Projection transformations

Parallel projection

Perspective projection

Parallell projection:

Projection lines are parallel

Orthogonal projection:

Projection lines are parallel and perpendicular to projection plane

Isometric projection:

Projection lines are parallel, perpendicular to projection plane, and have the same angle with axes.

Orthogonal projection:

Projection of (x, y, z)(from view coordinate s to projection coordinate s):

$$x_p = x$$

$$y_p = y$$

$$z_p = z$$

Trivial!

View volume

 \longrightarrow

Normalized View volume

Translation
Scaling
From right- to left handed

View plane: orthogonal to z_{view} axis.

Question: What is the projection of **P** on the view plane?

Line from \mathbf{R} (origin) to \mathbf{P} :

X' = uP, with $0 \le u \le 1$,

or x'=ux; y'=uy; and z'=uz.

At crossing with plane:

$$z'=z_{vp}$$
 hence $u=\frac{z_{vp}}{z}$.

Substituti on gives

$$x_p = \frac{z_{vp}}{z} x$$
 and $y_p = \frac{z_{vp}}{z} y$

 $\mathbf{P} = (x, y, z)$ View plane

Viewed from the side

We can see that:

$$\frac{y}{z} = \frac{y_p}{z_{vp}}$$

hence

$$y_p = \frac{z_{vp}}{z} y$$

Ratio between

 $W=w_{\rm max}-w_{\rm min}$ and $z_{\rm vp}$

determines strenght perspective

Viewed from the side

View volume orthogonal...

View volume perspective

To Normalized Coordinates...

Rectangular frustum View Volume Normalized View volume

Perspective transformation:

Distort space, such that perpendicular projection gives an image in perspective.

Simplest case: Square window, clipping plane coincides with view plane: $z_n = z_{vp}$

Earlier:
$$x_p = \frac{z_{vp}}{z}x$$
, $y_p = \frac{z_{vp}}{z}y$

How to put this transformation in the pipeline? How to process division by z?

Homogeneous coordinates (reprise)

Add extra coordinate:

$$\mathbf{P} = (p_x, p_y, p_z, p_h) \text{ or}$$

$$\mathbf{x} = (x, y, z, h)$$

• Cartesian coordinates: divide by h

$$\mathbf{x} = (x/h, y/h, z/h)$$

• Points: h = 1 (temporary...) perspective: h = -z!

Homogeneous coordinates (reprise)

Perspective transformation can be described by:

$$\begin{pmatrix} x_h \\ y_h \\ z_h \\ h \end{pmatrix} = \begin{pmatrix} s_{xx} & s_{xy} & s_{xz} & t_x \\ s_{yx} & s_{yy} & s_{yz} & t_y \\ s_{zx} & s_{zy} & s_{zz} & t_z \\ 0 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_v \\ y_v \\ z_v \\ 1 \end{pmatrix}$$

such that projected coordinate s are given by:

$$\begin{pmatrix} x_p \\ y_p \\ z_p \end{pmatrix} = \begin{pmatrix} x_h / h \\ y_h / h \\ z_h / h \end{pmatrix}.$$

First x. Generic form is $x_p = (s_{xx}x + s_{xy}y + s_{xz}z + t_x)/-z$.

If x = r and $z = z_n$, then $x_p = 1$.

If $x = rz_f / z_n$ and $z = z_f$, then also $x_p = 1$.

Elaboratio n gives : $s_{xx} = -z_n / r$, $s_{xy} = s_{xz} = t_x = 0$.

Next the y. Same as x, gives :

$$y_p = (-z_n/r)y/-z.$$

Or:
$$s_{yy} = (-z_n / r), s_{yx} = s_{yz} = t_y = 0.$$

Finally: z. Generic form is: $z_p = (s_{zx}x + s_{zy}y + s_{zz}z + t_z)/-z$.

If $z = z_n$, then $z_p = -1$.

If $z = z_f$, then $z_f = 1$. Elaboration gives

$$s_{zz} = \frac{z_n + z_f}{z_n - z_f}, t_z = \frac{-2z_n z_f}{z_n - z_f}, s_{zx} = s_{zy} = 0.$$

Perspective transformation can hence be described by:

$$\begin{pmatrix} x_h \\ y_h \\ z_h \\ h \end{pmatrix} = \begin{pmatrix} -z_n/r & 0 & 0 & 0 \\ 0 & -z_n/r & 0 & 0 \\ 0 & 0 & \frac{z_n + z_f}{z_n - z_f} & \frac{-2z_n z_f}{z_n - z_f} \\ 0 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_v \\ y_v \\ z_v \\ 1 \end{pmatrix}$$

where the projected coordinate s follow from:

$$\begin{pmatrix} x_p \\ y_p \\ z_p \end{pmatrix} = \begin{pmatrix} x_v / h \\ y_v / h \\ z_v / h \end{pmatrix}.$$