Topology General Exam

Fall 2002

Guidelines This is three hours, and "closed book".

1. Let S_1, S_2, \ldots be a sequence of finite sets each having at least two elements. Each S_n is a topological space with the discrete topology. Let

$$X = \prod_{n=0}^{\infty} S_n$$

be given the product topology.

(a) Is X discrete? Hausdorff? Compact? Connected? Normal? Metrizable?

(b) Describe the path connected components of X.

2. Recall that a topological group G is a group that is also a topological space, such that the functions

$$m: G \times G \longrightarrow G$$
 and $i: G \longrightarrow G$

defined by m(a, b) = ab and $i(a) = a^{-1}$ are continuous.

(a) Prove the useful lemma: if G is a topological group, and U is an open neighborhood of the unit e, then e has another open neighborhood W such that

$$a, b \in W \Rightarrow a^{-1}b \in U$$
.

(b) Suppose the topological group G is connected, and $H \subset G$ is a discrete subgroup, i.e. a subgroup which is discrete with the subspace topology. Let $p: G \to G/H$ be the projection on the space of cosets, i.e. p(g) = gH, and give G/H the quotient topology. Show that p is a covering space map.

(c) With G and H as in (b), how are the fundamental groups $\pi_1(G, e)$ and $\pi_1(G/H, eH)$ related?

3. As a space covered by \mathbb{R} , \mathbb{R}/\mathbb{Z} has the structure of a smooth manifold. The circle $S^1 = \{(x,y) \mid x^2 + y^2 = 1\}$ is a smooth submanifold of \mathbb{R}^2 . Prove the intuitively obvious fact: \mathbb{R}/\mathbb{Z} is diffeomorphic to S^1 .

- **4.** Let R be the figure eight space:
- (a) Explain (e.g. with convincing pictures) why R is a retract of the genus 2 surface:
- (b) In contrast, prove that R is not a retract of the torus $S^1 \times S^1$:
- **5.** Recall that $\mathbb{R}P^2 = S^2/(\sim)$, where $(x,y,z) \sim (-x,-y,-z)$ defines the equivalence relation. Write down an explicit smooth atlas for $\mathbb{R}P^2$, exhibiting it as a 2 dimensional smooth manifold. Remark: your atlas will need at least three charts.
- **6.** Let M be a smooth manifold of dimension n, and $f: M \to \mathbb{R}^N$ a smooth map with N > 2n.
- (a) Let $g: TM \to \mathbb{R}^N$ be defined by $g(v) = df_x(v)$ for $v \in T_xM$. Explain why g cannot be onto.
- (b) Let $v \in \mathbb{R}^N$ be chosen to *not* be in the image of g, and let $L : \mathbb{R}^N \to \mathbb{R}^{N-1}$ be a surjective linear map satisfying L(v) = 0. Show that, if the original map f is an immersion, then so is $L \circ f : M \to \mathbb{R}^{N-1}$.
- 7. (a) Give the definition of a 1-form on a smooth manifold M.
- (b) Show that the vector space of all 1–forms on S^1 is isomorphic to the vector space of all functions $f: S^1 \to \mathbb{R}$.