Mo cércub L

$$\{(x) = x^{L}\}$$
 $\{(x) = x^{L}\}$
 $\{(x) = x$

	T^{v}	5	10	15	20	25	30	40	50	60	70	80
	5	4	3	2	1	1	0	-1	-1	-2	-2	-3
	0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10
	-5	-7	-9	-11	-12	-12	-13	-14	-15	-16	-16	-17
	-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
	-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
	-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
J	-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
•	-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
	-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
	-40	-47	-51	-54	-56	-57	- 50	-61	-63	-64	-65	-67

Velocidade do vento (km/h)

Outra Representação Gráfica de Função de Duas Var

Limites

Umidade relativa (%)

Temperatura real (°C)

T	40	45	50	55	60	65	70	75	80
26	28	28	29	31	31	32	33	34	35
28	31	32	33	34	35	36	37	38	39
30	34	35	36	37	38	40	41	42	43
32	37	38	39	41	42	43	45	46	47
34	41	42	43	45	47	48	49	51	52
36	43	45	47	48	50	51	53	54	56

a)
$$\lim_{(X_1,y) \to (Z_1-1)} \frac{X^2y + xy^2}{x^2 - y^2}$$

4. Verifique se, para a função de produção de Cobb-Douglas
$$P(L, K) = 1.01L^{0.75}K^{0.25}$$

discutida no Exemplo 3, a produção dobrará se as quantidades de trabalho e a de capital investido forem dobradas. Determine se isso também é verdade para uma função de produção genérica

$$P(L, K) = bL^{\alpha}K^{1-\alpha}$$

$$P(2L,2K) = 1.01(2L)^{0.25}(2K)^{0.25}$$

$$= 1.01 2^{0.45} L^{0.45} Z^{0.25} K^{0.25}$$

$$= 1.01 2^{L} L^{0.45} K^{0.25}$$

$$= 2(1.01 L^{0.45} K^{0.25})$$

$$= 2P(LK)$$

$$P(2L,2K) = b(2L)^{\alpha}(2K)^{1-\alpha}$$

$$= b2^{\alpha}L^{\alpha}2^{1-\alpha}K^{1-\alpha}$$

$$= b2^{\alpha}2^{1-\alpha}L^{\alpha}K^{1-\alpha}$$

$$= b2^{\alpha}2^{1-\alpha}L^{\alpha}K^{1-\alpha}$$

$$= b2^{\alpha}2^{1-\alpha}L^{\alpha}K^{1-\alpha}$$

$$= b2^{\alpha}2^{1-\alpha}L^{\alpha}K^{1-\alpha}$$

$$= 2P(L,K)$$

Seja
$$f(x, y, z) = \sqrt{x} + \sqrt{y} + \sqrt{z} + \ln(4 - x^2 - y^2 - z^2)$$
.
(a) Calcule $f(1, 1, 1)$.

- (b) Determine o domínio de f.
- **12.** Seja $g(x, y, z) = x^3 y^2 z \sqrt{10 x y z}$.
 - (a) Calcule g(1, 2, 3).(b) Determine o domínio de g.

$$\frac{11-9}{5(1,1,1)} = \sqrt{1} + \sqrt{1} + \sqrt{1} + 2m(4-1-1-1)$$

$$= 1+1+1+2m(1)$$

$$f(1,1,1) = 3$$

9 Donin

$$\frac{1}{4-x^{2}-y^{2}-2^{2}} > 0$$

$$-x^{2}-y^{2}-2^{2} > -4$$

$$(1_{1}-1_{1})$$

D: 2 (X14, E) ER3/ X2+32 +U/4 2X>0,4>0,2>0)

$$(1)$$

$$g(x_{1}, y_{1}, z_{1}) = x^{3}y^{2}z^{3}\sqrt{10-x-y-z}$$

$$= 1^{3}z^{2}\sqrt{10-1-z-3}$$

$$= 1^{2}\sqrt{4}$$

$$= 24$$

$$\frac{1}{3} \frac{1}{3} \frac{1}$$

 \bigcirc A) < 2, 4, 5 >

Arr B $< 2, \frac{\sqrt{5}}{25}, 12 >$