Material para Circuitos I com o professor Tristão Garcia.

Parte 1 do material: Seleção de exercícios.

• Exercícios de 1–12 são uma seleção do livro do prof. Tristão, questões de prova e questões de aula.

Parte 2 do material: Provas/exames antigas.

- P2 2015/2
- Exame 2015/2
- Exame 2016/2
- P1 2017/1
- P2 2017/1
- Exame 2017/1 parte 1
- Exame 2017/1 parte 2

Exercício 1:

- a) Monte literalmente as EDOL para cada variável e verifique as unidades.
- b) Calcule literalmente as condições iniciais necessárias.
- c) Aplique os valores dos componentes e calcule a resposta completa pela EDOL.

Use: $e(t) = 10\sin(t)$ e(t) = 10 e(t) = (10+t) nos dois primeiros circuitos e $I(t) = 10\sin(t)$ I(t) = 10 I(t) = (10+t) para o terceiro.

Exercício 2 (P1 de 2017/1):

- a) Literalmente, monte a EDOL e as condições iniciais para eo(t).
- b) Adotando componentes unitários, calcule eo(t) para ei(t) = 4 + 40t.

Exercício 3:

- a) Determine i(t) para ei(t) = 300.
- b) Monte a EDOL e as condições iniciais para eo(t) na forma literal harmônica e, posteriormente, na forma numérica identificando os modos ou autovalores, esboçando a forma da resposta para $ei(t) = 300 + 300\cos(t) 150\sin(t)$.

R = 1 ohm L = 0.1 H C = 0.1 F k = 0.25

Exercício 4 (P1 2015/1):

- a) Monte a EDOL para eo(t) com as condições iniciais correspondentes.
- b) Sendo $\mu = 9$ ei(t) = (1+t) R1 = 0.5 R2 = R4 = 1 R3 = 0.05 C1 = C2 = 1 Calcule a resposta eo(t) e as condições iniciais da EDOL.

Exercício 5:

- a) Monte literalmente a EDOL para eo(t) e as condições iniciais necessárias.
- b) Resolva a EDOL na forma numérica.

Exercício 6:

- a) Monte literalmente a EDOL para eo(t) e as condições iniciais necessárias.
- b) Resolva a EDOL na forma numérica.

Exercício 7 (Exame de 2016/2): Calcule 'i' e 'v' e faça o balanço de potência.

Exercício 8: Calcule 'i' e 'v' e faça o balanço de potência.

Exercício 9 (Exame de 2016/2): Calcule 'i' e 'v' e faça o balanço de potência.

Exercício 10 (10.4 do livro do prof. Tristão): Calcular 'E' para que a potência total fornecida ao circuito abaixo seja de 460 W. Sabe-se que duas das fontes dissipam energia.

Exercício 11 (11.1 do livro do prof. Tristão): Calcule os valores de 'l' e 'R' para que os circuitos sejam equivalentes.

Exercício 12: Aplicando as técnicas de Thévenin determine 'i', 'v' e o balanço de potência.

P2 2015/2

Questão 1:

a) Determine os parâmetros 'h'

$$E_1 = h_{11}I_1 + h_{12}E_2$$

$$I_2 = h_{21}I_1 + h_{22}E_2$$

do quadripolo 'A'.

b) Repita o item anterior para o quadripolo 'B' e compare os parâmetros obtidos com aqueles do quadripolo 'A'. Qual a maior diferença?

Questão 2: Dado o quadripolo 'C'

$$E_3=10I_3$$

$$I_4=2.5E_4$$

que realimenta conforme esquema o quadripolo

'A'. Escreva o sistema de equações que modela e resolve todo o circuito.

11 → ← 12 + A E2 20 - + E1 A E2 e0 e0

$${\sf Calcule\ o\ ganho\ } \frac{e_0}{e_i}. \qquad {\it MX}={\it U} \qquad {\it X}^T=[\ {\it E}_1\ {\it I}_1\ {\it E}_2\ {\it I}_2\ {\it E}_3\ {\it I}_3\ {\it E}_4\ {\it I}_4\]$$

Questão 3: Dado o quadripolo 'D'

$$E_i = 44I_i + 30I_0$$

$$E_0 = 30I_i + 39I_0$$

e o mesmo quadripolo 'B' anterior, determine:

- a) Literalmente EDOL e as condições iniciais para a saída $e_0(t)$.
- **b)** A expressão de $e_0(t)$ e o seu regime permanente $e_{0rp}(t)$ para $e_i(t)=15t^2\,$ L=10 H C=1/40 F R=1 Ω .

Exame 2015/2

Questão 1: Determine os parâmetros 'h'

$$E_1 = h_{11}I_1 + h_{12}E_2$$

$$I_2 = h_{21}I_1 + h_{22}E_2$$

do quadripolo 'A'.

Questão 2: Dado o quadripolo 'B'

$$E_3 = 13I_3 + E_4$$

$$I_4 = -I_3$$

escreva o sistema de equações que modela e resolve o circuito do quadripolo 'A' realimentado pelo quadripolo 'B'.

Calcule o ganho $\frac{e_0}{e_i}$.

$$MX = U$$
 $X^T = [E_1 I_1 E_2 I_2 E_3 I_3 E_4 I_4]$

Questão 3: Determine a constante de tempo T = RC do circuito e a sua saída $e_0(t)$ para uma entrada $e_i(t)=20.$

Questão 4: Dado o circuito que modela um motor cc com carga no eixo

- a) Monte literalmente as EDOL para $i_a(t)$ e w(t) e as condições iniciais correspondentes.
- b) Calcule a velocidade w(t).

$$Ra = 0.45 \,\Omega$$
 $La = 10 \,mH$ $Ka = 7 \,N.\frac{m}{A}$ $D = 0.5 \,kg\frac{m^2}{s}$ $J = 0.1 \,kg.m^2$ $Kw = 0.025 \,V.s$

Exame 2016/2

Questão 1: Determine i v e o balanço de potência.

Questão 2: Calcule as leituras 'A' e 'V' em regime permanente e as expressões temporais i(t) v(t).

$$E = 5$$
 $R = 2.5 \Omega$ $L = 0.25 H$ $C = 0.25 F$

Questão 3: Determine i v e o balanço de potência.

Questão 4: Sabendo-se que $R=4~\Omega$ dissipa potência máxima:

$$1 W$$
 para $E = 0$ $I = 2 A$
 $1 W$ para $E = 1 V$ $I = 0$

$$2.25 W para E = 1 V I = 2$$

- a) Determine o valor de R para dissipar 1.5 W com E = 1 V I = 1 A.
- **b)** Calcule quanto representa em % 1.5 W com E = 1 V I = 1 A comparando-se com a máxima transferência de potência possível nessa situação.

P1 2017/1

Questão 1: Literalmente, calcule:

- **a)** $\frac{e_0}{e_i}$ com 'S' aberta.
- **b)** T = RC

Adotando $R_1 = 20 \Omega$ $R_2 = 125 \Omega$

$$R_o = 400 \, \Omega \quad \mu = 0.01 \frac{A}{V} \quad \textit{C} = 1000 \, \mu \textit{F}$$

 $e_i(t) = (5 + 5t)$ determine:

c) T = RC, $e_c(t)$, $e_o(t)$ e desenhe suas formas de onda.

Questão 2: Sabendo-se que o volt-metro mede $V = 24 \ volts$ calcule:

- a) E.
- b) Balanço de potência.

Questão 3:

- a) Literalmente, monte a EDOL e as condições iniciais para $e_o(t)$.
- **b)** Adotando componentes unitários, calcule $e_o(t)$ para $e_i(t)=4+40t$.

P2 2017/1

Questão 1: Calcule os parâmetros 'h' do quadripolo.

Questão 2: Para t = 0, calcule R_i , R_o e e_o/e_i .

Questão 3: Calcule $e_o(t)$, i(t) e os seus valores estacionários justifique fisicamente no circuito.

$$e_i(t) = 2(1+10t)$$

Exame 2017/1 parte 1

Questão 1: Determine:

- **a)** i(t) v(t).
- **b)** i(t) v(t) em regime permanente.

$$R = 10 \ \Omega$$
 $L = \sqrt{3} \ H$ $C = \frac{1}{100\sqrt{3}} \ F$

$$e_1(t) = 300\sqrt{2}cos10t$$

$$e_2(t) = -150\sqrt{2}cos10t + 150\sqrt{6}sin10t$$

$$e_3(t) = -150\sqrt{2}cos10t - 150\sqrt{6}sin10t$$

Questão 2: Determine para o circuito abaixo:

- **a)** Em t=0 R_{in} R_{out} $\frac{e_1}{e_i}$ e_o/e_i .
- **b)** Monte as EDOL de 1ª ordem para $x_1 e x_2$ e a equação de saída para e_o .

$$\begin{bmatrix} \dot{x1} \\ \dot{x2} \end{bmatrix} = \begin{bmatrix} & & \end{bmatrix} \begin{bmatrix} x1 \\ x2 \end{bmatrix} + \begin{bmatrix} & \end{bmatrix} [u]$$

$$[y] = [$$
 $]\begin{bmatrix} x1\\ x2 \end{bmatrix} + [$ $][u]$

Sendo, $u = e_i$ $y = e_o$.

$$R1 = 1.5 \,\Omega$$
 $Re = 1 \,\Omega$ $R2 = 10 \,\Omega$ $ri = 0.5 \,\Omega$ $ro = 50 \,\Omega$ $\Omega = 11$ $c1 = \frac{1}{105} \,F$ $c2 = \frac{1}{976} \,F$

Exame 2017/1 parte 2

Questão 1: Determine i v e o balanço de potência.

Questão 2: Para o circuito abaixo calcule e_0 i_1 para $e_i = 12 mV$. Desenhe o quadripolo 'h' equivalente à associação dos quadripolos 1 e 2 indicando valores dos parâmetros.

Questão 3:

- a) Calcule $e_o(t)$ para $e_i(t) = 1 + t$.
- **b)** Determine a representação de estado $\dot{x} = Ax + Bu$ y = Cx + Du onde x1 e x2 são as tensões em c1 e c2 u é a entrada $e_i(t)$.

 $R1 = 100~\Omega$ $R2 = 20~\Omega$ $RS = 5\Omega$ $ro = 50~\Omega$ $C1 = 10000~\mu F$ $C2 = 1000~\mu F$ $\mu = 0.1~A/V$