

## AMENDMENT TO THE CLAIMS

### In The Claims

A listing of claims follows:

1. (Currently Amended) An apparatus comprising:  
a plurality of wavelength division multiplexing access nodes of an optical network employing a source based scheme to establish communication paths,  
each of said plurality of access nodes building and maintaining a set of one or more network topology databases specific to that access node based on a set of one or more connectivity constraints,  
wherein a network topology database is includes the-a representation of a plurality of paths and wavelengths thereon of possible communication paths from that access node to other nodes, wherein each path is a series of two or more nodes and links interconnecting them through which traffic is carried, wherein the wavelengths for each path are the set of wavelengths of each link of that path that are available for establishing lightpaths on that path, and wherein said building and maintaining the set of one or more network topology databases includes building and maintaining a-the representation of the set-plurality of paths of the possible communication paths in each of the set of one or more network topology databases, and  
each of the plurality of access nodes selecting and allocating requested communication paths from the plurality of paths having that access node as a source, wherein that access node marks as allocated other

communication paths from the plurality of paths that have a link  
and wavelength thereon in common with the requested  
communications paths, wherein the marking is in response to the  
selecting and allocating the requested communication paths.

2. (original) The apparatus of claim 1, wherein said communication paths include lightpaths.
3. (original) The apparatus of claim 1, wherein said communication paths include one or more of optical circuits, lightpaths, and end-to-end unidirectional paths.
4. (original) The apparatus of claim 1, wherein the set of one or more network topology databases in each of said plurality of access nodes stores a conversion free topology for that access node.
5. (original) The apparatus of claim 1, wherein said plurality of access nodes to establish communication paths in real time.
6. (original) The apparatus of claim 1, wherein the set of one or more connectivity constraints includes quality of service (QoS) based criteria that divides said optical network into separate service levels, and the set of one or more network topology databases in each of said plurality of access nodes stores a conversion free service level topology for that access node for each of the service levels.
7. (original) The apparatus of claim 6, wherein the set of network topology databases in each of said plurality of access nodes includes a separate network topology database for each of the conversion free service level topologies for that access node.

8. (Canceled)
9. (Canceled)
10. (Currently Amended) An apparatus comprising:
  - a wavelength division multiplexing optical network including a plurality of access nodes each including,
    - for each link connected to the access node, a link channel set representing at least certain wavelengths on that link available for establishing a lightpath, wherein a lightpath is a wavelength and a path, wherein the path of a given lightpath is a series of two or more nodes and links interconnecting them through which traffic is carried by the wavelength of that lightpath, wherein said series of nodes respectively starts and ends with a source node and a destination node,
  - a database representing conversion free connectivity for the access node to others of said access nodes using the wavelengths in said link channel sets, ~~wherein the access nodes builds and maintains a representation of the path of the given lightpath in the database specific to the access node and wherein said conversion free connectivity includes the paths and wavelengths of possible lightpaths having the access node as the source node and others of the access nodes as the destination node, and wherein the access node builds and maintains a representation of the paths of the possible lightpaths in the database specific to the access node,~~

an allocate module to, responsive to requests for lightpaths received by that access node, select and allocate in real time requested lightpaths having that access node as the source node and to mark as allocated other lightpaths that have a link and wavelength thereon in common with the requested lightpaths in response to the selecting and allocating the requested ~~communication~~ ~~paths~~lightpaths.

11. (Canceled)

12. (original) The apparatus of claim 10, wherein the optical network is divided into a plurality of service levels, wherein different wavelengths on at least certain links of said optical network qualify for different ones of said plurality of service levels, said database representing conversion free connectivity using wavelengths that qualify for only one of said service levels.

13. (original) The apparatus of claim 12, wherein each of said plurality of access nodes also includes, for each of the others of said plurality of said service levels, another database representing conversion free connectivity from the access node to others of said access nodes using wavelengths that qualify for that service level.

14. (Canceled)

15. (original) The apparatus of claim 10, further comprising:  
a centralized network management server communicatively coupled to each of the plurality of access nodes to build and maintain the database in each of said plurality of access nodes.

16. (Currently Amended) A method comprising:
- each of a plurality of access nodes of a wave length division multiplexing optical network, tracking wavelengths for each link of the wave length division multiplexing optical network connected to that access node;
- each of said plurality of access nodes, building and maintaining a topology based on conversion free connectivity to others of said plurality of said access nodes, wherein the topology of each of said plurality of access nodes is different than topologies for others of said plurality of access nodes, and wherein the building and maintaining of the topology includes building and maintaining a set of paths to others of said plurality of access nodes;
- and
- responsive to a request for a communication path received by any one of said plurality of access nodes, that access node,
- selecting both a first path through a first set of two or more links of said optical network and a single wavelength available on everyone of said set of links based on said topology maintained in that access node,
- causing allocation of said selected path and wavelength on said selected path, and
- marking as allocated a second communication path through a second set of two or more links that has at least one link and wavelength thereon in common with the first set of one two or more links.
17. (Currently Amended) The method of claim 16, wherein said communication paths is-a lightpaths.

18. (Currently Amended) The method of claim 16, wherein said communication paths is-anare optical circuits.
19. (original) The method of claim 16, wherein said selecting and said allocation is performed in real time.
20. (original) The method of claim 16, wherein the topology maintained by each of said plurality of access nodes is also based on connectivity at one of a plurality of service levels, wherein different wavelengths on at least certain links of said optical network qualify for different ones of said plurality of service levels.
21. (original) The method of claim 16, wherein said tracking includes operating a link management protocol in each of said plurality of access nodes.
22. (original) The method of claim 16, wherein said maintaining includes each of said plurality of access nodes communicating with others of said plurality of access nodes.
23. (original) The method of claim 16, wherein said maintaining includes each of said plurality of access nodes communicating with a centralized network management server.
24. (original) The method of claim 16, wherein the topology for each of said plurality of access nodes includes the available wavelengths and the status as either allocated or unallocated.
25. (Currently Amended) An apparatus comprising:

an access node, to be coupled in a wavelength division multiplexing optical network, including,

a link state database to store, for each link connected to said access node, a link state structure to store a port of the access node to which that link is connected and available wavelengths on that link,

a database to store a representation of available paths from the access node to others of said access nodes using the wavelengths in said link state database, wherein a path is a series of two or more nodes connected by links on which a common set of one or more wavelengths is available for establishing one or more lightpaths, wherein the database is different than databases for other access nodes to be coupled in the wavelength division multiplexing optical network and wherein the access node builds and maintains the available paths represented in the database, and

a module to, responsive to requests for communication paths received by said access node, select from unallocated ones of said available paths and the common set of wavelengths thereon a selected path and wavelength and to, responsive to the selecting, mark as allocated a second communication path that has a link and wavelength thereon common with the selected path and wavelength.

26. (original) The apparatus of claim 25, wherein said module to perform said selection and cause allocation of said selected path and wavelength in real time.
27. (original) The apparatus of claim 25, wherein the optical network is divided into a plurality of service levels, wherein different wavelengths on at least certain

links of said optical network qualify for different ones of said plurality of service levels, said database to store a conversion free service level topology structure for each of said plurality of service levels.

28. (Canceled)

29. (Canceled)

30. (original) The apparatus of claim 25, wherein said access node includes a link management protocol to populate said link state database.

31. (Currently Amended) A method comprising:  
building and maintaining at an access node of an wave division multiplexing optical network a database specific to the access node based on a set of one or more connectivity constraints, wherein the building and maintaining includes building and maintaining a representation of a plurality of paths and wavelengths thereon to other access nodes in the database;  
receiving, at the access node, demand criteria representing a request for a communication path;  
selecting a first path from the plurality of paths and a wavelength on said first path using the database for that node that is stored in said access node and that stores a-the representation of available-the plurality of paths and wavelengths from the access node to others of said access nodes in said optical network, wherein each path from the plurality of paths is a series of two or more nodes connected by links on which a common set of one or more wavelengths is available for establishing one or more lightpaths;

in response to the selecting, marking as allocated a second communication path  
that has a link and wavelength thereon in common with the first path, and  
said access node communicating with those of the access nodes on the selected  
path to cause allocation of the selected wavelength on the selected path.

32. (Currently Amended) The method of claim 31, wherein said communication  
paths ~~is-a~~ are lightpaths.

33. (Currently Amended) The method of claim 31, wherein said communication  
paths ~~is-an~~ are optical circuits.

34. (original) The method of claim 31, wherein said selecting and said allocation  
is performed in real time.

35. (original) The method of claim 31, wherein the optical network is divided  
into a plurality of service levels, wherein different wavelengths on at least certain links of  
said optical network qualify for different ones of said plurality of service levels, said  
database to store a conversion free service level topology structure for each of said  
plurality of service levels.

36. (original) The method of claim 31, wherein the database includes the  
available wavelengths and the status as either allocated or unallocated.

37. (Currently Amended) A machine-readable medium that is one of a magnetic disk,  
optical disk, random access memory, read only memory, and flash memory, wherein the  
machine-readable medium provides instructions that, if executed by a processor, will  
cause said processor to perform operations comprising:

building and maintaining at an access node of an wave division multiplexing optical network a database specific to the access node based on a set of one or more connectivity constraints, wherein the building and maintaining includes building and maintaining a representation of a set plurality of paths and wavelengths thereon to other access nodes in the database;

responsive to receiving, at the access node, demand criteria representing a request for a communication path, selecting a first path from the plurality of paths and a wavelength on said first path using the database for that node that is stored in said access node and that stores ~~a~~the representation of available the plurality of paths and wavelengths thereon from the access node to others of said access nodes in said optical network, wherein each path from the setplurality of paths is a series of two or more nodes connected by links on which a common set of one or more wavelengths is available for establishing one or more lightpaths;

in response to the selecting, marking as allocated a second communication path ~~from the plurality of paths~~ that has a link and wavelength thereon in common with the first path, and causing said access node communicating with those of the access nodes on the selected path to cause allocation of the selected wavelength on the selected path.

38. (Currently Amended) The machine-readable medium of claim 37, wherein said communication paths ~~is-a~~are lightpaths.

39. (Currently Amended) The machine-readable medium of claim 37, wherein said communication paths ~~is-a~~are optical circuits.

40. (original) The machine-readable medium of claim 37, wherein said selecting and said allocation is performed in real time.

41. (original) The machine-readable medium of claim 37, wherein the optical network is divided into a plurality of service levels, wherein different wavelengths on at least certain links of said optical network qualify for different ones of said plurality of service levels, said database to store a conversion free service level topology structure for each of said plurality of service levels.

42. (original) The machine-readable medium of claim 37, wherein the database includes the available wavelengths and the status as either allocated or unallocated.

43. (Currently Amended) The apparatus of claim 1, wherein, responsive to receiving an update allocate message identifying an allocated first communication path, each of the plurality of access nodes allocating a second communication path that has a link and wavelength thereon in common with the first communication path, wherein the first and second communication paths have different source nodes.

44. (Currently Amended) The apparatus of claim 1, wherein, responsive to receiving an update deallocate channel message identifying a deallocated first communication path, each of the plurality of access nodes deallocating a second communication path that has a link and wavelengths thereon in common with the first communication path, wherein the first and second communication paths have different source nodes.

45. (Currently Amended) The apparatus of claim 1, wherein each of the plurality of access nodes ~~pre-allocating~~allocates a communication path for the next request for ~~a-the~~ communication path.