ISYE 4803 - Advanced simulation Spring 2018 Homework 4- due 3/13/18 Charu Thomas - 903126680 $1.f(x;p)=p(1-x)^{p-1},0<x<1,p>0$ u=1-x u(0)=1 u=0(a) $E[X] = \int_{0}^{1} x p(1-x)^{p-1} dx = \int_{0}^{1} (1-u)p(u)^{p-1} du$ $=P\int_{0}^{1}(1-u)u^{p-1}du=P\int_{0}^{1}(u^{p-1}-u^{p})du$ $= P \left[\frac{u^p}{P} - \frac{u^{p+1}}{P+1} \right]^{u=1} = P \left[\frac{1}{P} - \frac{1}{p+1} \right] = P \left[\frac{(p+1)^{-p}}{P(p+1)} \right] = \frac{1}{p+1}$ $\overline{X} = \frac{1}{\beta+1} \rightarrow \beta+1 = \frac{1}{\overline{X}} \rightarrow \hat{\beta} = \frac{1}{\overline{X}} - 1$ (b) $L(x; p) = \prod_{i=1}^{n} P(1-x_i)^{p-1}$ $l(x_i; p) = \ln L(x_i; p) = \sum_{i=1}^{n} \ln(p(1-x_i)^{p-1})$ = $n \ln(p) + (p-1) \sum_{i=1}^{n} \ln(1-x_i)$ $\frac{\partial l}{\partial p} = \frac{n}{p} + \sum_{i=1}^{p} ln(i-x_i) = 0$ $l_3 \frac{n}{\beta} = -\sum_{i=1}^{n} ln(1-x_i)$ $\Rightarrow \hat{p} = \frac{n}{-\sum_{i=1}^{n} \ln(1-x_i)}$

		1	,	,		1	1	-	-		-
(0)	X(t)	.08	.09	.10	11.	.24	.26	.35	.87	-39	.47
	£(x.)	2.5392	2.484	2.43	2.376	1733	1.643	1.268	1.1907	1.116	0.84
-	i- f(x0)	-2.439	-2.284	-2.13	-1.979	-1.233	-1.043	-0.568	-0.391	-0.216	0.157
	F(x(0))- 1-1	2.5392	2.384	2.23	2.076	1.333	1.143	0.668	0.491	0.316	-0.05
	Dio= 2.539				-		-				7

rodified
Test Statistic = $(\sqrt{10} + .12 + \frac{.11}{\sqrt{10}})(2.5392) = 8.4227$ B/c $8.4227 > C_{1-\alpha}$ for $\alpha \le 0.1$, we reject to and conclude the beta distin w/ p=3 is not a good fit. 2. (a) $L(u, \sigma^2) = \iint \left((2\pi\sigma^2)^{-1/2} \times_1^{-1} \exp\left[-\frac{(\ln(x_1) - u)^2}{2\sigma^2} \right] \right)$ $= (2\pi\sigma^2)^{-N_2} \int_{-N_2}^{\infty} (X_i^{-1} \exp[-(n(x_i) - u)^2]$ $= (2\pi\sigma^2)^{-N_2} \int_{-N_2}^{\infty} (X_i^{-1} \exp[-(n(x_i) - u)^2]$ $= (2\pi\sigma^2)^{-N_2} \int_{-N_2}^{\infty} (X_i^{-1} \exp[-(n(x_i) - u)^2]$ $= (2\pi\sigma^2)^{-N_2} \int_{-N_2}^{\infty} (X_i^{-1} \exp[-(n(x_i) - u)^2]$ $= -\frac{n}{2} \ln (2\pi\sigma^2) - \sum_{i=1}^{n} \ln (x_i) - \sum_{i=1}^{n} \ln (x_i)^2 + \sum_{i=1}^{n} \ln (x_i) u - nu^2$ $\frac{\partial l}{\partial u} = -\frac{n\hat{u}}{\sigma^2} + \frac{\sum_{i=1}^{n} \ln(x_i)}{\sigma^2} = 0 \Rightarrow \frac{n\hat{u}}{\sigma^2} = \frac{\sum_{i=1}^{n} \ln(x_i)}{\sigma^2}$ $\hat{\mathcal{U}} = \frac{\sum_{i=1}^{n} \ln(x_i)}{\sum_{i=1}^{n} \ln(x_i)}$ $\frac{dk}{d\theta^{2}} = -\frac{n}{2\hat{n}^{2}} + \frac{2}{2\hat{n}^{4}} + \frac{2}{2\hat{n}^{4}} = 0 \rightarrow \frac{n}{2\hat{n}^{2}} = \frac{2}{2\hat{n}^{4}} + \frac{2}{2\hat{n}^{4}} + \frac{2}{2\hat{n}^{4}} = 0$ $\Rightarrow n\hat{\sigma}^2 = \sum_{i=1}^n (\ln(x_i) - \hat{\omega})^2 \Rightarrow \hat{\sigma}^2 = \frac{\sum_{i=1}^n (\ln(x_i) - \frac{\sum_{i=1}^n (\ln(x_i))}{n})^2}{n}$ From MOH, $\tilde{\mathcal{H}} = -\frac{\ln(\frac{x}{2}x^2)}{2} + 2\ln(\frac{x}{2}x^2) - \frac{3}{2}\ln(n)$ 82= In (\$ X;2) - 2 In (\$X;) + In(n) compared to MOM estimators, the MLE estimators are asymptotically normal. (b) L(t,p)= Jt px: (1-p)+x; & B/c for papicular Xi, is the same doesn't and impact, inelinood $ln L(t, p) = l(t, p) = \sum_{i=1}^{n} ln(p^{x_i}(1-p)^{t-x_i})$ $= \sum [x_1 \ln(p)] + \sum [(t-x_1) \ln(1-p)]$

4. Original:

Data-Summary Table

Data Characteristic	Value
Source file	<edited></edited>
Observation type	Real valued
Number of observations	386
Minimum observation	0.78000
Maximum observation	3.51000
Mean	1.42448
Median	1.40000
Variance	0.05980
Coefficient of variation	0.17167
Skewness	2.15606

Relative Evaluation of Candidate Models

Model	Relative Score	Parameters	
1 - Log-Logistic(E)	99.14	Location	0.26079
	100	Scale	1.14009
		Shape	9.58568
2 - Log-Logistic	97.41	Location	0.00000
	1770	Scale	1.40234
		Shape	11.79421
3 - Pearson Type V	85.34	Location	0.00000
		Scale	56.03732
		Shape	40.35672

30 models are defined with scores between 1.72 and 99.14

Absolute Evaluation of Model 1 - Log-Logistic(E)

Evaluation: Good

Suggestion: Additional evaluations using Comparisons Tab might be informative.

See Help for more information.

Additional Information about Model 1 - Log-Logistic(E)

Results of the Anderson-Darling

goodness-of-fit test at level 0.1 Not applicable

"Error" in the model mean

relative to the sample mean 0.00293 = 0.21%

Copy
Print
Help
Done

Anderson-Darling Test

Anderson-Darling Test with Model 1 - Log-Logistic(E)

Sample size 386 Test statistic 0.25175

Note: No critical values exist for this special case.

The following critical values are for the case where all parameters are known, and are conservative.

	Critical Values for Level of Significance (alpha)								
Sample Size	0.250	0.100	0.050	0.025	0.010	0.005			
386	1.248	1.933	2.492	3.070	3.857	4.500			
Reject?	No								

Kolmogorov-Smirnov Test

Kolmogorov-Smirnov Test with Model 1 - Log-Logistic(E)

 Sample size
 386

 Normal test statistic
 0.02852

 Modified test statistic
 0.56034

Note: No critical values exist for this special case.

The following critical values are for the case where all parameters are known, and are conservative.

	Critical Values for Level of Significance (alpha)						
Sample Size	0.150	0.100	0.050	0.025	0.010		
386	1.131	1.216	1.349	1.471	1.618		
Reject?	No				1		

Equal-Probable Chi-Square Test

Equal-Probable Chi-Square Test with Model 1 - Log-Logistic(E)

Number of intervals 40 Expected (model) count 9.65 Test statistic 62.29016

Warning: The test may not be statistically valid because a method

other than maximum likelihood was used to estimate parameters.

Degrees	Observed Level	Critical Values for Level of Significance (alpha)				
of Freedom	of Significance	0.25	0.15	0.10	0.05	0.01
36	0.004	41.304	44.764	47.212	50.998	58.619
39	0.010	44.539	48.126	50.660	54.572	62.428
	Reject?	Yes	•			No

Simio Expression: Random.LogLogistics(9.58568, 1.14009)

This model seems appropriate. The only issue is the model does not handle the right tail of the distribution well. As shown in the Box Plot and on the upper edges of the QQ Plot, the right tail is significantly longer in the observed distribution than the fitted distribution. Correlation plot of lag looks good, fairly centered around 0. The scatter plot shows a few points that may be outliers and may explain the poor fitting at the tails of the distribution.

With a lower bound of 0.5: We get the same results as before with same plots.

Relative Evaluation of Candidate Models

Model	Relative Score	Parameters	
1 - Negative Binomial	100.00	Probability Success	0.85966 47
2 - Poisson	66.67	Lambda	7.67300
3 - Discrete Uniform	33.33	Lower endpoint Upper endpoint	0 17

Copy
Print
Help
Done

4 models are defined with scores between 0.00 and 100.00

Absolute Evaluation of Model 1 - Negative Binomial

Evaluation: Good

Suggestion: Additional evaluations using Comparisons Tab might be informative.

See Help for more information.

Additional Information about Model 1 - Negative Binomial

"Error" in the model mean relative to the sample mean

-2.6645e-15 = 0.00%

Data-Summary Table

Data Characteristic	Value
Source file	<edited></edited>
Observation type	Integer valued
Number of observations	474
Minimum observation	0
Maximum observation	17
Mean	7.67300
Median	7.50000
Variance	8.93935
Lexis ratio (var./mean)	1.16504
Skewness	0.46054

Simio Expression: Random.NegativeBinomial(0.85966, 47)

This model is very appropriate. The data is very minimally correlated and the Negative Binomial model fits very well. Even with the Chi-Squared test, the test statistic is far away from the critical values. If you increase and decrease the number of bins to extreme values, we still fail to reject the distribution fit. Even if you try to "cheat" with Chi-Squared, it looks like a pretty strong fit and hard to reject.

Relative Evaluation of Candidate Models

Model	Relative Score	Parameters	
1 - Geometric	83.33	Probability	0.03478
2 - Negative Binomial	83.33	Probability Success	0.03478 1
3 - Poisson	22.22	Lambda	27.75573

Copy
Print
Help
Done

4 models are defined with scores between 11.11 and 83.33

Absolute Evaluation of Model 1 - Geometric

Evaluation: Indeterminate

Suggestion: Additional evaluations using Comparisons Tab are strongly recommended.

See Help for more information.

Additional Information about Model 1 - Geometric

"Error" in the model mean

relative to the sample mean 3.5527e-15 = 0.00%

Data-Summary Table

Data Characteristic	Value
Source file	<edited></edited>
Observation type	Integer valued
Number of observations	131
Minimum observation	0
Maximum observation	264
Mean	27.75573
Median	14.00000
Variance	1,718.53987
Lexis ratio (var./mean)	61.91659
Skewness	3.18780

Equal-Width Chi-Square Test

Сору

Print

Help

Done

Equal-Width Chi-Square Test with Model 1 - Geometric

Upper endpoint of first interval Interval width (values per interval) 10 Number of intervals (grouped/original) 27/27

Number of intervals with fewer than

five expected observations per interval 21

175.25787 Test statistic

Degrees	Observed Level	Critical Values for Level of Significance (alpha)					
of Freedom	of Significance	0.25	0.15	0.10	0.05	0.01	
25	0.000	29.339	32.282	34.382	37.652	44.314	
26	0.000	30.435	33.429	35.563	38.885	45.642	
	Reject?	Yes					

Simio Expression: Random.Geometric(0.03478)

This model does not seem appropriate for the given data. The PP Plot is very alarming and the theoretical probabilities do not match the theoretical probabilities well. With the default number of bins for the Chi-Square test, we reject the theoretical distribution, but if the number of bins changes to a small value, i.e. 3, we fail to reject. However, at this small level of granularity, the theoretical distribution is still a stretch when checking the test statistic and critical values.

7.

Parameter	Estimated Value	Standard Deviation
size	0.51956510122101	0.0634944866704382
mu	27.7557251985778	3.39565939739202

 $\mu = r \frac{(1-p)}{p}$ where $\mu =$ 27.7557 and r = 0.519565. If you know μ and r and solve for p, you get

$$\widehat{p} = \frac{1}{(\frac{\mu}{r}+1)}$$

This implies that $\hat{p} = 0.018375$. The Var = $r \frac{(1-p)}{p^2}$. This implies the variance is 1510.5347. These estimates are fairly close to the sample estimates. The variance of the sample 1718.540 which is higher than our estimate.

Relative Evaluation of Candidate Models

Model	Relative Score	Parameters	
1 - Beta	100.00	Lower endpoint Upper endpoint Shape #1	1.91698 e -4 161.80296 1.30509
2 - Weibull	93.75	Shape #2 Location Scale	4.07965 0.00000 43.12127
3 - Gamma	84.38	Shape Location Scale	1.42821 0.00000 24.20804
		Shape	1.62635

17 models are defined with scores between 4.69 and 100.00

Absolute Evaluation of Model 1 - Beta

Evaluation: Bad

Suggestion: Use an empirical distribution.

See Help for more information.

Additional Information about Model 1 - Beta

"Error" in the model mean

relative to the sample mean 0.15468 = 0.39%

Copy
Print
Help
Done

ExpertFit failed to give a good model. This is likely because there were so many data points and the tests were sensitive.

(b) KDE = 8.812508 using Gaussian and h = 4.954466 (see below)

Properties of Density Trace		
Bandwidth	4.95446595386128	
#Observations	2590	

Maximum Density Valu	165		
Kernel	x-value	max. density	
Gaussian	8.81250846045052	0.0149838238117316	
Epanechnikov	9.93517066626168	0.0148811196669157	
Rectangular	9.93517066626168	0.0153894154716978	
Triangular	9.18672919572091	0.0148003349125171	
Biweight	9.5609499309913	0.0148611031225658	
Cosine	9.5609499309913	0.0148635896455241	
Optcosine	9.93517066626168	0.0148611305289252	

Gaussian Kernel

9.
$$\widehat{\mu} = 22.03031$$
, $\widehat{\sigma} = \sqrt{18.91534}$

