MATH 60604A Statistical modelling § 6e - Random slope model

Léo Belzile

HEC Montréal Department of Decision Sciences

Model formulation

We consider a linear mixed model with a random slope and a random intercept for the revenge data, of the form

$$egin{aligned} oldsymbol{Y}_i \mid oldsymbol{\mathcal{B}}_i = oldsymbol{b}_i \sim \mathsf{No}_5 \left(oldsymbol{\mathsf{X}}_i oldsymbol{eta} + oldsymbol{\mathsf{Z}}_i oldsymbol{b}_i, \sigma^2 oldsymbol{\mathsf{I}}_5
ight) \ oldsymbol{\mathcal{B}}_i \sim \mathsf{No}_2 (oldsymbol{0}_2, oldsymbol{\Omega}) \end{aligned}$$

where $\mathbf{Z}_i = [\mathbf{1}_5, \mathtt{time}_i]$ is a 5×2 model matrix for the random effects and $\mathbf{\Omega} = \begin{pmatrix} \omega_{11} & \omega_{12} \\ \omega_{12} & \omega_{22} \end{pmatrix}$.

The columns of Z_i typically include as covariates

- time or
- indicators for categorical variables (group effect).

Random effects on the predictor variables

Suppose the matrix $\mathbf{Z}_i = [\mathbf{1}_{n_i}, \mathbf{X}_{1i}]$.

$$Y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i})X_{ij1} + \beta_2X_{ij2} + \cdots + \beta_pX_{ijp} + \varepsilon_{ij}.$$

- The conditional effect of the variable X_1 for group i is $eta_1 + b_{1i}$
- The parameter β_1 is the "slope" of X_1 averaged over the entire population.
- $\beta_1 + b_{1i}$ is the effect of X_1 specific to group i.

Covariance of the response

- The covariance matrix of Y_{ij} depends on the predictors in \mathbf{Z}_i which have random effects.
- For example, if $Z_i = [\mathbf{1}_{n_i}, \mathbf{X}_{1i}]$, the marginal variance of Y_{ij} is

$$\mathsf{Var}\left(\mathsf{\textit{Y}}_{\mathit{ij}}\mid \mathbf{X}_{\mathit{i}}\right) = \omega_{11} + \mathsf{\textit{X}}_{\mathit{ij}1}^{2}\omega_{22} + 2\mathsf{\textit{X}}_{\mathit{ij}1}\omega_{12} + \sigma_{\varepsilon}^{2}.$$

 With independent errors, the covariance between two observations in the same group is

$$\mathsf{Cov}\left(Y_{ij},\,Y_{ik}\mid\mathbf{X}_i\right)=\omega_{11}+\mathsf{X}_{ij1}\mathsf{X}_{1ik}\omega_{22}+\big(\mathsf{X}_{ij1}+\mathsf{X}_{1ik}\big)\omega_{12}.$$

• It may be difficult to estimate parameters if the errors has a complex covariance structure (not to mention computational costs).

SAS code for random slope model

```
proc mixed data=statmod.revenge;
class id;
model revenge = sex age vc wom t / solution;
random intercept t / subject=id type=un v=1 vcorr=1;
run;
```

The output includes information about the number of covariance parameters, the number of random effects, etc.

Dimensions	
Covariance Parameters	4
Columns in X	6
Columns in Z per Subject	2
Subjects	80
Max Obs per Subject	5

Covariance matrix of response

Covariance Parameter Estimates		Estimated V Matrix for Subject 1						
		Row	Col1	Col2	Col3	Col4	Col5	
Cov Parm	Subject	Estimate	1	0.4239	0.1830	0.1476	0.1122	0.07682
UN(1,1)	id	0.3064	2	0.1830	0.3704	0.1468	0.1287	0.1106
UN(2,1)	id	-0.05268	3	0.1476	0.1468	0.3515	0.1452	0.1444
UN(2,2)	id	0.01730	4	0.1122	0.1287	0.1452	0.3672	0.1782
Residual	id	0.2055	5	0.07682	0.1106	0.1444	0.1782	0.4175

- The variance of the random intercept is $\omega_{11}=0.3064$
- The variance of the random slope is $\omega_{22}=0.01730$
- The correlation between the random effects is -0.72.

Testing for correlation between random effects

- We can test whether \mathcal{H}_0 : $\omega_{12}=0$ versus \mathcal{H}_a : $\omega_{12}\neq 0$ by fitting the model with diagonal covariance and performing a likelihood ratio test (REML, since they have the same fixed effects)
 - in SAS, change type=un to type=vc (default option)
 - the test statistic is R = 8.98
 - its null distribution is χ_1^2 (regular problem, covariance can be negative)
 - the *p*-value is 0.002:
 - the correlation between the random effects is strongly significant.

Model comparison

- We can do similar comparisons with the random intercept-only model,
 - this corresponds to $\mathscr{H}_0:\omega_{22}=0$, so $\frac{1}{2}\chi_1^2$ for uncorrelated random errors.
 - for correlated errors, setting one of the two variance parameters to zero forces $\omega_{12} = 0$ and one additional parameter is lost...
 - the asymptotic null distribution approximation is complicated,
 Andrews, D.W. (2001), Testing when a parameter is on the boundary of the maintained hypothesis, Econometrica, 69 (3)

The approximation is also poor ...most people thus resort to the use of information criteria.