Lecture 14 – Taxonomy of Machine Learning & Clustering

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others

Announcements

► Midterm this Friday!

Agenda

- ► Review of feature transformation.
- Taxonomy of machine learning.
- Clustering.

How do we fit prediction rules that aren't linear in the parameters?

Suppose we want to fit the prediction rule

$$H(x) = w_0 e^{w_1 x}$$

This is **not** linear in terms of w_0 and w_1 , so our results for linear regression don't apply.

Possible Solution: Try to apply a **transformation**.

Transformations

- **Solution:** Create a new prediction rule, T(x), with parameters b_0 and b_1 , where $T(x) = b_0 + b_1 x$.
 - This prediction rule is related to H(x) by the relationship $T(x) = \log H(x)$.
 - \vec{b} is related to \vec{w} by $\vec{b}_0 = \log w_0$ and $\vec{b}_1 = w_1$.

Our new observation vector,
$$\vec{z}$$
, is
$$\begin{bmatrix} \log y_1 \\ \log y_2 \\ ... \\ \log y_n \end{bmatrix}$$
.

- $T(x) = b_0 + b_1 x$ is linear in its parameters, b_0 and b_1 .
- Use the solution to the normal equations to find \vec{b}^* , and the relationship between \vec{b} and \vec{w} to find \vec{w}^* .

Non-linear prediction rules in general

- Sometimes, it's just not possible to transform a prediction rule to be linear in terms of some parameters.
- In those cases, you'd have to resort to other methods of finding the optimal parameters.
 - For example, with $H(x) = w_0 e^{w_1 x}$, we could use gradient descent or a similar method to minimize mean squared error, $R(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i w_0 e^{w_1 x_i})^2$, and find w_0^* , w_1^* that way.
- Prediction rules that are linear in the parameters are much easier to work with.

What is machine learning?

- ► One definition: Machine learning is about getting a computer to find patterns in data.
- ▶ Have we been doing machine learning in this class? Yes.
 - Given a dataset containing salaries, predict what my future salary is going to be.
 - Given a dataset containing years of experience, GPAs, and salaries, predict what my future salary is going to be given my years of experience and GPA.

WHEN YOU ADVERTISE OF SARTHEAN INTELLIGENCE WHEN YOU'HIRE IT'S **MACHINE LEARNING.** <u> WHEN YOU IMPLEMENT, IT'S</u> UNIAR REGRESSION. ണക്ഷാക്കുന്നുക്ക

Clustering

Question: how might we "cluster" these points into groups?

Problem statement: clustering

Goal: Given a list of n data points, stored as vectors in \mathbb{R}^d , $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$, and a positive integer k, place the data points into k groups of nearby points.

- These groups are called "clusters".
- Think about groups as colors.
 - i.e., the goal of clustering is to assign each point a color, such that points of the same color are close to one another.
- Note, unlike with regression, there is no "right answer" that we are trying to predict there is no y!
 - Clustering is an unsupervised method.

How do we define a group?

One solution: pick k cluster centers, i.e. centroids:

$$\mu_1, \mu_2, ..., \mu_k$$

- These k centroids define the k groups.
- Each data point "belongs" to the group corresponding to the nearest centroid.
- ► This reduces our problem from being "find the best group for each data point" to being "find the best locations for the centroids".

How do we pick the centroids?

- Let's come up with an **cost function**, *C*, which describes how good a set of centroids is.
 - Cost functions are a generalization of empirical risk functions
- One possible cost function:

$$C(\mu_1, \mu_2, ..., \mu_k)$$
 = total squared distance of each data point \vec{x}_i to its closest centroid μ_i

- This C has a special name, inertia.
- Lower values of C lead to "better" clusterings.
 - ▶ **Goal:** Find the centroids $\mu_1, \mu_2, ..., \mu_k$ that minimize C.

Discussion Question

Suppose we have *n* data points, $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$, each of which are in \mathbb{R}^d .

Suppose we want to cluster our dataset into k clusters.

How many ways can I assign points to clusters?

- A) $d \cdot k$

 - E) $n \cdot k \cdot d$

Discussion Question

Suppose we have n data points, $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$, each of which are in \mathbb{R}^d .

Suppose we want to cluster our dataset into *k* clusters. How many ways can I assign points to clusters?

- A) $d \cdot k$
- D) dk
- c) n^k
- C) n
- D) kⁿ
- E) $n \cdot k \cdot d$

Answer: D

How do we minimize inertia?

- Problem: there are exponentially many possible clusterings. It would take too long to try them all.
- ► Another Problem: we can't use calculus or algebra to minimize *C*, since to calculate *C* we need to know which points are in which clusters.
- We need another solution.

k-Means Clustering, i.e. Lloyd's Algorithm

Here's an algorithm that attemps to minimize inertia:

- 1. Pick a value of k and randomly initialize k centroids.
- 2. Keep the centroids fixed, and update the groups.
 - Assign each point to the nearest centroid.
- 3. Keep the groups fixed, and update the centroids.
 - Move each centroid to the center of its group.

4. Repeat steps 2 and 3 until the centroids stop changing.

Example

See the following site for an interactive visualization of k-Means Clustering: https://allisonhorst.com/k-means-clustering (shared by Suraj)

Summary, next time

Summary

- The process of creating new features is called feature engineering.
- As long as our prediction rule is linear in terms of its parameters $w_0, w_1, ..., w_d$, we can use the solution to the normal equations to find \vec{w}^* .
 - Sometimes it's possible to transform a prediction rule into one that is linear in its parameters.
- ► Linear regression is a form of supervised machine learning, while clustering is a form of unsupervised learning.
- ► Clustering aims to place data points into "groups" of points that are close to one another. k-means clustering is one method for finding clusters.

Next time

- ► How does k-means clustering attempt to minimize inertia?
- How do we choose good initial centroids?
- ▶ How do we choose the value of k, the number of clusters?