جبر خطی

دانشكده مهندسي كامپيوتر

حمیدرضا ربیعی، مریم رمضانی ياييز ۱۴۰۱

آزمون پایانترم زمان آزمون: ۱۵۰ دقیقه

۹ بهمن ۱۴۰۱، ساعت ۹:۰۰

نکته ۱ لطفا پاسخ بخشهای مختلف را در برگههای جدا به نحوی که قابل تفکیک باشند بنویسید.

نکته ۲ آزمون از ۱۳۵ نمره است. دریافت ۱۰۰ نمره از این ۱۳۵ نمره به منزله دریافت نمره کامل است.

زمان پیشنهادی: ۳۰ دقیقه

بخش اول: پرسشهای درست/نادرست (۲۴ نمره)

به پرسشهای زیر با استدلال ریاضی (اثبات یا مثال نقض) پاسخ درست/نادرست بدهید.

يرسش ١ (۴ نمره) مقادير ويژه يک ماتريس مربعي مختلط متقارن، حقيقي است.

پرسش ۲ (۲ نمره) اگر یک ماتریس حقیقی دلخواه وارون پذیر باشد، آنگاه قطری پذیر نیز خواهد بود.

پرسش $\mathbf r$ ($\mathbf r$ نمره) اگر دو ماتریس $\mathbf r$ و $\mathbf r$ همارز سطری باشند، آنگاه فضای ستونی آنها با هم برابر است.

پرسش * (* نمره) اگر A یک ماتریس مربعی n imes n با مقادیر ویژه حقیقی و n بردار ویژه دو به دو متعامد باشد، آنگاه ماتریس A متقارن خواهد بود.

پرسش ۵ (۴ نمره) حاصل ضرب ماتریسهای استاندارد تبدیل افکنش ایک ماتریس استاندارد تبدیل افکنش است.

M نمره) اگر برای ماتریس دلخواه A داشته باشیم $\{ullet\}=\{ullet\}$ ، آنگاه این ماتریس وارونپذیر خواهد بود. $Null(A)=\{ullet\}$

زمان پیشنهادی: ۱۲۰ دقیقه

بخش دوم: پرسشهای تشریحی (۱۱۱ نمره)

m imes n برسش ۱ (۶ نمره) نشان دهید که اگر ماتریسهای P و Q ماتریسهای مربعی و دارای رتبه کامل باشند و ماتریس A یک ماتریس دلخواه به ابعاد m imes n باشد، خواهيم داشت

$$Rank(A) = Rank(PA) = Rank(AQ)$$

پرسش ۲ (۱۲ نمره) R ماتریس استاندارد تبدیل انعکاس نسبت به خطی با زاویه θ از محور x است. R را برحسب ماتریس استاندارد تبدیل افکنش P به دست آوردید و نشان دهید که $R^{\mathsf{T}} = I$ است.

پرسش ۳ (۲۸ نمره) همانطور که در درس بود و شما نخواندید! نرم فربینیوس میک ماتریس جذر حاصل جمع مربعات درایههای آن ماتریس است که معادل جذر جمع درایههای قطری گرام آن ماتریس میشود.

 $\|A\|_F^{\mathsf{Y}} = \sum_{i=1}^n \sigma_i^{\mathsf{Y}}$ باشد، اثبات کنید $\{\sigma_i\}_{i=1}^n$ باشد و مقادیر تکین آن مجموعه $\{\sigma_i\}_{i=1}^n$ باشد، اثبات کنید $A \in \mathbb{C}^{m \times n}$ باشد و مقادیر تکین آن مجموعه

اگر A یک ماتریس حقیقی عریض m imes n با رتبه سطری کامل باشد و $ilde{x} = ilde{A}b$ کمینه کننده عبارت m imes n باشد، آنگاه:

- (ب) (۶ نمره) \tilde{A} را با استفاده از مشتق محاسبه نمایید.
- (ج) (۸ نمره) با استفاده از تجزیه مقدار تکین 0 مقدار \widetilde{A} را به صورت جمع ماتریسهایی با رتبه یک بدست آورید.
 - (د) (۸ نمره) \tilde{A} را از طریق تجزیه QR بدست آورید.

پرسش ۴ (۲۰ نمره)

(آ) (۵ نمره) فرض کنید که $A^{\intercal} = I$ باشد. اثبات کنید به ازای هر بردار حقیقی دلخواه v، بردارهای 4v + v و 4v - v بردارهای ویژه ماتریس A خواهند

Projection'

Reflection

Frobenius⁷

Wide*

Singular Value Decomposition $^{\diamond}$

(ب) (۵ نمره) اثبات کنید که هر بردار حقیقی دلخواه را میتوان به صورت ترکیب خطی بردارهای ویژه ماتریس A نوشت.

(ج) (۱۰ نمره) اثبات کنید که ماتریس A+I قطری پذیر است.

 \mathbf{y} رسش ۵ (۱۳ نمره) ماتریس پادمتقارن \mathbf{A}^{s} مفروض است.

I - A وارونپذیر است. I - A وارونپذیر است.

رب) (۷) نشان دهید ماتریس $Q = (I - A)^{-1}(I + A)$ متعامد است.

 $e^x, e^{-x}, xe^x, xe^{-x}$ مفروض است. ماتریس استاندارد تبدیل خطی $\{e^x, e^{-x}, xe^x, xe^{-x}\}$ مفروض است. ماتریس استاندارد تبدیل خطی

$$T(f(x)) = Yf(x) - f'(x)$$

را بیابید و در مورد Isomorphism بودن آن تحقیق کنید.

پرسش ۷ (۲۰ نمره) فرض کنید که ماتریس A یک ماتریس مربعی حقیقی باشد.

(آ) (۱۰ نمره) اگر مجموع قدر مطلق درایههای هر ستون برابر صفر یا ۱ باشد، ثابت کنید که مقادیر ویژه ماتریس A اندازهای کوچکتر یا مساوی ۱ دارند.

$$\forall j, \sum_{i=1}^{n} |a_{ij}| \in \{\cdot, 1\} \Rightarrow |\lambda| \leq 1$$

رب) (۱۰ نمره) اگر مجموع قدر مطلق درایههای ستون jام برابر S_j باشد، یعنی به عبارت ریاضی

$$\forall j, S_j = \sum_{i=1}^n |a_{ij}|$$

باشد، اثبات كنيد

$$\sum_{S_{i} \neq \cdot} \frac{|a_{jj}|}{S_{j}} \le Rank(A)$$