Program: B. Tech Data Science (Business Analytics)				ytics)	Semester: III	
Course/Module: Managing Uncertainty					Module	Code: BTDS03008
Teaching Scheme					Evaluation Scheme	
Lectur e (Hour s per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Con Assessm (ICA) (Marks -	ient)	Term End Examinations (TEE) (Marks -100 in Question Paper)
3	2	0	4	Marks Scale	ed to 50	Marks Scaled to 50

Objective:

• Students will be familiar with basic rules of probability and will be able to use them in modeling uncertainty in obtaining and recording data. They will be able to utilize graphical and numerical summaries of data in understanding data generating processes. To enable the students to analyze data more effectively using MS Excel

• To increase the student's ability in problem solving

Outcomes:

After completion of the course, students would be able to:

• Students will be able to learn basic probability and statistics and apply them to the analysis of real data sets from business fields.

Detailed Syllabus: (per session plan)

Unit	Description	Duration
	(1) Classification and tabulation of Data: Meaning and objective of	
1	classification, Types of classification, formation of discrete and	2
	continuous distribution.	
	(2) Data Classification and Data Presentation: Histogram, Frequency distribution, Quantitative Data Graphs (Histograms, Frequency Polygons, Ogives, Dot Plots, Stem-and-Leaf Plots); Qualitative Data Graphs (Pie Charts, Bar Graphs, Pareto Charts); Graphical Depiction of Two-Variable Numerical Data: Scatter Plots	4
	(3) Descriptive Statistics:	
	Measures of Central Tendencies - Grouped and Ungrouped Data;	
	Mean, Sample Mean- Weighted mean, Geometric Mean, Harmonic	4
	Mean; Median - Quartiles, Deciles, and Percentiles; Mode, Box	_
	Plot;	
	Measures of Variability- Dispersion, Range, Standard deviation,	
	Chebyshev's theorem; Population v/s sample variance and	4
	standard deviation, Skewness; Kurtosis.	

Signature

	(1) Probability Distribution: Introduction to Probability and				
2	Probability Distribution: Methods of Assigning probabilities,				
	Probability Space, conditions of probability model, Events, simple				
	and compound, Laws of probability, Probability density function,	4			
	Cumulative distribution function, Expected values of Mean and				
	Variance. Marginal, union, joint and conditional probabilities,				
	Bayes' Theorem				
	(2) Discrete Probability Distribution: Basics of Binomial Distribution				
	pdf, Multinomial Distribution, Negative Binomial Distribution, cdf,				
	Poisson Distribution pdf, cdf, Hypergeometric Distribution pf, cdf.				
	Continuous Probability Distributions: Relative frequency	4			
	,distribution and pdf, Exponential pdf, cdf, Normal distribution -				
	Normal pdf, cdf, Standard Normal Distribution, Normal				
	Approximation to the binomial.				
	Sampling Distribution:				
	(1) Introduction, Central Limit Theorem; Population frequency				
3	distribution vs. Sampling Distributions; Sampling distribution of the	4			
	sample mean - Estimating population Mean and Standard deviation;				
	Sampling distribution of the sample proportion – Estimating				
	proportions in a binomial population.				
	(2) Sampling distributions of the difference between sample means/ proportion – Mean and Standard Deviation, Conditions for	4			
	estimation.	1			
	Hypothesis Testing:				
	(1) Large Sample estimation of the population parameters and				
	Hypothesis testing: Basics of Estimating the populations mean and	4			
4	difference; estimating the proportion and difference; large sample test	1			
	for population mean, difference; large sample test for proportion,				
	difference.				
	(2) Estimation of a population variance: Sampling distribution of				
	variance, estimation.	4			
	(3) Inferences from small sample: Student's t distribution; Small sample t				
	test for following - A population mean, A difference between two	4			
	means, Confidence interval.				

ARBONT.

Signature (Prepared by Concerned Faculty/HOD)

Total		45		
	hypothesis about a population mean using the Z- statistic, using p-values to test Hypothesis	3		
	(4) Rejection and Non-rejection region, Type I and Type II errors, testing			

Prescribed Text:

- 1. Richard, L & David, R. (2013). Statistics For Management, Pearson
- 2. Gupta, S. P (2012). Statistical Methods. Sultan Chand & Sons

References:

- 1. Gujarati, D (2011). Basic Econometrics. McGraw Hill
- 2. William, M. (1993). Statistics for Management and Economics. Duxbery Press
- 3. Ken Black (2010). Business Statistics. E-book

Internet references: NIL

Any other information: NIL

Total Marks of Internal Continuous Assessment (ICA): 50 Marks

Distribution of ICA Marks:

Description of ICA	Marks
Test Marks	20
Term Work Marks	30
Total Marks:	50

Details of Term work:

• Class Test/Assignments/ Case Studies / Projects / Presentations

(DEROY

Signature

Program: B. TechData Science (Business Analytics)					Semes	ster : IV	
Course/Module: Statistical Method - I					Modu	ıle Code: BTDS04009	
	Teachin	g Scheme			Evaluation Scheme		
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Continuo Assessme (ICA) (Marks -5	us nt	Term End Examinations (TEE) (Marks -100 in Question Paper)	
3	2	0	4	Marks Scaled	to 50	Marks Scaled to 50	

Pre-requisite: Managing Uncertainty (SEM - III)

Objectives:

- To provide advanced statistical background for analysing data and drawing inferences from that analysis
- Predicative Analytics using liner and generalized liner model

Outcomes:

After completion of the course, students would be able to:

• Students will be able to learn advanced statistical technique and apply them to the analysis of real data sets from different fields.

Detailed Syllabus:					
Unit	Description	Duration			
	ANOVA/MANOVA: Chi-Square as a test of independent, Chi-square				
1	as a Test of goodness of fit: Testing the Appropriateness of a	3			
	Distribution, Analysis of Variance, Multivariate analysis of variance				
	Regression Model:				
	a) Least squares and linear regression: Introduction; Notation;				
	Ordinary least squares; Regression to the mean; Linear				
	regression; Residuals; Regression inference				
	b) Multivariable regression: Multivariate regression; Multivariate	3			
	examples; Adjustment; Residual variation and diagnostics;	4			
	Multiple variables, Interaction Terms, Non-linear	3			
2	Transformations of the Predictors, Qualitative Predictors	3			
	c) Multiple Regression Analysis: The Problem of Estimation and	3			
	the Problem of Inference	3			
	d) Dummy Variable Regression Models	3			
	e) Multi-collinearity, Heteroscedasticity, Autocorrelation	4			
	f) Econometric Modelling: Model Specification and Diagnostic				
	Testing				
	g) Correlation and Covariance Analysis				
	h) Canonical Analysis, Canonical Roots/variates				

Signature	Signature
(Prepared by Concerned Faculty/HOD)	(Approved by Dean)

	Extension of regression analysis:	5
	Ridge Regression, The Lasso	
3	Nonlinear Regression Models:	
	Approaches to Estimating Nonlinear	5
	Regression models	
	Generalized linear models:	2
4	Logistic Regression, Binary outcomes, Count outcomes,	3
	Multiple Logistic Regression	3
Total		45

Text Books:

- 1. An Introduction to Statistical learning with application in R . Hastie T, Robert T. (2014). Springer Science Business Media: New York
- 2. Gujarati, D (2011). Basic Econometrics. McGraw Hill

Reference Books:

- 1. Statistics for Management, Seventh Edition, by Richard I. Levin, David S. Rubin, Pearson
- 2. An Introduction to Categorical Data Analysis. Agresti, A. (2012). John Wiley & sons
- 3. The Element of Statistical Learning, Data mining, Inference and Prediction. Hastie, T, Tibshirani, R, & Friedman, J. (2011). New York: Springer Series in Statistics.
- 4. Hair, Black, Babin, Anderson and Tatham (2009). Multivariate Data Analysis, Pearson

Any other information: NIL

Details of Internal Continuous Assessment (ICA):

Test Marks: 20

Term Work Marks: 30

Details of Term work:

- Practical based on 10 Experiments
- Two class tests.
- Minimum two assignments

Signature (Prepared by Concerned Faculty/HOD)	Signature (Approved by Dean)

Program: B	Program: B. Tech Data Science (Business Analytics) Semester: V						
Course/Mo	Course/Module: Statistical Method - II				Module Code: BTDS05008		
	Teaching Scheme				Evaluation Scheme		
Lecture (Hours per week)	re Practical (Hours Credit		Internal Continuous Assessment (ICA) (Marks -50) Term End Examinations (' (Marks -100) Question Pap				
3	2	0	4	Marks Scaled to 5	Marks Scaled to 50		
Pre-requisite: Statistical Method-I							

Objectives:

To introduce and provide some core and necessary data mining techniques so that students understand how to work with large data sets and apply the appropriate data mining technique to answer business questions

Outcomes:

After completion of the course, students would be able to:

1. Students will able to learn a number of well-defined data mining tasks such as classification, estimation, prediction, affinity grouping and clustering, and data visualization are discussed

Detailed Syllabus:

Unit	Description	Duration			
	Classification:				
	a) Using Bayes' Theorem for Classification, Procedure of Discriminant				
	Analysis, Linear Discriminant Analysis, Estimating Misclassification				
	Probabilities, Quadratic Discriminant Analysis				
	b) Cluster Analysis: Measures of Association for Continuous Variables,				
	Measures of Association for Binary Variables, Agglomerative				
1	Hierarchical Clustering, Ward's Method, K-Means Procedure, K-				
	Nearest-Neighbours	6			
	c)Principal Components Analysis (PCA) and Factor Model:				
	Procedure Principal Component Analysis (PCA), Maximum Likelihood	6			
	Estimation Method, Factor Rotations, Varimax Rotation, Estimation of				
	Factor Scores.				
2	Resampling Methods	6			

Signature

Total		45
4	Conjoint analysis	6
3	Support Vector Machines: MaximalMargin Classifier, Support Vector Classifiers, SVMs with More than Two Classes	7
	Tree-Based Methods: The Basics of Decision Trees, Bagging, Random Forests, Boosting	8

Text Books:

- 1. An Introduction to Statistical learning with application in R . Hastie T, Robert T. (2014). Springer Science Business Media: New York
- 2. Hair, Black, Babin, Anderson and Tatham (2009). Multivariate Data Analysis, Pearson

Reference Books:

- 1. Statistics for Management, Seventh Edition, by Richard I. Levin, David S. Rubin, Pearson
- 2. An Introduction to Categorical Data Analysis. Agresti, A. (2012). John Wiley & sons
- 3. The Element of Statistical Learning, Data mining, Inference and Prediction. Hastie, T, Tibshirani, R, & Friedman, J. (2011). New York: Springer Series in Statistics.
- 4. Gujarati, Damodar N, and Dawn C. Porter. Basic Econometrics. Boston, Mass: McGraw-Hill, 2009

Any other information: NIL

Total Marks of Internal Continuous Assessment (ICA): 50 Marks

Distribution of ICA Marks:

Description of ICA	Marks
Test Marks	20
Term Work Marks	30
Total Marks:	50

Term Work:

- 1. Practical based on 10 Experiments
- 2. Two class tests.
- 3. Minimum two assignments

Askan

Signature