

PROJECT REPORT

TITLE - REAL-TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM

TEAM ID: PNT2022TMID42318

TEAM MEMBERS

Vinitha.R, Kaviya.K, Shanthini.P, Gokul Kannan.S

ADITHYA INSTITUTE OF TECHNOLOGY

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VINITHA.R -710119106010

KAVIYA.K - 710119106005

SHANTHINI.P	- 710119106302
GOKULKANNAN.S	- 710119106004

DATE:

PLACE:

ABSTRACT

Water pollution is one of the biggest threats for the green globalization. Water pollution affects human health by causing waterborne diseases. To prevent the water pollution, necessary steps are to be taken. First step is to estimate the water parameters like pH, turbidity, conductivity etc., as the variations in the values of these parameters point towards the presence of pollutants. The contamination level of water has been determined by comparing the obtained parameters with their respective ideal ranges. The sensors are interfaced with Arduino UNO and Raspberry Pi for data processing and transmission. The system is designed to float on the water body there by transmitting the measured data trough Wi-Fi to the remote place. In the present scenario, water parameters are detected by chemical tester laboratory test, where the testing equipment's are stationary and samples are provided to testing equipment's. Thus, it is a manual system with tedious process and is very time consuming. In order to minimize the time and to make the system automated, the testing equipment's can be placed in the river water and detection of pollution can be made remotely. To ensure the safe supply of drinking water, the quality should be monitored in real time for that purpose

Arduino based water quality monitoring has been proposed. In this report, the design of Arduino based water quality monitoring system that monitors the quality of water in real time is presented. This system consists of different sensors which measures the water quality parameter such as pH, conductivity, muddiness of water, temperature. The measured values from the sensors are processed by microcontroller and the processed values are transmitted using GSM to the concerned authority.

INTRODUCTION

PROJECT OVERVIEW

- River water qualitycan be monitored by the web application.
- Can be able to know if there are any dust particles present in the water.
- The PH level of the water can be monitored.
- Water temperature can be monitored.
- Alerting the authorities if the water quality is not good so that theycan go and announce the localities not to drink that water.

PURPOSE

- The main purpose is to maintain and restore the wholesomeness of national aquatic resources by prevention and control of pollution
- To ensure that safe drinking water is supplied to the public
- To protect, restore, and enhance environmental quality towards good public health.
- Then also to check the waste water is safe for discharge into public streams, rivers and waterways.

LITERATURE SURVEY

EXISTING PROBLEM

There are several types of impurities in water resource.

BIOLOGICAL IMPURITIES

These are caused by the presence of living organisms. They include,

- Algae
- Protozoa
- Pathogens
- Bacteria

BIOLOGICAL IMPURITIES

These are caused by the presence of living organisms. They include,

- Algae
- Protozoa
- Pathogens
- Bacteria

COLLOIDAL IMPURITIES

Theseinclude,

- Organic waste products
- Amino acids

If we consume the water which have the impurities, we will be affected by the diseases such as,

- Cholera
- Diarrhea
- Dysentery
- Typhoid

REFERENCES

- K. S. Adu -Manu, C. Tapparello, W. HeinzelmaN, F. A. Katsriku, and J.-D. Abdulai "Water quality monitoring using wireless sensor networks: Current trends and future research
- directions," ACM Transactions on Sensor Networks (TOSN), vol. 13, p. 4, 2017
- B. Paul, "Sensor based water quality monitoring system," BRAC University, 2018
- Central Pollution Control Board (2013) Status of water quality in India 2011. Central Pollution Control Board.
- New Delhi Central Water Commission Ministry of Water Resources India (2014)
- Report on Krishna River Basin Version 2.0 Geetha S. Gowthami (2016) Internet of things enabled real time water quality monitoring system.
- Project R. Rishi MS. Lata R. Sharma R (2016) Application of environmetrics statistical models and water quality index for ground- water quality characterization of alluvial aquifer of Nalagarh Valley, Himachal Pradesh. India. Sustain Water Resource Management.
- Huang L (2012) Unmanned monitoring system of rivers and lakes based on WSN, 495-498 Jiang P. Xia H. He Z, Wang Z (2009) Design of a water environment monitoring system based on wireless sensor networks.

- Kaur 1, Bhardwaj R. Arora S (2017) Assessment of ground water quality for drinking and irrigation purposes using hydro chemical studies in Malwa region, southwestern part of Punjab India.
- Nikhil Kedia, Water Quality Monitoring for Rural Areas-A Sensor Cloud Based Economical Project, in 1st International Conference on Next Generation Computing Technologies Dehradun, India, 4-5 September 2015.
- Jayti Bhatt, Jignesh Patoliya, Iot Based Water Quality Monitoring System, IRFIC, 21feb, 2016.
- Michal lom, ondrej priby & miroslav svitek, Internet 4.0 as a part of smart cities, 2016
- Mithaila Barabde, shruti Danve, Real Time Water Quality Monitoring System, vol 3, June 2015.
- Akanksha Purohit, Ulhaskumar Gokhale, Real Time Water Quality Measurement System based on GSM, IOSR (IOSR-JECE) Volume 9, Issue 3, Ver. V (May -Jun. 2014)

PROBLEM STATEMENT DEFINITION

Due to the fast growing, urbanization supply of safe drinking water is a challenge for the every city authority. Water can be polluted any time. So, the water we reserved in the water tank at our roof top or basement in our society or apartment may not be safe. Still in India most of the people use simple water purifier that is not enough to get surety of pure water. Sometimes the water has dangerous particles or chemical mixed and general purpose, water purifier cannot purify that. And it's impossible to check the quality of water manually in every time. So, an automatic real-time monitoring system is required to monitor the health of the water reserved in our water tank of the society or apartment. So, it can warn automatically if there is any problem with the reserved water. And we can check the quality of the water anytime and from anywhere. By keeping this mind, we designed this system especially for residential areas.

IDEATION AND PROPOSED SOLUTION

EMPATHY MAP CANVAS

An empathy map is a simple, easy-to-digest visual that captures knowledgeabout a user's behaviours, and attitudes. It is a useful tool to helps teams better understand theirusers. Creating an effective solutionrequires understanding the true problemand the person who is experiencing it. The exercise of creating the map helps participants considerthings from the user's perspective along with his or her goals and challenges.

IDEATION & BRAINSTORMING

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount ofcreative solutions.

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room

Step-1: Team Gathering, Collaboration and Select the Problem Statement.

Step-2: Brainstorm, Idea Listing and Grouping.

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

① 20 minutes

Step-3: Idea Prioritization

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

① 20 minutes

PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem	IOT Based Real Time River Water
	Statement	QualityMonitoring and Control
		System
2.	Idea / Solution	• To monitor the quality of water
	description	using sensors like temperature,
		potentiometer(pH), turbidity,
		salinity and so on.
		 Collecting those data andstoring
		it in cloud and perform analyse to
		check if the water is
		contaminated or not for drinking.
3.	Novelty /	1.Based on the collected data
	Uniqueness	prediction is made whether the water
		can be used for cultivation of
		specific cropsand suitable forthe
		aquatic animals.
4.	Social Impact /	Algal growth, fertilizers, pesticides
	Customer	cause riverpollution which can
	Satisfaction	impact all living beings.
5.	Business Model	Service based product is developed
	(Revenue	to serve the local peopleto know the
	Model)	quality of water before consuming it

		or using it for any purpose.
6.	Scalability of the Solution	Developing the product as both web and mobile application it is portable, and data canbe accessed from anywhere anytime.

PROBLEM SOLUTION

WHO IS YOUR CUSTOMER?	EXPLORE LIMITATIONS TO BUY / USE YOUR PRODUCT OR SERVICE	HOW ARE YOU GOING TO BE DIFFERENT THAN COMPETITION?	
FOCUS ON FREQUENT, COSTLY OR URGENT PROBLEM TO SOLVE	UNDERSTAND THE CAUSE OF THE PROBLEM	TAP INTO, RESEMBLE OR SUPPORT EXISTING BEHAVIOR	
DESIGN TRIGGERS THAT FIT REAL LIFE, SPARK ASSOCIATIONS, MAKE IT FAMILIAR	YOUR	BE WHERE YOUR	
ADD EMOTIONS FOR STRONGER MESSAGE	"DOWN TO EARTH" SOLUTION GUESS	CUS IOMERS ARE	

REQUIREMENT ANALYSIS

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story/ Sub-Task)
FR-1	User Login	Confirmation throughverified password

FR-2	View WaterDetails	View current water details in
		website
		View traditional water
		eligibility in website
FR-3	Logout	Logs out the usersuccessfully

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description	
	Requirement		
NFR-1	Usability	Load time for user interface	
		screens shall not be more than 2	
		seconds.	
NFR-2	Security	User account is password	
		protected	
		Account creation doneonly after	
		emailverification	
NFR-3	Reliability	Users can access their account	
		98% of thetime without failure	
NFR-4	Performance	Load time for user interface	
		screens shall not bemore than 2	
		seconds.	
		Login info verified within 10	
		seconds.	
NFR-5	Availability	Maximum down timewill be	
		about4 hours	

NFR-6	Scalability	System can
		handle about1000
		users at any
		giventime

PROJECT DESIGN

DATA FLOW DIAGRAMS

FLOW CHART

SOLUTION & TECHNICALARCHITECTURE

Solution architecture is a complex process — with many sub-processes — that bridgesthe gap between business problems and technology solutions. Its goals areţo

SOLUTION ARCHITECTURE DIAGRAM

TECHNICAL ARCHITECTURE DIAGRAM

USER STORIES

User Type	Function al	User StoryNum	User Story /	Accepta nce	Priori ty	Relea se
	Require	ber	Task	criteria		
	men t (Epic)					
User(Mo	Check	USN-1	User can	User can	High	Sprint
bile	Notificati		check	check the		-1
user)	on		then	notificati		
			notificati	on		
			on of the			
			alert			
			message.			
	Check	USN-2	User can	User can	High	Sprin
			check	check		t-1
			the level			
			of water			
	water		Parameter	the level		
			s like	of water		
			temperatu			
			re,			
	parame		humidity	paramete		
			, PH	rs		
			level etc.			

PROJECT PLANNING & SCHEDULING

SPRINT PLANNING & ESTIMATION & DELIVERY SCHEDULING

Sprin t	Functional	User	User Story / Task	Story Point	Priorit	Team
l	Requirement	Story Numbe	Task	S	y	Member
	(Epic)	r		5		S
Sprint -1		USN-1	As a user, I can check the notification of the alert message.	2 0	High	Vinitha. R
Sprint -2	Check water	USN-2	As a user, I can check the level of water parameters like temperature, humidity, PH level	2 0	High	Shanthini .P
Sprint -3	Registration Page	USN-3	As a user, I can register into the appication	2 0	High	Kaviya .K
Sprint -4	Login Page	USN-4	Asa user, I can logininto the applicatio	2 0	High	Gokul Kannan.S

	n		
	11		

Project Tracker, Velocity & Burndown Chart

Sprint	Total Story	Duration	Sprint Start	Sprint End Date	Story Points	Sprint Release Date
	Points		Date	(Planned)	Completed	(Actual)
					(ason	
					Planned	
					EndDate)	
Sprint-	20	6 Days	24 Oct	29 Oct	20	29 Oct 2022
1			2022	2022		
Sprint-	20	6 Days	31 Oct	09 Nov	20	09 Nov 2022
2			2022	2022		
Sprint-	20	6 Days	10 Nov	12 Nov	20	12 Nov 2022
3			2022	2022		
Sprint-	20	6 Days	12 Nov	13 Nov	20	13 Nov 2022
4			2022	2022		

REPORTS FROM JIRA

Jira Software is part of a family of products designed to help teams of all types manage work. Originally, Jira was designed as a bug and issue tracker. But today, Jira has evolved into a powerful work management tool for all kinds of use cases, from requirements and test case management to agile software development.

Jira is one of the best open-source tools for planning and tracking in Agile methodology. Development teams use Jira for tracking bugs and projects, managing Scrums, and visualizing

workflows with Kanban boards. Workflows in Jira make it easy to plan, track, release, and report on software.

CODING &

SOLUTIONING

FEATURE 1


```
"typeId": "NodeMCU",
    "deviceId":"123456"
  "auth": {
    "token": "v_I9Wzhs-oqBigzcD9"
  }
def myCommandCallback(cmd):
  print("Message received from IBM IoT
Platform: %s" % cmd.data['command'])
  m=cmd.data['command']
client =
wiotp.sdk.device.DeviceClient(config=myConfig,
logHandlers=None)
client.connect()
while True:
  ph=random.randint(1,5)
  turb=random.randint(0,5)
  myData={'Phvalue':ph,'turbidity':turb}
  client.publishEvent(eventId="status",
msgFormat="json", data=myData, qos=0,
onPublish=None)
  print("Published data Successfully: %s",
myData)
  client.commandCallback =
myCommandCallback
  time.sleep(2)
```

deviceCli.commandCallback = myCommandCallback	
deviceCli.disconnect()	

ADD A DEVICE

FEATURE 2

RESULT

Whenever the sensed parameter values exceed the threshold, message is sent to authorized person. Based on the parameters sensed by different sensors, an alert message will be received by the authorized person and accordingly they take necessary action to prevent or control pollution level.

The measured results are compared with drinking water quality standards defined by World Health Organization (WHO).

SAFE LIMITS FOR DRINKING WATER

Parameters monitored	Quality range	Units
Turbidity	5-10	NTU
рН	6.5-8.5	рН
Conductivity	300-800	microS/cm

ADVANTAGES

The advantages of river water quality monitoring system are,

- To develop a system for continuous monitoring of river water quality at remote places.
- Due to automation it will reduce the time to check the parameters.
- This is economically affordable for common peoples.

- Provides the prevention from diseases caused by water.
- High detection in accuracy.
- Low power consumption.
- SMS alert is also send to user.

APPLICATION

Commercial and domestic use

The water for commercial uses come from the surface and under ground sources. The extend to which community uses a surface or underground source depends on which source is more abundunt in the particular area.

Water supply agencies

Water supply is the provision of water by public utilities, commercial organisations, community endeavors or by individuals usually via system of pipes.

Useful for health departments to identify the reason of water diseases

Waterborne illness have two causes of pollution eg. dangerous levels of nitrates or heavy material in the water supply due to industrial pollution or the over use of agriculture chemicals. Dirt and contamination, viruses causes different kinds of diseases.

Residential Areas

This system will be more useful in residential areas like small village or town.

In different organizations

So the system of monitoring the water quality will be very much useful in organizational area like any industry, construction sites, Hostels, Schools, colleges etc.

CONCLUSION

Real time system for water quality measurement based on GSM is presented in this report. The system is incredibly versatile and economical. It is a real-time system that measures numerous parameters pertaining to the water and send them to the monitoring center. The system can monitor water quality automatically, and it is low in cost and doesn't need individuals on duty The system has good flexibility. It is a versatile system, because of which simply by replacing the sensors and by making some changes within the computer code, the system can be used to measure some other parameters of water. The system is reliable and easy to maintain and it can be extended to measure water pollution as well. By effectively using the proposed system, one can save time and cost can also be reduced.

Monitoring of Turbidity, PH & Temperature of Water makes use of water detection sensor with unique advantage and existing GSM network. The system can monitor water quality automatically, and it is low in cost and does not require people on duty. So, the water quality testing is likely to be more economical, convenient and fast. The system has good flexibility. Only by replacing the corresponding sensors and changing the relevant software programs, this system can be

used to monitor other water quality parameters. The operation is simple. The system can be expanded to monitor hydrologic, air pollution, industrial and agricultural production and so on.

By keeping the embedded devices in the environment for monitoring enables self protection(i.e., smart environment) to the environment. To implement this need to deploy the sensor devices in the environment for collecting the data and analysis. By this we can bring the environment into real life i.e., it can interact with other objects through the network.

FUTURE SCOPE

The capability of water quality monitoring system can be enhanced to obtain more efficient reliable results. The number of parameters to be sensed can be increased by the addition of multiple sensors to measure dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), ammonia nitrogen, nitrate, nitrite, phosphate. The system can be further upgraded using wireless sensor networks. The system can be expanded to monitor hydrologic, air pollution, industrial and agricultural production and so on. It has widespread application and extension value. Work can be carried on to include controlling the supply of water.

For monitoring environmental conditions, drinking water quality, treatment and disinfection of waste water etc. This system could also be implemented in various industrial processes. The system can be modified according to the needs of the user and can be implemented along with lab view to monitor data on computers.

APPENDIX

SOURCE CODE

**

ESP32 + DHT22 Example for Wokwi

https://wokwi.com/arduino/projects/322410731508073042

```
*/
#include "DHTesp.h"
const int DHT_PIN = 15;
DHTesp dhtSensor;
void setup() {
 Serial.begin(115200);
 dhtSensor.setup(DHT_PIN, DHTesp::DHT22);
void loop() {
 TempAndHumidity data = dhtSensor.getTempAndHumidity();
 Serial.println("Temp: " + String(data.temperature, 2) + "°C");
 Serial.println("Humidity: " + String(data.humidity, 1) + "%");
 Serial.println("---");
 delay(1000);
```

```
WOKWI B SAVE
                                                                                                                                                                                                                         Docs
   esp32-dht22.ino diagram json libraries.txt Library Manager
                                                                                                                           ESP32 + DHT22 Example for Wokwi
            https://wokul.com/ardulno/projects/322410731508073042
            const int DHT PIN - 15;
           void setup() {
    Serial.begin(115200);
    dhtSensor.setup(OHT_PIN, DHTesp::DHT22);
            void loop() {
   TempAndHumidity data + dhtSensor.getTempAndHumidity();
   Serial.printin("Temp: " + String(data.temperature, 2) + ""C");
   Serial.printin("Humidity: " + String(data.humidity, 1) + "%");
   Serial.printin("---");
}
                                                                                                                       Humidity: 40.0%
              delay(1000);
                                                                                                                       Temp: 24.00°C
                                                                                                                       Humidity: 40.0%
                                                                                                                       Temp: 24.00°C
                                                                                                                       Humidity: 40.0%
                                                                                                                                                                                                                            W + 0
```

Github link: https://github.com/IB M-EPBL/IBMProject-410951660639371

Demo link: https://youtu.be/vAFPl zh0yVY