7. Conditional Expectation

Spring 2023

Matthew Blackwell

Gov 2002 (Harvard)

Where are we? Where are we going?

Covered most aspects of multivariate distributions.

Where are we? Where are we going?

- · Covered most aspects of multivariate distributions.
- Time to preview a feature of these distributions we'll care a lot a bout: conditional expectations.

Where are we? Where are we going?

- · Covered most aspects of multivariate distributions.
- Time to preview a feature of these distributions we'll care a lot a bout: conditional expectations.
- At its core: how the average of one variable varies with others.

Definition

$$\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] = \begin{cases} \sum_{y} y \ \mathbb{P}(Y = y \mid \mathbf{X} = \mathbf{x}) & \text{discrete } Y \\ \int_{-\infty}^{\infty} y \ f_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) dy & \text{continuous } Y \end{cases}$$

Definition

The **conditional expectation** of Y conditional on X = x is:

$$\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] = \begin{cases} \sum_{y} y \ \mathbb{P}(Y = y \mid \mathbf{X} = \mathbf{x}) & \text{discrete } Y \\ \int_{-\infty}^{\infty} y \ f_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) dy & \text{continuous } Y \end{cases}$$

• Expected value of the conditional distribution of Y given $\mathbf{X} = \mathbf{x}$.

Definition

$$\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] = \begin{cases} \sum_{y} y \; \mathbb{P}(Y = y \mid \mathbf{X} = \mathbf{x}) & \text{discrete } Y \\ \int_{-\infty}^{\infty} y \; f_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) dy & \text{continuous } Y \end{cases}$$

- Expected value of the conditional distribution of Y given $\mathbf{X} = \mathbf{x}$.
 - $\mathbf{X} = (X_1, X_2, \dots, X_k)$ is a random vector (k = 1 just an r.v.)

Definition

$$\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] = \begin{cases} \sum_{y} y \ \mathbb{P}(Y = y \mid \mathbf{X} = \mathbf{x}) & \text{discrete } Y \\ \int_{-\infty}^{\infty} y \ f_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) dy & \text{continuous } Y \end{cases}$$

- Expected value of the conditional distribution of Y given $\mathbf{X} = \mathbf{x}$.
 - $\mathbf{X} = (X_1, X_2, \dots, X_k)$ is a random vector (k = 1 just an r.v.)
- Viewed as a function of x, it is the conditional expectation function (CEF)

Definition

$$\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] = \begin{cases} \sum_{y} y \ \mathbb{P}(Y = y \mid \mathbf{X} = \mathbf{x}) & \text{discrete } Y \\ \int_{-\infty}^{\infty} y \ f_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) dy & \text{continuous } Y \end{cases}$$

- Expected value of the conditional distribution of Y given $\mathbf{X} = \mathbf{x}$.
 - $\mathbf{X} = (X_1, X_2, \dots, X_k)$ is a random vector (k = 1 just an r.v.)
- Viewed as a function of x, it is the conditional expectation function (CEF)
 - How does the average value of Y change given different levels of X?

	Support Gay	Oppose Gay
	Marriage	Marriage
	Y = 1	Y = 0
Female $X = 1$	0.30	0.21
Male $X = 0$	0.22	0.27

• Conditional expectation of gay marriage support Y among men X = 0?

	Support Gay	Oppose Gay
	Marriage	Marriage
	Y = 1	Y = 0
Female $X = 1$	0.30	0.21
Male $X = 0$	0.22	0.27

• Conditional expectation of gay marriage support Y among men X=0?

$$\mathbb{E}[Y \mid X = 0] = \sum_{y} y \, \mathbb{P}(Y = y \mid X = 0)$$

	Support Gay	Oppose Gay
	Marriage	Marriage
	Y = 1	Y = 0
Female $X = 1$	0.30	0.21
Male $X = 0$	0.22	0.27

• Conditional expectation of gay marriage support Y among men X = 0?

$$\mathbb{E}[Y \mid X = 0] = \sum_{y} y \, \mathbb{P}(Y = y \mid X = 0)$$
$$= 0 \times \mathbb{P}(Y = 0 \mid X = 0) + 1 \times \mathbb{P}(Y = 1 \mid X = 0)$$

	Support Gay	Oppose Gay
	Marriage	Marriage
	Y = 1	Y = 0
Female $X = 1$	0.30	0.21
Male $X = 0$	0.22	0.27

• Conditional expectation of gay marriage support Y among men X=0?

$$\mathbb{E}[Y \mid X = 0] = \sum_{y} y \, \mathbb{P}(Y = y \mid X = 0)$$

$$= 0 \times \mathbb{P}(Y = 0 \mid X = 0) + 1 \times \mathbb{P}(Y = 1 \mid X = 0)$$

$$= 1 \times \frac{0.22}{0.22 + 0.27}$$

	Support Gay	Oppose Gay
	Marriage	Marriage
	Y = 1	Y = 0
Female $X = 1$	0.30	0.21
Male $X = 0$	0.22	0.27

• Conditional expectation of gay marriage support Y among men X = 0?

$$\mathbb{E}[Y \mid X = 0] = \sum_{y} y \, \mathbb{P}(Y = y \mid X = 0)$$

$$= 0 \times \mathbb{P}(Y = 0 \mid X = 0) + 1 \times \mathbb{P}(Y = 1 \mid X = 0)$$

$$= 1 \times \frac{0.22}{0.22 + 0.27} = 0.45$$

• Example:

- Example:
 - Y_i is the time respondent i waited in line to vote.

- Example:
 - Y_i is the time respondent i waited in line to vote.
 - $X_i = 1$ for whites, $X_i = 0$ for non-whites.

- · Example:
 - Y_i is the time respondent i waited in line to vote.
 - $X_i = 1$ for whites, $X_i = 0$ for non-whites.
- Then the mean in each group is just a conditional expectation:

$$\begin{split} \mu(\text{white}) &= E[Y_i|X_i = \text{white}] \\ \mu(\text{non-white}) &= E[Y_i|X_i = \text{non-white}] \end{split}$$

Why is the CEF useful?

• The CEF encodes relationships between variables.

Why is the CEF useful?

- The CEF encodes relationships between variables.
- If $\mu(\text{white}) < \mu(\text{non-white})$, so that waiting times for whites are shorter on average than for non-whites.

Why is the CEF useful?

- The CEF encodes relationships between variables.
- If μ (white) $< \mu$ (non-white), so that waiting times for whites are shorter on average than for non-whites.
- Indicates a relationship **in the population** between race and wait times.

CEF for discrete covariates

• New covariate: X_i is the # of polling booths at citizen i's polling station.

CEF for discrete covariates

- New covariate: X_i is the # of polling booths at citizen i's polling station.
- $\mu(x)$ is the mean of Y_i changes as X_i changes:

CEF for discrete covariates

- New covariate: X_i is the # of polling booths at citizen i's polling station.
- $\mu(x)$ is the mean of Y_i changes as X_i changes:

$$\mu(\text{white}, \text{man}) = \mathbb{E}[Y_i | X_i = \text{white}, Z_i = \text{man}]$$

$$\begin{split} \mu(\text{white}, \text{man}) &= \mathbb{E}[Y_i | X_i = \text{white}, Z_i = \text{man}] \\ \mu(\text{white}, \text{woman}) &= \mathbb{E}[Y_i | X_i = \text{white}, Z_i = \text{woman}] \end{split}$$

$$\begin{split} \mu(\text{white}, \text{man}) &= \mathbb{E}[Y_i | X_i = \text{white}, Z_i = \text{man}] \\ \mu(\text{white}, \text{woman}) &= \mathbb{E}[Y_i | X_i = \text{white}, Z_i = \text{woman}] \\ \mu(\text{non-white}, \text{man}) &= \mathbb{E}[Y_i | X_i = \text{non-white}, Z_i = \text{man}] \end{split}$$

```
\begin{split} \mu(\mathsf{white},\mathsf{man}) &= \mathbb{E}[Y_i|X_i=\mathsf{white},Z_i=\mathsf{man}] \\ \mu(\mathsf{white},\mathsf{woman}) &= \mathbb{E}[Y_i|X_i=\mathsf{white},Z_i=\mathsf{woman}] \\ \mu(\mathsf{non\text{-}white},\mathsf{man}) &= \mathbb{E}[Y_i|X_i=\mathsf{non\text{-}white},Z_i=\mathsf{man}] \\ \mu(\mathsf{non\text{-}white},\mathsf{woman}) &= \mathbb{E}[Y_i|X_i=\mathsf{non\text{-}white},Z_i=\mathsf{woman}] \end{split}
```

• We can also CEF conditioning on multiple variables $\mu(\mathbf{x})$:

```
\begin{split} \mu(\text{white}, \text{man}) &= \mathbb{E}[Y_i | X_i = \text{white}, Z_i = \text{man}] \\ \mu(\text{white}, \text{woman}) &= \mathbb{E}[Y_i | X_i = \text{white}, Z_i = \text{woman}] \\ \mu(\text{non-white}, \text{man}) &= \mathbb{E}[Y_i | X_i = \text{non-white}, Z_i = \text{man}] \\ \mu(\text{non-white}, \text{woman}) &= \mathbb{E}[Y_i | X_i = \text{non-white}, Z_i = \text{woman}] \end{split}
```

Why? Allows more credible all else equal comparisons (ceteris paribus).

```
\begin{split} \mu(\mathsf{white},\mathsf{man}) &= \mathbb{E}[Y_i|X_i=\mathsf{white},Z_i=\mathsf{man}] \\ \mu(\mathsf{white},\mathsf{woman}) &= \mathbb{E}[Y_i|X_i=\mathsf{white},Z_i=\mathsf{woman}] \\ \mu(\mathsf{non\text{-}white},\mathsf{man}) &= \mathbb{E}[Y_i|X_i=\mathsf{non\text{-}white},Z_i=\mathsf{man}] \\ \mu(\mathsf{non\text{-}white},\mathsf{woman}) &= \mathbb{E}[Y_i|X_i=\mathsf{non\text{-}white},Z_i=\mathsf{woman}] \end{split}
```

- Why? Allows more credible all else equal comparisons (ceteris paribus).
- Ex: average difference in wait times between white and non-white citizens of the same gender:

$$\mu(\text{white}, \text{man}) - \mu(\text{non-white}, \text{man})$$

• What if our independent variable, X_i is income?

- What if our independent variable, X, is income?
- Many possible values of $X_i \rightsquigarrow \text{many possible values of } \mathbb{E}[Y_i|X_i=x].$

- What if our independent variable, X, is income?
- Many possible values of $X_i \rightsquigarrow \text{many possible values of } \mathbb{E}[Y_i | X_i = x].$
 - Writing out each value of the CEF no longer feasible.

- What if our independent variable, X_i is income?
- Many possible values of $X_i \rightsquigarrow \text{many possible values of } \mathbb{E}[Y_i | X_i = x].$
 - Writing out each value of the CEF no longer feasible.
- Now we will think about $\mu(x) = \mathbb{E}[Y_i | X_i = x]$ as function. What does this function look like:

- What if our independent variable, X_i is income?
- Many possible values of $X_i \rightsquigarrow \text{many possible values of } \mathbb{E}[Y_i | X_i = x].$
 - · Writing out each value of the CEF no longer feasible.
- Now we will think about $\mu(x) = \mathbb{E}[Y_i | X_i = x]$ as function. What does this function look like:
 - Linear: $\mu(x) = \alpha + \beta x$

CEF for continuous covariates

- What if our independent variable, X_i is income?
- Many possible values of $X_i \rightsquigarrow \text{many possible values of } \mathbb{E}[Y_i | X_i = x].$
 - Writing out each value of the CEF no longer feasible.
- Now we will think about $\mu(x) = \mathbb{E}[Y_i | X_i = x]$ as function. What does this function look like:
 - Linear: $\mu(x) = \alpha + \beta x$
 - Quadratic: $\mu(x) = \alpha + \beta x + \gamma x^2$

CEF for continuous covariates

- What if our independent variable, X_i is income?
- Many possible values of $X_i \rightsquigarrow \text{many possible values of } \mathbb{E}[Y_i | X_i = x].$
 - · Writing out each value of the CEF no longer feasible.
- Now we will think about $\mu(x) = \mathbb{E}[Y_i | X_i = x]$ as function. What does this function look like:
 - Linear: $\mu(x) = \alpha + \beta x$
 - Quadratic: $\mu(x) = \alpha + \beta x + \gamma x^2$
 - Crazy, nonlinear: $\mu(x) = \alpha/(\beta + x)$

CEF for continuous covariates

- What if our independent variable, X_i is income?
- Many possible values of $X_i \rightsquigarrow \text{many possible values of } \mathbb{E}[Y_i | X_i = x].$
 - Writing out each value of the CEF no longer feasible.
- Now we will think about $\mu(x) = \mathbb{E}[Y_i | X_i = x]$ as function. What does this function look like:
 - Linear: $\mu(x) = \alpha + \beta x$
 - Quadratic: $\mu(x) = \alpha + \beta x + \gamma x^2$
 - Crazy, nonlinear: $\mu(x) = \alpha/(\beta + x)$
- These are **unknown functions in the population**! This is going to make producing an estimator $\hat{\mu}(x)$ very difficult!

• The conditional expectation is a function of \mathbf{x} : $\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}]$.

- The conditional expectation is a function of **x**: $\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}]$.
 - Not random: for a particular \mathbf{x} , $\mu(\mathbf{x})$ is a number.

- The conditional expectation is a function of **x**: $\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}]$.
 - Not random: for a particular x, $\mu(x)$ is a number.
 - Conditional expectation given an event.

- The conditional expectation is a function of **x**: $\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}]$.
 - Not random: for a particular x, $\mu(x)$ is a number.
 - · Conditional expectation given an event.
- What about the conditional expectation given an r.v., $\mathbb{E}[Y \mid X]$?

- The conditional expectation is a function of **x**: $\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}]$.
 - Not random: for a particular x, $\mu(x)$ is a number.
 - · Conditional expectation given an event.
- What about the conditional expectation given an r.v., $\mathbb{E}[Y \mid X]$?
 - Why? Best prediction about Y given we get to know X.

- The conditional expectation is a function of **x**: $\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}]$.
 - Not random: for a particular x, $\mu(x)$ is a number.
 - · Conditional expectation given an event.
- What about the conditional expectation given an r.v., $\mathbb{E}[Y \mid X]$?
 - Why? Best prediction about Y given we get to know X.
- Obtained by plugging r.v. into the CEF: $\mathbb{E}[Y \mid X] = \mu(X)$

- The conditional expectation is a function of **x**: $\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}].$
 - Not random: for a particular x, $\mu(x)$ is a number.
 - · Conditional expectation given an event.
- What about the conditional expectation given an r.v., $\mathbb{E}[Y \mid X]$?
 - Why? Best prediction about Y given we get to know X.
- Obtained by plugging r.v. into the CEF: $\mathbb{E}[Y \mid X] = \mu(X)$
- This is itself a random variable! For binary X:

$$\mathbb{E}[Y \mid X] = \begin{cases} \mu(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \mu(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}$$

- The conditional expectation is a function of **x**: $\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}].$
 - Not random: for a particular x, $\mu(x)$ is a number.
 - · Conditional expectation given an event.
- What about the conditional expectation given an r.v., $\mathbb{E}[Y \mid X]$?
 - Why? Best prediction about Y given we get to know X.
- Obtained by plugging r.v. into the CEF: $\mathbb{E}[Y \mid X] = \mu(X)$
- This is itself a random variable! For binary X:

$$\mathbb{E}[Y \mid X] = \begin{cases} \mu(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \mu(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}$$

• Has an expectation, $\mathbb{E}[\mathbb{E}[Y \mid X]]$, and a variance, $\mathbb{V}[\mathbb{E}[Y \mid X]]$.

Simple Law of Iterated Expectations

If $\mathbb{E}|Y| < \infty$, for any random vector **X**, $\mathbb{E}\{\mathbb{E}[Y \mid \mathbf{X}]\} = E[Y]$.

• Expectation of the conditional expectation is the marginal expectation.

Simple Law of Iterated Expectations

If $\mathbb{E}|Y| < \infty$, for any random vector **X**, $\mathbb{E}\{\mathbb{E}[Y \mid \mathbf{X}]\} = E[Y]$.

- Expectation of the conditional expectation is the marginal expectation.
 - Discrete version: $\mathbb{E}\left[\mathbb{E}[Y\mid X]\right] = \sum_{x} \mathbb{E}[Y\mid X=x]\mathbb{P}(X=x) = \mathbb{E}[Y]$

Simple Law of Iterated Expectations

If $\mathbb{E}[Y| < \infty$, for any random vector **X**, $\mathbb{E}\{\mathbb{E}[Y \mid \mathbf{X}]\} = E[Y]$.

- Expectation of the conditional expectation is the marginal expectation.
 - Discrete version: $\mathbb{E}\left[\mathbb{E}[Y\mid X]\right] = \sum_{x} \mathbb{E}[Y\mid X=x]\mathbb{P}(X=x) = \mathbb{E}[Y]$
 - Continuous version: $\mathbb{E}\left[\mathbb{E}[Y\mid X]\right] = \int_{x} \mathbb{E}[Y\mid X=x] f_X(x) dx = \mathbb{E}[Y]$

Simple Law of Iterated Expectations

If $\mathbb{E}[Y| < \infty$, for any random vector **X**, $\mathbb{E}\{\mathbb{E}[Y \mid \mathbf{X}]\} = E[Y]$.

- Expectation of the conditional expectation is the marginal expectation.
 - Discrete version: $\mathbb{E}\left[\mathbb{E}[Y\mid X]\right] = \sum_{\mathbf{x}} \mathbb{E}[Y\mid X=x]\mathbb{P}(X=x) = \mathbb{E}[Y]$
 - Continuous version: $\mathbb{E}\left[\mathbb{E}[Y\mid X]\right] = \int_{X} \mathbb{E}[Y\mid X=x]f_X(x)dx = \mathbb{E}[Y]$
- · General version allows for two conditioning sets:

Simple Law of Iterated Expectations

If $\mathbb{E}|Y| < \infty$, for any random vector **X**, $\mathbb{E}\{\mathbb{E}[Y \mid \mathbf{X}]\} = E[Y]$.

- Expectation of the conditional expectation is the marginal expectation.
 - Discrete version: $\mathbb{E}\left[\mathbb{E}[Y\mid X]\right] = \sum_{x} \mathbb{E}[Y\mid X=x]\mathbb{P}(X=x) = \mathbb{E}[Y]$
 - Continuous version: $\mathbb{E}\left[\mathbb{E}[Y\mid X]\right] = \int_{X} \mathbb{E}[Y\mid X=x]f_X(x)dx = \mathbb{E}[Y]$
- General version allows for two conditioning sets:

Law of Iterated Expectations

If $\mathbb{E}|Y|<\infty$, for any random vectors \mathbf{X}_1 and \mathbf{X}_2 ,

$$\mathbb{E}\left\{\mathbb{E}[Y\mid \mathbf{X}_1,\mathbf{X}_2]\mid \mathbf{X}_1\right\}=E[Y\mid \mathbf{X}_1].$$

Simple Law of Iterated Expectations

If $\mathbb{E}[Y] < \infty$, for any random vector **X**, $\mathbb{E}\{\mathbb{E}[Y \mid \mathbf{X}]\} = E[Y]$.

- Expectation of the conditional expectation is the marginal expectation.
 - Discrete version: $\mathbb{E}\left[\mathbb{E}[Y\mid X]\right] = \sum_{x} \mathbb{E}[Y\mid X=x]\mathbb{P}(X=x) = \mathbb{E}[Y]$
 - Continuous version: $\mathbb{E}\left[\mathbb{E}[Y\mid X]\right] = \int_{X} \mathbb{E}[Y\mid X=x]f_X(x)dx = \mathbb{E}[Y]$
- General version allows for two conditioning sets:

Law of Iterated Expectations

If $\mathbb{E}|Y|<\infty$, for any random vectors \mathbf{X}_1 and \mathbf{X}_2 ,

$$\mathbb{E}\left\{\mathbb{E}[Y\mid \mathbf{X}_1,\mathbf{X}_2]\mid \mathbf{X}_1\right\}=E[Y\mid \mathbf{X}_1].$$

• "Averaging" over what is not constant (\mathbf{X}_2) .

	Support Gay Marriage $Y = 1$	Oppose Gay Marriage $Y = 0$	Marginal
Female $X = 1$	0.30	0.21	0.51
Male $X = 0$	0.22	0.27	0.49
Marginal	0.52	0.48	

• $\mathbb{E}[Y \mid X = 1] = 0.59$ and $\mathbb{E}[Y \mid X = 0] = 0.45$.

	Support Gay Marriage $Y = 1$	Oppose Gay Marriage $Y = 0$	Marginal
Female $X = 1$	0.30	0.21	0.51
Male $X = 0$	0.22	0.27	0.49
Marginal	0.52	0.48	

- $\mathbb{E}[Y \mid X = 1] = 0.59$ and $\mathbb{E}[Y \mid X = 0] = 0.45$.
- $\mathbb{P}(X=1)=0.51$ (females) and $\mathbb{P}(X=0)=0.49$ (males).

	Support Gay Marriage Y=1	Oppose Gay Marriage $Y = 0$	Marginal
Female $X = 1$	0.30	0.21	0.51
Male $X = 0$	0.22	0.27	0.49
Marginal	0.52	0.48	

- $\mathbb{E}[Y \mid X = 1] = 0.59$ and $\mathbb{E}[Y \mid X = 0] = 0.45$.
- $\mathbb{P}(X=1)=0.51$ (females) and $\mathbb{P}(X=0)=0.49$ (males).
- Plug into the iterated expectations:

	Support Gay Marriage	Oppose Gay Marriage	Marginal
	Y = 1	Y = 0	Marginat
Female $X = 1$	0.30	0.21	0.51
Male $X = 0$	0.22	0.27	0.49
Marginal	0.52	0.48	

- $\mathbb{E}[Y \mid X = 1] = 0.59$ and $\mathbb{E}[Y \mid X = 0] = 0.45$.
- $\mathbb{P}(X = 1) = 0.51$ (females) and $\mathbb{P}(X = 0) = 0.49$ (males).
- Plug into the iterated expectations:

$$\mathbb{E}[\mathbb{E}[Y\mid X]] = \mathbb{E}[Y\mid X=0]\mathbb{P}(X=0) + \mathbb{E}[Y\mid X=1]\mathbb{P}(X=1)$$

	Support Gay	Oppose Gay	
	Marriage	Marriage	Marginal
	Y=1	Y = 0	
Female $X = 1$	0.30	0.21	0.51
Male $X = 0$	0.22	0.27	0.49
Marginal	0.52	0.48	

- $\mathbb{E}[Y \mid X = 1] = 0.59$ and $\mathbb{E}[Y \mid X = 0] = 0.45$.
- $\mathbb{P}(X = 1) = 0.51$ (females) and $\mathbb{P}(X = 0) = 0.49$ (males).
- · Plug into the iterated expectations:

$$\mathbb{E}[\mathbb{E}[Y \mid X]] = \mathbb{E}[Y \mid X = 0]\mathbb{P}(X = 0) + \mathbb{E}[Y \mid X = 1]\mathbb{P}(X = 1)$$
$$= 0.45 \times 0.49 + 0.59 \times 0.51$$

	Support Gay Marriage	Oppose Gay Marriage	Marginal
	Y = 1	Y = 0	Marginat
Female $X = 1$	0.30	0.21	0.51
Male $X = 0$	0.22	0.27	0.49
Marginal	0.52	0.48	

- $\mathbb{E}[Y \mid X = 1] = 0.59$ and $\mathbb{E}[Y \mid X = 0] = 0.45$.
- P(X = 1) = 0.51 (females) and P(X = 0) = 0.49 (males).
- · Plug into the iterated expectations:

$$\mathbb{E}[\mathbb{E}[Y \mid X]] = \mathbb{E}[Y \mid X = 0]\mathbb{P}(X = 0) + \mathbb{E}[Y \mid X = 1]\mathbb{P}(X = 1)$$
$$= 0.45 \times 0.49 + 0.59 \times 0.51 = 0.52$$

	Support Gay	Oppose Gay	
	Marriage	Marriage	Marginal
	Y=1	Y = 0	
Female $X = 1$	0.30	0.21	0.51
Male $X = 0$	0.22	0.27	0.49
Marginal	0.52	0.48	

- $\mathbb{E}[Y \mid X = 1] = 0.59$ and $\mathbb{E}[Y \mid X = 0] = 0.45$.
- $\mathbb{P}(X = 1) = 0.51$ (females) and $\mathbb{P}(X = 0) = 0.49$ (males).
- · Plug into the iterated expectations:

$$\mathbb{E}[\mathbb{E}[Y \mid X]] = \mathbb{E}[Y \mid X = 0]\mathbb{P}(X = 0) + \mathbb{E}[Y \mid X = 1]\mathbb{P}(X = 1)$$
$$= 0.45 \times 0.49 + 0.59 \times 0.51 = 0.52 = \mathbb{E}[Y]$$

1. $\mathbb{E}[c(X)Y \mid X] = c(X)\mathbb{E}[Y \mid X]$ for any function c(X).

- 1. $\mathbb{E}[c(X)Y \mid X] = c(X)\mathbb{E}[Y \mid X]$ for any function c(X).
 - Example: $\mathbb{E}[X^2Y \mid X] = X^2\mathbb{E}[Y \mid X]$ (If we know X, then we also know X^2)

- 1. $\mathbb{E}[c(X)Y \mid X] = c(X)\mathbb{E}[Y \mid X]$ for any function c(X).
 - Example: $\mathbb{E}[X^2Y \mid X] = X^2\mathbb{E}[Y \mid X]$ (If we know X, then we also know X^2)
- 2. If X and Y are independent r.v.s, then

$$\mathbb{E}[Y \mid X = x] = \mathbb{E}[Y].$$

- 1. $\mathbb{E}[c(X)Y \mid X] = c(X)\mathbb{E}[Y \mid X]$ for any function c(X).
 - Example: $\mathbb{E}[X^2Y \mid X] = X^2\mathbb{E}[Y \mid X]$ (If we know X, then we also know X^2)
- 2. If X and Y are independent r.v.s, then

$$\mathbb{E}[Y \mid X = x] = \mathbb{E}[Y].$$

3. If $X \perp \!\!\!\perp Y \mid Z$, then

$$\mathbb{E}[Y \mid X = x, Z = z] = \mathbb{E}[Y \mid Z = z]$$

- 1. $\mathbb{E}[c(X)Y \mid X] = c(X)\mathbb{E}[Y \mid X]$ for any function c(X).
 - Example: $\mathbb{E}[X^2Y \mid X] = X^2\mathbb{E}[Y \mid X]$ (If we know X, then we also know X^2)
- 2. If X and Y are independent r.v.s, then

$$\mathbb{E}[Y \mid X = x] = \mathbb{E}[Y].$$

3. If $X \perp \!\!\!\perp Y \mid Z$, then

$$\mathbb{E}[Y \mid X = x, Z = z] = \mathbb{E}[Y \mid Z = z]$$

4. Linearity: $\mathbb{E}[Y + X \mid Z] = \mathbb{E}[Y \mid Z] + E[X \mid Z]$

CEF errors and projection

• CEF error: $e = Y - \mathbb{E}[Y \mid X]$

CEF errors and projection

- CEF error: $e = Y \mathbb{E}[Y \mid \mathbf{X}]$
- Properties of the CEF error:

- CEF error: $e = Y \mathbb{E}[Y \mid X]$
- Properties of the CEF error:

1.
$$\mathbb{E}[e \mid \mathbf{X}] = 0$$

- CEF error: $e = Y \mathbb{E}[Y \mid X]$
- · Properties of the CEF error:
 - 1. $\mathbb{E}[e \mid \mathbf{X}] = 0$
 - 2. $\mathbb{E}[e] = 0$

- CEF error: $e = Y \mathbb{E}[Y \mid \mathbf{X}]$
- · Properties of the CEF error:
 - 1. $\mathbb{E}[e \mid \mathbf{X}] = 0$
 - $2. \ \mathbb{E}[e] = 0$
 - 3. If $\mathbb{E}[|Y|^r] < \infty$ for $r \geq 1$, then $\mathbb{E}[|e|^r] < \infty$

- CEF error: $e = Y \mathbb{E}[Y \mid \mathbf{X}]$
- Properties of the CEF error:
 - 1. $\mathbb{E}[e \mid \mathbf{X}] = 0$
 - 2. $\mathbb{E}[e] = 0$
 - 3. If $\mathbb{E}[|Y|^r] < \infty$ for $r \ge 1$, then $\mathbb{E}[|e|^r] < \infty$
 - 4. For any function $h(\mathbf{X})$, $h(\mathbf{X})$ is uncorrelated with e: $\mathbb{E}[h(\mathbf{X})e] = 0$

- CEF error: $e = Y \mathbb{E}[Y \mid X]$
- · Properties of the CEF error:
 - 1. $\mathbb{E}[e \mid \mathbf{X}] = 0$
 - 2. $\mathbb{E}[e] = 0$
 - 3. If $\mathbb{E}[|Y|^r] < \infty$ for $r \ge 1$, then $\mathbb{E}[|e|^r] < \infty$
 - 4. For any function $h(\mathbf{X})$, $h(\mathbf{X})$ is uncorrelated with e: $\mathbb{E}[h(\mathbf{X})e] = 0$
- Last property: CEF errors are orthogonal to the space of functions of X.

- CEF error: $e = Y \mathbb{E}[Y \mid X]$
- Properties of the CEF error:
 - 1. $\mathbb{E}[e \mid \mathbf{X}] = 0$
 - 2. $\mathbb{E}[e] = 0$
 - 3. If $\mathbb{E}[|Y|^r] < \infty$ for $r \ge 1$, then $\mathbb{E}[|e|^r] < \infty$
 - 4. For any function $h(\mathbf{X})$, $h(\mathbf{X})$ is uncorrelated with e: $\mathbb{E}[h(\mathbf{X})e] = 0$
- Last property: CEF errors are orthogonal to the space of functions of X.
 - $\mathbb{E}[Y \mid X]$ is the **projection** of Y on the space of all functions of X.

- CEF error: $e = Y \mathbb{E}[Y \mid X]$
- · Properties of the CEF error:
 - 1. $\mathbb{E}[e \mid \mathbf{X}] = 0$
 - $2. \ \mathbb{E}[e] = 0$
 - 3. If $\mathbb{E}[|Y|^r] < \infty$ for $r \ge 1$, then $\mathbb{E}[|e|^r] < \infty$
 - 4. For any function $h(\mathbf{X})$, $h(\mathbf{X})$ is uncorrelated with e: $\mathbb{E}[h(\mathbf{X})e] = 0$
- Last property: CEF errors are orthogonal to the space of functions of X.
 - $\mathbb{E}[Y \mid X]$ is the **projection** of Y on the space of all functions of X.
 - Closest point in that space to Y.

- CEF error: $e = Y \mathbb{E}[Y \mid \mathbf{X}]$
- Properties of the CEF error:
 - 1. $\mathbb{E}[e \mid \mathbf{X}] = 0$
 - 2. $\mathbb{E}[e] = 0$
 - 3. If $\mathbb{E}[|Y|^r] < \infty$ for $r \ge 1$, then $\mathbb{E}[|e|^r] < \infty$
 - 4. For any function $h(\mathbf{X})$, $h(\mathbf{X})$ is uncorrelated with e: $\mathbb{E}[h(\mathbf{X})e] = 0$
- Last property: CEF errors are orthogonal to the space of functions of X.
 - $\mathbb{E}[Y \mid X]$ is the **projection** of Y on the space of all functions of X.
 - Closest point in that space to Y.
- These properties are definitional, not assumptions.

• Suppose we want to predict Y based on random vector X.

- Suppose we want to predict Y based on random vector X.
 - We can use any function $g(\mathbf{X})$ as our predictor.

- Suppose we want to predict Y based on random vector X.
 - We can use any function $g(\mathbf{X})$ as our predictor.
- · Mean squared error of our predictions:

$$\mathbb{E}\left[\left(Y-g(\mathbf{X})\right)^2\right]$$

- Suppose we want to predict Y based on random vector X.
 - We can use any function $g(\mathbf{X})$ as our predictor.
- · Mean squared error of our predictions:

$$\mathbb{E}\left[\left(Y-g(\mathbf{X})\right)^2\right]$$

• What function will minimize this error? The CEF, $\mu(\mathbf{x})!$

- Suppose we want to predict Y based on random vector X.
 - We can use any function $g(\mathbf{X})$ as our predictor.
- · Mean squared error of our predictions:

$$\mathbb{E}\left[\left(Y-g(\mathbf{X})\right)^2\right]$$

- What function will minimize this error? The CEF, $\mu(\mathbf{x})!$
- If $E[Y^2] < \infty$, then for any predictor $g(\mathbf{X})$,

$$\mathbb{E}\left[\left(Y - g(\mathbf{X})\right)^{2}\right] \geq \mathbb{E}\left[\left(Y - \mu(\mathbf{X})\right)^{2}\right]$$

Definition

The **conditional variance** of a Y given X =is defined as:

$$\sigma^2(\mathbf{x}) = \mathbb{V}[\mathbf{Y} \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}\left[(\mathbf{Y} - \boldsymbol{\mu}(\mathbf{x}))^2 \mid \mathbf{X} = \mathbf{x}\right]$$

Definition

The **conditional variance** of a Y given X =is defined as:

$$\sigma^2(\mathbf{x}) = \mathbb{V}[\mathbf{Y} \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}\left[(\mathbf{Y} - \boldsymbol{\mu}(\mathbf{x}))^2 \mid \mathbf{X} = \mathbf{x}\right]$$

· Spread of the conditional distribution around its expectation.

Definition

The **conditional variance** of a Y given X =is defined as:

$$\sigma^2(\mathbf{x}) = \mathbb{V}[\mathbf{Y} \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}\left[(\mathbf{Y} - \boldsymbol{\mu}(\mathbf{x}))^2 \mid \mathbf{X} = \mathbf{x}\right]$$

- · Spread of the conditional distribution around its expectation.
- · By definition, same as the variance of the CEF errors:

$$\mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}] = \mathbb{V}[e \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}[e^2 \mid \mathbf{X} = \mathbf{x}]$$

Definition

The **conditional variance** of a Y given X =is defined as:

$$\sigma^2(\mathbf{x}) = \mathbb{V}[\mathbf{Y} \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}\left[(\mathbf{Y} - \boldsymbol{\mu}(\mathbf{x}))^2 \mid \mathbf{X} = \mathbf{x}\right]$$

- · Spread of the conditional distribution around its expectation.
- · By definition, same as the variance of the CEF errors:

$$\mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}] = \mathbb{V}[e \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}[e^2 \mid \mathbf{X} = \mathbf{x}]$$

· Can re-express in the usual way:

$$\mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}\left[Y^2 \mid \mathbf{X} = \mathbf{x}\right] - \left(\mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}]\right)^2$$

- The error is **homoskedastic** if $\sigma^2(\mathbf{x}) = \sigma^2$ does not depend on \mathbf{x} .

- The error is **homoskedastic** if $\sigma^2(\mathbf{x}) = \sigma^2$ does not depend on \mathbf{x} .
 - Homoskedasticity greatly simplifies math, but often strong and implausible.

- The error is **homoskedastic** if $\sigma^2(\mathbf{x}) = \sigma^2$ does not depend on \mathbf{x} .
 - Homoskedasticity greatly simplifies math, but often strong and implausible.
- The error is **heteroskedastic** if $\sigma^2(\mathbf{x})$ does depend on \mathbf{x}

- The error is **homoskedastic** if $\sigma^2(\mathbf{x}) = \sigma^2$ does not depend on \mathbf{x} .
 - Homoskedasticity greatly simplifies math, but often strong and implausible.
- The error is **heteroskedastic** if $\sigma^2(\mathbf{x})$ does depend on \mathbf{x}
 - Hetero = different, skedastic = scatter

- The error is **homoskedastic** if $\sigma^2(\mathbf{x}) = \sigma^2$ does not depend on \mathbf{x} .
 - Homoskedasticity greatly simplifies math, but often strong and implausible.
- The error is **heteroskedastic** if $\sigma^2(\mathbf{x})$ does depend on \mathbf{x}
 - Hetero = different, skedastic = scatter
- Default assumption should be the less restrictive one: heteroskedastic

• Conditional variance is just a function of **x**: $\sigma^2(\mathbf{x}) = \mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}]$

- Conditional variance is just a function of \mathbf{x} : $\sigma^2(\mathbf{x}) = \mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}]$
- $\sigma^2(\mathbf{X}) = \mathbb{V}[Y \mid \mathbf{X}]$ is an r.v. and a function of \mathbf{X} , just like $\mathbb{E}[Y \mid \mathbf{X}]$.

- Conditional variance is just a function of \mathbf{x} : $\sigma^2(\mathbf{x}) = \mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}]$
- $\sigma^2(\mathbf{X}) = \mathbb{V}[Y \mid \mathbf{X}]$ is an r.v. and a function of \mathbf{X} , just like $\mathbb{E}[Y \mid \mathbf{X}]$.
- With a binary X:

$$\mathbb{V}[Y \mid X] = \begin{cases} \sigma^2(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \sigma^2(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}$$

- Conditional variance is just a function of \mathbf{x} : $\sigma^2(\mathbf{x}) = \mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}]$
- $\sigma^2(\mathbf{X}) = \mathbb{V}[Y \mid \mathbf{X}]$ is an r.v. and a function of \mathbf{X} , just like $\mathbb{E}[Y \mid \mathbf{X}]$.
- With a binary X:

$$\mathbb{V}[Y \mid X] = \begin{cases} \sigma^2(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \sigma^2(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}$$

• Theorem (Law of Total Variance/EVE's law):

$$\mathbb{V}[\mathit{Y}] = \mathbb{E}[\mathbb{V}[\mathit{Y} \mid \mathbf{X}]] + \mathbb{V}[\mathbb{E}[\mathit{Y} \mid \mathbf{X}]]$$

- Conditional variance is just a function of \mathbf{x} : $\sigma^2(\mathbf{x}) = \mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}]$
- $\sigma^2(\mathbf{X}) = \mathbb{V}[Y \mid \mathbf{X}]$ is an r.v. and a function of \mathbf{X} , just like $\mathbb{E}[Y \mid \mathbf{X}]$.
- With a binary X:

$$\mathbb{V}[Y \mid X] = \begin{cases} \sigma^2(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \sigma^2(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}$$

Theorem (Law of Total Variance/EVE's law):

$$\mathbb{V}[Y] = \mathbb{E}[\mathbb{V}[Y \mid \mathbf{X}]] + \mathbb{V}[\mathbb{E}[Y \mid \mathbf{X}]]$$

The total variance can be decomposed into:

- Conditional variance is just a function of \mathbf{x} : $\sigma^2(\mathbf{x}) = \mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}]$
- $\sigma^2(\mathbf{X}) = \mathbb{V}[Y \mid \mathbf{X}]$ is an r.v. and a function of \mathbf{X} , just like $\mathbb{E}[Y \mid \mathbf{X}]$.
- With a binary X:

$$\mathbb{V}[Y \mid X] = \begin{cases} \sigma^2(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \sigma^2(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}$$

Theorem (Law of Total Variance/EVE's law):

$$\mathbb{V}[Y] = \mathbb{E}[\mathbb{V}[Y \mid \mathbf{X}]] + \mathbb{V}[\mathbb{E}[Y \mid \mathbf{X}]]$$

- The total variance can be decomposed into:
 - 1. the average of the within group variance ($\mathbb{E}[V[Y \mid \mathbf{X}]]$) and

- Conditional variance is just a function of **x**: $\sigma^2(\mathbf{x}) = \mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}]$
- $\sigma^2(\mathbf{X}) = \mathbb{V}[Y \mid \mathbf{X}]$ is an r.v. and a function of \mathbf{X} , just like $\mathbb{E}[Y \mid \mathbf{X}]$.
- With a binary X:

$$\mathbb{V}[Y \mid X] = \begin{cases} \sigma^2(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \sigma^2(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}$$

Theorem (Law of Total Variance/EVE's law):

$$\mathbb{V}[Y] = \mathbb{E}[\mathbb{V}[Y \mid \mathbf{X}]] + \mathbb{V}[\mathbb{E}[Y \mid \mathbf{X}]]$$

- The total variance can be decomposed into:
 - 1. the average of the within group variance ($\mathbb{E}[V[Y \mid X]]$) and
 - 2. how much the average varies between groups ($V[\mathbb{E}[Y \mid \mathbf{X}]]$).