Banco de Dados

Aulas Práticas - Laboratório 2

Profa Cristina Verçosa Pérez Barrios de Souza cristina.souza@pucpr.br

Tópicos

- > Base de Dados
- > Criando Tabelas
- > Povoando Tabelas
- > Integridade de dados

Tabelas

- > Definição
 - Coleção de dados sobre uma entidade específica (pessoal, local, coisa), que possui número discreto de atributos nomeados (ex. quantidade, tipo)
 - Geralmente, são relacionadas com outras tabelas

Tipos de Dados para Armazenamento

Dados Temporais			
Tipo Formato padrão Valores permitidos		Valores permitidos	
Date	AAAA-MM-DD	1000-01-01 a 9999-12-31	
Datetime	AAAA-MM-DD HH:MI:SS	1000-01-01 00:00:00 a 9999-12-31 23:59:00	
Timestamp	AAAA-MM-DD HH:MI:SS	1970-01-01 00:00:00 a 2037-12-31 23:59:00	
Year	AAAA	1901 a 2155	
Time	HHH:MI:SS	-838:59:59 a 838:59:59	

Dados de Texto Não-Binário			
Numero máximo de byte			
255			
65.535			
16.777.215			
4.294.967.295			
65.535			
255			

Dados de Texto Binário			
Tipo de texto	Numero máximo de byte:		
Tinyblob	255		
Blob	65.535		
Mediumblob	16.777.215		
Longblob	4.294.967.295		
Varbinary	65.535		
Binary	255		

Dados Numéricos Inteiros				
Tipo	Escopo com sinal	Escopo sem sinal		
Tinyint	-128 a 127	0 a 255		
Smallint	-32.768 a 32.767	0 a 65.535		
Mediumint	-8.388.608 a 8.388.607	0 a 16.777.215		
Int	-2.147.483.648 a 2.147.483.647	0 a 4.294.967.295		
Bigint -9.223.372.036.854.775.808 a 9.223.372.036.854.775.807		0 a 18.446.744.073.709.551.615		

Dados Numéricos (Bit e Boolean)			
Tipo	Numero máximo de bytes		
bit	1		
bool ou boolean	1		

Dados Numéricos de Ponto Flutuante e Ponto Fixo			
Tipo Escopo numérico			
Float(p,e)	-3,402823466E+38 a -1,175494351E-38 e de 1.175494351E-38 a 3,402823466E+38		
Double(p,e)	-1,7976931348623157E+308 a -2,2250738585072014E-308 e de 2,2250738585072014E-308 a 1.7976931348623157E+308		
Decimal(p,e)	-1,7976931348623157E+308 a -2,2250738585072014E-308 e de 2,2250738585072014E-308 a 1.7976931348623157E+308		

PRÁTICA FORMATIVA

Trabalho em equipe

1. Realize os exercícios indicados.

Formativa: Construa os modelos

 Na ferramenta brModelo, construa o seguinte modelo entidade-relacionamento (MER), e seu respectivo modelo lógico (relacional):

Diagrama Conceitual = MER

No modelo conceitual, a chave estrangeira (FK) fica implícita! (a FK não aparece) Diagrama Lógico = Modelo Relacional Tipos de Dados das Entidades

Empregado

Matricula: INT

Nome: VARCHAR(100)

CPF: VARCHAR(15)

Dt_nascimento: DATE

Dependente

ID_Dependente: INT

Nome: VARCHAR(100)

Dt_nascimento: DATE

* FK do relacionamento precisa aparecer no diagrama.

No modelo relacional, a chave estrangeira (FK) fica explícita! (a FK tem que aparecer no modelo)

Formativa: Implemente o modelo lógico

Na ferramenta
 brModelo, certifique se que o
 relacionamento entre
 Empregado e
 Dependente foi
 construído
 corretamente:

Formativa: Implemente o modelo lógico

- Na ferramenta
 brModelo, gere o
 modelo físico (SQL)
- Crie um database
 LAB02_Formativa que irá manter as tabelas
 Empregado e
 Dependente
- Execute o SQL para criar as tabelas indicadas

Modelo Físico (SQL)


```
1. /* Lógico_1: */
 3. CREAT TABLE Empregado (
      Matricula INT PRIMARY KEY,
      Nome VARCHAR(100),
      CPF VARVHAR(15),
      Dt_nascimento DATE
10. CREAT TABLE Dependente (
      ID_Dependente INT PRIMARY KEY,
      Nome VARCHAR(100),
      Dt_nascimento DATE,
      fk_Empregado_Matricula INT
15.);
16.
17. ALTE TABLE Dependente ADD CONSTRAINT FK_Dependente_2
      FOREIGN KEY (fk_Empregado_Matricula)
      REFERENCES Empregado (Matricula)
      ON DELETE CASCADE:
```


Formativa: Faça a inserção

Com as tabelas
 Empregado e
 Dependente
 construídas no
 MySQL, faça a
 inserção dos valores:

Tabelas preenchidas

	Matricula	Nome	CPF	Dt_nascimento
>	123	Maria Silva	123456789	1990-02-10
	234	Rafael Santos	234567890	1985-05-20
	345	Antônio Castro	345678901	2000-08-11

	ID_Dependente	Nome	Dt_nascimento	fk_Empregado_Matricula
>	1	Tiaguinho	2020-10-12	123
	2	Aninha	2018-05-03	123
	3	Joãozinho	2015-12-01	234

Formativa: Faça consultas

> Produto Cartesiano

 Problema: relaciona todos os registos de uma tabela com todos os registros de outra tabela

O Produto Cartesiano sozinho mistura todos os dados, criando informação INCORRETA!!!

SELECT *

27 •

28

29

Formativa: Faça consultas

FROM Empregado AS E, Dependente AS D

- > Produto Cartesiano com condição PK x FK
 - Relaciona corretamente os registos que estão relacionados por suas respectivas Chave Primária (PK) e Chave Estrangeira (FK)

Formativa: Faça consultas

- > Produto Cartesiano com condição PK x FK
 - Podemos indicar quais campos (atributos) são necessários em uma consulta:

Formativa: conclusões

- > Nesta formativa, vimos como:
 - Usar o Produto Cartesiano para combinar os dados de mais de uma tabela.

Exemplo: SELECT * FROM Empregado AS E, Dependente AS D

 Usar Chave Primária (PK) e Chave Estrangeira (FK) para selecionar os dados que realmente têm relacionamento.

```
Exemplo: SELECT * FROM Empregado AS E, Dependente AS D

WHERE E.Matricula = D.fk_Empregado_Matricula;

PK

FK
```

PRÁTICA SOMATIVA

Trabalho em equipe para entrega.

- 1. Realize os exercícios indicados.
- 2. Indique qual o número do exercício e salve o resultado (comandos e respectivas imagens da prática realizada) em um arquivo Word.
- 3. Após todos os exercícios, salve o Word como PDF.
- 4. Entregue o PDF.

Prática 2.1: Criação de Database

CRIAÇÃO DE DATABASE

> Use o código abaixo:

```
CREATE DATABASE LAB_02;
USE LAB_02;
```

2.1 - RESPONDER:

- 1. Para que serve o comando SQL: **USE**
- Como devemos usar o comando DROP para eliminar totalmente o database LAB_02 criado? Dê um exemplo e execute para verificar seu resultado.
- 3. Após eliminar o **LAB_02**, crie novamente este database para as próximas práticas.

EXECUTE O CÓDIGO

> Pressione F5 ou clique em Executar, como mostra a Figura:

Prática 2.2: Criando Tabelas

- > Colunas / Campos / Atributos "NULOS"
 - Todos os tipos de dados podem ser declarados como
 - NULL permite entrada nula / vazia.
 - NOT NULL não permite entrada nula / vazia.
 - Recomendação: devemos evitar permissão NULL em colunas
 - O tratamento do NULL acrescenta uma lógica extra ao SGBD, que pode reduzir o desempenho da atualização

Prática 2.2: Criando Tabelas

CRIAÇÃO DE DATABASE

> Execute o código abaixo:

```
CREATE TABLE Disciplina

(
id_discip int NOT NULL,
nome varchar(50) NOT NULL,
ementa text,
creditos int NOT NULL,
periodo int NOT NULL
)
```

RESPONDER:

- 1. O que significa quando não indicamos que um campo (atributo) é **NOT NULL**?
- Para que serve o comando SQL: ALTER TABLE ... ADD CONSTRAIN?
- 3. O que significa a restrição de **PRIMARY KEY**? Para que ela serve na prática?

> Adicionando Chave Primária (PK)

(b) ALTER TABLE Disciplina ADD CONSTRAINT PRIMARY KEY (ID_discip);

Integridade

- > Restrições (Constrains)
 - Forma fácil e poderosa de impor regras nas tabelas de um BD
- > Constrain Primary Key (restrição de chave primária)
 - Chave primária: uma ou mais colunas que identificam unicamente uma linha/tupla/registro
 - Construída com a restrição primary key
 - Modelagem Correta:
 - > Sempre declarar uma restrição de primary key por tabela
 - Se utilizar Chave Primária Composta, então todas as colunas que fazem parte da chave primária devem ser declaradas como NOT NULL

Prática 2.3: Povoando Tabelas

- > Adiciona uma ou mais linhas a uma tabela ou exibição no SQL Server.
 - Em sua database de trabalho, execute:

```
(a) INSERT INTO disciplina VALUES (1, 'Banco de Dados', NULL, 4, 2);

SELECT * FROM disciplina;
```

```
(b) INSERT INTO disciplina VALUES (1, 'Redes', 'Básico de redes de computadores', 4, 3);

SELECT * FROM disciplina;
```

- 1. Dos comandos passados, que comando não funcionou e como ele foi arrumado?
- 2. Qual o comando para visualizar as inserções para ver se elas estão corretas?
- 3. Crie e execute um comando para inserir mais 5 registros / linhas na tabela disciplina.
- 4. Apresente todos registros inseridos na tabela **disciplina**.

Prática 2.3: Povoando Tabelas

- > Criando e povoando nova tabela.
 - Em sua database de trabalho, execute:

- 1. O que significa **AUTO_INCREMENT PRIMARY KEY** e para que ela serve?
- O que significa GENERATED ALWAYS AS (SUBSTRING_INDEX(nome, " ", 1)) e para que ele server.
- 3. Um **atributo derivado** é salvo em disco? Qual a sua utilidade?

```
SELECT DATE_FORMAT (curdate(), '%d/%m/%y') AS Data; -- retorna a data atual, formatada dia/mês/ano
INSERT INTO Professor (nome, dt_nascimento)
VALUES ('Maria das Flores', STR_TO_DATE('23/12/1990', '%d/%m/%Y')); -- converte string para data
-- Apresenta os dados da tabela
SELECT * FROM Professor;

SELECT nome, dt_nascimento AS 'Data de Nascimento',
TIMESTAMPDIFF(YEAR, dt_nascimento, CURDATE()) AS Idade
FROM Professor;
```


Prática 2.3: Povoando Tabelas

- > Múltiplos INSERTs na tabela.
 - Em sua database de trabalho, execute:

```
(e) INSERT INTO Professor (nome, dt_nascimento) VALUES
  ('José da Silva', STR_TO_DATE('20/02/1985', '%d/%m/%Y')),
  ('Paulo Soares', STR_TO_DATE('10/12/1995', '%d/%m/%Y')),
  ('Ana Rita', STR_TO_DATE('20/02/2000', '%d/%m/%Y'));

SELECT nome, dt_nascimento AS 'Data de Nascimento',
  TIMESTAMPDIFF(YEAR, dt_nascimento, CURDATE()) AS Idade
  FROM Professor;
```

- 1. O que significa STR_TO_DATE('20/02/1985', '%d/%m/%Y') e para que este comando foi utilizado?
- 2. O que significa **AS** e para que server?
- 3. O que o comando TIMESTAMPDIFF(YEAR, dt_nascimento, CURDATE()) está realizando?

Integridade

> Constrain Foreign Key

- Recurso de integridade referencial declarativa
- Chave Externa ou Estrangeira: uma ou mais colunas em uma tabela cujos valores devem ser iguais a uma primary key
- Construída com a restrição foreign key
- Controle:
 - > O SGBD restringe a inserção ou modificação de um registro em uma tabela que é referenciado em outra tabela

Constrain Unique

- Chave Candidata: coluna exclusiva que pode vir a ser usada como chave primária
- Construída com a restrição unique
- Na prática:
 - > Uma das colunas de valor exclusivo em uma tabela é definida como primary key, e
 - > As outras colunas exclusivas são definidas como unique

> Constrain Check

- Imposição de integridade de domínio: garante que apenas entradas de tipos, valores ou intervalos definidos possam existir para uma determinada coluna
- Construída com a restrição check

Prática 2.4: Integridade Referencial

- > Criando nova tabela
 - Em sua database de trabalho, execute:

- 1. O que é e para que servem os comandos:
 - a) CHECK (semestre BETWEEN 1 AND 2)
 - b) UNIQUE (ano, semestre, id_discip, id_prof)
- 2. Apresente os modelos conceitual (MER) e lógico (relacional) das tabelas **Professor**, **Disciplina** e **Turma**.

```
CREATE TABLE Turma
    id turma int AUTO INCREMENT PRIMARY KEY, -- PK auto-incrementada:
(a)
           int NOT NULL,
    ano
    semestre int NOT NULL,
    id discip int NOT NULL,
    id prof
               int NOT NULL,
    CONSTRAINT CK Sem CHECK (semestre BETWEEN 1 AND 2), -- semestre
    CONSTRAINT UN_Ofeta UNIQUE (ano, semestre, id_discip, id_prof), -- Prof x Disc x Ano x Semestre
    CONSTRAINT FK_Prof FOREIGN KEY (id_prof) REFERENCES Professor (id_prof), -- FK Professor
    CONSTRAINT FK Discip FOREIGN KEY (id discip) REFERENCES Disciplina(id discip) -- FK Disciplina
    );
    SELECT * FROM Turma;
```


Prática 2.4: Integridade Referencial

- > Povoando nova tabela
 - Em sua database de trabalho, execute:

```
INSERT INTO Turma (ano, semestre, id_prof, id_discip) VALUES
(2020, 1, 2, 2),
(2020, 2, 2, 2),
(2021, 1, 3, 1);

SELECT * FROM Turma;
```

```
(c) INSERT INTO Turma (ano, semestre, id_prof, id_discip) VALUES (2020, 1, 2, 2);
```

```
(d) INSERT INTO Turma (ano, semestre, id_prof, id_discip) VALUES (2020, 5, 2, 2);
```

- Nos comandos passados, que comando não funcionou e como ele foi arrumado?
- Apresente todos registros de cada uma das tabelas Professor,
 Disciplina e Turma.
- 3. Apenas vendo o conteúdo das tabelas, deduza que professores lecionam quais disciplinas e quando.

Prática 2.4: Integridade Referencial

- > Buscando dados nas tabelas relacionadas
 - Em sua database de trabalho, execute:

```
(a) SELECT *
FROM Turma, Professor, Disciplina -- produto cartesiano
```

```
(b) SELECT *
FROM Turma AS t, Professor AS p, Disciplina AS d -- prod. Cartesiano
WHERE t.id_discip = d.id_discip AND p.id_prof = t.id_prof
```

```
SELECT t.ano, t.semestre, p.nome, d.nome
FROM Turma AS t, Professor AS p, Disciplina AS d
WHERE t.id_discip = d.id_discip AND p.id_prof = t.id_prof
ORDER BY t.ano ASC, t.semestre DESC
```

```
SELECT p.nome, d.nome, t.ano
FROM Turma AS t, Professor AS p, Disciplina AS d
WHERE t.id_discip = d.id_discip AND
    p.id_prof = t.id_prof AND
    p.nome LIKE 'j%' -- nome começa com j
```

AS: é um *alias* (apelido) para uma coluna ou tabela.

WHERE: indica a **condição** que será utilizada para trazer os dados selecionados.

ORDER BY: após o WHERE, indica a ordenação das linhas retornadas.

ASC: ordem ascendente **DESC**: ordem descendente

LIKE: determina se uma cadeia de caracteres corresponde a um padrão especificado.

%: máscara para qualquer caractere de qualquer tamanho

- 1. Explique cada um dos comandos passados e seus **resultados** obtidos.
- 2. Explique as diferenças entre (a) e (b)

Prática 2.5: Integridade de Valores

- > Povoando nova tabela criada com Regras de Negócio (constraints)
 - Em sua database de trabalho, execute:

```
(b) INSERT INTO Colaborador VALUES (2000, 'Josué',1500.56);
```

```
(c) INSERT INTO Colaborador (id_emp, salario) VALUES (300, 3500.56);
```

```
(d) INSERT INTO Colaborador VALUES (400, 'Antônio',350.56);
```

- Nos comandos passados, que comando não funcionou e como ele foi arrumado?
- 2. Exiba o conteúdo da tabela com as inserções corrigidas

Referência Bibliográfica

- > Sistema de Banco de Dados
 - Abraham Silberschatz, Henry F. Korth, S. Sudaarshan
- > Referência do SQL
 - Chapter 13 SQL Statements:
 https://dev.mysql.com/doc/refman/8.0/en/sql-statements.html
 - W3Schools: https://www.w3schools.com/mysql/mysql drop db.asp
- > Documentação Técnica do MySQL
 - MySQL 8.0 Reference Manual
 - https://dev.mysql.com/doc/refman/8.0/en/