Interrogation 2

Durée : 1 heure. Note : $CC2 = \min\{CC2_{ecrit}, 10\}$

Rappel de notations:

On utilise l'abréviation i.i.d pour signifier indépendantes et identiquement distribuées.

Exercice 1. Échauffement - Question de cours (3 points)

- 1. Rappeler les définitions de convergence presque sûre, de convergence en probabilité, de convergence en loi et de convergence en L^1 .
- 2. Quel est le rapport entre différentes modes de convergence de variable aléatoire?
- 3. Donner un contre exemple que une suite de variables aléatoires $(X_n)_{n\geq 1}$ converge en loi vers une limite $X \sim U[0,1]$, mais elle ne converge pas presque sûrement.

Exercice 2. Limite de gaussiennes (3 points)

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles suivant respectivement une loi gaussienne $N(m_n, \sigma_n^2)$ avec $m_n \in \mathbb{R}$ et $\sigma_n \in \mathbb{R}_+$.

- 1. Donner directement l'expression de la fonction caractéristique ϕ_{X_n} .
- 2. Rappeler la définition de fonction caractéristique et comment elle peut être utilisée pour démontrer la convergence en loi ? (Sans démonstration)
- 3. Montrer que si $m_n \xrightarrow{n \to \infty} m$, $\sigma_n \xrightarrow{n \to \infty} \sigma > 0$, alors $(X_n)_{n \ge 1}$ converge en loi vers une limite et préciser la loi de cette limite.

Exercice 3. Un exemple de loi de grande nombre (4 points)

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et $X_n \sim N\left(\frac{1}{n}, \sqrt{n}\right)$ et on note que $S_n = \sum_{i=1}^n X_i$. Démontrer que $\frac{S_n}{n} \xrightarrow[n \to \infty]{\mathbb{P}} 0$. (Indication : L'inégalité de Markov.)

Exercice 4. Retour du maximum de lois uniformes (4 points)

Soit $(X_i)_{i\geq 1}$ une suite de variables aléatoires i.i.d qui suit la loi uniforme sur [0,1]. On définit le maximum des n premières variables

$$\forall n \in \mathbb{N}^+, \quad M_n = \max_{1 \le i \le n} X_i.$$

- 1. Calculer la fonction de répartition F_{M_n} .
- 2. Démontrer que pour tout $c \in [0, 1[$, presque sûrement il y a que nombre fini de variables dans la suite $(M_n)_{n\geq 1}$ vérifiant $M_n \leq c$.
- 3. Montrer que la suite $(n(1-M_n))_{n\geq 1}$ converge en loi et expliciter la loi limite.

Exercice 5. Magie gaussienne (6 points)

Soient X et Y deux variables aléatoires réelles indépendantes telles que les variables aléatoires X+Y et X-Y soient indépendantes. Montrer que les deux variables X et Y sont deux variables aléatoires gaussiennes.