ΠΛΗΡΟΦΟΡΙΚΗ Ι

ΕΡΓΑΣΤΗΡΙΟ 3

Θέμα εργαστηρίου: Επαναληπτικές διαδικασίες

- 1. Να γραφεί πρόγραμμα fact που να δέχεται θετικό ακέραιο και να υπολογίζει το παραγοντικό του.
- **2.** Να γραφεί πρόγραμμα που να εμφανίζει τους περιττούς αριθμούς μεταξύ του 1 και δοσμένου αριθμού. Να γίνουν δύο εκδόσεις του προγράμματος, μία με for (odd1) και μία με while (odd2).
- **3.** Να γραφεί πρόγραμμα mesosoros1 που να υπολογίζει τον μέσο όρο των άρτιων από γνωστό πλήθος θετικών αριθμών. Το πλήθος καθώς και οι ίδιοι οι αριθμοί θα δίνονται από τον χρήστη.
- **4.** Τροποποιήστε το προηγούμενο πρόγραμμα (mesosoros2) ώστε να κάνει το ίδιο για άγνωστο πλήθος θετικών αριθμών (ο τερματισμός της διαδικασίας εισόδου αριθμών να γίνεται με την είσοδο οποιουδήποτε αρνητικού αριθμού).
- 5. Το παρακάτω πρόγραμμα επιστρέφει εάν η είσοδός του είναι πρώτος αριθμός ή όχι:

```
n=0;
while (n<2)
    n = input('Δώσε ακέραιο μεγαλύτερο του 1: ');
end
i=2;
while (rem(n,i)~=0)
    i=i+1;
end
if (n==i)
    fprintf('0 %d είναι πρώτος\n', n);
else
    fprintf('0 %d δεν είναι πρώτος\n', n);
end</pre>
```

- α) Ποιος είναι ο ρόλος του πρώτου while στο πρόγραμμα αυτό;
- β) Ποιος είναι ο αλγόριθμος βάσει του οποίου προκύπτει εάν η είσοδος είναι πρώτος ή όχι;
- γ) Τροποποιήστε το πρόγραμμα ώστε να χρησιμοποιεί for αντί για while.
- δ) Τροποποιήστε το πρόγραμμα ώστε να τρέχει πιο γρήγορα.
- **6.** Να γραφεί πρόγραμμα epsilon που να ζητάει από τον χρήστη την είσοδο ενός βαθμού ακρίβειας ώστε να προσεγγίσει την τιμή του *e* με τη συγκεκριμένη ακρίβεια. Η τιμή του *e* μπορεί να προσεγγιστεί ως εξής:

$$e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$$
 (1)

και το σφάλμα προσέγγισης μετά από η όρους είναι:

$$\sigma\varphi \,\dot{\alpha} \,\lambda\mu\alpha \leq \frac{3}{(n+1)!} \tag{2}$$

Στο πρόγραμμα να μη χρησιμοποιηθεί η πραγματική τιμή του e για σύγκριση με την προσέγγιση, αλλά να χρησιμοποιηθεί η ανισότητα (2) ώστε να τερματίζεται ο αλγόριθμος όταν το σφάλμα γίνεται μικρότερο της ακρίβειας που δίνει ο χρήστης. Επίσης, να χρησιμοποιηθεί το ότι (n+1)! = n! * (n+1)

7. Να γραφεί πρόγραμμα million που να υπολογίζει τον μικρότερο θετικό ακέραιο αριθμό του οποίου το παραγοντικό έχει τουλάχιστον 1 εκατομμύριο ψηφία.

Χρησιμοποιήστε τα εξής δεδομένα:

- i) Η εντολή floor(log10(x))+1 δίνει το πλήθος των ψηφίων του x, όπου x θετικός ακέραιος
- ii) $\log_{10}(n!) = \log_{10}(2) + \log_{10}(3) + ... + \log_{10}(n)$

(Θα χρειαστείτε τη while για τις επαναλήψεις καθώς και ένα τρέχον σύνολο για τα αθροίσματα των λογαρίθμων)

8. Να γραφεί πρόγραμμα stars που να εκτυπώνει στην οθόνη το ακόλουθο τρίγωνο από αστερίσκους. Το πλήθος των αστερίσκων της διαγωνίου (n) να δίνεται ως είσοδος από τον χρήστη.

```
* γραμμή 1: n-1 κενά, *

* * γραμμή 2: n-2 κενά, *, 0 κενά (2-2), *

* * γραμμή 3: n-3 κενά, *, 1 κενό (3-2), *

* * γραμμή 4: n-4 κενά, *, 2 κενά (4-2), *

* * * γραμμή 5: n αστερίσκοι
```