```
Для удобства обозначим \pi_{n_1,...,n_k} = \pi
```

Пусть F – σ -Алгебра для \mathbf{A}^{∞} , тогда верно, что

1)
$$A^{\infty} \in F$$
, $\emptyset \in F$;

2) S
$$\in$$
 F, W \in F = $>$ S \cap W \in F

3)
$$S \in F = > \overline{S} \in F$$

Покажем, что π (F) = $\left\{\pi\left(\mathsf{S}\right),\;\mathsf{S}\in\mathsf{F}\right\}$ является алгеброй

1)
$$A^{\infty} \in F$$
;
 $\pi (A^{\infty}) = {\pi (\omega), \omega \in A^{\infty}} = A^{k} \in \pi (F)$;

$$\phi \in F$$
;
 $\pi (\phi) = \phi \in \pi (F)$

2) Пусть S
$$\in$$
 F , т.е. π (S) \in π (F);

$$\overline{\pi\left(\mathsf{S}\right)} = \pi\left(\mathsf{A}^{\scriptscriptstyle{\odot}}\right) \setminus \pi\left(\mathsf{S}\right) = \mathsf{A}^{\mathsf{k}} \setminus \pi\left(\mathsf{S}\right) \in \pi\left(\mathsf{F}\right) \text{, так как можно построить } \mathsf{B} \subseteq \mathsf{F} : \pi\left(\mathsf{B}\right) = \overline{\pi\left(\mathsf{S}\right)}$$

$$\mathsf{B} = \left\{\omega : \ \omega \in \mathsf{A}^{\infty} \quad \mathsf{u} \quad \pi \ (\omega) \notin \pi \ (\mathsf{S}) \right\} \ \in \mathsf{F}$$

3)
$$\pi$$
 (S) $\in \pi$ (F) , π (W) $\in \pi$ (F)

покажем, что
$$\pi\left(S\right)\cap\pi\left(W\right)$$
 \in $\pi\left(F\right)$

Построим Q
$$\subset$$
 A $^{\infty}$: π (Q) = π (S) \cap π (W)

$$Q = \left\{\omega: \ \omega \in A^{\infty} \ \text{ и } \ \omega \in \pi \ (S) \ \text{ и } \ \omega \in \pi \ (W) \ \right\}$$