## EEE6420

# SATELLITE & OPTICAL COMMUNICATIONS

Prof Richard Langley r.j.langley@sheffield.ac.uk

## Outline Syllabus Part 1 Satellite Communications

#### Communication basics

- System components
- Noise

### Satellite Systems:

- Satellite system introduction
- Antennas
- Satellite orbits
- Satellite communications
- Astra satellite for TV broadcasting

#### **Recommended Books**

#### Benoit, H. "Satellite Television" - Arnold

- Gomez, J.M. Satellite Broadcast Systems Engineering Artech House
- Livingston, D.C. The Physics of Microwave propagation Prentice Hall
- Doble, J Introduction to Radio Propagation for Fixed and Mobile Communications Artech House
- Pritchard, W.L. & Sciulli, J.A. Satellite Communication Systems Engineering - Prentice Hall
- Pratt, T. & Bostian C.W., Satellite Communications Wiley
- Wood, J. Satellite Communications Newnes

## Communication BASICS

## **Basic Communication System**



Satcom systems use frequencies above 1GHz ( $\lambda$ <30cm) and the transmitter and receiver spacing is >> $\lambda$ .

Hence only consider **plane wave** propagation.

Signal strength at receiver estimated from Friis formula.

### COMMUNICATION TRANSMITTER



#### COMMUNICATION RECEIVER



Rectifies the modulated signal, then filters out the 455 KHz Leaving only the audio frequency or intelligence of 50 Hz - 20 KHz Which is sent to the AF amplifiers.

## **NOISE**

Fundamental challenge in communication system design is that of receiving a signal that is strong enough to detect i.e. has an acceptable signal to noise ratio.



## Noise Power

Noise power is expressed in Watts or Watts/Hz but it is more convenient in system design to relate it to a fictitious noise temperature T through the formula

P = kTB Watts

where  $k = Boltzman's constant = 1.38 \times 10^{-23} Watts/Hz/K$ 

T = absolute temperature in degrees Kelvin

B = bandwidth in Hz

The effective noise temperature does not correspond to the physical noise temperature of the noisy component in the system but is merely a theoretical concept.

## NOISE FACTOR AND NOISE FIGURE

For a linear 2 port device (amplifier) the noise factor F is defined by

$$F = \frac{C_{in} / N_{in}}{C_{out} / N_{out}} = \frac{\text{output noise power}}{\text{input noise power}}$$

where C = carrier power, N = noise power

Input noise power is equivalent to that produced by a resistor matched to the input terminal impedance of the 2 port at a standard temperature  $T_0 = 290$ K.

Hence F is a measure of the noise produced by a real component as compared with that from a perfect noise free component which has F = 1.

Now  $G = \text{amplifier gain} = C_{\text{out}}/C_{\text{in}}$ 

$$F = \frac{N_{out}}{kT_0BG} = \frac{kT_0BG + \Delta N}{kT_0BG}$$

 $kT_0BG$  = noise power with a termination at  $T_0$  = 290K

Excess noise generated by 2 port itself  $\Delta N = kT_{\rm e}BG$ 

Where  $T_e$  = temperature of fictitious resistor at input of noise free 2 port which would generate as much noise as the real noisy 2 port

Hence noise factor is given by  $F = \frac{T_0 + T_e}{T_0} = 1 + \frac{T_e}{T_0}$ 

and noise figure =  $10 \log_{10} F$  dB

#### NOISE FACTOR OF AMPLIFIERS IN CASCADE



Noise generated by each amplifier stage multiplied by gain of next stage and succeeding stages.

3 stage ampifier:

$$\begin{split} &C_{out} = C_{in}G_{1}G_{2}G_{3} \\ &N_{in} = k \; T_{0} \; B, \quad T_{0} = 290K \\ &N_{out} = k \; T_{0} \; B \; G_{1} \; G_{2} \; G_{3} + k \; T_{e1} \; B \; G_{1} \; G_{2} \; G_{3} + k \; T_{e2} \; B \; G_{2} \; G_{3} + k \; T_{e3} \; B \; G_{3} \end{split}$$

Now 
$$F_n = 1 + T_{en} / T_0$$

Then 
$$N_{out} = N_{in} G_1 G_2 G_3 + N_{in} (F_1 - 1) G_1 G_2 G_3 + N_{in} (F_2 - 1) G_2 G_3 + N_{in} (F_3 - 1) G_3$$

$$F = (C_{in}/N_{in})/(C_{out}/N_{out}) =$$

$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots \frac{F_n - 1}{G_1 G_2 \dots G_{n-1}}$$

Hence it is an advantage to have a first amplifier stage with a low noise factor  $F_1$  and a high gain  $G_1$ 

The effective noise temperature is

$$T = T_1 + \frac{T_2}{G_1} + \frac{T_3}{G_1 G_2} + \dots + \frac{T_n}{G_1 G_2 \dots G_{n-1}}$$

EXERCISE – show this relationship using  $F_n = 1 + T_{en} / T_0$ 

## NOISE TEMPERATURE OF LOSSY NETWORK

In practice the receiver will be connected to the antenna via a lossy transmission line or waveguide. This will act as an attenuator.



Attenuator is at a physical temperature T<sub>P</sub> and is terminated in matched loads.

The attenuator loss factor L is defined as:

$$L = \frac{powerin}{powerout} = \frac{P_{in}}{P_{out}}$$

The fractional power absorbed by the attenuator is

$$\frac{P_{\text{in}} - P_{\text{out}}}{P_{\text{in}}} = 1 - \frac{1}{L} = 1 - t$$

Also fractional power flowing through the reference plane from LHS = power flowing from RHS

$$tkT_{P}B + P_{n} = kT_{P}B$$

where t=1/L and  $P_n$  =noise power generated by attenuator

Hence 
$$P_n = kT_PB(1-t) = kT_PB(1-1/L)$$

\*Attenuator noise temp referred to output is  $T_{eout} = (1-1/L)T_{p}$ 

Now 
$$L = \frac{power.in}{power.out} = \frac{kT_{e.in}B}{kT_{e.out}B} = \frac{T_{e.in}}{T_{e.out}}$$

Hence 
$$T_{e.out} = \frac{T_{e.in}}{I}$$
  $T_{e.in} = LT_{e.out} & T_{e.in} = (F-1)T_0$ 

Hence noise factor for a lossy network is substituting for T<sub>eout</sub>

$$F = 1 + T_{e,in}/T_0 = 1 + (L-1)T_P/T_0$$

Now if  $T_P = T_0$ , F=L (this is usually the case)

i.e. the noise factor is numerically equal to the loss factor

e.g. In terms of noise figure, if a lossy network has an attenuation of 5 dB, its noise figure is also 5 dB.

### NB For calculations use ratio NOT dB

#### RECEIVING SYSTEM NOISE TEMPERATURE



Total system noise temperature T<sub>S</sub> has 3 components

T<sub>A</sub> = noise power received by antenna from external sources and itself

 $T_F$  = noise generated due to losses in transmission line  $T_R$  = noise power generated in receiver

\*Attenuator noise power referred to output is

$$T_{\text{eout}} = T_F = (1 - 1/L)T_P$$

Now  $T_P = T_0$  and noise temperature <u>at receiver</u> is

$$T'_{S} = \frac{T_{A}}{L} + (1 - \frac{1}{L})T_{0} + T_{R}$$

If we now refer the noise plane to the antenna then

$$T_{S} = LT'_{S}$$

$$T_{S} = T_{A} + (L-1)T_{0} + LT_{R}$$

Remember  $L = P_{in}/P_{out}$ 

So lowest  $T_S$  when L = 1 (no loss) and then  $T_S = T_A + T_R$ 

At low frequencies  $T_A >> T_R$  and receiver noise performance is of less importance.

At microwave carrier frequencies  $T_A$  is small and therefore  $T_R$  must be as small as possible for a high performance receiver system.

For a domestic satellite television receiver at 11 GHz, noise figure is  $\sim 0.6 \text{ dB} = 100 \text{K}$ .

## Sky noise vs elevation angle



Figure 9.15 Sky noise temperature as a function of elevation angle at 4 GHz and 11 GHz. Clear-air conditions.

**Example**: A radio receiver operating at 1 GHz has a noise figure of 2 dB.

- (a) If it is directly connected to an antenna/amplifier with a gain of 6dB and noise temperature of 100 K, estimate the overall system noise figure.
- (b) If the antenna is now connected to the receiver via a 5 m length of coaxial cable with an attenuation of 1 dB, estimate the new system noise figure.

Noise factor 
$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots \frac{F_n - 1}{G_1 G_2 \dots G_{n-1}}$$

And F related to T by 
$$F = 1 + \frac{T_e}{T_0}$$
,  $T_0 = 290$ 

#### **Example**

A simple superhet receiver was used to receive signals from a satellite based transmitter operating at 3.8 GHz. The measured carrier-to-noise ratio was 5 dB. This was increased to 17 dB by inserting a GaAs FET amplifier between the receiver and the receiving antenna. If the amplifier has a power gain of 20 dB, and a noise figure of 1 dB, estimate the noise figure of the receiver alone.

## **Solution For receiver alone**

$$C_o / N_o = C_i / (N_i F)$$
  $F = (T_o + T_R) / T_o$   
 $N_i = k T_o B = k 290 B$  and  $N_i F = k T_o B (T_o + T_R) / T_o = k B (T_o + T_R)$