Relatório 3 IA: Machine Learning

Erick Grilo¹, Max Fratane¹, Vitor Araujo¹, Vítor Lourenço¹

¹Instituto de Computação – Universidade Federal Fluminense (UFF) Niterói, Rio de Janeiro – Brazil

{simas_grilo, mfratane, vitoraraujo, vitorlourenco}@id.uff.br

Resumo.

1. Introdução

O que é pensado pelas pessoas sempre foi uma informação importante para seres humanos para o processo de tomada de decisão. Com o advento da *World Wide Web*, cresceu o acesso à quantidade de opiniões e experiências sobre determinados assuntos que são de pessoas que não conhecemos e nem são profissionais especialistas no assunto. Dessa forma, é possível obter informações de pessoas com os mais variados sentimentos acerca de algum assunto.

Nesse espectro, surge a área de análise de sentimentos (ou mineiração de opiniões), que é responsável por fazer o processamento de linguagem natural, usando táticas de análise textual e linguística computacional a fim de identificar, extrair e estudar opiniões, estados afetivos e informação subjetiva. Dessa forma, é possível extrair opiniões de consumidores acerca de um determinado produto, por exemplo. Tal mineiração é extremamente útil, pois como é visto em [Pang et al. 2008], influencia bastante em tópicos como a aquisição de serviços: a cada 2000 americanos, dentre os leitores de resenhas on-line de restaurantes, hotéis e outros serviços, como viagens, escolas, médicos e cursos, de 73% à 87% dos entrevistados disseram que tais resenhas tiveram uma influência significante na aquisção desses serviços [Zhu and Zhang 2010].

Tal abordagem também é útil para outras finalidades: além da compra de serviços e produtos, as revisões de outros usuários online também são úteis na busca de opiniões políticas (tanto acerca de empresas e organizações quanto acerca de políticos): muitas pessoas buscam atualmente informações de outras acerca de políticos, por exemplo, para confirmar se a opinião dele é condizente com a sua, ou até mesmo buscam na internet opiniões que divergem das suas a fim de enriquecer o debate [Gil de Zúñiga et al. 2009].

Com o advento de plataformas na web, tais como blogs, fóruns de discussão, redes peer-to-peer e outros tipos de social media, tais como o Facebook e o Twitter. consumidores têm uma quantidade de informação e uma facilidade de expor sua opinião sem precedentes, sejam elas negativas ou positivas. sobre qualquer produto ou serviço. Nesse âmbito, grandes companhias (bancos, restaurantes, agências de viagem, redes de fast-food e muitas outras companhinhas dos mais diversos ramos) buscam ler desse "apelo"informações relevantes para satisfazer as opiniões dos potenciais clientes; em outras palavras, essas opiniões podem exercer uma influência enorme na formação de opiniões de outros usuários, formando a "lealdade"à marca, o público consumidor, podendo alavancar ou condenar um determinado produto ou até mesmo a imagem de uma empresa [Hoffman 2008].

O seguinte experimento visa fazer uso de ferramentas como o *NLTK* [Bird 2006], uma ferramenta em Python que permite a construção de programas em Python que permite a e o *scikit* [Pedregosa et al. 2011],um módulo em Python que possui uma ampla gama de algoritmos de aprendizado de máquina para detectar o estado afetivo de textos, criando classificadores binários (positivo e negativo), ternários (positivo, negativo e neutro) e quaternários (positivo, negativo, neutro e irrelevante) usando diferentes classificadores e técnicas de seleção.

2. Metodologia de Pesquisa

A metodologia abordada foi dividida em três partes. A primeira parte consiste na comparação da abordagem de redução de dimensionalidade PCA [Jolliffe 2002] e seleção de atributos RFE [Guyon and Elisseeff 2003] aplicados no classificador SVM [Michalski et al. 2013]. A segunda parte trata da seleção de parâmetros utilizando a técnica de Grid Search [Snoek et al. 2012]. Por fim, a terceira parte confere a execução dos classificadores Naive Bayes, SVM, Decision Tree e Random Forest [Michalski et al. 2013] em cima da base de dados selecionada.

A base de dados utilizada é formada por tweets sobre os produtos e serviços fornecidos pela Apple e fornecida pela Carnegie Mellon University¹ ². A base foi tratada segundo a abordagem de *Bag of Words* utilizando a ferramenta NLTK³. A seleção da base baseou-se na proximidade das informações nela presente com o conhecimento de mundo dos integrantes do grupo.

Os algoritmos supracitados e técnicas foram implementadas conforme a ferramenta de aprendizado de máquina SciKit-Learn⁴ e a linguagem utilizada foi Python⁵ *release* 3.5.2.

Métodos de Aprendizado de Máquina Usados

- 1. *Naive Bayes*: O classficador Naïve Bayes é um classificador probabilistico baseado no teorema de Bayes com forte independência entre as *features* [Han 2005].
- 2. *SVM*: O classificador *Support Vector Machines* são modelos de aprendizado de máquina supervisionado que criam modelos de associação através dos exemplos, onde esses são mapeados e é definido uma "linha" entre os conjuntos de dados. A partir desde modelo os novos dados são categorizados nos grupos existentes.
- 3. Decision Tree: O classificador Árvore de Decisão a partir de tuplas treinadas é uma das categorias de árvores de decisão. Essa árvore é uma árvore de estrutura similar a um fluxograma, onde cada nó não folha denota um teste em um atributo, cada ramo representa um resultado do teste e cada nó folha representa a classe rótulo [Han 2005].
- 4. *Random Forest*: O classificador *Random Forest* é um método *ensemble*. Cada classificador existente no *ensemble* é um classificador do tipo árvore de decisão e sua coleção é chamada de floresta. Por fim, as árvores de decisão individuais são geradas selecionado atributos aleatórios de cada nó [Han 2005].

¹http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW3/twitter-sanders-apple2.zip

²http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW3/twitter-sanders-apple3.zip

³http://www.nltk.org/

⁴http://scikit-learn.org/stable/

⁵https://www.python.org/

PCA vs. RFE

PCA é uma técnica que converte um conjunto de possíveis variáveis correlatas em um conjunto de variáveis não correlatas chamada de 'componentes principais', usando transformação ortogonal. Ela é uma técnica que visa encontrar as features mais importantes para a variação dos dados. É usado justamente para reduzir a dimensionalidade de um conjunto de dados muito grande. Em poucas palavras, o PCA pode ser representado pela seguinte pergunta: Existe algum subconjunto menor de parâmetros, 30% por exemplo, que consegue explicar 70% ou mais da variação do dado?

Feature Selection, também conhecido como Variable Selection ou Attribute Selection, é o processo de seleção, do conjunto de treinamento, de um subconjunto de features mais relevantes. Tem como objetivo facilitar o classificador, tornando-o mais eficiente, pois diminuirá o número de features. E isso é muito importante para classificadores no qual o número de features afeta no tempo de treinamento. E, em segundo, Feature Selection, normalmente, aumenta a precisão, pois as features que desviam do conjunto padrão e que podem causar uma piora na precisao são eliminadas.

Feature Selection é diferente da Redução de Dimensionalidade. Ambos métodos tem como objetivo diminuir o número de features da base de dados, mas a redução de dimensionalidade realiza esse trabalho combinando os atributos, enquanto a feature selection inclue e excluem atributos presentes na base.

Grid Search

O *Grid Search* é o método tradicional para a otimização de hiperparametro que é a busca exaustiva por um subconjunto dos hiperparâmentros de um algortimo de aprendizado. Este método é necessário ser executado com auxílio de alguma métrica de performace que, normalmente, pode ser mensurado pela validação cruzada do conjunto de teste ou avaliação do conjunto de validação [wei Hsu et al. 2010].

3. Avaliação Experimental

As tabelas que seguem exibem a execução de cada um dos experimentos feitos: a matriz de confusão resultante de cada experimento (que estima a performance do algoritmo, mostrando o comparativo entre os valores previstos pelo algoritmo e os valores reais) acompanhadas de uma tabela que mostra a precisão do algoritmo em cada caso.

Para a execução dos classificadores binários: Decision tree puro, Naive Bayes puro, Random Forest puro, SVM puro, SVM com PCA e SVM com RFE, foram usados os arquivos twitter-sanders-apple3.csv para treino e para testes foi usado o arquivo twitter-sanders-apple2.csv, onde tanto o tamanho dos dados de teste quanto o tamanho dos dados de treino foram 479 tweets cada.

Para a execução dos classificadores ternários: Decision tree puro, Naive Bayes puro, Random Forest puro, SVM puro e SVM com PCA foram usados os arquivos full-corpus.csv para treino, com 3428 *tweets* e o arquivo twitter-sanders-apple3.csv, com 988 *tweets*.

Para a execução dos classificadores quaternários: Decision tree puro, Naive Bayes com GridSearch, Random Forest puro, SVM puro e SVM com PCA foram usados os arquivos full-corpus.csv, full_training_dataset.csv e twitter-sanders-apple2.csv para treino,

com um total de 27066 *tweets* e para testes, foram usados os arquivos irrelevantTest.csv e twitter-sanders-apple3.csv com um total de 1073 *tweets*.

O GridSearch foi experimentado usando o classificador Naive Bayes. Usando os parâmetros 'vect__ngram_range': [(1, 1), (1, 2)], 'tfidf__use_idf': (True, False) e 'clf__alpha': (1e-2, 1e-3) (pode ser visto em predict.py). Ao executá-lo, a seguinte combinação de parâmetros encontrada pelo GridSearch que maximizou a precisão: Pipeline(steps=[('vect', CountVectorizer(analyzer='word', binary=False, decode_error='strict',dtype=¡class 'numpy.int64'¿, encoding='utf-8', input='content', lowercase=True, max_df=1.0, max_features=None, min_df=1, ngram_range=(1, 2), preprocessor=None, stop_words=None, strip...lse, use_idf=False)), ('clf', Multinomi-alNB(alpha=0.01, class_prior=None, fit_prior=True))]), onde a precisão foi de 93,9%. Tal resultado pode ser encontrado na pasta Comparação GridSearch.

Teoricamente, a *feature selecion* deveria aumentar a precisão do classificador. Porém, ao executarmos o classificador binário (SVM binário), o resultado encontrado não foi esperado, que era o aumento da precisão: a precisão encontrada foi de 0.810020876827, com o RFE. Agora, sem o RFE, obtivemos um resultado melhor: uma precisão de 0.993736951983. Uma explicação para isso pode estar no tamanho do *dataset* usado como treino, que é muito pequeno no caso do teste binário, uma vez que o RFE atua melhor em um ambiente com muitos *features*, onde quanto mais *features*, maior a quantidade de coisas inúteis que ele pode remover. Tais *logs* de teste podem ser encontrados no diretório Comparação PCA vs RFE/BINÁRIO.

Na execução do PCA com o SVM binário, obtivemos um resultado que também diminuiu a precisão, comparado com o SVM puro binário. Uma possível explicação se encontra na suposição de reta que o PCA faz pode ter agrupado *features* que não são muito correlatas no resultado final, prejudicando a precisão.

Tabela 1. Matriz de Confusão Binária: *Naïve Bayes*

Billaria: Naivo Bayoo			
Atual\Previsto	positivo	negativo	
positivo	142	21	
negativo	0	316	

Tabela 2. Medidas da Matriz de Confusão

Comusao			
	precisão	recall	f1-score
positivo	1.00	0.87	0.93
negativo	0.94	1.00	0.97
média	0.96	0.96	0.96
acurácia	0.956158663883		

Tabela 3. Matriz de Confusão Binário: SVM

Billario. 3vivi			
Atual\Previsto	positivo	negativo	
positivo	160	3	
negativo	0	316	

Tabela 4. Medidas da Matriz de Confusão

Ooma	Oomasao			
	precisão	recall	f1-score	
positivo	1.00	0.98	0.99	
negativo	0.99	1.00	1.00	
média	0.99	0.99	0.99	
acurácia	0.993736951983			

Tabela 5. Matriz de Confusão Binária: Decision Tree

Billalia. <i>Decision free</i>			
Atual\Previsto	positivo	negativo	
positivo	163	0	
negativo	0	316	

Tabela 7. Matriz de Confusão

Binaria: Random Forest				
Atual\Previsto	positivo	negativo		
positivo	162	1		
negativo	3	313		

Tabela 9. Matriz de Confusão Ternária: *Naïve Bayes*

Atual\Previsto	positivo	negativo	neutro
positivo	16	1	146
negativo	0	99	217
neutro	0	0	509

Tabela 11. Matriz de Confusão Ternário: *SVM*

Terriario. Svivi				
Atual\Previsto	positivo	negativo	neutro	
positivo	130	4	29	
negativo	2	289	25	
neutro	2	4	503	

Tabela 13. Matriz de Confusão Ternária: Decision Tree

Ternaria: Decision Tree					
Atual\Previsto	positivo	negativo	neutro		
positivo	162	0	1		
negativo	1	314	1		
neutro	3	2	504		

Tabela 6. Medidas da Matriz de Confusão

	precisão	recall	f1-score
positivo	1.00	1.00	1.00
negativo	1.00	1.00	1.00
média	1.00	1.00	1.00
acurácia		1.0	

Tabela 8. Medidas da Matriz de Confusão

Comasac			
	precisão	recall	f1-score
positivo	0.98	0.99	0.99
negativo	1.00	0.99	0.99
média	0.99	0.99	0.99
acurácia	0.991649269311		

Tabela 10. Medidas da Matriz de Confusão

ac oomasao			
	precisão	recall	f1-score
positivo	1.00	0.10	0.18
negativo	0.99	0.31	0.48
neutro	0.58	1.00	0.74
média	0.78	0.63	0.56
acurácia	0.631578947368		

Tabela 12. Medidas da Matriz de Confusão

	precisão	recall	f1-score	
positivo	0.97	0.80	0.88	
negativo	0.97	0.91	0.94	
neutro	0.90	0.99	0.94	
média	0.94	0.93	0.93	
acurácia	0.933198380567			

Tabela 14. Medidas da Matriz de Confusão

de Comusão				
	precisão	recall	f1-score	
positivo	0.98	0.99	0.98	
negativo	0.99	0.99	0.99	
neutro	1.00	0.99	0.99	
média	0.99	0.99	0.99	
acurácia	0.991902834008			

4. Conclusão

Referências

Bird, S. (2006). Nltk: the natural language toolkit. In *Proceedings of the COLING/ACL on Interactive presentation sessions*, pages 69–72. Association for Computational Lin-

Tabela 15. Matriz de Confusão Ternária: Random Forest

iernaria: <i>Handom Forest</i>					
Atual\Previsto	positivo	negativo	neutro		
positivo	163	0	5		
negativo	0	316	7		
neutro	3	1	505		

Tabela 16. Medidas da Matriz de Confusão

uo oo:	omasao			
	precisão	recall	f1-score	
positivo	0.96	0.97	0.96	
negativo	1.00	0.97	0.98	
neutro	0.98	0.99	0.98	
média	0.98	0.98	0.98	
acurácia	0.97975708502			

Tabela 17. Matriz de Confusão

Qualteriano. Naive Bayes					
Atual\Previsto	positivo	negativo	neutro	irrelevante	
positivo	131	20	12	0	
negativo	3	310	3	0	
neutro	29	134	344	2	
irrelevante	16	28	14	27	

Tabela 18. Medidas da Matriz

de Colliusao				
	precisão	recall	f1-score	
positivo	0.73	0.80	0.77	
negativo	0.63	0.98	0.77	
neutro	0.92	0.68	0.78	
irrelevante	0.93	0.32	0.47	
média	0.81	0.76	0.75	
acurácia	0.756756756757			

Tabela 19. Matriz de Confusão Quartenário: *Naïve Bayes c*/

GridSearch				
Atual\Previsto	positivo	negativo	neutro	irrelevante
positivo	156	0	7	0
negativo	0	311	5	0
neutro	0	6	503	0
irrelevante	15	19	13	38

Tabela 20. Medidas da Matriz de Confusão

	precisão	recall	f1-score	
positivo	0.91	0.96	0.93	
negativo	0.93	0.98	0.95	
neutro	0.95	0.99	0.97	
irrelevante	1.00	0.45	0.62	
média	0.94	0.94	0.93	
acurácia	0.939422180801			

Tabela 21. Matriz de Confusão

Quaternario:	SVM			
Atual\Previsto	positivo	negativo	neutro	irrelevante
positivo	140	6	17	0
negativo	3	296	17	0
neutro	8	6	493	2
irrelevante	10	11	32	32

Tabela 22. Medidas da Matriz de Confusão

	precisão	recall	f1-score	
positivo	0.87	0.86	0.86	
negativo	0.93	0.94	0.93	
neutro	0.88	0.97	0.92	
irrelevante	0.94	0.38	0.54	
média	0.90	0.90	0.89	
acurácia	0.895619757689			

Tabela 23. Matriz de Confusão

Quartenário: Decision Tree					
Atual\Previsto	positivo	negativo	neutro	irrelevante	
positivo	163	0	0	0	
negativo	0	316	0	0	
neutro	4	2	503	0	
irrelevante	19	8	50	8	

Tabela 24. Medidas da Matriz

de Coniusão				
	precisão	recall	f1-score	
positivo	0.88	1.00	0.93	
negativo	0.97	1.00	0.98	
neutro	0.91	0.99	0.95	
irrelevante	1.00	0.09	0.17	
média	0.93	0.92	0.89	
acurácia	0.922646784716			

guistics.

Gil de Zúñiga, H., Puig-i Abril, E., and Rojas, H. (2009). Weblogs, traditional sources

Tabela 26. Medidas da Matriz
de Confusão

precisão recall flacore

Tabela 25. Matriz de Confusão

Quartenario: <i>Random Forest</i>						
Atual\Previsto	positivo	negativo	neutro	irrelevante		
positivo	163	0	0	0		
negativo	0	316	0	0		
neutro	0	1	508	0		
irrelevante	7	3	58	17		

		precisao	recan	11-50016
relevante	positivo	0.96	1.00	0.98
	negativo	0.99	1.00	0.99
	neutro	0.90	1.00	0.95
	irrelevante	1.00	0.20	0.33
7	média	0.94	0.94	0.92
	acurácia	0.922646784716		
	acuracia	0.922046784716		

- online and political participation: An assessment of how the internet is changing the political environment. *New media & society*, 11(4):553–574.
- Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. *The Journal of Machine Learning Research*, 3:1157–1182.
- Han, J. (2005). *Data Mining: Concepts and Techniques*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
- Hoffman, T. (2008). Online reputation management is hot—but is it ethical. *Computerworld, February*, pages 1–4.
- Jolliffe, I. T. (2002). Principal Component Analysis. Springer.
- Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. (2013). *Machine Learning: An Artificial Intelligence Approach*. Springer Publishing Company, Incorporated.
- Pang, B., Lee, L., et al. (2008). Opinion mining and sentiment analysis. *Foundations and Trends*(R) *in Information Retrieval*, 2(1–2):1–135.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. *Journal of Machine Learning Research*, 12(Oct):2825–2830.
- Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. pages 2960–2968.
- wei Hsu, C., chung Chang, C., and jen Lin, C. (2010). A practical guide to support vector classification.
- Zhu, F. and Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics. *Journal of marketing*, 74(2):133–148.