Machine learning II, unsupervised learning and agents: overview of mathematical tools

Probabilities and statistics

Optimization

Metrics

Metrics in output space Metrics in input space Outliers Probabilities and statistics

To have a solid understanding of machine learning, it is necessary to be familiar with elementary probabilities and statistics.

We want to analyse how the data are **distributed**. For instance the x coordinate, the y coordinate.

- ▶ (informal definition) A random variable is a quantity that can take several values, with some randomness.
- ▶ https://en.wikipedia.org/wiki/Random_variable

- ▶ A random variable is a quantity that can take several values
- ► For instance :
 - ▶ the result of a dice throw

Figure - Dice

- A random variable is a quantity that can take several values
- For instance :
 - the result of a dice throw
 - waiting time with RATP

Figure - Some metro station

- ▶ A random variable is a quantity that can take several values
- ► For instance :
 - the result of a dice throw
 - waiting time with RATP
 - weather

Figure - Weather in November

- ▶ A random variable is a quantity that can take several values
- ► For instance :
 - the result of a dice throw
 - waiting time with RATP
 - weather
 - number of cars taking the periphérique at the same time

Why are random variables important?

- most datasets encountered in machine learning can be considered as sampled from random variables.
- this is important for theoretical studies, and hence for applications: a better theoretical understanding of a problem allows to choose the best algorithm to solve it.
- ▶ theoretical results are sometimes precise in the sense that they allow to estimate the order of magnitude of the statistical error (e.g. the prediction error) as a function of d (dimension of the samples) and n (number of samples)
- ▶ a subdomain of machine learning is "statistical learning"

- ► Some are random variables continuous, others discrete
- continuous : weather, RATP
- ▶ discrete : dice (6 possibilities), number of cars (> 10000)

- ► A random variable is linked to a **probability distribution**, which is a function *P*
- ▶ It quantifies the probability of observing one outcome.
- ► For a discrete variable : each possible outcome is associated with a number between 0 and 1

- For a dice game, the possible outcomes are in the set $\{1, 2, 3, 4, 5, 6\}$
- ► For a dice game : P(1) = ? P(2) = ? P(3) = ? P(4) = ? P(5) = ? P(6) = ?

- For a dice game, the possible outcomes are in the set $\{1, 2, 3, 4, 5, 6\}$
- ► For a dice game : $P(1) = \frac{1}{6}$, $P(2) = \frac{1}{6}$, $P(3) = \frac{1}{6}$, $P(4) = \frac{1}{6}$, $P(5) = \frac{1}{6}$, $P(6) = \frac{1}{6}$
- ► This is called a uniform distribution

 Periphérique : probably a time-dependent very complicated distribution

Continuous variables

- ► The situation is different for continuous random variables.
- ► The distribution is given by a **probability density function**. Informally, the probably of being between x and x + dx is p(x)dx.
- https://en.wikipedia.org/wiki/Probability_density_ function
- ▶ Not that some variables are neither discrete nor continuous.

Uniform discrete

Figure – Uniform discrete distribution with 2 values

Uniform discrete

Figure – Uniform discrete distribution with 10 values

Bernoulli

Figure - Bernoulli distribution

Bernoulli p

- ▶ With probability p, X = 1
- ▶ With probability 1 p, X = 0

Bernoulli

Figure - Bernoulli Distribution

Bernoulli

Figure - Bernoulli Distribution

Figure – Uniform continuous distribution

Figure – Uniform continuous distribution

Figure – Uniform continuous distribution

Figure – Normal distribution

Figure – Normal distribution

Figure – Normal distribution

White noise

Figure – White noise

Histograms

Histograms are an alternative representation of the results of a (one-dimensional) random variable.

Uniform discrete

Figure – Historgram 1

Uniform discrete

Figure - Historgram 1

Bernoulli

Figure – Historgram 2

Figure - Historgram 3

Figure - Historgram 4

Normal

Figure - Historgram 4

cd distributions/
We can use the files analyze_distribution_1.py and
analyze_distribution_2.py to analyze and plot some simple
datasets, stored in csv files/

Distribution 1

Figure – The data we analyze

histograms

Figure – 5 bins

histograms

Figure – 100 bins

histograms

Figure – 1000 bins (too many)

Normal distribution

```
import csv
import numpy as np

file_name = 'mysterious_distro_1.csv'

mean = 4

std_dev = 1
nb_point = 1000

with open('csv_files/' + file_name, 'w') as csvfile:
    filewriter = csv.writer(csvfile, delimiter=',')
    for point in range(1, nb_point):
        random_variable = np.random.normal(loc=mean, scale=std_dev)
        filewriter.writerow([str(point), str(random_variable)])
```

Figure – **create_normal.py** : Creation of the distribution

Second example

Figure - Second distribution

Exercice 1: Create a one-dimensional dataset with a histogram that looks like this one!

Figure - This distribution has several modes

Expected value

- ► The **expected value** of a random variable is its probablistic average.
- Under the condition that this probabilistic average is correctly defined.

Expected value (espérance)

► For a discrete random variable *X* that takes the values *x_i* with probability *p_i* :

$$E(X) = \sum_{i=1}^{n} p_i x_i \tag{1}$$

ightharpoonup For a continuous random variable X with density p:

$$E(X) = \int x p(x) dx \tag{2}$$

Note that X may have values in \mathbb{R}^d , with $d \geq 1$.

Expected value (espérance)

Exercice 2: Computing an expected value

▶ For a discrete random variable X that takes the values x_i with probability p_i :

$$E(X) = \sum_{i=1}^{n} p_i x_i \tag{3}$$

For a continuous random variable X with density :

$$E(X) = \int x p(x) dx \tag{4}$$

Compute the expected value of the dice game.

Variance

The variance is a measure of the dispersion of a random real variable.

https://en.wikipedia.org/wiki/Variance

$$var(X) = E((X - E(X))^{2})$$
 (5)

Note that we can also define the variance of a multidimensonial random variable (which means a random vector). In that case, it is a matrix.

Multidimensional vectors

We often consider random variables and data that live in spaces with a higher dimension than 2 (random vectors).

- images
- sensor that receives multimodal information

Correlation

Random vectors with correlated components are common statistical objects.

- In physics, temperature and pressure, measured by some sensores are correlated.
- ► In a dataset of customers of a company, some dimensions are likely to be correlted.

To study the statistical relationship between components, we can compute the **covariance** of the two components, or the **correlation**, (normalized covariance (see below)).

https://en.wikipedia.org/wiki/Correlation

Covariance

The covariance is a measure of the relationship between the variations of two random variables.

$$cov(X,Y) = E((X - E(X))(Y - E(Y)))$$
 (6)

Correlation

The correlation is the covariance divided by the square roots of the variances.

$$corr(X,Y) = \frac{cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$
(7)

Example

The data in csv_files/distribution_3.csv contain samples of a random variable with 5 dimensions (random vector). Some of these dimensions are correlated.

Covariance

Figure – Covariance matrix of the random vector.

Correlation matrix

Figure – Correlation matrix for the distribution, note the difference in the scale.

Pandas, scikit-learn

- https://pandas.pydata.org/
- https://scikit-learn.org/stable/datasets/toy_dataset.html
- pandas demo with iris and distribution 3.

Minimization of a function

Optimization is another core aspect of machine learning.

Figure - Loss function

Optimization in machine learning

The loss function typically represents the quality of a set of parameters to solve a problem.

- in supervised learning, typically a measure of the prediction error on the dataset
- in clustering, typically a distorsion
- in density estimation, a likelihood

Analytic minimization

Exercice 3: What is the minimum of the function

$$f: x \to (x-1)^2 + 3.5$$
 (8)

And for what value x is it obtained?

Iterative algorithms

However, in most applications of machine learning, it is not possible to use an analytical solution, either because :

- we do not know the analytical solution
- we know how to compute it, but the computation is too costly for practical use.

Instead, we use **iterative algorithms** (gradient descent, coordinate descent, etc.)

Gradient algorithms

Figure - Optimization trajectory.

Metrics

Let $D = \{x_1, \dots, x_n\} \subset \mathcal{X}$ be a dataset of n samples, with labels $\{y_1, \dots, y_n\} \subset \mathcal{Y}$.

There is a metric in the input space $\mathcal X$ and in the output space $\mathcal Y.$

- ▶ The **metric** in \mathcal{X} determines to what extent two samples x_i and x_j should be considered similar or dissimilar.
- The **metric** in \mathcal{Y} determines to what extent two labels y_i and y_j should be considered similar or dissimilar.

In all machine learning, the choice of the metric is very important!

Metrics in output space

A **loss function** *I* is a map that measures the discrepancy between to elements of a set (for instance of a linear space).

$$I: \left\{ \begin{array}{l} \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+ \\ (y,z) \mapsto I(y,z) \end{array} \right.$$

Typically, z can represent our prediction for a given input x, $z = \tilde{f}(x)$, and y the correct label.

Most common supervised learning losses

"0-1" loss for binary classification.

$$\mathcal{Y} = \{0, 1\} \text{ or } \mathcal{Y} = \{-1, 1\}.$$

$$I(y,z) = 1_{y \neq z} \tag{9}$$

Squared loss for regression

$$\mathcal{Y} = \mathbb{R}$$
.

$$I(y,z) = (y-z)^2 (10)$$

absolute loss for regression.

$$\mathcal{Y} = \mathbb{R}$$
.

$$I(y,z) = |y-z| \tag{11}$$

In unsupervised learning, there is notion of output space!

Geometric distances

Often, $\mathcal{X} = \mathbb{R}^p$ (input space). In this case, **geometric** metrics are used. $x = (x_1, ..., x_p)$ and $y = (y_1, ..., y_p)$ are *p*-dimensional vectors.

- L2: $||x y||_2 = \sqrt{\sum_{k=1}^{p} (x_k y_k)^2}$ (Euclidian distance, 2-norm distance)
- ► L1 : $||x y||_1 = \sum_{k=1}^{p} |x_k y_k|$ (Manhattan distance, 1-norm distance)
- weighted $L_1: \sum_{k=1}^p w_k |x_k y_k|$, with each $w_k > 0$.
- ▶ $||x y||_{\infty}$: max $(|x_i y_i|, i \in [1, n])$ (infinity norm distance, Chebyshev distance)

Choice of the metric

In some contexts, some usual metrics such as L2 might not be meaningful!

Figure – In $\mathbb{R}^{64},$ those three points form an equilateral triangle, [Fix et al., ,]

Non-geometric data

Not all data are geometric!

Hamming distance

- ▶ $\#\{x_i \neq y_i\}$ (Hamming distance)
- Levenshtein distance for strings (allows deletions and additions)

General definition of a distance

A **distance** on a set E is an application $d: E \times E \to \mathbb{R}_+$ that must :

- ▶ be symetric : $\forall x, y, d(x, y) = d(y, x)$
- ▶ separate the values : $\forall x, y, d(x, y) = 0 \Leftrightarrow x = y$
- respect the triangular inequality $\forall x, y, z, d(x, y) \leq d(x, z) + d(y, z)$

General definition of a distance

We could verify that :

- ▶ L2 is a distance
- ► Hamming is a distance

Similarities

Sometimes, it is not possible to define a proper **distance** in the input space \mathcal{X} ! This may happen for instance is \mathcal{X} is a dataset of texts.

- When distances are unavailable, we can use Similarities or Dissimilarity to compare points.
- Dissimilarites are more general and don't always abide by the distance axioms.
- Other examples: Adjacency in an oriented graph, Custom agregated score to compare data.

Example: cosine similarity

The **cosine similarity** may be used to compare texts. If u and v are vectors,

$$S_C(u,v) = \frac{(u|v)}{||u||||v||}$$
 (12)

- the bag of words representation allows us to build a vector from a text (one hot encoding).
- cosine similarity/scraper.py
- cosine similarity/similarity.py

Hybrid data

Sometimes each sample contains both numerical data and non-numerical data (text, categorical data.)

See day_1/4_metrics/hybrid_data/

This is often the case in machine learning applications! (database of customers, cars, countries, etc.)

Exercice 4: Using the notebook in day_1/4_metrics/geometric_data/, choose the metric and the threshold so that this graph (and the ones on the next slides) are built.

Outliers

Outliers are samples that are considered like non-representative of the dataset (e.g. due to a measurement error). The detection of outliers depends on the metric!

Figure

Outliers with a different metric

References I

Fix, J., Frezza-Buet, H., Geist, M., and Pennerath, F. Machine Learning.pdf.