

Kanton Zürich Direktion der Justiz und des Innern Statistisches Amt

One tool to rule them all-R als statistisches "Sackmesser"

Dr. Peter Moser

R - ein multifunktionales Statistikwerkzeug

- Im STAT 2000 eingeführt, seither allmähliche Verbreitung, anfangs primär in der Analyseabteilung, heute amtsweit im Einsatz
- Warum R?
 - Objektorientierte Programmiersprache jeder Output ist auch potentieller Input – diszipliniert und f\u00f6rdert Replizierbarkeit von Auswertungen und Analysen
 - Ein Programmkern, dessen Funktionalität durch "libraries", Codebibliotheken erweiterbar ist (vorteilhaft in einem restriktiven Verwaltungs-IT-Umfeld!)
 - Weltweite Nutzergemeinschaft: Unterstützung; Lösungen für (fast alle) denkbaren Probleme sind im Internet zu finden
 - Open source, getragen von einer breiten Entwicklercommunity, kein teures Lizenzmodell

Vielseitigkeit: In einer Umgebung kann eine Vielzahl analytischer Probleme gelöst werden. "One tool to rule them all"

Als Exempel: ein hedonisches Bodenpreismodell

- Veredelung der Handänderungsdaten, einer der wertvollsten Datensätze des Amts
- Ziele
 - Erkenntnisgewinn: Wie funktioniert der Markt für Wohnbauland im Kanton Zürich, Welche Lage- und Grundstückseigenschaften beeinflussen die Preise in welchem Ausmass?
 - Praktische Anwendung: Erzeugung kleinräumiger Schätzwerte für den ganzen Kanton für verschiedene Zwecke
- Methodisch anspruchsvolles, vielfältiges Projekt
 - Aufbereitung und Berechnung von Mikro und Makro-Lagecharakteristiken aus unterschiedlichsten Quellen
 - Datenmanagement
 - Modellierung
 - Vermittlung und Visualisierung der Resultate

-Von (fast) A bis Z mit R ins Werk gesetzt

Bsp: Lageeigenschaften I

Fahrzeit nach Zürich

Grundlage: Google-Routing API

Distanz zu Detailhandelsgeschäften

Grundlage: STATENT

Bsp: Lageeigenschaften II

Sonneneinstrahlung

Grundlage: DHM25

ÖV-Güteklassen

Grundlage: DHM25

Datenbearbeitung

- Lageeigenschaften in 25X25
 Meter-Raster (für Wohnbauland ergibt das im Kanton ZH ~325K Zellen)
- Landtransaktionsdaten:
 Aufbereitung (Bereinigung von Merkmalen etc.) in (Oracle-)DB
- verortete Transaktionsdaten können dank einheitlicher Projektionsinformationen (z. B. CH1903+ LV95) mit Lageeigenschaften verknüpft werden.

Transaktionen

X	у	gmiv	detailhandel	insol	oevg	qmpreis
697774	232951	39.6	0.3	1.4	3	358.0
687840	233933	23.6	0.4	0.9	4	1382.6
702102	241644	27.3	0.3	1.3	1	328.9
683831	264093	24.5	0.4	1.7	4	1608.4
693364	258787	26.0	0.2	1.6	4	570.0
704212	268992	33.4	2.0	1.5	4	1384.0

Raster

X	у	gmiv	detailhandel	insol	oevg
690213	283288	39.6	0.2	1.2	2
690238	283288	39.6	0.2	1.2	2
690263	283288	39.6	0.2	1.3	2
690288	283288	39.6	0.2	1.3	2
690313	283288	39.3	0.2	1.4	2
690338	283288	39.3	0.2	1.4	2

Modellieren - die "Kernkompetenz" von R

- Die ganze Bandbreite moderner statistischer Modellierungstechnologien steht zur Verfügung: Zur Modellierung der "lärmigen" Bodenpreise wird ein robustes Modell verwendet
- In der R-Programmiersprache ist das Modell ein Objekt, das alle nötigen Informationen enthält (Parameter, Residuen, robuste Gewichte, design matrix etc.), kein "Output" auf der Konsole
- Das Modellobjekt ist selbst wieder Input für
 - Modelldiagnose
 - Visualisierungsfunktionen
 - Zusammen mit den Lagecharakteristiken im Raster für die Berechnung von Schätzwerten

Resultate I: relative Bedeutung der Einflussfaktoren

Resultate II: Reisezeit nach Zürich

Resultate III: Effekt der Besonnung

Resultate III: Schätzwerte

- Reliefschattierung, Wichtige
 Verkehrswege von Swisstopo (bereits als geotiff, OGD-verfügbar)
- Auch die Schichten in der Grafik (Relief, Verkehrsinfrastruktur, Gemeindegrenzen,) können kombiniert werden weil sie alle dasselbe LK-Koordinatensystem aufweisen

Export der Schätzwerte in .kml (Google-Earth)

Fazit

- Eine Vielzahl unterschiedlicher Datentypen kann ein einem einheitlichen
 Framework manipuliert werden (neben statistischen Daten, auch räumliche rasterpunkt-, polygon-, Liniendaten)
- Hier nicht von Belang, aber in R können auch Optimierungsprobleme (Operations research, Quadratische Optimierung) gleöst werden - Wahlhochrechnung

Verwendete R-libraries

- Aufbereitung, Handling, Verarbeitung räumlicher Daten: raster, sp, rgdal, maptools, rgeos, cleangeo, insol....
- Modellierung: robustbase, effects, relimp, car, stargazer, FNN....
- Visualisierung: lattice, latticeExtra, leafletR, plotKML, gridExtra, classInt...

Fragen?

Dr. Peter Moser

Statistisches Amt des Kantons Zürich

Schöntalstrasse 5

8090 Zürich

peter.moser@statistik.ji.zh.ch

www.statistik.zh.ch

Die resultierende Publikation:

"Der Preis des Bodens – Ein hedonisches Modell der Landpreise im Kanton Zürich statistik.info 05/2017

Modellieren - die "Kernkompetenz" von R

- Die ganze Bandbreite moderner statistischer Modellierungstechnologien steht zur Verfügung: Zur Modellierung der "lärmigen" Bodenpreise wird ein robustes Modell verwendet
- Das Modell ist kein "Output" sondern ein Objekt, das alle nötigen Informationen enthält (Residuen etc.),

Dient als Grundlage f
ür weitere

