ECON 709 - PS 6

Alex von Hafften*

- 1. Let X be distributed Bernoulli P(X = 1) = p and P(X = 0) = 1 p for some unknown parameter 0 .
- (a) Verify the probability mass function can be written as $f(x) = p^x(1-p)^{(1-x)}$.

$$f(1) = p^{1}(1-p)^{(1-1)} = p = P(X=1)$$

$$f(0) = p^{0}(1-p)^{(1-0)} = 1 - p = P(X=0)$$

(b) Find the log-likelihood function $\ell_n(\theta)$.

$$\ell_n(\theta) = \sum_{i=1}^n \ln(f(x_i|\theta)) = \sum_{i=1}^n \ln(p^{x_i}(1-p)^{(1-x_i)}) = \sum_{i=1}^n [x_i \ln(p) + (1-x_i) \ln(1-p)] = \ln(p) \sum_{i=1}^n x_i + \ln(1-p) \Big(n - \sum_{i=1}^n x_i \Big)$$

(c) Find the MLE \hat{p} for p.

$$\frac{\partial \ell_n}{\partial p} = 0$$

$$\frac{\partial}{\partial p} \left[\ln(p) \sum_{i=1}^n x_i + \ln(1-p) \left(n - \sum_{i=1}^n x_i \right) \right] = 0$$

$$\frac{\sum_{i=1}^n x_i}{p} - \frac{\left(n - \sum_{i=1}^n x_i \right)}{1-p} = 0$$

$$\sum_{i=1}^n x_i = pn - p \sum_{i=1}^n x_i + p \sum_{i=1}^n x_i$$

$$\hat{p} = \frac{1}{n} \sum_{i=1}^n x_i$$

- 2. Let X be distributed Pareto with density $f(x) = \frac{\alpha}{x^{1+\alpha}}$ for $x \ge 1$. The unknown parameter is $\alpha > 0$.
- (a) Find the log-likelihood function $\ell_n(\alpha)$.
- (b) Find the MLE $\hat{\alpha}_n$ for α .
- 3. Let X be distributed Cauchy with density $f(x) = \frac{1}{\pi(1+(x-\theta)^2)}$ for $x \in \mathbb{R}$. The unknown parameter is θ .
- (a) Find the log-likelihood function $\ell_n(\theta)$.

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

- (b) Find the first-order condition for the MLE $\hat{\theta}$ for θ . You will not be able to solve for $\hat{\theta}$.
- 4. Let X be distributed double exponential (or Laplace) with density $f(x) = \frac{1}{2} \exp(-|x \theta|)$ for $x \in \mathbb{R}$. The unknown parameter is θ .
- (a) Find the log-likelihood function $\ell_n(\theta)$.
- (b) Extra challenge: Find the MLE $\hat{\theta}$ for θ . This is challenging as it is not simply solving the FOC due to the nondifferentiability of the density function.
- 5. Take the Pareto model $f(x) = \alpha x^{-1-\alpha}, x \ge 1$. Calculate the information for α using the second derivative.
- 6. Take the model $f(x) = \theta \exp(-\theta x), x > 0, \theta > 0$.
- (a) Find the Cramer-Rao lower bound for θ .
- (b) Recall the MLE $\hat{\theta}_n$ for θ for Problem 1. Notice that this is a function of the sample mean. Use this formula and the delta method to find the asymptotic distribution for $\hat{\theta}_n$.
- (c) Find the asymptotic distribution for $\hat{\theta}_n$ using the general formula for the asymptotic distribution of MLE introduced in Section 6. Do you find the same answer as in part (b)?
- 7. In the Bernoulli model, you found the asymptotic distribution of the MLE in Problem 2(c).
- (a) Propose an estimator of V, the asymptotic variance.
- (b) Show that this estimator is consistent for V as $n \to \infty$.
- (c) Propose a standard error $s(\hat{p_n})$ for the MLE \hat{p}_n .
- 8. Consider the MLE for the upper bound of the uniform distribution in the Uniform Boundary example in Section 3. Assume that $\{X_1, ..., X_n\}$ is a random sample from $Uniform[0, \theta]$. The general asymptotic distribution formula in Section 6 does not apply here because $\ell_n(\theta)$ is not differentiable at the MLE. But you can derive the asymptotic distribution using the definition of convergences in distribution. Do so by following the steps below.
- (a) Let F_X denote the CDF of $Uniform[0,\theta]$. Calculate $F_X(c)$ for all $c \in \mathbb{R}$ based on the PDF of $Uniform[0,\theta]$.
- (b) Show that the CDF of $n(\hat{\theta}_n \theta) : F_{n(\hat{\theta}_n \theta)}(x) = \Pr(\max_{i=1,\dots,n}(n(X_i \theta)) \le x) = (F_X(\theta + \frac{x}{n}))^n$.
- (c) Recall that $\lim_{n\to\infty} (1+\frac{y}{n})^n = e^y$ for any $y\in\mathbb{R}$. Derive the limit of $F_{n(\hat{\theta}_n-\theta)}(x)$ for all fixed $x\in\mathbb{R}$. (Hint: consider the case where x<0 and the case where $x\geq 0$ separately).
- (d) Conclude that $n(\hat{\theta}_n \theta) \to_d Z$ for Z being an exponential distribution with parameter θ .
- 9. Take the model $X \sim N(\mu, \sigma^2)$. Propose a test for $H_0: \mu = 1$ against $H_1: \mu \neq 1$.
- 10. Take the model $X \sim N(\mu, 1)$. Consider testing $H_0: \mu \in \{0, 1\}$ against $H_1: \mu \notin \{0, 1\}$. Consider the test statistic $T = \min\{|\sqrt{n}\bar{X}_n|, |\sqrt{n}(\bar{X}_n 1)|\}$ Let the critical value be the 1α quantile of the random variable $\min\{|Z|, |Z \sqrt{n}|\}$, where $Z \sim N(0, 1)$. Show that $\Pr(T > c|\mu = 1) = \alpha$. Conclude that the size of the test $\phi_n = 1(T > c)$ is α .²

¹Recall that the standard error is supposed to approximate the variance of \hat{p}_n , not that of the variance of $\sqrt{n}(\hat{p}_n - p)$. What would be a reasonable approximation of the variance of \hat{p}_n once you have a reasonable approximation of the variance of $\sqrt{n}(\hat{p}_n - p)$ from part (b)?

²Use the fact that Z and -Z have the same distribution. This is an example where the null distribution is the same under different points in a composite null. The test $\phi_n = 1(T > c)$ is called a similar test because $\inf_{\theta_0 \in \Theta_0} \Pr(T > c | \theta = \theta_0 = \sup_{\theta_0 \in \Theta_0} \Pr(T > c | \theta = \theta_0)$.