## Two Techniques:

#### The Potential Method

#### Divide and Conquer





"WE ALROADY HAVE QUITE A FEW PEOPLE WHO KNOW HOW TO DIVIDE: GO ESSENTIALLY, WE'RE NOW LOOKING FOR FEOPLE WHO KNOW HOW TO CONQUER."

#### Last time:

#### The Tiling problem (aka gcd)

**Input:** n-bit integers  $x \ge y \ge 0$ , but not both =0.

**Output:** largest integer L that divides both x and y (aka greatest common divisor)

In other words: largest integer tile size that can exactly tile a path of length x and a path of length y



# Last time: Euclid's Algorithm (in pseudocode)

```
Euclid(x,y): // for integers x \ge y \ge 0

If y = 0, return x // Base case

Else return Euclid(y, x mod y) // Recursive case
```

Last time: We discussed why Euclid's algorithm is correct.

This time: We will analyze the running time of Euclid's algorithm.

# An execution of Euclid's algorithm



#### The Potential Method

Today we will analyze the running time of Euclid's algorithm using the **potential method**.

... But first, a toy example to illustrate this method

## A Flipping Game

- 3 x 3 board covered with two-sided chips: | /

- Two players, R (row) and C (column), alternately perform "flips":
  - R flips every chip in a row with # > # \rightarrow
  - C flips every chip in a column with # ₱ > # ₩
- If no flip is possible, then the game ends.
- **Question:** Must the game always end?



R flips row 3



C flips column 1



# Let's formalize this reasoning into a general-purpose method

Intuitively, a **potential function argument** says: If I start with a <u>finite</u> amount of water in a <u>leaky</u> bucket, then <u>eventually</u> water must stop leaking out.



#### Ingredients of the argument:

- 1. Define the unit of time e.g. one iteration of an algorithm
- 2. Define how we measure the amount of water in the bucket. This is the **potential function S**;  $\leftarrow$  amount of water in bucket at timestep i
- 3. Prove that the S can never be negative
- 4. Prove that the bucket is leaking quickly. I.e. show that each timestep i, the value of S decreases by at least some amount.
- 5. Use this to upper bound on the total number of units of time.

# Analyzing the Flipping Game via a Potential Function

- 1. Unit of time = one player's turn.
- Define the potential function S<sub>i</sub> = # in chips at turn i.
- 3. Note that **S** can never be negative.
- 4. At every turn the value of **S**, decreases by at least **1**.
- 5. This implies that the total number of turns is at most  $S_0$ , which is at most 9.

Now let's apply the potential method to Euclid's Algorithm...

# An execution of Euclid's algorithm



- 1. Unit of time = one recursive call.
- Define the potential function S<sub>i</sub> = y<sub>i</sub>.
- 3. Note that **S**, can never be negative.
- 4. At every recursive call the value of **S** decreases by at least **1**.
- 5. Thus, the total number of calls to Euclid is at most  $S_0 = y$ .

But we already knew this! Recall that the brute-force algorithm from last lecture already achieved y calls to Euclid.

This is looking

ba-a-a-a-d

Conclusion: We need a function **S** that decreases by more.

# Let's convince ourselves that the potential functions $S_i = y_i$ and $S_i = x_i$ are both doomed

Why  $S_i = y_i$  is doomed: What is an example of x,y values such that  $S_i$  only decreases by 1, i.e.  $y - y_1 = 1$ ? (and x,y  $\ge 4$ )

Why  $S_i = x_i$  is doomed: What is an example of x,y values such that  $S_i$  only decreases by 1, i.e.  $x - x_1 = 1$ ? (and  $x,y \ge 4$ )

Finding the right potential function can be a fine art.

It turns out that even though neither  $S_i = y_i$  nor  $S_i = x_i$  work,  $S_i = x_i + y_i$  does!

- 1. Unit of time = one recursive call.
- Define the potential function S<sub>i</sub> = x<sub>i</sub>+y<sub>i</sub>.
- 3. Note that **S**, can never be negative.
- 4. Claim 1. At every recursive call the value of S decreases by at least a multiplicative factor, specifically  $S_{i+1} \le (2/3) \cdot S_i$  for all i (need to prove)
- 5. Claim 2. Claim 1 implies: total # recursive calls is O(log (x+y)) = O(n). (need to prove)

Consequence of Claim 2: **final running time is poly(n)**, since x mod y for n-bit numbers can be computed in poly(n) time (by grade-school algorithm)

Claim 1.  $S_{i+1} \le (2/3) \cdot S_i$  (equivalently,  $S_i \ge (3/2) \cdot S_{i+1}$ ) for all i.

Proof. Goal: Show 
$$x_i + y_i \ge (3/2) \cdot (x_{i+1} + y_{i+1})$$
 i.e.  $x_i + y_i \ge (3/2) \cdot (y_i + x_i \mod y_i)$ .

Express 
$$x_i$$
 as:  $x_i = q_i \cdot y_i + r_i$ .

So 
$$x_i + y_i = q_i \cdot y_i + r_i + y_i$$
  
=  $(q_i + 1) \cdot y_i + r_i$   
 $\ge 2y_i + r_i$   
 $\ge 2y_i + r_i - (y_i - r_i)/2$   
=  $(3/2) \cdot (y_i + r_i)$   
=  $(3/2) \cdot (y_i + x_i \mod y_i)$ .

Claim 2: If  $S_{i+1} \le (2/3) \cdot S_i$  for all i, then total # recursive calls is  $O(\log (x+y))$ .

Proof. Observe 
$$S_i \ge 1$$
.  
So,  $1 \le (2/3)^i \cdot (x+y)$   
 $(3/2)^i \le (x+y)$   
 $i \le \log_{3/2}(x+y)$ .

$$S_0 = x+y,$$
  
 $S_1 \le (2/3) \cdot (x+y),$   
 $S_2 \le (2/3)^2 \cdot (x+y),$   
...  
 $S_i \le (2/3)^i \cdot (x+y)$ 

- Unit of time = one recursive call.
- 2. Define the **potential function S**<sub>i</sub> =  $x_i + y_i$ .
- 3. Note that **S**, can never be negative.
- 4. Claim 1. At every recursive call the value of S decreases by at least a multiplicative factor, specifically  $S_i \ge (3/2) \cdot S_{i+1}$  for all i (need to prove)
- 5. Claim 2. Claim 1 implies: total # recursive calls is O(log (x+y)) = O(n). (need to prove)

Consequence of Claim 2: **final running time is poly(n)**, since x mod y for n-bit numbers can be computed in poly(n) time (by grade-school algorithm)

## When to use the potential method

Part of the challenge (and fun) of algorithm design is figuring out when to use which technique.

General intuition: The potential method could be useful when some quantity seems to be monotonically increasing or decreasing over the execution of the algorithm, getting you closer and closer to termination.



# A Design Technique: Divide and Conquer

#### Overview: Divide-and-Conquer Algorithms

#### **Main Idea:**

- 1. **Divide** the input into smaller sub-problems
- 2. **Conquer** (solve) each sub-problem recursively
- 3. Combine the solutions to the subproblems

#### Designing the Algorithm + Proving Correctness: an "art"

• Depends on problem structure, ad-hoc, creative

#### Running time Analysis: "mechanical"

- Express runtime using a recurrence
- Can often solve using the "Master Theorem"



Discovered by John von Neumann in 1945







Unsorted array of length n

Unsorted array of length n/2

Unsorted array of length n/2

Unsorted array of length n

Unsorted array of length n/2

Unsorted array of length n/2





Unsorted array of length n

Unsorted array of length n/2

Unsorted array of length n/2

Sorted array of length n/2

Sorted array of length n/2







Unsorted array of length n

Unsorted array of length n/2

Unsorted array of length n/2

Sorted array of length n/2

Sorted array of length n/2







Unsorted array of length n

Unsorted array of length n/2

Unsorted array of length n/2

Sorted array of length n/2

Sorted array of length n/2









Unsorted array of length n/2

Unsorted array of length n/2

Sorted array of length n/2

Sorted array of length n/2





How long does it take to merge two sorted arrays, each of length n/2?



### Recurrences and Running Times

T(n) = worst case running time of mergesort on input of length n

$$T(n) = 2 T(n/2) + cn$$
Merge two arrays of size  $n/2$ 
Two recursive calls on

problems of size n/2

# Solving Recurrences

#### The Master Theorem

**Formally:** Consider the recurrence relation  $T(n) = kT(n/b) + O(n^d)$ , when k, b > 1. Then:

$$T(n) = \begin{cases} O(n^d) & \text{if } (k/b^d) < 1\\ O(n^d \log n) & \text{if } (k/b^d) = 1\\ O(n^{\log_b k}) & \text{if } (k/b^d) > 1 \end{cases}$$

You can use this as a black box



For Mergesort: k=2, b=2,  $d=1 \Rightarrow O(n \log n)$ .

# Hermit crabs sorting themselves



#### Another example of divide and conquer:

### Integer Multiplication

**Input:** Two n-digit positive integers x,y

Output: The product x • y

"Primitive operations" that can be done in constant time:

- add or multiply two single-digit numbers
- "shift" a number (i.e. add a o to the end)

#### The Grade-School Algorithm

|   |   | 3 | 4 |
|---|---|---|---|
| * |   | 3 | 9 |
|   | 3 | 0 | 6 |
| 1 | 0 | 2 |   |
| 1 | 3 | 2 | 6 |

What is the running time?



## An algorithm designer's mantra

"Perhaps the most important principle for the good algorithm designer is to refuse to be content."

- Aho, Hopcroft, Ullman, The Design and Analysis of Computer Algorithms (1974)

#### Another example of divide and conquer:

### Integer Multiplication



Conquer: 
$$x \cdot y = (x_L \cdot 10^{n/2} + x_R)(y_L \cdot 10^{n/2} + y_R)$$
  
=  $x_L y_L \cdot 10^n + (x_L y_R + x_R y_L) \cdot 10^{n/2} + x_R y_R$ 

#### **Recurrence:**