```
\underline{\mathrm{Def}}\ f:(X,	au)	o (Y,\omega) - гомеоморфизм, если
```

1. f - биекция

2. f непрерывна

 $3. f^{-1}$ - непрерывна

Def

ТН Отношение гомеом на мн-ве топологических пр-в является отношением эквивалентности

 $\underline{\mathrm{Def}}\ \mathrm{X}$ - мн-во, U_{lpha} - сем-во подмн-в X

 U_{α} - покрытие, если $\bigcup_{\alpha \in A} U_{\alpha} = X$

 $\underline{\mathrm{Def}}$ Покрытие называется фундаментальным, если $\forall (Y,\omega) \ \forall$ отображения $f:(X,\tau) \to (Y,\omega)$

 $f|_{U_{\alpha}}:(U_{\alpha},\tau_{\alpha})\to (Y,\omega)$ непр. \implies непрерывность f

<u>Def</u> Покрытие наз-ся открытым, если $U_{\alpha} \in \tau \quad \forall \alpha$

<u>Th.3</u> любое открытое покрытие пр-ва является фундаментальным

 $\underline{\text{Proof}}(X,\tau)$

 $U_{\alpha}, \ \alpha \in A$ — покрытие

$$U_{\alpha} \in \tau \quad \forall \alpha \in A$$

Пусть $f:(X,\tau) o (Y,\omega)$ $f_{lpha}=f|_{U_{lpha}}$ -непр

$$\forall V \in \omega \implies f^{-1}(V) \in \tau$$

$$f^{-1}(V) = f^{-1}(V) \cap (\cup_{\alpha \in A} U_{\alpha} = \cup (f^{-1}(V) \cap U_{\alpha}) = \cup_{\alpha \in A} f_{\alpha}^{-1}(V)$$

из непр $f_{\alpha}:(U_{\alpha},\tau_{\alpha})\to (Y,\omega)\implies f_{\alpha}^{-1}(V)\in\tau_{\alpha}\implies \exists \tilde{U}_{\alpha}\in\tau\mid f_{\alpha}^{-1}=\tilde{U}_{\alpha}\cap U_{\alpha}$

по условию $U_{\alpha} \in \tau \implies f_{\alpha}^{-1}(V) \in \tau$

Th Конечное замкнутое покрытие является фундаментальным

Доказательство аналогично с учётом условия, что конечное объединение замкнутых множеств замкнуто

 $\underline{\mathrm{Ex}}\ (\mathbb{Z}, au_D)
ot\cong (\mathbb{Q} \cap [0,1], au_0)$ - топология не явл au_D

 $\mathbf{E}\mathbf{x}\;([0,1],\tau_D) \;\;((0,1),\tau_D)\;\exists f$ - биекция [0,1] на (0,1) т.к. мощности еовпадают \mathbf{f} - гомеоморфизм

 $\underline{\text{Ex}} ((0,1), \tau_0) ((a,b), \tau_0)$

f(x) = a + (b - c)x

Note $f: (\mathbb{R}^n, \tau_0 \to (\mathbb{R}, \tau_0))$ Hend \iff

 $\underline{\mathrm{Th5}}\ f:(X,\tau)\to (Y,\omega)$ непр

 $\forall A \subset X \implies f|_a$ непр

Proof

$$\underline{\text{Ex}}\ ([0,1],\tau_0) \ncong ((0,1) \setminus \{a\},\tau_0)$$

Идея док-ва

М. от противного

Пусть f - гомеоморфизм

Пусть $f(0) = a \in (0,1)$

$$\tilde{f}: ((0,1], \tau_0) \to ((0,1), \tau_0)$$

 $ilde{f}$ - ограничение $\mathbf{f} \Longrightarrow ilde{f}$ - гомеоморфизм $\underline{\mathrm{Ex}}\ s^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ $ilde{s}^1 = \{(x,y) \in \mathbb{R}^2 \mid rac{x^2}{a^2} + rac{y^2}{b^2}\}$

$$\underline{\mathbf{Ex}} \ s^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

$$\tilde{s}^1 = \{(x, y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2}\}$$

$$(s^1, \tau_0) \cong (\tilde{s}^1, \tau_0)$$

$$F: \begin{cases} x' = ax \\ y' = dy \end{cases}$$

$$F: (\mathbb{R}^2, \tau_0) \to (\mathbb{R}^2, \tau_0)$$

$$F|_{s^1}:(S^1,\tau_0)\to$$

§3 Произведение топологических пространств

Note " $\tau \times \omega$ " не является топологией

<u>Тһ</u> Пусть (X, τ) , (Y, ω) - т.п. $\implies \tau \times \omega$ - база некоторой топологии на $X \times Y$. Эта топология называется топологией произведения

 $\underline{\operatorname{Proof}}$ Проверим критерий базы на мн-ве $\Sigma = \tau \times \omega$

Критерий базы на множестве $X \times Y$

1. $\bigcup_{\alpha \in A} = X \times Y$

2. $\forall U, V \in \Sigma \ \forall x \in U \cap V \implies \exists W \in \Sigma \ | \ x \in W \subset U \cap V$

1 очевидно выполнено

2.

$$\forall U \in \Sigma \implies U = A_1 \times B_2, \quad A_1 \in \tau, \ B_1 \in \omega \quad V = A_2 \times B_2 \quad A_2 \in \tau, \ B_2 \in \omega$$

Пусть $x \in U \cap V \implies x = (a, b) \ a \in X, \ b \in Y$

$$a \in A_1 \cap A_2$$

$$b \in B_1 \cap B_2$$

Пусть $W = (A_1 \cap A_2) \times (B_1 \cap B_2)$

 $\underline{\mathrm{Th}}\ \Sigma_1$ - база (X,τ) , Σ_2 - база (Y,ω)

Тогда $\Sigma_1 imes \Sigma_2$ - база $au imes \omega$

<u>Proof</u> Критерий базы в т.п.

1. $\Sigma \subset \tau \times \omega$ - топология произведения

2. $\forall U \in \tau \times \omega \ \forall x \in U \ \exists V \in \Sigma \mid X \in V \subset U$

1 из определения базы

2.

$$U = \bigcup_{i \in I} (A_i \times B_i) \ A_i \in \tau, \ B_i \in \omega$$

 $\forall x \in U \implies \exists A_{i_0} \times B_{i_0} \mid x \in A_{i_0} \times B_{i_0} \implies x = (a, b) \ a \in A_{i_0} \in \tau, \ b \in B_{i_0} \in \omega \implies \exists \tilde{A} \in \Sigma_1 \mid a \in \tilde{A} \subset A_{i_0} \ b \in \tilde{B} \subset B_{i_0}$ $\implies (a, b) \in (\tilde{A}, \tilde{B}) \subset U$

 $\underline{\mathrm{Def}}$ Отобр $pr_1: X \times Y \to X: (x,y) \mapsto x$

 $pr_2: X \times Y \to Y: (x,y) \mapsto y$

 $\underline{\operatorname{Th}}\ pr_i(X_1 \times X_2, \tau_1 \times \tau_2 \to (X_i, \tau_i))$ непрерывна Proof

$$\forall U \in \tau_i \implies pr_1^{-1}(U) = (U \times X_2) \in \tau_1 \times \tau_2$$

Аналогично для pr_2