```
In [8]: # importing pandas module
import pandas as pd
### making data frame
df = pd.read csv("C:/Users/Admin/Desktop/Sem 1/ births and deaths.csv")
#print(df)
df2 = pd.DataFrame(df)
#df2
# Prints no. of rows and columns of a DataFrame
print("The size of the dataframe is")
print(df2.shape)
# Prints the first 5 rows of a DataFrame as default
print("The first five rows of dataframe is")
print(df2.head(5))
# prints first 5 rows and every column which replicates df.head()
print("Another way of displaying the first five rows of dataframe is")
print(df.iloc[0:5,:])
#### STAT ANALYSIS
# computes various summary statistics, excluding NaN values
print(df2.describe())
# for computing correlations
print(df2.corr())
print(df2.sort_index())
# computes numerical data ranks
df2.rank()
```

The size of the dataframe is (52, 5)The first five rows of dataframe is Male Live Births Female Live Births Male Deaths Ouarter Female Deaths 2000Q2 Another way of displaying the first five rows of dataframe is Quarter Male Live Births Female Live Births Male Deaths Female Deaths 2000Q2 2001Q1 Female Live Births Male Live Births Male Deaths Female Deaths 52.000000 52.000000 52.000000 52.000000 count 7639.750000 7263.673077 3549.961538 3556.788462 mean 506.576548 445.757682 272.253844 329,419890 std min 6713.000000 6438.000000 3103.000000 3070.000000 25% 6864.250000 3354.250000 7275.000000 3319.250000 50% 7635.000000 7307.000000 3498.500000 3487.500000 75% 8037.250000 7544.250000 3680.000000 3699.750000 max 8756.000000 8212.000000 4149.000000 4287.000000 Male Deaths Male Live Births Female Live Births Male Live Births 1.000000 0.963614 0.137545 Female Live Births 0.197679 0.963614 1.000000 Male Deaths 0.137545 0.197679 1.000000 Female Deaths 0.125531 0.178861 0.950433 Female Deaths Male Live Births 0.125531 Female Live Births 0.178861 Male Deaths 0.950433 Female Deaths 1.000000 Female Live Births Male Deaths Ouarter Male Live Births Female Deaths 2000Q1 2000Q3 2000Q4 2001Q1 2001Q2 2001Q3 2002Q1 2002Q2 2002Q4 2003Q1 2003Q4

2004Q4

		Onlineara			
20	2005Q1	7499	7063	3129	3145
21	2005Q2	7509	7298	3485	3493
22	2005Q3	7281	6825	3577	3690
23	2005Q4	7257	7013	3240	3275
24	2006Q1	7800	7458	3319	3352
25	2006Q2	7492	7124	3363	3482
26	2006Q3	7631	7340	3966	4185
27	2006Q4	7317	7031	3276	3302
28	2007Q1	8602	7934	3450	3436
29	2007Q2	8093	7664	3403	3444
30	2007Q3	8068	7653	3870	3965
31	2007Q4	8250	7780	3552	3402
32	2008Q1	7948	7796	3342	3317
33	2008Q2	8597	8053	3617	3625
34	2008Q3	8262	7854	4075	4198
35	2008Q4	8295	7538	3501	3513
36	2009Q1	8092	7468	3300	3320
37	2009Q2	8019	7436	3534	3520
38	2009Q3	8264	8047	3999	3994
39	2009Q4	7737	7480	3647	3650
40	2010Q1	8756	8212	3289	3211
41	2010Q2	8107	7518	3539	3513
42	2010Q3	8084	7838	3993	3951
43	2010Q4	7957	7425	3402	3540
44	2011Q1	8370	7884	3559	3609
45	2011Q2	7676	7425	3573	3698
46	2011Q3	7961	7563	4079	4247
47	2011Q4	7469	7055	3612	3705
48	2012Q1	8027	7684	3496	3401
49	2012Q2	7804	7468	3695	3611
50	2012Q3	7639	7316	4149	4287
51	2012Q4	7773	7467	3716	3744

Out[8]:

	Quarter	Male Live Births	Female Live Births	Male Deaths	Female Deaths
0	1.0	27.5	24.0	13.0	1.5
1	2.0	16.0	14.0	17.0	6.0
2	3.0	11.0	12.0	39.0	28.0
3	4.0	7.0	3.0	14.5	4.0
4	5.0	22.0	25.0	3.0	1.5
5	6.0	9.0	9.0	24.0	19.0
6	7.0	3.0	8.0	44.0	45.0
7	8.0	2.0	6.0	14.5	18.0
8	9.0	5.0	7.0	6.0	9.0
9	10.0	1.0	1.0	28.0	16.0
10	11.0	8.0	5.0	45.0	46.0
11	12.0	6.0	4.0	7.5	22.0
12	13.0	19.0	13.0	1.0	5.0
13	14.0	4.0	2.0	19.5	24.5
14	15.0	10.0	11.0	49.0	48.0
15	16.0	18.0	21.0	22.0	10.0
16	17.0	29.0	29.0	5.0	7.0
17	18.0	17.0	19.0	21.0	17.0
18	19.0	24.0	16.0	43.0	47.0
19	20.0	12.0	15.0	31.0	37.0
20	21.0	23.0	22.0	2.0	3.0
21	22.0	25.0	26.0	25.0	27.0
22	23.0	14.0	10.0	35.0	38.0
23	24.0	13.0	17.0	4.0	11.0
24	25.0	33.0	33.0	11.0	15.0
25	26.0	21.0	23.0	16.0	26.0
26	27.0	26.0	28.0	46.0	49.0
27	28.0	15.0	18.0	7.5	12.0
28	29.0	51.0	49.0	23.0	23.0
29	30.0	43.0	42.0	19.5	24.5
30	31.0	40.0	41.0	42.0	43.0
31	32.0	45.0	44.0	32.0	21.0
32	33.0	35.0	45.0	12.0	13.0
33	34.0	50.0	51.0	37.0	35.0
34	35.0	46.0	47.0	50.0	50.0

	Quarter	Male Live Births	Female Live Births	Male Deaths	Female Deaths
35	36.0	48.0	39.0	27.0	29.5
36	37.0	42.0	35.5	10.0	14.0
37	38.0	38.0	32.0	29.0	31.0
38	39.0	47.0	50.0	48.0	44.0
39	40.0	31.0	37.0	38.0	36.0
40	41.0	52.0	52.0	9.0	8.0
41	42.0	44.0	38.0	30.0	29.5
42	43.0	41.0	46.0	47.0	42.0
43	44.0	36.0	30.5	18.0	32.0
44	45.0	49.0	48.0	33.0	33.0
45	46.0	30.0	30.5	34.0	39.0
46	47.0	37.0	40.0	51.0	51.0
47	48.0	20.0	20.0	36.0	40.0
48	49.0	39.0	43.0	26.0	20.0
49	50.0	34.0	35.5	40.0	34.0
50	51.0	27.5	27.0	52.0	52.0
51	52.0	32.0	34.0	41.0	41.0

```
In [10]:
 # importing pandas module
 import pandas as pd
 import matplotlib.pyplot as plt
 ### making data frame
 df1 = pd.read_csv("C:/Users/Admin/Desktop/Sem 1/_births_and_deaths.csv")
 #print(df)
 df2 = pd.DataFrame(df)
 df = pd.DataFrame({"a":["c", "nc", "c", "nc"],
 "b":[5, 6, 7, 8]})
 # plot a histogram
 #df['1965'].hist(bins=10)
 # shows presence of a lot of outliers/extreme values
 #df.boxplot(column='1975', by = '1965')
 # plotting points as a scatter plot
 x = df["a"]
 y = df["b"]
 plt.scatter(x, y, label= "stars", color= "m",
 marker= "*", s=30)
 # x-axis label
 plt.xlabel('class')
 # frequency label
 plt.ylabel('values')
 # function to show the plot
 plt.show()
```

