METODY NUMERYCZNE – LABORATORIUM

Zadanie 4 – Całkowanie Numeryczne

Opis rozwiązania

W zadaniu została wykorzystana metoda całkowania numerycznego: złożona kwadratura Newtona-Cotesa oraz Wariant 4: całkowanie na przedziale [a,b) (wielomiany Legendre'a) całek postaci $\int_a^b f(x)dx$. Kwadratury złożone Newtona-Cotesa obliczane są z dokładnością podaną przez użytkownika w sposób iteracyjny.

Wyniki

Wyniki uzyskane metodą Newtona-Cotesa:

Eps=0.1

Funkcja	Przedział [a,b)	Wynik kwadratura	Ilość iteracji	Wartość	różnica
		Newtona Cotesa		oczekiwana	
x^2	[0,2)	2,7	3	2.(6)	0.0(3)
x^2	[2,10)	332.4	15	330.67	1.73
1	[0,2)	1.5	4	1.1071	0.3929
$\overline{1+x^2}$					
1	[2,10)	0.7	6	0.36398	0.33602
$\overline{1+x^2}$					
1	[0,2)	1.5	5	1.0986	0.4014
$\overline{x+1}$					
1	[2,10)	1.7	6	1.2993	0.4007
$\overline{x+1}$					

Eps=0.001

Funkcja	Przedział [a,b)	Wynik kwadratura	Ilość iteracji	Wartość	różnica
		Newtona Cotesa		oczekiwana	
χ^2	[0,2)	2,668	8	2.(6)	0.001(3)
χ^2	[2,10)	330,845	175	330.67	0.175
1	[0,2)	1.151	45	1.1071	0.0439
$\overline{1+x^2}$					
1	[2,10)	0.403	42	0.36398	0.03902
$\overline{1+x^2}$					
1	[0,2)	1.143	45	1.0986	0,0444
$\overline{x+1}$					
1	[2,10)	1.349	53	1.2993	0,0497
$\overline{x+1}$					

Eps=0.00001

Funkcja	Przedział [a,b)	Wynik kwadratura	Ilość iteracji	Wartość	różnica
		Newtona Cotesa		oczekiwana	
x^2	[0,2)	2.66674	25	2.(6)	0.000007(3)
x^2	[2,10)	330.74097	428	330.67	0.07097
1	[0,2)	1.11168	440	1.1071	0,00458
$\overline{1+x^2}$					
1	[2,10)	0.36803	396	0.36398	0,00405
$\overline{1+x^2}$					
1	[0,2)	1.10307	448	1.0986	0,00447
$\overline{x+1}$					
1	[2,10)	1.30479	484	1.2993	0,00549
$\frac{\overline{x+1}}{x+1}$					

Wyniki uzyskane przy użyciu wielomianów Legendre'a:

Ilość węzłów: 3

Funkcja	Przedział [a,b)	Wynik Legendre'a	Wartość oczekiwana	różnica
χ^2	[0,2)	2.66666	2.(6)	0.00000(6)
χ^2	[2,10)	330.66665	330.67	0.00335
1	[0,2)	1.35135	1.1071	0.24425
$\overline{1+x^2}$				
1	[2,10)	0.33069	0.36398	0,03329
$\overline{1+x^2}$				
1	[0,2)	1.09091	1.0986	0,00769
$\overline{x+1}$				
1	[2,10)	1.28244	1.2993	0,01686
$\overline{x+1}$				

Ilość węzłów: 4

Funkcja	Przedział [a,b)	Wynik Legendre'a	Wartość oczekiwana	różnica
x^2	[0,2)	2.66666	2.(6)	0.00000(6)
x^2	[2,10)	330.66659	330.67	0.00341
1	[0,2)	1.10703	1.1071	0,00007
$1 + x^2$				
1	[2,10)	0.35854	0.36398	0,00544
$\frac{1 + x^2}{1 + x^2}$				
1	[0,2)	1.09803	1.0986	0,00057
$\overline{x+1}$				
1	[2,10)	1.29756	1.2993	0,00174
$\overline{x+1}$				

Ilość węzłów: 5

Funkcja	Przedział [a,b)	Wynik Legendre'a	Wartość oczekiwana	różnica
x^2	[0,2)	2.66666	2.(6)	0.00000(6)
x^2	[2,10)	330.66663	330.67	0,0037
1	[0,2)	1.10674	1.1071	0,00036
$\overline{1+x^2}$				
1	[2,10)	0.36327	0.36398	0,00071
$\overline{1+x^2}$				
1	[0,2)	1.09857	1.0986	0,00003
$\overline{x+1}$				
1	[2,10)	1.29911	1.2993	0,00019
$\overline{x+1}$				

Wnioski

- 1. Metoda Newtona-Cotesa jest w większości przypadków mniej dokładna niż wyliczanie wartości całki przy użyciu wielomianów Gausa-Legendre'a. Można uzyskać dokładniejszą wartość poprzez zwiększenie dokładności lecz wymaga to to znacznie większej ilości iteracji. Ich ilość jest również uzależniona od prędkości zmian wartości całkowanej funkcji.
- 2. Użycie wielomianów Gausa-Legendre'a nawet przy małej ilości węzłów daje bardzo dokładny wynik całkowanej funkcji, nawet w przypadku szybko zmieniających się wartości funkcji całkowanej.