Notes for MAT1341A Fall 2023 Part IV

Chapter 7 - Linear dependence and independence

$$\begin{bmatrix} e.g. \end{bmatrix} \text{ Show that span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\} = \text{span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} = \text{span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \end{bmatrix} \right\}.$$

Geometrically, we see that the problem is that all the vectors are collinear (meaning, parallel, or all lying on one line). Similar problems would occur in \mathbb{R}^3 if we had three *coplanar* vectors, that is, all lying in a plane.

 $\operatorname{span}\{u,v\}=\operatorname{span}\{u,w\}=\operatorname{span}\{v,w\}=\operatorname{span}\{u,v,w\}.\ u,v,w\ \operatorname{are}\ \operatorname{coplanar}\ (\operatorname{lying}\ \operatorname{in}\ \operatorname{the}\ \operatorname{same}\ \operatorname{plane}).$

Definition (7.5.1). Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_m \in V$, then the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_m \in V\}$ is *linearly dependent* if and only if there are scalars $a_1, a_2, \dots, a_m \in \mathbb{R}$, not all zero such that

$$a_1\mathbf{v}_1 + \ldots + a_m\mathbf{v}_m = \mathbf{0}.$$

$$[E.g.]$$
 Show that $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix} \right\}$ is LD.

If the zero vector is in a set of vectors, then this set is always LD since

$$1 \cdot \vec{0} = \vec{0}$$

$$[E.g.]$$
 Show that $\left\{ \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$ is LD.

[E.g.] Show that $\{\sin^2 x, 1, \cos^2 x\}$ is LD.

Definition (7.6.1). Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_m \in V$, then the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_m \in V\}$ is *linearly independent* if and only if the *only solution* to

$$a_1\mathbf{v}_1 + \ldots + a_m\mathbf{v}_m = \mathbf{0}$$

is the trivial solution $a_1 = 0, \ldots, a_m = 0$.

[E.g.] Show that $\{\hat{i}, \hat{j}, \hat{k}\}$ is LI.

[E.g.] Show that $\{1+X,1-X\}$ is LI.

Fact. If $\mathbf{v} \in V$, then $\{\mathbf{v}\}$ is LI if and only if $\mathbf{v} \neq \mathbf{0}$.

Fact. If $S = \{\mathbf{v}_1, ..., \mathbf{v}_m\}$ is LD, then any set containing S is also LD. *Proof.*

Fact. If $S = \{\mathbf{v}_1, ..., \mathbf{v}_m\}$ is LI, then any subset of S is also LI. *Proof.*

 ${\it Fact.}$ A set with three or more vectors can be LD ${\it even though}$ no two vectors are multiples of one another.

[E.g.] $\{(1,0),(0,1),(1,1)\}$ are coplanar but no two vectors are collinear.

Chapter 8 - Linear independence and spanning sets

Theorem (8.1.1 - Relation between linear dependence and spanning). A set $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ is LD if and only if there is at least one vector \mathbf{v}_k which is in the span of the rest.

What this tells us is that in a LD set, there is an element that is "reductant".

[E.g.] Show that the following sets are LD.

- a) $\{(1,1,1),(2,1,2),(0,1,0)\}.$
- b) $\{x^2, 1+2x, (1+x)^2\} \subset \mathbb{P}_2$.

Theorem (8.2.2 - Reducing spanning sets). Suppose $W = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$. If $\mathbf{v}_1 \in \operatorname{span}\{\mathbf{v}_2, \dots, \mathbf{v}_m\}$, then

 $W = \operatorname{span}\{\mathbf{v}_2, \dots, \mathbf{v}_m\}.$

 $[E.g.] \quad \text{Show that span}\{(1,1,1),(2,1,2),(0,1,0)\} = \text{span}\{(1,1,1),(2,1,2)\}.$

Theorem (8.3.1 - Enlarging linearly independent sets).

Suppose $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ is a LI subset of a subspace W. For any $\mathbf{v} \in W$, we have

$$\{\mathbf{v}, \mathbf{v}_1, \dots, \mathbf{v}_m\}$$
 is LI \iff $\mathbf{v} \notin \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_m\}.$

[E.g.] The set $\left\{\begin{bmatrix}0&1\\0&0\end{bmatrix},\begin{bmatrix}1&0\\0&0\end{bmatrix}\right\}$ is LI. Enlarge it to a LI set with 3 elements.

[E.g.] The set $\{x^2, 1+2x\} \subset \mathbb{P}_3$ is LI, show that $\{1, x^2, 1+2x\}$ is also LI.