Number & title	Grade	Instructor	Description & Book
M427K Differential		Da Karan Hhlanbaak	Ouding a send on this latter weather a such in a send for view as view
Equations	Α	Dr. Karen Uhlenbeck	
			Elements of vector analysis and calculus of functions of
			several variables; including gradient; divergence; and curl of
M427L Valetari			a vector field; multiple integrals and chain rules; length and
M427L Vector	_	Dr. Dartlay Caddard	area; line and surface integrals; Green's theorems in the
Calculus	A-	Dr. Bartley Goddard	plane and space; Stoke's theorem.
			Partial differential equations as basic models of flows;
			diffusion; dispersion; and vibrations. Topics include first- and second-order partial differential equations and classification
			(particularly the wave; diffusion; and potential equations);
			and their origins in applications and properties of solutions.
			Includes the study of characteristics; maximum principles;
M372K Partial			Green's functions; eigenvalue problems; and Fourier
Differential			expansion methods. Text: Partial Differential Equations: An
Equations	Α	Dr. Mikhail Vishik	Introduction by Walter A. Strauss
M341 Linear	, ,	Dir Pinkrian Vistink	Vector spaces; linear transformations; matrices; linear
ALgebra (Honors)	Α	Dr. Ronny Hadani	equations; determinants. Emphasis on rigor and proofs.
7. <u>_</u> geora (e.,			Intended to be first introduction to proof writing. Properties of
			the integers; divisibility; prime numbers; congruences and
			residues; linear and quadratic forms. Text: the class is taught
M328K Intro			in the Inquiry-Based Learning (IBL) fashion whereas students
Number theory			prove every theorem themselves and essentially write their
(IBL)	Α	Dr. Ekin Ozman	own textbook.
			A rigorous treatment of the real number system; Euclidean
			spaces; metric spaces; continuity of functions in metric
			spaces; differentiation and Riemann integration of real-
M365C Real			valued functions of one real variable; and uniform
Analysis I	В	Dr. Rachel Ward	convergence of sequences and series of functions.
			A study of groups; rings; and fields; including structure
			theory of finite groups; isomorphism theorems; polynomial
M373K Algebraic			rings; and principal ideal domains. Text: Topics in Algebra by
Structures I	B+	Dr. Lewis Bowen	I. N. Herstein (chapters 1;2;3;5)
NA262NA I I I			Introduction to discrete and continuous time Markov chains;
M362M Intro to			poison and renewal processes; birth and death processes
stochastic	_	Du Datau Muallau	and their applications Text: Essentials of Stochastic
processes	Α	Dr. Peter Mueller	Processes by Rick Durrett (chapters 1-4)
			Calculus applied to curves and surfaces in three dimensions:
			curvature and torsion of space curves; Gauss map and curvature of surfaces; Gauss theorem; geodesics; and the
M365G Curves			Gauss-Bonnet theorem. Text: Elementary Differential
and surfaces	Α	Dr. Dan Freed	Geometry by A.N. Pressley (all chapters)
and surfaces	^	Di. Dan need	An introduction to point set topology; including sets;
			functions; cardinal numbers; and culminates at the
			classification of 2-manifolds Text: the class is taught in the
			Inquiry-Based Learning (IBL) fashion whereas students prove
			every theorem themselves and essentially write their own
M367K Topology I	Α	Dr. Michael Starbird	textbook.
	ı	1	1

	,	1	
			Selected topics from Ring theory and Field Theory including
			quadratic number rings/fields and Galois theory. Texts:
M373L Algebraic			Algebra; by Michael Artin; Abstract Algebra by Dummit and
Structures II	A-	Dr. Ekin Ozman	Foote
			Complex differentiation; Cauchy-Riemann equations;
			conformality. Holomorphic functions; analytic functions.
			Stereographic projection. Contour integration; Cauchy's
			theorem; Liouville's theorem; Morera's theorem. Harmonic
			functions; mean value theorem; maximum principle.
			Moebius transforms; Schwarz lemma. Automorphisms of the
			unit disc and of the upper half plane. Holomorphic functions
			on the Riemann sphere. Isolated singularities and residues;
			meromorphic functions; Laurent series. Winding number;
			cycles; null homology; basics on differential forms;
			generalized Cauchy theorem; residue theorem. Uniqueness
			theorem; analytic continuation. Convergence and normal
			families. Mittag-Leffler theorem; Weierstrass and Hadamard
			factorization theorems; order and genus of entire functions.
			Riemann mapping theorem. Poisson formula; Poisson kernel.
			Harnack inequality. Approximate identities. Dirichlet problem
			on the unit disc with continuous and L1 boundary data.
			Riemann surfaces; basic definitions and examples. Analytic
M381D Complex			functions between Riemann surfaces. Valency; degree;
Analysis	A-	Dr. Thomas Chen	genus; Riemann-Hurwitz formula. Elliptic functions.
			Outermeasures; measures; sigma-algebras; measurability
			and continuity of functions; Littlewood's 3 principles; Lusin's
			Theorem; Lebesgue integration; Riemann integration;
			Lebesgue differentiation theorem; convergence theorems;
			functions of bounded variations; absolute continuous
			functions; convex functions; L^p spaces; Banach spaces;
			Hilbert spaces; Signed measures; Hahn decompostions;
			Jordan decompositions; Radon-Nikodym; Dual of L^p;
			Caratheodory's Extension Theorem; Product measures;
			Fubini's and Tonelli's; convolutions; spaces of measures;
M381C Real			Riesz representation theorem; Fourier transforms
Analysis	Α	Dr. Lewis Bowen	Text:Measure and Integral by R.L. Wheeden and A. Zygmund
			Classification of 2-manifolds; homotopy; fundamental
			groups; Van Kampen theorem; covering spaces; universal
			covers; subgroup correspondence; Z2 homology; mayer-
			vietoris sequences; applications (in fixed point theorem;
			Jordan separation theorem etc.); Z homology. Text: the class
			is taught in the Inquiry-Based Learning (IBL) fashion whereas
M382C Algebraic			students prove every theorem themselves and essentially
Topology	N/A	Dr. Michael Starbird	write their own textbook.

Ling,Feng - math supplements.csv

Homotopy Type Theory	audit	Dr. Andrew Blumberg	introducing homotopy type theory from propositional logic; (ETCS) set theory; type and dependent types; lambda-calculus; correspondence with cartesian closed categories; fibration cofibration; inductive types; simplicial sets; kan complex and fibrations; univalence axioms; path inductions; h-levels; inductive types; and finally proved $\pi 1(S^1) = Z$ using homotopy type theory methods.
M382D			Manifolds and maps; differential forms; transversality; and
Differential	N/A	Dr. Andrew Neitzke	intersection theory.