```
HashSet:
          1, 2, 3, 3, 3, 4, 5, 5, 6, 7
                                      * It will not allow depolicate
                                     le clements
           Hash Set < DataTyper Set = new-Hash Set <> 1);
                      Set add (1)
                      set add (2)
                      set add (3)
                      set add (3)
                      set add (4)
* The add () method internally calls the put () method of Map.
                     map. put (c, "PRESENT");
    Before adding the elements the add methods cheeks if its available in the
                    boolean add (Integer e) e
                  returnap. put(e, " PRESENT") == null;
        adding " to set
                                map.put (1, "PRESENT) == null -> True
                                map. put (2, 114 h) = 2 null - True
                                map-put (3, 11) == null -> True
map. put (3, 11) == null -> false
         So second time (or) whenever the same element is added in the set
             it returns false, So it will not add dysplicates in the set.
 Insertion: Deletion, Searching:
** Two Jum:
              [1, 2, 3, 4, 5, 6, 7] Target = 5
                 ole: (1,4),(2,3) :+ 1+1000
                   for lint i = 0; i < arr. length; i++) {
                    for wi= i+1; i carrlength; i++) {
                                                           0(12)
                      if (arr [i] + arr[i] = = target)
                         s.o. plu (arrei), arr [i]);
```

```
Uring hash Set:
          for (Pot i=o; i<o; i+t) {
            int num = arr [i]
            int res = target - num;
                                         T.C
                                               1.6
                                        o(n) o(n)
              if (set-contains cres) s
               S.O.ph (mum, res);
                Set add (num);
## Contains Duplicate:
      I/P: {1,1,1,2,8,2,2,4,4,5}
      add elements in the set by iterating the away.
       check if the elements is already available in the set.
  -> If available return True.
                  for (int 1=0; i < arr. length; it) q
                        if (set-contains (arrli)) f
                       return true;
      port ( ) " por sent) = - million Truck
      return false;
## Hewels and Stones:
      Jewel: "aA", stoner= "aAAbbbb"
-> Checkeach jewel in the stone.
Brute Force: - Iterating through Jewel & Stones and cheek each character if for (int i = 0; i < stones. length (3.8+1) { Found count ++ }
            for (i = 0; i < jewel-lengths); S++){
                if ( jewel · charAt(i) == Stones · charAt(i)) of
                      County+;
                     dead the store is not this in
                   form apastons to present as
                     return count;
                    T.C -> O (mn)
```

```
We can use Index of Approach:
           t = aA -> t.indexof(a) -> 0
      for lint i= 0; i < stones length (); i+) {
          char ch = stones-charAtci);
            if ( jewels. index of (ch)! = -1) {
              return count;
Using hash Set: (or) D.A.T
 -> Create an Array of Size 256.
- add i to that characters to frequency away by iterating the jewels.
-> Iterate the stones, if chase from stones is available in the array
    by checking if the value is 1.
-> If yes increment count.
            int[] frequency = new int (26);
      forcint i=0; i < jewels. length(); i++){
               frequency [sewels charAt(i)] +=1;
            int count = 0;
            for (int j=0) j < stones length with) {
                 if (frequency (stones. charAt(i)) == 1)
                  count ++;
                          f (m) involved (m) f
              return count;
               T. C > O(n+m), s. c -> O(1)
```

3

3

2

3

S

```
## # Happy Number
- A happy number is defined by the ofollowing Process. In Sum of the sequence
    of its digits.
  b) Repeat the process until the number equals 1:
  e) If ends with i', it is happy number.
    (19) = 1 + 9 = 82
                             2 = 2 = 4
    82 = 82+22=68
                             (4)= 42= 16
    68 = 678 = 100
                             16 = 176 = 871. (1 cm) del del
    100 = 170 to=1 /
                             37 = 379 = 58
                           28 = 278 = 89
                            89 = 87 9 = 145
                            145 = 12+42+5=42
                           42 = 42+22 = 20
                        20 = 240= 4
                                   et men son je padron
 1. Add the element in the hashset
 2. Compute the sam of squares and as u compute, add that number into the set
 3. If computed number is 1 = return true.
 4. If computed number is already present in the set - return false;
              while (true) & the trans also soil prompted
                 int sum = 0;
                 while(n!=0)f
                 sum += Math. pow(n%10,20); +) 11119+1-1 82
                3 ( 12 = (W/16742 Colors) brainhast 1 Hi
                 if(sum == 1) return true;
                n= sum; _
                 if ( set · contains (n) ) }
                  retur false; times remter
              set. add(n); adding ex to set
```

Maximum Window Jub String, IlP: S= "ADOBE CODEBANC"
t = "ABC OlP: BANC en - S = ADBC , t = ABC B is neguired B' A means c to 'i' c is required afound. - when all the keys in the map have become zoro, we have reached one potential answer. - In the above approach, we need to iterate through the map to cheek all the Values are zero. _s so we will have a new Approach with count variable. initialize count = hashmap. Sizee); -> when any value becomes zero, neduce the count, -> when count becomes '0', we neach the potential window. S= TTTTA , += TA 7 x 8 -> = - x - 3 So potential window = 5 soe got one potential window and potential the answer by optimising it. shrink the S= TTTTA
window -1-10
A 0 7-2-10 So potential window = \$ \$ \$ (2) Algorithm: · Create two pointers -> Window start, and Window End.

2 Dump the elements of String t along with the occurrence of characters in your hashmap. 3. Execute another variable called count - which will be initialized 4. Start travering wing i 5. If the element at j location is present in the map.

a) Decrement the value of that key. If key becomes zero, Count -i) Shrink the window and cheek whether after shrinking we are getting (ii) start trakering from ith location and check the value of that Particular element in Your hashmap.

3

P

-

-

-

-

-

-

P

-

-

-

-

-

-

-

-

-)

```
(iii) Shrink the window till the count =0".
(iv) Increment the count if any key, value >0.
     Map < Character, Integer > target Map = new Hash Map < > ();
         for (char c: t. to Chaic Array ()) {
             target Map. put (c, target Map. get Or Defautt (c, 0)+);
        int i=0, j=0;
        int count = targetMap.sizec);
        int minlen = Integer. MM-VALUE; int minter = 0;
         while ( i < s. length() {
            char jchar = s.charAt(i);
            if (target Map. containskey (ichar)) {
                target Map. put ( Johar, target Map get ( Johar )-1).
                if (targetMap. get(jchar)==0){
             while (count == 0) {
                  if (i-i+1 < minlen) &
                     minlen = j -i+1',
                     window Start Min = i;
                 Char ichar = S.charAt(i);
                if (target Map. contains key (ichae))
                   targetMap.put (icher, target Map.get (icher) +1).
               if (target Map. get(i chax) >0) {
                        count ++;
                     the distance is welled the decimals of
                                and don't be ender at the many of
                         mitted states from such and and see Maine;
```

return min Len == Integer. MX-VALUE? ": S. Substring (windowstarttling windowstarttling)

Longest Consecutive Veguence:
T/p: { 100, () 200, () () () -> 01P: 4
<u>ex:</u> <u>IIP</u> : 1000,000,000,000,00} - 019: 9
Brute Force:
-> Iterate through the averay and check if the next element is available
in the array.
en: 02, 3, 4,5,6 - checking all the elements through the loop.
Optimized-Approach:
100, 4, 200, 1, 8, 2
- Add all elements to the Hash Set
-> Check if the previous num is available 100
in the hash set (because if the previous no is the previous no is the previous number of the previous num is not available, increment the number
- If the previous num is not available, increment the number
and check in the set, if contains increment the number
and length.
-> Get the Max length of length and max length.
100, 4, 200, 1, 3, 2
$-A+0: \frac{100}{\text{max-1}} \rightarrow 9(x) \rightarrow \text{num+1}, 100+1=101(x)$
(cog in a
At 1: 4 - CON 3 - A
It will not compute fevrethere
"max length = 1.
-At 2: 200 length: 1 199 x numt -> 20041=201 (x)
$A+3: 1 \rightarrow (n-1) \circ X \rightarrow num+1 \rightarrow 1+1 = 2 \checkmark$
num++; -> 2 -> length = 2
num++; $\rightarrow 2$ \rightarrow length = 2 num++; $\rightarrow 2$ \rightarrow length = 3 num++; $\rightarrow 2$ \rightarrow length = 3
$3 \rightarrow (cn+1) \rightarrow 4$
num++; ->3->4 length =4
4 1 (n+1) -5 x
4 4 (n+1) -> 5 x [maxlength = 4]

constitution of the contract and and a contract and

```
At 5: 2 -> "(n+1) -> 1 (1)
       max length = 4
Ato: -0 -1 (n-1) -1 -1 (x)
         (n+1) -1'-> (1) /1 2
     1 -> m+1 -> 2 -> 60 1.3
      2 - n+1 - 3 - 1 1-4
                    the design to the state of the same
         maxlength = 9
     Set < Integer > Set = new Hash Set < > ();
                      Min is wear wolvery of it restant
        for Croti=0; 1 < arr. length; i++) &

set. add Carr CiD;
      · forciot i=0, i<arr. length; i++) f
     the arriver num = arriving; it has a
      int length = 1;
            if (|set · contains (num-1))
               while (set. contains (num +1))
               length ++;
         maxlength = Matho max (length, maxlength);
        return maxlength;
```

```
Four Dum:
     [1,0,-1,0,-2,2]
      Word the array . It was the same the same that the
     [-2,-1,0,0,1,2] \rightarrow -2+(-1)+0+2 \Rightarrow Sum = -1 \neq 0
         1 T T Sight
            left + + , and array (left) = array[left-1]:
                           so again left + +;
          -1,0,0,1,2] -2+(-1)+1+2=011
                 left right
                               Add to the list
                                 [-2, -1, 1, 2] left ++, right --;
 Next: increment j as left + right
 (-2,-1,-0, 0) 1,12] -> 12+0+0+2" => 0
                          right f (sspirit Just ) ti
                     left
                                  Add to the list
                                  [-2,0,0,2] left ++, right --;
           [-2,-1, 0, 0, 1, 2] - left & right
                     kit right
              So, incrementi
           [-2, -1, 0, 0, 1, 2] -1+0+
                                                   1>0
                 i left ( right orra blockil
                 right - This parms bon tell
           [-2, -1, 0, 0(|th|) para 1 hbs. till =
                 1 is left right (till) to be
                           add to the list
 in Sycamore of the state of the 2
                                  [-1,0,0,1]
   So final Result contains
   [[+2,-1,1,2] [-2,0,0,2] [-1,0,0,1]
                     ((191) or tillpant and autor
```

3

3

3

0

3

3

-S

-

22

7777777777777

extractioners in toil

```
int n = array. length;
 long sum = 0.
Set < Tist < Integer> > set = new Hash Set <> c);
Arrays. Sort (array);
  for (int i= 0; i < n-3; i++) {
      if ( i > 0 & & array [i] = = array [i-1]) continue;
      for (int j=i+1, j<n-2; j++) f
        if (i > 0 & & array [i] == array [i-1]) continue;
           int left = j+1;
       int right = n-1;
          while (left e right) fr
         sum = [long ) array[i] + array [i] + array [left] + array [right]
           if (sum > target) {
              right -= 1;
           else if (sum < target) fr
               left + = 1 :
               List «Integer > list = new Arrayliste > 0;
                  list add (array [i]);
                 list add Carray (i);
                 list add (array [left]):
              list add (array [right]);
                 Set add (list):
         left ++', right -
                                  > while (left < right & & away Cleft)
                                                     == array[left-1])
                                  while (test eright && array [right]
                                                    == array[right+i])
                                            right - -;
        return new ArrayList <> (set);
```