Intro to Algorithms, COMP-160, Homework #1

Benjamin Tanen, 02/02/2016

3. Let f(x) = O(x) and g(x) = O(x). Let c be a positive constant. Prove or disprove that $f(x) + c \cdot g(y) = O(x + y)$.

Because f(x) = O(x) and g(x) = O(x), we know $f(x) \le c_1 \cdot x$ and $g(y) \le c_2 \cdot y$ for some c_1 and c_2

$$f(x) + c \cdot g(y) \le c_1 \cdot x + c \cdot c_2 \cdot y = c_3(x+y)$$

We can define c_1 and c_2 such that $c_1 = c \cdot c_2 = c_3$, showing the existence of a valid c_3 .

Therefore, $\exists c_n$ such that $f(x) + c \cdot g(y) \leq c_n \cdot (x+y)$, so $f(x) + c \cdot g(y) = O(x+y)$.