Numeričko računanje svojstvenih vrijednosti Dirichletovog Laplaciana

Metoda konačnih razlika

Davor Penzar

2019.

Uvodno objašnjenje

Za prirodni broj $n \in \mathbb{N} \setminus \{0\}$, za otvoreni neprazni skup $\Omega \subseteq \mathbb{R}^n$ i za neprekidnu dvostruko diferencijabilnu funkciju $u \colon \Omega \to \mathbb{R}$ Laplaceov operator u točki $\mathbf{x} \in \Omega$ označavamo s

$$\Delta u\left(\mathbf{x}\right) = \frac{\partial^{2}}{\partial x_{0}^{2}} u\left(\mathbf{x}\right) + \frac{\partial^{2}}{\partial x_{1}^{2}} u\left(\mathbf{x}\right) + \dots + \frac{\partial^{2}}{\partial x_{n-1}^{2}} u\left(\mathbf{x}\right),$$

gdje su $x_0, x_1, \ldots, x_{n-1}$ vektori ortonormirane baze od R^n . Laplaceov operator skraćeno nazivamo i *Laplacian*.

1. Svojstvena funkcija i svojstvena vrijednost Dirichletovog Laplaciana

Definicija 1. Neka je $\Omega \subseteq \mathbb{R}^2$ neprazni otvoreni skup. Neprekidnu funkciju $u \colon \overline{\Omega} \to \mathbb{R}$ dvostruko diferencijabilnu na Ω različitu od konstantne nul-funkcije i pripadnu konstantu $\lambda \in \mathbb{R}$ koje zadovoljavaju Dirichletov rubni uvjet

$$\begin{cases}
-\Delta u = \lambda u & \text{u } \Omega \\
u = 0 & \text{na } \partial \Omega
\end{cases}$$
(1)

zovemo **svojstvenom funkcijom** i (pripadnom) **svojstvenom vrijednosti** Dirichletovog Laplaciana na Ω .

Pretpostavimo da za neki neprazni otvoreni skup $\Omega\subseteq\mathbb{R}^2$ poznajemo svojstvenu funkciju $u\colon\overline{\Omega}\to\mathbb{R}$ i pripadnu svojstvenu vrijednost $\lambda\in\mathbb{R}$ Dirichletovog Laplaciana na Ω . Za skup $S\subseteq R$ takav da vrijedi $\overline{\Omega}\subseteq S\subseteq\mathbb{R}^2$ funkciju u možemo dodefinirati do funkcije na cijelom S vrijednosti 0. Obratno, ako postoji funkcija $v\colon S\to\mathbb{R}$ neprekidna na $\overline{\Omega}$ čija je restrikcija $v|_{\Omega}$ dvostruko diferencijabilna funkcija različita od konstantne nul-funkcije i za čiju restrikciju $v|_{\overline{\Omega}}$ postoji konstanta $\mu\in\mathbb{R}$ tako da $v|_{\overline{\Omega}}$ i μ zadovoljavaju uvjet (1), onda su $v|_{\overline{\Omega}}$ i μ svojstvena funkcija i pripadna svojstvena vrijednost Dirichletovog Laplaciana na Ω — to posebno vrijedi i ako je $v|_{S\setminus\overline{\Omega}}$ konstantna nul-funkcija. Uočimo da je, ako je vrijednost funkcije na rubu skupa Ω konstantna, a izvan tog skupa poprima (također konstantno) tu istu vrijednost kao i na rubu, i ta Sira funkcija neprekidna na cijelom S.

2. Numeričko računanje svojstvene funkcije i svojstvene vrijednosti Dirichletovog Laplaciana

Neka je $\Omega \subseteq \mathbb{R}^2$ proizvoljni neprazni otvoreni ograničeni skup. Definiramo

$$\begin{aligned} x_{\min} &\coloneqq \min\left(\left\{x \in \mathbb{R} : \exists y \in \mathbb{R} \left((x,y) \in \overline{\Omega}\right)\right\}\right) \in \mathbb{R}, \\ y_{\min} &\coloneqq \min\left(\left\{y \in \mathbb{R} : \exists x \in \mathbb{R} \left((x,y) \in \overline{\Omega}\right)\right\}\right) \in \mathbb{R}, \\ x_{\max} &\coloneqq \max\left(\left\{x \in \mathbb{R} : \exists y \in \mathbb{R} \left((x,y) \in \overline{\Omega}\right)\right\}\right) \in \mathbb{R}, \\ y_{\max} &\coloneqq \max\left(\left\{y \in \mathbb{R} : \exists x \in \mathbb{R} \left((x,y) \in \overline{\Omega}\right)\right\}\right) \in \mathbb{R}. \end{aligned}$$

Vrijednosti x_{\min} , y_{\min} , x_{\max} , $y_{\max} \in \mathbb{R}$ dobro su definirane jer je $\overline{\Omega}$ neprazni kompakt, a \mathbb{R} topološki potpun. Definiramo sada točke

$$A := (x_{\min}, y_{\min}) \in \mathbb{R}^2,$$

$$B := (x_{\max}, y_{\min}) \in \mathbb{R}^2,$$

$$C := (x_{\max}, y_{\max}) \in \mathbb{R}^2,$$

$$D := (x_{\min}, y_{\max}) \in \mathbb{R}^2.$$

Točke $A, B, C, D \in \mathbb{R}^2$ očito su vrhovi pravokutnika čije su stranice paralelne s koordinatnim osima; štoviše, tim su redom vrhovi pozitivno orijentirani. Označimo još taj pravokutnik s $P \subseteq \mathbb{R}^2$ i duljine njegovih stranica s

$$a := |x_{\text{max}} - x_{\text{min}}| = ||B - A|| = ||D - C|| \ge 0,$$

 $b := |y_{\text{max}} - y_{\text{min}}| = ||C - B|| = ||A - D|| \ge 0.$

Dokažimo da je $\overline{\Omega} \subseteq \overline{P}$. U tu svrhu, pretpostavimo suprotno, to jest, da postoji $T \in \overline{\Omega} \setminus \overline{P}$. Neka su koordinate od T označene s $(x,y) \in \mathbb{R}^2$. Kada bi bilo $x_{\min} \le x \le x_{\max}$ i $y_{\min} \le y \le y_{\max}$, onda bi bilo $T \in \overline{P}$. Dakle, vrijedi $x < x_{\min}$, $x > x_{\max}$, $y < y_{\min}$ ili $y > y_{\max}$ jer je \mathbb{R} totalno uređeni skup — to je, pak, u kontradikciji s definicijom vrijednosti x_{\min} , y_{\min} , x_{\max} i y_{\max} .

Također, dokažimo da je P najmanji takav pravokutnik. Pretpostavimo, suprotno, da postoji pravokutnik $Q\subseteq\mathbb{R}^2$ čije su stranice paralelne s koordinatnim osima takav da je $\overline{\Omega}\subseteq\overline{Q}\subset\overline{P}$. Razmislimo li što implicira desna (stroga) inkluzija, zaključujemo da to znači da postoji točka na ∂P koja nije sadržana u \overline{Q} — budući da su oba pravokutnika paralelni s koordinatnim osima, to znači da je cijela jedna stranica pravokutnika P disjunktna s \overline{Q} . No, po definiciji vrijednosti x_{\min} , y_{\min} , x_{\max} i y_{\max} , od kojih svaka (na neki način) definira jednu stranicu pravokutnika P, to znači da postoji točka $T\in\overline{\Omega}$ koja je na ∂P , a koja nije u \overline{Q} . To je kontradikcija s inkluzijom $\overline{\Omega}\subseteq\overline{Q}$, drugim riječima, pravokutnik P je najmanji pravokutnik čije su stranice paralelne s koordinatnim osima i čije zatvorenje sadrži cijeli $\overline{\Omega}$.

Dokažimo, konačno, da je $\Omega \subseteq P$. Ponovo pretpostavljamo suprotno, to jest, da postoji točka $T \in \Omega \cap \partial P$ (već je poznato da je $\Omega \subseteq \overline{P}$). Po definiciji otvorenog skupa, to znači da postoji $\varepsilon > 0$ takav da za svaku točku $T^* \in \mathbb{R}$ za koju je $\|T^* - T\| < \varepsilon$ vrijedi $T^* \in \Omega$. No, vrijedi $\Omega \subseteq \overline{\Omega} \subseteq \overline{P}$ pa, koliko god malo *izađemo* iz \overline{P} od točke T (koja je, prisjetimo se, na rubu pravokutnika P), nismo više u skupu Ω . Dakle, takva točka T ne postoji, to jest, $\Omega \subseteq P$.

Sada kada točno znamo u kakvom su odnosu Ω , P i njihova zatvorenja, napomenimo zašto je bitno naglasiti da je P najmanji pravokutnik s pokazanim svojstvima **čije su stranice paralelne**

s koordinatnim osima. Naime, ako je Ω već i sam pravokutnik, ali čije stranice nisu paralelne s koordinatnim osima, očito je Ω najmanji pravokutnik čije zatvorenje sadrži $\overline{\Omega}$, a u \overline{P} tada postoje točke koje nisu u $\overline{\Omega}$. U tom slučaju, ipak, koordinatni sustav možemo *zarotirati* (odaberemo drugačiju ortonormiranu bazu) tako da su koordinatne osi paralelne sa stranicama pravokutnika Ω .

Kako je, po pretpostavci, Ω neprazan i otvoren, iz svega dokazanog zaključujemo:

- 1. $x_{\min} < x_{\max} i y_{\min} < y_{\max}$
- 2. a > 0 i b > 0.

Pretpostavimo da je $\frac{a}{b} \in \mathbb{Q}$. Neka su $m, n \in \mathbb{N}$ takvi da vrijedi $\frac{a}{b} = \frac{m}{n}$. To znači da postoji h > 0 takav da je a = mh i b = nh, to jest, da je $h = \frac{a}{m} = \frac{b}{n}$. Diskretiziramo sada interval $[x_{\min}, x_{\max}]$ ekvidistantnom podjelom na m + 1 točaka, a interval $[y_{\min}, y_{\max}]$ ekvidistantnom podjelom na n + 1 točaka:

$$x_i := x_{\min} + ih \in \mathbb{R}, \quad i = 0, 1, \dots m,$$

 $y_j := y_{\min} + jh \in \mathbb{R}, \quad j = 0, 1, \dots n.$

Očito je $x_0 = x_{\min}$, $x_m = x_{\max}$, $y_0 = y_{\min}$ i $y_n = y_{\max}$. Po dokazanomu prije znamo da za svaki uređeni par $(i, j) \in \{0, 1, \ldots, m\} \times \{0, 1, \ldots, n\}$ takav da je $(x_i, y_j) \in \Omega$ (ako takav par postoji) točke (x_{i-1}, y_j) , (x_i, y_{j-1}) , (x_{i+1}, y_j) i (x_i, y_{j+1}) su dobro definirane i nalaze se u \overline{P} . Za proizvoljnu funkciju $f : \overline{P} \to \mathbb{R}$, inspirirani indeksiranjem diskretizacije skupa \overline{P} , označimo $f_{i,j} := f(x_i, y_j) \in \mathbb{R}$ za svaki uređeni par $(i, j) \in \{0, 1, \ldots, m\} \times \{0, 1, \ldots, n\}$.

Pretpostavimo da je funkcija $u\colon \overline{P}\to\mathbb{R}$ neprekidna i takva da je $u|_{\Omega}$ dvostruko diferencijabilna funkcija koja nije konstantna nul-funkcija, ali da je $u|_{\overline{P}\setminus\Omega}$ konstantna nul-funkcija. Posebno je tada u(T)=0 za svaku točku $T\in\partial\Omega$. Za proizvoljnu točku $(x,y)\in\Omega$ možemo aproksimirati, metodom konačnih razlika (pomoću Taylorovog reda),

$$\Delta u\left(x,y\right)\approx\frac{u\left(x+l,y\right)+u\left(x,y+l\right)-4u\left(x,y\right)+u\left(x-l,y\right)+u\left(x,y-l\right)}{l^{2}}\tag{2}$$

za neki *dovoljno mali l* > 0, i to takav da je $(x-l,y) \in \overline{P}$, $(x,y-l) \in \overline{P}$, $(x+l,y) \in \overline{P}$ i $(x,y+l) \in \overline{P}$ (da izrazi s desne strane jednakosti budu definirani). Činjenica da je *u* neprekidna, a konstantna nul-funkcija i na $\partial\Omega$ i izvan $\overline{\Omega}$ (ako je $\overline{\Omega} \subset \overline{P}$) nam ovdje ide u korist — pomakom za *l* po koordinatnim osima rub od Ω možemo malo i *prekoračiti* jer se pri *izlasku* s $\overline{\Omega}$ ne događaju ekstremne oscilacije po *u*. To jest, u točkama koje su u Ω , ali *vrlo blizu* $\partial\Omega$, funkcija *u* poprima vrijednost blizu 0, stoga greške aproksimacije u blizini ruba skupa Ω (gdje je moguće *prekoračiti* rub aproksimacijom (2)) nisu ništa veće nego u Ω .

Pretpostavimo da je h zadovoljavajuće mali pomak za aproksimaciju (2) i da je diskretizacija skupa \overline{P} dovoljno fina da postoji uređeni par $(i,j) \in \{0,1,\ldots,m\} \times \{0,1,\ldots,n\}$ takav da je $(x_i,y_j) \in \Omega$ i $u_{i,j} \neq 0$ (ako barem jedno od toga ne vrijedi, umjesto brojeva m i n uzmemo neke njihove višekratnike dobivene množenjem brojeva m i n istim brojem; za dovoljno finu diskretizaciju moguće je barem posljednja 2 zahtjeva ispuniti jer je Ω neprazan i otvoren i, kako je u neprekidna funkcija koja na Ω poprima vrijednsost različitu od 0, postoji područje unutar Ω na kojem cijelom u poprima ne-nul vrijednosti). Definiramo sada matricu

$$U := \begin{pmatrix} u_{0,0} & u_{0,1} & \cdots & u_{0,n} \\ u_{1,0} & u_{1,1} & \cdots & u_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{m,0} & u_{m,1} & \cdots & u_{m,n} \end{pmatrix} \in \mathbf{M}_{m+1,n+1} \left(\mathbb{R} \right).$$

Također, definiramo vektor $\mathbf{u} = \left(u^{(0)}, u^{(1)}, \dots, u^{((m+1)(n+1)-1)}\right) \in \mathbb{R}^{(m+1)(n+1)}$ tako da je $u_{i,j} = u^{(i+(m+1)j)}$ za svaki uređeni par $(i,j) \in \{0,1,\dots,m\} \times \{0,1,\dots,n\}$ — vektor \mathbf{u} dobiven je konkatenacijom stupaca (promatranih kao vektori) matrice U redom od prvog do zadnjeg. Konačno, definiramo i kvadratnu matricu $D = \left(d^{(r,s)}\right)_{r,s} \in \mathrm{M}_{(m+1)(n+1)}\left(\mathbb{R}\right)$ ovako:

1. slično kao što je od indeksiranja matrice U dobiveno indeksiranje vektora \mathbf{u} , za uređene parove $(i_0, j_0), (i_1, j_1) \in \{0, 1, \dots, m\} \times \{0, 1, \dots, n\}$ označimo

$$d_{(i_0,j_0),(i_1,j_1)} = d^{(i_0+(m+1)j_0,i_1+(m+1)j_1)},$$

2. ako je $(x_i, y_j) \in \Omega$ za neki uređeni par $(i, j) \in \{0, 1, \dots, m\} \times \{0, 1, \dots, n\}$, onda je

$$d_{(i,j),(i-1,j)} = \frac{1}{h^2},$$

$$d_{(i,j),(i,j-1)} = \frac{1}{h^2},$$

$$d_{(i,j),(i,j)} = -\frac{4}{h^2},$$

$$d_{(i,j),(i+1,j)} = \frac{1}{h^2},$$

$$d_{(i,j),(i,j+1)} = \frac{1}{h^2},$$

3. svi su ostali elementi matrice D jednaki 0.

S ovakvom notacijom, jednako kao što je vektor $\mathbf u$ diskretizacija funkcije u na \overline{P} , vektor $D\mathbf u$ aproksimacija je diskretizacije Δu aproksimacijom (2) na \overline{P} (to jest, barem su njegovi elementi čiji indeksi pripadaju skupu Ω aproksimacija Laplaciana na Ω). Suprotnim smjerom od reindeksiranja matrice U do vektora $\mathbf u$, vektor $D\mathbf u$ možemo reindeksirati u matričnu formu.

Pretpostavimo, naposljetku, da postoji $\lambda \in \mathbb{R}$ takav da vrijedi

$$-D\mathbf{u} = \lambda \mathbf{u}.\tag{3}$$

Kako je $D\mathbf{u}$ aproksimacija Laplaciana od u na Ω , jednadžba (3) neodoljivo podsjeća na uvjet (1). Nadalje, tu jednadžbu možemo transformirati u oblik

$$(D + \lambda I)\mathbf{u} = 0 \tag{4}$$

iz kojeg, budući da **u** po pretpostavci nije nul-vektor, vidimo da je λ svojstvena vrijednost matrice D i **u** pripadni svojstveni vektor (alternativno, uzimamo li da je $\mu \in \mathbb{R}$ svojstvena vrijednost matrice M ako je det $(M - \mu I) = 0$, onda je $-\lambda$ svojstvena vrijednost matrice D, to jest, λ je svojstvena vrijednost matrice -D).

Neka je $\mu \in \mathbb{R}$ proizvoljna vrijednost. Neka je $\mathbf{v} \in \mathbb{R}^{(m+1)(n+1)}$ proizvoljan vektor čiji su elementi analogno notirani i indeksirani kao elementi vektora \mathbf{u} . Neka je $(i,j) \in \{0,1,\ldots,m\} \times \{0,1,\ldots,n\}$ proizvoljan uređeni par. Ako je $(x_i,y_j) \in \Omega$, onda se na indeksu (i,j) vektora $(D+\mu I)\mathbf{v}$ nalazi

$$\frac{v_{i+1,j} + v_{i,j+1} - 4v_{i,j} + v_{i-1,j} + v_{i,j-1}}{h^2} + \mu v_{i,j}.$$

Ako je, s druge strane, $(x_i, y_j) \notin \Omega$, onda se na indeksu (i, j) vektora $(D + \mu I)$ v nalazi $\mu v_{i,j}$. Zaključujemo da za svaku svojstvenu vrijednost matrice D različitu od 0 pripadni svojstveni

vektori reinterpretirani kao diskretizacija neke funkcije na $\overline{P} \setminus \Omega$ nužno poprimaju vrijednost 0 (to jest, barem poprimaju u točkama tog skupa koje pripadaju odabranoj diskretizaciji).

Nadalje, primijetimo da za svaki uređeni par $(i, j) \in \{0, 1, ..., m\} \times \{0, 1, ..., n\}$ vektor $\mathbf{e}_{(i,j)} \in \mathbb{R}^{(m+1)(n+1)}$, koji na mjestu (i, j) sadrži 1, a svugdje ostalo 0 (notacija je analogna vektoru \mathbf{u}), je svojstveni vektor matrice D s pripadnom svojstvenom vrijednosti 0 ako nijedna od točaka $(x_{i\pm 1}, y_{j\pm 1})$ (od onih koje su među njima definirane, to jest, čiji indeksi po x i y su definirani) nije u Ω . Štoviše, svi su takvi vektori (za različite uređene parove (i, j)) međusobno ortonormirani, dakle, i nezavisni.

Bilo bi lijepo dokazati da su sve svojstvene vrijednosti čiji se svojstveni vektori mogu interpretirati kao aproksimacija diskretizacije svojstvene funkcije Dirichletovog Laplaciana skupa Ω različite od 0, po mogućnosti i realne i strogo veće od 0, i tada bismo znali da je, za traženje svojstvenih funkcija Dirichletovog Laplaciana na Ω koje pripadaju najmanjim $k \in \mathbb{N} \setminus \{0\}$ svojstvenim vrijednostima dovoljno tražiti prvih $N_0 + k$ svojstvenih vrijednosti (svaku svojstvenu vrijednost računamo onoliko puta kolika joj je geometrijska kratnost) i pripadnih svojstvenih vektora matrice D, gdje je

$$N_0 = \operatorname{card} (\{(i, j) \in \{0, 1, \dots, m\} \times \{0, 1, \dots, n\} : (x_i, y_i) \notin \Omega\}) \in \mathbb{N} \setminus \{0\},$$

i za k takav da je $N_0 + k \le (m+1)(n+1)$. Na taj način rijetku matricu D mogli bismo u Pythonu prikazati kao objekt odgovarajuće potklase klase scipy.sparse.spmatrix (iz paketa SciPy), a svojstvene vrijednosti i vektore tražiti funkcijom scipy.sparse.linalg.eigs (očito također iz paketa SciPy)¹.

Napomena 2. Umjesto matrice D, možemo proučavati matricu h^2D kao nekakvo poopćenje. Naime, na taj način račun ne ovisi o dijametru skupa Ω ni o koraku diskretizacije, nego samo o obliku skupa Ω . Pritom ostaju isti:

- 1. nul-vrijednosti matrice: $h^20 = 0$ u smjeru $D \mapsto h^2D$, $h^{-2}0 = 0$ obratno,
- 2. svojstveni vektori:

$$D\mathbf{v} = \mu \mathbf{v} \implies (h^2 D) \mathbf{v} = h^2 (D\mathbf{v}) = h^2 (\mu \mathbf{v}) = (h^2 \mu) \mathbf{v}$$

u smjeru $D\mapsto h^2D$ za proizvoljnu svojstvenu vrijednost $\mu\in\mathbb{R}$ matrice D i pripadni svojstveni vektor $\mathbf{v}\in\mathbb{R}^{(m+1)(n+1)}$,

$$(h^2D)\mathbf{v}_{h^2} = \mu_{h^2}\mathbf{v}_{h^2} \iff h^2(D\mathbf{v}_{h^2}) = \mu_{h^2}\mathbf{v}_{h^2} \implies$$
$$\implies D\mathbf{v}_{h^2} = h^{-2}(\mu_{h^2}\mathbf{v}_{h^2}) = (h^{-2}\mu_{h^2})\mathbf{v}_{h^2}$$

obratno za proizvoljnu svojstvenu vrijednost $\mu_{h^2} \in \mathbb{R}$ matrice h^2D i pripadni svojstveni vektor $\mathbf{v}_{h^2} \in \mathbb{R}^{(m+1)(n+1)}$,

3. predznaci i međusobni omjeri svojstvenih vrijednosti: iz prethodne točke vidimo da su svojstvene vrijednosti pri prijelazu iz jedne matrice u drugu skalirane strogo pozitivnim koeficijentom h^2 odnosno h^{-2} .

¹Memorijski je ovo inteligentnija solucija — matrica D elemente različite od 0 ima na svega 5 dijagonala, to jest, ukupno takvih elemenata ima manje od 5(m+1)(n+1) elemenata. Ukupno elemenata u matrici D ima $(m+1)^2(n+1)^2$, dakle, udio onih koji su različiti od 0 ograničen je odozgo s $\frac{5}{(m+1)(n+1)}$. Finijom diskretizacijom ili većom domenom ovaj omjer teži u 0, a veličina matrice raste kvadratno. S druge strane, vremenski je ekstremno bolja solucija matricu D prikazati kao objekt klase numpy.ndarray, a svojstvene vrijednosti tražiti funkcijom numpy.linalg.eig, koji su oboje implementirani u paketu NumPy.

Zaključak

Koristimo notaciju i definirane vrijednosti kao u dijelu 2.

Za dovoljno finu diskretizaciju skupa \overline{P} uvjet (1) možemo numerički riješiti (s određenim skaliranjem — ovisnom o dijametru skupa Ω — svojstvene vrijednosti) traženjem svojstvenih vrijednosti i svojstvenih vektora matrice h^2D pod uvjetom da svojstveni vektor na $\overline{P}\setminus\Omega$ sadrži isključivo vrijednosti 0 (što će biti zadovoljeno barem ako je ta svojstvena vrijednost različita od 0). Uistinu, za dovoljno finu diskretizaciju vektor $h^2D\mathbf{u}$ i vektorska diskretizacija Δu prilično bi se podudarale do na koeficijent skaliranja, stoga bi za fiksirano rješenje uvjeta (1) postojala dovoljno fina diskretizacija tako da ono bude blisko nekom svojstvenom vektoru i pripadnoj svojstvenoj vrijednosti matrice h^2D pomnoženoj s odgovarajućim koeficijentom.

Međutim, preostaje jedna restrikcija — pretpostavili smo da vrijedi $\frac{a}{b} \in \mathbb{Q}$. Taj problem rješava neograničenost skupa \mathbb{Q} i njegova gustoća u \mathbb{R} : ako je $\frac{a}{b} \notin \mathbb{Q}$, za svaki $\varepsilon > 0$ postoji $q \in \left(\frac{a}{b}, \frac{a}{b} + \varepsilon\right) \cap \mathbb{Q}$ i, za neki takav q, umjesto stranice a za straincu pravokutnika P možemo uzeti stranicu veličine qb tako da je P sadržan u novom, većem pravokutniku — na primjer, neka su nove granice po apscisi $x'_{\min} = x_{\min} - \frac{qb-a}{2}$ i $x'_{\max} = x_{\max} + \frac{qb-a}{2}$ (jednako tako, mogli smo korigirati i stranicu b, a mogli smo korigirati i sva 4 vrha pravokutnika). Doduše, ako neki takav racionalni broj prikazan kao do kraja skraćeni razlomak ima nepotrebno veliki brojnik ili nazivnik (na primjer, 50-eroznamenkasti broj u dekadskom zapisu), možda je bolja solucija uzeti veći pravokutnik, ali koji dopušta grublju (još uvijek $dovoljno\ finu$) ekvidistantnu diskretizaciju. Ostatak razmatranja ionako ne ovisi o činjenici da je P najmanji pravokutnik čije su stranice paralelne s koordinatnim osima i koji sadrži cijeli Ω , ta je pretpostavka služila samo zato da ne baratamo suviše velikim strukturama jer ionako uzimamo da je u izvan Ω konstantna nul-funkcija.