

SHARP SERVICE MANUAL

CODE : 00ZEL5100SSME

MODEL EL-5100S

STANDARD FUNCTION		24 digits	11 M	
D	ISPL	← 2ndF HYP DEG RAD GRAD →		
A	Y	Dot matrix liquid crystal display	PARTS NAME: LF8034XE	
S	E	NUMERAL: 10 + 2 digits	SYMBOL: digit(s)	
T	C	13.3 5.05 (mm)	2ndF GRAD HYP ← DEG → RAD	
I	N	KEY SYSTEM: Rubber key		
L	Name : SC43125, SC43153			KEY LAYOUT
S	Type : Flat package			
I	Pin :			
POWER SUPPLY	AC: X	DC: O		
• BATTERY TYPE	Alkaline manganese battery (LR 44) x 3 pcs. or Silver oxide battery (S15 or SR44) x 3 pcs.			
• OPERATION TIME	LR44: Approx. 300H, S15 or S44: Approx. 1000H			
AC ADAPTOR				
RECHARGEABLE BATTERY				
POWER CONSUMPTION	0.0009 W			
AUTO POWER OF TIME	5 ~ 8 minutes			
BATTERY INDICATOR	No			
DIMENSION (mm)	175 (W) 70 (D) 9.3 (H)			
CALCULATIONS				

Four arithmetic calculations, trigonometric and inverse trigonometric functions, hyperbolic and inverse hyperbolic functions, angular conversion, reciprocal, square and cube root, square and power, logarithmic and exponential, Xth root of Y($\sqrt[X]{Y}$), factorial, permutation, combination, coordinate conversion, memory, and statistical calculations.

- General calculation capacity; 80 steps
- Algebraic expression reserve; Capacity: 80 steps (AER mode)
Functions: Cursor step-up, step-down, insertion, deletion, playback.
- Number of internal calculation digits; Mantissa 12 digits, Exponent 2 digits
- Display capacity; 24 digits (algebraic operation system)
(numeral ... mantissa 10 digits, exponents 2 digits)

PARTS LIST

V12353

SHARP

SERVICE MANUAL

MODEL EL-5100

TABLE OF CONTENTS

1. Specifications	1
2. Main key's explanation	3
3. Disassembly procedure	7
4. Block diagram	7
5. LSI signals	8
6. Circuit diagram	11
7. Parts & signals position	13
8. Parts list	15
9. Parts guide	17

1. SPECIFICATIONS

• Key's Layout

• Display Section

Display shape:

1-3.3-
T
5.05

SHARP CORPORATION

Display system;	Dot matrix liquid crystal display (LCD1601J)
Display capacity;	24 digits (algebraic operation system) (numeral ... mantissa 10 digits, exponents 2 digits)
Symbols:	2ndF Second function designation symbol HYP Hyperbolic function mode symbol DEG RAD Angular mode symbols GRAD
	DEG RAD GRAD
←	Appears, when there exists anything to be displayed to the left of the displayed contents of an algebraic formula.
→	Appears, when there exists anything to be displayed to the right of the displayed contents of an algebraic formula.
●	Appears also to indicates that the machine is in operation when it is executing a calculation.
●	Battery indicator The battery indicator is a grey dot located in the right of the display. When this dot is not on, the battery must be replaced.

● Calculations

Four arithmetic calculations, trigonometric and inverse trigonometric functions, hyperbolic and inverse hyperbolic functions, angular conversion, reciprocal, square and cube root, square and power, logarithmic and exponential, Xth root of Y ($\sqrt[X]{Y}$), factorial, permutation, combination, coordinate conversion, memory, and statistical calculations.

General calculation capacity; 80 steps

Algebraic expression reserve; Capacity: 80 steps (AER mode)
Functions: Cursor step-up, step-down, insertion, deletion, playback.

● Others

Overflow errors;

1. When the absolute value of a calculation result is greater than $9.99999999 \times 10^{99}$.
2. When a number is divided by 0 (zero). ($A \div 0$).
3. When the absolute value of a result of memory calculation is greater than $9.99999999 \times 10^{99}$.
4. When a formula that exceeds the capacity of function (16-stage) or data (8-stage) buffer is used for calculation.
5. When a formula grammatically wrong is executed.
6. When date for both 1-variable and 2-variable statistical calculations are input at random in the STAT mode.

Error symbol; □

Memory;

11

Power supply;

Silver oxide battery (G-13 x 3)

Battery life;

Approx. 1000 hours

Dimensions;

175(W) x 70(D) x 9.3(H)mm

Weight; .

Approx. 120g.

2. MAIN KEY'S EXPLANATION

Mode selector

AER: Algebraic Expression Reserve mode

This mode is used to store algebraic formulas into the calculator.

In this mode, any calculation is not performed.

COMP: Compute mode

This mode permits the calculator to perform (except for statistical calculation) all sorts of calculations including four arithmetic calculations, scientific calculations and calculations that utilize stored algebraic formulas in the AER mode.

STAT: Statistical calculations mode

The statistical program will be activated.

2nd function designation key

- This key is to be operated when designating the second function (labeled in mustard) of the function keys. (i.e. LOG, COS⁻¹, etc.). When the 2nd function is designated, the 2nd function designation symbol (2nd F) is displayed.

Ex. 23 → log 23

.5 → cos⁻¹ 0.5

- The **2ndF** key is of reversing type, and if it is pushed by mistake the 1st function can be designated by pushing the key once more.

Ex. → sin⁻¹ (Designation of 2nd function)

→ sin (Designation of 1st function)

Display format exchange key

When a calculation result is displayed in the floating decimal point system, pushing the key displays the result in the scientific notation system.

Pushing the key once more displays the result in the floating decimal point system again. This key operations does not work in the AER mode.

Tabulation key

This key specifies the number of decimal digits in the calculation results.

The number of decimal digits is specified by numeral key (**0** ~ **9**) depressed after the **TAB** key.

To set the floating decimal, depress the **TAB** keys.

Ex. COMP mode

(Decimal position: 3)

50 9 → 5.556

5 2 → 2.500

(Floating decimal)

50 9 → 5.555555556

5 2 → 2.5

Note: This key operation is ineffective right after or in the course of entry of a number and in the AER mode.

DRG**Degree/Radian/Grad selection key**

Used for calculation of trigonometric, inverse trigonometric and coordinate conversion.

The **DRG** key changes the angular mode.

Ex. DEG → GRAD: Depress the **DRG** key twice. (**DRG** **DRG**)

STO**Store key**

The EL-5101 has five (5) store memory registers. To designate each memory, depress the **STO** key followed by **A** ~ **J** (Ex. **STO** **A**)

AER mode:

Designates the instruction to store a number into the designated store memory.

COMP mode:

Depression of the **STO** and **A** ~ **J** key clear a number in the designated memory and then stores a number being displayed or calculated result in the designated memory.

RCL**Recall key**

Recall the contents of the designated memory. To designate each memory, depress **A** ~ **J** keys following the **RCL** key. (Ex. **RCL** **A**). The contents of the store memory remain unchanged after this operation.

AER mode:

The contents of the store memory are written as a constant in the formula.

COMP mode:

When the formulas are displayed, the contents of the store memory are written in the formulas.

When the calculated result is displayed, the contents of the store memory are displayed.

A ~ **E****Store memory keys**

AER mode, COMP mode:

When the **A** ~ **J** keys are depressed following the **STO** or **RCL** key, corresponding store memories are designated.

2ndF **F****1; Formula keys****2ndF** **J**

5; AER mode; Displays the formulas in each area.

COMP mode; Used to perform the calculation according to the algebraic formula stored in each area in the AER mode.

CD**RM****Recall memory and correct data key**

Recalls the contents of the independently accessible memory.

COMP mode:

When the formula is displayed, the contents of the independently accessible memory is written in the formula.

When the calculated result is displayed, the contents of the independently accessible memory is displayed.

AER mode:

The contents of the independently accessible memory are written as a constant in the formula.

4 CD:

STAT mode:

Used to correct the mis-entry of data.

(x, y)

$\Rightarrow M$

$\Rightarrow M$

Memory-in-two variable data designation key

: AER mode:

Designates the instruction for storing the number in the display or calculation result into the independently accessible memory.

: COMP mode:

Clear the contents of the independently accessible memory and replaces it with the number in the display or calculated result. To clear the memory depress the CL key followed by the $\Rightarrow M$ key.

(x, y)

: STAT mode:

Used to distinguish data x and data y in the two-variable statistical calculation.

Ex. When data x is 6 and data y is 3.

Key operation 6 (x, y) 3 $DATA$

Data

$M+$

$M+$

Memory plus/enter data key

: AER mode:

Designates the instruction for storing the number displayed or a calculated result to the independently accessible memory.

: COMP mode:

Used to add the number displayed or a calculated result to the contents of the independently accessible memory.

$2ndF$

$M+$

: AER mode:

Designates the instruction to subtract the displayed number or a calculated result from the independently accessible memory.

: COMP mode:

Used to subtract the displayed number or a calculated result from the contents of the independently accessible memory.

Note: When the $2ndF M+$ keys is depressed, the "M—" will be displayed.

$DATA$

: STAT mode:

Used to enter data in one-variable statistical calculation or data in two variable statistical calculation.

CA

CL

CL

Clear/clear all key

: AER mode:

Orders the cursor to be positioned at 0th step of algebraic expression reserve area.

: COMP mode:

Clears the contents of the calculation registers. The contents of the memory and stored algebraic formula are not affected. Clears the error condition.

: STAT mode:

Clears the contents of the calculation registers. The entry data for the statistical calculation is retained. And clears the error condition.

$2ndF$

CA

: AER mode:

Clears all of information stored in algebraic expression reserve area.

: COMP mode:

Clears the contents of the calculation registers. The contents of the memory and stored algebraic formula are not affected.

: STAT mode:

Clears the entry data or calculated result of the statistical calculation. The stored algebraic formulas are retained.

DEL

Cursor step-down and delete key

◀: Makes the cursor go down by one step.

2ndF **DEL**: Deletes the symbol (instruction) stored in the step indicated by the cursor.
(The cursor does not move.)

INS

Cursor step-up and insert key

▶: Makes the cursor go up by one step.

2ndF **INS**: Provides a blank necessary for insertion of an instruction in the step indicated by the cursor.

Pushing the **2ndF** and **INS** keys in this sequence shifts to the right the contents of the step indicated by the cursor and the subsequent. In the blank step appears the insert " ".

Ex. Key operation

2ndF **INS**

Display

$2 + \frac{3}{4} \times 4$

$2 + \frac{3}{4} \times 4$

Remarks

3: Blinking

4: Blinking

f(=)

PB **f(=)**:

Play back and variable designation key

Displays an inputted formula (or number) in sequence, divided into some parts of which can be displayed at a time. In the COMP- or STAT-mode, this key recalls formulas that was performed last.

2ndF **f(=)**

: In the AER mode, the combination specifies a variable when writing a formula necessary for performing a calculation in dialogic form.

For example, the key operation **2ndF** **f(=)** **A** **B** **2ndF** **f(=)** writes "f(AB)" designates A and B to variables.

COMP

Compute and comma key

COMP: COMP mode:

Executes a calculation according to a stored formula in the AER mode.

,

: AER mode:

Inserts a comma between formulas to distinguish them from each other when storing two or more formulas in the divided area.

2ndF **,** AER mode:

Used to put on end to each formula reserve area.

Note: Do not depress **2ndF** **,** keys at the end of the 5th area.

Otherwise an error will take place.

3. DISASSEMBLY PROCEDURE

1. Remove two screws on the bottom cabinet.
2. Detach the bottom cabinet from the top cabinet as it is clasped to the top cabinet at the points, X, Y, and Z.
3. Take batteries out (3 pcs).
4. Remove nine screws at the points a ~ i.
5. Detach the P.W.B. from the top cabinet by lifting the lower part of the P.W.B., as it is hooked to the top cabinet at the upper part (LCD side).
6. As soon as the P.W.B. was removed, such as the key rubber and filter are ready to remove.
7. Now, dismount the LCD unit by releasing the hooks, as it is hooked to the P.W.B. at eight locations A ~ H.
8. Then, the contact rubbers can be removed when the LCD unit was removed.
9. As the LCD is held to the angle using a double-tack adhesive tape, pour in a small amount of alcohol into the contact phase between the LCD and the angle. This will make separation of the LCD much more easier.

4. BLOCK DIAGRAM

• Key Section

Key signals are sent to the LSI as key signals $K_1 \sim K_{16}$, while key strobe signals are sent from the SC43151 as key strobe signals $S_1 \sim S_{16}$.

• Arithmetic Logic Section

All the arithmetic operations are carried out in the SC43150 on the basis of key signals $K_1 \sim K_{16}$. However, some part of the 1K RAM within the display chip (SC43125) is used for the memory of the SC43150, exchanging the data corresponding to the address bus ($B_1 \sim B_8$) via $Di_{01} \sim Di_{04}$.

• Display Section

When the signal Chip Enable is in high state, the display data is received into the designated address ($B_1 \sim B_8$) of the SC43125 via the lines $Di_{01} \sim Di_{04}$.

Though the display data is decoded into one of signals $1a \sim 24e$ by the decoder in the SC43125, it is then controlled by the signal HA for synchronizing with the back plate signal. If the signal Disp is in high state (out of arithmetic operation), the decoded signal $1a \sim 24e$ is sent to the LCD as a segment signal so that segments are lit corresponding to the back plate signal $H_1 \sim H_7$, directly received from the SC43151.

5. LSI SIGNALS

• SC43150

Pin No.	Signal Name	IN/OUT	Description
1	F4		Nonconnection
2	F3		Nonconnection
3	F2	OUT	Display chip 2 enable signal
4	F1	OUT	Display chip 1 enable signal
5	VDD	IN	Power source
6	VGG	IN	Power source
7	XOUT	IN	For internal CG
8	XIN	IN	For internal CG
9	TEST1	IN	LSi checking terminal
10	TEST2	IN	LSi checking terminal
11	RESET	IN	LSi reset signal
12	R/W	OUT	Read out/Write in control input
13	Di04	IN/OUT	Data buss
14	Di03	IN/OUT	Data buss
15	Di02	IN/OUT	Data buss
16	Di01	IN/OUT	Data buss
17	B8	OUT	Chip address
18	B7	OUT	Chip address
19	B6	OUT	Chip address
20	B5	OUT	Chip address
21	B4	OUT	Chip address
22	B3	OUT	Chip address
23	B2	OUT	Chip address
24	B1	OUT	Chip address
25	HA	OUT	Counter signal for display chip
26	DiS	OUT	Display control signal
27	VM	IN	Power source
28	VA	IN	Power source
29	GND	IN	Power source
30	H4	OUT	LCD back plate signal
31	H7	OUT	LCD back plate signal
32	H3	OUT	LCD back plate signal
33	H6	OUT	LCD back plate signal
34	H2	OUT	LCD back plate signal
35	H5	OUT	LCD back plate signal
36	H1	OUT	LCD back plate signal
37	V DISP	IN	Power source for display
38	VB	IN	Power source
39	S16	OUT	Key strobe signal
40	S15	OUT	Key strobe signal
41	S14	OUT	Key strobe signal
42	S13	OUT	Key strobe signal
43	S12	OUT	Key strobe signal
44	S11	OUT	Key strobe signal
45	S10	OUT	Key strobe signal

Pin No.	Signal Name	IN/OUT	Description			
46	S9	OUT	Key strobe signal			
47	S8	OUT	Key strobe signal			
48	S7	OUT	Key strobe signal			
49	S6	OUT	Key strobe signal			
50	S5	OUT	Key strobe signal			
51	S4	OUT	Key strobe signal			
52	S3	OUT	Key strobe signal			
53	S2	OUT	Key strobe signal			
54	S1	OUT	LCD segment signal			
55	Ki1	IN	Key input signal			
56	Ki2	IN	Key input signal			
57	Ki3	IN	Key input signal			
58	Ki4	IN	Key input signal			
59	Ki5	IN	Key input signal (Mode key)			
60	Ki6	IN	Key input signal (ON key)			

• SC43125

Pin No.	Signal Name	IN/OUT	Description			
1	S3	OUT	LCD segment signal	16c	8c	24c
2	S4	OUT	LCD segment signal	16b	8b	24b
3	S5	OUT	LCD segment signal	16a	8a	24a
4	S6	OUT	LCD segment signal	15e	7e	23e
5	S7	OUT	LCD segment signal	15d	7d	23d
6	S8	OUT	LCD segment signal	15c	7c	23c
7	S9	OUT	LCD segment signal	15b	7b	23b
8	S10	OUT	LCD segment signal	15a	7a	23a
9	S11	OUT	LCD segment signal	14e	6e	22e
10	S12	OUT	LCD segment signal	14d	6d	22d
11	S13	OUT	LCD segment signal	14c	6c	22c
12	S14	OUT	LCD segment signal	14b	CHIP 2	CHIP 3
13	S15	OUT	LCD segment signal	14a	6a	22a
14	S16	OUT	LCD segment signal	13e	5e	21e
15	S17	OUT	LCD segment signal	13d	5d	21d
16	S18	OUT	LCD segment signal	13c	5c	21c
17	S19	OUT	LCD segment signal	13b	5b	21b
18	S20	OUT	LCD segment signal	13a	5a	21a
19	S21	OUT	LCD segment signal	12e	4e	20e
20	S22	OUT	LCD segment signal	12d	4d	20d
21	S23	OUT	LCD segment signal	12c	4c	20c
22	S24	OUT	LCD segment signal	12b	4b	20b
23	S25	OUT	LCD segment signal	12a	4a	20a
24	S26	OUT	LCD segment signal	11e	3e	19e

CHIP 1

Pin No.	Signal Name	IN/OUT	Description			
25	S27	OUT	LCD segment signal	11d	3d	19d
26	S28	OUT	LCD segment signal	11c	3c	19c
27	S29	OUT	LCD segment signal	11b	3b	19b
28	S30	OUT	LCD segment signal	11a	3a	19a
29	GND	IN	Power source 0V			
30	S31	OUT	LCD segment signal	10e	2e	18e
31	S32	OUT	LCD segment signal	10d	2d	CHIP 3 18d
32	S33	OUT	LCD segment signal	10c	2c	18c
33	S34	OUT	LCD segment signal	10b	2b	18b
34	S35	OUT	LCD segment signal	10a	2a	18a
35	S36	OUT	LCD segment signal	9e	1e	17e
36	S37	OUT	LCD segment signal	9d	1d	17d
37	S38	OUT	LCD segment signal	9c	1c	17c
38	S39	OUT	LCD segment signal	9b	1b	17b
39	S40	OUT	LCD segment signal	9a	1a	17a
40	VA	IN	Power source			
41	VB	IN	Power source			
42	DiS	IN	Display control signal			
43	HA	IN	Control signal			
44	Di04	IN/OUT	Data buss			
45	Di03	IN/OUT	Data buss			
46	Di02	IN/OUT	Data buss			
47	Di01	IN/OUT	Data buss			
48	VGG	IN	Power source			
49	R/W	IN	Read out/Write in control signal			
50	CE	IN	Chip-enable			
51	B6	IN	Chip address			
52	B4	IN	Chip address			
53	B3	IN	Chip address			
54	B2	IN	Chip address			
55	B1	IN	Chip address			
56	B8	IN	Chip address			
57	B7	IN	Chip address			
58	B5	IN	Chip address			
59	S1	OUT	LCD segment signal	16e	CHIP 2 8e	CHIP 3 24e
60	S2	OUT	LCD segment signal	16d	8d	24d

6. CIRCUIT DIAGRAM

7. PARTS & SIGNALS POSITION

a) Main P.W.B.

b) KEY P.W.B.

SUB. P. W. B.

The circuit contained in this Sub P. W. B. will be fabricated in the L. S. I. itself. Therefore, use of this Sub P. W. B. will be abolished from the July production, 1979.

本回路は7月生産分よりLSIの内部に組込まれます。従って当SUB PWBは7月生産分（新LSI使用分）より廃止となります。

8. PARTS LIST

NO.	PARTS CODE	DESCRIPTION	NEW	MARK	PRICE RANK
1	CCABB2114CC01	Top cabinet	N	A S	
2	PFILWI228CCZZ	Display filter		A C	
3	HDECA1527CCZZ	Dec. panel for display	N	A C	
4	PFILWI230CCZZ	Filter	N	A H	
5	PSPAPI121CCZZ	Switch spacer		A A	
6	JKNBZ1256CCZZ	Knob for slide switch		A B	
7	QCNTM1034CCZZ	Contact for slide switch		A A	
8	MSPRC1098CCZZ	Earth spring		A A	
9	JKNBZ1492CC01	Key top (20key)		A E	
10	JKNBZ1493CC01	Key top (2nd F key) for 30sets		A E	
11	JKNBZ1494CC01	Key top (CL key) for 30sets		A E	
12	JKNBZ1495CC01	Key top (function key) for 2sets		A F	
13	JKNBZ1495CC03	Key top (A~J key etc.) for 2sets	N	A F	
14	JKNBZ1495CC04	Key top (ON, OFF, F↔E, TAB) for 6sets		A F	
15	JKNBZ1495CC05	Key top (COMP, PB, ▶, ◀) for 6sets	N	A F	
16	PGUMMI185CCZZ	Key rubber		A L	
17	LANGK1290CCZZ	L. C. D angle	N	A D	
18	DUNT-179BCCZZ	L. C. D	N	A Z	
19	PGUMSI190CCZZ	Rubber connector	N	A E	
20	QTANZ1249CCZZ	Battery terminal (+)		A B	
21	QTANZ1250CCZZ	Battery terminal (-)		A B	
22	QTANZ1251CCZZ	Battery terminal (+, -)		A B	
23	QCNTM1036CCZZ	Contact		A B	
24	PZETL1273CCZZ	Battery insulating sheet		A C	
25	HDECA1526CCZZ	Bottom panel	N	A K	
26	LX-BZ1060CCZZ	Screw		A A	
27	LX-BZ1061CCZZ	Screw		A A	
28	UBAGZ1169CCZZ	Hard case			
29	TINSE2445CCZZ	Instruction book (U. S. A. only)	N		
	TINSM2446CCZZ	Instruction book (E, F, G, S)	N	A T	
30	SPAKC4296CCZZ	Packing case (U. S. A. only)	N	A C	
	SPAKC4299CCZZ	Packing case (except U. S. A.)	N	A C	
31	TLABZ1295CCZZ	Name label		A A	
	RC-KZ1007CCZZ	Capacitor 1000PF		A B	
	RC-SZ1006CCZZ	Capacitor 0.1μF		A F	
	RC-SZ1007CCZZ	Capacitor 1μF		A F	
	RR-DZ1006CCZZ	Resistor 1/8W 143Kohm ±2%		A B	
	RR-DZ1007CCZZ	Resistor 1/8W 12.7Kohm ±2%	N	A B	
	RR-DZ1008CCZZ	Resistor 1/8W 21Kohm ±2%	N	A B	
	RVR-MB510QCZZ	Variable resistor		A E	
	RVR-M2510QCZZ	Variable resistor		A D	
	VHH154KD-5/-1	Thermistor		A C	
	VHISCI43125/-1	L. S. i		A X	
	VHISCI43151/-1	L. S. i	N	B F	
	VRC-MT2BG101K	Resistor 1/8W 100ohm ±10%		A A	
	VRC-MT2BG165J	Resistor 1/8W 1.6Mohm ±5%		A A	
	VRD-ST2BY104J	Resistor 1/8W 100Kohm ±5%		A A	
	VRD-ST2BY332J	Resistor 1/8W 3.3Kohm ±5%		A A	
	VS2SJ40-///-1	Transistor		A G	
A	DUNTK5088CSZZ	Sub P.W.B unit			
B	LX-BZ1072CCZZ	Screw for sub P.W.B			

*A B: These parts will be abolished from the July production, 1979.

9. PARTS GUIDE

