Ricerca Operativa

Un po' di storia...

La nascita della Ricerca Operativa (R.O.) è dovuta ad esigenze di tipo militare, durante la seconda guerra mondiale.

Immediatamente prima e durante la guerra erano sorti in alcuni Paesi Alleati gruppi di ricerca orientati alla soluzione di importanti problemi di ordine strategico e tattico collegati alla difesa nazionale.

Nei settori più propriamente civili, la ricerca operativa riprese tecniche note nel settore militare, migliorandole ed arricchendole con l'uso di strumenti matematici e di conoscenze organizzative: si occupò della standardizzazione della produzione, di problemi connessi alla pianificazione e programmazione industriale.

(Fonte: wikipedia.org)

Oggi la Ricerca Operativa si occupa di:

Ottimizzazione e Logistica

Formalizzare un problema in un modello matematico (tipicamente un modello di programmazione matematica o un Grafico di flusso) ed individuare per esso una soluzione ottima o sub-ottima.

Simulazione

Risolvere problemi "difficili" per ottimalità. Queste tecniche prevedono la formalizzazione del problema in un modello matematico e la determinazione di "buoni" parametri mediante metodi statistici o di teoria dei giochi.

Processi Stocastici

Realizzare modelli probabilistici al fine di determinare i comportamenti dei sistemi.

Cominciamo dalla Logistica

L'insieme delle attività organizzative, gestionali e strategiche che governano nell'azienda i flussi di materiali e delle relative informazioni dalle origini presso i fornitori fino alla consegna dei prodotti finiti ai clienti.

Ci occuperemo, in prima battuta di Logistica

Un tipico esempio di Logistica:

Ma i trasporti dalle U.P. alle D.

Hanno dei costi, dovuti a distanza, tempi, ...

Problema di 1° livello

Allocare **tutti** i beni prodotti dalle **Unità Produttive**, soddisfacendo **tutte** le richieste delle **Destinazioni**.

Problema di 2° livello

Come il precedente, minimizzando i costi.

Risoluzione di 1° livello

La premessa iniziale è che il **totale** dei beni prodotti dalle Unità Produttive (1..3) sia identico al **totale** delle richieste delle Destinazioni (1..5).

Se così non fosse, è sufficiente inserire nel problema delle U.P. o delle Destinazioni "fittizie", che avranno costo di trasporto infinito.

Si giunge rapidamente alla stesura di una "tabella" (o matrice) che riassume la situazione, comprensiva dei costi di trasporto.

Matrice UP / D

	D1	D2	D3	D4	D5	Totali
U.P.1	10	12	80	30	50	200
U.P.2	15	30	40	45	60	150
U.P.3	20	35	30	20	50	160
Totali	100	120	90	50	150	510

Dove:

- •il cerchio rosso mostra i totali delle produzioni delle singole U.P.
- •il rettangolo verde evidenzia le richieste delle singole D
- •il rettangolo azzurro mostra i costi di trasporto per spostare una unità del bene prodotto dalla U.P. x alla D y

Ad esempio: **D2** necessita di **120** prodotti, i costi per la fornitura dipendono dalla U.P. considerata. In particolare, il trasporto da **UP3** ha un costo di **35** per ogni unità.

Metodo del "Nord-Ovest" (1)

Risolve unicamente il problema di "allocazione", ovvero il problema di 1° livello.

Ha questo nome semplicemente perché si esamina la matrice sempre a partire dall'angolo superiore sinistro (Nord-Ovest).

	D1	D2	D3	D4	D5	Totali
U.P.1	10	12	80	30	50	200
U.P.2	15	30	40	45	60	150
U.P.3	20	35	30	20	50	160
Totali	100	120	90	50	150	

L'Unità Produttiva **UP1** è in grado di fornire i 100 prodotti di cui necessita la Destinazione **D1**.

Il costo di tale trasporto sarà: 100 x 10 = 1.000.

Metodo del "Nord-Ovest" (2)

Le richieste di D1 sono completamente soddisfatte, la colonna corrispondente viene eliminata e il totale della produzione di UP1 non "allocata" (o residua) è di 100 unità.

	D2	D3	D4	D5	Totali
U.P.1	12	80	30	50	100
U.P.2	30	40	45	60	150
U.P.3	35	30	20	50	160
Totali	120	90	50	150	510

UP1 è in grado di fornire 100 prodotti alla Destinazione **D2** (quest'ultima ne richiede 120).

Il costo di tale trasporto sarà: 100 x 12 = 1.200.

I prodotti di **UP1** sono terminati, la corrispondente riga viene eliminata.

Metodo del "Nord-Ovest" (3)

Le richieste di D2 non sono completamente soddisfatte; sempre procedendo con il metodo del Nord-Ovest, la richiesta residua di 20 unità verrà soddisfatta da UP2.

	D2	D3	D4	D5	Totali
U.P.2	30	40	45	60	130
U.P.3	35	30	20	50	160
Totali	20	90	50	150	

La colonna corrispondente a D2 viene eliminata e il totale della produzione di UP2 non "allocata" è di 130 unità. Il costo del trasporto sarà $20 \times 30 = 600$.

Metodo del "Nord-Ovest" (4)

Le richieste di D3 possono essere totalmente soddisfatte da UP2.

	D3	D4	D5	Totali
U.P.2	40	45	60	40
U.P.3	30	20	50	160
Totali	90	50	150	

La colonna corrispondente a D3 viene eliminata e il totale della produzione di UP2 non "allocata" è di 40 unità.

Il costo del trasporto sarà 90 x 40 = 3.600.

Metodo del "Nord-Ovest" (5)

Le richieste di D4 possono essere *parzialmente* soddisfatte da UP2.

	D4	D5	Totali
U.P.2	45	60	40
U.P.3	20	50	160
Totali	50	150	

La riga corrispondente a UP2 viene eliminata.

Il costo del trasporto sarà 40 x 45 = 1.800.

	D4	D5	Totali
U.P.3	20	50	160
Totali	10	150	510

Infine: UP3 fornirà 10 prodotti a D4 e 150 a D5.

Il costo del trasporto sarà $10 \times 20 + 150 \times 50 = 7.700$.

Metodo del "Nord-Ovest" (6)

L'organizzazione dei trasporti ed i loro costi sono:

Quantità	Movimento	Costo
100	UP1 => D1	1.000
100	UP1 => D2	1.200
20	UP2 => D2	600
90	UP2 => D3	3.600
40	UP2 => D4	1.800
10	UP3 => D4	200
150	UP3 => D5	7.500
510		15.900

Come anticipato: il Metodo del "Nord-Ovest" non tiene conto dei costi ma permette di giungere ad un'ipotesi di trasporto che soddisfa l'esigenza di allocare la produzione e soddisfare le destinazioni.

Metodo dei "Minimi costi" (1)

Risolve il problema di "allocazione", cercando però anche di minimizzare i costi.

Si parte sempre dalla matrice iniziale:

	D1	D2	D3	D4	D5	Totali
U.P.1	10	12	80	30	50	200
U.P.2	15	30	40	45	60	150
U.P.3	20	35	30	20	50	160
Totali	100	120	90	50	150	510

Ma si procede individuando, all'interno del reticolo, il trasporto più economico; nel caso qui sopra è ancora il trasferimento da UP1 a D1.

Si deciderà, pertanto, di soddisfare la richiesta di **D1** con la fornitura proveniente da **UP1**.

Metodo dei "Minimi costi" (2)

In modo analogo a quanto già visto, la colonna D1 viene eliminata e la produzione residua di UP1 sarà di 100 unità:

	D2	D3	D4	D5	Totali
U.P.1	12	80	30	50	100
U.P.2	30	40	45	60	150
U.P.3	35	30	20	50	160
Totali	120	90	50	150	

Si individua il costo di trasporto più basso restante e si procede allocando 100 unità da UP1 a D2.

In modo analogo a quanto già visto, la riga corrispondente a **UP1** viene eliminata, in quanto la sua capacità produttiva è esaurita.

Metodo dei "Minimi costi" (3)

Il costo più basso presente nel reticolo corrisponde ora al trasporto da **UP3** a **D4**:

	D2	D3	D4	D5	Totali
U.P.2	30	40	45	60	150
U.P.3	35	30	20	50	160
Totali	20	90	50	150	

UP3 fornirà a **D4** le 50 unità di prodotto che soddisfano integralmente le richieste.

La colonna D4 verrà eliminata e la produzione residua di UP3 scenderà a 110.

Metodo del "Minimi costi" (4)

I costi più bassi presenti nel reticolo corrispondono ora al trasporto da UP2 a D2 oppure da UP3 a D3:

	D2	D3	D5	Totali
U.P.2	30	40	60	150
U.P.3	35	30	50	110
Totali	20	90	150	

Scegliamone uno, ad esempio la fornitura da UP3 a D3.

La colonna D3 verrà eliminata e la produzione residua di UP3 calerà a 20 unità.

Metodo dei "Minimi costi" (5)

Il costo più basso presente nel reticolo corrisponde ora al trasporto da

UP2 a **D2**:

	D2	D5	Totali
U.P.2	<i>30</i>	60	150
U.P.3	35	50	20
Totali	20	150	

UP2 fornirà 20 unità a D2, la colonna D2 verrà eliminata e la capacità

residua di **UP2** calerà a 130.

	D5	Totali
U.P.2	60	130
U.P.3	50	20
Totali	150	

La richiesta di D5 verrà soddisfatta da UP2 (per 130 unità) e UP3 (per 20 unità).

Metodo dei "Minimi costi" (6)

L'organizzazione dei trasporti ed i loro costi sono:

Quantità	Movimento	Costo
100	UP1 => D1	1.000
100	UP1 => D2	1.200
50	UP3 => D4	1.000
90	UP3 => D3	2.700
20	UP2 => D2	600
130	UP2 => D5	7.800
20	UP4 => D5	1.000
510		15.300

Risultato: il Metodo del "Minimi costi" ha allocato tutte le risorse e ha permesso un risparmio di **15.900 - 15.300 = 600**.

Metodo di Vogel (1)

Risolve il problema di "allocazione", cercando però anche di minimizzare <u>ulteriormente</u> i costi.

Si parte sempre dalla matrice iniziale:

	D1	D2	D3	D4	D5	Totali
U.P.1	10	12	80	30	50	200
U.P.2	15	30	40	45	60	150
U.P.3	20	35	30	20	50	160
Totali	100	120	90	50	150	510

In corrispondenza ad ogni vincolo (*riga e colonna*) si calcolano i **valori assoluti degli scarti** fra <u>i due costi migliori</u>.

Si seleziona poi la riga o la colonna avente lo scarto massimo.

Si individua il **minimo** costo della riga o colonna selezionata.

Tale metodo risulta in genere migliore dei precedenti, in quanto per ogni vincolo si determina la penalità minima che si deve pagare se non si alloca nella posizione a minimo costo.

Si sceglie il vincolo col massimo scarto perché è il più penalizzante.

Metodo di Vogel (2)

Costruiamo gli scarti assoluti tra i costi "migliori" per ogni riga e colonna:

	D1	D2	D3	D4	D5	Totali	Scarto
U.P.1	10	12	80	30	50	200	2
U.P.2	15	30	40	45	60	150	15
U.P.3	20	35	30	20	50	160	0
Totali	100	120	90	50	150	510	
Scarto	5	18	10	10	0		

Gli scarti "massimi" (*riga e colonna*) sono quelli evidenziati dai cerchi in colore **rosso**.

Scegliamo la colonna D2, <u>ovvero quella che presenta lo scarto</u> <u>massimo</u>, cercando la riga che riporta il <u>costo minimo</u> (12).

Trasferirò pertanto 120 unità da UP1 a D2. La colonna D2 verrà eliminata e la produzione residua di UP1 sarà di 80 unità.

Metodo di Vogel (3)

Ricalcolando gli scarti, si giunge a questa situazione:

	D1	D3	D4	D5	Totali	Scarto
U.P.1	10	80	30	50	80	20
U.P.2	15	40	45	60	150	25
U.P.3	20	30	20	50	160	0
Totali	100	90	50	150		
Scarto	5	10	10	0		

Lo scarto massimo è evidenziato dal cerchio in colore rosso (riga UP2).

Sceglieremo, sulla riga UP2, il costo minimo.

Trasferirò pertanto 100 unità da UP2 a D1.

La colonna **D1** verrà eliminata.

Le unità residue di UP2 saranno 50 unità.

Metodo di Vogel (4)

Ricalcolando gli scarti, si giunge a questa situazione:

	D3	D4	D5	Totali	Scarto
U.P.1	80	<i>30</i>	50	80	20
U.P.2	40	45	60	50	5
U.P.3	30	20	50	160	10
Totali	90	50	150		
Scarto	10	10	0		

Lo scarto massimo è evidenziato dal cerchio in colore rosso.

Scegliamo la riga UP1, il costo minimo è sulla colonna D4.

Trasferirò 50 unità da UP1 a D4.

La colonna D4 verrà eliminata.

La capacità residua di **UP1** sarà di 30 unità.

Metodo di Vogel (5)

Ricalcolando gli scarti, si giunge a questa situazione:

	D3	D5	Totali	Scarto
U.P.1	80	<i>50</i>	30	30
U.P.2	40	60	50	20
U.P.3	30	50	160	20
Totali	90	150		
Scarto	10	0		

Lo scarto massimo è evidenziato dal cerchio in colore rosso.

Cerchiamo il costo minore sulla riga UP1.

Trasferirò 30 unità da UP1 a D5.

La colonna D5 non verrà eliminata perché non soddisfatta completamente.

La riga **UP1** sarà eliminata perché completamente esaurita.

Metodo di Vogel (6)

Ricalcolando gli scarti, si giunge a questa situazione:

	D3	D5	Totali	Scarto
U.P.2	40	60	50	20
U.P.3	30	50	160	20
Totali	90	120		
Scarto	10	10		

Gli scarti massimi sono evidenziati dal cerchio in colore rosso.

Cerchiamo il costo minore sulla riga UP3.

Trasferirò 90 unità da UP3 a D3.

La colonna D3 verrà eliminata.

La capacità residua di **UP3** sarà di 70 unità.

Metodo di Vogel (7)

Si giunge, infine, a questa tabella finale:

	D5	Totali
U.P.2	60	50
U.P.3	50	70
Totali	120	

Le richieste di D5 verranno soddisfatte da UP2 e UP3, con la fornitura di 50 e 70 unità.

I costi saranno $50 \times 60 = 3.000 = 70 \times 50 = 3.500$.

Metodo di Vogel (8)

L'organizzazione dei trasporti ed i loro costi sono:

Quantità	Movimento	Costo
120	UP1 => D2	1.440
100	UP2 => D1	1.500
50	UP1 => D4	1.500
30	UP1 => D5	1.500
90	UP3 => D3	2.700
50	UP2 => D5	3.000
70	UP3 => D5	3.500
510		15.140

Risultato: il Metodo di Vogel ha allocato tutte le risorse e ha permesso un risparmio di **15.900 – 15.140 = 760** (*rispetto al Metodo "Nord Ovest"*) e di **15.300 - 15.140 = 160** (*rispetto al Metodo dei "Minimi Costi"*).

Metodo di Russell (1)

Anche questo metodo risolve il problema di "allocazione", cercando di minimizzare ulteriormente i costi.

Si parte sempre dalla matrice iniziale:

	D1	D2	D3	D4	D5	Totali
U.P.1	10	12	80	30	50	200
U.P.2	15	30	40	45	60	150
U.P.3	20	35	30	20	50	160
Totali	100	120	90	50	150	510

Per ogni riga e per ogni colonna è necessario individuare i costi maggiori.

Da ogni cella si sottraggono i costi maggiori che si trovano sulla stessa riga e sulla stessa colonna, individuati al punto precedente.

Si prende in esame la cella che riporterà il valore negativo più grande (in termini assoluti) e si allocheranno i prodotti corrispondenti.

Si ripetono gli ultimi due punti fino alla completa allocazione di tutti i prodotti.

Metodo di Russell (2)

	D1	D2	D3	D4	D5	Totali
U.P.1	10	12	80	30	50	200
U.P.2	15	30	40	45	<i>60</i>	150
U.P.3	20	35	30	20	<i>50</i>	160
Totali	100	120	90	50	150	510

I costi evidenziati in colore **rosso** sono quelli massimi per ogni riga/colonna.

Da **ogni** valore della griglia è necessario sottrarre i valori massimi presenti sulla stessa riga/colonna.

Esempi

Dalla prima cella (valore 10) vanno sottratti i valori 80 e 20; dalla terza cella (valore 80) vanno sottratti i valori 80 e 80.

Metodo di Russell (2)

Dalla matrice iniziale:

	D1	D2	D3	D4	D5	Totali
U.P.1	10	12	80	30	50	200
U.P.2	15	30	40	45	<i>60</i>	150
U.P.3	20	35	30	20	<i>50</i>	160
Totali	100	120	90	50	150	510

Si giunge a questo risultato, la cella più grande è -103:

	D1	D2	D3	D4	D5
U.P.1	-90	-103	-80	-95	-90
U.P.2	-65	-65	-100	-60	-60
U.P.3	-50	-50	-100	-75	-60

Metodo di Russell (3)

Usando **UP1** soddisfo le richieste **D2**.

Come di consueto la colonna **D2** scomparirà (*in quanto totalmente soddisfatta*) e le unità ancora disponibili di **UP1** saranno 80. Si giunge quindi a questa situazione:

	D1	D3	D4	D5	Totali
U.P.1	10	80	30	50	80
U.P.2	15	40	45	60	150
U.P.3	20	30	20	50	160
Totali	100	90	50	150	

Con un costo di **120 x 12 = 1.440**.

Si ripete il calcolo delle differenze di prima...

Metodo di Russell (4)

Dalla matrice:

	D1	D3	D4	D5	Totali
U.P.1	10	80	30	50	80
U.P.2	15	40	45	60	150
U.P.3	20	30	20	50	160
Totali	100	90	50	150	

Si giunge a questo risultato, la cella più grande è -100 (*prendiamo*

UP2):

	D1	D3	D4	D5
U.P.1	-90	-80	-95	-90
U.P.2	-65	-100	-60	-60
U.P.3	-50	-100	-75	-60

Metodo di Russell (5)

Usando UP2 soddisfo le richieste D3.

Come di consueto la colonna D3 scomparirà (in quanto totalmente soddisfatta) e le unità ancora disponibili di UP2 saranno 60. Si giunge quindi a questa situazione:

	D1	D4	D5	Totali
U.P.1	10	30	50	80
U.P.2	15	45	60	60
U.P.3	20	20	50	160
Totali	100	50	150	

Con un costo di $90 \times 40 = 3.600$.

Si ripete il calcolo delle differenze di prima...

Metodo di Russell (6)

Dalla matrice:

	D1	D4	D5	Totali
U.P.1	10	30	50	80
U.P.2	15	45	60	60
U.P.3	20	20	50	160
Totali	100	50	150	

Si giunge a questo risultato, la cella più grande è -75:

	D1	D4	D5
U.P.1	-60	-65	-60
U.P.2	-65	-60	-60
U.P.3	-50	-75	-60

Metodo di Russell (7)

Usando UP3 soddisfo le richieste D4.

Come di consueto la colonna D4 scomparirà (*in quanto totalmente soddisfatta*) e le unità ancora disponibili di UP3 saranno 110. Si giunge quindi a questa situazione:

	D1	D5	Totali
U.P.1	10	50	80
U.P.2	15	60	60
U.P.3	20	50	110
Totali	100	150	

Con un costo di **50 x 20 = 1.000**. Si ripete il calcolo delle differenze di prima...

Metodo di Russell (8)

Dalla matrice:

	D1	D5	Totali
U.P.1	10	50	80
U.P.2	15	60	60
U.P.3	20	50	110
Totali	100	150	

Si giunge a questo risultato, la cella più grande è -65:

	D1	D5
U.P.1	-60	-60
U.P.2	-65	-60
U.P.3	-50	-60

Metodo di Russell (9)

Usando UP2 soddisfo le richieste D1.

La colonna **D1** non scomparirà (in quanto **non** totalmente soddisfatta), mentre la riga **UP2** sì.

Si giunge quindi a questa situazione:

	D1	D5	Totali
U.P.1	10	50	80
U.P.3	20	50	110
Totali	40	150	

Con un costo di $60 \times 15 = 900$.

Si ripete il calcolo delle differenze di prima...

Metodo di Russell (10)

Dalla matrice:

	D1	D5	Totali
U.P.1	10	50	80
U.P.3	20	50	110
Totali	40	150	

Si giunge a questo risultato, la cella più grande è -60:

	D1	D5
U.P.1	-60	-50
U.P.3	-50	-50

Metodo di Russell (11)

Usando **UP1** soddisfo le richieste **D1**.

La colonna **D1** scomparirà (*in quanto totalmente soddisfatta*) e le unità ancora disponibili di **UP1** saranno 40.

Si giunge quindi a questa situazione:

	D5	Totali
U.P.1	50	40
U.P.3	50	110
Totali	150	

Con un costo di $40 \times 10 = 400$.

Le richieste di D5 saranno soddisfatte da UP1 e UP3.

Metodo di Russell (12)

L'organizzazione dei trasporti ed i loro costi sono:

Quantità	Movimento	Costo
120	UP1 => D2	1.440
90	UP2 => D3	3.600
50	UP3 => D4	1.000
60	UP2 => D1	900
40	UP1 => D1	400
40	UP1 => D5	2.000
110	UP3 => D5	5.500
510		14.840

Risultato: il Metodo di Russell ha allocato tutte le risorse e ha permesso un **risparmio** di **15.900 – 14.840 = 1060** (*rispetto al Metodo "Nord Ovest"*), di **15.300 – 14.840 = 460** (*rispetto al Metodo dei "Minimi Costi"*) e di **15.140 - 14.840 = 300** (*rispetto a Vogel*).

Riassunto

Metodo del "Nord-Ovest"

Permette solo l'allocazione delle risorse

Metodo dei "Minimi costi"

Permette l'allocazione delle risorse, minimizzando i costi

Metodo di Vogel

Come il metodo dei "Minimi costi", in generale la soluzione con questo metodo **può** portare ad una ulteriore diminuzione dei costi.

Metodo di Russell

Come il metodo di Vogel, in generale la soluzione con questo metodo **può** portare ad una ulteriore diminuzione dei costi.

Esercizio

	Dest.1	Dest.2	Dest.3	Dest.4	Totali
Sorg.1	10	40	15	30	80
Sorg.2	20	25	30	10	40
Totali	25	50	30	15	120

Risolvere con i primi tre metodi illustrati

Metodo del "Nord Ovest" (1)

	Dest.1	Dest.2	Dest.3	Dest.4	Totali
Sorg.1	10	40	15	30	80
Sorg.2	20	25	30	10	40
Totali	25	50	30	15	120

25 unità - Sorg.1 => Dest.1 - Costo: 250

	Dest.2	Dest.3	Dest.4	Totali
Sorg.1	40	15	30	55
Sorg.2	25	30	10	40
Totali	50	30	15	

50 unità - Sorg.1 => Dest.2 - Costo: 2.000 - Costo totale: 2.250

Metodo del "Nord Ovest" (2)

	Dest.3	Dest.4	Totali
Sorg.1	15	30	5
Sorg.2	30	10	40
Totali	30	15	

5 unità - Sorg.1 => Dest.3 - Costo: 75 - Costo totale: 2.325

	Dest.3	Dest.4	Totali
Sorg.2	30	10	40
Totali	25	15	

25 unità - Sorg.2 => Dest.3 - Costo: 750 - Costo totale: 3.075

15 unità – Sorg.2 => Dest.4 – Costo: 150 – **Costo totale: 3.225**

Metodo dei "Minimi costi" (1)

	Dest.1	Dest.2	Dest.3	Dest.4	Totali
Sorg.1	10	40	15	30	80
Sorg.2	20	25	30	10	40
Totali	25	50	30	15	120

25 unità - Sorg.1 => Dest.1 - Costo: 250

	Dest.2	Dest.3	Dest.4	Totali
Sorg.1	40	15	30	55
Sorg.2	25	30	10	40
Totali	50	30	15	

15 unità - Sorg.2 => Dest.4 - Costo: 150 - Costo totale: 400

Metodo dei "Minimi costi" (2)

	Dest.2	Dest.3	Totali
Sorg.1	40	15	55
Sorg.2	25	30	25
Totali	50	30	

30 unità - Sorg.1 => Dest.3 - Costo: 450 - Costo totale: 850

	Dest.2	Totali	
Sorg.1	40		25
Sorg.2	25		25
Totali	50		

25 unità – Sorg.1 => Dest.2 – Costo: 1.000 – Costo totale: 1.850

25 unità – Sorg.2 => Dest.2 – Costo: 625 – Costo totale: 2.475

Metodo di Vogel (1)

	Dest.1	Dest.2	Dest.3	Dest.4	Totali	Scarti
Sorg.1	10	40	15	30	80	5
Sorg.2	20	25	30	10	40	10
Totali	25	50	30	15	120	
Scarti	10	15	15	20		

15 unità - Sorg.2 => Dest.4 - Costo: 150

	Dest.1	Dest.2	Dest.3	Totali	Scarti
Sorg.1	10	40	15	80	5
Sorg.2	20	25	30	25	5
Totali	25	50	30		
Scarti	10	15	15		

30 unità - Sorg.1 => Dest.3 - Costo: 450 - Costo totale: 600

Metodo di Vogel (2)

	Dest.1	Dest.2	Totali	Scarti
Sorg.1	10	40	50	30
Sorg.2	20	25	25	5
Totali	25	50		
Scarti	10	15		

25 unità - Sorg.1 => Dest.1 - Costo: 250 - Costo totale: 850

	Dest.2	Totali
Sorg.1	40	25
Sorg.2	25	25
Totali	50	

25 unità – Sorg.1 => Dest.2 – Costo: 1.000 – Costo totale: 1.850

25 unità – Sorg.2 => Dest.2 – Costo: 625 – Costo totale: 2.475