(H21T2A5)

Für eine reelle Zahl r ist die Aufrundung [r] definiert als $[r] := \min\{a \in \mathbb{Z}: a \ge r\}$.

Gegeben sei die Funktion
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \to \begin{cases} \sqrt{\frac{1}{|\frac{1}{x^2}|}} & \text{für } x > 0 \\ x & \text{für } x \le 0 \end{cases}$

- a) Skizzieren Sie den Funktionsgraphen von f.
- b) Entscheiden Sie für jedes x > 0, ob f in x stetig ist.
- c) Zeigen Sie, dass für alle x > 0 gilt: $\frac{x}{\sqrt{x^2+1}} \le f(x) \le x$
- d) Bestimmen Sie alle reellen Zahlen, in denen f differenzierbar ist, und berechnen Sie in diesen Punkten die Ableitung.

Zu a)

Die Funktion h_1 :]0; ∞ [\rightarrow]0; ∞ [; $x \rightarrow \frac{1}{x^2}$ ist streng monoton fallend und $h_1(x) = \frac{1}{x^2} = n \in \mathbb{N}$ genau dann, wenn $x = \frac{1}{\sqrt{n}}$ erfüllt ist.

$$[h_1(x)] = \begin{bmatrix} \frac{1}{x^2} \end{bmatrix} = \begin{cases} 1 & \text{für } x \ge 1 \\ n+1 & \text{für } x \in \left[\frac{1}{\sqrt{n+1}}; \frac{1}{\sqrt{n}}\right] \text{ somit gilt } f(x) = \begin{cases} 1 & \text{für } x \ge 1 \\ \frac{1}{\sqrt{n+1}} & \text{für } x \in \left[\frac{1}{\sqrt{n+1}}; \frac{1}{\sqrt{n}}\right] \\ x & \text{für } x \le 0 \end{cases}.$$

Zu b)

Auf den Intervallen $\left[\frac{1}{\sqrt{n+1}}; \frac{1}{\sqrt{n}}\right[$ und $]1; \infty[$ ist f konstant, deshalb ist f auf $\left(\bigcup_{n \in \mathbb{N}}\right] \frac{1}{\sqrt{n+1}}; \frac{1}{\sqrt{n}}[\right) \cup]1; \infty[=]0; \infty[\setminus \left\{\frac{1}{\sqrt{n}}: n \in \mathbb{N}\right\}$ stetig, weil lokal konstant.

Wegen
$$\lim_{x \nearrow \frac{1}{\sqrt{n+1}}} f(x) = \frac{1}{\sqrt{n+2}} \neq \frac{1}{\sqrt{n+1}} = f\left(\frac{1}{\sqrt{n+1}}\right) = \lim_{x \searrow \frac{1}{\sqrt{n+1}}} f(x) \text{ und } \lim_{x \nearrow 1} f(x) = \frac{1}{\sqrt{2}} \neq 1 = \lim_{x \searrow 1} f(x)$$
 ist f auf $\left\{\frac{1}{\sqrt{n}} : n \in \mathbb{N}\right\}$ nicht stetig.

Zu c)

Die Funktion $h_2 \colon \mathbb{R} \to \mathbb{R}$; $x \to \frac{x}{\sqrt{x^2+1}}$ ist wegen $h_2'(x) = \frac{\sqrt{x^2+1}-x\frac{2x}{2\sqrt{x^2+1}}}{x^2+1} = \frac{1}{\left(\sqrt{x^2+1}\right)^3} > 0 \quad \forall \ x \in \mathbb{R}$ streng monoton steigend mit $h_2\left(\frac{1}{\sqrt{n}}\right) = \frac{\frac{1}{\sqrt{n}}}{\sqrt{\left(\frac{1}{\sqrt{n}}\right)^2+1}} = \cdots = \frac{1}{\sqrt{n+1}}.$

Daher gilt für $x \in \left[\frac{1}{\sqrt{n+1}}; \frac{1}{\sqrt{n}}\right] : \frac{x}{\sqrt{x^2+1}} = h_2(x) \le h_2\left(\frac{1}{\sqrt{n}}\right) = \frac{1}{\sqrt{n+1}} = f(x) \text{ und für } x \ge 1 \text{ gilt:}$ $\frac{x}{\sqrt{x^2+1}} \le 1 = f(x) \text{ wegen } h_2(x) = \frac{x}{\sqrt{x^2+1}} \le 1. \text{ Dies zeigt } \frac{x}{\sqrt{x^2+1}} \le f(x) \text{ für alle } x > 0.$

Die Ungleichung $f(x) \le x$ folgt unmittelbar aus Teilaufgabe (a)

Zu d)

Es gilt:

- Auf] $-\infty$; 0[gilt: $f|_{]-\infty;0[} = id|_{]-\infty;0[}$, deshalb ist f hier differenzierbar mit f'(x) = 1
- Auf]1; ∞ [gilt: $f|_{1,\infty}$ [= 1, deshalb ist f hier differentier mit f'(x) = 0
- Auf $\left| \frac{1}{\sqrt{n+1}}; \frac{1}{\sqrt{n}} \right|$ gilt: $f \left| \frac{1}{\sqrt{n+1}}; \frac{1}{\sqrt{n}} \right| = \frac{1}{\sqrt{n+1}}$, deshalb ist f hier differenzierbar mit f'(x) = 0
- In jedem Punkt $x = \frac{1}{\sqrt{n}}$ ist f nicht stetig, also nicht differenzierbar.
- Für x = 0 gilt:

Für h > 0:
$$\frac{f(h)-f(0)}{h} = \frac{f(h)}{h}$$
 und mit Teilaufgabe (c): $1 \underset{h \to 0}{\longleftarrow} \frac{1}{\sqrt{h^2+1}} = \frac{\frac{h}{\sqrt{h^2+1}}}{h} \le \frac{f(h)}{h} \le \frac{h}{h} = 1$, also $\lim_{h \to 0} \frac{f(h)-f(0)}{h} = 1$.

Für h < 0:
$$f(h) = h$$
, also $\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h}{h} = 1$.
Somit existiert $f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = 1$

Insgesamt ist fauf $\mathbb{R}\setminus\left\{\frac{1}{\sqrt{n}}:n\in\mathbb{N}\right\}$ differenzierbar mit $f'(x)=\left\{\begin{matrix}1:x\leq0\\0&sonst\end{matrix}\right\}$.