

Universidade Federal do Pará Instituto de Ciências Exatas e Naturais

Faculdade de Computação

Prof.: Filipe de Oliveira Saraiva

Nome:

Disciplina: Inteligência Artificial Cód: EN05187 Período: 2022/4

Data: 10/10/2022

Matrícula:

Trabalho - Computação Evolucionária/Metaheurísticas

1. Introdução

A 1ª Avaliação da Disciplina trata sobre a implementação de um método de otimização metaheurístico para um problema de otimização combinatória.

Os alunos deverão se dividir em grupos de no máximo 4 integrantes e deverão selecionar 1 dos métodos estudados durante a disciplina (Busca Tabu, Algoritmo Genético ou Enxame de Partículas) para uma instância do Problema da Cobertura de Conjuntos. A instância será descrita a seguir.

2. Problema da Cobertura de Conjuntos

Somos uma equipe contratada para instalar câmeras de segurança na universidade. Foram identificadas 1000 áreas críticas que precisam ser monitoradas, e 200 possíveis localizações de câmeras que cobrem essas áreas críticas. O arquivo "instance.txt" apresenta essa relação, na seguinte lógica: cada linha representa uma localização de câmera, e os números que estão nela significam as áreas críticas cobertas.

Por exemplo, na primeira linha temos a cobertura de 17 áreas críticas: a 91, 214, 230, 289, 351, 416, 488, 491, 518, 567, 720, 721, 735, 753, 768, 928 e 990.

Já na linha 2 temos a cobertura de 18 áreas críticas: 22, 47, 99, 192, 299, 322, 340, 500, 619, 628, 640, 663, 709, 736, 796, 844, 930 e 970.

O objetivo portanto é encontrarmos a menor quantidade possível de câmeras a serem instaladas (ou seja, menor quantidade possível de linhas do arquivo) de forma que seja possível cobrir as 1000 áreas críticas mapeadas.

3. Avaliação

Cada grupo deverá selecionar uma das metaheurísticas estudadas e implementá-las na linguagem de programação de sua preferência. O método deve ser parametrizado para que bons resultados sejam atingidos.

O grupo deverá registrar os valores de parâmetros, operadores utilizados e critério de parada.

Cada grupo deverá executar seu método 20 vezes, e desses resultados deverá calcular a média, desvio padrão, e registrar o pior e melhor valor encontrado.

O grupo também deverá apresentar ao professor um gráfico que mostre, ao longo das iterações de uma execução, que o método está melhorando a solução encontrada, até que o critério de parada identifique que a busca convergiu.

Os cálculos, parâmetros e operadores, bem como os gráficos e descrição da máquina utilizada devem ser entregues em forma de relatório para o professor com no máximo 5 páginas. A avaliação levará em conta se o método está convergindo, os parâmetros utilizados e a qualidade do relatório entregue - se está bem escrito e formatado, e se fica claro durante a leitura o que o grupo fez.

4. Cronograma

As datas importantes e atividades relacionadas ao trabalho são as seguintes:

Data	${f Atividade}$
10/10	Início do Trabalho
11/10	Sem aula presencial
13/10	Aula para resolver dúvidas
18/10	Aula para resolver dúvidas
20/10	Aula para resolver dúvidas
25/10	Entrega do relatório durante a aula