Big Data módszertan alkalmazása a távérzékelésben a tájváltozás vizsgálatára

Gulácsi András

Témavezető: Dr. Kovács Ferenc

1. Szakirodalmi ismeretek, kutatási téma

- A tájváltozás és a klímaváltozás következményeinek detektálása:
 - Hol jelentkeznek degradációs folyamatok?
 - Hol stabil az állapot?
 - Trendszerű változások keresése, extremitások (statisztika)

- A tájváltozások távérzékelés alapú érzékelése, elemzése nagy adatigényű
- Hatalmas mennyiségű műholdfelvételt kell gyorsan és lehetőleg teljes egészében automatizáltan feldolgozni. A manuális feldolgozással rengeteg időt elpazarolunk, ahelyett, hogy az eredmények elemzésével és a következtetések levonásával foglalkoznánk.
- A hatalmas mennyiségű adatot (**Big Data**) a felhő alapú számítástechnika eszközeivel lehet csak feldolgozni.
- A Google Earth Engine nevű számítási platformot használom, amit a földtudományi/távérzékelt adatok feldolgozására hoztak létre; ez kiváltja a hagyományos asztali GIS alkalmazásokat. JavaScript API van hozzá.

A koncepció

Kovács F. 2007. Tájváltozások értékelése geoinformatikai módszerekkel a Duna-Tisza közén, különös tekintettel a szárazodás problémájára. PhD értekezés.

Kovács, F. 2007. Assessment of regional variations in biomass production using satellite image analysis between 1992 and 2004. Transactions in GIS. 6. pp. 911-926.

Kovács, F. 2008. Evaluation of changes and instability of water content using remote sensing methods in a nature conservation area. Journal of Environmental Geography. 3-4. pp. 7-14.

LADÁNYI Zs. 2011. Tájváltozások értékelése a Duna-Tisza közi homokhátság egy környezet- és klímaérzékeny kistáján, az Illancson. PhD értekezés. SZTE Környezettudományi Doktori Iskola. 111+41 p.

LADÁNYI Zs. – KOVÁCS F. 2009. Spektrális indexek szerepe a tájváltozás, táji érzékenység megfigyelésében. In: Szilassi P. – Henits L. (szerk.): Tájváltozás értékelési módszerei a XXI. században. JATEpress Szeged, pp. 203-214.

RAKONCZAI J. 2013. A klímaváltozás következményei a dél-alföldi tájon: A természeti földrajz változó szerepe és lehetőségei. Akadémiai doktori értekezés.

2. Eddigi kutatási eredmények

- MODIS-alapú aszálymonitoring spektrális indexekkel a Duna-Tisza-közi erdőkön (vegetáció-, víz- és aszályindexek: NDVI, NDWI, NDDI stb.) 2000-től.
- Validáció sikeres a PAI és a KSH gabonatermésátlagokkal.
- Éves szinten jól elkülöníthetők az aszályos évek
- Az aszály térbeliségének a meghatározása statisztikailag lehetséges: a referenciaidőszaktól vett eltérések (szórás) alapján.

$$Z_{ij} = \frac{x_{ij} - \overline{x}_{ij}}{SD_{ij}},$$

Terra MODIS → Duna-Tisza közi erdők →
aszálymonitoring spektrális indexekkel → PAI-val
validáció

standardizált NDDI értékek

Pearson's r	Index-PAI
NDDI	0.64*
DDI	0.80***
NDVI	-0.90***
DVI	-0.81***
NDWI	-0.91***
DWI	-o.87***

Időszak	Index	Árpa	Kukorica	Búza
jún. 18-	NDDI	-0.91***	-0.69**	-0.79***
25.	DDI	-0.90***	-0.69**	-0.77**
	NDVI	0.57*	0.34	0.54*
	DVI	0.66**	0.51	0.63*
	NDWI	0.83***	0.60*	0.75**
	DWI	0.81***	0.63*	0.74**
egész év	PAI	-0.61*	-0.93***	-0.66**

p < 0.05** p < 0.01*** p < 0.001

2. Eddigi kutatási eredmények

- A felszíni vízborítás változásainak radar-alapú (Sentinel-1A és 1B C-SAR) monitoringja 2014 decemberétől kezdődően a D.-T. közi vizes élőhelyeken
- A mintaterület a Felső-kiskunsági Tavak térsége (Ramsar, Kiskunsági NP)
- Két osztályozási módszer: ISODATA és Vevő Működési Karakterisztika (ROC) görbe alapú (küszöbértékes)
- Validáció: nagy felbontású Pléiades és VW-3 műholdképekkel
- Landsat 8 OLI és Sentinel-2 MSI MNDWI (Xu, 2006) adatokkal keresztvalidáció

Data	SWC threshold limit	AUC
Sentinel-1 C-VV (08/2016)	$\sigma <= -15.531$	0.135
Sentinel-1 C-VV (03/2017)	$\sigma <= -17.871$	0.135
Sentinel-2 MNDWI (08/2016)	MNDWI >= 0.553	0.779
Sentinel-2 MNDWI (03/2017)	MNDWI >= 0.586	0.744
Landsat 8 MNDWI (08/2016)	MNDWI >= 0.593	0.730
Landsat 8 MNDWI (03/2017)	MNDWI >= 0.656	0.758

AUC: görbe alatti terület, 0,5 felett jó

MNDWI ROC

L8:

• C-SAR: ISODATA

• C-VV / C-VH

3. Kutatási terv a 2. szakaszra

- Alapvetően módszertani jellegű lesz a dolgozat, de fontosak az alkalmazási példák
- Éppen ezért néhány természetföldrajzi kérdés megválaszolását tűztem ki célul (egyelőre csak 2):
- 1. A Duna-Tisza köze és a Nyírség erdőinek összehasonlító vizsgálata az aszályosság szempontjából (Milyen eltérések vannak a két táj között, talajvízszint-vált., szárazodás stb.);
- 2. A Duna-Tisza közi vizes élőhelyek / szikes tavak felszíni vízborításának változásainak elemzése, több mintaterületre kiterjesztve (megint az aszályosság illetve az éghajlatvált. tekintetében); *S-1*

1. A Duna-Tisza köze és a Nyírség erdőinek összehasonlító vizsgálata az aszályosság szempontjából

- MODIS léptékben 250/500 m (EVI, NDVI, NDWI stb.)
 2000-től
- Hosszabb távú elemzés nagyobb geometriai fb.-ban: Landsat MSS/TM/ETM+/OLI, Sentinel-2 MSI
- Éghajlati változások kimutatásához több évtizedre visszamenő adatokra van szükség (felhőborítás, időfelbontás probléma!)
- Talán 5 éves időszakokra lehetne 1-1 átlagképet készíteni:
 1975-79, 1980-84, 1985-89, 1990-94, 1995-1999, 2000-04, 2005-09, 2010-2014, 2015-2019
- Erdészeti körzetekre külön-külön?

4. Ütemezés

- 2018/19 II. félév:
 - International J. of RS cikk megjelenése
 - D.-T. köze Nyírség összehasonlító tanulmány
 (MODIS) -> erdészeti folyóiratba v. földrajzosba?
 - Vizes élőhelyes kutatás kiterjesztése más mintaterületekre is (radar) -> Hidrológai Közlönybe?
- 2019/20 I. félév:
 - D.-T. köze Nyírség összehasonlító elemzése nagyobb fb.-ban (Landsat, Sentinel-2)
- Utána:
 - a doktori dolgozat megírása

Kiegészítés

- Google Earth Engine példa:
- https://code.earthengine.google.com/
- 4 db elsőszerzős cikk, ebből 2 SCOPUS-os folyóiratban; 1 db nem elsőszerzős cikk (Hun. Geo. Bull., JoEG, Tájökológiai Lapok, Földrajzi Közlemények)
- 5 db konferencia ea./cikk, ebből 2 elsőszerzős (OTDK-t leszámítva)
- Lektorálás alatt 1 db: International Journal of Remote Sensing (radaros tanulmány)

Publikációs lista (MTMT)

- GULÁCSI A. KOVÁCS F. (2018). Drought monitoring of forest vegetation using MODIS-based normalized difference drought index in Hungary. *Hungarian Geographical Bulletin* 67(1): 29-42.
- GULÁCSI A. (2017). Az antropogén klímaváltozás és a természetes klímaoszcillációk szerepe a szárazodásban és a szélsőséges időjárásban Magyarországon. *Légkör*, 62(2): 72-81.
- GULÁCSI A. (2017). A vizes élőhelyek vízborítottságában bekövetkező változások vizsgálata radarfelvételekkel, a Google Earth Engine használatával. In. BLANKA V. LADÁNYI Zs. (szerk.): Interdiszciplináris tájkutatás a XXI. században. VII. Magyar Tájökológiai Konferencia, Szeged, Magyarország, 2017.05.25-2017.05.27. pp. 188-199.
- KOVÁCS F. VAN LEEUWEN, B. LADÁNYI ZS RAKONCZAI J. GULÁCSI A. (2017). Regionális léptékű aszálymonitoringot támogató vegetáció- és talajnedvesség értékelés MODIS adatok alapján. Földrajzi Közlemények 141(1): 14-29.
- GULÁCSI A. (2016). Setting up a cost-effective agricultural drought monitoring system using spectral indices derived from MODIS satellite images in Hungary. In. CVETKOVIĆ, M. NOVAK ZELENIKA, K. HORVÁTH J. HATVANI I.G. (szerk.): 8th Croatian-Hungarian and 19th Hungarian geomathematical congress: Geomathematics present and future of geological modelling. Trakostyán, Horvátország, 2016.05.26-2016.05.28. pp. 51-58.
- GULÁCSI A. KOVÁCS F. (2015). Drought monitoring with spectral indices calculated from MODIS satellite images in Hungary. *Journal Of Environmental Geography* 8(3-4): 11-20.
- GULÁCSI A. KOVÁCS F. (2015). Aszályvizsgálat lehetősége MODIS műholdképekből számított spektrális indexekkel Magyarországon. *Tájökológiai Lapok* 13(2): 235-248.
- KOVÁCS F. VAN LEEUWEN, B. BLANKA V. LADÁNYI ZS. TOBAK Z. GULÁCSI A. –
 SZÉCSÉNYI Á. (2015). Aszályindex értékelések, talajnedvesség becslési lehetőségek MODIS
 műholdképek alapján az SZTE Természeti Földrajzi és Geoinformatikai Tanszéken. FÉNYTÉR-KÉP Konferencia előadásanyaga, Gyöngyös. 16 p.

Köszönöm a figyelmet!