

Functional Analysis I

Tutorial Assignment 1

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: Let (X, d) be a metric space. Prove the following assertions.

- (i) We have
 - (a) \emptyset , X are open.

(b)
$$U_1, \dots U_r \subseteq X$$
 open $\Rightarrow \bigcap_{i=1}^r U_i$ is open.
(c) $U_i \subseteq X, i \in I$ open $\Rightarrow \bigcup_{i \in I} U_i$ is open.

(c)
$$U_i \subseteq X$$
, $i \in I$ open $\Rightarrow \bigcup_{i \in I} U_i$ is open.

- (ii) We have
 - (a) \emptyset , X are closed.
 - (b) $A_i \subseteq X, i \in I \text{ closed} \Rightarrow \bigcap_{i \in I} A_i \text{ is closed.}$

(c)
$$A_1, \ldots A_r \subseteq X \text{ closed} \Rightarrow \bigcup_{i=1}^r A_i \text{ is closed.}$$

- (iii) For each $x \in X$, r > 0, the set $K_r(x)$ is closed.
- (iv) For $E \subseteq X$, \overline{E} is the smallest closed set containing E.
- (v) For $E \subseteq X$, \mathring{E} is the biggest open set contained in E.

Background: A topology on a set X is a collection $\mathfrak{U} := \{U_i\}_{i \in J}$ of subsets such that $\varnothing \in \mathfrak{U}, X \in \mathfrak{U}$, and each union and each finite(!) intersection of sets in \mathfrak{U} is again contained in \mathfrak{U} . The pair (X,\mathfrak{U}) is then called a topological space and the elements of \mathfrak{U} open sets. Hence, Exercise 1 (i) states that the open sets of a metric space (X, d) form a topology on X.

Exercise 2: Let (X, d) be a metric space. Prove the following.

- (i) A sequence can have at most one limit.
- (ii) Let $E \subset X$. Then $x \in \overline{E}$ if and only if there exists a sequence $(x_n)_{n \in \mathbb{N}} \subset E$ with $x_n \to x$ as $n \to \infty$.
- (iii) If $(x_n)_{n\in\mathbb{N}}\subset X$ is convergent, then $(x_n)_{n\in\mathbb{N}}\subset X$ is a Cauchy-sequence. The converse is not always true¹. A Cauchy-sequence is convergent, if it contains a convergent subsequence.
- (iv) If X is complete and $E \subset X$ closed, then E is complete. If $E \subset X$ is complete, then E is closed in X.

Exercise 3: Let (X, d) and (X', d') be metric spaces and $f: X \to X'$.

- (i) Prove that f is continuous at $x \in X$ if and only if for each sequence $(x_n) \subset X$ with $d(x_n, x) \to 0$ we have $d'(f(x_n), f(x)) \to 0$ as $n \to \infty$.
- (ii) Show that f is continuous (on X) if and only if for every open set $V \subset X'$ the set $f^{-1}(V) \subset X$ is open.
- (iii) Find an example where f is continuous, U open, but f(U) not open in X'.
- (iv) If X is compact, show that f is continuous if and only if f is uniformly continuous.

Exercise 4: Prove that every norm induces a metric. Does every metric come from a norm?

For example, consider $X = (0, 1], x_n = \frac{1}{n}$.