S. 74 Nr. Ü1)Tipp: c, d) zeichnen

Definition des Skalarprodukt

4. Das Skalarprodukt

74. 1. a)
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \gamma = \sqrt{10} \cdot \sqrt{18} \cdot \cos 63^{\circ} \approx 6.09$$

b)
$$\vec{a} \cdot \vec{b} = 5.4 \cdot 0.8 = 16$$

b)
$$\vec{a} \cdot \vec{b} = 3.4 \cdot 0.6 = 70$$

c) $|\vec{a}| = \sqrt{34}$, $|\vec{b}| = \sqrt{61}$, $\gamma = 180^{\circ} - 50.19^{\circ} - 59.04^{\circ} = 70.77^{\circ}$, $\vec{a} \cdot \vec{b} = \sqrt{34 \cdot 61} \cdot \cos 70.77^{\circ}$

c)
$$|\vec{a}| = \sqrt{34}$$
, $|\vec{b}| = \sqrt{61}$, $|\vec{a}| = \sqrt{61}$, $|\vec{a}|$

2. a) Messen:
$$|\vec{a}| \approx 5.7$$
, $|\vec{b}| \approx 4.5$, $\gamma \approx 72^{\circ}$, $|\vec{a} \cdot \vec{b}| \approx 7.92$

$$|\vec{a}|=5$$
, $|\vec{b}|\approx 6.4$, $\gamma \approx 88^{\circ}$, $\vec{a} \cdot \vec{b} \approx 1.12$
 $|\vec{a}|\approx 4.5$, $|\vec{b}|=5$, $\gamma \approx 117^{\circ}$, $\vec{a} \cdot \vec{b} \approx -10.21$

b) Koordinatenform:
$$\vec{a} \cdot \vec{b} = \begin{pmatrix} -4 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 4 \end{pmatrix} = 8$$
, $\vec{a} \cdot \vec{b} = \begin{pmatrix} -3 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ -4 \end{pmatrix} = 1$, $\vec{a} \cdot \vec{b} = \begin{pmatrix} -2 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 0 \end{pmatrix} = -10$

3. a)
$$\vec{a} \cdot \vec{b} = 0$$
, $\vec{a} \cdot \vec{c} = 16$, $\vec{b} \cdot \vec{c} = 9$

b)
$$\overrightarrow{DA} \cdot \overrightarrow{DF} = 36$$
, $\overrightarrow{FB} \cdot \overrightarrow{FD} = -15$, $\overrightarrow{AF} \cdot \overrightarrow{AD} = 0$, $\overrightarrow{DC} \cdot \overrightarrow{DF} = 40$

c) Die Innenwinkel in einem Sechseck betragen 120°.

$$\vec{a} \cdot \vec{b} = 5.5 \cdot \cos 120^{\circ} = -12.5$$
, $\vec{a} \cdot \vec{c} = 5.5 \cdot \cos 60^{\circ} = 12.5$, $\vec{a} \cdot \vec{d} = 5.5 \cdot \cos 180^{\circ} = -25$
 $(\vec{a} + \vec{b}) \cdot \vec{c} = |\vec{a} + \vec{b}| \cdot 5 \cdot \cos 90^{\circ} = 0$, $(\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{d} + \vec{e} + \vec{f}) = 10 \cdot 10 \cdot \cos 180^{\circ} = -100$

b)
$$a^2 + a$$

5. a)
$$2a^2 + 4a + 2 = 0$$
, $a = -1$ b) $a + 4a + a = 1$, $a = 1/6$ c) $4a + 5 = 6$, $a = 0.25$

$$a+4a+a=1$$
, $a=1/6$

)
$$4a+5=6$$
, $a=0.25$

6. a)
$$\overrightarrow{SB} \cdot \overrightarrow{SC} = \begin{pmatrix} 3 \\ 3 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 3 \\ -3 \end{pmatrix} = 9$$
, $\overrightarrow{AD} \cdot \overrightarrow{DC} = 0$, $\overrightarrow{AC} \cdot \overrightarrow{BD} = 0$, $\overrightarrow{BA} \cdot \overrightarrow{BS} = 18$

b)
$$\overrightarrow{SA} = \begin{pmatrix} 3 \\ -3 \\ -3 \end{pmatrix}$$
, $\overrightarrow{SB} = \begin{pmatrix} 3 \\ 3 \\ -3 \end{pmatrix}$, $\overrightarrow{SA} \cdot \overrightarrow{SB} = \begin{pmatrix} 3 \\ -3 \\ -3 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \\ -3 \end{pmatrix} = 9$
 $|\overrightarrow{SA}| = \sqrt{27} = |\overrightarrow{SB}|$, $|\overrightarrow{SA}| \cdot |\overrightarrow{SB}| = 9 = \sqrt{27} \cdot \sqrt{27} \cdot |\cos\alpha| \Rightarrow \alpha \approx 70.53^{\circ}$

Winkel zwischen zwei Vektoren

S. 78 Ü1a, b), Ü2b), Ü3a, c) 🗳 und *U4)*

5. Winkel- und Flächenberechnungen

1. a)
$$\cos \gamma = \frac{6}{\sqrt{10} \cdot \sqrt{18}}, \quad \gamma \approx 63,43^{\circ}$$

b)
$$\cos \gamma = \frac{-10}{\sqrt{14.20}}$$
, $\gamma \approx 126,70^{\circ}$

78

c)
$$\cos \gamma = \frac{0}{\sqrt{41.21}}$$
, $\gamma = 90^\circ$

2. a)
$$\cos \alpha = \frac{5}{\sqrt{13.17}}$$
, $\alpha \approx 70.35^{\circ}$

b)
$$\cos \alpha = \frac{44}{\sqrt{40.61}}$$
, $\alpha \approx 27,03^{\circ}$

4. Der Ansatz
$$\cos 45^\circ = \frac{24+2z}{6\sqrt{36+z^2}} = 0{,}707$$
 führt auf $24+2z = 0{,}707 \cdot 6 \cdot \sqrt{36+z^2}$.

Quadrieren und umformen:
$$z^2 - \frac{48}{7}z + \frac{36}{7} = 0$$
, $z_1 = 6$, $z_2 = \frac{6}{7}$.

Orthogonalität von Vektoren

S. 79 Ü5) und Ü6a, b)

79 5. \vec{a} ist orthogonal zu \vec{c} , \vec{e} (für $\vec{a} = -1,5$). \vec{b} ist orthogonal zu \vec{c} , \vec{e} (für $\vec{a} = -0,5$). \vec{c} ist orthogonal zu \vec{a} , \vec{b} , \vec{e} (für $a = \frac{8}{3}$). \vec{d} ist orthogonal zu \vec{e} (für a = -5). e ist orthogonal zu \vec{a} (für a = -1,5), \vec{b} (für a = -0,5), \vec{c} (für $a = \frac{8}{3}$), \vec{d} (für a = -5), \vec{f} (für a = 0,5). f ist orthogonal zu e (für a = 0,5). c) rechtwinklig bei A b) rechtwinklig bei A 6. a) rechtwinklig bei B 7. a) $\triangle ABC: A_1 = \frac{1}{2} \cdot \sqrt{464} \approx 10,77$; $\triangle ABD: A_2 = \frac{1}{2} \cdot \sqrt{200} \approx 7,07$ $\triangle BCD: A_3 = \frac{1}{2} \cdot \sqrt{374} \approx 9,67$; $\triangle ACD: A_4 = \frac{1}{2} \cdot \sqrt{206} \approx 7,18$ $O \approx 34,69$ 80 b) A(1 | 1 | 4), B(4 | 4 | 4), C(1 | 5 | 2), D(2 | 4 | 6) $O = A_1 + A_2 + A_3 + A_4 \approx 7,35 + 5,20 + 5,20 + 7,35 = 25,10$ 8. Der Ansatz $15 = \frac{1}{2} \cdot \sqrt{\begin{pmatrix} 0 \\ -3 \\ z-2 \end{pmatrix}^2 \cdot \begin{pmatrix} 6 \\ -3 \\ 4 \end{pmatrix}^2 - (1-4z)^2}$ führt auf die quadratische Gleichung $z^2 - \frac{28}{5}z - \frac{12}{5} = 0$ mit den Lösungen $z_1 = 6$ und $z_2 = -0.4$.

Flächeninhalt eines Dreiecks

S. 81 Nr. 9) und 11) sowie *13)*

$$\overrightarrow{CA} = \begin{pmatrix} 5 \\ 1 \\ -2 \end{pmatrix}, \overrightarrow{CB} = \begin{pmatrix} 4 \\ 5 \\ -3 \end{pmatrix}$$

$$\overrightarrow{AC} = \begin{pmatrix} -5 \\ -1 \\ 2 \end{pmatrix}, \overrightarrow{AB} = \begin{pmatrix} -1 \\ 4 \\ -1 \end{pmatrix}$$

$$\cos \gamma = \frac{31}{\sqrt{30 \cdot 50}}, \quad \gamma \approx 36,83^{\circ}$$

$$\cos \alpha = \frac{-1}{\sqrt{30 \cdot 18}}, \quad \alpha \approx 92,47^{\circ}$$

$$\beta = 180^{\circ} - \alpha - \gamma \approx 50,70^{\circ}$$

b)
$$A = \frac{1}{2} \sqrt{\overrightarrow{AC}^2 \cdot \overrightarrow{AB}^2} - (\overrightarrow{AC} \cdot \overrightarrow{AB})^2 = \frac{1}{2} \sqrt{30 \cdot 18 - 1} \approx 11,61$$

10.A(0|0), B(8|0), C(12|4), D(4|4), M(6|2),
$$\overrightarrow{MB} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$
, $\overrightarrow{MC} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$, $\overrightarrow{MD} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$ |AB|= 8, |BC|= $\sqrt{32}$, |AC|= $\sqrt{160}$, |BD|= $\sqrt{32}$ cos $\phi = \frac{8}{\sqrt{8\cdot40}}$, $\phi \approx 63,43^{\circ}$, cos $\epsilon = \frac{-8}{\sqrt{8\cdot40}}$, $\epsilon \approx 116,57^{\circ}$ ($\epsilon = 180^{\circ} - \phi$)

Flächeninhalt: I. konventionell: $A = |AB| \cdot h = 8 \cdot 4 = 32$

II. mittels Skalarprodukt:

$$A = \sqrt{\overrightarrow{AB}^2 \cdot \overrightarrow{AD}^2 - (\overrightarrow{AB} \cdot \overrightarrow{AD})^2} = \sqrt{64 \cdot 32 - 32^2} = \sqrt{1024} = 32$$

11. C(8|2) bzw. C(0|8) rechter Winkel bei B
oder C(5|-2) bzw. C(-3|4) rechter Winkel bei A
rechter Winkel bei C ist schwieriger:
C muss auf der zu AB Senkrechten durch M_{AB}(2,5|3) liegen:

$$y = -\frac{3}{4}(x - 2, 5) + 3 = -\frac{3}{4}x + \frac{39}{8}, \quad C(x \mid -\frac{3}{4}x + \frac{39}{8})$$

$$\begin{pmatrix} x - 1 \\ -\frac{3}{4}x + \frac{39}{8} - 1 \end{pmatrix} \cdot \begin{pmatrix} x - 4 \\ -\frac{3}{4}x + \frac{39}{8} - 5 \end{pmatrix} = \frac{25}{16}x^2 - \frac{250}{32}x + \frac{225}{64} = 0$$

$$\Rightarrow x^2 - 5x + \frac{9}{4} = 0 \Rightarrow C(4, 5 \mid 1, 5) \text{ bzw.} \quad C(0, 5 \mid 4, 5)$$

12. Ist h die Höhe des Quaders, so muss gelten:
$$\begin{pmatrix} 4 \\ -3 \\ h \end{pmatrix} \cdot \begin{pmatrix} -4 \\ -3 \\ h \end{pmatrix} = 9 - 16 + h^2 = 0$$
, also $h = \sqrt{7}$

Geometrische Figuren und Körper im Raum

Bild von Körper mit Vektoren einfügen

Diverse Übungen – Lösungen auf nachfolgender Seite

• [S. 82/83 lesen und Beispiele nachvollziehen]

• S. 82 Ü1) (Tipp zu b): Ein paar parallele Seiten)

• S. 84 Nr. 2b), 4) und 7a,b)

• S. 85 Nr. 2), 3) und *4)*

84 2. a)
$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 4 \\ -4 \end{pmatrix}$$
, $\overrightarrow{CD} = \begin{pmatrix} -2 \\ -2 \\ 2 \end{pmatrix}$

b)
$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 5 \\ 2 \end{pmatrix}$$
, $\overrightarrow{BC} = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$, $\overrightarrow{CD} = \begin{pmatrix} -4 \\ -5 \\ -2 \end{pmatrix}$, $\overrightarrow{AD} = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$

c)
$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 2 \\ 2 \end{pmatrix}$$
, $\overrightarrow{BC} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$, $\overrightarrow{D} = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \\ 6 \end{pmatrix}$, $D(-1|3|6)$

3. a)
$$|\overrightarrow{BA}| = \sqrt{21} = |\overrightarrow{DA}|$$

b)
$$\overrightarrow{AD} = \overrightarrow{BC} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$$
, $\overrightarrow{c} = \overrightarrow{b} + \overrightarrow{BC} = \begin{pmatrix} 6 \\ 7 \\ 0 \end{pmatrix}$, $C(6 \mid 7 \mid 0)$, $\overrightarrow{AB} = \overrightarrow{DC} = \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix}$

c)
$$A = \sqrt{21 \cdot 21 - 14^2} \approx 15,65$$

 $\cos \alpha = \frac{14}{21}, \quad \alpha = \gamma \approx 48,2^{\circ}, \quad \beta = \delta \approx 131,8^{\circ}$

4. a)
$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}$$
, $\overrightarrow{AC} = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$, $\overrightarrow{BC} = \begin{pmatrix} 3 \\ 3 \\ -3 \end{pmatrix}$, $|\overrightarrow{AC}| = |\overrightarrow{BC}| = \sqrt{27}$

b)
$$\overline{M} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}$$
, $M(2 \mid 3 \mid 3)$
 $\cos \alpha = \frac{6}{\sqrt{12 \cdot 27}}$, $\alpha = \beta \approx 70, 5^{\circ}$, $\cos \gamma = \frac{6}{\sqrt{12 \cdot 27}}$, $\gamma \approx 38, 9^{\circ}$

c)
$$\cos \alpha = \frac{\binom{-6}{4}\binom{-6}{0}}{\sqrt{52.61}} = \frac{36}{\sqrt{3172}}, \quad \alpha \approx 50,3^{\circ}, \quad \cos \beta = \frac{\binom{-6}{0}\binom{-6}{0}}{\sqrt{36.61}} = \frac{36}{\sqrt{2196}}, \quad \beta \approx 39,8^{\circ}$$

 \(\psi \) BAS ist der gr\(\text{o}\)Bere Winkel.

d)
$$A_{ACS} = 15$$
, $A_{CBS} = 10$, $A_{ABC} = 12$, $A_{ABS} = \frac{1}{2}\sqrt{52 \cdot 61 - 36} \approx 28,16$
Oberfläche: $65,16$
 $V = \frac{1}{3}G \cdot h = \frac{1}{3} \cdot 12 \cdot 5 = 20$

d)
$$P(12|3|0)$$
, $|PE| = \sqrt{9+16} = 5$, $|EF| = 6$, $A_{ABFE} = 5.9 = 45$

e)
$$O = G + D + 4 \cdot A_S = 12^2 + 6^2 + 4 \cdot 45 = 360$$

f)
$$V_{P1} = \frac{1}{3}G_1 \cdot h_1 = \frac{1}{3} \cdot 12^2 \cdot 8 = 384$$
, $V_{P2} = \frac{1}{3}G_2 \cdot h_2 = \frac{1}{3} \cdot 6^2 \cdot 4 = 48$, $V = 336$

1. a)
$$A(4|0|0)$$
, $B(4|4|0)$, $C(0|4|0)$, $D(0|0|0)$, $S(2|2|3)$
c) $a = 4$ und $h = 6$
oder: $h = 3$ und $a = 2 \cdot \sqrt{2}$

2. a) |a|=9, |b|=9: gleiche Länge

b)
$$|\overrightarrow{AB}| = \sqrt{125 + x^2} = 15 \Rightarrow x = \pm 10$$

TEST – Buch S. 88

1, a) B(4|8|0), C(0|8|0), D(0|0|0), E(4|0|5), F(4|8|5), H(0|0|5), M(2|4|5)

b)
$$|\overline{AF}| = \sqrt{64 + 25} = \sqrt{89} \approx 9{,}43$$
, $|\overline{DM}| = \sqrt{4 + 16 + 25} = \sqrt{45} \approx 6{,}71$

2 a) $\binom{1}{7}$ b) $\binom{-2}{2} + \binom{-1}{3} + \binom{4}{2} = \binom{1}{7}$

3.
$$\begin{pmatrix} 6 \\ -2 \\ -1 \end{pmatrix} = 4 \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$$

4. a)
$$\overrightarrow{AB} = \begin{pmatrix} -2 \\ -3 \\ -6 \end{pmatrix}$$
, $\overrightarrow{AC} = \begin{pmatrix} -4 \\ 3 \\ -3 \end{pmatrix}$, $\overrightarrow{BC} = \begin{pmatrix} -2 \\ 6 \\ 3 \end{pmatrix}$
 $|\overrightarrow{AB}| = \sqrt{4+9+36} = 7$, $|\overrightarrow{AC}| = \sqrt{34}$, $|\overrightarrow{BC}| = \sqrt{49} = 7$

Das Dreieck ist gleichschenklig aber nicht gleichseitig.

5. a)
$$\overrightarrow{AM} = -\frac{1}{2}\vec{a} + \vec{b} + \vec{c}$$

- b) A(8|0|0), B(8|10|0), C(0|10|0), D(0|0|0) E(8|0|5), F(8|10|5), G(0|10|5), H(0|0|5) T(4|10|8), S(4|0|8)
- c) |ES|=5, |EF|=10, A=50

d)
$$\cos \alpha = \frac{\binom{4}{0}\binom{-4}{0}}{\binom{-3}{25}} = \frac{-7}{25}$$
, $\alpha \approx 106,3^{\circ}$ e) $\cos \beta = \frac{\binom{-4}{0}\binom{-4}{0}}{20} = \frac{4}{5}$, $\beta \approx 36,9^{\circ}$

e)
$$\cos \beta = \frac{\begin{pmatrix} -4 \\ 0 \\ -3 \end{pmatrix} \begin{pmatrix} -4 \\ 0 \\ 0 \end{pmatrix}}{20} = \frac{4}{5}, \quad \beta \approx 36.9^{\circ}$$

f)
$$|SF| = \sqrt{16 + 100 + 9} = \sqrt{125} \approx 11,19$$

Nur wenn die Vektoren a und b nicht kollinear sind.

Parameterdarstellung von Geraden #1

Buch S. 92 Ü1)

• Ortsvektoren: z.B. \overline{OP}

III. Geraden und Ebenen im Raum 1. Geraden im Raum

P ∈ g, 2mal den Richtungsvektor an A angesetzt (r = 2)

Q ∉g, Gleichungssystem liefert Widerspruch

 $R \in g (r = -1)$, R liegt vor A

- a) g, ist parallel zur y-Achse.
- b) g₂ ist parallel zur z-Achse.
- c) g₃ ist eine Ursprungsgerade entlang der Winkelhalbierenden in der x-y-Ebene.
- d) g₄ ist die x-Achse.

3. a)
$$\vec{\mathbf{x}} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} + r \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

b)
$$\vec{\mathbf{x}} = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} + \mathbf{r} \begin{pmatrix} 7 \\ -1 \\ 2 \end{pmatrix}$$
 c) $\vec{\mathbf{x}} = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix} + \mathbf{r} \begin{pmatrix} 7 \\ -1 \\ 6 \end{pmatrix}$

c)
$$\vec{\mathbf{x}} = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix} + \mathbf{r} \begin{pmatrix} 7 \\ -1 \\ 6 \end{pmatrix}$$

4. a)
$$\vec{X} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} + r \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

b)
$$\vec{x} = r \begin{pmatrix} a \\ 2a \\ -a \end{pmatrix}$$
 oder $\vec{x} = r \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$

$$\vec{\mathbf{x}} = \mathbf{r} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

Parameterdarstellung von Geraden #2

• Zwei-Punkte-Gleichung:

Buch S. 92 Ü3)

Buch S. 93 Nr. 8) und 9)

7. a)
$$\binom{1}{3} = \binom{3}{2} + r \binom{-4}{2} \underset{\Leftrightarrow}{\Leftrightarrow} r=0,5, P \in g$$

- b) P∉g
- d) g: $\vec{\mathbf{x}} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + r \begin{pmatrix} b_1 a_1 \\ b_2 a_2 \\ b_3 a_4 \end{pmatrix}$
 - c) P∈g d) P∉g

6. a) g: $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + r \begin{bmatrix} 2 \\ -6 \\ 0 \end{bmatrix}$

b) g: $\vec{\mathbf{x}} = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix} + r \begin{pmatrix} 6 \\ -1 \\ 1 \end{pmatrix}$

c) g: $\vec{\mathbf{x}} = \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix} + r \begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix}$

8. II, IIk, IIIn, IVg, Vp, VIh, VIIf, VIIIe, IXm

9. a) g:
$$\vec{\mathbf{x}} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} + r \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 b) g: $\vec{\mathbf{x}} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}$

b) g:
$$\vec{\mathbf{x}} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \mathbf{r} \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}$$

c) g:
$$\vec{\mathbf{x}} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \mathbf{r} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Lagebeziehung von Punkt/Gerade und Punkt/Strecke

Buch S. 94 Ü1a), *Ü1b)*

2. Lagebeziehungen

1. a) g_{AB} : $\vec{x} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} + r \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix}$ P liegt auf g (r = -1), aber nicht auf \overline{AB} . Q liegt auf g (r = 0,5) und sogar auf \overline{AB} . R liegt nicht auf g.

b)
$$\begin{pmatrix} 4+t \\ 5t \\ t \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} + r \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix} \implies t = 1 \quad (r = 1,5)$$

Schema zum Vorgehen

Buch S. 97 Ü2a-c) Buch S. 98 Nr. 5), *6)*

- 2. a) g schneidet h in S(-4|-1|8) (r = -2, s = 1).
 - b) g ist echt parallel zu h.
 - g und h sind windschief.
 - d) g schneidet h in S(6|2|-1) (r = 2, s = 3)

3.
$$\overline{CD}$$
: $\vec{x} = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} + t \begin{pmatrix} -4 \\ 2 \\ -2 \end{pmatrix}$, \overline{EF} : $\vec{x} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + k \begin{pmatrix} -2 \\ 3 \\ 3 \end{pmatrix}$ g schneidet h in S(4|-1,5|3,5) (r = 1,5, s = 0,5)

g ist echt parallel zu CD.

g und EF sind windschief, ebenso h und CD sowie CD und EF. h und EF sind echt parallel.

- 4. Ursprung in E, x-Achse in Richtung EA:
 - a) g_{AG} : $\vec{x} = \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix} + r \begin{pmatrix} -8 \\ 6 \\ 4 \end{pmatrix}$, g_{BH} : $\vec{x} = \begin{pmatrix} 8 \\ 6 \\ 0 \end{pmatrix} + s \begin{pmatrix} -8 \\ -6 \\ 4 \end{pmatrix}$
 - b) g_{AG} und g_{BH} schneiden sich in S(4|3|2) (r = s = 0.5)
 - c) h_{AM} : $\vec{x} = \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix} + r \begin{pmatrix} -4 \\ 6 \\ 2 \end{pmatrix}$, $g_{BH} = h_{AM}$: $S(\frac{16}{3} | 4 | \frac{4}{3})$, $r = \frac{2}{3}$, $s = \frac{1}{3}$
- 5. a) Mit g: $\vec{x} = \begin{pmatrix} 0 \\ 0 \\ 15 \end{pmatrix} + r \begin{pmatrix} -1 \\ 3 \\ 0.5 \end{pmatrix}$: Lediglich der Wolf wird getroffen, Entfernung: $|PW| = \sqrt{155^2 + 465^2 + 77,5^2} \approx 496,24 \text{ dm} \approx 50 \text{ m}$ d.h. $v = 50 \frac{m}{s} = 180 \frac{km}{h}$
 - b) Elchscheibenrichtung: $\vec{w} = \begin{pmatrix} -160 \\ 640 \\ 80 \end{pmatrix}$, bzw. $\begin{pmatrix} -1 \\ 4 \\ 0.5 \end{pmatrix}$
- 6. a) g_{AB} : $\bar{x} = \begin{pmatrix} 20 \\ 20 \\ 0 \end{pmatrix} + r \begin{pmatrix} 200 \\ 400 \\ 80 \end{pmatrix}$, S_1 erfüllt die Geradengleichung, ist also geeignet. S_2 muss von 30m auf 40m Höhe gebracht werden um geeignet zu sein. S₃ ist nicht geeignet, auch nicht durch Kürzen oder Verlängern.
 - b) Drahtlänge: $|AB| = \sqrt{200^2 + 400^2 + 80^2} \approx 454,31 \text{ m}$ $v = 20 \frac{km}{h} \approx 5,56 \frac{m}{t}, t \approx \frac{454,31}{5.56} s \approx 81,71s$

c) $\tan \gamma = \frac{80}{\sqrt{200^2 + 400^2}}$, $\gamma \approx 10.14^\circ$

98

97