

DIGITAL LOGIC AND DESIGN

LAB ASESSMENT - 6

Name: VIBHU KUMAR SINGH

Reg. No: 19BCE0215

Teacher: Sairabanu J.

Q1) Design Bi-directional shift register.

A1) Design:

using D flip flops and Multiplexers.

Truth Table:

Mode	Control	
S_1	S _o	Register Operation
0	0	No change
0	1	Shift Right
1	0	Shift Left
1	1	Parallel Load

Q2) To design and implement a binary counter with the repeated sequence as 0, 1, 3, 7, 6, 4 using SR flip flops.

A2)

Design:

SR Flip flops are used.

EQUATIONS:

	Gresent State	Next S	-atr	
	A B C	AB	C	-
[1]		0.0	1	-
E3J	001	0 1	1	
[#]	011		1	
[3]	- 1 1-1	1 1	0	
	110		0	
[47	100	00	0	
				-
	SA RA SA	0 0		
r_ u		_	L Rc	
[6]		X	0	
[1]	0 X 1		X 0	
[F]		X 0	X 0	
[6]		(0	01	
[4]		01	OX	
[4]	D I	OX	0 X	
Dor	it cases = 2			
	A BC 01	11 10		
SA.	> 6 0	1 T3 X4	SA = B	
) iX	X7 XL		
	A BC 00 01	11 60	*:	
RA:		1 X	Ra = B	
* 41	ILIX		71	
0				
-B=	+ /BC 1	11 10		
	- 0 0 1	$X_1 X_2$	SB=C	
-	, Xd	X L		
Re -	> 4/BC 00 0	1 11 10		
-	1 1 4	1 11	0 -	
		111	Rg = C	
		XI III		
Sc	-> ABC 00	01 11 10		
	0 1	XX	Sc=A	
	1	(
-	A 160 00	01 11 10		
Ke	=>	1	0 4	
	0	X	Re = A	

VIBHU KUMAR SINGH 19BCE0215 S: Q Rten0 В 屯 VIBHU KUMAR SINGH 19BCE0215 A. S: Q Q: Rt en 0 В

 ${\bf Q3})$ To design and implement four bit synchronous up -down binary counter.

A3) Design:

Using Multiplexer we can do both up and down in the same circuit. When the enable to the MUX is 0, its UP and if it is 1, it is DOWN counter.

Q4) To design and implement synchronous BCD counter

A4) Design:

Three T Flip flops are used to simulate BCD Counter. **EQUATIONS**:

	Present State Next State.	-
	Q8 Q4 92 Q1 Q8 Q4 Q2 Q1	
Lo	0000 0001	
LI	0 0 0 1 0 0 1 0	
DJ	00100011	
3	0011 0100	-
H	0100 0101	
15]	0101 0110	
7	0110 0111	
[Ŧ]	0111 1000	
XI .	1000 1001	
[9]	1001 0000	
4	7,	
_	TOO TOY TO, TO,	
_	0 0 0 1	
1	0 0 1 1	
_	0 0 0 1	
1	0 1 1 1	
_	0 0 0 1	
	0 0 1 1	ÿ
	0 0 0 1	
	0001	
	1001	

