# Physics-informed well surrogate model Avantyristy

Damir Akhmetov Daniil Sherki Egor Cherepanov Egor Malkershin

### Relevance

An important and urgent task of Petroleum engineering is the modeling of oil and gas reservoirs. Using the diffusivity equation, for example, we can calculate the pressure distribution in the reservoir. However, such simulation is time-consuming and resource-intensive, so there is a reasonable question "How can we speed up the process of obtaining results?". One approach to solve such a problem is to use surrogate modeling with physically-informed neural networks.



### Related work







[1]

3

### A few definitions before we start

A **surrogate model** is an engineering method used when an outcome of interest cannot be easily measured or computed, so an **approximate** mathematical model of the outcome is used instead.

**Physics-informed neural networks** (**PINNs**) are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs).



### Problem statement

**Problem statement:** using PINN predict pressure maps (by solving pressure diffusivity equation) after a certain period of time based on Permeability maps for three cases:

- steady pressure diffusivity equation;
- unsteady pressure diffusivity equation;
- steady pressure diffusivity equation with fracture in the well.



# Steady problem

## Steady-state problem

Equation:



Boundary conditions:

$$h(\mathbf{x}) = h_D(\mathbf{x}), \ \mathbf{x} \in \Gamma_D,$$
$$\nabla h(\mathbf{x}) \cdot n = g(\mathbf{x}), \quad \mathbf{x} \in \Gamma_N,$$

In related work:

$$q(\mathbf{x}) = 0$$

In our case it's more complicated:

$$q(\mathbf{x}) = q\delta(\mathbf{x} - \mathbf{x}_w)$$



## Dataset generation (steady-state)

| Main model properties                  | Value                                           |  |
|----------------------------------------|-------------------------------------------------|--|
| Number of cells                        | 64× 64 × 1                                      |  |
| Reservoir dimensions, m                | 12800 × 6400 × 0.25                             |  |
| Permeability, mD (from Brugge dataset) | 0 – 2500                                        |  |
| Methods                                | Finite differences +<br>Sparse Matrix Inversion |  |
| Total Number of K-P pairs              | 3643                                            |  |

$$\nabla \left[ K(\mathbf{x}) \nabla p(\mathbf{x}) \right] = q(\mathbf{x})$$

$$\nabla[K\nabla p] = \frac{d}{dx}[K\frac{d}{dx}p] + \frac{d}{dy}[K\frac{d}{dy}p] = \frac{d}{dx}K\frac{d}{dx}p + K\frac{d^2}{dx^2}p + \frac{d}{dy}K\frac{d}{dy}p + K\frac{d^2}{dy^2}p$$

$$\nabla[K\nabla p] = \frac{(K_{i+1,j} - K_{i-1,j})(p_{i+1,j} - p_{i-1,j})}{4dx^2} + K_{i,j}\frac{p_{i+1,j} - 2p_{i,j} + p_{i-1,j}}{dx^2} + \frac{(K_{i,j+1} - K_{i,j-1})(p_{i,j+1} - p_{i,j-1})}{4dy^2} + K_{i,j}\frac{p_{i,j+1} - 2p_{i,j} + p_{i,j-1}}{dy^2}$$

## **Determining PI-Loss function**

$$egin{aligned} \mathcal{L}_{ ext{data}}( heta) &= ||\hat{h}( heta) - h||_2^2 \ \mathcal{L}_{ ext{PDE}}( heta) &= ||
abla (K
abla \hat{h}( heta)) + q||_2^2 \ \mathcal{L}_{ ext{NB}}( heta) &= ||K
abla \hat{h}( heta)) - g||_2^2 \ \mathcal{L}_{ ext{total}}( heta) &= lpha_1 \cdot \mathcal{L}_{ ext{data}}( heta) + lpha_2 \cdot \mathcal{L}_{ ext{PDE}}( heta) + lpha_3 \cdot \mathcal{L}_{ ext{NB}}( heta) \end{aligned}$$

## PDE - loss



| -1 | 0 | +1 |
|----|---|----|
| -2 | 0 | +2 |
| -1 | 0 | +1 |

Gx

| +1 | +2 | +1 |
|----|----|----|
| 0  | 0  | 0  |
| -1 | -2 | -1 |

Gy

# Unsteady-state problem

### Problem statement

$$S_s \frac{\partial h(\mathbf{x}, t)}{\partial t} + \nabla \left[ K(\mathbf{x}) \nabla h(\mathbf{x}, t) \right] = q(\mathbf{x})$$

$$\Gamma_D: h(\mathbf{x}) = h_D, \mathbf{x} \in \Gamma_D$$

$$\Gamma_N : K \nabla h(\mathbf{x}) \cdot n(\mathbf{x}) = g(\mathbf{x}), \mathbf{x} \in \Gamma_N$$

$$\Gamma_D$$
: p = const in the well

$$\Gamma_N$$
:  $g(x) = 0$  on boundary



## Dataset generation (unsteady-state)



| Main tNav model properties             | Value               |  |
|----------------------------------------|---------------------|--|
| Number of cells                        | 64× 64 × 1          |  |
| Reservoir dimensions, m                | 12800 × 6400 × 0.25 |  |
| Initial pore pressure, bar.            | 300                 |  |
| Bottomhole pressure, bar.              | 50                  |  |
| Permeability, mD (from Brugge dataset) | 0 – 2900            |  |
| Simulation time, months                | 10                  |  |
| Number of time steps                   | 10                  |  |

#### Number of unique tNav models: 3643



Permeability map tNavigator

## Unet for unsteady-state problem



## **Experiments**



# Model training on the different dataset size

| Dataset size,<br>sample | RMSE on test<br>dataset |  |
|-------------------------|-------------------------|--|
| 10010                   | 10.27                   |  |
| 15004                   | 10.43                   |  |
| 20031                   | 9.16                    |  |
| 30008                   | 6.45                    |  |
| 40073                   | 6.15                    |  |

## Model training on the different batch size



### Results



## Training on PDE+Data loss



- 240

## Training on PDE loss



# **FNO**

### **FNO**





The Fourier layer consists of three main steps:

- 1. Fourier transform;
- Linear transform on the lower Fourier modes (low-pass filter);
- 3. Inverse Fourier transform;

## **FNO results**

| Input data         | Output data         | RMSE, bar |
|--------------------|---------------------|-----------|
| p(t=1)             | p(t=2,3,4)          | 3.45      |
| p(t=1)             | $p(t=2,\ldots,20)$  | 20.19     |
| p(t=1)             | p(t=7,14,20)        | 15.71     |
| k,p(t=1)           | p(t=7,14,20)        | 15.17     |
| $p(t=1,\ldots 10)$ | $p(t=10,\ldots,20)$ | 1.31      |





# **Custom FNO**



Best architecture (red): 16 modes, depth = 4, width = 256, Ir = 1e-3, w.d. = 1e-4



## Spectral neural operator (SNO)

Mapping input coefficients d<sub>i</sub> (permeability) to the output coefficients b<sub>i</sub> (pressure)

$$\sum_{i} g_i(x)d_i = f_{\text{in}}(x) \xrightarrow{\mathsf{N}} f_{\text{out}}(x) = \sum_{i} g_i(x)b_i,$$

g<sub>i</sub>(x) is Chebyshev polynomial

#### Advantages:

- Is not subject to aliasing errors
- Transparent output
- May include additional operations on functions

#### **Disadvantages:**

- Requires smooth function

Source: V. Fanaskov, I. Oseledets "Spectral Neural Operators"

## Obtained result is poor by now



10 -20 -30 -40 -50 -60 -20 30 50 10 40 60

Calculated pressure map

Predicted pressure map

## Loss function plot



Results are extremely poor either because of methodology mistakes or implementation mistake

### Further research

- Complete SNO in Chebyshev basis implementation
- Implement other types of SNO
- Create a multi-well surrogate model
- Learn how respond the influence one production well on each other

### Conclusions

- 1. PI-losses significantly increase the accuracy of PDEs and make the solution more physical.
- 2. FNO applicability for pressure distribution prediction was observed.
- 3. FNO give us pretty good results for prediction future steps results using time steps above.
- 4. Potentially SNO could be a great architecture to solve the problem.

### References

- 1. Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. "Physics-informed machine learning". Nat Rev Phys 3, 422–440 (2021) <a href="https://www.nature.com/articles/s42254-021-00314-5#citeas">https://www.nature.com/articles/s42254-021-00314-5#citeas</a>
- 2. Qiang Zheng, Lingzao Zeng, George Em Karniadakis. "Physics-informed semantic inpainting: Application to geostatistical modeling". Journal of Computational Physics, Volume 419, 2020, 109676, ISSN 0021-9991 <a href="https://www.sciencedirect.com/science/article/pii/S0021999120304502">https://www.sciencedirect.com/science/article/pii/S0021999120304502</a>
- 3. Nanzhe Wang, Haibin Chang, Dongxiao Zhang. "Theory-guided Auto-Encoder for surrogate construction and inverse modeling". Computer Methods in Applied Mechanics and Engineering, Volume 385, 2021, 114037, ISSN 0045-7825 <a href="https://www.sciencedirect.com/science/article/pii/S0045782521003686">https://www.sciencedirect.com/science/article/pii/S0045782521003686</a>
- 4. Suihong Song, Dongxiao Zhang, Tapan Mukerji, and Nanzhe Wang. "GANSim-surrogate: An Integrated Framework for conditional geomodelling and uncertainty analysis" <a href="https://eartharxiv.org/repository/view/4594/">https://eartharxiv.org/repository/view/4594/</a>
- 5. Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar. "Fourier Neural Operator for Parametric Partial Differential Equations". <a href="https://arxiv.org/abs/2010.08895">https://arxiv.org/abs/2010.08895</a>
- 6. Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, Sally M. Benson "An enhanced Fourier neural operator-based deep-learning model for multiphase flow" https://arxiv.org/abs/2109.03697

# Questions?

## Work distribution among team members

#### Daniil Sherki:

- 1. Unet approach architecture with data-loss
- 2. FNO implementation & experiments

#### **Egor Cherepanov:**

- 1. Custom FNO architecture implementation
- 2. PI loss implementation & experiments

#### **Damir Akhmetov:**

- Dataset generation
- 2. SNO approach implementation

### **Egor Malkershin:**

- 1. SNO approach implementation
- 2. PI loss implementation

## GitHub link

https://github.com/PhysicsInformedWellSurrogareModel/PIWSM\_dl\_course

