Semaine n° 9: du 11 novembre au 15 novembre

Mardi 12 novembre

- Cours à préparer : Chapitre X Relations d'ordre et d'équivalence
 - Partie 2 : Relation d'équivalence ; exemples ; classes d'équivalence.
 - Partie 3: Relation d'ordre; relation d'ordre totale, relation d'ordre partielle.
- Exercices à corriger en classe
 - Feuille d'exercices n° 8 : exercice 9.

Jeudi 14 novembre

- Cours à préparer : Chapitre X Relations d'ordre et d'équivalence
 - Partie 4.1 : Partie majorée, minorée, bornée; majorant, minorant.
 - Partie 4.2 : Plus grand élément, plus petit élément.
 - Partie 4.3 : Borne inférieure, borne supérieure.
 - Partie 4.4: Fonction majorée, minorée, bornée; maximum, minimum; borne supérieure.
 - Partie 5 : Relation d'ordre sur \mathbb{N} .
- Exercices à corriger en classe
 - Feuille d'exercices nº 9 : exercices 3, 5, 8, 9.

Vendredi 15 novembre

- Cours à préparer : Chapitre X Relations d'ordre et d'équivalence
 - Partie 6.1 : Relation d'ordre sur $\mathbb R$ et opérations. Résolution d'inéquations. Droite réelle achevée.
 - Partie 6.2 : Propriété de la borne supérieure.
 - Partie 6.3 : Partie entière ; partie dense de \mathbb{R} , densité de \mathbb{Q} et de $\mathbb{R} \setminus \mathbb{Q}$ dans \mathbb{R} ; valeur approchée, approximations décimales d'un réel.

Échauffements

Mardi 12 novembre

- Résoudre sur \mathbb{R} l'équation différentielle $y' + 2xy = e^{-x^2}$.
- Cocher toutes les assertions vraies : Soit $A \in \mathcal{M}_n(\mathbb{K})$.
 - \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que $AB = BA = \mathrm{Id}_n$, alors A est inversible;
 - \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que $BA = \mathrm{Id}_n$, alors A est inversible;
 - \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ non nulle telle que AB = 0, alors A est nulle;
 - \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ non nulle telle que AB = BA = 0, alors A est nulle;
 - \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ non nulle telle que AB = 0, alors A ne peut pas être inversible;
 - \square Si $A \neq 0$, il existe $B \in \mathcal{M}_n(\mathbb{K})$ différente de Id_n telle que $AB \neq 0$.

Jeudi 14 novembre

- Inverser la matrice $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ -1 & 0 & 0 \end{pmatrix}$.
- Cocher toutes les assertions vraies : Soient x et y deux réels tels que $-1 < x \le 3$ et $y \in [-1,1]$. Alors

$$\Box -2 \leqslant x + y \leqslant 4.$$

$$\Box 0 < x - y < 2.$$

$$\Box 1 < \frac{x}{y} \leqslant 3$$
$$\Box 0 \leqslant x^2 + y^2 \leqslant 10.$$

Vendredi 15 novembre

- Effectuer le produit suivant en n'utilisant que des opérations élémentaires sur les lignes et colonnes des matrices : $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 & 8 \\ -7 & 9 & 10 \\ 1 & 5 & -6 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}.$
- Cocher toutes les assertions vraies : On considère le système d'équations, d'inconnue $(x, y, z) \in \mathbb{R}^3$ et de paramètre un réel m:

$$(S) \left\{ \begin{array}{rcl} x - y - z & = & 1 \\ -x + 2y - mz & = & -3 \\ 2x - y + (m-1)z & = & 2m+2. \end{array} \right.$$

$$\square (S) \Leftrightarrow \begin{cases} x - y - z &= 1\\ y - (m+1)z &= -2\\ (m+1)z &= m+1. \end{cases}$$

- \square Pour tout réel m, (S) admet une infinité de solutions.
- \square Si m=-1, (S) n'admet pas de solution.
- \square Si $m \neq -1$, (S) admet une unique solution.
- Cocher toutes les assertions vraies : Soit $A \in \mathcal{M}_n(\mathbb{K})$.
 - \square A est inversible si et seulement si elle n'a aucun 0 sur sa diagonale.
 - \square Si A est triangulaire, elle est inversible si et seulement si elle n'a aucun 0 sur sa diagonale.
 - \square Si A est diagonale, elle est inversible si et seulement si elle n'a aucun 0 sur sa diagonale.