→ Homework 2 - Implementing a CNN for CIFAR-10 dataset

Part1 - implemention of a basic convolutional neural network

Importing needed libraries

```
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

loading dataset

```
(X_trainData, Y_trainData), (X_testData, Y_testData) = tf.keras.datasets.cifar10.load_data
```

Reshape dataset

convert labels to one-hot encoding

```
from tensorflow.keras.utils import to_categorical

cat_y_trainData = to_categorical(Y_trainData, num_classes=10)

cat y testData = to categorical(Y testData, num classes=10)
```

Normalization

```
between 0, 1 and float32

X_trainData = X_trainData.astype(np.float32) / 255.0

X testData = X testData.astype(np.float32) / 255.0
```

Creat our basic CNN model with stacking convelution and pooling layer

importing layers and models

```
from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, Dropout, MaxPool2D, Conv2D, Flatten, Glo
```

creating the model

```
input = Input(shape=(32, 32, 3))
x = Conv2D(32, (3, 3), activation='relu', padding='same')(input)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = MaxPool2D((2, 2))(x)
x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = MaxPool2D((2, 2))(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = MaxPool2D((2, 2))(x)
x = Flatten()(x)
x = Dropout(0.2)(x)
x = Dense(units=128)(x)
x = ReLU()(x)
x = Dense(units=10)(x)
predictions = Activation(activation='softmax')(x)
our_CNN_model = Model(input, predictions)
```

▼ print summary

our_CNN_model.summary()

Model: "model"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 32, 32, 3)]	0
conv2d (Conv2D)	(None, 32, 32, 32)	896
conv2d_1 (Conv2D)	(None, 32, 32, 32)	9248
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 16, 16, 32)	0
conv2d_2 (Conv2D)	(None, 16, 16, 64)	18496

conv2d_3 (Conv2D)	(None, 16, 16, 64)	36928
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 8, 8, 64)	0
conv2d_4 (Conv2D)	(None, 8, 8, 128)	73856
conv2d_5 (Conv2D)	(None, 8, 8, 128)	147584
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 4, 4, 128)	0
flatten (Flatten)	(None, 2048)	0
dropout (Dropout)	(None, 2048)	0
dense (Dense)	(None, 128)	262272
re_lu (ReLU)	(None, 128)	0
dense_1 (Dense)	(None, 10)	1290
activation (Activation)	(None, 10)	0
		=======
Total params: 550,570		

Total params: 550,570 Trainable params: 550,570 Non-trainable params: 0

Compile the model with optimizer and loss function

our_CNN_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accurac

Train the model

```
our_CNN_model.fit(x=X_trainData, y=cat_y_trainData, epochs=35, batch_size=32,
              validation_data=(X_testData, cat_y_testData))
```

```
Epoch 8/35
Epoch 9/35
1563/1563 [============= ] - 10s 6ms/step - loss: 0.2715 - accurac
Epoch 10/35
Epoch 11/35
Epoch 12/35
Epoch 13/35
Epoch 14/35
1563/1563 [============== ] - 10s 6ms/step - loss: 0.2138 - accurac
```

```
Epoch 15/35
Epoch 16/35
Epoch 17/35
Epoch 18/35
1563/1563 [============== ] - 9s 6ms/step - loss: 0.1984 - accuracy
Epoch 19/35
Epoch 20/35
1563/1563 [=============== ] - 10s 6ms/step - loss: 0.1946 - accurac
Epoch 21/35
Epoch 22/35
Epoch 23/35
Epoch 24/35
1563/1563 [============== ] - 9s 6ms/step - loss: 0.1749 - accuracy
Epoch 25/35
1563/1563 [============== ] - 10s 6ms/step - loss: 0.1734 - accurac
Epoch 26/35
1563/1563 [=============== ] - 10s 6ms/step - loss: 0.1721 - accurac
Epoch 27/35
1563/1563 [=============== ] - 10s 6ms/step - loss: 0.1679 - accurac
Epoch 28/35
Epoch 29/35
Epoch 30/35
Epoch 31/35
Epoch 32/35
Epoch 33/35
Epoch 34/35
Epoch 35/35
<keras.callbacks.History at 0x7f478e337b50>
```

plot model loss history

```
plot_history = pd.DataFrame(our_CNN_model.history.history)
plot_history[['loss', 'val_loss']].plot()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f478e331c50>

min of loss history

```
np.min(our_CNN_model.history.history['loss'])
0.15448826551437378
```

▼ plot model accuracy

```
plot_history = pd.DataFrame(our_CNN_model.history.history)
plot_history[['accuracy', 'val_accuracy']].plot()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f478e1cd8d0>

▼ max of validation accuracy

▼ Evalute the model

[1.2077003717422485, 0.767799973487854]

▼ Part2 - check the effect of layer's depth on the resalut

We use more hidden layers and GlobalArrangePooling

```
input = Input(shape=(32, 32, 3))
x = Conv2D(filters=32, kernel_size=(3, 3), strides=1, padding='same')(input)
x = ReLU()(x)
x = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')(x)
x = Conv2D(filters=64, kernel_size=(3, 3), strides=1, padding='same')(x)
x = ReLU()(x)
x = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')(x)
x = Conv2D(filters=128, kernel_size=(3, 3), strides=1, padding='same')(x)
x = ReLU()(x)
x = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')(x)
x = Conv2D(filters=256, kernel_size=(3, 3), strides=1, padding='same')(x)
x = ReLU()(x)
x = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')(x)
x = Conv2D(filters=512, kernel_size=(3, 3), strides=1, padding='same')(x)
x = ReLU()(x)
x = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')(x)
#globalaveragepooling
x = GlobalAveragePooling2D()(x)
x = Dense(units=128)(x)
x = ReLU()(x)
x = Dense(units=32)(x)
x = ReLU()(x)
x = Dense(units=10)(x)
predictions = Activation(activation='softmax')(x)
our CNN model2 = Model(input, predictions)
```

Getting a summary

```
our_CNN_model2.summary()
```

58 AM input_5 (InputLayer)	Homework2.ipynb - Colabor [(None, 32, 32, 3)]	atory 0
conv2d_8 (Conv2D)	(None, 32, 32, 32)	896
re_lu_1 (ReLU)	(None, 32, 32, 32)	0
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 16, 16, 32)	0
conv2d_9 (Conv2D)	(None, 16, 16, 64)	18496
re_lu_2 (ReLU)	(None, 16, 16, 64)	0
<pre>max_pooling2d_4 (MaxPooling 2D)</pre>	(None, 8, 8, 64)	0
conv2d_10 (Conv2D)	(None, 8, 8, 128)	73856
re_lu_3 (ReLU)	(None, 8, 8, 128)	0
<pre>max_pooling2d_5 (MaxPooling 2D)</pre>	(None, 4, 4, 128)	0
conv2d_11 (Conv2D)	(None, 4, 4, 256)	295168
re_lu_4 (ReLU)	(None, 4, 4, 256)	0
<pre>max_pooling2d_6 (MaxPooling 2D)</pre>	(None, 2, 2, 256)	0
conv2d_12 (Conv2D)	(None, 2, 2, 512)	1180160
re_lu_5 (ReLU)	(None, 2, 2, 512)	0
<pre>max_pooling2d_7 (MaxPooling 2D)</pre>	(None, 1, 1, 512)	0
<pre>global_average_pooling2d (G lobalAveragePooling2D)</pre>	(None, 512)	0
dense_2 (Dense)	(None, 128)	65664
re_lu_6 (ReLU)	(None, 128)	0
dense_3 (Dense)	(None, 32)	4128
re_lu_7 (ReLU)	(None, 32)	0
dense_4 (Dense)	(None, 10)	330
<pre>activation_1 (Activation)</pre>	(None, 10)	0
		=======

Total params: 1,638,698 Trainable params: 1,638,698

Non-trainable params: 0

 $https://colab.research.google.com/drive/161YXSdWalmN_WxZBFbV3T5zadb45oSy\#scrollTo=7p2dTavjFvfT\&printMode=true$

compile and training the model

our_CNN_model2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accura
our_CNN_model2.fit(x=X_trainData, y=cat_y_trainData, epochs=50, batch_size=32, validation_

```
Epoch 24/50
Epoch 25/50
Epoch 26/50
Epoch 27/50
Epoch 28/50
1563/1563 [=============== ] - 10s 6ms/step - loss: 0.0797 - accurac
Epoch 29/50
Epoch 30/50
Epoch 31/50
Epoch 32/50
1563/1563 [=============== ] - 10s 7ms/step - loss: 0.0711 - accurac
Epoch 33/50
Epoch 34/50
1563/1563 [============== ] - 10s 6ms/step - loss: 0.0684 - accurac
Epoch 35/50
Epoch 36/50
Epoch 37/50
1563/1563 [============== ] - 10s 7ms/step - loss: 0.0735 - accurac
Epoch 38/50
Epoch 39/50
1563/1563 [============== ] - 10s 7ms/step - loss: 0.0641 - accurac
Epoch 40/50
Epoch 41/50
Epoch 42/50
Epoch 43/50
Epoch 44/50
Epoch 45/50
Epoch 46/50
Epoch 47/50
Epoch 48/50
1563/1563 [=============== ] - 10s 6ms/step - loss: 0.0530 - accurac
Epoch 49/50
```

```
plot_history = pd.DataFrame(our_CNN_model2.history.history)
plot_history[['loss', 'val_loss']].plot()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f47368e88d0>

plot_history[['accuracy', 'val_accuracy']].plot()

▼ Evalute the model

Part3 - check the early-stoping technic to raech an optimum model

▼ use early-stoping in our model

to reach a fewer loss and a better accuracy

```
from tensorflow.keras.callbacks import EarlyStopping
```

```
Epoch 1/40
Epoch 2/40
Epoch 3/40
Epoch 4/40
Epoch 5/40
Epoch 6/40
Epoch 7/40
1563/1563 [==================== ] - 9s 6ms/step - loss: 0.4705 - accuracy: (
Epoch 8/40
Epoch 9/40
Epoch 10/40
Epoch 11/40
Epoch 12/40
Epoch 13/40
Epoch 14/40
Epoch 15/40
Epoch 16/40
<keras.callbacks.History at 0x7faf9001df50>
4 |
```

plot model loss history

```
plot_history = pd.DataFrame(our_CNN_model.history.history)
plot_history[['loss', 'val_loss']].plot()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7faf420eb050>

▼ min of loss history

```
np.min(our_CNN_model.history.history['loss'])
     0.23287376761436462
```

▼ plot model accuracy

```
plot_history = pd.DataFrame(our_CNN_model.history.history)
plot_history[['accuracy', 'val_accuracy']].plot()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7faf2b701090>

max of validation accuracy

▼ Evalute the model

confusion matrix and classification report

should be sparse

printing classification report

```
from sklearn.metrics import confusion_matrix, classification_report
print(classification_report(Y_testData, predictions_sparse))
```

	precision	recall	f1-score	support
^	0.75	0.04	0.70	1000
0	0.75	0.84	0.79	1000
1	0.86	0.91	0.88	1000
2	0.72	0.62	0.67	1000
3	0.60	0.65	0.62	1000
4	0.68	0.80	0.74	1000
5	0.78	0.58	0.67	1000
6	0.86	0.76	0.81	1000
7	0.76	0.85	0.80	1000
8	0.90	0.83	0.87	1000
9	0.84	0.87	0.86	1000

accuracy			0.77	10000
macro avg	0.78	0.77	0.77	10000
weighted avg	0.78	0.77	0.77	10000

use cinfusion matrix

```
confusion_matrix(Y_testData, predictions_sparse)
    array([[843, 20, 27, 14,
                               19,
                                     0,
                                         0, 13, 38, 26],
                      1,
           [ 10, 914,
                          1,
                                2,
                                    1,
                                         5,
                                             1, 15,
                                                      50],
           [ 97,
                  5, 620, 50,
                               93,
                                    37,
                                        48,
                                             31,
                                                   7,
                                                      12],
           [ 25, 9, 49, 650,
                                    76,
                              77,
                                        34,
                                             56,
                 1, 44, 44, 799,
                                                   3,
           [ 18,
                                   11,
                                        20,
                                             54,
           [ 14,
                 4, 46, 199,
                               54, 579,
                                       10,
                                             89,
                                                   3,
                 4, 38, 83,
                              74,
                                    16, 756,
                                              8,
                                         1, 849,
                 4, 22, 28, 46,
                                   16,
                                                   2, 17],
           [ 15,
                                         1,
           Γ 68.
                40, 11, 11,
                              4,
                                   1,
                                              5, 835,
                                                      24],
                                5,
           [ 27, 66, 4, 9,
                                     4,
                                         1,
                                              8, 10, 866]])
```

Part4 - using dropout layer and batch normalization to report its effect

▼ Import dropout layer

```
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Dropout, MaxPool2D
from tensorflow.keras.layers import Conv2D, Flatten, GlobalAveragePooling2D, ReLU, Activat
```

Create the model using dropout layer

```
input = Input(shape=(32, 32, 3))

x = Conv2D(filters=32, kernel_size=(5, 5), strides=1, padding='same')(input)
x = BatchNormalization()(x)
x = ReLU()(x)
x = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')(x)

x = Conv2D(filters=64, kernel_size=(3, 3), strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = ReLU()(x)
x = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')(x)

x = Conv2D(filters=128, kernel_size=(3, 3), strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = ReLU()(x)
```

```
x = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')(x)

x = Flatten()(x)

x = Dense(units=128)(x)

x = ReLU()(x)

x = Dropout(0.3)(x)

x = Dense(units=10)(x)

predictions = Activation(activation='softmax')(x)

our_CNN_model3 = Model(input, predictions)
```

▼ summary of the model

our_CNN_model3.summary()

Model: "model_1"

Layer (type)	Output Shape	Param #
input_2 (InputLayer)		
conv2d_6 (Conv2D)	(None, 32, 32, 32)	2432
<pre>batch_normalization (BatchN ormalization)</pre>	(None, 32, 32, 32)	128
re_lu_1 (ReLU)	(None, 32, 32, 32)	0
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 16, 16, 32)	0
conv2d_7 (Conv2D)	(None, 16, 16, 64)	18496
<pre>batch_normalization_1 (Batc hNormalization)</pre>	(None, 16, 16, 64)	256
re_lu_2 (ReLU)	(None, 16, 16, 64)	0
<pre>max_pooling2d_4 (MaxPooling 2D)</pre>	(None, 8, 8, 64)	0
conv2d_8 (Conv2D)	(None, 8, 8, 128)	73856
<pre>batch_normalization_2 (Batc hNormalization)</pre>	(None, 8, 8, 128)	512
re_lu_3 (ReLU)	(None, 8, 8, 128)	0
<pre>max_pooling2d_5 (MaxPooling 2D)</pre>	(None, 4, 4, 128)	0
flatten_1 (Flatten)	(None, 2048)	0
dense_2 (Dense)	(None, 128)	262272

```
(None, 128)
re_lu_4 (ReLU)
dropout 1 (Dropout)
                   (None, 128)
                   (None, 10)
dense_3 (Dense)
                                     1290
activation 1 (Activation)
                   (None, 10)
______
```

Total params: 359,242 Trainable params: 358,794 Non-trainable params: 448

compile the model with optimizer

our_CNN_model3.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accura

Train the model using early stoping

```
our_CNN_model3.fit(x=X_trainData, y=cat_y_trainData, epochs=40, batch_size=32,
     validation_data=(X_testData, cat_y_testData), callbacks=[early_stoping])
 Epoch 1/40
 Epoch 2/40
 Epoch 3/40
 1563/1563 [==================== ] - 8s 5ms/step - loss: 1.2022 - accuracy: (
 Epoch 4/40
 Epoch 5/40
 Epoch 6/40
 Epoch 7/40
 Epoch 8/40
 1563/1563 [==================== ] - 8s 5ms/step - loss: 0.8638 - accuracy: (
 Epoch 9/40
 Epoch 10/40
 1563/1563 [==================== ] - 8s 5ms/step - loss: 0.7792 - accuracy: (
 Epoch 11/40
 Epoch 12/40
 Epoch 13/40
 Epoch 14/40
 Epoch 15/40
```

loss function and accuracy metric

```
plot_history3 = pd.DataFrame(our_CNN_model3.history.history)
plot_history3[['accuracy', 'val_accuracy']].plot()
```


plot model loss history

```
plot_history3[['loss', 'val_loss']].plot()
```

Evalute the data

Part5 - using some portion of data

X_trainData = X_trainData[:40000]

```
X trainData.shape
  (10000, 32, 32, 3)
Y_trainData = Y_trainData[:40000]
Y_trainData.shape
  (10000, 1)
cat_y_trainData = cat_y_trainData[0:40000]
cat_y_trainData.shape
  (10000, 10)
our CNN model3.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accura
our_CNN_model3.fit(x=X_trainData, y=cat_y_trainData, epochs=40, batch_size=32,
       validation_data=(X_testData, cat_y_testData), callbacks=[early_stoping])
  Epoch 1/40
  Epoch 2/40
  Epoch 3/40
  Epoch 4/40
  Epoch 5/40
  313/313 [=============== ] - 3s 9ms/step - loss: 0.3307 - accuracy: 0.8
  Epoch 6/40
  Epoch 7/40
  Epoch 8/40
```

loss function and accuracy metric

```
plot_history3 = pd.DataFrame(our_CNN_model3.history.history)
plot_history3[['accuracy', 'val_accuracy']].plot()
```

C→ <matplotlib.axes._subplots.AxesSubplot at 0x7fae34c2abd0>

plot model loss history

plot_history3[['loss', 'val_loss']].plot()

<matplotlib.axes._subplots.AxesSubplot at 0x7fae34bab390>

▼ Evalute the data

Colab paid products - Cancel contracts here

✓ 2s completed at 9:37 AM

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.

X