非监督学习

Applications of clustering Market segmentation Social network analysis Organize computing clusters Astronomical data analysis

K 均值算法

K-means algorithm

Input:

- K (number of clusters) ←
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ \longleftarrow

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

K-means algorithm

Randomly initialize K cluster centroids $\underline{\mu}_1,\underline{\mu}_2,\dots,\underline{\mu}_K\in\mathbb{R}^n$ Repeat {

Mi Mr

Cluster for
$$i=1$$
 to m

$$c^{(i)} := index (from 1 to K) of cluster centroid closest to $x^{(i)}$

$$cosest to x^{(i)}$$

$$cose$$$$

K-means for non-separated clusters

S,M, L

K-means optimization objective

- $ightharpoonup c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned
- $\Rightarrow \mu_k$ = cluster centroid \underline{k} ($\mu_k \in \mathbb{R}^n$)

K Fe {1,3,..., k}

 $\mu_{c^{(i)}}$ = cluster centroid \underline{h} ($\mu_k \in \mathbb{R}$) $\mu_{c^{(i)}} = \text{cluster centroid of cluster to which example } x^{(i)} \text{ has been assigned}$ $\chi^{(i)} \rightarrow \underline{5} \qquad \underline{C^{(i)} = 5} \qquad \underline{\mathcal{M}}_{c^{(i)}} = \underline{\mathcal{M}}_{5}$

Optimization objective:

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

Repeat { (holding Mirror, ME Sixed)

for i = 1 to m $c^{(i)}$:= index (from 1 to K) of cluster centroid closest to $x^{(i)}$

for k=1 to K $\mu_k:=$ average (mean) of points assigned to cluster k $M_k:=$ minimize $M_k:=$ $M_k:=$ $M_k:=$ $M_k:=$

Random initialization

Should have ${\cal K} < m$

Randomly pick \underline{K} training examples.

Set μ_1, \ldots, μ_K equal to these K examples. $\mu_i = \chi^{(i)}$

Random initialization

For i = 1 to 100 {
$$\Rightarrow$$
 Randomly initialize K-means. Run K-means. Get $c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K$. Compute cost function (distortion)
$$\Rightarrow J(c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K)$$
}

Pick clustering that gave lowest cost
$$\underline{J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)}$$

选择 K 肘部法则 Elbow Method

Choosing the value of K

Elbow method:

