UCC28740 DESIGN CALCULATIONS

The Values Entered by the User on the DESIGN INPUT Page are Used in the Design Calculations

	INPUT			
Input Voltage Type	AC or DC:	AC		
Minimum Input Voltage	V _{INPUTmin} =	85	VAC	
Maximum Input Voltage	V _{INPUTmax} =	265	VAC	User Input Values From Design Input
Nominal Input Voltage	V _{INPUTnom} =	230	VAC	Page
Minimum Line Frequency	f _{LINEmin} =	47	Hz	
Minimum Input Voltage for Start-Up	V _{INPUTrun} =	80	VAC	
Minimum Peak Bulk Input Voltage	V _{BULKmin} =	120.208	V	
Maximum Peak Bulk Input Voltage	V _{BULKmax} =	374.767	V	
Nominal Peak Bulk Input Voltage	V _{BULKnom} =	325.269	V	
Turn-On Peak Bulk Input Voltage	V _{BULKstartup} =	113.137	V	
Line Cycle Period	t _{LINE} =	21.277	ms	
	OUTPUT			
Regulated Output Voltage, Constant Voltage Mode	V _{OUT_CV} =	45	V	
Full Load Rated Output Current	I _{OUT} =	0.6	A	
Target Constant Current Mode Output Load Threshold	I _{OCC_target} =	0.6	A	
Target Minimum Output Voltage During Constant Current Regulation	V _{OUT_CC} =	30	V	
Allowable Output Voltage Drop During Load-Step Transient in Constant Voltage Mode	V _{OUTA} =	0.5	V	User Input Values From Design Input Page
Maximum Peak to Peak Output Voltage Ripple	V _{RIPPLE} =	30	mV	
Required Positive Load Step Transient Current	I _{TRAN} =	0.6	A	
Maximum Allowable Response Time to Load Step Transient	t _{RESP} =	20	ms	
Output Over Voltage Protection	V _{OUT_OVP} =	50	V	
Maximum Stand By Power Dissipation	P _{SBtarget} =	50	mW	
Estimated Efficiency	η =	0.850		
Output Power	P _{out} =	27.000	W	
Estimated Input Power	P _{IN} =	31.765	W	

COMPONENT PARAMETER CALCULATIONS

INPUT CAPACITOR, C _{BULK}						
Recommended Input Bulk Capacitance	C _{BULKrecommended} =	123.44	μF			
Actual Input Bulk Capacitance	C _{BULKactual} =	140.000	μF L	lser Input		
Input Capacitor Value Used in Calculations	C _{BULK} =	140.000	μF			
Minimum Valley Voltage on Input Bulk Capacitors	V _{BULKvalley} =	102.329	V			
Minimum Input Capacitor Ripple Current Rating	I _{CINripple} =	772.655	mA			
Minimum Input Capacitor Voltage Rating	V _{Cin} =	400	V			

INPUT FUSE			
Voltage Rating	V _{FUSE} =	265	VAC
Peak Input Current	I _{INpeak} =	2.094	A

BRIDGE RECTIFIER			
Voltage Rating	V _{BRIDGE_minrating} =	400.000	V
Current Rating	I _{BRIDGE_minrating} =	0.621	A
Forward Voltage Drop	V _{F_BRIDGE} =	1.100	V User Input
Full Load Power Dissipation of Bridge Rectifier	P _{BRIDGE} =	1699.840	mW

TRANSFORMER TURNS-RATIO, N _{PS}			
Demagnetizing Duty Cycle	D _{DEMAG_CC} =	0.425	Device Parameter
Amplitude Modulation Control Ratio	K _{AMnom} =	4	Device Parameter
Maximum Desired Switching Frequency	f _{max_target} =	100.000	kHz User Input
Desired Switching Period	t _{SW_target} =	10.000	μs
Resonant Frequency During DCM Dead Time	f _{RES} =	0.500	MHz
Time to First Resonant Valley	t _{res} =	1.000	μs
Estimated Maximum Duty Cycle	D _{max_target} =	0.475	

Ideal Primary to Secondary Turns Ratio	N _{PSideal} =	2.4728	Ideal N _{PS}
Actual Primary to Secondary Turns Ratio	N _{PSactual} =	2.769	User Input
Primary to Secondary Turns Ratio Used in Calculations	N _{PS} =	2.769	
Actual Flyback Voltage	V _{FLYBACK} =	128.066	V
Allowable Leakage Inductance Voltage Spike	V _{LEAKAGE} =	197.167	V
Estimated Maximum On-Time	t _{ONestimated} =	5.003	μs
Estimated Transformer Efficiency	η_{XFMR} =	0.9	

CURRENT SENSE RESISTOR, $R_{\rm cs}$, PEAK PRIMARY CURRENT	, I _{PP}			
Constant Current Regulation Factor, Minimum	V _{CCR_min} =	318	mV	Device Parameter
Constant Current Regulation Factor, Nominal	V _{CCR_nom} =	330	mV	Device Parameter
Constant Current Regulation Factor, Minimum	V _{CCR_min} =	343	mV	Device Parameter
Initial estimate for L _P	L _{P_estimate} =	593.078	μΗ	
Recommended Current Sense Resistor Value	R _{CSrecommended} =	0.708	Ω	
Actual Current Sense Resistor Used	R _{CSactual} =	0.750	Ω	User Input
Current Sense Resistor Value Used in Calculation	R _{cs} =	0.750	Ω	
Power Dissipation of R _{cs}	P _{Rcs} =	141.254	mW	
Maximum Current Sense Threshold Voltage, Minimum	V _{CSTmax_min} =	738	mV	Device Parameter
Maximum Current Sense Threshold Voltage, Nominal	V _{CSTmax_nom} =	773	mV	Device Parameter
Maximum Current Sense Threshold Voltage, Maximum	V _{CSTmax_max} =	810	mV	Device Parameter
Peak Primary Current, Minimum, Full Load	I _{PPmin} =	0.984	Α	
Peak Primary Current, Nominal, Full Load	I _{PPnom} =	1.031	Α	
Peak Primary Current, Maximum, Full Load	I _{PPmax} =	1.080	Α	
Actual Output Current During Constant Current Mode	I _{OCC_actual} =	0.606	Α	
Peak Primary Current During Light Load, FM Mode	I _{PP_FM} =	0.258	A	
Worst Case Peak Primary Current	I _{PP_WC} =	1.091	Α	Assumes -1%R $_{\rm CS}$ and V $_{\rm CSTmax_max}$
Maximum Output Current During Constant Current Mode	I _{OCCmax} =	0.642	A	Worst Case Estimate

TRANSFORMER PRIMARY INDUCTANCE, L _p				
Calculated L _P to meet f _{max target} with chosen R _{CS}	L _{Pcalc} =	586.763	μΗ	
Recommended Primary Inductance to meet t _{CSLEB} with chosen R _{CS}	L _{Precommended} =	586.763	μΗ	Ideal L _P
Actual Primary Inductance	L _{Pactual} =	190.000	μΗ	User Input
Primary Inductance Used in Calculations	L _P =	190.000	μΗ	
Actual Maximum Nominal Switching Frequency	f _{max} =	277.940	kHz	Design exceeds capability of part
Actual Switching Period	t _{SWactual} =	3.598	μs	
Actual Maximum On-Time	t _{ONmax} =	1.914	μs	
Maximum Duty Cycle	D _{MAX} =	0.532		
Demagnetization Time	t _{DEMAG} =	1.529	μs	
Primary RMS Current	I _{PRI_RMS} =	0.434	A	
Secondary Peak Current	I _{SPmax} =	2.854	A	
Secondary RMS Current	I _{SEC_RMS} =	1.074	A	
VDD Under Voltage Lock Out (UVLO) Voltage, Maximum	VDD _{OFF_max} =	8.150	V	Device Parameter
VDD Under Voltage Lock Out (UVLO) Voltage, Minimum	VDD _{OFF_min} =	7.350	V	Device Parameter
Recommended Auxiliary to Secondary Turns Ratio	N _{ASrecommended} =	0.301		
Recommended Primary to Auxilliary Turns Ratio	N _{PArecommended} =	9.205		
Actual Primary to Auxiliary Turns Ratio	N _{PAactual} =	9.000		User Input
Primary to Auxiliary Turns Ratio Used in Calculations	N _{PA} =	9.000		
Nominal VDD Voltage	VDD =	12.980	v	
Actual Auxiliary to Secondary Turns Ratio	N _{AS} =	0.308		
Minimum On-Time, t _{CSLEB}	t _{ONmin(limit)} =	280.000	ns	
Actual Minimum On-Time	t _{ONmin(actual)} =	130.632	ns	Increase Primary Inductance
Minimum Demagnetizing Time	t _{DEMAGmin} =	0.382	μs	
Minimum Output Voltage During Constant Current Mode	V _{OUT_CCmin} =	26.702	v	

MOSFET, Q			
Required Drain to Soure Voltage Rating , V _{DSrated} =	V _{DSmin_rating} =	653.683 V	
MOSFET Rated Drain to Source Voltage	V _{DS} =	700.000 V	
Output Capacitance of Selected MOSFET	C _{oss} =	150 pF	
Drain to Source On-Resistance of Selected MOSFET	R _{DSon} =	1.400 Ω	User Input Values From Design Input

MOSFET Fall Time	t, =	52.000 ns	Page
MOSFET Turn Off Delay Time	· ·	80 ns	-
	t _{Doff} =		_
MOSFET Total Gate Charge	Q _g =	30.000 nC	
Actual Resonant Frequency During DCM Dead Time	f _{RES_actual} =	0.667 MHz	
Actual Estimated Time to First Resonant Valley	t _{RES_actual} =	0.750 μs	
Valley Switching Achieved?	YES or NO	YES	
MOSFET V _{DS} Derating	V _{DSderated} =	0.934	
MOSFET Continuous Current Rating	I _{DRAIN} =	4.593 A	
MOSFET Pulsed Current Rating	I _{PULSED} =	10.909 A	
Estimated MOSFET Conduction Losses	P _{FETconduction} =	0.264 W	
Estimated MOSFET Switching Losses	P _{FETswitching} =	5.014 W	
Total Estimated MOSFET Power Loss	P _{FET} =	5.277 W	
Recommended Clamping Voltage on Drain	V _{DRAINclamp} =	162.167 V	
	DKAINGAMP		
OUTPUT DIODE, D _{OUT}			
Forward Voltage Drop of Output Rectifier, V _F =	V _F =	1.250 V	User Input
Minimum Required Blocking Voltage Rating	V _{DOUT_blocking} =	243.909 V	
Required Minimum Average Rectified Output Current	I _{Dout} = P _{Dout} =	1.074 A	
Power Dissipation of D _{OUT}	P _{Dout} =	0.758 W	
ALIVILIA BY WINDING DIODE D			
AUXILIARY WINDING DIODE, D _{AUX}	V		
Auxiliary Rectifier Forward Voltage Drop	V _{FA} =	1.250 V	User Input
Minimum Required Blocking Voltage Rating	V _{DBIAS_blocking} =	68.465 V	
OUTPUT INDUCTOR, L _{out}			
DCR of Output Inductor	DCR _{Lout} =	0 mΩ	User Input
DCR of Output Inductor	DOR Lout	UIII12	Oser Input
OUTPUT CAPACITOR, C _{OUT}			
	_		The importance of using opto feedback
Minimum Required C _{out} Without Opto-Coupled FeedBack	C _{OUT_no_opto} =	24000.000 µF	should be noted here!
Becommanded Minimum Dequired Output Congestor With Onto Coupled			
Recommended Minimum Required Output Capacitor With Opto-Coupled FeedBack	C _{OUTrecommended} =	220.000 µF	
A short Code of Comparison and I have	C -	224 000 5	Haarlanut
Actual Output Capacitance Used	C _{OUTactual} =	221.000 μF	User Input
C _{out} Used in Calculations	C _{OUT} =	221.000 μF	
Required Minimum Ripple Current Rating	I _{COUTrms} = ESR _{Coutrecommended} =	0.944 A	
Recommended Maximum ESR Actual ESR of C _{out} Used	ESR _{Coutactual} =	10.512 mΩ 50.000 mΩ	User Input
ESR Used in Calculations	ESR _{Cout} =	50.000 mΩ	Oser input
Resultant Output Voltage Peak to Peak Ripple	V _{OUTripple} =	142.792 mV	
	ООТПРРІЕ		
VOLTAGE SENSE DIVIDER, R _{VS1} , R _{VS2}			
VS Line Sense Run Current, Minimum	I _{VSLrun_min} =	190 _µ A	Device Parameter
VS Line Sense Run Current, Nominal	l _{VSLrun_nom} =	225 _µ A	Device Parameter
VS Line Sense Run Current, Maximum	VSLrun_max =	275 μA	Device Parameter
VS Line Sense Stop Current, Minimum	VSLstop_min =	70 μA	Device Parameter
VS Line Sense Stop Current, Nominal	l _{VSLstop_nom} =	80 μA	Device Parameter
VS Line Sense Stop Current, Maximum	I _{VSLstop_max} =	100 μΑ	Device Parameter
Recommended Resistor Value for Minimum Start Up Line Voltage	R _{VS1recommended} =	46.400 kΩ	
Actual Resistor Value Used for Minimum Start Up Line Voltage	R _{VS1actual} =	46.4 kΩ	User Input
R _{vs1} Value Used in Calculations	R _{vs1} =	46.4 kΩ	
Resultant Turn On Voltage, Minimum	V _{TURNONmin} =	56.105 VAC	
Resultant Turn On Voltage, Nominal	V _{TURNONnom} =	66.440 VAC	
Resultant Turn On Voltage, Maximum	V _{TURNONmax} =	81.204 VAC	
Resultant Input Brown Out Voltage, Minimum	V _{BROWNOUTmin} =	33.312 VAC	
Resultant Input Brown Out Voltage, Nominal	V _{BROWNOUTnom} =	36.265 VAC	
Resultant Input Brown Out Voltage, Maximum	V _{BROWNOUTmax} =	42.171 VAC	
Internal VS Over Voltage Threshold, Minimum	V _{OVPmin} =	4.52 V	Device Parameter
Internal VS Over Voltage Threshold, Nominal	V _{OVPnom} =	4.600 V	Device Parameter
Internal VS Over Voltage Threshold, Maximum	V _{OVPmax} =	4.710 V	Device Parameter
Recommended Resistor Value for Desired Output Over Voltage Limit	R _{VS2recommended} =	20.500 kΩ	
Actual Resistor Value Used for Desired Output Over Voltage Limit	R _{VS2actual} =	20.500 kΩ	User Input
R _{vsz} Used in Calculations	R _{vs2} =	20.500 kΩ	
Resultant Output Over Voltage Threshold, Minimum	V _{OUT_OVPmin} =	49.194 V	
Resultant Output Over Voltage Threshold, Nominal	V _{OUT_OVPnin} =	50.042 V	Actual Output Over Voltage
Resultant Output Over Voltage Threshold, Maximum	V _{OUT OVPmax} =	51.209 V	
tosatta Sapat Ovor voltago Tili coriola, Maxilliani	OUT OVPmax	31.203 V	

LINE COMPENSATION, R _{LC}				
Line Compensation Current Ratio, Nominal	K _{LCnom} =	25	A/A	Device Parameter
Total Estimated Current Sense Delay	t _{DELAY} =	130	ns	
Recommended Resistor Value for Line Compensation	R _{LCrecommended} =	5.360	kΩ	
Actual Resistor Value Used for Line Compensation	R _{LCactual} =	5.170	kΩ	User Input
R _{LC} Used in Calculations	R _{LC} =	5.170	kΩ	
Result of R _{LC} selection	Output Constant Current will have minimal deviation over input line voltage range.			

VDD CAPACITOR, C _{VDD}			
Device Supply Current During Run Mode, Maximum	I _{RUNmax} =	2.65	mA Device Parameter
VDD _{on} Voltage, Maximum	VDD _{ONmax} =	23	V Device Parameter
VDD _{OFF} Voltage, Maximum	VDD _{OFFmax} =	8.15	V Device Parameter
Estimated Minimum Switching Frequency at No-Load	f _{SWmin} =	6.342	kHz
Estimated Over Voltage Charge Duration	t _{ov} =	20.000	ms
Minimum VDD Capacitor for Start UP	C _{VDD1} =	10.000	μF
Minimum VDD Capacitor for Load Transient	C _{VDD2} =	10.000	μF
Minimum VDD Capacitor for Target Ripple on VDD	C _{VDD3} =	0.470	μF
Recommended Capacitor on VDD	C _{VDDrecommended} =	10.000	μF

OPTO-COUPLED FEEDBACK			
Reference Voltage of TL431 Shunt Regulator	VREF ₄₃₁ =	2.5	∨ User Input
Shunt Regulator Reference Input Current, Maximum	I _{REF431} =	4	μA User Input
Recommended Bottom Resistor Value for Output Voltage Set Point	R _{FB2recommended} =	44.2	ΚΩ
Actual Bottom Resistor Value Used for Output Voltage Set Point	R _{FB2actual} =	44.2	KΩ User Input
R _{FB2} Used in Calculations	R _{FB2} =	44.2	ΚΩ
Recommended Top Resistor Value for Output Voltage Set Point	R _{FB1recommended} =	750	κΩ
Actual Top Resistor Value Used for Output Voltage Set Point	R _{FB1actual} =	750	KΩ User Input
R _{FB1} Used in Calculations	R _{FB1} =	750.02	ΚΩ
Noise Injection Resistor For Loop Analysis	R _{INJ} =	20	Ω May be changed by User here
Resultant Nominal Constant Voltage Output Voltage	V _{out_cv} =	44.922	V
Minimum Current Transfer Ratio of Selected Opto-Coupler	CTR _{min} =	50	% User Input
Response Fall Time of Opto-Coupler	t _{f opto} =	3	us User Input
R _L of Specified Opto-Coupler Fall Time	R _{L_opto} =	100	Ω User Input
Cut-Off Frequency of Opto-Coupler	f _{c_opto} =	80	kHz User Input
Input Forward Voltage of Opto-Coupler	V _{F_opto} =	1.4	V User Input
Equivalent Opto-Coupler Output Capacitance	C _{OPTO} =	4.775	nF
Equivalent Internal UCC28740 Dynamic Reistance	R _{EQU} =	40	kΩ
Recommended Value for External Capacitor on Opto-Coupler	C _{EXTrecommended} =	0	uF
Actual Value of External Capacitor on Opto-Coupler Used	C _{EXTactual} =	0.0015	μF User Input
C _{EXT} Used in Calculations	C _{EXT} =	0.0015	μF
Recommended C _{FB}	C _{FBrecommended} =	0.047	μF
Actual C _{FB} Used	C _{FBactual} =	0.047	μF User Input
C _{FB} Used in Calculations	C _{FB} =	0.047	
Recommended Value For R _{FB4}	R _{FB4recommended} =	22	kΩ
Actual Value for R _{FB4} Used	R _{FB4actual} =	22	KΩ User Input
R _{FB4} Used in Calculations	R _{FB4actual} = R _{FB4} =	22	ΚΩ
Opto-Coupler Emitter Current to FB Pin Current Gain	G _{FB1} =	0.355	
FB Pin Current to Control Law Voltage Gain, Full Load	G _{FB2} =	-192	ΚΩ
Control Law Voltage to Power Stage Modulation Gain, FM Mode	K _{FM4} =	50.4	kHz/V
Power Stage Modulation (FM) to Average Current Gain	G _{P4} =	2.159	μC
Recommeded Value for Shunt Regulator Bias Resistor	R _{TLrecommended} =	1.5	ΚΩ
Actual Value of Shunt Regulator Bias Resistor Used	R _{TI actual} =	1.5	KΩ User Input
R_{\scriptscriptstyleTL} Used in Calculations	R _{TL} =	1.5	
Recommended Value for Compensation Capacitor	C _{Zrecommended} =	390	pF
Actual Value Used C _z	C _{Zactual} =	1500	pF User Input
C _z Used in Calculations	C _z =	1500	oF

