Devoir à la maison n° 21

À rendre le 7 juin

Dans tout le problème les matrices utilisées appartiennent à $\mathcal{M}_3(\mathbb{R})$.

Toute matrice M de $\mathcal{M}_3(\mathbb{R})$ est notée : $M = \begin{pmatrix} a & b & c \\ k & \ell & m \\ r & s & t \end{pmatrix}$.

On appelle \mathcal{B} la base canonique de $\mathcal{M}_3(\mathbb{R})$. Elle est formée des matrices :

$$E_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_{2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_{3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$E_{4} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_{5} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

$$E_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad E_{8} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \qquad E_{9} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

On peut donc écrire : $M = aE_1 + bE_2 + cE_3 + kE_4 + \ell E_5 + mE_6 + rE_7 + sE_8 + tE_9$. À une telle matrice M on associe les huit nombres :

$$s_1(M) = a + b + c$$
, $s_2(M) = k + \ell + m$, $s_3(M) = r + s + t$, $s_4(M) = a + k + r$, $s_5(M) = b + \ell + s$, $s_6(M) = c + m + t$, $s_7(M) = a + \ell + t$, $s_8(M) = r + \ell + c$.

Soit aussi

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{et} \quad J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Enfin, on note

- S le sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ formé des matrices symétriques,
- A le sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ formé des matrices antisymétriques,
- V le sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ engendré par la matrice J,
- T l'ensemble des matrices pour lesquelles le nombre $s_7(M)$ est nul (ensemble des matrices de trace nulle).
- \mathcal{M} l'ensemble des matrices magiques de $\mathcal{M}_3(\mathbb{R})$, *i.e.* l'ensemble des matrices dont les 8 nombres $s_1(M), s_2(M), \ldots, s_8(M)$ sont égaux entre eux.
- 1) a) Justifier que les sous-espaces vectoriels S et A sont supplémentaires dans $\mathcal{M}_3(\mathbb{R})$.
 - b) Quelles sont les dimensions de S et A?
 - c) Montrer que T est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. Quelle est sa dimension?

- 2) On considère l'application φ qui, à la matrice $M \in \mathcal{M}_3(\mathbb{R})$, associe l'élément $(s_1(M), \dots, s_8(M))$ de \mathbb{R}^8 .
 - a) Montrer que φ est une application linéaire.
 - b) Écrire la matrice de φ en rapportant l'espace de départ $\mathcal{M}_3(\mathbb{R})$ à la base \mathcal{B} et l'espace d'arrivée \mathbb{R}^8 à sa base canonique notée \mathscr{C} .
 - c) Montrer que le rang de cette matrice est 7.

 On pourra remarquer que l'une des lignes est combinaison linéaire des autres, puis considérer une combinaison linéaire nulle des autres lignes.
 - d) En déduire la dimension du noyau de φ .
- 3) a) Justifier que \mathcal{M} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
 - b) Montrer que $\mathcal{M} \cap T$ et V sont des sous-espaces vectoriels supplémentaires de \mathcal{M} .
 - c) En observant que $\mathcal{M} \cap T = \operatorname{Ker} \varphi$, déterminer la dimension de \mathcal{M} .
- 4) a) Déterminer une matrice de $\mathcal{M} \cap T$ symétrique dont le coefficient d'indice (1,1) vaut 1.
 - **b)** Déterminer une matrice de $\mathcal{M} \cap T$ antisymétrique dont le coefficient d'indice (1,3) vaut 1.
 - c) Former une base de \mathcal{M} .
- 5) Montrer qu'il n'existe qu'une matrice magique vérifiant $a=1,\,b=2,\,c=3$ et donner celle-ci.

— FIN —