MCV4U - Unit 8 Test - Equations of Lines & Planes

Mark: /44

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. What is the vector equation of the line with parametric equations
$$x = 2t + 7$$
, $y = -3t + 2$, $t \in \mathbb{R}$?

a. $\overrightarrow{r} = (7,2) + s(2,-3)$, $s \in \mathbb{R}$

c. $\overrightarrow{r} = (2,7) + s(-3,2)$, $s \in \mathbb{R}$

c.
$$\overrightarrow{r} = (2,7) + s(-3,2), s \in \mathbf{R}$$

b.
$$\overrightarrow{r} = (2,-3) + s(7,2), s \in \mathbf{R}$$

d. none of the above

2. Which three points are on the line L:
$$\overrightarrow{r} = (2,-5) + s(2,1)$$
, $s \in \mathbb{R}$?

a.
$$P(2,-5)$$
, $Q(2,1)$, $R(0,-6)$

c.
$$P(1,7), Q(2,-5), R(6,-3)$$

b.
$$Q(2,1), Q(6,-3), R(2,-5)$$

c.
$$P(1,7)$$
, $Q(2,-5)$, $R(6,-3)$
d. $P(2,-5)$, $Q(6,-3)$, $R(0,-6)$

3. Which of the following is a direction vector for the line
$$x = 2t - 1$$
, $y = -3t + 2$, $t \in \mathbb{R}$?

a. $\overrightarrow{m} = (4, -6)$

c. $\overrightarrow{m} = (-2, 3)$

a.
$$\overrightarrow{m} = (4, -6)$$

c.
$$\overrightarrow{m} = (-2, 3)$$

b.
$$\overrightarrow{m} = \left(\frac{2}{3}, -1\right)$$

d. all of the above

4. Determine which line is perpendicular to the line
$$2x - 3y + 17 = 0$$
.

a.
$$\overrightarrow{r} = (2,-3) + s(3,-2), s \in \mathbb{R}$$

b. $\overrightarrow{r} = (1,2) + s(3,2), s \in \mathbb{R}$
c. $\overrightarrow{r} = (1,7) + s(2,-3), s \in \mathbb{R}$
d. $\overrightarrow{r} = s(3,2), s \in \mathbb{R}$

c.
$$\overrightarrow{r} = (1,7) + s(2,-3), s \in \mathbb{R}$$

b.
$$\overrightarrow{r} = (1,2) + s(3,2), s \in \mathbb{R}$$

d.
$$\overrightarrow{r} = s(3,2), s \in \mathbf{R}$$

5. Which value of
$$k$$
 will make the lines $\overrightarrow{r} = (1,2) + s(2,3)$, $s \in \mathbf{R}$ and $12x + ky = 0$ parallel?

6. Which of the following equations determines a line with normal vector
$$\overrightarrow{n} = (4,3)$$
 going through the point $P(1,-1)$?

a.
$$4x + 3y - 1 = 0$$

c.
$$3x + 4y - 1 = 0$$

b.
$$4x + 3y + 1 = 0$$

d.
$$3x + 4y + 1 = 0$$

7. Which of the following lines is parallel to the line shown below?

a.
$$2x + y + 3 = 0$$

b.
$$2x - y - 2 = 0$$

c.
$$x + 2y - 4 = 0$$

d.
$$x - 2y - 4 = 0$$

8. Which of the following is the parametric equation of the line with symmetric equation

$$\frac{x+3}{3} = \frac{y+2}{2} = \frac{z-1}{2}?$$

a.
$$x = 3t - 3$$
, $y = 2t - 2$, $z = 2t + 1$, $t \in \mathbb{R}$

a.
$$x = 3t - 3$$
, $y = 2t - 2$, $z = 2t + 1$, $t \in \mathbb{R}$ c. $x = 3t - 3$, $y = 2t - 2$, $z = t + 2$, $t \in \mathbb{R}$

b.
$$x = 3t + 3$$
, $y = 2t + 2$, $z = 2t - 1$, $t \in \mathbb{R}$ d. none of the above

9. What value of k will place the point P(k, 2k, k-2) on the line $\overrightarrow{r} = (-3, 2, 9) + s(3, 2, -4)$, $s \in \mathbb{R}$?

10. Which of the following is not an equation for the line passing through the points P(1,4,-3) and Q(3,2,1)?

a.
$$\vec{r} = (1, 4, -3) + s(2, -2, 4), s \in \mathbf{F}$$

c.
$$\frac{x-3}{2} = \frac{y-2}{-2} = \frac{z+1}{4}$$

b.
$$x = -t + 3$$
, $y = t + 2$, $z = -2t + 1$, $t \in \mathbf{I}$

which of the following is not an equation for the line passing through the points
$$F(1, 4)$$
:

a. $\overrightarrow{r} = (1, 4, -3) + s(2, -2, 4), s \in \mathbb{R}$

b. $x = -t + 3, y = t + 2, z = -2t + 1, t \in \mathbb{R}$

c. $\frac{x - 3}{2} = \frac{y - 2}{-2} = \frac{z + 1}{4}$

d. $\overrightarrow{r} = (3, 2, 1) + s(1, -1, 2), s \in \mathbb{R}$

- 11. Determine the value of k that makes the lines $\frac{x+2}{4} = \frac{y+1}{5} = \frac{z-3}{3}$ and r = (1,3,6) + s(-2k,2,k), $s \in$
 - R, perpendicular.

- d. none of the above
- 12. Which of the following determines a plane?
 - a. a line and a point not on the line
 - b. two intersecting lines

- two parallel, non-coincident lines
- d. all of the above

13. Which of the following is not a plane?
a.
$$\overrightarrow{r} = (1,3,4) + s(2,-1,2) + t(1,1,1), s,t \in \mathbf{R}$$

b.
$$\overrightarrow{r} = (2,4,2) + s(1,-2,3) + t(3,2,2), s,t \in \mathbf{R}$$

c.
$$\overrightarrow{r} = (3,2,3) + s(4,-4,2) + t(-2,2,-1), s,t \in \mathbb{R}$$

d.
$$\overrightarrow{r} = (-2, 1, 4) + s(2, 2, -1) + t(2, 2, 1), s, t \in \mathbb{R}$$

14. A plane is defined by the equation 3x - 2z = 4y + 1. Which of the following is the normal vector of this

plane?
a.
$$\overrightarrow{n} = (3, -2, 4)$$

c.
$$\overrightarrow{n} = (3, 2, 4)$$

b.
$$\overrightarrow{n} = (3, 4, -2)$$

d.
$$\overrightarrow{n} = (3, -4, -2)$$

15. On which of the following planes could the point P(2, 3, -4) lie?

a.
$$x = 3$$

c.
$$z = 3$$

b.
$$y = 3$$

16. Which of the following is the x-intercept of the plane 2x - 4z + 1 = 0?

a.
$$P(2, 0, -4)$$

c.
$$P\left(-\frac{1}{2}, 0, 0\right)$$

b.
$$P(0,0,0)$$

d.
$$P\left(0,0,\frac{1}{4}\right)$$

17. Which of the following best describes the intersection of the three planes π_1 : x = 2, π_2 : y = 6, and π_3 :

$$z = -3$$
?

a.
$$\overrightarrow{v} = (2,0,-3) + s(0,6,0), s \in \mathbf{R}$$

There is no intersection.

b.
$$P(2,6,-3)$$

none of the above

18. Which of the following would describe the sketch of the expression xy + 2y - 3x - 6 = 0?

a. the planes
$$x = -2$$
 and $y = 3$

c. the planes
$$x = 6$$
 and $y = 2$

b. the planes
$$x = 3$$
 and $y = -2$

d. the planes
$$x = 3$$
 and $y = 6$

19. Which of the following planes is the equation for the plane with an x-intercept at P(2, 0, 0), a y-intercept at Q(0,-3,0), and is parallel to the z-axis?

a.
$$3x - 2y - 6 = 0$$

c.
$$3y - 2z - 6 = 0$$

b.
$$2x - 3y + z - 6 = 0$$

d.
$$z = -1$$

20. Which three points are on the plane 2x - 7y + 3z - 5 = 0?

a.
$$P(1,0,1)$$
, $Q(3,1,2)$, and $R(4,3,6)$

c.
$$P(3,1,2)$$
, $Q(4,3,6)$, and $R(5,0,-2)$

b.
$$P(1,0,1)$$
, $Q(2,2,3)$, and $R(3,1,2)$

a.
$$P(1,0,1)$$
, $Q(3,1,2)$, and $R(4,3,6)$ c. $P(3,1,2)$, $Q(4,3,6)$, and $R(5,0,-2)$ b. $P(1,0,1)$, $Q(2,2,3)$, and $R(3,1,2)$ d. $P(4,3,6)$, $Q(0,0,0)$, and $R(3,1,2)$

Full Solutions: Show all applicable work for the following questions.

1. Calculate the acute angle that is formed by the intersection of the planes with equations

$$2x+3y-z+9=0$$
 and $x+2y+4=0$. [3]

2. Determine the x-intercept of the plane with equation

$$[x, y, z] = [1,8,6] + s[1,-12,-12] + t[2,4,-3].$$
 [4]

3. Determine the parametric equations of the line whose direction vector is perpendicular to the direction vectors of the two lines

[4]

$$\frac{x-5}{3} = \frac{y-5}{2} = \frac{z+5}{4}$$
 and
$$\frac{x}{-4} = \frac{y+10}{-7} = \frac{z+2}{3}$$

and passes through the point (2,-5,0) .

4. A plane is determined by a normal $\vec{n}=(2,5,3)$ and contains the point P(-1,-4,7). Deter-

4. A plane is determined by a normal $\vec{n} = (2,5,3)$ and contains the point P(-1,-4,7). Determine a Cartesian equation for this plane using two different methods. [5]

6. Explain why the line
$$\vec{r} = (4,9,-3)+t(1,-4,2)$$
 and the point $(8,-7,5)$ do not determine a plane? [2]

7. Explain why the plane with Cartesian equation 2x + 5z - 3 = 0 never intersects the y-axis. [2]