Assignment-1

Mukul Kumar Yadav

September 3, 2020

Problem Statement (Q.No.62):

A line perpendicular to the line segment joining the points (1,0) and (2,3)divides it into the ratio 1:n. Find the equation of the line.

Solution:

Given that $A = \begin{pmatrix} 1 \\ 0 \end{pmatrix} and B = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Let $P = \begin{pmatrix} x \\ y \end{pmatrix}$ and origin $O = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Since the line RP intersect the line AB in 1:n ration, then $\frac{AP}{PB} = \frac{1}{n}$. PB = n.AP or OB-OP = n(OP-OA). Solving OB + n OA

this vector equation,
$$OP = \frac{OB + n.OA}{n+1}$$

Therefore, $\binom{x}{y} = \binom{\frac{(n+2)}{(n+1)}}{\frac{3}{n+1}}$

Vector equation of Line RP, $\mathbf{r} = \mathbf{p} + \lambda . \mathbf{d}$, where \mathbf{p} is point on the line, λ is constant, and \mathbf{d} is direction vector of the line.

Since the line segment AB and the line RP is perpendicular to each other then dot product of both the vectors will be zero.

AB.d = 0.
$$\Longrightarrow$$
 $\binom{2-1}{3-0}^T$. $\binom{x}{y} = 0 \Longrightarrow x + 3y = 0$. x= 3 and y = -1.

Therefore, direction vector $\mathbf{d} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$

Final vector equation of the line is
$$\mathbf{r} = \begin{pmatrix} \frac{(n+2)}{(n+1)} \\ \frac{3}{n+1} \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$