Линейная алгебра

Базис векторного пространства. Линейные отображения.

Глеб Карпов

МНаД ФКН ВШЭ

Базис

Базис

Определение

• Набор векторов v_1, \dots, v_n из $\mathbb V$ называется базисом пространства V тогда и только тогда, когда любой вектор $x \in \mathbb V$ может быть уникально представлен в форме линейной комбинации:

$$x = \alpha_1 v_1 + \ldots + \alpha_n v_n.$$

• Соответствующие уникальные коэффициенты α_1,\ldots,α_n мы называем координатами вектора x в базисе (v_1,\ldots,v_n) .

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} - Sazuc \ell^{3}$$
Easuc

Определение

ullet Набор векторов v_1,\dots,v_n из ${\mathbb V}$ называется базисом пространства V тогда и только тогда, когда любой вектор $x \in \mathbb{V}$ может быть уникально представлен в форме линейной комбинации:

$$x = \alpha_1 v_1 + \ldots + \alpha_n v_n.$$

- Соответствующие уникальные коэффициенты α_1,\ldots,α_n мы называем координатами вектора x в базисе $(v_1, \dots, v_n).$
- ullet Немного иначе: набор векторов v_1,\dots,v_n из $\mathbb {V}$ называется базисом пространства V тогда и только тогда, когда этот набор векторов линейно независим и $\operatorname{span}(v_1,\ldots,v_n)=\mathbb{V}$, то есть мы можем 'дотянуться' до любого элемента из \mathbb{V} .

Базис. Примеры.
$$S = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}$$
 $\{ \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}$ $[x]_{S} = \begin{bmatrix} 3 \\ 2 \end{pmatrix}$ $[x]_{S} = \begin{bmatrix} 3 \\ 2 \end{pmatrix}$ $[x]_{S} = \begin{bmatrix} 3 \\ 2 \end{pmatrix}$ $[x]_{S} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ $[x]_{S} = \begin{bmatrix} 3 \\$

 $\mathcal{L} = \left\{ \begin{pmatrix} \frac{1}{9} \\ \frac{1}{9} \end{pmatrix} \begin{pmatrix} \frac{0}{1} \\ \frac{1}{9} \end{pmatrix} \begin{pmatrix} \frac{0}{9} \\ \frac{1}{9} \end{pmatrix} \begin{pmatrix} \frac{0}{9} \\ \frac{1}{9} \end{pmatrix} \right\}$

$$\mathbb{R}[x,2]$$
 Базис. Примеры $F(x) = 2x^2 - 5x + 7$

$$= 2x^{2} - 5x + 7 \qquad S = \{$$

$$x^{2} + (-5)x + 7.1 \qquad \Box i$$

$$F(x) = 2x^{2} - 5x + 7$$

$$F(x) = 2x^{2} - 5x + 7$$

$$S = \{x^{2}, x, 1\}$$

$$F(x) = 2 \cdot x^{2} + (-5)x + 7 \cdot 1$$

$$F(x) = \frac{1}{2} (4x^{2} + 2x) + (-1)(6x) + \frac{1}{2} (14)$$

$$F(x) = \frac{1}{2} (4x^{2} + 2x) + (-1)(6x) + \frac{1}{2} (14)$$

$$F(x) = \frac{1}{2} (4x^{2} + 2x) + (-1)(6x) + \frac{1}{2} (14)$$

$$F(x) = 2 \cdot x^{2} + (-5)x + 7.1 \qquad [F(x)]_{s} =$$

$$\beta = \int 4x^{2} + 2x \int 6x \int 4x^{2} dx$$

$$(x) = \frac{1}{2} (4x^{2} + 2x) + (-1)(6x) + \frac{1}{2} (14) \qquad (05)$$

Symm
$$\mathbb{R}^{2\times 2}$$
 Базис. Примеры. $A = A$

$$S = \left\{ \begin{pmatrix} 10 \\ 00 \end{pmatrix}, \begin{pmatrix} 00 \\ 04 \end{pmatrix}, \begin{pmatrix} 04 \\ 10 \end{pmatrix} \right\}$$

$$A = \left\{ \begin{pmatrix} 24 \\ 41 \end{pmatrix}, \begin{pmatrix} 24 \\ 41 \end{pmatrix} \right\}$$

$$A = \left\{ \begin{pmatrix} 10 \\ 4 \end{pmatrix}, \begin{pmatrix} 10 \\ 41 \end{pmatrix} + \begin{pmatrix} 10 \\ 41 \end{pmatrix}, \begin{pmatrix} 10 \\ 41 \end{pmatrix} + \begin{pmatrix} 10 \\ 41 \end{pmatrix}, \begin{pmatrix} 10 \\ 41 \end{pmatrix}, \begin{pmatrix} 10 \\ 41 \end{pmatrix}$$

$$S = \left\{ \begin{pmatrix} 10 \\ 00 \end{pmatrix}, \begin{pmatrix} 01 \\ 00 \end{pmatrix}, \begin{pmatrix} 00 \\ 10 \end{pmatrix}, \begin{pmatrix} 00 \\ 01 \end{pmatrix} \right\}$$

$$S = \left\{ \begin{pmatrix} 10 \\ 00 \end{pmatrix}, \begin{pmatrix} 01 \\ 00 \end{pmatrix}, \begin{pmatrix} 00 \\ 10 \end{pmatrix}, \begin{pmatrix} 00 \\ 01 \end{pmatrix} \right\}$$

Базис.

Если векторное пространство V имеет базис $\mathbf{v}_1, \dots, \mathbf{v}_m$, то любой вектор \mathbf{v} однозначно определяется своими координатами α_{l} в этом базисе. Если мы упакуем α_k в вектор из \mathbb{R}^n , то можем оперировать им вместо оперирования над

Если
$$\mathbf{v} = \sum_{k=1}^n \alpha_k \mathbf{v}_k$$
 и $\mathbf{w} = \sum_{k=1}^n \beta_k \mathbf{v}_k$, то
$$\mathbf{v} + \mathbf{w} = \sum_{k=1}^n \alpha_k \mathbf{v}_k + \sum_{k=1}^n \beta_k \mathbf{v}_k = \sum_{k=1}^n (\alpha_k + \beta_k) \, \mathbf{v}_k$$

- т.е. вместо сложения двух оригинальных векторов, можно сложить векторы координат.
- Аналогично, чтобы получить $\alpha \mathbf{v}$, можно умножить столбец координат ${f v}$ на lpha и сразу получить

Линейная алгебра: единый язык для разных объектов координаты вектора $lpha {f v}$.