EXERCISES 6.5 = PAGE 445

1.
$$\frac{8}{3}$$
 3. $\frac{45}{28}$ 5. $\frac{1}{10}(1-e^{-25})$ 7. $2/(5\pi)$

11. (a)
$$4/\pi$$
 (b) $\approx 1.24, 2.81$

15.
$$38\frac{1}{3}$$
 17. $(50 + 28/\pi)^{\circ}$ F $\approx 59^{\circ}$ F 19. 6 kg/m

21.
$$5/(4\pi) \approx 0.4 \text{ L}$$

CHAPTER 6 REVIEW = PAGE 446

Exercises

1.
$$\frac{8}{3}$$
 3. $\frac{7}{12}$ 5. $\frac{4}{3} + 4/\pi$ 7. $64\pi/15$ 9. $1656\pi/5$

11.
$$\frac{4}{3}\pi(2ah+h^2)^{3/2}$$
 13. $\int_{-\pi/3}^{\pi/3} 2\pi(\pi/2-x)(\cos^2x-\frac{1}{4}) dx$

15. (a)
$$2\pi/15$$
 (b) $\pi/6$ (c) $8\pi/15$

19. Solid obtained by rotating the region
$$0 \le y \le \cos x$$
, $0 \le x \le \pi/2$ about the y-axis

21. Solid obtained by rotating the region
$$0 \le x \le \pi$$
,

$$0 \le y \le 2 - \sin x$$
 about the x-axis

23. 36 **25.**
$$\frac{125}{3}\sqrt{3}$$
 m³ **27.** 3.2 J

29. (a)
$$8000\pi/3 \approx 8378$$
 ft-lb (b) 2.1 ft **31.** $f(x)$

PROBLEMS PLUS = PAGE 448

1. (a)
$$f(t) = 3t^2$$
 (b) $f(x) = \sqrt{2x/\pi}$ 3. $\frac{3}{2}$

(d) (i)
$$1/(105\pi) \approx 0.003$$
 in/s (ii) $370\pi/3$ s ≈ 6.5 min

9.
$$y = \frac{32}{9}x^2$$

II. (a)
$$V = \int_0^h \pi [f(y)]^2 dy$$
 (c) $f(y) = \sqrt{kA/(\pi C)} y^{1/4}$
Advantage: the markings on the container are equally spaced.

13.
$$b = 2a$$
 15. $B = 16A$

CHAPTER 7

EXERCISES 7.1 = PAGE 457

1.
$$\frac{1}{3}x^3 \ln x - \frac{1}{9}x^3 + C$$
 3. $\frac{1}{5}x \sin 5x + \frac{1}{25}\cos 5x + C$

5.
$$2(r-2)e^{r/2}+C$$

7.
$$-\frac{1}{\pi}x^2\cos\pi x + \frac{2}{\pi^2}x\sin\pi x + \frac{2}{\pi^3}\cos\pi x + C$$

9.
$$\frac{1}{2}(2x+1)\ln(2x+1)-x+C$$

11.
$$t \arctan 4t - \frac{1}{8} \ln(1 + 16t^2) + C$$

13.
$$\frac{1}{2}t \tan 2t - \frac{1}{4} \ln |\sec 2t| + C$$

15.
$$x(\ln x)^2 - 2x \ln x + 2x + C$$

17.
$$\frac{1}{13}e^{2\theta}(2\sin 3\theta - 3\cos 3\theta) + C$$

19.
$$\pi/3$$
 21. $1-1/e$ 23. $\frac{1}{2}-\frac{1}{2}\ln 2$ 25. $\frac{1}{4}-\frac{3}{4}e^{-2}$

27.
$$\frac{1}{6}(\pi + 6 - 3\sqrt{3})$$
 29. $\sin x (\ln \sin x - 1) + C$

31.
$$\frac{32}{5}(\ln 2)^2 - \frac{64}{25}\ln 2 + \frac{62}{125}$$

33.
$$2\sqrt{x} \sin \sqrt{x} + 2 \cos \sqrt{x} + C$$
 35. $-\frac{1}{2} - \pi/4$

37.
$$\frac{1}{2}(x^2-1)\ln(1+x)-\frac{1}{4}x^2+\frac{1}{2}x+\frac{3}{4}+C$$

39.
$$(2x+1)e^x+C$$

41.
$$\frac{1}{3}x^2(1+x^2)^{3/2} - \frac{2}{15}(1+x^2)^{5/2} + C$$

43. (b)
$$-\frac{1}{4}\cos x \sin^3 x + \frac{3}{8}x - \frac{3}{16}\sin 2x + C$$

45. (b)
$$\frac{2}{3}$$
, $\frac{8}{15}$ **51.** $x(\ln x)^3 - 3x(\ln x)^2 + 6x \ln x - 6x + C$

53.
$$\frac{25}{4} - \frac{75}{4}e^{-2}$$
 55. 1.0475, 2.8731; 2.1828 **57.** $4 - 8/\pi$

59.
$$2\pi e$$
 61. $\frac{9}{2} \ln 3 - \frac{13}{9}$ **63.** $2 - e^{-t}(t^2 + 2t + 2)$ m

EXERCISES 7.2 PAGE 465

1.
$$\frac{1}{5}\cos^5 x - \frac{1}{3}\cos^3 x + C$$
 3. $-\frac{11}{384}$

5.
$$\frac{1}{3\pi} \sin^3(\pi x) - \frac{2}{5\pi} \sin^5(\pi x) + \frac{1}{7\pi} \sin^7(\pi x) + C$$

7. $\pi/4$ 9. $3\pi/8$ II. $\frac{3}{2}\theta + 2 \sin \theta + \frac{1}{4} \sin 2\theta + C$

7.
$$\pi/4$$
 9. $3\pi/8$ 11. $\frac{3}{2}\theta + 2\sin\theta + \frac{1}{4}\sin 2\theta + C$

13.
$$\pi/16$$
 15. $\frac{2}{45}\sqrt{\sin\alpha} (45 - 18\sin^2\alpha + 15\sin^4\alpha) + C$

17.
$$\frac{1}{2}\cos^2 x - \ln|\cos x| + C$$
 19. $\ln|\sin x| + 2\sin x + C$

21.
$$\frac{1}{2} \tan^2 x + C$$
 23. $\tan x - x + C$

25.
$$\frac{1}{5} \tan^5 t + \frac{2}{3} \tan^3 t + \tan t + C$$
 27. $\frac{117}{8}$

29.
$$\frac{1}{3} \sec^3 x - \sec x + C$$

31.
$$\frac{1}{4} \sec^4 x - \tan^2 x + \ln|\sec x| + C$$

33.
$$\frac{1}{6} \tan^6 \theta + \frac{1}{4} \tan^4 \theta + C$$

35.
$$x \sec x - \ln |\sec x + \tan x| + C$$
 37. $\sqrt{3} - \frac{1}{3}\pi$

39.
$$\frac{1}{3}\csc^3\alpha - \frac{1}{5}\csc^5\alpha + C$$
 41. $\ln|\csc x - \cot x| + C$

43.
$$-\frac{1}{6}\cos 3x - \frac{1}{26}\cos 13x + C$$
 45. $\frac{1}{8}\sin 4\theta - \frac{1}{12}\sin 6\theta + C$

47.
$$\frac{1}{2}\sin 2x + C$$
 49. $\frac{1}{10}\tan^5(t^2) + C$

53.
$$\frac{1}{6} \sin 3x - \frac{1}{18} \sin 9x + C$$

63. $\pi(2\sqrt{2}-\frac{5}{2})$

55. 0 **57.** 1 **59.** 0 **65.**
$$s = (1 - \cos^3 \omega t)/(3\omega)$$

47.
$$\ln \left[\frac{e^x + 1}{e^x + 1} \right] + 0$$

1.
$$\sqrt{x^2-9}/(9x)+C$$
 3. $\frac{1}{3}(x^2-18)\sqrt{x^2+9}+C$

5.
$$\pi/24 + \sqrt{3}/8 - \frac{1}{4}$$
 7. $-\sqrt{25 - x^2}/(25x) + C$

9.
$$\ln(\sqrt{x^2+16}+x)+C$$
 11. $\frac{1}{4}\sin^{-1}(2x)+\frac{1}{2}x\sqrt{1-4x^2}+C$

61. $\pi^2/4$

13.
$$\frac{1}{6} \sec^{-1}(x/3) - \sqrt{x^2 - 9}/(2x^2) + C$$

15.
$$\frac{1}{16}\pi a^4$$
 17. $\sqrt{x^2-7}+C$

19.
$$\ln \left| (\sqrt{1+x^2}-1)/x \right| + \sqrt{1+x^2} + C$$
 21. $\frac{9}{500}\pi$

23.
$$\frac{9}{2}\sin^{-1}((x-2)/3) + \frac{1}{2}(x-2)\sqrt{5+4x-x^2} + C$$

25.
$$\sqrt{x^2+x+1}-\frac{1}{2}\ln(\sqrt{x^2+x+1}+x+\frac{1}{2})+C$$

27.
$$\frac{1}{2}(x+1)\sqrt{x^2+2x} - \frac{1}{2}\ln|x+1+\sqrt{x^2+2x}| + C$$

29.
$$\frac{1}{4}\sin^{-1}(x^2) + \frac{1}{4}x^2\sqrt{1-x^4} + C$$

33.
$$\frac{1}{6}(\sqrt{48} - \sec^{-1} 7)$$
 37. 0.81, 2; 2.10

41.
$$r\sqrt{R^2-r^2}+\pi r^2/2-R^2\arcsin(r/R)$$

43.
$$2\pi^2 Rr^2$$

EXERCISES 7.4 PAGE 481

1. (a)
$$\frac{A}{x+3} + \frac{B}{3x+1}$$
 (b) $\frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$

3. (a)
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{Dx + E}{x^2 + 4}$$

(b)
$$\frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{C}{x-3} + \frac{D}{(x-3)^2}$$

5. (a)
$$1 + \frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1}$$

(b)
$$\frac{At+B}{t^2+1} + \frac{Ct+D}{t^2+4} + \frac{Et+F}{(t^2+4)^2}$$

7.
$$x + 6 \ln |x - 6| + C$$

9.
$$2 \ln |x+5| - \ln |x-2| + C$$

13. $a \ln |x-b| + C$
15. $\frac{7}{6} + \ln \frac{2}{3}$

13.
$$a \ln |x-b| + C$$
 15. $\frac{7}{6} + \ln \frac{5}{3}$

17.
$$\frac{27}{5} \ln 2 - \frac{9}{5} \ln 3 \left(\text{or } \frac{9}{5} \ln \frac{8}{3} \right)$$

19.
$$-\frac{1}{36} \ln |x+5| + \frac{1}{6} \frac{1}{x+5} + \frac{1}{36} \ln |x-1| + C$$

21.
$$\frac{1}{2}x^2 - 2\ln(x^2 + 4) + 2\tan^{-1}(x/2) + C$$

23.
$$2 \ln |x| + (1/x) + 3 \ln |x + 2| + C$$

25.
$$\ln |x-1| - \frac{1}{2} \ln(x^2+9) - \frac{1}{3} \tan^{-1}(x/3) + C$$

27.
$$\frac{1}{2}\ln(x^2+1)+(1/\sqrt{2})\tan^{-1}(x/\sqrt{2})+C$$

29.
$$\frac{1}{2}\ln(x^2+2x+5)+\frac{3}{2}\tan^{-1}\left(\frac{x+1}{2}\right)+C$$

31.
$$\frac{1}{3} \ln |x-1| - \frac{1}{6} \ln(x^2 + x + 1) - \frac{1}{\sqrt{3}} \tan^{-1} \frac{2x+1}{\sqrt{3}} + C$$

33.
$$\frac{1}{4} \ln \frac{8}{3}$$
 35. $\frac{1}{16} \ln |x| - \frac{1}{32} \ln(x^2 + 4) + \frac{1}{8(x^2 + 4)} + C$

37.
$$\frac{7}{8}\sqrt{2} \tan^{-1}\left(\frac{x-2}{\sqrt{2}}\right) + \frac{3x-8}{4(x^2-4x+6)} + C$$

39.
$$\ln \left| \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1} \right| + C$$

41.
$$2 + \ln \frac{25}{9}$$
 43. $\frac{3}{10}(x^2 + 1)^{5/3} - \frac{3}{4}(x^2 + 1)^{2/3} + C$

45.
$$2\sqrt{x} + 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6\ln|\sqrt[6]{x} - 1| + C$$

47.
$$\ln \left[\frac{(e^x + 2)^2}{e^x + 1} \right] + C$$

49.
$$\ln |\tan t + 1| - \ln |\tan t + 2| + C$$

51.
$$\left(x-\frac{1}{2}\right)\ln(x^2-x+2)-2x+\sqrt{7}\tan^{-1}\left(\frac{2x-1}{\sqrt{7}}\right)+C$$

53.
$$-\frac{1}{2} \ln 3 \approx -0.55$$

55.
$$\frac{1}{2} \ln \left| \frac{x-2}{x} \right| + C$$
 59. $\frac{1}{5} \ln \left| \frac{2 \tan(x/2) - 1}{\tan(x/2) + 2} \right| + C$

61.
$$4 \ln \frac{2}{3} + 2$$
 63. $-1 + \frac{11}{3} \ln 2$

65.
$$t = -\ln P - \frac{1}{9}\ln(0.9P + 900) + C$$
, where $C \approx 10.23$

67. (a)
$$\frac{24,110}{4879} \frac{1}{5x+2} - \frac{668}{323} \frac{1}{2x+1} - \frac{9438}{80,155} \frac{1}{3x-7} +$$

$$\frac{1}{260,015} \frac{22,098x + 48,935}{x^2 + x + 5}$$

(b)
$$\frac{4822}{4879} \ln|5x + 2| - \frac{334}{323} \ln|2x + 1| - \frac{3146}{80.155} \ln|3x - 7| +$$

$$\frac{11,049}{260,015}\ln(x^2+x+5)+\frac{75,772}{260,015\sqrt{19}}\tan^{-1}\frac{2x+1}{\sqrt{19}}+C$$

The CAS omits the absolute value signs and the constant of integration.

EXERCISES 7.5 # PAGE 488

1.
$$\sin x + \frac{1}{3}\sin^3 x + C$$

3.
$$\sin x + \ln \left| \csc x - \cot x \right| + C$$

5. 4 - ln 9 **7.**
$$e^{\pi/4} - e^{-\pi/4}$$

9.
$$\frac{243}{5} \ln 3 - \frac{242}{25}$$
 II. $\frac{1}{2} \ln(x^2 - 4x + 5) + \tan^{-1}(x - 2) + C$

13.
$$\frac{1}{8}\cos^8\theta - \frac{1}{6}\cos^6\theta + C$$
 (or $\frac{1}{4}\sin^4\theta - \frac{1}{3}\sin^6\theta + \frac{1}{8}\sin^8\theta + C$)

(3)(1)

15.
$$x/\sqrt{1-x^2}+C$$

17.
$$\frac{1}{4}x^2 - \frac{1}{2}x \sin x \cos x + \frac{1}{4}\sin^2 x + C$$

$$\left(\text{or } \frac{1}{4}x^2 - \frac{1}{4}x\sin 2x - \frac{1}{8}\cos 2x + C\right)$$

19.
$$e^{e^x} + C$$
 21. $(x + 1) \arctan \sqrt{x} - \sqrt{x} + C$

23.
$$\frac{4097}{45}$$
 25. $3x + \frac{23}{3} \ln |x - 4| - \frac{5}{3} \ln |x + 2| + C$

27.
$$x - \ln(1 + e^x) + C$$
 29. $15 + 7 \ln \frac{2}{7}$

31.
$$\sin^{-1}x - \sqrt{1-x^2} + C$$

33.
$$2\sin^{-1}\left(\frac{x+1}{2}\right) + \frac{x+1}{2}\sqrt{3-2x-x^2} + C$$

35. 0 **37.**
$$\pi/8 - \frac{1}{4}$$
 39. $\ln|\sec \theta - 1| - \ln|\sec \theta| + C$

41.
$$\theta \tan \theta - \frac{1}{2}\theta^2 - \ln|\sec \theta| + C$$
 43. $\frac{2}{3}(1 + e^x)^{3/2} + C$

45.
$$-\frac{1}{3}(x^3+1)e^{-x^3}+C$$

47.
$$\ln |x-1| - 3(x-1)^{-1} - \frac{3}{2}(x-1)^{-2} - \frac{1}{3}(x-1)^{-3} + C$$

49.
$$\ln \left| \frac{\sqrt{4x+1}-1}{\sqrt{4x+1}+1} \right| + C$$
 51. $-\ln \left| \frac{\sqrt{4x^2+1}+1}{2x} \right| + C$

53.
$$\frac{1}{m}x^2 \cosh(mx) - \frac{2}{m^2}x \sinh(mx) + \frac{2}{m^3} \cosh(mx) + C$$

57.
$$\frac{3}{7}(x+c)^{7/3} - \frac{3}{4}c(x+c)^{4/3} + C$$

59.
$$\sin(\sin x) - \frac{1}{3}\sin^3(\sin x) + C$$
 61. $2(x - 2\sqrt{x} + 2)e^{\sqrt{x}} + C$

63.
$$-\tan^{-1}(\cos^2 x) + C$$
 65. $\frac{2}{3}[(x+1)^{3/2} - x^{3/2}] + C$

67.
$$\sqrt{2} - 2/\sqrt{3} + \ln(2 + \sqrt{3}) - \ln(1 + \sqrt{2})$$

69.
$$e^x - \ln(1 + e^x) + C$$

71.
$$-\sqrt{1-x^2} + \frac{1}{2}(\arcsin x)^2 + C$$

73.
$$\frac{1}{8} \ln |x-2| - \frac{1}{16} \ln (x^2+4) - \frac{1}{8} \tan^{-1}(x/2) + C$$

75.
$$2(x-2)\sqrt{1+e^x}+2\ln\frac{\sqrt{1+e^x}+1}{\sqrt{1+e^x}-1}+C$$

77.
$$\frac{2}{3} \tan^{-1}(x^{3/2}) + C$$

79.
$$\frac{1}{3}x\sin^3 x + \frac{1}{3}\cos x - \frac{1}{9}\cos^3 x + C$$
 81. $xe^{x^2} + C$

EXERCISES 7.6 PAGE 493

1.
$$(-1/x)\sqrt{7-2x^2} - \sqrt{2}\sin^{-1}(\sqrt{2}x/\sqrt{7}) + C$$

3.
$$\frac{1}{2\pi} \sec(\pi x) \tan(\pi x) + \frac{1}{2\pi} \ln|\sec(\pi x) + \tan(\pi x)| + C$$

5.
$$\pi/4$$
 7. $\frac{1}{2\pi} \tan^2(\pi x) + \frac{1}{\pi} \ln|\cos(\pi x)| + C$

9.
$$-\sqrt{4x^2+9}/(9x)+C$$
 II. $e-2$

13.
$$-\frac{1}{2} \tan^2(1/z) - \ln|\cos(1/z)| + C$$

15.
$$\frac{1}{2}(e^{2x}+1)\arctan(e^x)-\frac{1}{2}e^x+C$$

17.
$$\frac{2y-1}{8}\sqrt{6+4y-4y^2} + \frac{7}{8}\sin^{-1}\left(\frac{2y-1}{\sqrt{7}}\right)$$
$$-\frac{1}{12}(6+4y-4y^2)^{3/2} + C$$

19.
$$\frac{1}{9}\sin^3 x \left[3 \ln(\sin x) - 1 \right] + C$$

21.
$$\frac{1}{2\sqrt{3}} \ln \left| \frac{e^x + \sqrt{3}}{e^x - \sqrt{3}} \right| + C$$

23.
$$\frac{1}{4} \tan x \sec^3 x + \frac{3}{8} \tan x \sec x + \frac{3}{8} \ln |\sec x + \tan x| + C$$

25.
$$\frac{1}{2}(\ln x)\sqrt{4 + (\ln x)^2} + 2\ln[\ln x + \sqrt{4 + (\ln x)^2}] + C$$

27.
$$\sqrt{e^{2x}-1}-\cos^{-1}(e^{-x})+C$$

29.
$$\frac{1}{5} \ln |x^5 + \sqrt{x^{10} - 2}| + C$$
 31. $2\pi^2$

35.
$$\frac{1}{3} \tan x \sec^2 x + \frac{2}{3} \tan x + C$$

37.
$$\frac{1}{4}x(x^2+2)\sqrt{x^2+4}-2\ln(\sqrt{x^2+4}+x)+C$$

39.
$$\frac{1}{10}(1+2x)^{5/2}-\frac{1}{6}(1+2x)^{3/2}+C$$

41,
$$-\ln|\cos x| - \frac{1}{2}\tan^2 x + \frac{1}{4}\tan^4 x + C$$

43. (a)
$$-\ln \left| \frac{1 + \sqrt{1 - x^2}}{x} \right| + C$$
;

both have domain $(-1, 0) \cup (0, 1)$

45.
$$F(x) = \frac{1}{2} \ln(x^2 - x + 1) - \frac{1}{2} \ln(x^2 + x + 1);$$

max. at -1, min. at 1; IP at -1.7, 0, and 1.7

47. $F(x) = -\frac{1}{10}\sin^3 x \cos^7 x - \frac{3}{80}\sin x \cos^7 x + \frac{1}{160}\sin x \cos^5 x$ $+\frac{1}{128}\sin x\cos^3 x + \frac{3}{256}\sin x\cos x + \frac{3}{256}x$ max. at π , min. at 0; IP at 0.7, $\pi/2$, and 2.5

A93

EXERCISES 7.7 " PAGE 505

1. (a)
$$L_2 = 6$$
, $R_2 = 12$, $M_2 \approx 9.6$

(b)
$$L_2$$
 is an underestimate, R_2 and M_2 are overestimates.

(c)
$$T_2 = 9 < I$$
 (d) $L_n < T_n < I < M_n < R_n$

3. (a)
$$T_4 \approx 0.895759$$
 (underestimate)

(b)
$$M_4 \approx 0.908907$$
 (overestimate)

$$T_4 < I < M_4$$

5. (a) 5.932957,
$$E_M \approx -0.063353$$

(b) 5.869247.
$$E_s \approx 0.000357$$

(b) 5.869247,
$$E_S \approx 0.000357$$

19. (a)
$$T_8 \approx 0.902333$$
, $M_8 \approx 0.905620$

(b)
$$|E_T| \le 0.0078$$
, $|E_M| \le 0.0039$

(c)
$$n = 71$$
 for T_n , $n = 50$ for M_n

21. (a)
$$T_{10} \approx 1.983524$$
, $E_T \approx 0.016476$;

$$M_{10} \approx 2.008248, E_M \approx -0.008248;$$

$$S_{10} \approx 2.000110, E_S \approx -0.000110$$

(b)
$$|E_T| \le 0.025839$$
, $|E_M| \le 0.012919$, $|E_S| \le 0.000170$

(c)
$$n = 509$$
 for T_n , $n = 360$ for M_n , $n = 22$ for S_n

(i) The actual error is smaller. (j)
$$n \ge 50$$

5.	n	L_n	R_n	T_n	M_n
Ì	5	0.742943	1.286599	1.014771	0.992621
	10	0.867782	1.139610	1.003696	0.998152
	20	0.932967	1.068881	1.000924	0.999538

n	E_L	E_R	E_T	E_{M}
5	0.257057	-0.286599	-0.014771	0.007379
10	0.132218	-0.139610	-0.003696	0.001848
20	0.067033	-0.068881	-0.000924	0.000462

Observations are the same as after Example 1.

	n	T_n	M_n	S_n
Ī	6	6.695473	6.252572	6.403292
	12	6.474023	6.363008	6.400206

n	E_T	E_M	E_{S}
6	-0.295473	0.147428	-0.003292
12	-0.074023	0.036992	-0.000206

Observations are the same as after Example 1.

20	1-1	100	14)	20 6	10)	20 52
LY.	(a)	19.8	(0)	20.6	(C)	20.53

EXERCISES 7.8 p PAGE 515

Abbreviations: C, convergent; D, divergent

- I. (a) Infinite interval (b) Infinite discontinuity
- (c) Infinite discontinuity (d) Infinite interval

3.
$$\frac{1}{2} - 1/(2t^2)$$
; 0.495, 0.49995, 0.4999995; 0.5

3.
$$\frac{1}{2} - 1/(2t^2)$$
; 0.493, 0.499993; 0...

5.
$$\frac{1}{12}$$
 7. D **9.** $2e^{-2}$ **II.** D **I3.** 0

17. D 19.
$$\frac{1}{25}$$
 21. D 23. $\pi/9$

25.
$$\frac{1}{2}$$
 27. D **29.** $\frac{32}{3}$ **31.** D **33.** $\frac{75}{4}$

35. D **37.**
$$-2/e$$
 39. $\frac{8}{3} \ln 2 - \frac{8}{9}$

43.
$$2\pi/3$$

15. D

45. Infinite area

'. (a)	t	$\int_1^t \left[(\sin^2 x)/x^2 \right] dx$
	2	0.447453
	5	0.577101
	10	0.621306
1	100	0.668479
1	1,000	0.672957
1	10,000	0.673407

It appears that the integral is convergent.

(c)
$$f(x) = \frac{1}{x^2}$$

$$g(x) = \frac{\sin^2 x}{x^2}$$

$$-0.1$$

49. C **51.** D **53.** D **55.**
$$\pi$$
 57. $p < 1, 1/(1-p)$

59.
$$p > -1, -1/(p+1)^2$$
 65. $\sqrt{2GM/R}$

- (b) The rate at which the fraction F(t) increases as t increases
- (c) 1; all bulbs burn out eventually
- **69.** 1000

71. (a)
$$F(s) = 1/s, s > 0$$
 (b) $F(s) = 1/(s-1), s > 1$

(c)
$$F(s) = 1/s^2, s > 0$$

77.
$$C = 1$$
; ln 2 **79.** No

CHAPTER 7 REVIEW = PAGE 518

True-False Quiz

- False 3. False 5. False 7. False
- 9. (a) True (b) False II. False 13. False

Exercises

- 1. $5 + 10 \ln \frac{2}{3}$ 3. $\ln 2$ 5. $\frac{2}{15}$
- 7. $-\cos(\ln t) + C$ 9. $\frac{64}{5} \ln 4 \frac{124}{25}$

11.
$$\sqrt{3} - \frac{1}{3}\pi$$
 13. $3e^{\sqrt[3]{x}}(\sqrt[3]{x^2} - 2\sqrt[3]{x} + 2) + C$

15.
$$-\frac{1}{2} \ln |x| + \frac{3}{2} \ln |x+2| + C$$

17.
$$x \sec x - \ln|\sec x + \tan x| + C$$

19.
$$\frac{1}{18}\ln(9x^2+6x+5)+\frac{1}{9}\tan^{-1}\left[\frac{1}{2}(3x+1)\right]+C$$

21.
$$\ln |x-2+\sqrt{x^2-4x}|+C$$

23.
$$\ln \left| \frac{\sqrt{x^2 + 1} - 1}{x} \right| + C$$

25.
$$\frac{3}{2}\ln(x^2+1) - 3\tan^{-1}x + \sqrt{2}\tan^{-1}(x/\sqrt{2}) + C$$

27.
$$\frac{2}{5}$$
 29. 0 **31.** $6 - \frac{3}{2}\pi$

33.
$$\frac{x}{\sqrt{4-x^2}} - \sin^{-1}\left(\frac{x}{2}\right) + C$$

35.
$$4\sqrt{1+\sqrt{x}}+C$$
 37. $\frac{1}{2}\sin 2x-\frac{1}{8}\cos 4x+C$

39.
$$\frac{1}{8}e - \frac{1}{4}$$
 41. $\frac{1}{36}$ **43.** D

45.
$$4 \ln 4 - 8$$
 47. $-\frac{4}{3}$ **49.** $\pi/4$

51.
$$(x + 1) \ln(x^2 + 2x + 2) + 2 \arctan(x + 1) - 2x + C$$

55.
$$\frac{1}{4}(2x-1)\sqrt{4x^2-4x-3}$$

$$\ln |2x-1+\sqrt{4x^2-4x-3}|+C$$

63. (a) 1.925444 (b) 1.920915 (c) 1.922470

65. (a) 0.01348, $n \ge 368$ (b) 0.00674, $n \ge 260$

67. 8.6 mi

69. (a) 3.8 (b) 1.7867, 0.000646 (c) $n \ge 30$

73. 2 75. $\frac{3}{16}\pi^2$

PROBLEMS PLUS = PAGE 521

1. About 1.85 inches from the center

7. $f(\pi) = -\pi/2$ II. $(b^b a^{-a})^{1/(b-a)} e^{-1}$

13. $2 - \sin^{-1}(2/\sqrt{5})$

CHAPTER 8

EXERCISES 8.1 # PAGE 530

3. $\int_0^{2\pi} \sqrt{1 + \sin^2 x} \, dx$ 5. $\int_1^4 \sqrt{9y^4 + 6y^2 + 2} \, dy$

7. $\frac{2}{243}(82\sqrt{.82}-1)$ 9. $\frac{1261}{240}$ 11. $\frac{32}{3}$

13. $\ln(\sqrt{2} + 1)$ 15. $\ln 3 - \frac{1}{2}$

17. $\sqrt{1+e^2} - \sqrt{2} + \ln(\sqrt{1+e^2} - 1) - 1 - \ln(\sqrt{2} - 1)$

19. $\sqrt{2} + \ln(1 + \sqrt{2})$ 21. $\frac{46}{3}$ 23. 5.115840

25. 1.569619

27. (a), (b) 3 $L_1 = 4$, $L_2 \approx 6.43$ $L_4 \approx 7.50$

(c) $\int_0^4 \sqrt{1 + \left[4(3-x)/(3(4-x)^{2/3})\right]^2} dx$ (d) 7.7988

29. $\sqrt{5} - \ln(\frac{1}{2}(1+\sqrt{5})) - \sqrt{2} + \ln(1+\sqrt{2})$

33. $s(x) = \frac{2}{27} [(1+9x)^{3/2} - 10\sqrt{10}]$ **35.** $2\sqrt{2}(\sqrt{1+x}-1)$

39. 29.36 in. **41.** 12.4 **37.** 209.1 m

EXERCISES 8.2 PAGE 537

1. (a) $\int_0^1 2\pi x^4 \sqrt{1 + 16x^6} dx$ (b) $\int_0^1 2\pi x \sqrt{1 + 16x^6} dx$

3. (a) $\int_0^1 2\pi \tan^{-1}x \sqrt{1 + \frac{1}{(1+x^2)^2}} dx$

(b) $\int_0^1 2\pi x \sqrt{1 + \frac{1}{(1+x^2)^2}} dx$

9. $2\sqrt{1+\pi^2}+(2/\pi)\ln(\pi+\sqrt{1+\pi^2})$ II. $\frac{21}{2}\pi$

13. $\frac{1}{27}\pi(145\sqrt{145}-10\sqrt{10})$ 15. πa^2

17. 9.023754 **19.** 13.527296

21. $\frac{1}{4}\pi \left[4 \ln(\sqrt{17} + 4) - 4 \ln(\sqrt{2} + 1) - \sqrt{17} + 4\sqrt{2}\right]$

23. $\frac{1}{6}\pi \left[\ln(\sqrt{10} + 3) + 3\sqrt{10} \right]$

27. (a) $\frac{1}{3}\pi a^2$ (b) $\frac{56}{45}\pi\sqrt{3}a^2$

29. (a) $2\pi \left[b^2 + \frac{a^2b \sin^{-1}(\sqrt{a^2 - b^2}/a)}{\sqrt{a^2 - b^2}} \right]$

(b) $2\pi \left[a^2 + \frac{ab^2 \sin^{-1}(\sqrt{b^2 - a^2}/b)}{\sqrt{b^2 - a^2}} \right]$

31. $\int_{a}^{b} 2\pi [c - f(x)] \sqrt{1 + [f'(x)]^2} dx$ 33. $4\pi^2 r^2$

EXERCISES 8.3 = PAGE 547

1. (a) 187.5 lb/ft^2 (b) 1875 lb (c) 562.5 lb

3. 6000 lb **5.** 6.7×10^4 N **7.** 9.8×10^3 N

9. $1.2 \times 10^4 \, \text{lb}$ II. $\frac{2}{3} \delta a h$ 13. $5.27 \times 10^5 \,\mathrm{N}$

15. (a) 314 N (b) 353 N

17. (a) 5.63×10^3 lb (b) 5.06×10^4 lb

(c) $4.88 \times 10^4 \text{ lb}$ (d) $3.03 \times 10^5 \text{ lb}$ 19. $2.5 \times 10^5 \text{ N}$ 21. $230; \frac{23}{7}$ 23. $10; 1; (\frac{1}{21}, \frac{10}{21})$

25. (0, 1.6) **27.** $\left(\frac{1}{e-1}, \frac{e+1}{4}\right)$ **29.** $\left(\frac{9}{20}, \frac{9}{20}\right)$

31. $\left(\frac{\pi\sqrt{2}-4}{4(\sqrt{2}-1)}, \frac{1}{4(\sqrt{2}-1)}\right)$ 33. (2, 0)

35. 60; 160; $(\frac{8}{3}, 1)$ **37.** (0.781, 1.330) **41.** $(0, \frac{1}{12})$

45. $\frac{1}{3} \pi r^2 h$

EXERCISES 8.4 # PAGE 553

1. \$38,000 **3.** \$43,866,933.33 5. \$407.25

7. \$12,000 **9.** 3727; \$37,753

13. $\frac{(1-k)(b^{2-k}-a^{2-k})}{(2-k)(b^{1-k}-a^{1-k})}$ 11. $\frac{2}{3}(16\sqrt{2} - 8) \approx 9.75 million

15. $1.19 \times 10^{-4} \text{ cm}^3/\text{s}$

17. 6.60 L/min 19. 5.77 L/min

EXERCISES 8.5 # PAGE 560

1. (a) The probability that a randomly chosen tire will have a lifetime between 30,000 and 40,000 miles

(b) The probability that a randomly chosen tire will have a lifetime of at least 25,000 miles

3. (a) $f(x) \ge 0$ for all x and $\int_{-\infty}^{\infty} f(x) dx = 1$

(b) $1 - \frac{3}{8}\sqrt{3} \approx 0.35$

5. (a) $1/\pi$ (b) $\frac{1}{2}$

7. (a) $f(x) \ge 0$ for all x and $\int_{-\infty}^{\infty} f(x) dx = 1$ (b) 5

II. (a) $e^{-4/2.5} \approx 0.20$ (b) $1 - e^{-2/2.5} \approx 0.55$ (c) If you aren't served within 10 minutes, you get a free hamburger.

13. ≈44%

15. (a) 0.0668 (b) $\approx 5.21\%$

17. ≈ 0.9545