!pip install boruta

Requirement already satisfied: boruta in /usr/local/lib/python3.11/dist-package Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/python3.11/dist-package Requirement already satisfied: scikit-learn>=0.17.1 in /usr/local/lib/python3.11/dist-package Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.11/dist-package Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.11/dist-package Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.

from boruta import BorutaPy
import random
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import roc_auc_score, accuracy_score, confusion_matrix, prec
from sklearn.utils import resample
from sklearn.preprocessing import StandardScaler
from copy import deepcopy
from sklearn.feature_selection import RFECV
from sklearn.model_selection import StratifiedKFold

df = pd.read_excel('/content/Параметры_для_многомерной_регрессии_Добычные_парамет

df

 \rightarrow

	Скважины	Q ж, м3/ сут	Qн, т/ сут	Qв, м3/сут	06в, %	ГФ, м3/ т	Кпрод	Кратность	кр
N₂									
1	202_1_h	84.69	69.5960	0.25407	0.3	12.156	27.000000	31.631	
2	202_1_zbs	75.00	43.1250	2.25000	3.0	229.350	2.000000	32.640	
3	237_1_h	229.86	179.2793	11.49300	5.0	194.000	35.978370	29.693	
4	272_1_h	316.10	233.2430	3.47710	1.1	194.000	191.877689	35.421	
5	782_1_h	13.00	79.4892	0.78000	6.0	197.846	24.000000	25.391	
271	657_53_h2	95.50	41.5549	44.88500	47.0	499.000	25.000000	62.755	
272	362_54_h	121.00	41.6239	70.30100	58.1	372.670	13.000000	59.706	
273	413_54_h	94.30	68.9410	10.37300	11.0	565.627	15.000000	93.852	
274	378_57_h	29.20	23.8533	0.14600	0.5	13312.000	2.200000	73.766	

```
print(df.columns.tolist())
```

```
        Тели (пред на пред на
```

```
df = df.drop(columns=[
    "№", "Кпрод", "Qн, т/сут", "Qв, м3/сут", "Обв, %", "ГФ, м3/т",
    "Кратность ", "Выборка по кратности > 40", "Выборка по кратности > 70",
    "Снятие значений в рифее",

# Геометрия коллектора
    "Общая проходка", "Длина коллектора, м", "Мощность коллектора, м",
    "Длина коллектора с поро>5%, м", "Длина глинистых участков, м", "Доля глинист

# Все Средняя и Линейная по МD
    "Средняя ',"Средняя .1", "Линейная по МD", "Средняя .2", "Линейная по МD.1",
    "Средняя .3", "Линейная по МD.2", "Средняя .4", "Линейная по MD.3",
    "Средняя .5", "Линейная по MD.4", "Средняя .6", "Линейная по MD.5"
], errors="ignore")
```

df.reset_index(drop=True)

	Скважины	Qж, м3/ сут	Качество коллектора	Акустический импеданс (PSTM)	RMS амплитуды	Расстояние от разлома R4 (интерпретатор)	F C (B€
0	202_1_h	84.69	0.555	18329.34	1157.065	181.482	
1	202_1_zbs	75.00	0.571	19037.81	333.230	546.018	
2	237_1_h	229.86	0.639	17914.69	469.790	1298.976	
3	272_1_h	316.10	0.646	19384.03	1423.487	756.552	
4	782_1_h	13.00	0.625	17551.41	523.814	195.287	
270	657_53_h2	95.50	0.617	18469.91	1110.697	891.204	
271	362_54_h	121.00	0.557	18127.75	1122.852	193.434	
272	413_54_h	94.30	0.630	17116.49	543.458	213.632	
273	378 57 h	29.20	0.547	19868.97	1128.926	1255.104	
	h = ()						

df.describe()

	Qж, м3∕ сут	Качество коллектора	Акустический импеданс (PSTM)	RMS амплитуды	Расстояние от разлома R4 (интерпретатор)	Расст от ра (вероят разл
count	275.000000	275.000000	275.000000	275.000000	275.000000	275.
mean	118.440818	0.560625	18025.461964	1250.799927	784.099164	581.
std	104.659026	0.068420	1870.397750	1043.291816	551.062290	561.
min	1.000000	0.347000	11488.030000	81.338000	34.174000	13.
25%	34.245000	0.519000	17009.280000	543.910500	326.308000	174.
50%	86.400000	0.570000	18329.340000	927.013000	679.602000	376.

df = df.dropna()

df.isnull().sum()

	0
Скважины	0
Qж, м3/сут	0
Качество коллектора	0
Акустический импеданс (PSTM)	0
RMS амплитуды	0
Расстояние от разлома R4 (интерпретатор)	0
Расстояние от разлома (вероятность разломов)	0
Расстояние от разлома (интерпретатор + вероятности)	0
Расстояние от вреза	0
Расстояние от выклинивания толши	0
Глубина проводки (от эрозионной поверхности)	0
Толщина Б-Ro	0
Толщина R0-R4	0

dtype: int64

df.info()

₹

<class 'pandas.core.frame.DataFrame'>

Index: 275 entries, 1 to 275

Data columns (total 13 columns):

Column

Non-Null Count Dt

```
Скважины
                                                             275 non-null
                                                                             ob.
                                                             275 non-null
                                                                             flo
1
    Qж, м3/сут
                                                             275 non-null
                                                                             flo
2
    Качество коллектора
    Акустический импеданс (PSTM)
                                                             275 non-null
                                                                             flo
                                                                             flo
    RMS амплитуды
                                                             275 non-null
    Расстояние от разлома R4 (интерпретатор)
                                                            275 non-null
                                                                             flo
    Расстояние от разлома (вероятность разломов)
                                                            275 non-null
                                                                             flo
7
    Расстояние от разлома (интерпретатор + вероятности ) 275 non-null
                                                                             flo
    Расстояние от вреза
                                                            275 non-null
                                                                             flo
8
                                                                             flo
                                                            275 non-null
    Расстояние от выклинивания толши
10 Глубина проводки (от эрозионной поверхности)
                                                            275 non-null
                                                                             flo
11 Толшина Б-Ro
                                                            275 non-null
                                                                             flo
12 Толщина R0-R4
                                                            275 non-null
                                                                             flo
dtypes: float64(12), object(1)
```

```
print(df['Скважины'].nunique())
```

→ 275

)

memory usage: 30.1+ KB

Т.к. все скважины уже усреднены и уникальны, то не будем делить их на трейновую и тестовую выборку

```
df = df.copy()
df['Qx_class'] = (df['Qx, M3/cyt'] > 118).astype(int)

train_df, test_df = train_test_split(df, test_size=0.4, random_state=42)
```

Подбор признаков с помошью Boruta

```
X_boruta_q = df.drop(columns=['Qж_class', 'Qж, м3/сут', 'Скважины'])
y_boruta_q = df['Qж_class']

X_train_boruta_q, X_test_boruta_q, y_train_boruta_q, y_test_boruta_q = train_test_
scaler_boruta_q = StandardScaler()
X_train_boruta_scaled = scaler_boruta_q.fit_transform(X_train_boruta_q)
X_test_boruta_scaled = scaler_boruta_q.transform(X_test_boruta_q)

rf_boruta_q = RandomForestClassifier(n_estimators=100, random_state=42, class_weiboruta_selector_q = BorutaPy(
    rf_boruta_q,
    n_estimators='auto',
    alpha=0.05,
    max_iter=100,
    random_state=42
```

```
boruta_selector_q.fit(X_train_boruta_scaled, y_train_boruta_q.values)

# Получаем отобранные признаки
selected_features_q = X_boruta_q.columns[boruta_selector_q.support_].tolist()
print("Отобранные признаки Boruta:")
for feat in selected_features_q:
    print("-", feat)

→ Отобранные признаки Boruta:
```

Борута не под этот датасет

– Толшина Б-Ro

Подбор признаков с помощью RFECV

```
# Распределение по классам в train print(train_df['Qж_class'].value_counts())

→ Qж_class  
0    101  
1    64  
Name: count, dtype: int64

train_df['Qж_class'].value_counts().sort_index().plot(kind='bar')  
plt.title("Распределение значений Qж_class (train)")  
plt.xlabel("Значение")  
plt.ylabel("Количество")  
plt.xticks([0, 1], ['0', '1'])  
plt.grid(True)  
plt.show()
```



```
# Распределение по классам в test
print(test_df['Qж_class'].value_counts())
```

```
Oж_class
0 62
1 48
```

Name: count, dtype: int64

```
test_df['Qж_class'].value_counts().sort_index().plot(kind='bar')
plt.title("Распределение значений Qж_class (test)")
plt.xlabel("Значение")
plt.ylabel("Количество")
plt.xticks([0, 1], ['0', '1'])
plt.grid(True)
plt.show()
```

→

Распределение значений Qж class (test)


```
# Временные X и у только для RFECV
X_temp = df.drop(columns=['Скважины', 'Qж_class', 'Qж, м3/сут']) # все признаки,
y_temp = df['Qx_class']
                                                     # целевая переменная
# Базовая модель
estimator_rfecv_q = RandomForestClassifier(n_estimators=30, max_depth=2, random_s
rfecv_q = RFECV(
    estimator=estimator_rfecv_q,
    step=1,
    cv=StratifiedKFold(3),
    scoring='f1',
    min_features_to_select=1,
)
# Обучение селектора
rfecv_q.fit(X_temp, y_temp)
# Получение отобранных признаков
selected_features_rfecv_q = X_temp.columns[rfecv_q.support_].tolist()
print("\nВыбранные признаки (RFECV):")
for feat in selected_features_rfecv_q:
    print("-", feat)
```

→

Выбранные признаки (RFECV):

- Качество коллектора
- Акустический импеданс (PSTM)
- RMS амплитуды
- Расстояние от разлома (вероятность разломов)

```
класификация "прогноз добычного параметра: q жидкости .ipynb" - Colab

    Расстояние от разлома (интерпретатор + вероятности )

    – Расстояние от вреза
     - Расстояние от выклинивания толши
     – Глубина проводки (от эрозионной поверхности)
     – Толщина Б–Ro
     - Толшина R0-R4
X_train = train_df[[
    'Качество коллектора',
    'Акустический импеданс (PSTM)',
    'RMS амплитуды',
```

```
'Расстояние от разлома (вероятность разломов)',
    'Расстояние от разлома (интерпретатор + вероятности )',
    'Расстояние от вреза',
    'Расстояние от выклинивания толши',
    'Глубина проводки (от эрозионной поверхности)',
    'Толщина Б-Ro',
    'Толщина R0-R4'
11
y_train = train_df['Q*x_class']
X test = test df[[
    'Качество коллектора',
    'Акустический импеданс (PSTM)',
    'RMS амплитуды',
    'Расстояние от разлома (вероятность разломов)',
    'Расстояние от разлома (интерпретатор + вероятности )',
    'Расстояние от вреза',
    'Расстояние от выклинивания толши',
    'Глубина проводки (от эрозионной поверхности)',
    'Толщина Б-Ro',
    'Толщина R0-R4'
]]
y_test = test_df['Q*x_class']
param_grid = {
    'n_estimators': [50, 100],
                                       # Больше деревьев = стабильнее
    'max_depth': [2, 3],
                                       # Жесткое ограничение на глубину (контроли
    'min_samples_split': [6, 10],
                                      # Чем больше, тем деревья менее подвержены
    'min_samples_leaf': [4, 6]
                                      # Минимум объектов в листе — тоже ключевой
}
# Инициализация и подбор по F1
rf = RandomForestClassifier(random_state=42)
grid_search = GridSearchCV(rf, param_grid, cv=3, scoring='f1', n_jobs=-1)
grid_search.fit(X_train, y_train)
print("Лучшие параметры:", grid_search.best_params_)
```

→ Лучшие параметры: {'max_depth': 3, 'min_samples_leaf': 6, 'min_samples_split'

model = RandomForestClassifier(**grid_search.best_params_, random_state=42)
model.fit(X_train, y_train)

RandomForestClassifier

print("Feature Importances:", model.feature_importances_)

Feature Importances: [0.11960531 0.0489722 0.06022939 0.11766236 0.11320264 (0.12251669 0.07454329 0.11942684 0.12693079]

```
y_pred_test = model.predict(X_test)
y_pred_train = model.predict(X_train)
```

```
print("Метрики для тестовой выборки:")
print("Accuracy:", accuracy_score(y_test, y_pred_test))
print("ROC AUC:", roc_auc_score(y_test, y_pred_test))
print("Precision:", precision_score(y_test, y_pred_test))
print("Recall:", recall_score(y_test, y_pred_test))
print("F1:", f1_score(y_test, y_pred_test))
```

ROC AUC: 0.5305779569892473

Precision: 0.5

```
print("Метрики для обучающей выборки")
print("Accuracy:", accuracy_score (y_train, y_pred_train ))
print("ROC AUC:", roc_auc_score (y_train, y_pred_train ))
print("Precision:", precision_score (y_train, y_pred_train ))
print("Recall:", recall_score (y_train, y_pred_train ))
print("f1:", f1_score (y_train, y_pred_train ))
```

Recall: 0.390625

f1: 0.5434782608695652

```
fig, ax = plt.subplots(1, 2, figsize=(14, 6))
```

ConfusionMatrixDisplay.from_predictions(y_train, y_pred_train, ax=ax[0], cmap='Bl ax[0].set_title('Матрица по обучающей')

ConfusionMatrixDisplay.from_predictions(y_test, y_pred_test, ax=ax[1], cmap='0ran ax[1].set_title('Матрица по тестовой')

```
plt.tight_layout()
plt.show()
```



```
# Добавляем столбец "Скважина" в test_df
test_df = test_df.copy()
test_df['Скважина'] = ['Скв_' + str(i) for i in test_df.index]
# Создаем DataFrame с реальными и предсказанными классами
df_test_eval = test_df.copy()
df_test_eval['y_pred'] = y_pred_test
df_test_eval['Qx_class'] = y_test
# Строим график
plt.figure(figsize=(20, 9))
correct = df_test_eval['y_pred'] == df_test_eval['Q**x_class']
sns.scatterplot(x='Скважина',
                y='Qx, M3/cyT',
                hue=correct,
                data=df_test_eval,
                palette={True: 'green', False: 'red'})
plt.axhline(170.2, linestyle='--', color='blue', label='ΠοροΓ')
```

```
plt.title('Qж и корректность предсказаний (тест)')
plt.xlabel('Скважина')
plt.ylabel('Qж, м3/сут')
plt.xticks(rotation=90)
plt.legend(title='Правильно?')
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
# Добавляем столбец "Скважина" в train_df
train_df = train_df.copy()
train_df['Скважина'] = ['Скв_' + str(i) for i in train_df.index]

# Создаем DataFrame с реальными и предсказанными классами
df_train_eval = train_df.copy()
```

```
df_train_eval['y_pred'] = y_pred_train
df_train_eval['Qx_class'] = y_train
# Строим график
plt.figure(figsize=(25, 11))
correct = df_train_eval['y_pred'] == df_train_eval['Qx_class']
sns.scatterplot(x='Скважина',
                y='Qж, м3/сут',
                hue=correct,
                data=df_train_eval,
                palette={True: 'green', False: 'red'})
plt.axhline(170.2, linestyle='--', color='blue', label='ΠοροΓ')
plt.title('Qж и корректность предсказаний (обучение)')
plt.xlabel('Скважина')
plt.ylabel('Qx, M3/cyT')
plt.xticks(rotation=90)
plt.legend(title='Правильно?')
plt.grid(True)
plt.tight_layout()
plt.show()
```


Ручной подбор признаков основываясь на матрице корреляции

```
plt.figure(figsize=(16, 12))
sns.heatmap(
    df.corr(numeric_only=True),
    annot=True,
    cmap='coolwarm',
    fmt='.2f',
    linecolor='black',
    linewidths=0.5
)
plt.title('Матрица корреляции')
plt.show()
```



```
X_train_corr = train_df[['Расстояние от вреза', 'Расстояние от выклинивания толши
y train corr = train df['Qx class']
X_test_corr = test_df[['Расстояние от вреза', 'Расстояние от выклинивания толши',
y_test_corr = test_df['Q*x_class']
param_grid_corr = {
   'n_estimators': [30],
    'max depth': [2, 3, 5],
    'min_samples_split': [4, 6],
    'min_samples_leaf': [2, 3]
}
rf_corr = RandomForestClassifier(random_state=42)
grid search_corr = GridSearchCV(rf_corr, param_grid_corr, cv=3, scoring='f1', n_j
grid_search_corr.fit(X_train_corr, y_train_corr)
print("Лучшие параметры (corr):", grid_search_corr.best_params_)
model_corr = RandomForestClassifier(**grid_search_corr.best_params_, random_state
model_corr.fit(X_train_corr, y_train_corr)
→
                                                                        (i) (?)
                            RandomForestClassifier
    RandomForestClassifier(max_depth=5, min_samples_leaf=2, min_samples_split=4,
                          n_estimators=30, random_state=42)
print("Feature Importances (corr):", model_corr.feature_importances_)
```

Feature Importances (corr): [0.29405632 0.36218708 0.3437566]

```
y pred test corr = model corr.predict(X test corr)
y pred train corr = model corr.predict(X train corr)
print("Метрики для тестовой выборки (corr):")
print("Accuracy:", accuracy_score(y_test_corr, y_pred_test_corr))
print("ROC AUC:", roc_auc_score(y_test_corr, y_pred_test_corr))
print("Precision:", precision_score(y_test_corr, y_pred_test_corr))
print("Recall:", recall_score(y_test_corr, y_pred_test_corr))
print("F1:", f1_score(y_test_corr, y_pred_test_corr))
→ Метрики для тестовой выборки (corr):
    Accuracy: 0.67272727272727
    ROC AUC: 0.6485215053763441
    Precision: 0.6875
    Recall: 0.458333333333333333
    F1: 0.55
print("Метрики для обучающей выборки (corr):")
print("Accuracy:", accuracy_score(y_train_corr, y_pred_train_corr))
print("ROC AUC:", roc_auc_score(y_train_corr, y_pred_train_corr))
print("Precision:", precision_score(y_train_corr, y_pred_train_corr))
print("Recall:", recall score(y train corr, y pred train corr))
print("F1:", f1_score(y_train_corr, y_pred_train_corr))
→ Метрики для обучающей выборки (corr):
    Accuracy: 0.8242424242424242
    ROC AUC: 0.7734375
    Precision: 1.0
    Recall: 0.546875
    F1: 0.7070707070707071
fig, ax = plt.subplots(1, 2, figsize=(14, 6))
ConfusionMatrixDisplay.from_predictions(y_train_corr, y_pred_train_corr, ax=ax[0]
ax[0].set_title('Матрица по обучающей')
ConfusionMatrixDisplay.from_predictions(y_test_corr, y_pred_test_corr, ax=ax[1],
ax[1].set_title('Матрица по тестовой')
plt.tight_layout()
plt.show()
```

