Теория автоматов Лекция 5: НКА, ДКА, регулярные языки

Дьулустан Никифоров

Кафедра ИТ Северо-Восточный Федеральный Университет

Осень 2024

Theorem

Если N — HKA (возможно, с ε -переходами), то существует ДКА, который распознает язык L(N).

Proof:

Пусть $N = (Q, \Sigma, \delta, S, F), L(N) = A.$

Мы построим ДКА $M=(Q',\Sigma,\delta',S',F')$ такой, что L(M)=A.

$\mathsf{Theorem}$

Если N — НКА (возможно, с ε -переходами), то существует ДКА, который распознает язык L(N).

Proof:

Пусть $N=(Q,\Sigma,\delta,S,F),L(N)=A.$ Мы построим ДКА $M=(Q',\Sigma,\delta',S',F')$ такой, что L(M)=A.

- Для $R\subseteq Q$ определим $E(R)=\{q\mid q$ можно достичь из R, пользуясь только arepsilon-переходами $\};$
- определим $\delta'(R,a) = \{q \in Q \mid q \in E(\delta(r,a)) \text{ для некоторого } r \in R\};$
- определим $S' = E(\{S\});$

Почему это доказательство работает? Потому что на каждом шагу чтения строки, машина M всегда находится в состоянии, ровно соответствующем подмножеству состояний машины N в том же шагу.

Практичный алгоритм, как перевести НКА N с ε -переходами в ДКА M:

- ① Создать начальное состояние (в M), состоящее из начального состояния из N плюс состояния, в которые можно из него попасть только по ε -переходам;
- ② Добавить нехватающий переход в какое-нибудь из существующих состояний: посмотреть в какие состояния (*) идет переход (в N) сначала переход по букве, а потом можно делать переходы по ε -переходам \rightarrow направить переход в то состояние M, которое представляет собой множество тех состояний (*) из N (если такое состояние еще не существует, создать ее); может быть, что такого перехода из этого состояния вообще не существует в N в этом случае надо делать переход в состояние, представляющее пустое множество состояний (\emptyset)

НКА = ДКА

- Продолжать делать шаг 2, пока все созданные состояния не будут иметь все переходы.
- ① Сделать принимающими те состояния (из M), которые содержат внутри хотя бы одно принимающее состояние из N.

На доске, применим этот метод для:

На доске, применим этот метод для:

Другой пример:

Другой пример:

ДКА=НКА

 Мы доказали, что ДКА и НКА представляют одно и то же множество языков. Что это нам говорит про регулярные языки?

ДКА=НКА

- Мы доказали, что ДКА и НКА представляют одно и то же множество языков. Что это нам говорит про регулярные языки?
- Язык регулярный тогда и только тогда, когда оно принимается каким-то НКА.
 - Language is regular if and only if it is accepted by some NFA.
- Главное, теперь мы получили новое мощное оружие для изучения свойств регулярных языков!

Theorem

Множество регулярных языков замкнуто под операцией конкатенации, т.е. A_1 и A_2 — регулярные языки $\Rightarrow A_1A_2$ — регулярный язык.

Proof:

Пусть
$$L(N_1)=A_1, L(N_2)=A_2, N_1=(Q_1,\Sigma,\delta_1,S_1,F_1), N_2=(Q_2,\Sigma,\delta_2,S_2,F_2).$$
 Построим $N=(Q,\Sigma,\delta,S,F)$ т.ч. $L(N)=A_1A_2.$

Theorem

Множество регулярных языков замкнуто под операцией конкатенации, т.е. A_1 и A_2 — регулярные языки $\Rightarrow A_1A_2$ — регулярный язык.

Proof:

Пусть
$$L(N_1)=A_1, L(N_2)=A_2, N_1=(Q_1,\Sigma,\delta_1,S_1,F_1), N_2=(Q_2,\Sigma,\delta_2,S_2,F_2).$$
 Построим $N=(Q,\Sigma,\delta,S,F)$ т.ч. $L(N)=A_1A_2.$

- $Q = Q_1 + Q_2$
- $S = S_1$
- $F = F_2$
- $\delta(q,a) = \delta_1(q,a)$ if $q \in Q_1$ and $q \notin F_1$, $\delta(q,a) = \delta_1(q,a)$ if $q \in F_1$ and $a \neq \varepsilon$, $\delta(q,a) = \delta_1(q,a) \cup \{S_2\}$ if $q \in F_1$ and $a = \varepsilon$, $\delta(q,a) = \delta_2(q,a)$ if $q \in Q_2$.

$\mathsf{Theorem}$

Множество регулярных языков замкнуто под операцией замыкания, т.е. A_1 — регулярный язык $\Rightarrow A_1^*$ — регулярный язык.

Proof: Пусть $L(N_1)=A_1, N_1=(Q_1,\Sigma,\delta_1,q_1,F_1).$ Построим $N=(Q,\Sigma,\delta,q_0,F)$ т.ч. $L(N)=A_1^*.$

$\mathsf{Theorem}$

Множество регулярных языков замкнуто под операцией замыкания, т.е. A_1 — регулярный язык $\Rightarrow A_1^*$ — регулярный язык.

Proof: Пусть $L(N_1)=A_1, N_1=(Q_1,\Sigma,\delta_1,q_1,F_1).$ Построим $N=(Q,\Sigma,\delta,q_0,F)$ т.ч. $L(N)=A_1^*.$

- $Q = \{S\} \cup Q_1$,
- ullet S создаем новое состояние для этого,
- $F = \{S\} \cup F_1$,
- $$\begin{split} \bullet \ \delta(q,a) &= \delta_1(q,a) \text{ if } q \in Q_1 \text{ and } q \notin F_1, \\ \delta(q,a) &= \delta_1(q,a) \text{ if } q \in F_1 \text{ and } a \neq \varepsilon, \\ \delta(q,a) &= \delta_1(q,a) \cup \{S_1\} \text{ if } q \in F_1 \text{ and } a = \varepsilon, \\ \delta(q,a) &= \{S_1\} \text{ if } q = S \text{ and } a = \varepsilon, \\ \emptyset \text{ if } q &= S \text{ and } a \neq \varepsilon. \end{split}$$

- Итак, мы уже очень много доказали о регулярных языках и конечных автоматах, которые распознают их:
 - Множество регулярных языков замкнуто под регулярными операциями: объединение, конкатенация, замыкание.
 - Каждый регулярный язык представим в виде некого ДКА, т.е. некий ДКА распознает его.
 - Каждый ДКА распознает регулярный язык.
 - Каждый НКА эквивалентен некому ДКА.
 - Регулярные языки = ДКА = НКА.
- Теперь мы добавим еще один важный элемент в это уравнение: *регулярные выражения*.

Регулярные операции

Вспомним определение регулярных операций с языками. Пусть A и B языки. Тогда мы определяем такие регулярные операции (regular operations):

- Объединение (Union) A и B: $A + B = \{x \mid x \in A \text{ или } x \in B\}$
- Конкатенация (Concatenation) A и B: $AB = \{xy \mid x \in A \text{ и } x \in B\}$
- Замыкание/"звездочка" (Closure/Star): $A^* = \{x_1x_2\dots x_k \mid k\geq 0 \text{ и каждый } x_i\in A\}.$

Регулярное выраженое — Regular Expression (RegEx). Я обычно просто называю их *регексами*.

Каждый Regex обозначает какой-то язык.

•
$$0 \to \{0\}$$
,
 $1 \to \{1\}$,
 $0 + 1 \to \{0\} + \{1\} = \{0, 1\}$,
 $0^* \to \{0\}^*$,
 $10^* \to \{1\}\{0\}^* = \{1, 10, 100, 1000, \dots\}$,
 $(0 + 1)0^* \to \{0 + 1\}\{0\}^* = ?$

Регулярное выраженое — Regular Expression (RegEx). Я обычно просто называю их *регексами*.

Каждый Regex обозначает какой-то язык.

```
• 0 \to \{0\},

1 \to \{1\},

0 + 1 \to \{0\} + \{1\} = \{0, 1\},

0^* \to \{0\}^*,

10^* \to \{1\}\{0\}^* = \{1, 10, 100, 1000, \dots\},

(0 + 1)0^* \to \{0 + 1\}\{0\}^* = ?

(0 + 1)0^* \to \{0 + 1\}\{0\}^* = \{0, 1, 00, 10, 000, 100, \dots\}.
```


• Строгое определение регулярных выражений делается рекурсивно. Какие рекурсивные определения вы знаете?

- Строгое определение регулярных выражений делается рекурсивно. Какие рекурсивные определения вы знаете?
- Есть алфавит Σ . Тогда мы говорим, что R это регулярное выражение (regular expression), если R является одним из следующих:
 - ullet a для некоторого $a \in \Sigma$,
 - ε,
 - Ø,
 - \bullet (R_1+R_2) , где R_1 и R_2 регулярные выражения,
 - ullet (R_1R_2) , где R_1 и R_2 регулярные выражения, или
 - ullet (R_1^*) , где R_1 регулярное выражение.

- Строгое определение регулярных выражений делается рекурсивно. Какие рекурсивные определения вы знаете?
- Есть алфавит Σ . Тогда мы говорим, что R это регулярное выражение (regular expression), если R является одним из следующих:
 - ullet a для некоторого $a \in \Sigma$,
 - ε,
 - Ø,
 - ullet (R_1+R_2) , где R_1 и R_2 регулярные выражения,
 - ullet (R_1R_2) , где R_1 и R_2 регулярные выражения, или
 - ullet (R_1^*) , где R_1 регулярное выражение.
- ε соответствует языку, состоящему из одной пустой строки.
- ∅ пустой язык.

