

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

iContrALL

Korszerű fűtési rendszerek szabályzása munkapéldány

SZADOLGOZAT

Készítette Gyulai László Belső konzulens dr. Kiss Bálint Külső konzulens Kurbucz Máté

Tartalomjegyzék

1.	Mod	lellalko	tás, irodalomkutatás	2
	1.1.	Felíran	dó átviteli függvények	3
2.	Ház	model	lje	4
	2.1.	Big pio	cture	4
3.	. A felírt modell			4
	3.1.	Fűtési	rendszer és ház kapcsolata	4
4.	4. Fűtési rendszer modellje			6
	4.1.	Radiát	or modelljének felírása	6
		4.1.1.	Hőleadás	6
		4.1.2.	Hőfelvétel	7
		4.1.3.	Energiamérleg állandósult állapotban	7
		4.1.4.	Sugárzó és konvektív teljesítmény szétválasztása	8
		4.1.5.	Dinamikus modell	8
5.	Fűtő	ítestek	modellezése	10

1. Modellalkotás, irodalomkutatás

Munkámban elsősorban a különböző fűtési típusok közti különbségeket szeretném megvizsgálni. A ház modelljét először adottnak venném, az eltérést pedig a különböző fűtési módok jelentenék. Azaz megpróbálom felírni a környezet belső hőmérsékletre való ráhatását, eztán pedig modellezem többféle fűtőtest viselkedését.

Ehhez először áttekintettem a hőátadás lehetséges formáit és forrásait. Arra jutottam, hogy ha a levegő hőmérsékletére szabályzok, akkor az abba beleszóló tényezőket veszem sorra:

- konvektív hőátadás: a felszín közelében felmelegedett levegő áramlani kezd
- radiatív hőátadás: sugárzással kibocsátott energia a környezetbe

1. ábra. Alacsony hőmérsékletű fűtés és magas hőmérsékletű hűtés c. könyv ábrája

A levegő hőmérsékletére ezek a következőképp hatnak a leginkább:

- a fűtőtestek konvektív és radiatív hőátadással is melegítik a környezetet
- a radiatív energiát a tárgyak, falak nyelik el, amik ezáltal felmelegszenek (mintegy kapacitásként lesz egy hőtároló tömeg, ami a fűtés kikapcsolásával fenntartja a hőmérsékletet / lassítja a hűlést)
- a fűtetlen falfelületek hűtik a szobát (külső hőmérséklet befolyása)

Így a kezdeti modellben azzal a feltételezéssel élek, hogy ezen kívül más hatás nem lép fel.

A modellben feltételezem, hogy a fűtőtest felületi hőmérsékletével tudunk beavatkozni. A modellben paraméter a fűtőtestek hőátadási tényezője és felülete. Zavarásként (?) hat a külső hőmérséklet értéke, amit mérni is tudunk. Kimenet a belső hőmérséklet (térben konstansnak véve azt / átlagolva a szoba levegőjére)

A modell felírásához a fűtőtest tulajdonságain kívül szükség van a szobában található levegő mennyiségére is. A zavarás hatását is fel kell írni, azaz hogy egy külső hőmérsékletváltozás hogyan jelenik meg a kimeneten. (Célszerű itt egy átviteli függvényt felírni először, szuperpozíciószerűen. A zavarás viszont nem a modell bemenetén és nem is a kimenetén hat.)

A felírandó átviteli függvények:

- levegő felmelegedése konstans külső hőmérsékletet feltételezve, fűtőtest egységugrással
- levegő felmelegedése fűtés kikapcsolt állapota mellett, környezeti hőmérséklet ugrásával

1.1. Felírandó átviteli függvények

2. Ház modellje

2.1. Big picture

A modellalkotásnál igyekszek energetikai tanúsítványban szereplő adatokat felhasználni. Figyelembe kell vennem a ház hőveszteségeit és hőtároló képességét is.

A kinyerhető adatok: a határoló elemek felszíne,

hőigény numerikusan is szerepel A Simscape-ben hőátadási tényezőket és hőtároló tömegeket vettem fel.

3. A felírt modell

A schönherzes kollégiumi szoba határoló elemeit vettem fel. Ez 80 m²-nyi belső falfelület, 4

Táblázatban össze kellene foglalni.

Tablazat IDE.

3.1. Fűtési rendszer és ház kapcsolata

A fűtési rendszer és a szabályzás alapvető validálásához egyszerű házmodelleket fogok felállítani.

Szinte a legegyszerűbb ilyen tekintetben egy kollégiumi szoba modellje. Egy átlagos szobát 4 másik vesz körül, van ablaka, egy radiátora. Erre ki kellene számítani a hőigényt, figyelembe véve azt hogy mennyi hő szökik el a külső és belső határoló felületeken keresztül. A gyakorlati alkalmazásokban szeretnék majd az energetikai tanúsítványból kiindulni, így gyakorlatilag a szoba energetikai tanúsítását végzem el - olyan szinten, amennyire nekem szükséges.

Ashrae HVAC - 6.19 Panel H & C. - Controls strategy

Ezért utánanéztem a jellemző szerkezeti tulajdonságoknak. A modellezés Gouda alapján történik, gyakorlatilag csomóponti egyenleteket kell felírni az alábbi hálózatra, amiben az ellenállások a rétegrendi hőátbocsátási tényező reciprokai. A hőtároló képességeket kapacitások modellezik.

A ház modelljének felírásakor figyelembe vettem a hőtároló elemeket. A pontos (reális) modell felállításakor ezek hőtartalmát (a hőáram integrálja egyensúlyi állapotban legyen 0, azaz egy nagyobb ciklusban a felvett és leadott hője egyenlő) az egyensúlyi állapothoz közelinek vettem.

Viszont a szabályzótervezéshez identifikálni kell, ekkor pedig a falak, ill. szoba levegőjének kezdeti állapotát (hőmérsékletét) azonosnak vettem a külső hőmérséklettel. Így ha a hőkülönbség a modell kimenő jele, akkor lineáris a rendszer: 0 bemenetre (fűtés) 0 kimenetet ad.

Az identifikációnál így minden hőtároló elem (levegő, külső és belső falak) kezdeti hőmérsékletét a környezeti hőmérséklettel azonosnak vettem. (Még egy mérés lehet az, ha mérhető zavarásunk van, pl. kezdeti $20\,^{\circ}$ C hőmérsékletet beállítva a környezeti hőmérséklet zuhan 20-ról $10\,^{\circ}$ C-ra.)

4. Fűtési rendszer modellje

4.1. Radiátor modelljének felírása

Mivel a Matlab szimulációban a legbefúvásos fűtés modelljének teljesítmény kimenete van, fel akartam állítani egy olyan modellt, ami beillesztehető az eredeti légbefúvó rendszer helyére. A ház hőveszteségeit a Matlab számolja¹, ebből pedig adódik a szoba levegőjének hőmérséklete. A rendszer szabályozását így visszavezettem a leadott teljesítmény szabályzására. A levezetett egyenletnek köszönhetően egy teljesítményigényhez meg tudom majd mondani hogy mennyire kell a szabályzószelepeket kinyitni.

Az Épületgépészet a gyakorlatban² c. könyvben szó esik fűtési rendszerek méretezéséről. Itt adatként szerepel egy épületre a szobák hőigénye³ és névleges hőmérséklete. Ehhez választanak megfelelő méretű radiátort, hogy azokban a kiszámolt sebességgel vizet keringetve a hőleadás elég legyen az adott helyiségbe. (Ehhez figyelembe kell venni minden radiátorra a keringő víz hőmérsékletét is, különösen ha azok sorba vannak kötve és a hőmérsékletesések is jelentősek.)

Hasonlóan méretezési feladatot mutat be a [1, 4.2.7.3] is. Ezek alapján vezettem le a leadott hő mennyiségét állandósult állapotra. Természetesen a felmelegedés és lehűlés idejét is figyelembe kell majd venni, de ezzel érthető módon a méretezésnél sem számolnak.

4.1.1. Hőleadás

A fűtőtestek hőleadását befolyásolja a fűtőtestek közepes hőmérsékletkülönbsége (ld. a 2. egyenletet), a felülete és a hőleadási tényezője. Ezek közötti kapcsolatot adja az 1. egyenlet ([1, 358. o.]-ből):

$$\dot{Q}_{le} = k_e \ A_e \ \Delta t_m \tag{1}$$

ahol

 \dot{Q}_{le} [W] a leadott hő

 $k_e \left[\frac{\mathsf{W}}{\mathsf{m}^2 \mathsf{K}} \right]$ hőleadási tényező - ezt hőmérsékletfüggetlennek tekintem.

 A_e [m²] a radiátor felülete

 Δt_m [K] a közepes hőmérsékletkülönbség:

$$\Delta t_m = \frac{t_s + t_r}{2} - t_i \tag{2}$$

ahol

 t_s a radiátorba befolyó, t_r az onnan kifolyó víz hőmérséklete $^{\circ}$ C-ban

¹Pontosításra szorul ez a modell is, mert valószínűleg csak a konvektív hővezetéssel számol (a sugárzásival pedig nem). A légbefúvás a ház levegőjét melegíti. Ám a modellben a ház hőtároló tömege nem jelenik meg, csak egy hőellenállás a veszteségek modellezéséhez.

²Könyvtári könyv, Verlag. 5.11.6, 2. o.

³Pontosan nem tudom még, hogyan definiálják a hőigényt: mekkora kültéri hőmérsékletet vesznek pl. figyelembe, illetve hogy radiátor méretezésénél ezt nyilván felül kell becsülni.

 t_i a szoba hőmérséklete

A hőátadási tényező is hőmérsékletfüggő, de ezzel egyelőre nem foglalkozom, állandónak tekintem.

4.1.2. Hőfelvétel

A vízből felvett hő felírható:

$$\dot{Q}_{fel} = c \ \dot{m} \ \Delta t \tag{3}$$

ahol

 \dot{Q}_{fel} [W] a vízből felvett hő, ami annak lehűléséből adódik

$$c\left[\frac{\mathsf{J}}{\mathsf{kg}\,\mathsf{K}}\right]$$
 a víz fajhője

 \dot{m} $\left[\frac{\text{kg}}{\text{s}}\right]$ a víz tömegárama

 $\Delta t = t_s - t_r$ [K] a víz lehűlésének mértéke

4.1.3. Energiamérleg állandósult állapotban

Állandósult állapot esetén a leadott hő egyenlő a felvettel, mivel akkor nem történik hőfelhalmozás, hőtárolás. Azaz ekkor a radiátor hőkapacitását nem kell figyelembe vennem.

Beírva a (2)-ba (1)-t:

$$\dot{Q}_{le} = k_e A_e \left(\frac{t_s + t_r}{2} - t_i \right) = k_e A_e \left(\frac{t_s + (t_s - \Delta t)}{2} - t_i \right)$$
 (4)

Ahol felhasználtuk azt is, hogy $t_r = t_s - \Delta t$, majd Δt helyére beírhatjuk a (3) átrendezett alakját:

$$\Delta t = \frac{\dot{Q}_{fel}}{c \ \dot{m}} \tag{5}$$

Beírva (4)-ba (5)-t:

$$\dot{Q}_{le} = k_e A_e \left(t_s - t_i - \frac{\dot{Q}_{fel}}{c \dot{m}} \right)$$

$$\dot{Q}_{le} + \frac{k_e A_e \dot{Q}_{fel}}{2 c \dot{m}} = k_e A_e (t_s - t_i)$$
 (6)

$$2 c \dot{m} \dot{Q}_{le} + k_e A_e \dot{Q}_{fel} = k_e A_e 2 c \dot{m} (t_s - t_i)$$

Csak abban az esetben, ha $\dot{Q}_{le}=\dot{Q}_{fel}$:

$$\dot{Q}(2 c \dot{m} + k_e A_e) = 2 k_e A_e c \dot{m} (t_s - t_i)$$

$$\dot{Q} = \frac{2 c \dot{m} k_e A_e}{2 c \dot{m} + k_e A_e} (t_s - t_i)$$
(7)

A fenti képletet kiegészítve kezelhető lenne a hőmérsékletfüggő hőleadási tényező.

Mivel a hőleadást, hőtárolást Simscape-ben valósítottam meg, a radiátorba bemenő hőt kell csak kiszámítani. Erre meg kell vizsgálni, hogy az állandósult állapotbeli képlet helyes-e.

Megjegyzés: A radiátorba bekerülő teljesítményt a t_s-t_r szabja meg (3. egyenlet), viszont itt t_r -t kiejtettem az egyenletekből. Viszont az irodalom⁴ szerint a $\Delta t = t_s - t_r$ -re szabályzozással megtakarítás érhető el. Meg kell vizsgálni, reális-e mindkét paraméter mérése, radiátorok esetén, vagy csak padlófűtésnél.

4.1.4. Sugárzó és konvektív teljesítmény szétválasztása

Fun facts:

- A falakra az $\alpha=10~\frac{W}{m^2~K}$ érték a sugárzó és konvektív hőleadást is tartalmazza. A konvektív hőleadás függ a felületi áramlási sebességtől: falsaroknál ez az érték alacsonyabb, kb. a fele.
- A sugárzó hő a Stefan-Boltzmann törvény alapján függ az emisszivitástól. (Annak a mértéke, hogy a test a feketetesthez képest mennyi hőt bocsát ki). A hőmennyiség a hőmérséklet negyedik hatványával arányos. A sugárzott hő meghatározásához még meg kell keresni és be kell írni a Simscape blokkba a megfelelő együtthatókat. Valami általános összefüggést kell találni, hogy a radiátor milyen arányban melegíti a külső falat, ahol van, ill. az ablakra milyen hatással van: még nem kezelem le ezeket az aszimmetriákat, hanem minden hőmérsékleteloszlást homogénnek veszek.
- A q_r $\left[\frac{W}{m^2}\right]$ radiant heat flux density a T. Cholewa⁵ (5.) egyenlet alapján számítható.
- A hőhidak a hőveszteségek meglepően nagy részéért felelősek, jelentős hibát követünk el, ha ezekkel nem számolunk. Meg kell keresni az energ. tanúsítványokban hogy hol tüntetik fel ezek mértékét.

4.1.5. Dinamikus modell

A felmelegedéskor és lehűléskor a pontos hőleadást akkor tudjuk modellezni, ha ismerjük a radiátor hőkapacitását. Ehhez tudnunk kell, hogy a radiátorban mennyi víz van, illetve hogy a radiátortest milyen nehéz.

 $^{^5\}mbox{On}$ the heat transfer coefficients between heated/cooled radiant floor and room. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.07.065

Radiátor katalógusokból⁶ azt találtam, hogy az egyes radiátor típusokra ezek a paraméterek milyen értékűek.

Ismert a radiátor hossza, magassága, konstrukciója. Ezalapján a tömege, illetve az acél hőkapacitása alapján a radiátortest hőkapacitása - simscape termikus hőtároló elem blokként víztérfogata, a víz fajhője még egy hőtároló elem.

Ezen hőtároló elemek feltöltődése szimulálva adja a dinamikus viselkedést.

A modell kimenetén külön szerepelhet a sugárzás és a konvekció.

⁶Purmo Ventil Compact - purmo.com

5. Fűtőtestek modellezése

A MATLAB egyik demójában egy ház fűtési modelljét valósították meg. Ebben a fűtőtest kimenete teljesítmény dimenziójú. A ház veszteségeit a méretei és az ablakai alapján kiszámítja.

A modellezendő objektum a fűtési rendszer, itt kell számba venni hogy egy jól méretezett rendszernek mennyi a felfutási illetve a beállási ideje. Ezt számolni a kazán, a fűtővíz illetve a fűtőtest teljesítményeiből, illetve kapacitásaiból lehetne.

A fűtőtestek hőátadását számos tényező befolyásolja, ezekre az előzóekben egyenletet is felírtam. Az egyenletet Simulinkben valósítottam meg, a fűtési rendszer így beilleszthető a Matlab példájába.

Hivatkozások

[1] Csoknyai István. Több, mint hidraulika. Herz Armatúra Hungária Kft, 2013.