Machine

Learning

Assignment -2

Sithuhwar. B.M.

2023115062

Unit-5 : Advanced Learning

1) 11. Means clustering:

K-means is a partitioning clustering algorithm that divides a dataset into k-sherter based on similarity.

steps:

- 1) (howe no of clinters 11.
- 2) Randomly initialize k centroids.
- 3) Assign each data points to the nearest centroid (unity distance usually Euclidean).
- a) becompute centroids on the mean of points in each cluster.
- s) Repeat stem 3-4 untill centroids do not change significantly.

Objective: Minimize $J = \underbrace{\xi}_{i=1}^{k} \underbrace{\xi}_{z \in C_{i}} \|x - y_{i}\|^{2}$

Where (i = cluster i

Application: L'unto mer segmentation * îmage compression.

2) Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a dimensionally electricing technique used to transform high dimensional data into tewer dimensions while Preserving maximum variance

51 eps:

- 1) Standardire the data
- 2) (ompute covariane matrix.
- 3) Find eigen values and eigen vectors
- 4) Seled the top k eigenvalters (principal components)
- 5) Thankom data into now reduced tenture space

Example:

Datart with 2 features.

Step 1: Standardie 1 subtract mean = 1.5)

Step 2. Covariance Matrin

$$E = \begin{bmatrix} 1.67 & -1.0 \\ -1.0 & 1.67 \end{bmatrix}$$

First principal component aligns along direction [1,-1].
The date ran he represented along one accis (x, -x2) taplusing most of the variance.

Admantages:

- * Remove roise 8 redundary
- * Reduces computation.
- & 9 mpus ves visualisation.

Application:

- * Face and handwriting recognition
- * 9 mage compression
- * Exploratory data analysis.

3. GAUSSEAN MIXTURE MODELS (GMM)

Introduction!

A haurian mixture model (snmm) is a purbabilitie model for representing normally distributed suppopulation within an overall population:

Unlike K-means. It allower clusters of different Shaper.

Model Definition:

P(X) = \(\frac{k}{1} \) \(\tall \) \(\t

Leaving Parameter

Expectation Maximination (EM) Algorithm:

- 1. Anitialize Mans (4), Covariance (5) and weights (17.)
- 1. F.- Hep: Compute Probability each point belongs
- to each hausing.
- 3. M-step: Update 4, E, TI based on there probabilities
- 1. Repeat: Untill log-likehood converges.

Example:

Consider 1D date: [1.0,1.2, 1.4, 5.0, 5.2, 5.4]

We arrune 2 Gaurian

* 9 ritial means M, = 1.0, M1 = 5.0

* FM will adjust 4,=1.2, 1, =5.2 and compute 5,5;

* Result: tour overlapping normal curees to the two
clusters betty than 10. Means circles

Advantages:

- Mandles Overlapping clusters
- Provides probability of membership.

Applications:

- * Speaker recognition.
- + Object detection.
 - * Anamoly delection
- 4. Q Lecuring Algorithm [Reinforcement Learning]
 Introduction:

reinformement Learning [AZ] is bearing through interaction. An agent learns to make a seawere of divisions by beceiving sewards from the environment. O. Learning is a model-tree ofthe Policy RL algorithm that learns the optimal action - value function.

(organisty.

+ State: environment; ribuction.

+ Action: What the agent our do.

* Reward: runerical feedback.

* Policy: mapping from states to actions.

* Q. Value: inspected Letter reward for (5, 9).

a - Learning Update Equation

Q(s,a) = Q(s,a) + d[r + gmar, a Q(s',d')alsid

Example: Agent starts at korrow-left and most reach top-

right goal.

Actions: [Up, Down, Left, Fight).

Reward: +10 for goal, -1 new step

Initially Q (r,a) =0

and gets reward T, the when the agent mokes

Q table appeates wing the formula.

After many exister, the agent learns optimal action (shortest puth to goal).

Advantages:

- + Leans without environment model.
- * Works for Stachartie tasks.
- * Isaffic rigaral

Application:

- * Game AI (Chers, Go)
- * Robotics navigation.
- * Trabbie signal optimization.

PROBLEMS BASED ON K-MEANS CLUSTERING:

Clenter there points into K=2 clenters:

(2,3),(3,3),(6,6),(8,7)

Step 1: Initialize Centroid
(1 = (2,3), (2 = (6,6).

Pter 2: Assign points.

THE RESERVE

Point	d(c)	d (C,)	Assigned
(1,3)	0	5	C
(3,3)	ides	4-24	Cı
(6,6)	4.24	0	C2 N
(8,1)	6.4	2.24	Cı

Cludes:
$$(1 = [(2,3), (3,3)]$$

 $C_1 = [(6,6), (8,7)]$