COMPLEMENTOS DE MATEMÁTICA I MATEMÁTICA DISCRETA

Depto de Matemática Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNR

2024

CICLOS HAMILTONIANOS

DEFINICIÓN

Un ciclo hamiltoniano en un grafo G es un ciclo que contiene todos los vértices de G.

CICLOS HAMILTONIANOS

DEFINICIÓN

Un ciclo hamiltoniano en un grafo G es un ciclo que contiene todos los vértices de G.Un grafo es hamiltoniano si tiene un ciclo hamiltoniano.

• *C*_n

- *C*_n
- P_n

- \circ C_n
- P_n
- K_n

- \circ C_n
- P_n
- $K_n \sin n \ge 3$

- \circ C_n
- \bullet P_n
- $K_n \sin n \ge 3$
- W_n

- \circ C_n
- P_n
- $K_n \sin n \ge 3$
- W_n
- \bullet $K_{n,m}$

- \circ C_n
- P_n
- $K_n \sin n \ge 3$
- W_n
- $K_{n,m}$ sii m=n

- C_n
- P_n
- $K_n \sin n \ge 3$
- W_n
- $K_{n,m}$ sii m=n
- Grafo de Petersen
- El grafo siguiente, tiene un camino hamiltoniano? tiene un ciclo hamiltoniano?

 Los bucles y aristas múltiples no afectan a los ciclos, por eso consideramos grafos simples.

4/7

- Los bucles y aristas múltiples no afectan a los ciclos, por eso consideramos grafos simples.
- No hay una caracterización sencilla para grafos hamiltonianos (cf. eulerianos).

- Los bucles y aristas múltiples no afectan a los ciclos, por eso consideramos grafos simples.
- No hay una caracterización sencilla para grafos hamiltonianos (cf. eulerianos).
- Si G hamiltoniano entonces:
 - es conexo

- Los bucles y aristas múltiples no afectan a los ciclos, por eso consideramos grafos simples.
- No hay una caracterización sencilla para grafos hamiltonianos (cf. eulerianos).
- Si G hamiltoniano entonces:
 - es conexo
 - $\delta(G) \geq 2$

- Los bucles y aristas múltiples no afectan a los ciclos, por eso consideramos grafos simples.
- No hay una caracterización sencilla para grafos hamiltonianos (cf. eulerianos).
- Si G hamiltoniano entonces:
 - es conexo
 - ▶ $\delta(G) \ge 2$
 - ▶ si gr(v) = 2 ambas aristas están en todo ciclo hamiltoniano.

EJEMPLO

EJEMPLO

Si es bipartito y no son iguales los conjuntos de vértices de cada lado de la bipartición...NO tiene ciclo hamiltoniano.

EJEMPLO

Si es bipartito y no son iguales los conjuntos de vértices de cada lado de la bipartición...NO tiene ciclo hamiltoniano.

TEOREMA

Sea G = (V, E) un grafo sin bucles con $|V| = n \ge 2$. Si $gr(v) + gr(w) \ge n - 1$ para todo $v, w \in V$, $v \ne w$, entonces G tiene un camino hamiltoniano.

PROOF.

Pizarra

Sea G = (V, E) un grafo sin bucles con $|V| = n \ge 2$. Si $gr(v) \ge \frac{n-1}{2}$ para todo $v \in V$, entonces G tiene un camino hamiltoniano.

Ejercicio

Sea G = (V, E) un grafo sin bucles con $|V| = n \ge 2$. Si $gr(v) \ge \frac{n-1}{2}$ para todo $v \in V$, entonces G tiene un camino hamiltoniano.

Ejercicio

TEOREMA

Sea G = (V, E) un grafo sin bucles con $|V| = n \ge 3$. Si $gr(v) + gr(w) \ge n$ para todo par de vértices $v, w \in V$ no adyacentes entonces G tiene un ciclo hamiltoniano.

PROOF.

Pizarra

Sea G = (V, E) un grafo sin bucles con $|V| = n \ge 3$. Si $gr(v) \ge \frac{n}{2}$ para todo $v \in V$, entonces G tiene un ciclo hamiltoniano.

Ejercicio

Sea G = (V, E) un grafo sin bucles con $|V| = n \ge 3$. Si $gr(v) \ge \frac{n}{2}$ para todo $v \in V$, entonces G tiene un ciclo hamiltoniano.

Ejercicio

COROLARIO

Sea G = (V, E) un grafo sin bucles con $|V| = n \ge 3$. Si $|E| \ge {n-1 \choose 2} + 2$ para todo $v \in V$, entonces G tiene un ciclo hamiltoniano.

PROOF.

Pizarra

