MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Hard-core predicate based on indistinguishability). A predicate π is a (t, ε) -unpredictable also known as (t, ε) -hardcore predicate for a function $f: \mathcal{S} \to \mathcal{X}$ if for any t-time adversary

Show that $\pi: \mathcal{S} \to \{0,1\}$ must be almost regular if π is hard-core predicate. Let \mathcal{X}_i denote the distribution of f(s) for $s \leftarrow S_i$ where $S_0 = \{s \in S : \pi(s) = 0\}$ and $S_1 = \{s \in S : \pi(s) = 1\}$. Show that if the distributions \mathcal{X}_0 and \mathcal{X}_1 are (t,ε) -indistinguishable then π is also a hardcore predicate. Analyse how the prediction advantage depends on regularity. Is it possible to prove the reverse implication?

Hint: Give alternative definition of hard-core bits in terms of two games \mathcal{Q}_0 and \mathcal{Q}_1 . **Hint**: Define \mathcal{B} such that $\mathcal{Q}_0^{\mathcal{B}} \equiv \mathcal{G}_0^{\mathcal{A}}$. What is the corresponding $\mathcal{Q}_1^{\mathcal{B}}$?