

YOLO 細節理解-網路架構

重要知識點

了解 YOLO 網絡架構的設計與原理

造。進入 YOLO 網絡架構的世界

昨天我們介紹了 YOLO 架構的輸出設計,今天我們進入 YOLO 網絡 架構的世界,了解每一層設計的目的。

云 YOLO網絡架構 - 怎麼設計?

YOLO 的網絡架構,包含 24 層的卷積層(convolutional layer)和兩層的全連 接層(fully connected layer), 24 層的卷積層的目的用於抽象圖像特徵擷 取,兩個全連接層用於產生出對應的分類和定位的結果。

一 YOLO網絡架構 - 細部拆解

第一層有 64 個 7*7 大小的 Filters, Stride=2. 搭載一個 池化層,在 2*2 的大小中取最大值當代表值,Stride=2.

一 Filter 和 Output Dimension 的關係

Name	Filters	Output Dimension
Conv 1	7 x 7 x 64, stride=2	224 x 224 x 64
Max Pool 1	2 x 2, stride=2	112 x 112 x 64
Conv 2	3 x 3 x 192	112 x 112 x 192
Max Pool 2	2 x 2, stride=2	56 x 56 x 192
Conv 3	1 x 1 x 128	56 x 56 x 128
Conv 4	3 x 3 x 256	56 x 56 x 256
Conv 5	1 x 1 x 256	56 x 56 x 256
Conv 6	1 x 1 x 512	56 x 56 x 512
Max Pool 3	2 x 2, stride=2	28 x 28 x 512
Conv 7	1 x 1 x 256	28 x 28 x 256
Conv 8	3 x 3 x 512	28 x 28 x 512
Conv 9	1 x 1 x 256	28 x 28 x 256
Conv 10	3 x 3 x 512	28 x 28 x 512
Conv 11	1 x 1 x 256	28 x 28 x 256
Conv 12	3 x 3 x 512	28 x 28 x 512
Conv 13	1 x 1 x 256	28 x 28 x 256
Conv 14	3 x 3 x 512	28 x 28 x 512
Conv 15	1 x 1 x 512	28 x 28 x 512
Conv 16	3 x 3 x 1024	28 x 28 x 1024
Max Pool 4	2 x 2, stride=2	14 x 14 x 1024
Conv 17	1 x 1 x 512	14 x 14 x 512
Conv 18	3 x 3 x 1024	14 x 14 x 1024
Conv 19	1 x 1 x 512	14 x 14 x 512
Conv 20	3 x 3 x 1024	14 x 14 x 1024
Conv 21	3 x 3 x 1024	14 x 14 x 1024
Conv 22	3 x 3 x 1024, stride=2	7 x 7 x 1024
Conv 23	3 x 3 x 1024	7 x 7 x 1024
Conv 24	3 x 3 x 1024	7 x 7 x 1024
FC 1	-	4096
FC 2	-	7 x 7 x 30 (1470)

• 圖片大小 (W) : 448 × 448

• Filter大小 (F):7×7共64個

• 步長(S):2

- padding='same', 會用 zeropadding 的手法,讓輸入的圖不會受到 kernel map 的大小影響
- 第一層卷基層輸出的大小為

•
$$\frac{w}{S} = 224$$

- 輸出維度 = 224 × 224 × 64
- 觀察一下藍色的數字,64,發現 Filters 的個數等於輸出速度。

一 Filter 和 Output Dimension 的關係

Name	Filters	Output Dimension
Conv 1	7 x 7 x 64, stride=2	224 x 224 x 64
Max Pool 1	2 x 2, stride=2	112 × 112 × 64
Conv 2	3 x 3 x 192	112 x 112 x 192
Max Pool 2	2 x 2, stride=2	56 x 56 x 192
Conv 3	1 x 1 x 128	56 x 56 x 128
Conv 4	3 x 3 x 256	56 x 56 x 256
Conv 5	1 x 1 x 256	56 x 56 x 256
Conv 6	1 x 1 x 512	56 x 56 x 512
Max Pool 3	2 x 2, stride=2	28 x 28 x 512
Conv 7	1 x 1 x 256	28 x 28 x 256
Conv 8	3 x 3 x 512	28 x 28 x 512
Conv 9	1 x 1 x 256	28 x 28 x 256
Conv 10	3 x 3 x 512	28 x 28 x 512
Conv 11	1 x 1 x 256	28 x 28 x 256
Conv 12	3 x 3 x 512	28 x 28 x 512
Conv 13	1 x 1 x 256	28 x 28 x 256
Conv 14	3 x 3 x 512	28 x 28 x 512
Conv 15	1 x 1 x 512	28 x 28 x 512
Conv 16	3 x 3 x 1024	28 x 28 x 1024
Max Pool 4	2 x 2, stride=2	14 x 14 x 1024
Conv 17	1 x 1 x 512	14 x 14 x 512
Conv 18	3 x 3 x 1024	14 x 14 x 1024
Conv 19	1 x 1 x 512	14 x 14 x 512
Conv 20	3 x 3 x 1024	14 x 14 x 1024
Conv 21	3 x 3 x 1024	14 x 14 x 1024
Conv 22	3 x 3 x 1024, stride=2	7 x 7 x 1024
Conv 23	3 x 3 x 1024	7 x 7 x 1024
Conv 24	3 x 3 x 1024	7 x 7 x 1024
FC 1	-	4096
FC 2	-	7 x 7 x 30 (1470)

- Max pooling:在 2*2 的大小中取最大 值當代表值,
- **Stride = 2**

• Layer 1 輸出維度 =
$$\frac{224}{2} \times \frac{224}{2}$$
 64

云。YOLO網絡架構 - 以 GoogLeNet 為核心

YOLO 的網絡架構,是以 GoogLeNet 模型為基礎發展,YOLO 借鑑 Inception Module 架構,在某些 3×3 的卷積層前面用 1×1 的卷積層,那麼 這樣的架構有什麼好處?

一 1×1 卷積的用處

直觀

把原本的數值放大或縮小

微觀:

- . 跨通道(channel)信息整合
- 2. 空間關係不變下,達到降維或升維的效果

對應相乘的動作,就是把相 同位置下的 channel 特徵融 合再一起

空間關係不變下,透過 Filters 個數, 來達到降維或升維的效果,以這個圖 為例從 5 channel→3 channel

一。1×1 卷積的效益-降維達到降低參數量(1/3)

- 這邊我們以 GoogleNet 中的某一層架構來看,下方左邊的圖沒有搭載 1×1 卷積,右邊的突有搭載 1×1 卷積,比較兩者的參數,看 1×1 卷積如 何達到降低參數量的過程。
- 首先,兩邊都輸入相同大小的 feature map 是 28×28×192

长。1×1 卷積的效益-降維達到降低參數量(2/3)

假設網絡架構中:

1×1卷積Filter數量為64

3×3卷積Filter數量為128

5×5卷積Filter數量為32

這張圖這一層的參數的數量為:

 $192 \times (1 \times 1 \times 64) + 192 \times (3 \times 3 \times 128) +$

 $192 \times (5 \times 5 \times 32) = 387072$

一个 1×1 卷積的效益-降維達到降低參數量(3/3)

 $387,072 \rightarrow 163,328$ 藍色的數字,就是降維,最終達到降 低參數量的效果

假設網絡架構中:

1×1卷積 Filters 數量為64 3×3卷積 Filters數量為128 5×5卷積 Filters 數量為32 對3×3、5×5卷積與3×3 池化層前(/後)分 别加入了數量為96、16和32的1×1卷積 **Filters**

這張圖這一層的參數的數量為:

 $192 \times (1 \times 1 \times 64) + (192 \times 1 \times 1 \times 96 + 96 \times 192 \times$ $3\times3\times128$) + $(192\times1\times1\times16+16\times5\times5\times$ 32) $+(192\times1\times1\times32)=163,328$

1×1 與 3×3 卷積層組合的好處

Name	Filters	Output Dimension
Conv 1 Max Pool 1 Conv 2 Max Pool 2 Conv 3 Conv 4 Conv 5 Conv 6 Max Pool 3 Conv 7 Conv 8 Conv 9 Conv 10 Conv 11 Conv 12 Conv 13 Conv 14 Conv 15 Conv 15 Conv 16 Max Pool 4 Conv 17 Conv 18 Conv 19 Conv 19 Conv 20 Conv 21 Conv 21 Conv 22	Filters 7 x 7 x 64, stride=2 2 x 2, stride=2 3 x 3 x 192 2 x 2, stride=2 1 x 1 x 128 3 x 3 x 256 1 x 1 x 512 2 x 2, stride=2 1 x 1 x 512 2 x 2, stride=2 1 x 1 x 256 3 x 3 x 512 1 x 1 x 256 3 x 3 x 512 1 x 1 x 256 3 x 3 x 512 1 x 1 x 256 3 x 3 x 512 1 x 1 x 256 3 x 3 x 512 1 x 1 x 512 3 x 3 x 1024 2 x 2, stride=2 1 x 1 x 512 3 x 3 x 1024 1 x 1 x 512 3 x 3 x 1024 1 x 1 x 512 3 x 3 x 1024 3 x 3 x 1024, stride=2	224 x 224 x 64 112 x 112 x 192 56 x 56 x 192 56 x 56 x 256 56 x 56 x 256 56 x 56 x 256 56 x 56 x 512 28 x 28 x 512 29 x 28 x 512 20 x 28 x 512 21 x 14 x 14 x 1024 14 x 14 x 1024
Conv 23 Conv 24 FC 1 FC 2	3 x 3 x 1024 3 x 3 x 1024 -	7 x 7 x 1024 7 x 7 x 1024 4096 7 x 7 x 30 (1470)

A

3

5

6

8

9

- 通過跨通道 (channel) 信息整合後,再取 3×3 的小範圍下找相似的特徵
- 在 YOLOv1 中共有 9 個這樣的組合

一 1×1 與 3×3 卷積層組合的好處

Name	Filters	Output Dimension
Conv 1	7 x 7 x 64, stride=2	224 x 224 x 64
Max Pool 1	2 x 2, stride=2	112 x 112 x 64
i	3 x 3 x 192	112 x 112 x 192
	2 x 2, stride=2	56 x 56 x 192
i	1 x 1 x 128	56 x 56 x 128
i	3 x 3 x 256	56 x 56 x 256
	1 x 1 x 256	56 x 56 x 256
	1 x 1 x 512	56 x 56 x 512
i	2 x 2, stride=2	28 x 28 x 512
i	1 x 1 x 256	28 x 28 x 256
	3 x 3 x 512	28 x 28 x 512
i	1 x 1 x 256	28 x 28 x 256
Conv 10	3 x 3 x 512	28 x 28 x 512
Conv 11	1 x 1 x 256	28 x 28 x 256
Conv 12	3 x 3 x 512	28 x 28 x 512
Conv 13	1 x 1 x 256	28 x 28 x 256
Conv 14	3 x 3 x 512	28 x 28 x 512
Conv 15	1 x 1 x 512	28 x 28 x 512
Conv 16	3 x 3 x 1024	28 x 28 x 1024
Max Pool 4	2 x 2, stride=2	14 x 14 x 1024
Conv 17	1 x 1 x 512	14 x 14 x 512
Conv 18	3 x 3 x 1024	14 x 14 x 1024
Conv 19	1 x 1 x 512	14 x 14 x 512
Conv 20	3 x 3 x 1024	14 × 14 × 1024
Conv 21	3 x 3 x 1024	14 × 14 × 1024
Conv 22	3 x 3 x 1024, stride=2	7 x 7 x 1024
Conv 23	3 x 3 x 1024	7 x 7 x 1024
Conv 24	3 x 3 x 1024	7 x 7 x 1024
FC 1	-	4096
FC 2	-	7 x 7 x 30 (1470)

- 拉平後
- 兩個全連接層用於產生出對應的分類和 定位的結果。

天间報的極期

- YOLO 的網絡架構,是以 GoogLeNet 模型為骨架進行調整,透過 1×1 卷積層,進行跨通道(channel)信息整合,同時達到降低參數的效果,降低過度擬合的情形。
- 了解原理後,明天將進行 YOLO 的網絡架構程式碼講解, 明天見

參考資料

今天的課程還意猶未盡嗎?想更深入從不同的角度探討 1×1 的實際效益,可以看參考資料中的網路討論,可以學習到更多。

● 卷積神經網路中用 1×1 卷積有甚麼作用或好處?

解題時間 Let's Crack It

請跳出 PDF 至官網 Sample Code &作業開始解題