IMDB.COM

WEB SCRAPING PROJECT

BY STEPHEN SHAFER

CONTENTS

OVERVIEW

WEB SCRAPING

DATA CLEANING

ANALYSIS/VISUALIZATION

WHAT IS IMDB?

QUESTIONS ASKED GOING IN

- What is the general makeup of IMDb's users?
- Do users rate movies differently based on their demographic?
- When are the highest rated movies released?
- Does voting between demographics differ based on who the lead actor is?

WEB SCRAPING

Rating By Demographic						
	All Ages	<18	18-29	30-4	44 45+	
All	6.9 598,397	7.2 1,934	6.9 212,165	6.1 193,5		
Males	6.8 397,489	7.1 1,557	6.8 169,441	6.		
Females	7.1 77,652	7.8 364	7.2 40,679	7.0 25,3		
IMDb	Staff	Top 1000 Voters	US Users		Non-US Users	
7.0 43		6.9 808	7.2 92,342		6.7 250,976	

CLEANING

Dropping NAs and cleaning Data

```
In [6]: # droping all rows with NAs in meta rating and male teen rating
         imdb test = imdb test.dropna(subset=["male under18 rating"])
         imdb_test = imdb_test.dropna(subset=["meta_rating"])
         #imdb test[imdb test.isnull().any(axis=1)]
 In [7]: # changing rating counts into int type
         imdb test.loc[:,"female ratingCount"] = imdb test.loc[:,"female ratingCount"].astype(int)
         imdb test.loc[:,"male ratingCount"] = imdb test.loc[:,"male ratingCount"].astype(int)
         imdb test.loc[:,"meta rating"] = imdb test.loc[:,"meta rating"].astype(int)
 In [8]: # converting release date into datetime format
         import re
         def split it(year):
             return re.findall('(\d+ \w+ \d+)', year)
         imdb test['release_date'] = imdb_test['release_date'].apply(split_it)
         imdb test['release date'] = imdb test['release date'].apply(lambda x: ','.join(map(str, x)))
         imdb test['release date']= pd.to datetime(imdb test['release date'])
 In [9]: # giving year its own column
         imdb test["release year"] = imdb test["release date"].apply (lambda x : x.year)
         imdb_test = imdb_test.dropna(subset=["release_year"])
         imdb_test.release_year = imdb_test.release_year.astype(int)
In [10]: # giving month its own column
         imdb_test["release_month"] = imdb_test["release_date"].apply (lambda x : x.month)
         imdb_test = imdb_test.dropna(subset=["release_month"])
         imdb test.release month = imdb test.release month.astype(int)
```

ANALYSIS & VISUALIZATION

Demographic Rating by Genre

Rating Count based on Gender

Mean Rating by Year

Demographic Rating based on Actor

CONCLUSION