Département de génie électrique et de génie informatique Faculté des sciences et de génie Vision numérique GIF-4100 / GIF-7001

Date 11 décembre 2014 Local PLT-2783 Heure 13h30 à 16h20 **Examen partiel 2 A2014**

Toute documentation permise sauf Internet

Question 1. (20 points) Radiométrie

Deux sources ponctuelles uniformes s_1 et s_2 d'intensité I_1 et I_2 placées au plafond d'une pièce, éclairent la surface d'une table de travail. Une feuille de papier d'aire dA est placée directement en dessous de s_2 à une distance d de la source, tel que montré à la Figure 1. Les deux sources ponctuelles sont aussi espacées de la distance d.

Figure 1. Géométrie de la Question 1. / Geometry of Question 1

Quel doit être le rapport entre les intensités I_2/I_1 pour que la feuille de papier d'aire dA recoive la même illuminance des deux sources.

Question 2. (20 points au total) Analyse en composantes principales et eigenfaces

Supposons qu'un ensemble de 1000 images en noir et blanc (de dimensions 640 colonnes x 480 lignes) de visages humains (v_i , i = 1..1000) soit représenté par une matrice B telle que:

$$B_{307200x1000} = v_1 \quad v_2 \quad \dots \quad v_{1000} \tag{1}$$

On calcule les valeurs propres de la matrice de covariance Cov_B de B et on retient les vecteurs propres f_i (avec i = 1..10) associés aux 10 plus grandes valeurs propres.

A. (5 points)

Quelles sont les dimensions des f_i ?

B. (15 points)

Supposons que les vecteurs f_i sont assemblés dans une matrice F telle que:

$$F = \begin{cases} f_1^t \\ F = f_2^t \\ \vdots \\ f_{10}^t \end{cases}$$
 (2)

Expliquez comment on peut compresser la banque de données B et représenter les visages v_i dans un espace de dimensions réduites.

Question 3. (30 points au total) Filtrage non-linéaire

A. (15 points) Soit l'image binaire de la Figure 2.

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	0	0	0	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1

Figure 2. Image binaire de la Question 3 A / Binary image of Question 3 A

On désire boucher le trou formé de 0 avec une opération morphologique de fermeture. Quel élément structurant de a ou b ci-dessous est le plus approprié pour cette opération? La flèche indique le "centre" de l'élément structurant.

Justifiez votre réponse en donnant l'image résultant de la fermeture associée à chaque élément structurant.

B. (15 points) Supposons l'image à niveaux de gris de la Figure 3. Cette image devrait être uniforme (c'est-à-dire que le niveau de gris de chaque pixel devrait être à 5), mais l'image est perturbée par du bruit impulsionnel.

5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5
5	5	5	12	12	5	5	5
5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5

Figure 3. Image de la Question 3 B / Image of Question 3 B

Donnez le résultat du filtrage médian de l'image de la Figure 3 avec les noyaux a et b ci-dessous. Lequel est le plus adéquat pour éliminer complètement le bruit impulsionnel? La flèche indique le "centre" du noyau du filtre.

Question 4. (15 points) Filtrage bilatéral

Expliquez brièvement le fonctionnement du filtrage bilatéral et donnez ses avantages par rapport au filtre gaussien classique.

Question 5. (15 points) Descripteur SIFT

Décrivez brièvement le descripteur SIFT par rapport à ce qu'il contient et à comment il est obtenu.