BMEn 2401 – Programming for Biomedical Engineers – Problem Set 1 Due Tuesday, 11 September 2018

A1. (10-2 pts each) My kids play a game called 24, in which one flips over four playing cards (A-10) and, using only addition, subtraction, multiplication, division, and parentheses, one must use the four numbers to make 24. For example, 4,5,6,9 could be 4+5+6+9=24, and 1,1,4,8 could be (1+1)*(4+8)=24 or 1*(4-1)*8=24. For the following sets of numbers, write an appropriate expression in appropriate Matlab format. I recommend that you type your expression into Matlab to be sure that it is correct.

a. 1,2,3,4 b. 2,4,6,8 c. 1,3,5,7 d. 3,3,3,3 e. 4,4,4,4 (Zero-point bonus: a friend of mine says that 3,3,7,7 and 1,3,4,6 are the hardest sets, in case you want more of a challenge.)

A2. (40-5 points each). What are the values of x and y at the end of each of these scripts? You are welcome to type them into Matlab and see, or you can work it out. Either way is fine.

- a. x = 5; y = 4;
- x = x y;
- b. x = 5; x = 4;
- x = x x;c. x = 1;
 - y = 2; x = x + y;x = x - y;
 - x = x * y;
 - x = x / y;
- d. x = 1;
 - y = 2;
 - x = x + y;
 - y = x y;x = x * y;
 - x = x * y;
 - y = x / y;
- e. x = 1;
 - y = 2;
 - z = x;
 - x = y;y = z;

```
    f. x = 125;
y = 25;
y = log(x*y)/log(x/y);
x = sqrt(x/y);
    g. x = pi/2;
y = pi/3;
x = sin(x)*cos(y) + cos(x)*sin(y);
y = (tan(x*pi + y))^2;
    h. x = pi/3;
y = pi/2;
x = sin(abs(x-y)) / tan(x-y) / cos(x-y);
y = sqrt(x);
```

A3. (50 - 10 points each). For each of the following calculations, the given script contains three errors. Identify and correct the errors, and record the outcome of the script when executed.

а	The line $y = 3x$ and the curve $y = x^2 - 10$	x1 = (3+sqrt(3^2-4*1*(-10))/(2*1);
	intersect at two points, which we will call	y1 = 3 * x1;
	(x_1,y_1) and (x_2,y_2) . Find the distance d	x1 = (3-sqrt(3^2-4*1*(-10)))/(2*1);
	between two points. (HINT: You know that	y2 = 3 * x2;
	$3x = x^2 - 10$ at each point.)	d = sqrt((x1-x2)^2+y2-y1^2);
b	For any positive number k, if one guesses a ₀	k = 5;
	as a possible square root of k, then updates	a0 = 2;
	according to the recurrence formula	a1 = 0.5(a0+k/a0);
	$a_{j+1} = 0.5(a_j + k/a_j)$, the sequence should	a2 = 0.5 * (a1 + k / a1);
	eventually converge to a good estimate of	a3 = 0.5 * (a1 + k / a2);
	sqrt(k). For $k = 5$ and $a_0 = 2$, calculate a_4 and	a4 = 0.5 * (a3 + k / a3);
	calculate the absolute error a ₄ -sqrt(k) .	E = abs(a4 - sqrt(a0));
С	If a triangle has sides a, b, and c and	a = 8;
	semiperimeter $s = (a+b+c)/2$, then the area of	b = 17;
	the triangle is given by the formula	c = 22;
		s = (A + b + c) * 2;
	$A = \sqrt{s(s-a)(s-b)(s-c)}$	A = sqrt(s(s-a)*(s-b)*(s-c));
	•	
	what is the area of a triangle with sides 8, 17,	
	and 22?	
d	The radius of the circle circumscribed around	R = a*b*c/4*A;
	a triangle is given by the product of all three	pct = a / (pi * R^2);
	sides abc divided by the quantity given by	pct = pct / 100;
	four times the triangle's area. If a triangle	
	has sides 8, 17, and 22, what percentage of	
	the area of the circumscribed circle does it	
	cover? The script at right is designed to run	
	after the script for part c has run correctly.	

The cross product of the vector $v_1 = [x_1 \ y_1 \ z_1]^T$ and vector $v_2 = [x_2 \ y_2 \ z_2]^T$ is given by

$$v_1 \times v_2 = \begin{bmatrix} y_1 z_2 - y_2 z_1 \\ z_1 x_2 - z_2 x_1 \\ x_1 y_2 - x_2 y_1 \end{bmatrix}$$

and the area of a triangle defined by three points (x_a,y_a,z_a) , (x_b,y_b,z_b) , and (x_c,y_c,z_c) is given by one half the magnitude of the cross product of the vector pointing from a to b and the vector pointing from a to c. Suppose that a triangle has vertices at (0,0,0), (1,1,1), and (1,-1,2). What is the area of the triangle?

Note: Anything from a % sign on is ignored by Matlab and exists only as a comment for the user. There are no errors in any comments.

```
% Define vectors
```

$$x2 = 1;$$

$$y2 = -1;$$
 $z2 = 2;$

% Calculate cross product

c3 = x1 * y2 - y1 * x2;

$$A = 0.5 * SQRT (c1^2 + c2^2 + c3^2);$$