Work flow

Set up the model

```
clc;
clear
close all;
addpath('./core/');
load('./model/model8_2.mat');
vs_d = model8_2;
% vs_d = generateCheckerboard(34, 180, 3, 10, 500, 0.1,1); % True model
vsmin=min(vs_d(:));vsmax=max(vs_d(:));
vpmin=vsmin*1.732;vpmax=vsmax*1.732;
[nz,nx]=size(vs_d);
vs_d=single(vs_d);
vs = zeros(nz,nx); % Initial model
for i=1:nx
    vs(:,i)=linspace(vsmin,vsmax,nz);
end
vp=vs*1.732; % vp is constant
```


Stability conditions, observation system

```
fr=30;
dx=1;%dx=(vsmin/fr/12);
dt=dx/vpmax*0.5;
dtx=dt/dx;
pickMethod=1; %1==FDC 2==argmax
nt_wf=5; % Storage wave field interval
nt=floor((nx*dx/vsmin/dt+1000)/10)*10-500; % time step; Must be divisible by nt_wf
[s,nw]=ricker(fr,dt,nt); s =single(s); % source wavelet
nbc=40; % boundary layer
% define acquisition geometry
ds=6; sx=single(1:ds:nx); sz=zeros(size(sx),'single')+1;[~,ns]=size(sx);
dg=2;gx=single(1:dg:nx); gz=zeros(size(gx),'single')+1; ng=numel(gx);
```



```
M=ds/dg;refsx=floor(sx/dg)+1;
dg=dg*dx; % Randon Transform need real distance
% Set papramters
pur=-0.05; % no need to change
offset=45; % multi-offset &the maximum offset (floor(1.2*nz*dx))
offmin=3; % no need to change
```



```
parameter_type=0; % no need to change
fd_order=22;fsz=0;source_type='w'; % no need to change
isfs=1; % no need to change
vmin=floor(vsmin/2); % min phase-velocity of RT
vmax=floor(vsmax*1.2); % max phase-velocity of RT
np=vmax-vmin+1; % no need to change
```

```
df=0.1; % no need to change
fmin=10; % min freq of the data
fmax=80; % max freq of the data
ini=10; % initial point to extract dispersion
m=0;w=3; % no need to change
err=0.01; % no need to change
SoftArgNorm = 1e+4; % no need to change
iteration=190; % no need to change
smoothZ = 1;smoothX=2; % change if the gradient is incorrect
```

Start SWD iversion

```
%%-----
parallel_init(ns); % parallel_init(ns);
```


The inversion time of 60-100 parallel inversions are roughly the same.

网格大小	Mex单精度(s)	Mex双精度(s)	Matlab单精度(s)	Matlab双精度(s)
58x184	10.4	22.5	42.1	50.1
88x244	14.3		141.2	
128x324	71.4		392.6	
178x424	236		1213.4	

Provides single precision and double precision modes, but single precision will result in different gradient smoothing results. (MTIMES (*) does not support one sparse argument and one single precision argument.)

```
[a,b]=size(seismo_v_d(:,:,1));
k =1;
while (k<=iteration)
tic;
display(['Elastic_LSM, k=',num2str(k),' iteration=',num2str(iteration)]);
ml = zeros(np,npair,ns);
ml1 = zeros(np,npair,ns);</pre>
```

```
cr_0 = 1.*ones(npair,ns);
cr_01 = 1.*ones(npair,ns);
```



```
parfor is=1:ns-floor(m/M)-round(w/M)
    [ml(:,:,is),dataLen]=RTr(seismo_v_d(:,:,is),is,df,dt,np,vmin,vmax,fmin,fmax,a,b,dg,
    [~,cr_0(:,is)] = LHDispPick(ml(:,:,is),vmin,cr_0(:,is),pickMethod,ini);
end
parfor is=round(w/M)+floor(m/M)+1:ns
    [ml1(:,:,is),dataLen]=RTl(seismo_v_d(:,:,is),is,df,dt,np,vmin,vmax,fmin,fmax,a,b,dg,
    [~,cr_0l(:,is)] = LHDispPick(ml1(:,:,is),vmin,cr_0l(:,is),pickMethod,ini);
end
```



```
cr_pre_r = 1.*ones(npair,ns);
cr_pre_l = 1.*ones(npair,ns);
g_cl=zeros(nz,nx);
g_cm=zeros(nz,nx);
g_illum=zeros(nz,nx);
```

```
parfor is=1:ns
  [~,seismo_v,wavefield_gradient]=staggerfd_eigen(is,nbc,nt,dtx,dx,dt,sx(is),sz(is),ssaveForBackwardr = 0;
  saveForBackwardl = 0;
  if is<=ns-floor(m/M)-round(w/M)
      [mlr,dataLen,saveForBackwardr]=RTrAD(seismo_v,is,df,dt,np,vmin,vmax,fmin,fmax,ssaveForBackwardr.cr_r = cr_pre_r(:,is)] = LHDispPick(mlr,vmin,cr_0(:,is),pickMethod,ini);
      saveForBackwardr.cr_r = cr_pre_r(:,is)-vmin;
end

if is>=round(w/M)+floor(m/M)+1
      [mll,dataLen,saveForBackwardl]=RTlAD(seismo_v,is,df,dt,np,vmin,vmax,fmin,fmax,ssaveForBackwardl)] = LHDispPick(mll,vmin,cr_01(:,is),pickMethod,ini);
      saveForBackwardl.cr_l = cr_pre_l(:,is)-vmin;
```

```
end
    grad_outputr = cr_pre_r(:,is)-cr_0(:,is);
    grad_outputl = cr_pre_l(:,is)-cr_0l(:,is);
        % [seismo_v_d1]=weight_data_muti3(seismo_v_d(:,:,is),seismo_v,is,dt,df,offset,c
        % cr_0(:,is),cr_01(:,is),cr_pre_r(:,is),cr_pre_l(:,is),ind);% Uncomment there t
    [seismo_v_d1]=ADWDgrad_1(nt,ng,ns,npair,is,w,m,M,SoftArgNorm,grad_outputr,grad_outp
    % [seismo_v_d1,res_r]=FWIresidual(seismo_v,seismo_v_d(:,:,is));
    [cl_img,cm_img,illum_div]=e2drtm_eigen(wavefield_gradient,single(seismo_v_d1),is,nk
    g_cl = g_cl+cl_img;g_cm = g_cm+cm_img;g_illum = g_illum+illum_div;
end
residual(k)=mean(mean(res_r));%+mean(mean(res_l));
display(['residual = ',num2str( residual(k) ),' k=',num2str(k)]);
res0=residual(k);
g_cl=g_cl./g_illum;g_cm=g_cm./g_illum;
dk_vs = -4*vs.*g_cl+2*vs.*g_cm;
dk_vs=single(smooth2a(double(dk_vs),smoothZ,smoothX)); % Smooth the Vs gradient
if k==1
    f1=0.5;
end
v_{mean} = (sum(vs(:).*vs(:)))^0.5;
g_{mean}=(sum(dk_vs(:).*dk_vs(:)))^0.5;
alpha=v_mean/g_mean*pur;
display(['v_mean=',num2str(v_mean),' g_mean=',num2str(g_mean),' alpha=',num2str(alpha)]
vs1=vs+alpha*f1*dk_vs;
vs1(vs1<vsmin)=vsmin;vs1(vs1>vsmax)=vsmax;
```



```
parfor is=1:ns
  [~,seismo_v,~]=staggerfd_eigen(is,nbc,nt,dtx,dx,dt,sx(is),sz(is),gx,gz,s,vp,vsl,ist
  if is<=ns-floor(m/M)-round(w/M)
      [mlr,dataLen]=RTr(seismo_v,is,df,dt,np,vmin,vmax,fmin,fmax,a,b,dg,offset,m,M);
      [res_r(is),cr_pre_r(:,is)] = LHDispPick(mlr,vmin,cr_0(:,is),pickMethod,ini);

end
  if is>=round(w/M)+floor(m/M)+1
      [mll,dataLen]=RTl(seismo_v,is,df,dt,np,vmin,vmax,fmin,fmax,a,b,dg,offset,m,M);
      [res_l(is),cr_pre_l(:,is)] = LHDispPick(mll,vmin,cr_0l(:,is),pickMethod,ini);
  end

end

end

resl=mean(mean(res_r));%+mean(mean(res_l));
  display(['fl= ',num2str(fl),' resl= ',num2str(resl)]);
```

```
if res1>res0
    while res1>res0 && f1>0.0001
        f2=f1; res2=res1;
        f1=f1*0.5;
        vs1=vs+alpha*f1*dk_vs;
        vs1(vs1<vsmin)=vsmin;vs1(vs1>vsmax)=vsmax;
        %vs1(vp./vs1<1.3)=vp(vp./vs1<1.3)/1.3;
        parfor is=1:ns
            [~,seismo_v,~]=staggerfd_eigen(is,nbc,nt,dtx,dx,dt,sx(is),sz(is),gx,gz,s,vr
            if is<=ns-floor(m/M)-round(w/M)</pre>
                [mlr,dataLen]=RTr(seismo_v,is,df,dt,np,vmin,vmax,fmin,fmax,a,b,dg,offse
                [res_r(is),cr_pre_r(:,is)] = LHDispPick(mlr,vmin,cr_0(:,is),pickMethod
            end
            if is>=round(w/M)+floor(m/M)+1
                [mll,dataLen]=RTl(seismo_v,is,df,dt,np,vmin,vmax,fmin,fmax,a,b,dg,offse
                [res_l(is),cr_pre_l(:,is)] = LHDispPick(mll,vmin,cr_0l(:,is),pickMethod
            end
        end
        res1=mean(mean(res_r)); %+mean(mean(res_l));
        display(['f1= ',num2str(f1),' res1= ',num2str(res1)]);
    end
else
    f2=f1*2;
    vs1=vs+alpha*f2*dk_vs;
    vs1(vs1<vsmin)=vsmin;vs1(vs1>vsmax)=vsmax;
```

```
parfor is=1:ns
        [~,seismo_v,~]=staggerfd_eigen(is,nbc,nt,dtx,dx,dt,sx(is),sz(is),gx,gz,s,vp,vs1
        if is<=ns-floor(m/M)-round(w/M)</pre>
            [mlr,dataLen]=RTr(seismo_v,is,df,dt,np,vmin,vmax,fmin,fmax,a,b,dg,offset,m]
            [res_r(is),cr_pre_r(:,is)] = LHDispPick(mlr,vmin,cr_0(:,is),pickMethod,ini
        end
        if is>=round(w/M)+floor(m/M)+1
            [mll,dataLen]=RTl(seismo_v,is,df,dt,np,vmin,vmax,fmin,fmax,a,b,dg,offset,m]
            [res_1(is),cr_pre_1(:,is)] = LHDispPick(mll,vmin,cr_01(:,is),pickMethod,in:
        end
    end
    res2=mean(mean(res_r));%+mean(mean(res_l));
    display(['f2= ',num2str(f2),' res2= ',num2str(res2)]);
end
gama = (f1^2*(res0-res2)+f2^2*(res1-res0))/(2*res0*(f1-f2)+2*res1*f2-2*res2*f1);
if isinf(gama)
    gama=0;
end
display(['gama= ',num2str(gama),' numerical step_length= ',num2str(gama*alpha)]);
```

```
vs1=vs+alpha*gama*dk_vs;
vs1(vs1<vsmin)=vsmin;vs1(vs1>vsmax)=vsmax;
```

```
parfor is=1:ns
    [~,seismo_v,~]=staggerfd_eigen(is,nbc,nt,dtx,dx,dt,sx(is),sz(is),gx,gz,s,vp,vsl,ist
    if is<=ns-floor(m/M)-round(w/M)</pre>
        [mlr,dataLen]=RTr(seismo_v,is,df,dt,np,vmin,vmax,fmin,fmax,a,b,dg,offset,m,M);
        [res_r(is),cr_pre_r(:,is)] = LHDispPick(mlr,vmin,cr_0(:,is),pickMethod,ini);
    end
    if is>=round(w/M)+floor(m/M)+1
        [mll,dataLen]=RTl(seismo_v,is,df,dt,np,vmin,vmax,fmin,fmax,a,b,dg,offset,m,M);
        [res_l(is),cr_pre_l(:,is)] = LHDispPick(mll,vmin,cr_0l(:,is),pickMethod,ini);
    end
end
res3=mean(mean(res_r));%+mean(mean(res_l));
display(['res3= ',num2str(res3)]);
if (res3>res1 | res3>res2)
    if res1>res2
        res0=res2;
        gama=f2;
    else
        res0=res1;
        gama=f1;
    end
    vs1=vs+alpha*gama*dk_vs;
    vs1(vs1<vsmin)=vsmin;vs1(vs1>vsmax)=vsmax;
else
    res0=res3;
end
vs=vs1;
vs_all(:,:,k) = vs1;
dk_vs_all(:,:,k) = dk_vs;
offsets(k) = offset;
if (k>1) && ((residual(k) - res0)/residual(k)) < err</pre>
    offset = offset - 3
    f1=0.5;
end
k = k + 1;
if offset==3
    break
end
end
toc;
```

