A deep seek of DeepSeek Models

李坤泽

目录

- DeepSeek系列论文回顾
- DeepSeekR1细节深入
- Deepseek本地部署

DeepSeek系列论文

> DeepSeek LLM: Scaling Open-Source Language Models with Longtermism	DeepSeek-AI 等	
> DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence	DeepSeek-AI 等	
> DeepSeek-Coder: When the Large Language Model Meets Programming The Rise of Code Intelligence	Guo等	
> DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning	DeepSeek-AI 等	
> DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model	DeepSeek-AI 等	
> DeepSeek-V3 Technical Report	DeepSeek-AI 等	
> DeepSeek-VL: Towards Real-World Vision-Language Understanding	Lu等	
> 📝 DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding	Wu 等	
> DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models	Shao等	
> 📝 DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models	Dai等	

- BaseModel
- Reasoning
- 多模态

DeepSeek系列论文

DeepSeek LLM

Scaling Open-Source Language Models with Longtermism 继承LLaMA架构、采用GQA多步学习率调度器

DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models

传统MoE架构存在知识混合和知识冗余,提出细 粒度专家分割与共享专家隔离

DeepSeek-Coder: When the Large Language Model Meets 通过LLM提升代码智能(项目级代码预训练、FIM

训练策略、长上下文处理)

2024年3-4月

DeepSeek-VL: Towards Real-World Vision-Language Understanding

语言视觉模型, 基于DeepSeek LLM,模型架构混 合视觉编码器,视觉-语言适配器

DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

基于DeepSeek-Coder,使用大规 模数学预训练、采用GRPO强化学习算法进行训练

2024年6月

DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence

基于DeepSeek-V2, MLA注意力机制, 长上下文 扩展

DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

多头潜在注意力机制(MLA),结合 DeepSeek MoE 架构

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

DeepSeek-R1-Zero、DeepSeek-R1**推理**模型,模 型蒸馏方法, 失败的尝试

DeepSeek-V3 Technical Report

采用MLA和DeepSeekMoE架构,无辅助损失的负 载均衡策略, 多token预测训练目标

2025年1-2月

2024年12月

DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding

基于MoE, 动态分块视觉编码策略, MLA策略, 改讲的数据构建流程

总览

- V1 (GQA) → V2 (混合专家架构、 MLA) → V3 (负载均衡、 **MTP**) → R1 (强化学习驱动)
- Coder (2024.1) → Coder V2 (2024.6)
- VL (2024.3) \rightarrow Math (2024.4) \rightarrow VL-2 (2024.8)
- 效率优先策略(MoE、RL)
- 开源生态布局(语言模型、代码模型)
- 跨领域技术融合(视觉-语言, mathRL)

GRPO Group Relative Policy Optimization

使用同一问题下 多个采样输出的 平均奖励作为基 线

GRPO-采样

GRPO-reward

自行设计,表达你认可的回答形式

Query: <q>1+1?</q>

第一组

第二组

Completion: 2

Full: <q>1+1?2</q>2

Query

Reward函数

Completion 输出: score

输入:

0.5分

Query: <q>1+1?</q>

Completion: 等于2

Full: <q>1+1?</q>等于2

2分

GRPO-advantage

GRPO-loss

Loss= - Sum(adv=0.7*0.5 adv=0.5*2 adv=0.7*2 adv=0.9*2 adv=0.9*2) /5

《原理》

希望reward高的 Next token,其 prob能继续走高。 这样就符合人类 的偏好了。

GRPO-loss-防止RL过度优化

$$\hat{A}_{i,t} = rac{r_i - ext{mean}(\mathbf{r})}{ ext{std}(\mathbf{r})}$$

$$\mathbb{D}_{\mathrm{KL}}\left[\pi_{\theta} \| \pi_{\mathrm{ref}}\right] = \frac{\pi_{\mathrm{ref}}(o_{i,t} \mid q, o_{i, < t})}{\pi_{\theta}(o_{i,t} \mid q, o_{i, < t})} - \log \frac{\pi_{\mathrm{ref}}(o_{i,t} \mid q, o_{i, < t})}{\pi_{\theta}(o_{i,t} \mid q, o_{i, < t})} - 1,$$

$$\mathcal{L}_{ ext{GRPO}}(heta) = -rac{1}{G}\sum_{i=1}^{G}rac{1}{|o_i|}\sum_{t=1}^{|o_i|} \left[rac{\pi_{ heta}(o_{i,t}\mid q,o_{i,< t})}{\left[\pi_{ heta}(o_{i,t}\mid q,o_{i,< t})
ight]_{ ext{no grad}}}\hat{A}_{i,t} - eta \mathbb{D}_{ ext{KL}}\left[\pi_{ heta} \| \pi_{ ext{ref}}
ight]
ight]$$

V3 vs R1

- DeepSeek V3
- 为通用自然语言处理模型,采用混合专家(MoE)架构,参数总量达 6710 亿。其优势在于高效处理多模态任务(文本、图像、图像等)和长文本处理能力(支持 128K 上下文窗口),适用于内容生成、多语言翻译、智能客服等场景。
- MoE
- MLA
- 负载均衡

- DeepSeek R1
- 专注于复杂逻辑推理任务,基于强化学习(RL)训练,无需大量监督微调(SFT)。擅长数学证明、代码生成、决策优化等场景。其独特之处在于输出答案前展示"思维链",增强透明度和可信度。
- 冷启动
- 强化学习

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

- 开源 DeepSeek-R1-Zero, 预训练模型直接 RL, 不走 SFT。
- •开源 DeepSeek-R1 推理大模型,与 o1 性能相近。
- 开源用 R1 数据蒸馏的 Qwen、Llama 系列小模型,蒸馏模型超过 o1-mini

1. 训练DeepSeek R1 Zero

R1-zero性能

Model	AIME 2024		MATH-500	GPQA Diamond	LiveCode Bench	CodeForces
	pass@1	cons@64	pass@1	pass@1	pass@1	rating
OpenAI-o1-mini OpenAI-o1-0912	63.6 74.4	80.0 83.3	90.0 94.8	60.0 77.3	53.8 63.4	1820 1843
DeepSeek-R1-Zero	71.0	86.7	95.9	73.3	50.0	1444

Table 2 | Comparison of DeepSeek-R1-Zero and OpenAI o1 models on reasoning-related benchmarks.

Figure 2 | AIME accuracy of DeepSeek-R1-Zero during training. For each question, we sample 16 responses and calculate the overall average accuracy to ensure a stable evaluation.

R1-zero-aha moment

一问题: 如果 a > 1, 那么 $\sqrt{a} - \sqrt{a + x} = x$ 的实数解之和等于

答: <think>为了解方程 $\sqrt{a} - \sqrt{a+x} = x$, 我们首先两边平方 \cdots $(\sqrt{a} - \sqrt{a+x})^2 = x^2 \Rightarrow a - \sqrt{a+x} = x^2$.

重新排列以隔离内部平方根项:

$$(a-x^2)^2=a+x \implies a^2-2ax^2+(x^2)^2=a+x \implies x^4-2ax^2-x+(a^2-a)=0$$
 等一下,等一下。等一下。这里有一个我需要注意的地方。让我们一步一步

重新评估这一步, 以确定正确的和是否可以 ... 我们首先从方程开始:

$$\sqrt{a} - \sqrt{a+x} = x$$
首先, 让我们平方两边:

$$a-\sqrt{a+x}=x^2 \implies \sqrt{a+x}=a-x^2$$
接下来,我可以再次平方两边,处理方程: · · · · . . .

2. 训练DeepSeek R

2. 训练DeepSeek R1 (第1步)

| special_token | <reasoning_process> | special_token | <summary>

2. 训练DeepSeek R1 (第2步)

拒绝采样

- 步骤 1: 选择提议分布 q(x)
 - 提议分布 q(x)满足以下条件:
 - 易于采样。
 - 存在一个常数 M, 使得 M*q(x)≥p(x)对所有 x 成立。
- 步骤 2: 生成候选样本
 - 从提议分布 q(x) 中生成一个候选样本 x。
- 步骤 3: 计算接受概率
 - 计算接受概率 A(x):
 - A(x)=p(x)/M*q(x), p(x) 是目标分布, M是满足 M*q(x)≥p(x)的常数。
- 步骤 4: 接受或拒绝样本
 - 生成一个均匀随机数 u~Uniform(0,1)。
 - 如果 u≤A(x),则接受样本 x;否则,拒绝样本并重新采样。

4. 训练DeepSeek R1 (第4步)

基于规则的奖励

摘要

奖励模型

推理过程和摘要

模型蒸馏

- 复杂模型("教师模型")的知识转移到简单模型("学生模型")
- 通过教师模型的输出(如概率分布)来指导学生模型的训练
- 训练教师模型——>生成软标签——>训练学生模型

猫: 0.8 虎: 0.1 豹: 0.05 狮: 0.05

<mark>α</mark>×(蒸馏损失) + (1-<mark>α</mark>) ×(真实监督损失)

模型蒸馏

失败的尝试

- 基于过程奖励模型(PRM)
 - 推理步骤
 - 中间步骤的正确性
 - 奖励黑客
- 蒙特卡洛树搜索(MCTS)
 - 搜索空间
 - 价值模型

实验设置

- 基准测试:数学推理(AIME 2024、MATH-500)、代码题 (LiveCodeBench、Codeforces)、知识问答(MMLU、GPQA Diamond、SimpleQA)和开放生成场景(AlpacaEval2.0、 ArenaHard)。对于蒸馏模型, AIME 2024、MATH-500、GPQA Diamond、Codeforces和LiveCodeBench
- 对比模型:评估了DeepSeek-V3、Claude-Sonnet-3.5-1022、GPT-4o-0513、OpenAl-o1-mini和 OpenAl-o1-1217 等模型。

R1

	Benchmark (Metric)	Claude-3.5- Sonnet-1022	GPT-40 0513	DeepSeek V3		OpenAI o1-1217	DeepSeek R1
	Architecture	_	-	MoE	_	-	MoE
	# Activated Params	_	-	37B	-	-	37B
	# Total Params	-	-	671B	-	-	671B
	MMLU (Pass@1)	88.3	87.2	88.5	85.2	91.8	90.8
	MMLU-Redux (EM)	88.9	88.0	89.1	86.7	-	92.9
	MMLU-Pro (EM)	78.0	72.6	75.9	80.3	-	84.0
	DROP (3-shot F1)	88.3	83.7	91.6	83.9	90.2	92.2
English	IF-Eval (Prompt Strict)	86.5	84.3	86.1	84.8	-	83.3
English	GPQA Diamond (Pass@1)	65.0	49.9	59.1	60.0	75.7	71.5
	SimpleQA (Correct)	28.4	38.2	24.9	7.0	47.0	30.1
	FRAMES (Acc.)	72.5	80.5	73.3	76.9	-	82.5
	AlpacaEval2.0 (LC-winrate)	52.0	51.1	70.0	57.8	-	87.6
	ArenaHard (GPT-4-1106)	85.2	80.4	85.5	92.0	-	92.3
	LiveCodeBench (Pass@1-COT)	38.9	32.9	36.2	53.8	63.4	65.9
Code	Codeforces (Percentile)	20.3	23.6	58.7	93.4	96.6	96.3
Code	Codeforces (Rating)	717	759	1134	1820	2061	2029
	SWE Verified (Resolved)	50.8	38.8	42.0	41.6	48.9	49.2
	Aider-Polyglot (Acc.)	45.3	16.0	49.6	32.9	61.7	53.3
Math	AIME 2024 (Pass@1)	16.0	9.3	39.2	63.6	79.2	79.8
	MATH-500 (Pass@1)	78.3	74.6	90.2	90.0	96.4	97.3
	CNMO 2024 (Pass@1)	13.1	10.8	43.2	67.6	-	78.8
	CLUEWSC (EM)	85.4	87.9	90.9	89.9	-	92.8
Chinese	C-Eval (EM)	76.7	76.0	86.5	68.9	-	91.8
	C-SimpleQA (Correct)	55.4	58.7	68.0	40.3	-	63.7

Table 4 | Comparison between DeepSeek-R1 and other representative models.

蒸馏

Model	AIME 2024		MATH-500	GPQA Diamond	LiveCode Bench	CodeForces
	pass@1	cons@64	pass@1	pass@1	pass@1	rating
GPT-4o-0513	9.3	13.4	74.6	49.9	32.9	759
Claude-3.5-Sonnet-1022	16.0	26.7	78.3	65.0	38.9	717
OpenAI-o1-mini	63.6	80.0	90.0	60.0	53.8	1820
QwQ-32B-Preview	50.0	60.0	90.6	54.5	41.9	1316
DeepSeek-R1-Distill-Qwen-1.5B	28.9	52.7	83.9	33.8	16.9	954
DeepSeek-R1-Distill-Qwen-7B	55.5	83.3	92.8	49.1	37.6	1189
DeepSeek-R1-Distill-Qwen-14B	69.7	80.0	93.9	59.1	53.1	1481
DeepSeek-R1-Distill-Qwen-32B	72.6	83.3	94.3	62.1	57.2	1691
DeepSeek-R1-Distill-Llama-8B	50.4	80.0	89.1	49.0	39.6	1205
DeepSeek-R1-Distill-Llama-70B	70.0	86.7	94.5	65.2	57.5	1633

Table 5 | Comparison of DeepSeek-R1 distilled models and other comparable models on reasoning-related benchmarks.

效果很好,蒸馏后较小规模的模型能超过原始更大规模的模型,且蒸馏的32B和70B在大多数测试都能超过o1-mini。

蒸馏vsRL

	AIME 2024		MATH-500	GPQA Diamond	LiveCodeBench	
Model	pass@1	cons@64	pass@1	pass@1	pass@1	
QwQ-32B-Preview	50.0	60.0	90.6	54.5	41.9	
DeepSeek-R1-Zero-Qwen-32B	47.0	60.0	91.6	55.0	40.2	
DeepSeek-R1-Distill-Qwen-32B	72.6	83.3	94.3	62.1	57.2	

Table 6 | Comparison of distilled and RL Models on Reasoning-Related Benchmarks.

蒸馏√RL√

• 未来计划要提升DeepSeek-R1的下面几个能力

• **增强通用能力**:通过长链思维(CoT)提升模型在复杂任务(如函数调用、角色扮演)上的表现。

· 优化多语言支持: 解决语言混合问题, 提升对非中英文语言的支持能力。

• 改进提示工程:降低模型对提示的敏感性,提升在少样本提示下的表现。

• **提升软件工程任务性能**:通过拒绝采样和异步评估优化强化学习效率,增强模型在软件工程任务中的表现。

开源程度——开放权重

- - 完全开源: 包含训练代码+数据+权重(如LLAMA2)
- - 开放权重: 仅发布权重+推理代码(如早期的BERT)
- - 伪开源: 仅提供API访问 (GPT-3.5 和 GPT-4)

开源程度——开放权重

- https://huggingface.co/deepseek-ai/DeepSeek-R1
- https://hf-mirror.com/deepseek-ai/DeepSeek-R1/tree/main

本地部署-交互式测试语言模型

批部罢-构建个人知 目 知识库 ─ 聊天 Q 搜索 战 Agent □ 文件管理 简体中文 🗸 🕠 RAGFlow 目 知识库 ─ 聊天 □ 搜索 ♣ Agent □ 文件管理 简体中文 〇 ※ 《》 模型提供商 系统模型设置 知识库 / 数据集 在此设置模型参 聊天模型 ② deepseek-r1:1.5b 数据集 蟹堡王知识库二 解析成功后才能问答哦。 ∨ 添加了的 嵌入模型 ② 系统 BAAI/bge-large-zh-v1.5 F 数据集 批量 ∨ + 新增文件 Q搜索文件 9.0 添加模型 🔞 展示更多模型 🖏 ⑥ 检索测试 Img2txt模型 ② 解析方法 解析状态 qwen-vl-max@Tongyi-Qianwen ⇔ 配置 **RAGFlow** 目 知识库 ペ Agent □ 文件管理 简体中文 ∨ ○ 解保干员工规范... API-Key 🔞 展示更多模型 🖏 你好! 我是你的助理,有什么可以帮到你的吗? 新建助理 聊天 1 000 蟹堡王助手二 怎么接待一车沙丁鱼 A helpful dialog 怎么接待一车沙丁鱼 蟹堡王助手 • 流程: oll • 知道和蟹堡王有关的一切 日本日中冷 嗯,用户问的是"如何接待一车沙丁鱼"。首先,我需要看看知识库里有没有相关的内容。在文档 中提到第二章顾客接待标准2.1,特别是关于普通顾客的迎接方法。 根据这个部分,当有大批量顾客时,比如沙宁鱼大群涌入餐厅时,员工应该立即启动"沙丁鱼快餐 模式"①。"快餐模式"主要是指引导和指引队列,并简化点餐流程。这可能包括引导队伍、简化 点餐建议以及加快出餐速度 ①。 · 参考: 所以,用户的问题可以转化为如何在顾客大量进入的情况下高效接待他们。根据知识库中的内 容,应该指导员工立即启动"沙丁鱼快餐模式",并采取相应的措施来处理这些顾客。 接下来,我需要将这个思路用中文表达出来,并确保回答清晰明确。同时,在回答中提到如果所 https://w =333.337.s 有相关知识库都与问题无关时,必须指出这一点。 如何接待一车沙丁鱼: 在顾客大量进入餐厅的情况下,建议员工立即启动"沙丁鱼快餐模式"(2.1中的第二点)。具体操 2bf4f39f earch-car 作包括引导队列、简化点餐流程和加快出餐速度。这将帮助处理大批量顾客并确保服务效率。 如果所有知识库内容与问题无关时,请提供更多信息以便进一步解答。 ₩堡王员工规范.docx