Il sistema più avanzato per un'esatta misurazione del calore

sensonic II

Indice

sensonic II – Tecnologia innovativa orientata al futuro	4
Scelta del contatore – versione orizzontale	6
Dati tecnici	7
Scelta del contatore – versione verticale	8
Dati tecnici	9
sensonic II – Panoramica	10
sensonic II – Versione compatta	11
Versione compatta con due sonde esterne – Dati tecnici	12
Versione compatta con una sonda integrata – Dati tecnici	13
Curve di perdita di carico sensonic II – Versione compatta	14
sensonic II calculator – Unità di calcolo	15
Dati tecnici	16
Sonde di temperatura	17
sensonic II – Cicli di visualizzazione	18
sensonic II – Apparecchi combinati	20
Contatori a ultrasuoni e Woltman	21
Dati tecnici contatori a contatto a turbina	22
Curve perdita di carico contatori a contatto a turbina	23
Dati tecnici contatori volumetrici a ultrasuoni	24
Curve perdita di carico contatori Woltman	25
sensonic II – Accessori	26
Supporto EAS	27
Pozzetti e manicotti a saldare	28
Valvole a sfera e componenti di montaggio	29
Installazione delle sonde di temperatura	30
Collegamento di sonde e volumetrica all'unità di calcolo	31
Esempi di installazione	32
Indicazioni di montaggio	34

Il contatore di calore sensonic II – Tecnologia innovativa orientata al futuro

Descrizione del funzionamento

La nuova generazione del contatore di calore sensonic II è disponibile in due versioni.

La versione compatta integra in un unico apparecchio unità di calcolo, volumetrica e sonde di temperatura.

La versione combinata si compone invece dell'unità di calcolo sensonic II calculator, della volumetrica sensonic II flow sensor e delle sonde di temperatura.

Sia i contatori di calore compatti che quelli in versione combinata sono funzionanti secondo l'affermato principio istameter, che garantisce elevata flessibilità in caso di ricambio.

La parte volumetrica del sensonic II ed il sensonic II flow sensor si basano sul principio di misura a turbina multigetto con rilevazione dei giri senza magneti. La tecnologia elettronica ed i materiali all'avanguardia utilizzati consentono una misurazione precisa ed affidabile nel tem-

Caratteristiche

po.

L'apparecchio compatto sensonic II e la parte volumetrica sensonic II flow sensor sono disponibili per le portate 0,6/1,5/2,5 m³/h. L'unità di calcolo sensonic II calculator è inoltre combinabile con contatori d'acqua con uscita a contatto del tipo a turbina e

Woltman, con portate da 0,6 m³/h a 250 m³/h.

La misura della differenza di temperatura tra mandata e ritorno avviene ogni 60 secondi. Sul display a cristalli liquidi vengono visualizzati tutti i dati rilevanti, suddivisi in cinque cicli di selezione.

Interfaccia

Oltre alla lettura diretta è possibile la comunicazione attraverso interfaccia ottica integrata per operazioni di programmazione e lettura.

Grazie all'interfaccia ottica, inoltre, tutti i contatori della serie sensonic possono essere integrati (all'installazione o successivamente) nel sistema radio 3 mediante optosonic (art. 19450).

Campo di applicazione

Il contatore compatto sensonic II è particolarmente indicato per la misura dei consumi in ambito domestico.

Nella versione combinata, invece, sensonic II è utilizzabile, grazie alla sua compatibilità con i contatori d'acqua con uscita a contatto per grandi portate, anche per grandi impianti di riscaldamento e per il teleriscaldamento.

Vantaggi

- Integrabile direttamente o successivamente nel sistema radio; in tal modo è possibile usufruire di servizi aggiuntivi di elaborazione dati
- Elevata affidabilità grazie all'innovativa tecnologia a microchip
- Semplice sostituzione grazie al principio istameter
- Batterie a lunga durata (10 anni)
- Resistenza all'usura e alla corrosione
- Realizzato con materiali di alta qualità, con design accattivante e dimensioni ridotte
- Alto grado di protezione contro polvere e spruzzi d'acqua
- Tasto sensore integrato
- Facilmente leggibile
- Protezione antimanomissione
- Certificazione costruttore ISO 9001
- Marchio CE, che assicura la compatibilità elettromagnetica in campo domestico e industriale
- Omologazione secondo direttiva MID (direttiva europea 2004/22/ CE recepita in Italia mediante D. Lgs. 2 Febbraio 2007, n.22)

Gamma di prodotti

ista ha sempre la soluzione giusta!

I contatori di calore della generazione sensonic II offrono, grazie alle due versioni ed alle diverse combinazioni possibili, molteplici soluzioni applicative.

Dall'apparecchio compatto per la misura del calore in ambito domestico, alla versione modulare in combinazione con diverse volumetriche, ai contatori d'acqua a turbina o Woltman con uscita a contatto, sono a vostra disposizione apparecchi equipaggiati con la più moderna elettronica.

Con l'aiuto delle tabelle di scelta riportate nelle pagine seguenti potete facilmente trovare il contatore di calore adatto per il vostro impianto.

I contatori rifiniti con materiale plastico ABS

sono di facile montaggio e sostituzione grazie al principio istameter.

È pertanto possibile la semplice sostituzione di apparecchi della vecchia generazione sensonic.

Grazie all'impiego di due diversi registri di energia sensonic II nella versione dual può essere utilizzato per la misura dei consumi di riscaldamento e di condizionamento estivo.

Alcune importanti precisazioni:

I contatori della gamma sensonic II possono essere utilizzati anche in presenza di acqua con glicole. In questo caso, al momento dell'ordine occorre precisare la percentuale di glicole presente nell'acqua, affinché il contatore possa essere opportunamente programmato. I contatori indicati in questo catalogo sono predisposti per essere installati sulla tubazione di ritorno dell'impianto di riscaldamento.

Se fosse necessario **installare i contatori sulla mandata** dell'impianto, vi preghiamo di segnalarlo al momento dell'ordine: vi verrà fornita la versione specifica.

Scelta del contatore – installazione orizzontale

Campo di misura secondo la direttiva UE 2004/22 EG Limite di avvio

Campo compl. di misura

Portata minima = q_i Portata nominale = q_p (il limite di separazione Q_t non è parte della certificazione)

Campo di misura secondo la direttiva PTB Limite di avvio

Campo inferiore di misura

Campo superiore di misura

Limite inferiore campo di misura = Q_{min}

Limite di separazione = Q_t

Portata nominale = Q_n

Dati tecnici

	ra		Volumet	riche							Unità di calcolo a microprocessore		
		ansilu.	÷ 5		C	Collegamento			a 1.1	Ë.	ura	_	٩٠ ح
Descrizione: vedi pagina	Principio di misura		Portata nomi- nale q _p in m³/h	Perdita di carico ∆p (in bar)	Filetto secondo ISO 228/1	Flangia secondo DIN 2501	istameter G 2 B	Diametro nom. DN in mm	Massima temperatura dell'acqua °C	Pressione nom. PN 16	Unità di misura visualizzata	Campo di temperatura O in °C	Diff. di tempe- ratura Ʃ in K
11		Turbina	0,6	0,16			•		0	•	Ę	0	0
	dei giri senza	multigetto (principio	1,5	0,22			•		15 – 90	•	0,1 kWh	5 – 150	- 100
	magnete	istameter)	2,5	0,24			•			•	o o	<u> </u>	m
20	Rilevamen-	ei giri multigetto za ma- (principio	0,6	0,16			•			•		5 – 150	0
	to dei giri senza ma-		1,5	0,22			•		06 – 90	•	0,1 kWh		- 100
	gnete		2,5	0,24			•		15	•	0,		m
24	Contatore	Woltman	15	0,07		•		50		•			
	con magneti a secco/		25	0,06		•		65		•	A N		
	contatto reed		40	0,1		•		80		•	0,001 MWh	C	0
	recu		60	0,1		•		100	130	•	0,0	. – 150	- 100
			100	0,06		•		125		•		7	Ř
			150	0,14		•		150		•	0,1 MWh		
			250	0,03		•		200		•	0 \{		

Scegliete così il contatore di calore adatto:

Decisiva per la scelta del contatore di calore giusto è la portata di progetto, ossia la quantità teorica minima e massima di acqua in circolo.

La portata massima possibile deve essere uguale o minore della portata nominale (Qn) consentita.

La portata minima deve essere maggiore al

limite inferiore del campo di misura (Qmin). Se necessario devono essere installati organi di regolazione come distributori/collettori, valvole di taratura, valvole di miscela o di by-pass.

Utilizzate così le tabelle di pagina 6:

Passate in senso verticale, partendo dalla portata di progetto calcolata, verso il basso

finché non trovate la "barra" blu o azzurra di un contatore di calore.

Se trovate più barre blu, i seguenti criteri saranno decisivi: tipo di costruzione del contatore di calore, perdita di carico della parte idraulica, minima portata possibile, prezzo.

Scelta del contatore – installazione verticale

Campo di misura secondo la direttiva **UE 2004/22 EG**

Limite di avvio Campo compl. di misura Portata minima $= q_i$ Portata nominale = q_p (il limite di separazione Q, non è parte della certificazione)

Campo di misura secondo la direttiva **PTB**

Limite di avvio Campo inferiore di misura Campo superiore di misura Limite inferiore campo di misura = Q_{min} Limite di separazione

Portata nominale

= Q, = Q,

Dati tecnici

		ro.	Volumet	riche							Unità di d	alcolo a m	nicropr.	
			:= £		Collegamento			Ë.	∞ U	m.	ura	Ė	å z	
Descrizione: vedi pagina	Principio di misura		Portata nomi- nale q _p in m³/h	Perdita di carico ∆p (in bar)	Filetto secondo ISO 228/1	Flangia secondo DIN 2501	istameter G 2 B	Diametro nom. DN in mm	Massima temperatura dell'acqua °C	Pressione nom. PN 16	Unità di misura visualizzata	Campo di tem- peratura O in °C	Diff. di tempe- ratura ΔΘ in K	
11	Rilevamento		0,6	0,16					06	•	Ę	0	0	
	dei giri senza	multigetto (principio	1,5	0,22			•		15 – 9	•	0,1 kWh	5 – 150	3 – 100	
	magnete istameter)	2,5	0,24			•			•	O O		m		
20	Rilevamento		0,6	0,16			•		06	•	Æ	0	0	
	dei giri senza	multigetto (principio istameter)	1,5	0,22			•		15 – 9	•	0,1 kWh	5 – 150	- 100	
	magnete		2,5	0,24			•		_	•	0		m	
24	Contatore	Woltman	15	0,07		•		50		•				
	con magneti		25	0,06		•		65		•	Wh			
	a secco/ contatto		40	0,1		•		80		•	0,001 MWh	0	0	
	reed		60	0,1		•		100	130	•	0,0	5 – 150	100	
			100	0,06		•		125		•		īV	m	
			150	0,14		•		150	-	•	0,1 MWh			
			250	0,03		•		200		•	 			

Scegliete così il contatore di calore adatto:

Decisiva per la scelta del contatore di calore giusto è la portata di progetto, ossia la quantità teorica minima e massima di acqua in circolo.

La portata massima possibile deve essere uguale o minore della portata nominale (Qn) consentita.

La portata minima deve essere maggiore al

limite inferiore del campo di misura (Qmin). Se necessario devono essere installati organi di regolazione come distributori/collettori, valvole di taratura, valvole di miscela o di by-pass.

Utilizzate così le tabelle di pagina:

Passate in senso verticale, partendo dalla portata di progetto calcolata, verso il basso

finché non trovate la "barra" blu o azzurra di un contatore di calore.

Se trovate più barre blu, i seguenti criteri saranno decisivi: tipo di costruzione del contatore di calore, perdita di carico della parte idraulica, minima portata possibile, prezzo.

sensonic II - visione d'insieme

La gamma dei contatori di calore sensonic II comprende una versione compatta, una modulare ed un gran numero di accessori.

L'impiego dell'affermato principio istameter offre la più elevata flessibilità; le due versioni dei contatori, con diverse combinazioni possibili, forniscono molteplici soluzioni applicative nell'ambito della misura del calore.

La misurazione precisa e stabile nel tempo è garantita dal rilevamento elettronico della rotazione della girante. La rilevazione è particolarmente affidabile nel tempo grazie all'impiego di materiali resistenti alla corrosione.

Il microchip integrato elabora il consumo di calore tramite valori di misura mediati nel tempo e diverse costanti per il fluido termovettore.

Il valore di consumo complessivo viene riportato sul display a cristalli liquidi. Cinque cicli di visualizzazione consentono di richiamare con semplicità tutti i valori desiderati. Il display è normalmente in stand-by. Esso viene attivato sfiorando il tasto sensore, allo scopo di preservare la durata della batteria di alimentazione (fino a 10 anni).

La misurazione della differenza di temperatura avviene, indipendentemente dalla portata, ogni 60 secondi. I valori massimi di potenza e portata vengono attualizzati automaticamente ogni 15 minuti.

sensonic II – versione compatta

Il contatore di calore compatto comprende unità di calcolo, volumetrica e sonde di temperatura. sensonic II dispone nella versione standard di una sonda di temperatura di ritorno integrata, e di una sonda di mandata esterna. Il contatore è disponibile anche con entrambe le sonde esterne, per installazione nelle tubazioni e non nel pozzetto integrato nell'apparecchio.

Un cavo di 30 cm di lunghezza tra l'unità di calcolo e la volumetrica permette, in entrambe le varianti, di montare l'unità di calcolo separatamente in modo molto semplice.

sensonic II può essere montato su tutti i supporti ista.

Le dimensioni compatte del sensonic rendono possibile un agevole montaggio anche nelle situazioni più difficoltose.

Per agevolare la lettura, la cassa dell'apparecchio può essere ruotata a piacere, oppure essere

rimossa dalla base e montata sull'apposito supporto (art. 45221)..

Il sensonic II è un contatore a turbina multigetto, nel quale la rotazione della girante viene rilevata elettronicamente. Grazie al principio di adduzione multigetto del fluido termovettore, la spinta dello stesso sulla girante è ripartita in modo uniforme e ciò garantisce elevata stabilità della misura per tutta la durata di vita dell'apparecchio.

sensonic II – apparecchio compatto con 2 sonde esterne Dati tecnici

Apparecchi con due sode esterne con certificazione MID (installazione simmetrica delle sonde)		senson	nsonic II 0,6 sensonic II 1,5			sensonic II 2,5				
Lunghezza sonda mandata	m	1,5	3,0	1,5	3,0	1,5	3,0			
Lunghezza sonda ritorno	m	1,0	1,0	1,0	1,0	1,0	1,0			
ArtNr.		59152	59158	59154	59160	59156	59161			
Parte volumetrica dati validi anche per sensonic II flow sensor										
Portata nominale q _p m³/h		0	,6	1	,5	2,	5			
Perdita di carico* Δp con q _p	bar	0,	16	0,	.23	0,2	24			
Campo di misura inferiore q _i	l/h	12		30		50				
Valore d'avvio - montaggio orizzontale	l/h	3		5		7				
Valore d'avvio - montaggio verticale	l/h	4 7				10)			
Pressione nominale PN	bar			1	6					
Valori limite del campo di temperatura	θ			15-	-90					
Tratti rettilinei in ingresso e uscita		Non necessari; si ricorda di rispettare le norme UNI-EN 1434/6								
Unità di calcolo a microprocessore										
Valori limite del campo di temperatura ⊖				5-	150					
Valori limite della differenza di temperatura ΔΘ				3-	100					
Esclusione conteggio per differenza di temperatura	K			<	0,2					
Sensibilità di misura	K			< (),01					
Coefficiente termico K			in funzio	one delle vari	azioni di tem	peratura				
Temperatura ambiente	°C			5-	-55					
Condizioni ambiente			in	accordo a DII	N EN 1434 E1/	M2				
Visualizzazione del consumo di calore	kWh			8 cifre di cui	un decimale					
Alimentazione		batteria incorporata avente durata fino 10 anni								
Protezione		IP 54 secondo EN 60529								

Combinazione con EAS Rp 3/4.

Accessori

45221 Adattatore per montaggio a parete 45222 Adattatore come sopra - con magnete sensonic II con due sonde esterne

sensonic II – apparecchio compatto con 1 sonda integrata Dati tecnici

Apparecchi con sonda di ritorno integrata (con certificazione MID (installazione asimmetrica delle sonde)		senson	ic II 0,6	sensor	nic II 1,5	sensonic II 2,5				
Lunghezza sonda mandata	m	1,5	3,0	1,5	3,0	1,5	3,0			
Lunghezza sonda ritorno	m	0,4	0,4	0,4	0,4	0,4	0,4			
ArtNr.		59120	59123	59121	59124	59122	59125			
Parte volumetrica dati validi anche per sensonic II flow sensor										
Portata nominale Q_n m ³ /h		0	,6	1	,5	2,	5			
Perdita di carico* Δp con Q _n	bar	0,16 0,23				0,2	24			
Campo di misura inferiore Q _{min}	l/h	1	2	3	30		500			
Valore d'avvio - montaggio orizzontale	l/h	:	3	-	5		7			
Valore d'avvio - montaggio verticale	l/h	4 7				10)			
Pressione nominale PN	bar			1	6					
Valori limite del campo di temperatura	θ			15-	-90					
Tratti rettilinei in ingresso e uscita		Non necessari; si ricorda di rispettare le norme UNI-EN 1434/6								
Unità di calcolo a microprocessore										
Valori limite del campo di temperatura ⊖				5–	150					
Valori limite della differenza di temperatura ΔΘ				3-	100					
Esclusione conteggio per differenza di temperatura	K			<	0,2					
Sensibilità di misura	K			< (),01					
Coefficiente termico K			in funzio	one delle vari	azioni di tem	peratura				
Temperatura ambiente	°C			5-	-55					
Condizioni ambiente			in corr	ispondenza a	DIN EN 1434	E1/M2				
Visualizzazione del consumo di calore	kWh			8 cifre di cui	un decimale					
Alimentazione		batteria incorporata avente durata 10 anni								
Protezione				IP 54 second	do EN 60529					

Combinazione con EAS Rp 3/4.

Accessori

45221 Adattatore per montaggio a parete 45222 Adattatore come sopra - con magnete

sensonic II con sonda di ritorno integrata

Curve di perdita di carico sensonic II – apparecchio compatto

Perdita di carico a Q_n/q_ρ

 $1 = Q_n/q_n = 0.6 \text{ m}^3/\text{h}$

 $2 = Q_n/q_p$ 1,5 m³/h

 $3 = Q_n/q_p 2,5 \text{ m}^3/\text{h}$

Valori validi sia per i contatori con sonda di ritorno integrata che per i contatori con due sonde esterne.

sensonic II calculator – unità di calcolo

Nella versione combinata, l'unità di calcolo sensonic Il calculator può essere abbinata a diverse volumetriche e a sonde di temperatura aventi diverse lunghezze.

L'unità di calcolo è disponibile con tre differenti valori di impulso: 1/25/250 litri/impul-

so. Il sensonic Il calculator Tx può essere programmato con un valore di impulso diverso in fase di produzione, pertanto tale valore deve essere specificato al momento dell'ordine, in accordo con le caratteristiche di impulso della volumetrica a cui deve essere abbinato.

La base di montaggio del sensonic calculator ha le stesse dimensioni di quella della precedente versione rendendo così possibile la sostituzione dell'unità di calcolo in modo molto semplice.

sensonic II calculator – dati tecnici

Tipo apparecchio		sensonic II calculator T1	sensonic II calculator T25	sensonic II calculator T250	sensonic II calculator Tx				
ArtNr.		59135	59136	59137	59138				
Tecnica di collegamento sonde		2 fili/4 fili	2 fili/4 fili	2 fili/4 fili	2 fili/4 fili				
Valore impulso in entrata	l/Impulso	1	25	250	X*				
Visualizzazione del consumo di calore		0,1 kWh	0,001 MWh	0,1 MWh	Variabile**				
Valori limite del campo di temperatura	θ	5–150							
Valori limite della diff. di temperatura ΔΘ	K		3–	100					
Esclusione differenza di temperatura	K		<	0,2					
Sensibilità di misura	K		< (),01					
Coefficiente termico K			in funzione delle vari	azioni di temperatura					
Temperatura ambiente	°C		0-	-55					
Condizioni ambiente		Secondo DIN EN 1434 classe E1/M2							
Alimentazione		Batteria fino a 10 anni - incorporata							
Protezione		IP 54 secondo EN 60529							

Tutte le unità di calcolo ista sensonic II calculator sono omologate secondo la direttiva europea MID 2004/22/EG. Sono abbinabili a tutte le volumetriche e le sonde fornite da ista, indipendentemente dal fatto che abbiano approvazione nazionale PTB o MID.

- 'Il sensonic calculator Tx ha un valore di impulso programmabile su richiesta. Specificare al momento dell'ordine il valore d'impulso desiderato.
- " L'unità di misura con cui vengono visualizzati i dati dipende dal valore dell'impulso.

sensonic II calculator

Dimensioni in mm: L = 134/B = 93/H = 35

sensonic II – sonde di temperatura

Le temperature di mandata e ritorno vengono misurate con sonde di temperatura al platino per garantire la massima precisione nella determinazione della differenza di temperatura.

Negli apparecchi combinati, le sonde non sono direttamente collegate alla unità di calcolo, ma devono essere ordinate separatamente e collegate. Le sonde di temperatura sono disponibili con cavo di collegamento a 2 fili e lunghezza pari a 3 metri, oppure con cavo a 4 fili e lunghezza 10 metri.

L'installazione delle sonde di temperatura può avvenire per immersione diretta o mediante portasonde a pozzetto.

Coppia di sonde di temperatura

Тіро		Sonde di temp	Sonde di temperatura Pt 500						
Codice articolo secondo direttiva MID (2004/22/CE)		59142	59143						
Lunghezza	m	3	10						
Tecnica di collegamento		2 fili	4 fili						
Termoresistenza al platino		Secondo DIN	I IC 751 Pt 500						
Valori limite del campo di temperatura	°C	0–150							
Montaggio sonde		Ø 5 mm, a immersione	diretta o in portasonde						

sensonic II - cicli di visualizzazione

Il sensonic II dispone di un display a cristalli liquidi ad otto cifre con diverse indicazioni supplementari. L'attivazione del display avviene tramite sfioramento del tasto sensore. Con brevi pressioni del tasto, è possibile visualizzare le varie schermate all'interno di un ciclo. Premendo il tasto più a lungo, (più di 2 secondi) si passa invece da un ciclo di vi-

sualizzazione al successivo. Al fine di preservare la durata di vita della batteria, l'indicazione viene disattivata automaticamente dopo 60 secondi dall'ultima pressione del tasto sensore. Tutti i dati rilevanti sono rappresentati suddivisi in cinque cicli di visualizzazione: misure, diagnosi, dati tecnici, statistiche, tariffe.

I valori di misura vengono visualizzati sul display con 8 cifre; le cifre decimali sono evidenziate da una cornice che le comprende. Alcune funzioni del display (indicazioni specifiche) sono visualizzate solo per particolari applicazioni. Esse sono altrimenti visibili solo all'atto del test dei segmenti che viene eseguito dopo l'attivazione del display.

Dodici valori di fine mese: il display visualizza in successione i valori di energia dei precedenti fine mese.

Dodici valori di fine mese: il display visualizza in successione i valori di potenza massima e portata massima dei precedenti fine mese.

Lista di controllo m	Lista di controllo messaggi di errore									
Errore C	calculator (Hardware): guasto generico dell'elettronica									
Errore t	sonde di temperatura: guasto della/e sonda/e									
Errore F	flow sensor: errore nel rilevamento del volume									

sensonic II – apparecchi combinati

L'unità di calcolo può essere abbinata a diverse volumetriche: sensonic II flow sensor, contatori a ultrasuoni o contatori Woltman.

Combinazione con la volumetrica: sensonic II flow sensor

Con queste volumetriche multigetto a turbina, costruite secondo il principio istameter, ista offre grande flessibilità e sicurezza. Grazie al rilevamento elettronico della rotazione della girante, viene garantita una misurazione esatta e puntuale.

Volumetrica flow sensor*

ArtNr.	Q _n in m³/h	Abbinabile a	Risultato			
59132	0,6	sensonic II T1	WMZ	0,6	_	0,6/T1
59133	1,5	sensonic II T1	WMZ	1,5	_	1,5/T1
59134	2,5	sensonic II T1	WMZ	2,5	_	2,5/T1

Dati tecnici: v. pag. 12 - parte volumetrica.
Dimensioni: v. pag. 23..

Contatori a ultrasuoni e Woltman

	Q _{max} in m³/h		Q _p in m³/h	Abbinabile a:
	1,2	_	0,6	sensonic II T1
	3	_	1,5	sensonic II T1
	5	_	2,5	sensonic II T1
	7	_	3,5	sensonic II T1
Grandezza	12	_	6	sensonic II T1
Granuezza	20	_	10	sensonic II T25
	30	_	15	sensonic II T25
	50	_	25	sensonic II T25
	80	_	40	sensonic II T25
	120	_	60	sensonic II T25

Combinazione con contatori a ultrasuoni

La volumetrica del contatore ad ultrasuoni è in ottone, senza parti in movimento. Due opposti trasduttori, di invio e di ricezione, inoltrano segnali a ultrasuoni alternativamente con e contro la direzione del flusso dell'acqua.

Misurando con esattezza la differenza tra i due tempi di transito, si possono calcolare la velocità del flusso e quindi la portata ed il volume

Un impulso proporzionale al volume inoltra poi queste informazioni all'unità di calcolo collegata.

I contatori sono disponibili in versione filettata, oppure flangiata e possono essere montati in tubazioni orizzontali, verticali ascendenti o discendenti oppure oblique.

	DN in mm		Q _n in m³/h	Abbinabile a
	50	-	15	sensonic II T25
	65	_	25	sensonic II T25
	80	_	40	sensonic II T25
Grandezza	100	_	60	sensonic II T25
	125	_	100	sensonic II T25
	150	_	150	sensonic II T250
	200	_	250	sensonic II T250

Combinazione con contatori a contatto Woltman

Questi contatori con funzionamento completamente a secco sono dotati di contatore a rulli incapsulato ermeticamente. Per facilitare la lettura l'unità di calcolo può essere ruotata di quasi 360°.

I contatori sono disponibili nella versione WS per il montaggio orizzontale e nella versione WP per il montaggio verticale e orizzontale.

Dati tecnici Contatori volumterici a ultrasuoni

 $Contatori\ FILETTATI-PN: 16\ bar,\ t_{max}: 90°C\ per\ installazione\ orizzontale;\ 105°C\ per\ installazione\ verticale\ o\ orizzontale\ capovolta$

Cod. a	articolo - v. Figura 1		77655	77656	77658	77657	77682	77661	77660	77664	77667	77663	77666	77668
Cod. a	articolo - set bocchettoni		17031	17031	17030	17031	17032	17033	17033	17033	17034	17033	17034	17035
Porta	ta nominale Q _p	m³/h	0,6	1,5	1,5	1,5	2,5	3,5	3,5	6	6	6	6	10
Perdi	ta di carico a Qp	mbar	85	75	75	75	100	44	44	128	128	128	128	95
Porta	ta minima Q _i	I/h	6	15	15	15	25	35	35	60	60	60	60	100
Limit	e di avvio Q _t	l/h	1	2,5	2,5	2,5	4	7	7	7	7	7	7	20
Valor	e di sovraccarico	m³/h	2,5	4,6	4,6	4,6	6,7	18,4	18,4	18,4	18,4	18,4	18,4	20
Peso		kg	0,60	0,60	0,60	0,60	0,63	0,93	1,35	0,93	1,08	0,88	1,35	2,60
Valor	e impulso	l/imp	1	1	1	1	1	1	1	1	1	1	1	25
Abbir	nabile a sensonic II calcula	tor	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T25
Dime	nsioni d'ingombro													
	Lunghezza L	mm	110	110	150	165	190	150	260	150	150	260	260	300
	Lunghezza L2	mm	190	190	250	245		270	380	270	270	380	380	440
	Altezza H	mm	14,5	14,5	14,5	14,5	18	23	23	23	23	23	23	33
_	Altezza H1	mm	54,5	54,5	54,5	54,5	56,6	61,0	61,0	61,0	61,0	61,0	61,0	66,5
Figura	Lunghezza L1	mm	90	90	90	90	90	90	90	90	90	90	90	90
<u>ië</u>	Profond. elettr.onica	mm	65,5	65,5	65,6	65,5	65,5	65,5	65,5	65,5	65,5	65,5	65,5	65,5
	Filetto al contatore													
	secondo ISO 228/1		G3/4B	G3/4B	G1B	G3/4B	G1B	G11/4B	G11/4B	G11/4B	G11/2B	G11/4B	G11/2B	G2B
	Filetto dei bocchettoni													
	secondo DIN 2999	"	R 1/2	R 1/2	R 3/4	R 1/2	R 3/4	R 1	R 1	R 1	R 11/4	R 1	R 11/4	R 11/2

^{&#}x27;Sono disponibili anche contatori da 2,5 m³/h aventl lunghezza 130 mm, contatori 3,5 e 6 m³/h aventi lunghezza 135 mm e contatori da 10 m³/h aventi lunghezza 200 mm

Contatori FLANGIATI - PN: 16 bar, t_{max}: 90°C per installazione orizzontale; 105°C per installazione verticale o orizzontale capovolta

Cod. ar	ticolo - v. Figur2 /3		77671	77672	77673	77674	77675	77676	776777	77679	77680	77681
Portata	a nominale Q _p	m³/h	0,6	1,5	2,5	3,5	6	10	15	25	40	60
Perdita	di carico a Q	mbar	85	75	100	44	128	95	80	75	80	75
Portata	a minima Q _i	I/h	6	15	25	35	60	100	150	250	400	600
Limite	di avvio Q _t	l/h	1	2,5	4	7	7	20	40	50	80	120
Valore	di sovraccarico	m³/h	2,5	4,6	6,7	18,4	18,4	24	36	60	90	132
Peso		kg	2,70	2,70	2,70	3,35	3,35	6,60	6,31	8,08	10,01	15,76
Valore	impulso	l/imp	25	25	25	25	25	25	25	25	25	25
Abbina	abile a sensonic II calcula	ntor	T25	T25	T25	T25						
Dimen	sioni d'ingombro											
	Diametro nominale	DN	20	20	20	25	25	40	50	65	80	100
	Lunghezza L	mm	190	190	190	260	260	300	270	300	300	360
	Altezza H	mm	47,5	47,5	47,5	50,0	50,0	69,0	73,5	85,0	92,5	108,0
	Altezza H1	mm	56,5	56,5	56,5	61,0	61,0	66,5	71,5	79,0	86,5	96,5
2/3	Lunghezza L1	mm	90	90	90	90	90	90	90	90	90	90
Figure	Profond. elettronica	mm	65,5	65,5	65,5	65,5	65,5	65,5	65,5	65,5	65,5	65,5
<u> </u>	Dim. flangia F	mm	95	95	95	100	100	138	147	170	185	216
	Diametro flangia D	mm	105	105	105	114	114	148	163	184	200	235
	Numero fori flangia		4	4	4	4	4	4	4	8	8	8
	Diametro K	mm	75	75	75	85	85	110	125	145	160	180
	Diametero fori D1	mm	14	14	14	14	114	18	18	19	19	19

Curve di perdita di carico Contatori volumetrici a ultrasuoni

Alcune caratteristiche tecniche:

Alimentazione batteria al litio 3V Pressione nominale PN 16 Ciclo di vita fino a 10 anni + 1 anno riserva Materiale volumetrica da q_p 0,6 a q_p 10: ottone da $q_{_{D}}$ 15 a $q_{_{D}}$ 60: ghisa grigia +1 anno magazzino Interfacce uscita impulsiva Open-Collector Valore impulso vedi targhetta Posizione di installazione arbitraria da q_p 0,6 a q_p 6: 1 l/impulso da q 10 a q 60: 25 l/impulso Tratti rettilinei richiesti nessuno 1:100 tra 1 ms e 250 ms, a seconda Classe metrologica **Durata** impulso orizzontale: da 5 °C a 90 °C Range di temperatura del valore dell'impulso e Obliquo, ascendente e discendente: della portata nominale da 5 °C a 105 °C Lunghezza cavo 2.4 m

Figura 1 Figura 2 Figura 3

Dati tecnici Contatori a contatto Woltman

Contatori a contatto Woltman flangiati

PN = 16 bar, $t_{max} = 130$ °C

Cod. arti	icolo - versione orizzontale WS		18757	18836	18759	18761	18763	18765*	18766	18768*
Cod. articolo - set tronchetto e bocchettoni			17040	17040	17060	17041	17042	17061	17043	17044
Cod. arti	icolo - versione ascendente WP		18758		18760	18762	18764	18765	18767	18768
Cod. arti	icolo - versione discendente WP		18758		18760	18762	18764	18765	18767	18768
Cod. arti	icolo - set tronchetto e bocchettoni		17045		17059	17046	17047	17061	17048	17044
Portata r	nominale Q	m³/h	15	15	25	40	60	100	150	250
<u>. a</u>	Perdita di carico Δp a Q _n	bar	0,07	0,04	0,06	0,1	0,1	0,06	0,14	0,01
ione	Limite inferiore di misura Q _{min}	m³/h	0,25	0,3	0,3	0,3	0,5	3,5	0,8	8
Versione orizzontale	limite di separazione Q _t	m³/h	1,5	1,5	2,5	2,5	4	8	12	20
_ o	Peso	kg	13,5	13,9	17,5	19,5	32,5	21	91,5	51
ee/ te	Perdita di carico Δp a Q္n	bar	0,015		0,034	0,03	0,03	0,06	0,025	0,01
ione Jent den	Limite inferiore di misura Q _{min}	m³/h	0,6		1	1,4	2	3,5	4,5	8
Versione ascendente/ discendente	limite di separazione Q _t	m³/h	1,8		2	3,2	4,8	8	12	20
	Peso	kg	8		10	14	18	21	36	51
Valore in	npulso	l/Impulso	25	25	25	25	25	25	250	250
	ile all'unità di calcolo sensonic II oni d'ingombro*		T25	T25	T25	T25	T25	T25	T250	T250
	o nominale	DN	50	50	65	80	100	125*	150	200*
1 or	Lunghezza L	mm	270	270	300	300	360	250	500	350
Figura 1 Versione WS	Altezza H/h	mm	151/80	195/84	161/100	161/100	191/110	106/46	301/180	206/162
Ē, ē	Larghezza (non indicata in figura)	mm	170	165	200	200	260	250	320	340
2 ne	Lunghezza L	mm	200		200	225	250	250	300	350
Figura 2 Versione WP	Altezza H/h	mm	120/73		120/85	150/95	150/105	160/118	117/135	206/162
	Larghezza (non indicata in figura)	mm	175		185	200	220	250	285	340
Diametro	o flangia	D	165	165	185	200	220	250	285	340
Diametro	o cerchio forato	D1	125	125	145	160	180	210	240	295
Numero	delle viti/filetti		4/M16	4/M16	4/M16	8/M16	8/M16	8/M16	8/M20	12/M20

Tutti i contatori sono omologati secondo PTB.

I valori indicati per Q_t e Q_{min} sono dati di prestazione che superano di molto le richieste delle classi metrologiche A e B. Per i contatori Woltman deve essere predisposta prima del contatore, nella direzione del flusso, una sezione avente lunghezza pari ad almeno tre volte il diametro nominale ad ogni modo fare rifermento alle prescrizioni e istruzioni di montaggio allegate al contatore.

Figura 1 (Tipo WS)

Figura 2 (Tipo WP)

^{*} Disponibile solo come WP.

WS = Woltman per installazioneorizzontale

WP = Woltman per ogni tipo di installazione

Curve di perdita di carico Contatori a contatto Woltman

sensonic II – accessori

sensonic II

Versione compatta

Versione combinata

Accessori

Supporto EAS Rubinetti sfera Pozzetti Manicotti a saldare Attrezzi speciali

Oltre alla nostra vasta gamma di apparecchi, è disponibile, ovviamente, anche un vasto assortimento di accessori. Dai supporti EAS per l'installazione dei contatori costruiti secondo il principio istameter, ai pozzetti per l'installazione delle sonde di temperatura, ai manicotti a saldare o agli opportuni accessori speciali: vi offriamo la più adeguata soluzione per ogni situazione.

Supporto EAS	Attacco	Lunghezza	Codice articolo		
			Ottone	Bronzo	
EAS con 2 valvole a sfera integrate	Rp 3/4	157 mm		14450	
(con presa per la sonda di ritorno)	Rp 1	169 mm		14451	
EAS con chiusura (non presente nella foto)	Rp 3/4	105 mm	14949		
(con 1 valvola a sfera integrata)	Rp 1	105 mm	14950		
EAS con attacco a pressione	15 mm	145 mm		14008	
	18 mm	145 mm		14009	
	22 mm	145 mm		14010	
EAS con filettatura esterna	G 3/4 B	110 mm	14103		
	G1B	105 mm	14403		
	G1B	130 mm	14414	14404	
	G1B	190 mm		14408	
EAS con filettatura interna	Rp 1/2	94 mm	14000	14011	
	Rp 3/4	100 mm	14100	14012	
EAS a saldare	15 mm	94 mm	14200		
	18 mm	100 mm	14300		
	22 mm	105 mm	14000		
	28 mm	190 mm		14402	

Supporti EAS

I supporti EAS possono essere installati orizzontalmente e verticalmente in tutti i comuni tipo di tubazioni .

Gli EAS sono disponibili in ottone oppure in parte anche nella versione di alta qualità in bronzo.

I supporti sono permanentemente collegati all'impianto dove vengono installati. Tutti i contatori di calore della serie sensonic II, funzionanti secondo il principio istameter, possono essere facilmente montati su tali supporti. Prima del montaggio, o dopo lo smontaggio del contatore, viene avvitata sul supporto EAS una calotta di chiusura: ciò permette la messa in pressione dell'impianto ed il lavaggio delle tubazioni.

EAS con 2 valvole a sfera integrate (con presa per la sonda di ritorno)*

EAS con attacco a pressione*

EAS con filettatura esterna*

EAS con filettatura interna*

EAS a saldare*

*Tutte le dimensioni indicate sono in mm.

Pozzetti e manicotti a saldare

I pozzetti ista per il rilevamento della temperatura possono essere installati direttamente ad immersione. Possono essere forniti singolarmente o con il relativo tronchetto a saldare.

Pozzetto 5 mm*

Pozzetto con sonda di temperatura

Diametro (DN) tubo	Lunghezza pozzetto	Codice articolo
32-40 mm	50 mm	18391
50–120 mm	80 mm	18392
150–300 mm	150 mm	18393

Dimensioni in mm.

Valvole a sfera e componenti di montaggio

Le sonde di temperatura possono essere installate direttamente a bagno utilizzando le valvole a sfera.

Se vengono installate opportune valvole a sfera per la chiusura del passaggio dell'acqua in mandata e in ritorno, è poi possibile sostituire facilmente il contatore di calore.

Caratteristiche:

- Valvole a sfera per impianti per acqua calda e riscaldamento con attacco per la sonda M 10 x 1.
- Comando a farfalla in metallo con fermo, sfera cromata con guarnizione in teflon e perno di manovra con doppio o-ring di tenuta.
- Realizzazione in ottone nichelato, con filettatura interna su entrambi i lati.

Valvola a sfera con ingresso filettato per la sonda di temperatura

Dati tecnici

Pres-	Temperatura max.		Filettatura interna	Attacco alla	
sione max.	costante	per breve tempo	in entrambi i lati	sonda	
25 bar			Rp 1/2; Rp 3/4; Rp 1 secondo DIN ISO 228	M 10 x 1 mm	

Attrezzi	Articolo
Chiave a gancio, piccola	80008
Chiave a gancio, grossa	80518

Installazione delle sonde di temperatura

Installazione della sonda direttamente nella valvola a sfera

Montaggio della sonda nel pozzetto in tubazione rettilinea

La corretta installazione delle sonde di temperatura nella linea di mandata e di ritorno dell'impianto di riscaldamento è di fondamentale importanza per il processo di misura

Pertanto si raccomanda di scegliere correttamente la lunghezza dei pozzetti che a sua volta dipende dal diametro della tubazione. Le sonde di temperatura vengono installate in posizione inclinata e comunque in direzione contraria a quella di flusso. Al termine dell'installazione si ricorda di piombare sonde, volumetrica e centralina per assicurare che non vengano manomesse in rispetto alla normativa vigente.

Per una corretta installazione delle sonde di temperatura, occorre fare riferimento alla normativa UNI EN 1434 parte sesta.

Montaggio della sonda nel pozzetto in tubazione curva a 90°

Collegamento di sonde e volumetrica all'unità di calcolo

Collegamento sonde a due fili

Indicazioni

- 1 sonda di ritorno
- 2 sonda di mandata.
- 3 cavo volumetrica flow sensor
- 4 cavo volumetrica Woltman
- 5 cavo volumetrica a ultrasuoni

Legenda colori:

bl = blu

br = marrone

ge = giallo

gn = verde

ws = bianco

Collegamento sonde a quattro fili

Collegamento volumetriche

Collegamenti:

Sonde a due fili: collegare i fili blu ai morsetti 4 e 8; collegare i fili marrone ai morsetti 5 e 9

Sonde a quattro fili: collegare i fili marrone ai morsetti 3 e 7; collegare i fili gialli ai morsetti 4 e 8; collegare i fili verdi ai morsetti 5 e 9; collegare i fili bianchi ai morsetti 6 e 10..

Collegamento sensonic flow sensor (3): collegare il filo bianco al morsetto 1; collegare il filo verde al morsetto 2; non collegare e non isolare il filo marrone.

Collegamento volumetrica Woltman (4): collegare il filo marrone/nero al morsetto 1; collegare il filo nero al morsetto 2; non collegare e non isolare l'eventuale filo giallo.

Collegamento volumetrica a ultrasuoni (5): collegare il filo blu al morsetto 1; collegare il filo bianco al morsetto 2.

Collegamento delle volumetriche

Esempi di installazione

Per la corretta installazione dei contatori di calore, fare sempre riferimento alla norma UNI 1434 parte sesta.

Gruppo di regolazione

Esempio di un gruppo di regolazione completo

- 1 Volumetrica del contatore installata sul ritorno, tratto più freddo. Normalmente dovrebbero essere presenti dispositivi di intercettazione.
- Sensore temperatura di ritorno inserito in un tratto con buona miscelazione dell'acqua, immediatamente dopo il contatore.
- 3 Sensore temperatura di mandata in un tratto con buona miscelazione dell'acqua, dopo la pompa di circolazione.

- 4 Valvola limitatrice di portata per garantire una portata maggiore del Q_{min} .
- 5 Valvola di regolazione della portata (o di bilanciamento) a volume costante per impostare la differenza di temperatura desiderata.

Gruppi di riscaldamento

Esempi di due gruppi di riscaldamento con radiatori ed impianto a pavimento

I contatori di calore sono montati nel circuito di utilizzo, nel quale la pompa di circolazione fornisce una quantità d'acqua costante. La valvola limitatrice può essere eliminata se viene controllato il flusso massimo di regolazione. Le condizioni di funzionamento dei due circuiti sono diverse. per la scelta dei contatori di calore bisogna tenere presente che la portata è bassa per i radiatori e alta per il riscaldamento a pavimento.

N.B.:

I contatori di calore illustrati in questo catalogo sono predisposti per l'installazione nel ritorno dell'impianto di riscaldamento. Se necessario, è possibile chiedere la versione da installare nella mandata.

Nel caso in cui all'interno dell'impianto di riscaldamento circolasse acqua mista a glicole, vi ricordiamo di precisarne le percentuali in fase di ordine, così che il contatore venga opportunamente programmato.

In ogni caso, si consiglia sempre l'installazione di un filtro a monte del contatore di calore per evitare che eventuali particelle presenti nell'acqua possano entrare nella volumetrica del contatore e causarne il blocco.

Caloriferi

Esempio di un unico circuito d'utenza

Misurazione del consumo di calore di un utente all'interno di una unità abitativa. I singoli radiatori sono collegati ad una linea ad anello.

Impianto di riscaldamento

Esempio di riscaldamento con scambiatore di calore

Una prima possibilità consiste nell'effettuare la misura prima dello scambiatore di calore; in questo caso si tiene conto anche delle perdite nello scambiatore che si verificano anche ad elevate pressioni e temperature.

Un'altra possibilità di misurazione consiste nell'inserire l'apparecchio dopo lo scambiatore di calore, installandolo nel circuito d'utenza. In questo caso si verificano spesso piccole differenze di temperatura, d'altra parte si riscontra una portata quasi costante.

Legenda

Volumetrica - cont. di calore

Unità di calcolo

Sonda temperatura di ritorno

Sonda temperatura di mandata

Pompa di circolazione

Valvola a 3 vie

Valvola di regolazione motorizzata

Valvola di sovrapressione

Valvola a farfalla con taratura fissa

Valvola di intercettazione

Valvola di non ritorno

Filtro

||||||| Riscaldamento a radiatori

Indicazioni di montaggio

I contatori di calore sono strumenti elettronici di precisione che devono essere montati correttamente come indicato nelle normative di riferimento, in particolare la UNI EN 1434 parte sesta. Durante l'installazione vi preghiamo di prestare attenzione alle istruzioni di montaggio (consultabili anche dal ns. sito internet www.istaitalia.it). Fondamentalmente i contatori di calore devono essere montati nello stesso circuito di impianto (sia esso quello primario o quello secondario).

Volumetrica

Normalmente la volumetrica viene installata nel tratto di ritorno, ossia in quello più freddo (se si parla di un circuito di riscaldamento), come indicato nella targa identificativa del contatore.

A monte e a valle dell'installazione devono essere previsti opportuni organi di intercettazione al fine di facilitare la verifica e/o la sostituzione del contatore.

Si consiglia, inoltre, di installare sempre un filtro a monte del contatore per preservarlo da danni dovuti a impurità e/o sporcizia presenti nelle tubazioni e di effettuare un lavaggio dell'impianto prima dell'installazione del contatore.

Sonde di temperatura

Le sonde di mandata e di ritorno devono essere montate nello stesso circuito della volumetrica, in direzione contraria a quella del flusso.

Le sonde di mandata sono contrassegnate in rosso, quelle di ritorno in blu.

I cavi delle sonde non devono essere né allungati né accorciati e devono essere mantenuti opportunamente distanti da cavi in tensione.

Le sonde ista hanno un attacco filettato M10x1 che permette l'installazione diretta nelle valvole a sfera. Se le sonde vengono installate nei pozzetti, devono essere inserite fino alla battuta e bloccate (piombate). La posizione di montaggio delle sonde deve quindi essere isolata.

I contatori di calore compatti e i componenti dei contatori in versione combinata, come unità di calcolo, volumetrica, o sonde di temperatura devono essere piombati, in accordo alle normative di riferimento.

Spazio per gli appunti

Via Lepetit, 40 • 20020 Lainate Tel 02 96.28.83.1 • Fax 02-96.70.41.86

Viale Carlo Marx, 135/2 = 00137 Roma Tel 06 59.47.41.1 = Fax 06-59.47.41.30

info@ista-italia.it • www.istaitalia.it

