Tarea 5/6

Prepara 8 de los siguientes ejercicios para entregar.

- 1. Para el grupo de Lie $G = SO_3$ de rotaciones, tenemos $\mathfrak{g} = \mathfrak{so}_3 = \mathbb{R}^3$ según la identificación con producto de cross. Para $g \in G$ una rotación, describir la transformación $Ad_g : \mathfrak{g} \to \mathfrak{g}$.
- 2. Mostrar que $\frac{d}{dt}|_{t=0} \det(I + tA) = tr(A)$.
- 3. Usamos la notación en las notas sobre formas diferenciales, se puede usar para estos ejercicios cualquier de las identidades en estas notas.

Sea u, v, w campos vectoriales con divergencia cero en $D \subset \mathbb{R}^3$ y tambien tangente a la frontera ∂D .

- (a) Verificar que $\int_D \omega_u^1 \wedge \omega_v^2 = \int_D (u \cdot v) \omega_{vol} =: \langle u, v \rangle$ y $d(i_u i_v \omega_{vol}) = i_{[u,v]} \omega_{vol} = \omega_{[u,v]}^2$.
- (b) Mostrar: $\langle [u, v], w \rangle = \langle u \times curl(w), v \rangle$.

Sugerencia: usa $d(\omega \wedge \eta) = d\omega \wedge \eta - \omega \wedge d\eta$ para 1-formas ω, η .

- (c) Para α un función sobre D, mostrar: $\langle grad(f), v \rangle = 0$.
- *estos ejercicios conduce a la ecuación de Euler para fluidos. Esencialmente, has calculado el operador que llamamos B en 'lecture 18': $B(v,v) = v \times curl(v) + grad(\alpha)$, donde el función α esta determinado por la condición de que B(v,v) tiene divergencia cero.*
- 4. (a) Sea $f: \mathbb{R}^n \to \mathbb{R}$ homogenea de grado α : $f(\lambda x) = \lambda^{\alpha} f(x)$ cada $\lambda > 0$. Mostrar que $d_x f(x) = \nabla_x f \cdot x = \alpha f(x)$.

Considera el problema de n-cuerpos en el plano, con potencial Newtoniano: $U = \sum_{i < j} \frac{m_i m_j}{|q_i - q_j|}$. Suponer que $q(t) = \lambda(t)q_o$ para $\lambda(t) \in \mathbb{C}$ es una solución con q_o un configuración fijada con centra de masa cero.

- (b) Mostrar que $\nabla_{q_o} U = k \nabla_{q_o} I$ donde $I = \sum_j m_j |q_j|^2$ y k es algún constante. Ademas mostrar que $\lambda(t)$ satisfice un ecuación de Kepler: $\ddot{\lambda} = -\mu \frac{\lambda}{|\lambda|^3}$ donde μ es algún constante.
- 5. Deja que V sea un espacio vectorial de dimension n, y $\omega: V \times V \to \mathbb{R}$ una forma simplectica sobre V. Es decir: ω es bilineal, anti-simetrica y no-degenerado: $\omega(\vec{u}, \vec{v}) = 0, \forall \vec{v} \in V \Rightarrow \vec{u} = 0$.
 - (a) Mostrar que dim(V) es par, n = 2k.
 - (b) Mostrar que existe un base, $e_1, e_2, ..., e_k, f_1, f_2, ..., f_k$ de V para que $\omega(e_j, f_j) = 1$ y todos los otros productos son cero.
- 6. El grupo simplectica (lineal), $\operatorname{Sp}(2n)$, consiste de las aplicaciones lineales $A: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ tal que $\omega(\vec{u}, \vec{v}) = \omega(A\vec{u}, A\vec{v})$ para todos $\vec{u}, \vec{v} \in \mathbb{R}^{2n}$. Para $A \in \operatorname{Sp}(2n)$, mostrar:
 - (a) $AJA^T = A^TJA = J$,
 - (b) det(A) = 1 (considerar los autovalores de A).
- 7. Sea $\omega = dp_1 \wedge dq^1 + ... + dp_n \wedge dq^n$ la forma simplectica estandard sobre \mathbb{R}^{2n} .
 - (a) Dado una transformación de 'base', $q \mapsto Q = Aq$, donde $A_{n \times n}$ es una mapa lineal $\mathbb{R}^n \to \mathbb{R}^n$, verificar que su 'levantamiento simplectica' a $(q,p) \mapsto (Q,P)$ donde $A^TP = p$ es una transformación simplectica de \mathbb{R}^{2n} .
 - (b) Para el problema de 3-cuerpos (q_1, q_2, q_3) , determinar el levantamiento simplectica de la transformación heliocentrica: $Q_1 = q_1, Q_2 = q_2 q_1, Q_3 = q_3 q_1$. Dar la expresión para la Hamiltoniana en estas coordenadas heliocentricas.
- 8. Usar el método de seperación de variables para cambiar el oscillador harmónica $H = \frac{p_x^2 + k^2 x^2}{2}$, $dp_x \wedge dx$ (donde k > 0 es un constante) a la forma H(I), $dI \wedge d\theta$.
- 9. ...en progreso...