

Sistema de monitoreo de Rhynchophorus Ferrugineus en palmeras de la ciudad de Montevideo

Ing. Bruno Masoller

Carrera de Especialización en Inteligencia Artificial

Director: Ing. Juan Ignacio Cavalieri (FIUBA)

Jurados:

Jurado 1 (pertenencia) Jurado 2 (pertenencia) Jurado 3 (pertenencia)

Resumen

Esta memora describe la implementación de una plataforma para la intendencia de Montevideo que utiliza visión por computadora para detectar la plaga del picudo rojo en las palmeras esta ciudad. El sistema se desarrolló con el objetivo de reducir costos operativos y mejorar la toma de decisiones para el servicio de arbolado de la institución.

Para el desarrollo del trabajo fueron necesarios los conocimientos de visión por computadora, análisis de datos y aprendizaje profundo, así como de despliegue y operaciones de modelos de aprendizaje de máquinas e infraestructura de soporte.

Agradecimientos

Esta sección es para agradecimientos personales y es totalmente **OPCIONAL**.

Índice general

Ke	esumen	I
1.	Introducción general	1
		1
	1.2. Estado del arte	3
	1.3. Objetivos y alcance	3
2.	Introducción específica	5
	2.1. Estilo y convenciones	5
		5
	2.1.2. Este es el título de una subsección	5
	2.1.3. Figuras	6
	2.1.4. Tablas	7
	2.1.5. Ecuaciones	8
3.	Diseño e implementación	11
	3.1. Análisis del software	11
4.	Ensayos y resultados	13
	4.1. Pruebas funcionales del hardware	13
5.	Conclusiones	15
	5.1. Conclusiones generales	15
		15
Bi	bliografía	17

Índice de figuras

1.1.	Picudo rojo ¹	1
1.2.	Infección y muerte de palmeras por el picudo rojo	2
1.3.	Ejemplo de ortomosaico ²	3
2.1.	Ilustración del cuadrado azul que se eligió para el diseño del logo.	6
2.2.	Imagen tomada de la página oficial del procesador ³	7
	¿Por qué de pronto aparece esta figura?	
	Tres gráficos simples	

Índice de tablas

2.1.	caption corto																																	8
------	---------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Dedicado a... [OPCIONAL]

Introducción general

En el capítulo siguiente se presenta una introducción general al trabajo realizado. Se describe el problema que el *Rhynchophorus Ferrugineus* (picudo rojo) presenta en las palmeras de la ciudad de Montevideo, el estado del arte en cuanto a trabajos similares y los objetivos planteados por la Intendencia de Montevideo (IM) y por el equipo de trabajo.

1.1. Descripción del problema

El picudo rojo, que puede observarse en la figura 1.1, es un insecto que afecta a las palmeras, especialmente a la *Phoenix Canariensis*, que es la especie más común en Montevideo. Este insecto ha causado un daño significativo en la flora de la ciudad, lo que ha llevado a la Intendencia de Montevideo (IM) a enfocarse en su control y erradicación.

FIGURA 1.1. Picudo rojo¹.

Este escarabajo supone una amenaza grave para las palmeras, ya que una vez infectada, como puede verse en la figura 1.2a, sus larvas se alimentan de su tejido interno, causando el colapso estructural de estos árboles en un período entre 8 y 10 meses . Esta amenaza aumenta según la época del año, ya que el insecto tiene diferentes tasas de dispersión y reproducción dependiendo de la temperatura y la humedad. Existen varios tipos de picudos , algunos autóctonos y otros introducidos.

¹Imagen tomada de https://es.wikipedia.org/wiki/Rhynchophorus_ferrugineus

La plaga del picudo rojo llegó al Uruguay en 2022, esparciéndose rápidamente por la ciudad de Montevideo (de las 25.000 palmeras que forman una parte esencial de la ciudad, muchas ya han sucumbido a la plaga, donde se estima que para el año 2030 el ecosistema se verá ampliamente afectado). Sin embargo, últimamente también se ha esparcido por el interior del país, como puede observarse en la figura 1.2b, perteneciente a la ruta 5 de Uruguay, donde se han encontrado palmeras muertas por la plaga.

(A) Palmera infectada por el picudo rojo.

(B) Palmeras muertas en la ruta 5 de Uruguay.

FIGURA 1.2. Infección y muerte de palmeras por el picudo rojo.

Entre los métodos de control fitosanitarios que se utilizan para combatir la plaga, se encuentran: endoterapia, baño, cirugía y remoción. . Sin embargo, estos métodos son costosos y requieren de un monitoreo constante para detectar la presencia del picudo rojo. Para la IM no es solamente una cuestión ecológica sino también económica. En este sentido, el servicio de Arbolado realiza un seguimiento de las palmeras afectadas por la plaga. Para ello, se registra su ubicación y estado de salud, mediante campañas de detecciones a pie. Este proceso manual requiere de mucho tiempo y recursos humanos, por lo que resulta imprescindible un sistema automatizado que permita detectar la presencia de la plaga en lugares específicos de Montevideo.

Uno de los recursos aún no explotados por la IM para el monitoreo de la plaga es el uso de imágenes aéreas obtenidas mediante drones, disponibles por el servicio de Geomática de esta institución. Estos ortomosaicos, que se puede observar un ejemplo en la figura 1.3, permiten obtener información detallada sobre el estado de las palmeras y su entorno. Sin embargo, el análisis de estas imágenes es un proceso complejo que requiere de técnicas avanzadas de procesamiento de imágenes y aprendizaje automático, así como también herramientas que brinden soporte a estas actividades.

1.2. Estado del arte 3

FIGURA 1.3. Ejemplo de ortomosaico².

1.2. Estado del arte

1.3. Objetivos y alcance

 $^{^2 \}rm Imagen$ tomada del sistema de información geográfica de la IM (SIG): https://sig.montevideo.gub.uy/

Introducción específica

Todos los capítulos deben comenzar con un breve párrafo introductorio que indique cuál es el contenido que se encontrará al leerlo. La redacción sobre el contenido de la memoria debe hacerse en presente y todo lo referido al proyecto en pasado, siempre de modo impersonal.

2.1. Estilo y convenciones

2.1.1. Uso de mayúscula inicial para los título de secciones

Si en el texto se hace alusión a diferentes partes del trabajo referirse a ellas como capítulo, sección o subsección según corresponda. Por ejemplo: "En el capítulo 1 se explica tal cosa", o "En la sección 2.1 se presenta lo que sea", o "En la subsección 2.1.2 se discute otra cosa".

Cuando se quiere poner una lista tabulada, se hace así:

- Este es el primer elemento de la lista.
- Este es el segundo elemento de la lista.

Notar el uso de las mayúsculas y el punto al final de cada elemento.

Si se desea poner una lista numerada el formato es este:

- 1. Este es el primer elemento de la lista.
- 2. Este es el segundo elemento de la lista.

Notar el uso de las mayúsculas y el punto al final de cada elemento.

2.1.2. Este es el título de una subsección

Se recomienda no utilizar **texto en negritas** en ningún párrafo, ni tampoco texto <u>subrayado</u>. En cambio sí se debe utilizar *texto en itálicas* para palabras en un idioma extranjero, al menos la primera vez que aparecen en el texto. En el caso de palabras que estamos inventando se deben utilizar "comillas", así como también para citas textuales. Por ejemplo, un *digital filter* es una especie de "selector" que permite separar ciertos componentes armónicos en particular.

La escritura debe ser impersonal. Por ejemplo, no utilizar "el diseño del firmware lo hice de acuerdo con tal principio", sino "el firmware fue diseñado utilizando tal principio".

El trabajo es algo que al momento de escribir la memoria se supone que ya está concluido, entonces todo lo que se refiera a hacer el trabajo se narra en tiempo pasado, porque es algo que ya ocurrió. Por ejemplo, "se diseñó el firmware empleando la técnica de test driven development".

En cambio, la memoria es algo que está vivo cada vez que el lector la lee. Por eso transcurre siempre en tiempo presente, como por ejemplo:

"En el presente capítulo se da una visión global sobre las distintas pruebas realizadas y los resultados obtenidos. Se explica el modo en que fueron llevados a cabo los test unitarios y las pruebas del sistema".

Se recomienda no utilizar una sección de glosario sino colocar la descripción de las abreviaturas como parte del mismo cuerpo del texto. Por ejemplo, RTOS (*Real Time Operating System*, Sistema Operativo de Tiempo Real) o en caso de considerarlo apropiado mediante notas a pie de página.

Si se desea indicar alguna página web utilizar el siguiente formato de referencias bibliográficas, dónde las referencias se detallan en la sección de bibliografía de la memoria, utilizado el formato establecido por IEEE en [1]. Por ejemplo, "el presente trabajo se basa en la plataforma EDU-CIAA-NXP [2], la cual...".

2.1.3. Figuras

Al insertar figuras en la memoria se deben considerar determinadas pautas. Para empezar, usar siempre tipografía claramente legible. Luego, tener claro que **es incorrecto** escribir por ejemplo esto: "El diseño elegido es un cuadrado, como se ve en la siguiente figura:"

La forma correcta de utilizar una figura es con referencias cruzadas, por ejemplo: "Se eligió utilizar un cuadrado azul para el logo, como puede observarse en la figura 2.1".

FIGURA 2.1. Ilustración del cuadrado azul que se eligió para el diseño del logo.

El texto de las figuras debe estar siempre en español, excepto que se decida reproducir una figura original tomada de alguna referencia. En ese caso la referencia de la cual se tomó la figura debe ser indicada en el epígrafe de la figura e incluida como una nota al pie, como se ilustra en la figura 2.2.

FIGURA 2.2. Imagen tomada de la página oficial del procesador¹.

La figura y el epígrafe deben conformar una unidad cuyo significado principal pueda ser comprendido por el lector sin necesidad de leer el cuerpo central de la memoria. Para eso es necesario que el epígrafe sea todo lo detallado que corresponda y si en la figura se utilizan abreviaturas entonces aclarar su significado en el epígrafe o en la misma figura.

FIGURA 2.3. ¿Por qué de pronto aparece esta figura?

Nunca colocar una figura en el documento antes de hacer la primera referencia a ella, como se ilustra con la figura 2.3, porque sino el lector no comprenderá por qué de pronto aparece la figura en el documento, lo que distraerá su atención.

Otra posibilidad es utilizar el entorno *subfigure* para incluir más de una figura, como se puede ver en la figura 2.4. Notar que se pueden referenciar también las figuras internas individualmente de esta manera: 2.4a, 2.4b y 2.4c.

FIGURA 2.4. Tres gráficos simples.

El código para generar las imágenes se encuentra disponible para su reutilización en el archivo **Chapter2.tex**.

2.1.4. Tablas

Para las tablas utilizar el mismo formato que para las figuras, sólo que el epígrafe se debe colocar arriba de la tabla, como se ilustra en la tabla 2.1. Observar que sólo algunas filas van con líneas visibles y notar el uso de las negritas para los encabezados. La referencia se logra utilizando el comando \ref{<label>} donde label debe estar definida dentro del entorno de la tabla.

¹Imagen tomada de https://goo.gl/images/i7C70w

```
\begin{table}[h]
 \centering
 \caption[caption corto]{caption largo más descriptivo}
 \begin{tabular}{l c c}
  \toprule
  \textbf{Especie} & \textbf{Tamaño} & \textbf{Valor}\\
  \midrule
 Amphiprion Ocellaris & 10 cm
Hepatus Blue Tang & 15 cm
Zebrasoma Xanthurus & 12 cm
                                             & \$ 6.000 \\
                                              & \$ 7.000 \\
                                             & \$ 6.800 \\
  \bottomrule
  \hline
 \end{tabular}
 \label{tab:peces}
\end{table}
```

TABLA 2.1. caption largo más descriptivo.

Especie	Tamaño	Valor
Amphiprion Ocellaris	10 cm	\$ 6.000
Hepatus Blue Tang	15 cm	\$ 7.000
Zebrasoma Xanthurus	12 cm	\$ 6.800

En cada capítulo se debe reiniciar el número de conteo de las figuras y las tablas, por ejemplo, figura 2.1 o tabla 2.1, pero no se debe reiniciar el conteo en cada sección. Por suerte la plantilla se encarga de esto por nosotros.

2.1.5. Ecuaciones

Al insertar ecuaciones en la memoria dentro de un entorno *equation*, éstas se numeran en forma automática y se pueden referir al igual que como se hace con las figuras y tablas, por ejemplo ver la ecuación 2.1.

$$ds^{2} = c^{2}dt^{2} \left(\frac{d\sigma^{2}}{1 - k\sigma^{2}} + \sigma^{2} \left[d\theta^{2} + \sin^{2}\theta d\phi^{2} \right] \right)$$
 (2.1)

Es importante tener presente que si bien las ecuaciones pueden ser referidas por su número, también es correcto utilizar los dos puntos, como por ejemplo "la expresión matemática que describe este comportamiento es la siguiente:"

$$\frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{r})\Psi = -i\hbar\frac{\partial\Psi}{\partial t}$$
(2.2)

Para generar la ecuación 2.1 se utilizó el siguiente código:

```
\begin{equation}
\label{eq:metric}
ds^2 = c^2 dt^2 \left( \frac{d\sigma^2}{1-k\sigma^2} + \sigma^2\left[ d\theta^2 + \sin^2\theta d\phi^2 \right] \right)
\end{equation}
```

Y para la ecuación 2.2:

```
\begin{equation}
  \label{eq:schrodinger}
  \frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{r})\Psi =
  -i\hbar \frac{\partial\Psi}{\partial t}
  \end{equation}
```

24

26

controlActuators();

vTaskDelayUntil(&ticks, period);

Diseño e implementación

Todos los capítulos deben comenzar con un breve párrafo introductorio que indique cuál es el contenido que se encontrará al leerlo. La redacción sobre el contenido de la memoria debe hacerse en presente y todo lo referido al proyecto en pasado, siempre de modo impersonal.

3.1. Análisis del software

La idea de esta sección es resaltar los problemas encontrados, los criterios utilizados y la justificación de las decisiones que se hayan tomado.

Se puede agregar código o pseudocódigo dentro de un entorno lstlisting con el siguiente código:

```
\begin{lstlisting}[caption= "un epígrafe descriptivo"]
   las líneas de código irían aquí...
  \end{lstlisting}
  A modo de ejemplo:
1 #define MAX_SENSOR_NUMBER 3
2 #define MAX_ALARM_NUMBER 6
3 #define MAX_ACTUATOR_NUMBER 6
5 uint32_t sensorValue[MAX_SENSOR_NUMBER];
6 FunctionalState alarmControl[MAX_ALARM_NUMBER]; //ENABLE or DISABLE
7 state_t alarmState[MAX_ALARM_NUMBER];  //ON or OFF
8 state_t actuatorState[MAX_ACTUATOR_NUMBER];  //ON or OFF
void vControl() {
    initGlobalVariables();
12
13
    period = 500 ms;
14
15
    while (1) {
16
17
      ticks = xTaskGetTickCount();
19
      updateSensors();
20
21
      updateAlarms();
22
23
```

28 }

CÓDIGO 3.1. Pseudocódigo del lazo principal de control.

Ensayos y resultados

Todos los capítulos deben comenzar con un breve párrafo introductorio que indique cuál es el contenido que se encontrará al leerlo. La redacción sobre el contenido de la memoria debe hacerse en presente y todo lo referido al proyecto en pasado, siempre de modo impersonal.

4.1. Pruebas funcionales del hardware

La idea de esta sección es explicar cómo se hicieron los ensayos, qué resultados se obtuvieron y analizarlos.

Conclusiones

Todos los capítulos deben comenzar con un breve párrafo introductorio que indique cuál es el contenido que se encontrará al leerlo. La redacción sobre el contenido de la memoria debe hacerse en presente y todo lo referido al proyecto en pasado, siempre de modo impersonal.

5.1. Conclusiones generales

La idea de esta sección es resaltar cuáles son los principales aportes del trabajo realizado y cómo se podría continuar. Debe ser especialmente breve y concisa. Es buena idea usar un listado para enumerar los logros obtenidos.

En esta sección no se deben incluir ni tablas ni gráficos.

Algunas preguntas que pueden servir para completar este capítulo:

- ¿Cuál es el grado de cumplimiento de los requerimientos?
- ¿Cuán fielmente se puedo seguir la planificación original (cronograma incluido)?
- ¿Se manifestó algunos de los riesgos identificados en la planificación? ¿Fue efectivo el plan de mitigación? ¿Se debió aplicar alguna otra acción no contemplada previamente?
- Si se debieron hacer modificaciones a lo planificado ¿Cuáles fueron las causas y los efectos?
- ¿Qué técnicas resultaron útiles para el desarrollo del proyecto y cuáles no tanto?

5.2. Próximos pasos

Acá se indica cómo se podría continuar el trabajo más adelante.

Bibliografía

- [1] IEEE. *IEEE Citation Reference*. 1.ª ed. IEEE Publications, 2016. URL: http://www.ieee.org/documents/ieeecitationref.pdf (visitado 26-09-2016).
- [2] Proyecto CIAA. *Computadora Industrial Abierta Argentina*. Visitado el 2016-06-25. 2014. URL: http://proyecto-ciaa.com.ar/devwiki/doku.php?id=start.