Скінченно породжені та головні ідеали

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

22 лютого 2023

Скінченно породжені ідеали та головні ідеали

Нехай R — кільце, \mathfrak{X} – деяка підмножина кільця R.

Ідеалом, породженим \mathfrak{X} , називається ідеал

$$(\mathfrak{X}) = \bigcap_{\mathfrak{X} \subseteq I, I - \text{idean}} I.$$

Це найменший ідеал, що містить \mathfrak{X} .

Скінченно породжені та головні ідеали

Ідеал, породжений скінченною множиною елементів, називається *скінченно породженим*. Скінченно породжений ідеал, який породжений елементами $\alpha_1, \ldots, \alpha_n$, позначається $(\alpha_1, \ldots, \alpha_n)$.

Скінченно породжені та головні ідеали

Ідеал, породжений скінченною множиною елементів, називається *скінченно породженим*. Скінченно породжений ідеал, який породжений елементами a_1, \ldots, a_n , позначається (a_1, \ldots, a_n) .

Ідеал, який породжений одним елементом $\alpha \in R$, називається *головним ідеалом*. Позначається (α).

Нехай R — кільце, α ∈ R. Тоді

$$(a) = \{ ra + as + ka + r_1 a s_1 + \dots + r_n a s_n | r, s, r_i, s_i \in R, k \in \mathbb{Z}, n \in \mathbb{N} \}.$$

Нехай R — кільце, α ∈ R. Тоді

$$(a) = \{ ra + as + ka + r_1 a s_1 + \ldots + r_n a s_n \mid r, s, r_i, s_i \in R, k \in \mathbb{Z}, n \in \mathbb{N} \}.$$

lack Позначимо $I=\{ra+as+ka+r_1as_1+\ldots+r_nas_n\,|\,r,s,r_i,s_i\in R,k\in\mathbb{Z},n\in\mathbb{N}\}.$

Hexaй R — кільце, α ∈ R. Тоді

$$(a) = \{ ra + as + ka + r_1 a s_1 + \dots + r_n a s_n | r, s, r_i, s_i \in R, k \in \mathbb{Z}, n \in \mathbb{N} \}.$$

♣ Позначимо $I = \{ra + as + ka + r_1as_1 + \ldots + r_nas_n \mid r, s, r_i, s_i \in R, k \in \mathbb{Z}, n \in \mathbb{N}\}.$ Ідеал (a) містить $a \Rightarrow$ він містить всі добутки ra, as, r_ias_i , ka та їхні суми $\Rightarrow I \subset (a)$.

Нехай R — кільце, a ∈ R. Тоді

$$(a) = \{ ra + as + ka + r_1 a s_1 + \dots + r_n a s_n | r, s, r_i, s_i \in R, k \in \mathbb{Z}, n \in \mathbb{N} \}.$$

♣ Позначимо $I = \{ra + as + ka + r_1as_1 + \ldots + r_nas_n \mid r, s, r_i, s_i \in R, k \in \mathbb{Z}, n \in \mathbb{N}\}$. Ідеал (a) містить $a \Rightarrow$ він містить всі добутки ra, as, r_ias_i , ka та їхні суми $\Rightarrow I \subset (a)$. За критерієм ідеалу I — ідеал.

Нехай R — кільце, α ∈ R. Тоді

$$(a) = \{ ra + as + ka + r_1 a s_1 + \ldots + r_n a s_n | r, s, r_i, s_i \in R, k \in \mathbb{Z}, n \in \mathbb{N} \}.$$

- ♣ Позначимо $I = \{ra + as + ka + r_1as_1 + ... + r_nas_n | r, s, r_i, s_i \in R, k \in \mathbb{Z}, n \in \mathbb{N}\}.$ Ідеал (a) містить $a \Rightarrow$ він містить всі добутки ra, as, r_ias_i , ka та їхні суми $\Rightarrow I \subset (a)$. За критерієм ідеалу I ідеал.
- (a) найменший ідеал, який містить $a, a \in I \Rightarrow (a) = I$. \spadesuit

Якщо $1 \in R$, то

• $aR = \{ar | r \in R\}$ — правий ідеал;

Якщо $1 \in R$, то

Якщо $1 \in R$, то

- $(a) = RaR = \{r_1 a r'_1 + \ldots + r_n a r'_n | r_i, r'_i \in R, n \in \mathbb{N}\}.$

Якщо $1 \in R$, то

- $(a) = RaR = \{r_1 ar'_1 + \ldots + r_n ar'_n | r_i, r'_i \in R, n \in \mathbb{N}\}.$

Якщо $1 \in R$ та R — комутативне, то

$$(a) = aR = Ra = \{ar | r \in R\}.$$

Зауваження

Якщо кільце R не є комутативним, то правий ідеал αR , $\alpha \in R$, у загальному випадку, не є двостороннім ідеалом. Більше того, множина $\{r\alpha s \mid r, s \in R\}$ не обов'язково буде ідеалом, бо вона не замкнена відносно додавання.

Зауваження

Якщо кільце R не ϵ комутативним, то правий ідеал αR , $\alpha \in R$, у загальному випадку, не ϵ двостороннім ідеалом. Більше того, множина $\{r\alpha s \mid r, s \in R\}$ не обов'язково буде ідеалом, бо вона не замкнена відносно додавання.

$$R=M_2(\mathbb{R})$$
, $A=egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}$. Тоді матриця RAS — вироджена, але

$$\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \cdot A \cdot \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot A \cdot \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Якщо
$$1 \in R$$
 та R — комутативне, $A \subset R$, то

$$(A) = \{r_1 \alpha_1 + \dots + r_k \alpha_k \mid r_i \in R, \alpha_i \in A, k \in \mathbb{N}\}.$$

1 Нульовий ідеал ϵ головним: $\{0\} = (0)$.

- **1** Нульовий ідеал ϵ головним: $\{0\} = (0)$.
- **2** Якщо кільце містить одиницю, то R = (1).

- **1** Нульовий ідеал ϵ головним: $\{0\} = (0)$.
- **2** Якщо кільце містить одиницю, то R = (1).

- **1** Нульовий ідеал ϵ головним: $\{0\} = (0)$.
- **2** Якщо кільце містить одиницю, то R = (1).
- - ♣ Очевидно, що (n) ідеал для довільного $n \in \mathbb{N}$.

- **1** Нульовий ідеал ϵ головним: $\{0\} = (0)$.
- **2** Якщо кільце містить одиницю, то R = (1).
- - \bullet Очевидно, що (n) ідеал для довільного $n \in \mathbb{N}$.

Нехай I — ідеал \mathbb{Z} , $m \in I$ — найменший додатний елемент. Розділимо $a \in I$ на m з остачею:

$$a = mq + r, 0 \le r < m.$$

- **1** Нульовий ідеал ϵ головним: $\{0\} = (0)$.
- **2** Якщо кільце містить одиницю, то R = (1).
- \bigcirc У кільці \mathbb{Z} всі ідеали головні і мають вигляд $(n) = n\mathbb{Z}$.
 - **♣** Очевидно, що (n) ідеал для довільного $n \in \mathbb{N}$.

Нехай I — ідеал \mathbb{Z} , $m \in I$ — найменший додатний елемент. Розділимо $a \in I$ на m з остачею:

$$a = mq + r, 0 \le r < m.$$

Тоді
$$r = a - mq ∈ I \Rightarrow r = 0.$$
 ♠

- **1** Нульовий ідеал ϵ головним: $\{0\} = (0)$.
- **2** Якщо кільце містить одиницю, то R = (1).
- - Очевидно, що (n) ідеал для довільного $n \in \mathbb{N}$. Нехай I — ідеал \mathbb{Z} , $m \in I$ — найменший додатний елемент. Розділимо $\alpha \in I$ на m з остачею:

$$a = mq + r, 0 \le r < m.$$

Тоді
$$r = a - mq ∈ I \Rightarrow r = 0$$
. ♠

③ У кільці многочленів k[x] над полем k всі ідеали є головними.

В кільці $\mathbb{Z}[x]$ ідеал (2, x) не є головним.

В кільці $\mathbb{Z}[x]$ ідеал (2, x) не ϵ головним.

$$(2,x) = \{2f(x) + xg(x) | f(x), g(x) \in \mathbb{Z}[x]\}$$

В кільці $\mathbb{Z}[x]$ ідеал (2,x) не ϵ головним.

$$(2, x) = \{2f(x) + xg(x) | f(x), g(x) \in \mathbb{Z}[x]\}\$$

Припустимо, що (2, x) = (a(x)) для деякого $a(x) \in \mathbb{Z}[x]$.

В кільці $\mathbb{Z}[x]$ ідеал (2,x) не ϵ головним.

$$(2, x) = \{2f(x) + xg(x) | f(x), g(x) \in \mathbb{Z}[x]\}\$$

Припустимо, що (2, x) = (a(x)) для деякого $a(x) \in \mathbb{Z}[x]$.

Оскільки $2 \in (a(x))$, то 2 = a(x)b(x), а тому $a(x) \in \{\pm 1, \pm 2\}$.

В кільці $\mathbb{Z}[x]$ ідеал (2,x) не ϵ головним.

$$(2, x) = \{2f(x) + xg(x) | f(x), g(x) \in \mathbb{Z}[x]\}\$$

Припустимо, що (2, x) = (a(x)) для деякого $a(x) \in \mathbb{Z}[x]$.

Оскільки $2 \in (a(x))$, то 2 = a(x)b(x), а тому $a(x) \in \{\pm 1, \pm 2\}$.

Якщо $a(x) = \pm 1$, то $(1) = (-1) = \mathbb{Z}[x] \neq (2, x)$.

В кільці $\mathbb{Z}[x]$ ідеал (2,x) не ϵ головним.

$$(2, x) = \{2f(x) + xg(x) | f(x), g(x) \in \mathbb{Z}[x]\}\$$

Припустимо, що (2, x) = (a(x)) для деякого $a(x) \in \mathbb{Z}[x]$.

Оскільки $2 \in (a(x))$, то 2 = a(x)b(x), а тому $a(x) \in \{\pm 1, \pm 2\}$.

Якщо $a(x) = \pm 1$, то $(1) = (-1) = \mathbb{Z}[x] \neq (2, x)$.

Якщо $a(x) = \pm 2$, то $(2) = (-2) = 2\mathbb{Z}[x] \neq (2, x)$.

В кільці $\mathbb{Z}[x]$ ідеал (2,x) не ϵ головним.

$$(2,x) = \{2f(x) + xg(x) | f(x), g(x) \in \mathbb{Z}[x]\} =$$

$$= \{2k + a_1x + a_2x^2 + \dots + a_nx^n | k, a_i \in \mathbb{Z}, n \in \mathbb{N}\}$$

Припустимо, що (2, x) = (a(x)) для деякого $a(x) \in \mathbb{Z}[x]$.

Оскільки $2 \in (a(x))$, то 2 = a(x)b(x), а тому $a(x) \in \{\pm 1, \pm 2\}$.

Якщо $a(x) = \pm 1$, то $(1) = (-1) = \mathbb{Z}[x] \neq (2, x)$.

Якщо $a(x) = \pm 2$, то $(2) = (-2) = 2\mathbb{Z}[x] \neq (2, x)$.