Definition

• Combination of [[Logic Gates]] and [[Sequential Circuits and Registers]] with a specific layout on a chip

Circuit Description Options

- boolean functions using [[Boolean Algebra]]
- truth tables
- · circuit netlist
 - connected logic gates
- · hardware description language
 - code that describes physical hardware
 - default
 - e.g. SystemVerilog
- examples

Application Specific Integrated Circuit ASIC

- chip that physically realizes a given circuit
 - Basic steps to building your ASIC (very high level view):
 - Select your favorite semiconductor manufacturing plant (see https://en.wikipedia.org/wiki/List of semiconductor fabrication plants)
 - Receive the standard cell library from the plant ("the list of logic gates that the plant can build")
 - Map our circuit to the available cells (called "synthesis")
 - Place and route the cells
 - Let the plant physically build your circuit

Field Programmable Gate Arrays FPGA

- existing hardware configured to correspond to a given circuit
- · tradeoff between hardware and software
 - more efficient but more expensive than software
 - less efficient but less expensive than hardware

Basic concept (high level view):

- FPGA vendors build huge arrays of LUTs (Look-Up-Tables) and switches (highly regular repeated physical structure)
- You can map your design to this hardware (the gates are mapped to LUTs and the wiring is mapped to the switches connecting the LUTs)
- An FPGA bitfile stores how a given FPGA needs to be configured to realize your circuit (format is vendor-specific)
- Load the bitfile into the FPGA and the FPGA realizes your circuit

Logic Synthesis

process of mapping abstract circuit description to circuit netlist

Addition of [[Binary Numbers]]

- adder (sum of two bits)
 - three inputs
 - * two digits to add
 - * carry over
 - two outputs
 - * digit of sum
 - * carry over
- n-bit addition
 - cascading these adders

