Bio 3SS Math review

Notation (e is cool)

- In this course \log_e means the natural \log_e in the textbooks)
 - If I mean $\log_{10},$ I will say so
- exp() is a synonym for "e to the power of"

Logarithms

- Multiplying on the original scale is equivalent to adding on the log scale
 - $-\log(ab) = \log(a) + \log(b)$
- Division is the opposite of multiplication and subtraction is the opposite of addition:

$$-\log(a/b) \equiv \log\left(\frac{a}{b}\right) = \log(a) - \log(b)$$

- Exponentiation is to multiplication like multiplication is to addition:
 - $-\log(\lambda^k) = k\log(\lambda)$

Complementarity

- \bullet log_e and exp are complementary functions
 - $-\exp(\log_e(x)) \equiv e^{\log_e(x)} = x$
 - $-\log_e(\exp(x)) \equiv \log_e(e^x) = x$

Exponentiation

- The rules for exp are exactly complementary to those for log
 - $-\exp(a+b) = \exp(a) \cdot \exp(b)$
 - $-\exp(a-b) = \exp(a)/\exp(b)$
 - $-\exp(k\log_e(\lambda)) = \lambda^k$
- Remember: you can't take the log or exponent of something with units

Problems

- You should be able to use these rules to solve simple problems, algebraically, or on your calculator
 - If $\lambda^{20} = 0.1$, what is λ ?
- Also, word problems
 - If a population declines by 90% in 20 generations, what is its reproductive number per generation?

1

$\mathbf{Algebra}$

- If $\lambda^{20} = 0.1$, what is λ ?
 - Answer: $20\log_e(\lambda) = \log_e(0.1)$
 - **Answer:** $\log_{e}(\lambda) = \log_{e}(0.1)/20$
 - Answer: $\lambda = \exp(\log_e(0.1)/20)$
 - Answer: $\lambda = 0.89$
- If $\exp(rt) = 5$, and r = 0.1/yr, what is t?
 - Answer: $rt = \log_e(5)$
 - Answer: $t = \frac{\log_e(5)}{0.1/\text{yr}}$
 - Answer: $t = 16 \,\mathrm{yr}$

Units are our friends

- Keep track of units at all times
- Use units to confirm that your answers make sense
 - Or to find quick ways of getting the answer
- Get used to manipulating and cancelling units
- 36 mpg = ?? L/100 km
 - $\underline{\mathbf{Answer}} \colon \frac{\mathrm{gal}}{36\,\mathrm{mi}} \cdot \frac{\mathrm{mi}}{1.6\,\mathrm{km}} \cdot \frac{3.8\,\mathrm{L}}{\mathrm{gal}} \cdot \frac{100\,\mathrm{km}}{100\,\mathrm{km}}$
 - **Answer:** 6.6 L/100km