Techniques for DFA

- 1. If the L is equal to a finite value, if possible, draw that base condition state flow, figure out all the possible transitions for each state.
- 2. If L is not equal to a finite value, draw that base condition flow, and mark the initial ones as final but not the last state. Figure out all the possible transitions for each state.
 - Design a DFA which accepts all strings with a substring 01.

 $L = \{01, 001, 101, 010, 011, 0001, 0010, 0100 \dots\}$

 $A = \{Q, \Sigma, \delta, q_0, F\}$

 $Q = \{q_0, q_1, q_2\}$

 $\Sigma = \{0, 1\}$

 $q_0 = q_0$ (start state)

 $F = \{q_2\}$

δ	0	1
→ q₀	q_1	q_0
q_1	q_1	q_2
*q ₂	q_2	q_2

2. Construct a DFA over {a, b} which accepts language for all strings starting with symbol 'a'.

L = {a, aa, ab, aaa, aab, aba, abb ...}

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{a, b\}$$

$$q_0 = q_0$$
 (start state)

$$F = \{q_1\}$$

δ	а	b
→ q₀	q_1	q_2
*q ₁	q_1	q_1
q ₂	q_2	q_2

NOTE: q₂ is trap state or sink state.

3. Construct DFA to accept all strings with arbitrary no. of a's followed by a single b.

 $A = \{Q, \Sigma, \delta, q_0, F\}$

 $Q = \{q_0, q_1, q_2\}$

 $\Sigma = \{a, b\}$

 $q_0 = q_0$ (start state)

 $F = \{q_1\}$

δ	а	b
→ q₀	q_0	q_1
*q ₁	q_2	q_2
q ₂	q_2	q_2

Construct DFA for $\Sigma = \{0, 1\}$ which accepts strings starting with 2 0's & ending with 2 1's.

0

1

0

 q_3

0

1

 q_4

1

1 q_5 0,1

 $A = \{Q, \Sigma, \delta, q_0, F\}$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$

1

 $\Sigma = \{0, 1\}$

 $q_0 = q_0$ (start state)

 $F = \{q_4\}$

δ	0	1
→q₀	q_1	q ₅
q_1	q_2	q ₅
q ₂	q_2	q ₃
q ₃	q_2	q_4
*q ₄	q_2	q_4
q ₅	q ₅	q ₅

S. Design automata for $\Sigma = \{a, b\}$ strings with at least one 'a'.

L = {a, aa, ab, ba, aaa, aab, baa, abb ...}

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

$$Q = \{q_0, q_1\}$$

$$\Sigma = \{a, b\}$$

$$q_0 = q_0 \text{ (start state)}$$

 $F = \{q_1\}$

δ	а	b
→q₀	q_1	q_0
*q ₁	q_1	q_1

Extending the transition function to strings (δ^*):-

Example: 1) baab

$$\delta^*(q_0, \epsilon) = q_0$$

$$\delta^*(q_0, b) = \delta(\delta^*(q_0, \epsilon), b)$$

$$= \delta(q_0, b)$$

$$= q_0$$

$$\delta^*(q_0, ba) = \delta(\delta^*(q_0, b), a)$$

$$= \delta(q_0, a)$$

$$= q_1$$

$$\delta^*(q_0, baa) = \delta(\delta^*(q_0, ba), a)$$

$$= \delta(q_1, a)$$

$$= q_1$$

$$\delta^*(q_0, baab) = \delta(\delta^*(q_0, baa), b)$$

$$= q_1$$

$$\delta^*(q_0, baab) = \delta(\delta^*(q_0, baa), b)$$

$$= q_1$$

Since $q_1 \in F$, baab is valid.

Example: 2) bbb

$$\begin{split} \delta^*(q_0,\,\epsilon) &= q_0 \\ \delta^*(q_0,\,\epsilon) &= \delta(\delta^*(q_0,\,\epsilon),\,b) \\ &= \delta(q_0,\,b) \\ &= q_0 \\ \delta^*(q_0,\,b) &= \delta(\delta^*(q_0,\,b),\,b) \\ &= \delta(q_0,\,b) \\ &= q_0 \\ \delta^*(q_0,\,bbb) &= \delta(\delta^*(q_0,\,bb),\,b) \\ &= \delta(q_0,\,b) \\ &= q_0 \\ \text{Since } q_0 \not\in F,\,bbb \text{ is invalid.} \end{split}$$

β. Design an automata with $Σ = {a, b}$ that accepts string with exactly one 'a'.

L = {a, ab, ba, abb, bab, bba ...}

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{a, b\}$$

$$q_0 = q_0$$
 (start state)

$$F = \{q_1\}$$

δ	а	b
→q ₀	q_1	q_0
*q ₁	q_2	q_1
q ₂	q_2	q_2

7. Design an automata with $\Sigma = \{a, b\}$ such that it accepts all strings except those which end with abb.

 $L = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abba ...\}$

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{a, b\}$$

$$q_0 = q_0$$
 (start state)

$$F = \{q_0, q_1, q_2\}$$

δ	а	b
→*q ₀	q_1	q_0
*q ₁	q_1	q_2
*q ₂	q_1	q_3
q ₃	q_1	q_0

8. Design an automata with $\Sigma = \{0, 1\}$ that accepts set of all strings ending with 00. L = $\{00, 000, 100, 1000, 0100, 0000, 1100 ...\}$

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{0, 1\}$$

 $q_0 = q_0$ (start state)

$$F=\{q_2\}$$

δ	0	1
→q₀	q_1	q_0
q_1	q_2	q_0
*q ₂	q_2	q_0

9 Draw an automata with $\Sigma = \{0, 1\}$ that accepts set of all strings with 3 consecutive 0's. $L = \{000, 1000, 0000, 0001, 101000, 00010001 ...\}$

$$A = {Q, Σ, δ, q_0, F}$$

Q =
$$\{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$

$$q_0 = q_0$$
 (start state)

$$F = \{q_3\}$$

δ	0	1
→ q₀	q_1	q_0
q_1	q_2	q_0
q ₂	q_3	q_0
*q ₃	q_3	q_3

10. Design an automata with $\Sigma = \{0, 1\}$ that accepts set of all strings except those containing substring 001.

 $L = \{\epsilon, \, 0, \, 1, \, 00, \, 11, \, 01, \, 10, \, 101, \, 011, \, 010, \, 010100 \, \ldots \}$

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$

$$q_0 = q_0$$
 (start state)

$$F = \{q_0, q_1, q_2\}$$

δ	0	1
→ *q ₀	q_1	q_0
*q ₁	q_2	q_0
*q ₂	q_2	q ₃
q ₃	q_3	q ₃

11. Design an automata with $\Sigma = \{a, b\}$ that accepts set of all strings with b as second letter. L = { ab, bb, aba, abb, bba, bbb, abbabab ...}

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{a, b\}$$

$$q_0 = q_0$$
 (start state)

$$F = \{q_2\}$$

δ	а	b
→ q₀	q_1	q_1
q_1	q_3	q_2
*q ₂	q_2	q_2
q ₃	q_3	q ₃

12 Obtain DFA that accepts all strings on $\Sigma = \{0, 1\}$ that ends with 1 and do not contain 00.

 $A = {Q, Σ, δ, q_0, F}$

 $Q = \{q_0, q_1, q_2, q_3\}$

 $\Sigma = \{0, 1\}$

 $q_0 = q_0$ (start state)

 $F = \{q_1\}$

δ	0	1
→ q₀	q_2	q_1
*q ₁	q_2	q_1
q ₂	q_3	q_1
q ₃	q_3	q_3

13. Obtain DFA to accept the language $L = \{w \mid n_0(w) \text{ is odd and } n_1(w) \text{ is even}\}$.

 $A = \{Q, \Sigma, \delta, q_0, F\}$

 $Q = \{q_0, q_1, q_2, q_3\}$

 $\Sigma = \{0, 1\}$

 $q_0 = q_0$ (start state)

 $F = \{q_1\}$

δ	0	1
→q ₀	q_1	q_2
*q ₁	q_0	q ₃
q ₂	q_3	q_0
q ₃	q_2	q_1

Ü	U	Position
Even -	 · Even	1
Odd -	Even	2
Odd -	Odd	3

14.	$L = \{w \mid n_0(w) \text{ is } \underline{\text{odd}} \text{ and } n_1(w) \text{ is } \underline{\text{odd}} \}$
,	L = {01, 10, 0010, 1000, 010101}

A = {Q,
$$\Sigma$$
, δ , q_0 , F}
Q = {q_0, q_1, q_2, q_3}
 Σ = {0, 1}
 q_0 = q_0 (start state)
F = {q_3}

δ	0	1
→ q₀	q_1	q_2
q_1	q_0	q ₃
q ₂	q_3	q_0
*q ₃	q_2	q_1

15. L = {w | $n_0(w)$ is even and $n_1(w)$ is odd} L = {1, 100, 010, 001, 111, 00111 ...}

$A = \{Q, \Sigma, \delta, q_0, F\}$
$Q = \{q_0, q_1, q_2, q_3\}$
$\Sigma = \{0, 1\}$
$q_0 = q_0$ (start state)
$F = \{a_2\}$

δ	0	1
→ q₀	q_1	q_2
q_1	q_0	q_3
*q ₂	q_3	q_0
q ₃	q_2	q_1

16. L = {w | $n_0(w)$ is even and $n_1(w)$ is even} L = { ϵ , 11, 00, 0101, 01011010 ...}

A = {Q,
$$\Sigma$$
, δ , q_0 , F}
Q = {q₀, q₁, q₂, q₃}
 Σ = {0, 1}
q₀ = q₀ (start state)
F = {q₀}

δ	0	1
→*q ₀	q_1	q_2
q_1	q_0	q_3
q_2	q_3	q_0
q ₃	q_2	q_1

17. DFA to accept binary numbers that are divisible by 5 and start with 1.

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$

$$\Sigma = \{0, 1\}$$

$$q_0 = q_0 \text{ (start state)}$$

$$F = \{q_4, q_5\}$$

δ	0	1
⇒q ₀	q_6	q_1
q_1	q_2	q_3
q ₂	q_4	q ₅
q ₃	q_1	q_2
*q ₄	q_3	q_4
*q ₅	q ₅	q_1
q ₆	q_6	q_6

18. DFA for L = $\{w \mid w \text{ has odd no of 1's followed by even no of 0's}$

L = {1, 100, 111, 1110000 ...}

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4\}$

 $\Sigma = \{0, 1\}$

 $q_0 = q_0$ (start state)

 $F = \{q_1, q_3\}$

δ	0	1
→ q₀	q_4	q_1
*q ₁	q_2	q_0
q ₂	q_3	q_4
*q ₃	q_2	q_4
q ₄	q_4	q_4

19. DFA for L = {wbab | $w \in \{a, b\}^*$ }

L = {bab, abab, bbab, aabab, abbab, abbbababbab ...}

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{a, b\}$$

$$q_0 = q_0$$
 (start state)

$$F=\{q_3\}$$

δ	а	b
→ q₀	q_0	q_1
q_1	q_2	q_1
q ₂	q_0	q_3
*q₃	q_2	q_1

20. DFA for L = {w| |w| mod 3 >= |w| mod 2} where $w \in \Sigma^*$ and Σ = {a, b}.

$$L = \{|w| = 1, |w| = 2, |w| = 4, |w| = 5, |w| = 6, |w| = 7 ...\}$$

 $A = {Q, Σ, δ, q_0, F}$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$

 $\Sigma = \{a, b\}$

 $q_0 = q_0$ (start state)

 $F = \{q_0, q_1, q_2, q_4, q_5\}$

δ	a	b
→*q ₀	q_1	q_1
*q ₁	q_2	q_2
*q ₂	q_3	q_3
q ₃	q_4	q_4
*q ₄	q ₅	q ₅
*q ₅	q_0	q_0

21. $L = \{w \mid n(a) \mod 3 > 1\} \text{ for } \Sigma = \{a, b\}.$

L = {aa, aab, baa, babab, abba, ababaabba ...}

 $A = \{Q, \Sigma, \delta, q_0, F\}$

 $Q = \{q_0, q_1, q_2\}$

 $\Sigma = \{a, b\}$

 $q_0 = q_0$ (start state)

 $F=\{q_2\}$

δ	а	b
->q₀	q_1	q_0
q_1	q_2	q_1
*q ₂	q_0	q_2

22. Detect even number of 0's for $\Sigma = \{0, 1\}$.

 $L = \{\epsilon, 1, 00, 0000, 010, 100, 1001, 110010101 ...\}$

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

 $Q = \{q_0, q_1\}$

 $\Sigma = \{0, 1\}$

 $q_0 = q_0$ (start state)

 $F=\{q_0\}$

δ	0	1
→*q ₀	q_1	q_0
q ₁	q_0	q_1

23. Accept all strings that either begin or end or both with 01.

L = {01, 010, 011, 001, 101, 1001, 0111 ...}

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

$$\Sigma = \{0, 1\}$$

$$q_0 = q_0$$
 (start state)

$$F = \{q_2, q_5\}$$

δ	0	1
⇒q ₀	q_1	q_3
q_1	q_4	q_2
*q ₂	q_2	q_2
q ₃	q_4	q_3
q ₄	q_4	q ₅
*q ₅	q_4	q_3

24. Accept strings that doesn't contain two consecutive 0's.

$$A = {Q, Σ, δ, q_0, F}$$

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{0, 1\}$$

$$q_0 = q_0$$
 (start state)

$$F = \{q_0, q_1\}$$

δ	0	1
→*q ₀	q_1	q_0
*q ₁	q_2	q_0
q ₂	q_2	q_2

25 Detect odd binary numbers.

L = {1, 01, 11, 101, 001, 011, 111, 00101011 ...}

$$A = {Q, Σ, δ, q_0, F}$$

$$Q = \{q_0, q_1\}$$

$$\Sigma = \{0, 1\}$$

$$q_0 = q_0$$
 (start state)

$$F=\{q_1\}$$

δ	0	1
->q₀	q_0	q_1
*q ₁	q_0	q_1

n Mod length is basically a circle with n states

26. L = $\{w \mid |w| \mod 3 = 0\}$ for $\Sigma = \{a, b\}$

L = {aaa, aab, aba, abb, baa, bab, bba, bbb, abaaba ...}

 $A = \{Q, \Sigma, \delta, q_0, F\}$

 $Q = \{q_0, q_1, q_2\}$

 $\Sigma = \{a, b\}$

 $q_0 = q_0$ (start state)

 $F = \{q_0\}$

δ	а	b
→*q ₀	q_1	q_1
q_1	q_2	q_2
q_2	q_0	q_0

27. $L = \{w \mid |w| \mod 5 = 0\} \text{ for } \Sigma = \{a, b\}$

L = {aaaaa, bbbbb, ababa, abbaa, baabb, babba, aababbaabb ...}

 $A = \{Q, \Sigma, \delta, q_0, F\}$

 $Q = \{q_0, q_1, q_2, q_3, q_4\}$

 $\Sigma = \{a, b\}$

 $q_0 = q_0$ (start state)

 $F = \{q_0\}$

δ	а	b
→*q ₀	q_1	q_1
q_1	q_2	q_2
q ₂	q_3	q ₃
q ₃	q_4	q_4
q ₄	q_0	q_0

28. $L = \{a^{2n}b^{3m}c \mid n \ge 1 \text{ and } m \ge 0\}$

L = {aac, aabbbc, aaaac, aaaabbbc, aabbbbbbc ...}

a, c

 $A = \{Q, \Sigma, \delta, q_0, F\}$

 $Q = \{q_0, \, q_1, \, q_2, \, q_3, \, q_4, \, q_5, \, q_6\}$

 $\Sigma = \{a, b\}$

 $q_0 = q_0$ (start state)

 $F=\{q_3\}$

δ	а	b	С
→q₀	q_1	q_6	q_6
q ₁	q_2	q_6	q_6
q ₂	q_1	q_4	q_3
*q ₃	q_6	q_6	q_6
q ₄	q_6	q ₅	q_6
q ₅	q_6	q_2	q_6
q ₆	q_6	q_6	q_6

a, b

29. At least one 'a' and exactly two b's.

L = {abb, bab, bba, abab, aaba, aabaabaa ...}

$$A = \{Q, \Sigma, \delta, q_0, F\}$$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$

$$\Sigma = \{a, b\}$$

 $q_0 = q_0$ (start state)

$$F = \{q_4\}$$

δ	а	b
→ q₀	q_6	q_1
q ₁	q ₃	q_2
q_2	q_4	q ₅
q ₃	q_3	q_4
*q ₄	q_4	q ₅
q ₅	q ₅	q ₅
q ₆	q_6	q ₃