Chapter -2

- Process of converting analog or continuous signal into discrete signal is called sampling.
- Sampling Theorem/Nquist Criteria
- For band limited signal which do not have maximum frequency greater than f<sub>s</sub>
- Sampling Rate or Sampling frequency
- For Transmitting and Receiving end
- $f_{s \ge 2} f_x$



The sampling function 
$$g(t)$$
 is given by

$$g(t) = C_0 + 2 \sum C_n \quad \text{(os } 2\pi n f_s t - 2)$$

As

$$x_1(t) = x(t) \quad g(t)$$

$$x_2(t) = x(t) \quad \left[ c_0 + 2 \sum c_n \cos 2\pi n f_s t \right]$$

$$x_2(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_3(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_4(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2\pi n f_s t$$

$$x_5(t) = c_0 x(t) + 2 c_1 x(t) \cos 2$$

$$= \frac{1}{T_1} \frac{e^{-j\pi i \pi f_1 t}}{e^{-j\pi i \pi f_1 t}} \Big|_{-\frac{1}{2}}$$

$$= -\frac{1}{j\pi i \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= -\frac{1}{j\pi i \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1 t} e_{j_2} \right]$$

$$= \frac{1}{j\pi \pi f_1 T_1} \left[ e^{-j\pi i \pi f_1 t} e_{j_2} - e^{-j\pi i \pi f_1$$

```
Taking Fordies Transform (F.T) of ean ()
we get
 (01 mot = +1) = + [2(+-to) + 2(++to)]
7(+)(01100+ -11 = = [ X (t-to) + X (t+to)]
x1(f)= (0x(f)+(1x(f-fs)+(1x(f+fs)
```

Apole 600 com pe deschiluth 2 sector 49 00



- Fig a represents the fourier transform of original message signal x(t).
- Fig b represents the fourier transform of the output of the sampler.
- For error less recovery of the message signal from the spectrum of the sampled signal mus t obey the nyquist sampling theorem as
- $f_s \ge 2 f_x$

- Similarly for sampling frequency  $f_s < 2 f_x$
- Distortion will occur at the receiving side.
- Samples get overlapped while recovering.
- This phenomena is known as Aliasing.



### Instantaneous / Ideal Sampling

- Instantaneous sampling gives train of impulse equal to the instantaneous value of input signal at sampling instant.
- Ideal sampling simply consist of switch Circuit.



### Instantaneous/Ideal Sampling

- For time t, the output g(t) contains the instantaneous value of input signal x(t).
- Sampling function is represented as train of impulse

ST<sub>3</sub>(+) = 
$$\sum_{n=-\infty}^{\infty} S(t-n\tau_3) - 0$$

output 3(t) in expressed as

$$g(t) = x(t) ST3(t)$$

$$g(t) = x(t) \sum_{n=-\infty}^{\infty} S(t-n\tau_3) \qquad ST3(t) = ST3(t) =$$

- Process of Reconstructing original Signal x(t) from sampled signal is called Reconstruction.
- Signal x(t) band limited to f<sub>m</sub> Hz can be reconstructed by passing the sampled signal through the Ideal Low Pass Filter at cut off frequency f<sub>m</sub>
- The expression of sample signal is  $g(t) = x(t) \delta T_s(t)$  ----(1)

• 
$$g(t) = 1/T_s$$
  
 $g(t) = \sum_{n=-\alpha}^{\alpha} x(nts)\delta(t - nT_s)$ ----(3)

To recover the original Signal , the sampled signal is passed through the Ideal Low pass filter of bandwidth  $f_m$  Hz. The transform function of LPF is

$$H(w) = T_s rect(w/2\pi f_m) --- (4)$$

The impulse response of the filter is

$$h(t) = 2 f_m T_s Sinc(2\pi f_m t)----(5)$$

As the sampling is done at Nyquist rate

$$T_s = 1/2 f_m, 2f_m T_s = 1$$
  
 $h(t) = 1 * T_s Sinc(2\pi f_m t)$   
 $h(t) = T_s Sinc(2\pi f_m t)$ 

#### Output of the filter is

- $x(t)=\sum x(nT_s) h(t-nT_s)$
- $x(t)=\Sigma x(nT_s) Sinc [2\pi f_m(t-nT_s)]$
- $x(t)=\sum x(nT_s) Sinc [2\pi f_m t-2\pi f_m nT_s)]$
- $x(t)=\Sigma x(nT_s)$  Sinc  $[2\pi f_m t-n\pi)]$  is known as Interpolation formula
- Message or original signal can be recovered from the weighted sum of all sample value.



### Effect of Under Sampling: Aliasing

- Continuous time band limited signal sampled at rate lower than the Nyquist rate( $f_s < 2 f_m$ )
- Aliasing effects occurs by overlapping of successive cycle of spectrum.
- Higher frequency overlaps or undertakes over lower frequency component.
- Low Pass Filter called prealias filter to limit band of frequency of the signal to  $f_m$ .
- Select sampling frequency  $f_{s} \ge 2 f_{m}$ .

### Sampling of Band Pass Signal

- Also Known as Sub Sampling Theorem.
- Sampling Theorem of band pass signal x(t) can be recovered from its sample if it is sampled with minimum rate of twice of bandwidth.



### Sampling of Band Pass Signal

- For bandwidth of spectrum of band pass signal of  $2 f_m$ .
- Sampling rate of band pass signal must be 4 f<sub>m</sub>
   Signal x(t) can be expressed in terms of
   Inphase and Quadrature are expressed as

•  $X(t)=x_{l}(t) \cos(2\pi f_{c}t) - x_{Q}(t) \sin(2\pi f_{c}t) - --(1)$ 

# Sampling of Band Pass Signal

By solving 
$$\infty$$

we get  $x(t) = \sum x(\sqrt[n]{f_m}) \operatorname{Sinc}(2 \operatorname{fm} t - \frac{n}{2}) \operatorname{los}[2\pi f_c(t - \frac{n}{4f_m})]$ 

Compairing this lectors truction formula with low pass signals

 $x(t) = \sum x(n\tau_t) \operatorname{Sinc}[2\pi f_m t - n\pi]$ 
 $x(\frac{n}{4f_m}) = x(n\tau_s) = \operatorname{Sompleauelsim} of bandpass signal$ 
 $T_s = \frac{1}{4f_m}$ 

. Minimum Sampling rate = Twice of bandwidth =  $4 \operatorname{fm}$ 

#### **Aperture Effect**

- Attenuation of upper portion of message signal spectrum is called Aperture Effect.
- It effects the high frequency component introducing Amplitude Distortion.
- It is depended upon the duration or pulse width of each sample (T).
- Large or greater value of pulse width 'T' introduces Aperture Effect.

#### Aperture Effect

#### Mitigation of Aperture Effect

- We use the pulse width 'T' or duration as low / small/narrow as possible.
- By use of Equalizer while Reconstruction, which will compensate attenuation caused by Low Pass Reconstruction Filter.
- Introducing Guard band between frequency.





- Natural Sampler is a practical method whose periodic pulse of sampling function c(t) is of width 'T'.
- Continuous Input signal x(t) is sampled at the rate of Sampling frequency satisfying Nyquist Criterion.
- Sampled Signal
- g(t)=x(t).C(t)----(1)

We know that the exponential Fourier series for any periodic waveform is

expressed as 
$$\mathbf{c(t)} = \sum_{\mathbf{n} = -\infty}^{\infty} \mathbf{C_n} e^{j2\pi n t/T_0}$$
 
$$\mathbf{c(t)} = \sum_{\mathbf{n} = -\infty}^{\infty} \mathbf{C_n} e^{j2\pi f_s n t} \text{ with } \frac{1}{T_0} = f_s$$

Since C(t) is rectangular pulse train

$$\begin{aligned} \mathbf{C_n} &= \frac{\tau.\mathbf{A}}{T_s} \cdot \sin \mathbf{c}(\mathbf{f_{n.}}\tau) \\ c(t) &= \sum_{n=-\infty}^{\infty} \frac{\tau.\mathbf{A}}{T_s} \cdot \sin \mathbf{c}(\mathbf{f_{n.}}\tau) e^{j2\pi f_s \cdot nt} \\ g(t) &= \frac{\tau \mathbf{A}}{T_s} \cdot \sum_{n=-\infty}^{\infty} \sin \mathbf{c}(\mathbf{f_{n.}}\tau) \cdot e^{j2\pi f_s nt}.\mathbf{x}(t) \end{aligned}$$

Taking Fourier Transform the spectrum of Natural Sampled signal

$$G(f) = \frac{\tau A}{T_s} \cdot \sum_{n = -\infty}^{\infty} \sin c(nf_{s.} \tau) X(f - nf_{s})$$

- The output sample has varying top in accordance with continuous time analog signal.
- Difficult to determine the shape of top of pulse.
- Amplitude detection at Reconstruction may not be exact.
- More susceptible of contamination of Noise.



$$\begin{split} g(t) &= s(t) \otimes h(t) \\ s(t) &= x(t) \cdot \delta_{T_s}(t) \\ \delta_{T_s}(t) &= \sum_{n = -\infty}^{\infty} \delta(t - nT_s) \\ s(t) &= \sum_{n = -\infty}^{\infty} \delta(t - nT_s) = \sum_{n = -\infty}^{\infty} x(nT_s) \cdot \delta(t - nT_s) \\ g(t) &= s(t) \otimes h(t) \\ g(t) &= \int_{-\infty}^{\infty} s(\tau)h(t - \tau) d\tau \\ g(t) &= \int_{-\infty}^{\infty} \sum_{n = -\infty}^{\infty} x(nT_s) \delta(\tau - nT_s)h(t - \tau) d\tau \\ g(t) &= \sum_{n = -\infty}^{\infty} x(nT_s) \int_{-\infty}^{\infty} \delta(\tau - nT_s)h(t - \tau) d\tau \end{split}$$

$$g(t) = \sum_{n=-\infty}^{\infty} x(nT_s) h(t - nT_s)$$
  
$$g(t) = s(t) \otimes h(t)$$

Taking Fourier transform of both sides of above equation, we get

$$G(f) = S(f) H(f)$$

We know that S(f) is given as

$$S(f) = f_s \sum_{n = -\infty}^{\infty} X(f - nf_s)$$

Therefore,

$$G(f) = f_s \sum_{n=-\infty}^{\infty} X(f - nf_s) \cdot H(f)$$

Thus, spectrum of flat top sampled signal:

$$G(f) = f_s \sum_{n = -\infty}^{\infty} X(f - nf_s) H(f)$$

- The output sample has constant top in accordance with continuous time analog signal.
- Easy to determine the shape of top of pulse.
- More immune to Noise.
- Sample and Hold Circuit is used to get Flat Top Sampled.
- It consist of Two FET Switches and a Capacitor.

- Sampling Switch G1 is closed for short duration.
- Capacitor gets quickly charged up to voltage equal to the instantaneous sample value of the incoming signal x(t).
- Sampling switch G1 is opened. With the applied pulse to gate Discharge switch G2.
- Capacitor then gets discharged producing output of sample and Hold Circuit.

#### Chapter -3

#### **Pulse Modulation System**

#### Modulation



#### Pulse Modulation Systems

- In Pulse Modulation the carrier is pulse train instead of sinusoidal carrier.
- Characteristics or parameter of carrier signal is Amplitude, Width and Position which is changed w.r.t instantaneous value of modulating signal.
- PAM, PLM/PWM/PDM and PPM.
- Benefits of Pulse modulation: It Permits simultaneous transmission of several signals on time sharing basis. Time Division Multiplexing.

### Pulse Amplitude Modulation(PAM)

- Amplitude of carrier of periodic train of rectangular pulse is changed in proportion to sample value of message signal.
- Flattop sampling is used over Natural Sampling.
- Flattop Sampling has better noise immunity over Natural Sampling.

#### Transmission Bandwidth of PAM

 Pulse duration is "T" is very small in comparision to sampling period "T<sub>s</sub>" between two sample.

• 
$$T << T_s ----(1)$$

- According to Sampling Theorem
- $f_{s} \ge 2 f_{m}$  ----(2)
- $1/T_{S \ge 2} f_{m}$  ----(3)
- $1/2 f_{m} \ge \ge T_{s} ----(4)$

#### Transmission Bandwidth of PAM

- From equation (1 & 3)
- $T << T_S \le 1/2 f_m$
- For both ON and OFF Time
- Maximum frequency of PAM
- $f_{max} = 1/T + T = 1/2T$
- Transmission bandwidth
- BW>>  $f_{max} \ge 1/2T$



### Demodulation(Reconstruction)



Block Diagram of PAM Demodulator



Holding Circuit ( Zero-Order Holding Circuit)

### Demodulation(Reconstruction)

- Recovering of the message signal from the modulated signal is called Reconstruction.
- Demodulation is done by Holding Circuit.
- Switch S is closed after arrival of pulse.
- Capacitor is charged to the pulse amplitude value and passed through LPF to recover the

Holding circuit output

LPF output

modulating signal.

### PLM/PWM/PDM

• In Pulse Length/Width/Duration Modulation the pulse width or length or duration is changed in proportion to the amplitude of the modulating signal.



### PLM/PWM/PDM

- Saw tooth Generator generates saw tooth signal of frequency f<sub>s</sub> sampling frequency
- Message/Modulating signal x(t) is applied to Non Inverting Terminal of comparator.
- Output of Comparator is PLM/PWM/PDM.



### PLM/PWM/PDM

#### Advantages:-

- Better Noise Immunity.
- Synchronization between Tx and Rx is not required.
- Possible to reconstruct the signal from Noise.

#### **Disadvantages:-**

- Requires large Bandwidth compared to PAM Signal.
- Tx must handle the power content of pulse with maximum width.

### Pulse Position Modulation(PPM)

- Amplitude and Width is Kept Constant.
- Position of each pulse is changed with respect to the amplitude of sampled Value.



### Pulse Position Modulation(PPM)

- Pulse Width Modulated signal:
- Output of Comparator is fed to monostable multivibrator.
- Multistable Vibrator is negative edge triggered.
- Pulse position modulated signal is obtained at the falling edge of triggering clock Pulse.

### Pulse Position Modulation(PPM)

#### **Advantages:-**

- PPM has less interference of noise.
- Separation of Signal and Noise is easy.
- Pulse length/Pulse amplitude is constant:
   Requirement of transmission power is same.

#### **Disadvantages:-**

- Synchronization between Tx and Rx is required.
- Large / More bandwidth is required as compared to PAM.



- Digital Pulse modulation Technique.
- Analog signal is sampled and converted into digital encoded signal.
- Encoded signal is represented with n-bit binary code.
- Three basic operation in PCM
- Sampling
- Quantization
- Encoding

- Quantization:- Process of representing analog sampled values to a finite set of level.
- Finite set of level is a discrete amplitude value from 0 to maximum level.
- Two types of Quantization:-
- Uniform Quantization.
- Non Uniform Quantization.

#### **Uniform Quantization:-**

- Quantization level are uniformly spaced.
- Same step size.
- Input is divided into interval of equal size.
- Two types of Uniform Quantization
- Mid Rise type Quantizer Mid Tread Quantizer

#### **Mid Rise Quantizer:**

- Origin lies in the middle of a raising part of the stair-case like graph.
- The quantization levels are even in number.

#### **Mid Tread Quantizer:-**

- Origin lies in the middle of a tread of the stair-case.
- Quantization levels are odd in number.



Fig 1: Mid-Rise type Uniform Quantization



Fig 2 : Mid-Tread type Uniform Quantization

#### **Non Uniform Quantization:-**

- Step size is not same and fixed.
- Step size is small or reduced for small amplitude or weak signal.
- Step size is increased or big for large amplitude or strong signal.
- Non Uniform Quantization is achieved practically by Companding. (Improves SQNR).

### Companding

- Process of compressing signal at the Transmitter (Tx) side.
- Expansion on the Receiver(Rx) Side.
- Improves the SQNR.
- Two types of Companding Technique:-
- μ Law Companding.
- A Law Companding.

### μ Law Companding

- Compressor Characteristics is Continuous.
- Approximately linear for small Value of input level.
- Approximately logarithmic for high input level.
- Compressed Output is given as

$$|v| = \log(1 + \mu |x| / x_{max}) / \log(1 + \mu)$$

V= Normalized Compressed Output voltage.

 $\mu$  = Parameter to define amount of compression

x<sub>max</sub> = Maximum Value

 $IxI/x_{max}$  = Normalized value of Input W.r.t maximum Value.

### μ Law Companding

- American Standard. U.S, Canada and Japan.
- Compressor Characteristics neither strictly Linear nor strictly Logarithmic.
- Practical value of  $\mu$ =255.



Compressor Characteristics of a µ Law Compressor

### A Law Companding

- Compressor Characteristics is Piecewise.
- Linear segment for low level input.
- Logarithmic curve for high level input.

```
IVI = \log(1 + A |x|/x_{max}) / 1 + \log A for 1/A \le |x|/x_{max} \le 1
IVI = A |x|/x_{max}) / 1 + \log A for 0 \le |x| \le 1/A
V= Normalized Compressed Output voltage.
```

A = Parameter to define amount of compression

```
x<sub>max</sub> = Maximum Value
```

 $IxI/x_{max}$  = Normalized value of Input W.r.t maximum Value.

### A Law Companding



- -European Standard used in Europe and rest of the world.
- -Used in PCM Telephone System.

## Necessity of Non Uniform Quantization for Speech Signal

- Crest factor = Peak Value of signal/ rms value of signal.
- X(t) is the input to quantizer with its amplitude
   -X<sub>max</sub> to + X<sub>max</sub>
- Peak Value of Signal= X<sub>max</sub>
- rms value of signal= $\sqrt{X^2}$  (t)
- Power is defined as P= X<sup>2</sup> (t)/R
- For normalized power R=1

## Necessity of Non Uniform Quantization for Speech Signal

- $P = X^2(t)$
- Crest factor =  $X_{max} / \sqrt{X^2}$  (t)
- For normalized signal x(t) has  $X_{max} = 1$
- Crest factor =  $1 / \sqrt{X^2}$  (t)
- Crest factor =  $1/\sqrt{P}$
- P<<1 will decrease the SQNR.</li>

## Time Division Multiplexing with PCM



## Time Division Multiplexing with PCM

- In Time Division Multiplexing, samples of messages are transmitted at some fixed interval of time.
- Samples of signal are transmitted serially and recovered separately on destination.
- Commutator takes low pass filtered signal sequentially at fixed interval of time over same channel.

## Time Division Multiplexing with PCM

- Decommutator at receiving end separates the signal.
- Commutator and Decommutator are synchronized
- Low Pass Filter(LPF) at the receiving end converts the sampled signal into original signal.

### T1 TDM-PCM Telephone Hierarchy



```
T1 = 8000 frames/sec x ((24 x 8) + 1) bits/frame
= 1544000 bits/sec
= 1.544 Mbps
```

### T1 TDM-PCM Telephone Hierarchy

- T1 System is North American digital multiplexing standard recognized by ITU-T.
- 24 voice channel band limited to 300-3400 MHz.
- Sampling frequency of 8 KHz.
- Each Sample converted to 7 bit word and 1 bit is reserved for synchronization.
- Similarly there are other standard of T1 as:-

### T1 TDM-PCM Telephone Hierarchy

| Standard    | Channel      | Signaling Rate |
|-------------|--------------|----------------|
| T2 = 4*T1   | 96 Channel   | 6.312 Mbps     |
| T3 = 7 * T2 | 672 Channel  | 44.736 Mbps    |
| T4 = 6 * T3 | 4032 Channel | 274.176 Mbps   |
| T5 = 2 * T4 | 8064 Channel | 560.16 Mbps    |



### E1 TDM-PCM Telephone Hierarchy





### E1 TDM-PCM Telephone Hierarchy

- E1 System is European digital multiplexing standard recognized by ITU-T.
- 32 voice channel band limited to 300-3400 MHz.
- Sampling frequency of 8 KHz.
- Each frame is divided into 32 equal time slot.
- Two time slot is reserved for Signaling & Controlling.

### E1 TDM-PCM Telephone Hierarchy

- Bit rate = 32\*8 bits/frame \* 8000 sample/sec
- Bit Rate = 2.048 Mbps.
- Other standards

| Standard  | Channel | Signaling Rate |
|-----------|---------|----------------|
| E2 = 4*E1 | 120     | 8.448 Mbps     |
| E3 = 4*E2 | 480     | 34.368 Mbps    |
| E4 = 4*E3 | 1920    | 139.264 Mbps   |

- Each sample is quantized in independent manner in PCM.
- Previous sample value has no effect on quantization of new sample.



- Samples taken at 3Ts and 4Ts are encode with same value (110).
- Single sample can be send in DPCM.
- Samples at 5Ts and 6Ts @ Difference between sample is last bit only.
- Two repeated bit(Redundant bit) can be removed and only the difference third bit can be send to represent the whole sample value.



- DPCM works on the principle of prediction.
- Present Sample is predicted on the basis of past sample.
- Prediction may not be exact.
- Very Close to actual sample value.



- Delta modulation transmits one bit per sample.
- DPCM works on the principle of Comparison.
- Present Sample is compared with the previous sample value.
- Present sample value is smaller than previous sample value : defined by  $-\Delta$  level and "0" is transmitted.

- Present sample value is smaller than previous sample value : defined by  $+\Delta$  level and "1" is transmitted.
- It is staircase approximation of the input waveform.
- Each Step is represented by 1 for the rise of step.
- Each Step is represented by 0 for the fall of step.





## Quantization Noise in Delta Modulation

 Granual noise is introduced if the step size is very large compared to the input signal.



## Quantization Noise in Delta Modulation

 Slope Overload Distortion is introduced if the input signal slope is very large compared to the input signal.



## Parametric Speech Coding Vocoders, Linear Prediction Coding

- Digital Speech coders classified into two categories:-
- Waveform Coder: Uses Algorithm to encode and decode.
- Output is the approximation of the input.
- Provides high quality of signal but requires relatively high bandwidth / bit rate.

## Parametric Speech Coding Vocoders, Linear Prediction Coding

- VoCoder:-
- Encode the speech signal by modeling the signal extracting set of parameters.
- Original voice is predicted using these parameters extracted at the transmitter.
- This technique of coding of speech is Linear Prediction Coding (LPC).
- It requires relatively less bandwidth / bit rate.

## Parametric Speech Coding Vocoders, Linear Prediction Coding

 VoCoder: Speech signal is modeled with parameter like repetition frequency "Fo", all pole filter "Ao" Gain parameter "G".



#### Unit-3

# Thank you