M5218AL/P/FP

DUAL LOW-NOISE OPERATIONAL AMPLIFIERS (DUAL POWER SUPPLY TYPE)

DESCRIPTION

The M5218 are semiconductor integrated circuits designed for a low noise preamplifier in audio equipment and a general-purpose operational amplifier in other electronic equipment. Two low noise operational amplifier circuits displaying internal phase-compensated high gain and low distortion are contained in an 8-pin SIP, DIP or FP for application over a wide rage as a general-purpose dual amplifier in general electronic equipment.

The devices have virtually the same characteristics as the 4557, 4558, 4559 and 741 operational amplifiers.

The units can also be used as a single power supply type and amplifier in portable equipment. It is also suitable as a headphone amplifier because of its high load current.

FEATURES

APPLICATION

General-purpose amplifier in stereo equipment, tape decks, and radio stereo cassette recorders; active filters, servo amplifiers, operational circuits in other general electronic equipment.

RECOMMENDED OPERATING CONDITINONS

Supply voltage range $\pm 2 \sim \pm 16 \text{V}$ Rated supply voltage $\pm 15 \text{V}$

ABSOLUTE MAXIMUM RATINGS ($T_a=25$ °C, unless otherwise noted)

Symbol	Parameter	Conditions Ratings	Unit
V _{cc}	Supply voltage	±18	V
ILP	Load current	±50	mA
V _{id}	Differential input voltage	±30	V
Vic	Common input voltage	±15	V
Pd	Power dissipation	800(SIP)/625(DIP)/440(FP)	mW
Kθ	Thermal dirating	$T_a \ge 25^{\circ}$ 8(SIP)/6.25(DIP)/4.4(FP)	mW/℃
Topr	Ambient temperature	-20~+75	°C
T _{stg}	Storage temperature	_55~+125	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=±15V)

Symbol	Parameter			Limits			
		Test conditions	Min.	Тур.	Max.	Unit	
Icc	Circuit current	V _{in} =0		3.0	6.0	mA	
V _{IO}	Input offset voltage	R _S ≤10kΩ		0.5	6.0	mV	
l _{io}	Input offset current			5	200	nA	
l _{iB}	Input bias current				500	nA	
Rin	Input resistance		0.3	5		МΩ	
Gvo	Open loop voltage gain	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	86	110		dB	
	Maximum output voltage	R _L ≥10kΩ	±12	±14		\ \	
V _{OM}		R _L <u>≥</u> 2kΩ	±10	±13			
V _{CM}	Common input voltage range		±12	±14		٧	
CMRR	Common mode rejection ratio	R _S ≦10kΩ	70	90		dB	
SVRR	Sypply voltage	R _S ≦10kΩ		30	150	μV/V	
Pd	Power dissipation			90	180	mW	
SR	Slew rate	$G_V=0$ dB, $R_L=2k\Omega$		3.0		V/μs	
f _T	Gain bandwidth product			7		MHz	
V _{NI}	Input referred noise voltage	R _S =1kΩ, BW:10Hz~30kHz		2.0		μVrms	

TYPICAL CHARACTERISTICS

TERMAL DERATING (MAXIMUM RATING)

VOLTAGE GAIN VS. FREQUENCY RESPONSE

APPLICATION EXAMPLES

(1) Stereo Equalizer amplifier circuit

TYPICAL CHARACTERISTICS (Vcc=±15V, RIAA)

- $\cdot G_v = 35.6 dB(f=1kHz)$
- \cdot V_{NI}=1/4</sub>Vrms(R_S=1k Ω , BW=20Hz \sim 30kHz)
- · Signal-to-noise=72.5dB (IHF-A network, shorted input, 2.5mVrms input sensitivity)
- THD=0.0015%(f=1kHz, V_O=3Vrms)

TOTAL HARMONIC DISTORTION VS. OUTPUT VOLTAGE

OUTPUT VOLTAGE Vo (Vrms)

Left channel circuit constants are identical to those of right channel. C_{B1}, C_{B2}: Capacitors for buzz prevention, use if required. Ro : Resistor used to prevent parasitic oscillation for capacitive loads and current limiting with shorted and other abnormal load conditions.

OUTPUT NOISE VOLTAGE VS. SIGNAL SOURCE RESISTANCE

SIGNAL SOURCE RESISTANCE R_S (Ω)

SIGNAL-TO-NOISE RATIO VS. SIGNAL SOURCE RESISTANCE

SIGNAL SOURCE RESISTANCE R_S (Ω)

(2) High S / N stereo DC ICL equalizer

Left channel circuit constants are identical to those of right channel.

TYPICAL CHARACTERISTICS (Vcc=±15V, RIAA)

- Signal-to-noise=72.5dB (IHF-A network, shorted input, 2.5mVrms input sensitivity)
- · V_{NI} =0.77 μ Vrms(R_S=5.1k Ω , BW=5Hz \sim 100kHz)
- \cdot G_v=35.6dB(f=1kHz)

(3) Headphone amplifier

(Output resistance R_O is made the parameter) POWER OUTPUT / POWER DISSIPATION VS. SUPPLY VOLTAGE

Capacitance : F

Recomm Symbol A A1 A2 B B C Detail F Detail F	[EIAJ Package Code SOP8-P-225-1.27	JEDEC Code	Weight(g)	Lead Material	
Recomm Symbo A A1 A2 b C D E E E D D Detail F	ŀ	SOP8-P-225-1.27	_	0.07	Cu Alloy	
12		# # 		A A		Recomm $ \begin{array}{c c} \hline A_1 \\ A_2 \\ b \\ \hline C \\ \hline D \\ E \\ \hline e \\ HE \\ L \\ L_1 \\ C \\ \hline y \\ \theta \\ b2 \\ \hline $

Recommended Mount Pad

Cymbol	Dimension in Millimeters				
Symbol	Min	Nom	Max		
Α	_	_	1.9		
A1	0.05	_	-		
A2	_	1.5	-		
b	0.35	0.4	0.5		
С	0.13	0.15	0.2		
D	4.8	5.0	5.2		
E	4.2	4.4	4.6		
е	_	1.27	ı		
HE	5.9	6.2	6.5		
L	0.2	0.4	0.6		
L1	_	0.9	ı		
у	_	_	0.1		
θ	0°	_	10°		
b2	_	0.76	_		
e1		5.72			
l 2	1.27	_	-		