Equação de Clausius-Clapeyron

Gonçalo Quinta nº 65680, Fernando Rodrigues nº 66326, Teresa Jorge nº 65722 e Vera Patrício nº 65726

Laboratório de Complementos de Electromagnetismo e Termodinâmica

Mestrado Integrado em Engenheria Física Tecnológica 2009/2010 Instituto Superior Técnico (IST)

(Dated: 4 de Maio de 2010)

Determinou-se o calor latente de vaporização da água através de sucessivas medições da sua pressão e temperatura durante o seu aquecimento e arrefecimento numa câmara de vapor. O valor obtido para o arrefecimento foi de $(426,7 \pm 5,2)$ cal/g e para o aquecimento de $(509,3 \pm 5,2)$ cal/g.

I. EXPERIÊNCIA REALIZADA E FUNDAMENTOS TEÓRICOS

Com o objectivo de determinar o calor latente da água, foi estudado a sua mudança de fase primeiramente de líquido para vapor e de seguida de vapor para líquido. Para tal, a água destilada foi encerrada numa câmara de vapor - figura 1 - e aquecida até que a pressão no seu interior atingisse os 40 bar. A câmara permite monitorizar a pressão e temperatura a que a água se encontra.

Figura 1. Esquema de montagem

O estado físico em que uma substância se encontra depende das suas características químicas (forças de ligação interatómicas, por exemplo) e também das condições físicas em que se encontra: pressão e temperatura [?]. A figura 2 ilustra o diagrama de fases da água, em que é indicado em que fase se encontra a água para uma dada pressão e temperatura:

Figura 2. Diagrama de fases da água

A recta que separa a fase líquida da fase gasosa pode ser descrita pela equação seguinte, obtida da relação de Gibbs-Duhem:

$$\frac{\partial P}{\partial T} = \frac{\Delta S}{\Delta V} \tag{1}$$

P – pressão (atm)

T - temperatura (K)

S – entropia molar (J/(k mol)

V – volume molar (m^3/mol)

Atendendo à definição de variação de entropia, assim como à lei dos gases perfeitos, e assumindo portanto que a variação do volume corresponde apenas à variação do volume da parte gasosa da água, esta equação pode ser reescrita como

$$\frac{\partial P}{\partial T} = \frac{Q_{tran}}{T \frac{RT}{D}} \tag{2}$$

 Q_{tran} – calor latente de transição (cal/g) R – constante dos gases perfeitos (J/(K mol)

Rearranjando a equação de modo a que a temperatura seja a variável independente:

$$\frac{\partial P}{P} = \frac{Q_{tran}}{R} \frac{\partial T}{T^2} \tag{3}$$

e integrando esta equação resulta que

$$\ln(P) = -\frac{Q_{tran}}{R} \frac{1}{T} \tag{4}$$

Tomando os pares de logarítmos das pressões e respectivas temperaturas, ajustam-se esses valores à recta da expressão (4), sendo assim possível obter calor lantente de vaporização da água através do declive da recta.

II. RESULTADOS

Figura 3.

Figura 4.

III. ANÁLISE DOS RESULTADOS

Os ajustes estão representados nas figuras 5 e 6:

Figura 5.

Figura 6.

Tabela I. Declives obtidos e calores latentes, durante o arrefecimento e aquecimento, respectivamente

a	e_a	$Q_{tran}(\mathrm{cal/g})$	$e_{Q_{tran}} (\text{cal/g})^{\text{a}}$
3868,9	46,7	426,7	5,2
4618,5	46,7	509,3	5,2

^a capacidade térmica da água - 4.18 cal R - 8.31 $Jmol^{-1}K^{-1}$ Massa molar - 18,01 g/mol

IV. CONCLUSÃO E CRÍTICAS

Da análise de resultdos obtemos que o calor latente da água para a subida da temperatura e da pressão é (509.3 ± 5.2) cal/g com um desvio à exactidão de 6% e para a descida da temperatura e da pressão é (426.7±5.2) cal/g com um desvio à exactidão de 21%. Nenhum dos erros calculados cobre o valor previsto de 540 cal/g. Uma vez que a montagem utilizada para a subida e para a descida da temperatura era a mesma, estando esta cheia de água e à pressão atmosférica e sendo esta isolada no início da experiência, era de esperar que o calor latente medido para as duas situações fosse o mesmo, o que não foi verificado. Isto pode ser explicado considerando o facto de que na última parte da experiência, após a descida da temperatura abaixo dos 100°C, não foi possivel recuperar a pressão atmosférica inicial de 1 bar no interior da câmara de vapor. Este facto foi ainda confirmado aquando da abertura da câmara, depois do completo arrefecimento da água, verificando-se que a câmara se encontrava pressurizada. Estas duas observações levam a crer que no interior se encontrava não só água destilada, mas também uma qualquer outra substância que se volatize abaixo das temperaturas atingidas, mas que não volta a condensar nas condições iniciais após o arrefecimento. Um possível candidato será a gordura que é necessária utilizar no aparelho, de modo a selá-lo, uma vez que estas substâncias têm um comportamento compatível com o observado, já que se podem degradar com o aumento de temperatura, modificando a sua estrutura química e consequentemente algumas das suas propriedades físicas.

Esta hipótese poderia ser morosamente verificada aquecendo e arrefecendo sucessivamente a água até várias temperaturas inferiores à temperatura de vaporização desta, de modo a tentar averiguar a que temperatura a possível substância se volatiza. Por outro lado, uma má calibração do manómetro ou do termómetro poderão também explicar algumas discrepâncias com os valores obtidos. A verificação da calibração do termómetro poderá ser feita facilmente, comparando-o com as leituras de outros aparelhos existentes no laboratório, embora a do manómetro já apresente alguma dificuldade. É de notar, no entanto, que este dá uma leitura correcta para a pressão atmosférica, o que diminui a probabilidade de contribuição significativa para o erro experimental.