Exercise Sheet 14

Discrete Mathematics, 2020.11.10

- 1. ([R], Page 689, Exercise 2(a)(b)(d)) Does each of these lists of vertices form a path in the following graph? Which paths are simple? Which are circuits? What are the lengths of those that are paths? (只需给出答案无需证明)
 - a)a,b,e,c,b
 - b)a, d, a, d, a
 - d)a, b, e, c, b, d, a

2. ([R], Page 689, 6) How many connected components does each of the graphs in Exercises 3-5 have? For each graph find each of its connected components. (只需给出答案无需证明)

4.

3. ([R], Page 690, 14(a)(b)(c)) Find the strongly connected components of each of these graphs. (只需给出答案无需证明)

- 4. ([R], Page 692, Exercise 63) Show that a simple graph G is bipartite if and only if it has no circuits with an odd number of edges.
- 5. Suppose G = (V, E) is a subgraph of $G' = (V, E \cup \{e_0\})$ ($e_0 \notin E$ is an additional edge) and both G and G' are undirected graphs. Prove: if e_0 connects u and v but u is not connected to v in G, then $[u]_{conn(G')} = [v]_{conn(G')} = [u]_{conn(G)} \cup [v]_{conn(G)}$.

6. (Optional Homework, 2 additional points)

Matriods. A finite matroid is an ordered pair (E, \mathcal{I}) , where E is a finite set and $\mathcal{I} \subseteq 2^E$ is a collection of subsets of E such that

- $\emptyset \in \mathcal{I}$, and
- for any sets $A \subseteq B \subseteq E$, if $B \in \mathcal{I}$ then $A \in \mathcal{I}$, and
- for any sets $A, B \in \mathcal{I}$, if |A| < |B| then there exists $x \in B \setminus A$ such that $A \cup \{x\} \in \mathcal{I}$.

Disjoint Paths. Let G = (V, E) be a(n undirected) simple graph. Given a path $\rho = x_0, e_1, \ldots, x_{n-1}, e_n, x_n$ in G, we denote by $Edges(\rho)$ the set of all edges appearing in ρ , i.e., $Edges(\rho) := \{e_0, \ldots, e_n\}$. We say that two paths ρ, ρ' in G are disjoint if $Edges(\rho) \cap Edges(\rho') = \emptyset$.

Independent Sets of Vertices. Let G = (V, E) be a(n undirected) connected simple graph such that $|V| \geq 2$. We assume a designated vertex v^* called the source vertex. A set $U \subseteq V \setminus \{v^*\}$ of vertices is called independent if $U = \{u_1, \ldots, u_k\}$ (k can be zero) and there are k pairwise-disjoint paths ρ_1, \ldots, ρ_k such that each path ρ_i connects v^* and u_i (as endpoints). Define \mathcal{I} to be the set of all independent sets of vertices. Show that (V, \mathcal{I}) is a finite matroid. (选版题可以不做)