

Description

The VSM210N08 uses advanced trench technology and design to provide excellent $R_{\text{DS(ON)}}$ with low gate charge. It can be used in automotive applications and a wide variety of other applications.

General Features

• $V_{DSS} = 85V, I_D = 210A$ $R_{DS(ON)} < 3.5 m\Omega @ V_{GS} = 10V$

- Good stability and uniformity with high E_{AS}
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Automotive applications
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-247

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM210N08-T7	VSM210N08	TO-247	-	-	-

Absolute Maximum Ratings (T_c=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDSS	85	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	210	А	
Drain Current-Continuous(T _C =100°C)	I _D (100°C)	150	Α	
Pulsed Drain Current	I _{DM}	850	А	
Maximum Power Dissipation	P _D	330	W	
Derating factor		2.2	W/℃	
Single pulse avalanche energy (Note 3)	E _{AS}	2200	mJ	
Peak Diode Recovery dv/dt (Note 4)	dv/dt	5	V/ns	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	℃	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 1)	R _{eJC}	0.45	°C/W]
---	------------------	------	------	---

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	85	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =85V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±200	nA
On Characteristics						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	2.9	3.5	mΩ
Forward Transconductance	G FS	V _{DS} =10V,I _D =20A	35	-	-	S
Dynamic Characteristics						
Input Capacitance	C _{lss}	\/ -05\/\/ -0\/	-	11000	-	PF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, F=1.0MHz	-	914	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0IVIHZ	-	695	-	PF
Switching Characteristics	·		•			
Turn-on Delay Time	t _{d(on)}		-	23	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_D =2A, R_L =15 Ω	-	190	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	130	-	nS
Turn-Off Fall Time	t _f		-	120	-	nS
Total Gate Charge	Qg		-	250	-	nC
Gate-Source Charge	Q _{gs}	ID=30A,VDD=30V,VGS=10V	-	48	-	nC
Gate-Drain Charge	Q _{gd}		-	98	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage	V _{SD}	V _{GS} =0V,I _S =40A	-	-	1.2	V
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 40A	-	63	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note2)	-	98	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 2. Pulse Test: Pulse Width \leq 400 μ s, Duty Cycle \leq 2%.
- 3. EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=42.5V,VG=10V,L=2mH,Rg=25 Ω ,IAS=37A
- 4. ISD \leqslant 125A, di/dt \leqslant 260A/ μ s, VDD \leqslant V(BR)DSS, TJ \leqslant 175°C

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

T_J-Junction Temperature(°C)

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance