Capítulo 3

Límites de funciones

Si f es una función real, queremos definir el valor límite de f(x) cuando x es un punto de su dominio que se acerca a un valor dado a. El punto a, en general, no tiene que pertenecer necesariamente al dominio de f. Lo que interesa es estudiar cómo se comporta f en puntos de su dominio cercanos al punto a.

3.1. Límites de funciones reales de variable real

Definición 3.1.1. Sean $a, r \in \mathbb{R}$, con r > 0. Se define el entorno (abierto) reducido de centro a y radio r, y se denota por $E_r^*(a)$, como

$$E_r^*(a) = \{x \in \mathbb{R} : 0 < |x - a| < r\} = (a - r, a + r) \setminus \{a\} = (a - r, a) \cup (a, a + r).$$

Definición 3.1.2. Sea A un subconjunto de \mathbb{R} y sea $x \in \mathbb{R}$. Diremos que x es un punto de acumulación de A si, para todo $\delta > 0$, existe $a \in A$ tal que $a \in E^*_{\delta}(x)$.

Ejemplo 3.1.3.

- 1. Sea A = (0, 1). Se tiene entonces que $\frac{1}{2}$, $\frac{1}{3}$ y $\frac{2}{3}$ son puntos de acumulación de A. Además, 0 y 1 son también puntos de acumulación de A.
- 2. Consideremos ahora $A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$. No es difícil ver que 0 es punto de acumulación de A. En efecto, dado $\delta > 0$, $E_{\delta}^{*}(0) = (-\delta, 0) \cup (0, \delta)$. Por el Corolario 1.4.8, existe $n \in \mathbb{N}$ tal que $0 < \frac{1}{n} < \delta$, es decir $\frac{1}{n} \in A$ verifica que $\frac{1}{n} \in E_{\delta}^{*}(0)$.
- 3. El conjunto de los números naturales, N, no tiene puntos de acumulación.
- 4. Sea ahora $A = \mathbb{Q} \cap [0, 1]$. Entonces todo punto del intervalo [0, 1] es de acumulación para A.
- 5. Si A es un conjunto finito, entonces no tiene puntos de acumulación.

Definición 3.1.4. Sea $A \subseteq \mathbb{R}$ y sea $f: A \longrightarrow \mathbb{R}$ una función. Sea a un punto de acumulación de A y sea $L \in \mathbb{R}$. Decimos que la función f tiene límite L cuando x tiende a a, y se denota por $\lim_{x\to a} f(x) = L$, si para todo $\varepsilon > 0$, existe $\delta = \delta(\varepsilon) > 0$ tal que si $x \in A$, con $0 < |x-a| < \delta$, entonces $|f(x) - L| < \varepsilon$.

Observación 3.1.5.

- 1. La condición $0 < |x a| < \delta$ significa que x pertenece a un entorno abierto reducido de a, $x \in (a \delta, a + \delta) \setminus \{a\}$. Con lo que, para que tenga sentido estudiar el límite de f en un punto a, la función debe estar definida en algún entorno reducido de a.
- 2. Si x es un punto de A, contenido en un entorno reducido de centro a y radio δ , la imagen de x, f(x), es un punto del entorno abierto de centro L y radio ε . Intuitivamente, esto significa que el valor al que se aproxima f(x) es L, cuando x se aproxima a a.
- 3. El valor del límite de una función f cuando x tiende a a no depende de los valores de f para puntos x situados "lejos" de a (esto significa que el límite de una función en un punto es una propiedad local). Tampoco depende del valor de f en a. De hecho, podría no existir f(a) ya que, por definición, a no tiene por qué estar en el dominio de f.

Ejemplo 3.1.6.

- 1. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = c para todo $x \in \mathbb{R}$, con $c \in \mathbb{R}$ constante. Es claro entonces que, para todo $a \in \mathbb{R}$, se tiene que $\lim_{x \to a} f(x) = c$ ya que, para todo $x \in \mathbb{R}$, se verifica que |f(x) c| = 0, con lo que, para todo $\varepsilon > 0$ y para todo $\delta > 0$, se tiene que $0 = |f(x) c| < \varepsilon$, si $0 < |x a| < \delta$.
- 2. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por f(x) = x para todo $x \in \mathbb{R}$. Entonces $\lim_{x \to a} f(x) = a$ para todo $a \in \mathbb{R}$. En efecto, dado $\varepsilon > 0$ y tomando $\delta = \varepsilon > 0$ se tiene que, si $0 < |x a| < \delta$, entonces $|f(x) a| = |x a| < \delta = \varepsilon$.
- 3. Aplicando la definición de límite, probar que $\lim_{x\to 1} \frac{x+3}{2} = 2$.

Sea $\varepsilon > 0$. Necesitamos encontrar $\delta > 0$ tal que si $0 < |x-1| < \delta$, entonces $|f(x)-2| < \varepsilon$. Por una parte, tenemos que

$$|f(x)-2| = \left|\frac{x+3}{2}-2\right| = \left|\frac{x+3-4}{2}\right| = \left|\frac{x-1}{2}\right| = \frac{|x-1|}{2}.$$

Luego, tomando $\delta=2\varepsilon>0$, obtenemos que si $0<|x-1|<\delta$, entonces

$$|f(x) - 2| = \frac{|x - 1|}{2} < \frac{\delta}{2} = \frac{2\varepsilon}{2} = \varepsilon.$$

Con lo que $\lim_{x\to 1} \frac{x+3}{2} = 2$.

4. Utilizando la definición de límite, demostrar que $\lim_{x\to 1} \frac{x-1}{\sqrt{x-1}} = 2$.

Consideremos $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \frac{x-1}{\sqrt{x}-1}$. Es claro que $\text{Dom}(f) = [0, \infty) \setminus \{1\} = [0, 1) \cup (1, \infty)$. Además

$$|f(x) - 2| = \left| \frac{x - 1}{\sqrt{x} - 1} - 2 \right| = \left| \frac{x - 1 - 2\sqrt{x} + 2}{\sqrt{x} - 1} \right| = \left| \frac{x - 2\sqrt{x} + 1}{\sqrt{x} - 1} \right| = \left| \frac{(\sqrt{x} - 1)^2}{\sqrt{x} - 1} \right| = \left| \sqrt{x} - 1 \right|.$$

Ahora bien, como $x \neq 1$, entonces se tiene que

$$\left| \frac{\sqrt{x} - 1}{x - 1} \right| = \left| \frac{\sqrt{x} - 1}{(\sqrt{x} + 1)(\sqrt{x} - 1)} \right| = \left| \frac{1}{\sqrt{x} + 1} \right| = \frac{1}{\sqrt{x} + 1} < 1,$$

con lo que $\left|\frac{\sqrt{x}-1}{x-1}\right| = \frac{\left|\sqrt{x}-1\right|}{|x-1|} < 1$ y, por tanto, $|\sqrt{x}-1| < |x-1|$.

Sea entonces $\varepsilon > 0$. Necesitamos encontrar $\delta > 0$ tal que si $0 < |x-1| < \delta$, entonces se verifique que $|f(x)-2| < \varepsilon$.

Como tenemos que $x \neq 1$ entonces, por lo anterior, tenemos que $|\sqrt{x} - 1| < |x - 1|$, con lo que basta tomar $\varepsilon = \delta$. En efecto, si $0 < |x - 1| < \delta$, entonces

$$|f(x) - 2| = |\sqrt{x} - 1| < |x - 1| < \delta = \varepsilon.$$

Luego $\lim_{x\to 1} \frac{x-1}{\sqrt{x}-1} = 2$.

Teorema 3.1.7. Sea $A \subseteq \mathbb{R}$ y sea $f: A \longrightarrow \mathbb{R}$ una función. Sea a un punto de acumulación de A. Sean $L, L' \in \mathbb{R}$ tales que $\lim_{x \to a} f(x) = L$ y $\lim_{x \to a} f(x) = L'$. Entonces L = L'. Es decir, si existe el límite de f cuando x tiene a a, entonces es único.

Proposición 3.1.8. (Aritmética de límites). Sea $A \subseteq \mathbb{R}$ y sean $f, g : A \longrightarrow \mathbb{R}$ dos funciones. Sea a un punto de acumulación de A y sean $L, L' \in \mathbb{R}$ tales que $\lim_{x \to a} f(x) = L$ y $\lim_{x \to a} g(x) = L'$. Entonces se verifica:

- 1. $\lim_{x\to a} (rf(x) + sg(x)) = rL + sL'$, para todo $r, s \in \mathbb{R}$.
- 2. $\lim_{x \to a} (f(x)g(x)) = LL'.$
- 3. $\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{L}{L'}, \ si \ L' \neq 0.$
- 4. $\lim_{x\to a} (f(x)^{g(x)}) = L^{L'}$, si L y L' no son ambos cero.
- 5. $\lim_{x\to a} \log_b(f(x)) = \log_b L$, para todo b>0, siempre que L>0.
- 6. $\lim_{x \to a} |f(x)| = |L|$.
- 7. Si para todo $x \in A$ se verifica que $f(x) \leq g(x)$, entonces $L \leq L'$.

Observación 3.1.9. Es fácil comprobar que los apartados 1 y 2 de la proposición anterior se puede generalizar para un número finito de funciones.

Ejemplo 3.1.10.

- 1. Por los apartados 1, 2 y 3 de la proposición anterior, tenemos que $\lim_{r\to 1} \frac{3x^4-2}{2x^2+1} = \frac{1}{3}$.
- 2. Calcular $\lim_{x\to 2} \frac{x^3-8}{2x-4}$.

En este caso, no podemos aplicar el apartado 3 de la proposición anterior, ya que $\lim_{x\to 2} (2x+4) = 0$. Sin embargo, para $x \neq 2$, tenemos que

$$\frac{x^3 - 8}{2x - 4} = \frac{(x - 2)(x^2 + 2x + 4)}{2(x - 2)} = \frac{x^2 + 2x + 4}{2}.$$

Con lo que $\lim_{x\to 2} \frac{x^3-8}{2x-4} = \lim_{x\to 2} \frac{x^2+2x+4}{2} = 6.$

Definición 3.1.11. Sea $A \subseteq \mathbb{R}$ y sea $f : A \longrightarrow \mathbb{R}$ una función. Sea $B \subseteq A$. Diremos que f está (o es) acotada en B si existe $M \ge 0$ tal que $|f(x)| \le M$ para todo $x \in B$.

Ejemplo 3.1.12. Las funciones seno y coseno son acotadas en todo su dominio, ya que $|\text{sen}(x)| \le 1$ y $|\cos(x)| \le 1$ para todo $x \in \mathbb{R}$.

Proposición 3.1.13. Sea $A \subseteq \mathbb{R}$ y sea $f: A \longrightarrow \mathbb{R}$ una función tal que existe $\lim_{x \to a} f(x)$ en un punto a de acumulación de A. Entonces f está acotada en un entorno abierto de a, es decir, existe $\delta > 0$ y $M = M(\delta) \ge 0$ tal que $|f(x)| \le M$ para todo $x \in (a - \delta, a + \delta)$.

Demostración. Sea $L = \lim_{x \to a} f(x)$ y sea $\varepsilon > 0$. Como $\lim_{x \to a} f(x) = L$ existe entonces $\delta > 0$ tal que si $x \in A$, con $0 < |x - a| < \delta$, entonces $|f(x) - L| < \varepsilon$.

Luego si x está en un entorno reducido de centro a y radio δ , se tiene entonces que f(x) está en el entorno abierto de centro L y radio ε . Con lo que f está acotada en un entorno de a.

Observación 3.1.14. Como consecuencia de esta proposición, tenemos que si f no es acotada en ningún entorno de a, entonces no existe $\lim_{x\to a} f(x)$.

Ejemplo 3.1.15. Consideremos la función $f : \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ definida por $f(x) = \frac{1}{x}$. Veamos que no existe el límite de f cuando x tiende a 0. Para ello, veamos que f no es acotada en ningún entorno de 0.

Sea $M \ge 0$ y sea $E_{\delta}(0) = (-\delta, \delta)$, con $\delta > 0$, un entorno (arbitrario) de 0. Por la Propiedad Arquimediana, existe $n \in \mathbb{N}$ con n > M y tal que $0 < \frac{1}{n} < \delta$, con lo que $f\left(\frac{1}{n}\right) = n > M$ y, por tanto, f no está acotada en ningún entorno de 0.

Luego no existe $\lim_{x\to 0} f(x)$.

Teorema 3.1.16. Sea $A \subseteq \mathbb{R}$ y sea $f: A \longrightarrow \mathbb{R}$ una función tal que $\lim_{x \to a} f(x) = 0$ en un punto de acumulación a de A. Si g es una función acotada en un entorno reducido de a, entonces $\lim_{x \to a} (f(x)g(x)) = 0$.

Ejemplo 3.1.17. Calcular $\lim_{x\to 0} x \operatorname{sen}\left(\frac{1}{x}\right)$.

Sean $f: \mathbb{R} \longrightarrow \mathbb{R} \text{ y } g: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ definidas por f(x) = x para todo $x \in \mathbb{R} \text{ y } g(x) = \text{sen} \left(\frac{1}{x}\right)$ para todo $x \in \mathbb{R} \setminus \{0\}$, respectivamente.

Por una parte, tenemos que $\lim_{x\to 0} f(x) = 0$. Por otra parte, como $|\mathrm{sen}(x)| \le 1$ para todo $x \in \mathbb{R}$ entonces, en particular, $\left|\mathrm{sen}\left(\frac{1}{x}\right)\right| \le 1$ para todo $x \in \mathbb{R} \setminus \{0\}$.

Luego, por el teorema anterior, $\lim_{x\to 0} x \operatorname{sen}\left(\frac{1}{x}\right) = 0$.

Teorema 3.1.18. (Criterio del sandwich). Sea $A \subseteq \mathbb{R}$ y sean $f: A \longrightarrow \mathbb{R}$, $g: A \longrightarrow \mathbb{R}$ y $h: A \longrightarrow \mathbb{R}$ tres funciones tales que $f(x) \leq g(x) \leq h(x)$ para todo $x \in A$. Sea a un punto de acumulación de A. Si $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \in \mathbb{R}$, entonces $\lim_{x \to a} g(x) = L$.

Ejemplo 3.1.19. Comprobar, aplicando el criterio del sandwich, que $\lim_{x\to 0} -x^2\cos(20\pi x) = 0$.

Por una parte, tenemos que

$$\left| -x^2 \cos(20\pi x) \right| = \left| -x^2 \right| \left| \cos(20\pi x) \right| = x^2 \left| \cos(20\pi x) \right| \le x^2,$$

ya que $|\cos(20\pi x)| \le 1$. Luego, tenemos así que $-x^2 \le -x^2\cos(20\pi x) \le x^2$.

Por otra parte, es claro que $\lim_{x\to 0}-x^2=\lim_{x\to 0}x^2=0$. Luego, por el criterio del sandwich, $\lim_{x\to 0}-x^2\cos(20\pi x)=0$.

Algunos límites importantes:

Como consecuencia del criterio del sandwich, y utilizando algunas propiedades geométricas de las funciones trigonométricas, se calculan los dos límites siguiente, que resultan ser muy útiles:

- 1. $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$.
- 2. $\lim_{x \to 0} \frac{1 \cos(x)}{x} = 0.$

Ejemplo 3.1.20.

1. Calcular $\lim_{x\to 0} \frac{\operatorname{tg}(x)}{x}$.

Como $tg(x) = \frac{sen(x)}{cos(x)}$, entonces

$$\lim_{x\to 0}\frac{\operatorname{tg}(x)}{x}=\lim_{x\to 0}\frac{\operatorname{sen}(x)}{x}\cdot\frac{1}{\cos(x)}=\lim_{x\to 0}\frac{\operatorname{sen}(x)}{x}\cdot\lim_{x\to 0}\frac{1}{\cos(x)}=1\cdot 1=1.$$

2. Demostrar que $\lim_{x\to 0} \frac{\sin(16x)}{2x} = 8$.

Por una parte,

$$\lim_{x \to 0} \frac{\sin(16x)}{2x} = \lim_{x \to 0} \frac{8 \cdot \sin(16x)}{8 \cdot 2x} = 8 \cdot \lim_{x \to 0} \frac{\sin(16x)}{16x}.$$

Por otra parte, realizando el cambio de variable y = 16x, tenemos entonces que

$$\lim_{x \to 0} \frac{\sin(16x)}{2x} = 8 \cdot \lim_{x \to 0} \frac{\sin(16x)}{16x} = 8 \cdot \lim_{y \to 0} \frac{\sin(y)}{y} = 8 \cdot 1 = 8.$$

Nótese que, si y = 16x, como $x \to 0$, entonces $y \to 0$.

3.1.1. Límites laterales

Definición 3.1.21. Sea $A \subseteq \mathbb{R}$ y sea $f: A \longrightarrow \mathbb{R}$ una función. Sea a un punto de acumulación de $A \cap (a, +\infty)$ y sea $L \in \mathbb{R}$. Diremos que L es el límite por la derecha de f en a, y se denota por $f(a^+) = \lim_{x \to a^+} f(x) = L$, si para todo $\varepsilon > 0$ existe $\delta = \delta(\varepsilon) > 0$ tal que si $x \in A$, con $0 < x - a < \delta$ (es decir, $x \in A \cap (a, a + \delta)$), entonces $|f(x) - L| < \varepsilon$.

Definición 3.1.22. Sea $A \subseteq \mathbb{R}$ y sea $f: A \longrightarrow \mathbb{R}$ una función. Sea a un punto de acumulación de $(-\infty, a) \cap A$ y sea $L \in \mathbb{R}$. Diremos que L es el límite por la izquierda de f en a, y se denota por $f(a^-) = \lim_{x \to a^-} f(x) = L$, si para todo $\varepsilon > 0$ existe $\delta = \delta(\varepsilon) > 0$ tal que si $x \in A$, con $0 < a - x < \delta$ (es decir, $x \in (a - \delta, a) \cap A$), entonces $|f(x) - L| < \varepsilon$.

Observación 3.1.23. Los resultados de unicidad del límite y de aritmética de límites tienen sus análogos en el caso de límites laterales, siempre que tengan sentido. Esto mismo ocurrirá cuando estudiemos límites infinitos y límites en el infinito.

Teorema 3.1.24. Sea $A \subseteq \mathbb{R}$ y sea $f: A \longrightarrow \mathbb{R}$ una función. Sea a un punto de acumulación de $A \cap (a, +\infty)$ y de $(-\infty, a) \cap A$ y sea $L \in \mathbb{R}$. Entonces $\lim_{x \to a} f(x) = L$ si, y solo si, $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$.

Ejemplo 3.1.25.

1. Consideremos la función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} x, & \text{si } x < 1 \\ x + 1, & \text{si } x \ge 1 \end{cases}.$$

En este caso, tenemos que $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x = 1$ y $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x+1) = 2$.

Luego no existe $\lim_{x\to 1} f(x)$, ya que $\lim_{x\to 1^-} f(x) = 1 \neq 2 = \lim_{x\to 1^+} f(x)$.

2. Sea $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ definida por $f(x) = \frac{|x|}{x}$ para todo $x \neq 0$.

Por las propiedades del valor absoluto, tenemos que

$$f(x) = \begin{cases} -1, & \text{si } x < 0 \\ 1, & \text{si } x > 0 \end{cases}.$$

Luego $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -1 = -1$ y $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 1 = 1$, con lo que no existe $\lim_{x \to 0} f(x)$.

3.2. Límites infinitos y en el infinito

3.2.1. Límites infinitos

Definición 3.2.1. Sea $A \subseteq \mathbb{R}$ y sea $f: A \longrightarrow \mathbb{R}$ una función. Sea a un punto de acumulación de A.

- Diremos que f tiene l'imite infinito cuando x tiende a a, y lo denotamos por $\lim_{x\to a} f(x) = \infty$, si para todo $C \in \mathbb{R}$ existe $\delta = \delta(C) > 0$ tal que si $x \in A$, con $0 < |x-a| < \delta$, entonces f(x) > C.
- Diremos que f tiene límite menos infinito cuando x tiende a a, y lo denotamos por $\lim_{x\to a} f(x) = -\infty$, si para todo $C \in \mathbb{R}$ existe $\delta = \delta(C) > 0$ tal que si $x \in A$, con $0 < |x-a| < \delta$, entonces f(x) < C.

Observación 3.2.2. Las definiciones correspondientes para límites laterales infinitos se obtienen sustituyendo la condición $x \in A$, con $0 < |x - a| < \delta$ (es decir, $x \in A \cap E^*_{\delta}(a)$), por las condiciones correspondientes, $x \in A \cap (a, a + \delta)$ para límites por la derecha o $x \in A \cap (a - \delta, a)$, para límites por la izquierda.

Ejemplo 3.2.3. Sea $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ definida por $f(x) = \frac{1}{|x|}$ para todo $x \neq 0$.

Veamos que $\lim_{x\to 0} f(x) = \infty$.

Sea $C \in \mathbb{R}$. Necesitamos encontrar $\delta > 0$ tal que si $x \neq 0$, con $|x| < \delta$, entonces se verifique que $\frac{1}{|x|} > C$.

Así, tomando $\delta = \frac{1}{|C|} > 0$, entonces

$$|x| < \delta = \frac{1}{|C|} \Leftrightarrow \frac{1}{|x|} > |C| \ge C.$$

Luego $\lim_{x\to 0} f(x) = \infty$.

Observación 3.2.4. Para determinar un límite de este tipo sin pasar por la definición (es decir, una indeterminación del tipo $\frac{k}{0}$, con $k \neq 0$), debemos observar el signo por el que se acerca el denominador a 0 cuando realizamos límites laterales a a.

Ejemplo 3.2.5. En el ejemplo anterior, $f(x) = \frac{1}{|x|}$ para todo $x \neq 0$, tenemos que $\lim_{x \to 0} f(x) = \left[\frac{1}{0}\right]$. Miramos entonces el signo de los límites laterales.

$$\lim_{x \to 0^{-}} f(x) = \left[\frac{1}{|0^{-}|} \right] = \left[\frac{1}{0^{+}} \right] = \infty, \text{ y}$$

$$\lim_{x \to 0^+} f(x) = \left[\frac{1}{|0^+|} \right] = \left[\frac{1}{0^+} \right] = \infty.$$

Luego $\lim_{x\to 0} f(x) = \infty$.

Definición 3.2.6. Sea $A \subseteq \mathbb{R}$ y sea $f: A \longrightarrow \mathbb{R}$ una función. Sea a un punto de acumulación de A. Diremos que la recta (vertical) x = a es una asíntota vertical de f si, al menos uno de los límites laterales de f en a, es ∞ o $-\infty$, es decir, o bien $\lim_{x\to a^-} f(x) = \pm \infty$, o bien $\lim_{x\to a^+} f(x) = \pm \infty$.

Ejemplo 3.2.7.

1. Sea $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ definida por $f(x) = \frac{-1}{x}$ para todo $x \neq 0$. En este caso x = 0 es una asíntota vertical de f, ya que $\lim_{x \to 0^-} f(x) = \left[\frac{-1}{0^-}\right] = \infty$ y $\lim_{x \to 0^+} f(x) = \left[\frac{-1}{0^+}\right] = -\infty$.

2. Consideremos ahora la función $f(x) = \frac{x^2 + 2x - 8}{x^2 - 4}$, para todo $x \notin \{-2, 2\}$. Si $x \neq -2, 2$ entonces, factorizando,

$$f(x) = \frac{x^2 + 2x + 8}{x^2 - 4} = \frac{(x - 2)(x + 4)}{(x - 2)(x + 2)} = \frac{x + 4}{x + 2}.$$

Así, tenemos que $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = \lim_{x\to 2} f(x) = \frac{6}{4} = \frac{3}{2}$ y $\lim_{x\to -2} f(x) = \left[\frac{2}{0}\right]$. Miramos entonces el signo de los límites laterales de f en -2.

$$\lim_{x \to -2^{-}} f(x) = \left[\frac{2}{0^{-}} \right] = -\infty, \text{ y}$$

$$\lim_{x \to -2^+} f(x) = \left[\frac{2}{0^+}\right] = \infty.$$

Luego, la recta x=-2 es una asíntota vertical de f, pero la recta x=2 no es una asíntota vertical de f.

Un límite importante:

El siguiente límite será importante a la hora de calcular indeterminaciones del tipo $1^{(\pm)\infty}$.

Si $\lim_{x\to a} f(x) = (\pm)\infty$, entonces

$$\lim_{x \to a} \left(1 + \frac{1}{f(x)} \right)^{f(x)} = e.$$

Ejemplo 3.2.8. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \left(\frac{2x+1}{x+2}\right)^{\frac{1}{x-1}}$. Calcular $\lim_{x\to 1} f(x)$.

Como $\lim_{x\to 1} f(x) = [1^{\infty}]$, entonces debemos manipular la función f(x) para obtener una expresión del tipo $f(x) = \left(1 + \frac{1}{g(x)}\right)^{g(x)}$, con $\lim_{x\to a} g(x) = \infty$. Para ello, existen varios procedimiento, uno de ellos sería el siguiente:

1. Sumamos y restamos 1 dentro de la base de la función, y operamos la parte que tiene la diferencia:

$$f(x) = \left(\frac{2x+1}{x+2}\right)^{\frac{1}{x-1}} = \left(1 + \frac{2x+1}{x+2} - 1\right)^{\frac{1}{x-1}} = \left(1 + \frac{2x+1}{x+2} - \frac{x+2}{x+2}\right)^{\frac{1}{x-1}} = \left(1 + \frac{2x+1-x-2}{x+2}\right)^{\frac{1}{x-1}} = \left(1 + \frac{x-1}{x+2}\right)^{\frac{1}{x-1}}.$$

2. Como nuestro nuevo numerador ha de ser 1, dividimos numerador y denominador entre el numerador, es decir,

$$f(x) = \left(1 + \frac{x-1}{x+2}\right)^{\frac{1}{x-1}} = \left(1 + \frac{\frac{x-1}{x-1}}{\frac{x+2}{x-1}}\right)^{\frac{1}{x-1}} = \left(1 + \frac{1}{\frac{x+2}{x-1}}\right)^{\frac{1}{x-1}}.$$

3. Por último, como necesitamos en el exponente la misma función que en el denominador, elevamos todo al denominador y su inverso:

$$f(x) = \left(1 + \frac{1}{\frac{x+2}{x-1}}\right)^{\frac{1}{x-1}} = \left[\left(1 + \frac{1}{\frac{x+2}{x-1}}\right)^{\frac{1}{x-1}}\right]^{\frac{x+2}{x-1} \cdot \frac{x-1}{x+2}} = \left[\left(1 + \frac{1}{\frac{x+2}{x-1}}\right)^{\frac{x+2}{x-1}}\right]^{\frac{1}{x-1} \cdot \frac{x-1}{x+2}} = \left[\left(1 + \frac{1}{\frac{x+2}{x-1}}\right)^{\frac{x+2}{x-1}}\right]^{\frac{1}{x+2}}.$$

Luego

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \left[\left(1 + \frac{1}{\frac{x+2}{x-1}} \right)^{\frac{x+2}{x-1}} \right]^{\frac{1}{x+2}} = \lim_{x \to 1} \left[\left(1 + \frac{1}{\frac{x+2}{x-1}} \right)^{\frac{x+2}{x-1}} \right]^{\frac{\lim_{x \to 1} \frac{1}{x+2}}{x-1}} = e^{\frac{1}{3}} = \sqrt[3]{e},$$

ya que
$$\lim_{x \to 1^{-}} \frac{x+2}{x-1} = \left[\frac{3}{0^{-}}\right] = -\infty$$
, $\lim_{x \to 1^{+}} \frac{x+2}{x-1} = \left[\frac{3}{0^{+}}\right] = +\infty$ y $\lim_{x \to 1} \frac{1}{x+2} = \frac{1}{3}$.

3.2.2. Límites en el infinito

Definición 3.2.9. Sea $A \subseteq \mathbb{R}$ y sea $f: A \longrightarrow \mathbb{R}$ una función. Sea $L \in \mathbb{R}$.

- Si A es un conjunto no acotado superiormente, diremos que f tiene límite L cuando x tiende a infinito, y lo denotamos por $\lim_{x\to\infty} f(x) = L$, si para todo $\varepsilon > 0$ existe $M = M(\varepsilon) \in \mathbb{R}$ tal que si $x \in A$, con x > M, entonces $|f(x) L| < \varepsilon$.
- Si A es un conjunto no acotado inferiormente, diremos que f tiene límite L cuando x tiende a menos infinito, y lo denotamos por $\lim_{x\to-\infty} f(x) = L$, si para todo $\varepsilon > 0$ existe $M = M(\varepsilon) \in \mathbb{R}$ tal que si $x \in A$, con x < M, entonces $|f(x) L| < \varepsilon$.

Ejemplo 3.2.10. Sea $f(x) = \frac{1}{x}$ para todo $x \neq 0$. Veamos que $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$.

Veamos primero que $\lim_{x\to\infty} f(x) = 0$.

Sea $\varepsilon > 0$. Tenemos que encontrar $M \in \mathbb{R}$ tal que si x > M, entonces $|f(x)| < \varepsilon$.

Como queremos que

$$|f(x)| = \left|\frac{1}{x}\right| = \frac{1}{|x|} < \varepsilon,$$

basta entonces considerar $M = \frac{1}{\varepsilon}$. Así,

$$x > M = \frac{1}{\varepsilon} \Leftrightarrow \frac{1}{x} < \varepsilon \Leftrightarrow \frac{1}{|x|} < \varepsilon,$$

ya que al ser x > M > 0, entonces $\frac{1}{|x|} = \frac{1}{x}$.

Veamos ahora que $\lim_{x \to -\infty} f(x) = 0$.

Sea $\varepsilon > 0$. Tenemos que encontrar $M \in \mathbb{R}$ tal que si x < M, entonces $|f(x)| < \varepsilon$.

Como queremos que

$$|f(x)| = \left|\frac{1}{x}\right| = \frac{1}{|x|} < \varepsilon,$$

basta entonces considerar $M = -\frac{1}{\varepsilon}$. Así,

$$x < M = -\frac{1}{\varepsilon} \Leftrightarrow -\varepsilon < \frac{1}{x} \Leftrightarrow -\frac{1}{x} < \varepsilon \Leftrightarrow \frac{1}{|x|} < \varepsilon,$$

ya que al ser x < M < 0, entonces $\frac{1}{|x|} = \frac{1}{-x} = -\frac{1}{x}$.

Definición 3.2.11. Sea $A \subseteq \mathbb{R}$ y sea $f: A \longrightarrow \mathbb{R}$ una función. Sea $L \in \mathbb{R}$. Diremos que la recta (horizontal) y = L es una asíntota horizontal de f si, o bien $\lim_{x \to \infty} f(x) = L$, o bien $\lim_{x \to -\infty} f(x) = L$.

Ejemplo 3.2.12. La recta y = 0 es una asíntota horizontal para la función $f(x) = \frac{1}{x}$ para todo $x \neq 0$, del ejemplo anterior.

Definición 3.2.13. Sea $A \subseteq \mathbb{R}$ y sea $f: A \longrightarrow \mathbb{R}$ una función. Sean $m, n \in \mathbb{R}$, con $m \neq 0$. Diremos que la recta y = mx + n es una asíntota oblicua de f si, o bien $\lim_{x \to \infty} (f(x) - (mx + n)) = 0$, o bien $\lim_{x \to -\infty} (f(x) - (mx + n)) = 0$.

Observación 3.2.14. Si una función f tiene una asíntota oblicua, y = mx + n, entonces

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
, y $n = \lim_{x \to \pm \infty} (f(x) - mx)$.

Ejemplo 3.2.15. Consideremos la función $f(x) = \frac{x^2+2}{x-2}$ para todo $x \neq 2$. Veamos que la recta y = x + 2 es una asíntota oblicua de f.

Por una parte,

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{\frac{x^2 + 2}{x - 2}}{x} = \lim_{x \to \infty} \frac{x^2 + 2}{x(x - 2)} = \lim_{x \to \infty} \frac{x^2 + 2}{x^2 - 2x} = 1.$$

Por otra parte,

$$n = \lim_{x \to \pm \infty} \left(f(x) - mx \right) = \lim_{x \to \pm \infty} \left(\frac{x^2 + 2}{x - 2} - x \right) = \lim_{x \to \pm \infty} \left(\frac{x^2 + 2 - x^2 + 2x}{x - 2} \right) = \lim_{x \to \pm \infty} \left(\frac{2x + 2}{x - 2} \right) = 2.$$

Luego la recta y = x + 2 es una asíntota oblicua de f.

3.2.3. Límites infinitos en el infinito

Definición 3.2.16. Sea $A \subseteq \mathbb{R}$ y sea $f : A \longrightarrow \mathbb{R}$ una función.

- Si A es un subconjunto no acotado superiormente, $\lim_{x\to\infty} f(x) = \infty$ (o $-\infty$) si para todo C > 0 existe $\delta = \delta(C) \in \mathbb{R}$ tal que si $x \in A$, con $x > \delta$, entonces f(x) > C (o f(x) < -C).
- Si A es un subconjunto no acotado inferiormente, $\lim_{x \to -\infty} f(x) = \infty$ (o $-\infty$) si para todo C > 0 existe $\delta = \delta(C) \in \mathbb{R}$ tal que si $x \in A$, con $x < \delta$, entonces f(x) > C (o f(x) < -C).

3.3. Anexo: cálculo de límites

En esta última sección, vamos a proceder a calcular los tipos de límites más usuales.

3.3.1. Cálculo del límite en un punto

1. $\lim_{x\to a} f(x) = f(a)$, siempre que exista f(a).

Ejemplo 3.3.1.

- a) $\lim_{x \to 1} (-x^2 5x + 6) = 0.$
- $b) \lim_{x \to 3} \frac{x^2 2}{x^2 5x + 2} = -\frac{7}{4}.$
- c) $\lim_{x \to 1} \left(\sqrt{x^2 + 3x} \sqrt{2x} \right) = 2 \sqrt{2}$.
- d) Consideremos ahora la siguiente función

$$f(x) = \begin{cases} -2x, & \text{si } x < -1\\ x^2 + 1, & \text{si } -1 \le x < 0\\ -5, & \text{si } x \ge 0 \end{cases}.$$

Vamos a calcular $\lim_{x\to -1} f(x)$ y $\lim_{x\to 0} f(x)$.

 $\bullet \lim_{x \to -1} f(x):$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} -2x = 2$$

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} (x^{2} + 1) = 2$$

$$\implies \lim_{x \to -1} f(x) = 2.$$

 $\bullet \lim_{x \to 0} f(x):$

$$\left| \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x^{2} + 1) = 1$$

$$\left| \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} -5 = -5
\right| \Longrightarrow \# \lim_{x \to -1} f(x).$$

2. Indeterminaciones del tipo $\lim_{x\to a} f(x) = \left[\frac{k}{0}\right]$, con $k\neq 0$. En esta indeterminación, el resultado puede ser $-\infty$, $+\infty$ o que no exista.

Ejemplo 3.3.2.

 $\lim_{x \to -1} \frac{x-1}{x+1} = \left[\frac{-2}{0}\right]$. Calculamos los límites laterales:

$$\left| \lim_{x \to -1^{-}} \frac{x-1}{x+1} = \left[\frac{-2}{0^{-}} \right] = +\infty \\ \left| \lim_{x \to -1^{+}} \frac{x-1}{x+1} = \left[\frac{-2}{0^{+}} \right] = -\infty \right| \right\} \Longrightarrow \nexists \lim_{x \to -1} \frac{x-1}{x+1}.$$

3. Indeterminaciones del tipo $\lim_{x\to a} f(x) = \begin{bmatrix} 0\\0 \end{bmatrix}$.

Ejemplo 3.3.3.

- a) Funciones racionales: se factoriza numerador y denominador, sacando como factor común x a.
 - $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Factorizando obtenemos

$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 - 1} = \lim_{x \to -1} \frac{(x+1)^2}{(x-1)(x+1)} = \lim_{x \to -1} \frac{x+1}{x-1} = \frac{0}{-2} = 0.$$

• $\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 4x + 4} = \left[\frac{0}{0}\right]$. Factorizando

$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 4x + 4} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x - 2)^2} = \lim_{x \to 2} \frac{x + 2}{x - 2} = \begin{bmatrix} 4\\0 \end{bmatrix}.$$

Calculamos límites laterales:

$$\left| \lim_{x \to 2^{-}} \frac{x+2}{x-2} = \left[\frac{4}{0^{-}} \right] = -\infty \\
\left| \lim_{x \to 2^{+}} \frac{x+2}{x-2} = \left[\frac{4}{0^{+}} \right] = +\infty \right| \Longrightarrow \left| \lim_{x \to 2} \frac{x^{2} - 4}{x^{2} - 4x + 4} \right|.$$

- b) Funciones radicales: se multiplica y divide por el conjugado del radical problemático.
 - \blacksquare $\lim_{x\to 0}\frac{x}{1-\sqrt{1-x}}=\left[\frac{0}{0}\right]$. Multiplicando y dividiendo por el conjugado de $1-\sqrt{1-x}$ obtenemos que

$$\lim_{x \to 0} \frac{x}{1 - \sqrt{1 - x}} = \lim_{x \to 0} \frac{x(1 + \sqrt{1 - x})}{(1 - \sqrt{1 - x})(1 + \sqrt{1 - x})} = \lim_{x \to 0} \frac{x(1 + \sqrt{1 - x})}{1 - (1 - x)} = \lim_{x \to 0} \frac{x(1 + \sqrt{1 - x})}{1 - (1 - x)} = \lim_{x \to 0} \frac{x(1 + \sqrt{1 - x})}{1 - (1 - x)} = \lim_{x \to 0} \frac{x(1 + \sqrt{1 - x})}{1 - (1 - x)} = 2.$$

3.3.2. Cálculo del límite en el infinito

- 1. Funciones polinómicas: nos fijamos en el término de mayor grado, teniendo cuidado con los signos.
- 2. Funciones radicales: nos fijamos en el término de mayor grado de dentro del radical.

•
$$\lim_{x \to \infty} \sqrt{-3x^2 + 1} = \lim_{x \to \infty} \sqrt{-3x^2}$$
 no existe, ya que $\lim_{x \to \infty} -3x^2 = -\infty$.

3. Función exponencial: $f(x) = a^x$, con a > 0.

■ Si
$$0 < a < 1$$
, entonces $\lim_{x \to \infty} a^x = 0$ y $\lim_{x \to -\infty} a^x = \infty$.
■ Si $a > 1$, entonces $\lim_{x \to \infty} a^x = \infty$ y $\lim_{x \to -\infty} a^x = 0$.

• Si
$$a > 1$$
, entonces $\lim_{x \to \infty} a^x = \infty$ y $\lim_{x \to -\infty} a^x = 0$

4. Función logarítmica: $f(x) = \log_a(x)$, con a > 0.

■ Si
$$0 < a < 1$$
, entonces $\lim_{x \to \infty} \log_a(x) = -\infty$ y $\lim_{x \to 0^+} \log_a(x) = \infty$.

■ Si
$$a > 1$$
, entonces $\lim_{x \to \infty} \log_a(x) = \infty$ y $\lim_{x \to 0^+} \log_a(x) = -\infty$.

5. Indeterminaciones del tipo $\frac{\pm \infty}{+\infty}$.

"Comparamos infinitos": Si $f(x) = \frac{g(x)}{h(x)}$, tenemos los siguientes casos:

a) Si el orden de
$$g$$
 es mayor que el orden de h , entonces $\lim_{x\to\pm\infty} f(x)=\pm\infty$.

b) Si el orden de
$$g$$
 es menor que el orden de h , entonces $\lim_{x\to\pm\infty} f(x)=0$.

c) Si el orden de
$$g$$
 es el mismo que el orden de h , entonces $\lim_{x \to \pm \infty} f(x) = L \in \mathbb{R} \setminus \{0\}$.

Comparaciones usuales entre órdenes de funciones:

a) Dadas dos potencias de x, tiene mayor orden la de mayor exponente.

Ejemplo 3.3.4. x^5 tiene mayor orden que x^3 .

b) Dadas dos funciones exponenciales de base mayor que 1, tiene mayor orden la de base mayor.

Ejemplo 3.3.5. 4^x tiene mayor orden que 3^x .

c) Toda función exponencial, de base mayor que 1, tiene mayor orden que cualquier potencia de x.

Ejemplo 3.3.6. 5^x tiene mayor orden que x^5 .

d) Las potencias de x tienen mayor orden que las funciones logarítmicas.

Ejemplo 3.3.7. x^3 tiene mayor orden que $\log(2x+3x^4)$.

e) Dos polinomios del mismo grado, tienen el mismo orden.

Ejemplo 3.3.8. $x^5 + 2x - 2$ y $x^4 + 2x^3 - 1 + 4x^5$ tienen el mismo orden.

Ejemplo 3.3.9.

a)
$$\lim_{x \to \infty} \frac{x^3 + 2x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3}{x^2} = \lim_{x \to \infty} \frac{x}{1} = +\infty.$$

$$b)\ \lim_{x\to -\infty}\frac{x^3+2x}{x^2-1}=\lim_{x\to -\infty}\frac{x^3}{x^2}=\lim_{x\to -\infty}\frac{x}{1}=-\infty.$$

$$c) \ \lim_{x\to\infty} \frac{5x^4-2x+4}{-7x^4+x^3+2x} = \lim_{x\to\infty} \frac{5x^4}{-7x^4} = \lim_{x\to\infty} \frac{5}{-7} = -\frac{5}{7}.$$

d)
$$\lim_{x \to -\infty} \frac{-2x^5 - 3}{4x + 2x^5} = \lim_{x \to -\infty} \frac{-2x^5}{2x^5} = \lim_{x \to -\infty} \frac{2}{-2} = -1.$$

$$e) \lim_{x \to \infty} \frac{1}{x^3 - 1} = \lim_{x \to \infty} \frac{1}{x^3} = 0.$$

$$f$$
) $\lim_{x \to -\infty} \frac{1}{x^3 - 1} = \lim_{x \to -\infty} \frac{1}{x^3} = 0.$

$$g) \lim_{x \to \infty} \frac{3^x}{4^x} = 0.$$

$$h) \lim_{x \to \infty} \frac{42^x}{3^x} = +\infty.$$

$$i) \lim_{x \to \infty} \frac{\sqrt[3]{x^5 - 1}}{x} = \infty.$$

$$j$$
) $\lim_{x \to \infty} \frac{\log(x^5 - 2x)}{x^2 - 5} = 0.$

$$k) \lim_{x \to \infty} \frac{2^x}{x^{16}} = +\infty.$$

$$l) \lim_{x \to \infty} \frac{e^x}{x^2 + 2} = \infty.$$

6. Indeterminaciones del tipo $\infty - \infty$.

a) Comparación de infinitos:

- Si f tiene orden mayor que g, entonces $\lim_{x\to\infty} (f(x) g(x)) = \infty$.
- Si f tiene orden menor que g, entonces $\lim_{x\to\infty} (f(x) g(x)) = -\infty$.

Ejemplo 3.3.10.

b) Funciones racionales: operar las fracciones.

Ejemplo 3.3.11.

•
$$\lim_{x\to 3} \left(\frac{x-1}{x-3} - \frac{x+5}{x^2-4x+3}\right) = [\infty - \infty]$$
. Operando obtenemos

c) Funciones irracionales: multiplicar y dividir por el conjugado.

Ejemplo 3.3.12. $\lim_{x\to+\infty} \left(\sqrt{x^2-2}-\sqrt{x^2+x}\right) = [\infty-\infty]$. Multiplicando y dividiendo por el conjugado tenemos

$$\lim_{x \to +\infty} \left(\sqrt{x^2 - 2} - \sqrt{x^2 + x} \right) = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 - 2} - \sqrt{x^2 + x} \right) \left(\sqrt{x^2 - 2} + \sqrt{x^2 + x} \right)}{\sqrt{x^2 - 2} + \sqrt{x^2 + x}} = \lim_{x \to +\infty} \frac{\left(x^2 - 2 \right) - \left(x^2 + x \right)}{\sqrt{x^2 - 2} + \sqrt{x^2 + x}} = \lim_{x \to +\infty} \frac{x^2 - 2 - x^2 - x}{\sqrt{x^2 - 2} + \sqrt{x^2 + x}} = \lim_{x \to +\infty} \frac{-x - 2}{\sqrt{x^2 - 2} + \sqrt{x^2 + x}} = \lim_{x \to +\infty} \frac{-x}{\sqrt{x^2 + x}} = \lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + x}} = \lim_{x \to +\infty} \frac{-x}{\sqrt{x^2 + x}} = \lim_{x \to +\infty} \frac{-x}{$$

7. Indeterminaciones del tipo $0.\infty$.

Reducimos a alguno de los casos conocidos.

Ejemplo 3.3.13. $\lim_{x\to\infty}(x+7)\sqrt{\frac{1}{4x^2+3}}=[\infty\cdot 0]$. En este caso, introduciendo el facto x+7 dentro de la raíz, obtenemos

$$\lim_{x \to \infty} (x+7) \sqrt{\frac{1}{4x^2 + 3}} = \lim_{x \to \infty} \sqrt{\frac{(x+7)^2}{4x^2 + 3}} = \lim_{x \to \infty} \sqrt{\frac{x^2 + 14x + 49}{4x^2 + 3}} = \left[\frac{\infty}{\infty}\right].$$

Ahora bien,

$$\begin{split} \lim_{x \to \infty} & \sqrt{\frac{x^2 + 14x + 49}{4x^2 + 3}} = \lim_{x \to \infty} & \sqrt{\frac{x^2}{4x^2}} = \\ & \lim_{x \to \infty} & \sqrt{\frac{1}{4}} = \frac{1}{2}. \end{split}$$

Luego
$$\lim_{x \to \infty} (x+7) \sqrt{\frac{1}{4x^2+3}} = \frac{1}{2}$$
.

8. Indeterminaciones del tipo 1^{∞} .

Debemos aplicar que $\lim_{x\to a}\left(1+\frac{1}{f(x)}\right)^{f(x)}=e,$ si $\lim_{x\to a}f(x)=\infty.$

Ejemplo 3.3.14. $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$.

Como $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = [1^{\infty}]$, entonces debemos manipular la función f(x) para obtener una expresión del tipo $f(x) = \left(1 + \frac{1}{g(x)}\right)^{g(x)}$, con $\lim_{x\to a} g(x) = \infty$.

En este caso,

$$f(x) = (1+x)^{\frac{1}{x}} = \left(1+\frac{1}{\frac{1}{x}}\right)^{\frac{1}{x}} = e,$$

ya que $\lim_{x\to 0^-} \frac{1}{x} = \left[\frac{1}{0^-}\right] = -\infty$, $\lim_{x\to 0^+} \frac{1}{x} = \left[\frac{1}{0^+}\right] = +\infty$.

Ejercicios

- 1. Utilizando la definicion de límite, demostrar que
 - a) $\lim_{x\to 0} \frac{x^2-3}{3} = -1$.
 - b) $\lim_{x \to 4} \frac{1}{2} (3x 1) = \frac{11}{2}$.
 - c) $\lim_{x \to 0} x \operatorname{sen}\left(\frac{1}{x}\right) = 0$
- 2. Calcular los límites de las siguientes funciones en el origen, en caso de que existan:

(a)
$$f(x) = \frac{x}{|x|}$$

(f)
$$f(x) = \frac{1-\sqrt{1-x^2}}{x^2}$$

(b)
$$f(x) = \frac{1}{x^2}$$

(g)
$$f(x) = x \operatorname{sen}\left(\frac{1}{x}\right)$$

(c)
$$f(x) = \log(x^2)$$

(h)
$$f(x) = x^2 \operatorname{sen}\left(\frac{1}{x}\right)$$

(d)
$$f(x) = \frac{x^2}{\text{sen}(x)}$$

(i)
$$f(x) = x^3 \operatorname{sen}\left(\frac{1}{x}\right)$$

(e)
$$f(x) = \frac{e^{\frac{1}{x}} - e^{-\frac{1}{x}}}{e^{\frac{1}{x}} + e^{-\frac{1}{x}}}$$

(j)
$$f(x) = \frac{|x|}{x^2 + x}$$

3. Calcula los siguientes límites en caso de que existan:

(a)
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^4 - 4x + 3}$$

(j)
$$\lim_{x \to 0} \frac{\sqrt[3]{x^3 + 1} - 1}{x}$$

(b)
$$\lim_{x\to 0} \frac{3}{\cos(x) + e^{-\frac{1}{x}}}$$

$$\text{(k)} \lim_{x \to \frac{\pi}{4}} \frac{1 - \operatorname{tg}(x)}{\operatorname{sen}(x) - \cos(x)}$$

(c)
$$\lim_{x \to a} \frac{\sin(x) - \sin(a)}{x - a}$$
, con $a \in \mathbb{R}$

(l)
$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$$

(d)
$$\lim_{x\to 0} \frac{\operatorname{tg}(x) - \operatorname{sen}(x)}{x^2}$$

(m)
$$\lim_{x \to \infty} \frac{\sqrt{x} + \sqrt[3]{x} + \sqrt[4]{x}}{\sqrt{2x+1}}$$

(e)
$$\lim_{x \to 0} \frac{1 - \cos(x)}{2 \operatorname{tg}(x)}$$

(n)
$$\lim_{x \to \infty} \left(\frac{3x^2 - x + 1}{2x^2 + x + 1} \right)^{\frac{x^3}{1 - x}}$$

(f)
$$\lim_{x\to 0} (\cos(x))^{\frac{1}{\operatorname{sen}(x)}}$$

$$(\tilde{\mathbf{n}}) \lim_{x \to \infty} \left(\frac{x^2+1}{x^2-2}\right)^{x^2}$$

(g)
$$\lim_{x \to a} \frac{\sqrt{x} - \sqrt{a} + \sqrt{x-a}}{\sqrt{x^2 - a^2}}$$
, con $a \ge 0$

(o)
$$\lim_{x\to 2} \frac{x^2+x-6}{x^2-4}$$

(h)
$$\lim_{x \to 1} \frac{x^3 - 1}{\sqrt[3]{x - 1}}$$

(p)
$$\lim_{x\to 2} \frac{x^3-8}{x-2}$$

(i)
$$\lim_{x\to 0} \frac{\sqrt{x^2+4}-2}{x^2}$$

(q)
$$\lim_{x\to 0} \frac{\sqrt{x+a}-\sqrt{a}}{x}$$
, con $a \ge 0$

- 4. Sabiendo que $\lim_{x\to 0} \frac{\operatorname{sen}(x)}{x} = 1$ y que $\lim_{x\to \infty} \left(1 + \frac{1}{x}\right)^x = e$, calcula los siguientes límites:
 - $a) \lim_{x\to 0} \frac{\sin(2x)}{2x}.$
 - $b) \lim_{x\to 0} \frac{\log(1+x)}{x}$.
 - c) $\lim_{x \to 0} \frac{\operatorname{sen}(ax)}{\operatorname{sen}(bx)}$, con $a, b \in \mathbb{R} \setminus \{0\}$.
- 5. Calcula los siguientes límites:

(a)
$$\lim_{x \to \infty} \frac{4x + \sin^2(x)}{3x + 1}$$

(d)
$$\lim_{x\to\infty} \sqrt{x^2 - x}$$

(b)
$$\lim_{x \to \infty} \frac{2x^3 + x^2}{\sqrt{3x^2 - \sqrt{4x^6 + 3x^3}}}$$

(e)
$$\lim_{x \to \infty} \frac{x + \operatorname{sen}(x)}{2x + 7 - 5\operatorname{sen}(x)}$$

(c)
$$\lim_{x\to\infty} \frac{e^x}{e^x-1}$$

(f)
$$\lim_{x \to -\infty} \frac{e^x}{e^x - 1}$$

6. Calcula los siguientes límites laterales:

(a)
$$\lim_{x\to 0^-} \left(\frac{1}{x}\right)^{[x]}$$

(b)
$$\lim_{x \to 0^+} \left(\frac{1}{x}\right)^{[x]}$$

(c)
$$\lim_{x\to 0^-} e^{\frac{1}{x}}$$

(d)
$$\lim_{x \to 0^+} e^{\frac{1}{x}}$$

(e)
$$\lim_{x \to 5^{-}} \frac{3x}{2x-10}$$

(f)
$$\lim_{x \to 5^+} \frac{3x}{2x - 10}$$

7. Hallar las constantes reales a y b que verifican

$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 1} - ax - b \right) = 0.$$

8. Estudiar las asíntotas horizontales y verticales de las siguientes funciones:

(a)
$$f(x) = \frac{x^2+1}{x^2-1}$$

(c)
$$f(x) = \log\left(\frac{1}{1+x^2}\right)$$

(b)
$$f(x) = e^{\frac{1}{x}}$$

(d)
$$f(x) = \frac{\operatorname{sen}(x)}{x}$$

9. Determinar los posibles valores reales de a para que exista $\lim_{x\to 1} f(x)$, donde

$$f(x) = \begin{cases} \frac{\sqrt[3]{x} - \sqrt[3]{a}}{x - a}, & \text{si } x < 1\\ \frac{x^3 - a^3}{x - a}, & \text{si } x > 1 \end{cases}$$

y calcular el límite para tales valores de a.