Reservoir Computing

吴思 心理与认知科学学院 IDG/McGovern 脑科学研究所 北大-清华联合生命科学中心 北京大学

The Kernel Trick of Support Vector Machine

Which One is the Best?

$$y(\mathbf{x}) = sign(\mathbf{w} \cdot \mathbf{x} + b)$$

The max-margin classifier

■ The optimization problem:

Find w and b such that

$$d = \frac{2}{\|\mathbf{w}\|}$$
 is maximized; and for all $\{(\mathbf{x_i}, y_i)\}$

$$\mathbf{w} \cdot \mathbf{x_i} + b \ge 1 \text{ if } y_i = 1; \quad \mathbf{w} \cdot \mathbf{x_i} + b \le -1 \quad \text{if } y_i = -1$$

The Soft-Margin Classifier

Minimize
$$\frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i} \xi_{i}$$
Subject to
$$y_{i} (\mathbf{w} \cdot \mathbf{x}_{i} + b) \ge 1 - \xi_{i}$$

$$\xi_{i} \ge 0$$

Who really need linear classifiers

■ Datasets that are linearly separable with some noise, linear SVM work well:

But if the dataset is non-linearly separable?

■ How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Kernel Mapping

■ General idea: the original space is mapped to a higher-dimensional space where data becomes linearly separable:

The "Kernel Trick"

- The SVM only relies on the inner-product between vectors $\mathbf{x}_i \cdot \mathbf{x}_j$
- If every data point is mapped into high-dimensional space via some transformation $\Phi: x \to \varphi(x)$, the inner-product becomes:

$$K(x_i,x_j) = \varphi(x_i) \cdot \varphi(x_j)$$

- $K(x_i,x_j)$ is called the kernel function.
- For SVM, we only need specify the kernel $K(x_i,x_j)$, without need to know the corresponding non-linear mapping, φ(x).

Key ideas of SVM

- A hyper-plane classifier
- A hyper-plane that maximizes the margin between two classes of data points
- Using a kernel function to map the original data into a high-dimensional space
- Soft-margin to accommodate noises

"Kernel Trick" in Neural Information Processing?

Olfactory system of Locust

■ Visual system of primates

Reservoir networks

- Liquid state machine
- Echo state machine

Long-duration Rhythmic Synchronous Firings in Zebrafish

Substrate of Perceptual Memory

Scale-Free Network

Diameter of a neuron is proportional to its connectivity.

N=200, < K>=4

 $P(K) \square K^{-\gamma}$

K > 6: hub neuron

 $K \le 6$: low-degree neuron

Dynamics of Single Neurons

> Dynamics of neurons

$$\frac{du_{i}}{dt} = -\frac{1}{\varepsilon}u_{i}(u_{i} - 1)\left(u_{i} - \frac{v_{i} + b}{a}\right) + D\sum_{j=1}^{N}M_{ij}(u_{j} - u_{i}) \qquad f(u_{i}) = \begin{cases} 0, & u_{i} < \frac{1}{3} \\ 1 - 6.75u_{i}(u_{i} - 1)^{2}, & \frac{1}{3} \le u_{i} \le 1 \\ 1, & u_{i} > 1 \end{cases}$$

$$\frac{dv_{i}}{dt} = f(u_{i}) - v_{i}.$$

$$M_{ij} = 1$$
 interaction $M_{ii} = 0$ no interaction

- ➤ Scaled chemical synapse: higher connectivity, weaker efficacy
- > Electrical synapse

Difficulty of Activating Hub Neurons

Rhythmic Synchronous Firing in a Scale-Free Network

Population Activity

The Mechanism

<u>Hub Neurons</u> trigger synchronous firing;

Loop formed by lowdegree neurons define the rhythm

Facts of Scale-Free Networks (1)

Histogram of loops

Histogram of chains

After hub neurons are removed.

Facts of Scale-Free Networks (2)

The maximum loop or chain length vs. the network size

For N=(1~10)*10^4, loop=1000~10,000 For t=10ms, T=10~100s

Scale-free Network: a general property

➤ <u>Scale-free topology</u> achieves a balance between connection cost & communication efficiency

- > Reservoir network
 - —Over-complete resources
 - —Fast & simple

<u>Layer 2/3</u>:

Hubal

Neurons

Layer 5:

Low-degree

Neurons

How to acquire the right loop

- ◆ Matching the rhythm of input with a loop of proper size from a repertoire.
 - ➤ Long loop/chain holds memory trace
 - > Hebbian learning establish association

Why Reservoir Computing?

- Rapid response, rather than Efficient utilization, is crucial for animal survival.
- Reservoir computing provides a simple yet efficient way to process information.
- Spatial-temporal information of the inputs folded into pattern of spatial activity in a large-size network.