

Product: Kidz Gear–Wireless Bluetooth Headphones–PNK

Kidz Gear-Wireless Bluetooth Headphones-BLU

Trade mark : Kidz Gear™

Model/Type reference : BT68KG02, BT68KG04

Serial Number : N/A

Report Number : EED32H000819-2

FCC ID : 2ADKP0BT68KG02PNK

Date of Issue: : July 29, 2015

Test Standards : 47 CFR Part 15Subpart C (2014)

Test result : PASS

Prepared for:

Supply and Beyond, LLC (dba Kidz Gear)
4665 Golden Foothill Parkway Suite # 106, El Dorado Hills,
California 95762, United States

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Report Seal

2 XM

Reviewed by:

Date:

Levin lan

Sheek Luo

Lab supervisor

Jul. 29, 2015

Check No.: 1022564812

Page 2 of 39

2 Version

Version No. Date		ersion No. Date Description			
00	July 29, 2015	6	Original	<u> </u>	
				(S)	

Page 3 of 39

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Model No.: BT68KG02, BT68KG04

All models are same product just different surface color and model names. The test model is BT68KG02 and the test results are applicable to others. Test according to ANSI C63.4-2014.

4 Content

7.7	PAGE						
2 VERSIO	N	•••••	••••••		••••••	••••	
3 TEST SU	JMMARY	•••••	••••••	••••••	••••••	••••••	••••••
	IT						
5 TEST RE	QUIREMENT	•••••	•••••	•••••	•••••	•••••	
5.1.1 5.1.2 5.1.3 5.2 Test	For Conducted test For Radiated Emiss For Conducted Emi ENVIRONMENT	setupions test setu ssions test se	ptup				
6 GENERA	AL INFORMATION		•••••				
6.2 GEN 6.3 PRO 6.4 DESG 6.5 TEST 6.6 TEST 6.7 DEVG 6.8 ABNG 6.9 OTH 6.10 ME 7 EQUIPM 8 RADIO T Appe Appe Appe Appe Appe Appe Appe App	NT INFORMATION ERAL DESCRIPTION OF DUCT SPECIFICATION OF SUPPORT LOCATION ATION FROM STANDAD ORMALITIES FROM STER INFORMATION RECENT LIST ECHNICAL REQUIRED TO BE CONTROLLED TO	F EUTSUBJECTIVE T T UNITS RDS ANDARD CONE QUESTED BY TH AINTY (95% Concentration of RF Conducted Spurious Etral Density quirement ine Conducte	O THIS STANDA OITIONS HE CUSTOMER. ONFIDENCE LEV PECIFICATIO Power cted Emissions Emissions	/ELS, K=2)			
	RAPHS OF TEST SI						
PHOTOGR	RAPHS OF EUT CO	NSTRUCTIO	NAL DETAILS	S	•••••	•••••	3:

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		(4)
Temperature:	24 °C	6
Humidity:	53 % RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
rest Mode	TX/FX	Low(L)	Low(L) Middle(M)		
OFOK	04000411 0400 0411	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				
TOWNS 1	THE PARTY OF THE P	Comment of the Commen	-		

6 General Information

6.1 Client Information

Applicant:	Supply and Beyond, LLC (dba Kidz Gear)
Address of Applicant:	4665 Golden Foothill Parkway Suite # 106, El Dorado Hills, California 95762, United States
Manufacturer:	ANTONIO PRECISE PRODUCTS MANUFACTORY LTD.
Address of Manufacturer:	Unit 307-313, 3/F, Photonics Centre, No. 2 Science Park East Avenue, HK Science Park, Shatin, N.T. HK

6.2 General Description of EUT

Product Name:	Kidz Gear – Wireless Bluetooth Headphones – PNK Kidz Gear – Wireless Bluetooth Headphones – BLU		
Model No.(EUT):	BT68KG02, BT68KG04		
Trade mark:	Kidz Gear™	(0,)	
EUT Supports Radios application:	Bluetooth V4.0 BLE		
Power Supply:	Battery: DC3.7V (Li-on Rechargeable Battery)		(3)
Sample Received Date:	Jun. 23, 2015		(65)
Sample tested Date:	Jun. 23, 2015 to July 03, 2015		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(20)			
Bluetooth Version:	4.0	(0,)		(0)	
Modulation Technique:	DSSS			110	
Modulation Type:	GFSK				
Number of Channel:	40		130		130
Sample Type:	Portable production		(3)		(6)
Antenna Type:	Integral				
Antenna Gain:	0dBi				
Test Voltage:	DC3.7V	25		25	

Page 8 of 39

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below:

Device Type	Brand	Model	Data Cable	Remark
Notebook	HP	G3	N/A	FCC DOC
Mouse	lenovo	MO28UOL	Un-shielded 1.2M	FCC DOC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Page 9 of 39

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

None.

None.

Page 10 of 39

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1/	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Redicted Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 11 of 39

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(3)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4	(a)	01-13-2015	01-12-2016
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-13-2015	01-12-2016
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-13-2015	01-12-2016
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016

	Shielding	g Room No. 1 – Co	nduction Emi	ssion Test	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100009	07-09-2015	07-08-2016
LISN	R&S	ENV216	100098	11-12-2014	11-13-2015

Page 12 of 39

		3M Semi/full-anech	noic Chamber	•		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy	
3M Chamber	TDK	SAC-3		06-02-2015	06-01-2016	
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-14-2014	07-13-2015	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016	
Horn Antenna	ETS-LINDGREN	3117	00057410	07-08-2014	07-07-2015	
Loop Antenna	ETS	6502	00071730	07-23-2014	07-22-2015	
Spectrum Analyzer	R&S	FSP40	100416	07-09-2014	07-08-2015	
Receiver	R&S	ESCI	100435	07-09-2014	07-08-2015	
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016	
LISN	schwarzbeck	NNBM8125	81251547	07-09-2014	07-08-2015	
LISN	schwarzbeck	NNBM8125	81251546	07-09-2014	07-08-2015	
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016	
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016	
Temperature/ Humidity Indicator	TAYLOR	1451	5190	07-10-2014	07-09-2015	
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016	
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016	
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016	
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016	
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016	
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016	
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002	<u> </u>	01-13-2015	01-12-2016	
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4	(CZ)	01-13-2015	01-12-2016	
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-13-2015	01-12-2016	
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016	
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016	
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001		01-13-2015	01-12-2016	

Page 13 of 39

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2014)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

oot i toodito Eloti	UPS 27 1	100.00		1 75.7
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

Appendix A) 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6673	1.0366	PASS
BLE	MCH	0.6671	1.0390	PASS
BLE	НСН	0.6714	1.0416	PASS

Test Graphs

Appendix B) Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-0.579	PASS
BLE	MCH	3.165	PASS
BLE	HCH	5.617	PASS

Test Graphs

Page 16 of 39

Appendix C) Band-edge for RF Conducted Emissions

Appendix D) RF Conducted Spurious Emissions

Test Graphs

Page 19 of 39

Page 20 of 39

Page 21 of 39

Appendix E) Power Spectral Density

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-16.342	PASS
BLE	MCH	-12.415	PASS
BLE	HCH	-9.846	PASS

Test Graphs

Page 22 of 39

Page 23 of 39

Appendix F) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 24 of 39

Appendix G) AC Power Line Conducted Emission

Test Procedure:	Test frequency range: 150KHz 1) The mains terminal disturba 2) The EUT was connected to Stabilization Network) which power cables of all other which was bonded to the grown the unit being measure multiple power cables to a exceeded. 3) The tabletop EUT was place reference plane. And for flow horizontal ground reference will EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximum of the interface cables	AC power source thresh provides a 50Ω/50μ mits of the EUT were round reference planed. A multiple socket of single LISN provided to the avertical ground reference plane, the avertical ground reference to the horizontal ground associated equipment emission, the relative	ough a LISN 1 (Line a) H + 5Ω linear important to a sect in the same way a coutlet strip was use the rating of the LIS ic table 0.8m above tent, the EUT was preference plane. The rence plane. The rence plane. The vertical trader test and in top of the groundints of the LISN 1 and the tent was at least 0. The positions of equipment in the positions of equipment was at least 0.	e Impedance edance. The cond LISN 2, is the LISN 1 d to connect N was not e the ground placed on the erear of the ertical ground he. The LISN bonded to and reference and the EUT. 8 m from the coment and all
	conducted measurement.			
Limit:	(0,)	(C)	(6,5)	\neg
	Frequency range (MHz)	Limit (c	lΒμV)	
	requeries range (iiii i2)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	13
	0.5-5	56	46	(25)
	5-30	60	50	
	* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is appli	-		e range 0.15

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 25 of 39

No.	Freq.		ling_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)	ent	Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1980	35.14		27.47	9.90	45.04		37.37	63.69	53.69	-18.65	-16.32	Р	
2	0.6460	35.71		22.14	9.90	45.61		32.04	56.00	46.00	-10.39	-13.96	Р	
3	1.5540	29.76		17.86	9.90	39.66		27.76	56.00	46.00	-16.34	-18.24	Р	
4	16.6980	36.99		32.00	10.07	47.06		42.07	60.00	50.00	-12.94	-7.93	Ρ	
5	25.0500	31.57		26.09	10.30	41.87		36.39	60.00	50.00	-18.13	-13.61	Р	

(MHz)

0.150

0.5

5

30.000

Page 26 of 39

Neutral line:

No.	Freq.		ding_Le	vel	Correct Factor	M	leasurem (dBuV)	ent	Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1980	33.58		26.14	9.90	43.48		36.04	63.69	53.69	-20.21	-17.65	Р	
2	0.6540	35.00		24.41	9.90	44.90		34.31	56.00	46.00	-11.10	-11.69	Р	
3	1.1260	30.15		17.16	9.90	40.05		27.06	56.00	46.00	-15.95	-18.94	Р	
4	2.7780	29.99		18.41	9.90	39.89		28.31	56.00	46.00	-16.11	-17.69	Р	
5	16.6980	37.34		31.39	10.07	47.41		41.46	60.00	50.00	-12.59	-8.54	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Page 27 of 39

Appendix H)Restricted bands around fundamental frequency / Radiated Spurious Emissions (Radiated)

					A 470 1	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
/	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
	Above 4011-	Peak	1MHz	3MHz	Peak	
(0,	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limnita	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-05	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 28 of 39

Radiated Spurious Emissions test Data: Radiated Spurious Emissions test Data:

All the modes of operation (X, Y, Z) were investigated and the worst-case emissions are reported.

A. Below 30MHz:

No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

B. $30MHz \sim 1GHz$:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of middle channel are chosen as representative in below:

H

Page 29 of 39

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Height cm	Azimuth deg	Polarization
51.340000	21.60	15.9	40.0	18.4	 100.0	42.00	VERTICAL
57.160000	20.40	15.2	40.0	19.6	 100.0	293.00	VERTICAL
130.880000	24.90	11.3	43.5	18.6	 200.0	355.00	VERTICAL
301.600000	25.10	16.4	46.0	20.9	 100.0	42.00	VERTICAL
513.060000	27.30	21.1	46.0	18.7	 100.0	245.00	VERTICAL
897 180000	33 10	27 0	46.0	12 9	 100 0	304 00	VEDUTCAL.

Page 30 of 39

C. Above 1GHz:

Test Results-(Measurement Distance: 3m)_Channel low_2402MHz_GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2390.0	36.04	74	PK	Н	Р
2400.0	45.09	74	PK	Н	Р
2402.0*	85.27	(65%)	PK	Н	Р
4804.0	43.13	74	PK	Н	Р
2390.0	36.14	74	PK	V	Р
2400.0	43.12	74	PK	V	Р
2402.0*	88.01		PK	V	Р
4804.0	42.81	74	PK	V	Р

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m)_Channel middle_2440MHz_GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)			Antenna (H/V)	Result (P/F)	
2440.0*	85.91		PK	Н	Р	
4880.0	43.19	74	PK	Н	P	
2440.0*	86.06	9	PK	V	Р	
4880.0	44.22	74	PK	V	Р	

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m) Channel high 2480MHz GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2480.0*	88.13		PK	Н	Р
2483.5	40.91	74	PK	н ("	Р
4960.0	43.04	74	PK	Н	Р
2480.0*	87.16		PK	V	Р
2483.5	40.14	74	PK	V	Р
4960.0	44.19	74	PK	V	Р

^{*:} fundamental frequency

Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. No emission found from 18GHz to 25GHz.
- 3. All outside of operating frequency band and restricted band specified are below 15.209.

Page 31 of 39

PHOTOGRAPHS OF TEST SETUP

Test mode No.: BT68KG02

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 33 of 39

PHOTOGRAPHS OF EUT Constructional Details

View of external EUT-1

View of external EUT-2

View of external EUT-5

View of external EUT-6

Page 36 of 39

View of internal EUT-2

View of internal EUT-4

View of internal EUT-7

View of internal EUT-8

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

