

PRESENTED BY:

Erik Elbieh, Security Consultant & Researcher Palindrome Technologies

We're not in HTTP anymore: Investigating WebSocket Server Security

Talk Summary

- 1. How WebSockets Work
- 2. Summary of WebSockets Research
- 3. New STEWS tool(s)

Erik Elbieh's Brief Bio

- Security Researcher and Consultant at <u>Palindrome Technologies</u>
 - Pen testing telecom systems, web apps, Kubernetes, and more
- Previously a Security Engineer at General Motors
 - Secured vehicle modules, Bluetooth specialist
- OSCP certified since 2019
- Graduated from Columbia University and Bard College at Simon's Rock
- More at <u>erikelbieh.com</u>

Part 1: How WebSockets Work

WebSocket Protocol History

- Created in 2010-2011 (RFC6455)
- Provides a low-overhead web protocol for real-time communications
- WebSocket servers are often <u>distinct</u> from HTTP servers

WebSocket vs. HTTP

WebSocket vs. HTTP

- WebSockets don't use the request/response approach that HTTP does. WebSockets remain open until closed. This allows webpage updates to happen without refreshing the webpage (alternative to XHR, etc.)
 - Note: Proxies are usually built for the request/response approach HTTP uses and can have WebSockets vulnerabilities
- HTTP has headers (AKA overhead) with every request/response, but after a WebSocket is started, there is no similar header. Lower overhead is good for frequent back-and-forth real time communication.

WebSocket Stack

WebSocket Frame

Any Protocol

(socket-io, engine-io, STOMP, WAMP, MQTT, etc.)

WebSocket (!= HTTP)

TCP/IP

```
F|R|R|R|
         opcode | M | Payload len |
                                     Extended payload length
I|S|S|S|
          (4)
                                               (16/64)
                        (7)
                                    (if payload len==126/127)
N V V V V
  1|2|3|
     Extended payload length continued, if payload len == 127
                                Masking-key, if MASK set to 1
Masking-key (continued)
                                           Payload Data
                     Payload Data continued ...
                     Payload Data continued ...
```


WebSockets Higher-Level Protocols

- Some protocols are (or can be) implemented on top of WebSockets:
 - Socket.io
 - Engine.io
 - STOMP
 - WAMP
 - MQTT

WebSocket Example: Phase 1

Key Point: WebSockets use HTTP to "kickstart" the WebSocket protocol

Step 1: HTTP request from browser

(Note the many uses of the word "WebSocket")

```
> GET / HTTP/1.1
> Host: 127.0.0.1:8085
> User-Agent: curl/7.74.0
> Accept: */*
> Upgrade: websocket
> Sec-WebSocket-Key: dXP3jD9Ipw0B2EmWrMDTEw==
> Sec-WebSocket-Version: 13
> Connection: upgrade
>
```

Step 2: HTTP response from server

"101 Switching Protocols" is a 'rare' HTTP status code that often indicates a WebSocket was started

```
< HTTP/1.1 101 Switching Protocols
< Upgrade: websocket
< Connection: Upgrade
< Sec-WebSocket-Accept: GLWt4W80gwo6lmX9ZGa314RMRr0=
< X-Powered-By: Ratchet/0.4.3
```


WebSocket Example: Phase 2

Not much to see because the WebSocket Protocol focuses on minimizing overhead. Chat application example shown below

```
> Look, matey, I know a dead parrot when I see one, and I'm looking at one right now.
```

- < No no he's not dead, he's, he's restin'! Remarkable bird, the Norwegian Blue, idn'it, ay? Beautiful plumage!
- > The plumage don't enter into it. It's stone dead.
- < Nononono, no, no! 'E's resting!

WebSockets in the Wild

Use cases include:

- Chat bots, especially customer service
- Slack, Discord, and other chat platforms
- Maps tracking real-time movement
- Live finance data websites
- Cryptocurrency websites
- Smart TV remote control!?
- Kubernetes/Docker API!?

Try This at Home Kids!

Try This at Home Kids!

- 1. Open web browser developer tools (Control+Shift+I in Firefox or Chrome) and visit the Network tab
- 2. Click "WS" to filter for only WebSockets traffic
- 3. Visit a webpage with WebSockets, such as:
 - a. Finance: https://finance.yahoo.com/
 - b. Sports: https://www.livescore.in/
 - c. Chat: https://support.zoom.us
 - d. Live maps: https://www.marinetraffic.com
- 4. Observe initial WebSocket request and response **Note:** Web proxy tools like Burp Suite and OWASP ZAP store WebSocket traffic in a separate tab from HTTP traffic

Finding WebSockets

Burp Suite

Part 2: Summary of WebSockets Research

Highlights of Prior WebSockets Security Research

- 2011: Firefox 4 temporarily removes WebSocket support due to protocol issue
- 2016: CORS, a HTTP CSRF mitigation, doesn't apply to WebSockets -> Cross Site WebSocket Hijacking (CSWSH)
- 2019: Proxies that don't properly handle WebSockets can lead to WebSocket Smuggling

Port Scanning with WebSockets

eBay is port scanning your system when you load the webpage

by Martin Brinkmann on May 25, 2020 in Internet - Last Update: May 25, 2020 - 99 comments

eBay is port scanning users' PCs

By Anthony Spadafora (Pro) May 26, 2020

Windows PCs are scanned for remote support and remote access applications when visiting eBay's website

eBay port scans visitors' computers for remote access programs

Related slide deck:

https://datatracker.ietf.org/meet ing/96/materials/slides-96-saagPort Scanning and WebSockets

Tom Gallagher

NSA Information Assurance

Timeline of Prior Related Research

Takeaways from Past Research

- Large scale security testing of WebSockets "in the wild" hasn't been publicly done before
- Research has been focused on the protocol level and proxy (mis)handling - but what about the server implementations?
- HTTP gets all the attention

HTTP Servers Market share

WebSocket Servers Market share

Common WebSocket Server Implementations

Name	Language	Repository	GitHub
			Stars (as of
			Nov 2021)
WS	JS	https://github.com/websockets/ws	17,200
Gorilla	Go	https://github.com/gorilla/websocket	15,700
uWebSockets	C++	https://github.com/uNetworking/uWebSockets	13,300
Java-WebSocket	Java	https://github.com/TooTallNate/Java-WebSocket	8,500
Cowboy	Erlang	https://github.com/ninenines/cowboy	6,500
Ratchet	PHP	https://github.com/ratchetphp/Ratchet	5,600
warp	Rust	https://github.com/seanmonstar/warp	5,500
WebSocket++	C++	https://github.com/zaphoyd/websocketpp	5,100
websocket-sharp	C#	https://github.com/sta/websocket-sharp	4,400
WS	Go	https://github.com/gobwas/ws	4,200
websockets	Python	https://github.com/aaugustin/websockets	3,700
libwebsockets	С	https://github.com/warmcat/libwebsockets	3,200

Part 3: New STEWS tool(s)

Who doesn't like free stuff?

Released today, fresh out of the oven!

- 1. STEWS repository: https://github.com/PalindromeLabs/STEWS
 - a. Includes whitepaper and this slide deck
- 2. WebSockets Playground: https://github.com/PalindromeLabs/WebSocket-Playground
- 3. WebSockets Security Awesome: https://github.com/PalindromeLabs/awesome-websockets-security

Top Tools Lack WebSocket Custom Test Support

- 1. nmap: https://seclists.org/nmap-dev/2015/q1/134
- Burp Suite (supports WebSockets, but not for extensions): https://forum.portswigger.net/thread/websockets-api-support-c8e1 https://forum.portswigger.net/thread/websockets-api-support-c8e1
- 3. nuclei: https://github.com/projectdiscovery/nuclei/issues/539

STEWS

STEWS = Security Testing and Enumeration of WebSockets

Performs 3 key steps in WebSockets security testing:

- 1. Discovery
- 2. Fingerprinting
- 3. Vulnerability Detection

Why WebSocket endpoint discovery is difficult:

- WebSockets use HTTP to start a connection, but observing HTTP alone does not indicate a WebSocket
- 2. Websites often start WebSockets using JavaScript, so WebSocket endpoints aren't always found parsing HTML
 - a. Sometimes the main website is not linked to the WebSocket because the WebSocket endpoint is a standalone API
- 3. WebSockets may only exist at one specific URL path and at one specific port of the endpoint

Approaches to discovering WebSockets:

- 1. Finding WebSockets on a specific website
 - a. Spider website HTML and search for WebSocket keywords in source code (downsides: false positives)
 - b. Spider website and load all JavaScript and watch for HTTP 101 responses (downsides: loading all JS is slow)
- 2. Finding WebSockets on any website
 - Use wordlist of common WebSocket endpoints and brute force a large list of websites (downsides: only testing wordlist endpoints)

Approaches to discovering WebSockets:

- 1. Finding WebSockets on a specific website
 - a. Spider website HTML and search for WebSocket keywords in source code (downsides: false positives)
 - b. Spider website and load all JavaScript and watch for HTTP 101 responses (downsides: loading all JS is slow)
- 2. Finding WebSockets on any website
 - a. Use wordlist of common WebSocket endpoints and brute force a large list of websites (downsides: only testing wordlist endpoints)

Difficulties in scalable WebSocket endpoint discovery:

- 1. Tools like <u>masscan</u> and <u>zmap</u> are fast at endpoint detection
 - a. ...However, they work at the TCP/IP layer and we need to operate at the HTTP/WebSocket layer
- 2. <u>Burp Suite's Turbo Intruder</u> is fast at the HTTP layer
 - a. ...However, Turbo Intruder documentation states "it's designed for sending lots of requests to a single host", not testing many hosts
- 3. **ZGrab2** is a fast application-layer scanner
 - a. ... However, requires some tweaks to support WebSocket requests

Acquiring large lists of URLs

- 1. Googling "Top million URLs": https://www.letmegooglethat.com/?q=top+million+urls
- 2. Zone Files: https://czds.icann.org/home
 - a. Zone Files are what DNS servers use for lookups
 - b. Downside is that many URLs in zone file aren't active

Other difficulties:

- Large number of DNS lookups can be a bottleneck
 - Many DNS servers have rate limit
 - Using multiple DNS servers can help solution
 - zgrab2 allows DNS lookup beforehand (using zdns, massdns, etc.)
- Obtaining wordlist of probable WebSocket paths to brute force requires manual effort
 - Found known WebSocket endpoints through random browsing, bug bounty reports, reading GitHub WebSocket repository issues

From ~3 million domains

URL	Number of WebSocket servers found
domain.com	2281
domain.com/ws	1991
domain.com/ws/v1	1605
domain.com/ws/v2	1606
domain.com/socket.io/?EIO=3&transport=websocket	1389
domain.com/stream	448
domain.com/feed	452
www.domain.com	1582
ws.domain.com	891
stream.domain.com	574
Total	12819

STEWS Discovery Demo

```
STOO | India is discovery standard to these image jpg standard to the standard
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IMMERCENTS RUNGER NEW ZEEL Presentation will
```


2. WebSockets Fingerprinting

The challenge: to find implementation-level differences between WebSocket server implementations in order to identify them

"In theory there is no difference between theory and practice – in practice there is"

A few of the most popular WebSocket servers include:

- uWebSockets (C++)
- Gorilla (Go)
- ws (JavaScript)
- websockets (Python)
- Spring Boot (Java)

But there's dozens of WebSocket server implementations

Differences from other fingerprinting tools:

- HTTP fingerprinters only handle 1 protocol, whereas WebSockets use HTTP to negotiate the switch to WebSockets, meaning STEWS fingerprinting handles 2 protocols
- Tools like nmap query specific URL paths to gain information, but WebSocket servers usually only listen at a specific URL path

To find WebSocket server identifying features, use a simple deterministic fuzzer to test different features of the WebSocket Server, such as:

- Supported WebSocket Protocol Version Numbers
- Reserved and opcode bit support
- Verbose error messages
- Default maximum data length

Over 50 different STEWS fingerprinting test cases:

- 100-series tests: opcode tests (WebSocket protocol)
- 200-series tests: rsv bit tests (WebSocket protocol)
- 300-series tests: version tests (HTTP protocol)
- 400-series tests: extensions tests (HTTP protocol)
- 500-series tests: subprotocol tests (HTTP protocol)
- 600-series tests: long payload tests (WebSocket protocol)
- 700-series tests: hybi and similar tests (WebSocket protocol)

WebSocket Server Implementation	STEWS-fingerprint.py Test Case 200 Response	
npm ws	No error message	
faye	One or more reserved bits are on: reserved1 = 0, reserved2 = 0, reserved3 = 1	
Gorilla	unexpected reserved bits 0x10	
uWebSockets	No error message	
Java Spring Boot	The client frame set the reserved bits to [1] for a message with opCode [2] which was not supported by this endpoint	
Python websockets	No error message	
Ratchet	Ratchet detected an invalid reserve code	
Tornado	No error message	

STEWS Fingerprint Local Server Demo

STEWS Fingerprint Public Server Demo

```
Control Bright
                                                                                                                                                                                                                                                                                                                                                                                               Re fe er @ to in ber ibn
                                                                                                                                                                              Service Address of the Australia Control of th
           STEES party maked on Fargarprint
      Ci link supraincels but AEROS no requirements but offini-fine-result by websecot-frame Seg.
  * Magamprint ()[1] (mails) pythodi STEAG-fisgosprint by -n
mage: STEAG-fisgosprint by [-6] [-6] [-6] [-6] [-6] [-7] [-7] [-6] [-6] [-6] [-6] [-6] [-6] [-7] [-7] [-7] [-7]
   ecarity Testing and Semi-ration of Nethockata (970ml) Fingerprinting Two
   V Sections
                                                        shew this help message and bull
frame worked tracing of communications.
                                                        Frist such test rose to track programs while running
                                                        Preside a till to operant to-
     I File; . Tile For: Provide a file containing May to check for could widewated connections.
-1, -no-energotion connect using us//, not wes// infants in was//)
                                                         Ignami invalid SSL port
      a DODGIM. - arigum DANGIN

    --geernste-Tlegergreint:

                                                         Generate a fingerprint for a kneen server
       a, —ali-mata-
                                                        Non into tenta.
                series 100 Run the 100-series (opcode) tests
                Series-300 Non-the 360-series (nov-hit) tests
             -series 200 Ain the 200 series (wrales) facts
--series 200 But the 200 series (extension) tests
               - serbes-500 Will the 500 herses (subgrothoris) heats
              - series and Rus the dom-series (long psyloads) tests - series No. Rus the Yok-series (byts and similar) term
        Magarprior: [11] Audia: pythod3.57D6-fingerprint.py -6 -1 -2 -5 -4 -4 altraumag.on.tesTenzters.com/straumag/
   uneing Serbes 500 teleli
```


3. WebSockets Vulnerability Detection

WebSocket servers have a few CVEs...

A longer list of WebSocket server CVEs found in WebSocket Security Awesome

CVE ID	Vulnerable package	Related writeup	Vulnerability summary
CVE-2021-	Tomcat	Apache	DoS memory leak
42340	Tomcac	mailing list	bos memory leak
CVE-2020-	uWebSockets	Google OSS-	Stack buffer overflow
36406		Fuzz	
CVE-2021-	Python websockets		HTTP basic auth timing attack
33880			
CVE-2021-	w <u>s</u>	GitHub	Regex backtracking Denial of Service
32640		Advisory	
CVE-2020-	socket.io-file	Auxilium	File type restriction bypass
24807		Security	200
CVE-2020-	socket.io-file	<u>Auxilium</u>	Path traversal
<u>15779</u>		Security	
CVE-2020-	Gorilla	Auxilium	Integer overflow
27813	111	Security	
CVE-2020-	Java WebSocket	GitHub	SSL hostname validation not performed
11050		advisory	
CVE-2020-	faye-websocket	GitHub	Lack of TLS certificate validation
<u>15134</u>		advisory	
CVE-2020-	faye-websocket	GitHub	Lack of TLS certificate validation
<u>15133</u>		advisory	
CVE-2020-	Ruby websocket-extensions	Writeup	Regex backtracking Denial of Service
<u>7663</u>			
CVE-2020-	npm websocket-extensions	Writeup	Regex backtracking Denial of Service
7662			
CVE-2018-	Python websockets		DoS via memory exhaustion when
1000518			decompressing compressed data
CVE-2018-	Qt WebSockets	Bug report	Denial of service due large limit on
<u>21035</u>		100 May	message and frame size
CVE-2017-	socket.io	GitHub Issue	Socket IDs use predictable random
16031			numbers
CVE-2016-	<u>uWebSockets</u>	npm advisory	Denial of service due to large limit on
10544			message size
CVE-2016-	NodeJS ws	npm advisory	Denial of service due to large limit on
10542	<u> </u>		message size

3. WebSockets Vulnerability Detection

- Ideally the detection process of a CVE does not involve exploiting it, but often there is no other way
- STEWS vuln-detect includes checks for a few CVEs, though more should be added in the future:
 - CVE-2020-27813 (Gorilla DoS Integer Overflow)
 - CVE-2020-7662 & CVE-2020-7663 (faye Sec-WebSocket-Extensions Regex DoS)
 - CVE-2021-32640 (ws Sec-Websocket-Protocol Regex DoS)

STEWS Vuln Detect Demo

```
Ingurpoint paper;pdf READM:nl stone-image.jpg all section HebSockets AppSec MA 1821 Presentation.gdf
 STSMS mit! | mater or co vator-percent

    Wile-detect (i) (main) a pythoro STEWS value detect, pp. -h.
    wager STEWS value detect, pp. 1-bi. [-a] (-d) (-a) (-d) (-i) File! (-a) (-b) (-b) (-b) (-a) (-b) (-a) (-a) (-a)

Sycarity Testing and Examination of MadSochata (STEWS) Wileansbilling Detection Foot
 pasamenti i
  th, -help
                            stev this tests workings and exit
                            fruitle werbone treeling of communications
  W. - werbook
                            Print each test case to Track progress while running
  il, udebig
  I UPL . WILL UPL TO CONCELL TO
  F FILE, - file FELE File containing URLs to check for calls subjected connections

    -ex-energetime Communics onling ver//, rot sear// introduct in searce/);

                           Donn't bwelle ss. cert.
  A ORDSTN. -- BYTEEN WRITER
                           Set arigin
                           Test for generic Crimo-site Nembocket Mijacking (CNEM)
Test CRE-JRC1 20048 - WE See McLincket Frederich Reges Bos
Test CRE-JRC2 20048 - WEST - Hay See Westbocket Enterties Augus Doll
Test CRE-JRC2 2004 20013 - Geritla Bos Integer Beetlow
  wolk-detect un limite a mythond STERS-enin-detect.pg -1 -n -u 127, 8.0.1:0004/echo
```


Summary

Part 1: WebSockets work like HTTP, but less examined

Part 2: Minimal research done around WebSocket security and popular tools lack support

Part 3: STEWS toolset provides off-the-shelf tooling for discovery, fingerprinting, and vulnerability detection of WebSocket servers

Ideas for Future Research

- 1. Security of WebSockets subprotocols
- 2. Security of WebSocket Compression (RFC 7692)
- 3. Fast JavaScript-based spidering to discover WebSocket endpoints on single domain
- 4. Can other HTTP-type attacks be ported to WebSocket servers?

Over a dozen additional ideas listed in whitepaper

Recommended Additional Resources

PortSwigger WebSocket mini-CTF exercises:

https://portswigger.net/web-security/websockets

Mikhail Egorov's 2019 conference talk:

https://www.youtube.com/watch?v=gANzRo7UHt8

WebSocket Protocol RFC, RFC 6455:

https://datatracker.ietf.org/doc/html/rfc6455

WebSocket Protocol Compression RFC, RFC 7692:

https://datatracker.ietf.org/doc/html/rfc7692

Thank You!

Questions?

Email: erik.elbieh@palindrometech.com

Site: https://erikelbieh.com

THANK YOU!