

Licenciatura em Engenharia Informática

MATEMÁTICA DISCRETA

Teste 23 de abril de 2022

Aluno nº	Nome

- \bullet A duração da prova é de ${\bf 1}$ hora + 15 minutos de tolerância.
- É permitida a consulta do formulário da U.C.. Não é permitida a consulta de quaisquer dispositivos eletrónicos (máquina de calcular, telemóvel, etc.).
- Todos os cálculos que efetuar e todas as conclusões que obtiver terão de ser devidamente justificados.
- Resolva a prova em 5 grupos de folhas separadas, como é indicado ao longo do enunciado.
- 1. Considere o conjunto $A = \{a, b\}$. Determine:
 - a) (0.5 val.) o conjunto $A \times \mathcal{P}(A)$.
 - b) (0.5 val.) o cardinal de $\mathcal{P}(\mathcal{P}(A))$.
- 2. Considere os seguintes predicados: $P(x): x \in par$ e $I(x): x \in par$ e $I(x): x \in par$
 - a) (2 val.) Indique, justificando, o valor lógico das seguintes proposições:
 - (i) $\forall x, y \in \mathbb{Z}, [P(x) \land I(y)] \Rightarrow I(x \cdot y).$
 - (ii) $\forall x, y \in \mathbb{Z}, I(x \cdot y) \Rightarrow [I(x) \vee I(y)].$
 - b) (1 val.) Negue as proposições da alínea anterior, apresentando o resultado sem o símbolo ~.

******* Folha 2 *******

3. (4 val.) Use unicamente as propriedades das operações lógicas para verificar que a proposição

$$\Big\lceil (p \Rightarrow q) \vee (p \wedge q) \Big\rceil \wedge \Big\lceil \big[p \vee (p \Rightarrow \sim q) \big] \Rightarrow q \Big\rceil$$

é logicamente equivalente a q. Justifique a sua resposta e indique as propriedades usadas na simplificação da proposição.

******* Folha 3 ******

- 4. Seja $A = \{1, 2, 5, 7, 8, 9, 15, 27\}$ e considere a relação binária R em A definida por xRy se e só se x e y têm o mesmo número de divisores naturais.
 - a) (1 val.) Represente o grafo orientado da relação R.
 - b) (1.5 val.) Classifique-a quanto à reflexividade, simetria, anti-simetria e transitividade, justificando a sua resposta.
 - c) (1 val.) Justifique se R é relação de ordem ou de equivalência. No caso de ser uma relação de ordem, diga se é de ordem total ou parcial. No caso de ser uma relação de equivalência, determine as classes de equivalência de A determinadas por R.
 - d) (1.5 val.) Considere a relação binária S de A em $B = \{1, 2, 3, 4, 5\}$ definida por aSb se e só se a tem b divisores naturais. Apresente a relação $S \circ R$ por extensão.

Nota: Caso não tenha resolvido a alínea a), ou por opção, pode usar a relação

$$R = \{(1,1), (2,5), (5,7), (7,7), (8,15), (9,9), (15,27), (27,27)\}.$$

****** Folha 4 *******

5. (3 val.) Converta o argumento seguinte e construa uma prova simbólica, indicando quais as regras de inferência usadas em cada passo:

Quando o José vai jogar Padle, a Maria vai ao cinema. Se a Manuela vai jogar futebol, então o João vai ao cinema. Se a Maria ou o João vão ao cinema, a Zélia é informada por SMS. A Zélia não recebeu SMS. Consequentemente o José e a Manuela não vão jogar.

******* Folha 5 *******

6. (4 val.) Usando o Princípio de Indução Matemática, mostre que, para todo o inteiro não negativo,

$$\sum_{k=0}^{n} \frac{1}{(k+1)(k+2)} = \frac{n+1}{n+2}.$$