Homework 6: Monotonic and Bounded Sequences (Due March 2, 2022)

Assignments should be **stapled** and written clearly and legibly. Problems 4(c), 5, and 6 are optional.

- 1. (a) Give an example of a sequence with subsequences converging to 1, 2, and 3.
 - (b) Give an example of a sequence with subsequences converging to every integer.
 - (c) Show that there exists a sequence with subsequences converging to every rational number.
- 2. Prove that the sequence (a_n) converges, where $a_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)}$.
- 3. In this problem, we give an algorithm for computing $\sqrt{2}$. Let $a_1 = 2$, and define

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right), \text{ for } n \ge 1.$$
 (1)

- (a) Prove that $a_n^2 \ge 2$ for all n. (Use proof by induction.)
- (b) Use part (a) and equation (1) to prove that $a_n a_{n+1} \ge 0$ for all n.
- (c) Conclude that the sequence (a_n) converges.
- (d) Prove that $\lim_{n\to\infty} a_n = \sqrt{2}$.
- (e) Modify the sequence (a_n) so that it converges to \sqrt{c} . No formal proof is required for this part, but you should give a brief justification.
- 4. (a) Prove that if 0 < a < 2, then $a < \sqrt{2a} < 2$.
 - (b) Use part (a) to prove that the sequence

$$\left(\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \sqrt{2\sqrt{2\sqrt{2}\sqrt{2}}}, \dots\right)$$

converges.

- (c) (Challenge) Find the limit.
- 5. Consider the sequence

$$\left(\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, \frac{1}{7}, \dots\right)$$

For which numbers x does this sequence have a subsequence converging to x? Prove your answer.

6. Let $a_0 = 2\sqrt{3}$ and $b_0 = 3$. Define two sequences recursively by

$$a_n = \frac{2a_{n-1}b_{n-1}}{a_{n-1} + b_{n-1}}$$
 and $b_n = \sqrt{a_n b_{n-1}}$

Prove that (a_n) is decreasing and convergent, and prove that (b_n) is increasing and convergent. Then prove that they both converge to π .