3.7 Pretest: Working with exponents

A.SSE.3c Exponent properties

Do Not Use a Calculator

1. Select all of the solutions to $x^2 = 16$.

(a)
$$x = 4$$

(d)
$$x = -8$$

(b)
$$x = -4$$

(e)
$$x = 16$$

(c)
$$x = 8$$

(f)
$$x = -16$$

2. Find the value of each variable that makes the equation true.

(a)
$$5^2 \cdot 5^3 = 5^a$$
 $a =$

(d)
$$(4^3)^5 = 4^d$$
 $d =$

(b)
$$\frac{3^7}{3^6} = 3^b$$
 $b =$

$$b =$$

(e)
$$2^e = \frac{1}{2}$$
 $e = \frac{1}{2}$

(c)
$$7^c = 1$$
 $c =$

(f)
$$3^4 \cdot f^4 = 15^4$$
 $f =$

3. Evaluate each expression.

(a)
$$\frac{1}{4} \cdot 24$$

(c)
$$\frac{3}{5} \cdot 8 \cdot \frac{5}{3}$$

(b)
$$\frac{3}{2} \cdot 10$$

$$(d) \ \frac{2}{3} \cdot \frac{5}{2} \cdot 9$$

4. p = 3x + 1 and q = 2x - 5. (AI-A.APR.1 Add, subtract, & multiply polynomials)

For each expression, write an equivalent expression and simplify.

(a)
$$p+q$$

(b)
$$p-q$$

A2-F.BF.2 Write arithmetic and geometric sequences with recursive formulas

- 5. Given the geometric sequence beginning $a_1=2, a_2=1, a_3=\frac{1}{2}, a_4=\frac{1}{4}, \dots$
 - (a) Write a recursive definition of the sequence.
 - (b) Write a formula expression of the sum of the first 10 terms of the sequence. (You do not need to calculate the sum's value.)
- 6. Given the function f(x) = (2x+5)(x+7)(x-1). (AII-F.IF.7c Graph polynomials)

- (a) Sketch a graph of the function.
- (b) Mark and label all x-intercepts of the graph.
- (c) Calculate the function's y-intercept and mark it on the graph.