Weighted non-trivial multiply intersecting families

Peter Frankl Norihide Tokushige

April 18, 2005

Abstract

Let n and r be positive integers. Suppose that a family $\mathcal{F} \subset 2^{[n]}$ satisfies $F_1 \cap \cdots \cap F_r \neq \emptyset$ for all $F_1, \ldots, F_r \in \mathcal{F}$ and $\bigcap_{F \in \mathcal{F}} F = \emptyset$. We prove that there exists $\epsilon = \epsilon(r) > 0$ such that $\sum_{F \in \mathcal{F}} w^{|F|} (1-w)^{n-|F|} \leq w^r (r+1-rw)$ holds for $1/2 \leq w \leq 1/2 + \epsilon$ if $r \geq 13$.

1 Introduction

Let n, r and t be positive integers. A family \mathcal{F} of subsets of $[n] = \{1, 2, ..., n\}$ is called r-wise t-intersecting if $|F_1 \cap \cdots \cap F_r| \geq t$ holds for all $F_1, ..., F_r \in \mathcal{F}$. An r-wise 1-intersecting family is also called an r-wise intersecting family for short. An r-wise t-intersecting family \mathcal{F} is called non-trivial if $|\bigcap_{F \in \mathcal{F}} F| < t$. Let us define the Brace-Daykin structure as follows.

$$\mathcal{F}_{BD}^r = \{ F \subset [n] : |F \cap [r+1]| \ge r \}.$$

Then \mathcal{F}_{BD}^r is a non-trivial r-wise intersecting family. Brace and Daykin proved the following.

Theorem 1 [1] Suppose that $\mathcal{F} \subset 2^{[n]}$ is a non-trivial r-wise intersecting family. Then $|\mathcal{F}| \leq |\mathcal{F}_{BD}^r|$.

For a real $w \in (0,1)$ let us define the weighted size (or simply weight) $W_w(\mathcal{F})$ of \mathcal{F} by

$$W_w(\mathcal{F}) = \sum_{F \in \mathcal{F}} w^{|F|} (1 - w)^{n - |F|}.$$

Note that $W_{1/2}(\mathcal{F}) = |\mathcal{F}|/2^n$. See [3] for the maximum weighted size of intersecting families, and see [2, 4] for applications of weighted size to Erdős–Ko–Rado and Sperner type results concerning multiply intersecting families. In this note, we consider the maximum weighted size of non-trivial intersecting families and extend Theorem 1. The weight of the Brace–Daykin family is calculated as follows:

$$W_w(\mathcal{F}_{BD}^r) = (r+1)w^r(1-w) + w^{r+1} = w^r(r+1-rw).$$

Let us define

 $g_n(w,r,t) := \max\{W_w(\mathcal{F}) : \mathcal{F} \subset 2^{[n]} \text{ is non-trivial } r\text{-wise } t\text{-intersecting}\},$

$$g(w,r,t) := \lim_{n \to \infty} g_n(w,r,t).$$

Then the Brace–Daykin theorem states that $g_n(1/2, r, 1) = W_{1/2}(\mathcal{F}_{BD}^r)$ and thus $g(1/2, r, 1) = (r + 2)(1/2)^{r+1}$. Can we expect the same thing for $w = 1/2 + \epsilon$? The answer is "yes" for $r \geq 13$, and "no" for $r \leq 5$.

Theorem 2 Let $r \ge 13$. Then there exists $\epsilon = \epsilon(r) > 0$ such that $g(w, r, 1) = W_w(\mathcal{F}_{BD}^r) = w^r(r+1-rw)$ holds for $1/2 \le w \le 1/2 + \epsilon$.

In the last section, we shall construct non-trivial r-wise intersecting families with weights larger than $W_w(\mathcal{F}_{BD}^r)$ for $r \leq 5$. The cases $6 \leq r \leq 12$ remain open.

Conjecture 1 Theorem 2 is true for $r \geq 6$.

2 Tools

In this section we summarize some results on the maximum weight of (not necessarily non-trivial) r-wise t-intersecting families. Let us define

$$f_n(w, r, t) := \max\{W_w(\mathcal{F}) : \mathcal{F} \subset 2^{[n]} \text{ is } r\text{-wise } t\text{-intersecting}\},$$

$$f(w,r,t) := \lim_{n \to \infty} f_n(w,r,t).$$

If $\mathcal{F} \subset 2^{[n]}$ satisfies $f_n(w,r,t) = W_w(\mathcal{F})$ then $\mathcal{F}' := \mathcal{F} \cup \{F \cup \{n+1\} : F \in \mathcal{F}\} \subset 2^{[n+1]}$ satisfies $W_w(\mathcal{F}') = W_w(\mathcal{F}) = f_n(w,r,t)$, which implies

 $f_{n+1}(w,r,t) \geq f_n(w,r,t)$. Since $\mathcal{F} = \{F \subset [n] : [t] \subset F\}$ is r-wise t-intersecting and $W_w(\mathcal{F}) = w^t$, it follows that $f(w,r,t) \geq f_n(w,r,t) \geq w^t$.

Let $\alpha_{w,r} \in (1/2, 1)$ be the unique root of the equation $(1-w)x^r - x + w = 0$. The following inequality is not sharp but it is very useful (see Fact 3 on page 98 of [2]).

Lemma 1 $f(w,r,t) \leq \alpha_{w,r}^t$.

For the case t = 1, we proved the following in [3].

Lemma 2
$$f(w,r,1) = w$$
 if $w \leq \frac{r-1}{r}$, and $f(w,r,1) = 1$ if $w > \frac{r-1}{r}$.

For the case r = 3, we proved the following in [2] (see Proposition 2 on page 104).

Lemma 3 $f(w,3,t) \leq w^2 \alpha_{w,3}^{t-2}$ if $t \geq 2$ and w < 0.5018.

We also use the following simple fact.

Lemma 4 If $\alpha_{w,r-1}^{t+1} \leq w^t$ then $f(w,r,t) = w^t$.

Proof. Suppose that \mathcal{F} is an r-wise t-intersecting family with $W_w(\mathcal{F}) = f(w,r,t) \geq w^t$. If \mathcal{F} has (r-1) edges F_1,\ldots,F_{r-1} with $|F_1\cap\cdots\cap F_{r-1}|=t$ then all edges in \mathcal{F} must contain this t-subset, which proves $W_w(\mathcal{F}) \leq w^t$. Thus we may assume that \mathcal{F} is (r-1)-wise (t+1)-intersecting. By Lemma 1, we have $W_w(\mathcal{F}) \leq f(w,r-1,t+1) \leq \alpha_{w,r-1}^{t+1} \leq w^t$. \square

Using above lemmas, we have the following.

Lemma 5 There exists $\epsilon = \epsilon(r)$ such that $f(w, r, t) = w^t$ holds for $1/2 \le w \le 1/2 + \epsilon$ in the following cases: r = 3 and $t \le 2$, r = 4 and $t \le 2$, r = 5 and $t \le 7$.

Proof. The case t=1 follows from Lemma 2. The case r=3 and t=2 follows from Lemma 3.

Let us consider the case r=4 and t=2. Since $\alpha_{\frac{1}{2},3}=\frac{\sqrt{5}-1}{2}\approx 0.618$, we have $\alpha_{\frac{1}{2},3}^3<(\frac{1}{2})^2$. Then, by the continuity, $\alpha_{\frac{1}{2}+\epsilon,3}^3<(\frac{1}{2}+\epsilon)^2$ holds for sufficiently small $\epsilon>0$. Thus $f(w,4,2)\leq w^2$ for $\frac{1}{2}\leq w\leq \frac{1}{2}+\epsilon$ follows from Lemma 4. One can prove the case r=5 and $2\leq t\leq 7$ similarly. \sqcap

Note also that

$$\alpha_{\frac{1}{2},r-1}^{t+1}<(\frac{1}{2}+\frac{1}{2^{r-1}})^{t+1}=(\frac{1}{2})^{t+1}(1+\frac{1}{2^{r-2}})^{t+1}<(\frac{1}{2})^{t+1}\exp(\frac{t+1}{2^{r-2}}),$$

which is smaller than $(1/2)^t$ if $t+1 \le 2^{r-2} \log 2$. This means that $f(w,r,t) = w^t$ holds for $w = 1/2 + \epsilon(r)$ if $t \le 2^{r-2} \log 2 - 1$. We shall use the following weaker version later.

Proposition 1 Let $\mathcal{F} \subset 2^{[n]}$ be an r-wise r-intersecting family. If $r \geq 5$, then there exists $\epsilon = \epsilon(r) > 0$ such that $W_w(\mathcal{F}) \leq w^r$ holds for $\frac{1}{2} \leq w \leq \frac{1}{2} + \epsilon$.

3 Proof of Theorem 2

Proof. We prove Theorem 2 by induction on r. First we prove the initial step r = 13.

Proposition 2 Suppose that $\mathcal{F} \subset 2^{[n]}$ is a non-trivial 13-wise intersecting family. Then there exists $\epsilon > 0$ such that $W_w(\mathcal{F}) \leq W_w(\mathcal{F}_{BD}^{13})$ holds for $\frac{1}{2} \leq w \leq \frac{1}{2} + \epsilon$.

Proof. Let $\mathcal{F} \subset 2^{[n]}$ be a non-trivial 13-wise intersecting family. We assume that \mathcal{F} is shifted and (size) maximal. (Recall that \mathcal{F} is called shifted iff $(F - \{j\}) \cup \{i\} \in \mathcal{F}$ holds for all $1 \leq i < j \leq n$ and for all $F \in \mathcal{F}$ which satisfies $F \cap \{i, j\} = \{j\}$. See [2] for more about shifting.) Note also that if $F \in \mathcal{F}$ and $F \subset G$ then $G \in \mathcal{F}$ because \mathcal{F} is maximal.

Let

$$k := \max\{i : \forall F \in \mathcal{F}, |F \cap [i+1]| \ge i\}.$$

We can find such k, for $|F \cap [1]| \ge 0$ (i.e., the case i = 0) is evident. If $k \ge 13$ then $\mathcal{F} \subset \mathcal{F}_{BD}^{13}$. So we may assume that $k \le 12$. Let $t(\ell) := \max\{t : \mathcal{F} \text{ is } \ell\text{-wise } t\text{-intersecting}\}$. Then $1 \le t(13) < t(12) < \cdots < t(6) < \cdots$. This implies $8 \le t(6) < t(5) < t(4)$.

Since $\alpha_{1/2,4} \approx 0.543689$, the weight of 4-wise 12-intersecting family is, by Lemma 1, at most $\alpha_{1/2,4}^{12} \approx 0.000667124$. On the other hand, $W_{1/2}(\mathcal{F}_{BD}^{13}) = 15(1/2)^{14} \approx 0.000915527$. Thus for sufficiently small $\epsilon > 0$ we have $\alpha_{\frac{1}{2}+\epsilon,4}^{12} < W_{\frac{1}{2}+\epsilon}(\mathcal{F}_{BD}^{13})$, because these functions of both sides are continuous with respect to $w = \frac{1}{2} + \epsilon$. This means $W_w(\mathcal{F}) < W_w(\mathcal{F}_{BD}^{13})$ holds for $\frac{1}{2} \le w \le \frac{1}{2} + \epsilon$ if \mathcal{F} is 4-wise 12-intersecting. So we may assume that \mathcal{F} is not 4-wise 12-intersecting, that is, $t(4) \le 11$. Consequently we have $8 \le t(6) < t(5) < t(4) \le 11$, and so t(6) + 1 = t(5) or t(5) + 1 = t(4).

Lemma 6 If $t(\ell + 1) + 1 = t(\ell)$ then $k \ge t(\ell + 1)$.

Proof. Set $t := t(\ell+1)$. If $t(\ell) = t+1$ then \mathcal{F} is ℓ -wise (t+1)-intersecting, but \mathcal{F} is not ℓ -wise (t+2)-intersecting. So there exist $F_1, \ldots, F_\ell \in \mathcal{F}$ such that $|F_1 \cap \cdots \cap F_\ell| = t+1$. Since \mathcal{F} is shifted, we may assume that $F_1 \cap \cdots \cap F_\ell = [t+1]$. If there exists $F \in \mathcal{F}$ such that $|F \cap [t+1]| \leq t-1$, then $|F \cap F_1 \cap \cdots \cap F_\ell| \leq t-1$ and this means \mathcal{F} is not $(\ell+1)$ -wise t-intersecting. Thus we must have $|F \cap [t+1]| \geq t$ for all $F \in \mathcal{F}$ and this proves $k \geq t = t(\ell+1)$. \square

Using the lemma we have $k \ge t(6)$ if t(6) + 1 = t(5), or $k \ge t(5) > t(6)$ if t(5) + 1 = t(4). In either case we have $8 \le t(6) \le k \le 12$. For $1 \le i \le k + 1$ define

$$\mathcal{F}(i) := \{ F \in \mathcal{F} : F \cap [k+1] = ([k+1] \setminus \{i\}) \},\$$

and for i = 0 define $\mathcal{F}(0) := \{ F \in \mathcal{F} : [k+1] \subset F \}$, and set

$$G(i) := \{ F \cap [k+2, n] : F \in \mathcal{F}(i) \}$$

for $0 \le i \le k+1$. Since \mathcal{F} is non-trivial intersecting, shifted and maximal, we have

$$\emptyset \neq \mathcal{G}(1) \subset \mathcal{G}(2) \subset \cdots \subset \mathcal{G}(k+1) \subset \mathcal{G}(0). \tag{1}$$

Note also that

$$W_w(\mathcal{F}) = w^k (1 - w) \sum_{i=1}^{k+1} W_w(\mathcal{G}(i)) + w^{k+1} W_w(\mathcal{G}(0)).$$
 (2)

By the definition of k, there exists $F \in \mathcal{F}$ such that $|F \cap [k+2]| \leq k$. Since \mathcal{F} is shifted and maximal, it follows that $E_1 := [n] - \{k+1, k+2\} \in \mathcal{F}$. By shifting E_1 , we have $E_i := [n] - \{k+i, k+i+1\} \in \mathcal{F}$ for $1 \leq i \leq n-k-1$. Set s := r-k = 13-k. We will only use the fact that there exist $\mathcal{F} \ni E_1, \ldots, E_{2s}$ such that

$$k + i, k + i + 1 \notin E_i \text{ for } i = 1, \dots, 2s.$$

Note that $E_1 \cap E_3 \cap \cdots \cap E_{2j-1} \cap [k+1, k+2j] = \emptyset$, and $E_2 \cap E_4 \cap \cdots \cap E_{2j} \cap [k+2, k+2j+1] = \emptyset$.

Lemma 7 $\mathcal{G}(i)$ is (k+1-i)-wise 2s-intersecting for $i=1,\ldots,k-2$.

Proof. Suppose, on the contrary, that $\mathcal{G}(i)$ is not (k+1-i)-wise 2s-intersecting. Then we can find $G_i, G_{i+1}, \ldots, G_k \in \mathcal{G}(i)$ such that $|G_i \cap \cdots \cap G_k| \leq 2s-1$. By the shiftedness, we may assume that $G_i \cap \cdots \cap G_k = 1$

[k+2, k+2s]. For $i \leq j \leq k$, let $F_j := ([k+1] - \{i\}) \cup G_j \in \mathcal{F}(i)$. Applying (i, j)-shift to F_j we have

$$F'_i := (F_i \setminus \{j\}) \cup \{i\} \in \mathcal{F}(j) \text{ for } i < j \le k.$$

Set $F'_i := F_i$ and choose $F_j \in \mathcal{F}(j)$ for $j = 1, \ldots, i - 1$ arbitrarily. Then $F_1 \cap \cdots \cap F_{i-1} \cap F'_i \cap \cdots \cap F'_k \subset [k+2,k+2s]$ and so $F_1 \cap \cdots \cap F_{i-1} \cap F'_i \cap \cdots \cap F'_k \cap E_1 \cap E_3 \cap \cdots \cap E_{2s-1} = \emptyset$. This means that we have k+s=r edges in \mathcal{F} whose intersection is empty and this is a contradiction. \square

Lemma 8

 $\mathcal{G}(k-1)$ is 3-wise (2s-1)-intersecting if $s \geq 1$.

 $\mathcal{G}(k)$ is 3-wise (2s-3)-intersecting if $s \geq 2$.

 $\mathcal{G}(k+1)$ is 3-wise (2s-5)-intersecting if $s \geq 3$.

 $\mathcal{G}(0)$ is 3-wise (2s-6)-intersecting if $s \geq 4$.

Proof. The proof is similar to the previous lemma. For example, suppose that $\mathcal{G}(k-1)$ is not 3-wise (2s-1)-intersecting. Then there exist $G_{k-1}, G_k, G_{k+1} \in \mathcal{G}(k-1)$ such that $G_{k-1} \cap G_k \cap G_{k+1} = [k+2, k+2s-1]$. Set $F'_j := ([k+1] - \{j\}) \cup G_j \in \mathcal{F}(j)$ for j = k-1, k, k+1 and choose $F_j \in \mathcal{F}(j)$ for $j = 1, \ldots, k-2$ arbitrarily. Then $F_1 \cap \cdots \cap F_{k-2} \cap F'_{k-1} \cap F'_k \cap F'_{k+1} \cap E_2 \cap E_4 \cap \cdots \cap E_{2s-2} = \emptyset$, which is a contradiction. The remaining statements can be proved in the same way. \square

Recall that $8 \le k \le 12$ and so $1 \le s \le 5$. Let us deal with the hardest case k = 10 (s = 3) first.

Case 1
$$k = 10 (s = 3)$$
.

By Lemma 7 and Lemma 8, we get a table representing the ℓ -wise t-intersecting property for $\mathcal{G}(i)$ as follows:

By Lemma 5 we have $W_w(\mathcal{G}(6)) \leq w^6$. Using (1) we have

$$W_w(\mathcal{G}(1)) + \dots + W_w(\mathcal{G}(6)) \le 6W_w(\mathcal{G}(6)) \le 6w^6.$$

By Lemma 1, $W_w(\mathcal{G}(7)) \leq \alpha_{w,4}^6$ follows. By Lemma 3 we have

$$W_w(\mathcal{G}(8)) + W_w(\mathcal{G}(9)) + W_w(\mathcal{G}(10)) \le w^2 \alpha_{w,3}^4 + w^2 \alpha_{w,3}^3 + w^2 \alpha_{w,3}.$$

By Lemma 2, $W_w(\mathcal{G}(11)) \leq w$. For $\mathcal{G}(0)$ we use the trivial bound $W_w(\mathcal{G}(0)) \leq 1$. Therefore using (2) we have

$$W_w(\mathcal{F}) \le w^{10}(1-w)\{6w^6 + \alpha_{w,4}^6 + w^2\alpha_{w,3}^4 + w^2\alpha_{w,3}^3 + w^2\alpha_{w,3} + w\} + w^{11}. (3)$$

Since $\alpha_{1/2,3} \approx 0.618033$ and $\alpha_{1/2,4} \approx 0.543689$, we have

$$W_{1/2}(\mathcal{F}) \le 0.00091288 < W_{1/2}(\mathcal{F}_{BD}^{13}) \approx 0.000915527.$$

So we can conclude that $W_w(\mathcal{F}) < W_w(\mathcal{F}_{BD}^{13})$ for $w = 1/2 + \epsilon$ because both the RHS of (3) and $W_w(\mathcal{F}_{BD}^{13}) = (14 - 13w)w^{13}$ are continuous with respect to w.

The proof for the cases k = 12, 11, 9, 8 is similar (and easier). We give a sketchy proof here.

Case 2
$$k = 12 (s = 1)$$
.

By Lemma 7 and Lemma 8, we have the following table.

$$\begin{array}{c|cccc} \mathcal{G}(i) & \mathcal{G}(10) & \mathcal{G}(11) \\ \hline \ell\text{-wise} & 3 & 3 \\ \hline t\text{-int.} & 2 & 1 \\ \end{array}$$

Therefore, we have

$$W_w(\mathcal{F}) \le w^{12}(1-w)\{10w^2+w+1+1\}+w^{13},$$

and $W_{1/2}(\mathcal{F}) \le 0.000732422 < W_{1/2}(\mathcal{F}_{BD}^{13})$.

Case 3
$$k = 11 (s = 2)$$
.

By Lemma 7 and Lemma 8, we have the following table.

Therefore, we have

$$W_w(\mathcal{F}) \le w^{11}(1-w)\{9w^2\alpha_{w,3}^2 + w^2\alpha_{w,3} + w + 1\} + w^{12},$$

and $W_{1/2}(\mathcal{F}) \le 0.000857893 < W_{1/2}(\mathcal{F}_{BD}^{13}).$

Case 4
$$k = 9 (s = 4)$$
.

By Lemma 7 and Lemma 8, we have the following table.

Therefore, we have

$$W_w(\mathcal{F}) \le w^9 (1 - w) \{ 9w^2 \alpha_{w,3}^3 + w^2 \alpha_{w,3} \} + w^{10} \cdot w^2,$$

and $W_{1/2}(\mathcal{F}) \le 0.000913729 < W_{1/2}(\mathcal{F}_{BD}^{13})$.

Case 5
$$k = 8 (s = 5)$$
.

By Lemma 7 and Lemma 8, we have the following table.

$$\begin{array}{c|ccccc}
\mathcal{G}(i) & \mathcal{G}(8) & \mathcal{G}(9) & \mathcal{G}(0) \\
\hline
\ell\text{-wise} & 3 & 3 & 3 \\
\hline
t\text{-int.} & 7 & 5 & 4
\end{array}$$

Therefore, we have

$$W_w(\mathcal{F}) \le w^8 (1-w) \{8w^2 \alpha_{w,3}^5 + w^2 \alpha_{w,3}^3\} + w^9 \cdot w^2 \alpha_{w,3}^2,$$

and $W_{1/2}(\mathcal{F}) \le 0.000653997 < W_{1/2}(\mathcal{F}_{BD}^{13}).$

This completes the proof of Proposition 2. \square

Now we are going back to the proof of the theorem. Let \mathcal{F} be a non-trivial r-wise intersecting family. To apply induction, we suppose r > 13. We also suppose that \mathcal{F} is shifted and maximal. Let us define

$$\mathcal{F}(1):=\{F-\{1\}:1\in F\in\mathcal{F}\},\quad \mathcal{F}(\bar{1}):=\{F\in\mathcal{F}:1\not\in F\}.$$

Since \mathcal{F} is non-trivial intersecting and maximal, we have $[2, n] \in \mathcal{F}(\bar{1})$. By shifting [2, n], we have $[n] - \{i\} \in \mathcal{F}$ for $1 \leq i \leq n$. Thus $\bigcap_{F \in \mathcal{F}(1)} F = \emptyset$. Since \mathcal{F} is r-wise intersecting and $[2, n] \in \mathcal{F}$, it follows that $\mathcal{F}(1)$ is a non-trivial (r-1)-wise intersecting family. Thus using the induction hypothesis we have $W_w(\mathcal{F}(1)) \leq W_w(\mathcal{F}_{BD}^{r-1}) = w^{r-1}(r-(r-1)w)$.

On the other hand, $\mathcal{F}(\bar{1})$ is r-wise r-intersecting. To see this fact, suppose on the contrary that there exist $F_1, \ldots, F_r \in \mathcal{F}(\bar{1})$ such that $|F_1 \cap \cdots \cap F_r| < r$. Since \mathcal{F} is shifted, we may assume that $F_1 \cap \cdots \cap F_r = [2, r]$. Then $F'_i := (F_i - \{i\} \cup \{1\}) \in \mathcal{F}$ for $2 \le i \le r$, and $F_1 \cap F'_2 \cap \cdots \cap F'_r = \emptyset$, a contradiction. Therefore $\mathcal{F}(\bar{1})$ is r-wise r-intersecting and using Proposition 1 we have $W_w(\mathcal{F}(\bar{1})) \le w^r$. Consequently it follows that

$$W_{w}(\mathcal{F}) = wW_{w}(\mathcal{F}(1)) + (1 - w)W_{w}(\mathcal{F}(\bar{1}))$$

$$\leq w(w^{r-1}(r - (r - 1)w)) + (1 - w)w^{r}$$

$$= w^{r}(r + 1 - rw) = W_{w}(\mathcal{F}_{BD}^{r}).$$

This completes the proof of Theorem 2. \Box

4 Constructions

First we check that Theorem 2 fails if r = 5. Recall that $W_w(\mathcal{F}_{BD}^r) = (r+1-rw)w^r$.

Example 1 We construct a non-trivial 5-wise intersecting family $\mathcal{F} \subset 2^{[n]}$ as follows:

$$\mathcal{F} := \{ \{1, 2, 3\} \cup G : G \subset [4, n], |G| \ge \lceil \frac{n-2}{2} \rceil \} \cup \{F_1, F_2, F_3\},$$
where $F_i = [n] \setminus \{i\}.$

Then $\lim_{n\to\infty} W_w(\mathcal{F}) = w^3$ for w > 1/2. This implies $g(w,5,1) \ge w^3 > W_w(\mathcal{F}_{BD}^5) = (6-5w)w^5$ for $1/2 < w < \frac{1+\sqrt{21}}{10}$.

Using the fact that $\binom{[n]}{k}$ is r-wise t-intersecting if (r-1)n + (t-1) < rk, we can extend the above construction to get a slightly general lower bound for g(w, r, t) as follows.

Proposition 3 If $\frac{r-(i+1)}{r-i} < w$ then $g(w,r,t) \ge w^{it}$, where i is a non-negative integer.

Proof. For sufficiently small $\epsilon > 0$, we may assume that $\frac{r-(i+1)}{r-i} < (1-\epsilon)w$. Moreover, for sufficiently large n, we may assume that $\frac{r-(i+1)}{r-i} + \frac{t-1}{(r-i)(n-it)} < (1-\epsilon)w$. Set an open interval $I = ((1-\epsilon)wn, (1+\epsilon)wn)$ and choose an integer $k \in I$, then $(1-\epsilon)w < k/n < k/(n-it)$. Thus, $\frac{r-(i+1)}{r-i} + \frac{t-1}{(r-i)(n-it)} < \frac{k}{n-it}$, or

equivalently, (r-(i+1))(n-it)+(t-1)<(r-i)k. This means that $\binom{[it+1,n]}{k}$ is a non-trivial (r-i)-wise t-intersecting family. Therefore, the family

$$\mathcal{F} := \{[it] \cup G : G \in \binom{[it+1,n]}{k}, k \in I\} \cup \{[n] - [jt+1,(j+1)t] : 0 \leq j < i\}$$

is non-trivial r-wise t-intersecting, and

$$g_n(w,r,t) \ge W_w(\mathcal{F}) = w^{it} \sum_{k \in I} \binom{n-it}{k} w^k (1-w)^{n-it-k} + i(1-w)^t w^{n-t} \to w^{it}$$

as
$$n \to \infty$$
.

Using the above proposition, Theorem 1 and Lemma 2, we have the following.

Example 2

$$f(w, r, t) = g(w, r, t) = 1 \text{ if } w > (r - 1)/r.$$

$$g(w,3,1) = \begin{cases} 5/16 & \text{if } w = 1/2 \\ w & \text{if } 1/2 < w \le 2/3 \\ 1 & \text{if } 2/3 < w \le 1. \end{cases}$$

$$g(w,4,1) = \begin{cases} 3/16 & \text{if } w = 1/2 \\ \ge w^2 & \text{if } 1/2 < w \le \frac{1+\sqrt{17}}{8} \\ \ge (5-4w)w^4 & \text{if } \frac{1+\sqrt{17}}{8} \le w \le 2/3 \\ w & \text{if } 2/3 < w \le 3/4 \\ 1 & \text{if } 3/4 < w \le 1. \end{cases}$$

$$g(w,5,1) = \begin{cases} 7/64 & \text{if } w = 1/2 \\ \ge w^3 & \text{if } 1/2 < w \le \frac{1+\sqrt{21}}{10} \\ \ge (6-5w)w^5 & \text{if } \frac{1+\sqrt{21}}{10} \le w \le 2/3 \\ \ge w^2 & \text{if } 2/3 < w \le 3/4 \\ w & \text{if } 3/4 < w \le 4/5 \\ 1 & \text{if } 4/ < w \le 1. \end{cases}$$

References

 A. Brace and D. E. Daykin. A finite set covering theorem. I,II,III,IV. Bull. Austral. Math. Soc., 5:197–202, 1971, 6:19–24, 417–433, 1972, Infinite and finite sets, I:199–203, 1975.

- [2] P. Frankl, N. Tokushige. Weighted 3-wise 2-intersecting families. J. Combin. Theory (A) 100:94-115, 2002.
- [3] P. Frankl, N. Tokushige. Weighted multiply intersecting families. *Studia Sci. Math. Hungarica* 40:287–291, 2003.
- [4] P. Frankl, N. Tokushige. Random walks and multiply intersecting families. J. Combin. Theory (A), 109:121-134, 2005.