TAKAGI-SUGENO FUZZY MODELING

Fuzzy Logic

TUGAS AKHIR MODEL LOGIKA FUZZY

Oleh:

- 1. Rauzan Sumara (135090501111014)
- 2. M. Yuyud Anizar (135090507111006)

PROGRAM STUDI
STATISTIKA
FAKULTAS
MATEMATIKA DAN
ILMU PENGETAHUAN
ALAM UNIVERSITAS
BRAWIJAYA

Berikut ini akan dijelaskan tahap-tahap dalam memprediksi data deret waktu menggunakan metode Fuzzy Takagi-Sugeno. Data deret waktu yang digunakan yaitu nilai kurs Rupiah terhadap Swedia (IDR/SEK) mulai tangal 01 Januari 2015 sampai 10 April 2015 (n = 100).

Tanggal	Kurs	Tanggal	Kurs	Tanggal	Kurs
01/01/2015	1596.937	04/02/2015	1523.025	10/03/2015	1536.256
02/01/2015	1596.508	05/02/2015	1531.7279	11/03/2015	1529.235
03/01/2015	1582.24	06/02/2015	1509.3388	12/03/2015	1535.194
04/01/2015	1573.982	07/02/2015	1510.1184	13/03/2015	1518.793
05/01/2015	1587.574	08/02/2015	1502.9263	14/03/2015	1519.115
06/01/2015	1593.732	09/02/2015	1515.7618	15/03/2015	1517.368
07/01/2015	1593.564	10/02/2015	1523.2385	16/03/2015	1526.411
08/01/2015	1582.36	11/02/2015	1523.7132	17/03/2015	1517.956
09/01/2015	1570.991	12/02/2015	1515.7651	18/03/2015	1521.811
10/01/2015	1566.757	13/02/2015	1516.3187	19/03/2015	1507.649
11/01/2015	1567.607	14/02/2015	1515.0659	20/03/2015	1511.857
12/01/2015	1559.233	15/02/2015	1517.1538	21/03/2015	1513.807
13/01/2015	1561.472	16/02/2015	1514.992	22/03/2015	1517.124
14/01/2015	1560.233	17/02/2015	1532.9727	23/03/2015	1525.841
15/01/2015	1550.754	18/02/2015	1535.5013	24/03/2015	1520.22
16/01/2015	1553.43	19/02/2015	1527.7996	25/03/2015	1526.922
17/01/2015	1554.87	20/02/2015	1532.3782	26/03/2015	1514.969
18/01/2015	1556.346	21/02/2015	1532.1574	27/03/2015	1522.907
19/01/2015	1553.222	22/02/2015	1531.3465	28/03/2015	1522.192
20/01/2015	1542.307	23/02/2015	1528.8916	29/03/2015	1521.246
21/01/2015	1533.218	24/02/2015	1531.6619	30/03/2015	1520.86
22/01/2015	1519.267	25/02/2015	1549.1531	31/03/2015	1516.115
23/01/2015	1501.65	26/02/2015	1531.059	01/04/2015	1506.285
24/01/2015	1497.999	27/02/2015	1550.6478	02/04/2015	1509.034
25/01/2015	1491.3	28/02/2015	1552.4525	03/04/2015	1512.662
26/01/2015	1501.042	01/03/2015	1553.1833	04/04/2015	1511.468
27/01/2015	1519.962	02/03/2015	1557.4921	05/04/2015	1520.344
28/01/2015	1506.984	03/03/2015	1566.0803	06/04/2015	1514.91
29/01/2015	1522.084	04/03/2015	1560.6493	07/04/2015	1500.61
30/01/2015	1529.524	05/03/2015	1561.4128	08/04/2015	1497.937
31/01/2015	1533.852	06/03/2015	1542.6846	09/04/2015	1481.674
01/02/2015	1540.433	07/03/2015	1540.8291	10/04/2015	1468.793
02/02/2015	1529.22	08/03/2015	1540.5509		
03/02/2015	1535.441	09/03/2015	1542.5527		

Berikut merupakan hasil input data ke dalam software R:

```
> Data
          Kurs
1
    1596, 9365
2
    1596.5078
3
    1582.2402
    1573.9823
4
5
    1587.5735
    1593.7315
6
    1593.5639
7
    1582.3597
8
    1570.9908
9
    1566.7571
10
    1567.6068
11
12
    1559.2332
13
    1561.4715
14
    1560.2327
15
    1550.7541
    1553.4301
16
    1554.8695
17
    1556.3462
18
    1553.2222
19
20
    1542.3069
90
    1516.1149
    1506.2849
91
    1509.0339
92
93
    1512.6622
94
    1511.4681
95
    1520.3437
    1514.9100
97
    1500.6096
    1497.9368
99
    1481.6742
100 1468.7926
```

✓ Pertama, mencari nilai maksimum dan minimum dari data yang bertujuan untuk memudahkan dalam menentukan parameter dari setiap himpunan *fuzzy* :

Minimum	Maksimum		
1468.7926	1596.9365		

✓ Kedua yaitu menentukan nilai parameter dari setiap himpunan *fuzzy*. Pada kasus ini digunakan fungsi keanggotaan gaussmf (Gaussian) dengan 5 himpunan *fuzzy* (*fuzzy set*), yakni :

$$\mu_{A_k^l}(y_{t,k}) = \exp\left(-\frac{1}{2} \left(\frac{y_{t,k} - c_k^l}{\sigma_k^l}\right)^2\right)$$

dimana A_k^l adalah himpunan fuzzy dari variabel input ke-k untuk rule ke-l yang direpresentasikan oleh suatu fungsi keanggotaan $\mu_{A_k^l}(y_{t,k})$ sedangkan c_k^l dan σ_k^l berturut-turut adalah parameter pusat (mean) dan parameter spread gaussian (zigma). Berikut adalah nilai hasil parameter dari setiap himpunan fuzzy melalui $\mathit{software}$ MATLAB:

Berikut script pada software R untuk mencari parameter Gaussian:

Nilai parameter yang diperoleh di export ke dalam software R sebagai berikut :

Fuzzy Set	σ	μ
Fuzzy Set-1	13.61	1469
Fuzzy Set-2	13.61	1501
Fuzzy Set-3	13.61	1533
Fuzzy Set-4	13.61	1565
Fuzzy Set-5	13.61	1597

Software K						
> Par	r					
	[,1]	[,2]				
	13.6					
[2,]	13.6	1501				
[3,]	13.6	1533				
[4,]	13.6	1565				
[5,]	13.6	1597				

Software R

✓ Setelah itu, dari nilai parameter yang diperoleh digunakan untuk mencari derajat keanggotaan dari data pada setiap himpunan *fuzzy*. Berikut *script* pada *software* R :

```
#Fungsi Mencari Derajat Keanggotaan
#Keterangan :
#Ser -> Data time series berupa suatu vektor
#Par -> Parameter dari fungsi keanggotaan gaussian sigma, mean,
and tinggi berupa suatu matriks

DKeanggotaan <- function(Ser,Par){
m <- nrow(Par)
myMF <- NULL
for(i in 1:m) {
    myDM <- gaussMF("myDM",Ser,c(Par[i,],1))$mfVals
    myMF <- cbind(myMF,myDM)
    }
colnames(myMF) <- NULL
DKeanggotaan <- myMF
}</pre>
```

Sehingga diperoleh derajat keanggotaan dari data pada setiap himpunan fuzzy sebagai berikut:

```
> DK <- DKeanggotaan(Data,Par)
                              [,2]
                                                           [,4]
                [,1]
                                            [,3]
  [1,] 6.0798386e-20 1.5650046e-11 1.5875985e-05 6.3469816e-02 9.9998910e-01
  [2,] 8.1744412e-20 1.9537555e-11 1.8402798e-05 6.8312311e-02 9.9934531e-01
  [3,] 8.8126026e-16 1.7843712e-08 1.4238614e-03 4.4776660e-01 5.5492867e-01
  [4,] 1.1501727e-13 5.5804151e-07 1.0670172e-02 8.0404034e-01 2.3877328e-01
  [5,] 3.1161785e-17 1.5875738e-09 3.1874767e-04 2.5220958e-01 7.8646180e-01
  [6,] 5.4277114e-19 8.0246258e-11 4.6755673e-05 1.0736070e-01 9.7153356e-01
  [7,] 6.0767261e-19 8.7273956e-11 4.9397065e-05 1.1018415e-01 9.6858685e-01
  [8,] 8.1905524e-16 1.6930631e-08 1.3792232e-03 4.4278966e-01 5.6022420e-01
  [9,] 6.1329723e-13 1.7733757e-06 2.0208402e-02 9.0753774e-01 1.6061973e-01
 [10,] 6.0326752e-12 8.3855249e-06 4.5935880e-02 9.9168860e-01 8.4372338e-02
 [11,] 3.8425876e-12 6.1871177e-06 3.9260377e-02 9.8179776e-01 9.6758938e-02
 [12,] 2.7610318e-10 1.0441551e-04 1.5561811e-01 9.1402215e-01 2.1157035e-02
 [13,] 9.1402325e-11 5.0913274e-05 1.1176512e-01 9.6690332e-01 3.2965623e-02
 [14,] 1.6909581e-10 7.6019734e-05 1.3468565e-01 9.4041124e-01 2.5877110e-02
 [15,] 1.4228064e-08 1.2409133e-03 4.2651918e-01 5.7774631e-01 3.0841626e-03
   .....
 [90,] 2.4767843e-03 5.3924054e-01 4.6267749e-01 1.5645005e-03 2.0848485e-08
 [91,] 2.3330076e-02 9.2727670e-01 1.4524595e-01 8.9660297e-05 2.1812117e-10
 [92,] 1.3133436e-02 8.3989386e-01 2.1167615e-01 2.1024271e-04 8.2294622e-10
 [93,] 5.7790644e-03 6.9234857e-01 3.2688392e-01 6.0822433e-04 4.4600067e-09 [94,] 7.6313899e-03 7.4361695e-01 2.8555936e-01 4.3216043e-04 2.5774787e-09
 [95,] 8.0365574e-04 3.6366849e-01 6.4854897e-01 4.5580739e-03 1.2624711e-07
 [96,] 3.3533535e-03 5.9270771e-01 4.1286047e-01 1.1333590e-03 1.2261206e-08
 [97,] 6.7136001e-02 9.9958807e-01 5.8652718e-02 1.3563030e-05 1.2360236e-11
 [98,] 1.0397902e-01 9.7495353e-01 3.6026628e-02 5.2464410e-06 3.0109771e-12
 [99,] 6.4775453e-01 3.6434961e-01 8.0765829e-04 7.0556736e-09 2.4291302e-16
[100,] 9.9988373e-01 6.0557332e-02 1.4453914e-05 1.3595828e-11 5.0399629e-20
```

Keterangan:

- Kolom1 = derajat keanggotaan setiap data pada himpunan *fuzzy* pertama,
- Kolom2 = derajat keanggotaan setiap data pada himpunan *fuzzy* kedua,
- Kolom3 = derajat keanggotaan setiap data pada himpunan *fuzzy* ketiga,
- Kolom4 = derajat keanggotaan setiap data pada himpunan *fuzzy* keempat,
- Kolom5 = derajat keanggotaan setiap data pada himpunan *fuzzy* kelima.
- ✓ Kemudian kita memilih nilai derajat keanggotaan dan himpunan *fuzzy* yang mewakili setiap data. Berikut ini merupakan *script* pada *software* R :

Sehingga diperoleh hasil sebagai berikut :

```
> FK <- Pilih.FK(DK)
 > FK
        fuzzy.set
                     Degree
           5 0.99998910
   [1,]
              5 0.99934531
   [2,]
              5 0.55492867
   [3,]
               4 0.80404034
               5 0.78646180
               5 0.97153356
               5 0.96858685
              5 0.56022420
   [9,]
              4 0.90753774
              4 0.99168860
  [10,]
               4 0.98179776
  [12,]
              4 0.91402215
  [13,]
              4 0.96690332
  [14,]
              4 0.94041124
  [15,]
               4 0.57774631
......
```

```
[90,]
              2 0.53924054
 [91,]
              2 0.92727670
             2 0.83989386
 [92,]
             2 0.69234857
 [93,]
 [94,]
             2 0.74361695
 [95,]
             3 0.64854897
 [96,]
             2 0.59270771
 [97,]
              2 0.99958807
[98,]
              2 0.97495353
[99,]
              1 0.64775453
[100,]
              1 0.99988373
```

✓ Setelah itu kita menentukan pasangan *Input-Output*. Pada kasus ini digunakan *input* sebanyak 3 lag. Berikut *script* pada *software* R :

```
_____
#Mencari Rule dari Pasangan Input Output
#Keterangan:
#FK -> Himpunan fuzzy yang mewakili suatu data yang berupa suatu
vektor
#DK -> Derajat keanggotaan dari data yang berupa suatu vektor
#m -> Banyaknya input yang berpengaruh yang berupa suatu sekalar
_____
Pas.IO <- function(FK,DK,m) {</pre>
n <- length(FK)</pre>
Pasangan \leftarrow matrix (0, (n-m), (m+1))
Degree <- NULL
for(i in 1:(n-m)) {
    s <- i
    for(j in 1:(m+1)) {
        Pasangan[i,j] = FK[s]
        s <- s+1
    Degree[i] <- prod(DK[i:(m+i)])</pre>
Pas.IO <- cbind(Pasangan, Degree)</pre>
}
```

Sehingga diperoleh hasil sebagai berikut :

> IO <- Pas.IO(FK[,1],FK[,2],3)								
> colnames(IO) <- NULL								
> IO								
		[,2]	[,3]	[,4]	[,5]			
[1,]	5	5	5	4	0.445888060			
[2,]	5	5	4		0.350677747			
[3,]		4	5		0.340918394			
[4,]	4	5	5		0.595047784			
[5,]	5	5	5	5	0.414606279			
[6,]	5	5	5	4	0.478434996			
[7,]	5	5	4	4	0.488360415			
[8,]	5	4	4	4	0.495021343			
[9,]	4	4	4	4	0.807641780			
[10,]	4	4	4	4	0.860472772			
[11,]	4	4	4	4	0.815980202			
[12,]	4	4	4	4	0.480169710			
[13,]	4	4	4	4	0.365830847			
[14,]	4	4	4	4	0.286688853			
[15,]	4	4	4	4	0.248984599			
[16,]	4	4	4	4	0.296195803			
[17,]	4	4	4	3	0.336546178			
[18,]	4	4	3	3	0.444094541			
[19,]	4	3	3	3	0.326578239			
[20,]	3	3	3	2	0.474621238			

[88,]	3	3	2	2 0.231081984
[89,]	3	2	2	2 0.281963013
[90,]	2	2	2	2 0.290764304
[91,]	2	2	2	2 0.400966265
[92,]	2	2	2	3 0.280440842
[93,]	2	2	3	2 0.197905303
[94,]	2	3	2	2 0.285728589
[95,]	3	2	2	2 0.374617735
[96,]	2	2	2	1 0.374158842
[97,]	2	2	1	1 0.631197016

Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t
<i>Y_{t-3}</i>	<i>Y_{t-2}</i>	-	5
-	-	5	5
-	5	5	5
5	5	5	4
5	5	4	5
5	4	5	5
4	5	5	5
5	5	5	5
5	5	5	4
5	5	4	4
5	4	4	4
4	4	4	4
4	4	4	4
4	4	4	4
4	4	4	4
4	4	4	4
5 5 5 4 5 5 5 5 4 4 4 4 4 4 4 4 4	5 5 5 4 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4	<i>Y_{t-1}</i>	Yt 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3
4	4	4	4
4	4	4	4
4	4	4	3
4	4	3	3
2	2	2	3
2	2	3	2
2	3	2	3 2 2 2 1
3	2	2	2
2	2	2 3 2 2 2	1
2 2 2 3 2 2 2 1	2 2 3 2 2 2 1	1	1
2	1	1	
	1		
1			

Keterangan : $Kolom1 -> Y_{t\text{-}3}$

 $Kolom2 -\!\!\!> Y_{t\text{-}2}$

 $\begin{array}{c} \text{Kolom3} \rightarrow \text{Y}_{t-1} \\ \text{Kolom4} \rightarrow \text{Y}_{t} \\ \text{Kolom5} \rightarrow \textit{Degree} \end{array}$

✓ Kemudian mencari basis kaidah (*Rule Base*) yang bersesuaian dan tidak konflik. Berikut ini merupakan *script* pada *software* R :

```
_____
#Mencari Rule Base
#Keterangan :
#Pasangan -> Pasangan input ouput dengan tambahan derajat
keanggotaan yang berupa suatu matriks
_____
Rule.Base <- function(Pasangan) {</pre>
n <- nrow(Pasangan)</pre>
m <- ncol(Pasangan)</pre>
KR <- Pasangan[order(Pasangan[,m],decreasing=T),]</pre>
KRt < - KR[, 1: (m-2)]
for(i in 1:(n-1)) {
    for(j in (i+1):n) {
        in.cond <- all(KRt[i,]==KRt[j,])</pre>
        if(in.cond==TRUE) {
            KR[\dot{1},] < -0
        }
}
rule <- KR[which(KR[,1]!=0),]
Rule.Base=rule
}
```

Sehingga diperoleh basis kaidah sebanyak 21. Hasil dari software R sebagai berikut :

```
> Rule <- Rule.Base(IO)
> Rule
       [,1] [,2] [,3] [,4]
 [1,]
          3 3 3 0.94555421
 [2,]
                          4 0.86047277
         2 2 2 2 0.75591345
3 2 2 2 0.65236861
2 3 3 3 0.63537757
2 2 1 1 0.63119702
4 4 3 3 0.60338604
4 5 5 5 0.59504778
 [3,]
 [4,]
 [5,]
 [6,]
 [7,]
 [8,]
          3 3 2 2 0.58541583
 [9,]
              3 3
                          3 0.54435180
[10,]
          4
          5 4 4
                          4 0.49502134
[11.]
          5 5 4
                          4 0.48836041
[12,]
          5 5 5 4 0.47843500
[13,]
          3 3 4
[14,]
                           3 0.47734564
         2 2 3 2 0.44457998
2 3 2 3 0.41543835
3 2 3 0.40209094
[15,]
[16,]
[17,]
         5 4 5 5 0.34091839
3 4 3 4 0.28629740
3 4 4 0.25408163
[18,]
[19,]
[20,]
         4 3 4 4 0.18796702
[21,]
```

✓ Kemudian memasukan nilai variabel *input* ke dalam masing-masing *rule base* untuk memperoleh derajat keanggotaan masing-masing nilai pada variabel *input*. Berikut variabel *Input* dan *Output*:

Variabel Input Output							
	Variabel Input						
Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t				
-	-	-	1596.9365				
-	-	1596.9365	1596.5078				
_	1596.9365	1596.5078	1582.2402				
1596.9365	1596.5078	1582.2402	1573.9823				
1596.5078	1582.2402	1573.9823	1587.5735				
1582.2402	1573.9823	1587.5735	1593.7315				
1573.9823	1587.5735	1593.7315	1593.5639				
1587.5735	1593.7315	1593.5639	1582.3597				
1593.7315	1593.5639	1582.3597	1570.9908				
1593.5639	1582.3597	1570.9908	1566.7571				
1582.3597	1570.9908	1566.7571	1567.6068				
1570.9908	1566.7571	1567.6068	1559.2332				
1566.7571	1567.6068	1559.2332	1561.4715				
1567.6068	1559.2332	1561.4715	1560.2327				
1559.2332	1561.4715	1560.2327	1550.7541				
1561.4715	1560.2327	1550.7541	1553.4301				
1560.2327	1550.7541	1553.4301	1554.8695				
1506.2849	1509.0339	1512.6622	1511.4681				
1509.0339	1512.6622	1511.4681	1520.3437				
1512.6622	1511.4681	1520.3437	1514.91				
1511.4681	1520.3437	1514.91	1500.6096				
1520.3437	1514.91	1500.6096	1497.9368				
1514.91	1500.6096	1497.9368	1481.6742				
1500.6096	1497.9368	1481.6742	1468.7926				
1497.9368	1481.6742	1468.7926					
1481.6742	1468.7926						
1468.7926							

Variabel Input	Output
1,	> Output [,1] [1,] 1573.9823 [2,] 1587.5735 [3,] 1593.7315 [4,] 1593.5639 [5,] 1582.3597 [6,] 1570.9908 [7,] 1566.7571 [8,] 1567.6068 [9,] 1559.2332 [10,] 1561.4715 [11,] 1560.2327 [12,] 1550.7541 [13,] 1553.4301 [14,] 1554.8695 [15,] 1556.3462
[75,] 1526.4110 1517.9559 1521.8113 [76,] 1517.9559 1521.8113 1507.6492 [77,] 1521.8113 1507.6492 1511.8572 [78,] 1507.6492 1511.8572 1513.8070 [79,] 1511.8572 1513.8070 1517.1241 [80,] 1513.8070 1517.1241 1525.8408 [81,] 1517.1241 1525.8408 1520.2203 [82,] 1525.8408 1520.2203 1526.9219 [83,] 1520.2203 1526.9219 1514.9689 [84,] 1526.9219 1514.9689 1522.9067 [85,] 1514.9689 1522.9067 1522.1915 [86,] 1522.9067 1522.1915 [86,] 1522.9067 1522.1915 [86,] 1522.9067 1522.1915 1521.2459 [87,] 1520.8601 1516.1149 [89,] 1520.8601 1516.1149 1506.2849 [90,] 1516.1149 1506.2849 1509.0339 [91,] 1506.2849 1509.0339 1512.6622 [92,] 1509.0339 1512.6622 [92,] 1509.0339 1512.6622 [11.4681 1520.3437 [94,] 1511.4681 1520.3437 1514.9100 [95,] 1520.8096 1497.9368 [97,] 1500.6096 1497.9368 1481.6742	[78,] 1517.1241 [79,] 1525.8408 [80,] 1520.2203 [81,] 1526.9219 [82,] 1514.9689 [83,] 1522.9067 [84,] 1522.1915 [85,] 1521.2459 [86,] 1520.8601 [87,] 1516.1149 [88,] 1500.2849 [89,] 1509.0339 [90,] 1512.6622 [91,] 1511.4681 [92,] 1520.3437 [93,] 1514.9100 [94,] 1500.6096 [95,] 1497.9368 [96,] 1481.6742 [97,] 1468.7926

Berikut ini adalah *script* pada *software* R untuk memperoleh derajat keanggotaan masing-masing nilai pada variabel *input* yang bersesuaian dengan *rule base* :

```
n <- nrow(Par)
envi <- list()
for(i in 1:l) {
    myMF <- NULL
    for(j in 1:k) {
        s <- Rule[i,j]
        myDM <- gaussMF("",Data[,j],c(Par[s,],1))$mfVals
        myMF <- cbind(myMF,myDM)
        }
colnames(myMF) <- NULL
envi[[i]] <- myMF
        }
hasil <- envi
}</pre>
```

Sehingga diperoleh suatu tipe *data list* dengan *length list* sebanyak *rule base* yaitu 21. hasil pada *software* R sebagai berikut :

```
> DK.Input <- hasil(Input,Par,Rule)
> head(DK.Input)
[[1]]
                                            [,3]
               [,1]
                             [,2]
 [1,] 1.5875985e-05 1.8402798e-05 1.4238614e-03
 [2,] 1.8402798e-05 1.4238614e-03 1.0670172e-02
 [3,] 1.4238614e-03 1.0670172e-02 3.1874767e-04
 [4,] 1.0670172e-02 3.1874767e-04 4.6755673e-05
 [5,] 3.1874767e-04 4.6755673e-05 4.9397065e-05
 [6,] 4.6755673e-05 4.9397065e-05 1.3792232e-03
   ,] 4.9397065e-05 1.3792232e-03 2.0208402e-02
 [8,] 1.3792232e-03 2.0208402e-02 4.5935880e-02
 [9,] 2.0208402e-02 4.5935880e-02 3.9260377e-02
[10,] 4.5935880e-02 3.9260377e-02 1.5561811e-01
```

Keterangan:

List pertama, menyatakan nilai derajat keanggotaan setiap variabel *input* pada *rule base* ke-1.

List kedua, menyatakan nilai derajat keanggotaan setiap variabel *input* pada *rule base* ke-2.

dan seterusnya, . . .

```
[83,] 6.4306926e-01 9.0495655e-01 4.1524180e-01 [84,] 9.0495655e-01 4.1524180e-01 7.5927095e-01 [85,] 4.1524180e-01 7.5927095e-01 7.2919949e-01 [86,] 7.5927095e-01 7.2919949e-01 6.8833262e-01 [87,] 7.2919949e-01 6.8833262e-01 6.7139152e-01 [88,] 6.8833262e-01 6.7139152e-01 4.6267749e-01 [89,] 6.7139152e-01 4.6267749e-01 1.4524595e-01 [90,] 4.6267749e-01 1.4524595e-01 2.1167615e-01 [91,] 1.4524595e-01 2.1167615e-01 3.2688392e-01 [92,] 2.1167615e-01 3.2688392e-01 [93,] 3.2688392e-01 2.8555936e-01 [93,] 3.2688392e-01 2.8555936e-01 6.4854897e-01 [94,] 2.8555936e-01 6.4854897e-01 [95,] 6.4854897e-01 4.1286047e-01 [95,] 6.4854897e-01 4.1286047e-01 5.8652718e-02 [96,] 4.1286047e-01 5.8652718e-02 [97,] 5.8652718e-02 3.6026628e-02 [97,] 5.8652718e-02 3.6026628e-02
```

```
[[21]]
               [,1]
                             [,2]
 [1,] 6.3469816e-02 1.8402798e-05 4.4776660e-01
 [2,] 6.8312311e-02 1.4238614e-03 8.0404034e-01
 [3,] 4.4776660e-01 1.0670172e-02 2.5220958e-01
 [4,] 8.0404034e-01 3.1874767e-04 1.0736070e-01
 [5,] 2.5220958e-01 4.6755673e-05 1.1018415e-01
 [6,] 1.0736070e-01 4.9397065e-05 4.4278966e-01
 [7,] 1.1018415e-01 1.3792232e-03 9.0753774e-01
 [8,] 4.4278966e-01 2.0208402e-02 9.9168860e-01
 [9,] 9.0753774e-01 4.5935880e-02 9.8179776e-01
[10,] 9.9168860e-01 3.9260377e-02 9.1402215e-01
[11,] 9.8179776e-01 1.5561811e-01 9.6690332e-01
[12,] 9.1402215e-01 1.1176512e-01 9.4041124e-01
[13,] 9.6690332e-01 1.3468565e-01 5.7774631e-01
[14,] 9.4041124e-01 4.2651918e-01 6.9637358e-01
[15,] 5.7774631e-01 3.2357566e-01 7.5772835e-01
```

List kedua puluh satu, menyatakan nilai derajat keanggotaan setiap variabel input pada rule base ke-21.

```
[85,] 1.1515714e-03 7.5927095e-01 7.0554372e-03 [86,] 8.3140506e-03 7.2919949e-01 5.6549133e-03 [87,] 7.0554372e-03 6.8833262e-01 5.1595927e-03 [88,] 5.6549133e-03 6.7139152e-01 1.5645005e-03 [89,] 5.1595927e-03 4.6267749e-01 8.9660297e-05 [90,] 1.5645005e-03 1.4524595e-01 2.1024271e-04 [91,] 8.9660297e-05 2.1167615e-01 6.0822433e-04 [92,] 2.1024271e-04 3.2688392e-01 4.3216043e-04 [93,] 6.0822433e-04 2.8555936e-01 4.5580739e-03 [94,] 4.3216043e-04 6.4854897e-01 1.1333590e-03 [95,] 4.5580739e-03 4.1286047e-01 1.3563030e-05 [96,] 1.1333590e-03 5.8652718e-02 5.2464410e-06 [97,] 1.3563030e-05 3.6026628e-02 7.0556736e-09
```

✓ Kemudian dari hasil sebelumnya maka dicari *fire strength rule (Alfa Cut)*. *Fire strength rule* dihitung dengan operator perkalian, yaitu :

$$\alpha_t^l = \prod\nolimits_{k=1}^p \mu_{A_k^l}(y_{t,k})$$

dimana:

l: Banyaknya rule

t: Banyaknya amatan

p: Banyaknya variabel input

Berikut ini adalah script pada software R untuk memperoleh fire strength rule (Alfa Cut):

```
alfa <- function(ipt) {
    n <- nrow(ipt[[1]])
    m <- length(ipt)
    out <- matrix(0,n,m)
    for(i in 1:m) {
            out[j,i] <- prod(ipt[[i]][j,])
            }
        }
    alfa <- out
}</pre>
```

Sehingga diperoleh *Alfa Cut* yang berupa suatu matriks berukuran 97x21 (banyaknya data dikali banyaknya *rule base*). Hasil dari *software* R sebagai berikut :

```
> alpa <- alfa(DK.Input)
> alpa
                                                                           [,20]
                                                                                         [,21]
                                                         [,4]
                                                                   6.1735351e-06 5.2300132e-07
 [1,] 4.1599897e-13 1.9414129e-03 5.4559585e-30 4.3536505e-25
                                                                   3.2637892e-04 7.8206800e-05
 [2,] 2.7959087e-10 2.4593962e-02 1.9454583e-25 3.7198622e-21
                                                                   1.1475630e-04 1.2049935e-03
 [3,] 4.8426842e-09 9.0801099e-02 1.5808317e-23 3.1739401e-18
                                                                   9.4814274e-06 2.7515041e-05
 [4,] 1.5902037e-10 2.1771319e-02 7.1092735e-26 4.1422351e-20
                                                                   1.3375439e-06 1.2993167e-06
 [5,] 7.3617738e-13 2.9834998e-03 1.1118428e-29 6.2930309e-24
                                                                   1.6315448e-05 2.3482479e-06
 [6,] 3.1854443e-12 5.2379567e-03 1.1857212e-28 9.6592634e-24
                                                                   9.8593564e-04 1.3791718e-04
     1.3767900e-09 4.4277316e-02 2.6203454e-24 2.9859998e-20
                                                                   1.8459257e-02 8.8737007e-03
 [8,] 1.2803202e-06 3.9850841e-01 2.5177009e-19 1.3791958e-15
                                                                   3.5334137e-02 4.0929720e-02
     3.6445045e-05 8.8361292e-01 9.2006684e-17 5.8382874e-13
                                                                   1.5151565e-01 3.5586601e-02
[10,] 2.8065103e-04 8.8992638e-01 5.4173096e-15 8.0738144e-12
                                                                   1.0029633e-01 1.4772882e-01
[11,] 6.8284305e-04 8.6768444e-01 3.2891557e-14 7.2203741e-11
                                                                   1.1903128e-01 9.6068460e-02
[12,] 2.3425440e-03 8.3110823e-01 4.0413122e-13 7.1600720e-10
                                                                   3.8782824e-01 7.5238749e-02
[13,] 6.4204609e-03 5.2533706e-01 4.8028478e-12 1.6508056e-09
                                                                   1.7580484e-01 2.7931783e-01
[14,] 1.8588132e-02 3.7835308e-01 5.5895738e-11 3.0524154e-08
                                                                   1.1042660e-01 1.4165326e-01
[15,] 3.7879887e-02 3.0485477e-01 2.8809041e-10 2.0181182e-07
                                                                   1.2090953e-01 1.5610472e-01
[16,]
     2.0350488e-02 4.3095836e-01 5.8819158e-11 5.3197605e-08
                                                                   2.0487608e-01 1.1933336e-01
[17,] 2.0820791e-02 4.2534038e-01 6.2382427e-11 3.2862919e-08
                                                                   4.4415149e-01 6.7202167e-02
[18,] 6.0022075e-02 1.3951748e-01 1.5805121e-09 1.2597775e-07
                                                                   1.7080220e-01 3.5445542e-02
[19,] 2.6190910e-01 1.1134203e-02 3.7709129e-07 6.2375019e-06
                                                                   9.7298655e-03 8.7075159e-04
[20,] 4.7516413e-01 5.6762296e-05 2.4346234e-04 3.6039888e-04
                                                                   1.6025831e-05 7.6055660e-07
[21,] 4.2140700e-02 4.4369513e-09 2.4497586e-02 1.7210200e-03
                                                                   2.4814083e-09 1.3192704e-09
[22,] 1.5363176e-03 3.6525648e-13 3.9552006e-01 1.4772933e-02
                                                                   9.4753732e-13 2.9736894e-13
[23,] 2.3250512e-05 4.3771891e-17
                                 7.5591710e-01 8.8607742e-03
[24,] 2.0952861e-05 3.5507700e-17 7.5677810e-01 4.7857236e-02
                                                                   1.4247610e-13 7.6864103e-13
                                                                   4.1796514e-12 1.1034387e-10
[25,] 3.6304507e-04 2.7499750e-14 2.9335723e-01 4.8976076e-01
                                                                   1.0508629e-08 1.1126334e-09
[26,] 6.4088020e-03 7.3205004e-12 3.4341353e-01 6.0703063e-02
                                                                   3.3657765e-07 4.5886334e-06
[27,]
     7.3434797e-02 3.1965246e-09 1.0325954e-01 2.4884075e-01
                                                                   7.4449914e-07 2.6971300e-06
[28,] 1.1253218e-01 2.5615018e-08 3.0259603e-02 2.6417530e-01
                                                                   2.2871214e-04 4.8356411e-04
[29,] 6.9994831e-01 1.6637365e-05 1.8024028e-03 3.3269455e-02
                                                                   2.0822569e-03 6.5012801e-03
[30.] 8.3197168e-01 4.7292708e-04 8.9583360e-05 5.1628051e-03
                                                                   .....
                                                                   .....
```

```
4.5975165e-02 4.3814722e-02
[65,] 5.6362078e-01 1.0658091e-02 1.8243115e-06 1.0731333e-04
[66,] 5.6750012e-01 1.0489331e-02 1.8792675e-06 1.5629800e-04
                                                                     3.2002321e-02 4.5247192e-02
[67,] 6.5084672e-01 5.4534582e-03 4.7543363e-06 1.3303296e-04
                                                                     4.9453969e-02 1.6638175e-02
[68,] 7.3076166e-01 8.6442759e-04 3.7811798e-05 3.1400864e-04
                                                                     2.6412705e-02 7.8389481e-03
                                                                3.3315623e-03 9.3400015e-03
[69,] 9.2312682e-01 3.0567695e-04 1.7063358e-04 3.9726267e-03
[70,] 5.5048232e-01 8.8836060e-06 2.0878626e-03 2.8471861e-03
                                                                .. 1.6530039e-03 9.6822110e-05
                                                                     1.6748313e-04 1.7708136e-04
[71,] 3.3965726e-01 9.5167415e-07 7.4198989e-03 1.0698274e-02
[72,] 1.7774107e-01 2.2794754e-08 8.4829149e-02 9.0397855e-02
                                                                     5.4277571e-06 4.0116007e-06
                                                                     6.5090274e-06 3.1118716e-05
[73,] 2.7276234e-01 1.3068814e-07 3.4844730e-02 1.7752343e-01
                                                                     2.1006416e-05 4.8647136e-06
[74,] 2.4912505e-01 9.7673632e-08 3.8892147e-02 4.5886593e-02
[75,] 3.4383246e-01 2.9080551e-07 2.4882590e-02 5.7201104e-02
                                                                   3.2099060e-05 6.2542791e-05
[76,] 6.8048092e-02 2.2405664e-09 1.2649651e-01 2.5088993e-02
                                                                     2.8664980e-06 2.4731332e-07
                                                                     2.6535899e-07 5.4955632e-07
[77,] 3.7472900e-02 4.2955462e-10 2.0008783e-01 8.2187122e-02
                                                                     2.4569949e-08 3.4427641e-08
[78,] 1.9418402e-02 5.5730360e-11 4.1413274e-01 2.3835578e-01
                                                                     2.0496565e-07 3.6384761e-07
[79,] 5.5822450e-02 8.2529102e-10 2.3110808e-01 2.3612375e-01
                                                                .. 1.4861351e-06 6.7144264e-06
[80,] 1.6272139e-01 2.7035535e-08 5.9945802e-02 2.7671581e-01
                                                                     2.0748243e-05 7.8464150e-06
[81,] 2.8325567e-01 1.4274074e-07 3.4404378e-02 6.0059104e-02
[82,] 5.0665455e-01 1.3907948e-06 1.1297057e-02 6.2874075e-02
                                                                     6.3409636e-05 2.0216055e-04
[83,] 2.4164986e-01 1.0112319e-07 3.5344902e-02 2.4872252e-02 [84,] 2.8531564e-01 1.9003739e-07 2.6219027e-02 7.2850236e-02
                                                                · · 3.6463719e-05 4.6104464e-06
                                                                1.7354942e-05 6.8525032e-05
6.9815185e-06 6.1689548e-06
[85,] 2.2990277e-01 6.7550329e-08 4.7892268e-02 1.1758218e-01
                                                                .. 4.0377084e-05 3.4283486e-05
[86,] 3.8110223e-01 3.3171304e-07 2.6799389e-02 5.5866441e-02
                                                                     2.6787102e-05 2.5057498e-05
[87,] 3.3699275e-01 2.0585684e-07 3.3766051e-02 6.5844326e-02
                                                                1.3499564e-05 5.9398777e-06
[88,] 2.1382209e-01 4.5647508e-08 6.1304526e-02 5.2600319e-02
                                                                .. 1.1724522e-06 2.1403952e-07
[89,] 4.5118873e-02 7.2375453e-10 1.7215897e-01 2.6966484e-02
[90,] 1.4225067e-02 2.9491497e-11 4.1996809e-01 1.0584341e-01
                                                                     2.9692571e-08 4.7774997e-08
                                                                .. 6.1619005e-09 1.1543457e-08
[91,] 1.0050080e-02 1.1465287e-11 5.3921077e-01 2.5458177e-01
                                                                     3.6515827e-08 2.9700209e-08
[92,] 1.9758860e-02 5.5262401e-11 4.3241275e-01 1.6605257e-01 ...
                                                                     1.7047142e-07 7.9166520e-07
[93,] 6.0538650e-02 1.1980920e-09 1.8723186e-01 3.3390034e-01
                                                                     8.1326048e-07 3.1765470e-07
[94,] 7.6461440e-02 2.2325124e-09 1.6028598e-01 1.1164988e-01
                                                                     3.0299608e-07 2.5523567e-08
[95,] 1.5704865e-02 7.0065718e-11 2.1546033e-01 1.2642542e-02
                                                                     5.5379346e-10 3.4875500e-10
[96,] 8.7239879e-04 8.0647146e-14 5.7762444e-01 2.1344464e-02
                                                                     5.7471053e-14 3.4476153e-15
[97,] 1.7066301e-06 5.0206504e-19 3.5507761e-01 7.8710493e-04
```

✓ Selanjutnya sebelum menghitung *output* nilai tegas, *fire strength* terlebih dahulu dinormalisasi, yakni:

$$\bar{\alpha}_{t}^{l} = \frac{\alpha_{t}^{l}}{\sum_{l=1}^{L} \alpha_{t}^{l}} = \frac{\prod_{k=1}^{p} \mu_{A_{k}^{l}}(y_{t,k})}{\sum_{l=1}^{L} \prod_{k=1}^{p} \mu_{A_{k}^{l}}(y_{t,k})}$$

Berikut ini adalah script pada software R untuk menormalisasi fire strength atau alfa cut:

```
}
normfire <- out
}</pre>
```

```
Hasil dari software R sebagai berikut :
> alpa.norm <- normfire(alpa)</pre>
> alpa.norm
                                                                               [,20]
                                                                                              [,21]
                                            [,3]
                              [,2]
                                                           [,4]
               [,1]
                                                                      5.7189435e-06 4.8448983e-07
 [1,] 3.8536666e-13 1.7984559e-03 5.0542060e-30 4.0330671e-25
                                                                      4.4923940e-04 1.0764659e-04
 [2,] 3.8483869e-10 3.3851993e-02 2.6777971e-25 5.1201490e-21
                                                                      1.2102833e-04 1.2708527e-03
 [3,] 5.1073621e-09 9.5763854e-02 1.6672324e-23 3.3474125e-18
                                                                      8.6622705e-06 2.5137853e-05
 [4,] 1.4528165e-10 1.9890365e-02 6.4950611e-26 3.7843628e-20
                                                                      1.1406717e-06 1.1080711e-06
 [5,] 6.2781991e-13 2.5443604e-03 9.4819136e-30 5.3667637e-24
 [6,] 2.9660621e-12 4.8772176e-03 1.1040603e-28 8.9940281e-24
                                                                      1.5191800e-05 2.1865236e-06
 [7,] 1.9345847e-09 6.2215893e-02 3.6819560e-24 4.1957522e-20
                                                                      1.3853791e-03 1.9379315e-04
                                                                      3.0400127e-02 1.4613894e-02
 [8,] 2.1085300e-06 6.5629437e-01 4.1463439e-19 2.2713660e-15
                                                                      3.1906027e-02 3.6958729e-02
 [9,] 3.2909155e-05 7.9788500e-01 8.3080217e-17 5.2718581e-13
                                                                      1.3002578e-01 3.0539259e-02
[10,] 2.4084555e-04 7.6370576e-01 4.6489582e-15 6.9286838e-12
                                                                      8.2663088e-02 1.2175640e-01
[11,] 5.6279141e-04 7.1513556e-01 2.7108844e-14 5.9509495e-11
                                                                      9.4074349e-02 7.5926074e-02
[12,] 1.8513899e-03 6.5685226e-01 3.1939824e-13 5.6588412e-10
                                                                      3.3201131e-01 6.4410254e-02
[13,] 5.4964167e-03 4.4972961e-01 4.1116134e-12 1.4132188e-09
[14,] 1.6826548e-02 3.4249682e-01 5.0598538e-11 2.7631402e-08
                                                                      1.5914394e-01 2.5284708e-01
                                                                      1.0408856e-01 1.3352293e-01
[15,] 3.5705735e-02 2.8735734e-01 2.7155519e-10 1.9022864e-07
                                                                      1.0918472e-01 1.4096697e-01
[16,] 1.8377065e-02 3.8916757e-01 5.3115361e-11 4.8038940e-08
                                                                      1.8573053e-01 1.0818172e-01
[17,] 1.8875100e-02 3.8559257e-01 5.6552825e-11 2.9791898e-08
                                                                      4.0065384e-01 6.0620771e-02
[18,] 5.4143857e-02 1.2585394e-01 1.4257258e-09 1.1364021e-07
                                                                      1.4883430e-01 3.0886678e-02
[19,] 2.2822340e-01 9.7021662e-03 3.2859131e-07 5.4352593e-06
[20,] 4.5308831e-01 5.4125156e-05 2.3215124e-04 3.4365497e-04
                                                                      9.2778222e-03 8.3029703e-04
[21,] 3.6845049e-02 3.8793775e-09 2.1419073e-02 1.5047464e-03
                                                                      1.4011929e-05 6.6498052e-07
[22,] 1.4091971e-03 3.3503384e-13 3.6279330e-01 1.3550567e-02
                                                                      2.2760876e-09 1.2101092e-09
[23,] 2.6080745e-05 4.9100147e-17 8.4793323e-01 9.9393767e-03 [24,] 2.2668343e-05 3.8414837e-17 8.1873810e-01 5.1775471e-02
                                                                      1.0628790e-12 3.3356701e-13
                                                                      1.5414110e-13 8.3157230e-13
                                                                      4.4415630e-12 1.1725840e-10
[25,] 3.8579474e-04 2.9222980e-14 3.1174002e-01 5.2045089e-01
                                                                      8.9935669e-09 9.5222151e-10
[26,] 5.4848247e-03 6.2650806e-12 2.9390251e-01 5.1951310e-02
                                                                      3.0389120e-07 4.1430122e-06
[27,] 6.6303240e-02 2.8860969e-09 9.3231581e-02 2.2467479e-01
                                                                      6.2711449e-07 2.2718755e-06
[28,] 9.4789310e-02 2.1576317e-08 2.5488593e-02 2.2252297e-01
                                                                      1.8329574e-04 3.8754061e-04
[29.] 5.6095643e-01 1.3333608e-05 1.4444916e-03 2.6662990e-02
                                                                      1.6074576e-03 5.0188484e-03
[30,] 6.4226425e-01 3.6508954e-04 6.9156428e-05 3.9855745e-03
    .....
[65,] 4.7831781e-01 9.0450090e-03 1.5482053e-06 9.1071653e-05
                                                                      3.9016909e-02 3.7183445e-02
[66,] 4.8091709e-01 8.8889819e-03 1.5925491e-06 1.3245174e-04
                                                                      2.7119753e-02 3.8343865e-02
                                                                      4.0375187e-02 1.3583731e-02
[67,] 5.3136398e-01 4.4523098e-03 3.8815331e-06 1.0861071e-04
                                                                      2.1300778e-02 6.3217946e-03
[68,] 5.8932972e-01 6.9712589e-04 3.0493686e-05 2.5323526e-04
                                                                      2.4683384e-03 6.9199620e-03
[69,] 6.8394020e-01 2.2647457e-04 1.2642159e-04 2.9432999e-03
                                                                      1.3908524e-03 8.1466999e-05
[70,] 4.6318080e-01 7.4747464e-06 1.7567465e-03 2.3956481e-03
                                                                      1.5577610e-04 1.6470342e-04
[71,] 3.1591530e-01 8.8515237e-07 6.9012498e-03 9.9504670e-03
                                                                     5.3510589e-06 3.9549139e-06
[72,] 1.7522945e-01 2.2472647e-08 8.3630451e-02 8.9120467e-02
                                                                      6.0296346e-06 2.8826808e-05
[73,] 2.5267327e-01 1.2106289e-07 3.2278399e-02 1.6444875e-01
                                                                      1.9545927e-05 4.5264902e-06
[74,] 2.3180442e-01 9.0882788e-08 3.6188137e-02 4.2696288e-02
[75,] 3.1193201e-01 2.6382485e-07 2.2574006e-02 5.1894039e-02
                                                                      2.9120939e-05 5.6740129e-05
[76,] 6.2346152e-02 2.0528231e-09 1.1589701e-01 2.2986716e-02
                                                                      2.6263061e-06 2.2659025e-07
[77,] 3.3558586e-02 3.8468455e-10 1.7918722e-01 7.3602086e-02
                                                                      2.3764033e-07 4.9215121e-07
                                                                      2.2107383e-08 3.0977070e-08
[78,] 1.7472159e-02 5.0144688e-11 3.7262557e-01 2.1446615e-01
[79,] 5.3614280e-02 7.9264496e-10 2.2196613e-01 2.2678340e-01
                                                                      1.9685782e-07 3.4945488e-07
                                                                      1.3801608e-06 6.2356300e-06
[80,] 1.5111795e-01 2.5107668e-08 5.5671149e-02 2.5698359e-01 [81,] 2.6203468e-01 1.3204687e-07 3.1826866e-02 5.5559587e-02
                                                                      1.9193823e-05 7.2585762e-06
                                                                      5.4294231e-05 1.7309911e-04
[82,] 4.3382080e-01 1.1908621e-06 9.6730566e-03 5.3835659e-02
                                                                      3.3352159e-05 4.2170230e-06
[83,] 2.2102914e-01 9.2494041e-08 3.2328815e-02 2.2749827e-02
[84,] 2.5510018e-01 1.6991207e-07 2.3442383e-02 6.5135260e-02
                                                                      1.5517021e-05 6.1268103e-05
                                                                      6.5191573e-06 5.7604067e-06
[85,] 2.1467713e-01 6.3076710e-08 4.4720533e-02 1.0979513e-01
[86,] 3.4951821e-01 3.0422217e-07 2.4578377e-02 5.1236484e-02
                                                                      3.7030814e-05 3.1442226e-05
                                                                      2.5025981e-05 2.3410090e-05
[87,] 3.1483713e-01 1.9232276e-07 3.1546099e-02 6.1515384e-02
[88,] 2.0544806e-01 4.3859790e-08 5.8903624e-02 5.0540305e-02
                                                                      1.2970873e-05 5.7072510e-06
[89,] 4.1305592e-02 6.6258545e-10 1.5760872e-01 2.4687376e-02 [90,] 1.2566359e-02 2.6052653e-11 3.7099788e-01 9.3501581e-02
                                                                      1.0733608e-06 1.9594969e-07
                                                                      2.6230281e-08 4.2204213e-08
                                                                      5.2977112e-09 9.9245198e-09
[91,] 8.6405842e-03 9.8573123e-12 4.6358797e-01 2.1887739e-01
                                                                      3.2899709e-08 2.6759033e-08
[92,] 1.7802164e-02 4.9789832e-11 3.8959143e-01 1.4960859e-01
                                                                      1.6022053e-07 7.4406033e-07
[93,] 5.6898305e-02 1.1260476e-09 1.7597313e-01 3.1382205e-01
                                                                      7.7448848e-07 3.0251059e-07
[94,] 7.2816160e-02 2.1260779e-09 1.5264438e-01 1.0632700e-01
                                                                      2.8113297e-07 2.3681878e-08
[95,] 1.4571659e-02 6.5010027e-11 1.9991348e-01 1.1730301e-02
                                                                      5.1320493e-10 3.2319411e-10
[96,] 8.0845909e-04 7.4736370e-14 5.3528929e-01 1.9780089e-02
```

1.3864628e-13 8.3172141e-15

[97,] 4.1171671e-06 1.2112089e-18 8.5660850e-01 1.8988546e-03

✓ Selanjutnya menduga parameter konsekuen. Proses pendugaan parameter konsekuen diestimasi menggunakan metode kuadrat terkecil (MKT). Berikut ini adalah *script* pada *software* R untuk memperoleh parameter konsekuen :

Hasil dari software R sebagai berikut :

```
> par.teta <- Teta(alpa.norm,Output)</pre>
> par.teta
            [,1]
 [1,] 1531.1829
 [2,] 1556.5893
 [3,] 1498.7648
[4,] 1540.1013
 [5,] 1493.3527
 [6,] 1431.0403
 [7,] 1560.7295
 [8,] 1562.5617
 [9,] 1523.6577
[10,] 1532.7276
[11,] 1507.1460
[12,] 1622.2225
[13,] 1565.9770
[14,] 1508.9005
[15,] 1492.6238
[16,] 1538.8158
[17,] 1523.8008
[18,] 1681.2223
[19,] 1577.8065
[20,] 1525.8385
[21,] 1606.4979
```

✓ Selanjutnya menduga *output* nilai tegas \hat{y}_t yang merupakan nilai prediksi pada pengamatan ket dihitung dengan :

$$\hat{y}_{t} = \sum_{l=1}^{L} \bar{\alpha}_{t}^{l} \, \hat{y}_{t} = \sum_{l=1}^{L} \bar{\alpha}_{t}^{l} \, (\theta_{0}^{l} + \theta_{1}^{l} y_{t,1} + \dots + \theta_{p}^{l} y_{t,p})$$

Karena pada kasus ini digunakan fuzzy takagi-sugeno orde nol, maka :

$$\hat{y}_t = \sum_{l=1}^L \bar{\alpha}_t^l \, \theta_0^l$$

Berikut hasil dari software R:

```
> Fitted <- alpa.norm%*%par.teta
 > Fitted
   [1,] 1570.2941
[2,] 1580.6072
   [3,] 1595.0729
   [4,] 1592.8664
   [5,] 1583.8139
   [6,] 1573.7290
   [7,] 1574.2725
   [8,] 1564.0486
   [9,] 1555.8189
  [10,] 1553.5688
  [11,] 1558.6521
  [12,] 1556.6166
  [13,] 1547.9360
  [14,] 1557.9708
  [15,] 1556.8359
  [16,] 1557.9127
  [17,] 1554.2309
  [18,] 1538.7852
  [19,] 1525.3532
  [20,] 1516.8995
  [21,] 1496.9976
  [22,] 1497.3498
[23,] 1496.8724
  [24,] 1495.3134
  [25,] 1514.9308
 [26,] 1521.4637
......
```

[80,] 1526.5501 [81,] 1522.6773 [82,] 1524.2580 [83,] 1516.5931 [84,] 1519.5205 [85,] 1524.3490 [86,] 1520.4064 [87,] 1520.0903 [88,] 1515.3149 [89,] 1504.9521 [90,] 1505.3991 [91,] 1513.6698 [92,] 1514.3328 [93,] 1522.2368 [94,] 1521.1823 [95,] 1502.4674 [96,] 1498.6272 [97,] 1495.9006 ✓ Berikut plot data aktual versus nilai *fitted*:

```
> ts.plot(Output,main = 'Data Vs. Fitted',ylab ='')
> lines(Fitted,col=2)
> legend('topright',legend = c('Data','Fitted'),col=c(1,2), lty = 1,bty = 'n')
```

Data Vs. Fitted

✓ Untuk melihat kabaikan prediksi dengan metode fuzzy takagi-sugeno, maka kita mencari nilai R^2 , SSE ($Sum\ Square\ Error$), dan MSE ($Mean\ Square\ Error$). Berikut hasil pada $software\ R$:

Console ~/ ⇔	R^2	SSE	MSE
<pre>> cor(Output,Fitted)^2</pre>	88.4055%	6187.5436	294.6449

- Metode fuzzy takagi-sugeno dengan orde nol didapatkan nilai R^2 sebesar 88.4055%. Ini menandakan metode yang digunakan sangat baik dalam menjelaskan keragaman data yang ada. Penggunaan orde yang lebih tinggi mungkin akan memberikan hasil yang lebih baik.
- MSE (*Mean Square Error*) yang diperoleh yaitu sebesar 294.6449. Nilai ini sangat kecil apabila dibandingkan dengan besaran data aktual yang berkisar antara 1468.7926 sampai 1596.9365 dengan banyaknya amatan adalah 100 amatan.

Lampiran 1. Data Aktual & Fitted

Tanggal	Kurs	Fitted	Tanggal	Kurs	Fitted
01/01/2015	1596.9365	-	20/02/2015	1532.3782	1528.8400
02/01/2015	1596.5078	-	21/02/2015	1532.1574	1527.8723
03/01/2015	1582.2402	-	22/02/2015	1531.3465	1529.7293
04/01/2015	1573.9823	1570.2941	23/02/2015	1528.8916	1529.2167
05/01/2015	1587.5735	1580.6072	24/02/2015	1531.6619	1527.6524
06/01/2015	1593.7315	1595.0729	25/02/2015	1549.1531	1528.3198
07/01/2015	1593.5639	1592.8664	26/02/2015	1531.059	1533.4763
08/01/2015	1582.3597	1583.8139	27/02/2015	1550.6478	1549.6053
09/01/2015	1570.9908	1573.7290	28/02/2015	1552.4525	1548.3575
10/01/2015	1566.7571	1574.2725	01/03/2015	1553.1833	1551.7529
11/01/2015	1567.6068	1564.0486	02/03/2015	1557.4921	1555.4153
12/01/2015	1559.2332	1555.8189	03/03/2015	1566.0803	1559.3997
13/01/2015	1561.4715	1553.5688	04/03/2015	1560.6493	1559.3224
14/01/2015	1560.2327	1558.6521	05/03/2015	1561.4128	1555.3913
15/01/2015	1550.7541	1556.6166	06/03/2015	1542.6846	1557.4686
16/01/2015	1553.4301	1547.9360	07/03/2015	1540.8291	1537.7234
17/01/2015	1554.8695	1557.9708	08/03/2015	1540.5509	1530.3135
18/01/2015	1556.3462	1556.8359	09/03/2015	1542.5527	1536.4128
19/01/2015	1553.2222	1557.9127	10/03/2015	1536.2563	1537.7262
20/01/2015	1542.3069	1554.2309	11/03/2015	1529.2351	1537.2976
21/01/2015	1533.2178	1538.7852	12/03/2015	1535.1935	1527.3979
22/01/2015	1519.2672	1525.3532	13/03/2015	1518.7929	1529.2079
23/01/2015	1501.6503	1516.8995	14/03/2015	1519.115	1519.1343
24/01/2015	1497.9988	1496.9976	15/03/2015	1517.3675	1514.2711
25/01/2015	1491.3004	1497.3498	16/03/2015	1526.411	1517.7075
26/01/2015	1501.0423	1496.8724	17/03/2015	1517.9559	1525.1451
27/01/2015	1519.9624	1495.3134	18/03/2015	1521.8113	1521.0899
28/01/2015	1506.9836	1514.9308	19/03/2015	1507.6492	1519.0721
29/01/2015	1522.0839	1521.4637	20/03/2015	1511.8572	1511.8834
30/01/2015	1529.5241	1520.1513	21/03/2015	1513.807	1505.9325
31/01/2015	1533.8517	1527.8895	22/03/2015	1517.1241	1516.4686
01/02/2015	1540.4325	1528.8742	23/03/2015	1525.8408	1519.6051
02/02/2015	1529.2204	1532.5740	24/03/2015	1520.2203	1526.5501
03/02/2015	1535.4412	1533.8814	25/03/2015	1526.9219	1522.6773
04/02/2015	1523.025	1528.3709	26/03/2015	1514.9689	1524.2580
05/02/2015	1531.7279	1524.7965	27/03/2015	1522.9067	1516.5931
06/02/2015	1509.3388	1526.4405	28/03/2015	1522.1915	1519.5205
07/02/2015	1510.1184	1510.0912	29/03/2015	1521.2459	1524.3490
08/02/2015	1502.9263	1501.3854	30/03/2015	1520.8601	1520.4064
09/02/2015	1515.7618	1506.6110	31/03/2015	1516.1149	1520.0903
10/02/2015	1523.2385	1515.2972	01/04/2015	1506.2849	1515.3149
11/02/2015	1523.7132	1527.2951	02/04/2015	1509.0339	1504.9521
12/02/2015	1515.7651	1524.9059	03/04/2015	1512.6622	1505.3991
13/02/2015	1516.3187	1514.4262	04/04/2015	1511.4681	1513.6698

14/02/2015	1515.0659	1512.6768	05/04/2015	1520.3437	1514.3328
15/02/2015	1517.1538	1516.3482	06/04/2015	1514.91	1522.2368
16/02/2015	1514.992	1517.6861	07/04/2015	1500.6096	1521.1823
17/02/2015	1532.9727	1517.1627	08/04/2015	1497.9368	1502.4674
18/02/2015	1535.5013	1528.5486	09/04/2015	1481.6742	1498.6272
19/02/2015	1527.7996	1528.2116	10/04/2015	1468.7926	1495.9006