CS4102 Algorithms

Nate Brunelle

Spring 2018

Warm Up

What is the asymptotic run time of MergeSort if its recurrence is

$$T(n) = 2T(\frac{n}{2}) + 209n$$

Tree method

$$T(n) = 2T(\frac{n}{2}) + 209n$$

$$T(n) = 209 \sum_{i=1}^{\log n} n = 209n \log_2 n$$

Anonymous Feedback

Today's Keywords

- Karatsuba
- Guess and check Method
- Induction

CLRS Readings

Chapter 4

Homeworks

- Hw1 due 11pm Friday, February 2
 - Written (use Latex!)
 - Asymptotic notation
 - Recurrences
 - Divide and conquer

Merge Sort

Divide:

- Break n-element list into two lists of n/2 elements

Conquer:

- If n > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)

Combine:

Merge together sorted sublists into one sorted list

Analyzing Merge Sort

- 1. Break into smaller subproblems
- Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify
- Divide: 0 comparisons
- Conquer: recurse on 2 small problems, size $\frac{n}{2}$
- Combine: *n* comparisons
- Recurrence:

$$-T(n) = 2T(\frac{n}{2}) + n$$

Tree method

$$T(n) = 2T(\frac{n}{2}) + n$$

$$T(n) = \sum_{i=1}^{\log n} n = n \log_2 n$$

Analyzing Merge Sort

- 1. Break into smaller subproblems
- Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify
- Divide: 0 comparisons
- Conquer: recurse on 2 small problems, size $\frac{n}{2}$
- Combine: *n* comparisons
- Recurrence:

$$-T(n) = 2T(\frac{n}{2}) + n$$

Recurrence Solving Techniques

"Cookbook"

Substitution

Divide and Conquer Multiplication

Divide:

– Break n-digit numbers into four numbers of n/2 digits each (call them a, b, c, d,)

Conquer:

- If n > 1:
 - Recursively compute ac, ad, bc, bd
- If n = 1:
 - Compute ac, ad, bc, bd directly (base case)

Combine:

$$-10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$$

Analyzing D&C Multiplication

1. Break into smaller subproblems

a b =
$$10\frac{n}{2}$$
 a + b
× c d = $10\frac{n}{2}$ c + d

$$10^{n}$$
 (a × c) +

$$10\frac{n}{2}$$
 (a × d + b × c) +
(b × d)

Divide and Conquer method

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$$

Recursively solve

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Divide and Conquer method

3. Use asymptotic notation to simplify
$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

$$T(n) = 5n$$

$$T(n)$$

Karatsuba

1. Break into smaller subproblems

a b =
$$10\frac{\pi}{2}$$
 a + b
 \times c d = $10\frac{\pi}{2}$ c + d
 $10\frac{n}{n}$ (a \times c) +
 $10\frac{n}{2}$ (a \times d + b \times c) +
(b \times d)

$$\times$$
 Karatsuba
$$100^{2}(ac) + 100(ad + bc) + bd$$

Can't avoid these

This can be simplified

$$(a+b)(c+d) =$$

$$ac + ad + bc + bd$$

$$\frac{ad + bc}{\mathsf{Two}} = (a + b)(c + d) - ac - bd$$

multiplications

One multiplication

Karatsuba

2. Use recurrence relation to express recursive running time

$$100^{2}(ac) + 100((a+b)(c+d) - ac - bd) + bd$$

Recursively solve

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Karatsuba

Divide:

– Break n-digit numbers into four numbers of n/2 digits each (call them a, b, c, d,)

Conquer:

- If n > 1:
 - Recursively compute ac, bd, (a + b)(c + d)
- If n = 1:
 - Compute ac, bd, (a + b)(c + d) directly (base case)

Combine:

$$-10^{n}(ac) + 10^{\frac{n}{2}}((a+b)(c+d) - ac - bd) + bd$$

Karatsuba Algorithm

- 1. Recursively compute: ac, bd, (a + b)(c + d)
- 2. (ad + bc) = (a + b)(c + d) ac bd
- 3. Return $10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$

Pseudo-code

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

- 1. x = Karatsuba(a,c)
- 2. y = Karatsuba(a,d)
- 3. z = Karatsuba(a+b,c+d)-x-y
- 4. Return $10^{n}x + 10^{n/2}z + y$

Karatsuba T(n) = 8n

 $\log_2 n$

3. Use asymptotic notation to simplify

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Karatsuba

3. Use asymptotic notation to simplify

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

$$T(n) = 8n \sum_{i=0}^{\log_2 n} (3/2)^i$$

$$T(n) = 8n \frac{(^{3}/_{2})^{\log_{2} n+1} - 1}{^{3}/_{2} - 1}$$

Math, math, and more math...(on board, see lecture supplemental)

$$T(n) = 24(n^{\log_2 3}) - 16n = \Theta(n^{\log_2 3})$$

 $\approx \Theta(n^{1.585})$

Recurrence Solving Techniques

"Cookbook"

Substitution

Induction (review)

Goal: $\forall k, P(k)$ holds

Base cases: P(1) holds

Hypothesis: $\forall n < n_0, P(n) \text{ holds}$

Inductive step: $P(n_0) \Rightarrow P(n_0 + 1)$

Guess and Check Intuition

- To Prove: T(n) = O(g(n))
- Consider: $g_*(n) = O(g(n))$
- Goal: show $\exists n_0$ s.t. $\forall n > n_0$, $T(n) < g_*(n)$
- Technique: Induction
 - Base cases:
 - show $T(1) < g_*(1), T(2) < g_*(2), ...$ for a small number of cases
 - Hypothesis:
 - $\forall n < n_0, T(n) < g_*(n)$
 - Inductive step:
 - $T(n_0 + 1) < g_*(n_0 + 1)$

Karatsuba Guess and Check (Loose)

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Goal:
$$T(n) < 3000 n^{1.6} = O(n^{1.6})$$

Base cases:
$$T(1) = 8 < 3000$$

$$T(2) = 3(8) + 16 = 40 < 3000 \cdot 2^{1.6}$$

... up to some small k

Hypothesis:
$$\forall n < n_0 \ T(n) < 3000 n^{1.6}$$

Inductive step:
$$T(n_0 + 1) < 3000(n_0 + 1)^{1.6}$$

Mergesort Guess and Check

$$T(n) = 2T(\frac{n}{2}) + n$$

Goal:
$$T(n) < 2n \log n = O(n \log n)$$

Base cases:
$$T(1) = 0$$

$$T(2) = 2 < 4 \log 2$$

... up to some small k

Hypothesis:
$$\forall n < n_0 \ T(n) < n \log n$$

Inductive step:
$$T(n_0 + 1) < 2(n_0 + 1) \log(n_0 + 1)$$

Karatsuba Guess and Check

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$
Goal:
$$T(n) < n^{\log_2 3} - 16n = O(n^{\log_2 3})$$

Base cases: by inspection, holds for small n (at home)

Hypothesis:
$$\forall n < n_0 \ T(n) < n^{\log_2 3} - 16n$$

Inductive step:
$$T(n_0 + 1) < (n_0 + 1)^{\log_2 3} - 16(n_0 + 1)$$

What if we leave out the -16n?

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$
Goal:
$$T(n) < n^{\log_2 3} - 16n = O(n^{\log_2 3})$$

Base cases: by inspection, holds for small n (at home)

Hypothesis:
$$\forall n < n_0 \ T(n) < n^{\log_2 3} - 16n$$

Inductive step:
$$T(n_0 + 1) < (n_0 + 1)^{\log_2 3} - 16(n_0 + 1)$$

What we wanted: $T(n_0 + 1) < (n_0 + 1)^{\log_2 3}$ Induction failed! What we got: $T(n_0 + 1) < (n_0 + 1)^{\log_2 3} + 8(n_0 + 1)$

Recurrence Solving Techniques

"Cookbook"

Substitution

Observation

- Divide: D(n) time,
- Conquer: recurse on small problems, size s
- Combine: C(n) time
- Recurrence:

$$-T(n) = D(n) + \sum T(s) + C(n)$$

Many D&C recurrences are of form:

$$-T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

General

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

$$T(n) = \sum_{i=0}^{\log_b n} a^i f\left(\frac{n}{b^i}\right)$$

Master Theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a} \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

Proof of Case 1

$$T(n) = \sum_{i=0}^{\log_b n} a^i f\left(\frac{n}{b^i}\right),$$
$$f(n) = O\left(n^{\log_b a - \varepsilon}\right) \Rightarrow f(n) \le c \cdot n^{\log_b n - \varepsilon}$$

Insert math here...

Conclusion: $T(n) = O(n^{\log_b n})$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 4T\left(\frac{n}{2}\right) + 8n$$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + 15n^3$$