CREDIT CARD FRAUDULENT TRANSACTIONS DETECTION

Project presentation of AI for Cybersecurity

DATASET KNOWLEDGE

Credit card transactions made by european cardholders in 2 days of September 2013. It contains only numeric input variables which are the result of the PCA transformation, so dimensionality reduction already applied to database.

13	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9		V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787		-0.018307	0.277838	-0.110474	0.066928	0.128539	-0.189115	0.133558	-0.021053	149.62	0
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	-22	-0.225775	-0.638672	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724	2.69	0

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	
count	284807.000000	2.848070e+05									
mean	94813.859575	1.168375e-15	3.416908e-16	-1.379537e-15	2.074095e-15	9.604066e-16	1.487313e-15	-5.556467e-16	1.213481e-16	-2.406331e-15	
std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380247e+00	1.332271e+00	1.237094e+00	1.194353e+00	1.098632e+00	
min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137433e+02	-2.616051e+01	-4.355724e+01	-7.321672e+01	-1.343407e+01	
25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.915971e-01	-7.682956e-01	-5.540759e-01	-2.086297e-01	-6.430976e-01	
50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433583e-02	-2.741871e-01	4.010308e-02	2.235804e-02	-5.142873e-02	
75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119264e-01	3.985649e-01	5.704361e-01	3.273459e-01	5.971390e-01	
max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480167e+01	7.330163e+01	1.205895e+02	2.000721e+01	1.559499e+01	

RangeIndex: 284807 entries, 0 to 284806 Data columns (total 31 columns):

DATASET KNOWLEDGE

31 features and most of these has confidentiality protection for security reasons (V1,V2,, V28). No possibility to have other informations, instead in 3 features:

- **Time**: Interval quantity attribute starts from 0 (first transaction) and corresponds to the second between the actual and the first transactions.
- **Amount**: Ratio quantity attribute represents the amount of euros in each transaction
- Class: Binary attribute for labelling data objects, 1 for "fraudulent" and 0 for "legal"

WORK STEPS

DATA VISUALIZATION & DATA ANALYSIS

Pie Chart - Imbalance transactions dataset: Label O legal, Label 1 fraudulent

Bar Chart - Number of transactions depending on money ranges in a log scale

DATA VISUALIZATION & DATA ANALYSIS

Bar Chart - Number of transactions depending on time ranges (steps of 400 sec)

PREPROCESSING

NULL VALUES: no NULL values in the dataset

DUPLICATES: discard 1081 duplicate transactions

NORMALIZATION: normalize all features with Min - Max Normalization to obtain more efficient learning phase above all with Neural Network.

0	Time	284807	non-null	float64
1	V1	284807	non-null	float64
2	V2	284807	non-null	float64
3	V3	284807	non-null	float64
4	V4	284807	non-null	float64
5	V5	284807	non-null	float64
6	V6	284807	non-null	float64
7	V7	284807	non-null	float64
8	V8	284807	non-null	float64
9	V9	284807	non-null	float64
10	V10	284807	non-null	float64
11	V11	284807	non-null	float64
12	V12	284807	non-null	float64
13	V13	284807	non-null	float64
14	V14	284807	non-null	float64
15	V15	284807	non-null	float64
16	V16	284807	non-null	float64
17	V17	284807	non-null	float64
18	V18	284807	non-null	float64
19	V19	284807	non-null	float64
20	V20	284807	non-null	float64
21	V21	284807	non-null	float64
22	V22	284807	non-null	float64
23	V23	284807	non-null	float64
24	V24	284807	non-null	float64
25	V25	284807	non-null	float64
26	V26	284807	non-null	float64
27	V27	284807	non-null	float64
28	V28	284807	non-null	float64
29	Amount	284807	non-null	float64
30	Class	284807	non-null	int64

CLASSIFICATION CHOICES

- Exploit all features to train classifiers: Time, Amount, V1, V2, ..., V28
- Test all classifiers with the imbalanced dataset and the rebalanced dataset:
 - o under_sampler = RandomUnderSampler(sampling_strategy = 'majority')
 - over_sampler = RandomOverSampler(sampling_strategy = 'minority')
- 5-folds cross validation in all cases:
 - o skf = StratifiedKFold(n_splits = 5, shuffle = True, random_state = 123)
- Main evaluation metrics: AUC, Recall and Precision

CLASSIFICATION - IMBALANCED DS Neural Networks cross validation

neural_net1 = MLPClassifier(solver = 'adam', max_iter = 200, hidden_layer_sizes = (5), random_state = 123)

AUC evaluation of NNs

Other metrics for all NNs

AUC values are very similar in all configurations, as the precision. Evaluating Fit Time, Sensitivity and the F1-score I chose the last network, NN(10,10) for next tests.

CLASSIFICATION - IMBALANCED DS

MODEL	AUC	RECALL	PRECISION	F1-SCORE	ACCURACY
LR	0.927	0.759	0.927	0.823	0.999
NN(10,10)	0.928	0.877	0.928	0.901	0.999
RF	0.969	0.885	0.969	0.922	0.999

Initially i trained classifiers without any sampling technique as starting point to observe changes in performance metrics with future resample train sets.

CLASSIFICATION - REBALANCED TS

	MODEL	AUC	RECALL	PRECISION	F1-SCORE	ACCURACY
,	LR	0.533	0.943	0.533	0.556	0.978
	NN(10,10)	0.514	0.937	0.52	0.529	0.941
	RF	0.964	0.888	0.964	0.923	0.999

Random Oversampling of Train-Set

MODEL	AUC	RECALL	PRECISION	F1-SCORE	ACCURACY
LR	0.662	0.920	0.662	0.733	0.996
NN(10,10)	0.68	0.917	0.68	0.751	0.997
RF	0.528	0.937	0.527	0.545	0.973

Random Undersampling of Train-Set

T-TEST (AUC)

MODELS	P-VALUE	RESULT (conf = 0.05)
NEURAL NETWORK - RANDOM FOREST [IMBALANCED DS]	0.0015	H _o rejected Random Forest Wins
LOGISTIC REGR RANDOM FOREST [OVERSAMPLED TRAIN SET]	6.042 e-15	H _o rejected Random Forest Wins
LOGISTIC REGR NEURAL NETWORK [UNDERSAMPLED TRAIN SET]	0.277	H _o confirmed

FIT TIME EVALUATION

Fit time without sampling train set

Fit time with oversampled train set

Fit time with undersampled train set

CONCLUSIONS

Evaluating AUC, Recall and Precision i can assume the Random

Forest as better classifier for fraudulent detection transactions than

Logistic Regression and Neural Network with this dataset.

IMPROVEMENTS

 Increase the number of transactions, above all fraudulent transactions, decreasing the imbalance ratio.

PYTHON PACKAGES

- PANDAS -> database handling
- **NUMPY** -> array handling
- **TIME** -> fit time
- MATPLOTLIB -> plots
- **IMBLEARN** -> sampling
- **SKLEARN** -> cross validation, models, performance metrics
- **STATISTICS** -> statistical measures
- **SCIPY** -> t-test

REFERENCES

- Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015
- Dal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications, 41, 10, 4915-4928, 2014, Pergamon
- Dal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems, 29,8,3784-3797, 2018, IEEE
- Dal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)
- Carcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-Aël; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier
- Carcillo, Fabrizio; Le Borgne, Yann-Aël; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card
 fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018, Springer
 International Publishing
- Bertrand Lebichot, Yann-Aël Le Borgne, Liyun He, Frederic Oblé, Gianluca Bontempi Deep-Learning Domain Adaptation Techniques for Credit Cards Fraud Detection, INNSBDDL 2019: Recent Advances in Big Data and Deep Learning, pp 78-88, 2019
- Fabrizio Carcillo, Yann-Aël Le Borgne, Olivier Caelen, Frederic Oblé, Gianluca Bontempi Combining Unsupervised and Supervised Learning in Credit Card Fraud Detection Information Sciences, 2019
- Yann-Aël Le Borgne, Gianluca Bontempi Reproducible machine Learning for Credit Card Fraud Detection Practical Handbook
- Bertrand Lebichot, Gianmarco Paldino, Wissam Siblini, Liyun He, Frederic Oblé, Gianluca Bontempi Incremental learning strategies for credit cards fraud detection, IInternational Journal of Data Science and Analytics