Lecture Notes by Jonathan Alcaraz (UCR)

Geometry

Math 232A Fall 2017

Based on Lectures by

Dr. Frederick Willhelm University of California, Riverside

Lecture 1 28 Sep 2017

Introduction

Given a smooth surface $S \subseteq \mathbb{R}^3$, we'd like to compare and contrast with \mathbb{R}^n . In doing so, we may ask for analogs to lines, angles, volume, distance, length, et cetera.

In fact, we can even consider these analogs in more abstract smooth manifolds. For example:

- \bullet $\mathbb{R}P^n$
- the Torus
- the Klein Bottle

While these space can be embedded into \mathbb{R}^n , we don't usually consider them this way, but rather thin of them abstractly.

RIEMANNIAN MANIFOLDS

Definition 1.1 A Riemannian Manifold (M, g) is a C^{∞} -manifold together with a smoothly varying inner product g on M.

Definition 1.2 An *Inner Product* is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that is bilinear, symmetric, and positive definite.

Note Really there are inifinitely many inner products in a Riemmanian Manifold since each point has its own tangent space. We sometimes say g_p is the inner product at p. We say that g is a $Riemannian\ metric$, though this shouldn't be confused with standard notions of a metric.