CLAIMS

What is claimed is:

1	1.	A method of discovering a network path that satisfies a quality of service (QoS)
2		requirement, the method comprising the computer-implemented steps of:
3		receiving, at a first router, a first data packet that indicates a destination and said QoS
4		requirement;
5		updating said first data packet to indicate an identity of said first router;
6		determining whether a least-delay path from said first router to said destination satisfies
7		said QoS requirement;
8		determining whether said first data packet has visited any router in said least-delay path
9		other than said first router;
10		if said least-delay path satisfies said QoS requirement and said first data packet has not
11		visited any router in said least-delay path other than said first router, then sending
12		said first data packet to a second router in said least-delay path; and
13		receiving, at said first router, a second data packet that indicates a path taken by said first
14		data packet to said destination.
1	2.	The method of Claim 1, wherein said first router has links, and further comprising:
2		if said least-delay path does not satisfy said QoS requirement, then performing steps
3		comprising:
4		determining one or more of said first router's links that satisfy said QoS
5		requirement; and
6		sending a copy of said first data packet through said one or more of said first
7		router's links that satisfy said QoS requirement.
1	3.	The method of Claim 1, wherein said first router has links, and further comprising:
2		if said first data packet has visited a router in said least-delay path other than said first
3		router, then performing steps comprising:
4		determining one or more of said first router's links that satisfy said QoS
5		requirement; and

6		sending a copy of said first data packet through said one or more of said first
7		router's links that satisfy said QoS requirement.
1	4.	The method of Claim 1, further comprising:
2		in response to receiving said first data packet, updating a table to indicate that said first
3		router has received a copy of said first data packet.
1	5.	A method of discovering a network path that satisfies a quality of service (QoS)
2		requirement, the method comprising the computer-implemented steps of:
3		receiving, at a first router, a data packet that indicates a destination and said QoS requirement;
5 6		determining whether said data packet indicates that a path to said destination has been found;
7		determining whether a least-delay path from said first router to said destination satisfies
8		said QoS requirement;
9		if said data packet indicates that a path to said destination has been found, and if said
10		least-delay path from said first router to said destination does not satisfy said QoS
11		requirement, then eliminating said data packet; and
12		if said data packet does not indicate that a path to said destination has been found, and if
13		said least-delay path from said first router to said destination satisfies said QoS
14		requirement, then performing steps comprising:
15		updating said data packet to indicate that a path to said destination has been
16		found; and
17		sending said data packet through said link that leads to said second router on said
18		least-delay path.
1	6.	A method of discovering a network path that satisfies a quality of service (QoS)
2		requirement, the method comprising the computer-implemented steps of:
3		receiving, at a first router that has links, a data packet that indicates a destination and said
4		QoS requirement;
5		determining whether said first router previously has received a copy of said data packet;
6		if said first router previously has received a copy of said data packet, then eliminating
7		said data packet; and

8	if said first router previously has not received a copy of said data packet, then performing
9	steps comprising:
10	updating a table to indicate that said first router has received a copy of said data
11	packet;
12	determining whether said data packet indicates that a path to said destination has
13	been found;
14	determining whether a least-delay path from said first router to said destination
15	satisfies said QoS requirement;
16	if said data packet indicates that a path to said destination has been found, then
17	performing steps comprising:
18	if said least-delay path from said first router to said destination does not
19	satisfy said QoS requirement, then eliminating said data packet;
20	and
21	if said least-delay path from said first router to said destination satisfies
22	said QoS requirement, then sending said data packet through a link
23	that leads to a second router on said least-delay path; and
24	if said data packet does not indicate that a path to said destination has been found,
25	then performing steps comprising:
26	determining one or more of said first router's links that satisfy said QoS
27	requirement;
28	if said least-delay path from said first router to said destination does not
29	satisfy said QoS requirement, then sending a copy of said data
30	packet through said one or more of said first router's links that
31	satisfy said QoS requirement; and
32	if said least-delay path from said first router to said destination satisfies
33	said QoS requirement, then performing steps comprising:
34	determining whether said data packet has visited any router in said
35	least-delay path other than said first router;
36	if said data packet has visited a router in said least-delay path other
37	than said first router, then sending a copy of said data

38		packet through said one or more of said first router's links
39		that satisfy said QoS requirement; and
40		if said data packet has not visited any router in said least-delay
41		path other than said first router, then performing steps
42		comprising:
43		updating said data packet to indicate that a path to said
44		destination has been found; and
45		sending said data packet through said link that leads to said
46		second router on said least-delay path.
1	7.	A method of discovering a least-cost network path, the method comprising the computer-
2		implemented steps of:
3		receiving, at a first router, a first data packet that indicates a destination;
4		updating said first data packet to indicate an identity of said first router;
5		determining whether said first data packet has visited any router in a least-cost path from
6		said first router to said destination, not including said first router;
7		if said first data packet has not visited any router in said least-cost path other than said
8		first router, then sending said first data packet to a second router in said least-cost
9		path;
10		if said first data packet has visited a router in said least-cost path other than said first
11		router, then sending said first data packet to a third router in a first least-delay
12		path from said first router to said destination; and
13		receiving, at said first router, a second data packet that indicates a path taken by said first
14		data packet to said destination;
15		wherein said least-cost path differs from said first least-delay path.
1	8.	The method of Claim 7, further comprising:
2		receiving, at said second router, said first data packet;
3		determining whether a second least-delay path from said second router to said destination
4		satisfies a delay requirement indicated by said first data packet;
5		if said second least-delay path does not satisfy said delay requirement, then performing
6		steps comprising:

7		updating said first data packet to indicate a wrong way; and
8		sending said first data packet to said first router.
1	9.	The method of Claim 8, further comprising:
2		receiving, at said first router, said first data packet;
3		determining whether said first data packet indicates a wrong way;
4		if said first data packet indicates a wrong way, then performing steps comprising:
5		updating said first data packet to not indicate a wrong way; and
6		sending said first data packet to said third router.
1	10.	A computer-readable medium carrying one or more sequences of instructions for
2		discovering a network path that satisfies a quality of service (QoS) requirement, which
3		instructions, when executed by one or more processors, cause the one or more processors
4		to carry out the steps of:
5		receiving, at a first router, a first data packet that indicates a destination and said QoS
6		requirement;
7		updating said first data packet to indicate an identity of said first router;
8		determining whether a least-delay path from said first router to said destination satisfies
9		said QoS requirement;
10		determining whether said first data packet has visited any router in said least-delay path
11		other than said first router;
12		if said least-delay path satisfies said QoS requirement and said first data packet has not
13		visited any router in said least-delay path other than said first router, then sending
14		said first data packet to a second router in said least-delay path; and
15		receiving, at said first router, a second data packet that indicates a path taken by said first
16		data packet to said destination.
1	11.	The computer-readable medium of Claim 10, wherein said first router has links, and
2		wherein said instructions, when executed by the one or more processors, cause the one or
3		more processors to carry out the steps of:
4		if said least-delay path does not satisfy said QoS requirement, then performing steps
5		comprising:

6		determining one or more of said first router's links that satisfy said QoS
7		requirement; and
8		sending a copy of said first data packet through said one or more of said first
9		router's links that satisfy said QoS requirement.
1	12.	The computer-readable medium of Claim 10, wherein said first router has links, and
2		wherein said instructions, when executed by the one or more processors, cause the one or
3		more processors to carry out the steps of:
4		if said first data packet has visited a router in said least-delay path other than said first
5		router, then performing steps comprising:
6		determining one or more of said first router's links that satisfy said QoS
7		requirement; and
8		sending a copy of said first data packet through said one or more of said first
9		router's links that satisfy said QoS requirement.
1	13.	The computer-readable medium of Claim 10, wherein said instructions, when executed
2		by the one or more processors, cause the one or more processors to carry out the steps of:
3		in response to receiving said first data packet, updating a table to indicate that said first
4		router has received a copy of said first data packet.
1	14.	An apparatus for discovering a network path that satisfies a quality of service (QoS)
2		requirement, comprising:
3		means for receiving, at a first router, a first data packet that indicates a destination and
4		said QoS requirement;
5		means for updating said first data packet to indicate an identity of said first router;
6		means for determining whether a least-delay path from said first router to said destination
7		satisfies said QoS requirement;
8		means for determining whether said first data packet has visited any router in said least-
9		delay path other than said first router;
10		means for sending said first data packet to a second router in said least-delay path if said
11		least-delay path satisfies said QoS requirement and said first data packet has not
12		visited any router in said least-delay path other than said first router; and

13		means for receiving, at said first router, a second data packet that indicates a path taken
14		by said first data packet to said destination.
1	15.	The apparatus of Claim 14, wherein said first router has links, and further comprising:
2		means for determining one or more of said first router's links that satisfy said QoS
3		requirement if said least-delay path does not satisfy said QoS requirement; and
4		means for sending a copy of said first data packet through said one or more of said first
5		router's links that satisfy said QoS requirement if said least-delay path does not
6		satisfy said QoS requirement.
1	16.	The apparatus of Claim 14, wherein said first router has links, and further comprising:
2		means for determining one or more of said first router's links that satisfy said QoS
3		requirement if said first data packet has visited a router in said least-delay path
4		other than said first router; and
5		means for sending a copy of said first data packet through said one or more of said first
6		router's links that satisfy said QoS requirement if said first data packet has visited
7		a router in said least-delay path other than said first router.
1	17.	The apparatus of Claim 14, further comprising:
2		means for updating, in response to receiving said first data packet, a table to indicate that
3		said first router has received a copy of said first data packet.
1	18.	An apparatus for discovering a network path that satisfies a quality of service (QoS)
2		requirement, comprising:
3		a network interface that is coupled to a data network for receiving one or more packet
4		flows therefrom;
5		a processor;
6		one or more stored sequences of instructions which, when executed by the processor,
7		cause the processor to carry out the steps of:
8		receiving, at said apparatus, a first data packet that indicates a destination and said
9		QoS requirement;
10		updating said first data packet to indicate an identity of said apparatus;
11		determining whether a least-delay path from said apparatus to said destination
12		satisfies said QoS requirement;

13		determining whether said first data packet has visited any router in said least-
14		delay path other than said apparatus;
15		if said least-delay path satisfies said QoS requirement and said first data packet
16		has not visited any router in said least-delay path other than said
17		apparatus, then sending said first data packet to a router in said least-delay
8		path; and
9		receiving, at said apparatus, a second data packet that indicates a path taken by
20		said first data packet to said destination.
1	19.	The apparatus of Claim 18, wherein said apparatus has links, and wherein said
2		instructions, when executed by the processor, cause the processor to carry out the steps
3		of:
4		if said least-delay path does not satisfy said QoS requirement, then performing steps
5		comprising:
6		determining one or more of said apparatus' links that satisfy said QoS
7		requirement; and
8		sending a copy of said first data packet through said one or more of said
9		apparatus' links that satisfy said QoS requirement.
1	20.	The apparatus of Claim 18, wherein said apparatus has links, and wherein said
2		instructions, when executed by the processor, cause the processor to carry out the steps
3		of:
4		if said first data packet has visited a router in said least-delay path other than said
5		apparatus, then performing steps comprising:
6		determining one or more of said apparatus' links that satisfy said QoS
7		requirement; and
8		sending a copy of said first data packet through said one or more of said
9		apparatus' links that satisfy said QoS requirement.
1	21.	The apparatus of Claim 18, wherein said instructions, when executed by the processor,
2		cause the processor to carry out the steps of:
3		in response to receiving said first data packet, updating a table to indicate that said
4		apparatus has received a copy of said first data packet.