Posterior Predictive Checking and Generalized Graphical Models

Andrew Gelman

Dept of Statistics and Dept of Political Science, Columbia University, New York (Visiting Sciences Po, Paris, for 2009–2010)

24 novembre 2009

Expand graphical modeling to include:

- Expand graphical modeling to include:
 - Predictive model checking

- Expand graphical modeling to include:
 - Predictive model checking
 - ► Fake-data simulation

- Expand graphical modeling to include:
 - Predictive model checking
 - ► Fake-data simulation
 - Scaffolding

- Expand graphical modeling to include:
 - Predictive model checking
 - ► Fake-data simulation
 - Scaffolding
- ► Common features:

- Expand graphical modeling to include:
 - Predictive model checking
 - ► Fake-data simulation
 - Scaffolding
- Common features:
 - Small changes to an existing fitted model

- Expand graphical modeling to include:
 - Predictive model checking
 - ► Fake-data simulation
 - Scaffolding
- Common features:
 - Small changes to an existing fitted model
 - Comparisons of nodes between models

 (applied) Building confidence in our computations and our models

- (applied) Building confidence in our computations and our models
- ▶ (methodological) Being able to do this routinely

- (applied) Building confidence in our computations and our models
- (methodological) Being able to do this routinely
- ► (theoretical): A unified framework for model building, model fitting, and model checking

- (applied) Building confidence in our computations and our models
- (methodological) Being able to do this routinely
- ► (theoretical): A unified framework for model building, model fitting, and model checking
- ▶ (computational): Implementing in a Bugs-like language

▶ Setting up a realistic (i.e., complicated) model

- ▶ Setting up a realistic (i.e., complicated) model
- ► Regularization or partial pooling

- ▶ Setting up a realistic (i.e., complicated) model
- Regularization or partial pooling
- Fitting the model

- Setting up a realistic (i.e., complicated) model
- Regularization or partial pooling
- Fitting the model
- Checking the fit to data

- Setting up a realistic (i.e., complicated) model
- Regularization or partial pooling
- Fitting the model
- Checking the fit to data
- Confidence building

- Setting up a realistic (i.e., complicated) model
- Regularization or partial pooling
- Fitting the model
- Checking the fit to data
- Confidence building
- Understanding the fitted model

► Hierarchical generalized linear models

- ► Hierarchical generalized linear models
- $y_i = \alpha + \beta x_i + \epsilon_i$

- ▶ Hierarchical generalized linear models
- $y_i = \alpha + \beta x_i + \epsilon_i$
- $y_i = \alpha_{j[i]} + \beta_{j[i]} x_i + \epsilon_i$ (separate regression in each group)

- Hierarchical generalized linear models
- $y_i = \alpha + \beta x_i + \epsilon_i$
- $y_i = \alpha_{j[i]} + \beta_{j[i]} x_i + \epsilon_i$ (separate regression in each group)

$$\blacktriangleright \ \begin{pmatrix} \alpha_j \\ \beta_j \end{pmatrix} \sim \mathsf{N} \left(\begin{pmatrix} \mu_\alpha \\ \mu_\beta \end{pmatrix}, \ \begin{pmatrix} \sigma_\alpha^2 & \rho \sigma_\alpha \sigma_\beta \\ \rho \sigma_\alpha \sigma_\beta & \sigma_\beta^2 \end{pmatrix} \right), \ \text{for} \ j=1,\dots,J$$

- ► Hierarchical generalized linear models
- $y_i = \alpha + \beta x_i + \epsilon_i$
- $y_i = \alpha_{j[i]} + \beta_{j[i]} x_i + \epsilon_i$ (separate regression in each group)
- $\blacktriangleright \ \begin{pmatrix} \alpha_j \\ \beta_j \end{pmatrix} \sim \mathsf{N} \left(\begin{pmatrix} \mu_\alpha \\ \mu_\beta \end{pmatrix}, \, \begin{pmatrix} \sigma_\alpha^2 & \rho \sigma_\alpha \sigma_\beta \\ \rho \sigma_\alpha \sigma_\beta & \sigma_\beta^2 \end{pmatrix} \right), \ \text{for} \ j = 1, \dots, J$
- Also can have group-level predictors and nonnested grouping factors

Application: public opinion in population subgroups

▶ Main effects, 2-way, 3-way, etc.

- ► Main effects, 2-way, 3-way, etc.
- ► Example: predicting public opinion given 4 age categories, 5 income categories, 50 states

- Main effects, 2-way, 3-way, etc.
- ► Example: predicting public opinion given 4 age categories, 5 income categories, 50 states
- ▶ $4+5+50+4\times5+4\times50+5\times50+4\times5\times50$ parameters ("effects")

- ▶ Main effects, 2-way, 3-way, etc.
- ► Example: predicting public opinion given 4 age categories, 5 income categories, 50 states
- ▶ $4 + 5 + 50 + 4 \times 5 + 4 \times 50 + 5 \times 50 + 4 \times 5 \times 50$ parameters ("effects")
- ► Also, group-level predictors (linear trends for age and income, previous voting patterns for states)

- ▶ Main effects, 2-way, 3-way, etc.
- ► Example: predicting public opinion given 4 age categories, 5 income categories, 50 states
- ▶ $4 + 5 + 50 + 4 \times 5 + 4 \times 50 + 5 \times 50 + 4 \times 5 \times 50$ parameters ("effects")
- ► Also, group-level predictors (linear trends for age and income, previous voting patterns for states)
- Need a richer modeling language

- ▶ Main effects, 2-way, 3-way, etc.
- ► Example: predicting public opinion given 4 age categories, 5 income categories, 50 states
- ▶ $4+5+50+4\times5+4\times50+5\times50+4\times5\times50$ parameters ("effects")
- ► Also, group-level predictors (linear trends for age and income, previous voting patterns for states)
- ► Need a richer modeling language

```
pglmer (y ~ z.age*z.inc*rvote.st + (z.age*z.inc | st) +
   (z.age*rvote.st | inc) + (z.inc*rvote.st | age) +
   (z.age | inc*st) + (z.inc | age*st) + (z.st | age*inc) +
   (1 | age*inc*st), family=binomial(link="logistic"))
```

- ▶ Main effects, 2-way, 3-way, etc.
- ► Example: predicting public opinion given 4 age categories, 5 income categories, 50 states
- ▶ $4+5+50+4\times5+4\times50+5\times50+4\times5\times50$ parameters ("effects")
- ► Also, group-level predictors (linear trends for age and income, previous voting patterns for states)
- ► Need a richer modeling language
 - pglmer (y ~ z.age*z.inc*rvote.st + (z.age*z.inc | st) +
 (z.age*rvote.st | inc) + (z.inc*rvote.st | age) +
 (z.age | inc*st) + (z.inc | age*st) + (z.st | age*inc) +
 (1 | age*inc*st), family=binomial(link="logistic"))
 - ▶ No easy way to write this in Bugs or to program it oneself!

Posterior predictive checking: 3 examples

Example 1: a normal distribution is fit to the following data:

Example 1 of 3: checking a fit to a univariate dataset

20 replicated datasets under the model:

Example 2: checking a model fit to data with time ordering

```
> plot (y, type="1")
> lines (y.rep)
```


Example 3: checking a model with three-way structure

Data and 7 replications:

▶ Data model: $\theta \rightarrow y$

- ▶ Data model: $\theta \rightarrow y$
- ▶ Data and replicated data: $\theta \rightarrow y, y^{\text{rep}}$

- ▶ Data model: $\theta \rightarrow y$
- ▶ Data and replicated data: $\theta \rightarrow y, y^{\text{rep}}$
- ► Posterior predictive distribution, $p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}|\theta, y)p(\theta|y)d\theta$

- ▶ Data model: $\theta \rightarrow y$
- ▶ Data and replicated data: $\theta \rightarrow y, y^{\text{rep}}$
- ▶ Posterior predictive distribution, $p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}|\theta, y)p(\theta|y)d\theta$
- Computation:

- ▶ Data model: $\theta \rightarrow y$
- ▶ Data and replicated data: $\theta \rightarrow y, y^{\text{rep}}$
- ▶ Posterior predictive distribution, $p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}|\theta, y)p(\theta|y)d\theta$
- Computation:
 - Simulate θ from the posterior distribution, $p(\theta|y)$

- ▶ Data model: $\theta \rightarrow y$
- ▶ Data and replicated data: $\theta \rightarrow y, y^{\text{rep}}$
- ▶ Posterior predictive distribution, $p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}|\theta, y)p(\theta|y)d\theta$
- ► Computation:
 - Simulate θ from the posterior distribution, $p(\theta|y)$
 - Simulate y^{rep} from the predictive distribution, $p(y^{\text{rep}}|\theta,y)$

- ▶ Data model: $\theta \rightarrow y$
- ▶ Data and replicated data: $\theta \rightarrow y, y^{\text{rep}}$
- ▶ Posterior predictive distribution, $p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}|\theta, y)p(\theta|y)d\theta$
- Computation:
 - Simulate θ from the posterior distribution, $p(\theta|y)$
 - ▶ Simulate y^{rep} from the predictive distribution, $p(y^{\text{rep}}|\theta,y)$
 - Compare y to the replicated datasets y^{rep}

- ▶ Data model: $\theta \rightarrow y$
- ▶ Data and replicated data: $\theta \rightarrow y, y^{\text{rep}}$
- ► Posterior predictive distribution, $p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}|\theta, y)p(\theta|y)d\theta$
- ► Computation:
 - Simulate θ from the posterior distribution, $p(\theta|y)$
 - ▶ Simulate y^{rep} from the predictive distribution, $p(y^{\text{rep}}|\theta,y)$
 - Compare y to the replicated datasets y^{rep}
- ▶ The generalized graphical model:

► Tous les modèles sont faux

- Tous les modèles sont faux
- Nous voudrons trouver les aspects des modèles que ne sont pas en forme des données

- ► Tous les modèles sont faux
- Nous voudrons trouver les aspects des modèles que ne sont pas en forme des données
- L'objectif, c'est apprendre les lacunes de notre histoire substantive

- ► Tous les modèles sont faux
- Nous voudrons trouver les aspects des modèles que ne sont pas en forme des données
- L'objectif, c'est apprendre les lacunes de notre histoire substantive
- Par example, problèmes du modèle des erreurs, ou des interactions importantes que nous n'avons encore incluses

- ► Tous les modèles sont faux
- Nous voudrons trouver les aspects des modèles que ne sont pas en forme des données
- L'objectif, c'est apprendre les lacunes de notre histoire substantive
- Par example, problèmes du modèle des erreurs, ou des interactions importantes que nous n'avons encore incluses
- Voilà la connection d'analyse exploratoire des données (EDA) et la presentation visuelle

- ► Tous les modèles sont faux
- Nous voudrons trouver les aspects des modèles que ne sont pas en forme des données
- L'objectif, c'est apprendre les lacunes de notre histoire substantive
- ▶ Par example, problèmes du modèle des erreurs, ou des interactions importantes que nous n'avons encore incluses
- Voilà la connection d'analyse exploratoire des données (EDA) et la presentation visuelle
- ► Les "p-values" sont les moins importants choses dans la vérification posterior predictive!

Quick summary of posterior predictive checking

- Quick summary of posterior predictive checking
 - ▶ Data y, inference from $p(\theta|y)$

- Quick summary of posterior predictive checking
 - ▶ Data y, inference from $p(\theta|y)$
 - Predictive replications from $p(y^{\text{rep}}|\theta)$

- Quick summary of posterior predictive checking
 - ▶ Data y, inference from $p(\theta|y)$
 - Predictive replications from $p(y^{\text{rep}}|\theta)$
 - Compare y to y^{rep} using (visual) test variables

- Quick summary of posterior predictive checking
 - ▶ Data y, inference from $p(\theta|y)$
 - Predictive replications from $p(y^{rep}|\theta)$
 - Compare y to y^{rep} using (visual) test variables
 - ▶ Graphical structure: $y \leftarrow \theta \rightarrow y^{\text{rep}}$

- Quick summary of posterior predictive checking
 - ▶ Data y, inference from $p(\theta|y)$
 - Predictive replications from $p(y^{\text{rep}}|\theta)$
 - Compare y to y^{rep} using (visual) test variables
 - ▶ Graphical structure: $y \leftarrow \theta \rightarrow y^{\text{rep}}$
- More general formulation

- Quick summary of posterior predictive checking
 - ▶ Data y, inference from $p(\theta|y)$
 - Predictive replications from $p(y^{rep}|\theta)$
 - Compare y to y^{rep} using (visual) test variables
 - ▶ Graphical structure: $y \leftarrow \theta \rightarrow y^{\text{rep}}$
- More general formulation
 - ▶ Data y, inference from $p(\theta|X, y)$

- Quick summary of posterior predictive checking
 - ▶ Data y, inference from $p(\theta|y)$
 - Predictive replications from $p(y^{\text{rep}}|\theta)$
 - Compare y to y^{rep} using (visual) test variables
 - ▶ Graphical structure: $y \leftarrow \theta \rightarrow y^{\text{rep}}$
- More general formulation
 - ▶ Data y, inference from $p(\theta|X,y)$
 - ▶ Predictive replications from $p(y^{\text{rep}}|X,\theta)$

- Quick summary of posterior predictive checking
 - ▶ Data y, inference from $p(\theta|y)$
 - Predictive replications from $p(y^{\text{rep}}|\theta)$
 - Compare y to y^{rep} using (visual) test variables
 - ▶ Graphical structure: $y \leftarrow \theta \rightarrow y^{\text{rep}}$
- More general formulation
 - ▶ Data y, inference from $p(\theta|X,y)$
 - Predictive replications from $p(y^{\text{rep}}|X,\theta)$
 - Connection to graphical models!

► A posterior predictive check requires:

- ► A posterior predictive check requires:
 - ightharpoonup Set of conditioning variables heta

- A posterior predictive check requires:
 - \blacktriangleright Set of conditioning variables θ
 - Set of fixed design variables X (e.g., sample size)

- A posterior predictive check requires:
 - \blacktriangleright Set of conditioning variables θ
 - ► Set of fixed design variables *X* (e.g., sample size)
 - ▶ Test variable T(y) (more generally, $T(X, y, \theta)$

- A posterior predictive check requires:
 - \blacktriangleright Set of conditioning variables θ
 - ► Set of fixed design variables *X* (e.g., sample size)
 - ▶ Test variable T(y) (more generally, $T(X, y, \theta)$
- Simulating posterior predictive replications is a fundamental operation in graphical models

- A posterior predictive check requires:
 - \blacktriangleright Set of conditioning variables θ
 - Set of fixed design variables X (e.g., sample size)
 - ▶ Test variable T(y) (more generally, $T(X, y, \theta)$
- Simulating posterior predictive replications is a fundamental operation in graphical models
- ▶ Requires a new node, y^{rep} , whose distribution is implied by the existing model

▶ Models can be debugged by simulating fake data:

- ▶ Models can be debugged by simulating fake data:
 - Sample θ^{true} from the prior distribution $p(\theta)$

- Models can be debugged by simulating fake data:
 - ▶ Sample θ^{true} from the prior distribution $p(\theta)$
 - ▶ Sample y from the model $p(y|\theta)$

- Models can be debugged by simulating fake data:
 - ▶ Sample θ^{true} from the prior distribution $p(\theta)$
 - ▶ Sample y from the model $p(y|\theta)$
 - ▶ Perform Bayesian inference, simulations from $p(\theta|y)$

- Models can be debugged by simulating fake data:
 - Sample θ^{true} from the prior distribution $p(\theta)$
 - ▶ Sample y from the model $p(y|\theta)$
 - ▶ Perform Bayesian inference, simulations from $p(\theta|y)$
 - \blacktriangleright Check calibration of posterior means, predictive intervals, etc. compared to $\theta^{\rm true}$

- Models can be debugged by simulating fake data:
 - Sample θ^{true} from the prior distribution $p(\theta)$
 - ▶ Sample y from the model $p(y|\theta)$
 - ▶ Perform Bayesian inference, simulations from $p(\theta|y)$
 - \blacktriangleright Check calibration of posterior means, predictive intervals, etc. compared to $\theta^{\rm true}$
 - General procedure in Cook, Gelman, and Rubin (2007)

- Models can be debugged by simulating fake data:
 - Sample θ^{true} from the prior distribution $p(\theta)$
 - ▶ Sample y from the model $p(y|\theta)$
 - ▶ Perform Bayesian inference, simulations from $p(\theta|y)$
 - \blacktriangleright Check calibration of posterior means, predictive intervals, etc. compared to $\theta^{\rm true}$
 - General procedure in Cook, Gelman, and Rubin (2007)
- ► Fake-data simulation is a fundamental operation in graphical models

- Models can be debugged by simulating fake data:
 - ▶ Sample θ^{true} from the prior distribution $p(\theta)$
 - ▶ Sample y from the model $p(y|\theta)$
 - Perform Bayesian inference, simulations from $p(\theta|y)$
 - \blacktriangleright Check calibration of posterior means, predictive intervals, etc. compared to $\theta^{\rm true}$
 - ▶ General procedure in Cook, Gelman, and Rubin (2007)
- ► Fake-data simulation is a fundamental operation in graphical models
- $ightharpoonup heta^{true}$ is a new node

► Step 0 (already done): Expressing a statistical model as a graph; Bayesian computation on the graph

- Step 0 (already done): Expressing a statistical model as a graph; Bayesian computation on the graph
- ► Step 1: Graph of models

- Step 0 (already done): Expressing a statistical model as a graph; Bayesian computation on the graph
- ► Step 1: Graph of models
 - ► Each model is a node of this super-graph

- Step 0 (already done): Expressing a statistical model as a graph; Bayesian computation on the graph
- ► Step 1: Graph of models
 - ► Each model is a node of this super-graph
 - ➤ Two models are connected if they differ by only one feature (adding/removing a variable, allowing a parameter to vary by group, adding/removing a grouping factor, changing a probability distribution or link function, . . .)

- Step 0 (already done): Expressing a statistical model as a graph; Bayesian computation on the graph
- ► Step 1: Graph of models
 - ► Each model is a node of this super-graph
 - ➤ Two models are connected if they differ by only one feature (adding/removing a variable, allowing a parameter to vary by group, adding/removing a grouping factor, changing a probability distribution or link function, ...)
- Step 2: Integrated graph

- ► Step 0 (already done): Expressing a statistical model as a graph; Bayesian computation on the graph
- ► Step 1: Graph of models
 - ► Each model is a node of this super-graph
 - ► Two models are connected if they differ by only one feature (adding/removing a variable, allowing a parameter to vary by group, adding/removing a grouping factor, changing a probability distribution or link function, ...)
- Step 2: Integrated graph
 - Nodes within models are linked within a larger graph

- Step 0 (already done): Expressing a statistical model as a graph; Bayesian computation on the graph
- ► Step 1: Graph of models
 - ► Each model is a node of this super-graph
 - ➤ Two models are connected if they differ by only one feature (adding/removing a variable, allowing a parameter to vary by group, adding/removing a grouping factor, changing a probability distribution or link function, ...)
- Step 2: Integrated graph
 - Nodes within models are linked within a larger graph
 - All models coexist

- Step 0 (already done): Expressing a statistical model as a graph; Bayesian computation on the graph
- ► Step 1: Graph of models
 - Each model is a node of this super-graph
 - ➤ Two models are connected if they differ by only one feature (adding/removing a variable, allowing a parameter to vary by group, adding/removing a grouping factor, changing a probability distribution or link function, ...)
- Step 2: Integrated graph
 - Nodes within models are linked within a larger graph
 - All models coexist
 - Analogy to computational method of parallel tempering

Example:

```
for (i in 1:n){
   y[i] ~ dnorm (y.hat[i], tau.y)
   y.hat[i] <- a[state[i]] + b[state[i]]*x[i]
   e.y[i] <- y[i] - y.hat[i]
}
tau.y <- pow(sigma.y, -2)
sigma.y ~ dunif (0, 100)</pre>
```

Example:

```
for (i in 1:n){
   y[i] ~ dnorm (y.hat[i], tau.y)
   y.hat[i] <- a[state[i]] + b[state[i]]*x[i]
   e.y[i] <- y[i] - y.hat[i]
}
tau.y <- pow(sigma.y, -2)
sigma.y ~ dunif (0, 100)</pre>
```

► We would prefer:

```
y ~ norm (a[state] + b[state]*x, sigma.y)
```

Example:

```
for (i in 1:n){
   y[i] ~ dnorm (y.hat[i], tau.y)
   y.hat[i] <- a[state[i]] + b[state[i]]*x[i]
   e.y[i] <- y[i] - y.hat[i]
}
tau.y <- pow(sigma.y, -2)
sigma.y ~ dunif (0, 100)</pre>
```

We would prefer:

```
y ~ norm (a[state] + b[state]*x, sigma.y)
```

► Also, instead of y.hat, sigma.y, e.y, we want a more general "operator" notation, for example E(y), sd(y), error(y)

Example in Bugs:

```
for (i in 1:n){
  y[i] ~ dnorm (y.hat[i], tau.y)
  y.rep[i] <- dnorm (y.hat[i], tau.y)
  . . .</pre>
```

► Example in Bugs:

```
for (i in 1:n){
  y[i] ~ dnorm (y.hat[i], tau.y)
  y.rep[i] <- dnorm (y.hat[i], tau.y)
  . . .</pre>
```

ightharpoonup But y^{rep} should be included automatically

► Example in Bugs:

```
for (i in 1:n){
  y[i] ~ dnorm (y.hat[i], tau.y)
  y.rep[i] <- dnorm (y.hat[i], tau.y)
  . . .</pre>
```

- But y^{rep} should be included automatically
- ▶ Implicit graphical structure for model checking: $y \leftarrow \theta \rightarrow y^{\mathrm{rep}}$

▶ Model checking or debugging in ideal graphical model software ("DreamBUGS"):

- Model checking or debugging in ideal graphical model software ("DreamBUGS"):
 - Set an on/off switch for each node: is it conditioned on or averaged over?

- Model checking or debugging in ideal graphical model software ("DreamBUGS"):
 - Set an on/off switch for each node: is it conditioned on or averaged over?
 - Specify a test summary (numerical or graphical) of data and parameters

- Model checking or debugging in ideal graphical model software ("DreamBUGS"):
 - Set an on/off switch for each node: is it conditioned on or averaged over?
 - Specify a test summary (numerical or graphical) of data and parameters
 - Various off-the-shelf test summaries will be available

- Model checking or debugging in ideal graphical model software ("DreamBUGS"):
 - Set an on/off switch for each node: is it conditioned on or averaged over?
 - Specify a test summary (numerical or graphical) of data and parameters
 - ▶ Various off-the-shelf test summaries will be available
- ▶ Design of data collection is integrated with graphical modeling

On peut généraliser les modéles graphiques:

▶ Tous les quantitées— θ , y, y^{rep} —existent ensemble

- ▶ Tous les quantitées— θ , y, y^{rep} —existent ensemble
- ► La vérification, c'est possible être plus formal dans la théorie et dans la computation

- ▶ Tous les quantitées— θ , y, y^{rep} —existent ensemble
- ▶ La vérification, c'est possible être plus formal dans la théorie et dans la computation
- ► Tout est complètement Bayesien—il n'y a jamais le *utilisation* double des données!

- ▶ Tous les quantitées— θ , y, y^{rep} —existent ensemble
- ▶ La vérification, c'est possible être plus formal dans la théorie et dans la computation
- ➤ Tout est complètement Bayesien—il n'y a jamais le *utilisation* double des données!
- On peut faire un réseau des modèles pour augmenter notre comprension

- ▶ Tous les quantitées— θ , y, y^{rep} —existent ensemble
- ▶ La vérification, c'est possible être plus formal dans la théorie et dans la computation
- ➤ Tout est complètement Bayesien—il n'y a jamais le *utilisation* double des données!
- On peut faire un réseau des modèles pour augmenter notre comprension
- C'est la unification thèoreticale (de Bayes et de l'enquête)

- ▶ Tous les quantitées— θ , y, y^{rep} —existent ensemble
- ▶ La vérification, c'est possible être plus formal dans la théorie et dans la computation
- ➤ Tout est complètement Bayesien—il n'y a jamais le *utilisation* double des données!
- On peut faire un réseau des modèles pour augmenter notre comprension
- C'est la unification thèoreticale (de Bayes et de l'enquête)
- ► Et la unification de l'inference et la utilization des modéles dans les applications