UNCLASSIFIED

AD NUMBER AD478158 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies only; Administrative/Operational Use; JUL 1962. Other requests shall be referred to Defense Advanced Research Projects Agency, Arlington, VA 22203. AUTHORITY DARPA ltr 20 Aug 1982

AD 478158

AUTHORITY: DARPA Ity 20 Aug 82

BEST AVAILABLE COPY

SPRAY TEST CALIBRATION OF THE HIDAL . (HUS-1 or H-34)

This work was prepared under OSD/ARPA Order 256, Amendment 4.

J. W. Brown, U.S.A. CmlC

July 1962

This document or any portion thereof may not be reproduced without specific authorization from the Office of the Secretary of Defense, Advanced Research Projects Agency.

DESTI	WHITE SECTION
DOC	BUFF SECTION
UNARHOUNCE	TD
AUSTIFICATIO) N NC
Py	
B. C.	R/AP/LILABILITY CODE
ON IN BUT IN	
	WALL and/or Specia

SPRAY TEST CALIBRATION OF THE HIDAL (HUS-1 or H-34),

A joint report by personnel of USDA USAF and USA CmlC of work performed under OSD/

James W. Brown, USASSINC 15 ARPA Order-256-4

This document, or any portion thereof, may not be reproduced without specific authorization from the Advanced Research Projects Agency, Office of the Secretary of Defense; however, DDC is authorized to reproduce the document for U.S. government purposes.

Each transmittal of this document outside the agencies of the U.S. government must have prior approval of the Director of Technical Information, Advanced Research Projects Agency, Office of the Secretary of Defense.

Eglin Air Force Base Florida

14/2

(03685)

CONTENTS

I.	BACKGROUND
II.	CALIBRATION METHODS AND RESULTS
	A. Flow Rate
	B. Sampling Grid Operation 3
	C. Particle Size 4
	D. Swath Width4
III.	DISCUSSION 6
IV.	CONCLUSIONS
v.	RECOMMENDATIONS9
vı.	REFERENCES
	APPENDICES
	A. Instructions for the Operation of the HIDAL
	B. Basic Data
	C. Corrections for Swath Width and Percent Recovery
	D. Schedule and Support
	E. Graphic Presentations

I. BACKGROUND

The HIDAL (Appendix A) has been used successfully within the past year on an H-34 helicopter to spray herbicidal materials (references 2 and 3, Test 1). It had not been previously calibrated for this purpose. Verbal approval of OSD/ARPA (reference 1 (Appendix B)) was obtained on 26 June 1962 to obtain performance data on this equipment. Attempts to modify the equipment were not intended. It was of immediate interest to determine flow rates, swath widths, particle size (mmd), and levels of deposit with three solutions of various viscosities, each at spray altitudes of 50, 75, and 100 feet. The solutions used were: (1) purple, (2) a mix of 2 parts fuel oil and 1 part purple, and (3) fuel oil, in that order.

In the use of the HIDAL it has been recommended that only inwind flights be performed (Appendix A) and that airspeeds be held in the range of 45 to 55 knots.

An HUS-1 helicopter (equivalent to H-34) with HIDAL aboard arrived from MCAF, New River, Jacksonville, N. C., for performance tests. On 17 July the pilot was a ground observer for the last tests performed with the first modification of the C-123 circraft (reference 1 and Supplement) and had an orientation fly-over of the grid later in the same day.

Captain George S. Stains, USN, DVCC, Naval Air Station, Jacksonville, Florida, was alerted of the aircraft arrival on 16 July and he and Mr. L. Branson arrived 17 July. Both witnessed flights of 18 and 19 July. These tests were completed 21 July 1962. It is planned for the author to visit Captain Stains at NAS, Jacksonville, Florida, on or about 25 July to discuss performance of the equipment and the results obtained.

Subdivision of work for the HIDAL testing at Eglin AFB was as follows:

Flow Rate Determinations

Mr. Donald Whittam, USDA. In charge*

Mr. Glenn Hipple, Olmstead AFB*

Mr. Ken Baird, Olmstead AFB*

Mr. L. Branson, USNAS**

^{*} Departed Eglin AFB 20 July
** Departed Eglin AFB 22 July

Grid Operations

Mr. L. W. Boyer, CmlC. In charge
Mr. C. Boyles, CmlC
Lt. C. Fuller, CmlC
Lt. P. Wampner, CmlC*
Captain R. W. Weaver, Eglin AFB

and CmlC enlisted personnel from Fort McClellan

Data Processing

Mr. W. B. Johnson, CmlC. In charge Lt. C. Francis, CmlC

Spray Flights

lst Lt. W. W. Moore, USMC, 074593, In charge
2d Lt. A. Palatini, USMC, 082942
 (H&MS 26, Sub Unit 1
 MCAF, New River
 Jacksonville, N. C.)

Report Preparation

Dr. J. W. Brown Mrs. B. O. McCollough

^{*} Departed Eglin AFB 19 July

II. CALIBRATION METHODS AND RESULTS

The methods used for calibration have been described elsewhere (reference 1). Exceptions are noted below.

A. Flow Rate

The HIDAL equipment was functioned on the ground and the three solutions recovered in troughs draining into half-drums. A calibrated dipstick was used to measure the drained amounts sprayed in a given period.

It was found that all three solutions were sprayed at the same rate, namely, 24 gallons per minute. The motor, electrically powered, appears capable of driving a positive displacement pump at a constant speed, despite differing viscosities of the solutions used. Pressures observed varied as follows:

Solution	Pump Pressure (ps1)
Purple	34
Mix	32
Fuel 011	31

B. Sampling Grid Operation

The 50 knot aircraft speed requested for all flights, combined with altitudes of 50, 75, and 100 feet, required a more exact aiming of the aircraft across given stations of the sample line. To provide this exactness, helium-filled balloons* on tethers approximately 10 feet long were set out opposite desired crossing points.

Because of the lower altitudes at which the tests were conducted, the weight-lifting capacity of the aircraft (HUS-1, equivalent to the H-34), the possible period of daily operation, the chemical and fuel loads, and the varying meteorological conditions encountered at the grid and in transit, flights were planned in pairs across the same sampling set-up. For instance, once a sample line had been prepared, one spray pass was called for across station 75 and then another across station 25 with the same altitude and heading. These passes were usually accomplished within 3 to 5 minutes. An 8-minute period was allowed for the spray to settle prior to picking up and setting out cards for the next pair of runs. In the meantime the aircraft could land within 200 yards of the controller's station, well away from the sampling grid, and wait for the servicing of the sample line. Usually, three sets of two passes each were accomplished before returning the aircraft for refueling.

A total of 40 spray flights were accomplished in the period 18-21 July.

^{*} White-colored balloons were preferred by the pilot for both dawn and daylight flights.

C. Particle Size

All flights were attempted inwind; however, shifts in wind direction were sufficient to provide adequate separation of drops for approximate particle size determinations (mmd) for each solution (reference Appendix B).

Solution	MMD (microns)					
Purple	348					
Mîx	265 - 273					
Fuel Oil	235 ≈ 265					

D. Swath Wicths

The following table has been prepared from the data presented in Appendix B.

				Total		dth for Ap	
	Spray	No. Of		Swath		Per Acre R	
Solution	Alt (ft)	Flights		(ft)	0.5 GPA	1.0 GPA	1.5 GPA
Purple	100	5	Max:	880	320	160	120
			Min:	1110	160	20	0
			X:	58 8	248	10 8	44
Purple	75	5	Max:	1020	440	280	140
			Min:	440	220	100	20
			Ī:	724	304	160	80
Purple	50	4	Mex:	500	240	140	120
			Min:	320	220	120	20
			Ī:	415	225	135	85
Mix	100	4	Max:	1100	360	160	20
			Min:	460	200	20	0
			Ī:	640	245	115	5
Mix	75	4	Max:	56 0	320	180	20
			Min:	50 0	18 0	40	0
			X:	530	240	130	5
Mix	50	4	Max:	980	340	180	20
			Min:	52 0	220	20	0
			Ï:	655	2 65	125	5
Fuel 011	100	4	Max:	620	240	9	0
			Min:	526	18 0	0	0
			X:	580	210	0	0
Fuel 011	75	2	Max:	68 o	240	20	0
			Min:	560	200	0	0
			X:	620	220	10	0
Fuel 011	50	2	Max:	56 0	180	40	0
			Min:	540	180	50	0
			Ī:	550	100	30	0
Fuel 011*	100	2	Max:	540	200	0	0
			Min:	240	120	0	0
			Σ:	390	160	0	0
Fuel 011*	75	2	Max:	660	200	0	0
			Min:	460	60	0	0
			X:	56 0	130	0	0
Fuel 011*	50	2	Max:	720	220	0	0
			Min:	420	180	0	0
			X:	570	200	0	0

^{*} Intentionally flown 1100-1230, 20 July with a strong lapse condition existing and temperatures near 860 F.

III. DISCUSSION

Although there appear to be inherent characteristics of sprays delivered by helicopter vs fixed wing aircraft, the sprays delivered by helicopter have been demonstrated elsewhere (references 2, 3 and 4) to be effective.

Helicopters crn operate safely at lower altitudes and airspeeds; however, reduced parload (200 gallons or less), and relatively fixed delivery rates of the HIDAL have been found. It also seems that maintenance requirements of the aircraft are relatively frequent.

Because of the lower altitudes and airspeeds of these aircraft, and perhaps of the air blast of the main rotor downward, a better control of aimability of spray may be experienced. It appears that the main rotor influence is sufficient to overcome to a degree the influence of gentle and variable winds. Several flights performed in these tests gave evidence of deposit that resemble a classic bimodal curve wherein the trough or valley was readily apparent but not severely prenounced.

During inwind flight under inversion conditions directly away from an observation point, much of the spray was observed to be influenced by vertices created by the main retor. This phenomenen usually can be expected to even out the level of deposit in effective swath widths. It is conjectured, however, that under the conditions obtaining (low altitude, low air speed, inwind, inversion with low wind velocities) and where the mmd of the spray and its density were relatively high, a relatively rapid fallout occurred. As the density of the spray material diminished to that of fuel oil, it appears that levels of deposit and mmd decreased somewhat.

Except for the first spray flights on 13 July, all other flights were well executed. The first flight was performed at about 100 feet altitude over station 50, and a total swath of about 440 feet was obtained. Because the line was 2000 ft long it was decided to combine flights to pass centrally ever each 1000 ft of the same line. The second flight performed at about 75 ft altitude resulted in two spray passes over station 50 on the same set of cards.

At Captain Stains suggestion some releases of fuel oil were made on 20 July (after an abort because of thunderstorms at about 1300 to 1400 hours on 19 July) during a lapse condition. Wind velocities were quite high and essentially precluded the use of purple because of potential damage to valuable vegetation. These releases, although indicating a lower level of deposit, averaged total swaths comparable to or a little less than swaths flown 21 July with fuel oil under inversion conditions.

Meteorological information is essential for a proper evaluation of the data, (particularly wind directions influencing the spray during its rall). The wind direction data is perhaps the least reliable, not only for this report but for a previous one (reference 1). Instrumentation to give more exact directional data at low altitudes (25 to 200 ft at desired intervals) using a tethered balloon is highly desirable but unavailable. Tower instruments are known but a balloon is desirable because it can be lowered should the prevailing winds indicate a flight in its vicinity. A fixed tower for the sake of safety would have to be further removed from the sampling area.

Since a "fix" for the HIDAL was obtained in the past year it appears that flight tests would be in order to determine new and perhaps greater safe airspeeds. The pilot reported that in his opinion the HIDAL could be flown safely at 75 knots. If higher airspeeds are possible, greater flow rates would also be indicated for use in connection with the increased airspeeds.

The sequence of materials sprayed was intentionally planned to leave the system as uncentaminated of purple code material as possible under the circumstances. It is suggested that the nozzles be removed, disassembled, submerged and rinsed in a suitable solvent (gasoline, acetone or the like) prior to use for insecticide purposes. The tank and booms can be flushed again with fuel oil as a precautionary measure.

In regard to aircraft and other vehicles exposed to sprays of the purple code material, it is suggested that in a large measure heroic efforts to remove the chemical have contributed to observations by others that any deleterious effect was caused by the chemical. Effects of this kind should be objectively appraised. Areas of investigation should include, effects on various metal alloys, plastics, paints, various rubber compositions, etc. Until studies of this kind are made prejudice and superstition are likely to prevail.

IV. CONCLUSIONS

- A. The data reported herein are uncorrected and should be corrected prior to evaluation by others skilled in the necessary arts.
- B. The HIDAL performance is generally indicative of a useful system to spray the solutions tested. It appears that the system is capable of delivering about 1 gallon per acre of purple code material in a swuth of 100 to 150 ft over open terrain. This swath width is likely to decrease somewhat if releases are made over a forest.
- C. The unevaluated data are probably representative of what can be expected performance-wise under operational conditions comparable to those prevailing during these tests.

V. RECOMMENDATIONS

It is recommended that:

- 1. Certain materials including about 27 drums of purple code material and 10 drums of mix (2 parts fuel oil-1 part purple) and other items necessary for the maintenance and operation of the sampling grid be stored under appropriate conditions at Eglin AFB pending the arrival of the second modification of an MC-1/C-123 system for testing.
- 2. Captain George S. Stains, USN, DVCC, NAS, Jacksonville, Florida, be provided with an evaluated report as soon as it becomes available so that any further desirable testing can be planned for this system immediately subsequent to tests with the second modification in 1 above.
- 3. The HIDAL/H-34 system continue to be used in situations where I gallon per acre or less of purple code material is indicated and the system capacity is not restrictive.
- 4. Decontamination procedures be developed and tested for adequacy for those systems which have been or will be used to spray purple code material, either in concentrated or in diluted form.
- 5. Teflon vanes be used in the HIDAL pumps until proven to be unsatisfactory or until a more suitable material is found.
- 6. A realistic appraisal of effects of the purple code material be conducted on the HUS-1 aircraft (No. 145786) used in these tests and that these findings be made known as soon as possible.
- 7. The HIDAL rig be test flown for greater permissible operational airspeeds. If the airspeed can be increased effort should be initiated to increase flow rates as well.

VI. REFERENCES

- 1. Modification and Calibration of Defoliation Equipment (C-123 First Modification) (and Supplement).
 - 2. Preliminary Report of Vegetational Spray Tests.
 - 3. Vegetational Spray Tests in South Vietnam (and classified Supplement).
 - 4. Review and Evaluation of ARPA/OSD "Defoliation" Program.

APPENDIX A

INSTRUCTIONS FOR THE OPERATION OF HIDAL

UNITED STATES NAVY DISEASE VECTOR CONTROL CENTER U. S. NAVAL AIR STATION JACKSONVILLE 12, FLORIDA

INSTRUCTIONS FOR THE OPERATION OF HIDAL

INTRODUCTION

The Navy's need for insecticide dispersal equipment for use on rotor wing type aircraft has been evident for several years. A few of the helicopter manufacturing companies have produced dispersal apparatus for their own aircraft; however, such equipment required varying amounts of alteration to the helicopter and resulted in too much time for mounting and dismounting.

The Navy and Marine Corps, and this is also true for the other branches of the Armed Forces, have a progressively fewer number of propeller-driven fixed wing type of aircraft that are capable of accommodating presently available aerial dispersal equipment. Jet aircraft are extremely limited in their ability to disperse insecticide because of their tremendous speed, poor maneuverability, and the high altitudes at which they must operate. Therefore the helicopter is the only remaining aircraft which is suitable and available in quantity for aerial dispersal operations.

The principle objectives in developing insecticide dispersal equipment for the helicopter were as follows: (1) to have available a versatile spraying apparatus that could be mounted on most of the larger types of Navy and Marine Corps helicopters; (2) to design the equipment so that it could be mounted and dismounted with a minimum of time and effort, and require as little modification to the aircraft fuselage as possible; (3) construct the equipment as light in weight as possible, without sacrificing rigidity and strength, and thereby achieving the maximum pay load; (4) utilize standard stock items for parts that would most likely need repair or replacement; and (5) make the equipment so that it would be economical to contruct and maintain and simple to operate.

Eefore any serious consideration is given to the use of this equipment for aerial dispersal operations the following instructions and technical publication should be used as guidelines:

- 1.. OPNAVINST 6250.2A (being revised) "Dispersal of Insecticide by Aircraft".
- 2. SECNIVINST 6250.1 "Pest Control in civilian communities, policy concerning assistance of".
- 3. BUMEDINST 6250.3 "Insecticides, Precautions and Use of".
- 4. NavMed P-5010-11, The Proper Handling of Navy Standard Pesticides.

A. The Dispersal Unit.

HIDAL (Helicopter, Insecticide, Dispersal Apparatus, Liquid) consists of a pair of spray booms extending out some 25 feet, on on each side of the helicopter fuselage in a delta design. The pumping unit is operated by a motor which receives power from the helicopter electrical system. A 200 gallon fiber glass non-corrosive cylindrical tank mounted inside the cabin comprise the reservoir for the insecticide. The insecticide is discharged from the boom through a series of tee-jet brand diaphragm type nozzles and is distributed over a wide area by the helicopter rotor blade turbulence.

B. Insecticide Solution to be Used.

- 1. A 20 per cent solution of DDT in fuel oil (Standard Stock No. GM6840-291-3462) is recommended for use in the HIDAL provided there is no proven insect resistance to this insecticide. In the event there is resistance, the recommendations of an entomologist are essential. Insecticide concentrates other than 20 per cent DDT aerial spray may be used. However, they must be in oil solutions. Insecticide solutions should be of sufficient concentration so that a deposit rate as low as one-half pint per acre will produce kill.
- 2. When possible, those using HIDAL should work with and be guided by the advice of a member of the Medical Department qualified in entomology or vector control.
- 3. Only oil solutions of insecticides can be used in this equipment.

 This is required because the pumping unit is lubricated by the solution it pumps.
- 4. Safety precautions should be observed at all times when handling insecticides (see instructions in enclosed NavMed Po5010oll, "The Proper Handling of Pavy Standard Pesticides").

C. Filling Reservoir.

- 1. Remove reservoir filler cap and place funnel equipped with fine mesh screen in position.
- 2. Fill the 200-gallon reservoir to capacity or to level approved by the aircraft commander. Standard Stock 20 per cent DDT insecticide weighs approximately 8 pounds per gallon. The insecticide level in the fiber glass tank can be easily seen through the tank wall.
- 3. A convenient and rapid method of filling the reservoir is by using a barrel type hand crank oil transfer pump (Tokheim high vacuum hand pump, Model 688 Series, Ft. Wayne, Indiana Factory Branch, 475 Ninth Street, San Francisco, California). This unit is for field use in transferring oil solvents from barrels.

- 4. After filling reservoir make certain that filter c.p is securely in place.
- 5. Every effort should be made to prevent spillage of the insecticide in the cabin of the aircraft.

D. Ground Check.

- 1. Check all hose connections and pipe fittings for leaks.
- 2. Check electrical connections for tightness and determine if operating switch is properly mounted in pilot's compartment.
- 3. Make certain that ground wire from pump unit is properly grounded to aircraft frame.
- 4. Check individual neggles for correctness of alignment and tightness of fit.
- 5. With pilot in aircraft compartment, activate spray switch for sufficient period to determine if each nozzle is functioning properly.

 Appreximately ten seconds pumping time will be required to fill the booms and before the nozzles will begin spraying.
- 6. Observe pump pressure gauge. The proper pump pressure should read about 40 psi with all nozzles spraying.
- 7. Turn meter unit on and off several times and check nezzles and other boom fittings for leaks.

E. Flight Recommendations.

1. Altitude of release.

a. HIDAL should be operated between 75 and 100 feet altitude. Over dense foliage it may be necessary to fly at lower altitudes in order to obtain maximum penetration of spray. Spraying over open terrain an effective swath (killing swath) of 300 or more feet may be expected at 75 to 100 foot altitude. It should be noted that lower altitudes will result in considerably reduced swath widths. Altitudes in excess of 125 feet are not recommended. because of the wide and ineffective dispersal of the insecticide.

b. Imicated air speed.

Recommended operational speed is 50 to 55 knots for the HUS type helicopter. Speeds higher than 55 knots will result in an undesirable decreased insecticide deposit rate and diminish the down draft effect of the rotor blades. Speeds less than 45 knots are not recommended due to loss of translational lift. At the recommended speeds the deposit rate is between 1-1/2 and 2 quarts of insecticide per acre.

c. Wind velocity.

Operations are not recommended in winds above 10 knots. Wind velocity below 5 knots is the most desirable.

c. Line of flight.

When possible all flight operations should be made into the wind. Downwind and crosswind flights may result in considerable contamination to the aircraft. The equipment should never be operated with the aircraft in a "hovering" position. This results in undue contamination to the aircraft and endangers flight personnel.

e. Distance which may be expected between lines of flight (swath width).

(1) Open type terrain: 300 feet

(2) Light or intermittent canopy: 200 feet

(3) Heavy canopy: 100 feet

It should be noted that the above distances are only approximates and many conditions can alter them.

f. Time of day for spraying.

(1) Ground turbulence.

- (a) Spraying is most effectively controlled when the air near the ground is moving downward or when there are no detectable vertical drafts. Updrafts (turbulence), increase during the day as the sun warms the terrain and often are considerable by mid-afternoon. This tends to float the spray, especially the small droplets, and downward progress of the insecticidal cloud is delayed. If significant winds are present, the insecticide may drift entirely out of the target area resulting in unpredictable and erratic deposit of the spray.
- (b) Spraying is therefore best done in the early morning near sunrise or late evening when the ground temperatures are cool.
- (c) When the temperature of the air six to eight feet above the ground is at least one degree warmer than the temperature six inches from the ground, best results are achieved.

B. Special Precautions.

- 1. The after fuel tank of the helicopter should be left empty whenever possible. This is to compensate for C-G.
- 2. Never operate the insecticide fuel pumps without solution.
- 3. For each 1,000 gallons of insecticide dispensed the master filter and filters in each nozzle should be removed and cleaned. The nozzle tips should always be adjusted so that the nozzle slit opening and the flat spray pattern are parallel to the boom. Each nozzle is equipped with an individual diaphram type check valve which is designed to open at 5-7 pounds pressure. Sometimes dirt may cause these valves to "leak" and results in nozzle dripping.
- 4. Use only an oil type insecticide solution in HIDAL equipment. Never under any circumstances, use an emulsion, suspension, or wettable powder solution.
- 5. The beems should be handled with extreme care in order that the delicate nozzles will not become damaged or broken.

F. Nozzles.

1. The mozzles used with HIDAL are a special "tee-jet" brand especially adapted for aerial dispersal of insecticides. A Spraying Systems Company catalog furnished with each unit, describes the nozzle and its components in detail. The nozzles have been assembled on the boom at the time of shipping, and only need to be checked for tightness of fit when the boom is removed from the shipping case. DO NOT THROW AWAY THE SHIPPING CASE, because it has been especially provided for transporting and storing the HIDAL booms.

2. Nozzle description.

The nozzles furnished with this equipment are No. 4664 diaphragm "tee-jet" brand. The tip furnished with each nozzle is a Spraying Systems No. 8006, which delivers a flat spray pattern (800) at a flow rate of 0.6 gpm at 40 psi. All component parts of the nozzle may be purchased separately from the Spraying Systems Company, Bellwood, Illinois, in the event that they are lost or damaged. Tips which provide different flow rates and spray patterns may also be obtained for this nozzle. Bight spare nozzles and 15 blank plugs are furnished with each HIDAL kit.

3. Nozzle spacing along the boom.

The nezzle openings on the boom are numbered 1 through 34, beginning with the inboard section. Under most conditions, numbers 1 through 4 are plugged. This is to reduce contamination to the aircraft fuselage. The recommended nozzle arrangement is as follows:

1 - 4 Inclu	sive Plug	14	Plug
5	hozzle	15	Nozzle
6	Plug	16	Plug
7	Nozzle	17	Nozzle
8	Plug	18	Plug
9	noz zl e	19	Nozzle
10	Plug	20	Plug
11	Nozzle	21	Nozzle
12	Plug	22	Plug
13	Nozzle	23 - 24	Nozzles

4. Nozzle adjustment.

The nozzle is in the correct position when its length is at right angles to the boom proper. The tip should be adjusted so that the slotted portion is parallel to the boom. No adjustment is necessary to the diaphragm end of the nozzle except to be sure that the retainer is tightly locked by the spring clip.

APPENDIX B

BASIC DATA

CONSCIENT SOMEWIT

Swath Widths* and Estimated , of Mass in Each Swath

					Total	0.5 GPA	1.0 GPA	1.5 GPA	%	
File	Flt.		Alt.	Spray	Swath	*	76	%	Recov-	
No.	No.	te .	(ft)	Material	(ft)	Pt Mass	Ft Mass	Ft Mass	ery	MMD
H-1	1	16 Jul 62	100	Purple	440	260 91.1	160 68.9	0	135.2	-
2	2		75	11	1020	440 93.9	280 76.7	140 49.5	126.7	-
H-3	1	19 Jul 62	100	Purple	66 0	320 77.5	20 6.2	0 -	126.9	-
<u> </u>	2	n	100	11	880	230 85.0	100 43.8	20 13.7	121.3	348
	3	11	75	ff .	520	280 98.6	160 75.7	120 62.7	140.2	0.5
5 6	4	tt .	75	ff	540	220 84.6	120 65.8	100 56.4	116.9	•
7	5	11	50	tt	420	240 97.1	140 73.5	120 64.5	135.0	-
7 8	5 E	11	50	W	420	220 89.9	120 64.6	100 55.3	129.5	-
ğ	7	11	100	11	520	220 93.3	160 78.8	120 62.9	140.1	-
<u>1</u> 0	ė	tt	100	ff .	440	160 84.9	100 64.5	80 55.0	123.1	-
11	9	11	75	tf	660	320 91.1	140 59.2	20 17.7	163.8	-
12	10	11	75	tt	880	260 85.0	100 52.1	20 19.3	146.4	-
13	11	Ħ	50	Ħ	320	220 96.1	140 75.1	100 56.8	138.2	-
14	12	10	50	n	500	220 37.1	140 64.3	20 13.3	126.6	-
					,					
H-15	1	20 Jul 62	100	2 Fuel 01	1 460	200 83.7	140 68.1	20 11.7	123.7	-
16	2	II.	100	& 1 Purpl		200 86.6	140 68.3	0 -	107.6	273
17	3	11	75	11	500	2:40 90.0	180 72.0	0 -	109.4	•
18	Ý.	tt	75	11	540	180 93.5	140 77.6	20 14.9	82.5	•
19		t .	50	11	540	260 93.9	140 61.3	0 -	101.9	-
ะัง	5 6	11	50	11	580	240 86.1	160 64.6	0 -	113.1	-
21	7	11	100	tt	520	220 86.4	160 66.3	0 -	•	tr
22	7 8	T1	100	ti .	1100	360 86.□	20 6.5	0 -	•	رن2
23	9	Ħ	75	11	560	220 88.3	40 19.2	0	110.7	-
24	10	tr	75	Ħ	520	320 85.0	160 53.9	0 =	161.7	•
25	11	tt	50	11	980	340 84.6	160 58.8	20 10.7	183.3	_
26	12	tt .	50	tt	520	220 84.5	20 11.8	0 -	98.1	-
	_			200					- O	
H-27	1	20 Jul 62		Fuel O11	240	120 77.2	10 -	0 -	51.8	-
28	2	11 11	100	11	540	200 75.5	0 -	0 -	92.8	-
29	3	11	75	# #	460	200 77.3	0 -	0 -	72.6	-
50	4	tt	75		660	60 32.5	0 -	0 -	68.4	-
31	5 6		50	t! 11	420	180 79.4	0 -	6 -	82.3	-
32	6	Π	50	11	720	220 81.7	0 -	0 -	79.0	-
H-33	1	21 Jul 62	100	Fuel 011	620	240 81.4	0 -	0 -	96.4	•
34	1 2	11	100	11	620	220 81.8	0 -	0 -	94,9	
35	3	11	75	ff.	680	240 81.3	0 -	0 -	104.0	
35 36	4	11	75	II	56Ø	200 82.1		0 -	90.3	-
37	5	tt	50	п	56 0	180 73.9	20 9.6 40 18.5	0 =	90.7	-
38	6	n	50	88	540°	180 83.8	20 10.7	0 -	78. 0	-
37 38 39 4 0	3 4 5 6 7 8	tt .	100	11	560	200 87.9	0 -	0 -	78.2	235
40	8	11	100	tt	52 0	180 81.2	0 -	0.	79.9	265
•	_				100		ı	v	17.7	,

^{*} All flights were attempted inwind ** Mid-day flights

HUS-10- H-34 SPRAY NOZZIE SPACING AND DATA	Furnite Calibrated Flow Rate:	Oty Description	+ 42 14.46455 16.1 1.1. 11 and 7.4.	Nozzle location, same on each boom. No. 1 is most inboard position.	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54	D	Engine throttle position: Methic Jump System pressure at engine; spraying:	Seconds Gallons			
Helicopter , Test No.:	Material Used:	ıt		Nozzle loca	1 3 5 7	Δ Δ	Engine throttle System pressure	Length of test	Remarks:		B-3

	Test No .:	Date Calibrated: 17 July	
a .	ë	Material Used: Josh's fuel Oil + Josh Purple Calibrated Flow Rate:	Now Rate: 24 GPM
-	į	Nozzle Information	Location
O	3		
T	112	47 14, 4664 S.S. Week where body with 800% Trejet to	5,9,9,11,13,15,19,19,21,23 thru 34
e l	locatio	Nozzle location, same on each boom. No. 1 is most inboard position 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 3	on. 35 37 39 41 43 45 47 49 51 5 4 36 38 40 42 44 46 48 50 <i>5</i> 2
A	4 4 4	4 4444444	. 10
1 1	ottle r	Engine throttle position: Flechic Jump	
pre	ssure	System pressure at engine; spraying:	
g			
		The state of the s	
The second secon	o programme and the		THE THE PARTY OF T
			等一次 这樣的語言,我們看著聖旨的動意的事情不過為自由行為 化學的概 化分子

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 14 4664 S. check where body with 3006 Teejet tip 5,7,9,11,13,15,17,19,21,23 thun 34 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 Date Test Flown: 20 July Calibrated Flow Rate: Location Nozzle location, same on each boom. No. 1 is most inboard position. 60 seconds Galions pumped: Helicopher HUS-1 or H-34 SPRAY NOZZIE SPACING AND DATA A A A A A AAAAAAAAAAAAAA NozzIe Information ŧ Test No.: 3 Date Calibrated: System pressure at engine; spraying: 0 Fuel Description Engine throttle position: Length of test run: Material Used: 77 0ty Ident Remarks: 4 0 +

The second second of the second secon

のでは、「「「「「」」では、「「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「

 のでは、東京大学の日本のでは、10mmでは

MATERIAL:	Purple		TOTAL STREET, SANCE AND ESTATE STREET, SANCE AND STREET, SANCE AND STREET, SANCE AND STREET, SANCE AND STREET,	AIRSPEED:	Constant	at 57.5	mph (50	knots
DATE:	18 July	1962	IKO SAS KIS LOVINS	ALTITUDE:	tenderfloor, was received	100	feet	
FLIGHT #:	1;	Inwind		SWATH WIDT	TH:	440	feet	
SAMPLE LIN	B:	D		AIRCRAFT (egrees	
TIME OF RE	LBASE:	0449	hours					
DURATION:		31	seconds					
FLOW RATE:		24	GPM					
STATION G	PA	Չ Ͳ Δ ΦΤΛΝ	G P A	∂m a m + ∧ x		5 m A		
Stations 1	37 blank	38	G.F.A.	Station	8 63-100	Blank	TION G.I	P. A.
		39	0.04		,			
		40	0.08					
		41	0.2					
		42	0.4					
		43 44	0.5					
		45	0.8					
		46	1.0					
		47	1.4					
		48	1.1					
		49	1.0					
		50	0.6					
		51	1.0					
		52	1.2					
		53	1.2					
		54	1.1					
		55 56	0.7					
		57	0.5					
		58	0.1					
			0.1					
			0.02					
		61	Trace					
		62	0					
				The second second second second				

% Recovery = $.202 \times 57.5 \times 13.94 \times 20 = 135.2$

Total 13.94

MATERIAL:	Purple		AIRSPRED: Constant	t at 57.5	mph (50 knots)
DATE:18	July 1962	<u> </u>	ALTITUDE:	75	feet
FLIGHT #: 2	; Inwir	nd	SWATH WIDTH:	1020	Feet
Sample line:	D		AIRCRAFT COURSE:	45	degrees
TIME OF RELEASE	: 0508	hours			
DURATION:	13	seconds			
PLOW HATE:	24	GPM			н

STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
1	Trace	26	0.2	51	3.5		
2	11	27	0.3	5 2	-		
3	Ħ	2 8	0.4	Stations	53-100	blank	
4	11	29	0.4				
5	11	30	0.5				
6	11	31	0.5				
7	11	32	0.5				
8	1t	33	0.5				
2 3 4 5 6 7 8 9	n	34	0.6				
10	11	3 5	0.7				
11	tt	35 36	0.7				
12	11	3 7	0.8				
13	11	3 7 3 8	1.0				
14	11	39	0.9				
15	ti	40	0.9				
16	11	41	1.0				
17	11	42	1.2				
18	11	43	1.3				
19	11	44	1.3				
20	11	45	2.1				
21	0.06	46	2.0				
22	0.06	47	1.7				-
23	0.08	48	1.3				
24	0.1	49	1.1				
25	0.1	50	2.1				
-,	- • -	,-					

% Recovery = $.202 \times 57.5 \times 27.9 \times 18.54 = 126.7$

Total 27.9

MATERIAL: Purple)		AIRSPEED: Constant	t at 57.5 m	ph (50 knots)
DATE: 19 Jul	ly 1962		ALTITUDE:	100	feet
FLIGHT #: 1	; <u>In</u>	wind	SWATH WIDTH:	660	feet
SAMPLE LINE:	A		AIRCRAFT COURSE:	90	degrees
TIME OF RELEASE:	0457	hours			
DURATION:	20	seconds			
PLOW PARR.	эk	(1 PM			

STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
		Stations	1-65 blank	66 67 68	-	91	0.4
				67	Trace	92	0.4
				68	u	93	0.3
				69	H	94	0.4
				70	Ħ	94 95	0.4
				71	11	96	0.4
				72	11	97	0.3
				73	d. B	98	0.2
		•		74	p:8	99	0.2
				75	0.9	100	0.2
				74 75 766	0.9		
				77	1.0		
				77 78	0.9 0.8 0.8		
				79	0.8		
				79 80	0.8		
				81	6 .8		
				81 82	0.8		
				83	0.8 0.7		
				84	0.7		
			•	85	0.5		
				8 6	0 = 5		
,				00 00	0.5		
				87	0.5		
				88	0.5		
				89	0.5		
				90	0.4		

% Recovery = $.202 \times 57.5 \times 16.00 \times 16.38 = 126.9$

Total 16.00

MATERIAL: Purple	e		AIRSPEED: Constant	at 57.5	mph (50)	knots
DATE: 19 Ju	ly 1962		AJ TITUDE:	100	feet	
FLIGHT #: 2	; Inwind		SWATH WIDTH:	880	feet	
SAMPLE LINE:	<u> </u>		AIRCRAFT COURSE:	90	degrees	
TIME OF RELEASE:	0500	hours				
DURATION:	18	seconds				
PLOW RATE:	24	GPM				

STATION G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
Station 1-19 blank	20	•	45	0.04		
	21	2.1	4 6	0.08	a •	
	22	0.9	47	0.04		
	23	0.8	48	0.04		
	24	1.0	49	0.02		
	25	0.9	50	0.1		
	2 6	1.0	51	0.1		
	27	0.8	52	0.1		
	28	0.9	53	0.05		
	29	0.7	54	0.05		
	30	0.8	55	0.05		
	31	0.7	5 6	0.05		
	32	0.7	57	0.05		
	33	0.7	58	0.05		
	34	0.5	59	0.05		
	3 5	0.5	6 0	0.01		
	3 6	0. ‡	61	0.01		
	37	0.3	6 2	Trace		
	38	0.1	63	E)		
	39	0.2	64	(i		
	40	0.08	65	tt		
	41	0.1	66	•		
	42	0.05	Stations	67-100 Bla	nk	
	43	0.08				
	संस	0.1				

% Recovery = .202 x 57.5 x 15.30 x 16.38 = 121.3

Total 15.30

MATERIAL: Purple	<u> </u>		AIRSPEED:	Constant	at 57.5 mp	h (50 knots)
DATE: 19 July 1	1962		ALTITUDE:		75	feet
PLIGHT #:;	Inwind		SWATH WID	TH:	520	feet
SAMPLE LIFE:	D		AIRCRAFT	COURSE:	045 de	grees
TIME OF RELEASE:	0518	hours				
DURATION:	22 s	econds				
FLOW RATE:	24	GPM				
STATION G.P.A.	STATION	G.P.A.	STATIO	N G.P.A.	STATIO	N G.P.A.
	23 24 25 26 27 28 29 30 31	0.05 0.5 2.0 1.4 1.5 0.8 0.7 1.5 1.7				
	33 34 35 36 37 39 41 43 44 45	0.7 0.7 0.6 0.5 0.5 0.1 0.02				
	46 47 48	" - 149-100	blank			

% Recovery = $.202 \times 57.5 \times 15.32 \times 18.91 = 140.2$

Total 15.32

MATERIAL:	Pur	ple		AIRSPEED:	Constant	at 57.5	mph (50 knots)
DATE:	19	July 196	52	ALTITUDE:	-	75	feet
FLIGHT #:	4	; Inv	ind	SWATH WIL	HT:	540	feet
SAMPLE LINE	3:	D		AIRCRAFT	COURSE:	45	degrees
TIME OF REI	LEASE:	0521	hours				
DURATION:		19	seconds				
PLON BATE.		24	GPM				

STATION G.P.A.		G.P.A.	STATION	G.P.A.	STATION G.P.A.
Stations 1-57 b	lank		58	-	83 1.2
			59	Trace	84 0. 5
			60	11	85 0.1
			61	11	86 Trace
			62	11	87 -
			63	- 11	Stations 88-100
			64	11	Blank
			65 66	0.04	
			66	0.05	
			67	0.08	
			68	0.1	
			69	0.1	
			7 ó	0.2	
			71	0.2	
			72	0.2	
			73	0.5	
			74	0.6	
			75	0.8	
			76	0.9	
			77		
			78	1.5	
				1.2	
			79	1.1	
			80	0.7	
			81	1.2	
			82	1.5	

% Recovery = $.202 \times 57.5 \times 12.77 \times 18.91 = 116.9$

Total 12.77

MATERIAL:	Purple		AIRSPEED: Con	stant at	7.5 mph	(50 knots)
DATE: 19 July	1962	and since the second	ALTITUDE:		50	feet
FLIGHT: 5;	Inwind		SWATH WIDTH:	42	20	feet
SAMPLE LINE:	D	-	AIRCRAFT COUR	SB:	15	degrees
TIME OF RELEASE: _	0537	hours				
DURATION:	22	seconds				
PLOW RATE:	24	GPM				
ANATAY A A	CD4GT0		60.070V		851974	
STATION G.P.A. Stations 1-55 blan	STATIO	N G.P.A			STATIO	N G.P.A.
stations 1-33 plan	K		56 57	- Trace		
			58	n n		
			5 9	n		
			60	Ħ÷		
			61	Ħ		
			62	0.1		
			63	0.2		
			64	0.6		
			65	0. 8		
			66	1.5		
			67	1.5		
			68	1.8		
			69	1.6		
			70	0.6		
			71	1.5 1.6		
			72 73	1.4		
			74	0.9		
			7 5	0 .8		
			76	0.6		
			77	0.1		
			78	0.05		
			79	-		
				80 - 100	blank	

\$ Recovery = $.202 \times 57.5 \times 15.65 \times 17.82 = 135.0$

Total 15.65

MATERIAL	: Pur	ole		AIRSPEED:	Constant	at 57.5 mph	(50 knots)
DATE:	19 Ju	1y 1962	er er li China alaman ya sa sa sa sa sa	ALTITUDE:	-	50	feet
FLIGHT #	: 6	; _ <u>I</u> ı	wind	SWATH WIDT	H:	420	ſeet
SAMPLE L	INB:	D		AIRCRAFT C	OURSE:	45 a	egrees
time of 1	relbase:	0539	hours				
DURATION		20	seconds				
FLOW RATI	3:	24	GPM				
<u>S</u> TATION	G.P.A.	STATIO	ON G.P.A.	STATIO	N G.P.A.	STAT10	N G.P.A.
Stations	1-7 bla	nk					
8	10						
	Trace						
10							
11 12	0.1						
	0.4						
	0.5						
15	0. 8						
	1.4						
	1.6						
	1.1						
	1.2						
20	1.2						
	1.7						
	1.5						
	0.9						
24	8.0						
	0.8 0.4						
	0.7						
	0.1						
	0.01						
	Trace						
Stations		Blank					
	*					MCI CHICHENON HOMOROUS COM	WERE THE REST OF THE PERSON NAMED IN

% Recovery = $.202 \times 57.5 \times 15.01 \times 17.82 = 129.5$

Total 15.01

MATERIAL: Purp	le		AIRSPEED: Co	nstant s	it 57.5 mph (50 knots)
DATE: 19 Jul	y 1962		ALTITUDE:		100	feet
FLIGHT #: 7	; Inwi	.nd	SWATH WIDTH:		520	feet
SAMPLE TIME:	A		AIRCRAFT COU	rse:	90 d	egrees
TIME OF RELEASE:	0619	hours				
DURATION:	20 8	econds				
FNOW RATE:	Sit	GPM				
STATION G.P.A.	STATION	G.P.A.	STA'L JON	G.2.A.	STATION	G.P.A.
Stations 1-53 Blank			54 55 56 57 59 61 62 64 65 66 67 77 77 77 77 77 78	Trace	79 80 81 82 Stations Blank	0.02 83-100

% Recovery = $.202 \times 57.5 \times 14.47 \times 20 = 140.1$

Total 14.47

MATERIAL	Pu:	rple		AIRSPEED: Cons	stant at 57.5 mp	h (50 knots)
DATE:	19	July 1962		ALTITUDE:	100	feet
FLIGHT #	8	; <u>Inw</u>	ind	SWATH WIDTH:	440	feet
SAMPLE L	INE:	A		AIRCRAFT COURS	BB: 90	degrees
TIME OF	release :	0622	hours			
DURATION		20	seconds			
FLOW RATE	3:	24	GPM			
STATION	G.P.A.	STATION	G.P.A.	STATION (3.P.A. STATI	ON G.P.A.
Stations						
8	•					
9	Trace					
	0.02					
11	0.05					
	0.05					
	0.05					
	0.2				•	
	0.3					
	0.3					
17	0.9					
18	1.2					
	1.9					
2 0 21	1.1 0.8					
22	1.2					
	2.0					
24	0.9					
25	0. 8					
	9.4					
27	0.2					
28	0.2					
	0.1					
	0.05					
	Trace					
32	•					
Stations	33-100	Blank				
						

% Recovery = $.202 \times 57.5 \times 12.72 \times 20 = 123.1$

Total 12.72

MATERIAL: Purple		AIRSPEED: C	(50 knots				
DATE: 19 July 1962			ALTITUDE: _		75	feet	
FLIGHT #: 9	IGHT #: 9 ; Inwind				660	feet	
SAMPLE LINE:	A		AIRCRAFT CO	URSE:	90	degrees	
TIME OF RELEASE:	0635	hours					
DURATION:	20	seconds					
FLOW RATE:	24	GPM					
STATION G.P.A.		G.P.A.		G.P.A.	STATION	G.P.A.	
Stations 1-65 Blan			66 67 68 69 70 71 73 74 75 76 77 78 81 82 83 84 89 90	Trace 3.5 1.2 0.9 1.3 1.2 1.3 1.2 1.8 0.7 0.8 0.5 0.5 0.4 0.1 0.1	91 92 93 94 95 96 97 98 39 100	0.1 0.08 0.05 0.08 0.02 0.02 Trace 0.02 Trace	

% Recovery = .202 x 57.5 x 19.75 x 17.14 = 163.8

Total 19.75

MATERIAL: Purpl	е		AIRSPRED: Cons	tant at 57.	5 mph (50 knots)
DATE: 19 July	1962		ALTITUDE:	75	feet
FLIGHT #: 10	; Inwind		SWATH WIDTH:	88 0	feet
SAMPLE LINE:	A		AIRCRAFT COURS	E: <u>90</u>	degrees
TIME OF RELEASE:	0 6 3 8	hours			
DURATION:	22	seconds			
FLOW RATE:	24	GPM			

Stations 1-18 blank 44 0.1 19 - 45 0.1 20 3.4 46 0.05 21 1.4 47 0.05 22 0.9 48 0.05 23 1.2 49 0.05 24 1.1 50 0.05	
20 3.4 46 0.05 21 1.4 47 0.05 22 0.9 48 0.05 23 1.2 49 0.05 24 1.1 50 0.05	
21 1.4 47 0.05 22 0.9 48 0.05 23 1.2 49 0.05 24 1.1 50 0.05	
22 0.9 48 0.05 23 1.2 49 0.05 24 1.1 50 0.05	
23 1.2 49 0.05 24 1.1 50 0.05	
23 1.2 49 0.05 24 1.1 50 0.05	
25 1.2 51 Trace	
26 0.9 52 "	
27 0.9 53 "	
28 0.8 54 "	
29 0. 8 55 "	
30 0.8 56 0.0 5	
31 0.5 57 0.0 5	
32 0. 6 58 0.02	
33 0. 5 59 0.0 4	
34	
35 0.2 61 Trace	
35 0.2 61 Trace 36 G.2 62 0.02	
37 0. 3 63 Trace	
38 0.2 64 "	
39 0.2 65 -	
40 0.1 Stations 66-100	
41 0.2 Blank	
42 0.2	
432 0.2	

% Recovery = .202 x 57.5 x 17.65 x 17.14 = 146.4 24

Total 17.65

MATERIAN:	Pur	ple	ACTOR MORDITORIES	AIRSPEED:	Constant	at 57.5 mpl	n (50 knots
DATE:	19 Ju1	y 1962		ALTITUDE:	· · · · · · · · · · · · · · · · · · ·	50	feet
FLIGHT #:	11	; Inw:	ind	SWATH WID	PH:	320	feet
SAMPLE LI	INB:	D		AIRCRAFT (COURSE:	45	degrees
TIME OF F	Release: _	0658	hours				
DURATION:	Audit Holotonia	20	seconds				
FLOW RATE	:	24	GPM				
© ™AMT∧¥	7. D. A	QWAWTON.	71. TO A	QM4MTAN	0. TO A	STATION	G B 4
Stations	1-10 Blan	SIMITON	U. F. A.	STATION	U.F.A.	STATION	U.F.A.
11	Told Digit	un.					
	Trace						
	0.3						
	0.5						
	0.9						
	1.4						
	1.5						
18	1.3						
19	0.8						
	1.0						
	2.2						
22	1.6						
	1.3						
	0.9						
	0.8						
	0.2						
	0.08						
<u>.</u>	Trace						
	8 3						
	30-100 B1	ank					

% Recovery = $.202 \times 57.5 \times 14.78 \times 19.32 = 138.2$

Total 14.78

DATE: 19 July 1962 ALTITUDE: 50 feet FLIGHT #: 12 ; Inwind SWATH WIDTH: 500 feet SAMPLE LINE: D AIRCRAFT COURSE: 45 degrees TIME OF RELEASE: 0700 hours DURATION: 19 seconds FLOW RATE: 24 GPM STATION G.P.A. STATION G.P.A. STATION G.P.A. STATION G.P.A. Stations 1-50 Blank 51 - 76 0.1 52 - 77 0.2 53 Trace 78 Trace 54 0.02 79 - 55 0.02 Stations 80-100 56 0.05 blank 57 0.05 58 0.2 59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2 75 0.1	MATERIAL: Purple		AIRSPEED: Co	nstant a	t 57.5 mpl	(50 knots)
SAMPLE LINE: D AIRCRAFT COURSE: 45 degrees TIME OF RELEASE: 0700 hours DURATION: 19 seconds FLOW RATE: 24 GPM STATION G.P.A. STATION G.P.A. STATION G.P.A. STATION G.P.A. Stations 1-50 Blank 51 - 76 0.1 52 - 77 0.2 53 Trace 78 Trace 54 0.02 79 - 55 0.02 Stations 80-100 56 0.05 blank 57 0.05 58 0.2 59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2	DATE: 19 July 1962		ALTITUDE:		50	feet
TIME OF RELEASE: 0700 hours DURATION: 19 seconds FLOW RATE: 24 GPM STATION G.P.A. STATION G.P.A. STATION G.P.A. STATION G.P.A. Stations 1-50 Blank 51 - 76 0.1 52 - 77 0.2 53 Trace 78 Trace 54 0.02 79 - 55 0.02 Stations 80-100 56 0.05 blank 57 0.05 58 0.2 59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2	FLIGHT #: 12 ; Inwind	 	SWATH WIDTH:		500	feet
DURATION: 19 seconds FLOW RATE: 24 GPM STATION G.P.A. STATION G.P.A. STATION G.P.A. STATION G.P.A. Stations 1-50 Blank 51 - 76 0.1 52 - 77 0.2 53 Trace 78 Trace 54 0.02 79 - 55 0.02 Stations 80-100 56 0.05 58 0.2 59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2	SAMPLE LINE: D		AIRCRAFT COU	irse:	45	degrees
STATION G.P.A. STATION G	TIME OF RELEASE: 0700	hours				
STATION G.P.A. STATION G	DURATION: 19 se	conds				
Stations 1-50 Blank 51 - 76 0.1 52 - 77 0.2 53 Trace 78 Trace 54 0.02 79 - 55 0.02 Stations 80-100 56 0.05 blank 57 0.05 58 0.2 59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2	FLOW RATE: 24	GPM				
Stations 1-50 Blank 51 - 76 0.1 52 - 77 0.2 53 Trace 78 Trace 54 0.02 79 - 55 0.02 Stations 80-100 56 0.05 blank 57 0.05 58 0.2 59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2	STATION G.P.A. STATION	G.P.A.	STATION	G.P.A.	STATT!	M G.P.A
53 Trace 78 Trace 54 0.02 79 80-100 55 0.02 Stations 80-100 56 0.05 blank 57 0.05 58 0.2 59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2			51			
54 0.02 79 - 55 0.02 Stations 80-100 56 0.05 blank 57 0.05 58 0.2 59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
55 0.02 Stations 80-100 56 0.05 blank 57 0.05 58 0.2 59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
56 0.05 blank 57 0.05 58 0.2 59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2					79	•
57 0.05 58 0.2 59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
58 0.2 59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2					bla	ank
59 0.2 60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2			57			
60 0.2 61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
61 0.4 62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
62 0.6 63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
63 0.7 64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
64 0.9 65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
65 1.0 66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
66 1.1 67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
67 1.2 68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
68 1.0 69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
69 1.0 70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
70 0.6 71 1.0 72 1.8 73 0.9 74 0.2						
71 1.0 72 1.8 73 0.9 74 0.2						
72 1.8 73 0.9 74 0. 2						
73 0.9 74 0.2						
74 0.2						
			75			

% Recovery = $.202 \times 57.5 \times 13.54 \times 19.32 = 126.6$

Total 13.54

MATERIAL: 2 Fuel	011, 1 Pu	rple	AIRSPRED: C	onstant at	57.5 mph	(50 knots)
DATE: 20 July 1	962		ALTITUDE: _		100	feet
FLIGHT #: 1;	Inwind		SWATH WIDTH	:	460	feet
SAMPLE LINE:	В		AIRCRAFT CO	URSE:	315	degrees
TIME OF RELEASE:	0445	hours				
DURATION:	20 se	conds_				
PLOW RATE:	24	GPM			•	
STATION G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATIO	N G.P.A.
Stations 1-15 blank	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	0.46 1.00 1.51 1.086 1.10 1.54 1.086 1.44 1.085	Blank			

% Recovery = $.202 \times 57.5 \times 12.78 \times 20 = 123.7$

Total 12.78

MATERIAL:	2 Fuel 011, 1	Purple	AIRSPEED: Co	onstant	at 57.5	mph (50 knots)
DATE:	20 July 1962		ALTITUDE: _		100	feet
FLIGHT #:	2 ; Inwind	*.*·	SWATH WIDTH		48 0	feet
SAMPLE LINE	B:B	·	AIRCRAFT CO	urse:	31 5	degrees
TIME OF RE	LEASE: 0449	hours				
DURATION:	23	seconds				
FLOW RATE:	24	GPM				
STATION G.	P.A. STATION	G.P.A.	STATION	G.P.A.	STAT	TION G.P.A.
Stations 1			71	=		Contraction of the Contraction o
			72			
			73 7 4	1.1		
			75	1.0		
			76	0.8		
			77	0.4		
			78	1.2		
			7 9	1.0		
			80	1.1		
			81 82	0. 8 0. 7		
			83	0. 6		
			84	0.3		
			85	0.2		
			86	0.1		
			87	0.1		
			88			
			89 90			
			•	0.05		
			92	0.05		
			93	0.02		
			94	0.02		
			95	Trace		
			96			
			97 Stations	98-100	blank	

% Recovery = .202 x 57.5 x 11.12 x 20 s 107.6

Total 11.12

MATERIAL: 2 Fuel	011, 1 Pt	rple	AIRSPEED:	Constan	t at 57.5	mph (50 knots)
DATE: 20 July 196	2		ALTITUDE:		75	feet
FLTGHT #: 3	; <u>Inwine</u>	1	SWATH WID	TH:	500	feet
SAMPLE LINE:C			AIRCRAFT (COURSE:	180	degrees
TIME OF RELEASE:	0505	hours			,	
DURATION:	20	seconds				
FLOW RATE:	24	GPM				
STATION G.P.A.	STATION	G P A	STATT	AN G D	A 97	ATION G.P.A.
Stations 1-20	21		OIRIL	ON G.Z.	A. UI.	ALLON U.I.A.
2 CH CIOUR 1-20						
	22	Trace				
	23	1.2				
	24	1.0				
	25	1.0				
	2 6	0.7				
	27	0.8				
	28	0.9				
	29	1.0				
	30	1.0				
	31	1.0				
	32	1.0				
	33	0.9				
	34	0.8				
		0.7				
	3 6	0.4				
		0.4				
		0.3				
		0.1				
		0.08				
		0.05				
	42	Trace				
	43					
	ग्रेग	11				
	4 5 4 6	#				
	46	11				
	47	11				
	48	-				
	Stations	49-100	blank			

% Recovery = $.202 \times 57.5 \times 13.33 \times 16.96 = 109.4$

Total 13.33

MATERIAL: 2 Fuel	Oil, 1 Purple	AIRSPRED: Constan	t at 57.	5 mph (50 knots)
DATE: 20 Jul	у 1962	ALTITUDE:	75	feet
FLIGHT #: 4	; Inwind	SWATH WIDTH:	54 0	feet
SAMPLE LINE:	C	AIRCRAFT COURSE:	180	degrees
TIME OF RELEASE:	0509 hours			
DURATION:	23 seconds			
FLOW RATE:	24 GPM			

STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
Stations	1-58 blank			59 60	•	84	0.3
				6 0	•	85	0.1
				61	Trace	8 6	0.1
				62	tr .	87	0.1
				63	Ħ	88	0.05
				64	11	8 9	•
				65	11	Stations	90-100
•				6 6	tt	blank	•
				67	tt		
				68	11		
				6 9	87		
				70	5 1		
				71	11		
				72	Ħ		
				73	11		
	•			74	1.5		
				75	1.0		
				76	0.9		
				77	0.7		
				78	0.8		
				<u>7</u> 9	0.9		
				80	1.0		
				81	1.0		
				82	0.9		
				83	0.7		
				• •			

% Recovery = $.202 \times 57.5 \times 10.05 \times 16.96 \approx 82.5$

Total 10.05

MATERIAL: 2 Fuel	011, 1	Purple	AIRSPEED: Constan	t at 57.	5 mph (50 knots)
DATE: 20 July 19	62		ALTITUDE:	50	feet
FLIGHT #: 5	; <u>Inwir</u>	nd	SWATH WIDTH:	540	feet
SAMPLE LINE:	В		AIRCRAFT COURSE:	135	degrees
TIME OF RELEASE: _	0525	hours			
DURATION:	23	seconds			
FLOW RATE:	24	G P M			

STATION	G.P.A.	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
Stations	1-68 blank		69	•	94	Trace
			70	0.6	9 5 9 6	11
			71	1.4	96	11
			72	1.1	9 7	11
			73	1.0	9 8	-
			74	0.7	Stations	99-100
			75	0.7	blank	
			76	0. 8		
			77	0.9		
			78	1.1		
			79	0.9		
			8 0	0.8		
			81	0.8		
			82	0.5		
			83	0.5		
			84	0.3		
			85	0.1		
			86	0.1		
4			87	0.08		
			88	0.05		
			8 9	0.05		
			90	0.05		
			91 02	0.02		
			92 07	0.01		
			93	Trace		

% Recovery = .202 x 57.5 x 12.56 x 16.77 = 101.9

Total 12.56

MATERIAL: 2 Fuel Oil, 1 Purple AIRSPEED: Constant at 57.5 mph (50 knots)

DATE: 20 July 1962 ALTITUDE: 50 feet

FLIGHT #: 6 ; Inwind SWATH WIDTH: 580 feet

SAMPLE LINE: B AIRCRAFT COURSE: 135 degrees

TIME OF RELEASE: 0527 hours

DURATION: 24 seconds

FLOW RATE: 24 GPM

STATION G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
Station 1-18 blank	19	•	44	0.01		
	20	•	45	0.01		
	21	0.5	46	0.01		
	22	1.2	47	0.01		
	23	1.1	48	0.01		
	24	1.0	119	Trace		
	2 5	0.5	50	11		
	26	0.9	5 1	•		
	27	1.0	Stations	52-100	blank	
	28	1.2				
	29	1.1				
	30	1.0				
	31	0.9				
	32	0.8				
	33	0.8				
	34	0.4				
	35 36	0.4				
	36	0.3				
	37 38	0.3				
	38	0.1				
	39	0.1				
	40	0.1				
	41	0.08				
	42	0.08				
	43	0.02				

% Recovery = $.202 \times 57.5 \times 13.93 \times 16.77 = 113.1$

Total 13.93

MATERIAL: 2 Fuel 01	1, 1 Purp	le	AIRSPEED: C	onstant	at 57.5 mph	(50 knots
DATE: 20 July 1	962		ALTITUDE: _		700	feet
FLIGHT #: _ 7	; Crossw	1nd	SWATH LIDTH	l:	520	feet
SAFFLE LINE:	В		AIRCRAFT CO	URSE:	135 de	grees
TIME OF RELEASE:	0605	hours				
DURATION:	21	seconds				
FLOW RATE:	24	GPM				
STATION G.P.A.	STATTON	G.P.A.	STATION	G.P.A.	ያጥ ል ጥ፣ ጋ ህ	G.P.A.
Station 1-72 blank				Trace 1.1 0.9 0.9 0.9 0.9 0.9 1.0 0.9 0.4 0.2 0.1 0.08 0.05 0.08	98 99 100	0.05

Total 12.97

MATERIAL: 2 Fuel 011, 1 Purple AIRSPEED: Constant at 57,5 mph (50 knots)

DA'E: 20 July 1962 ALTITUDE: 100 feet

FLIGHT #: 8 ; Crosswind SWATH WIDTH: 1100 feet

SAMPLE LINE: B AIRCRAFT COURSE: 135 degrees

TIME OF RELEASE: 0609 hours

DURATION: 21 seconds

FLOW RATE: 24 GPM

STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
Stations	1-15 blank	16	-	41	0.7	6 6	0.02
		17	Trace	42	0.6	67	0.02
		18	11	43	0.5	68	0.02
		19	11	प्रम	0.5	69	0.01
		20	17	45	0.4	70	0.01
		21	11	46	0.3	71	Trace
		22	11	47	0.2	72	n
		23	II	48	0,2	73	•
		24	11	49	0.1	Stations	74-100
		25	Ħ	50	0.1	blank	
		26	3. 9	51	0.1		
		27	0.9	52	0.08		
		28	0.9	53	0.08		
		29	0.9	54	0.08		
		30	0.9	55	0.08		
		31	1.1	56	0.1		
		32	0.9	57	0.1		
		33	0. 8	58	0.08		
		34	0.8	59	0.08		
		35	0.8	6 0	0.05		
		36	0. 8	61	0.05		
	_	37	0.7	62	0.05		
		38	0.6	63	0.02		
		39	0.6	64	0,02		
		40	0.6	65	0.02		
					- · -		

Total 16.87

MATERIAL: 2 Fuel	011, 1 Pu	rple	AIRSPEED: Constant	t at 57.	mph (50 km)ts)
DATE: 20 July	1962		ALTITUDE: 7	5	feet	
FLIGHT #: 9	; Inwind		SWATH WIDTH: 560	0	feet	
SAMPLE LINE:	D		AIRCRAFY COTTE:	45	degrees	
TIME OF RELEASE:	0623	hours				
DURATION:	22	seconds				
FLOW RATE:	24	GPM				

STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
Stations	1-47 blank			48	•	73	0.7
				49	Trace	74	0.8
				50	Ħ	75	1.0
				51	П	76	1.2
				52	II	77	0.9
				53	11	78	•
				54	1i	Stations	79-100
					Ħ	Blenk	
				55 56 37 58	0.05		
				37	0.05		
				58	0.06		
				59	0.06		
				60	0.08		
				61	0.1		
				62	0.1		
				63	0.2		
				64	0.3		
				65	0.4		
				66			
					0.5		
				67 68	0.7		
				68	0.8		
				6 9	0.9		
				70	0.9		
				71	0.9		
				72	0.8		

% Recovery = $.202 \times 57.5 \times 11.44 \times 20 = 119.7$

Total 11.44

MATERIAL: 2 Fuel 011, 1 Purple AIRSPEED: Constant at 57.5 mph (50 knots DATE: 20 July 1962 ALTITUDE: 75 feet FLIGHT #: 10 ; Inwind SWATH WIDTH: 520 feet SAMPLE LINE: D AIRCRAFT COURSE: 45 degrees TIME OF RELEASE: 060 hours DURATION: 22 seconds FLOW RATE: 24 GPM STATION G.P.A. STATION G.P.A. STATION G.P.A. STATION G.P.A. 26 27 2 0.1 1.3 28 0.2 Stations 29-100 blank 0.2 5 0.2 0.2 78 0.3 0.4 9 0.4 0.4 10 11 0.5 0.4 12 13 0.6 14 0.6 15 0.7 0.7 16 17 18 19 20 1.1 21 0.9 22 0.9 9.9 23 24 0.9 25 0.9

% Recovery = $.202 \times 57.5 \times 16.7 \times 20 = 161.7$

Total 16.7

MATERIAL: 2 Fuel Oil, 1 Purple AIRSPEED: Constant at 57.5 mph (50 knots) DATE: 20 July 1962 ALTITUDE: 50 feet FLIGHT #: 11 ; Inwind SWATH WIDTH: 980 feet SAMPLE LINE: D AIRCRAFT COURSE: 45 degrees TIME OF RELEASE: 0637 hours

DURATION: 22 seconds

FLOW RATE: 24 GPM

STATION G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION G.P.A.
Station 1-25 blank	26	•	51	0.1	76 1.2
	27	•	52	0.1	77 2.2
	2 8	Trace	53	0.2	78 -
	29	Ħ	54	0.3	Stations 79-100
	30	n	55	0.3	blank
	31	tt	56	0.3	
	32	11	57	0.4	
		tt	58	0.4	
	34	Ħ	59	0.4	
	35	n	60	0.5	
	36	Ħ	61	0.5	
	33 34 35 36 37 38 39	. 41	62	0.5	
	38	11	63	0.5	
	39	Ħ	64	0.7	
	40	n	65	8.0	
	41	0.01	66	9.8 0.8	
	42	0.02	67	0.9	
	43	0.05	68	1.2	
	44	0.08	6 9	1.2	
	45	0.08	70	1.4	
	46	0.08	71	1.3	
	47	0.1	72	0.9	
	48	0.1	73	1.0	
	49	0.1	74	0.9	
	50	0.05	75	0.8	
)	V.V)	1)	0.0	

% Recovery = $.202 \pm 57.5 \times 20.57 \times 18.41 = 183.3$

Total 20.57

MATERIAL	: 2 Fue	011, 1	Purple	AIR PERD: Con	stant at 57	.5 mph (50 knots)
DATE: _	20 July 1	1962		ALTITUDE:	50	feet
FLIGHT #	: 12	; Inwin	d	SWATH WIDTH:	520	feet
SAMPLE I	INE:	D		AIRCRAFT COUR	SE: 45	degrees
TIME OF	RELEASE:	0 6 40	hours			
DURATION	i:	22 s e	conds			
FLOW RAT	E:	24	GPM			
STATION	G.P.A.	STATION	G.P.A	. STATION	G.P.A.	STATION G.P.A.
3	0.01	26	0.9			
2 3 4	0.01	27 28	1.3			
) J	0.05 0.02	Stations	20-10	1 hlank		
5	0.02	PACTORS	53-10	o prair		
	0.01					
7	0.02					
8	0.04					
9	0.05					
10	0.0 8					
	0.2					
	0.2					
13 14	0.3 0.3					
15,						
16	0.5					
17	0.6					
<u>1</u> 8	6.7					
19	0.8					
20	0.9					
21	0.9					
	0.7					
23	0.7					
24 25	0. 6 0. 7					
-,						

% Recovery = $.202 \times 57.5 \times 1101 \times 18.41 = 98.1$

Total 11.01

MATERIAL: Fuel 011	AIRSPEED: Co	nstant	at 57.5	mph (50 knots
DATE: 20 July 1962 (p.m.)	ALTITUDE:		100	feet
PLIGHT #: 1 ; Inwind	SWATH WIDTH:		240	feet
SAMPLE LINE: C	AIRCRAFT COU	rse: _	180	degrees
TIME OF RELEASE: 1115 hours				
DURATION: 18 seconds				
FLOW RATE: 24 GPM				
STATION G.P.A. STATION G.P.A.	STATION	G.P.A.	STA	ATION G.P.A.
Stations 1-61 blank	62	•		
	63			
		0.4		
	65			
		0.4		
•	67	0.7		
	68	0.8		
	69			
	70			
	71	0.5		
	72	0.7		
	73	0.5		
	74	Trace		
	75	TI .		
••	.76	•		
	Stations	77-100	blank	
% Recovery %	.202 x 57.5	x 5.7 x	18.79	51.8

Total <u>5.7</u>

MATERIAL	: Fuel	011	*(P\$HIPHICHE	AIRSPEED:	Constant a	t 57.5 mph	(50 knots)
DATE:	20 July	1962 (p.	m.)	ALTITUDE:	•	100	feet
FLIGHT #	:2	; Inwind	Principal Control of the Control of	SWATH WID	TH:	540	feet
SAMPLE L	INE:	С		AIRCRAFT (COURSE:	18 0 d	legrees
TIME OF	release: _	1118	hours				
DURATION	:	28 s	econds				
FLOW RAT	E:	24	GPM				
STATION	G P A	MOTTA TO	G P A	ማ ቀጥፕ!	ON G.P.A.	STATTO	1 C D 4
1	0.1	26	0.5	DIMIL	on deleas	DIVITA	V.Y.A.
	0.1		0.3				
3	0.1	28					
Ý	0.1	29	-				
5	0.1 0.1	Stations		hlank			
	0.1	0.0000000	,				
7	0.2						
	0.2						
9	0.2						
10	0.2						
11	0.2						
	0.2						
13	0.2						
14	0.2						
15	0.5						
	0.5						
17	0.7						
18	0.7						
19	0.8						
	0.8						
	0. 7 0. 8						
	0.7						
24	0.5						
25	0.5						

% Recovery = $.202 \times 57.5 \times 10.2 \times 18.79 \approx 92.8$

Total 10.2

MATERIAL: Fu	el 011		AIRSPEED: Con	nstant a	t 57.5 mpl	1 (50 knots)
DATE: 20 July	1962	(p.m.)	ALTITUDE:		75	feet
FLIGHT #: 3	; Inwind		SWATH WIDTH:	4	60	feet
SAMPLE LINE:	C		AIRCRAFT COU	rse:	180	degrees
TIME OF RELEASE:	1132	hours				
DURATION:	25	seconds				
FLOW RATE:	24	GPM				
STATION G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATIO	ON G.P.A.
Stations 1-60 blan	k		61	6		
			62			
			63	0.02		
			64	0.08		
			65	0.1		
			66			
			67			
			68	0.2		
			69	0.4		
			70			
			71	0.5		
			72 73	0.5		
			1 -			
			74 75			
			75 76	0.4		
			77	0.7		
			78			
			70	0.6		
			79 80	0.6		
			81			
			82			
			83	0.1		
			84	Trace		
			85	11		
			86	CMS		
			Stations	87~ 100	blank	

% Recovery = $.202 \times 57.5 \times 7.5 \times 20 = 72.6$

Total 7.5

MATERIAL: Fuel 011

AIRSPED: Constant at 57.5 mph (50 knots)

DATE: 20 July 1962 (p.m.)

ALTITUDE: 75 feet

FLIGHT #: 4 ; Inwind SWATH WIDTH: 660 feet

SAMPLE LINE: C AIRCRAFT COURSE: 180 degrees

TIME OF RELEASE: 1135 hours

DURATION: 27 seconds

FLOW RATE: 24 GPM

STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
1	Blank	26	0.4				
2	TI .	27	0.4				
3	Ħ	28	0.2				
4	11	29	0.3				
2 3 4 5 6	ŧ.	30	0.1				
6	n	31	0.2				
7	•	32	0.2				
? 8 9	Trace	33	0.1				
9	n	34	0.1				
10	11	35	0.05				
11	0.04	36	0.05				
12	0.0 6	37	0.02				
13	0.1	38	0.05				
14	0.1	39	0.05				
15	0.2	40	0.04				
16	0.4	41	0.01				
17	0.4	42	œ ·				
18	0.5		ons 43-100	blank			
19	0.7		,				
20	0.5						
21	0.6						
22	0.4						
23	0.2						
24	0.4						
25	0.2						
	~ 4						

% Recovery = $.202 \times 57.5 \times 7.07 \times 20 = 68.4$

Total 7.07

MATERIAL:	Puel Puel	011		AIRSPRED:	Constant	at 57.5 mph	(50 knots)
DATE:	2 0 Ju	1y 1962 (p	.m.)	ALTITUDE:		50	feet
FLIGHT #:	5	; Inwind		SWATH WID	rh:	420	feet
Sample Li	INB:	C		AIRCRAFT (COURSE: _	180	degrees
TIME OF I	ZLEASE:	1149	hours				
DURATION		20 5	econds				
FLOW RATE	3: <u> </u>	24	GPM				
STATION	G.P.A.	S'/ATION	G.P.A.	STA/II	ON G.P.A	STATION	G.P.A.
1	0.08						
2	0.08						
3	0.08						
4	0.08						
5	0.1						
0	0.1						
5 6 7 8	0.1						
9	0.2						
10	0.3						
11	0.3						
12	0.4						
13	0.5						
14	0.7						
15	0.9						
16	0.9						
17	0.8						
18	0.8						
19	0.9						
20	0.9						
21	0.9						
22	0.5						
23							
Stations	24 -100	blank					

% Recovery = $.202 \times 57.5 \times 9.82 \times 17.32 = 82.3$

Total 9.82

MATERIAL: Fuel	011	AIRSPEED: Constan	t at 57.5	mph (50 knots)
DATE: 20 July	1962 (p.m.)	ALTITUDE:	50	feet
FLIGHT #: 6	; Inwind	SWATE WIDTH:	720	feet
SAMPLE LINE:	C	AIRCRAFT COURSE:	180	degrees
TIME OF RELEASE:	1152 hours			
DURATION:	20 seconds			
FLOW RATE:	24 GPM			

STATION		STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
Stations	1-36 blank	37	12	62	0.4		
	-	3 ව	Trace	63	0.5		
		39	11	64	0.6		
		40	TT .	65	0.7		
		41	0.02	6 6	0.8		
		42	0.02	67	0.7		
		43	0.02	68	0.6		
		44	Trace	6 9	0.5		
		45	11	70	0.6		
		46	11	71	0.7		
		47	0.02	72	0.8		
		48	0.02	73	0.7		
		49	Trace	74	0.5		
		5 0	0.02	75	-		
		51	0.01	Stati	on 76-100	blink	
		52	0.01				
		5 3	0.01				
		54	0.01				
		55 55 57 57	0.03				
		55	0.05				
		27	o.c9				
		ું.ડે 3 9 2 0	0.1				
) 9	0.2				
		50	0.3				
		· 1	0.4				

Recovery = $.202 \times 57.5 \times 9.42 \times 17.32 = 79.0$

Total 9.42

MATERIAL: Fu	el 011		AIRSPEED: Constant	at 57.5 mp	h (50 knots)
DATE:	21 July 1962		ALTITUDE:	100	feet
FLIGHT #: 1	; Inwind		SWATH WIDTH:	6 20	feet
SAMPLE LINE: _	В		AIRCRAFT COURSE:	31 5	degrees
TIME OF RELEASE	s: <u>0443</u>	hours			
DURATION:	18	seconds			
FLOW RATE:	24	GPM			

STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATICN.	G.P.A.
1	Blank	26	0.8		··		
2	n	27	0.8				
3	n	2 8	0.7				
4	#	29	0. 6				
5	ñ	30	0.4				
6	Ħ	31	0.4				
7	tt	32	0.2				
8	n	33	0.2				
g	tr	34	0.2				
2 3 4 5 6 7 8 9 10	tt	34 35	0.2				
11	Ħ	36	0.1				
12	11	37	0.1				
13	•	38	0.08				
14	Trace	39	0.08				
15	n	40	0.05				
1 6	tt	41	0.05				
17	0.5	42	0.02				
17 18	0.9	43	Trace				
19	0.6	44	11 000				
20	0.7	45	Ħ				
21	0.5	46	_				
			- 17 1A	A 15 and			
22	0.6	Stati	ons 47-10	A DTSUR			
23	0.8						
24	0.8						
25	0.8						

% Recovery = $.202 \times 57.5 \times 11.18 \times 17.82 = 96.4$

Total 11.18

MATERIAL: Fuel	011		AIRSPEED:	Constant	t at 57.	5 mph (50 knots)
DATE: 21 Jul	y 1962		ALTITUDE:		100	feet
FLIGHT #: 2	_; <u>Im</u>	rind	SWATH WID	TH:	620	feet
SAMPLE LINE:	В		AIRCRAFT	COURSE: _	315	degrees
TIME OF RELEASE:	0445	nours				
DURATION:	20	seconds				
FLOW RATE:	24	G P M				

STATION G	,P.A.	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
Stations 1	-65 blank	 	66	•	91	0.03
			67	Trace	92	0.02
			68	Ħ	93	Trace
			69	0.9	94	11
			70	0.9	95	11
			71	0.8	95 96	11
			72	0.8	97	11
			73	0.7	9 8	tt .
			74	0.7	99	•
			75	0.7	100	-
			76	0.7		
			77	0. 8		
			78	0.8		
				0.6		
			79 80	0.6		
	•		81	0.4		
			82	0.3		
			83	0.2		
			84	0.2		
			85			
			86	0,2		
				0.2		
			87	0.2		
			88	0.1		
			89	0.1		
			90	0.05		

% Recovery = $.202 \times 57.5 \times 11.0 \times 17.82 = 94.9$

Total 11.0

MATERIAL:	Fuel	011		AIRSPEED: Constan	t at 57.5	mph (50 knets)
DATE:	21 July	1962		ALTITUDE:	75	feet
FLIGHT #:	3	; Inwi	nd	SWATH WIDTH:	680	feet
Sample Lini	ß:	c		AIRCRAFT COURSE:	<u> 360</u>	degrees
TIME OF RE	Lease:	0503	heurs			
DURATION:		25	seconds			
FLOW RATE:		24	GPM			

STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
Stations	1-48 blank			49	•	74	0.7
				50	Trace	75	0. 8
				5 1	П	76	0.9
				52	11		0.8
				53	11	77 78	0.8
				54	J.01	79	0.9
				55	0.04	80	0.9
				56	0.05	81	0.9
				57	0.05	82	0.9
				57 58	0.06	83	0.05
				59	0.06	84	Trace
				60	0.08	85	-
				61	0.08	Stations	86-100
				62	0.08	blank	
				63	0.1		
				64	0.1		
				65	0.2		
				66	0.2		
				67	0.3		
				68	0.4		
				69	0.4		
				70	0.5		
				71	0.5 0.5		
				72	0.6		
				73	0.6		
				17	•••		

% Recevery = $.202 \times 57.5 \times 12.06 \times 17.82 = 104.0$

Total 12.06

MATERIAL:	Fuel 011	- 1944	AIRSPEED: Constan	t at 57.	5 mph (50 knots
DATE:	21 July 1962	2	ALTITUDE:	75	feet
FLIGHT #:	4 ; Inwir	nd	SWATH WIDTH:	560	feet
SAMPLE LINE:	<u>c</u>		AIRCRAFT COURSE:	360	degrees
TIME OF RELEAS	SE: 0505	hours			
DURATION:	20	seconds			
FLOW RATE:	24	G P M			

STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
1	Blank	26	8.0				
2	Ħ	27	0.8				
3	n	2 8	0.8				
3 4	11	29	0.8				
5	•	30	0.8				
6	Trace	31	0.8				
	II	32	0.9				
8	Ħ	33	1.0				
7 8 9 10	11	34	Trace				
10	0.02	35	-				
11	0.05	Stat1	ons 36-100	blank			
12	0.06		-				
13	0.0 8						
14	0.0 8						
15	0.08						
16	0.1						
	0.1						
17 18	0.2						
19	0.2						
20	0.2						
21	0.3						
22	0.4						
23	0.5						
24	0.6						
25	0.8						

% Recovery = $.202 \times 57.5 \times 10.47 \times 17.82 = 90.3$

Total 10.47

MATERIAL: Fuel 01	1	-	AIRSPEED: Co	nstant at 5'	7.5 mph (5	io knets)
DATE: 21 Jul	y 1962		ALTITUDE:	50		eet_
FLIGHT #: 5;	Inwind		SWATH WIDTH:	560	1	eet
SAMPLE LINE:	c		AIRCRAFT COU	rse: <u>360</u>	degi	ees
TIME OF RELEASE:	0519	hours				
DURATION:	22 5	econds				
FLOW RATE:	24	GPM				
STATION G.P.A.	STATION	G.P.A.	STATION	G. P. A.	STATION	G.P.A.
Station 1-50 blank			51	Trace	76	0.7
			52	tt	77	1.0
			53	0.05	78	1.0
			54	0.05	7 9	Trace
			55	0.08	8ó	•
			56	0.08	Stations	81-100
			57	0.08	blenk	
				0.08		
			59	0.1		
			6 0	0.1		
			61	0.2		
			62	0.2		
			63	0.2		
			64	0.2		
			65	0.3		
			66	0.3		
			67	0.4		
			68	0.4		
			69	0.6		
			70	0.8		
			71	0.7		
			72	0.9		
			73	0.8		
			74 75	0.7		
			75	0. 8		

% Recovery = .202 x 57.5 x 10.82 x 17.32 = 90.7

Total 10.82

MATERIAL	F	uel 0il	-0	AIRSPEED:	Constar	t at	57.5 mph (50 knots)
DATE:	21 Ju	ly 1962		ALTITUDE:		50	f	eet
FLIGHT #	: 6	; Inwind		SWATH WIDT	H:	540	f	eet
SAMPLE L	Ine:	C		AIRCRAFT C	OURSE:	<u>360</u>	degr	ees
TIME OF	release: _	0521	hours					
DURATION	:	22 s	econds					
FLOW RAT	K:	24	GPM					
STATION	G.P.A.	STATION	G.P.A.	STATIO	N G.P.	A.	STATION	G.P.A.
1	Trace	26	0.9		-			
2 3 4	ti	-1	1.0					
) !!	11	28	0.5					
4 5	11	29 Stations		hlank				
5	0.05	DURCTORS	704100	DTGIIV				
7	0.05							
7 8	0.05							
9	0.05							
10	0.05							
11	0.08							
12	0.0 8							
13	0.1							
14	0.1							
15	0.1							
16	0.2							
17 18	0.2 0.4							
19	0.6							
20	0.8							
21	0.8							
22	0.8							
	0.9							
24	0.8							
25	0.7							

% Recovery = $.202 \times 57.5 \times 9.31 \times 17.32 = 78.0$

Total 9.31

MATERIAL: Fuel	011		AIRSPEED: Constan	t at 57.	mph (50 knots
DATE: 21 July	1962		ALTITUDE:	100	feet
FLIGHT #: 7	; Inwi	nd	SWATH WIDTH:	560	feet
SAMPLE LINE:	В		AIRCRAFT COURSE:	315	degrees
TIME OF RELEASE:	0601	hours			
DURATION:	25	seconds			
FLOW RATE:	24	GPM			

STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
1	Blank	26	Q.5	·			
2	n	27 28	0.4				
3	Ħ	2 8	0.05				
4	11	29	Trace				
5	11	30	11				
6	ū	31	Ħ				
7	11	32	11				
8	•	33	10				
34 56 78 9	Trace	34	n				
10	n	32 33 34 35 36	11				
11	Ħ	36	11				
12	0.05	37	Ħ				
13	0.08	37 38	•				
14	0.1	Stations	39-100	blank			
15	0.3						
16	0.5						
17	0.9						
18	0.9						
19	0.6						
20	0.6						
21	0.6						
22	0.5						
23	0.6						
24	0.8						
25	0.6						

% Recevery = .202 x 57.5 x 8.68 x 20 = 78.2

Tetal 8.08

MATERIAL: F	uel 011		AIRSPEED:	Constant	at 57.5 m	ph (50 knots)
DATE: 21 July 1	962		ALTITUDE:	100		feet
FLIGHT #: 8	; Inwir	nd	SWATH WID	тн:520		feet
SAMPLE LINE:	В		AIRCRAFT	COURSE:	315	degrees
TIME OF RELEASE:	0604	hours				
DURATION:	20	seconds				
FLOW RATE:	24	GPM				

STATION G.P.A.	STATION	G.P.A.	STATION	G.P.A.	STATION	G.P.A.
Stations 1-47 blank			48			
			49	Trace		
			5 0	Ħ		
			5 1	11		
			5 2	11		
			53	0.02		
			53 54	0.05		
			55 56	0.05		
			56	0.08		
			57	0.05		
			57 58	0.05		
			5 9 6 0	0.1		
			6 0	0.1		
			61	0.2		
			62	0.3		
			63 64	0.4		
			64	0.5		
			65 66	0.8		
			66	0.7		
			67 68	0.7		
			6 8	0.6		
			6 9	0.6		
			70	0.5		
			71	0.7		
			72	0.9		
			73	0.7		
			74	0.1		
			7 5	0.05		
			76			
				77-100 b	lank	

% Recovery = $.202 \times 57.5 \times 8.25 \times 20 = 79.9$

Total 8.25

MASS MEDIAN DIAMETER

DATE: 19 J	uly 1962	SPREAD FACTOR:	6.0
FLIGHT #:	2 ; Inwind	CONVERSION FACTOR:	2.2
SAMPLE LINE:	<u> </u>	PAYER: Krome	kote (Red)
FLOW RATE:	24 GPM	SPRAY MATERIAL:	Purple

MMD Spot D-max
Spread Factor x Conv. Factor

Spherical Drop Size = Spot Dia.
Spread Factor

Sta.	Drop #	Size	Sta.	Drop 🦸	Size
21	1	5200			
21	. 2	4600*			
21	3	4500			
21	īt.	4300			
21	5	4200			
21	5 6	4100			'*
21		3900			
21	7 8	3800			
21	9	3700			
21	10	3600			
21	11	3500			
21	12	3400			
21	13	3200			
21	14	3100			
21	15	3000			
<u>a</u>				·	<u> </u>

MMD = $\frac{4600}{13.2}$ = 348 microns

Max. Sph. Dia. = $\frac{5200}{6}$ = 866 microns

Min. Sph. Dia. = $\frac{300}{6}$ = 50 microns

MASS MEDIAN DIAMETER

DATE:	26 J1	uly 1962		SPREAD FACT	OR:	6.0
FLIGHT	#:	2 ; <u>Ir</u>	wind	CONVERSION	PACTOR:	2.2
Sample	LINE:	В		PAPER:	Kromeko	te (Red)
FLOW R	ATE:	24	GPM	SPRAY MATER	IAL: 2 Fuel	011, 1 Purple

MMD Spot D-max
Spread Factor x Conv. Factor

Spherical Drop Size Spot Dia.
Spread Factor

Sta.	Drop #	Size	Sta. Drop # Size
78	1	4300	
78	2	4100	
78	3	4000	
78 78 78 78 78 78 78 78 78 78 78 78 78 7	3 4 5 6	3900	
78	5	3600*	
78	6	3500	
78	7 8	3300	
78	8	3200	
78	9	3100	
78	10	3000	
78	11	2900	
73	12	2800	
78	13	2700	
78	14	2600	
72	15	2500	

Max. Sph. Dia. = $\frac{4300}{6}$ = 716 microns

Min. Sph. Dia. = 300 = 50 microns

MASS MEDIAN DIAMETER

DATE:	20 July 1962		SPREAD FACTOR:	6.0
FLIGHT	#: 8 ;	Inwind	CONVERSION FACTOR:	2.2
Sample	LINE:	B	PAPER: Kromekot	e (Red)
FLOW R	ATE:	24 GPM	SPRAY MATERIAL: 2 Fu	el 011, 1 Purple

MMD Spot DeMAX
Spread Factor x Conv. Factor

Spherical Drop Size = Spot Dia.
Spread Factor

Sta.	Drop #	Size	Sta.	Drop #	Siza
	1	4300			
26	2	35 00*			
34	3	3300			
34	4	3200			
26 26 34 34 26 26 26 27	5 6	3100			
26	6	3000			
26	7	2900			
27	8	2700			
27	9	26 00			
27	10	25 06			
27	11	2400			

Max. Sph. Dia.
$$=$$
 $\frac{4300}{6}$ $=$ 716 microns

MASS MEDIAN DIAMETER

DATE:	21 Jul;	, 15 62		SPREAD FACTOR:	6. 0
PLICHT	#: _7	; <u>I</u> :	nwind	CONVERSION FACTOR:	2.2
Sample	LINE:	В		PAPER: Kromekot	e (Red)
FLOW R	RATE:	24	GPM	SPRAY MATERIAL:	uel 011

MMD Spot D-Max
Spread Factor x Conv. Factor

Spherical Drop Size * Spot Dia.
Spread Factor

Sta.	Drop #	Size	Sta.	Drop #	Size
17	1	4300			
17	2	3500			
17	3	3100*			
17	ъ	3000			
17	5 6	2800			
17	6	2700			
17	7	2600			
17	8	2500			
17	9	2400			
16	10	2300			
16 16	11	2200			
16	12	2160			

MMD
$$\approx \frac{3100}{13.2} \approx 235$$
 microns

Max. Sph.
$$\sim 1.8 \pm 4300 = 716$$
 microns

Min. Sph. Dia.
$$= 300 = 50$$
 microns

MASS MEDIAN DIAMETER

DATE:	21 July 1962	APREAD 1	FACTOR: 6.0	
FLIGHT #:	8; Inwind	convers	ION FACTOR: 2.2	_
SAMPLE LIN	R: B	PAPER:	Kromekote (Red)	
FLOW RATE:	24	GPM SPRAY M	ATERIAL: Fuel 011	

MMD = Spot D-max
Spread Factor x Conv. Factor

Spherical Drop Size Spot Dia.
Spread Factor

Sta.	Drcp #	Size	Sta.	Drop #	Size
72	1	3500*			
72	2	3300			
72	3	3200			
72	14	3100			
72	5	2900			
72	5 6	2700			
72 72	7	2500			
72	8	2400			
72	9	2300			
72	10	2200			

MMD = 3500 = 265 microns 13.2

Max. Sph. Dia. = $\frac{3500}{6}$ = 583 microns

Min. Sph. Dia. $= \frac{300}{6} = 50$ microns

APPENDIX C

CORRECTIONS FOR SWATH WIDTH AND PERCENT RECOVERY

CORRECTIONS FOR SWATH WIDTH AND PERCENT RECOVERY*

Swath width corrections, for determining the interval (distance in feet) between sampling stations, total swath widths, effective swath widths and percent of recovery of the spray released from the aircraft, are necessary when either the angle (greater than 150) of wind direction or spray release are not perpendicular with the sampling line.

In the illustration below with a 300 angle of wind from the perpendicular to the sampling line, it can be calculated that the corrected distance

between the stations is 17.32 ft instead of 20 ft. If the effective swath at 1.5 gpa was 200 ft the corrected swath width would be 173.2 ft.

The corrected distance between stations is important for the calculation of the percent recovery of the spray material.

The formula used for percent recovery was:

% Recovery = .202 x Airspeed x Total Deposit x Station Interval Flow Rate in GPM

In several instances the percent recovery was in excess of 100%. This can be due to estimating the deposit too high or inaccurate wind direction data, aircraft heading off of inwind and/or air turbulence obtaining over the grid some 2000 ft from the "met" station.

Accuracy in measuring wind direction and velocity at various altitudes is very important during spray fall.

^{*} Prepared by Mr. W. B. Johnson

APPENDIX D

SCHEDULE AND SUPPORT

(SAMPLE) HIDAL SPRAY TEST Project #0071W

Flight Scheduled 19 July 1962 and daily thereafter

TEST OBJECTIVES:

Deposition, swath width and particle size determinations of spray solutions to be made from in-flight releases at

various altitudes.

TEST SITES:

Field #2 for ground flow rate determinations; Range 52

South for flight tests.

EQUIPMENT:

HIDA: mounted on helicopter, HUS-1, number 145786.

SPRAY MATERIALS:

It is proposed to test three solutions to determine the flow rates of these solutions in the following order:

1. Purple

2. 1 Purple - 2 Fuel 011

3. Fuel 011

AIRSPEED:

50 knots (all flights - constant).

ALTITUDES:

100, 75, 50 feet.

(Subject to revision depending on weather and wind velocities. The highest altitude will be flown first and will be inwind flights. Crosswind flights will be made at 75 and 100 feet if winds of 8 mph or less are obtained. The higher the wind velocity, the lower will be the altitude. Decisions will be made by the controller and instructions communicated by him to the

pilot.)

APGC SUPPORT REQUIRED:

METRO:

l observer to be in place at Range 52-S at 0350 hours capable of providing temperature, dew point, wind speed, wind direction during test period at ground level; temperature, wind direction and velocity at 50, 75, 100, and 125 ft altitude. Of this information the wind direction at the altitude is most important in order to select the most appropriate sample line. For the first run this information is required at least 10 minutes in advance (0420). Subsequently all met measurements will commence at the time of spraying on each run and be completed and available to the controller as soon as possible. The time period of obtaining the met information will also be recorded, example 0335 to 0440 hours.

COMMUNICATIONS: 2 mobile air/ground communications units to be in

place at 0350, Range 52-S, or 4 Walkie Talkie radios

if available.

TRANSPORTATION

REQUIRED:

5 Jeeps w/drivers, source army personnel, will pick up personnel at quarters, provide transportation to

mess hall, test site and return.

AIRCRAFT #:

145786

LOAD INFORMATION:

2 drums of Purple, loaded at Field #2, after static

test completed on 18 July 1962.

FERRY INFORMATION:

Aircraft will return and land at Field #2 for servicing

and static testing.

DOSEMENT:

Mass median diameter particle size estimate of mass

deposit. The results to be plotted on graph paper

for analysis.

MISSION NUMBER:

3

COORDINATION SCHEDULE

FLIGHT CREW		FIELD CREW	
Wake Up	0230	Wake Up	0230
Transp Mess Hell	0245	Transp Mess Hall	0245
Breakfast	0250	Breakfast	0250
Transp to Range	0315	Transp to Range	0315
Take Off	0420	Set Up Range	0350
Live Run	0430	1st Run	0430
Land at Field #2	0700	Depart Range	0630
	. , -	Arrive Test Ops	071

LABORATORY CREW

WORK SCHEDULE: 0700 to 1700 hours or as demanded. SCHEDULE OF EVENTS: Daily

Mass Deposit Flight.

- 1. Assay cards for deposit rate.
- 2. Tabulate data.
- 3. Graphical representation of data.
- 4. Ascertain swath width.
- 5. Calculate % of recovery of spray.

Mass Median Diameter Flights.

- 1. Determine 5 largest droplets having no more than 200 mm difference.
- 2. Select largets of the group and apply formula mmd = $\frac{D-xax}{6.0 \times 2.2}$
- Determine droplet size spectrum largest to smallest droplet.
 measurable. Divide by S_f 6.0 to convert to spherical drop size.

Jeep and Truck Drivers

- 1. All vehicles to have fuel and oil checks made on the day before an early merning departure.
- 2. The 12 ton truck will be first to report to building 496 in the morning and from there it will depart to Test Ops to load, then to mess hall.
- 3. The jeeps will report to building 496 for pick up of personnel and then depart directly to mess hall.
- 4. Upon arriving at test area jeeps and crews working sample line will form to the rear of the latton truck for pick up of plates.
- On completion of days tests the 1½ ton truck will d∈part to Test Cps, to unload equipment.
- 6. Jeeps will depart test area and proceed to Test Ops.
- 7. All vehicles needing washing will depart from Test Ops, and proceed to meter pool, after vehicles are washed, personnel will return to Test Ops.

APPENDIX E

GRAPHIC PRESENTATIONS

Security	Class	ification
		·· · · · · · · · · · · · · · · · · · ·

DOCUMENT CONTROL DATA - R&D (Security classification of title, body of abstract and induxing annotation must be entered when the overall report is classified)						
1. ORIGINATING ACTIVITY (Corporate author) U.S. Air Force, U.S. Department of A		28. REPORT SECURITY CLASSIFICATION Unclassified				
and U.S. Army (Cml Corps)		2 b. GROUP Not	applicable			
3. REPORT TITLE Spray Test Calibration of the HIDAL (HUS-1 or H-34)						
4. DESCRIPTIVE NOTES (Type of raport and inclusiva dates)		-				
5. AUTHOR(S) (Lest name, first name, initial) Brown, James W.						
6. REPORT DATE	70. TOTAL NO. OF	PAGES	7b. NO. OF REFS			
8a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S	REPORT NUM	BER(S)			
ь раојест но OSD/ARPA Order 256-62, Amendment 4						
c.	9b. OTHER REPOR	T NO(S) (Any other numbers that may be assigned				
d.	<u></u>					
10. AVAILABILITY/LIMITATION NOTICES Each transmittal of this document ou must have prior approval of the Dire Research Projects Agency, Office of	ctor of Techn:	ical Info	rmation, Advanced			
11. SUPPL EMENTARY NOTES	SUPPL EMENTARY NOTES 12. SPONSORING MI ARY ACTIVITY					
Advanced Research Projects Agency, Office of the Secretary of Defense						
This report contains the result the HIDAL (Helicopter, Insecticide, unit for use on rotor wing type airc included.	Dispersal Appa	aratus, <u>L</u>	iquid) dispersal			

14. KEY WORDS		LINK A		LINK 3		LINK C	
		WΤ	ROLE	WT	ROLE	WΤ	
·							
						.7	
	:						
				į			
INSTRUCTIONS							

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, aubcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2s. R. OORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital lettera. Titlea in all casea should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, aummary, annual, or final. Give the inclusive datea when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as ahown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further disaemination of the report, other than those imposed by security classification, using standard statements such as:
 - "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and disaemination of this report by DDC is not authorized."
 - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shail request through
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPOINTS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.