Notes on Noncommutative Geometry and Particle Physics

Popovic Milutin

Week 5: 12.03 - 19.03

Contents

1	Non	commutative Geometric Spaces	1
	1.1	Exercises	1
	1.2	Properties of Matrix Algebras	3
	1.3	Morphisms Between Finite Spectral Triples	4
	1.4	Graphing Finite Spectral Triples	8
		1.4.1 Graph Construction of Finite Spectral Triples	

1 Noncommutative Geometric Spaces

1.1 Exercises

Exercise 1

Make the proof of the last theorem (see week4.pdf) explicit for N = 3.

For the C* algebra we have $A = \mathbb{C}^3$ For H we have $H = (\mathbb{C}^2)^{\oplus 3} = H_2 \oplus H_2^1 \oplus H_2^2$.

The symmetric operator D acting on H and the representation $\pi(a)$:

$$D = \begin{pmatrix} 0 & x_1 \\ x_1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & x_1 \\ x_1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & x_1 \\ x_1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & x_1 & 0 & 0 & 0 & 0 \\ x_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & 0 & 0 \\ 0 & 0 & x_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & x_3 \\ 0 & 0 & 0 & 0 & x_3 & 0 \end{pmatrix}$$

$$(2)$$

(3)

Then the norm of the commutator would be the largest eigenvalue

$$||[D, \pi(a)]|| = ||D\pi(a) - \pi(a)D||$$

The matrix in Equation $\ref{eq:condition}$ is a skew symmetric matrix its eigenvalues are $i\lambda_1, i\lambda_2, i\lambda_3, i\lambda_4$, where the λ 's are on the upper and lower diagonal check https://en.wikipedia.org/wiki/Skew-symmetric_matrix#Skew-symmetrizable_matrix. The matrix norm of would be the maximum of the norm of the larges eigenvalues:

$$||[D, \pi(a)]|| = \max_{a \in A} \{x_i | a(j) - a(k)|\}$$
(4)

Exercise 2

Compute the metric on the space of three points given by $d_{ij}=\sup_{a\in A}\{|a(i)-a(j)|:||[D,\pi(a)]||\leq 1\}$ for the set of data $A=\mathbb{C}^3$ acting in the defining representation $H=\mathbb{C}^3$, and

$$D = \begin{pmatrix} 0 & d^{-1} & 0 \\ d^{-1} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

for some $d \in \mathbb{R}$

We have $A = \mathbb{C}^3$, $H = \mathbb{C}^3$ and D from above, then

$$||[D, \pi(a)]|| = d^{-1} \left\| \begin{pmatrix} 0 & a(2) - a(1) & 0 \\ -(a(2) - a(1)) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\|$$

$$= d^{-1}|a(2) - a(1)|$$
(6)

Exercise 3

Show that d_{ij} from Equation 10 is a metric on \hat{A} by establishing that:

$$d_{ij} = 0 \quad \Leftrightarrow \quad i = j \tag{7}$$

$$d_{ij} = d_{ji} \tag{8}$$

$$d_{ij} \le d_{ik} + d_{kj} \tag{9}$$

$$d_{ij} = \sup_{a \in A} \{ |\mathbf{Tr}(a(i)) - \mathbf{Tr}((a(j))| : ||[D, a]|| \le 1 \}$$
 (10)

For Equation 7 set i = j in 10.

$$\begin{split} d_{ii} &= \sup_{a \in A} \{|\mathrm{Tr}(a(i)) - \mathrm{Tr}((a(i))| : ||[D,a]|| \le 1\} \\ &= \sup_{a \in A} \{0 : ||[D,a]|| \le 1\} = 0 \end{split}$$

For Equation 8 obviously we have the commuting property of addition. For Equation 9, for k=j then $d_{kj}=0$ and the equality holds. For i=k then $d_{ik}=0$ and equality holds. Else set $d_{ik}=1$ and $d_{kj}=1$ then $d_{ij}=1 \le d_{ik}+d_{kj}=2$

1.2 Properties of Matrix Algebras

Lemma 1. If A is a unital C* algebra that acts faithfully on a finite dimensional Hilbert space, then A is a matrix algebra of the Form:

$$A \simeq \bigoplus_{i=1}^{N} M_{n_i}(\mathbb{C}) \tag{11}$$

Proof. Since *A* acts faithfully on a Hilbert space, then *A* is a C* subalgebra of a matrix algebra $L(H) = M_{\dim(H)}(\mathbb{C} \Rightarrow A \simeq \text{Matrix algebra}.$

Question 1. What does the author mean when he sais 'acts faithfully on a Hilbertspace'? Then the representation is fully reducible, or that the presentation is irreducible?

Example 1. $A = M_n(\mathbb{C})$ and $H = \mathbb{C}^n$, A acts on H with matrix multiplication and standard inner product. D on H is a hermitian matrix $n \times n$ matrix.

D is referred to as a finite Dirac operator as in as its ∞ dimensional on Riemannian Spin manifolds coming in Chapter 4. Now we introduce it as

$$\frac{a(i) - a(j)}{d_{ij}} \tag{12}$$

for each pair $i, j \in X$ the finite dimensional discrete space. This appears in the entries in the commutator [D, a] in the above exercises.

Definition 1. Given an finite spectral triple (A, H, D), the A-bimodule of Connes' differential one form is:

$$\Omega_D^1(A) := \left\{ \sum_k a_k[D, b_k] : a_k, b_k \in A \right\}$$
(13)

Question 2. Is the Conne's differential one form the set of all '1st order differential operators' given *A*, that act on *H*?

Then there is a map $d: A \to \Omega^1_D(A)$, $d = [D, \cdot]$.

Exercise 4

Verify that 'd' is a derivation of the C* algebra

$$d(ab) = d(a)b + ad(b)$$
$$d(a^*) = -d(a)^*$$

For the record $d(\cdot) = [D, \cdot]$, then we have

1.

$$d(ab) = [D, ab] = [D, a]b + a[D, b]$$
$$= d(a)b + ad(b)$$

2.

$$\begin{split} d(a^*) &= [D, a^*] = Da^* - a^*D \\ &= -(D^*a - aD^*) = -[D^*, a] \\ &= -d(a)^* \end{split}$$

Exercise 5

Verify that $\Omega^1_D(A)$ is an A-bimodule by rewriting

$$a(a_k[D,b_k]b = \sum_k a'_k[D,b'_k] \quad a'_k,b'_k \in A$$

First off we know the algebra is associative then we know that elements in A can be represented faithfully on a Hilbert space H. Because of the Hilbert Basis $\{\mathbf{n}_i\}_{i\in\mathbb{N}}$ of the Hilbert space we can decompose these elements in therms of the basis elements.

$$aa_k = \sum_{\mathbf{n}} (\langle a, \mathbf{n} \rangle) a_k$$
$$= \sum_k a'_k$$

Which would than be the same as the sum of some elements $a'_k \in A$. Then we calculate the commutator:

$$[D, b_k]b = d(b_k)b = d(b_k b) - b_k d(b)$$

I don't think this is correct I'll try it again

Lemma 2. Let $(A,H,D) = (M_n(\mathbb{C},\mathbb{C}^n,D)$, with D a hermitian $n \times n$ matrix. If D is not a multiple of the identity then:

$$\Omega_D^1(A) \simeq M_n(\mathbb{C}) = A \tag{14}$$

Proof. Assume $D = \sum_i \lambda_i e_{ii}$ (diagonal), $\lambda_i \in \mathbb{R}$ and $\{e_{ij}\}$ the basis of $M_n(\mathbb{C})$. For fixed i, j choose k such that $\lambda_k \neq \lambda_j$ then

$$\left(\frac{1}{\lambda_k - \lambda_j} e_{ik}\right) [D, e_{kj}] = e_{ij} \tag{15}$$

 $e_{ij} \in \Omega^1_D(A)$ by the above definition. And $\Omega^1_D(A) \subset L(\mathbb{C}^n) = H \simeq M_n(\mathbb{C}) = A$

Exercise 6

Consider
$$(A=\mathbb{C}^2, H=\mathbb{C}^2, D=\begin{pmatrix} 0 & \lambda \\ \overline{\lambda} & 0 \end{pmatrix})$$
 with $\lambda \neq 0$. Show that $\Omega^1_D(A) \simeq M_2(\mathbb{C})$

Because of the Hilbert Basis D can be extended in terms of the basis of $M_2(\mathbb{C})$, plugging this into Equation 15 will get us the same cyclic result, thus $\Omega^1_D(A) \simeq M_2(\mathbb{C})$

1.3 Morphisms Between Finite Spectral Triples

Definition 2. two finite spectral tripes (A_1, H_1, D_1) and (A_2, H_2, D_2) are called unitarily equivalent if

•
$$A_1 = A_2$$

- $\exists U: H_1 \rightarrow H_2$, unitary with
 - 1. $U\pi_1(a)U^* = \pi_2(a)$ with $a \in A_1$
 - 2. $UD_1U^* = D_2$

Some remarks

- the above is an equivalence relation
- spectral unitary equivalence is given by the unitaries of the matrix algebra itself
- for any such U then $(A,H,D) \sim (A,H,UDU^*)$
- $UDU^* = D + U[D, U^*]$ of the form of elements in $\Omega^1_D(A)$.

Exercise 7

Show that the unitary equivalence between finite spectral triples is a equivalence relation

An equivalence relation needs to satisfy reflexivity, symmetry transitivity. Let (A_1, H_1, D_1) , (A_2, H_2, D_2) and (A_3, H_3, D_3) be three finite spectral triples.

For reflexivity $(A_1, H_1, D_1) \sim (A_1, H_1, D_1)$. So there exists a $U: H_1 \to H_1$ unitary, which is the identity and always exists.

For symmetry we need

$$(A_1, H_1, D_1) \sim (A_2, H_2, D_2) \Leftrightarrow (A_2, H_2, D_2) \sim (A_1, H_1, D_1)$$

because U is unitary:

$$U\pi_1(a)U^* = \pi_2(a) \mid U^* \boxdot U$$

 $U^*U\pi_1(a)U^*U = \pi_1(a) = U^*\pi_2(a)U$

The same with the symmetric operator D.

For transitivity we need

$$(A_1, H_1, D_1) \sim (A_2, H_2, D_2)$$
 and $(A_2, H_2, D_2) \sim (A_3, H_3, D_3)$
 $\Rightarrow (A_1, H_1, D_1) \sim (A_3, H_3, D_3)$

There are two unitary maps $U_{12}: H_1 \rightarrow H_2$ and $U_{23}: H_2 \rightarrow H_3$ then

$$U_{23}U_{12}\pi_{1}(a)U_{12}^{*}U_{23}^{*} = U_{23}\pi_{2}(a)U_{2}3^{*}$$

$$= \pi_{3}(a)$$

$$U_{23}U_{12}D_{1}U_{12}^{*}U_{23}^{*} = U_{23}D_{2}U_{2}3^{*}$$

$$= D_{3}$$

Extending the this relation we look again at the notion of equivalence from Morita equivalence of Matrix Algebras.

Given a Hilbert bimodule $E \in KK_f(B,A)$ and (A,H,D) we construct a finite spectral triple on B, (B,H',D')

$$H' = E \otimes_A H \tag{16}$$

This extends the left action on B with the right action and inherits the $\mathbb C$ valued inner product space.

$$D'(e \otimes \xi) = e \otimes D\xi + \nabla(e)\xi \quad e \in E, a \in A$$
(17)

Where ∇ is called the *connection on the right A-module E* associated with the derivation $d = [D, \cdot]$ and satisfying the *Leibnitz Rule* which is

$$\nabla(ae) = \nabla(e)a + e \otimes [D, a] \quad e \in E, \ a \in A$$
 (18)

Then the linearity of the balanced tensor product $E \otimes_A H$ is satisfied

$$D'(ea \otimes \xi - e \otimes a\xi) = D'(ea \otimes \xi) - D'(e \otimes \xi)$$

$$= ea \otimes D\xi + \nabla(ae)\xi - e \otimes D(a\xi) - \nabla(e)a\xi$$

$$= 0$$

With the information thus far we can prove the following theorem

Theorem 1. If (A, H, D) a finite spectral triple, $E \in KK_f(B, A)$. Then $(V, E \otimes_A H, D')$ is a finite spectral triple, provided that ∇ satisfies the compatibility condition

$$\langle e_1, \nabla e_2 \rangle_E - \langle \nabla e_1, e_2 \rangle_E = d \langle e_1, e_2 \rangle_E \quad e_1, e_2 \in E$$
 (19)

Proof. $E \otimes_A H$ was shown in the previous section (text before the theorem). The only thing left is to show that D' is a symmetric operator, this we can just compute. Let $e_1, e_2 \in E$ and $\xi_1, \xi_2 \in H$ then

$$\begin{split} \langle e_1 \otimes \xi_1, D'(e_2 \otimes \xi_2) \rangle_{E \otimes_A H} &= \langle \xi_1, \langle e_1, \nabla e_2 \rangle_E \xi_2 \rangle + \langle \xi_1, \langle e_1, e_2 \rangle_E D \xi_2 \rangle_H \\ &= \langle \xi_1, \langle \nabla e_1, e_2 \rangle_E \xi_2 \rangle_H + \langle \xi_1, d \langle e_1, e_2 \rangle_E \xi_2 \rangle_H \\ &+ \langle D \xi_1, \langle e_1, e_2 \rangle_E \xi_2 \rangle_H - \langle \xi_1, [D, \langle e_1, e_2 \rangle_E] \xi_2 \rangle_H \\ &= \langle D'(e_1 \otimes \xi_1), e_2 \otimes \xi_2 \rangle_{E \otimes_A H} \end{split}$$

Exercise 8

Let ∇ and ∇' be two connections on a right A-module E. Show that $\nabla - \nabla'$ is a right A-linear map $E \to E \otimes_A \Omega^1_D(A)$

Both ∇ and ∇' need to satisfy the Leiblitz rule, so let's see if $\nabla - \nabla'$ does.

$$\nabla(ea) - \nabla'(ea) = \nabla(e) + e \otimes [D, a]$$

$$- (\nabla'(e)a + e \otimes [D', a])$$

$$= \bar{\nabla}a + e \otimes (Da - aD - D'a + aD')$$

$$= \bar{\nabla}a + e \otimes ((D - D')a - a(D - D'))$$

$$= \bar{\nabla}a + e \otimes [\prime D, a]$$

$$= \bar{\nabla}(ea)$$

For some $\bar{\nabla} = \nabla - \nabla'$.

Exercise 9

Construct a finite spectral triple (A, H', D') from (A, H, D)

- 1. show that the derivation $d(\cdot):A\to A\otimes_A\Omega^1_D(A)=\Omega^1_D(A)$ is a connection on A considered a right A-module
- **2.** Upon identifying $A \otimes_A H \simeq H$, what is D' when the connection is $d(\cdot)$.
- 3. Use 1) and 2) to show that any connection $\nabla:A\to A\otimes_A\Omega^1_D(A)$ is given by

$$\nabla = d + \omega$$

where $\omega \in \Omega^1_D(A)$

4. Upon identifying $A \otimes_A H \simeq H$, what is the difference operator D' with the connection on A given by $\nabla = d + \omega$

I did some notes on this one, but they are not really correct. I'll try it again next session.

1.4 Graphing Finite Spectral Triples

Definition 3. A *graph* is a ordered pair $(\Gamma^{(0)}, \Gamma^{(1)})$. Where $\Gamma^{(0)}$ is the set of vertices (nodes) and $\Gamma^{(1)}$ a set of pairs of vertices (edges)

Figure 1: A simple graph with three vertices and three edges

Exercise 10

Show that any finite-dimensional faithful representation H of a matrix algebra A is completely reducible. To do that show that the complement W^{\perp} of an A-submodule $W \subset H$ is also an A-submodule of H.

 $A \simeq \bigoplus_{i=1}^N M_{n_i}(\mathbb{C})$ is the matrix algebra then H is a Hilbert A-bimodule and W a submodule of A. Because we have $H = W \cup W^{\perp}$, then W^{\perp} is naturally a A-submodule, because elements in W^{\perp} need to satisfy the bimodularity.

Definition 4. A Λ -decorated graph is given by an ordered pair (Γ, Λ) of a finite graph Γ and a set of positive integers Λ with the labeling

- of the vetices $v \in \Gamma^{(0)}$ given by $n(v) \in \Lambda$
- of the edges $e = (v_1, v_2) \in \Gamma^{(1)}$ by operators

-
$$D_e: \mathbb{C}^{n(v_1)} \to \mathbb{C}^{n(v_2)}$$

- and $D_{\rho}^*: \mathbb{C}^{n(v_2)} \to \mathbb{C}^{n(v_1)}$ its conjugate traspose (pullback?)

such that

$$n(\Gamma^{(0)}) = \Lambda \tag{20}$$

Question 3. Would then D_e be the pullback?

Question 4. These graphs are important in the next chapter I should look into it more, I don't understand much here, specific how to construct them with the abstraction of a spectral triple...

The operator D_e between \mathbf{n}_i and \mathbf{n}_j add up to D_{ij}

$$D_{ij} = \sum_{\substack{e = (\mathbf{v}_1, \mathbf{v}_2) \\ n(\mathbf{v}_1) = \mathbf{n}_i \\ n(\mathbf{v}_2) = \mathbf{n}_j}} D_e$$

Theorem 2. There is a on to one correspondence between finite spectral triples modulo unitary equivalence and Λ -decorated graphs, given by associating a finite spectral triples (A, H, D) to a Λ decorated graph (Γ, Λ) in the following way:

$$A = \bigoplus_{n \in \Lambda} M_n(\mathbb{C}); \quad H = \bigoplus_{v \in \Gamma^{(0)}} \mathbb{C}^{n(v)}; \quad D = \sum_{e \in \Gamma^{(1)}} D_e + D_e^*$$
 (21)

Figure 2: A Λ-decorated Graph of $(M_n(\mathbb{C}), \mathbb{C}^n, D = D_e + D_e^*)$

1.4.1 Graph Construction of Finite Spectral Triples

Algebra: We know if a acts on a finite dimensional Hilbert space then this \mathbb{C}^* algebra is isomorphic to a matrix algebra so $A \simeq \bigoplus_{i=1}^N M_{n_i}(\mathbb{C})$. Where $i \in \hat{A}$ represents an equivalence class and runs from 1 to N, thus $\hat{A} \simeq \{1, \dots, N\}$. We label equivalence classes by \mathbf{n}_i , then $\hat{A} \simeq \{\mathbf{n}_1, \dots, \mathbf{n}_N\}$.

Hilbert Space: Since every Hilbert space that acts faithfully on a C* algebra is completely reducible, it is isomorphic to the composition of irreducible representations. $H \simeq \bigoplus_{i=1}^N \mathbb{C}^{n_i} \otimes V_i$. Where all V_i 's are Vector spaces, their dimension is the multiplicity of the representation landed by \mathbf{n}_i to V_i itself by the multiplicity space.

Finite Dirac Operator: D_{ij} is connecting nodes \mathbf{n}_i and \mathbf{n}_j , with a symmetric map $D_{ij}: \mathbb{C}^{n_i} \otimes V_i \to \mathbb{C}^{n_j} \otimes V_j$

To draw a graph, draw nodes in position $\mathbf{n}_i \in \hat{A}$. Multiple nodes at the same position represent multiplicities in H. Draw lines between nodes to represent D_{ij} .

Figure 3: Example