Cap.: 13-Movimiento periódico

- **13.3**. La punta de un diapasón efectúa 440 vibraciones completas en 0.500 s. Calcule la frecuencia angular y el periodo del movimiento.
- **13.2**. Si un objeto en una superficie horizontal sin fricción se une a un resorte, se emplaza y después se suelta, oscilará. Si se desplaza 0.120 m de su posición de equilibrio y se suelta con rapidez inicial cero, después de 0.800 s su desplazamiento es de 0.120 m en el lado opuesto, habiendo pasado la posición de equilibrio una vez durante este intervalo. Calcule a) la amplitud, b) el periodo y c) la frecuencia.
- **13.4**. En la figura 13.30 se muestra el desplazamiento de un objeto oscilante en función del tiempo. Calcule a) la frecuencia, b) la amplitud, c) el periodo y d) la frecuencia angular de este movimiento.

- **13.6**. En un laboratorio de física, se conecta un deslizador de riel de aire de 0.200 kg al extremo de un resorte ideal de masa despreciable y se pone a oscilar. El tiempo transcurrido entre la primera vez que el deslizador pasa por la posición de equilibrio y la segunda vez que pasa por este punto es de 2.60 s. Determine la constante de fuerza del resorte.
- **13.8**. Cuando una masa de 0.750 kg oscila en un resorte ideal, la frecuencia es de 1.33 Hz. a) ¿Cuál será la frecuencia si se agregan 0.220 kg a la masa original, y b) y si se restan de la masa original? Intente resolver este problema sin calcular la constante de fuerza del resorte.
- **13.9**. Un oscilador armónico tiene una masa de 0.500 kg unida a un resorte ideal con constante de fuerza de 140 N/m. Calcule a) el periodo, b) la frecuencia y c) la frecuencia angular de las oscilaciones.
- **13.11**. Un bloque de 2.00 kg, que se desliza sin fricción, se conecta a un resorte ideal con constante de fuerza de 300 N/m. En t=0, el resorte no está estirado ni comprimido, y el bloque se mueve en la dirección negativa a 12.0 m/s. Calcule a) la amplitud y b) el ángulo de fase. c) Escriba una ecuación para la posición en función del tiempo.
- **13.16**. Un objeto de 0.400 kg en MAS tiene $a_x = -2.70 \text{ m/s}^2$ cuando x = 0.300 m. ¿Cuánto tarda una oscilación completa?
- **13.17.** Sobre una pista de aire horizontal sin fricción, un deslizador oscila en el extremo de un resorte ideal, cuya constante de fuerza es 2.50 N/cm. En la figura 13.31 la gráfica muestra la aceleración del deslizador en función del tiempo. Calcule a) la masa del deslizador; b) el desplazamiento máximo del deslizador desde el punto de equilibrio; c) la fuerza máxima que el resorte ejerce sobre el deslizador.

- **13.20.** Un objeto está en MAS con periodo de 0.300 s y una amplitud de 6.00 cm. En t = 0, el objeto está instantáneamente en reposo en x = 6.00 cm. Calcule el tiempo que el objeto tarda en ir de x = 6.00 cm a x = -1.50 cm.
- **13.43**. En San Francisco un edificio tiene aditamentos ligeros que consisten en bombillas pequeñas de 2.35 kg con pantallas, que cuelgan del techo en el extremo de cordones ligeros y delgados de 1.50 de longitud. Si ocurre un terremoto leve, ¿cuántas oscilaciones por segundo harán tales aditamentos?
- **13.45**. Una manzana pesa 1.00 N. Si la colgamos del extremo de un resorte largo con constante de fuerza de 1.50 N/m y masa despreciable, rebota verticalmente en M.A.S. Si detenemos el rebote y dejamos que la manzana oscile de lado a lado con un ángulo pequeño, la frecuencia de este péndulo simple es la mitad de la del rebote. (Puesto que el ángulo es pequeño, las oscilaciones de lado a lado no alteran apreciablemente la longitud del resorte.) ¿Qué longitud tiene el resorte no estirado (sin la manzana)?.
- 13.68. Un bloque de masa M descansa en una superficie sin fricción y está conectado a un resorte horizontal con constante de fuerza k. El otro extremo del resorte está fijo a una pared (figura 13.36). Un segundo bloque de masa m está sobre el primero. El coeficiente de fricción estática entre los bloques es μ_s . Determine la amplitud de oscilación máxima que no permite que el bloque superior resbale.

13.89. En la figura 13.39, la esfera superior se suelta del reposo, choca contra la esfera inferior estacionaria y se pega a ella. Ambos cordones tienen 50.0 cm de longitud. La esfera superior tiene masa de 2.00 kg y está inicialmente 10.0 cm más alta que la inferior, cuya masa es de 3.00 kg. Calcule la frecuencia y el desplazamiento angular máximo del movimiento después del choque.

