Grado en Ingeniería en Inteligencia Artificial

SEÑALES Y SISTEMAS

Proyecto nº 1

Antonio Valle Sánchez

© Protegidos derechos de autor

PROYECTO Nº 1. DESARROLLO DE UN SISTEMA DE RECONOCIMIENTO DE IMÁGENES MEDIANTE REDES NEURONALES PROFUNDAS

1.- Introducción

Los proyectos que se realizan durante el curso están enmarcados dentro de las competencias generales de la asignatura:

- CG2 (Conocer, seleccionar y aplicar métodos de los diferentes campos de la inteligencia artificial para la resolución de problemas de ingeniería).
- CG5 (Comunicar de manera clara y precisa conocimientos, metodologías, ideas, problemas y soluciones en el ámbito de la inteligencia artificial).

El reconocimiento de imágenes se ha convertido en una de las aplicaciones más impactantes y avanzadas de la **inteligencia artificial**. Los sistemas de reconocimiento de imágenes se utilizan en áreas como la medicina, la conducción autónoma, la seguridad, el comercio electrónico y muchas otras. Uno de los enfoques más efectivos para este tipo de tareas es el uso de **redes neuronales profundas (deep learning)**, que han demostrado ser altamente eficientes en la identificación de patrones complejos en los datos visuales. En particular las **redes neuronales convolucionales** han revolucionado el campo del **procesamiento de imágenes**.

En este proyecto, los alumnos desarrollarán un sistema de reconocimiento de imágenes utilizando **Matlab**, una plataforma potente y versátil que integra herramientas avanzadas de **procesamiento de imágenes y algoritmos de deep learning**. Esta plataforma ofrece una interfaz sencilla para el desarrollo y entrenamiento de modelos de redes neuronales, incluyendo la posibilidad de trabajar con redes preentrenadas, así como para realizar entrenamientos desde cero con conjuntos de datos personalizados.

2. Objetivo del Proyecto

El objetivo de este proyecto es aprender a crear y entrenar una red neuronal convolucional para la clasificación mediante deep learning e implementar un programa en Matlab que permita clasificar una imagen usando una CNN preentrenada.

En primer lugar, se pretende que el alumno aprenda a crear una red neuronal convolucional paso a paso, desde la carga de datos de imágenes a la definición de la arquitectura de la red. A continuación, deberá entrenar y probar la red creada. Para ello, debe utilizar las funciones que proporcionan Deep Learning Toolbox e Image Processing Toolbox.

En segundo lugar, se desarrollará otro programa, también en Matlab, que permita mostrar como las CNN ayudan a clasificar una imagen. Alguna de las redes que se pueden utilizar para el ejemplo son GoogLeNet, SqueezeNet o DarkNet53.

3.- Fases del proyecto

- Buscar y estudiar la documentación de Matlab sobre cómo crear una red neuronal de deep learning sencilla para clasificación.
- Implementar el código que permita la creación y entrenamiento de la red.
- Ejecutar el programa y mostrar los resultados del entrenamiento, calculando incluso la precisión de la clasificación.
- Documentarse sobre la clasificación de imágenes usando una red neuronal convolucional profunda preentrenada.
- Escribir el código necesario en Matlab que permita leer una imagen y clasificarla en base una red precargada.
- Mostrar ejemplos de la ejecución con las imágenes suministradas y con imágenes propias (opción imprescindible).

4.- Presentación de resultados

Antes del día 19 de marzo a las 23:59 h debe presentarse por tutoría la siguiente documentación:

- Los 2 ficheros .m con el código de Matlab, perfectamente documentados.
- Un **informe** .pdf explicando cómo se ha realizado el proyecto, incluyendo ejemplos del funcionamiento de cada uno de los programas.
 - El documento debe incluir las tareas específicas que ha realizado cada miembro del grupo.
- Una breve **presentación del trabajo realizado** que servirá de soporte en la exposición del proyecto.

5.- Exposición del proyecto

La sesión de laboratorio de la semana se dedicará a la presentación pública y demostración del funcionamiento del sistema desarrollado.

Cada equipo dispondrá de 10 minutos para exponer su proyecto.

Todos los componentes del grupo deben ser capaces de responder a cuestiones relacionadas con el trabajo realizado. De modo que, el profesor designará justo antes de la exposición a la persona que debe llevarla a cabo.

6.- Bibliografía recomendada

https://es.mathworks.com/discovery/image-recognition-matlab.html

https://es.mathworks.com/help/deeplearning/ug/create-simple-deep-learning-network-for-classification.html

https://es.mathworks.com/help/deeplearning/gs/classify-image-using-pretrained-network.html

