1 Congruence with Isomorphic Binary Expression Nodes

Theorem 1.1. The inferred type of a binary expression node from any valid abstract syntax tree is unaffected by the ordering of its two children nodes.

Proof. Let Σ be the set of all nodes from a valid abstract syntax tree. We can then define Γ to be the set of all possible data types in our language, and similarly define F to be the set of all valid data types in our program, such that $F \subset \Gamma$.

Let us then describe the process of inferring a data type from any node $\delta \in \Sigma$ as the transformation function $\lambda(\delta) \to \gamma$, $\forall \delta \in \Sigma$ where $\gamma \in \Gamma$.

Let us also define the binary operation of comparing two data types as $\cap : \Gamma \times \Gamma \to \Gamma$ such that $\gamma_i \cap \gamma_j \to \gamma_k$ where $\gamma_k \in F \leftrightarrow \gamma_i \equiv \gamma_j$ otherwise $\gamma_k \notin F$.

To infer the data type of a binary expression, we can further describe that particular function as $\lambda(\hat{\delta}) = \lambda(\alpha) \cap \lambda(\beta)$ where α and β represent the left and right children respectfully of the binary node $\hat{\delta}$.

To show that the inferred type of a node is unaffected by the ordering of its two children nodes, we need to show that the binary operation \cap is commutative such that $\gamma_i \cap \gamma_j \equiv \gamma_j \cap \gamma_i$.

It shows from our definition of \cap that for $\gamma_i \cap \gamma_j$ to produce a data type namely γ_k such that $\gamma_k \in F$, it is required that both γ_i and γ_j must be the equivalent. Therefore $\gamma_i \equiv \gamma_j \equiv \gamma_i$ which implies that it is equivalent to say that $\gamma_i \cap \gamma_i \to \gamma_k$ for some $\gamma_k \in F$.

Therefore, it must also be true to say that $\gamma_j \cap \gamma_i \to \gamma_k$ for some $\gamma_k \in F$ since it is empirically true that $\gamma_i \cap \gamma_j \equiv \gamma_i \cap \gamma_i \equiv \gamma_j \cap \gamma_i$.

Since $\gamma_j \cap \gamma_i \equiv \gamma_i \cap \gamma_j$, we can conclude that $\lambda(\hat{\delta}) = \lambda(\alpha) \cap \lambda(\beta)$ where α and β represent the left and right children respectfully of the binary node $\hat{\delta}$ is equivalent to $\lambda(\hat{\delta}) = \lambda(\beta) \cap \lambda(\alpha)$.

Therefore, the proposition that the inferred type of a binary expression node from any valid abstract syntax tree is unaffected by the ordering of its two children nodes. \Box

Corollary 1.1.1. Two binary expression nodes from any valid abstract syntax trees are said to have the same type if both nodes are isomorphic to one another.

Proof. Let us assume that we have two binary expression nodes namely α and β from some abstract syntax tree which are isomorphic to one another such that there exists a bijection $\phi: \alpha \to \beta$ which preserves the integrety of each node through their transformations.

Therefore, if one node α has some inferred type γ , then it is known from 1.1 that all isomorphic variations of α will have the same inferred type γ .