PART 3 Generalisations

Definition 5. Let $f: A \to B$ be a separable isogeny between abelian varieties over a finite field k. Let $(\ker f)(k)$ be of type δ with associated basis $\langle P_1, \ldots, P_r \rangle$. The generalised f-Tate profile $t_{\ker f}$ is the map

$$t_{\ker f}: (\operatorname{coker} \hat{f})(k) \to \mu_{\delta},$$

$$t_{\ker f}: (\operatorname{coker} \hat{f})(k) \to \mu_{\delta}, \qquad Q \mapsto (t_f(P_1, Q), ..., t_f(P_r, Q)).$$

easy

Generalised Entangled Basis for Elliptic Curves

Using **Theorem 5**, we can easily sample basis (P,Q) for $E[2^n]$, with E a Montgomery curve.

With our knowledge of 2-profiles, we know we just need P, Q with different non-trivial profiles

$$t_2(P) \neq t_2(Q),$$

to generalize this to any elliptic curve E.

Easy: Solve the linear system

$$f_1(P) = f_1(Q),$$

$$f_2(P) = -f_3(Q),$$

$$f_3(P) = -f_2(Q),$$

where the f_i denote the reduced 2-Tate pairings.

This gives x_P, x_O in terms of 2-torsion E[2].

medium

Subgroup Membership Test in Dimension 2

Using Theorem 6, we can sometimes use trivial profiles to perform subgroup membership tests

$$P \stackrel{?}{\in} E[r](\mathbb{F}_q).$$

We can now generalise this to abelian varieties with a non-degenerate cofactor. For example, Gaudry-Schost's Kummer surface $K(\mathbb{F}_p)$ has non-degenerate cofactor 2, so we find

$$P \in K[r](\mathbb{F}_p) \quad \Leftrightarrow \quad t_{[2]}(P) = 1_{\delta}.$$

Efficiency: Compared to testing $[r]P \stackrel{?}{=} \mathbf{0}_K$, this profile approach is fourteen times faster.

hard

Sylow \mathscr{C} -Torsion Basis for Abelian Varieties

At the heart of all these results lies the duality between $A[\ell](\mathbb{F}_q)$ and $A(\mathbb{F}_q)/[\ell]A(\mathbb{F}_q)$.

The ℓ -Tate profile gives us a set of coordinates to view both as μ_{δ} , and make things practical.

Main Theorem (sketch).

Given a basis of $A[\mathcal{E}](\mathbb{F}_q)$ and the cofactor h, and [h] as isomorphism to the Sylow ℓ -torsion,

$$A(\mathbb{F}_q)/[\mathscr{C}]A(\mathbb{F}_q) \xrightarrow{[h]} S_{\mathscr{C},q}(A),$$

we can use the ℓ -Tate profile $t_{\lceil \ell \rceil}$ to **efficiently** sample a basis $\langle P_1, ..., P_r \rangle$ of $S_{\ell,a}(A)$.

Exercise: Even when $|A(\mathbb{F}_q)|$ is unknown!

The agenda for today

