Chapitre 2 – Caractérisation inertielle des solides

Sciences Industrielles de

l'Ingénieur

Activation 1

Activation 1

X. Pessoles

Savoirs et compétences :

□ *Mod2.C13 : centre d'inertie*

■ Mod2.C14 : opérateur d'inertie

1

■ Mod2.C15 : matrice d'inertie

Triaxe

On donne le plan d'un triaxe constitué des 3 axes A_1 , A_2 , A_3 et du moyeu central noté M. On note T l'ensemble.

On note \overrightarrow{z} l'axe perpendiculaire au plan de la feuille. On se place ci-dessus dans le plan de symétrie $(O, \overrightarrow{x}, \overrightarrow{y})$.

TOUS LES CALCULS SE FERONT DE MANIÈRE LIT-TEREALE!

• $D_1 = 18 \,\mathrm{mm}$ et $H_1 = 25 \,\mathrm{mm}$.

• $D = 46 \,\mathrm{mm}$, $D' = 30 \,\mathrm{mm}$ et $H = 48 \,\mathrm{mm}$.

• $\alpha = (\overrightarrow{x}, \overrightarrow{x_2}) = -150$ et $\beta = (\overrightarrow{x}, \overrightarrow{x_3}) = -30^\circ$.

Question 1 Déterminer (sans calcul) la position du centre de gravité du triaxe.

Question 2 Déterminer analytiquement la position du centre de gravité G_1 du solide A_1 dans le repère $\mathcal{R}_1(O_1; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$.

Question 3 Déterminer (sans calcul) la **forme** de la matrice d'inertie du triaxe.

Question 4 Déterminer analytiquement la matrice d'inertie du solide A_1 en G_1 dans \mathcal{R}_1 . On la note $I_{G_1}(A_1) =$

$$\begin{pmatrix} A_1 & -F_1 & -E_1 \\ -F_1 & B_1 & -D_1 \\ -E_1 & -D_1 & C_1 \end{pmatrix}_{\mathcal{R}_1}$$
 où les constantes seront à déterminer

Question 5 Déterminer $I_{G_1}(A_1)$ dans la base $\mathscr{B}(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ puis $I_O(A_1)$ dans la base $\mathscr{B}(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$.

Question 6 Déterminer $I_O(A_2)$ et $I_O(A_3)$ dans la base $\mathscr{B}(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$.

Question 7 Déterminer $I_O(M)$ la matrice d'inertie du moyeu M.

Question 8 Déterminer $I_O(T)$ la matrice d'inertie du triaxe T.