SQL Preprocessing Querries

Query:

select * from projectfinaldata limit 10;

Output:

Query:

select distinct Dept from projectfinaldata;

Output:

Query:

select count(distinct Specialisation) from projectfinaldata;

Output:

Query:

select DrugName from projectfinaldata where Final_Sales=0;

Output:

it was observed that a total of 1638 drugs Final_sales was 0

	DrugName
>	SALBUTAMOL 2.5MG
	SODIUM CHLORIDE 0.9%
	MULTIPLE ELECTROLYTES 500ML IVF
	CALCIUM 250MG + VITAMIN D3 125IU
	NORADRENALINE 2ML INJ
	ATROPINE SULPHATE 0.6MG
	LIGNOCAINE HYDROCHLORIDE 2% INJ
	DEXTROSE 10%W/V 500ML IVF
	MULTIPLE ELECTROLYTES 500ML IVF
	BISACODYL 10MG
	DOXYCYCLINE 100MG INJ
	SODTI IM CHI ODTDE 0 9%

So from this insight we can say that these drugs do not contribute much to the sales so these drugs stock intake should be minimized **Query:** To handle Null values

select count(*),Formulation,DrugName from projectfinaldata
where Formulation=' ' and DrugName=' ';

O/P: 164

Delete from projectfinaldata where Formulation=" and DrugName=";

Output: 164 rows deleted

select count(*) from projectfinaldata where DrugName=" and SubCat=" and SubCat1=";

O/P: 1504

So these 1504 rows can be deleted as we cant get meaningful insight from these columns

select count(*) from projectfinaldata where DrugName=" and SubCat=" and SubCat1=";

Output: 1504 rows deleted

Query:

Select Patient_ID, COUNT(Patient_ID)

from projectfinaldata

group by Patient_ID

having COUNT(Patient_ID) > 1 order by count(Patient_ID) desc;

This Query selects the frequency of a particular patient in descending order

Output:

Patient_ID	COUNT(Patient_ID)
120 1808 56 15	39
12018071649	38
12018097835	35
12018064444	34
12018075690	33
12018086686	29
12018096209	29
12018097199	29

2442 row(s) returned

Query:

select sum(Final_Sales) as tot_sales,Dept from projectfinaldata group by Dept order by tot_sales desc;

This will return which department has the highest sales

Output:

	tot_sales	Dept
)	2602757.8879999933	Department1
	229228.57399999985	Department2
	58783.54400000001	Department3

From the o/p Department 1 is having the Highest sales of 2602757

select * from projectfinaldata where Typeofsales='Return' order by ReturnQuantity desc;

o/p This will return all the rows which has sales type as 'Returm'

1514 row(s) returned

Query:

select count(*) as cnt, Subcat

from (select Subcat from projectfinaldata where Typeofsales='Return') as sub_table

group by SubCat order by cnt desc;

this query will return which subcategory medicines where most frequently returned by the customers/patients

Output:

	cnt	Subcat	
•	762	INJECTIONS	
	475	IV FLUIDS, ELECTROLYTES, TPN	
	94	TABLETS & CAPSULES	
	71	INHALERS & RESPULES	
	31	POWDER	
	24	LIQUIDS & SOLUTIONS	
	15	OINTMENTS, CREAMS & GELS	
	15	SYRUP & SUSPENSION	
	11	PESSARIES & SUPPOSITORIES	
	8	NUTRITIONAL SUPPLEMENTS	
	7	DROPS	
	2	VACCINE	
	1	PATCH	
	1	LOTIONS	

From the output we can say that Injections are most frequently returned by the patients so we can recommend alternative medicines instead of Injections to patients

Query:

select avg(Final_sales)as avgs,Dept from projectfinaldata group by Dept order by avgs;

Output:

	avgs	Dept
)	187.4313769419459	Department2
	232.80482003577757	Department1
	399.88805442176874	Department3

Query: To set the dateofbill column to datetime datatype instead of text

update projectfinaldata set Dateofbill=

case

when Instr(Dateofbill,'-')>0 then str_to_date(Dateofbill,'%d-%m-%Y')

when Instr(Dateofbill, '/') > 0 then str_to_date(Dateofbill, '%m/%d/%Y')

-- The Instr() function returns an integer value representing the position of the substring within the string. If the substring is found, the function returns the position as a positive integer. If the substring is not found, it returns 0.

end;

alter table projectfinaldata modify column Dateofbill datetime;

o/p: 12250 rows affected and column dtype change to datetime

Query:

select round(sum(Final_cost),2) from projectfinaldata where Final_Sales=0;

Output:

Query:

- -- Univariate analysis
- -- Mean, Median, Min, Max, and Std Deviation of Quantity select

```
avg(quantity) as mean_quantity,
min(quantity) as min_quantity,
max(quantity) as max_quantity,
stddev(quantity) as std_quantity
from projectfinaldata;
```

Output:

-- Count occurrences of each type of sale select typeofsales, count(*) as sale_count from projectfinaldata group by typeofsales;

o/p:

	type	ofsales	sale_count
•	Sale	Sale	11033
	Return		1517

--- Bivariate Analysis

-- Average Final Sales for each Specialisation select specialisation, avg(final_sales) as avg_sales from projectfinaldata group by specialisation order by avg_sales desc;

	specialisation	avg_sales
•	Specialisation41	379.6255121951219
	Specialisation7	325.328082627119
	Specialisation4	291.0131788040259
	Specialisation23	284.4663139013453
	Specialisation8	277.4144533333333
	Specialisation 13	276.8935
	Specialisation48	272.7979130434783
	Specialisation26	259.2639868852461
	Specialisation65	245.6972307692308

56 row(s) returned

-- Multivariate Analysis

-- correlation between quantity and Final_sales

```
select
```

```
(SUM((Q - mean_quantity) * (F - mean_final_sales)) / (SQRT(SUM((Q - mean_quantity) * (Q - mean_quantity))) * SQRT(SUM((F - mean_final_sales) * (F - mean_final_sales))))) as correlation_coefficient from (
select

Quantity as Q, Final_Sales as F,

(select avg(Quantity) from projectfinaldata) as mean_quantity,

(select avg(Final_Sales) from projectfinaldata) as mean_final_sales from projectfinaldata) as sub_query;
```

O/P:

	correlation_coefficient
>	0.27538065041171095

From the result quantity and final_sales are positively correlated i.e as quantity increases the final_sales also increases

-- Pivot table to show Total Sales and Total Return Quantity by Specialisation select specialisation,

sum(final_sales) as total_sales,

sum(returnquantity) as total_return_quantity

from projectfinaldata

group by specialisation order by total_return_quantity desc,total_sales;

O/P:

	specialisation	total_sales	total_return_quantity
•	Specialisation4	983042.5179999996	916
	Specialisation7	614219.4200000006	469
	Specialisation3	120560.54600000006	156
	Specialisation2	85424.11000000004	152
	Specialisation8	145642.588	129
	Specialisation20	108007.48000000003	117
	Specialisation5	69332.65999999997	114
	Specialisation 1	73179.88000000002	102
	Specialisation6	35257.69	98

56 row(s) returned

-- Skewness and kurtosis

select

(SUM(POW(Quantity - mean_quantity, 3)) / (COUNT(Quantity) * POW(STDDEV(Quantity), 3))) as skewness,

(SUM(POW(Quantity - mean_quantity, 4)) / (COUNT(Quantity) * POW(STDDEV(Quantity), 4))) as kurtosis

from projectfinaldata,

(select avg(Quantity) as mean_quantity from projectfinaldata) as subquery;

O/P:

	skewness	kurtosis
•	17.085292418207427	466.90008667183463

A skewness value of 17.08 indicates a highly skewed distribution

it suggests that the distribution of the Quantity column is highly skewed towards higher values.

the kurtosis value of 466.9 indicates that the Quantity column has a distribution with heavy tails and a significant number of outliers.

select

Dateofbill as purchase_date,

sum(Quantity) as quantity_brought,

sum(ReturnQuantity) as quantity_returned,

COUNT(distinct case when Quantity>0 then Patient_ID end) as patients_bought,

COUNT(distinct case when ReturnQuantity > 0 then Patient_ID end) as patients_returned

from projectfinaldata

group by Dateofbill order by quantity_returned desc;

1					
	purchase_date	quantity_brought	quantity_returned	patients_bought	patients_returned
•	2022-05-03	43	32	25	10
	2022-06-17	69	31	35	15
	2022-02-02	45	29	21	8
	2022-05-15	32	29	19	4
	2022-12-01	44	27	23	6
	2022-12-28	84	27	30	8
	2022-08-30	122	25	36	7
	2022-05-09	30	24	16	7
	2022-03-11	58	23	29	5
	2022-09-04	84	23	37	8
Re	2022-01-31 sult 59 ×	63	22	27	6

356 row(s) returned