Exploratory analysis

March 18, 2021

```
[116]: %reload_ext autoreload
       %autoreload 2
       default_figsize=(14,12)
[117]: import datasets
       import numpy as np
       import pandas as pd
       import seaborn as sn
       import matplotlib.pyplot as plt
       import matplotlib
       matplotlib.rcParams['figure.figsize'] = (14, 12)
       dataset_name = "all_em"
       dataset_module = datasets.datasets_by_name_all[dataset_name]
       x,y,metadata = dataset_module.load(dropna=True,verbose=True)
       y = datasets.map_y_em(y,dataset_name)
       \# generate dataframe with both x and y
       xy = pd.concat([x,y],axis=1)
       xy.describe()
      Warning loading data from Mohr-Smith_2017.csv:
      Dropped 38 rows with missing values.
      Rows (original):
      Rows (after drop): 5877
      Warning loading data from McSwain2005-2009_VPHAS-2MASS.csv:
      Dropped 2313 rows with missing values.
      Rows (original):
      Rows (after drop): 3142
      Warning loading data from Hou2016_VPHAS-SDSS-IPHAS-2MASS.csv:
      Dropped 27 rows with missing values.
      Rows (original):
      Rows (after drop): 1007
[117]:
                                                                              Hamag \
                      umag
                                                  rmag
                                                                 imag
                                    gmag
       count 10307.000000
                            10307.000000
                                          10307.000000 10307.000000
                                                                       10307.000000
                 16.952936
                               16.452857
                                             15.257591
                                                            14.554945
                                                                          14.953842
      mean
       std
                  2.135863
                                1.835733
                                              1.548815
                                                             1.438887
                                                                           1.522385
```

min 25% 50% 75% max	10.980000 15.340000 16.940000 18.625000 24.651000	10.130000 15.050000 16.420000 17.730000 21.633000	11.820000 14.020000 15.240000 16.404500 19.330000	11.081000 13.400000 14.534000 15.633000 18.290000	11.160000 13.730000 14.940000 16.100000 18.890000
	Jmag	Hmag	Kmag	em	
count	10307.000000	10307.000000	10307.000000	10307.000000	
mean	13.386535	12.990008	12.802591	0.139129	
std	1.354593	1.371860	1.394660	0.346098	
min	8.693000	7.870000	7.414000	0.000000	
25%	12.396000	12.040000	11.868000	0.000000	
50%	13.374000	13.010000	12.833000	0.000000	
75%	14.386000	14.003000	13.831500	0.000000	
max	17.013000	16.700000	17.150000	1.000000	

1 Variable visualization

```
[118]: sn.boxplot(data=x)

plt.figure()
xy_long = pd.melt(xy, id_vars='em')
sn.boxplot(x='em', y='value', hue='variable', data=xy_long)
plt.title("Per class boxplots")
```

[118]: Text(0.5, 1.0, 'Per class boxplots')


```
[119]: pd.plotting.parallel_coordinates(xy,"em",color=('#556270','#C7F464'))
```

[119]: <AxesSubplot:>

[120]: Text(0.5, 0.98, 'Scatterplots between magnitudes')

2 Outlier detection via confidence interval

```
[121]: from scipy import stats
    m = len(x.columns) # number of columns = number of hypothesis
    confidence= 0.98
    adjusted_confidence = 1- (1-confidence)/m # bonferroni-adjusted confidence
    max_zscore = stats.norm.ppf(adjusted_confidence)
    print(f"Confidence (desired): {confidence}")
    print(f"Confidence (adjusted): {adjusted_confidence}")
    print(f"Z-score (adjusted): {max_zscore}")

indices = (np.abs(stats.zscore(x-x.mean())) > max_zscore).any(axis=1)
    outliers_x = x[indices]
```

```
if dataset_name != "all_em":
   outliers_metadata = metadata[indices]
   outliers_x = outliers_x.
   →merge(outliers_metadata,left_index=True,right_index=True)
outliers_x
```

Confidence (desired): 0.98 Confidence (adjusted): 0.9975

Z-score (adjusted): 2.807033768343811

[121]:		umag	gmag	rmag	imag	Hamag	Jmag	Hmag	Kmag
	40	23.710	18.130	13.210	12.940	13.010	12.250	12.170	12.180
	43	11.080	11.180	12.630	11.210	11.290	10.360	10.280	10.270
	76	10.980	10.130	12.870	11.100	11.350	9.060	9.160	9.080
	89	11.480	10.870	12.730	11.210	11.160	9.710	9.610	9.520
	90	11.480	10.870	12.730	11.210	11.160	9.710	9.610	9.520
	144	11.170	10.630	12.740	11.110	11.320	9.570	9.560	9.490
	264	19.450	17.230	14.220	12.360	13.630	9.650	8.910	8.510
	275	17.560	16.460	13.810	12.200	13.270	9.780	9.140	8.750
	299	17.129	15.965	13.610	12.248	13.113	9.942	9.267	8.845
	314	17.230	15.975	13.523	12.100	13.031	9.670	8.930	8.536
	321	17.566	15.969	13.405	11.925	12.928	9.317	8.560	8.115
	327	17.929	16.214	13.487	11.917	12.970	9.144	8.367	7.875
	338	17.728	16.367	13.978	12.543	13.478	10.023	9.224	8.802
	379	16.304	15.184	12.878	11.698	12.404	9.383	8.702	8.270
	412	16.936	15.480	12.953	11.486	12.341	8.693	7.870	7.414
	433	20.597	18.508	15.374	13.514	14.826	10.056	9.057	8.424
	466	16.588	15.619	13.410	12.131	12.934	9.722	9.025	8.567
	522	17.558	16.161	13.570	12.095	13.049	9.327	8.474	7.953
	582	14.975	14.257	12.236	11.081	11.762	8.968	8.297	7.940
	587	14.794	14.270	12.475	11.404	12.034	9.516	8.969	8.667
	718	19.141	17.146	14.245	12.551	13.746	9.479	8.656	8.113
	736	15.700	14.928	12.883	11.681	12.432	9.315	8.620	8.200
	750	17.844	16.488	14.034	12.574	13.513	9.870	9.100	8.600
	830	14.600	14.320	12.575	11.566	12.225	9.273	8.673	8.371
	839	14.593	14.293	12.563	11.542	12.169	9.450	8.950	8.520
	1401	14.979	14.243	12.437	11.366	11.680	9.488	8.925	8.498
	1994	15.168	14.395	12.444	11.318	11.885	9.005	8.365	8.059
	2064	14.353	13.961	12.394	11.538	11.903	9.465	8.881	8.555
	2218	17.744	16.371	13.813	12.309	13.302	9.674	8.837	8.406
	2526	16.736	16.161	13.962	12.592	13.489	9.756	8.880	8.334
	2642	15.297	14.605	12.680	11.556	12.232	9.689	9.120	8.725
	5034	16.710	15.442	13.140	11.778	12.642	9.577	8.856	8.469
	5451	16.262	15.748	13.700	12.411	13.154	9.975	9.167	8.738
	5640	16.351	15.423	13.115	11.700	12.603	9.018	8.190	7.617
	5844	14.949	14.260	12.473	11.405	12.035	9.485	8.892	8.531
	5886	15.297	14.487	12.594	11.352	12.067	9.205	8.511	8.126

```
6003 20.484
             18.317
                     15.149
                            13.372
                                    14.604
                                             9.970
                                                     9.007
                                                             8.402
                                             9.924
                                                             8.747
7430 16.870
             14.440
                    12.510
                            11.620
                                    12.130
                                                     9.015
7620 19.190
             15.990
                    13.720
                            12.080
                                    13.140
                                             9.836
                                                     8.866
                                                             8.505
8152 18.690
             15.600 13.520
                            12.090
                                    13.010 10.053
                                                     9.082
                                                             8.692
8321 20.270
             16.750 14.240
                            12.350
                                    13.660
                                             9.725
                                                     8.603
                                                             8.161
8641 14.210
             13.950
                    13.340
                            12.930
                                    13.150 12.348
                                                     9.971
                                                            8.329
8841 18.880
             15.780 13.350
                            12.230
                                    12.900
                                             9.957
                                                     8.990
                                                            8.636
8876 20.660
             16.880 14.000
                            12.590
                                    13.460
                                             9.700
                                                     8.521
                                                             8.118
9173 20.290
             16.890 14.100
                                                     9.070
                            12.640
                                    13.600 10.106
                                                            8.703
9186 20.140
             16.660 14.010
                            12.480
                                    13.430
                                             9.984
                                                     8.943
                                                            8.580
9394 23.028 21.130 19.330
                            18.290
                                    18.890 16.676 15.830
                                                          15.471
9432 24.635 17.203 16.660
                            16.170
                                    16.480 15.515
                                                    15.300
                                                           15.175
9610 19.594 18.110 17.700
                            17.240
                                    17.510 16.625
                                                    16.700
                                                            17.006
9854 20.728 19.168 18.390
                            17.730
                                    18.080 17.013 16.539
                                                           17.150
9929 24.651
                            13.680
                                    14.190 12.102
            14.845
                    14.630
                                                    11.286
                                                           11.082
9962 14.853
            13.601
                    12.860
                            12.310
                                    12.370 10.700
                                                     9.547
                                                            8.578
9983 21.713 21.633 17.700
                            15.200
                                    17.000 11.054
                                                     9.331
                                                             8.658
```

3 Outlier detection via IQR

```
[122]:
                                              Hamag
                                                        Jmag
                                                                Hmag
                                                                        Kmag
               umag
                       gmag
                               rmag
                                        imag
       40
             23.710
                     18.130
                            13.210
                                     12.940
                                             13.010
                                                     12.250
                                                              12.170
                                                                      12.180
       76
             10.980
                     10.130
                            12.870
                                     11.100
                                             11.350
                                                       9.060
                                                               9.160
                                                                       9.080
                                             11.160
       89
             11.480
                     10.870 12.730
                                     11.210
                                                       9.710
                                                               9.610
                                                                       9.520
       90
             11.480
                     10.870 12.730
                                     11.210
                                             11.160
                                                       9.710
                                                               9.610
                                                                       9.520
       144
             11.170
                     10.630
                            12.740
                                     11.110
                                             11.320
                                                       9.570
                                                               9.560
                                                                       9.490
       264
             19.450
                     17.230 14.220
                                     12.360
                                             13.630
                                                       9.650
                                                               8.910
                                                                       8.510
       275
             17.560
                    16.460 13.810
                                     12.200
                                             13.270
                                                       9.780
                                                               9.140
                                                                       8.750
       299
             17.129
                    15.965
                            13.610
                                    12.248
                                             13.113
                                                       9.942
                                                               9.267
                                                                       8.845
       314
             17.230
                    15.975 13.523 12.100
                                             13.031
                                                       9.670
                                                               8.930
                                                                       8.536
       321
             17.566
                     15.969 13.405
                                     11.925
                                             12.928
                                                       9.317
                                                               8.560
                                                                       8.115
       327
             17.929
                    16.214 13.487
                                     11.917
                                             12.970
                                                       9.144
                                                               8.367
                                                                       7.875
```

338	17.728	16.367	13.978	12.543	13.478	10.023	9.224	8.802
379	16.304	15.184	12.878	11.698	12.404	9.383	8.702	8.270
412	16.936	15.480	12.953	11.486	12.341	8.693	7.870	7.414
433	20.597	18.508	15.374	13.514	14.826	10.056	9.057	8.424
466	16.588	15.619	13.410	12.131	12.934	9.722	9.025	8.567
522	17.558	16.161	13.570	12.095	13.049	9.327	8.474	7.953
582	14.975	14.257	12.236	11.081	11.762	8.968	8.297	7.940
587	14.794	14.270	12.475	11.404	12.034	9.516	8.969	8.667
718	19.141	17.146	14.245	12.551	13.746	9.479	8.656	8.113
736	15.700	14.928	12.883	11.681	12.432	9.315	8.620	8.200
750	17.844	16.488	14.034	12.574	13.513	9.870	9.100	8.600
830	14.600	14.320	12.575	11.566	12.225	9.273	8.673	8.371
839	14.593	14.293	12.563	11.542	12.169	9.450	8.950	8.520
1401	14.979	14.243	12.437	11.366	11.680	9.488	8.925	8.498
1994	15.168	14.395	12.444	11.318	11.885	9.005	8.365	8.059
2064	14.353	13.961	12.394	11.538	11.903	9.465	8.881	8.555
2218	17.744	16.371	13.813	12.309	13.302	9.674	8.837	8.406
2526	16.736	16.161	13.962	12.592	13.489	9.756	8.880	8.334
2642	15.297	14.605	12.680	11.556	12.232	9.689	9.120	8.725
4675	16.992	15.882	13.628	12.295	13.172	10.076	9.316	8.894
5034	16.710	15.442	13.140	11.778	12.642	9.577	8.856	8.469
5085	14.948	14.293	12.512	11.497	12.127	9.699	9.197	8.898
5451	16.262	15.748	13.700	12.411	13.154	9.975	9.167	8.738
5640	16.351	15.423	13.115	11.700	12.603	9.018	8.190	7.617
5844	14.949	14.260	12.473	11.405	12.035	9.485	8.892	8.531
5886	15.297	14.487	12.594	11.352	12.067	9.205	8.511	8.126
6003	20.484	18.317	15.149	13.372	14.604	9.970	9.007	8.402
7430	16.870	14.440	12.510	11.620	12.130	9.924	9.015	8.747
7620	19.190	15.990	13.720	12.080	13.140	9.836	8.866	8.505
8152	18.690	15.600	13.520	12.090	13.010	10.053	9.082	8.692
8321	20.270	16.750	14.240	12.350	13.660	9.725	8.603	8.161
8641	14.210	13.950	13.340	12.930	13.150	12.348	9.971	8.329
8841	18.880	15.780	13.350	12.230	12.900	9.957	8.990	8.636
8876	20.660	16.880	14.000	12.590	13.460	9.700	8.521	8.118
9173	20.290	16.890	14.100	12.640	13.600	10.106	9.070	8.703
9186	20.140	16.660	14.010	12.480	13.430	9.984	8.943	8.580
9432	24.635	17.203	16.660	16.170	16.480	15.515	15.300	15.175
9610	19.594	18.110	17.700	17.240	17.510	16.625	16.700	17.006
9854	20.728	19.168	18.390	17.730	18.080	17.013	16.539	17.150
9929	24.651	14.845	14.630	13.680	14.190	12.102	11.286	11.082
9962	14.853	13.601	12.860	12.310	12.370	10.700	9.547	8.578
9983	21.713	21.633	17.700	15.200	17.000	11.054	9.331	8.658

4 Analysis of q-features (q_3) (all magnitudes)

```
[123]: x np=x.to numpy()
       import qfeatures
       coefficients = dataset module.coefficients
       systems = dataset_module.systems
       coefficients_np = np.array([coefficients[k] for k in x.columns])
       systems = [systems[k] for k in x.columns]
       q=qfeatures.calculate(x_np,coefficients_np,x.columns,systems,combination_size=3)
       m = q.magnitudes
       q_df = pd.DataFrame(m, columns = q.column_names)
       q_df.describe()
[123]:
                                                umag_gmag_Hamag
                                                                  umag_gmag_Jmag
                               umag_gmag_imag
              umag_gmag_rmag
                10307.000000
                                 10307.000000
                                                   10307.000000
                                                                    10307.000000
       count
                   -0.063921
                                    -0.709701
                                                      -0.263438
                                                                        -4.141992
       mean
       std
                    0.658024
                                      0.703104
                                                       0.668365
                                                                         1.920013
                                                                      -15.935431
       min
                   -6.198398
                                    -7.366959
                                                      -6.524593
       25%
                    -0.483868
                                    -1.148602
                                                       -0.695596
                                                                        -5.547403
       50%
                    -0.202892
                                    -1.020696
                                                       -0.427495
                                                                        -4.001958
       75%
                    0.079946
                                    -0.450000
                                                      -0.102033
                                                                        -2.759167
       max
                    9.704550
                                      9.063398
                                                        9.472379
                                                                         5.653403
              umag_gmag_Hmag
                               umag_gmag_Kmag
                                                umag_rmag_imag
                                                                 umag_rmag_Hamag
                10307.000000
                                                  10307.000000
                                                                    10307.000000
       count
                                 10307.000000
                   -7.705369
                                   -12.502502
                                                                         1.400112
       mean
                                                      0.840664
       std
                    3.425802
                                      5.545913
                                                      0.771068
                                                                         0.943564
                   -29.070391
                                                                        -3.367383
       min
                                    -46.138137
                                                      -4.042982
       25%
                   -10.231500
                                   -16.576010
                                                      0.330058
                                                                         0.764346
       50%
                   -7.360348
                                   -11.786373
                                                      0.722339
                                                                         1.295589
       75%
                   -5.125587
                                    -8.249484
                                                      1.310099
                                                                         1.996963
                     4.414391
                                      4.119078
                                                                        10.305607
                                                      10.171579
       max
              umag_rmag_Jmag
                               umag_rmag_Hmag
                                                   imag_Hamag_Jmag
                                                                     imag_Hamag_Hmag
       count
                10307.000000
                                 10307.000000
                                                      10307.000000
                                                                         10307.000000
                                    -8.558077
       mean
                   -3.709929
                                                           0.537134
                                                                             1.436861
       std
                    1.897399
                                      3.997383
                                                           0.273023
                                                                             0.694547
                                   -33.829435
       min
                  -15.186556
                                                          -0.156500
                                                                            -0.411696
       25%
                    -5.096611
                                   -11.436261
                                                           0.314993
                                                                             0.895750
       50%
                   -3.488778
                                    -8.058565
                                                           0.497042
                                                                             1.315304
       75%
                   -2.278667
                                    -5.460239
                                                           0.729924
                                                                             1.944413
                    7.726667
                                      5.797391
                                                                             5.368848
                                                           1.753681
       max
              imag_Hamag_Kmag
                                imag_Jmag_Hmag
                                                 imag_Jmag_Kmag
                                                                  imag_Hmag_Kmag
                  10307.000000
                                  10307.000000
                                                   10307.000000
                                                                    10307.000000
       count
                      2.624102
                                                      -0.720819
                                       0.315014
                                                                         0.799348
       mean
```

std	1.275666	0.375150	0.627362	0.622198
min	-0.772131	-6.482065	-13.751588	-11.218902
25%	1.635833	0.089261	-0.989706	0.460582
50%	2.406157	0.310435	-0.644588	0.783667
75%	3.540333	0.544804	-0.366000	1.161458
max	9.922418	4.936783	4.142765	7.507065
	${\tt Hamag_Jmag_Hmag}$	Hamag_Jmag_Kmag	${\tt Hamag_Hmag_Kmag}$	${\tt Jmag_Hmag_Kmag}$
count	10307.000000	10307.000000	10307.000000	10307.000000
mean	0.343245	-1.142496	0.934883	0.237285
std	0.506861	0.925879	0.801468	0.194781
min	-9.400609	-19.827601	-15.024588	-2.622131
25%	0.064652	-1.545882	0.516039	0.126850
50%	0.348696	-1.020052	0.925157	0.223863
75%	0.641043	-0.602605	1.386402	0.336935
max	6.374304	5.383026	9.521608	2.715843

[8 rows x 56 columns]

```
[124]: sn.heatmap(q_df.corr().abs())
  plt.title("abs(Correlation) between q-features")
  plt.show()
```


5 Analysis of q-features (q_3) (calculated by system)

q_df.describe() [125]: umag_gmag_rmag umag_gmag_imag umag_gmag_Hamag umag_rmag_imag 10307.000000 10307.000000 10307.000000 count 10307.000000 -0.063921-0.709701-0.2634380.840664 mean std 0.658024 0.703104 0.668365 0.771068 min -6.198398 -7.366959 -6.524593 -4.042982 25% -0.483868 -1.148602 -0.695596 0.330058 50% -0.202892 -1.020696 -0.427495 0.722339 75% 0.079946 -0.450000 -0.102033 1.310099 9.704550 9.063398 9.472379 10.171579 max umag_rmag_Hamag umag_imag_Hamag gmag_rmag_imag gmag_rmag_Hamag 10307.000000 10307.000000 10307.000000 10307.000000 count 1.400112 2.897545 0.788471 1.054746 mean 1.441601 0.943564 0.397424 std 0.500724 min -1.556037 -3.443178 -3.367383 -3.76473725% 0.764346 1.904645 0.504553 0.697477 50% 1.295589 2.703551 0.756842 0.998224 75% 1.996963 3.818360 1.066368 1,407572 10.305607 11.609692 5.197842 5.329972 max gmag_imag_Hamag rmag_imag_Hamag Jmag_Hmag_Kmag 10307.000000 10307.000000 10307.000000 count mean 2.194289 0.814487 0.237285 std 0.937865 0.344062 0.194781 -2.622131 min -0.928542-0.07148625% 1.505748 0.550846 0.126850 50% 2.058925 0.762523 0.223863 75% 2.856493 1.050168 0.336935 max7.770383 3.004673 2.715843

```
[126]: sn.heatmap(q_df.corr().abs())
_=plt.title("abs(Correlation) between q-features (calculated with same system

→magnitudes)")
```

[126]: Text(0.5, 1.0, 'abs(Correlation) between q-features (calculated with same system magnitudes)')


```
[127]: q_dfy=pd.concat([q_df,y],axis=1)
sn.pairplot(q_dfy,hue="em")
_=plt.suptitle("Scatter plots between q-features (calculated with same system

→magnitudes)")
```

