Separation of Variables – Eigenvalues of the Laplace Operator

Bernd Schröder

1. Solution technique for partial differential equations.

- 1. Solution technique for partial differential equations.
- 2. If the unknown function u depends on variables x, y, z, t, we assume there is a solution of the form u = f(x, y, z)T(t).

- 1. Solution technique for partial differential equations.
- 2. If the unknown function u depends on variables x, y, z, t, we assume there is a solution of the form u = f(x, y, z)T(t).
- 3. The special form of this solution function allows us to replace the original partial differential equation with several ordinary differential equations.

- 1. Solution technique for partial differential equations.
- 2. If the unknown function u depends on variables x, y, z, t, we assume there is a solution of the form u = f(x, y, z)T(t).
- 3. The special form of this solution function allows us to replace the original partial differential equation with several ordinary differential equations.
- 4. Key step: If a(t) = b(x, y, z), then a and b must be constant.

- 1. Solution technique for partial differential equations.
- 2. If the unknown function u depends on variables x, y, z, t, we assume there is a solution of the form u = f(x, y, z)T(t).
- 3. The special form of this solution function allows us to replace the original partial differential equation with several ordinary differential equations.
- 4. Key step: If a(t) = b(x, y, z), then a and b must be constant.
- 5. Solutions of the ordinary differential equations we obtain must typically be processed some more to give useful results for the partial differential equations.

- 1. Solution technique for partial differential equations.
- 2. If the unknown function u depends on variables x, y, z, t, we assume there is a solution of the form u = f(x, y, z)T(t).
- 3. The special form of this solution function allows us to replace the original partial differential equation with several ordinary differential equations.
- 4. Key step: If a(t) = b(x, y, z), then a and b must be constant.
- 5. Solutions of the ordinary differential equations we obtain must typically be processed some more to give useful results for the partial differential equations.
- 6. Some very powerful and deep theorems can be used to formally justify the approach for many equations involving the Laplace operator.

How Deep?

How Deep?

plus about 200 pages of really awesome functional analysis.

$$\Delta u = k \frac{\partial^2 u}{\partial t^2}$$

$$\Delta u = k \frac{\partial^2 u}{\partial t^2}$$
 $u(x, y, z, t) = f(x, y, z)T(t)$

$$\Delta u = k \frac{\partial^2 u}{\partial t^2} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial^2}{\partial t^2} (k f(x, y, z) T(t))$$

$$\Delta u = k \frac{\partial^2 u}{\partial t^2} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial^2}{\partial t^2} (k f(x, y, z) T(t))$$

$$T\Delta f = k f T''$$

$$\Delta u = k \frac{\partial^2 u}{\partial t^2} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial^2}{\partial t^2} (k f(x, y, z) T(t))$$

$$T\Delta f = k f T''$$

$$\frac{T\Delta f}{Tf} = k \frac{f T''}{Tf}$$

$$\Delta u = k \frac{\partial^2 u}{\partial t^2} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial^2}{\partial t^2} (kf(x, y, z) T(t))$$

$$T\Delta f = kf T''$$

$$\frac{T\Delta f}{Tf} = k \frac{f T''}{Tf}$$

$$\frac{\Delta f}{f} = k \frac{T''}{T}$$

$$\Delta u = k \frac{\partial^2 u}{\partial t^2} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial^2}{\partial t^2} (kf(x, y, z) T(t))$$

$$T\Delta f = kf T''$$

$$\frac{T\Delta f}{Tf} = k \frac{f T''}{Tf}$$

$$\frac{\Delta f}{f} = k \frac{T''}{T} = \lambda$$

$$\Delta u = k \frac{\partial^2 u}{\partial t^2} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial^2}{\partial t^2} (kf(x, y, z) T(t))$$

$$T\Delta f = kf T''$$

$$\frac{T\Delta f}{Tf} = k \frac{f T''}{Tf}$$

$$\frac{\Delta f}{f} = k \frac{T''}{T} = \lambda$$

$$\Delta f = \lambda f$$

$$\Delta u = k \frac{\partial^2 u}{\partial t^2} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial^2}{\partial t^2} (kf(x, y, z) T(t))$$

$$T\Delta f = kf T''$$

$$\frac{T\Delta f}{Tf} = k \frac{f T''}{Tf}$$

$$\frac{\Delta f}{f} = k \frac{T''}{T} = \lambda$$

$$\Delta f = \lambda f \qquad T'' - \frac{\lambda}{k} T = 0$$

$$\Delta u = k \frac{\partial u}{\partial t}$$

The Heat Equation
$$\Delta u = k \frac{\partial u}{\partial t}$$

$$\Delta u = k \frac{\partial u}{\partial t}$$
 $u(x, y, z, t) = f(x, y, z)T(t)$

$$\Delta u = k \frac{\partial u}{\partial t} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial}{\partial t} (k f(x, y, z) T(t))$$

$$\Delta u = k \frac{\partial u}{\partial t} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial}{\partial t} (k f(x, y, z) T(t))$$

$$T\Delta f = k f T'$$

$$\begin{array}{rcl} \Delta u & = & k \frac{\partial u}{\partial t} & u(x,y,z,t) = f(x,y,z)T(t) \\ \Delta \big(f(x,y,z)T(t) \big) & = & \frac{\partial}{\partial t} \big(k f(x,y,z)T(t) \big) \\ & T\Delta f & = & k f T' \\ & \frac{T\Delta f}{Tf} & = & k \frac{f T'}{Tf} \end{array}$$

$$\Delta u = k \frac{\partial u}{\partial t} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial}{\partial t} (kf(x, y, z) T(t))$$

$$T\Delta f = kf T'$$

$$\frac{T\Delta f}{Tf} = k \frac{f T'}{Tf}$$

$$\frac{\Delta f}{f} = k \frac{T'}{T}$$

$$\Delta u = k \frac{\partial u}{\partial t} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial}{\partial t} (kf(x, y, z) T(t))$$

$$T\Delta f = kf T'$$

$$\frac{T\Delta f}{Tf} = k \frac{f T'}{Tf}$$

$$\frac{\Delta f}{f} = k \frac{T'}{T} = \lambda$$

$$\Delta u = k \frac{\partial u}{\partial t} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial}{\partial t} (kf(x, y, z) T(t))$$

$$T\Delta f = kf T'$$

$$\frac{T\Delta f}{Tf} = k \frac{f T'}{Tf}$$

$$\frac{\Delta f}{f} = k \frac{T'}{T} = \lambda$$

$$\Delta f = \lambda f$$

$$\Delta u = k \frac{\partial u}{\partial t} \qquad u(x, y, z, t) = f(x, y, z) T(t)$$

$$\Delta (f(x, y, z) T(t)) = \frac{\partial}{\partial t} (kf(x, y, z) T(t))$$

$$T\Delta f = kf T'$$

$$\frac{T\Delta f}{Tf} = k \frac{f T'}{Tf}$$

$$\frac{\Delta f}{f} = k \frac{T'}{T} = \lambda$$

$$\Delta f = \lambda f \qquad T' = \frac{\lambda}{k} T$$