Logistic Regression

TOTAL POINTS 5

1. Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.4. This means (check all that apply):

1 point

- Our estimate for $P(y = 0 | x; \theta)$ is 0.4.
- Our estimate for $P(y = 1|x; \theta)$ is 0.6.
- Our estimate for $P(y = 1 | x; \theta)$ is 0.4.
- Our estimate for $P(y = 0 | x; \theta)$ is 0.6.
- 2. Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2).$

1 point

\boldsymbol{x}_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

- Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2)$) could increase how well we can fit the training data.
- igspace At the optimal value of heta (e.g., found by fminunc), we will have $J(heta) \geq 0$.
- Adding polynomial features (e.g., instead using $h_\theta(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2) \text{) would increase } J(\theta) \text{ because we are now summing over more terms.}$
- If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(x^{(i)}) > 1$.
- 3. For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) y^{(i)}) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

1 point

- lacksquare $\theta := heta lpha rac{1}{m} \sum_{i=1}^m \left(h_{ heta} oldsymbol{x}^{(i)}
 ight) y^{(i)} ig) x^{(i)}.$
- $\theta := \theta \alpha \frac{1}{m} \sum_{i=1}^{m} \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} y^{(i)} \right) x^{(i)}.$

- 4. Which of the following statements are true? Check all that apply.

1 point

- For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).
- Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.
- igspace The cost function $J(\theta)$ for logistic regression trained with $m\geq 1$ examples is always greater than or equal to zero.
- igwedge The sigmoid function $g(z)=rac{1}{1+e^{-z}}$ is never greater than one (>1).

O Figure:

O Figure:

O Figure:

$$x_2$$
 $y = 0$
 $y = 1$
 $y = 1$

Figure:

