Network Theorems

- 4.1 Superposition Theorem and Reciprocity
- 4.2 Source Transformation, Thevenin's and Norton's Theorem
- 4.3 Millman's Theorem
- 4.3 Maximum Power Transfer Theorem
- 4.4 Substitution Theorem
- 4.5 Compensation Theorem

SUPERPOSITION THEOREM

Superposition Theorem

Superposition: the voltage across (or current through) an element in a linear circuits is the algebraic sum of the voltage across (or current through) that element due to each independent source acting alone.

Current Source → open circuit(0 A)

Voltage Source → short circuit (0 V)

Superposition Theorem

Step to apply:

- Turn off all independent sources except one source. Find the output (voltage or current) due to that active source.
- 2. Repeat step 1 for each other independent sources.
- Find the total contribution by adding algebraically all the contribution due to the independent source.

SOURCE TRANSFORMATION

Source Transformation

Source transformation: replacing a voltage source v_s in series with a impedance Z by a current source i_s in parallel with a impedance Z, or vice versa.

Source Transformation

THEVENIN'S THEOREM

Thevenin's theorem: a linear two terminal circuit can be replaced by an equivalent circuit consisting of a voltage V_{Th} in series with an impedance Z_{Th} , where V_{Th} is the open circuit voltage at the terminals and Z_{Th} is the input or equivalent impedance at the terminals when the independent source are turned off.

Finding VTh and ZTh

Finding Z_{Th} when circuit has dependent sources

Circuit with load

$$I_L = \frac{V_{Th}}{R_{Th} + R_I}$$

$$I_L = \frac{V_{Th}}{R_{Th} + R_L}$$
 $V_L = R_L I_L = \frac{R_L}{R_{Th} + R_L} V_{Th}$

NORTON'S THEOREM

Norton's Theorem

Norton's Theorem: a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_N in parallel with an impendence Z_N , where I_N is the short circuit current through the terminals and Z_N is the input or equivalent impedance at the terminals when the independent source are turned off.

Norton's Theorem

$$R_N = R_{Th}$$

Norton's Theorem

Finding Norton current I_N .

$$I_{N} = i_{sc}$$

$$I_{N} = \frac{V_{Th}}{R_{Th}}$$

Thevenin and Norton Equivalent

$$V_{Th} = v_{oc}$$
 $I_N = i_{sc}$
 $R_{Th} = \frac{v_{oc}}{i_{sc}} = \frac{V_{Th}}{I_N} = R_N$

Millman's Theorem

 A number of voltage sources in parallel can be replaced by a single ideal voltage source V in series with an impedance Z where

$$V = \frac{\sum_{i=1}^{n} V_i Y_i}{\sum_{i=1}^{n} Y_i}$$

$$Z = \frac{1}{\sum_{i=1}^{n} Y_i}$$

Millman's Theorem

• A number of current sources in series can be replaced by a single ideal current source I in parallel with an impedance Z where

$$I = \frac{\sum_{i=1}^{n} (I_i / Y_i)}{\sum_{i=1}^{n} (1 / Y_i)}$$

$$Y = \frac{1}{\sum_{i=1}^{n} \left(1/Y_{i}\right)}$$

MAXIMUM POWER TRANSFER THEOREM

Maximum Power Transfer Theorem

Maximum power: transferred to the load when the load resistance equals the Thevenin resistance as seen from the load

$$RL = RTh$$

Maximum power: transferred to the load when the load impedance equals the conjugate of the Thevenin impedance as seen from the load

$$Z_L = Z^*_{Th}$$

Maximum Power Transfer

$$R_L = R_{Th}$$

$$p_{\text{max}} = \frac{V_{Th}^2}{4R_{Th}}$$