содержание

основная часть			2
1	Решение волнового уравнения		2
	1.1	Вывод уравнения колебаний струны	2
	1.2	Обобщение уравнения колебаний на многомерный случай	3
	1.3	Методы решения уравнения колебаний	4
	1.4	Описание программы	4
	1.5	Результаты расчётов для разных условий	4
СПИС	COK 1/	ІСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ	5

ОСНОВНАЯ ЧАСТЬ

1 Решение волнового уравнения

Дифференциальные уравнения в частных производных, которые встречаются при решении физических задач, называют также уравнениями математической физики. Одним из основных уравнений математической физики является волновое уравнение:

1.1 Вывод уравнения колебаний струны

Рассмотрим гибкую однородную струну, в которой создано натяжение T, и получим дифференциальное уравнение, описывающее её малые поперечные свободные колебания. Отметим, что, если струна расположена горизонтально в поле тяжести, величина T должна быть достаточна для того, чтобы в состоянии равновесия струна не провисала, т.е. сила натяжения должна существенно превышать вес струны.

Направим ось Ox вдоль струны в положении равновесия. Форму струны будем описывать функцией y(x,t), определяющей её вертикальное смещение в точке x в момент времени t. Угол наклона касательной к струне в точке x относительно горизонтального направления обозначим как α . В любой момент этот угол совпадает с углом наклона касательной к графику функции y(x), то есть $tg\alpha = \frac{\partial u}{\partial x}$.

Рассмотрим элементарный участок струны, находящийся в точке x, имеющий длину δx и массу $\delta m = \rho \delta x$, где ρ [кг/м] — погонная плотность струны (масса на единицу длины). При отклонении от равновесия на выделенный элемент действуют силы натяжения $\overrightarrow{T_1}$ и $\overrightarrow{T_2}$, направленные по касательной к струне. Их вертикальная составляющая будет стремиться вернуть рассматриваемый участок струны к положению равновесия, придавая элементу некоторое вертикальное ускорение $\frac{\partial^2 u}{\partial x^2}$. Заметим, что угол α зависит от координаты x вдоль струны и различен в точках приложения сил. Таким образом, второй закон Ньютона для вертикального движения элемента струны запишется в следующем виде:

$$\delta m \frac{\partial^2 u}{\partial t^2} = -T_1 \sin \alpha_1 + T_2 \sin \alpha_2. \tag{1.1}$$

Основываясь на предположении, что отклонения струны от положения равновесия малы, можем сделать ряд упрощений:

- 1. Длина участка струны в смещенном состоянии практически равна длине участка в положении равновесия, поэтому добавочным напряжением вследствие удлинения струны при деформации можно пренебречь. Следовательно, силы $\overrightarrow{T_1}$ и $\overrightarrow{T_2}$ по модулю равны силе натяжения струны: $T_1 = T_2 = T$.
- 2. Углы наклона α малы, поэтому $\tan \alpha \approx \sin \alpha \approx \alpha$, и, следовательно, можно положить $\alpha \approx \frac{\partial u}{\partial x}$.

Разделим обе части уравнения движения (1.1) на δx и устремим размер элемента к нулю, $\delta x \to 0$. Тогда правая часть примет вид:

$$\rho \frac{\partial^2 u}{\partial t^2} = \frac{T_2 \sin \alpha_2 - T_1 \sin \alpha_1}{\delta x} \approx T \frac{\alpha_2 - \alpha_1}{\delta x} \to T \frac{\partial \alpha}{\partial x}.$$

Наконец, подставляя $\alpha = \frac{\partial \alpha}{\partial x}$ и вводя величину с размерностью скорости $c = \sqrt{\frac{T}{\rho}}$, находим окончательно уравнение свободных малых поперечных колебаний струны:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}. (1.2)$$

Уравнение (1.2) называют волновым уравнением. Оно играет крайне важную роль в физике и кроме волн на струне может описывать волновые процессы в самых разных системах, в том числе волны в сплошных средах (звук), электромагнитные волны и т.п.

В случае, если на струну действует внешняя сила, уравнение (1.2) необходимо дополнить соответствующим слагаемым:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} + f(x, t). \tag{1.3}$$

1.2 Обобщение уравнения колебаний на многомерный случай

Уравнение (1.3) можно обобщить на двумерный и трёхмерный случаи.

Уравнение (1.3) удобно записывать в общем виде используя оператор Лапласа $\Delta f = \sum_{i=1}^N \frac{\partial^2 f}{\partial x_i^2} : \frac{\partial^2 u}{\partial t^2} = c^2 \; \Delta u + f.$

Более экзотическим вариантом будет запись с оператором Даламбера $\Box f = \Delta f - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$: $\Box u = f$.

- 1.3 Граничные и начальные условия
- 1.4 Численные методы решения уравнения колебаний
- 1.5 Описание программы
- 1.6 Результаты расчётов для разных условий

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + f(x, t) \\ u|_{t=0} = g(x) \\ u'_t|_{t=0} = h(x) \\ u'_t|_{x=0} = j(t) \\ u'_t|_{x=l} = k(t) \end{cases}$$

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

[1] Львовский С. Набор и вёрстка в системе LATEX. — 5-е изд., переработанное. — М.: МЦНМО, 2014. — 400 с