Signal Processing and Linear Systems I

Lecture 5: Time Domain Analysis of Continuous Time Systems

January 14, 2013

Time Domain Analysis of Continuous Time Systems

Today's topics

- Zero-input and zero-state responses of a system
- Impulse response
- Extended linearity
- Response of a linear time-invariant (LTI) system
- Superposition integral
- Convolution

System Equation

The System Equation relates the outputs of a system to its inputs.

Example from last time: the system described by the block diagram

has a system equation

$$y' + ay = x.$$

In addition, the initial conditions must be given to uniquely specifiy a solution.

Solutions for the System Equation

Solving the system equation tells us the output for a given input.

The output consists of two components:

• The zero-input response, which is what the system does with no input at all. This is due to initial conditions, such as energy stored in capacitors and inductors.

• The *zero-state* response, which is the output of the system with all initial conditions zero.

If H is a linear system, its zero-input response is zero. Homogeneity states if y=F(ax), then y=aF(x). If a=0 then a zero input requires a zero output.

Example: Solve for the voltage across the capacitor y(t) for an arbitrary input voltage x(t), given an initial value $y(0) = Y_0$.

From Kirchhoff's voltage law

$$x(t) = Ri(t) + y(t)$$

Using i(t) = Cy'(t)

$$RCy'(t) + y(t) = x(t).$$

This is a first order LCCODE, which is linear with zero initial conditions. First we solve for the homogeneous solution by setting the right side (the input) to zero

$$RCy'(t) + y(t) = 0.$$

The solution to this is

$$y(t) = Ae^{-t/RC}$$

which can be verified by direct substitution.

To solve for the total response, we let the undetermined coefficient be a function of time

$$y(t) = A(t)e^{-t/RC}.$$

Substituting this into the differential equation

$$RC\left[A'(t)e^{-t/RC} - \frac{1}{RC}A(t)e^{-t/RC}\right] + A(t)e^{-t/RC} = x(t)$$

Simplying

$$A'(t) = x(t) \left[\frac{1}{RC} e^{t/RC} \right]$$

which can be integrated from t=0 to get

$$A(t) = \int_0^t x(\tau) \left[\frac{1}{RC} e^{\tau/RC} \right] d\tau + A(0)$$

Then

$$y(t) = A(t)e^{-t/RC}$$

$$= e^{-t/RC} \int_0^t x(\tau) \left[\frac{1}{RC} e^{\tau/RC} \right] d\tau + A(0)e^{-t/RC}$$

$$= \int_0^t x(\tau) \left[\frac{1}{RC} e^{-(t-\tau)/RC} \right] d\tau + A(0)e^{-t/RC}$$

At t=0, $y(0)=Y_0$, so this gives $A(0)=Y_0$

$$y(t) = \underbrace{\int_0^t x(\tau) \left[\frac{1}{RC} e^{-(t-\tau)/RC} \right] d\tau}_{\text{zero-state response}} + \underbrace{Y_0 e^{-t/RC}}_{\text{zero-input response}}$$

Impulse Response

The *impulse response* of a linear system $h(t,\tau)$ is the output of the system at time t to an impulse at time τ . This can be written as

$$h(t,\tau) = H(\delta(t-\tau))$$

Care is required in interpreting this expression!

Note: Be aware of potential confusion here:

When you write

$$h(t,\tau) = H(\delta(t-\tau))$$

the variable t serves different roles on each side of the equation.

- t on the left is a specific value for time, the time at which the output is being sampled.
- t on the right is varying over all real numbers, it is not the same t as on the left.
- The output at time specific time t on the left in general depends on the input at all times t on the right (the entire input waveform).

Alternative notation: Let $\delta_{\tau} = \{\delta(t - \tau); t \in (-\infty, \infty)\}$ denote the entire signal. Given a signal x, let $H_t(x)$ denote the output of system H at time t when the input is x. Then $h(t,\tau) = H_t(\delta_{\tau})$ is unambiguous.

• Assume the input impulse is at $\tau = 0$,

$$h(t,0) = H(\delta(t)).$$

We want to know the impulse response at time t=2. It doesn't make any sense to set t=2, and write

$$h(2,0) = H(\delta(2))$$
 $\Leftarrow No!$

First, $\delta(2)$ is something like zero, so H(0) would be zero. Second, the value of h(2,0) depends on the entire input waveform, not just the value at t=2.

• Compare to an equation such as

$$y'(t) + 2y(t) = x(t)$$

which holds for each t, so that y'(1) + 2y(1) = x(1).

If H is time invariant, delaying the input and output both by a time au should produce the same response

$$h(t,\tau) = h(t-\tau,\tau-\tau) = h(t-\tau,0).$$

Hence h is only a function of $t - \tau$. We suppress the second argument, and define the impulse response of a *linear time-invariant* (LTI) system H to be

$$h(t) = H(\delta(t))$$

RC Circuit example

The solution for an input x(t) and initial $y(0) = Y_0$ is

$$y(t) = \int_0^t x(\tau) \left[\frac{1}{RC} e^{-(t-\tau)/RC} \right] d\tau + Y_0 e^{-t/RC}$$

The zero-state response is $(Y_0 = 0)$ is

$$y(t) = \int_0^t x(\tau) \left[\frac{1}{RC} e^{-(t-\tau)/RC} \right] d\tau$$

The impulse response is then

$$h(t) = \int_{0-}^{t} \delta(\tau) \left[\frac{1}{RC} e^{-(t-\tau)/RC} \right] d\tau$$
$$= \frac{1}{RC} e^{-t/RC}$$

for $t \ge 0$, and zero otherwise. We integrate from 0- to include the impulse.

This impulse response looks like:

Linearity and Extended Linearity

Linearity: A system S is linear if it satisfies both

• Homogeneity: If y = Sx, and a is a constant then

$$ay = S(ax).$$

• Superposition: If $y_1 = Sx_1$ and $y_2 = Sx_2$, then

$$y_1 + y_2 = S(x_1 + x_2).$$

Combined Homogeneity and Superposition:

If $y_1 = Sx_1$ and $y_2 = Sx_2$, and a and b are constants,

$$ay_1 + by_2 = S(ax_1 + bx_2)$$

Extended Linearity

• Summation: If $y_n = Sx_n$ for all n, an integer from $(-\infty < n < \infty)$, and a_n are constants

$$\sum_{n} a_n y_n = S\left(\sum_{n} a_n x_n\right)$$

Summation and the system operator commute, and can be interchanged.

• Integration (Simple Example): If y = Sx,

$$\int_{-\infty}^{\infty} a(\tau)y(t-\tau) d\tau = S\left(\int_{-\infty}^{\infty} a(\tau)x(t-\tau)d\tau\right)$$

Integration and the system operator commute, and can be interchanged.

Output of an LTI System

We would like to determine an expression for the output y(t) of an linear time invariant system, given an input x(t)

We can write a signal x(t) as a sample of itself

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t - \tau) d\tau$$

This means that x(t) can be written as a weighted integral of δ functions.

Applying the system H to the input x(t),

$$y(t) = H(x(t))$$

$$= H\left(\int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau\right)$$

If the system obeys extended linearity we can interchange the order of the system operator and the integration

$$y(t) = \int_{-\infty}^{\infty} x(\tau) H(\delta(t - \tau)) d\tau.$$

The impulse response is

$$h(t,\tau) = H(\delta(t-\tau)).$$

Substituting for the impulse response gives

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t,\tau)d\tau.$$

This is a *superposition integral*. The values of $x(\tau)h(t,\tau)d\tau$ are superimposed (added up) for each input time τ .

If H is time invariant, this written more simply as

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau.$$

This is in the form of a *convolution integral*, which will be the subject of the next class.

Graphically, this can be represented as:

RC Circuit example, again

The impulse response of the RC circuit example is

$$h(t) = \frac{1}{RC}e^{-t/RC}$$

The response of this system to an input x(t) is then

$$y(t) = \int_0^t x(\tau)h(t-\tau)d\tau$$
$$= \int_0^t x(\tau)\left[\frac{1}{RC}e^{-(t-\tau)/RC}\right]d\tau$$

which is the zero state solution we found earlier.

Example:

High energy photon detectors can be modeled as having a simple exponential decay impulse response.

These are used in positiron emmision tomography (PET) systems.

Input is a sequence of impulses (photons).

Output is superposition of impulse responses (light).

Summary

ullet For an input x(t), the output of an linear system is given by the superposition integral

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t,\tau) d\tau$$

• If the system is also time invariant, the result is a convolution integral

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

• The response of an LTI system is completely characterized by its *impulse* response h(t).