Precept 8: Dimension Reduction: PCA, SVD and NMF

COS 424/524, SML 302 Sulin Liu, Xiaoyan Li

Outline

Why dimension reduction?

Principle component analysis (PCA)

Singular value decomposition (SVD)

Non-negative matrix factorization (NMF)

Dealing with huge data and missing data

Dimension reduction

- Represent high-dimensional data with low-dimensional representations
 - $x_i \in \mathbb{R}^p \to z_i \in \mathbb{R}^k, k \ll p$
- Focus of today: matrix factorization $X = ZV^{T}$

Dimension reduction

- Motivation?
 - Oftentimes the data have an approximately low-dimensional structure
 - Example: face images

• Potential benefits?

 4096×1 vector

Dimension reduction

- Motivation?
 - Oftentimes the data have an approximately low-dimensional structure
 - Example: face images

- Potential benefits?
 - 1. Data compression: the important information are kept with much less memory
 - 2. De-noising: the less important information (hopefully noise) are discarded
 - 3. Visualization: lower dimension means easier to visualize
 - 4. Useful latent structure in the data

Outline

Why dimension reduction?

Principle component analysis (PCA)

Singular value decomposition (SVD)

Non-negative matrix factorization (NMF)

Dealing with huge data and missing data

• Idea:

1. Project data onto a set of orthogonal basis vectors (principle components): $z_i = U^{\mathsf{T}} x_i$

$$u_i^{\mathsf{T}} u_j = 0, \, \forall i \neq j, \, ||u_i|| = 1, \, \forall i$$

- 2. The principle components are chosen to be directions that capture the most variance of the data
- 3. To reconstruct the data from the projected coordinates: $x_i \approx \hat{x}_i = Uz_i$ (the PCs also minimize the reconstruction error)

- How to compute the principal components?
 - Turns out PCs are the eigenvectors of the covariance matrix! (XX^{T} for mean-centered data)
 - The eigenvalues correspond to the variances explained by those directions
- Why do eigenvectors capture the most variance in the data?
 - Let's try to find the first principal component u, data $x_i \in \mathbb{R}^d$ is projected to $u^T x_i \in \mathbb{R}$

$$\max_{u} \frac{1}{n} \sum_{i=1}^{n} (u^{T} x_{i})^{2}$$
$$= u^{T} X X^{T} u$$

The first eigenvector maximizes this!

• Eigenfaces:

mean face

Vectorize the faces, subtract the mean and compute eigenvectors of the covariance matrix

Surakait Sathirathai

Eigenfaces:

Lindsay Davenport

Vin Diesel

Reconstructed faces, k=250

Reconstructed faces, k=50

Reconstructed faces, k=1000

How many components shall I pick?

- How many components shall I pick?
 - 1. Percentage of the variance explained (say pick the first k until 90% variance is explained)
 - 2. Create a scree plot, identify the PC at the "elbow".
 - 3. Treat as hyperparameter, use cross-validation for tuning

Outline

Why dimension reduction?

Principle component analysis (PCA)

Singular value decomposition (SVD)

Non-negative matrix factorization (NMF)

Dealing with huge data and missing data

Singular value decomposition (SVD)

- SVD is a fundamental linear algebra tool: can be used for calculating PCs, low-rank matrix approximation, matrix factorization etc.
- Factorization of a rectangular matrix into three parts: $A = U\Sigma V^{T}$

$$m \begin{bmatrix} n \\ A \end{bmatrix} = m \begin{bmatrix} r \\ U \end{bmatrix} r \begin{bmatrix} \Sigma \\ \Sigma \end{bmatrix} r \begin{bmatrix} n \\ V^T \end{bmatrix}$$

- U, V are orthogonal matrices (orthogonal columns)
- Σ is a diagonal matrix that contains singular values (non-negative)

Singular value decomposition (SVD)

- Relationship with eigen-decomposition:
 - U are the eigenvectors of AA^{T}

Short proof:
$$AA^{\top} = U\Sigma V^{\top}(U\Sigma V^{\top})^{\top} = U\Sigma V^{\top}V \Sigma U^{\top} = U\Sigma^{2}U^{\top}$$

Relationship with PCA?

Singular value decomposition (SVD)

- Relationship with eigen-decomposition:
 - U are the eigenvectors of AA^{\top}

Short proof:
$$AA^{\top} = U\Sigma V^{\top}(U\Sigma V^{\top})^{\top} = U\Sigma V^{\top}V \Sigma U^{\top} = U\Sigma^{2}U^{\top}$$

- Relationship with PCA?
 - U gives the principle components if A is centered, σ_i^{2} 's are the eigenvalues

Truncated SVD

Approximate the data with the top k components: $A_k = U_k \Sigma_k V_k^{\top} = \sum_{i=1}^{\kappa} \sigma_i u_i v_i^{\top} \approx \sum_{i=1}^{\kappa} \sigma_i u_i v_i^{\top} = U \Sigma V^{\top} = A$

- This gives a low rank (rank=k) approximation to A
 - in fact the best approximation to A in terms of matrix Frobenius norm
- How do we select k? Similar to PCA.
- It is also used as a initialization for many of the more complicated matrix factorization problems

Outline

Why dimension reduction?

Principle component analysis (PCA)

Singular value decomposition (SVD)

Non-negative matrix factorization (NMF)

Dealing with huge data and missing data

Non-negative matrix factorization (NMF)

• Factorizes a non-negative matrix X into two non-negative matrices

- Example use case: text data topic modeling
 - x_i is the bag-of-words representation, w_i contains the weights for k different topics, each row of H is bag-of-words representation for each topic

Non-negative matrix factorization (NMF)

- How do we pick *k*?
 - Use SVD to determine how low rank the matrix is
 - Domain knowledge (number of topics, number of sources)
 - Cross-validation
- Are *W* and *H* unique?
 - Not unique if we are just minimizing $||X WH||_F^2 : WBB^{-1}H = WH, \forall B$
- More terms can be added to the optimization objective (L1 penalty, L2 penalty...)

$$\frac{1}{2}\|X - WH\|_F^2 + \alpha\|\text{vec}(W)\|_1 + \alpha\|\text{vec}(H)\|_1 + \beta\|W\|_F^2 + \beta\|H\|_F^2 \quad \text{s.t.} W \ge 0, H \ge 0$$

- X is the police-compliant data matrix
 - n police officers $\times p$ type of complaints: x_{ij} is the count of complaints of type j for police officer i

- X is the police-compliant data matrix
 - n police officers $\times p$ type of complaints: x_{ij} is the count of complaints of type j for police officer i

- k type of officers, each row of H corresponds to complaint pattern for each type of officers
- w_i : weights for the different types

• What can I do with the latent representations W and H?

- What can I do with the latent representations W and H? Just some ideas:
 - Use W as low-dimensional features of the police officers and apply learning methods on top of it.
 - Clustering? Prediction of certain features in the police officer database?

- What can I do with the latent representations W and H? Just some ideas:
 - Use W as low-dimensional features of the police officers and apply learning methods on top of it.
 - Clustering? Prediction of certain features in the police officer database?
 - H could give some interpretations about the patterns in police officers.
 - Does it correspond to certain type of police officers? Connections with the police officer database?

Outline

Why dimension reduction?

Principle component analysis (PCA)

Singular value decomposition (SVD)

Non-negative matrix factorization (NMF)

Dealing with huge data and missing data

Dealing with huge data

- Use sparse matrix format (supported by scikit learn)
 - Reduces computation time and uses less memory
- Use approximate but faster methods:
 - Stochastic gradient descent (SGD) as an approximate method to gradient descent
 - MiniBatchKMeans, a faster approximate variant of KMeans
- Dimension reduction
 - Represent data in a low-dimensional subspace
 - Perform learning on the low-dimensional representations

Matrix factorization with missing data

Suppose the objective we are minimizing is:

$$\arg\min_{W,H} \frac{1}{2} ||X - WH||_F^2$$

 Define a binary mask matrix M over the labeled ratings:

$$\hat{W}, \hat{H} = \arg\min_{W,H} \frac{1}{2} ||M \odot (X - WH)||_F^2$$

• Fill up missing values with $\hat{X} = \hat{W}\hat{H}$

Netflix data matrix

Related python package

- The sklearn.decomposition module for matrix factorization
 - PCA, TruncatedSVD, NMF and many more
 - Hyperparamters: n_components, regularization terms for NMF
- The scipy.sparse module for sparse matrices

Start thinking about HW3!

- 1. Come up with an ML task of your interest about the dataset
 - Look at the data, what data are there?
 - What patterns are you interested in finding out?
 - Ask questions that help inform better policies
- 2. Formulate the task mathematically

Start thinking about HW3!

- 3. What ML methods do you plan to use and motivate the methods
 - Dimension reduction (PCA, NMF, LDA)
 - Clustering
 - Community detection (stochastic block model)
 - Graph analysis
 - Time series analysis (Poisson/Hawkes processes) ...

Start thinking about HW3!

- 4. Explain your results
 - Visualization,
 - Interpretation
 - Prediction...
- 5. In the end, it is all up to you to explore! We look forward to your interesting findings (;

Some more resources

- Ryan Adams's COS 302 Lectures on matrix factorization and SVD
 - https://www.youtube.com/watch?v=67a8ClukcPA&ab_channel=IntelligentSystemsLab
 - https://www.youtube.com/watch?v=JUYGohQY41U&ab_channel=IntelligentSystemsLab
- Eigenfaces
 - https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184