

Tutoría Redes de Datos

Capítulo 2: Capa Física

Rodrigo Muñoz Lara

Outline

- Funciones de la capa física
- Modos de transmisión
 - Modos de transmisión guiados
 - Cable de par trenzado
 - Fibra Óptica
 - Cable Coaxial
 - Modos de transmisión NO guiados o inalámbricos

La capa física, la más baja del modelo OSI, se encarga de la transmisión y recepción de una secuencia no estructurada de bits sin procesar a través de un medio físico. Describe las interfaces eléctrica/óptica, mecánica y funcional al medio físico, y lleva las señales hacia el resto de las capas superiores.

Codificación de datos: modifica el modelo de señal digital que utiliza el equipo (1s y 0s) para acomodar mejor las características del medio físico y así ayudar a la sincronización entre bits y trama. Determina:

- Qué estado de la señal representa un "1" binario
- Como sabe la estación receptora cuándo empieza un "momento de bit"
- Cómo delimita la estación receptora una trama

Lo anterior se resumen en la creación de diferentes códigos de línea

Simplex: La transmisión simplex (sx) o unidireccional es aquella que ocurre en una dirección solamente, deshabilitando al receptor de responder al transmisor.

Normalmente la transmisión simplex no se utiliza donde se requiere interacción humano-máquina. Ejemplos de transmisión simplex son:

 La radiodifusión (broadcast) de TV y radio.

<u>Half-duplex</u>: permite transmitir en ambas direcciones; sin embargo, la transmisión puede ocurrir solamente en una dirección a la vez.

 Un ejemplo típico de half-duplex es el radio de banda civil (CB) donde el operador puede transmitir o recibir, no pero puede realizar ambas funciones simultaneamente por el mismo canal.

<u>Full-duplex</u>: permite transmitir en ambas dirección, pero simultáneamente por el mismo canal.

 Ejemplos de este tipo abundan en el terreno de las telecomunicaciones, el caso más típico es la telefonía, donde el transmisor y el receptor se comunican simultaneamente utilizando el mismo canal, pero usando dos frecuencias.

Medios de Transmisión Guiados Cable par trenzado

Cable de par trenzado

- El par trenzado es un tipo de cableado de cobre que se utiliza para las comunicaciones telefónicas y la mayoría de las redes Ethernet.
- Un par de hilos forma un circuito que transmite datos. El par está trenzado para proporcionar protección contra crosstalk, que es el ruido generado por pares de hilos adyacentes en el cable.
- Los pares de hilos de cobre están envueltos en un aislamiento de plástico con codificación de color y trenzados entre sí. Un revestimiento exterior protege los paquetes de pares trenzados.

Cable de par trenzado

- Cuando circula electricidad por un hilo de cobre, se crea un campo magnético alrededor del hilo.
- Un circuito tiene dos hilos y, en un circuito, los dos hilos tienen campos magnéticos opuestos. Cuando los dos hilos del circuito se encuentran uno al lado del otro, los campos magnéticos se cancelan mutuamente.
- Esto se denomina efecto de cancelación. Sin el efecto de cancelación, las comunicaciones de la red se ralentizan debido a la interferencia que originan los campos magnéticos.

Cable de par trenzado (Twisted pair cable)

Tipos de cables de par trenzado

Cable de par trenzado

Category	Maximum Speed	Max. Length	Frequency	SHIELDING	Application
CAT 1	Up to 1Mbps(Carry only Voice)		1MHz	Unshielded	Old telephone cabling
CAT 2	Up to 4Mbps		4MHz	Unshielded	Token Ring Network
CAT 3	Up to 10Mbps	100m	16MHz	Unshielded	Token Ring & 10BASE-T Network
CAT 4	Up to 16Mbps	100m	20MHz	Unshielded	Token Ring Network
CAT 5	Up to 100Mbps	100m	100MHz	Unshielded	Ethernet, Fast ethernet and Token Ring
CAT 5e	Up to 1Gbps	100m	100MHz	Unshielded or Shielded	Ethernet, Fast ethernet & Gigabit ethernet
CAT 6	Up to 10Gbps	100m	250MHz	Unshielded or Shielded	Ethernet, Fast ethernet, Gigabit ethernet & 10G Ethernet(37 - 55 meter)
CAT 6a	Up to 10Gbps	100m	500MHz	Shielded	Ethernet, Fast ethernet, Gigabit ethernet & 10G Ethernet(37 - 55 meter)
CAT 7	Up to 10Gbps	100m	600MHz	Shielded	Ethernet, Fast ethernet, Gigabit ethernet & 10G Ethernet(100 meter)
CAT 8	Up to 40Gbps	100m	2000MHz	Shielded	Ethernet, Fast ethernet, Gigabit ethernet & 25G-40G Ethernet(30 meter)

- ANSI/TIA-568 es un set de estándares desarrollado por la Telecommunications Industry Association referido al cableado comercial para productos y servicios de telecomunicaciones.
- Lo más distintivo de esta norma, es la asignación de pines/pares para cable de par trenzado equilibrado de 100 Ω y 8 conductores. Dicha asignación se denomina T568A y T568B.

Medios de Transmisión Guiados Fibra Óptica

Un sistema de comunicación basado en fibra óptica está compuesto por 3 partes:

- El emisor o transmisor (LASER o LED)
- La fibra óptica (monomodo o multimodo)
- El detector o receptor

Tipos de emisores

- LED (Light Emitting Diode)
- LASER (Light Amplification by Stimulated Emission of Radiation)

Comparación de emisores de fibra óptica LED y láser

Característica	LED	Láser semiconductor		
Velocidad máxima	Baja (622 Mb/s)	Alta (10 Gb/s)		
Fibra	Multimodo	Multimodo y Monomodo		
Distancia	Hasta 2 Km	Hasta 160 Km		
Vida media	Larga	Corta		
Sensibilidad a la temperatura	Pequeña	Elevada		
Costo	Bajo	Alto		

Reflexión interna total

 Es el fenómeno que se produce cuando un rayo de luz atraviesa un medio de índice de refracción n2 menor que el índice de refracción n1 en el que este se encuentra, se refracta de tal modo que no es capaz de atravesar la superficie entre ambos medios reflejándose completamente

https://phet.colorado.edu/sims/html/bending-light/latest/bending-light_en.html

Reflexión interna total

Sección lateral de una fibra óptica. Todos los rayos incidentes entre R1 y R3 (dentro del ángulo máximo de aceptación) se propagan por la fibra óptica

- Una fibra óptica es un conductor de cristal o plástico que transmite información mediante el uso de luz.
- Debido a que está hecho de cristal, el cable de fibra óptica no se ve afectado por la interferencia electromagnética ni por la interferencia de radiofrecuencia.

 Todas las señales se transforman en pulsos de luz para ingresar al cable y se vuelven a transformar en señales eléctricas cuando salen de él.

Tipos de fibra óptica:

Multimodo: Cable que tiene un núcleo más grueso que el cable monomodo. Es más fácil de realizar, puede usar fuentes de luz (LED) más simples y funciona bien en distancias de hasta unos pocos kilómetros.

Monomodo: Cable que tiene un núcleo muy delgado. Es más difícil de realizar, usa láser como fuente de luz y puede transmitir señales a docenas de kilómetros con facilidad.

Tipos de fibra óptica:

	MM 62,5/125 OM1 Long. de onda		MM 50/125 OM2 Long. de onda		MM 50/125 OM3 Long. de onda		MM 50/125 OM4 Long. de onda		SM tipo OS2 Long. de onda	
Protocolo										
	850 nm	1300 nm	850 nm	1300 nm	850 nm	1300 nm	850 nm	1300 nm	1300 nm	1550 nm
Fast Ethernet 100 Mbps	300 m.	2000 m.	300 m.	2000 m.	300 m.	2000 m.	300 m.	2000 m.	2000 m.	N/A
Gigabit Ethernet 1Gbps	330 m.	550 m.	550 m.	550 m.	900 m.	550 m.	1040 m.	550 m.	5000 m.	N/A
10 Gigabit Ethernet	35 m.	300 m. (*)	86 m.	300 m. (*)	300 m.	300 m. (*)	550 m.	300 m. (*)	10 Km.	40 Km.

Alcances máximos (*) Despliegues realizados con WWDM y 10GBASE-LX4

Tipos de conectores

- SC: Este conector es el que con mayor frecuencia veremos, ya que se utiliza para la transmisión de datos en conexiones de fibra monomodo. También existe una versión SC-Duplex que básicamente son dos SC unidos.
- FC: este es otro de los más utilizados y tienen un aspecto similar a un conector de antena coaxial.
- ST: también es similar al anterior con un elemento central de unos 2,5 mm el cual está más expuesto.

Tipos de conectores

- LC: en este caso el conector es cuadrado, aunque se mantiene el elemento central de igual configuración que los dos anteriores.
- FDDI: es un conector de fibra dúplex, es decir, conecta dos cables en lugar de uno.
- MT-RJ: También es un conector dúplex y no se suele utilizar para fibras monomodo.

Medios de Transmisión NO Guiados o Inalámbricos

¿Cómo funciona una onda electromagnética?

Hay cuatro rangos de frecuencias de interés en tecnologías de transmisión inalámbrica

- Ondas de Radio: 300 KHz → 30 GHz
- Radiación de microondas: 300 MHz → 3 THz (1 THz = 1000 GHz)
- Radiación Infraroja: $10^{-7}m \rightarrow 10^{-3}m$ (300 GHz \rightarrow 3000 THz)
- Ondas de luz visible: 400nm → 750nm

Para medios inalámbricos, la transmisión y recepción se logran por medio del uso de antenas

Ondas de Radio

Utilizan antenas omnidireccionales sin línea vista entre Tx y Rx

Atraviesa estructuras permitiendo comunicación indoor/outdoor

(b) Sky wave propagation (2 to 30 MHz)

Microondas

- Viajan en línea recta
- Energía concentrada en un haz (antenas directivas)
- Requiere que Tx y Rx tengan visión directa (Line of Sight -LOS)
- La curvatura de la tierra afecta.
 Se necesita el uso de torres

