Lec6 Note of Algebra

Xuxuayame

日期: 2024年9月25日

定义 1.19. C 中**零对象** 0 意指既始又终的对象.

例 1.21. $\{1_G\} \in \mathsf{Grp}, \ 0 \in R - \mathsf{mod}.$

定义 1.20. C 中对象 X, Y 的**积 (Product)** 意指 $(X \prod Y, p, q), X \prod Y$ 也记为 $X \times Y, p \colon X \times Y \to X, q \colon X \times Y \to Y$. 它须满足如下泛性质:

对任意 Z 有图表交换.

那么我们有积在同构意义下至多唯一. 例如若还有一个积 $(X\prod'Y,p',q')$. 那么实际上有

图表交换, 于是有

于是 $\theta \circ \eta = 1_{X \times Y}$.

这里还有一种证明. 考虑新范畴 $\mathcal{C}'_{X,Y}$, 对象为三元组 $(A; f, g), A \in \mathrm{Obj}(\mathcal{C}), f: A \to$

 $X, g: A \to Y$. 态射为 $(A; f, g) \stackrel{h}{\to} (A'; f', g')$ 也即交换图表:

或者更确切的可以理解为 $h: A \to A'$ 满足 $f' \circ h = f$ 且 $g' \circ h = g$. 那么显然积即此范畴中的终对象因此同构意义下至多唯一.

例 1.22. Set 中的笛卡尔积, Grp 与 Ring 中的直积, R-Mod 中的直和.

定义 1.21. X, Y 的余积 (Coproduct) 记作 $(X \coprod Y, i, j)$ 须满足泛性质, 也即

图表交换.

例 1.23. Set 中余积即不交并.

(**习题**): 设 $G = \{1, a\}$, $H = \{1, b\}$ 均为二阶群,则 $G \coprod H = \langle a, b \mid a^2 = 1 = b^2 \rangle$. ComRing 中余积是张量积.

Ring 中余积是直和.

评论. 对任意指标集 Λ 也可定义相应积与上积.

定义 1.22. 图表

$$X \xrightarrow{f} Z$$

的拉回 (Pullback) 或称纤维积 (Fibered Product) 意指交换图表

$$\begin{array}{ccc} X \times_Z Y & \xrightarrow{p_2} & Y \\ & \downarrow^{p_1} & & \downarrow^g \\ X & \xrightarrow{f} & Z \end{array}$$

且满足泛性质:

评论. 若 Z 为上述范畴的终对象,则 $X \times_Z Y = X \times Y$.

定义 1.23. 图表

$$Z \xrightarrow{f} X$$

$$\downarrow g \downarrow \qquad \qquad Y$$

的**推出 (Pushout)** 或**纤维余积 (Fibered Coproduct)** 意指 $(X \coprod_Z Y, i_1, i_2)$ 满足如下泛性 质:

评论. 若 Z 是原范畴的始对象,则 $X \coprod_Z Y = X \coprod Y$.

例 1.24. 在 R-Mod 中, 拉回 $X \times_Z Y = \{(x,y) \in X \oplus Y \mid f(x) = g(y)\}$, 推出 $X \coprod_Z Y = (X \oplus Y)/\{(f(z), -g(z)) \mid z \in Z\}$

(习题): 验证之.

例 1.25. 在 Set 中, 拉回同上. 推出 $X\coprod_Z Z=(X\coprod Y)/\sim$, 这里 $f(z)\sim g(z),\ \forall\ z\in Z.$

1.2.2 **函子 Functor**

定义 1.24. 设 A, B 为范畴, 定义从 A 到 B 的 (共变) 函子为 $F: A \to B$ 即

- $\forall A \in \text{Obj}(A)$, 指定 $\mathcal{F}(A) \in \text{Obj}(B)$.
- $\forall f: A \to B$ 在 \mathcal{A} 中, 指定 $\mathcal{F}(f): \mathcal{F}(A) \to \mathcal{F}(B)$ 在 \mathcal{B} 中.

并满足

- (1) 结合律: $\mathcal{F}(g \circ f) = \mathcal{F}(g) \circ \mathcal{F}(f)$.
- (2) 单位元: $\mathcal{F}(1_A) = 1_{\mathcal{F}(A)}, \forall A \in \mathrm{Obj}(\mathcal{A})$

例 1.26. 忘却函子 R-Mod $\stackrel{U}{\rightarrow}$ Ab:

$$R^{M} \longmapsto M$$

$$f \downarrow \qquad \qquad \downarrow f$$

$$R^{N} \longmapsto N$$

这里 U(f) = f.

例 1.27. 对 R^M 有函子 $\operatorname{Hom}_R(M,-)$: $R\operatorname{-Mod} \to R\operatorname{-Mod}$ 如下

$$X \longmapsto \operatorname{Hom}_{R}(M, X)$$

$$f \downarrow \qquad \qquad \downarrow_{f_{*}}$$

$$Y \longmapsto \operatorname{Hom}_{R}(M, Y)$$

这里 $f_* = \operatorname{Hom}_R(M, f), f_* : g \mapsto f \circ g.$

定义 1.25. 设 A, B 为范畴, 定义 $F: A \to B$ 为**反变函**子即 $F: A \to B^{op}$ 为函子, 即:

$$A \in \mathrm{Obj}(\mathcal{A}) \leadsto \mathcal{F}(A) \in \mathrm{Obj}(\mathcal{B}),$$

$$A \xrightarrow{f} B \leadsto \mathcal{F}(f) \colon \mathcal{F}(B) \to \mathcal{F}(A),$$

$$A \xrightarrow{f} B \xrightarrow{g} C \leadsto \mathcal{F} \xrightarrow{\mathcal{F}(g)} \mathcal{F}(B) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(A).$$

例 1.28. 对 R-模 M. $\operatorname{Hom}_R(-,M)$: R- $\operatorname{Mod} \to R$ - Mod 如下

$$X \longmapsto \operatorname{Hom}_{R}(X, M)$$

$$f \downarrow \qquad \qquad \uparrow_{f^{*}}$$

$$Y \longmapsto \operatorname{Hom}_{R}(Y, M)$$

为反变函子. $f^*: h \mapsto h \circ f$.

1.2.3 加法范畴

定义 1.26. 称 C 为加法范畴, 若

- (1) $\forall A, B$, $\operatorname{Hom}_{\mathcal{C}}(A, B)$ 为 Abel 群, 零元记作 $0_{A,B}$. 且 $\operatorname{Hom}_{\mathcal{C}}(B, C) \times \operatorname{Hom}_{\mathcal{C}}(A, B) \stackrel{\circ}{\to} \operatorname{Hom}_{\mathcal{C}}(A, C)$, $(g, f) \mapsto g \circ f$ 是双线性的, 即 $g \circ (f + f') = g \circ f + g \circ f'$, $(g + g') \circ f = g \circ f + g' \circ f$.
- (2) 存在零对象 0. 因此对任意 A, B 存在 A 到 0 与 0 到 B 的态射复合, 恰为 $0_{A,B}$.
- (3) 存在有限积与余积. 即指标集有限时双积存在.

命题 1.19. 加法范畴 \mathcal{C} 中, $A \coprod B \simeq A \coprod B$, 记作 $A \oplus B$.

现在假设 C 是加性的.

定义 1.27. $f: X \to Y$ 的核指 $K \stackrel{i}{\to} X$ (或 (K,i)) 满足:

(1) $f \circ i = 0_{K,Y}$.

(2) 泛性质: $\forall T \stackrel{t}{\to} X$ s.t. $f \circ t = 0$, 则 $\exists ! T \stackrel{\tilde{t}}{\to} K$ s.t. $i \circ \tilde{t} = t$.

评论. *i* 是单态射.

例 1.29. 在 R-Mod 中, 对 $X \xrightarrow{f} Y$, $\operatorname{Ker} f \stackrel{\operatorname{inc}}{\hookrightarrow} X$ 是真正意义上的核.