Lesson 30: Practice Problems - Distinct Eigenvalues

ODE 1 - Prof. Adi Ditkowski

Part A: Eigenvalue/Eigenvector Computation

- 1. Find all eigenvalues and eigenvectors of $A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$
- 2. Find all eigenvalues and eigenvectors of $A = \begin{pmatrix} 5 & -2 \\ 3 & -2 \end{pmatrix}$
- 3. Find all eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
- 4. Verify that $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ is an eigenvector of $A = \begin{pmatrix} 4 & 1 \\ 2 & 5 \end{pmatrix}$ and find the corresponding eigenvalue.
- 5. For the matrix $A = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$, find conditions on a and b for distinct real eigenvalues.

Part B: $2 \times 2Systems with Distinct Real Eigenvalues$

- 6. Solve the system $\mathbf{x}' = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \mathbf{x}$
- 7. Solve the IVP: $\mathbf{x}' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{x}, \ \mathbf{x}(0) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$
- 8. Find the solution to $\mathbf{x}' = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \mathbf{x}$ that satisfies $x_1(0) = 2, x_2(0) = -1$
- 9. Determine all solutions of $\mathbf{x}' = \begin{pmatrix} 3 & 4 \\ 1 & 3 \end{pmatrix} \mathbf{x}$ that remain bounded as $t \to \infty$
- 10. Find the fundamental matrix for $\mathbf{x}' = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix} \mathbf{x}$

Part C: $3 \times 3 Systems with Distinct Eigenvalues$

11. Solve:
$$\mathbf{x}' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \mathbf{x}$$

12. Solve:
$$\mathbf{x}' = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{pmatrix} \mathbf{x}$$

13. Find the general solution:
$$\mathbf{x}' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{pmatrix} \mathbf{x}$$

14. Solve the IVP:
$$\mathbf{x}' = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \mathbf{x}, \ \mathbf{x}(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

15. Find all equilibrium solutions and their stability for:
$$\mathbf{x}' = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \mathbf{x}$$

Part D: Stability and Behavior Analysis

16. For what values of
$$k$$
 is the origin a stable equilibrium for $\mathbf{x}' = \begin{pmatrix} -1 & k \\ 0 & -2 \end{pmatrix} \mathbf{x}$?

17. Classify the equilibrium at the origin for
$$\mathbf{x}' = \begin{pmatrix} 3 & 5 \\ 1 & -1 \end{pmatrix} \mathbf{x}$$

18. Find a system
$$\mathbf{x}' = A\mathbf{x}$$
 where all solutions approach the line $x_1 = x_2$ as $t \to \infty$

2

19. Determine the long-term behavior of solutions to
$$\mathbf{x}' = \begin{pmatrix} -3 & 2 \\ 1 & -2 \end{pmatrix} \mathbf{x}$$

20. Show that if A has all negative eigenvalues, then
$$\|\mathbf{x}(t)\| \to 0$$
 as $t \to \infty$

Part E: Special Cases and Theory

21. Prove that if A is symmetric, all eigenvalues are real

22. Show that
$$tr(A) = \sum \lambda_i and det(A) = \prod \lambda_i$$

23. If A has eigenvalues 2, 3, 5, what are the eigenvalues of A^2 ? Of A^{-1} ?

24. Construct a
$$2 \times 2matrix with eigenvalues \lambda_1 = 1, \lambda_2 = -2$$
 and eigenvectors $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

25. Find a 3×3 uppertriangularmatrixwitheigenvalues 1, 2, 3 and determineits eigenvectors

Part F: Application Problems

- 26. Two tanks contain salt solutions. Tank 1 has rate of change $x'_1 = -0.1x_1 + 0.05x_2$ and Tank 2 has $x'_2 = 0.1x_1 0.15x_2$. Find the salt amounts over time if initially $x_1(0) = 100, x_2(0) = 50$.
- 27. A predator-prey model gives $\mathbf{x}' = \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix} \mathbf{x}$ where x_1 is prey, x_2 is predator population. Analyze the long-term behavior.
- 28. Coupled springs lead to $\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -2 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 & 0 \\ 0 & -3 \end{pmatrix} \mathbf{x}$. Find the general solution.
- 29. An electrical circuit gives $\mathbf{x}' = \begin{pmatrix} -R/L & -1/L \\ 1/C & 0 \end{pmatrix} \mathbf{x}$ with R = 2, L = 1, C = 0.5. Solve for the current and voltage.
- 30. Challenge: Show that the solution to $\mathbf{x}' = A\mathbf{x}$ can be written as $\mathbf{x}(t) = e^{At}\mathbf{x}_0$ and \mathbf{v} erify this for a diagonal m

Solutions and Hints

Problem 1: $\lambda_1 = 5, \lambda_2 = 2; \mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Problem 7: First find $\lambda_1 = 3, \lambda_2 = -1$. General solution involves e^{3t} and e^{-t} terms.

Problem 11: Diagonal matrix - eigenvectors are standard basis vectors.

Problem 16: Stable for all k since both eigenvalues are negative regardless of k.

Problem 22: Use the fact that $tr(A) = tr(PDP^{-1}) = tr(D)$ where D is diagonal with eigenvalues.

Key Strategy: Always verify your eigenvalues by checking that $\det(A - \lambda I) = 0$ and eigenvectors by confirming $A\mathbf{v} = \lambda \mathbf{v}$.