FMI, Info, Anul I

Logică matematică și computațională

Seminar 11

(S11.1) Să se arate că pentru orice formule φ , ψ și orice variabilă $x \notin FV(\varphi)$,

- (i) $\varphi \bowtie \exists x \varphi$;
- (ii) $\forall x(\varphi \wedge \psi) \vDash \varphi \wedge \forall x\psi$;
- (iii) $\exists x(\psi \to \varphi) \vDash \forall x\psi \to \varphi$.

Demonstrație: Fie \mathcal{A} o \mathcal{L} -structură și $e: V \to A$.

(i) Avem:

$$\mathcal{A} \vDash (\exists x \varphi)[e] \iff \text{există } a \in A \text{ a.î. } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \\ \iff \text{există } a \in A \text{ a.î. } \mathcal{A} \vDash \varphi[e] \text{ (aplicând P. 3.27)} \\ \iff \mathcal{A} \vDash \varphi[e].$$

(ii) Avem:

$$\mathcal{A} \vDash (\forall x (\varphi \land \psi))[e] \iff \text{pentru orice } a \in A, \ \mathcal{A} \vDash (\varphi \land \psi)[e_{x \leftarrow a}] \\ \iff \text{pentru orice } a \in A, \ \mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \text{ şi } \mathcal{A} \vDash \psi[e_{x \leftarrow a}] \\ \iff \text{pentru orice } a \in A, \ \mathcal{A} \vDash \varphi[e] \text{ şi } \mathcal{A} \vDash \psi[e_{x \leftarrow a}] \text{ (aplicând P. 3.27)} \\ \iff \mathcal{A} \vDash \varphi[e] \text{ şi pentru orice } a \in A, \ \mathcal{A} \vDash \psi[e_{x \leftarrow a}] \\ \iff \mathcal{A} \vDash \varphi[e] \text{ şi } \mathcal{A} \vDash \forall x \psi[e] \iff \mathcal{A} \vDash (\varphi \land \forall x \psi)[e].$$

(iii) Avem:

$$\mathcal{A} \vDash (\exists x(\psi \to \varphi))[e] \iff \text{există } a \in A \text{ a.î. } \mathcal{A} \vDash (\psi \to \varphi)[e_{x \leftarrow a}]$$

$$\iff \text{există } a \in A \text{ a.î. } (\mathcal{A} \not\vDash \psi[e_{x \leftarrow a}] \text{ sau } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}])$$

$$\iff \text{există } a \in A \text{ a.î. } (\mathcal{A} \not\vDash \psi[e_{x \leftarrow a}] \text{ sau } \mathcal{A} \vDash \varphi[e]) \text{ (aplicând P. 3.27)}$$

$$\iff \text{(există } a \in A \text{ a.î. } \mathcal{A} \not\vDash \psi[e_{x \leftarrow a}]) \text{ sau } \mathcal{A} \vDash \varphi[e]$$

$$\iff \mathcal{A} \not\vDash \forall x \psi[e] \text{ sau } \mathcal{A} \vDash \varphi[e]$$

$$\iff \mathcal{A} \vDash (\forall x \psi \to \varphi)[e].$$

(S11.2) Considerăm limbajul $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} -structura canonică peste acest limbaj $\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0)$. Să se dea exemplu de \mathcal{L}_{ar} -formule $\varphi_1, \varphi_2, \varphi_3$ astfel încât pentru orice $e: V \to \mathbb{N}$,

- (i) $\mathcal{N} \vDash \varphi_1[e] \Leftrightarrow e(v_0)$ este par;
- (ii) $\mathcal{N} \vDash \varphi_2[e] \Leftrightarrow e(v_0)$ este prim;
- (iii) $\mathcal{N} \vDash \varphi_3[e] \Leftrightarrow e(v_0)$ este putere a lui 2 cu exponent strict pozitiv.

Demonstraţie:

(i) Luăm

$$\varphi_1 := \exists v_1 (v_1 \dot{+} v_1 = v_0).$$

(ii) Luăm

$$\varphi_2 := \dot{S}\dot{0} \dot{<} v_0 \land \forall v_1 ((v_1 \dot{<} v_0 \land \exists v_2 (v_1 \dot{\times} v_2 = v_0)) \rightarrow v_1 = \dot{S}\dot{0}).$$

(iii) Luăm

$$\varphi_3 := \dot{S}\dot{0} \dot{<} v_0 \land \forall v_1 ((\dot{S}\dot{0} \dot{<} v_1 \land \exists v_2 (v_1 \dot{\times} v_2 = v_0)) \rightarrow \exists v_2 (v_1 = v_2 \dot{+} v_2)).$$

(S11.3) Considerăm limbajul $\mathcal{L}_r = (\dot{+}, \dot{\times})$ şi \mathcal{L}_r -structura $\mathcal{R} := (\mathbb{R}, +, \cdot)$. Să se dea exemplu de \mathcal{L}_r -formulă ψ astfel încât pentru orice $e: V \to \mathbb{R}$,

$$\mathcal{R} \vDash \psi[e] \Leftrightarrow e(v_0) \leq e(v_1).$$

Demonstrație: Luăm

$$\psi := \exists v_2 (v_1 = v_0 + v_2 \land \exists v_3 (v_2 = v_3 \times v_3)).$$

(S11.4) Considerăm limbajul \mathcal{L} ce conține un singur simbol, anume un simbol de funcție de aritate 2. Să se găsească un enunț φ astfel încât $(\mathbb{Z}, +) \models \varphi$, dar $(\mathbb{Z} \times \mathbb{Z}, +) \not\models \varphi$.

Demonstraţie:

Prima soluție: se ia φ ca fiind

$$\forall x \forall y ((\neg \exists z (x=z+z) \land \neg \exists z (y=z+z)) \rightarrow \exists z (x+y=z+z)),$$

ce exprimă faptul că suma a două elemente "nepare" este pară – în \mathbb{Z} , avem într-adevăr regula "impar + impar = par", dar în $\mathbb{Z} \times \mathbb{Z}$ avem contraexemplul (1,0)+(0,1)=(1,1). **A doua soluție:** se ia φ ca fiind

$$\exists t \forall x (\exists z (x = z + z) \lor \exists z (x = z + z + t)),$$

ce este adevărată în \mathbb{Z} , luând t := 1 (orice număr este ori de forma 2z, ori de forma 2z + 1), dar nu este adevărat în $\mathbb{Z} \times \mathbb{Z}$, unde relația de congruență indusă de elementele pare are patru clase, și nu două.