Week 4

Prof. Nitin Chandrachoodan

Department of EE, IIT Madras

Notes by Adarsh (23f2003570)

L4.1: Persistent Storage 13:29

Talks about Spreadsheets

L4.2: Mechanisms for Persistent Storage and Relational Databases (22:32)

Talks about Spreadsheets, External Data Stores etc etc

L4.3: Relations and ER Diagram (25:24)

Talks about relations - please refer to my DBMS notes

Crows Foot

Relationships

One-to-many relationship is a type of cardinality that defines a relationship between two entities A and B where an element in A may be linked to multiple elements in B but an element in B is linked to only one element in A

1. Types of Relationships

• One-to-One (1:1): Each record in Relation A is associated with exactly one record

- in Relation B and vice versa.
- One-to-Many (1:N): A record in Relation A can be associated with multiple records in Relation B, but each record in Relation B is associated with only one record in Relation A.
- Many-to-One (N:1): Multiple records in Relation A can be associated with a single record in Relation B, which is essentially the reverse of a one-to-many relationship.
- Many-to-Many (M:N): Records in Relation A can be associated with multiple records in Relation B and vice versa. This relationship usually requires a junction (or associative) table to manage the associations.

2. Referential Integrity

• Ensures that relationships between tables remain consistent. For example, if a foreign key in Relation B refers to a primary key in Relation A, the value in the foreign key must match an existing primary key in Relation A or be null.

3. Foreign Keys

 A foreign key is an attribute (or a set of attributes) in one relation that refers to the primary key of another relation. Foreign keys establish a link between the two relations, facilitating the relationship.

4. Cascading Actions

- Cascade on Delete: If a record in the parent table (Relation A) is deleted, all related records in the child table (Relation B) are also automatically deleted.
- Cascade on Update: If the primary key in the parent table is updated, the corresponding foreign key values in the child table are also updated.

5. Cardinality Constraints

- Defines the numerical relationships between two relations:
 - **Minimum Cardinality**: The minimum number of instances of one entity that can be associated with one instance of another entity (e.g., zero or one).
 - **Maximum Cardinality**: The maximum number of instances of one entity that can be associated with one instance of another entity (e.g., one or many).

6. Participation Constraints

- Specifies whether all or only some entity occurrences participate in a relationship:
 - **Total Participation**: Every instance of an entity must participate in the relationship (represented as a double line in ER diagrams).
 - Partial Participation: Only some instances of an entity participate in the relationship (represented as a single line in ER diagrams).

7. Associative Entities

• Used to represent many-to-many relationships. An associative entity is a table that holds foreign keys referencing the primary keys of the two related entities, along with any additional attributes related to the relationship.

8. Hierarchical Relationships

 Sometimes, relationships can be hierarchical (parent-child). This is common in organizational structures, where a manager (parent) can have multiple employees (children).

9. Normalization

 The process of organizing data to minimize redundancy and dependency, which involves establishing proper relationships between tables through normalization forms (1NF, 2NF, 3NF, etc.).

10. Aggregation and Composition

- **Aggregation**: A higher-level entity is created from a set of relationships. It can encapsulate multiple relationships.
- **Composition**: A strong relationship where the lifetime of the part entity is tied to the lifetime of the whole entity. If the whole is deleted, so are the parts.

11. Derived Relationships

• These are relationships that can be inferred from existing relationships. For example, if a relationship exists between A and B, and between B and C, a derived relationship can be inferred between A and C.

12. Complex Relationships

 Relationships can have attributes of their own, such as "date of association" or "role in the relationship," which can be useful for additional context.

L4.4: SQL

Basically same concepts in DBMS and talk of Models, Views, Controllers