Санкт- Петербургский политехнический университет Петра Великого

Институт информационных технологий и управления Кафедра компьютерных систем и программных технологий

Пояснительная записка По предмету: «Метрология, стандартизация и сертификация»

Генератор напряжения треугольной формы

Выполнил: Бояркин Н.С. группа 23501/3-1 Проверил: Кошелев С.И.

Оглавление

1. Задания для практической работы по приведенной схеме электронного устройства	. 3
2. Техническое задание. Моделируемая схема.	. 4
3. Моделирование работы схемы в САПР OrCAD	. 5
3.1. Назначение устройства, входные и выходные сигналы. Принцип работы, уточнение или доопределение параметров и номиналов элементов	. 5
3.2. Величины, измерение которых позволит судить о качестве работы устройства	. 6
3.3. Тестовые воздействия и контролируемые величины, схема моделирования. Диаграмми результатов моделирования. Оценка работы устройства на качественном уровне	
4. Расчет погрешностей	12

1. Задания для практической работы по приведенной схеме электронного устройства

- 1. Выполнить моделирование работы схемы в САПР OrCAD, используя указанные активные элементы (PSpice модели) или их близкие аналоги
 - Описать назначение устройства (схемы), входные и выходные сигналы. Понять принцип работы, уточнить или доопределить параметры и номиналы элементов.
 - Определить величины, измерение которых позволит судить о качестве работы устройства.
 - Выбрать тестовые воздействия и контролируемые величины, составить схему моделирования.
 - Описать работу схемы, иллюстрируя диаграммами результатов моделирования. Оценить работу на качественном уровне.
- 2. Разработать для устройства два конструкторских документа ЕСКД:
 - Принципиальную схему устройства в среде OrCAD. На схеме не должно быть источников питания, тестовых воздействий и маркеров виртуальных измерителей. Зато надо добавить разъем, обычно один, но с достаточным количеством контактов, для ввода питания и входного сигнала, а также для вывода сигнала выходного.
 - Ведомость покупных изделий (в редакторе Word).
- 3. Оценить априорную инструментальную погрешность измерений качества работы устройства.
 - Разработать и описать методы измерения величин, характеризующих качество работы устройства, выбранных в первой главе.
 - Подобрать средства измерений (СИ) для реализации выбранных методов, из имеющихся в лаборатории электроники и электротехники кафедры. Привести их необходимые и достаточные метрологические характеристики.
 - Оценить (вычислить) априорную инструментальную погрешность измерений качества работы устройства с доверительной вероятностью 0,9.

2. Техническое задание. Моделируемая схема.

В данной работе необходимо смоделировать работу схемы генератора напряжения треугольной формы (Рис. 2.1). Измерить основные характеристики, описывающие выходной треугольный сигнал. Заполнить конструкторскую документацию. Рассчитать погрешности основных измеряемых величин.

Puc. 2.1

3. Моделирование работы схемы в САПР OrCAD

3.1. Назначение устройства, входные и выходные сигналы. Принцип работы, уточнение или доопределение параметров и номиналов элементов

Генератор треугольных импульсов состоит из двух последовательно соединенных устройств: самого генератора и компаратора (Рис. 2.1). Компаратор генерирует прямоугольные импульсы (Uкомп), которые в свою очередь подаются на вход генератора треугольного напряжения. При $U_{\text{комп}} = +U_{\text{нас}}$ на выходе генератора импульсов ($U_{\text{лин}}$) наблюдается линейное падение напряжения от $U_{\text{п.в.}}$ до $U_{\text{п.н.}}$. При $U_{\text{комп}} = -U_{\text{нас.}}$ наблюдается линейное повышение от $U_{n,h}$ до $U_{n,h}$. После этого выходное напряжение генератора ($U_{n,h}$) подается на вход компаратора, тем самым образуя замкнутую цепь. Таким образом, напряжение $U_{\text{комп}}$ работает как ключ для схемы генератора треугольных импульсов, который заставляет переключаться между линейным падением и ростом напряжения, образуя при этом треугольные импульсы (Рис. 3.2).

Было бы неверно утверждать, что вышеописанная схема генерирует только треугольный сигнал. Помимо U_{лин} на выход схемы выводится также и прямоугольный сигнал $U_{\text{комп}}$.

Обозначим формулы, с помощью которых рассчитываются основные параметры схемы.

Напряжение $U_{\text{нас}}$ известно заранее - оно примерно равно постоянному напряжению питания операционного усилителя компаратора. Также известны номиналы резисторов и времязадающего конденсатора.

Таким образом, легко рассчитать основные величины, влияющие на работу генератора:

Коэффициент соотношения сопротивлений резисторов компаратора (3.1):

$$\alpha = \frac{\alpha R}{R} \tag{3.1}$$

Нижние и верхние пороговые напряжения (3.2, 3.3):

$$U_{\text{п.н}} = \frac{-U_{\text{Hac}}}{\alpha}$$

$$U_{\text{п.в}} = \frac{U_{\text{Hac}}}{\alpha}$$
(3.2)

$$U_{\text{п.в}} = \frac{U_{\text{нас}}}{\alpha} \tag{3.3}$$

Напряжение ширины петли гистерезиса (3.4):

$$U_{\text{\tiny FUCT}} = U_{\text{\tiny II.B}} - U_{\text{\tiny II.H}}$$
 (3.4)

Время нарастания и время спада треугольного сигнала (3.5, 3.6):

$$t_{\rm H} = \frac{-U_{\rm FMCT}}{-U_{\rm Hac}} R_{\rm BX} \cdot C \tag{3.5}$$

$$t_{\rm c} = \frac{U_{\rm \Gamma MCT}}{U_{\rm HAC}} R_{\rm BX} \cdot C \tag{3.6}$$

Период и частота выходных сигналов (3.7, 3.8):

$$T = t_{\rm H} + t_{\rm c} \tag{3.7}$$

$$f = 1/T \tag{3.8}$$

Как мы видим из формул, сопротивление $R_{\text{вх}}$ и емкость С используются в формулах

парно и влияют только на частоту импульсов, не влияя на их амплитуду. Однако при изменении резистора R или aR (изменении α) пропорционально изменится и амплитуда импульсов, и их частота.

3.2. Величины, измерение которых позволит судить о качестве работы устройства

Задача моделируемого устройства — это генерирование треугольного сигнала. Следовательно, основные величины, которые определяют качество работы этого устройства — это величины, которые описывают результирующий треугольный сигнал.

Во-первых, амплитуда сигнала. Результирующее треугольное напряжение изменяется в пределах от $U_{\text{п.в.}}$ до $U_{\text{п.н.}}$ (Рис.3.2). Таким образом, при условии равенства по модулю питающих напряжений ОУ схемы, мы имеем и равные по модулю $U_{\text{п.в.}}$, $U_{\text{п.н.}}$. Обозначим $U_a = U_{n,g} = |U_{n,n}|$ - амплитуда результирующего треугольного сигнала.

Во-вторых, важной характеристикой этого устройства является зависимость $f(R_{ex})$. Варьируя значение R_{ex} можно задать конкретную частоту выходного сигнала, не влияя на его амплитуду.

3.3. Тестовые воздействия и контролируемые величины, схема моделирования. Диаграммы результатов моделирования. Оценка работы устройства на качественном уровне

Смоделируем общую схему генератора напряжения треугольной формы (Puc.3.1). Подадим питающее напряжение на операционные усилители $\pm 15~\mathrm{B}$ и построим временную диаграмму выходных напряжений $U_{\text{лин}}$, $U_{\text{комп}}$ (Puc.3.3).

Puc. 3.1

Puc. 3.2

Рассчитаем теоретические значения основных параметров схемы по формулам 3.1 - 3.8. Или воспользуемся готовой теоретической временной диаграммой (Puc.3.2).

Теоретические значения: $U_a = U_{n.6} = |U_{n.H}| = 7,5B$, $U_{zucm} = 15B$, $U_{hac} = 15B$, $t_{\rm H} = t_c = 1c$, T = 2c, $f = 0,5\Gamma u$.

Puc. 3.3

С помощью временной диаграммы моделирования PSpice (Puc.3.3), функции Toggle Cursor и формул 3.1 - 3.8 мы можем рассчитать эксперементальные значения основных параметров схемы.

Эксперементальные значения: $U_a = U_{n.s} = |U_{n.h}| = 7,4096B$, $U_{eucm} = 14,8192B$, $U_{hac} = 14,802B$, $t_h = 1,001162c$, $t_c = 1,001162c$, T = 2,002324c, $f = 0,49942\Gamma u$.

Результаты моделирования PSpice практически совпали с ожидаемыми теоретическими результатами.

После этого, варьируя входное сопротивление R_I , получим зависимость $f(R_I)$. Очень важно определить интервал изменения R_I . Воспользовавшись моделированием PSpice, найдем примерные границы: схема стабильно работает при R_I от полутора килом, до десятков мегом. Уточним эти границы, воспользовавшись конструкторской документацией, приложенной к отчету. В качестве R_I используется резистор 0402, который отличается хорошей точностью, дешевизной, но небольшим показателем мощности. Для того, чтобы обеспечить работу устройства при $U_{hac} = \pm 15$ В входной резистор R_I должен иметь номинал больше 3.6 кОм. Верхняя граница — это максимальный номинал 0402 — 5,1 МОм.

Снимем экспериментальную характеристику $f(R_1)$ в указанных границах, используя реальные номиналы резисторов 0402:

R ₁ , к О м	Т, с	f, Гų
3,9	0,008	128,056
10	0,020	49,942
20	0,040	24,971
30	0,060	16,647
43	0,086	11,614
62	0,124	8,055
91	0,182	5,488
120	0,240	4,162
150	0,300	3,329
200	0,400	2,497
240	0,481	2,081
300	0,601	1,665
360	0,721	1,387
430	0,861	1,161
510	1,021	0,979
560	1,121	0,892
620	1,241	0,806
680	1,362	0,734
750	1,502	0,666
820	1,642	0,609
910	1,822	0,549
1000	2,002	0,499
1100	2,203	0,454
1200	2,403	0,416
1500	3,003	0,333

1600	3,204	0,312
1800	3,604	0,277
2000	4,005	0,250
2200	4,405	0,227
2400	4,806	0,208
2700	5,406	0,185
3000	6,007	0,166
3300	6,608	0,151
5100	10,212	0,098

Табл. 3.1

Выведем формулу $f(R_1)$, из формул 3.1 - 3.8:

$$f = \frac{U_{\text{Hac}}}{4 \cdot U_a \cdot R_1 \cdot C_1} \tag{3.9}$$

Как можно заметить из графика экспериментальных измерений (Рис 3.4), и из теоретической формулы 3.9, сопротивление R_I . обратно пропорционально частоте треугольных импульсов.

					КСПТ.230100.8.Э3			
						Литер	Macca	Масштаб
Изм.	Лист	N документа	Подпись	Дата	Генератор напряжения треугольной формы			
Разр	раб.	Бояркин Н.С.						
Пров	вер.	Кошелев С.И.			форты			
Т. ко	нтр.					Лист Листов		
Н. ко Утв.	онтр.					ИИТУ 23501/3-1		

Поз.	обозначение	Наименование			Кол.	Примечание		
				Резисторы				
	R1	1МОм ± 1	% 04		1			
R	R2, R3, R5	10кОм <u>±</u> 1			3			
	R4	20кОм ± 1	% 04	102	1			
				Конденсаторы				
	C1	1 мкФ ± 10	080	05	1			
				Операционные усилители				
	D1, D2	AD741			2			
<u> </u>								
				КСПТ. 2301	UU 8 UJ3			
				KG111.2301	00.0.1100			
					Литер	Масса Масштаб		
Изм. Лист	т N документа Бояркин Н.С.	Подпись	Дата	Генератор напряжения треугольной				
Разраб. Провер.	Бояркин н.С. Кошелев С.И.			формы				
		Листов						
Н. контр.					ИИТУ 23501/3-1			
Утв.								

4. Расчет погрешностей

Исследуемые величины — амплитуда выходного сигнала U_a и зависимость частоты треугольного напряжения от входного резистора $f(R_I)$.

Для изменения амплитуды используем лабораторный осциллограф AKTAKOM ADS-2111MV. Его некоторые метрологические характеристики:

Общие						
Полоса пропускания	100 МГц					
Ограничение полосы пропускания	20 МГц					
Максимальное входное напряжение (DC+AC пик)	400 Вп-п					
Горизо	онтальная система					
Коэффициент развертки	2 нс/дел ~ 100 с/дел, с шагом 1~2~5					
Погрешность времени выборки и времени задержки	±100 ppm					
Погрешность измерения интервалов (DC – 100 МГц)	Однократный сигнал: ±(время выборки + 100 ppm * измеренное значение + 0.6 нс)					
Верти	Вертикальная система					
Коэффициент отклонения 2 мВ/дел ~ 10 В/дел, с шагом 1~2~5						
Погрешность коэф.усиления	±3%					
Курсорны	ые измерения (ось X)					
Диапазон установки курсоров	± 8 делений от центральной линии экрана					
Абсолютная погрешность курсорных	$\Delta T \pm (0.02 \cdot T_{\text{изм}} + 0.04 \cdot K_{\text{разв}})$					
измерений	где $T_{\text{изм}}$ – измеренные значения периода; $K_{\text{разв}}$ –					
	установленные значения коэффициентов развертки					
Курсорные измерения (ось Y)						
Диапазон установки курсоров	± 5 делений от центральной линии экрана					
Абсолютная погрешность курсорных	$\Delta V \pm (0.02 \cdot V_{\text{изм}} + 0.04 \cdot K_{\text{откл}})$					
измерений	где $V_{\text{\tiny ИЗМ}}$ – измеренные значения напряжения; $K_{\text{откл}}$ –					
	установленные значения коэффициентов отклонения					

Табл. 4.1.

Измерим с помощью этого осциллографа амплитуду выходного сигнала на схеме (Рис.3.1). Найдем абсолютную погрешность измерения по формуле:

$$\Delta V \pm (0.02 \cdot V_{\text{M3M}} + 0.04 \cdot K_{\text{OTKJ}}) \tag{4.1}$$

Для измерения погрешности необходимо знать $K_{om\kappa n}$. Этот коэффициент — это высота одного деления на экране осциллографа, в вольтах. Измеряем величину, которая находится в пределах $\pm 7,5$ В, диапазон установки курсоров ± 5 делений от центра. Таким образом $K_{\text{откл}} \geq \frac{2\cdot 7,5}{2\cdot 5} = 1,5$ В. Такого коэффициента нет в характеристиках осциллографа, поэтому используем ближайший к нему 2В. Вычислим погрешность измерения амплитуды во формуле 4.1:

$$\Delta(U_a) = \Delta U_{\text{ILB}} = 0.02 \cdot 7.4096 + 0.04 \cdot 2 = 0.228 \text{ B}$$
 (4.2)

$$\delta(U_a) = \delta U_{\text{\tiny II.B}} = \frac{\Delta U_{\text{\tiny II.B}}}{U_{\text{\tiny II.B}}} \cdot 100\% = \frac{0,228}{7,4096} \cdot 100\% = 3,08\% \tag{4.3}$$

$$U_a = (7,41 \pm 0,23) \text{ B}$$
 (4.4)

Из зависимости $f(R_I)$ (Рис. 3.4) измерим частоту при трех характерных входных сопротивлениях R_I :

R ₁ , кОм	Т, с	f, Гц
3,9	0,008	128,05
620	1,241	0,806
5100	10,212	0,098

Табл. 4.2

K сожалению, лабораторный частотомер Ч3-33 с диапазоном измерения $10~\Gamma \mu - 10~M\Gamma \mu$ не может измерять настолько низкочастотные сигналы, поэтому в очередной раз воспользуемся осциллографом.

Зависимость $f(R_1)$ легко найти через зависимость $T(R_1)$.

Найдем абсолютную погрешность измерения по формуле:

$$\Delta T \pm (0.02 \cdot T_{H3M} + 0.04 \cdot K_{Da3B})$$
 (4.5)

Для измерения погрешности необходимо знать $K_{\text{разв}}$. Этот коэффициент — это ширина одного деления на экране осциллографа, в секундах. Используем ближайший больший коэффициент $K_{\text{разв}} \geq \frac{T}{2 \cdot 8}$ Измерения указанных периодов проводились при различных приближениях, поэтому и $K_{\text{разв}}$ будут различные.

После этого найдем относительную погрешность измерения по формуле:

$$\delta T = \frac{\Delta T}{T_{\text{MBM}}} \cdot 100\% \tag{4.6}$$

Найдем частоту по формуле:

$$f = \frac{1}{T} \tag{4.7}$$

Выразим относительную погрешность измерения зависимости $\delta f(R_1)$, используя формулу 4.7. Необходимо учесть относительную погрешность резистора R_I :

$$\delta f(R_1) = \sqrt{(\delta T)^2 + (\delta R_1)^2} = \sqrt{(\delta T)^2 + 1}$$

Зная относительную погрешность, найдем абсолютную погрешность измерения частоты:

$$\Delta f = \frac{\delta f \cdot f_{\text{H3M}}}{100\%} \tag{4.8}$$

Результаты расчетов приведены в таблице:

R ₁ , к О м	Т, с	Кразв, мс	$\Delta T,c$	f, Гц	$\Delta f(\mathbf{R}_1)$, %	Δf, Гц
3,9	0,008	1	0,0002	128,05	2,69	3,45
620	1,241	100	0,0298	0,806	2,53	0,020
5100	10,212	1000	0,244	0,098	2,59	0,0025

Табл.4.3.

Относительные погрешности измерений получились небольшими ($\delta < 3\%$), даже с учетом того, что мы измеряли осциллографом.

Итоговые результаты измерения частоты для трех точек зависимости:

$$f(3900) = (128 \pm 3) \Gamma \mu$$
 (4.9)

$$f(620000) = (0.81 \pm 0.02) \Gamma \text{ц}$$
 (4.10)

$$f(5100000) = (9.80 \pm 0.25) \cdot 10^{-2} \,\Gamma_{\text{LL}}$$
 (4.11)

5. Список литературы

1. *Кофлин У., Дрисколл У.*, Операционные усилители и линейные интегральные схемы. - М.: Мир, 1980.