UK. Advanced Chemistry Practice Problems

Kinetics: The Arrhenius Equation

1. The rate constants for the decomposition of a certain substance were measured at five different temperatures. The data is given in the table below. Graphically determine the activation energy of the reaction in kJ/mol.

k (M ⁻¹ s ⁻¹)	T (K)
3.81 × 10 ⁻¹⁰	500
5.90×10^{-4}	950
3.90×10^{-3}	1100
0.221	1500
2.05	2000

2. A reaction has an activation energy of 205 kJ/mol. At 250.°C, the rate constant is 4.45×10^{-3} s⁻¹. Calculate the rate constant at 350.°C.

UK. Advanced Chemistry Practice Problems

Kinetics: Reaction Mechanisms

1. Consider the following two step mechanism for decomposition of hydrogen peroxide.

Step 1:
$$H_2O_2 + I^- \rightarrow H_2O + IO^-$$
 (slow)

Step 2:
$$H_2O_2 + IO^- \rightarrow H_2O + + O_2 + I^-$$
 (fast)

Answer each of the following questions.

- a. Which substance or substances are intermediates?
- b. Which substance (if any) is a catalyst?
- c. What is the overall reaction?
- d. What is the rate law?

Kinetics: Catalysts

1. Examine the following diagram depicting the potential energy diagram for the reaction: $A + B \rightarrow C + D$.

Reaction Progress

Draw (within the same diagram above) the potential energy curve if an effective catalyst is used in the reaction.

- 2. Describe the similarities and differences between the following.
 - a. A homogeneous catalyst.
 - b. A heterogeneous catalyst.
 - c. An enzyme.

