1 **O**PÉRATIONS SUR LES POLYNÔMES

- Déterminer $U(\mathbb{K}[X])$. 1
- Montrer que $\sum_{k=0}^{+\infty} \frac{(-1)^k}{(k+1)!} P^{(k)}(X) X^{k+1}$ est l'unique primitive de P qui s'annule en 0 pour tout $P \in \mathbb{K}[X]$.
- On note \mathscr{A} l'ensemble des polynômes $\sum_{k=0}^{\infty} (-1)^k a_k X^k$, $(a_k)_{k\in\mathbb{N}}$ décrivant l'ensemble des suites presque nulles de réels positifs ou nuls. Montrer que A est stable par produit.
- (P) (P) 4
 - 1) Simplifier la somme : $\sum_{k=0}^{r} {a \choose k} {b \choose r-k}$ pour tous $a, b, r \in \mathbb{N}$.
 - 2) En déduire une simplification de : $\sum_{k=0}^{\infty} {n \choose k} {2n \choose k}$ pour tout $n \in \mathbb{N}$.
- - 1) Soit P un polynôme unitaire à coefficients entiers. Montrer que toute racine rationnelle de P
 - **2)** Soient $k, d \in \mathbb{N}^*$. On suppose que d n'est la puissance $k^{\mathrm{\grave{e}me}}$ d'aucun entier. Montrer qu'alors $\sqrt[k]{d}$ est irrationnel.
 - 3) Soit $k \in \mathbb{Z}$. Le polynôme $X^3 + kX + 1$ peut-il avoir une racine rationnelle?
- 6
 - 1) Déterminer, en fonction des coefficients de P, une expression simple de:
 - **2)** On suppose que *P* est non nul à coefficients entiers et que pour tout $u \in \mathbb{U}$: $|P(u)| < \sqrt{2}$. Montrer qu'alors P est un monôme.
 - 3) Que devient le résultat de la question 2) si on remplace l'inégalité stricte par une inégalité large?

2 **DIVISION EUCLIDIENNE**

- \bigcirc À quelle condition nécessaire et suffisante sur $\lambda \in \mathbb{C}$ et $\mu \in \mathbb{C}$ le polynôme $X^4 + X^3 + \lambda X^2 + \mu X + 2$ est-il divisible par $X^2 + 2$?
- \bigcirc \bigcirc Soit $a \in \mathbb{C}$. À quelle condition nécessaire et suffisante sur a le polynôme $X^4 - X + a$ est-il divisible par $X^2 - aX + 1$?

- (2) (2) Calculer le reste de la division euclidienne de X^n par $(X-1)^4$ pour tout $n \ge 4$.
- Calculer le reste de la division euclidienne : 10
 - 1) \bigcirc de $X(X+1)^2(X+2)^3$ par (X-1)(X-2).
 - 2) \bigcirc de X^{100} par $(X-1)^3(X+1)$.

 - 3) 9 9 de X^{2n} par $(X^2 + 1)^2$ pour tout $n \in \mathbb{N}$. 4) 9 9 9 de $(X + 1)^{2n+1} X^{2n+1}$ par $X^2 + X + 1$ pour tout $n \in \mathbb{N}$.
- $\bigcirc \bigcirc \bigcirc \bigcirc$ Soit $P \in \mathbb{R}[X]$. 11
 - 1) On suppose que le reste de la division euclidienne de P par X-1 vaut 3, que son reste par X-2vaut 7 et que son reste par X - 3 vaut 13. Déterminer le reste de la division euclidienne de P par (X-1)(X-2)(X-3).
 - 2) On suppose que le reste de la division euclidienne de P par $X^2 + 4$ vaut X + 1 et que son reste par X-3 vaut 14. Déterminer le reste de la division euclidienne de P par $(X^2 + 4)(X - 3)$.
- division euclidienne de k par n, montrer que X^r est le reste de la division euclidienne de X^k par $X^n - 1$.

RACINES ET MULTIPLICITÉS

- \bigcirc Pour tout $n \in \mathbb{N}^*$, quelle est la multiplicité de 1 dans $nX^{n+1} - (n+1)X^n + 1$?
- Montrer que $X^2 + X + 1$ divise $X^{311} + X^{82} + X^{15}$. 14
- Montrer que pour tout $n \in \mathbb{N}^*$: 15 $nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$ est divisible par $(X-1)^3$.
- \bigcirc Soient $P \in \mathbb{C}[X]$ et $n \in \mathbb{N}$. Montrer que si $P(X^n)$ est divisible par X - 1, alors il l'est aussi par $X^n - 1$.
- $\bigcirc \bigcirc \bigcirc$ Pour quelles valeurs de $n \in \mathbb{N}$ le polynôme $\frac{17}{X^{2n} + X^n + 1}$ est-il divisible par $X^2 + X + 1$?
- Montrer que pour tous $n \in \mathbb{N}^*$ et $\theta \in \mathbb{R}$: 18 $X^n \sin \theta - X \sin(n\theta) + \sin((n-1)\theta)$

est divisible par $X^2 - 2X \cos \theta + 1$.

 \bigcirc Pour tout $n \in \mathbb{N}$, montrer que le polynôme $\sum_{k=0}^{n} \frac{X^{k}}{k!}$ 19 n'a que des racines simples dans C.

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Soient $p \ge 2$ et $q \ge 2$ premiers entre eux. Montrer qu'alors $(X^p-1)(X^q-1)$ divise $(X-1)(X^{pq}-1)$.

Nombre maximal de racines

- Soient $P \in \mathbb{R}[X]$ non constant de degré n et $y \in \mathbb{R}$. Que peut-on dire du nombre de solutions de l'équation : y = P(x) d'inconnue $x \in \mathbb{R}$?
- (P) (P) 22 1) Pourquoi n'existe-t-il pas de polynôme $P \in \mathbb{R}[X]$ a) pour tout $x \in \mathbb{R}_+$: $P(x) = \sqrt{x}$?
 - **b)** pour tout $x \in \mathbb{R}$: $P(x) = \sin x$? **c)** pour tout $x \in [0, 2\pi]$: $P(x) = \sin x$?
 - **d)** pour tout $x \in \mathbb{R}$: $P(x) = e^x$?
 - e) pour tout $x \in \mathbb{R}$: $P(x) = \frac{1}{x^2 + 1}$? f) pour tout $x \in \mathbb{R}$: P(x) = [x]?
 - **2)** Pourquoi n'existe-t-il pas de polynôme $P \in \mathbb{C}[X]$ tel que :
 - a) pour tout $z \in \mathbb{C}$: $P(z) = \overline{z}$? **b)** pour tout $z \in \mathbb{C}$: $P(z) = |z|^2$?
- \bigcirc \bigcirc Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que pour tout $n \in \mathbb{N}$:
 - $P(n) = n^2$. 2) $P(n) = n^2 + (-1)^n$.
- Soit $P \in \mathbb{R}[X]$ de degré n.
 - 1) ③ ⑤ On suppose que *P* est unitaire et que pour tout $k \in [1, n+1]$: $P(k) = \frac{1}{k^2}$. Calculer
 - 2) $\bigcirc \bigcirc \bigcirc$ On suppose que : $P(k) = \frac{k}{k+1}$ tout $k \in [0, n]$. Calculer P(n+1).
 - tout $k \in [1, n+1]$. Calculer P(0).
- $\bigcirc \bigcirc \bigcirc \bigcirc$ Soit $P \in \mathbb{R}[X]$ un polynôme à coefficients entiers. On suppose que pour tout $n \in \mathbb{N}$: $P(n) \in \mathbb{P}$.
 - 1) Montrer que pour tout $n \in \mathbb{N}$, P(n + P(n)) est divisible par P(n).
 - 2) En déduire que : P(X + P(X)) = P(X), puis trouver une contradiction.

- 26 S Déterminer les polynômes $P \in \mathbb{R}[X]$ pour lesquels : P(0) = 1 et $P(X^2 + 1) = P(X)^2 + 1$.
- B B O On s'intéresse à l'ensemble \mathscr{A} des fonctions $x \longmapsto \sum_{k=1}^{n} \lambda_k e^{kx}$ de \mathbb{R} dans \mathbb{R} , n décrivant \mathbb{N} et $\lambda_0, \dots, \lambda_n$ décrivant \mathbb{R} .
 - 1) Montrer que \mathscr{A} est un sous-anneau de $\mathbb{R}^{\mathbb{R}}$.
 - **2)** Montrer que \mathcal{A} est intègre.
 - **3)** Déterminer $U(\mathcal{A})$.

ÉQUATIONS POLYNOMIALES

- Présoudre les équations polynomiales suivantes d'inconnue $P \in \mathbb{R}[X]$:
 - 1) P = P'P''.

 - 3) P'P'' = 18P. 4) P(X+1) = P(X). 5) P(X+1)-P(X) = X. 6) $(X^2+1)P'' = 6P$.
 - $P(X^2) = (X^2 + 1)P(X).$
 - (X + 4)P(X) = XP(X + 1).

POLYNÔMES SCINDÉS ET RELATIONS **COEFFICIENTS-RACINES**

- \bigcirc \bigcirc Soit $n \ge 2$. 1) Simplifier: $\prod_{n=1}^{n-1} \left(1 - e^{\frac{2ik\pi}{n}}\right).$
 - **2)** Montrer que pour tout $k \in [1, n-1]$:

$$\sin\frac{k\pi}{n} = \frac{1}{2} \left| 1 - e^{\frac{2ik\pi}{n}} \right|.$$

- 3) Simplifier enfin le produit : $\prod_{k=1}^{n-1} \sin \frac{k\pi}{n}$.
- 30 $\bigcirc \bigcirc \bigcirc \bigcirc$ Soient $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$. On note P le polynôme $(X+1)^n \mathrm{e}^{2\mathrm{i} n\theta}$.
 - 1) Déterminer les racines de P dans \mathbb{C} .
 - **2)** En déduire que P est scindé sur \mathbb{C} .
- Soient $p, q \in \mathbb{R}$. On pose : $P = X^3 + pX + q$. Comme P est réel de degré 3, P est scindé sur $\mathbb C$ d'après une remarque du cours. On note alors x, y et z ses trois racines complexes comptées avec multiplicité. Simplifier en fonction de p et q les quantités suivantes :

 - 1) D $x^2 + y^2 + z^2$. 2) D D $x^3 + y^3 + z^3$. Et si: $x \neq 0$, $y \neq 0$ et $z \neq 0$:

 3) D $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$. 4) D $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}$.

- $\bigcirc \bigcirc \bigcirc \bigcirc$ Soient $p, q \in \mathbb{R}$. On pose : $P = X^3 + pX + q$. Comme P est réel de degré 3, P est scindé sur \mathbb{C} d'après une remarque du cours. On note alors x, y et z ses trois racines complexes comptées avec multiplicité.
 - 1) Prouver l'égalité:

$$P'(x)P'(y)P'(z) = 4p^3 + 27q^2$$

au moyen des relations coefficients-racines.

2) À quelle condition nécessaire et suffisante sur p et q le polynôme P possède-t-il une racine multiple?

33

1) On note \bigstar le système $\begin{cases} x^2 + y^2 + z^2 = 21 \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 \end{cases}$

On pose : P = (X - x)(X - y)(X - z).

- a) Si (x, y, z) est solution d' \bigstar , déterminer P explicitement.
- **b)** Résoudre ★.
- **2)** Résoudre les systèmes suivants dans \mathbb{C}^3 :

a)
$$\begin{cases} x + y + z = 1 \\ x^2 + y^2 + z^2 = 3 \\ xyz = 2. \end{cases}$$

a)
$$\begin{cases} x + y + z - 1 \\ x^2 + y^2 + z^2 = 3 \\ xyz = 2. \end{cases}$$
b)
$$\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 0 \\ x^3 + y^3 + z^3 = 3. \end{cases}$$

- \bigcirc \bigcirc On définit une suite de polynômes $(T_n)_{n\in\mathbb{N}}$ de $\mathbb{R}[X]$ en posant : $T_0=1$, $T_1=X$ et pour tout $n\in\mathbb{N}$: $T_{n+2}=2XT_{n+1}-T_n$. Le polynôme T_n ainsi construit est appelé le n^{eme} polynôme de Tchebychev. Dans les questions suivantes, les résultats sont exigés « pour tout $n \in \mathbb{N}$ ».
 - 1) a) Déterminer le degré de T_n et calculer son coefficient dominant.
 - **b)** Calculer le coefficient constant de T_{2n} .
 - **2) a)** Montrer que pour tout $\theta \in \mathbb{R}$:

$$T_n(\cos\theta) = \cos(n\theta).$$

- **b)** Montrer que T_n est le seul polynôme de $\mathbb{R}[X]$ pour lequel la relation a) est vraie.
- c) En dérivant deux fois la relation a), montrer l'égalité : $(X^2 - 1)T_n'' + XT_n' - n^2T_n = 0.$
- 3) Désormais, $n \ge 1$.
 - a) Déterminer toutes les racines de T_n dans [-1, 1].
 - **b)** En déduire que T_n est scindé sur \mathbb{R} .
 - c) Simplifier enfin le produit : $\prod_{k=0}^{2n-1} \cos \frac{(2k+1)\pi}{4n}$.

POLYNÔMES ANNULATEURS DE MATRICES

Montrer que la matrice $\begin{pmatrix} 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 0 \end{pmatrix},$ 35

est inversible pour $n \ge 2$ et calculer son inverse en exhibant d'abord un polynôme annulateur.

(b) (c) Calculer les puissances des matrices suivantes en exhibant d'abord pour chacune un polynôme annulateur:

1)
$$\begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$$
 (degré 2)

2)
$$\begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$$
 (degré 2)

3)
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (degré 3).

POLYNÔMES DE LAGRANGE

- Soient $n \ge 2$, $x_1, \dots, x_n \in \mathbb{K}$ distincts et L_1, \dots, L_n 37 les polynômes de Lagrange associés. Simplifier $\sum_{i=1}^{n} L_i$ et
- \bigcirc \bigcirc Montrer que pour tout $n \in \mathbb{N}$, il existe des réels $\lambda_0, \ldots, \lambda_n$ tels que pour tout $P \in \mathbb{R}_n[X]$:

$$\int_0^1 P(t) dt = \sum_{k=0}^n \lambda_k P\left(\frac{k}{n}\right).$$

- \bigcirc \bigcirc On note L_1, \ldots, L_n les polynômes de Lagrange
 - 1) Pour tout $k \in [1, n]$, exprimer le coefficient dominant de L_k au moyen de factorielles.
 - 2) Exprimer de deux manières l'unique polynôme $P \in \mathbb{R}[X]$ de degré inférieur ou égal à n-1 pour lequel: $P(k) = k^{n-1}$ pour tout $k \in [1, n]$.
 - **3)** En déduire une simplification de :
- $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Déterminer l'ensemble des polynômes $P \in \mathbb{C}[X]$ pour lesquels : $P(\mathbb{R}) \subset \mathbb{R}$ (resp. $P(\mathbb{Q}) \subset \mathbb{Q}$).