierung

Score: RMSE

```
# Evaluiere das Modell
scores = cross_val_score(model, X, y, scoring='neg_root_mean_squared_error')
print(f'RMSE: {scores.mean()}')
```

Erzeuge die Datei für die Einreichung zum Kaggle-Wettbewerb

Vorhersage des Umsatzes des Kaggle Testdatensatzes (er muss vorverarbeitet worden sein)

Schreibt den DataFrame in eine CSV-Datei

Aufbau

- Überblick
- ML Validierung
- Beispiel zu Regression: Ticketverkauf-Vorhersage mit TMDB
- Cheat sheets
- Mini-Test

Cheat Sheets: Überblick und Hilfestellung für ML

Cheat Sheets for Al, Neural Networks, Machine Learning, Deep Learning & Big Data

The Most Complete List of Best Al Cheat Sheets

Over the past few months, I have been collecting AI cheat sheets. From time to time I share them with friends and colleagues and recently I have been getting asked a lot, so I decided to organize and share the entire collection. To make things more interesting and give context, I added descriptions and/or excerpts for each major topic.

This is the most complete list and the Big-O is at the very end, enjoy...

>>> Update: We have recently redesigned these cheat sheets into a Super High Definition PDF. Check them out below:

Get Al Cheat Sheets PDF

Python Basics: Python For Data Science Cheat Sheet

NumPy Basics: Python For Data Science Cheat Sheet

Pandas Basics: Python For Data Science Cheat Sheet

Data Wrangling with Pandas (1/2) Cheat Sheet

Data Wrangling with Pandas (2/2) Cheat Sheet

Scikit-Learn: Python For Data Science Cheat Sheet

Matplotlib: Python For Data Science Cheat Sheet

Aufbau

- Überblick
- ML Validierung
- Beispiel zu Regression: Ticketverkauf-Vorhersage mit TMDB
- Cheat sheets
- Mini-Test

Mini-Test "ML Regression", fällig am (siehe Moodle)

- Erklären Sie die ML Aufgabe Regression
- Erklären Sie den ML Entwicklungsprozess
- Warum ist es wichtig, ein ML Modell zu validieren?
- Erklären Sie die Konfusionsmatrix
- Erklären Sie Treffergenauigkeit
- Wann ist es sinnvoll, Treffergenauigkeit zu benutzen, wann nicht?
- Welcher Score sollte bei unausgewogenen Datensätzen verwendet werden?
- Welche Scores existieren für die Validierung von Regressionen?
- Erklären Sie die k-fache Kreuzvalidierung
- Welche ML Modelle können für Regression verwendet werden? Wie werden Sie trainiert? Wie werden Sie für die Vorhersage benutzt?