1 More on Eigenvectors and Eigenvalues

Write T or F next to each of the following (if F, think of a counter example)

- 1. If A is a 4×4 matrix, then $\det(\lambda I A) = 0$ has exactly four distinct roots.
- 2. If a matrix has one eigenvector, then it has an infinite number of eigenvectors.
- 3. The sum of two eigenvalues of a matrix A is also an eigenvalue of A.
- 4. The sum of two eigenvectors of a matrix A is also an eigenvector of A.
- 5. The characteristic polynomial of an $n \times n$ matrix has degree n.
- 6. There exists an $n \times n$ matrix with n+1 distinct eigenvalues.

2 Attractors, Repellers and Saddle Points

Let A be a 2×2 matrix with eigenvalues $\lambda_1 = 0.4$, $\lambda_2 = 2$ and corresponding eigenvectors $\mathbf{v}_1 = [1, 1]^T$, $\mathbf{v}_2 = [-1, 1]^T$. Suppose $\mathbf{x}_0 = [2, 3]^T$ and that the other \mathbf{x}_k are determined by the difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k$.

- 1. As in the webwork, write \mathbf{x}_k in terms of $\lambda_1, \lambda_2, \mathbf{v}_1, \mathbf{v}_2$ and k.
- 2. Give an approximation of \mathbf{x}_k as $k \to \infty$. (e.g. write $\mathbf{x}_k = a(b)^k \mathbf{u}$ for some real numbers a, b and a vector \mathbf{u}).
- 3. Draw (all on one graph) what happens to \mathbf{x}_k for the following starting conditions: $\mathbf{x}_0 = [1, 1]^T$, $\mathbf{x}_0 = [-1, 1]^T$, $\mathbf{x}_0 = [-0.8, 1.2]^T$ and $\mathbf{x}_0 = [0, 0]^T$.
- 4. Does this system contain an attractor, repeller or saddle point?

3 Similar Matrices

Write T or F next to each of the following (if F, think of a counter example)

- 1. If A is similar to B then B must be similar to A.
- 2. Two similar matrices have the same eigenvalues (with the same multiplicities).
- 3. If two matrices have the same characteristic polynomial and the same eigenvalues then they are similar.

4 Diagonalization

- 1. This question begins to explain why diagonalization (and so eigenvectors and values) are so useful.
 - (a) Suppose that $P^{-1}AP = D$ where D is diagonal. Show that $A^k = PD^kP^{-1}$ for any positive integer k.
 - (b) Use part (a) to compute A^{10} where $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$.
- 2. Answer the following true or false. Explain your reasoning, or give a counterexample.
 - (a) Any $n \times n$ matrix that has fewer than n distinct eigenvalues is not diagonalizable.
 - (b) Eigenvectors corresponding to the same eigenvalue are always linearly dependent.
 - (c) If A is diagonalizable, then it has at least one eigenvalue.
- 3. Suppose A is a 2×2 matrix with characteristic polynomial $(\lambda 2)^2$. What can you conclude about the diagonalizability of A?
- 4. Let A be a 3×3 matrix with the following eigenvectors and corresponding eigenvalues: $[1,1,1]^T$ and $[1,-2,0]^T$ are eigenvectors corresponding to the eigenvalue $\lambda = 3$. [1,1,-2] is an eigenvector corresponding to the eigenvalue $\lambda = -3$. Find A by finding an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.
- 5. In this exercise we determine whether A is diagonalizable without doing any

hard work.
$$A = \begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- (a) Find the eigenvalues of A. Call them λ_1 and λ_2 .
- (b) Write down the matrix $\lambda_1 I A$.
- (c) What is the rank of $\lambda_1 I A$? What is its nullity? How many independent eigenvectors are there with eigenvalue λ_1 ? (Dont compute them.)
- (d) What is the rank of $\lambda_2 I A$? What is its nullity? How many independent eigenvectors are there with eigenvalue λ_2 ?
- (e) Is A diagonalizable?