BÀI TẬP VỀ PHẢN ỨNG THẾ BỞI ION KIM LOẠI CỦA CÁC ANKIN

A. Phương pháp giải.

- Công thức tổng quát của ankin là C_nH_{2n-2} $(n \ge 2)$.
- Chỉ có ank-1-in hoặc các chất có liên kết ba đầu mạch mới có phản ứng với AgNO₃/NH₃.
- Phương trình tổng quát:

$$C_nH_{2n-2} + xAgNO_3 + xNH_3 \rightarrow C_nH_{2n-2-x}Ag_x \downarrow + xNH_4NO_3 (1)$$

$$C_xH_y + aAgNO_3 + aNH_3 \rightarrow C_xH_{y-a}Ag_a \downarrow + aNH_4NO_3$$
 (2)

- Chú ý:
- + Theo phương trình (2) ta có: $n_{ankin} = n \downarrow \rightarrow m \downarrow = m_{ankin} + 107.n \downarrow .a.$
- + Khối lượng bình đựng AgNO₃/NH₃ tăng bằng khối lượng ankin phản ứng.
- + Để tái tạo lại ankin ta cho ↓ phản ứng với HCl.
- + Anken và ankan không có phản ứng này.
- + Chỉ có C₂H₂ mới phản ứng với AgNO₃/NH₃ theo tỉ lệ mol 1:2; các ank-1-in khác chỉ phản ứng theo tỉ lệ 1:1.
- Nếu đề bài cho hỗn hợp ankin phản ứng với dung dịch AgNO₃/NH₃:

Xét tỉ lệ:
$$k = \frac{n_{AgNO_3}}{n_{ankin}}$$

- + Nếu k = 1: hỗn hợp gồm các ank -1 in.
- + Nếu $1 \le k \le 2$: hỗn hợp có C_2H_2 và các ank 1 in

Trong trường hợp đề bài không cho tỉ lệ mol phải xét các trường hợp.

B. Ví dụ minh họa

Ví dụ 1: Cho 3,36 lít hiđrocacbon X (đktc) phản ứng hoàn toàn với lượng dư dung dịch AgNO₃ trong NH₃, thu được 36 gam kết tủa. Công thức phân tử của X là:

- A. C_4H_4 .
- $B. C_3H_4.$
- C. C₄H₆.
- D. C_2H_2 .

Hướng dẫn giải:

$$n_{x} = \frac{3,36}{22,4} = 0,15 \text{mol} \Rightarrow n_{\downarrow} = 0,15 \text{mol}$$

$$\Rightarrow$$
 $M_{\downarrow} = \frac{36}{0.15} = 240 \Rightarrow Ag_2C_2 \Rightarrow X:C_2H_2$

Đáp án D

Ví dụ 2: Hỗn hợp khí X gồm etilen và propin. Cho a mol X tác dụng với dung dịch AgNO₃ trong NH₃, thu được 17,64 gam kết tủa. Mặt khác a mol X phản ứng tối đa với 0,34 mol H₂. Giá trị của a là

A. 0,02.

B. 0,04.

C. 0,22.

D. 0,24.

Hướng dẫn giải:

$$\begin{split} n_{C_3H_4} &= \ n_{C_3H_3Ag} = \frac{17,64}{147} = 0,12 \ mol \\ n_{C_2H_4} + 2n_{C_3H_4} &= n_{H_2} \Longrightarrow n_{C_2H_4} = \ 0,1 \ mol \Longrightarrow a = n_{C_2H_4} + n_{C_3H_4} = \ 0,22 \ mol \end{split}$$

Đáp án C

Ví dụ 3: Hiđrat hóa 5,2 gam axetilen với xúc tác HgSO₄ trong môi trường axit, đun nóng. Cho toàn bộ các chất hữu cơ sau phản ứng vào một lượng dư dung dịch AgNO₃ trong NH₃ thu được 44,16 gam kết tủa. Hiệu suất của phản ứng hiđrat hóa axetilen là

A. 60%.

B. 40%.

C. 80%.

D. 70%.

X

Hướng dẫn giải:

Gọi n_{C,H_2} tham gia phản ứng là x và n_{C,H_2} dư là y mol trong phản ứng hi
đ
rat hóa.

$$CH = CH + H_2O \xrightarrow{Hg^{2+},H^+} CH_3CHO$$

$$x \qquad x$$

$$CH_3CHO + 2AgNO_3 + 3NH_3 \rightarrow 2Ag + 2NH_4NO_3 + CH_3COONH_4$$

2x

$$CH \equiv CH + 2AgNO_3 + 2NH_3 \rightarrow AgC \equiv CAg + 2NH_4NO_3$$
y

$$\begin{cases} x + y = \frac{5.2}{26} = 0.2 \\ 2.108x + 240y = 44.16 \end{cases} \Rightarrow \begin{cases} x = 0.16 \text{mol} \\ y = 0.04 \text{mol} \end{cases}$$
$$\Rightarrow H = \frac{0.16}{0.2}.100\% = 80\%$$

Đáp án C

C. Bài tập tự luyện

Câu 1: Dẫn V lít (đktc) axetilen qua dung dịch AgNO₃/NH₃ dư thấy thu được 60 gam kết tủa. Giá trị V là:

A. 5,6 lít

B. 11,2 lít

C. 2,8 lít

D. 10,11 lít

Hướng dẫn giải:

$$n \downarrow = 0.25 \text{ mol} \implies n_{\text{axetilen}} = 0.25.22.4 = 5.6 \text{ lít}$$

Đáp án A

Câu 2: 1 mol hiđrocacbon X đốt cháy cho ra 5 mol CO₂, 1 mol X phản ứng với 2 mol AgNO₃ /NH₃. Xác định công thức cấu tạo của X.

A. $CH_2=CH-CH_2-C\equiv C-H$

B. CH₂=CH-CH=CH-CH₃

C. HC≡C-CH₂- C≡CH

D. CH₂=C=CH-CH₂-CH₃

Hướng dẫn giải:

- Gọi công thức phân tử của X là $C_x H_y$.
- Do 1 mol X tạo ra $\frac{5}{2}$ mol CO_2 nên công thức phân tử X là C_5H_y .
- Do 1mol X phản ứng với 2 mol AgNO₃/NH₃ nên X có 2 liên kết 3 ở đầu mạch.

Đáp án: C

Câu 3: Đốt cháy hoàn toàn 2,24 lít hiđrocacbon X thu được 6,72 lít CO₂ (đktc), biết X tác dụng với dung dịch AgNO₃/NH₃ sinh ra kết tủa Y. Công thức cấu tạo của X là:

A. CH₃-CH=CH₂

B. CH≡CH

C. CH₃-C≡CH

D. CH₂=CH-C≡CH

Hướng dẫn giải:

$$n_{X} = \frac{2,24}{22,4} = 0,1 \text{mol}; n_{CO_{2}} = \frac{6,72}{22,4} = 0,3 \text{mol}$$

$$\overline{C} = \frac{0.3}{0.1} = 3$$

Do X tác dụng với dung dịch AgNO₃/NH₃ nên suy ra X là CH₃-C≡CH

Đáp án C

Câu 4: Đốt cháy hoàn toàn m gam ankin A bằng O₂ vừa đủ thu được 22,4 lít CO₂ (đktc). Mặt khác, dẫn m gam A qua dung dịch AgNO₃/NH₃ dư thấy có 35 gam kết tủa màu vàng nhạt. Công thức phân tử của A là.

A. C_7H_{12}

B. C_8H_{14}

 $\mathbf{C.}$ $\mathbf{C}_5\mathbf{H}_8$

D. C_6H_{10}

Hướng dẫn giải:

Công thức phân tử ankin A: C_nH_{2n-2} $(n \ge 2)$.

 $n_{CO_2} = 1 mol$

$$n_{\downarrow} = n_{A} = \frac{1}{n} \Rightarrow M_{\downarrow} = \frac{m_{\downarrow}}{n_{\downarrow}} = 35n$$

Mà $M_{\downarrow} = 14n + 105 \Longrightarrow 35n = 14n + 105$

 \Rightarrow A là C₅H₈

Đáp án: C

Câu 5: Dẫn 6,72 lít một ankin X qua dung dịch AgNO₃/NH₃ dư thấy thu được 44,1gam kết tủa. Công thức phân tử của X là:

A. C_2H_2 .

B. C_4H_6 .

C. C_5H_8 .

D. C_3H_4 .

Hướng dẫn giải:

Công thức phân tử ankin A: C_nH_{2n-2} $(n \ge 2)$.

$$n_X = 0,3 \text{ mol} \implies M_{k \acute{e}t \, t \acute{u}a} = \frac{44,1}{0,3} = 147 \Longrightarrow 14n + 105 = 147 \Longrightarrow n = 3$$

 \Rightarrow ankin là C₃H₄.

Đáp án D

Câu 6: Đốt cháy hoàn toàn hỗn hợp X gồm C₂H₂, C₃H₄ và C₄H₄ (số mol mỗi chất bằng nhau) thu được 0,09 mol CO₂. Nếu lấy cùng một lượng hỗn hợp X như trên tác dụng với một lượng dư dung dịch AgNO₃ trong NH₃ thì khối lượng kết tủa thu được lớn hơn 4 gam. Công thức cấu tạo của C₃H₄ và C₄H₄ trong X lần lượt là

A.
$$CH = C - CH_3, CH_2 = C = C = CH_2$$

B.
$$CH_2 = C = CH_2$$
, $CH_2 = CH - C \equiv CH$

C.
$$CH \equiv C - CH_3$$
, $CH_2 = CH - C \equiv CH$

D.
$$CH_2 = C = CH_2$$
, $CH_2 = C = C = CH_2$

Hướng dẫn giải:

$$n_{C_2H_2} = n_{C_3H_4} = n_{C_4H_4} = \frac{0.09}{2+3+4} = 0.01 \text{mol}$$

$$m_{C_2Ag_2} = 0.01.240 = 2.4 < 4$$

⇒ Hai chất còn lại có ít nhất 1 chất tạo kết tủa.

Giả sử C_3H_4 có công thức cấu tạo là $CH \equiv C - CH_3$

$$m_{K \text{\'et t\'ua}} = 2.4 + 0.01.147 = 3.87 < 4$$

 \Rightarrow C₄H₄ có 1 liên kết ba ở đầu mạch \Rightarrow công thức cấu tạo của C₄H₄ là

$$CH_2 = CH - C \equiv CH$$

Đáp án C

Câu 7: Dẫn 4,032 lít (đktc) hỗn hợp khí A gồm C₂H₂, C₂H₄, CH₄ lần lượt qua bình 1 chứa dung dịch AgNO₃ trong NH₃ rồi qua bình 2 chứa dung dịch Br₂ dư trong CCl₄. Ở bình 1 có 7,2 gam kết tủa, khối lượng bình 2 tăng thêm 1,68 gam. Thể tích các khí trong hỗn hợp A lần lượt là

A. 0,672 lít; 1,344 lít; 2,016 lít.

B. 0,762 lít; 0,672 lít; 2,688 lít.

C. 2,016 lít; 0,896 lít; 1,12 lít.

D. 1,344 lít; 2,016 lít; 0,672 lít.

Hướng dẫn giải:

$$n_{A} = 0.18 \text{ mol}$$

$$n_{C_2H_2} = n_{\downarrow} = 0.03 \text{mol} \Rightarrow V_{C_2H_2} = 0.03.22, 4 = 0.672(1)$$

$$m_{C_2H_4} = 1,68(g) \Rightarrow n_{C_2H_4} = 0,06 \text{mol} \Rightarrow V_{C_2H_4} = 1,344(1)$$

$$n_{CH_4} = 0.18 - 0.03 - 0.06 = 0.09 \Rightarrow V_{CH_4} = 2.016(1)$$

Đáp án A

Câu 8: Hỗn hợp X gồm propin và một ankin A có tỉ lệ mol 1:1. Lấy 0,3 mol X tác dụng với dung dịch AgNO₃ /NH₃ dư thu được 46,2 gam kết tủa. A là

- A. But 1- in
- B. But- 2 in
- C. Axetilen
- D. Pent 1- in

Hướng dẫn giải:

$$n_{CH=C-CH_2} = n_A = 0.15 \text{mol}$$

$$m_{AgC=C-CH_3} = 0.15.147 = 22.05 < 46.2g$$

$$\Rightarrow$$
 A + AgNO₃ / NH₃

$$M_{\downarrow A} = \frac{46, 2 - 22, 05}{0.15} = 161 \rightarrow CH_3 - CH_2 - C \equiv CAg$$

A: but -1-in

Đáp án A

Câu 9: Cho 17,92 lít hỗn hợp X gồm 3 hiđrocacbon khí là ankan, anken và ankin lấy theo tỉ lệ mol 1:1:2 lội qua bình đựng dung dịch AgNO₃/NH₃ lấy dư thu được 96 gam kết tủa và hỗn hợp khí Y còn lại. Đốt cháy hoàn toàn hỗn hợp Y thu được 13,44 lít CO₂. Biết thể tích đo ở đktc. Khối lượng của X là

- **A.** 19,2 gam.
- **B.** 1,92 gam.
- **C.** 3,84 gam.
- **D.** 38,4 gam.

Hướng dẫn giải:

$$n_X$$
 = 0,8 mol \rightarrow n_{ankan} = 0,2 mol; n_{anken} = 0,2 mol; n_{ankin} = 0,4 mol

$$\rightarrow$$
M \downarrow = 96:0,4 = 240 \rightarrow C₂Ag₂

Ankin là C₂H₂

Đặt x, y là số C của ankan và anken:

$$n_{CO_2} = 0.2x + 0.2y = 0.6mol$$

 $\rightarrow x + y = 3 \Rightarrow x = 1; y = 2$
 $\Rightarrow CH_4; C_2H_4$
 $\Rightarrow m_x = 19.2g$

Đáp án A

Câu 10: Đốt cháy một hiđrocacbon M thu được số mol nước bằng $\frac{3}{4}$ số mol CO_2 và số mol CO_2 nhỏ hơn hoặc bằng 5 lần số mol M. Xác định công thức phân tử và công thức cấu tạo của M, biết rằng M cho kết tủa với dung dịch $AgNO_3/NH_3$.

A. C_4H_6 và $CH_3CH_2C \equiv CH$.

B. C₄H₆ và CH₂=C=CHCH₃.

C. C_3H_4 và $CH_3C\equiv CH$.

D. C_4H_6 và $CH_3C \equiv CCH_3$.

Hướng dẫn giải:

$$n_{_{\mathrm{H_2O}}} = \frac{3}{4} n_{_{\mathrm{CO}_2}} \Longrightarrow n_{_{\mathrm{CO}_2}} : n_{_{\mathrm{H_2O}}} = 4 : 3$$

 \Rightarrow C:H=4:6=2:3

 \Rightarrow CTDGN: C_2H_3

$$n_{CO_2} < 5n_M \Longrightarrow C = \frac{n_{CO_2}}{n_M} < 5$$

 \Rightarrow M: C_4H_6

Do M cho kết tủa với dung dịch AgNO₃/NH₃ nên M có liên kết ba ở đầu mạch **Đáp án A**