Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir

Thermodynamics & Thermochemistry

DPP: 4

- Q1 One mole of an ideal gas at $25^{\circ}\mathrm{C}$ expands in volume from $1.0~\mathrm{L}$ to $4.0~\mathrm{L}$ at constant temperature. What work (in J) is done if the gas expands against vacuum?
 - (A) -4.0×10^2
 - (B) $-3.0 imes 10^2$
 - (C) -1.0×10^2
 - (D) Zero
- **Q2** The maximum work obtained by an isothermal reversible expansion of 1 mole of an ideal gas at $27^{\circ}\mathrm{C}$ from 2.24 L to 22.4 L is:
 - $(R=2 \ \mathsf{cal} \ K^{-1} \ \mathsf{mol}^{-1})$
 - (A) -1381.8 cal
 - (B) -600 cal
 - (C) -138.18 cal
 - (D) -690.9 cal
- $\bf Q3$ 2 mole of an ideal gas at $27^{\circ}C$ expands isothermally and reversibly from a volume of 4 litres to 40 litres. The work done (in kJ) is:
 - (A) w = -28.72 kJ
 - (B) w = -11.488 kJ
 - (C) w = -5.736 kJ
 - (D) w = -4.988 kJ
- **Q4** The work done on the system when one mole of an ideal gas at $500~{\rm K}$ is compressed isothermally and reversibly to $\frac{1}{10}$ th of its original volume $(R=2{\rm cal})$
 - (A) 500 kcal
- (B) 15.1 kcal
- (C) 25.03 kcal
- (D) 2.303 kcal
- Q5 The maximum work done in expanding $16~{\rm g}$ oxygen at $300~{\rm K}$ and occupying a volume of $5{\rm dm}^3$ isothermally until the volume becomes $25{\rm dm}^3$ is:
 - (A) $-2.01 \times 10^3 \text{ J}$

- (B) $2.81 \times 10^{-3} \; \mathrm{J}$
- (C) $2.01 \times 10^{-6} \; \mathrm{J}$
- (D) $-2.01 \times 10^{-6} \text{ J}$
- **Q6** Isothermal free expansion of an ideal gas correspond to
 - (A) q = 0
 - (B) W=0
 - (C) None of these
 - (D) Both (A) and (B)
- Q7 The temperature of 1 mole of a gas is increased by $1^{\circ}C$ at constant pressure. The work done is:
 - (A) R
 - (B) 2R
 - (c) R/2
 - (D) 3R
- Q8 The relation of internal energy, enthalpy and work done can be represented by
 - (A) $\Delta E = \Delta H + W$
 - (B) $\Delta \mathrm{E} = \mathrm{W} \Delta \mathrm{H}$
 - (C) $\Delta H = \Delta E + W$
 - (D) $W = \Delta E + \Delta H$
- Q9 A gas expands isothermally against a constant external pressure of $1\,atm$ from a volume of $10\,dm^3$ to a volume of $20\,dm^3.$ It absorbs $800\,J$ of thermal energy from its surroundings. The ΔU is:
 - (A) -312 J
 - (B) +123 J
 - (C) -213 J
 - (D) +231 J
- Q10 A system absorb $20~\mathrm{kJ}$ heat and does $10~\mathrm{kJ}$ work then internal energy of system will be-

- (A) Decreases by $10~\mathrm{kJ}$
- (B) Increases by $10 \mathrm{\ kJ}$
- (C) Increases by $30~\mathrm{kJ}$
- (D) Decreases by $30~\mathrm{kJ}$
- Q11 5 mol of ideal gas expands isothermally and irreversibly from a pressure of 10 atm to $1~\mathrm{atm}$ against constant external pressure of 1 atm work at $300~\mathrm{K}$ will be
 - (A) -15.921 kJ
 - (B) -11.224 kJ
 - (C) -110.83 kJ
 - (D) None of these
- Q12 Which of the following is correct for free expansion of ideal gas under isothermal condition:
 - (A) $q = 0, \Delta T < 0, w < 0$
 - (B) $q = 0, \Delta T = 0, w = 0$
 - (C) $q \neq 0, \Delta T = 0, w = 0$
 - (D) $q \neq 0, \Delta T = 0, w \neq 0$
- Q13 Net work done by the system in a cyclic process is equal to:
 - (A) Zero
 - (B) $\triangle U$
 - (C) ΔH
 - (D) q
- Q14 An ideal gas is taken around the cycle ABCA as shown in $\mathrm{P}-\mathrm{V}$ diagram. The net work done during the cycle is equal to:

- (A) $12P_1 V_1$
- (B) $6P_1 V_1$
- (c) $5P_1 V_1$
- (D) $P_1 V_1$

Q15

For monoatomic ideal gas, the exact value of the ratio of $C_{p, m}$ and $C_{v, m}$ is:

- (A) $\frac{5}{3}$ (B) $\frac{7}{5}$ (C) $\frac{9}{7}$
- (D) $\frac{9}{11}$
- Q16 Molar heat capacity of water in equilibrium with ice at constant pressure is:
 - (A) Zero
 - (B) Infinity
 - (C) $40.45 \text{ kJ K}^{-1} \text{ mol}^{-1}$
 - (D) $75.48 \text{JK}^{-1} \text{ mol}^{-1}$
- Q17 How many calories are required to heat 40 grams of argon from 40 to $100^{\circ}\mathrm{C}$ at constant volume? (R = 2cal/molK)
 - (A) 120 cal
- (B) 2400 cal
- (C) 1200 cal
- (D) 180 cal
- **Q18** $4.48 \, \mathrm{L}$ of an ideal gas at STP requires 12.0calories to raise its temperature by $15^{\circ}\mathrm{C}$ at constant volume. The C_p of the gas is:
 - (A) 3 cal
 - (B) 4 cal
 - (C) 7 cal
 - (D) 6 cal
- Q19 Calculate the amount of heat required to raise the temperature of $5~{
 m g}$ of iron from $25^{\circ}{
 m C}$ to $75^{\circ}\mathrm{C}$. The specific heat capacity of iron is $0.45 \, {\rm J/g}$.
 - (A) 112.1
- (B) 112.5
- (C) 112.9
- (D) 112
- **Q20** For two mole of an ideal gas
 - (A) $C_v C_p = R$
 - (B) $C_p C_v = 2R$
 - (C) $C_p C_v = R$
 - (D) $\mathrm{C_v} \mathrm{C_p} = 2\mathrm{R}$

Answer Key

Q1	(D)	Q11	(B)
Q2	(A)	Q12	(B)
Q3	(B)	Q13	(D)
Q4	(D)	Q14	(C)
Q5	(A)	Q15	(A)
Q6	(D)	Q16	(B)
Q 7	(A)	Q17	(D)
Q8	(A)	Q18	(D)
Q9	(C)	Q19	(B)
Q10	(B)	Q20	(B)

Master NCERT with PW Books APP