Ayudantía #9

Repaso I2.

P1. Dibuje un mapa de curvas de nivel de la función marcando varias curvas de nivel

a)
$$f(x,y) = y - \ln x$$

b)
$$f(x,y) = \sqrt{y^2 - x^2}$$

c)
$$f(x,y) = \frac{y}{x^2 + y^2}$$

P2. Encuentre las ecuaciones de la recta de intersección de los planos

$$z = 2x - y - 5,$$
 $z = 4x + 3y - 5$

- **P3.** Halle una ecuación del plano con intersección a del eje x, e intersección b del eje y e intersección c del eje z.
- P4. Encuentre el punto en que se cortan las rectas dadas y además encuentra la ecuación del plano que las contiene a ambas.

$$r = (1,1,0) + t(1,-1,2)$$

 $r = (2,0,2) + s(-1,1,0)$

P5. Determine los puntos en los cuales la siguiente función es continua.

$$f(x,y) = \begin{cases} \frac{x^2 y^3}{2x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 1 & \text{si } (x,y) = (0,0) \end{cases}$$

P6. Sea

$$f(x,y) = \begin{cases} 0 & \text{si } y \le 0 \text{ o } y \ge x^4 \\ 1 & \text{si } 0 < y < x^4 \end{cases}$$

- (a) Demuestre que $f(x,y) \to 0$ cuando $(x,y) \to (0,0)$ a lo largo de cualquier trayectoria que pase por (0,0) de la forma $y = mx^a$ con a < 4.
- (b) No obstante la parte (a), demuetre que f es discontinua en (0,0).
- (c) Demuestre que f es discontinua en dos curvas enteras.
- **P7.** Demuestre que el elipsoide $3x^2 + 2y^2 + z^2 = 9$ y la esfera $x^2 + y^2 + z^2 8x 6y 8z + 24 = 0$ son tangentes entre sí en el punto (1, 1, 2), además calcule la recta perpendicular a ambas superficies que atraviesa este punto.
- **P8.** Suponga que en una cierta región del espacio el potencial eléctrico V está definido por $V(x,y,z)=5x^2-3xy+xyz$.
 - a) Determine la razón de cambio del potencial en P(3,4,5) en la dirección del vector v=i+j-k.
 - b) ¿En qué dirección cambia V con mayor rapidez en P?
 - c) ¿Cuál es la razón máxima de cambio en P?