

Time series analysis in neuroscience

Outline / overview

- **Section 1.** Models hierarchy
- Section 2. Autoregressive (AR) model
- Section 3. Moving average (MA) model
- Section 4. Autoregressive moving average (ARMA) model
- Section 5. Estimation of power spectrum using AR model

NOTE: Prepare one/two questions about the lectures material

Section 1. Models hierarchy

Time series analysis in neuroscience

Linearity

To understand the complicated methods, we first need to understand the basic concepts

Models hierarchy

Linear vs. non-linear temporal dependency

See, "L04_linear_vs_nonlinear.py"

Univariate vs. multivariate timeseries

See, "L04_univariate_vs_multivariate.py"

Section 2. Autoregressive (AR) model

AR model and its parameters

An autoregressive (AR) model is a representation of a type of random process.

The autoregressive model specifies that the output variable depends linearly on its own **previous values** and on a stochastic term.

https://en.wikipedia.org/wiki/Autoregressive model

The notation AR(p) indicates an autoregressive model of order p. The AR(p) model is defined as

convolution

$$X_n = c + \sum_{i=1}^p a_i X_{n-i} + e_n$$
 $x[n] = c + np.sum(a * x[np.arrange((n-1),(n-p-1),-1)]) + e[n]$

where a_i are the parameters of the model, c is a constant, and e_i is white noise.

See, "L04 ar python equation.py"

Indexing in Python

```
# array of items
                                         # array of items
X = np.array([1, 2, 3, 4, 5])
                                         X = np.array([1, 2, 3, 4, 5])
N = len(X)
                                         N = len(X)
                                          p = 2
p = 2
# Тоор
                                         # Тоор
                                         for n in range(p, N):
for n in range(p, N):
  print(X[(n-1):(n-p-1):-1])
                                            print(X[np.arange((n-1),(n-p-1),-1)])
                                         # output
# output
                                         [2, 1]
                                         [3, 2]
[3, 2]
[4, 3]
                                         [4, 3]
```

Graphical representation of AR model

AR time series (1/3)

The simplest AR process is AR(0), which has no dependence between the terms. Only the error/innovation/noise term contributes to the output of the process.

```
# gaussian noise
e = np.random.randn(N)

# AR model
a = []
p = len(a)
x = np.zeros(N)
for i in range(p, N):
    x[i] = 0.1 + e[i]
```

See, "L04_graph_ar_0_process.py"

AR time series (2/3)

For an AR(1) process with a positive a_1 , only the previous term in the process and the noise term contribute to the output.

If a_1 is close to 0, then the process still looks like white noise, but as a_1 approaches 1, the output gets a larger contribution from the previous term relative to the noise.

```
# gaussian noise
e = np.random.randn(N)

# AR model
a = [0.5]
p = len(a)
x = np.zeros(N)
for i in range(p, N):
    x[i] = a[0] * x[i-1] + e[i]
```

```
See, "L04_graph_ar_1_process.py"
```


AR time series (3/3)

For an AR(2) process, the previous two terms and the noise term contribute to the output.

If both a_1 and a_2 are positive, the output will resemble a low pass filter, with the high frequency part of the noise decreased.

If a_1 is positive while a_2 is negative, then the process favors changes in sign between terms of the process. The output oscillates.

```
# gaussian noise
e = np.random.randn(N)

# AR model
a = [0.5, 0.5]
p = len(a)
x = np.zeros(N)
for i in range(p, N):
    x[i] = a[0]*x[i-2] + a[1]*x[i-1] + e[i]
```

See, "LO4_graph_ar_2_process.py"

AR impulse response

The impulse response of a system is the change in an evolving variable in response to a change in the value of a shock term k periods earlier, as a function of k.

An autoregressive model can thus be viewed as the output of an all-pole **infinite impulse response** filter.

```
# impulse
e = np.zeros(N)
e[10] = 1

# AR model
a = [0.5, 0.5]
p = len(a)
x = np.zeros(N)
for i in range(p, N):
    x[i] = a[0]*x[i-2] + a[1]*x[i-1] + e[i]
```

See, "L04_ar_impulse_response.py"

AR autocorrelation function

The autocorrelation function of an AR(p) process is a sum of decaying exponentials.

```
# gaussian noise
e = np.random.randn(N)

# AR model
a = [0.3, -0.5]
p = len(a)
x = np.zeros(N)
for i in range(p, N):
    x[i] = a[0]*x[i-2] + a[1]*x[i-1] + e[i]

# autocorrelation function
re = signal.correlate(e, e)
rx = signal.correlate(x, x)
```


See, "L04_ar_acf.py"

AR parameters estimation

We assume that the noise is Gaussian, and for known output **y** and model order **p**, we estimate AR coefficients.

Algorithms for computing the least squares AR model,

- **Burg's lattice-based method**. Solves the lattice filter equations using the harmonic mean of forward and backward squared prediction errors.
- Forward-backward approach. Minimizes the sum of a least-squares criterion for a forward model, and the analogous
 criterion for a time-reversed model.
- **Geometric lattice approach**. Similar to Burg's method, but uses the geometric mean instead of the harmonic mean during minimization.
- Least-squares approach. Minimizes the standard sum of squared forward-prediction errors.
- Yule-Walker approach. Solves the Yule-Walker equations, formed from sample covariances.

https://se.mathworks.com/help/ident/ref/ar.html

AR n-step-ahead forecasting

Once the parameters of the autoregression have been estimated, the autoregression can be used to forecast an arbitrary number of periods into the future.

```
# signal
A = 0.05
X = np.sin(2 * np.pi * 5 * t) +
    A * np.random.randn(N)

# split dataset
x = X[:L] # data to fit
y = X[L:] # data to test

# autoregressive model
p = 20 # AR model order
model = AR(x)
model_fit = model.fit(maxlag=p)
u = model_fit.predict(start, stop)
```

See, "L04_ar_forecasting.py"

Section 3. Moving average (MA) model

MA model and its parameters (1/2)

The moving-average (MA) model is a common approach for modeling univariate time series.

The moving-average model specifies that the output variable depends linearly on the **current** and various **past values** of a stochastic term.

https://en.wikipedia.org/wiki/Moving-average_model

The notation MA(q) refers to the moving average model of order q:

$$X_n = \mu + \sum_{i=1}^q b_i e_{n-i} + e_n$$
 $x[n] = mu + np.sum(b * e[np.arange((n-1),(n-p-1),-1)]) + e[n]$

where b_i are the parameters of the model, μ is the expectation of X_n (often assumed to equal 0), and e_t is white noise.

See, "L04_ma_python_equation.py"

Graphical representation of MA model

MA impulse response

The moving-average model is essentially a **finite impulse response** filter applied to white noise, with some additional interpretation placed on it.

In an MA process, a one-time shock affects values of the evolving variable non-infinitely far into the future.

```
# impulse
e = np.zeros(N)
e[10] = 1

# AR model
b = [0.5, 0.5]
p = len(a)
x = np.zeros(N)
for i in range(p, N):
    x[i] = b[0]*e[i-2] + b[1]*e[i-1] + e[i]
```

See, "L04_ma_impulse_response.py"

MA parameters estimation

Fitting the MA estimates is more complicated than with autoregressive models because the lagged error terms are not observable. This means that iterative non-linear fitting procedures need to be used in place of linear least squares.

https://en.wikipedia.org/wiki/Moving-average_model

Section 4. Autoregressive moving average (ARMA) model

Time series analysis in neuroscience

ARMA model and its parameters

Autoregressive—moving-average (ARMA) models provide a parsimonious description of a stationary stochastic process in terms of two polynomials, one for the **autoregression** and the second for the **moving average**.

The model consists of two parts, an autoregressive (AR) part and a moving average (MA) part. The AR part involves regressing the variable on its own past values. The MA part involves modeling the error term as a linear combination of error terms occurring contemporaneously and at various times in the past.

https://en.wikipedia.org/wiki/Autoregressive-moving-average_model

The notation ARMA(p, q) refers to the model with p autoregressive terms and q moving-average terms

$$X_n = c + e_n + \sum_{i=1}^p a_i X_{n-i} + \sum_{i=1}^q b_i e_{n-i}$$

$$X[n] = c + e[n] + \text{np.sum}(a * X[np.arange((n-1), (n-p-1), -1)]) + \text{np.sum}(b * e[np.arange((n-1), (n-q-1), -1)])$$

where a_i and b_i are the parameters of the model, c is a constant, and e_t is white noise.

Graphical representation of ARMA model

ARMA n-step-ahead forecasting

ARMA models in general cannot be, after choosing p and q, fitted by least squares regression to find the values of the parameters which minimize the error term.

```
# signal
A = 0.05
X = np.sin(2 * np.pi * 5 * t) +
    A * np.random.randn(N)
# split dataset
x = X[:L] # data to fit
y = X[L:] # data to test
# autoregressive model
 = 2 # AR model order
q = 2 # MA model order
model = ARMA(x, (p, q))
model_fit = model.fit()
u = model_fit.predict(start, stop)
```

```
See, "L04_arma_forecasting.py"
```


Section 5. Estimation of power spectrum

Burg estimation of power spectrum

Estimate AR coefficients and then compute Fourier transform of these coefficients

from spectrum import arburg, arma2psd

```
# estimate AR model
p = 6
AR, P, k = arburg(x, p)
# compute power spectrum
PSD = arma2psd(AR, NFFT=NFFT)
PSD = PSD / np.sum(PSD)
```


See, "L04_ar_spectrum_estimation.py"

http://thomas-cokelaer.info/software/spectrum/html/user/ref_param.html

Literature

- Python programming language
- http://www.scipy-lectures.org/, see "materials/L02_ScipyLectures.pdf"
- Data analysis
- Cohen M., "Analyzing Neural Time Series Data: Theory and Practice"