

Mathematics for computing Graph Theory

Basic Definition

- A graph consists of finite set of vertices V and edges E.
- Often we denote a graph by G and with the two sets of vertices and edges it is represented by V(G) and E(G).

Example:

Let
$$V(G) = \{a,b,c,d\}$$
 and $E(G) = \{\{a,b\},\{a,c\},\{b,c\},\{a,d\}\}$

- If $\{a,b\} \in V(G)$ and a and b are the end points of the edge $\{a,b\}$
- A vertex 'a' and the edge {a, b} are said to be <u>incident</u> since the vertex is an end point of the edge.
- Two vertices u, v of a graph G are said to be <u>adjacent</u> if they are joined by an edge. When u and v are adjacent, we say they are <u>neighbors</u>.

Definition Contd...

 The above graph can be shown pictorially as follows.

• $V(G) = \{a, b, c, d\}$ and $E(G) = \{\{a, b\}, \{a, c\}, \{b, c\}, \{a, d\}\}\}$

Features of Graphs

- •In the graph G2, the edges a and b have the same endpoints, and so do the edges c, d and e.
- •Such sets of edges are called <u>multiple edges or</u> <u>Parallel edges</u>.
- •The edge e of the graph G3 in Fig.7.I(c) is an example for a loop (two endpoints of an edge are coincide)

Multi-graphs and Simple graphs

• A graph that has loops or multiple edges is known as a multi-graph.

 A graph with neither loops nor multiple edges is called a <u>simple graph</u>.

• Therefore G_2 and G_3 are multi-graphs and G_1 is a simple graph.

Degree of a Vertex

- The degree of a vertex deg(v) is the number of edges incident with it.
- A loop will contribute 2 towards the degree.
- Thus in the graph $G_1 \deg(z) = 3$, $\deg(w) = 5$ and in G_2 , $\deg(v) = 5$ and in G_3 , $\deg(u) = 3$ and $\deg(w) = 0$.
- W in G₃, is an <u>isolated vertex</u>.

Example

Write the vertex set and the edge set, and give a table showing the edge-endpoint function;

vertex set = $\{v1, v2, v3, v4, v5, v6\}$

edge set = $\{e1, e2, e3, e4, e5, e6, e7\}$

The end-point function table

Edge	End points
e_1	$\{ V_1, V_3 \}$
e_2	$\{ V_2, V_4 \}$
e_3	$\{\ \boldsymbol{V}_{1},\ \boldsymbol{V}_{2}\}$
e_4	$\{ V_1, V_2 \}$
e ₅	$\{ V_3, V_4 \}$
e_6	$\{ V_7, V_6 \}$
e ₇	$\{ V_6, V_5 \}$
e ₈	$\{V_7, V_5\}$
e_9	$\{V_6\}$

Q: Find all edges that are incident on v_1 , all loops, all parallel edges, and all isolated vertices.

Theorem

 Let g be a graph. Then the sum of degrees of the vertices of G is equal to twice the number of edges of V.

 Show that the theorem is valid for the above example.

Degree Sequence of a Graph

• The degree sequence of a graph G is the sequence of the degrees of its vertices in descending order of size.

Example:

Paths, cycles and connectivity

 Path is an alternating sequence of vertices and edges of the form v₁e₁v₂e₂...e_{k-1}v_k.

(Edges can repeat but vertices cannot repeat)

• If G is a simple graph, path can be specified just by a sequence of distinct vertices $v_1v_2v_3...v_k$.

Q: Find the paths from u to w in G_1 and G_2 ?

Paths, cycles and connectivity Contd...

- The length of a path is the number of EDGES in it. The path vfzey in G₁has length 2.
- A cycle is a sequence of distinct vertices and edges that begins and ends at the same vertex.
 - (xywx or wyxw are not 2 different cycles in G_1)
- Two cycles are different if they differ in at least one edge.

Paths, cycles and connectivity Contd...

- Two vertices u, v in a graph G are said to be connected if there is a path in G from u to v.
- The graph G is connected if every pair of vertices are connected; otherwise, G is said to be disconnected.

Components

- The separate parts of a disconnected graph are called its components. Thus the graph G3 has 3 components.
- every connected graph has just one component, the graph itself

Digraphs and relationship graphs

- A graph in which every edge has a direction assigned to it is called a digraph (an abbreviation of <u>directed graph</u>).
- The directed edges are often called <u>arcs.</u>
- In a digraph, we define the outdegree of vertex u, denoted by outdeg(u), as the number of arcs directed out of (away from) the vertex u.
- The indegree of vertex u, denoted by indeg(u), as the number of arcs directed into (towards) the vertex u.

Example

Q: Find the sum of the indegrees and the sum of the outdegrees of the vertices of the digraph shown in the following figure.

Example Contd...

Answer:

vertex	indegrees	outdegrees
и	1	1
ν	1	2
w	1	1
х	2	2
у	4	2
Z	2	2
S	1	1
r	1	1
t	1	2
Total	14	14

Isomorphism of Graphs

- A graph G is determined by its vertex set V(G) and its edge set E(G).
- Given this information, two people might draw the graph differently.
- Example:

$$V(G)=\{u_1,v_1,w_1,z_1\}$$

$$E(G) = \{u_1v_1, u_1z_1, v_1w_1, z_1w_1, u_1w_1, z_1v_1\}$$

• G and H are isomorphic if we can label their vertices with the same set of labels in such a way that any pair of vertices u_1 , v_1 are joined by the same number of edges in G as they are in H.

• In other words, G and H are isomorphic if there is a one-to-one correspondence between V(G) and V(H).

 G and H in the previous example are Isomorphic.

There is a I-I correspondence between V(G) and V(H)

• Show that G_1 and G_3 are Isomorphic and G_2 is not isomorphic to either G_1 or G_3 .

note that in G_1 and G_3 , the two vertices of degree 3 are adjacent, whereas in G_2 they are not

- When two graphs are isomorphic, their structural properties must be exactly the same.
- Let G and H be isomorphic graphs. Then G and H have
 - I. the same number of components;
 - 2. the same number of vertices;
 - 3. the same number of edges;
 - 4. the same degree sequence;
 - 5. the same number of paths of any given length k;
 - 6.the same number of cycles of any given length k.

Note: The converse is not true.

Adjacency Matrix

- If we want to use a computer to analyze the properties of a graph, we must have some way of representing it in the computer.
- One method is using an Adjacency Matrix.

$$A(G) = \begin{bmatrix} 0 & 3 & 1 & 1 \\ 3 & 0 & 2 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Euler Path and Circuit

• An **Euler circuit** in a graph G is a simple circuit containing every edge of G. **Euler path** in G is a simple path containing every edge of G. (Edges cannot repeat)

Theorem 1:

 A connected multi-graph has an Euler circuit if and only if each of its vertices has even degree.

Theorem 2:

 A connected multi-graph has an Euler path but not an Euler circuit if and only if it has exactly two vertices of odd degree.

Euler Path and Circuit Contd...

- Example:
 - Find an Euler Circuit of the following graph.

Euler Circuit: abcgaecdefa

Hamilton Path and Circuit

- a Hamiltonian path is a path in a graph that visits each vertex exactly once. (Edges and vertices cannot repeat)
- A Hamiltonian circuit is a Hamiltonian path that is a circuit.
- Example:
 - Find a Hamilton Circuit of the following graph.

Hamilton Circuit: abgcdefa

Hamilton Path and Circuit Contd...

Dirac's Theorem

If G is a simple graph with n vertices with $n \ge 3$ such that the degree of every vertex in G is at least n/2, then G has a Hamilton circuit.

Ore's Theorem

If G is a simple graph with n vertices with $n \ge 3$ such that $\deg(u) + \deg(v) \ge n$ for every pair of nonadjacent vertices u and v in G, then G has a Hamilton circuit.

The End