AE 308: Control Theory AE 775: System Modelling, Dynamics and Control

Lecture 15: Polar Plot

Dr. Arnab Maity

Department of Aerospace Engineering Indian Institute of Technology Bombay Powai, Mumbai 400076, India

Table of Contents

Introduction

Polar Plot

Introduction - Bode Drawbacks

Drawbacks

- Bode plot consists of two graphics, which need to be interpreted together.
- However, in some cases, there is a need to see complete frequency response in a single graphic and Nyquist plot addresses this need.
- It is a plot of $\mathrm{Imag}[G(j\omega)]$ versus $\mathrm{Re}[G(j\omega)]$ in 2-D complex plane as ω varies from $-\infty$ to $+\infty$, where unity feedback is considered.
- \bullet Polar plot is the plot from 0 to ∞ and hence is a subset of the Nyquist plot.

Introduction

• The Polar plot is a plot, drawn between the magnitude and the phase angle of $G(j\omega)$ by varying ω from 0 to ∞

$$G(j\omega) = |G(j\omega)| \angle G(j\omega)$$

Figure: Source - "https://www.tutorialspoint.com/"

Table of Contents

Introduction

Polar Plot

Polar Plot - Construction

Drawing Polar Plots

- Substitute, $s=j\omega$ in the open loop transfer function
- ullet Write the expressions for magnitude and the phase of $G(j\omega)$
- Find the starting magnitude and the phase of $G(j\omega)$ by substituting $\omega=0$.
- The polar plot starts with this magnitude and the phase angle.
- Find the ending magnitude and the phase of $G(j\omega)$ by substituting $\omega=\infty.$
- The polar plot ends with this magnitude and the phase angle.
- Check whether the polar plot intersects the real axis, by making the imaginary term of $G(j\omega)$ equal to zero and find the value(s) of ω .

Polar Plot - Construction

Drawing Polar Plots Contd..

- Check whether the polar plot intersects the imaginary axis, by making real term of $G(j\omega)$ equal to zero and find the value(s) of ω
- For drawing polar plot more clearly, find the magnitude and phase of $G(j\omega)$ by considering the other value(s) of ω

Example: Consider the open loop transfer function with unity feedback and draw its polar plot

$$G(s) = \frac{1}{1+2s}$$

Example: Consider the open loop transfer function with unity feedback and draw its polar plot

$$G(s) = \frac{1}{1+2s}$$

Solution:

• Substitute, $s=j\omega$ in the open loop transfer function,

$$G(j\omega) = \frac{1}{1+2j\omega} = \frac{1}{1+4\omega^2} + j\frac{-2\omega}{1+4\omega^2}$$

• The magnitude of the open loop transfer function is,

$$|G(j\omega)| = M = \frac{1}{\sqrt{4\omega^2 + 1}}$$

• The phase angle of the open loop transfer function is,

$$\angle G(j\omega) = \phi = -\tan^{-1} 2\omega$$

• The start of plot i.e. $\omega = 0$,

$$M = \frac{1}{\sqrt{1+0}} = 1, \qquad \phi = -\tan^{-1}0 = 0$$

• The end of plot i.e. $\omega = \infty$,

$$M = \frac{1}{\sqrt{1+\infty}} = 0, \qquad \phi = -\tan^{-1} \infty = -90^{\circ}$$

• Where the plot crosses the real axis, i.e. $\operatorname{Imag}(G(j\omega))=0$,

$$\frac{-2\omega}{1+4\omega^2} = 0 \implies \omega = 0, \infty$$

• Where the plot crosses the imaginary axis, i.e. $Re(G(j\omega)) = 0$,

$$\frac{1}{1+4\omega^2} = 0 \implies \omega = \infty$$

• At $\omega = 0.5$,

$$M = \frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}}, \qquad \phi = -\tan^{-1}1 = -45^{\circ}$$

Figure: Lecture Notes - "Analysis and Synthesis of Linear Control System", University of Saskatchewan

Example: Obtain the polar plot of the following transfer function with unity feedback

$$G(j\omega) = \frac{1}{1 + 2\zeta \left(j\frac{\omega}{\omega_n}\right) + \left(j\frac{\omega}{\omega_n}\right)^2} \quad \text{for } \zeta > 0$$

Example: Obtain the polar plot of the following transfer function with unity feedback

$$G(j\omega) = \frac{1}{1 + 2\zeta \left(j\frac{\omega}{\omega_n}\right) + \left(j\frac{\omega}{\omega_n}\right)^2} \quad \text{for } \zeta > 0$$

Solution:

On simplyfying,

$$G(j\omega) = \frac{1}{\left(1 - \frac{\omega^2}{\omega_n^2}\right) + 2\zeta\left(j\frac{\omega}{\omega_n}\right)}$$

Magnitude of system is given by,

$$|G(j\omega)| = M = \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + 4\left(\frac{\zeta\omega}{\omega_n}\right)^2}}$$

• Phase angle of system is given by,

$$\angle G(j\omega) = \phi = -\tan^{-1}\frac{2\zeta\left(\frac{\omega}{\omega_n}\right)}{\left(1 - \frac{\omega^2}{\omega_n^2}\right)}$$

• At $\omega = 0$,

$$M=1, \quad \phi=0^{\circ}$$

• At $\omega = \infty$,

$$M = 0, \quad \phi = -180^{\circ}$$

• At $\omega = \omega_n$,

$$M = \frac{1}{2\zeta}, \quad \phi = -90^{\circ}$$

Figure: Source - "Modern Control Engineering" by Katsuhiko Ogata

Polar Plot - Observations

What do you observe?

Polar Plot - Observations

Observations

- \bullet For the overdamped case, as ζ increases well beyond unity, the $G(j\omega)$ locus approaches a semicircle.
- This may be seen from the fact that, for a heavily damped system, the characteristic roots are real, and one is much smaller than the other.
- Since, for sufficiently large ζ , the effect of the larger root (larger in the absolute value) on the response becomes very small, the system behaves like a first-order one.

Example: Obtain the polar plot of the following transfer function with unity feedback

$$G(j\omega) = \frac{e^{-j\omega L}}{1 + j\omega T}$$

Example: Obtain the polar plot of the following transfer function with unity feedback

$$G(j\omega) = \frac{e^{-j\omega L}}{1 + j\omega T}$$

Solution:

Magnitude of system is given by,

$$|G(j\omega)| = M = \frac{1}{\sqrt{1 + T^2 \omega^2}}$$

• Phase angle of system is given by,

$$\angle G(j\omega) = \phi = -\omega L - \tan^{-1} \omega T$$

 The magnitude decreases from unity monotonically and the phase angle also decreases monotonically and indefinitely, the polar plot of the given transfer function is a spiral

Figure: Source - "Modern Control Engineering" by Katsuhiko Ogata

Polar Plot - Features

Features

- Type 0 Systems
 - The starting point of the polar plot (which corresponds to $\omega=0$) is finite and is on the positive real axis
 - The terminal point, which corresponds to $\omega=\infty$, is at the origin, and the curve is tangent to one of the axes.

Figure: Source - "Modern Control Engineering" by Katsuhiko Ogata

Polar Plot - Features

Features

- Type 1 Systems
 - The $j\omega$ term in the denominator contributes -90° to the total phase angle of $G(j\omega)$ for $0\leq\omega\leq\infty$
 - At $\omega=0$, the magnitude of $G(j\omega)$ is infinity, and the phase angle becomes -90° .
 - At $\omega=\infty$, the magnitude becomes zero, and the curve converges to the origin and is tangent to one of the axes.

Figure: Source - "Modern Control Engineering" by Katsuhiko Ogata

Polar Plot - Features

Features

- Type 2 Systems
 - The $(j\omega)^2$ term in the denominator contributes -180° to the total phase angle of $G(j\omega)$ for $0\leq\omega\leq\infty$
 - At $\omega=0$, the magnitude of $G(j\omega)$ is infinity, and the phase angle becomes -180° .
 - At $\omega=\infty$, the magnitude becomes zero, and the curve is tangent to one of the axes.

Figure: Source - "Modern Control Engineering" by Katsuhiko Ogata

Polar Plots of Simple Transfer Functions

Figure: Source - "Modern Control Engineering" by Katsuhiko Ogata

Polar Plots of Simple Transfer Functions

Figure: Source - "Modern Control Engineering" by Katsuhiko Ogata

References 1

- Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini: "Feed-back Control of Dynamic Systems", Pearson Education, Inc., Upper Saddle River, New Jersey, Seventh Edition, 2015.
- Katsuhiko Ogata: "Modern Control Engineering", Pearson Education, Inc., Upper Saddle River, New Jersey, Fifth Edition, 2010.
- Farid Golnaraghi and Benjamin C. Kuo: "Automatic Control Systems", John Wiley & Sons, Inc., New Jersey, Ninth Edition, 2010.
- Ashok Joshi: "System Modeling Dynamics and Control", Lecture Notes, IIT Bombay, Mumbai, 2019.