

Unit 2:Distance and Similarity Measures

Mamatha.H.R

Department of Computer Science and Engineering

Unit 2:Distance and Similarity Measures

Mamatha H R

Department of Computer Science and Engineering

Similarity and Dissimilarity Measures

- Similarity and dissimilarity are important because they are used by a number of data mining, data analytics and machine learning techniques, such as clustering, nearest neighbor classification, and anomaly detection.
- In many cases, the initial data set is not needed once these similarities or dissimilarities have been computed.
- Such approaches can be viewed as transforming the data to a similarity (dissimilarity) space and then performing the analysis.

Similarity and Dissimilarity Measures

- Similarity measure
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Dissimilarity measure
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity between two objects, *x* and *y*, with respect to a single, simple attribute.

Attribute	Dissimilarity	Similarity	
Type			
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$	
	d = x - y /(n - 1)		
Ordinal	(values mapped to integers 0 to $n-1$,	s = 1 - d	
	where n is the number of values)		
Interval or Ratio	d = x - y	$s = -d, s = \frac{1}{1+d}, s = e^{-d},$	
		$s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min \cdot d}{max \cdot d - min \cdot d}$	

Euclidean Distance

Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where n is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects \mathbf{x} and \mathbf{y} .

□ Standardization is necessary, if scales differ.

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Minkowski Distance

Minkowski Distance is a generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where r is a parameter, n is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects \mathbf{x} and \mathbf{y} .

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L_1 norm) distance.
 - A common example of this for binary vectors is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse *r* with *n*, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Mahalanobis Distance

(mahalanobis(x,y))² =
$$(x - y)^T \Sigma^{-1}(x - y)$$

Mahalanobis Distance

Covariance Matrix:

$$\Sigma = \begin{bmatrix} 0.3 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}$$

$$Mahal(A,B) = 5$$

$$Mahal(A,C) = 4$$

Common Properties of a Distance

- 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)
- 3. $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ for all points \mathbf{x} , \mathbf{y} , and \mathbf{z} . (Triangle Inequality)

where $d(\mathbf{x}, \mathbf{y})$ is the distance (dissimilarity) between points (data objects), \mathbf{x} and \mathbf{y} .

A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - 1. $s(\mathbf{x}, \mathbf{y}) = 1$ (or maximum similarity) only if $\mathbf{x} = \mathbf{y}$. (does not always hold, e.g., cosine)
 - 2. $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)

where $s(\mathbf{x}, \mathbf{y})$ is the similarity between points (data objects), \mathbf{x} and \mathbf{y} .

Similarity Between Binary Vectors

- Common situation is that objects, x and y, have only binary attributes
- Compute similarities using the following quantities f_{01} = the number of attributes where ${\bf x}$ was 0 and ${\bf y}$ was 1 f_{10} = the number of attributes where ${\bf x}$ was 1 and ${\bf y}$ was 0 f_{00} = the number of attributes where ${\bf x}$ was 0 and ${\bf y}$ was 0 f_{11} = the number of attributes where ${\bf x}$ was 1 and ${\bf y}$ was 1
- Simple Matching and Jaccard Coefficients SMC = number of matches / number of attributes = $(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$
 - = number of 11 matches / number of non-zero attributes = (f_{11}) / $(f_{01} + f_{10} + f_{11})$

SMC versus Jaccard: Example

$$\mathbf{x} = 1000000000$$

$$y = 0000001001$$

$$f_{10} = 1$$
 (the number of attributes where **x** was 1 and **y** was 0)

$$f_{00}$$
 = 7 (the number of attributes where **x** was 0 and **y** was 0)

$$f_{11} = 0$$
 (the number of attributes where **x** was 1 and **y** was 1)

SMC =
$$(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$$

= $(0+7) / (2+1+0+7) = 0.7$

$$J = (f_{11}) / (f_{01} + f_{10} + f_{11}) = 0 / (2 + 1 + 0) = 0$$

Cosine Similarity

- If \mathbf{d}_1 and \mathbf{d}_2 are two document vectors, then $\cos(\mathbf{d}_1, \mathbf{d}_2) = \langle \mathbf{d}_1, \mathbf{d}_2 \rangle / ||\mathbf{d}_1|| ||\mathbf{d}_2||$,
- where $\langle \mathbf{d_1}, \mathbf{d_2} \rangle$ indicates inner product or vector dot product of vectors, $\mathbf{d_1}$ and $\mathbf{d_2}$ and $| \mathbf{d_1} |$ is the length of vector \mathbf{d} .
- Example:

$$d_1 = 3205000200$$

 $d_2 = 100000102$

$$\langle \mathbf{d_1}, \mathbf{d2} \rangle = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$| | \mathbf{d_1} | | = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5}$$

= $(42)^{0.5} = 6.481$

$$| | \mathbf{d_2} | | = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5}$$

= (6) $| 0.5 | = 2.449$

$$cos(d_1, d_2) = 0.3150$$

Extended Jaccard Coefficient (Tanimoto)

- Variation of Jaccard for continuous or count attributes
 - Reduces to Jaccard for binary attributes

$$EJ(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - \mathbf{x} \cdot \mathbf{y}}$$

Correlation measures the linear relationship between objects

$$corr(\mathbf{x}, \mathbf{y}) = \frac{covariance(\mathbf{x}, \mathbf{y})}{standard_deviation(\mathbf{x}) * standard_deviation(\mathbf{y})} = \frac{s_{xy}}{s_x s_y}, (2.11)$$

where we are using the following standard statistical notation and definitions

covariance(
$$\mathbf{x}, \mathbf{y}$$
) = $s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$ (2.12)

standard_deviation(
$$\mathbf{x}$$
) = $s_x = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})^2}$

standard_deviation(
$$\mathbf{y}$$
) = $s_y = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (y_k - \overline{y})^2}$

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$
 is the mean of \mathbf{x}

$$\overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k$$
 is the mean of \mathbf{y}

Visually Evaluating Correlation

Scatter plots showing the similarity from – 1 to 1.

Drawback of Correlation

•
$$\mathbf{x} = (-3, -2, -1, 0, 1, 2, 3)$$

•
$$y = (9, 4, 1, 0, 1, 4, 9)$$

$$y_i = x_i^2$$

- mean(x) = 0, mean(y) = 4
- std(x) = 2.16, std(y) = 3.74

• corr =
$$(-3)(5)+(-2)(0)+(-1)(-3)+(0)(-4)+(1)(-3)+(2)(0)+3(5) / (6)$$

* 2.16 * 3.74)
= 0

Comparison of Proximity Measures

- Domain of application
 - Similarity measures tend to be specific to the type of attribute and data
 - Record data, images, graphs, sequences, 3D-protein structure, etc. tend to have different measures
- However, one can talk about various properties that you would like a proximity measure to have
 - Symmetry is a common one
 - Tolerance to noise and outliers is another
 - Ability to find more types of patterns?
 - Many others possible
- The measure must be applicable to the data and produce results that agree with domain knowledge

General Approach for Combining Similarities

- Sometimes attributes are of many different types, but an overall similarity is needed.
- 1: For the k^{th} attribute, compute a similarity, $s_k(\mathbf{x}, \mathbf{y})$, in the range [0, 1].
- 2: Define an indicator variable, δ_k , for the k^{th} attribute as follows:
 - δ_k = 0 if the k^{th} attribute is an asymmetric attribute and both objects have a value of 0, or if one of the objects has a missing value for the kth attribute
 - δ_{k} = 1 otherwise
- 3. Compute

similarity(
$$\mathbf{x}, \mathbf{y}$$
) = $\frac{\sum_{k=1}^{n} \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \delta_k}$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
 - Use non-negative weights $\,\omega_k\,$

•
$$similarity(\mathbf{x}, \mathbf{y}) = \frac{\sum_{k=1}^{n} \omega_k \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \omega_k \delta_k}$$

Can also define a weighted form of distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} w_k |x_k - y_k|^r\right)^{1/r}$$

Density

- Measures the degree to which data objects are close to each other in a specified area
- The notion of density is closely related to that of proximity
- Concept of density is typically used for clustering and anomaly detection
- Examples:
 - Euclidean density
 - Euclidean density = number of points per unit volume
 - Probability density
 - Estimate what the distribution of the data looks like
 - Graph-based density
 - Connectivity

Euclidean Density: Grid-based Approach

 Simplest approach is to divide region into a number of rectangular cells of equal volume and define density as # of points the cell contains

Euclidean Density: Center-Based

• Euclidean density is the number of points within a specified radius of the point

Illustration of center-based density.

Exercise

- ☐ Mention and explain the different distance measures.
- ☐ For each of the distance measure, find out an application and explore how it is used in that application.

References

Text Book:

• <u>Introduction to Data Mining</u>, Tan, Steinbach, Kumar, 2nd Edition

THANK YOU

Dr.Mamatha H R

Professor, Department of Computer Science mamathahr@pes.edu

+91 80 2672 1983 Extn 834