## The International Interaction Game

## Finding the Probability of Two Counties Engaging into War

We will consider uniquely the subgame crisis where we only have Force (F) or Not Force  $(\tilde{F})$  as actions.



$$\begin{aligned} & \text{In}[310] \coloneqq \text{ fb } = \text{Rfb} \begin{pmatrix} \mathbf{1} \\ \boldsymbol{\theta} \end{pmatrix} \\ & \text{Out}[310] \coloneqq \left\{ \left\{ \text{Cos} \left[ \text{Re} \left[ \boldsymbol{\theta} + \boldsymbol{\phi} \right] \right] + \text{Sin} \left[ \text{Re} \left[ \boldsymbol{\theta} + \boldsymbol{\phi} \right] \right] \right\}, \left\{ \boldsymbol{\theta} \right\} \right\} \\ & \text{ (* Probability of war given that B started *)} \\ & \text{In}[313] \coloneqq \text{ probBwarAwar } = \text{ FullSimplify} \left[ \text{Norm} \left[ \text{fb } \text{F1}_{\text{RAtoB}} \, \text{F1}_{\overline{\text{B}}} \, . \, \text{SB} \, + \, \text{F1}_{\text{RAtoB}} \, \text{F1}_{\text{B}} \, . \, \text{SB} \right] \, ^2 \right] \\ & \text{Out}[313] \coloneqq \frac{1}{2} \, \text{Cos} \left[ \text{Re} \left[ \boldsymbol{\theta} + \boldsymbol{\phi} \right] \, \right]^2 \\ & \text{In}[346] \coloneqq \text{ Plot3D} \left[ \text{probBwarAwar}, \left\{ \boldsymbol{\theta}, \, \boldsymbol{\theta}, \, 2\,\pi \right\}, \left\{ \boldsymbol{\phi}, \, \boldsymbol{\theta}, \, 2\,\pi \right\}, \, \text{Boxed} \rightarrow \text{False}, \\ & \text{AxesLabel} \rightarrow \left\{ \text{Style} \left[ \text{"$\boldsymbol{\theta}$} \, \text{player B} \text{"}, \, 16 \right], \, \text{Style} \left[ \text{"$\boldsymbol{\phi}$} \, \text{player A} \text{"}, \, 16 \right], \, \text{Style} \left[ \text{"Prob"}, \, 16 \right] \right\}, \\ & \text{ColorFunction} \rightarrow \left( \text{ColorData} \left[ \text{"DarkRainbow"} \right] \left[ \# 3 \right] \, \& \right) \right] \end{aligned}$$







## **Computing Probabilities when A starts**



(\* We need to define the superposition state according to A's basis \*)

In[316]:= SA = FullSimplify [Inverse[R]. 
$$\binom{0}{1}$$
 .R. SB];

In[317]:= MatrixForm[SA]

Out[317]//MatrixForm=

$$\begin{pmatrix} \frac{\mathsf{Cos}[2\,\mathsf{Re}[\phi]] + \mathsf{Sin}[2\,\mathsf{Re}[\phi]]}{\sqrt{2}} \\ \frac{\mathsf{Cos}[2\,\mathsf{Re}[\phi]] - \mathsf{Sin}[2\,\mathsf{Re}[\phi]]}{\sqrt{2}} \end{pmatrix}$$

$$\ln[327] = F2_A = \begin{pmatrix} Cos[Re[\phi]] \\ Sin[Re[\phi]] \end{pmatrix}; F2_{\overline{A}} = \begin{pmatrix} -Sin[Re[\phi]] \\ Cos[Re[\phi]] \end{pmatrix}; (* basis of A *)$$

In[325]:= Norm [F2<sub>A</sub>] ^2

Out[325]= 
$$\cos[\operatorname{Re}[\phi]]^2 + \sin[\operatorname{Re}[\phi]]^2$$

(★ Then, we define Player's B roation according to A ★)

In[332]:= probAwarBwar = FullSimplify[Norm[
$$F2_A F2_B F2_{\overline{A}} SA + F2_B F2_A SA$$
]^2]

Out[332]= 
$$\frac{1}{2} \left( -(1 + \cos[Re[\phi]])^2 \sin[Re[\theta]]^2 \sin[Re[\phi]]^2 (-1 + \sin[4Re[\phi]]) + \cos[Re[\theta]]^2 \cos[Re[\theta]]^2 \cos[Re[\phi]]^2 (-1 + \sin[4Re[\phi]])^2 (1 + \sin[4Re[\phi]]) \right)$$

In[348]:= Plot3D[probAwarBwar, 
$$\{\Theta, 0, 2\pi\}$$
,  $\{\phi, 0, 2\pi\}$ , Boxed  $\rightarrow$  False,   
AxesLabel  $\rightarrow$  {Style[" $\Theta_{playerB}$ ", 16], Style[" $\phi_{playerA}$ ", 16], Style["Prob", 16]},   
ColorFunction  $\rightarrow$  (ColorData["DarkRainbow"][#3] &)]



## Final Probability of WAR: Pr(WarB, WarA) + Pr(WarA, WarB)

$$\label{eq:out_345} \begin{split} & \text{In}[345]\text{:=} \quad \textbf{final} \ = \ \textbf{FullSimplify[(probBwarAwar + probAwarBwar) / 2]} \\ & \text{Out}[345]\text{:=} \quad \frac{1}{4} \left( \text{Cos}\left[\text{Re}\left[\theta + \phi\right]\right]^2 - \left(1 + \text{Cos}\left[\text{Re}\left[\phi\right]\right]\right)^2 \\ & \text{Sin}\left[\text{Re}\left[\theta\right]\right]^2 \\ & \text{Sin}\left[\text{Re}\left[\phi\right]\right]^2 \left(1 + \text{Sin}\left[4 \, \text{Re}\left[\phi\right]\right]\right) \right) \end{split}$$

ln[349]:= Plot3D[final, { $\theta$ , 0, 2 $\pi$ }, { $\phi$ , 0, 2 $\pi$ }, Boxed  $\rightarrow$  False, ColorFunction → (ColorData["DarkRainbow"][#3] &) ]



In[351]:= DensityPlot[final,  $\{\theta, 0, 2\pi\}$ ,  $\{\phi, 0, 2\pi\}$ , Ticks  $\rightarrow$  {{0, Pi / 2, Pi, 3 Pi / 2, 2 Pi}, {0, Pi / 2, Pi, 3 Pi / 2, 2 Pi}}, ColorFunction → "DarkRainbow", PlotLegends → Automatic]

