- Fiche de TD6 : Classes de graphes -

- Graphes planaires -

M1 Info

- Exercice 1 - Pour s'occuper... -

- Trois puces électroniques doivent chacune être reliées à trois transistors différents. Est-il possible de réaliser le montage sur une seule plaque de circuits imprimés ?
- Trois pays peuvent-ils avoir deux-à-deux une frontière commune? Même question pour quatre pays. Même question pour cinq pays.

- Exercice 2 - Marre du plan... -

Dessiner K_5 sans croisement sur le tore, et sur le ruban de Mobius. Dessine K_6 sans croisement sur le tore (on peut même faire K_7 !).

- Exercice 3 - Formule d'Euler -

On définit la *maille* d'un graphe G, notée g(G) comme la taille d'un plus petit cycle de G. Par convention, si G est sans cycle, on pose $g(G) = +\infty$.

- a. Montrer que pour un graphe planaire de maille finie, on a $m \le \frac{g}{g-2}.n \frac{2g}{g-2}$
- b. Montrer que le graphe de Petersen n'est pas planaire.
- c. Le graphe suivant est-il planaire?

- Exercice 4 - Champions League -

Peut-on réaliser un ballon de foot avec uniquement des hexagones?

Donner la compositon du ballon de foot en hexagones et pentagones. Voir le beau ballon ci-dessous...

- Exercice 5 - Re- formule d'Euler -

- a. Montrer que tout graphe biparti cubique planaire 2 sommet-connexe contient un cycle de longueur 4.
- b. Calculer le nombre de sommets d'un graphe cubique planaire ayant 8 faces. Donner deux tels graphes non isomorphes.
- c. Vérifier que la formule d'Euler est fausse pour les graphes planaires non connexes.
- d. Proposer une formule valable pour les planaires non connexes.

- Exercice 6 - Redressement -

Montrer que tout graphe planaire admet une représentation plane dans laquelle chaque arête est un segment (on pourra récurrer sur le nombre de sommets du graphe...).

- Graphes chordaux -

- Exercice 7 - Séparer les chordaux -

Soient G un graphe chordal connexe qui n'est pas un graphe complet et S un sommet-séparateur minimal de G.

- a. Monter que *S* est une clique de *G*.
- b. En déduire que *G* contient deux sommets simpliciaux qui sont non adjacent (on pourra faire une récurrence sur le nombre de sommets de *G*).

- Exercice 8 - Graphe d'intersection -

Montrer que tout graphe est graphe d'intersection d'un certain modèle bien choisi.

- Exercice 9 - Entrainement -

Faire tourner l'algorithme LEXBFS sur le graphe de l'exemple 1 du cours. En déduire un ordre parfait d'élimination simplicial de ce graphe ainsi qu'un modèle d'intersection de sous-arbres.

- Exercice 10 - Stable facile pour les chordaux -

Une couverture par cliques d'un graphe G est une partition $\mathcal{K} = (K_1, \dots, K_p)$ des sommets de G telle que pour tout $i = 1, \dots, p$ l'ensemble K_i soit une clique de G. On dit que \mathcal{K} est une couverture minimum par cliques de G si P est minimum parmi toutes les couvertures par cliques de G.

Soient G un graphe chordal et x un sommet simplicial de G. On note $X = \{x\} \cup N_G(x)$ et $G' = G \setminus X$. Soient aussi S' un stable maximum de G' et \mathcal{K}' une couverture minimum par cliques de G'.

- a. Montrer que $S = S' \cup \{x\}$ est un stable maximum de G.
- b. Montrer que $\mathcal{K} = \mathcal{K}' \cup \{X\}$ est une couverture minimale par cliques de G.
- c. Montrer que $|S| = |\mathcal{K}|$.
- d. En déduire un algorithme linéaire pour calculer un stable maximum d'un graphe chordal *G*, en supposant qu'un ordre parfait d'élimination simplicial de *G* soit donné en entrée.

- Exercice 11 - Coloration facile pour les chordaux -

Soit G un graphe chordal muni d'un ordre parfait d'élimination simplicial x_1, \ldots, x_n . Montrer que $\chi(G) = \omega(G) = \max\{|N_G(x_i) \cap \{x_1, \ldots, x_{i-1}\}| + 1 : i = 2, \ldots, n\}$.

En déduire un algorithme linéaire pour calculer le nombre chromatique d'un graphe chordal *G*, en supposant qu'un ordre parfait d'élimination simplicial de *G* soit donné en entrée.

- Exercice 12 - Graphes d'intervalles -

Un graphe d'intervalles est le graphe d'intersection d'un ensemble fini d'intervalles fermés de la droite réel.

- a. Monter que tout graphe d'intervalles est un graphe chordal.
- b. Donner un exemple de graphe chordal qui ne soit pas un graphe d'intervalles.
- c. Un graphe orienté D = (V,A) est *transitif* si pour tous sommets x, y et z de D, si D contient les arcs xy et yz alors D contient aussi l'arc xz. Un graphe (non orienté) est *de comparabilité* si c'est le graphe sous-jacent d'un graphe orienté acyclic et transitif.
 - Montrer qu'un graphe G est un graphe d'intervalles si, et seulement si, G est chordal et \overline{G} est un graphe de comparabilité.
- d. Un graphe d'intervalles G est défini par la donnée de 2n valeurs $((d_i, f_i))_{i=1,\dots,n}$ avec $d_i < f_i$ si G est le graphe d'intersection des intervalles $([d_i, f_i])_{i=1,\dots,n}$. On supposera que l'on a $d_i, f_i \in \mathbb{Z}$ pour $i=1,\dots n$ et que les $(d_i)_{i=1,\dots,n}$ sont donnés par ordre croissant.
 - Montrer alors que que si x_i désigne le sommet correspondant à l'intervalle $[d_i, f_i]$, l'ordre x_1, \ldots, x_n est un ordre parfait d'élimination simplicial de G.