Universidad	Mayor de San Simón
Facultad de	Ciencias y Tecnología

Nota:		

CIRCUITOS ELÉCTRICOS I

TEMA 3: CIRCUITOS ELÉCTRICOS RESISTIVOS SIMPLES PRÁCTICA 3

Grupo:		
Apellido (s) y Nombre (s):		
		
D	M.C. L. L. L. L. MONTEDO C. L. V. DÉDEZ D	
Docentes:	M.Sc. Ing. Juan José E. MONTERO G. – Ing. Yuri PÉREZ P.	
Auxiliar:		
Asignatura:	Circuitos Eléctricos I	
Carrera:	Ingeniería: Eléctrica - Electrónica - Electromecánica	
	2° Semestre – 4° Semestre ntrega: Cbba / / 20	

Universidad Mayor de San Simón Facultad de Ciencias y Tecnología

Ingeniería: Eléctrica — Electrónica — Electromecánica

Circuitos Eléctricos I: 2º Semestre - 4º Semestre

TEMA 3: CIRCUITOS ELÉCTRICOS RESISTIVOS SIMPLES

PRÁCTICA 3

Problema 1.

Encuentre la potencia que se disipa en la resistencia de $12[\Omega]$.

R.: $P_{12} = 1200W$

Problema 2.

En el circuito que se muestra en la figura, encuentre:

- a) El voltaje v. R.: 60[V]
- b) La potencia suministrada al circuito por la fuente de corriente. R.: 300[W]
- c) La potencia que disipa la resistencia de $10[\Omega]$. **R**.: 57.6[W]

Problema 3.

Encuentre el valor de ig en el circuito de la figura.

R.: -5.14[A]

Problema 4.

Encuentre i_0 e i_g , en el circuito de la siguiente figura.

R.:
$$i_0 = 3.2[A]$$
; $i_g = 14[A]$

Problema 5. Encuentre v_0 en el circuito de la siguiente figura.

R.: -200[V]

Problema 6.

En el circuito divisor de voltaje de la figura se pide:

- a) Calcular el voltaje v_0 . R.: 80[V]
- b) Si la tolerancia de las resistencias del circuito divisor de voltaje es del \pm 10%, determinar el rango de tensiones del resistor R₂.R.: 76.6 < v_0 < 83.02 [V]

Problema 7.

- a) En el circuito de la figura, encuentre el valor de "v₀" sin carga. R.: 75[V]
- b) ¿Cuál es la potencia disipada en la resistencia de $50[\Omega]$? R.: 112.5[W]
- c) ¿Cuánta potencia se disipa en la resistencia de $30[\Omega]$ si por accidente hay un cortocircuito entre las terminales de carga (con "R_L")? 480[W]
- d) Encuentre " v_0 " cuando " R_L " vale 450[Ω]. R.: 72[V]

- e) ¿Cuál es la potencia disipada en la resistencia de $50[\Omega]$ (sin "RL")?
- R.: 103.68[W]

Problema 8.

El voltaje sin carga del circuito divisor de voltaje de la figura es de 20[V]. La resistencia de carga más pequeña que se puede conectar al divisor es de $37.8[k\Omega]$.

La tensión V_o no debe bajar de 18[V] cuando se cargue el divisor.

a) Especifique el valor numérico de R₁ y R₂.

R.: 16.8 [k Ω]; 5.6[k Ω]

b) ¿Cuál es la potencia máxima que disipa R₁?.

R.: 228.81[mW]

Problema 9. Especifique las resistencias necesarias en el circuito de la siguiente figura para cumplir con las siguientes condiciones de diseño: $i_g=1[mA]$; $v_g=1[V]$; $i_1=2$ i_2 ; $i_2=2$ i_3 ; e $i_3=2$ i_4 .

Problema 10.

Calcular la potencia que disipa la resistencia de $6[\Omega]$ aplicando el concepto de divisor de corriente. R.: 61.44[W]

Problema 11.

- a) En el siguiente mecanismo de D'Arsonval de 50[mV] y 1[mA] en un amperímetro con escala de lectura máxima de 10[mA] determinar R_A . R.: $5.555[\Omega]$
- b) Repetir a) para una lectura máxima de 1[A].
- c) ¿Cuánta resistencia se añade al circuito cuando se inserta el amperímetro de 10[mA] para medir corriente?. R.: $5[\Omega]$
- d) Repetir c) para el amperímetro de 1[A].

 $R.: 0.050[\Omega]$

Problema 12.

a) En el circuito que se muestra en la siguiente figura calcular la corriente. R.: 6.25[mA]

b) Si se usa el miliamperímetro del *Problema 11 inciso a*) para medir la corriente, ¿cuál será su lectura?. R.: 5.88[mA]

Problema 13.

Se conectan en paralelo dos amperímetros de D'Arsonval. El amperímetro 1 usa un mecanismo de 2 $[\mu A]$, $500[\mu V]$ y tiene un valor de fondo de escala de $10[\mu A]$. El amperímetro 2 utiliza un mecanismo de $1[\mu A]$, 1[mV] y tiene un valor de fondo de escala de $5[\mu A]$. ¿Cuál es la corriente máxima que pueden leer estos amperímetros conectados en paralelo? R.: $12.5[\mu A]$

Problema 14. El amperímetro en el circuito de la figura tiene una resistencia interna de 0.1 $[\Omega]$. ¿Cuál es el porcentaje de error en la lectura de este amperímetro si el porcentaje de error se determina según:

% error =
$$\left(\frac{\text{valor medido}}{\text{valor real}} - 1\right) \times 100$$

R.: - 0.3488 %

Problema 15.

En la siguiente figura se muestra un circuito voltimétrico de D'Arsonval l. Encuentre el valor de R_v para cada uno de los siguientes valores de fondo de escala: 100[V]; l[V]; 200[mV] y 20[mV].

R.: 99980[Ω] ; 980[Ω] ; 180[Ω] ; 0[Ω]

