

FORMALE SYSTEME

ÜBUNG 7

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 3. Dezember 2021

CORONA-UMFRAGE

Wie stehst du zu Online-Übungen?

- ► Ich bin für Online-Übungen. nur online
- ► Ich kann mit Online-Übungen leben. beides okay, bevorzugt online
- ► Ich kann mit Präsenzübungen leben. beides okay, bevorzugt Präsenz
- ► Ich bin für Präsenzübungen. nur Präsenz

https://tudvote.tu-dresden.de/88314

Kontextfrei? Pumping-Lemma?

Aufgabe 1:

PUMPEN FÜR KONTEXTFREIE SPRACHEN

Grundidee beim regulären Pumping-Lemma:

endliche viele Zustände \leadsto Schleifen für lange Wörter notwendig \leadsto Schleifen mehrfach benutzbar

PUMPEN FÜR KONTEXTFREIE SPRACHEN

Grundidee beim regulären Pumping-Lemma:

endliche viele Zustände → Schleifen für lange Wörter notwendig → Schleifen mehrfach benutzbar

Grundidee beim kontextfreien Pumping-Lemma:

- ► Grammatiken haben nur endlich viele Variablen.
- Beim Generieren langer Wörter muss eine Variable zu etwas expandiert werden, das diese Variable nochmal enthält:

$$S \Rightarrow ... \Rightarrow u \underline{A} y \Rightarrow u \underline{z} y \Rightarrow ... \Rightarrow u \underline{v} \underline{A} \underline{x} y \Rightarrow ... \Rightarrow u \underline{v} \underline{w} \underline{x} \underline{y}$$

▶ Diese Schleife kann beliebig oft durchlaufen werden.

```
Satz (Pumping Lemma): Für jede kontextfreie Sprache L gibt es eine Zahl n \ge 0, so dass gilt: für jedes Wort z \in \mathbf{L} mit |z| \ge n gibt es eine Zerlegung z = uvwxy mit |vx| \ge 1 und |vwx| \le n, so dass: für jede Zahl k \ge 0 gilt: uv^kwx^ky \in \mathbf{L}
```

AUFGABE 1

Welche der folgenden Sprachen L_i ist kontextfrei? Zur Begründung Ihrer Antwort sollten Sie das Pumping-Lemma für kontextfreie Sprachen verwenden oder eine entsprechende kontextfreie Grammatik angeben.

a)
$$L_1 = \{a^n b^n c^n d^n \in \{a, b, c, d\}^* \mid n \ge 1\}$$

b)
$$L_2 = \{a^m b^n c^p d^q \in \{a, b, c, d\}^* \mid m, n, p, q \ge 1 \text{ und } m + n = p + q\}$$

a) L_1 ist nicht kontextfrei. Angenommen L_1 wäre kontexfrei, dann gilt das Pumping-Lemma mit einer Zahl $n \ge 0$. Wir betrachten das Wort $w = a^n b^n c^n d^n \in L_1$ und eine Zerlegung dessen in w = uvwxy mit $|vx| \ge 1$ und $|vwx| \le n$.

- ⊳ Fall 1: $vwx \in \{a, b\}^+$, d.h. vwx ist ein Teilwort von a^nb^n . Dann enthält uv^2wx^2y mehr a oder b als c oder d. Somit ist $uv^2wx^2y \notin L_1$ im Widerspruch zum Pumping-Lemma.
 - ⊳ Fall 2: $vwx \in \{b, c\}^+$, d.h. vwx ist ein Teilwort von $b^n c^n$. Analog zu Fall 1.
- ⊳ Fall 3: $vwx \in \{c, d\}^+$, d.h. vwx ist ein Teilwort von $c^n d^n$. Analog zu Fall 1.
- b) L_2 ist kontextfrei. Betrachte dazu die Grammatik $G = \langle V, \Sigma, P, S \rangle$ mit $V = \{S, S_1, S_2, S_3, S_4\}$ und

$$P = \left\{ \begin{array}{ll} S & \to & aS_{1}d \\ S_{1} & \to & aS_{1}d \mid aS_{2}c \mid bS_{3}d \mid bS_{4}c \\ S_{2} & \to & aS_{2}c \mid bS_{4}c \\ S_{3} & \to & bS_{3}c \mid bS_{4}c \\ S_{4} & \to & bS_{4}c \mid \varepsilon \end{array} \right\}$$

Aufgabe 2:

Abschlusseigenschaften

ABSCHLUSS FÜR KONTEXTFREIE SPRACHEN

Satz: Wenn L, L_1 und L_2 kontextfreie Sprachen sind, dann beschreiben auch die folgenden Ausdrücke kontextfreie Sprachen:

- (1) $L_1 \cup L_2$ (Abschluss unter Vereinigung)
- (2) $L_1 \circ L_2$ (Abschluss unter Konkatenation)
- (3) L* (Abschluss unter Kleene-Stern)

Aber:

Satz: Es gibt kontextfreie Sprachen L, L_1 und L_2 , so dass die folgenden Ausdrücke keine kontextfreien Sprachen sind:

- (1) $L_1 \cap L_2$ (Nichtabschluss unter Schnitt)
- (2) **L** (Nichtabschluss unter Komplement)

AUFGABE 2

Beweisen Sie mithilfe der Abschlußeigenschaften für kontextfreie Sprachen, dass die nachfolgende Sprache

$$L_0 = \{ \alpha^i b^j c^k \mid i = j \text{ oder } j = k \text{ mit } i, j, k \ge 1 \}$$

kontextfrei ist und geben dann eine kontextfreie Grammatik G_0 für L_0 an mit $L_0 = L(G_0)$. Geben Sie Ableitungen für die Wörter *abc* und *abbcc* an.

$$L_{0} = \left\{ a^{i}b^{j}c^{k} : i = j \text{ oder } j = k \text{ mit } i, j, k \ge 1 \right\}$$

$$= \left\{ a^{i}b^{j}c^{k} : i = j \text{ mit } i, j, k \ge 1 \right\} \cup \left\{ a^{i}b^{j}c^{k} : j = k \text{ mit } i, j, k \ge 1 \right\}$$

$$= \left\{ a^{i}b^{i}c^{k} : i, k \ge 1 \right\} \cup \left\{ a^{i}b^{j}c^{j} : i, j \ge 1 \right\}$$

$$= \underbrace{\left\{ a^{i}b^{i} : i \ge 1 \right\}}_{\text{kontextfrei}} \underbrace{\left\{ c \right\}^{*}}_{\text{regulär}} \cup \underbrace{\left\{ a \right\}^{*}}_{\text{kontextfrei}} \underbrace{\left\{ b^{j}c^{j} : j \ge 1 \right\}}_{\text{kontextfrei}}$$

$$L_{0} = \left\{ a^{i}b^{j}c^{k} : i = j \text{ oder } j = k \text{ mit } i, j, k \ge 1 \right\}$$

$$= \left\{ a^{i}b^{j}c^{k} : i = j \text{ mit } i, j, k \ge 1 \right\} \cup \left\{ a^{j}b^{j}c^{k} : j = k \text{ mit } i, j, k \ge 1 \right\}$$

$$= \left\{ a^{i}b^{i}c^{k} : i, k \ge 1 \right\} \cup \left\{ a^{j}b^{j}c^{j} : i, j \ge 1 \right\}$$

$$= \underbrace{\left\{ a^{j}b^{i} : i \ge 1 \right\}}_{\text{kontextfrei}} \underbrace{\left\{ c \right\}^{*}}_{\text{regulär}} \cup \underbrace{\left\{ a \right\}^{*}}_{\text{kontextfrei}} \underbrace{\left\{ b^{j}c^{j} : j \ge 1 \right\}}_{\text{kontextfrei}}$$

Grammatik $G_0 = \langle V, \Sigma, P, S \rangle$ mit $V = \{S, S_a, S_c, S_{ab}, S_{bc}\}$ und

$$P = \left\{ \begin{array}{cccc} S & \rightarrow & S_{ab}S_c \mid S_aS_{bc} \\ S_a & \rightarrow & aS_a \mid a \\ S_c & \rightarrow & cS_c \mid c \end{array} \right. \quad \left. \begin{array}{cccc} S_{ab} & \rightarrow & aS_{ab}b \mid ab \\ S_{bc} & \rightarrow & bS_{bc}c \mid bc \end{array} \right\}$$

$$L_{0} = \left\{ a^{i}b^{j}c^{k} : i = j \text{ oder } j = k \text{ mit } i, j, k \ge 1 \right\}$$

$$= \left\{ a^{i}b^{j}c^{k} : i = j \text{ mit } i, j, k \ge 1 \right\} \cup \left\{ a^{i}b^{j}c^{k} : j = k \text{ mit } i, j, k \ge 1 \right\}$$

$$= \left\{ a^{i}b^{j}c^{k} : i, k \ge 1 \right\} \cup \left\{ a^{i}b^{j}c^{j} : i, j \ge 1 \right\}$$

$$= \underbrace{\left\{ a^{i}b^{j} : i \ge 1 \right\}}_{\text{kontextfrei}} \underbrace{\left\{ c \right\}^{*}}_{\text{regulär}} \underbrace{\left\{ b^{j}c^{j} : j \ge 1 \right\}}_{\text{kontextfrei}}$$

Grammatik $G_0 = \langle V, \Sigma, P, S \rangle$ mit $V = \{S, S_a, S_c, S_{ab}, S_{bc}\}$ und

$$P = \left\{ \begin{array}{cccc} S & \rightarrow & S_{ab}S_c \mid S_aS_{bc} \\ S_a & \rightarrow & aS_a \mid a \\ S_c & \rightarrow & cS_c \mid c \end{array} \right. \quad \left. \begin{array}{cccc} S_{ab} & \rightarrow & aS_{ab}b \mid ab \\ S_{bc} & \rightarrow & bS_{bc}c \mid bc \end{array} \right\}$$

Ableitungen: w = abc:

(i)
$$S \rightarrow S_{ab} S_c \rightarrow ab S_c \rightarrow ab C$$

(ii)
$$S \rightarrow S_a S_{bc} \rightarrow a S_{bc} \rightarrow a bc$$

CNF-Design und CYK-Algorithmus

Aufgabe 3 & 4:

CHOMSKY-NORMALFORM

Eine kontextfreie Grammatik $G = \langle V, \Sigma, P, S \rangle$ ist in Chomsky-Normalform (CNF), wenn alle ihre Produktionsregeln eine der beiden folgenden Formen haben:

$$A \to BC$$
 (mit $B, C \in V$) oder $A \to c$ (mit $c \in \Sigma$)

Umwandlung in CNF:

- (1) Eliminierung von ε -Regeln
- (2) Eliminierung von Kettenregeln
- (3) Extrahieren von Terminalsymbolen in Regeln $V_c \rightarrow c$
- (4) Reduzieren von Regeln der Form A \rightarrow B₁ \cdots B_n auf n = 2

CYK: GRUNDIDEE

gegeben: kontextfreie Grammatik G in CNF

Frage: $W = \mathbf{a_1} \cdots \mathbf{a_n} \in \mathbf{L}(G)$?

- Falls |w| = 1, dann ist w ∈ Σ und es gilt: w ∈ L(G) genau dann wenn es eine Regel S → w in G gibt
- Falls |w| > 1, dann ist:
 w ∈ L(G) genau dann wenn es eine Regel S → AB und eine
 Zahl i gibt, so dass gilt

$$A \Rightarrow^* a_1 \cdots a_i$$
 und $B \Rightarrow^* a_{i+1} \cdots a_n$

Idee: Fall 2 reduziert das Problem $S \stackrel{?}{\Rightarrow} * w$ auf zwei einfachere Probleme $A \stackrel{?}{\Rightarrow} * \mathbf{a_1} \cdots \mathbf{a_i}$ und $B \stackrel{?}{\Rightarrow} * \mathbf{a_{i+1}} \cdots \mathbf{a_n}$, die man allerdings für alle Regeln $S \to AB$ und Indizes i lösen muss

CYK: PRAKTISCHE UMSETZUNG

Vorgehen: $V[i,j] = \text{Menge aller A mit A} \Rightarrow^* w_{i,j}$

- ightharpoonup Diagonale = Fall 1: existiert Terminalsymbolregel $\stackrel{\textbf{d}}{=}$ ightharpoonup a
- ► Fixiere Element <a>\textsize : sei <a>\textsize in der gleichen Zeile ganz links und <a>\textsize direkt unten drunter
 - ightrightarrows wenn eine Regel ${m{\mathscr{T}}}
 ightarrow {m{\overset{a}{=}}} {m{\overset{a}{=}}}$, dann füge ${m{\mathscr{T}}}$ zu ${m{\overset{a}{>}}}$ hinzu
 - schiebe nach rechts und nach unten und wiederhole

Ist am Ende das Startsymbol $S \in V[1, |w|]$, dann $w \in \mathbf{L}$.

Beispiel: Wir betrachten das Wort $w = \mathbf{a} + \mathbf{b} \cdot \mathbf{c}$ der Länge |w| = 5.

a	<i>V</i> [1, 1]	V[1, 2]	V[1, 3]	V[1, 4]	<i>V</i> [1, 5]
+		4	V[2, 3]	👌 U 🌋	<i>V</i> [2, 5]
b			V[3, 3]	&	<i>V</i> [3, 5]
				V[4, 4]	V[4, 5]
С					V[5, 5]
	a	+	b		С

AUFGABE 3 & 4

Aufgabe 3: Geben Sie für die nachfolgenden Sprachen L_i jeweils eine (kontextfreie) Grammatik G_i in CNF mit $L_i = L(G_i)$ an:

- (a) Es sei L_1 genau die Menge der Palindrome über $\Sigma = \{a, b\}$. (Palindrome sind Wörter, die vorwärts und rückwärts gelesen gleich sind, z.B. aba, abba, a, ε , bb)
- (b) Es sei L_2 die Sprache aller $w \in \{a, b\}^{\cdot}$ mit gleicher Anzahl an a's und b's.
- (c) Es sei $L_3 = \{(ab)^n (ba)^n \mid n \ge 0\}$ über dem Alphabet $\Sigma = \{a, b\}$

Aufgabe 4: Gegeben seien L_1, L_2, L_3 wie in Aufgabe 3. Wenden Sie den CYK-Algorithmus für folgende Instanzen an um zu prüfen ob das jeweilige Wort zur entsprechenden Sprache gehört:

- (a) L_1 mit w = abba sowie w = aba
- (b) L_2 mit w = aababb
- (c) L_3 mit w = ababbaba

Die Grammatiken sind hier informell nur über die Regelmenge angegeben. Ebenso führen wir für ε -freie Grammatiken kein neues Startsymbol ein, um das Wort ε ableiten zu können, sondern fügen den Fall zum normalen Startsymbol hinzu mit dem Wissen es bei der Chomsky-Normalform zu ignorieren.

(a) L_1 = Palindrome über $\Sigma = \{a, b\}$

Grammatik: $S \rightarrow \varepsilon \mid a \mid b \mid aSa \mid bSb$

" ε -freie" Grammatik: $S \to \varepsilon \mid a \mid b \mid aSa \mid bSb \mid aa \mid bb$

Chomsky-Normalform:

$$P = \left\{ \begin{array}{cccc} S & \rightarrow & a \mid b \mid V_a C_a \mid V_b C_b \mid V_a V_a \mid V_b V_b \\ V_a & \rightarrow & a & C_a & \rightarrow & SV_a \\ V_b & \rightarrow & b & C_b & \rightarrow & SV_b \end{array} \right\}$$

CYK-Algorithmus:

a	S, V_a	C_b	S
b		S, V_b	Ca
a			S, V_a
	а	b	а

a	S, V_a	C_b	Ø	S
b		S, V_b	S, C_b	Ca
b			S, V_b	Ca
a				S, V_a
	3	h	h	3

(b)
$$L_2 = \{ w \in \{a, b\}^* : |w|_a = |w|_b \}$$

Grammatik: $S \rightarrow \varepsilon \mid aB \mid bA$, $A \rightarrow a \mid aS \mid bAA \mid B \rightarrow b \mid bS \mid aBB$

Chomsky-Normalform:

CYK-Algorithmus: $w = aababb \in L_2$

a	A, V_a	C_A	Α	C_A	Α	S
a		A, V_a	S	Α	S	В
b			B, V_b	S	В	C_B
a				A, V_a	S	В
b					B, V_b	C_B
b						B, V_b
	а	а	b	а	b	b

(c) $L_3 = \{(ab)^n (ba)^n : n \ge 0\}$

(ε -freie) **Grammatik:** $S \rightarrow \varepsilon \mid ab \ S \ ba \mid abba$

Chomsky-Normalform:

$$P = \left\{ \begin{array}{cccc} S & \rightarrow & C_{ab}C \mid C_{ab}C_{ba} \\ V_a & \rightarrow & a & & C_{ab} & \rightarrow & V_aV_b \\ V_b & \rightarrow & b & & C_{ba} & \rightarrow & V_bV_a \\ C & \rightarrow & SC_{ba} \end{array} \right\}$$

CYK-Algorithmus: $w = ababbaba \in L_3$

a	Va	C _{ab}	Ø	Ø	Ø	Ø	Ø	S
b		V_b	C _{ba}	Ø	Ø	Ø	Ø	Ø
a			Va	C_{ab}	Ø	S	Ø	С
b				V_b	Ø	Ø	Ø	Ø
b					V_b	C _{ba}	Ø	Ø
a						Va	Cab	Ø
b							V_b	C _{ba}
a								Va
	a	b	a	b	b	a	b	b