Topics in Machine Learning Midterm 1

2017-02-21

- A mathematical optimization problem is defined as: minimize $f_0(x)$ but subject to $f_i(x) \le b_i, i = 1, \ldots, m$, where x is the optimization variable, f_0 is the objective function, f_i are the constraint functions.
- A solution method for a class of optimization problems is an algorithm that computes a solution
 of the problem (to some given accuracy), given a particular problem from the class, i.e., an
 instance of the problem.
- **Regularization** comes up in statistical estimation when the vector x to be estimated is given a prior distribution.
- Some optimization problems are considered to be easy ones because they have either a direct analytical solution or an efficient algorithm to solve them. These problems include least-squares, linear programming, and convex optimization. A global optimal is achievable.
- Nonconvex optimization sometimes has an analytical solution as well, e.g. in certain constraints.
 A global optimal is not guaranteed.
- The least-squares problem and linear programming problem are both special cases of the general convex optimization problem.
- Linear combination:
 - Affine combination: $\{\theta_1x_1+\ldots+\theta_kx_k|x\in C, \theta_1+\ldots+\theta_k=1\}$
 - \circ Conic combination: $\{ heta_1x_1+\ldots+ heta_kx_k|x\in C, heta\geq 0\}$
 - Convex combination: $\{\theta_1x_1+\ldots+\theta_kx_k|x\in C,\theta\geq 0,\theta_1+\ldots+\theta_k=1\}$

• Affine:

- **Affine set**: the set *C* where the line through any two distinct points in *C* lies in *C*.
- **Affine hull**: the set of all affine combinations of points in some set *C*. It is the smallest affine set that contains *C*.

• Conic:

• **Conic hull**: the set of all conic combinations of points in *C*.

• Convex:

- **Convex set**: the set *C* where the line segment between any two points in *C* lies in *C*.
- **Convex hull**: the set of all convex combinations of points in *C*. It is the smallest convex set that contains *C*.

- Every affine set and cone is also convex. A cone is often called a **convex cone**.
- Interior v.s. relative interior
 - x is an interior point of C if there exists an open ball with the same dimension as C
 centered at x which is completely contained in C.
 - x is an relative interior point of C if there exists an open ball with the same dimension as
 the affine set of x centered at x which is completely contained in C.
- Hyperplanes: $\{x|a^{\mathrm{T}}x=b\}$ or $\{x|a^{\mathrm{T}}(x-x_0)=0\}$
 - \circ The solution set of a nontrivial linear equation among the components of \boldsymbol{x} (and hence an affine set).
 - The set of points with a constant inner product to a given vector \boldsymbol{a} .
 - A hyperplane with normal vector **a** and the offset **b** of the hyperplane from the origin.
 - An offset x_0 , plus all vectors orthogonal to the (normal) vector a.
- Polyhedra: $\{x|Ax \leq b, Cx = d\}$
 - The solution set of a finite number of linear equalities and inequalities.
 - The intersection of finite number of **hyperplanes** and **halfspaces**.
- Ellipsoid:
 - $\circ \ \ \{x|(x-x_c)^{\mathrm{T}}P^{-1}(x-x_c)\leq 1\}$, where P is symmetric and positive definite.
 - $\circ \ \{x_c + Au | \parallel u \parallel_2 \leq 1\}$, where a is square and nonsingular.
- Norm ball:
 - $||x|| ||x x_c|| \le r$
 - $| \cdot | \{x_c + ru | | | u | | \le 1 \}$
- Norm cone: $\{(x,t)| ||x|| \le t\}$
- Halfspaces: $\{x|a^{\mathrm{T}}x\leq b\}$ or $\{x|a^{\mathrm{T}}(x-x0)\leq 0\}$
- **Simplexes**: the set of convex combinations of k+1 affinely independent points in K dimensional space.
- Positive semidefinite cone: $S^n_+ = \{X \in S^n | X \succeq 0\}$
 - S^n is a vector space with dimension n(n+1)/2.

2017-03-07

- Operations that preserve convexity includes **intersection**, **affine functions**, **perspective functions**, and **linear-fractional functions**.
- Intersection:
 - The intersection of an infinite number of halfspaces.
- Affine functions: f(x) = Ax + b

- A sum of a linear function and a constant.
- The *image* and the *inverse image* of S under f.
- Scaling, translation, or projection of a convex.
- The sum, partial sum, direct or Cartesian product of convexes.
- Polyhedron under affine function f(x) = (b Ax, d Cx) is the Cartesian product of the nonnegative orthant and the origin $\{x | f(x) \in \mathbb{R}^n_+ \times \{0\}\}$.
- Solution set of linear matrix inequality under affine function f(x) = B A(x) is a positive semidefinite cone S^n_+ .
- Hyperbolic cone $\{x|x^{\mathrm{T}}Px\leq (c^{\mathrm{T}}x)^2,c^{\mathrm{T}}x\geq 0\}$ under affine function $f(x)=(P^{1/2}x,c^{\mathrm{T}}x)$ is a second-order cone $\{(z,t)|z^{\mathrm{T}}z\leq t^2,t\geq 0\}$.
- Ellipsoid $\{x|(x-x_c)^{\mathrm{T}}P^{-1}(x-x_c)\leq 1\}$ under affine function $g(x)=P^{-1/2}(x-x_c)$ is a unit Euclidean ball $\{u| \parallel u \parallel \leq 1\}$.

• Proper cone: *K*

- **K** is convex.
- **K** is closed.
- **K** is *solid*, which means it has nonempty interior.
- **K** is *pointed*, which means that it contains no line.
- Examples of proper cones:
 - Nonnegative orthant and componentwise inequality.
 - Positive semidefinite cone and matrix inequality.
 - Cone of polynomials nonnegative on [0,1].
- A proper cone K can be used to define a *generalized inequality*, which is a partial ordering on \mathbb{R}^n .
- Generalized inequality: $x \leq_K y \leftrightarrow y x \in K$.
- $x \in S$ is the **minimum** element if and only if $S \subseteq x + K$, which means all other points of S lie above and to the right.
- $x \in S$ is the **minimal** element if and only if $(x K) \cap S = x$, which means *no other point of S lies* to the left and below x.
- Separating hyperplane theorem: Suppose C and D are nonempty disjoint convex sets, i.e., $C \cap D = \emptyset$. Then there exist $a \neq 0$ and b such that $a^Tx \leq b \ \forall x \in C$ and $a^Tx \geq b \ \forall x \in D$. The hyperplane $\{x | a^Tx = b\}$ is called a separating hyperplane for the sets C and D.

2017-03-14

Supporting hyperplane theorem: if *C* is convex, then there exists a supporting hyperplane at
every boundary point of *C*.

• Convex functions: f is convex if dom f is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

- **Concave functions**: f is concave if -f is convex.
- Affine functions:
 - All affine (and therefore also linear) functions are both convex and concave.
 - Any function that is convex and concave is affine.
- Practical methods for establishing convexity of a function
 - Verify definition.
 - \circ For first-order conditions, show $f(y) \geq f(x) + \nabla f(x)^{\mathrm{T}} (y-x)$
 - For twice differentiable functions, show its second derivative ∇^2 is greater than 0.
- First-order conditions:
 - For a convex function, the first-order Taylor approximation is in fact a global underestimator of the function.
 - If the first-order Taylor approximation of a function is always a global underestimator of the function, then the function is convex.
- Second-order conditions: Hessian (second derivative) test.
- Examples of convex functions: affine, exponential, powers (power ≥ 1, or power ≤ 0), powers of absolute value, negative entropy, norms, spectral (maximum singular value) norm, max, quadratic, least-squares, quadratic-over-linear, log-sum-exp, geometric mean, log-determinant, Jensen's inequality, etc.
- Examples of concave functions: *affine*, *powers* $(0 \le power \le 1)$, *logarithm*, etc.

2017-03-21

- Operations that preserve convexity: nonnegative weighted sum, composition with affine function, pointwise maximum, pointwise supremum, composition with scalar functions, vector composition, minimization, perspective function, conjugate function, etc.
- Nonnegative weighted sum & composition with affine function:
 - Log barrier for linear inequalities
 - Any norm of affine function
- Pointwise maximum:
 - Piecewise-linear function
 - Sum of r largest components of $x \in \mathbb{R}^n$
- Pointwise supremum: $g(x) = \sup_{y \in C} f(x,y)$ is convex if f(x,y) is convex in x for each $y \in C$
 - Support function of a set $C: S_C(x) = \sup_{y \in C} y^T x$
 - $\circ~$ Distance to farthest point in a set C: $f(x) = \sup_{y \in C} \parallel x y \parallel$

- Maximum eigenvalue of symmetric matrix $S: \lambda_{\max}(S) = \sup_{\|y\|_{2}=1} y^{\mathrm{T}} Sy$
- Minimization: $g(x) = \inf_{y \in C} f(x, y)$ is convex if f(x, y) is convex in (x, y) and C is a convex set
 - $f(x,y) = x^{\mathrm{T}}Ax + 2x^{\mathrm{T}}By + y^{\mathrm{T}}Cy$ with $[A,B;B^{\mathrm{T}},C] \succeq 0, C \succeq 0$
 - \circ Distance to a set C: $\operatorname{dist}(x,C) = \inf_{y \in C} \parallel x y \parallel$ if C is convex
- Conjugate functions: $f^*(y) = \sup(y^{\mathrm{T}}x f(x))$ must be convex.
 - \circ Conjugate function of negative logarithm $f(x) = -\log x$
 - \circ Conjugate function of strictly convex quadratic $f(x)=(1/2)x^{\mathrm{T}}Qx$
- Quasiconvex functions: f is quasiconvex if dom f is convex and the sublevel sets

$$S_{lpha} = \{x \in \mathrm{dom} f | f(x) \leq lpha \}$$
 are convex for all $lpha$

- \sqrt{x} is quasiconvex on \mathbb{R}
- $\operatorname{ceil}(x) = \inf\{z \in Z | z \ge x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbb{R}_{++}
- $f(x_1,x_2)=x_1x_2$ is quasiconcave on \mathbb{R}^2_{++}
- Linear-fractional function is quasilinear
- Distance ratio is quasiconvex
- Properties of quasiconvex functions:
 - Modified Jensen inequality: $f(\theta x + (1 \theta)y) \le \max\{f(x), f(y)\}$
 - \circ First-order condition: $f(y) \leq f(x) \Rightarrow
 abla f(x)^{\mathrm{T}}(y-x) \leq 0$
- Log-concave and log-convex functions: $f(heta x + (1- heta)y) \geq f(x)^ heta f(y)^{1- heta}$
 - Powers x^a on \mathbb{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
 - Many common probability densities are log-concave.
 - \circ Cumulative Gaussian distribution function Φ is log-concave.
- Properties of *log-concave functions*:
 - \circ Twice differentiable f with convex domain is log-concave if and only if $f(x)
 abla^2 f(x) \preceq
 abla f(x)
 abla f(x)^{\mathrm{T}}$
 - Product of log-concave functions is log-concave
 - Sum of log-concave functions is not always log-concave
 - Integration of log-concave functions is log-concave