Some useful latex for you to use:

• For sets use the command we defined in the latex source

$$\{1, 2, 3\}, \{\emptyset, \{4, 5, 6\}\}, \left\{\frac{1}{2}, \frac{\alpha}{1+\beta}\right\}$$

it will format the braces nicely.

- Sometimes it is nice to write ℓ instead of l because it looks nice in formulas.
- For logic, latex defines the symbols we need:

$$\sim P \qquad P \lor Q \qquad P \land Q \qquad P \implies Q \qquad P \iff Q$$

Unfortunately, we use \sim for negation and not the default negation symbol \neg , so it is useful to redefine things in the header of your document (a bit like how we define the set command.)

• For a proof we can (and probably should) use the proof environment. It automatically puts the word "proof" at the start and the little square at the end:

Proof. This is my proof. It is just missing a few details, but I'll put in an equation

$$a + b = c$$

just because I can.

Sometimes we want to give the proof a title, and the proof environment helps us do that too. Here is a classic false-proof that 2 = 1.

Not-quite-a-proof that two equals one. Let x, y be non-zero real numbers so that x = y. Then, multiplying by x gives us

$$x^2 = xy$$
 now subtract y^2
 $x^2 - y^2 = xy - y^2$ now factor
 $(x - y)(x + y) = y(x - y)$ divide by common factor of $(x - y)$
 $x + y = y$ since $x = y$
 $2y = y$ now divide by y
 $2 = 1$

• For the truth tables you can use the following:

A_1	A_2	A_3	A_4	A_5	A_6
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	a_{26}
a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}
a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	a_{46}

- Remeember to cheque the speeling of your subbmisssion.
- Also remember that you should not include your scratchwork unless a question specifically asks for it.
- Finally, please try to make your work look nice and neat and use 12pt font think about the reader!

Please do not include the above text in your homework solution — we have just included it here to help you write your homework.

Solutions to homework 1:

1. Your solution to question 1.

Proof. Let $n \in \mathbb{Z}$, Prove that if $3 \mid n+1$ then $3 \nmid n^2 + 5n + 5$.

- Assume for some $n \in \mathbb{Z}, 3 \mid n+1$
- Then $(n+1) = 3\ell$ for $\ell \in \mathbb{Z}$
- $n^2 + 5n + 5 = (n+1)^2 + 3(n+1) + 1 = (3\ell)^2 + 3(3\ell) + 1$
- By fact, $(3l)^2 + (3l) \in \mathbb{Z}$ so $n^2 + 5n + 5 = 3(3\ell^2 + 3\ell) + 1$
- This shows that $3 \nmid n^2 + 5n + 5$

2. Your solution to question 2.

Proof. Let $a \in \mathbb{Z}$. Prove that if 5a+11 is odd then 9a+3 is odd.

- Let's assume that 5a + 11 is odd, then we can see that $5a + 11 = 2\ell + 1$ for $\ell \in \mathbb{Z}$.
- $9a + 3 = 10a a + 3 = 2(2\ell 10) a + 3 = 2(2l 8) a 1$.
- As $a \in \mathbb{Z}$, we know that a is either an odd number or even number by fact.
- Let's consider the case when a is an odd number. $a = 2k + 1, k \in \mathbb{Z}$.
- $9a + 3 = 2(2\ell 8) (2k + 2) = 2 * (2l 2k 10)$. And as $l, k \in \mathbb{Z}$ we know that 2l 2k 10 is also an Integer.
- However, in this case 5a + 11 = 10k + 16 = 2(5k + 8) becomes an even number.
- So, let's consider the case when $a = 2q, q \in \mathbb{Z}$.

- In this case, 5a + 11 = 10q + 11 = 2(5q + 5) + 1. Thus satisfies that 5a + 11 is an odd number due to the fact that $5q + 5 \in \mathbb{Z}$.
- And, $9a + 3 = 2(2\ell 8) 2q 1 = 2(2\ell q 9) + 1$ shows us that 9a + 3 is odd as $2\ell q 9 \in \mathbb{Z}$.
- Therfore, we can conclude that when 5a + 11 is odd then 9a + 3 is odd.
- 3. Your solution to question 3.

Proof. If -1 < x < 2, then $x^2 - x - 2 < 0$.

- Assume that -1 < x < 2.
- We change the expression $x^2 x 2$ to (x 2)(x + 1).
- For some $x \in (-1,2)$, we know that (x-2) < 0 and (x+1) > 0.
- This shows that (x-2)(x+1) < 0 because we know that for some $a, b \in \mathbb{R}$ if ab < 0 then a < 0, b > 0 or a > 0, b < 0.
- Therefore, we can conclude that if -1 < x < 2 then $x^2 x 2 < 0$
- 4. Your solution to question 4.

Proof. Let a, b, c, d be integers. Suppose that a, c, b + d are all odd numbers. Prove ab + cd is odd.

- Let's assume that a, b, c, d be integers and a, c, b + d are all odd numbers.
- Then we can see that $a=2\ell+1, c=2k+1, b+d=2m+1$. for $\ell, k, m \in \mathbb{Z}$.
- When b+d is odd, we can express b+d as a sum of an even number and an odd number.
- For instance, let's consider the case when b is even and d is odd.
- Then we can express these as b=2n and d=2p+1 for $n,p\in\mathbb{Z}$.
- We can see that $ab+cd = (2\ell+1)*(2n)+(2k+1)*(2p+1) = 2(2n\ell+n+2kp+k+p)+1$
- As we know that $n, l, k, p \in \mathbb{Z}$, $2nl + n + 2kp + k + p \in \mathbb{Z}$.
- Therfore, from the form ab + cd = 2(2nl + n + 2kp + k + p) + 1 we can conclude that ab + cd is odd.
- 5. Your solution to question 5.

Proof. Let x and y be real numbers. Show that

$$xy \le \frac{1}{2}(x^2 + y^2)$$

- Let's assume that $x, y \in \mathbb{R}$
- $\frac{1}{2}x^2 + \frac{1}{2}y^2 xy = \frac{1}{2}(x^2 2xy y^2) = \frac{1}{2}(x y)^2$
- We know for some $n \in \mathbb{R}$ that $n^2 > 0$.
- As $x, y \in \mathbb{R}$ we also can find out that $(x y) \in \mathbb{R}$ making $(x y)^2 \ge 0$.
- If $(x-y)^2 \ge 0$, then $\frac{1}{2}(x-y)^2 = \frac{1}{2}x^2 + \frac{1}{2}y^2 xy \ge 0$.
- Therefore, we can conclude that $\frac{1}{2}x^2 + \frac{1}{2}y^2 \ge xy$.
- 6. Your solution to question 6.

Proof. Let x and y be real numbers. Suppose that x < y and $y^2 < x^2$. Show that x + y < 0.

- Let's assume that x < y and $y^2 < x^2$ for $x, y \in \mathbb{R}$.
- x < y shows that x y < 0. And $y^2 < x^2$ shows that $x^2 y^2 > 0$.
- $x^2 y^2 = (x y)(x + y)$ and as we know that x y < 0 then in order to satisfy $x^2 y^2 > 0$, x + y < 0 has to be satisfied.
- This is due to the fact that for $a, b \in \mathbb{R}$. If a > 0 then b > 0, and if a < 0 then b < 0 to make ab > 0.
- Therfore, x + y < 0 when x < y and $y^2 < x^2$.
- 7. Your solution to question 7.

Proof. For an integer n, prove that if $5 \mid (n+7)$, then $5 \mid (n^2+1)$.

- Let's assume that for $n \in \mathbb{Z}$, $5 \mid (n+7)$.
- Then, $n+7=5\ell$ for some $\ell \in \mathbb{Z}$.
- $n^2 + 1 = (5\ell 7)^2 + 1 = 5(5\ell^2) 5(14\ell) + 50 = 5(5\ell^2 14\ell + 10).$
- We know that as $\ell \in \mathbb{Z}$, $5\ell^2 14\ell + 10 \in \mathbb{Z}$.
- Then, $n^2 + 1 = 5(5\ell^2 14\ell + 10)$ shows that $5 \mid (n^2 + 1)$.
- Therefore, we can conclude that if $5 \mid (n+7)$, then $5 \mid (n^2+1)$.
- 8. Your solution to question 8.

Proof. Let $n, a, b, x, y \in \mathbb{Z}$ with n > 0. Prove that if $n \mid a$ and $n \mid b$ then $n \mid (ax + by)$.

- Let $n \mid a$ and $n \mid b$ for $n, a, b, x, y \in \mathbb{Z}$ and n > 0.
- Then a=nl , b=nk for $l,k\in\mathbb{Z}.$
- ax = anl, by = nky we know that ax + by = n(al + ky).
- We can see that $al + ky \in \mathbb{Z}$, because $a, l, k, y \in \mathbb{Z}$.
- Therefore, ax + by = n(al + ky) shows that $n \mid ax + by$, when n > 0.

Mercury Mcindoe Page 5 85594505