Lecture 3 Time Domain Representation of Discrete Time Systems

Digital Signal Processing by Yu Yajun @ SUSTech

67

Discrete Time System

$$T(\cdot) \qquad y[n] = T(x[n])$$

• The function of **discrete-time system** is to process a given sequence, called the **input sequence**, to generate another sequence, called the **output sequence**, with more desirable properties or to extract certain information about the input signal.

Examples

Accumulator

$$y[n] = \sum_{l=-\infty}^{n} x[l]$$
$$= y[n-1] + x[n]$$

- The output y[n] at time instant n is the sum of input sample values x[n] and all past input samples.
- It accumulates all input sample values from $-\infty$ to n.

Digital Signal Processing by Yu Yajun @ SUSTech

69

• Alternative input-output relation expression

$$y[n] = \sum_{l=-\infty}^{-1} x[l] + \sum_{l=0}^{n} x[l]$$

$$= y[-1] + \sum_{l=0}^{n} x[l]$$
Initial condition A causal input sequence

Examples

• M-point Moving-Average Filter

$$y[n] = \frac{1}{M} \sum_{l=0}^{M-1} x[n-l]$$

- Used in smoothing random variation in data.
- If there is no bias in measurements, an improved estimate of noise data is obtained by simply increasing *M*.

Digital Signal Processing by Yu Yajun @ SUSTech

71

• Alternative expression

$$y[n] = \frac{1}{M} \left(\sum_{l=1}^{M-1} x[n-l] + x[n] + x[n-M] - x[n-M] \right)$$

$$= \frac{1}{M} \left(\sum_{l=1}^{M} x[n-l] + x[n] - x[n-M] \right)$$

$$= \frac{1}{M} \left(\sum_{l=0}^{M-1} x[n-l-1] + x[n] - x[n-M] \right)$$

$$= y[n-1] + \frac{1}{M} (x[n] - x[n-M])$$

Examples

- Linear Interpolator employed to estimate sample values between pairs of adjacent sample values of a discrete-time sequence
- Factor-of-4 interpolation

• Factor-of-2 interpolator

$$y[n] = x_u[n] + \frac{1}{2}(x_u[n-1] + x_u[n+1])$$

• Factor-of-3 interpolator

$$y[n] = x_u[n] + \frac{1}{3}(x_u[n-2] + x_u[n+2]) + \frac{2}{3}(x_u[n-1] + x_u[n+1])$$

Digital Signal Processing by Yu Yajun @ SUSTech

• Factor-of-2 interpolation

Digital Signal Processing by Yu Yajun @ SUSTech

75

Example: Median Filter

Median

- The **median** of a set of (2*k*+1) numbers is the number such that *k* numbers from the set have values greater than this number, and the other *K* numbers have values smaller.
- Median can be determined by rank-ordering the numbers in the set by their values and then choosing the number at the middle.
- The median of a sequence is denoted as

$$med{a_1, a_2, a_3, a_4, a_5}$$

• Example: Consider the set of numbers

$$\{8, 2, 6, 12, -4\}$$

- Rank-ordered set: {-4, 2, 6, 8, 12}
- Hence: $med{8, 2, 6, 12, -4} = 6$

Median Filter

• Median filter is implemented by sliding a window of odd length over the input sequence x[n] one sample at a time. The output y[n] at the nth instant of the median filter with a window length-(2k+1) is then given by $y[n]=\text{med}\{x[n-k], ..., x[n-1], x[n], x[n+1], ..., x[n+k]\}.$

Digital Signal Processing by Yu Yajun @ SUSTech

77

- Median Filter Example:
 - Find applications in removing additive random noise, which shows up as sudden large errors in the corrupted signal, for example signals corrupted by impulse noise.

Compressor

 Compressor has an inputoutput relation given by

$$y[n] = x[Mn]$$
 for $M > 1$

Digital Signal Processing by Yu Yajun @ SUSTech

79

Properties of DT System

- Linearity
- Causality
- Memoryless
- Time-invariance
- BIBO-stability
- Passive and Lossless properties

Properties of DT System

• Linearity:

If
$$y_1[n] = T\{x_1[n]\}$$
, and $y_2[n] = T\{x_2[n]\}$

• Superposition:

$$T\{x_1[n] + x_2[n]\} = T\{x_1[n]\} + T\{x_2[n]\} = y_1[n] + y_2[n]$$

• Homogeneity:

$$T\{ax_1[n]\} = aT\{x_1[n]\} = ay_1[n]$$

Overall:
$$T\{a_1x_1[n] + a_2x_2[n]\} = a_1y_1[n] + a_2y_2[n]$$

• The above property must hold for arbitrary constant a_1 and a_2 , and for all possible input $x_1[n]$ and $x_2[n]$.

Digital Signal Processing by Yu Yajun @ SUSTech

81

- Let $y_1[n] = \sum_{l=-\infty}^n x_1[l], y_2[n] = \sum_{l=-\infty}^n x_2[l]$
- For an input

$$x[n] = \alpha x_1[n] + \beta x_2[n]$$

• The output is

$$y[n] = \sum_{l=-\infty}^{n} (\alpha x_1[l] + \beta x_2[l])$$

$$= \alpha \sum_{l=-\infty}^{n} x_1[l] + \beta \sum_{l=-\infty}^{n} x_2[l] = \alpha y_1[n] + \beta y_2[n]$$

Hence, the above system is linear.

Linearity of Median Filter

- The median filter is a non-linear DT system
- $y[n] = MED\{x[n-k], ..., x[n+k]\}.$

多选题

貸

Which of the following is a linear system

$$A \quad y[n] = x[n-n_d]$$

$$y[n] = x[Mn] \text{ for } M > 1$$

$$y[n] = x[n] + 3$$

$$y[n] = x^2[n]$$

$$y[n] = \begin{cases} x\left[\frac{n}{L}\right], n = 0, \pm L, \pm 2L, \dots \\ 0, & \text{otherwise} \end{cases}$$
 for $L > 1$

提交

Properties of DT System (Cont.)

- Causality:
 - $y[n_0]$ depends only on x[n] for $-\infty < n \le n_0$, and does not depends on input samples $n > n_0$.
- A non-causal system cannot be implemented because it uses future input signal to generate the current output signal.

Digital Signal Processing by Yu Yajun @ SUSTech

85

• Example of causal systems:

$$y[n] = a_1x[n] + a_2x[n-1] + a_3x[n-2] + a_4x[n-3]$$

$$y[n] = b_0x[n] + b_1x[n-1] + a_1y[n-1]$$

$$y[n] = y[n-1] + x[n]$$

• Example of non-causal systems:

$$y[n] = x_u[n] + \frac{1}{2}(x_u[n-1] + x_u[n+1])$$

$$y[n] = x_u[n] + \frac{1}{3}(x_u[n-1] + x_u[n+1]) + \frac{2}{3}(x_u[n-2] + x_u[n+2])$$

Which of the following is a causal system

$$A \quad y[n] = x[n - n_d]$$

$$y[n] = x[Mn] \text{ for } M > 1$$

$$y[n] = x[-n]$$

$$y[n] = x^2[n]$$

$$y[n] = \begin{cases} x \left[\frac{n}{L} \right], n = 0, \pm L, \pm 2L, \dots \\ 0, & \text{otherwise} \end{cases} \text{ for } L > 1$$

Digital Signal Processing by Yu Yajun @ SUSTech

87

Implementation of non-causal system

- A non-causal system may be implemented as a causal system by delaying the output by an appropriate number of samples
- For example a causal implementation of the factor-of-2 interpolator is given by

$$y[n] = x_u[n-1] + \frac{1}{2}(x_u[n-2] + x_u[n])$$

non-causal expressions of a factor-of-2 interpolator:

$$y[n] = x_u[n] + \frac{1}{2}(x_u[n-1] + x_u[n+1])$$

Numerical Example

Digital Signal Processing by Yu Yajun @ SUSTech

89

Properties of DT System (Cont.)

- Memoryless:
 - $y[n_0]$ depends only on $x[n_0]$, and does not depend on input samples for $n < n_0$.
 - Example of memoryless system: $y[n] = x[n]^2$
 - Example of memory system:

$$y[n] = a_1x[n] + a_2x[n-1] + a_3x[n-2] + a_4x[n-3]$$

 $y[n] = y[n-1] + x[n]$

Which of the following is memoryless?

$$A \mid y[n] = x[n - n_d]$$

$$y[n] = x[Mn] \text{ for } M > 1$$

$$y[n] = x[-n]$$

$$y[n] = x^2[n]$$

$$y[n] = \begin{cases} x \left[\frac{n}{L} \right], n = 0, \pm L, \pm 2L, \dots \\ 0, & \text{otherwise} \end{cases}$$
 for $L > 1$

Digital Signal Processing by Yu Yajun @ SUSTech

91

Properties of DT System (Cont.)

• Time invariance:

If:
$$y[n] = T\{x[n]\}$$

Then: $y[n-n_0] = T\{x[n-n_0]\}$ for all integer n_0

- The above relation must hold for arbitrary input and its corresponding output.
- Time-invariance property ensures that for a specified input, the output is independent of the time the input is being applied.

Compressor is time-invariant or not? -- Numerical Example

• Suppose M=2, y[n] = x[Mn] $x[n] = \cos(\pi/2 \ n) \longrightarrow y[n]$ $x[n-1] \longrightarrow y[n-1]$ $x[n-1] \longrightarrow y[n-1]$

Digital Signal Processing by Yu Yajun @ SUSTech

93

• Proof:

• If an input $\{x[n]\}$ at time n produces an output y[n], the system is time invariant if a time shifted input $x[n-n_0]$ produces a time shifted output $y[n-n_0]$, i.e. if

$$x[n] \Rightarrow y[n]$$

then $x[n-n_0] \Rightarrow y'[n] = y[n-n_0].$

- Consider the system y[n] = x[Mn], we have $x[n] \Rightarrow x[Mn] = y[n]$, $x[n-n_0] \Rightarrow x[Mn-n_0] = y'[n]$.
- y[n] shifted by n_0 is $y[n-n_0] = x[M(n-n_0)] \neq x[Mn-n_0]$ y'[n].
- Therefor, y[n] = x[Mn] is not time invariant if $M \ne 1$.

Which of the following is time-invariant?

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$y[n] = x^2[n]$$

$$y[n] = \begin{cases} x \left[\frac{n}{L} \right], n = 0, \pm L, \pm 2L, \dots \\ 0, & \text{otherwise} \end{cases} \text{ for } L > 1$$

Digital Signal Processing by Yu Yajun @ SUSTech

提交

95

Properties of DT System (Cont.)

• BIBO stability:

If:
$$|x[n]| \le B_x < \infty \quad \forall n$$

Then:
$$|y[n]| \le B_y < \infty \quad \forall n$$

- Example The *M*-point moving average filter is BIBO stable:
 - For a bounded input $|x[n]| \le B_x$, we have

$$|y[n]| = \left| \frac{1}{M} \sum_{k=0}^{M-1} x[n-k] \right| \le \frac{1}{M} \sum_{k=0}^{M-1} |x[n-k]| \le \frac{1}{M} M B_x$$

$$= B_x$$

Which of the following is BIBO?

$$A \mid y[n] = x[n - n_d]$$

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$y[n] = x[-n]$$

$$y[n] = \begin{cases} x\left[\frac{n}{L}\right], n = 0, \pm L, \pm 2L, \dots \\ 0, & \text{otherwise} \end{cases}$$
 for $L > 1$

Digital Signal Processing by Yu Yajun @ SUSTech

提交

97

Properties of DT System (Cont.)

Passive and Lossless

Passive if:
$$\sum_{n=-\infty}^{\infty} |y[n]|^2 \le \sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$$

Lossless if the inequality is satisfied with an equal sign for every input sequence,

• A passive Discrete-time system

$$y[n] = \alpha x[n - N]$$

• Since
$$\sum_{n=-\infty}^{\infty} |y[n]|^2 = |\alpha|^2 \sum_{n=-\infty}^{\infty} |x[n]|^2$$

it is a passive system if $|\alpha| \le 1$ and is a lossless system if $|\alpha| = 1$

Digital Signal Processing by Yu Yajun @ SUSTech

99

多选题

设置

Which of the following is passive?

$$A \quad y[n] = x[n-n_d]$$

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$y[n] = x[-n]$$

$$y[n] = x^2[n]$$

$$y[n] = \begin{cases} x\left[\frac{n}{L}\right], n = 0, \pm L, \pm 2L, \dots \\ 0, & \text{otherwise} \end{cases}$$
 for $L > 1$

提交

Summary

	Causal	Linear	Time- Invariant	Memory -less	BIBO Stable	Passive
Time Shift $y[n] = x[n-n_d]$						
Accumulator $y[n] = \sum_{k=-\infty}^{n} x[k]$						
Compressor $y[n] = x[Mn]$ for $M > 1$						
Up-sampler $y[n] = \begin{cases} x \left[\frac{n}{L} \right] & n = 0, \pm L, \pm 2L \\ 0 & \text{otherwise} \end{cases}$						
· C T 1		Processing by Y	Yu Yajun @ SUSTec	ch		101

LTI Discrete Time Systems

- Linear Time-Invariant (LTI) System a system satisfying both the linearity and the time-invariant properties.
- LTI systems are mathematically easy to analyze and characterize, and consequently easy to design.
- Highly useful signal processing algorithms have been developed utilizing this class of systems over the last several decades.

Impulse and Step Responses

• The response of a DT system to a unit impulse sequence $\{\delta[n]\}$ is called the **unit impulse response** or simply, the **impulse response**, denoted as $\{h[n]\}$.

$$\begin{array}{c|c}
\delta[n] & h[n] \\
\hline
\mu[n] & s[n]
\end{array}$$

• The response of a DT system to a unit step sequence $\{\mu[n]\}$ is called the **unit step response** or simply, the **step response**, denoted as $\{s[n]\}$.

Digital Signal Processing by Yu Yajun @ SUSTech

103

Impulse Response

• Example – The impulse response of system $y[n] = a_1x[n] + a_2x[n-1] + a_3x[n-2] + a_4x[n-3]$ is obtained by setting $x[n] = \delta[n]$, resulting in $h[n] = a_1\delta[n] + a_2\delta[n-1] + a_3\delta[n-2] + a_4\delta[n-3]$

• The impulse response is thus a finite length sequence of length 4 given by

$$\{h[n]\} = \{a_1, a_2, a_3, a_4\}$$

Impulse Response

• Example – The impulse response of the discrete-time accumulator: $y[n] = \sum_{k=-\infty}^{n} x[k]$

By setting $x[n] = \delta[n]$, we have

$$h(n) = \sum_{k=-\infty}^{n} \delta[k]$$

which is precisely the unit step sequence

Digital Signal Processing by Yu Yajun @ SUSTech

105

Impulse Response

• Example – The impulse response *h*[*n*] of factor-of-2 interpolator

$$y[n] = x_u[n-1] + \frac{1}{2}(x_u[n-2] + x_u[n])$$

is obtained by setting $x_u[n] = \delta[n]$, resulting in

$$h[n] = \delta[n-1] + \frac{1}{2}(\delta[n-2] + \delta[n])$$

• The impulse response is thus a finite length sequence of length 3 given by

$$h[n] = \{0.5, 1, 0.5\}$$

Time-Domain Characterization of LTI Discrete Time Systems

- Input-output relation A consequence of the linear and time-invariant properties is that an LTI discrete time system is completely characterized by its impulse response
- In other words, knowing the impulse response one can compute the output of the system for an arbitrary input

Digital Signal Processing by Yu Yajun @ SUSTech

107

Compute Impulse Response

- Let *h*[*n*] denote the impulse response of a LTI discrete-time system.
- We compute its output y[n] for the input:

$$x[n] = 0.5\delta[n+2] + 1.5\delta[n-1] - \delta[n-2] + 0.75\delta[n-5]$$

• As the system is linear, we can compute its outputs for each term in the input separately and add the individual outputs to determine *y*[*n*].

Compute Impulse Response

• Since the system is time-invariant, we have

Input		Output
$\delta[n+2]$	\rightarrow	h[n + 2]
$\delta[n-1]$	\rightarrow	h[n-1]
$\delta[n-2]$	\rightarrow	h[n-2]
$\delta[n-5]$	\rightarrow	h[n - 5]

Digital Signal Processing by Yu Yajun @ SUSTech

100

Compute Impulse Response

• Likewise, as the system is linear, we have

Input Output
$$0.5\delta[n+2] \rightarrow 0.5h[n+2]$$

$$1.5\delta[n-1] \rightarrow 1.5h[n-1]$$

$$\delta[n-2] \rightarrow h[n-2]$$

$$0.75\delta[n-5] \rightarrow 0.75h[n-5]$$

• Hence, because of the linear property, we get y[n] = 0.5h[n+2] + 1.5h[n-1] - h[n-2] + 0.75h[n-5]

Compute Impulse Response

 Recall, an arbitrary input sequence x[n] can be expressed as a linear combination of delayed and advanced unit impulse sequence in the form

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

- The response of the LTI system to an input $x[k]\delta[n-k]$ will be x[k]h[n-k]
- Hence, the overall output is

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Digital Signal Processing by Yu Yajun @ SUSTech

111

Compute Impulse Response

• The impulse response h[n] completely characterizes an LTI system. "DNA of LTI"

Digital Signal Processing by Yu Yajun @ SUSTech

112

Compute Impulse Response

Mathematically,

$$y[n] = \text{LTI}\{x[n]\} = \text{LTI}\left\{\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\right\}$$
$$= \sum_{k=-\infty}^{\infty} x[k]\text{LTI}\{\delta[n-k]\} = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Digital Signal Processing by Yu Yajun @ SUSTech

113

Discrete (Linear) Convolution

$$x[n] \xrightarrow{\sum_{k=-\infty}^{\infty}} x[k]h[n-k] \equiv x[n] \otimes h[n]$$

$$x[n] \otimes h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \qquad \text{Sum of weighted and delayed impulse response}$$

$$= \sum_{k=-\infty}^{\infty} h[k]x[n-k] = h[n] \otimes x[n]$$

The above summation is defined to be the convolution of the sequences x[n] and h[n] and represented compactly as

$$y[n] = x[n] \otimes h[n]$$

An Illustrative Example

Compute the convolution of x[n] and h[n]

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[-k]$$

Digital Signal Processing by Yu Yajun @ SUSTech

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[-k]$$

$$= x[-2]h[2] + x[-1]h[1] + x[0]h[0]$$
$$+x[1]h[-1] + x[2]h[-2]$$

$$= -1 \times (-2) + 1 \times 1 + 2 \times 2 = 7$$

Digital Signal Processing by Yu Yajun @ SUSTech

117

Digital Signal Processing by Yu Yajun @ SUSTech

Digital Signal Processing by Yu Yajun @ SUSTech

119

Digital Signal Processing by Yu Yajun @ SUSTech

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[n] y[-1] = \sum_{k=-\infty}^{\infty} x[k]h[-1-k]$$

$$= x[-2]h[1] + x[-1]h[0] + x[0]h[-1]$$

$$+x[1]h[-2] + x[2]h[-3]$$

$$= x[-2]h[1] + x[-1]h[0] + x[0]h[-1] + x[1]h[-2] + x[2]h[-3]$$
$$= 1 \times 2 = 2$$

Digital Signal-Tocessing by Yu Yajun @ SUSTech

121

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[n]$$

$$y[-2] = \sum_{k=-\infty}^{\infty} x[k]h[-2-k]$$

$$= x[-2]h[0] + x[-1]h[-1] + x[0]h[-2]$$

$$+x[1]h[-3] + x[2]h[-4]$$

$$= -1 \times 1 = -1$$

Digital Signal Hocessing by Yu Yajun @ SUSTech

$$y[n] = \sum_{k=0}^{\infty} x[k]h[n-k]$$

Computation of Convolution

Digital Signal Hocessing by Yu Yajun @ SUSTech

- Fold h[k] with respect to the origin to obtain h[-k].
- Form the product of the corresponding samples of sequences h[-k] and x[k], and sum all product terms to obtain y[0].
- Shift h[-k] to the right by n samples (more specifically, shift to right by |n| samples if n>0 and shift to left by |n| samples if n<0).
- Form the product of the corresponding samples of sequences h[n-k] and x[k], and sum all product terms to obtain y[n].
- Overall, fold, shift, product, and sum

Digital Signal Processing by Yu Yajun @ SUSTech

124

123

- <u>Note</u>: The sum of indices of each sample product inside the convolution sum is equal to the index of the sample being generated by the convolution operation
 - For example, the computation of y[-3] in the previous example involves the products, x[-2]h[-1], x[-1]h[-2], x[0]h[-3], x[1]h[-4], and x[2]h[-5]
 - The sum of indices in each of these products is equal to −3
- In general, if the lengths of the two sequences being convolved are *M* and *N*, then the sequence generated by the convolution is of length *M*+*N*–1

Digital Signal Processing by Yu Yajun @ SUSTech

125

Example:

How about

$$x[n] \longrightarrow h[n-m] \qquad y_1[n]$$

$$y_1[n] = x[n] \otimes h[n-m] = \sum_{k=-\infty}^{\infty} x[k]h[n-m-k]$$

$$= y[n-m]$$

Properties of Convolution

- Communitive: $x[n] \oplus h[n] = h[n] \oplus x[n]$
- Associative: $x[n] \otimes (h[n] \otimes g[n]) = (x[n] \otimes h[n]) \otimes g[n]$
- Linear:

$$x[n] \otimes (\alpha h[n] + \beta g[n]) = \alpha x[n] \otimes h[n] + \beta x[n] \otimes g[n]$$

 Sequence shifting is equivalent to convolve with a shifted impulse

$$x[n-d] = x[n] \otimes \delta[n-d]$$

Digital Signal Processing by Yu Yajun @ SUSTech

127

Computation of LTI System Output

- In practice, if either the input or the impulse response, or both of them, are finite length, the convolution can be used to compute the output sample, as it involves a finite sum of products.
- If both the input sequence and the impulse response sequence are of infinite length, convolution can **NOT** be used to compute the output.
- For system characterized by an infinite impulse response sequence, an alternate time-domain description involving a finite sum of products have to be considered.

BIBO Stability of LTI Systems

- Recall, BIBO stability condition:
 - iff {y[n]} remains bounded for any bounded input sequence {x[n]}
- An LTI system is BIBO stable iff h[n] is absolutely summable

$$\sum_{k=-\infty}^{\infty} |h(k)| < \infty$$

Digital Signal Processing by Yu Yajun @ SUSTech

129

BIBO Stability of LTI Systems

Proof: "if" (Sufficient Condition)

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right| \le \sum_{k=-\infty}^{\infty} |h[k]x[n-k]|$$

$$= \sum_{k=-\infty}^{\infty} |h[k]| |x[n-k]|$$

$$\le B_x$$

$$\le B_x \sum_{k=-\infty}^{\infty} |h[k]| \le B_y$$

$$< \infty$$

Digital Signal Processing by Yu Yajun @ SUSTech

BIBO Stability of LTI Systems

Proof: "only if" (Necessary Condition)

suppose
$$\sum_{k=-\infty}^{\infty} |h[k]| = \infty$$
, show that for that $h[k]$, there

always exists a bounded x[n] that gives unbounded y[n].

• Let: Assume
$$h[n]$$
 is real sequence $x[n] = \frac{h[-n]}{|h[-n]|} = \text{sign}\{h[-n]\}$

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} h[k]x[-k] = \sum_{k=-\infty}^{\infty} \frac{h[k]h[k]}{|h[k]|} = \sum_{k=-\infty}^{\infty} |h[k]| = \infty$$
Digital Signal Processing by Yu Yajun @ SUSTech

BIBO Stability of LTI Systems

- Example Consider an LTI discrete-time system with an impulse response $h[n] = \alpha^n \mu[n]$
- For this system:

$$S = \sum_{n=-\infty}^{\infty} |\alpha^n| \mu[n] = \sum_{n=0}^{\infty} |\alpha|^n = \frac{1}{1-|\alpha|}, \text{ if } |\alpha| < 1$$

- Therefor $S < \infty$ if $|\alpha| < 1$ for which the system is BIBO stable.
- If $|\alpha| = 1$, the system is not BIBO stable.

Causality of LTI Systems

An LTI system is causal iff

$$h[k] = 0$$
 for $k < 0$

• Proof:
$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

= $\sum_{k=-\infty}^{-1} h[k]x[n-k] + \sum_{k=0}^{\infty} h[k]x[n-k]$

Sufficient: Since h[k] = 0 for k < 0, the first term is 0. So, $y[n_0]$ is independent of $x[n_0+1]$, $x[n_0+2]$, Necessary: The system is causal, i.e., $y[n_0]$ independent of $x[n_0+1]$, $x[n_0+2]$, ..., implying that the first term is equal to 0. Since x[n] may not be equal to 0, h(k) must be equal to 0 for k < 0

Digital Signal Processing by Yu Yajun @ SUSTech

133

Examples

- Causal LTI system
 - Accumulator: $y[n] = \sum_{l=-\infty}^{n} x[l]$ $h[n] = \mu[n]$, a causal impulse response sequence
- Non causal LTI system
 - Factor-of-2 interpolator

$$y[n] = x_u[n] + \frac{1}{2}(x_u[n-1] + x_u[n+1])$$
$$h[n] = \{0.5, \frac{1}{4}, 0.5\}$$

a non causal impulse response sequence

Simple Interconnection Schemes

Cascade Connection

• If $h_1[n] \oplus h_2[n] = \delta[n]$ system $h_1[n]$ is said to be the **inverse** of system $h_2[n]$, and vice versa.

Digital Signal Processing by Yu Yajun @ SUSTech

135

Parallel Connection

$$= h_1[n] + h_2[n]$$

$$h_2[n]$$

Analysis of Cascade and Parallel connections

Digital Signal Processing by Yu Yajun @ SUSTech

137

主观题

$$h[n] = h_1[n] + h_2[n] \otimes (h_3[n] + h_4[n])$$

$$h_1[n] = \delta[n] + \frac{1}{2}\delta[n-1]$$

$$h_2[n] = \frac{1}{2}\delta[n] - \frac{1}{4}\delta[n-1]$$

$$h_3[n] = 2\delta[n]$$

$$h_4[n] = -2\left(\frac{1}{2}\right)^n \mu[n]$$

What is the equivalent h[n]? Use d[n] to represent $\delta[n]$ if the later is not able to be keyed in.

General Difference Equation

 An important subclass of LTI system is characterized by a linear constant-coefficient difference equation of the form:

$$\sum_{m=0}^{N} b_m y[n-m] = \sum_{m=0}^{M} a_m x[n-m]$$

y[n] can be computed recursively

$$b_0 y[n] = \sum_{m=0}^{M} a_m x[n-m] - \sum_{m=1}^{N} b_m y[n-m]$$

Digital Signal Processing by Yu Yajun @ SUSTech

139

Signal-flow graph

• When b_0 is normalized to $b_0 = 1$ $y[n] = \sum_{m=0}^{M} a_m x[n-m] - \sum_{m=1}^{N} b_m y[n-m]$

Digital Signal Processing by Yu Yajun @ SUSTech

140

Classification of LTI System

- Based on Impulse Response Length
 - If h[n] is of **finite** length, then it is known as a **finite impulse response** (**FIR**) discrete time system.

$$y[n] = \sum_{k=N_1}^{N_2} h[k]x[n-k]$$

• Examples: Moving averaged filter, factor-2-interpolator

$$y[n] = \sum_{k=0}^{4} \frac{1}{5} x[n-k]$$
$$y[n] = x_u[n-1] + \frac{1}{2} (x_u[n-2] + x_u[n])$$

Digital Signal Processing by Yu Yajun @ SUSTech

141

• If *h*[*n*] is of **infinite** length, then it is know as a **infinite impulse response** (**IIR**) discrete-time system.

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

If causal (system causal, input sequence causal),

$$y[n] = \sum_{k=0}^{n} x[k]h[n-k]$$

- The class of IIR system we are concerned with is the causal system characterized by the linear constant coefficient difference equation.
- Example: accumulator

$$y[n] = \sum_{l=-\infty}^{n} x[l] = y[n-1] + x[n]$$

- Based on the Output Calculation Process
 - Non-recursive discrete time system: Computation of output samples involves only the present and past input samples. Example: FIR system.
 - **Recursive** discrete time system: Computation of output samples involves NOT ONLY the present and past input samples, but also the **past output** samples. Example: IIR system implemented using difference equation.
 - It's possible to implement an FIR system using a recursive scheme, e.g., $y[n] = y[n-1] + \frac{1}{M}(x[n] x[n-M])$

Digital Signal Processing by Yu Yajun @ SUSTech

143

- Based on the Coefficient Values
 - **Real coefficient** filters.
 - Complex coefficient filters.