N5, Andrei Negel

Sign p > 5 primo e a,b interes da

$$1+\frac{1}{2}+\dots+\frac{1}{p}=\frac{a}{b}$$

Prove que p^{+} | $ap-b$.

S. P.G., $a \in b$ so primos entre si

 $logo, 1+\frac{1}{2}+\dots+\frac{1}{p}=\frac{p(-)+(-)!}{p!}=\frac{a}{b}=p \cdot p(b)=1$

Sejo $b=p \cdot c$. $logo $a=p \cdot c \cdot (1+\frac{1}{2}+\dots+\frac{1}{p})=c \cdot (p+\frac{p}{2}+\dots+\frac{p}{p-1}+1)$
 p^{+} | $p \cdot c \cdot (p+\frac{p}{2}+\dots+\frac{p}{p-1}+1)-p \cdot c$
 $logo = p \cdot c \cdot (p+\frac{p}{2}+\dots+\frac{p}{p-1}+1)-p \cdot c$
 $logo = p \cdot c \cdot (p+\frac{p}{2}+\dots+\frac{p}{p-1}+1)-p \cdot c$
 $logo = p \cdot c \cdot (p+\frac{p}{2}+\dots+\frac{p}{p-1}+1)$
 $logo$$

$$O = (1^{-1})^2 + (2^{-1})^2 + (3^{-1})^2 + \cdots + (p-1)^{-1})^2. \quad (mod p)$$

$$O = (1)^{2} + (2)^{2} + (3)^{2} + \cdots + (p-1)^{2}$$
 (mod p)

$$O \equiv (p-1) \cdot p \cdot (2p-1) \cdot \partial^{-1} \qquad (mool p)$$

$$O \equiv (p-1) \cdot p(2p-1) \qquad (mod p)$$

que é verdode!