Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

a SB 228

Sugarcane Variety Tests in Florida 1982-83 Harvest Season

ACKNOWLEDGMENT

The authors are grateful to the Florida Sugar Cane League, Inc., for making available Wayne Jarriel to assist in planting, sampling, harvesting, and analyzing the field experiments described in this report.

This publication is available from the U.S. Sugarcane Field Station, Star Route, Box 8, Canal Point, Fla. 33438.

Sugarcane Variety Tests in Florida. 1982-83 Harvest Season. November 1983.

Published by Agricultural Research Service (Southern Region), U.S. Department of Agriculture, P.O. Box 53326, New Orleans, La. 70153.

CONTENTS

		Page
Abst	ract	rage
	oduction	1
	procedures	2
Resu	lts and discussion	
11000	Plant cane	3
	First-ratoon cane	4
	Second-ration cane	
Cumm	ary	4
Dofo	rancoe	4
Kere	rences	4
	TADIEC	
	TABLES	
1.	Parentage, variety correction factors, and ratings for	
	smut and rust susceptibility of CP 63-588, CP 70-1133,	
	and 27 new sugarcane varieties	,
2.		6
2.	Yields of cane, in metric tons per hectare, from plant	
	cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck	-
2	and on Pompano fine sand	7
3.	Indicated yields of 96° sugar, in kilograms per metric	
	ton of cane, from preharvest samples of plant cane on	
	Lauderhill, Pahokee, Terra Ceia, and Torry muck and on	
	Pompano fine sand	8
4.	Indicated yields of 96° sugar, in kilograms per hec-	
	tare, from preharvest samples of plant cane on Lauder-	
	hill, Pahokee, Terra Ceia, and Torry muck and on Pom-	
	pano fine sand	9
5.	Indicated yields of 96° sugar, in kilograms per metric	
	ton of cane, from plant cane on Lauderhill, Pahokee,	
	Terra Ceia, and Torry muck and on Pompano fine sand	10
6.	Indicated yields of 96° sugar, in kilograms per hec-	
	tare, from plant cane on Lauderhill, Pahokee, Terra	
	Ceia, and Torry muck and on Pompano fine sand	11
7.	Yields of cane, in metric tons per hectare, from first-	
	ratoon cane on Lauderhill, Pahokee, Terra Ceia, and	
	Torry muck and on Pompano fine sand	12
8.	Indicated yields of 96° sugar, in kilograms per metric	
	ton of cane, from preharvest samples of first-ratoon	
	cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck	
	and on Pompano fine sand	13
9.	Indicated yields of 96° sugar, in kilograms per hec-	-
, .	tare, from preharvest samples of first-ration cane on	
	Lauderhill, Pahokee, Terra Ceia, and Torry muck and on	
	Pompano fine sand	14
10.	Indicated yields of 96° sugar, in kilograms per metric	14
10.	ton of cane, from first-ration cane on Lauderhill,	
	Pahokee, Terra Ceia, and Torry muck and on Pompano fine	
	panokee, lerra cera, and forry muck and on rompano fine	15

11.	Indicated yields of 96° sugar, in kilograms per hectare, from first-ratoon cane on Lauderhill, Pahokee,	
12.	Terra Ceia, and Torry muck and on Pompano fine sand Yields of cane, in metric tons per hectare, from second-ratoon cane on Lauderhill, Pahokee, Terra Ceia,	16
13.	and Torry muck and on Pompano fine sand	17
	ton of cane, from preharvest samples of second-ratoon cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck	
14.	and on Pompano fine sand	18
	tare, from preharvest samples of second-ratoon cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on	
15	Pompano fine sand	19
15.	Indicated yields of 96° sugar, in kilograms per metric ton of cane, from second-ratoon cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine	
	sand	20
16.		
	Terra Ceia, and Torry muck and on Pompano fine sand	21

SUGARCANE VARIETY TESTS IN FLORIDA

1982-83 Harvest Season

By B. Glaz, M. S. Kang, J. D. Miller, P. Y. P. Tai, J. L. Dean, 4 and O. Sosa, Jr. 5

ABSTRACT

Twenty-seven new Canal Point (CP) varieties of sugarcane (10 in plant cane, 11 in first-ratoon cane, and 6 in second-ratoon cane) were grown in replicated experiments and harvested at 8 locations representing 5 soil series (Terra Ceia muck, Pahokee muck, Lauderhill muck, Torry muck, and Pompano fine sand). The cane and sugar yields of these varieties, interspecific hybrids of Saccharum spp., were compared with those of CP 70-1133 in the plant-cane experiments and CP 63-588 in the ratoon experiments. Each variety was also rated for its reaction to sugarcane smut, Ustilago scitaminea Sydow, in separate inoculation tests and by natural infection and for its reaction to sugarcane rust, Puccinia melanocephala H. Syd. & P. Syd., by natural infection. In the plant-cane experiments, CP 78-1247 had the best overall results, with high yields of both cane and sucrose. Other promising varieties from the plant-cane experiments were CP 78-1156, CP 78-1628, and CP 78-2114. In the firstratoon experiments, CP 77-1776 did very well in the early-maturity analyses and had high sucrose levels throughout the season. None of the varieties was superior to the reference variety from the second-ratoon experiments. Index terms: Florida, Lauderhill muck, Pahokee muck, Pompano fine sand, Puccinia melanocephala, H. Syd. & P. Syd., Saccharum spp., sugarcane rust, sugarcane smut, sugarcane varieties, sugarcane yields, sugar yields, Terra Ceia muck, Torry muck, Ustilago scitaminea Sydow.

INTRODUCTION

Varietal selection at precommercial stages is one of the major components involved in the successful production of sugarcane, interspecific hybrids of

Saccharum spp. Although production of sugar per unit area is a very important characteristic, it is not the only yield factor upon which sugarcane is evaluated. In addition, analyses are made on the quantity of cane needed to produce a

¹Agronomist, U.S. Sugarcane Field Station, Agricultural Research Service, U.S. Department of Agriculture, Star Route, Box 8, Canal Point, Fla. 33438.

²Research geneticist, Agricultural Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Belle Glade 33430.

³Research geneticist, U.S. Sugarcane Field Station.

⁴Research plant pathologist, U.S. Sugarcane Field Station.

⁵Research entomologist, U.S. Sugarcane Field Station.

particular sugar yield and on the relative millability of the cane. The time of year and the amount of time during the year that a variety yields its highest amount of sugar per unit area can be very important, since sugarcane harvest seasons are usually long. Sugarcane is also characteristically grown as plant and ratoon crops, thus varieties are evaluated accordingly.

Varieties that have the desired agronomic characteristics must also be productive in the presence of major disease, insect, and weed pests. The determination of pest resistance can be a complicated process that takes several years to complete. The selection team must be careful not to discard varieties that could be grown commercially without significantly increasing pest populations or causing pest-related yield losses, but it also must be careful to discard varieties that are too susceptible to pests to be grown commercially.

In recent years in many sugarcane producing regions worldwide, there have been major pest attacks on widely grown commercial varieties. It is now well accepted that sugarcane growing regions must have adequate reserves of varieties so that major varieties can be quickly replaced if they become suddenly susceptible to an established or new pest. This lesson was reemphasized this year in Florida, where a number of previously resistant varieties became susceptible to sugarcane rust, Puccinia melanocephala H. Syd. & P. Syd.

Each year at Canal Point, approximately 100,000 seedlings are evaluated from crosses made with a diverse collection (perhaps not sufficiently diverse) of sugarcane varieties. The varieties reported on herein are those that are receiving their last 3 years of evaluation by the staff at Canal Point. Each variety that successfully passes the first year of this phase will undergo an additional 3 to 5 years of testing by local industry personnel before a decision is made as to whether or not it will become a commercial variety.

Characteristics of varieties that may be valuable for breeding with other varieties are identified throughout the selection process. Varieties with specific characteristics are often requested by sugarcane breeders worldwide. From September 1982 to August 1983,

Canal Point varieties were sent to Australia, Colombia, Fiji, France, Israel, Liberia, Morocco, People's Republic of China, Peru, Philippines, Senegal, Sudan, Venezuela, and Zimbabwe. In addition, Canal Point varieties were sent to Clewiston, Gainesville, Jay, Ona, and Tallahassee in Florida and also to Arizona, Hawaii, Maryland, Texas, and Washington.

TEST PROCEDURES

Twenty-three replicated test plantings of 27 new Canal Point (CP) varieties (10 in plant cane, 11 in first-ratoon cane, and 6 in second-ratoon cane) and the reference varieties, CP 70-1133 and CP 63-588, were harvested at 8 growers' farms. Both CP 70-1133 and CP 63-588 were planted in plant cane, but CP 70-1133 was used as the reference variety; however, CP 70-1133 was not planted in the ratoon experiments. There were plant-cane, first-ratoon, and secondratoon experiments at each location. second-ratoon experiment at New Farm, Inc., was not harvested. The experiments on Lauderhill muck included six experiments on A. Duda and Sons' farm east of Belle Glade, and at A. F. Saunders, Inc., south of Clewiston; the plant-cane experiment on the properties of Gulf and Western Food Products Co. at Okeelanta; and the first-ratoon experiment at New Farm, Inc., east of Canal Point. experiments on Pahokee muck, which is similar to Lauderhill and Terra Ceia muck but deeper than the former and not as deep as the latter (Snyder et al. 1978), included all three experiments at South Florida Industries near 20 Mile Bend in Palm Beach County; the first-ratoon experiment at Wedgworth Farms, Inc., east of Belle Glade; and the second-ratoon experiments at Okeelanta and New Farm. The experiments on Terra Ceia muck included the plant-cane experiments at New Farm and Wedgworth Farms, the firstratoon experiment at Okeelanta, and the second-ratoon experiment at Wedgworth Farms. Three experiments at the Beardsley Farm near Lake Harbor were on Torry muck, and three experiments at the Lykes Brothers' Farm near Lakeport in Glades County were on Pompano fine sand.

Selection of each variety for planting in the replicated yield experiments was based on 5 years of data. Beginning with the results of the plant-cane experiments presented herein, we replaced CP 63-588 with CP 70-1133 as the reference variety because CP 70-1133 has become the most widely grown commercial variety in Florida (Glaz 1982). In each of the 24 experiments, varieties were planted with 2 lines of seed cane per furrow in plots of 0.0065 hectare in a randomized complete-block design with 4 replications. Each plot was 10.7 meters long and 6.1 meters wide. The distance between rows was 1.5 meters, and a distance of 1.5 meters separated the end of each plot row and the beginning of the next plot row. The margins of the experiments were buffered to reduce mechanical damage and border effects, but individual fourrow plots were not buffered.

Sugarcane management practices, such as fertilizing, cultivating, controlling of pests, burning, loading, and hauling, were the same for each experimental plot as for the commercial field in which the plot was located.

To evaluate early-season sugar production, 10 stalks per plot were randomly sampled from the unburned cane in 2 of the 4 replications at each location between October 18 and October 27, 1982. These samples were milled, the crusher juice was analyzed for Brix and sucrose, and the indicated yields of sugar in kilograms per metric ton of cane were determined. To calculate the yield of sugar per hectare from these preharvest data, we assumed that the preharvest yield of cane per hectare was equal to the actual yield of cane per hectare obtained at harvest.

All experiments were harvested between November 24, 1982, and April 4, 1983. After each plot had been burned, all cane was cut and piled by hand and then weighed with a tractor-mounted weighing device. Fifteen stalks were randomly selected from each plot and transported to the Agricultural Research Service's Laboratory at Canal Point for weighing, milling, and crusher-juice analysis.

All values for yields of sugar per metric ton of cane and sugar per hectare in this report are indicated (theoretical) yields calculated in accordance with a simplification of the Winter-Carp-Geerligs formula (Arceneaux 1935); an explanation of the formula was given previously (Rice and Hebert 1972).

Although the indicated sugar yields reported herein may not be obtained by all sugar factories, they are valid for comparing varieties having different milling qualities. Varietal correction factors were used in all the theoretical sugar calculations.

Statistical analyses were done according to procedures explained recently (McIntosh 1983). F-ratios were chosen according to a mixed model with treatments (varieties) fixed and locations random. The source of variation that corresponded to the error term for the effect being tested was used to calculate the least significant difference (LSD). LSD was used regardless of significance of F-ratios in all analyses. Significant differences were at the 10% probability level. LSD values at the 5% probability level were included in the tables for readers who prefer to use that level.

RESULTS AND DISCUSSION

The parentage, variety correction factor, and reactions to smut and rust for each variety included in these tests are listed in table 1. Tables 2-6, 7-11, and 12-16 contain the results of the plant-cane, first-ratoon, and second-ratoon experiments, respectively.

Plant Cane

CP 70-1133 yielded significantly more metric tons of cane per hectare (TC/H) than any other variety (table 2). However, CP 78-1247, because of its moderately high yield of TC/H and excellent yield of sugar (kilograms) per metric ton of cane (KS/T), yielded more kilograms of sugar per hectare (KS/H) than CP 70-1133 and significantly more KS/H than any variety except CP 70-1133 (tables 2, 5, and 6). In KS/H yields from the preharvest samples, CP 78-1247 was also significantly higher than any variety except CP 70-1133 (table 4).

CP 78-2114, CP 78-1628, and CP 78-1156 had KS/H yields not significantly less than that of CP 70-1133 and not significantly different from each other (table 6). CP 78-2114 had a significantly higher TC/H yield than CP 78-1156; otherwise, there were no significant differences in TC/H among these varieties. All of the above experimental varieties yielded significantly less KS/T than CP 78-1247. However, CP 78-1628 and CP 78-1156 had significantly higher KS/T yields than CP 70-1133 and CP 78-2114, which were not significantly different from each other (table 5).

All of the promising plant-cane varieties were labeled as resistant to smut and rust. However, there were low levels of smut in plots of CP 78-1247 and CP 78-1628.

First-Ratoon Cane

CP 77-1414, CP 77-1055, and CP 77-1008 yielded significantly more TC/H than CP 63-588 (table 7). Of the above new varieties, only CP 77-1414 and CP 77-1055 yielded significantly more KS/H than CP 63-588 (table 11). However, all three of the above new varieties have characteristics that preclude their use commercially. The variety correction factor of CP 77-1414 is too low, the smut susceptibility of CP 77-1055 is too high, and the rust susceptibility of CP 77-1008 is too high (table 1). In addition, the low KS/T yields of CP 77-1414 and CP 77-1008 detract from their desirability (table 10).

CP 77-1776 had significantly higher KS/T yields than all other varieties in both the preharvest and harvest experiments (tables 8 and 10). In preharvest and harvest KS/H yields, CP 77-1776 was not significantly different from CP 63-588 (tables 9 and 11). However, CP 77-1776 had these respectable KS/H yield levels with a TC/H yield that was significantly lower than that of CP 63-588 (table 2). Based on current data, the smut rating of CP 77-1776 was changed from intermediate in 1982 (Glaz et al. 1982) to resistant in 1983 (table 1).

Second-Ratoon Cane

CP 76-1306 and CP 75-1322 had significantly higher TC/H yields than CP 63-588 (table 12). However, neither of the above two varieties nor any other variety had higher KS/H yields than CP 63-588 (table 16). CP 76-1519, which had relatively high yields in the previous 2 years (Glaz et al. 1981, 1982), declined in relative performance in 1983. In addition, CP 76-1519 became infected with rust in 1983, and although labeled as

intermediate (table 1), it was very close to susceptible.

SUMMARY

Results from the plant-cane experiments revealed one outstanding and three promising varieties. CP 78-1247 yielded more KS/H than any variety except CP 70-1133. It was also one of the varieties in the highest category for KS/T yield. CP 78-2114, CP 78-1628, and CP 78-1156 had KS/H yields not significantly less than that of CP 70-1133. CP 78-1628 had relatively balanced levels of TC/H and KS/T. The highest yield component for CP 78-2114 was TC/H, and the strongest component for CP 78-1156 was KS/T.

Combining the data of the last 2 years (1982-83) indicated one promising variety from the first-ratoon experiments, CP 77-1776. The outstanding characteristic of CP 77-1776 was its KS/T, both at preharvest and harvest. It yielded only 51 KS/H less than the 2-year total of CP 63-588 with 18 TC/H less than the 2-year total TC/H of CP 63-588.

Combining the data of the last 3 years (1981-83) for varieties in the second-ration experiments indicated no promising varieties for commercial purposes.

REFERENCES

Arceneaux, G.

1935. A simplified method of making theoretical sugar yield calculations in accordance with Winter-Carp-Geerligs formula.

Int. Sugar J. 37: 264-265.

Glaz, B.

1982. Florida's 1982 sugar cane variety census. Sugar Azucar 77(12): 30-31.

Glaz, B.; Dean, J. L.; Kang, M. S.; Miller, J. D.; Sosa, O., Jr.; and Tai, P. Y. P.

1981. Sugarcane variety tests in Florida. 1980-81 Harvest season. 18 pp. U.S. Agricultural Research Service, New Orleans.

Glaz, B.; Dean, J. L.; Kang, M. S.; Miller, J. D.; Tai, P. Y. P.; and Sosa, O., Jr. 1982. Sugarcane variety tests in Florida. 1981-82 Harvest season. 21 pp. U.S. Agricultural Research Service, New Orleans.

McIntosh, M. S.

1983. Analysis of combined experiments. Agron. J. 75: 153-155.

Rice, E. R., and Hebert, L. P. 1972. Sugarcane variety tests in Florida during the 1971-72 season. U.S. Agric. Res.
Serv. (Rep.) ARS-S-2, 14 pp.
Snyder, G. H.; Burdine, H. W.; Crockett,
J. R.; Gascho, G. J.; Harrison, D. S.;
Kidder, G.; Mishoe, J. W.; Myhre, D.
L.; Pate, F. M.; and Shih, S. F.
1978. Water table management for
organic soil conservation and
crop production in the Florida
Everglades. Univ. Fla. Inst.
Food Agric. Sci. Tech. Bull.
801, 22 pp.

Table 1.--Parentage, variety correction factors, and ratings for smut and rust susceptibility of CP 63-588, CP 70-1133, and 27 new sugarcane varieties 1

Variety	Parentage ²	VCF	Rat	ing ³
			Smut	Rust
CP 63-588	CL 54-191 X CP 57-120	1.000	R	I
	67 P 6 CP 56-63		R	R
CP 75-1322	CP 69-1059 X CP 57-614		R	R
	CP 63-588 X CP 68-1026		R	R
	CP 68-1154 X CP 68-1022.		R	R
	CP 68-1154 X CP 68-1022.		I	R
	CL 54-378 X CP 63-588		R	S
	CP 65-357 X CP 68-1026		R	I
	CP 65-357 X CL 54-1910		R	S
	CP 68-1154 X CP 68-1022.		I	R
	CP 68-1154 X CP 68-1022.		S	I
	CP 63-588 X CP 56-63		R	R
	CP 65-357 X CP 68-1022		I	R
	CP 70-1133 X CP 69-1059.		I	R
	CP 68-1067 X CP 69-1056		R	R
	CP 68-1067 X CP 69-1056.		R	R
	CP 69-1062 X CP 63-306		S	S
	CP 68-1154 X CP 63-588		S	R
CP 77-1776 ⁵	CP 68-1067 X CP 68-1022.		R	R
CP 78-1038 ⁴	73 P 1 CP 63-588		I	R
CP 78-1140 ⁴	73 P 2 CP 69-1052		R	R
CP 78-1156	CP 70-1512 X CP 70-1133.		R	R
	CP 68-1067 X CP 57-614		R	R
	CP 68-1067 X CP 57-614		R	R
	CP 68-1067 X CP 68-1022.		I	R
	CP 68-1067 X CP 68-1022.		R	R
	CP 65-357 X CP 68-1026		R	R
CP 78-1979	CP 70-1512 X CP 68-1026.		I	S
CP 78-2114 ⁵	Unknown		R	R

¹Variety correction factors (VCF) were used to calculate the theoretical yield of 96° sugar per metric ton of cane according to Arceneaux's simplification of the Winter-Carp-Geerligs formula.

²CL 54-191, CL 54-378, and CL 54-1910 are varieties developed by the United States

Sugar Corporation, Clewiston, Fla.

⁵Seed cane of this variety is currently being increased by the Florida Sugar Cane

League, Inc., for potential release.

³The following general ratings were used to describe variety susceptibility to smut and rust: R, resistant enough for commercial production. S, too susceptible for commercial production. I, intermediate; the available data are not sufficiently persuasive to determine susceptibility.

⁴67 P 6 was the 6th polycross made in the 1967 crossing season. In this polycross, the female parent (CP 56-63) was exposed to pollen from a number of male varieties; therefore, the male parent of CP 70-1133 is unknown. Explanations for CP 78-1038 and CP 78-1140 are similar.

Table 2. -- Yields of cane, in metric tons per hectare, from plant cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand

	Lauderhill muck	nuck	Pahokee muck, South Florida	Terra Ceia muck	ia muck	Torry	Pompano fine sand	all farms
Duda 2/11/83	Okeelanta 3 2/24/83	Saunders 3/22/83	Industries 3/5/83	New Farm, Inc.1 2/16/83	Wedgworth 3/11/83	Beardsley 1/29/83	Lykes Bros.	
70-1133	120.62	156.53	155.89	167.18	139.51	201.88	104.33	150.31
	126.13	•	141.40	170.16	120.10	183.21	104.90	141.96
78-1247138	113.49		142.34	147.57	136.95	193.84	110.01	140.14
78-1140145	119.39		135.91	139.53	140.53	177.77	84.66	137.45
78-1979141		141.99	114.01	156.33	119.45	202.70	103.28	135.91
		140.67	1125.54	159.46	123.09	171.25	60.66	135.08
	117.32	•	153.46	141.13	127.64	181.20	98.06	134.
/8-1628139.2	129.82	130.19	132.13	147.74	117.56	175.27	102.91	133.93
	110.27	•	135.26	144.00	140.96	189.37	79.74	132.50
	108.14	118.03	133.91	142.75	105.17	173.13	93.51	128.44
	•		106.15	108.61	104.54	159.38	93.23	117,19
CP /8-1038126.07 CP 65-357	112.80	2118.15	114.22	115.84	79.32	163.33	82.36	113.66
78-1680					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			• •
Mean ³ 141.53 LSD:	117.07	135.24	132.67	145.03	121.24	181.03	97.58	133.70
	19.70	9.82	14.74	12.81	17.56	14.22	14.73	6
j0% level 8.98		8.13	12.24	10.60	14.58	11.81	12.23	0
cv ⁴ 5.30	11.65	4.95	7 70	00 9	10.0%	7 7	10.7.6	7 2

laverage is of 3, not 4 replications. 2Average is of 2, not 4 replications. 3LSD for location means=3.44 metric tons per hectare at 10% probability level. $^4\mathrm{CV}$ Coefficient of variation.

Table 3.--Indicated yields of 96° sugar, in kilograms per metric ton of cane, from preharvest samples of plant cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand

Terra Ceia muck Torry Pompano muck, fine sand, Beardsley Lykes Bros. Inc.1 10/21/82 10/27/82 10/20/82 10/20/82 10/20/82 10/20/82 10/20/82 10/20/82 10/20/82 10/20/82 10/20/82 10/20/82 10/20/82 10/20/82 10/20/82 10/20		Average	yield by soil	series, farm, a	and sampling date	date		Average yield,
Beardsley Lykes Bros. New Farm, Wedgworth	Lauderhill muck Pah	Pah	Pahokee muck, South Florida	Terra Ce	eia muck	Torry muck,	Pompano fine sand,	farms
114.3 106.0 105.6 131.8 11 103.1 103.4 115.6 122.2 11 112.0 103.4 109.8 117.0 10 105.1 103.5 77.4 124.1 10 104.5 91.7 93.0 120.0 10 91.3 90.3 79.3 128.4 10 107.7 83.8 99.9 115.5 9 100.2 77.9 99.7 116.2 9 94.7 91.8 73.2 120.0 9 94.7 91.8 81.9 113.0 8 89.7 71.8 88.4 107.2 8 82.9 84.4 88.4 107.2 8 100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 12.9 88.95 9.97 17.23 6.05 6.05	Okeelanta Saunders 10/10/25/82 10/27/82		Industries 10/20/82	New Farm, Inc.1 10/20/82	Wedgworth 10/21/82	Beardsley 10/18/82	Lykes Bros.	
103.1 103.4 115.6 122.2 11 112.0 103.4 109.8 117.0 10 105.1 103.5 77.4 124.1 10 104.5 91.7 93.0 120.0 10 91.3 90.3 79.3 128.4 10 107.7 83.8 99.9 115.5 9 95.0 86.2 80.2 120.0 9 94.7 91.8 73.2 113.7 8 89.7 71.8 81.9 113.0 8 82.9 84.4 88.4 107.2 8 100.0 91.2 92.0 119.1 9 16.1 16.2 28.5 12.9 88.95 9.97 17.23 6.05		119	119.0	114.3	106.0	105.6	131.8	113.3
112.0 103.4 109.8 117.0 10 105.1 103.5 77.4 124.1 10 104.5 91.7 93.0 120.0 10 91.3 90.3 79.3 128.4 10 107.7 83.8 99.9 115.5 9 100.2 77.9 99.7 116.2 9 95.0 86.2 80.2 120.0 9 94.7 91.8 73.2 113.7 9 89.7 71.8 81.9 113.0 8 82.9 84.4 88.4 107.2 8 100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 16.1 16.2 28.5 12.9 8.95 9.97 17.23 6.05	2100.5	6	93.4	103.1	103.4	115.6	122.2	110.3
105.1 103.5 77.4 124.1 10 104.5 91.7 93.0 120.0 10 91.3 90.3 79.3 128.4 10 107.7 83.8 99.9 115.5 9 100.2 77.9 99.7 116.2 9 95.0 86.2 80.2 120.0 9 94.7 91.8 73.2 113.7 9 89.7 71.8 81.9 113.0 8 82.9 84.4 88.4 107.2 8 100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 16.1 16.2 28.5 12.9 8.95 9.97 17.23 6.05	115.4 10	10	7.0	112.0	103.4	109.8	117.0	109.2
104.5 91.7 93.0 120.0 10 91.3 90.3 79.3 128.4 10 107.7 83.8 99.9 115.5 9 100.2 77.9 99.9 116.2 9 95.0 86.2 80.2 120.0 9 94.7 91.8 73.2 113.7 9 89.7 71.8 81.9 113.0 8 82.9 84.4 88.4 107.2 8 100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 16.1 16.2 28.5 12.9 8.95 9.97 17.23 6.05	•	114	.5	105.1	103.5	77.4	124.1	106.3
91.3 90.3 79.3 128.4 10 107.7 83.8 99.9 115.5 100.2 77.9 99.7 116.2 95.0 86.2 80.2 120.0 94.7 91.8 73.2 113.7 82.9 84.4 88.4 107.2 8 100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 16.1 16.2 28.5 12.9 8 8.95 9.97 17.23 6.05	•	97	.2	104.5	91.7	93.0	120.0	100.5
107.7 83.8 99.9 115.5 9 100.2 77.9 99.7 116.2 9 95.0 86.2 80.2 120.0 9 94.7 91.8 73.2 113.7 9 89.7 71.8 81.9 113.0 8 82.9 84.4 88.4 107.2 8 100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 16.1 16.2 28.5 12.9 8 8.95 9.97 17.23 6.05	97.9	101.	7	91.3	90.3	79.3	128.4	100.1
100.2 77.9 99.7 116.2 9 95.0 86.2 80.2 120.0 9 94.7 91.8 73.2 113.7 9 89.7 71.8 81.9 113.0 8 82.9 84.4 88.4 107.2 8 100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 16.1 16.2 28.5 12.9 8 8.95 9.97 17.23 6.05	99.0 102.2 92.	92.	6	107.7	83.8	6.66	115.5	0.66
95.0 86.2 80.2 120.0 9 94.7 91.8 73.2 113.7 9 89.7 71.8 81.9 113.0 8 82.9 84.4 88.4 107.2 8 100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 16.1 16.2 28.5 12.9 8.95 9.97 17.23 6.05	91.8	95.	1	100.2	77.9	7.66	116.2	96.5
94.7 91.8 73.2 113.7 99 89.7 71.8 81.9 113.0 8 82.9 84.4 88.4 107.2 8 100.0 91.2 92.0 119.1 9 16.1 16.2 28.5 12.9 8.95 9.97 17.23 6.05		. 68		95.0	86.2	80.2	120.0	95.7
89.7 71.8 81.9 113.0 8 82.9 84.4 88.4 107.2 8 88.4 107.2 8 100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 16.05	6.96	86.	1	7.46	91.8	73.2	113.7	92.3
82.9 84.4 88.4 107.2 8 100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 16.1 16.2 28.5 12.9 8.95 9.97 17.23 6.05	•	87.		89.7	71.8	81.9	113.0	88.8
100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 16.1 16.2 28.5 12.9 8.95 9.97 17.23 6.05	95.9 81.8 96.7	7.96		82.9	84.4	88.4	107.2	87.4
100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 16.1 16.2 28.5 12.9 8.95 9.97 17.23 6.05	92.4	•						
100.0 91.2 92.0 119.1 9 19.7 19.8 34.9 15.8 16.1 16.2 28.5 12.9 8.95 9.97 17.23 6.05								
19.7 19.8 34.9 15.8 16.1 16.2 28.5 12.9 8.95 9.97 17.23 6.05	107.9 97.8 98.3	98.3		100.0	91.2	92.0	119.1	99.5
16.1 16.2 28.5 12.9 3 8.95 9.97 17.23 6.05	3.1	20.2		19.7	19.8	34.9	15.8	8.5
8.95 9.97 17.23 6.05	10.7 16	16	2	16.1	16.2	28.5	12.9	7.1
	6	6	.33	8.95	9.97	17.23	6.05	95.9

lData are for 1, not 2 replications.

2Datum is for 1, not 2 replications.

3LSD for location means=4.3 kg per metric ton of cane at 10% probability level.

4CV=Coefficient of variation.

Table 4.--Indicated yields of 96° sugar, in kilograms per hectare, from preharvest samples of plant cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand

									yteru, all
	La	Lauderhill muck	ıck	Pahokee muck, South Florida	Terra Ceia muck	eia muck	Torry muck.	Pompano fine sand.	farms
	Duda 10/21/82	Okeelanta 10/25/82	Saunders 10/27/82	Industries 10/20/82	New Farm, Inc. 10/20/82	Wedgworth 10/21/82		Lykes Bros. 10/27/82	
CP 78-1247	13,670	14,574			16,894	13,643	21.553	13.616	15.684
70-1133	16,156	13,781	15,126	15,237	214,842	12,859	15,994	14,254	14,777
78-1610	13,594	11,976	•		216,117	13,098	13,758	11,201	13,773
78-1599	2	•			12,549	11,080	16,936	12,597	13,193
78-1140	13,643	11,824	•		14,486	10,687	17,448	11,019	13,182
78-1628	12,707	13,279	~		15,034	9,925	17,047	11,507	13,144
/ 00	.11,409	13,542	16,099		15,557	10,387	13,564	12,630	12,993
00	10,566	12,694			14,379	11,838	16,937	9,655	12,689
78	11,190	3,763			14,721	8,583	15,210	11,996	12,376
200	14,636	13,087	•	10,534	11,640	7,366	18,166	9,316	12,078
63-588.	11,587		11,573	11,403	15,094	2	12,786	10,895	11,577
CP 78-1979	8,445	9,957	•	11,847	11,664	10,736	17,347	10,893	11,570
78-1680			14,391		* * * * * * * * * * * * * * * * * * *				• • •
Mean ³	12,549	12,723	13,412	13,170	14,360	10,813	16,395	11,632	13,084
5% level		3,338	2,776	2,258	2,986	3,093	6.943	3,116	1.557
,10% level.	٠	2,715	2,224	1,842	2,340	2,524	5,666	2,542	1.304
PV2		11 78	0 75	7 10	000	000		1	

lyields are based on early sucrose analysis, assuming that early cane yields are equal to actual yields at

harvest. $^2_{\rm Datum}$ is for 1, not 2 replications. $^2_{\rm LSD}$ for location means=632 kg per hectare at 10% probability level. $^4_{\rm CV}=$ Coefficient of variation

Table 5. -- Indicated yields of 96° sugar, in kilograms per metric ton of cane, from plant cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand

e

	1	Lauderhill muck	ıuck	Pahokee muck, South Florida	Terra Ceia muck	ia muck	Torry muck.	Pompano fine sand.	farms
	Duda 2/11/83	Okeelanta 2/24/83	Saunders 3/22/83	Industries 3/5/83	New Farm, Inc. 2/16/83	Wedgworth 3/11/83	Beardsley 1/29/83	Lykes Bros. 11/29/82	
CP 78-1599	.128.8		•	126.2	121.7	115.0	115.8	142.0	124.9
CP 78-1247	127.5	118.2	•	123.5	124.1	113.6	125.0	134.4	123.8
CP 78-1038120.5	.120.5	116.2	116.0	116.1	122.7	113.8	116.8	136.3	120.0
CP 78-1628	.111.4	114.2	122.4	129.0	116.1	105.7	114.4	143.4	119.6
CP 78-1156	.112.8	118.5	•	126.1	110.9	109.8	119.3	130.7	118.3
CP 78-1263118	.118.5	112.2	114.4	1122.2	113.1	113.4	101.9	129.5	115.5
CP 63-588112.4	.112.4	120.3	7.66	121.6	109.4	121.1	108.4	130.1	115.4
CP 78-2114107.3	.107.3	106.8		117.4	114.6	9.96	112.0	128.2	111.9
CP 78-1140105.1	.105.1	113.6	105.6	111.6	9.601	102.2	110.9	128.1	110.8
CP 70-1133108.1	.108.1	104.4	107.2	115.9	105.9	103.6	108.8	131.8	110.7
CP 78-1610114.7	.114.7	108.9	•	107.7	110.0	93.4	110.1	129.9	110.7
CP 78-1979109.2 111.8 CP 65-357 CP 78-1680	.109.2	• •	96.8 .103.8	105.1	106.6	6.66	104.1	119.5	106.6
Mean ²	114.7	113.2	107.5	118.5	113.7	107.4	112.3	132.0	115.2
5% level	•	6.6	12.1	8.6	12.0	12.0	12.8	10.0	6.4
10% level.	6.9	8.2	10.0	8.1	10.0	10.0	10.6	8.3	4.1
503	50 5	90 9	7 70	5 73	8 95	7 75	7 00	7 2	7 7

lAverage is of 3, not 4 replications. 2LSD for location means=4.1 kg per metric ton of cane at 10% probability level. 3CV=Coefficient of variation.

Table 6.--Indicated yields of 96° sugar, in kilograms per hectare, from plant cane on Lauderhill, Pahokee, Terra

9

,									yield,
	I	Lauderhill muck	nuck	Pahokee muck, South Florida	Terra Ceia muck	ia muck	Torry muck,	Pompano fine sand,	farms
	Duda 2/11/83	Okeelanta 2/24/83	Saunders 3/22/83	Industries 3/5/83	New Farm, Inc. 1 2/16/83	Wedgworth 3/11/83	Beardsley 1/29/83	Lykes Bros. 11/29/82	
CP 78-1247	17,691	13,441		17,574	18,268	15,533	24,231	14,777	17,326
CP 70-1133	17,355	12,558	16,783	18,012	17,668	14,489	21,979	13,736	16,537
CP 78-2114	169,91	13,472	•	16,649	20,061	11,649	20,543	13,451	15,920
	15,524	14,842	15,933	17,046	17,110	12,441	20,026	14,711	15,917
CP 78-1156	14,757	13,068	•	17,013	16,140	15,163	22,551	10,433	15,56
CP 78-1263	17,451	13,184	16,116	115,341	17,763	13,962	17,480	12,825	15,44
CP 78-1140	15,336	13,549	14,981	15,133	15,327	14,366	19,705	12,717	15,13
CP 78-1610	14,631	12,765	•	16,521	15,304	11,866	19,966	12,734	14,80
CP 63-588	17,606	12,996	11,802	16,287	16,353	12,731	18,869	12,090	14,79
CP 78-1599	16,616	•	•	13,417	13,401	12,017	18,500	13,219	14,57
CP 78-1979	15,490	12,584	13,728	12,052	16,365	11,906	21,128	12,347	14,388
CP 78-1038	15,182	13,156	2 13,728	13,247	14,298	8,919	19,105	11,185	13,57
	•		13,711		•	•	•	•	•
CP 78-1680	•	· · · · · · · · · · · · · · · · · · ·	13,602				•		•
e 6	16,194	13,238	14,532	15,699	16,505	12,920	20,340	12,852	15,295
LSD:	Ţ		270 6		.00	210	000	1 750	1 02
5% level.	-	2,368	1,946	2,145	2,091	1,915	2,993	1,752	1,2/3
jo% level	1 1,639	1,968	1,685	1,781	1,730	1,590	2,490	1,455	1,062
CV ⁴	•	12.39	9.13	6.47	7.46	10.27	10.20	9.45	9.80

lAverage is of 3, not 4 replications.

2 Average is of 2, not 4 replications.

3 LSD for location means=599 kg per hectare at 10% probability level.

⁴cV=Coefficient of variation.

Table 7 .-- Yields of cane, in metric tons per hectare, from first-ratoon cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand

e

Variety			Average y	Average yield by soil	l series, farm, and harvest date	and harvest	date		Average yield,
	Laude	Lauderhill	muck	Paho	Pahokee muck	Terra Ceia muck,	Torry muck,	Pompano fine sand,	all
New Fa Inc. 1/6/83	Farm,	Duda 1/29/83	Saunders 3/12/83	Wedgworth 12/10/82	South Florida Industries 3/4/83	Okeelanta 4/5/83	Beardsley 1/27/83	Lykes Bros. 11/30/82	
CP 77-1414140.7	5	151.23	110.19	147.48	141.91	106.26	145.31	99.16	130.29
CP 77-1055129.71		132.70	104.42	148.40	133.23	112.77	155.54	72.04	123.60
CP 77-1008124.46		118.51	99.71	146.84	138.27	89.48	139.24	70.66	115.90
CP 77-1125117.74		119.68	73.08	142.69	111.96	64.71	152.42	85.74	108.50
CP 77-1148108.02		133.11	74.68	142.28	126.63	89.28	118.58	60.36	108.47
CP 77-1720109.04		127.02	105.56	121.85	122.65	106.99	122.43	51.67	108.40
CP 77-1446103.57		121.49	103.31	145.82	117.40	82.43	101.84	80.74	107.08
CP 63-588 88.40		112.76	87.92	118.71	103,33	79.71	164.56	72.51	103.49
CP 77-1404 95.74		108.92	74.00	107.96	115.32	82.01	165.15	58.57	100.96
CP 77-1776 86.04		102.15	81.65	116.05	00.96	54.47	112.94	64.83	89.26
CP 77-1049105.21		51.50	83.47	110.13	94.76	51.11	133.04	64.51	87.34
CP 77-1400 53.45		93.41	83.44	112.04	77.81	55.98	103.59	62.10	80.23
Mean ¹ 105.18		114.37	91.35	130.02	115.36	81.27	134.56	70.24	105.29
LSD: 5% level 23.15		13.57	14.77	14.22	18.13	17.47	20.59	12.92	14.10
		11.26	12.26	11.81	15.06	14.50	17.09	10.73	11.75
CV ² 15.26	26	8.22	11.21	7.58	10.90	14.90	10.61	12.76	11.32

 $^{1}\mathrm{LSD}$ for location means=6.11 metric tons per hectare at 10% probability level. $^{2}\mathrm{CV}\text{=}\mathrm{Coefficient}$ of variation.

Table 8.--Indicated yields of 96° sugar, in kilograms per metric ton of cane, from preharvest samples of first-ration cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand

	Lau	Lauderhill muck	ck	Pahokee muck	muck	Terra Ceia	Torry	Pompano	farms
	New Farm, Inc. 10/20/82	Duda 10/21/82	Saunders 10/27/82	South Florida Industries 10/20/82	Wedgworth 10/21/82	Okeelanta 10/25/82	Beardsley 10/18/82	Lykes Bros.	
CP 77-1776119.1	.119.1	126.3	125.2	120.0	117.7	132.9	112.6	138.7	124.1
CP 77-1049	. 93.6	117.7	120.1	112.3	100.7	131.2	104.9	129.6	113.8
	.109.1	111.4	107.6	122.3	91.5	130.7	109.6	124.4	113.3
CP 77-1446106.4	.106.4	98.7	107.8	119.5	110.5	127.2		120.2	112.2
CP 77-1720102.3	.102.3	114.0	128.9	118.3	96.1	107.2	101.7	129.2	112.2
	6*68 *	120.0	120.0	104.8	93.6	120.9		133.5	110.0
	.106.6	113.0	117.1	72.1	102.4	126.9	102.1	123.3	107.9
	91.8	104.4	108.4	103.2	102.0	6.06	114.5	112.9	103.5
CP 77-1404	. 91.8	110.4	108.6	79.5	92.3	111.7		124.6	102.6
	.100.7	97.2	91.9	84.5	91.9	113.6	100.5	115.2	101.6
	.101.0	90.1		0.06	86.5	104.9	0.86	124.1	99.7
CP 77-1008	. 92.2	96.3	97.6	97.1	82.9	106.1	91.3	109.3	9.96
Mean ¹ 100.4	.100.4	108.3	112.8	102.0	97.3	117.0	103.5	123.8	108.1
5% level	. 22.5	10.9	13.3	17.3	15.4	9.5	14.7	11.4	6.0
10% level.	18.4	8.9	10.8	14.1	12.6	7.7	12.0	9.3	6.4
CV ²	14.42	97.9	7.57	10.91	10,19	5.21	01.0	5 91	80

 $^{1}\!\text{LSD}$ for location means=4.1 kg per metric ton of cane at 10% probability level. $^{2}\!\text{CV=Coefficient}$ of variation.

Table 9.--Indicated yields of 96° sugar, in kilograms per hectare, from preharvest samples of first-ratoon cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand

									73
	Lau	Lauderhill muck	ck	Pahokee muck	muck	Terra Ceia muck,	Torry muck,	Pompano fine sand,	farms
	New Farm, Inc. 10/20/82	Duda 10/21/82	Saunders 10/27/82	South Florida Industries 10/20/82	Wedgworth 10/21/82	Okeelanta 10/25/82	Beardsley 10/18/82	Lykes Bros. 10/27/82	
CP 77-141414,576	.14,576	16,833	11,390	14,697	14,789	9,902	17,610	10,666	13,808
CP 77-105510,180	.10,180	14,872	12,835	14,758	12,980	15,278	14,397	7,556	12,857
CP 77-144611,986	.11,986	12,114	10,794	14,101	15,801	10,371	12,388	620,6	12,079
CP 77-172011,826	.11,826	14,520	14,498	13,828	11,617	11,441	12,482	5,516	11,966
CP 77-114811,908	.11,908	14,509	9,517	14,533	12,715	10,316	14,197	6,351	11,756
CP 77-177611,311	.11,311	12,282	10,093	11,191	13,329	8,275	13,287	7,840	10,951
CP 77-100811,615	.11,615	10,314	9,296	14,056	11,515	9,345	12,314	7,482	10,742
CP 77-1125	12,524	10,755	7,158	9,832	12,665	7,095	15,402	10,350	10,723
CP 77-1404	. 9,457	12,402	7,731	9,176	10,018	9,542	16,761	5,428	10,064
CP 63-588	. 9,883	10,542	9,012	8,160	10,506	8,225	15,985	7,526	086,6
CP 77-1049	.11,114	6,544	9,115	10,518	10,743	5,394	13,643	7,581	9,331
сь 77-1400	6,169	9,916	9,250	4,455	11,450	7,583	9,623	7,925	8,296
Mean ² 11,046	.11,046	12,133	10,057	11,609	12,344	9,397	14,007	7,775	10,404
5% level	3,984	2,679	3,425	2,812	4,407	3,238	4,895	2,887	1,871
10% level.	1. 3,251	2,186	2,795	2,294	3,596	2,643	3,995	2,356	1,563
CV ³	16.39	10.03	15.47	11,00	16 22	15 66	15 99	16 97	17, 80

lyields are based on early sucrose analysis, assuming that early cane yields are equal to actual yields at

harvest. ²LSD for location means=475 kg per hectare at 10% probability level. ³CV=Coefficient of variation.

Table 10.--Indicated yields of 96° sugar, in kilograms per metric ton of cane, from first-ratoon cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand

CP 77-1776130.1 CP 77-1720120.5 CP 77-1049119.4 CP 77-1125107.0 CP 77-1148112.0 CP 77-1148112.0 CP 77-1148112.0	Lauderhill muck							y reray
77-1776 77-1720 77-1049 77-1125 77-1148		uck	Paho	Pahokee muck	Terra Ceia muck,	Torry muck,	Pompano fine sand,	farms
77-1776130 77-1720120 77-1049119 77-1125107 77-1055117 77-1148112	Duda 1/29/83	Saunders 3/12/83	Wedgworth 12/10/82	South Florida Industries 3/4/83	Okeelanta 4/5/83	Beardsley 1/27/83	Lykes Bros. 11/30/82	
77-1720120 77-1049119 77-1125107 77-1055112 77-1148112 63-588	135.7	138.4	137.2	131.0	131.5	122.6	150.5	134.6
77-1049119 77-1125107 77-1055112 77-14041148	128.7	130.5	116.7	125.0	122.0	111.6	134.0	123.6
77-1125107 77-1055112 77-1404114 77-1148112	117.6	141.4	122.0	132.1	115.1	7.86	134.0	122.5
	135.6	131.6	111.2	115.6	114.1	116.9	130.9	120.4
	125.0	128.4	122.1	118.4	111.1	108.5	134.1	120.0
	121.4	129.5	110.5	119.8	112.5	119.5	131.0	119.8
	124.8	119.1	115.4	113.8	115.8	102.3	131.7	116.9
	114.2	122.6	107.4	121.5	112.4	104.7	134.7	115.9
CP 77-1446111.9	122.5	116.0	123.6	118.2	98.2	105.9	125.3	115.2
CP 77-1400104.8	113.0	125.6	110.2	102.5	115.7	98.3	130.5	112.6
CP 77-1414109.9	110.5	110.2	113.8	107.4	97.5	109.6	124.8	110.5
CP 77-1008 98.3	109.1	106.3	105.5	108.7	94.2	8.46	121.8	104.9
Mean ¹ 112.6	121.5	125.0	116.3	117.8	111.7	107.8	131.9	118.1
LSD:								
	12.7	8.3	8.3	12.2	15.7	11.9	0.6	5.4
10% level 6.3	10.5	6.9	6.9	10.2	13.0	6.6	7.5	9.4
CV ² 4.71	7.24	4.62	4.98	7.21	9.73	7.66	4.75	67.9

 $^{1}\!\text{LSD}$ for location means=3.8 kg per metric ton of cane at 10% probability level. $^{2}\!\text{CV=Coefficient}$ of variation.

Table 11.--Indicated yields of 96° sugar, in kilograms per hectare, from first-ratoon cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand

			Avelage y	age yield by soil	serres	larm, and narvest	חשרה		Average yield,
	Lauc	Lauderhill muck	ıck	Paho	Pahokee muck	Terra Ceia muck,	Torry muck,	Pompano fine sand,	all
	New Farm, Inc.	Duda 1/29/83	Saunders 3/12/83	Wedgworth 12/10/82	South Florida Industries 3/4/83	Okeelanta 4/5/83	Beardsley 1/27/83	Lykes Bros. 11/30/82	
CP 77-1055	14,610	16,564	13,419	18,108	15,779	12,528	16,819	9,646	14,684
CP 77-1414	15,453	16,740	12,147	16,749	15,257	10,350	15,938	12,378	14,377
CP 77-172013,28	13,283	16,357	13,727	14,246	15,439	13,033	13,693	6,903	13,335
CP 77-112512,535	12,535	16,216	9,601	15,845	12,945	7,395	17,836	11,221	12,949
CP 77-114812,098	12,098	16,564	10,627	16,417	14,466	10,461	12,265	7,956	12,607
CP 77-1446	11,541	14,898	11,972	17,986	13,871	8,334	10,827	10,133	12,445
CP 77-1008	12,234	12,928	10,618	15,537	15,085	8,437	13,143	8,615	12,075
CP 77-140410,965	10,965	13,229	009,6	11,937	13,819	9,178	19,810	7,663	12,025
CP 77-177611,227	11,227	13,837	11,328	15,903	12,643	7,135	15,938	9,762	11,961
CP 63-588 9,657	9,657	12,895	10,760	12,762	12,514	8,939	13,850	9,750	11,822
CP 77-104912,503	12,503	6,102	11,812	13,439	13,162	5,874	13,105	8,564	10,570
CP 77-1400	5,610	10,571	10,418	12,349	0	6,459	10,223	8,130	8,979
Mean 1	.11,810	13,908	11,336	15,106	13,588	9,010	14,567	9,227	12,319
5% level	2,730	2,011	1,853	1,841	2,861	2,578	3,109	1,813	1,844
10% level	2,267	1,670	1,539	1,529	2,376	2,141	2,582	1,506	1,543
cv2	16.02	10 02	11 33	8 45	14.60	19.83	17, 70	13 67	13 51

Average 88.10 112.84 104.52 97.29 Table 12 .-- Yields of cane, in metric tons per hectare, from second-ratoon cane on Lauderhill, Pahokee, Terra Ceia, yield, 101.71 8.32 10.02 18.23 113.45 100.81 farms all Lykes Bros. fine sand, 12/28/82 Pompano 21.36 22.48 73.25 90.00 86.48 84.55 51.19 77.50 25.88 74.41 82.63 Beardsley farm, and harvest date 1/27/83 140.29 111.79 133.89 10.95 9.04 20.76 128.68 148.12 118.17 128.81 Torry muck, Terra Ceia Wedgworth and Torry muck and on Pompano fine sand 3/10/83 107.72 103.59 9.75 105.61 09.96 100.04 93.86 11.41 105.29 muck, 129.61 series, South Florida Industries Pahokee muck 85.40 3/3/83 117.04 102.71 107.18 100.57 95.35 102.44 12.52 10.33 8.22 108.84 Average yield by soil Okeelanta 11/24/82 114.08 96.14 109.28 84.81 10.76 8.88 7.98 81.94 77.30 90.80 Saunders 3/21/83 20.85 17.21 17.03 79.93 79.30 75.04 82.39 Lauderhill muck 95.62 82.91 101.11 12/3/82 10.17 7.00135.26 5% level..... 12.32106.94119.23102.43 Mean¹.....118.42 Duda 10% level..... 75-1411. 76-1053. 76-1050. 75-1322. 63-588.. 76-1519. 76-1306. LSD: Variety 888888

¹LSD for location means=4.42 metric tons per hectare at 10% probability level. 2CV=Coefficient of variation.

Table 13.--Indicated yields of 96° sugar, in kilograms per metric ton of cane, from preharvest samples of second-ratoon cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand

Variety			Average yi	Average yield by soil series, farm, and sampling date	ies, farm,	and sampling	date		Average yield,
	Lauderhi	Lauderhill muck		Pahokee muck		Terra Ceia muck,	Torry muck,	Pompano fine sand,	all
	Duda 10/21/82	Saunders 10/27/82	New Farm, Inc. 10/20/82	South Florida Industries 10/20/82	Okeelanta 10/25/82	Wedgworth 10/21/82	Beardsley 10/18/82	Lykes Bros. 10/27/82	
CP 76-1050115.3	115.3	103.1	118.3	101.9	102.6	119.5	99.1	117.2	109.6
CP 76-1053111.6	111.6	112.1	112.3	106.9	100.9	107.5	95.0	123.5	108.7
	107.6	91.8	101.3	6.99	107.7	112.7	106.7	130.3	107.2
	87.5	106.1	109.1	102.3	107.0	106.5	103.1	125.1	105.8
75-1411	79.1	4.96	107.3	104.8	108.3	118.1	6.86	119.4	104.0
	101.3	105.2	86.7	7.96	102.8	98.3	106.6	126.9	103.0
CP 76-1306 93.7	93.7	6°96	101.4	101.7	100.1	100.6	92.8	109.6	99.5
Mean ¹ 99.5	5.99.5	101.5	105.2	102.0	104.2	109.0	100.3	121.7	105.4
5% level. 27.2 $10%$ level. 21.6 $10%$ level. 21.6 $10%$	27.2 1. 21.6 11.17	33.0 26.2 13.28	36.8 29.2 14.70	31.7 25.2 14.75	24.3 19.3 9.54	9.1 7.3 3.43	17.4 13.8 11.20	22.4 17.8 8.89	20.8 17.3 10.68

 $^{1}\!\text{LSD}$ for location means=4.3 kg per metric ton of cane at 10% probability level. $^{2}\!\text{CV=Coefficient}$ of variation.

Table 14.--Indicated yields of 96° sugar, in kilograms per hectare, from preharvest samples of second-ratoon cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand

								yield,
	Lauderhi	Lauderhill muck	Pahokee muck	muck	Terra Ceia muck,	Torry muck,	Pompano fine sand,	farms
	Duda 10/21/82	Saunders 10/27/82	South Florida Industries 10/20/82	Okeelanta 10/25/82	Wedgworth 10/21/82	Beardsley 10/18/82	Lykes Bros. 10/27/82	
CP 75-1322	.13,701	10,608	11,953	9,304	10,435	15,191	10,890	11,726
CP 76-130612,922	.12,922	10,198	11,792	11,368	13,508	11,761	7,438	11,284
CP 63-588	12,729	8,773	10,526	9,631	10,813	14,977	11,012	11,209
CP 76-151910,940	.10,940	8,486	10,827	12,123	10,691	11,744	10,222	10,719
CP 75-1411	. 9,122	7,110	9,281	8,750	11,607	12,886	7,555	9,473
CP 76-105311,135	.11,135	7,982	10,013	7,709	11,096	10,353	6,627	9,273
CP 76-1050	10,778	5,299	8,715	7,626	10,666	11,589	9,357	9,147
Mean ²	11,618	8,351	10,444	9,502	11,259	12,643	9,014	10,404
5% level	. 4,912	2,219	3,214	2,969	3,330	4,016	8,654	1,380
10% level	. 3,900	1,762	2,552	2,358	2,644	3,189	6,872	1,149
CV ³	. 17.28	10.86	12.58	12.77	12.09	12.98	39.23	18.20

lyields are based on early sucrose analysis, assuming that early cane yields are equal to actual yields at harvest. $^2\mathrm{LSD}$ for location means=1,059 kg per hectare at 10% probability level. $^3\mathrm{CV}\text{=Coefficient}$ of variation.

Table 15.--Indicated yields of 96° sugar, in kilograms per metric ton of cane, from second-ratoon cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand

	Lauderhi	Lauderhill muck	Paho	Pahokee muck	Terra Ceia muck,	Torry muck,	Pompano fine sand,	farms
	Duda 12/3/82	Saunders 3/21/83	Okeelanta 11/24/82	South Florida Industries 3/3/83	Wedgworth 3/10/83	Beardsley 1/27/83	Lykes Bros. 12/28/82	
7 711	117 5	125 9	113.7	127.8	123.9	125.2	131.0	123.6
	2110	121.6	104.8	124.1	119.0	123.3	121.0	117.8
	0.011.	122.3	109.1	116.5	117.2	122.3	123.1	116.8
CF /6-1319100.3	107 1	103 7	105.9	116.2	111.5	115.7	127.4	112.5
	00 2	114 6	0.901	107.1	106.5	114.4	118.4	109.5
		100 0	107 3	111.3	104.2	107.6	119.0	108.0
CP 75-1411		106.8	93.7	110.3	111.8	103.3	131.3	107.6
Mean ¹	104.8	115.0	105.8	116.2	113.4	116.0	124.4	113.7
LSD:	0	200	o o	8.2	12.7	7.9	10.0	5.0
10% level	. 0.0	15.5	8.1	6.8	10.5	6.5	8.2	4.2
10% Level	5.67	11.01	6.26	4.75	7.57	4.56	5.40	6.19

 $^{\rm LSD}$ for location means=3.6 kg per metric ton of cane at 10% probability level. $^{\rm 2CV=Coefficient}$ of variation.

* U.S. GOVERNMENT PRINTING OFFICE: 1983-769-037:6

Pahokee,	Average yield,	all farms	-	12,546	12,314	12,145	12,122	10,411	10,360	9,864	11,395	1,153	960
on Lauderhill,		Pompano fine sand,	Lykes Bros. 12/28/82	11,020	10,624	10,685	8,721	9,842	6,66	6,408	9,613	3,390	2,798
ratoon cane and	vest date	Torry muck,	Beardsley 1/27/83	17,576	16,961	14,420	13,853	13,840	14,881	12,941	14,925	1,604	1,324
from second- mpano fine s	arm, and har	Terra Ceia muck,	Wedgworth 3/10/83	12,000	11,483	12,396	13,517	11,178	11,192	11,533	11,900	2,148	1,773
gar, in kilograms per hectare, from second-rat Ceia, and Torry muck and on Pompano fine sand	Average yield by soil series, farm, and harvest date	Pahokee muck	South Florida Industries 3/3/83	13,702	12,536	11,980	12,073	11,189	10,601	11,084	11,880	1,934	1,596
, in kilogratia, and Torr	erage yield b	Paho	Okeelanta 11/24/82	9,653	10,191	11,947	12,247	7,634	7,526	8,185	9,626	1,339	1,105
of 96° sugar Terra Ce	Ave	Lauderhill muck	Saunders 3/21/83	9,862	10,972	6,749	11,099	8,904	7,607	7,901	9,442	2,868	2,367
Table 16Indicated yields of 96° sugar, in kilograms per hectare, from second-ratoon cane on Lauderhill, Pahokee, Terra Ceia, and Torry muck and on Pompano fine sand	Variety	Lauderhi	Duda 12/3/82	CP 63-58814,008	CP 75-132213,432	CP 76-151913,838	CP 76-130613,342	CP 75-141110,288	CP 76-105010,718	CP 76-105310,995	Mean ¹ 12,375	5% level 1,452	10% level 1,199 CV ² 7.90

U. S. DEPARTMENT OF AGRICULTURE
AGRICULTURAL RESEARCH SERVICE
SOUTHERN REGION
P. O. BOX 83326
NEW ORLEANS, LOUISIANA 70153

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

POSTAGE AND FEES PAID U. S. DEPARTMENT OF AGRICULTURE AGR 101

