

FCC REPORT

(Bluetooth)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: Buzztime 7 inches Tablet - T101

Model No.: BZT-T101

FCC ID: 2AB6Z-BZT-T101

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 26 May, 2016

Date of Test: 26 May, to 07 Jun., 2016

Date of report issued: 08 Jun., 2016

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	08 Jun., 2016	Original

Reviewed by: Over them Date: 08 Jun., 2016

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3		2
4	4 TEST SUMMARY	4
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T.	5
	5.3 TEST MODE	7
	5.4 LABORATORY FACILITY	7
	5.5 LABORATORY LOCATION	7
	5.6 DESCRIPTION OF SUPPORT UNITS	
	5.7 TEST INSTRUMENTS LIST	8
6	6 TEST RESULTS AND MEASUREMENT DATA	9
	6.1 Antenna requirement	9
	6.2 CONDUCTED EMISSIONS	10
	6.3 CONDUCTED OUTPUT POWER	13
	6.4 20dB Occupy Bandwidth	17
	6.5 CARRIER FREQUENCIES SEPARATION	
	6.6 HOPPING CHANNEL NUMBER	
	6.7 DWELL TIME	
	6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9 BAND EDGE	
	6.9.1 Conducted Emission Method	
	6.9.2 Radiated Emission Method	
		50
7		
1		
8	8 EUT CONSTRUCTIONAL DETAILS	64

4 Test Summary

rest Summary					
Test Item	Section in CFR 47	Result			
Antenna Requirement	15.203/15.247 (c)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.247 (b)(1)	Pass			
20dB Occupied Bandwidth	15.247 (a)(1)	Pass			
Carrier Frequencies Separation	15.247 (a)(1)	Pass			
Hopping Channel Number	15.247 (a)(1)	Pass			
Dwell Time	15.247 (a)(1)	Pass			
Radiated Emission	15.205/15.209	Pass			
Band Edge	15.247(d)	Pass			

Pass: The EUT complies with the essential requirements in the standard.

Project No.:CCISE1605074

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED		
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong		
Manufacturer/Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD		
Address of Manufacturer/Factory:	3rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China		

5.2 General Description of E.U.T.

·	
Product Name:	Buzztime 7 inches Tablet - T101
Model No.:	BZT-T101
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	2.88dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-4000mAh

Project No.:CCISE1605074

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.		
Remark	GFSK (1 Mbps) is the worst case mode.		

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfully described a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
Nuu	AC Adapter	HJ-0501000E1-US	N/A	N/A
N/A	shielding USB cable with Core	N/A	N/A	N/A

Project No.: CCISE1605074

5.7 Test Instruments list

Radia	Radiated Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017				
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017				
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017				
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017				
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017				
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017				
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017				
8	Spectrum analyzer 9k-30GHz Rohde & Schwarz		FSP30	CCIS0023	03-28-2016	03-28-2017				
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017				
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017				
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017					
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017					
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetoothantenna is anintegral antenna which permanently attached, and the best case gain of the antenna is 2.88 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.4:2014						
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz, Sweep time=auto						
Limit:	Limit (dRu\/)						
	Quasi-peak Average						
	0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46						
	5-30	60	50				
	* Decreases with the logarithn	n of the frequency.					
Test setup:	Reference Plane						
	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 						
Test Uncertainty:			±3.28 dB				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Bluetooth (Continuous transmitting) mode						
Test results:	Pass						

Measurement Data:

Line:

Trace: 11

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : Buzztime 7" Tablet-T101 Site Condition EUT

Model : BZT-T101 Test Mode : BT mode Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: YT

Remark

tomark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜		₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.214	24.04	0.15	10.76	34.95	63.05	-28.10	QP
2	0.214	12.34	0.15	10.76	23.25	53.05	-29.80	Average
3	0.286	13.79	0.16	10.74	24.69	50.63	-25.94	Average
4	0.358	24.69	0.21	10.73	35.63	58.78	-23.15	QP
2 3 4 5 6	0.358	17.57	0.21	10.73	28.51	48.78	-20.27	Average
6	0.502	26.67	0.24	10.76	37.67	56.00	-18.33	QP
7 8 9	0.788	26.54	0.30	10.81	37.65	46.00	-8.35	Average
8	1.289	33.67	0.28	10.90	44.85	56.00	-11.15	QP
9	1.289	29.04	0.28	10.90	40.22	46.00	-5.78	Average
10	1.716	33.69	0.31	10.94	44.94	56.00	-11.06	QP
11	1.716	28.12	0.31	10.94	39.37	46.00	-6.63	Average
12	3.436	33.63	0.34	10.91	44.88	56.00	-11.12	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Trace: 9

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : Buzztime 7" Tablet-T101 : BZT-T101 Condition

EUT

Model Test Mode : BT mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT Remark :

emark.								
	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
20-24	MHz	dBu∀	dB		dBu∀	dBuV	dB	
	лита	and v	ш.	ш	andy	and.	ш	
1	0.214	25.38	0.16	10.76	36.30	63.05	-26.75	QP
2	0.214	17.60	0.16	10.76	28.52	53.05	-24.53	Average
2 3 4 5 6 7 8 9	0.358	27.23	0.21	10.73	38.17	58.78	-20.61	QP
4	0.358	22.89	0.21	10.73	33.83	48.78	-14.95	Average
5	0.431	28.78	0.23	10.73	39.74	57.24	-17.50	QP
6	0.573	24.00	0.28	10.77	35.05	46.00	-10.95	Average
7	0.788	27.04	0.31	10.81	38.16	46.00	-7.84	Average
8	0.928	36.11	0.27	10.85	47.23	56.00	-8.77	QP
9	1.216	27.99	0.26	10.90	39.15	46.00	-6.85	Average
10	1.289	37.46	0.26	10.90	48.62	56.00	-7.38	QP
11	1.359	27.89	0.26	10.91	39.06	46.00	-6.94	Average
12	1.568	37.50	0.26	10.93	48.69	56.00	-7.31	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

	GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	3.17	21.00	Pass			
Middle	2.95	21.00	Pass			
Highest	2.46	21.00	Pass			
	π/4-DQPSK	mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	Lowest 1.15		Pass			
Middle	Middle 1.00		Pass			
Highest	Highest 0.54		Pass			
	8DPSK mode					
Test channel	Test channel Peak Output Power (dBm)		Result			
Lowest	1.36	21.00	Pass			
Middle	1.33	21.00	Pass			
Highest	0.81	21.00	Pass			

Test plot as follows:

Date: 3.JUN.2016 17:53:51

Lowest channel

Date: 3.JUN.2016 17:54:12

Middle channel

Date: 3.JUN.2016 17:54:33

Highest channel

Date: 3.JUN.2016 17:55:04

Lowest channel

Date: 3.JUN.2016 17:55:23

Middle channel

Date: 3.JUN.2016 17:55:40

Date: 3.JUN.2016 17:56:44

Lowest channel

Date: 3.JUN.2016 17:56:25

Middle channel

Date: 3.JUN.2016 17:56:03

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=30kHz, VBW=100kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Toot showned	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	1052	1368	1380	
Middle	1048	1372	1384	
Highest	1048	1372	1384	

Test plot as follows:

Date: 3.JUN.2016 18:00:55

Lowest channel

Date: 3.JUN.2016 18:02:23

Middle channel

Date: 3.JUN.2016 18:03:11

Highest channel

Date: 3.JUN.2016 18:05:37

Lowest channel

Date: 3.JUN.2016 18:06:29

Middle channel

Date: 3.JUN.2016 18:07:10

Date: 3.JUN.2016 18:08:19

Lowest channel

Date: 3.JUN.2016 18:08:57

Middle channel

Date: 3 JUN 2016 18:09:40

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100kHz, VBW=300kHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

GFSK mode					
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result		
Lowest	1004	701.33	Pass		
Middle	1008	701.33	Pass		
Highest	1000	701.33	Pass		
	π/4-DQPSK mo	de			
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result		
Lowest	Lowest 1000		Pass		
Middle	Middle 1000		Pass		
Highest	Highest 1004		Pass		
	8DPSK mode				
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result		
Lowest	Lowest 1004		Pass		
Middle	Middle 1004		Pass		
Highest 1004		922.67	Pass		

Note: According to section 6.4

Mode	20dB bandwidth (kHz)	Limit (kHz)	
Wode	(worse case)	(Carrier Frequencies Separation)	
GFSK	1052	701.33	
π/4-DQPSK	1372	914.67	
8DPSK	1384	922.67	

Test plot as follows:

Date: 3.JUN.2016 20:28:58

Lowest channel

Date: 3.JUN.2016 20:29:44

Middle channel

Date: 3.JUN.2016 20:30:23

Date: 3.JUN.2016 20:31:23

Lowest channel

Date: 3.JUN.2016 20:32:14

Middle channel

Date: 3.JUN.2016 20:33:04

Date: 3.JUN.2016 20:33:58

Lowest channel

Date: 3.JUN.2016 20:34:27

Middle channel

Date: 3 JUN 2016 20:35:01

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Project No.:CCISE1605074

Test plot as follows:

Date: 3.JUN.2016 21:12:21

Date: 3.JUN.2016 21:14:15

Date: 3.JUN.2016 21:16:08

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB DA00-705		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.13440		
GFSK	DH3	0.27456	0.4	Pass
	DH5	0.31403		
π/4-DQPSK	2-DH1	0.13056		
	2-DH3	0.26592	0.4	Pass
	2-DH5	0.31232		
	3-DH1	0.12928		
8DPSK	3-DH3	0.26688	0.4	Pass
	3-DH5	0.31232		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.420*(1600/(2*79))*31.6=134.40ms DH3 time slot=1.716*(1600/(4*79))*31.6=274.56ms DH5 time slot=2.944*(1600/(6*79))*31.6=314.03ms

2-DH1 time slot=0.408*(1600/(2*79))*31.6=130.56ms2-DH3 time slot=1.662*(1600/(4*79))*31.6=265.92ms

2-DH5 time slot=2.928*(1600/ (6*79))*31.6=312.32ms

3-DH1 time slot=0.404*(1600/ (2*79))*31.6=129.28ms

3-DH3 time slot=1.668*(1600/ (4*79))*31.6=266.88ms

3-DH5 time slot=2.928*(1600/ (6*79))*31.6=312.32ms

Test plot as follows:

Date: 3.JUN.2016 20:43:30

DH1

Date: 3.JUN.2016 20:44:02

DH3

Date: 3.JUN.2016 20:44:37

DH5

Date: 3.JUN.2016 21:05:52

2-DH1

Date: 3.JUN.2016 21:06:54

2-DH3

Date: 3.JUN.2016 21:07:38

2-DH5

Date: 3.JUN.2016 21:08:34

MARANAMARANA

*

3-DH1

Date: 3.JUN.2016 21:09:34

3-DH3

Date: 3.JUN.2016 21:10:08

3-DH5

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and DA00-705
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

Project No.:CCISE1605074

*RBW 100 kHz *VBW 300 kHz SWT 2.5 ms

Test plot as follows:

Date: 3.JUN.2016 18:11:19

GFSK

Lowest Channel

Date: 3.JUN.2016 18:12:21

No-hopping mode

Hopping mode

Highest Channel

Date: 3.JUN.2016 20:22:33

Date: 3.JUN.2016 20:25:14

Hopping mode

No-hopping mode

π/4-DQPSK

Lowest Channel

Date: 3.JUN.2016 19:46:53

No-hopping mode

Hopping mode

Highest Channel

Date: 3.JUN.2016 20:15:22

Date: 3.JUN.2016 20:16:39

Date: 3.JUN.2016 20:06:57

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

Date: 3.JUN.2016 20:08:57

No-hopping mode

Hopping mode

Highest Channel

Date: 3.JUN.2016 20:13:29

Date: 3.JUN.2016 20:14:27

Date: 3.JUN.2016 20:10:36

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15 20	2 and 15 205		
Test Method:	ANSI C63.10: 2		3 and 13.203		
Test Frequency Range:	2.3GHz to 2.5G				
Test site:	Measurement D				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
receiver setup.		Peak	1MHz	3MHz	Peak Value
	Above 1GHz	RMS	1MHz	3MHz	Average Value
Limit:	Erogue		Limit (dBuV		Remark
Cirric.	Freque	ricy	54.0		Average Value
	Above 1	IGHz -	74.0		Peak Value
Test setup:		AE EUT (Turntable)	Ground Reference Plane Test Receiver	orn Antenna To	wer
Test Procedure:	groundat a 3 todetermine 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and thenthe the rotatable maximum resonated by the emission of the emission	meter camber the position of set 3 meters chwas mount height is varitermine the mid vertical polant. Spected emission antenna was turned from the condition of	er. The table ver the highest reseaway from the ed on the toped from one reaximum value arizations of the ed on the EUT tuned to heigh om 0 degrees was set to Peak aximum Hold EUT in peak of could be stoped therwise the ed tested one by	vas rotated radiation. The interference of a variable meter to four e of the field the antenna was arrangents from 1 m to 360 deg at Detect Ford Mode, mode was apped and the missions the one using processing processing of the mode was one using processing processi	nce-receiving le-height antenna r meters above the distrength. Both are set to make the ed to its worst case neter to 4 meters and rees to find the unction and 10dB lower than the ne peak values of the nat did not have peak, quasi-peak or
Test Instruments:	Refer to section	5.7 for detail	s		
Test mode:	Non-hopping m	ode			
Test results:	Passed				
Pomork:					

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Buzztime 7" Tablet-T101 Condition

EUT

: Duzztime 7" Tablet-T101

Model : BZT-T101

Test mode : DH1-L mode

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT

RFMARK

REMARK

	200		Antenna Factor						Remark
-	MHz	—dBuV	<u>dB</u> /m	dB	<u>ab</u>	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000					47.90 37.72			

Site Condition EUT : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Buzztime 7" Tablet-T101

: Buzztime 7" Tablet-T101

Model : BZT-T101
Test mode : DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

	F		Antenna Factor						
2	MHz	dBu∜		dB	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000 2390.000					48.10 37.99			

Test channel:Highest

Horizontal:

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Buzztime 7" Tablet-T101 Condition

EUT

: BIT-T101
Test mode : DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

	Freq		Antenna Factor						
-	MHz	—dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Buzztime 7" Tablet-T101 Condition EUT

Model : BZT-T101 Test mode : DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT REMARK :

шши		Read	Antenna	Cable	Presmo		Limit	Over		
	Freq		Factor							
_	MHz	dBu∇	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>		-
1	2483.500	18.70	23.70	6.85	0.00	49.25	74.00	-24.75	Peak	
2	2483.500	7.63	23.70	6.85	0.00	38.18	54.00	-15.82	Average	

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Tablet-T101

: Buzztime 7"

Model : BZT-T101

Test mode : 2DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: YT
REMARK

Huni:55% 101KPa

1 2

UI.	ui .								
	Freq		Antenna Factor				Limit Line		
	MHz	dBu₹	$\overline{dB/m}$	āB	ā <u>ā</u>	$\overline{dBuV/m}$	dBuV/m	dB	 -
	2390.000 2390.000				0.00				

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Buzztime 7" Tablet-T101 Condition

EUT

Model : BZT-T101 Test mode : 2DH1-L mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Test Engineer: YT Huni:55% 101KPa

REMARK

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m 碅 dB dBuV/m dBuV/m 2390.000 18.82 0.00 49.13 74.00 -24.87 Peak 23.68 6.63 2390.000 7.06 23.68 6.63 0.00 37.37 54.00 -16.63 Average

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Buzztime 7" Tablet-T101 Condition

EUT

Model : BZT-T101 Test mode : 2DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: YT
REMARK :

Huni:55% 101KPa

1 2

ш	TV :	Read	Antenna	Cable	Preamn		Limit	Over	
	Free	1 Level							
	MH:	z dBuV	dB/m	dB	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500				0.00 0.00				Peak Average

1 2

Freq	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
MHz	dBu₹	$-\overline{dB}/\overline{m}$	d <u>B</u>	d <u>B</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B		
2483.500 2483.500	20.20 7.24	23.70 23.70	6.85 6.85	0.00 0.00	50.75 37.79	74.00 54.00	-23.25 -16.21	Peak Average	

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Buzztime 7" Tablet-T101 : BZT-T1101 Condition

EUT

: DLI-T101
Test mode : 3DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

PHETE	1000		Antenna Factor						
	MHz	dBu₹	$\overline{dB}/\overline{m}$	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000					49.43 37.87			

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Buzztime 7" Tablet-T101

EUT

Model BZT-T101 Test mode : 3DH1-L mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55% 101KPa Test Engineer: YT

REMARK

האשונים	7		Antenna Factor						
-	MHz	dBu∀	$\overline{-dB/m}$	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	 _
	2390.000 2390.000					45.57 37.59			

Test channel:Highest

Horizontal:

EMARI	. :	Read	Antenna	Cable	Preamn		Limit	Over		
	Freq		Factor						Remark	
	MHz	—dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
1 2	2483.500 2483.500					47.92 37.72				

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Buzztime 7" Tablet-T101 Condition

EUT

: DLT-T101
Test mode : 3DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

1 2

Freq			Antenna Factor					Over Limit	
	MHz	dBuV	$^{}\overline{dB}/\overline{m}$	dB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	dB	
	2483.500 2483.500								Peak Average

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					

Test plot as follows:

Date: 3.JUN.2016 18:29:48

30MHz~25GHz

Date: 3.JUN.2016 18:30:27

30MHz~25GHz

Date: 3.JUN.2016 18:31:20

30MHz~25GHz

π/4-DQPSK

Lowest channel

Date: 3.JUN.2016 18:31:56

30MHz~25GHz

Date: 3.JUN.2016 18:32:30

30MHz~25GHz

Date: 3.JUN.2016 18:32:57

30MHz~25GHz

Date: 3.JUN.2016 18:33:28

30MHz~25GHz

Date: 3.JUN.2016 18:34:52

30MHz~25GHz

Date: 3.JUN.2016 18:35:26

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission N					7			
Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10: 20 ⁻	13						
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Dis	tance: 3m	1	Ī	,			
Receiver setup:	Frequency	Frequency Detector RBW VBW						
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value			
	Above 1GHz	Peak	3MHz	Peak Value				
	713010 10112	RMS	1MHz	3MHz	Average Value			
Limit:	Frequen	су	Limit (dBuV	/m @3m)	Remark			
	30MHz-88I	MHz	40.0)	Quasi-peak Value			
	88MHz-216		43.5	5	Quasi-peak Value			
	216MHz-960		46.0		Quasi-peak Value			
	960MHz-1	GHz	54.0		Quasi-peak Value			
	Above 1G	Hz –	54.0		Average Value			
Test setup:			74.0)	Peak Value			
	Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz Antenna Tower Antenna Antenna Antenna RF Test Receiver Im Table Ground Plane Acterna Tower For Acterna Tower Test Receiver Test Receiver Test Receiver Test Receiver Test Receiver Test Receiver							

Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the groundat a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Uncertainty: ±4.88 dB Test Instruments: Refer to section 5.7 for details Test mode: Non-hopping mode Test results: Pass

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Project No.: CCISE1605074

Report No: CCISE160507401

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : Buzztime 7" Tablet-T101 Condition

EUT

Model : BZT-T101 Test mode : BT mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT REMARK

	Freq		Antenna Factor						
_	MHz	—dBuV	<u>d</u> B/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	39.576	34.56	16.75	1.21	29.90	22.62	40.00	-17.38	QP
2	128.113	45.55	12.21	2.26	29.34	30.68	43.50	-12.82	QP
3	226.894	39.81	11.57	2.84	28.67	25.55	46.00	-20.45	QP
4	396.242	42.17	15.78	3.08	28.76	32.27	46.00	-13.73	QP
5	721.726	37.01	19.76	4.26	28.58	32.45	46.00	-13.55	QP
6	782.345	38.93	20.53	4.35	28.29	35.52	46.00	-10.48	QP

Horizontal:

: 3m chamber Site

: FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : Buzztime 7" Tablet-T101 Condition

Buzztime 7"

Model : BZT-T101

Test mode : BT mode

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C

Test Engineer: YT

REMARK

Huni:55% 101KPa

AAAM										
			Ant enna				Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
_	MHz	dBu∜	$\overline{dB/m}$		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1	41.277	29.17	17.09	1.24	29.89	17.61	40.00	-22.39	QP	
1 2 3 4	119.856	36.60	11.80	2.17	29.39	21.18	43.50	-22.32	QP	
3	195.137	45.18	9.97	2.84	28.86	29.13	43.50	-14.37	QP	
4	396.242	51.07	15.78	3.08	28.76	41.17	46.00	-4.83	QP	
5 6	721.726	41.67	19.76	4.26	28.58	37.11	46.00	-8.89	QP	
6	782.345	46.08	20.53	4.35	28.29	42.67	46.00	-3.33	QP	

Above 1GHz:

Test channel:		Lowest		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	42.93	35.99	10.57	40.24	49.25	74.00	-24.75	Vertical
4804.00	42.28	35.99	10.57	40.24	48.60	74.00	-25.40	Horizontal
Te	Test channel:		Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	32.52	35.99	10.57	40.24	38.84	54.00	-15.16	Vertical
4804.00	34.68	35.99	10.57	40.24	41.00	54.00	-13.00	Horizontal

Test channel:			Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	42.04	36.38	10.66	40.15	48.93	74.00	-25.07	Vertical	
4882.00	41.83	36.38	10.66	40.15	48.72	74.00	-25.28	Horizontal	
Te	st channel:	•	Middle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	32.65	36.38	10.66	40.15	39.54	54.00	-14.46	Vertical	
4882.00	31.41	36.38	10.66	40.15	38.30	54.00	-15.70	Horizontal	

Test channel:			Highest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	41.94	36.71	10.73	40.03	49.35	74.00	-24.65	Vertical	
4960.00	42.50	36.71	10.73	40.03	49.91	74.00	-24.09	Horizontal	
Te	Test channel:		Highest		Lev	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	31.62	36.71	10.73	40.03	39.03	54.00	-14.97	Vertical	
4960.00	32.03	36.71	10.73	40.03	39.44	54.00	-14.56	Horizontal	

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.