Chapter 5: Process Scheduling

Chapter 5: Process Scheduling

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- Thread Scheduling
- Multiple-Processor Scheduling
- Algorithm Evaluation

Objectives

- To introduce CPU scheduling, which is the basis for multiprogrammed operating systems
- To describe various CPU-scheduling algorithms
- To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system
- To examine the scheduling algorithms of several operating systems

Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU-I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait
- CPU burst followed by I/O burst
- CPU burst distribution is of main concern

load store add store read from file

wait for I/O

store increment index write to file

wait for I/O

load store add store read from file

wait for I/O

•

CPU burst

I/O burst

CPU burst

I/O burst

CPU burst

· I/O burst

Histogram of CPU-burst Times

CPU Scheduler

- Short-term scheduler selects from among the processes in ready queue, and allocates the CPU to one of them
 - Queue may be ordered in various ways
- CPU scheduling decisions may take place when a process:
 - Switches from running to waiting state
 - Switches from running to ready state
 - Switches from waiting to ready
 - **Terminates**

Operating System Concepts – 9th Edition

- Scheduling under 1 and 4 is nonpreemptive
- All other scheduling is preemptive
 - Consider access to shared data
 - Consider preemption while in kernel mode
 - Consider interrupts occurring during crucial OS activities

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- Dispatch latency time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

- **CPU utilization** keep the CPU as busy as possible
- Throughput # of processes that complete their execution per time unit
- Turnaround time amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

Scheduling Algorithm Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

First-Come, First-Served (FCFS) Scheduling

<u>Process</u>	Burst Time
P_1	24
P_2	3
P_3	3

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

$$P_2, P_3, P_1$$

The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process
 - Consider one CPU-bound and many I/O-bound processes

Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst
 - Use these lengths to schedule the process with the shortest time
- SJF is optimal gives minimum average waiting time for a given set of processes
 - The difficulty is knowing the length of the next CPU request
 - Could ask the user

Example of SJF

<u>Process</u>	Burst Time
P_1	6
P_2	8
P_3	7
P_4	3

■ SJF scheduling chart

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Determining Length of Next CPU Burst

- Can only estimate the length should be similar to the previous one
 - Then pick process with shortest predicted next CPU burst
- Can be done by using the length of previous CPU bursts, using exponential averaging
 - 1. t_n = actual length of n^{th} CPU burst
 - 2. τ_{n+1} = predicted value for the next CPU burst
 - 3. α , $0 \le \alpha \le 1$
 - 4. Define: $\tau_{n=1} = \alpha t_n + (1 \alpha)\tau_n$.
- Commonly, α set to ½
- Preemptive version called **shortest-remaining-time-first**

Prediction of the Length of the Next CPU Burst

CPU burst (t_i) 6 4 6 4 13 13 13 ... "guess" (τ_i) 10 8 6 6 5 9 11 12 ...

Examples of Exponential Averaging

- $\alpha = 0$
 - \bullet $\tau_{n+1} = \tau_n$
 - Recent history does not count
- $\alpha = 1$
 - $\bullet \quad \tau_{n+1} = \alpha t_n$
 - Only the actual last CPU burst counts
- If we expand the formula, we get:

$$\tau_{n+1} = \alpha t_n + (1 - \alpha)\alpha t_n - 1 + \dots$$

$$+ (1 - \alpha)^j \alpha t_{n-j} + \dots$$

$$+ (1 - \alpha)^{n+1} \tau_0$$

Since both α and $(1 - \alpha)$ are less than or equal to 1, each successive term has less weight than its predecessor

Example of Shortest-remaining-time-first

Now we add the concepts of varying arrival times and preemption to the analysis

<u>Process</u>	<u>Arrival Time</u>	Burst Time
P_1	0	8
P_2	1	4
P_3	2	9
P_4	3	5

Preemptive SJF Gantt Chart

	P ₁	P ₂	P ₄	P ₁	P ₃	
0	1		5 1	0	17	_ 26

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer = highest priority)
 - Preemptive
 - Nonpreemptive
- SJF is priority scheduling where priority is the inverse of predicted next CPU burst time
- Problem = Starvation low priority processes may never execute
- Solution = Aging as time progresses increase the priority of the process

Example of Priority Scheduling

<u>Process</u>	Burst Time	<u>Priority</u>
P_1	10	3
P_2	1	1
P_3	2	4
P_4	1	5
P_5	5	2

Priority scheduling Gantt Chart

	P ₂	P ₅		P ₁	P ₃	P ₄	
0	1	1	6		16	18	19

Average waiting time = 8.2 msec

Round Robin (RR)

- Each process gets a small unit of CPU time (time quantum q), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.
- Timer interrupts every quantum to schedule next process
- Performance
 - $q \text{ large} \Rightarrow \text{FIFO}$
 - $q \text{ small} \Rightarrow q \text{ must be large with respect to context switch, otherwise overhead is too high$

Example of RR with Time Quantum = 4

<u>Process</u>	Burst Time
P_1	24
P_2	3
P_3	3

■ The Gantt chart is:

- Typically, higher average turnaround than SJF, but better *response*
- q should be large compared to context switch time
- q usually 10ms to 100ms, context switch < 10 usec

Time Quantum and Context Switch Time

			pr	oces	s tim	e = 1	10			_	quantum	context switches
											12	0
0										10		
											6	1
0						6				10		
											1	9
0	1	2	3	4	5	6	7	8	9	10		

Turnaround Time Varies With The Time Quantum

process	time
P_1	6
P_2	3
P_3	1
P_4	7

80% of CPU bursts should be shorter than q

Multilevel Queue

- Ready queue is partitioned into separate queues, eg:
 - foreground (interactive)
 - background (batch)
- Process permanently in a given queue
- Each queue has its own scheduling algorithm:
 - foreground RR
 - background FCFS
- Scheduling must be done between the queues:
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - 20% to background in FCFS

Multilevel Queue Scheduling

highest priority

lowest priority

Multilevel Feedback Queue

- A process can move between the various queues; aging can be implemented this way
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

■ Three queues:

- Q_0 RR with time quantum 8 milliseconds
- Q_1 RR time quantum 16 milliseconds
- Q_2 FCFS

Scheduling

- A new job enters queue Q_0 which is served FCFS
 - When it gains CPU, job receives 8 milliseconds
 - If it does not finish in 8 milliseconds, job is moved to queue Q₁
- At Q₁ job is again served FCFS and receives
 16 additional milliseconds
 - If it still does not complete, it is preempted and moved to queue Q_2

Thread Scheduling

- Typically use an intermediate data structure between user and kernel threads lightweight process (LWP)
 - Appears to be a virtual processor on which process can schedule user thread to run
 - Each LWP attached to kernel thread
- Distinction between user-level and kernel-level threads
- When threads supported, threads scheduled, not processes
- Many-to-one and many-to-many models, thread library schedules user -level threads to run on LWP
 - Known as process-contention scope (PCS) since scheduling competition is within the process
 - Typically done via priority set by programmer
- Kernel thread scheduled onto available CPU is system-contention scope
 (SCS) competition among all threads in system

Pthread Scheduling

- API allows specifying either PCS or SCS during thread creation
 - PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling
 - PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling
- Can be limited by OS Linux and Mac OS X only allow PTHREAD_SCOPE_SYSTEM

Pthread Scheduling API

```
#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[]) {
   int i, scope;
   pthread t tid[NUM THREADS];
   pthread attr t attr;
   /* get the default attributes */
   pthread attr init(&attr);
   /* first inquire on the current scope */
   if (pthread attr getscope(&attr, &scope) != 0)
      fprintf(stderr, "Unable to get scheduling scope\n");
   else {
      if (scope == PTHREAD SCOPE PROCESS)
         printf("PTHREAD SCOPE PROCESS");
      else if (scope == PTHREAD SCOPE SYSTEM)
         printf("PTHREAD SCOPE SYSTEM");
      else
         fprintf(stderr, "Illegal scope value.\n");
```


Pthread Scheduling API

```
/* set the scheduling algorithm to PCS or SCS */
  pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
   /* create the threads */
   for (i = 0; i < NUM THREADS; i++)
     pthread create(&tid[i],&attr,runner,NULL);
   /* now join on each thread */
   for (i = 0; i < NUM THREADS; i++)
     pthread join(tid[i], NULL);
/* Each thread will begin control in this function */
void *runner(void *param)
   /* do some work ... */
  pthread exit(0);
```


Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available
- Homogeneous processors within a multiprocessor
- Asymmetric multiprocessing only one processor accesses the system data structures, alleviating the need for data sharing
- Symmetric multiprocessing (SMP) each processor is self-scheduling, all processes in common ready queue, or each has its own private queue of ready processes
 - Currently, most common
- Processor affinity process has affinity for processor on which it is currently running
 - soft affinity
 - hard affinity
 - Variations including processor sets

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

- If SMP, need to keep all CPUs loaded for efficiency
- Load balancing attempts to keep workload evenly distributed
- Push migration periodic task checks load on each processor, and if found pushes task from overloaded CPU to other CPUs
- Pull migration idle processors pulls waiting task from busy processor

Multicore Processors

- Recent trend to place multiple processor cores on same physical chip
- Faster and consumes less power
- Multiple threads per core also growing
 - Takes advantage of memory stall to make progress on another thread while memory retrieve happens

Multithreaded Multicore System

Algorithm Evaluation

- How to select CPU-scheduling algorithm for an OS?
- Determine criteria, then evaluate algorithms
- **■** Deterministic modeling
 - Type of analytic evaluation
 - Takes a particular predetermined workload and defines the performance of each algorithm for that workload
- Consider 5 processes arriving at time 0:

Process	Burst Time
P_1	10
P_2	29
P_3	3
P_4	7
P_5	12

Deterministic Evaluation

- For each algorithm, calculate minimum average waiting time
- Simple and fast, but requires exact numbers for input, applies only to those inputs
 - FCS is 28ms:

Non-preemptive SFJ is 13ms:

• RR is 23ms:

Queueing Models

- Describes the arrival of processes, and CPU and I/O bursts probabilistically
 - Commonly exponential, and described by mean
 - Computes average throughput, utilization, waiting time, etc
- Computer system described as network of servers, each with queue of waiting processes
 - Knowing arrival rates and service rates
 - Computes utilization, average queue length, average wait time, etc

Little's Formula

- n = average queue length
- \mathbf{W} = average waiting time in queue
- λ = average arrival rate into queue
- Little's law in steady state, processes leaving queue must equal processes arriving, thus $n = \lambda \times W$
 - Valid for any scheduling algorithm and arrival distribution
- For example, if on average 7 processes arrive per second, and normally 14 processes in queue, then average wait time per process = 2 seconds

Simulations

- Queueing models limited
- Simulations more accurate
 - Programmed model of computer system
 - Clock is a variable
 - Gather statistics indicating algorithm performance
 - Data to drive simulation gathered via
 - Random number generator according to probabilities
 - Distributions defined mathematically or empirically
 - Trace tapes record sequences of real events in real systems

Evaluation of CPU Schedulers by Simulation

Implementation

- Even simulations have limited accuracy
- Just implement new scheduler and test in real systems
 - High cost, high risk
 - Environments vary
- Most flexible schedulers can be modified per-site or per-system
- Or APIs to modify priorities
- But again environments vary

