Data Mining:

Concepts and Techniques

(3rd ed.)

- Chapter 10 -

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University ©2011 Han, Kamber & Pei. All rights reserved.

Chapter 10. Cluster Analysis: Basic Concepts and Methods

Cluster Analysis: Basic Concepts 🤝

- Partitioning Methods
- Hierarchical Methods
- **Density-Based Methods**
- **Grid-Based Methods**
- **Evaluation of Clustering**
- Summary

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering for Data Understanding and Applications

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market resarch

Clustering as a Preprocessing Tool (Utility)

- Summarization:
 - Preprocessing for regression, PCA, classification, and association analysis
- Compression:
 - Image processing: vector quantization
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection
 - Outliers are often viewed as those "far away" from any cluster

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high intra-class similarity: cohesive within clusters
 - low inter-class similarity: distinctive between clusters
- The <u>quality</u> of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

Dissimilarity/Similarity metric

- Similarity is expressed in terms of a distance function, typically metric: d(i, j)
- The definitions of distance functions are usually rather different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables
- Weights should be associated with different variables based on applications and data semantics
- Quality of clustering:
 - There is usually a separate "quality" function that measures the "goodness" of a cluster.
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective

Considerations for Cluster Analysis

- Partitioning criteria
 - Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable)
- Separation of clusters
 - Exclusive (e.g., one customer belongs to only one region) vs. nonexclusive (e.g., one document may belong to more than one class)
- Similarity measure
 - Distance-based (e.g., Euclidian, road network, vector) vs. connectivity-based (e.g., density or contiguity)
- Clustering space
 - Full space (often when low dimensional) vs. subspaces (often in high-dimensional clustering)

Requirements and Challenges

- Scalability
 - Clustering all the data instead of only on samples
- Ability to deal with different types of attributes
 - Numerical, binary, categorical, ordinal, linked, and mixture of these
- Constraint-based clustering
 - User may give inputs on constraints
 - Use domain knowledge to determine input parameters
- Interpretability and usability
- Others
 - Discovery of clusters with arbitrary shape
 - Ability to deal with noisy data
 - Incremental clustering and insensitivity to input order
 - High dimensionality

Major Clustering Approaches (I)

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSCAN, OPTICS, DenClue
- Grid-based approach:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods

- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary

Partitioning Algorithms: Basic Concept

Partitioning method: Partitioning a database **D** of **n** objects into a set of **k** clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - c_i)^2$$

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67, Lloyd'57/'82): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

Algorithm: *k*-means. The *k*-means algorithm for partitioning, where each cluster's center is represented by the mean value of the objects in the cluster.

Input:

- \blacksquare *k*: the number of clusters,
- \blacksquare D: a data set containing n objects.

Output: A set of *k* clusters.

Method:

- (1) arbitrarily choose k objects from D as the initial cluster centers;
- (2) repeat
- (3) (re)assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster;
- (4) update the cluster means, that is, calculate the mean value of the objects for each cluster;
- (5) **until** no change;

An Example of *K-Means* Clustering

Until no change

Comments on the K-Means Method

- Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</p>
 - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- Comment: Often terminates at a local optimal.
- Weakness
 - Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify k, the number of clusters, in advance (there are ways to automatically determine the best k (see Hastie et al., 2009)
 - Sensitive to noisy data and outliers
 - Not suitable to discover clusters with non-convex shapes

Variations of the *K-Means* Method

- Most of the variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means

- Handling categorical data: k-modes
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: k-prototype method

What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster
 as a reference point, medoids can be used, which is the most
 centrally located object in a cluster

PAM: A Typical K-Medoids Algorithm

The K-Medoid Clustering Method

- K-Medoids Clustering: Find representative objects (medoids) in clusters
 - PAM (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)
 - Starts from an initial set of medoids and iteratively replaces one
 of the medoids by one of the non-medoids if it improves the total
 distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets (due to the computational complexity)
- Efficiency improvement on PAM
 - CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples
 - CLARANS (Ng & Han, 1994): Randomized re-sampling

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods

- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary

Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition

AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical packages, e.g., Splus
- Use the single-link method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

Dendrogram: Shows How Clusters are Merged

DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = min(t_{ip}, t_{jq})
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = max(t_{ip}, t_{jq})
- Average: avg distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = avg(t_{ip}, t_{jq})
- Centroid: distance between the centroids of two clusters, i.e.,
 dist(K_i, K_j) = dist(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dist(K_i, K_j) = dist(M_i, M_j)
 - Medoid: a chosen, centrally located object in the cluster

Centroid, Radius and Diameter of a Cluster (for numerical data sets)

Centroid: the "middle" of a cluster

$$C_m = \frac{\sum_{i=1}^{N} (t_{ip})}{N}$$

• Radius: square root of average distance from any point of the cluster to its centroid $\sum_{\Sigma} N$

$$R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}}$$

 Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$D_{m} = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^{2}}{N(N-1)}}$$

Extensions to Hierarchical Clustering

- Major weakness of agglomerative clustering methods
 - Can never undo what was done previously
 - <u>Do not scale</u> well: time complexity of at least $O(n^2)$, where n is the number of total objects
- Integration of hierarchical & distance-based clustering
 - BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters
 - CHAMELEON (1999): hierarchical clustering using dynamic modeling

BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies)

- Zhang, Ramakrishnan & Livny, SIGMOD'96
- Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering
 - Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression of the data that tries to preserve the inherent clustering structure of the data)
 - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree
- Scales linearly: finds a good clustering with a single scan and improves the quality with a few additional scans
- Weakness: handles only numeric data, and sensitive to the order of the data record

Clustering Feature Vector in BIRCH

Clustering Feature (CF): CF = (N, LS, SS)

N: Number of data points

LS: linear sum of N points: $\sum_{i=1}^{N} X_{i}$

SS: square sum of N points

$$\sum_{i=1}^{N} X_i^2$$

CF = (5, (16,30), (54,190))

(3,4)

(2,6)

(4,5)

(4,7)

(3,8)

CF-Tree in BIRCH

- Clustering feature:
 - Summary of the statistics for a given subcluster: the 0-th, 1st, and 2nd moments of the subcluster from the statistical point of view
 - Registers crucial measurements for computing cluster and utilizes storage efficiently
- A CF tree is a height-balanced tree that stores the clustering features for a hierarchical clustering
 - A nonleaf node in a tree has descendants or "children"
 - The nonleaf nodes store sums of the CFs of their children
- A CF tree has two parameters
 - Branching factor: max # of children
 - Threshold: max diameter of sub-clusters stored at the leaf nodes

The CF Tree Structure

Root

The Birch Algorithm

Cluster Diameter

$$\sqrt{\frac{1}{n(n-1)}} \sum (x_i - x_j)^2$$

- For each point in the input
 - Find closest leaf entry
 - Add point to leaf entry and update CF
 - If entry diameter > max_diameter, then split leaf, and possibly parents
- Algorithm is O(n)
- Concerns
 - Sensitive to insertion order of data points
 - Since we fix the size of leaf nodes, so clusters may not be so natural
 - Clusters tend to be spherical given the radius and diameter measures

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- **Partitioning Methods**
- **Hierarchical Methods**
- Density-Based Methods

- **Grid-Based Methods**
- **Evaluation of Clustering**
- Summary