Data analysis Multidimensional Scaling & Isomap

BENAZHA Hamed

"correct" solution?

"correct" solution?

Distances:						Data?
	×0	×1	x2	x3	×4	
×0	0.	3.	2.24	3.8	1.8	
×1	3.	0.	2.8	6.7	2.5	
x2	2.24	2.8	0	4.5	3.5	
x3	3.8	6.7	4.5	0	5.4	
v/1	10	2 5	2 5	E /	Λ	

MDS - maths

Remember squared euclidian distance between x and z:

$$d^{2} = \sum_{k} (x_{k} - z_{k})^{2} = \sum_{k} (x_{k}^{2} + z_{k}^{2} - 2x_{k}z_{k}).$$

- ▶ If we subtract $x_k^2 + z_k^2$, divide it by two and multiply with 1 we are left with $\sum_k x_k z_k = x^\top z$.
- Matrix containing this type of data can be written as XX^T with data samples on rows of X

MDS - maths

- ightharpoonup Assume distance matrix Δ is given (Euclidian distance)
- If we double-center Δ^2 (subtract column and row means, add overall mean) we get a *positive semi-definite matrix* that we know has been generated with some \mathbf{ZZ}^{\top} (property of psd matrices).
- ► Eigendecomposition of a psd matrix is $\mathbf{V}\mathbf{\Lambda}\mathbf{V}^T = \mathbf{V}\mathbf{\Lambda}^{1/2}\mathbf{\Lambda}^{1/2}\mathbf{V}^T = \mathbf{\tilde{X}\tilde{X}}^T$

MDS - algo

Classical MDA process:

- 1. Form distance matrix Δ and calculate elementwise square
- 2. double-center this matrix $\Delta^* = -0.5 \mathbf{J} \Delta^{(2)} \mathbf{J}$ where \mathbf{J} is centering matrix, $\mathbf{J} = \mathbf{I} \frac{1}{n} \mathbf{1} \mathbf{1}^T$ (and \mathbf{I} is identity matrix, $\mathbf{1}$ is vector of ones).
- 3. Perform eigendecomposition of Δ^* to recover low-dimensional new data ${\bf X}$ as

$$\underbrace{\mathbf{X}}_{n\times p} = \underbrace{\mathbf{V}_p}_{n\times p} \underbrace{\Lambda_p^{1/2}}_{p\times p}.$$

Here p largest eigenvalues are in diagonal of matrix Λ_p , and the corresponding eigenvectors on columns of \mathbf{V}_p (so again, as in PCA, the largest eigenvalues are the most important ones).

Isomap - extension of MDS

Geodesic distances:

Excercises

- ► Again at www.celestium.eu/dana
- Open with:
 - google colab: go to colab.research.google.com and upload there the notebook you downloaded from my website
 - or with jupyter notebook from your own computer if you have python 3, jupyter notebook and necessary libraries like sklearn and matplotlib