ME647 - Assignment 2 (50 Marks)

Please read the below INSTRUCTIONS carefully:

- Submit by 23/03/2025, Sunday, 1800 hrs. Late submissions upto 1 day will be graded out of 60%, and later than 1 day will not be graded.
- Submit your solutions as 1 zip file, called "FullName.zip" on HelloIITK. This should contain 1 PDF "FullName.pdf" with all the solutions and figures (make sure labels and fonts on figures are readable in the PDF). Also submit your Python/Matlab scripts combine all the functions and codes to one file "Full-Name.py", which has different sections, and not multiple code files.
- If you use Jupyter notebooks, please convert the code-only parts to a ".py" and share, MATLAB users can share ".m".
- Assignments not submitted as one, well annotated PDF, will not be graded.
- Bonus 5 marks will be given if your answers are formatted in LaTeX (and are correct).
- While discussing with your classmates is encouraged, there will be **zero tolerance towards** plagiarism.

Turbulence Scaling Laws

You can work with the same data as the previous assignment: A two-dimensional cut from a direct numerical simulation of three-dimensional homogeneous, isotropic turbulence from the Johns Hopkins Turbulence Database. The details of your dataset are as follows, along with dimensionless parameters:

- Grid Size: $N_x \times N_y = 1024 \times 1024$ grid cells (which is a 2D plane, at z = 0, from a 1024^3 simulation). The lateral size $L_x = L_y = 2\pi$, and the length of each grid cell is $dx = L/N_x$. The kinematic viscosity $\nu = 0.000185$ and integral lengthscale $\mathcal{L} = 1.364$.
- Velocity fields in dataset: u, v, w or u_i with $i \in \{1, 2, 3\}$
- Boundaries: Periodic (i.e. $u_i(l,y) = u_i(l+2\pi,y)$)

Calculate, plot, and comment on the following measurements:

- 1. Verify Parseval's theorem using a line-cut of the data (say u along x at y=0) and its Fourier transform. Explain the result. (2 Marks)
- 2. The energy spectra $E(k) = (|\widehat{u}|^2 + |\widehat{v}|^2)/2$, where \widehat{u} is the Fourier Transform of the u velocity field and k is the wavenumber. Calculate the energy spectra along lines in the x-direction, and average over the y direction. Plot the averaged energy spectrum as a function of k (calculate the k values based upon the length of the data and resolution, appropriately) on a $log-log\ scale$. Label and show the scaling exponent $k^{-5/3}$ in the inertial range with a line-fit. (5 Marks)

3. In the above example, the spectra is calculated in 1D, and hence k is simply a wavenumber. Now compute the two-dimensional energy spectrum using the full 2D velocity fields (u, v) to obtain $E(\mathbf{k})$ where $\mathbf{k} = k_x \hat{i} + k_y \hat{j}$. This is a spectral field in wavevector space. Perform a shell-averaging over wavenumber shells $k - 1/2 \le k < k + 1/2$ for $k \in [k_{\min}, k_{\max}]$, to obtain the spherically averaged energy spectrum $E(k) = \sum_{k-1/2 \le k \le k+1/2} E(\mathbf{k})$ over the scalar

wavenumber $k = \sqrt{k_x^2 + k_y^2}$. Again label and show the scaling exponent in the inertial range with a line-fit, and compare the spectra to the one in the previous problem. (10 Marks)

- 4. Plot the longitudinal and transverse velocity correlation functions from the velocity fields. (8 Marks)
- 5. Longitudinal structure functions are defined as

$$S_p(r) = \langle \Delta u^p(r) \rangle = \left\langle \left| \left(\left[\mathbf{u}(\mathbf{x} + \mathbf{r}) - \mathbf{u}(\mathbf{x}) \right] \cdot \frac{\mathbf{r}}{|r|} \right) \right|^p \right\rangle \propto r^{\zeta_p} \tag{1}$$

where the angle brackets denote averaging over all orientations of \mathbf{r} (for a fixed $|\mathbf{r}|$) and over many centres \mathbf{x} . For ease of coding, you can take \mathbf{r} along the x-direction alone, or for more accuracy, take arbitrary orientations of \mathbf{r} at each point \mathbf{x} . Keep in mind, and use the fact, that the data is periodic in space. Perform the averaging over many points!

- (a) Plot $S_p(r)$ v/s r for $p \in \{1, 2, 3, 4, 5, 6, 7\}$ and $r \in [0, L/2]$ on a log-log scale. Plot these in the same figure, with clean legends and labels. (10 Marks)
- (b) Verify Kolmogorov's 4/5th law for $S_3(r)$. (3 Marks)
- (c) It is typically difficult to find the scaling (inertial) range to obtain the structure function scaling exponents ζ_p (it needs a lot of statistics). You can, however, plot $S_p(r)$ v/s $S_3(r)$ instead, on a log-log scale, which improves the scaling range significantly, i.e. you find the scaling of $S_p(r)$ versus $S_3(r)$, and not with r itself. This technique, used widely in turbulence study, is known as ESS: Extended Self-Similarity (note that $\zeta_3 = 1$, by default in ESS). Plot the ESS profiles of all the $S_p(r)$, on the same plot, using clear legends and labels. (7 Marks)
- (d) To the ESS plots above, add line fits in the scaling-range to obtain the scaling exponents ζ_p and errorbars for the different p-values. Then plot the scaling exponents ζ_p v/s p, with errorbars, against Kolmogorov's predction of $\zeta_p = p/3$. What is the source of this anomalous scaling of exponents, and why does the deviation prominently increase at large values of p? (5 Marks)

Hints and Suggestions

• To calculate the Fourier transform, look into the following functions:

Using np.fft.fftshift over the n-dimensional Fourier transform rearranges the data such that the zeroth-mode falls in the center of the domain, and hence Fourier modes with the same wavenumber $|\mathbf{k}|$ are on a thin spherical-shell of radius k, in the range $k-1/2 \le k < k+1/2$. You can then calculate the relative distance of each point in spectral space to this center, which will give the wavenumber corresponding to each point.

• Practically, $k - 1/2 \le k < k + 1/2$ is equivalent to simply binning all the values in the range $k \in [k, k+1]$ to the wavenumber k.

 \bullet Use Linear Regression linear fits to the log-log data, in the scaling range only. For this you may use

np.polyfit

which gives both the linear fit, as well as the fitting error.

All the best!