

Description

Image

Caption

1. Stack of copy paper. © Jonathan Joseph Bondhus at en.wikipedia - (CC BY-SA 3.0) 2. Corrugated cardboard. © Richard Wheeler (Zephyris) at en.wikipedia - (CC BY-SA 3.0)

The material

Papyrus, the forerunner of paper, was made from the flower stem of the reed, native to Egypt; it has been known and used for over 5000 years. Paper, by contrast, is a Chinese invention (105 AD). It is made from pulped cellulose fibers derived from wood, cotton or flax. There are many different types of paper and paper board: tissue paper - newsprint, kraft paper for packaging, office paper, fine glazed writing paper, cardboard - and a correspondingly wide range of properties. The data below span the range of newsprint and kraft paper.

Composition (summary)

Cellulose fibers, usually with filler and colorant

General properties

Density 30 - 53.7 lb/ft^3				
* 0.449 - 0.549 USD/lb				
Date first used 105				
Mechanical properties				
Young's modulus 0.435 - 1.29 10\(^6\) psi				
Shear modulus * 0.145 - 0.29 10^6 psi				
* 0.29 - 0.58 10^6 psi				
Poisson's ratio 0.38 - 0.41				
Yield strength (elastic limit) 2.18 - 4.93 ksi				
Tensile strength 3.34 - 7.4 ksi				
Compressive strength 5.95 - 7.98 ksi				
Elongation 0.75 - 2 % strain				
Hardness - Vickers * 4 - 9 HV				
Fatigue strength at 10^7 cycles * 1.89 - 3.48 ksi				
Fracture toughness * 5.46 - 9.1 ksi.in^0.	5			
Mechanical loss coefficient (tan delta) * 0.05 - 0.2				
Thermal preparties				
Thermal properties				
Glass temperature 117 - 153 °F				
Maximum service temperature 171 - 266 °F				
Minimum service temperature -459 °F				
Thermal conductor or insulator? Good insulator	Good insulator			
Thermal conductivity 0.0347 - 0.0982 BTU.ft/h	.ft^2.F			

Paper and cardboard

Specific heat capacity	0.32	-	0.334	BTU/lb.°F
Thermal expansion coefficient	2.78	-	11.1	µstrain/°F

Electrical properties

Electrical conductor or insulator?	Good insulator			
Electrical resistivity	1e13	-	1e15	µohm.cm
Dielectric constant (relative permittivity)	2.5	-	6	
Dissipation factor (dielectric loss tangent)	0.015	-	0.04	
Dielectric strength (dielectric breakdown)	5.08	-	7.62	V/mil

Optical properties

Transparency	Opaque

Processability

Moldability 4 - 5

Eco properties

Embodied energy, primary production	* 5.3e3	-	5.85e3	kcal/lb
CO2 footprint, primary production	* 1.11	-	1.23	lb/lb
Recycle	✓			

Supporting information

Technical notes

Paper is graded in "grammage", the weight, in grams, per unit area. typically 40 - 120 g/m^2. The "bulk" of paper is the reciprocal of its density. The typical sheet "caliper" or thickness of newsprint is 40 - 50 microns; that of bond paper 60 - 90 microns, paper board 120 - 300 microns. "Book bulk" is the number of sheets that, when stacked, have a thickness of 25 mm (1 inch). For newsprint this is 60 - 80, for office paper, it is 105 - 110.

Cellulose fibers (the main constituent of paper) swell in diameter by 15 - 20% from dry to water-saturated. Since most of the fibers in paper lie parallel, change of humidity can change the dimension of the sheet, affecting registration in printing, which therefore requires a controlled atmosphere. Typically moisture accounts of 6 - 9 % of the weight of paper. Friction, too, is important in printing and in packaging; the coefficient of friction of paper sliding on paper is 0.35 - 0.45.

Typical uses

Packaging, filtering, writing; printing; currency, electrical and thermal insulation; gaskets.

Further reading

General information about paper: http://www.paperonweb.com

Eco and thermal data from Hammond, G. and Jones, C. (2006) "Inventory of carbon and energy (ICE), Dept. of Mechanical Engineering, University of Bath, UK.

Links

Reference

ProcessUniverse