Supplementary Materials for

Static and Dynamic Event-triggered Mechanisms for Distributed Control of Parallel Inverters in Low-Voltage islanded Microgrids

Jianbo Chen, Dong Yue, Senior Member, IEEE, Chunxia Dou, Member, IEEE, Shengxuan Weng, Xiangpeng Xie, Member, IEEE, Yanman Li, and Gerhard P. Hancke, Fellow, IEEE

I. PRELIMINARY

For completeness, some equations of the manuscript are relisted here. The active and reactive power flows, P_i and Q_i , are

$$P_{i} = \sum_{j=1}^{n} G_{ij} V_{i} V_{j} cos(\delta_{ij})$$

$$Q_{i} = \sum_{j=1}^{n} G_{ij} V_{i} V_{j} sin(\delta_{ij})$$

$$(1)$$

The $P - \dot{V}/Q - \omega$ droop control method of inverter $i \in \{1, \dots m\}$ is represented as

$$D_{pi}\dot{V}_{i}(t) = P_{i}^{*} - P_{i}(t) - p_{i}(t)$$

$$\dot{p}_{i} = k_{pri}\dot{V}_{i}(t)$$

$$D_{qi}\dot{\theta}_{i}(t) = -(Q_{i}^{*} - Q_{i}(t) - q_{i}(t))$$

$$\dot{q}_{i} = -k_{qri}\dot{\theta}_{i}(t)$$
(2)

The structure-preserving model is adopted to model the constant power flows P_{Li} and Q_{Li} at load $i \in \{m+1, \dots, n\}$.

$$D_{Lpi}\dot{\theta}_{i}(t) = -P_{Li} - P_{i}(t) D_{Lqi}\dot{V}_{i}(t) = -Q_{Li} - Q_{i}(t)$$
(3)

The event-triggered restoration mechanism (ETSM) is designed as:

$$k_{pi}\dot{p}_{i}(t) = P_{i}^{*} - P_{i}(t) - p_{i}(t) + \lambda_{pi} \sum_{j \in N_{i}} \left(\frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} - \frac{p_{i}(t_{g}^{i})}{D_{pi}} \right), t \in \left[t_{g}^{i}, t_{g+1}^{i} \right)$$

$$k_{qi}\dot{q}_{i}(t) = Q_{i}^{*} - Q_{i}(t) - q_{i}(t) + \lambda_{qi} \sum_{j \in N_{i}} \left(\frac{q_{j}(\tau_{h'(t)}^{j})}{D_{qj}} - \frac{q_{i}(\tau_{h}^{i})}{D_{qi}} \right), t \in \left[\tau_{h}^{i}, \tau_{h+1}^{i} \right)$$

$$(4)$$

where $\lambda_{pi} = \lambda_{qi} = \lambda$.

The measurement errors with respect to $p_i(t)$ and $q_i(t)$ are defined as

$$e_{pi}(t) = p_i(t) - p_i(t_g^i), \quad t \in [t_g^i, t_{g+1}^i)$$

$$e_{qi}(t) = q_i(t) - q_i(\tau_h^i), \quad t \in [\tau_h^i, \tau_{h+1}^i)$$
(5)

Jianbo Chen and Dong Yue are with the College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China (email: jianbo686@aliyun.com; medongy@vip.163.com)

Chunxia Dou, Shengxuan Weng and Xiangpeng Xie are with the Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China (email: cxdou@ysu.edu.cn; shxweng@gmail.com; xiexiangpeng1953@163.com)

Yanman Li is with the NARI Technology Co., Ltd, Nanjing 211000, China (email: liyanman@sgepri.sgcc.com.cn)

Gerhard P. Hancke is with the Nanjing University of Posts and Telecommunications, Nanjing 210023, China and also with the University of Pretoria, Pretoria 0002, South Africa (email: g.hancke@ieee.org)

1

II. PROOF OF THEOREM 1

Proof: Construct the following function

$$U = \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} V_{i} V_{j} G_{ij} \cos(\theta_{i} - \theta_{j}) \right) + \sum_{i=1}^{m} Q_{i}^{*} \theta_{i} - \sum_{i=m+1}^{n} Q_{Li} \theta_{i} - \sum_{i=1}^{m} P_{i}^{*} \ln V_{i} + \sum_{i=m+1}^{n} P_{Li} \ln V_{i} + \frac{1}{2} \sum_{i=1}^{m} p_{i}^{2} + \frac{1}{2} \sum_{i=1}^{m} q_{i}^{2} \right)$$
(6)

Define $\nu_i = lnV_i$ for $i \in \{1, ..., m\}$. According to (1) and (6), we have

$$\frac{\partial U}{\partial \theta_i} = \frac{1}{2} \left(-2 * \sum_{j=1}^n V_i V_j G_{ij} \sin(\theta_i - \theta_j) \right) + Q_i^* = -Q_i(t) + Q_i^*, \quad i \in \{1, ..., m\}$$
 (7)

$$\frac{\partial U}{\partial \theta_i} = \frac{1}{2} \left(-2 * \sum_{j=1}^n V_i V_j G_{ij} \sin(\theta_i - \theta_j) \right) - Q_{Li}^* = -Q_i(t) - Q_{Li}^*, \quad i \in \{m+1, ..., n\}$$
 (8)

$$\frac{\partial U}{\partial \nu_i} = \frac{1}{2} \frac{\partial}{\partial \nu_i} \left(\sum_{i=1}^n \sum_{j=1}^n e^{\nu_i} e^{\nu_j} G_{ij} \cos(\theta_i - \theta_j) \right) - P_i^*$$

$$= \frac{1}{2} \left(2 * \sum_{i=1}^n e^{\nu_i} e^{\nu_j} G_{ij} \cos(\theta_i - \theta_j) \right) - P_i^*$$

$$= P_i(t) - P_i^*, \quad i \in \{1, ..., m\}$$
(9)

$$\frac{\partial U}{\partial \nu_i} = P_i(t) + P_{Li}, \quad i \in \{m+1, ..., n\}$$

$$\tag{10}$$

$$\frac{\partial U}{\partial_{pi}} = p_i(t), \quad \frac{\partial U}{\partial_{qi}} = q_i(t)$$
 (11)

In summary, we have

$$\frac{\partial U}{\partial \theta_{i}} = \begin{cases}
-Q_{i}(t) + Q_{i}^{*} & i \in \{1, ..., m\} \\
-Q_{i}(t) - Q_{Li} & i \in \{m+1, ..., n\} \end{cases}$$

$$\frac{\partial U}{\partial \nu_{i}} = \begin{cases}
P_{i}(t) - P_{i}^{*} & i \in \{1, ..., m\} \\
P_{i}(t) + P_{Li} & i \in \{m+1, ..., n\} \end{cases}$$

$$\frac{\partial U}{\partial \rho_{i}} = p_{i}(t), \quad \frac{\partial U}{\partial q_{i}} = q_{i}(t)$$
(12)

According to (2,3,4,5) and (12), the closed-loop system can be written as follows. For inverter $i \in \{1,...,m\}$

$$D_{pi}\dot{V}_{i}(t) = D_{pi}e^{\dot{\nu}_{i}(t)} = e^{\dot{\nu}_{i}(t)}D_{pi}\dot{\nu}_{i}(t) = -(P_{i}(t) - P_{i}^{*}) - p_{i}(t) = -\frac{\partial U}{\partial \nu_{i}} - \frac{\partial U}{\partial p_{i}}$$
(13)

$$k_{pi}\dot{p}_{i}(t) = -(P_{i}(t) - P_{i}^{*}) - p_{i}(t) + \lambda_{pi} \sum_{j \in N_{i}} \left(\frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} - \frac{p_{i}(t_{g}^{i})}{D_{pi}} \right)$$

$$= -\frac{\partial U}{\partial \nu_{i}} - \frac{\partial U}{\partial p_{i}} - \lambda \sum_{j=1}^{m} \frac{l_{ij}}{D_{pj}} p_{j} \left(t_{g'(t)}^{j} \right)$$

$$= -\frac{\partial U}{\partial \nu_{i}} - \frac{\partial U}{\partial p_{i}} - \lambda \sum_{j=1}^{m} \frac{l_{ij}}{D_{pj}} \left(p_{j}(t) - e_{pj}(t) \right)$$

$$(14)$$

$$D_{qi}\dot{\theta}_i(t) = -(-Q_i(t) + Q_i^*) + q_i(t) = -\frac{\partial U}{\partial \theta_i} + \frac{\partial U}{\partial_{qi}}$$
(15)

$$k_{qi}\dot{q}_{i}(t) = -Q_{i}(t) + Q_{i}^{*} - q_{i}(t) + \lambda_{qi} \sum_{j \in N_{i}} \left(\frac{q_{j}(\tau_{h'(t)}^{j})}{D_{qj}} - \frac{q_{i}(\tau_{h}^{i})}{D_{qi}} \right)$$

$$= \frac{\partial U}{\partial \theta_{i}} - \frac{\partial U}{\partial q_{i}} - \lambda \sum_{j=1}^{m} \frac{l_{ij}}{D_{qj}} \left(q_{j}(t) - e_{qj}(t) \right)$$

$$(16)$$

In summary, we have

$$e^{\nu_{i}(t)}D_{pi}\dot{\nu}_{i}(t) = -\frac{\partial U}{\partial\nu_{i}} - \frac{\partial U}{\partial\rho_{i}}$$

$$k_{pi}\dot{p}_{i}(t) = -\frac{\partial U}{\partial\nu_{i}} - \frac{\partial U}{\partial\rho_{i}} - \lambda \sum_{j=1}^{m} \frac{l_{ij}}{D_{pj}} \left(p_{j}(t) - e_{pj}(t)\right)$$

$$D_{qi}\dot{\theta}_{i}(t) = -\frac{\partial U}{\partial\theta_{i}} + \frac{\partial U}{\partial\rho_{i}}$$

$$k_{qi}\dot{q}_{i}(t) = \frac{\partial U}{\partial\theta_{i}} - \frac{\partial U}{\partial\rho_{i}} - \lambda \sum_{j=1}^{m} \frac{l_{ij}}{D_{qj}} \left(q_{j}(t) - e_{qj}(t)\right)$$

$$(17)$$

where l_{ij} is the element in the Laplacian matrix L.

For load $i \in \{m + 1, ..., n\}$

$$D_{Lpi}\dot{\theta}_{i}(t) = -\frac{\partial U}{\partial \nu_{i}}$$

$$e^{\nu_{Li}(t)}D_{Lqi}\dot{\nu}_{i}(t) = \frac{\partial U}{\partial \theta_{i}}$$
(18)

Denote the $m \times n$ dimensional zero and identity matrix as $\mathbf{0}_{m \times n}$ and $\mathbf{I}_{m \times n}$, respectively. Denote the vectors $\boldsymbol{\theta}(t) \triangleq [\theta_1(t), ..., \theta_n(t)]^T$, $\boldsymbol{p}(t) \triangleq [p_1(t), ..., p_n(t)]^T$, $\boldsymbol{q}(t) \triangleq [q_1(t), ..., q_n(t)]^T$, $\boldsymbol{\nu}(t) \triangleq [\nu_1(t), ..., \nu_n(t)]^T$, $\boldsymbol{e}_{\boldsymbol{p}}(t) \triangleq [e_{p_1}(t), ..., e_{p_n}(t)]^T$, $\boldsymbol{e}_{\boldsymbol{q}}(t) \triangleq [e_{q_1}(t), ..., e_{q_n}(t)]^T$, $\boldsymbol{x}(t) \triangleq [\boldsymbol{\nu}(t)^T, \boldsymbol{p}(t)^T, \boldsymbol{\theta}(t)^T, \boldsymbol{q}(t)^T]^T$, $\boldsymbol{e}(t) \triangleq [\mathbf{0}_{1 \times n}^T, e_{\boldsymbol{p}}(t)^T, \mathbf{0}_{1 \times n}^T, e_{\boldsymbol{q}}(t)^T]^T$. Besides, define the matrix $\boldsymbol{\lambda} \triangleq diag(\lambda_1, ..., \lambda_m)$, $\boldsymbol{k}_{\boldsymbol{p}} \triangleq diag(k_{p_1}, ..., k_{p_m})$, $\boldsymbol{k}_{\boldsymbol{q}} \triangleq diag(k_{q_1}, ..., k_{q_m})$, $\boldsymbol{D}_{\boldsymbol{p}} \triangleq diag(D_{p_1}, ..., D_{p_m})$, $\boldsymbol{D}_{\boldsymbol{L}\boldsymbol{p}} \triangleq diag(D_{Lp(m+1)}, ..., D_{Lpn})$, $\boldsymbol{D}_{\boldsymbol{q}} \triangleq diag(D_{q_1}, ..., D_{q_m})$, $\boldsymbol{D}_{\boldsymbol{L}\boldsymbol{q}} \triangleq diag(D_{Lq(m+1)}, ..., D_{Lqn})$, $\boldsymbol{e}^{\boldsymbol{\nu}(t)} \triangleq diag(e^{\nu_L(m+1)(t)}, ..., e^{\nu_L(t)})$. Then,set $\boldsymbol{D}(t) \triangleq diag(e^{\boldsymbol{\nu}(t)}\boldsymbol{D}_{\boldsymbol{p}}, e^{\boldsymbol{\nu}_L(t)}\boldsymbol{D}_{\boldsymbol{L}\boldsymbol{q}}, \boldsymbol{k}_{\boldsymbol{p}}, \boldsymbol{D}_{\boldsymbol{q}}, \boldsymbol{D}_{\boldsymbol{L}\boldsymbol{p}}, \boldsymbol{k}_{\boldsymbol{q}})$ and $\boldsymbol{A} \triangleq \boldsymbol{A}_1 + \boldsymbol{A}_2$, $\boldsymbol{A}_2 \triangleq diag(\mathbf{0}_{n \times n}, \boldsymbol{\lambda} \boldsymbol{L} \boldsymbol{D}_{\boldsymbol{p}}^{-1}, \mathbf{0}_{n \times n}, \boldsymbol{\lambda} \boldsymbol{L} \boldsymbol{D}_{\boldsymbol{q}}^{-1})$ and \boldsymbol{A}_1 is shown as follows.

Based on the above vectors and matrix, the closed-loop system (17.18) can be rewritten in a compact form as

$$D\frac{d}{dt}x = -A\frac{\partial U}{\partial x} + A_2 e(t)$$
(20)

The derivative of U with respect to time t along with the solution of system (20) is

$$\frac{d}{dt}U = \left(\frac{\partial U}{\partial x}\right)^{T} \frac{dx}{dt}
= -\left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A \frac{\partial U}{\partial x} + \left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A_{2} e(t)
= -\frac{1}{2} \left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A \frac{\partial U}{\partial x} - \frac{1}{2} \left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} (A_{1} + A_{2}) \frac{\partial U}{\partial x} + \left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A_{2} e(t)
= -\frac{1}{2} \left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A \frac{\partial U}{\partial x} - \frac{1}{2} \left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A_{1} \frac{\partial U}{\partial x}
- \frac{1}{2} \left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A_{2} \frac{\partial U}{\partial x}
+ \left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A_{2} e(t)
= -\frac{1}{2} \left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A \frac{\partial U}{\partial x} - \frac{1}{2} \left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A_{1} \frac{\partial U}{\partial x}
- \frac{1}{2} (p^{T} \lambda k_{p}^{-1} L D_{p}^{-1} p + q^{T} \lambda k_{q}^{-1} L D_{q}^{-1})
+ (p^{T} \lambda k_{p}^{-1} L D_{p}^{-1} e_{p} + q^{T} \lambda k_{q}^{-1} L D_{q}^{-1} e_{q})$$
(21)

Defining the vectors $\hat{p}(t) \triangleq p_1(t_{q'(t)}^1), ..., p_m(t_{q'(t)}^m)^T$ and $\hat{q}(t) \triangleq q_1(\tau_{h'(t)}^1), ..., q_m(\tau_{h'(t)}^m)^T$, we obtain

$$-\frac{1}{2} \left(p^{T} \lambda k_{p}^{-1} L D_{p}^{-1} p \right) + \left(p^{T} \lambda k_{p}^{-1} L D_{p}^{-1} e_{p} \right)$$

$$= p^{T} \lambda k_{p}^{-1} L D_{p}^{-1} \left(e_{p} - \frac{1}{2} p \right)$$

$$= \frac{1}{2} \left(e_{p} + \hat{p} \right) \lambda k_{p}^{-1} L D_{p}^{-1} \left(e_{p} - \hat{p} \right)$$

$$= \frac{1}{2} \left(e_{p} \lambda k_{p}^{-1} L D_{p}^{-1} e_{p} - \hat{p} \lambda k_{p}^{-1} L D_{p}^{-1} \hat{p} \right)$$
(22)

Since the communication graph G is undirected and connected, we have

$$e_{p}\lambda k_{p}^{-1}LD_{p}^{-1}e_{p}$$

$$= \sum_{i=1}^{m} \frac{\lambda k_{pr}e_{pi}}{D_{pi}} \sum_{j \in N_{i}} \left(\frac{e_{pi}}{D_{pi}} - \frac{e_{pj}}{D_{pj}} \right)$$

$$\leq \lambda k_{pr} \sum_{i=1}^{m} |N_{i}| \frac{e_{pi}^{2}}{D_{pi}^{2}} + \lambda k_{pr} \sum_{i=1}^{m} \sum_{j \in N_{i}} \left| \frac{e_{pi}}{D_{pi}} \right| \cdot \left| \frac{e_{pj}}{D_{pj}} \right|$$

$$\leq \lambda k_{pr} \sum_{i=1}^{m} |N_{i}| \frac{e_{pi}^{2}}{D_{pi}^{2}} + \lambda k_{pr} \sum_{i=1}^{m} \sum_{j \in N_{i}} \left(\frac{e_{pi}^{2}}{2D_{pi}^{2}} + \frac{e_{pj}^{2}}{2D_{pj}^{2}} \right)$$

$$= \lambda k_{pr} \sum_{i=1}^{m} |N_{i}| \frac{e_{pi}^{2}}{D_{pi}^{2}} + \frac{1}{2} \lambda k_{pr} \sum_{i=1}^{m} |N_{i}| \frac{e_{pi}^{2}}{D_{pi}^{2}} + \frac{1}{2} \lambda k_{pr} \sum_{i=1}^{m} |N_{i}| \frac{e_{pi}^{2}}{D_{pi}^{2}}$$

$$= \lambda k_{pr} \sum_{i=1}^{m} |N_{i}| \frac{e_{pi}^{2}}{D_{pi}^{2}} + \frac{1}{2} \lambda k_{pr} \sum_{i=1}^{m} |N_{i}| \frac{e_{pi}^{2}}{D_{pi}^{2}}$$

$$= 2\lambda k_{pr} \sum_{i=1}^{m} |N_{i}| \frac{e_{pi}^{2}}{D_{pi}^{2}}$$

$$= 2\lambda k_{pr} \sum_{i=1}^{m} |N_{i}| \frac{e_{pi}^{2}}{D_{pi}^{2}}$$

and

$$\begin{aligned}
&= \sum_{i=1}^{m} \lambda k_{pr} \frac{p_{i}(t_{g'(t)}^{i})}{D_{pi}} \sum_{j \in N_{i}} \left(\frac{p_{i}(t_{g'(t)}^{i})}{D_{pi}} - \frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} \right) \\
&= \lambda k_{pr} \sum_{i=1}^{m} \sum_{j \in N_{i}} \left(\frac{p_{i}^{2}(t_{g'(t)}^{i})}{D_{pi}^{2}} - \frac{p_{i}(t_{g'(t)}^{i})p_{j}(t_{g'(t)}^{j})}{D_{pi}D_{pj}} \right) \\
&= \lambda k_{pr} \sum_{i=1}^{m} \sum_{j \in N_{i}} \left(\frac{p_{i}^{2}(t_{g'(t)}^{i})}{2D_{pi}^{2}} + \frac{p_{j}^{2}(t_{g'(t)}^{j})}{2D_{pj}^{2}} - \frac{p_{i}(t_{g'(t)}^{i})p_{j}(t_{g'(t)}^{j})}{D_{pi}D_{pj}} \right) \\
&= \lambda k_{pr} \sum_{i=1}^{m} \sum_{j \in N_{i}} \frac{1}{2} \left(\frac{p_{i}(t_{g'(t)}^{i})}{D_{pi}} - \frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} \right)^{2}
\end{aligned} \tag{24}$$

Combing (22,23) and (24), we have

$$-\frac{1}{2} \left(\boldsymbol{p}^{T} \boldsymbol{\lambda} \boldsymbol{k}_{\boldsymbol{p}}^{-1} \boldsymbol{L} \boldsymbol{D}_{\boldsymbol{p}}^{-1} \boldsymbol{p} \right) + \left(\boldsymbol{p}^{T} \boldsymbol{\lambda} \boldsymbol{k}_{\boldsymbol{p}}^{-1} \boldsymbol{L} \boldsymbol{D}_{\boldsymbol{p}}^{-1} \boldsymbol{e}_{\boldsymbol{p}} \right)$$

$$\leq \lambda k_{pr} \sum_{i=1}^{m} \left[|N_{i}| \frac{e_{pi}^{2}}{D_{pi}^{2}} - \sum_{j \in N_{i}} \frac{1}{4} \left(\frac{p_{i}(t_{g'(t)}^{i})}{D_{pi}} - \frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} \right)^{2} \right]$$
(25)

With a similar analysis, the following equation is derived.

$$-\frac{1}{2}\left(q^{T}\lambda k_{q}^{-1}LD_{q}^{-1}q\right) + \left(q^{T}\lambda k_{q}^{-1}LD_{q}^{-1}e_{q}\right)$$

$$\leq \lambda k_{qr}\sum_{i=1}^{m}\left[|N_{i}|\frac{e_{qi}^{2}}{D_{qi}^{2}} - \sum_{j\in N_{i}}\frac{1}{4}\left(\frac{q_{i}(\tau_{h'(t)}^{i})}{D_{qi}} - \frac{q_{j}(\tau_{h'(t)}^{j})}{D_{qj}}\right)^{2}\right]$$
(26)

With the definition of matrix D and A_1 , we have

$$\left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A_{1} \frac{\partial U}{\partial x} \\
= \sum_{i=1}^{m} \frac{1}{D_{pi} V_{i}} \left(P_{i} - P_{i}^{*}\right)^{2} + \sum_{i=1}^{m} \frac{1}{D_{pi} V_{i}} \left(P_{i} - P_{i}^{*}\right) p_{i} + \sum_{i=m+1}^{n} \frac{1}{D_{Lqi} V_{i}} \left(P_{i} + P_{Li}\right) \left(Q_{i} + Q_{Li}\right) + \sum_{i=1}^{m} \frac{1}{k_{pi}} \left(P_{i} - P_{i}^{*}\right) p_{i} + \sum_{i=1}^{m} \frac{1}{k_{pi}} p_{i}^{2} \\
+ \sum_{i=1}^{m} \frac{1}{D_{qi}} \left(Q_{i} - Q_{i}^{*}\right)^{2} + \sum_{i=1}^{m} \frac{1}{D_{qi}} \left(Q_{i} - Q_{i}^{*}\right) q_{i} + \sum_{i=m+1}^{n} -\frac{1}{D_{Lpi}} \left(P_{i} + P_{Li}\right) \left(Q_{i} + Q_{Li}\right) + \sum_{i=1}^{m} \frac{1}{k_{qi}} q_{i}^{2} + \sum_{i=1}^{m} \frac{1}{k_{qi}} \left(Q_{i} - Q_{i}^{*}\right) q_{i} \\
= \sum_{i=1}^{m} \frac{1}{D_{pi} V_{i}} \left(P_{i} - P_{i}^{*}\right) \left(P_{i} - P_{i}^{*} + p_{i}\right) + \sum_{i=1}^{m} \frac{k_{pri}}{D_{pi}} \left(P_{i} - P_{i}^{*} + p_{i}\right) p_{i} + \sum_{i=1}^{m} \frac{1}{D_{qi}} \left(Q_{i} - Q_{i}^{*} + k_{qi} q_{i}\right) \left(Q_{i} - Q_{i}^{*} + q_{i}\right) \\
\geq \sum_{i=1}^{m} \frac{1}{D_{pi} V_{i}} \left(P_{i} - P_{i}^{*}\right) \left(P_{i} - P_{i}^{*} + p_{i}\right) + \sum_{i=1}^{m} \frac{1}{D_{qi}} \left(Q_{i} - Q_{i}^{*} + p_{i}\right) k_{pri} p_{i} + \sum_{i=1}^{m} \frac{1}{D_{qi}} \left(Q_{i} - Q_{i}^{*} + q_{i}\right)^{2} \\
= \sum_{i=1}^{m} \frac{1}{D_{pi} V_{i}} \left(P_{i} - P_{i}^{*} + k_{pri} p_{i}\right) \left(P_{i} - P_{i}^{*} + p_{i}\right) + \sum_{i=1}^{m} \frac{1}{D_{qi}} \left(Q_{i} - Q_{i}^{*} + q_{i}\right)^{2} \\
\geq \sum_{i=1}^{m} \frac{1}{D_{pi} V_{i}} \left(P_{i} - P_{i}^{*} + p_{i}\right)^{2} + \sum_{i=1}^{m} \frac{1}{D_{qi}} \left(Q_{i} - Q_{i}^{*} + q_{i}\right)^{2}$$
(27)

Substituting (22,23,25,26,27) into (21) yields

$$\frac{d}{dt}U \leq -\frac{1}{2} \left(\frac{\partial U}{\partial \boldsymbol{x}}\right)^{T} \boldsymbol{D}^{-1} \boldsymbol{A} \frac{\partial U}{\partial \boldsymbol{x}} + \sum_{i=1}^{m} \left[\lambda k_{pr} |N_{i}| \frac{e_{pi}^{2}(t)}{D_{pi}^{2}} - \sum_{j \in N_{i}} \frac{\lambda k_{pr}}{4} \left(\frac{p_{i}(t_{g'(t)}^{i})}{D_{pi}} - \frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} \right)^{2} - \frac{1}{2D_{pi}V_{i}} (P_{i}(t) - P_{i}^{*}(t) + p_{i}(t))^{2} \right] + \sum_{i=1}^{m} \left[\lambda k_{qr} |N_{i}| \frac{e_{qi}^{2}(t)}{D_{qi}^{2}} - \sum_{j \in N_{i}} \frac{\lambda k_{qr}}{4} \left(\frac{q_{i}(\tau_{h'(t)}^{i})}{D_{qi}} - \frac{q_{j}(\tau_{h'(t)}^{j})}{D_{qj}} \right)^{2} - \frac{1}{2D_{qi}} (Q_{i}^{*}(t) - Q_{i}(t) - q_{i}(t))^{2} \right]$$
(28)

Considering the static event-triggered mechanism, we obtain

$$e_{pi}^{2}(t) \leq \sum_{j \in N_{i}} \frac{D_{pi}^{2}}{4 |N_{i}|} \left(\frac{p_{j}(t_{g'(t)}^{i})}{D_{pj}} - \frac{p_{i}(t_{g}^{i})}{D_{pi}} \right)^{2} + \frac{D_{pi}(P_{i}^{*}(t) - P_{i}(t) - p_{i}(t))^{2}}{2\lambda k_{pr} V_{i} |N_{i}|} + \frac{D_{pi}^{2}}{\lambda k_{pr} |N_{i}|} \eta_{pi}$$

$$e_{qi}^{2}(t) \leq \sum_{j \in N_{i}} \frac{D_{qi}^{2}}{4 |N_{i}|} \left(\frac{q_{j}(\tau_{h'(t)}^{j})}{D_{qj}} - \frac{q_{i}(\tau_{h}^{i})}{D_{qi}} \right)^{2} + \frac{D_{qi}(Q_{i}^{*}(t) - Q_{i}(t) - q_{i}(t))^{2}}{2\lambda k_{qr} |N_{i}|} + \frac{D_{qi}^{2}}{\lambda k_{qr} |N_{i}|} \eta_{qi}$$

$$(29)$$

Thus,

$$\frac{d}{dt}U \leq -\frac{1}{2} \left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A \frac{\partial U}{\partial x} + \sum_{i=1}^{m} (\eta_{pi} + \eta_{qi})$$

$$= -\sum_{i=1}^{m} \frac{q}{2D_{pi}V_{i}} (P_{i}(t) - P_{i}^{*}(t) + p_{i}(t))^{2} - \sum_{i=1}^{m} \frac{1}{2D_{qi}} (Q_{i}^{*}(t) - Q_{i}(t) - q_{i}(t))^{2}$$

$$- \lambda k_{pr} \sum_{i=1}^{m} \sum_{j \in N_{i}} \frac{1}{4} \left(\frac{p_{i}(t)}{D_{p,i}} - \frac{p_{j}(t)}{D_{p,j}}\right)^{2} - \lambda k_{qr} \sum_{i=1}^{m} \sum_{j \in N_{i}} \frac{1}{4} \left(\frac{q_{i}(t)}{D_{q,i}} - \frac{q_{j}(t)}{D_{q,j}}\right)^{2} + \sum_{i=1}^{m} (\eta_{p,i} + \eta_{q,i})$$
(30)

Since the boundedness of x can be deduced by the boundedness of U(x) through a similar analysis of that in [1], [2], equation (30) indicates that the closed-loop system (20) converges into the set S and with the LaSalle's invariance principle, we have

$$S \triangleq (\theta_{1}, ..., \theta_{n}, p_{1}, ..., p_{m}, ..., V_{1}, ..., V_{n}, q_{1}, ..., q_{m}) \left| \sum_{i=1}^{m} \frac{q}{2D_{pi}V_{i}} (P_{i}(t) - P_{i}^{*}(t) + p_{i}(t))^{2} \right.$$

$$+ \sum_{i=1}^{m} \frac{1}{2D_{qi}} (Q_{i}^{*}(t) - Q_{i}(t) - q_{i}(t))^{2} + \lambda k_{pr} \sum_{i=1}^{m} \sum_{j \in N_{i}} \frac{1}{4} \left(\frac{p_{i}(t)}{D_{pi}} - \frac{p_{j}(t)}{D_{pj}} \right)^{2}$$

$$+ \lambda k_{qr} \sum_{i=1}^{m} \sum_{j \in N_{i}} \frac{1}{4} \left(\frac{q_{i}(t)}{D_{qi}} - \frac{q_{j}(t)}{D_{qj}} \right)^{2} \leqslant \sum_{i=1}^{m} (\eta_{pi} + \eta_{qi})$$

$$(31)$$

In other words, the frequency and voltage of the microgrid staring from a neighbourhood of the equilibrium converges into an arbitrate small neighbourhood of the equilibrium since η_{pi} and η_{qi} can be defined small enough. In a mathematical statement, we have $|\omega_i - \omega^*| < C_{\omega}$, C_{ω} is an arbitrary small positive constants and $|V_i - V^*| < 5\%V^*$.

statement, we have $|\omega_i - \omega^*| < C_\omega$, C_ω is an arbitrary small positive constants and $|V_i - V^*| < 5\%V^*$. With (31), we can obtain that $\left|\frac{p_i(t)}{D_{pi}} - \frac{p_j(t)}{D_{pj}}\right| \leqslant \frac{2}{\sqrt{\lambda k_{pr}}} \sqrt{\sum_{i=1}^m (\eta_{pi} + \eta_{qi})}$, for $j \in N_i$. Defining the variable $\xi_{pi}(t) \triangleq P_i^* - P_i(t) - p_i(t)$, we can also have that $|\xi_{pi}(t)| \leqslant \sqrt{2D_{pi}V_i\sum_{i=1}^m (\eta_{pi} + \eta_{qi})}$.

Since

$$\left| \frac{p_{i}(t)}{D_{pi}} - \frac{p_{j}(t)}{D_{pj}} \right| = \left| \frac{P_{i}^{*} - P_{i}(t) - \xi_{pi}(t)}{D_{pi}} - \frac{P_{j}^{*} - P_{j}(t) - \xi_{pj}(t)}{D_{pj}} \right|
= \left| \frac{P_{i}^{*}}{D_{pi}} \left(1 - \frac{P_{i}(t)}{P_{i}^{*}} - \frac{\xi_{pi}(t)}{P_{i}^{*}} \right) - \frac{P_{j}^{*}}{D_{pj}} \left(1 - \frac{P_{j}(t)}{P_{j}^{*}} - \frac{\xi_{pj}(t)}{P_{j}^{*}} \right) \right|
= \frac{P_{i}^{*}}{D_{pi}} \left| -\frac{P_{i}(t)}{P_{i}^{*}} - \frac{\xi_{pi}}{P_{i}^{*}} + \frac{P_{j}(t)}{P_{j}^{*}} + \frac{\xi_{pj}(t)}{P_{j}^{*}} \right|
\geqslant \frac{P_{i}^{*}}{D_{pi}} \left(\left| \frac{P_{i}(t)}{P_{i}^{*}} - \frac{P_{j}(t)}{P_{j}^{*}} \right| - \left| \frac{\xi_{pi}}{P_{i}^{*}} - \frac{\xi_{pj}}{P_{j}^{*}} \right| \right)$$
(32)

we can derive

$$\left| \frac{P_{i}(t)}{P_{i}^{*}} - \frac{P_{j}(t)}{P_{j}^{*}} \right| \leq \frac{D_{pi}}{P_{i}^{*}} \left| \frac{p_{i}(t)}{D_{pi}} - \frac{p_{j}(t)}{D_{pj}} \right| + \left| \frac{\xi_{pi}(t)}{P_{i}^{*}} - \frac{\xi_{pj}(t)}{P_{j}^{*}} \right| \\
\leq \frac{2D_{pi}}{P_{i}^{*}\sqrt{\lambda k_{pr}}} \sqrt{\sum_{i=1}^{m} (\eta_{pi} + \eta_{qi})} + \frac{\sqrt{2D_{pi}V_{i}}\sum_{i=1}^{m} (\eta_{pi} + \eta_{qi})}{P_{i}^{*}} + \frac{\sqrt{2D_{pj}V_{j}}\sum_{i=1}^{m} (\eta_{pi} + \eta_{qi})}{P_{j}^{*}} \\
= \left(\frac{2D_{pi}}{P_{i}^{*}\sqrt{\lambda k_{pr}}} + \frac{\sqrt{2D_{pi}V_{i}}}{P_{i}^{*}} + \frac{\sqrt{2D_{pj}V_{j}}}{P_{j}^{*}} \right) \sqrt{\sum_{i=1}^{m} (\eta_{pi} + \eta_{qi})} \tag{33}$$

With the same analysis, we have

$$\left| \frac{Q_i(t)}{Q_i^*} - \frac{Q_j(t)}{Q_j^*} \right| \leqslant \left(\frac{2D_{qi}}{Q_i^* \sqrt{\lambda k_{qr}}} + \frac{\sqrt{2D_{qi}}}{Q_i^*} + \frac{\sqrt{2D_{qj}}}{Q_j^*} \right) \sqrt{\sum_{i=1}^m (\eta_{pi} + \eta_{qi})}$$
(34)

$$\text{Let } \eta^{'} = \sqrt{\sum_{i=1}^{m}(\eta_{pi} + \eta_{qi})}, C_{Pi} = \left(\frac{2D_{pi}}{P_{i}^{*}\sqrt{\lambda k_{pr}}} + \frac{\sqrt{2D_{pi}V_{i}}}{P_{i}^{*}} + \frac{\sqrt{2D_{pj}V_{j}}}{P_{j}^{*}}\right) \eta^{'} \text{ and } C_{Qi} = \left(\frac{2D_{qi}}{Q_{i}^{*}\sqrt{\lambda k_{qr}}} + \frac{\sqrt{2D_{qi}}}{Q_{i}^{*}} + \frac{\sqrt{2D_{qj}}}{Q_{j}^{*}}\right) \eta^{'}.$$
 This concludes the proof.

III. PROOF OF THEOREM 2

Proof: With equations (4) and (5), the following inequality is derived. For $t \in [t_q^i, t_{q+1}^i]$:

$$\frac{d}{dt}|e_{pi}(t)| \leqslant |\dot{e}_{pi}(t)| = |\dot{p}_{i}(t)| = \frac{k_{pr}}{D_{pi}} \left| P_{i}^{*} - P_{i}(t) - p_{i}(t) + \lambda_{i} \sum_{j \in N_{i}} \left(\frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} - \frac{p_{i}(t_{g}^{i})}{D_{pi}} \right) \right| \leqslant M_{pi}$$
(35)

where M_{pi} is positive constant and the last inequality holds due to the convergence verified by Theorem 1. Thus, for $t \in [t_g^i, t_{g+1}^i)$, we have $|e_{pi}(t)| \leq M_{pi}(t-t_g^i)$.

Since the adjacent triggering event occurs when the inequality (36) holds according to the SETM,

$$e_{pi}^{2}(t) > \sum_{i \in N_{i}} \frac{D_{pi}^{2}}{4 |N_{i}|} \left(\frac{p_{j}(t_{g'(t)}^{i})}{D_{pj}} - \frac{p_{i}(t_{g}^{i})}{D_{pi}} \right)^{2} + \frac{D_{pi}(P_{i}^{*}(t) - P_{i}(t) - p_{i}(t))^{2}}{2\lambda k_{pr} V_{i} |N_{i}|} + \frac{D_{pi}^{2}}{\lambda k_{pr} |N_{i}|} \eta_{pi}$$

$$(36)$$

we have

$$M_{pi}(t_{g+1}^{i} - t_{g}^{i}) > \sqrt{\sum_{j \in N_{i}} \frac{D_{pi}^{2}}{4 |N_{i}|} \left(\frac{p_{j}(t_{g'(t)}^{i})}{D_{pj}} - \frac{p_{i}(t_{g}^{i})}{D_{pi}}\right)^{2} + \frac{D_{pi}(P_{i}^{*} - P_{i}(t_{g+1}^{i}) - p_{i}(t_{g+1}^{i}))^{2}}{2\lambda k_{pr}V_{i} |N_{i}|} + \frac{D_{pi}^{2}}{\lambda k_{pr} |N_{i}|} \eta_{pi}}$$
(37)

Which also means

$$t_{g+1}^{i} - t_{g}^{i} > \frac{1}{M_{pi}} \sqrt{\sum_{j \in N_{i}} \frac{D_{pi}^{2}}{4 |N_{i}|} \left(\frac{p_{j}(t_{g'(t)}^{i})}{D_{pj}} - \frac{p_{i}(t_{g}^{i})}{D_{pi}} \right)^{2} + \frac{D_{pi}(P_{i}^{*} - P_{i}(t_{g+1}^{i}) - p_{i}(t_{g+1}^{i}))^{2}}{2\lambda k_{pr} V_{i} |N_{i}|} + \frac{D_{pi}^{2}}{\lambda k_{pr} |N_{i}|} \eta_{pi}}$$
(38)

With a similar analysis, we obtain

$$\tau_{h+1}^{i} - \tau_{h}^{i} > \frac{1}{M_{qi}} \sqrt{\sum_{j \in N_{i}} \frac{D_{qi}^{2}}{4 |N_{i}|} \left(\frac{q_{j}(\tau_{h'(\tau_{h+1}^{j})}^{j})}{D_{qj}} - \frac{q_{i}(\tau_{h}^{i})}{D_{qi}}\right)^{2} + \frac{D_{qi}(Q_{i}^{*} - Q_{i}(\tau_{h+1}^{j}) - q_{i}(\tau_{h+1}^{j}))^{2}}{2\lambda k_{qr} |N_{i}|} + \frac{D_{qi}^{2}}{\lambda k_{qr} |N_{i}|} \eta_{qi}}$$
(39)

This concludes the proof.

IV. PROOF OF THEOREM 3

Proof: Construct the following function

$$U_d = U + \sum_{i=1}^m \varphi_{pi} + \sum_{i=1}^m \varphi_{qi} \tag{40}$$

_

With the similar analysis as (28), we have

$$\frac{d}{dt}U \leq -\frac{1}{2} \left(\frac{\partial U}{\partial x}\right)^{T} D^{-1} A \frac{\partial U}{\partial x} + \sum_{i=1}^{m} (\dot{\varphi}_{pi} + \dot{\varphi}_{qi}) \\
+ \sum_{i=1}^{m} \left[\lambda k_{pr} |N_{i}| \frac{c_{pi}^{2}(t)}{D_{pi}^{2}} - \sum_{j \in N_{i}} \frac{\lambda k_{pr}}{4} \left(\frac{p_{i}(t_{g'(t)}^{i})}{D_{pi}} - \frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} \right)^{2} - \frac{1}{2D_{pi}V_{i}} (P_{i}(t) - P_{i}^{*}(t) + p_{i}(t))^{2} \right] \\
+ \sum_{i=1}^{m} \left[\lambda k_{qr} |N_{i}| \frac{c_{pi}^{2}(t)}{D_{qi}^{2}} - \sum_{j \in N_{i}} \frac{\lambda k_{qr}}{4} \left(\frac{q_{i}(\tau_{h'(t)}^{i})}{D_{qi}} - \frac{q_{j}(\tau_{h'(t)}^{j})}{D_{qj}} \right)^{2} - \frac{1}{2D_{qi}} (Q_{i}^{*}(t) - Q_{i}(t) - q_{i}(t))^{2} \right] \\
\leq -\frac{1}{2} \left(\frac{\partial U}{\partial x} \right)^{T} D^{-1} A \frac{\partial U}{\partial x} + \sum_{i=1}^{m} (\dot{\varphi}_{pi} + \dot{\varphi}_{qi}) + \sum_{i=1}^{m} (\alpha_{pi}\varphi_{pi} + \alpha_{qi}\varphi_{qi}) \\
+ \sum_{i=1}^{m} \left[-\sum_{j \in N_{i}} \frac{\lambda k_{pr}(1 - \alpha_{pi})}{4} \left(\frac{p_{i}(t_{g'(t)}^{i})}{D_{pi}} - \frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} \right)^{2} - \frac{1 - \alpha_{pi}}{2D_{pi}V_{i}} (P_{i}(t) - P_{i}^{*}(t) + p_{i}(t))^{2} \right] \\
+ \sum_{i=1}^{m} \left[-\sum_{j \in N_{i}} \frac{\lambda k_{qr}(1 - \alpha_{qi})}{4} \left(\frac{q_{i}(\tau_{h'(t)}^{i})}{D_{qi}} - \frac{q_{j}(\tau_{h'(t)}^{j})}{D_{qj}} \right)^{2} - \frac{1 - \alpha_{qi}}{2D_{qi}} (Q_{i}^{*}(t) - Q_{i}(t) - q_{i}(t))^{2} \right] \\
\leq -\frac{1}{2} \left(\frac{\partial U}{\partial x} \right)^{T} D^{-1} A \frac{\partial U}{\partial x} + \sum_{i=1}^{m} ((\alpha_{pi} - \beta_{pi})\varphi_{pi} + (\alpha_{qi} - \beta_{qi})\varphi_{qi}) \\
- \sum_{i=1}^{m} \sum_{j \in N_{i}} \frac{1}{4} \left(\lambda k_{pr}(1 - \alpha_{pi}) - \frac{\alpha_{pi}\gamma_{pi}D_{pi}^{2}}{|N_{i}|} \right) \left(\frac{p_{i}(t_{g'(t)}^{i})}{D_{pi}} - \frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} \right)^{2} \\
- \sum_{i=1}^{m} \sum_{j \in N_{i}} \frac{1}{4} \left(\lambda k_{qr}(1 - \alpha_{qi}) - \frac{\alpha_{qi}\gamma_{qi}D_{qi}^{2}}{|N_{i}|} \right) \left(\frac{q_{i}(\tau_{h'(t)}^{i})}{D_{qi}} - \frac{q_{j}(\tau_{h'(t)}^{j})}{D_{qj}} \right)^{2} \\
- \sum_{i=1}^{m} \frac{1}{2\lambda k_{qr}D_{qi}} \left(\lambda k_{qr}(1 - \alpha_{qi}) - \frac{\alpha_{qi}\gamma_{qi}D_{qi}^{2}}{|N_{i}|} \right) \left(Q_{i}^{*} - Q_{i}(t) - q_{i}(t) \right)^{2} \\
- \sum_{i=1}^{m} \frac{1}{2\lambda k_{qr}D_{qi}} \left(\lambda k_{qr}(1 - \alpha_{qi}) - \frac{\alpha_{qi}\gamma_{qi}D_{qi}^{2}}{|N_{i}|} \right) \left(Q_{i}^{*} - Q_{i}(t) - q_{i}(t) \right)^{2} \\
- \sum_{i=1}^{m} \frac{1}{2\lambda k_{qr}D_{qi}} \left(\lambda k_{qr}(1 - \alpha_{qi}) - \frac{\alpha_{qi}\gamma_{qi}D_{qi}^{2}}{|N_{i}|} \right) \left(Q_{i}^{*} - Q_{i}(t) - Q_{i}(t) - Q_{i}(t) \right)^{2$$

The last inequality of (41) holds if the parameters are selected such that (42) holds and φ_{pi} and φ_{qi} are both positive variables with the similar analysis as [3].

$$\alpha_{pi} \leq (\lambda k_{pr}|N_i|)/(\lambda k_{pr}|N_i| + \gamma_{pi}D_{pi}^2)$$

$$\alpha_{qi} \leq (\lambda k_{qr}|N_i|)/(\lambda k_{qr}|N_i| + \gamma_{qi}D_{qi}^2)$$

$$\alpha_{pi} \leq \beta_{pi}, \alpha_{qi} \leq \beta_{qi}$$

$$(42)$$

Equation (41) shows that the solution of the closed-loop system (20) converges into set $S^{'} \triangleq \{x|D^{-1}A\frac{\partial U}{\partial x}=0\}$ by

applying the LaSalle's invariance principle [2], which further means $\frac{\partial U}{\partial x} = 0$. According to (20), we have

$$for i = 1, ..., m$$

$$P_{i}^{*} - P_{i}(t) - p_{i}(t) = 0$$

$$P_{i}^{*} - P_{i}(t) - p_{i}(t) + \lambda_{i} \sum_{j \in N_{i}} \left(\frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} - \frac{p_{i}(t_{g}^{i})}{D_{pi}} \right) = 0, t \in [t_{g}^{i}, t_{g+1}^{i})$$

$$Q_{i}^{*} - Q_{i}(t) - q_{i}(t) = 0$$

$$Q_{i}^{*} - Q_{i}(t) - q_{i}(t) + \lambda_{j} \sum_{j \in N_{i}} \left(\frac{q_{j}(\tau_{h'(t)}^{j})}{D_{qj}} - \frac{q_{i}(\tau_{h}^{i})}{D_{qi}} \right) = 0, t \in [\tau_{h}^{i}, \tau_{h+1}^{i})$$

$$Q_{i}^{*} - Q_{i}(t) - q_{i}(t) + \lambda_{j} \sum_{j \in N_{i}} \left(\frac{q_{j}(\tau_{h'(t)}^{j})}{D_{qj}} - \frac{q_{i}(\tau_{h}^{i})}{D_{qi}} \right) = 0, t \in [\tau_{h}^{i}, \tau_{h+1}^{i})$$

$$Q_{i}^{*} - Q_{i}(t) - q_{i}(t) + \lambda_{j} \sum_{j \in N_{i}} \left(\frac{q_{j}(\tau_{h'(t)}^{j})}{D_{qj}} - \frac{q_{i}(\tau_{h}^{i})}{D_{qi}} \right) = 0, t \in [\tau_{h}^{i}, \tau_{h+1}^{i})$$

 $for \, i=m+1,...,n$

$$-P_{Li} - P_i(t) = 0$$
$$-Q_{Li} - Q_i(t) = 0$$

This implies that S' is the set of all equilibriums of the closed-loop system (20). The solution of (20) starts from a neighborhood of its initial equilibrium asymptotically converges to an equilibrium in the neighborhood.

In a mathematical statement, we have $\omega_i = \omega^*$, $P_i^* - P_i(t) - p_i(t) \equiv 0$ and $Q_i^* - Q_i(t) - q_i(t) \equiv 0$ hold for i = 1, ..., m. Besides, we have $\sum_{j \in N_i} \left(\frac{p_j(t)}{D_{pj}} - \frac{p_i(t)}{D_{pi}}\right) = 0$ and $\sum_{j \in N_i} \left(\frac{q_j(t)}{D_{qj}} - \frac{q_i(t)}{D_{qi}}\right) = 0$ at the equilibrium point for i = 1, ..., m, which further means $\frac{p_j(t)}{D_{pj}} = \frac{p_i(t)}{D_{pi}}$ and $\frac{q_j(t)}{D_{qj}} = \frac{q_i(t)}{D_{qi}}$ for all i, j = 1, ..., m.

Since the droop coefficient are selected as $\frac{P_j^*}{D_{pj}} = \frac{P_i^*}{D_{pi}}$ and $\frac{Q_j^*}{D_{qj}} = \frac{Q_i^*}{D_{qi}}$, we have $\frac{P_j(t)}{D_{pj}} = \frac{P_i(t)}{D_{pi}}$ and $\frac{Q_j(t)}{D_{qi}} = \frac{Q_i(t)}{D_{qi}}$. Thus, we can deduce that $\frac{P_j(t)}{P_j^*} = \frac{P_i(t)}{P_i^*}$ and $\frac{Q_j(t)}{Q_j^*} = \frac{Q_i(t)}{Q_i^*}$ at the equilibrium point for all i, j = 1, ..., m.

This concludes the proof.

V. Proof of theorem 4

Proof: With the dynamic distributed event-triggered mechanism of $p_i(t)$, the local error e_{pi}^2 and the dynamic regulation of φ_{pi} during $t \in \left[t_g^i, t_{g+1}^i\right)$ are shown as follows.

$$e_{pi}^{2}(t) \leqslant \alpha_{pi} \left[\sum_{j \in N_{i}} \frac{D_{pi}^{2}}{4 \left| N_{i} \right|} \left(\frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} - \frac{p_{i}(t_{g}^{i})}{D_{pi}} \right)^{2} + \frac{D_{pi}}{2\lambda k_{pr}V_{i} \left| N_{i} \right|} (P_{i}^{*} - P_{i}(t) - p_{i}(t))^{2} + \frac{D_{pi}^{2}}{\lambda k_{pr} \left| N_{i} \right|} \varphi_{pi} \right] \quad t \in \left[t_{g}^{i}, t_{g+1}^{i} \right)$$

$$\dot{\varphi}_{pi} = -\beta_{pi}\varphi_{pi} + \gamma_{pi} \left(\sum_{j \in N_i} \frac{\alpha_{pi}D_{pi}^2}{4|N_i|} \left(\frac{p_j(t_{g'(t)}^j)}{D_{pj}} - \frac{p_i(t_g^i)}{D_{pi}} \right)^2 + \frac{\alpha_{pi}D_{pi}}{2\lambda k_{pr}V_i|N_i|} (P_i^* - P_i(t) - p_i(t))^2 - e_{pi}^2(t) \right)$$
(44)

According to (44), we have

$$\dot{\varphi}_{pi} \ge -\left(\beta_{pi} + \gamma_{pi} \frac{\alpha_{pi} D_{pi}^2}{\lambda k_{pr} |N_i|}\right) \varphi_{pi} \tag{45}$$

Thus, we obtain

$$\varphi_{pi} \ge \varphi_{pi}(0)e^{-\left(\beta_{pi} + \gamma_{pi} \frac{\alpha_{pi}D_{pi}^2}{\lambda k_{pri}|N_i|}\right)t}$$

$$\tag{46}$$

where $\varphi_{pi}(0) \geq 0$ [3].

Assume that there exists Zeno behaviour, then $\lim_{k\to\infty}t_k^i=T_c$ for some $i\in\{1,...,n\}$ with an accumulation time T_c . According to the definition of limitation, for a given constant

$$\varepsilon_{a} = \frac{D_{pi}\sqrt{\alpha_{pi}\varphi_{pi}(0)}}{2M_{pi}\sqrt{\lambda k_{pr}|N_{i}|}}e^{-\frac{1}{2}\left(\beta_{pi}+\gamma_{pi}\frac{\alpha_{pi}D_{pi}^{2}}{\lambda k_{pr}|N_{i}|}\right)T_{c}} > 0$$

$$(47)$$

there exists a positive integer N_c , such that for $\forall k > N_c$, we have

$$t_k^i \in [T_c - \varepsilon_a, T_c) \tag{48}$$

Consider the following equation for $t > t_k^i$:

$$M_{pi}(t - t_k^i) \le \frac{D_{pi}\sqrt{\alpha_{pi}\varphi_{pi}(0)}}{\sqrt{\lambda k_{pr}|N_i|}} e^{-\frac{1}{2}\left(\beta_{pi} + \gamma_{pi}\frac{\alpha_{pi}D_{pi}^2}{\lambda k_{pr}|N_i|}\right)T_c}$$

$$\tag{49}$$

Since $\int_{t_k^i}^t |\dot{e}_{pi}(t)| \leq M_{pi}(t-t_k^i)$, then

$$|e_{pi}(t)| = \left| \int_{t_k^i}^t \dot{e}_{pi}(t) \right| \le \int_{t_k^i}^t |\dot{e}_{pi}(t)|$$

$$\le \frac{D_{pi}\sqrt{\alpha_{pi}\varphi_{pi}(0)}}{\sqrt{\lambda k_{pr}|N_i|}} e^{-\frac{1}{2}\left(\beta_{pi} + \gamma_{pi}\frac{\alpha_{pi}D_{pi}^2}{\lambda k_{pr}|N_i|}\right)T_c}$$
(50)

According to (46) and (50), we have

$$e_{pi}^{2}(t) \leq \frac{\alpha_{pi}D_{pi}^{2}}{\lambda k_{pr}|N_{i}|}\varphi_{pi}$$

$$\leq \alpha_{pi} \left[\sum_{j \in N_{i}} \frac{D_{pi}^{2}}{4|N_{i}|} \left(\frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} - \frac{p_{i}(t_{g}^{i})}{D_{pi}} \right)^{2} + \frac{D_{pi}}{2\lambda k_{pr}V_{i}|N_{i}|} (P_{i}^{*} - P_{i}(t) - p_{i}(t))^{2} + \frac{D_{pi}^{2}}{\lambda k_{pr}|N_{i}|} \varphi_{pi} \right]$$
(51)

Therefore, equation (49) is one sufficient condition of (51). Thus, we derive

$$e_{pi}^{2}(t) > \alpha_{pi} \left| \sum_{j \in N_{i}} \frac{D_{pi}^{2}}{4 |N_{i}|} \left(\frac{p_{j}(t_{g'(t)}^{j})}{D_{pj}} - \frac{p_{i}(t_{g}^{i})}{D_{pi}} \right)^{2} + \frac{D_{pi}}{2\lambda k_{pr}V_{i}|N_{i}|} (P_{i}^{*} - P_{i}(t) - p_{i}(t))^{2} + \frac{D_{pi}^{2}}{\lambda k_{pr}|N_{i}|} \varphi_{pi} \right|$$

$$(52)$$

is one sufficient condition of

$$M_{pi}(t - t_k^i) > \frac{D_{pi}\sqrt{\alpha_{pi}\varphi_{pi}(0)}}{\sqrt{\lambda k_{pr}|N_i|}} e^{-\frac{1}{2}\left(\beta_{pi} + \gamma_{pi}\frac{\alpha_{pi}D_{pi}^2}{\lambda k_{pr}|N_i|}\right)T_c}$$

$$(53)$$

Selecting $k = N > N_c$ and $t = t_{N+1}^i$,

$$e_{pi}^{2}(t_{N+1}^{i}) > \alpha_{pi} \left[\sum_{j \in N_{i}} \frac{D_{pi}^{2}}{4 |N_{i}|} \left(\frac{p_{j}(t_{g'(t_{N}^{i})}^{j})}{D_{pj}} - \frac{p_{i}(t_{g}^{i})}{D_{pi}} \right)^{2} + \frac{D_{pi}}{2\lambda k_{pr}V_{i} |N_{i}|} (P_{i}^{*} - P_{i}(t) - p_{i}(t))^{2} + \frac{D_{pi}^{2}}{\lambda k_{pr} |N_{i}|} \varphi_{pi} \right]$$
(54)

where t_{N+1}^i and t_N^i are two neighbouring triggering time instants. Then

$$M_{pi}(t_{N+1}^{i} - t_{N}^{i}) > \frac{D_{pi}\sqrt{\alpha_{pi}\varphi_{pi}(0)}}{\sqrt{\lambda k_{nr}|N_{i}|}} e^{-\frac{1}{2}\left(\beta_{pi} + \gamma_{pi}\frac{\alpha_{pi}D_{pi}^{2}}{\lambda k_{pr}|N_{i}|}\right)T_{c}}$$

$$(55)$$

Combing (47) and (55), we have

$$t_{N+1}^i - t_N^i > 2\varepsilon_a \tag{56}$$

Noting that (56) contradicts (48), which means the aforementioned assumption is invalid. Thus, Zeno behavior is excluded. This concludes the proof.

REFERENCES

- [1] L. Lu and C. Chu, "Consensus-based secondary frequency and voltage droop control of virtual synchronous generators for isolated ac micro-grids," *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, vol. 5, no. 3, pp. 443–455, Sep. 2015.
- [2] S. Weng, D. Yue, C. Dou, J. Shi, and C. Huang, "Distributed event-triggered cooperative control for frequency and voltage stability and power sharing in isolated inverter-based microgrid," *IEEE Transactions on Cybernetics*, vol. 49, no. 4, pp. 1427–1439, April 2019.
- [3] S. Weng, D. Yue, and C. Dou, "Event-triggered mechanism based distributed optimal frequency regulation of power grid," *IET Control Theory & Application*, vol. 13, no. 18, pp. 2994–3005, Dec. 2019.