

ETL - PARTE 2

Eric Gustavo Coronel Castillo

youtube.com/DesarrollaSoftware gcoronelc@gmail.com

Logro Esperado

Al finalizar esta presentación, se espera que el participante aplique SSIS para crear procesos ETL Avanzados.

STAGING AREA: Fundamentos

- Área de almacenamiento intermedio utilizada para el procesamiento de calidad de datos durante las operaciones de extracción, transformación y carga.
- Contiene tablas normalizadas y archivos usados para:
 - Staging e integridad de datos del Sistema OLTP.
 - Validación.
 - Referencias cruzadas y búsquedas.
- La data OLTP fluye a través del staging area y es eventualmente almacenada en un esquema estrella (dimensional).
- El acceso a la data por parte de los usuarios de negocio está siempre direccionado a la base de datos dimensional.

STAGING AREA: Asignación de llaves

Clave subrogada: identificador único en una tabla, y que no tiene ningún significado para el negocio. Su objetivo es diferenciar a un registro de los otros.

STAGING AREA: Integridad Referencial

Esquema E-R

Validar las relaciones uno-a-uno y uno-a-muchos entre atributos almacenados en una tabla de dimensión.

Tabla de Hechos (Fact Table)

- Use un esquema E-R para el Staging Area.
- Procesamiento secuencial sobre las tablas de dimensión.
 - Uno-a-uno: Ordenar sobre una columna y verificar que existe exactamente un solo valor en la otra columna.
 - Uno-a-muchos: Ordenar sobre los atributos y verificar que cada valor tenga solo un valor en la otra tabla de atributos.

EXTRACCIÓN DE DATOS: Fuentes y destino

EXTRACCIÓN DE DATOS: Especificación

PARTICIONAMIENTO DEL DATA WAREHOUSE

- Es el proceso de dividir una tabla en unidades más pequeñas.
- Ventajas:
 - Las consultas son respondidas más rápidamente.
 - Acelera el proceso de backup y restore de la data incremental.
 - Disminuye el tiempo requerido para cargar las tablas indexadas.
- El particionamiento no es libre.
 - La mayor cantidad de consultas son requeridas para determinar cual tabla contiene la data más requerida por el usuario.
 - Adicionalmente la metadata es requerida para definir el particionamiento en el warehouse.

PARTICIONAMIENTO DEL DATA WAREHOUSE: Horizontal y vertical

Tabla particionada horizontal (HTP)

Criterio para particionar:

Tiempo:

Año, Mes.

Geografía:

Norte, Sur.

Organización:

Marketing,

Manufactura.

- Una práctica común es particionar por tiempo, dado que es frecuente encontrar este tipo de preguntas en las consultas a los Sistemas de Soporte a la Toma de Decisiones.
- ◆ Elegir el criterio de HTP de una tabla puede ser un desafío, dado que la estrategia de una partición favorece a un conjunto de queries sobre otro.
- Una razón común para aplicar VTP a una tabla es acelerar el acceso a los queries emitidos por un conjunto muy diverso de usuarios.
- Transporta la sobrecarga de espacio asociada con la duplicación de claves en todas las particiones.

PARTICIONAMIENTO DEL DATA WAREHOUSE: Algoritmos

Round-robin

Hash

Range

PARTICIONAMIENTO DEL DATA WAREHOUSE: Arquitectura del hardware

PARTICIONAMIENTO DEL DATA WAREHOUSE: Beneficios

- Incrementa el paralelismo.
- Reduce los tiempos de backup.
- Incrementa la disponibilidad.
- Mejora la administración.
- * Reduce el conjunto de datos para las consultas.
- ❖ La eliminación de datos antiguos es más rápida.

PARTICIONAMIENTO EN SQL SERVER: Tablas e índices

PARTICIONAMIENTO EN SQL SERVER: Partition Function

- Definen el tipo de dato que se utilizará para particionar la información.
- Todos los tipos de datos, excepto text, ntext, image, xml, timestamp, varchar(max), nvarchar(max), varbinary(max), son aceptables para particionar.
- Contiene el valor de las fronteras que se utilizarán en la partición.
- El número de particiones es igual al número de las fronteras más 1.

PARTICIONAMIENTO EN SQL SERVER: Sintaxis de Partition Function

✓ Sintaxis

CREATE PARTITION FUNCTION <Nombre> (tipo de dato)
AS RANGE [LEFT | RIGHT]
FOR VALUES (sta de valores>)

✓ Ejemplo

CREATE PARTITION FUNCTION pf_FechaDocumento (datetime) AS RANGE LEFT FOR VALUES ('01/01/2002','01/01/2004','01/01/2006')

✓ Fronteras.

- ✓ Fechas menores a 01/01/2002 incluido el 01/01/2002
- ✓ Fechas entre 01/01/2002 y 01/01/2004 incluido 01/01/2004
- ✓ Fechas entre 01/01/2004 y 01/01/2006 incluido 01/01/2006
- ✓ Fechas Superiores al 01/01/2006

PARTICIONAMIENTO EN SQL SERVER: Partition Scheme

- Mapea las particiones definidas en la Partition Function a los filegroups donde la información será almacenada físicamente.
- En necesario que exista una Partition Function definida.
- Es necesario que existan los filesgroups que se utilizarán en la Partition Scheme.

PARTICIONAMIENTO EN SQL SERVER: Sintaxis de Partition Scheme

✓ Sintaxis

CREATE PARTITION SCHEME <Nombre>
AS PARTITION <partition function>
[TO ((filegroups >) | ALL TO (filegroup)

✓ Ejemplo

CREATE PARTITION SCHEME ps_FechaDocumento AS PARTITION pf_FechaDocumento TO (Filegroup1, Filegroup2, Filegroup1, Filegroup2)

PARTICIONAMIENTO EN SQL SERVER: Ejemplos de Partition Scheme

✓ Ejemplo

CREATE PARTITION SCHEME ps_FechaDocumento
AS PARTITION pf_FechaDocumento
TO (Filegroup1, Filegroup2, Filegroup1, Filegroup2, Filegroup1)

✓ Ejemplo

CREATE PARTITION SCHEME ps_FechaDocumento AS PARTITION pf_FechaDocumento ALL TO (Filegroup1)

PARTICIONAMIENTO EN SQL SERVER: Tabla particionada

- * Requiere un Partition Scheme.
- Se debe indicar la columna que se utilizará para el particionamiento.
- La tipo de dato de la columna por la que se particionara debe ser el mismo tipo de dato de la Partition Function.

PARTICIONAMIENTO EN SQL SERVER: Sintaxis para crear una tabla particionada

✓ Sintaxis

```
CREATE TABLE <Nombre>
<Lista de campos>
ON <partition scheme>(campo de partición)
```

✓ Ejemplo

CREATE TABLE Ventas (
SalesOrderID int identity,

OrderDate datetime)

ON ps_FechaDocumento(OrderDate)

PARTICIONAMIENTO EN SQL SERVER: Consultar particionamiento

✓ Consulta

```
SELECT
SalesOrderID, OrderDate,
$partition.pf_FechaDocumento(OrderDate) NroParicion
FROM Ventas;
GO
```

PARTICIONAMIENTO EN SQL SERVER: Particionamiento de índices

✓ Sintaxis

CREATE INDEX < nombre indice>

ON <tabla>(lista de campos)

ON partition scheme(campo de particionamiento)

✓ Ejemplo

CREATE UNIQUE INDEX idx5_orden

ON Ventas (Sales OrderId, OrderDate)

ON ps_FechaDocumento(OrderDate)

CONCLUSIONES

- EL particionamiento de las bases de datos muy grandes mejora el rendimiento de las consultas a los datos.
- Además del tipo de consultas, la arquitectura del hardware influye en la estrategia del diseño de particionamiento de una base de datos.

GRACIAS TOTALES

Gustavo Coronel gcoronelc.github.io

Inicia tu aprendizaje, utilizando las mejores prácticas de programación

CURSO PROFESIONAL DE JAVA ORIENTADA A OBJETOS

Aprende programación en capas, patrones y buenas prácticas

gcoronelc.github.io youtube.com/DesarrollaSoftware facebook.com/groups/desarrollasoftware

PROGRAMACIÓN DE BASE DE DATOS ORACLE CON PL/SQL

Aprende a obtener el mejor rendimiento de tú base de datos

PROGRAMACIÓN DE BASE DE DATOS ORACLE CON JDBC

Aprende a programar correctamente con JDBC