Practical 2 - Data Management

Theory

Data Management tasks are

- Creating Subsets
- Deriving
- Sorting
- Merging
- Aggregating
- 1. Read data from CSV file in R

#import basic_salary data
salary<-read.csv(file.choose(),header=T)
summary(salary)</pre>

First_Name Last_Name Grade Location Function ba ms Kavita: 2 Joshi: 2 GR1:23 DELHI:17 FINANCE:13 Min.:10940 Min.: 2700

Mahesh: 2 Shah: 2 GR2:17 MUMBAI:21 SALES: 15 1st Qu.:13785 1st Qu.:10450

Nishi : 2 Singh : 2 NA's: 1 NA's : 3 TECHNICAL:11 Median :16230 Median :12420 Priya : 2 Arora : 1 NA's : 2 Mean :17210 Mean :11939

Ajit : 1 Bhide : 1 3rd Qu.:19305 3rd Qu.:14200
Ameet : 1 Bhutala: 1 Max. :29080 Max. :16970

(Other):31 (Other):32 NA's :2 NA's :4

2. Find missing values

#Number of missing observations nmiss<-sum(is.na(salary\$ba))

nmiss [1] 12

3. Find mean of the column "ba"

mean(salary\$ba)

[1] NA

#NA output due to missing observations

4. Remove missing observations and calculates mean #removes missing observations and calculates mean mean(salary\$ba,na.rm=TRUE)

[1] 17209.74

5. Create subset using selected rows #Display rows from 5th to 10th salary[c(5:10),]

```
First_Name Last_Name Grade Location
                                           Function
                                                        ba
5
6
7
8
         Sneha
                   Joshi
                            GR1
                                   DELHI
                                            FINANCE 20660 15660
       Mahesh
                    Rane
                            GR1
                                   DELHI TECHNICAL 23160 14200
                  Kanade
                            GR1
                                   DELHI TECHNICAL 20160 15850
           Ram
         Nishi
                            GR1
                                   DELHI TECHNICAL 20460 15880
                  Honrao
        Nishi
                Kulkarni
                            GR1
                                     <NA>
                                              SALES 22620 16150
10
       Hameed
                   Singh
                            GR1
                                   DELHI
                                              SALES 23720 15120
```

6. Display only selected rows salary[c(1,3,5,8),]

First_Name Last_Name Grade Location Function ba ms

- 1 Mahesh Joshi GR1 DELHI SALES 17990 16070
- 3 Neha Rao GR1 DELHI FINANCE 19235 15200
- 5 Sneha Joshi GR1 DELHI FINANCE 20660 15660
- 8 Nishi Honrao GR1 DELHI TECHNICAL 20460 15880

7. Create subset using selected columns salary1<-salary[, c(1,2)] #Object salary1 has columns 1 and 2 head(salary1)

First_Name Last_Name

- 1 Mahesh Joshi
- 2 Rajesh Kolte
- 3 Neha Rao
- 4 Priya Jain
- 5 Sneha Joshi
- 6 Mahesh Rane

8. Create subset using selected rows for selected columns #Object salary2 has rows 1,5,8,4 and columns 1 and 2 salary2<-salary[c(1,5,8,4), c(1,2)] salary2

First_Name Last_Name

- 1 Mahesh Joshi
- 5 Sneha Joshi
- 8 Nishi Honrao
- 4 Priya Jain

9. Create subsets using Subset function

Condition on observations

#All details of employees of DELHI with ba more than 20000 salary3<-subset(salary, Location=="DELHI" & ba > 20000) head(salary3)

```
First_Name Last_Name Grade Location
                                       Function
                                                    ba
4
                                           SALES 23280 13490
        Priva
                  Jain
                         GR1
                                DELHI
5
       Sneha
                 Joshi
                         GR1
                                         FINANCE 20660 15660
                                DELHI
6
      Mahesh
                  Rane
                                DELHI TECHNICAL 23160 14200
                         GR1
7
                                DELHI TECHNICAL 20160 15850
         Ram
                Kanade
                         GR1
8
       Nishi
                Honrao
                         GR1
                                DELHI TECHNICAL 20460 15880
10
      Hameed
                 Singh
                                           SALES 23720 15120
                         GR1
                                DELHT
```

Condition on variable names

#Only First name and Last name of previous data salary4<-subset(salary3,select=c(First_Name,Last_Name)) head(salary4)

```
First_Name Last_Name
        Priya
                    Jain
5
        Sneha
                   Joshi
6
       Mahesh
                    Rane
7
           Ram
                  Kanade
8
        Nishi
                  Honrao
10
       Hameed
                   Singh
```

Condition on observations and variable names

#Select details of specific set of employees salary5<-subset(salary,Grade=="GR1" & ba>15000,select= c(First_Name,Grade, Location)) head(salary5)

```
First_Name Grade Location
1
      Mahesh
                GR1
                       DELHI
2
      Raiesh
                GR1
                       DELHI
3
        Neha
                GR1
                       DELHI
4
       Priya
                GR1
                       DELHI
5
       Sneha
                GR1
                       DELHI
6
      Mahesh
                GR1
                       DELHI
```

#Details of employees not having grade 1 and not from Mumbai salary6<-subset(salary,!(Grade=="GR1") & !(Location=="MUMBAI"))

salary6

```
First_Name Last_Name Grade Location Function
                                                  ba
1
     Mahesh
               Joshi
                        GR1
                               DELHI
                                         SALES 17990 16070
2
     Rajesh
                Kolte
                        GR1
                               DELHI
                                       FINANCE 19250 14960
3
       Neha
                  Rao
                        GR1
                               DELHI
                                       FINANCE 19235 15200
4
      Priya
                 Jain
                        GR1
                               DELHI
                                         SALES 23280 13490
5
      Sneha
                Joshi
                        GR1
                               DELHI
                                       FINANCE 20660 15660
6
                               DELHI TECHNICAL 23160 14200
     Mahesh
                 Rane
                        GR1
```

10. Perform Data Sorting functions # Import and attach basic_salary data salary_data<-read.csv(file.choose(),header=T) attach(salary_data)

Sorting data is one of the common activity in preparing data for analysis Sorting is storage of data in sorted order, it can be in ascending or descending order.

attach() attaches the database to the R search path, so the variables in the database can be accessed by simply giving their names

Sort salary_data by ba in ascending order ba_sorted_1<-salary_data[order(ba,] ba sorted 1

	First Name	Lact Namo	Cnada	Location	Function	ha	mc
27	First_Name	- .			Function	ba	ms
37			GR2	_	TECHNICAL		11160
32	Anup	Save	GR2	MUMBAI	SALES	11960	7880
33	Yogesh	Lonkar	GR2	MUMBAI	TECHNICAL	12390	6630
38	Shiva	Jathar	GR2	MUMBAI	FINANCE	12860	10940
41	Ketan	Kharkar	GR2	MUMBAI	SALES	13140	9800
34	Sagar	Chavan	GR2	MUMBAI	FINANCE	13390	6700
35	Dev	Patil	GR2	MUMBAI	SALES	13500	10760
39	Anu	Bhutala	GR2	MUMBAI	FINANCE	13650	10580
30	Amit	Mehta	GR2	DELHI	TECHNICAL	13660	6840
29	Gaurav	Singh	GR2	DELHI	SALES	13760	13220
26	Naresh	Sinha	GR2	DELHI	TECHNICAL	13810	11540
40	Nita	Punjabi	GR2	MUMBAI	SALES	14050	NA
13	Anjali	Sonar	GR1	MUMBAI	<na></na>	14410	10450
31	Ameet	Mishra	GR2	DELHI	FINANCE	14780	9300
25	Priya	Mittal	GR2	DELHI	TECHNICAL	15000	10680
15	Rahul	Potdar	GR1	MUMBAI	SALES	15125	NA
14	Bipin	Bhide	GR1	MUMBAI	FINANCE	15230	11010
17	Mangesh	0ak	GR1	MUMBAI	SALES	15800	12420
27	Jivesh	Shah	GR2	<na></na>	FINANCE	16000	13730
28	Jigar	Shah	GR2	DELHI	FINANCE	16230	NA
18	Anand	Soman	GR1	<na></na>	FINANCE	16540	12780
19	Malhar	Jadhav	GR1	MUMBAI	TECHNICAL	17240	13220

2.4			c-1			17520	
24	Kavita	NS	GR1	MUMBAI		17520	NA
22	Jina	Arora	GR1	MUMBAI	SALES	17830	13090
1	Mahesh	Joshi	GR1	DELHI	SALES	17990	16070
20	Suresh	VS	GR1	MUMBAI	TECHNICAL	18310	13220
23	Kavita	NA	GR1	MUMBAI	SALES	19000	2700
3	Neha	Rao	GR1	DELHI	FINANCE	19235	15200
2	Rajesh	Kolte	GR1	DELHI	FINANCE	19250	14960
21	Rajni	Gudi	GR1	MUMBAI	FINANCE	19360	13050
7	Ram	Kanade	GR1	DELHI	TECHNICAL	20160	15850
8	Nishi	Honrao	GR1	DELHI	TECHNICAL	20460	15880
5	Sneha	Joshi	GR1	DELHI	FINANCE	20660	15660
9	Nishi	Kulkarni	GR1	<na></na>	SALES	22620	16150
6	Mahesh	Rane	GR1	DELHI	TECHNICAL	23160	14200
4	Priya	Jain	GR1	DELHI	SALES	23280	13490
10	Hameed	Singh	GR1	DELHI	SALES	23720	15120
11	Raj	Mohite	GR1	DELHI	FINANCE	26080	16970
12	Yogita	Raje	GR1	DELHI	SALES	29080	8795
16	Ganesh	Sane	<na></na>	MUMBAI	SALES	NA	12120
36	Ajit	Shinde	GR2	MUMBAI	TECHNICAL	NA	9580

Sort salary_data by ba in Descending order ba_sorted_1<-salary_data[order(-ba,] ba_sorted_1

	First_Name	Last_Name	Grade	Location	Function	ba	ms
12	Yogita	Raje	GR1	DELHI	SALES	29080	8795
11	1 Raj Mohite		GR1	DELHI	FINANCE	26080	16970
10	Hameed	Singh	GR1	DELHI	SALES	23720	15120
4	Priya	Jain	GR1	DELHI	SALES	23280	13490
6	Mahesh	Rane	GR1	DELHI	TECHNICAL	23160	14200
9	Nishi	Kulkarni	GR1	<na></na>	SALES	22620	16150
5	Sneha	Joshi	GR1	DELHI	FINANCE	20660	15660
8	Nishi	Honrao	GR1	DELHI	TECHNICAL	20460	15880
7	Ram	Kanade	GR1	DELHI	TECHNICAL	20160	15850
21	Rajni	Gudi	GR1	MUMBAI	FINANCE	19360	13050
2	Rajesh	Kolte	GR1	DELHI	FINANCE	19250	14960
3	Neha	Rao	GR1	DELHI	FINANCE	19235	15200
23	Kavita	NA	GR1	MUMBAI	SALES	19000	2700
20	Suresh	VS	GR1	MUMBAI	TECHNICAL	18310	13220
1	Mahesh	Joshi	GR1	DELHI	SALES	17990	16070
22	Jina	Arora	GR1	MUMBAI	SALES	17830	13090
24	Kavita	NS	GR1	MUMBAI	<na></na>	17520	NA
19	Malhar	Jadhav	GR1	MUMBAI	TECHNICAL	17240	13220
18	Anand	Soman	GR1	<na></na>	FINANCE	16540	12780
28	Jigar	Shah	GR2	DELHI	FINANCE	16230	NA
27	Jivesh	Shah	GR2	<na></na>	FINANCE	16000	13730
17	Mangesh	0ak	GR1	MUMBAI	SALES	15800	12420
14	Bipin	Bhide	GR1	MUMBAI	FINANCE	15230	11010
15	Rahul	Potdar	GR1	MUMBAI	SALES	15125	NA
25	Priya	Mittal	GR2	DELHI	TECHNICAL	15000	10680

31	Ameet	Mishra	GR2	DELHI	FINANCE	14780	9300
13	Anjali	Sonar	GR1	MUMBAI	<na></na>	14410	10450
40	Nita	Punjabi	GR2	MUMBAI	SALES	14050	NA
26	Naresh	Sinha	GR2	DELHI	TECHNICAL	13810	11540
29	Gaurav	Singh	GR2	DELHI	SALES	13760	13220
30	Amit	Mehta	GR2	DELHI	TECHNICAL	13660	6840
39	Anu	Bhutala	GR2	MUMBAI	FINANCE	13650	10580
35	Dev	Patil	GR2	MUMBAI	SALES	13500	10760
34	Sagar	Chavan	GR2	MUMBAI	FINANCE	13390	6700
41	Ketan	Kharkar	GR2	MUMBAI	SALES	13140	9800
38	Shiva	Jathar	GR2	MUMBAI	FINANCE	12860	10940
33	Yogesh	Lonkar	GR2	MUMBAI	TECHNICAL	12390	6630
32	Anup	Save	GR2	MUMBAI	SALES	11960	7880
37	Archa	Narvekar	GR2	MUMBAI	TECHNICAL	10940	11160
16	Ganesh	Sane	<na></na>	MUMBAI	SALES	NA	12120
36	Ajit	Shinde	GR2	MUMBAI	TECHNICAL	NA	9580

Sort data by column with characters / factors # Sort salary_data by Grade gr_sorted<-salary_data[order(Grade),] head(gr_sorted)

```
First_Name Last_Name Grade Location Function
                                                  ba
1
     Mahesh
                Joshi
                        GR1
                               DELHI
                                         SALES 17990 16070
2
     Rajesh
                Kolte
                        GR1
                               DELHI
                                       FINANCE 19250 14960
3
       Neha
                        GR1
                               DELHI
                                       FINANCE 19235 15200
                  Rao
4
      Priya
                 Jain
                        GR1
                               DELHI
                                         SALES 23280 13490
5
                                       FINANCE 20660 15660
      Sneha
                Joshi
                        GR1
                               DELHI
6
                               DELHI TECHNICAL 23160 14200
     Mahesh
                 Rane
                        GR1
```

Sort data by column with characters / factors in Descending order # Sort salary_data by Grade in descending order gr_sorted<-salary_data[order(Grade,decreasing=TRUE),] head(gr_sorted)

```
First_Name Last_Name Grade Location Function
                                                     ba
25
                                  DELHI TECHNICAL 15000 10680
        Priya
                 Mittal
                          GR2
26
       Naresh
                  Sinha
                                  DELHI TECHNICAL 13810 11540
                          GR2
27
       Jivesh
                   Shah
                                          FINANCE 16000 13730
                          GR2
                                  <NA>
28
        Jigar
                   Shah
                          GR2
                                  DELHI
                                          FINANCE 16230
29
       Gaurav
                  Singh
                          GR2
                                  DELHI
                                            SALES 13760 13220
30
         Amit
                  Mehta
                                  DELHI TECHNICAL 13660 6840
                          GR2
```

Sort data by giving multiple columns; one column with characters / factors and one with numerals

Sort salary_data by Grade and ba grba_sorted<-salary_data[order(Grade,ba),] head(grba_sorted)

	First_Name	Last_Name	Grade	Location	Function	ba	ms
13	Anjali	Sonar	GR1	MUMBAI	<na></na>	14410	10450
15	Rahul	Potdar	GR1	MUMBAI	SALES	15125	NA
14	Bipin	Bhide	GR1	MUMBAI	FINANCE	15230	11010
17	Mangesh	0ak	GR1	MUMBAI	SALES	15800	12420
18	Anand	Soman	GR1	<na></na>	FINANCE	16540	12780
19	Malhar	Jadhav	GR1	MUMBAI	TECHNICAL	17240	13220

11. Perform merging / joining operations using merge function #Import following 2 data sets sal_data bonus_data

outerjoin

Outer Join includes all employee ID's from both data sets outerjoin<- merge(sal_data,bonus_data,by=c("Employee_ID"), all=TRUE)

	<pre>Employee_ID</pre>	First_Name	Last_Name	Basic_Salary	Bonus
1	E-1001	Mahesh	Joshi	16070	16070
2	E-1002	Rajesh	Kolte	14960	NA
3	E-1004	Priya	Jain	13490	13490
4	E-1005	Sneha	Joshi	15660	NA
5	E-1007	Ram	Kanade	15850	NA
6	E-1008	Nishi	Honrao	15880	15880
7	E-1009	Hameed	Singh	15120	NA
8	E-1003	<na></na>	<na></na>	NA	15200
9	E-1006	<na></na>	<na></na>	NA	14200
10	E-1010	<na></na>	<na></na>	NA	15120

innerjoin

Inner Join includes employee ID only if present in both data sets innerjoin<-merge(sal_data,bonus_data,by="Employee_ID")

	<pre>Employee_ID</pre>	First_Name	Last_Name	Basic_Salary	Bonus
1	E-1001	Mahesh	Joshi	16070	16070
2	E-1004	Priya	Jain	13490	13490
3	E-1008	Nishi	Honrao	15880	15880

leftjoin

#Left Join includes all employee ID's from first data set leftjoin<-merge(sal_data,bonus_data,by=c("Employee_ID"), all.x=TRUE)

	<pre>Employee_ID</pre>	First_Name	Last_Name	Basic_Salary	Bonus
1	E-1001	Mahesh	Joshi	16070	16070
2	E-1002	Rajesh	Kolte	14960	NA
3	E-1004	Priya	Jain	13490	13490
4	E-1005	Sneha	Joshi	15660	NA
5	E-1007	Ram	Kanade	15850	NA
6	E-1008	Nishi	Honrao	15880	15880
7	E-1009	Hameed	Singh	15120	NA

rightjoin

Right Join includes all employee ID's from second data set rightjoin<-merge(sal_data,bonus_data, by="Employee_ID", all.y=TRUE)

	<pre>Employee_ID</pre>	First_Name	Last_Name	Basic_Salary	Bonus
1	E-1001	Mahesh	Joshi	16070	16070
2	E-1004	Priya	Jain	13490	13490
3	E-1008	Nishi	Honrao	15880	15880
4	E-1003	<na></na>	<na></na>	NA	15200
5	E-1006	<na></na>	<na></na>	NA	14200
6	E-1010	<na></na>	<na></na>	NA	15120

Appending two datasets using rbind function requires both the datasets with exactly the same number of variables with exactly the same names.

If datasets do not have the same number of variables, variables can be either dropped or created so both match.

#import new_emp data set

new_emp<-read.csv(file.choose(),header=T) #append data sets
sal_data<-rbind(sal_data,new_emp)</pre>

sal data

	_			
	<pre>Employee_ID</pre>	First_Name	Last_Name	Basic_Salary
1	E-1001	Mahesh	Joshi	16070
2	E-1002	Rajesh	Kolte	14960
3	E-1004	Priya	Jain	13490
4	E-1005	Sneha	Joshi	15660
5	E-1007	Ram	Kanade	15850
6	E-1008	Nishi	Honrao	15880
7	E-1009	Hameed	Singh	15120
8	E-1115	Nihar	Rao	16000
9	E-1116	Rajesh	Srivastav	14000

12. Aggregate using aggregate function

A<-aggregate(ba ~ Location, data=salary, FUN = mean)

```
#To calculate mean for variable 'ba' by Location variable 
#Aggregate function by default ignores the missing data values. 
#na.rm=TRUE is not required in mean function.
```

A

```
Location ba
1 DELHI 19430.29
2 MUMBAI 15037.11
```

13. Aggregate Function - Single Variable, Single Factor, Single Function

#To calculate mean for variable 'ba' by 'Location'

A<-aggregate(ba ~ Location, data=salary, FUN = mean)

A

```
Location ba
1 DELHI 19430.29
2 MUMBAI 15037.11
```

14. Create your own function which calculates mean, median and standard deviation

#f is the name of your function

f<-function(x) c(mean=mean(x), median=median(x), sd=sd(x))

Do not forget

na.rm=TRUE if there are missing values

Apply your function to a variable: f(salary\$ba)

```
mean median sd
17209.744 16230.000 4159.515
```

#use previously defined function f in aggregate function

B<-aggregate(ba ~ Location,data=salary, FUN = f)

B

```
Location ba.mean ba.median ba.sd
1 DELHI 19430.294 19250.000 4597.886
2 MUMBAI 15037.105 14410.000 2522.308
```

modify your function to display integer value Output.

f < -function(x) c(mean = round(mean(x), 0), median = round(median(x), 0), sd = round(sd(x), 0))

f < -function(x) c(mean = round(mean(x), 0), median = round(median(x), 0), sd = round(sd(x), 0))

C<-aggregate(cbind(ba,ms) ~ Location,data=salary, FUN=f) C

	Location	ba.mean	ba.median	ba.sd	ms.mean	ms.median	ms.sd
1	DELHI	19630	19705	4672	13361	14580	3037
2	MUMBAT	14938	14030	2673	10226	10850	2933

15. Aggregate Function - Single Variable and Multiple Factors D<-aggregate(ba ~ Location+Grade+Function,data=salary, FUN = f)

	Location	Grade	Function	ba.mean	ba.median	ha.sd
1	DELHI	GR1	FINANCE	21306	19955	3252
2	MUMBAI	GR1	FINANCE	17295	17295	2920
3	DELHI	GR2	FINANCE	15505	15505	1025
4	MUMBAI	GR2	FINANCE	13300	13390	403
5	DELHI	GR1	SALES	23518	23500	4531
6	MUMBAI	GR1	SALES	16939	16815	1792
7	DELHI	GR2	SALES	13760	13760	NA
8	MUMBAI	GR2	SALES	13162	13320	885
9	DELHT		TECHNICAL	21260	20460	1652
10	MUMBAI		TECHNICAL	17775	17775	757
$\overline{11}$	DELHI		TECHNICAL	14157	13810	734
12	MUMBAI	GR2	TECHNICAL	11665	11665	1025

16. Aggregate Function - Multiple Variables and Multiple Factors E<-aggregate (cbind(ba,ms) ~ Location+Grade+Function, data=salary, FUN = f) E

	Location	Grade	Function	ba.mean	ba.median	ba.sd	ms.mean	ms.median	ms.sd
1	DELHI	GR1	FINANCE	21306	19955	3252	15698	15430	897
2	MUMBAI	GR1	FINANCE	17295	17295	2920	12030	12030	1442
3	DELHI	GR2	FINANCE	14780	14780	NA	9300	9300	NA
4	MUMBAI	GR2	FINANCE	13300	13390	403	9407	10580	2351
5	DELHI	GR1	SALES	23518	23500	4531	13369	14305	3230
6	MUMBAI	GR1	SALES	17543	17830	1619	9403	12420	5815
7	DELHI	GR2	SALES	13760	13760	NA	13220	13220	NA
8	MUMBAI	GR2	SALES	12867	13140	806	9480	9800	1466
9	DELHI	GR1	TECHNICAL	21260	20460	1652	15310	15850	961
10	MUMBAI	GR1	TECHNICAL	17775	17775	757	13220	13220	0
11	DELHI	GR2	TECHNICAL	14157	13810	734	9687	10680	2503
12	MUMBAI	GR2	TECHNICAL	11665	11665	1025	8895	8895	3203

17. Generating Frequency Tables

freq<-table(salary\$Location, salary\$Grade)

prop.table(freq)

```
GR1 GR2
DELHI 0.2972973 0.1621622
MUMBAI 0.2702703 0.2702703
```

18. Disect data with quantiles

- Quartiles divide the distribution into 4 equal parts. Q1: Lower Quartile(25% observations are below Q1) Q3: Upper Quartile (25% observations are above Q3) Q2 is same as median
- Deciles divide the distribution into 10 equal parts.
- 5th Decile is same as median
- Percentiles divide the distribution into 100 equal parts.
- 50th percentile is same as median
- 75th percentile is same as Q3

Import basic_salary2 data and store in object salary quantile(salary\$ba,na.rm=T)

```
0% 25% 50% 75% 100% 10940 13785 16230 19305 29080
```

quantile(salary\$ba,prob=c(0.1,0.5,0.8),na.rm=T)

10% 50% 80% 13084 16230 20280

19. Defining Outliers

- An outlier is an observation that lies an abnormal distance from other values in a random sample from a population.
- Before abnormal observations can be singled out, it is necessary to characterize normal observations.
- where IQR: Inter-quartile Range =Q3-Q1

20. Box-Whisker Plot

- Box and Whisker plot summarizes data graphically using 5 measures: Minimum,Q1,Q2,Q3 and Maximum.
- The body of the box goes from the first quartile (Q1) to the third quartile (Q3).
- The whiskers go from Q1 to smallest non outlier and Q3 to highest non outlier data points.

boxplot(salary\$ba)

boxplot(ba~Grade,data=salary)

21. Adding Colour to boxplot boxplot(ba~Grade,data=salary,col=(c("blue","red")))

22. Histogram is useful in visualizing a distribution.

To construct a histogram, the first step is to "bin" the range of values—that is, divide the entire range of values into a series of intervals—and then count how many values fall into each interval(frequency) hist(salary\$ba)

23. Adding Colour in Histogram hist(salary\$ba,col="blue")

24. Skewness

- Skewness is a measure of 'lack of symmetry' of the data.
- positive skew: The right tail is longer; the mass of the distribution is concentrated on the left.
- negative skew: The left tail is longer; the mass of the distribution is concentrated on the right.
- If the distribution is symmetric, then the mean is equal to the median, and the distribution has zero skewness.
- The Normal distribution is symmetric distribution.

Visualizing Skewness

• The Pearson measure of skewness is defined as (mean – mode) / standard deviation.

25. Kurtosis

- Kurtosis is defined as a measure of "peakedness'.
- Kurtosis is generally measured relative to Normal distribution, which means excess of kurtosis is measured.
- Normal distribution is termed as mesokurtic distribution.
- A leptokurtic distribution has a more acute peak, positive kurtosis
- A platykurtic distribution has a flatter peak, negative kurtosis.

Normal Distribution

- Normal distribution used for continuous variables.
- Normal curve is a symmetric bell-shaped curve.
- It is also known as the Gaussian distribution.
- Many statistical methods assume that population is normally distributed.

#Measure skewness and kurtosis install.packages("e1071") library(e1071) #use basic_salary2 data

skewness(salary\$ba,na.rm=T,type=2)

[1] 0.9033507

kurtosis(salary\$ba,na.rm=T,type=2)

[1] 0.4996513

f<-function(x)skewness(x,na.rm=T,type=2) aggregate(ba~Grade,data=salary,FUN=f)

Grade ba 1 GR1 0.85500651 2 GR2 0.08682743

f1<-function(x)kurtosis(x,na.rm=T,type=2) aggregate(ba~Grade,data=salary,FUN=f1)

Grade ba 1 GR1 0.6293901 2 GR2 0.3485238