3) Henpepulace publicumprice paenpeyentus X w W (a, b) a < B 2 Hopenyos bka $\int_{0}^{\infty} \xi(x) a_{i}(x) dx = \int_{0}^{\infty} \xi(x) a_{i}(x) dx + \int_{0}^{\infty} \xi(x) a_{i}(x) dx + \int_{0}^{\infty} \xi(x) a_{i}(x) dx = \int_{0}^{\infty} \xi(x) dx = \int_{0}^{\infty} \xi(x$ = $\int_{-\infty}^{a} 0 \, dx + \int_{-\infty}^{a} \frac{1}{4-\alpha} \, dx + \int_{-\infty}^{a} 0 \, dx = \int_{-\infty}^{a} \frac{1}{4-\alpha} \, dx =$ $= \frac{1}{6-a} \int_{-a}^{6} dy = \frac{1}{6-a} \times \Big|_{a}^{6} = \frac{1}{6-a} (6-a) = 1$ E[X] = (xf(x|0'))qx =)xf(x|0') qx + (xf(x|0'))qx + (xf(x|0'))qx + (xf(x|0'))qx = $= \int_{-\infty}^{\infty} x \cdot 0 \, dx + \int_{-\infty}^{\infty} x \cdot \frac{1}{2} \, dx + \int_{-\infty}^{\infty} x \cdot 0 \, dx = \int_{-\infty}^{\infty} x \cdot \frac{1}{2} \, dx = \int_{-\infty}^{\infty} x \cdot \frac{1}{2} \, dx = \int_{-\infty}^{\infty} x \cdot 0 \, dx + \int_{-\infty}^{\infty} x \cdot 0 \, dx = \int_{-\infty}^{\infty} x \cdot \frac{1}{2} \, dx = \int_{-\infty}^{\infty} x \cdot 0 \, dx = \int_{-\infty}^{\infty} x \cdot \frac{1}{2} \, dx = \int_{-\infty}^{\infty} x \cdot 0 \, dx = \int_{-\infty}^{\infty} x \cdot \frac{1}{2} \, dx = \int_{-\infty}^{\infty} x \cdot 0 \, dx = \int_{-\infty}^{\infty} x \cdot$ $= \frac{1}{1-\alpha} \int_{1}^{1-\alpha} x \, dx = \frac{8-d}{1-\alpha} \frac{s}{k_5} \Big|_{0}^{q} = \frac{5(1-\alpha)}{1-\alpha} \frac{k_5}{k_5} \Big|_{0}^{q} = \frac{5(8-\alpha)}{1-\alpha} \left(\frac{8}{6} - \frac{3}{6} \right) =$

 $= \frac{(6-\alpha)(6+\alpha)}{2(8-\alpha)} = \frac{6+\alpha}{2}$

(1)

 $D[X] = \int_{-\infty}^{\infty} (x - E[X])^2 dx |a,6\rangle dx =$ $= \int_{\Omega} \left(x - E[X] \right)_{5} 2(x|\alpha'0) \, dx - \int_{R} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx + \int_{-2\pi} (x - E[X])_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \, dx = \int_{\Omega} \left(x - E[X] \right)_{5} \xi(x|\alpha'0) \,$ = [(x-E[X])2.0 dx + [(x - lig)2 f-a dx + (x-E[X])2 odx = $= \int_{0}^{\beta} \left(x - \frac{6+\alpha}{2} \right)^{2} \frac{1}{\rho - \alpha} dx = \frac{1}{\beta - \alpha} \int_{0}^{\beta} \left(x - \frac{\beta + \alpha}{2} \right)^{2} dx =$ = 1 1 (x-640) (x-640) (x-640) (x-640) == $= \frac{1}{3(4-\alpha)} \left[\left(6 - \frac{(\pm \alpha)^3}{2} \right)^3 - \left(\alpha - \frac{(\pm \alpha)^3}{2} \right)^3 \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - 6 - \alpha^3}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - \alpha}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - \alpha}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - \alpha}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - \alpha}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - \alpha}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - \alpha}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - \alpha}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - \alpha}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - \alpha}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac{24 - \alpha}{2^3} - \frac{(2\alpha - 6 - \alpha)^3}{2^3} \right] = \frac{1}{3(4-\alpha)} \left[\frac$ $= \frac{1}{3 \cdot 2^{3} (\ell - \alpha)} \left[(\ell - \alpha)^{3} - (\alpha - \ell)^{3} \right] = \frac{1}{3 \cdot 2^{3} (\ell - \alpha)} \left[(\ell - \alpha)^{3} - (\omega)^{3} (\ell - \alpha)^{3} \right] =$ $= \frac{2(6-a)^3}{32^2(6-a)} = \frac{(8-a)^2}{32^2} = \frac{(6-a)^2}{12}$

5. Approximate pachyleyentrum

$$P(X \leq X) = F(X|a,6) = \int_{X}^{X} f(a,6) da = \int_{X}^{X} f$$

$$X \sim U(a,b) \quad a < b$$

$$f(x|a,b) = \begin{cases} \frac{1}{6-a}, & a < x < b \\ 0, & x < a \end{cases} \quad b < x$$

$$f(x|a,b) = \begin{cases} \frac{1}{6-a}, & a < x < b \\ 0, & x < a \end{cases} \quad b < x$$

$$f(x|a,b) = \begin{cases} x + (x|a,b) + (x|a,b)$$