

[Handwritten signature]
JUN 18 2002

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of

Docket No: CA1163

Peter R. BEETHAM, et al.

Appln. No.:09/685,403

Group Art Unit: 1638

Confirmation No.: 4644

Examiner: KRUSE, David H.

Filed: October 10, 2000

For: NON-TRANSGENIC HERBICIDE RESISTANT PLANTS

SUBMISSION OF FORMAL DRAWINGS

Commissioner for Patents
Washington, D.C. 20231

Sir:

Submitted herewith please find 14 sheet(s) of formal drawings. The Examiner is respectfully requested to acknowledge receipt of these formal drawings.

The submitted drawings incorporate the proposed drawing changes approved in the Office Action mailed 13 February 2002 (one-month extension) and are believed to obviate the informalities indicated on Form PTO-948 attached to that Office Action.

Respectfully submitted,

John M. Sanders
John M. Sanders
Registration No. 30,126

SUGHRUE MION, PLLC
1010 El Camino Real, Suite 300
Menlo Park, CA 94025

Tel: (650) 325-5800
Fax: (650) 325-6606

Certificate of Mailing

U.S. Patent and Trademark Office
Washington, D.C. 20231

Commissioner for Patents
Washington, D.C. 20231

Date
Signed

June 13, 2002
Blair E. Calmire

DNA sequence:

cccttcatgtctttagaaaccccatttatcttttagggcccaattgaaaacccacatttttcacctaacc
ccaaaggccctgcacatgtgacgtgaacacacaaactaacacgtgtcatactgccagtggatatgataaatgtcatacc
ataccagagtcatagatgtttgggtggaaagatgtgacggatgccttcttccatatttcaccaactccctccaaa
cccaacaaaatgttatattagaaagccaaagtgtaaaacgaaagttataaatttcatattctgtatcttacgta
attggaggaagatcaaaatttcaatccccattttcgattgttcatttgaaagtttctccg

[transit peptide start]

ATGGCGCAAGTTAGCAGAATCTGCAATGGTGTGCAGAACCCATCTTATCTCCAATCTCTGAAATCCAGTCACCGCA
AATCTCCCTTATCGTTTCTCTGAAGACCGAGCAGCATCCACGAGCTTATCCGATTTCGTCGTGCGTGGGATTGAAGAA
GAGTGGGATGACGTTAATTGGCTCTGAGCTCGTCTTAAGGTATGTCTTCTGTTCAACGGCG3AG

[mature peptide starts]

AAAGCGTGGAGATTGACTTCACCCATTAGAGAAATCTCCGGCTTATTAAAGCTTCTGGCTCAAGTCTATCAA
ATCGGATCCTGCTTCTCGTCTGCTGTCTGAGGTATATATCACTTCGTTCTCTGTAATCTGAACCTAGATT
ATAAAAGATTGATACTTACCATTTGCTGTTAGGGAAACAACGTGAGTGGACAACCTGTTGAATAGCGATGAC
ATCAATTACATGCTTGATGCGTTGAAGAGATTGGCTTAACTTAACTGCTGAAACTGACAGTGAAGAAATACTGCTGTAGTTG
AAGGATGTGGGGATATTCCCAGCTTCCATAGATTCAAAGAGTGAATATGAACTTTACCTCGGTAAATGCAGGAACAGC
AATGCGTCCACTTACCGCTGCGGTCACTGCTGAGGTAGATTGAAGGAGTTGATGCTTCTTGGTAT
TTGATGTTAAGGAATGGAGCTTGTGATGCTTATGATCCATTATCCAGTTGATGCTTCTGATGGGGTGCCTCGT
ATGAGAGAAAGACCTATAGGGATTGGTGTGTTGGCTTAAAGCAGCTGGTGTGATGTTGAATGACTCTTGGAAACT
ACTGCCCTCTGTTCTGTCACGCTAATGGGCGCTTCCCGGTGAAAGGTTAGATCTGCAAATGGCATGTGAATAT
GTAATCTGTTCTACTCTATGAAACATTGCTGAGAAATGTGTGTTCATAGCTTAGTTGACAAGATTTCAGTTT
TAATCTACTCTCAACGGATGGATCCTAAAATAGAAATGGATTGGTGTGATTGGTTCTGTTCTGATTACCGTTTCGTT
GTATGATTTCTGATTAACAATTAGGAGACATGTTATGCATTGCAAGGTGAAGCTTCTGATCAATTAGTAGTCAGTA
CTTGACTGCTGCTCATGCTGCTCCATTAGCTCTTGGAGACGTCAGATTGAGATTGTGATAAATTAAATTCTGTT
CCATATGTTGAAATGACATTGAAGTTGATGGAACGTTGGGGTTAGTGTGAGCATAGTGTAGCTGGATCGTTCT
TTGTCAGGGGGCAAAATACAAGTAGGAGTTATTCTTTCTTCTTCTGAAATCACTCCCTAGCTTGACAAT
ATAATGACTAAAAGGTGAATGATTGAGCTCTGGGGTAATGCGTATGTGAGAAGGTGATGCTTCTAGTGCATGTTATTC
TTGGCTGGTGTGCATTACCGTGAACACTGTCACAGTCGAAGGTTGGAACCTACAGCTTGCAAGGTAAATTGTA
ACTGAATCATGACGGGGCTGTTAAGTTATAGTGAATTCGTCAGGTCAAAGTTCATTTTGACAAGTTGTATAT
AACATATTGCAAGATTCTAACGCTAACATTGATGAAATCTGAGGGAGATGAAATTGCGGAGGTCTTGAGAA
AATGGGATGTAAGGTGCTGGACAGAGAACAGTGTGACTGTGACAGGACCACCTAGAGATGCTTTGGAATGAGACAC
TTGCGGGCTATTGATGTCACATGAAACAAATGCGTGTAGCCATGACCTTGCCGTCCTGCTCTTTGCTGACG
GTCCAACCACCATAGAGATGTTAAGTAAAAAGCTCTCTTATAATTAAAGTTCTCAATATTGATCACTTAATT
CTGTTGGTTAATATAGTGGTAGCTGGAGAGTAAAGGAGACAGAAAGGATGATTGCCATTGACAGAGCTTAGAAAA
GTAAGAGATTCTTATCTCTCTTCTGTCCTGACAGTGTCTTCAAGTAATTAGCTCATAAATTGTTGTTGTTG
TGTTCAAGCTGGAGCTACAGTGGAAAGAAGGTTGAGATTATTGTTGATAACTCCGCCAAAAGGTGAAACGGCAGAG
ATTGATACATATGATGATCATAGAAATGGCAATGGCATTCTCTTGCAGCTTGCTGATGTTCCAATCACCACCAACG
ACTCTGGTTGCACCAAGGAAAACCTTCCCCGACTACTTCAAGTACTTGAAAGAATCACAAAGCACTAAacaataaactc
tgtttttttctgttcaagtt

FIG. 1A

Protein sequence:

MAQVSRICNGVQNPSLISNLSSQRKSPSVSLKTQQHPRAYPISSWGLKKSGMTLIGSELRPLKVMSSVSTAE
KASEIVLQPIREISGLIKLPGSKSLSNRILLAAALSEGTTVVDNLLNSDDINYMLDALKRLGLNVETDSENNRAVV
EGCGGIFPASIDSKSDIELYLGNAGTAMRPLTAAVTAAGGNASYVLDGVPRMRERPIGDLVGLKQLGADVECTLG
TNCPPVRVNANGGLPGGVKLGSISSSQYLTALLMSAPLALGDVEIEIVDKLISVPYVEMTLKLMERFGVSVEHSD
SWDRFFVKGGQKYKSPGNAYVEGDASSACYFLAGAAITGETVTVEGCGTTSLQGDVKFAEVLEKMGCKVSWTENS
TGTGPPRDAFGMRHLRAIDVNMMNKMPDVAMTLAVVALFADGPTTIRDVASWRVKETERMIAICTELRKLGATVEEG
SDYCVITPPKKVKTAEIDTYDDHRMAMAFSLAACADVPITINDSGCTRKTFPDYFQVLERITKH

FIG. 1B

Arabidopsis thaliana wild type sequence:

Position	173	174	175	176	177	178	179	180	181	182	183
	L	G	N	A	G	T	A	M	R	P	L
	CTC	GGT	AAT	GCA	GGA	ACA	GCA	ATG	CGT	CCA	CTT

Arabidopsis thaliana mutant sequences:

Name	CTC	GGT	AAT	GCA	GCA	ACA	GCA	ATG	CGT	CCA	CTT
A₁₇₇	L	G	N	A	A	T	A	M	R	P	L
I₁₇₈	CTC	GGT	AAT	GCA	GGA	ATA	GCA	ATG	CGT	CCA	CTT
	L	G	N	A	I	T	A	M	R	P	L
A₁₇₇I₁₇₈	CTC	GGT	AAT	GCA	GCA	ATA	GCA	ATG	CGT	CCA	CTT
	L	G	N	A	A	I	A	M	R	P	L
I₁₇₈S₁₈₂	CTC	GGT	AAT	GCA	GGA	ATA	GCA	ATG	CGT	TCA	CTT
	L	G	N	A	G	I	A	M	R	S	L
A₁₇₇S₁₈₂	CTC	GGT	AAT	GCA	GCA	ACA	GCA	ATG	CGT	TCA	CTT
	L	G	N	A	A	T	A	M	R	S	L
A₁₇₇I₁₇₈S₁₈₂	CTC	GGT	AAT	GCA	GCA	ATA	GCA	ATG	CGT	TCA	CTT
	L	G	N	A	A	I	A	M	R	S	L
V₁₇₈S₁₈₂	CTC	GGT	AAT	GCA	GGA	GTA	GCA	ATG	CGT	TCA	CTT
	L	G	N	A	G	V	A	M	R	S	L
L₁₇₈S₁₈₂	CTC	GGT	AAT	GCA	GGA	TTA	GCA	ATG	CGT	TCA	CTT
	L	G	N	A	G	L	A	M	R	S	L
A₁₇₇V₁₇₈	CTC	GGT	AAT	GCA	GCA	GTA	GCA	ATG	CGT	CCA	CTT
	L	G	N	A	A	V	A	M	R	P	L
A₁₇₇L₁₇₈	CTC	GGT	AAT	GCA	GCA	TTA	GCA	ATG	CGT	CCA	CTT
	L	G	N	A	A	L	A	M	R	P	L

FIG. 2

Title : NON-TRANSGENIC HERBICIDE RESISTANT PLANTS

Inventor(s): Peter BEETHAM et

Application No: 09 685,403

Sheet 4 of 14

					Section 1
DNA.seq	(1) ATGGCGCAAGT TAGCAGAATCTGCAATGGTGTGCAGAACCCAT	10	20	30	40
cdna.seq	(1) ATGGCGCAATCTAGCAGAATCTGCCATGGCGTGCAGAACCCAT				50
icdna.seq	(1) ATGGCACAAATAACAAACATGGCTAAGGGATAACAAACCTTA				60
dpsp.seq	(1) GCGG-----				70
consensus	(1) ATGGCGCAA TTAGCAGAATCTGCATGG GTGCAGAACCCAT				71
					Section 2
(72) 72	80	90	100	110	120
DNA.seq	(69) CAGTCAACGCAAATCTCC	142	143	144	145
cdna.seq	(72) CAACCAAACAAATCACC				
icdna.seq	(69) CCAAGTTCTAAATCTTCAAGTTCTGTGTTTGGATCTAA				
dpsp.seq	(5) -----				
consensus	(72) CAA CAAC CAAATCTCC TTT TC GTTTCT TTGAAGACGCAGCAT CACGAGCTT				
					Section 3
(143) 143	150	160	170	180	190
DNA.seq	(134) TTTCGTCGTCGGGGATGAAAGAGTGGGATGACTGTTAATTGGCTCTGAGCTTGTCCTTAAGGTC	200	201	202	213
cdna.seq	(128) -----				
icdna.seq	(134) -----				
dpsp.seq	(5) -----				
consensus	(143) CTTCGGGGATGAAAGAGTGGGAATGATG TAA TGGCTCTGAG TTGTCCTAAGGGT				
					Section 4
(214) 214	220	230	240	250	260
DNA.seq	(205) ATGTCTTCTGTTCCACGGGGAGAAGCGGTGGAGAATGTACTTCACCCATTAGAGAAATCTCCGGTCT	270	271	272	284
cdna.seq	(193) ACAGCTTCTGTTCCACGGGGAGCTTCAGAGATTGTGCTTCAGAGATAGTGTGAGATAGTGTGCAACCCATTAAAGAGATTCAAGGAC				
icdna.seq	(193) TCAGCATCAGTGGCTACAGGACAGAACCCATTAAAGAGATTCAAGGAC				
dpsp.seq	(13) -----				
consensus	(214) ACAGCTTCTGTTCCACGGGC GAGAAAGCTTCAGGAAATCTCCGGTCT				

Section 5

(285) 285 290 300 310 320 330 340
cDNA.seq (276) TATTAAGCTTCCGGCTCAAGTCTCTATCAAATCGGATCCTGCTGAGGGAAACAA
scDNA.seq (264) CATTAAAGCTACCCGGATCCAATCTCTCCAAATCGGATCCTCCGCTCTATCTGAAGGGAAACTA
cdna.seq (264) TGTTAAATTGCCCTGGCTCAAATCATTAATAGAATTCTCCCTCTGCTGCCTTATCTGAAGGGAAACAA
epspseq (57) GCTGCCGGGGTCCAAGTGCTTCCAAACCGGATCCTACTGCCGCCCTGTCGAGGGACAAACAGTGG
onsensus (285) TATTAAGCTGCCCTGGCTCTCA AATCGGATCCTCCCTTGGCTGCTCTGTGAGGGAAACAA

Section 6

(356) 356 370 380 390 400 410
cDNA.seq (347) CTGTAGTGGACAACATTAGCGATGACATCAATTACATGCTTGAAGAGAGATGGGACTT
scDNA.seq (335) CTGTAGTGGACAACATTAGCGATGACATCAACTACATGCTTGAAGAGAGCTGGGCTT
cdna.seq (335) CTGTGGTTGACAATTACTAAGTAGTGTGATATTACATGCTTGGCCTTGAAAAACA CTTGGACTG
epspseq (128) TTGATAAACCTGCTGAACAGTGAGGATGCCACTACATGCTCGGGGCCCTGAGGACTCTGGTCTCTGTG
onsensus (356) CTGTAGTGGACAACATTAGCGATGACATCAATTACATGCTTGAAGAGAGACTGGGACTT
Section 7

(427) 427 440 450 460 470 480
cDNA.seq (418) AATGTGGAAACTGACAGTGAACAAATAATCGTGTAGTTGAAGGGATGTTGGGGATAATTCCCAGCTTCCAT
scDNA.seq (406) AACGTGGAAACGTGACAGTGTAAACAAACCGTGGCTTGTGAAGGGATGCCGGGGAAATAATTCCCAGCTTCCCT
cdna.seq (406) CATGTAGAAGAAAGATAGTGCACCAACCAACGGACTGTTGGGGCTTTCCCTGGTGGTAA
epspseq (199) GAAGCGGACAACGGCTGCCAAAGAGCTGTAGTTGTGCTGCTGGAAAGTCCCAGTGTG - - AGGATGC
onsensus (427) AATGTGGAAATGATAGT3AAACAAATCGTGTGTTGAAGGGTTGTGGGGCTATTCCCAGCTTCTAT

Section 8

(498) 498 510 520 530 540 550 568
cDNA.seq (489) AGATTCAAAGAGTGATATGAACTTACCTCGTAATGGCAATGGTCCACTTACCGCTGGG
scDNA.seq (477) AGATTCCAAGAGGTGATATGAGTTGATCTGGAAATGCAAGCCATGGTCCACTCACCGCTGCA
cdna.seq (477) AGAGTCCAAGGAAGAAATTCAACTGTTGGAAATGCAAGGAACAGCAATGGGGCACTAAACAGCAG
epspseq (267) TAAAGAGGAAGTGCAGCTTCTGGGAATGCTGGAAACTGCAATGGGGCATTGACAGCAGGAGCTGTTACTG
onsensus (498) AGATTCCAAGGGTGTATATTGAATTGTACCTTGGTAATGCAAGAACAGCAATGCGTCCACTAACCGCTGCA

Section 9

(569) 569 590 600 610 620 639
DNA.seq (560) TCACTGCTGCCAGGTGGAAACGCAAGTTATG GCTTGTATGGCTCGTATGAGAGAAAGACCTATAGGG
>cdna.seq (548) TTACAGCTGCCAGGTGGCAACGGGAGTTATGTA CTTGAGTTCTAGAATGAGGGAAAGACCTATAGGA
>cdna.seq (548) TTACTGTAGCTGGTGGAAATTCAAGGTATGTA CTTGAGTTCTAGAATGAGAGAGAACATTAGT
>cdna.seq (338) CTGCTGGTGGAAATGCAACTTACGTGCTTGATGGAGTACCAAGAATGAGGGAGACCCATTGGCAGCTG
>psps.seq (569) TTACTGCTGCCAGGTGGAAATTCAAGTTATGTA CTTGAGTTCTAGAATGAGGGCTCGAATGAGAGAAAGACCTATAGGG
>nsensus (569) TTACTGCTGCCAGGTGGAAATTCAAGTTATGTA CTTGAGTTCTAGAATGAGGGCTCGAATGAGAGAAAGACCTATAGGG

Section 10

(640) 640 650 660 670 680 690 700 710
DNA.seq (631) GATTGGCTTGTGGTCTTAAGCAGCTTGGCTGATGTTGAATGTA CTTGGAACCTAACTGCCCCCTCTGT
>cdna.seq (619) GATTTGGTTGTGGTCTTAAGCAGCTTGGCTGATGTTGAAGGGTGTGAGTTCTGGCAGTA CTTGGAACCTAACTGCCCCCTCTGT
>cdna.seq (619) GAATTGGTTGTGATGGTCTTAACAGCCTTGGCTGCAAGGGTGTGATTTCTGGCAGATGTTGATTTGGCAGCTGACTGCCACCTGTTCTGT
>psps.seq (409) GTTGTGGGATTGAGCAGCTGGTGCAGATGTTGATTTGGCAGCTGACTGCCACCTGTTCTGT
>nsensus (640) GATTGGTTGTGGTCTTAAGCAGCTTGGCTGATGTTGA TGTACTCTGGCAGTA CTTGGAACCTAACTGCCCCCTCTGT

Section 11

(711) 711 720 730 740 750 760 770 781
DNA.seq (702) TCGTGTCAACGCTTAATGGGGCCTTCCGGTGGAAAGGTGAAGCTTCTGGATCAATTAGTAGTCAGTACT
>cdna.seq (690) TCGTGTCAATGCTTAATGGGGCCTTCCGGTGGAAAGGTGAAGCTTCTGGATCAATTAGTAGTCAGTACT
>cdna.seq (690) TCGAATTGGTCAAGCAAGGGGGTCTTCCTGGAAAGGTCAAGCTCTCTGGCATTAGCAGTCAGTACTTGAGTG
>psps.seq (480) CAATGGAATGGGGCTAACCTGGCAAGGTCAAACGCTGTCTGGCTCCATCAGCAGTCAGTACTTGAGTG
>nsensus (711) TCGTGTCAATCGGTAATGGGGCTTCGGAAAGGTGAAGCTTCTGGATCCATTAGTAGTCAGTACT

Section 12

(782) 782 790 800 810 820 830 840 852
DNA.seq (773) TGACTGCTCTGCTCATGCTCTGGCTTGGAGACGTTGGAGATTGAGATTGCTGGATTTGGATTAATT
>cdna.seq (761) TGACTGCCCTCCATGGCAGCTCTTGGCTGCTTATGGCTGCTTGGGATTTAGGAGATGAGATTGATAACTGATA
>cdna.seq (761) TGACTGCTCTGCTCATGGCTGCTTGGCTGCTTGGGATTTAGGAGATGAGATTGAAATCATTGATAAAATTCTCCATT
>psps.seq (551) CCTTGCTGATGGCTGCTTGGCTGCTTGGGATTTAGGAGATGAGATTGAAATCATTGATAAAATTCTCCATT
>nsensus (782) TGACTGCTCTGCTTATGGCTGCTCCTTAGCTCTGGAGACGTTGGAGATTGAGATTGATAAAATT

Section 17		Section 18		Section 19		Section 20	
(1137) 1137	1150	1160	1170	1170	1180	1190	1207
DNA.seq	(1128) AGAGAACAGTGTGACTGTGGACAGGACACCTAGAGATGAGACACTTGGGGCTATTGATG						
scdna.seq	(1116) AGAGAACAGTGTGACTGTGGACATCAAGAGATGCTTGGAAATGAGGCACCTGGCTGTTGATG						
cdna.seq	(1116) AGAGAACAGTGTGACAGTCACAGTCAAAAGACCTCCAAGGGAGTCTTCTGGAGGAAGCATTGTGATG						
cpssps.seq	(906) TAGCGTAACCTGTTACTGGCCACTGGGGAGCCATTGGAGAAACACCTCAAGGCATTGTGATGTCACAACA						
consensus	(1137) AGAGAACAGTGTGACTGTGGACAGGACACCAAGGACACTTGGAAATGAGGACATTGGCTGTGTTGATG						
(1208) 1208	1220	1230	1240	1250	1260	1278	1278
DNA.seq	(1199) TCAAACATGAAACAAAATGCCATGACCCATTGGCATGACCTTGCGCTCGTGCCTCTTGGCTCTTTGGCCGATGGTCCAAACC						
scdna.seq	(1187) TCAAACATGAAACAAAATGCCATGACCTTGCGCTCTAGCCGCTAGACTCTAGGAGGATGGCTCTTTGGCCGATGGTCCAAACC						
cdna.seq	(1187) TCAAACATGAAATAAAAATGCCATGACACTTGCGCTGATGGCTGTTGCACTTTATGCTGATGGTCCCAACA						
cpssps.seq	(977) TGAACAAGATGCCCTGATGTCGCCCCATGACCTTGCGCTGTTGCGATGGCCGATGGCCGACAGGCCATC						
consensus	(1208) TGAACATGAAACAAAATGCCATGACCTTGCGATGGCCATGACTCTTGTGATGGCTCTTGGCTGATGGTCCCAACC						
(1279) 1279	1290	1300	1310	1320	1330	1349	1349
DNA.seq	(1270) ACCATTAGAGATGTTGGCTAGCTGGAGAGTAAGGGAGACAGGAAAGGATGATTGCCATTGACAGGCTTAG						
scdna.seq	(1258) ACCATCAGAGATGTTGGCTAGCTGGAGAGTAAGGGAGACAGGAAAGGATGATTGCCATTGACAGGCTTAG						
cdna.seq	(1258) GCTATAAGAGATGTTGGCTAGCTGGAGAGTCAGGAAACTGAGGCTATGCACTGACAGAACTTGTGATGCCATTGACAGAAGCTTAG						
cpssps.seq	(1048) AGAGACGTTGGCTTCTGGAGAGTAAGGGAGACGGAGAGGATGGCTAGCTGGAGAGT AAGGAGACAGAGGATGATTGCCATTGACAGGCTTAG						
consensus	(1279) ACCATCAGAGATGTTGGCTAGCTGGAGAGTCAGGAAAGGATGATTGCCATTGACAGGCTTAG						
(1350) 1350	1360	1370	1380	1390	1400	1410	1420
DNA.seq	(1341) AAAACTGGGAGCTACAGTGGAAAGGTTCAAGATTATTGTTGATAACTCCGCCAAAAGGTGAAAAACGG						
scdna.seq	(1329) AAAGCTTGGAGCTACAGTGGAAAGGTTCAAGATTATTGTTGATAACTCCACCGCAAAAGGTGAAAACGG						
cdna.seq	(1329) GAAGTTAGGACCAACCGTTGAGAAGGACAGACTACTGCAATAATCACCCCACGGGAGAAACTAAATGTGA						
cpssps.seq	(1119) GGAGGCACTGTTGAGGAAGGGCGGGACTACTGCAATCACGGCCGGGAAAGCTGAAACGTGACGGGGA						
consensus	(1350) GAAGGCTAGGAGCTACAGTGGAAAGGTTCAAGATTATTGTTGATAACTCCGCCAAAAGGTGAAAAACGG						

Section 21
(1421) 1421 1430 1440 1450 1460 1470 1480 1491
cDNA.seq (1412) CAGAGATTGATACATATGATGATCATAGAATGGCAATGGCATTCTCTCTGCGACTTGTGATGTTCCA
scdna.seq (1400) CGGAGATTGATACGTTGATGATCATAGAATGGCGATGGCCATTGGCTTCTCGCTGCGACTTGTGATGTTCCA
acdma.seq (1400) CCGATATTGATACATACGGATGATGATCATAGGATGGCCATTGGCTTCTCGCTGCGACTTGTGATGTTCCA
epss.seq (1190) TCGAACGTTGACGACCACAGGATGGCCATGGCCATTGGCTTCTCGCTGCGACTTGTGATGTTCCA
onsensus (1421) CCGAGATTGATACATATGATGATCATAGAATGGCCATGGC TTTTCTCTTGCTGTGCTGATGTTCCA
Section 22
(1492) 1492 1500 1510 1520 1530 1540 1550 1562
cDNA.seq (1483) ATCACCATCAACGACTCTGGTTGCACCGAGAAACCTTCCCGACTACTCCAAGTACTTGAAGAAATCAC
scdna.seq (1471) GTCACCATCAAGGATCCTGGCTGCACCCAGGAAACTTCCCTGACTACTCCAAGTCCCTGAAAGTATCAC
acdma.seq (1471) GTCACCATCAATGACCCCTGGCTGACGGGAAACCTTCCCTAACTACTTGTACTTCAAGCTACTCAGCAGTACTC
epss.seq (1261) ATCCGGGACCCCTGGTGACCCGGAAAGACCTTCCCGACTACTCGATGTGCTGAGCACTTGTCAAGAA
onsensus (1492) GTCACCATCAATGACTCTGGCTGCACGGAAAACCTTCCCTGACTACTCCAAGTCCCTGAAAG ATCAC
Section 23
(1563) 1563 1572
cDNA.seq (1554) AAAGCACTAA
scdna.seq (1542) AAAGCATTAA
acdma.seq (1542) CAAGCATTGA
epss.seq (1332) TTAA - - -
onsensus (1563) AAAGCATTAA

Section 1

(1) 1	10	20	30	40	50	60
PRO	(1) MAQVSRICNGVQNP - SLISNLSSQRKSPLSVSLSLKTOQQHPRAYPISSSWGLRKSGMTLIGSELR					74
PRO	(1) MAQSSRICHGQVNPCVPIISNLSSQNQNSPFSVSLKTHQ - - - PRASSWGLRKSGTMLINGSVTR					PVK
PRO	(1) MAQINNMAQGIQL - NPNSNFHKPQVPKSSFLVFGSKK - - - LKNSA					- - - NSMLVLKXDSIFMQKFCSF
PRO	(1) AG - - - - -					
Ansus	(1) MAQISRICNGVQNP IISNLSSKSNQ KSP SVSLKT Q					PKASSWGLRKSGMILLIGSDIR

Section 2

(75) 75	80	90	100	110	120	130
PRO	(68) VMSSVSTA EKASEIVLQPIREISGLKLPGSKSLSNRILLALAESEGTTVDNLLNSDDINYM	DALKRLGLNV				148
PRO	(64) VMASVSTSEKASEIVLQPIREISGLKLPGSKSLSNRILLALAESEGTTVDNLLNSDDINYM	DALKKLGLNV				
PRO	(64) TISASVATQAQPKSEIVLQPIKEISGTVVKLPGSKSLSNRILLALAESEGTTVDNLLNSDDIH	YMLGALKTLGLHV				
PRO	(3) - - - - - AEEIVLQPIKEISGTVVKLPGSKSLSNRILLALAESEGTTVDNLLNSD	EYHYMLGALRTLGLSV				
Ansus	(75) VSASVSTA EKASEIVLQPIKEISGTIQLPGSKSLSNRILLALAESEGTTVDNLLNSDDINYM	GALKTLGLNV				

Section 3

(149) 149	160	170	180	190	200	210
PRO	(142) ETDSENNRAVVEGCCGIFPASIDSKSDEIELYLGNA GTAMRPLTAAVTAAGGNASYVLDGVPRMRERPIGDVLVVG					222
PRO	(138) ERDSVNNRAVVEGCCGIFPASIDSKSDEIELYLGNA GTAMRPLTAAVTAAGGNASYVLDGVPRMRERPIGDVLVVG					
PRO	(138) EEDSANQRAVVEGCCGILFPVGKESKEEIQFLGNAGTAMRPLTAAVTVAGGS	SRYVLDGVPRMRERPIGDVLVVG				
PRO	(67) EADYAAKRAVVGGCGKFPV - EDAKEEVQFLGNAGTAMRPLTAAVTAAGGNATYVLDGVPRMRERPIGDVLVVG					
Ansus	(149) E DSANNRAVVEGCCGIFPPVSIDSKSIDIQLFLGNAGTAMRPLTAAVTAAGGNASYVLDGVPRMRERPIGDVLVVG					

Section 4

(223) 223	230	240	250	260	270	280
PRO	(216) LKQLGADVECTLGTNCPPVRVNANGGLPGGGKVKLSSGSISSSQYLTALIMSAPLALGDVEIEIDKLISVPYVEMT					296
PRO	(212) LKQLGADVECTLGTNCPPVRVNANGGLPGGGKVKLSSGSISSSQYLTALIMAAPLA	LGDVEIEIDKLISVPYVEMT				
PRO	(212) LKQLGAEVDCEFLGTKCPPVRVNSKGGLPGGGKVKLSSGSISSSQYLTALIMAAPLA	LGDVEIEIDKLISVPYVEMT				
PRO	(140) LKQLGADVDCEFLGTDCPPVRVNGIGGLPGGGKVKLSSGSISSSQYLTALIMAAPLA	LGDVEIEIDKLISVPYVEMT				
Ansus	(223) LKQLGADVDCTLGTNCPPVRVNANGGLPGGGKVKLSSGSISSSQYLTALIMAAPLA	LGDVEIEIDKLISVPYVEMT				

(297) 297	310	340	360	370	Section 5
PRO (290) LKLMERFGVSVEHSDSWDREFFVKGGQKYKSPGNAYVEGDASSACYFLAGAAITGETVTVEGCCGTTSLQGDVKFA	320	330	350	360	
PRO (290) LKLMERFGVSAEHSDSWDREFFVKGGQKYKSPGNAYVEGDASSASASYFLAGAAITGETVTVEGCCGTTSLQGDVKFA					
PRO (286) LKLMERFGVSVEHSDSWDREFFVKGGQKYKSPGNAYVEGDASSASASYFLAGAAITGETVTVEGCCGTTSLQGDVKFA					
PRO (286) LKLMERFGVISVEHSSSWDREFFVURGGQKYKSPGKA F VEGDASSASASYFLAGAAV TGGT TVEGCCGTTNSLQGDVKFA					
PRO (214) LRLMERFGVKAEHSDSWDREFVKKGGQKYKSPKNAYVEGDASSASASYFLAGAAITGGTVTVEGCCGTTSLQGDVKFA					
PRO (297) LKLMERFGVSVEHSDSWDREFVKGQKYKSPGNAYVEGDASSASASYFLAGAAITGGTVTVEGCCGTTSLQGDVKFA					
					Section 6
(371) 371	380	390	400	410	420
PRO (364) EVLEKMGCKVSWTENSVTVTGPPRDAFGMRHLRAIDVNMNKMPDVAMTLAVVALFADGPTTIRDVASWRVKETE					430
PRO (360) EVLEKMGCKVSWTENSVTVTGPPSRDAFGMRHLRAIDVNMNKMPDVAMTLAVVALFADGPTTIRDVASWRVKETE					
PRO (360) EVLEKMGCKVSWTENSVTVTGPPRSSGRKHRAIDVNMNKMPDVAMTLAVVALFADGPTTIRDVASWRVKETE					
PRO (288) EVLEMMGAKVWTETSVTGTGPPREPFGRKHLKAI D VNMNKMPDVAMTLAVVALFADGPTTIRDVASWRVKETE					
PRO (371) EVLEKMGCKVSWTENSVTVTGPPRDAFGRKHLRAIDVNMNKMPDVAMTLAVVALFADGPTTIRDVASWRVKETE					
					Section 7
(445) 445	450	460	470	480	490
PRO (438) RMIAICTELRKLGATVEEGSDYCWI T PPKKVKTAEIDTYDDHRMANAFSLAACADVPVTIKDPGCTRTKF P DFYF					500
PRO (434) RMIAICTELRKLGATVEEGSDYCWCWTPPAKVKP A EIDTYDDHRMANAFSLAACADVPVTIKDPGCTRTKF P DFYF					
PRO (434) RMIAICTELRKLGATVEEGPDYC I ITPPEKLNVT D IDTYDDHRMANAFSLAACADVPVTI N DPGCTRTKF P NYF					
PRO (362) RMVIAITELTKLGAS S VEEGPDYC I ITPPEKLNVT D IDTYDDHRMANAFSLAACADVPVTI N DPGCTRTKF P DFYF					
PRO (445) RMIAICTELRKLGATVEEGSDYC I ITPPEKLNVT D IDTYDDHRMANAFSLAACADVPVTI N DPGCTRTKF P DFYF					
					Section 8
(519) 519	527				
PRO (512) QVLERITKH					
PRO (508) QVLESITKH					
PRO (508) DVLCQYSKH					
PRO (436) DVLSTTEVKN					
PRO (519) QVLESITKH					

Oligo Name	Oligo Sequence (5'→3')
ATEPS-A ₁₇₇	CGTTTCCACCTGCAGCAGTGA <u>CCGACGGTAAGTGCTGTCATTACCGAG</u>
ATEPS-AI	CGTTTCCACCTGCAGCAGTGA <u>CCGACGGTAAGTGCTATTGCTGCATTACCGAG</u>
ATEPS-IS	CGTTTCCACCTGCAGCAGTGA <u>CCGACGGTAAGTGAAACGCATTGCTATTGCTGCATTACCGAG</u>
ATEPS-AS	CGTTTCCACCTGCAGCAGTGA <u>CCGACGGTAAGTGAAACGCATTGCTGTGCTGCATTACCGAG</u>
ATEPS-AIS	CGTTTCCACCTGCAGCAGTGA <u>CCGACGGTAAGTGAAACGCATTGCTATTGCTGCATTACCGAG</u>
ATEPS-I ₁₇₇	CGTTTCCACCTGCAGCAGTGA <u>CCGACGGTAAGTGCTGTCATTGCTATTGCTGCATTACCGAG</u>
ATEPS-VS	CGTTTCCACCTGCAGCAGTGA <u>CCGACGGTAAGTGAAACGCATTGCTACTGCTGCATTACCGAG</u>
ATEPS-LS	CGTTTCCACCTGCAGCAGTGA <u>CCGACGGTAAGTGAAACGCATTGCTAATGCTGCATTACCGAG</u>
ATEPS-AV	CGTTTCCACCTGCAGCAGTGA <u>CCGACGGTAAGTGAAACGCATTGCTACTGCTGCATTACCGAG</u>
ATEPS-AL	CGTTTCCACCTGCAGCAGTGA <u>CCGACGGTAAGTGCTAATGCTGCATTACCGAG</u>

FIG. 5

FIG. 6

FIG. 7