Name:			_		Tu	toria	l group: _	<u>T1</u>	
Matriculation number:									

NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER I 2015/16

MH2500- Probability and Introduction to Statistics

20 October 2015 Test 3 40 minutes

INSTRUCTIONS

- 1. Do not turn over the pages until you are told to do so.
- 2. Write down your name, tutorial group, and matriculation number.
- 3. This test paper contains FOUR (4) questions and comprises FIVE (5) printed pages.
- 4. Answer all questions. The marks for each question are indicated at the beginning of each question.
- 5. You are allowed three double-sided A4 size cheat sheet.

For graders only	Question	1	2	3	4	Bonus	Total
	Marks						

QUESTION 1. (12 marks)

Suppose the joint cumulative distribution function of continuous random variables X and Y is

$$F_{X,Y}(x,y) = \frac{1}{10}(3x^3y + xy^2),$$
 $0 \le x \le 1 \text{ and } 0 \le y \le 2.$

- (a) Find $f_{X,Y}\left(\frac{1}{3},\frac{1}{2}\right)$, where $f_{X,Y}$ is the joint density of X and Y.
- (b) Find $F_X(x)$ and $F_Y(y)$, the marginal cumulative distribution functions for X and Y, respectively.
- (c) Find $f_{Y|X}(y|x)$, the conditional density of Y given X.

QUESTION 2. (8 marks)

Let X and Y have the joint density function

$$f(x,y) = k(2x + y),$$
 $0 \le x \le 2 \text{ and } 0 \le y \le 2,$

and 0 elsewhere.

- (a) Find k. Leave your answer as a fraction.
- (b) Find P(Y < X + 1). Leave your answer as a fraction or to three significant figures.

QUESTION 3. (6 marks)

A number, N, is chosen randomly from the set $\{1, 2, 4\}$. A fair coin is then flipped N time. Let H denote the number heads obtained. Find the conditional distribution of N given H=2.

QUESTION 4. (8 marks)

Let X and Y have the joint density function f(x,y) and let Z=2X+Y. Show that the density function of Z is

$$f_Z(z) = \int_{-\infty}^{\infty} f(x, z - 2x) dx$$

by completing the proof below.

Proof:

$$F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-2x} f(x, y) \, dy dx.$$

Making a change of variable $y=\dots$