

# Министерство высшего и среднего специального образования РСФСР

Ризанский радиотехнический институт

# ОФОРМЛЕНИЕ ЧЕРТЕЖЕЙ

Методическая разработка № I по курсу "Инженерная графика"

Составила Л.Д.Голованова

Одобрено Методическим советом Рязанского радиотехнического института 14 мая 1976 г.

Методическая разработка содержит краткие сведения о форматах, масштабах, типах линий, шрифтах, простановке размеров в соответствии с действужщими стандартами ЕСКД. Приведени некоторые рекомендации по организации чертежного процесса. Кроме того рассмотрены основные случаи плавных переходов линий — сопряжений, конусности и уклонов. Цель разработки — помочь студенту при самостоятельной работе над заданиями по инженеркой графике.

## ОФОРМЛЕНИЕ ЧЕРТЕЖЕЙ

Методическая разработка № I -- по курсу "Инженерная графика"

Составила Любовь Дмитриевна Голованова

Редактор Н.В.Оборина Корректор И.П.Перехрест

Подписано к печати 8/УІ 1976 г. Формат бумаги 60х84 1/16. Печ.н. 1.5. Тираж 900 экз. Заказ № 2837 Бесплатно.

Рязанская областная типография, 390012, г. Рязань, Новая, 69.

### ВВЕДЕНИЕ

Всевозможная деятельность человека в области науки, техники и производства снязана с передачей и переработной информации. Графическая форма предъявления информации является наиболее экономичной. Одно из достоинств её — везможность в зрительно воспринимаемой форме представить самые разнообразные
объекти и измерлемые величини. Грамотно выполненный чертеж даёт о детали такое полное и точное преставление, какое че даст
ни одно достаточно подробное её описание.

Зародившийся ещё в древности чертёх представиял собой разметку на земме планов зданий и сооружений, рисунки на доснах, коже, пергаменте приблизительной фотми изготовляемих изтелий. В документах ХУП дека впервые встречается слово "чертеж. Содержанием таких чертежей яклялись плани земельных участков, дорог, з позднее плани зданий и даже городов. Чертеми сооружений и машин впервые встречаются во второй половине ХУП вена. В начале ХУПП века стали выполнять чертежи по методу прамоугольных проенций, а во второй половине XVIII века -дооб восировите выправно изобратения, являющиеся просбразом аксенометрии. В нервой половине XIX века русским ученым Я. А. Серастыновым сила написана книга " Начальные основания газрезки камией ", ослержищая рид геометрических построений. а неспольно позднее им же был вытупен в свет учебник " Основания начергательной геометрии ". Последующими учеными, онграмними большую роль в развития технической графики, были: А.Х Редер, В.А. Чебимев, Ф.В. Сриов, В.П. Курдомов, Н.А. Рыкин. Н.А. Глаголев, А.И. Добреков, Д.И. Каргин и многие другие.

В настоящее время советские учение проводят теоретические исследования в области начертательной ресметрии и инженерной графики, изучают процесси выполнения чертежне-конструкторских работ, а также работают над созданием новых приборов в автоматов, облегчающих труд чертежника и конструктора. В результате стало возможным автоматизировать режение многих зодач начертательной геометрии, выполнение рабочих чертежей деталей по данным сборочным чертежем, выполнение чертежей из медий о начуры и т.д.

Иля работи любого промижленного предприятия требуется

техническая документация: чертежи, спецификации, технические условия, отраслевие нормали и т.д. На предприятии должно бить в наличии столько экземпляров технической документации, сколько необходимо для организации нормальной работы предприятия. Документацию размножают в количестве от нескольких десятков до нескольких тисяч экземпляров. Существует несколько способов размножения технической документации; основные способи следующие: светокопирование на диазобумагах, электрография, микрофотокопирование, термокопирование, оперативная полиграфия.

Современные чертежи, в целях удовлетворения повышенным требованиям передовой промышленности, содержат, кроме изображения самого изделия, все пояснения (технические требования, надписи на чертеже и т.д.); они насыщени большим количеством различных условностей. Применение таких чертежей позволяет выполнять по ним чрезвичайно сложные и точные взаимозаменяемые детали, сборочные единици и конструкции.

Инженерная графика — одна из дисциплин, составляющих общениженерную подготовку специалистов с высшим образованием. Занятия по инженерной графике развивают способность к пространственному представлению. Знания, умения и навыки, приобретенные в курсе киженерной графики, необходимы для изучения общениженерних дисциплин, а также в последующей общениженерной деятельности. Обладение чертежом как средством выражения технической мысли и как производственным документом происходит на протяжении всего процесса обучения. Этот процесс начинается с изучения инженерной графики, а затем развивается и закрепляется в ряде общениженерных и специальных дисциплин, а также при выполнении курсовых и дипломных проектов. В курсе инженерной графики будущий инженер должен научиться оформлять чертежи согласно государственным стандартам.

Стандартизация зародилась очень давно. Письменность, кадендарь, система счета — вот проявления стандартизации на первых ступенях развития культуры. Современная промышленность немыслима без стандартизации. Стандарты представляют собой наиболее концентрированное выражение передового опыта в различных областях производственной деятельности, включая в себя данные исследований и открытий науки и техники. Действующие стандарти - стражи качества и контроль надежности.

В курсе инженерной графики изучаются стандарти, объединенные в "Единой системе конструкторской документации", содержащие указания по оформлению чертежей и других конструктороких документов. Все стандарти ЕСКД расположени по группам:

группа 0 - сощие положения;

группа і - основные положения;

группа 2 - классификация и обозначение изделий в конструкторских документах;

группа 3 - общие правила оформления чертежей;

группа 4 - правила выполнения чертежей изделий машиностро-

группа 5 — правила обращения конструкторских документов (учет, хранение, дублирование, внесение изменений);

группа 6 - правила выполнения эксплувтационной и ремонт-

группа 7 - правила выполнения схем;

группа 8 - превила виполнения документов строительных и судостроения;

группа 9 - прочие стандарти.

Все стандарты ЕСКД имеют обозначения по структуре:

"ГОСТ 2.XXX — XX", где 2 — номер, присвоенний всем стандартам ЕСКД: XXX — номер группи стандартов по их классиминации и порядковий номер, начиная с СП в пределах данной группи; XX — год утверждения стандарта. Стандарти ЕСКД разработани с максимальным упрощением конструкторской документации сез ущеров для ясности. Государственные стандарти в СССР узаконени, поэтому их использование обязательно при выполнении чертелей.

Изучаемый курс инженерной графики включает в себя следую-

- 1) проектионное черчение,
- 2) рабочие чертежи деталей,
- . 3) чертеж сборочной единицы,
  - 4) первая деталировка,
  - 5) вторая деталировка.

Объем заданий рассчитан на плодотворные занятия под руководотвом препоравателя в часн занятий. Кроме этого студенты долкны расотать к вне расписания, согласно графику.

| Обозначение формата           | 44       | 24      | 22      | 12      | II      |
|-------------------------------|----------|---------|---------|---------|---------|
| Размери сторон<br>формата, мм | II89x84I | 594x84I | 594x420 | 297x420 | 297x2I0 |



Puc. 2

Допускается применение дополнительных форматов согласно ГОСТ 2. 301 - 68.

Пля того чтобы правильно расположить формат на листе, находят точку пересечения его диагоналей. Через полученную точку проводят горизонтальную и вертикальную линии, на которих откладыварт размеры сторон формата. Это внешняя рамка. Внутренняя рамка отстает от краев формата - с левой стороны на 20 мм, с остальных сторон - по 5 мм. Наружная рамка обводит-

ся силошной тонкой линией, внутренняя — основной. Края листа за пределами формата не срезаются (рис. 3). Ссновная надписьштами помещается в правом нижнем угму по длинной или короткой стороне формата.

В одиннадцатом формате штами располагается только вдоль короткой стороны.

Размеры штампа приведены на рис. 4a и 46. Штамп может быть вычерчен студентом или поставлен с помощью резинового штемпеля.



Pric. 4a

|         |                            |            |              | Задание N°1 Вариант N°30 |                 |  |  |  |  |  |
|---------|----------------------------|------------|--------------|--------------------------|-----------------|--|--|--|--|--|
| Ризраб. | N°dokym.<br>Cedos<br>Tumos |            | 2am<br>5.10. | ПРОЕКЦИОННОЕ<br>ЧЕРЧЕНИЕ | Лит Масса Масшт |  |  |  |  |  |
| Т.кант. |                            |            |              | 3 0 1.                   | пист пистов     |  |  |  |  |  |
| н конт: |                            |            |              |                          | РРТИ НГЧ Гр.316 |  |  |  |  |  |
| ¥m₿.    | Tumo8                      | Dittioning |              |                          |                 |  |  |  |  |  |

Pro: 46 § 3. Machitable

В конструкторской практике приходится чертить изображения как крупных, так и мелких изделий. Размер изображения определяется его назначением: должна бить хорошо видна форма как нелого, так и его частей.

Отношение величини изображения к величине самого предмета называется м а с ш т а б о м и регламентируется ГОСТ 2. 302 - 68.

Размеры элементов изделия проставляются в натуральную величину, независимо от масштаба (рис. 5).

В ряде случаев для обеспечения наглядности изображаемого предмета допустимо отступление от масштаба. Например, при незначительном уклоне или конусности их изображают увеличенно.

Если разница в размерах одинаковых элементов мала (отверстия, назы), допустимо их изображать о большей разницей в размерах.



Рис. 5

# § 4. ТИПЫ ЛИНИЙ

Трудно разобраться в чертеже, если все линии его выполнить одной толяиной и одинакового начертания. Так же значительно усложнилась он работа, если каждый конструктор применяя ту или иную линию на своё усмотрение.

Начертание и основное назначение линий (ГОСТ 2. 303-68)

| Наименование         | :Начертание<br>: | Толщина линии по отношению к толщине сплошной основной линии | : Основное назначение                                                                                                                                                                                                                                                                                                   |  |  |  |
|----------------------|------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| I. Спловная основная |                  | \$                                                           | Линии видикого конту-<br>ре. Линии перехода ви-<br>димие. Лении контура<br>сечения (винесенного<br>и входящего в состав<br>гразреза)                                                                                                                                                                                    |  |  |  |
| 2. Спрошная тонкая   |                  | От <u>\$</u> до <u>\$</u>                                    | Пинии контура наложен- ного сечения. Линии размерние и вы- носние. Линии втриховки. Линии выноски. Полки линий-выносок и подчериивание надии- сей Линии для изобра- жения пограничных де- талей (" обстановка"). Линии ограничения вы- носных элементов на видах, разрезах и се- чениях. Линии перехода вообра- жаемие. |  |  |  |

|                                            | - 1                                                                         |                                                                                                                                                                                                                                                                    |
|--------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Наименование Начертание                    | :Толщина линии<br>по отношению к<br>толщине сплош-<br>ной основной<br>линии |                                                                                                                                                                                                                                                                    |
|                                            |                                                                             | :Линии сгиба на раз-<br>вертках.<br>:Осй проекций, следы<br>плоскостей, линии<br>:построения характер-<br>ных точек при специ-<br>:альных построениях.                                                                                                             |
| 3. Силошиля волнястая                      | От <u>S</u> до <u>S</u>                                                     | :Линии обрыва.<br>:Линии разграничения<br>:вида и разреза.                                                                                                                                                                                                         |
| 4. Штриховая: 1.2                          | От <u>\$</u> до <u>\$</u>                                                   | :Линии невидимого<br>:контура.<br>:Линии перехода неви-<br>:димые.                                                                                                                                                                                                 |
| 5. Птрих— 5.30<br>пунктирная 3.5           | От <u>\$</u> до <u>\$</u>                                                   | :Линии осевне и цент- ровые. :Линии сечений, явля- рошеся осями симмет- раи для наложенных :или винесенных сече- ний. :Линии для изображения частей изделий в край- них или промежуточ- них положениях. :Линии для изображе- ния развертки, сов- мещенной с видом. |
| 6. Штрих—<br>пунктярная<br>утолщенная — 38 | Oт $\frac{S}{2}$ до $\frac{S}{3}$                                           | Пинии, обозначающие поверхности, подле- жащие термообработ- ке или покрытию. Линии для изображе- ния элементов, рас- положенных перед се- кущей плоскостыю ("на- ложенная проекция").                                                                              |
| 7. Разомкну-<br>тая                        | Or S до $I^{\perp}_2$ S                                                     | :Линии сечений.                                                                                                                                                                                                                                                    |

Из табл. 3 видно, что основным расчетным параметром является толщина сплошной основной линииs(0,6...I,5 мм) в зависимости от величины и сложности изображения.

Выполнить чертеж ярко и четко необходимо для получения качественного изображения при бескопировочном размножении чертежей и снятия с них микробильмов.

Длину штрихов в штрихових и штрих-пунктирных линиях следует выбирать в зависимости от величины изображения. Штрихи в линии должны быть одинаковой длины, промежутки тоже.

Штрих-пунктирные линии должны пересекиться и заканчиваться штрихами. Если штрих-пунктирные линии применяются как центровне в отверстиях или других геометрических элементах малой величины (<12 мм), ях следует заменять сплошными тонкими.



Выбранная толщина сплошной основной линии S, а следовательно и толщина всех других линий, должна оставаться постоянной в пределах всего чертежа. Примеры использования линий различных типов приведены на рис. 6.

Prc. 6
§ 5. IIPMOTH VEPTENHLE

П р и ф т - это совокупность общих закономерностей начертания букв и нифр, которые придают им единий, карактерный облик.

Все надписи на чертежах и других технических документах (название изделия, размерные числа, обозначения масштабов, указания о материалах, покритиях) следует выполнять тем или иним шрифтом, согласно ГОСТ 2. 304 — 68.

Качество чертежа определяется не только правильным гра-

фическим изображением, но и оформлением, неотъемлемой частью которого являются надписи. Они позволяют дополнить на чертеже то, что трудно или восоще невозможно выразить графически. Шрифти для надписей должны соответствовать карактеру и маситабу чертежа. Слишком крупные надняси "выпирают из чертежа, слишком мелкие "проваливаются".

Стандарт содержит три алфавита ( русский, латинский и греческий), арабские и римские цифры и различные знаки, применя емые в чертежах и других технических документах. Различают шрифт основной и широкий, шрифт прямой и шрифт с наклоном. Шрифт широкий применяется для виделения надписей и чисел, прямой — наименований, обозначений и заголовков. Кроме того, прямой шрифт применяется для выполнения надписей на различно го рода изделиях и приборах.

Буквы и пыфры основного чертежного шрифта пишут с наклоном 75°к основанию строки. Такой угол наклона удобно получить при помощи двух угольников и рейсшины (рис. ?).



Рис. 7

Размер мрифта определяется висотой л пропасних букв в миллиметрах или высотой цифр данных чисел.

ГОСТ 2.304-68 устанавливает следующие размеры прифтов: 2,5; 3,5; 5; 7; 10; 14: 20: 28: 40.

При веполнении надия-

сем шрифтом 2,5 строчные буквы не применяют. В табл. 4 указаны соотношения между висотой и остальными размерами букв и пефр, расстояния между буквами, словами и строками. Примечания.

для всего текста толщина линий должна быть одинакова.
 Нежние и соковые отростки букв Д.Ц.Щ.Ь, цифрн 4 и верхний знак оукви й должни выполняться за счёт промежутков между строками и буквами.

# Конструкция прописных букв

Для удобства изучения прописные буквы делят на пять групп.

| 1             |                       |    | 1                           |                    |                                                               |                         |                  |                |                                                             |                         |                                |                           |                |                              |                                                                  |
|---------------|-----------------------|----|-----------------------------|--------------------|---------------------------------------------------------------|-------------------------|------------------|----------------|-------------------------------------------------------------|-------------------------|--------------------------------|---------------------------|----------------|------------------------------|------------------------------------------------------------------|
| Tannula       | IO                    |    |                             | 2                  | 5,7                                                           | 9,8                     | 7                | 2,9            | 2                                                           | IO                      | 4,3                            | 2                         | 2,7            | I++.I                        | 547                                                              |
|               | 4                     |    |                             | 7                  | 4                                                             | 9                       | 52               | 2              | 5                                                           | 7                       | m                              | in,                       | 4              | 1.0.7                        | 3,545                                                            |
| Везиал шлифие | 5                     | MM |                             | 5                  | 2,8                                                           | 4,3                     | 3,6              | 7°T            | 3,6                                                         | in.                     | 2.1                            | 3,6                       | 2,8            | 0,740,5                      | 2,5+3,5                                                          |
|               | 3,5                   |    |                             | 3,5                | .2                                                            | 3                       | 2,5              | H              | 2,5                                                         | 3,5                     | T,5.                           | 2,5                       | 2              | 0,5+0,35                     | 2,5                                                              |
| · On on moon  | таме разме-           |    |                             |                    | 4714                                                          | 41/9                    | . 47/2           | 2/7/           | 11/5                                                        | 1                       | 3/7/                           | 5/7.11                    | 4774           | 1/7+1/104                    | .0,5+0,7 h,                                                      |
|               | Обозначе-вие          |    | 1                           | 4.                 | 9.                                                            | 19                      | 02               | 63             | 4                                                           | · 4                     | 64                             | 69                        | (e             |                              | h2                                                               |
|               | Определяемая величива |    | I. Прописние бунвы и цифры: | высота букв и цифр | ширина букв и цифр, проме букв .<br>А.Т.М.Ф.Ш.Ш.Н.Ю и цифры I | ширина букв Ж.Ф.П.И.И.Ю | ширина букв А, И | пирина пифри Т | 2. Строчные буквы: высота букв, кроме букв б, в, т, р, у, ф | высота букв б,в,д,р,у,ф | ширина бунв, ироме букв ж.и.т. | шприна букв ж,т,ф,ш,щ,ы,ю | ширина буквы и | 3. Толшина пиний букв и цифр | 4. Высота индеисов, поназаленей:<br>степени, предельных отклоне- |

К первой группе относится букви Г, Е, Н, П, Т, Ц, Ш,



Е, Н, П, Т, Ц, Ш, Щ, образованные из прямых ланий, расположенных горизонтально и с наклоном 75°.

Ко второй группе относятся буквы А, Ж, И, Й, К, М, Х, образованные из наклонных и диагональных линий.

К третьей груп-

пе относятся буквы Л и Д из горизонтальных, наклонных и диагональных линий.





К четвертой группе - букви Б, В, Р, У, Ч, Ь, Ъ, Ы, Я.



К пятой группе — буквы 0, С, Э, Ф, Ю, З, состоящие из прямых и кривых линий.



Конструкции строчных букв Строчные буквы по конструкции можно разделить на шесть групп.

Первая группа - н. х. к. ж. м. л. ч. которые остаются

одинаковыми по форме с соответствующими прописными.



Вторая группа - я, и, ь, ь, которые также одинакови по форме с соответствующими прописными.



К третьей группе - a, e, o, c, э, ю, которые в основе построения содержат букву о.



Четвертая группа - и, й, ц, ш,щ, п, т, состоящие из наклонных и криволинейных линий.



Пятая группа — б, в, д, р, ф, у — высота их равняется размеру прифта.







конструкция арабских цифр



Если формат завершается текстом, поясняющим его содержание, то текст рекомендуется выполнять шрифтом № 5, соблюдая правила выполнения букв и цифр. Основная надпись в угловом штампе выполняется в одну или в две строчки буквами прописного шрифта № 10 или 7.

#### § 6. ШТРИХОВКА ФИГУР СЕЧЕНИЯ

Сечением называется изображение фигуры, получающейся при мисленном рассечении предмета плоскостью.

Эта фигура сечения покрывается штриховкой. Такая условность облегчает чтение чертежа. Вид штриховки соответствует различным материалам ГОСТ 2.306-68.

На чертежах штриховка фигуры сечения металлических деталей выполняется сплошными тонкими линиями, нараллельными друг другу под 45°к основной надынси чертежа. Расстояние между штриками выбирают от I до IO мм в зависимости от величины заштрикованной площади.

Наклон штрихов может быть либо вправо, либо влево, но всегда в одну и ту же сторону на всех сечениях, относищихся к одной и той же летали.

Если направление штриховки парадлельно линиям контура изображения или его осевых, допускается изменить угол наклона штрихов, приняв его равным 30 или 60°.

Узкие площади сечений, имеющие шарину 2 мм и менее, зачернартся.



#### § 7. СОПРЯЖЕНИЯ

При изображении технических деталей различной сложности часто можно встретить линии различного вида, плавно переходящие одна в другую.

Плавные переходы одних линий в другие называются сопредениями. Сопряжения достигаются путём построений, основанных на геометрических понятиях о прямых, касательных в окружностям, в об окружностях, касательных друг к другу. Предлагаются некоторые типы наиболее употребляемых сопряжений.

I. Произвести сопряжение дугой заданного радкуса R двух прямых, расположенных под углом друг к другу. Для осуществления сопряжения необходимо определить центр сопряжения, его начало и конец. Парадлельно сторонам угла на расстоянии, равном



радиусу дуги R, проводят две вспомогательние прямие линии и находят точку О пересечения этих прямых. Точка О является центром дуги раmayca R conparabщейся стороны угла. Из центра 0 описивают дугу, плавно переходящую в прямые - стороны угла. Дуги заканчивают в точках, которые являются основаниями перпендикуляров, опущенных из центра С на стороны угла (рис. §).

II. Произвести сопряжение дугой радиуса R прямой и дуги окружности радиуса R<sub>4</sub>. Для построения такого сопряжения парал-



лельно заданной прямой на расстоянии R проводят прямую, из нентра  $O_1$  проводят дугу окружности радиусом, равным сумме радиусов R и  $R_1$ , до пересечения с прямой, проведенной ра-

Рис. 9

нее в точке 0. Точка 0 является нентром дуги сопряжения. Точку начала сопряжения находят, опуская перпендикуляр из центра 0 на заданную прямую. Точку конца сопряжения находят в пересечении прямой, соединяющей пентры 0 и  $0_4$  с дугой данной окружности радиуса  $R_4$  (рис. 9).

III. Произвести сопряжение дугой радиуса R двух дуг окружностей радиусов  $R_1$  и  $R_2$  с центрами в точках  $0_1$  и  $0_2$ .



Pac. IO

Для построения сопряжения из центра 0 1 проводят вспомогатемьную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги  $R_1$  и сопрагающей  $R_2$  и сопрагающей  $R_2$  и сопрагающей  $R_3$ . Вспомогательные дуги пересекутся в точке 0, которая и будет центром сопрагающей дуги. Для нахождения точек сопражения центры дуг соединяют прамыми линиями  $00_1$  и  $00_2$ . Эти две прамые пересекают сопрагаемие дуги в точках сопражения (рис. 10).

# § 8. HAHECEHUE PAGMEPOB

ГОСТ 2.307-68 устанавливает обязательные к выполнению правила размещения и нанесения размеров. Размерные числа, нанесенные на чертеже, служат основанием для определения величины изображаемого изделия и его составных частей. Независимо от масштаба проставляют действительные размеры изделий в маллиметрах. Общее количество размеров на чертеже должно бить минимальным, но достаточным для изготовления и контроля изделия. Размеры на чертежах указывают размерными линиями и размерными числами. Рекомендуется виносить размерные линии за контур изображения. Размерные и выносные линии выполняются тонкими сплошнеми линиями толщиной 5/2. Расстояние между параллельными размерными линиями и от размерной до параллельной ей контурной, осевой или выносной линии должно быть 6 ... ... 10 мм. Виносные линии должны виходить за концы стрелок размерных линий на 1...5 мм. Размер стрелок, ограничивающих размерную линию, приведен на рис. II.



Рис. II. Рис. 12 На рис. 12 . 13 приведены примеры простановки размеров отдельных элементов деталей.



Рис. 13 -

Обычно виделяют три способа простановки размеров: координатний, пенной, смеванный. Первый из них наиболее распространен. С учетом технологии изготовления или положения детали в
механляме выбирается поверхность, личия или точка, которая
принимается за базу. От этих баз проставляются размеры. На
рис. 14 приведен один из вариантов этого способа, когда указываются места расположения и диаметри большого количества
отверстай. Размерные числа помещают в таблице в непосредственной близости от изображеная. При наличии на изображении элементов одинаковой форми и размеров рекомендуется проставлять
размеры одного элемента с указанием количества этих элементов (рис. 141 Изображея деталь с разрывом, размерную линию не
прерывают.



Puc. I4 § 9. УКЛОН И КОНУСНОСТЬ

Наклон одной линии к другой определяется уклоном, т.е. величиной тангенса угла между ними. Уклони обнуно виражаются отношением двух чисел, например I : 4, где числитель графически изображает один катет прямоугольного треугольника, а знаменатель - другой катет этого же треугольника (рис. 15 и I6).

На чертеже уклон обозначается знаком -, вершина угла ко-



Рис. 15

торого направлена в сторону уклона,и отношением двух чисел, обозначанием величину уклона.

Под конусностью понимают отношение разности диаметров двух поперечных сечений

конуса к расстоянию между ними (рис. 17 и 18).

На чертеже величину конусности тоже выражают отношением двух чисел (I: 5). Числитель - величина диаметра конуса, зна-



менатель — высота. На чертеже конусность обозначают знаком — и отношением двух чисел. Вершина знака направлена в сторону вершини конуса. Обозначение конусности пишется или над осью конуса или на полке, паравлельной его оси.

Рис. 16 Незначительные конусность и уклон допускается изображать с небольшим уреличением.





PMC. IS

### вопросы для повторения и контроля

- І. Роль ЕСКД в оформлении конструкторских документов.
- 2. Формати (основные), роли их, принцип образования.
- 3. Масштабы (определение).
- 4. Типы линий (наименование, конструкция, соотношения тольин, назначение).
- 5. Ерифти чертежние (определение, види, соотношения отдельных элементов, порядок построения).
- 6. Штряховки фигур сечения (виды, типы линий, наклон).
- 7. Сопряжения (определения, сопряжения пересскающихся примых, парадлельных прямых, дуги окружности с прямой, дуг окружности; нахождение точек сопряжения).
- 8. Уклон и конусность (определение, обозначение на чертеже). ОСНОБНАЯ ЛИТЕРАТУРА
- I. Государственные стандарти ЕСЕД (Единой системы конструкторской документации). 1968—1973.

# дополнительная литература

- I. Боголюбов С.К., Воинов А.В. Курс технического черчения. "Машиностроение", М., 1973.
  - 2. Годик Е.И., Хаскин А.М. Справочное руководство по черчению. "Машиностроение", М., 1974.
  - 3. Федоренко В.А., Пошин А.И. Справочник по машиностроительному черчению. "Машиностроение", Л., 1975.

