```
In [1]: import pandas as pd

jpn_df = pd.read_excel("JPN Data.xlsx")
    ind_df = pd.read_excel("IN_Data.xlsx")

print("Japanese Dataset:")
    display(jpn_df.head())

print("Indian Dataset:")
    display(ind_df.head())
```

Japanese Dataset:

	ID	CURR_AGE	GENDER	ANN_INCOME	AGE_CAR	PURCHASE
0	00001Q15YJ	50	М	445344.000000	439	0
1	00003I71CQ	35	M	107634.000000	283	0
2	00003N47FS	59	F	502786.666667	390	1
3	00005H41DE	43	M	585664.000000	475	0
4	00007E17UM	39	F	705722.666667	497	1

Indian Dataset:

	ID	CURR_AGE	GENDER	ANN_INCOME	DT_MAINT
0	20710B05XL	54	М	1425390	2018-04-20
1	89602T51HX	47	М	1678954	2018-06-08
2	70190Z52IP	60	М	931624	2017-07-31
3	25623V15MU	55	F	1106320	2017-07-31
4	36230I68CE	32	F	748465	2019-01-27

```
In [2]: jpn_df = jpn_df.drop("ID", axis=1)

jpn_df["GENDER"] = jpn_df["GENDER"].map({"M": 0, "F": 1})

print("Missing values in Japanese dataset:")
print(jpn_df.isnull().sum())

X_jpn = jpn_df.drop("PURCHASE", axis=1)
y_jpn = jpn_df["PURCHASE"]
```

Missing values in Japanese dataset:

CURR_AGE 0
GENDER 0
ANN_INCOME 0
AGE_CAR 0
PURCHASE 0
dtype: int64

```
In [4]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
```

```
from sklearn.metrics import classification_report, confusion_matrix

X_train, X_test, y_train, y_test = train_test_split(X_jpn, y_jpn, test_size=
model = LogisticRegression(max_iter=200)
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))

print("\nClassification Report:")
print(classification_report(y_test, y_pred))

coefficients = pd.DataFrame({
    "Feature": X_jpn.columns,
    "Coefficient": model.coef_[0]
})
print("\nModel Coefficients:")
display(coefficients)
```

Confusion Matrix:

[[1833 1516] [1013 3638]]

Classification Report:

support	fl-score	recall	precision	
3349 4651	0.59 0.74	0.55 0.78	0.64 0.71	0 1
8000 8000 8000	0.68 0.67 0.68	0.66 0.68	0.67 0.68	accuracy macro avg weighted avg

Model Coefficients:

Feature Coefficient 0 CURR_AGE -0.010736 1 GENDER -0.219585 2 ANN_INCOME 0.000002 3 AGE_CAR 0.004169

```
In [5]: import numpy as np
    from datetime import datetime
    ind_df = ind_df.drop("ID", axis=1)
    ind_df["GENDER"] = ind_df["GENDER"].map({"M": 0, "F": 1})
```

```
ind_df["DT_MAINT"] = pd.to_datetime(ind_df["DT_MAINT"], errors="coerce")

today = pd.to_datetime("2025-07-08")
ind_df["AGE_CAR"] = (today - ind_df["DT_MAINT"]).dt.days // 30

ind_df = ind_df.drop("DT_MAINT", axis=1)
ind_df.head()
```

CURR_AGE GENDER ANN_INCOME AGE_CAR Out[5]:

This notebook was converted with convert.ploomber.io