286 Jal 500

Computer Organization - Quiz 3

School of Electrical Engineering, Tel Aviv University

Instructor - Shai Avidan

TAs -Yoav Chachamovitz, Yoav Yosif Or December 31, 2024

- Please write your ID number on top of the first page.
- The assignment consists of **one** question with **three** subsections.
- Write the solutions in the space provided below the relevant section. If you need extra space, please use the back of the page.
- Please make sure your answers are clear and readable.

Question

Consider the following sequence of instructions in MIPS assembly language:

Label	Instruction	Comment					
	lw \$t0, 0(\$s0)	# load word from memory into \$t0					
	add \$t1, \$t0; \$s1	# add \$t0 and \$s1, store result in \$t1					
	sw \$t1, 4(\$s0)	# store word in memory					
	beq \$t1, \$zero, Label	# branch to Label if \$t1 is equal to 0					
	add \$t2, \$t1, \$t3	# add \$t1 and \$t3, store result in \$t2					
	sw \$t2, 8(\$s0)	# store word in memory					
Label:							
		# other instructions					

Based on the code above, answer the questions given below.

inctrat	clk csde	/ /	2	3	S	5	6	4	5	9	lo	11
	2	14	10	62X	MEM	Di,						
Pata Pata	ald		16	10	6×	Ex	hen	SB				
fators	22			16	10	10	Ex	hen	MB			×
by to fourth	1 beg				14	16	10	6x	MEM	76		
_	abb						16	10	6×	MEM	J.C	
Catald	ζω					Page :	2	16	10		MEM	JU.

1. Identify and describe any data hazards that occur in this sequence of instructions.

so first add we don't have the value we need to store

so first sw- we don't have the value we need to store

so beg- It a don't hald yet the unluc.

so second sw- Biz is written on the previous
instruction.

2. Identify and describe any **control** hazards that occur in this sequence of instructions.

to jump to Label and we're already fetching the next lust ruckion.

3. Suggest **one** technique that could be used to minimize the impact of one of the hazards that you identified in the previous sections on the performance of the MIPS pipeline processor.

torwarding - on the most of the Julia hazards were described, forwarding prevents the need to stall (exception (s tirst Loutan hazard)