H8 8/6/13 18

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Industrial Property Office.

출 원 번 호 :

특허출원 1999년 제 54111 호

Application Number

출~-원-변~-월--일

_ 1999년 _12월 - 01일 -

Date of Application

출

원

인 :

삼성종합화학주식회사

Applicant(s)

2000

1

27

의

특

허

청

COMMISSIONER

특허출원서 【서류명】 【권리구분】 특허 【수신처】 특허청장 【참조번호】 0001 【제출일자】 1999.12.01 【발명의 명칭】 에틸렌 중합 및 공중합용 촉매 【발명의 영문명칭】 A catalyst for ethylene homo- and co-polymerization 【출원인】 【명칭】 삼성종합화학주식회사 1-1998-001808-7 【출원인코드】 【대리인】 임석재 【성명】 ··· म्बद्धान्यः 【대리인코드】 9-1998-000328-4 【대리인】 【성명】 김동엽 【대리인코드】 9-1998-000055-2 · JUDY TUNDER 【대리인】 【성명】 김예숙 【대리인코드】 9-1998-000121-3 【발명자】 【성명의 국문표기】 양춘병 【성명의 영문표기】 YANG, Chun Byung 【주민등록번호】 631008-1675212 【우편번호】 305-390 【주소】 대전광역시 유성구 전민동 세종아파트 111-208호 【국적】 KR 【발명자】 _【성명의 국문표기】 - -- - 이원 - - - - -【성명의 영문표기】 LEE,Weon 【주민등록번호】 571121-1690811 【우편번호】 305-390 대전광역시 유성구 전민동 세종아파트 108-304호 【주소】

KR

【국적】

【성명의 국문표기】

김상열

【성명의 영문표기】

KIM, Sang Yull

【주민등록번호】

730829-1074319

【우편번호】

463-480

【주소】

경기도 성남시 분당구 금곡동 청솔마을 301-1401

: 【국적】

KR

【심사청구】

청구

【취지】

특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정 🗸

에 의한 출원심사 를 청구합니다. 대리인

임석재

(인) 대리인

김동엽

(인) 대리인

김예숙 (인)

【수수료】

【기본출원료】

20

면

29,000 원

【가산출원료】

8 면

8,000 원

【우선권주장료】

0

건

- 0' "원 급 "

【심사청구료】

10 항

429,000 원

【합계】

466,000 원

【첨부서류】

1. 요약서 명세서(도면)_1통 2.위임장_1통

【요약서】

[요약]

본 발명은 에틸렌 중합 및 공중합용 촉매에 관한 것으로서, 보다 상세하게는 할로 겐화 마그네슘 화합물과 알코올을 접촉 반응시켜 마그네슘 용액을 제조하고, 여기에 적어도 하나의 히드록시기를 포함하는 에스테르 화합물 또는 인 화합물과 알콕시기를 갖는 제한으로 최합물을 반응시킨 다음, 티타늄 화합물과 실리콘 화합물의 혼합물을 참가하여 입자 형상이 조절된 고형 성분을 제조하고, 여기에 알루미늄 화합물을 반응시킨 다음, 티타늄 화합물 또는 티타늄 화합물과 바나튬 화합물을 반응시켜 제조되는 에틸렌 중합 및 공중합용 고체 티타늄 촉매에 관한 것이다. 본 발명의 촉매는 촉매활성이 매우 높고, 촉매 형상이 우수한 마그네슘을 포함하는 담지체에 지지된 교체-타타늄 촉매에다고 바다

【명세서】

【발명의 명칭】

에틸렌 중합 및 공중합용 촉매{A catalyst for ethylene homo- and co-polymerization}

【발명의 상세한 설명】

~[발명의 목적]

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 발명은 에틸렌 중합 및 공중합용 촉매에 관한 것으로서, 보다 상세하게는 촉매활성이 매우 높고, 촉매 형상이 우수한 마그네슘을 포함하는 담지체에 지지된 고체 티타 축매에 관한 것이다.
 - ** 마그네슘을 포함하는 에틸렌 중합 및 공중합용 촉매는 높은 촉매활성과 겉보기 밀도가 높은 중합체를 제조하는 것으로 알려져 있으며, 액상 및 기상 중합용으로도 적합한 것으로 알려져 있다. 에틸렌 액상 중합은 벌크 에틸렌이나 이소 펜탄, 핵산과 같은 매질내에서 이루어지는 중합 공정을 일컬으며, 이에 사용되는 촉매의 중요한 특성들로는 고활성, 제조된 중합체의 겉보기 밀도, 매질에 녹는 저분자량 함량 등이 있는데, 이중에서 촉매의 활성은 촉매의 가장 중요한 특징이라 할 수 있다.
 - 마그네슘을 포함하고 티타늄에 기초를 둔 많은 올레핀 중합용 촉매 및 촉매 제조 공정이 보고되어 왔다. 특히 위에서 언급한 겉보기 밀도가 높은 올레핀 중합용 촉매를 얻기 위해서 마그네슘 용액을 이용하는 많은 방법이 알려져 있다. 탄화수소 용매 존재하에서 마그네슘 화합물을 알코올, 아민, 환상 에테르, 유기 카르복시산 등과 같은 전자

공여체와 반응시켜 마그네슘 용액을 얻는 방법이 있는데, 알코올을 사용한 경우는 미국특허 제 4,330,649호 및 제 5,106,807호에 언급되어 있다. 그리고 이 액상 마그네슘 용액을 사염화티탄과 같은 할로겐 화합물과 반응시켜 마그네슘 담지 촉매를 제조하는 방법이 잘 알려져 있다. 이와 같은 촉매는 높은 겉보기 밀도를 제공하지만, 촉매의 활성면에서 개선되어야 하며, 고가의 TiCl4의 다량 사용, 그리고 촉매의 제조 과정에서 다량의염화수소가 생성되는 등의 제조상의 단점을 갖고 있다.

- "작 미국특허 제 5,459,116호에서는 적어도 하나의 히드록시기를 갖는 에스테르류를 전 작공여체로 포함하는 마그네슘 용액과 티타늄 화합물을 접촉 반응시켜 담지 티타늄 고체 촉매를 제조하는 방법을 보고하고 있다. 이 방법을 이용하여 높은 중합 활성과 중합체 의 겉보기 밀도가 우수한 촉매를 얻을 수는 있지만, 고가의 TiCl4의 다량 사용, 그리고 ---촉매의 제조 과정에서 다량의 염화수소가 생성되는 등의 제조상의 단점을 갖고 있다.
 - ▷ 미국특허 제 4,843,049호에서는 분무-건조 방법으로 제조된 염화마그네슘-에탄올 담지체와 티타늄알콕사이드류를 반응시킨 다음, 디에틸알루미늄클로라이드나 에틸알루미 늄세스퀴클로라이드를 반응시켜 티타늄 함량이 높은 촉매를 제조하는 방법을 보고하고 있다. 그러나 이 방법은 알코올의 함량이 18~25%의 범위에 들지 않거나, 디에틸알루미 늄클로라이드나 에틸알루미늄세스퀴클로라이드 이외에 다른 화합물을 사용할 때에는 제 조된 중합체의 겉보기 밀도가 저하되는 단점이 있고, 또한 높은 촉매 활성을 얻기 위해 서는 티타늄 함량이 최소 8중량% 이상 되어야 하는 문제가 있다.
 - 이 미국특허 제 5,726,261호 및 제 5,585,317호에서는 분무-건조 방법으로 제조된 염화마그네슘-에탄을 담자체를 열처리나 트리에틸알루미늄으로 처리하고, 티타늄 알콕사이드류나 티타늄알콕사이드 및 실리콘테트라에톡사이드 등으로 처리하여 최소 하나의 티타

늄-할로겐 및 최소 하나의 알콕시기를 갖는 티타늄 화합물이 담지된, 촉매의 다공률이 0.35~0.7인 촉매를 제조하는 방법을 소개하고 있다. 그러나 이 방법은 촉매활성이 다소 낮은 단점이 있다.

【발명이 이루고자 하는 기술적 과제】

- 《가 위에서 살펴본 바와 같이 제조 공정이 간단하면서도, 고가의 티타늄 화합물을 다량 사용하지 않으면서 높은 중합 활성과, 촉매 입자가 조절되어 높은 중합체 겉보기 밀도를 내는 물 수 있는 새로운 에틸렌 중합 및 공중합용 촉매의 개발이 요구되고 있다. 그래서 본으라는 발명에서는 비용이 저렴한 화합물로부터 간단한 제조 공정을 거쳐 촉매 활성이 우수하며 , 촉매 입자 형상이 조절되어 높은 중합체 겉보기 밀도를 줄 수 있는 우수한 촉매를 제 그느록하고자 한다. 그리고 본 발명에서 밝히고자 하는 구체적인 촉매 제조 단계나 공정들은 기존의 특허나 문헌에서 알려진 바가 없다.
- 《》 따라서 본 발명의 목적은 촉매활성이 더욱 향상되고 중합된 중합체의 겉보기 밀도 * 보위카 높은 새로운 에틸렌 중합 및 공중합용 촉매를 제조하는 방법을 제공하는 것이다.
 - ** 본 발명의 또 다른 목적은 본 발명에서 밝힌 간단하면서도 구체적인 제조 방법 및 공정을 거쳐 제조된 에틸렌 중합 및 공중합용 촉매를 제공하는 것이다.
 - <10> 본 발명의 다른 목적들과 유익성은 다음의 설명과 본 발명의 청구 범위를 참조하면 더욱 명확해질 것이다.

【발명의 구성 및 작용】

<11> 본 발명에서 제공하고자 하는 촉매 활성이 향상되고 겉보기 밀도가 높은 중합체를 제조할 수 있는 에틸렌 중합 및 공중합용 고체 티타늄 촉매는(i) 할로겐화 마그네슘

화합물과 알코올을 접촉 반응시켜 마그네슘 용액을 제조하고, (ii) 여기에 적어도 하나의 히드록시기를 포함하는 에스테르 화합물 또는 인 화합물과 알콕시기를 갖는 실리콘 화합물을 반응시킨 다음, 티타늄 화합물과 실리콘 화합물의 혼합물을 첨가하여 입자 형상이 조절된 고형 성분을 제조하고, (iii) 여기에 알루미늄 화합물을 반응시킨 다음, 티타늄 화합물 또는 티타늄 화합물과 바나듐 화합물을 반응시켜 고체 티타늄 촉매를 제조하는 간단하면서도 효과적인 제조 공정에 의해 제조된다.

C X1.

V: []

보화마그네슘 그리고 브롬화마그네슘과 같은 디할로겐화마그네슘; 메틸마그네슘 할라이 드, 에틸마그네슘 할라이드, 프로필마그네슘 할라이드, 부틸마그네슘 할라이드, 이소부 나 + 사틸마그네슘 할라이드, 핵실마그네슘 할라이드 그리고 아밀마그네슘 할라이드와 같은 알다 킬마그네슘 할라이드; 메톡시마그네슘 할라이드, 에톡시마그네슘 할라이드, 이소프로폭시마그네슘 할라이드, 부톡시마그네슘 할라이드 그리고 옥톡시마그네슘 할라이드와 같은 알콕시마그네슘 할라이드; 페녹시마그네슘 할라이드 및 메틸페녹시마그네슘 할라이드와 같은 아릴옥시마그네슘 할라이드를 예로 들 수 있다. 상기 마그네슘 화합물중 2개 이상이 혼합물로 사용되어도 무방하다. 또한, 상기 마그네슘 화합물은 다른 금속과의 착화합물 형태로 사용되어도 효과적이다.

(13) 위에서 열거한 화합물들은 간단한 화학식으로 나타낼 수 있으나, 어떤 경우에는 마그네슘 화합물의 제조방법에 따라 간단한 식으로 나타낼 수 없는 경우가 있다. 이런 경우에는 일반적으로 상기 열거한 마그네슘 화합물의 혼합물로 간주할 수 있다. 예를들어, 마그네슘 화합물을 폴리실록산 화합물, 할로겐 함유 실란 화합물, 에스테르, 알코올 등과 반응시켜 얻은 화합물; 마그네슘 금속을 할로 실란, 오염화인, 또는 염화티오닐

존재하에서 알코올, 페놀, 또는 에테르와 반응시켜 얻은 화합물들도 본 발명에 사용될수 있다. 바람직한 마그네슘 화합물은 마그네슘 할라이드, 특히 염화 마그네슘, 알킬 마그네슘 클로라이드, 바람직하기로는 탄소수 1~10의 알킬기를 갖는 것, 알콕시 마그네슘 클로라이드, 바람직하기로는 탄소수 1~10의 알콕시기를 갖는 것, 그리고 아릴옥시 마그네슘 클로라이드, 바람직하기로는 탄소수 6~20의 아릴옥시기를 갖는 것이 좋다. 본 발명에서 사용한 마그네슘 용액은 전술한 마그네슘 화합물을 탄화수소 용때의 존재 또는

여기에 사용된 탄화수소 용매의 종류로는 펜탄, 헥산, 헵탄, 옥탄, 데칸 그리고 케로센과 같은 지방족 탄화수소, 시클로벤젠, 메틸시클로벤젠, 시클로헥산 그리고 메틸시 프 스 클로헥산과 같은 지환족 탄화수소, 벤젠, 톨루엔, 크실렌, 에틸벤젠, 큐멘 프라고 시멘 과 같은 방향족 탄화수소, 디클로로프로판, 디클로로에틸렌, 트리클로로에틸렌, 사염화 탄소 그리고 클로로벤젠과 같은 할로겐화 탄화수소를 예로 들 수 있다.

<15>

마그네슘 화합물을 마그네슘 용액으로 전환시 전술한 탄화수소의 존재하에서 알코올이 사용된다. 알코올의 종류로는 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 헥산을, 옥탄올, 데칸을, 도데칸을, 옥타데실알코올, 벤질알코올, 페닐에틸알코올, 이소프로필벤질알코올, 쿠밀알코올과 같은 1~20개의 탄소원자를 함유하는 알코올을 들 수 있고, 바람직한 알코올은 1~12개의 탄소원자를 포함하는 알코올이다. 원하는 촉매의 평균크기, 입자 분포도는 알코올의 종류, 전체 양, 마그네슘 화합물의 종류, 마그네슘과 알코올의비 등에 따라 변하지만, 마그네슘 용액을 얻기 위한 알코올의 총량은 마그네슘 화합물 1물당 최소 0.5물, 바람직하기로는 약 1.0~20물, 더욱 바람직하기로는 약 2.0~10물이좋다.

<16> 마그네슘 용액의 제조시 마그네슘 화합물과 알코올의 반응은 탄화수소 매질중에서 수행하는 것이 바람직하며, 반응온도는 알코올과 환상 에테르의 종류 및 양에 따라 다르 지만, 최소 약 -25℃, 바람직하기로는 -10~200℃, 더욱 바람직하기로는 약 0~150℃에 서 약 15분~5시간, 바람직하기로는 약 30분~4시간 동안 실시하는 것이 좋다.

<17>

본 발명에서 사용되는 전자 공여체 중 적어도 하나의 히드록시기를 포함하는 에스

學學 常來 태훈 화합물로는 2-히드록시 에틸아크릴레이트, 2-히드록사 에틸메타아크릴레이트아2±회래야 드록시 프로필아크릴레이트, 2-히드록시 프로필메타아크릴레이트, 4-히드록시 부틸아크 그리릴레이트, 펜타에리스리톨 트리아크릴레이트 등과 같은 적어도 하나의 히드록시기를 포함 함하는 불포화 지방산 에스테르류 ; 2-히드록시 에틸 아세테이트, 메틸 3-히드록시 부티 ▷레이트, 에틸 3-히드록시 부티레이트, 메틸 2-히드록시 이소부타레이트; 에틸 2-히드록때트 시 이소부티레이트, 메틸-3-히드록시-2-메틸 프로피오네이트, 2,2-디메틸-3-히드록시 프 로피오네이트, 에틸-6-히드록시 헥사노에이트, t-부틸-2-히드록시 이소부티레이트, 디에 틸-3-히드록시 글루타레이트, 에틸락테이트, 이소프로필 락테이트, 부틸 이소부탈 락테어 이트, 이소부틸 락테이트, 에틸 만델레이트, 디메틸 에틸 타르트레이트, 에틸 타르트레 이트, 디부틸 타르트레이트, 디에틸 시트레이트, 트리에틸 시트레이트, 에틸 2-히드록시 카프로에이트, 디에틸 비스-(히드록시 메틸)말로네이트 등과 같이 적어도 하나의 히드 록시기를 포함하는 지방족 모노에스테르 또는 폴리에스테르류 ; 2-히드록시 에틸 벤조에 이트, 2-히드록시 에틸살리실레이트, 메틸 4-(히드록시 메틸)벤조에이트, 메틸 4-히드록 시 벤조에이트, 에틸 3-히드록시 벤조에이트, 4-메틸 살라실레이트, 에틸 살리실레이트, 페닐 살리실레이트, 프로필 4-히드록시 벤조에이트, 페닐 3-히드록시 나프타노에이트. 모노에틸렌 글리콜 모노벤조에이트, 디에틸렌 글리콜 모노벤조에이트, 트리에틸렌 글리

콜 모노벤조에이트 등과 같은 적어도 하나의 히드록시기를 포함하는 방향족 에스테르류; 또는 히드록시 부틸락톤 등과 같은 적어도 하나의 히드록시기를 포함하는 지환족 에스테르류 등을 사용할 수 있다. 적어도 하나의 히드록시기를 포함하는 에스테르 화합물의 양은 마그네슘 화합물 1몰당 0.001~5몰이며, 바람직하게는 0.01 ~2몰이 적당하다.

- <18> 본 발명에 사용되는 전자공여체인 인 화합물은 다음의 일반식으로 표시된다.
- · 当時句 1<19% 句 PX_aR¹_b(OR²)_c 또는 POX_dR³_e(OR⁴)_f,
 - - 이들의 구체적인 예로는 삼염화인, 삼브롬화인, 디에틸클로로포스파이트, 디페닐클로로포스파이트, 디에틸브로모포스파이트, 디페틸브로모포스파이트, 디메틸클로로포스파이트, 페닐클로로포스파이트, 트리메틸포스파이트, 트리에틸포스파이트, 트리노말부틸포스파이트, 트리옥틸포스파이트, 트리데실포스파이트, 트리페닐포스파이트, 트리에틸포스 페이트, 트리노말부틸포스페이트, 트리페닐포스페이트 등이 있으며, 이외에도 상기식을 만족하는 다른 인 화합물도 사용될 수 있다. 이들의 사용량은 마그네슘 화합물 1몰당 0.25물 이하가 적당하며, 더욱 바람직하게는 1몰당 0.2물 이하가 적당하다.
 - <22> 본 발명에 사용되는 또다른 전자 공여체인 알콕시기를 갖는 실리콘 화합물로는 R_n Si(OR)_{4-n}(여기에서 R은 탄소수가 1~12인 탄화수소, n은 1~3의 자연수)의 일반식을 갖는 화합물이 바람직하다. 구체적으로는, 디메틸디메톡시실란, 디메틸디에

톡시실란, 디페닐디메톡시실란, 메틸페닐메톡시실란, 디페닐디에톡시실란, 에틸트리메톡시실란, 비닐트리메톡시실란, 메틸트리메톡시실란, 페닐트리메톡시실란, 메틸트리에톡시실란, 메틸트리에톡시실란, 메틸트리에톡시실란, 메틸트리에톡시실란, 메틸트리에톡시실란, 메틸트리에톡시실란, 메틸트리에톡시실란, 메틸트리에톡시실란, 메틸트리아톡시실란, 메틸트리아르꼭시실란, 비닐트리부톡시실란, 에틸실리케이트, 부틸실리케이트, 메틸트리아릴옥시실란 등의 화합물을 사용할 수 있다. 이들의 양은 마그네슘 화합물 1몰당 0.05~3물이 바람직하며, 더욱 바람직하기로는 0.1~2물이다.

- 약상의 마그네슘 화합물 용액과 적어도 하나의 히드록시기를 포함하는 에스테르 화합물 또는 인 화합물과 알콕시기를 갖는 실리콘 화합물의 접촉 반응 온도는 0~100℃가 적당하며, 1~70℃가 더욱 바람직하다.
- ◇5> 상기 일반식 Ti(OR)_aX_{4-a}을 만족하는 티타늄 화합물의 종류로는 TiCl₄, TiBr₄, TiI₄ 와 같은 사할로겐화 티타늄, Ti(OCH₃)Cl₃, Ti(OC₂H₅)Cl₃, Ti(OC₂H₅)₃, 그리고 Ti(O(i-C₄H₉))Br₃와 같은 삼할로겐화 알콕시티타늄, Ti(OCH₃) ₂Cl₂, Ti(OC₂H₅)₂Cl₂, (O(i-C₄H₉)₂)Cl₂ 그리고 Ti(OC₂H₅)₂Br₂와 같은 이할로겐화 알콕시티타늄, Ti(OCH₃)₄, Ti(OC₂H₅)₄ 그리고 Ti(OC₄H₉)₄와 같은 테트라알콕시티타늄을 예로 들 수 있다. 또한 상기한 티타늄 화합물 의 혼합물도 본 발명에 사용될 수 있다. 바람직한 티타늄 화합물은 할로겐 함유 티타늄 화합물이며, 더욱 바람직한 티타늄 화합물은 사염화티타늄이다.

상기 일반식 R_nSiCl_{n-4}을 만족하는 실리콘 화합물의 종류로는 사염화실리콘과 메틸트리클로로실란, 에틸트리클로로실란, 페닐트리클로로실란 등과 같은 트리클로로실란, 디메틸디클로로실란, 디메틸디클로로실란, 디메틸디클로로실란, 디메틸디클로로실란, 디메틸디클로로실란 등과 같은 디클로로실란, 트리메틸클로로실란 등과 같은 모노클로로실란을 예로 들 수 있으며, 상기한 실리콘 화합물의 혼합물도 본 발명에 사용할 수 있다. 바람직한 실리콘 화합물은 사염화실리콘이다.

아그네슘 화합물 용액을 재결정시킬 때 사용하는 티타늄 화합물과 실리콘 화합물의 혼합물의 양은 할로겐화 마그네슘 화합물 1몰당 0.1~200물이 적당하며, 바람직하게는~~0.1~100물이고, 더욱 바람직하게는 0.2~80물이다. 티타늄 화합물과 실리콘 화합물의 혼합비는 물비로 0.05~0.95가 적당하며, 더욱 바람직하기로는 0.1~0.8이다. 마그네슘~화합물 용액과 티타늄 화합물 및 실리콘 화합물의 혼합물을 반응시킬 때의 반응조건에 의해 재결정된 고체 성분의 모양과 크기가 많이 변화한다. 따라서 마그네슘 화합물 용액과 티타늄 화합물 및 실리콘 화합물의 혼합물과의 반응은 충분히 낮은 온도에서 행하여고체 성분을 생성시키는 것이 좋다. 바람직하게는 -70~70℃에서 접촉반응을 실시하는 것이 좋고, 더욱 바람직하기로는 -50~50℃에서 수행하는 것이 유리하다. 접촉 반응 후 서서히 반응 온도를 올려서 50~150℃에서 0.5~5시간 동안 충분히 반응시킨다.

생기에서 얻은 고체성분을 알루미늄 화합물과 반응시켜 고형성분을 활성화시킨다.
본 발명에 사용되는 알루미늄 화합물의 예로는 트리에틸알루미늄, 트리이소부틸알루미늄
과 같은 탄소수 1~6개의 알킬기를 가진 트리알킬알루미늄과 에틸알루미늄
디클로라이드, 디에틸알루미늄 클로라이드, 에틸알루미늄 세스퀴클로라이드 등과 같은
하나 이상의 할로겐을 포함하는 알루미늄 화합물 또는 이들의 혼합물이 사용될 수 있다.

그리고 알루미늄 화합물은 필요시에 용매에 묽혀서 사용할 수 있으며, 알루미늄을 반응 시킬 때에는 0~100℃에서 수행하는 것이 좋고, 더욱 바람직하기로는 20~80℃에서 실시 하는 것이 좋다.

사염화바나듐, 바나딜 트리클로라이드, 바나딜 트리-n-프로폭사이드, 바나딜 트리이소프로폭사이드, 바나딜 트리-n-부톡사이드, 바나딜 테트라-n-부톡사이드 및 바나딜 테트라-n-프록폭사이드 등이 있으며 이들중 하나 이상의 화합물이 사용될 수 있다.

본 발명에서 제시된 방법에 의해 제조된 촉매는 에틸렌의 중합 및 공중합에 유익하게 사용된다. 특히 이 촉매는 에틸렌의 단독중합 및 에틸렌과 프로필렌, 1-부텐,
 1-펜텐, 4-메틸-1-펜텐, 1-헥센과 같은 탄소수 3개 이상의 α-올레핀과의 공중합에 사용된다.

<32> 본 발명의 촉매 존재하에서의 중합 반응은 (a) 마그네슘, 티타늄, 알루미늄, 할로
 겐, 그리고 전자공여체로 이루어진 본 발명에 의한 고체 촉매와, (b) 주기율표 제 Ⅱ족
 및 제 Ⅲ족 유기금속 화합물으로 구성된 촉매계를 사용하여 수행된다.

- 본 발명의 고체 티타늄 촉매(a)는 중합 반응에 사용되기 전에 에틸렌 또는 α-올레 핀으로 전중합하여 사용할 수 있다. 전중합은 핵산과 같은 탄화수소 용매 존재하에서 충분히 낮은 온도와 에틸렌 또는 α-올레핀 압력 조건에서 상기의 촉매 성분과 트리에틸알루미늄과 같은 유기알루미늄 화합물의 존재하에 행할 수 있다. 전중합은 촉매 입자를 중합체로 둘러싸서 촉매 형상을 유지시키므로 중합후에 폴리머의 형상을 좋게 하는데 도움을 준다. 전중합 후의 중합체/촉매의 무게비는 대개 0.1:1~20:1이다.
- 본 발명의 촉매를 이용한 중합반응에 사용되는 유기금속 화합물(b)은 세Rn 와 일반석(м) / 으로 표기할 수 있는데, 여기에서 M은 마그네슘, 칼슘, 아연, 보론, 알루미늄, 칼륨과 같은 주기율표 Ⅱ족 또는 ⅢA족 금속 성분이며, R은 메틸, 에틸, 부틸, 헥실, 옥틸, 데 실과 같은 탄소수 1~20개의 알킬기를 나타내며, n은 금속 성분의 원자가를 표시한다. 보다 바람직한 유기금속 화합물로는 트리에틸알루미늄, 트리이소부틸알루미늄과 같은 탄소수 1~6개의 알킬기를 가진 트리알킬 알루미늄과 이들의 혼합물이 유익하다. 경우에 따라서는 에틸알루미늄 디클로라이드, 디에틸알루미늄 클로라이드, 에틸알루미늄 세스퀴 클로라이드, 디이소부틸알루미늄 하이드리드와 같은 한 개 이상의 할로겐 또는 하이드리드기를 갖는 유기알루미늄 화합물이 사용될 수 있다.
- <35> 중합 반응은 유기용매 부재하에서 기상 또는 벌크 중합이나 유기용매 존재하에서 액상 슬러리 중합 방법으로 가능하다. 이들 중합 방법은 산소, 물, 그리고 촉매독으로 작용할 수 있는 기타 화합물의 부재하에서 수행된다.

액상 슬러리 중합의 경우에 바람직한 고체 티타늄 촉매(a)의 중합 반응계상의 농도는 용제 1리터에 대하여 촉매의 티타늄 원자로 약 0.001~5밀리몰, 바람직하게는 약
 0.001~0.5밀리몰이다. 용제로는 펜탄, 헥산, 헵탄, n-옥탄, 이소옥탄, 시클로헥산, 메
 - 틸시클로헥산과 같은 알칸 또는 시클로알칸, 톨루엔, 자이렌, 에틸벤젠,

이소프로필벤젠, 에틸톨루엔, n-프로필벤젠, 디에틸벤젠과 같은 알킬아로마틱, 클로로벤
- 나 이에팅 젠, 클로로나프탈렌, 오르소-디클로로벤젠과 같은 할로겐화 아로마틱 그리고 이들의 혼

- 다 아마아는 약 0.01~0.5밀리몰로 하는 것이 좋다.
 - <38> 유기 금속 화합물(b)의 바람직한 농도는 알루미늄 원자로 계산하여 촉매(a)중 티타 늄 원자의 몰당 약 1~2000몰이며, 더욱 바람직하게는 약 5~500몰이다.
 - - <40> 본 발명에서 분자량은 이 분야에서 통상적으로 널리 알려진 용융지수(ASTM D 1238)
 로 나타낸다. 용융지수는 일반적으로 분자량이 적을수록 그 값이 크게 나타난다.
 - 성1> 본 발명의 촉매를 이용한 중합방법에서 얻어진 생성물은 고체의 에틸렌 단독 중합
 체 또는 에틸렌과 α-올레핀의 공중합체이며, 중합체의 수율도 충분히 높아서 촉매 잔사

의 제거가 필요하지 않고, 우수한 겉보기 밀도와 유동성을 갖고 있다.

- <42> 실시예
- 본 발명을 다음의 실시예와 비교예를 통하여 더 상세히 설명한다. 그러나 본 발명은 이들 예에 국한되지는 않는다.
- <44> 실시예 1
- <45> 촉매제조
- <46> 고체 티타늄 촉매성분은 다음의 3단계의 과정을 통하여 제조되었다.
- <47> (i) 단계 : 마그네슘 용액의 제조
- △48> 질소 분위기로 치환된, 기계식 교반기가 설치된 1.0ℓ 반응기에 MgCl₂ 300g, 데칸 2800mℓ를 넣고 200rpm으로 교반한 다음, 2-에틸헥산을 2000mℓ를 투입한 후, 온도를 120℃로 올린 다음 3시간 동안 반응시켰다. 반응후에 얻어진 균일 용액을 상온(25℃)으로 식혔다.
- <49> (ii) 단계 : 담지체 제조
- <51> (iii) 단계 : 고체 촉매의 제조

(52> 100g의 고형 성분에 데칸 800ml와 디에틸알루미늄클로라이드(1.0M) 1000ml를 연속으로 주입하고 온도를 60℃로 상승시킨 뒤 2시간 유지시켰다. 반응뒤 반응기를 실온으로 냉각하여 데칸 600ml를 주입하여 4회 세척하였다. 여기에 데칸 1000ml와 TiCl₄ 300ml를 주입하고 온도를 100℃로 상승시킨 뒤 2시간 유지시켰다. 반응뒤 온도를 실온으로 냉각하여 미반응 유리 사염화티타늄이 제거될 때까지 핵산 300ml를 주입하여 세척하였다. 이렇게 제조된 촉매의 티타늄 함량은 4.2%이었다.

<53> <u>중합</u>

- 응량 2 리터의 고압 반응기를 오븐에 말린 후 뜨거운 상태로 조립한 후 질소와 진 공을 교대로 3회 조작하여 반응기 안을 질소 분위기로 만들었다. n-핵산 1000㎖를 반응기에 주입한 후 트리에틸알루미늄 2밀리몰과 고체 촉매를 티타늄 또는 티타늄 +-바나듐 금속 원자 기준으로 0.01밀리몰을 주입하고, 수소 1000㎖를 주입하였다. 교반기 700rpm으로 교반시키면서 반응기의 온도를 80℃로 올리고 에틸렌 압력을 100psi로 조정한 다음 20분 동안 중합을 실시하였다. 중합이 끝난후 반응기의 온도를 상온으로 내리고, 중합 내용물에 과량의 에탄을 용액을 가하였다. 생성된 중합체는 분리수집하고 50℃의 진공오 본에서 최소한 6시간 동안 건조하여 백색 분말의 폴리에틸렌을 얻었다.
- <55> 중합 활성(kg 폴리에틸렌/g 촉매)은 사용한 촉매량(g 촉매)당 생성된 중합체의 무게(kg)비로 계산하였다. 중합 결과는 중합체의 겉보기 밀도(g/ml), 용용지수(g/10분)와함께 표 1에 나타내었다.

<56> 비교예 1

<57> 실시예 1의 (ii) 단계에서 제조된 100g의 고형 성분에 데칸 800ml와 디에틸알루미

늄클로라이드(1.0M) 1000㎖를 연속으로 주입하고 온도를 60℃로 상승시킨 뒤 2시간 유지하였다. 반응뒤 반응기를 실온으로 냉각하여 데칸 600㎖를 주입하여 4회 세척하였다. 여기에 데칸 600㎖와 VCl₄ 30㎖를 주입하고 온도를 100℃로 상승시킨 뒤 2시간 유지하였다. 반응뒤 온도를 실온으로 냉각하고 미반응 유리 VCl₄가 제거될 때까지 핵산 300㎖를 주입하여 세척하였다. 이렇게 제조된 촉매의 바나듐 함량은 1.7%이었다. 중합반응은 실시에 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

<58> 실시예 2

<60> 실시예 3

《61》 실시예 1의 촉매 제조 과정중 (iii) 단계에서 제조된 촉매 15g에 데칸 100ml와
Ti/V=0.3의 몰비로 TiCl₄와 VCl₄를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

<62> 실시예 4

40 실시예 1의 촉매 제조 과정중 (iii) 단계에서 제조된 촉매 15g에 데칸 100ml와

Ti/V=0.5의 몰비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하여 보다 제조하여 보다 제조하다.

**Ti/V=0.5의 물비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 실시하였다.

**Ti/V=0.5의 물비로 TiC1와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 실시하였다.

**Ti/V=0.5의 물비로 TiC1와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하는 제조 VCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 취임 VCl4를 제조 VCl4와 VCl4와 VCl4를 제조 VCl4와 V

<64> <u>실시예 5</u>

<65> 실시예 1의 촉매 제조 과정중 (iii) 단계에서 제조된 촉매 15g에 데칸 100㎖와

Ti/V=0.7의 몰비로 TiCl₄와 VCl₄를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제조하였다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

<66> 실시예 6

실시예 1의 촉매 제조 과정중 (iii) 단계에서 제조된 촉매 15g에 데칸 100㎡와
Ti/V=1.0의 몰비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제
조하였다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다! -

<68> 실시예 7

비교예 1의 촉매 제조 과정중 (iii) 단계에서 제조된 촉매 15g에 데칸 100ml와

Ti/V=0.1의 몰비로 TiCl4와 VCl4를 처리하여 실시예 1과 같은 반응 조건으로 촉매를 제

<70> 실시예 8

실시예 1의 촉매 제조 과정중 (ii) 단계에 트리부틸포스페이트 76.0㎡, 실리콘테트라이톡사이드 100㎡를 사용하여 실시예 1과 같이 촉매를 제조하였고, 제조된 촉매의 티타늄 함량은 3.6%이었다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

<72> 실시예 9

73> 실시예 8의 촉매-제조 과정중 (iii)-단계에서 제조된 촉매 15g에 데칸 100ml와 Ti/V=0.1의 몰비로 TiCl4와 VCl4를 처리하여 실시예 8과 같은 반응 조건으로 촉매를 제조하였다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

<74> 실시예 10

<75> 실시예 8의 촉매 제조 과정중 (iii) 단계에서 제조된 촉매 15g에 데칸 100ml와
Ti/V=0.3의 몰비로 TiCl₄와 VCl₄를 처리하여 실시예 8과 같은 반응 조건으로 촉매를 제조하였다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

<76> 실시예 11

<77> 실시예 8의 촉매 제조 과정중 (iii) 단계에서 제조된 촉매 15g에 데칸 100ml와
나타내切다V=0.5의 몰비로 TiCl4와 VCl4를 처리하여 실시예 8과 같은 반응 조건으로 촉매를 제기하여
조하였다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

· 기술 1 설시.예 12

<80> 실시예 13

실시예 8의 촉매 제조 과정중 (iii) 단계에서 제조된 촉매 15g에 데칸 100㎡와
Ti/V=1.0의 몰비로 TiCl4와 VCl4를 처리하여 실시예 8과 같은 반응 조건으로 촉매를 제조하였다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

<82> 실시예 14

<83> 실시예 8의 촉매 제조 과정중-(iii) 단계에서 제조된 촉매 15g에 데칸 100메와 Ti/V=0.3의 몰비로 TiCl₄와 VOCl₃를 처리하여 실시예 8과 같은 반응 조건으로 촉매를 제조하였다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

<84> 실시예 15

실시예 8의 촉매 제조 과정중 (iii) 단계에서 제조된 촉매 15g에 데칸 100ml와
Ti/V=0.7의 몰비로 TiCl4와 VOCl3를 처리하여 실시예 8과 같은 반응 조건으로 촉매를 제조하였다. 중합반응은 실시예1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

<86> <u>실시예 16</u>

실시예 8의 촉매 제조 과정중 (iii) 단계에서 제조된 촉매 15g에 데칸 100ml와
Ti/V=1.0의 몰비로 TiCl4와 VO(OC3H7)3를 처리하여 실시예 8과 같은 반응 조건으로 추매를 제조하였다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

<88> 비교예 2

<90>

실시예 8의 (ii) 단계에서 제조된 100g의 고형 성분에 데칸 800ml와 디에틸알루미 늄클로라이드(1.0M) 1000ml를 연속으로 주입하고 온도를 60℃로 상승한 뒤 2시간 유지시켰다. 반응뒤 반응기를 실온으로 냉각하여 데칸 600ml를 주입하여 4회 세척하였다. 여기에 데칸 600ml와 VCl₄ 30ml를 주입하고 온도를 100℃로 상승시킨 뒤 2시간 유지하였다. 반응뒤 온도를 실온으로 냉각하고 미반응 유리 VCl₄가 제거될 때까지 핵산 300ml를 주입하여 세척하였다. 이렇게 제조된 촉매의 바나듐 함량은 1.3%이었다. 중합반응은 실시예 1의 조건으로 실시하였으며 그 결과는 표 1에 나타내었다.

【丑 1】

r				-55 -5		
	Ti(3	Ti(중량%)	V(중량%)	활성	겉보기 밀도	용융지수
		11(6 6 70)		(kg PE/g촉매/hr)	(g/mℓ)	(g/10min)
	실시예 1	4.2	· <u>-</u>	15.2	0.36	1.07
viii.	실시예 2	3.9	0.91	24.1	0.35	0.43
	실시예 3	3.7	1.12	24.2	0.34	0.20
	실시예 4	3.9	1.42	32.1	0.33	0.12
	실시예 5	3.5	1.51	34.6	0.34	0.21
	실시예 6	3.4	1.57	33.1	0.36	0.26
	실시예 7	1.9	2.04	22.6	0.36	0.07
	~실시예 8	3.6	_	13.8	0.37	0.92
	실시예 9	3.3	1.15	27.9	0.35	0.14
్ చిక	실시예 10	3.2	1.74	26.4	0.37	0.12
	실시예 11	3.3	1.82	37.2	0.33	0.99
	실시예 12	3.0	1.76	36.9	0.34	0.11
	실시예 13	3.4	2.14	33.4	0.35	0.12
	ㅁ'실시예 14	3.5	1.95	29.2	0.36	0.07
	실시예 15	3.5	2.42	22.4	0.36	0.06
	실시예 16	3.4	2.68	23.1	0.37	0.03
	비교예 1	_	1.7	5.7	0.34	0.019
	비교예 2	-	1.3	4.6	0.33	0.014

【발명의 효과】

24

<91> 상기와 같이 본 발명의 에틸렌 중합 또는 공중합용 촉매는 제조공정이 간단하면서 도, 촉매활성이 우수하며, 높은 중합체 겉보기 밀도를 주고, 중합체의 입자분포가 좁고 미세입자를 적게 하는 효과를 갖는다.

【특허청구범위】

【청구항 1】

(i) 할로겐화 마그네슘 화합물과 알코올을 접촉 반응시켜 마그네슘 용액을 제조하고.

- (ii) 여기에 적어도 하나의 히드록시기를 포함하는 에스테르 화합물 또는 인 화합물과 알콕시기를 갖는 실리콘 화합물을 반응시킨 다음, 티타늄 화합물과 실리콘 화합물의 혼합물을 첨가하여 고형 성분을 제조하고,
- (iii) 이 고형 성분을 알루미늄 화합물과 반응시킨 다음, 티타늄 화합물 또는 티타 늄 화합물과 바나듐 화합물을 반응시켜 제조되는 에틸렌 중합 및 공중합용 촉매.

【청구항 2】

제 1항에 있어서, 적어도 하나의 히드록시기를 포함하는 에스테르 화합물은 2-히드록시 에틸아크릴레이트, 2-히드록시 에틸메타아크릴레이트, 2-히드록시 프로필마크릴레이트, 4-히드록시 부틸아크릴레이트, 펜타에리스리톨 트리아크릴레이트와 같은 적어도 하나의 히드록시기를 포함하는 불포화 지방산 에스테르류; 2-히드록시 에틸 아세테이트, 메틸 3-히드록시 부티레이트, 에틸 3-히드록시부티레이트, 메틸 2-히드록시 이소부티레이트, 메틸 3-히드록시 이소부티레이트, 메틸 -3-히드록시 이소부티레이트, 메틸 -3-히드록시-2-메틸 프로피오네이트, 2,2-디메틸-3-히드록시 프로피오네이트, 에틸-6-히드록시 핵사노에이트, t-부틸-2-히드록시 이소부티레이트, 디에틸-3-히드록시 글루타레이트, 에틸락테이트, 이소프로필 락테이트, 부틸 이소부틸 락테이트, 이소부틸 락테이트, 에틸 만텔레이트, 디메틸 에틸 타르트레이트, 에틸 타르트레이트, 디부틸 타

르트레이트, 디에틸 시트레이트, 트리에틸 시트레이트, 에틸 2-히드록시 카프로에이트, 디에틸 비스-(히드록시 메틸)말로네이트와 같은 적어도 하나의 히드록시기를 포함하는 지방족 모노에스테르 또는 폴리에스테르류 ; 2-히드록시 에틸 벤조에이트, 2-히드록시 에틸살리실레이트, 메틸 4-(히드록시 메틸)벤조에이트, 메틸 4-히드록시 벤조에이트, 에틸 3-히드록시 벤조에이트, 메틸 살리실레이트, 메틸 살리실레이트, 페닐 살리실레이트, 페닐 살리실레이트, 파닐 살리실레이트, 파닐 살리실레이트, 프로필 4-히드록시 벤조에이트, 페닐 3-히드록시 나프타노에이트, 모노애틸렌 글리콜 모노 벤조에이트, 디에틸렌 글리콜 모노벤조에이트, 트리에틸렌 글리콜 모노벤조에이트 등의 같은 적어도 하나의 히드록시기를 포함하는 방향족 에스테르류 ; 또는 히드록시 부 틸락톤과 같은 적어도 하나의 히드록시기를 포함하는 지환족 에스테르류이며,

인 화합물은 $PX_aR^1_b(OR^2)_c$ 또는 $POX_dR^3_e(OR^4)_f$ 로 표시되는 화합물이며, 여기에서…… X는 할로겐 원자이고, R^1 , R^2 , R^3 , R^4 는 1~20개의 탄소원자를 가진 탄화수소기로, 알킬, 알케닐, 아릴이며, 각각 같거나 다를 수도 있고, a+b+c=3이며, 0≤a≤3, 0≤b≤3, 0≤c≤3, d+e+f=3이며, 0≤d≤3, 0≤e≤3, 0≤f≤3 이고,

알콕시기를 갖는 실리콘 화합물은 $R_nSi(OR)_{4-n}$ (여기에서 R은 탄소수가 $1\sim12$ 인 탄화수소기, n은 $1\sim3$ 의 자연수)의 일반식을 갖는 화합물인 것을 특징으로 하는 에틸렌 중합 및 공중합용 촉매.

【청구항 3】

SE OF-

제 2항에 있어서, 인 화합물은 삼염화인, 삼브롬화인, 디에틸클로로포스파이트, 디메닐클로로포스파이트, 디메틸브로모포스파이트, 디메틸클로로 포스파이트, 페닐클로로포스파이트, 트리메틸포스파이트, 트리에틸포스파이트, 트리노말

부틸포스파이트, 트리옥틸포스파이트, 트리데실포스파이트, 트리페닐포스파이트, 트리에 틸포스페이트, 트리노말부틸포스페이트, 트리페닐포스페이트인 것을 특징으로 하는 에틸 렌 중합 및 공중합용 촉매.

【청구항 4】

제 2항에 있어서, 알콕시기를 갖는 실리콘 화합물은 디메틸디메톡시실란, 디메틸디 에톡시실란, 디페닐디메톡시실란, 메틸페닐메톡시실란, 디페닐디에톡시실란, 에틸트리메르르며 톡시실란, 비닐트리메톡시실란, 메틸트리메톡시실란, 페닐트리메톡시실란, 메틸트리에톡시실란, 메틸트리에톡시실란, 메틸트리에톡시실란, 페닐트리에톡시실란, 페닐트리에톡시실란, 페닐트리에톡시설란, 페닐트리에톡시설란, 페닐트리에톡시설란, 메틸트리에톡시설란, 메틸트리에톡시설란, 메틸트리아르리에톡시 등 이 등 에탈린 중합 및 공중합용 속 매는 등 이 부 이 부 에 드리아 를 리아릴옥시설란인 것을 특징으로 하는 에탈린 중합 및 공중합용 속 매는 등 이 부 이 부 이 부 이 기에또는 메틸트리아릴옥시설란인 것을 특징으로 하는 에탈린 중합 및 공중합용 속 매는 등 이 부 이 부 이 기에또는 메틸트리아릴옥시설란인 것을 특징으로 하는 에탈린 중합 및 공중합용 속 매는 등 이 부 이 부 기에 되었다.

【청구항 5】

제 1항에 있어서, 티타늄 화합물과 실리콘 화합물은 각각 일반식 Ti(OR)_aX_{4-a}(R은 탄화수소기, X는 할로겐 원자, 그리고 a는 0≤a≤4의 자연수)과 R_nSiCl_{n-4}(R은 수소 또는 탄소수 1~10인 알킬, 알콕시, 할로알킬, 아릴 또는 탄소수가 1~8인 할로실릴, 할로실 릴알킬기이며, n은 0~3의 자연수)로 표시되는 화합물인 것을 특징으로 하는 에틸렌 중 합 및 공중합용 촉매.

【청구항 6】

제 5항에 있어서, 티타늄 화합물은 TiCl₄, TiBr₄, TiI₄와 같은 사할로겐화 티타늄, Ti(OCH₃)Cl₃, Ti(OC₂H₅)Cl₃, Ti(OC₂H₅)Br₃, Ti(O(i-C₄H₉))Br₃와 같은 삼할로겐화 알콕시티타늄, Ti(OCH₃)₂Cl₂, Ti(OC₂H₅)₂Cl₂, Ti(O(i-C₄H₉)₂)Cl₂, Ti(OC₂H₅)₂Br₂와 같은 이할로겐

화 알콕시티타늄, Ti(OCH₃)₄, Ti(OC₂H₅)₄, Ti(OC₄H₉)₄와 같은 테트라알콕시티타늄이며, 실리콘 화합물은 사염화실리콘과 메틸트리클로로실란, 에틸트리클로로실란, 페닐트리클 로로실란과 같은 트리클로로실란, 디메틸디클로로실란, 디에틸디클로로실란, 디페닐디클 로로실란, 메틸페닐디클로로실란과 같은 디클로로실란 또는 트리메틸클로로실란과 같은 모노클로로실란인 것을 특징으로 하는 에틸렌 중합 및 공중합용 촉매.

그러 모드【청구항 7】

제 6항에 있어서, 티타늄 화합물은 사염화티타늄이고, 실리콘 화합물은 사염화실리 가콘인 것을 특징으로 하는 에틸렌 중합 및 공중합용 촉매.

【청구항 8】

제'1항에 있어서, 티타늄 화합물과 실리콘 화합물의 혼합물의 양은 할로겐화 마그 네슘 화합물 1몰당 0.1~200몰이며, 티타늄 화합물과 실리콘 화합물의 혼합비는 몰비로 0.05~0.95인 것을 특징으로 하는 에틸렌 중합 및 공중합용 촉매.

【청구항 9】

제 1항에 있어서, 알루미늄 화합물은 트리에틸알루미늄, 트리이소부틸알루미늄과 같은 탄소수가 1~6인 알킬기를 가진 트리알킬알루미늄과 에틸알루미늄 디클로라이드, 디에틸알루미늄 클로라이드, 에틸알루미늄 세스퀴클로라이드와 같은 하나 이상의 할로겐을 포함하는 알루미늄 화합물 또는 이들의 혼합물인 것을 특징으로 하는 에틸렌 중합 및 공중합용 촉매.

【청구항 10】

제 1항에 있어서, 바나듐 화합물은 최대 원자가가 4가 또는 바나딜기 VO가 최대원

자가 3가인 화합물이며, $V(OR^4)_{4-n}X_n$ 또는 $VO(OR^4)_{3-m}X_m$ 의 일반식을 갖고, 여기에서 R^4 는 탄소수가 $1\sim 14$ 인 지방족 또는 방향족 탄화수소기 또는 COR^5 (여기에서 R^5 는 탄소수가 $1\sim 14$ 인 지방족 또는 방향족 탄화 수소기임)이고, X는 Cl, Br, I이며 n은 $0\sim 4$ 의 정수 또는 분율이며, m은 $0\sim 3$ 의 정수 또는 분율인 것을 특징으로 하는 에틸렌 중합 및 공중합용 촉매.