INTERPOLACJA HERMITEA [obrazek]		
Niech suma $\sum_{i=0}^k m_i = n+1$; $k \leq m$ gdzie k-		
l.pkt Danych jest k+1 różnych węzłów		
$x_0, x_1 \dots x_k$ oraz I.naturarnych $m_0, m_1 \dots m_k$		
takie że $\sum_{i=0}^k m_i = n+1$ określające ilość znanych informacji (wartości funk i kolejnych		
pochodnych) o funkcji w węźle 'i' Znaleźć dla		
danej funkcji f wielomian H_n stopnia co		
najwyżej n spełniający warunek $H_n^{(j)}(x_i) =$		
$f^{(j)}(x_i)dla i = 0,1,,k; j = 0,1,,m_{i-1}$		
Zadanie interpolacyjne Hermite'a ma		
jednoznaczne rozwiązanie		
INTERPOLACJA CZYBYSZEWA [OBRAZEK szczególny przykład funk		
$f(x) = \frac{1}{25x^2 + 1}$		
Zachodzi zjawisko Rungego-gdy wybieramy		
bardzo dużo węzłów równoodległych interp.		
daje bardzo dobre efekty w środku przedziału		
interp, a po bokach przedziału efekt jest		
najmocniejszy.(dla interp.lagra.albo wielom) Zatem Interp.Czyby. to sposób obl. węzłów,		
optymalny żeby błąd interp. był najmniejszy.		
Def. Rodzina (trójkątna) wielom.Czyb.		
$T_n(x) := \cos(n * arccosx)$ Własności:		
[1]Opis rekurencyjny $T_0(x) = 1$; $T_1(x) = x$		
$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$ dla n>1 [2] $T_n(x)$ jest równoważny pewnemu		
wielom, algebr. ST. n określonemu w [-1:1]		
wielom. algebr. ST. n określonemu w [-1;1] [3]Współczy. wiodący wynosi $\begin{cases} 2^{n-1}, n \geq 1\\ 1, n = 0 \end{cases}$		
[3] W sporezy. Woodey wynosi (1, $n = 0$		
[4] T_n ma n miejsc zerowych w [-1;1] jednokrotnych rzeczywistych		
$(2k+1 \pi)$		
$x_k = cos(\frac{n}{n} * \frac{1}{2}), k = 0,1,,n-1$		
$x_k = cos\left(\frac{2k+1}{n} * \frac{\pi}{2}\right), k = 0,1,,n-1$ $lub x_k = cos\left(\frac{2^{k-1}}{n} * \frac{\pi}{2}\right), k = 1,2,,n$ [EMM: respect to minimal respectively.]		
[J]Widshose minimana. Ze wszystkich		
wielomianów stopnia n o współczynniku		
wiodącym równym 1, najmniejszą normę maksymalną w [-1;1] ma wielomian $\frac{1}{2^{n-1}}T_n$.		
maksymaniq w [-1,1] ma wielomian $\frac{1}{2^{n-1}}I_n$.		
Jego norma maksymalna wynosi $\frac{1}{2^{n-1}}$		
(norm.maks $ f_{\infty} = \max_{x \in [a,b]} f(x) $) Gdy[a,b]=[-1,1] wówczas wielomianem		
stopnia n+1 takim, aby $\sup_{x[a,b]} W_{n+1}(x) $		
było minimalne jest wielomian $W_n(x) =$		
$\frac{1}{2^{n-1}}T_n$ Optymalny zbiór węzłów dla interp.		
w przedziale [-1;1] odpowiada zatem wielom.		
Czyb. T_n . Wówczas: $ f(x) - W_n(x) = M_n$		
$\frac{\dot{M}_{n+1}}{2^n(n+1)!}$ Teraz żeby mieć węzły Czyb. na		
dowolnym przedziale [a,b] trzeba		
przeskalować. $t = C_1 x + C_2$ $[t = a \land x = (a = -C_1 + C_2)]$		
-1], $[t = a \land x = 1] \Rightarrow \begin{cases} a = -C_1 + C_2 \\ b = C_1 + C_2 \end{cases}$		
Zatem: $t = \frac{1}{2}(b-a)x + \frac{1}{2}(a+b)$ Dowolną		
funkcję f(t) określoną na przedziale [a,b]		
można przeskalować, aby była określona na		
przedziale [-1,1] i odwrotnie. Przeskalowanie nie zmienia interpolacji. Czyli optymalne		
wezły to: dla k = 0.1n-1		
$t = \frac{1}{2} [(h - a)\cos(2k + 1)\pi]$		
$t_k = \frac{1}{2} \left[(b - a)\cos\left(\frac{2k+1}{n} * \frac{\pi}{2}\right) + (b+a) \right]$		
Zbieżność Ciągów Wielomianów: Zbieżność – Faber, Bernstein		
Dla każdego układu n+1 węzłów $x \in [a, b]$		
istnieje funkcja "złośliwa" ciągła w [a,b], dla		
której metoda interpolacji nie jest		
jednostajnie zbieżna w tym przedziale, do tej funkcji.		
runkejt.		