

Driver Distraction: A view from the simulator

Frank Drews & David Strayer

Distracted Driving and Multi-tasking...

Research Questions

- Does conversing on a cell phone interfere with driving?
- > What are the sources of the interference?
 - Peripheral interference (dialing, holding the phone)
 - Attentional interference (cell phone conversation)
- Who is affected?
 - Are there age / expertise effects?
- > How much are drivers affected?
 - How significant is the interference?
 - How do other cell phone activities compare?
 - How do other types of conversation compare?

Simulator-Based Studies

Does conversing on a cell phone interfere with driving (Experiment 1)

- Car-following paradigm
 - > Follow periodically braking pace car
 - > Required timely and appropriate reactions
 - Hands-free cell phone (positioned in advance)
 - Naturalistic conversations
- Conditions
 - > Single vs. dual-task
 - Low vs. moderate density *
- Measures
 - Reaction time
 - Following distance
 - Rear-end collisions

Reaction Time

Following Distance

Rear-end Collisions

- Cell-phone driver's
 - Slower reaction times
 - Drivers compensate by increasing following distance
 - Increase in rear-end accidents
- Cell-phone interference
 - Naturalistic conversations

Why Do Cell Phones Cause Interference?

- > From earlier studies, no interference from:
 - Radio broadcasts (audio input)
 - Books on tape & recorded conversations (audio/verbal input)
 - Simple shadowing (audio/verbal input, verbal output)
- Implies active engagement in conversation necessary
- Impairments from both hand-held and hands-free units
 - Implies central / cognitive locus
 - Inattention-blindness (Neisser, Simons)

Inattention-Blindness (Experiment 2)

- Is there cell-phone induced inattention blindness?
 - > Hands-free cell phone
 - Naturalistic conversation with confederate
 - Eye tracker
- > Two phases to the study:
 - Phase 1: Single & dual-task driving
 - Phase 2: Recognition memory tests for objects encountered while driving

Recognition Memory Given Fixation

Summary (Experiment 2)

- Cell phone conversations create inattention blindness for traffic related events/scenes
- Cell phone drivers look but fail to see up to half of the information in the driving environment
- No evidence that cell phone drivers protect more traffic relevant information

Are there age / experience effects? (Experiment 3)

- Car-following paradigm
 - Follow periodically braking pace car
 - Required timely and appropriate reactions
 - Hands-free cell phone (positioned in advance)
 - Naturalistic conversations

Performance Measures		Single	Dual
Reaction time	Younger Adults		
Recovery time	Younger Adults		
Driving speed			
Following distance	Older Adults		

Brake Reaction Time

Summary (Experiment 3)

- Main effect of single vs. dual-task:
 - Reaction time
 - Following distance
- Main effect of age:
 - Slower reactions
 - Slower driving speed
 - Greater following distance
- No Age x Task interaction

How Significant is the Interference? The drunk driver (Experiment 4)

Cell-phone vs. drunk-driver

Problem Redelmeier and Tibshirani (1997) suggested that "the relative risk [of being in a traffic accident while using a cell-phone] is similar to the hazard associated with driving with a blood alcohol level at the legal limit" (p. 465).

- Car-following paradigm
 - Follow periodically braking pace car
 - Required timely and appropriate reactions
- Conditions
 - Single-task driving
 - Cell-phone driving *
 - Intoxicated driving (BAC= 0.08 wt/vol)
 - * Hands-free = Hand-held

Reaction Time

Following Distance

Rear-end Collisions

- Compared to drunk drivers, cell-phone drivers
 - React slower
 - Increase following distance
 - Compensate by increasing following distance
 - > But: Still more rear-end accidents
- When controlling for time on task and driving conditions, cell-phone drivers' performance is worse than that of the drunk driver

- Follow periodically braking pace car
- > Required timely and appropriate reactions
- > 20 friend dyads
- Conditions
 - Single vs. dual-task
- Measures
 - Reaction time
 - Following distance
 - Minimum following distance
 - Rear-end collisions

Reaction Time

Following Distance

Rear-end Collisions

Summary (Experiment 5)

- > Test messaging drivers
 - Slower reaction times
 - Increased following distance
 - > But: smaller minimum distance
 - > Increase in rear-end accidents
- > Things can be worse: Text messaging exceeds cell phone conversations in accident risk

Other types of conversations: Cell Phone vs. Passenger Conversations (Experiment 6)

- Conditions
 - Single task / dual task
 - Conversing on cell phone
 - Conversing with passenger
- Design
 - > Task (2) x Condition (2)

Cell Phone vs. Passenger Conversations

- Free driving paradigm
 - > 8 miles of highway
 - > Exit highway at rest area
 - Hands-free cell phone
 - Close call stories / friends
- Performance Measures
 - Lane keeping
 - Navigation task
 - Traffic references

Lane Keeping Errors

Successful Navigation

Traffic References

- Cell-phone conversations
 - More lane keeping errors
 - More navigation errors
 - > Fewer references to traffic
- Passenger conversations
 - Collaborative problem solving
 - > Shared situation awareness
 - > Passenger actively supports the driver

The answers

- Does conversing on a cell phone interfere with driving?
 - > Yes
- What are the sources of the interference?
 - Peripheral interference (dialing)
 - Attentional interference (inattention blindness)
- > Who is affected?
 - > Younger and older drivers equally affected
- How significant is the interference?
 - Worse than listening to radio/books on tape
 - Worse than in-vehicle conversations
 - Worse than driving while legally intoxicated
 - > BUT: Less significant than text messaging

