THE DEVELOPMENT OF A PREDICTIVE MODEL OF COVID-19 MORTALITY AND ITS RELATIONSHIP WITH ENVIRONMENTAL POLLUTANTS AND OUTDOOR MOBILITY

(Wally Skalij / Los Angeles Times)

Danielle Heymann, Graduate Student

Research Advisor: Dr. Guan Nan Wang

Department of Computer Science

Computational Operations Research (COR)

College of William and Mary

OBJECTIVE

- Model the death and infection counts during the COVID-19 pandemic
 - Data sources
 - Air quality index (AQI), CO, SO2, NO2, PM10, PM2.5, Ozone (EPA)
 - Outdoor Mobility Data (Google)
 - COVID-19 Data (JHU)

- Area of Interest for Research
 - California counties with early surges of COVID-19 cases:
 - Santa Barbara, Sacramento, Ventura
 - Matrix of models considered and created:
 - GLM: General Linear Model
 - TSGLM: Time Series following Generalized Linear Model

Models created	Response,Y	Autoregressive component		
GLM,TSGLM	Death_diff	AR(1), AR(2)		
GLM,TSGLM	Infections_diff	AR(1), AR(2)		
TSGLM	Death_diff	AR(1), delayed infections		

METHODOLOGY

DATA INGESTION, CLEANING, AND EDA

DATA GATHERING

- JHU COVID-19 Infection and Death Counts
 - Used dataset maintained by Dr. GuanNan Wang
 - Additional remedial measure:
 - Resolved Santa Barbara false jump in death count
- Google Mobility Data
 - Extracted outdoor park visits mobility data

- EPA Pollutants data
 - Sources:
 - Pre-extracted aggregated data for each pollutant by quarter
 - Real time raw data from queries to Air Quality System (AQS)
 API
 - Json files imported to python

DATA CLEANING + REMEDIAL MEASURES

Key Reasons for Data Cleaning:

- Formatting and Naming Discrepancies
 - Merging API and pre-extracted EPA data
- COVID counts represented as difference (delta) in cumulative counts per day
- Date Conventions
 - Time Series based on days
- Missing Observations
 - Kalman Smoothing
- Outlier Detection and Removal
 - Conventional method: more than 1.5 IQR below Q1 or more than 1.5 IQR above Q3

Techniques and Remedial Measures:

- Multiple Daily Observations
 - Grouped by specific county and pollutant combination
 - Averaged to one mean observation
- Missing Observations
 - Get/fit a State Space Model via ARMIA model
 - Estimate missing values by Kalman smoothing
 - R package: imputeTS (Moritz, Steffen, and Bartz-Beielstein, Thomas)

MODELING: INPUT

Models created	Response, Y	Autoregressive component	
GLM with lag, TSGLM	Death_diff	AR(1), AR(2)	
GLM with lag, TSGLM	Infections_diff	AR(1), AR(2)	
TSGLM	Death_diff	AR(1), delayed infections	

R Libraries Utilized:

- mgcv (for glm, general linear model)
- tscount (for tsglm, time series general linear model)

County	Source	Covariates, Xi
Santa Barbara	EPA pollutants	NO2_ppb
		AQI
		Ozone
		PM10
		PM2.5
		SO2
		CO
	Google	Parks Percent change
	JHU *varies for model	Death_diff lagged
		Infection_diff lagged
		Infection_diff lagged optimally
Sacramento	EPA pollutants	NO2_ppb
		AQI
		Ozone
		PM10
		PM2.5
	Google	Parks Percent change
	JHU *varies for model	Death_diff lagged
		Infection_diff lagged
		Infection_diff lagged optimally
Ventura	EPA pollutants	NO2_ppb
		AQI
		Ozone
		PM10
		PM2.5
	Google	Parks Percent change
	JHU *varies for model	Death_diff lagged
		Infection_diff lagged
		Infection_diff lagged optimally

TRANSFORMATIONS OF COVARIATES + HISTOGRAMS

FINAL DATASET CREATION CONSIDERATIONS

- Time series plots generated for each covariate and response variable for anomaly detection
- Histograms generated for all variables as additional quality diagnostic
- Correlation matrix and heatmap generated for each county
- Some covariates left out to avoid multicollinearity:
 - kept AQI; removed NO₂
 - kept PM2.5; removed PM10

Histogram: JHU Infected diff

FINAL DATASET CREATION CONSIDERATIONS: CORRELATION HEATMAPS

MODELING, EVALUATION, VALIDATION

º ₽ TRAIN

BASELINE GLM MODELS

- General Linear Model
- mgcv R package (Wood)
- Poisson Family
 - Response variable in terms of "counts"
- Autoregressive component
 - Infection_diff with AR(2)
 - Death_diff with AR(2)

Poisson AR(2): $E[y_t|X_{t},y_{t-1},y_{t-2}] = \exp(\delta_0 + X_t \delta_1 + \rho_1 y_{t-1} + \rho_2 y_{t-2} + \epsilon_t)$

SANTA BARBARA COUNTY

Baseline GLM Models

SACRAMENTO COUNTY

Baseline GLM Models

MSPE I_diff D_diff 64.32438 0.2364802

VENTURA COUNTY

Baseline GLM Models

MSPE I_diff D_diff I56.8412 0.5457606

TSGLM MODELS

- Time Series following Generalized Linear Model
- tscount R package (Liboschik, Fokianos, Fried)
- Poisson Family with log link
 - Response variable in terms of "counts"
- Autoregressive (AR) and Moving Average components (MA)
 - AR(I), MA(I)

Poisson AR(I), MA(I): $E[y_t|\mathbf{X}_{t},y_{t-1},y_{t-2}] = \exp(\delta_0 + \mathbf{X}_t\delta_1 + \alpha_1y_{t-1} + \beta_1\epsilon_{t-1} + \epsilon_t)$

SANTA BARBARA COUNTY

TSGLM Models

SACRAMENTO COUNTY

TSGLM Models

VENTURA COUNTY

TSGLM Models

UPDATED TSGLM MODEL

- Adapted from the previous Death_diff response model
- Incorporate Infection_diff as a covariate with delay
 - 15 models generated for each county with Infection_diff covariate taking delay value, d, in [1,15]
 - $\mathbf{x}_{\text{delay_infection}} = \mathbf{X}_{\text{t-d}}$
 - Optimal delay time determined via selecting model with minimum MSPE

Poisson AR(I), MA(I):

$$E[y_t|X_t,y_{t-1},y_{t-2}] = \exp(\delta_0 + X_t\delta_1 + \alpha_1y_{t-1} + \beta_1\epsilon_{t-1} + \epsilon_t)$$

SANTA BARBARA COUNTY

TSGLM Models (updated)

call:

Coefficients:

	Estimate	Std.Error	CI(lower)	CI(upper)
(Intercept)	-8.4229	3.8380	-15.9453	-0.9005
beta_1	-0.0642	0.4556	-0.9572	0.8287
alpha_1	0.0750	0.3092	-0.5310	0.6810
I_diff_t_n	0.0125	0.0104	-0.0079	0.0329
boxcox_aqi	-0.0784	0.6957	-1.4419	1.2851
mean_Ozone_ppm	41.2354	89.9593	-135.0816	217.5525
boxcox_mean_PM2_5_âµg_m3_LC	1.6729	0.8870	-0.0656	3.4115
sqrt_mean_so2_ppb	-3.6334	7.6248	-18.5777	11.3109
boxcox_mean_CO_ppm	12.0704	14.0057	-15.3802	39.5210
parks_percent_change_from_baseline	-0.0184	0.0291	-0.0755	0.0387
Standard errors and confidence intervals (level = 95 %) obtained				
by normal approximation.				

Link function: log

Distribution family: poisson Number of coefficients: 10 Log-likelihood: -28.7795

AIC: 77.559 BIC: 103.0978 QIC: 77.52773

^{*} No significant coefficients

SACRAMENTO COUNTY

TSGLM Models (updated)

```
call:
tsglm(ts = S_tot_train$D_diff, model = list(past_obs = 1, past_mean = 1),
    xreg = tmp_reg_mat, link = "log", distr = "poisson")
```

Coefficients:

	Estimate	Std.Error	cI(lower)	CI(upper)
(Intercept)	0.2988	0.31629	-0.32108	0.9187
beta_1	-0.5675	0.15099	-0.86344	-0.2716
alpha_1	1.0000	0.07400	0.85497	1.1450
I_diff_t_n	0.0027	0.00347	-0.00411	0.0095
boxcox_aqi	-0.1102	0.08688	-0.28046	0.0601
mean_Ozone_ppm	1.8029	7.00902	-11.93456	15.5403
boxcox_mean_PM2_5_âµg_m3_LC	0.0984	0.27536	-0.44125	0.6381
<pre>parks_percent_change_from_baseline</pre>	-0.0147	0.00260	-0.01981	-0.0096
Standard errors and confidence inte	rvals (leve	e1 = 95 %	obtained	
by normal approximation.				

Link function: log

Distribution family: poisson Number of coefficients: 8 Log-likelihood: -88.46104

AIC: 192.9221 BIC: 212.3686 QIC: 53.90557

 $[\]ensuremath{^*}$ Significant coefficients: parks % change from baseline

VENTURA COUNTY

TSGLM Models (updated)

```
call:
tsglm(ts = V_tot_train$D_diff, model = list(past_obs = 1, past_mean = 1),
    xreg = tmp_reg_mat, link = "log", distr = "poisson")
```

Coefficients:

	Estimate	Std.Error	CI(lower)	CI(upper)
(Intercept)	-3.0622	1.58721	-6.1730	0.04869
beta_1	-0.7398	0.26066	-1.2507	-0.22892
alpha_1	0.7187	0.13759	0.4491	0.98842
I_diff_t_n	0.0797	0.02266	0.0353	0.12412
log_aqi	1.5669	1.16548	-0.7174	3.85121
boxcox_mean_Ozone_ppm	34.1514	14.21933	6.2820	62.02078
boxcox_mean_PM2_5_µg_m3_LC	-0.1627	0.12138	-0.4006	0.07521
parks_percent_change_from_baseline	-0.0121	0.00863	-0.0290	0.00481
Standard errors and confidence inte	rvals (lev	el = 95 %)	obtained	
by normal approximation.				

Link function: log

Distribution family: poisson Number of coefficients: 8 Log-likelihood: -60.16595 AIC: 136.3319

AIC: 136.3319 BIC: 155.8731 QIC: 137.4416

TSGLM Death_diff Model, full Ventura, CA

^{*}Significant coefficients: Ozone, Infections (t - 13 days)

MSPE COMPARISON RESULTS

	MODEL	GL	.M	TSGLM		TSGLM (updated)	
	Response, Y	I_diff	D_diff	I_diff	D_diff	D_diff	*optimal delay days for I_diff:
У	Santa Barbara	520.2754	0.0017114	501.3653	0.0046582	0.0014522	3
County	Sacramento	64.32438	0.2364802	178.8306	0.0746677	0.0028939	14
S	Ventura	156.8412	0.5457606	120.8618	0.5922987	0.4257723	13

REFERENCES AND SOURCES

- https://personal.utdallas.edu/~pbrandt/pests/parp.pdf
- https://www.cdc.gov/mmwr/volumes/69/wr/mm6922e1.htm
- https://www.google.com/covid19/mobility/
- https://aqs.epa.gov/aqsweb/airdata/download_files.html
- https://www.airnow.gov/?city=Washington&state=DC&country=USA
- https://aqs.epa.gov/aqsweb/documents/data_api.html
- https://github.com/CSSEGISandData/COVID-19
- Wood SN (2011). "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models." *Journal of the Royal Statistical Society (B)*, **73**(1), 3-36.

THANK YOU

