INT304 Support Vector Machine (SVM)

The **Support Vector Machine (SVM)** is a powerful supervised learning model that finds the optimal hyperplane separating data from different classes with the **maximum margin**.

SVM works well in high-dimensional spaces and is effective when the number of features exceeds the number of samples.

► Objective Function

For linearly separable data, SVM solves:

$$\min_{w,b} \quad rac{1}{2} \|w\|^2 \quad ext{subject to} \quad y_i(w^T x_i + b) \geq 1$$

This maximizes the margin between classes while ensuring correct classification.

Kernels

To handle non-linearly separable data, SVM uses **kernel functions** to map input data into a higher-dimensional space. Common kernels:

- 'linear': $K(x_i,x_j)=x_i^Tx_j$
- 'poly' : $K(x_i,x_j)=(\gamma x_i^Tx_j+r)^d$
- 'rbf' : $K(x_i,x_j) = \exp(-\gamma \|x_i-x_j\|^2)$
- <code>'sigmoid'</code> : $K(x_i, x_j) = anh(\gamma x_i^T x_j + r)$

We will use sklearn 's SVC (Support Vector Classifier) to implement SVM efficiently.

```
In [23]: # import necessary libs
         from sklearn.datasets import load digits
         from sklearn import svm, metrics
         from sklearn.model selection import train test split
         import numpy as np
         import matplotlib.pyplot as plt
In [24]: # Load dataset
         digits = load digits()
         X, y = digits.data, digits.target
         # Show first few samples
         fig, axes = plt.subplots(1, 5, figsize=(10, 2))
         for i, ax in enumerate(axes):
             ax.imshow(digits.images[i], cmap='gray')
             ax.set title(f"Label: {digits.target[i]}")
             ax.axis('off')
         plt.tight layout()
         plt.show()
         # Split into train/test
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/7, random_state=42)
         # Train SVM
         clf = svm.SVC(kernel='linear') # You may want to tune kernel, C, gamma
         clf.fit(X train, y train)
         # Predict & Evaluate
         y pred = clf.predict(X test)
         print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
```


Parameters you may tune for training

• C : float, default = 1.0

Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared L_2 penalty.

- kernel: 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or callable, default = 'rbf'
 Specifies the kernel type to be used in the algorithm.
 If none is given, 'rbf' will be used.
 If a callable is given, it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).
 For an intuitive visualization of different kernel types, see Plot classification boundaries with different SVM Kernels.
- degree: int, default = 3
 Degree of the polynomial kernel function ('poly'). Must be non-negative.
 Ignored by all other kernels.
- coef0: float, default = 0.0
 Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'.
- tol : float, default = 1e 3Tolerance for stopping criterion.

Observe:

• Does overfitting or underfitting occur with certain parameter choices?

Support Vector Regression (SVR) is an extension of Support Vector Machines (SVM) to regression tasks. Unlike linear regression, which minimizes squared errors, SVR aims to fit a function that deviates from actual targets by at most ϵ , while also being as flat as possible.

Optimization Objective

SVR minimizes the following:

$$\min_{w,b,\xi,\xi^*} \; rac{1}{2} \|w\|^2 + C \sum_{i=1}^n (\xi_i + \xi_i^*)$$

Subject to:

$$y_i - (w^T x_i + b) \le \epsilon + \xi_i \ (w^T x_i + b) - y_i \le \epsilon + \xi_i^* \ \xi_i, \xi_i^* \ge 0$$

Where:

- ullet C is the regularization parameter
- ϵ defines a margin of tolerance (called the ϵ -tube)
- ξ_i , ξ_i^* are slack variables for errors outside the ϵ -tube

raw df = pd.read csv(data url, sep="\s+", skiprows=22, header=None)

SVR works well when the data is noisy and you want to balance between **model complexity** and **precision tolerance**.

```
In [25]: # import necessary libs
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.preprocessing import MinMaxScaler, StandardScaler
import matplotlib.pyplot as plt
In [26]: data url = "http://lib.stat.cmu.edu/datasets/boston"
```

```
X = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
Y = raw_df.values[1::2, 2]
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
scaler = MinMaxScaler()
norm_x_train = scaler.fit_transform(x_train)
norm_x_test = scaler.transform(x_test)

model = SVR() # you need tuning here
model.fit(norm_x_train, y_train)
y_pred = model.predict(norm_x_test)
test_mse = mean_squared_error(y_test, y_pred)
test_mae = mean_absolute_error(y_test, y_pred)
print(f'Test MSE: {test_mse}, Test MAE: {test_mae}')
```

Test MSE: 27.907001783282002, Test MAE: 2.94557507610235

Plot actual vs predicted values. Are there consistent under- or over-estimations?

```
In [27]: # plot actual vs predicted values
import matplotlib.pyplot as plt

plt.scatter(y_test, y_pred, alpha=0.7)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--')
plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.title("SVR Prediction vs Actual")
plt.grid(True)
plt.show()
```


Parameters you may tune for training

- kernel: 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or callable, default = 'rbf' Specifies the kernel type to be used in the algorithm.
 If none is given, 'rbf' will be used.
 If a callable is given, it is used to precompute the kernel matrix.
- degree: int, default = 3
 Degree of the polynomial kernel function ('poly'). Must be non-negative.
 Ignored by all other kernels.
- coef0: float, default = 0.0
 Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'.
- tol : float, default = 1e 3Tolerance for stopping criterion.
- **C**: **float**, **default** = **1.0**Regularization parameter. The strength of the regularization is inversely proportional to *C*.

Must be strictly positive. The penalty is a squared L_2 penalty.

• epsilon: float, default = 0.1

Epsilon in the epsilon-SVR model.

It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value.

Must be non-negative.

In []: