FACULTAD DE INGENIERIA Y CIENCIAS EXACTAS

MATERIA: ARQUITECTURA DE COMPUTADORES (3.4.072)
Circuitos Combinacionales UAL de 1 Bit

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

Álgebra de Boole:

- Aproximadamente en el año 1850 George Boole, desarrolló un sistema algebraico para formular proposiciones con símbolos.
- Consiste en un método para resolver problemas de lógica que recurre solamente a los valores binarios "1" y "0" y a tres operadores:
 - AND (y)
 - OR (o)
 - NOT (no)
- Una variable Booleana representa un bit que quiere decir:

Binary digIT

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

Operador AND:

X	У	x y
0	0	0
0	1	0
1	0	0
1	1	1

Si una de las entradas es 0, entonces la salida es 0

(3.4.072)

Operador OR:

X	y	<i>x</i> + <i>y</i>
0	0	0
0	1	1
1	0	1
1	1	1

Si una de las entradas es 1, entonces la salida es 1

UADE WACIÓN LA UNIVERSIDAD UNA GRAN UNIVERSIDAD

(3.4.072)

Operador NOT:

$\boldsymbol{\mathcal{X}}$	\mathcal{X}
0	1
1	0

La salida es la negación de la entrada

5

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

- Símbolos de los operadores:
- Operador AND:

Operador OR:

Operador NOT:

(3.4.072)

- Ejercicio:
- Realizar la tabla de verdad de la siguiente ecuación:

$$w = x \overline{y} + y z$$

X	у	Z	хÿ	yz	W
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	1
1	0	0	1	0	1
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	0	1	1

(3.4.072)

El álgebra de Boole tiene propiedades, postulados, axiomas, teoremas y leyes.

Por Ej.: Las Leyes de De Morgan

$$\bullet \quad (\overline{x + y}) = \overline{x}\,\overline{y}$$

$$\bullet \qquad (\overline{xy}) \qquad = \ \overline{x} + \overline{y}$$

que nos permiten cambiar operadores AND por operadores OR

UADE JERACIÓN DE JUNA GRAN UNIVERSIDAD

(3.4.072)

- Circuitos Combinacionales:
- Un circuito combinacional es aquel cuya salida depende exclusivamente de la combinación de las señales en sus entradas.

Es decir:

- No depende del valor de su salida
- No depende del tiempo
- Desde el punto de vista de las computadoras cualquier dispositivo que realice la función de un operador booleano se denomina compuerta lógica.

UADE WEALTH OF THE PROPERTY OF

(3.4.072)

Compuerta AND:

x	у	x y
0	0	0
0	1	0
1	0	0
1	1	1

Compuerta NAND:

x	у	\overline{x} \overline{y}
0	0	1
0	1	1
1	0	1
1	1	0

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

Compuerta OR:

x	у	<i>x</i> + <i>y</i>
0	0	0
0	1	1
1	0	1
1	1	1

Compuerta NOR:

x	у	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

Compuerta XOR (OR Exclusivo):

x	у	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Compuerta XNOR (XOR Exclusivo):

x	у	
0	0	1
0	1	0
1	0	0
1	1	1

(3.4.072)

Postulados del Algebra de Boole

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	$A\overline{A} = 0$	$A + \overline{A} = 1$
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

Equivalencias de las funciones

$$AB = \overline{A} + \overline{B}$$

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

Equivalencias de las funciones

UADE UNA GRAN UNIVERSIDAD

(3.4.042 / 3.4.072)

- Construir la tabla de verdad de un cicuito
- Dada la ecuación lógica construir el circuito
- Determinar si los circuitos son equivalentes

Α	В	C	AB	AC	AB + AC
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

	F2 = A.(B+C)		
Α —	F2		
B			

Α	В	O	A	B+C	A(B + C)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

UADE UNA GRAN UNIVERSIDAD

(3.4.042 / 3.4.072)

- Ejercicio:
- Diseñe un circuito combinacional que responda a la siguiente ecuación:

$$w = x \bar{y} + y z$$

UADE JOACIÓN LA PROPERTIDAD LA CIÓN LA PROPERTIDA LA CIÓN LA

(3.4.042 / 3.4.072)

- Ejercicio:
- Construya la tabla de verdad a la que responde el siguiente circuito lógico:

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

QUAD 2-INPUT NAND GATE

ESD > 3500 Volts

SN54/74LS00

QUAD 2-INPUT NAND GATE

LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 632-08

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

MOTOROLA

QUAD 2-INPUT NAND GATE

ESD > 3500 Volts

SN54/74LS00

QUAD 2-INPUT NAND GATE

LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 632-08

UADE JERACIÓN CONTROLLA DE LA CIÓN CONTROLLA DE LA

(3.4.072)

ADICIÓN BINARIA:

 \boldsymbol{A}

+

 \boldsymbol{B}

dec

bin

Regla 1:

U

+

0

=

0

 \cap

Regla 2:

0

+

1

=

1

Regla 3:

1

+

0

=

1

Regla 4:

1

+

1

=

2

acarreo

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

Suma de dos bits:

A	В	suma	acarreo
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

¿Cómo sería el circuito combinacional de suma y acarreo?

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

Sumador de dos bits:

half adder (1/2 sumador)

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

¿Cómo se suman números de dos bits?

Ej:

Se necesita un Full Adder (sumador completo) que considere el acarreo.

(3.4.072)
Estructura del sumador completo:

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

Ejercicio: diseñar un s

diseñar un sumador de cuatro bits usando half y/o full adders.

$$A_4 A_3 A_2 A_1$$

$$+ B_4 B_3 B_2 B_1$$

$$C_5$$
 C_4 C_3 C_2 C_1

(3.4.072)

sumador de cuatro bits

Especificaciones Técnicas

(3.4.042 / 3.4.072)

Sustracción binaria:

Para restar dos números binarios se puede utilizar el complemento a 2.

El complemento a 2 de un número binario es su complemento a 1 + 1.

(3.4.042 / 3.4.072)

Símbolos de los operadores:

Para calcular la resta binaria C = A-B

- se calcula: B' como el complemento a 2 de B
- se procede a calcular: C = A+B'

```
Ejemplo: 57|_{10} - 34|_{10}:

57: 0011 1001 (A)

34: 0010 0010 (B)

not 1101 1101 not(B)

+1 1101 1110 B'

0001 0111 A+B' => 0001 0111 = 23|_{10}
```


(3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

1 - Unidad de Entrada: preprocesa operandos Bit A y Bit B (Habilita A y B , Invierte A)

(3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

2 - Unidad Lógica: Realiza tres operaciones A and B, A or B y not B

(3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

3- Unidad Aritmética: Realiza la suma aritmética del Bit A y el Bit B (Inc. y Acarreo)

(3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

4 - Multiplexor de Operaciones: Selecciona una operación de 4, usa un decodificador

(3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

5 – Decodificador: Activa la salida que se indica con el código binario de entrada

(3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

7- Entrada A: Primer Operando Bit A

(3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

(3.4.042 / 3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

9 – Incremento: Transporte o acarreo de entrada del módulo aritmético.

(3.4.042 / 3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

10 - Salidas de Operaciones: Todas las Operaciones Aritmético lógicas al MUX4-1

(3.4.042 / 3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

11 - Selector de Operación: Fo y F1 con ENA, ENB, INVA e INC

UADE UNA GRAN UNIVERSIDAD

(3.4.072) [™] Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

(3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

13 - Interconectando de Módulos

UADE UNA GRAN UNIVERSIDAD

(3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

(3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

14 - Modelo de N bits

(3.4.072)

Unidad Aritmético Lógica de 1 Bit, etapas de diseño:

F ₀	F ₁	ENA	ENB	INVA	INC	Function
0	1	1	0	0	0	Α
0	1	0	1	0	0	В
0	1	1	0	1	0	Ā
1	0	1	1	0	0	Ē
1	1	1	1	0	0	A + B
1	1	1	1	0	1	A + B + 1
1	1	1	0	0	1	A + 1
1	1	0	1	0	1	B + 1
1	1	1	1	1	1	B – A
1	1	0	1	1	0	B – 1
1	1	1	0	1	1	-A
0	0	1	1	0	0	A AND B
0	1	1	1	0	0	A OR B
0	1	0	0	0	0	0
1	1	0	0	0	1	1
1	1	0	0	1	0	-1

15 - Tabla de operaciones