

32032 Feedback Quiz, 2022/23, Week 03: Linear codes Open books. 10–15 minutes. Not for credit. To be marked in class.

Recall that a **linear code** is a subspace of the vector space \mathbb{F}_q^n .

Recall that a linear code is a subspace of the vector space \mathbb{F}_q^n .
Question 1 & Given that
$C = \{0000, 0112, 0221, 2011, 1022, 2120, 1210, \underline{x}, \underline{y}\}$
is a ternary linear code, fill in the correct responses below.
• C is adimensional vector space over the field $\mathbb{F}_{\underline{\hspace{1cm}}}$.
• A generator matrix of C has rows and columns.
• The codevectors \underline{x} , \underline{y} are (write in either order) and .
• $w(C) = \square$.
• $d(C) = \square$.
Tick true statements:
C is a trivial code
\bigcap C is a repetition code
$\bigcap C$ is a zero sum code
C is a perfect code
\bigcap C is an MDS code

CORRECTED

32032 Feedback Quiz, 2022/23, Week 03: Linear codes

Open books. 10–15 minutes. Not for credit. To be marked in class.

Recall that a **linear code** is a subspace of the vector space \mathbb{F}_{q}^{n} .

Question 1 🌲

Given that

$$C = \{0000, 0112, 0221, 2011, 1022, 2120, 1210, \underline{x}, y\}$$

is a ternary linear code, fill in the correct responses below.

• C is a 2-dimensional vector space over the field $\mathbb{F}_{\boxed{3}}$.

Explanation: The word "ternary" means that the alphabet is the field \mathbb{F}_3 . The cardinality of a linear code is $\#C = q^k$ where q = 3 and #C is seen to be 9, so $3^k = 9$ and the dimension k of C is 2.

• A generator matrix of *C* has **2** rows and **4** columns.

Explanation: Rows of a generator matrix of a linear code form a basis of the code as a vector space. The space C is 2-dimensional so there are 2 vectors in the basis, i.e., 2 rows in a generator matrix.

Each row of a generator matrix is a codevector, so the size of the row (=the number of columns of the matrix) is equal to the number of symbols in a codevector, i.e., the length of the code. There are 4 columns in a generator matrix.

• The codevectors \underline{x} , \underline{y} are (write in either order) $\boxed{1101}$ and $\boxed{2202}$.

Explanation: The code C is a vector space, so it is closed under addition of vectors. We need to find a sum of known vectors which is not listed among the 7 known vectors. For example, 0221 + 2011 = 2202 (remember, addition is modulo 3). Also, -2202 = 1101 must be in C.

• $w(C) = \boxed{3}$.

Explanation: By inspection, all non-zero codevectors have weight 3 so the minimum weight of a non-zero codevector is 3. This, by definition, is w(C), the weight of the code C.

• $d(C) = \boxed{3}$.

Explanation: By a result from lectures, d(C) = w(C) for linear codes.

CORRECTED

Tick true statements:
C is a trivial code
Explanation: No, because C is not the whole space \mathbb{F}_3^4 . The space \mathbb{F}_3^4 contains $3^4 = 81$ vectors but C contains only 9 vectors.
\bigcap C is a repetition code
Explanation: No, because e.g. the codevector 0112 of C does not consist of a symbol repeated 4 times. Also, repetition codes are 1-dimensional but C is 2-dimensional.
$\bigcap C$ is a zero sum code
Explanation: No, for example the sum of symbols in the codevector 0112 is $0+1+1+2=1$ and not zero. Also, zero sum codes are $n-1$ -dimensional but C is not 3-dimensional.
$\bigotimes C$ is a perfect code
Explanation: Yes: $n = 4$, $d = 3$, $q = 3$ so $t = [(3-1)/2] = 1$ and the Hamming bound is $\#C \le 3^4/\sum_{i=0}^1 \binom{4}{i}(2-1)^i = 3^4/\binom{4}{0}2^0 + \binom{4}{1}2^1 = 3^4/(1+4\times 2) = 9$. The bound is attained because C consists of 9 codevectors.
$\bigotimes C$ is an MDS code
<i>Explanation:</i> Yes, because the Singleton bound $k \le n - d + 1$ becomes $2 \le 4 - 3 + 1$ which is attained.