## Complexité

## Philippe Quéinnec

http://queinnec.perso.enseeiht.fr/Ens/calc.html

1<sup>er</sup> février 2021



Complexité 1 / 111

## Plan

## Complexité temporelle

- Introduction
- Temps déterministe
  - Temps déterministe
  - La classe P
  - Temps exponential
- NP et NP-complétude
  - NP
  - NP-complétude

## Complexité spatiale

- 4 Introduction
- Complexité en espace
  - DSPACE
  - NSPACE
- 6 Classes de complexité spatiale
  - 1SPACE
  - LSPACE, NLSPACE
  - PSPACE, EXPSPACE
  - Bilan

### Complexité probabiliste

(certains transparents sont issus du cours d'Adam Shimi 2019)

77

Complexité 2 / 111

### Ressources

### Ce cours est inspiré des cours suivants :

- Introduction à la calculabilité, Pierre Wolper, Dunod, 2006
- Langages formels, Calculabilité et Complexité, Olivier Carton, éditions Vuibert, 2014
- Calculabilité et complexité, Anca Muscholl, 2018 http://www.labri.fr/perso/anca/MC.html
- Complexité algorithmique, Sylvain Perifel, Ellipses, 2014
   https://www.irif.fr/~sperifel/livre\_complexite.html
- Fondements de l'informatique Logique, modèles, et calculs, Olivier Bournez, 2013–2020
  - $\verb|https://www.enseignement.polytechnique.fr/informatique/INF412| \\$
- Computational Complexity: A Modern Approach, Sanjeev Arora and Boaz Barak, Cambridge University Press, 2009 (draft sur http://theory.cs.princeton.edu/complexity/)
- Mathematics and Computation, Avi Wigderson, 2019
   https://www.math.ias.edu/avi/book

77

Complexité 3 / 111

# Première partie

Introduction



Complexité 4 / 111

## Multiplier efficacement $577 \times 423$

- Par additions successives
  - 577 + 577 + 577 + 577 + . . . : nécessite 422 additions
  - multiplier deux nombres de n chiffres nécessite  $O(n \cdot 10^n)$  additions
- par l'algorithme standard

Plagorithme standard

$$\frac{5 \quad 7 \quad 7}{\times \quad 4 \quad 2 \quad 3}$$

$$\frac{1 \quad 1 \quad 5 \quad 4}{2 \quad 3 \quad 0 \quad 8}$$

$$\frac{2 \quad 3 \quad 0 \quad 8}{2 \quad 4 \quad 4 \quad 0 \quad 7 \quad 1}$$
multiplier deux nombres de  $n$  chiffres nécessite  $O(n^2)$  opérations

- multiplier deux nombres de n chiffres nécessite  $O(n^2)$  opérations
- Par transformée de Fourier FFT (1971)  $O(n \cdot \log n \cdot \log \log n)$  opérations (pour n > 100000)
- Algorithme de Harvey et van der Hoeven (2019)  $O(n \cdot \log n)$  opérations (pour  $n > 2^{1729^{12}}$ )
- Peut-on faire mieux? (on ne pense pas)

(O(f(n)) signifie "dominé par f(n)", précisé plus loin)

## Trier efficacement n entiers par comparaison 2 à 2

- bogosort : temps asymptotique O(n!), espace O(n)
- Tri à bulles : temps  $O(n^2)$ , espace O(1)
- Tri par insertion : temps  $O(n^2)$ , espace O(1),
- Tri rapide : temps en moyenne  $O(n \log n)$ , temps en pire cas  $O(n^2)$ , espace  $O(\log n)$
- Tri rapide avec pivot aléatoire : espérance probabiliste  $O(n \log n)$
- Tri fusion : temps  $O(n \log n)$ , espace O(n)
- heap sort : temps  $O(n \log n)$ , espace O(1)
- Peut-on faire mieux? (on sait que non par comparaison)

### Pigeonhole sort ou counting sort

• temps O(n+k), espace O(k) (où k est l'espace des clefs)

Complexité 6 / 111

## La question : efficacité et difficulté d'un problème

### Problème vs algorithme

Difficulté d'un problème = efficacité du meilleur algorithme.

#### Quelles ressources mesurer?

- le temps de calcul
- la mémoire utilisée
- l'énergie consommée
- l'aléatoire nécessaire
- la communication nécessaire

### Pour quelle machine, quelle langage, quelle entrée?

- Machine, langage : sans importance (équiv. à un polynôme près)
- Fonction de la taille de l'entrée,  $\to \infty$
- Entrée : pire cas

Complexité 7 / 111

## Calculer vs vérifier (Cole, 1903)

- Trouver si 147573952589676412927 est premier est dur.
- Vérifier  $2^{67}-1=147573952589676412927=193707721\times 761838257287$  est facile (Cole, 1903).

Calculer Vérifier en temps 
$$\stackrel{?}{=}$$
 en temps polynomial P  $\stackrel{?}{=}$  NP

(Projet de loi de programmation de la recherche pour les années 2021 à 2030, texte élaboré par la commission mixte paritaire, Assemblée nationale n°3533 & Sénat n°177, novembre 2020, p82 : trois grandes questions ouvertes de la science sont mises en avant, dont celle-ci)

Complexité 8 / 111

## Résumé

- P = classe des problèmes solubles en temps polynomial de la taille de l'entrée
- NP = classe des problèmes vérifiables en temps polynomial
- NP-complet = problèmes vérifiables en temps polynomial, pas solubles en temps polynomial (sans doute)
- **EXPTIME** = problèmes solubles en temps exponentiel
- LSPACE = problèmes nécessitant moins que log n espace
- **PSPACE** = problèmes nécessitant un espace polynomial
- **EXPSPACE** = problèmes nécessitant un espace exponentiel

74

Complexité 9 / 111

## Modèle de calcul considéré : les machines de Turing

#### Mesure de la complexité

Mesurer la complexité = ressources utilisées par une machine de Turing :

- Temps : nombre de pas nécessaire pour arriver à la solution
- Mémoire : nombre de cases nécessaires, en plus du mot en entrée
- Énergie : énergie = O(temps), toute transition de même coût
- Aléatoire : source externe de bits aléatoires

Asymptotiquement pour des entrées de taille  $\to \infty$ , et dans le pire cas.

(On verra que le modèle de calcul est sans importance)



Complexité 10 / 111

## Notations: Grand-O

## Grand-O (Big-Oh) f = O(g)

f est dominée par g, f croît moins vite que g:  $f(n) = O(g(n)) \triangleq \exists c \in \mathbb{R}, \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : f(n) \leq c \cdot g(n)$ 

On écrit 
$$f = O(g)$$
 ou  $f(n) = O(g(n))$ .

L'usage de = est abusif mais installé, il vaudrait mieux écrire  $f \in O(g)$ .

## Petit-o f = o(g)

f croît beaucoup moins vite que g:

$$f(n) = o(g(n)) \stackrel{\triangle}{=} \forall \epsilon \in \mathbb{R}^{+*}, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : f(n) \le \epsilon \cdot g(n)$$

$$\stackrel{\triangle}{=} \lim_{x \to \infty} \frac{f(n)}{g(n)} = 0$$

$$n \log n = O(n^2)$$
,  $10n^2 + 24n = O(n^2)$ ,  $n^3 = o(3^n)$ 

77

Complexité 11 / 111

## Deuxième partie

Complexité en temps



Complexité 12 / 111

### Plan

- Introduction
- Temps déterministe
  - Temps déterministe
  - La classe P
  - Temps exponentiel
- 3 NP et NP-complétude
  - NP
  - NP-complétude



Complexité 13 / 111

## Importance de la complexité

Processeur effectuant 1 million d'instructions par seconde.

|            | Complexité |              |            |               |                  |                      |                      |
|------------|------------|--------------|------------|---------------|------------------|----------------------|----------------------|
|            | l '        |              |            |               |                  |                      |                      |
| taille     | n          | $n \log_2 n$ | $n^2$      | $n^3$         | 1.5 <sup>n</sup> | 2 <sup>n</sup>       | n!                   |
| n = 10     | < 1 s      | < 1 s        | < 1 s      | < 1 s         | < 1 s            | < 1 s                | 4 <i>s</i>           |
| n = 30     | < 1  s     | < 1 s        | < 1 s      | < 1 s         | < 1 s            | 18 <i>min</i>        | 10 <sup>25</sup> ans |
| n = 50     | < 1 s      | < 1 s        | < 1 s      | < 1 s         | 11 min           | 36 <i>ans</i>        | $\infty$             |
| n = 100    | < 1 s      | < 1 s        | < 1 s      | < 1 s         | 12,9 ans         | 10 <sup>17</sup> ans | $\infty$             |
| n = 1000   | < 1 s      | < 1 s        | 1 <i>s</i> | 18 <i>min</i> | $\infty$         | $\infty$             | $\infty$             |
| n = 10000  | < 1 s      | < 1 s        | 2 min      | 12 jours      | $\infty$         | $\infty$             | $\infty$             |
| $n = 10^5$ | <1 s       | 2 <i>s</i>   | 3 h        | 32 ans        | $\infty$         | $\infty$             | $\infty$             |
| $n = 10^6$ | 1 s        | 20 s         | 12 jours   | 31710 ans     | $\infty$         | $\infty$             | $\infty$             |

$$(\infty \ge 10^{25} ans)$$

(Extrait de Algorithm Design, Kleinberg and Tardos, 2005)



Complexité 14 / 111

## Problème de décision

#### Problème de décision

Un problème de décision sur un alphabet  $\Sigma$  est un ensemble de mots sur  $\Sigma$ , ou alternativement, une fonction  $f:\Sigma^* \to \{0,1\}$ 

#### Problème de recherche

Un problème de recherche sur un alphabet  $\Sigma$  est une fonction  $f:\Sigma^* \to \Sigma^*$ 

#### Exemple : soit G un graphe :

- Problème de décision : G est-il k-colorable ? (colorable avec k couleurs sans que les voisins partagent leur couleur)
- Problème de recherche / calcul : trouver une k-coloration de G.
- Problème d'optimisation : trouver une coloration pour le plus petit k tel que G est k-colorable.

Complexité 15 / 111

## Problème de recherche → problème de décision

On peut souvent transformer un problème de recherche en problème de décision de difficulté équivalente (mais pas toujours...)

- « Trouver le plus petit diviseur de  $N \gg \to \infty$  Soit N et k, existe-t-il un diviseur de N qui soit inférieur k? » Effectuer une recherche dichotomique < N/2? si oui, < N/4? Si oui, < N/8, si non < 3N/8 etc  $\Rightarrow$  facteur  $O(\log N)$
- « Calculer  $f(x,y) \gg \to \infty$  le *i*-ième bit de f(x,y) est-il 1? » nombre de bits à calculer indépendant des entrées  $\Rightarrow$  facteur O(1) nombre de bits à calculer O(g) des entrées  $\Rightarrow$  facteur O(g)



Complexité 16 / 111

## Plan

- Introduction
- Temps déterministe
  - Temps déterministe
  - La classe P
  - Temps exponentiel
- 3 NP et NP-complétude
  - NP
  - NP-complétude



Complexité 17 / 111

## **DTIME**

#### **DTIME**

La classe DTIME(f(n)) est la classe des problèmes de décision décidé en O(f(n)) pas : un langage L appartient à la classe de complexité  $DTIME(f(n)) \triangleq \exists M$  une machine de Turing :

- $\forall x \in L : M \text{ accepte } x$ .
- $\forall x \notin L : M \text{ rejette } x$ .
- $\forall x : M \text{ prend } O(f(|x|)) \text{ pas pour terminer.}$

(machine de Turing basique : déterministe, mono-ruban, mono-tête)

77

Complexité

## Fonction constructible en temps

### Constructible en temps

Une fonction  $f: \mathbb{N} \to \mathbb{N}$  est constructible en temps si  $f(n) \ge n$  et s'il existe une machine de Turing qui calcule f(n) en O(f(n)) pas.

- La restriction  $f(n) \ge n$  est pour pouvoir lire l'entrée n. On pourrait aussi dire "en O(n + f(n)) pas".
- Toutes les fonctions usuelles pour la complexité (log, +, ×, exp...) sont constructibles en temps.
- Dans la suite, on ne considère que des fonctions constructibles en temps.

Concept pas vraiment important, mais il se passe des choses bizarres si l'on considère des classes de complexité de fonctions non constructibles en temps : elles apportent du temps gratuit.

Complexité 19 / 111

## Propriétés de DTIME

#### fermeture

Pour f constructible en temps, DTIME(f) est fermé par union, intersection et complémentaire :

Pour  $L_1, L_2$  problèmes de décision dans DTIME(f),

- $L_1 \cup L_2 \in DTIME(f)$
- $L_1 \cap L_2 \in DTime(f)$
- $\overline{L_1} \in \mathrm{DTime}(f)$
- $\cup$  : exécuter  $M_1$  qui reconnaît  $L_1$ , si échec exécuter  $M_2$  qui reconnaît  $L_2$ . Temps pire = somme des temps + constante pour le "si".
- $\cap$  : exécuter  $M_1$  qui reconnaît  $L_1$ , si ok exécuter  $M_2$  qui reconnaît  $L_2$ . Temps pire = somme des temps + constante pour le "si".
- $\overline{L_1}$ : inverser la décision.

77

## Hiérarchie temporelle

#### Ordre partiel

Pour f,g constructibles en temps,  $f=O(g)\Rightarrow \mathrm{DTime}(f)\subseteq \mathrm{DTime}(g)$ 

#### Ordre strict

Pour f,g constructibles en temps,  $f=o(g)\Rightarrow \mathrm{DTime}(f)\varsubsetneq \mathrm{DTime}(g)$ 

Bizarrement, preuve pas triviale par diagonalisation, similaire à l'indécidabilité de l'arrêt.



## La classe P = les calculs efficaces

### Classe de complexité P

 ${f P}=$  classe des problèmes décidables en temps polynomial :

$$\mathbf{P} \triangleq \bigcup_{c \in \mathbb{N}} \mathrm{DTIME}(n^c)$$

### Pourquoi polynomial pour les calculs efficaces?

- Classe fermée par addition, multiplication et composition : résoudre un problème par agrégation d'autres problèmes conserve l'efficacité.
- Les polynômes ne croissent pas trop vite. La force brute est exponentielle et n'est pas dans P.
- Le modèle de calcul est sans importance : tous équivalents à un polynôme près (à suivre).
- La représentation des données est sans importance (à suivre).
- Loi des petits nombres : en pratique, on rencontre plutôt des problèmes en  $O(n^2)$  ou  $O(n^3)$  qu'en  $O(n^{100})$ .

Complexité 22 / 111

## Exemples de problèmes dans P

- Vérification de multiplication de matrices
- Test de primalité (2004)
   (naïf en O(2<sup>log n</sup>), algorithme probabiliste polynomial 1976)
- Existence d'un chemin entre deux nœuds d'un graphe
- Test de planarité d'un graphe
- Graphe eulériens : existence d'un cycle passant par chaque arc exactement une fois
- Programmation linéaire (1984)
- Factorisation de polynôme dans  $\mathbb{Q}$  (1982)
- Un Rubik's cube arbitrairement coloré est-il soluble? (2015)
- Évaluation d'un circuit logique à partir des entrées

77

Complexité

## Limites de P

- Ne distingue pas  $n^{50}$  de  $n^2$ .
- Les constantes sont ignorées : ne distingue pas  $1000n^2 + 100000$  et  $n^2$ .
- Considère le pire cas. Le cas moyen serait-il plus utile?
- Ne considère que des solutions exactes. Qu'en est-il des solutions approximatives?
- Précision des calculs : tous les modèles de calcul Church-Turing équivalents sont *discrets*. Qu'en est-il d'un modèle de calcul dans  $\mathbb{R}$  et non pas dans les flottants informatiques? (non réalisable)
- Les MT sont déterministes. Qu'en est-il si on a accès à de l'aléatoire? (classe BPP)
- Qu'en est-il d'un ordinateur quantique? (classe BQP)

77

Complexité 24 / 111

## Le codage des données est (presque) sans importance

Passer d'une représentation des données à une autre est polynomial (sauf codage catastrophique : base  $1) \Rightarrow$  un algorithme efficace pour une représentation reste efficace pour une autre (commencer par convertir les données).

Exemple : représentation d'un graphe de *n* nœuds :

- Matrice d'adjacence : matrice de  $n^2$  cases
- Listes d'adjacence : n listes d'au plus n nœuds
- Ensemble d'arêtes : ensemble d'au plus  $n^2$  couples

Complexité 25 / 111

## Théorème d'accélération : plusieurs transitions en une

#### Accélération linéaire

Pour toute constante  $\epsilon > 0$ , si un langage L est reconnu par une machine M en O(t(n)), alors il existe une machine M' reconnaissant L en  $O((1+\epsilon)n+\epsilon t(n)).$ 

Principe : agrandir l'alphabet pour faire plusieurs transitions de M en une seule dans M'.

Soit  $\Sigma$  l'alphabet de M et  $c = \lceil 6/\epsilon \rceil$  le facteur d'accélération. On construit M' sur  $\Sigma \cup \Sigma^c$ : une case de M' contient c symboles et une transition de M' effectue c transitions de M.

M' a besoin de déterminer au plus c cases de M à partir de sa case courante, donc a besoin de lire la case courante et ses voisines à droite et à gauche, puis simuler c transitions de M en une, et écrire le résultat  $\rightarrow$ 6 transitions de M'.

Temps = conversion de 
$$\Sigma$$
 vers  $\Sigma^c = n + \lceil \frac{n}{c} \rceil = O((1 + \epsilon)n)$   
+ exécution de  $M' = \lceil \frac{6}{c} \rceil \cdot t(n) = O(\epsilon t(n))$ 

Complexité 26 / 111

## Réduction de l'alphabet

### Réduction de l'alphabet

Soit une machine de Turing M sur un alphabet  $\Sigma$ , alors il existe une machine de Turing M' définie sur l'alphabet  $\Sigma' = \{0,1\}$  telle que (avec  $\varphi: \Sigma^* \to \Sigma'^*$  une bijection de codage) :

- $M(x) = \varphi^{-1}(M'(\varphi(x)))$
- Si M s'arrête sur l'entrée x en t pas de calcul, alors M' s'arrête sur l'entrée  $\varphi(x)$  en moins de  $(6 \cdot t \cdot \log |\Sigma|)$  pas;
- Si M s'arrête sur l'entrée x en utilisant un espace s, alors M' s'arrête sur l'entrée  $\varphi(x)$  en espace  $\leq (2 \cdot s \cdot \log |\Sigma|)$ .

(même idée que pour l'accélération)

77

Complexité 27 / 111

## Réduction du nombre de rubans

#### Réduction de k rubans à un seul

Une machine de Turing à k rubans fonctionnant en temps t peut être simulée par une machine de Turing à un ruban et fonctionnant en temps  $O(t^2)$ .

Etape 1: un seul ruban, k têtes : alterner les symboles de chaque ruban



Étape 2 : une seule tête, faire des aller-retours pour récupérer les k symboles et simuler la transition.

L'utilisation du parallélisme ne change pas la classe de complexité.



(dessin de Sylvain Perifel)
Complexité

## Le modèle de calcul est sans importance

Le modèle de calcul (de la famille Church-Turing) est sans importance.

Un problème de la classe **P** possède un algorithme efficace (polynomial) dans n'importe quel modèle ou langage : un algorithme efficace en CAML est un algorithme efficace en JAVA, ou un algorithme efficace en C.



## Machines non déterministes

On sait qu'une machine non déterministe M peut être convertie en une machine déterministe en explorant en largeur l'arbre du calcul non déterministe. cf cours calculabilité

#### Déterminisation

Si une machine non déterministe a besoin d'au plus t(n) transitions pour décider une entrée n, alors la machine déterminisée a besoin de  $O(2^{t(n)})$  transitions.



La déterminisation change la classe de complexité : polynomial  $\rightarrow$  exponentiel

À venir, classe **NP** 



Complexité 30 / 111

## Réduction de problèmes

#### Réduction $A \leq B$

(Rappel) Soit A et B deux problèmes de décision. Une réduction de A vers B est une fonction calculable f telle que  $x \in A \Leftrightarrow f(x) \in B$ .

(A est plus facile que B, A se réduit à B)





## Réduction de problèmes



### Réduction et complexité

- Si  $A \leq B$  et  $B \in \mathbf{P}$ , alors  $A \in \mathbf{P}$
- Si  $A \leq B$  et  $A \notin \mathbf{P}$ , alors  $B \notin \mathbf{P}$



Complexité

## Temps exponentiel

## Classes exponentielles

**ETIME** 
$$\triangleq \bigcup_{k \in \mathbb{N}} DTIME(2^{kn})$$

**EXPTIME** 
$$\triangleq \bigcup_{k \in \mathbb{N}} DTIME(2^{n^k})$$

#### Inclusion

### $P \subsetneq ETIME \subsetneq EXPTIME$

(d'après la hiérarchie temporelle T21)

### Exemple d'EXPTIME:

- Soit une machine de Turing M,  $M(\epsilon)$  s'arrête-t-elle en  $\leq k$  étapes? La seule manière est d'exécuter M pendant k transitions. L'entrée k, codée en base 2, prend  $\lceil \log_2 k \rceil$  bits, l'algorithme prend  $O(2^{\log k})$  pas.
- Échecs, Go (généralisés) : une partie peut nécessiter un nombre de pas exponentiel de la taille du damier.
- Vérification d'une formule LTL : exponentiel en le nombre d'opérateurs temporels.



### Bilan

- Définition de classes de complexité pour des problèmes de décision déterministes
- ullet Classe  ${f P}=$  les problèmes faciles, à résolution en temps polynomial
- Non importance du modèle de calcul



## Plan

- Introduction
- Temps déterministe
  - Temps déterministe
  - La classe P
  - Temps exponentiel
- 3 NP et NP-complétude
  - NP
  - NP-complétude



Complexité 35 / 111

## Problème de vérification



### Que demander d'une procédure de vérification?

- Ne jamais accepter une mauvaise solution
- Toujours accepter une solution correcte fournie avec un certificat
- Être efficace, c'est-à-dire polynomiale

#### Vérificateur

Un vérificateur pour un problème A est une machine M tel que

 $A = \{w \mid M \text{ accepte } \langle w, u \rangle \text{ pour un certain mot } u\}$ 

u est le certificat qui permet la preuve que w est dans A.

Complexité 36 / 111

### Classe NP

#### Définition de NP

Un langage  $L \subseteq \{0,1\}^*$  appartient à la classe de complexité  $\mathbf{NP} \triangleq \exists M$  une machine de Turing polynomiale,  $\exists p$  un polynôme :

- $\forall x \in L, \exists y \in \{0,1\}^{p(|x|)} : M \text{ accepte } \langle x,y \rangle.$
- $\forall x \notin L, \forall y \in \{0,1\}^* : M \text{ rejette } \langle x,y \rangle.$

Un y pour lequel M accepte est un certificat ou un témoin.

Observer que le certificat est de longueur polynomiale, car la machine ne peut lire en temps polynomial qu'un nombre polynomial de symboles.

(NP ne signifie pas Non Polynomial mais Non déterministe Polynomial)



Complexité 37 / 111

# Exemple de problèmes NP

- Satisfiabilité d'une formule propositionnelle certificat : valuation des symboles
- k-colorabilité d'un graphe certificat : l'affectation des couleurs
- Problème du sac à dos certificat : les objets retenus
- Factorisation : x a-t-il un diviseur premier dans l'intervalle [a, b]?
   certificat : le diviseur
- Programmation linéaire certificat : valuation des variables
- Existence d'un cycle hamiltonien (qui passe exactement une fois par tous les nœuds)

certificat : un tel cycle

77

## Temps non déterministe NTIME

#### NTIME

La classe  $\operatorname{NTIME}(f(n))$  est la classe des problèmes de décision décidé en O(f(n)) pas par une machine de Turing non déterministe : un langage L appartient à la classe de complexité  $\operatorname{NTIME}(f(n)) \triangleq \exists M$  une machine de Turing non déterministe :

- $\forall x \in L : M \text{ accepte } x$ .
- $\forall x \notin L : M \text{ rejette } x$ .
- $\forall x : M$  prend O(f(|x|)) pas pour terminer

(toute branche de son arbre de calcul est majorée en cas de rejet)

77

### Définition alternative de NP

### NP: Non déterministe, polynomial

**NP** est la classe des problèmes décidables en temps polynomial par une machine non déterministe :

$$\mathsf{NP} \triangleq \bigcup_{c \in \mathbb{N}} \mathsf{NTIME}(n^c)$$

### Classes exponentielles

**NETIME** 
$$\triangleq \bigcup_{k \in \mathbb{N}} NTIME(2^{kn})$$

**NEXPTIME** 
$$\triangleq \bigcup_{k \in \mathbb{N}} NTIME(2^{n^k})$$



### **Fermeture**

#### fermeture

Pour f constructible en temps, NTIME(f) est fermé par union et intersection :

Pour  $L_1, L_2$  problèmes de décision dans NTIME(f),

- $L_1 \cup L_2 \in \text{NTIME}(f)$
- $L_1 \cap L_2 \in NTIME(f)$
- NTIME(f) n'est pas fermé par complémentaire (pense-t-on)



### Hiérarchie

#### Ordre strict

Pour f, g constructibles en temps et croissantes,

$$f(n+1) = o(g(n)) \Rightarrow \text{NTIME}(f(n)) \subsetneq \text{NTIME}(g(n))$$

#### Hiérarchie

- $P \subset NP \subset EXPTIME \subset NEXPTIME$
- $\bullet$  P  $\stackrel{?}{=}$  NP
- NP  $\stackrel{?}{=}$  EXPTIME
- EXPTIME  $\stackrel{?}{=}$  NEXPTIME

(on pense que toutes les inclusions sont strictes)





Un problème dont on peut vérifier efficacement la solution est-il soluble par un algorithme efficace?

NP

Un problème possédant un espace exponentiel de solutions potentielles a-t-il un algorithme polynomial qui permet de trouver une solution?

- Prix de 1 million de US\$ du Clay Mathematics Institute (Millennium Prize Problems)
- La majorité des chercheurs pensent que  $P \neq NP$  :
  - Intuitivement, vérifier semble plus facile que calculer (cf T8).
  - Depuis 70 ans, on cherche des algorithmes polynomiaux pour des centaines de problèmes NP-complets, sans succès.

(Les problèmes NP-complets sont les problèmes les plus durs de la classe NP, à suivre)

Complexité 43 / 111

### Et si P = NP?

- Programmes efficaces pour prouver tout théorème (une preuve est un certificat de taille polynomiale du théorème).
- Optimalité des solutions pour tous les problèmes sur les graphes.
- Inutilité de l'aléatoire : les algorithmes probabilistes ne seraient pas mieux que les algorithmes déterministes.
- Tout chiffrage (cryptage) serait efficacement déchiffrable ⇒ plus de sécurité (privacy).

(côté pratique, si  $\mathbf{P} = \mathbf{NP}$  mais que le facteur pour passer de vérification à résolution est  $n^{\text{beaucoup}}$ , ça ne changera pas grand chose; côté théorique, cela serait un bouleversement)

77

# Réduction polynomiale de problèmes

### Réduction polynomiale $A \leq_p B$

Rappel : soit A et B deux problèmes de décision. Une réduction polynomiale de A vers B est une fonction f calculable en temps polynomial telle que  $x \in A \Leftrightarrow f(x) \in B$ .

(A est plus facile que B, A se réduit à B)



La seule différence avec la réduction générale est la contrainte que f est calculable en temps polynomial.

77

Complexité 45 / 111

### **NP**-complétude

### Problème NP-difficile (ou NP-dur)

Un problème de décision L est  $\mathbf{NP}$ -difficile  $\triangleq \forall L' \in \mathbf{NP} : L' \leqslant_p L$  (L' est réductible en temps polynomial à L).

(intuition : au moins aussi difficile que n'importe quel problème dans NP)

### Problème NP-complet

*L* est **NP**-complet  $\triangleq L$  est **NP**-difficile et  $L \in NP$ .

(intuition : un des problèmes les plus difficiles de NP)



# **NP**-complétude



(sous l'hypothèse  $P \neq NP$  et  $NP \neq EXPTIME$ )



## Intérêt des problèmes complets

Les problèmes complets capturent la classe tout entière :

- Si l'on prouve qu'un problème complet pour une classe  $\mathcal{A}$  appartient à la classe  $\mathcal{B}$ , on obtient  $\mathcal{A} \subseteq \mathcal{B}$ .
  - Si l'on trouve un problème NP-complet qui est dans P, alors P = NP.
- si on prouve que ce problème n'appartient pas à la classe  $\mathcal{C}$ , on obtient  $\mathcal{A} \not\subset \mathcal{C}$ .

Étudier une classe de complexité revient à étudier ses problèmes complets.

- Si on étudie une classe intéressante (comme P et NP), on va chercher leurs problèmes complets.
- Si on étudie un problème intéressant, on va regarder s'il existe une classe de complexité naturelle pour laquelle il est complet.

77

Complexité 48 / 111

# Remarques sur la X-complétude

 Un problème est X-complet si tous les problèmes de X se réduisent à lui. Pour X quelconque, rien ne dit qu'il existe des problèmes X-complets.

(c'est bon pour **NP**-complet)

- Tous les problèmes X-complets sont équivalents (tous réductibles entre eux).
- Il existe des problèmes hors de NP qui ne sont pour autant pas NP-complets.

77

# Un problème artificiel NP-complet

#### Acceptation en temps max

Le problème  $A \triangleq \{\langle \langle N \rangle, x, 1^t \rangle \mid N(x) \text{ accepte en temps } \leq t\}$ , où N est une machine de Turing non déterministe, x un mot d'entrée et t un entier (donné en base 1), est **NP**-complet.

- **1**  $A \in \mathbf{NP}$ : simuler la machine N(x) par une machine de Turing universelle. Le certificat est un chemin de calcul qui conduit à l'acceptation de N(x) en moins de t pas.
- ② A est **NP**-difficile: soit un problème B dans **NP**. B(n) est reconnu par une MT non déterministe M en temps p(n). La fonction  $f: w \to \langle \langle M \rangle, w, 1^{p(w)} \rangle$  est calculable en temps polynomial et vérifie  $w \in B \Leftrightarrow f(w) \in A$ . Donc  $B \leqslant A$ .

(problème artificiel : jeu sur les définitions)

77

# Le problème SAT

#### Définition

SAT (ou satisfiabilité booléenne) est le langage formé par toutes les formules propositionnelles satisfiables, c'est-à-dire qui ont une valuation des variables telle que la formule est évaluée à vrai.

Pour simplifier et parce qu'il existe une transformation polynomiale, les formules considérées sont en forme normal conjonctive (CNF) :

$$C_1 \wedge C_2 \wedge ... \wedge C_k$$
, où chaque  $C_i$  est de la forme

$$x_{i_1} \vee \ldots \vee x_{i_q} \vee \neg x_{i_r} \vee \ldots \vee \neg x_{i_s}.$$

#### Exemple:

$$(\neg x1 \lor x2) \land (\neg x2 \lor x3) \land (\neg x3) \land (x1 \lor x3 \lor x4) \land (\neg x4 \lor x1) \notin \mathsf{SAT}$$

$$(\neg x1 \lor x2) \land (\neg x2 \lor x3) \land (x1 \lor x3 \lor x4) \land (\neg x4 \lor x1) \in \mathsf{SAT}$$

#### Théorème de Cook-Levin

SAT est **NP**-complet.

Complexité 51 / 111

# Preuve : SAT est **NP**-complet

- SAT ∈ NP : compte tenu d'une "bonne" valuation des variables (le certificat), on vérifie la formule en temps polynomial de sa taille.
- ② SAT est **NP**-difficile : soit un langage  $L \in \mathbf{NP}$ , donc il existe une MT non déterministe M(x) qui décide  $x \in L$ . On construit (en temps polynomial de |x|) une formule CNF qui représente les calculs acceptants possibles de M(x) (la formule est donc de taille polynomiale de |x|). Cette formule est satisfiable ssi M accepte x.

77

Complexité 52 / 111

# Preuve : SAT est **NP**-difficile (suite)

M nécessite au plus  $T=|x|^c$  pas  $\to T+1$  configurations de taille T+1 :

- ullet  $c_{t,i}$  est la valeur inscrite dans la i-ème case à l'étape t.
- $p_{t,j}$  vaut 1 si la tête de lecture est sur la case j à l'étape t, 0 sinon.
- $s_{t,k}$  vaut 1 si M est dans l'état k à l'étape t, et 0 sinon.

#### Formules:

- Un seul état à la fois :  $\forall t, \forall k \neq k' : s_{t,k} \implies \neg s_{t,k'}$
- ullet Une seule position de la tête à la fois :  $\forall t, \forall j \neq j' : p_{t,j} \implies \neg p_{t,j'}$
- La seule case qui peut changer est celle où se trouve la tête :  $\forall t > 0, \forall j : \neg p_{t,j} \implies (c_{t+1,j} = c_{t,j}).$
- État initial :  $s_{0,0} \land p_{0,0} \land \forall k \leq |x| : c_{0,k} = x_k$
- Transition (état k, lecture b dans case j)  $\rightarrow$  (état k', écriture b', mouvement j') :

$$s_{t,k} \wedge p_{t,j} \wedge (c_{t,j} = b) \implies s_{t+1,k'} \wedge p_{t+1,j'} \wedge (c_{t+1,j} = b').$$

• Le calcul accepte en temps polynomial :  $\bigvee_{0 < t < T} (s_{t,Halt} \land c_{t,0})$ 

77

# Conséquences de la **NP**-complétude de SAT

- Si on réduit polynomialement SAT à un problème A, alors A est NP-difficile : A est au moins aussi difficile que SAT.
  - $\rightarrow$  en supposant  $\textbf{P} \neq \textbf{NP},$  il n'existe pas d'algorithme polynomial pour A.
- Si un problème A se réduit polynomialement à SAT, alors A est dans NP.
  - $\rightarrow$  on peut résoudre A en utilisant la réduction à SAT + un solveur SAT.
  - Si A est un problème difficile, cela peut être plus facile et peut-être plus efficace que de chercher un algorithme direct.

77

Complexité 54 / 111

### Solveur SAT

SAT est NP-complet  $\rightarrow$  tout algorithme sera exponentiel dans le pire cas (sauf si P = NP).

Pour autant, il existe des solveurs SAT extrêmement performants la majorité du temps :

- 1000 variables / 10 000 clauses en < 2 ms
- 100 000 variables / 200 000 clauses en quelques minutes

Mais pas de magie : il y aura toujours des formules de quelques dizaines ou centaines de variables qui nécessiteraient plusieurs milliards d'années.

77

### 3-SAT est **NP**-complet

### 3-SAT (où les clauses ont au plus trois variables) est NP-complet.

Preuve : SAT  $\leq_{p}$  3-SAT.

Réduction de SAT vers 3-SAT :

Transformer chaque clause  $C = x_1 \vee ... \vee x_n$  qui contient n > 3 valeurs en la conjonction de deux clauses (où z est une nouvelle variable)

$$C_1 = x_1 \vee ... \vee x_{n-2} \vee z$$
 et

$$C_2 = \neg z \lor x_{n-1} \lor x_n$$
.

Répéter jusqu'à n'avoir plus que des clauses de taille 3.

La réduction est polynomiale.

(trivialement 3-SAT  $\leq_p$  SAT)



Complexité 56 / 111

## Autres problèmes **NP**-complets : coloration de graphes

#### 3-colorabilité de carte

Un graphe planaire est-il colorable avec trois couleurs? (colorable sans que deux régions adjacentes soient de la même couleur)

(théorème des 4 couleurs : tout graphe planaire est colorable avec 4 couleurs, prouvé en 1976 par ordinateur – énumération des cas –, pas de preuve connue sans ordinateur)

La 3-colorabilité est NP-complet, la 2-colorabilité est dans P.

### Coloration de graphe

Un graphe arbitraire est-il colorable avec k couleurs? (colorable sans que deux nœuds adjacents soient de la même couleur)

La coloration à k couleurs est **NP**-complet pour k > 2.

Complexité 57 / 111

# 3-colorabilité $\leq_p SAT$

Soit un graphe G = (V, E), construisons une formule  $\varphi_G$  telle que G est 3-colorable  $\Leftrightarrow \varphi_G$  est satisfiable :

- Trois couleurs 1, 2, 3
- Variables  $v_i$  pour  $v \in V$  et  $i \in \{1, 2, 3\}$  ( $v_i$  est vraie si le sommet v est de couleur i)
- Chaque sommet est coloré par une et une seule couleur :

$$\bigwedge_{v \in V} ((v_1 \vee v_2 \vee v_3) \wedge \bigwedge_{i \neq i} (\neg v_i \vee \neg v_j))$$

• Deux sommets voisins n'ont pas la même couleur :

$$\bigwedge_{(u,v)\in E} \bigwedge_{i\in\{1,2,3\}} (\neg u_i \vee \neg v_i)$$



# $SAT \leqslant_p 3$ -colorabilité

Soit une formule  $\varphi$ , construisons un graphe dont la 3-coloration indique la satisfiabilité de  $\varphi$  :

- Trois couleurs 0, 1 (= vrai), 2
- Trois sommets distingués 0,1,2 de couleur 0,1,2, reliés entre eux
- Pour chaque variable  $v_i$ , sommets  $v_i$  et  $\neg v_i$ , reliés entre eux et à 2
- $p \lor q$  codé par : p Q Q Q

nœud  $\vee_{p,q}$  colorable par 1 ssi p ou g sont colorés 1

•  $p \wedge q$  codé par :



nœud  $\wedge_{p,q}$  colorable par 1 ssi p et q sont colorés 1

• Sommet  $\varphi$  relié à 0 et 2 (à colorer en 1).

77

### Autres problèmes **NP**-complets : graphes

#### cycle hamiltoniens

L'existence d'un cycle hamiltonien (qui passe exactement une fois par tous les nœuds) est **NP**-complet.

(l'existence d'un cycle eulérien, passant exactement une fois par chaque arc, est  ${\bf P}$ )

#### Clique

Dans un graphe non orienté, une clique est un ensemble de sommet tous reliés deux à deux (le sous-graphe est complet).

Étant donné un graphe non orienté et un entier k, existe-t-il une clique de taille k?

Le problème Clique est **NP**-complet (2006).

Complexité 60 / 111

# Équation diophantienne

### Équation diophantienne

Équation polynomiale à une ou plusieurs inconnues, à coefficients entiers, et dont les solutions sont cherchées parmi les nombres entiers. (dixième problème de Hilbert, 1900, prouvé indécidable en 1970)

2DIO : Équation diophantienne restreinte à deux inconnues

Quelles équations  $Ax^2 + By + C = 0$  sont solubles par entiers positifs?

(1975)

2DIO est NP-complet.



# Autres problèmes **NP**-complets

### Voyageur de commerce

Etant donné des villes, les distances les séparant et une limite, existe-t-il un cycle qui passe par toutes les villes sans dépasser la limite de distance?

#### Somme

Etant donné des objets avec valeur, existe-t-il un sous-ensemble d'objets qui atteint une valeur donnée ? Soit des entiers  $v_1,\ldots,v_k>0$  et un entier s; existe-t-il  $x_1,\ldots,x_k\in\{0,1\}$  tel que  $\sum_{i=1}^k x_i v_i=s$  ?

#### Sac à dos

Étant donné des objets avec valeur et poids, une limite de poids, existe-t-il un sous-ensemble d'objets qui maximise la valeur sans dépasser le coût? Soit des couples d'entiers positifs  $(v_1, p_1), \ldots, (v_k, p_k)$  et un entier C, trouver  $x_1, \ldots, x_k \in \{0,1\}$  qui maximise  $\sum_{i=1}^k x_i v_i$  en respectant  $\sum_{i=1}^k x_i p_i \leq C$ .

# Réflexions sur la **NP**-complétude

De nombreuses disciplines (biologie, chimie, économie, neuroscience, électronique...) décrivent le comportement des systèmes par des *règles simples et locales*, analogues à des algorithmes.

Ces modèles sont souvent indécidables ou au mieux **NP**-complets (exemple : calcul de la configuration d'énergie minimale d'une protéine – protein folding)  $\rightarrow$  leur résolution (quand elle est faisable) prend un temps exponentiel. Or la nature est *efficace* : un processus a lieu en temps borné et son observation nécessite un temps borné.

- Est-ce car le modèle **NP**-complet n'est qu'une approximation d'un modèle plus simple (polynomial) inconnu ?
- Est-ce car P = NP?
- Est-ce car les problèmes difficiles n'existent pas dans la nature?

(Wigderson 2019)

Complexité 63 / 111

# Bilan sur la complexité en temps

- Définition de classes de complexité
- Distinction résolution d'un problème / vérification d'une solution
- Notion de réduction : passer d'un problème à un autre
- Classe P : les problèmes à résolution polynomiale
- Classe NP : les problèmes à vérification polynomiale
- Problèmes **NP**-complets : les problèmes **NP** les plus difficiles
- $\bullet$  P  $\stackrel{?}{=}$  NP



# Troisième partie

Complexité en espace



Complexité 65 / 111

### Plan

- Introduction
- Complexité en espace
  - DSPACE
  - NSPACE
- 6 Classes de complexité spatiale
  - 1SPACE
  - LSPACE, NLSPACE
  - PSPACE, EXPSPACE
  - Bilan



Complexité 66 / 111

# **Objectifs**

- L'espace (la mémoire) est une ressource précieuse, autant que le temps (systèmes embarqués par exemple).
- Même si un algorithme est rapide, il faut que sa consommation en espace n'explose pas (mais espace ≤ temps : on ne peut pas manipuler plus de cases que de transitions effectuées).
- L'espace se comporte fondamentalement différemment du temps : il est réutilisable.
- Il n'y a pas de sous-classes intéressantes de **P** définies pour le temps, mais il y en a pour l'espace (espace constant, espace logarithmique).



Complexité 67 / 111

### Quelle mesure?

#### Que mesure-t-on?

On mesure uniquement l'espace utilisé par le calcul.

On ne compte pas la taille de l'entrée ni de la sortie, ni la taille de l'algorithme (constant).

Attention au risque de donner de l'espace "gratuit", par exemple en réutilisant l'espace pour l'entrée ou celui pour la sortie :

- L'espace d'entrée doit être uniquement en lecture
- L'espace de sortie doit être uniquement en écriture



Complexité 68 / 111

### Modèle standard

#### Machine de Turing à trois bandes

Les définitions et résultats sont indépendants du modèle, mais il est plus aisé d'utiliser une machine de Turing à trois bandes :

- Une bande d'entrée en lecture seule.
- Une bande de travail classique, en lecture et écriture.
- Une bande de sortie en écriture seule.



74

Complexité 69 / 111

## Réduction linéaire de l'espace

#### Réduction linéaire de l'espace

Pour toute constante  $\epsilon > 0$ , si un langage L est reconnu par une machine M en espace s(n), alors il existe une machine M' reconnaissant L en  $\epsilon \cdot s(n)$ .

Principe : similaire à l'accélération temporelle : agrandir l'alphabet de la bande de travail pour avoir besoin de moins de cases. Par exemple en passant de  $\{0,1\}$  à  $\{00,01,10,11\}$ , on divise par deux le nombre de cases. (c'est pour cela qu'on va plutôt compter le nombre de bits, et/ou utiliser uniquement l'alphabet  $\{0,1\}$ )



Complexité 70 / 111

### **DSPACE**

#### **DSPACE**

La classe DSPACE(s(n)) est la classe des problèmes de décision décidé en espace O(s(n)): un langage L appartient à la classe de complexité  $DSPACE(s(n)) \triangleq \exists M$  une machine de Turing déterministe (à trois bandes):

- $\forall x \in L : M \text{ accepte } x$ .
- $\forall x \notin L : M \text{ rejette } x$ .
- $\forall x : M \text{ écrit } O(s(|x|)) \text{ cases}$

(Comme pour le temps, il faut que s soit constructible en espace : le calcul de s(n) nécessite un espace O(s(n)), sinon s apporterait un espace gratuit) (Contrairement au temps, on pourrait affaiblir le cas  $\forall x \notin L$  en M rejette x ou M boucle mais il devient alors délicat de comparer les classes de complexité temporelles et spatiales)

Complexité 71 / 111

# Propriétés de DSPACE

#### fermeture

Pour s constructible en espace, DSPACE(s(n)) est fermé par union, intersection et complémentaire : pour  $L_1, L_2$  problèmes de décision dans DSPACE(s(n)),

- $L_1 \cup L_2 \in \mathrm{DSPACE}(s(n))$
- $L_1 \cap L_2 \in \mathrm{DSPACE}(s(n))$
- $\overline{L_1} \in \mathrm{DSPACE}(s(n))$

Preuve comme pour  $\mathrm{DTIME}$ : on utilise le max des espaces utilisés par chaque problème (en le réutilisant) :

- $\cup$  : exécuter  $M_1$  qui reconnaît  $L_1$ , si échec exécuter  $M_2$  qui reconnaît  $L_2$ .
- $\cap$  : exécuter  $M_1$  qui reconnaît  $L_1$ , si ok exécuter  $M_2$  qui reconnaît  $L_2$ .
- $\overline{L_1}$  : inverser la décision.

- 1

### Hiérarchie spatiale

#### Ordre partiel

Pour f, g constructibles en espace,  $f = O(g) \Rightarrow \text{DSPACE}(f) \subseteq \text{DSPACE}(g)$ 

#### Ordre strict

Pour f, g constructibles en espace,

$$f = o(g) \Rightarrow DSPACE(f) \subsetneq DSPACE(g)$$

Démonstration analogue au cas temporel.



### **NSPACE**

#### **NSPACE**

La classe  $\operatorname{NSPACE}(s(n))$  est la classe des problèmes de décision vérifié en O(s(n)) espace : un langage L appartient à la classe de complexité  $\operatorname{NSPACE}(s(n)) \triangleq \exists M$  une machine de Turing non déterministe (à trois bandes) :

- $\forall x \in L : M \text{ accepte } x$ .
- $\forall x \notin L : M \text{ rejette } x$ .
- $\forall x : M \text{ écrit } O(s(|x|)) \text{ cases}$



Complexité

### Graphe de configuration

#### Définition

Soit une machine de Turing M avec une entrée x,

- Une configuration est son état, le contenu de la bande de travail et les positions des têtes d'entrée et de travail.
- Le graphe de configuration est le graphe constitué des configuration avec des arêtes orientées reliant une configuration à une suivante selon la fonction de transition, et partant des configurations initiales.

Inutile de s'occuper de la bande de sortie, en écriture seule, et qui dans un problème de décision se réduit à un bit écrit à la dernière transition. (si M est déterministe, le graphe est linéaire)

77

Complexité 75 / 111

### Propriétés du graphe de configuration

#### Nombre de nœuds

Pour s(n) tel que  $s(n) \ge \log n$ , le graphe de configuration d'une machine dans NSPACE(s(n)) a  $2^{O(s(n))}$  nœuds.

- Le nombre de configurations est  $\leq Q.B.T$ , où Q est le nombre d'états, B est le nombre de contenus possibles et T est le nombre de positions possibles des têtes.
- Comme M est en espace O(s(n)),  $\exists c$  telle que le nombre de cases utilisées est  $\leq c \cdot s(n)$  et le nombre de contenus possibles du ruban de travail est  $\leq 2^{c \cdot s(n)}$ .
- La tête de travail est sur l'une des  $c \cdot s(n)$  cases, son codage prend  $\log(c \cdot s(n))$  bits.
- La tête d'entrée est sur une des n cases, son codage prend  $\log n$  bits.
- Le produit total donne  $|Q| \cdot \log(c \cdot s(n)) \cdot \log n \cdot 2^{c \cdot s(n)}$ . Comme  $\log(c \cdot s(n)) \cdot \log n = o(2^{s(n)})$ , cqfd.

77

### Lien temps espace

Pour f constructible en temps et espace,  $\operatorname{DTime}(f(n)) \subseteq \operatorname{DSPACE}(f(n)) \subseteq \operatorname{DTIME}(2^{O(f(n))})$ 

- DTIME $(f(n)) \subseteq DSPACE(f(n))$ : Une machine ne peut écrire qu'une case par transition. En f(n) transitions, elle ne peut utiliser qu'au plus f(n) cases.
- DSPACE $(f(n)) \subseteq \text{NSPACE}(f(n))$ : une MT déterministe est un cas particulier de MT non déterministe.
- NSPACE $(f(n)) \subseteq \text{DTIME}(2^{O(f(n))})$ : Si une MT s'arrête, elle ne peut pas passer deux fois par la même configuration. Il y a  $2^{O(f(n))}$  configurations, donc la machine s'arrête en moins de  $2^{O(f(n))}$  transitions.

77

Complexité 77 / 111

### Théorème de Savitch

#### Théorème de Savitch

Soit une fonction s telle que  $s(n) \ge \log n$  pour n assez grand. Une machine non déterministe qui fonctionne en espace O(s(n)) est équivalente à une machine de Turing déterministe en espace  $O(s(n)^2)$ :

$$NSPACE(s(n)) \subseteq DSPACE(s(n)^2)$$

Conséquence : pour l'espace, le non-déterminisme n'est intéressant que pour des classes de complexité < O(polynôme(n)).



### Preuve du théorème de Savitch

 $Access(C, C', t) \triangleq$ 

Soit une machine M dans  $\operatorname{NSPACE}(s(n))$ , on simule M(x) par l'algorithme  $\operatorname{Access}(C,C',t)$  qui renvoie vrai si M peut passer de C à C' en < t' transitions :

```
if t < 1 then return C = C'
  else
     for all C'' de taille < s(|x|) do
        if Access(C, C'', \lceil t/2 \rceil) and Access(C'', C', |t/2|) return true;
     end for
     return false
M accepte x en espace s(n), donc en temps 2^{O(s(n))}:
\exists c : \text{Access}(C_0, C_f, 2^{c \cdot s(n)}).
Espace utilisé = taille pile \times espace d'un appel
Pile des appels récursifs = c \cdot s(n) (dichotomie)
Espace d'un appel = (C, C', C'', t) = 3 * s(n) + c \cdot s(n) (t codé en binaire)
Total = O(s(n)^2)
```

Complexité 79 / 111

### La classe **1SPACE**

#### Classe **1SPACE**

**1SPACE** = problèmes décidables en espace constant : **1SPACE**  $\triangleq$  DSPACE(1)

#### Exemples:

- Parité d'un entier
- Incrémenter un entier
- Nombre pair de 1 dans un mot de  $\{0,1\}^*$
- And/Or bit-à-bit
- *n*-ième nombre de Fibonacci



### Classes LSPACE, NLSPACE

#### Classe LSPACE

**LSPACE** = problèmes décidables en espace logarithmique :

**LSPACE**  $\triangleq$  DSPACE(log(n))

- Additionner, multiplier deux entiers
- Comparer deux entiers, trier un ensemble d'entier
- Connexité d'un graphe non orienté (2004)

#### Classe NLSPACE

**NLSPACE** = problèmes décidables non déterministiquement en espace logarithmique :

 $NLSPACE \triangleq NSPACE(log(n))$ 

Complexité 81 / 111

### **NLSPACE**

#### Définition alternative de NLSPACE

Un langage  $L \subseteq \{0,1\}^*$  appartient à la classe **NLSPACE**  $\triangleq \exists M$  une machine de Turing  $\exists p$  un polynôme :

- $\forall x \in L, \exists y \in \{0,1\}^{p(|x|)} : M \text{ accepte } \langle x,y \rangle.$
- $\forall x \notin L, \forall y \in \{0,1\}^* : M \text{ rejette } \langle x,y \rangle.$
- M utilise au plus  $O(\log(n))$  cases.

Le certificat y doit être sur une bande à usage unique : la tête ne peut pas aller vers la gauche (sinon, on offrirait gratuitement un espace polynomial : le certificat)



Complexité

### Problème st-CONN

#### Problème st-CONN

Soit un graphe orienté G et deux nœuds s et t, existe-t-il un chemin de s à t?

#### st-CONN est NLSPACE-complet.

La difficulté est dans la définition de la réduction en espace logarithmique

Étrangement, st-UCONN, défini identiquement pour un graphe non orienté, est dans **LSPACE** (2005).



### PSPACE, EXPSPACE

#### Classes PSPACE, EXPSPACE

**PSPACE** = problèmes décidables en espace polynomial :

$$\mathsf{PSPACE} \triangleq \bigcup_{c \in \mathbb{N}} \mathsf{DSPACE}(n^c)$$

**EXPSPACE** = problèmes décidables en espace exponentiel :

**EXPSPACE** 
$$\triangleq \bigcup_{c \in \mathbb{N}} DSPACE(2^{n^c})$$

$$\mathsf{NPSPACE} \triangleq \bigcup_{c \in \mathbb{N}} \mathsf{NSPACE}(n^c) = \mathsf{PSPACE}$$

NEXPSPACE = EXPSPACE

(d'après le théorème de Savitch)



### Problème QBF

### Problème QBF (ou QSAT)

 $\mathsf{QBF} = \mathsf{ensemble} \ \mathsf{des} \ \mathsf{formules} \ \mathsf{bool\acute{e}ennes} \ \mathsf{quantifi\acute{e}es} \ \mathsf{closes} \ \mathsf{qui} \ \mathsf{sont} \ \mathsf{vraies}$ 

(closes = sans variable libre) exemple : 
$$\forall x_1, \exists x_2, x_1 \lor x_2$$

QBF est **PSPACE**-complet.

(SAT est le cas particulier de QBF avec que des ∃)



### QBF est dans **PSPACE**

$$\begin{array}{l} \mathit{QBF}(\varphi) \triangleq \\ \mathrm{si} \ \varphi = \exists x : \psi \ \mathrm{alors} \ \mathit{QBF}(\psi[x \leftarrow 0]) \lor \mathit{QBF}(\psi[x \leftarrow 1]) \\ \mathrm{sinon} \ \mathrm{si} \ \varphi = \forall x : \psi \ \mathrm{alors} \ \mathit{QBF}(\psi[x \leftarrow 0]) \land \mathit{QBF}(\psi[x \leftarrow 1]) \\ \mathrm{sinon} \ \mathrm{\'evaluer} \ \varphi \qquad (\varphi \ \mathrm{n'a} \ \mathrm{plus} \ \mathrm{de} \ \mathrm{quantificateur}) \end{array}$$

Soit une formule de taille m avec n variables. L'algorithme n'a besoin que d'une seule copie de  $\varphi$  et une pile de taille proportionnelle au nombre de variables  $\to$  espace O(nm).



Complexité

## QBF est **PSPACE**-difficile (1/2)

Pour tout  $L \in \mathbf{PSPACE}$ , montrons  $L \leq_p QBF$ . Soit une machine M qui décide L en espace polynomial O(s(n)) et soit  $x \in \{0,1\}^*$ .

- On considère le graphe de configuration de M(x).
- On a vu qu'il existe un polynôme  $q(n) = c \cdot s(n)$  tel que le graphe de M(x) a au plus  $2^{q(n)}$  nœuds.
- On va construire en temps et espace polynomial une formule QBF  $\psi^{\times}$  qui capture l'existence d'un chemin de longueur  $\leq 2^{q(n)}$  entre le nœud de départ et celui d'acceptation.

77

## QBF est **PSPACE**-difficile (2/2)

 $\psi_i(s,e)$  est l'existence d'un chemin de taille  $\leq 2^i$  entre s et e.

- $\psi_0(s,e) \triangleq (s=e) \lor (s \leadsto e)$
- $\psi_{i+1}(s,e) \triangleq \exists m : \psi_i(s,m) \land \psi_i(m,e)$  mais cela conduit à une formule de taille exponentielle (double à chaque pas).

$$\psi_{i+1}(s,e) \triangleq \\ \exists m, \forall u, v, ((u = s \land v = m) \lor (u = m \land v = e)) \implies \psi_i(u,v)$$

• Acceptation  $\psi^{\mathsf{x}} = \exists c \text{ acceptante}, \psi_{q(n)}(c_0, c)$ 

Taille de  $\psi^{x}$  :

- $|\psi_0|$  : énumérer les configurations pour vérifier l'existence d'une transition = un compteur en base 2 = O(q(n))
- $|\psi_{i+1}| \le p(n) + |\psi_i|$ : la première partie de la formule récursive utilise un nombre constant de configurations en espace polynomial, donc est en taille polynomiale (< p(n)).

• 
$$|\psi^{\times}| = O(q(n) \times p(n) + r(n))$$



### QBF = jeux à deux joueurs

#### Trouver une stratégie gagnante est **PSPACE**-complet

On considère un jeu (comme le Go généralisé) avec un nombre polynomial de mouvements et une description polynomiale des positions et des mouvements, alors l'ensemble des positions avec une stratégie gagnante est **PSPACE**-complet.

On réduit QBF à un jeu généralisé entre

- un joueur E qui décide la valeur des variables quantifiées par ∃.
- un joueur A qui décide la valeur des variables quantifiées par ∀.

$$\exists c_0, \forall c_1, \exists c_2, \forall c_3, \dots, \exists c_n, (c_0 \rightarrow c_1) \land (c_1 \rightarrow c_2) \land \dots \land c_n \text{ acceptant}$$

Dans ce jeu, la valeur de la formule est l'existence ou non d'une stratégie gagnante pour le joueur existentiel.

Complexité 89 / 111

### Bilan

# $\begin{aligned} \textbf{1SPACE} \subseteq \textbf{LSPACE} \subseteq \textbf{NLSPACE} \subseteq \textbf{P} \subseteq \textbf{NP} \\ \subset \ \ \textbf{PSPACE} \subseteq \textbf{EXPTIME} \subseteq \textbf{EXPSPACE} \end{aligned}$

- NLSPACE ⊊ P
- P ⊊ EXPTIME
- PSPACE ⊊EXPSPACE
- On pense que toutes les inclusions sont strictes
- Le non-déterminisme n'apporte rien pour l'espace à partir de



PSPACE

# Quatrième partie

Complexité probabiliste



Complexité 91 / 111

### Plan

- Complexité probabiliste : BPP
  - Introduction
  - Calcul probabiliste
  - Résultats



Complexité 92 / 111

### Apport du calcul probabiliste

#### Intuition

- Un algorithme avec la possibilité de faire des choix probabilistes, comme s'il lançait des pièces.
- Un compromis entre déterminisme et non-déterminisme : il ne faut pas forcément toujours accepter, mais il faut accepter "suffisamment souvent".
- Moyen de ne pas surdéterminer un algorithme, en faisant des choix aléatoires plutôt que déterministes.



Complexité 93 / 111

### Deux formulations de l'aléa

#### En ligne et hors ligne

- En ligne : le lancer de pièces. Lorsqu'il y a un choix aléatoire à faire, on "lance une pièce", c'est-à-dire qu'on tire un bit aléatoire.
   Comme une machine non déterministe aux choix probabilistes.
- Hors ligne : une liste initiale de bits aléatoires. Les choix sont fait en lisant un nouveau bit de cette liste.
   Comme une machine déterministe qui vérifie un certificat généré aléatoirement.

### Équivalence

La même intuition que pour **NP** permet de passer d'une formulation à l'autre : la liste initiale peut encoder tous les lancers de pièces, et les lancers de pièces peuvent simuler une lecture dans la liste initiale.

Complexité 94 / 111

### Las Vegas et Monte Carlo

#### Deux variations d'algorithmes probabilistes

- Algorithme de Las Vegas : algorithme qui renvoie toujours la réponse correcte, mais dont le temps pris pour le calcul est une variable aléatoire.
- Algorithme de Monte Carlo : algorithme qui finit en temps déterministe (en fonction de la taille), mais qui peut retourner des erreurs.

Puisque l'on étudie des classes de complexité, on veut des garanties sur le temps pris par l'algorithme et on se limite donc aux algorithmes de Monte Carlo.



Complexité

### Types d'erreurs

#### Double erreur et simple erreur

Une caractéristique des calculs probabilistes est la possibilité d'erreur :

- Double erreur : Il peut y avoir une erreur en acceptant ou en rejetant : l'algorithme peut accepter une mauvaise instance, et en rejeter une bonne.
- Simple erreur : Il ne peut y avoir une erreur qu'en acceptation (faux positifs) ou qu'en rejet (faux négatifs).

77

### Digression : complexité lissée (smoothed complexity)

De par notre définition classique de la complexité, il est possible qu'un algorithme soit efficace partout sauf pour certaines instances très spécifiques. Faut-il pour autant dire qu'il n'est pas efficace?

### Utiliser l'aléa pour négliger les cas pathologiques

La complexité lissée essaye de résoudre ce problème : le temps mesuré pour une entrée devient l'espérance du temps quand l'entrée est perturbée aléatoirement (par une distribution gaussienne).

On prend ensuite le maximum de ces temps pour chaque taille d'entrée.

Si les entrées qui prennent du temps sont pathologiques (très spécifiques), alors la perturbation fera baisser énormément la complexité.



Complexité 97 / 111

### Machine de Turing probabiliste

### Machine de Turing probabiliste

Une machine de Turing probabiliste est une machine de Turing avec deux fonctions de transitions. À chaque pas du calcul, l'une des fonctions est utilisée de manière équiprobable. La machine fonctionne en temps O(s(n)) si elle s'arrête en temps  $\leq s(|x|)$  pour toute entrée x et quels que soient les choix pris.

(équivalent à une MT non déterministe avec, à chaque pas, deux transitions possibles, équiprobables)

L'arbre d'exécution d'une MT probabiliste est un arbre binaire, la probabilité d'une branche de longueur I est  $2^{-I}$ .

- Dans une MT non déterministe, pour une entrée x, on se demande s'il existe un chemin qui conduit à l'acceptation.
- Dans une MT probabiliste, pour une entrée x, on se demande si une fraction majoritaire des chemins équiprobables conduisent à l'acceptation.

### Tri rapide probabiliste

### Tri rapide déterministe

$$tridet(x) \triangleq \text{si } |x| = 1 \text{ alors retourner } x \\ \text{sinon } T_1 \leftarrow \{x_i \mid x_i < x_1\}, \ T_2 \leftarrow \{x_i \mid x_i > x_1\} \\ \text{retourner } [tridet(T_1), x_1, tridet(T_2)]$$

Complexité pire cas =  $O(n^2)$  (si x est déjà trié)

#### Tri rapide probabiliste

$$triproba(x) \triangleq \text{si } |x| = 1 \text{ alors retourner } x$$
  
 $sinon \ p \leftarrow \text{au hasard parmi } 1, ..|x|$   
 $T_1 \leftarrow \{x_i \mid x_i < x_p\}, \ T_2 \leftarrow \{x_i \mid x_i > x_p\}$   
 $retourner \ [triproba(T_1), x_p, triproba(T_2)]$ 

- Temps moyen d'exécution =  $O(n \log n)$  sur toute entrée
- Encore mieux : tirer trois pivots et utiliser le  $x_p$  médian

77

### Sortir d'un labyrinthe

#### Problème st-UCONN

Soit un graphe non orienté G et deux nœuds s et t, trouver un chemin de s à t.

- ullet Parcours en profondeur de G: temps et espace polynomiaux
- Parcours aléatoire : choisir aléatoirement la prochaine arête, sans mémoire : temps polynomial, espace logarithmique (numéro du nœud courant). En  $O(n^3)$  pas, il y a une forte probabilité d'avoir parcouru toutes les arêtes (1979).
- En fait, il existe un algorithme déterministe polynomial en espace logarithmique (2005).

Si le graphe est orienté, un parcours aléatoire prend un temps exponentiel

 $0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots \longrightarrow (n-1) \longrightarrow n$ 

Complexité 100 / 111

### La classe BPP

Bounded error Probabilistic Polynomial time

#### Classe BPP

Un langage  $L \subseteq \{0,1\}^*$  appartient à la classe de complexité **BPP**  $\triangleq \exists M$  une machine de Turing probabiliste et un polynôme s(n) tel que pour tout mot  $x \in \{0,1\}^*$ :

- M(x) s'arrête en au plus s|x| transitions quels que soient les choix aléatoires
- $x \in L \implies Pr[M(x) \text{ accepte}] \ge 2/3$
- $x \notin L \implies Pr[M(x) \text{ rejette}] \ge 2/3$

Pourquoi 2/3? Toute constante > 1/2 est équivalente (à suivre).



Complexité

### La classe BPP, en terme de certificat

#### Classe BPP

Un langage  $L \subseteq \{0,1\}^*$  appartient à la classe de complexité **BPP**  $\triangleq \exists M$  une machine de Turing polynomiale,  $\exists p$  un polynôme :

- $\forall x \in L : Pr_{y \in \{0,1\}^{p(|x|)}}[M(\langle x,y \rangle) \text{ accepte}] \ge 2/3.$
- $\forall x \notin L : Pr_{v \in \{0,1\}^{p(|x|)}}[M(\langle x, y \rangle) \text{ rejette}] \ge 2/3.$

Le certificat y est la suite des choix aléatoires.

 $Pr_{x \in E}[A] \triangleq \text{probabilité de } A \text{ selon la distribution uniforme sur } E.$  On prend  $\frac{1}{p(|x|)}$  pour y, traduisant que tous les choix sont équiprobables.



Complexité

### La classe RP

Randomized Probabilistic Polynomial time

#### Classe RP

Un langage  $L \subseteq \{0,1\}^*$  appartient à la classe de complexité  $\mathbf{RP} \triangleq \exists M$  une machine de Turing probabiliste et un polynôme s(n) tel que pour tout mot  $x \in \{0,1\}^*$ :

- M(x) s'arrête en au plus s|x| transitions quels que soient les choix aléatoires
- $x \in L \implies Pr[M(x) \text{ accepte}] \ge 2/3$
- $x \notin L \implies Pr[M(x) \text{ rejette}] = 1$

La machine ne se trompe que par faux négatifs (rejet erroné d'un mot dans L).

Pourquoi 2/3? Pour faire comme **BPP** : toute constante > 0 est équivalente!

77

### Réduction de l'erreur pour RP

#### Réduction de l'erreur

Pour tout langage  $A \in \mathbf{RP}$  et pour toute constante c,  $\exists M$  une machine de Turing polynomiale probabiliste tel que pour tout mot  $x \in \{0,1\}^*$ :

- $x \in L \implies Pr[M(x) \text{ accepte}] > 1 2^{-c}$
- $x \notin L \implies Pr[M(x) \text{ rejette}] = 1$

Pour réduire l'erreur à  $\leq 2^{-c}$ , il suffit de recommencer l'algorithme c fois. Si l'une des exécutions accepte, alors  $x \in A$ , sinon on décrète que  $x \notin A$ . La probabilité de se tromper est  $(1/3)^c$ , qui est  $\leq 2^{-c}$ .

On peut réduire la probabilité d'erreur de manière exponentielle : peu de répétitions suffisent à avoir une probabilité d'erreur négligeable.

77

Complexité

### Réduction de l'erreur pour BPP

#### Réduction de l'erreur

Pour tout langage  $A \in \mathbf{BPP}$  et pour toute constante c,  $\exists M$  une machine de Turing polynomiale probabiliste tel que pour tout mot  $x \in \{0,1\}^*$ :

- $x \in L \implies Pr[M(x) \text{ accepte}] \ge 1 2^{-c}$
- $x \notin L \implies Pr[M(x) \text{ rejette}] > 1 2^{-c}$

Même idée : répéter plusieurs fois et garder la réponse majoritaire. (le calcul exact fait intervenir un peu de théorie des probabilités (bornes de Chernoff). Toute valeur > 1/2 fonctionne pour définir **BPP**)



### Test de primalité dans BPP

#### Primalité de N

Choisir A tel que  $1 \le A < N$ .

Si pgcd(N, A) > 1 ou  $(\frac{N}{A}) \neq A^{(N-1)/2} \pmod{N}$  alors conclure composite, sinon conclure premier.

- *N* premier ⇒ l'algorithme conclut correctement
- N composite  $\Rightarrow$  l'algorithme se trompe avec une probabilité 1/2.

On améliore la probabilité par répétition du test.

(Il existe plusieurs algorithmes probabilistes de primalité, peu coûteux en général. Un résultat inattendu de 2002 a montré que le test de primalité est dans **P**, avec un algorithme polynomial déterministe mais peu performant)

77

# Égalité de polynômes

#### PIT Polynomial Identity Testing

Soit F un corps fini (par exemple les entiers modulo 5). Soit  $p, q : F^n \mapsto F$  deux polynômes de degré au plus d.

$$PIT \triangleq \forall x_1, ..., x_n \in F : p(x_1, ..., x_n) = q(x_1, ..., x_n).$$

(Version simplifiée de PIT : l'énonce formel est sur les entiers non bornés, l'algorithme choisit une valeur m et tous les calculs sont modulo m)

#### Idée de l'algorithme

Tester la valeur de p(n) - q(n) en un point choisi aléatoirement :

- Si le résultat est non nul, on est sûr de devoir rejeter.
- Sinon, il y a une probabilité  $\frac{d}{|F|}$  d'être tombé sur une racine du polynôme, puisqu'il y en a au plus d.

Problème à solution dans **BPP** pour lequel on ne connaît pas d'algorithme déterministe polynomial.

### Hiérarchie

# $\begin{array}{c} P \subseteq RP \subseteq BPP \subseteq PSPACE \\ RP \subseteq NP \end{array}$

- $P \subseteq RP : P = pas d'erreur$
- $RP \subseteq BPP : RP = moins d'erreur$
- BPP ⊆ PSPACE : d'après la simulation d'une MT non déterministe : évaluer la MT selon tous les chemins possibles et évaluer la probabilité que le mot soit accepté
- **RP**  $\subseteq$  **NP** : Dans **RP**,  $x \in L \Rightarrow \exists y, M(\langle x, y \rangle)$  accepte et  $x \notin L \Rightarrow \forall y, M(\langle x, y \rangle)$  rejette, ce qui est la caractérisation existentielle de **NP** en terme de certificat.
- On ne sait pas la relation entre **BPP** et **NP** (dans aucun sens).

On soupçonne RP = BPP = P.

 $\rightarrow$  les algorithmes probabilistes ne permettraient pas de résoudre plus de problèmes que les algorithmes déterministes, mais ils peuvent être plus rapides d'un facteur arbitraire (avec une probabilité d'erreur).

Complexité 108 / 111

### Bilan

- Classe BPP = problèmes à résolution probabiliste en temps polynomial
- ullet Classe RP= sous-classe de BPP pour les problèmes sans faux positifs
- La répétition améliore drastiquement la probabilité de succès
- Beaucoup d'interrogations subsistent (dont le lien entre BPP et NP et si BPP = P)
- Même si BPP = P (l'aléatoire ne permettrait pas de résoudre plus de problème que le déterminisme), nous avons des algorithmes probabilistes qui sont beaucoup plus rapides que les algorithmes déterministes connus (quand il existe), au pris d'une petite probabilité d'erreur.

77

# Cinquième partie

Conclusion



Complexité 110 / 111

### Conclusion

### Bilan

TODO



Complexité 111 / 111