WHAT IS CLAIMED IS:

1. An amyloid binding compound having one of structures A-E or a water soluble, non-toxic salt thereof:

Structure A

$$R_{13}$$
 R_{14}
 R_{13}
 R_{14}
 R_{15}
 R_{16}
 R_{17}
 R_{10}
 R_{10}
 R_{10}

Structure B

$$R_8$$
 R_9
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}

Structure C

$$R_8$$
 R_9
 R_{10}
 R_{10}

Structure D

$$R_{8}$$
 R_{10}
 R_{13}
 R_{12}
 R_{9}
 R_{10}
 R_{10}
 R_{10}
 R_{10}

Structure E

$$R_3$$
 R_4
 R_6
 R_6
 R_6
 R_6
 R_7
 R_6
 R_7
 R_8

wherein Z is S, NR', O or CR' in which case the correct tautomeric form of the heterocyclic ring becomes an indole in which R' is H or a lower alkyl group:

wherein Y is NR¹R², OR², or SR²;

wherein the nitrogen of amine;

or an amyloid binding compound having one of structures F-J or a water soluble, non-toxic salt thereof:

Structure F
$$R_{13}$$
 R_{14} R_{7} R_{10} R_{10}

Structure G
$$R_9$$
 R_{10} R_1 R_2 R_3 R_4

Structure H
$$R_9$$
 R_{10} R_1 R_2 R_3 R_4 R_5 R_7 R_7 R_7 R_8 R_9 R_9

Structure I
$$R_8$$
 R_7 R_9 R_{10} R_{10}

Structure J
$$Q$$
 Z $R_{11}R_7$ Z Q

wherein each Q is independently selected from one of the following structures:

$$R_6$$
 R_5 (CH₂)_n wherein $n = 0, 1, 2, 3 \text{ or } 4,$
 R_4 R_3 , R_4 R_5 , R_5 , R_6 R_6 , R_8 , R_8

wherein Z is S, NR', O, or C(R')2 in which R' is H or a lower alkyl group; wherein U is CR' (in which R' is H or a lower alkyl group) or N (except when U

= N, then Q is not
$$R_4$$
 R_3);

wherein Y is NR1R2, OR2, or SR2;

is not a quaternary wherein the nitrogen of amine;

wherein each R1 and R2 independently is selected from the group consisting of H, a lower alkyl group, $(CH_2)_nOR'$ (wherein $n=1,\ 2,\ or\ 3)$, CF_3 , CH_2 - CH_2X , CH_2 - CH_2 - CH_2X (wherein X = F, CI, Br or I), (C = O)-R', R_{ph} , and $(CH_2)_nR_{ph}$ (wherein n = I) 1, 2, 3, or 4 and Rph represents an unsubstituted or substituted phenyl group with the phenyl substituents being chosen from any of the non-phenyl substituents defined below for R3-R14 and R' is H or a lower alkyl group);

and wherein each R^3 - R^{14} independently is selected from the group consisting of H, F, CI, Br, I, a lower alkyl group, $(CH_2)_nOR'$ (wherein n=1, 2, or 3), CF_3 , CH_2 - CH_2X , O- CH_2 - CH_2X , CH_2 - CH_2 -C

wherein M is selected from the group consisting of Tc and Re;

or wherein each R^1 and R^2 is a chelating group (with or without a chelated metal group) of the form W-L , wherein W is $-(CH_2)_n$ where n=2,3,4, or 5; and L is:

wherein M is selected from the group consisting of Tc and Re; or wherein each R^1 – R^{14} independently is selected from the group consisting of a chelating group (with or without a chelated metal ion) of the form W-L and V-W-L, wherein V is selected from the group consisting of –COO-, and -CO-; W is – (CH₂)_n where n = 0,1,2,3,4, or 5; L is:

and wherein R¹⁵ independently is selected from the following:

or an amyloid binding, chelating compound (with or without a chelated metal group) or a water soluble, non-toxic salt thereof of the form:

$$R_{15}$$
 N R_{16} R_{15} R_{15}

wherein R^{15} independently is selected from the following:

H,
$$COOH$$
, $CONHCH_3$, CH_3

or

and
$$R^{16}$$
 is R_{23} R_{24} R_{17} R_{18} R_{16} R_{29} R_{21} R_{20} R_{20} R_{20} , wherein Q is

independently selected from one of the following structures:

R₁₇ R₁₈ wherein
$$n = 0, 1, 2, 3 \text{ or } 4,$$

R₁₇ R₁₈

R₁₈

R₁₇ R₁₈

R₁₉

Or

R₁₉

wherein Z is S, NR', O, or $C(R')_2$ in which R' is H or a lower alkyl group; wherein U is N or CR';

wherein Y is NR¹R², OR², or SR²;

wherein each R^{17} - R^{24} independently is selected from the group consisting of H, F, CI, Br, I, a lower alkyl group, $(CH_2)_nOR'$ (wherein n=1, 2, or 3), CF_3 , CH_2 - CH_2X , O- CH_2 - CH_2X , CH_2 - CH_2 -CH

2. The compound of claim 1, wherein at least one of the substituents R¹-R¹⁴ is selected from the group consisting of ¹³¹I, ¹²³I, ⁷⁶Br, ⁷⁵Br, ¹⁸F, CH₂-CH₂-X*, O-

CH₂-CH₂-X*, CH₂-CH₂-CH₂-X*, O- CH₂-CH₂-CH₂-X* (wherein X* = 131 I, 123 I, 76 Br, 75 Br or 18 F), 19 F, 125 I, a carbon-containing substituent as specified in claim 1 wherein at least one carbon is 11 C or 13 C and a chelating group (with chelated metal group) of the form W-L* or V-W-L*, wherein V is selected from the group consisting of $^{-}$ COO-, $^{-}$ CO-, $^{-}$ CH₂O- and $^{-}$ CH₂NH-; W is $^{-}$ (CH₂)_n where n = 0,1,2,3,4, or 5; and L* is:

wherein M* is 99mTc;

and a chelating group (with chelated metal group) of the form W-L* or V-W-L*, wherein V is selected from the group consisting of $-COO_{-}$, $-CO_{-}$, $-CH_{2}O_{-}$ and $-CH_{2}NH_{-}$; W is $-(CH_{2})_{n}$ where n=0,1,2,3,4, or 5; and L* is:

and wherein R¹⁵ independently is selected from the following:

H,
$$\begin{picture}(1000\text{H}) \begin{picture}(1000\text{H}) \begin{pictur$$

or the chelating compound of claim 1 (with chelated metal group) of the form:

wherein R¹⁵ independently is selected from the following:

H, COOH, CONHCH₃,
$$OH$$
 SH OH Or OH Or OH And OH

independently selected from one of the following structures:

wherein
$$n = 0, 1, 2, 3 \text{ or } 4$$
,

 R_{17}
 R_{18}
 R_{19}
 R_{19}

wherein Z is S, NR', O, or $C(R')_2$ in which R' is H or a lower alkyl group; wherein U is N or CR';

wherein Y is NR1R2, OR2, or SR2;

wherein each R^{17} - R^{24} independently is selected from the group consisting of H, F, Cl, Br, I, a lower alkyl group, $(CH_2)_nOR'$ (wherein n=1, 2, or 3), CF_3 , CH_2 - CH_2X , O- CH_2 - CH_2X , CH_2 - CH_2X , O- CH_2 - CH_2X (wherein X=F, Cl, Br or I), CN, (C=O)-R', $N(R')_2$, NO_2 , $(C=O)N(R')_2$, O(CO)R', OR', SR', COOR', R_{ph} , CR'=CR'- R_{ph} and CR_2' - CR_2' - R_{ph} (wherein R_{ph} represents an unsubstituted or substituted phenyl group with the phenyl substituents being chosen from any of the non-phenyl substituents defined for R^{17} - R^{20} and wherein R' is H or a lower alkyl group).

The compound of claim 1, wherein, Z=S, Y=N, R¹=H; and wherein when the amyloid binding compound of claim 1 is structure A or E, then R² is selected from the group consisting of a lower alkyl group, (CH₂)nOR' (wherein n=1, 2, or 3), CF₃, CH₂-CH₂X, CH₂-CH₂-CH₂X (wherein X=F, Cl, Br or I), (C=O)-R', Rph, and (CH₂)nRph wherein n= 1, 2, 3, or 4;

wherein when the amyloid binding compound of claim 1 is structure B, then R^2 is selected from the group consisting of $(CH_2)_nOR'$ (wherein n=1, 2, or 3, and where when R'=H or CH_3 , n is not 1). CF_3 , CH_2-CH_2X and $CH_2-CH_2-CH_2X$ (wherein X=F, CI, Br or I);

wherein when the amyloid binding compound of claim 1 is structure C, then R^2 is selected from the group consisting of a lower alkyl group, $(CH_2)_nOR'$ (wherein $n=1,\ 2,\ or\ 3,\ CF_3)$, CH_2-CH_2X , $CH_2-CH_2-CH_2X$ (wherein X=F, CI, Br or I), (C=O)-H, R_{ph} , and $(CH_2)_nR_{ph}$ wherein $n=1,\ 2,\ 3,\ or\ 4$; and

wherein when the amyloid binding compound of claim 1 is structure D, then R^2 is selected from the group consisting of $(CH_2)_nOR'$ (wherein n=1, 2, or 3), CF_3 , CH_2 - CH_2 X, CH_2 - CH_2 X (wherein X=F, CI, Br or I), (C=O)-R', R_{ph} , and $(CH_2)_nR_{ph}$ (wherein n=1, 2, 3, or 4) wherein when R^2 is CH_2R_{ph} R^8 is not CH_3 .

4. The compound of claim 3, wherein at least one of the substituents R^3 - R^{14} is selected from the group consisting of 131 I, 123 I, 76 Br, 75 Br, 18 F, CH_2 - CH_2 - X^* , O-

CH₂-CH₂-X*, CH₂-CH₂-CH₂-X*, O- CH₂-CH₂-CH₂-X* (wherein X* = 131 I, 123 I, 76 Br, 75 Br or 18 F), 19 F, 125 I, a carbon-containing substituent as specified in claim 1 wherein at least one carbon is 11 C or 13 C, a chelating group (with chelated metal group) of the form W-L* or V-W-L*, wherein V is selected from the group consisting of -COO-, -CO-, -CH₂O- and -CH₂NH-; W is -(CH₂)_n where n=0,1,2,3,4, or 5; and L* is:

wherein M* is 99mTc;

and a chelating group (with chelated metal group) of the form W-L* or V-W-L*, wherein V is selected from the group consisting of $-COO_{-}$, $-CO_{-}$, $-CH_{2}O_{-}$ and $-CH_{2}NH_{-}$; W is $-(CH_{2})_{n}$ where n=0,1,2,3,4, or 5; and L* is:

and wherein R15 independently is selected from the following:

or the chelating compound of claim 1 (with chelated metal group) of the form:

wherein R¹⁵ independently is selected from one of the following structures:

independently selected from one of the following structures:

wherein
$$n = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{10} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{17} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{18} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{19} = 0, 1, 3, 3, 3,$$

$$R_{19} = 0, 1, 3, 3,$$

$$R_{19} = 0, 1, 3, 3,$$

$$R_{19} = 0, 1, 3,$$

$$R_$$

wherein Z is S, NR', O, or $C(R')_2$ in which R' is H or a lower alkyl group; wherein U is N or CR';

wherein Y is NR1R2, OR2, or SR2;

wherein each R^{17} - R^{24} independently is selected from the group consisting of H, F, CI, Br, I, a lower alkyl group, $(CH_2)_nOR'$ (wherein n=1, 2, or 3), CF_3 , CH_2 - CH_2 X, O- CH_2 - CH_2 X, CH_2 - CH_2 -CH

- 5. The compound of claim 1, structure A-E, wherein, Z = S, Y = N, R' = H, $R^1 = H$, $R^2 = CH_3$ and R^3 R^{14} are H.
- 6. The compound of claim 1, structure A-E, wherein, Z = S, Y = O, R' = H, $R^2 = CH_3$ and R^3 R^{14} are H.
- 7. The compound of claim 1, structure A-E, wherein Z = S, Y = N, R' = H, R^{1-} A' = H, A' = H
- 8. The compound of claim 1, structure A-E, wherein Z = S, Y = N, R' = H, R^{1-} A' = H, A' = H
- 9. The compound of claim 1, structure A-E, wherein, Z = S, Y = N, R' = H, $R^1 = H$, $R^2 = CH_2$ - CH_2 - CH_2 -F and R^3 R^{14} are H.
- 10. The compound of claim 1, structure A-E, wherein, Z = S, Y = O, R' = H, $R^2 = CH_2$ -CH₂-F and R^3 R^{14} are H.
- 11. The compound of claim 1, structure A-E, wherein Z = S, Y = N, R' = H, R^{1-} $^{7} = H$, $R^{8} = O-CH_{2}-CH_{2}-F$ and $R^{9}-R^{14}$ are H.
- 12. The compound of claim 1, structure A-E, wherein Z=S, Y=N, R'=H, $R^1 = CH_3$, $R^{2-7} = H$, $R^8 = O-CH_2-CH_2-F$ and R^9-R^{14} are H.

- 13. The compound of claim 1, structure F-J, wherein, Z=S, Y=N, R'=H, $R^1=H$, $R^2=CH_3$ and R^3-R^{14} are H.
- 14. The compound of claim 1, structure F-J, wherein, Z=S, Y=O, R'=H, $R^2=CH_3$ and R^3-R^{14} are H.
- 15. The compound of claim 1, structure F-J, wherein Z=S, Y=N, R'=H, R^{1-} $^{4}=H$, $R^{5}=I$, and $R^{6}-R^{14}$ are H.
- 16. The compound of claim 1, structure F-J, wherein Z=S, Y=N, R'=H, R^{1-} $^{4}=H$, $R^{5}=I$, $R^{8}=OH$ and $R^{6}-R^{7}$ and $R^{9}-R^{14}$ are H.
- 17. The compound of claim 1, structure F-J, wherein, Z = S, Y = N, R' = H, $R^1 = H$, $R^2 = CH_2-CH_2-F$ and R^3-R^{14} are H.
- 18. The compound of claim 1, structure F-J, wherein, Z=S, Y=O, R'=H, $R^2=CH_2\text{-}CH_2\text{-}F$ and R^3 R^{14} are H.
- 19. The compound of claim 1, structure F-J, wherein Z = S, Y = N, R' = H, R^{1-} $^{7} = H$, $R^{8} = O CH_{2} CH_{2} F$ and $R^{9} R^{14}$ are H.
- 20. The compound of claim 1, structure F-J, wherein Z=S, Y=N, R'=H, R^1 =CH₃, R^{2-7} =H, R^8 =O-CH₂-CH₂-F and R^9 R^{14} are H.
- 21. The compound of claim 3, wherein at least one of the substituents R³ -R¹⁴ is selected from the group consisting of CN, OCH₃, OH and NH₂.
- 22. The compound of claim 1, wherein the amyloid binding compound is selected from the group consisting of structure B, structure C and structure D; wherein $R^1 = H$, $R^2 = CH_3$ and R^8 is selected from the group consisting of CN, CH₃, OH, OCH₃ and NH₂.
- 23. The compound of claim 22, wherein R³- R⁷ and R⁹- R¹⁴ are H.

- 24. The compound of claim 1, wherein the compound binds to $A\beta$ with a dissociation constant (K_D) between 0.0001 and 10.0 μ M when measured by binding to synthetic $A\beta$ peptide or Alzheimer's Disease brain tissue.
- 25. The compound of claim 3, wherein the compound binds to $A\beta$ with a dissociation constant (K_D) between 0.0001 and 10.0 μ M when measured by binding to synthetic $A\beta$ peptide or Alzheimer's Disease brain tissue.
- 27. A method for synthesizing a compound of claim 1 having at least one of the substituents R^3 R^{14} selected from the group consisting of 131 I, 125 I, 123 I, 76 Br, 75 Br, 18 F, and 19 F, comprising the step of labeling a compound of claim 1, structures A-E or F-J, wherein Z=S, Y=N, R^1 =H and at least one of the substituents R^3 - R^{14} is a tri-alkyl tin, by reaction of the compound with a 131 I, 125 I, 123 I, 76 Br, 75 Br, 18 F, or 19 F containing substance.
- 28. A pharmaceutical composition for *in vivo* imaging of amyloid deposits, comprising (a) a compound of claim 1 and (b) a pharmaceutically acceptable carrier.
- 29. A pharmaceutical composition for *in vivo* imaging of amyloid deposits, comprising (a) a compound of claim 1, structures A-E or F-J, wherein Z = S, Y = N, $R^1 = H$, and (b) a pharmaceutically acceptable carrier.
- 30. An *in vivo* method for detecting amyloid deposits in a subject, comprising the steps of:
- (a) administering a detectable quantity of the pharmaceutical composition of claim 28, and

- (b) detecting the binding of the compound to amyloid deposit in the subject.
- 31. The method of claim 30, wherein the amyloid deposit is located in the brain of a subject.
- 32. The method of claim 30, wherein the subject is suspected of having a disease or syndrome selected from the group consisting of Alzheimer's Disease, familial Alzheimer's Disease, Down's Syndrome and homozygotes for the apolipoprotein E4 allele.
- 33. The method of claim 30, wherein the detecting is selected from the group consisting of gamma imaging, magnetic resonance imaging and magnetic resonance spectroscopy.
- 34. The method of claim 33, wherein the detecting is done by gamma imaging, and the gamma imaging is either PET or SPECT.
- 35. The method of claim 30, wherein the pharmaceutical composition is administered by intravenous injection.
- 36. The method of claim 30, wherein the ratio of (i) binding of the compound to a brain area other than the cerebellum to (ii) binding of the compound to the cerebellum, in the subject, is compared to the ratio in normal subjects.
- 37. A method of detecting amyloid deposits in biopsy or post-mortem human or animal tissue comprising the steps of:
- (a) incubating formalin-fixed or fresh-frozen tissue with a solution of acompound of claim 1 to form a labeled deposit and then,
 - (b) detecting the labeled deposits.
- 38. The method of claim 37 wherein the solution is composed of 25-100% ethanol, with the remainder of the solution being water, wherein the solution is saturated with the compound having one of structures A-E or F-J.

- 39. The method of claim 37 wherein the solution is composed of an aqueous buffer containing 0-50% ethanol, wherein the solution contains 0.0001 to 100 μ M of the compound having one of structures A-E or F-J.
- 40. The method of claim 37 wherein the detecting is effected by microscopic techniques selected from the group consisting of bright-field, fluorescence, laser-confocal, and cross-polarization microscopy.
- 41. A method of quantifying the amount of amyloid in biopsy or post-mortem tissue comprising the steps of:
- a) incubating a radiolabeled derivative of a compound of claim 1 with a homogenate of biopsy or post-mortem tissue, wherein at least one of the substituents R¹-R¹⁴ of the compound is labeled with a radiolabel selected from the group consisting of ¹²⁵I, ³H, and a carbon-containing substituent as specified in claim 1, wherein at least one carbon is ¹⁴C,
- b) separating the tissue-bound from the tissue-unbound radiolabeled derivative of a compound of claim 1,
- c) quantifying the tissue-bound radiolabeled derivative of a compound of claim 1, and
- d) converting the units of tissue-bound radiolabeled derivative of a compound of claim 1 to units of micrograms of amyloid per 100 mg of tissue by comparison with a standard.
- 42. The method of claim 41, wherein the radiolabeled derivative is an amyloid binding compound having one of structures A-E or a water soluble, non-toxic salt thereof:

Structure A
$$R_{13}$$

$$R_{14}$$

$$R_{14}$$

$$R_{15}$$

$$R_{10}$$

$$R_{11}$$

$$R_{12}$$

$$R_{20}$$

$$R_{10}$$

$$R_{11}$$

$$R_{21}$$

$$R_{31}$$

$$R_{12}$$

$$R_{20}$$

$$R_{10}$$

$$R_{11}$$

$$R_{11}$$

$$R_{12}$$

$$R_{20}$$

$$R_{11}$$

$$R_{21}$$

$$R_{31}$$

$$R_{41}$$

$$R_{32}$$

$$R_{51}$$

$$R_{51}$$

$$R_{51}$$

$$R_{52}$$

$$R_{53}$$

$$R_{54}$$

$$R_{54}$$

$$R_{55}$$

$$R_{55}$$

wherein Z is S, NR', O or CR' in which case the correct tautomeric form of the heterocyclic ring becomes an indole in which R' is H or a lower alkyl group:
-85-

is not a quaternary

wherein Y is NR¹R², OR², or SR²;

$$Z$$
 or R'

wherein the nitrogen of amine;

or an amyloid binding compound having one of structures F-J or a water soluble, non-toxic salt thereof:

Structure F
$$R_{13}$$
 R_{14} R_{7} R_{10} R_{10} R_{10}

Structure I
$$R_8$$
 R_7 R_9 R_{10} R_{10}

Structure J
$$Q$$
 Z $R_{11}R_7$ Z Q

wherein each Q is independently selected from one of the following structures:

$$R_6$$
 R_5 $CH_2)_n$ wherein $n = 0, 1, 2, 3 \text{ or } 4,$ R_4 R_3

$$R_6$$
 R_5 R_5 R_4 R_3

wherein Z is S, NR', O, or $C(R')_2$ in which R' is H or a lower alkyl group; wherein U is CR' (in which R' is H or a lower alkyl group) or N (except when U

$$R_6$$
 R_5 Y R_4 R_3);

= N, then Q is not H_4 H_4

wherein Y is NR¹R², OR², or SR²;

wherein each R^1 and R^2 independently is selected from the group consisting of H, a lower alkyl group, $(CH_2)_nOR'$ (wherein n=1, 2, or 3), CF_3 , CH_2-CH_2X , CH_2-CH_2X (wherein X=F, CI, Br or I), (C=O)-R', R_{ph} , and $(CH_2)_nR_{ph}$ (wherein n=1, 2, 3, or 4 and R_{ph} represents an unsubstituted or substituted phenyl group with the phenyl substituents being chosen from any of the non-phenyl substituents defined below for R^3-R^{14} and R' is H or a lower alkyl group);

and wherein each R^3 - R^{14} independently is selected from the group consisting of H, F, Cl, Br, I, a lower alkyl group, $(CH_2)_nOR'$ (wherein n=1, 2, or 3), CF_3 , CH_2 - CH_2X , O- CH_2 - CH_2X , CH_2 - $CH_$

wherein M is selected from the group consisting of Tc and Re; or wherein each R^1 and R^2 is a chelating group (with or without a chelated metal group) of the form W-L, wherein W is $-(CH_2)_n$ where n=2,3,4, or 5; and L is:

wherein M is selected from the group consisting of Tc and Re;

or wherein each R^1 – R^{14} independently is selected from the group consisting of a chelating group (with or without a chelated metal ion) of the form W-L and V-W-L, wherein V is selected from the group consisting of –COO-, and -CO-; W is – (CH₂)_n where n=0,1,2,3,4, or 5; L is:

and wherein R¹⁵ independently is selected from the following:

À15

or an amyloid binding, chelating compound (with or without a chelated metal group) or a water soluble, non-toxic salt thereof of the form:

wherein R¹⁵ independently is selected from the following:

H,
$$\COOH$$
, \CONHCH_3 , \COOH , \CONHCH_3 , \COOH ,

or

ÌΑ₁₉

and
$$R^{16}$$
 is R_{23} R_{24} R_{17} R_{18} R_{18} R_{20} R_{20} R_{20} R_{20} , wherein Q is

independently selected from one of the following structures:

R₁₇ R₁₈ wherein
$$n = 0, 1, 2, 3 \text{ or } 4,$$

$$R_{17} R_{18}$$

$$R_{17} R_{18}$$

$$R_{17} R_{18}$$

$$R_{19}$$

$$R_{17} R_{18}$$

$$R_{19} R_{19}$$

$$R_{17} R_{18}$$

$$R_{19} R_{19}$$

$$R_{17} R_{18}$$

$$R_{19} R_{19}$$

$$R_{19} R_{19}$$

wherein Z is S, NR', O, or $C(R')_2$ in which R' is H or a lower alkyl group; wherein U is N or CR';

wherein Y is NR1R2, OR2, or SR2;

wherein each R^{17} - R^{24} independently is selected from the group consisting of H, F, CI, Br, I, a lower alkyl group, $(CH_2)_nOR'$ (wherein n=1, 2, or 3), CF_3 , CH_2 - CH_2X , O- CH_2 - CH_2X , CH_2 - CH_2 -CH

Atty. Dkt. No.: 076333-0281

And a sea of sea for the contract of the contr

- 43. A method of distinguishing an Alzheimer's disease brain from a normal brain comprising the steps of:
- a) obtaining tissue from (i) the cerebellum and (ii) another area of the same brain other than the cerebellum, from normal subjects and from subjects suspected of having Alzheimer's disease;
- b) incubating the tissues with a radiolabeled derivative of a compound of claim 1 derivative so that amyloid in the tissue binds with the radiolabeled derivative of a compound of claim 1;
- c) quantifying the amount of amyloid bound to the radiolabeled derivative of a compound of claim 1, by administering a detectable quantity of the pharmaceutical composition comprising a compound of claim 1 with a pharmaceutically acceptable carrier, and detecting the binding of the compound to amyloid deposit in the subject;
- d) calculating the ratio of the amount of amyloid in the area of the brain other than the cerebellum to the amount of amyloid in the cerebellum;
- e) comparing the ratio for amount of amyloid in the tissue from normal subjects with ratio for amount of amyloid in tissue from subjects suspected of having Alzheimer's disease; and
- f) determining the presence of Alzheimer's disease if the ratio from the brain of a subject suspected of having Alzheimer's disease is above 90% of the ratios obtained from the brains of normal subjects.