Homework 12

Christophe Hunt April 22, 2017

Contents

1	Page 529: problem 1	2
2	Page 529: problem 6	2
3	Page 546: problem 1	2

Page 529: problem 1

Verify that the given function pair is a solution to the first-order system.

$$\begin{split} x &= -e^t \text{, } y = e^t \\ \frac{dx}{dt} &= -y \text{, } \frac{dy}{dt} = -x \\ \frac{dx}{dt} &= \frac{d}{dt}(-e^t) = e^t = y \text{ ; } \frac{dx}{dt} = -y \\ \frac{dy}{dt} &= \frac{d}{dt}(e^t) = -e^t = x \text{ ; } \frac{dy}{dt} = -x \end{split}$$

Page 529: problem 6

Find and classify the rest points of the given autonomous system.

$$\frac{dx}{dt} = -(y-1)$$
, $\frac{dy}{dt} = x-2$

The rest point of the system is a point in the phase plane for which f(x,y)=0 and g(x,y)=0, then both the derivatives $\frac{dx}{dt}=0$ and $\frac{dy}{dt}=0$.

when
$$y=1$$
, $\frac{dx}{dt}=-(1-1)$; $\frac{dx}{dt}=0$ when $x=2$, $\frac{dy}{dt}=2-2$; $\frac{dy}{dt}=0$

(2,1) is the rest point of the autonomous system $\frac{dx}{dt}=-(y-1)$, $\frac{dy}{dt}=x-2$

Page 546: problem 1

Apply the first and second derivative tests to the function $f(y) = y^a/e^{by}$ to show that $f(y) = y^a/e^{by}$ is a unique critical point that yields the relative maximum f(a/b). Show also that f(y) approaches zero as y tends to infinity.

first derivative:

$$\frac{\frac{df(y)}{dy} = 0}{\frac{d(\frac{y^a}{e^{by}})}{dy}} = 0$$

Use the product rule: $= y^a(\frac{d}{dy}(e^{-by})) + e^{-by}(\frac{d}{dy}(y^a))$

Use the chain rule: $=\frac{rac{d}{dy}(y^a)}{e^{by}}+rac{rac{d}{dy}-(by)}{e^{by}}y^a$

Factor out constants: $= \frac{\frac{d}{dy}(y^a)}{e^{by}} + \frac{e^{by}}{-b\frac{d}{dy}(y)}y^a$ The derivative of y is 1: $= \frac{\frac{d}{dy}y^a}{e^{by}} - \frac{1by^a}{e^by}$

Use the power rule: $=\frac{-by^a}{e^{by}}+\frac{ay^{a-1}}{e^{by}}$

Answer: $y^{a-1}e^{-by}(a - by) = 0$

Since e^{by} cannot be zero :

$$y = \frac{a}{b}$$
 or $y = 0$

Second derivative

$$\frac{\frac{d^2f(y)}{dy^2}}{\frac{d^2f(y)}{dy^2}} = \frac{\frac{d^{\frac{ay^{a-1}-y^ab}}{e^{by}}}{dy}}{\frac{d^2f(y)}{dy^2}} = \frac{e^{by}\{a(a-1)y^{a-2}-aya-1\}-(ay^{a-1}-y^a)be^{by}}{e^{2by}}$$

Substitute the value of 0 :

$$\frac{d^2 f(y)}{dy^2} = 0$$

Substitute the value of $y = \frac{a}{b}$

$$\frac{d^2 f(y)}{dy^2} = \frac{\left(\frac{a}{b}\right)^{a-2} x - a}{e^a}$$

As a and b are positive, the second derivative is less than zero and therefore it is proved that $y=\frac{a}{b}$ yields the relative maximum.