Matrix theory - Assignment 13

Shreeprasad Bhat AI20MTECH14011

Find

Abstract—This document proves properties on linear functionals

Download latex-tikz from

https://github.com/shreeprasadbhat/matrix-theory/ blob/master/assignment13/

1 Problem

Show that the trace functional on $n \times n$ matrices is unique in the following sense. If W is the space of $n \times n$ matrices over the field F and if f is a linear functional on W such that f(AB) = f(BA) for each A and B in W, then f is a scalar multiple of the trace function. If, in addition, f(I) = n, then f is the trace function.

2 Solution

Given	W is the space of $n \times n$ matrices over the field F $f ext{ is a linear functional on } W, ext{ that } f(AB) = f(BA)$
To prove	f is scalar multiple of trace $f(A) = c \times \operatorname{trace}(A)$ and If $f(I) = n$, then f is the trace $f(A) = \operatorname{trace}(A)$
Basis of W	Let $\{E^{pq}, 1 \le p, q \le n\}$ be the basis of W where E^{pq} is a $n \times n$ matrix such that, $E^{pq} = \begin{cases} 1 & pq^{th}\text{-position} \\ 0 & \text{everywhere else} \end{cases}$

If
$$p = q$$
, we know $I = \sum_{p,q=1}^{n} E^{pp}$ then
$$f(I) = \sum_{p,q=1}^{n} f(E^{pp}) \implies f(I) = nf(E^{pp})$$
Find
$$\implies f(E^{pp}) = \frac{f(I)}{n}$$
If $p \neq q$, then
$$f(E^{pq}) = f(E^{p1}E^{1q}) = f(E^{1q}E^{p1}) = \mathbf{0}$$

$$\operatorname{trace}(E^{pq}) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

$$\therefore f(E^{pq}) = \frac{f(I)}{n} \operatorname{trace}(E^{pq})$$

$$f(E^{pq}) = \frac{f(I)}{n} \operatorname{trace}(E^{pq})$$
Let $A \in W$, then $A = \sum_{p,q=1}^{n} c^{pq} E^{pq}$
Also, $\operatorname{trace}(A) = \sum_{p,q=1}^{n} c^{pq} \operatorname{trace}(E^{pq})$
Since f is linear, $f(A) = \sum_{p,q=1}^{n} c^{pq} f(E^{pq})$
Proof
$$f(A) = \sum_{p,q=1}^{n} c^{pq} \left(\frac{f(I)}{n} \operatorname{trace}(E^{pq})\right)$$

$$f(A) = \frac{f(I)}{n} \operatorname{trace}(A)$$
Hence f is a scalar multiple of trace.

If $f(I) = n$, $f(A) = \operatorname{trace}(A)$
Hence f is the trace function