Decoder

- Decoder is a combinational logic circuit with 'n' inputs and a maximum of 2^n outputs.
- •One output is selected for each combination of the inputs

Ex:- 2×4 decoder

Let the inputs are A&B; outputs are y_3, y_2, y_1, y_0

Α	В	y_3	y_2	y_1 y_0
0	0	0	0	0 1
0	1	0	0	1 0
1	0	0	1	0 0
1	1	1	0	0 0

$$y_0 = \overline{AB}$$

$$y_1 = \overline{AB}$$

$$y_2 = A\overline{B}$$

$$y_3 = AB$$

Circuit

If E=0
$$\longrightarrow$$
 $y_3 = y_2 = y_1 = y_0 = 0$

If E=1 normal operation mentioned in the above truth table

3×8 decoder:

For 3×8 decoder,

$$y_0 = \overline{A} \overline{B} \overline{C} = m_0 \text{(minterm 0)}; \text{ similarly } y_7 = ABC = m_7$$

i.e decoder generates all the minterms. Hence any Boolean function can be implemente using decoder .

Ex:- Implement the following Boolean functions using decoder

$$f_1(A, B, C) = \sum m(0, 1, 4, 7)$$
 $f_2(A, B, C) = \sum m(1, 4, 6)$

Design of BCD to 7- segment decoder

decimal	BCD input			7-segment output							
	8	4	2	1	а	b	С	d e	e f	•	3
	W	X	y	Z							
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	1	0
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

$$\therefore a = \sum m(0, 2, 3, 5, 6, 7, 8, 9) + \sum d(10, 11, 12, 13, 14, 15)$$

$$\therefore a = w + y + xz + \frac{--}{xz}$$

$$\therefore b = \sum m(0,1,2,3,4,7,8,9) + \sum d(10,11,12,13,14,15)$$

$$\therefore b = \overline{x} + \overline{yz} + yz$$

$$\therefore c = \sum m(0,1,3,4,5,6,7,8,9) + \sum d(10,11,12,13,14,15)$$

$$\therefore c = x + \overline{y} + z$$

$$\therefore d = \sum m(0, 2, 3, 5, 6, 8, 9) + \sum d(10, 11, 12, 13, 14, 15)$$

$$d = w + \overline{xz} + y\overline{z} + \overline{xy} + x\overline{yz}$$

$$\therefore e = \sum m(0, 2, 6, 8) + \sum d(10, 11, 12, 13, 14, 15)$$

$$\therefore e = \overline{xz} + y\overline{z}$$

$$\therefore f = \sum m(0,3,4,5,6,8,9) + \sum d(10,11,12,13,14,15)$$

$$\therefore f = w + xz + xy + yz + xyz$$

$$\therefore g = \sum m(2,4,5,6,8,9) + \sum d(10,11,12,13,14,15)$$

$$\therefore g = w + y\overline{z} + x\overline{y}$$

Multiplexer

- Multiplexer is a combinational circuit with 2ⁿ inputs, n selection lines and one output.
- Depending on the status of selection lines, one of the inputs is transferred to the output.

Ex:- Let n=2 No. of inputs=4

 4×1 MUX contains four inputs, two selection lines and one output

Let the inputs are I_0, I_1, I_2, I_3 selection signal are S_1 , and S_0 output be y

The truth table of 4*1 multiplexer (MUX) is as follows:

Truth table

Si	S ₀		Υ
0	0	I ₀	
0	1	I ₁	
1	0	I ₂	
1	1	I ₃	

The Boolean expression for Y is

$$Y = \overline{S}_{1} \overline{S}_{0} I_{0} + \overline{S}_{1} S_{0} I_{1} + S_{1} \overline{S}_{0} I_{2} + S_{1} S_{0} I_{3}$$

Boolean function implementation using MUX

- A 'n' variable Boolean function can be implemented using a MUX with (n-1) selection signal
- $2^{(n-1)} \times 1 \text{ MUX is required}$

Ex:- Implement the following Boolean function using MUX $f(A,B,C) = \sum m(0,1,4,7)$

Sol:-Since the no. of variable in given Boolean function $n=3 \rightarrow 4 \times 1 MUX$ is required.

■ Connect last (*n*-1) variables of the given Boolean function to selection lines of MUX.

	I_0	I_1	I_2	I_3
Ā	0	1	2	3
A	4	5	6	0
	1	$\overline{\mathbf{A}}$	0	A

- If both the terms along the column are encircled, the corresponding input is 1.
- If both the terms along column are not encircled, the corresponding input 0
- If only upper one is encircled the correspond input is \overline{A}
- If only lower one is encircled .the corresponding is A

3 -bit odd parity generator

Let inputs are x, y and z, output be p

X	y	Z	р
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

4-bit odd parity checker:-

		709 A. 		
x	y	Z	p	E
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

$$p = \overline{x} \overline{y} \overline{z} + \overline{x} y z + x \overline{y} z + x y \overline{z}$$

$$p = \overline{x} [\overline{y} \oplus \overline{z}] + x [\overline{y} \oplus \overline{z}]$$

$$= \overline{x} \oplus [\overline{y} \oplus \overline{z}]$$

 $E=1 \Rightarrow error ; E=0 \Rightarrow No error$

$$\therefore E = \overline{xyzp} + \overline{xyzp} + \overline{xyzp} + \overline{xyzp} + \overline{xyzp} + \overline{xyzp} + xyzp + xyzp + xyzp + xyzp + xyzp + xyzp + xy[z \oplus p] + xy[z \oplus p] + xy[z \oplus p]$$

$$= [x \oplus y] + [z \oplus p] + [\overline{x \oplus y}] + [\overline{z \oplus p}]$$

$$= \overline{[x \oplus y] \oplus [z \oplus p]}$$

