

ANTHROPOMETRY OF THE FOOT AND LOWER LEG OF U.S. ARMY SOLDIERS: FORT JACKSON, SC -- 1985

By Kenneth R. Parham Claire C. Gordon Carolyn K. Bensel

September 1992

Final Report

June 1985 - December 1988

Approved for **Public** Release; Distribution **Unlimited**

UNITED STATES ARMY NATICK
RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
NATICK, MA 01760-5000

SOLDIER SCIENCE DIRECTORATE

U. S. ARMY NATICK ROSE CENTER ATTN: STRNC-MIL NATICK, MA 01760-5040

DISCLAIMERS

The findings contained in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

DESTRUCTION NOTICE

For Classified Documents:

Follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For Unclassified/Limited Distribution Documents:

Destroy by any method that prevents disclosure of contents or reconstruction of the document.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Departions and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND	D DATES COVERED
]	September 1992	Final JUN 198	5 DEC 1988
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
ANTHROPOMETRY OF THE FOOT	AND LOWER LEG OF U.	S. ARMY	PE: 728012.30
SOLDIERS: FORT JACKSON,			PR: 728012.12
			AG CODE: OMA1811
6. AUTHOR(S)			
KENNETH R. PARHAM, CLAIRE	C. GORDON, CAROLYN	K. BENSEL	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
US ARMY NATICK RD&E CENTER	R		NATICK/TR-92/028
ATTN: SATNC-YBA			
NATICK, MA 01760-5020			,
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING
		Ī	AGENCY REPORT NUMBER
		1	
11. SUPPLEMENTARY NOTES			
	,		
·			
12a. DISTRIBUTION/AVAILABILITY STATE	PAAPAIT		CASE DISTRIBUTION CODE
128. DISTRIBUTION/AVAILABILIT STATE	EMENI		12b. DISTRIBUTION CODE
Approved for public releas	se distribution unl	1m1+0d	į
pproved for public force.	se, distribution unit	Imited.	
		'	
13. ABSTRACT (Maximum 200 words)			
	for a leather combat	boot, which w	as recently adopted by
the US Army, was conducted	d at Fort Jackson. S	outh Carolina	by the US Army Natick
Research, Development and	Engineering Center.	In conjunction	on with the fit test.
a series of 33 anthropomet	tric measurements of	the foot and	lower leg (including
stature and weight) was of	btained on 867 male.	and female sole	diers. This report
presents statistical info	rmation for those da	ta on the full	male sample (n=293)
and on a female subsample	(n=491), which has	been reconfigu	red to represent more
closely the demographic co	omposition of the cu	rrent US Army	female nonulation.
In addition to measurement	t descriptions and s	ummary statisti	ice for each variable
by gender, bivariate and r	multivariate relation	nchine in the c	data are also presented.
This includes bivariate ta	ables. correlation co	nefficients, ar	nd both simple and
multiple regression equati	ions. These data re	present the mos	st comprehensive
anthropometric information	n on the foot collect	ted to date. /	As such the statistical
information presented in t	this report should be	e of value to s	scientists and to
and on a female subsample closely the demographic control in addition to measurement by gender, bivariate and in this includes bivariate to multiple regression equation anthropometric information information presented in the subsample control in	(n=491), which has lomposition of the curt descriptions and somultivariate relation ables, correlation coions. These data repose to the foot collection to the foot collection to the foot collection.	been reconfigurerent US Army in the commary statistices in the coefficients, are present the mosted to date.	red to represent more female population. ics for each variable data are also presented. nd both simple and st comprehensive As such, the statistical

14. SUBJECT TERMS Anthropometry Anthropometric Data Combat Boots	Demography Dimensions Foot	Measurements Army Leather Men	15. NUMBER OF PAGES 360 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unc 1	18. SECURITY CLASSIF OF THIS PAGE Uncl		ATION 20. LIMITATION OF ABSTRACT UL

developers of both military and civilian footwear.

TABLE OF CONTENTS

			1.1
LIST OF	FIGUR	ES	Page iv
LIST OF	TABLE	S ·	v
PREFACE			xvii
INTRODUC	CTION		. 1
CHAPTER	ı.	THE SAMPLES	3
		Sample Size	3
		Military Information	. 3
		Demographic Information	3 7
		Personal Information	10
CHAPTER	II.	METHODOLOGICAL CONSIDERATIONS	15
		The Variables	15
		Procedural Considerations	16
		Anthropometric Considerations	. 18
			23
		Data Integrity	23
CHAPTER	III.	UNIVARIATE STATISTICS AND MEASURING TECHNIQUES	28
		Statistical Measures	28
		Visual Index of the Measurements	31
		Measurements and Data Summaries	34
CHAPTER	IV.	BIVARIATE RELATIONSHIPS IN THE DATA	167
		Bivariate Frequency Tables	167
		Correlation Coefficients	243
		Simple Regression Equations	253 253
1		Shipte Regression Equactors	255
CHAPIER	v.	MULITIPLE AND STEPWISE REGRESSIONS	289
		Introduction	289
		Multiple Regression with Select Pairs of	290
		Variables as Predictors	
		Stepwise Multiple Regression	300
REFERENC	ŒS		329
APPENDIX	ŒS		331
			331
		MEASUREMENT AND BOOT FIT STUDY: BIOGRAPHICAL SURVEY	332
В.	MEASU	REMENT RECORD	341

LIST OF FIGURES

		Page
Figure 1.	Measuring Landmarks	20
Figure 2.	Measuring Equipment	23
Figure 3.	Visual Index of Dimensions	32

LIST OF TABLES

Table		Page
1	Distribution of the Sample by Rank	4
2	Distribution of the Sample by Length of Service	5
3	Distribution of the Sample by Primary MOS	6
4	Distribution of the Sample by Age Category	7
5	Distribution of the Male Sample by Racial Group	8
6	Distribution of the Female Sample by Racial Group	9
7	Distribution of the Sample by Handedness	11
8	Distribution of the Sample by Broken Bone	12
9	Distribution of the Sample by Highest Toe (Right Foot), Longest Toe (Right Foot), and Longest Toe (Left Foot)	14
10	Mean Absolute Differences for Observer Errors	27
11	Male Bivariate Table of Ankle Circumference (VAR 13) and Weight (VAR 21)	169
12	Male Bivariate Table of Ankle Circumference (VAR 13) and Foot Length, Right (VAR 25)	170
13.	Male Bivariate Table of BOF Breadth, Horiz, Right (VAR 26) and Foot Length, Right (VAR 25)	171
14	Male Bivariate Table of BOF Circumference, Right (VAR 16) and Ankle Circumference (VAR 13)	172
15	Male Bivariate Table of BOF Circ, Right (VAR 16) and BOF Breadth, Horiz, Right (VAR 26)	173
16	Male Bivariate Table of BOF Circumference, Right (VAR 16) and Foot Length, Right (VAR 25)	174
17	Male Bivariate Table of BOF Circumference, Right (VAR 16) and Instep Circumference (VAR 15)	175
18	Male Bivariate Table of BOF Circumference, Right (VAR 16) and Weight (VAR 21)	176
19	Male Bivariate Table of BOF Length, Right (VAR 24)	177

TABLE		PAGE
20	Male Bivariate Table of BOF Length, Right (VAR 24) and BOF Breadth, Horizontal, Right (VAR 26)	178
21	Male Bivariate Table of BOF Length, Right (VAR 24) and BOF Circumference, Right (VAR 16)	179
22	Male Bivariate Table of BOF Length, Right (VAR 24) and Foot Length, Right (VAR 25)	180
23	Male Bivariate Table of BOF Length, Right (VAR 24) and Heel Breadth, Right (VAR 17)	181
24	Male Bivariate Table of BOF Length, Right (VAR 24) and Instep Circumference (VAR 15)	182
25	Male Bivariate Table of BOF Length, Right (VAR 24) and Stature (VAR 1)	183
26	Male Bivariate Table of Calf Circumference (VAR 12) and Ankle Circumference (VAR 13)	184
27	Male Bivariate Table of Calf Circumference (VAR 12) and Calf Height (VAR 2)	185
28	Male Bivariate Table of Calf Circumference (VAR 12) and Weight (VAR 21)	186
29	Male Bivariate Table of Calf Height (VAR 2) and Stature (VAR 1)	187
30	Male Bivariate Table of Heel Breadth, Right (VAR 17) and Ankle Circumference (VAR 13)	188
31	Male Bivariate Table of Heel Breadth, Right (VAR 17) and BOF Breadth, Horiz, Right (VAR 26)	189
32	Male Bivariate Table of Heel Breadth, Right (VAR 17) and BOF Circumference, Right (VAR 16)	190
33	Male Bivariate Table of Heel Breadth, Right (VAR 17) and Foot Length, Right (VAR 25)	191
34	Male Bivariate Table of Heel Breadth, Right (VAR 17) and Instep Circumference (VAR 15)	192
35	Male Bivariate Table of Heel-Ankle Circ (VAR 14) and BOF Breadth, Horiz, Right (VAR 26)	193

TABLE		PAGE
36	Male Bivariate Table of Heel-Ankle Circ (VAR 14) and BOF Circ, Right (VAR 16)	194
37	Male Bivariate Table of Heel-Ankle Circumference (VAR 14) and BOF Length, Right (VAR 24)	195
38	Male Bivariate Table of Heel-Ankle Circumference (VAR 14) and Foot Length, Right (VAR 25)	196
39	Male Bivariate Table of Heel-Ankle Circumference (VAR 14) and Heel Breadth, Right (VAR 17)	197
40	Male Bivariate Table of Heel-Ankle Circumference (VAR 14) and Instep Circumference (VAR 15)	198
41	Male Bivariate Table of Heel-Ankle Circumference (VAR 14) and Weight (VAR 21)	199
42	Male Bivariate Table of Instep Circumference (VAR 15) and Ankle Circumference (VAR 13)	200
43	Male Bivariate Table of Instep Circumference (VAR 15) and BOF Breadth, Horiz, Right (VAR 26)	201
44	Male Bivariate Table of Instep Circumference (VAR 15) and Foot Length, Right (VAR 25)	202
45	Male Bivariate Table of Instep Circumference (VAR 15) and Weight (VAR 21)	203
46	Male Bivariate Table of Foot Length, Right (VAR 25) and Stature (VAR 1)	204
47	Male Bivariate Table of Stature (VAR 1) and Weight(VAR 21)	205
48	Female Bivariate Table of Ankle Circumference (VAR 13) and Weight (VAR 21)	206
49	Female Bivariate Table of Ankle Circumference (VAR 13) and Foot Length, Right (VAR 25)	207
50	Female Bivariate Table of BOF Breadth, Horiz, Right (VAR 26) and Foot Length, Right (VAR 25)	208
51	Female Bivariate Table of BOF Circumference, Right (VAR 16) and Ankle Circumference (VAR 13)	209

TABLE		PAGE
52	Female Bivariate Table of BOF Breadth, Horiz, Right (VAR 26) and BOF Circ, Right (VAR 16)	210
53	Female Bivariate Table of BOF Circumference, Right (VAR 16) and Foot Length, Right (VAR 25)	211
54	Female Bivariate Table of BOF Circumference, Right (VAR 16) and Instep Circumference (VAR 15)	212
55	Female Bivariate Table of BOF Circumference, Right (VAR 16) and Weight (VAR 21)	213
56	Female Bivariate Table of BOF Length, Right (VAR 24) and Ankle Circumference (VAR 13)	214
57	Female Bivariate Table of BOF Breadth, Horiz, Right (VAR 26) and BOF Length, Right (VAR 24)	215
58	Female Bivariate Table of BOF Circumference, Right (VAR 16) and BOF Length, Right (VAR 24)	216
59	Female Bivariate Table of BOF Length, Right (VAR 24) and Foot Length, Right (VAR 25)	217
60	Female Bivariate Table of Heel Breadth, Right (VAR 17) and BOF Length, Right (VAR 24)	218
61	Female Bivariate Table of Instep Circumference (VAR 15) and BOF Length, Right (VAR 24)	219
62	Female Bivariate Table of BOF Length, Right (VAR 24) and Stature (VAR 1)	220
63	Female Bivariate Table of Calf Circumference (VAR 12) and Ankle Circumference (VAR 13)	221
64	Female Bivariate Table of Calf Circumference (VAR 12) and Calf Height (VAR 2)	222
65	Female Bivariate Table of Calf Circumference (VAR 12) and Weight (VAR 21)	223
66	Female Bivariate Table of Calf Height (VAR 2) and Stature (VAR 1)	224
67	Female Bivariate Table of Heel Breadth, Right (VAR 17) and Ankle Circumference (VAR 13)	225

TABLE		PAGE
68	Female Bivariate Table of Heel Breadth, Right (VAR 17) and BOF Breadth, Horiz, Right (VAR 26)	226
69	Female Bivariate Table of Heel Breadth, Right (VAR 17) and BOF Circumference, Right (VAR 16)	227
70	Female Bivariate Table of Heel Breadth, Right (VAR 17) and Foot Length, Right (VAR 25)	228
71	Female Bivariate Table of Heel Breadth, Right (VAR 17) and Instep Circumference (VAR 15)	229
72	Female Bivariate Table of Heel-Ankle Circ (VAR 14) and BOF Breadth, Horiz, Right (VAR 26)	230
73	Female Bivariate Table of Heel-Ankle Circ (VAR 14) and BOF Circ, Right (VAR 16)	231
74	Female Bivariate Table of Heel-Ankle Circumference (VAR 14) and BOF Length, Right (VAR 24)	232
75	Female Bivariate Table of Heel-Ankle Circumference (VAR 14) and Foot Length, Right (VAR 25)	233
76	Female Bivariate Table of Heel-Ankle Circumference (VAR 14) and Heel Breadth, Right (VAR 17)	234
77	Female Bivariate Table of Heel-Ankle Circumference (VAR 14) and Instep Circumference (VAR 15)	235
78	Female Bivariate Table of Heel-Ankle Circumference (VAR 14) and Weight (VAR 21)	236
79	Female Bivariate Table of Instep Circumference (VAR 15) and Ankle Circumference (VAR 13)	237
80	Female Bivariate Table of BOF Breadth, Horiz, Right (VAR 26) and Instep Circumference (VAR 15)	238
81	Female Bivariate Table of Instep Circumference (VAR 15) and Foot Length, Right (VAR 25)	239
82	Female Bivariate Table of Instep Circumference (VAR 15) and Weight (VAR 21)	240
83	Female Bivariate Table of Foot Length, Right (VAR 25) and Stature (VAR 1)	241

CABLE		PAGE
84	Female Bivariate Table of Weight (VAR 21) and Stature (VAR 1)	242
85	Correlation Coefficients for Foot Dimensions Male	245
86	Correlation Coefficients for Foot Dimensions Female	249
87	Simple Regression Equations for Estimating Stature	255
88	Simple Regression Equations for Estimating Calf Height	256
89	Simple Regression Equations for Estimating Ankle Height	257
90	Simple Regression Equations for Estimating Medial Malleolus Height	258
91	Simple Regression Equations for Estimating Lateral Malleolus Height	259
92	Simple Regression Equations for Estimating Dorsal Arch Height	260
93	Simple Regression Equations for Estimating Plantar Arch Height	261
94	Simple Regression Equations for Estimating BOF Height	262
95	Simple Regression Equations for Estimating 1st Toe Height	263
96	Simple Regression Equations for Estimating Maximum Toe Height	264
97	Simple Regression Equations for Estimating Outside BOF Height	265
98	Simple Regression Equations for Estimating Calf Circumference	266
99	Simple Regression Equations for Estimating Ankle Circumference	267
100	Simple Regression Equations for Estimating Heel-Ankle Circumference	268
101	Simple Regression Equations for Estimating Instep Circumference	269
102	Simple Regression Equations for Estimating BOF Circumference	270
103	Simple Regression Equations for Estimating Heel Breadth, Right	271
104	Simple Regression Equations for Estimating BOF Breadth, Diagonal	272
105	Simple Regression Equations for Estimating Heel Breadth, Left	273

TABLE		PAGE
106	Simple Regression Equations for Estimating BOF Circumference, Left	274
107	Simple Regression Equations for Estimating Weight	275
108	Simple Regression Equations for Estimating Ankle Length	276
109	Simple Regression Equations for Estimating Instep Length	277
110	Simple Regression Equations for Estimating BOF Length, Right	278
111	Simple Regression Equations for Estimating Foot Length, Right	279
112	Simple Regression Equations for Estimating BOF Breadth, Horizontal, Right	280
113	Simple Regression Equations for Estimating Outside BOF Length	281
114	Simple Regression Equations for Estimating 5th Toe Length	282
115	Simple Regression Equations for Estimating BOF Length, Left	283
116	Simple Regression Equations for Estimating Foot Length, Left	284
117	Simple Regression Equations for Estimating BOF Breadth, Horizontal, Left	285
118	Simple Regression Equations for Estimating Bimalleolar Breadth	286
119	Simple Regression Equations for Estimating 1st-3rd Toe Breadth	287
120	Multiple Correlation Coefficients and Regression Equations with BOF Length, Right and BOF Breadth, Horizontal, Right as Predictor Variables Male	292
121	Multiple Correlation Coefficients and Regression Equations with Foot Length, Right and BOF Breadth, Horizontal, Right as Predictor Variables Male	293
122	Multiple Correlation Coefficients and Regression Equations with BOF Length, Right and BOF Circumference, Right as Predictor Variables Male	294
123	Multiple Correlation Coefficients and Regression Equations with Foot Length, Right and BOF Circumference, Right as Predictor Variables Male	295

TABLE		PAGE
124	Multiple Correlation Coefficients and Regression Equations with BOF Length, Right and BOF Breadth, Horizontal, Right as Predictor Variables Female	296
125	Multiple Correlation Coefficients and Regression Equations with Foot Length, Right and BOF Breadth, Horizontal, Right as Predictor Variables Female	297
126	Multiple Correlation Coefficients and Regression Equations with BOF Length, Right and BOF Circumference, Right as Predictor Variables Female	298
127	Multiple Correlation Coefficients and Regression Equations with Foot Length, Right and BOF Circumference, Right as Predictor Variables Female	299
128	Stepwise Multiple Regression Equations For Estimating Stature Male	301
129	Stepwise Multiple Regression Equations For Estimating Stature Female	301
130	Stepwise Multiple Regression Equations For Estimating Calf Height Male	302
131	Stepwise Multiple Regression Equations For Estimating Calf Height Female	302
132	Stepwise Multiple Regression Equations For Estimating Ankle Height Male	303
133	Stepwise Multiple Regression Equations For Estimating Ankle Height Female	303
134	Stepwise Multiple Regression Equations For Estimating Medial Malleolus Height Male	304
135	Stepwise Multiple Regression Equations For Estimating Medial Malleolus Height Female	304
136	Stepwise Multiple Regression Equations For Estimating Lateral Malleolus Height Male	305
137	Stepwise Multiple Regression Equations For Estimating	305

TABLE		PAGE
138	Stepwise Multiple Regression Equations For Estimating Dorsal Arch Height Male	306
139	Stepwise Multiple Regression Equations For Estimating Dorsal Arch Height Female	306
140	Stepwise Multiple Regression Equations For Estimating Plantar Arch Height Male	307
141	Stepwise Multiple Regression Equations For Estimating Plantar Arch Height Female	307
142	Stepwise Multiple Regression Equations For Estimating BOF Height Male	308
143	Stepwise Multiple Regression Equations For Estimating BOF Height Female	-308
144	Stepwise Multiple Regression Equations For Estimating 1st Toe Height Male	309
145	Stepwise Multiple Regression Equations For Estimating 1st Toe Height Female	309
146	Stepwise Multiple Regression Equations For Estimating Maximum Toe Height Male	310
147	Stepwise Multiple Regression Equations For Estimating Maximum Toe Height Female	310
148	Stepwise Multiple Regression Equations For Estimating Outside BOF Height Male	311
149	Stepwise Multiple Regression Equations For Estimating Outside BOF Height Female	311
150	Stepwise Multiple Regression Equations For Estimating Calf Circumference Male	312
151	Stepwise Multiple Regression Equations For Estimating Calf Circumference Female	312
152	Stepwise Multiple Regression Equations For Estimating Ankle Circumference Male	313
153	Stepwise Multiple Regression Equations For Estimating Ankle Circumference Female	313

TABLE		PAGE
154	Stepwise Multiple Regression Equations For Estimating Heel-Ankle Circumference Male	314
155	Stepwise Multiple Regression Equations For Estimating Heel-Ankle Circumference Female	314
156	Stepwise Multiple Regression Equations For Estimating Instep Circumference Male	315
157	Stepwise Multiple Regression Equations For Estimating Instep Circumference Female	315
158	Stepwise Multiple Regression Equations For Estimating BOF Circumference, Right Male	316
159	Stepwise Multiple Regression Equations For Estimating BOF Circumference, Right Female	316
160	Stepwise Multiple Regression Equations For Estimating Heel Breadth, Right Male	317
161	Stepwise Multiple Regression Equations For Estimating Heel Breadth, Right Female	317
162	Stepwise Multiple Regression Equations For Estimating BOF Breadth, Diagonal Male	318
163	Stepwise Multiple Regression Equations For Estimating BOF Breadth, Diagonal — Female	318
164	Stepwise Multiple Regression Equations For Estimating Weight Male	319
165	Stepwise Multiple Regression Equations For Estimating Weight Female	319
166	Stepwise Multiple Regression Equations For Estimating Ankle Length Male	320
167	Stepwise Multiple Regression Equations For Estimating Ankle Length Female	320
168	Stepwise Multiple Regression Equations For Estimating Instep Length Male	321
169	Stepwise Multiple Regression Equations For Estimating Instep Length Female	321

TABLE		v •	EAG
170	Stepwise Multiple Regression Equations For Estimating BOF Length, Right Male		322
171	Stepwise Multiple Regression Equations For Estimating BOF Length, Right Female	,	322
172	Stepwise Multiple Regression Equations For Estimating Foot Length, Right Male		323
173	Stepwise Multiple Regression Equations For Estimating Foot Length, Right Female		323
174	Stepwise Multiple Regression Equations For Estimating BOF Breadth, Horizontal, Right Male		324
175	Stepwise Multiple Regression Equations For Estimating BOF Breadth, Horizontal, Right — Female		324
176	Stepwise Multiple Regression Equations For Estimating Outside BOF Length Male		325
177	Stepwise Multiple Regression Equations For Estimating Outside BOF Length Female		325
178	Stepwise Multiple Regression Equations For Estimating 5th Toe Length Male		326
179	Stepwise Multiple Regression Equations For Estimating 5th Toe Length Female		326
180	Stepwise Multiple Regression Equations For Estimating Bimalleolar Breadth Male		327
181	Stepwise Multiple Regression Equations For Estimating Bimalleolar Breadth Female		327
182	Stepwise Multiple Regression Equations For Estimating 1st-3rd Toe Breadth Male	V , 1	328
183	Stepwise Multiple Regression Equations For Estimating 1st-3rd Toe Breadth Female		328

PREFACE

The boot fit study for which these data were collected was conducted by the Human Factors Group of the Life Systems Support Division in cooperation with the Clothing and Uniforms Division of the Individual Protection Directorate at Natick. At the time that the study took place, Dr. Carolyn K. Bensel, a coauthor of this report, served as leader of the Human Factors Group. Dr. Bensel was coprincipal investigator for the boot fit test along with Dr. Claire C. Gordon, also a coauthor of this report. Because of their superb efforts in planning the study and ensuring that all logistical challenges were sufficiently met, the boot fit test was a resounding success.

The high quality anthropometric data collected during the fit test are a result of the diligence and professionalism exhibited by all members of the boot fit study team. Ms. Patricia Robinson and 2IIT Beth Ann Holloway are especially commended for their leadership in the measurement and boot fit portions of the study, respectively. The other crew members, in alphabetical order, were: Ms. Cecilia Alderman, Ms. Brenda Baker, Ms. Juanita Bowens, Ms. Deborah Childs, Ms. Kassandra Collins, Ms. Wanda Culler, Mr. Steve Duray, Mr. Nigel Jenkins, Ms. Kim Rhett, and Ms. Kyla White. The primary author of this report, Dr. Kenneth Parham, served as the anthropometry team leader.

Special acknowledgment is also extended to the many people at Fort Jackson who served in various capacities to bring the study to fruition. Mr. Larry Kyzer and Mr. Douglas Burchett of the Directorate of Logistics gave unstintingly of their time in the role of liaison between Natick and the military administration at Fort Jackson. In this capacity they greatly facilitated subject acquisition and other logistical requirements. Other participants from the Directorate of Logistics, without whose assistance the study could not have taken place, include COL Rayburn Stovall (Director), Mr. Lonnie Turner, Mr. Luther Wilson, Mr. John Wilson, and Mr. Edward Mizzel. The latter two individuals served as expert boot fitters during the fit test as did Mr. Richard Braga and Mr. William Montuori of the Clothing and Uniforms Division at Natick.

Special thanks also are extended to the staff of the Fort Jackson Administration School, site of the actual fit test. In particular, the following individuals were instrumental in coordinating the test facilities and ensuring that the test participants were available when required: CPT Monica Russel, Director of the Administration School; CPT Todd Smith, S4 of the 4th Brigade; 1LT Brian Kennedy, Assistant S4; and SFC Joseph Benzin.

Finally, the authors would like to extend appreciation to Ms. Nancy Bell, Ms. Christine Bukruian, Ms. Sarah Donelson, and Ms. Ellen Wolfson of GEO CENTERS, Inc. for their significant contributions in the preparation of this report.

ANTHROPOMETRY OF THE FOOT AND LOWER LEG OF U.S. ARMY SOLDIERS: FORT JACKSON, SOUTH CAROLINA - 1985

INTRODUCTION

The purpose of this report is to present statistical information for a series of anthropometric measurements of the foot and lower leg (plus stature and weight) which were obtained on male and female U.S. Army soldiers from Fort Jackson, South Carolina during the summer of 1985. These data were collected in conjunction with a fit test for a recently developed leather combat boot which, in 1984, was adopted by the U.S. Army as a replacement for the previously-issued standard leather combat boot. The primary purpose for acquiring the anthropometric data was to assess various aspects of fit of the new boot, especially among women, and to discern quantitative relationships between foot dimensions and the forms over which the combat boots are fabricated (i.e., the MIL-5 last system).

An ancillary but equally important reason for acquiring these data was to expand and augment the existing data base for foot dimensions of both male and female Army soldiers. Until recently, anthropometric foot data for U.S. Army women was available from only two primary sources. These are the anthropometric survey of Army women conducted in 1946 (Randall, 1947; Randall and Munro, 1949), and the more recent 1977 anthropometric survey of Army women (Churchill et al., 1977; Iaubach et al., 1977). In the earlier survey only five dimensions of the foot were measured. In the 1977 survey 13 dimensions of the foot and lower leg were measured.

Understandably, more anthropometric foot data exist for Army men than women. In 1945, a series of 27 foot measurements was obtained on 6,278 white male soldiers and 1,281 black Army men from Fort Knox, Kentucky (Freedman et al., 1946). This survey precipitated other more esoteric, but quite important, studies of the foot. For example, two such works in which Fort Knox data were analyzed (Randall et al., 1951; Mann and Zacharias, 1952) pertained to the sizing and tariffing of military footwear. Both these studies greatly influenced the development of the MIL-5 last system still in use today by the Army. In addition to the Fort Knox study, anthropometric foot data for Army men is also found in more general anthropometric surveys conducted in 1946 (Randall and Baer, 1947; Newman and White, 1951), in 1959 (White, 1961), in 1966 (White and Churchill, 1971), in 1970 (Churchill et al., 1971), and in 1977 (McConville et al., 1977). It is important to note that foot data from many of these male and female anthropometric surveys as well as others were compiled by Robert White in a compendium entitled "Comparative Anthropometry of the Foot" (1982).

In terms of representing the present Army, only the recently completed anthropometric survey of Army men and women (ANSUR) (see Gordon et al., 1988) provides anthropometric foot data that is more current than the Fort Jackson data presented here. However, in terms of the variety and number of foot

dimensions measured, the female data set from Fort Jackson is not matched by ANSUR nor any of the other female surveys mentioned above, and the only male data set comparable to Fort Jackson is the Fort Knox survey. In essence, the Fort Jackson data set represents the most comprehensive array of foot measurements ever obtained on both male and female U.S. Army soldiers.

Because of the comprehensive nature of these foot and leg data, there is little doubt that the statistical information contained herein will be of interest and value to a wide variety of scientific disciplines including podiatry, orthopedics, anatomy, and anthropology, to name a few. Of perhaps greater importance to the Army, however, is the fact that these data should lead to improvements in the future development of military footwear.

This report is organized into five chapters. Chapter I discusses the derivation of the samples and presents biographical information, including both demographic and military data. Chapter II details methodological considerations in obtaining the data. Chapter III pertains to univariate statistical measures of the data and, in addition to statistical summaries, presents line drawings, photographs, and descriptions of the variables. Chapter IV details bivariate relationships in the data, including bivariate frequency tables, correlation coefficients, and regression equations. Finally, Chapter V explores multivariate relationships in the data including multiple regression and correlation.

CHAPTER I

THE SAMPLES

In addition to the anthropometric data, biographical data were obtained on each subject. These data include military information, demographic information, and personal information such as handedness, frequencies of broken bones, and data pertaining to footwear usage. The purpose of this chapter is to describe the male and female samples with regard to the biographical data, excluding information on footwear usage, and to discuss the derivation of the samples. Data on footwear usage are to be analyzed and reported separately from the current information.

Sample Size

A total of 867 soldiers, including 293 males and 574 females, participated in the foot study at Fort Jackson. Approximately two-thirds of the subjects were students participating in Advanced Individual Training (AIT) at the 4th Brigade Administration School. The remaining third consisted of basic trainees, cadre from basic training units and the AIT school, a few participants from Drill Instructor School, and military nurses, technicians, aides, etc. from Moncrief Army Community Hospital, the primary medical facility at Fort Jackson.

For the purposes of this report, the male sample is comprised of the entire 293 individuals measured. The female sample, however, is comprised of only 491 of the 574 subjects originally measured for reasons mentioned below in the discussion on racial distribution of the samples.

Military Information

Table 1 presents the distribution of the samples by rank. Of the 293 males only four are officers. Of the 491 females only seven are officers. Approximately 77% of the male and 88% of the female enlisted personnel are subsumed in the lower three enlisted ranks. Table 2 presents the distribution of the samples by length of service. As can be seen, approximately 72% of the males and 86% of the females had spent less than two years in the service. Table 3, which presents the distribution of the sample by primary MOS, shows that the majority of both males (61%) and females (85%) are included in the administration category. The large percentage of individuals in the administration category reflects the fact that about two-thirds of the subjects were administration AIT students. This, coupled with the fact that some basic trainees were included in the samples, explains the large percentages of lower ranking personnel and the large number of individuals with a limited time in service.

Table 1. Distribution of the Samples by Rank

	Officers					
Rank	Males (N=4)			Females (N=7)		
	n	- 8	nn	<u> </u>		
Lieutenant Colonel	1	0.3	2	0.4		
Major		0.0	2	0.4		
Major Captain	3	1.0	2	0.4		
1st Lieutenant		0.0	1	0.2		
2nd Lieutenant		0.0		0.0		
Total Officers	4	1.3	7	1.4		

	Enlisted					
Rank	Males (N=289)		Females (N=484)			
	n	કું	n			
E-9	2	0.7		0.0		
E-8	3	1.0	1	0.2		
E-7	14	4.8	6	1.2		
E-6	15	5.1	4	0.8		
E-5	26	8.9	22	4.5		
E-4	4	1.4	19	3.9		
E-3	43	14.7	117	23.8		
E-2	93	31.7	149	30.3		
E-1	89	30.4	166	33.8		
Total Enlisted	289	98.7	484	98.5		

Table 2. Distribution of the Samples by Length of Service

	Males	(N=190)	Females	s (N=232)
Length of Service	n	ક	n	<u> </u>
,			,	
30-35 years	1	0.3	· 0	0.0
25-30 years	0	0.0	0	0.0
20-25 years	4	1.4	2	0.4
15-20 years	12	4.1	5	1.0
10-15 years	23	7.8	9	1.8
9-10 years	7	2.4	2	0.4
8-9 years	10	3.4	3	0.6
7-8 years	5	1.7	4	0.8
6-7 years	3	1.0	3	0.6
5-6 years	0	0.0	5	1.0
4-5 years	1	0.3	9	1.8
3-4 years	1	0.3	12	2.4
2-3 years	9	3.1	14	2.9
1-2 years	114	38.9	164	33.4
•	190	64.7	232	47.2

	Males (N=90)		Females (N=259)		
Length of Service	n	ક	<u> </u>	<u> </u>	
11-12 months	1	0.3	10	2.0	
10-11 months	2	0.7	8	1.6	
9-10 months	0	0.0	7	1.4	
8-9 months	0	0.0	3	0.6	
7-8 months	1	0.3	7	1.4	
6-7 months	1	0.3	15	3.0	
5-6 months	9	3.1	24	4.9	
4-5 months	28	9.6	54	11.0	
3-4 months	7	2.4	56	11.4	
2-3 months	7	2.4	53	10.8	
1-2 months	34	11.6	14	2.8	
0-1 month	0	0.0	8	1.6	
•	90	30.7	259	52.5	
Not Ascertained	13	4.4			

Table 3. Distribution of the Samples by Primary MOS

Mos	Males n	(№293) (%) ^a	Female n	es (N=491) (%)b
TAAJ	**	(3)		(7)
Infantry	29	10.1		0.0
Field Artillery	2	0.7	2	0.4
Land Combat and Air Defense				
System Intermediate Maint.	2	0.7		0.0
Communications/Electronics Maint.	7	2.4		0.0
Communications/Electronics				
Operations	18	6.3	1	0.2
General Engineering	2	0.7		0.0
Chemical	4	1.4	2	0.4
Ammunition	1	0.3		0.0
Mechanical Maintenance	7	2.4	2	0.4
Transportation	4	1.4	11	2.4
Aircraft Maintenance	4	1.4	2	0.4
Administration	175	61.0	390	85.0
Automatic Data Processing		0.0	2	0.4
Supply and Service	11	3.8	14	3.0
Recruitment and Reenlistment	1	0.3		0.0
Public Affairs and				
Audio-Visual		0.0	1.	0.2
Medical	13	4.5	32	7.0
Food Service	3	1.0	•	0.0
Military Intelligence	3	1.0		0.0
Electronic Warfare/				
Cryptologic Operations	_1	0.3		0.0
	287	99.7	459	99.8
MOS Not Ascertained	2		25	
Officers	4		7	

a Percents calculated on N=287.

b Percents calculated on N=459.

Demographic Information

Distribution by Age

Table 4 presents male and female distributions by age category, mean age of each gender, and, for comparative purposes, age distribution of the active duty Army as of June, 1988. The distributions of the Fort Jackson males and females differ most in the 21-24 year age category, which has relatively more females than males, and in the 31 years and over age category, which favors the males. However, although the mean age of males is slightly higher than the mean age of females, the difference between the two is not statistically significant (t=1.64, $p \le 0.05$).

A comparison of the age distribution of the Fort Jackson test sample with the 1988 Army-wide data shows that the ≤20 year age group of both males and females is greatly overrepresented in the test sample. Indeed, approximately 62% of the males and 57% of the females in the test sample fall into this age category as compared to approximately 21% of the male and 20% of the female active duty force. Conversely, the other three age groups are underrepresented in the test sample as compared to the active duty force. The relative youth of the Fort Jackson sample is consistent with the predominant rank and MOS status of the subjects reported above.

Table 4. Distribution of the Samples by Age Category

Age Category	Males n	(N=293) (%)	Army Males- Jun 88 ^a (%)	Females	(N=491) (%)	Army Females- Jun 88 ^b (%)
≤ 20	182	62.1	17.6	282	57.4	16.4
21–24	37	12.6	26.8	117	23.8	29.9
25-30	39	13.3	25.3	61	12.4	32.1
≥ 31 ,	35	11.9	30.3	31	6.3	21.7
Mean Age	22.3			21.6		-,-
Std. Dev.	6.3			4.8		

 $a_{N} = 667,298$

 $b_{N} = 81,486$

Distribution by Racial Category

The distribution of the male and female test samples by racial group is presented in Tables 5 and 6, respectively, along with comparative data for the active duty force of June, 1988. It should be mentioned that the racial categories presented in Tables 5 and 6 are not exactly the same as those presented in the Biographical Survey which was administered to the Fort Jackson subjects (Appendix). The racial categories in the Biographical Survey were White, Black, Asian, Pacific Islander, and American Indian. The categories in Tables 5 and 6 are White, Black, Hispanic, a combined American Indian/Alaskan Native category, and a combined Asian/Pacific Islander category. These categories conform to standard racial categories commonly utilized by the Army. The creation of the Hispanic and the two combined categories was possible because the Biographical Survey also had an extensive list of choices for ethnicity.

Table 5. Distribution of the Male Sample by Racial Group

Racial Category		Males- (N=293) (%)	Jun 88* (%)
White	178	60.7	66.2
Black	78	26.6	25.9
Hispanic	24	8.2	3.9
Asian/Pacific Islander	9	3.1	1.5
American Indian/Alaskan Native	4	1.4	0.5
Mixed/Other**	-	· -	2.0

 $^{^*}N = 667,298$

A comparison of the racial distribution of the male test sample with the racial distribution of the male active duty force shows that the percentage of Blacks in the test sample (26.6%) is nearly the same as the percentage of Blacks in the active duty force (25.9%). However, the percentage of Whites in the test sample (60.7%) underrepresents the percentage of Whites (66.2%) in the active duty force by about 5%. Conversely, the percentage of Hispanics in the test sample (8.2%) is about twice the percentage of

^{**}Not an alternative category in the Fort Jackson study

Hispanics in the active duty force (3.9%). The remaining two categories are also slightly overrepresented in the test sample. Also, as indicated, the Fort Jackson study did not have a Mixed/Other category.

Despite the lack of congruity between the male test sample and the male active duty force for all but the Black racial categories, the test subjects were not resampled to more accurately reflect the male distribution of the active duty force for two reasons. First, the differences did not seem excessive, and, at least in the case of the overrepresented Hispanics, the active duty Army is projected to include increasingly more individuals in that category in the near future. Second, the random elimination of male subjects from the test sample as a means to bring the two distributions into closer alignment would have adversely reduced not only the overall male sample size but also the sample sizes of males in the less-represented racial categories.

Table 6. Distribution of the Female Sample by Racial Group

		l Sample 574)	Jun 88*	Current Sa (N=491)		
Racial Category	n`	(%)	(%)	<u> </u>	(%)	
White	253	44.1	51.7	253	51.5	
Black	273	47.6	41.8	194	39.5	
Hispanic	34	5.9	2.6	30	6.1	
Asian/Pacific Islander	8	1.4	1.5	8	1.6	
American Indian/Alaskan Native	6	1.0	0.6	6	`1.2	
Mixed/Other**	-		1.9	, -	-	

 $^{^*}N = 81.486$

It was indicated previously that the female sample in this report does not include all 574 of the subjects measured at Fort Jackson. Indeed, the original female sample was reduced to 491 individuals by randomly eliminating (using SPSS; Nie et al., 1977) 79 Blacks and 4 Hispanics from the total. This reduction was performed because the racial distribution of the original sample underrepresented Whites by 7.6% and overrepresented Blacks by 5.8% as compared to the racial distribution of the active duty Army of June, 1988 (see Table 6 above). Since preliminary analyses of the Fort Jackson foot data have shown that significant differences in foot morphology exist

^{**}Not an alternative category in the Fort Jackson study

between Blacks and Whites, it is important that the samples presented in this report more closely reflect the racial distribution of the current Army if the data are to be used in the design, sizing, and tariffing of contemporary Army footwear.

A comparison of the racial distribution of the current female sample with the active duty force shows that the resampling procedure brought both Blacks and Whites into much closer compliance with the active duty Army. As among the males, the percentage of Hispanics in the female sample is still overrepresented by approximately 3% in spite of the reduction of the female sample. Both the American Indian/Alaskan Native category and the Asian/Pacific Islander category differ negligibly from the corresponding distributions in the current female sample. Again, because the ratio of Hispanics in the Army is projected to increase in the near future, their overrepresentation in the current female sample does not jeopardize the utility of the female data for application in the sizing and design of contemporary footwear.

Personal Information

Distribution by Handedness

The distribution of the male and female Fort Jackson samples by handedness is presented in Table 7 and compared to handedness information from the 1988 U.S. Army Working Data Base (Gordon et al., 1989), which is demographically configured to represent the June 1988 active duty Army. In the Fort Jackson survey, each subject reported whether he/she was righthanded, lefthanded, or ambidextrous. The comparative handedness data from the 1988 data base are based on subject response to a question pertaining to which hand is used for writing. The category of "either" referred to a person's ability to write with either hand and is used to correspond to the ambidextrous category from the Fort Jackson survey.

Comparison of the male sample distribution with the 1988 data shows that righthanders and lefthanders are underrepresented by approximately 3% and 4%, respectively, but that the ambidextrous category is greatly overrepresented by approximately 7%. Similarly, for the females, the Fort Jackson righthanders and lefthanders are underrepresented by approximately 2% as compared to the corresponding 1988 percentages, and the ambidextrous category is overrepresented by approximately 4%.

The preponderance of ambidextrous individuals in the Fort Jackson sample is not readily explainable. The data could suggest that the number of ambidextrous men and women who have joined the Army has dramatically decreased since 1985, although this is unlikely. Another more likely possibility is that the soldiers' perceptions of what constitutes a truly ambidextrous person were erroneous. A third possibility is that these data are simply an artifact of sampling; that is, the high frequency of ambidextrous individuals occurred by chance.

Table 7. Distribution of the Samples by Handedness

<u>Handedness</u>	Male n	(N=293) (%)	Army Males 1988 ^a (%)	Females n	(N=491) (%)	Army Females 1988 ^b (%)
Right	248	84.6	87.9	426	86.8	88.7
Left	23	7.8	11.4	42	8.6	10.2
Ambidextrous	22	7.5	0.6	23	4.7	1.0
Unascertained	0		0.1	0		0.1

 $a_{N} = 1.774$

Distribution by Frequency of Broken Bone

Table 8 presents the distribution of the sample for frequencies of broken legs, ankles, foot bones, and toes as reported by the subjects. The values refer to the number and percentages of individuals who indicated they had experienced broken bones in each category. Among males, broken ankles occurred most frequently (approximately 8%), followed by occurrences of broken legs (6.5%) and broken foot bones (5.5%). The great toe of both feet was the most frequently occurring broken toe (2.7% for right and left). The frequency of males with broken toes other than the great toe was consistently less than 1%.

The female frequencies followed the same pattern as the males. Broken ankles (4.5%) occurred most frequently, followed by broken legs (1.6%) and broken foot bones (2.4%). Again, the most frequently occurring broken toe was the great toe (right = 2%; left = 1.4%), and the frequency of occurrence for any of the other toes never exceeded 1%, except the right fifth toe which was 1.4%.

A comparison of the male versus female frequencies shows that males experienced more occurrences of broken bones in all categories except for the second through fifth toe of the right foot. The fact that males have higher frequencies of broken bones than females possibly reflects more rigorous levels of physical activity among males.

 $b_{N} = 2.208$

Table 8. Distribution of the Samples by Broken Bone

Bone	Males n	s (№293) (%)	Female n	s (N=491) (%)	
Broken Leg					
Right	11	3.8	6	1.2	
<u> Left</u>	7	2.4	7	1.4	
Both	1	0.3	0		
None	274	93.5	478	97.4	
Broken Ankle					
Right	11	3.8	14	2.9	
Left	9	3.1	8	1.6	
Both	4	1.4	0		
None	269	91.8	469	95.5	
Broken Foot Bone					
Right	9	3.1	7	1.4	
Left	5	1.7	<i>.</i> 5	1.0	
Both	2	0.7	Ö		
None	277	94.5	479	97.6	
Notice	211	94.5	4/3	37.0	
Broken Toe - Right 1					
Yes	8	2.7	10	2.0	
No	285	97.3	481	98.0	
Broken Toe - Right 2					
Yes	2	0.7	5	1.0	
No	291	99.3	486	99.0	
No	252	<i>3343</i>			
Broken Toe - Right 3				•	
Yes	1	0.3	4	0.8	
No	292	99.7	487	99.2	
Broken Toe - Right 4					
Yes	2	0.7	5	1.0	
	291	99.3	486	99.0	
No	431	33.3	400	JJ • U	
Broken Toe - Right 5					
Yes	2	0.7	7	1.4	
No	291	99.3	484	98.6	
410				- -	

Table 8. Distribution of the Samples by Broken Bone (Continued)

Bone	Males (N=293)		Female	es (N=491)
	n (%)		n	(%)
Broken Toe - Left 1				
Yes	8	2.7	7	1.4
No	285	97.3	484	98.6
Broken Toe - Left 2				
Yes	2	0.7	1	0.2
No	291	99.3	4 90	99.8
Broken Toe - Left 3				
Yes	2	0.7	<u></u>	100.0
No	291	99.3	491	
Broken Toe - Left 4				,
Yes	2	0.7	1	0:2
No	291	99.3	4 90	99.8
Broken Toe - Left 5				
Yes	3	1.0	0	100.0
No	290	99.0	491	

Distribution by Highest Toe and Longest Toe

Table 9 presents the distribution of the sample by highest toe on the right foot only and by the longest toe on each foot. The highest toe pertains to the second through fifth toes and was used for the measurement of Maximum Toe Height (VAR 10). For both males and females, the second toe was by far most frequently the highest, followed by the third, fourth and fifth, in that order.

The longest toe, invariably the first or second, was used for measuring Foot Length of the right foot (VAR 25) and left foot (VAR 30). In males, the frequency for the first toe was approximately 88% on both the right and left foot. In females, the higher frequency also occurred for the first toe on both the right foot (approximately 93%) and left foot (approximately 91%).

Table 9. Distribution of the Samples by Highest Toe (Right Foot), Longest Toe (Right Foot), and Longest Toe (Left Foot)

		(N=293)		s (N=491)
Toe	n	(8)	n n	(§)
<u>Highest Toe</u> ^a				
Second Third Fourth Fifth	192 51 27 23	65.5 17.4 9.2 7.8	358 78 34 21	72.9 15.9 6.9 4.3
Longest Toe, Right Footb				
First Second	258 35	88.1 11.9	456 35	92.6 7.1
Longest Toe, Left Foot ^C				
First Second	258 35	88.1	446 45	90.8 9.2

^a Toe with highest dorsal surface - Used for measurement of Maximum Toe Height.

b Most protruding toe on the right foot - Used for measurement of Foot Length, Right.

^C Most protruding toe on the left foot - Used for measurement of Foot Length, Left.

Chapter II

METHODOLOGICAL CONSIDERATIONS

The Variables

A total of 33 anthropometric measurements were obtained on each subject. These included 26 dimensions of the right foot and lower leg, 5 dimensions of the left foot, and stature and weight. While all measurements are described in detail in Chapter III, a listing of each of the measurement names and the respective designated variable numbers is as follows:

VAR1	Stature	VAR18	BOF Breadth, Diagonal
VAR2	Calf Height	VAR19	Heel Breadth, Left
VAR3	Ankle Height	VAR20	BOF Circumference, Left
VAR4	Medial Malleolus Height	VAR21	Weight
VAR5	Lateral Malleolus Height	VAR22	Ankle Length
VAR6	Dorsal Arch Height	VAR23	Instep Length
VAR7	Plantar Arch Height	VAR24	BOF Length, Right
VAR8	BOF Height	VAR25	Foot Length, Right
VAR9	1st Toe Height	VAR26	BOF Breadth, Horizontal, Right
VAR10	Maximum Toe Height	VAR27	Outside BOF Length
VAR11	Outside BOF Height	VAR28	5th Toe Length
VAR12	Calf Circumference	VAR29	BOF Length, Left
VAR13	Ankle Circumference	VAR30	Foot Length, Left
VAR14	Heel-Ankle Circumference	VAR31	BOF Breadth, Horizontal, Left
VAR15	Instep Circumference	VAR32	Bimalleolar Breadth
VAR16	BOF Circumference, Right	VAR33	1st-3rd Toe Breadth
VAR17	Heel Breadth, Right		1

It should be mentioned that because of space considerations in certain places in the report it was necessary to occasionally abbreviate parts of variable names (for example, "circumference" is occasionally abbreviated to "circum"). One abbreviation that will be used very frequently throughout the report is "BOF" in place of "Ball of Foot".

Procedural Considerations

Processing the Subjects

Prior to being measured, subjects were briefed by the measuring team leader about the purpose of the study, their rights of privacy and disclosure of information (See Appendix A), and general procedures of the measurement process. Additionally, they were asked to fill out a biographical questionnaire (Appendix A). Upon completion of the biographical questionnaire, subjects were asked to remove their footwear and roll up their trousers to just below the knees. Each was provided with a pair of disposable hospital slippers for use when walking about in the measuring areas.

Before a subject was measured, it was first necessary to locate and then mark specific anthropometric landmarks of both feet and the right leg of each subject. A black eyebrow pencil was used for this purpose. (These landmarks are described in the section on Anthropometric Considerations, p. 18.) To ensure consistency in the position of the marks throughout the study, one worker served as the primary marker for the duration of the study. It also should be noted that, while one of the primary measurers was trained as an alternate marker, the primary marker was not absent during any of the time subjects were being processed.

Once marked, subjects were directed toward one of three measuring stations, each of which was manned by two trained measuring technicians. While one measured the other served as a recorder. To prevent fatigue, the two would reverse roles approximately every other subject. In the event of absence of one of the two measurers at any station, a trained alternate who was involved in the boot fit portion of the study would fill in until the primary measurer returned to duty. During the few times this occurred, the alternate functioned as the recorder while at the measuring station.

For the most part, an individual station was designed to include similar types of measurements requiring the same measuring instruments: at Station 1, foot and leg heights, stature, and weight were taken; at Station 2, foot and leg circumferences predominated; and at Station 3, foot lengths and breadths were measured. The measurement record showing the respective measurements for each station is presented in the Appendix. With the exception of stature and weight, measurements were taken in the order provided on the form.

Regardless of the measuring station where a subject began, a forward rotation was always followed so the flow of subjects could be regulated. For example, if a subject started at station 2, he/she would next go to Station 3 then on to Station 1. Finally, once subjects had completed all phases of the boot fit study, including measurement, they were directed to the briefing area so that all forms could be checked for completeness and so subjects could remove the marks on their feet and legs.

Processing the Data

The foot data collected at Fort Jackson were keypunched onto magnetic tape by personnel at Natick's central computer facility. A working data set was then copied from tape to magnetic disk for use at remote terminals.

Before generating the statistical information, it was necessary to screen the data for erroneous values which lie beyond the range of normal variation for each variable. Outlying values may result from mistaken instrument readings during measurement, faulty transcription of the measurement by the recorder, or keypunch errors when transferring the data to magnetic tape. The extreme values were identified from frequency and range data generated by the Frequency procedure of the Statistical Package for Social Sciences (SPSS) (Nie, et al., 1975), and then were checked against the original data entries on the measurement records. Obvious reading, recording, and keypunch errors were changed in the data file to reflect the proper values. It must be emphasized that a conservative approach was taken in changing discrepant values; that is, if any question of accuracy arose for a particular value and could not be resolved by reviewing the original entries, it was coded as missing data in the data file.

Once the "clean" data set had been established, the basic statistics were computed for each variable by gender. Computation of the univariate statistics was facilitated by several programs and/or subroutines generously provided by the Anthropology Research Project (ARP) of Yellow Springs, Ohio. Two of these programs in particular, XVAL (= extreme value) and MSDP (= mean, standard deviation, and percentiles), were utilized to produce all the basic statistics presented in Chapter IV. Specific details of the mechanics of these programs and other subroutines necessary to produce the basic statistics can be found in Kikta and Churchill (1978) and in the technical reports for anthropometric surveys of U.S. Army men (White and Churchill, 1971) and U.S. Army women (Churchill et al., 1977). However, two important aspects of these programs require mention. First, although the original measurements were recorded in millimeters, the ARP programs convert the values to centimeters by multiplying each by 0.1; similarly, weight was recorded in hectograms and converted to kilograms. Second, the programs convert the metric values to inches by multiplying each by 0.3937; (weight is converted to pounds by using 2.2046 as the multiplier). As a result, the output in Chapter III is presented in both centimeters and inches.

Finally, various procedures of SPSS were employed to generate bivariate frequency data, correlation coefficients, simple regression equations, and multiple regression equations. Details of each of these statistical procedures are discussed in the following sections of this report.

Anthropometric Considerations

Posture and Positioning

A critical requirement of any anthropometric survey is to ensure that subject posture and position of the body are consistent throughout the duration of the study. By applying the same standards to all subjects, differences in body dimensions are attributable with greater certainty to actual differences in body size rather than to differences resulting from inconsistent postures and positions.

Since the majority of the measurements in this study are for the feet, it was most critical that the subjects stand erect with weight equally distributed on both feet, and with the trunk and legs straight but not rigidly locked. The arms were to hang straight, but loosely, at the sides of the body with the palms alongside, but not touching, the thighs. Depending on the measurement, heels were positioned approximately 10 cm apart or were brought together as much as possible. Subjects were asked to look straight ahead so that the body would not move in conjunction with a shifting line of vision. When the line of vision is parallel to the plane of the standing surface, the head is considered to be in the Frankfort plane. In essence, the posture the subjects were asked to assume was similar to that of the position of military attention, but without the stiffness and bracing which is often associated with it.

Anthropometric Landmarks

As stated previously, prior to measuring a subject it was first necessary to locate and mark several anatomical landmarks which served as reference points for the measurers. While being marked, a subject assumed the same basic posture as that previously mentioned for measuring, and placed his/her feet approximately 10 cm apart with weight equally distributed on both feet. All marks were made on the right foot and leg unless noted otherwise in the landmark definitions presented below. The landmarks are depicted in Figure 1.

- (1) Calf Level The level of the maximum circumference of the calf as established by measuring with a steel tape. This level is marked on the posterior calf. If maximum circumference occurs at more than one level, the lowest level is selected for marking. The mark is made along the inferior edge of the tape.
- (2) Ankle Level The level of the minimum circumference of the ankle as established by measuring with a steel tape. It is located slightly above the medial and lateral malleoli. This level is marked on the posterior ankle. If minimum circumference occurs at more than one level, the lowest level is selected for marking. The mark is made along the inferior edge of the tape.
- (3) Lateral Malleolus The level of the most lateral protrusion of the lateral malleolus as established with a marking block. If the most lateral protrusion occurs at several levels, the midpoint where the block is in contact with the surface is selected for marking.

- (4) Medial Malleolus The level of the most medial protrusion of the medial malleolus as established with a marking block. If the most medial protrusion occurs at several levels, the midpoint where the block is in contact with the surface is selected for marking.
- (5) Maximum Plantar Arch Height The most medial projection of the foot in the mimimum instep circumference plane as determined by moving a plain block laterally until its vertical edge contacts the middle instep circumference plane landmark. A horizontal mark is made at this level. If the most medial projection occurs at several levels, the lowest level is selected for marking.
- (6) 1st Metatarsal-Phalangeal Protrusion The most medial aspect of the ball of the foot in the region of the first metatarsal-phalangeal joint as determined with the aid of a plain block. If maximum protrusion occurs over a wide surface, the midpoint where the block is in contact with the surface is selected for marking. Once the point is located, the mark is extended over the dorsal surface of the protrusion. This mark is made on both feet.
- (7) Dorsal Junction of the Foot and Leg A horizontal line in the deepest and longest crease of the skin produced over the extensor hallucis longus tendon when the knees and ankles are flexed and weight is equally distributed on both feet, which are approximately 10 cm apart.
- (8) Minimum Instep Circumference Plane The vertical plane of minimum instep circumference as established by measuring with a steel tape held in a vertical position. This plane is marked on the dorsal, medial and lateral aspects of the foot. The mark is made along the inferior edge of the tape.
- (9) 5th Metatarsal-Phalangeal Protrusion The most lateral aspect of the ball of the foot in the region of the 5th metatarsal-phalangeal joint as determined with the aid of a plain block. If maximum protrusion occurs over an extended surface, the midpoint where the block is in contact with the surface is selected for marking. Once the point is located, the mark is extended over the dorsal surface of the protrusion. This mark is made on both feet.
- (10) Maximum Toe Height Location The toe, other than the great toe, having the highest phalangeal surface as established with the aid of an adjustable block. The point of maximum dorsal protrusion is marked.

1 Calf Level (max circ)
2 Ankle Level (min circ)
3 Lateral Malleolus

- 4 Medial Malleolus
- 5 Maximum Plantar Arch Height 6 1st Metatarsal-Phalangeal Protrusion, Medial Aspect

Figure 1. Measuring Landmarks

- 7 Dorsal Juncture of the Foot and Leg
- 8 Minimum Instep Circumference Plane
- 9 5th Metatarsal-Phalangeal Protrusion, Dorsal and Medial Aspects
- 10 Maximum Toe Height Location

Figure 1. Measuring Landmarks (continued)

Measuring Equipment

The items of equipment used in this study are listed below. A description of each follows the list and all are depicted in Figure 2.

Anthropometer (GPM, Martin Type)

Sliding Caliper (GPM, Martin Type)

Steel Tape (2m K&E Tip Top, Wyteface No. 860358)

Scales (NCI Model No. 5787 Digital)

Footboard, Right Foot (made at Natick)

Footboard, Left Foot (made at Natick)

Adjustable Block (made at Natick)

Plain Block (made at Natick)

Marking Blocks (made at Natick)

Eyebrow Pencil (Maybelline, Velvet Black)

This list of equipment includes several familiar anthropometric instruments and other more specialized items of equipment. Perhaps the most common is the anthropometer. The anthropometer is a versatile instrument that, because it consists of four connecting segments, can be used to measure various heights of the body. In addition, the topmost segment of the anthropometer can be converted into a large beam caliper which is useful for measuring dimensions of the body that are too large or deep for the smaller sliding caliper. In the present study, a fully configured stainless steel anthropometer was used for stature; an abbreviated version (only the bottom segment) was used for two shorter heights (calf and ankle height); and the beam caliper was used for two breadth dimensions (bimalleolar breadth and 1st-3rd toe breadth). It also should be mentioned that the standing anthropometers were firmly planted in specially designed stainless steel bases or pedestals (6" X 6" X 1/2") so that strict verticality of the anthropometers relative to the standing surface and the body could be maintained.

Three other familiar anthropometric instruments are the sliding caliper, the steel tape, and the scales. The sliding caliper, useful for measuring smaller breadths and lengths, was used in this study for the determination of heel breadth (both feet) and diagonal ball of foot breadth. The steel tape was used to measure all circumferences. Obviously, the scales were used to determine weight.

1 Anthropometer 2 Beam Caliper

3 Steel **Tape** 4 Sliding Caliper 5 Adjustable Block

Figure 2. Measuring Equipment

- 6 Foot Box, Right Foot 7 Foot Box, Left Foot 8 Plain Block

9 Marking Blocks 10 Eyebrow Pencil

Figure 2. Measuring Equipment (continued)

Two of the more specialized items of equipment employed in this study were the footboard and the adjustable block. The footboard is used expressly for measuring lengths and breadths of the foot in a quick and efficient manner. This device consists of a stainless steel tray (8" by 16"), bound on two sides by a metal side and back wall. Graph paper with both horizontal and vertical scales in millimeters covers the tray surface, and it is overlain with clear plexiglass. Measurements are obtained with the aid of a plain block. The footboard's sturdy construction easily supported the weight of all subjects measured in the study.

The adjustable block is a triangular block of wood 6-1/4" tall. On the vertical surface are two scales in millimeters bounding either side of a groove which functions as a track for a plastic arm that extends five inches from the vertical face. By manipulating the arm up or down, very low heights such as those of the foot can be obtained.

The plain block is identical in shape to the adjustable block but does not have the measuring apparatus on the long vertical side. In addition to its use with the footboard, the plain block was used along with the marking block to determine various landmarks of the feet. The marking block is more irregularly shaped than the plain block, and it was indispensable for obtaining landmarks of the ankle on a large number of subjects.

Finally, the black eyebrow pencil was used to make the marks on the feet and legs. The particular pencil noted above was chosen for use because the marking substance is highly visible on most variants of skin pigmentation, it does not smudge easily, and it can be removed easily.

Data Integrity

One of the premier challenges facing any anthropometric survey is the maintenance of consistency and reliability in the data. As indicated in the discussions above, sources of error in measurement data can occur for a variety of reasons including inconsistent landmarks, inconsistent positioning of subjects, whether being marked or measured, erroneous reading of instruments, faulty recording of the measurements, and errors in transcription from hardcopy to computer format. From the preceding discussions it is also evident that efforts were taken to minimize these sources of error. To reiterate, landmarks were made by only one marker, subject positioning was consistent throughout the study, and outlying values were identified and altered or removed.

Other critical sources of error may occur in the measurement process itself. For example, <u>intraobserver</u> error may occur when a single measurer alters his/her measuring technique over the course of a study or even over the course of a day. Measurement error between two individuals who take the same measurements, <u>interobserver</u> error, may occur when one or both deviate from an established measurement technique. In this study preventative measures were taken to minimize both intraobserver and interobserver error as much as possible. For example, prior to commencement of the study a full work week was spent familiarizing members of the measuring team with <u>all</u> of the measurements

(i.e., via numerous measuring sessions). The team members were then assigned to one of the three measuring stations based on their proficiency and consistency, and spent essentially another work week standardizing their technique on their particular suite of measurements. A standardization session was then conducted once in each of the five weeks that the data were collected. In the standardization sessions several selected subjects were measured by each of the measurers for all dimensions to assess whether measuring techniques were consistent among the measurers.

During the days when sufficient numbers of subjects were being measured, the team leader would randomly select several subjects for remeasurement over the course of the day. Enough subjects were sent back for remeasurement until sufficient intraobserver and interobserver repeatability data for each of the team members had been obtained. This procedure, which was ordinarily conducted on a daily basis, also provided for a frequent check of degradation in measurement accuracy among the measurers.

Presented in Table 10 are mean absolute differences for the intraobserver and interobserver errors for each variable. Mean absolute differences are computed by summing the differences between the first and second measurement, regardless of which is larger or smaller, and then dividing by the number of times error data were collected. Mean absolute differences for intraobserver error thus provide some indication as to how consistent measurers are from one subject to the next. As can be seen, consistency among the measurers varied from measurement to measurement. A comparison of mean absolute differences for certain measurements taken in this study with those for the same measurements obtained in the recent anthropometric survey of Army personnel (ANSUR) shows that the Fort Jackson data are well within acceptable error rates established for ANSUR (see Clauser et al., 1988).

Table 10. Mean Absolute Differences for Observer Errors

		Intraobse		
	riable No.	Measurer	Measurer	Interobserver
<u>& N</u>	Name	One	OWT	Error
	Station 1			
1	Stature	3.40*	3.10	5.04
2	Calf Height	1.55	1.65	1.44
. 3	Ankle Height	1.30	0.90	1.52
4	Medial Malleolus Height	0.45	1.25	1.09
5	Lateral Malleolus Height	0.80	1.25	1.00
6	Dorsal Arch Height	1.15	1.45	2.13
7	Plantar Arch Height	0.95	1.05	1.39
8	BOF Height	0.50	0.35	0.78
9	1st Toe Height	0.85	1.20	0.87
10	Maximum Toe Height	0.75	0.55	0.78
11	Outside BOF Height	0.55	0.50	0.96
	Station 2			÷
		•		ì
12	Calf Circumference	1.20	2.05	1.55
13	Ankle Circumference	1.30	1.35	2.05
14	Heel-Ankle Circumference	1.60	1.53	2.14
15	Instep Circumference	1.65	1.05	1.32
16	BOF Circumference, Right	1.60	1.80	2.18
17	Heel Breadth, Right	0.55	0.60	1.00
18	BOF Breadth, Diagonal	0.95	0.70	1.14
19	Heel Breadth, Left	0.60	0.80	0.86
20	BOF Circumference, Left	1.60	1.45	2.82
	Station 3			
22	Ankle Length	3.35	1.35	2.67
23	Instep Length	2.65	1.91	1.76
24	BOF Length, Right	2.70	2.78	1.24
25	Foot Length, Right	1.60	1.55	1.24
26	BOF Breadth, Horiz, Right	1.65	1.36	2.48
27	Outside BOF Length	2.60	2.61	2.38
28	5th Toe Length	1.95	2.76	2.05
29	BOF Length, Left	2.85	2.04	2.71
30	Foot Length, Left	1.35	2.77	2.10
31	BOF Breadth, Horiz, Left	2.95	1.04	1.71
32	Bimalleolar Breadth	1.40	0.83	0.95
33	1st-3rd Toe Breadth	1.90	1.70	2.29
_	<u> </u>			

^{*}All values in millimeters

Chapter III

UNIVARIATE STATISTICS AND MEASURING TECHNIQUES

Statistical Measures

Anthropometric surveys characteristically involve a large number of measurements taken on a large sample of subjects from a given population. In order to fully understand such large data sets and apply the information in different contexts, it is necessary to condense the data into a variety of meaningful summary statistics. Even though the data set in this report involves only 33 variables taken on fewer than 900 individuals, both quantities being far smaller than those from a large-scale survey, the information would have little utility unless summarized.

For a number of years, anthropometric survey reports of the U.S. Armed Forces traditionally have included a specific set of univariate statistics, which have proven to be extremely useful in various contexts. In keeping with tradition, these same summary statistics are included in this report for the foot and lower leg data (stature and weight also included). Presented below are descriptions of the traditional statistical measures. All statistical descriptions were derived from the statistic texts of Sokal and Rohlf (1981) and Hays (1981) and from reports for previous anthropometric surveys (White and Churchill, 1971; Clauser et al., 1972; Churchill et al., 1977). The statistical measures are as follows:

(1) The Arithmetic Mean - Familiarly called the "mean" or "average", the arithmetic mean is the most common of several measures of central tendency for a distribution of numerical values. It is derived by summing a set of values and then dividing by the total number of observations. For example, the sum of all right foot_length values for the 491 women in this study is 11,970.58 cm, and the mean (X) is:

$$X = \frac{\sum X}{N} = \frac{11,970.58}{491} = 24.38$$

where X = each value of foot length, and N = the number of observations.

(2) The Median - Another measure of central tendency, the median is the middle value in an ordered array of numbers. As such, 50% of all values fall above the median and 50% fall below. Thus, it is the same as the 50th percentile value in each of the percentile tables.

(3) The Standard Deviation - The standard deviation is a measure of dispersion or variability about the mean of a distribution of values. It is defined as the square root of the variance, that is, the square root of the average squared deviations from the mean. The formula for the standard deviation is:

$$SD = \frac{\sum (X - \overline{X})^2}{N}$$

where SD is the standard deviation, X is each value, \overline{X} is the mean, and N is the number of values.

In considering the standard deviation as a measure of dispersion about the mean, it follows that a standard deviation will be small if most values cluster about the mean. Conversely, if the values are considerably smaller or larger than the mean, or perhaps a combination of both, then the standard deviation will be large. In terms of the distribution of values about the mean, approximately two thirds will fall within one standard deviation above and below the mean, and about 95% of all values will fall within plus and minus two standard deviations from the mean.

(4) The Coefficient of Variation - This statistic is simply the standard deviation expressed as a percentage of the mean (\overline{X}) . Its formula is:

$$CV = \underline{100 \cdot SD}$$

The coefficient of variation (CV) is useful for comparing the variability of a character among two or more populations which have different means for that character. Additionally, it can be used to determine whether one character is more variable than another within a given population or whether a group of anatomically similar characters within a population exhibits more variability than another group of anatomically similar characters. For example, regarding the latter application, it has been shown in other anthropometric surveys that linear dimensions, which correspond to long bone lengths, have smaller coefficients of variation than circumferential measurements, which correspond to fleshy dimensions of the body.

(5) The Standard Errors - An obvious goal of large anthropometric surveys is to provide a sampling of data that is representative of some larger population. Thus the importance of a sound sampling strategy for achieving adequate population representation should never be underemphasized. Unfortunately, the statistical measures of a sample can deviate from actual population parameters simply by chance. The standard error (SE) of any particular statistical measure, such as a sample mean for a variable, is a method to estimate the magnitude of deviation from a population parameter, in this case the population mean. In essence, a standard error is a standard deviation-type statistic which can be interpreted similarly to the distributional probabilities of the standard deviation for a single variable in a sample. In this regard, if a large number of sample means were derived from a population and were normally distributed, approximately two thirds would fall within ±1 SE of the population mean, and 95% would fall within ±2 SE.

Although every descriptive statistic can have an associated standard error, in this report only the standard error of the mean [SE(M)] and the standard deviation [SE(SD)] are included. The computational formulae for the standard error of the mean and the standard error of the standard deviation are:

$$SE(M) = SD/\sqrt{N}$$

 $SE(SD) = SD/\sqrt{2N}$

(6) Symmetry and Kurtosis - In a normal probability distribution, each value larger than the mean will be mirrored by values smaller than the mean. In this sense the distribution is considered to be symmetrical. Departures from symmetry, called asymmetry or skew, suggest that a frequency curve will be more heavily weighted toward one side of the mean while the tail is drawn out to the other side. The curve is said to be skewed to the right or left depending on which direction the tail is drawn out.

Another type of departure from normality that a frequency distribution can take is <u>kurtosis</u> or peakedness. When compared to a normal cluster of observations with the same mean and variance, a kurtotic curve may be flatter (platykurtosis) with fewer values near the mean and more at the tails, or it may be taller (leptokurtosis) with more values about the mean and fewer at the tails.

For any given distribution of values, it is possible to measure the nature and degree of departure from an expected normal distribution. The particular statistics that accomplish this are called Veta I (β_1) and Veta II (β_2) in this report, the former pertaining to a measure of symmetry and the latter pertaining to a measure of kurtosis. The formulae for β_1 and β_2 are:

$$\beta_1 = \frac{\sum (x - \overline{x})^3}{N(SD^3)}$$

$$\beta_2 = \frac{\sum (x - \overline{x})^4}{N(SD^4)} - 3$$

For each of the these statistics the normal distribution values are 0. Hence, β_1 is interpreted such that a positive value indicates a skewed distribution to the right and a negative value indicates a skewed distribution to the left. A positive value of β_2 indicates leptokurtosis, and a negative β_2 indicates platykurtosis.

(7) The Percentiles - The percentile is a way to express a value's position in an ordered array of numbers. For example, a value at the 25th percentile indicates that 25% of all other values in the distribution are smaller than it is. Conversely, 75% of all values are larger than the value at the 25th percentile. The percentiles utilized in this report include the 1st, 2nd, 3rd, the 5th through 95th in increments of 5 (e.g., 5th, 10th, 15th, etc.), and the 97th, 98th and 99th. These percentiles are those that have been commonly reported in other U.S. military surveys.

(8) <u>Frequency Table</u> - The primary purpose of a frequency table is to arrange the values for a variable into specific intervals. In this report, the interval widths for most variables are 0.1, 0.2, or 0.3 cm. These increment widths allow the number of intervals to be between 25 and 50 in most cases.

Visual Index of the Measurements

A visual index consists of a series of line drawings which depict the dimensions measured in an anthropometric survey. By design, it is intended to provide the reader with a quick and uncomplicated reference to each of the measurements. The visual index is especially useful for those readers who are unfamiliar with the technical jargon of the measurement description.

The following Visual Index consists of six line drawings including one whole-body sketch for stature and five sketches of the foot and lower leg. The illustrations depict only right side measurements. Each of the measurements in the sketches is denoted by a number, which corresponds to the variable sequence on the original recording form and which is used to identify the variable throughout this report. The dimension names are presented either below or to the side of each sketch.

- 1 Stature

- 2 Calf Height
 3 Ankle Height
 4 Medial Malleolus Height
 5 Iateral Malleolus Height
 7 Plantar Arch Height
 12 Calf Circumference

- 13 Ankle Circumference
- 14 Heel-Ankle Circumference 15 Instep Circumference 32 Bimalleolar Breadth

- 6. Dorsal Arch Height
- 8. Ball of Foot Height
- 9. First Toe Height
- 10. Maximum Toe Height
- 11. Outside Ball of Foot Height
- 16. Ball of Foot Circumference
- 17. Heel Breadth, Right
- 18. Ball of Foot Breadth,
 Diagonal

- 22. Ankle Length
- 23. Instep Length
- 24. Ball of Foot Length, Right
- 25. Foot Length, Right
- 26. Ball of Foot Breadth, Horizontal, Right
- 27. Outside Ball of Foot Length
- 28. 5th Toe Length
- 33. 1st-3rd Toe Breadth

Measurements and Data Summaries

This section presents the technical information and data summaries for the 33 measurements. The statistical data for both males and females are presented together in this section rather than in separate sections for each gender. The format of presentation was designed to first introduce the reader to each particular measurement, then follow the measurement descriptions with the statistical information. The total information for each measurement thus comprises four pages.

The first page lists the measurement number and name followed by a description of the pertinent landmark(s), the instruments used in obtaining the measurement, the position of the subject, and the actual measurement procedure. This information is then followed by a photograph depicting the measurement technique.

The second and third of the four pages present the univariate frequency tables for each measurement. Included in these tables are measurement intervals in centimeters, actual frequencies for each interval, cumulative frequencies, the frequency percentages of the total, and the cumulative percentages. By design of the programs used to generate the statistical data, the intervals for any variable never exceed 50 in number. The width of the intervals for the foot and leg dimensions vary between one and five millimeters, while the interval width for male and female Stature is set at 10 millimeters. The interval width for male and female Weight is set at 15 and 10 kilograms, respectively. The intervals should be read as the first value through the second value. For example, the interval 28.15-28.44 should be read as 28.15 through 28.44, not as 28.15 to 28.44. Accordingly, the next interval should be read as 28.45 through 28.74.

The fourth page for each measurement presents the percentile values and the summary statistics for each gender. Male data are presented on the left side of the page while female data are shown on the right side. All percentiles and appropriate summary statistics are given in centimeters and inches, except for Weight, which is presented in kilograms and pounds.

1. Stature

Landmark: None

<u>Instrument</u>: Anthropometer

<u>Position of Subject</u>: Subject stands erect, heels together with weight equally distributed on both feet, head in the Frankfort plane, and the heels, buttocks, and upper back in contact with a vertical surface (the wall).

<u>Procedure</u>: With the arm of the anthropometer firmly touching the scalp, measure the vertical distance from the standing surface to the top of the head in the mid sagittal plane.

VARIABLE NO. 1--STATURE

MALE DATA

INTERVALS	FREQUENCIES				
	ACTUAL	CUM	PCT	CUM	
	FREQ.	FREQ.	FREQ.	PCTFQ.	
155.75 - 156.74	1	1	.34	.34	
156.75 - 157.74	0	1	.00	.34	
157.75 - 158.74	0	1	.00	.34	
158.75 - 159.74	1	2	.34	.68	
159.75 - 160.74	1	3	.34	1.02	
160.75 - 161.74	3	6	1.02	2.05	
161.75 - 162.74	4	10	1.37	3.41	
162.75 - 163.74	4	14	1.37	4.78	
163.75 - 164.74		16	.68	5.46	
164.75 - 165.74	2 7	23	2.39	7.85	
165.75 - 166.74	7	30	2.39	10.24	
166.75 - 167.74	13	43	4.44	14.68	
167.75 - 168.74	9	52	3.07	17.75	
168.75 - 169.74	12	64	4.10	21.84	
169.75 - 170.74	11	75	3.75	25.60	
170.75 - 171.74	9	84	3.07	28.67	
171.75 - 172.74	21	105	7.17	35.84	
172.75 - 173.74	12	117	4.10	39.93	
173.75 - 174.74	19	136	6.48	46.42	
174.75 - 175.74	17	153	5.80	52.22	
175.75 - 176.74	10	163	3.41	55.63	
176.75 - 177.74	10	173	3.41	59.04	
177.75 - 178.74	21	194	7.17	66.21	
178.75 - 179.74	15	209	5.12	71.33	
179.75 - 180.74	12	221	4.10	75.43	
180.75 - 181.74	14	235	4.78	80.20	
181.75 - 182.74	14	249	4.78		
182.75 - 183.74				84.98	
183.75 - 184.74	10	259	3.41	88.40	
	6	265	2.05	90.44	
184.75 - 185.74	4	269	1.37	91.81	
185.75 - 186.74	7	276	2.39	94.20	
186.75 - 187.74	1 - 1	277	.34	94.54	
187.75 - 188.74	3	280	1.02	95.56	
188.75 - 189.74	0	280	.00	95.56	
189.75 - 190.74	7	287	2.39	97.95	
190.75 - 191.74	1	288	.34	98.29	
191.75 - 192.74	2	290	.68	98.98	
192.75 - 193.74	2	292	.68	99.66	
193.75 - 194.74	1	293	.34	100.00	

VARIABLE NO. 1--STATURE

FEMALE DATA

INTERVALS		FREQ	UENCIES -	-
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
140.75 - 141.74	2	2	.41	.41
141.75 - 142.74	0	2	.00	.41
142.75 - 143.74	Ö	2	.00	.41
143.75 - 144.74	1	3	.20	.61
144.75 - 145.74	Ō	3	.00	.61
145.75 - 146.74	Ö	3	.00	.61
146.75 - 147.74	2	5	.41	1.02
147.75 - 148.74	2	7	.41	1.43
148.75 - 149.74	3	10	.61	2.04
149.75 - 150.74	7	17	1.43	3.46
150.75 - 151.74	14	31	2.85	6.31
151.75 - 152.74	11	42	2.24	8.55
152.75 - 153.74	14	56	2.85	11.41
153.75 - 154.74	12	68	2.44	13.85
154.75 - 155.74	14	82	2.85	16.70
155.75 - 156.74	26	108	5.30	22.00
156.75 - 157.74	31	139	6.31	28.31
157.75 - 158.74	27	166	5.50	33.81
158.75 - 159.74	23	189	4.68	38.49
159.75 - 160.74	33	222	6.72	45.21
160.75 - 161.74	24	246	4.89	50.10
161.75 - 162.74	32	278	6.52	56.62
162.75 - 163.74	23	301	4.68	61.30
163.75 - 164.74	28	329	5.70	67.01
164.75 - 165.74	24	353	4.89	71.89
165.75 - 166.74	2 5	378	5.09	76.99
166.75 - 167.74	21	399	4.28	81.26
167.75 - 168.74	19	418	3.87	85.13
168.75 - 169.74	15	433	3.05	88.19
169.75 - 170.74	12	445	2.44	90.63
170.75 - 171.74	8	453	1.63	92.26
171.75 - 172.74	11	464	2.24	94.50
172.75 - 173.74	6	470	1.22	95.72
173.75 - 174.74	7	477	1.43	97.15
174.75 - 175.74	4	481	.81	97.96
175.75 - 176.74	5	486	1.02	98.98
176.75 - 177.74	2	488	.41	99.39
177.75 - 178.74	2	490	.41	99.80
178.75 - 179.74	1	491	.20	100.00

VARIABLE NO. 1--STATURE

MALE DATA

* * * * *

FEMALE DATA

PERCENTILES	PERCENTILES					
CENTIMETERS INCHES			CENTIMETER			
CENTAILEIENS	INChes		CENTIMETER	.5	INCHES	
160 51 100					1	
	63.19		147.88	1ST		
	63.69		149.35			e:
162.70 3RD	64.06		150.28	3RD	59.17	
164.06 5TH	64.59		151.56	5TH	59.67	
	65.50		153.59			
	66.16		155.02			
	66.69		156.18			
	67.17		157.22			
	67.60		158.16			
	68.00		159.06			
	68.38		159.92			
174.63 45TH	68.75		160.77	45TH	63.30	
175.56 50TH	69.12		161.63	50TH	63.63	
176.50 55TH	69.49		162.50	55TH		
	69.86		163.38	60TH	64.32	
178.43 65TH	70.25		164.31	65TH	64.69	
179.47 70TH	70.66					
			165.29	70TH	65.07	
180.58 75TH	71.10		166.36	75TH	65.49	
181.84 80TH	71.59		167.55	80TH	65.97	
183.28 85TH	72.16		168.93	85TH	66.51	
185.11 9 0TH	72.88		170.65	90TH	67.18	
187.83 95TH	73.95		173.08	95TH	68.14	
189.62 97TH	74.65		174.55	97TH	68.72	
190.96 98 TH	75.18		175.56	98TH	69.12	
193.10 99TH	76.02		176.97		69.67	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70102		1,0.77	77111	07.07	
* * * * *				* * * *		
			*	***		
THE SUMMARY STATI				ARY STATI	STICS	
CENTIMETERS	INCHES		CENTIMETER	S	INCHES	
175.71 MEAN	69.18		161.85	MEAN	63.72	
.42 SE(M)	.16		.30	SE(M)	.12	
7.13 ST DEV				ST DEV		
.29 SE(SD)	.12			SE (SD)		
02 (02)	• 4 4		• 4.1	02 (00)	.00	
* * * *				* * * *		
COPPE OF HARY MAN						
COEFF. OF VARIATION			OEFF. OF V			
SYMMETRYVETA I			YMMETRY			
KURTOSISVETA II	24	K	URTOSIS	-VETA II	19	
* * * * *			*	* * * *		
NUMBER OF SUBJECTS	293	N	UMBER OF S	UBJECTS	491	
		••			774	

2. Calf Height

Landmark: Calf level (maximum circumference)

<u>Instrument</u>: Anthropometer

<u>Position of Subject</u>: Subject stands erect, heels together, and weight distributed equally on both feet.

<u>Procedure</u>: With an anthropometer, measure the vertical distance from the standing surface to the middle of the calf landmark.

INTERVALS -	-	FREQUENCIE	S
	ACTUAL		
	FREQ.	FREQ. FREQ	
28.15 - 28.4	4 1	1 .3	4 .34
28.45 - 28.7	4 0	1 .0	0 .34
28.75 - 29.0	4 2	3 .6	8 1.02
29.05 - 29.3	4 0	3 .0	
29.35 - 29.6	4 0	3 .0	
29.65 - 29.9		3 .0	
29.95 - 30.2		6 1.0	
30.25 - 30.5		9 1.0	
30.55 - 30.8		13 1.3	
30.85 - 31.1		24 3.7	
31.15 - 31.4		31 2.3	
31.45 - 31.7		41 3.4	
31.75 - 32.0			
32.05 - 32.3		59 4.1	
32.35 - 32.6		70 3.7	
32.65 - 32.9		89 6.4	
32.95 - 33.2		99 3.4	
33.25 - 33.5		116 5.8	
33.55 - 33.8		129 4.4	
33.85 - 34.1	4 10	139 3.4	1 47.44
34.15 - 34.4	4 24	163 8.1	9 55.63
34.45 - 34.7	4 16	179 5.4	6 61.09
34.75 - 35.0	4 16	195 5.4	
35.05 - 35.3		208 4.4	
35.35 - 35.6		219 3.7	
35.65 - 35.9		232 4.4	
35.95 - 36.2		245 4.4	
36.25 - 36.5		252 2.3	
36.55 - 36.8		262 3.4	
36.85 - 37.1		265 1.0	
37.15 - 37.4		265 .0	
37.45 - 37.7		267 .6	
37.75 - 38.0		273 2.0	
38.05 - 38.3		275 .6	
38.35 - 38.6			
		283 2.7	
38.65 - 38.9		284 .3	
38.95 - 39.2		285 .3	
39.25 - 39.5		286 .3	
39.55 - 39.8		287 .3	
39.85 - 40.1		287 .0	
40.15 - 40.4		288 .3	
40.45 - 40.7		288 .0	
40.75 - 41.0		290 .6	
41.05 - 41.3		291 .3	4 99.32
41.35 - 41.6	4 0	291 .0	0 99.32
41.65 - 41.9	1	292 .3	4 99.66
41.95 - 42.2	4 0	292 .0	0 99.66
42.25 - 42.5		293 .3	

VARIABLE NO. 2--CALF HEIGHT

FEMALE DATA

INTERVALS	ACTUAL FREQ.	FREQ CUM FREQ.	PCT FREQ.	CUM PCTFQ.
24.25 - 24.74	1	1	.20	.20
24.75 - 25.24	1	2	.20	.41
25.25 - 25.74	3	5	.61	1.02
25.75 - 26.24	0	5	.00	1.02
26.25 - 26.74	1	6	.20	1.22
26.75 - 27.24	5	11	1.02	2.24
27.25 - 27.74	4	15	.82	3.06
27.75 - 28.24	16	31	3.27	6.33
28.25 - 28.74	19	50	3.88	10.20
28.75 - 29.24	27	77	5.51	15.71
29.25 - 29.74	29	106	5.92	21.63
29.75 - 30.24	35	141	7.14	28.78
30.25 - 30.74	34	175	6.94	35.71
30.75 - 31.24	38	213	7.76	43.47
31.25 - 31.74	41	254	8.37	51.84
31.75 - 32.24	36	290	7.35	59.18
32.25 - 32.74	41	331	8.37	67.55
32.75 - 33.24	35	366	7.14	74.69
33.25 - 33.74	25	391	5.10	79.80
33.75 - 34.24	22	413	4.49	84.29
34.25 - 34.74	25	438	5.10	89.39
34.75 - 35.24	14	452	2.86	92.24
35.25 - 35.74	16	468	3.27	95.51
35.75 - 36.24	8	476	1.63	97.14
36.25 - 36.74	5	481	1.02	98.16
36.75 - 37.24	5	486	1.02	99.18
37.25 - 37.74	1	487	.20	99.39
37.75 - 38.24	1	488	.20	99.59
38.25 - 38.74	0	488	.00	99.59
38.75 - 39.24	0	488	.00	99.59
39.25 - 39.74	0	488	.00	99.59
39.75 - 40.24	0	488	.00	99.59
40.25 - 40.74	1	489	.20	99.80
40.75 - 41.24	0	489	.00	99.80
41.25 - 41.74	0	489	.00	99.80
41.75 - 42.24	1	490	.20	100.00

VARIABLE NO. 2--CALF HEIGHT

MALE DATA

FEMALE DATA

*	*	*	*	*

PERCENTILES			PERCENTILES			
CENTIMETERS	5	INCHES		CENTIMETER	RS	INCHES
29.32	1ST	11.54		26.02	1ST	10.24
29.94	2ND	11.79		26.91	2ND	10.59
30.32	3RD	11.94		27.40	3RD	10.79
30.82	5TH	12.13		28.00	5TH	11.02
31.56	10TH	12.43		28.82	10TH	11.35
32.05	15TH	12.62		29.34	15TH	11.55
32.43	20TH	12.77		29.74	20TH	11.71
32.76	25TH	12.90		30.09	25TH	11.85
33.05	30TH	13.01		30.41	30TH	11.97
33.32	35TH	13.12		30.71	35TH	12.09
33.58	40TH	13.22		31.01	40TH	12.21
33.84	45TH	13.32		31.30	45TH	12.32
34.10	50TH	13.42		31.59	50TH	12.44
34.36	55TH	13.53		31.89	55TH	12.56
34.63	60TH	13.63		32.21	60TH	12.68
34.92	65TH	13.75		32.54	65TH	12.81
35.24	70TH	13.87		32.89	70TH	12.95
35.59	75TH	14.01		33.29	75TH	13.11
36.01	80TH	14.18		33.73	80TH	13.28
36.52	85TH	14.38		34.25	85TH	13.48
37.22	90TH	14.65		34.90	90TH	13.74
38.39	95TH	15.11		35.80	95TH	14.10
39.24	97TH	15.45		36.32	97TH	14.30
39.93	98TH	15.72		36.65	98TH	14.43
41.11	99TH	16.19		37.06	99TH	14.59
41.11	991n	10.19		37.00	991n	14.33
*	* * * *			•	* * * *	
•						
TUE CIIMM	ARY STATI	CTICC		TUE CIM	ARY STATE	CTICS
CENTIMETER				CENTIMETER		INCHES
CENTIMETER	5	INCHES		CENTIMETER	(5	INCHES
34.28	MEAN	13.49		31.72	MEAN	12.49
					SE (M)	-
.14		.05			ST DEV	.04
	ST DEV				SE (SD)	
.10	SE (SD)	.04		.08	2F (2D)	.03
ale e	* * * *				* * * *	
COEEE OF "	740 T A T T O A	£ 0%		COEFF. OF	7 A D T A T T CA U	7.6%
COEFF. OF V.						
SYMMETRY				SYMMETRY		
KURTOSIS	-AFIY II	.60		KURTOSIS	VEIA II	.40
_	* * * *			_	* * * *	
ж						
MINDED OF C	110 40000	202		MILLIANDER OF	CIID IECTO	400
NUMBER OF S	UBJECTS	293		NUMBER OF	PUBLECIS	490

3. Ankle Height

Landmark: Ankle level (minimum circumference)

<u>Instrument</u>: Anthropometer

<u>Position of Subject</u>: Subject stands erect, heels together, and weight distributed equally on both feet.

<u>Procedure</u>: With an anthropometer, measure the vertical distance from the standing surface to the middle of the ankle landmark.

VARIABLE NO. 3--ANKLE HEIGHT

MALE DATA

INTERVALS		FREQ	UENCIES -	
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
	·	•		
10.15 - 10.34	2	2	.68	.68
10.35 - 10.54	1	3	.34	1.02
10.55 - 10.74	2	5	.68	1.71
10.75 - 10.94	6	11	2.05	3.75
10.95 - 11.14	4	15	1.37	5.12
11.15 - 11.34	8	23	2.73	7.85
11.35 - 11.54	10	33	3.41	11.26
11.55 - 11.74	18	51	6.14	17.41
11.75 - 11.94	14	65	4.78	22.18
11.95 - 12.14	22	87	7.51	29.69
12.15 - 12.34	19	106	6.48	36.18
12.35 - 12.54	28	134	9.56	45.73
12.55 - 12.74	23	157	7.85	53.58
12.75 - 12.94	21	178	7.17	60.75
12.95 - 13.14	22	200	7.51	68.26
13.15 - 13.34	24	224	8.19	76.45
13.35 - 13.54	11	235	3.75	80.20
13.55 - 13.74	16	251	5.46	85.67
13.75 - 13.94	9	260	3.07	88.74
13.95 - 14.14	11	271	3.75	92.49
14.15 - 14.34	7	278	2.39	94.88
14.35 - 14.54	4	282	1.37	96.25
14.55 - 14.74	6	288	2.05	98.29
14.75 - 14.94	4	292	1.37	99.66
14.95 - 15.14	0	292	.00	99.66
15.15 - 15.34	1	293	.34	100.00

VARIABLE NO. 3--ANKLE HEIGHT FEMALE DATA

INTERVALS	ACTUAL FREQ.	FREQU CUM FREQ.	PCT FREQ.	CUM PCTFQ.
7.95 - 8.14 8.15 - 8.34 8.35 - 8.54 8.55 - 8.74 8.75 - 8.94 8.95 - 9.14 9.15 - 9.34 9.35 - 9.54 9.55 - 9.74 9.75 - 9.94 9.95 - 10.14 10.15 - 10.34 10.35 - 10.54 10.55 - 10.74 10.75 - 10.94 11.15 - 11.34 11.35 - 11.54 11.55 - 11.74 11.75 - 11.94 11.95 - 12.14 12.15 - 12.34				
12.35 - 12.54 12.55 - 12.74 12.75 - 12.94 12.95 - 13.14 13.15 - 13.34 13.35 - 13.54 13.55 - 13.74	9 2 1 0 1 0	485 487 488 488 489 489	1.83 .41 .20 .00 .20	98.78 99.19 99.39 99.39 99.59 99.59 99.59
13.75 - 13.94	1	491	.20	100.00

VARIABLE NO. 3--ANKLE HEIGHT

MALE DATA

FEMALE DATA

*	*	*	*	*

PERCENTILE		p	ERCENTILES		
CENTIMETERS	INCHES				INCHES
10.51 1ST	4.14		8.66	1ST	3.41
10.77 2ND	4.24		8.93	2ND	3.52
10.93 3RD	4.30		9.10	3RD	3.58
11.14 5TH	4.39		0 33		3.67
11.46 10TH	4.51		9.67		3.81
11.68 15TH	4.60		9.91	15TH	3.90
11.85 20TH	4.67		10.09	20TH	3.97
12.01 25TH	4.73		10.24	25TH	4.03
12.15 30TH	4.78		10.38	30TH	4.09
12.28 35TH	4.84		10.50	35TH	4.14
12.41 40TH	4.89		10.62	40TH	4.18
12.54 45TH	4.94		10.74	45TH	4.23
12.66 50TH	4.99		10.85		4.27
12.79 55TH	5.04		10.96		
12.92 60TH	5.09		11.07		4.36
13.06 65TH	5.14		11.18	65TH	4.40
13.21 70TH	5.20		11.30		4.45
13.37 75TH	5.26			75TH	4.50
13.55 80TH	5.33		11.56		
13.75 85TH	5.41		11.72		
14.00 90TH	5.51		11.91	90TH	4.69
14.36 95TH	5.65		12.19	95TH	4.80
	5.74		12.36	97TH	4.86
14.71 98TH	5.79		12.48	98TH	4.91
14.89 99TH	5.86		12.66	99TH	4.98
* * * * *			*	* * * *	
THE SUMMARY STAT				MARY STATI	
CENTIMETERS	INCHES		CENTIMETER	RS	INCHES
12.70 MEAN	5.00		10.82	MEAN	4.26
.06 SE(M)	.02		.04	SE (M)	.02
.97 ST DEV			.88	ST DEV	.34
.04 SE(SD)	.02		.03	SE (SD)	.01
* * * *			*	* * * *	
COPPE OF WARTING	9 20		60PPP		
COEFF. OF VARIATION SYMMETRYVETA I			COEFF. OF		
	707 (01 (01)		SYMMETRY		
KURTOSISVETA II	30		KURTOSIS	VEIA II	.22
* * * * *			*	* * * *	
NUMBER OF SUBJECTS	293		NUMBER OF	SUBJECTS	491

4. Medial Malleolus Height

Landmark: Medial malleolus

<u>Instrument</u>: Adjustable block

Position of Subject: Subject stands erect, feet slightly apart, and weight

distributed equally on both feet.

Procedure: With an adjustable block, measure the vertical distance from the

standing surface to the middle of the medial malleolus landmark.

INTERVALS		FREO	UENCIES	
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
	TREQ.	INLQ.	rkey.	rcrrq.
5.15 - 5.24	1	1	.34	.34
5.25 - 5.34	0	1	.00	.34
5.35 - 5.44	0	1	.00	.34
5.45 - 5.54	0	1	.00	.34
5.55 - 5.64	0	1	.00	.34
5.65 - 5.74	0	1	.00	.34
5.75 - 5.84	0	1	.00	.34
5.85 - 5.94	0	1	.00	.34
5.95 - 6.04	0	1	.00	.34
6.05 - 6.14	0	1	.00	.34
6.15 - 6.24	0	ī	.00	.34
6.25 - 6.34	Ö	ī	.00	.34
6.35 - 6.44	0	1.	.00	.34
6.45 - 6.54	1	2	.34	.68
6.55 - 6.64	3	5	1.03	1.71
6.65 - 6.74	2	7	.68	2.40
6.75 - 6.84	2	9	.68	3.08
6.85 - 6.94	2	11	.68	3.77
6.95 - 7.04	2	13	.68	4.45
7.05 - 7.14	6	19	2.05	6.51
7.15 - 7.24	6	25	2.05	8.56
7.25 - 7.34	9	34	3.08	11.64
7.35 - 7.44	11	45	3.77	15.41
7.45 - 7.54	10	55	3.42	18.84
7.55 - 7.64	15	70	5.14	23.97
7.65 - 7.74	11	81	3.77	27.74
7.75 - 7.84	17	98	5.82	33.56
7.85 - 7.94	16	114	5.48	39.04
7.95 - 8.04	13	127	4.45	43.49
8.05 - 8.14	15	142	5.14	48.63
8.15 - 8.24	25	167	8.56	57.19
8.25 - 8.34	15	182	5.14	62.33
8.35 - 8.44	26	208	8.90	71.23
8.45 - 8.54	10	218	3.42	74.66
8.55 - 8.64	14	232	4.79	79.45
8.65 - 8.74	10	242	3.42	82.88
8.75 - 8.84	11	253	3.77	86.64
8.85 - 8.94	8	261	2.74	89.38
8.95 - 9.04	13	274	4.45	93.84
9.05 - 9.14	3	277	1.03	94.86
9.15 - 9.24	8	285	2.74	97.60
9.25 - 9.34	2	287	.68	98.29
9.35 - 9.44	1	288	.34	98.63
9.45 - 9.54	î	289	.34	98.97
9.55 - 9.64	i	290	.34	99.32
9.65 - 9.74	ō	290	.00	99.32
9.75 - 9.84	1	291	.34	99.66
9.85 - 9.94	1	292	.34	100.00
er en overen.				

VARIABLE NO. 4--MED MALLEOLUS HT FEMALE DATA

INTERVA	LS	FREQUENCIES			
		ACTUAL	CUM	PCT	CUM
		FREQ.	FREQ.	FREQ.	PCTFQ.
3.75 -	3.94	1	1	.20	.20
3.95 -	4.14	0	1	.00	.20
4.15 -	4.34	1	2	.20	.41
4.35 -	4.54	0	2	.00	.41
4.55 -	4.74	0	2	.00	.41
4.75 -	4.94	2	4	.41	.81
4.95 -	5.14	1	5	.20	1.02
5.15 -	5.34	1	6	.20	1.22
5.35 -	5.54	3	9	.61	1.83
5.55 -	5.74	1	10	.20	2.04
5.75 -	5.94	8	18	1.63	3.67
5.95 -	6.14	15	33	3.05	6.72
6.15 -	6.34	19	52	3.87	10.59
6.35 -	6.54	23	75	4.68	15.27
6.55 -	6.74	40	115	8.15	23.42
6.75 -	6.94	46	161	9.37	32.79
6.95 -	7.14	62	223	12.63	45.42
7.15 -	7.34	71	294	14.46	59.88
7.35 -	7.54	59	353	12.02	71.89
7.55 -	7.74	45	398	9.16	81.06
7.75 -	7.94	40	438	8.15	89.21
7.95 -	8.14	24	462	4.89	94.09
8.15 -	8.34	16	478	3.26	97.35
8.35 -	8.54	7	485	1.43	98.78
8.55 -	8.74	3	488	.61	99.39
8.75 -	8.94	2	490	.41	99.80
8.95 -	9.14	1	491	.20	100.00

VARIABLE NO. 4--MED MALLEOLUS HT

MALE DATA

FEMALE DATA

*	*	*	*	×

PERCENTILE	c	PERCENTILES	
CENTIMETERS	INCHES	CENTIMETERS	INCHES
A.m., 9 074 900 9 1017 2 10	21101120	CENTITETERS	INCHES
6.56 1ST	2.58	5.22 1ST	2.06
6.74 2ND	2.65	5.60 2ND	2.21
6.86 3RD	2.70	5.81 3RD	2.29
7.02 5TH	2.76	6.06 5TH	2.38
7.27 10TH	2.86	6.38 10TH	2.51
7.45 15TH	2.93	6.56 15TH	2.58
7.58 2 0TH	2.98	6.69 20TH	2.63
7.69 25 TH	3.03	6.80 25TH	2.68
7.80 3 0TH	3.07	6.89 30TH	2.71
7.89 3 5TH	3.11	6.98 35TH	2.75
7.98 40TH	3.14	7.05 40TH	2.78
8.06 45TH	3.17	7.13 45TH	2.81
8.14 50TH	3.21	7.20 50TH	2.84
8.22 55TH	3.24	7.28 55TH	2.87
8.30 60TH	3.27	7.35 60TH	2.90
8.39 65TH	3.30	7.43 65TH	2.93
8.47 70TH	3.34	7.52 70TH	2.96
8.56 75TH	3.37	7.61 75TH	3.00
8.67 80TH	3.41	7.71 80TH	3.04
8.78 85TH	3.46	7.83 85TH	3.08
8.92 90TH	3.51	7.99 90TH	3.15
9.13 95TH	3.60	8.22 95TH	3.24
9.26 97TH	3.65	8.36 97TH	3.29
9.36 98TH	3.69	8.46 98TH	
9.52 99 TH	3.75	8.59 99TH	3.38
* * * * *			
* * * * *		* * * *	
THE SUMMARY STAT	TETTCE	THE SUMMARY STATI	STICS
CENTIMETERS	INCHES		INCHES
	Inches	CENTITETERS	INCIILS
8.12 MEAN	3 20	7.17 MEAN	2 82
.04 SE (M)	.02	.03 SE(M)	.01
.65 ST DEV		.67 ST DEV	.26
.03 SE(SD)		.02 SE(SD)	.01
02(02)	.01	. 02 02/	.01
* * * *		* * * *	
COEFF. OF VARIATION	8.0%	COEFF. OF VARIATION	9.4%
SYMMETRYVETA I		SYMMETRYVETA I	
KURTOSISVETA II		KURTOSISVETA II	
			2170
* * * *		* * * *	
NUMBER OF SUBJECTS	292	NUMBER OF SUBJECTS	491

5. Lateral Malleolus Height

Landmark: Lateral malleolus

<u>Instrument</u>: Adjustable block

<u>Position of Subject</u>: Subject stands erect, heels together, and weight distributed equally on both feet.

<u>Procedure</u>: With an adjustable block, measure the vertical distance from the standing surface to the middle of the lateral malleolus landmark.

VARIABLE NO. 5--LAT MALLEOLUS HT MALE DATA

INTERVALS		FREQ	UENCIES -	-
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
5.25 - 5.34	1	1	.34	.34
5.35 - 5.44	1	2	.34	.68
5.45 - 5.54	2	4	.68	1.37
5.55 - 5.64	0	4	.00	1.37
5.65 - 5.74	3	7	1.02	2.39
5.75 - 5.84	1	8	.34	2.73
5.85 - 5.94	2	10	.68	3.41
5.95 - 6.04	3	13	1.02	4.44
6.05 - 6.14	4	17	1.37	5.80
6.15 - 6.24	5	22	1.71	7.51
6.25 - 6.34	7	29	2.39	9.90
6.35 - 6.44	6	35	2.05	11.95
6.45 - 6.54	11	46	3.75	15.70
6.55 - 6.64	12	58	4.10	19.80
6.65 - 6.74	12	70	4.10	23.89
6.75 - 6.84	16	86	5.46	29.35
6.85 - 6.94	11	97	3.75	33.11
6.95 - 7.04	24	121	8.19	41.30
7.05 - 7.14	11	132	3.75	45.05
7.15 - 7.24	16	148	5.46	50.51
7.25 - 7.34	10	158	3.41	53.92
7.35 - 7.44	18	176	6.14	60.07
7.45 - 7.54	12	188	4.10	64.16
7.55 - 7.64	14	202	4.78	68.94
7.65 - 7.74	15	217	5.12	74.06
7.75 - 7.84	17	234	5.80	79.86
7.85 - 7.94	10	244	3.41	83.28
7.95 - 8.04	8	252	2.73	86.01
8.05 - 8.14	7	259	2.39	88.40
8.15 - 8.24	7	266	2.39	90.78
8.25 - 8.34	8	274	2.73	93.52
8.35 - 8.44	7	281	2.39	95.90
8.45 - 8.54	2	283	.68	96.59
8.55 - 8. 6 4	4	287	1.37	97.95
8.65 - 8.74	0	287	.00	97.95
8.75 - 8.84	0	287	.00	97.95
8.85 - 8.94	2	289	.68	98.63
8.95 - 9.04	1	290	.34	98.98
9.05 - 9.14	1	291	.34	99.32
9.15 - 9.24	0	291	.00	99.32
9.25 - 9.34	2	293	.68	100.00

VARIABLE NO. 5--LAT MALLEOLUS HT FEMALE DATA

INTERVALS	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
4.65 - 4.74	1	1	.20	.20
4.75 - 4.84	. 0	i	.00	.20
4.85 - 4.94	1	2	.20	.41
4.95 - 5.04	6	8	1.22	1.63
5.05 - 5.14	3	11	.61	2.24
5.15 - 5.24	3	14	.61	2.85
5.25 - 5.34	8	22	1.63	4.48
5.35 - 5.44	5	27	1.02	5.50
5.45 - 5.54	7	34	1.43	6.92
5.55 - 5.64	13	47	2.65	9.57
5.65 - 5.74	11	58	2.24	11.81
5.75 - 5.84	18	76	3.67	15.48
5.85 - 5.94	7	83	1.43	16.90
5.95 - 6.04	20	103	4.07	20.98
6.05 - 6.14	16	119	3.26	24.24
6.15 - 6.24	21	140	4.28	28.51
6.25 - 6.34	31	171	6.31	34.83
6.35 - 6.44	3 0	201	6.11	40.94
6.45 - 6.54	24	225	4.89	45.82
6.55 - 6.64	33	258	6.72	52.55
6.65 - 6.74	31	289	6.31	58.86
6.75 - 6.84	26	315	5.30	64.15
6.85 - 6.94	34	349	6.92	71.08
6.95 - 7.04	32	3 81	6.52	77.60
7.05 - 7.14	23	404	4.68	82.28
7.15 - 7.24	15	419	3.05	85.34
7.25 - 7.34	13	432	2.65	87.98
7.35 - 7.44	11	443	2.24	90.22
7.45 - 7.54	14	457	2.85	93.08
7.55 - 7.64	5	462	1.02	94.09
7.65 - 7.74	4	466	.81	94.91
7.75 - 7.84	9	475	1.83	96.74
7.85 - 7.94	4	479	.81	97.56
7.95 - 8.04	3	482	.61	98.17
8.05 - 8.14	2	484	.41	98.57
8.15 - 8.24	1	485	.20	98.78
8.25 - 8.34	0	485	.00	98.78
8.35 - 8.44	1	486	.20	98.98
8.45 - 8.54	2	488	.41	99.39
8.55 - 8.64	1	489	.20	99.59
8.65 - 8.74	2	491	.41	100.00

VARIABLE NO. 5--LAT MALLEOLUS HT

MALE DATA

FEMALE DATA

-la	-da	al.	mile.	-
*	*	*	*	*

	PERCENTILE		PERCENTILES	
	ENTIMETERS	INCHES	CENTIMETERS INCHES	
	5.51 1ST	2.17	4.99 1ST 1.97	
	5.73 2ND	2.26	5.13 2ND 2.02	
		2.31	5.24 3RD 2.06	
		2.39	5.40 5TH 2.13	
		2.49	5.68 10TH 2.23	
		2.57	5.87 15TH 2.31	
		2.62	6.02 20TH 2.37	
		2.67	6.14 25TH 2.42	
		2.71	6.25 30TH 2.46	
		2.75	6.35 35TH 2.50	
		2.79	6.44 40TH 2.54	
	7.17 45TH		6.53 45TH 2.57	
	7.17 451H 7.26 50TH		6.61 50TH 2.60	
	7.35 55TH		6.69 55TH 2.64	
	7.44 60TH			
			6.77 60TH 2.67	
	7.53 65TH		6.85 65TH 2.70	
	7.63 70TH		6.94 70TH 2.73	
	7.74 75TH		7.03 75TH 2.77	
	7.86 80TH		7.13 80TH 2.81	
	8.00 85TH		7.25 85TH 2.85	
	8.19 90TH		7.41 90TH 2.92	
	8.47 95TH		7.69 95TH 3.03	
	8.66 97TH		7.90 97TH 3.11	
	8.80 98TH		8.08 98TH 3.18	
	9.04 99TH	3.56	8.43 99TH 3.32	
	* * * * *		* * * *	
	THE SUMMARY STAT		THE SUMMARY STATISTICS	
	ENTIMETERS	INCHES	CENTIMETERS INCHES	
	7.26 MEAN	2.86	6.59 MEAN 2.59	
	.04 SE(M)	.02	.03 SE(M) .01	
			.69 ST DEV .27	
	.72 ST DEV .03 SE(SD)	.01	.02 SE(SD) .01	
	* * * * *		* * * *	
	***		****	
C	EFF. OF VARIATION	10.0%	COEFF. OF VARIATION 10.4%	
S	MMETRYVETA I	.03	SYMMETRYVETA I .04	
K	RTOSISVETA II		KURTOSISVETA II .20	
	* * * * *		* * * *	
N	MBER OF SUBJECTS	293	NUMBER OF SUBJECTS 491	
N		293		

6. Dorsal Arch Height

Landmark: Dorsal junction of the foot and leg

<u>Instrument</u>: Adjustable block

Position of Subject: Subject stands erect, feet slightly apart, and weight

distributed equally on both feet.

Procedure: With an adjustable block positioned on the medial side of the foot, measure the vertical distance from the standing surface to the highest point on the dorsal surface of the foot at the level of the foot-leg landmark.

VARIABLE NO. 6--DORSAL ARCH HEIGHT MALE DATA

INTERVALS	ACTUAL FREQ.	FREC CUM FREQ.	PCT FREQ.	CUM PCTFQ.
6.85 - 6.94	1	1	.34	.34
6.95 - 7.04	0	ī	.00	.34
7.05 - 7.14	0	1	.00	.34
7.15 - 7.24	0	1	.00	.34
7.25 - 7.34	0	ī	.00	.34
7.35 - 7.44	0	1	.00	.34
7.45 - 7.54	Ö	ī	.00	.34
7.55 - 7.64	4	5	1.37	1.71
7.65 - 7.74	5	10	1.71	3.41
7.75 - 7.84	9	19	3.07	6.48
7.85 - 7.94	4	23	1.37	7.85
7.95 - 8.04	12	35	4.10	11.95
8.05 - 8.14	4	39	1.37	13.31
8.15 - 8.24	9	48	3.07	16.38
8.25 - 8.34	14	62	4.78	21.16
8.35 - 8.44	16	78	5.46	26.62
8.45 - 8.54	21	99	7.17	33.79
8.55 - 8.64	15	114	5.12	38.91
8.65 - 8.74	13	127	4.44	43.34
8.75 - 8.84	16	143	5.46	48.81
8.85 - 8.94	21	164	7.17	55.97
8.95 - • 9.04	9	173	3.07	59.04
9.05 - 9.14	14	187	4.78	63.82
9.15 - 9.24	22	209	7.51	71.33
9.25 - 9.34	14	223	4.78	76.11
9.35 - 9.44	15	238	5.12	81.23
9.45 - 9.54	10	248	3.41	84.64
9.55 - 9.64	11	259	3.75	88.40
9.65 - 9.74	5	264	1.71	90.10
9.75 - 9.84	10	274	3.41	93.52
9.85 - 9.94	7	281	2.39	95.90
9.95 - 10.04	1	282	.34	96.25
10.05 - 10.14	2	284	.68	96.93
10.15 - 10.24	2	286	.68	97.61
10.25 - 10.34	2	288	.68	98.29
10.35 - 10.44	2	290	.68	98.98
10.45 - 10.54	2	292	.68	99.66
10.55 - 10.64	1	293	.34	100.00

VARIABLE NO. 6--DORSAL ARCH HEIGHT FEMALE DATA

INTERVA	INTERVALS		FREQUE	UENCIES	CUM
		ACTUAL FREQ.	FREQ.	FREQ.	PCTFQ.
6.25 -	6.34	1	1	.20	.20
6.35 -	6.44	1	2	.20	.41
6.45 -	6.54	1	3	.20	.61
6.55 -	6.64	2	5	.41	1.02
6.65 -	6.74	2	7	.41	1.43
6.75 -	6.84	5	12	1.02	2.44
6.85 -	6.94	3	15	.61	3.05
6.95 -	7.04	7	22	1.43	4.48
7.05 -	7.14	9	31	1.83	6.31
7.15 -	7.24	16	47	3.26	9.57
7.25 -	7.34	16	63	3.26	12.83
7.35 -	7.44	2 0	83	4.07	16.90
7.45 -	7.54	19	102	3.87	20.77
7.55 -	7.64	24	126	4.89	25.66
7.65 -	7.74	25	151	5.09	30.75
7.75 -	7.84	33	184	6.72	37.47
7.85 -	7.94	26	210	5.30	42.77
7.95 -	8.04	32	242	6.52	49.29
8.05 -	8.14	38	280	7.74	57.03
8.15 -	8.24	27	3 07	5.50	62.53
8.25 -	8.34	30	337	6.11	68.64
8.35 -	8.44	28	365	5.70	74.34
8.45 -	8.54	27	392	5.50	79.84
8.55 -	8.64	22	414	4.48	84.32
8.65 -	8.74	19	433	3.87	88.19
8.75 -	8.84	16	449	3.26	91.45
8.85 -	8.94	12	461	2.44	93.89
8.95 -	9.04	10	471	2.04	95.93
9.05 -	9.14	1	472	.20	96.13
9.15 -	9.24	5	477	1.02	97.15
9.25 -	9.34	5	482	1.02	98.17
9.35 -	9.44	1	483	.20	98.37
9.45 -	9.54	1	484	.20	98.57
9.55 -	9.64	3	487	.61	99.19
9.65 -	9.74	2	489	.41	99.59
9.75 -	9.84	2	491	.41	100.00

VARIABLE NO. 6--DORSAL ARCH HEIGHT

MALE DATA

FEMALE DATA

*	*	*	*	yk.
00	00	9.0	20	00

PERCENTILES	,	PERCENTILES
CENTIMETERS	INCHES	CENTIMETERS INCHES
7.60 1ST 7.66 2ND 7.72 3RD 7.82 5TH 8.02 10TH 8.17 15TH 8.30 20TH 8.41 25TH 8.51 30TH 8.61 35TH 8.70 40TH 8.78 45TH 8.87 50TH 8.87 50TH 8.96 55TH 9.04 60TH 9.13 65TH 9.13 65TH 9.23 70TH 9.33 75TH 9.44 80TH 9.57 85TH 9.73 90TH	2.99 3.02 3.04 3.08 3.16 3.22 3.27 3.31 3.35 3.39 3.42 3.46 3.49 3.53 3.56 3.60 3.63 3.67 3.72 3.77 3.83 3.93	6.67 1ST 2.63 6.81 2ND 2.68 6.91 3RD 2.72 7.05 5TH 2.77 7.27 10TH 2.86 7.42 15TH 2.92 7.54 20TH 2.97 7.65 25TH 3.01 7.74 30TH 3.05 7.83 35TH 3.08 7.90 40TH 3.11 7.98 45TH 3.14 8.05 50TH 3.17 8.13 55TH 3.20 8.20 60TH 3.23 8.28 65TH 3.26 8.36 70TH 3.29 8.45 75TH 3.29 8.45 75TH 3.32 8.54 80TH 3.36 8.66 85TH 3.41 8.81 90TH 3.47 9.05 95TH 3.56
10.14 97TH 10.26 98TH	3.99 4.04 4.12	9.22 97TH 3.63 9.36 98TH 3.68 9.60 99TH 3.78
THE SUMMARY STATI		THE SUMMARY STATISTICS CENTIMETERS INCHES
8.88 MEAN .04 SE(M) .65 ST DEV .03 SE(SD)	3.49 .01 .26 .01	8.05 MEAN 3.17 .03 SE(M) .01 .61 ST DEV .24 .02 SE(SD) .01
COEFF. OF VARIATION SYMMETRYVETA I KURTOSISVETA II * * * * *		COEFF. OF VARIATION 7.5% SYMMETRYVETA I .06 KURTOSISVETA II .01
NUMBER OF SUBJECTS	293	NUMBER OF SUBJECTS 491

7. Plantar Arch Height

Landmark: Maximum plantar arch height

<u>Instrument</u>: Adjustable block

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With an adjustable block positioned on the medial side of the foot, measure the vertical distance from the standing surface to the middle of the maximum plantar arch height landmark.

VARIABLE NO. 7--PLANTAR ARCH HT MALE DATA

INTERVALS		FREQ	UENCIES -	
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
1.35 - 1.44	1	1	.34	.34
1.45 - 1.54	0	1	.00	.34
1.55 - 1.64	0	1	.00	.34
1.65 - 1.74	1	2	.34	.68
1.75 - 1.84	2	4	.68	1.37
1.85 - 1.94	2	6	.68	2.05
1.95 - 2.04	3	9	1.02	3.07
2.05 - 2.14	8	17	2.73	5.80
2.15 - 2.24	9	26	3.07	8.87
2.25 - 2.34	12	38	4.10	12.97
2.35 - 2.44	19	57	6.48	19.45
2.45 - 2.54	18	75	6.14	25.60
2.55 - 2.64	13	88	4.44	30.03
2.65 - 2.74	14	102	4.78	34.81
2.75 - 2.84	11	113	3.75	38.57
2.85 - 2.94	19	132	6.48	45.05
2.95 - 3.04	16	148	5.46	50.51
3.05 - 3.14	22	170	7.51	58.02
3.15 - 3.24	12	182	4.10	62.12
3.25 - 3.34	22	204	7.51	69.62
3.35 - 3.44	17	221	5.80	75.43
3.45 - 3.54	14	235	4.78	80.20
3.55 - 3.64	13	248	4.44	84.64
3.65 - 3.74	12	260	4.10	88.74
3.75 - 3.84	6	266	2.05	90.78
3.85 - 3.94	6	272	2.05	92.83
3.95 - 4.04	5	277	1.71	94.54
4.05 - 4.14	3	280	1.02	95.56
4.15 - 4.24	4	284	1.37	96.93
4.25 - 4.34	3	287	1.02	97.95
4.35 - 4.44	2	289	.68	98.63
4.45 - 4.54	3	292	1.02	99.66
4.55 - 4.64	0	292	.00	99.66
4.65 - 4.74	1	293	.34	100.00

VARIABLE NO. 7--PLANTAR ARCH HT FEMALE DATA

INTERVA	LLS			UENCIES -	-
		ACTUAL	CUM	PCT	CUM
		FREQ.	FREQ.	FREQ.	PCTFQ.
1.15 -	1.24	1	1	.20	.20
1.25 -	1.34	3	4	.61	.81
1.35 -	1.44	0	4	.00	.81
1.45 -	1.54	3	7	.61	1.43
1.55 -	1.64	3	10	.61	2.04
1.65 -	1.74	5	15	1.02	3.05
1.75 -	1.84	3	18	.61	3.67
1.85 -	1.94	7	25	1.43	5.09
1.95 -	2.04	14	39	2.85	7.94
2.05 -	2.14	11	50	2.24	10.18
2.15 -	2.24	12	62	2.44	12.63
2.25 -	2.34	25	87	5.09	17.72
2.35 -	2.44	20	107	4.07	21.79
2.45 -	2.54	33	140	6.72	28.51
2.55 -	2.64	24	164	4.89	33.40
2.65 -	2.74	34	198	6.92	40.33
2.75 -	2.84	39	237	7.94	48.27
2.85 -	2.94	33	270	6.72	54.99
2.95 -	3.04	35	305	7.13	62.12
3.05 -	3.14	27	332	5.50	67.62
3.15 -	3.24	33	365	6.72	74.34
3.25 -	3.34	26	391	5.30	79.63
3.35 -	3.44	21	412	4.28	83.91
3.45 -	3.54	22	434	4.48	88.39
3.55 -	3.64	13	447	2.65	91.04
3.65 -	3.74	9	456	1.83	92.87
3.75 -	3.84	8	464	1.63	94.50
3.85 -	3.94	8	472	1.63	96.13
3.95 -	4.04	9	481	1.83	97.96
4.05 -	4.14	1	482	.20	98.17
4.15 -	4.24	2	484	.41	98.57
4.25 -	4.34	1	485	.20	98.78
4.35 -	4.44	1	486	.20	98.98
4.45 -	4.54	2	488	.41	99.39
4.55 -	4.64	1	489	.20	99.59
4.65 -	4.74	0	489	.00	99.59
4.75 -	4.84	0	489	.00	99.59
4.85 -	4.94	0	489	.00	99.59
4.95 -	5.04	1	490	.20	99.80
5.05 -	5.14	1	491	.20	100.00

VARIABLE NO. 7--PLANTAR ARCH HT

MALE DATA

FEMALE DATA

* * * * *

-8-	- Por	ofe	ed.	and an
*	2fc	280	水	*

PERCENTILES		10 1	ERCENTILE:		
CENTIMETERS		TAICTITC			-
CENTIMETERS		INCHES	CENTIMETER	RS	INCHES
1.83	1ST	.72	1.48	1ST	.58
1.93	2ND	.76	1.65	2ND	.65
2.00	3RD	.79	1.76	3RD	.69
2.10	5TH	.83	1.91	5TH	.75
	10TH	.89	2.14	10TH	.84
	15TH	.94	2.29	15TH	.90
2.50	2 0TH	.98	2.41	20TH	.95
2.60	25TH	1.02	2.51	25TH	.99
	30TH	1.06	2.59	30TH	1.02
	35TH	1.09	2.67	35TH	1.05
	40TH	1.12	2.75	40TH	1.08
	45TH	1.15	2.82	45TH	1.11
3.01	50TH	1.18	2.89	50TH	1.14
3.09	55TH	1.22	2.96	55TH	1.16
3.17	60TH	1.25	3.03	60TH	1.19
	65TH	1.28			
			3.10	65TH	1.22
ine. its resolution	70TH	1.32	3.17	70TH	1.25
	75TH	1.36	3.26	75TH	1.28
3.56	80TH	1.40	3.35	80TH	1.32
3.69	85TH	1.45	3.46		1.36
	90TH	1.52	3.61		1.42
	95TH	1.61			
			3.84		1.51
	97TH	1.67		97TH	
	98TH	1.71		98TH	
4.50	99TH	1.77	4.40	99TH	1.73
र्श र्श	* * *		*	* * * *	
THE SUMMAR				LARY STAT	
CENTIMETERS		INCHES	CENTIMETER	RS	INCHES
3.03	MEAN	1.19	2.89	MEAN	1.14
	E (M)	.01		SE (M)	.01
.60 S					
		.24		ST DEV	
.02 S	E(SD)	.01	.02	SE (SD)	.01
* *	* * *		*	* * * *	
COEFF. OF VAR	TATION	19.9%	COEFF. OF V	740TATENT	20.5%
SYMMETRYV		F	SYMMETRY		
KURTOSISV	ETA II	36	KURTOSIS	VETA II	.51
और और	* * *		*	* * * *	
NUMBER OF SUB	TECTE	293	NUMBER OF S	CIID TECTS	491
MUNDER OF SUB	JEC 13	273	MUNDER UP S	DUDIECIS	471

8. BOF Height

Landmark: 1st metatarsal-phalangeal protrusion, dorsal aspect

<u>Instrument</u>: Adjustable block

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With an adjustable block positioned on the medial side of the foot, measure the vertical distance from the standing surface to the dorsal surface of the foot at the dorsal landmark of the 1st metatarsal-phalangeal joint.

VARIABLE NO. 8-BALL OF FOOT HT MALE DATA

INTERVALS		FREQ	UENCIES	
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
2.95 - 3.04	1	1	.34	.34
3.05 - 3.14	0	1	.00	.34
3.15 - 3.24	3	4	1.02	1.37
3.25 - 3.34	1	5	.34	1.71
3.35 - 3.44	13	18	4.44	6.14
3.45 - 3.54	12	30	4.10	10.24
3.55 - 3.64	20	50	6.83	17.06
3.65 - 3.74	29	79	9.90	26.96
3.75 - 3.84	38	117	12.97	39.93
3.85 - 3.94	47	164	16.04	55.97
3.95 - 4.04	40	204	13.65	69.62
4.05 - 4.14	30	234	10.24	79.86
4.15 - 4.24	27	261	9.22	89.08
4.25 - 4.34	15	276	5.12	94.20
4.35 - 4.44	7	283	2.39	96.59
4.45 - 4.54	7	290	2.39	98.98
4.55 - 4.64	2	292	.68	99.66
4.65 - 4.74	0	292	.00	99.66
4.75 - 4.84	1	293	.34	100.00

VARIABLE NO. 8--BALL OF FOOT HT FEMALE DATA

INTERV	ALS	ACTUAL FREQ.	FREQ CUM FREQ.	PCT FREQ.	CUM PCTFQ.
2.75 -	2.84	1	1	.20	.20
2.85 -	2.94	1	2	.20	.41
2.95 -	3.04	3	5	.61	1.02
3.05 -	3.14	7	12	1.43	2.44
3.15 -	3.24	26	38	5.30	7.74
3.25 -	3.34	43	81	8.76	16.50
3.35 -	3.44	63	144	12.83	29.33
3.45 -	3.54	72	216	14.66	43.99
3.55 -	3.64	85	301	17.31	61.30
3.65 -	3.74	60	361	12.22	73.52
3.75 -	3.84	66	427	13.44	86.97
3.85 -	3.94	36	463	7.33	94.30
3.95 -	4.04	17	480	3.46	97.76
4.05 -	4.14	9	489	1.83	99.59
4.15 -	4.24	1	490	.20	99.80
4.25 -	4.34	1	491	.20	100.00

VARIABLE NO. 8--BALL OF FOOT HT

	-	arms .	-
M A	1 5	DA	TA

FEMALE DATA

*	a/c	×	3/4	*
---	-----	---	-----	---

PERCENTILES CENTIMETERS	INCHES		PEI CENTIMETERS	RCENTILE:	S INCHES
3.23 1ST 3.32 2ND 3.38 3RD 3.45 5TH 3.56 10TH 3.62 15TH 3.68 20TH 3.72 25TH 3.77 30TH 3.80 35TH 3.84 40TH 3.88 45TH 3.91 50TH 3.95 55TH 3.98 60TH 4.02 65TH 4.06 70TH 4.10 75TH 4.15 80TH 4.15 80TH 4.21 85TH 4.28 90TH 4.28 90TH 4.38 95TH 4.45 97TH 4.50 98TH 4.50 98TH 4.57 99TH	1.27 1.31 1.33 1.36 1.40 1.43 1.45 1.47 1.48 1.50 1.51 1.53 1.54 1.55 1.57 1.58 1.60 1.62 1.63 1.66 1.69 1.73 1.75 1.77		3.06 3.11 3.15 3.20 3.28 3.34 3.38 3.42 3.46 3.49 3.52 3.55 3.55 3.62 3.65 3.68 3.71 3.75 3.79 3.84 3.90 3.98 4.03 4.06 4.11	1ST 2ND 3RD 5TH 10TH 15TH 20TH 25TH 35TH 40TH 45TH 55TH 60TH 55TH 60TH 75TH 85TH 90TH 95TH 97TH	1.20 1.23 1.24 1.26 1.29 1.31 1.33 1.35 1.36 1.37 1.39 1.40 1.41 1.42 1.44 1.45 1.46 1.48 1.49 1.51 1.53 1.57 1.59 1.60 1.62
* * * * *		,		* * * *	
THE SUMMARY STATE	STICS INCHES		THE SUMMA		ISTICS INCHES
3.91 MEAN .02 SE(M) .28 ST DEV .01 SE(SD)			.24	SE (M) ST DEV SE (SD)	
* * * * * COEFF. OF VARIATION	7.3%		COEFF. OF V	* * * *	6.6%
SYMMETRYVETA I KURTOSISVETA II			SYMMETRY KURTOSIS	-VETA I	03
* * * * *			*	* * * *	
NUMBER OF SUBJECTS	293		NUMBER OF S	UBJECTS	491

9. First Toe Height

Landmark: None

<u>Instrument</u>: Adjustable block

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With an adjustable block positioned anterior to the 1st (great) toe, measure the vertical distance from the standing surface to the highest point on the dorsal surface of the distal phalanx of the 1st toe.

VARIABLE NO. 9--1ST TOE HEIGHT MALE DATA

INTERVALS	ACTUAL FREQ.	FREQ CUM FREQ.	PCT FREQ.	CUM PCTFQ.
1.75 - 1.84	12	12	4.10	4.10
1.85 - 1.94	20	32	6.83	10.92
1.95 - 2.04	43	75	14.68	25.60
2.05 - 2.14	53	128	18.09	43.69
2.15 - 2.24	44	172	15.02	58.70
2.25 - 2.34	54	226	18.43	77.13
2.35 - 2.44	29	255	9.90	87.03
2.45 - 2.54	23	278	7.85	94.88
2.55 - 2.64	8	286	2.73	97.61
2.65 - 2.74	6	292	2.05	99.66
2.75 - 2.84	1	293	.34	100.00

VARIABLE NO. 9--1ST TOE HEIGHT FEMALE DATA

INTERVALS			FREQ	UENCIES	
		ACTUAL	CUM	PCT	CUM
		FREQ.	FREQ.	FREQ.	PCTFQ.
1.35 -	1.44	1	1	.20	.20
1.45 -	1.54	4	5	.81	1.02
1.55 -	1.64	16	21	3.26	4.28
1.65 -	1.74	58	79	11.81	16.09
1.75 -	1.84	97	176	19.76	35.85
1.85 -	1.94	95	271	19.35	55.19
1.95 -	2.04	88	359	17.92	73.12
2.05 -	2.14	56	415	11.41	84.52
2.15 -	2.24	47	462	9.57	94.09
2.25 -	2.34	15	477	3.05	97.15
2.35 -	2.44	6	483	1.22	98.37
2.45 -	2.54	5	488	1.02	99.39
2.55 -	2.64	1	489	.20	99.59
2.65 -	2.74	1	490	.20	99.80
2.75 -	2.84	. 0	490	.00	99.80
2.85 -	2.94	1	491	.20	100.00

VARIABLE NO. 9--1ST TOE HEIGHT

MALE DATA

FEMALE DATA

* * * * *

		en gen	
PERCENTILES		PERCE	NTILES
CENTIMETERS		CENTIMETERS	
1.77 1ST	.70		1ST .61
1.80 2ND	.71		2ND .62
1.83 3RD	.72		3RD .63
1.86 5TH	.73		5TH .65
1.93 10TH	.76		OTH .67
1.97 15TH	.78		5TH .68
2.01 20TH	.79		OTH .70
2.05 25TH	.81		5TH .71
2.08 30TH	.82		OTH .72
2.11 35TH	.83		5TH .73
2.14 40TH	.84		OTH .74
2.16 45TH	.85		5TH .75
2.19 50TH	.86		OTH .76
2.22 55TH	.87		5TH .77
2.25 60TH	.89		OTH .78
2.28 65TH	.90		5TH .79
2.31 70TH	.91		.80 ATO
2.34 75TH	.92		5TH .81
2.38 80TH	.94		.83 OTH
2.43 85TH	.96		5TH .84
2.48 90TH 2.57 95TH	.98		OTH .87
	1.01		5TH .90
2.62 97TH			7TH .93
2.66 98TH 2.72 99TH	1.03	2.41 9 2.50 9	
2.72 991H	1.07	2.30	9TH .99
* * * * *		* * *	* *
THE SUMMARY STATI	CTICC	THE SUMMARY	STATISTICS
CENTIMETERS		CENTIMETERS	
CENTITETERS	INCILS	CENTIFIETERS	INCILLO
2.20 MEAN	. 87	1.94 M	EAN .76
.01 SE(M)	.00		(M) .00
.21 ST DEV			DEV .08
.01 SE(SD)	.00	.01 SE	
		* * *	
* * * * *		* * *	* *
COEFF. OF VARIATION	9.5%	COEFF. OF VARI	ATION 10.4%
SYMMETRYVETA I		SYMMETRYVE	
KURTOSISVETA II		KURTOSISVE	
* * * * *		* * *	* *
NUMBER OF SUBJECTS	293	NUMBER OF SUBJ	ECTS 491

10. Maximum Toe Height

Landmark: Maximum toe height location

Instrument: Adjustable block

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With an adjustable block positioned anterior to the toe having the highest dorsal surface, measure the vertical distance from the standing surface to the maximum toe height landmark. Record the toe measured. (The great toe is excluded from consideration for this measurement).

VARIABLE NO. 10--MAXIMUM TOE HEIGHT MALE DATA

INTERVALS		FREQ	UENCIES	
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
1.75 - 1.84	1	1	.34	.34
1.85 - 1.94	0	1	.00	.34
1.95 - 2.04	2	3	.68	1.02
2.05 - 2.14	7	10	2.39	3.41
2.15 - 2.24	25	35	8.53	11.95
2.25 - 2.34	29	64	9.90	21.84
2.35 - 2.44	47	111	16.04	37.88
2.45 - 2.54	54	165	18.43	56.31
2.55 - 2.64	39	204	13.31	69.62
2.65 - 2.74	25	229	8.53	78.16
2.75 - 2.84	27	256	9.22	87-37
2.85 - 2.94	16	272	5.46	92.83
2.95 - 3.04	10	282	3.41	96.25
3.05 - 3.14	3	285	1.02	97.27
3.15 - 3.24	5	290	1.71	98.98
3.25 - 3.34	2	292	.68	99.66
3.35 - 3.44	1	293	.34	100.00

VARIABLE NO. 10--MAXIMUM TOE HEIGHT FEMALE DATA

INTERVA	LS		FRE	QUENCIES .	-
		ACTUAL	CUM	PCT	CUM
		FREQ.	FREQ.	FREQ.	PCTFQ.
1.65 -	1.74	1	1	.20	.20
1.75 -	1.84	5	6	1.02	1.22
1.85 -	1.94	24	30	4.90	6.12
1.95 -	2.04	33	63	6.73	12.86
2.05 -	2.14	51	114	10.41	23.27
2.15 -	2.24	86	200	17.55	40.82
2.25 -	2.34	96	296	19.59	60.41
2.35 -	2.44	86	382	17.55	77.96
2.45 -	2.54	41	423	8.37	86.33
2.55 -	2.64	32	455	6.53	92.86
2.65 -	2.74	19	474	3.88	96.73
2.75 -	2.84	11	485	2.24	98.98
2.85 -	2.94	4	489	.82	99.80
2.95 -	3.04	0	489	.00	99.80
3.05 -	3.14	1	490	.20	100.00

VARIABLE NO. 10--MAXIMUM TOE HEIGHT

B 1	des	TO A	STP A
MA		DA	I A

FEMALE DATA

-0.	-4-			-4
34	×	*	37	K

PERCENTILES CENTIMETERS		PERCENTILES CENTIMETERS INCHES
2.04 1ST 2.10 2ND 2.13 3RD 2.17 5TH 2.24 10TH 2.29 15TH 2.33 20TH 2.36 25TH 2.39 30TH 2.42 35TH 2.42 35TH 2.46 40TH 2.49 45TH	.80 .83 .84 .86 .88 .90 .92 .93 .94 .95	1.82 1ST .71 1.87 2ND .73 1.90 3RD .75 1.94 5TH .77 2.02 10TH .79 2.07 15TH .81 2.11 20TH .83 2.15 25TH .84 2.18 30TH .86 2.21 35TH .87 2.24 40TH .88 2.27 45TH .89
2.52 50TH	.99 1.00 1.02 1.03 1.05 1.07 1.09 1.11 1.14 1.19 1.23 1.25	2.29 50TH .90 2.32 55TH .91 2.35 60TH .93 2.38 65TH .94 2.42 70TH .95 2.45 75TH .96 2.49 80TH .98 2.54 85TH 1.00 2.60 90TH 1.02 2.69 95TH 1.06 2.75 97TH 1.08 2.80 98TH 1.10 2.87 99TH 1.13
* * * * * THE SUMMARY STATIS CENTIMETERS	STICS INCHES	* * * * * THE SUMMARY STATISTICS CENTIMETERS INCHES
	1.00	2.30 MEAN .91 .01 SE(M) .00 .22 ST DEV .09 .01 SE(SD) .00
COEFF. OF VARIATION SYMMETRYVETA I KURTOSISVETA II	. 49	COEFF. OF VARIATION 9.7% SYMMETRYVETA I .23 KURTOSISVETA II .11
NUMBER OF SUBJECTS	293	NUMBER OF SUBJECTS 490

11. Outside BOF Height

Landmark: 5th metatarsal-phalangeal protrusion, dorsal aspect

<u>Instrument</u>: Adjustable block

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With an adjustable block positioned on the lateral side of the foot, measure the vertical distance from the standing surface to the dorsal surface of the foot at the dorsal landmark of the 5th metatarsal-phalangeal joint.

VARIABLE NO. 11--OUTSIDE BOF HEIGHT MALE DATA

INTERVALS		FREQ	UENCIES	
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
2.25 - 2.34	2	2	.68	.68
2.35 - 2.44	2	4	.68	1.37
2.45 - 2.54	15	19	5.12	6.48
2.55 - 2.64	25	44	8.53	15.02
2.65 - 2.74	29	73	9.90	24.91
2.75 - 2.84	49	122	16.72	41.64
2.85 - 2.94	45	167	15.36	57.00
2.95 - 3.04	44	211	15.02	72.01
3.05 - 3.14	24	235	8.19	80.20
3.15 - 3.24	24	259	8.19	88.40
3.25 - 3.34	8	267	2.73	91.13
3.35 - 3.44	14	281	4.78	95.90
3.45 - 3.54	4	285	1.37	97.27
3.55 - 3.64	2	287	.68	97.95
3.65 - 3.74	3	290	1.02	98.98
3.75 - 3.84	1	291	.34	99.32
3.85 - 3.94	1	292	.34	99.66
3.95 - 4.04	0	292	.00	99.66
4.05 - 4.14	1	293	.34	100.00
7.00	ds	an / 4		

VARIABLE NO. 11--OUTSIDE BOF HEIGHT FEMALE DATA

INTERVALS				FRE	QUENCIES	
			ACTUAL	CUM	PCT	CUM
		*	FREQ.	FREQ.	FREQ.	PCTFQ.
	2.05 -	2.14	2	2	.41	.41
	2.15 -	2.24	7	9	1.43	1.83
	2.25 -	2.34	20	29	4.07	5.91
	2.35 -	2.44	41	70	8.35	14.26
	2.45 -	2.54	64	134	13.03	27.29
	2.55 -	2.64	85	219	17.31	44.60
	2.65 -	2.74	70	289	14.26	58.86
	2.75 -	2.84	71	360	14.46	73.32
	2.85 -	2.94	63	423	12.83	86.15
	2.95 -	3.04	37	460	7.54	93.69
	3.05 -	3.14	20	480	4.07	97.76
	3.15 -	3.24	8	488	1.63	99.39
	3.25 -	3.34	0	488	.00	99.39
	3.35 -	3.44	3	491	.61	100.00

VARIABLE NO. 11--OUTSIDE BOF HEIGHT

MALE DATA

FEMALE DATA

ada .	alla.	-la	-B-	-
*	*	*	*	*

PERCENT	TILES	PERCENTILES	3
CENTIMETERS		CENTIMETERS	
	201 00000	Cart Lill Latte	21.0220
2.40 19	ST .95	2.20 1ST	.87
2.45 21		2.25 2ND	.88
2.48 3		2.28 3RD	.90
2.53 51		2.33 5TH	.92
2.60 101		2.40 10TH	.94
2.66 157		2.45 15TH	.97
2.70 201			
		2.49 20TH	.98
2.74 251		2.53 25TH	
2.77 301		2.57 30TH	
2.81 351		2.60 35TH	
2.84 401		2.63 40TH	
2.87 451		2.66 45TH	
2.90 501		2.69 50TH	
2.94 551		2.72 55TH	
2.97 607		2.75 60TH	1.08
3.01 657	TH 1.18	2.79 65TH	1.10
3.05 707	TH 1.20	2.82 70TH	1.11
3.09 751	TH 1.22	2.86 75TH	1.12
3.15 807	TH 1.24	2.90 80TH	1.14
3.21 857	TH 1.26	2.94 85TH	1.16
3.30 901	TH 1.30	3.00 90TH	1.18
3.44 957		-3.09 95TH	1.21
3.54 977		3.14 97TH	1.23
3.63 981		3.17 98TH	1.25
3.77 991		3.22 99TH	1.27
		2000 7711	2007
* * * *	k *	* * * * *	
THE SUMMARY S	STATISTICS	THE SUMMARY STATE	ISTICS
CENTIMETERS		CENTIMETERS	
	an o v w sales ley		21101120
2.93 MEA	AN 1.15	2.70 MEAN	1.06
.02 SE()		.01 SE(M)	.00
		.23 ST DEV	
.28 ST I .01 SE(S	SD) .00	.01 SE(SD)	
.01 32(3	.00	.01 SE(SD)	.00
* * * *	* *	* * * * *	
COEFF. OF VARIAT	710N 9.6%	COEFF. OF VARIATION	8.5%
SYMMETRYVETA			
KURTOSISVETA	1.12	KURTOSISVETA II	24
* * * *		* * * * *	
MIMBED OF CURTE	TC 909	MIMPER AT SUBTRACE	601
NUMBER OF SUBJEC	CTS 293	NUMBER OF SUBJECTS	491

12. Calf Circumference

Landmark: Calf level (maximum oircumference)

Instrument: Tape

<u>Position of Subject</u>: Subject stands erect, heels approximately 10 cm apart, and weight distributed equally on both feet.

<u>Procedure</u>: With a tape held in a horizontal plane, measure the circumference of the calf at the level of the calf landmark.

INTERVALS	ACTIIAI	FREQU		- CIIN -
	FREQ.	FREQ.	FREQ.	PCIFQ.
29.95 - 30.24 30.25 - 30.54 30.55 - 30.84 30.85 - 31.14 31.15 - 31.44 31.45 - 31.74 31.75 - 32.04 32.05 - 32.34 32.35 - 32.64 32.65 - 32.94 32.95 - 33.24 33.25 - 33.54 33.55 - 33.84 33.85 - 34.14 34.15 - 34.44 34.45 - 34.74 34.75 - 35.04 35.05 - 35.34 35.05 - 35.34 35.05 - 35.64 35.65 - 35.94 35.95 - 36.24 36.25 - 36.54 36.85 - 37.14 37.15 - 37.44 37.15 - 37.44 37.15 - 37.74 37.75 - 38.04 38.05 - 38.94 38.05 - 38.94 38.05 - 38.94 38.95 - 39.24 39.25 - 39.54 39.55 - 39.84	1 1 0 1 1 2 2 5 5 4 7 8 8 1 1 7 1 3 1 7 1 5 1 6 1 6 1 9 9 9 1 0 1 9 1 9 1 9 1 9 1 9 1 9 1 9	CUM FREQ. 1 2 3 4 6 8 13 18 22 25 30 34 41 49 57 68 75 88 105 120 136 150 159 168 178 198 205 214 223 235 235 236 246 257 268 278 278 278 278 278 278 278 27	PCT FREQ. .34 .34 .68 .68 1.71 1.71 1.37 1.03 1.71 1.37 2.40 2.74 2.74 3.77 2.40 4.45 5.82 5.14 5.48 4.79 3.08 3.08 3.08 3.12 6.85 2.40 3.08 3.08 3.11 1.37 1.03	.34 .68 .68 1.03 1.37 2.05 2.74 4.45 6.16 7.53 8.56 10.27 11.64 14.04 16.78 19.52 23.29 25.68 30.14 35.96 41.10 46.58 51.37 54.45 57.53 60.96 67.81 70.21 73.29 76.37 80.48 81.85 82.88
39.25 - 39.54	4	239	1.37	81.85
39.55 - 39.84	3	242	1.03	82.88
39.85 - 40.14	11	253	3.77	86.64
40.15 - 40.44	6	259	2.05	88.70
40.45 - 40.74	8	267	2.74	91.44
40.75 - 41.04	4	271	1.37	92.81
41.05 - 41.34	6	277	2.05	94.86
41.35 - 41.64	3	280	1.03	95.89
41.65 - 41.94	2	282	.68	96.58
41.95 - 42.24	3	285	1.03	97.60
42.25 - 42.54	4	289	1.37	98.97
42.55 - 42.84	0	289	.00	98.97
42.85 - 43.14	1	290	.34	99.32
43.15 - 43.44	0	290	.00	99.32
43.45 - 43.74	2	292	.68	100.00

VARIABLE NO. 12--CALF CIRCUMFERENCE FEMALE DATA

INTERV	ALS	ACTUAL	FREQ	QUENCIES	- CUM
		FREQ.	FREQ.	FREQ.	PCTFQ.
29.05 -	29.34	1	1	.20	.20
29.35 -	29.64	0	1	.00	.20
29.65 -	29.94	0	1	.00	.20
29.95 -	30.24	1	2	.20	.41
30.25 -	30.54	1	3	.20	.61
30.55 -	30.84	3	6	.61	1.22
30.85 -	31.14	4	10	.82	2.04
31.15 -	31.44	6	16	1.22	3.27
31.45 -	31.74	8	24	1.63	4.90
31.75 -	32.04	9	33	1.84	6.73
32.05 -	32.34	10	43	2.04	8.78
32.35 -	32.64	7	50	1.43	10.20
32.65 -	32.94	23	73	4.69	14.90
32.95 -	33.24	18	91	3.67	18.57
33.25 - 33.55 -	33.54 33.84	15 23	106	3.06	21.63
33.85 -	34.14	26	129 155	4.69 5.31	26.33
34.15 -	34.44	22	177	4.49	31.63 36.12
34.45 -	34.74	26	203	5.31	41.43
34.75 -	35.04	35	238	7.14	48.57
35.05 -	35.34	19	257	3.88	52.45
35.35 -	35.64	24	281	4.90	57.35
35.65 -	35.94	30	311	6.12	63.47
35.95 -	36.24	31	342	6.33	69.80
36.25 -	36.54	23	365	4.69	74.49
36.55 -	36.84	18	383	3.67	78.16
36.85 -	37.14	24	407	4.90	83.06
37.15 -	37.44	23	430	4.69	87.76
37.45 -	37.74	12	442	2.45	90.20
37.75 -	38.04	16	458	3.27	93.47
38.05 -	38.34	11	469	2.24	95.71
38.35 -	38.64	5	474	1.02	96.73
38.65 -	38.94	5	479	1.02	97.76
38.95 -	39.24	0	479	.00	97.76
39.25 -	39.54	3	482	.61	98.37
39.55 -	39.84	2	484	.41	98.78
39.85 -	40.14	0	484	.00	98.78
40.15 - 40.45 -	40.44	3	487	.61	99.39
40.45 -	40.74	1	488	.20	99.59
41.05 -	41.04 41.34	1 0	489 489	.20	99.80
41.35 -	41.64	0	489	.00	99.80
41.65 -	41.94	0	489	.00 .00	99.80 99.80
41.95 -	42.24	0	489	.00	99.80
42.25 -	42.54	0	489	.00	99.80
42.55 -	42.84	o	489	.00	99.80
42.85 -	43.14	Ö	489	.00	99.80
43.15 -	43.44	Õ	489	.00	99.80
43.45 -	43.74	Ö	489	.00	99.80
43.75 -	44.04	1	490	.20	100.00

VARIABLE NO. 12--CALF CIRCUMFERENCE

MALE	DATA	

FEMALE DATA

	-8-	-0		
35	24	370	of	×

	ENTILES	7		ERCENTILE:	
CENTIMETERS		INCHES	CENTIMETER	RS	INCHES
34.66 35.10 35.49 35.86 36.22 36.57 36.92 37.27 37.63 38.00 38.39 38.82	1ST 2ND 3RD 5TH 10TH 15TH 20TH 25TH 30TH 35TH 40TH 45TH 55TH 60TH 65TH 70TH 75TH 80TH	12.23 12.48 12.65 12.87 13.21 13.45 13.65 13.82 13.97 14.12 14.26 14.40 14.53 14.67 14.81 14.96 15.12 15.28 15.47	31.10 31.35 31.75 32.47 33.00 33.42 33.79 34.12 34.42 34.70 34.97 35.23	1ST 2ND 3RD 5TH 10TH 15TH 20TH 25TH 30TH 35TH 40TH 45TH 50TH 55TH 60TH 70TH 75TH	12.24 12.34 12.50 12.78 12.99 13.16 13.30 13.43 13.55 13.66 13.77 13.87 13.97 14.07 14.17
39.84 40.51 41.45	85TH 90TH ' 95TH 97TH 98TH		37.20 37.66 38.39 38.93 39.36	85TH 90TH 95TH	14.65 14.83 15.12 15.32 15.50
* *	भे भे क		*	* * * *	
THE SUMMAR CENTIMETERS		ISTICS INCHES	THE SUM!		ISTICS INCHES
.16 S 2.66 S .11 S	T DEV	.06 1.05	.09 2.04 .07	MEAN SE (M) ST DEV SE (SD)	.04
COEFF. OF VAR SYMMETRYV KURTOSISV	ETA II	.04	COEFF. OF SYMMETRY	VETA I	.12
* *	* * *		*	* * * *	
NUMBER OF SUE	JECTS	292	NUMBER OF	SUBJECTS	490

13. Ankle Circumference

Landmark: Ankle level (minimum circumference)

<u>Instrument</u>: Tape

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With a tape held in a horizontal plane, measure the minimum circumference of the leg at the level of the ankle landmark.

INTERVALS	ACTUAL FREQ.	FREQU CUM FREQ.	PCT FREQ.	CUM PCTFQ.
17.35 - 17.54 17.55 - 17.74 17.75 - 17.94 17.95 - 18.14 18.15 - 18.34 18.35 - 18.54 18.55 - 18.74 18.75 - 18.94 18.95 - 19.14 19.15 - 19.34 19.35 - 19.54 19.55 - 19.74 19.55 - 19.74 19.75 - 19.94 19.95 - 20.14 20.15 - 20.34 20.35 - 20.54 20.55 - 20.74 20.75 - 20.94 20.95 - 21.14 21.35 - 21.54	FREQ. 1 0 1 1 0 6 7 4 14 11 20 16 21 26 41 32 22 33 52 28 34	CUM FREQ. 1 1 2 3 3 9 16 20 34 45 65 81 102 128 169 201 223 256 308 336 370	PCT FREQ. .20 .00 .20 .20 .00 1.23 1.43 .82 2.86 2.25 4.09 3.27 4.29 5.32 8.38 6.54 4.50 6.75 10.63 5.73 6.95	.20 .20 .41 .61 .61 1.84 3.27 4.09 6.95 9.20 13.29 16.56 20.86 26.18 34.56 41.10 45.60 52.35 62.99 68.71 75.66
21.55 - 21.74 21.75 - 21.94 21.95 - 22.14 22.15 - 22.34 22.35 - 22.54 22.55 - 22.74 22.75 - 22.94 22.95 - 23.14 23.15 - 23.34 23.35 - 23.54 23.55 - 23.74 23.75 - 23.94 23.95 - 24.14 24.15 - 24.34 24.35 - 24.54 24.55 - 24.74 24.75 - 24.94 24.95 - 25.14	26 22 16 16 14 5 6 4 2 2 2 1 1 0 0 1	396 418 434 450 464 469 475 479 481 483 485 486 487 488 488 488 488	5.32 4.50 3.27 3.27 2.86 1.02 1.23 .82 .41 .41 .20 .20 .00 .00	80.98 85.48 88.75 92.02 94.89 95.91 97.14 97.96 98.36 98.77 99.18 99.39 99.59 99.59 99.80 99.80 100.00

VARIABLE NO. 13--ANKLE CIRCUMFER

, , , , , , , , , , , , , , , , , , , ,						
MAL	E DATA			FEMA	LE DATA	i.
* *	* * *		* * * * *			
PER	CENTILE	ES		PER CENTIMETERS	CENTILE	S
CENTIMETERS		INCHES		CENTIMETERS	3	INCHES
10.10		7 (7				
19.49	1ST	7.67		18.40		7.24
19.78	2ND	7.79		18.59	2ND	7.32
19.97	3RD	7.86		18.75		
		7.96		18.98	5TH	7.47
20.63	10TH	8.12		19.38	10TH	7.63
20.92	15TH	8.23		19.66	15TH	7.74
21 15	20TH	8 33		19.89	20TH	7.83
21.36	25TH	8.41		19.89 20.08	25TH	7.91
21.56	30TH	8.49		20.26	30TH	7.97
		8.56		20.41		8.04
		8.63		20.56		8.10
		8.70		20.70		8.15
22.29	SOTH	8 77		20.84	50TH	8.20
22.47	55TH	8.77 8.85		20.97	55TH	8.26
22.66	SOTH	8.92		21.11		8.31
		9.00		21.24		
		9.08		21.39		8.42
		9.18		21.54	/51H	8.48
	80TH			21.71	80TH	8.55
23.88	85TH	9.40		21.92	85TH	8.63
		9.56		22.18	90TH	8.73
		9.78		22.61		8.90
		9.92		22.93		9.03
25.46	98TH			23.18		9.13
25.83	99TH	10.17		23.65	99TH	9.31
* *	* * *			at a	* * * *	
9017770 Pt 975-45-4				days and the		
THE SUMMA				THE SUMM		
CENTIMETERS		INCHES		CENTIMETERS	•	INCHES
22 38	MEAN	R R1		20 82	MEAN	8 20

THE SUMMARY STATI	STICS INCHES	THE SUMMARY STATI	STICS INCHES
22.38 MEAN .08 SE(M) 1.40 ST DEV .06 SE(SD)	8.81 .03 .55 .02	20.82 MEAN .05 SE(M) 1.11 ST DEV .04 SE(SD)	8.20 .02 .44 .01
COEFF. OF VARIATION SYMMETRYVETA I KURTOSISVETA II * * * * *	6.3% .30 25	COEFF. OF VARIATION SYMMETRYVETA I KURTOSISVETA II * * * * *	5.3% .13 .33
NUMBER OF SUBJECTS	292	NUMBER OF SUBJECTS	489

14. Heel-Ankle Circumference

Landmark: Dorsal junction of the foot and leg

Instrument: Tape

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: Measure the diagonal circumference of the foot with the tape passing over the foot-leg landmark and around the base of the heel.

	ACTUAL FREQ.	FREQU CUM FREQ.	PCT FREQ.	CUM PCTFQ.
25.75 - 26.04 26.05 - 26.34 26.35 - 26.64 26.65 - 26.94 26.95 - 27.24 27.25 - 27.54 27.55 - 27.84 27.85 - 28.14 28.15 - 28.44 28.45 - 28.74 29.05 - 29.04 29.05 - 29.34 29.35 - 29.64 29.65 - 29.94 29.95 - 30.24 30.25 - 30.54 30.25 - 30.84 30.85 - 31.14 31.15 - 31.44 31.15 - 31.44 31.15 - 32.04 32.05 - 32.34 32.05 - 32.34 32.05 - 32.34 32.35 - 32.64 32.65 - 32.94 33.25 - 33.54 33.25 - 33.54 33.55 - 33.84 33.85 - 34.14 34.15 - 34.44 34.15 - 34.44 34.45 - 34.74 34.75 - 35.04 35.05 - 35.34 35.05 - 35.94 35.05 - 35.94	FREQ. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CUM FREQ. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PCT FREQ. .34 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	PCTFQ. .34 .34 .34 .34 .34 .34 .34 .34 .34 .
36.55 - 36.84 36.85 - 37.14 37.15 - 37.44 37.45 - 37.74 37.75 - 38.04 38.05 - 38.34 38.35 - 38.64 38.65 - 38.94	8 4 2 4 2 2 1 1	274 278 280 284 286 288 289 290	2.76 1.38 .69 1.38 .69 .69 .34	94.48 95.86 96.55 97.93 98.62 99.31 99.66 100.00

VARIABLE NO. 14--HEEL-ANKLE CIRCUM FEMALE DATA

INTERVALS	ACTUAL FREQ.	FREQU CUM FREQ.	PCT FREQ.	CUM PCTFQ.
24.85 - 25.14	1	1	.20	.20
25.15 - 25.44	Ô	1	.00	.20
25.45 - 25.74	0	1	.00	.20
25.75 - 26.04	0	1	.00	.20
26.05 - 26.34	Ö	i	.00	.20
26.35 - 26.64	0	1	.00	.20
26.65 - 26.94	0	ī	.00	.20
26.95 - 27.24	1	2	.20	.41
27.25 - 27.54	4	6	.82	1.23
27.55 - 27.84	1	7	.20	1.43
27.85 - 28.14	3	10	.61	2.05
28.15 - 28.44	4	14	.82	2.87
28.45 - 28.74	10	24	2.05	4.92
28.75 - 29.04	23	47	4.71	9.63
29.05 - 29.34	15	62	3.07	12.70
29.35 - 29.64	32	94	6.56	19.26
29.65 - 29.94	21	115	4.30	23.57
29.95 - 30.24	40	155	8.20	31.76
30.25 - 30.54	47	202	9.63	41.39
30.55 - 30.84	33	235	6.76	48.16
30.85 - 31.14	53	288	10.86	59.02
31.15 - 31.44	36	324	7.38	66.39
31.45 - 31.74	43	367	8.81	75.20
31.75 - 32.04	34	401	6.97	82.17
32.05 - 32.34	13	414	2.66	84.84
32.35 - 32.64	20	434	4.10	88.93
32.65 - 32.94	13	447	2.66	91.60
32.95 - 33.24	13	460	2.66	94.26
33.25 - 33.54	10	470	2.05	96.31
33.55 - 33.84	6	476	1.23	97.54
33.85 - 34.14	7	483	1.43	98.98
34.15 - 34.44	2	485	.41	99.39
34.45 - 34.74	0	485	.00	99.39
34.75 - 35.04	1	486	.20	99.59
35.05 - 35.34	0	486	.00	99.59
35.35 - 35.64	1	487	.20	99.80
35.65 - 35.94	1	488	.20	100.00

VARIABLE NO. 14-HEEL-ANKLE CIRCUM

MALE DATA		FEMALE DATA		
* * * * *		* * * *		
PERCENTILES CENTIMETERS	INCHES	PERCENTILES CENTIMETERS INCHES		
30.53 1ST 30.90 2ND 31.16 3RD 31.52 5TH 32.10 10TH 32.50 15TH 32.83 20TH 33.11 25TH 33.37 30TH 33.61 35TH 34.06 45TH 34.06 45TH 34.28 50TH 34.28 50TH 34.72 60TH 34.94 65TH 35.18 70TH 35.18 70TH 35.44 75TH 35.73 80TH 35.44 75TH 35.74 75TH 35.75 80TH 36.06 85TH 36.06 85TH 37.09 95TH 37.48 97TH 37.77 98TH 37.77 98TH 37.77 98TH 37.77 98TH	12.02 12.17 12.27 12.41 12.64 12.80 12.92 13.04 13.14 13.23 13.32 13.41 13.49 13.58 13.67 13.76 13.85 13.67 14.07 14.20 14.36 14.60 14.76 14.87 15.05	27.53		
* * * * *		* * * *		
THE SUMMARY STATI	STICS INCHES	THE SUMMARY STATISTICS CENTIMETERS INCHES		
34.28 MEAN .10 SE(M) 1.72 ST DEV .07 SE(SD)	.04	30.89 MEAN 12.16 .06 SE(M) .03 1.41 ST DEV .56 .05 SE(SD) .02		
COEFF. OF VARIATION SYMMETRYVETA I KURTOSISVETA II	30	SYMMETRYVETA I .07		

NUMBER OF SUBJECTS

488

290

NUMBER OF SUBJECTS

15. <u>Instep Circumference</u>

Landmark: Minimum instep circumference plane

<u>Instrument</u>: Tape

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With a tape held in a vertical plane, measure the circumference of the instep over the medial, dorsal, and lateral instep circumference landmarks.

INTERVALS	ACTUAL FREQ.	FREQU CUM FREQ.	PCT FREQ.	CUM PCTFQ.
22.35 - 22.54	1	1	.34	.34
22.55 - 22.74	0	1	.00	.34
22.75 - 22.94	0	1	.00	.34
22.95 - 23.14	2	3	.69	1.03
23.15 - 23.34	1	4	.34	1.37
23.35 - 23.54	3	7	1.03	2.41
23.55 - 23.74	1	8	.34	2.75
23.75 - 23.94	3	11	1.03	3.78
23.95 - 24.14	7	18	2.41	6.19
24.15 - 24.34	7	25	2.41	8.59
24.35 - 24.54	8	33	2.75	11.34
24.55 - 24.74	7	40	2.41	13.75
24.75 - 24.94	6	46	2.06	15.81
24.95 - 25.14	20	6 6	6.87	22.68
25.15 - 25.34	13	79	4.47	27.15
25.35 - 25.54	22	101	7.56	34.71
25.55 - 25.74	12	113	4.12	38.83
25.75 - 25.94	19	132	6.53	45.36
25.95 - 26.14	20	152	6.87	52.23
26.15 - 26.34	18	170	6.19	58.42
26.35 - 26.54	17	187	5.84	64.26
26.55 - 26.74	14	201	4.81	69.07
26.75 - 26.94	13	214	4.47	73.54
26.95 - 27.14	11	225	3.78	77.32
27.15 - 27.34	7	232	2.41	79.73
27.35 - 27.54	13	245	4.47	84.19
27.55 - 27.74 27.75 - 27.94	6	251	2.06	86.25
	10	261	3.44	89.69
27.95 - 28.14 28.15 - 28.34	6 7	267 274	2.06	91.75
28.35 - 28.54			2.41	94.16
28.55 - 28.74	3 5	277 282	1.03 1.72	95.19
28.75 - 28.94	3	285	1.03	96.91 97.94
28.95 - 29.14	2	287	.69	98.63
29.15 - 29.34	3	290	1.03	99.66
29.35 - 29.54	1	291	.34	100.00
=>.JT	-		• 37	100.00

INTERVALS	ACTUAL FREQ.	FREQ CUM FREQ.	PCT FREQ.	CUM PCTFQ.
18.75 - 18.94	1	1	.20	.20
18.95 - 19.14	ō	î	.00	.20
19.15 - 19.34	0	ī	.00	.20
19.35 - 19.54	Ö	î	.00	.20
19.55 - 19.74	Ö	ī	.00	.20
19.75 - 19.94	Ö	î	.00	.20
19.95 - 20.14	Õ	i	.00	.20
20.15 - 20.34	1	2	.20	.41
20.35 - 20.54	ō	2	.00	.41
20.55 - 20.74	Ö	2	.00	.41
20.75 - 20.94	1	3	.20	.61
20.95 - 21.14	1	4	.20	.82
21.15 - 21.34	8	12	1.64	2.45
21.35 - 21.54	14	26	2.86	5.32
21.55 - 21.74	5	31	1.02	6.34
21.75 - 21.94	16	47	3.27	9.61
21.95 - 22.14	10	57	2.04	11.66
22.15 - 22.34	17	74	3.48	15.13
22.35 - 22.54	45	119	9.20	24.34
22.55 - 22.74	26	145	5.32	29.65
22.75 - 22.94	34	179	6.95	36.61
22.95 - 23.14	54	233	11.04	47.65
23.15 - 23.34	3 5	268	7.16	54.81
23.35 - 23.54	35	303	7.16	61.96
23.55 - 23.74	24	327	4.91	66.87.
23.75 - 23.94	30	357	6.13	73.01
23.95 - 24.14	29	386	5.93	78.94
24.15 - 24.34	23	409	4.70	83.64
24.35 - 24.54	28	437	5.73	89.37
24.55 - 24.74	9	446	1.84	91.21
24.75 - 24.94	11	457	2.25	93.46
24.95 - 25.14	10	467	2.04	95.50
25.15 - 25.34	6	473	1.23	96.73
25.35 - 25.54	8	481	1.64	98.36
25.55 - 25.74	4	485	.82	99.18
25.75 - 25.94	2	487	.41	99.59
25.95 - 26.14	0	487	.00	99.59
26.15 - 26.34	0	487	.00	99.59
26.35 - 26.54	0	487	.00	99.59
26.55 - 26.74	0	487	.00	99.59
26.75 - 26.94	1	488	.20	99.80
26.95 - 27.14	0	488	.00	99.80
27.15 - 27.34	0	488	.00	99.80
27.35 - 27.54	1	489	.20	100.00

VARIABLE NO. 15--INSTEP CIRCUMFER

VARIABLE NO. 1	JINSILI	CIRCUITER	
MALE DATA		FEMALE DATA	
* * * * *		* * * *	
PERCENTILES		PERCENTILES	
	INCHES	CENTIMETERS INC	IES
24.52 10TH 24.80 15TH 25.03 20TH 25.23 25TH 25.41 30TH 25.58 35TH 25.75 40TH 25.92 45TH 26.09 50TH 26.26 55TH 26.44 60TH 26.63 65TH 26.83 70TH 27.06 75TH 27.31 80TH	9.09 9.26 9.36 9.48 9.65 9.77 9.85 9.93 10.00 10.07 10.14 10.20 10.27 10.34 10.41 10.48 10.56 10.65 10.75	21.31 2ND 8. 21.45 3RD 8. 21.65 5TH 8. 21.98 10TH 8. 22.21 15TH 8. 22.40 20TH 8. 22.57 25TH 8. 22.72 30TH 8. 22.72 30TH 9. 23.00 40TH 9. 23.14 45TH 9. 23.27 50TH 9. 23.40 55TH 9. 23.54 60TH 9. 23.54 60TH 9. 23.69 65TH 9. 23.84 70TH 9. 24.00 75TH 9. 24.19 80TH 9.	31 39 45 53 65 75 82 89 95 00 06 11 16 21 27 33 45
27.60 85TH 27.97 90TH 28.48 95TH 28.78 97TH 28.98 98TH 29.22 99TH	10.87 11.01 11.21 11.33 11.41 11.51	24.67 90TH 9. 25.06 95TH 9.	
* * * * *		* * * *	
THE SUMMARY STATI	STICS INCHES	THE SUMMARY STATISTIC CENTIMETERS INCH	
1.33 ST DEV .06 SE(SD)		.03 SE(SD)	
* * * * * COEFF. OF VARIATION SYMMETRYVETA I KURTOSISVETA II	.13	* * * * * COEFF. OF VARIATION SYMMETRYVETA I KURTOSISVETA II	4.5% .15 .65

291

NUMBER OF SUBJECTS

489

NUMBER OF SUBJECTS

16. BOF Circumference, Right

Landmark: 1st and 5th metatarsal-phalangeal protrusions

Instrument: Tape

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With a tape, measure the maximum circumference of the right foot over the 1st and 5th metatarsal-phalangeal landmarks. The measurement is in a plane oblique to the long axis of the foot.

INTERVALS		FREQU	ENCIES	
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
			•	•
21.95 - 22.14	2	2	.68	.68
22.15 - 22.34	2	4	.68	1.37
22.35 - 22.54	2	6	.68	2.05
22.55 - 22.74	0	6	.00	2.05
22.75 - 22.94	3	9	1.03	3.08
22.95 - 23.14	2	11	.68	3.77
23.15 - 23.34	6	17	2.05	5.82
23.35 - 23.54	9	26	3.08	8.90
23.55 - 23.74	8	34	2.74	11.64
23.75 - 23.94	15	49	5.14	16.78
23.95 - 24.14	12	61	4.11	20.89
24.15 - 24.34	16	77	5.48	26.37
24.35 - 24.54	18	95	6.16	32.53
24.55 - 24.74	24	119	8.22	40.75
24.75 - 24.94	20	139	6.85	47.60
24.95 - 25.14	17	156	5.82	53.42
25.15 - 25.34	10	166	3.42	56.85
25.35 - 25.54	14	180	4.79	61.64
25.55 - 25.74	11	191	3.77	65.41
25.75 - 25.94	15	206	5.14	70.55
25.95 - 26.14	15	221	5.14	75.68
26.15 - 26.34	20	241	6.85	82.53
26.35 - 26.54	10	251	3.42	85.96
26.55 - 26.74	10	261	3.42	89.38
26.75 - 26.94	4	265	1.37	90.75
26.95 - 27.14	5	270	1.71	92.47
27.15 - 27.34	4	274	1.37	93.84
27.35 - 27.54	3	277	1.03	94.86
27.55 - 27.74	7	284	2.40	97.26
27.75 - 27.94	4	288	1.37	98.63
27.95 - 28.14	3	291	1.03	99.66
28.15 - 28.34	0	291	.00	99.66
28.35 - 28.54	1	292	.34	100.00

VARIABLE NO. 16--BOF CIRCUM, RIGHT FEMALE DATA

INTERVALS	ACTUAL	FREQU	JENCIES	Cum
	FREQ.	FREQ.	FREQ.	PCTFQ.
	·	-	•	
18.55 - 18.74	1	1	.20	.20
18.75 - 18.94	0	1	.00	.20
18.95 - 19.14	0	1	.00	.20
19.15 - 19.34	0	1	.00	.20
19.35 - 19.54	0	1	.00	.20
19.55 - 19.74	0	1	.00	.20
19.75 - 19.94	0	1	.00	.20
19.95 - 20.14	0	1	.00	.20
20.15 - 20.34	1	2	.20	.41
20.35 - 20.54	7	9	1.43	1.84
20.55 - 20.74	6	15	1.22	3.06
20.75 - 20.94 20.95 - 21.14	3 16	18 34	.61 3.27	3.67
21.15 - 21.34	19	53	3.88	6.94 10.82
21.35 - 21.54	23	76	4.69	15.51
21.55 - 21.74	18	94	3.67	19.18
21.75 - 21.94	26	120	5.31	24.49
21.95 - 22.14	41	161	8.37	32.86
22.15 - 22.34	30	191	6.12	38.98
22.35 - 22.54	47	238	9.59	48.57
22.55 - 22.74	30	268	6.12	54.69
22.75 - 22.94	38	306	7.76	62.45
22.95 - 23.14	3 8	344	7.76	70.20
23.15 - 23.34	22	366	4.49	74.69
23.35 - 23.54	26	392	5.31	80.00
23.55 - 23.74	18	410	3.67	83.67
23.75 - 23.94	25	435	5.10	88.78
23.95 - 24.14	16	451	3.27	92.04
24.15 - 24.34	11	462	2.24	94.29
24.35 - 24.54	8	470	1.63	95.92
24.55 - 24.74	3	473	.61	96.53
24.75 - 24.94	7	480	1.43	97.96
24.95 - 25.14	3	483	.61	98.57
25.15 - 25.34	3	486	.61	99.18
25.35 - 25.54	1	487	.20	99.39
25.55 - 25.74	0	487	.00	99.39
25.75 - 25.94	0	487	.00	99.39
25.95 - 26.14	0	487	.00	99.39
26.15 - 26.34	0	487	.00	99.39
26.35 - 26.54	2	489	.41	99.80
26.55 - 26.74	1	490	.20	100.00

VARIABLE NO. 16--BOF CIRCUM, RIGHT

MALE DATA

FEMALE DATA

*	*	*	*	*

* * * * *

PE	RCENTILES		PE	ERCENTILES	5
CENTIMETER	S	INCHES	CENTIMETER	IS	INCHES
				•	
22.20	1ST	8.74	20.40	1ST	8.03
22.6 6	2ND	8.92	20.62	2ND	8.12
22.91	3RD	9.02	20.77	3RD	8.18
23.21	5TH	9.14	20.99	5TH	8.26
23.62	10TH	9.30	21.32	10TH	8.40
23.89	15TH	9.40	21.56	15TH	8.49
24.10	2 0TH	9.49	21.75	20TH	8.56
24.28	2 5TH	9.56	21.92	25TH	8.63
24.45	3 0TH	9.63	22.07	3 0TH	8.69
24.62	35TH	9.69	22.22	3 5TH	8.75
24.78	40TH	9.75	22.35	40TH	8.80
24.94	45TH	9.82	22.49	45TH	8.85
25.10	5 0TH	9.88	22.62	50TH	8.91
25.27	55TH	9.95	22.75	55TH	8.96
25.44	60TH	10.02	22.89	60TH	9.01
25.63	65TH	10.09	23.03	65TH	9.07
25.83	70TH	10.17	23.19	7 0TH	9.13
26.05	75TH	10.26	. 23.35	75TH	9.19
26.31	8 0TH	10.36	23.54	80TH	9.27
26.60	85TH	10.47	23.76	85TH	9.35
26.96	9 0TH	10.61	24.04	90TH	9.47
27.45	95TH	10.81	24.47	95TH	9.63
27.71	97TH	10.91	24.76	97TH	9.75
27.87	98TH	10.97	24.97	98TH	9.83
28.03	9 9TH	11.04	25.31	99TH	9.96
*	* * * *		*	* * * *	
THE SIIMM	ARY STATI	STICS	THE SIME	ARY STAT	פחזרכ
CENTIMETER		INCHES	CENTIMETER		INCHES
25.18	MEAN	9.91	22.66	MEAN	8.92
.07	SE (M)	.03	.05	SE (H)	.02
	ST DEV		1.07	ST DEV	.42
	SE (SD)		.03	SE (SD)	.01
*	* * * *		*	* * * *	
COEFF. OF V	ARIATION	5.0%	COEFF. OF V	VARIATION	4.7%
SYMMETRY	-VETA I	.15	SYMMETRY	VETA I	.27
KURTOSIS	-VETA II	35	KURTOSIS	VETA II	.56
*	* * * *		#	* * * *	
NUMBER OF S	UBJECTS	292	NUMBER OF	SUBJECTS	490

17. Heel Breadth, Right

Landmark: None

Instrument: Sliding Caliper

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With a sliding caliper held parallel to the long axis of the foot, measure the maximum horizontal breadth of the right heel. The measurement is perpendicular to the long axis of the foot.

VARIABLE NO. 17-HEEL BREADTH, RIGHT MALE DATA

INTERVALS		FREQU	ENCIES	
	ACTUAL	CUM	PCT	CUM
1	FREQ.	FREQ.	FREQ.	PCTFQ.
5.85 - 5.94	1	1	.34	.34
5.95 - 6.04	1	2	.34	.68
6.05 - 6.14	2	4	.68	1.37
6.15 - 6.24	8	12	2.73	4.10
6.25 - 6.34	4	16	1.37	5.46
6.35 - 6.44	10	26	3.41	8.87
6.45 - 6.54	17	43	5.80	14.68
6.55 - 6.64	25	68	8.53	23.21
6.65 - 6.74	17	85	5.80	29.01
6.75 - 6.84	13	98	4.44	33.45
6.85 - 6.94	22	120	7.51	40.96
6.95 - 7.04	42	162	14.33	55.29
7.05 - 7.14	23	185	7.85	63.14
7.15 - 7.24	27	212	9.22	72.35
7.25 - 7.34	20	232	6.83	79.18
7.35 - 7.44	14	246	4.78	83.96
7.45 - 7.54	17	263	5.80	89.76
7.55 - 7.64	8	271	2.73	.92.49
7.65 - 7.74	6	277	2.05	94.54
7.75 - 7.84	4	28 1	1.37	95.90
7.85 - 7.94	4	285	1.37	97.27
7.95 - 8.04	1	28 6	.34	97.61
8.05 - 8.14	3	289	1.02	98.63
8.15 - 8.24	2	2 91	.68	99.32
8.25 - 8.34	0	291	.00	99.32
8.35 - 8.44	1	292	.34	99.66
8.45 - 8.54	1	293	.34	100.00

VARIABLE NO. 17-HEEL BREADTH, RIGHT FEMALE DATA

INTERVA	LS		FREC	UENCIES -	-
		ACTUAL	CUM	PCT	CUM
		FREQ.	FREQ.	FREQ.	PCTFQ.
5.25 -	5.34	1	1	.20	.20
5.35 -	5.44	2	3	.41	.61
5.45 -	5.54	2	5	. 41	1.02
5.55 -	5.64	14	19	2.86	3.88
5.65 -	5.74	11	30	2.24	6.12
5.75 -	5.84	29	59	5.92	12.04
5.85 -	5.94	15	74	3.06	15.10
5.95 -	6.04	56	130	11.43	26.53
6.05 -	6.14	47	177	9.59	36.12
6.15 -	6.24	56	233	11.43	47.55
6.25 -	6.34	39	272	7.96	55.51
6.35 -	6.44	42	314	8.57	64.08
6.45 -	6.54	43	357	8.78	72.86
6.55 -	6.64	3 6	393	7.35	80.20
6.65 -	6.74	20	413	4.08	84.29
6.75 -	6.84	18	431	3.67	87.96
6.85 -	6.94	17	448	3.47	91.43
6.95 -	7.04	10	458	2.04	93.47
7.05 -	7.14	7	465	1.43	94.90
7.15 -	7.24	9	474	1.84	96.73
7.25 -	7.34	5	479	1.02	97.76
7.35 -	7.44	6	485	1.22	98.98
7.45 -	7.54	3	488	.61	99.59
7.55 -	7.64	1	489	.20	99.80
7.65 -	7.74	0	489	.00	99.80
7.75 -	7.84	0	489	.00	99.80
7.85 -	7.94	1	490	.20	100.00

VARIABLE NO. 17--HEEL BREADTH, RIGHT

MALE DATA

* * * *			* * * * *	
PERCENTILE	c		PERCENTILES	2
CENTIMETERS		CENTIMET		INCHES
CENTITETERS	INCILLO	CENTITIE	FV2	ANCHES
6.09 1ST	2.40	5.51	1ST	2.17
	2.43		2ND	
	2.45		3RD	
	2.48		5TH	
	2.54	5.83		
	2.58	5.91		
	2.61		20TH	
6.71 25TH			25TH	
6.78 30TH			30TH	
	2.69	6.13		
	2.72		40TH	
6.95 45TH			45TH	
	2.76		50TH	
7.06 55TH		6.34		
7.12 60TH	2.80		60TH	
7.17 65TH	2.82		65TH	
7.23 70TH	2.85	6.52	70TH	2.57
7.30 75TH	2.87	6.60	75TH	2.60
7.38 8 0TH	2.90	6.68	80TH	2.63
7.47 85TH	2.94	6.78	85TH	2.67
7.59 9 0TH	2.99	6.92	90TH	2.72
7.78 95TH	3.06	7.12		2.80
7.92 97TH	3.12	7.25		2.85
8.04 98TH	3.16	7.35		2.89
8.24 99TH	3.24	7.49		2.95
* * * *			* * * * *	
THE SUMMARY STAT	221721	THE SI	MMARY STAT	ISTICS
CENTIMETERS	INCHES	CENTIMET		INCHES
CENTILLERS	INCILLS	CLIVILITI	LNS	211011110
7.02 MEAN	2.76	6.33	MEAN	2.49
.03 SE(M)	.01		SE (M)	.01
.44 ST DEV	.17		ST DEV	.17
			SE (SD)	.01
.02 SE(SD)	.01	.01	SE (SD)	.01
* * * * *			* * * * *	
COEFF. OF VARIATION	6.37	COEFF. OF	VARIATION	6.7%
SYMMETRYVETA			VETA I	
KURTOSISVETA II			VETA II	
* * * * *			* * * * *	

FEMALE DATA

NUMBER OF SUBJECTS 293 NUMBER OF SUBJECTS 490

18. BOF Breadth, Diagonal

Landmark: 1st and 5th metatar 3al-phalangeal protrusions, medial aspects

<u>Instrument</u>: Sliding Caliper

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With a sliding caliper, measure the breadth of the foot at the medial landmarks of the 1st and 5th metatarsal-phalangeal joints. The measurement is in a plane oblique to the long axis of the foot.

INTERVALS			JENCIES	Macana and Control of the Control of
	ACTUAL	CUM	PCT	CUM
*	FREQ.	FREQ.	FREQ.	PCTFQ.
9.15 - 9.24	3	3	1.02	1.02
9.25 - 9.34	2	5	.68	1.71
9.35 - 9.44	2	7	.68	2.39
9.45 - 9.54	2	9	.68	3.07
9.55 - 9.64	6	15	2.05	5.12
9.65 - 9.74	5	20	1.71	6.83
9.75 - 9.84	8	28	2.73	9.56
9.85 - 9.94	10	38	3.41	12.97
9.95 - 10.04	20	58	6.83	19.80
10.05 - 10.14	16	74	5.46	25.26
10.15 - 10.24	27	101	9.22	34.47
10.25 - 10.34	14	115	4.78	39.25
10.35 - 10.44	22	137	7.51	46.76
10.45 - 10.54	15	152	5.12	51.88
10.55 - 10.64	19	171	6.48	58.36
10.65 - 10.74	21	192	7.17	65.53
10.75 - 10.84	19	211	6.48	72.01
10.85 - 10.94	13	224	4.44	76.45
10.95 - 11.04	17	241	5.80	82.25
11.05 - 11.14	13	254	4.44	86.69
11.15 - 11.24	5	259	1.71	88.40
11.25 - 11.34	9	268	3.07	91.47
11.35 - 11.44	6	274	2.05	93.52
11.45 - 11.54	7	281	2.39	95.90
11.55 - 11.64	3	284	1.02	96.93
11.65 - 11.74	3	287	1.02	97.95
11.75 - 11.84	3 2 2	289	.68	98.63
11.85 - 11.94		291	.68	99.32
11.95 - 12.04	2	293	.68	100.00

VARIABLE NO. 18--BOF BRDTH, DIAGONAL FEMALE DATA

INTERVALS	ACTUAL FREQ.	FREQUENCUM FREQ.	PCT FREQ.	CUM PCTFQ.
7.65 - 7.74	1	1	.20	.20
7.75 - 7.84	0	1	.00	.20
7.85 - 7.94	0	1	.00	.20
7.95 - 8.04	0	1	.00	.20
8.05 - 8.14	0	1	.00	.20
8.15 - 8.24	1	2	.20	.41
8.25 - 8.34	2	4	.41	.82
8.35 - 8.44	1	5	.20	1.02
8.45 - 8.54	6	11	1.23	2.25
8.55 - 8.64	4	15	.82	3.07
8.65 - 8.74	8	23	1.64	4.71
8.75 - 8.84	10	33	2.05	6.76
8.85 - 8.94	16	49	3.28	10.04
8.95 - 9.04	33	82	6.76	16.80
9.05 - 9.14	34	116	6.97	23.77
9.15 - 9.24	3 6	152	7.38	31.15
9.25 - 9.34	32	184	6.56	37.70
9.35 - 9.44	51	235	10.45	48.16
9.45 - 9.54	39	274	7.99	56.15
9.55 - 9.64	37	311	7.58	63.73
9.65 - 9.74	35	346	7.17	70.90
9.75 - 9.84	25	371	5.12	76.02
9.85 - 9.94	27	3 98	5.53	81.56
9.95 - 10.04	29	427	5.94	87.50
10.05 - 10.14	13	440	2.66	90.16
10.15 - 10.24	. 19	459	3.89	94.06
10.25 - 10.34	10	469	2.05	96.11
10.35 - 10.44	7	476	1.43	97.54
10.45 - 10.54	4	480	.82	98.36
10.55 - 10.64	2	482	.41	98.77
10.65 - 10.74	1	483	.20	98.98
10.75 - 10.84	2	485	.41	99.39
10.85 - 10.94	0	485	.00	99.39
10.95 - 11.04	2	487	.41	99.80
11.05 - 11.14	1	488	.20	100.00

VARIABLE NO. 18--BOF BRDTH, DIAGONAL

	DA	

FEMALE DATA

-0-	-4-	all.	-1-	
ऋ	*	34	34	- 74

* * * * *

PER	CENTILES		PF	RCENTILE!	5
CENTIMETERS		INCHES	CENTIMETER:		INCHES
9.24	1ST	3.64	8.43	1ST	
9.42	2ND	3.71	8.56	2ND	3.37
9.52	3RD	3.75	8.64	3RD	3.40
9.65	5TH	3.80	8.75	5TH	3.44
9.84	10TH	3.87	8.91	10TH	3.51
9.96	15TH	3.92	9.02	15TH	3.55
10.06	2 0TH	3.96	9.11	20TH	3.59
10.15	25TH	3.99	9.18	25TH	3.61
10.22	3 0TH	4.02	9.25	30TH	3.64
10.30	35TH	4.05	9.31	35TH	3.67
10.37	40TH	4.08	9.37	40TH	3.69
10.44	45TH	4.11	9.43	45TH	3.71
10.51	50TH	4.14	9.49	50TH	3.74
10.58	55TH	4.16	9.55	55TH	3.76
10.65	60TH	4.19	9.61	60TH	3.78
10.73	65TH	4.22	9.67	65TH	3.81
10.82	7 0TH	4.26	9.74	70TH	3.83
10.91	75TH	4.29	9.81	75TH	3.86
11.01	80TH	4.34	9.89	80TH	3.89
11.14	85TH	4.38	9.99	85TH	3.93
11.29	90TH	4.45	10.12	90TH	3.98
11.52	95TH	4.54	10.31	95TH	4.06
11.66	97TH	4.59	10.45	97TH	4.11
11.76	98TH	4.63	10.55	98TH	4.15
11.90	9 9TH	4.68	10.71	99TH	4.22
ia. a			4		
31 34	* * * *		W.	* * * *	
THE SUMMA	DV STATT	STICS	THE SUMM	TATE VEA	TSTICS
CENTIMETERS		INCHES	CENTIMETER		INCHES
CENTITETERS	,	INCILLS	CENTILLER		11101110
10 54	MEAN	4.15	9.50	MEAN	3.74
	SE (M)	.01			.01
	ST DEV			ST DEV	
	SE (SD)			SE (SD)	
.02	SL (SD)	.01	.02	02 (02)	.01
* *	* * * *		*	* * * *	
COEFF. OF VA	RIATION	5.3%	COEFF. OF V	ARIATION	5.1%
SYMMETRY			SYMMETRY		
KURTOSIS			KURTOSIS		
* 1	* * * *		*	* * * *	
NUMBER OF ST	JBJECTS	293	 NUMBER OF S	UBJECTS	488

19. Heel Breadth, Left

Landmark: None

Instrument: Sliding Caliper

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With a sliding caliper held parallel to the long axis of the foot, measure the maximum horizontal breadth of the left heel. The measurement is perpendicular to the long axis of the foot.

[SEE HEEL BREADTH, RIGHT FOR PHOTOGRAPH]

VARIABLE NO. 19-HEEL BREADTH, LEFT MALE DATA

INTERVALS	CTUAL	FREQUI	PCT	CUM
· · · · · · · · · · · · · · · · · · ·	FREQ.	FREQ.	FREQ.	PCTFQ.
5.85 - 5.94	1	1	.34	.34
5.95 - 6.04	1	2	.34	.69
6.05 - 6.14	5	7	1.72	2.41
6.15 - 6.24	4	11	1.37	3.78
6.25 - 6.34	12	23	4.12	7.90
6.35 - 6.44	11	34	3.78	11.68
6.45 - 6.54	18	52	6.19	17.87
6.55 - 6.64	14	66	4.81	22.68
6.65 - 6.74	19	85	6.53	29.21
6.75 - 6.84	31	116	10.65	39.86
6.85 - 6.94	22	138	7.56	47.42
6.95 - 7.04	31	169	10.65	58.08
7.05 - 7.14	26	195	8.93	67.01
7.15 - 7.24	20	215	6.87	73.88
7.25 - 7.34	21	236	7.22	81.10
7.35 - 7.44	15	251	5.15	86.25
7.45 - 7.54	16	267	5.50	91.75
7.55 - 7.64	6	273	2.06	93.81
7.65 - 7.74	4	277	1.37	95.19
7.75 - 7.84	7	284	2.41	97.59
7.85 - 7.94	0	284	.00	97.59
7.95 - 8.04	2	286	.69	98.28
8.05 - 8.14	0	286	.00	98.28
8.15 - 8.24	3	289	1.03	99.31
8.25 - 8.34	2	291	.69	100.00

VARIABLE NO. 19-HEEL BREADTH, LEFT FEMALE DATA

INTERVALS		FR	EQUENCIES	-
	ACTU	AL CUM	PCT	CUM
	FREQ	. FREQ.	FREQ.	PCTFQ.
5.25 - 5.	34 4	4	.82	.82
		5	.21	1.03
	44 1 54 7	12	1.44	2.46
	64 14		2.87	5.34
	74 21	47	4.31	9.65
· · · · · · · · · · · · · · · · · · ·	84 31	78	6.37	16.02
	94 32		6.57	22.59
5.95 - 6.	04 39		8.01	30.60
	14 55		11.29	41.89
6.15 - 6.	24 42		8.62	50.51
6.25 - 6.	34 47	293	9.65	60.16
6.35 - 6.	44 39	332	8.01	68.17
6.45 - 6.	54 34		6.98	75.15
6.55 - 6.	64 37		7.60	82.75
6.65 - 6.	74 19	422	3.90	86.65
6.75 - 6.	84 23	445	4.72	91.38
6.85 - 6.	94 9	454	1.85	93.22
6.95 - 7.	04 12	466	2.46	95.69
7.05 - 7.	14 2	468	.41	96.10
7.15 - 7.	24 11	479	2.26	98.36
7.25 - 7.	34 3		.62	98.97
7.35 - 7.	44 3	485	.62	99.59
7.45 - 7.	54 0		.00	99.59
7.55 - 7.	64 2	487	.41	100.00

VARIABLE NO. 19-HEEL BREADTH, LEFT

MALE DATA

FEMALE DATA

sk	*	*	of	×

* * * * *

PERCENTILE:	2	PERCENTILE:	2
CENTIMETERS		CENTIMETERS	INCHES
CENTINETERS	INCHES	CENTIMETERS	INCHES
(07 107	9 90	P / 0 10m	0 1/
6.07 1ST	2.39	5.43 1ST	2.14
6.13 2ND	2.41	5.52 2ND	2.17
6.18 3RD	2.43	5.57 3RD	2.19
6.27 5TH	2.47	5.64 5TH	2.22
6.41 10TH	2.52	5.76 10TH	2.27
6.52 15TH	2.57	5.84 15TH	2.30
6.60 2 0TH	2.60	5.91 20TH	2.33
6.68 25TH	2.63	5.97 25TH	2.35
6.74 30TH	2.66	6.03 30TH	2.37
6.81 35TH	2.68	6.08 35TH	2.39
6.86 40TH	2.70	6.14 40TH	2.42
6.92 45TH	2.72	6.19 45TH	2.44
6.97 50TH	2.74	6.24 50TH	2.46
7.02 55TH	2.77	6.29 55TH	2.48
7.08 60TH	2.79	6.35 60TH	2.50
7.13 65TH	2.81	6.41 65TH	2.52
7.19 70TH	2.83	6.47 70TH	2.55
	2.86	6.54 75TH	2.58
7.33 80TH	2.88	6.62 80TH	2.61
7.41 85TH	2.92	6.72 85TH	2.65
7.53 90TH	2.96		2.69
		6.84 90TH	
	3.04	7.03 95TH	
	3.10	7.15 97TH	
	3.15		2.85
8.21 99TH	3.23	7.37 99TH	2.90
* * * *		* * * * *	
THE SUMMARY STAT	ISTICS	THE SUMMARY STATE	ISTICS
CENTIMETERS	INCHES	CENTIMETERS	INCHES
6.98 MEAN	2.75	6.27 MEAN	2.47
.03 SE(M)	.01	.02 SE(M)	.01
.44 ST DEV		.42 ST DEV	
.02 SE(SD)		.01 SE(SD)	
.02 SE(SD)	.01	.01 3E(3D)	.01
* * * * *		* * * * *	
		, , , , ,	
			e ****
COEFF. OF VARIATION			
SYMMETRYVETA I			
KURTOSISVETA II	.1	KURTOSISVETA II	.02
* * * * *		* * * *	
NUMBER OF SUBJECTS	29	NUMBER OF SUBJECTS	487

20. BOF Circumference, Left

Landmark: 1st and 5th metatarsal-phalangeal protrusions

<u>Instrument</u>: Tape

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With a tape, measure the maximum circumference of the left foot over the 1st and 5th metatarsal-phalangeal landmarks. The measurement is in a plane oblique to the long axis of the foot.

[SEE BOF CIRCUMFERENCE, RIGHT FOR PHOTOGRAPH]

VARIABLE NO. 20--BOF CIRCUMFER, LEFT MALE DATA

	CTUAL REQ.	FREQUE CUM FREQ.	PCT FREQ.	CUM PCTFQ.
26.33 - 26.34 26.55 - 26.74 26.75 - 26.94 26.95 - 27.14 27.15 - 27.34 27.35 - 27.54 27.55 - 27.74 27.75 - 27.94 27.95 - 28.14 28.15 - 28.34 28.35 - 28.54	7 6 5 6 5 3 4 1	249 256 262 267 273 278 281 285 286 289 290	2.41 2.07 1.72 2.07 1.72 1.03 1.38 .34 1.03	88.28 90.34 92.07 94.14 95.86 96.90 98.28 98.62 99.66 100.00

VARIABLE NO. 20-BOF CIRCUMFER, LEFT FEMALE DATA

INTERVALS	ACTUAL FREQ.	FREQUE	PCT FREQ.	CUM PCTFQ.
17.95 - 18.14 18.15 - 18.34 18.35 - 18.54 18.75 - 18.94 18.95 - 19.14 19.15 - 19.34 19.35 - 19.54 19.75 - 19.94 19.95 - 20.14 20.15 - 20.34 20.35 - 20.54 20.75 - 20.94 20.95 - 21.14 21.15 - 21.34 21.35 - 21.54 21.75 - 21.94 21.95 - 22.14 22.15 - 22.34 22.35 - 22.54 22.35 - 22.74 22.75 - 22.94 22.95 - 23.14 23.15 - 23.34 23.35 - 23.74 23.75 - 23.94 23.95 - 24.14 24.15 - 24.34 24.35 - 24.54 24.55 - 25.14 25.15 - 25.34 25.35 - 25.54 25.55 - 25.74 <td< td=""><td>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>.20 .00 .00 .00 .00 .00 .00 .00 .00 .00</td><td>.20 .20 .20 .20 .20 .20 .20 .20 1.02 1.43 2.46 4.51 6.15 9.22 11.68 16.39 21.93 30.74 37.70 45.49 52.46 60.04 65.78 73.16 77.87 82.17 86.07 89.96 93.65 95.08 96.11 97.13 98.96 99.59 99.59 99.59 99.59 99.59 99.59 99.59</td></td<>	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.20 .00 .00 .00 .00 .00 .00 .00 .00 .00	.20 .20 .20 .20 .20 .20 .20 .20 1.02 1.43 2.46 4.51 6.15 9.22 11.68 16.39 21.93 30.74 37.70 45.49 52.46 60.04 65.78 73.16 77.87 82.17 86.07 89.96 93.65 95.08 96.11 97.13 98.96 99.59 99.59 99.59 99.59 99.59 99.59 99.59
26.15 - 26.34 26.35 - 26.54	0	487 488	.00 .20	99.80 100.00

VARIABLE NO. 20-BOF CIRCUMFER, LEFT

MALE DATA		FEMALE DATA	
* * * * *		* * * * *	
PERCENTILES		PERCENTILES	
CENTIMETERS	INCHES	CENTIMETERS	INCHES
22.16 1ST	8.72	20.14 1ST	7.93
22.57 2ND	8.89	20.44 2ND	8.05
22.80 3RD	8.98	20.62 3RD	8.12
	9.09	20.86 5TH	8.21
	9.25	21.21 10TH	8.35
	9.35	21.45 15TH	8.44
	9.44	21.64 20TH	8.52
	9.51	21.80 25TH	8.58
	9.58 9.65	21.95 30TH 22.09 35TH	8.64 8.70
	9.71	22.22 40TH	
	9.77	22.22 401h 22.35 45TH	
	9.84	22.49 50TH	8.85
	9.91	22.62 55TH	8.91
25.35 60TH		22.76 60TH	8.96
25.54 65TH	10.06	22.91 65TH	9.02
25.75 70TH	10.14	23.06 7 0TH	9.08
25.98 75TH	10.23	23.24 75TH	9.15
26.24 80TH	10.33	23.43 80TH	9.23
26.54 85TH	10.45	23.66 85TH	
26.92 90TH	10.60	23.96 90TH	
27.45 95TH	10.81	24.40 95TH	
27.76 97TH	10.93	24.68 97TH	
27.95 98TH	11.01	24.88 98TH	
28.20 99 TH	11.10	25.19 99TH	9.92
* * * * *		* * * * *	
THE SUMMARY STATI		THE SUMMARY STATI	
CENTIMETERS	INCHES	CENTIMETERS	INCHES
25.10 MEAN	9.88	22.54 MEAN	8.87
.08 SE(M)	.03	.05 SE(M)	.02
1.30 ST DEV	.51	.05 SE(M) 1.08 ST DEV .03 SE(SD)	.43
.05 SE(SD)	.02	.03 SE(SD)	.01
* * * * *		* * * *	
COEFF. OF VARIATION	5.2%	COEFF. OF VARIATION	4.8%
SYMMETRYVETA I			
KURTOSISVETA II			

NUMBER OF SUBJECTS

488

290

NUMBER OF SUBJECTS

21. Weight

Landmark: None

<u>Instrument</u>: Scales

<u>Position of Subject</u>: Subject removes the contents of his/her pockets and stands on center of scale platform.

Procedure: Read scales to 0.1 kg.

[NO PHOTOGRAPH]

MALE DATA

INTERVALS		FREOI	JENCIES	
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
*				
50.75 - 52.24	1	1	.34	.34
52.25 - 53.74	1	2	.34	.68
53.75 - 55.24	1	3	.34	1.03
55.25 - 56.74	3	6	1.03	2.05
56.75 - 58.24	3	9	1.03	3.08
58.25 - 59.74	5	14	1.71	4.79
59.75 - 61.24	9	23	3.08	7.88
61.25 - 62.74	12	35	4.11	11.99
62.75 - 64.24	18	53	6.16	18.15
64.25 - 65.74	19	72	6.51	24.66
65.75 - 67.24	9	81	3.08	27.74
67.25 - 68.74	17	98	5.82	33.56
68.75 - 70.24	8	106	2.74	36.30
70.25 - 71.74	18	124	6.16	42.47
71.75 - 73.24	12	136	4.11	46.58
73.25 - 74.74	11	147	3.77	50.34
74.75 - 76.24	9	156	3.08	53.42
76.25 - 77.74	16	172	5.48	58.90
77.75 - 79.24	10	182	3.42	62.33
79.25 - 80.74	8	190	2.74	65.07
80.75 - 82.24	15	205	5.14	70.21
82.25 - 83.74	12	217	4.11	74.32
83.75 - 85.24	13	230	4.45	78.77
85.25 - 86.74	6	236	2.05	80.82
86.75 - 88.24 88.25 - 89.74	11 7	247 254	3.77	84.59
89.75 - 91.24	11	265	2.40 3.77	86.99 90.75
91.25 - 92.74	5	270	1.71	90.73
92.75 - 94.24	4	274	1.37	93.84
94.25 - 95.74	2	276	.68	94.52
95.75 - 97.24	5	281	1.71	96.23
97.25 - 98.74	3	284	1.03	97.26
98.75 - 100.24	0	284	.00	97.26
100.25 - 101.74	3	287	1.03	98.29
101.75 - 103.24	0	287	.00	98.29
103.25 - 104.74	2	289	.68	98.97
104.75 - 106.24	1	290	.34	99.32
106.25 - 107.74	0	290	.00	99.32
107.75 - 109.24	1	291	.34	99.66
109.25 - 110.74	1	292	.34	100.00

FEMALE DATA

INTERVALS		FREQ	UENCIES -	- '
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
42.75 - 43.74	1	1	.20	.20
43.75 - 44.74	Ô	i	.00	.20
44.75 - 45.74	2	3	.41	.61
45.75 - 46.74	3	6	.61	1.22
46.75 - 47.74	5	11	1.02	2.24
47.75 - 48.74	5	16	1.02	3.27
48.75 - 49.74	9	25	1.84	5.10
49.75 - 50.74	13	38	2.65	7.76
50.75 - 51.74	13	51	2.65	10.41
51.75 - 52.74	13	64	2.65	13.06
52.75 - 53.74	17	81	3.47	16.53
53.75 - 54.74	17	98	3.47	20.00
54.75 - 55.74	27	125	5.51	25.51
55.75 - 56.74	15	140	3.06	28.57
56.75 - 57.74	34	174	6.94	35.51
57.75 - 58.74	32	206	6.53	42.04
58.75 - 59.74	37	243	7.55	49.59
59.75 - 60.74	29	272	5.92	55.51
60.75 - 61.74	29	301	5.92	61.43
61.75 - 62.74	26	327	5.31	66.73
62.75 - 63.74	29	356	5.92	72.65
63.75 - 64.74	20	376	4.08	76.73
64.75 - 65.74	16	392	3.27	80.00
65.75 - 66.74	20	412	4.08	84.08
66.75 - 67.74	15	427	3.06	87.14
67.75 - 68.74	12	439	2.45	89.59
68.75 - 69.74	10	449	2.04	91.63
69.75 - 70.74	10	459	2.04	93.67
70.75 - 71.74	5	464	1.02	94.69
71.75 - 72.74	6	470	1.22	95.92
72.75 - 73.74	7	477	1.43	97.35
73.75 - 74.74 74.75 - 75.74	2	479	.41	97.76
	3	482	.61	98.37
75.75 - 76.74	2	484	.41	98.78
76.75 - 77.74	3	487	.61	99.39
77.75 - 78.74	1	488	.20	99.59
78.75 - 79.74 79.75 - 80.74	0	488	.00	99.59
	0	488	.00	99.59
	1	489	.20	99.80
81.75 - 82.74 82.75 - 83.74	0	489	.00	99.80
83.75 - 84.74	0	489	.00	99.80
84.75 - 85.74	0	489 489	.00	99.80
85.75 - 86.74	0	489	.00	99.80
86.75 - 87.74	0	489	.00 .00	99.80
87.75 - 88.74	1	490		99.80
07.75	1	770	.20	100.00

MALE DATA

* * * * *

FEMALE DATA

* * * * *

PERCENTILES		PERCENTILES	
KILOGRAMS	POUNDS		POUNDS

55.77 1ST	122.95	46.23 1ST 1	101.92
56.75 2ND	125.11		
			104.94
	126.88		106.96
	129.78		109.81
	135.38		114.43
	139.89	53.37 15TH 1	117.67
65.25 20TH	143.86	54.56 20TH 1	120.29
66.93 25TH	147.56	55.61 25TH 1	122.59
68.52 30TH	151.06		124.68
	154.46		126.63
	157.81		128.51
73.10 45TH	161.16		130.33
	164.58		
			132.16
	168.08		134.01
	171.70		135.89
79.61 65TH	175.51		137.86
81.46 7 0TH	179.59	63.48 70TH 1	139.96
83.49 75 TH	184.06	64.53 75TH 1	142.26
85.77 · 80TH	189.10	65.71 80TH 1	144.87
88.42 85TH	194.93		147.94
91.74 90TH	202.25		151.92
96.47 95TH	212.69		158.03
99.35 97TH	219.04		162.17
	223.41		165.31
104.16 99TH			
104.16 991H	229.62	77.31 99TH 1	170.44
* * * * *			
* * * * *		* * * *	
THE SUMMARY STATE		THE SUMMARY STATIS	
KILOGRAMS	POUNDS	KILOGRAMS	POUNDS
75.72 MEAN			132.87
.67 SE(M)		.30 SE(M)	
11.47 ST DEV	25.29	6.66 ST DEV	14.69
.47 SE (SD)	1.05	.21 SE(SD)	.47
* * * *		sk sk sk sk	
COEFF. OF VARIATION	15 19	COEFF. OF VARIATION	11.1%
SYMMETRYVETA I			.34
KURTOSISVETA II		KURTOSISVETA II	
KUN10313 VEIA II	42	VOVIOSISAFIN II	* of T
* * * * *		* * * *	
1111/2 PD AT ALL TO CO.			
NUMBER OF SUBJECTS	292	NUMBER OF SUBJECTS	490

22. Ankle Length

Landmark: Dorsal junction of the foot and leg.

Instrument: Footboard, plain block, and adjustable block

<u>Position of Subject</u>: Subject stands erect, right foot in the right measuring box, left foot in the left measuring box, and weight distributed equally on both feet. The right foot is positioned so that its medial side is parallel to the side of the box, the heel touches the rear of the box, and the 5th metatarsal-phalangeal joint touches the side of the box.

<u>Procedure</u>: Using an adjustable block placed outside the lateral wall of the foot box with its arm over the dorsal junction landmark, align a plain block at the foot-leg landmark and measure on the scale of the box the length from the heel to the anterior limit of the ankle.

INTERVALS	ACTUAL FREQ.	FREQUENCUM FREQ.	PCT FREQ.	CUM PCTFQ.
8.95 - 9.04	1	1	.34	.34
9.05 - 9.14	Ō	ī	.00	.34
9.15 - 9.24	0	ī	.00	.34
9.25 - 9.34	1	2	.34	.68
9.35 - 9.44	2	4	.68	1.37
9.45 - 9.54	5	9	1.71	3.07
9.55 - 9.64	3	12	1.02	4.10
9.65 - 9.74	4	16	1.37	5.46
9.75 - 9.84	2	18	.68	6.14
9.85 - 9.94	4	22	1.37	7.51
9.95 - 10.04	23	45	7.85	15.36
10.05 - 10.14	9	54	3.07	18.43
10.15 - 10.24	9	63	3.07	21.50
10.25 - 10.34	14	77	4.78	26.28
10.35 - 10.44	15	92	5.12	31.40
10.45 - 10.54	19	111	6.48	37.88
10.55 - 10.64	12	123	4.10	41.98
10.65 - 10.74	16	139	5.46	47.44
10.75 - 10.84	12	151	4.10	51.54
10.85 - 10.94	12	163	4.10	55.63
10.95 - 11.04	31	194	10.58	66.21
11.05 - 11.14	10	204	3.41	69.62
11.15 - 11.24	5	209	1.71	71.33
11.25 - 11.34	15	224	5.12	76.45
11.35 - 11.44	4	228	1.37	77.82
11.45 - 11.54	12	240	4.10	81.91
11.55 - 11.64	4	244	1.37	83.28
11.65 - 11.74	8	252	2.73	86.01
11.75 - 11.84 11.85 - 11.94	11	263	3.75	89.76
11.85 - 11.94 11.95 - 12.04	6	269	2.05 4.10	91.81 95.90
12.05 - 12.14	12	281		
12.15 - 12.24	2 1	283 284	.68 .34	96.59 96.93
12.25 - 12.34	3	287	1.02	97.95
12.35 - 12.44	3	290	1.02	98.98
12.45 - 12.54	1	290	.34	99.32
12.55 - 12.64	1	292	.34	99.66
12.65 - 12.74	î	293	.34	100.00

FEMALE DATA

INTERVALS	ACTUAL FREQ.	FREQ CUM FREQ.	PCI FREQ.	CUM PCTFQ.
7.75 - 7.84	1	1	.20	.20
7.85 - 7.94	1	2	.20	.41
7.95 - 8.04	1	3	.20	.61
8.05 - 8.14	0	3	.00	.61
8.15 - 8.24	2	5	.41	1.02
8.25 - 8.34	0	5	.00	1.02
8.35 - 8.44	3	8	.61	1.63
8.45 - 8.54	17	25	3.47	5.10
8.55 - 8.64	2	27	.41	5.51
8.65 - 8.74	5	32	1.02	6.53
8.75 - 8.84	7	39	1.43	7.96
8.85 - 8.94	5	44	1.02	8.98
8.95 - 9.04	44	88	8.98	17.96
9.05 - 9.14	12	100	2.45	20.41
9.15 - 9.24	26	126	5.31	25.71
9.25 - 9.34	28	154	5.71	31.43
9.35 - 9.44	28	182	5.71	37.14
9.45 - 9.54	58	240	11.84	48.98
9.55 - 9.64	22	262	4.49	53.47
9.65 - 9.74	18	280	3.67	57.14
9.75 - 9.84	25	305	5.10	62.24
9.85 - 9.94	19	324	3.88	66.12
9.95 - 10.04	62	3 86	12.65	78.78
10.05 - 10.14	15	401	3.06	81.84
10.15 - 10.24	10	411	2.04	83.88
10.25 - 10.34	6	417	1.22	85.10
10.35 - 10.44	14	431	2.86	87.96
10.45 - 10.54	19	450	3.88	91.84
10.55 - 10.64	7	457	1.43	93.27
10.65 - 10.74	10	467	2.04	95.31
10.75 - 10.84	6	473	1.22	96.53
10.85 - 10.94	2	475	.41	96.94
10.95 - 11.04	10	485	2.04	98.98
11.05 - 11.14	0	485	.00	98.98
11.15 - 11.24	0	485	.00	98.98
11.25 - 11.34	3	488	.61	99.59
11.35 - 11.44	1	489	.20	99.80
11.45 - 11.54	0	489	.00	99.80
11.55 - 11.64	1	490	.20	100.00

VARIABLE NO. 22--ANKLE LENGTH

MALE DATA

FEMALE DATA

* * * * *

* * * * *

PERCENTILES CENTIMETERS INCHES	PERCENTILES CENTIMETERS INCHES
9.37 1ST 3.69 9.51 2ND 3.74 9.59 3RD 3.78 9.72 5TH 3.83 9.92 10TH 3.91 10.07 15TH 3.97 10.20 20TH 4.01 10.31 25TH 4.06 10.41 30TH 4.10 10.51 35TH 4.14 10.61 40TH 4.18 10.70 45TH 4.21 10.80 50TH 4.25 10.90 55TH 4.29 11.00 60TH 4.33 11.11 65TH 4.37 11.22 70TH 4.42 11.34 75TH 4.47 11.48 80TH 4.52 11.64 85TH 4.58 11.83 90TH 4.66 12.09 95TH 4.76 12.24 97TH 4.82 12.34 98TH 4.86 12.46 99TH 4.91	8.24 1ST 3.24 8.41 2ND 3.31 8.52 3RD 3.35 8.66 5TH 3.41 8.87 1OTH 3.49 9.01 15TH 3.55 9.13 2OTH 3.59 9.22 25TH 3.63 9.31 3OTH 3.67 9.39 35TH 3.70 9.47 4OTH 3.73 9.55 45TH 3.76 9.63 5OTH 3.79 9.71 55TH 3.82 9.79 6OTH 3.85 9.87 65TH 3.89 9.96 7OTH 3.92 10.06 75TH 3.96 10.17 8OTH 4.00 10.30 85TH 4.06 10.47 9OTH 4.12 10.74 95TH 4.23 10.91 97TH 4.30 11.04 98TH 4.35 11.25 99TH 4.43
* * * *	ale ale ale ale
THE SUMMARY STATISTICS CENTIMETERS INCHES	THE SUMMARY STATISTICS CENTIMETERS INCHES
10.84 MEAN 4.27 .04 SE(M) .02 .72 ST DEV .28 .03 SE(SD) .01	9.65 MEAN 3.80 .03 SE(M) .01 .62 ST DEV .25 .02 SE(SD) .01 * * * * *
COEFF. OF VARIATION SYMMETRYVETA I RURTOSISVETA II * * * *	SYMMETRYVETA I .17

NUMBER OF SUBJECTS 490

NUMBER OF SUBJECTS 293

23. Instep Length

Landmark: Minimum instep circumference plane.

Instrument: Footboard and plain block

<u>Position of Subject</u>: Subject stands erect, right foot in the right measuring box, left foot in the left measuring box, and weight distributed equally on both feet. The right foot is positioned so that its medial side is parallel to the side of the box, the heel touches the rear of the box, and the 5th metatarsal-phalangeal joint touches the side of the box.

<u>Procedure</u>: Align a plain block at the instep circumference landmark and measure on the scale of the box the length from the heel to the anterior limit of the instep.

INTERV	ALS		FREC	UENCIES	-
		ACTUAL	CUM	PCT	CUM
		FREQ.	FREQ.	FREQ.	PCTFQ.
8.25 -	8.34	1	1	.20	.20
8.35 -	8.44	1	2	.20	.41
8.45 -	8.54	1	3	.20	.61
8.55 -	8.64	1	4	.20	.82
8.65 -	8.74	0	4	.00	.82
8.75 -	8.84	3	7	.61	1.43
8.85 -	8.94	4	11	.82	2.24
8.95 -	9.04	8	19	1.63	3.88
9.05 -	9.14	8	27	1.63	5.51
9.15 -	9.24	9	36	1.84	7.35
9.25 -	9.34	8	44	1.63	8.98
9.35 -	9.44	12	5 6	2.45	11.43
9.45 -	9.54	28	84	5.71	17.14
9.55 -	9.64	24	108	4.90	22.04
9.65 -	9.74	19	127	3.88	25.92
9.75 -	9.84	32	159	6.53	32.45
9.85 -	9.94	18	177	3.67	36.12
9.95 -	10.04	48	225	9.80	45.92
10.05 -	10.14	29	254	5.92	51.84
10.15 -	10.24	12	266	2.45	54.29
10.25 -	10.34	24	290	4.90	59.18
10.35 -	10.44	22	312	4.49	63.67
10.45 -	10.54	33	345	6.73	70.41
10.55 -	10.64	16	361	3.27	73.67
10.65 -	10.74	14	375	2.86	76.53
10.75 -	10.84	18	3 93	3.67	80.20
10.85 -	10.94	11	404	2.24	82.45
10.95 -	11.04	23	427	4.69	87.14
11.05 -	11.14	13	440	2.65	89.80
11.15 -	11.24	6	446	1.22	91.02
11.25 -	11.34	6	452	1.22	92.24
11.35 -	11.44	4	456	.82	93.06
11.45 -	11.54	13	469	2.65	95.71
11.55 -	11.64	3	472	.61	96.33
11.65 -	11.74	3	475	.61	96.94
11.75 -	11.84	5	480	1.02	97.96
11.85 -	11.94	1	481	.20	98.16
11.95 -	.12.04	4	485	.82	98.98
12.05 -	12.14	1	486	.20	99.18
12.15 -	12.24	3	489	.61	99.80
12.25 -	12.34	1	490	.20	100.00

VARIABLE NO. 23--INSTEP LENGTH

MALE DATA

FEMALE DATA

* * * * *

* * * *

PERCENTILES			PERCENTILES	
CENTIMETE	RS	INCHES	CENTIMETERS	INCHES
9.76	1ST	3.84	8.76 1ST	3.45
9.93		3.91		3.51
10.04	3RD	3.95	9.02 3RD	3.55
10.18		4.01	9.15 5TH	3.60
10.41		4.10	9.36 10TH	3.68
10.57		4.16		3.74
10.70		4.21		3.78
10.82		4.26		3.82
10.92	30TH	4.30		3.86
11.02		4.34		3.90
11.12		4.38		3.93
11.22		4.42		3.97
11.31		4.45		4.00
11.41		4.49		4.04
11.51		4.53		4.08
11.62	65TH			4.12
	70TH		10.57 70TH	
11.87	75TH			
12.01	80TH		10.69 75TH	
12.19	85TH		10.83 80TH	
	90TH		10.99 85TH 11.21 90TH	
	95TH		11.21 90TH 11.52 95TH	
	97TH			
	98TH			
	99TH		11.87 98TH	
13.42	99111	5.29	12.08 99TH	4.75
*	* * * *		* * * * *	
THE CIM	MARY STATI	STICS	THE SUMMARY STATIS	27700
	RS			
CENTIMETER		INCRES	CENTINETERS	INCHES
11 27	MEAN	4 48	10.23 MEAN	/ ₄ 02
.05		.02	.03 SE(M)	.01
	ST DEV	.31	.03 SE(n)	.28
	SE (SD)	.01	.72 ST DEV .02 SE(SD)	.01
.03	SE (SD)	.01	.02 SE(SD)	.01
*	* * * *		* * * * *	
COEFF. OF	TAD TATTON	6.9	% COEFF. OF VARIATION	7.0%
SYMMETRY				.35
KURTOSIS				07
VOV 10212	APIW II	.0	O NONTOSISALIA II	07
4	* * * *		* * * * *	
•			n n n n n	
MIMBED OF	CIID ITCAC	20	7 MILLER AT ALL TRADA	400
NUMBER OF	PORTECTS	29	NUMBER OF SUBJECTS	490

24. BOF Length, Right

Landmark: 1st metatarsal-phalangeal protrusion, medial aspect

Instrument: Footboard and plain block

<u>Position of Subject</u>: Subject stands erect, right foot in the right measuring box, left foot in the left measuring box, and weight distributed equally on both feet. The right foot is positioned so that its medial side is parallel to the side of the box, the heel touches the rear of the box, and the 5th metatarsal-phalangeal joint touches the side of the box.

<u>Procedure</u>: With a plain block touching the widest part of the right foot at the medial landmark of the 1st metatarsal-phalangeal joint, measure on the scale of the box the length from the heel to the ball of the foot.

INTERVALS	ACTUAL FREQ.	FREQUENCE FREQ.	PCT FREQ.	CUM PCTFQ.
16.95 - 17.14 17.15 - 17.34 17.35 - 17.54 17.55 - 17.74 17.75 - 17.94 17.95 - 18.14 18.15 - 18.34 18.35 - 18.54 18.55 - 18.74 18.75 - 18.94 18.95 - 19.14 19.15 - 19.34 19.35 - 19.54 19.55 - 19.74 19.55 - 19.74 19.75 - 19.94 19.95 - 20.14 20.15 - 20.34 20.35 - 20.54 20.55 - 20.74 20.75 - 20.94 20.95 - 21.14 21.15 - 21.34 21.35 - 21.54 21.55 - 21.74	1 0 5 4 5 10 12 8 13 16 17 18 26 24 16 24 18 17 9 12 11	1 1 6 10 15 25 37 45 58 74 91 109 135 159 175 199 217 234 243 255 266 271 277 280	.34 .00 1.72 1.37 1.72 3.44 4.12 2.75 4.47 5.50 5.84 6.19 8.93 8.25 5.50 8.25 6.19 5.84 3.09 4.12 3.78 1.72 2.06 1.03	.34 .34 2.06 3.44 5.15 8.59 12.71 15.46 19.93 25.43 31.27 37.46 46.39 54.64 60.14 68.38 74.57 80.41 83.51 87.63 91.41 93.13 95.19 96.22
21.75 - 21.94 21.95 - 22.14 22.15 - 22.34 22.35 - 22.54	4 2 4 1	284 286 290 291	1.37 .69 1.37	97.59 98.28 99.66 100.00

INTERVALS	ACTUAL FREQ.	FREQUENCY FREQ.	PCT FREQ.	CUM PCTFQ.
11.95 - 12.14 12.15 - 12.34 12.35 - 12.54 12.55 - 12.74 12.75 - 12.94 12.95 - 13.14 13.15 - 13.34 13.35 - 13.54 13.55 - 13.74 13.75 - 13.94 13.95 - 14.14 14.15 - 14.34 14.35 - 14.54 14.55 - 14.74 14.75 - 14.94 14.95 - 15.14 15.15 - 15.34 15.35 - 15.54 15.55 - 15.74 15.75 - 15.94 15.95 - 16.14 16.15 - 16.34 16.35 - 16.54 16.55 - 16.74 16.75 - 16.94 16.95 - 17.14 17.15 - 17.34 17.35 - 17.54 17.35 - 17.54 17.55 - 17.74 17.75 - 17.94 17.95 - 18.14 18.15 - 18.34 18.35 - 18.54 18.35 - 18.54 18.55 - 18.74 18.75 - 18.94 19.15 - 19.34 19.35 - 19.54 19.55 - 19.74 19.75 - 19.94	10000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.20 .00 .00 .00 .00 .00 .00 .00 .20 .00 .20 .2	.20 .20 .20 .20 .20 .20 .20 .20 .41 .41 .61 .61 .82 1.02 1.84 2.86 3.88 6.53 10.20 13.27 16.53 20.20 28.37 37.55 44.29 51.02 56.53 64.90 71.63 77.76 81.43 85.31 89.04 94.90 96.33 98.16
19.95 - 20.14 20.15 - 20.34 20.35 - 20.54	2 5 2	483 488 490	.41 1.02 .41	98.57 99.59 100.00

VARIABLE NO. 24--BOF LENGTH, RIGHT

MALE DATA

FEMALE DATA

-4-	-de	-4-	al.	al.
蚞	*	*	nk:	ok

	RCENTILES		PERCENTILES	}
CENTIMETER	RS	INCHES	CENTIMETERS	INCHES
17.38	1ST	6.84	15.31 1ST	6.03
17.58	2ND	6.92	15.61 2ND	6.14
17.72	3RD	6.98	15.79 3RD	6.22
17.93	5TH	7.06	16.03 5TH	6.31
18.28	10TH	7.19	16.40 10TH	6.46
18.52	15TH	7.29	16.65 15TH	6.55
18.73	20TH	7.37	16.85 20TH	6.63
18.91	25TH	7.44	17.02 25TH	6.70
19.07	30TH	7.51		6.76
19.22	35TH	7.57	17.32 35TH	6.82
19.37	40TH	7.62	17.46 40TH	6.88
19.51		7.68	17.60 45TH	6.93
19.65	50TH	7.74	17.74 50TH	6.98
19.79 19.93	55TH 60TH	7.79 7.85	17.88 55TH 18.02 60TH	7.04
20.08	65TH	7.91		7.09
20.08	70TH	7.91	18.32 7 0TH	7.15 7.21
20.24	75TH	8.03	18.32 701H 18.49 75TH	7.21
20.59	80TH	8.11	18.68 80TH	7.28
20.39	85TH	8.19	18.90 85TH	7.44
21.09	90TH	8.31	19.17 90TH	7.55
21.51	95TH	8.47	19.57 95TH	7.70
21.79		8.58	19.81 97TH	7.80
22.00		8.66	19.98 98TH	7.86
22.34		8.79	20.22 99TH	7.96
				,,,,
*	* * * *		* * * * *	
	LARY STATI		THE SUMMARY STATI	
CENTIMETER	(5	INCHES	CENTIMETERS	INCHES
19.67	MEAN	7.74	17.75 MEAN	6.99
.06	SE (M)	.02	.05 SE(M)	.02
1.07	ST DEV	.42	1.10 ST DEV	.43
.04	SE (SD)	.02	.04 SE(SD)	.01
	* * * *		* * * * *	
*	***		* * * * *	
COEFF. OF V	ARIATION	5.5%	COEFF. OF VARIATION	6.2%
SYMMETRY				26
KURTOSIS	-VETA II	27	KURTOSISVETA II	1.13
*	* * * *		sk sk sk sk sk	
NUMBER OF S	SUBJECTS	291	NUMBER OF SUBJECTS	490

25. Foot Length, Right

Landmark: None

Instrument: Footboard and plain block

<u>Position of Subject</u>: Subject stands erect, right foot in the right measuring box, left foot in the left measuring box, and weight distributed equally on both feet. The right foot is positioned so that its medial side is parallel to the side of the box, the heel touches the rear of the box, and the 5th metatarsal-phalangeal joint touches the side of the box.

<u>Procedure</u>: With a plain block touching the anterior tip of the most protruding toe, measure on the scale of the box the length of the right foot. Record the most protruding toe.

INTERVALS	ACTUAL FREQ.	FREQU CUM FREQ.	PCT FREQ.	CUM PCTFQ.
21.55 - 21.74 21.75 - 21.94 21.95 - 22.14 22.15 - 22.34 22.35 - 22.54 22.55 - 22.74 22.75 - 22.94 22.95 - 23.14 23.15 - 23.34 23.35 - 23.54 23.55 - 23.74 23.75 - 23.94 24.15 - 24.34 24.15 - 24.34 24.15 - 24.34 24.55 - 24.74 24.75 - 24.94 24.95 - 25.14 25.15 - 25.34 25.35 - 25.74 25.35 - 25.74 25.55 - 25.74 25.55 - 26.74 26.15 - 26.34 26.35 - 26.54 26.35 - 26.94 26.35 - 26.94 26.35 - 27.14 27.15 - 27.34 27.35 - 27.54 27.55 - 27.74 27.75 - 27.94 27.75 - 27.94 27.75 - 27.94 27.75 - 27.94 27.75 - 28.14 28.35 - 28.54 28.35 - 28.54 28.35 - 28.74 28.95 - 29.14	FREQ. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FREQ. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FREQ. .34 .00 .00 .00 .00 .00 .00 .00 .34 .34 .34 .37 1.03 1.71 1.37 1.71 4.45 2.40 4.45 3.08 4.45 4.79 6.85 4.45 5.14 6.51 3.77 3.08 7.53 3.08 4.45 2.05 .34 3.08	PCTFQ. .34 .34 .34 .34 .34 .34 .34 .34 .34 .
29.15 - 29.34 29.35 - 29.54 29.55 - 29.74 29.75 - 29.94	5 4 3 1	280 284 287 288	1.71 1.37 1.03	95.89 97.26 98.29 98.63
29.95 - 30.14 30.15 - 30.34	2 2	290 292	.68	99.32 100.00

INTERVALS	FREQUEN			NCIES		
	ACTUAL	CUM	PCT	CUM		
	FREQ.	FREQ.	FREQ.	PCTFQ.		
19.15 - 19.34	1	1	.20	.20		
19.35 - 19.54	0	1	.00	.20		
19.55 - 19.74	0	1	.00	.20		
19.75 - 19.94	0	1	.00	.20		
19.95 - 20.14	1	2	.20	.41		
20.15 - 20.34	0	2	.00	.41		
20.35 - 20.54	0	2	.00	.41		
20.55 - 20.74	1	3	.20	.61		
20.75 - 20.94	0	3	.00	.61		
20.95 - 21.14	0	3	.00	.61		
21.15 - 21.34	1	4	.20	.81		
21.35 - 21.54	1	5	.20	1.02		
21.55 - 21.74	3	8	.61	1.63		
21.75 - 21.94	6	14	1.22	2.85		
21.95 - 22.14	5	19	1.02	3.87		
22.15 - 22.34	5	24	1.02	4.89		
22.35 - 22.54	11	35	2.24	7.13		
22.55 - 22.74	15	50	3.05	10.18		
22.75 - 22.94	12	62	2.44	12.63		
22.95 - 23.14	26	88	5.30	17.92		
23.15 - 23.34	13	101	2.65	20.57		
23.35 - 23.54	31	132	6.31	26.88		
23.55 - 23.74	27	159	5.50	32.38		
23.75 - 23.94	19	178	3.87	36.25		
23.95 - 24.14	34					
		212	6.92	43.18		
24.15 - 24.34	30	242	6.11	49.29		
24.35 - 24.54	35	277	7.13	56.42		
24.55 - 24.74	17	294	3.46	59.88		
24.75 - 24.94	24	318	4.89	64.77		
24.95 - 25.14	42	360	8.55	73.32		
25.15 - 25.34	16	376	3.26	76.58		
25.35 - 25.54	29	405	5.91	82.48		
25.55 - 25.74	18	423	3.67	86.15		
25.75 - 25.94	9	432	1.83	87.98		
25.95 - 26.14	15	447	3.05	91.04		
26.15 - 26.34	10	457	2.04	93.08		
26.35 - 26.54	12	469	2.44	95.52		
26.55 - 26.74	5	474	1.02	96.54		
26.75 - 26.94	4	478	.81	97.35		
26.95 - 27.14	7	485	1.43	98.78		
27.15 - 27.34	1	486	.20	98.98		
27.35 - 27.54	3	489	.61	99.59		
27.55 - 27.74	1	490	.20	99.80		
27.75 - 27.94	0	490	.00	99.80		
27.95 - 28.14	Ö	490	.00	99.80		
28.15 - 28.34	Ö	490	.00	99.80		
28.35 - 28.54	1	491	.20			
20.37	-	771	. 20	100.00		

VARIABLE NO. 25--FOOT LENGTH, RIGHT

MALE DATA

FEMALE DATA

* * * * *

PI	ERCENTILES	;	PE	RCENTILE	S
CENTIMETER	RS	INCHES	CENTIMETER	S	INCHES
23.94	1ST		21.52	1ST	8.47
		9.54	21.82	2ND	8.59
24.42	3RD	9.61	22.02	3RD	8.67
24.71	5TH	9.73	22.30	5TH	8.78
25.18	10TH	9.91	22.74	10TH	8.95
25.52	15TH	10.05	23.05	15TH	9.07
25.79	20TH	10.15	23.29	20TH	9.17
26.03	25TH	10.25	23.50	25TH	9.25
26.24	30TH	10.33	23.70	30TH	9.33
26.43	35TH	10.41	23.88	35TH	9.40
26.62	40TH	10.48	24.05	40TH	9.47
26.80	45TH	10.45	24.21	45TH	9.47
26.98		10.62			
	50TH		24.38	50TH	9.60
27.16 27.34	55TH	10.69	24.55	55TH	9.66
	60TH	10.76	24.71	60TH	9.73
27.52	65TH	10.83	24.89	65TH	9.80
27.71	70TH	10.91	25.07	70TH	9.87
27.92	75TH	10.99	25.27	75TH	9.95
28.14	80TH	11.08	25.49		10.03
28.40	8 5TH	11.18	25.74	85TH	10.13
28.73	9 0TH	11.31	26.06		10.26
29.20	95TH	11.49	26.53		10.44
29.50	97TH	11.61	26.82	97TH	10.56
29.72	98TH	11.70	27.04	98TH	10.65
30.06	99TH	11.83	27.37	99TH	10.78
*	* * * *		*	* * * *	
			-		
THE SUM	ARY STATI	STICS	THE SUMM	LARY STAT	ISTICS
CENTIMETER	RS	INCHES	CENTIMETER	S	INCHES
	MEAN			MEAN	
	SE (M)	.03		SE(M)	.02
	ST DEV			ST DEV	
.06	SE (SD)	.02	.04	SE(SD)	.02
*	* * * *		*	* * * *	
COEFF. OF			COEFF. OF V		
SYMMETRY			SYMMETRY		
KURTOSIS	VETA II	.13	KURTOSIS	-VETA II	.24
*	* * * *		*	* * * *	
NUMBER OF	SIIR IFCTS	292	NUMBER OF S	HIB JECTS	491
MANUAL OF I	20222612	272	HAIRMIL AT B		771

26. BOF Breadth, Horizontal, Right

<u>Landmark</u>: 1st metatarsal-phalangeal protrusion

Instrument: Footboard and plain block

<u>Position of Subject</u>: Subject stands erect, right foot in the right measuring box, left foot in the left measuring box, and weight distributed equally on both feet. The right foot is positioned so that its medial side is parallel to the side of the box, the heel touches the rear of the box, and the 5th metatarsal-phalangeal joint touches the side of the box.

<u>Procedure</u>: With a plain block touching the widest part of the right foot at the 1st metatarsal-phalangeal joint, measure on the scale of the box the breadth of the foot.

	ACTUAL FREQ.	FREQUE CUM FREQ.	PCI FREQ.	CUM PCTFQ.
8.65 - 8.74	2	2	.69	.69
8.75 - 8.84	0	2	.00	.69
8.85 - 8.94	0	2	.00	.69
8.95 - 9.04	6	8	2.06	2.75
9.05 - 9.14	3	11	1.03	3.78
9.15 - 9.24	1	12	.34	4.12
9.25 - 9.34	11	23	3.78	7.90
9.35 - 9.44	6	29	2.06	9.97
9.45 - 9.54	21	50	7.22	17.18
9.55 - 9.64	14	64	4.81	21.99
9.65 - 9.74	21	85	7.22	29.21
9.75 - 9.84	21	106	7.22	36.43
9.85 - 9.94	6	112	2.06	38.49
9.95 - 10.04	38	150	13.06	51.55
10.05 - 10.14	12	162	4.12	55.67
10.15 - 10.24	16	178	5.50	61.17
10.25 - 10.34	18	196	6.19	67.35
10.35 - 10.44	16	212	5.50	72.85
10.45 - 10.54	26	238	8.93	81.79
10.55 - 10.64	11	249	3.78	85.57
10.65 - 10.74	8	257	2.75	88.32
10.75 - 10.84	10	267	3.44	91.75
10.85 - 10.94	2	269	.69	92.44
10.95 - 11.04	11	280	3.78	96.22
11.05 - 11.14	2	282	.69	96.91
11.15 - 11.24	3	285	1.03	97.94
11.25 - 11.34	0	288	1.03	98.97
11.35 - 11.44	2	288	.00	98.97
11.45 - 11.54 11.55 - 11.64	0	290 290	.69 .00	99.66
11.65 - 11.74	0	29 0	.00	99.66 99.66
11.75 - 11.84	1	2 90	.34	100.00
11.07		671	. 34	200.00

VARIABLE NO. 26--BOF BRDTH, HOZ, RT FEMALE DATA

INTERVALS	ACTUAL FREQ.		PCT FREQ.	CUM PCTFQ.
7.65 - 7.3	74 1	1	.20	.20
7.75 - 7.8	34 0	1	.00	.20
7.85 - 7.9	0	1	.00	.20
7.95 - 8.0		3	.41	.61
8.05 - 8.3		4	.20	.82
8.15 - 8.3		6	.41	1.22
8.25 - 8.3	12	18	2.45	3.67
8.35 - 8.4	44 8	26	1.63	5.31
8.45 - 8.5		52	5.31	10.61
8.55 - 8.6	12	64	2.45	13.06
8.65 - 8.	74 28	92	5.71	18.78
8.75 - 8.8		118	5.31	24.08
8.85 - 8.9		150	6.53	30.61
8.95 - 9.0		246	19.59	50.20
9.05 - 9.3		268	4.49	54.69
9.15 - 9.2		313	9.18	63.88
9.25 - 9.3		336	4.69	68.57
9.35 - 9.4		363	5.51	74.08
9.45 - 9.5		405	8.57	82.65
9.55 - 9.6		420	3.06	85.71
9.65 - 9.	74 21	441	4.29	90.00
9.75 - 9.8		457	3.27	93.27
9.85 - 9.9		468	2.24	95.51
9.95 - 10.0		478	2.04	97.55
10.05 - 10.3		481	.61	98.16
10.15 - 10.2		483	.41	98.57
10.25 - 10.3		487	.82	99.39
10.35 - 10.4		488	.20	99.59
10.45 - 10.5		489	.20	99.80
10.55 - 10.6		489	.00	99.80
10.65 - 10.3	14 1	490	.20	100.00

VARIABLE NO. 26--BOF BRDTH, HOZ, RT

MALE DATA	FEMALE DATA
at at at at	* * * * *
PERCENTILES CENTIMETERS INCHES	PERCENTILES CENTIMETERS INCHES
8.94 1ST 3.52 9.05 2ND 3.56 9.12 3RD 3.59 9.22 5TH 3.63 9.40 10TH 3.70 9.52 15TH 3.75 9.62 20TH 3.79 9.71 25TH 3.82 9.79 30TH 3.85 9.86 35TH 3.88 9.93 40TH 3.91 10.00 45TH 3.94 10.07 50TH 3.97 10.14 55TH 3.99 10.21 60TH 4.02 10.29 65TH 4.05 10.36 70TH 4.08 10.45 75TH 4.11 10.55 80TH 4.15 10.66 85TH 4.20 10.80 90TH 4.25 11.02 95TH 4.34 11.16 97TH 4.39 11.27 98TH 4.44 11.44 99TH 4.51	8.18 1ST 3.22 8.28 2ND 3.26 8.35 3RD 3.29 8.43 5TH 3.32 8.58 10TH 3.38 8.67 15TH 3.41 8.75 20TH 3.45 8.82 25TH 3.47 8.89 30TH 3.50 8.95 35TH 3.52 9.00 40TH 3.54 9.06 45TH 3.57 9.12 50TH 3.59 9.17 55TH 3.61 9.23 60TH 3.63 9.29 65TH 3.66 9.36 70TH 3.68 9.43 75TH 3.71 9.51 80TH 3.75 9.61 85TH 3.78 9.73 90TH 3.83 9.92 95TH 3.91 10.05 97TH 3.96 10.14 98TH 3.99 10.29 99TH 4.05
* * * * *	* * * *
THE SUMMARY STATISTICS CENTIMETERS INCHES	THE SUMMARY STATISTICS CENTIMETERS INCHES
10.09 MEAN 3.97 .03 SE(M) .01 .54 ST DEV .21 .02 SE(SD) .01 * * * * *	9.14 MEAN 3.60 .02 SE(M) .01 .46 ST DEV .18 .01 SE(SD) .01
COEFF. OF VARIATION 5.4% SYMMETRYVETA I .19 KURTOSISVETA II14	SYMMETRYVETA I .25

NUMBER OF SUBJECTS

291 NUMBER OF SUBJECTS

490

27. Outside BOF Length

Landmark: 5th metatarsal-phalangeal protrusion, medial aspect

Instrument: Footboard and plain block

<u>Position of Subject</u>: Subject stands erect, right foot in the right measuring box, left foot in the left measuring box, and weight distributed equally on both feet. The right foot is positioned so that its medial side is parallel to the edge of the box, the heel touches the rear of the box, and the 5th metatarsal-phalangeal joint is approximately 10 cm from the side of the box.

<u>Procedure</u>: With a plain block touching the foot at the medial landmark of the 5th metatarsal-phalangeal joint, measure on the scale of the box the length from the heel to the outside ball of the foot.

VARIABLE NO. 27--OUTSIDE BOF LENGTH MALE DATA

INTERVALS	ACTUAL FREQ.	FREQUE	PCT FREQ.	CUM PCTFQ.
13.75 - 13.94 13.95 - 14.14 14.15 - 14.34 14.35 - 14.54 14.55 - 14.74 14.75 - 14.94 14.95 - 15.14 15.15 - 15.34 15.35 - 15.54 15.55 - 15.74 15.75 - 15.94 15.95 - 16.14 16.15 - 16.34 16.35 - 16.54 16.55 - 16.74 16.75 - 16.94 16.95 - 17.14 17.15 - 17.34	FREQ. 2 0 2 2 2 3 9 10 13 7 19 25 17 28 13 18 30 15	FREQ. 2 2 4 6 8 11 20 30 43 50 69 94 111 139 152 170 200 215	.68 .00 .68 .68 1.02 3.07 3.41 4.44 2.39 6.48 8.53 5.80 9.56 4.44 6.14 10.24 5.12	.68 .68 1.37 2.05 2.73 3.75 6.83 10.24 14.68 17.06 23.55 32.08 37.88 47.44 51.88 58.02 68.26 73.38
17.35 - 17.54 17.55 - 17.74 17.75 - 17.94 17.95 - 18.14 18.15 - 18.34 18.35 - 18.54 18.55 - 18.74 18.75 - 18.94 18.95 - 19.14 19.15 - 19.34 19.35 - 19.54 19.55 - 19.74	22 17 12 12 3 3 3 0 1	237 254 266 278 281 284 287 290 290 291 291 291	7.51 5.80 4.10 4.10 1.02 1.02 1.02 1.02 1.02 .00 .34	80.89 86.69 90.78 94.88 95.90 96.93 97.95 98.98 99.32 99.32 99.66
19.75 - 19.94	1	293	.34	100.00

VARIABLE NO. 27--OUTSIDE BOF LENGTH FEMALE DATA

INTERVALS	ACTUAL FREQ.	FREQU CUM FREQ.	PCT FREQ.	CUM PCTFQ.
10.95 - 11.14	1	1	.20	.20
11.15 - 11.34	0	1	.00	.20
11.35 - 11.54	0	1	.00	.20
11.55 - 11.74	0	1	.00	.20
11.75 - 11.94	1	2	.20	.41
11.95 - 12.14	0	2	.00	.41
12.15 - 12.34	0	2 2	.00	.41
12.35 - 12.54	0		.00	.41
12.55 - 12.74	1	3	.20	.61
12.75 - 12.94	4	7	.81	1.43
12.95 - 13.14 13.15 - 13.34	13 6	20	2.65	4.07
13.35 - 13.54	17	26 43	1.22 3.46	5.30 8.76
13.55 - 13.74	17	60	3.46	12.22
13.75 - 13.94	17	77	3.46	15.68
13.95 - 14.14	25	102	5.09	20.77
14.15 - 14.34	29	131	5.91	26.68
14.35 - 14.54	39	170	7.94	34.62
14.55 - 14.74	40	210	8.15	42.77
14.75 - 14.94	36	246	7.33	50.10
14.95 - 15.14	57	303	11.61	61.71
15.15 - 15.34	32	335	6.52	68.23
15.35 - 15.54	33	368	6.72	74.95
15.55 - 15.74	23	391	4.68	79.63
15.75 - 15.94	27	418	5.50	85.13
15.95 - 16.14	16	434	3.26	88.39
16.15 - 16.34	17	451	3.46	91.85
16.35 - 16.54	15	466	3.05	94.91
16.55 - 16.74	9	475	1.83	96.74
16.75 - 16.94	-5	480	1.02	97.76
16.95 - 17.14	7	487	1.43	99.19
17.15 - 17.34	2	489	.41	99.59
17.35 - 17.54	1	490	.20	99.80
17.55 - 17.74	1	491	.20	100.00

VARIABLE NO. 27--OUTSIDE BOF LENGTH

MAJ	1	D	AT	A
17A		DA	71	А

FEMALE DATA

3/2	*	*	35	×

PERCENTILE: CENTIMETERS	INCHES	PERCENTILES CENTIMETERS INCHES
14.29 1ST 14.55 2ND 14.72 3RD 14.97 5TH 15.35 10TH 15.61 15TH 15.82 20TH 16.00 25TH 16.15 30TH 16.30 35TH 16.43 40TH 16.56 45TH 16.68 50TH 16.81 55TH 16.93 60TH 17.06 65TH	5.63 5.73 5.80 5.89 6.04 6.15 6.23 6.30 6.36 6.42 6.47 6.52 6.57 6.62 6.67 6.72 6.77 6.82 6.89 6.96	12.79 1ST 5.04 13.00 2ND 5.12 13.14 3RD 5.17 13.34 5TH 5.25 13.66 10TH 5.38 13.89 15TH 5.47 14.08 20TH 5.54 14.25 25TH 5.61 14.39 30TH 5.67 14.53 35TH 5.72 14.66 40TH 5.77 14.79 45TH 5.82 14.92 50TH 5.87 15.05 55TH 5.92 15.17 60TH 5.97 15.31 65TH 6.03 15.45 70TH 6.08 15.60 75TH 6.08 15.60 75TH 6.14 15.76 80TH 6.21 15.96 85TH 6.28 16.20 90TH 6.38
18.30 95TH 18.56 97TH 18.77 98TH 19.12 99TH	7.20 7.31	16.55 95TH 6.51 16.77 97TH 6.60 16.93 98TH 6.67 17.18 99TH 6.77
* * * * * THE SUMMARY STATE CENTIMETERS	ISTICS INCHES	* * * * * THE SUMMARY STATISTICS CENTIMETERS INCHES
	6.56 .02 .40	14.92 MEAN 5.87 .04 SE(M) .02 .98 ST DEV .39 .03 SE(SD) .01
COEFF. OF VARIATION SYMMETRYVETA I KURTOSISVETA II * * * * *	.01	SYMMETRYVETA I07
NUMBER OF SUBJECTS	293	NUMBER OF SUBJECTS 491

28. 5th Toe Length

Landmark: None

Instrument: Footboard and plain block

<u>Position of Subject</u>: Subject stands erect, right foot in the right measuring box, left foot in the left measuring box, and weight distributed equally on both feet. The right foot is positioned so that its medial side is parallel to the edge of the box, the heel touches the rear of the box, and the 5th metartarsal-phalangeal joint is approximately 10 cm from the side of the box.

<u>Procedure</u>: With a plain block touching the foot at the anterior tip of the 5th toe, measure on the scale of the box the length from the heel to the tip of the 5th toe.

INTERVALS		FREO	UENCIES -	-
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.		PCTFQ.
18.55 - 18.74	2	2	.69	.69
18.75 - 18.94	0	2	.00	.69
18.95 - 19.14	1	3	.34	1.03
19.15 - 19.34	0	3	.00	1.03
19.35 - 19.54	3	6	1.03	2.07
19.55 - 19.74	5	11	1.72	3.79
19.75 - 19.94	7	18	2.41	6.21
19.95 - 20.14	7	25	2.41	8.62
20.15 - 20.34	8	33	2.76	11.38
20.35 - 20.54	16	49	5.52	16.90
20.55 - 20.74	7	56	2.41	19.31
20.75 - 20.94	15	71	5.17	24.48
20.95 - 21.14	18	89	6.21	30.69
21.15 - 21.34	21	110	7.24	37.93
21.35 - 21.54	27	137	9.31	47.24
21.55 - 21.74	18	155	6.21	53.45
21.75 - 21.94	21	176	7.24	60.69
21.95 - 22.14	11	187	3.79	64.48
22.15 - 22.34	15	202	5.17	69.66
22.35 - 22.54	15 .	217	5.17	74.83
22.55 - 22.74	14	231	4.83	79.66
22.75 - 22.94	21	252	7.24	86.90
22.95 - 23.14	9	261	3.10	90.00
23.15 - 23.34	5	266	1.72	91.72
23.35 - 23.54	7	273	2.41	94.14
23.55 - 23.74	4	277	1.38	95.52
23.75 - 23.94	4	281	1.38	96.90
23.95 - 24.14	4	285	1.38	98.28
24.15 - 24.34	3	288	1.03	99.31
24.35 - 24.54	1	289	.34	99.66
24.55 - 24.74	0	289	.00	99.66
24.75 - 24.94	0	289	.00	99.66
24.95 - 25.14	1	290	.34	100.00

VARIABLE NO. 28--5TH TOE LENGTH FEMALE DATA

INTERVALS	ACTUAL FREQ.	FREQ CUM FREQ.	PCT FREQ.	CUM PCTFQ.
14.95 - 15.14	1	1	.20	.20
15.15 - 15.34	0	1	.00	.20
15.35 - 15.54	1	2	.20	.41
15.55 - 15.74	0	2	.00	.41
15.75 - 15.94	0	2	.00	.41
15.95 - 16.14	0	2	.00	.41
16.15 - 16.34	1	3	.20	.61
16.35 - 16.54	0	3	.00	.61
16.55 - 16.74	0	3	.00	.61
16.75 - 16.94	0	3	.00	.61
16.95 - 17.14	3	6	.61	1.23
17.15 - 17.34	4	10	.82	2.04
17.35 - 17.54	6	16	1.23	3.27
17.55 - 17.74	9	25	1.84	5.11
17.75 - 17.94	9	34	1.84	6.95
17.95 - 18.14	15	49	3.07	10.02
18.15 - 18.34	15	64	3.07	13.09
18.35 - 18.54	16	80	3.27	16.36
18.55 - 18.74	28	108	5.73	22.09
18.75 - 18.94	27	135	5.52	27.61
18.95 - 19.14	35	170	.7.16	34.76
19.15 - 19.34	45	215	9.20	43.97
19.35 - 19.54	24	239	4.91	48.88
19.55 - 19.74	39	278	7.98	56.85
19.75 - 19.94	34	312	6.95	63.80
19.95 - 20.14	40	352	8.18	71.98
20.15 - 20.34	21	373	4.29	76.28
20.35 - 20.54	26	399	5.32	81.60
20.55 - 20.74	14	413	2.86	84.46
20.75 - 20.94	17	430	3.48	87.93
20.95 - 21.14	17	447	3.48	91.41
21.15 - 21.34	17	464	3.48	94.89
21.35 - 21.54	8	472	1.64	96.52
21.55 - 21.74 21.75 - 21.94	5	477	1.02	97.55
	5 2	482	1.02	98.57
21.95 - 22.14 22.15 - 22.34	2	484	.41	98.98
	3	486	.41	99.39
22.35 - 22.54	3	489	.61	100.00

VARIABLE NO. 28--5TH TOE LENGTH

MALE DATA

FEMALE DATA

×	3,6	*	35	*

PERCENTILES CENTIMETERS	INCHES	PERCENTILES CENTIMETERS INCHES
19.16 1ST 19.47 2ND 19.65 3RD 19.90 5TH 20.28 1OTH 20.53 15TH 20.74 2OTH 20.92 25TH 21.08 3OTH 21.24 35TH 21.39 4OTH 21.54 45TH 21.68 5OTH 21.68 5OTH 21.83 55TH 21.99 6OTH 22.15 65TH 22.32 7OTH	7.54 7.66 7.74 7.83 7.98 8.08 8.16 8.24 8.30 8.36 8.42 8.54 8.60 8.66 8.72 8.79 8.86 8.94 9.03 9.15 9.32 9.42	17.05 1ST 6.71 17.34 2ND 6.83 17.53 3RD 6.90 17.78 5TH 7.00 18.17 10TH 7.15 18.43 15TH 7.26 18.64 20TH 7.34 18.83 25TH 7.41 18.99 30TH 7.48 19.14 35TH 7.54 19.29 40TH 7.59 19.43 45TH 7.65 19.57 50TH 7.70 19.71 55TH 7.76 19.85 60TH 7.81 19.99 65TH 7.87 20.15 70TH 7.93 20.32 75TH 8.00 20.50 80TH 8.07 20.72 85TH 8.16 20.99 90TH 8.27 21.40 95TH 8.42 21.66 97TH 8.53 21.85 98TH 8.60 22.15 99TH 8.72
. * * * * *		* * * *
THE SUMMARY STATI	INCHES	THE SUMMARY STATISTICS CENTIMETERS INCHES
21.72 MEAN .07 SE(M) 1.14 ST DEV .05 SE(SD)	.03	19.57 MEAN 7.70 .05 SE(M) .02 1.12 ST DEV .44 .04 SE(SD) .01
COEFF. OF VARIATION SYMMETRYVETA I KURTOSISVETA II * * * * * *	.07	SYMMETRYVETA I14
NUMBER OF SUBJECTS	2 90	NUMBER OF SUBJECTS 489

29. BOF Length, Left

Landmark: 5th metatarsal-phalangeal protrusion, medial aspect

Instrument: Footboard and plain block

<u>Position of Subject</u>: Subject stands erect, left foot in the left measuring box, right foot in the right measuring box, and weight distributed equally on both feet. The left foot is positioned so that its medial side is parallel to the side of the box, the heel touches the rear of the box, and the 5th metatarsal-phalangeal joint touches the side of the box.

<u>Procedure</u>: With a plain block touching the widest part of the left foot at the medial landmark of the 1st metatarsal-phalangeal joint, measure on the scale of the box the length from the heel to the ball of the foot.

[SEE BOF LENGTH, RIGHT FOR PHOTOGRAPH]

INTERVALS	ACTUAL FREQ.	FREQU CUM FREQ.	PCT FREQ.	CUM PCTFQ.
16.75 - 16.94 16.95 - 17.14 17.15 - 17.34 17.35 - 17.54 17.55 - 17.74 17.75 - 17.94 17.95 - 18.14 18.15 - 18.34 18.35 - 18.54 18.55 - 18.74 18.75 - 18.94 18.95 - 19.14 19.15 - 19.34 19.35 - 19.54 19.35 - 19.54 19.55 - 19.74 19.75 - 19.94 19.95 - 20.14 20.15 - 20.34	FREQ. 1 1 1 5 3 5 13 9 28 11 19 16 17 25 18 12 26 23	FREQ. 1 2 3 8 11 16 29 38 66 77 96 112 129 154 172 184 210 233	.34 .34 .34 1.71 1.02 1.71 4.44 3.07 9.56 3.75 6.48 5.46 5.80 8.53 6.14 4.10 8.87 7.85	PCTFQ. .34 .68 1.02 2.73 3.75 5.46 9.90 12.97 22.53 26.28 32.76 38.23 44.03 52.56 58.70 62.80 71.67 79.52
20.35 - 20.54 20.55 - 20.74 20.75 - 20.94 20.95 - 21.14 21.15 - 21.34 21.35 - 21.54 21.55 - 21.74 21.75 - 21.94 21.95 - 22.14 22.15 - 22.34 22.35 - 22.54 22.55 - 22.74	9 10 9 8 4 4 4 4 1 3 2 2	242 252 261 269 273 277 281 285 286 289 291 293	3.07 3.41 3.07 2.73 1.37 1.37 1.37 1.37 .34 1.02 .68	82.59 86.01 89.08 91.81 93.17 94.54 95.90 97.27 97.61 98.63 99.32 100.00

INTERVALS		FREQUENCIES			
	ACTUA			CUM	
	FREQ.	FREQ.	FREQ.	PCTFQ.	
	•				
10.75 - 10.94	1	1	.20	.20	
10.95 - 11.14	0	1	.00	.20	
11.15 - 11.34	0	1	.00	.20	
11.35 - 11.54		1	.00	.20	
11.55 - 11.74		1	.00	.20	
11.75 - 11.94		1	.00	.20	
11.95 - 12.14		1	.00	.20	
12.15 - 12.34		1	.00	.20	
12.35 - 12.54		ī	.00	.20	
12.55 - 12.74		ī	.00	.20	
12.75 - 12.94		1	.00	.20	
12.95 - 13.14		1	.00	.20	
13.15 - 13.34		1	.00	.20	
13.35 - 13.54		1	.00	.20	
13.55 - 13.74		1			
13.75 - 13.94		3	.00	.20	
13.95 - 14.14		3	. 41	.61	
			.00	.61	
		3	.00	.61	
14.35 - 14.54		4	.20	.82	
14.55 - 14.74		5	.20	1.02	
14.75 - 14.94		5	.00	1.02	
14.95 - 15.14		6	.20	1.22	
15.15 - 15.34		6	.00	1.22	
15.35 - 15.54		6	.00	1.22	
15.55 - 15.74		12	1.22	2.45	
15.75 - 15.94		20	1.63	4.08	
15.95 - 16.14		36	3.27	7.35	
16.15 - 16.34		48	2.45	9.80	
16.35 - 16.54		67	3.88	13.67	
16.55 - 16.74		92	5.10	18.78	
16.75 - 16.94		109	3.47	22.24	
16.95 - 17.14	46	155	9.39	31.63	
17.15 - 17.34	37	192	7.55	39.18	
17.35 - 17.54	43	235	8.78	47.96	
17.55 - 17.74	33	268	6.73	54.69	
17.75 - 17.94	28	296	5.71	60.41	
17.95 - 18.14		330	6.94	67.35	
18.15 - 18.34	35	365	7.14	74.49	
18.35 - 18.54		393	5.71	80.20	
18.55 - 18.74		419	5.31	85.51	
18.75 - 18.94		441	4.49	90.00	
18.95 - 19.14		462	4.29	94.29	
19.15 - 19.34		468	1.22	95.51	
19.35 - 19.54		476	1.63	97.14	
19.55 - 19.74		478	.41	97.55	
19.75 - 19.94		483	1.02	98.57	
19.95 - 20.14		485			
20.15 - 20.34			.41	98.98	
		488	.61	99.59	
20.35 - 20.54	2	490	.41	100.00	

VARIABLE NO. 29--BOF LENGTH, LEFT

MALE DATA

FEMALE DATA

ar.	*	*	*	*

PERCENTILE:	S	PERCENTILES
CENTIMETERS	INCHES	CENTIMETERS INCHES
17.31 1ST	6.82	14.94 1ST 5.88
17.50 2ND	6.89	15.43 2ND 6.07
17.64 3RD	6.94	15.69 3RD 6.18
17.83 5TH	7.02	16.01 5TH 6.30
18.14 10TH	7.14	16.43 10TH 6.47
18.37 15TH	7.23	16.68 15TH 6.57
18.56 2 0TH	7.31	16.86 20TH 6.64
18.73 25TH	7.38	17.02 25TH 6.70
18.89 30TH	7.44	17.15 30TH 6.75
19.04 35TH	7.50	17.28 35TH 6.80
19.18 40TH	7.55	17.40 40TH 6.85
19.33 45TH	7.61	17.52 45TH 6.90
19.47 50TH	7.66	17.63 50TH 6.94
19.61 55TH	7.72	17.75 55TH 6.99
19.76 60TH	7.78	17.88 60TH 7.04
19.92 65TH	7.84	18.01 65TH 7.09
20.09 70TH	7.91	18.15 70TH 7.15
20.28 75TH	7.98	18.31 75TH 7.21
20.49 80TH	8.07	18.49 80TH 7.28
20.74 85TH	8.17	18.70 85TH 7.36
21.07 90TH	8.29	18.98 90TH 7.47
21.56 95TH	8.49	19.38 95TH 7.63
21.89 97TH	8.62	19.64 97TH 7.73
22.14 98TH	8.71	19.82 98TH 7.80
	8.87	20.07 99TH 7.90
* * * * *		* * * * *
36 36 36 36 36		* * * * *
THE SUMMARY STATE	ISTICS	THE SUMMARY STATISTICS
CENTIMETERS	INCHES	CENTIMETERS INCHES
19.55 MEAN	7.70	17.64 MEAN 6.94
.07 SE(M)	.03	.05 SE(M) .02
1.12 ST DEV		1.07 ST DEV .42
.05 SE(SD)		.03 SE(SD) .01
* * * *		* * * *
COEFF. OF VARIATION	5.7%	COEFF. OF VARIATION 6.1%
SYMMETRYVETA I	.34	
KURTOSISVETA II		
* * * *		* * * * *
NUMBER OF SUBJECTS	293	NUMBER OF SUBJECTS 490

30. Foot Length, Left

Landmark: None

Instrument: Footboard and plain block

<u>Position of Subject</u>: Subject stands erect, left foot in the left measuring box, right foot in the right measuring box, and weight distributed equally on both feet. The left foot is positioned so that its medial side is parallel to the side of the box, the heel touches the rear of the box, and the 5th metatarsal-phalangeal joint touches the side of the box.

<u>Procedure</u>: With a plain block touching the anterior tip of the most protruding toe, measure on the scale of the box the length of the left foot. Record the most protruding toe.

[SEE FOOT LENGTH, RIGHT FOR PHOTOGRAPH]

VARIABLE NO. 30--FOOT LENGTH, LEFT MALE DATA

	ACTUAL FREQ.	FREQU CUM FREQ.	PCT FREQ.	CUM PCTFQ.
23.75 - 23.94	1	1	.34	.34
23.95 - 24.14	2	3	.68	1.03
24.15 - 24.34	0	3	.00	1.03
24.35 - 24.54	9	12	3.08	4.11
24.55 - 24.74	4	16	1.37	5.48
24.75 - 24.94	4	20	1.37	6.85
24.95 - 25.14	5	25	1.71	8.56
25.15 - 25.34	10	35	3.42	11.99
25.35 - 25.54	11	46	3.77	15.75
25.55 - 25.74	10	56	3.42	19.18
25.75 - 25.94	18	74	6.16	25.34
25.95 - 26.14	8	82	2.74	28.08
26.15 - 26.34	19	101	6.51	34.59
26.35 - 26.54	19	120	6.51	41.10
26.55 - 26.74	10	130	3.42	44.52
26.75 - 26.94	13	143	4.45	48.97
26.95 - 27.14	28	171	9.59	58.56
27.15 - 27.34	21	192	7.19	65.75
27.35 - 27.54	8	200	2.74	68.49
27.55 - 27.74	10	210	3.42	71.92
27.75 - 27.94	16	226	5.48	77.40
27.95 - 28.14	19	245	6.51	83.90
28.15 - 28.34	7	252	2.40	86.30
28.35 - 28.54	12	264	4.11	90.41
28.55 - 28.74	1	265	.34	90.75
28.75 - 28.94	7	272	2.40	93.15
28.95 - 29.14	5	277	1.71	94.86
29.15 - 29.34	4	281	1.37	96.23
29.35 - 29.54	3	284	1.03	97.26
29.55 - 29.74	2	286	.68	97.95
29.75 - 29.94	0	286	.00	97.95
29.95 - 30.14	5	291	1.71	99.66
30.15 - 30.34	1	292	.34	100.00

VARIABLE NO. 30--FOOT LENGTH, LEFT FEMALE DATA

INTERVALS		FREQU	ENCIES	
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
19.35 - 19.54	1	1	.20	.20
19.55 - 19.74	1	2	.20	.41
19.75 - 19.94	0	2	.00	.41
19.95 - 20.14	0	2	.00	.41
20.15 - 20.34	0	2	.00	.41
20.35 - 20.54	1	3	.20	.61
20.55 - 20.74	0	3	.00	.61
20.75 - 20.94	0	3	.00	.61
20.95 - 21.14	0	3	.00	.61
21.15 - 21.34	0	3	.00	.61
21.35 - 21.54	3	6	.61	1.22
21.55 - 21.74	2	8	.41	1.63
21.75 - 21.94	3	11	.61	2.24
21.95 - 22.14	7	18	1.43	3.67
22.15 - 22.34	9	27	1.83	5.50
22.35 - 22.54	10	37	2.04	7.54
22.55 - 22.74	19	56	3.87	11.41
22.75 - 22.94	9	65	1.83	13.24
22.95 - 23.14	24	89	4.89	18.13
23.15 - 23.34	14	103	2.85	20.98
23.35 - 23.54	31	134	6.31	27.29
23.55 - 23.74	24	158	4.89	32.18
23.75 - 23.94	20	178	4.07	36.25
23.95 - 24.14	31	209	6.31	42.57
24.15 - 24.34	43	252	8.76	51.32
24.35 - 24.54	27	279	5.50	56.82
24.55 - 24.74	20	299	4.07	60.90
24.75 - 24.94	30	329	6.11	67.01
24.95 - 25.14	31	3 60	6.31	73.32
25.15 - 25.34	25	385	5.09	78.41
25.35 - 25.54	21	406	4.28	82.69
25.55 - 25.74	13	419	2.65	85.34
25.75 - 25.94	11	430	2.24	87.58
25.95 - 26.14	17	447	3.46	91.04
26.15 - 26.34	17	464	3.46	94.50
26.35 - 26.54	11	475	2.24	96.74
26.55 - 26.74	5	480	1.02	97.76
26.75 - 26.94	2	482	.41	98.17
26.95 - 27.14	5	487	1.02	99.19
27.15 - 27.34	1	488	.20	99.39
27.35 - 27.54	2	490	.41	99.80
27.55 - 27.74	0	490	.00	99.80
27.75 - 27.94	0	490	.00	99.80
27.95 - 28.14	0	490	.00	99.80
28.15 - 28.34	0	490	.00	99.80
28.35 - 28.54	1	491	.20	100.00

VARIABLE NO. 30--FOOT LENGTH, LEFT

MALE DATA		FEMALE DATA	
* * * * *		* * * *	
PERCENTILE	S	PERCENTILES	
CENTIMETERS	INCHES	CENTIMETERS	INCHES
24.36 2ND 24.52 3RD 24.77 5TH 25.19 10TH 25.50 15TH 25.76 20TH 25.98 25TH 26.18 30TH 26.37 35TH 26.37 35TH 26.55 40TH 26.72 45TH 26.72 45TH 27.06 55TH 27.06 55TH 27.24 60TH 27.24 60TH 27.41 65TH 27.41 65TH 27.50 70TH 27.81 75TH 28.03 80TH 28.03 85TH 28.64 90TH	9.50 9.59 9.65 9.75 9.92 10.04 10.14 10.23 10.31 10.38 10.45 10.52 10.59 10.65 10.72 10.79 10.87 10.95 11.04 11.14 11.27 11.48 11.61	21.52 1ST 21.82 2ND 22.02 3RD 22.30 5TH 22.73 10TH 23.03 15TH 23.27 20TH 23.49 25TH 23.68 30TH 23.86 35TH 24.03 40TH 24.19 45TH 24.19 45TH 24.36 50TH 24.52 55TH 24.69 60TH 24.86 65TH 25.04 70TH 25.24 75TH 25.46 80TH 25.70 85TH 26.00 90TH 26.42 95TH 26.68 97TH	8.59 8.67 8.78 8.95 9.07 9.16 9.25 9.32 9.39 9.46 9.52 9.59 9.65 9.72 9.79 9.86 9.94
29.76 98TH 30.19 99TH	11.72	26.85 98TH 27.09 99TH	10.57
* * * * * THE SUMMARY STAT CENTIMETERS		* * * * * THE SUMMARY STATI	
26.91 MEAN .08 SE(M) 1.31 ST DEV .05 SE(SD)	.03	24.36 MEAN .06 SE(M) 1.28 ST DEV .04 SE(SD)	9.59 .02 .50 .02
COEFF. OF VARIATION SYMMETRYVETA I KURTOSISVETA II	.13	SYMMETRYVETA I	14

NUMBER OF SUBJECTS

491

292

NUMBER OF SUBJECTS

31. BOF Breadth, Horizontal, Left

Landmark: 1st metatarsal-phalangeal protrusion

Instrument: Footboard and plain block

<u>Position of Subject</u>: Subject stands erect, left foot in the left measuring box, right foot in the right measuring box, and weight distributed equally on both feet. The left foot is positioned so that its medial side is parallel to the side of the box, the heel touches the rear of the box, and the 5th metatarsal-phalangeal joint touches the side of the box.

<u>Procedure</u>: With a plain block touching the widest part of the left foot at the 1st metatarsal-phalangeal joint, measure on the scale of the box the breadth of the foot.

[SEE BOF BREADTH, HORIZONTAL, RIGHT FOR PHOTOGRAPH]

VARIABLE NO. 31--BOF BRDTH, HOZ, LEFT MALE DATA

INTERVALS		FREC	QUENCIES	-
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
	,		•	
8.85 - 8.94	1	1	.34	.34
8.95 - 9.04	8	9	2.75	3.09
9.05 - 9.14	5	14	1.72	4.81
9.15 - 9.24	4	18	1.37	6.19
9.25 - 9.34	7	25	2.41	8.59
9.35 - 9.44	5	30	1.72	10.31
9.45 - 9.54	15	45	5.15	15.46
9.55 - 9.64	14	59	4.81	20.27
9.65 - 9.74	23	82	7.90	28.18
9.75 - 9.84	19	101	6.53	34.71
9.85 - 9.94	14	115	4.81	39.52
9.95 - 10.04	49	164	16.84	56.36
10.05 - 10.14	9	173	3.09	59.45
10.15 - 10.24	8	181	2.75	62.20
10.25 - 10.34	14	195	4.81	67.01
10.35 - 10.44	22	217	7.56	74.57
10.45 - 10.54	27	244	9.28	83.85
10.55 - 10.64	5	249	1.72	85.57
10.65 - 10.74	6	255	2.06	87.63
10.75 - 10.84	8	263	2.75	90.38
10.85 - 10.94	3	266	1.03	91.41
10.95 - 11.04	10	276	3.44	94.85
11.05 - 11.14	5	281	1.72	96.56
11.15 - 11.24	2	283	.69	97.25
11.25 - 11.34	1	284	.34	97.59
11.35 - 11.44	1	285	.34	97.94
11.45 - 11.54	5	290	1.72	99.66
11.55 - 11.64	1	291	.34	100.00

VARIABLE NO. 31--BOF BRDTH, HOZ, LEFT FEMALE DATA

INTERVALS		FREQ	UENCIES	-
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
7.65 - 7.74	1	1	.20	.20
7.75 - 7.84	0	1	.00	.20
7.85 - 7.94	0	1	.00	.20
7.95 - 8.04	5	6	1.02	1.22
8.05 - 8.14	2	8	.41	1.63
8.15 - 8.24	8	16	1.63	3.27
8.25 - 8.34	14	30	2.86	6.12
8.35 - 8.44	13	43	2.65	8.78
8.45 - 8.54	23	66	4.69	13.47
8.55 - 8.64	21	87	4.29	17.76
8.65 - 8.74	30	117	6.12	23.88
8.75 - 8.84	19	136	3.88	27.76
8.85 - 8.94	24	160	4.90	32.65
8.95 - 9.04	85	245	17.35	50.00
9.05 - 9.14	35	280	7.14	57.14
9.15 - 9.24	30	310	6.12	63.27
9.25 - 9.34	39	349	7.96	71.22
9.35 - 9.44	26	375	5.31	76.53
9.45 - 9.54	31	406	6.33	82.86
9.55 - 9.64	15	421	3.06	85.92
9.65 - 9.74	17	438	3.47	89.39
9.75 - 9.84	11	449	2.24	91.63
9.85 - 9.94	14	463	2.86	94.49
9.95 - 10.04	16	479	3.27	97.76
10.05 - 10.14	3	482	.61	98.37
10.15 - 10.24	4	486	.82	99.18
10.25 - 10.34	0	486	.00	99.18
10.35 - 10.44	1	487	.20	99.39
10.45 - 10.54	3	490	.61	100.00

VARIABLE NO. 31--BOF BRDTH, HOZ, LEFT

MALE	DATA

FEMALE DATA

*	st.	*	*	*

PERCENT CENTIMETERS			PI CENTIMETER	ERCENTILE:	INCHES
	11101120		Carra Tim Tm	(3	INCHES
8.92 15	3.51		8.03	15T	3 16
9.03 2N				2ND	
9.11 3R				3RD	
9.22 51			8.34		
9.39 107			8.50		
9.51 157			8.61		
9.61 201			8.69		
9.69 251			8.77		
9.77 301			8.84		
9.85 351			8.90		
9.92 401			8.97		
9.99 451			9.03		
10.05 501			9.09		
10.12 557			9.15		
10.20 601			9.21		
10.27 65T			9.28		
10.35 701			9.28		3.65
					3.68
10.44 751			9.43		3.71
10.54 801			9.52		3.75
10.66 851			9.62		3.79
10.82 907			9.74		3.84
11.06 951			9.93		3.91
11.23 971			10.04		3.95
11.36 98T 11.57 99T			10.11		3.98
11.57 991	л 4.56		10.22	99TH	4.03
* * * *	: *		*	* * * *	
THE CHANADA C	TATICTICC		THE CHAN	(ADV CTAT)	CTT CC
THE SUMMARY S	INCHES			MARY STAT	
CENTIMETERS	INCHES		CENTIMETER	(5	INCHES
10.09 MEA	N 3.97		0 11	MEAN	3.59
.03 SE (M			.02		
.55 ST D	SD) .01		. 47	ST DEV SE(SD)	.01
. 02 SE (S	.01		.02	SE (SD)	.01
* * * *	* *		*	* * * *	
COFFE OF WARTER	TON E E	•/	COFFE OF	7 A D T A T T C 2 T	F 29
COEFF. OF VARIAT			COEFF. OF V		
SYMMETRYVETA			SYMMETRY		
KURTOSISVETA	· II0	10	KURTOSIS	-VEIA II	11
* * * *	* *		a/c	* * * *	
NUMBER OF SUBJEC	CTS 29	1	NUMBER OF S	SUBJECTS	490

32. Bimalleolar Breadth

Landmark: None

<u>Instrument</u>: Footboard and anthropometer configured as a beam caliper

<u>Position of Subject</u>: Subject stands erect, left foot in the left measuring box, right foot in the right measuring box, and weight distributed equally on both feet.

<u>Procedure</u>: With a beam caliper held horizontally, adjust the arms of the caliper so that they just brush the medial and lateral malleoli when the arms are moved up and down, parallel to the long axis of the foot.

VARIABLE NO. 32--BIMALLEOLAR BRDTH MALE DATA

INTERVALS		FREQ	UENCIES -	-
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
	•	3007 - 3000 (300 and 300 and 3		
6.05 - 6.14	1	1	.34	.34
6.15 - 6.24	0	1	.00	.34
6.25 - 6.34	0	1	.00	.34
6.35 - 6.44	2	3	.68	1.02
6.45 - 6.54	4	7	1.37	2.39
6.55 - 6.64	10	17	3.41	5.80
6.65 - 6.74	6	23	2.05	7.85
6.75 - 6.84	18	41	6.14	13.99
6.85 - 6.94	10	51	3.41	17.41
6.95 - 7.04	24	75	8.19	25.60
7.05 - 7.14	28	103	9.56	35.15
7.15 - 7.24	23	126	7.85	43.00
7.25 - 7.34	43	169	14.68	57.68
7.35 - 7.44	23	192	7.85	65.53
7.45 - 7.54	23	215	7.85	73.38
7.55 - 7.64	17	232	5.80	79.18
7.65 - 7.74	15	247	5.12	84.30
7.75 - 7.84	15	262	5.12	89.42
7.85 - 7.94	11	273	3.75	93.17
7.95 - 8.04	12	285	4.10	97.27
8.05 - 8.14	3	288	1.02	98.29
8.15 - 8.24	4	292	1.37	99.66
8.25 - 8.34	0	292	.00	99.66
8.35 - 8.44	0	292	.00	99.66
8.45 - 8.54	1	293	.34	100.00

VARIABLE NO. 32-BIMALLEOLAR BRDTH FEMALE DATA

INTERVALS		FREQ	UENCIES	
*	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
	•	•	•	
5.45 - 5.54	2	2	.41	.41
5.55 - 5.64	1	3	.20	.61
5.65 - 5.74	3	6	.61	1.22
5.75 - 5.84	9	15	1.83	3.05
5.85 - 5.94	10	25	2.04	5.09
5.95 - 6.04	23	48	4.68	9.78
6.05 - 6.14	26	74	5.30	15.07
6.15 - 6.24	34	108	6.92	22.00
6.25 - 6.34	40	148	8.15	30.14
6.35 - 6.44	64	212	13.03	43.18
6.45 - 6.54	51	263	10.39	53.56
6.55 - 6.64	60	323	12.22	65.78
6.65 - 6.74	46	369	9.37	75.15
6.75 - 6.84	41	410	8.35	83.50
6.85 - 6.94	23	433	4.68	88.19
6.95 - 7.04	26	459	5.30	93.48
7.05 - 7.14	12	471	2.44	95.93
7.15 - 7.24	12	483	2.44	98.37
7.25 - 7.34	4	487	.81	99.19
7.35 - 7.44	2	489	.41	99.59
7.45 - 7.54	2	491	.41	100.00

VARIABLE NO. 32-BIMALLEOLAR BRDTH

MALE DATA	FEMALE DATA
* * * *	* * * * *
PERCENTILES	PERCENTILES
CENTIMETERS INCHES	CENTIMETERS INCHES
6.43 1ST 2.53	5.70 1ST 2.25
6.52 2ND 2.57	5.80 2ND 2.28
6.58 3RD 2.59	5.86 3RD 2.31
6.66 5TH 2.62	5.94 5TH 2.34
6.79 10TH 2.67	6.07 10TH 2.39
6.88 15TH 2.71	6.15 15TH 2.42
6.96 20TH 2.74	6.22 20TH 2.45
7.02 25TH 2.77	6.28 25TH 2.47
7.08 30TH 2.79	6.33 30TH 2.49
7.14 35TH 2.81	6.38 35TH 2.51
7.20 40TH 2.83	6.43 40TH 2.53
7.25 45TH 2.85	6.47 45TH 2.55
7.30 50TH 2.87	6.52 50TH 2.57
7.36 55TH 2.90	6.56 55TH 2.58
7.41 60TH 2.92	6.61 60TH 2.60
7.47 65TH 2.94	6.65 65TH 2.62
7.53 70TH 2.96	6.70 70TH 2.64
	6.76 75TH 2.66
7.66 80TH 3.02	6.82 80TH 2.68
7.74 85TH 3.05	6.89 85TH 2.71
7.84 90TH 3.09	6.97 90TH 2.75
7.98 95TH 3.14	7.10 95TH 2.80
8.06 97TH 3.17	7.18 97TH 2.83
8.12 98TH 3.20	7.24 98TH 2.85
8.20 99TH 3.23	7.33 99TH 2.89
* * * *	ate ate ate
THE SUMMARY STATISTICS	THE SUMMARY STATISTICS
CENTIMETERS INCHES	CENTIMETERS INCHES
7.31 MEAN 2.88	6.52 MEAN 2.57
.02 SE(M) .01	.02 SE(M) .01
.40 ST DEV .16	.35 ST DEV .14
.02 SE(SD) .01	.01 SE(SD) .00
* * * *	* * * *
COEFF. OF VARIATION 5.5%	COEFF. OF VARIATION 5.4%
SYMMETRYVETA I .06	
KURTOSISVETA II21	
VOKIOSIS VEIM II ZI	NORTOSIS VETA II US

NUMBER OF SUBJECTS

491

293

NUMBER OF SUBJECTS

33. 1st-3rd Toe Breadth

Landmark: None

<u>Instrument</u>: Anthropometer configured as a beam caliper

<u>Position of Subject</u>: Subject stands erect, feet slightly apart, and weight distributed equally on both feet.

<u>Procedure</u>: With a beam caliper perpendicular to the long axis of the foot, measure the maximum breadth from the medial border of the 1st (great) toe to the lateral border of the 3rd toe.

VARIABLE NO. 33--1ST-3RD TOE BRDTH MALE DATA

INTERVALS		FREOU	ENCIES	
	ACTUAL	CUM	PCT	CUM
	FREQ.	FREQ.	FREQ.	PCTFQ.
	INLQ.	INLQ.	IREQ.	rcirq.
5.45 - 5.54	1	1	.34	.34
5.55 - 5.64	0	1	.00	.34
5.65 - 5.74	0.	1	.00	.34
5.75 - 5.84	1	2	.34	.68
5.85 - 5.94	2	4	.68	1.37
5.95 - 6.04	1	5	.34	1.71
6.05 - 6.14	2	7	.68	2.39
6.15 - 6.24	4	11	1.37	3.75
6.25 - 6.34	4	15	1.37	5.12
6.35 - 6.44	4	19	1.37	6.48
6.45 - 6.54	8	27	2.73	9.22
6.55 - 6.64	19	46	6.48	15.70
6.65 - 6.74	15	61	5.12	20.82
6.75 - 6.84	23	84	7.85	28.67
6.85 - 6.94	12	96	4.10	32.76
6.95 - 7.04	17	113	5.80	38.57
7.05 - 7.14	23	136	7.85	46.42
7.15 - 7.24	20	156	6.83	53.24
7.25 - 7.34	23	179	7.85	61.09
7.35 - 7.44	28	207	9.56	70.65
7.45 - 7.54	10	217	3.41	74.06
7.55 - 7.64	21	238	7.17	81.23
7.65 - 7.74	15	253	5.12	86.35
7.75 - T.84	11	264	3.75	90.10
7.85 - 7.94	7	271	2.39	92.49
7.95 - 8.04	6	277	2.05	94.54
8.05 - 8.14	0	277	.00	94.54
8.15 - 8.24	6	283	2.05	96.59
8.25 - 8.34	5	288	1.71	98.29
8.35 - 8.44	4	292	1.37	99.66
8.45 - 8.54	0	292	.00	99.66
8.55 - 8.64	0	292	.00	99.66
8.65 - 8.74	0	292	.00	99.66
8.75 - 8.84	1	293	.34	100.00

VARIABLE NO. 33--1ST-3RD TOE BRDTH FEMALE DATA

INTERV	ALS		FREQ	UENCIES	-
		ACTUAL	CUM	PCT	CUM
		FREQ.	FREQ.	FREQ.	PCTFQ.
5.25 -	5.34	1	1	.20	.20
5.35 -	5.44	3	4	.61	.81
5.45 -	5.54	5	9	1.02	1.83
5.55 -	5.64	8	17	1.63	3.46
5.65 -	5.74	7	24	1.43	4.89
5.75 -	5.84	19	43	3.87	8.76
5.85 -	5.94	20	63	4.07	12.83
5.95 -	6.04	31	94	6.31	19.14
6.05 -	6.14	33	127	6.72	25.87
6.15 -	6.24	40	167	8.15	34.01
6.25 -	6.34	39	206	7.94	41.96
6.35 -	6.44	42	248	8.55	50.51
6.45 -	6.54	36	284	7.33	57.84
6.55 -	6.64	49	333	9.98	67.82
6.65 -	6.74	46	379	9.37	77.19
6.75 -	6.84	45	424	9.16	86.35
6.85 -	6.94	16	440	3.26	89.61
6.95 -	7.04	19	459	3.87	93.48
7.05 -	7.14	5	464	1.02	94.50
7.15 -	7.24	16	480	3.26	97.76
7.25 -	7.34	3	483	.61	98.37
7.35 -	7.44	3	486	.61	98.98
7.45 -	7.54	1	487	.20	99.19
7.55 -	7.64	0	487	.00	99.19
7.65 -	7.74	1	488	.20	99.39
7.75 -	7.84	1	489	.20	99.59
7.85 -	7.94	2	491	.41	100.00

VARIABLE NO. 33--1ST-3RD TOE BRDTH

MALE DATA

FEMALE DATA

*	3,4	3/2	24	×

* * * * * *

PERCENTILE	:s	PERCE	NTILES
CENTIMETERS	INCHES	CENTIMETERS	INCHES
5.89 1ST 6.09 2ND 6.20 3RD 6.34 5TH 6.53 10TH 6.66 15TH 6.75 20TH	2.32 2.40 2.44 2.50 2.57 2.62 2.66	5.56 5.63 5.72 5.88 1 5.99 1	1ST 2.15 2ND 2.19 3RD 2.22 5TH 2.25 0TH 2.31 5TH 2.36 0TH 2.39
6.83 25TH 6.91 30TH 6.98 35TH 7.05 40TH 7.11 45TH 7.18 50TH	2.69 2.72 2.75 2.77 2.80 2.83	6.15 2: 6.21 3: 6.27 3: 6.33 4: 6.39 4: 6.44 5:	5TH 2.42 5TH 2.45 5TH 2.47 5TH 2.49 5TH 2.51 5TH 2.54
7.32 60TH 7.39 65TH 7.47 70TH 7.55 75TH 7.65 80TH	2.85 2.88 2.91 2.94 2.97 3.01 3.06	6.55 6 6.60 6 6.66 7 6.72 7 6.79 8	5TH 2.56 5TH 2.58 5TH 2.60 5TH 2.62 5TH 2.65 5TH 2.67 5TH 2.71
7.91 90TH 8.11 95TH 8.24 97TH 8.32 98TH	3.11 3.19 3.24 3.28 3.32	6.97 99 7.13 99 7.23 9 7.31 98	OTH 2.74 5TH 2.81 7TH 2.85 BTH 2.88 9TH 2.93
* * * * * THE SUMMARY STAT	ISTICS	* * * THE SUMMARY	
CENTIMETERS	INCHES	THE SUMMARY CENTIMETERS	INCHES
7.19 MEAN .03 SE(M) .53 ST DEV .02 SE(SD)		6.44 M .02 SE .43 ST .01 SE	DEV .17
* * * * *		sk sk sk	* *
COEFF. OF VARIATION SYMMETRYVETA I	.02	SYMMETRYVE	TA I .12 TA II .17
* * * * *		* * *	* *
NUMBER OF SUBJECTS	293	NUMBER OF SUBJ	ECTS 491

Chapter IV

BIVARIATE RELATIONSHIPS IN THE DATA

In the previous chapter each measurement was presented individually, that is, independently of one another. While the univariate summary statistics are essential to any anthropometric study, they do not reveal information about the interrelationships among specific pairs of variables. Within the realm of anthropometry, the statistical relationships that exist between pairs of variables, the bivariate relationships, are of extreme importance because they are crucial to the design of clothing and personal equipment and because they can be applied to a variety of ergonomic problems.

The purpose of this chapter is to present three useful ways in which bivariate relationships may be expressed. Specifically, these are bivariate frequency tables, correlation coefficients, and simple regression equations. In the following text it will be seen that the three are intimately tied to one another.

Bivariate Frequency Tables

A bivariate frequency table specifies the simultaneous distribution of individuals within uniform size categories of two variables. For example, consider the relationship between Foot Length and BOF Length among males in this study (see Table 22). Of the 290 males with information for both variables, 19 (6.6% of the total) fall within a bivariate size category of 26.0 - 26.4 cm for Foot Length and 19.0 - 19.4 cm for BOF Length, 20 (6.9%) fall within a size category 26.5 - 26.9 for Foot Length and 20.0 - 20.4 for BOF Length, and so on. In this manner all individuals are subsumed within a specific number of categories depending on the range of each variable and the increment size established for each variable.

In this report 37 bivariate tables per gender (74 total) are presented. Since the original variable count numbers 33, exactly 528 nonrepetitive bivariate combinations per gender (1056 total) would have been theoretically possible. However, this ponderous number of tables would include many bivariate combinations that have little or no intrinsic value for the design and sizing of footwear. The usefulness of a bivariate combination in the design and sizing of footwear and the applicability of a bivariate combination to biological interest were both used as selection criteria to determine which tables were to be included in this report.

The bivariate frequency tables presented in this section were initially generated by the Crosstabs procedure of SPSS (Nie et al., 1975), and then were modified to their present form. The general configuration of the tables is a matrix with uniform size increments encompassing the range of a variable across the top of the table (columns), and uniform size increments encompassing the range of another variable down the left margin of the table (rows). The column increments are in ascending order from left to right, and

the row increments are in descending order from top to bottom. All variable increments are given in centimeters except for Weight which is presented in kilograms. The increment size for the variables was set at either 0.2 cm, 0.5 cm, or 1.0 cm depending on the relative magnitude and the range of the measurement. The increment size for Stature among males and females is 2.0 cm. The increment sizes for male and female Weight are 3.0 kg and 2.5 kg, respectively. By using these increments the number of size categories for any particular variable does not exceed 20 nor fall below 11. As with the univariate frequency data, the increments are to be read as the first value through the second value.

Within the demarcated cells formed by the union of the columns and rows are the actual frequency counts and the corresponding percentages of the total number of individuals for each count. Column and row totals with percentages of the total are located at the bottom and right margins, respectively. The grand total of individuals is located in the lower right corner. All frequencies and percentages are presented in "piggyback" fashion with the counts over the percentages.

One other noticeable feature of the tables that requires mention is the sequential numbering of the increments (above the column increments and below the row increments). The numbers serve to alert the reader to missing increments. The missing increments occur because the Crosstabs procedure of SPSS (Nie et al. 1975) is designed to omit from printing any column or row labels which have no individuals falling within that particular size increment. This is clearly illustrated again in Table 22 where the distribution for Foot Length (VAR 25), the row variable, skips increments from 1 to 5. This feature should be borne in mind when reading the tables.

As is evident, all tables are placed in broad aspect on the page. To accomplish this, it was necessary to utilize the variable with the greater number of increments as the column variable. This was done for the majority of the tables except in a few cases where the number of increments for the row variable exceeded that of the column variable by only one or two increments. Finally, in following the general pattern used throughout this report, the bivariate tables for males (Tables 11 to 47) are presented before those for females (Tables 48 to 84).

	VAR21																				
	IS1.0 - I 53.9	56.9	57.0 - 59.9	60.0 - 62.9	63.0 - 65.9	68.9	71.9	74.9	77.9	80.9	81.0 - 83.9 I 11	86.9	89.9	92.9	93.0 - 95.9	98.9	99.0 - 101.9 I 17	102.0 - 104.9 I 18	107.9	110.9	ROW TOTAL I
		I 2 I	1 3	I 4 I			I 7		! 9 . !	[10]	1	I 1	[1				i		i	I I 1
17 26.5-26.9	I	I I	I I	I I	I I	1 1	1	!	I I	! !	i I	i I	i 	i 	i I	i I	i I	.3 	! !	I I	1 .3 1
16 26.0-26.4		I	I	[[I I	ľ	, i	I I	I I	I 1 I .3		I 1 I .3	1	I I	I I	I I	I I	I I	I I	I 2 I .7
	1	i :	i	I	i :	i	I	t t	1 1	I	I I	I I	I	I 1	I	I 1	I	1 1	<u> </u>	! !	1 2
25.5-25.9		i i	ī 1	i !	i 1	I I	[[[! !	! !	1 !	i 	i 	I .3	I 	I .3	I I	! [ı 1	! [
14 25.0-25.4	I	I I	1 1	I I	I I	! !	I I	[[[! ! !	1 [[1 1 [3 [i .3	I .7	i .3	.3	•	: ! !	i i i	i I	I 2.1
13 24.5-24.9		1 1 1	I	[[[I I	I I	1 1 1 .3	i i	I 1 I .3	I 1 I .3	I 2 I .7	I 2 I .7	I 1 I .3	1 2 1 .7	I 1 I .3	I I	1	I 1 I .3	I 1 I .3	I I	1 13
12		I I	I	[[[I	I 2		[[[[I 4	I 4 I 1.4	1 4 I 1.4	I 4	[2 [7	1	I 1	I I	i !	1	I 22 I 7.6
24.0-24.4	1	I 1	I I	[[I I	I I	I .7 I		! !	1 .3	[i	1	1 2	i'	i	i	i	i : :	i	I I 23
23.5-23.9	I	I I	I I	I I	[[I I	1 2 1 .7	.3	1 1.0	1 1.4	i 1.0	i 1.0	i .3	i .7	•	i .3	i .3	1 .3 1	i I	E. 1	1
10 23.0-23.4	ī	I I	[[[[[I 2 I .7	I 3 I 1.0	i I	i 4 i 1.4	I 4 I 1.4	I 2 I .7	1 7 1 2.4	I 4 I 1.4	1 1 1 .3	I 2 I .7	•	i	I I	I I	I I *	I I	I 29 I 10.0
- 9 22.5-22.9		I I	I	I 1 I 3	I 2	I 2	I 3 I 1.0	I I 2 I .7	I 6 I 2.1	I 3 I 1.0	I 4 I 1.4	ī	i 2	i 2 i .7		I 1 I .3	I I I .3	I I	I I	I I	1 30 1 10.3
	1	ļ	ļ		i	i	1 4	6	[5	I I 4	1 3	1 3				I	I	I	I I	I I	I I 44
22.0-22.4		i !	i I	i .i	1 2.1	I 2.7	I 1.4	2.1	I 1.7	I 1.4 I	I 1.0 I	I 1.0 I	1	i	I I	I I	I I	I I	! !	I	I 15.1 I I 42
7 21.5-21.9	i -	I 1 I .3	I 1 I .3	1 1	1 9	1 6 1 2.1	I 7 I 2.4	I 4 I 1,4	1 5 1 1.7	I 1 I .3	I 3 I 1.0	I 1 I .3 [1 1 I .3		I I I	I 2 I .7 I		! ! [ι Ι Ι	I I	I 14.4
6 21.0-21.4		I I I	I 3 I 1.0	I 5 I 1.7	I 4 I 1.4	I 6 I 2.1				i .i	i	1 1 1 .3		1	1	I I	1	I I	I I	I I	I 33 I 11.3
5 20.5-20.9		I 2 I 7	II I J I 1.0	I B I 2.7	I 7 I 2.4		i 1	i	[[2 [.7	i	I	[]]	I I	1 1 1 .3	1 1	I I	I I	I I] [I I	I 25 I 8.6
	1	1	1	1 2.7 1 5		1	1		i	i I	ī I	ī I	i I	1 I	I	I	II	I I	I I	I I	I I 14
20.0-20.4		1 .3		1.7	i 1.4	i .7	I	i !	I I	I I	I I	I I	I	I I	I I	I I	I	I I	I !	! !	I 4.B
3 19.5-19.9	Ī	I I	i I	I 1 I .3	I I	I I	1 1	I I	I I	I I	I I	I I !	I I	I ,	I I !	I I	I I I	I I I	I I [I I I	l 2 I .7 I
2 19.0-19.4		Ī	I I I	I 1	I I I	I I	I I	[[i i	I I	I I	i I	i i	i I	i	ī I	I I	i !	I I	I I	I 2 I .7
1 18.5-18.9		[[II I 1 I .3	I I	I I	I · · · · · · · · · · · · · · · · · · ·	I I	I I I	I	[[[[[[[[[I I I	I I I	I I I	I I	I I	I I		I I	1 1
	i 2 .7	i	3.1	1 1 23 7.9	34 11.7	1 28 _ 9.6	Î 27 9.3	20 6_9	28 9.6	17 5.8	27 9.3	19 6.5	1 16 5.5	18 6.2	5 1.7	6 2.1	3	1.0	.3	.3	291 100.0

Table 11. Male Bivariate Table of Ankle Circumference (VAR 13) and Weight (VAR 21)

	VAR25																		ROW
VAR 13	I 19.0 - I 19.4 I 1			21.0 - 21.4 5	21.9	22.4	22.5 - 22.9 8	23.0 - 23.4 1 9	23.5 - 23 9 [10]	24.0 - 24.4 I 11		25.4		26.0 - 26.4 [15	26.9	27.0 - 27.4 I 17	27.5 - 27.9 I 18	28.5 - 28.9 I 20	TOTAL I
17 25.0-25.4		1 -	t .	 	I I	[] [[· · · · · · · · · · · · · · · · ·	[[[i i		I 1	i i	I I	t t	í I	1 .2
15	I 1	i i	i i	i	I I	ii		i !	[]	!	i	I : I	1	[[7	[[1	[[!	I I	1	1 2 1 .4
24.0-24.4	1	I I	I I	! [t !	[[]	! !	! !	I I	J .2	I	I		 	i I	i I 1	I	I	T T 4
23.5-23.9	I	1 t T	I .	[[i I I	I	! !	, (i I	2 1	.2	i .2	i 	i !	i !	1 .2 	1 1	1 Ĭ	1 .8 i
13 23.0-23.4	I I	i I	I I	[[i !	i i	.2] (I T	i 2 I .4 I	I I I	I 1, I .2	. 2	[I I I	I I I	I 1 I .2 I	1 1 I .2 I	1 7 I 1.4
12 22.5-22.9	I I	i i	I I		Î T	i i		1 1	I 4	I 4 I .8	I I .	I 4 I .8	.4	E 1	I 1 I .2	I I	1	! !	I 19 I 3.9
11 22.0-22.4	I I	I I	I		I	i ·	.2	[4 [.8	I † I .2	I 3 I 6	I 4 I .8	I 7 I 1.4	8 1.6	I 3 I .6	1 3 1 6	1 4	I I	I I	1 38 1 7,8
10 21.5-21.9	I I	I I	I I		I I	1 2	,4	1.6	I 11 I 2.2	I 14 I 2.9	1 11 I 2.2	I 7 I 1.4 I	.8	I 6 I 1.2 I	1 3 I .6 I	I 1 1 .2 I	Î 1 1 .2 I	[]	70 1 14.3
9 21.0-21.4	I I	i	I I		I 1 I .2	I 3 I	1.2	f G I 1.2	ī 13 1 2.7	I 10 I 2.0	I 8 I 1.6 I	I 23 I 4.7 I	[8 [1.6 [I 6 I 1,2 I	I 5 I 1.0 I	I I I .2 I	I 2 I .4 I		I 92 I 18.8 L
20.5-20.9	I I	i !	I I		I 1 I .2	1 2 I	1.0	1 9 1 13	1 7 I 1.4	I 5 I +.0	1 15 1 3.1	I 9 I 1.8	12 2.5	I 4 I .8	1 3 1 6	I 1 I .2 I		I f [I 73 I 14.9 I
20.0-20.4	I I	I I	I I		1 1	1 5 I 1.0	9 1.8	1.2	I 14 I 2.9	I 16 I 3.3	I 11 I 2.2	I 11 I 2.2			1 3 1 6	I I I	I I	I I I	I 81 I 15.6 I
6 19.5-19.9	Ī	I 1 I .2	I I		1 3 I 6	I 1 I	.2	1 7 I 1.4	I 10 I 2.0	I 13 I 27	I 2 I .4 I			! ! !	I I I	I I I	I I I	I I 1	I 48 I 9.8 I
19.0-19.4	I I	i i	I I		I 2 I .4	I 4 i	3	6 1.2	J 5 I 1.0	1 5 1 1.0	I 7 I 1.4		1 1 1 .2	! ! !	I 1 I .2 I	I I I	! ! !	I I I	I 34 I 7.0 I
4 18.5-18.9	Î 1 I .2	I I	I 1 I .2		i 1	• .	.6	.4	I 2 I .4		I 3 I .6	[1 [.2		I I I	I I I	I I I	I I I	I I I	I 16 I 3.3 I
3 18.0-18.4	Ī Ī	[[I I	 	I 1 I .2	•			I I	I I	I I	I 1 I .2	! !	i 1 1	I I I	i I I] [I I	I 2 I .4
17.5-17.9	I I	I I	I I	[I I	I I		I	I I]	I I	I I I	.2	! !	I I I	I I I	I I I	I I	.2
1 17.0-17.4	I I	I I	I I	1 .2	I	I I		[I	[[I I	i I	i !	! !	! !	I I	I I	I I	.2
COLUMN TOTAL	1 .2	.2	i . 2	.2	10 2.0	17 3.5	31 6.3	49 10.0	67 13.7	76 15.5	62 12.7	68 13.9	46 9.4	27 5.5	19 3.9	8 1.6	. 8	. 1	489 100.0

Table 12. Male Bivariate Table of Ankle Circumference (VAR 13) and Foot Length, Right (VAR 25)

	V1825									,						
	[[21.5 - [2: 7	23.5 · 23.3	24 0 4 24 4 [6 :	24.5 - 24.9 (7	25.0 - 25.4	25.5 - 25.9 [9	26.9 - 26.4 ! IC	26.3 26.9 [11	27.0 - 27.4 ! 12 !	27.5 - 27.9 13	28.0 - 28.4 14	29.5 28.9 [15	29.3 29.3 [16	29.5 · 29.3 1 · 1-	30.4 1 18	FOTAL FOTAL
17		[[[[[[[t t		i I	i ;	.3
11:3 11 7	1	[[[[(· • • • • • • • • • • • • • • • • • •			,	† · · · · · · · · · · · · · · · · · · ·	l	[[2
15 11.4-11.5		[[1				t [! !				!	.7
11.2-11.3	i	Î Î	i i	i i	! ·	! !		[] !				.1		i t	i i	2.1
13	i	I	!	[1 1			i i	1 2	1 1	I 2	1.0	.7	1 .3	1 2 1	4.5
11.0-11.1	1	i	i	i		[[[[[[2 [7	! !	1 2	1 2	1 1	
10.8-10.9	! 	i !	t 1	I	! !		! ! ! 2	i	! . !	1 1.0 1		1 1	1 2	i	i	19
11 10.6-10.7	ī	I I	1 1	1 .3	I I I	[[.7	i .7	i	i	i .1	7	I .3	i i	6.5 1
10 10,4-10,5	Ť	1	1 1	i I	1 3	1 1	1.4	1 1.0	1 6	I 4 I 1.4	1 10 1 3 4	1.7	1 1.0	I 1.0	•	14.4
9	1	i t	i	1 1 1 3	1 2 1 7	1 2 1 7	1 2	I 7 I 2.4	1 6	1 1.0	1 7	1 1	1 2 1 .7	i I	t i	34 11.7
10.2-10.3	1	i 	! !	1 .3 1	1	7	10	i	[11	j 1 3	t			[[! !	! 50 17.2
10.0-10.1	İ	1 1 T	! ! !	i 1.0	i ,i	2.4	3.4	1 2.7	1 3.6 1		1 1.7 [t	I [: !	[.3 [27
9,8-9,9	t	i 1	1 1	î I	I I	.7	1.7	1 7	1 5	1 1.0	1.4		i 1	! !	i 1	9.3
6	ī		1 2		I 4 I 1.4	1 2 1 1 .7	6	1 8	I 10 I 3,4	1 1	i 1		<u> </u>	[[1 1	12.0
9.6-9.7 5	1	I I		i	1 7			i	i 3	I I 3	1 1	[[2 [.7	!	[27 9.3
9.4-9.5	Ţ	i !	i . i	1 .3	2.4			I 1.4	1 1.0	! 1.0 [1 1	! ! :			[]	12
4 9,2-9,3	ī	1 1 1 .3	ľ 1	t 2 t .7	1 1	1.4	7		1 []	i I [! !	i !	i 	i !	[]	4.1
3	I	!	I 2 I .7	I 2 I .7		2		1 1	1 2	i I	! ! .	! !	I I	<u> </u>	I I	3.1
9.0-9.1	1	: [!		i	i 2		i	i i	1 1	1 1	1 !	[[[i I T	1	.7
8.6-8.7	I	i 1	ī 1	1	i .7	[! !	I 1	! 1	t 1 25	I [37	14	[15	i -	ī	291
COLUMN TOTAL	.3	.7	5 1.7	12 4.1	20 6.9	. 26 8.9	32 11.0	43 14.8	48 16.5	8.6	12.7	4.8	5.2	2.4	1.4	100.0

Table 13. Male Bivariate Table of BOF Breadth, Horiz, Right (VAR 26) and Foot Length, Right (VAR 25)

	VAR 13																	
	1 8.5 - 1 18.9 1 1	19.0 - 19.4 I 2	19.5 - 19.9 I 3	20.0 - 20.4 I 4	20.5 - 20.9 I 5	21.0 - 21.4 I 6	21.5 - 21.9 t 7	22.0 - 22.4 I 8	22.5 · 22.9 I · 9	23.0 - 23.4 I 10	23.5 - 23.9 I 11	24 0 - 24 4 I 12	24.5 - 24.9 I 13	25.0 - 25 4 I 14	25.5 - 25.9 I 15	26.0 - 25.4 I 16	26.5 - 26.9 I 17	1017f 1017f 804
14		I	I	I	I	I	[· [t	[I 1	I I	I	I	!	[[I	1 1
28.5-28.9	1	i	! !	<u>.</u>	İ	i		i	i	<u> </u>		i	į	i :	į	i !	į	t .3
13 28.0-28.4	I	i 	1 ! !	! !	I I	1 1 1	1 1 1		i !	i .i	! !	i .3	i .j	I !	i !	! !	1	1 1.0
12 27.5-27.9	t I	I I	i i	I I	! !	i i	i I I	I 3 I 1.0	I I	I I	i 2 I .7 I	I 3 I 1.0	I 1 I .3	i 2 I .7	I I I	[[[I I I	1 11 1 3.8
27.0-27.4	Ī	i I	i ! !	I I I	I I	ī 1 1	I I I	I I	[3 [1.0	[1 [.3	t 2 I .7	I 2 I .7	t 1 1 .3	I I I	I 1 I	! !	i i : .3	i 11 I 3.8
10 26.5-26.9	Ī Ī	I I		; ; ;	i I I	i t	i t	i !	i 2 I .7	i 5 I 1.7	I 6 I 2.1	t 3 1 1.0	i 3		[]	.3	i t	1 20 1 6.9
9 26.0-25.4	I I	I I		I I	I I	i 2 I .7	1 2 1 .7	I 5 I 1.7	i 6 I 2.1	I 7 I 2.4	I 6 I 2.1	i 3	I 5	.7	i i	.3		1 39 1 13.4
8 25.5-25.9	I I	I I		I I	I I	1 2 1 .7	1,4	I 11 I 3.8	I 4 I 1.4	1 3 1 1.0	i 3	I 4 I 1,4		.3	.3			33
7 25.0-25.4	I .	I I		I 1 I .3	1 2	1,4	8 2.7	I 7 I 2,4	i 2 I .7	. 2 I . 7	.7	I 4	.3	.3				34 11.7
6 24.5-24.9	ī	I I		1 .3	1 8 1 2.7	8 2.7	11 3.8	I 9 I 3.1	6 I 2.1	7 2.4	. 1	.3	.3		1			53 18.2
24.0-24.4		I I		.7	2.7	5 1.7	9 3.1	1.0	7 2.4	.3		.3			1	1		37 12.7
23.5-23.9	I I	I I	.3	5 1.7	1.0	7 2.4	7 2.4	1.4			i i				I		1	27 9.3
3 23.0-23.4	I I		1	3 1.0	3 1.0	5 1.7		.3		.3] 		1	1	İ	1	1	13 4.5
2 22.5-22.9	I i	1	1		.7]	1	.3		.3		1	I	i 1	1 1	I 1		1.4
22.0-22.4	r i	.7 1	I I	.7	I	I	.3 1			. I	I I	1	I I	1	1 1	1 1	I	, 1.7
COLUMN TOTAL	.3	. 7	.3	14 4.8	26 8.9	33 11.3	42 14,4	44 15. 1	30 10.3	29 10.0	23 7.9	22 7.6	13 4.5	6 2.1	.7	.7	.3	291 100.0

Table 14. Male Bivariate Table of BOF Circumference, Right (VAR 16) and Ankle Circumference (VAR 13)

,	VAR26															
VAR 16	I8.6 - I 8.7	9.0 - 9.1	9.2 - 9.3	9.4 - 9.5	9.6 - 9.7	9.8 - 9.9 I 7	10.0 - 10.1 I 8	10.2 - 10.3	10.4 - 10.5 I 10	10.6 - 10.7 I 11	10.9	11.1	11.2 - 11.3 I 14	11.4 - 11.5 I 15	11.8 - 11.9 I 17	ROW TOTAL
14	- I	· i	. į	• • • • • • • • • • • • • • • • • • • •	· i	· į i	i				i	į: <u>-</u>	įi	į	į	į .
28.5-28.9		i 	i	i	<u>;</u>	i	i !	i	. j	i !	I I	i !	i .	i !	i !	į .i
13 28.0-28.4	Ĭ	i !	i I	i i	I I	i i	I I	I I	I I	I I	i i	I 1 I 3	I 1 I .3	I I	I I	i 3 I 1.0
12 27.5-27.9	Ī	i 1	i I	i !	I I	I I	i i	I I	I I	I 1 I .3	I 1 I .3	I 5 I 1.7	i . 2 I . 7	I 2 I .7	i I I	Î 11 Î 3.8
11 27.0-27.4	I I	i I	i I	i !	i 1 I .3	i I			I 3 I 1.0			I 3 I 1.0			I I	I 11 I 3.8
10 26.5-26.9	1	i t t	I I	I 1 I .3		i 1 I .3	i i i	i 1 I 3	i 9 I 3.1	i 5 I 1.7			i ! !	I I	i ! !	I 20 I 6.9
26.0-26.4	i	ī 1 1	i I I	i I !	I I I	I 1 I .3	I 3 I 1.0	I 6 I 2.1	I 15 I 5.2	I 6 I 2.1	5 1.7	1 2 1 .7	i !	i I	I 1 I .3	I 39 I 13.4
25.5-25.9 -	Ī	I I I	I I I	I 1 I .3	I 1 I .3		I 6 I 2.1	1 10 1 3.4	1 7 1 2.4			i 2 I .7	I 1 I .3	[[[I I I	I 33 I 11,4
25.0-25.4	1	I I I	[[I 2 I .7			1 15 I 5.2	1.4	I 6 I 2.1			! ! !	I I	[[1 1 1	34 11.7
24.5-24.9 _		[[[[I 4 I 1.4	•	2.8	18 6.2	10 3.4	I 2 I .7			 	I I	[[[[E 53 I 18.3 I
24.0-24.4	1 1	[[10	3.6	7 2.4	1.7	1.0					I I	[[[[37 1 12.8
23.5-23.9	g i	1.4		1.4		1.4	.7			.3 1			I I			27 1 9.3
3 23.0-23.4	i i	.3 [1.7	1.7	.3 1					I	i :		i i			12 4.1
2 22.5-22.9	1 1	.7 1	1 I			1	1	1		i			I .			1.4
22.0-22.4	1 1 1	2 i	2 I .7 I		I	I I	1	1	1	I I	1		I I			1.7
COLUMN TOTAL	.7	9 3.1	12 4.1	27 9.3	35 12. 1	27 9.3	49 16.9	34 11.7	42 14,5	19 6.6	12 4.1	13 4.5	6 2.1	.7	.3	290 100.0

Table 15. Male Bivariate Table of BOF Circ, Right (VAR 16) and BOF Breadth, Horiz, Right (VAR 26)

	VAR25				•										•	
	I21.5 - I 21.9	23.5 - 23.9 I 5	. 24.0 - 24.4 I 6	24.5 - 24.9 I 7	25.0 - 25.4 I 8	25.6 - 25.9 I 9	26.0°- 26.4 I 10	26.5 - 26.9 1 11	27.0 · 27.4 I 12	27.5 - 27.9 I 13	28.0 - 28.4 I 14	28.5 - 28.9 I 15	29.0 - 29.4 I 16	29.5 - 29.9 I 17	30.0 + 30.4 I 18	ROW TOTAL
14 28.5-28.9	ī	I I I	I I	I	I I	I ! !	II	! !	I	I I	I I I	I I	I 1 I 3	I I I	I I	I 1 I .3
13 28.0-28.4	I .	I I !	I I	I I	[[I I	[]	I I	1 1 1 .3	I I	i ,	I I	I 1 I .3	I t I .3	I I I	I 3 I 1.0
12 27.5-27.9	I I	I I]]]]	I I	I	i I	I I	I 1 I .3	I I	I 1 I .3	I 4 I 1.4	I 3	I .3	I 1 I .3	I 11 I 3.8
27.0-27.4	I I	I I	I I	[]	I I	i i	: : :	I I	I 2 I .7	i 2 i .7	2 1 .7	I 2 I .7	I 2 I .7	I I I	I 1 I .3	I I 11 I 3.8
10 26.5-26.9	I I	i I	I I I	! !	i i i	I I	I I	i i i .3	i I I	I 6 I 2.1	7 2.4	I 1 I .3	I 1 I .3	1 3 1 1.0	i ı	1 20 1 6.9
26.0-26.4 -	I I	i !	I I I	I I I	i I I	. 7	I 2 I .7 I	I 5 I 1.7 I	I 6 I 2.1	I 4 I	12 4.1	1.4	I 4 I 1.4		! ! !	I 39 I 13.4
8 25.5-25.9 -	1 1	! !	I I I	I 1 I 3 I	I 1 I .3	1 .3	1.4	I 5 I 1.7 I	I 6 I 2.1 I	i 2 i i .7 i	2.1	1.0	I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 .3	I 33 I 11.3
7 25.0-25.4	i i	[[[I 1 I .3 I			.7	i 3 I 1.0	I 6 I 2.1 I	I 7 I 2.4	5 ; [1.7 ; []	1.7		.7 j		! ! !	7 34 [11.7
6 24.5-24.9 -	1 .3 I		I I I	I 1 I .3 I	I 3 1 I 1.0 I	7 2.4	11 3.8	I 11 I 3.8 I	I 14 I 4.8 I	I 2 I .7 I	3 1 1.0 1		[[[]		 	I 53 I 18.2 I
5 24.0-24.4	[]	[[[++]	1 1 1 .3	I 4 I 1.4	1,4 [1,4]		2.4	I 7 I 2.4 I	1 7 I 2.4 I	.7 I] [37 . 12.7
23.5-23.9	I i	.3	I .3	t [7] [2.4]		1,4	1 5 I 1.7 I	I 3 1 I 1.0 1] 			27 9.3
3 23.0-23.4	i !	.3	1 1 1 .3		1.0			I 2 I .7 I	I I I	[[I I	1 1 1	1 1 1	1 1 11	1	13 4.5
2 22.5-22.9	! ! ! !		[I 1 1 I .3 1	· i			I 1 I .3 I	[[I I I	1 1 1	1 1 1	I	i	1.4
1 1 22.0-22.4 1		[]	.3 i	[]			.3		[I 1 1	: : :	1 1 11	. I I	1 1 11	5 1.7
COLUMN TOTAL	.3	.7	5 1.7	12 4.1	21 7.2	26 8.9	32 11.0	43 14.8	47 16.2	25 8.6	37 12.7	4.8	15 5.2	2.4	1.4	291 100.0

Table 16. Male Bivariate Table of BOF Circumference, Right (VAR 16) and Foot Length, Right (VAR 25)

	VAR 15															
	122.0 - 1 22.4	23.0 - 23.4 1 3	23.5 - 23.9 I 4	24.0 - 24.4 I 5	24.5 - 24.9 I 6	25.0 · 25.4 1 7	25.5 - 25.9	26.0 - 26.4 I 9	26.5 - 26.9 I 10	27.0 - 27.4 I 11	27.5 - 27.9 I 12	28.0 - 28.4 I 13	28.5 · 25.9 I 14	29.0 - 29.4 I 15	29.5 - 29.9 I 16	RCW TOTAL I
14	1		i	i	i	[: [! !	[I	I	I I	I	I I	I	I 1	I I	! ! !
28.5-28.9	ī	! !	i !	i !	i !	I [[[t t	I I	! [I I	I [I I	I .3	ī	I .3
13 28.0-29.4	I I	i I	Ī L	I I	I I	! !	! ! !	I I	i I	I I [[[I 1 I .3 I	I 1 I .3 I	I 1 I 3 I		I 1.0 I
- 12 27.5-27.9	Ī	I I I	! !	I I	I I	i i		į	i I	i i i 3	i 2 i .7	i 3 I 1.0	I 5 I 1.7	I 1 I .3		I 12 I 4.1
- 11 27.0-27.4	ī] [7	I I I	I I I	[[[[[[1 1	I 1 I .3	I 4 I 1.4	I 1 I .3	I 2	I 1 I .3	I 2 I .7	i I	i 11 i 3.8
10 26.5-26.9	I		I	I	1	[: [[I	I 5 I 1.7	I + I +	[[2.1	I 4 I 1.4	1 3 I 1.0	[[[I 1 I .3	I 20 I 6.9
9	1 1		i	i !	i	i	1.4	I 4 I 1.4	I 8 I 2.6	I 10 I 3.4	I I 8 I 2.8	I 3 I 1.0	I 1 I .3	I I I	[[[I I 38 I 13.1
26.0-26.4 - 8	I 1	! !	1 1	i 	! !	1			i 11	i 5	4	I	i	I	I	I I 33
25.5-25.9	1	<u> </u>	i I	<u> </u>	i .	. 3	1.4	1 2.8	1 3.8	1.7	1.4	i 1	I	I I	I I	I 11.4 I
7 25.0-25.4	I I .	I I	I I	I I	1 1 C. 1	1.4	1.7	13 1 4.5	I 6 I 2.1	I 2 I .7	1 3 1 1.0		t t	I I I	I I I • • • • • • • • • • • • • • • • •	I 34 I 11.7 I
- 6 24.5-24.9	Ī] [[] I I	I I 1 I .3	I 3 I 1.0	1 10 1 3.4	19 6.6	I 13 I 4.5	I 7 I 2.4		i I	i I	i 1	I I	I I	I 53 I 18.3
5 24.0-24.4		[] 	I I T	I 6 I 2.1	I 4 I 1.4	I 17 I 5.9	1,4	I 5 I 1.7	I I I	I I]	I I	I I	i	r 1	I 36 I 12.4
23.5-23.9	Ĭ I 1	1 1	i 1 1 1 .3	I 4	I 6 I 2.1	[9] [3.1	5 1 1.7	I	[[[I I I	[I I I	I I I	[[]	! ! !	I 27 I 9.3
23.5-23.9	1		: :	I		3		1	i	I		I	I	I I	I I	I I 13
23.0-23.4	t	.3				1.0	; ;	i I	i !	I [i !	I 1	I	I 1	! !	1 4.5 I
2 22.5-22.9	I I		1 1	I 1 I .3	I I	.3		i 1 1 .3	I I	I I	t t !	1 I I	I I I	i I I	I I I	I 4 I 1.4
1 22.0-22.4	I I	3	1 3 1 1.0	i 1	i			i i	1	I I	i !	I I	I I	I I I	I I [I 5 I 1.7 I
COLUMN TOTAL	1 .3	3 1.0	7 2.4	19 6.6	15 5.2	45 15.5	41 14.1	44 15.2	38 13.1	23 7.9	24 8.3	13 4.5	11 3.8	1.7	.3	290 100.0

Table 17. Male Bivariate Table of BOF Circumference, Right (VAR 16) and Instep Circumference (VAR 15)

	VAR21																				
VAR 16	I51.0 - I 53.9 I 1			60.0 - 62.9 I 4							81.0 - 83.9 I 11						99.0 - 101.9 I 17		105.0 - 107.9 I 19	108.0 - 110,9 I 20	ROW TOTAL I
14	Ī	I	I	I I	! !	I	i i	I I	I	I I	I I	I 1 I 3	I	I	I	I	I	I	!	I I	1 1 1 1 .3
28.5-28.9 13	I	i 	I I I	1 [I	i i i	i i	i		i I	i	i		1 1	1 1 1	i	i	i	i		1 [I .3
28.0-28.4		i !	I I	I I	I I	I I	I I	I . I	I I	t 1	I I	I .3	I I	i I	E1	i [i 	i 1	i .i	i !	1 1.0
12 27.5-27.9		I I	I I I	I I I	I I I	I 1 1	1 1 1	1 1 1 .3	I I I	I ! !	1 []	I 2 I .7	I 2 I .7	t 2 I .7	I 2 I .7	I 2 I .7	1 I	1 1 1 .3	I I	! !	I 12 I 4.1
11 27.0-27.4	i	i i	I I	I I	I I	I I	I I	1 1	Ī I	I 2 I .7	1 1 1 .3	i 2 I .7	i !	1 3 1 1.0	i i	i I	i 1 I .3	I 1 I .3	:	I I	I 11 I 3.8
10 26.5-26.9	Ĭ	I I	I I	i I	i i	I ! I .3	I 1 I .3	I I	I 1 I .3	I 1 I .3	I 4 I 1.4	1.0	1 4	I ! I .3	I I	1 1	I 1 I .3	I 1 I 3	i I	1 1 1 .3	I 20 I 6.9
9 26.0-26.4	Ī	I I	I I	1 1	I I	1 4	I 5 I 1.7	1 3 1 1.0	I 3 I 1.0		I 6 I 2.1	• • •	I 2 I .7		I 2 I 7		I .1	I I	i .	[[[I I 39 I 13.4
8 25.5-25.9	Ī	I I	I I	[[1 1	I 3 I 1.0	I 3 I 1.0	I 3 I 1.0	I 5 I 1.7	I 2	I 3	I 4 I 1,4	1 3	I 4 I 1,4	I I	i 2 i .7	I I	I	I I I	I I I	I I 33 I 11.3
7 25.0-25.4	I I	I I I	I 1 I .3		I 4 I 1.4	1 5 I 1.7	I 5 I 1.7	I 3 I 1.0	1 3 1 1.0	I 4 I 1.4	I 6 I 2.1	I 1 I .3	I 2 I .7		I I I	I .	I I I	I I I	I I I	I	I I 34 I 11.7
6 24.5-24.9	t t	•	II	5 1,7	I 10 I 3.4	5 I 1.7	I 7 I 2.4	1 4	8 2.7	1 4		1 .3	. 2 : 1 .7		I I	I ,	I I	I I	! !	I	I I 52 I 17.9
5 24.0-24.4	Ī	I I	5 1 1.7	5 1,7	1 11	3	1 1.0	2	1.4		i I	1 .3		2 .7	i i	i I	I I	I! I I		[I I 37 I 12.7
- 4 23.5-23.9	1 1 1 .3	1 2 1 .7		5 1.7	1 4 1 1.4	5 1.7	.7				I I	.3		[[I I	I I	I .				I I 27 I 9.3
3 23.0-23.4	Ī	1 1 1 1 3 1				.3			[·] [.3			1 1	i i		I I	[[] [I I 13 I 4.5
2 22.5-22.9	I I	I		.7	.3				[] [.3	[,	T .	[]]]	1 4
1 22.0-22.4	i i i .3	•		.7		.3					.3						[1] 	5 1.7
COLUMN TOTAL	2	1	9 3.1	23 7.9	34 11.7	28 9.6	26 8.9	20 6.9	28 9.6	17 5.8	27 9.3	19 6.5	16 5.5	18 6.2	5 1.7	7 2.4	3 1.0	3 1.0	.3	.3	291 100.0

Table 18. Male Bivariate Table of BOF Circumference, Right (VAR 16) and Weight (VAR 21)

																-		
	1 18.5 - 1 18.9 1 1 18.9	19 4	19.5 19.9	20 0 - 20.4 [4	20 5 - 20.9 E 5	21.4	21.5 21.9 7	22.0 - 22 4 I 8	22.5 22.9 I 9	23.4	23.5 23.9 1 11	24.0 · 24.4 1 12	24.5 24.9 I 13	25.0 - 25.4 I 14	25 5 - 25.9 1 15	25.0 - 25.4 7 16	26.5 - 26.3 I 17	ROW FOTAL I
	i	[· · · · · · · · · · · · · · · · · · ·	! !	i	[· · · · · · · · · · · · · · · · · · ·	[• - • - •	! !	I 2 I .7	I 1 I .3	1 1.0		t t	i	I I	i	i I	i 7
10	[ii		i	i	i		j	! !	I	t 2	1 2 7	I 2	[· · · · · · · · · · · · · · · · · · ·	t t] Î Î	I 1 I .3	I 10 I 3.4
21.5-21.9	1	1	I I	t t	[1		1 1 2					i i	i	i	i I	1	I I 18
9 21.0-21.4	I	I I	1 I	I I	I I	1 .7	. 3	. 7		1.0	1.0	1.4	.3	i .3	i 	t 1	! [I 6.2 I
- 8 20.5-20.9		1	! !	1	l 1	1 1 1	1.0	5 1.7	6 1 2.1	i 4 - 1.4	1.4	1 2 1 .7	1 4	[] 	I I	1 1 1 .3	I I I	I 31 I 10.7
	I	[[1 · · · · · · · · · · · · · · · · · · ·	I	I] 4] 1.4	7 2.4	1 8	1 6 1 2.1	1 6	[2 [.7	5 1 1.7	.7	1.4			1 !	1 49 1 15 9
6	t · · · · · · · · · · · · · · · · · · ·	i · · · · · · · · · · · · · · · · · · ·		I 3 I 1.0	5	[· · · · · ·] [6]	12	[9 [7.1	I 4 I 1.4	I 5. I 1.7	[T 3	1 2 1 .7	1 [t 1 E. 1	1 1	1	54 18.6
5	I I	i	i 1	1 2	5	5	4	1 10	3	8		I 3 I 1.0	[I 1 I .3	{ · · · · · · · · · · · · · · · · · · ·	1 I I	I I I]] [I I 47 I 16.2
19.0-19.4		1 .3	t [t .7 t	[1.7 [1 1.7		1 3.4 1	1.0	1 2.6			· · · · · · · · · · · · · · · · · · ·	i	i	i I	! I	I I 35
4 18.5-18.9	1	1 .3	! !	1.4	1 6	1 1.4	2.8	1.4	1.4	! !	i .š	i .7	i .3	i 	i [I [I I	I 12.1
3 18.0-18.4	I	I I	I 1 I .3	I 4 I 1.4	1 3	I 4 I 1.4	5 1.7	i 3 I 1.0	1 1.0	I 1 I .3	! !	! ! !	: : :	! [[[· · · · · · · · · · · · · · · · · · ·	t I I	I I I	1 24 ° 1 8.3 1
- 2 17.5-17.9		I	I	I 1 I .3	I 2 I ,7	1 7 1	.7	1 2	i	ī I	t 1:	i !	I !	I I	1 1	I I T	1 1	I 14 I 4.8 I
	[1		[] T	I 1 1	! ! !] E I] :]]	I I I	1: 1: 1:	: :	1 1	i I	i	i i	i t	i 1
	ii .j	i	2 .7	i 14 4.8	7 25 8.6	33 11.4	42 14.5	1	30 10.3	28 9.7	23 7.9	7.6	13 4.5	6 2.1	.7	.7	.3	290 100.0

Table 19. Male Bivariate Table of BOF Length, Right (VAR 24) and Ankle Circumference (VAR 13)

	VAR26					•										
VAR24	18.6 - 18.7 1 1	9.0 - 9.1 I 3	9.2 - 9.3 I 4	9,4 - 9.5 I 5	9.6 - 9.7 I 6	9.8 - 9.9 1 7	10.01 1.01 B	10.2 - 10.3 I 9	10.4 - 10.5 I 10	10.7	10.8 - 10.9 I 12	11.0 - 11.1 1 13	11.2 - 11.3 I 14	11.4 - 11.5 I 15	11.8 - 11.9 [17	ROW TOTAL
22 0-22.4		[[[:	1 1	[1	[[[[[]	1	I 2 I 7	[1 [,3	[[1 1 1	[• • • • • • • • • • • • • • • • • • •	[[[7 [2.1
10 21.5-21.9		[[[[1	1	!	I !	! !	1 2	1 1	l 1 L .3	I 5 I 1.7	[[. 3	t t	i 10
9 21.0-21.4	ī	1	t t	1 1	[t t	1 2	[] [].0	1 5	1 3	1.0	I I	t t			19 1 8.6
8 20.5-20.9	f ,	! !	[[[2 [7	[2] 7	[3 [1.0	I 3 I 1.0	[6 [2.1	6 1 2.1	1.0	. 7	.7	1 2 1 .7			31 10.7
7 20.0-20.4	1 1		1 .3	1 2	I 3	1.4	I 10 I 3.5	5 I 1.7	I 9 I J.1	f 6 I 2.1	. 7	1.0	1 2	.3		48 16.5
19.5-19.9	i i	.7	1	I 5 I 1.7	1 9 1 3.1	9 1 3,1	12 4.2	1.4	1 10 1 3.5	.3	. 3	.3				54 18.7
19.0-19.4		.3	1.0	t 2 l .7	I 9 I 3.1	7 2.4	9 3,1	10 3.5	1 1.0	.3		.3	.3			47 16.3
18.5-18.9	1 .3	.3	1.4	7 1 2.4	. 7	1.0	5 1,7	4_ 1,4	1 1.0	1.0	.7					35 12. j
3 18.0-18.4	1 1 1	.7	.3	1.4	. 6, 1 [2,1		7 2.4	.3						1		23 8.0
17.5-17.9	i i	1.0	1.0	1 2 1 .7	1.4		.3	.3						1	ı	14 4.8
17.0-17.4	1 1					.3					1			1	1	.3
COLUMN TOTAL	.7	9 3.1	12 4.2	26 9.0	35 12.1	27 9.3	50 17.3	34 11.8	41 14.2	19 6.6	12 4.2	13 4.5	6 2.1	.7		289 100.0

Table 20. Male Bivariate Table of BOF Length, Right (VAR 24) and BOF Breadth, Horizontal, Right (VAR 26)

	VAR 16											•			
	I 122.0 - I 22.4 I 1	22.5 - 22.9 I 2	23.0 - 23.4 I 3	23.5 - 23.9 1 4	24.0 - 24.4 1 5	24.5 - 24.9 I 6	25.0 - 25.4 I 7	25.5 - 25.9 I 8	26.0 - 26.4 1 9	26.5 - 26.9 I 10	27.0 - 27.4 . 1 11	27.5 - 27.9 I 12	28.0 - 28.4 I 13	28.5 - 28.9 I 14	ROW TOTAL
11 22.0-22.4	I	i i	I I I	I I	I I	I	I 1 I .3	1 2 1 .7	I I I	1 2 1 .7]]]	I 1 I .3	! ! !	[[] 7] 2.4
10 21.5-21.9	i i	I 1	I I	I I]] !	; ; ;	; : :	I 1 I ,3	1 1	. 2 I .7	.7	i 4 I 1.4	I 1 I .3	; : :	I 10 I 3.4
21.0-21.4	I I	i !	i I	I 1 I .3	I I I	1 1	t 2 t .7	I 2 I .7	I 7 I 2.4	1.4	i !	t t 1 .3	I 1 I .3	i i i .3	I 19 I 6.6
20.5-20.9	I I	i !	i i i	i 1 I .3	i 2 i .7	i 3 I 1.0	ī 2 I .7	ī 7 I 2.4	7 1 2,4	1.7	.7	I 2 I ,7	i I	I I	31 1 10.7
20.0-20.4	t	i I	i I	i 1 I .3	i 3 I 1.0	ī 7 I 2.4	1 B 1 2.0	i 5 I 1.7	I 13 I 4.5	5 1.7	1.0	1 1.0	i i		48 16.6
6 19.5-19.9		i 1 I 3	i 2 I .7	i 3 I 1.0	I 8 I 2.8	I 15 I 5.2	11 3,8	I 6 I 2.1	1 1.0	.7	.7 .7	I 1 I .3		i I	54 18.6
19.0-19.4	I 1 I .3	i I	i I	1 7 1 2.4	7 1 2.4	1 15 1 5.2	1,4	1 6 2.1	1 5 1 1.7		.3		.3		47 16.2
4 18.5-18.9	I 1 I .3	i 2 i .7	I 5 I 1.7	i 3 I 1.0	1 6 1 2.1	1 8 1 2.8	1.0	1.4	1.0						35 12,1
3 18.0-18.4	ī 2	i I	i 3	1 7 1 2.4	6 1 2.1	1,4	.7								24 8.3
17.5-17.9		I 1 I .3	I 2 I .7	1 3 1 1.0	5 1,7	.3	.3								14 - 4.8
17.0-17.4	i	i i	i	.3				,				I	-		.3
COLUMN TOTAL	1.7	1.4	12 4.1	27 9.3	37 12.8	53 18.3	34 11.7	33 11.4	38 13, 1	20 5.9	11 3.8	12 4, 1	3 1.0	.3	290 100.0

Table 21. Male Bivariate Table of BOF Length, Right (VAR 24) and BOF Circumference, Right (VAR 16)

	VAR25															
	121.5 - 1 21.9 1 1	23.5 - 23.9 I 5	24.0 - 24.4 I 6	24.5 - 24.9 I 7	25.4	25.9	26.4	26.5 - 26.9 I 1f	27.4	27.5 - 27.9 I 13	28.0 - 28.4 I 14	29.5 - 28.9 I 15	29.0 - 29.4 I 16	29.5 - 29.9 1 17	30.0 - 30.4 I 18	ROW TOTAL
11 22.0-22.4	I	I I I	I	[I	I I I	I	! ! !	I	I	I I I	[]]	I	I 2 I 7	1 2 1 .7	I 3 I 1.0	I I 7 I 2.4
10 21.5-21.9	I I	i I	i I	i I	ī ſ	i .	I I	<u>.</u> !	i I	i !	T 2	1	1 5 I 1.7	.7	i i I .3	10 I 3.4
9 - 21.0-21.4	I I		I I	i I	i I	I I		I I	1 1 I .3	1 1 1 .3	1.4	I 3 I 1.0	1 7 1 2.4	1.0		1 19 1 6.6
8 20.5-20.9	I i		i 1	i I]]	t I	! !	t I	I 3		1 14	I 5 I 1.7	I I		1	31 10.7
7 20.0-20.4	I I		I I	I I	1	I I	!	I 3 I 1.0 .	I 16 I 5.5	1 11	1 11 1 3.8	I I 6 I 2.1	1 1			I 48 I 16.6
6 19.5-19.9	i 1 i		I I	I I	I	I . I	1.0	1 20 1 6.9	I 19 I 6.6	1.4	6 2.1	[[[I I			[[54. [18.6
5 19.0-19.4	i i		I I	i I	.3	2 1	19 6.6	1 17 1 5.9	I 8 I 2.8		[i	1			47 1 16.2
4 1 18.5-18.9	i i		[I 1	7 2.4	15 1	9 3.1	.7	1 1				I			35 12.1
3 18.0-18.4	i i		.3	1,4	13	5 I 1.7 I		.3		[]						24 8.3
-1 2 1 17.5-17.9 1	1 1	.3	1.0	2.4		1.0		[]			1			I	1	14 4.8
-1 1 1 17.0-17.4 1	1	1 1	[• • • • • • • • • • • • • • • • • • •	[] 	I I	1 1	[]]]]]]	[1 1	 	.3
COLUMN TOTAL	.3	.7	1.4	12 4.1	21 7.2	26 9.0	31 10.7	43 14.8	48 16.6	25 8.6	37 12.8	14 4.8	15 5.2	7 2.4	1.4	290 100.0

Table 22. Male Bivariate Table of BOF Length, Right (VAR 24) and Foot Length, Right (VAR 25)

	VAR 17														
	15.8 - 15.9	6.0 - 6.1 I 2	6.2 - 6.3	6.4 - 6.5	6.6 - 6.7	6.8 - 6.9	7.0 - 7.1	7.2 - 7.3	7.4 - 7.5 [9]	7.6 - 7.7 1 10	7.8 - 7.9 L 11	8.0 + 8.1 I 12	8.2 - 8.3 I 13	8.4 - 8.5 I 14	ROW TOTAL
VARI4	. [i							I	I	[[2	I	I	I 1	I I 7
22.0-22.4		I I	I I	i		i		.7		i 	.7	I I	1 .3	1 .3	1 2.4
10 21.5-21.9	. [I	I I I	1		Ī	.7		i 2 I .7	1 1.0	.3	[1] .3	I 1 I .3	[[[I 10 I 3.4
9 21.0-21.4		I	I I	1		.7	4 1.4	5 1.7	i 2 i .7	. 2 1 .7	.7	I 1 I .3	I I [I I I	1 19 1 6.5
20.5-20.9		1	t 1 c. 1	I I	.7	1 .3	7 2.4	10 3.4	I 8 I 2.7	1 1 .3	[[[I I I .3	I I I	1 1 1	I 31 I 10.7
7 20.0-20.4				1 1 1 .3	5 1.7	1.7	14 4.8	12	I 8 I 2.7	i I I	I 2 I .7	I I I	! ! !	I 1 I .3 I	I 49 I 16.8 I
6 19.5-19.9	I I	I 2 I .7	1 .3	1.4	5 1.7	7	18 6.2	2.1	I 5 .	5 I 1.7	! ! !	I 1 I .3 I	l I I	[] [I 54 I 18.6 I
5 19.0-19.4		i i	1 2	I 6	10 3.4	2.7	8 2.7	2.4	1 1.0	1 2 1 .7	1 1 1	! ! !	1 1 1	I I [I 47 I 16.2 I
4 18.5-18.9	I 1 I 3	1	1 1.0	1 7 1 2.4	7 2.4	2.7	5 1.7	.7	t 1 1 .3	1 1 1 .3		I I I	! ! !	1 I I	I 35 I 12.0 I
3 18.0-18.4		I I	1 2	1 7 I 2.4	8 2.7	1 1	1.0	1.0	i I	[[[፤ ፤ ፤	I ! !	I I I	I 24 I 8.2 I
2 17.5-17.9		I 1 I 3	2 1 .7	1 1	1.4	3 1 1.0	2 .7		I 1 I .3	i i	! ! !	[] [i i I	I I I	14 4.8
1 17.0-17.4		I I	1	! !		i i	.3		I I I	I I I	! ! !	I I I	t 1 1	I I I	t 1 E. 1
COLUMN TOTAL	.3	1.0	12 4, 1	26 8.9	42 14.4	35 12.0	54 22.0	47 16.2	. 31 10.7	14 4.8	2.7	1.4	.7	.7	291 100.0

Table 23. Male Bivariate Table of BOF Length, Right (VAR 24) and Heel Breadth, Right (VAR 17)

,	VAR 15															
	122.0 - 122.4 1 . f :	23.0 - 23.4	23.5 - 23.9	24,0 - 24,4 1 5	24.5 * 24.9 1 6 !	25,0 - 25,4 1 7	25.9	26.0 - 26.4 I 9	26.5 - 26.9 I 10	27.4	27.5 • 27.9 1 12	28.0 - 28.4 I 13	28.5 - 28.9 1 14	29.0 - 29.4 I 15	29.5 • 29.9 ! 16	ROW TOTAL T
11 22.0-22.4	I			1	[[[[1	! !	I 1 I .3	I J	[1 .3	I 1 I .3]] !	1 7 1 2.4
10 21,5-21.9	1		 	[[]	[· · · · · · · · · · · · · · · · · · ·	i		1	: :	2	1 1.0	1 2 1 7	i 2 i :7	1 1 1 .5] [1 10
9 21.0-21.4	f I		I	1	î L	i I	1.4	1 1	! !	1 5 1 1.7	1 2 1 .7	i 2 I .7	i j	t t t .3	t .3	1 19 1 6.6 1
9 20.5-20.9	1			I I	i i	1.0	.7	i 2 i .7	[9.1	I 3 I 1.0	1 7 1 2.4	i 4 i 1.4	I 1 I .3	I I I	I I I	I 31 I 10.7
20.0-20.4	T T	i i		[[1 .7	2.1	1.0	i 11 I 3.8	j 9 l J.!	1 7 1 2.4 1	1 5 1 1.7	1 3 1 1.0	I 3 I 1.0 I	i i i	t 1 1	1 47 1 17.0 1
19,5-19.9	i :	i i	i i	i 2 i .7	1 2 1 .7	7 2.4	12 4.2	I 16 I 5.5	1 9 1 3.1 1	1 ; 1 .3	t 2 t .7	! ! !3	! ! ! .3		! !	I 54 I 18.7
19.0-19.4	i t !	1 .3	! ! !	I 1 I .3 I	[4] [1,4]	f 10 I 3.5 I	11 3.8	1 7 1 2.4	1 8 1 2.8	1 1.0		I [[! ! !	.3		E 47 E 16.3
18.5-18.9		i 1 i .o :	; 2 ; .7 ;	1 7 I 2.4 I	t 3 I 1.0	1 6 1 2 [6 7 1	1 4	1 1.0	I I]	! !	1		•••••	I 34 I 11.8 I 27
18.0-18.4 -	I I	i i [[5 [2.]	I 1.0	1 9 1 3.1 1	.3	1 1.0	! ! !	: t t			: !	 		9 Ó
17,5-17.9	i !		1.4	1 1.0	f .3	1 1.4 1	.7	! ! !	! ! !	: :	i 		[[]	 		4.A
17.0-17.4		! !		! ! [! ! !	!	; !			i 		i	. 1
COLUMN TOTAL	.3	7	7 2.4	19 6.6	16 5.5	45 15.6	41 14.2	15.2	38 13.1	7.6	8.3	13 4.5	3.8	1.7	.3	287 100.0

Table 24. Male Bivariate Table of BOF Length, Right (VAR 24) and Instep Circumference (VAR 15)

	VAR 1																			
	1156.4 - 1 158.3 I 1	158,4 - 160,3 I 2	160.4 - 162.3 I 3	162.4 - 164.3 I 4	164.4 - 166.3 I 5	166,4 - 168.3 I 6	168.4 - 170.3 I 7	170.4 - 172.3 I 8	172.4 - 174.3 I 9	174.4 - 176.3 I 10	176.4 • 178.3 I 11	178.4 - 180.3 [12	180.4 - 182.3 I 13	182.4 - 184.3 I 14	184.4 - 186.3 I 15	186.4 - 188.3 I 16	188.4 - 190.3 I 17	190.4 - 192.3 I 18	192.4 - 194.3 I 19	ROW TOTAL I
22.0-22.4		I I I	I	I I	[[[[[[I I I	I I	I I I	I 1 I .3	I I I	I I	I ! I .3	I I I	I I I	I 1 I .3	I 2 I .7	I 1 I .3	I 1 I .3	I I 7 I 2.4
10 21.5-21.9		I I	i I	I I	i I	I I	i I	i	.3	I 1 I .3	I .	i 1 I .3	i i	I 1 I .3	i 2 1 .7	i !	i 1 I .3	I 2 I .7	i I	I 10 I 3.4
9 21.0-21.4	I I	I I	I I	I I	i I	ī ī	I I	1 1	I I	I 2 I .7	I 1 I .3	I 3 I 1.0	I 5 I 1.7	I J	I 1 I .3	i	1 1	[1 [.3	1 1	I 19 I 6.5
8 20.5-20.9	I I	I I	I I	i i	i i		[1 [.3	I I	I 6 I 2.1	I I	1 5 1 1.7	I 6 I 2.1	I 4	I 5 I 1.7	I 1 I .3	i 2	I 1 I .3			31 1 10.7
7 20.0-20.4	Ĭ		i i	i i	. 1 .3	.7	I 2 I .7	I 2 I .7	I 5 I 1.7	I 5 I 1.7	1.4	I 8 I 2.7	1 7 1 2.4	I 4 I 1.4	1 6 1 2.1	[I i		.7	1 49 1 16.8
6 1 19.5-19.9 1				.3	.3	3 1.0	5 1.7	I 4 I 1.4	I 6 I 2.1	6 1 2.1	8 2.7	I B I 2.7	5 [1.7	3 1.0	i 2	I I	I 1 I .3	.3	i !	54 18.6
5 i 19.0-19.4 i	i i			.7		.7	1.4	10 1 3.4	1 9 1 3.1	9 3,1	1.4	1 1.0	.7	.3	.3	I I	I I			47 16.2
4] 18.5-18.9 [.3		.7	3 1.0	7 2.4	4 1.4	3 1.0	7 1 2.4	3 1:0	.7	I 2		.3		I I				35 12.0
3 I 18.0-18.4 I			.7	.7	6 2.1	3 1.0	3 1.0	3 1.0	.7			I I	.7			i i				24 8.2
2 I 17.5-17.9 I				.7	.7	.7	.7	3 1.0	.3	.7						: :				14 4.8
1 I 17.0-17.4 I	I I	1 I	I	1	I	1				1		I								.3
COLUMN TOTAL	.3	.7	.7	9 3. t	13 4.5	19 6.5	21 7.2	26 8.9	37 12.7	29 10.0	24 8.2	31 10.7	27 9.3	18 6.2	13 4.5	1.4	6 2.1	1.7	1.4	291 100.0

Table 25. Male Bivariate Table of BOF Length, Right (VAR 24) and Stature (VAR 1)

VAR12	VAR13 18.5- 18.9	19.0- 19.4 2	19.5- 19.9 3	20.0- 20.4 4	20.5- 20.9 5	21.0- 21.4 6	21.5- 21.9 7	22.0- 22.4 8	22.5- 22.9 9	23.0- 23.4 10	23.5- 23.9 11	24.0- 24.4 12	24.5- 24.9 13	25.0- 25.4 14	25.5- 25.9 15	26.0- 26.4 16	26.5- 26.9 17	ROW TOTAL
. 14		1	 	1 1	 			[[]		j	.3			1 1	•	[[[1 2 1 .7
43.0-43.9	1	I] [[[i	i	[2	[[1 1 8 1 2.7
42.0-42.9	1			i 1]] 		1 C. 1		1.0	2				1 1 1 12
12 41.0-41.9	1	:		1	1		 	i .	[[. 3	.7	. 7	.7	.7		.3	.3	4.1
11 40.0-40.9	ī ·	1		1			. 3	1 1	1 2	1.0	1.4	2.4	1.4	. 3		.3	 	[23 [7.9 [
10	I			1	! !	.3	1 1]	1 4	6	5 1	.7	3	.7				t 23 1 7.9
39.0-39.9 - 9	! !	[]]	! !		4	7	1 4	4	7 !	4					 	I I 35 I 12.0
38.0-38.9	1	[! !	i .a	1.0	1.4	1 2.4	1 1.4 	1.4	2.4	1.4			1			1 12.0 1 34
8 37.0-37.9	1	1	.3	1	[[!	.7	1.7	1.4	2.1	2.7	.3	1,4	1.0		1 1		 	1 11.7 1
7 36.0-36.9		1		[[i 4- I 1.4	2.4	8 2.7	t 12 t 4.1	1 11	1.4	1 1.0			 	I I			I 49 . I 16.8
6	I	1	 	[1 3	1 6 1 1 2.7	12	1 12	1 2	3							i	t 40 t 13.7
35.0-35.9 5	! !	[! !	1 1.0 1 7	[7	1 4						!	I			I I 28 I 9.6
34.0-34.9	1	i I		i .7	1 2.4	2.7	2.4	1.4	! !		[[[]] 			I I 15
33.0-33.9	ī	1 1	! !	I 4. I 1.4	I 5 I 1.7	1 .7	1.0	1 .3 1	! ! 		i 		i 	i] [! ! • • • • • • •	1 5.2 1
32.0-32.9		1 1	1 .3	1 5 1 1.7	1 1.0	.7	.3	1	1 1		1		[[[[[]		 	I 15 I 5.2 I
2	i	i		1 2	1 2] !] [[· [I !				1			1 1.7
31.0-31.9	1	I .3	! !	1 .7	; 7 [] ;	! ! !		i	i		i			!	1			! ! 2 ! .7
30,0-30.9		i !		i .i	i .i	t t	! 	! !	! !] [] 23	22	i [6	i 2	2	·····	1 .' 1 291
COLUMN TOTAL	.3	.7	.7	14 4.8	26 8.9	33 11.3	42 14. 4	43 14.8	10.3	10.0	7.9	7.6	4.5	2.1	.7	.7	.3	100.0

Table 26. Male Bivariate Table of Calf Circumference (VAR 12) and Ankle Circumference (VAR 13)

	VAR2															
	128.0 - 1 28.9	29.0 - 29.9 I 2	30.0 - 30.9 I 3	31.0 - 31.9 I 4	32.0 - 32.9 I 5	33.0 - 33.9 I 6	34.0 - 34.9 I 7	35.0 - 35.9 I B	36.0 - 36.9 I 9	37.0 - 37.9 I 10	38.0 - 38.9 I II	39.0 - 39.9 I 12	40.0 - 40.9 I 13	41.0 - 41.9 I 14	42.0 - 42.9 I 15	ROW TOTAL
14 43.0-43.9		I I I	I I I	I	I I I	! !	I I	I I	I 1 I .3	I 1 I .3	[[[i I	I I	I I	[[I 2 I .7
13 42.0-42.9		I I I	I I I .	[I I	[[1 2 1 .7	I 2 I .7	I 2 I .7	1 1	t I	i i	[[I I	i i i	i i	1 8 1 2.7
	I	[I I I	I I I	I 3 I 1.0	I 3 I 1.0	I I I	I 3 I 1.0	1 2		: :	I 1 I .3	I I	I I	i i	12 I 4.1
11	I	I	I I I	II I 1 I .3	I 2 I .7	[[6 [2.1	I 9 I 3.1	I	I 4 I 1.4		I I	I 1 I .3	I 1 I .3	I I	1 1	I 24 I 8.2
	i	[[I 1 I .3	[[1 [.3	I 3 I 1.0	[I 2 I .7	I I 5 I 1.7	I 3 I 1.0	I 4 I 1.4	I 1 I .3	2 .7	I I	1	1 1 I .3	I I	i 23 i 7.9
	I	[[I 2 I 7	[I 3 I 1.0	I 6 I 2.1	I 6 I 2.1	[I 7 I 2.4	I 6 I 2.1	I 1 I .3	I 3 I 1.0	I I I 3		I I	[[I I	1 35 1 12.0
37.0-33.5 37.0-37.9	I	i I 1 I .3	1 2 1 .7	I 4 I 1.4	I 4	I 4 I 1.4	I 4 I 1.4	I 5 I 1.7	I 1 I .3	I 3 I 1.0	I 5 I 1.7	I I I	I 1 I .3] [I I	I 34 I 11.6
7 36.0-36.9	I 1	i	I 5 I 1.7	I 4 I 1.4	I 3 I 1.0	I 3 I 1.0	I 13 I 4.5	1 7 I 2.4	I 7 I 2.4	I	I 3 I 1.0	1	1	I 1 I .3	I 1 I .3	I 49 I 16.8
	1 1		i	I 3 I 1.0	1 13	t 5	I I 8 I 2.7	I 6 I 2.1	I 2 I .7	I I	I .3	[I 1 I .3	I I	I I	1 40 I 13.7
5	1	i !	i	I 4 I 1.4	I 4	1 9 1 3.1	1 5 1 1.7	I 3 I 1.0		II I 1 I .3	! ! !	II I (I .3	t t	I I I	I I	I 28 I 9.6
4	I	! ! !] [3	II	1 2 1 .7	1 1 1 .3	1 4 1 1.4	I 1 I 1	I 3 I 1.0	I	I I I	I	I I I	! ! !	1	1 I 15 I 5.1
33.0-33.9	I	I I	I	I	II	I	1.4	i	I		i i	I	I I I	[]]	I	I I 15 I 5.1
32.0-32.9	I	I I	I .3 II	I 2.1 I I	[[1	II	i		i I 1 I .3	I I	i :	I	I I I	I I I	1 1 1	I I 5 I 1.7
31.0-31.9	1	I 	I I I	I I I <u>j</u>			7 	I	i		i	[I I	I I	I I I	I I I	I I 2 I .7
30.0-30.9 COLUMN TOTAL	1 12 -7	I [1 .3	I I	1 .3 1 28 9.6	I I 44 15.1	I I 42 14.4	I I 63 21.6	1 .3 I 38 13.0	1 1 29 9.9	10 3.4	12 4.1	i3 1.0	.ii 3 1.0	12 .7	.3	292 100.0

Table 27. Male Bivariate Table of Calf Circumference (VAR 12) and Calf Height (VAR 2)

VAR12	VAR21 51.0- 50.9	54.0- 56.9 2	57.0- 59.9 3	60.0- 62.9 4	63.0- 65.9 5	66.0- 68.9 6	69.0- 71.9 7	72.0- 74.9 8	75.0- 77.9 9	78.0- 80.9 10	81.0- 83.9 11	84.0- 86.9 12	87.0- 89.9 13	90.0- 92.9 14	93.0- 95.9 15	96.0- 98.9 16	99.0- 101.9 17	102.0- 104.9 18	105.0- 107.9 19	108.0- 110.9 20	ROW TOTAL
VAR12		t	; <u></u>	l	!	!	I					1		1 1	i	i	i	į į		t t	1 2
43 0 41 9			: :	• •											i	10.00		t		1	! '
13 42.0 42.9		E I	i i	[[! !	; ;	! !	[· · · · ·	[! ! · · · · · · · · · · · · · · · · · ·	1 3	1 1 7	į 	1 3	l [f 			2 7
12	ę.	t	[[1	1	[1	1 1		:	2	1 1	i i	1 2	1 1	! ! ; T	t 1 1 t .3 1	! !	; ; 1	I 12
	t -	! ! · · • · • • •	! !			į	[4	6		1 2	1 3	1	1 · · · · · · · · · · · · · · · · · · ·	t	! - 	· · · - -	; ······!	1 24
40 0-40 9	_	t I	! !	E T	! !		! !	i !			2.1	1.4	i .7	1 10	[; ,7 ;	1	[]	l [•••••	l3 .!	1 82
• 10	Ī	1	!	!		!	1 1	1 2		1.4	.7	i 5	1 1	1 2 1 .7		1 2	1 1	I 1 I .3		i i	l 23 l 79
	1	: !	1 !						[[4	6	6	[[[· · · · · · · · · · · · · · · · · · ·	1 1	1 · · · · ·	[· · · · · · · · · · · · · · · · · · ·			,	! ! 95
38.0-38 9	ř	! !	1 	i	Č. 1	j .7	1 10		1.4		2 1	t 1,7 [! 1.4 		†	t .3 1	t .3 [1 [· · · · · · ·]		: [1 12 2
8	Ĭ	1			1 1.0		[7 [2.4	1 10	1 0.0	.7	5	I 2						! !			11.7
37 O-37 9 	1							[]		[[5	[· · · · · · · · · · · · · · · · · · ·]	i 2	i	i	1	1			48
36 0 34 9	Ī	1	i 		1,4	2 3 A	1 2 7	17]	[3] [· · · · · · · ·	1.7	1 .3 [•	i	i		i 1				I 165
6 35 O 35 9	į	I	1 1	! !	I 10 I 3.4	7 1 2.4	1 4	1 7 1	l 8 1 £ 2.7 1		3	i	f I	t 1 E. 1		1	1	[[1 13 7
5 1	\$ - 		i	i	7	1 5	t 3	2	2	[-···• -·			; ··	1		1		1		, ,	78
34.0-34.9				1 1.7	2.4	1.7	t 1.0 I	; .7 ;		[! !	! [! !	! !		i 	1				1 9 6 1 15
4 i 33 0 33 9 i	Ī	i 2	i 3	5	r 4	1 1 1 .3	1 5	[t t .	:	! !	<u> </u>	!	1				5 2
	1	t	2]	I	1 1	1	!				1	!	!	1	1			į	i 15
32.0-32.9	1 .3		7		I 1.0	! ! · · · · · · ·	1 .3 [! 	[] [i					·	i
2 31.0-31.9				1 2	1 2 1 .7	I I	i i	? [t 1					1 !				i		(i	1 1 7
1	i		i		:]]] [[· · · · · · · · · · · · · · · · · · ·		1	Ī	: :				1				:
30 0 34, 9	1	i .s			i			 	[1 [i	i <u>.</u>	i	ii		, j	i ,,,,
COLUMN TOTAL	.7	1.4	3. i	23 7.9	34- 11.7	28 9.6	27 9.3	19 6.5	28 9.6	5.8	9 3	6.5	5.5	6.2	1.7	2 4	1.0	1.0	, i	.3	130 0

Table 28. Male Bivariate Table of Calf Circumference (VAR 12) and Weight (VAR 21)

	VAR 1							450.4	479 1 -	171 4 -	1-6 1 -	17R 4 -	180.4 - 182.3	182.4 -	184.4 -	186.4 -	188.4 -		192.4 -	ROW
	1 158.3	160.3	162.3	164.3	165.J	100.3	110.3				178.3 I 11	1 17	1 13	[14	Į 15.	188.3 [16	,	192.3 I 18		_
	I 1		I 3 I	!	i	i	i	i I	ii	[I	I I	i i		! !			I 1 I .3		1 1
42.0-42.9		i !	i 1	[]	I I	I I	I I	t t		! ! • • • • • • • • • • • • • • • • • •	1 [!	i i i 2	i		i I	I I		[[1 1 2 1 .7
14 41.0-41.9		[]	I I	I I	[[[1 [[1 I I	: [[i 	i !	i !	I .7	i	! !	I I	! !	I [7	I I		i I 3
13 40.0-40.9	Ī ī] [[I I		i I	t I	I I	! !		[[]	[] 	I I 	i !	.7	i ! !	i 	i .3	I I		(1.0 I
12 39.0-39.9	Ī	I	I	[: [I I	[[[]]]	i			î 1	t t	I I	I 1 I .3	I 2 I .7	I I	[[[I I !		I 1.0
	1	i i	i	i	i I	i	I	i			! ! .	[[I 2	2	I I	i 1 i .3	I 3 I 1.0	1	1.0	I 12 I 4.1
	1	t !	! !	[[! !	I [7	[[• • • • • • • • • • • • • • • • • •	 		2	i	I I 1	1	I 2	II	! !	[[1 [.3	I I I 3	1 1	
10 37.0-37.9		1 I I	I I	I I	i [: : :	i 	i 		.7		I .3 I	! !	I .7 1	[.3 [i	i I	ii		t 1 30
9 36.0-36.9	Ī	I I	I I	I I	! !	[[I 2 I .7	I 1 I	.7	3	1.0	1 2.4 I	2.7	1.0	I	i 	i !	I .3		I 10.2 I I 38
8 35.0-35.9	i	I I 1	I I	1 1	I 1	i .	I 1 I .3	.3	6 2.0	1.4	I 6 I 2.0	I 4 I 1.4	1 1.0	1 5 1 1.7	I 3 I 1.0	1 2 1 .7	I 1 I .3 I	I I I		I 13.0
7 .	I	i	i i	I 2] I	[[7	I 4	12	I 10 I 3.4	I 6	I 6	I 9	1 2	I 2 I .7	i 1 I .3	I I	1 2	1	I 63 I 21.5
34.0-34.9	1	I I	I I	1 .7 [I 1	l 5	I 2.4 I 1	3	7	5	i	I 7	1 4	•	ī 2		I I	I I	[[I 42 I 14.3
33.0-33.9		i !	i !	i .i		1 1.7	i .3	1.0	2.4	1.7	I 1.7	I 2.4 I	I 1.4 I I 1		i	i	i I	i I	i I	I I 44
5 32.0-32.9	I	! !	I I	I	I 2 I .7	I 5 I 1.7	I 4 I 1.4	[11] 3.8	2.7	2.0	1.0	1.0	i .i		i .3 II	i !	I	I I	! !	I 15.0 I I 28
4 31.0-31.9		I	1 1	I 3	1 5 I 1.7	1 5 1 1.7	i 5			i 1	I I	I 1 I .3	I I	I I	I I	1 1 [1 I 	i I	i 1	1 9.6 1
3	II	1 2	I	I 1	4	I	I	[1]		! · · ·	[] 7	t I	i i	I I	i	I I	1	I I	[[I 14 I 4.8
30.0-30.9	i	.7	1 .3 I	E .3	I 1.4	I 1.4 I I	1 .J 1 1				i I	i 1	I	I	I	<u>.</u> I	I	I I	I I	i 1 I .3
29.0-29.9		i I	i 1	i .i	i !	ī 1	I 1	! !	! !	t !	! !	I I	ː !	1 [!	i	i	i i	ī I	I	I I 2 I .7
1 · 28.0-28.9	1 .3	<u> </u>	τ 1 Ι .3		! !	I I	I I	I I I	[[L [[I I	i ! !	i :	ī 1	i I	I I	! !	I I	I I4	I ./ I 293
COLUMN TOTAL	1 .3	.7	3 1.0	9 3.1	13 4.4	19 6.5	21 7.2	26 8.9	37 12.6	29 9.9	25 8.5	31 10.6	27 9.2	18 6.1	4.4	1.4	2.0	1.7	1.4	100.0

Table 29. Male Bivariate Table of Calf Height (VAR 2) and Stature (VAR 1)

	V2R13																	
	I I 9.5 + I 18.9 I I	19.0 - 19.4 I 2	19.3	20.4	20.5 - 20.9 1 5 :	21.4	21.9	22.4	22.9	23.0 - 23.4 1 10	23.5 - 23.9 [11	24.0 - 24.4 - 12	24.5 - 24.9 I IJ	25.0 - 25.4 1.14	25.5 25.9 ! 15	25.0 - 26.4 1 16	26.5 - 26.9 1 17	ROY TOTAL I
14 8,4-9,5	!	i			I I	t t			[[1	[! !		! !	! !	t t	1	I I	.7
13	1				i	j		 	[[1 I	I t	[1	[<u>-</u>	1	! !		2
8.2-8.3	f	[i [[[.3	1 1	: [1 .3	t !	! !		[[!		
12 8.0-8.1	, !	î I			1 1		, , , , , , , , , , , , , , , , , , ,	! ! !******	[! [[1 [.3 [1 1 1 .3	.7	! !		I I		i !	1.4
11 7.9-7.9	i	t I	[1	1		.3		1 2	1 2	1 1 [.3	7 2 1 .7	I I [! ! [[[[! ! !	[2.7
10 7.5-7.7	1	[[[[- 	1 1	2	.3		į Į	I I	1 1.4	2 . 7	1 1.0	[[1 1 .3	t [[• • • • • • • • •		4.5
7.4-7.3	t	i	 	i i	[[4	1 1	[7 [2.4	1 3 1 1.0	[4] [1,4	1,4	t 1 C. 1	.7	!	i !	1	31 10.5
,	[[i	1 1		[2	4	7	9	1 2 1 7	[5 [1.7	[7 1 2,4	1 5	. J	t . 1	3	1	47 16.1
7.2·7.3 7	[I 				10	7		1 8 1 2.7	i 9	[7 [7 [2.4		[4 [1.4	[!	: 1 t .3	I	64 1 21.9
7 0-7.1	1	! !	! !	; ;	I 1.0 I 2	[9.4 [2.4		1 2	2] · · · · · · · · · · · · · · · · · · ·	1 2	t t	!	ţ	! · · · ·	[·	1 7 35 1 12.9
5.3-f.9	Ī	! [[I	1.0	7	1.7	2.4	3 1	i .7	i .7	7	I .7	i	3 !		: [: [1 42
5 6.6-6.7	t f	i I	i 1 i	ī :	I 5 I 1.7	6 I 2.1	2.4	2.1	i 7 i 2.4	1 6 1 2.1	1 .3	[1 [.3	! ! !	1 	: ! !	! !	i [14.4
4 6.4·6.5	1 1	[2 [7	i i	[4 [1,4	I 6	1 1.0	1.4	1,4	1 2 1 .7	I I	i ! !		! !	[[! !	{ [[I I	27 1 9.2
3	!	!	[1 2 1 .7	1 4 I 1.4	i 2	2	2	[[[I I I	1	[[[1 1	i I	i I	[[t I	12 4.1
6.2-6.3 2	1 1 1	i	i	j	1 1	i	1	 	[]	I I	[] !	[[[I I I	:	t t	t t f	t (1.0
6.0-6,1	[[[[3 [I .3	I !		 	i ! !	i i 	i	i	1	[[I	! !	[]	1 1
5.8-5.9	Ī	: ! !	i !	! !	1	i !	.3	 -	! !	! [! !	! !	[: 		¦	i	292
COLUMN TOTAL	.3	.7	.7	14 4.8	2G 8.9	33 11.3	42 14,4	44 15.1	10.3	29 9.9	23 7.9	7.5	4.5	2.1	.7	.7	.3	100.0

Table 30. Male Bivariate Table of Heel Breadth, Right (VAR 17) and Ankle Circumference (VAR 13)

	VAR26				•											
	18.6 - 1 8.7	9.0 - 9.1 1 3 1	9.2 - 9.3 [4]	9.4 - 9.5 [5]	9.6 - 9.7 1 6	9.8 - 9.9 1 7	10.0 - 10.1 I B	10.2 - 10.3 I 9	10.4 - 10.5 I 10	10.6 - 10.7 [11	10.8 - 10.9 1 12	11.0 - 11.1 I 13	11.2 - 11.3 I 14	11.4 - 11.5 I 15	11.8 - 11.9 . I 17	ROW TOTAL I
14 8.4-8.5	i i	I		.3		i i	I I I	i 1 I .3	i i		i i	I I I	I I I	I	I I	I I 2 I .7
8.2-8.3	Ī I	I I			 	I I !	f I I		[1] [.3]		! ! !	I I [i ! !	i 1 I .3 I	i I I	i 2 I .7 I
8.0-8.1	I I	I			i i	፤ ፤	i i		1.0		 	I I I .3	I I I	I I I	I I I	i 4 I 1.4
7.8-7.9	I I	I I			i i	I I	1 2 1 .7	.3	.3		l 1 l .3		I 1 I .3	t I I	ī t t	i 8 I 2.7
10 7.6-7.7	I I	I I		.3		[1 [3	.7	.3	1.4	[[.7	[2 [.7	1 1 [i I I	i 1 I .3	1 14 1 4.8
7.4-7.5	I I		.3		3 1.0	i 4 I 1.4	1 6 1 2.1	1,4	1.7		1.0	1 3 1 1 1.0 1	.3	1 .3	I I	1 31 1 10.7
7.2-7.3	I I				7 2.4	1 1.0	9 1 3.1	6 2,1	2.7	2.7	[[1.0	1.0		I I	47 16.2
7.0-7.1	1 1 1 .3	.3	.7	8 2.7	7 2.4	1 7 1 2.4	1 10 3.4	1.7	10 3.4	2.1	1.7	.7			[[64 22.0
6.8-6.9	Ī		.7	.3	7 2.4	1 3 1 1.0	8 2.7	. 5 1.7	1,4	1.4	[.3		[[35 12.0
6.6-6.7	I :	.7	3 1.0	6 2.1	5 1.7	i 2 I .7	10 1 3.4	9 3.1	1.0	.3	.3		1			42 14.4
6.4-6.5	i I	1.4		6 2.1	.7	i 5 I. 1.7	1 1.0	.7	1.0	[[] 1 1	1			26 8.9
3 6.2-6.3	I I I .3		3 1.0	3 1.0	3 1 1.0		I I					1 1		1	1	12 4.1
6.0-6.1	I I	.7			.3	I I	i I	 			[[[]	1 1 1I	i i	i i	I I	3 1.0
5.8-5.9	t 1	I		.3	I	i i			[[i i	i i II	i i 1	i i	i I	.3
COLUMN TOTAL	.7	9 3. 1	12 4. 1	27 9.3	35 12.0	27 9.3	50 17.2	34 11.7	42 14.4	19 6.5	12 4. 1	13 4.5	6 2.1	.7	.3	291 100.0

Table 31. Male Bivariate Table of Heel Breadth, Right (VAR 17) and BOF Breadth, Horiz, Right (VAR 26)

	VAR 16														
	122.0 - 1 22.4	22.5 - 22.9 I 2	23.0 - 23.4 I 3	23.5 - 23.9 I 4	24.0 - 24.4 I 5	24.5 - 24.9 I 6	25.0 - 25.4 I 7	25.5 - 25.9 I 8	26.0 - 26.4 I 9	26.5 - 26.9 I 10	27.0 - 27.4 I 11	27.5 - 27.9 I 12	28.0 - 28.4 I 13	28.5 - 28.9 I 14	ROW TOTAL
14 8.4-8.5	I	I I I	I I I	I I	I	I	I i I .3	I I I	I I	I 1 I .3	I I I	I I I	I I I	I	I I 2 I .7
13 8.2-8.3	i I	I I I	I	1 1	1 1	I I I	I I	[[[I I	I 1 I .3	I I] .3	I I I	I	l I 2 I .7
8.0-8.1	I .	! ! !	: : :	I I	i i	I I	I 1 I .3	1 I I	I I	I 1 I .3		I 1 I .3		! !	I I 4 I 1.4
7.8-7.9	I	I I I	i i i	I I I	i i i	I I I	i i i .3	I 2 I .7		i 2 i .7	Î 1 I .3 I	i i i	i I I	I 1 I .3	1 8 1 2.7
7.6-7.7 -	I	I I I	I t I	I I I	I 1 I .3	I 1 I .3 I	i i I .3	I 2 I .7 [I 4 I 1.4	1 1 I .3	I 2 I .7 I		I I I	t 1 1	14 4.8
7.4-7.5	1 .3		i i [I I I	I 2 I .7 I	I 9 I 3. t I	I 2 I .7 I	! 2 I .7 I	I 6 I 2.1 I	I 2 I .7 I	1 3 I 1.0			I :	31 10.6
7.2-7.3	1	[[[I I I	I ! I .3 I	I 4 I 1.4 I	I 10 I 3.4 I	I 5 I 1.7 I	I 9 I 3.1 I	I 7 I 2.4	I 4 I 1.4 I	1 2 1 .7		1 1 .3	I I	46 15.8
7.0-7.1	I .3	.7	I I I	I 6 I 2.1 I	I 10 I 3.4	I 10 I 3.4 I	I 6 I 2.1	1 9 1 3.1	I 12 I 4.1	I 6 I 2.1 I	I 1 1 I .3 1	.7 .7	[[[[]	22.3
6.8-6.9 ~		I I I	I 2 I 7 I	I 3 I 1.0 I		I 11 I 3.8 I	I 5 I 1.7	I 1.7	1	I I I	I I I	I 1 1 I .3 1		i i . i	35 1 12.0
5 1 6.6-6.7 1	! [.3	1 3 1 1.0	I 7 I 2.4 I	I 7 I 2.4	I 8 I 2.7 I	7 1 2.4	1 3 1 1.0	1 3 1 1.0	I 2 I .7	. 1 . 3	[] []	 	[] []	42 14.4
4 1 6.4-6.5 1	I 1.0		5 1 1.7	i	I 8 I 2.7 I					[[[[[[[]	! !	[] [9.2
3 6.2-6.3 -1		. 1] [.3]		1 3 1 1.0	1 3 1 1 1.0 1	.7	1 1 1 .3 1			[] []		[4.1
6.0-6.1 1 -1	[]	[. 1 1 . 3 1	. 7	[[[[[[[] []	[[[[] []	1.0
1 1 5.8-5.9 1 -1			[] []	[[[[]	[[.3		[] []	[] []	[] [[I I	.3
TOTAL	5 1.7	1.4	13 4.5	27 9.2	37 12.7	53 18.2	34 11.6	33 11.3	39 13.4	6.8	11 3.8	12 4.1	1.0	.3	292 100.0

Table 32. Male Bivariate Table of Heel Breadth, Right (VAR 17) and BOF Circumference, Right (VAR 16)

	VAR25	-														
•	I21.5 - I 21.9	23.5 - 23.9 [5	24.0 - 24.4 1 6	24.5 - 24.9 1 7	25.0 - 25.4 I 8	25.5 - 25.9 I D	26.0 - 26.4 1 10	26.9	27.0 - 27.4 12	27.5 - 27.9 [13	28.0 - 28.4 I 14	28.5 - 28.9 I 15	29.0 - 29.4 I 16	29.5 - 29.9 I 17	30.0 - 30.4 I 18	ROW TOTAL
14 8.4-8.5	I I	i i i	I I I	I I	[[[I I I	I I I	I I		I I	[1 [.3	[[1 1	[[I I	.7
13 8.2-8.3		1 ! !	I I	I I . I	I I	I I I	I I	I I		I I	[[I I	I 1 I .3	.3	i i	.7
12 8.0-8.1	I I	I I I	1 I 1	i i I	I I	! !	I I	1 1		i i	1 2 1 .7	I 1 I .3	I I	.3	I I I	1.4
11 7.8-7.9	I I	I	I I i	I I I	i i	i i	I I	I 2 I .7		1 1	t t	I I	I 1 I .3	.3	I 2 I .7	2.7
10 7.6-7.7	I I	I I I	II I	i i	1	I I	2 1 .7	I 1 I .3	4 1.4	t t	i 4 i 1.4	i 1 I .3	1 1 1 .3	i i i	1 1 I .3 :	i -
7.4-7.5	I I	I I I	I I	1 .3	1 1	1 .3	i i	1 2	6 2.1	I 4 I 1.4	ī 7 ī 2.4	I 4 I 1.4	I 3 I 1.0	1 1 I .3	I ! I .3 I	10.6
8 7.2-7.3	I I	I I	I I	1 1	. 2 1 . 7	. 3 1 1.0	1 3 1 1.0	I 5 I 1.7	9 3.1	1 7 1 2.4	1 8 1 2.7	I 4 I 1.4	I 4 I 1.4	[1 [.3 [I I I	I 47 I 16.1 I
7.0-7.1	I 1 I .3	I 1 I .3	I 1 I .3	1 .3	. 7	6 I 2.1	i 7 I 2.4	I 9 I 3.1	13 4.5	7 I 2.4	3.1	i 2 i .7	I 3 I 1.0 I	I 2 I .7 I		64 1 21.9
6.8-6.9	ī ī	I I	I 1 I .3	I 2 I .7		1 4 1 1.4	1 8 1 2.7	I 9 I 3.1	1.7	I I I	i 2 i .7	I 2 I .7 I	I 1 I .3 I	! ! !	I I I	1 35 1 12.0
5 6.6-6.7	I I	I I	t I	5 1 1.7	6 1 2.1	i 6 i 2.1	i 5 I 1.7	1 8 1 2.7	2.1	I 4 I 1.4	i .7	I I I	I I I	I I I	I I I	1 42 1 14.4 1
6.4-6.5	I I	I I	1 2 1 .7	1 1	1 6 1 2.1	1 3 1 1.0	1 6 1 2.1	I 4 I 1.4	1.0	I 1 I .3 I	-	I I I	I I	I I I	I I I	I 27 I 9.2 I 12
3 6.2-6.3	I I	I 1 I .3	i I	i 1 1	3 1 1.0				.3			I I I	I I I	I I . I	I I 	1 4.1 I 3
6.0-6.1	ī	i I	I 1 I .3	I I	I I I	t í 1	[[]	I 1 I .3	.3	I I I	i i i	I I I	I I I	i i i	t 1	1.0
1 5.8-5.9	I I	i 1	! !	I I	i i i	I 1 I .3		1 [I I I	I ! I	I I I	i 	i ! !	i 	1 .3 1 292
COLUMN TOTAL	.3	.7	5 1.7	12 4.1	21 7.2	26 8.9	32. 11.0	43 14.7	48 16.4	25 8.6	37 12.7	14 4.8	15 5.1	2.4	1.4	100.0

Table 33. Male Bivariate Table of Heel Breadth, Right (VAR 17) and Foot Length, Right (VAR 25)

	VAR 15														29.5 -	ROW
	[[22.0 - [22.4	23.0 -	23.5	24 0 -	24.7	75.0 - 75.4 I T	25.5 - 25.9 t a	26.0 - 25.4 1 3	26.5 - 25.4 - 1 10	27.0 - 27.4 [27.5 - 27.9 I 12	28.0 - 28.4 I 13	28.5 - 28.0 [14	29.0 - 29.4 I !5	29.5 - 29.9 [15	TOTAL T
VAR 17	1	1 3 1	1		i		[i		[[1	I I	[[[2
14 8.4-9.5	I	I I	I I	I !	1		!	1 1	I I	i !	.3	t !		: [[[1 .7
13 8,2-8,3	i	[- · - · · · · · · · · · · · · · · · ·	I I	I	[[I I	t t	t I		i ! .	i .3	i i r .3	! ! !	! [[[[I 2 I .7 I
12 8.0-8.1	1	I I	[[· · · · · · · · · · · · · · · · · · ·	 	 	[[1 1	 	t t	1 1		1 1	1 1	t 1 C. 1	I 4 I 1.4
- 11	[i !	i !	i		[f -]		[[2 [.7		1 2 1 .7	1 1		1 8 1 2.7
7.8-7.9 -	1	I I I	! [[! !			i	j	1 3	i 2	[[2 [.7	[[· · · · · · · · · · · · · · · · · · ·	I: I I	I I 14 I 4.9
.7.6-7.7	[[[! !	f f	[1 .3	i	1 .3	1.0 !	1.0 1	5		1 . 2	[[[: [[[]1
9 7.4-7.5		i i	1 1 1 3	[[! ! ! .3	E 2 I .7	1.4	0.1	1,4	-	• -	1.4	f .7	! !	t [I 10.7
7,2-7,3	[[[[[[[I 4 I 1.4		[9 [3.1	1 10	I 3	1 6 1 2.1	t 3 t 1.9	t 2 t .7	I 2 I .7	[:	I 47 I 162
7	[[] [[I I J		I 6 I 2.1	[[9 [3.1	1 14 1 4,8	[I 5	1 6 1 2.1		1 1	t t	[[[64 [22.0
7.0-7.1 -	!	i	! !	t 1		[7	[11 [3,8	[5 1 1.7	1 1 6 1 2.1	[3 [1.0	[[[[• · · · · · · · · · · · · · ·	1 1	! !	1	L E 35 I 12.0
8.8·5.9 •	1	[[<u>.</u>	i	!	1 10	1		1	[[1	[[[[] [[[42
5 6.4-5.7	ľ	I T	1 .3	I 1.7		1 4 1	3.4	2.4	1.0	1 1.0	: !	t [I 	1 1	t [:	I 14.4 I
4 6,4-6.5	1 1	[1 3	t 5 f 1.7		1 . 8	1 2	i J I 1.0	i !	I I	! ! !	I t r	! ! [[[[! ! !	I 25 I 8.9 I
3 6.2-5.3		[II I I I .J	1 1 2 1 .7		I 5 .	! !	I 1 I .3		t t	i I	T I	I I	[- [[[I 12 I 4.1
2 6.0-5.1	1 1	t t	t t c 1	1		{ f I	; i f	I	1 []	I I	i i	i I	i t	i 1	I I	i 3 I 1.0
1	I I	i !	i	i t	i ! r .3	I I	I I I	I I I	[[[I I I	I I I	! ! !	t I	ī I	i I	i i
5.9-5.9 COLUMN TOTAL	1 1 .3	1 [3 1.0	2.4	19 6.5	16 5.5	45 15.5	41 14 1	1	38 13. I	23 7.9	1 24 8.2	13 4.5	11 3.5	5 1.7	.3	1 291 100.0

Table 34. Male Bivariate Table of Heel Breadth, Right (VAR 17) and Instep Circumference (VAR 15)

	VAR26										•	•				
	I I8.6 - I 8.7 I 1	9.0 - 9.1 1 3	9.2 - 9.3 I 4	9.4 - 9.5 I 5	9.6 - 9.7 I 6	9.8 - 9.9 I 7	10.0 - 10.1 I 8	10.2 - 10.3 I 9	10.4 - 10.5 I 10	10.6 - 10.7 I 11	10.8 - 10.9 I 12	11.0 - 11.1 I 13	11.2 - 11.3 I 14	11.4 - 11.5 J 15	11.8 - 11.9 I 17	ROW TOTAL
14 38.0-38.9		I I I	I	[[[I I	I	I I I	[[[1 1 1 .3	I	.3	I 2 I .7	I 1 I .3	I I I	I I I	I I 5 I 1.7
13 37.0-37.9	Ī	: : :	[[[[I I	! ! !	1 1 2 .3	[[[I 2 I .7	1 1	3	I 2 I .7	1 1	I 1 I .3	I	I I 10 I 3.5
12 36.0-36.9	Ī I	i i	I I	I I	i i	i 2 I .7	i 1 I .3	I 1 I .3	1 15 I 5.2	I 4 I 1.4	.7	7 1 2.4	I 3 I 1.0	I 1 I .3	I 1 I .3	1 37 1 12.8
11 35.0-35.9	ī I	1	I I	I 2 I .7	I 6 I 2.1	I 3 I 1.0	9 1 3.1	I 9 I 3.1	1 10 1 3.5	I 7 I 2.4	3 1.0		I 1 I .3	i i	I I	50 17.4
10 34.0-34.9	Ī	i i	.3	6 I 2.1	I 6 I 2.1	I 9 I 3.1	13 4.5	12 1 4.2	1 7 1 2.4	I 6 I 2.1	3 1.0	.7	[1 [.3	I I	i I	66 22.9
33.0-33.9	1	3 1.0	1 .3	6 2.1	I 12 I 4.2	9 1 3.1	15 5.2	8 1 2.8	I 5 I 1.7	. 1 1 .3 1			I I			60 20.8
32.0-32.9	i 2	.3	5 1.7	11 3.8	I 6 I 2.1	.7	8 2.8	1.0	.7		i 1					41 14.2
7 31.0-31.9	I I	1.4	3 1.0		I 5	.3	.3	i !			1					14 4.9
30.0-30.9	1 1	.3	.3	.3			.3				i 				i i	1.4
1 25.0-25.9							.3				i 1					.3
COLUMN	.7	3.1	11 3.8	27 9.4	35 12.2	26 9.0	50 17.4	33 11.5	42 14.6	19 6.6	12 4.2	13 4.5	6 2.1	.7	.3	288 100.0

Table 35. Male Bivariate Table of Heel-Ankle Circ (VAR 14) and BOF Breadth, Horiz, Right (VAR 26)

•	VAR 16														
	122.0 - 1 22.4 t t	22.5 - 22.9 [2	23.0 · 23.4 I 3	23.5 - 23.9 [4	24.0 - 24.4 I 5	24.5 - 24.9 1 6	25.0 - 25.4 [7	25.5 • 25.9 [8	26.0 - 26.4 I 9	26.5 - 26.9 [10	27.0 - 27.4 I II	27.5 - 27.9 I 12	28.0 - 28.4 I 13	28.5 - 28.9 I 14	ROW TOTAL
1# 38.0-38.9	t !	t t	! !	[[[[[[] [[[! ! ! .3	1 2	[] [I 1 I .3	I I 5 I 1.7
13 37.0-37.9		I I	t t	[1 1 1	[[1 2 1 .7	[.3	1 .3	1 3 [1.0	[[[I 10 I 3.5
12 36.0-35,9		i i i	I I	i i i	f t	i i i .3	i 2 i .7	1 1.0	1 10 1 3.5	1 8 1 2.8	6 2.1	i 6 I 2,1	[1 [.3	[[1 37 1 12.8
11 35.0-35.9		[] [! ! !	I I I	[1 [.3	I 6 I 2.1	1 9 [3,1	1 10 1 3.5	5.2	1 7 1 2.4	.3	1 1 .3	[: ! !	i. 51 1 17.5
34.0-34.9		[! [f t t	1.4	11 3.8	18 1 6.2	2.8	12 4.2	3.1	1 2 1 .7	.2	[[[• • • • • • • • • • • • • • • • •	[[[[[[f 55 1 22.8
33.0-33.9 -	I t T	1 1 1 .3	I 1 [.3	1 7 1 2.4	12 4.2	I 21 I 7.3 I	9 2.8	2.1	1.0	1 1 1 .3	[[[[[i I I	! ! !	I 50 I 20.8
32.0-32.9	I 2 I .7	I 2 I .7 I	I 5 I 1.7 I	I 9 : I 3.1 : I	9 1 3.1	7 7 2.4	6 2.1	.3	[[[[[[[[! ! ! • • • • • • • • • • • • • • • • •	[[I 41 I 14.2
31.0-31.9	I 2 I .7	I 1 I 3	[4 [1,4	6 [2.1	.7 ·	[[[[[[[[[[[[1 15 1 5.2
30.0-30.9		I I I	I 2 I .7 I		.3	[[[[]	[[[[[[• • • • • • •	[[]	[[[]	1.4
COLUMN TOTAL	5 1.7	1.4	12 4.2	26 9.0	36 12.5	53 18.3	34 11.8	33 11.4	39 13.5	20 5.9	11 3.8	12 4.2	1.0	. :	289 100.0

Table 36. Male Bivariate Table of Heel-Ankle Circ (VAR 14) and BOF Circ, Right (VAR 16)

	VAR24											
	I 17.0 - I 17.4	17.5 • 17.9	18.0 - 18.4	18.9	19.4	19.5 - 19.9	20.0 - 20.4	20.5	21.0 -	21.5 - 21.9	22.0 - 22.4	ROW TOTAL
VAR 14	I 1 I	[2 [I 3 I	I 4 [1 5 [I 6 I	-	I 8	1 9 1	I 10	I 11 I	I I
38.0-38.9		I I	I I	I I	I I	I I	I I	I I	I 1 I .3	I 3 I 1.0	1 1 I .3	I 5
13 37.0-37.9	1		i i	i 1 I .3	i i	i i	1 1 1 .3	I I	i 2 i .7	I 2 I .7	1.0	1 10 1 3.5
12 36.0-36.9	1		! ! !	I I	1 1	1 4	I 11 I 3.8	1 9 1 3.1	6 1 2.1	1 4 1 1.4	1 3	I I 37 I 12.8
11 35.0-35.9	I I		i I	! !	I 7 I 2.4	I 11 I 3.8	I 15 I 5.2	I 8 I 2.8	I 9 I 3.1	1 1 1 .3	i i	I I 51 I 17.7
10 34.0-34.9	I I		1 3 I 1.0	8	I 16 I 5.6	I 15 I 5.2		I 11 I 3.8	[1 [.3	1 I		I 65 I 22.6
9 33.0-33.9	I I	1.4		7 2.4	I 15 I 5.2	I 18 I 6.3	I 10 I 3.5	I 3 I	i	I I		60 20.8
32.0-32.9	I I	1.4	12	14	I 6 I 2.1	I 5 I 1.7	I I	1		l I		41 14.2
7 31.0-31.9	i 1 i	1.4	1.4	1.4	2	II I	I	I I				15 5.2
30.0-30.9		.3	.7			I I	I I	[· · · · ·]		i .		1.0
1 1 25.0-25.9		1				[.3					.3
COLUMN TOTAL	.3	13 4.5	24 8.3	34 11.8	46 16.0	54 . 18.8	49 17.0	31 10.8	19 6.6	10 3.5	7 2.4	288 100.0

Table 37. Male Bivariate Table of Heel-Ankle Circumference (VAR 14) and BOF Length, Right (VAR 24)

	VAR25															
	I21.5 - I 21.9 I 1	23.5 - 23.9 I 5	24.0 - 24.4 I 6	24.5 - 24.9 I 7	25.0 - 25.4 I 8	25.5 - 25.9 I 9	26.0 - 26.4 I 10	26.5 - 26.9 I II	27.0 - 27.4 I 12	27.5 - 27.9 I 13	28.0 - 28.4 I 14	28.5 - 28.9 I 15	29.0 - 29.4 I 16	29.5 - 29.9 I 17	30.0 - 30.4 I 18	ROW TOTAL
14 38.0-38.9	Ī	. I	I	II	I	. [I I	I I I	I	I I I	[] 1 [.3	I I I	I 2 I .7	I 1 I .3	I 1 I .3	I I 5 I 1.7
13 37.0-37.9	Ī Ī	I I	I I	I I	I I	i i	I I	I 1 I .3	I I	I i	I 1 : .3	I 1 I .3	I 4 I 1.4	I 1 I .3	1 2 1 ,7	I I 10 I 3.5
12 36.0-36.9	I I	i I	i i i	I I	i i	i i	î I	I i	I 4 I 1.4	I 4 I 1.4	I 10 I 3.5	I 8 I 2.8	I 5 I 1.7	I 4 I 1.4	I t	1 37 1 12.8
35.0-35.9 -	1	I I I	I I I	Î I I	[[]	I 1 I .3 I	i i i .3	I 6 I 2.1	I 14 I 4.8 I	I 7 I 2.4	t 11 t 3.8	I 5 I 1.7	I 4 I 1.4	i 1 I .3 [I I	I 50 I 17.3
10 34.0-34.9 -	I .3	I I I	I I [! ! [I 2 I .7 I	I 6 I 2.1 I	I 10 I 3.5 I	12 4.2	I 11 I 3.8 I	I 13 I 4.5 I	I 11 I 3.8	[[[I I [I I [I I I	1 66 1 22.8 I
33.0-33.9	I I I	I I I	I 1 1 I .3 1	I 2 I .7 I	I 2 I .7 I	I 6 I 2.1 I	13 4.5	19 6.6	I 13 I 4.5 I	I 1 1 I .3 1 I1	1.0	! ! !	[[[I I I	f I I	60 1 20.8 1
32.0-32.9		I I	.3	1.4	I 13 I 4.5	I 10 I 3.5	1,7	1.0	I 5 I 1.7 I	I I I			1 [[I I I	I I I	41 14,2
7 31.0-31.9 - 6		I .3 1		1.4	I 4 I 1.4	I 2 I .7 I	1.0		I I I				[[15 5.2
30-0-30.9	[[I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.7	.3	I I	[]			[[[[1.4
25.0-25.9	i !	i . i	1		r r	i !			.3				[/-		.3
COLUMN TOTAL	.3	.7	1.7	3.8	21 7.3	25 8.7	32 11.1	42 14.5	48 16.6	25 8.7	37 12.8	14 4.8	15 5.2	2.4	1.4	289 100.0

Table 38. Male Bivariate Table of Heel-Ankle Circ (VAR 14) and Foot Length, Right (VAR 25)

VAR14	VAR17 5.8- 5.9 1	6.0- 6.1 2	6.2- 6.3 3	6.4- 6.5 4	6.6- 6.7 5	6.8- 6.9 6	7.0- 7.1 7	7.2- 7.3 8	7.4- 7.5 9	7.6- 7.7 10	7.8- 7.9 11	8.0- 8.1 12	8.2- 8.3 13	8.4- 8.5 14	ROW TOTAL
14 38.0-38.9		i i	i	į		I I	i	i !	i i	1 3	i i i .3	i !	I 1 I 3	I I	I 5 I 1.7
13 37.0-37 9	I	I I	I I	! !	t I	I I	1 1	I ! I .3	1 1.0	I 1 I .3	I 1 I .3	I 2 I .7	I I	I 1	I 1G I 3.4
12 36.0-36.9	I	I I	I I	1	1	1 1 1 .3	1.4	I 14 I 4.5	1 7 I 2 4	1 4 I 1.4	1 4	1 1	1 1 C. 1	1 1	[] 37 [12.8
11 35.0-35.9	Ĭ	1	I I	1 1 1 .3	1 .7	1 8 I 2.8	I 15 I 5.2	1 9	1 10 1 3 4	I 4	I 1 I .3	I 1 I .3	! !	I	5 · 17 · 5
10 34.0-34.9	1	I I	I I	1 2	I 12 I 4,1	7 1 2.4	24 1 8.3	I 13 I 4 5	I 6 I 2.1	I I	1 1	[]	II	[· · · · · · · ·]	66 22.8
- 9 33.0-33.9	i t	I 1	I 4 I 1.4	7	I 11 I 3 9] 11].8	I 15 I 5.2	I 8 I 2.8	I 2 I .7	I .3	I I I	: :		1	60 20.7
32.0-32.9	i i i .3	1 1 1 .3	1 5 1 1.7	3.1	I 11 I	2.1	1 5 1 1.7	i i	I 3 I	! !	i I		[I	4: 14,1
7 31.0-31.9	I	I 1 I .3	.7	5	[5] I 1.7]		I 1 I .3	1 .3	[· · · · · · ·] [1 1	t5 5.2
6 30.0-30.9		II I I	.3	1.0	[1					1	1	1	I I I	1.4
1 1 25.0-25.9		I	 	[] 	[] [] 	[• • • • • • •] [.3 1]			I I I	1 1 1	.3
COLUMN TOTAL	1 .3	3 1.0	12 4.1	27 9.3	41 14,1	33 11.4	65 22.4	47 16.2	31 10.7	14 4.8	8 2.8	1.4	.7	1 .7	290 100.0

Table 39. Male Bivariate Table of Heel-Ankle Circ (VAR 14) and Heel Breadth, Right (VAR 17)

	VAR 15															
	1 122.0 - 1 22.4	23.0 - 23.4	23.5	24.0 - 24.4	24.5 - 24.9	25.0 - 25.4	25.5 - 25.9	26.4	26.5 - 26.9	27.4	27.9	28.0 - 28.4	28.5 - 28.9	29.0 - 29.4	29.5 - 29.9	ROW TOTAL
VAR 14	I 1	l 3 [[4	[5	[6 [! 7 !	l 8	[9	I 10	[11	I 12 I	[13	I 14	t 15	1 16	I .
14 38.0-38.9	t i	i I	: ! !	i !	I I	[]	[[I I	† !	1 1	l 1 L .3	i 2 i .7	1	.7	i i	i 5
13 37.0-37.9	i I	t I	i i	1	i I	i !	I I	i t	i i	i !	1 J	i i	I 5	,3	1	t 10 t 3.5
12 36.0-26.9	I I	1 1	t t	[[[[! !	1 1	1 1	t 1 C. 1	7 1 2.4	I 10 I 3.5	1 9 1 3,1	I 6	. 3	1 .3	[[37 [12.8
11 35.0-35.9	t I	[[[[t f	1 1	1 6 1 2.1	11 11	I 14 I 4.9	1 10	5 [2,1	1 2	1	.3	[1 51 17.7
10 34.0+34.9	t i	[t t	1	i 2	5	l 13 l 4.5	1 17	1 19 1 6.6	1 5 1 1.7	1.4	i !	1		1	65 22.6
33.0-33.9	t i		; !	I J	6 1 2.1	21 7.3	I 13	l 13	1.4	t I			[I 1	60 20.8
32.0-32.9	i i		1 2	T 7	t 6	16 5.6	1 7 1 2.4	1 2		i i			1	1	I I	40 13.9
7 31.0-31.9	i i	.7	1.0	7		! .3	i I	T E		i i				. 1	! !	15 5.2
6 1 30.0-30.9	1 1	.3	.7	.3									ľ	1		1.4
-1 1 1 25.0-25.9 1	i i											1	i 1	1 1] 1	.3
COLUMN - 1	.3	1.0	7 2.4	18 6,3	19 5.6	44 15.3	40 13.9	44 15.3	38 13.2	23 8.0	24 8.3	13 4.5	11 3.8	5 1,7	1 1 .3	288 100.0

Table 40. Male Bivariate Table of Heel-Ankle Circumference (VAR 14) and Instep Circumference (VAR 15)

											•										
	VAR21 I I51.0 - I 53.9			60.0 - 62.9	****	63 0	69.0 - 71.9 [7	74.9	75.0 • 77.9 I 9	80.9	81.0 - 83.9 [11	84.0 - 86.9 I 12	87.0 - 89.9 I 13	92.9	93.0 - 95.9 I 15	98.9	99.0 - 101.9 I 17 I	102.0 - 104.9 [18	105.0 - 107.9 1 19	108.0 - 110.9 I 20	
van	. .	·	i		i	[[· · · · · · · · · · · · ·	I	Ī	i	Ī	1 1	Ī	I	I	I 1	i ,	1 10	1	I I	L 3
1.1	T	7	1	I .	ı	•	-	-	•	ī	I	1 .3	I 	[[1 [I	[i	i
38.0-36.3	. i	i 1	i	i	I	[[i	I	i	1 2	i	i	t 4	1 2	I 1	I •		1 1	[I 10 I 3.5
13 37.0-37.9		I .	I T	I T	I I	i	ī	i !	1	! !	1 .7 [I 	I 1	[1,4 [I .7 [! [.		I
37.0-37.9	. I	i	i . -	i	1	[[2	[[1	7	i 7	i 4	7	1 3	1 1	1 3		Ţ	[1	I 37
12		I .	Į,	I T	I T	I I	7	7	Ĭ	1	1 2.4	1 2.4	I 1.4	[2.4	I 1.0 I	I .3	[1.0				I
36.0-36.9		.[ı I	i	i	· · · · · · · · · · · ·		[I	I 4	1 9	I 2	1 9	i 3	i	i 2	i	t .	[!	I 51
11		t	1	I 2	I 1	I 4	1 1.7	1.1	2.1	1.4	1 3.1	I .7	I 3,1	1.0	[[I .7	[[I 17.6
35.0-35.9	I 	[1 [i	i	i	i	· · · · · · · · · · · · · · · · · · ·	1	[[11	T 2	1 5	1 1	I 4	i	1 2	ī		Ī	<u> </u>	1 65 1 22.5
10	i	i	i 1	! !	1 5	[6	I 7 I 2.4	1 2.8	1 4.2	8.6	1 .7	1.7	1 .3	I 1.4	! !	1 .7	[[1 22.5 I
34.0-34.9	I	I 	I .3 		I	i	i	i	· · · · · · · · · · · · · · · · · · ·	I	I	1 3	1 1	[]]		i			Ī	C6 1
9	I	i	i 2	i 5	1 15	I 8.8	I 8 I 2.8	T 1.4	1 2.4	έ. ί	1 2.1	1 1.0	1 .3	İ	I	I	[[! !	I 20.8
33.0-33.9	I 	1	I .7	I 1.7	I 5.2	I 2.0	1	i	1	I	I	[[I	I	1					I 41
8	-	1 1	1 2	Ī 10	į 9	1 8	1 4	I 2	1 7	I I	i .i	i .i	Ė. i	ī	i	ī	Ī				I 14.2
32.0-32.9	Ī	1 .3	1 .7	1 3.5	1 3.1	1 2.8 1		i	i	i	I	I	[[[f	[]	I :				1 15
7 .	7 2	1 3	1 2	1 1	į J	1 2	Ī	<u>I</u>	I 1	I 1	1	i	i	ì	i, .	i	i i				I 5.2
31.0-31.9	i .7	1.0	.7	1 .3	1 1.0	I .7	[[ı [i	i	ī	i	i	I	[[[1 4
6	· [· [[1 2	I 1	1 1.	Ī	i	i .	I	I	Į,	I	I I	i I	i ·	i	i i				I 1.4
30.0-30.9	ī	î	i .7	É. 1	1 .3	1	I	[I 	1 [ì	i	<u>i</u>	i	[1	[I 1 1
-	· I I	· <u> </u>	i			:		Ť	I	I	I	1		:	:	:	i i				į .š
25.0-25.9	I I	ĭ	Ĭ	î	i	Ī	1 .3	I	I 1	I 	i I	i	I I 16	I	i	i	t	!	([I 283
-			1	-	34	28	27	20	28				16 5.5	18 6.2	1.7	2 4	1.0	1.0	.3	. 3	100.0
COLUMN	2	1.4	3.1	20 6.9	11.8	9.7	9.3	6.9	9.7	5.9	9.3	6.6	9.5	Ð. 2	,	•.•				•	

Table 41. Male Bivariate Table of Heel-Ankle Circumference (VAR 14) and Weight (VAR 21)

VAR15	VAR13 18.5- 18.9 1	19.0- 19.4 2	19.5- 19.9 3	20.0- 20.4 4	20.5- 20.9 5	21.0- 21.4 6	21.5- 21.9 7	22.0- 22.4 8	22.5- 22.9 9	23.0- 23.4 10	23.5- 23.9 11	24.0- 24.4 12	24.5- 24.9 13	25.0- 25.4 14	25.5- 25.9 15	26.0- 26.4 16	26.5- 26.9 17	ROW TOTAL
16	i	!	! · · · · · · · · · · · · ·	! : !	!	[[[; ! !	1	1 .3	ī	1 I	ī I	i I		i i	.3
29.5-29.9	1	i !		· · ·	i	[]	i	t	1	1 1	1 2 1 7	I I	! !	! !	!	!	1 1 1 3	[: 5 : 17
29.0-29.4	I	i 	i 	i 1	t t	[[! !	! !	[]	1 .3 1			ļ		·	•	! .J !	I 1.7 I 10
14 28.5-28.9	1	f I	1					.3		1 2 1 .7		i .7	. 3.		[]		! !	1 3.4
13	I	I						1 1	3	1	6 2.1	1 2 1 .7	I 2	I İ			1 1	1 13 I 4.5
28.0-28.4							2	1 2	j	1 3	1] ! 3 ! 1.0	1 5 1 1.7	i i	I	2	[[! ! 24 ! 8.3
27.5-27.9	İ	i [! !	[.3 1		, 7 1	! 1.4 :	1.0] 1.0 [! !		ii	·	i	1 23
27.0-27.4	Ī	1	i I				 		1.7	2.1	1.0	2.1	! [1 1	t !	I I	1 7.9
10 26,5-26,9	ī					5 1.7	2	1 6 1 2.1	1.7	7 6	1.7	1 1.4	1 1.4	! !	I 1 I .3		! !	I 38 I 13.1
9	1	i			1	3	12	11	6	[1.0	1 2	! ! ! .3	1 1	I	1	! !	I 44 I 15.2
26.0-26.4	! !	I I :	[[1.0	4.!	1 3.8 [[2.1 [i	· · · · · · · · · · · · · · · · · · ·		i		i	I I 41
8 25.5-25.9	İ	i i		.5	1.7	2.4	3.5	3.1		1,7		i .3	I	! !	I I		1 1	I 14.1
7 25.0-25.4	ī]]		2	10 3.4	2.8	9 3.1	I 8	t 5 : T 1.7	.7	t T	1 1		I ! !	I I	[] [1 [!	1 45 I 15.5
6	: :	1 1		3	2	3	3	1 3	[1	1 E	!	I I	i	i i	i 16 i 5.5
	1	! !		1 1.0 [1.0	1.0	1.0				ī	i	t I	I	! !	I	I I 19
24.0-24.4		1	.3	1.0	2.1	1,4	1.0	i .5	i [i 		I I	I I	; !	! !	t [: !	1 6.6 1 1 7
23.5-23.9		i 1 i .5		2	.3	.7 1	ľ	t t c. 1	1		! !	! ! !	I I :] [: : :	! ! !	i !	2.4
3		I		1	1 1			1	!			i L	ī ī	i I	1	i i	1 1	1 3 1 1.0
23.0-23.4	1	i		.3				; ;			• • • • • • • • • • • • • • • • • • • •	I I	1 I	! !	1		!	! !
22.0-22.4	1	i i						i 1	! [] [·····	I I 22	I I 13	! !	[]	! !	1 	1 .3 I 290
COLUMN TOTAL	3	.7	.7	13 4.5	25 9.0	33 11,4	42 14.5	44 15.2	10.3	10.0	7.6	7.6	4.5	2.1	.7	.7	. 3	100.0

Table 42. Male Bivariate Table of Instep Circumference (VAR 15) and Ankle Circumference (VAR 13)

	VAR26															
	I 18.6 - L 8.7	9.0 - 9.1	9.2 - 9.3	9.4 - 9.5 1 5	9,6 - 9,7 1 6	9.9	10.0 - 10.1		10.4 - 10.5 1 10	10.7	10.8 - 10.9 I 12	11.0 - 11.1 [13	11.2 - 11.3 I 14	11,4 - 11.5 1 15	11.8 - 11.9 [17	ROW TOTAL
VAR 15	1						i	į	! · · · · · · · · · · · · · · · · · · ·	[t t	[[l	[[[[
9.5-29.9	t 1			! !	i !	! !	t [1	1 .3 (i	1 [! !	! !	1 1	! !	! .: !
15 9.0-29.4		i i	i I	i !	1 1	[[[! ! ! • • • • • • • •	t t	1 1 [.3	i .3	i .5		1 2 1 .7 1		! ! !	1.3
14 8.5-25.7	1	[[1	1	i !	i !	i !	1 1	1 2 1 .7		l 2 l .7		[I I I .3	[[! 1! ! 3.! !
13 8.0-28 4	i	[· · · · · · · · · · · · · ·	[[1 1	[[t t		1 1	1 4			1.4			1 1	1 13
12 7,5-27,9	1	[[[]	I 1 I .3	[[[! ? ! 7	l !		1 9		1 5	į 2 1 .7				į 24 L 8.3
11 7.0-27.4	[i	t	[[[]	[[[[· · · · · · · · · · · · · · · · · · ·		1 7 1 2.4			i 1 i .3		[[1 1	i 22 1 7.6
10 3.5-26.7	1	i	[[i t	1 2		 8 2.8	1 5 1 1.7	[9 [3,1	5 1 1.7	į , j	t 2 L .7		[i i	1 30 1 13.
9 1.0-26.4	I	ii I I I .3		I 4 I 1.4	1 5		[13 [4.5	1 7 1 2.4	1 6 1 2.1	I 3 I 1.0		i	I 1 I .3		I I	i [4: [15.2
8	1	[!	i I !	1 4	1 3	8 2.8	[[9 [3.1	1 11 1 3.8	1 1 2 1 .7	I 3 I 1.0	-	[[[[[[[[] [1 4:
5.5-25.9 - 7	T	 . 3	1 2	1 10	1 14			1 7		t 1	t t	i	t t]	[[[l I 49 I 15.9
6.0-25.4 - 6	· i	1 1.0 1	I .7 I	1	1		 2	[[[1	i i	i I	i : :	i ! !	i	i !	[]
.5-24.9	1	i !	1.0	1 .7	1		[1	i	! 1	I I	[[! !	! !		[[] 18
5 1.0-24.4	I 2 I .7	t 1 t .3	i 3 i 1.0		1.4		1,4			! ! [1 1 [[[[I I [[] [! ! [i 6.1
4 1.5-23.9	t	I 4 I 1.4	1 2 1 .7	t .3	[[i !	i i	I I	t 1	I I I	1 1	[[! ! !	1 2.4 1
- 3 3.0-23.4	t	[[i 1	[! !	i i	I I	t t	I I	i I	i I	: ! !	I I	i : I 1.0
1	1	l	I	l]		 	! ! !	[]]	: :	1 1 1	1 t T	1 1	1	i I	i :
COLUMN		i g 3.1	i 12 4.2	7 7 7 7 9,3	35 12.1	27 • 9.3	50 17.3	33 11.4	14.2	19 6,6	1 12 4.2	13 4,5	1 6 2.1	.7	, ,	289 100.0

Table 43. Male Bivariate Table of Instep Circumference (VAR 15) and BOF Breadth, Horiz, Right (VAR 26)

	VAR25										-								
	I 19.0 - I 19.4 I 1	20.0 - 20.4 I 3	20.5 - 20.9 I 4	21.4	21.5 - 21.9 I 6	22.0 - 22.4 I 7	22.5·- 22.9 I 8	23.0 - 23.4 I 9	23.5 - 23.9 I 10	24.0 - 24.4 I II	24.5 - 24.9 I 12	25.0 - 25.4 I 13	25.5 25.9 I 14	26.0 - 26.4 I 15	26.5 - 26.9 I 16	27.0 - 27.4 [17	27.5 - 27.9 I 18 I	28.5 - 28.9 1 20	
18 27.0-27.4		I	I	[I !	[] [[[[]]	! ! !	1 1]] [[I I I		i ! i .2	i 1 1	i i i	i I I	i i !	I 1 I .2 I
17 26.5-26.9	I I	1	i I	i i	ī I	i I	I I	I I	1	! !	[1	I I	[[I I	I I T	I I !	I 1 I .2	I 1	I 1 I .2
15 25.5-25.9	I	I I	1 I	[[]	[[i i		i i	! !	 	I I	1		.8	I 2 I .4	1 .2	I 2 I .4	I 1 I .2	10 2.0
, 14 25.0-25.4	i I	I I	I I	I I	I I	1 [[] !	I I	i 1 I .2	I 2 I .4	1 1.2	1.0	I 3 I .6	i 2 i .4	1 .2	i i i	1 I I	20 [4.]
13 24.5-24.9	I I	i I	1	i I	į	ī I	;	1 2	1 2	.8	I 4 I 8	.8	1	1 5 1 1.0	1 1.2	. 2	i i	[[40 1 8 2
12 24.0-24.4	I I	I I I	I I	; ! !	I I	: :		1 1 1 2	1 8	1.8	1 5 1 1.0	10 2.0	10 2.0	1 10	1 3 1 6	4	I I I		60 12.3
23.5-23.9	I I	I I	i i	i f I	I I	i !	1.2	1 6 1 1.2	1 6 1 1.2	14 1 2.9	I 19 I 3.9	1 14 1 2.9	1 6 1 1.2	I 1 I .2 I	1 3 1 .6 I	! ! !	i I I	I I I	T 75 T 15.3
10 23.0-23.4	I I	i I	i I	î I	I I	I 2 I .4	1.2	I 8 I 1.6	I 15 I 3.1	20 4 . 1	I 17 I 3.5	21 1 4.3	9 I 1.8	1 3 1 .6	I 2 I .4	I I 7	l 1	t I	103 L 21.1
22.5-22.9	I	I I I	I I	! ! !	i 2	I 4	6 1.2	l 15 I 3.1	1 18 1 3.7	17 1 3.5	I 8 I 1.6	.11 I 2.2	. 8	; ; ;	1 1 1 .2	i i	I I] 	86 1 17.6
8 22.0-22.4	i	i 1 I .2	i i i	I I	I 1 I .2 I	I 3 1	1.2	I 11 I 2.2	I 9 I 1.8	7 1 1.4	I 6 I 1.2	2 1 4	i I	I I I	i t 1	t I I	i ! !	I I I	46 ¹ I 9.4
7 21.5-21.9	1	I I	I I	I I	1 3 1 .6	I 5 I	.8	t 5 I 1.0	I 7	1.0	1 2 I .4		1 .2	I I	! !	! !	I [1 1	32 5 6.5
6 21.0-21.4		I I	I 1 I .2	•	I 4 I ,8	I 2 I .4	.6	l 1 I .2	I 1 I .2		I I	I I	[[I I I	i i	i I I	i i i	I I I	1 12 I 2.5
5 20.5-20.9	i	! !	[]	I I	[]	I 1 I ,2	! !	! !	I I		I I	I I	! !	i i i	i i 1	I I [I I I	I I I	1 1 1 .2
20.0-20.4	Ī	i !	I I	1 1	i I	1		i !	1 I		I I	t I	i i	! !	I I	I I	I I	I I	i i i .2
1 18.5-18.9	1 .2	I I	i i	i i	i I	1		!	I I		I I	1	I I	I I	i i	i I	i i	i 1	.2
COLUMN TOTAL	. 2	1 .2	1 .2	. 2	10 2.0	17 3.5	31 6.3	45 10.0	66 13.5	77 15.7	63 12.9	68 13.9	46 9,4	27 5.5	19 3.9	7 1.4	.8	1 .2	489 100-0

Table 44. Male Bivariate Table of Instep Circumference (VAR 15) and Foot Length, Right (VAR 25)

	VAR21																				
V±R15	IS1.0 - I 52.3 I 1	54.0 - 56.9 I 2	57.0 - 59.9 I 3	60.0 - 62.3 I 4	63.0 - 65.9 I 5		69.0 - 71.9 I 7	72.0 - 74.9 I B	75.0 - 77.9 I 9	80.9	81.0 - 83.9 I 11	84.0 - 86.9 I 12	87.0 - 89.9 L 13	90.0 - 92.9 I 14	93.0 - 95.9 I 15	98.9	99.0 - 101.9 I 17	102.0 - 104.9 I 18	105.0 - 107.9 I 19	108.0 - 110.9 I 20	RCW TOTAL I
16 29.5 <i>-2</i> 9.9	i I	I I	I I	I I I	-I I I	I I I	I I I	I	I I I	I I I	II I	I I I	I	I I	I I I	II I	I I I	[[]	I I I	I 1 I .3	I 1 I .3
15 29.0-29.4	1	· I · · · · · · · · · · · · · · · · · ·	I I I	I · · · I	-1 I I	I I I	I I I	I I I	I I	I	I I	I 3 I 1.0		I 1 I .3	I	I I I	I I	I 1 I .3	I I	I I	I 5 I 1.7
14 28.5-28.9		i I	I I	I I I	I I	I I	I I]] [I I	[[1 1	1 1	I 2 I .7	I 4 I 1.4	I :	1 1 1 .3	I 1 I .3	I I I	I 1 I .3	I I	I 11 I 3.8
13 28.0-28.4	ī	į	I I	I I	. [[1	I I	1 1 1 .3	I I	[[i	I 2 I .7	I 1	I J	I 3 I 1.0	I 1 I .3	I 1 I .3	I 1 I 3	I I	I I	I 13 I 4.5
12 27.5-27.9	î	i I	i I	i			I I	1 1			I 7 I 2.4		I 3 I 1.0			I . 4 I 1.4	I		I	i I	I 24 I 8.3
27.0-27.4		: ! !	I I I		I I	I 2 I .7		I 1 I .3	I 1 I .3	1 3 1 1.0			I 4 I 1.4			: ! !	. 1 1 I .3 1	•		I I	I 23 I 7.9
10 26.5-26.9		I I I	i i	i 1 I .3	i i i	i 3 I 1.0	I 5 I 1.7	i 5 I 1.7	I 4 I 1.4	10 3,4	3 I 1.0	1 1.0		ī . j	ī	1 1 1 .3				i i i	I 38 I 13.1
9 26.0-26.4 -		I I I	[[.3	I 4 I 1.4	I 3 I 1.0	I 5 I 1.7	1 5 1 1.7	I 11 I 3.8 I	.3	1 8 1 2.8 1	I 2 I .7 I			T :			[· · · · · · · · · · · · · · · · · · ·			I 44 I 15.2 I
	ī 1	I I I	.7	3 1.0	I 8 I 2.8 I	I 8 I 2.8 I	I 9 I 3.1 I	.7	.7	.3	[4 [1.4 [I I I	t I I	.3	[[[[]		[I 40 I 13.8 I
	I I		.3 1 	9 3.1	I 10 I 3.4 I	I 7 I 2.4 I	I 4 : I 1.4 : I	.7	[5] [1.7]	.7		.7	l 1 i .3		[[[[] []	[] 		I 45 I 15.5 I
	I I	.3		.7	I 5 I 1.7 I	I 2 I .7 I	.7 I					[i ;				I I I				I 16 I 5.5 I
5 24.0-24.4 -1 4	ī [.3	1	1.4	I 5 1.7 1	.7	[]						.3	i		1	I I	1			I 19 I 6.6 I
23.5-23.9	i !							[.3									I	I		1 7 1 2.4 1 3
23.0-23.4	i	.3 1			i i										1	1	I	i 	i		1.0
22.0-22.4		ī			I			1			1					<u>-</u>	<u>-</u>	i	i		.3
TOTAL	.7	1.4	3.1	7.6	34 11.7	28 9.7	27 9.3	20 6.9	27 9.3	17 5.9	27 9.3	19 6.6	16 5.5	18 6.2	1.7	2.4	1.0	1.0	. 3	.3	290 100.0

Table 45. Male Bivariate Table of Instep Circumference (VAR 15) and Weight (VAR 21)

	VART																		
	[[14].0 - [142.9	143.0 -	147.0 - 148.9	150.9	152.9	154 9	156 9	158 9	159.0 - 160.9	162 9	164.9	165.9	168.9	170.9	1/2.9	1/4.9	1/0.3	1/8.9	ROW TOTAL
VAR25	1	t 2 	[4 [t 5 1	i	7		!	1 10									i	i . ,
20 24.5-28.9	1	I I	1	I I	I I	! !	1	, : :			i 	i 	i 	i 1	: [.2	i 	i 	i .2
- 18 27.5-27.9	i	I	(;	: :			•	i i		1 1	I I .	1	1	1	.2	.4	1	. 8
17	[i	j	i	j				! - · · · · · · · · · · · · · · · · · ·		!	1 2	1	I 1	i	1 1	1 .2	! !	1.6
27.0-27.4	1	! !	[[1 ·	I I		2	! !	1		2 	1 .4	[.2 [1					1.0
16 26.5-26.9	1	I I	! !	[T	! !			! !	1		.2	.2	6	1 1.0	.6	.4	.4	.4	g.9
15 26.0-26.4	i	;	1]	1				I 1 I		2	I 8 I 1.6	I 1 I .2	I 5	1 5 1	.4	.2	.2	5.5
14	1	i	ii	i	i	1		1	1 4	7]	1 9 1 1.8] 6 I 1.2	I 6	[]	4	1 1	1	1 1 45 1 9.4
25 5-25.9	[I I		i 	<u>.</u>	.2			I		 	1 1.8 [1	1	6			i	i 69
13 25.0-25.4	I	I !		! ! •	! !		.2	.8	1 2 2	1.6	1 2.2	2.2	1 1.8	1.0	1 1.2	i 	i .4	I I	1 13.8 1
12 24.5-24.9	t I	!	t I	!]] }		12	1.6	1 1.6	2.0	1 10 1 2.0	; 9 ; 1.8	1 6 1 1.2	I I I .2	1 .4	.4	! ! !	i i i .2	f 63 I 12.0 I
11 24.0-24.4	I I	I I		. 2	i !	.0	G 1.2	15 3 1	14	10 2.0	1 12 1 2.4	I 8 I 1.6	1 7 1 1.4	! ! !	I I I	! ! !	I I I • • • • • • • •	1 1 1	1 77 1 15.7
10 23.5-23.9	1	I I	1 1	2	1.0	7	1.2	9	14	11 2.2	i 3 I .6	1 5 1 1.0	1 3 1 .6	; ; ;	1 1	! ! !	i i i] [i 67 I 13.6 I
23.0-23.4	i t	1 !	: :	1 5	1 4	5 1.0	15 3.1	5	.8	5 1.0	. 5 1 .6	i 1	i 1 I .2	•	1 1 1 .2	i I !	1 I I	[[[1 49 1 10.0
8 22.5-22.9	i t	! ! !	t :	1 1 1 .2	1 7 1 1,4	.8	9	7	1 1	1 2	. 2	i i	i ·	: ! !	i ! -	: :	! ! !	i 1	31 6.3
7 22.0-22.4	i I	I I I	1 .2	I 1 I .2	1 2 1 .4	5 I	,	. 8	1 1	2]]	1	! !	! !	! !	: :	1 [i 1	1 17 1 3 5
6 21.5-21.9	! !	[] [1 2 1 .4	1 .6	[4 [.0	.2		!	1		I I	1	 	i !	t !	i i	1 ! !	[] [I 10 I 2.0
5 21.0-21.4	; !	I	I I	I	.2				1		: : :	1	1 1 1	[]]	I I	 	i i i	! !	.2
20.5-20.9	i	1 1	1	! !	[[1		! !	i I	: ! !	i I I	! ! !	; ; ;	i i i] [[.2
3 20.0-20.4	i 1	! !	I	: : :	I				i	1	! !		: ! !	i : :	[[] 	[] [.2
1 19.0-19.4	1 .2	I I]]	1 1 1	[[1	 	: :	i i	: ! !	I I	I I I	i i i	! ! !	 	. 2
COLUMN TOTAL	.4	.2	.8	13 2.6	23 4.7	27 5.5	45 9.2	53 10.8	58 11.8	55 11 2	51 10.4	54 11.0	37 7.5	23 4.7	19 3.9	13 2.6	9 1.8	.8	491 100.0

Table 46. Male Bivariate Table of Foot Length, Right (VAR 25) and Stature (VAR 1)

	VAR21 51.0- 53.9	54.0- 56.9	57.0- 59.9	60.0 62.9	63.0- 65.9	66.0- 68.9	69.0- 71.9	72.0- 74.9	75.0- 77.9	78.0- 80.9	81.0- 83.9	84.0- 86.9	87.0- 89.9 13	90.0- 92.9 14	93.0- 96.9 15	96.0- 98.9 16	99.0- 101.9 17	102.0- 104.9 18	105.0- 107.9 19	108.0- 110.9 20	ROW
VARI			3	. :		6				. 10	11	12	;		:		-				: • 4
192,4-194,3		! !	I !	! !	1 1	! !	I I	t 1	! ! :	! !	[2 [7	[] :•••••	! ! !	[; [3	•	1 	1 1				1.4
18 190.4-192 3		į	i	i !	<u>i</u>	i i	i 1	! !	! !	! ! !	1 .3		I I	i ! !	[[[1 1 1 .3	[[[1.7
17 188.4-190.3		1		1	i	i I	i	i !			! !	2	i i	1 2		! ! !	[' [1 6 1 2.1 1
16 186.4-189.3	I	! !	I I	I I	! !	1	1	i i	I I	i		1 1		1 1	I 1 I .3	! !	i i i .3		1		I 4 I 1.4
15 184.4-186.3	1	: ! !	I	: [t t	[2] ,7	I 1 I 3	1	I 2 I .7		1 1	1 1 1 .3		I I	t 1 I ,3	i i	i !	.3	.3		1 12 1 4.1
14 182.4-184.3		[[1	t	. I . I . I . I . I . I . I . I . I . I	[[[I	t 2 1 .7	I 3 I 1.0	1 2	I	I 2 I 7	I I I .3	1 2 1 .7	1 3	[1 1	i				18
13 180,4-182,3			i i	I 3	1 1 1 1	[· · · · · · · · · · · · · · · · · · ·	I 2] I J	I 2	[· · · · · · · · · · · · · · · · · · ·] 1 2		I 7 I 2.4	I 4 I 1.4	[[27 9.2
12 178.4-180 3		1 1 1] 1 7	I I	!	i	1 2	4] [[[1 5 1 1.7	[I 1.0	[[1 2 1 .7					. 3	31 10.6
	I	i	i !	i	I 3	1	i	i 3	i	I 3	2	I	1 4 1 1.4	[! ! ! • • • • • • • • • • • • • • • • •	[1		25 5 5
	1 1	i	·] ! 2			5	1	1	i	1.4	;	1 1] [[[[[• • • • • • • • • • • • • • • • • • •		1		1 23 1 9.9
	[I			2	3	I 1. /			4	 5	i	i]		[1 · · · · · · · · · · · · · · · · · · ·		1		[[37 [12.7
	1			C. 1	.7	1.0	I 1.7	1.0	1 2.7 1	1 4	1.7	[1.4 [[3	: [į · · · · · ·		į	i				t E 26
170.4-172.3	i I		.3	.3	2.7	1.0	I 2 I .7 I	.7	. 2 . 7		.7	1.0	i	i 	i !	i .i	i				I 8.9 I I 21
7 168.4-170.3	c. 1	[.3	1 1.0	2.1	1.7	.3		.3	.7		I I I .3	I I I	1 [. [! t !	i	: ! [I 7.2 I I 19
6 166,4-168.3	Ī i	.3	.7	1.0	5 I	.7	.7	.3	.3	.3		t !	! ! ! .3	! ! .	I I [[[]	I I I			••	f 6.5
5 164.4-166.3	.3		.3	1.4	.7 I	.7		1		.1 1	.1 .3	•	i i	•	•	I I 1	1 ! !				[13 [4.5 [
4 1 162.4-164.3 1	i	1 I 1 C.		1.0	3 1	.3 1	1			1		i	: :	[[i i	i I				f 9 [3.1 [
3 1 160.4-162.3 1		I	.7 1]I	II	1 · · · · · · · · · · · · · · · · · · ·	 					i	[] [i i	I I	i i				I 3 I 1.0 I
-1 2 1 158.4-160.3 1	ı	1 I 1 C.	1 1	I	1 1	i	t 1	i				[[[[[I	[! t t	I I				.7
-; 1 ; 156.4-158.3 ;	i	······································	ii		·····i	1 t			•	· · · · · · · · · · · · · · · · · · ·			[I I	[I I I	I		1	•	3
	t	i 1.4	i 9 3. 1	23 7.9	34 11.6	29 . 9.6	27 9 2	20 6.8	29 9.6	17 5.8	27 9.2	19 6.5	i 16 5.5	18 6.2	5 1,7	7 2.4	1.0	3 1.0	.3	.3	292 100.0

Table 47. Male Bivariate Table of Stature (VAR 1) and Weight (VAR 21)

	VAR21																	
V4042	I42.5 - I 44.9 I 1	45.0 - 47.4 I 2	47.5 - 49.9 I 3	50.0 - 52.4 I 4	52.5 - 54.9 I 5	55.0 - 57.4 I 6	57.5 - 59.9 I 7	60.0 - 62.4 I 8	62.5 - 64.9 I 9	65.0 67.4 I 10	69.9	70.0 72.4 I 12	72.5 74.9 1 13	75.0 - 77.4 [14	77.5 79.9 I 15	80.0 - 82.4 I 16	87.5 - 89.9 I 19	ROW TOTAL
17 25.0-25.4	1 1 1	I I I	I I I	I I I	I I I	[] [I I I]]]	1 ! !	I I I	1 1 1	I	1 1 1	I I I	! !	! ! !	I 1 I 2 I	i 1 I .2 I
15 24.0-24.4		I I	I I	I I	I I	! !	! !	I I	I I	I I T	I 1 I .2	I I I	1 !	! ! !	I 1 I .2	! ! !	[]	I 2 I 4
14 23.5-23.9	1	I I	; ; ;	I I I	! !	I 1 I .2	! ! !	I I I	I I	I I	i 1 I .2	i i	i i i .2	I I		I I	i , i	i 4 i .8
13 23.0-23.4	I .	i i i	i I . I	I I I	: : : :	I I I	i i i	I I I .2	I I I	3 1 ,6	i 1 1 .2		I 1 I .2	i i I .2		i 1 1	i i i	7 I 1.4
12 22.5-22.9	I I	i I !	i I	i I	i I	i 1 I .2	I 1 I .2	1 3 1 .6	1 4 1 .8	. 6	I 3 I .6	2	i i i .2	i 1 I .2	i I	i I	i I	19 1 3.9
22.0-22.4	i I	: : :	I I	I I	I I I	1 4 1 .8	i 1 I .2	1 2 1 .4	i 8 I 1.6	1.8	I 4 I 8	1 5 1 1.0	I 5 I 1.0	1 1	i i	: : :	I I	38 7.8
10 21.5-21.9	I I	i I	i i	i 2 i .4	I 5 I 1.0	1.2	10	1 15 1 3.1	I 15 I 3.1	1.6	I 1 I .2	3 1 .6	I 1 1 .2	i 3 I .6 I	i i i .2	I I	i i I	70 14.3
9 21.0-21.4		I I	i I	1 2 1 .4	I 5 I 1.0	7 I 1.4	1 23 1 4.7	I 16 I 3.3	1 16 I 3.3	1 8 1 1.6	I 6 I 1.2	i 4	I 2 I .4	1 2 1 .4	[[I 1 I .2	i I	1 92 1 18.9
8 20.5-20.9		i I	i .	. 6	1 3 1 .6	17 3.5	12 2.5	I 14 I 2.9	1 6 1 1.2	9	I 8 I 1.6		i i	i I	i I	I I	I I	72 14.8
20.0-20.4	I I		5 I 1.0	1 8 1 1.6	I 14 I 2.9	10 2.0	17 3.5	15 1 3.1	1 3 1 .6	6	I 3 I .6	! !	I I	I I I	1 1	I I I	I I	81 16.6
6 19.5-19.9	1	. 8	f 4	. 8	1 3 I .6	7 1.4	15 3 - 1	1 6	i 5		I I		i i	i I	i I	i I	i I	1 48 1 9.8
5 19.0-19.4	I 1 I	.6	. 6	7 1.4	9 I 1.6	.8	5 1.0	.2	1 1 .2		I I	i I	i I	i I	i i	i i	I I	34 7.0
18.5-18.9	I I	. 4	. 4 8		I 3 I .6		. 2	. 2	I I		I I		I I	I I	i i	I I	I I	16 I 3.3
3 18.0-18.4	I I	-		. 4	i i						I I		I I	I I	1	[[[I I	.4
2 17.5-17.9	i		.2		I I						I I	I	I I	i I	I I	I I	i !	.2
17.0-17.4	I I				1 1]]	i I	i .	I I	i i	i i	[[.2
COLUMN	. 2	9 1.8	17 3.5	31 6.4	43 8.8	59 12.1	85 17.4	74 15.2	58 11.9	46 9.4	28 5.7	15 3.1	11 2.3	1.4	.4	.2	. 2	488 100.0

Table 48. Female Bivariate Table of Ankle Circumference (VAR 13) and Weight (VAR 21)

VAR13	VAR25 21.5- 21.9 1	23.5- 23.9 5	24.0- 24.4 6	24.5- 24.9 7	25.0- 25.4 8	25.5- 25.9 9	26.0- 26.4 10	26.5- 26.9 11	27.0- 27.4 12	27.5- 27.9 13	28.0- 28.4 14	28.5- 28.9 15	29.0- 29.4 16	29.5- 29.9 17	30.0- 30.4 18	ROW TOTAL
17	i i		i .	i	[• • • • • • • • • • • • • • • • • • •	!	! · · · · · · · · · · · · · · · · · · ·	[1	3
26.5-26.9 16	1						[· · · · · · · · · · · · · · · · · · ·	[· · · · · · · · · · · · · · · · · · ·	[• • • • • • • • • • • • • • • • • • •		[.7
26.0-26.4 15	1	i . 	! !	i	i :	· · · · · · · · · · · · · · · · · · ·	i	i !	[i	1	1			1	2 7
25.5-25.9	1	· · · · · · · · · · · · · · · · · · ·	t !	: :				i 			1 2 1 1 .7	2	1	1 1		. 6 . 2.1
25.0-25.4	i [i 	! !			t 	i 2	! !	2	5	1		1 1		1 1 13 1 4.5
13 24.5-24.9	i [i 1			.3		[.7	1.7	3	1	2 1		1 22
24.0-24.4	i i			1 1 1		: [:		1.4	1.0	1.4	1.0	1.0		7 .7 1 [1	1	
11 23.5-23.9	t 1		i I	1 1	[[[.3	1.0	[[[• • • • • • • • • • • • • • • • •	1.0	1.0	1.4	10	1.0	.3 1		t
10 23.0-23.4	į ! į !						1.4	1.4	1.7	.7	2.7	 	.,,	i	.3	
9 22,5-22.9	i i		i i	1	.7		1.4		1.7	2.7	1.0		.3	ti	.3	f 10.3 f
8 22.0-22.4	1 1		i i	[2]		4	2.1	12	7 2.4		1.4		1.0			1 43 1 14.8
7	i			I 3 I		4	3 1.0	1 8 1 2.7	2.7	1,4	1,4					42 14.4
21.5-21.9]			1 3	i 4	5	4	1 4 1 1.4	7		1 1.0	1 1		i i		33 11.3
21.0-21.4	[.3	:		3	4		7	5					i		26 8.9
20.5-20.9	I I		.7 [I :	1.0 I	1.4				· · · · · · · · · · · · · ·	i					1 1 14 1 4.8
20.0-20.4	i !		.3	c. 1		.7			.7							1
19.5-19.3				1		.3					: :					1 2
19.0-19.4	I 1	i 	i 	i	i [.3	.3	i [I				4	.7 ! ! 1
18.5-18.9	i • i			i i	I I		.3		 		i 			i i		1 .3 1 291
COLUMN • TOTAL	1 .3	2 .7	5 1.7	12 4.1	21 7.2	26 8.9	32 11.0	43 14.8	48 16.5	25 8.6	37 12.7	14 4.8	4.8	2.4	1.4	100.0

Table 49 Female Bivariate Table of Ankle Circumference (VAR 13) and Foot Length, Right (VAR 25)

	VAR25																		
VAR26	I 19.0 - I 19.4 I 1	20.0 - 20.4 I , 3	20.5 - 20.9 I 4	21.0 - 21.4 I 5	21.5 - 21.9 I 6	22.0 - 22.4 I 7	22.5 - 22.9 I 8	23.0 - 23.4 1 9		24.0 - 24.4 I 11		25.0 - 25.4 I 13	25.5 - 25.9 I 14	26.0 - 26.4 1 15	26.5 - 26.9 I 16	27.0 - 27.4 1 17	27.5 - 27.9 I 18		
16 10.6-10.7	i	I	[[[I I I	I	I I I	1 1 1	[[I	!	I I	I	[[[[[[I	1 1	I 1 I .2		I I 1 I .2 I
15 10.4-10.5	Ī	1	i !	i !	I I	i !	I ·	1				I 1 I .2	1 1		i !	I I	I I	1	i 2 i .4
10.2-10.3	I I	I I	I I	I I	I I	 	I I .	! !	1 2		1 1 1 .2	I I		.2	.2	I I	I I	I 1 I .2	1 6 1 1.2
10.0-10.1	I I	i I	i I	I I	i I 7	: [[; ; ;	i 1 I .2		i 1 I .2	i i	I 1 I .2	5 1.0	.4	i 3 I .6	i I	i i	i i	1 13
9.8-9.9 9.8-9.9	I I	ī [i I	i i	i 1	i !	i !	i i	; !	1 3 1 .6	I 4 I .8	1 5 1 1.0	. 8	.8	. 8	I 1 I .2	I 2 I .4	i !	27 5.5
11 9.6-9.7	1	1	i !	i i	i i	I I	I 1 I .2	I 2 I 4	I 2 I .4	I 4 I .8	I 3 I .6	1 6 1 1.2	7 1,4	6 1.2	. 8	I 1 I .2	I I	i I	35 7.3
9.4-9.5	i I	1		i I	I I	! !	I 2 I .4	I 11 I 2.2	I 5 I 1.0	9 1 1.8	I 11 I 2.2	I 15 I 3.1	7 1.4	. 4	. 6	I 4 I .8	I I	i !	69 14.1
9.2-9.3	I I			! !	i !	I 1 I .2	I 6 I 1.2	I 8 I 1.6	I 10 I 2.0	14 2.9	1 8 1 1.6	I 8 I 1.6	, 4 , 8	7 1.4	. 1 . 2	ī 1 1 .2	i I	I I	68 13.9
9.0-9.1	I I			i I	2	I 4 I .8	I 4	l 13 I 2.7	I 17 I 3.5	21 4.3	I 22 I 4.5	I 18 I 3.7	13 2.7		.4	i i	I 1 I 2	I I	118
8.8-8.9	I I	.2		I :	.4	I 4	I 1 I .2	1 4 1 .8	I 13 I 2.7	10 2.0	I 8 I 1.6	1 9	.6	.4	1 .2	I I	i I	I I	58 11.8
8.6-8.7	I I				. 1	I 2 I 4	I 9 I 1.8	. 8	I 9 I 1.8	1.0	1 3 1 .6	1 4	.2	.4		i i	I I	I I	40 8.2
5 8.4-8.5	1			.2	3	5 I 1.0	5 1 1.0	. 6	5 1.0	8 1.6	I 2		2		1	I I	1	I I	34 6.9
8.2-8.3	I I				.4	i I	.6	.6		.2	I 1 I .2			.2		i I	I I	I I	14 2.9
3 8.0-8.1	i i		.2			.2			.2		I I	I I			[[I I	i i	I I	.6
7.6-7.7	1 1				!	ľ		[]			I I	I I				i I	i I	I I	.2
COLUMN TOTAL	. 2	.2	.2	.2	10 2.0	17 3.5	31 6.3	49 10.0	67 13.7	76 15.5	63 12.9	68 13.9	46 9.4	27 5.5	19 3.9	1.6	.8	. 2	490 100.0

Table 50. Female Bivariate Table of BOF Breadth, Horiz, Right (VAR 26) and Foot Length, Right (VAR 25)

	VAR 13 I																
V4046	I 17.0 - I 17.4 I 1	17.5 - 17.9 I 2	18.0 - 18.4 I 3	18.5 - 18.9 I 4	19.4	19.5 - 19.9 I 6	20.4	20.9	21.4	21.9	22.0 - 22.4 I 11	22.5 - 22.9 I 12	23.0 - 23.4 I 13	23.5 - 23.9 1 14	24.0 - 24.4 I 15	25.0 - 25.4 1 17	ROW TOTAL
17 26.5-26.9	I	I I I	I	[] [[[I I I	[[• • • • • • • • • • • • • • • • • • •	[[[I	I I I	I I I]] [I 1 I .2	
16 26.0-26.4	1	I I	1 1	t t	i i	i i I	i I I	1 1 1	f T 1	1 1 .2 1	I I I	! ! !	I 1 .2	! ! !	[[]	I : : : : : : : : : : : : : : : : : : :	1 2 1 .4 1
15 25.5-25.9	Ī	i i i	I I I	i i i	t : !	[]]	! ! !	I I I	I I I	I I I .2	1	[[]	I I [! ! !	I I I	I I I	I 1 I 2
14 25.0-25.4	1	i i	[]]	t I I	! ! !	i	I I I	t I I	I 2 I .4 I	1 2 1 .4 1	I 1 I .2 I	ī	I 1 I .2 I	i i i	! ! !	I I	1 6
13 24.5-24.9	I	I I I	I I I	1 ! !			i 1	I 2 I .4 I	i	1 3 1 .6	I 5 I 1.0 I	i 	I	I I I	I I I	I I I	I 13 I 2.7 I
24.0-24.4	I	I I · · · · · ·	1 ! !	t I I	1 1 1 .2			1 .6 I	1		1	i .6	1 .2		I 1 I .2 I	t 1	I 32 I 6.6 I
23.5-23.9	I :	1 1 1 .2	I I I	I I I	[[[I 1 I .2 I	I 4 I .8 I	[7 [1.4 [l 17 I 3.5 I	2.3	I 8 I 1.6 I	1.0 1	6. 1 1	i .4	i	I I	I 60 I 12.3
23.0-23.4	1	1 I I	I I	[] 	[1 3 1 .6	I 11 I 2.3 I	I 13 I 2.7	I 15 I 3.1 I	1 11 1 2.3	I B I 1.6 I	I 6 I, 1.2 I		I 1 I .2 I	i 1	I	I 68 I 13.9 I
22.5-22.9 -	I I	[[i I	1 2 1 .4	. 6	I 10 I 2.0	I 19 I 3.9	1 21 1 4.3	I 16 I 3.3 I	13 2.7	I 4 I .8 I	I 1 I .2 I	I I I	! ! !	I I I	•	I 89 I 18.2 I
22.0-22.4	I I	! !	[[[I 3 I .6	1 11	I 12 I 2.5	I 20 I 4.1	I 15 I 3.1	I 13 I 2.7 I	l 16 I 3.3 I	I 4 I .8 I	I 1 I .2 I	I 1 I .2 I	l I I	I I I	! ! !	I 96 I 19.7 I
21.5-21.9	1	I I I	I I I	I 4 I .8	1 8 1 1.6	1 B I 1.6	I 13 I 2.7	I 6 I 1.2	I 14 I 2.9 I	7 1 1.4		I 1 I .2 I	t t t	! ! !	I I I	I I I	I 61 I 12.5 I
21.0-21.4	i		I I I	1 3 3 .6	I 7 I 1.4	I 9 I t.8 I	I 11 I 2.3 I	I 4 I .8	I 5 I 1.0 I	i	I 1 I .2 I		I I I	I I I	I I I	I 1 I	I 41 I 8.4 I
20.5-20.9	1	! !	I 1 I .2 I	1 2 1 4							1 1 1	I I I	I I I	! ! !	I I I	I I I	I 11 I 23 I
20.0-20.4	1 .2		I 1 I .2	1 1 1 .2 :				I I I	i i i	[I I I	I I I	I I I	I I 1	I I I	I I I	I 6 I 1.2 I
18.5-18.9	1		1 1	i 1 I .2		I I I	1 I I	t 1 1	! ! !	! ! 	I 1 [I I I	I I I	I I I	I I I	I I I	I 1 I .2 I
COLUMN TOTAL	. 2	. 2	. 4	16 3.3	34 7.0	48 9.8	81 16.6	73 15.0	92 18.9	69 14 . 1	38 7.8	19 3.9	1.4	.8	.4	.2	488 100.0

Table 51. Female Bivariate Table of BOF Circumference, Right (VAR 16) and Ankle Circumference (VAR 13)

	VAR 16															
V4000	118.5 - 1 18.9 1 1	20.0 - 20.4 I 4	20.5 - 20.9 I 5	21.0 - 21.4 I 6	21.5 - 21.9 1 7	22.Q - 22.4 1 8	22.5 - 22.9 I 9	23.0 - 23.4 I 10	23.5 - 23.9 I II	24.0 - 24.4 I 12	24.5 - 24.9 1 13	25.0 - 25.4 I 14	25.5 - 25.9 I 15	26.0 - 26.4 I 16	26.5 - 26.9 I 17	ROW TOTAL I
16 10.6-10.7	Ĭ	[] !	I	!	[] [.	[]] [! ! !	I I I	I I I	I I I	I I I	1 I I	i i i .2	I I I	i 1 i .2 i
15 10.4-10.5	I I	i i	i i	i !			i !	I I	i I	Î 1 I .2	I 1 I .2	I I	I I	I ! !	I I	I 2 I .4
14 1 10.2-10.3	t I	1 1 1	I I	1			; ;	I I	t !	1 2 1 .4		I 1 I .2	I 1	1 1	I I	I 6 I 1.2
13 1 10.0-10.1	[[1 I 1	I I	I I			1 1 1	I I	I 5	I 4			I I		I I	I 13 I 2.7
-1 12 9.8-9.9	i i	1 1 1	I I	1 1		! !	I I	I 4 I .8	I 9 I 1.8	I 5 I 1.0		I .6	I 1 I .2	i i	I 1 I .2	I 27 I 5.5
- 11 9.6-9.7	t 1	I I I	I I	I I			[4 [.8	I 4 I .8	I 14 I 2.9	I 11 I 2.2		1	I I] []	•	1 35 1 7.2
10 9.4-9.5	i i	I I I	I I	I 1 I .2	.4	5	1 14 1 2.9	1 23 I 4.7	1 16 1 3.3	I 6 I 1.2	1 2 1 4	1 1	I I	i i	I I	1 69 I 14.1
9 9.2-9.3	ī ī	I I	I	t I	.8	11 2.2	1 18 I 3.7	i 20 i 4.1	I 13 I 2.7	1 2	1 1	I I	I I	: : :	I I	68 I 13.9
9.0-9.1	i t	I I	I 1 I .2	I 6 I 1.2	14 2.9	39 8.0	39 I 8.0	I 16 I 3.3	1 2	I 1 I .2	I I	I I	I I	! ! !	1 1 1	I 118 I 24.1
- 7 8.8-8.9	I I	I I	1 1	I 5 I 1.0	16 3.3		[9 [1.8	I I	1 2 1 .4	I I	I I	1	i I	t I	I I	1 58 1 11.9
- 1 6 1 8.6-8.7	t i	I I	I 2 I .4	1 6 I 1.2	18 1		I 3		[[I I	I I	i	I I	I I	i i	I 40 I 8.2
-: 5 : 8.4-8.5 :	t I	I 3 I .6	I 4 I .8	I 17	5					I I	1 1	i, l'	I I	: : :	i i	1 34 1 7.0
8.2-8.3		I 1 I .2	I 3 I .6	I 6 I 1.2	2	.2			1	i I	I I	i i	i i	! !	i I I	i 14 I 2.9
3 8.0-8.1	t I	1 2 I .4	1 1.				! !	I I	[[[[]]]	i i	i i	: ! !	i I I	i 3 I .6
7.6-7.7	I 1 I .2	1 1	I I	I I	I	 	i i	i I	I I	I I	I I	i I	i i	: ! !	: ! !	I 1 I .2
COLUMN TOTAL		6 1.2	11 2.2	41 8.4	61 12.5	95 19.4	90 18.4	68 13.9	61 12.5	32 6.5	13 2.7	6 1.2	1 .2	. 4	. 2	489 100.0

Table 52. Female Bivariate Table of BOF Breadth, Horiz, Right (VAR 26) and BOF Circ, Right (VAR 16)

	VAR25																		
	I 19.0 - I 19.4 I 1	20.0 - 20.4 I 3	20.5 - 20.9 I 4	21.0 - 21.4 I 5	21.5 - 21.9 I 6	22.0 - 22.4 I 7	22.5 - 22.9 I 8	23 0 · 23.4 I 9	23.5 23.9 I 10	24.0 - 24.4 I 11	24.5 - 24.9 I 12	25.4	25.5 - 25.9 1 14	26.0 - 26.4 I 15	26.5 - 26.9 I 16	27.0 - 27.4 L 17	27.5 - 27.9 I 18	28.5 28.9 I 20	ROW TOTAL I
17 *26.5-26.9		1	[[]	I I I	I I I	I	[[]	 	1 1	I · · · · · · · · · · · · · · · · · · ·	1 1 1	I I I	[[i 1 i .2	i i 1	i i i	i I I	i i t	I 1 I .2 I
16 26.0-26.4		i I	i I	I !	i I	1 1	! !	i !	I I I	I I I	1 ! !	I I I	! ! !	1 [[1 1 1	I I I	[1 .2 1	I 2 I .4 I
15 25.5-25.9	i	i I	î 1	I I]]	I I		i !	1	t . !	i i	I I	! ! !	I 1 1 .2 I		t I 1	I I 1	I 1 [1 1 1 .2 I
14 25.0-25.4	ī	I I	1 1	ī	[[I I		i !	i !	: ! !	i 1 I .2	I 1 I .2	l 1 I .2	I I I	I 1 I .2	I 1 I .2	I 1 I .2 I	I I I	I 6 I 1.2 I
13 24.5-24.9	i I	I I	1	I I	I I	I I			I 2 I 4	i i	i !	i 1 I .2	.4	I 3 I .6	1 3	I 1 I .2	I 1 I .2	•	I 13 I 2.7 I
12 24.0-24.4	i 1	I	I I I	1 I	I I I	1		1 .2	1 2	2	I 4	I 5 I 1.0	9 1.8	i 3 I .6	i 5 I 1.0	i 1 i .2		[]	1 32 1 6.5
11 23.5-23.9	ī I	I I I	I I I	! ! !	I I I	I I	2	3	I 3	I 9 I 1.8	I 6 I 1.2	1 13 I 2.7	10 2.0	I 9 I 1.8	i 4 i .8	I 2 I .4	I I	•	1 61 I 12.4
10 23.0-23.4	ī	[: []	I I I	[I I I	I I I	1 1	4	1 4 1 .8	1 14 1 2.9	I 14 I 2.9	I 14 I 2.9	I 8	1 2	1 3 1 .6	I 3 I .6	I 1 I .2	i I	I 68 I 13.9
9 22.5-22.9	i	I I I	[] [[[[I I I	I 1 I .2	1 6	10 1 2.0	I 16 I 3.3	I 17 I 3.5	I 14 I 2.9	1 12	10 2.0		I 1 I .2	I I	i I	i	I 90 I 18,4
-: 8 22.0-22.4	ī	I I I	I	I	I 2 I .4	I 2 I .4	[[6 [1.2	12	1 18 1 3.7	I 19 I 3.9	I 14 I 2.9	I 15 I 3.1	. 4 8	i 2 I .4	I 2 I 4	I I	I I	t I	i 96 i 19.6
7 21.5-21.9		I 1 I .2	I I I	I	I 2 I .4	I 5 I 1.0	[I 12 I 2.4	I 11 I 2.2	I I 9 I 1.8	I 6 I 1.2	I 6		i 2	1	I I	i i	i I	T 61 I 12.4
- 6		[[I I	t 	1 I 3	I 6 I 1.2	[8 [1.6	 5 1.0	I 9 I 1.8	I 7 I 1,4	I 2 I .4	I I	I 1 I .2	I I I	I I	I I	I I	I I	1 41 I 8.4
	i	I I	II	i	1 1 1 .2	I 3 I 6	2	l 1	1 1 I .2	 	I 2 I .4	I 1 I .2	•	I ·	I I I	I I I	1	I I	I 11 I 2.2
20.0-20.4	i	I	1 1 1 2	i I 1	I 2]]		1 1	i		I I I	I I	i I I	I	I I I	I I I	1 I	I I	1 6 1 1.2
18.5-18.9	1		i	i	i !	II			1	i	I	1 1 1	[I I I	· I I I	I I I	I	I 1	I I 1 I .2
	1 .2	1 . 2	1 . 2	1 . 2	10 2.0	17 3.5	31 6.3	49 10.0	67 13.7	77 15.7	63 12.9	68 13.9	46 9.4	26 5.3	19 3.9	1 8 1.6	.8	1 . 2	1 490 100.0

Table 53. Female Bivariate Table of BOF Circumference, Right (VAR 16) and Foot Length, Right (VAR 25)

	VAR 15															
VAR 16	I I 18.5 - I 18.9 I 1	20.4		21.4		22.4	22.5 - 22.9 1 9	23.0 - 23.4 I 10	23.5 - 23.9 1 11	24.0 - 24.4 I 12	24.5 - 24.9 I 13	25.0 - 25.4 I 14	25.5 25.9 I t5	26.5 - 26.9 I 17	27.0 - 27.4 I 1B	ROW TOTAL
17 26.5-26.9	i	I I] 	I	1	1 1	[[] [[[]]]]	I I	I I	[[]	I I	I I	[1 .2	I 1 I .2 I
16 26.0-26.4	I I	I I	I I	I I	I I	I r	t I	I I		I I I'	! !	i i		I 1 I .2	•	i 2 I: .4
15 25.5-25.9	I I	î 1 1	I I	i i i	i i i	i i i	r I I	i t I	i i I	I I I	i i	r I I	I 1 I .2	i i r r	i I 1	I: 1 I2
14 25.0-25.4 13	I	Î T t	I I I	[[r r r	I I I	I I I	1 1 1	i I	I I I	1 4 I 8	i ! I .2	I f I .2 I	I I I	ľ I I	I 6 I 1.2 I
13 24.5-24.9 12	I	I I I	f I I	I I I	f I I	ľ Í I	I f [I I I	i .2	I I I	I 3 I 6 I	i	I 5 I 1.0 I	r ! !	I I !	I 13: I 2.7 I
12 24.0-24.4	I i	I I I	i I I	t I I	I I I	I I I	I I I	ř 1 ř .2 I	1 3 1 .6 1	I	I II I 2.3	I	I 2 I .4 I	T I I	1 I I	I 31 I 6.4 F
23.5-23.9	I I	I I I	I I I	t I I	I I I	[[[I 3 I .6 I	I 8 I 1.6 I	I 12 I 2.5 I	1	I 15 I 3.1 I	I 6 I 1.2 I	I I I	I I T	I. I I	f 61 I 12.5 I
23,0-23,4	I I [[] [[[[I I I	I 2 I 4 I	1 1 I 2 I	I 4 I ,B'	ľ 16 ľ 3.3 ľ	I 22 I 4.5 I	[.6	i 	1	! ! !	[]]	68 I 13.9 I
22.5-22.9	I I I	f I I	I I I	r	[] [ľ 33 I 6,8 I	I 26 I 5.3 I	I	. 8			[1	I 89 I 18.2 I
8 22.0-22.4	r 1	I I I	i	I I	I 3 I 6 I	3.5	7.0		1	r .8	[[i	ī	i 1	1	I 96 I 19.7 I
21.5-21.9 	i i	1	t I		T	3.3		1	i .2	6 .6	r 1	i !	i	i I	1	I 61 I 12.5 I
21.0-21.4	I I		i i i .2	1.0	1 2.7	1,6		ř .6	r T		[I I		t 1 [I 41 I 8.4 I
20.5-20.9	i I	; [I 2 I .4 I	1.0	.4		1 1 1 .2			[[[I I I	I I	! ! !	I I I	I 11 I 2.3
20.0-20.4	i 1	1 .2 ! ! .2 !] 4 [.8				[! ! [[[; ; !	I I	I I I	! ! !	I 6 I 1.2 I
18.5-18.9	1 .2		[[[] 	I I I	[[[! !	I I I	1 	! ! !	[1 [.2 [
COLUMN TOTAL	. 2	. 2	. 2	12 2.5	32 6.6	46 9.4	86 17.6	103 21.1	75 15.4	60 12.3	40 8.2	3,9 19	2.0	. 2	.2	488 100.0

Table 54. Female Bivariate Table of BOF Circumference, Right (VAR 16) and Instep Circumference (VAR 15)

	VAR21																	
	142.5 -	45.0 - 47.4 I 2	47.5 - 49.9 I J	50.0 - 52.4 I 4	52.5 - 54.9 I 5	55.0 - 57.4 I 6	57.5 - 59.9 1 7	60.0 - 62.4 [8	62.5 - 64.9 I 9	65.0 - 67.4 I 10	67.5 - 69.9 1 11	70.0 - 72.4 I 12	72.5 - 74.9 I 13	75.0 - 77.4 I 14	77.5 - 79.9 I 15	80.0 + 82.4 I 16	87.5 - 89.9 I 19	ROW TOTAL
17 26.5-26.9		1 1	I I I	I I	I	1		[[]	 	[[[1 1 I	! ! !	I	I I I	I	[] }	I 1 1	.2
16 26.0-26.4	I	i I	! !	I I	I I	I I	 	i i i	i i i		I I I	I I	i 1	I 1 I .2	: ! !	I I	i i	.4
15 25.5-25.9	ī	I I	! !	i i i	I I I	I I	! !	1 1 1	I I I .2	ī t	I I	1 1	i !	I I	i i i	i i i	I I	.2
14 25.0-25.4	Ī	I I	I I	i I I	I !	I I	! !	[] 	i i	I 1 I .2	I I	i 2 I .4	i 2 i .4	I 1 I .2	I I	t 1 1	I I	1.2
13 24.5-24.9	t ·	i i I	i I I	: ! !	: ! !	I :		1 2 1 .4	i 2 i .4	1 2	I 1 I .2	.8	I 2	I I I	i i !	I I I	I I	13
12 24.0-24.4	i	i I I	I I	I 1 I .2	l 1 I .2	1 2	 	1 5 1 1.0	1 6 1 1.2	i 7 I 1.4	t 6 1 1.2	I I	I 2	I 2 I .4	I I	I I I	i i	32 6.5
23.5-23.9	I I	I I	1 1 .2	1 1 1 .2	i 2 i 4	I 2 I	10 2.0	I 10 I 2.0	8 1 1.6	I 10 I 2.0	1 9 I 1.8	1 5 1 1.0	.2	I I	I 1 I .2	I I I .2	I	61 12.5
10 23.0-23.4	t I	i I	2 1 .4		1 4 1 .8	t 9 i	10 2.0	I 14 I 2.9	11 2.2	i 9 I 1.8	I 4 I .8	i 1 I .2	i i	i 1 i .2		I I		68 13.9
9 22.5-22.9	I I		1 .2		i 7 I 1.4	1 12 1 1 2.5 1	17 3.5	I 17 I 3.5	10 2.0	I 14 I 2.9		1 .2		I 1 I .2		i i i		89 18.2
8 22.0-22.4	ī	I I	. 6	ī 7 I 1.4	I 14 I 2.9	I 16 I	26 5.3	I 14 I 2.9	11 2.2	I 3 I .6	i 1 I .2	1 . 1	I I	i I I	I I	I I I		96 19.6
7 21.5-21.9	I 1	i 2 i .4	5 1.0	I 7 I 1.4	I 6 I 1.2	10 2.0	. 14 2.9	7 1 1.4	1.2	•	i 2 I .4	I 1 I .2	T	[[I I	1 1	I I	61 12.5
6 21.0-21.4	i ·	I 4 I	.4	i 6 I 1.2	i 6 I 1.2	1.4	8 1.6	i 4	.6	i !	i i	i I	i I	! !	I I	i 1	I I	8.4
5 20.5-20.9	Ī	I 2 I .4	.4	I 4 I .8	I 1 I .2	1 1	. 2	i i		: :	I I	I I	1	i I	I I	i I	I I	11 2.2
4 20.0-20.4	Ī	I I	.2	I 1 I .2	I 2 I .4	.2		. 1 1 . 2		i I	i .			i I I	i I	I I	i i	1.2
18.5-18.9	I I	I 1 I .2		: []	I I					i i	I I	1	i I ·	i I	i I	i i	I I	.2
COLUMN TOTAL	.2	1.8	17 3.5	31 6.3	43 8.8	60 12.3	86 17.6	74 15. t	58 11.9	46 9.4	28 5.7	15 3.1	11	6 1.2	.4	.2	.2	489 100.0

Table 55. Female Bivariate Table of BOF Circumference, Right (VAR 16) and Weight (VAR 21)

· · · · · · · · · · · · · · · ·	CIRAV					÷											
	117.0 -	17,5:- 17,9 1 2	18.0 - 18.4 1 3	18.5 - 18.9 T 4	19.0 - 19.4 ! 5	1 6	20.0 - 20.4 1 7		21.0 - 71.4 ! 9	21.5 - 21.9 [10	22.0 - 22.4 ! !!	22.5 • 22.9 1 12	23.0 - 23.4 1 13	23.5 - 23.9 I 14		25.0 - 25.4 1 17	
18 20.5-20.9	1	! !]	1	[[[[[[1 [! ! !	1 1	1 .2	1	1	1	.2
17 20.0-20.4	1	I	1 1	1 1	1 1	1	1 1		1 .7		1 2 1 .4	1	1 1	1 1	1	i t	i 0 1 1.6
16 19.5-19.9	1	1 [1] 	1	2	1 .2	1.0	1 5	1 3 1 .6	i 3 i .6			i !	i i	i !	i 18 1 3.7
15 19.0-19.4	1	! !	1	i i i	; ; ; ,2	0 1 .6 1	1.0	i .7	1 13 1 2.7	† 7 1.4 	I 8 I 1.6	; 3 ; .6] 	1 .2	2	1 45 1 9.2
14 18.5-18.9	1	i i i	i ! !	; ; ; .4	i i i .7	1 3 1 6	1 1.0	1 16	† 17 1 3.5	1 4 1 ,8	1 2 1 .4 1	; 5 ; 1.0	 	1 I	1 1	! ! !	3 55 3 11.3 1
13 18.0-18.4	1	i ! ! .2 !	i ! i .2	† 1 I ,2	1 6 1 1,2	T 5 I 1.0	1 16 1 3,3	1 16 1 7,3	I 12 I 2.5	I 12 I 2.5] 6 [1.6	; 4 ; .8 [I 2 I .4	I 2 I .4	 	1 1 1	j 86 T 17.6 T
17.5-17.9	. <u>;</u>	t 1 1	1 1	, 4 , 4	l 6 I 1.2	I 9 1 I.R 1	[14 [2.9 [1 11 2.7	[15 1 3.1 [l 13 l 2.7	I 7 I 1.4 I	I 2 I .4 I		1 1	! !	i	1 16.4 1
17.0-17.4		! ! !	1 t 1] 4] ,0	1.4	1 16 1 3 3 1	1 15	1 20	1 13 1 2.7	1 20 1 4.1 1					.2	ļ	I 96 I 19.7 I
10 16.5-16.9	.	! ! !	ļ		1.0		1 17 1 2.5	1.2	1.4	.6	! ? ! .4 !	[]]		ļ. 			0.4
18.0-16.4	i :	: : !		.6		i	1 1, 8 1		1 6	1.7			įż	i 1	i 	į	i 8.0 1 1 12
15.5-15.9	2	i !	i 	i ! !		, , , , , , , , , , , , , , , , , , ,	i .a 	i .6.	i .i !	i 	: 	; !	i . !	i !	i !	j	2.5
15.0-15.4	i 1	i ! !	i 1	i .2	i .4 	i ! ! !	i ,2	i 	i 1 I	i !	: ! !	i ! !	1		1	t 1	.8
14.5-14.9	i	i ! • !	! !	i 1		i .2 	!] 	† { 	i	i 	I []	! !	i	! !] 	2
14.0-14.4	1	!] I	! !	2 !	! 	t † !	! ! · · · · · · · · · · · · · · · · · ·	! !	! t f	; [!	! ! !	! ! ! ,	1 	1 1 1	 	1 1 1	.2
12.0-12.4 COLUMN	1]]	! !	1 1	i i: 34	! .2 ! 48	81	73	! 92 -	t 69	38 1	! 19	1] [4	1 1] 	. 2 1 488
TOTAL	7	. 2	.4	3.3	7.0	9 6	16 6	15.0	18.3	14.1	7.8	3.9	1.4	. 8	.4	. 2	100.0

Table 56. Female Bivariate Table of BOF Length, Right (VAR 24) and Ankle Circumference (VAR 13)

	VAR24														-	
	112.0 -	14.0 - 14.4 I 5	14.5 - 14.9 I 6	15.0 - 15.4 I 7	15.5 - 15.9 I &	16.0 - 16.4 I 9	16.5 - 16.9 I 10	17.0 - 17.4 I 11	17.5 - 17.9 I 12	18.0 - 18.4 J 13	18.5 - 18.9 I 14	19.0 - 19.4 I 15	19.5 - 19.9 I 16	20.0 - 20.4 I 17	20.5 - 20.9 I 18	ROW TOTAL I
16 10.6-10.7	Ī	I I	I	I I	I I I	I]]]	I I	I I	I I I	I I I	 	I 1 I .2	I I I	I	I I 1 I .2
15 10.4-10.5	1	I I	I I	i i	1 1	i I I	i I		I I	I 1 I .2			I I	i I	i !	i 2 i .4
10.2-10.3	Ī ī	i i	i I	i !	I I	i i	I I	I 2 I .4		I 1 I .2				I I	I 1 I .2	. 6 . 1.2
13 10.0-10.1	i I	i I	i I	!	I I	I 1		I 1 1 .2		I 1 I .2	T . B			I I	I I	I 13 I 2.7
12 9.8-9.9	1	I I	1 1	1] []]]]]]	I 1 I 2		I 4		6 1 1.2		2		27 1 5.5
11 9.6-9.7	I I	i I	I	I I] [i i	1 2 1 4	I 2	I 7 I 1.4	I 6 I 1.2	I 5 I 1.0	11 2.2	I 2]]	I I	1 36 1 7.4
10 9.4-9.5	I I	I]]	I I	I I	2	I 8 I 1.6	I 16 I 3.3	1 10 1 2.0	1 10 1 2.0	1 9 1 1.8	6	I 4 I .8	1 3 I .6		I 68 . I 13.9
9 9.2-9.3	r i		I	1	: :	1 6	I .6	I 22 I 4.5	I 14 I 2.9	T 9 T 1.8	1 B	1 2 1 .4	1 2	.4	-	1 68 1 13.9
8 9.0-9.1	I I		I I	1 1 1 .2	4	9	10	I 21 I 4.3	I 19 I 3.9	3 1 1 6.3	1 12 1 2.5	I 8 I 1.6	I 2 I .4	I 1 I .2	[[]	I 118 I 24.1
7 8.8-8.9	I I		I 1 I .2	I 1 .2 1		.8	I 4 I .8	I 9 I	11 2.2	14 2.9	I 9 I 1.8			II I	[[1 58 I 11.9
6 : 8.6-8.7 :	I 1		 	I	1 1	8	1 . 6 1 . 1.2	I 9 I 1.8	5	5 1 1.0	I 2 I 4		i 1	I I	I I	I 40 I 8.2
-1 5 1 8,4-8,5 1	I i			I 1 I		1.0	6	I 8 1 I 1.6	.8			1 2 1 .4	I .	I I I	I I	1 34 1 7.0
-1 4 1 8.2-8.3 1	I 1 I			I		3 .6	.4	I 4 I	3		I 1 I .2		I I I	I I I	I I	1 1 14 1 2.9
5] 8.0-8.1]				I 1 1 I			• • • • • • • • • • • • • • • • • • •	[] [I	I	I I I	I I I	I I I	I I 3 I 6
-1 1 1 7.6-7.7 1	i i	1 1	•	1 [[] [[] [I I I	[[:] [[I	I I I	I	I I I	I I 1 I .2
COLUMN TOTAL	.2	. 2	t . 2	11 4 .8	12 2.5	39 8.0	41 8.4	96 19.6	81 16.6	86 17.6	55 11.2	45 9.2	18 3.7	I8 1.6	1 . 2	1 489 100.0

Table 57. Female Bivariate Table of BOF Breadth, Horiz, Right (VAR 26) and BOF Length, Right (VAR 24)

	VAR24															
W4846	I I 12.0 - I 12.4 I 1	14.0 - 14.4 I 5	14.5 - 14.9 I 6	15.0 - 15.4 1 7	15.5 - 15.9 I 8	16.4	16.9	17.0 - 17.4 I 11	17.5 - 17.9 1 12	18.4	18.5 - 18.9 14	19.0 - 19.4 15	19.5 - 19.9 I 16	20.0 - 20.4 I 17	20.5 - 20.9 I 18	ROV TOTAL
17 26.5-26.9	ī	I	1 1 1	I I I	I I I	I	[] ! !	[I I I	I		. 2	I I	! ! !		.2
16 26.0-26.4	1 [: :	1 I	I I	: ! !	i i	! !	i I	I I	I I			! ; ! .2 !	i i i	1 1 1 1 .2 1	I 2 I .4 I
15 25.5-25.9	i I	I I	: ! !	I I	I I	i i	i []	i !	; ; ;] [! , ! !	I 1 I .2 I	1	t t I	[
14 25.0-25.4	I I	i I	i I I	I 1	i 1 1	I I I	I I I	! ! !	I 1 I .2 I	i 1	.2	.4	I 1 I .2 J	i .2	1	I 6 I 1.2 I
13 24.5-24.9	I I	i i			I I I		1 1 1	I 2 I .4 I	1 I	I 3 I .6			I 1 I .2 I	I	! !	I 13 I 2.7 I
12 24.0-24.4	1	I I I	I I		[] [I 1 I .2	i [.8		1 1.2	1.2 [[I 5 I 1.0 I	I .2	[i 32 I 6.5 I
23.5-23.9	1	I I I	[[[; ! !	I I I	I 2 : I 4 I	i .2	1 11 I 2.2 I	1 1.8 I	1 2.0		2.2	i .4	1	I	l 61 I 12.5 I
10 23.0-23.4	I	I I I	I I I	t I I	1 I I	I 2 I .4		1 2.2	1 3.7	2.2	2.0	2.0	I6 I	. 2 1	I I	1 67 I 13.7 I
9 22.5-22.9	I I	t 1 1	I I I	i I I	i 2 I .4	1 6 1 1.2	I 8 I 1.6 I	18 3.7	1 4.5	i	14 2.9	.4	i .4	I .2	I I	I 90 I 18.4 I
22.0-22.4	I	I I 1	I I I	I 1 I .2 I	I 1 I .2 I	1 6 1 1.2	I 11 I 2.2 I	25 5.1 	1 2.2 1	:	1,2	.8	I 1 I .2 I	i .2		I 96 I 19.6 I
7 21.5-21.9	I	I I I	I 1 I .2 I	I ! I .2 I		I 8 I 1.6	I 11 I 2.2 I	1 13 1 2.7 1	I 9 I 1.8 I	I 9 I 1.8 I	.4		1 1 1 .2 1		I I [1 61 1 12.5 I
21.0-21.4 -	I 1 I .2	i 	i I	i 1	I 1 I .2 I	1	r		I 1.2	1	i	. 1 2	I I I	I I I	I I .	I 41 I 8.4
20.5-20.9				i	1 .8 I	.4	.2	. 2	.4	1 .2 I	[[! ! !	1 1 1	I I I	I I I	I 11 I 2.2 I
20.0-20.4		I I I	I I] 2] 4 [.2	.2	I I	i i i	I I I	I I I	I I I	I I I	1 6 1 1.2 1
18.5-18.9		I 1 I 2		t I I	i t 1] 	! ! !		i !	i 	i	i	I I I	[I I I	1 .2
COLUMN	.2	. 2	.2	. 8	12 2.5	39 8.0	41 8.4	96 19.6	82 16.8	86 17.6	55 11.2	9.0	18 3.7	1.6	. 2	489 100.0

Table 58. Female Bivariate Table of BOF Circumference, Right (VAR 16) and BOF Length, Right (VAR 24)

	VAR25																27.5 -	28.5 -	ROW
	I 19.0 - I 19.4 I 1	20.0 - 20.4 I 3	20.5 - 20.9	21.0 - 21.4 I 5	21.5 - 21.9 1 6	22.0 - 22.4 I 7	22.5 - 22.9	23.0 · 23.4 I 9	23.5 - 23.9 I 10	24.0 24.4 I 11	24.5 · 24.9 I 12	25.4	25.5 - 25.9 14	26.0 - 26.4 I 15	26.5 - 26.9 I 16	27.0 - 27.4 1 17	27.9 [18	28 9 I 20	TOTAL I
18	I		i	i	i	I	· · 	1 · · · · · · · · · · · · · · · · · · ·	1	[I	1		! !	I I	i i	i i	1 1	1 1 1 .2
20.5-20.9	I	t 1	I 	I I	1 1	t 1		I] - ·	I I	1 1	1 [i		i	i 1 2	i 4	I	1	1 1 8
17 20.0-20.4	Ī	I I	1	I I	! !	! !	 	:] [1 [i 	i 	i I		I .2	I4 1	8. I	I .2	i] 1.6 I I 18
16 19.5-19.9	1	I I	I I	i	1	I I		I I	i .	i 1 1 .2	i I	I I	1 3 1 .6	I 5 I 1.0	I 5 I 1.0	[1 [.2	i	I I . I	i 3.7
15 19.0-19.4	ī	I I I	[] [I	I	I I	 	I I	I I	I I	I I	i 10 I 2.0	7 1.4	I 13 I 2.7	1 12 I 2.4	1 3 1 .6	I I [I I .[I 45 I 9.2
14 18.5-18.9	ī	I	I I	[I t I	I I I	[• • • • • • • • • • • • • • • • • • •	I I I	I I	t 1 L .2	I 8 I 1.6	I 20 I 4.1	19 3.9	i 7 I 1.4	i !	I I	1	I I	1 55 1 11.2
13 18.0-18.4	1	i I	1	i I	i i	[[• • • • • • • • • • • • • • • • • • •] [[I 1 I 2	I 15 I 3.1	I 26 I 5.3	I 27 I 5.5	I 16 I 3.3	I 1		I I	i I	i 1	I 86
12 17.5-17.9	I I	i !	i	i]		I 5 I 1.0	I 14 I 2.9	I 31 I 6.3	1 22 1 4.5	I 9 I 1.8	1 1 1 .2	I I	I I	I I	I I	i !	1 82 1 1G.7
11	[[i !	i		i	i		I 16 I 3 3	I 42 I 8.6	1 27 I 5.5	I 6 I 1.2	I 2 I .4	I	1 1 1	1 1	I I	i	I I	I 96 I 19.6
17.0-17.4 10	1	1 [I	1 1 1	, 1 - <i></i> 1	i	i 2	13	i 17	1 8	i	i 1	I	!	[I	 !	. [1	1 41 1 8.4
16.5-16.9	1	ī 1	I I	i I	I	1 .4 1	2.7	I 3.5	1 1.6 1	i	1 .2	i	1] 1	i	. i	-i	- i	1	1 39
9 16.0-16.4	t	I I	I I	i I	1 .8	i 9 i 1.8	2.9	! 9 ! 1.8	1 2 1 .4	I .2	i !	i 	! !	i . I	I I	I - I	. <u>I</u>		I 8.0 -I I 12
8 15,5-15.9	ī	I I	1 1	I 1 I .2	1 3 1 .6	1 6 1 1.2	.2	1 1	i !	i I	I I	1 1	I I I	I I .1	I I ·1	I I -1	I 1 -1	1 -1	1 2.4
7 7 15.0-15.4	i i ,	1 1 1	I 1 I .2	I I I	1 3 1 .6	I I	 	1 1	1	ī I	i I	i !	1 1	1 1	I I - I	1 1 -[1 1 -1	! ! -1	I .8
- 6 14.5-14.9		I 1 I .2		[]]	I I I	I I I		I	[[[[I I	i	i i	i !	i	I I	I I -[1 1 '	I 1 t .2 -I
5 14.0-14.4	1]] T	[]]] [[I	! !	[I • • • • • • • • • • • • •	[[]	: : :	I I	i i	I I	I I	i	Î 1	I I	I I -I	I 1 I .2
1	ī	Ī I	ī !	i	i I	II]	1	i	i !	1 -	I	- 1	I I	I I	i I	1	I 1 1 .2
	I	! !	! !	! !	I I	I [l [31	1 .2 1	I I	1 1 76	63	- 1 1 1 1	i46	-i 27	-1 19	-18	-14	1 2	-1 490 100.0
COLUMN	.2	.2	. 2	. 2	2.0	3.5	6.3	10.0	13.7	15.5	12.9	13.9	9.4	5.5	3.9	*1.6	. 8	.2	100.0

Table 59. Female Bivariate Table of BOF Length, Right (VAR 24) and Foot Length, Right (VAR 25)

	VAR24															
	I 12.0 -	14.0 - 14.4 I 5	14.5 - 14.9 [6 .	15.0 - 15.4 I 7	15.5 - 15.9 1 8	16.0 - 16.4 1 9	16.5 - 15.9 I 10	17.0 + 17.4 I 11	17.5 - 17.9 I 12	18.0 - 18.4 I 13	18.5 - 18.9 I 14	19.0 - 19.4 [15	19.5 - 19.9 I 16	20.0 - 20.4 I 17	20.5 - 20.9 I 18	ROW TOTAL I
14 7.8-7.9	Ī	I		[[I I I	I	 	I I I ,2	I	I		[[[] [; ! !	I I 1 I .2
13 7.6-7.7	I I	I I		! !	i i i	[] [I I I	! !	[[[I I I	,		i I	1 1 .2	I I	1 1 1 .2
7.4-7.5	i i	1 1			! !	I 1 I .2	[[[! ! !	I I I] 	.4	.6	I 3 I .6	i I	I I I	1 9 1 1.8
7.2-7.3	i I	I I			; ;] [[t t	.4	I I I	I 2 I .4	i 2 I .4	1.0	I 2 I ,4	1 1 1 .2	I I	I 14 I 2.9
7.0-7.1	I I	r I				i i	i I	.2	i !	i 2	i 4	7	I 2 I .4	i 1 i ,2	I I	I 17 I 3.5
6.8-6.9	i 1	I I			.2		i I	.8	6	1 13 1 2.7	1 4 1 .8	1.2	1 2 1 .4	I 1 I .2	I 1 I .2	i 35 I 7.2
8 6.6-6.7	I I	I I				.2	.4	11 2.2	1 B	1 10 1 2.0	i 12 i 2.5	9		•	i i	56 1 11.5
7 6.4-6.5	I I	i i			.2	.8	. 3 1 .6	17 3,5	1 15 I 3.1		1 12	1 6 1 1.2	1 2	i 3		I 84 I 17.2
6 6.2-6.3	i 1 i .2	i :	.2		.2	5	1 8	34 7.0	20 I 4.1	10 1 2.0	I 8 I 1.6	5 I 1.0	i 2	I I I	I I	I 95 I 19.4
5 6.0-6.1	I I	I I		.4	5 1.0	15 3.1	14 1	17 3.5	21	1 17 1 3.5	1 7 1 1.4	1 3 1 .6	1 2	i I	i I	I 103 I 21.1
4 5.8-5.9	1	I I		.4	.2	6	1.8	1.0	1 8	I 9 I 1.8	I 2 I .4	I 1 I .2			I I	I 44 I 9.0
3 5.6-5.7	i i	I I			.6	5 1.0	1 5	2	I 6	I 2	1 2 1 .4	I I I	I I	I I	I I	I 25 I 5.1
2 5.4-5.5	i i	I I			[.4		.4			I I I	I I I]] [I I I	1 1	I I 4 I .8
5.2-5,3	I :	I 1 1 I .2 1		[] [[[[] 1	[• • • • • • • [I I I	1 I I	I I I	I I I	1 I	I I 1 I .2
COLUMN TOTAL	1 .2	[] 1 .2	1 .2	.9	12 2.5	39 8.0	41 8.4	95 19.4	82 16.8	86 17.6	55 11.2	45 9,2	18 3.7	1 8 1.6	.2	1 489 100.0

Table 60. Female Bivariate Table of Heel Breadth, Right (VAR 17) and BOF Length, Right (VAR 24)

	VAR24 I															
*****	I 12.0 - I 12.4 I 1	14.0 - 14.4 I 5	14.5 - 14.9 1 6	15.0 - 15.4 I 7	15.9		16.9	17.0 - 17.4 I 11	17.5 - 17.9 I 12	18.0 - 18.4 I 13	18.5 • 18.9 I 14	19.0 - 19.4 I 15	19.5 - 19.9 I 16	20.0 - 20.4 I 17	20.5 - 20.9 I 18	ROW TOTAL
18 27.0-27.4	Ĭ	I	1 t I	I I I	1 1 1	 	I I I	[] [[I	[[[[1 .2	1 1 1	I I I	I	.2
17 26.5-26.9	i	I I	I I	I I	I I	f 1	I I	•		1] [I 1 I .2	i I	I I	1 1
15 25.5-25.9	1	I I	I	[[]	; ; ;	 	[! ! !				3			I 1 I .2	1 2.0
14 25.0-25.4	I I	ī ! !	I I	; ! !	i I I	I I	I I	•	i 3 i .6		1.0	5 1.0	I 1 I .2	i i i .2		i 20 I 4.1
13 24.5-24.9	I	i I	i i	i !	İ	i 1	i i	I 5 L 1.0	I 4 I .B		9 1.8	11 2.3	i 5 I 1.0	i i	I 1	1 40 1 8.2
12 24.0-24.4	i I	1 [I I	I I I	I I	I I	I I I ,2	13 1 2.7		I 9 I		12 2.5	1 5 I 1.0	I 2 I .4	-	I I 59 I 12.1
23.5-23.9	I I	I I	I I	i I	.4	1.0	.4			22 4.5	11 2.3		I 1 I .2	I I	i i	75 I 15.4
10 23.0-23.4	1	I I	t I	1	i I	7 1.4	1.2	23		23	13 2.7				I I	I 103 I 21.1
9 22.5-22.9	I I	I I		i 1	1 .2	8 1.6	16 3.3	19 1 3.9	I 16			. 8	I I	[[[i i	86 I 17.6
8 22.0-22.4	I 1		. 2		.4	6 1.2	7 1.4		. 8		2	i		I I	I I	46 1 9.4
7 21.5-21.9	1			i 1	. 4	1.6	1.0	7 1.4				.2		I I .	1 1	I 32 I 6.6
-1 6 1 21.0-21.4 1				3 1 .6	.4	.6	.4					[[I I I	[] [I I	I 12 I 2.5 I
5 20.5-20.9						.2							i I	i !	I I	I 1 I .2
4 20.0-20.4	i i				.2								1	i i	I I	1 1
-1 1 1 18.5-18.9 1		.2		i :	[]		• • • • • 	[] [i	i I	I I	1 1	i i	1 1
COLUMN TOTAL	.2	[] 1 .2	. † . 2	.8	12 2.5	39 8.0	40 8.2	96 19.7	82 16.8	86 17.6	55 11.3	45 9.2	18 3.7	7 1.4	1 .2	488 100.0

Table 61. Female Bivariate Table of Instep Circ (VAR 15) and BOF Length, Right (VAR 24)

	VAR 1																		
•	1 [141.0 - [142.9 [1	143.0 - 144.9	148.9	150.9	151.0 - 152.9 I 6	153 O 151 9 I 7	155.0 1 156.9	158.9	159,0 = 160,9 1 10 1	162.9	163.0 - 164.9 f 12	166.9	168.9	170.9	171.0 • 172.9 I 16	173.0 - 174.9 [17	175.0 - 176.9 1 18	177.0 * 178.9 1 19	ROW JATOT 1
	j 1		· · · · · · · · · · · · · · · · · · ·		! ! !	; ! !	· · · · · · · · · · · · · · · · · · ·]]] • • • • • • • • • • • • • • • • • • •	 	1 1 1 .2] [1 (,
17 20.0-20.4	1]	[! ! !	! !	!		1	1 .2	1 1	2	.2	i 2	! !	1 1	i 1 1 .2	i I	1 8 1 1.6
16 19.5-19.9	I I	1	,		[]]	! !	; ; 1	! !	[1] .2	 	6 1	.4	.2	i 3	i 2 i .4	. 8	i 2	! !	18 1 3.7
19.0-19.4	i	! !	! !		! ! !	i ! !	.2		1 5 1 1 1.0 1	. 2	1 6] 7 ! 1.4	1.0	I 5 I 1.0	t 6 I 1.2	I 4 I .B	[3 [.6	[2 [,4 [1 45 1 9 7
14 18.5-18.9	i i i	1	i t		i ! !	.2	, , , , , , , , , , , , , , , , , , ,	. 6 	[6] [1.2]	1.4] 5 1.0] 9 [1.8 [1 9 1 1.0	1 10 1 2.0]] .6 	; [. [1 ! !] 1 1 .2	
13 18.0-18.4	; ; ;	1 1] 	. 2	1 l 	1 7	, 4 , , n	1.6	[[] [2.2]	17 3.5	1 14 1 2.9 1	1 13 1 2.7	t 6 t 1.2 J] 7] .4 [C 1 8, 1	1 7 1 .4 1] ? [.4	! !	E RG E 17 A T
17.5-17.9		! !	! ! !	.2	† 1 ! .2	.0	1 # 1.6 [12 2.4	1 13 1 1 2.7	1.6	1 13 1 2.7	[9] 1.8 [1	! ! !	! 2 ! .4 !	! ! ! .2 !	1 1	! ! ! .2 !	l
17.0-17.4		i !	1 1	.4	1 1.0	1 10 1 2.0	1 15 1 3 1	1 13 1 2 7 1	[14 2.9 	12 2.4	1 7 1 1.4 1	10 2.0	1 5 1 1.0] ; [.2		! ! !	! ! !	! ! !	1 96 1 19.4 1
16.5-16.9		! ! !	1 			t 3 1 .6 1)	; 9 ; 1.8 ;	1 6 1 1.2 1] 	.4	! ! !	.4	! ! !		ļ !	H.41
16.0-16.4	! ! !	! ! !	! ! ! .2	. 6	1 9 1 1.6	[4 1 .B [1.4	1 7 1 1.4	1 .2		1 .2			! ! !	! !	! ! !	ļ !] 39 [8.0 [12
15.5-15.9]]]	1	.2	.4	1 1.0	.4	! ! !		I .7			! ! !	! ! !	; ! !	<u>:</u>	! !			2.4
15.0-15.4	1	.2	.2		.2						! !	! ! !		1 1 1		ļ	i 	! !	
	1 .2 1	1			! ! !	; ; 					! ! !	! !		! ! !			! !		.2
		I i			I I !	[] [! !	I I		! ! !			! !	j	2
12.0-12.4	ļ		 		i 	 	.2	 			; ;	! !	 	! ! !			i !		. 7
TOTAL	.4	.2	.8	13 2.7	4.7	27 5.5	45 9.2	57 10.8	58 11.8	54 11.0	10.4	54 11.0	37 7.6	4.7	3. 9	13 2.7	1.8		414) 100.0

Table 62. Female Bivariate Table of BOF Length, Right (VAR 24) and Stature (VAR 1)

	VAR13														•		
	I 17.0 - I 17.4 I 1	17.5 - 17.9 I 2	18.0 - 18.4 - I 3 I	18.5 - 18.9 I 4	19.4	19.5 - 19.9 6	20.0 - 20.4 I 7	20.5 - 20.9 1 8	21.0 - 21.4 I 9	21.5 - 21.9 I 10	22.0 - 22.4 1 11	22.5 22.9 1 12	23.0 - 23.4 I 13	23.5 - 23.9 I 14	24.0 - 24.4 I 15	25.0 - 25.4 I 17 I	ROW TOTAL
16 44.0-44.9	I I	I	I	I I	[]		[]]]	I	[[[[I	I I I	 	I I I	i i i	i i I	I 1 I .2	.2
13 41.0-41.9	Ī	I I	I I] [[[]	i I I	I I	i ! !	I I I	I 1 I .2 I	I I I	I I 1	I I I	1 1	.2
12 40.0-40.9	I .	! ! !	i i	i I	i i i i		i i i i	t 1 1	1 1 1	I I I	I 1 I .2 I	1 2 1 .4	I 1 I .2	: : :	i	! !	. 8
39.0-39.9 -	İ	[[[I	i I I	1 1 1		i i i	I I I	! ! !	i	I I I	1 1 1 .2	1	1 .4 1 .4	ļ !	i !	1.0
10 38.0-38.9	I I	i i i	I I	i i	I		! ! !	I 1 I .2	I 6 I 1.2 I	I 11 I 2.3 I	I 6 I 1.2 I	i <i></i>	I 1 I2	i I I	.2	i !	5.7 1 64
37.0-37.9	1	i I	I I I	i i i	1 1 1	.4	I 2 I .4 I	I 1.4 I	I 14 I 2.9 I	I 15 I 3.1 I	1	1 5 1 1.0	I 2 I .4	i	.2	i i !	1 13.1 I 76
36.0-36.9	I	i I I	1 1 1	i i i	i ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	1.0	I 5 I 1.0 I	I 15 I 3.1 I	I 18 I 3.7 . I	I 17 I 3.5 I	I 8 I 1.6	1 5 1 1.0	i .4		i !	i !	1 15.6 I 81
7 35.0-35.9		! !	I I I	I I [I 1 I	.8	I 14 I 2.9 I	I 17 I 3.5 I	I 24 I 4.9 I	I 11 I 2.3 I	I 7 I 1.4 I	I 2 I .4	I 1 I .2	: ! !	i	i i	1 16.6 1 92
34.0-34.9 	I I	[I 1 I I .2 I	I 1 I .2 I	I 4 1 I .8 1 I1	2.3	1 25 I 5.1 I	I 17 I 3.5 I	I 19 I 3.9 J	I 12 I 2.5 I	I 1 I .2	! ! !	I I		i !	i i	1 18.9 I I 63
33.0-33.9 4	I :	[[[I [[i 4 i .8 i	I 9 1 I 1.8 1	14 2.9	I 21 I 4.3 I	I 8 I 1.6 I	1	I I I	I I 1	I I ·	I I 	i ! !	i !	i i	1 12.9 1 48
32.0-32.9	I	I I I	[[[[6 [1.2 [I 12 I 2.5 I	9 1.8	I 8 I 1.6 I	I 6 I 1.2 I	[4 [.8 [1 1 1 .2	i !	i ! !	i !	i !	I 9.8 I I 18
31.0-31.9	1	I 1 I .2 I	1 1 I .2	I 4 I .8 I	1 4 1 I .8 1	[I 5 I 1.0 I	I 1 I .2 I	Ī	I I	I I I	I I [i 	i i i	į	i !	1 3.7 1
30.0-30.9		I I I	1 I I	I 1 I .2 I	1 3 1 1 .6 1	. 1	I I . I	I 1 I .2 I		I I I	I I	i I I	I I	i i i	i !	i !	1 1.2
29.0-29.9		I I I	I I I	I I I	I I I	 	[[[I I I	! ! !	I I I	I I I	I I I	i i	i :	. i	i :	1 .2 1 488
COLUMN TOTAL	.2	.2	.4	16 3.3	34 7.0	48 9.8	80 16.4	73 15.0	92 18.9	70 14.3	38 7.8	19 3.9	1.4	. 8	.4	.2	100.0

Table 63. Female Bivariate Table of Calf Circumference (VAR 12) and Ankle Circumference (VAR 13)

	VAR2																	
VAR 12	124.0 - 1 24.9	25.0 - 25.9 1 2	26.9	27.0 - 27.9 I 4	28.0 - 28.9 1 5	29.0 - 29.9 I 6	30.0 <u>:</u> 30.9 I 7	31.0 - 31.9		33.0 - 33.9 1 10		35.0 - 35.9 1 12	36.9 36.9	37.0 - 37.9 1 14	38.0 - 38.9 1 15	40.0 - 40.9 I 17	41.0 - 41.9 1 18	ROV TOTAL
16 44.0-44.9	i	! !	! !]]]	[[]]	! !		[[[]	[[[1	
13 41.0-41.9	ī 1	! !		! !	i !	i i		: ! !	; ! !	; ; !	; ;	i 1 I .2	; ; ;	i i i	i i !	i i !	i ! !	i 1 i .2
40.0-40.9	1	i !		.2	i ! !	 	! 	i ! !	1 2 1 .4 1	1 1 1 .7	! ! !	i 1 1	i ! [; ! 	! ! !	i ! 	 	1 .8
39.0-39.9	S .		 	; ;	1 ! .2	[.4	[[[! ! ! .2	1 1 1 .2	1 1 1	[[[[! ! !	1 [! !	1 1 1	1 1.0
10 38.0-38.9	t I			i :	I .6	1 .2	5 1.0	i 6	1 2	i 2 i 4	6 1 1.2	i 2 i .4	i 1 i .2	! !	į	i !	i ! !	1 28 1 5.7
37.0-37.9	I I		.2		1 .2		13	i 7 14 	1 14 1 2.9	1 6 1 1.2	1 4	1.0	1 3 1 .6	! 2 ! .4	i !	i !	1 1	i 64 i 13.1
36.0-36.9	I 1	.7	 	i i !	1 6 1 1.7	1 10 1 2.0	1.0	1 16 1 3.3	1 7	1 12 1 2.5	1 11	1 6 1 1.2	i I .2	j i i .2	i ! !	i !	! !	i 76 I 15.5
7 35.0-35.9	1 .2		.2	.4	1,4	1 12 1 2.5	(5 3 	[12 2.5	1 7	1 14 1 1 2.9	1 6 1 1.2		1 1 1 .2	 	i !	1 1	! ! !	1 03 1 17.0
34.0-34,9	1	! ! !	i 	1 .0	1 5	1 12 1 1 2.5 1	10 2.0	1 18 1 3.7	1 17 1 3.5]. 7] 1,4 [1.4	1 9 1 1.8	1 2 1 .4	1 ! 1	1	! ! !	 	1 91 1 18.6
33.0-33.9	1	l 1 I .2	! ! [1 2 1 .4	[7 [1.4 [[7 1 1.4 1 1.4	1,6	8 1.6 	[1 B 1 1.6	1 3 t .6	1 3 1 .6	[1 ! 1 .2	! ! !	I 1 I	1 1 [1 63 1 12.9
32.0-32.9	i		! ! !	1 3 1 .6	1 3 1 .6	1 6 1 1 1.2	1.6	† 4 1 .0	1 13 1 2.7	t 5 1 .6	1 6	i I	i 2	t !	i 1	! !	! !	9.8
31.0-31.9	1 .2		! !	i 1 [1 5		.6	t 2 1 .4	, j , 6	i ! ! .2	i !	i i	i ! !	i ! !	i !	i !	i I	t 18 1 3.7
30.0-30.9	İ	.2			.2	. 1	.2	1 1 1 .2	! !	! !			; !	i I	! !	! !	t 1	1.2
1 29.0-29.9				1 1		.2		! !	t t		i	! !			!	i !		.;
COLUMN	.4	.6	. 4	16 3.3	39 8.0	57 11.7	70 14.3	74 15. l	80 16.4	55 11.2	43 8.8	30 6. t	11 2.2	4	. 2	. 2	. 2	489 100.0

Table 64. Female Bivariate Table of Calf Circumference (VAR 12) and Calf Height (VAR 2)

	VAR21									•								
		45.0 - 47.4 I 2	47.5 - 49.9 I 3	50.0 - 52.4 I 4	52.5 - 54.9 I 5	55.0 - 57.4 I 6	57.5 - 59.9 I 7	60.0 - 62.4 [8	62.5 - 64.9 I 9	65.0 - 67.4 1 10	67.5 - 69.9 I 11	70.0 - 72.4 I 12	72.5 - 74.9 I 13	75.0 - 77.4 I 14	77.5 - 79.9 J 15	80.0 - 82.4 I 16	87.5 - 89.9 I 19	ROW TOTAL
16 44.0-44.9	ī	I I	I I I	I	I	I	[[[] [I I	I	I	1 1	I	I I I	I	I I	I I I	I I 1 I .2
13 41.0-41.9	I I	I I	1 I I]] []]]	I I	I I I	i I	; ! !	1 1]]	[]	I 1 I .2	I I	1 I	I I	i i	I I I .2
12 40.0-40.9	I I	i i	! ! !	I I I	I . I	1 I	I I	i i	I I	1 2 1 .4	I 1 I .2	I I	i i i .2	[[]	I I	I I	i i	I 4 I .8
39.0-39.9	I I	i I I	i I I	[]	: : :	i I	i I	I I	I 1 I .2	I 1 I .2	1 2 1 4	I I	I 1 I .2		i i	: ! !	i I	i 5 i 1.0
38.0-38.9	1	i i i	i i	i i i	i i	I 1 I .2	1 2 1 ,4	1 1 .2	I 8 I 1.6	1 5 1 1.0	i 1	i 4 I .8	i 2 I .4 I	i 3 I 6	i 2 I .4	i I I	i i !	i 28 i 5.7
9 37.0-37.9	Ī	I I I	! !	I I ·	i i i	1 4 1 .8	. 8	14 2.9	I 11 I 2.2 I	I 9 I 1.8	I 12 I 2.5 I	I 6 I 1.2 I	I 3 I .6 I	i 1 1	i I I	I 1 I .2 I	i i	I 64 I 13.1 I
8 : 36.0-36.9 : -1		I I I		I I I	I 1 I .2	1 8 1 1.6	1 12 2.5	I 13 L 2.7	I 15 I 3.1	1 15 1 3.1	I 3 I 6	I 3 I 6 I	1 2 1 .4 1	I 4 I .8	I I I] [[I I ·	I 76 I 15.5 I
7 1 35.0-35.9 1 -1	! ! !	I 1 1 I .2 1 I1	[[I I T	1 7 1 1.4	I 12 1 I 2.5 1	18 1 3.7	1 17 1 3.5	I 12 I 2.5 I	T 5.0	I 8 I 1.6	I 2 I .4 I	I I I	I I I	1 1 1	I I [I I I	I 82 I 16.8 I
6 1 34.0-34.9 1 -1	[]	I I I	. 6 	I 4 I .8 I	I 7 I 1.4	I 18 I 3.7 	[25] [5.1]	16 1 3.3	I 10 I 2.0	7 1 1.4	I 1 I .2 I	t 1 1	I 1 I .2 I	I I I	I I I	I I I	I I I	1 92 1 18.8 1
5 1 , 33.0-33.9 1 -1		I 2 1 I .4 1	.4	1 5 1 1.0	I 12 I I 2.5 I	[13] [2.7]	19 3.9	1.4	I 1 I .2 I	.4	I I I	! ! !	I I I	I I I	I I I	I I I	I I I	I 63 I 12.9 I
32.0-32.9 1		.4 i	.8	1 16 1 3.3	I 10 I 2.0 I	.8 I	5 1.0 	1.2	i i i	[[I 1 I .2 I	I . I I	I I I	! ! !	I I I	I I [I I I	I 48 I 9.8 I
31.0-31.9 I	[[]	.4	1.6	.8	3 1 6 1	[.2 1		[[[[[[I I I	[[]	I I I	I I !	I I I	I 18 I 3.7 I
30.0-30.9	.2	.4	·	.4		[[[]	[[[[]]	! ! !	! ! !	I I I	I I I	I I I	I I	I 6 I 1.2 I
1 1 29.0-29.9 1 -I	 		 		1 1 1 ,2 1	i	 				i i : i	! !	I I I	I I I	1 1 [I I I	I I I	I 1 I .2 I
COLUMN	. 2	1.8	17 3.5	31 6.3	8.6	60 12.3	86 17.6	74 15.1	58 11.9	46 9.4	28 5.7	15 3.1	11 2.2	1.4	.4	. 2	. 2	489 100.0

Table 65. Female Bivariate Table of Calf Circumference (VAR 12) and Weight (VAR 21)

	VAR 1																		
	I 142.9	144.9	148.9	150.9	152.9	153.0 - 154.9	156.9	158.3	159.0 - 160.9 I 10 1	102.3	104.3	100.5			172.9	173.0 - 174.9 I 17	175.0 - 176.9 I 18	178.9	ROW TOTAL I
	I 1 I	I 2 I	I 4	I 5	i							[[[[[[[1	[I	[t 1 1
18 41.0-41.9		I I	1	1		1			1		! !	I !			I I	2	I I	I 	I .2 I
17	ī	I		1		I *					I T	1		I I	I .	1	I 1 I .2	I I	I 1 I .2
40.0-40.9	[<u>.</u>	[ii							i •	i		[[I	[! !	I	[[1
15 38.0-38.9		Ī		1					i !		! !	I I		I 	[: [I .2 	I I	1 1	.2 1
14 37.0-37.9	I	I I		I I					I I	. 2	i i i	I I I	.2	I 1 I .2	[! ! !	I 1 I .2 I	I I İ	1 4 1 .8
13 36.0:36.9	ī	I I	I I	I I	I I	i i			1 I	1 1	t 1 I .2	I 1 I .2	[[I 3 I .6	1 1 1 .2	I 2 I .4	f 2 I .4	! !	t 11 I 2.2
12 35.0-35.9	i	I	i i	I I I	j [[I I			I I	1 .2	I 2 I .4	1 6 I 1.2	7 1.4	1 6 1 1.2	I 5 I 1.0	i 1 I .2	I 1 I .2	1 1 1 .2	1 30 1 6.1
11	i	I I	I I	II	i	i	1	. 2	1 2	3	I 6	I 6	10	5 1 1.0	1 3	i 2	i 2	i 2	i 44 I 9.0
34.0-34.9	1	I I	I [I I	!	!	.2				1 12				1 6	i	i	i	I I 55
33.0-33.9		I I I	[[I I I	I I I	[[.6 	I 1.2 I	1.4	i 2.4	1.8	1.2	i6	[1.2 [i .4	I I	I 11.2
9 32.0-32.9	Ī	! !	I I	I I	I I	1 4 1 .8	1 7 1 1 1.4	12	I 13 I 2.7 I	1 12	I 7 I 1.4 I	I 11 I 2.2 I	1 5 1 1.0	1 .4 1 .4 1	I 3 I .6 I	I 3 I 6 I	1 1 1	1 .2	I 16.3 I
8 31.0-31.9	I I	I I	I I	I I	ī	! !	12 2.4	1.2	I 11 I 2.2	1 12 1 2.4	I 11 I 2.2	I 12 I 2.4	I 6 I 1.2	I 1 I .2 I	I 1 I .2 I	I 2 [.4 I	I I [I I 1	I 74 I 15.1 I
7 30.0-30.9	I I	I I	I I	i 2	I 8 I 1.6	5 1 1.0	7 1.4	13 2.7	1 11 1 2,2	10 2.0	I 8 I 1.6	I 5 I 1.0	1 .2	[[]	I I	1 [[I I I	I ! !	I 70 I 14.3 I
- 6 29.0-29.9	i] []	i i	I 2	1 4	I 13 I	10	1.4	I 6	5 1.0	1 3 1 6	t 4 I .8	1 .2	t 2 I .4	! !	I I !	! !	I I	I 57 I 11.6 I
- 5 28.0-28.9		I I I	I I	I 6	I 6 I 1.2	1 5 1 1 1.0	.8	9	I 9 I	2	I 1 I .2	I I	i i	I I.	I I	I I	I I I	I I	1 39 I 8.0
27.0-27.9	ī	II I 1 I .2	[[1 [.2	I 5 I 1.0	I 5 I 1.0	I I I	3	 	II I I	.2	1	I I	1	i I	I I	i !	! !	I I	I 16 I 3.3
	I	! ! !	I 1 I .2	I I I	I I	I I I	[[.2	 		l I	I I		i I	i i	I I	I I	1 1	i 2 i .4
25.0-25.9	1	I I I	I 2 I .4	I I I	[] [!! ! !	1 1	- 	I I		I I	I I	l I	I I	I I	i i	I I	! !	6
1 24.0-24.9	I I 2	I I I	I I I	I I I	I I I	1 1	[• • • • • • • 	[I I I	 	I I	I I		i I	1	i i	i I	[]	.4
	2 .4	1 .2	1 4 . 8	1 12 2.4	23 4.7	27 5.5	45 9.2	53 10.8	[] 58 11.8	55 11.2	5 f 10.4	54 11.0	37 7.6	23 4.7	19 3.9	13 2.7	1.8	. B	490 100.0

Table 66. Female Bivariate Table of Calf Height (VAR 2) and Stature (VAR 1)

	VAR 13											-					•
VAR 17		17.5 - 17.9 I 2	18.0 - 18.4 I 3	18.5 - 18.9 I 4	19.0 19.4 I 5	19.5 · 19.9 [6	20.0 - 20.4 I 7	20.9	21.0 - 21.4 ! 9	21.5 - 21.9 I 10	22.0 - 22.4 [11	22.5 - 22.9 I 12	23.0 - 23.4 I I3	23.5 - 23.9 I 14	24.0 - 24.4 1 15	25.0 - 25.4 I 17	RUW TOTAL I
14 7.8-7.9	i I	I		 	[• • • • • • • • • • • • • • • • • • •	1 1 1 .2	[! ! !	; ; ;	; ; ;	I I I	I I I	i i !	i I I	I 1 I .2 I
7.6-7.7	i I	1 I		i !	1		[]	! !		i 1	1 1 1 .2	t t	I I 1	t . t	! ! !	! ! !	1 1 7 .2 1
12 7.4-7.5	i i	1]]	I		1 1	1 3	2	1 2	i I	1 .2	; ! !	i I .	i i	1 1 1	1 1 N
11 7.2-7.3	i I] [] []	I 1 1	[• • • • • • • • • • • • • • • • • • •	1	1 2	I 5 I 1.0	7	i 3	i !	t· 1	; ; ;	i I	i i i .2	t 14 l 2.9
10 7.0-7.1	1]]]	[1	! ! !	[1 2	1	1 5 1 1.0	I ! I .2	1 4	i i i 2	I 1 I .2	i i	i !	i 1	1 17 1 3.5
9 6.8-6.9	1	[] [I I I	1 1 3 1 ,6	1 5 I 1.0	[5 [1.0	I 4 I .8	! 6 ! 1.2] [3 [6	t 4 1 .8	2	1 1		1 1	1	1 35 1 7.2
6.6-6.7	1	1		!	1 1 1 .2	5 1 1.0	1 9 1 1.8	1 11	1 10 1 2.0	I 9 I 1.8	1 5 I 1.0	. 4 8	7	 	1	! !	1 50 1 11.5 1
7 6.4-6,5	I I	I! I	1 1	[[1 1 6 1 1.2	1 1.2	I 10 I 2.0	1 14	I 14 I 2.9	1 14	l 8 I 1.6	1 5 1 1.0	1 1	i 2 i .4	i ! ! .2	i i	1 67.4 1 17.4
6 6.2-6.3	i ī			1 3 1 .6	I 6 I 1.2	[16 [3.3	1 14 1 2.9	1 16 1 3.3	l 17 I 3.5	I 12 I 2.5	5 1 1.0	. 8	i 1 I .2	i 1	1	I I	1 95 1 19.5 1
5 6.0-6.1	I 1 I . 2		. 2	I 6 I 1.2	1 5 I 1.0	l 11 I 2.3	1 22	1 12 1 2.5	1 19 1 3.9	1 16 1 3.3	1 6 1 1.2	1 2 1 .4	1 1	i 1 1 .2	1	1	1 107 1 21.1
4 5.8-5.9	ľ]	1 7 1 1,4	1 2 1 ,4	I 8 I 1.6	I 4 I .8	[10 I 2.0	1 8 1 1.6	I 2	! !	i i	i !	i i	i !	1 42. 1 8.6
3 5.6-5.7	Ī		 	I 2 I ,4	I 5 I		1 7 1 1.4	I 3 I .6	1 I 3 I .6	I 2 I .4	[[t I	1	1 1	1	i !	1 25 1 5.1
2 5.4-5.5		[[!	[I I	• • • • • • • • • • • • • • • • • • •	1 2 1 .4	I I ! I .2	[[] I I	[[I I	i i	I I	i i	i !	8. I
- 1 5.2-5.3		[] [[-	II I 1 I .2		 	[] 	[[[I	[]]	: : :	I I	I I	i i	i i	i i i .2
COLUMN TOTAL	1 .2	1 .2	2 [.] .4	16 3.3	34 7.0	48 9.8	9 I 16 . 6	73 15.0	1 92 18.9	69 14.1	38 7.8	19 3.9	7 1.4	. 0	4	2	488 100.0

Table 67. Female Bivariate Table of Heel Breadth, Right (VAR 17) and Ankle Circumference (VAR 13)

	VAR26															
	17.6 - 1 7.7	8.0 - 8.1 I 3	8.2 - 8.3 J 4	8.4 - 8.5 I 5	8.6 - 8.7 I 6	8.8 - 8.9 1 7	9.0 - 9.1 1 8	9.2 - 9.3 1 9	9.4 - 9.5 I 10	9.6 - 9.7 I II	9.8 - 9.9 I 12	10.0 - 10.1 I 13	10.2 - 10.3 I 14	10.4 - 10.5 I 15	10.6 - 10.7 I 16	ROW TOTAL
14 7.8-7.9		[II I	[] !	1 I I	1 1 1	1	1 I I	I I ! I .2	t I I	I	I I	I I	[[1 I I	i i i .2
13 7.6-7.7]	I I I	1 I I	1	I I I	I	I 1 .2	I I I	1 ! !	I I	I I I	1 1	! ! !	I I I	I I 1 I .2
	I	I I I	I I I	I	I	II	I I	I 1 I 2	II I I I .2		I t I .2	I 2 I .4	I 1 I ,2	I 1 I .2	I 1 I .2	I I 9 I 1.8
11 7,2-7,3	1 1	ī I ī	I I	[1 1	I	I	I I 5 I 1.0	I I 1 I .2	I		I . 3 I . 5	I 2 I .4		I I I	I I I	I I 14 I 2.9
10 7.0-7.1	I 1	[[!	i I	I I	[i I I	1 2 1 .4		I I 6 I 1.2	II I 2 I .4	I 4 I 8	I 1 I .2	I 1 I .2	I I I	I I I	I I 17 I 3.5
9 6.8-6.9	1 I	i i	i	I 1 I 2	I I 3 I .6	1 2 1 4	1 6 1 1.2	I 4 I .8	I 5 I 1.0	I I 6 I 1.2		I 2 I .4	1 3 1 6	II I 1 I .2	I I I	I I 35 I 7.2
6.6-6.7	[i !	i	I 1 I .2	I	I 4 I .8	I 9 I 1.8	I 10 I 2.0	1 9 1	1 1 9	I 5	I 5 I 1.0	I I I	I I I	I I I	I I 56 I 11.5
7 6,4-6,5	I I	; ; !	i	I 3 I 6	I I 4	I	1 21 1 4.3	I 15 I 3.1	1 t t5	I 9 I 1.8	I 3 I 6	I 1 I .2	I 1 I .2	I I I	[I I	I I 84 I 17.2
6 6.2-6.3	1 1	i I	I 6 I 1.2	I 7 I 1.4	I5	I 14	I 26. I 5.3	I 14 I 2.9	I I 14	1	I 5 I 1.0	i	I I I	I I I	I I I	I I 95 I 19.4
5 6.0-6.1	! !	i 2 I .4	I6	1 10 I 2.0	I I 9	I 17	I 30	I 12 I 2.5	I 13 I 2.7	[[1 3 1 .6		1 I I	I I I	I I I	I I 103 I 21.1
5.8-5.9	I I	-	I 1 I .2	I 5 I 1.0	t 1 8	t	I 14	I 7 I 1.4	II 4 I .8	1 2	I 1 I .2		1 1 1	II	I I I	I I 44 I 9.0
3 5.6-5.7	II	i I 1 I .2	I 1 1 I	i 6	I 4 I .8	I 6 I 1.2	1	I	I I 1 I .2	1 1	I I I	I	I I I	I I I	I I I	I I 25 I 5.1
5.4-5.5	I I	<u>:</u>	i !	I 1 I .2	i 2	i 1 I 1	1	i	i	i i	Ii I	I I I	I I	I I I	I I I	I I 4 I .8
5.2-5.3]] 1		i I	i		i	i	i i	 	; ; !	I	I	I I I	I I I	I I I	I I 1 I .2
	i i i ,2	1 3 .6	14 2.9	34 7.0	40 8,2	58	118 24.1	67 13.7	69 14.1	1 36 7.4	27 5.5	13 2.7	6 1.2	2 .4	1 .2	I 489 100.0

Table 68. Female Bivariate Table of Heel Breadth, Right (VAR 17) and BOF Breadth, Horiz, Right (VAR 26)

	VAR16															
i	118.5 -	20.0 - 20.4 1 4	20.5 - 20.9	21.0 - -21.4 I 6 1	21.5 - 21.9 [7	22.0 - 22.4 I 8	22.5 - 22.9 1 9 1	23.0 - 23.4 I 10	23.5 - 23.9 [11	24.0 - 24.4 I 12 :	24.5 - 24.9 [13]	25.0 - 25.4 [14]	25.5 - 25.9 15	26.0 - 26.4 16	26.5 - 26.9 I 17	ROW TOTAL
14 7.8-7.9	i	I I I	[[[]]	[[[I 1 I .2		I I I	[[[[] [[I I	.2
-1 13 7.6-7.7	I I	II I	I I I]] []]]	I I I	l I I	i i	I 1 I 2	! !					1	. 1
1 12 1 7.4-7.5 1	t I	I I I	i I	I		! !	I I	[I 1 I 2	1 5 1 1.0	1 2	.2		.2	I I I	1 9 1 1.6
-1 11 7.2-7.3	ī t	I I	I I	I I	I	I 1 I .2	. 8	I 2 I .4	I 4	i i	1 1 1 .2		i 	[[[1 1 1 .2	1 14 1 2.9
-1 10 1 7.0-7.1	I I	I I I	I	I I		I 1 I .2	3 1 .6	1 2 1 .4	1 2 1 .4	I 4 I .8	3 1 .6	.4	[[i i i	1 1 1	1 17 I 3.5 I
-1 9 1 6.8-6.9 1	I I	I I	i i	I 1 I	1 .2	i 4		1 6 1 1.2	1 10 1 2.0		1 .4		1 .2	i 1 I .2 I	I I I	1 35 I 7.2 I
8 6.6-6.7	i	i I	i	I I	5 1.0	1 7 1 1.4	12 2.5	1 11 1 2.2	i 13 I 2.7	i 3 i .6	1 .8	2		[] [I I I	I 56 I 11.5 I
7 1 6.4-6.5 1		i i	1 1 .2	1 6 I 1.2	9 1.8	1 14 1 2.9	13			1 10 I 2.0		1 1 1 .2 1	I I I	[[[1 1 1	I 85 I 17.4 I
6 1 6.2-6.3 1		1 1	1 .2	1 12 1 1 2.5	13 1 2.7	1 25 1 5.1	19 1 3.9	1 13 1 2.7	I 9 I 1.8	1 2 1 .4	I I I	I I I	T 1 I	1 I I	I I I	I 94 I 19.2 I
5 i 6.0-6.1 i	i	I 4 I B	.8	I 12 I I 2.5 I	1 17 1 3.5	I 24 I 4.9	23 1 4.7	I 8 I 1.6	I 8 I 1.6	1	1	I 1 I 2 I	I I I	I I I	ļ	I 103 I 21.1
4 i 5.8-5.9 i	t	I 1 I 2 I	1 2 1 .4	I 3 I .6	1 10 1 2 0	I 9 I 1.8	1 9 I 1.8	I 6 I 1.2 I	I 2 I .4 I	I 2 I .4 I		I I I	I I [I I I	! ! !	I 44 I 9.0 I 25
3 1 5.6-5.7 1	Ī	I 1 I .2 I		I 6 1 I 1.2	I 4 I .8 I	1 10 1 2.0		I 1 I .2 I	I I I	1 I I	I I I	1 1 1	I I I	1 1 [i : :1	1 5.1 1 7
2 I 5.4-5.5 I	Į.	I I I	! ! !	I 1 I I .2 I		I 1 I .2 [I I 1	I I I	I I I	I I I	I I I	I I I	I I I	! ! .]	
1 1 5.2-5.3 1	2		I I	[I I I	1 [[I I I	1 [[·	I I [[[I I I	I [[! ! !	i i i	i ! .1	i .2
COLUMN TOTAL	. 2	6 1.2	11 2.2	41 8.4	61 12.5	96 19.6	89 18.2	68 13.9	61 12.5	32 6.5	13 2.7	6 1.2	. 2	.4	.2	489 100.0

Table 69. Female Bivariate Table of Heel Breadth, Right (VAR 17) and BOF Circumference, Right (VAR 16)

	VAR25																		
	I I19.0 - I 19.4 I 1	20.0 - 20.4 I 3	20.5 - 20.9	21.0 - 21.4 1 5 1	21.5 - 21.9 I 6	22.0 - 22.4 I 7	22.5 - 22.9 I 8	23.0 - 23.4 1 9	23.5 - 23.9 [10	24.0 - 24.4 [11	24.5 - 24.9 1 12	25.0 - 25.4 [13]	25.5 - 25.9 [14	26.0 - 26.4 I 15	26.5 - 26.9 I 16	27.0 - 27.4 I 17	27.5 • 27.9 I 18	28,5 - 28.9 I 20	ROV TOTAL I
14 7.8-7.9	I]] [[] [I I I	I I I	[• • • • • • • • • • • • • • • • • • •	1 1	I I I	I I I	I 1 I .2	[[I I I	i I I	I I I	I I I	I I I	I I I .2
13 7.6-7.7	I I	I I		I I	i i j	i i i	i i i	 	! ! !	t ! !	I I I	I I I	! ! !	t 1 1	I I I	1 1 1 .2 1	1 1	I I	I 1 I .2
12 7.4-7.5	I I	t t	! !	I	i i i	I I I	! ! !	 	I I T	I 1 I .2 I	I I [I 1 I .2 I	.2	I 1 I .2 I	1 .6 I	[[I 2 I .4 I	I [I 9 I 1.8 I
7.2-7.3	I I	I I	! !	I I I	! ! !	I I I	I I I	! ! [I 1 I .2 I	[I 2 I .4 I	I 1 I .2 I	1 3 1 .6 [[1 I .2 [I 3 t ,6 1	I ! I .2 I	1 .2 1	1 1	I 14 I 2.9 I
7.0-7.1	I ·	! !	! ! !	[] [[]]	I I I	I T I	[[[I 1 I .2 I	I I J	l ! I .2 !	I 2 I I .4 I	3 1 ,6 1	I 3 I 6 I	I 5 I 1.0 I	I 1 I .2 I	I 1 I .2 I	! ! !	I 17 I 3.5 I
6.8-6.9 -	I I	I I	i i	I I	I I I	1 I I	! ! [1 3 I .6 [I 1 I .2	I 6 I 1.2 I	I 5 I 1.0 I	I 4 1 I .8 1	[6 [1.2 [I 7 I 1.4 I	I 1 I .2 I	I 1 I .2 I	I I I	I 1 1 .2 I	I 35 I 7.1 I
8 6.6-6.7	I I	I 1		I I	1 1 1	I I	I 1 I .2 I	! 4 ! 8	I 4 I ,8 I	I 10 I 2.0	I 4 I· .8 I	I 13 I 2.7 I	[11 [2.2 [I 5 I 1.0 I	I 3 I .6 I	I 1 I .2 I	I I I	[[[I 56 I 11.4 I
7 6.4-6.5	í I	! !	i I	I I	I I	i i	I 4 I .8	7 1 1.4	I 6 I 1.2	i 15 I 3.1	I 21 I 4.3 I	I 12 I 2.4	12 2.4	I 4 I 8 I	1 2 I .4	I 2 I .4 I	I I I	I I I	I 85 I 17.3 I
6.2-6.3	I I	1 1 1 .2	i I]]	I 1 I .2	I 2 I .4	1 5 1 1.0	I 13 I 2.7	1 20 I 4.1	I 22 I 4.5	I 7 I 1.4 I	I 14 I 2.9 I	1 5 1 1.0	I 3 I .6 I	I ! I .2 I	I 1 I .2 I	I I I	I I I	I 95 I 19.4 I
5 6.0-6, 1	I I	I I	.2	I 1 I .2	I 5 I 1.0	I 6 I 1.2	I 11 I 2.2	I 12 I 2.4	I 20 I 4.1	I 14 I 2.9	I 14 I 2.9	I 12 I 2.4	. 4 8	I 2 I .4 I	I I I .2 I	t I 1	I I I	I I I	1 103 1 21.0
5.8-5.9	I I	i i		i i	I 3 I .6	I 4 I .8	I 4 I .8	5 I 1.0	1 9	I 4 I .B	f 6 I 1.2 I	1 7 [1.4]	1 1 .2	I 1 I .2 I	I I I	1 I 1	I I 1	1 []	I 44 I 9.0 I
3 5.6-5.7	I I	i I	i !	i I	i 1 I .2	i 4 I, .8	I 5 I 1.0	I 4 I .8	1 3 1 .6	I 4 I .8	1 3 1 .6 1	1 1 1 .2		[- [[I I I	I I I	I I I	1 1 1	I 25 I 5,1 I
2 5.4-5.5	I I	I I		I I	ľ I	i 1 I .2	i 1 i .2	I I	i 2 i .4	I I	I I I	I I	[[I I I	I I I	i i i	I I I	! ! [I 4 I .8 I
1 5.2-5.3	i ı	I I	i	I I		I	: :	! !	i i i	1 1 1	i I I	I I I	[I I I	I I I	[[[! ! [I I]	I 1 I .2 I
COLUMN TOTAL	.2	.2	.2	. 2	10 2.0	17 3.5	31 6,3	48 9.9	67 13.7	77 15.7	63 12.9	68 13.9	46 9.4	27 5.5	19 3.9	1.6	. 8	. 2	490 100.0

Table 70. Female Bivariate Table of Heel Breadth, Right (VAR 17) and Foot Length, Right (VAR 25)

	VAR15															
VAR 17	118.5 - 1 18.9 1 1	20.0 - 20.4 I 4 I	20.9	21.4	21.5 - 21.9 7	22.0 - 22.4 1 8	22.9	23.0 - 23.4 1 10	23.5 - 23.9 [1]	24.0 - 24.1 [12	24.5 - 24.9 1 13	25.0 - 25.4 1 14	25.5 - 25.9 [15	26.5 - 26.9 [17 [27.0 - 27.4 [18 [ROW TOTAL
14 7.8-7.9	I	[]					[l 1 l 2	· · · · · · · · · ·	! ! !	i i i	i t t	i 1 	[.2
7.6-7.7	I I	1					! [i I	i i	1 1 1	i ! i .2	[· 	[1	.2
12 7.4-7.5	I .	I					1		; ; ;	! !] 3 [.6		[1 [.2	[1 1 1 1 1	9 1.8 .
11 7.2-7.3	1				1	! !	1	.2	1 2	i 3 i ,6	1 5 1 1.0	I 1 I .2	[1 1 [1 1 1 1 .2 1	7.9
10 7.0-7.1	I I	I			 	j • • • • • • • • • • • • • • • • • • •	1 1	.2	1 2	1 .2			i 2 1 .4	1 1	 	1 17 1 3.5 1
6.8-6.9	I I	I			1	1		7	1 10 1 2.0	1.2	i 6 i 1.2	.4	1	1		l 95 7.2
6.6-6.7	i I	I I] .2	1 2	12 2.5	1 16 1 3.3	1 14 1 2.9	I 4 I .B		i .6		 	50 11.5
6.4-6.5	i t	I I		2	. A	1 4	1 10 1 2.0	21	1 15 1 3.1	16 1 3.3	1 10 1 2.0		Ī	[[]	 	84 17.2
6 6.2-6.3	i i			.2	1 0	1 11	2G 5.3	19 3.9	1 11	1 12 1 2.5		1 2 1 .4	I 1 [i i i	 t 	F 94 F 19.3 F
5 6.0-6.1	i i	.2		. 6	7 1 1.4	1 13 1 2.7	1 25 1 5.1	32 6.6	1 13	1 5 1 1.0	i 4 i .8	1	[[I I !	[1 103 I 21.1 I
5.8-5.9	I T	i :		.6	5 1.0	1 6	1 15 1	1.4	I 5 I 1.0		i !	1 1	t t	t 1 1	! ! .]	I 44 I 9.0 I
3 5.6-5.7	1			.8	7	1 6 1 1,2	1 6	. 4	: : :	t !	i i	i i	i i	! ! .1	I I -1	1 25 1 5.1 1
2 5.4-5.5	ī ī		.2		.2	2	[! !	; ;	i I	i !	i i	I I - I	! ! •[1 4 1 .8 1
5.2-5.3	i 1 i	[[] [[• • • • • • [• • • • • • 	[[i I	! !	1	i !	ī 1	I I	[I 1 I .2 I
COLUMN TOTAL	1 .2	1 .2	1 .2	12 2.5	32 6.6	46 9,4	1 86 17.G	102 20.9	75 15.4	60 12.3	40 8.2	20 4.1	10 2.0	.2	.2	48f 100.0

Table 71. Female Bivariate Table of Heel Breadth, Right (VAR 17) and Instep Circumference (VAR 15)

	VAR26															
	17.6 - 1 7.7 1 1	8.0 - 8.1 I 3	8.2 - 8.3 I 4	8.4 8.5 I 5	8.6 - 8.7 1 6	Я.В - В.9 I 7	9.0 - 9.1 I 8	9.2 - 9.3 I 9	9.4 - 9.5 I 10	9.6 - 9.7 I 11	9.8 - 9.9 I 12	10.0 - 10.1 I 13	10.2 - 10.3 I 14	10.4 - 10.5 I 15	10.6 - 10.7 I 16	ROW TOTAL I
11 35.0-35.9	1	I I	i !	i i	i I		; ; ;] [[I I	I I	1 1 1 .2	i I	1 1	î I	I 1 I .2	I 2 I .4
10 34.0-34.9	I I	1	i	i I	i I	i !	i 1 I .2	1 1 1 .2	i 2 I .4	I 1 I .2	1 1 .2	i 1 I .2	i 1 I .2	i I	i !	I 8 I 1.6
37 0-22 9	Ī	I I	i 1 I .2	I I	I 1 I .2		2 1 .4	1 3 1 .6	I 6 I 1.2	I 9 I 1.8	1 5 1 1.0	1 2 1 .4	i 1	I 2 I .4	I I	1 31 1 6.4
8 32.0-32.9	Ī	I I	i :	I 1 I .2	1 3 1 .6	. 6	7 1.4	i 7 I 1.4	I 11 I 2.3	1 10 1 2.1	1 7 I 1.4	I 6 I 1.2	i 2 I .4	I I	I I	57 1 11.7
7 31.0-31.9	I I	1 I	I I	I 2	I B I 1.6	16 3.3	39 8.0	1 <i>1</i> 4 1 4.9	I 25 I 5.1	1 8 I 1.6	I 11 I 2.3	3 1 .6	1 3 I .6	i i]]	1 139 I 28.5
6 30.0-30.9	I .	I I	I 2	I 11 I 2.3	I 11 I 2.3	20 4.1	I 40 I 8.2	I 25 I 5.1	1 18 I 3.7	I 7 I 1.4	T I	i 1 i .2	I I	I I	I I	1 135 1 27.7
5 29.0-29.9		I 1 I .2	I 6 I 1.2	I 9 I 1.8	I 12 I 2.5	14	1 21 1 4.3	I 8 I 1.6	I 6 I 1.2	i 1 i .2	I 1 I .2	i i	i I	1	I I	79 16.2
4 28.0-28.9	i I	I 2 I .4	5 1 1.0	1 7 1 1.4	1 5 1 1.0	.6	6 I 1.2	I I	I 1 I 2	I I	i i	i I	I I]]	i i	29 6.0
3 27.0-27.9	Ĭ	I I	i	I 4 I .8	1	. 1	i . 1 I .2	I I	1 1	i I	i i	i i]]	I I	1 1	6 1.2
1 25.0-25.9		I I	I I I	[[I I	I I	i i	I I	I I	I I	I I	! !	I I	I I	I I	.2
COLUMN TOTAL	1 .2	. 6	14 2.9	34 7.0	40 8.2	57 11.7	117 24.0	68 14.0	69 14.2	36 7.4	26 5.3	13 2.7	1.2	,4	. 2	487 100.0

Table 72. Female Bivariate Table of Heel-Ankle Circ (VAR 14) and BOF Breadth, Horiz, Right (VAR 26)

	VAR 16															
VAR14	118.5 - I 18.9 I 1	20.0 - 20.4 I 4	20.5 - 20.9 I 5	21.4	21.5 - 21.9 I 7		22.9	23.4		24.0 - 24.4 I 12	24.5 - 24.9 I 13	25.0 - 25.4 I 14	25.5 - 25.9 I 15	26.0 - 26.4 1 16	26.5 - 26.9 [17]	ROW TOTAL
11 35.0-35.9	I	I I I	II	II I	I	I .	1 I I	I	I	I I	I I I	! ! !	I I	1 1	II I 1 I I .2 I	.4
10 34.0-34.9	I i	 	! !	I I	i i] [[[]]	1 2	1 2 1 4	I 3 I .6	I I I	I	1 1	[8 1 6
33.0-33.9	I I	I I	I I	I I	i i	I I] [.6	I 6 I 1.2	I 8 I 1.6	I 6 I 1.2	I 6 I 1.2	1 1 1 .2	I 1		I I	31 6.4
32.0-32.9	I I		I I	I I	I 3 I .6	.4	5 1 1.0	I 13 I 2.7	I 16 I 3.3	I 14 I 2.9	1 1 1 .2	3 6	I I		I I	57 11.7
7 31.0-31.9	I I		I 1 I .2	I 1 I .2	1 10 1 2.1	27 5.5	1 28 1 7.8	t 24 I 4.9	t 27 I 5.5	T 7 I 1.4	1 .2	.4	i i		I I	138 28.3
30.0-30.9	I I		I 2 I .4	I 16 I 3.3	I 15 I 3.1	7.6	34 1 7.0	I 22 1 4.5	I 6 I 1.2	I 3 I .6	. 2		I I	 	i i	136 27.9
5 29.0-29.9	I I		I 5 I 1.0	I 11 I 2.3	1 23 I 4.7	27 5.5	1 9 1 1.8	[3 [.6	I 1 I .2	I I I	i !	i ! !	I I	 	i i i i	79 16.2
4 28.0-28.9	i i	1.0	I 1 I .2	1 12 I 2.5	1 8 1 1.6	.6	i ' ! !	! ! !	i i i	I I		! !	I I		i i I I	29 6.0
3 27.0-27.9	T 1	.2	i 2 i .4	I 1 I .2	I 2 I .4		[[[i i	; ; ;	I			I I I		[] 1]	6 1.2
1 25.0-25.9	1 .2 1		i i	i 1 1	[]		i !	I I I	1 1 1	I .		i i	I .		1 1 1 1	.2
COLUMN TOTAL	. 2	6 1.2	11 2.3	41 8.4	61 12.5	96 19. <i>7</i>	89 18.3	68 14.0	60 12.3	32 6.6	12 2.5	6 1.2	.2	.4	. 2	487 100.0

Female Bivariate Table of Heel-Ankle Circ (VAR 14) and BOF Circ, Right (VAR 16)

	VAR24															
	112.0 - 1 12.4 1 1 1	14.0 - 14.4 I 5	14.5 - 14.9 I 6	15.4		16.4	16.9	17.4	17.5 - 17.9 1 12	18.4	18.5 - 18.9 I 14	19.0 - 19.4 I 15	19.5 - 19.9 I 16	20.0 - 20.4 I 17	20.5 - 20.9 I 18	ROW TOTAL
11 35.0-35.9	I I	I I I	I I I	I	[i i	i I I	1 t t	I I I	I	I I I	I 2	I 1 I .2	l	1 I I] [2 [.4
10 34.0-34.9	i i	[[[I I I	I		[, I I	! ! !	[[]	I I T	1 I I	I 3 I .6	I 2 I	.4	I 1 1 I	I I 8 I 1.6
33.0-33.9	I I	I I I	t 1 1	I I			; ; ; ;	: ! ! !	i i i	i 6 i 1.2	I 6 I 1.2 I	I 9. I 1.8	I 7 I 1,4	.6	[I 31 I 6.4
8 32.0-32.9	i i	! ! !	I I	I I I		.2	i I I	1 2 I .4	1 7 I 1.4	I 9 I 1.8		l 19 I 3.9	1 5 1 1 1.0	.4	[i 57 I 11.7
7 31.0-31.9	I I	: : :	I I I	[[.6		I 26 I 5.3 I	1 30 1 6.2	I 38 I 7.8 I		I 10 I 2,1 I	I 2 I .4 I	. 2	I i	I 138 I 28.3
30.0-30.9	1	[[[I I I	I I I	.4	14 2.9	1 11 1 2.3 1	I 44 I 9.0 I	1 28 1 5.7 J	I 24 I 4.9 I	1 9 1 1 1.8	1 3 1 .6 1	I 1 1 I .2 1 I1		I I	1 136 I 27.9
5 29.0-29.9 -	1 .2 I	! ! !	1 I I	I 1 1 I .2 1 I1	.8 . .8 .	13	[15 [3.1 [I 22 I 4.5 I	1 14 I 2.9	I 8 I I 1.6	[1] [.2	[[[I I I] 	79 1 16.2
28.0-28.9 -1	I I	! ! !	I I I	I 3 I .6 I	[3 [.6]	7 1.4 [[11 1 2.3 [t 2 I .4 I	. 3 I .6	I I I	[[! ! !	I I I		! 1 [; []	1 29 1 6.0
27.0-27.9	[[]		I 1 I 2	I :	.6 l	.2	l 1 I .2	[[[[! ! !	[I I		[1 6 1 1.2
1 1 25.0-25.9 1	i i	.2	I I I	I 1	[[! ! !		[[[! ! !		[.2
TOTAL	. 2	.2 .	.2	.8	12 2.5	8.O	41 B.4	96 19.7	82 16.8	85 17.5	53 10.9	45 9.2	18 3.7	1.6	.2	487 100.0

Table 74. Female Bivariate Table of Heel-Ankle Circ (VAR 14) and BOF Length, Right (VAR 24)

	I VAR25																		
VAR14	I 19.0 - I 19.4 I 1	1 3	20.9 I 4	21.4 I 5	21.9 I 6	1 7	22.9 I 8	23.4	23.9 I 10	24.4 1 11	24.9 I 12	25.4 I 13			26.9 1 16			28.5 - 28.9 I 20	
11 35.0-35.9	i e	I I I	I I I	[[[I	[I I I	; ; f i	I I I	I I I	1 1 1	[[[I 1 I .2	[1 .2	1 1 1	2
10 34.0-34.9		I I	I I] 	I I	[]	i I	i I	[[I I	! !	I I	1 .2	I 1 I .2	I 2 I .4	. 4	.2	I 1 I .2	1.6
33.0-33.9	Ī	I I	I I	I I	i i	I I			i	I 1 I .2	i !	I 4 I .8	1.2	I 6 I 1.2	1 10 1 2.0	.4	.4	i i	31 6.4
8 32.0-32.9	Ī	I I	I I		I I	I I		i I	l I	7	I 5	1 9	12 2.5	1 13 1 2.7	1.4	.8		I I	57 117
7 31.0-31.9	i	[[[1		i	1 1	.4	. 5	1 12	1 26 1 5.3	1 26 I 5.3	I 41 I 8.4	23 4.7	I 5	1			I I	139 28.5
6 30.0-30,9	i	I I I	1 1	1		I 2 I	11	21 4.3	I 31 I 6.4	6.8	I 21 I 4.3	1 13	.6	I 1 I .2	[]			I I	136 27.9
5 29.0-29.9	i	I I I	i I		.4	1 9 1 I 1.B	11 2.3	18 3.7	I 20 I 4.1	1 9	I 10 I 2.0	[I I	[]		 	1 [79 16.2
28.0-28.9	t	; ;	1 1		7	I 3 I	7	6	i 4	1 .2	I I			! !	i :			t I	29 5.9
3 1 27.0-27.9		.2	I 1	.2	.2	I 2 I		. 2	I I	[I I			I I	i i			I I	6 1.2
1 I 25.0-25.9 I	. 2		I 1			I I			i i		I I I			I	i i		 	I I	.2
COLUMN TOTAL	1 . 2	, 2	i 1 . 2	1 .2	10 2.0	17 17 3.5	31 6.4	49 10.0	67 13.7	77 15.8	62 12.7	67 13.7	45 9.2	1 27 5.5	19 3.9	8 1.6	.8	1 . 2	488 100.0

Table 75. Female Bivariate Table of Heel-Ankle Circumference (VAR 14) and Foot Length, Right (VAR 25)

	VAR 17														
	15.2 - 1 5.3 1 1	5.4 - 5.5 I 2	5.6 - 5.7 I 3	5.8 - 5.9 I 4	6.0 - 6.1 [5	6.2 - 6.3 6	6.4 - 6.5 I 7	6.6 - 6.7 I 8	6.8 - 6.9 1 9	7.0 - 7.1 I 10	7.2 - 7.3 I II	7.4 - 7.5 I 12	7.6 - 7.7 I 13	7.8 - 7.9 I 14	ROW TOTAL
35.0-35.9	I	I I	I	[I I I	[I I I	 	I	I	I 1 I .2	I 1 I .2	I I	I	I I 2 I .4
10 34.0-34.9	I I	I I	: : :	I I	I I	I I I	I 1 I .2	I 1	I 2 I .4	1 2] [I 1 I .2	I 1 I .2	;	1 1 8 1 1.6
33.0-33.9	Ī	I I	1	I I	i I	I 2 I .4	i 4 i .8	I 5 I 1.0	I 5 I 1.0	I 6 I 1.2	1 5 1 1.0	t 4 I .8	I I	<u>1</u>	1 31 1 6,4
8 32.0-32.9	ī 1	1	! !	i 1 i .2	. 8	2	1 11 1 2.3	17 1 3.5	I 11 I 2.3	I 4 I .8	I 4 I 8	1 3 1 .6	I I	i i	1 57 I 11.7
31.0-31.9	i i	I I		1 6 1 1.2	20 4.1	32 6 6	41 6.4	22 4.5	I 10 I 2.1	I 5 I 1.0	1 2 I .4	: : :	I I	I 1	1 139 [28.5
30.0-30.9	ī	i I	1 6 1 1.2	I 14 I	9.2	35 7.2	21	9 1.8	1 5	i I I	1 1 I .2	: ! !	I I	! !	1 136 1 27.9
29.0-29.9		i 3 I .6	1 11 1 2.3	14	22 4.5	19 3.9	1.2	.2	i 2 I .4	i I	I I	i i	! !		78 1 15.0
28.0-28.9		I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	1.2	10 2.1	. 8	.2	-	i 1	i I I	i f		i i		29 6.0
27.0-27.9		I I	.2	.6	. 2	.2			[]	! !			i I		6 1.2
25.0-25.9		1													.2
COLUMN	.2	. 8	25 5. 1	44 - 9.0	102 20.9	95 19.5	85 17.5	55 11.3	35 7.2	17 3.5	13 2.7	9 1.8	. 2	.2	487 100.0

Table 76. Female Bivariate Table of Heel-Ankle Circ (Var 14) and Heel Breadth, Right (VAR 17)

	VAR 15															
	1 110.5 - 1 18.9 1 1	20.0 - 20.4	20.5 - 20.9	21.0 - 21.4 1 6	21.5 - 21.9 1 7	22.4	22.9	23.4	23 5 - 23.9 I II	24.0 - 24.4 1 12	24.5 - 24.9 [13	25.0 - 25.4 1 14	25.5 - 25.9 1 15 1	26.5 - 20.9 17	27.0 - 27.4 [18	ROW TOTAL
11 35.0-35.9		t I t	 	i i i	[i			[[[[· · · · · · · · · · · · · · · · · · ·	[[] [1 .2	[2
10 34.0-34.9		! !	[[[I 1	• • • • • • • • 	· · · · · · · · · · · · · · · · · · ·	1	I I	; ; ;	1 2	1 2	1 3 1 .6		1 1	7 1 1.4
33.0-33.9		! !	! !	i i	i i			1 .2	2 1 .4	i 5 I 1.0	1 11 1 2.3	1 6 1 1.2	1 6 1 1.2]]]	I 31 I 6.4 I
32.0-32.9	i	: :	i i	 	1 1) 2	1 1.4	10	1 17 1 3.5	1 15 1 3, 1	i 6 i 1., 2	1 .2	 	 	1 57 1 11.7 1
31.0-31.9		: ! !	i i	 	1 1	4 . A	14	1 31 1 M.O 1	i 36 i 7.4	f 30 I 6.2	1 11 1 2.3	[4 [.8	[[]	[[t i 1	1 138 1 28.4 I
30.0-30.9		i i	† ! !	1 !	1 6 1.2 1	19	7.0	1 43 1 8.8 1	I 25 I 5. I	t 8 l 1.6	i i i .2	[[[1 1 [I I I	I 136 I 28.0 I
5 29.0-29.9		! !	t 1	: ! !	1 17 1 3.5	17 3.5	31 1 6.4	l 12 l 2.5	1 .4	i i !	! ! !	! ! !] [[t 1 1	1 79 1 16.3 I
4 28.0-28.9			.2	i 11 [2.3	I 6 I 1.2	1.0	1 6 1 1.2]]]	i !	i i i	I I I	! !	I I I	[I I I	t 29 t 6.0 ; I
3 27.0-27.9	I I	.2		. 1	. 3 1 .6	.2	!	: ! !	t f	1 1	f t 1	1 1 1	1 I I	 	1 ! !	; 6 ; 1.2 ;
1 25.0-25.9	[1] [.2]			!	i i	 	, 	[]	t t	! !	I I	! !	I I I	 	! !]	i i i .2
COLUMN TOTAL	. 1	.2	. 2	12 2.5	32 6.6	46 9.5	86 17,7	102 21.0	75 15.4	60 12.3	40 8.2	18 3.7	10 2.1	.2	.2	486 100.0

Table 77. Female Bivariate Table of Heel-Ankle Circumference (VAR 14) and Instep Circumference (VAR 15)

	VAR21																	
	I 44.9	45.0 - 47.4 I 2	49.9	52.4	54.9	57.4	59.9	62.4	64.9	67.4	67.5 - 69.9 ! !!	72.4	74.9	75.0 - · 77.4 14	77.5 - 79.9 I 15	80.0 - 82.4 I 16	87.5 - 89.9 I 19	ROW TOTAL
11 35.0-35.9		I I I	[] [I I I I	I I I	[] [I I I	! ! ! !	I I I	I I I	I I I	I I I	I I	1 .2	I	I I I	I 1 I .2 I	I I 2 I .4 I
10 34.0-34.9	1	I I	! !	T !	1 !	l 1 I .2	[[1 I T	I I	1 2 I .4	I 1 I .2	I 2 I .4	1 1 1 .2	[[[I 1 I .2	I 1 7	I I	I 8 I 1.6
9 1 33.0-33.9	I I	I I		i i	I I	1 1 .2		I .6	I 5 I 1.0	i 6 I 1.2	i 5 I 1.0	5 1 1.0	I 2 I	.8	i I	I I	I I	I 31 I 6.4
32.0-32.9	ī I	I		I 1 I .2	I 2	2	1 8 1 1.6	1 12 1 2.5	1 10 1 2.1	5 1 1.0	I 7 I 1.4	.8	I 5	. 2]]]	I I I	I I	1 1 57 1 11.7
7 31.0-31.9	ī ī	I I	. 4	I 5 I 1.0	I 7 I 1.4	I 10 I 2.1	22 1 4.5	28 5.7	I 24 I 4.9	23 1 4.7	I 9 I 1.8	. 8	I 2 I .4	.2	I 1 I .2	i i	I I	I 139 I 28.5
30.0-30.9	I I	I I	.6	1 6 1 1.2	I 14 I 2.9	30 6.2	34 7.0	21 4.3	I 14 I 2.9	8 1.6	I 4 I .8		I 1 I .2		i i	I I]]	I 135 I 27.7
5 29.0-29.9	I I	I 1 I .2	7 1.4	I 14 I 2.9	1 14 1 2.9	1 13 I 2.7	I 18 I 3.7	6	1 4	I	I 2 I .4	I I	I I		I I	i i	I I	I 79 I 16.2
28.0-28.9 1	I 1 I .2	I 4	.8	5 1.0	1 5 1 1.0	.6	I 4	.6	I I	i i	I I		1		I I	i i	i i	1 29 1 6.0
3 27.0-27.9	Ī	I 3	.2	f !	I !	[[[.2	! !	1	I I		I I			i I	i I	I 6 I 1.2
1 25.0-25.9	ī	1 1			i i	I	I		I I	! !	I I		I I		1		I I	i 1 I .2
COLUMN TOTAL	1 .2	9 1.8	17 3.5	31 6.4	43 8.8	60 12.3	86 17.7	74	57 11.7	44 9.0	28 5.7	15 3.1	11 2.3	7 1.4	.4	.2	.2	487 100.0

Table 78. Female Bivariate Table of Heel-Ankle Circumference (VAR 14) and Weight (VAR 21)

	VAR 13																
VAR 15	1 17.4		18.4	18.5 - 18.9 I 4	19.4	19.9		20.9	21.4	21.9	22.0 - 22.4 1 11	22.5 · 22.9 1 12	23.0 - 23.4 1 13	23.5 - 23.9 1 14	24.0 - 24.4 I 15	25.0 - 25.4 1 17	ROW TOTAL
18 27.0-27.4	1	! !	! !	 	[] [1 , 1]		• • • • • • • • • • • • • • • • • • •	I I		[· · · · · · · · · · · · · · · · · · ·	1 1 1 .2	1
17 26.5-26.9	ī t	1	1	1	1				 	. 2	 	; ; ;	1	 	 	i !	.2
15 25.5-25.9	i !	 	! !	 	1		 	1	.4	.2	.6	1 2	.4	: : :	† †	į 	i 10 i 2.1
14 25.0-25.4	1	! !	! !	; ; ;			 	i 3 i 1.0		i 1.0	1 5 1 10	i ? I .4	i 	i 1 1	i ! !	i : :	i 20 i 4. i
13 24.5-24.9	:	i ! !	t 1 1	i i i	i .	; ; ; ;	. J I .6) 3 1 .6	1 13 1 2.7] 9 [1.8]	1 6 1 1.2	1 2 1 .4	1 .2	[1 2	! ! !	1 40 1 8.2
24.0-24.4	i	! ! ! .2	i 1 [• • • • • • • • • • • • • • • • • • •	i ! !	i !	.4	j 4 j ,8	1 (r) 1 2.1	t 12 t 2.5	1 11	1 B 1 1.6	1 8 1 1.6	1 .6]	! ! !] 	[60 [12.3 [
23.5-23.9	i :] ! !	t 1 1	! ! !	.4	1 6 1 1.2	10 1 2.1] 15] 3, 1	1 16 1 3.3 1	1 17 1 3.5	1 6 1 1.2 1	1 1 1 .2	1 1 1	1 1 1 .2 1	1 1 1	 	1 74 1 15.2
23.0-23.4	1	i ! !	1 .2	1 5	1 8 1	1 9 1 1 8	23 4.7 	1 16 1 3.3		! 9 ! 1.6	1 7 1 1.4		1 .2	1 1 1	 	1	1 102 1 20.9
22.5-22.9	1 1	 	i i i	t 1 8, 1	1 8 1 1 1.6	l 11 l 2.7	1 18 1 3.7	1 16 1 3.3	[15 [3.1 [I 13 I 2.7	[2] .4 [t 	ļ	1 1 1] 	 t 	1 86 1 17.7 1
22.0-22.4] [t t 	! ! !	l 1 l .2 l	1 5 1 1.0	[10 [2.1 [[11] 2.3 [1 5 1 1.0	1 9 1 1.8	: 4 .8 	[! ! !	! !	! !		9.4
7 21.5-21.9	! !	! ! !	! ! !	[] [.2 [1 6 1 1.2] 1 * 	1 10 1 2.1 1	6 1 6. 1	t 3 1 .6 1		! ! !	! ! !	! !	! !	! ! 	ļ	1 37 1 6.6 1
6 21.0-21.4 -1	1 	 	1 1 1 .2 [1 5 1 1.0	1 5 1 1.0 1	 	! ! ! .2 !	† 1 1	! 	! ! !	 	! ! [! !	! ! !			1 2.5
20.5-20.9	! !		[[[1 1 [1 1 1 .2 1	t t t	! ! !	† 1] { {	! ! !	1	I I	! !	!	.2
20.0-20.4 -1		 	 	 •••••	[' 	! ! !	! ! !	t i 1	[[[····	! ! !	! !	! ! !	! ! !		
1 18.5-18.9 -1	i i	 			!	 	 	 	 	t T 1	[1 1 1	; !]	! ! !		
TOTAL	.2	.2	.4	3.5 5.5	34 7.0	9 7	# 1 16.6	7:1 15:0	92 18.9	70 14.4	7.8	19 3.9	1.4	.6	.4	. 2	487 100.0

Table 79. Female Bivariate Table of Instep Circumference (VAR 15) and Ankle Circumference (VAR 13)

	VAR 15															
VARDE	I I18.5 - I 18.9 I 1	20.0 - 20.4 I 4	20.5 - 20.9 I 5	21.0 - 21.4 I 6	21.5 - 21.9 I 7	22.0 - 22.4 I 8	22.5 - 22.9 I 9	23.0 - 23.4 I 10	23.5 - 23.9 I 11	24.0 - 24.4 I 12	24.5 - 24.9 I 13	25.0 - 25.4 I 14	25.5 - 25.9 1 15	26.5 - 26.9 I 17		ROW TOTAL I
16 10.6-10.7	I	I I I	I	I	I	[[]	I I	[[[[[]	1 1	I I] []	I I	1 1 1 .2	i i i	1 1 1 .2
15 10.4-10.5	ī I	I I	I I	I I I	I I	I I	I I I	I I	I I	[[]]]	i 2 I .4		I I I	I I I	1 . 2 14
14 10.2-10.3	i I	i i	I I	I I	I I	t 1	[[: :	I 1 I .2	I 1 I .2	2	I 1 I .2	i 1 I .2	I I	: ! !	I 6 I 1.2
13 10.0-10.1	I I	I I	I I	1 1	I I	i i	i i	I I	I I	1 3 1 .6	7 I 1.4	I 2 I .4	I I I .2	I I I	I I I	1 13 1 2.7
12 9.8-9.9	I I	I I] [1 1 1	I I	i	I I	I 3	1 6 1 1.2	I 4 I 8	I 6 I 1.2	I 2 I .4		I I	I 1 I .2	1 27 1 5.5
11 9.6-9.7	t :	I I		I I			I 1 I .2			i 9 I 1.8	1 10 1 2.0	I 5 I 1.0	I 2 I .4		[]]	I 36 I 7.4
10	1	I I		I I I	l 1 l .2			I 16 I 3.3		i 10 i 2.0	I 7 I 1.4					I 67 I 13.7
9.2-9.3	I :	I I	I I	i i	[[14 1 2.9	1 16 1 3.3	i 12 I 2.5	I 17 I 3.5	1 3 1 .6	I .6		i i i		I 68 I 13.9 I
9.0-9.1	1	I I	! !	i 2 I .4	I 6 I 1.2	10 2.0	33 1 6.8	I 31 I 6.4	1 24 1 4.9	I 8 I 1.6	i 3 I .6		•	t I I		I 118 I 24.2
8.8-8.9	1	I I	i i	i :	I 4 I .8	10 2.0	16 1 3.3	I 17 I 3.5	i 7 I 1.4	i 3 I .6	I 1 I .2		I I	I I I	I I I	I 58 I 11.9 I
8.6-8.7	I I	I I	1 1	1 2 1 .4	I 3 I .6	10 2.0		11 2.3		i 4 I .8		i I I	i I !	I I I	I I I	I 40 I 8.2
5 8.4-8.5	I 1	I 1 I .2	1 1 1 .2	I 5 I 1.0	I 11 I 2.3	6	5	5 1 1.0	i	! ! !	: ! !	i i i	i i i	ī 1 1	I I I	1 34 1 7.0
8.2-8.3	I I	[[I I	i 2 I .4	I 6 I 1.2					I 1 I .2		i i i	1 1	i i i	I I I	I 14 I 2.9 I
8.0-8.1	I I	i i	I I	I 1 I .2					! !	•	i I I	i I	i i	I I I	I I	C 1 2 .6
7.6-7.7	1 1 1 .2	ī ī	I I	I I	I I			i i	! !	! !	1 1	i i	I I	i i i	I I [I 1 I .2 I
COLUMN TOTAL	.2	.2	.2	12 2.5	32 6.6	46 9.4	85 17.4	103 21.1	75 15.4	60 12.3	40 8.2	20 4.1	10 2.0	.2	.2	488 100.0

Table 80. Female Bivariate Table of BOF Breadth, Horiz, Right (VAR 26) and Instep Circumference (VAR 15)

	VAR25						26.0 -	255-	27.6 -	2- 5 -	29 0 -	29.5 -	29.3 -	29.5 -	30.0 -	RCY
	121.5 - 1 21.9	23.5	24.0	24.5 - 24.9 1 7	25.4	25.9	26.4	26 9 I II	2 . 1 1 12	29 1 13	23.4	28.9 I 15	29 4 [16	29.9 I 17.	30.4 [18]	TOTAL
VAR15	I	I 5	1 6	1				[[[[[[1	1
16 29.5-29.9		! ! !	! [[I I				I I		[3 !	I I	[[7	[[]	
15 29.0-29.4			ī I	I I				! !	.3			i !	1.0	i !	I I	t 1.7 t
14 28.5-28.9	1	ļ	I					i I	.3		t 2 I .7	i 2 i .7	I 3 I 1.0	1 2	I 1 I .3	3.8
13	1		i	[II	.3	2	I 2	1 4	1 1	2	I 1 I .3	i 13 I 4.5
28.0-28.4	[[I I	r [i	2	4	1	I 2]	! [2	I 1	I I 24 I 8.3
27.5-27.9	I .		I I	[7	.7	I 1.4 I I 3	I 2.8 I I 6	I .7 I I 3	I 1.0 I I 2	t .7 !	[I B.J I 22
11 27.0-27.4	1		I I	I I .			.7	.3	1.0			1.0		.3	i .3	7.6 I
10	i		I	I		2 .7	5 1.7	1 6 1 2.1	9 i 3.1	5 [2.1	1 8 1, 2.8	1 1		[[i I	I 38 I 13.1
26.5-26.9	I :		i :	ii	2	3	6	1 13	2.1	7	I 4 I 1,4	I I '	1 1		I I	44 1 15.2
26.0-25.4	1	i !	t [. 7 1	.7	1.0	2.1	I 4.5	12		i	T T 1	i 2	i	II	I I 41
8 25.5-25.9	1 .3		I 1 I 3			1.0		1 3.1 i	4.1		I 1.7	i .1	I .7	! !	I I	I 14.1 I I 45
7 25.0-25.4	1 1		1	1 4	6 i 2.1	6 2.1	7 2.4	I 9 1	10 3.4	7	1 1 1 .3	[[[I I T	! ! !	I I	1 15.5
6	I	1	I 1	II	[] [1.0	4	I 2	2		I I		! !	i I	I I	t 16 1 5.5
24.5-24.9	[.3	1	I I I 3	[7		[i	I	[;	I	1	I I 19 I 6.6
24.0-24.4	1		I I			2.4	.3	[.3		1 !	! !	! [! ! !	! !	1 0.6 1 7
23.5-23.9	ī i		i 2 i .7			.3		I I		[] [: ! !	! ! !	I I	i i i	i !	I 2.4
3	II		[[1	[[1 1		.3	i i		I I	I I	i t	I I	i I	I I	I 3.0
23.0-23.4	1		 [[i			1	[] [!	I	I I	! !	I	I	I I 1 I .3
22.0-22.4	1	i !	i !	I I			.3	[[! ! 25	I I 37	I I 14	1 [15	i 	i4	I 290
COLUMN TOTAL	.3	.7	1.7	12 4, 1	20 6.9	25 8.6	32 11.0	43 14.8	16.6	8.6	12.8	4.8	5.2	2.4	1.4	100.0

Table 81. Female Bivariate Table of Instep Circumference (VAR 15) and Foot Length, Right (VAR 25)

	VAR21																	
VARIS	142.5 - 1 44.9 1 1	47.4 1 2	47.5 - 49.9	50.0 - 52.4 1 4	52.5 - 54.9 1 5	55.0 - 57.4 1 5 1	57 5 59.9	60.0 62.4 1 8	62.5 • 64.9. ! 9	65.0 - 67.4 I IO	67.5 - 69.9	70.0 72.4 12.12	72.5 - 74.9	75.0 - 77.4	77.5 • 79.9 1 15	80.0 - 82.4 3 16	87,5 · 89.9 ! 19	ROY TOTAL
18 27.0-27.4	1	1		!	1	1		1]]					! !	 	.2	2
17 26.5-26.9	<u>.</u>	1		! !	! !	! !		1	1 1	 	; ; ;	: : :	1	.2		i : :	i t 1	1 .2
15 25.5-25.9	1		! !	i !	! !	! !		i !		i 2	. 4	.4	t ,4			! ! [! ! !	1 10
25.0-25.4	i t			! !	! !	: !	 	2	1 ,6	1 4 .	.8		.2	.6	† ! !	i ! !	! ! !	I 20 I 4.1
13 24.5-24.9	1	i !		i i i .2	! !	1 1	.4	1 5	1 6 1 1,2	1 9	. 6 	. 8	t 6 t 1,2	.4	! ! ! .2 !	! ! !	[] [1 · 40 1 8.2
12 24.0-24.4	1	i !	.7	i 1 1 .2	. 1 2	1 4	.8	1 13	1 16 1 3.3	1 9 1 1.8	1 7 1 1,4	. 6	[1] .2 [! ! ! • • • • • • • •	1 ! !	: : 1	! ! 	1 60 1 12.3
23.5-23.9	t I	i i	! !	i ! !	1 6 1 1,2	1 10 1 2.0	1 16 1 3 3	1 18	1 9 1 1.8	1 9 1 1.6	1 5	! ? !	1 t 	t t 	t 1 1] [! 	I 75 I 19.4
10 23.0-23.4	t f	i !	.4	, , , , , ,	1 10	1 18 1 3.7	22 4.5	1 13	1 13 1 2.7	1 11	j 3 i ,6	.2	[t 1 1	[[! ! 	1 103 1 21.1
22.5-22.9	I I	1 [. 4	1 6	2.3	1 14	74 4.9	1 16 1 3.3	1 5 1 1.0	; ; ; .4 ;	i J i .6	! ! !	; ; ;	 	1 1 1	t t !	i	17.4
22.0-22.4	t 1	1 .4	, , 6 	I 5 I 1.0 I	! 7 ! 1,4 [1 6 1.7 	15 3.1 	; 3 ! .6 !	1 5 1 1.0 1	1 1 5] []	1 1 !	 	; ; [! !	! !		1 45 1 9.4 1 32
21.5-21.9	1	i 3 t .6	. 4	1 8 1 1.6	1.0	! 6 ! 1.2] .6 	1 2 1 .4	1 1 1 · · · · · · · · ·	! ! !	i ! i .2	[] [! ! !	! ! 		! !		i 6.6
21.0-21.4	1.2	t ,6		! 2 ! .4	! ! ! .2	[! 	1 .2		1 ! !	1 1	t ! {	t 1 1	! ! !	! !			1 12
20.5-20.9	1	1 1	 	1 .2 1 .2	! !	! ! ! !	 	! ! !	! ! 	! ! !	1 ! !	1 ! !] []	; ; ;	! !	! !	ļ	.2
20.0-20.4	Ī	1 1	 	: :	.2	1	 	1 1 1	t 	1 ! !	i ! [! ! !	: ! !	[[[
18.5-18.9	Ĭ	1 1 1 1 .2	[i i	[[t 1	 	! ! !	t ; ;	! ! !	1 ! !	i ! ! • • • • • • • • • • • • • • • • • •	i i i	; ; ;	[1	I.	
COLUMN TOTAL	.2	1.8	17 3.5	9.4	43 8.8	59 12.1	86 17,6	73 15.0	58 11.9	45 9.4	28 5.7	15 3. 1	2.3	1.4	.4	.2	. 2	100.0

Table 82. Female Bivariate Table of Instep Circumference (VAR 15) and Weight (VAR 21)

	VAR 1																			
VAR25		160.3 J 2			164.4 - 166.3 I 5	166.4 - 168.3 I 6	168.4 - 170.3 I 7	172.3	174.3 I 9	176.3 I 10	178.3 I 11	178.4 • 180.3 I 12	182.3 I 13	184.3 I 14			188.4 - 190.3 I 17	190.4 - 192.3 I 18	192.4 - 194.3 1 19	ROW TOTAL
18 30.0-30.4		I I	I I	I I	[[[[i i	1 1	I I	! !	[[! !	I I	•	l 1 L .3	I I I .3	1 1	l 1	i 4 I 1.4
17 29.5-29.9	i	i i	i	t 1	! !	I I		•	! !			I 1 I .3			1 .3	1	. 1	l 1 l .3	: : :	7 2 4
16 29.0-29.4	i	i ·	i 1	i	: : :		•	1 1	[1 [.3	1 .7		I I	1 1.4	. 2	1 2 1 .7	: ! !	1 2	i !	1 1 1 .3	i 15 i 5 1
15 28.5-28.9	Ī	i 1 1	i I I	I I	i i i	: : :	i i i .3		•	! !	1 2 1 .7	i 3 i 1.0	: ! !	. 1.0	i 2 I .7	I 1 I .3	i !	i 1	i ;	I 14 I 4.8
28.0-28.4	1 I	i I I	i I !	i I	: ! !	: ! !	! !	i 1 I .3	I 5 I 1.7	1.0	1.0	1 8 1 2.7	1 8 1 2.7	1.0	1 1.0	l 1 L 3	i i	I 1 I .3	i i	i 37 i 12 7
13 27.5-27.9	I	i I I	i I I	i i	i i	[] [• • • • • • • • •	i 1 I .3	! !	1 4	1.0	5 1.7	i 1 I .3	1 3 I 1.0	6 2.1	[[I I I .3	I I I .3	! !	: :	25 1 8 6
27.0-27.4 -	I	i i I	I I I · • • • • • • •	I I I	1 2 1 .7	5 1 1.7	i i i .3	.7	1 5 1 1.7	2,1	1.4	f 11 I 3.8	1.4	.7	1 5	; ; ; ;	; ; ; !]]		I 48 I 16 4
11 26.5-26.9		I I	! ! !	.3	i I	i I	1 7 1 2.4	I 9 I 3.1	1 6 1 2.1	1.4	1.7	1,4	1,4	.7	i i i	; ; ;	! !	I 1 I .3		1 43 1 14.7
10 26.0-26.4		[]	! !	1 1	1 1 1 .3	1.0	1 5 1 1.7	I 3 I 1.0	I 7 I 2.4	2.1	1.0	1.0			! ! ! · · • • • • • • •	: ! !	: ! !	I I		I 32 I 11.0
25.5-25.9		I I	i I	.7	1 1.0	1.4	i 1 I .3	I 4 I 1.4	1 7 1 2.4	1.0	.3					: ! !	! !	I I		26 1 8.9
8 25.0-25.4		I I	i !	1 3 1 1.0	1.4	5 1 1.7	i 3 I 1.0	i j	i 1 I .3				.5		! !	i I	: ! !	1 1		I 21 I 7.2
7 24.5-24.9			.7	.3	.3	.3	i 1 I .3	i 3 i 1.0									i ! !	f i		12 1 4.1
6 24.0-24.4	I 1		.3		.7			i i	t I				1							5 1 1.7
5 23.5-23,9	i i	.3		.3			i I	i I	! !				I							.7
21.5-21.9	I i						I I	i i	ī		.3		•]		,			1	.3
COLUMN	.3	.7	3 1.0	9 3.1	13 4.5	19 6.5	21 7.2	26 8.9	37 12.7	29 9.9	25 8.6	31 10.6	26 8.9	18 6.2	13 4.5	1,4	6 2.1	5 1.7	1.4	292 100.0

Table 83. Female Bivariate Table of Foot Length, Right (VAR 25) and Stature (VAR 1)

	VAR 1 I																		
VAR21	1141.0 - I 142.9 I 1	144.9 I 2	148.9	150.9	151.0 - 152.9 I 6	153.0 - 154.9 I 7	156.9	158.9	160.9	162.9	163.0 - 164.9 J 12	166 9	168.9	170.9	172.9	173.0 - 174.9 1 17	175.0 - 17G.9 I 18	178.9	ROW TOTAL
19 87.5-89.9		I	I	! !	I I I	I I I	[I	I I	; ! !	I I I	I I	[[[[I I I	I 1 I .2	t t	[I I 1 I .2
16 80.0-82.4	I I	I I I	I I	[[[I I I	I I	[[[ī I I	i ! !	i i i	[[I 1 I .2 I	I	i I I	i I I	i i i	i i		i i I .2
15 77,5-79.9 -	Ī	i t I	I I I	i ! !	i i i	I I I I I	[[I I 	1 1 I	I I I	[[! ! !	I I I	[1 [.2 [. 1 1 .2		i 2 I .4 I
75.0-77.4		I I I	I I	! ! [I I I	I I I	[[[[[! ! !	I I I	I 1 I .2 I		. 2	I I I	I † I .2	I 1 I .2	.4]	.2	I 7 I 1.4
13 72.5-74.9 -	I I	I I I	I I I	[[[i ! 	[] []		I I		I 1 I .2	I I I	3 ! I .6 !		.2	I I 	I 3 I .6 I	.4	•••••	I 2.2
	I I	1 1 1	I I I	[I I I	I I I	.2	[. 2	i i !	I 1 I .2 {	I 2 I I .4 I II	.2		I 3 I .6 II	i .8	[[]	.2	I 15 I 3.1 I 28
67.5-69.9 -	I [I I	I I I		I 1 I .2 I	1 1 1	3		.8	.2	1 2 I .4 I	I .4 I	1.8	. 6 [4]	: : : :	.6		1 5.7 I 46
10 65.0-67.4 9	I I	i !] 		: ! !	I I	.6	i .2			I 1.4 I I 13	1 2.0 I	1.4	I 1.6 I	i .6 II	i .2 I I t	[[]		I 9.4 I 58
62.5-64.9 -	I I	: ! !	I I	i .2 I	i .2 ! ! 2	4 i	6	8. I []	2.2	I 1.2 I 10	I 2.7 I I 8	I 1.2 I 9	.6	I .6 II 4	I .6 II 3	1 .2 I 1	.2 	1	I 11.8 I 74
60.0-62.4	I I	I I I	I I I 1	i 	I .4 I I 4	1 1.0 1 1	1.2 	I 1.6 18	2.0 	1 10	1 1.6 I I 8	I 11	1.4	I .8 II I I	īī	I .2 I I	[.2	T 15.1 T I 86
57.5-59.9 - 6	I I	I I I	i .2 II	! [! 4	I .8 I I 3	I .8 I I 4	1.8 [[11	1 3.7 1	2.4	1 2.0 1 12	1 1.6 I I 3	1 2.2 1 5		I .2 II	I .8 I I	I I I			I 17.6 I I 60 I 12.2
5	I I	I I I	I [I 1	.8	I .6 II 4	I .8 1 II I 4 1	2.2 7	I 1.4 II I 3	1.4	2.4	i .6 I I 5 I 1.0	I 1.0 I 4 I 8	1	I 1 I 2	1 	I I I		,	I 12.2 I 43 I 8.6
52.5-54.9 - 4 50.0-52.4	I I	1 1 !	i .2 I I	.8	I .8 I I 4 I8	I .8 II I 2	I 1,4 I I 4 I 8	I .6 II I 6	1.0 [] 5	I .6 I I 5 I 1.0	1 1.0 1 3 1 .6	II		; ;	i i i	i I I			I I 31 I 6.3
	I I	i I 1 I .2	I 1 I .2		;	I .6	° . 1	I 5 I	1 1	1.0 1 3	i I	I 1 I 2	 !] ! !	[] [I I I			I I 17 I 3.5
	I	i	i	i	I I 4 I .8	I 2 I]] [i	I I		I I	! ! !	I I I	[• • • • • • • •] [I I 9 I 1.8
	I	I I I	i	I	7 I I] []] [I I I	II I I	[]	I f f	I I			1 1
COLUMN TOTAL	.4	.2	1	13 2.7	23 4.7	26 5.3	45 9.2	53 10.8	58 11.8	55 11.2	51 10.4	54 11.0	37 7.6	23 4.7	19 3.9	13 2.7	9	.8	490 100.0

Table 84. Female Bivariate Table of Weight (VAR 21) and Stature (VAR 1)

Correlation Coefficients

To reiterate, the bivariate frequency tables provide useful information about the distribution of individuals within size categories of two variables. However, also of extreme importance in the sizing and design of clothing and equipment is an understanding of the nature and degree of association between two variables. The shape of the distribution in a bivariate frequency table provides some insight in this regard, but a more precise measure of association is desirable.

A common and useful statistic that fullfills this need is the <u>Pearson product-moment coefficient of correlation</u>. Commonly called the correlation coefficient, and mathematically designated "r", the value of this statistic for any two variables will vary between -1.0 and +1.0. The absolute magnitude of the value indicates the strength of association. Thus, a perfect correlation coefficient of 1.0 occurs when a variable is correlated with itself, while two variables that are lowly correlated yield a coefficient that approaches 0.0. The positive or negative sign of the coefficient reflects whether an increase or decrease of one variable is matched by an increase or decrease in the second variable. For example, the correlation of +0.903 for Foot Length and BOF Length in males shows that these two variables are highly correlated and that as one increases in size the other does as well. This is corroborated by the shape of the bivariate distribution for these variables (see Table 22), which depicts an elliptical band of numbers that originates in the lower left corner of the table and steeply slopes upward toward the right corner.

The correlation coefficients for both males or females in this report are mostly positive. A very few are negative, but these are also very small in magnitude. Other anthropometric surveys dealing with much larger arrays of measurements have shown that most body dimensions are usually positively correlated with one another.

The correlation coefficients for all possible pairs of the 33 variables are presented in Tables 85 and 86 for males and females, respectively. By design of the Pearson Corr procedure of SPSS (Nie et al., 1985), each correlation matrix is symmetrical. This means that the coefficients above the diagonal row formed by the perfect correlations (1.000) are mirrored by identical coefficients below the diagonal. All values are printed to four decimal places. Asterisks beside the coefficients denote probability levels regarding whether a value significantly differs from a zero correlation. Finally, due to space considerations, variable numbers have been utilized as column and row headings. Therefore, to facilitate reading the tables, the following Index with variable names corresponding to the variable numbers is provided.

Variable Index for Correlation Matrices

VAR1 Stature	VAR18 BOF Breadth, Diagonal
VAR2 Calf Height	VAR19 Heel Breadth, Left
VAR3 Ankle Height	VAR20 BOF Circumference Left
VAR4 Medial Malleolus Height	VAR21 Weight
VAR5 Lateral Malleolus Height	VAR22 Ankle Length
VAR6 Dorsal Arch Height	VAR23 Instep Length
VAR7 Plantar Arch Height	VAR24 BOF Length, Right
VAR8 BOF Height	VAR25 Foot Length, Right
VAR9 1st Toe Height	VAR26 BOF Breadth, Horizontal, Right
VAR10 Maximum Toe Height	VAR27 Outside BOF Length
VAR11 Outside BOF Height	VAR28 5th Toe Length
VAR12 Calf Circumference	VAR29 BOF Length, Left
VAR13 Ankle Circumference	VAR30 Foot Length, Left
VAR14 Heel-Ankle Circumference	VAR31 BOF Breadth, Horizontal, Left
VAR15 Instep Circumference	VAR32 Bimalleolar Breadth
VAR16 BOF Circumference, Right	VAR33 1st-3rd Toe Breadth
VAR17 Heel Breadth, Right	

Table 85. Correlation Coefficients for Foot Dimensions -- Male

	VAR1	VAR2	. VAR3	VAR4	VAR5	VAR6	VAR7	VAR8	VAR9	VAR10
VAR1	1.0000	0.6889 *	0.5131 *	0.5216 *	0.4600 *	0.5895 *	0.3215 *	0.4662 *	0.1743 *	0.3064 *
VAR2	0.6889 *	1.0000	0.3982 *	0.2233 *	0.2016	0.3381 *	0.1159	0.2690 *	0.1450 *	0.3773 *
VAR3	0.5131 *	0.3982 *	1.0000	0.3011 *	0.2646 *	0.3492 *	0.1445	0.2388 *	0.2185 *	0.1897
VAR4	0.5216 *	0.2233 *	0.3011 *	1.0000	0.7095 *	0.7328 *	0.6495 *	0.5177 *	0.1508 *	0.1221
VAR5	0.4600 *	0.2016	0.2646 *	0.7095 *	1.0000	0.6201 *	0.5894 *	0.4501 *	0.0961	0.0915
VAR6	0.5895 *	0.3381 *	0.3492 *	0.7328 *	0.6201 *	1.0000	0.6747 *	0.5841 *	0.1908	0.1857
VAR7	0.3215 *	0.1159	0.1445	0.6495 *	0.5894 *	0.6747 *	1.0000	0.4706 *	0.0152	0.0685
VAR8	0.4662 *	0.2690 *	0.2388 *	0.5177 *	0.4501 *	0.5841 *	0.4706 *	1.0000	0.2557 *	0.3688 *
VAR9	0.1743	0.1450	0.2185 *	0.1508	0.0961	0.1908	0.0152	0.2557 *	1.0000	0.2058
VAR10	0.3064 *	0.3773 *	0.1897	0.1221	0.0915	0.1857	0.0685	0.3688 *	0.2058	1.0000
VAR11	0.3488 *	0.3385 *	0.2761 *	0.1530	0.0418	0.1871	0.0493	0.3344 *	0.3228 *	0.4934 *
VAR12	0.2977 *	0.1862	-0.0129	0.2570 *	0.1470	0.2521 *	0.0988	0.4521 *	0.2203 *	0.3911 *
VAR13	0.4866 *	0.2314 *	0.0561	0.4005 *	0.3240 *	0.4170 *	0.2476 *	0.5850 *	0.2455 *	0.4350 *
VAR14	0.6975 *	0.5733 *	0.4248 *	0.3758 *	0.2838 *	0.5064 *	0.2206 *	0.5702 *	0.3538 *	0.5302 *
VAR15	0.6118 *	0.5119 *	0.3656 *	0.3043 *	0.2038	0.4272 *	0.1280	0.5630 *	0.3621 *	0.5710 *
VAR16	0.5747 *	0.4004 *	0.3531 *	0.2962 *	0.2238 *	0.3976 *	0.1246	0.5870 *	0.3602 *	0.4588 *
VAR17	0.3674 *	0.4481 *	0.1873	0.0607	-0.1092	0.1936	-0.0320	0.2882 *	0.2486 *	0.5112 *
VAR18	0.4996 *	0.3722 *	0.3144 *	0.1866	0.0989	0.2974 *	0.0290	0.4106 *	0.3093 *	0.4395 *
VAR19	0.4065 *	0.4864 *	0.2207 *	0.0868	-0.0435	0.2320 *	0.0047	0.3192 *	0.2727 *	0.5207 *
VAR20	0.5606 *	0.3803 *	0.3667 *	0.3011 *	0.2167 *	0.3995 *	0.1487	0.5924 *	0.3498 *	0.4653 *
VAR21	0.5663 *	0.4504 *	0.2499 *	0.3528 *	0.2252 *	0.3776 *	0.1896	0.4565 *	0.2521 *	0.4922 *
VAR22	0.4994 *	0.4955 *	0.3632 *	0.0989	0.0653	0.0992	-0.0732	0.3396 *	0.2444 *	0.4828 *
VAR23	0.4577 *	0.5075 *	0.3171 *	0.0284	-0.0151	0.1167	-0.1561	0.2324 *	0.2073	0.4248 *
VAR24	0.6595 *	0.6151 *	0.4778 *	0.1954	0.0933	0.2546 *	-0.0788	0.2479 *	0.2603 *	0.4218 *
VAR25	0.6889 *	0.6324 *	0.4799 *	0.2569 *	0.1504	0.3751 *	0.0050	0.4206 *	0.2703 *	0.4075 *
VAR26	0.4611 *	0.3449 *	0.2754 *	0.1753	0.1034	0.2843 *	0.0388	0.4112 *	0.2704 *	0.4101 *
VAR27	0.6575 *	0.6245 *	0.4675 *	0.2843 *	0.1952	0.3299 *	0.0945	0.3039 *	0.1892	0.4143 *
VAR28	0.6972 *	0.6469 *	0.4755 *	0.3095 *	0.2126	0.3727 *	0.0846	0.3638 *	0.2177	0.4412 *
VAR29	0.6569 *	0.6248 *	0.5162 *	0.1876	0.1072	0.2857 *	-0.0412	0.3502 *	0.2564 *	0.4363 *
VAR30	0.7233 *	0.6681 *	0.5031 *	0.2856 *	0.1799	0.4015 *	0.0282	0.4406 *	0.2736 *	0.4225 *
VAR31	0.4786 *	0.3017 *	0.3161 *	0.2281 *	0.1596	0.3038 *	0.0880	0.4679 *	0.2678 *	0.4073 *
VAR32	0.5207 *	0.3154 *	0.3619 *	0.2043	0.0939	0.3230 *	-0.0040	0.4346 *	0.3148 *	0.3425 *
VAR33	0.3185 *	0.0408	0.0962	0.2830 *	0.1975	0.2959 *	0.1156	0.3614 *	0.2031	0.0931

^{*}Significant to 0.05 level using Bonferroni multiple comparisons criteria.

Table 85. Correlation Coefficients for Foot Dimensions -- Male (cont.)

	VAR11	VAR12	VAR13	VAR14	VAR15	VAR16	VAR17	VAR18	VAR19	VAR20
VAR1	0.3488 *	0.2977 *	0.4866 *	0.6975 *	0.6118 *	0.5747 *	0.3674 *	0.4996 *	0.4065 *	0.5606 *
VAR2	0.3385 *	0.1862	0.2314 *	0.5733 *	0.5119 *	0.4004 *	0.4481 *	0.3722 *	0.4864 *	0.3803 *
VAR3	0.2761 *	-0.0129	0.0561	0.4248 *	0.3656 *	0.3531 *	0.1873	0.3144 *	0.2207 *	0.3667 *
VAR4	0.1530	0.2570 *	0.4005 *	0.3758 *	0.3043 *	0.2962 *	0.0607	0.1866	0.0868	0.3011 *
VAR5	0.0418	0.1470	0.3240 *	0.2838 *	0.2038	0.2238 *	-0.1092	0.0989	-0.0435	0.2167 *
VAR6	0.1871	0.2521 *	0.4170 *	0.5064 *	0.4272 *	0.3976 *	0.1936	0.2974 *	0.2320 *	0.3995 *
VAR7	0.0493	0.0988	0.2476 *	0.2206 *	0.1280	0.1246	-0.0320	0.0290	0.0047	0.1487
VAR8	0.3344 *	0.4521 *	0.5850 *	0.5702 *	0.5630 *	0.5870 *	0.2882 *	0.4106 *	0.3192 *	0.5924 *
VAR9	0.3228 *	0.2203 *	0.2455 *	0.3538 *	0.3621 *	0.3602 *	0.2486 *	0.3093 *	0.2727 *	0.3498 *
VAR10	0.4934 *	0.3911 *	0.4350 *	0.5302 *	0.5710 *	0.4588 *	0.5112 *	0.4395 *	0.5207 *	0.4653 *
VAR11	1.0000	0.4495 *	0.4500 *	0.5355 *	0.5947 *	0.5243 *	0.4855 *	0.4561 *	0.5377 *	0.5685 *
VAR12	0.4495 *	1.0000	0.7785 *	0.5533 *	0.6729 *	0.6098 *	0.4689 *	0.5490 *	0.4898 *	0.6067 *
VAR13	0.4500 *	0.7785 *	1.0000	0.7286 *	0.7260 *	0.6791 *	0.4724 *	0.5799 *	0.4936 *	0.6879 *
VAR14	0.5355 *	0.5533 *	0.7286 *	1.0000	0.8494 *	0.7903 *	0.6537 *	0.6948 *	0.6602 *	0.7636 *
VAR15	0.5947 *	0.6729 *	0.7260 *	0.8494 *	1.0000	0.8565 *	0.6524 *	0.7939 *	0.6774 *	0.8610 *
VAR16	0.5243 *	0.6098 *	0.6791 *	0.7903 *	0.8565 *	1.0000	0.5222 *	0.9410 *	0.5502 *	0.9387 *
VAR17	0.4855 *	0.4689 *	0.4724 *	0.6537 *	0.6524 *	0.5222 *	1.0000	0.5397 *	0.9164 *	0.5397 *
VAR18	0.4561 *	0.5490 *	0.5799 *	0.6948 *	0.7939 *	0.9410 *	0.5397 *	1.0000	0.5414 *	0.8814 *
VAR19	0.5377 *	0.4898 *	0.4936 *	0.6602 *	0.6774 *	0.5502 *	0.9164 *	0.5414 *	1.0000	0.5616 *
VAR20	0.5685 *	0.6067 *	0.6879 *	0.7636 *	0.8610 *	0.9387 *	0.5397 *	0.8814 *	0.5616 *	1.0000
VAR21	0.6061 *	0.7846 *	0.6989 *	0.7132 *	0.7591 *	0.6533 *	0.5831 *	0.5765 *	0.6229 *	0.6668 *
VAR22	0.4599 *	0.4582 *	0.5796 *	0.7326 *	0.6837 *	0.6343 *	0.5603 *	0.6292 *	0.5684 *	0.6085 *
VAR23	0.3843 *	0.3247 *	0.4443 *	0.6278 *	0.5431 *	0.5277 *	0.5924 *	0.5400 *	0.5707 *	0.4978 *
VAR24	0.4357 *	0.3993 *	0.4975 *	0.7279 *	0.6949 *	0.6478 *	0.5463 *	0.6690 *	0.5647 *	0.6160 *
VAR25	0.4105 *	0.4061 *	0.5181 *	0.7569 *	0.7163 *	0.6780 *	0.5297 *	0.6606 *	0.5483 *	0.6545 *
VAR26	0.3917 *	0.5014 *	0.5151 *	0.6333 *	0.7237 *	0.8245 *	0.4761 *	0.8412 *	0.4875 *	0.7801 *
VAR27	0.3464 *	0.3131 *	0.4329 *	0.6659 *	0.6125 *	0.4948 *	0.4816 *	0.4827 *	0.4817 *	0.5044 *
VAR28	0.3718 *	0.3638 *	0.4867 *	0.7335 *	0.6884 *	0.5978 *	0.5252 *	0.5963 *	0.5275 *	0.5965 *
VAR29	0.4238 *	0.3907 *	0.4855 *	0.7502 *	0.7094 *	0.6481 *	0.5488 *	0.6420 *	0.5590 *	0.6456 *
VAR30	0.4082 *	0.4098 *	0.5288 *	0.7860 *	0.7235 *	0.6914 *	0.5673 *	0.6687 *	0.5784 *	0.6781 *
VAR31	0.3989 *	0.5128 *	0.5779 *	0.6243 *	0.7285 *	0.8299 *	0.4698 *	0.8152 *	0.4812 *	0.8480 *
VAR32	0.4438 *	0.5286 *	0.6270 *	0.6695 *	0.6908 *	0.6633 *	0.4835 *	0.6220 *	0.5026 *	0.6594 *
VAR33	0.2674 *	0.3112 *	0.4510 *	0.3818 *	0.4213 *	0.4967 *	0.2369 *	0.4206 *	0.2523 *	0.4598 *

^{*}Significant to 0.05 level using Bonferroni multiple comparisons criteria.

Table 85. Correlation Coefficients for Foot Dimensions -- Male (cont.)

	VAR21	VAR22	VAR23	VAR24	VAR25	VAR26	VAR27	VAR28	VAR29	VAR30
VAR1	0.5663 *	0.4994 *	0.4577 *	0.6595 *	0.6889 *	0.4611 *	0.6575 *	0.6972 *	0.6569 *	0.7233 *
VAR2	0.4504 *	0.4955 *	0.5075 *	0.6151 *	0.6324 *	0.3449 *	0.6245 *	0.6469 *	0.6248 *	0.6681 *
VAR3	0.2499 *	0.3632 *	0.3171 *	0.4778 *	0.4799 *	0.2754 *	0.4675 *	0.4755 *	0.5162 *	0.5031 *
VAR4	0.3528 *	0.0989	0.0284	0.1954	0.2569 *	0.1753	0.2843 *	0.3095 *	0.1876	0.2856 *
VAR5	0.2252 *	0.0653	-0.0151	0.0933	0.1504	0.1034	0.1952	0.2126	0.1072	0.1799 *
VAR6	0.3776 *	0.0992	0.1167	0.2546 *	0.3751 *	0.2843 *	0.3299 *	0.3727 *	0.2857 *	0.4015 *
VAR7	0.1896	-0.0732	-0.1561 *	-0.0788	0.0050	0.0388	0.0945	0.0846	-0.0412	0.0282
VAR8	0.4565 *	0.3396 *	0.2324 *	0.2479 *	0.4206 *	0.4112 *	0.3039 *	0.3638 *	0.3502 *	0.4406 *
VAR9	0.2521 *	0.2444 *	0.2073	0.2603 *	0.2703 *	0.2704 *	0.1892	0.2177 *	0.2564 *	0.2736 *
VAR10	0.4922 *	0.4828 *	0.4248 *	0.4218 *	0.4075 *	0.4101 *	0.4143 *	0.4412 *	0.4363 *	0.4225 *
VAR11	0.6061 *	0.4599 *	0.3843 *	0.4357 *	0.4105 *	0.3917 *	0.3464 *	0.3718 *	0.4238 *	0.4082 *
VAR12	0.7846 *	0.4582 *	0.3247 *	0.3993 *	0.4061 *	0.5014 *	0.3131 *	0.3638 *	0.3907 *	0.4098 *
VAR13	0.6989 *	0.5796 *	0.4443 *	0.4975 *	0.5181 *	0.5151 *	0.4329 *	0.4867 *	0.4855 *	0.5288 *
VAR14	0.7132 *	0.7326 *	0.6278 *	0.7279 *	0.7569 *	0.6333 *	0.6659 *	0.7335 *	0.7502 *	0.7860 *
VAR15	0.7591 *	0.6837 *	0.5431 *	0.6949 *	0.7163 *	0.7237 *	0.6125 *	0.6884 *	0.7094 *	0.7235 *
VAR16	0.6533 *	0.6343 *	0.5277 *	0.6478 *	0.6780 *	0.8245 *	0.4948 *	0.5978 *	0.6481 *	0.6914 *
VAR17	0,5831 *	0.5603 *	0.5924 *	0.5463 *	0.5297 *	0.4761 *	0.4816 *	0.5252 *	0.5488 *	0.5673 *
VAR18	0.5765 *	0.6292 *	0.5400 *	0.6690 *	0.6606 *	0.8412 *	0.4827 *	0.5963 *	0.6420 *	0.6687 *
VAR19	0.6229 *	0.5684 *	0.5707 *	0.5647 *	0.5483 *	0.4875 *	0.4817 *	0.5275 *	0.5590 *	0.5784 *
VAR20	0.6668 *	0.6085 *	0.4978 *	0.6160 *	0.6545 *	0.7801 *	0.5044 *	0.5965 *	0.6456 *	0.6781 *
VAR21	1.0000	0.5626 *	0.4406 *	0.5579 *	0.5520 *	0.5293 *	0.5020 *	0.5465 *	0.5628 *	0.5694 *
VAR22	0.5626 *	1.0000	0.7673 *	0.7844 *	0.7456 *	0.5346 *	0.6612 *	0.6989 *	0.7623 *	0.7240 *
VAR23	0.4406 *	0.7673 *	1.0000	0.7746 *	0.7260 *	0.4348 *	0.6285 *	0.6599 *	0.7508 *	0.7297 *
VAR24	0.5579 *	0.7844 *	0.7746 *	1.0000	0.9029 *	0.5300.*	0.7941 *	0.8405 *	0.9012 *	0.8876 *
VAR25	0.5520 *	0.7456 *	0.7260 *	0.9029 *	1.0000	0.5720 *	0.8115 *	0.8641 *	0.8885 *	0.9474 *
. VAR26	0.5293 *	0.5346 *	0.4348 *	0.5300 *	0.5720 *	1.0000	0.5057 *	0.5873 *	0.5549 *	0.6034 *
VAR27	0.5020 *	0.6612 *	0.6285 *	0.7941 *	0.8115 *	0.5057 *	1.0000	0.9218 *	0.7944 *	0.8248 *
VAR28	0.5465 *	0.6989 *	0.6599 *	0.8405 *	0.8641 *	0.5873 *	0.9218 *	1.0000	0.8324 *	0.8817 *
VAR29	0.5628 *	0.7623 *	0.7508 *	0.9012 *	0.8885 *	0.5549 *	0.7944 *	0.8324 *	1.0000	0.9279 *
VAR30	0.5694 *	0.7240 *	0.7297 *	0.8876 *	0.9474 *	0.6034 *	0.8248 *	0.8817 *	0.9279 *	1.0000
VAR31	0.5461 *	0.5581 *	0.4780 *	0.5438 *	0.5683 *	0.8307 *	0.4906 *	0.5697 *	0.5153 *	0.5880 *
VAR32	0.5350 *	0.5671 *	0.5149 *	0.6313 *	0.6351 *	0.5608 *	0.5408 *	0.5870 *	0.6070 *	0.6434 *
VAR33	0.3617 *	0.2788 *	0.1932	0.2285 *	0.2694 *	0.4115 *	0.1775	0.2127	0.2403 *	0.2846 *

^{*} Significant to 0.05 level using Bonferroni multiple comparisons criteria.

Table 85. Correlation Coefficients for Foot Dimensions -- Male (cont.)

	VAR31	VAR32	VAR33
VAR1	0.4786 *	0.5207 *	0.3185
VAR2	0.3017 *	0.3154 *	0.0408
VAR3	0.3161 *	0.3619 *	0.0962
VAR4	0.2281 *	0.2043 *	0.2830
VAR5	0.1596	0.0939	0.1975
VAR6	0.3038 *	0.3230 *	0.2959
VAR7	0.0880	-0.0040	0.1156
VAR8	0.4679 *	0.4346 *	0.3614
VAR9	0.2678 *	0.3148 *	0.2031
VAR10	0.4073 *	0.3425 *	0.0931
VAR11	0.3989 *	0.4438 *	0.2674
VAR12	0.5128 *	0.5286 *	0.3112
VAR13	0.5779 *	0.6270 *	0.4510
VAR14	0.6243 *	0.6695 *	0.3818
VAR15	0.7285 *	0.6908 *	0.4213
VAR16	0.8299 *	0.6633 *	0.4967
VAR17	0.4698 *	0.4835 *	0.2369
VAR18	0.8152 *	0.6220 *	0.4206
VAR19	0.4812 *	0.5026 *	0.2523
VAR20	0.8480 *	0.6594 *	0.4598
VAR21	0.5461 *	0.5350 *	0.3617
VAR22	0.5581 *	0.5671 *	0.2788
VAR23	0.4780 *	0.5149 *	0.1932
VAR24	0.5438 *	0.6313 *	0.2285
VAR25	0.5683 *	0.6351 *	0.2694
VAR26	0.8307 *	0.5608 *	0.4115
VAR27	0.4906 *	0.5408 *	0.1775
VAR28	0.5697 *	0.5870 *	0.2127
VAR29	0.5153 *	0.6070 *	0.2403
VAR30	0.5880 *	0.6434 *	0.2846
VAR31	1.0000	0.5789 *	0.4811
VAR32	0.5789 *	1.0000	0.3800
VAR33	0.4811 *	0.3800 *	1.0000

^{*}Significant at 0.05 level using Bonferroni multiple comparisons criteria.

Table 86. Correlation Coefficients for Foot Dimensions -- Female

	VAR1	VAR2	VAR3	VAR4	VAR5	VAR6	VAR7	VAR8	VAR9	VAR10
VAR1	1.0000	0.7051 *	0.6223 **	0.4320 *	0.4275 *	0.5300 *	0.2092 *	0.3671 *	0.1763 *	0.2568 *
VAR2	0.7051 *	1.0000	0.5679 **	0.1404 *	0.1984 *	0.3470 *	0.0218	0.2261 *	0.2445 *	0.3437 *
VAR3	0.6223 *	0.5679 *	1.0000	0.3603 *	0.3461 *	0.4469 *	0.1299	0.2236 *	0.1981 *	0.2792 *
VAR4	0.4320 *	0.1404	0.3603 **	1.0000	0.6271 *	0.6498 *	0.5497 *	0.5106 *	-0.0064	0.0080
VAR5	0.4275 *	0.1984 *	0.3461 **	0.6271 *	1.0000	0.6589 *	0.5655 *	0.4282 *	-0.0330	0.0236
VAR6	0.5300 *	0.3470 *	0.4469 **	0.6498 *	0.6589 *	1.0000	0.6132 *	0.5848 *	0.0945	0.1269 *
VAR7	0.2092 #	0.0218	0.1299	0.5497 *	0.5655 *	0.6132 *	1.0000	0.4801 *	-0.0936	-0.0039
VAR8	0.3671 *	0.2261 *	0.2236 **	0.5106 *	0.4282 *	0.5848 *	0.4801 *	1.0000	0.1938 *	0.2729 *
VAR9	0.1763 *	0.2445 *	0.1981 **	-0.0064	-0.0330	0.0945	-0.0936 -	0.1938 *	1.0000	0.4061 *
VAR10	0.2568 *	0.3437 *	0.2792 **	0.0080	0.0236	0.1269	-0.0039	0.2729 *	0.4061 *	1.0000
VAR11	0.1656	0.2690 *	0.1462	0.0236	-0.0011	0.1746 *	-0.0272	0.3221 *	0.3547 *	0.4497 *
VAR12	0.2276 *	0.1847 *	0.0338	0.2034 *	0.1790 *	0.2491 *	0.1300	0.3621 *	0.1187	0.2258 *
VAR13	0.3767 *	0.1366	0.0273	0.3877 *	0.2634 *	0.3949 *	0.2879 *	0.4831 *	0.1593	0.2169 *
VAR14	0.6810 *	0.6279 *	0.5273 **	0.3100 *	0.2433 *	0.5065 *	0.1378	0.4442 *	0.4094 *	0.4598 *
VAR15	0.5468 *	0.5143 *	0.4246 **	0.2616 *	0.2007 *	0.4081 *	0.0656	0.4476 *	0.4301 *	0.5211 *
VAR16	0.5226 *	0.3881 *	0.4244 **	0.2968 *	0.2266 *	0.4012 *	0.0797	0.4378 *	0.3808 *	0.3972 *
VAR17	0.3255 *	0.4899 *	0.2860 **	-0.0243	-0.0440	0.1523	-0.1303	0.2171 *	0.4297 *	0.4870 *
VAR18	0.4810 *	0.3773 *	0.4177 **	0.1868 *	0.1249	0.3014 *	-0.0366	0.2621 *	0.3474 *	0.3775 *
VAR19	0.3406 *	0.4740 *	0.2981 **	-0.0182	-0.0278	0.1792 *	-0.1105	0.2507 *	0.4481 *	0.4775 *
VAR20	0.5115 *	0.3817 *	0.4038 **	0.2728 *	0.2049 *	0.3812 *	0.0660	0.4363 *	0.3785 *	0.4227 *
VAR21	0.6019 *	0.5087 *	0.3376 **	0.3041 *	0.2680 *	0.3709 *	0.1547	0.3979 *	0.2229 *	0.3244 *
VAR22	0.4853 *	0.4865 *	0.3580 **	0.0545	-0.0322	0.0743	-0.1168 *	0.1801 *	0.3757 *	0.4033 *
VAR23	0.5382 *	0.5632 *	0.4089 **	0.0609	0.0045	0.1805 *	-0.1095 *	0.1434	0.3539 *	0.3612 *
VAR24	0.6444 *	0.6172 *	0.5157 **	0.1114	0.0429	0.2172 *	-0.1433	0.0834	0.3492 *	0.3997 *
VAR25	0.7311 *	0.6774 *	0.5619 **	0.2119 *	0.1354	0.3359 *	-0.0648	0.2535 *	0.3590 *	0.3911 *
VAR26	0.4223 *	0.3288 *	0.3576 **	0.2112 *	0.1637	0.2958 *	-0.0106	0.2951 *	0.3312 *	0.3398 *
VAR27	0.6676 *	0.6438 *	0.5243 **	0.2089 *	0.1523	0.3098 *	0.0005	0.1801 *	0.2582 *	0.3678 *
VAR28	0.6985 *	0.6512 *	0.5424 **	0.2514 *	0.1805 *	0.3571 *	0.0101	0.2493 *	0.3013 *	0.3908 *
VAR29	0.6313 *	0.5970 *	0.5170 **	0.1852 *	0.1083	0.2644 *	-0.0943	0.1659	0.3040 *	0.3716 *
VAR30	0.7525 *	0.6937 *	0.5839 **	0.2423 *	0.1596	0.3647 *	-0.0398	0.2602 *	0.3384 *	0.3883 *
VAR31	0.4387 *	0.3572 *	0.3420 **	0.1735 *	0.1442	0.2824 *	-0.0289	0.2874 *	0.3315 *	0.3426 *
VAR32	0.4916 *	0.3461 *	0.3645 **	0.2241 *	0.0947	0.2685 *	0.0839	0.3543 *	0.3077 *	0.3476 *
VAR33	0.2195 *	0.0917	0.1724 **	0.1900 *	0.1604	0.2308 *	0.0453	0.2330 *	0.2075 *	0.1246

Significant to 0.05 level using Bonferroni multiple comparisons criteria.

Table 86. Correlation Coefficients for Foot Dimensions -- Female (cont.)

	VAR11	VAR12	VAR13	VAR14	VAR15	VAR16	VAR17	VAR18	VAR19	VAR20
VAR1	0.1656	0.2276 *	0.3767 **	0.6810 **	0.5468 **	0.5226 **	0.3255 **	0.4810 *	0.3406 *	0.5115 *
VAR2	0.2690 *	0.1847 *	0.1366	0.6279 **	0.5143 **	0.3881 **	0.4899 **	0.3773 *	0.4740 *	0.3817 *
VAR3	0.1462	0.0338	0.0273	0.5273 **	0.4246 **	0.4244 **	0.2860 **	0.4177 *	0.2981 *	0.4038 *
VAR4	0.0236	0.2034 *	0.3877 **	0.3100 **	0.2616 **	0.2968 **	-0.0243	0.1868 *	-0.0182	0.2728 *
VAR5	-0.0011	0.1790 *	0.2634 **	0.2433 **	0.2007 **	0.2266 **	-0.0440	0.1249	-0.0278	0.2049 *
VAR6	0.1746 *	0.2491 *	0.3949 **	0.5065 **	0.4081 **	0.4012 **	0.1523	0.3014 *	0.1792 *	0.3812 *
VAR7	-0.0272	0.1300	0.2879 **	0.1378	0.0656	0.0797	-0.1303	-0.0366	-0.1105	0.0660
VAR8	0.3221 *	0.3621 *	0.4831 **	0.4442 **	0.4476 **	0.4378 **	0.2171 *	0.2621 *	0.2507 *	0.4363 *
VAR9	0.3547 *	0.1187	0.1593	0.4094 **	0.4301 **	0.3808 **	0.4297 *	0.3474 *	0.4481 *	0.3785 *
VAR10	0.4497 *	0.2258 **	0.2169 **	0.4598 **	0.5211 **	0.3972 **	0.4870 *	0.3775 *	0.4775 *	0.4227 *
VAR11	1.0000	0.3117 **	0.3025 **	0.4457 **	0.5105 **	0.4302 **	0.4541 *	0.3414 *	0.4670 *	0.4538 *
VAR12	0.3117 *	1.0000	0.6867 **	0.4458 **	0.5317 **	0.4525 **	0.2980 *	0.3799 *	0.3101 *	0.4528 *
VAR13	0.3025 *	0.6867 **	1.0000	0.5920 **	0.5756 **	0.5496 **	0.2409 *	0.4514 *	0.2630 *	0.5388 *
VAR14	0.4457 *	0.4458 **	0.5920 **	1.0000	0.8290 **	0.7529 **	0.6784 *	0.7112 *	0.6779 *	0.7418 *
VAR15	0.5105 *	0.5317 **	0.5756 **	0.8290 **	1.0000	0.8247 **	0.6524 *	0.7728 *	0.6483 *	0.8223 *
VAR16	0.4302 *	0.4525 **	0.5496 **	0.7529 **	0.8247 **	1.0000	0.5358 *	0.9413 *	0.5411 *	0.9385 *
VAR17	0.4541 *	0.2980 **	0.2409 **	0.6784 **	0.6524 **	0.5358 **	1.0000	0.5527 *	0.9271 *	0.5468 *
VAR18	0.3414 *	0.3799 **	0.4514 **	0.7112 **	0.7728 **	0.9413 **	0.5527 *	1.0000	0.5482 *	0.8922 *
VAR19	0.4670 *	0.3101 **	~ 0.2630 **	0.6779 **	0.6483 **	0.5411 **	0.9271 *	0.5482 *	1.0000	0.5577 *
VAR20	0.4538 *	0.4528 **	0.5388 **	0.7418 **	0.8223 **	0.9385 **	0.5468 *	0.8922 *	0.5577 *	1.0000
VAR21	0.3138 *	0.7036 **	0.6055 **	0.6587 **	0.6653 **	0.6109 **	0.4639 *	0.5442 *	0.4828 *	0.6056 *
VAR22	0.3531 *	0.3142 **	0.4160 **	0.7588 **	0.6364 **	0.5760 **	0.5372 *	0.5944 *	0.5395 *	0.5677 *
VAR23	0.3223 *	0.2124 **	0.3099 **	0.7250 **	0.5045 **	0.5031 **	0.5482 *	0.5200 *	0.5533 *	0.4849 *
VAR24	0.3156 *	0.1965 **	0.2850 **	0.7428 **	0.6006 **	0.5519 **	0.4962 *	0.5967 *	0.5007 *	0.5392 *
VAR25	0.3244 *	0.2384 **	0.3492 **	0.8227 **	0.6640 **	0.6241 **	0.5529 *	0.6365 *	0.5569 *	0.6056 *
VAR26	0.3192 *	0.3498 **	0.4109 **	0.6047 **	0.7008 **	0.8331 **	0.4997 *	0.8501 *	0.4839 *	0.7988 *
· VAR27	0.1914 *	0.1868 **	0.2724 **	0.6965 **	0.5323 **	0.3899 **	0.4490 *	0.4177 *	0.4405 *	0.3912 *
VAR28	0.2690 *	0.2390 **	0.3298 **	0.7430 **	0.5968 **	0.5020 **	0.4963 *	0.5086 *	0.4858 *	0.4864 *
VAR29	0.2404 *	0.2058 **	0.2777 **	0.7328 **	0.5711 **	0.5246 **	0.4857 *	0.5548 *	0.4873 *	0.5442 *
VAR30	0.2899 *	0.2346 **	0.3440 **	0.8193 **	0.6594 **	0.6171 **	0.5405 *	0.6292 *	0.5448 *	0.6047 *
VAR31	0.3331 *	0.3312 **	0.3832 **	0.6181 **	0.6872 **	0.8071 **	0.5303 *	0.8095 *	0.5216 *	0.8106 *
VAR32	0.3440 *	0.4853 **	0.6259 **	0.7049 **	0.6722 **	0.5904 **	0.4015 *	0.5483 *	0.4210 *	0.5990 *
VAR33	0.2441 *	0.2599 **	0.2981 **	0.3181 **	0.3885 **	0.4369 **	0.2305 *	0.4046 *	0.2580 *	0.4209 *

^{*} Significant to 0.05 level using Bonferroni multiple comparisons criteria.

Table 86. Correlation Coefficients for Foot Dimensions -- Female (cont.)

	VAR21	VAR22	VAR23	VAR24	VAR25	VAR26	VAR27	VAR28	VAR29	VAR30
VAR1	0.6019 *	0.4853 *	0.5382 *	0.6444 *	0.7311 *	0.4223 *	0.6676 *	0.6985 *	0.6313.*	0.7525 *
VAR2	0.5087 *	0.4865 *	0.5632 *	0.6172 *	0.6774 *	0.3288 *	0.6438 *	0.6512 *	0.5970 *	0.6937 *
VAR3	0.3376 *	0.3580 *	0.4089 *	0.5157 *	0.5619 *	0.3576 *	0.5243 *	0.5424 *	0.5170 *	0.5839 *
VAR4	0.3041 *	0.0545	0.0609	0.1114	0.2119 *	0.2112 *	0.2089 *	0.2514 *	0.1852 *	0.2423 *
VAR5	0.2680 *	-0.0322	0.0045	0.0429	0.1354	0.1637	0.1523	0.1805 *	0.1083	0.1596
VAR6	0.3709 *	0.0743	0.1805 *	0.2172 *	0.3359 *	0.2958 *	0.3098 *	0.3571 *	0.2644 *	0.3647 *
VAR7	0.1547	-0.1168	-0.1095	-0.1433	-0.0648	-0.0106	0.0005	0.0101	-0.0943	-0.0398
VAR8	0.3979 *	0.1801 *	0.1434	0.0834	0.2535 *	0.2951 *	0.1801 *	0.2493 *	0.1659	0.2602 *
VAR9	0.2229 *	0.3757 *	0.3539 *	0.3492 *	0.3590 *	0.3312 *	0.2582 *	0.3013 *	0.3040 *	0.3384 *
VAR10	0.3244 *	0.4033 *	0.3612 *	0.3997 *	0.3911 *	0.3398 *	0.3678 *	0.3908 *	0.3716 *	0.3883 *
VAR11	0.3138 *	0.3531 *	0.3223 *	0.3156 *	0.3244 *	0.3192 *	0.1914 *	0.2690 *	0.2404 *	0.2899 *
VAR12	0.7036 *	0.3142 *	0.2124 *	0.1965 *	0.2384 *	0.3498 *	0.1868 *	0.2390 *	0.2058 *	0.2346 *
VAR13	0.6055 *	0.4160 *	0.3099 *	0.2850 *	0.3492 *	0.4109 *	0.2724 *	0.3298 *	0.2777 *	0.3440 *
VAR14	0.6587 *	0.7588 *	0.7250 *	0.7428 *	0.8227 *	0.6047 *	0.6965 *	0.7430 *	0.7328 *	0.8193 *
VAR15	0.6653 *	0.6364 *	0.5045 *	0.6006 *	0.6640 *	0.7008 *	0.5323 *	0.5968 *	0.5711 *	0.6594 *
VAR16	0.6109 *	0.5760 *	0.5031 *	0.5519 *	0.6241 *	0.8331 *	0.3899 *	0.5020 *	0.5246 *	0.6171 *
VAR17	0.4639 *	0.5372 *	0.5482 *	0.4962 *	0.5529 *	0.4997 *	0.4490 *	0.4963 *	0.4857 *	0.5405 *
VAR18	0.5442 *	0.5944 *	0.5200 *	0.5967 *	0.6365 *	0.8501 *	0.4177 *	0.5086 *	0.5548 *	0.6292 *
VAR19	0.4828 *	0.5395 *	.0.5533 *	0.5007 *	0.5569 *	0.4839 *	0.4405 *	0.4858 *	0.4873 *	0.5448 *
VARZO	0.6056 *	0.5677 *	0.4849 *	0.5392 *	0.6056 *	0.7988 *	0.3912 *	0.4864 *	0.5442 *	0.6047 *
VAR21	1.0000	0.4755 *	0.4245 *	0.4690 *	0.5354 *	0.4696 *	0.4560 *	0.5061 *	0.4593 *	0.5354 *
VAR22	0.4755 *	1.0000	0.7604 *	0.7560 *	0.7640 *	0.4500 *	0.6313 *	0.6376 *	0.7104 *	0.7389 *
VAR23	0.4245 *	0.7604 *	1.0000	0.7986 *	0.8025 *	0.3657 *	0.6809 *	0.6927 *	0.7415 *	0.7758 *
VAR24	0.4690 *	0.7560 *	0.7986 *	1.0000	0.9092 *	0.4251 *	0.8101 *	0.7873 *	0.8419 *	0.8879 *
VAR25	0.5354 *	0.7640 *	0.8025 *	0.9092 *	1.0000	0.5089 *	0.8447 *	0.8621 *	0.8606 *	0.9712 *
VAR26	0.4696 *	0.4500 *	0.3657 *	0.4251 *	0.5089 *	1.0000	0.3651 *	0.4384 *	0.4437 *	0.5154 *
VAR27	0.4560 *	0.6313 *	0.6809 *	0.8101 *	0.8447 *	0.3651 *	1.0000	0.9007 *	0.7763 *	0.8460 *
VAR28	0.5061 *	0.6376 *	0.6927 *	0.7873 *	0.8621 *	0.4384 *	0.9007 *	1.0000	0.7471 *	0.8600 *
VAR29	0.4593 *	0.7104 *	0.7415 *	0.8419 *	0.8606 *	0.4437 *	0.7763 *	0.7471 *	1.0000	0.8843 *
VAR30	0.5354 *	0.7389 *	0.7758 *	0.8879 *	0.9712 *	0.5154 *	0.8460 *	0.8600 *	0.8843 *	1.0000
VAR31	0.4734 *	0.4826 *	0.4010 *	0.4641 *	0.5410 *	0.8274 *	0.3886 *	0.4574 *	0.4518 *	0.5362 *
VAR32	0.5457 *	0.5560 *	0.5035 *	0.5059 *	0.5530 *	0.4777 *	0.4531 *	0.4813 *	0.4819 *	0.5429 *
VAR33	0.2632 *	0.2441 *	0.1637	0.1571	0.2448 *	0.4080 *	0.0806	0.1367	0.1967 *	0.2426 *

^{*} Significant to 0.05 level using Bonferroni multiple comparisons criteria.

25;

Table 86. Correlation Coefficients for Foot Dimensions -- Female (cont.)

		•	
	VAR31	VAR32	VAR33
VAR1	0.4387 *	0.4916 *	0.2195 *
VAR2	0.3572 *	0.3461 *	0.0917
VAR3	0.3420 *	0.3645 *	0.1724 *
VAR4	0.1735 *	0.2241 *	0.1900 *
VAR5	0.1442	0.0947	0.1604
VAR6	0.2824 *	0.2685 *	0.2308 *
VAR7	-0.0289	0.0839	0.0453
VAR8	0.2874 *	0.3543 *	0.2330 *
VAR9	0.3315 *	0.3077 *	0.2075 *
VAR10	0.3426 *	0.3476 *	0.1246
VAR11	0.3331 *	0.3440 *	0.2441 *
VAR12	0.3312 *	0.4853 *	0.2599 *
VAR13	0.3832 *	0.6259 *	0.2981 *
VAR14	0.6181 *	0.7049 *	0.3181 *
VAR15	0.6872 *	0.6722 *	0.3885 *
VAR16	0.8071 *	0.5904 *	0.4369 *
VAR17	0.5303 *	0.4015 *	0.2305 *
VAR18	0.8095 *	0.5483 *	0.4046 *
VAR19	0.5216 *	0.4210 *	0.2580 *
VAR20	0.8106 *	0.5990 *	0.4209 *
VAR21	0.4734 *	0.5457 *	0.2632 *
VAR22	0.4826 *	0.5560 *	0.2441 *
VAR23	0.4010 *	0.5035 *	0.1637
VAR24	0.4641 *	0.5059 *	0.1571
VAR25	0.5410 *	0.5530 *	0.2448 *
VAR26	0.8274 *	0.4777 *	0.4080 *
VAR27	0.3886 *	0.4531 *	0.0806
VAR28	0.4574 *	0.4813 *	0.1367
VAR29	0.4518 *	0.4819 *	0.1967 *
VAR30	0.5362 *	0.5429 *	0.2426 *
VAR31	1.0000	0.4744 *	0.3990 *
VAR32	0.4744 *	1.0000	0.2945 *
VAR33	0.3990 *	0.2945 *	1.0000

^{*} Significant to 0.05 level using Bonferroni multiple comparisons criteria.

Simple Regression Equations

In the preceding section, it was noted that the bivariate distribution provides an indication or estimate of the degree of association between two variables, and that the degree of association could be more precisely measured by the correlation coefficient. The bivariate frequency distribution and the correlation coefficient are also highly suggestive of the functional relationship between two variables. In other words, they provide an indication of the ability of one variable to accurately predict values of another variable. The higher the correlation between two variables, the more accurate the predictive ability each will have for the other.

The common statistical method for establishing a predictive function is the simple regression equation which expresses a straight line fitted through a bivariate distribution of points. The formula is:

$$Y = a + bX$$

where, Y is the dependent variable (the one being predicted), X is the independent variable (the predictor), a is the intercept or constant (the point on the Y-axis that is crossed by the fitted line), and b is the slope or regression coefficient (ratio created by the increase or decrease of Y divided by the change in X).

To better understand the simple regression equation, again consider the bivariate relationship between Foot Length and BOF Length. With the former as the buttock independent variable (X) and BOF Length as the dependent variable (Y), the regression equation is Y = 0.709X + 0.55. In this equation, the slope of the line (0.709) indicates that, for every unit increase in Foot Length, BOF Length will increase by approximately seven-tenths as much. Additionally, the fitted line crosses the Y-axis at 0.55 cm for BOF Length.

Using this formula to estimate BOF Length when Foot Length is, say, 27.0 cm, yields an expected value of 19.7 cm for BOF Length. However, this predicted value for BOF Length should be construed as a mean estimate of the variable when Foot Length is 27.0 cm. The reason is that, given the large sample size from which the equation was derived, not every individual who actually had a Foot Length of 27.0 cm also had a BOF Length of 19.7 cm. In other words, there is variability or error about the mean estimate. Because of this error factor, a regression equation is often accompanied by an associated statistic called the standard error of estimate (SEE). The formula for the SEE is as follows:

SEE = SDy
$$1-r^2$$

where SDy is the standard deviation of the dependent variable, and r is the correlation coefficient between the independent and dependent variables. For example, the SEE for the above equation that predicts BOF Length from Foot Length is:

SEE =
$$1.07 \sqrt{1-.903^2}$$

= 0.46 cm

Because the SEE is a standard deviation-type statistic, it can be interpreted with respect to the same probabilities as the standard deviation. Thus, using the above example, the SEE of 0.46 cm implies that approximately 66% of all individuals with a Foot Length of 19.7 cm fall within a range of 20.16 cm to 19.24 cm (19.7 ± 0.46 cm). Plus or minus two standard errors of the estimate would encompass about 95% of the individuals with Foot Length of 27.0 cm in a range of 18.78-20.62 cm for BOF Length.

It should be emphasized that the regression equation for the two variables used in the above example is exclusively for predicting BOF Length from Foot Length, and not vice versa. Even though the correlation coefficient stands as a measure of mutual association, the X and Y variables cannot be interchanged in the regression equation. A different regression equation is necessary when the dependent and independent variables are reversed because the values of the Y-intercept and the slope change. By changing the orientation of the X and Y axes in a bivariate plot, the general shape and direction of the distribution will be similar but the slope of the fitted line is now in terms of increases in Foot Length relative to unit changes in BOF Length, and the line will now intercept the axis for Foot Length instead of BOF Length.

Tables 87 to 119 present the simple regression equations derived from the 33 dimensions. Each table corresponds to each dimension as it is used as a dependent variable. The format of the tables lists the number and name for each dimension as an independent knee variable (designated Predictor Variable), corresponding regression coefficients (designated "slope"), Y-intercepts (designated "Const." for constant), and the SEEs. Male and female equations are presented side by side on the same table. When right side measurements are used as the dependent variable, equations with a left side measurement as the predictor variable are excluded from the table unless the left side measurement is the homologue of the right side measurement. The pattern is reversed when a left side measurement is used as the dependent variable. Equations with Stature and Weight as independent variables are included in all tables. Finally, regression equations are presented only in those instances in which correlations, presented previously, were found to be significant at p>0.05. This should help the reader prepare for NS (not significant) in the tables.

Table 87. Simple Regression Equations for Estimating Stature (VAR 1)

			Male		Female			
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE	
1	Stature	-	-	-	-	-	-	
2	Calf Height	2.121	103.00	5.19	1.925	100.80	4.67	
3	Ankle Height	3.777	127.74	6.14	4.668	111.36	5.16	
4	Med Malleolus Height	5.706	129.38	6.11	4.227	131.54	5.94	
5	Lat Malleolus Height	4.532	142.78	6.36	4.101	134.83	5.95	
6	Dorsal Arch Height	6.476	118.23	5.78	5.750	115.56	5.58	
7	Plantar Arch Height	3.799	164.18	6.78	2.321	155.15	6.44	
8	Ball of Foot Height	11.720	129.85	6.33	10.211	125.24	6.13	
9	1st Toe Height	5.932	162.65	7.05	5.748	150.69	6.48	
10	Maximum Toe Height	8.399	154.32	6.81	7.538	144.49	6.36	
11	Outside BOF Height	8.855	149.74	6.71	4.731	149.09	6.50	
12	Calf Circumference	0.800	146.13	6.83	0.734	136.02	6.41	
13	Ankle Circumference	2.474	120.36	6.25	2.224	115.54	6.10	
14	Heel-Ankle Circum	2.886	76.77	5.13	3.170	63.92	4.82	
15	Instep Circumference	3.289	89.69	5.66	3.416	82.25	5.51	
16	BOF Circum, Right	3.237	94.20	5.86	3.207	89.19	5.61	
17	Heel Breadth, Right	5.899	134.30	6.66	5.048	129.88	6.23	
18	BOF Breadth, Diagonal	6.364	108.65	6.20	6.578	99.33	5.77	
19	Heel Breadth, Left	6.607	129.60	6.54	5.340	128.35	6.19	
20	BOF Circum, Left	3.070	98.63	5.93	3.107	91.83	5.66	
21	Weight	3.523	149.03	5.90	0.594	126.07	5.26	
22	Ankle Length	4.971	121.80	6.20	5.116	112.47	5.76	
23	Instep Length	4.176	128.22	6.36	4.908	111.65	5.55	
24	BOF Length, Right	4.379	89.58	5.38	3.859	93.36	5.04	
25	Foot Length, Right	3.592	78.86	5.19	3.703	71.55	4.49	
26	BOF Breadth, Hoz, Right	6.058	114.59	6.35	6.099	106.11	5.97	
27	Outside BOF Length	4.641	98.40	5.39	4.479	95.03	4.90	
28	5th Toe Length	4.380	80.58	5.13	4.096	81.71	4.71	
29	BOF Length, Left	41.880	93.84	5.40	3.883	93.35	5.11	
30	Foot Length, Left	3.933	69.89	4.94	3.860	67.84	4.34	
31	BOF Breadth, Hoz, Left	6.194	113.24	6.28	5.942	107.74	5.92	
32	Bimalleolar Breadth	9.223	108.29	6.11	9.204	101.87	5.74	
33	1st-3rd Toe Breadth	4.269	145.00	6.79	3.371	140.15	6.42	
					J.J. 1			

Table 88. Simple Regression Equations for Estimating Calf Height (VAR 2)

· ·		Male			<u>Female</u>			
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE	
1	Stature	0.224	-5.04	1.68	0.258	-10.09	1.71	
2	Calf Height		_	_			-	
3	Ankle Height	0.952	22.18	2.13	1.560	14.84	1.98	
4	Med Malleolus Height	0.793	27.83	2.27	0.503	28.11	2.39	
5	Lat Malleolus Height	0.645	29.59	2.28	0.697	27.12	2.36	
6	Dorsal Arch Height	1.206	23.57	2.19	1.379	20.61	2.26	
7	Plantar Arch Height	0.445	32.92	2.31	NS"			
8	Ball of Foot Height	2.196	25.68	2.24	2.303	23.46	2.35	
9	1st Toe Height	1.602	30.75	2.30	2.920	26.05	2.34	
10	Maximum Toe Height	3.359	25.72	2.15	3.695	23.21	2.26	
11	Outside BOF Height	2.791	26.09	2.19	2.815	24.12	2.32	
12	Calf Circumference	0.162	28.27	2.28	0.218	24.04	2.37	
13	Ankle Circumference	0.382	25.73	2.26	0.295	25.57	2.39	
14	Heel-Ankle Circum	0.770	7.86	1.90	1.070	-1.36	1.88	
15	Instep Circumference	0.894	10.90	2.00	1.177	4.29	2.07	
16	BOF Circum, Right	0.732	15.83	2.13	0.872	11.95	2.22	
17	Heel Breadth, Right	2.336	17.87	2.08	2.783	14.09	2.10	
18	BOF Breadth, Diagonal	1.540	18.05	2.16	1.890	13.75	2.23	
19	Heel Breadth, Left			-	_	_	-	
20	BOF Circum, Left	-		_	_	_	-	
21	Weight	0.091	27.38	2.08	0.184	20.64	2.08	
22	Ankle Length	1.602	16.91	2.02	1.878	13.58	2.11	
23	Instep Length	1.504	17.18	2.00	1.881	12.47	1.99	
24	BOF Length, Right	1.326	8.19	1.83	1.354	7.69	1.90	
25	Foot Length, Right	1.071	5.40	1.80	1.257	1.07	1.77	
26	BOF Breadth, Hoz, Right	1.472	19.43	2.18	1.739	15.82	2.28	
27	Outside BOF Length	1.432	10.43	1.82	1.582	8.11	1.84	
28	5th Toe Length	1.320	5.61	1.77	1.399	4.34	1.83	
29	BOF Length, Left	_	-	_		-		
30	Foot Length, Left	_	_	_	_	_	_	
31	BOF Breadth, Hoz, Left	_			_	_	_	
32	Bimalleolar Breadth	1.814	21.01	2.21	2.374	16.25	2.26	
32 33	1st-3rd Toe Breadth	0.178	33.00	2.32	0.516	28.40	2.40	
23	isc-sid foe breadth	0.1/0	33.00	2.32	0.510	20.40	Z•4U	

Table 89. Simple Regression Equations for Estimating Ankle Height (VAR 3)

	•	Male				Female			
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE		
1	Stature	0.070	0.45	0.83	0.083	-2.61	0.69		
2	Calf Height	0.166	6.99	0.89	0.003	4.26	0.03		
3	Ankle Height	0.100	0.33	0.09	0.207	4.20	0.72		
4	Med Malleolus Height	0.448	9.07	0.93	0.470	7.44	0.82		
5	Lat Malleolus Height	0.354	10.13	0.94	0.443	7.90	0.82		
6	Dorsal Arch Height	0.521	8.08	0.91	0.646	5.61	0.78		
7	Plantar Arch Height	0.232	12.00	0.96	0.192	10.26	0.87		
8	Ball of Foot Height	0.816	9.51	0.94	0.829	7.84	0.86		
ğ	1st Toe Height	1.010	10.48	0.95	0.861	9.14	0.86		
10	Maximum Toe Height	0.707	10.90	0.95	1.093	8.30	0.84		
11	Outside BOF Height	0.952	9.91	0.93	0.557	9.32	0.87		
12	Calf Circumference	ns*			NS				
13	Ankle Circumference	NS			NS				
14	Heel-Ankle Circum	0.239	4.51	0.88	0.327	0.71	0.75		
15	Instep Circumference	0.267	5.72	0.90	0.354	2.58	0.79		
16	BOF Circum, Right	0.270	5.90	0.91	0.347	2.95	0.80		
17	Heel Breadth, Right	0.409	9.83	0.96	0.591	7.07	0.84		
18	BOF Breadth, Diagonal	0.544	6.97	0.92	0.762	3.58	0.80		
19	Heel Breadth, Left	-	_	_	, -	_			
20	BOF Circum, Left	-	-	_	_	_	_		
21	Weight	0.021	11.10	0.94	0.044	8.14	0.83		
22	Ankle Length	0.491	7.38	0.91	0.503	5.96	0.82		
23	Instep Length	0.393	8.23	0.92	0.497	5.73	.0.80		
24	BOF Length, Right	0.431	4.22	0.85	0.412	3.51	0.75		
25	Foot Length, Right	0.340	3.54	0.85	0.379	1.56	0.73		
26	BOF Breadth, Hoz, Right	0.491	7.74	0.94	0.688	4.52	0.82		
27	Outside BOF Length	0.448	5.23	0.86	0.469	3.82	0.75		
28	5th Toe Length	0.406	3.89	0.86	0.424	2.52	0.74		
29	BOF Length, Left	•••	-	_	_	_	-		
30	Foot Length, Left	_	_	_	***	_	_		
31	BOF Breadth, Hoz, Left	•	_	-		_	_		
32	Bimalleolar Breadth	0.871	6.34	0.91	0.910	4.89	0.82		
33	1st-3rd Toe Breadth	0.175	11.44	0.97	0.353	8.54	0.86		

Table 90. Simple Regression Equations for Estimating Medial Malleolus Height (VAR 4)

			Male			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1 2	Stature Calf Height	0.048 0.063	26 5.96	0.56 0.64	0.044 0.039	0.03 5.93	0.61 0.67
3	Ankle Height	0.202	5.54	0.62	0.276	4.18	0.63
4 5	Med Malleolus Height	0.639	_ 3.48	- 0.46	0.615	3.12	- 0 E2
6	Lat Malleolus Height Dorsal Arch Height	0.736	1.59	0.44	0.720	1.37	0.52 0.51
7	Plantar Arch Height	0.702	5.99	0.50	0.623	5.37	0.56
8	Ball of Foot Height	1.190	3.46	0.56	1.451	1.97	0.58
9	1st Toe Height	0.469	7.08	0.65	NS*	4001	0.00
10	Maximum Toe Height	0.306	7.34	0.65	NS		
11	Outside BOF Height	0.355	7.08	0.65	NS		
12	Calf Circumference	0.063	5.78	0.63	0.067	4.81	0.66
13	Ankle Circumference	0.186	3.95	0.60	0.234	2.30	0.62
14	Heel-Ankle Circum	0.142	3.24	0.61	0.147	2.62	0.64
15	Instep Circumference	0.149	4.21	0.62	0.167	3.28	0.65
16	BOF Circum, Right	0.152	4.28	0.62	0.186	2.96	0.64
17	Heel Breadth, Right	NS			NS		
18	BOF Breadth, Diagonal	0.217	5.83	0.64	0.261	4.69	0.66
19	Heel Breadth, Left	_	- .	_	-	_	_
20	BOF Circum, Left	_	-	_	-	,	_
21	Weight	0.020	6.60	0.61	0.031	5.32	0.64
22	Ankle Length	NS		•	NS		
23	Instep Length	NS 0 110	E 70	0.64	NS 0.069	E 06	0 67
24	BOF Length, Right	0.118	5.78 4.82	0.64	0.068 0.110	5.96 4.50	0.67 0.66
25 26	Foot Length, Right	0.122 0.210	4.82 5.99	0.64	0.110	4.30	0.66
26 27	BOF Breadth, Hoz, Rt Outside BOF Length	0.210	5.06	0.63	0.143	5.04	0.66
28	5th Toe Length	0.178	4.26	0.62	0.151	4.22	0.65
29	BOF Length, Left	0.176	4.20	-	0.131	4.22	0.03
30	Foot Length, Left	_	_	_	-	_	-
31	BOF Breadth, Hoz, Left		· -	_	-	_	
32	Bimalleolar Breadth	0.331	5.70	0.64	0.429	4.38	0.66
33	1st-3rd Toe Breadth	0.347	5.62	0.63	0.298	5.25	0.66

Table 91. Simple Regression Equations for Estimating Lateral Malleolus Height (VAR 5)

	•		Male			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.047	-0.94	0.64	0.044	-0.62	0.62
2	Calf Height	0.063	5.10	0.71	0.056	4.80	0.67
3	Ankle Height	0.198	4.75	0.70	0.270	3.66	0.64
4	Med Malleolus Height	0.788	0.87	0.51	0.640	2.00	0.53
5	Lat Malleolus Height	_	_	-	_	-	-
6	Dorsal Arch Height	0.691	1.13	0.57	0.745	0.59	0.52
7	Plantar Arch Height	0.707	5.12	0.59	0.654	4.70	0.57
8	Ball of Foot Height	1.148	2.77	0.65	1.241	2.14	0.62
9	1st Toe Height	ns*			NS		
10	Maximum Toe Height	NS			NS		
11	Outside BOF Height	NS			NS		
12	Calf Circumference	0.040	5.78	0.72	0.060	4.47	0.68
13	Ankle Circumference	0.167	3.52	0.69	0.162	3.21	0.66
14	Heel Ankle Circuum	0.119	3.18	0.70	0.118	2.94	0.66
15	Instep Circumference	0.111	4.36	0.71	0.131	3.54	0.67
16	BOF Circum,Right	0.128	4.04	0.71	0.145	3.30	0.67
17	Heel Breadth, Right	NS			NS		
18	BOF Breadth, Diagonal	NS			0.178	4.90	0.68
19	Heel Breadth, Left	-	-	-	-	•	-
20	BOF Circum, Left	_	_	-	_	-	-
21	Weight	0.014	6.19	0.71	0.028	4.93	0.66
22	Ankle Length	NS			NS		
23	Instep Length	NS			NS		
24	BOF Length, Right	NS			NS		
25	Foot Length, Right	0.80	5.12	0.72	0.071	4.84	0.68
26	BOF Breadth, Hoz, Right	NS			0.246	4.34	0.68
27	Outside BOF Length	0.140	4.93	0.71	0.106	5.00	0.68
28	5th Toe Length	0.136	4.32	0.71	0.110	4.43	0.68
29	BOF Length, Left	-	-	-	-	-	-
30	Foot Length, Left	-	-		_	-	
31	BOF Breadth, Hoz, Left		-	-		_	_
32	Bimalleolar Breadth	NS			0.185	5.38	0.68
33	1st-3rd Toe Breadth	0.269	5.33	0.71	0.257	4.93	0.68

Table 92. Simple Regression Equations for Estimating Dorsal Arch Height (VAR 6)

			<u>Male</u>			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.054	-0.55	0.53	0.049	0.14	0.51
2	Calf Height	0.095	5.63	0.61	0.087	5.28	0.57
3	Ankle Height	0.234	5.90	0.61	0.309	4.71	0.54
4	Med Malleolus Height	0.730	2.95	0.44	0.586	3.85	0.46
5	Lat Malleolus Height	0.556	4.84	0.51	0.582	4.21	0.46
6	Dorsal Arch Height	_	-	-	_	-	_
7	Plantar Arch Height	0.726	6.67	0.48	0.627	6.24	0.48
8	Ball of Foot Height	1.337	3.64	0.53	1.499	2.68	0.49
9	1st Toe Height	0.591	7.58	0.64	0.284	7.50	0.60
10	Maximum Toe Height	0.463	7.70	0.64	0.343	7.26	0.60
11	Outside BOF Height	0.432	7.61	0.64	0.460	6.81	0.60
12	Calf Cicumference	0.062	6.60	0.63	0.074	5.44	0.59
13	Ankle Circumference	0.193	4.56	0.59	0.215	3.58	0.56
14	Heel-Ankle Circum	0.191	2.34	0.56	0.217	1.34	0.52
15	Instep Circumference	0.209	3.41	0.59	0.235	2.58	0.55
16	BOF Circum, Right	0.204	3.74	0.60	0.227	2.91	0.56
17	Heel Breadth, Right	0.283	6.89	0.64	0.218	6.67	0.60
18	BOF Breadth, Diagonal	0.345	5.24	0.62	0.380	4.44	0.58
19	Heel Breadth,Left	-		_	-	-	_
20	BOF Circum, Left	-	_	-	-	, –	-
21	Weight	0.021	7.26	0.60	0.034	6.02	0.56
22	Ankle Length	ns*			NS		
23	Instep Length	0.097	7.77	0.65	0.152	6.50	0.60
24	BOF Length, Right	0.154	5.85	0.63	0.120	5.92	0.59
25	Foot Length, Right	0.178	4.08	0.60	0.157	4.23	0.57
26	BOF Breadth, Hoz, Right	0.340	5.44	0.62	0.394	4.45	0.58
27	Outside BOF Length	0.212	5.34	0.62	0.192	5.19	0.58
28	5th Toe Length	0.213	4.25	0.60	0.193	4.27	0.57
29	BOF Length, Left			· -			-
30	Foot Length, Left		-	_	-	_	_
31	BOF Breadth, Hoz, Left	· -	_		-	-	-
32	Bimalleolar Breadth	0.521	5.07	0.62	0.463	5.03	0.58
33	1st-3rd Toe Breadth	0.361	6.28	0.62	0.327	5.95	0.59

Table 93. Simple Regression Equations for Estimating Plantar Arch Height (VAR 7)

			Male			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.027	-1.74	0.57	0.019	-0.16	0.58
2	Calf Height Ankle Height	0.030 0.090	2.00 1.89	0.60 0.60	NS 0.088	1.94	0.59
4	Med Malleolus Height	0.601	-1.85	0.46	0.485	-0.59	0.50
5	Lat Malleolus Height	0.491	-0.53	0.49	0.489	-0.33	0.49
6	Dorsal Arch Height	0.627	-2.53	0.45	0.600	-1.94	0.47
7 8	Plantar Arch Height	1 001	-0.88	0.53	1 202	-1.43	0.52
9	Ball of Foot Height 1st Toe Height	1.001 NS*	-0.00	0.53	1.203 -0.275	3.42	0.52
10	Maximum Toe Height	NS			-0.275 NS	3.42	0.33
11	Outside BOF Height	NS			NS		
12	Calf Circumference	NS			0.038	1.56	0.59
13	Ankle Circumference	0.106	0.65	0.59	0.153	-0.30	0.57
14	Heel-Ankle Circum	0.077	0.39	0.59	0.058	1.10	0.59
15	Instep Circumference	0.058	1.51	0.60	ns		
16	BOF Circum, Right	0.059	1.54	0.60	NS		
17	Heel Breadth, Right	NS	•		-0.182	4.04	0.59
18	BOF Breadth, Diagonal	NS			NS		
19	Heel Breadth, Left	-	-		-		-
20	BOF Circum, Left	0.010	2 20	0 50	0 014	2.06	0 50
21 22	Weight Ankle Length	0.010 NS	2.28	0.59	0.014 -0.111	2.06 3.96	0.59 0.59
23	Instep Length	-0.120	4.40	0.60	-0.090	3.90 3.81	0.59
24	BOF Length, Right	NS	4.40	0.00	-0.077	4.26	0.59
25	Foot Length, Right	NS			NS	1.20	0.00
26	BOF Breadth, Hoz, Right	NS			NS		
27	Outside BOF Length	NS			NS		
28	5th Toe Length	NS			NS		•
29	BOF Length, Left	_		-	-	-	-
30	Foot Length, Left	_	-	-	-	-	-
31	BOF Breadth, Hoz, Left		-	•-	_	-	-
32 33	Bimalleolar Breadth 1st-3rd Toe Breadth	NS 0.131	2.09	0.60	ns Ns		

Table 94. Simple Regression Equations for Estimating BOF Height (VAR 8)

		*	Male			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.018	0.65	0.25	0.013	1.45	0.22
2	<u> </u>	0.033	2.78	0.27	0.022	2.88	0.23
3	Ankle Height	0.070	3.02	0.28	0.060	2.93	0.23
4	Med Malleolus Height	0.225	2.08	0.24	0.180	2.30	0.20
5	Lat Malleolus Height	0.176	2.63	0.25	0.148	2.61	0.21
6	Dorsal Arch Height	0.255	1.65	0.23	0.228	1.75	0.19
7	Plantar Arch Height	0.221	3.24	0.25	0.192	3.03	0.21
8	Ball of Foot Height	_	- ·	- .		-	-
9	1st Toe Height	0.346	3.15	0.28	0.227	3.14	0.23
10	Maximum Toe Height	0.402	2.89	0.26	0.288	2.92	0.23
11	Outside BOF Height	0.338	2.92	0.27	0.331	2.69	0.22
12	Calf Circumference	0.048	2.13	0.25	0.042	2.11	0.22
13	Ankle Circumference	0.118	1.26	0.23	0.102	1.45	0.21
14	Heel-Ankle Circum	0.094	0.70	0.23	0.074	1.29	0.21
15	Instep Circumference	0.120	0.76	0.24	0.100	1.24	0.21
16	BOF Circum, Right	0.131	0.60	0.23	0.096	1.40	0.21
17	Heel Breadth, Right	0.184	2.62	0.27	0.121	2.82	0.23
18	BOF Breadth, Diagonal	0.208	1.72	0.26	0.129	2.36	0.23
19	Heel Breadth, Left	_	_	_	_	•	_
20	BOF Circum, Left	_		_	_	-	_
21	Weight	0.011	3.06	0.25	0.014	2.73	0.22
22	Ankle Length	0.134	2.45	0.27	0.068	2.93	0.23
23	Instep Length	0.084	2.95	0.28	0.047	3.10	0.23
24	BOF Length, Right	0.065	2.62	0.28	NS		
25	Foot Length, Right	0.087	1.56	0.26	0.046	2.46	0.23
26	BOF Breadth, Hoz, Right	0.215	1.74	0.26	0.153	2.18	0.23
27	Outside BOF Length	0.085	2.49	0.27	0.043	2.94	0.23
28	5th Toe Length	0.091	1.94	0.26	0.052	2.56	0.23
29	BOF Length, Left	_	-	_	. .		-
30	Foot Length, Left	-	-	_	-	_	-
31	BOF Breadth, Hoz, Left	_	_		_	_	_
32	Bimalleolar Breadth	0.306	1.67	0.26	0.238	2.03	0.22
33	1st-3rd Toe Breadth	0.193	2.53	0.26	0.129	2.76	0.23

Table 95. Simple Regression Equations for Estimating 1st Toe Height (VAR 9)

			Male			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.005	1.30	0.21	0.005	1.07	0.20
2	Calf Height	0.013	1.75	0.21	0.020	1.29	0.20
3	Ankle Height	0.047	1.60	0.20	0.046	1.45	0.20
4	Med Malleolus Height	0.048	1.81	0.21	ns*		
5	Lat Malleolus Height	NS			NS		
6	Dorsal Arch Height	0.062	1.65	0.21	0.031	1.69	0.20
7	Plantar Arch Height	NS			-0.032	2.03	0.20
8	Ball of Foot Height	0.189	1.46	0.20	0.165	1.35	0.20
9	1st Toe Height	-	_	_	-	_	- ,
10	Maximum Toe Height	0.166	1.78	0.20	0.366	1.10	0.18
11	Outside BOF Height	0.241	1.49	0.20	0.311	1.10	0.19
12	Calf Circumference	0.017	1.56	0.20	0.012	1.53	0.20
13	Ankle Circumference	0.037	1.38	0.20	0.029	1.34	0.20
14	Heel-Ankle Circum	0.043	0.72	0.20	0.058	1.36	0.18
15	Instep Circumference	0.057	0.70	0.20	0.082	0.02	0.18
16	BOF Circum, Right	0.060	0.70	0.20	0.072	0.32	0.19
17	Heel Breadth, Right	0.117	1.38	0.20	0.204	0.65	0.18
18	BOF Breadth, Diagonal	0.116	0.98	0.20	0.146	0.56	0.19
19	Heel Breadth, Left	_	-	_	_	_	_
20	BOF Circum, Left	_	_	_	_	-	-
21	Weight	0.005	1.85	0.20	0.007	1.54	0.20
22	Ankle Length	0.071	1.42	0.20	0.121	0.77	0.19
23	Instep Length	0.056	1.57	0.20	0.099	0.93	0.19
24	BOF Length, Right	0.051	1.20	0.20	0.064	0.80	0.19
25	Foot Length, Right	0.041	1.08	0.20	0.056	0.58	0.19
26	BOF Breadth, Hoz, Right	0.104	1.15	0.20	0.147	0.60	0.19
27	Outside BOF Length	0.039	1.55	0.21	0.053	1.15	0.20
28	5th Toe Length	0.040	1.33	0.20	0.054	0.88	0.19
29	BOF Length, Left	_	_	· <u>-</u>		<u> </u>	_
30	Foot Length, Left	_	-		_	_	_
31	BOF Breadth, Hoz, Left	_	_	_	_	_	••
32	Bimalleolar Breadth	0.164	1.00	0.20	0.177	0.79	0.19
33	1st-3rd Toe Breadth	0.080	1.62	0.20	0.098	1.31	0.20
		3.003		3.20			

Table 96. Simple Regression Equations for Estimating Maximum Toe Height (VAR 10)

			Male			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.011	0.58	0.25	0.009	0.89	0.22
2	Calf Height	0.042	1.09	0.24	0.032	1.29	0.21
3	Ankle Height	0.051	1.90	0.26	0.071	1.53	0.22
4	Med Malleolus Height	0.049	2.15	0.26	ns*		•
5	Lat Malleolus Height	NS			NS		
6	Dorsal Arch Height	0.074	1.89	0.26	0.047	1.92	0.22
7	Plantar Arch Height	NS			NS		
8	Ball of Foot Height	0.338	1.22	0.24	0.258	1.38	0.22
9	1st Toe Height	0.255	1.98	0.26	0.451	1.43	0.20
10	Maximum Toe Height	-	-	-	-	-	-
11	Outside BOF Height	0.457	1.21	0.23	0.438	1.12	0.20
12	Calf Circumference	0.038	1.13	0.24	0.025	1.43	0.22
13	Ankle Circumference	0.081	0.74	0.24	0.044	1.39	0.22
14	Heel-Ankle Circum	0.080	-0.20	0.22	0.073	0.05	0.20
15	Instep Circumference	0.112	-0.38	0.21	0.111	-0.28	0.19
16	BOF Circum, Right	0.094	0.17	0.23	0.083	0.42	0.20
17	Heel Breadth, Right	0.299	0.44	0.22	0.257	0.67	0.20
18	BOF Breadth, Diagonal	0.204	0.39	0.23	0.176	0.63	0.21
19	Heel Breadth, Left	- ,	-	-	_	-	-
20	BOF Circum, Left	_	_	_		<u> </u>	_
21	Weight_	0.011	1.70	0.23	0.011	1.64	0.21
22	Ankle Length	0.175	0.64	0.23	0.145	0.90	0.20
23	Instep Length	0.141	0.94	0.24	0.112	1.15	0.21
24	BOF Length, Right	0.102	0.54	0.24	0.082	0.86	0.20
25	Foot Length, Right	0.078	0.46	0.24	0.067	0.66	0.21
26	BOF Breadth, Hoz, Right	0.196	0.56	0.24	0.167	0.77	0.21
27	Ouside BOF Length	0.107	0.77	0.24	0.084	1.05	0.21
28	5th Toe Length	0.101	0.35	0.23	0.078	0.78	0.21
29	BOF Length, Left	_	-	-	-	-	-
30	Foot Length, Left	-	_	-	-	-	***
31	BOF Breadth, Hoz, Left	_	_	_	-	_	
32	Bimalleolar Breadth	0.221	0.93	0.24	0.222	0.86	0.21
33	1st-3rd Toe Breadth	NS			0.065	1.88	0.22

Table 97. Simple Regression Equations For Estimating Outside BOF Height (VAR 11)

			Male			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1 2 3 4	Stature Calf Height Ankle Height Med Malleolus Height	0.014 0.041 0.080 0.066	0.52 1.52 1.92 2.40	0.26 0.26 0.27 0.28	0.006 0.026 0.038 NS*	1.76 1.88 2.28	0.23 0.22 0.23
5 6 7	Lat Malleolus Height Dorsal Arch Height Plantar Arch Height	NS 0.081 NS	2.21	0.28	NS 0.066 NS	2.16	0.23
8 9 10	Ball of Foot Height 1st Toe Height Maximum Toe Height	0.331 0.433 0.533	1.64 1.98 1.58	0.26 0.27 0.24	0.314 0.405 0.462	1.57 1.91 1.63	0.22 0.22 0.20
11 12	Outside BOF Height Calf Circumference	_ 0.048	1.17	0.25	- 0.035	- 1.46	0.22
13 14 15	Ankle Circumference Heel-Ankle Circum Instep Circumference	0.090 0.087 0.126	0.92 -0.06 -0.36	0.25 0.24 0.23	0.062 0.073 0.112	1.39 0.45 0.10	0.22 0.21 0.20
16 17 18	BOF Circum, Right Heel Breadth, Right BOF Breadth, Diagonal	0.116 0.307 0.229	0.004 0.78 0.52	0.24 0.25 0.25	0.092 0.246 0.163	0.60 1.14 1.14	0.21 0.20 0.22
19 20 21	Heel Breadth, Left BOF Circum, Left Weight	- 0.015	- 1.81	- 0.22	0.011	2.04	0.22
22 23	Ankle Length Instep Length	0.180 0.138	0.98 1.36	0.25 0.26	0.130 0.103	1.44 1.64	0.22 0.22
24 25 26	BOF Length, Right Foot Length, Right BOF Breadth, Hoz, Right	0.114 0.084 0.203	0.69 0.66 0.89	0.25 0.26 0.26	0.066 0.058 0.161	1.52 1.29 1.22	0.22 0.22 0.22
27 28 29	Outside BOF Length 5th Toe Length BOF Length	0.096 0.092	1.33 0.93	0.26 0.26	0.045 0.055 -	2.03 1.62	0.23 0.22
30 31 32	Foot Length, Left BOF Breadth, Hoz, Left Bimalleolar Breadth	- - 0.310	- - 0.67	- 0.25	- - 0.225	- - 1.23	- 0.22
33	1st-3rd Toe Breadth	0.141	1.92	0.27	0.131	1.85	0.22

Table 98. Simple Regression Equations for Estimating Calf Circumference (VAR 12)

			Male			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1 2 3	Stature Calf Height Ankle Height	0.111 0.213 NS*	17.50 29.65	2.54 2.62	0.070 0.156 NS	23.76 30.22	1.99 2.00
4 5 6	Med Malleolus Height Lat Malleolus Height Dorsal Arch Height	1.046 0.539 1.031	28.47 33.05 27.82	2.57 2.64 2.58	0.617 0.532 0.838	30.75 31.67 28.43	2.00 2.01 1.98
7 8 9 10	Plantar Arch Height Ball of Foot Height 1st Toe Height Maximum Toe Height	NS 4.230 2.790 3.990	20.42 30.82 26.80	2.38 2.60 2.45	0.447 3.121 1.200 2.054	33.88 23.98 32.85 30.45	2.02 1.90 2.03 1.99
11 12 13	Outside BOF Height Calf Circumference Ankle Circumference	4.247 - 1.473	24.51 - 4.01	2.38 - 1.67	2.759 - 1.256	27.73 - 9.01	1.94 - 1.48
13 14 15	Heel-Ankle Circum Instep Circumference	0.852 1.346	7.76 1.76	2.22 1.97	0.643 1.029	15.31 11.19	1.83 1.73
16 17 18	BOF Circum,Right Heel Breadth,Right BOF Breadth,Diagonal	1.278 2.802 2.603	4.78 17.30 9.54	2.11 2.35 2.23	0.860 1.432 1.160	15.68 26.10 19.87	1.82 1.95 1.89
19 20 21	Heel Breadth, Left BOF Circum, Left	- - 0 192	- - -	_ _ 1 65	_	- - - -	-
22 23 24	Weight Ankle Length Instep Length BOF Length, Right	0.182 1.697 1.102 0.987	23.21 18.56 24.43 17.56	1.65 2.37 2.52 2.44	0.215 1.026 0.600 0.365	22.21 25.27 29.04 28.70	1.45 1.94 1.99 2.00
25 26 27	Foot Length, Right BOF Breadth, Hoz, Right Outside BOF Length	0.788 2.451 0.822	15.72 12.23 23.27	2.43 2.30 2.53	0.374 1.566 0.388	26.05 20.87 29.38	1.98 1.91 2.00
28 29 30	5th Toe Length BOF Length, Left Foot Length, Left	0.850	18.50	2.48	0.434	26.68	1.98
31 32 33	BOF Breadth, Hoz, Left Bimalleolar Breadth 1st-3rd Toe Breadth	3.484 1.552	- 11.50 25.80	2.26 2.53	2.816 1.237	16.82 27.21	1.78 1.97

Table 99. Simple Regression Equations for Estimating Ankle Circumference (VAR 13)

			Male			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.096	5.55	1.23	0.064	10.50	1.03
2	Calf Height	0.140	17.57	1.37	0.063	18.82	1.10
3	Ankle Height	ns*			NS		
4	Med Malleolus Height	0.862	15.38	1.29	0.642	16.21	1.03
5	Lat Malleolus Height	0.628	17.81	1.33	0.428	18.00	1.08
6	Dorsal Arch Height	0.901	14.38	1.28	0.726	14.98	1.02
7	Plantar Arch Height	0.576	20.63	1.36	0.541	19.26	1.07
8	Ball of Foot Height	2.894	11.05	1.14	2.276	12.66	0.98
9	1st Toe Height	1.643	18.76	1.36	0.879	19.11	1.10
10	Maximum Toe Height	2.346	16.40	1.27	1.078	18.34	1.09
11	Outside BOF Height	2.247	15.78	1.26	1.464	16.87	1.06
12	Calf Circumference	0.412	7.16	0.88	0.375	7.62	0.81
13	Ankle Circumference	_	_	-		_	_
14	Heel-Ankle Circum	0.593	2.04	0.96	0.467	6.40	0.90
15	Instep Circumference	0.768	2.29	0.97	0.609	6.63	0.91
16	BOF Circum, Right	0.752	3.43	1.03	0.571	7.88	0.93
17	Heel Breadth, Right	1.492	11.90	1.24	0.633	16.81	1.08
18	BOF Breadth, Diagonal	1.453	7.06	1.15	1.046	10.88	1.00
19	Heel Breadth, Left	-	-	-	-	_	-
20	BOF Circum, Left	-	-	-	-	_	-
21	Weight	0.086	15.90	1.01	0.101	14.72	0.89
22	Ankle Length	1.135	10.07	1.15	0.743	13.65	1.01
23	Instep Length	0.789	13.31	1.26	0.479	15.92	1.06
24	BOF Length, Right	0.650	9.59	1.22	0.289	15.69	1.07
25	Fot Length, Right	0.531	8.05	1.20	0.300	13.52	1.04
26	BOF Breadth, Hoz, Right	1.331	8.94	1.21	1.005	11.63	1.02
27	Outside BOF Length	0.601	12.36	1.27	0.309	16.20	1.07
28	5th Toe Length	0.601	9.31	1.23	0.328	14.41	1.05
29	BOF Length, Left	_	_	_		-	_
30	Foot Length, Left		_	_	_	_	-
31	BOF Breadth, Hoz, Left	•	_	_	_	_	-
32	Bimalleolar Breadth	2.185	6.40	1.10	1.984	7.89	0.87
33	1st-3rd Toe Breadth	1.189	13.82	1.26	0.776	15.83	1.06

Table 100. Simple Regression Equations for Estimating Heel-Ankle Circumference (VAR 14)

	•		Male		Female
Pre	dictor Variable	Slope	Const.	SEE	Slope Const. SEE
1	Stature	0.168	4.66	1.24	0.146 7.21 1.04
2	Calf Height	0.426	19.66	1.42	0.368 19.21 1.10
3	Ankle Height	0.756	24.68	1.57	0.850 21.70 1.20
4	Med Malleolus Height	0.994	26.21	1.60	0.652 26.22 1.34
5	Lat Malleolus Height	0.676	29.37	1.66	0.502 27.59 1.37
6	Dorsal Arch Height	1.334	22.35	1.49	1.181 21.39 1.22
7	Plantar Arch Height	0.630	32.37	1.69	0.329 29.94 1.40
8	Ball of Foot Height	3.464	20.72	1.42	2.654 21.38 1.27
9	lst Toe Height	2.910	27.87	1.62	2.868 25.32 1.29
10	Maximum Toe Height	3.512	25.33	1.47	2.900 24.22 1.26
11	Outside BOF Height	3.285	24.64	1.46	2.735 23.52 1.27
12	Calf Circumference	0.359	21.00	1.44	0.309 20.02 1.27
13	Ankle Circumference	0.895	14.25	1.18	0.751 15.26 1.14
14	Heel-Ankle Circum	_	-	-	
15	Instep Circumference	1.103	5.42	0.91	1.113 4.97 0.79
16	BOF Circum, Right	1.076	7.19	1.06	0.993 8.40 0.93
17	Heel Breadth, Right	2.536	16.47	1.31	2.260 16.58 1.04
18	BOF Breadth, Diagonal	2.139	11.74	1.24	2.090 11.03 0.99
19	Heel Breadth, Left	-			
20	BOF Circum, Left	-	_	-	
21	Weight	0.107	26.16	1.21	0.140 22.48 1.06
22	Ankle Length	1.762	15.17	1.18	1.719 14.30 0.92
23	Instep Length	1.384	18.54	1.35	1.420 16.36 0.97
24	BOF Length, Right	1.168	11.31	1.19	0.956 13.93 0.95
25	Foot Length, Right	0.954	8.56	1.13	0.895 9.06 0.80
26	BOF Breadth, Hoz, Rt	2.011	13.99	1.34	1.876 13.74 1.13
27	Outside BOF Length	1.136	15.36	1.29	1.004 15.92 1.02
28	5th Toe Length	1.114	10.09	1.18	0.936 12.58 0.95
29	BOF Length, Left	_	-	_	
30	Foot Length, Left	_	-	_	
31	BOF Breadth, Hoz, Left	_	-	_	
32	Bimalleolar Breadth	2.866	13.33	1.28	2.836 12.42 1.00
33 .	1st-3rd Toe Breadth	1.237	25.38	1.60	1.050 24.14 1.34

Table 101. Simple Regression Equations for Estimating Instep Circumference (VAR 15)

			Male			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.114	6.16	1.05	0.088	9.14	0.88
2	Calf Height	0.293	16.10	1.14	0.225	16.17	0.90
3	Ankle Height	0.501	19.80	1.24	0.510	17.79	0.95
4	Med Malleolus Height	0.619	21.13	1.27	0.410	20.36	1.02
5	Lat Malleolus Height	0.374	23.44	1.30	0.308	21.27	1.03
6	Dorsal Arch Height	0.873	18.41	1.20	0.709	17.60	0.96
7	Plantar Arch Height	0.281	25.30	1.32	NS ~		
8	Ball of Foot Height	2.633	15.85	1.10	1.992	16.16	0.94
9	1st Toe Height	2.292	21.11	1.24	2.244	18.94	0.95
10	Maximum Toe Height	2.912	18.74	1.09	2.448	17.66	0.90
11	Outside BOF Height	2.809	17.92	1.07	2.334	17.01	0.91
12	Calf Circumference	0.336	13.72	0.98	0.275	13.64	0.89
13	Ankle Circumference	0.686	10.79	0.92	0.544	11.97	0.86
14	Heel-Ankle Circum	0.654	3.74	0.70	0.618	4.22	0.59
15	Instep Cirumference	_	-	-	_	-	_
16	BOF Circum, Right	0.897	3.56	0.69	0.810	4.95	0.60
17	Heel-Breadth, Right	1.949	12.48	1.01	1.620	13.04	0.80
18	BOF Breadth, Diagonal	1.881	6.33	0.81	1.692	7.22	0.67
19	Heel Breadth, Left	- .	-	_	_	_	_
20	BOF Circum, Left	_	_	_	_	_	_
21	Weight	0.088	19.50	0.87	0.105	16.97	0.79
22	Ankle: Length	1.266	12.43	0.97	1.074	12.94	0.81
23	Instep Length	0.922	15.67	1.12	0.736	15.77	0.91
24	BOF Length, Right	0.858	9.28	0.96	0.576	13.08	0.84
25	Foot Length, Right	0.695	7.42	0.93	0.538	10.17	0.79
26	BOF Breadth, Hoz, Right	1.769	8.31	0.92	1.620	8.50	0.75
27	Outside BOF Length	0.804	12.76	1.05	0.572	14.77	0.89
28	5th Toe Length	0.804	8.68	0.96	0.560	12.34	0.84
29	BOF Length, Left	_	_	_	_	-	_
30	Foot Length, Left		_	-	-	_	-
31	BOF Breadth, Hoz, Left	_	-	_	_	-	_
32	Bimalleolar Breadth	2.276	9.52	0.96	2.015	10.17	0.78
33	1st-3rd Toe Breadth	1.050	18.60	1.21	0.955	17.15	0.97
-	200 DIG 100 DIGGGGI	11000	10.00		0.755	±10±0	0.0,

Table 102. Simple Regression Equations for Estimating BOF Circumference, Right (VAR 16)

			Male			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
			_				
1	Stature	0.102	7.25	1.04	0.085	8.87	0.92
2	Calf Height	0.219	17.68	1.16	0.173	17.18	0.99
3	Ankle Height	0.461	19.32	1.19	0.519	17.05	0.97
4	Med Malleolus Height	0.575	20.51	1.21	0.473	19.26	1.02
5	Lat Malleolus Height	0.392	22.34	1.24	0.354	20.32	1.04
6	Dorsal Arch Height	0.775	18.30	1.17	0.709	16.95	0.98
7	Plantar Arch Height	0.261	24.39	1.26	ns"		-
8	Ball of Foot Height	2.620	14.93	1.03	1.984	15.54	0.96
9	1st Toe Height	2.177	20.39	1.18	2.024	18.73	0.99
10	Maximum Toe Height	2.233	19.49	1.13	1.900	18.28	0.98
11	Outside BOF Height	2.363	18.25	1.08	2.002	17.26	0.97
12	Calf Circumference	0.291	14.42	1.01	0.238	14.29	0.96
13	Ankle Circumference	0.613	11.47	0.93	0.529	11.64	0.90
14	Heel-Ankle Circum	0.581	5.28	0.78	0.571	5.01	0.71
15	Instep Circumference	0.818	3.80	0.66	0.840	3.09	0.61
16	BOF Circum Right	-	_	_	-	_	_
17	Heel Breadth, Right	1.489	14.73	1.08	1.354	14.08	0.91
18	BOF Breadth, Diagonal	2.128	2.76	0.43	2.098	2.72	0.36
19	Heel Breadth,Left	_	_		· -		
20	BOF Circum, Left	0.913	2.27	0.44	0.929	1.72	0.37
21	Weight	0.072	19.72	0.96	0.098	16.74	0.85
22	Ankle Length	1.121	13.03	0.98	0.990	13.10	0.88
23	Instep Length	0.885	15.46	1.08	0.748	15.01	0.93
24	BOF Length, Right	0.764	10.16	0.97	0.539	13.10	0.90
25	Foot Length, Right	0.628	8.26	0.93	0.515	10.09	0.84
26	BOF Breadth, Hoz, Right	1.923	5.78	0.72	1.961	4.74	0.59
27	Outside BOF Length	0.620	14.85	1.10	0.426	16.30	0.99
28	5th Toe Length	0.667	10.70	1.02	0.480	13.27	0.93
29	BOF Length, Left	-	_		_	-	_
30	Foot Length, Left	_	_	-		_	_
31	BOF Breadth, Hoz, Left	_	_	_	_	-	_
32	Bimalleolar Breadth	2.086	9.93	0.95	1.802	10.92	0.87
33	1st-3rd Toe Breadth	1.182	16.68	1.10	1.094	15.62	0.96
<i>-</i>	100 Did 100 Dicaddi	11102		2.20	11003	20102	3.50

Table 103. Simple Regression Equations for Estimating Heel Breadth, Right (VAR 17)

		<u></u>	Male	·		<u>Female</u>	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.023	3.00	0.41	0.021	2.94	0.40
2	Calf Height	0.086	4.07	0.40	0.086	3.60	0.37
3	Ankle Height	0.086	5.93	0.44	0.138	4.84	0.41
4	Med Malleolus Height	ns^			NS		
5	Lat Malleolus Height	NS			NS		
6	Dorsal Arch Height	0.132	5.84	0.44	0.106	5.48	0.42
7	Plantar Arch Height	NS			-0.093	6.60	0.42
8	Ball of Foot Height	0.451	5.25	0.43	0.389	4.94	0.41
9	1st Toe Height	0.527	5.86	0.43	0.903	4.58	0.38
10	Maximum Toe Height	0.873	4.80	0.38	0.922	4.21	0.37
11	Outside BOF Height	0.768	4.77	0.39	0.836	4.08	0.38
12	Calf Circumference	0.078	4.12	0.39	0.062	4.15	0.40
13	Ankle Circumference	0.150	3.67	0.39	0.092	4.42	0.41
14	Heel-Ankle Circum	0.168	1.24	0.34	0.204	0.04	0.31
15	Instep Circumference	0.218	1.31	0.34	0.263	0.21	0.32
16	BOF Circum, Right	0.183	2.41	0.38	0.212	1.53	0.36
17	Heel Breadth, Right	-	-		-	- .	_
18	BOF Breadth, Diagonal	0.428	2.51	0.38	0.487	1.70	0.35
19	Heel Breadth,Left	0.928	0.55	0.18	0.937	0.45	0.16
20	BOF Circum, Left		-	_	-	- .	_
21	Weight	0.022	5.31	0.36	0.030	4.56	0.38
22	Ankle Length	0.347	3.25	0.37	0.365	2.81	0.36
23	Instep Length	0.337	3.19	0.36	0.322	3.04	0.36
24	BOF Length, Right	0.226	2.58	0.37	0.192	2.93	0.37
25	Foot Length, Right	0.172	2.38	0.38	0.180	1.93	0.35
26	BOF Breadth, Hoz, Right	0.390	3.09	0.39	0.465	2.08	0.37
27	Outside BOF Length	0.212	3.49	0.39	0.194	3.44	0.38
28	5th Toe Length	0.206	2.56	0.38	0.188	2.66	0.37
29	BOF Length, Left	_	_	-	_	_	_
30	Foot Length, Left	_	_	_	_	_	-
31	BOF Breadth, Hoz, Left	-	-	_			
32	Bimalleolar Breadth	0.533	3.12	0.39	0.485	3.17	0.39
33	1st-3rd Toe Breadth	0.198	5.60	0.43	0.228	4.86	0.41
			2.00	01.10	V-1220		~ + · I L

Table 104. Simple Regression Equations for Estimating BOF Breadth, Diagonal (VAR 18)

			Male	······································		Female	
Pre	Predictor Variable		Const.	SEE	Slope	Const.	SEE
1	Stature	0.039	3.65	0.49	0.035	3.81	0.42
2	Calf Height	0.090	7.45	0.52	0.075	7.12	0.44
3	Ankle Height	0.182	8.23	0.53	0.229	7.03	0.44
4	Med Malleolus Height	0.160	9.24	0.55	0.134	8.54	0.47
5	Lat Malleolus Height	ns*			0.088	8.93	0.48
6	Dorsal Arch Height	0.256	8.26	0.54	0.239	7.58	0.46
7	Plantar Arch Height	NS			NS		
8	Ball of Foot Height	0.810	7.37	0.51	0.533	7.59	0.46
9	1st Toe Height	0.826	8.72	0.53	0.828	7.90	0.45
10	Maximum Toe Height	0.946	8.13	0.50	0.810	7.64	0.44
11	Outside BOF Height	0.909	7.87	0.50	0.713	7.58	0.45
12	Calf Circumference	0.116	6.26	0.47	0.090	6.35	0.44
13	Ankle Circumference	0.231	5.36	0.46	0.195	5.44	0.43
14	Heel-Ankle Circum	0.226	2.80	0.40	0.242	2.03	0.34
15	Instep Circumference	0.335	1.77	0.34	0.353	1.28	0.30
16	BOF Circum, Right	0.416	0.06	0.19	0.422	-0.06	0.16
17	Heel Breadth, Right	0.680	5.76	0.47	0.627	5.53	0.40
18	BOF Breadth, Diagonal	_	_	-	-	-	_
19	Heel Breadth,Left	_	_	-	_	_	-
20	BOF Circum,Left	-	-	-	_	, -	-
21	Weight	0.028	8.40	0.46	0.039	7.14	0.40
22	Ankle Length	0.492	5.21	0.44	0.458	5.08	0.39
23	Instep Length	0.387	6.14	0.47	0.347	5.96	0.41
24	BOF Length, Right	0.349	3.68	0.42	0.261	4.87	0.39
25	Foot Length, Right	0.270	3.25	0.42	0.236	3.76	0.37
26	BOF Breadth, Hoz, Right	0.867	1.78	0.30	0.898	1.30	0.25
27	Outside BOF Length	0.267	6.08	0.49	0.205	6.45	0.44
28	5th Toe Length	0.294	4.15	0.45	0.218	5.24	0.41
29	BOF Length, Left	-	_	-	-	-	-
30	Foot Length, Left	-	_	-	_	-	_
31	BOF Breadth, Hoz, Left	_	_		-	_	
32	Bimalleolar Breadth	0.865	4.22	0.44	0.751	4.61	0.40
33	1st-3rd Toe Breadth	0.442	7.35	0.51	0.454	6.58	0.44

Table 105. Simple Regression Equations for Estimating Heel Breadth, Left (VAR 19)

			<u>Male</u>			Female	
Pre	edictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.025	2.58	0.40	0.022	2.76	0.39
2	Calf Height	- .	_	_	_	- ,	_
3	Ankle Height	_	-	_	-	_	,
4	Med Malleolus Height	-	_	_	_	_	_
5	Lat Malleolus Height	_	_	-	_	-	
6	Dorsal Arch Height	-	_	_	_	_	
7	Plantar Arch Height	_	_	_	_		-
8	Ball of Foot Height		-	_	_	***	-
9	1st Toe Height	· -	_	-		_	_
10	Maximum Toe Height	_	_	-	_		
11	Outside BOF Height	-	-	_	_	-	_
12	Calf Circumference	-	_	-	· –	_	-
13	Ankle Circumference	_	_	-	_	_	-
14	Heel-Ankle Circum	_	_	-	_		_
15	Instep Circumference	-	-	-	_	-	-
16	BOF Circum, Right	_	_	 ,	_	_	-
17	Heel Breadth, Right	0.905	0.62	0.18	0.917	0.46	0.16
18	BOF Breadth, Diagonal		***	_	_	_	
19	Heel Breadth, Left	-		_	-	_	
20	BOF Circum, Left	0.189	2.23	0.36	0.216	1.40	0.35
21	Weight	0.024	5.17	0.34	0.030	4.44	0.37
22	Ankle Length		_	-	. -	_	
23	Instep Length		_	-	_	_	
24	BOF Length, Right	_	_	-	_	-	-
25	Foot Length, Right	_	_	-	_	-	_
26	BOF Breadth, Hoz, Right	-	-	_	_	_	_
27	Outside BOF Length	-	-	_		_	-
28	5th Toe Length	_	-	_	_	-	_
29	BOF Length, Left	0.219	2.69	0.36	0.191	2.90	0.37
30	Foot Length, Left	0.194	1.77	0.36	0.178	1.93	0.35
31	BOF Breadth, Hoz, Left	0.383	3.11	0.39	0.450	2.17	0.36
32	Bimalleolar Breadth	_	-	_	_	_	
33	1st-3rd Toe Breadth	_	_	-	_	· -	

Table 106. Simple Regression Equations for Estimating BOF Circumference, Left (VAR 20)

		Male			Female			
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE	
1	Stature	0.102	7.12	1.08	0.084	8.91	0.93	
2	Calf Height	-	_		_	_	· 🕳	
3	Ankle Height	_	-	-	-		-	
4	Med Malleolus Height	_	_	_	_	-		
5	Lat Malleolus Height	-	-	_	_	_		
6	Dorsal Arch Height	, –	-	-	_	-	-	
7	Plantar Arch Height	_	_	_	_	•••	-	
8	Ball of Foot Height	-	_	_	• -	_	- 1	
9	1st Toe Height	_	-	-	_	-	-	
10	Maximum Toe Height	_	-	_	-	-	-	
11	Outside BOF Height	-		_		_	-	
12	Calf Circumference	-	_	-	- ·	_	-	
13	Ankle Circumference	_	-	_	_	-		
14	Heel-Ankle Circum	-		-	_	•	-	
15	Instep Circumference	_	-	_	_		-	
16	BOF Circum, Right	0.965	0.80	0.45	0.948	1.06	0.37	
17	Heel Breadth, Diagonal	-	-	-		-		
18	BOF Breadth, Diagonal	_ `	_ ·	-	-	-	_	
19	Heel Breadth,Left	1.667	13.47	1.08	1.440	13.50	0.90	
20	BOF Circum,Left	-		-	-	_	_	
21	Weight	0.076	19.37	0.97	0.098	16.61	0.86	
22	Ankle Length	_	-	_	_	-	-	
23	Instep Length		-	-	_	_	-	
24	BOF Length, Right	_	_	-	_	-	-	
25	Foot Length, Right	_	-	-	-	_	_	
26	BOF Breadth, Hoz, Right	-	_	_	-	-	-	
27	Outside BOF Length	-	-	-	_			
28	5th Toe Lenth	_	_	_	-	_	_	
29	BOF Length, Left	0.752	10.41	1.00	0.551	12.82	0.91	
30	Foot Length, Left	0.673	6.99	0.96	0.511	10.10	0.86	
31	BOF Breadth, Hoz, Left	2.004	4.89	0.69	1.807	6.08	0.63	
32	Bimalleolar Breadth	-	_		_		_	
33	1st-3rd Toe Breadth	_	_	-	-	_	-	

Table 107. Simple Regression Equations for Estimating Weight (VAR 21)

			Male			Female	
Pre	dictor Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Chahuma	0.010	-84.26	9.49	0 610	-38.51	5.33
1 2	Stature Calf Height	0.910 2.230	-7.00	10.28	0.610 1.408	-36.51 15.61	5.75
3	Ankle Height	2.230	38.15	11.14	2.568	32.49	6.28
4	Med Malleolus Height	6.206	25.34	10.77	3.017	38.62	6.36
5	Lat Malleolus Height	3.567	49.81	11.21	2.607	43.09	6.43
6	Dorsal Arch Height	6.668	16.53	10.66	4.080	27.42	6.20
7	Plantar Arch Height	3.603	64.78	11.30	1.740	55.24	6.60
8	Ball of Foot Height	18.450	3.54	10.24	11.219	20.04	6.13
9	1st Toe Height	13.794	45.36	11.14	7.367	45.96	6.51
10	Maximum Toe Height	21.692	20.48	10.02	9.654	38.04	6.32
11	Outside BOF Height	24.737	3.18	9.15	9.089	35.75	6.34
12	Calf Circumference	3.390	-49.58	7.14	2.302	-20.71	4.74
13	Ankle Circumference	5.711	-52.07	8.23	3.625	-15.22	5.31
14	Heel-Ankle Circum	4.745	-86.92	8.07	3.108	-35.77	5.02
15	Instep Circumference	6.560	-95.87	7.49	4.214	-37.94	4.98
16	BOF Circum, Right	5.915	-73.24	8.71	3.801	-25.85	5.29
17	Heel Breadth, Right	15.052	-29.94	9.35	7.296	14.06	5.92
18	BOF Breadth, Diagonal	11.807	-48.68	9.40	7.546	-11.45	5.60
19	Heel Breadth,Left	16.276	-37.85	9.00	7.676	12.11	5.85
20	BOF Circum,Left	5.871	-71.67	8.58	3.729	-23.79	5.31
21	Weight	-			_	_	
22	Ankle Length	9.003	-21.91	9.52	5.082	11.21	5.87
23	Instep Length	6.463	2.23	10.33	3.924	20.13	6.05
24	BOF Length, Right	5.956	-41.41	9.55	2.848	9.72	5.90
25	Foot Length, Right	4.626	-49.02	9.60	2.750	-6.78	5.64
26	BOF Breadth, Hoz, Right	11.179	-37.07	9.76	6.877	-2.58	5.90
27	Outside BOF Length	5.696	-19.16	9.95	3.101	13.99	5.94
28	5th Toe Length	5.520	-44.16	9.64	3.009	1.39	5.76
29	BOF Length, Left	5.768	-37.04	9.51	2.865	9.74	5.93
30	Foot Length, Left	4.977	-58.19	9.46	2.784	-7.54	5.64
31	BOF Breadth, Hoz, Left	11.361	-38.87	9.64	6.501	1.06	5.88
32	Bimalleolar Breadth	15.236	-35.65	9.72	10.359	-7.24	5.60
33	1st-3rd Toe Breadth	7.794	19.65	10.73	4.100	33.88	6.44

Table 108. Simple Regression Equations for Estimating Ankle Length (VAR 22)

			Male			Female	
Predictor Variable		Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.050	2.03	0.62	0.046	2.20	0.55
2	Calf Height	0.153	5.59	0.62	0.126	5.66	0.54
3	Ankle Height	0.268	7.43	0.67	0.255	6.90	0.58
4	Med Malleolus Height	ns*			NS		
5	Lat Malleolus Height	NS			NS		
6	Dorsal Arch Height	NS			NS		
7	Plantar Arch Height	NS			-0.123	10.01	0.62
8	Ball of Foot Height	0.858	7.49	0.68	0.475	7.95	0.61
9	1st Toe Height	0.836	9.00	0.70	1.162	7.40	0.58
10	Maximum Toe Height	1.330	7.46	0.63	1.123	7.07	0.57
11	Outside BOF Height	1.173	7.40	0.64	0.957	7.07	0.58
12	Calf Cicumference	0.124	6.27	0.64	0.096	6.27	0.59
13	Ankle Circumference	0.296	4.22	0.59	0.233	4.80	0.57
14	Heel-Ankle Circum	0.305	4.04	0.49	0.335	-0.70	0.41
15	Instep Circumference	0.369	1.19	0.52	0.377	0.86	0.48
16	BOF Circum, Right	0.359	1.81	0.56	0.335	2.06	0.51
17	Heel Breadth, Right	0.904	4.50	0.60	0.790	4.65	0.53
18	BOF Breadth, Diagonal	0.085	2.36	0.56	0.771	2.32	0.50
19	Heel Breadth, Left		_	-	_	-	_
20	BOF Circum,Left			-		-	- ,
21	Weight	0.035	8.18	0.59	0.044	6.97	0.55
22	Ankle Length	-			_	· -	_
23	Instep Length	0.703	2.84	0.46	0.658	2.92	0.40
24	BOF Length, Right	0.523	0.55	0.45	0.429	2.03	0.41
25	Foot Length, Right	0.390	0.31	0.48	0.367	0.70	0.40
26	BOF Breadth, Hoz, Right	0.706	3.72	0.61	0.616	4.02	0.56
27	Outside BOF Length	0.469	3.03	0.54	0.402	3.66	0.48
28	5th Toe Length	0.441	1.26	0.51	0.355	2.71	0.48
29	BOF Length, Left	-		- ,	-	***	_
30	Foot Length, Left	-	-	_	***	_	-
31	BOF Breadth, Hoz, Left	<u>.</u>	_	_	-	_	-
32	Bimalleolar Breadth	1.009	3.47	0.59	0.987	3.22	0.52
33	1st-3rd Toe Breadth	0.375	8.14	0.69	0.356	7.36	0.60

Table 109. Simple Regression Equations for Estimating Instep Length (VAR 23)

			Male			<u>Female</u>	
Pre	Predicted Variable		Const.	SEE	Slope	Const.	SEE
1	Stature	0.050	2.56	0.70	0.059	0.68	0.61
2	Calf Height	0.171	5.50	0.68	0.169	4.88	0.60
3	Ankle Height	0.256	8.12	0.74	0.336	6.59	0.66
4	Med Malleolus Height	NS*			NS		
5	Lat Malleolus Height	NS			NS		
6	Dorsal Arch Height	0.140	10.12	0.78	0.215	8.50	0.71
7	Plantar Arch Height	-0.202	11.98	0.78	-0.133	10.61	0.72
8	Ball of Foot Height	0.640	8.86	0.76	0.437	8.66	0.71
9	1st Toe Height	0.773	9.67	0.77	1.265	7.77	0.68
10	Maximum Toe Height	1.276	8.12	0.71	1.163	7.55	0.67
11	Outside BOF Height	1.069	8.23	0.72	1.010	7.50	0.68
12	Calf Circumference	0.096	7.84	0.74	0.075	7.58	0.70
13	Ankle Circumference	0.248	5.83	0.70	0.201	6.05	0.69
14	Heel-Ankle Circum	0.285	1.61	0.61	0.370	-1.20	0.50
15	Instep Circumference	0.320	3.00	0.66	0.346	2.17	0.62
16	BOF Circum, Right	0.326	3.17	0.67	0.338	2.56	0.62
17	Heel Breadth, Right	1.042	4.05	0.63	0.932	4.32	0.60
18	BOF Breadth, Diagonal	0.754	3.43	0.66	0.780	2.82	0.62
19	Heel Breadth, Left	_	_	_	-	_	_
20	BOF Circum, Left	_	_		_	_	-
21	Weight	0.030	9.10	0.70	0.046	7.46	0.65
22	Ankle Length	0.837	2.29	0.50	0.879	1.74	0.47
23	Instep Length	-		_	-		-
24	BOF Length, Right	0.564	0.28	0.50	0.524	0.92	0.43
25	Foot Length, Right	0.415	0.18	0.54	0.446	-0.64	0.43
26	BOF Breadth, Hoz, Right	0.626	5.05	0.71	0.579	4.93	0.67
27	Outside BOF Length	0.486	3.27	0.61	0.501	2.75	0.53
28	5th Toe Length	0.454	1.50	0.59	0.445	1.51	0.52
29	BOF Length, Left	_		-	_		-
30	Foot Length, Left	200	_	_	_	_	
31	BOF Breadth, Hoz, Left	_	_	_	_	_	_
32	Bimalleolar Breadth	1.000	4.06	0.67	1.034	3.49	0.62
33	1st-3rd Toe Breadth	0.284	9.33	0.77	0.276	8.45	0.71
		01201	2100		5.270		

Table 110. Simple Regression Equations for Estimating BOF Length, Right (VAR 24)

			Male			Female	· .
Pre	dicted Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.099	2.21	0.81	0.108	0.33	0.84
2	Calf Height	0.285	9.89	0.85	0.281	8.28	0.86
3	Ankle Height	0.530	12.94	0.95	0.646	10.76	0.94
4	Med Malleolus Height	0.322	17.05	1.06	0.182	16.44	1.09
5	Lat Malleolus Height	ns*			ns		
6	Dorsal Arch Height	0.421	15.93	1.04	0.394	14.58	1.07
7	Plantar Arch Height	NS			-0.266	18.52	1.09
8	Ball of Foot Height	0.939	15.99	1.04	NS		
9	1st Toe Height	1.334	16.73	1.04	1.901	14.06	1.03
10	Maximum Toe Height	1.741	15.23	0.98	1.959	13.24	1.01
11	Outside BOF Height	1.666	14.78	0.97	1.505	13.69	1.04
12	Calf Circumference	0.162	13.69	0.99	0.106	14.02	1.08
13	Ankle Circumference	0.381	11.14	0.94	0.281	11.90	1.05
14	Heel-Ankle Circum	0.454	4.12	0.74	0.577	-0.09	0.74
15	Instep Circumference	0.562	4.95	0.78	0.627	3.15	0.88
16	BOF Circum, Right	0.549	5.83	0.82	0.566	4.93	0.92
17	Heel Breadth, Right	1.321	10.39	0.90	1.285	9.61	0.95
18	BOF Breadth, Diagonal	1.284	6.14	0.80	1.363	4.80	0.88
19	Heel Breadth, Left	-	_	_	_	-	-
20	BOF Circum, Left	-	_	-	_	7	
21	Weight	0.052	15.71	0.89	0.077	13.09	0.97
22	Ankle Length	1.176	6.92	0.67	1.331	4.90	0.72
23	Instep Length	1.064	7.56	0.68	1.216	5,31	0.66
24	BOF Length, Right	-	-	_	-	<u>:</u>	
25	Foot Length, Right	0.709	0.55	0.46	0.769	-1.00	0.46
26	BOF Breadth, Hoz, Right	1.048	9.09	0.91	1.025	8.38	1.00
27	Outside BOF Length	0.844	5.61	0.66	0.908	4.21	0.64
28	5th Toe Length	0.795	2.40	0.58	0.771	2.66	0.68
29	BOF Length, Left	0.865	2.75	0.47	0.865	2.49	0.59
30	Foot Length, Left		-	_	_		•
31	BOF Breadth, Hoz, Left		_	_	•••	_	_
32	Bimalleolar Breadth	1.684	7.36	0.84	1.582	7.44	0.95
33	1st-3rd Toe Breadth	0.461	16.35	1.05	0.403	15.15	1.09
						į	

Table 111. Simple Regression Equations for Estimating Foot Length, Right (VAR 25)

	·	Male			Female	
Predicted Variable	Slope	Const.	SEE	Slope	Const.	SEE
1 Stature 2 Calf Height 3 Ankle Height 4 Med Malleolus Height 5 Lat Malleolus Height 6 Dorsal Arch Height 7 Plantar Arch Height 8 Ball of Foot Height 9 1st Toe Height 10 Maximum Toe Height 11 Outside BOF Height 12 Calf Circumference 13 Ankle Circumference 14 Heel-Ankle Circum 15 Instep Circumference 16 BOF Circum, Right 17 Heel Breadth, Right 18 BOF Breadth, Diagonal 19 Heel Breadth, Left 20 POF Circum, Left 21 Weight 22 Ankle Length 23 Instep Length 24 BOF Length, Right	Slope 0.132 0.373 0.678 0.539 0.284 0.790 NS* 2.028 1.764 2.143 1.999 0.209 0.505 0.601 0.739 0.732 1.631 1.614 - 0.066 1.423 1.271 1.150		1.00 1.06 1.20 1.33 1.36 1.27 1.24 1.32 1.25 1.25 1.25 1.17 0.90 0.96 1.01 1.16 1.03	Slope 0.144 0.365 0.832 0.409 0.256 0.719 NS 1.392 2.311 2.267 1.829 0.152 0.407 0.756 0.819 0.756 1.693 1.718 - 0.104 1.590 1.445 1.075		SEE 0.89 0.96 1.08 1.27 1.29 1.22 1.26 1.21 1.20 1.23 1.26 1.22 0.74 0.97 1.02 1.08 1.00 - 1.10 0.84 0.78 0.54
25 Foot Length, Right 26 BOF Breadth, Hoz, Right 27 Outside BOF Length 28 5th Toe Length	1.441 1.099 1.041	12.42 8.66 4.35	1.13 0.80 0.69	1.451 1.119 0.998	11.12 7.69 4.86	1.12 0.70 0.66
28 5th Toe Length 29 BOF Length, Left 30 Foot Length, Left 31 BOF Breadth, Hoz, Left 32 Bimalleolar Breadth	1.041 - 0.988 - 2.158	4.35 - 0.38 - 11.19	0.69 - 0.44 - 1.06	0.998 - 0.983 - 2.044	4.86 - 0.43 - 11.06	0.66 - 0.31 - 1.08
33 1st-3rd Toe Breadth	0.693	21.98	1.32	0.742	19.60	1.26

Table 112. Simple Regression Equations for Estimating BOF Breadth, Horizontal, Right (VAR 26)

		· <u></u>	Male			Female	
Pre	dicted Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.035	3.92	0.48	0.029	4.41	0.41
2	Calf Height	0.081	7.32	0.51	0.062	7.17	0.43
3	Ankle Height	0.154	8.13	0.52	0.186	7.13	0.42
4	Med Malleolus Height	0.146	8.90	0.54	0.143	8.11	0.44
5	Lat Malleolus Height	ns*			0.109	8.42	0.45
6	Dorsal Arch Height	0.238	7.98	0.52	0.222	7.35	0.44
7	Plantar Arch Height	NS			ns		
8	Ball of Foot Height	0.787	7.01	0.50	0.568	7.10	0.44
9	1st Toe Height	0.700	8.55	0.52	0.748	7.69	0.43
10	Maximum Toe Height	0.856	7.91	0.50	0.690	7.55	0.43
11	Outside BOF Height	0.757	7.87	0.50	0.631	7.44	0.43
12	Calf Circumference	0.102	6.30	0.47	0.078	6.39	0.43
13	Ankle Circumference	0.199	5.63	0.47	0.168	5.64	0.42
14	Heel-Ankle Circum	0.199	3.25	0.42	0.195	3.12	0.36
15	Instep Circumference	0.296	2.34	0.38	0.303	2.08	0.32
16	BOF Circum, Right	0.353	1.19	0.31	0.354	1.12	0.25
17	Heel Breadth, Right	0.582	6.00	0.48	0.537	5.74	0.39
18	BOF Breadth, Diagonal	0.816	1.49	0.29	0.805	1.49	0.24
19	Heel Breadth,Left	_	_		_	-	_
20	BOF Circum, Left	_	_	-	_	, 	_
21	Weight	0.025	8.19	0.46	0.032	7.21	0.40
22	Ankle Length	0.405	5.70	0.46	0.328	5.97	0.41
23	Instep Length	0.302	6.66	0.49	0.231	6.78	0.42
24	BOF Length, Right	0.268	4.82	0.46	0.176	6.01	0.41
25	Foot Length, Right	0.227	3.97	0.45	0.178	4.79	0.39
26	BOF Breadth, Hoz, Right	_	- ,	_	-	-	-
27	Outside BOF Length	0.272	5.56	0.47	0.170	6.61	0.42
28	5th Toe Length	0.281	3.99	0.44	0.178	5.66	0.41
29	BOF Length, Left		-	_	٠	_	
30	Foot Length, Left	-	_	-	-	_	
31	BOF Breadth, Hoz, Left	0.818	1.84	0.30	0.776	2.07	0.26
32	Bimalleolar Breadth	0.756	4.56	0.45	0.619	5.10	0.40
33.	1st-3rd Toe Breadth	0.420	7.07	0.50	0.434	6.35	0.42

Table 113. Simple Regression Equations for Estimating Outside BOF Length (VAR 27)

			<u> Male</u>			Female	
Pre	dicted Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.093	0.29	0.76	0.100	-1.19	0.73
2	Calf Height	0.272	7.32	0.79	0.262	6.61	0.75
3	Ankle Height	0.488	10.46	0.90	0.586	8.58	0.84
4	Med Malleolus Height	0.441	13.08	0.97	0.305	12.74	0.96
5	Lat Malleolus Height	0.272	14.68	0.99	0.218	13.48	0.97
6	Dorsal Arch Height	0.513	12.10	0.96	0.501	10.89	0.93
7	Plantar Arch Height	ns*			NS		
8	Ball of Foot Height	1.082	12.42	0.97	0.747	12.24	0.96
9	1st Toe Height	0.912	14.65	1.00	1.255	12.48	0.95
10	Maximum Toe Height	1.609	12.56	0.92	1.609	11.21	0.91
11	Outside BOF Height	1.246	13.00	0.95	0.815	12.72	0.96
12	Calf Circumference	0.119	12.25	0.96	0.090	11.76	0.96
13	Ankle Circumference	0.312	9.68	0.91	0.240	9.93	0.94
14	Heel-Ankle Circum	0.390	3.27	0.76	0.483	-0.01	0.70
15	Instep Circumference	0.466	4.45	0.80	0.496	3.37	0.83
16	BOF Circum, Right	0.395	6.71	0.88	0.357	6.84	0.90
17	Heel Breadth, Right	1.096	8.96	0.89	1.038	8.34	0.88
18	BOF Breadth, Diagonal	0.871	7.48	0.89	0.852	6.83	0.89
19	Heel Breadth, Left		_	_	 .		_ '
20	BOF Circum, Left	_	_	_	_	_	-
21	Weight	0.044	13.30	0.88	0.067	10.88	0.87
22	Ankle Length	0.932	6.54	0.76	0.992	5.34	0.76
23	Instep Length	0.812	7.42	0.79	0.926	5.45	0.72
24	BOF Length, Right	0.747	1.96	0.62	0.723	2.08	0.58
25	Foot Length, Right	0.599	0.49	0.59	0.638	-0.63	0.52
26	BOF Breadth, Hoz, Right	0.941	7.16	0.87	0.786	7.74	0.91
27	Outside BOF Length	-	-	•	-	_	_
28	5th Toe Length	0.820	-1.16	0.39	0.787	-0.48	0.43
29	BOF Length, Left	_	-	***	_	-	_
30	Foot Length, Left	_	_	_	_	-	_
31	BOF Breadth, Hoz, Left	_	-	***	_		-
32	Bimalleolar Breadth	1.357	6.74	0.85	1.265	6.68	0.88
33	1st-3rd Toe Breadth	0.337	14.23	1.00	NS		

Table 114. Simple Regression Equations for Estimating 5th Toe Length (VAR 28)

			Male			Female	_
Pre	dicted Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.111	2.22	0.82	0.119	0.29	0.80
2	Calf Height	0.317	10.85	0.87	0.303	9.95	0.85
3	Ankle Height	0.057	14.64	1.00	0.694	12.06	0.94
4	Med Malleolus Height	0.539	17.34	1.08	0.419	16.56	1.09
5	Lat Malleolus Height	0.333	19.30	1.11	0.295	17.62	1.10
6	Dorsal Arch Height	0.652	15.93	1.06	0.661	14.25	1.05
7	Plantar Arch Height	ns*			NS		
8	Ball of Foot Height	1.456	16.02	1.06	1.183	15.33	1.09
9	1st Toe Height	1.179	19.12	1.11	1.675	16.32	1.07
10	Maximum Toe Height	1.925	16.82	1.02	1.956	15.06	1.03
11	Outside BOF Height	1.502	17.31	1.06	1.310	16.03	1.08
12	Calf Circumference	0.156	15.96	1.06	0.132	14.94	1.09
13	Ankle Circumference	0.394	12.91	1.00	0.332	12.65	1.06
14	Heel-Ankle Circum	0.483	5.16	0.77	0.590	1.35	0.75
15	Instep Circumference	0.589	6.31	0.83	0.636	4.75	0.90
16	BOF Circum, Right	0.536	8.22	0.91	0.525	7.67	0.97
17	Heel Breadth, Right	1.342	12.30	0.97	1.312	11.25	0.98
18	BOF Breadth, Diagonal	1.209	8.98	0.91	1.186	8.29	0.97
19	Heel Breadth, Left	-	•••		- .	_	-
20	BOF Circum,Left	***	_	_	_	-	
21	Weight	0.054	17.62	0.95	0.085	14.44	0.97
22	Ankle Length	1.107	9.71	0.82	1.146	8.50	0.86
23	Instep Length	0.958	10.82	0.86	1.077	8.55	0.81
24	BOF Length, Right	0.888	4.25	0.62	0.804	5.30	0.69
25	Foot Length, Right	0.717	2.38	0.57	0.745	1.41	0.57
26	BOF Breadth, Hoz, Right	1.228	9.33	0.92	1.080	9.70	1.01
27	Outside BOF Length	1.036	4.47	0.44	1.030	4.19	0.49
28	5th Toe Length	_	-	_	_	_	
29	BOF Length, Left		-	-	_	-	_
30	Foot Length, Left	_	_	-	-	_	-
31	BOF Breadth, Hoz, Left	-	-	_	_	_	_
32	Bimalleolar Breadth	1.655	9.62	0.92	1.537	9.55	0.98
33	1st-3rd Toe Breadth	0.454	18.45	1.11	0.358	17.26	1.11
i							

Table 115. Simple Regression Equations for Estimating BOF Length, Left (VAR 29)

		Male			Female			
Pre	dicted Variable	Slope	Const.	SEE	Slope	Const.	SEE	
1	Chahaan	0 102	1 44	0.05	0 102	1.03	0.03	
1	Stature	0.103	1.44	0.85	0.103	1.03	0.83	
2	Calf Height		*. **	-	_	-	-	
	Ankle Height	-	-	_	. —	-	-	
4 5	Med Malleolus Height Lat Malleolus Height	-	-			-	_	
5 6	Dorsal Arch Height	-	-	_	_		_	
7		-	-	-	-	_		
8	Plantar Arch Height	-	_	_	. —	-	-	
9	Ball of Foot Height 1st Toe Height	· -	-	_	-	-		
10	Maximum Toe Height	-	-	-	-	-	_	
11	Outside BOF Height	-	-	_		-	-	
12	Calf Circumference	_	_	_	_	-	-	
		-	_	_	_		-	
13	Ankle Circumference	-	_	_	_	_	-	
14	Heel-Ankle Circum	_	_	-	•••		-	
15	Instep Circumference	-	-	-	_	_		
16	BOF Circum, Right		_	_	-	-	-	
17	Heel Breadth, Right	-	-	-	-	· .	-	
18	BOF Breadth, Diagonal	_	_	_	-	_	_	
19	Heel Breadth, Left	1.425		0.93	1.242	9.85	0.94	
20	BOF Circum, Left	0.554	5.63	0.86	0.537	5.53	0.90	
21	Weight 0.055	15.39	0.93	0.074	13.20	0.95		
22	Ankle Length	_	_	_	-	-	-	
23	Instep Length	_	-	_	_	-	-	
24	BOF Length, Right	0.938	1.09	0.49	0.820	3.09	0.58	
25	Foot Length, Right	_	-	-	-	_	-	
26	BOF Breadth, Hoz, Right	_	_		_	_	-	
27	Outside BOF Length	- ,	•	-	_	_	-	
28	5th Toe Length	_	_	_	_	_	_	
29	BOF Length, Left	_	_		_	-	_	
30	Foot Length, Left	0.791	-1.74	0.42	0.737	-0.32	0.50	
31	BOF Breadth, Hoz, Left	1.046	9.00	0.96	0.995	8.58	0.96	
32	Bimalleolar Breadth		-	-	· · · · · ·	-	_	
33	1st-3rd Toe Breadth		_	_	_	-	_	

Table 116. Simple Regression Equations for Estimating Foot Length, Left (VAR 30)

			Male			Female_	
Pre	dicted Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.133	3.53	0.91	0.147	0.61	0.84
2	Calf Height	-	-	-	-	-	-
3	Ankle Height		_	_		_	_
4	Med Malleolus Height	_	-	-	_		
5	Lat Malleolus Height	-	_	_	•••		_
6	Dorsal Arch Height	-	-	-	_	_	_
7	Plantar Arch Height	_	_	-	_		_
8	Ball of Foot Height	-	<u></u>	_		· 🛶	_
9	1st Toe Height	_	_	_		_	
10	Maximum Toe Height	-	_			-	
11	Outside BOF Height	_		_	_	_	-
12	Calf Circumference		-	· -	_	_	-
13	Ankle Circumference	***	_	_	-	-	_
14	Heel-Ankle Circum		_	_	-	-	-
15	Instep Circumfence		_	-	-	-	-
16	BOF Circum, Right	_	_	_	_	-	
17	Heel Breadth, Right		· -	-	_	_	_
18	BOF Breadth, Diagonal	–	-		-	_	~
19	Heel Breadth, Left	1.729	14.84	1.07	1.666	13.91	1.08
20	BOF Circum, Left	0.683	9.76	0.97	0.716	.8.21	1.02
21	Weight	0.065	21.98	1.08	0.103	18.15	1.08
22	Ankle Length	-	_	-	-		
23	Instep Length	_	-	-	_	_	-
24	BOF Length, Right	-	_	-	-	-	-
25	Foot Length, Right	0.908	2.41	0.42	0.959	0.97	0.30
26	BOF Breadth, Hoz, Right	_	•	-	· —	_	_
27	Outside BOF Length		-	-	-	-	-
28	5th Toe Length	-	_	-	-	_	-
29	BOF Length, Left	1.008	5.64	0.49	1.060	5.65	0.60
30	Foot Length, Left	-	-	_	_	-	-
31	BOF Breadth, Hoz, Left	1.399	12.79	1.06	1.416	11.46	1.08
32	Bimalleolar Breadth	-	-	_	_	-	-
33	1st-3rd Toe Breadth		_	_	_		-

Table 117. Simple Regression Equations for Estimating BOF Breadth, Horizontal, Left (VAR 31)

			Male			Female	
Pre	dicted Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.037	3.59	0.48	0.032	3.86	0.44
2	Calf Height	_	_	_	_		~ `
3	Ankle Height	, -	_	-	-	-	. 🗕
4	Med Malleolus Height	_	- .	-	-	-	-
5	Lat Malleolus Height	-	-	.	_	_	-
6	Dorsal Arch Height	_	-	_	-	_	
7	Plantar Arch Height	-	-	_	_	, - .	-
8	Ball of Foot Height	- ,	-	. =	_		-
9	1st Toe Height	_	-	_	-	_	-
10	Maximum Toe Height	-		_	_	_	_ '
11	Outside BOF Height	_	_		-	_	_
12	Calf Circumference	_	_	-	_	-	_
13	Ankle Circumference	_	_	. —	-	_	_
14	Heel-Ankle Circum	_	_	_	_		
15	Instep Circumference		_	_		_	_
16	BOF Circum, Right		_	_	_		
17	Heel Breadth, Right	_	-	_	_	_	_
18	BOF Breadth, Diagonal	_	_	_	-	_	_
19	Heel Breadth, Left	0.604	5.87	0.48	0.604	5.32	0.41
20	BOF Circum, Left	0.359	1.08	0.29	0.364	0.91	0.28
21	Weight	0.026	8.10	0.46	0.034	7.03	0.43
22	Ankle Length	_	-	-			-
23	Instep Length	_	_	-	_	-	-
24	BOF Length, Right	_				_	
25	Foot Length, Right		_	_	_	_	_
26	BOF Breadth, Hoz, Right	0.843	1.58	0.31	0.882	1.04	0.27
27	Outside BOF Length	_	_	_	_	_	_
28	5th Toe Length	_	_	-		_	_
29	BOF Length, Left	0.254	5.12	0.47	0.205	5.49	0.43
30	Foot Length, Left	0.247	3.44	0.45	0.203	4.16	0.41
31	BOF Breadth, Hoz, Left	-	_	_	-	_	-
32	Bimalleolar Breadth	_	_	_	—	_	
33	1st-3rd Toe Breadth	-	-	_	_	-	-

Table 118. Simple Regression Equations for Estimating Bimalleolar Breadth (VAR 32)

Male		Male	ale <u>Female</u>				
Pre	dicted Variable	Slope	Const.	SEE	Slope	Const.	SEE
1	Stature	0.029	2.14	0.34	0.026	2.27	0.31
2	Calf Circumference	0.055	5.43	0.38	0.050	4.92	0.33
3	Ankle Height	0.150	5.40	0.38	0.146	4.94	0.33
4	Med Malleolus Height	0.126	6.28	0.40	0.117	5.68	0.34
5	Lat Malleolus Height	ns*			0.048	6.20	0.35
6	Dorsal Arch Height	0.200	5.53	0.38	0.156	5.26	0.34
7	Plantar Arch Height	NS		•	NS		
8	Ball of Foot Height	0.617	4.90	0.36	0.526	4.63	0.33
9	1st Toe Height	0.605	5.98	0.38	0.536	5.48	0.33
10	Maximum Toe Height	0.530	5.96	0.38	0.545	5.26	0.33
11	Outside BOF Height	0.636	5.44	0.36	0.525	5.10	0.33
12	Calf Circumference	0.080	4.34	0.34	0.084	3.57	0.31
13	Ankle Circumference	0.180	3.28	0.31	0.197	2.41	0.27
14	Heel-Ankle Circum	0.156	1.95	0.30	0.175	1.10	0.25
15	Instep Circumference	0.210	1.83	0.29	0.224	1.29	0.26
16	BOF Circum, Right	0.211	2.00	0.30	0.193	2.13	0.28
17	Heel Breadth,Right	0.438	4.23	0.35	0.332	4.41	0.32
18	BOF Breadth, Diagonal	0.447	2.60	0.32	0.400	2.71	0.29
19	Heel Breadth,Left	_		_	_	-	-
20	BOF Circum, Left	_	_	_	-		-
21	Weight	0.019	5.89	0.34	0.029	4.78	0.29
-22	Ankle Length	0.319	3.85	0.33	0.313	3.49	0.29
23	Instep Length	0.265	4.29	0.35	0.245	4.01	0.30
24	BOF Length, Right	0.237	2.66	0.31	0.162	3.64	0.30
25	Foot Length, Right	0.187	2.27	0.31	0.150	2.87	0.29
26	BOF Breadth, Hoz, Right	0.416	3.11	0.33	0.368	3.15	0.31
27	Outside BOF Length	0.215	3.72	0.34	0.162	4.09	0.31
28	5th Toe Length	0.208	2.79	0.33	0.151	3.57	0.31
29	BOF Length, Left	-	-	-	-	_	-
30	Foot Length, Left	-		_	-	_	-
31	BOF Breadth, Hoz, Left	-	-	-	_	-	-
32	Bimalleolar Breadth	-	_	-	_	-	-
33 ⁻	1st-3rd Toe Breadth	0.288	5.24	0.37	0.242	4.96	0.34

Table 119. Simple Regression Equations for Estimating 1st-3rd Toe Breadth (VAR 33)

			Male			Female	
Pre	dicted Variable	Slope	Const.	SEE	Slope	Const.	SEE
1 2	Stature Calf Height	0.024 NS*	3.02	0.51	0.014 0.016	4.12 5.92	0.42 0.43
3	Ankle Height	NS 0 221	E 22	A F1	0.084	5.52	0.42
4 5	Med Malleolus Height Lat Malleolus Height	0.231 0.145	5.32 6.14	0.51 0.52	0.121 0.100	5.57 5.78	0.42 0.42
6	Dorsal Arch Height	0.242	5.04	0.51	0.163	5.12	0.42
7	Plantar Arch Height	0.102	6.88	0.53	NS		•••
8	Ball of Foot Height	0.678	4.54	0.50	0.422	4.92	0.42
9	1st Toe Height	0.516	6.06	0.52	0.440	5.58	0.42
10	Maximum Toe Height	NS			0.238	5.89	0.42
11	Outside BOF Height	0.506	5.71	0.51	0.454	5.21	0.42
12	Calf Circumference	0.062	4.89	0.51	0.055	4.52	0.41
13	Ankle Circumference	0.171	3.37	0.48	0.115	4.05	0.41
14	Heel-Ankle Circum	0.118	3.15	0.49	0.096	3.46	0.41
15	Instep Circumference	0.169	2.77	0.48	0.158	2.75	0.40
16	BOF Circum, Right	0.209	1.94	0.46	0.174	2.48	0.38
17	Heel Breadth, Right	0.284	5.20	0.52	0.233	4.96	0.42
18	BOF Breadth, Diagonal	0.400	2.98	0.48	0.360	3.01	0.39
19	Heel Breadth, Left	-	-	-	-	-	-
20	BOF Circum, Left	- 017		-	- 017	-	_ ^ 41
21	Weight	0.017	5.92	0.50	0.017	5.42	0.41
22	Ankle Length	0.207	4.95	0.51	0.168	4.82	0.42
23	Instep Length	0.131	5.70	0.52	0.097	5.44	0.42
24	BOF Length, Right	0.113	4.97	0.52	0.061	5.35	0.42
25	Foot Length, Right	0.105	4.37	0.51	0.081	4.47	0.42
26	BOF Breadth, Hoz, Right	0.403	3.12	0.49	0.384	2.93	0.39
27	Outside BOF Length	0.093	5.64	0.52	NS	E 40	0.40
28	5th Toe Length	0.100	5.03	0.52	0.052	5.42	0.42
29 30	BOF Length, Left		-	_	_	_	
31	Foot Length, Left	_	_	-	_	-	-
32	BOF Breadth, Hoz, Left Bimalleolar Breadth	0.502	- 3.52	0.49	0.359	4.10	0.41
33	1st-3rd Toe Breadth	-	3.32 -	U•47 —	-	-	-

CHAPTER V

MULTIPLE REGRESSION AND CORRELATION

Introduction

In the preceding chapter, the functional relationship between any two variables was expressed by the simple regression equation, and the strength of the bivariate relationship was measured by the correlation coefficient. In a sense, the accuracy and magnitude of the correlation coefficient are largely determined by the amount of variation of a variable that is "explained" by the other. Thus, unless a perfect correlation exists between two variables, a certain amount of variation of the dependent variable will remain unexplained.

Depending on the extent of the unexplained variability, the inclusion of additional independent variables in a regression function may significantly enhance the predictive ability of the regression equation, thereby reducing the amount of residual variability of the dependent variable. A predictive function that utilizes two or more independent variables to estimate a single dependent variable is called a <u>multiple regression equation</u>. The multiple regression equation is expressed as:

$$Y = a + b_1X_1 + b_2X_2 + \dots b_nX_n$$

where Y is the dependent variable; a is the constant; b_1, b_2, b_n are regression coefficients corresponding to each independent variable; and X_1, X_2, X_n are the independent variables.

The regression coefficients in the multiple regression equation are in effect partial regression coefficients because "they reflect the partial effect of one indepedent variable when the other independent variables included in that model are held constant" (Neter and Wasserman, 1974:217). Also, whereas the simple regression equation was that for a straight line fitted through the bivariate distribution of points, the multiple regression is representative of a "response surface," the configuration of which becomes increasingly more complex with the addition of more independent variables in the model (Neter and Wasserman, 1974:215).

As with a bivariate correlation, the concept of the strength of relationship among several variables cant be applied to multiple correlation. The measure of the joint covariation among several variables is the <u>multiple</u> correlation coefficient, which is usually statistically designated as "R". The multiple correlation coefficient can perhaps be best understood by considering its relationship to multiple regression. To reiterate, the predictive function for any dependent variable (Y) essentially aims to minimize the unexplained variability. Thus, with respect to the regression of Y on a particular suite of independent variables in the model, the total variation of Y comprises the variation explained by the regression and the remaining unexplained variation,

the residual variation. These components of the total variation in Y can be stated in terms of the "sums of squares" of Y (i.e., the squared deviations from the mean of Y) as follows:

$$SS_Y = SS_{reg} + SS_{res}$$

where $SS_Y = (Y-Y)^2$, the total sums of squares of Y: $SS_{reg} = (Y'-Y)^2$, the regression sums of squares; and $SS_{res} = (Y-Y')^2$, the residual sums of squares. The sums of squares can then be used to derive the coefficient of multiple correlation as follows:

$$R = (\underline{SS_{Y} - SS_{res}}) = \underline{SS_{reg}}$$

Another way to consider the multiple correlation coefficient is as a simple correlation between values predicted by the regression (Y') and actual values of Y. However, a multiple correlation coefficient is best interpreted by its square. Designated R², the <u>coefficient of multiple determination</u> is essentially a measure of the proportion of the total variation that is explained by the regression. Thus, it provides an indication of the efficacy of the predictive function, and, unless R² is equal to 1.0, a proportion of the residual variation remains unexplained.

As with the simple regression equation, the multiple regression equation also has an associated standard error of estimate (SEE). Again, the SEE essentially represents the standard devination of actual values of the dependent variable (Y) from the predicted values of the dependent variable (Y').

The purpose of this chapter is to present multiple regression equations with associated statistics for the foot and leg variables. Obviously, not every possible multiple relationship among variables will be expressed by the equations and statistics presented herein. Given that there are a total of 33 variables, the number of possible combinations of independent variables in the equations is enormous. Hence, the multiple relationships chosen for inclusion in this report consist of two specific types of multiple regression equations which provide the most salient statistical information among the variables. First, equations in which select pairs (i.e., four pairs) of dimensions are utilized as predictors of the other variables are presented. Secondly, multiple regression equations generated by a stepwise procedure are presented. Both types are discussed in more detail in their respective sections below.

Multiple Regression Equations with Select Pairs of Variables as Predictors

As indicated above, four specific pairs of dimensions were utilized as predictor variables to generate multiple regression equations for the other variables. These include: BOF Length and BOF Breadth, Horizontal; Foot Length and BOF Breadth, Horizontal; BOF Length and BOF Circumference; and Foot Length with BOF Circumference. These variables were selected because they are most commonly used as key dimensions in the design and sizing of footwear.

Tables 120 to 123 present the information for males, and Tables 124 to 127 present the information for females. Each table shows the multiple correlations (designated "MULT CORR") and regression equations for each variable as predicted by one specific variable pair. The standard error of estimate (SEE) for each equation is also presented. It should be noted that, in some cases, the coefficient for one or the other predictor variables is not always significantly different from zero. When this occurs, the bivariate correlation coefficient and the simple regression equation have been inserted. Also, in five cases the multiple regression equations are not statistically significant and thus no information is provided for these relationships. Finally, regression equations were not developed for the left side measurements.

Table 120. Multiple Correlation Coefficients and Regression Equations with BOF Length, Right (X) and BOF Breadth, Horizontal, Right (Y) as Predictor Variables -- Male

		MULT	EO	UATIONS		
PRE	DICTED VARIABLE	CORR	A	B	С	SEE
1	Stature ₊	0.674		2.015Y +		5.27
2	Calf Height"	0.615	1.326X	+	T	1.83
3	Ankle Height"	0.478	0.431X	+		0.85
4	Med Malleolus Height	0.195	0.118X	+	5.78	0.64
5	Lat Malleolus Height"	-	_	-		-
6	Dorsal Arch Height	0.284		0.340Y +	5.44	0.62
7	Plantar Arch Height **	_	-	-	-	_
8	Ball of Foot Height"	0.411		0.215Y +	1.74	0.26
9	1st Toe Height	0.294	0.027X +	0.073Y +	0.93	0.20
10	Maximum Toe Height	0.468	0.068X +	0.121Y -	0.02	0.23
11	Outside BOF Height	0.474	0.082X +	0.119Y +	0.12	0.25
12	Calf Circumference	0.518		1.992Y +		2.29
13	Ankle Circumference	0.579	0.410X +	0.886Y +	5.38	1.15
14	Heel-Ankle Circum	0.820	0.885X +	1.044Y +		0.95
15	Instep Circumference	0.804		1.179Y +		0.78
16	BOF Circum, Right	0.857		1.529Y +		0.65
17	Heel Breadth, Right	0.590		0.224Y +		0.37
18	BOF Breadth, Diagonal	0.879		0.702Y +		0.27
21	Weight	0.620		6.734Y -		9.05
22	Ankle Length *	0.798		0.211Y -		0.44
23	Instep Length*	0.775	0.564X	+		0.50
25	Foot Length, Right	0.907	-	0.312Y +		0.58
23 27		0.799		0.3121 +		0.61
	Outside BOF Length					0.58
28	5th Toe Length	0.856		0.389Y +		
32	Bimalleolar Breadth	0.683	U.1/3X +	0.231Y +		0.30
33	1st-3rd Toe Breadth	0.412		0.403Y +	3.12	0.49

^{*}The regression coefficient for either the X or Y predictor variable does not significantly differ from zero; thus the bivariate correlation coefficient and the simple regression equation are presented.

**The F value for this multiple regression is not significant at p<0.05.

NOTE, Tables 120-127: In the heading for the equations, the letter A refers to the regression coefficient for the first predictor variable (X), the letter B refers to the regression coefficient for the second predictor variable (Y), and the letter C refers to the constant.

Table 121. Multiple Correlation Coefficients and Regression Equations with Foot Length, Right (X) and BOF Breadth, Horizontal, Right (Y) as Predictor Variables -- Male

		MULT	EQ	UATIONS	_	
PRE	DICTED VARIABLES	CORR	A	В	C	SEE
						•
1	Stature	0.692	3.263X +	1.341Y +	74.16	5.15
2	Calf Height [*]	0.632	1.071X	+		1.80
3	Ankle Height"	0.480	0.340X	+	3.54	0.85
4	Med Malleolus Height"	0.257	0.122X	+	4.82	0.63
5	Lat Malleolus Height"	_	_	-	_	-
6	Dorsal Arch Height"	0.284		0.340Y +	5.44	0.62
7	Plantar Arch Height"	-	-	_	- '	_
8	Ball of Foot Height	0.452	0.057x +	0.118Y +	1.18	0.25
9	1st Toe Height"	0.270		0.104Y +	1.15	0.20
10	Maximum Toe Height	0.449	0.046x +	0.129Y +	0.02	0.24
11	Outside BOF Height	0.455	0.057X +	0.125Y +	0.14	0.25
12	Calf Circumference	0.517	0.325x +	1.968Y +	8.37	2.29
13	Ankle Circumference	0.582	0.341X +	0.833Y +	4.79	1.14
14	Heel-Ankle Circum	0.827	0.736x +	0.929Y +		0.93
15	Instep Circumference	0.804	0.423x +	1.127Y +		0.78
16	BOF Circum, Right	0.857	0.274X +	1.491Y +		0.65
17	Heel Breadth, Right	0.573		0.226Y +		0.37
18	BOF Breadth, Diagonal	0.868		0.718Y +		0.28
21	Weight	0.607		6.638Y -		9.17
22	Ankle Length	0.762		0.211Y -		0.47
23	Instep Length*	0.726	0.415X	+		0.54
24	BOF Length, Right*	0.903	0.709X	+		0.46
27	Outside BOF Length*	0.812	0.599X	+		0.59
28	5th Toe Length	0.867		0.289Y +		0.56
32	Bimalleolar Breadth	0.675		0.221Y +		0.30
33	1st-3rd Toe Breadth*	0.412	0.133A 1	0.403Y +		0.49
55	TOC-OLG TOC DECOMMI	0.41L		O TOST	J • 12	0.47

The regression coefficient for either the X or Y predictor variable does not significantly differ from zero; thus the bivariate correlation coefficient and the simple regression equation are presented.

**The F value for this multiple regression is not significant at p≤0.05.

Table 122. Multiple Correlation Coefficients and Regression Equations with BOF Length, Right (X) and BOF Circumference, Right (Y) as Predictor Variables -- Male

		MULT	EQU	JATIONS		
PRE	DICTED VARIABLE	CORR	A	В	C	SEE
1	Stature	0.686	3.313X +	1.375Y +	75.94	5.19
2	Calf Height"	0.615	1.326X	+	8.19	1.83
3	Ankle Height*	0.478	0.431X	+	4.22	0.85
4	Med Malleolus Height*	0.296		0.152Y +	4.28	0.62
5	Lat Maleolus Height"	0.224		0.128Y +	4.04	0.71
6	Dorsal Arch Height*	0.398		0.204Y +	3.74	0.60
7	Plantar Arch Height	0.233	-0.155X +	0.133Y +	2.73	0.59
8	Ball of Foot Height	0.586	-0.054x +	0.156Y +	1.04	0.23
9	1st Toe Height*	0.360		0.060Y +	0.70	0.20
10	Maximum Toe Height	0.478	0.053x +	0.064Y -	0.12	0.23
11	Outside BOF Height	0.545	0.040x +	0.099Y -	0.34	0.24
12	Calf Circumference	0.610		1.278Y +	4.78	2.11
13	Ankle Circumference*	0.679		0.752Y +		1.03
14	Heel-Ankle Circum	0.856	0.674X +	0.661Y +	4.41	0.85
15	Instep Circumference	0.871	0.293x +	0.732Y +	1.96	0.65
17	Heel Breadth, Right	0.589	0.147x +	0.107Y +	1.44	0.37
18	BOF Breadth, Diagonal	0.944	0.053x +	0.394Y -	0.43	0.19
21	Weight	0.672	2.542X +	4.492Y -	87.37	8.54
22	Ankle Length	0.805	0.432X +	0.128Y -	0.90	0.43
23	Instep Length*	0.775	0.564X	+	0.28	0.50
25	Foot Length, Right	0.909		0.168Y +		0.57
26	BOF Breadth, Hoz, Right*	0.824		0.353Y +		0.31
27	Outside BOF Length	0.794	0.747X	+		0.62
28	5th Toe Length	0.844		0.083Y +		0.61
32	Bimalleolar Breadth	0.715		0.142Y +		0.28
33	1st-3rd Toe Breadth	0.504	-0.074X +		2.30	0.46

^{*}The regression coefficient for either the X or Y predictor variable does not significantly differ from zero; thus the bivariate correlation coefficient and the simple regression equation are presented.

Table 123. Multiple Correlation Coefficients and Regression Equations with Foot Length, Right (X) and BOF Circumference, Right (Y) as Predictor Variables -- Male

		MULT	EQ	UATIONS		
PRED:	ICTED VARIABLE	CORR	A	В	C	SEE
1 8	Stature _	0.072	2.888X +	1.095Y		5.09
2 (Calf Height*	0.632	1.071X		+ 5.40	1.80
3 2	Ankle Height	0.480	0.340X		+ 3.54	0.85
	Med Malleolus Height	0.296		0.152Y		0.62
	Lat Malleolus Height [*]	0.224		0.128Y		0.71
6 I	Dorsal Arch Height	0.399	0.087X +	0.127Y	+ 3.32	0.59
	Plantar Arch Height "	_	-	-	_	_
8 I	Ball of Foot Height"	0.587		0.131Y	+ 0.60	0.23
	1st Toe Height"	0.360		0.060Y	+ 0.70	0.20
10 N	Maximum Toe Height	0.465	0.032X +	0.071Y	- 0.09	0.23
11 (Outside BOF Height [*]	0.524		0.116Y	+ 0.004	0.24
	Calf Circumference	0.610		1.278Y	+ 4.78	2.11
13 <i>I</i>	Ankle Circumference*	0.679		0.752Y	+ 3.43	1.03
14 F	Heel-Ankle Circum	0.861	0.567X +	0.620Y	+ 3.40	0.84
15	Instep Circumference	0.871	0.237X +	0.722Y	+ 1.60	0.65
	Heel Breadth,Right	0.575	0.105X +	0.112Y	+ 1.38	0.37
	BOF Breadth, Diagonal*	0.941		0.416Y	+ 0.06	0.19
	Weight	0.665	1.720X +	4.641Y		8.62
	Ankle Length	0.772	0.310X +			0.46
	Instep Length*	0.726	0.415X		+ 0.18	0.54
	BOF Length, Right	0.903	0.669X +	0.066Y	- 0.04	0.46
	BOF Breadth, Hoz, Right*	0.824		0.353Y		0.31
27 (Outside BOF Length"	0.812	0.599X		+ 0.49	0.59
	5th Toe Length*	0.864	0.717X		+ 2.38	0.57
	Bimalleolar Breadth	0.709	0.098X +	0.142Y		0.28
	1st-3rd Toe Breadth*	0.497		0.209Y		0.46

^{*}The regression coefficient for either the X or Y predictor variable does not significantly differ from zero; thus the bivariate correlation coefficient and the simple regression equation are presented.

**The <u>F</u> value for this multiple regression is not significant at p≤0.05.

Table 124. Multiple Correlation Coefficients and Regression Equations with BOF Length, Right (X) and BOF Breadth, Horizontal, Right (Y) as Predictor Variables — Female

		MULT	EO	UATIONS		
PRE	DICTED VARIABLE	CORR	A	_В	<u> </u>	SEE
1	Stature	0.668	3.410x +	2.676Y +	76.86	4.93
2	Calf Height	0.620	1.271X +	0.468Y +	4.87	1.91
3	Ankle Height	0.547	0.364x +	0.330Y +	1.35	0.74
4	Med Malleolus Height	0.211		0.312Y +	4.32	0.66
5	Lat Malleolus Height*	0.164		0.246Y +	4.34	0.68
6	Dorsl Arch Height	0.322	0.061X +	0.345Y +	3.81	0.58
7	Plantar Arch Height	-0.143	-0.077X	-1	4.26	0.59
8	Ball of Foot Height"	0.295		0.153Y +	2.18	0.23
9	1st Toe Height	0.404	0.046X +	0.099Y +	0.21	0.18
10	Maximum Toe Height	0.445	0.062X +	0.105Y +	0.24	0.20
11	Outside BOF Height	0.385	0.045X +	0.122Y +	0.77	0.22
12	Calf Circumference	0.350		1.566Y +	20.87	1.91
13	Ankle Circumference	0.429	0.124X +	0.890Y +	10.49	1.02
14	Heel-Ankle Circum	0.809	0.762X +	1.116Y +	7.18	0.84
15	Instep Circumference	0.780	0.353X +	1.267Y +	5.46	0.66
16	BOF Circum, Right	0.862	0.233X +	1.736Y +	2.66	0.55
17	Heel Breadth, Right	0.600	0.134X +	0.341Y +	0.84	0.34
18	BOF Breadth, Diagonal	0.888	0.123X +	0.768Y +	0.30	0.22
21	Weight	0.559	2.009X +	4.868Y -	19.87	5.57
22	Ankle Length *	0.766	0.391X +	0.214Y +	0.76	0.40
23	Instep Length*	0.799	0.524X	+	0.92	0.43
25	Foot Length, Right	0.918	1.002X +	0.423Y +	2.72	0.52
27	Outside BOF Length"	0.810	0.723X	+	2.08	0.58
28	5th Toe Length	0.797		0.308Y +		0.69
32	Bimalleolar Breadth	0.581	0.118x +	0.246Y +	2.17	0.29
33	1st—3rd Toe Breadth*	0.408		0.384Y +	2.93	0.39

The regression coefficient for either the X or Y predictor variable does not significantly differ from zero; thus the bivariate correlation coefficient and the simple regression equation are presented.

Table 125. Multiple Correlation Coefficients and Regression Equations With Foot Length, Right (X) and BOF Breadth, Horizontal, Right (Y) as Predictor Variables -- Female

		MULT	EQUATIONS	
PRE	DICTED VARIABLE	CORR	A B	C SEE
1	Stature _	0.738	3.535X + 1.043Y + 66	
2	Calf Height"	0.677		1.77
3	Ankle Height	0.578		0.72
4	Med Malleolus Height	0.252		3.38 0.66
5	Lat Malleolus Height"	0.164	0.246Y + 4	1.34 0.68
6	Dorsal Arch Height	0.375	0.118X + 0.236Y + 3	3.01 0.57
7	Plantar Arch Height**	_		
8	Ball of Foot Height	0.332	0.026x + 0.122y + 1	1.83 0.22
9	1st Toe Height	0.401	0.040X + 0.089Y + 0	0.15
10	Maximum Toe Height	0.429	0.050X + 0.096Y + 0	0.21
11	Outside BOF Height	0.382	0.039X + 0.112Y + 0	0.72
12	Calf Circumference*	0.350	1.566Y + 20	1.91
13	Ankle Circumference	0.442	0.155X + 0.792Y + 9	9.80 1.01
14	Heel-Ankle Circum	0.852	0.754X + 0.803Y + 5	5.17 0.75
15	Instep Circumference	0.791	0.337X + 1.140Y + 4	1.67 0.65
16	BOF Circum, Right	0.866		2.15 0.54
17	Heel Breadth, Right	0.620	0.133X + 0.286Y - 0	0.49 0.34
18	BOF Breadth, Diagonal	0.882		0.22 0.23
21	Weight	0.587	2.073X + 3.919Y - 26	
22		0.764		0.19 0.40
23	Ankle Length Instep Length*	0.802		0.64 0.43
24	BOF Length, Right	0.909		0.36
27	Outside BOF Length	0.851		0.15
28	5th Toe Length	0.862		1.41 0.57
32	Bimalleolar Breadth	0.598	0.113X + 0.203Y + 1	
33	1st-3rd Toe Breadth*	0.408		2.93 0.39
J J	180-310 TOE DIEGULI	0.400	U-3041 T 2	

The regression coefficient for either the X or Y predictor variable does not significantly differ from zero; thus the bivariate correlation coefficient and the simple regression equation are presented.

**The F value for this multiple regression is not significant at p≤0.05.

Table 126. Multiple Correlation Coefficients and Regression Equations with BOF Length, Right (X) and BOF Circumference, Right (Y) as Predictor Variables -- Female

		MULT	EC	UATIONS		
PRE	DICTED VARIABLE	CORR	A	В	С	SEE_
1	Stature	0.678	3.072X +	- 1.504Y +	· 73 . 25	4.87
2	Calf Height [*]	0.617	1.354X	+		1.90
3	Ankle Height	0.553	0.330x +	- 0.170Y +		0.74
4	Med Malleolus Height*	0.297		0.186Y +		0.64
5	Lat Malleolus Height	0.251	-0.068X +	- 0.187Y +		0.67
6	Dorsal Arch Height"	0.401		0.227Y +	2.91	0.56
7	Plantar Arch Height	0.238	-0.144x +	· 0.128Y +	2.55	0.58
8	Ball of Foot Height	0.489	-0.049x +	· 0.126Y +	1.59	0.21
9	1st Toe Height	0.415	0.037X +	- 0.050Y +	0.15	0.18
10	Maximum Toe Height	0.455	0.052X +	- 0.053Y +	0.17	0.20
11	Outside BOF Height	0.451	0.022X +	- 0.082Y +	0.43	0.21
12	Calf Circumference	0.452		0.860Y +	- 15.68	1.82
13	Ankle Circumference*	0.550		0.571Y +	7.88	0.93
14	Heel-Ankle Circum	0.850	0.605X +	- 0.656Y +	- 5.30	0.75
15	Instep Circumference	0.848	0.201X +	- 0.698Y +	- 3.93	0.56
17	Heel Breadth, Right	0.596	0.112X +	- 0.152Y +	0.89	0.34
18	BOF Breadth, Diagonal	0.946	0.047X +	- 0.392Y -	0.22	0.16
21	Weight	0.637	1.156X +	· 3.173Y -	32.14	5.18
22	Ankle Length	0.776	0.358X +	· 0.131Y +	0.33	0.40
23	Instep Length	0.803	0.495X +	- 0.057Y +	0.16	0.43
25	Foot Length, Right	0.920	0.962X +	-0.213Y +	2.48	0.51
26	BOF Breadth, Hoz, Right*	0.833		0.354Y +	1.12	0.25
27	Outside BOF Length	0.817	0.774X -	0.074Y +	2.86	0.57
28	5th Toe Length	0.793	0.757X +	0.102Y +	3.82	0.69
32	Bimalleolar Breadth	0.629	0.082X +	- 0.147Y +		0.27
33	1st-3rd Toe Breadth	0.453	-0.046X +	- 0.202Y +	2.67	0.39

The regression coefficient for either the X or Y predictor variable does not significantly differ from zero; thus the bivariate correlation coefficient and the simple regression equation are presented.

Table 127. Multiple Correlation Coefficient and Regression Equations with Foot Length, Right (X) and BOF Circumference, Right (Y) as Predictor Variables -- Female

		MULT	EQUATIONS	
PRE	DICTED VARIABLE	CORR	A B C	SEE_
1	Stature	0.740	3.362X + 0.697Y + 64.6	
2	Calf Height [*]	0.677	1.257X + 1.0	
3	Ankle Height	0.581	0.334X + 0.104Y + 0.104Y	
4	Med Malleolus Height"	0.297	0.186Y + 2.9	
5	Lat Malleolus Height"	0.027	0.145Y + 3.3	
6	Dorsal Arch Height	0.426	0.066X + 0.182Y + 2.	31 0.55
7	Plantar Arch Height	0.169	-0.086X + 0.111Y + 2.6	44 0.59
8	Ball of Foot Height"	0.438	0.096Y + 1.4	40 0.21
9	1st Toe Height	0.412	0.032X + 0.047Y + 0.	10 0.18
10	Maximum Toe Height	0.441	0.040X + 0.052Y + 0.	14 0.20
11	Outside BOF Height*	0.430	0.092Y + 0.0	60 0.21
12	Calf Circumference*	0.452	0.860Y + 15.0	68 1.82
13	Ankle Circumference*	0.550	0.571Y + 7.8	
14	Heel-Ankle Circum	0.879	0.627X + 0.523Y + 3.7	75 0.68
15	Instep Circumference	0.852	0.200X + 0.660Y + 3.4	
17	Heel Breadth, Right	0.614	0.119X + 0.126Y + 0.1	59 0.34
18	BOF Breadth, Diagonal	0.943	0.028X + 0.397Y - 0.	
21	Weight	0.648	1.308X + 2.837Y - 35.9	
22	Ankle Length	0.771	0.318X + 0.092Y - 0.	
23	Instep Length"	0.802	0.446X - 0.6	
24	BOF Length, Right*	0.909	0.769X - 1.0	
26	BOF Breadth, Hoz, Right*	0.833	0.354Y + 1.	
27	Outside BOF Length	0.865	0.749X - 0.204Y + 1.3	
28	5th Toe Length*	0.862	0.745X + 1.4	
32	Bimalleolar Breadth	0.637	0.081X + 0.132Y + 1.9	
33	1st-3rd Toe Breadth*	0.437	0.174Y + 2.4	
55	100 old 100 model	0110,	VII. 1 21	

The regression coefficient for either the X or Y predictor variable does not significantly differ from zero; thus the bivariate correlation coefficient and the simple regression equation are presented.

Stepwise Multiple Regressions

The stepwise procedure is a method that develops multiple regression equations which include the "best" combination of independent variables as predictors of the dependent variable. In other words, the aim is to "isolate a subset of predictor variables that will yield an optimal prediction equation with as few terms as possible" (Nie et al., 1975:345). There are several variations of the stepwise procedure which can be used to develop the equations. Perhaps the most commonly used is stepwise forward inclusion. this procedure the first variable entered into the equation is the one which explains the greatest amount of variation in the dependent variable, that is, the independent variable which yields the highest R2 with the dependent variable. The next variable entered will be the one which yields the greatest significant increase in the R². The procedure is repeated for all subsequent independent variables. It is important to note that, at each step, all previously included independent variables are reconsidered for their effect on the R². This is done because the interrelationships among the independent variables could change and a previously included variable may no longer significantly increase the R².

The stepwise forward inclusion method was used to develop the equations in this report. The stepwise multiple regression equations for the Fort Jackson data are presented in Tables 128 to 183. For each predictive function the stepwise procedure was followed up to a limit of five steps (i.e., five independent variables). Each step essentially represents a single multiple regression equation with associated statistics. Each table shows the five steps for each respective dependent variable. The equation at each step is to be read in a columnar fashion with the regression coefficients corresponding to the variables entered in each step. Left side measurements were not used as predictor variables in the equations nor were predictive functions developed for them as dependent variables. Each male table for a specific dependent variable is followed by the female table for that variable.

Table 128. Stepwise Multiple Regression Equations for Estimating Stature (VAR 1) — Male

			Step		<u> </u>
Variable	1	2	3	4.	5
14 Heel-Ankle Circumference	3.106	2.088	1.579	0.932	
2 Calf Height		1.214	1.249	1.092	
4 Medial Malleolus Height			3.034	3.346	
24 BOF Length, Right				1.455	
6 Dorsal Arch Height					
Constant	69.182	62.398	54.060	50.500	
Standard Error of Estimate	4.98	4.44	4.06	3.95	
Multiple Correlation	0.717	0.785	0.825	0.836	

Table 129. Stepwise Multiple Regression Equations for Estimating Stature (VAR 1) — Female

				Step		
<u>Var</u>	iable	1	2	3	4	5
25	Foot Length, Right	3.727	3.480	2.388	2.204	2.478
5	Lateral Malleolus Height		3.220	2.876	1.904	1.804
2	Calf Height			0.887	0.949	1.023
4	Medial Malleolus Height				1.592	1.477
17	Heel Breadth, Right					-1.886
Con	stant	70.943	55.766	56.513	54.029	58.437
Sta	ndard Error of Estimate	4.49	3.92	3.59	3.50	3.44
Mul	tiple Correlation	0.735	0.807	0.841	0.850	0.856

Table 130. Stepwise Multiple Regression Equations for Estimating Calf Height (VAR 2) -- Male

			Step		
Variable	1	22	3	4	5
28 5th Toe Length	1.323	0.928	0.778	0.727	0.788
14 Heel-Ankle Circumference		0.354	0.865	0.928	1.014
13 Ankle Circumference			-0.691	-0.614	-0.542
33 1st-3rd Toe Breadth				-0.639	-0.585
32 Bimalleolar Breadth					-0.985
Constant	5.580	2.007	3.222	5.024	5.957
Standard Error of Estimate	1.79	1.75	1.63	1.60	1.58
Multiple Correlation	0.641	0.662	0.718	0.727	0.739

Table 131. Stepwise Multiple Regression Equations for Estimating Calf Height (VAR 2) -- Female

				Step		···
<u>Var</u>	iable	1	2	3	4	5_
25	Foot Length, Right	1.260	0.971	0.782	0.925	0.863
3	Ankle Height		0.745	0.764	0.826	0.808
17	Heel Breadth, Right			0.990	1.339	1.074
18	BOF Breadth, Diagonal				-0.994	-1.440
15	Instep Circumference					0.409
Con	stant	9.887	-0.027	-1.894	1.183	-7. 356
Sta	ndard Error of Estimate	1.79	1.70	1.67	1.64	1.62
Mul	tiple Correlation	0.678	0.713	0.728	0.742	0.748

Table 132. Stepwise Multiple Regression Equations for Estimating Ankle Height (VAR 3) -- Male

				Step		
<u>Var</u>	riable	11	2	3	4	5
24	BOF Length, Right	0.432	0.379	0.535	0.332	
6	Dorsal Arch Height		0.378	0.560	0.384	į
13	Ankle Circumference			-0.278	-0.389	
14	Heel-Ankle Circumference		•		0.257	
Con	stant	4.205	1.901	3.437	2.678	
Sta	ndard Error of Estimate	0.85	0.82	0.76	0.74	
Mul	tiple Correlation	0.481	0.538	0.63	0.658	

Table 133. Stepwise Multiple Regression Equations for Estimating Ankle Height (VAR 3) -- Female

		<u></u>		Step		
<u>Var</u>	iable	1	22	3	4	5
25	Foot Length, Right	0.388	0.321	0.371	0.281	0.286
6	Dorsal Arch Height		0.418	0.559	0.590	0.399
13	Ankle Circumference			-0.245	-0.380	-0.412
32	Bimalleolar Breadth				0.832	0.850
4	Medial Malleolus Ht					0.286
Con	stant	1.363	-0.369	2.379	1.691	1.616
Sta	ndard Error of Estimate	0.72	0.68	0.64	0.61	0.59
Mul	tiple Correlation	0.573	0.633	0.691	0.728	0.746

Table 134. Stepwise Multiple Regression Equations for Estimating Medial Malleolus Height (VAR 4) -- Male

			Step		
Variable	11	2	3	4	5
6 Dorsal Arch Height	0.743	0.484	0.396	0.364	
5 Lateral Malleolus Height		0.372	0.332	0.329	
7 Plantar Arch Height			0.186	0.202	
12 Calf Circumference				-0.025	
Constant	1.513	1.108	1.618	9.620	
Standard Error of Estimate	0.45	0.39	0.39	0.38	
Multiple Correlation	0.728	0.798	0.808	0.813	

Table 135. Stepwise Multiple Regression Equations for Estimating Medial Malleolus Height (VAR 4) -- Female

				Step		
<u>Var</u>	riable	11	2	3	44	5
6	Dorsal Arch Height	0.726	0.470	0.401	0.331	0.244
5	Lateral Malleolus Height		0.340	0.338	0.297	0.275
13	Ankle Circumference			0.097	0.091	0.105
7	Plantar Arch Height				0.173	0.214
3	Ankle Height					0.106
Con	stant	1.335	1.154	-0.293	0.152	-0.541
Sta	ndard Error of Estimate	0.51	0.48	0.47	0.47	0.46
Mul	tiple Correlation	0.652	0.701	0.717	0.726	0.736

Table 136. Stepwise Multiple Regression Equations for Estimating Lateral Malleolus Height (VAR 5) -- Male

				Step	·	.,
<u>Var</u>	iable	1	2	3	4	5
4	Medial Malleolus Height	0.782	0.793	0.674	0.554	0.555
17	Heel Breadth, Right		-0.255	-0.576	-0.544	-0.558
14	Heel-Ankle Circumference			0.131	0.127	0.169
7	Plantar Arch Height			· .	0.209	0.177
32	Bimalleolar Breadth					-0.214
Con	stant	0.916	2.620	1.343	1.588	1.900
Sta	ndard Error of Estimate	0.52	0.50	0.48	0.48	0.47
Mul	tiple Correlation	0.705	0.722	0.746	0.758	0.762

Table 137. Stepwise Multiple Regression Equations for Estimating Lateral Malleolus Height (VAR 5) -- Female

				Step_		
<u>Var</u>	iable	1	2	3	4	5
6	Dorsal Arch Height	0.752	0.503	0.414	0.444	0.390
4	Medial Malleolus Height		0.344	0.297	0.310	0.291
7	Plantar Arch Height			0.204	0.187	0.218
32	Bimalleolar Breadth				-0.178	-0.230
3	Ankle Height					0.087
Con	stant	0.530	0.071	0.535	1.418	1.293
Sta	ndard Error of Estimate	0.52	0.49	0.48	0.48	0.47
Mul	tiple Correlation	0.663	0.711	0.723	0.728	0.734

Table 138. Stepwise Multiple Regression Equations for Estimating Dorsal Arch Height (VAR 6) -- Male

				Step		
<u>Var</u>	riable	11	2	3	4	5
4	Medial Malleolus Height	0.714	0.600	0.481	0.332	0.305
14	Heel-Ankle Circumference		0.113	0.285	0.260	0.210
22	Ankle Length			-0.455	-0.377	-0.436
7	Plantar Arch Height				0.280	0.329
25	Foot Length, Right					0.107
Con	stant	3.086	0.124	0.132	0.502	0.034
Sta	ndard Error of Estimate	0.44	0.40	0.35	0.33	0.32
Mul	tiple Correlation	0.728	0.776	0.837	0.860	0.869

Table 139. Stepwise Multiple Regression Equations for Estimating Dorsal Arch Height (VAR 6) -- Female

		Step				
Variable		1	2	3	4	5
5	Lateral Malleolus Height	0.584	0.503	0.404	0.276	0.206
14	Heel-Ankle Circumference		0.157	0.326	0.298	0.280
22	Ankle Length			-0.469	-0.394	-0.382
7	Plantar Arch Height			•	0.298	0.244
4	Medial Malleolus Height					0.171
Constant		4.201	-0.115	-0.152	-0.042	-0.216
Standard Error of Estimate		0.46	0.40	0.36	0.33	0.32
Multiple Correlation		0.663	0.752	0.808	0.842	0.853

Table 140. Stepwise Multiple Regression Equations for Estimating Plantar Arch Height (VAR 7) — Male

				Step		
<u>Var</u>	riable	1	2	3	4	5
6	Dorsal Arch Height	0.623	0.722	0.498	0.444	0.452
25	Foot Length, Right		-0.131	-0.129	-0.149	-0.110
4	Medial Malleolus Height			0.300	0.264	0.249
8	Ball of Foot Height				0.388	0.464
32	Bimalleolar Breadth					-0.239
Con	stant	-2.500	0.151	-0.336	-0.557	-0.939
Sta	ndard Error of Estimate	0.45	0.42	0.40	0.39	0.38
Mul	tiple Correlation	0.663	0.720	0.754	0.767	0.776

Table 141. Stepwise Multiple Regression Equations for Estimating Plantar Arch Height (VAR 7) — Female

				Step		
<u>Variable</u>		1	2	3	4	5
6	Dorsal Arch Height	0.603	0.707	0.541	0.473	0.397
25	Foot Length, Right		-0.141	-0.140	-0.146	-0.139
4	Medial Malleolus Height			0.228	0.197	0.149
8	Ball of Foot Height				0.413	0.415
5	Lateral Malleolus Height					0.140
Con	stant	-1.970	0.633	0.318	-0.261	-0.399
Sta	ndard Error of Estimate	0.47	0.44	0.42	0.42	0.41
Mul	tiple Correlation	0.613	0.678	0.706	0.717	0.726

Table 142. Stepwise Multiple Regression Equations for Estimating BOF Height (VAR 8) -- Male

	-		Step		
<u>Variable</u>	1	2	3	4	5_
14 Heel-Ankle Circumference	0.102	0.171	0.144	0.123	0.090
24 BOF Length, Right		-0.137	-0.118	-0.219	-0.220
4 Medial Malleolus Height			0.111	0.107	0.109
25 Foot Length, Right				0.110	0.103
16 BOF Circumference, Right					0.063
Constant	0.403	0.741	0.396	0.159	-0.107
Standard Error of Estimate	0.22	0.20	0.19	0.18	0.18
Multiple Correlation	0.602	0.691	0.730	0.762	0.781

Table 143. Stepwise Multiple Regression Equations for Estimating BOF Height (VAR 8) -- Female

		• • • • • • • • • • • • • • • • • • • •		Step		
Variable		1	2	3	4	5
6	Dorsal Arch Height	0.228	0.181	0.176	0.128	0.100
13	Ankle Circumference		0.066	0.055	0.051	0.045
11	Outside BOF Height			0.176	0.209	0.225
7	Plantar Arch Height				0.082	0.070
4	Medial Malleolus Height					0.053
Cor	nstant	1.745	0.763	0.539	0.697	0.654
Sta	undard Error of Estimate	0.19	0.18	0.18	0.17	0.17
Mul	tiple Correlation	0.586	0.651	0.672	0.690	0.698

Table 144. Stepwise Multiple Regression Equations for Estimating 1st Toe Height (VAR 9) -- Male

•			Step		
Variable	1	2	3	4	5_
16 BOF Circumference, Right	0.056	0.038			
11 Outside BOF Height		0.146			•
Constant	0.793	0.810			
Standard Error of Estimate	0.20	0.19			•
Multiple Correlation	0.339	0.380			

Table 145. Stepwise Multiple Regression Equations for Estimating 1st Toe Height (VAR 9) -- Female

				Step		
Variable		1	2	· 3	4	5
15	Instep Circumference	0.082	0.058	0.037	0.052	0.046
10	Maximum Toe Height		0.227	0.190	0.185	0.161
17	Heel Breadth, Right			0.092	0.088	0.080
12	Calf Circumference				-0.012	-0.013
11	Outside BOF Height					0.100
Con	stant	0.017	0.069	0.048	0.183	0.184
Sta	ndard Error of Estimate	0.18	0.18	0.18	0.17	0.17
Mul	tiple Correlation	0.431	0.482	0.502	0.513	0.522

Table 146. Stepwise Multiple Regression Equations for Estimating Maximum Toe Height (VAR 10) -- Male

				Step		
Variable		1	2	3	4	5
15 Ins	step Circumference	0.112	0.082	0.096	0.072	0.059
11 Out	cside BOF Height	•	0.237	0.243	0.216	0.211
33 1st	-3rd Toe Breadth			-0.087	-0.082	-0.090
17 Hee	el Breadth,Right				0.114	0.124
8 Bal	ll of Foot Height					0.117
Constan	nt	-0.392	-0.283	-0.389	-0.193	-0.280
Standar	d Error of Estimate	0.22	0.21	0.21	0.20	0.20
Multipl	le Correlation	0.564	0.60	0.621	0.638	0.646

Table 147. Stepwise Multiple Regression Equations for Estimating Maximum Toe Height (VAR 10) -- Female

				Step		
Variable		1	2	3	4	5
15	Instep Circumference	0.108	0.080	0.067	0.046	0.033
11	Outside BOF Height		0.248	0.216	0.193	0.211
9	1st Toe Height			0.208	0.176	0.172
17	Heel Breadth, Right				0.098	0.084
27	Outside BOF Length					0.029
Con	stant	-0.226	-0.237	-0.239	-0.251	-0.343
Sta	ndard Error of Estimate	0.19	0.18	0.18	0.18	0.18
Mul	tiple Correlation	0.515	0.561	0.586	0.602	0.611

Table 148. Stepwise Multiple Regression Equations for Estimating Outside BOF Height (VAR 11) -- Male

			Step		
	11	2	3	4	5
	0.130	0.100	0.090		
		0.262	0.264		
			0.198		
•	-0.458	-0.356	-0.520		
e	0.23	0.22	0.22		
	0.599	0.632	0.646		
		-0.458 • 0.23	0.130 0.100 0.262 -0.458 -0.356 0.23 0.22	1 2 3 0.130 0.100 0.090 0.262 0.264 0.198 -0.458 -0.356 -0.520 0.23 0.22 0.22	1 2 3 4 0.130 0.100 0.090 0.262 0.264 0.198 -0.458 -0.356 -0.520 0.23 0.22 0.22

Table 149. Stepwise Multiple Regression Equations for Estimating Outside BOF Height (VAR 11) -- Female

	•	· 		Step		
<u>Var</u>	iable	1	2	3	4	5
15	Instep Circumference	0.114	0.084	0.100	0.092	0.122
10	Maximum Toe Height		0.270	0.290	0.277	0.269
27	Outside BOF Length			-0.035	-0.062	-0.067
23	Instep Length				0.065	0.078
18	BOF Breadth, Diagonal					-0.086
Con	stant	0.044	0.105	0.224	0.172	0.267
Sta	ndard Error of Estimate	0.199	0.192	0.190	0.188	0.186
Mul	tiple Correlation	0.517	0.562	0.577	0.594	0.604

Table 150. Stepwise Multiple Regression Equations for Estimating Calf Circumference (VAR 12) -- Male

				Step		
Variable		1	22	3	4	5
13	Ankle Circumference	1.497	1.198	1.326	1.384	1.260
15	Instep Circumference		0.439	0.875	0.899	0.921
14	Heel-Ankle Circumference			-0.493	-0.483	-0.348
33	1st-3rd Toe Breadth				-0.472	-0.465
3	Ankle Height					-0.282
Con	stant	3.475	-1.321	1.318	2.448	3.565
Sta	ndard Error of Estimate	1.65	1.60	1.56	1.54	1.53
Mul	tiple Correlation	0.788	0.802	0.814	0.819	0.823

Table 151. Stepwise Multiple Regression Equations for Estimating Calf Circumference (VAR 12) -- Female

			Step		
Variable	1	2	. 3	4	5
13 Ankle Circumference	1.276	1.066	1.047	1.091	1.160
15 Instep Circumference		0.384	0.162	0.556	0.539
25 Foot Length, Right			-0.261	-0.367	-0.408
2 Calf Height				0.098	0.114
7 Plantar Arch Height					-0.311
Constant	8.607	4.020	5.487	5.360	5.680
Standard Error of Estimate	1.490	1.454	1.434	1.425	1.416
Multiple Correlation	0.693	0.711	0.722	0.726	0.731

Table 152. Stepwise Multiple Regression Equations for Estimating Ankle Circumference (VAR 13) -- Male

				Step		
Variable		11	2	3	4	5
12	Calf Circumference	0.414	0.286	0.258	0.221	0.219
14	Heel-Ankle Cicumference		0.356	0.489	0.582	0.558
2	Calf Height			-0.127	-0.119	-0.119
3	Ankle Height				-0.254	-0.291
5	Lateral Malleolus Height					0.281
Con	stant	7.060	-0.405	0.435	1.526	0.876
Sta	andard Error of Estimate	0.87	0.72	0.69	0.66	0.63
Mul	tiple Correlation	0.788	0.858	0.873	0.885	0.896

Table 153. Stepwise Multiple Regression Equations for Estimating Ankle Circumference (VAR 13) — Female

				Step		
Variable		1	22	3	4	5
12	Calf Circumference	0.376	0.276	0.261	0.228	0.192
32	Bimalleolar Breadth		1.204	1.089	1.430	0.911
4	Medial Malleolus Height			0.351	0.488	0.465
3	Ankle Height				-0.330	-0.475
14	Heel-Ankle Circumference					0.268
Con	stant	7.577	3.270	2.024	3.546	1.658
Sta	ndard Error of Estimate	0.809	0.720	0.683	0.636	0.591
Mul	tiple Correlation	0.693	0.768	0.794	0.825	0.852

Table 154. Stepwise Multiple Regression Equations for Estimating Heel-Ankle Circumference (VAR 14) -- Male

				Step		
<u>Variable</u>		11	2	3	4	5
15	Instep Circumference	1.086	0.776	0.699	0.520	0.392
25	Foot Length, Right		0.420	0.390	0.154	0.143
6	Dorsal Arch Height			0.497	0.738	0.775
22	Ankle Length				0.801	0.732
17	Heel Breadth, Right					0.685
Con	stant	5.910	2.664	1.069	1.303	0.549
Sta	ndard Error of Estimate	0.82	0.72	0.66	0.56	0.52
Mul	tiple Correlation	0.867	0.902	0.918	0.94	0.95

Table 155. Stepwise Multiple Regression Equations for Estimating Heel-Ankle Circumference (VAR 14) -- Female

				Step		
<u>Var</u>	Variable		2	3	4	5
15	Instep Circumference	1.122	0.688	0.521	0.355	0.293
25	Foot Length, Right		0.525	0.542	0.498	0.468
13	Ankle Circumference			0.250	0.297	0.256
17	Heel Breadth, Right				0.649	0.743
6	Dorsal Arch Height					0.366
Con	nstant	4.756	2.055	0.354	0.186	-0.314
Sta	andard Error of Estimate	0.790	0.604	0.560	0523	0.486
Mul	tiple Correlation	0.832	0.906	0.920	0.931	0.941

Table 156. Stepwise Multiple Regression Equations for Estimating Instep Circumference (VAR 15) — Male

				Step		
Variable		11	2	3	4	5
14	Heel-Ankle Circumference	0.693	0.413	0.374	0.336	0.296
16	BOF Circumference, Right		0.468	0.399	0.392	0.402
12	Calf Circumference			0.085	0.078	0.075
10	Maximum Toe Height	·			0.576	0.494
17	Heel Breadth, Right					0.236
Con	stant	2.391	0.220	0.145	0.378	0.206
Sta	ndard Error of Estimate	0.66	0.55	0.52	0.51	0.50
Mul	tiple Correlation	0.867	0.910	0.919	0.924	0.926

Table 157. Stepwise Multiple Regression Equations for Estimating Instep Circumference (VAR 15) — Female

				Step	 	
Variable		1	2	3	4	5_
14	Heel-Ankle Circumference	0.617	0.355	0.316	0.293	0.374
16	BOF Circumference, Right		0.457	0.443	0.408	0.398
10	Maximum Toe Height			0.633	0.630	0.653
12	Calf Circumference				0.067	0.059
23	Instep Length				•	-0.194
Con	stant	4.232	1.981	2.025	1.198	1.156
Sta	ndard Error of Estimate	0.586	0.489	0.474	0.458	0.449
Mul	tiple Correlation	0.832	0.887	0.894	0.902	0.906

Table 158. Stepwise Multiple Regression Equations for Estimating BOF Circumference, Right (VAR 16) -- Male

				Step	·	
Variable		1	2	3	4	5
18	BOF Breadth, Diagonal	2.089	1.888	1.632	1.594	1.599
8	Ball of Foot Height		1.043	0.823	0.765	0.738
15	Instep Circumference			0.162	0.154	0.195
33	1st-3rd Toe Breadth				0.159	0.154
17	Heel Breadth, Right					-0.168
Con	stant	3.162	1.207	0.532	0.203	0.418
Sta	ndard Error of Estimate	0.42	0.33	0.31	0.30	0.29
Mul	tiple Correlation	0.941	0.965	0.970	0.971	0.972

Table 159. Stepwise Multiple Regression Equations for Estimating BOF Circumference, Right (VAR 16) -- Female

				Step		
Variable		1	2	3	4	5
18	BOF Breadth, Diagonal	2.118	1.990	1.758	1.756	1.750
8	Ball of Foot Height		0.939	0.771	0.751	0.678
15	Instep Circumference			0.149	0.185	0.162
27	Outside BOF Length				-0.067	-0.065
13	Ankle Circumference		•			0.052
Con	stant	2.530	0.383	-0.284	-0.042	-0.290
Sta	ndard Error of Estimate	0.365	0.296	0.282	0.276	0.273
Mul	tiple Correlation	0.941	0.962	0.966	0.967	0.968

Table 160. Stepwise Multiple Regression Equations for Estimating Heel Breadth, Right (VAR 17) -- Male

				Step		
Variable		1	2	3	4	5
14	Heel-Ankle Circumference	0.190	0.218	0.191	0.221	0.208
5	Lateral Malleolus Height		-0.216	-0.209	-0.217	-0.198
10	Maximum Toe Height			0.307	0.300	0.269
25	Foot Length, Right				-0.043	-0.073
23	Instep Length					0.101
Con	stant	0.509	1.128	1.196	1.412	1.462
Sta	ndard Error of Estimate	0.32	0.29	0.28	0.28	0.28
Mul	tiple Correlation	0.694	0.769	0.784	0.788	0.796

Table 161. Stepwise Multiple Regression Equations for Estimating Heel Breadth, Right (VAR 17) -- Female

				Step		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Variable		1	2	3	4	5
14	Heel-Ankle Circumference	0.204	0.229	0.156	0.175	0.212
4	Medial Malleolus Height		-0.165	-0.165	-0.133	-0.092
15	Instep Circumference			0.119	0.145	0.154
13	Ankle Circumference				-0.085	-0.125
3	Ankle Height					-0.089
Con	stant	0.016	0.434	-0.070	0.286	0.451
Sta	ndard Error of Estimate	0.313	0.294	0.286	0.277	0.272
Mul	tiple Correlation	0.682	0.726	0.744	0.763	0.774

Table 162. Stepwise Multiple Regression Equations for Estimating BOF Breadth, Diagonal (VAR 18) -- Male

			Step		
Variable		2	3	4	5
BOF Circumference, Right	0.424	0.476	0.409	0.388	0.370
Ball of Foot Height		-0.418	-0.381	-0.359	-0.320
BOF Breadth, Horizontal, Right			0.175	0.176	0.206
BOF Length, Right		· .		0.032	0.071
Outside BOF Length					-0.048
estant	-0.132	0.177	-0.374	-0.236	-0.195
andard Error of Estimate	0.19	0.16	0.16	0.15	0.15
tiple Correlation	0.941	0.956	0.961	0.962	0.963
	BOF Circumference, Right Ball of Foot Height BOF Breadth, Horizontal, Right BOF Length, Right Outside BOF Length estant undard Error of Estimate	BOF Circumference, Right 0.424 Ball of Foot Height BOF Breadth, Horizontal, Right BOF Length, Right Outside BOF Length estant -0.132 undard Error of Estimate 0.19	BOF Circumference, Right 0.424 0.476 Ball of Foot Height -0.418 BOF Breadth, Horizontal, Right BOF Length, Right Outside BOF Length estant -0.132 0.177 undard Error of Estimate 0.19 0.16	BOF Circumference, Right 0.424 0.476 0.409 Ball of Foot Height -0.418 -0.381 BOF Breadth, Horizontal, Right 0.175 BOF Length, Right Outside BOF Length stant -0.132 0.177 -0.374 andard Error of Estimate 0.19 0.16 0.16	### BOF Circumference, Right

Table 163. Stepwise Multiple Regression Equations for Estimating BOF Breadth, Diagonal (VAR 18) -- Female

				Step	· · · · · · · · · · · · · · · · · · ·	·····
<u>Var</u>	riable	1	2	3	4	5
16	BOF Circumference, Right	0.418	0.456	0.388	0.360	0.368
8	Ball of Foot Height		-0.375	-0.345	-0.310	-0.290
26	BOF Breadth, Horizontal, Right			0.183	0.197	0.193
24	BOF Length, Right				0.036	0.391
11	Outside BOF Height					-0.110
Cor	stant	0.023	0.527	0.276	0.032	0.051
Sta	undard Error of Estimate	0.162	0.142	0.134	0.130	0.129
Mul	tiple Correlation	0.941	0.956	0.960	0.963	0.964
			··			

Table 164. Stepwise Multiple Regression Equations for Estimating Weight (VAR 21) -- Male

				Step		
<u>Var</u>	iable	1	2	3	4	5
12	Calf Circumference	3.375	2.314	2.136	2.300	2.63
14	Heel-Ankle Circumference		2.944	2.325	1.629	2.134
11	Outside BOF Height			8.297	7.893	8.234
2	Calf Height				0.693	0.615
32	Bimalleolar Breadth					-3.084
Con	stant	-48.947 -	-110.719 -	107.258	-112.046 -	-107.496
Sta	ndard Error of Estimate	7.16	5.98	5.66	5.53	5.47
Mul	tiple Correlation	0.784	0.856	0.872	0.879	0.882

Table 165. Stepwise Multiple Regression Equations for Estimating Weight (VAR 21) -- Female

	•		·····	Step		
<u>Var</u>	iable	1	2	3	4	5
12	Calf Circumference	2.300	1.651	1.746	1.674	1.465
14	Heel-Ankle Circumference		2.065	1.294	0.677	0.356
2	Calf Height			0.661	0.717	0.827
16	BOF Circumference				1.053	1.009
13	Ankle Circumference					0.785
Con	stant	-20.496	-61.600	-62.091	-66.116	-67.683
Sta	ndard Error of Estimate	4.74	3.95	3.76	3.69	3.66
Mul	tiple Correlation	0.708	0.809	0.830	0.836	0.840

Table 166. Stepwise Multiple Regression Equations for Estimating Ankle Length (VAR 22) -- Male

	•	· , , , , , , , , , , , , , , , , , , ,	Step		
Variable	1	2	3	4	5_
24 BOF Length, Right	0.529	0.323	0.191	0.146	0.127
23 Instep Length		0.363	0.302	0.208	0.235
14 Heel-Ankle Circumfere	ence		0.142	0.269	. 0.314
6 Dorsal Arch Height			· .	-0.352	-0.386
17 Heel Breadth, Right					-0.200
Constant	0.434	0.366	-1.224	-0.481	-0.280
Standard Error of Estimat	te 0.45	0.41	0.38	0.34	0.34
Multiple Correlation	0.787	0.826	0.85	0.884	0.887

Table 167. Stepwise Multiple Regression Equations for Estimating Ankle Length (VAR 22) -- Female

				Step	•	
<u>Var</u>	riable	1	2	3	4	5
25	Foot Length, Right	0.365	0.204	0.114	0.150	0.091
23	Instep Length		0.362	0.378	0.331	0.217
15	Instep Circumference			0.153	0.198	0.061
6	Dorsal Arch Height				-0.240	-0.337
14	Heel-Ankle Circumference					0.222
Con	estant	0.748	0.966	-0.579	-0.068	-0.342
Sta	andard Error of Estimate	0.407	0.376	0.357	0.332	0.312
Mul	tiple Correlation	0.761	0.801	0.823	0.849	0.869

Table 168. Stepwise Multiple Regression Equations for Estimating Instep Length (VAR 23) -- Male

				Step		
<u>Variable</u>		11	2	3	4	5
24 BOF Length, R	tight	0.569	0.329	0.294	0.338	0.224
22 Ankle Length	ı		0.454	0.382	0.439	0.426
17 Heel Breadth	,Right			0.320	0.444	0.452
15 Instep Circu	mference				-0.121	-0.141
25 Foot Length,	Right	•			,	0.118
Constant		0.186	-0.011	-0.793	0.022	-0.335
Standard Error o	of Estimate	0.50	0.46	0.44	0.43	0.43
Multiple Correla	tion	0.775	0.816	0.829	0.839	0.843

Table 169. Stepwise Multiple Regression Equations for Estimating Instep Length (VAR 23) -- Female

				Step		
<u>Variable</u>		1	2	3	4	5
25	Foot Length, Right	0.444	0.296	0.168	0.206	0.184
22	Ankle Length		0.406	0.357	0.406	0.374
24	BOF Length, Right			0.191	0.179	0.190
15	Instep Circumference				-0.875	-0.150
17	Heel Breadth, Right					0.324
Con	stant	-0.603	-0.907	-0.696	0.142	0.206
Sta	ndard Error of Estimate	0.431	0.399	0.390	0.384	0.371
Mul	tiple Correlation	0.803	0.835	0.843	0.848	0.860

Table 170. Stepwise Multiple Regression Equations for Estimating BOF Length, Right (VAR 24) -- Male

	•			Step		
Variable		1	2	3	4	5
25	Foot Length, Right	0.710	0.560	0.605	0.531	0.449
22	Ankle Length		0.376	0.396	0.260	0.252
8	Ball of Foot Height			-0.630	-0.934	-0.886
14	Heel-Ankle Circumference				0.162	0.134
28	5th Toe Length					0.152
Con	stant	0.521	0.477	1.508	0.618	0.380
Sta	ndard Error of Estimate	0.47	0.43	0.40	0.38	0.37
Mul	tiple Correlation	0.901	0.916	0.928	0.936	0.939

Table 171. Stepwise Multiple Regression Equations for Estimating BOF Length, Right (VAR 24) -- Female

				Step	,	
<u>Va</u>	riable	1	22	3	4	5
25	Foot Length, Right	0.765	0.800	0.681	0.581	0.511
8	Ball of Foot Height		-0.741	-0.689	-0.662	-0.706
23	Instep Length			0.262	0.263	0.257
27	Outside BOF Length				0.154	0.194
18	BOF Breadth, Diagonal			·		0.208
Cor	nstant	-0.906	0.880	0.913	0.967	0.302
Sta	andard Error of Estimate	0.462	0.430	0.415	0.408	0.401
Mu	ltiple Correlation	0.908	0.921	0.927	0.930	0.932

Table 172. Stepwise Multiple Regression Equations for Estimating Foot Length, Right (VAR 25) -- Male

			Step		
Variable	1	2	3	4	5
24 Foot Length, Right	1.144	1.080	0.814	0.770	0.755
8 Ball of Foot Height	•	0.995	0.780	0.950	0.828
28 5th Toe Length			0.319	0.346	0.326
7 Plantar Arch Height				-0.173	-0.312
6 Dorsal Arch Height					0.235
Constant	4.480	1.832	0.991	1.126	0.683
Standard Error of Estimate	0.59	0.53	0.50	0.49	0.48
Multiple Correlation	0.901	0.922	0.932	0.934	0.937

Table 173. Stepwise Multiple Regression Equations for Estimating Foot Length, Right (VAR 25) -- Female

				Step		
<u>Var</u>	riable	1	2	3	4	5_
24	BOF Length, Right	1.078	0.714	0.602	0.609	0.548
28	5th Toe Length		0.448	0.337	0.349	0.344
14	Heel-Ankle Circumference			0.210	0.182	0.158
33	1st-3rd Toe Breadth				0.177	0.181
23	Instep Length					0.168
Con	stant	5.259	2.945	0.603	-0.012	0.171
Sta	undard Error of Estimate	0.548	0.451	0.411	0.406	0.400
Mul	tiple Correlation	0.908	0.939	0.949	0.951	0.952

Table 174. Stepwise Multiple Regression Equations for Estimating BOF Breadth, Horizontal, Right (VAR 26) -- Male

			· .	Step		
Variable		1	2	3	4	5
18	BOF Breadth, Diagonal	0.814	0.752	0.869	0.694	0.656
27	Outside BOF Length		0.071	0.178	0.171	0.188
24	BOF Length, Right			-0.163	-0.160	-0.183
16	BOF Circumference, Right		٠		0.085	0.111
7	Plantar Arch Height					-0.075
Con	stant	1.502	0.959	1.158	0.929	1.076
Sta	ndard Error of Estimate	0.29	0.29	0.27	0.27	0.27
Mul	tiple Correlation	0.842	0.850	0.866	0.868	0.872

Table 175. Stepwise Multiple Regression Equations for Estimating BOF Breadth, Horizontal, Right (VAR 26) -- Female

			Step	<u> </u>	
Variable	1	2	3	4	5
18 BOF Breadth, Diagonal	0.808	0.540	0.612	0.644	0.593
16 BOF Circumference, Right		0.127	0.123	0.119	0.146
24 BOF Length, Right			-0.048	-0.132	-0.145
27 Outside BOF Length				0.106	0.116
7 Plantar Arch Height					-0.050
Constant	1.456	1.135	1.378	1.081	1.168
Standard Error of Estimate	0.241	0.237	0.233	0.225	0.224
Multiple Correlation	0.850	0.856	0.861	0.871	0.874

Table 176. Stepwise Multiple Regression Equations for Estimating Outside BOF Length (VAR 27) -- Male

			Step		
Variable	1	2	3	4	5_
28 5th Toe Length	0.826	0.884	0.788	0.750	
18 BOF Breadth, Diagonal		-0.194	-0.267	-0.447	
24 BOF Length, Right			0.147	0.182	
27 BOF Breadth, Horizontal, Right				0.219	
Constant	013	-0.501	-0.528	-0.734	
Standard Error of Estimate		0.39	0.38	0.38	
Multiple Correlation		0.924	0.927	0.929	

Table 177. Stepwise Multiple Regression Equations for Estimating Outside BOF Length (VAR 27) — Female

			Step		
Variable	1	2	3	4	5_
28 5th Toe Length	0.789	0.589	0.622	0.555	0.542
24 BOF Length, Right		0.248	0.303	0.199	0.213
16 BOF Circumference, Right			-0.138	-0.165	-0.258
25 Foot Length, Right				0.161	0.162
26 BOF Breadth, Horizontal, Right					0.258
Constant	-0.515	-1.196	0.484	0.342	0.067
Standard Error of Estimate	0.432	0.398	0.379	0.373	0.368
Multiple Correlation	0.900	0.916	0.924	0.927	0.929

Table 178. Stepwise Multiple Regression Equations for Estimating 5th Toe Length (VAR 28) -- Male

				Step		
Variable		11	2	3	4	5
27	Outside BOF Length	1.024	0.719	0.737	0.726	0.707
25	Foot Length, Right		0.280	0.207	0.210	0.193
18	BOF Breadth, Diagonal			0.229	0.227	0.233
5	Lateral Malleolus Height				0.071	0.064
2	Calf Height		·			0.025
Con	stant	4.674	2.199	1.446	1.081	0.963
Sta	undard Error of Estimate	0.44	0.38	0.37	0.37	0.36
Mul	tiple Correlation	0.920	0.941	0.945	0.946	0.947

Table 179. Stepwise Multiple Regression Equations for Estimating 5th Toe Length (VAR 28) -- Female

		Step								
<u>Var</u>	riable	11	2	3	4	5				
27	Outside BOF Length	1.028	0.685	0.732	0.757					
25	Foot Length, Right		0.307	0.230	0.317					
16	BOF Circumference, Right			0.090	0.091					
24	BOF Length, Right		·		-0.135					
Cor	nstant	4.235	1.859	0.990	0.870					
Sta	andard Error of Estimate	0.493	0.445	0.440	0.436					
Mu]	tiple Correlation	0.900	0.920	0.922	0.924					

Table 180. Stepwise Multiple Regression Equations for Estimating Bimalleolar Breadth (VAR 32) -- Male

			· · · · · · · · · · · · · · · · · · ·	Step		
<u>Var</u>	iable	1	2	3	4	5
14	Heel-Ankle Circumference	0.172	0.183	0.134	0.089	0.085
7	Plantar Arch Height		-0.132	-0.144	-0.155	-0.108
13	Ankle Circumference			0.080	0.117	0.127
3	Ankle Height				0.086	0.099
5	Lateral Malleolus Height					-0.076
Con	stant	1.396	1.436	1.366	1.008	. 1.151
Standard Error of Estimate		0.29	0.28	0.27	0.26	0.26
Mul	tiple Correlation	0.704	0.729	0.753	0.771	0.778

Table 181. Stepwise Multiple Regression Equations for Estimating Bimalleolar Breadth (VAR 32) -- Female

				Step		
Variable		11	2	3	4	5
14	Heel-Ankle Circumference	0.176	0.129	0.146	0.108	0.080
13	Ankle Circumference		0.100	0.107	0.142	0.133
6	Dorsal Arch Height	•		-0.092	-0.131	-0.126
3	Ankle Height				0.090	0.086
15	Instep Circumference					0.052
Con	stant	1.088	0.445	0.520	0.301	0.131
Sta	ndard Error of Estimate	0.248	0.232	0.227	0.220	0.218
Mul	tiple Correlation	0.710	0.755	0.767	0.784	0.789

Table 182. Stepwise Multiple Regression Equations for Estimating 1st-3rd Toe Breadth (VAR 33) -- Male

				Step		
Variable		1	2	3	4	5
16	BOF Circumference, Right	0.211	0.242	0.224	0.178	0.191
2	Calf Height		-0.043	-0.048	-0.045	-0.046
4	Medial Malleolus Height			0.142	0.113	0.101
13	Ankle Circumference				0.063	0.123
12	Calf Circumference					-0.044
Con	stant	1.884	2.595	2.055	1.933	2.012
Standard Error of Estimate		0.47	0.46	0.45	0.45	0.44
Mul	tiple Correlation	0.492	0.521	0.547	0.559	0.574

Table 183. Stepwise Multiple Regression Equations for Estimating 1st-3rd Toe Breadth (VAR 33) -- Female

				Step		
<u>Var</u>	iable	1	22	3	4	5
16	BOF Circumference, Right	0.176	0.202	0.184	0.179	0.131
24	BOF Length, Right		-0.046	-0.132	-0.129	-0.132
25	Foot Length, Right			0.088	0.149	0.146
28	5th Toe Length				-0.080	-0.092
15	Instep Circumference					0.071
Con	stant	2.438	2.674	2.455	2.610	2.384
Standard Error of Estimate		0.388	0.386	0.384	0.381	0.380
Mul	tiple Correlation	0.442	0.453	0.465	0.477	0.485

REFERENCES

- Churchill, E., J.T. McConville, L.L. Laubach and R.M. White (1971) Anthropometry of U.S. Army Aviators - 1970. Technical Report 72-52-CE, U.S. Army Natick Laboratories, Natick, MA. (AD743 529)
- Churchill, E., T. Churchill, J.T. McConville, and R.M. White (1977)
 Anthropometry of Women of the U.S. Army 1977: Report No. 2, The Basic
 Univariate Statistics. Technical Report NATICK/TR-77/024, U.S. Army Natick
 Research and Development Command, Natick, MA. (AD A044 806)
- Clauser, C., P. Tucker, J. McConville, E. Churchill, L. Laubach, and J. Reardon (1972) Anthropometry of Air Force Women. Technical Report AMRL-TR-70/5, Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio.
- Clauser, C., I. Tebbetts, B. Bradtmiller, J. McConville, and C.C. Gordon (1988) Measurer's Handbook: U.S. Army Anthropometric Survey 1987-1988. Technical Report NATICK/TR-88/043, U.S. Army Natick Research, Development and Engineering Center, Natick, MA. (AD A202 721)
- Freedman, A., E.C. Huntington, G.C. Davis, R.B. Magee, V.M. Milstead, and C.M. Kirkpatrick (1946) Foot Dimensions of Soldiers. Third Partial Report, Project T-13, Armored Medical Research Laboratory, Fort Knox, KY.
- Gorden, C.C., T. Churchill, C.E. Clauser, B. Bradtmiller, J.T. McConville, I. Tebbetts, and R.A. Walker (1989) 1988 Anthropometric Survey of U.S. Army Personnel: Summary Statistics Interim Report. Technical Report NATICK/TR-89/027, U.S. Army Natick Research, Development and Engineering Center, Natick, MA. (AD A209 600)
- Hays, W. (1981) Statistics (3rd Edition). Holt, Rinehart, and Winston, New York.
- Laubach, L.L., J.T. McConville, E. Churchill, and R.M. White (1977)
 Anthropometry of Women of the U.S. Army 1977: Report No. 1, Methodology and
 Survey Plan. Technical Report NATICK/TR-77/021, U.S. Army Natick Research and
 Development Command, Natick, MA. (AD A043 715)
- McConville, J.T., E. Churchill, T. Churchill, and R.M. White (1977)
 Anthropometry of Women of the U.S. Army 1977: Report No. 5, Comparative Data
 for U.S. Army Men. Technical Report NATICK/TR-77/029, U.S. Army Natick
 Research and Development Command, Natick, MA. (AD A048 591)
- Mann, C.W. and W.B. Zacharias (1952) Application of Foot Measurements in the Development of Last Systems. Footwear and Leather Series Report No. 7, Department of the Army, Office of the Quartermaster General, Washington, D.C.
- Neter, J. and W. Wasserman (1974) Applied Linear Statistical Models. Richard D. Irwin, Inc., Homewood, IL.

REFERENCES (continued)

- Newman, R.W. and R.M. White (1951) Reference Anthropometry of Army Men. Environmental Protection Section Report No. 180, U.S. Army Quartermaster Climatic Research Laboratory, Lawrence, MA.
- Nie, N.H., C.H. Hull, J.G. Jenkins, K. Steinbrenner, and D.H. Bent (1975) Statistical Package for the Social Sciences. McGraw-Hill Book Co., New York, NY.
- Randall, F.E. (1947) Survey of Body Size of Army Personnel, Male and Female: Project No. E-59-46, Phase 4, Report No. 1 Methodology and General Considerations (Female). Report No. 123, U.S. Army Quartermaster Climatic Research Laboratory, Lawrence, MA.
- Randall, F.E. and M.J. Baer (1947) Survey of Body Size of Army Personnel, Male and Female: Project No. E-59-46, Phase 1, Report No. 1 Methodology. Report No. 122, U.S. Army Quartermaster Climatic Research Laboratory, Lawrence, MA.
- Randall, F.E. and E.H. Munro (1949) Reference Anthropometry of Army Women. Environmental Protection Section Report No. 149, U.S. Army Quartermaster Climatic Research Laboratory, Lawrence, MA.
- Randall, F.E., E.H. Munro, and R.M. White (1951) Anthropometry of the Foot (U.S. Army White Male). Environmental Protection Section Report No. 172, U.S. Army Quartermaster Climatic Research Laboratory, Lawrence, MA.
- Sokal, R.R. and F.J. Rohlf (1981) Biometry: The Principles and Practice of Statistics in Biological Research. W.H. Freeman and Co., San Francisco, CA.
- White, R.M. (1961) Anthropometry of Army Aviators. Environmental Protection Division Technical Report EP-150, U.S. Army Quartermaster Research and Engineering Center, Natick, MA.
- White, R.M. (1982) Comparative Anthropometry of The Foot. Technical Report NATICK/TR-83/010, U.S. Army Natick Research and Development Laboratories, Natick, MA. (AD A126 189)
- White, R.M. and E. Churchill (1971) The Body Size of Soldiers: U.S. Army Anthropometry 1966. Technical Report 72-51-CE, U.S. Army Natick Laboratories, Natick, MA. (AD 743 465)

This document reports research undertaken at the US Army Natick Research, Development and Engineering Center and has been assigned No. NATICK/TR-92/028 in the series of reports approved for publication.

APPENDIXES

- A. Foot Measurement and Boot Fit Study: Biographical Survey
- B. Measurement Record

APPENDIXES

A: FOOT MEASUREMENT AND BOOT FIT STUDY

DATA REQUIRED BY THE PRIVACY ACT OF 1974 (5 U.S. Code 552a)

- 1. AUTHORITY: 10 U.S. Code 3012.
- 2. PRINCIPAL PURPOSE(S): The personal and other information on these forms is to assist U.S. Army Natick Research & Development Center personnel in developing footwear in a range of sizes to fit the range of foot and lower leg dimensions of Army personnel.
- 3. ROUTINE USES: This information will be used in analyzing the results of the study and in reporting or publishing results of the study without identifying the individual participants.
- 4. MANDATORY OR VOLUNTARY DISCLOSURE AND EFFECT ON INDIVIDUAL NOT PROVIDING INFORMATION: Disclosure of the requested information is voluntary. If requested information is not furnished, your participation in this study may be prevented or terminated.

The U.S. Army recently adopted a new-style combat boot to replace the black leather boot which is issued today. The new boot will be available in 1986. In preparation for the introduction of the new combat boot, it is necessary to determine the sizes in which the boot should be produced.

The U.S. Army Natick Research and Development Center, Natick, MA, is the Army element which develops military footwear and which must determine the sizes for the new boot. In order to do this, information is needed on the foot and lower leg dimensions of Army personnel and on the way various sizes of boots fit the feet. YOU ARE THE BEST SOURCE OF THIS INFORMATION.

Those of us here from Natick today request your cooperation and assistance in the following areas:

<u>First</u>: Biographical information and some facts regarding the footwear you use today are required. Therefore, please complete the Biographical Survey which begins on the next page. Also, enter your name, Social Security Number, and sex in the places indicated on the other forms you have been given.

Second: Measurements are needed of your lower legs and feet. For this, you will remove your footgear, including socks, and roll your trousers up to just below your knees. Your height and weight will also be measured. While we measure you, you will be asked to stand up straight, with your arms at your sides, and your weight evenly distributed on both feet.

<u>Third</u>: Some of you will be asked to try on boots so that the fit of the boots can be checked. For this, you will roll your trousers up to just below your knees and wear green cushion-sole socks. You will be asked to tell us how boots in various sizes feel to you.

THANK YOU FOR YOUR HELP WITH THE ARMY'S FOOTWEAR PROGRAM

Subject No	D			Date .	

		BIOGR	APHICAL SU	RVEY	
		(Please PRIN	T all requested	information)	
			•	•	
1. Name	: (Last)	(First)	(Mide	die)	
2. Soc. 9	Security No.	•	•	•	
3. Date					
J. Date	(Month)	(Day) (Year)	•	
4. Sex:	Male	Female			
5. MOS:	Primary	s	econdary		
6. Rank					
7. Date of	of First Enlistment(M	Month) (Y	'ear)		
8. Age _	years				
9. Your	place of birth		·	· · · · · · · · · · · · · · · · · · ·	
	(U.S. St	ate or U.S. Terr	itory. Enter c	ountry if not born	in U.S. or U.S. Territory)
10. Your	time in service	_ years		•	
11. Your	MOTHER'S place of bi	th(U.S. State U.S. Territ	or U.S. Territor tory)	ry. Enter country	if not born in U.S. or
12. Your	FATHER'S place of bir	th (U.S. State U.S. Territ	or U.S. Territor	y. Enter country	if not born in U.S. or
13. Which	hand do you usually w	rite with?			
	Right		eft	Either har	nd
14. How t	tall are you in bare feet?	in	ches		
15. How r	much do you weigh with	out clothes on	?	_ pounds	
16. Do yo	u consider yourself:				
	Right-handed?	Le	ft-handed?	Ambide	xtrous?
17. On the	e average, how many da	ys per week do	you wear comb	at boots?	
•	days per week				

18.	Whic	ch racial cate	egory b	est describ	es you?					
		White		Black		Asian		Pacific Islander		American Indian
19.	Tov	vhat ethnic (group d	lo you belo	ong?					
		Puerto Ric	an					South Ame		
		Mexican								
		Cuban						Spanish		
		Haitian						Portuguese		
-		Other Lati	n Amei	rican				Other Hispa (Specify)		
		(Specify)			·					
	\Box	American	Indian					Aleut		
		Eskimo	ina ian					Other Nativ	10 Ami	a-ioan
		ESKIMO					لــــا			erican
					· · · · · · · · · · · · · · · · · · ·				· 	
		Melanesian	ı					Polynesian		
		Micronesia	n					Other Pacif		
								(эресту)		
		Filipino						Vietnamese	•	
		Chinese						Thai		
		Japanese						East Indian	l.	
		Korean						Other Asia	n	
		r to roun						(Specify)		
		American	of Euro	pean Desc	ent			American c	of Hisp	anic Descent
		American	of Afri	can Descer	nt			American o	of Asia	n Descent
								`		
			Ot	her Ethnic	Group.	(Specify)	•			

20.	Whic	h racial c	ategor	y best de	escribes	your <u>M</u>	OTHE	<u>R</u> ?				
		White		Black		Asian		Pacific Islander	American Indian		Don't Know	
21.	To w	hat ethni	ic grou	ıp does y	our <u>M</u> (OTHER	belong	?				
		Puerto F	Rican						South American (Specify)			
		Mexican	1						Spanish			
		Cuban							Portuguese			
		Haitian Other L (Specify		merican	· · · · · · · · · · · · · · · · · · ·				Other Hispanic (Specify)			
_				 	<u></u>	·				 	······································	
		America	n Indi	an .	•				Aleut			
		Eskimo	,			٠			Other Native Ame (Specify)	erican		
		Melanes	ian						Polynesian			
		Microne	sian						Other Pacific Isla (Specify)			. •
•		Filipino							Vietnamese			
		Chinese							Thai ·			
		Japanes	e						East Indian			
		Korean							Other Asian (Specify)		# # # WE 11 WESTER O ST 4 1 WHITE	•
					;							
		America	n of E	uropean	Descer	nt			American of Hisp	anic De	scent	
		America	n of A	African D	escent				American of Asia	n Desce	nt	
				Other E	thnic (Group.	(Speci	ify)				
				Don't K	Know							

22.	Whic	h racial c	ategor	y best de	scribes	your <u>f</u>	FATHER	?		
		White		Black		Asian		Pacific Islander	American Indian	Don't Know
23.	To w	hat ethni	c grou	p does yo	our <u>FA</u>	THER	belong?			
		Puerto F	Rican						South American (Specify)	
		Mexican Cuban Haitian Other La (Specify)		merican					Spanish Portuguese Other Hispanic (Specify)	· · · · · · · · · · · · · · · · · · ·
		America Eskimo	n Indi	an		T - V.,			Aleut Other Native Ame (Specify)	
		Melanesi Micrones							Polynesian Other Pacific Islan (Specify)	
		Filipino Chinese Japanese Korean	;						Vietnamese Thai East Indian Other Asian (Specify)	
				uropean African De		n t			American of Hispa	
,				Other Etl Don't Kn		roup.	(Specify)		

24.	For each of the different types of shoes and boots listed below, indicate the size, including the width, that you normally take:							
		Size with Width	Don't Know					
	Standard-Issue Black Combat Boot							
	Corcoran Jump Boot							
	Civilian Dress Shoe							
	Running Shoe							
25.	What type of socks do you usually wear wit	h your boots?						
	Army standard-issue green cushion-sole socks							
	Other. Describe the style and type of socks you usually wear:							
26.	Have you ever had a broken							
		Yes N	No .					
	Leg							
	Ankle							
	Toe							
	Foot bone]					
27.	During your time in service, have you ever of the top of your feet that you think were ca		ers on the front of your ankles or					
	Yes	No						
28.	During your time in service, have you ever g	one on sick call because of	f foot or lower leg problems?					
	Yes	No						
29.	In the past month, have you gone on sick ca	Il because of foot or lower	leg problems?					
	Yes	No						
	If you answered 'Yes,' explain what the pro	blem was:						

30.	Which ONE type of combat boot do you now wear most often?					
	Standard-issue black leather boot					
	Corcoran jump boot					
	West German jump boot					
	Other. (Specify)					
31.	Indicate the size, including the width, of the combat boots that you now wear most often	<u>ı.</u>				
	Size with Width					
32.	Rate the fit of the combat boots that you now wear most often.					
	Fit in the heel area:	od fit				
	Amount of toe room: Too short Too long Go	ood fit				
	Height of the boot top: Too high Too low Go	ood				
	Support at the ankle: Too tight Too loose Go	ood				
	Width of the boot:	ood				
33.	ndicate the ONE area in which you have felt the greatest discomfort while wearing the byou now use most often.	poots				
	Toes					
	Soles of the feet					
	Back of the heels					
	,					
	Front of the ankles					
	Back of the ankles					
	Lower legs between the ankle and the top of the boots					
	Top of the boots					
	Other. (Specify)					
	No discomfort felt					

34.	4. Rate the combat boots you now wear most often with regard to overall comfort and fit.					
		Very comfortable				
		Moderately comfortable				
		Adequate				
		Moderately uncomfortable				
		Very uncomfortable				

B: MEASUREMENT RECORD

Subject No.			Date			
***************	=======================================					====
	_					
Name (Last) (First) (Middl		(Middle	<u> </u>			
			Sex: Male Female			
Marker			Obs: W B O P		א מא	_
GROUP I			Clothing:			
Measurer			ID:2			
ID: 1			17. Heel Breadth, Right		!	
1. Stature			18. Ball Breadth, Diag	<u>.</u>	!	
2 Calf Ht	<u>-</u>		19. Heel Breadth, LEFT	<u>!</u>	!	
3. Ankle Ht		_!!	20. Ball Circ, LEFT	<u>-</u> -		<u></u>
4. Medial Malleolus H	ti	_!!	21. Weight	_	!	·
5. Lateral Malleolus	Ht		anava			
6. Dorsal Arch Ht	!	_!!	GROUP III			
7. Plantar Arch Ht	<u>-</u>	_!!	Measurer	_		
8. Ball Ht		_!!	22. Ankle Length		!	
9. 1st Toe Ht			23. Instep Length		_!	
10. Max Toe Ht (Toe	·i_	_!!	24. Ball Length, Right			
11. Outside Ball Ht	i		25. Foot Length, Right (T	o e) :	!	:
CROUP II	•	:	26. Ball Breadth, Horiz,	Right_!_	!	!!
		:	27. Outside Ball Length		_!	<u>. </u>
Measurer	<u>, —</u>		28. 5th Toe Length			
12. Calf Circ	<u></u> :	_!!	29. Ball Length, LEFT		_:	!:
13. Ankle Circ	:	:	30. Foot Length, LEFT (To	e;	!	!!
14. Heel-Ankle Circ		_	31. Ball Breadth, Horiz,	LEFT		
15. Instep Circ		_ :	32. Bimalleolar Breadth			: !!
16. Ball Circ, Right	;		33. Breadth, 1st-3rd Toes	i	; ;	;

NATICK Form 602 (ONE-TIME)
1 Jun 85

DEPARTMENT OF THE ARMY
US ARMY NATICK RESEARCH, DEVELOPMENT, AND
ENGINEERING CENTER
NATICK, MASSACHUSETTS 01760

OFFICIAL BUSINESS