

© International Baccalaureate Organization 2021

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Chemistry Higher level Paper 1

Friday 14 May 2021 (morning)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [40 marks].

	г											
	48	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.90	54 Xe 131.29	86 Rn (222)	118 Uuo (294)				
	11		9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)	117 Uus (294)	71 Lu 174.97	103 Lr (262)		
	16		8 o 16.00	16 S 32.07	34 Se 78.96	52 Te 127.60	84 Po (209)	116 Uuh (293)	70 Yb 173.05	102 No (259)		
	15		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.76	83 Bi 208.98	115 Uup (288)	69 Tm 168.93	101 Md (258)		
	4		6 C 12.01	14 Si 28.09	32 Ge 72.63	50 Sn 118.71	82 Pb 207.2	114 Uug (289)	68 Er 167.26	100 Fm (257)		
	13		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 Tl 204.38	113 Unt (286)	67 Ho 164.93	99 Es (252)		
	12	•			30 Zn 65.38	48 Cd 112.41	80 Hg 200.59	112 Cn (285)	66 Dy 162.50	98 Cf (251)		
aple	7				29 Cu 63.55	47 Ag 107.87	79 Au 196.97	111 Rg (281)	65 Tb 158.93	97 Bk (247)		
The Periodic Table	10				28 Ni 58.69	46 Pd 106.42	78 Pt 195.08	110 Ds (281)	64 Gd 157.25	96 Cm (247)		
Perio	၈				27 Co 58.93	45 Rh 102.91	77 Ir 192.22	109 Mt (278)	63 Eu 151.96	95 Am (243)		
The	œ			26 Fe 55.85	44 Ru 101.07	76 0s 190.23	108 Hs (269)	62 Sm 150.36	94 Pu (244)			
	_				25 Mn 54.94	43 Tc (98)	75 Re 186.21	107 Bh (270)	61 Pm (145)	93 Np (237)		
	9	Atomic number Element Relative atomic mass	mass		24 Cr 52.00	42 Mo 95.96	74 W 183.84	106 Sg (269)	60 Nd 144.24	92 U 238.03		
	ည			23 V 50.94	41 Nb 92.91	73 Ta 180.95	105 Db (268)	59 Pr 140.91	91 Pa 231.04			
	4		Ato	Atò	Atò	Relativ		22 Ti 47.87	40 Zr 91.22	72 Hf 178.49	104 Rf (267)	58 Ce 140.12
	က				21 Sc 44.96	39 < 88.91	57 † La 138.91	89 ‡ Ac (227)	+	++		
	7		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.33	88 Ra (226)				
	_	1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)				

2

9

_

7

က

1. 0.20 mol of magnesium is mixed with 0.10 mol of hydrochloric acid.

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

Which is correct?

	Limiting reagent	Maximum yield of H ₂ / mol
A.	HCl	0.10
B.	Mg	0.20
C.	HCl	0.05
D.	Mg	0.10

- 2. Which amount, in mol, of sodium chloride is needed to make 250 cm³ of 0.10 mol dm⁻³ solution?
 - A. 4.0×10^{-4}
 - B. 0.025
 - C. 0.40
 - D. 25
- 3. What is the sum of the coefficients when the equation is balanced with whole numbers?

$$_Sn(OH)_4(aq) + _NaOH(aq) \rightarrow _Na_2SnO_3(aq) + _H_2O(l)$$

- A. 4
- B. 5
- C. 6
- D. 7
- **4.** What is represented by "2-" in ${}_Z^AX^{2-}$?
 - A. loss of electron
 - B. gain of electron
 - C. loss of proton
 - D. gain of proton

5. The first eight successive ionization energies for an element are shown. In which group is the element?

- A. 6
- B. 7
- C. 8
- D. 17
- **6.** Which property increases down group 1?
 - A. atomic radius
 - B. electronegativity
 - C. first ionization energy
 - D. melting point
- **7.** Which is a d-block element?
 - A. Ca
 - B. Cf
 - C. Cl
 - D. Co

8.	Whic	Which factor does not affect the colour of a complex ion?					
	A.	temperature of the solution					
	B.	identity of the ligand					
	C.	identity of the metal					
	D.	oxidation number of the metal					
9.	Whic	ch compound has the greatest volatility under the same conditions?					
	A.	SO ₂					
	B.	SiO ₂					
	C.	SnO ₂					
	D.	SrO					
10.	Whic	ch compound has the shortest C to N bond?					
	A.	HCN					
	B.	CH ₃ CH ₂ NH ₂					
	C.	CH ₃ CHNH					
	D.	(CH ₃) ₂ NH					
11.	Whic	ch is the correct order based on increasing strength?					
	A.	covalent bonds < hydrogen bonds < dipole–dipole forces < dispersion forces					
	B.	dipole–dipole forces < dispersion forces < hydrogen bonds < covalent bonds					
	C.	dispersion forces < dipole–dipole forces < hydrogen bonds < covalent bonds					
	D.	dispersion forces < dipole–dipole forces < covalent bonds < hydrogen bonds					
12.	Whic	ch atom has an expanded octet?					
	A.	C in CO ₂					
	B.	S in SCl ₄					

 ${\rm C.} \quad {\rm O} \ {\rm in} \ {\rm H_2O_2}$

D. P in PCl₃

- **13.** What is the electron domain geometry of Si in SiO₂?
 - A. bent
 - B. linear
 - C. square planar
 - D. tetrahedral
- 14. Which describes an exothermic reaction?

	Heat transfer	Enthalpy
A.	from surroundings to system	reactants > products
B.	from surroundings to system	products > reactants
C.	from system to surroundings	products > reactants
D.	from system to surroundings	reactants > products

15. The potential energy profile of a reaction is shown.

What can be determined about stability and energy change from the potential energy profile shown?

	More stable	Reaction
A.	reactants	exothermic
B.	reactants	endothermic
C.	products	exothermic
D.	products	endothermic

16. Which represents electron affinity?

A.
$$Al^{2+}(g) \to Al^{3+}(g) + e^{-}$$

B.
$$C(g) + e^- \rightarrow C^-(g)$$

C.
$$Cl_2(g) \rightarrow 2Cl(g)$$

$$D. \hspace{0.2in} S(s) \rightarrow S^{\scriptscriptstyle +}(g) + e^{\scriptscriptstyle -}$$

17. Which change results in the largest negative value of ΔS ?

A.
$$C_2H_5OH(l) + SOCl_2(l) \rightarrow C_2H_5Cl(l) + SO_2(g) + HCl(g)$$

B.
$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

C.
$$H_2O(l) \rightarrow H_2O(s)$$

D.
$$NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$$

18. Which change causes the greatest increase in the initial rate of reaction between nitric acid and magnesium?

$$2HNO_3(aq) + Mg(s) \rightarrow Mg(NO_3)_2(aq) + H_2(g)$$

	[HNO ₃]	Size of metal pieces
A.	doubled	halved
B.	doubled	doubled
C.	halved	halved
D.	halved	doubled

19. Which explains increasing rate of reaction with increasing temperature?

	Particles with $E > E_a$	Frequency of collisions
A.	same	same
B.	more	greater
C.	same	greater
D.	more	same

20. Which graph represents a second order reaction with respect to X?

$$X \rightarrow Y$$

A.

B.

C.

D.

- 21. Which statements are correct about the action of a catalyst in a chemical reaction?
 - It increases the energy of each collision.
 - II. It alters the mechanism of the reaction.
 - III. It remains unchanged at the end of the reaction.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **22.** What effect does a catalyst have on the position of equilibrium and the value of the equilibrium constant, K_c , for an exothermic reaction?

	Position of equilibrium	Value of equilibrium constant
A.	moves to products	increases
B.	stays the same	increases
C.	stays the same	stays the same
D.	moves to products	stays the same

23. Sulfur dioxide reacts with oxygen to form sulfur trioxide.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ}$

Which change increases the value of K_c ?

- A. increasing the temperature
- B. decreasing the temperature
- C. decreasing $[SO_2(g)]$
- D. decreasing $[SO_3(g)]$

24. Which cannot act as a Brønsted–Lowry base?

- A. HPO₄ 2-
- B. H₂O
- C. CH₄
- D. NH₃

25. Which causes acid deposition?

- A. SO₂
- B. SiO₂
- C. SrO
- D. CO₂

26. Which is correct?

- A. Electrophiles are Brønsted-Lowry acids.
- B. Nucleophiles are Brønsted-Lowry acids.
- C. Electrophiles are Lewis acids.
- D. Nucleophiles are Lewis acids.

- **27.** Which compound is acidic in aqueous solution?
 - A. KBr
 - B. CH₃COONa
 - C. NH₄Cl
 - D. Na₂CO₃
- **28.** What is the oxidation state of oxygen in H_2O_2 ?
 - A. –2
 - B. -1
 - C. +1
 - D. +2
- 29. What are the products of the electrolysis of molten potassium chloride, KCl(l)?

	Anode (positive electrode)	Cathode (negative electrode)
A.	К	Cl
B.	Cl_2	К
C.	Cl	К
D.	K	Cl ₂

30. What would be the electrode potential, E^{\ominus} , of the Mn²⁺(aq)|Mn(s) half-cell if Fe³⁺(aq)|Fe²⁺(aq) is used as the reference standard?

$$Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$$
 $E^{\ominus} = -1.18 V$

$$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$$
 $E^{\ominus} = +0.77 \, V$

- A. -1.95 V
- B. -0.41 V
- C. +0.41 V
- D. +1.95 V

31. What happens to the mass of each copper electrode when aqueous copper(II) sulfate solution is electrolysed?

	Anode (positive electrode)	Cathode (negative electrode)
A.	increases	increases
B.	increases	decreases
C.	decreases	increases
D.	decreases	decreases

32. What is the IUPAC name of the molecule shown?

- A. 2,4-dimethylhexane
- B. 3,5-dimethylhexane
- C. 2-methyl-4-ethylpentane
- D. 2-ethyl-4-methylpentane

33. Which monomer forms the polymer shown?

- A. $CH(Cl)=CH(CH_3)$
- B. CH₂=C(Cl)CH₃
- C. (CH₃)₂CHCl
- D. CH₂=CHCl

34. Which is a propagation step in the free-radical substitution mechanism of ethane with chlorine?

- A. $Cl_2 \rightarrow 2 \cdot Cl$
- $\mathsf{B.} \quad {}^\bullet\mathsf{C}_2\mathsf{H}_5 + \mathsf{Cl}_2 \to \mathsf{C}_2\mathsf{H}_5\mathsf{Cl} + {}^\bullet\mathsf{Cl}$
- C. ${}^{\bullet}C_2H_5 + {}^{\bullet}Cl \rightarrow C_2H_5Cl$
- D. $C_2H_6 + \bullet Cl \rightarrow C_2H_5Cl + \bullet H$

35. Which compound shows *cis-trans* isomerism?

- A. CH₃CH=CCl₂
- B. CCl₂=CH₂
- C. Cl
- D. CI

36.	Which	compound	rotates	the	plane	of	plane-	polarized	light?

- A. CH₃C(CH₃)ClCH₃
- B. CH₃CH₂CHClCH₃
- C. CH₃C(Cl)₂CH₃
- D. CH₃CClBrCH₃

37. Which can be reduced to a secondary alcohol?

- A. C₂H₅COOH
- B. CH₃CH₂OCH₃
- C. (CH₃)₂CHCHO
- D. CH₃COC₂H₅

38. Which spectra would show the difference between propan-2-ol, CH₃CH(OH)CH₃, and propanal, CH₃CH₂CHO?

- I. mass
- II. infrared
- III. ¹H NMR
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

39. How should the difference between 27.0 ± 0.3 and 9.0 ± 0.2 be shown?

- A. 18.0 ± 0.1
- B. 18.0 ± 0.3
- C. 18.0 ± 0.5
- D. 18.0 ± 0.6

- 14 - 2221-6113

- **40.** What information can be deduced from the splitting pattern of ¹H NMR signals?
 - A. total number of hydrogen atoms in a compound
 - B. number of hydrogen atoms on adjacent atom(s)
 - C. functional group on which hydrogen atoms are located
 - D. number of hydrogen atoms in a particular chemical environment

