实验十二 测定介质中的声速 实验报告

1400012141 邵智轩 周二下午3组11号 2016年12月13日

1 实验数据

1.1 空气中换能器的共振频率

f = 40.20000 kHz

1.2 极值法测空气中的声速

以x表示增大换能器间距的一组数据, x'表示减小换能器间距的一组数据。

序号	x/mm	$U_{pp}/{ m V}$	x'/mm	$U'_{pp}/{ m V}$
1	10.080	32.0	10.050	32.2
2	14.369	27.2	14.321	27.4
3	18.748	24.4	18.721	24.4
4	23.060	20.0	23.079	20.2
5	27.048	17.6	27.062	17.4
6	31.323	16.0	31.316	15.9
7	35.598	14.8	35.522	14.8
8	39.880	13.4	39.878	13.3
9	44.302	12.4	44.312	12.4
10	48.886	11.4	48.871	11.3
11	53.240	10.2	53.158	10.1
12	57.477	9.28	57.462	9.28

Table 1: 极值法测量空气中的声速

1.3 相位法测空气中的声速

以x表示增大换能器间距的一组数据, x'表示减小换能器间距的一组数据。

序号	x/mm	x'/mm	序号	x/mm	x'/mm
1	17.251	17.150	7	69.520	69.472
2	26.021	25.970	8	77.881	77.790
3	34.920	34.845	9	86.431	86.300
4	43.602	43.526	10	94.982	94.865
5	52.201	52.105	11	103.400	103.245
6	60.810	60.775	12	111.990	111.975

Table 2: 相位法测量空气中的声速

1.4 气体状态参量法测量空气中声速

		室温θ/°C	相对湿度H/%	饱和蒸汽压 p_s/Pa	大气压强p/mmHg
	最小分度	1	2	/	0.05
Ì	数值	17.8	40	2038.3	770.25

Table 3: 气体状态参量法数据

其中 p_s 是从饱和蒸气压和温度的关系表,并利用插值法计算得到的。

1.5 水中换能器的谐振频率

 $f=2.013000\mathrm{MHz}$

1.6 相位法测水中的声速

序号	x/mm	序号	x/mm
1	33.402	7	37.842
2	34.128	8	38.574
3	34.862	9	39.308
4	35.612	10	40.048
5	36.355	11	40.790
6	37.101	12	41.526

Table 4: 相位法测量水中的声速

1.7 极值法测水中的声速

序号	x/mm	序号	x/mm
1	39.218	7	36.968
2	38.842	8	36.598
3	38.468	9	36.220
4	38.095	10	35.852
5	37.722	11	35.488
6	37.350	12	35.110

Table 5: 极值法测量水中的声速

2 实验数据的分析、处理和结论

2.1 气态参量法测量空气中声速

$$v = \sqrt{(1 + \frac{\theta}{T_0})(1 + \frac{0.3192p_w}{p})} \times 331.45 \text{m/s}$$

$$= \sqrt{(1 + \frac{\theta}{T_0})(1 + \frac{0.3192p_sH}{p})} \times 331.45 \text{m/s}$$

$$= 331.45 \sqrt{(1 + \frac{17.8}{273.15})(1 + \frac{0.3192 \times 2038.3 \text{Pa} \times 40\%}{770.25 \text{mmHg}})}$$

$$= 342.51 \text{m/s}$$

室温 θ 的极限不确定度 $e_{\theta}=1$ K, $\sigma_{\theta}=\frac{1}{\sqrt{3}}e_{\theta}=0.6$ K。

饱和蒸气压 p_s 的不确定度 $\sigma_{p_s} = \frac{\mathrm{d}p_s}{\mathrm{d}\theta}\sigma_{\theta} = 76\mathrm{Pa}$.

又水蒸气的分压强 $p_w = Hp_s$,相对湿度H的极限不确定度为 $e_H = 2\%$ 。

$$\sigma_{p_w} = p_w \sqrt{(\frac{\sigma_{p_s}}{p_s})^2 + (\frac{e_h}{\sqrt{3}})^2} = 30 \text{Pa}$$

水银气压计的极限不确定度 $e_p = 0.05$ mmHg, $\sigma_p = \frac{1}{\sqrt{3}}e_p = \frac{0.05}{\sqrt{3}} \times 130$ Pa = 4Pa。 故最后合成的声速的不确定度为:

$$\sigma_{v} = \sqrt{\left(\frac{\partial v}{\partial \theta}\sigma_{\theta}\right)^{2} + \left(\frac{\partial v}{\partial p_{w}}\sigma_{p_{w}}\right)^{2} + \left(\frac{\partial v}{\partial p}\sigma_{p}\right)^{2}} \\
= \frac{v_{0}^{2}}{2v}\sqrt{\left(\frac{1 + \frac{0.3192p_{w}}{p}}{T_{0}}\sigma_{\theta}\right)^{2} + \left[\frac{0.3192}{p}(1 + \frac{\theta}{T_{0}})\sigma_{p_{w}}\right]^{2} + \left[-(1 + \frac{\theta}{T_{0}})\frac{0.3192p_{w}}{p^{2}}\sigma_{p}\right]^{2}} \\
= 0.4\text{m/s}$$

所以气态参量法测空气中的声速的结果为 $v = (342.5 \pm 0.4)m/s$ 。

2.2 极值法测空气中的声速

x_i/mm	x_{i+6}/mm	λ_i/mm	x_i'/mm	x'_{i+6}/mm	λ_i'/mm
10.080	35.598	8.506	10.050	35.522	8.491
14.369	39.880	8.504	14.321	39.878	8.519
18.748	44.302	8.518	18.721	44.312	8.530
23.060	48.886	8.609	23.079	48.871	8.597
27.048	53.240	8.731	27.062	53.158	8.699
31.323	57.477	8.718	31.316	57.462	8.715

Table 6: 极值法测得空气中的声波波长

对于x组(换能器间距增大),逐差法计算波长: $\lambda_i = \frac{1}{3}(x_{i+6} - x_i)$ 。

$$\bar{\lambda} = 8.5977 \mathrm{mm}$$

$$\sigma_{\bar{\lambda}} = \sqrt{\frac{\sum (\lambda_i - \bar{\lambda})^2}{n(n-1)}} = 0.04$$
mm

又位移读数的极限不确定度为 $e_x = 0.01$ mm,有:

$$\sigma_{\lambda} = \sqrt{{\sigma_{\bar{\lambda}}}^2 + \frac{1}{3}(\frac{2}{5}e_x)^2} = 0.04$$
mm

x组的空气中声波波长测量结果为:

$$\lambda = (8.60 \pm 0.04) \text{mm}$$

对于x'组(换能器间距减小),同样用逐差法计算波长: $\lambda_i' = \frac{1}{3}(x_{i+6}' - x_i')$,列表如下。

$$\bar{\lambda}' = 8.5918 \text{mm}$$

$$\sigma_{\bar{\lambda}'} = \sqrt{\frac{\sum (\lambda'_i - \bar{\lambda}')^2}{n(n-1)}} = 0.04 \text{mm}$$

$$\sigma_{\lambda'} = \sqrt{\sigma_{\bar{\lambda}'}^2 + \frac{1}{3}(\frac{2}{5}e_x)^2} = 0.04 \text{mm}$$

x'组的空气中声波波长测量结果为:

$$\lambda' = (8.59 \pm 0.04) \text{mm}$$

综合两组结果,有

$$\lambda = (8.60 \pm 0.04) \text{mm}$$

信号源频率为: f = 40.20000 kHz。 其精度很高,相比波长的相对不确定度可以忽略不计。

$$v = f\lambda = 345.72 \text{m/s}$$
$$\frac{\sigma_v}{v} = \frac{\sigma_\lambda}{\lambda} = 0.5\%$$
$$\sigma_v = 2 \text{m/s}$$
$$v = (346 \pm 2) \text{m/s}$$

2.3 振幅随距离衰减曲线

绘制 $U_{pp}-x$ 曲线如下。

Figure 1: 声波振幅随距离衰减曲线

又曲线可知,声波振幅随距离增大而减小,且减小的趋势逐渐变缓,类似于指数衰减。

2.4 相位法测空气中的声速

采用最小二乘法处理数据。 对于x组(换能器间距增大),作x-n图。

Figure 2: 相位法测空气声波波长x-n曲线

$$r=0.99995$$

$$\lambda=k=8.597\text{mm}$$

$$b=9.034\text{mm}$$

$$\sigma_{\lambda}=\sigma_{k}=k\sqrt{\frac{1/r^{2}-1}{n-2}}=0.026\text{mm}$$

信号源频率为: f = 40.20000 kHz。 其精度很高,相比波长的相对不确定度可以忽略不计。

$$v = f\lambda = 345.6 \text{m/s}$$

 $\frac{\sigma_v}{v} = \frac{\sigma_\lambda}{\lambda} = 0.3\%$
 $\sigma_v = 1 \text{m/s}$
 $v = (346 \pm 1) \text{m/s}$

对于x'组(换能器间距减小),作x'-n'图。

Figure 3: 相位法测空气声波波长x'-n'曲线

$$r = 0.99995$$

$$\lambda = k = 8.595 \text{mm}$$

$$b = 8.964 \text{mm}$$

$$\sigma_{\lambda} = \sigma_{k} = k \sqrt{\frac{1/r^{2} - 1}{n - 2}} = 0.027 \text{mm}$$

$$v = f\lambda = 345.5 \text{m/s}$$

$$\frac{\sigma_{v}}{v} = \frac{\sigma_{\lambda}}{\lambda} = 0.3\%$$

$$\sigma_{v} = 1 \text{m/s}$$

$$v = (346 \pm 1) \text{m/s}$$

2.5 相位法测水中的声速

采用最小二乘法处理数据。作x-n图。

Figure 4: 相位法测水中声波波长x-n曲线

$$r=0.999994$$

$$\lambda=k=0.740\text{mm}$$

$$b=32.656\text{mm}$$

$$\sigma_{\lambda}=\sigma_{k}=k\sqrt{\frac{1/r^{2}-1}{n-2}}=0.0008\text{mm}$$

利用上述公式计算得到的 σ_{λ} 太小,不能反映实验中 λ 的真实不确定度,考虑到 $e_x=0.01$ mm,应有 $\sigma_{\lambda}=\sigma_x=\frac{1}{\sqrt{3}}e_x=0.006$ mm。

信号源频率为: f = 2.013000 MHz。 其精度很高,相比波长的相对不确定度可以忽略不计。

$$v = f\lambda = 1489.6 \text{m/s}$$
$$\frac{\sigma_v}{v} = \frac{\sigma_\lambda}{\lambda} = 0.8\%$$
$$\sigma_v = 12 \text{m/s}$$
$$v = (1490 \pm 12) \text{m/s}$$

2.6 极值法测水中声速

用逐差法处理数据。 $\lambda_i = x_{i+6} - x_i$

x_i/mm	x_{i+6}/mm	λ_i/mm
35.110	37.350	0.747
35.488	37.722	0.745
35.852	38.095	0.748
36.220	38.468	0.749
36.598	38.842	0.748
36.968	39.218	0.750

Table 7: 极值法测水中的声波波长

$$\bar{\lambda} = 0.748 \text{mm}$$

$$\sigma_{\bar{\lambda}} = \sqrt{\frac{\sum (\lambda_i - \bar{\lambda})^2}{n(n-1)}} = 0.0007 \text{mm}$$

又位移读数的极限不确定度为 $e_x = 0.01$ mm,有:

$$\sigma_{\lambda} = \sqrt{{\sigma_{\bar{\lambda}}}^2 + \frac{1}{3}(\frac{2}{5}e_x)^2} = 0.003 \mathrm{mm}$$

x组的空气中声波波长测量结果为:

$$\lambda = (0.748 \pm 0.003) \text{mm}$$

信号源频率为: f = 2.013000 MHz。 其精度很高,相比波长的相对不确定度可以忽略不计。

$$v = f\lambda = 1505.7 \text{m/s}$$

$$\frac{\sigma_v}{v} = \frac{\sigma_\lambda}{\lambda} = 0.4\%$$

$$\sigma_v = 6 \text{m/s}$$

$$v = (1506 \pm 6) \text{m/s}$$

3 收获与感想

在这三种方法中,通过不确定度分析可知,气态参量法是最准确的,可以成为声速的参考值。

通过极值法、相位法的测量,对声波的驻波、行波性质有了更深切的认识。

在极值法测量过程中,主要误差来自于对振幅极大值位置的判断。一方面是很多时候最大值附近电压峰峰值变化很小,另一方面是一旦转过头了往回转时会有回程差,需要多转回一点消除回程差的影响。这就要求我们首先要粗测一遍以便预判极值点位置,其次临近极值点的时候要谨慎而缓慢地旋转手轮。

相位法是个人更喜欢的方法,因为相比极值法,其判断起来更加简明,准确。

水中测声速个人认为对实验操作要求较高。首先要调试使系统稳定,各部件都需要拧牢使其不晃动不松动,使得示波器上的波形稳定,否则无法进行下一步实验。在转动手轮过程中要缓慢平稳,避免晃动水面,尤其要注意不要碰到连接线,引起波动。在转动过程中要专注,尽量不要转过头,避免往回转。因为水中测声速的设备回程差很大,来回折腾很容易引入误差。