Filtrations et martingales 1

[M. Gubinelli - Processus discrets - M1 MMD 2009/2010 - 20100113 - v.6]

IV Martingales

1 Filtrations et martingales

On considère un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.

Définition 1. Une filtration est une famille $(\mathcal{F}_n)_{n\geqslant 0}$ de sous-tribus de \mathcal{F} telles que $\mathcal{F}_n\subseteq \mathcal{F}_{n+1}$ pour tout $n\geqslant 0$. On pose $\mathcal{F}_{-1}=\{\emptyset,\Omega\}$ et $\mathcal{F}_{\infty}=\sigma(\mathcal{F}_n,n\geqslant 0)$ (\mathcal{F}_{∞} est la plus petite tribu qui contienne les \mathcal{F}_n pour $n\geqslant 0$). Soit $(X_n)_{n\geqslant 0}$ un processus stochastique, sa filtration naturelle $(\mathcal{F}_n^X)_{n\geqslant 0}$ est la filtration définie par $\mathcal{F}_n^X=\sigma(X_0,...,X_n)$.

Définition 2. Soit $(X_n)_{n\geqslant 0}$ un processus stochastique et $(\mathcal{F}_n)_{n\geqslant 0}$ une filtration, on dit que $(X_n)_{n\geqslant 0}$ est adapté (à la filtration $(\mathcal{F}_n)_{n\geqslant 0}$) ssi $X_n \in \mathcal{F}_n$ pour tout $n\geqslant 0$. On dit que $(X_n)_{n\geqslant 0}$ est prévisible (par rapport à la filtration $(\mathcal{F}_n)_{n\geqslant 0}$) ssi $X_n \in \mathcal{F}_{n-1}$ pour tout $n\geqslant 0$. La filtration naturelle de X est la plus petite filtration à laquelle X est adapté.

Définition 3. Un processus $(X_n)_{n\geqslant 0}$ réel, adapté et intégrable (c-à-d tel que $\mathbb{E}[|X_n|]<+\infty$ pour tout $n\geqslant 0$) est

- i. une martingale ssi $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$ p.s. pour tout $n \ge 0$;
- ii. une sur-martingale ssi $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \leqslant X_n$ p.s. pour tout $n \geqslant 0$;
- iii. une sous-martingale ssi $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geqslant X_n$ p.s. pour tout $n \geqslant 0$.

Si on interprète $(X_n)_{n\geqslant 0}$ comme les gains dans un jeux d'hasard et la filtration $(\mathcal{F}_n)_{n\geqslant 0}$ comme l'information à disposition à chaque instant de temps, alors une martingale est un jeux équitable, une sur-martingale est un jeux défavorable et une sous-martingale un jeux favorable.

Remarque 4. Si X est une martingale, alors par récurrence de la définition on a que $\mathbb{E}[X_m|\mathcal{F}_n] = X_n$ pour tout $m \ge n \ge 0$. Une propriété analogue est valable pour les sous/sur-martingales. Si on note $\Delta X_n = X_n - X_{n-1}$ alors on a que la propriété de (sous-/sur-)martingale est équivalent à

$$\mathbb{E}[\Delta X_{n+1}|\mathcal{F}_n] = 0 \text{ (ou } \geqslant \text{, ou } \leqslant \text{) pour tout } n \geqslant 0.$$

Exemple 5. Soit Z une v.a. réelle et intégrable. Alors $X_n = \mathbb{E}[Z|\mathcal{F}_n]$ est une martingale. Si $(A_n)_{n\geqslant 0}$ est un processus réel adapté et croissant (décroissant) alors il est aussi une sous-(sur-) martingale.

Proposition 6. (DÉCOMPOSITION DE DOOB) Soit $(X_n)_{n\geqslant 0}$ une suite adapté et intégrable, alors il existe un unique martingale $(M_n)_{n\geqslant 0}$ et un unique processus $(I_n)_{n\geqslant 0}$ prévisible, intégrable et tel que $I_0=0$ tels que on a

$$X_n = X_0 + M_n + I_n, \qquad n \geqslant 0.$$

De plus

- a) $I_n = 0$ pour tout $n \ge 0$ ssi $(X_n)_{n \ge 0}$ est une martingale;
- b) $(I_n)_{n\geq 0}$ est croissant ssi $(X_n)_{n\geq 0}$ est une sous-martingale;
- c) $(I_n)_{n\geqslant 0}$ est décroissant ssi $(X_n)_{n\geqslant 0}$ est une sur-martingale.

2 Section 1

Démonstration. On démontre l'unicité de la décomposition d'abord: si \tilde{M} , \tilde{I} sont une autre possible décomposition de X en partie martingale et processus prévisible intégrable, alors on doit avoir

$$\tilde{M}_n + \tilde{I}_n = M_n + I_n = X_n - X_0$$

et donc si on pose $N_n = \tilde{M}_n - M_n = I_n - \tilde{I}_n$ on a que N_n est une martingale et au même temps un processus prévisible intégrable, donc pour tout $n \ge 0$

$$N_n = \mathbb{E}[N_{n+1}|\mathcal{F}_n] = N_{n+1}$$

car $N_{n+1} \in \mathcal{F}_n$ ce qu'implique que N_n est constant en n et donc que $N_n = N_0 = 0$ car $I_0 = \tilde{I}_0 = 0$. Donc $I_n = \tilde{I}_n$ et $M_n = \tilde{M}_n$. Pour l'existence on remarque que $\Delta M_n = \Delta X_n - \Delta I_n$ et en prenant l'espérance conditionnelle on obtient que

$$0 = \mathbb{E}[\Delta M_{n+1}|\mathcal{F}_n] = \mathbb{E}[\Delta X_{n+1}|\mathcal{F}_n] - \mathbb{E}[\Delta I_{n+1}|\mathcal{F}_n] = \mathbb{E}[\Delta X_{n+1}|\mathcal{F}_n] - \Delta I_{n+1}$$

car par la prévisibilité de I_n on a $\Delta I_{n+1} \in \mathcal{F}_n$. Donc on peut poser

$$I_n = \sum_{i=0}^{n-1} \mathbb{E}[\Delta X_{i+1} | \mathcal{F}_i], \qquad I_0 = 0$$

ce qui nous donne un processus prévisible et intégrable. Il est aussi évident que si on pose $M_n = X_n - X_0 - I_n$ alors $(M_n)_{n \ge 0}$ est une martingale.

La formule pour I_n donne directement que si $(X_n)_{n\geqslant 0}$ est martingale alors $I_n=0$ pour tout $n\geqslant 0$, l'implication opposée est évidente. Si $(X_n)_{n\geqslant 0}$ est une (sur-)sous-martingale alors pour tout n: $\mathbb{E}[\Delta X_{n+1}|\mathcal{F}_n]\geqslant X_n$ (ou \leqslant) et donc le processus I_n est (de-)croissant.

Proposition 7. Soit $(X_n)_{n\geqslant 0}$ une (sous-)martingale et Φ une fonction convexe (convexe et croissante) et telle que $\mathbb{E}[|\Phi(X_n)|] < +\infty$ pour tout $n\geqslant 0$, alors $(\Phi(X_n))_{n\geqslant 0}$ est une sous-martingale.

Démonstration. Par l'inégalité de Jensen on a que

$$\mathbb{E}[\Phi(X_{n+1})|\mathcal{F}_n] \geqslant \Phi(\mathbb{E}[X_{n+1}|\mathcal{F}_n]) = \Phi(X_n)$$

ou la dernière égalité est due à la propriété de martingale de X. Si X est sous-martingale on a que

$$\mathbb{E}[\Phi(X_{n+1})|\mathcal{F}_n] \geqslant \Phi(\mathbb{E}[X_{n+1}|\mathcal{F}_n]) \geqslant \Phi(X_n)$$

par le fait que on suppose Φ croissante.

Proposition 8. Soit $(X_n)_{n\geqslant 0}$ une martingale de carre integrable (c-à-d $\mathbb{E}[X_n^2] < +\infty$ pour tout $n\geqslant 0$). Alors la sous-martingale $(X_n^2)_{n\geqslant 0}$ admet la décomposition

$$X_n^2 = X_0^2 + N_n + [X]_n$$

avec

$$N_n = 2\sum_{i=1}^n X_{i-1}\Delta X_i, \qquad [X]_n = \sum_{i=1}^n (\Delta X_i)^2$$

où le processus $(M_n)_{n\geqslant 0}$ est un martingale et le processus $([X]_n)_{n\geqslant 0}$ est un processus croissante appelé variation quadratique de X.

Démonstration. (exercice)

Exercice 1. Soit $(X_n)_{n\geqslant 0}$ une martingale. Déterminer la décomposition de Doob de $(X_n^2)_{n\geqslant 0}$:

$$X_n^2 = X_0^2 + M_n + \langle X \rangle_n$$

avec $(M_n)_{n\geq 0}$ martingale et $(\langle X\rangle_n)_{n\geq 0}$ processus prévisible (et croissante). Montrer que

$$\Delta \langle X \rangle_n = \mathbb{E}[(\Delta X_n)^2 | \mathcal{F}_{n-1}] = \mathbb{E}[\Delta [X]_n | \mathcal{F}_{n-1}].$$

2 Théorèmes de convergence

Théorème 9. (Doob) Soit $(X_n)_{n\geqslant 0}$ une sous-martingale positive et $X_n^* = \sup_{0\leqslant i\leqslant n} X_i$ pour $n\geqslant 0$. Alors

$$\mathbb{E}[(X_N^*)^2] \leqslant 4\mathbb{E}[X_N^2]$$

pour tout $N \geqslant 0$.

Démonstration. On pose $X_{-1}^* = 0$ par convenance. On a que

$$(X_{n+1}^*)^2 - (X_n^*)^2 = (X_{n+1}^* - X_n^*)(X_{n+1}^* + X_n^*) \le 2X_{n+1}(X_{n+1}^* - X_n^*)$$
 pour tout $n \ge -1$

car si $X_{n+1}^* - X_n^* > 0$ alors $X_{n+1}^* = X_{n+1}$ et $X_n^* \leqslant X_{n+1}$. Donc

$$\mathbb{E}[(X_{n+1}^*)^2] - \mathbb{E}[(X_n^*)^2] \leqslant 2\mathbb{E}[X_{n+1}(X_{n+1}^* - X_n^*)]$$

$$\leqslant 2\mathbb{E}[\mathbb{E}[X_N | \mathcal{F}_{n+1}](X_{n+1}^* - X_n^*)] = 2\mathbb{E}[\mathbb{E}[X_N(X_{n+1}^* - X_n^*) | \mathcal{F}_{n+1}]]$$

$$= 2\mathbb{E}[X_N(X_{n+1}^* - X_n^*)]$$

où on a utilisé la propriété de sous-martingale de $(X_n)_{n\geqslant 0}$. Par sommation sur n entre -1 et N cela donne

$$\mathbb{E}[(X_N^*)^2] \leqslant 2\mathbb{E}[X_N X_N^*]$$

Théorème 10. Soit $(M_n)_{n\geqslant 0}$ une martingale telle que $\alpha = \sup_{n\geqslant 0} \mathbb{E}[M_n^2] < +\infty$. Alors la suite M_n converge dans $L^2(\Omega)$ et p.s.

Démonstration. On décompose la martingale selon ses incréments:

$$M_n = M_0 + \sum_{k=1}^n \Delta M_k$$

et on remarque que les incréments sont orthogonaux: si n > k:

$$\mathbb{E}[\Delta M_n \Delta M_k] = \mathbb{E}[\mathbb{E}[\Delta M_n \Delta M_k | \mathcal{F}_{n-1}]] = \mathbb{E}[\mathbb{E}[\Delta M_n | \mathcal{F}_{n-1}] \Delta M_k] = 0$$

car $\Delta M_k \in \mathcal{F}_k \subseteq \mathcal{F}_{n-1}$. Donc

 $\mathbb{E}[M_n^2] = \mathbb{E}[M_0^2] + \sum_{k=1}^n \mathbb{E}[(\Delta M_k)^2]$

et

$$\mathbb{E}[M_0^2] + \sum_{k=1}^{\infty} \mathbb{E}[(\Delta M_k)^2] = \alpha$$

ce que implique que la suite $\sum_{k=1}^n \Delta M_k$ converge dans $L^2(\Omega)$ et donc que $M_\infty = \lim_n M_n$ dans L^2 : en effet pour tout $k' \geqslant k \geqslant n$

$$\mathbb{E}[|M_{k'} - M_k|^2] = \sum_{\ell=k+1}^{k'} \mathbb{E}[(\Delta M_{\ell})^2] \leqslant \sum_{\ell=n+1}^{\infty} \mathbb{E}[(\Delta M_{\ell})^2] \to 0$$

quand $n \to +\infty$. La suite $(M_n)_{n\geqslant 0}$ est donc de Cauchy dans $L^2(\Omega)$.

On veut maintenant montrer la convergence presque sûre. Pour cela on considère la v.a.

$$V_n = \sup_{i,j \geqslant n} |M_i - M_j|.$$

On a

$$\mathbb{E}[V_n^2] = \mathbb{E}[\lim_{N \to \infty} \sup_{n \leqslant i, j \leqslant N} |M_i - M_j|^2] = \lim_{N \to \infty} \mathbb{E}[\sup_{n \leqslant i, j \leqslant N} |M_i - M_j|^2]$$

$$\leqslant 4 \lim_{N \to \infty} \mathbb{E}[\sup_{n \leqslant i \leqslant N} |M_i - M_n|^2]$$

4 Section 2

car par inégalité triangulaire $|M_i - M_j| \leq |M_i - M_n| + |M_j - M_n|$ et $(a+b)^2 \leq 2a^2 + 2b^2$ pour $a, b \geq 0$. Fixons $n \geq 0$ et soit $Y_k = M_{n+k} - M_n$ et $\mathcal{G}_k = \mathcal{F}_{n+k}$. Le processus $(Y_k)_{k \geq 0}$ est une martingale de carré intégrable relative à la filtration $(\mathcal{G}_k)_{k \geq 0}$ et donc par l'inégalité de Doob (car $(|Y_k|)_{k \geq 0}$ est une sous-martingale positive par rapport à la filtration $(\mathcal{G}_k)_{k \geq 0}$) on a que

$$\mathbb{E}[\sup_{0\leqslant k\leqslant N}Y_k^2] = \mathbb{E}[(\sup_{0\leqslant k\leqslant N}|Y_k|)^2] \leqslant 4\mathbb{E}[Y_N^2]$$

ce que nous donne

$$\mathbb{E}[V_n^2] \leqslant 4 \lim_{N \to \infty} \mathbb{E}[\sup_{0 \leqslant k \leqslant N} Y_k^2] \leqslant 16 \lim_{N \to \infty} \mathbb{E}[Y_N^2] = 16 \lim_{N \to \infty} \mathbb{E}[|M_N - M_n|^2] = 16 \mathbb{E}[|M_\infty - M_n|^2]$$

car la convergence de M_n vers M_{∞} a lieu dans L^2 . Maintenant si on prends la limite $n \to \infty$ on obtient par convergence monotone (la suite V_n est décroissante)

$$\mathbb{E}\left[\lim_{n\to\infty}V_n^2\right] = \lim_{n\to\infty}\mathbb{E}\left[V_n^2\right] = \lim_{n\to\infty}16\mathbb{E}\left[|M_\infty - M_n|^2\right] = 0$$

et donc $\lim_n V_n = 0$ presque sûrement. Mais cela implique que pour presque tout $\omega \in \Omega$ la suite réelle $(M_n(\omega))_{n\geqslant 0}$ converge vers un limite $\tilde{M}_{\infty}(\omega)$. De la convergence L^2 de $(M_n)_{n\geqslant 0}$ vers M_{∞} on peut déduire qu'il existe une sous-suite M_{n_k} qui converge p.s. vers M_{∞} et donc on doit avoir $\tilde{M}_{\infty} = M_{\infty}$.

Lemme 11. Soit $(X_n)_{n\geqslant 0}$ une sur-martingale positive et bornée par K. La martingale $(M_n)_{n\geqslant 0}$ de la décomposition de Doob est uniformément de carré intégrable et

$$\mathbb{E}[M_n^2] \leqslant 2 K \mathbb{E}[X_0] - \mathbb{E}[X_0^2].$$

Démonstration. La martingale M_n est définie par $M_n = X_n - X_0 + A_n$ où A_n est un processus prévisible, intégrable et positif croissante (car X est une sur-martingale). Par construction X_n , A_n et donc M_n sont de carré intégrable, en particulier $\mathbb{E}[M_n^2] = \sum_{i=1}^n \mathbb{E}[(\Delta M_i)^2]$. On observe que

$$\mathbb{E}[(\Delta M_i)^2] = \mathbb{E}[(\Delta X_i - \mathbb{E}[\Delta X_i | \mathcal{F}_{i-1}])^2] \leqslant \mathbb{E}[(\Delta X_i)^2]$$

compte tenu des propriétés de la variance conditionnelle. Observons que

$$\mathbb{E}[(\Delta X_i)^2] = \mathbb{E}[X_i^2] - \mathbb{E}[X_{i-1}^2] - 2\mathbb{E}[X_{i-1}(X_i - X_{i-1})]$$
$$= \mathbb{E}[X_i^2] - \mathbb{E}[X_{i-1}^2] + 2\mathbb{E}[X_{i-1}(A_i - A_{i-1})].$$

Par sommation, il vient

$$\mathbb{E}[M_n^2] \leqslant \mathbb{E}[X_n^2] - \mathbb{E}[X_0^2] + 2\sum_{i=1}^n \mathbb{E}[X_{i-1}(A_i - A_{i-1})]$$

$$\leqslant \mathbb{E}[X_n^2] - \mathbb{E}[X_0^2] + 2K\sum_{i=1}^n \mathbb{E}[A_i - A_{i-1}] = \mathbb{E}[X_n^2] - \mathbb{E}[X_0^2] + 2K \mathbb{E}[A_n]$$

$$= \mathbb{E}[X_n^2 - 2KX_n] - \mathbb{E}[X_0^2] + 2K \mathbb{E}[A_n + X_n]$$

$$= \mathbb{E}[X_n^2 - 2KX_n] - \mathbb{E}[X_0^2] + 2K \mathbb{E}[X_0] \leqslant 2K \mathbb{E}[X_0] - \mathbb{E}[X_0^2]$$

car $X_n^2 - 2KX_n = X_n(X_n - 2K) \le 0$ et où on a utilisé la propriété de martingale de $A_n + X_n$. \square

Lemme 12. Soit $(X_n)_{n\geqslant 0}$ une sous-martingale telle que $\sup_n \mathbb{E}[(X_n)_+] = K < +\infty$. Alors $X_n = Y_n - Z_n$ où $(Y_n)_{n\geqslant 0}$ est une martingale positive et $(Z_n)_{n\geqslant 0}$ est une sur-martingale positive.

Démonstration. Le processus $((X_n)_+)_{n\geqslant 0}$ est une sous-martingale de décomposition de Doob

$$(X_n)_+ = (X_0)_+ + M_n + I_n$$

où I_n est un processus croissant, positif, prévisible et intégrable tel que

$$\mathbb{E}[I_n] \leqslant \mathbb{E}[|X_0|] + \mathbb{E}[(X_n)_+] \leqslant \mathbb{E}[|X_0|] + K.$$

Arrêt optionnel 5

La v.a. $I_{\infty} = \lim_{n \to \infty} I_n$ (qu'existe car I_n est croissante) est donc aussi intégrable (par convergence monotone $\mathbb{E}[I_{\infty}] = \lim_n \mathbb{E}[I_n]$). Soit $Y_n = (X_0)_+ + M_n + \mathbb{E}[I_{\infty}|\mathcal{F}_n]$, $(Y_n)_{n\geqslant 0}$ est une martingale par construction et elle est positive car $Y_n \geqslant (X_0)_+ + M_n + I_n = (X_n)_+ \geqslant 0$ du fait que $\mathbb{E}[I_{\infty}|\mathcal{F}_n] \geqslant \mathbb{E}[I_n|\mathcal{F}_n] = I_n$. Alors $Z_n = Y_n - X_n \geqslant (X_n)_+ - X_n = (X_n)_- \geqslant 0$ est une sur-martingale (car différence d'une martingale et d'une sous-martingale) positive, d'où le résultat.

Théorème 13. (DOOB) Soit $(X_n)_{n\geqslant 0}$ une sur-martingale positive. Alors $(X_n)_{n\geqslant 0}$ converge p.s. vers une v.a. $X_\infty \in L^1(\Omega)$. Soit $(X_n)_{n\geqslant 0}$ une sous-martingale telle que $\sup_n \mathbb{E}[(X_n)_+] < \infty$. Alors $(X_n)_{n\geqslant 0}$ converge p.s. vers une v.a. $X_\infty \in L^1(\Omega)$.

Démonstration. Supposons d'abord que $(X_n)_{n\geqslant 0}$ soit une sur-martingale $(X_n)_{n\geqslant 0}$ positive et bornée par K. D'après le lemme 11, elle admet une décomposition en $X_n = M_n - A_n$, où la martingale est bornée dans L^2 et donc converge p.s. vers une v.a. finie M_{∞} et comme la suite $(X_n)_{n\geqslant 0}$ est bornée alors il existe aussi la limite finie $A_{\infty} = \lim_n A_n$ (car A_n est croissant). La suite $(X_n)_{n\geqslant 0}$ converge donc p.s.. Par changement de signe, il en est de même pour les sousmartingales bornées.

Considérons maintenant une sur-martingale positive $(Z_n)_{n\geqslant 0}$ et soit $X_n=e^{-Z_n}$. Le processus $(X_n)_{n\geqslant 0}$ est une sous-martingale positive et bornée par 1. Pour ce que on vient de voir, elle converge donc p.s. et en est de même pour la suite $Z_n=-\log X_n$ à condition d'admettre $+\infty$ comme limite. Mais

$$\mathbb{E}[Z_{\infty}] = \mathbb{E}[\liminf_{n} Z_{n}] \leqslant \liminf_{n} \mathbb{E}[Z_{n}] \leqslant \mathbb{E}[Z_{0}].$$

La limite est intégrable et donc finie p.s.

Si $(X_n)_{n\geqslant 0}$ est une sous-martingale bornée dans L^1 alors on peut utiliser le lemme 12 pour la décomposer en $X_n = Y_n - Z_n$ avec $(Y_n)_{n\geqslant 0}$ martingale positive et $(Z_n)_{n\geqslant 0}$ sur-martingale positive. Ce deux processus convergent p.s. vers des limites Y_∞ et Z_∞ finis et intégrables. Donc on obtient aussi le dernier résultat.

Remarque 14. Bien que la limite d'une sous-martingale bornée dans L^1 soit une v.a. dans L^1 , cette convergence n'a pas a priori lieu en L^1 . Voici un contre exemple.

Soit $(Z_n)_{n\geqslant 0}$ une suite iid avec $\mathbb{P}(Z_n=+1)=1-\mathbb{P}(Z_n=-1)=p$. Soit u>1. On pose $X_0=x$ et $X_{n+1}=u^{Z_{n+1}}X_n$. Supposons que p=1/(1+u) de telle sorte que $\mathbb{E}[u^{Z_{n+1}}]=1$. Alors il est facile de vérifier que $(X_n)_{n\geqslant 0}$ est une martingale et donc $\mathbb{E}[X_n]=\mathbb{E}[X_0]=x$. Par la loi forte des grands nombres on a

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} Z_k = \mathbb{E}[Z_1] = 2 \ p - 1 = \frac{1 - u}{1 + u} < 0$$

d'où

$$\left(\frac{X_n}{x}\right)^{1/n} \to u^{2p-1} < 1 \qquad p.s.$$

Ainsi $X_n \to 0$ p.s., alors que son espérance est constante! (et donc $X_n \to 0$ dans L^1).

3 Arrêt optionnel

Définition 15. (TRANSFORMATION DE MARTINGALE) Soit $(X_n)_{n\geqslant 0}$ un processus adapté et $(C_n)_{n\geqslant 1}$ un processus prévisible. On définit le nouveau processus $((C\cdot X)_n)_{n\geqslant 0}$ par $(C\cdot X)_0=0$ et $\Delta(C\cdot X)_n=C_n\Delta X_n$ pour tout $n\geqslant 1$. Alors

$$(C \cdot X)_n = \sum_{i=1}^n C_i(X_i - X_{i-1}).$$

Lemme 16. Soit $(C_n)_{n\geqslant 1}$ un processus prévisible bornée $(c-\grave{a}-d \mid C_n \mid \leqslant K \text{ pour tout } n\geqslant 1)$.

i. Si $(X_n)_{n\geqslant 0}$ est une martingale alors $((C\cdot X)_n)_{n\geqslant 0}$ est une martingale.

6 Section 3

ii. Si $(X_n)_{n\geqslant 0}$ est une (sous-)sur-martingale et $C_n\geqslant 0$ pour tout $n\geqslant 1$ alors $((C\cdot X)_n)_{n\geqslant 0}$ est une (sous-)sur-martingale.

Ces propriétés sont aussi valables sans condition de bornitude si $C_n \in L^2$ pour tout $n \ge 1$ et $X_n \in L^2$ pour tout $n \ge 0$.

Démonstration. L'integrabilité et l'adaptation de $((C \cdot X)_n)_{n \ge 0}$ sont laisse en exercice. On a que, pour tout $n \ge 1$,

$$\mathbb{E}[\Delta(C \cdot X)_n | \mathcal{F}_{n-1}] = \mathbb{E}[C_n \Delta X_n | \mathcal{F}_{n-1}] = C_n \mathbb{E}[\Delta X_n | \mathcal{F}_{n-1}]$$

par la prévisibilité de $(C_n)_{n\geqslant 1}$ et donc on peut conclure.

Définition 17. Une v.a. $T: \Omega \to \mathbb{N}_* = \mathbb{N} \cup \{+\infty\}$ est un temps d'arrêt si $\{T \leqslant n\} \in \mathcal{F}_n$ pour tout $0 \leqslant n \leqslant +\infty$. De manière équivalente T est un t.a. ssi $\{T = n\} \in \mathcal{F}_n$ pour tout $0 \leqslant n \leqslant +\infty$.

Exemple 18. Soit $(X_n)_{n\geq 0}$ un processus adapté et A un borelien de \mathbb{R} , alors

$$T_A = \inf\{n > 0 : X_n \in A\}$$

(avec $T_A = +\infty$ si $X_n \notin A$ pour tout n > 0) est un temps d'arrêt: pour tout $0 \le n \le +\infty$ on a

$$\{T \leqslant n\} = \bigcup_{0 < k \leqslant n} \{X_k \in A\} \in \mathcal{F}_n.$$

Si T est un t.a. et $(X_n)_{n\geqslant 0}$ un processus adapté alors le processus $X_n^T(\omega)=X_{n\wedge T(\omega)}(\omega)$ est encore adapté (exercice) et s'appelle processus arrêté en T. Il est facile de montrer que si on pose

$$C_n = 1_{n \leqslant T}$$

alors le processus $(C_n)_{n\geqslant 1}$ est prévisible et $(C\cdot X)_n=X_n^T$ donc on peut conclure que

Théorème 19. Si T est un temps d'arrêt et $(X_n)_{n\geq 0}$ est une (sur-)martingale, alors $(X_n^T)_{n\geq 0}$ est une (sur-)martingale et en particulier

$$\mathbb{E}[X_{n\wedge T}] \leqslant \mathbb{E}[X_0]$$

dans le cas des sur-martingales (avec égalité pour les martingales).

Remarque 20. Soit $(X_n)_{n\geqslant 0}$ la marche aléatoire simple sur \mathbb{Z} avec $X_0=0$, alors $(X_n)_{n\geqslant 0}$ est une martingale et pour tout t.a. T on a que

$$\mathbb{E}[X_{n \wedge T}] = \mathbb{E}[X_0] = 0$$

Mais en général

$$\mathbb{E}[X_T] \neq 0$$

en effet si $T=\inf\{n>0\colon X_n=1\}$ alors par récurrence on a que $\mathbb{P}(T<+\infty)=1$ et $X_T=1$ qui donne $\mathbb{E}[X_T]=1$. Donc la convergence L^1 de $X_{T\wedge n}$ vers X_T n'a pas toujours lieu.

Théorème 21. (THÉORÈME D'ARRÊT OPTIONNEL DE DOOB) Soit T un t.a. et $(X_n)_{n\geqslant 0}$ une sur-martingale, alors X_T est integrable et $\mathbb{E}[X_T]\leqslant \mathbb{E}[X_0]$ dans les cas suivantes :

- i. T est borné
- ii. X est borné et $T < +\infty$ p.s.
- iii. $\mathbb{E}[T] < +\infty$ et pour tout K > 0 et tout $n \ge 1$

$$|X_n - X_{n-1}| \leq K$$
.

 $iv. \ X_n \geqslant 0 \ pour \ tout \ n \geqslant 0 \ et \ T < + \infty \ p.s.$

Démonstration. On sait que pour tout $n \ge 1$

$$\mathbb{E}[X_{n\wedge T}-X_0]\leqslant 0.$$

Arrêt optionnel 7

(i) Si $T \leq N$ il suffit de prendre n = N. (ii) On peut utiliser la convergence dominée pour montrer que

$$0 \geqslant \lim_{n} \mathbb{E}[X_{n \wedge T} - X_0] = \mathbb{E}[\lim_{n} (X_{n \wedge T} - X_0)] = \mathbb{E}[X_T - X_0].$$

(iii) On a que

$$|X_{n \wedge T} - X_0| \leqslant \sum_{k=1}^{T \wedge n} |\Delta X_k| \leqslant KT$$

si $|\Delta X_k| \leq K$ pour tout $k \geq 0$. Du fait que $\mathbb{E}[T] < +\infty$ on en déduit par convergence dominée que $\mathbb{E}[X_T] \leq \mathbb{E}[X_0]$. (iv) La suite $(X_{n \wedge T})_{n \geq 0}$ est positive et converge p.s. à X_T donc par le lemme de Fatou on a que

$$\mathbb{E}[X_0] \geqslant \liminf_n \mathbb{E}[X_{n \wedge T}] \geqslant \mathbb{E}[\liminf_n X_{n \wedge T}] = \mathbb{E}[X_T].$$