Lecture 15: Modular Congruence

Summary:

We continue our study of modular arithmetic, examining the structure of integers modulo m. We prove that the invertible group of integers modulo m consists of integers coprime to m, and establish conditions for the existence of multiplicative inverses.

Topics Covered: modular congruence relation, modular congruence ring

For a positive integer m, we define

$$\mathbb{Z}_m = \{[a]_m : a \in \mathbb{Z}\} = \{[0]_m, [1]_m, \dots, [m-1]_m\}$$

to be the set of equivalence classes of $\ensuremath{\mathbb{Z}}$ under the equivalence relation

$$a \sim b \iff m \mid a - b$$

We checked last class that addition and multiplication defined on $\mathbb Z$ in the obvious way

$$[a]_m + [b]_m = [a+b]_m$$
$$[a]_m \cdot [b]_m = [ab]_m$$

is well-defined.

Lemma:

 $(\mathbb{Z}_m,+)$ is a group

Example:

The addition table for $(\mathbb{Z}_3,+)$ is

+	[0]3	[1] ₃	[2]3
$[0]_{3}$	$[0]_{3}$	$[1]_{3}$	$[2]_{3}$
$[1]_3$	$[1]_{3}$	$[2]_{3}$	$[0]_{3}$
$[2]_3$	$[2]_{3}$	[0]3	$[1]_3$

Example:

The addition table for $(\mathbb{Z}_4,+)$ is

+	$[0]_4$	$[1]_{4}$	$[2]_{4}$	$[3]_{4}$
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

Lemma:

The cyclic group $(\mathbb{Z}_m,+)$ is generated by $[a]_m \iff \gcd(a,m)=1.$

Proof:

If $\gcd(a,m)=1$, then we can use Bezout's theorem to write 1 as a linear combination of a and m. This shows that $[1]_m \in \langle [a]_m \rangle$, so $[a]_m$ generates all of \mathbb{Z}_m .

Conversely, if gcd(a,b)=d>1, then everything generated by $[a]_m$ is a multiple of d. In particular, you cannot reach $[1]_m$.

Lemma:

$$(\mathbb{Z}_m,\cdot)$$

is a monoid.

Note that $[0]_m$ is never invertible in (\mathbb{Z}_m,\cdot) .

Recall that the grou pof units in a monoid (M,\cdot) is the set

$$M^\times = \{x \in M \ : \ x \text{ is invertible}\}$$

We saw many lectrues ago that (M^{\times},\cdot) is always a group, What does that group look like for \mathbb{Z}_m ?

Lemma:

$$\mathbb{Z}_m^\times = \{[a]_m \ : \ \gcd(a,b) = 1\}$$

Here, we are looking for elements $[a]_m$ which are invertible. In particular, these are the elements such that there exists $x \in \mathbb{Z}$ with $[a]_m[x]_m = [1]_m$.

This is the same as requiring $[ax]_m = [1]_m$, which in trun is the same as

$$ax \equiv 1 \pmod{m}$$

Proposition:

Let $a\in\mathbb{Z}$. Then,

- 1. $\exists x \in \mathbb{Z} ext{ such that } ax \equiv 1 \pmod{m} \iff \gcd(a,b) = 1 ext{ and }$
- 2. Such an x is unique modulo m