MACS203: Martingales

1 Martingales en temps discret

Martingales et temps d'arrêt

Def. Soit $(X_n)_{n\geqslant 0}$ un processus aléatoire adapté sur l'espace probabilisé filtré $(\Omega, \mathcal{A}, \mathbf{F}, \mathbf{P})$. On dit que X est une **surmartingale** (resp. **sous-martingale**) si X_n est **P**-intégrable pour tout n et $\forall n \in \mathbf{N}^*, \mathbf{E}[X_n \mid \mathcal{F}_{n-1}] \leqslant (\text{resp. } \geqslant)X_{n-1}$. X est une **martingale** s'il est à la fois surmartingale et sous-martingale.

Def. Pour un processus aléatoire $X=(X_n)_{n\geqslant 0}$, on définit le **processus arrêté** au temps d'arrrêt ν par $\forall n\in \mathbb{N}, X_n^{\nu}:=X_{n\wedge \nu}.$

Lem. Soit X une surmartingale (resp. sous-martingale, martingale) et ν un temps d'arrêt. Alors le processus arrêté X^{ν} est une surmartingale (resp. sous-martingale, martingale).

Th. Soit X une martingale (resp. surmartingale) et $\underline{\nu}$, $\overline{\nu}$ deux temps d'arrêt bornés dans \mathcal{T} vérifiant $\underline{\nu} \leqslant \overline{\nu}$ p.s. Alors $\mathbf{E}[X_{\overline{\nu}} \mid \mathcal{F}_{\underline{\nu}}] = (resp. \leqslant) X_{\underline{\nu}}$.

Prop. Soit $X = (X_n)_n$ un processus aléatoire **F**-adapté, $\forall n \in \mathbb{N}, \mathbf{E}(|X_n|) < \infty$. Alors X est une martingale ssi $\mathbf{E}[X_\nu] = \mathbf{E}[X_0]$ pour tout temps d'arrêt n borné.

Def. Une martingale $(X_n)_n$ est **fermée** s'il existe une v.a. réelle intégrable Y telle que $\forall n \in \mathbb{N}, X_n = \mathbf{E}(Y \mid X_n)$. **Th.** Toute martingale fermée est uniformément intégrable.

Th (Inégalité maximale de Doob). Soit $M=(M_n)_{n\geqslant 0}$ une sous-martingale, et $M_n^*:=\sup_{k\leqslant n}M_k$ son processus de maximum courant.

- (i) $\forall c > 0, \forall n \in \mathbf{N}, c\mathbf{P}(M_n^* \geqslant c) \leqslant \mathbf{E}(M_n \mathbf{1}_{M_n^* \geqslant c})$
- (ii) Soit p > 1 et supposons que la sous-martingale M est positive et $\forall n \in \mathbb{N}, M_n \in \mathcal{L}^p$. Alors $M_n^* \in \mathcal{L}^p$ et $\|M_n^*\|_p \leqslant \frac{p}{p-1} \|M_n\|_p$.

Prop (Décomposition de Doob). Soit $(X_n)_n$ un processus aléatoire intégrable. Il existe une martingale $(M_n)_n$ et un processus **F**-prévisible $(V_n)_n$ tels que $M_0 = V_0 = 0$ et $\forall n \ge 0, X_n = X_0 + M_n + V_n$. Cette décomposition est unique.