

Exercises 10

Phasors

Exercise 1 - Equivalent impedance/admittance 1

- Determine the equivalent impedance/admittance for an angular frequency $\omega = 10\,000\,\mathrm{rad/s}$.
- If we want the current and voltage for that equivalent impedance to be in phase for that frequency, by which value of capacitance should we change the $2\,\mu F$ capacitor?

Exercise 2 - Equivalent impedance/admittance 2

• Determine the equivalent impedance/admittance for an angular frequency $\omega = 1000 \, \mathrm{rad/s}$.

Circuits Page 1 of 4

Exercise 3 - Equivalent impedance/admittance 2

• Determine the equivalent impedance/admittance for an angular frequency $\omega = 1.6 \,\mathrm{Mrad/s}$.

Exercise 4 - Circuit 1

• Determine the steady-state expression for $v_L(t)$.

Exercise 5 - Circuit 2

• Determine the steady-state expression for i(t).

Circuits Page 2 of 4

Exercise 6 - Source transformation

• Using source transformation, determine the steady-state expression for v(t).

Exercise 7 - Superposition

• Using superposition, determine the steady-state expression for v(t).

Exercise 8 - Circuit 3

Knowing that $I_b = 5/45^{\circ}A$:

- Determine \mathbf{I}_a , \mathbf{I}_c and \mathbf{V}_s
- For $\omega = 800 \, \mathrm{rad/s}$, give the expression for $i_a(t), i_c(t)$ and $v_s(t)$.

Circuits Page 3 of 4

Exercise 9 - Circuit 4

 \bullet Determine the phasor ${\bf V}.$

Circuits Page 4 of 4