REPRENDRE EN DÉTAILLANT CAS IMPOSSIBLE DIST CARRÉ + COMMENCER CHAQUE CAS SUR NELLE PAGE + INDIQUER QUE LES PREUVES MÊME LONGUES SONT LÀ À TITRE PEDAGO <— BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS – RÉSOLUTIONS À LA MAIN

CHRISTOPHE BAL

Document, avec son source L^AT_EX , disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

1.	Ce qui nous intéresse	2
2.	Notations utilisées	2
3.	Avec 1 seul facteur	2
4.	Avec 2 facteurs	2
5.	Avec 3 facteurs	3
6.	Avec 4 facteurs	3
7.	Avec 5 facteurs	4
8.	Avec 6 facteurs	6
9.	Sources utilisées	10
10.	AFFAIRE À SUIVRE	11

Date: 25 Jan. 2024 – 1er Fév. 2024.

1. CE QUI NOUS INTÉRESSE

Dans l'article « Note on Products of Consecutive Integers » 1 , Paul Erdos démontre que pour tout couple $(n,k) \in \mathbb{N}^* \times \mathbb{N}^*$, le produit de (k+1) entiers consécutifs $\prod_{i=0}^k (n+i)$ n'est jamais le carré d'un entier.

Dans ce document, nous proposons quelques cas particuliers résolus de façon « adaptative » à la sueur des neurones.

2. Notations utilisées

Dans la suite, nous emploierons les notations suivantes.

- ${}^{2}\mathbb{N} = \{n^{2}, n \in \mathbb{N}\} \text{ et } {}^{2}\mathbb{N}_{*} = {}^{2}\mathbb{N} \cap \mathbb{N}^{*}.$
- $\forall (n,k) \in \mathbb{N}^* \times \mathbb{N}$, $\pi_n^k = \prod_{i=0}^k (n+i)$. Par exemple, nous avons $\pi_n^0 = n$ et $\pi_n^1 = n(n+1)$.
- \bullet $\mathbb P$ désigne l'ensemble des nombres premiers.
- $\forall (p;n) \in \mathbb{P} \times \mathbb{N}^*$, $v_p(n) \in \mathbb{N}$ est la valuation p-adique de n, c'est-à-dire $p^{v_p(n)} \mid n$ et $p^{v_p(n)+1} \nmid n$, autrement dit $p^{v_p(n)}$ divise n, contrairement à $p^{v_p(n)+1}$.
- $\forall (n,m) \in \mathbb{N}^2$, $n \wedge m$ désigne le PGCD de n et m.
- 2 N désigne l'ensemble des nombres naturels pairs.
- $2 \mathbb{N} + 1$ désigne l'ensemble des nombres naturels impairs.
- $(a \pm b)$ est un raccourci pour (a + b)(a b).

3. Avec 1 seul facteur

Via $N^2-M^2=(N-M)(N+M)$, il est immédiat de noter que $\forall (N,M)\in\mathbb{N}^*\times\mathbb{N}^*$, si N>M, alors $N^2-M^2\geq 3$. Le fait suivant précise ceci.

Fait 3.1.
$$\forall (N, M) \in \mathbb{N}^* \times \mathbb{N}^*$$
, si $N > M$, alors $N^2 - M^2 = \sum_{k=M+1}^{N} (2k-1)$.

En particulier, $N^2 - M^2 \ge 3$.

Démonstration. Il suffit d'utiliser
$$N^2 = \sum_{k=1}^{N} (2k-1)$$
.

Bien que simple, le fait suivant va nous rendre de grands services dans la suite.

Fait 3.2.
$$\forall n \in {}^{2}\mathbb{N}_{*}$$
, s'il existe $m \in {}^{2}\mathbb{N}_{*}$ tel que $n = fm$ alors $f \in {}^{2}\mathbb{N}_{*}$.

Démonstration. Il suffit de passer via les décompositions en facteurs premiers de n, m et f. \square

4. Avec 2 facteurs

Fait 4.1. $\forall n \in \mathbb{N}^*, \ n(n+1) \notin {}^2\mathbb{N}$

Démonstration. Il suffit de noter que
$$n^2 < n(n+1) < (n+1)^2$$
.

Preuve alternative no.1. Supposons que $\pi_n^1=n(n+1)\in{}^2\mathbb{N}_*$. Clairement $\forall p\in\mathbb{P}$, nous avons : $v_p(\pi_n^1)\in 2\mathbb{N}$. Or $p\in\mathbb{P}$ ne peut diviser à la fois n et n+1. Nous savons donc que $\forall p\in\mathbb{P}$, $v_p(n)\in 2\mathbb{N}$ et $v_p(n+1)\in 2\mathbb{N}$, autrement dit $(n,n+1)\in {}^2\mathbb{N}\times {}^2\mathbb{N}$. D'après le fait 3.1, nous savons que ceci est impossible.

^{1.} J. London Math. Soc. 14 (1939).

Preuve alternative no.2. Supposons que $\pi_n^1 = n(n+1) = N^2$ où $N \in \mathbb{N}^*$. Les équivalences suivantes donnent alors une contradiction.

$$n(n+1) = N^{2}$$

$$\iff 2 \sum_{k=1}^{n} k = \sum_{k=1}^{N} (2k-1)$$

$$n(n+1) = 2 \sum_{k=1}^{n} k \text{ et } N^{2} = \sum_{k=1}^{N} (2k-1).$$

$$\iff \sum_{k=1}^{n} 2k = \sum_{k=1}^{N} 2k - N$$

$$\iff \sum_{k=n+1}^{N} 2k - N = 0$$

$$\implies \sum_{k=n+1}^{N-1} 2k + N = 0$$

$$N > 0 \text{ rend impossible la dernière égalité.}$$

5. Avec 3 facteurs

Fait 5.1. $\forall n \in \mathbb{N}^*$, $n(n+1)(n+2) \notin {}^2\mathbb{N}$.

 $\begin{array}{l} \textit{D\'{e}monstration}. \text{ Supposons que } \pi_n^2 = n(n+1)(n+2) \in {}^2\mathbb{N}_*. \text{ Posant } m=n+1, \text{ nous avons } \\ \pi_n^2 = (m-1)m(m+1) = m(m^2-1) \text{ où } m \in \mathbb{N}_{\geq 2}. \text{ Comme } \forall p \in \mathbb{P} \text{ , } v_p(\pi_n^2) \in 2\mathbb{N} \text{ , et comme } \\ \text{de plus } p \in \mathbb{P} \text{ ne peut diviser à la fois } m \text{ et } m^2-1 \text{ , nous savons que } \forall p \in \mathbb{P} \text{ , } v_p(m) \in 2\mathbb{N} \\ \text{et } v_p(m^2-1) \in 2\mathbb{N} \text{ , d'où } (m,m^2-1) \in {}^2\mathbb{N}_* \times {}^2\mathbb{N}_*. \text{ Or, d'après le fait } 3.1, \ m^2-1 \in {}^2\mathbb{N} \text{ est impossible.} \end{array}$

Une preuve alternative. Supposons que $\pi_n^2 = n(n+1)(n+2) \in {}^2\mathbb{N}_*$. Comme $p \in \mathbb{P}_{>2}$ ne peut diviser au maximum qu'un seul des trois facteurs n, (n+1) et (n+2), nous savons que $\forall p \in \mathbb{P}_{>2}$, $\forall i \in [0;2]$, $v_p(n+i) \in 2\mathbb{N}$. Mais que se passe-t-il pour p=2?

Supposons d'abord $n \in 2\mathbb{N}$.

- Posant n=2m, nous avons $\pi_n^2=4m(2m+1)(m+1)$, d'où $m(2m+1)(m+1)\in {}^2\mathbb{N}_*$.
- Comme $v_2(2m+1)=0$, nous savons que $2m+1 \in {}^2\mathbb{N}_*$.
- Donc $m(m+1) \in {}^2\mathbb{N}_*$ via le fait 3.2, mais le fait 4.1 interdit cela.

Supposons maintenant $n \in 2\mathbb{N} + 1$.

- Nous savons que $n \in {}^{2}\mathbb{N}_{*}$ via $v_{2}(n) = 0$.
- Dès lors, on obtient $(n+1)(n+2) \in {}^{2}\mathbb{N}_{*}$, mais de nouveau ceci contredit le fait 4.1. \square

6. Avec 4 facteurs

Fait 6.1. $\forall n \in \mathbb{N}^*, \ n(n+1)(n+2)(n+3) \notin {}^2\mathbb{N}$.

 $D\acute{e}monstration$. Nous pouvons ici faire les manipulations algébriques naturelles suivantes qui cherchent à obtenir le même coefficient pour n dans chaque parenthèse.

$$\pi_n^3 = n(n+3) \cdot (n+1)(n+2)$$

$$= (n^2 + 3n) \cdot (n^2 + 3n + 2)$$

$$= m(m+2)$$

$$= m^2 + 2m$$

$$= (m+1)^2 - 1$$

Comme m>0, d'après le fait 3.1, $(m+1)^2-1\notin{}^2\mathbb{N}$, c'est-à-dire $\pi_n^3\notin{}^2\mathbb{N}$.

Une preuve alternative. En « symétrisant » certaines expressions, nous obtenons les manipulations algébriques suivantes.

$$\pi_n^3 = n(n+1)(n+2)(n+3)$$

$$= \left(x \pm \frac{3}{2}\right)\left(x \pm \frac{1}{2}\right)$$

$$= \left(x^2 - \frac{9}{4}\right)\left(x^2 - \frac{1}{4}\right)$$

$$= (y \pm 1)$$

$$= y^2 - 1$$

$$= \left(\left(n + \frac{3}{2}\right)^2 - \frac{5}{4}\right)^2 - 1$$

$$= \left(n^2 + 3n + 1\right)^2 - 1$$

7. Avec 5 facteurs

Fait 7.1.
$$\forall n \in \mathbb{N}^*$$
, $n(n+1)(n+2)(n+3)(n+4) \notin {}^2\mathbb{N}$.

Démonstration. Supposons que $\pi_n^4 = n(n+1)(n+2)(n+3)(n+4) \in {}^2\mathbb{N}_*$. Clairement, $\forall p \in \mathbb{P}_{>3}$, $\forall i \in [0;4]$, $v_p(n+i) \in 2\mathbb{N}$. Pour p=2 et p=3, nous avons les alternatives suivantes pour chaque facteur (n+i) de π_n^3 .

- [A1] $(v_2(n+i), v_3(n+i)) \in 2\mathbb{N} \times 2\mathbb{N}$
- [A2] $(v_2(n+i), v_3(n+i)) \in 2\mathbb{N} \times (2\mathbb{N}+1)$
- [A3] $(v_2(n+i), v_3(n+i)) \in (2\mathbb{N}+1) \times 2\mathbb{N}$
- [A4] $(v_2(n+i), v_3(n+i)) \in (2\mathbb{N}+1) \times (2\mathbb{N}+1)$

Comme nous avons cinq facteurs pour quatre alternatives, ce bon vieux principe des tiroirs va nous permettre de lever des contradictions très facilement.

- Deux facteurs différents (n+i) et (n+i') vérifient [A1]. Dans ce cas, on sait juste que $(n+i,n+i') \in {}^2\mathbb{N} \times {}^2\mathbb{N}$. Or $n \notin {}^2\mathbb{N}$ puisque sinon nous aurions $(n+1)(n+2)(n+3)(n+4) \in {}^2\mathbb{N}$ via $n(n+1)(n+2)(n+3)(n+4) \in {}^2\mathbb{N}$, mais ceci ne se peut pas d'après le fait 6.1. De même, $n+4 \notin {}^2\mathbb{N}$. Dès lors, nous avons $\{n+i,n+i'\} \subseteq \{n+1,n+2,n+3\}$ qui donne deux carrés parfaits non nuls éloignés de moins de 3, et ceci contredit le fait 3.1.
- Deux facteurs différents (n+i) et (n+i') vérifient [A2].

 Dans ce cas, le couple de facteurs est (n, n+3), ou (n+1, n+4).
 - (1) Supposons d'abord que n et (n+3) vérifient $[\mathbf{A2}]$. Comme $\forall p \in \mathbb{P} - \{3\}$, $v_p(n) \in 2\mathbb{N}$ et $v_p(n+3) \in 2\mathbb{N}$, mais aussi $v_3(n) \in 2\mathbb{N} + 1$ et $v_3(n+3) \in 2\mathbb{N} + 1$, nous avons $n = 3N^2$ et $n+3 = 3M^2$ où $(N,M) \in (\mathbb{N}^*)^2$. Or, ceci donne $3 = 3M^2 - 3N^2$, puis $M^2 - N^2 = 1$ qui contredit le fait 3.1.
 - (2) De façon analogue, on ne peut pas avoir (n+1) et (n+4) vérifiant $[\mathbf{A2}]$.

- Deux facteurs différents (n+i) et (n+i') vérifient **[A3]**. Comme dans le point précédent, c'est impossible car on aurait $2 = 2M^2 - 2N^2$, ou $4 = 2M^2 - 2N^2$. En effet, ici les couples possibles sont (n, n+2), (n, n+4), (n+2, n+4) et $(n+1, n+3)^2$.
- Deux facteurs différents (n+i) et (n+i') vérifient **[A4]**. Ceci donne deux facteurs différents divisibles par 6, mais c'est impossible.

Bien que longue, la preuve suivante est simple à comprendre car elle ne fait que dérouler le fil des faits découverts.

Une preuve alternative. Supposons que $\pi_n^4=n(n+1)(n+2)(n+3)(n+4)\in {}^2\mathbb{N}_*$. Posant m=n+2, nous avons $\pi_n^4=(m\pm 2)(m\pm 1)m=m(m^2-1)(m^2-4)$ où $m\in\mathbb{N}_{\geq 3}$. On notera dans la suite $u=m^2-1$ et $q=m^2-4$.

Supposons d'abord que $m \in {}^{2}\mathbb{N}_{*}$.

- De $muq \in {}^{2}\mathbb{N}_{*}$, nous déduisons $uq \in {}^{2}\mathbb{N}_{*}$.
- Comme u q = 3, nous savons que $u \wedge q \in \{1, 3\}$.
- Si $u \wedge q = 1$, alors $\forall p \in \mathbb{P}$, $v_p(u) \in 2\mathbb{N}$ et $v_p(q) \in 2\mathbb{N}$, d'où $(u,q) \in {}^2\mathbb{N} \times {}^2\mathbb{N}$. Le fait 3.1 impose d'avoir (u,q) = (4,1), d'où $m^2 1 = 4$, mais ceci est impossible 3 .
- Si $u \wedge q = 3$, alors $\forall p \in \mathbb{P} \{3\}$, $v_p(u) \in 2\mathbb{N}$ et $v_p(q) \in 2\mathbb{N}$, mais aussi $v_3(u) \in 2\mathbb{N} + 1$ et $v_3(q) \in 2\mathbb{N} + 1$. Donc $u = 3U^2$ et $q = 3Q^2$ avec $(U, Q) \in (\mathbb{N}^*)^2$. Or u q = 3 donne $U^2 Q^2 = 1$, et le fait 3.1 nous indique une contradiction.

Supposons maintenant que $m \notin {}^{2}\mathbb{N}_{*}$.

- Montrons que $u \notin {}^{2}\mathbb{N}$ et $q \notin {}^{2}\mathbb{N}$.
 - (1) $u \in {}^{2}\mathbb{N}$ donne les équivalences logiques suivantes qui lèvent une contradiction.

$$\begin{split} m^2 - 1 &\in {}^2\mathbb{N} \iff \exists r \in \mathbb{N} \,. \, \big(m^2 - 1 = r^2\big) \\ &\iff \exists r \in \mathbb{N} \,. \, \big(m^2 - r^2 = 1\big) \\ &\iff m = 1 \end{split} \qquad \qquad \begin{array}{c} \textit{Via le fait 3.1, mais} \\ \textit{ceci contredit } m \in \mathbb{N}_{\geq 3} \end{split}$$

(2) $q \in {}^{2}\mathbb{N}$ donne les équivalences logiques suivantes qui lèvent une contradiction.

$$\begin{array}{ll} m^2-4\in {}^2\mathbb{N} \iff \exists r\in\mathbb{N} \,.\, \left(m^2-r^2=4\right) & \text{Voir le fait 3.1, mais} \\ \iff m=2 & \text{veci contredit } m\in\mathbb{N}_{\geq 3} \,. \end{array}$$

- Donc $m = \alpha M^2$, $u = \beta U^2$, $q = \gamma Q^2$ où $(M, U, Q) \in (\mathbb{N}^*)^3$, et $(\alpha, \beta, \gamma) \in (\mathbb{N}_{>1})^3$, le dernier triplet étant formé d'entiers sans facteur carré.
- Notons que $\beta \neq \gamma$ car, dans le cas contraire, $3 = u q = \beta (U^2 Q^2)$ fournirait $\beta = 3$ puis $U^2 Q^2 = 1$, et ceci contredirait le fait 3.1.
- Nous avons $m \wedge u = 1$, $m \wedge q \in \{1, 2, 4\}$ et $u \wedge q \in \{1, 3\}$ avec $m \wedge u = m \wedge q = u \wedge q = 1$ impossible car sinon on aurait $(m, u, q) \in \binom{2}{\mathbb{N}}^3$ via $muq \in \binom{2}{\mathbb{N}}$.
- Clairement, $\forall p \in \mathbb{P}_{>3}$, $(v_p(m), v_p(u), v_p(q)) \in (2\mathbb{N})^3$.

^{2.} Rien n'empêche d'avoir n, (n+2) et (n+4) vérifiant tous les trois [A3].

^{3.} On peut aussi noter que le fait 5.1 lève une contradiction car nous avons $m \in {}^2\mathbb{N}$ et $u \in {}^2\mathbb{N}$ qui donnent $(m-1)m(m+1) \in {}^2\mathbb{N}$

• Les points précédents donnent $\{\alpha, \beta, \gamma\} \subseteq \{2, 3, 6\}$ avec de plus $\beta \neq \gamma$, ainsi que $\alpha \wedge \beta = 1$, $\alpha \wedge \gamma \in \{1, 2\}$ et $\beta \wedge \gamma \in \{1, 3\}$. Notons au passage que $\alpha \wedge \beta = 1$ implique $(\alpha, \beta) = (2, 3)$, ou $(\alpha, \beta) = (3, 2)$. Via le tableau « mécanique » ci-après, nous obtenons que forcément $(\alpha, \beta, \gamma) = (2, 3, 2)$ ou $(\alpha, \beta, \gamma) = (2, 3, 6)$. Le plus dur est fait!

α	β	γ	$\alpha \wedge \beta$	$\alpha \wedge \gamma$	$\beta \wedge \gamma$	Statut
2	3	2	1	2	1	√
2	3	6	1	2	3	√
3	2	3	1	3	1	\boxtimes
3	2	6	1	3	2	\boxtimes

- $(\alpha, \beta, \gamma) = (2, 3, 2)$ nous donne $m = 2M^2, u = 3U^2$ et $q = 2Q^2$, d'où la contradiction $3 \cdot 4M^2U^2Q^2 \in {}^2\mathbb{N}_+$.
- $(\alpha, \beta, \gamma) = (2, 3, 6)$ nous donne $m = 2M^2, m^2 1 = 3U^2$ et $m^2 4 = 6Q^2$, mais ce qui suit lève une autre contradiction.
 - Travaillons modulo 3. Comme $m=2M^2$, nous avons $m\equiv 0$ ou $m\equiv -1$. Or $m^2-1=3U^2$ donne $m^2\equiv 1$, d'où $m\equiv -1$, puis 3 | m-2, et enfin 6 | m-2puisque m est pair.
 - Posant m-2=6r et notant s=m+2, nous avons $6rs=6Q^2$, puis $rs=Q^2$.
 - $-s \notin {}^{2}\mathbb{N}$, car dans le cas contraire, nous aurions $(m-2)(m-1)m(m+1) \in {}^{2}\mathbb{N}$ via $(m-2)(m-1)m(m+1)(m+2) \in {}^{2}\mathbb{N}$, mais ceci ne se peut pas d'après le fait 6.1.
 - Les deux résultats précédents donnent $(\pi, R, S) \in \mathbb{N}_{>1} \times (\mathbb{N}^*)^2$ tel que $r = \pi R^2$ et $s = \pi S^2$ avec π sans facteur carré.
 - $-4 = s 6r = \pi(S^2 6R^2)$ donne $\pi = 2$, d'où $m + 2 = 2S^2$.
 - $-4 = s 6r = \pi(S^{-} 0R)$ donne n 2, and $n 2 = 2(S^{2} M^{2})$, soit $1 = S^{2} M^{2}$, Finalement, $m = 2M^{2}$ et $m + 2 = 2S^{2}$ donnent $2 = 2(S^{2} M^{2})$, soit $1 = S^{2} M^{2}$, ce qui contredit le fait 3.1.

8. Avec 6 facteurs

Fait 8.1. $\forall n \in \mathbb{N}^*, \ \pi_n^5 \notin {}^2\mathbb{N}$.

La démonstration suivante se trouve dans l'article « Solution of a Problem » 4 de G. W. Hill et J. E. Oliver. Une petite simplification a été faite pour arriver à $\pi_n^5 = (a-4)a(a+2)$.

 $D\acute{e}monstration$. Supposons que $\pi_n^5 \in {}^2\mathbb{N}$. Commençons par de petites manipulations algébriques où l'on cherche à faire apparaître le même coefficient pour n dans chaque parenthèse.

$$\pi_n^5 = n(n+5) \cdot (n+1)(n+4) \cdot (n+2)(n+3)$$

$$= (n^2 + 5n)(n^2 + 5n + 4)(n^2 + 5n + 6)$$

$$= x(x+4)(x+6)$$

$$= (a-4)a(a+2)$$

$$x = n^2 + 5n \in \mathbb{N}_{\geq 6}$$

$$a = x+4 \in \mathbb{N}_{\geq 10}$$

Nous avons donc $a \in \mathbb{N}^*$ vérifiant $a(a+2)(a-4) \in {}^2\mathbb{N}_*$. Posons alors $a = \alpha A^2$ où $(\alpha, A) \in (\mathbb{N}^*)^2$ avec α sans facteur carré. Nous avons alors $a = \alpha(\alpha A^2 + 2)(\alpha A^2 - 4) \in {}^2\mathbb{N}_{+}$. Comme α est sans facteur carré, nous devons avoir $\alpha \mid (\alpha A^2 + 2)(\alpha A^2 - 4)$, d'où $\alpha \mid 8$, et finalement $\alpha \in \{1, 2\}^5$. Nous allons voir que ceci est impossible.

^{4.} The Analyst (1874).

^{5.} On comprend ici le choix d'avoir $\pi_n^5 = (a-4)a(a+2)$.

REPRENDRE EN DÉTAILLANT CAS IMPOSSIBLE DIST CARRÉ + COMMENCER CHAQUE CAS SUR NELLE PAGE + IN

Supposons avoir $\alpha = 1$.

• Notons les équivalences suivantes.

$$(A^2+2)(A^2-4)\in {}^2\mathbb{N}_* \qquad \mathcal{V} u = A^2-1 \text{ où } -1 = \frac{2-4}{2} \ .$$

$$\iff u^2-9\in {}^2\mathbb{N}_*$$

• Ensuite, prenant $m \in \mathbb{N}^*$ tel que $m^2 = u^2 - 9$, comme $u^2 - m^2 = \sum_{k=m+1}^w (2k-1)$, on a $(u,m) = (5,4)^6$. On aboutit alors à la contradiction suivante.

$$u = 5$$

$$\iff A^2 - 1 = 5$$

$$\iff A^2 = 6$$

$$\downarrow 6 \notin {}^{2}\mathbb{N}.$$

Supposons avoir $\alpha = 2$.

• Notons l'équivalence suivante.

$$2(2A^2+2)(2A^2-4) \in {}^2\mathbb{N}_* \\ \iff 2(A^2+1)(A^2-2) \in {}^2\mathbb{N}_* \ \ \ \bigvee \ \textit{Via} \ 4 \cdot 2(A^2+1)(A^2-2) \ .$$

• Ensuite, en travaillant modulo 3, nous avons $2(A^2+1)(A^2-2) \equiv -4 \equiv -1$ qui ne correspond pas à un carré modulo 3.

Bien que très longue, la preuve suivante est simple à comprendre car elle ne fait que dérouler le fil des faits découverts.

Une preuve alternative. Supposons que $\pi_n^5 \in {}^2\mathbb{N}$.

Une preuve alternative. Supposons que
$$\pi_n^5 \in {}^2\mathbb{N}$$
.

 $\pi_n^5 = n(n+1)(n+2)(n+3)(n+4)(n+5)$
 $\iff \pi_n^5 = \left(x \pm \frac{5}{2}\right)\left(x \pm \frac{3}{2}\right)\left(x \pm \frac{1}{2}\right)$
 $\iff 2^6\pi_n^5 = (y \pm 5)(y \pm 3)(y \pm 1)$
 $\iff 2^6\pi_n^5 = (z-25)(z-9)(z-1)$
 $\iff 2^6\pi_n^5 = (u-8)(u+8)(u+16)$
 $\downarrow x = n+2+\frac{1}{2}$
 $\downarrow y = 2x$
 $\downarrow z = y^2$
 $\downarrow u = z-17 \text{ où } 17 = \frac{25+9}{2}$.

Notant a = u - 8, b = u + 8 et c = u + 16, où $u = (2n + 5)^2 - 17 \in 2\mathbb{N}$, nous avons les faits suivants.

- $(a,b,c) \in (\mathbb{N}^*)^3$ et $abc \in {}^2\mathbb{N}_*$ car $(2^6,\pi_n^5) \in ({}^2\mathbb{N}_*)^2$.
- $a \wedge b \mid 16 \text{ via } b a = 16$.
- $a \wedge c \mid 24 \text{ via } c a = 24$.
- $b \wedge c \mid 8 \text{ via } c b = 8$.
- En particulier, $\forall p \in \mathbb{P}_{>3}$, $(v_n(a), v_n(b), v_n(c)) \in (2\mathbb{N})^3$.

Démontrons qu'aucun des trois entiers a, b et c ne peut être un carré parfait.

^{6.} Noter que $2u-1 \leq 9$ implique $u \in [0, 5]$. Ceci permet d'analyser tous les cas mentalement.

- Commençons par supposer que $(a,b,c) \in {}^2\mathbb{N}_* \times \mathbb{N}^* \times \mathbb{N}^*$. Dans ce cas, $bc \in {}^2\mathbb{N}_*$, soit $(u+8)(u+16) \in {}^2\mathbb{N}_*$. En posant w=u+12, on arrive à $(w-4)(w+4) \in {}^2\mathbb{N}_*$, soit $w^2-16 \in {}^2\mathbb{N}_*$. Notant $m \in \mathbb{N}^*$ tel que $m^2=w^2-16$, nous arrivons à $w^2-m^2=16$. D'après le fait 3.1, $w^2-m^2=\sum_{k=m+1}^w (2k-1)$. Ceci n'est possible que si $(w,m)=(5,3)^7$. Or $u \in 2\mathbb{N}$ donne $w \in 2\mathbb{N}$, d'où une contradiction.
- Supposons maintenant que $(a,b,c) \in \mathbb{N}^* \times {}^2\mathbb{N}_* \times \mathbb{N}^*$. Dans ce cas, $ac \in {}^2\mathbb{N}_*$, soit $(u-8)(u+16) \in {}^2\mathbb{N}_*$. En posant w=u+4, on arrive à $(w-12)(w+12) \in {}^2\mathbb{N}_*$, soit $w^2-144 \in {}^2\mathbb{N}_*$. Notant $m \in \mathbb{N}^*$ tel que $m^2=w^2-144$, nous arrivons à $w^2-m^2=144$, d'où $w^2-m^2=\sum_{k=m+1}^w (2k-1)$. Ceci n'est possible que si $(w,m) \in \{(13,5),(15,9),(20,16),(37,35)\}^8$. Ici aussi, $u \in 2\mathbb{N}$ donne $w \in 2\mathbb{N}$, donc (w,m)=(20,16), mais les équivalences suivantes lèvent une contradiction.

$$u + 4 = 20 \iff (2n+5)^2 - 17 = 24$$

 $\iff (2n+5)^2 = 41$ $\downarrow 41 \notin {}^2\mathbb{N}$

• Supposons enfin que $(a, b, c) \in \mathbb{N}^* \times \mathbb{N}^* \times {}^2\mathbb{N}_*$.

Dans ce cas, $ab \in {}^2\mathbb{N}_*$, soit $(u-8)(u+8) \in {}^2\mathbb{N}_*$, c'est-à-dire $u^2-64 \in {}^2\mathbb{N}_*$. Notant $m \in \mathbb{N}^*$ tel que $m^2=u^2-64$, nous arrivons à $u^2-m^2=64$. Ceci n'est possible que si $(u,m) \in \{(10,6),(17,15)\}$. Comme $u \in 2\mathbb{N}$, forcément (u,m)=(10,6), mais les équivalences suivantes lèvent une contradiction.

Nous avons donc $a = \alpha A^2$, $b = \beta B^2$ et $c = \gamma C^2$ avec $(A, B, C) \in (\mathbb{N}^*)^3$, et $(\alpha, \beta, \gamma) \in (\mathbb{N}_{>1})^3$ un triplet d'entiers sans facteurs carrés. Nous avons les faits suivants.

- $\alpha \wedge \beta \in \{1,2\}$ d'après $a \wedge b \mid 16$.
- $\alpha \wedge \gamma \in \{1, 2, 3\}$ d'après $a \wedge c \mid 24$.
- $\beta \wedge \gamma \in \{1,2\}$ d'après $b \wedge c \mid 8$.
- $\{\alpha, \beta, \gamma\} \subseteq \{2, 3, 6\}$ car $\forall p \in \mathbb{P}_{>3}$, $(v_p(a), v_p(b), v_p(c)) \in (2\mathbb{N})^3$.

En fait, α , β et γ sont différents deux à deux.

- Démontrons que $\alpha \neq \beta$. Dans le cas contraire, $16 = b - a = \alpha(B^2 - A^2)$ et $\alpha > 1$ donnent $B^2 - A^2 \in \{1, 2, 4, 8\}$. Or nous avons les impossibilités suivantes.
 - (1) $B^2 A^2 = 1$ et $B^2 A^2 = 2$ contredisent le fait 3.1.
 - (2) $B^2 A^2 = 4$ n'est possible que si (B, A) = (2, 0).
 - (3) $B^2 A^2 = 8$ n'est possible que si (B, A) = (3, 1) et $\alpha = 2$. Ceci donne a = 2, puis u = 10, mais nous avons vu que ceci était impossible.

^{7.} Noter que l'on doit avoir $2w-1 \le 16$, d'où $w \in [0; 8]$.

^{8.} Comme $2w-1 \le 144$ donne $w \in [0;72]$, il suffit de faire appel à un petit programme pour obtenir brutalement toutes les valeurs possibles.

- Nous avons aussi $\beta \neq \gamma$. Dans le cas contraire, $8 = c - b = \beta(C^2 - B^2)$ et $\beta > 1$ donnent $C^2 - B^2 \in \{1, 2, 4\}$, mais ce qui précède ne laisse aucun choix possible.
- Enfin, $\alpha \neq \gamma$. Dans le cas contraire, $C^2 - A^2 \in \{1, 2, 3, 4, 6, 8, 12\}$ car $24 = c - a = \alpha(C^2 - A^2)$ et $\alpha > 1$. Nous obtenons alors les impossibilités suivantes.
 - (1) $C^2 A^2 \in \{1, 2, 4\}$ est à rejeter comme précédemment.
 - (2) $C^2 A^2 = 3$ n'est possible que si (C, A) = (2, 1) et $\alpha = 8$, mais les équivalences suivantes lèvent une contradiction.

$$a=8\iff u=16$$
 $\iff (2n+5)^2-17=16$ $\iff (2n+5)^2=33$ $\downarrow 33\notin {}^2\mathbb{N}$

- (3) $C^2 A^2 = 6$ est impossible.
- (4) $C^2 A^2 = 8$ n'est possible que si (C, A) = (3, 1) et $\alpha = 3$, mais les équivalences suivantes lèvent une contradiction.

(5) $C^2 - A^2 = 12$ n'est possible que si (C, A) = (4, 2) et $\alpha = 2$, mais ceci donnerait a = 8, or nous savons que cela est impossible.

Comme $\{\alpha, \beta, \gamma\} \subseteq \{2, 3, 6\}$, $\alpha \land \beta \in \{1, 2\}$, $\alpha \land \gamma \in \{1, 2, 3\}$ et $\beta \land \gamma \in \{1, 2\}$, et comme de plus α , β et γ sont différents deux à deux, il ne nous reste plus qu'à analyser les cas suivants.

α	β	γ	$\alpha \wedge \beta$	$\alpha \wedge \gamma$	$\beta \wedge \gamma$	Statut
2	3	6	1	2	3	\boxtimes
2	6	3	2	1	3	\boxtimes
3	2	6	1	3	2	√
3	6	2	3	1	2	\boxtimes
6	2	3	2	3	1	√
6	3	2	3	2	1	\boxtimes

Traitons les deux cas restants en nous souvenant que a=u-8, b=u+8 et c=u+16, où $u=(2n+5)^2-17\in 2\mathbb{N}$.

- Supposons $(\alpha, \beta, \gamma) = (3, 2, 6)$, autrement dit $a = 3A^2$, $b = 2B^2$ et $c = 6C^2$. Travaillons modulo 3 afin de lever une contradiction.
 - (1) $a \equiv u 2$ et $a \equiv 3A^2 \equiv 0$ donnent $u \equiv 2$.
 - (2) D'autre part, $b \equiv 2B^2 \equiv 0$ ou 2 via les carrés modulo 3. Or $b \equiv u+2 \equiv 1$ lève une contradiction.
- Supposons $(\alpha, \beta, \gamma) = (6, 2, 3)$, autrement dit $a = 6A^2$, $b = 2B^2$ et $c = 3C^2$. La preuve précédente s'adapte sans difficulté puisque que $a \equiv 6A^2 \equiv 0$ et $b \equiv 2B^2$ modulo 3.

9. Sources utilisées

- (1) Un échange consulté le 28 janvier 2024, et titré « n(n+1)...(n+k) est un carré ? » sur le site lesmathematiques.net.
 - La démonstration du fait 7.1 via le principe des tiroirs trouve sa source dans cet échange.
- (2) L'article « Le produit de 5 entiers consécutifs n'est pas le carré d'un entier. » de T. Hayashi, Nouvelles Annales de Mathématiques, est consultable via Numdam, la bibliothèque numérique française de mathématiques.
 - Cet article a inspiré la preuve alternative du fait 7.1.
- (3) Un échange consulté le 28 janvier 2024, et titré « product of six consecutive integers being a perfect numbers » sur le site https://math.stackexchange.com.
 - La démonstration courte du fait 8.1 est donné dans cet échange. Vous y trouverez aussi un très joli argument basé sur les courbes elliptiques rationnelles.

REPRENDRE EN DÉTAILLANT (CAS IMPOSSIBLE DIST	CARRÉ + COMMENCER	CHAQUE CAS SUR	NELLE PAGE + IN
	10. AFFAIRE À	SUIVRE		