NANENG 520: Problem Set 1

- 1) Consider a MOS capacitor with a p-type silicon substrate doped to $N_a = 2 \times 10^{17}$ cm⁻³, a silicon dioxide insulator with a thickness of $t_{ox} = 10$ nm, and an n⁺ polysilicon gate. Assume that $Q_{ss}' = 5 \times 10^{10}$ electronic charges per cm². Calculate:
 - (a) The difference $E_{Fi} E_F$ in the bulk, φ_{fp} .
 - (b) The oxide capacitance.
 - (c) The maximum depletion region width.
 - (d) The metal-semiconductor workfunction difference, φ_{ms} .
 - (e) The flat-band voltage.
 - (f) The threshold voltage.
- 2) Three different Si samples maintained at 300K are characterized by the energy band diagrams shown in the figure. Answer the following questions:
 - (a) Do equilibrium conditions prevail? How do you know?
 - (b) Sketch the electrostatic potential inside the semiconductor as a function of x.
 - (c) Sketch the electric field inside the semiconductor as a function of x.
 - (d) Roughly sketch n and p versus x.

- 3) A p-channel MOSFET has the following parameters: $k'_p = 0.10 \text{ mA/V}^2$, W/L = 17, and $V_T = -0.5 \text{ V}$. Calculate the drain current I_D for (a) $V_{SG} = 0.9 \text{ V}$, $V_{SD} = 0.3 \text{ V}$; and (b) $V_{SG} = 1.2 \text{ V}$, $V_{SD} = 2.0 \text{ V}$.
- 4) Consider A p-channel MOSFET has an oxide thickness of $t_{ox}=25$ nm and a substrate doping of $N_d=6$ x 10^{15} cm⁻³ . Find:
 - (a) The body-effect coefficient.
 - (b) The body-to-source voltage, V_{BS} , such that the shift in threshold voltage, ΔV_T is 0.22 V.
- 5) Consider an n-channel MOSFET with a substrate doping concentration of $N_a = 10^{16}$ cm⁻³, a threshold voltage of $V_T = 0.5$ V. The device is biased at $V_{GS} = 1.5$ V and $V_{DS} = 3$ V. (a) Determine the change in channel length, ΔL , using simple change in depletion width at drain.

- (b) Repeat (a), using 1D Poission's equation at pinch-off region.
- (b) Determine the ratio of actual drain current compared to the ideal value if the channel length is $L = 1.2 \mu m$.
- (c) Find the minimum channel length such that the ratio of actual drain current to the ideal drain current due to channel length modulation is no larger than 1.4.
- (e) Determine the minimum channel length so that the incremental change ΔL is no more than 10 percent of the original length L.
- (f) Calculate the CLM coefficient λ , using either methods in (a) or (b)
- 6) An n-channel MOSFET has a substrate doped with boron with N_A =2x10¹⁷ cm ⁻³, and n+ polysilicon gate, gate oxide thickness of 10 nm, Oxide charges of +10¹⁰ electron charges/cm ², the channel length is 0.5 μ m, the channel width is 2 μ m, the source/drain junction depth is 0.15 μ m, V_{gs} = V_{ds} = 5V, $V_{substrate}$ =0V. Find:
 - (a) The long and short channel threshold voltages
 - (b) The average "lateral" electric field in the inversion channel, ignoring the effect of inversion charges in the solution of 1D Poisson's equation in the inversion layer.
 - (c) The electron velocity in the inversion channel.
 - (d) The "normal" effective field in the inversion layer
 - (e) The mobility in the presence of effective field alone (i.e. at V_{ds} =100mV). Assume that the mobility before the onset of inversion charges is 1000 cm².V⁻¹.s⁻¹.
 - (f) The mobility in the presence of both effective field and lateral field. Assume the mobility at low electron velocity can be calculated from part "e".
 - (g) Check if the transistor is near velocity saturation
 - (h) Calculate the drain current using:
 - i. velocity saturation assumption, and
 - ii. The regular equation using the mobility calculated in part "f".
 - iii. Comment on which of the previous condition is more realistic for current calculation