Part III – Introduction to Discrete Analysis (Ongoing course, rough)

Based on lectures by Professor W. T. Gowers Notes taken by Bhavik Mehta

Michaelmas 2018

Contents

1	The	e discrete Fourier transform	2
	1.1	Roth's Theorem	4
	1.2	Bogolyubov's method	6
2	Sun	nsets and their structure	6

1 The discrete Fourier transform

Let N be some fixed positive integer. Write ω for $e^{\frac{2\pi i}{N}}$, and \mathbb{Z}_N for $\mathbb{Z}/N\mathbb{Z}$.

Definition (Discrete Fourier transform). Let $f: \mathbb{Z}_N \to \mathbb{C}$. Given $r \in \mathbb{Z}_N$, define $\hat{f}(r)$ to be

$$\frac{1}{N} \sum_{x \in \mathbb{Z}_N} f(x) \omega^{-rx}.$$

Notation. From now on, we shall use notation $\mathbb{E}_{x \in \mathbb{Z}_N}$ for $\frac{1}{N} \sum_{x \in \mathbb{Z}_N}$, where the subscript is omitted when it is clear from context.

Notice we can write

$$\hat{f}(r) = \mathop{\mathbb{E}}_{x} f(x) e^{-\frac{2\pi i r x}{N}},$$

highlighting the similarity with the usual Fourier transform.

If we write ω_r for the function $x \mapsto \omega^{rx}$, and $\langle f, g \rangle$ for $\mathbb{E}_x f(x) \overline{g(x)}$, then $\hat{f}(r) = \langle f, \omega_r \rangle$. Let us write $||f||_p$ for $(\mathbb{E}_x |f(x)|^p)^{\frac{1}{p}}$ and call the resulting space $L_p(\mathbb{Z}_N)$.

Important convention. We use *averages* for the 'original functions' in 'physical space' and *sums* for their Fourier transforms in 'frequency space'.

Lemma 1.1 (Parseval's identity). If $f, g : \mathbb{Z}_N \to \mathbb{C}$, then $\langle \hat{f}, \hat{g} \rangle = \langle f, g \rangle$.

Proof.

$$\begin{split} \langle \hat{f}, \hat{g} \rangle &= \sum_{r} \hat{f}(r) \overline{\hat{g}(r)} \\ &= \sum_{r} (\underbrace{\mathbb{E}}_{x} f(x) \omega^{-rx}) \overline{(\underbrace{\mathbb{E}}_{y} g(y) \omega^{-ry})} \\ &= \underbrace{\mathbb{E}}_{x} \underbrace{\mathbb{E}}_{y} f(x) \overline{g(y)} \sum_{r} \omega^{-r(x-y)} \\ &= \underbrace{\mathbb{E}}_{x} \underbrace{\mathbb{E}}_{y} f(x) \overline{g(y)} \Delta_{xy} \\ &= \underbrace{\mathbb{E}}_{x} f(x) \underbrace{\mathbb{E}}_{y} \overline{g(y)} \Delta_{xy} \\ &= \underbrace{\mathbb{E}}_{x} f(x) \underline{\mathbb{E}}_{y} \overline{g(x)} = \langle f, g \rangle \end{split}$$

where

$$\Delta_{xy} = \begin{cases} N & x = y \\ 0 & x \neq y. \end{cases}$$

Definition (Convolution). The convolution $\widehat{f * g}(x)$ is defined to be

$$\mathbb{E}_{y+z=x} f(y)g(z) = \mathbb{E}_{y} f(y)g(x-y).$$

Lemma 1.2 (Convolution identity).

$$\widehat{f * g}(r) = \widehat{f}(r)\widehat{g}(r).$$

Proof.

$$\begin{split} \widehat{f*g}(r) &= \underbrace{\mathbb{E}}_x f*g(x)\omega^{-rx} \\ &= \underbrace{\mathbb{E}}_x \underbrace{\mathbb{E}}_{y+z=x} f(y)g(z)\omega^{-rx} \\ &= \underbrace{\mathbb{E}}_x \underbrace{\mathbb{E}}_{y+z=x} f(y)g(z)\omega^{-ry}\omega^{-rz} \\ &= \underbrace{\mathbb{E}}_x f(y)\omega^{-ry} \underbrace{\mathbb{E}}_z g(z)\omega^{-rz} = \widehat{f}(r)\widehat{g}(r). \end{split}$$

Lemma 1.3 (Inversion formula).

$$f(x) = \sum_{r} \hat{f}(r)\omega^{rx}$$

Proof.

$$\sum_{r} \hat{f}(r)\omega^{rx} = \sum_{r} \underbrace{\mathbb{E}}_{y} f(y)\omega^{r(x-y)}$$

$$= \underbrace{\mathbb{E}}_{y} f(y) \sum_{r} \omega^{r(x-y)}$$

$$= \underbrace{\mathbb{E}}_{y} f(y) \Delta_{xy} = f(x).$$

Further observations:

- If f is real-valued, then $\hat{f}(-r) = \mathbb{E}_x f(x)\omega^{rx} = \overline{\mathbb{E}_x f(x)\omega^{-rx}} = \overline{\hat{f}(r)}$.
- If $A \subset \mathbb{Z}_n$, write A (instead of \mathbb{I}_A or χ_A) for the characteristic function of A. Then $\hat{A}(0) = \mathbb{E}_x A(x) = \frac{|A|}{N}$, the density of A.
- Also, $\|\hat{A}\|_2^2 = \langle \hat{A}, \hat{A} \rangle = \langle A, A \rangle = \mathbb{E}_x A(x)^2 = \mathbb{E}_x A(x) = \frac{A}{N}$.

Let $f: \mathbb{Z}_N \to \mathbb{C}$. Given $\mu \in \mathbb{Z}_N$ with $(\mu, N) = 1$, define $f_{\mu}(x)$ to be $f(\mu^{-1}x)$. Then

$$\hat{f}_{\mu}(r) = \mathbb{E}_{x} f_{\mu}(x) \omega^{-rx}$$

$$= \mathbb{E}_{x} f(x/\mu) \omega^{-rx}$$

$$= \mathbb{E}_{x} f(x) \omega^{-r\mu x}$$

$$= \hat{f}(\mu r).$$

1.1 Roth's Theorem

Theorem 1.4. For every $\delta > 0$, there exists N such that if $A \subseteq \{1, ..., N\}$ is a set of size at least δN then A must contain an arithmetic progression of length 3.

This is the k=3 case of Szemerédi's theorem.

Basic strategy: show that if A has density $\geq \delta$ and no arithmetic progression of length 3, then there is a long arithmetic progression $P \subseteq \{1, \ldots, N\}$ such that

$$|A \cap P| \ge (\delta + c(\delta))|P|.$$

In particular, we have that $|P| \to \infty$ as $N \to \infty$.

The proof we give will produce a bound $\delta \geq \frac{C}{\log\log N}$, but this is not the best known. If the bound was reduced to $\frac{1}{\log N}$, this produces a combinatorial proof of the fact that there are arbitrarily long arithmetic progressions in the primes. The best known bound is $\frac{(\log\log N)^4}{\log N}$ by Thomas Bloom. In the other direction, we know $e^{-\sqrt{\log N}}$ does not work.

Lemma 1.5. Let $A, B, C \subset \mathbb{Z}_N$ have densities α, β, γ , for N odd. If $\max_{r \neq 0} |\hat{A}(r)| \leq \frac{\alpha(\beta\gamma)^{\frac{1}{2}}}{2}$ and $\frac{\alpha\beta\gamma}{2} > \frac{1}{N}$ then there exists $x, d \in \mathbb{Z}_N$ with $d \neq 0$ such that $(x, x+d, x+2d) \in A \times B \times C$.

Proof.

$$\mathbb{E}_{x,d} A(x)B(x+d)C(x+2d) = \mathbb{E}_{x+z=2y} A(x)B(y)C(z)$$

$$= \mathbb{E}_{u} (\mathbb{E}_{x+z=u} A(x)C(z)) \mathbb{E}_{2y=u} B(y)$$

$$= \mathbb{E}_{u} (A*C)(u)B_{2}(u) = \langle A*C, B_{2} \rangle$$

$$= \langle \widehat{A} \cdot \widehat{C}, \widehat{B}_{2} \rangle$$

$$= \langle \widehat{A}\widehat{C}, \widehat{B}_{2} \rangle$$

$$= \sum_{r} \widehat{A}(r)\widehat{C}(r)\widehat{B}(-2r)$$

$$= \alpha\beta\gamma + \sum_{r\neq 0} \widehat{A}(r)\widehat{C}(r)\widehat{B}(-2r).$$

We have a lower bound on the left term, so focus on the right.

$$\begin{split} \left| \sum_{r \neq 0} \hat{A}(r) \hat{B}(-2r) \hat{C}(r) \right| &\leq \frac{\alpha(\beta \gamma)^{\frac{1}{2}}}{2} \sum_{r \neq 0} |\hat{B}(-2r) \hat{C}(r)| \\ &\leq \frac{\alpha(\beta \gamma)^{\frac{1}{2}}}{2} \left(\sum_{r} |\hat{B}(-2r)|^2 \right)^{\frac{1}{2}} \left(\sum_{r} |\hat{C}(r)|^2 \right)^{\frac{1}{2}} \\ &= \frac{\alpha(\beta \gamma)^{\frac{1}{2}}}{2} \|\hat{B}\|_2 \|\hat{C}\|_2 = \frac{\alpha(\beta \gamma)^{\frac{1}{2}}}{2} \|B\|_2 \|C\|_2 \\ &= \frac{\alpha\beta\gamma}{2}. \end{split}$$

The contribution to $\mathbb{E}_{x,d} A(x) B(x+d) C(x+2d)$ from d=0 is at most $\frac{1}{N}$, so if $\frac{\alpha\beta\gamma}{2} > \frac{1}{N}$, we are done.

Now let A be a subset of $\{1,\ldots,N\}$ of density $\geq \delta$ and let $B=C=A\cap(\frac{N}{3},\frac{2N}{3}]$. If B has density $<\frac{\delta}{5}$, then either $A\cap[1,\frac{N}{3}]$ or $A\cap[\frac{2N}{3},N]$ has density at least $\frac{2\delta}{5}$. So in that case we find an AP P of length about $\frac{N}{3}$ such that $\frac{|A\cap P|}{|P|}\geq \frac{6\delta}{5}$.

Otherwise, we find that if $\max_{r\neq 0} |\hat{A}(r)| \leq \frac{\delta^2}{10}$ and $\frac{\delta^3}{50} > \frac{1}{N}$ then $A \times B \times C$ contains a 3AP $\implies A$ contains a 3AP. So if A does not contain a 3AP, then either we find P of length about $\frac{N}{3}$ with $\frac{|A\cap P|}{|P|} \geq \frac{6\delta}{5}$ or $\exists r \neq 0$ such that $|\hat{A}(r)| \geq \frac{\delta^2}{10}$.

Definition. If X is a finite set and $f: X \to \mathbb{C}, Y \subseteq X$, write $\operatorname{osc}(f|_Y)$ to mean $\max_{y_1,y_2\in Y}|f(y_1)-f(y_2)|$.

Lemma 1.6. Let $r \in \hat{\mathbb{Z}}_n$ and let $\epsilon > 0$. Then there is a partition of $\{1, 2, ..., N\}$ into arithmetic progressions P_i of length at least $c(\epsilon)\sqrt{N}$ such that $\operatorname{osc}(\omega_r|_{P_i}) \leq \epsilon$ for each i.

Proof. Let $t = \lfloor \sqrt{N} \rfloor$. Of the numbers $1, \omega^r, \omega^{2r}, \dots, \omega^{tr}$ there must be two that differ by at most $\frac{2\pi}{t}$. If $|\omega^{ar} - \omega^{br}| \leq \frac{2\pi}{t}$ with a < b, then $|1 - \omega^{dr}| \leq \frac{2\pi}{t}$ where d = b - a. Now, by the triangle inequality, if u < v, then

$$|\omega^{urd} - \omega^{vrd}| \le |\omega^{urd} - \omega^{(u+1)rd}| + |\omega^{urd} - \omega^{(u+1)rd}| + \dots + |\omega^{urd} - \omega^{(u+1)rd}| \le \frac{2\pi}{t}(v-u).$$

So if P is a progression with common difference d and length l, then $\operatorname{osc}(\omega_r|_P) \leq \frac{2\pi l}{t}$. So divide up $\{1,\ldots,N\}$ into residue classes mod d and partition each residue class into parts of length between $\frac{\epsilon t}{4\pi}$ and $\frac{\epsilon t}{2\pi}$ (possible, since $d \leq t \leq \sqrt{N}$). We are done, with $c(\epsilon) = \frac{\epsilon}{16}$. \square

Now let us use the information that $r \neq 0$ and $|\hat{A}(r)| \geq \frac{\delta^2}{10}$. Define the balanced function f of A by $f(x) = A(x) - \frac{|A|}{N}$ for each x.

Note that $\hat{f}(0) = 0$ and $\hat{f}(r) = \hat{A}(r)$ for all $r \neq 0$. Now let P_1, \ldots, P_m be given by Lemma 1.6 with $\epsilon = \frac{\delta^2}{20}$. Then

$$\frac{\delta^2}{10} \le \frac{1}{N} \left| \sum_{x} f(x) \omega^{-rx} \right| \le \frac{1}{N} \sum_{i=1}^{m} \left| \sum_{x \in P_i} f(x) \omega^{-rx} \right|$$
$$\le \frac{1}{N} \sum_{i=1}^{m} \left[\left| \sum_{x \in P_i} f(x) \omega^{-rx_i} \right| + \left| \sum_{x \in P_i} f(x) (\omega^{-rx} - \omega^{-rx_i}) \right| \right]$$

where $x_i \in P_i$ is arbitrary

$$\leq \frac{1}{N} \sum_{i=1}^{m} \left| \sum_{x \in P_i} f(x) \right| + \frac{\delta^2}{20}$$

So

$$\sum_{i=1}^{N} \left| \sum_{x \in P_i} f(x) \right| \ge \frac{\delta^2 N}{20}.$$

Also,

$$\sum_{i=1}^{m} \sum_{x \in P_i} f(x) = 0.$$

So

$$\sum_{i=1} \left(\left| \sum_{x \in P_i} f(x) \right| + \sum_{x \in P_i} f(x) \right) \ge \frac{\delta^2}{20} \sum_{i=1}^m |P_i|$$

Therefore, $\exists i$ such that

$$\left| \sum_{x \in P_i} f(x) \right| + \sum_{x \in P_i} f(x) \ge \frac{\delta^2}{20} |P_i|$$

$$\implies \sum_{x \in P_i} f(x) \ge \frac{\delta}{40} |P_i|$$

$$\implies |A \cap P_i| \ge \left(\delta + \frac{\delta^2}{40}\right) |P_i|$$

So now, either

- 1. A contains a 3AP
- 2. N is even
- 3. $\exists P \subset \{1,\ldots,N\}, |P| \geq \frac{N}{2} \text{ such that } |A \cap P| \geq \frac{6\delta}{5}|P|$

4.
$$\exists P \subset \{1, \dots, N\}, |P| \ge \frac{\delta^2}{320} \sqrt{N} \text{ such that } |A \cap P| \ge \left(\delta + \frac{\delta^2}{40}\right) |P|$$

If 2 holds, write $N=N_1+N_2$ with N_1,N_2 odd, $N_1+N_2\approx\frac{N}{2}$. Then A has density at least δ in one of $\{1,\ldots,N_1\}$ or $\{N_1+1,\ldots,N_1+N_2\}$.

If 4 holds (note $3\Rightarrow 4$) then we pass to P and start again. After $\frac{40}{\delta}$ iterations, the density at least doubles. So the total number of iterations we can have is $\leq \frac{40}{\delta} + \frac{40}{2\delta} + \frac{40}{4\delta} + \ldots \leq \frac{80}{\delta}$.

If $\frac{\delta^2}{320}\sqrt{N} \geq N^{\frac{1}{3}}$ at each iteration, and $\frac{\delta^3}{25} > N^{-1}$ (which follows from the first condition) then after $\frac{80}{\delta}$ iterations we have $N \geq N^{\left(\frac{1}{3}\right)^{\frac{80}{\delta}}}$. So the argument works provided

$$\begin{split} N^{\left(\frac{1}{3}\right)^{\frac{80}{\delta}}} & \geq \left(\frac{320}{\delta^2}\right)^6 \iff \left(\frac{1}{3}\right)^{\frac{80}{\delta}} \log N \geq 6 \left(\log 320 + 2\log \frac{1}{\delta}\right) \\ & \iff -\frac{80}{\delta} \log 3 + \log\log N \geq \log 6 + \log \left(\log 320 + 2\log \frac{1}{\delta}\right) \\ & \iff \log\log N \geq \frac{160}{\delta} \iff \delta \geq \frac{160}{\log\log N}. \end{split}$$

1.2 Bogolyubov's method

Let $K \subset \mathbb{Z}_N$ and let $\delta > 0$.

Definition (Bohr set). The **Bohr set** $B(K, \delta)$ has two definitions.

- 1. $B(K, \delta) = \{ x \in \mathbb{Z}_N \mid rx \in [-\delta N, \delta N] \ \forall r \in K \}$ (arc-length definition)
- 2. $B(K, \delta) = \{ x \in \mathbb{Z}_N \mid |1 \omega^{rx}| < \delta \ \forall r \in K \}$ (chord-length definition)

Definition. Let G be an abelian group and let A, B be subsets of G. Then

$$A + B = \{ a + b \mid a \in A, b \in B \}$$

$$A - B = \{ a - b \mid a \in A, b \in B \}$$

$$rA = \{ a_1 + \dots + a_r \mid a_1, \dots, a_r \in A \}$$

Lemma 1.7. Let $A \subset \mathbb{Z}_N$ be a set of density α . Then 2A - 2A contains a Bohr set (arc) with $|K| \geq \alpha^{-2}$.

Proof. Observe that $x \in 2A - 2A$ iff $A * A * (-A) * (-A)(x) \neq 0$. But

$$A * A * (-A) * (-A)(x) = \sum_{r} \overline{A * A * (-A) * (-A)}(r)\omega^{rx}$$
$$= \sum_{r} |\hat{A}(r)|^4 \omega^{rx}.$$

Let $K = \{ r \mid |\hat{A}(r)| \ge \alpha^{\frac{3}{2}} \}$. Then $\alpha = \|\hat{A}\|_2^2 = \sum_r |\hat{A}(r)|^2 \ge \alpha^3 |K|$ So $|K| \le \alpha^{-2}$. Now suppose that $x \in B(K, \frac{1}{4})$. Then

$$\sum_{r} |\hat{A}(r)|^{4} \omega^{rx} = \alpha^{4} + \sum_{r \in K \setminus \{0\}} |\hat{A}(r)|^{4} \omega^{rx} + \sum_{r \notin K} |\hat{A}(r)|^{4} \omega^{rx}.$$

The real part of the second term is non-negative, since $rx \in \left[-\frac{N}{4}, \frac{N}{4}\right]$ when $r \in K$. Also

$$\left|\sum_{r \notin K} |\hat{A}(r)|^4 \omega^{rx}\right| \leq \sum_{r \notin K} |\hat{A}(r)|^4 < \alpha^3 \sum_{r \notin K} |\hat{A}(r)|^2 \leq \alpha^4.$$

It follows that
$$\operatorname{Re}\left(\sum_{r}|\hat{A}(r)|^{4}\omega^{rx}\right)>0$$
, so $x\in 2A-2A$.

Lemma 1.8. Let $K \subset \mathbb{Z}_N$ and let $\delta > 0$. Then

- (i) $B(K, \delta)$ (arc) has density at least $\delta^{|K|}$
- (ii) $B(K, \delta)$ contains a mod-N arithmetic progression of length $\geq \delta N^{\frac{1}{|K|}}$

Proof.

(i) Let $K = \{r_1, \ldots, r_k\}$. Consider the N k-tuples $(r_1x, r_2x, \ldots, r_kx) \in \mathbb{Z}_N^k$. If we intersect this set of k-tuples with a random 'box' $[t_1, t_1 + \delta N] \times \cdots \times [t_k, t_k + \delta N]$ then the expected number of the k-tuples in the box is $\delta^k N$ (since each one has a probability δ^k). But if (r_1x, \ldots, r_kx) and (r_1y, \ldots, r_ky) belong to this box, then $x - y \in B(K, \delta)$.

(ii) If we take $\eta > N^{\frac{1}{2}}$, then by (i) we get that $|B(K,\eta)>1$, so $\exists x\in B(K,\eta)$ such that $x\neq 0$. But then $dx\in B(K,d\eta)$ for every d. So if $d\eta\leq \delta$ then $dx\in B(K,\delta)$. That gives us an AP of length at least $\frac{\delta}{n}$. So we get one of length at least $\delta N^{\frac{1}{k}}$.

Definition (Freiman homomorphism). Let A, B be subsets of Abelian groups and let $\phi : A \to B$. Then ϕ is a **Freiman homomorphism of order** k if

$$a_1 + \dots + a_k = a_{k+1} + \dots + a_{2k} \implies \phi(a_1) + \dots + \phi(a_k) = \phi(a_{k+1}) + \dots + \phi(a_{2k}).$$

If k = 2, we call this a **Freiman homomorphism**. In that case, the condition is equivalent to $a - b = c - d \implies \phi(a) - \phi(b) = \phi(c) - \phi(d)$.

If ϕ has an inverse which is also a Freiman homomorphism of order k, then ϕ is a Freiman isomorphism of order k.

Lemma 1.9. Assume $0 \notin K$ and N prime. If $\delta < \frac{1}{4}$, then $B(K, \delta)$ (arc) is Freiman isomorphic to the intersection in \mathbb{R}^K of $[-\delta N, \delta N]^{|K|}$ with some lattice Δ .

Proof. Let $K = \{r_1, \ldots, r_k\}$ and let $\Lambda = N\mathbb{Z}^k + \{(r_1x, \ldots, r_kx) \mid x \in \mathbb{Z}\}$. Write **r** for (r_1, \ldots, r_k) . Claim that $B(K, \delta) \cong \Lambda \cap [-\delta N, \delta N]^k$. Define a map $\phi : B(K, \delta) \to \Lambda \cap [-\delta N, \delta N]^k$ by sending x to $(\langle r_1x \rangle, \ldots, \langle r_kx \rangle)$ where $\langle u \rangle$ means the least-modulus residue of $u \mod N$.

If x + y = z + w, then $\mathbf{r}x + \mathbf{r}y = \mathbf{r}z + \mathbf{r}w$ in \mathbb{Z}_N^k . But for each i, $\langle r_i x \rangle + \langle r_i y \rangle - \langle r_i z \rangle - \langle r_i w \rangle \in [-4\delta N, 4\delta N]$. Since $\delta < \frac{1}{4}$, that implies that $\langle r_i x \rangle + \langle r_i y \rangle - \langle r_i z \rangle - \langle r_i w \rangle = 0$. So $\langle \mathbf{r}x \rangle + \langle \mathbf{r}y \rangle = \langle \mathbf{r}z \rangle + \langle \mathbf{r}w \rangle$.

That already implies that ϕ is an injection. If $\mathbf{r}x + \mathbf{a}N \in [-\delta N, \delta N]^k$ then $r_ix \in [-\delta N, \delta N] \mod N$ for each i, so $x \in B(K, \delta)$ and $\phi(x) = \mathbf{r}x + \mathbf{a}N$. So ϕ is a surjection.

If $\mathbf{r}x + \mathbf{a}N + \mathbf{r}y + \mathbf{b}N = \mathbf{r}z + \mathbf{c}N + \mathbf{r}w + \mathbf{d}N$, then $r_1(x+y) = r_1(z+w) \mod N$, so $x+y=z+w \mod N$. So the inverse of ϕ is also a Freiman homomorphism.

Lemma 1.10. Let Λ be a lattice and let C be a symmetric convex body, both in \mathbb{R}^k . Then $\Lambda \cap C \leq 5^k |\Lambda \cap \frac{C}{2}|$.

Proof. Let x_1, \ldots, x_n be a maximal subset of $\Lambda \cap C$ such that for all $i \neq j$, $x_j \notin x_i + \frac{C}{2}$. Then by maximality, the sets $x_i + \frac{C}{2}$ cover all of $\Lambda \cap C$. Also, the sets $x_i + \frac{C}{4}$ are disjoint subsets of \mathbb{R}^k , and they are all contained in $C + \frac{C}{4} = \frac{5}{4}C$. So

$$m \le \frac{\operatorname{vol}(\frac{5}{4}C)}{\operatorname{vol}(\frac{1}{4}C)} = 5^k.$$

Corollary 1.11. If N is prime, $0 \notin K$, |K| = k, $\delta < \frac{1}{4}$, then $|B(K, \delta)| \le 5^k |B(K, \frac{\delta}{2})$.

8

2 Sumsets and their structure

The idea is to show that for $A \subset \mathbb{Z}$, if $|A + A| \leq K|A|$ then $|rA - sA| \leq K^{r+s}|A|$.

Lemma 2.1 (Petridis). Let A_0, B be finite subsets of an abelian group such that $|A_0 + B| \le K_0 |A_0|$. Then there exists a non-empty subset $A \subset A_0$ and $K \le K_0$ such that $|A + B + C| \le K|A + C|$ for every finite subset C of the group.

Proof. Let A minimise the ratio $\frac{|A+B|}{|A|}$ and let the minimal ratio be K. Claim: this works. We prove this by induction on C.

If $C = \emptyset$, then the result holds. Now assume it for C and let $x \notin C$. Then

$$A + (C \cup \{x\}) = (A + C) \cup (A + \{x\}) = (A + C) \cup [(A + x) \setminus (A' + x)]$$

where $A' = \{ a \in A \mid a + x \in A + C \}$. This is a disjoint union, so

$$|A + (C \cup \{x\})| = |A + C| + |A| - |A'|.$$

Similarly,

$$A + B + (C \cup \{x\}) = (A + B + C) \cup ((A + B + x) \setminus (A' + B + x))$$
 (since if $a + x \in A + C$ then $a + B + x \subset A + B + C$)

$$\implies |A + B + (C \cup \{x\})| \le |A + B + C| + |A + B| - |A' + B|$$

$$< K|A + C| + K|A| - K|A'|$$

by induction and minimality property of A.

Corollary 2.2. If A, B are finite subsets of an Abelian group and $|A + B| \le K|A|$, then there exists $A' \subseteq A$, $A' \ne \emptyset$ such that $|A' + rB| \le K^r|A'|$ for every positive integer r.

Proof. Choose A' as we chose A in the proof of Lemma 2.1. Then

$$|A' + rB| = |A' + B + (r - 1)B| < K|A' + (r - 1)B|$$

and $|A' + B| \le K|A'|$ so we are done by induction.

Corollary 2.3. If $|A + A| \le K|A|$ or $|A - A| \le K|A|$, then $|rA| \le K^r|A|$.

Proof. Set
$$B = A$$
 or $-A$ in Corollary 2.2

Lemma 2.4 (Rusza inequality). Let A, B, C be finite subsets of an abelian group. Then $|A||B-C| \leq |A-B||A-C|$.

Proof. Define a map $\phi: A \times (B - C) \to (A - B) \times (A - C)$ as follows. Given (a, x) with $a \in A, x \in B - C$, choose, somehow, $b(x) \in B$ and $c(x) \in C$ such that b(x) - c(x) = x and set $\phi(a, x) = (a - b(x), a - c(x))$.

Note that (a - c(x)) - (a - b(x)) = b(x) - c(x) = x. Having worked out x, we know b(x) and a = a - b(x) + b(x), so a is determined too. So ϕ is an injection.

Why is it called a triangle inequality? We can write it as

$$\frac{|B-C|}{|B|^{\frac{1}{2}}|C|^{\frac{1}{2}}} \leq \frac{|A-B|}{|A|^{\frac{1}{2}}|B|^{\frac{1}{2}}} + \frac{|A-C|}{|A|^{\frac{1}{2}}|C|^{\frac{1}{2}}}$$

so if we define the Rusza distance d(A, B) to be

$$\frac{|A-B|}{|A|^{\frac{1}{2}}|B|^{\frac{1}{2}}},$$

then the inequality says $d(B,C) \leq d(A,B)d(A,C)$.

Corollary 2.5. If $|A - B| \le K|A|$, then $|rB - sB| \le K^{r+s}|A|$ for all r, s.

Proof. Pick A' as before. Then by Corollary 2.2 with B replaced by -B, $|A'-rB| \leq K'|A'|$ and $|A'-sB| \leq K^s|A'|$. Therefore, by Rusza inequality,

$$|A'||rB - sB| \le K^{r+s}|A'|^2 \implies |rB - sB| \le K^{r+s}|A|.$$

Corollary 2.6 (Plünnecke's theorem). If $|A+A| \le K|A|$ or $|A-A| \le K|A|$, then $|rA-sA| \le K^{r+s}|A|$.

Proof. Apply Corollary 2.5 with
$$B = -A$$
 or $B = A$.

Lemma 2.7 (Ruzsa's embedding theorem). Let $A \subseteq \mathbb{Z}$ be finite and suppose that $|kA - kA| \le C|A|$. Then there exists a prime $p \le 4C|A|$ and a subset $A' \subseteq A$ of size at least |A|/k such that A' is Freiman isomorphic of order k to a subset of \mathbb{Z}_p .

Proof. Consider the following composition of maps

$$\mathbb{Z} \xrightarrow{\text{reduce mod } q} \mathbb{Z}_q \xrightarrow{\text{x by some }} \mathbb{Z}_q \xrightarrow{\text{periodic mod } p} \mathbb{Z}_q \xrightarrow{\text{residue}} \mathbb{Z} \xrightarrow{\text{reduce mod } p} \mathbb{Z}_p$$

where q is a prime bigger than diam A and p is a prime $\in (2C|A|, 4C|A|]$.

Let ϕ be the composition. The first, second and fourth parts are group homomorphisms, and thus Freiman homomorphisms of all orders. Also, the third map is a Freiman homomorphism of order k if you restrict to a subinterval of [0,q-1] of length $\leq \frac{q}{k}$. To see this, write $\langle u \rangle$ for the least non-negative residue. Then if I has length $\leq \frac{q}{k}$ (and therefore $<\frac{q}{k}$) and $u_1,\ldots,u_{2k}\in I$, then if $u_1+\cdots+u_k-u_{k+1}-\cdots-u_{2k}=0$, then

$$\langle u_1 \rangle + \dots + \langle u_k \rangle - \langle u_{k+1} \rangle - \dots - \langle u_{2k} \rangle \equiv 0 \pmod{q}$$

and also has modulus less than q. So it is zero.

By the pigeonhole principe, for any r we can find I of length $\leq \frac{q}{k}$ such that

$$A' = \{ a \in A \mid ra \in I \}$$

has size at least |A|/k.

Remains to prove that ϕ is an isomorphism to its image. That is, we must show that if

$$a_1 + \dots + a_k - a_{k+1} - \dots + a_{2k} \equiv 0 \quad (a_i \in A)$$

then

$$\langle ra_1 \rangle + \dots + \langle ra_k \rangle - \langle ra_{k+1} \rangle - \langle ra_{2k} \rangle \neq 0 \pmod{p}$$

But if the a_i are chosen such that the ra_i all belong to the same interval of length $\frac{q}{k}$,

$$|\langle ra_1 \rangle + \cdots \langle ra_k \rangle - \langle ra_{k+1} \rangle - \cdots - \langle ra_{2k} \rangle| < q$$

and

$$\langle ra_1 \rangle + \dots + \langle ra_k \rangle - \langle ra_{k+1} \rangle - \dots - \langle ra_{2k} \rangle \equiv r(a_1 + \dots + a_k - a_{k+1} - \dots - a_{2k}) \mod q$$

So all that can go wrong is if $r(a_1+\cdots+a_k-a_{k+1}-\cdots-a_{2k})$ is xp for some $x\neq 0$ with $|x|<\frac{q}{p}$. The number of values to avoid is at most $\frac{2q}{p}$, so for each $a_1+\cdots+a_k-a_{k+1}-\ldots-a_{2k}$ the probability of going wrong if r is chosen randomly is at most $\frac{2}{p}$. So since $|kA-kA|\leq C|A|$, the probability of going wrong is at most $\frac{2}{p}C|A|$. Since p>2C|A|, there exists r such that we get a Freiman isomorphism of order k.