WHAT IS CLAIMED IS:

5

15

20

1. A compound of Formula I or Formula II:

10 Wherein:

A is selected from: -CH₂-, -O-, -N(R²⁰)-, -S-, -SO-, -SO₂-, -N(SO₂R¹⁴)-, and -N(COR¹³)-;

E is independently selected from N and C;

X is O, N, S, SO₂ or C;

Y is selected from: -O-, -N(R^{20})-, -S-, -SO-, -SO₂-, and -C(R^{21})(R^{22})-, -N(SO_2R^{14})-, -N(COR^{13})-, -C(R^{21})(COR^{11})-, -C(R^{21})(COR^{14})- and -CO-;

Z is selected from C, N or O;

 $R^{1} \text{ is selected from: hydrogen, -C$_{1$-6alkyl, -O-C$_{1$-6alkyl, -S-C$_{1$-6alkyl, -SO-C$_{1$-6alkyl, -SO$_{2}$-C$_{1$-6alkyl, -SO$_{2}$-C$_{2}$-$

NR 12 COR 13 , -NR 12 SO₂R 14 , -COR 11 , -CONR 12 R 12 , -NR 12 CONR 12 R 12 , -O-CO-C₁₋₆alkyl, -O-CO₂-C₁₋₆alkyl, hydroxy, heterocycle and phenyl,

where said alkyl and cycloalkyl are unsubstituted or substituted with 1-7 substituents independently selected from: halo, hydroxy, -O-C₁-6alkyl unsubstituted or substituted with 1-6 fluoro, C₁-6alkyl unsubstituted or substituted with 1-6 fluoro, -CONR¹²R¹², -NR¹²CONR¹²R¹², -COR¹¹, -SO₂R¹⁴, -NR¹²COR¹³, -NR¹²SO₂R¹⁴, -heterocycle, =O, -CN, phenyl, -SO₂NR¹²R¹², -NR¹²-SO₂-NR¹²R¹², -S-C₁-6alkyl unsubstituted or substituted with 1-6 fluoro, -SO-C₁-6alkyl unsubstituted or substituted with 1-6 fluoro, and -O-COR¹³,

where said phenyl and heterocycle are unsubstituted or substituted with 1-3 substituents independently selected from: halo, hydroxy, -COR¹¹, C₁₋₃alkyl, and C₁₋₃alkoxy, said C₁₋₃alkyl and C₁₋₃alkoxy being unsubstituted or substituted with 1-6 fluoro;

 R^2 and R^3 are nothing when Z is O;

5

10

25

30

15 R^2 is nothing and R^3 is hydrogen or C_{1-3} alkyl when Z is N;

 R^2 and R^3 are independently hydrogen or C_{1-3} alkyl unsubstituted or substituted with 1-3 fluoro, when Z is C;

20 R⁴ is selected from: hydrogen, C₁₋₃alkyl unsubstituted or substituted with 1-3 fluoro, -O-C₁₋₃alkyl unsubstituted or substituted with 1-3 fluoro, hydroxy, chloro, fluoro, bromo, phenyl and heterocycle, when E is C;

R⁵ is selected from: fluoro, chloro, bromo, -heterocycle, -CN, -COR¹¹, C₄₋₆cycloalkyl, -O-C₄₋₆cycloalkyl, C₁₋₆alkyl unsubstituted or substituted with 1-6 fluoro or hydroxyl or both, -O-C₁₋₆alkyl unsubstituted or substituted with 1-6 fluoro, -CO-C₁₋₆alkyl unsubstituted or substituted with 1-6 fluoro, -pyridyl unsubstituted or substituted with one or more substituted from halo, trifluoromethyl, C₁₋₄alkyl and COR¹¹, - phenyl unsubstituted or substituted substituted or substituted or substituted or substituted with one or more substituted from halo, trifluoromethyl, C₁₋₄alkyl and COR¹¹, -O-phenyl unsubstituted or substituted with one or more substitutents selected from halo, trifluoromethyl, C₁.

₄alkyl and COR¹¹, -C₃₋₆cycloalkyl unsubstituted or substituted with 1-6 fluoro, and -O-C₃₋₆cycloalkyl unsubstituted or substituted with 1-6 fluoro, when E is C;

R⁶ is selected from: hydroxy, chloro, fluoro, bromo, phenyl, heterocycle, C₁₋₃alkyl unsubstituted or substituted with 1-3 fluoro and -O-C₁₋₃alkyl unsubstituted or substituted with 1-3 fluoro, when E is C;

R⁴ and R⁶ are independantly selected from nothing or O (to make an N-oxide) when E is N;

10 R^7 is selected from: hydrogen, (C₀-6alkyl)-phenyl, (C₀-6alkyl)-heterocycle, (C₀-6alkyl)-C₃₋₇cycloalkyl, (C₀-6alkyl)-COR¹¹, (C₀-6alkyl)-COR¹¹, (C₀-6alkyl)-SO₃H, (C₀-6alkyl)-W-C₀-4alkyl, (C₀-6alkyl)-CONR¹²-phenyl and (C₀-6alkyl)-CONR²³-V-COR¹¹, when X is N or C,

where W is selected from: a single bond, -O-, -S-, -SO-, -SO₂-, -CO-, -CO₂-, -CONR¹²- and -NR¹²-,

where V is selected from C₁₋₆alkyl or phenyl,

15

20

25

30

where R^{23} is hydrogen or C_{1-4} alkyl, or R^{23} is a 1-5 carbon linker to one of the carbons of V to form a ring,

where said C₀-6alkyl is unsubstituted or substituted with 1-5 substituents independently selected from: halo, hydroxy, -C₀-6alkyl, -O-C₁-3alkyl, trifluoromethyl and -C₀-2alkyl-phenyl,

where said phenyl, heterocycle, cycloalkyl and C₀-4alkyl, if present, are unsubstituted or substituted with 1-5 substituents independently selected from: halo, trifluoromethyl, hydroxy, C₁-3alkyl, -O-C₁-3alkyl, -C₀₋₃-COR¹¹, -CN, -NR¹²R¹², -CONR¹²R¹² and -C₀₋₃-heterocycle,

or where said phenyl or heterocycle is fused to another heterocycle, said other heterocycle being unsubstituted or substituted with 1-2 substituents independently selected from hydroxy, halo, - COR^{11} , and $-C_{1-3}$ alkyl

and where alkene is unsubstituted or substituted with 1-3 substituents which are independently selected from: halo, trifluoromethyl, $C_{1,3}$ alkyl, phenyl and heterocycle;

5 R^7 is absent when X is O, S, or SO_{2} :

 R^8 is selected from: hydroxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyl-hydroxy, -O- $C_{1\text{-}3}$ alkyl, -COR¹¹, -CONR¹²R¹² and -CN, when X is C;

10 R^8 is nothing, when X is O, S, SO₂ or N, or when a double bond joins the carbons to which R^7 and R^{10} are attached;

or, R⁷ and R⁸ are joined to form a ring selected from: 1H-indene, 2,3-dihydro-1H-indene, 2,3-dihydro-benzofuran, 1,3-dihydro-isobenzofuran, 6H-cyclopenta[*d*]isoxazol-3-ol, cyclopentane and cyclohexane,

where said ring is unsubstituted or substituted with 1-5 substituents independently selected from: halo, trifluoromethyl, hydroxy, C_{1-3} alkyl, -O- C_{1-3} alkyl, -C₀₋₃-COR¹¹, -CN, -NR¹²R¹², -CONR¹²R¹² and -C₀₋₃alkyl-heterocycle;

20

15

 R^9 and R^{10} are independently selected from: hydrogen, hydroxy, $C_{1\text{-}6}$ alkyl- $C_{1\text{-}6}$ alkyl-hydroxy, -O- $C_{1\text{-}3}$ alkyl, halo;

or R⁹ and R¹⁰ together are O, where O is connected to the ring via a double bond;

25

or, R^7 and R^9 , or R^8 and R^{10} , are joined to form a fused ring which is phenyl or heterocycle, wherein said fused ring is unsubstituted or substituted with 1-7 substituents independently selected from: halo, trifluoromethyl, hydroxy, C_{1-3} alkyl, $-O-C_{1-3}$ alkyl, $-COR^{11}$, -CN, $-NR^{12}R^{12}$ and $-CONR^{12}R^{12}$;

R¹¹ is independently selected from: hydroxy, hydrogen, C₁₋₆ alkyl, -O-C₁₋₆ alkyl, benzyl, phenyl, C₃₋₆ cycloalkyl, where said alkyl, phenyl, benzyl and cycloalkyl groups are unsubstituted or substituted with

1-6 substituents independently selected from: halo, hydroxy, C₁-3alkyl, C₁-3alkoxy, -CO₂H, -CO₂-C₁-6 alkyl, and trifluoromethyl;

- R¹² is selected from: hydrogen, C₁₋₆ alkyl, benzyl, phenyl and C₃₋₆ cycloalkyl, where said alkyl, phenyl, benzyl and cycloalkyl groups are unsubstituted or substituted with 1-6 substituents independently selected from: halo, hydroxy, C₁₋₃alkyl, C₁₋₃alkoxy, -CO₂H, -CO₂-C₁₋₆ alkyl, and trifluoromethyl;
- or, when two separate R¹² groups reside on the same atom or adjacent atoms, said two R¹² groups are optionally connected via a C₁₋₇alkyl linker to form a 3 to 9 membered ring, said linker being unsubstituted or substituted with with 1-6 substituents independently selected from: halo, hydroxy, C₁₋₃alkyl, C₁₋₃alkoxy, -CO₂H, -CO₂-C₁₋₆ alkyl and trifluoromethyl;
- R¹³ is selected from: hydrogen, C₁₋₆ alkyl, -O-C₁₋₆alkyl, benzyl, phenyl and C₃₋₆ cycloalkyl, where said alkyl, phenyl, benzyl, and cycloalkyl groups are unsubstituted or substituted with 1-6 substituents independently selected from: halo, hydroxy, C₁₋₃alkyl, C₁₋₃alkoxy, -CO₂H, -CO₂-C₁₋₆ alkyl and trifluoromethyl;
- R¹⁴ is selected from: hydroxy, C₁₋₆ alkyl, -O-C₁₋₆alkyl, benzyl, phenyl and C₃₋₆ cycloalkyl, where said alkyl, phenyl, benzyl and cycloalkyl groups are unsubstituted or substituted with 1-6 substituents independently selected from: halo, hydroxy, C₁₋₃alkyl, C₁₋₃alkoxy, -CO₂H, -CO₂-C₁₋₆ alkyl and trifluoromethyl;
- R¹⁵ is hydrogen or C₁₋₆alkyl, where said alkyl is unsubstituted or substituted with 1-3 substituents independently selected from: halo, hydroxy, -CO₂H, -CO₂C₁₋₆alkyl, and -O-C₁₋₃alkyl;
 - R^{16} is selected from: hydrogen, fluoro, C_{3-6} cycloalkyl, -O- C_{3-6} cycloalkyl, hydroxy, -COR¹¹, -OCOR¹⁴, C_{1-6} alkyl unsubstituted or substituted with 1-6 substituted selected from fluoro, C_{1-3} alkoxy, hydroxyl and -COR¹¹, and -O- C_{1-3} alkyl unsubstituted or substituted with 1-3 fluoro;

or, R^{15} and R^{16} together are a C_{2-4} alkyl or a C_{0-2} alkyl-O- C_{1-3} alkyl, forming a ring where said ring has 5-7members;

- R¹⁷ is selected from: hydrogen, COR¹¹, hydroxy,-O-C₁₋₆alkyl unsubstituted or substituted with 1-6 substituents selected from fluoro, C₁₋₃alkoxy, hydroxy, and -COR¹¹ and C₁₋₆alkyl unsubstituted or substituted with 1-6 substituents selected from fluoro, C₁₋₃alkoxy, hydroxy, and -COR¹¹, or R¹⁷ is nothing if R²⁸ is connected to a ring carbon via a double bond;
- or, R^{16} and R^{17} together are $C_{1\text{-}4}$ alkyl or $C_{0\text{-}3}$ alkyl-O- $C_{0\text{-}3}$ alkyl, forming ring where said ring has 3-7 members;
 - R^{18} is selected from: hydrogen, fluoro, -O-C₃₋₆cycloalkyl, -O-C₁₋₃alkyl unsubstituted or substituted with 1-6 fluoro and C₁₋₆alkyl unsubstituted or substituted with 1-6 fluoro;
- or, R¹⁶ and R¹⁸ together areC₂₋₃alkyl, where said alkyl is unsubstituted or substituted with 1-3 substituents independently selected from: halo, hydroxy, -COR¹¹, C₁₋₃alkyl, and C₁₋₃alkoxy;
 - or, R¹⁶ and R¹⁸ together areC₁₋₂alkyl-O-C₁₋₂alkyl, where said alkyl is unsubstituted or substituted with 1-3 substituents independently selected from: halo, hydroxy, -COR¹¹, C₁₋₃alkyl, and C₁₋₃alkoxy;
 - or, R^{16} and R^{18} together are -O- C_{1-2} alkyl-O-, where said alkyl is unsubstituted or substituted with 1-3 substituents independently selected from halo, hydroxy, $-COR^{11}$, C_{1-3} alkyl, and C_{1-3} alkoxy;
 - R¹⁹ is selected from: hydrogen, COR¹¹, SO₂R¹⁴, SO₂NR¹²R¹² and C₁₋₃alkyl unsubstituted or substituted with 1-6 substituents independently selected from fluoro and hydroxyl;
 - R^{20} is selected from: hydrogen, C_{1-6} alkyl, benzyl, phenyl and C_{3-6} cycloalkyl, where said alkyl, phenyl, benzyl and cycloalkyl groups are unsubstituted or substituted with 1-6 substituents independently selected from halo, hydroxy, C_{1-3} alkyl, C_{1-3} alkoxy, $-CO_2H$, $-CO_2-C_{1-6}$ alkyl, and trifluoromethyl;

20

25

 R^{21} and R^{22} are independently selected from: hydrogen, hydroxy, C_{1-6} alkyl, -O- C_{1-6} alkyl, benzyl, phenyl and C_{3-6} cycloalkyl where said alkyl, phenyl, benzyl, and cycloalkyl groups can be unsubstituted or substituted with 1-6 substituents independently selected from: halo, hydroxy, C_{1-3} alkyl, C_{1-3} alkoxy, - CO_{2} H, - CO_{2} - C_{1-6} alkyl and trifluoromethyl;

- 5 R²⁴ is selected from: hydrogen, COR¹¹, SO₂R¹⁴, SO₂NR¹²R¹² and C₁₋₃alkyl, where said alkyl is unsubstituted or substituted with 1-6 substituents independently selected from: fluoro and hydroxyl;
 - or, R²⁴ and R¹⁷ together are a C₁₋₃alkyl bridge;

15

- 10 R²⁵ and R²⁶ are independently selected from: =O where R²⁵ and/or R²⁶ is oxygen and is connected via a double bond, hydrogen, phenyl, and C₁₋₆alkyl substituted or unsubstituted with 1-6 substituents selected from -COR¹¹, hydroxy, fluoro, chloro and C₁₋₃alkyl;
 - R²⁷ is selected from: hydrogen, COR¹¹, SO₂R¹⁴, SO₂NR¹²R¹² and C₁₋₃alkyl, where said alkyl is unsubstituted or substituted with 1-6 substituents independently selected from fluoro and hydroxyl;
 - R²⁸ is selected from selected from: hydrogen, hydroxy, halo, C₁₋₃alkyl unsubstituted or substituted with 1-6 substituents independently selected from fluoro and hydroxy, -NR¹²R¹², -COR¹¹, -CONR¹²R¹², -NR¹²CONR¹²R¹², -heterocycle, -CN, -NR¹²-SO₂-NR¹²R¹², -NR¹²-SO₂-NR¹²-SO
- SO₂-R¹⁴, -SO₂-NR¹²R¹² and =O where R^{28} is connected to the ring via a double bond and where R^{17} at the same position is absent;
 - R²⁹ and R³³ are selected from: hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkyl-COR¹¹, C₁₋₆alkyl-hydroxy, -O-C₁₋₃alkyl, trifluoromethyl and halo, or R²⁹ or R³³ are independently absent if the site of substitution is unsaturated;
 - or, R^{29} and R^{16} together are a $C_{1\text{--}3}$ alkyl bridge;
- R³⁰ and R³¹ are independently selected from: hydroxy, C₁₋₆alkyl, C₁₋₆alkyl-COR¹¹, C₁₋₆alkyl-30 hydroxy, -O-C₁₋₃alkyl, halo and hydrogen, where said alkyl are unsubstituted or substituted with 1-6 substituents independently selected from fluoro and hydroxyl;

or, R³⁰ and R³¹ together are a -C₁₋₄alkyl-, -C₀₋₂alkyl-O-C₁₋₃alkyl- or -C₁₋₃alkyl-O-C₀₋₂alkyl-, where said alkyl are unsubstituted or substituted with 1-2 substituents consisting of oxy where the oxygen is joined to the bridge via a double bond, fluoro, hydroxy, methoxy, methyl or trifluoromethyl;

5

 R^{32} and R^{34} are independently selected from: hydrogen, hydroxy, C_{1-6} alkyl, C_{1-6} alkyl-COR¹¹, C_{1-6} alkyl-hydroxy, -O-C₁₋₃alkyl, trifluoromethyl and halo;

j is 0, 1, or 2;

10

k is 0, 1, or 2;

m is 0, 1, or 2;

15 n is 1 or 2;

the dashed line represents an optional single bond;

and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

20

2. The compound of claim 1 of the Formula Ia:

$$\begin{array}{c|c}
R^{16} & R_{15} & O \\
N & N & N \\
R^{18} & R^{10} & N \\
\end{array}$$
Ia

25

and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

3. The compound of claim 1 of the Formula Ib:

WO 2005/072361

Ib

and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

5

- 4. The compound of claim 1, wherein: A is CH₂, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- 5. The compound of claim 1, wherein Y is O or CH₂, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
 - 6. The compound of claim 1, wherein E is C, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- The compound of claim 1, wherein Z is C, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
 - 8. The compound of claim 1, wherein R¹ is selected from: -C₁-6alkyl, -C₀-6alkyl-O-C₁-6alkyl, heterocycle, and -(C₀-6alkyl)-(C₃-7cycloalkyl)-(C₀-6alkyl), where said alkyl, heterocycle and cycloalkyl are unsubstituted or substituted with 1-7 substituents independently selected from halo, hydroxy, -O-C₁-3alkyl, trifluoromethyl, C₁-3alkyl, -O-C₁-3alkyl, -COR¹¹, -CN, -NR¹²R¹², -CONR¹²R¹² and -NCOR¹³, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- 9. The compound of claim 1, wherein R¹ is selected from: C₁₋₆alkyl, C₁₋₆alkyl substituted with hydroxy, and C₁₋₆alkyl substituted with 1-6 fluoro, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

10. The compound of claim 1, wherein R^1 is selected from: $-CH(CH_3)_2$, $-CH(OH)(CH_3)_2$, $-CH(OH)CH_3$ and $-CH_2CF_3$, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

- 5 11. The compound of claim 1, wherein one or more of R², R³ and R⁴ is hydrogen, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
 - 12. The compound of claim 1, wherein R⁵ is selected from: C₁₋₆alkyl substituted with 1-6 fluoro, -O-C₁₋₆alkyl substituted with 1-6 fluoro, chloro, bromo and phenyl, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
 - 13. The compound of claim 12, wherein R⁵ is trifluoromethyl, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- 15 14. The compound of claim 1, wherein R¹⁵ is methyl or hydrogen, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

10

20

- 15. The compound of claim 1, wherein R¹⁶ is selected from: hydrogen, C₁₋₃alkyl which is unsubstituted or substituted with 1-6 fluoro, -O-C₁₋₃alkyl, fluoro and hydroxy, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- 16. The compound of claim 1, wherein R¹⁶ is selected from: hydrogen, trifluoromethyl, methyl, methoxy, ethoxy, ethyl, fluoro and hydroxy, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- 17. The compound of claim 1, wherein R¹⁷ is hydrogen, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- The compound of claim 1, wherein R¹⁸ is selected from: hydrogen, methyl, and methoxy, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

19. The compound of claim 1, R^{16} and R^{18} together are -CH₂CH₂- or -CH₂CH₂-, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

- 20. The compound of claim 1, wherein one or more of R¹⁹, R²⁴ and R²⁵ is hydrogen, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
 - 21. The compound of claim 1, wherein R^{26} is O, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

22. The compound of claim 1, wherein one or more of R^{27} , R^{28} and R^{29} is hydrogen, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

23. A compound selected from:

5

H_{CQ}
H_{GQ}
H_{GQ}
H_{GQ}
H_{GQ}
CF₃

H_{GQ}
H_{GQ}
CF₃

and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

- 24. A pharmaceutical composition which comprises an inert carrier and a compound of Claim 1.
 - 25. A method for modulations of chemokine receptor activity in a mammal which comprises the administration of an effective amount of a compound of Claim 1.

26. A method for treating, ameliorating, controlling or reducing the risk of an inflammatory and immunoregulatory disorder or disease which comprises the administration to a patient of an effective amount of a compound of Claim 1.

5 27. A method for treating, ameliorating, controlling or reducing the risk of rheumatoid arthritis which comprises the administration to a patient of an effective amount of a compound of Claim 1.