Esercizio 1

Si consideri un flip-flop D che è allo stesso tempo positive-edge-triggered e negative-edge-triggered, ovvero entra nella fase di campionamento sia in corrispondenza della transizione da 0 a 1 della variabile p, che in corrispondenza della transizione opposta di p da 1 a 0. Con riferimento ad una implementazione di tale flip-flop come coppia di reti campionatore-ritardatore, **descrivere** – completando opportunamente la tabella di flusso sotto riportata – e **sintetizzare** la rete campionatore sui fronti in salita e discesa.

Esercizio 2

Descrivere e sintetizzare l'unità **XXX** in modo che emetta, tramite l'uscita *out*, una sequenza di 0 e di 1, mantenendo ogni livello per un numero di cicli di clock pari al *numero* naturale *richiesto e fornito* dal Produttore durante l'emissione del livello precedente

NOTA: Il Produttore emette numeri così grandi ed è così veloce da concludere un nuovo handshake in un tempo inferiore al tempo di permanenza del livello logico presente su *out*

Suggerimento per inizio descrizione di XXX, con condizioni al reset iniziale

```
module XXX(soc,eoc,numero,out,clock,reset );
 input
             clock, reset_;
 input
             eoc;
 output
             soc;
 input [7:0] numero;
 output
             out;
              SOC, OUT; assign soc=SOC; assign out=OUT;
 reg
             DURATA_ZERO, DURATA_UNO;
 reg [7:0]
             STAR; parameter S0=0, S1=1, ...;
 reg [..:0]
 always @(reset_==0) begin OUT<=0; DURATA_ZERO<=8; ...; end
 always @(posedge clock) if (reset_==1) #3
  casex (STAR)
   . . .
   . . .
   . . .
  endcase
```

Soluzione Esercizio 1

Una possibile descrizione della rete campionatore è data dalla seguente tabella di flusso:

$\backslash d$	p =	= 0	p =		
	0	1	0	1	$z_1 z_0$
S_0	S_0	S_0	S_2	S_3	01
S_1	S_1	S_1	S_2	S_3	10
S_2	S_0	S_1	S_2	S_2	01
S_3	S_0	S ₁	S_3	S_3	10

Adottando le codifiche $S_0 = 00$, $S_1 = 11$, $S_2 = 01$, $S_3 = 10$, la rete risulta esente da corse critiche delle variabili di stato. Con riferimento al modello strutturale con elementi di ritardo, la tabella delle transizioni corrispondente risulta essere

pd							
$y_1 y_0$	00	01	11	10	$z_1 z_0$		
00	00	00	10	01	01		
01	00	11	01	01	01		
11	11	11	10	01	10		
10	00	11	10	10	10		
$a_1 a_0$							

Per sintetizzare la rete CN1 si può procedere come segue:

pd					pd				
$y_1 y_0$	00	01	11	10	y_1y_0	00	01	11	10
00	0	0	1	0	00	0	0	0	1
01	0	1	0	0	01	0	1	1	1
11	1	1	1	0	11	1	1	0	1
10	0	1	1	1	10	0	1	0	0
a_1				a_0					

Le liste di copertura sono opportunamente ridondate per assicurare l'assenza di alee statiche del primo ordine:

$$\begin{split} a_1 &= \overline{p} \cdot y_1 \cdot y_0 + \overline{p} \cdot d \cdot y_0 + d \cdot y_1 + p \cdot y_1 \cdot \overline{y}_0 + p \cdot d \cdot \overline{y}_0 \\ a_0 &= \overline{p} \cdot d \cdot y_1 + p \cdot \overline{d} \cdot \overline{y}_1 + \overline{d} \cdot y_1 \cdot y_0 + d \cdot \overline{y}_1 \cdot y_0 + \overline{p} \cdot y_1 \cdot y_0 + \overline{p} \cdot d \cdot y_0 + p \cdot \overline{y}_1 \cdot y_0 + p \cdot \overline{d} \cdot y_0 \end{split}$$

Per la rete CN2, è immediato verificare che:

$$z_1 = y_1$$
, $z_0 = \overline{y}_1$.

Soluzione esercizio 2

```
module XXX(soc,eoc,numero,out,clock,reset_);
            clock, reset_;
 input
 input
            eoc;
 output
            soc;
 input [7:0] numero;
 output
            out;
             SOC, OUT; assign soc=SOC; assign out=OUT;
 reg
 reg [7:0]
            DURATA_ZERO, DURATA_UNO;
            STAR; parameter S0=0, S1=1, S2=2, S3=3;
 reg [1:0]
 always @(reset_==0) begin DURATA_ZERO<=6; OUT<=0; SOC<=0; STAR<=S0; end
 always @(posedge clock) if (reset_==1) #3
 casex (STAR)
   S0: begin OUT<=0; DURATA_ZERO<=DURATA_ZERO-1;
             SOC<=1; STAR<=(eoc==1)?S0:S1; end
   S1: begin DURATA_ZERO<=DURATA_ZERO-1;
             SOC<=0; DURATA_UNO<=numero; STAR<=(DURATA_ZERO==1)?S2:S1; end
   S2: begin OUT<=1; DURATA_UNO<=DURATA_UNO-1;
             SOC<=1; STAR<=(eoc==1)?S2:S3; end
   S3: begin DURATA_UNO<=DURATA_UNO-1;
             SOC<=0; DURATA_ZERO<=numero; STAR<=(DURATA_UNO==1)?S0:S3; end
  endcase
endmodule
```