Introduction to Network Programming

CST 357/457 – Systems Programming

Michael Ruth, Ph.D.

Associate Professor

Computer Science & I.T.

mruth@roosevelt.edu

Objectives

- Discuss basic terminology, communication paradigms and protocol layering
- Explain the important elements of the network layer including addressing and the transport layer including protocols and port numbers
- Discuss and compare application protocols and introduce the standardization of protocols
- Introduce network programming architectural models including client/server and peer to peer
- Discuss general networking applications

Terminology

- Two or more computer hardware resources are connected form a computer network
- Every machine on a network is a node
 - Nodes which are computers are called hosts
- Every node/host has an address
 - Uniquely identifies it to the rest of the network
- Some addresses have names
 - identifies an address to make it easier for humans to use

More Terminology

- Most modern networks are packetswitched networks
 - All data is broken into packets
 - Packets are managed separately
 - Packets contain addresses (to/from)
- **Protocol**: A precise set of rules governing how two computers communicate:
 - Format of addresses/messages
 - Order in which they are exchanged

Two Basic Communication Paradigms

Connection-oriented

- Paradigm
 - Form a "connection" through the network
 - Send / receive data over the connection
 - Terminate the connection
- Can guarantee bandwidth
- Connectionless
 - Paradigm
 - Form "packet" of data
 - Pass to network
 - Each packet travels independently
 - Packet includes identification of the destination
 - Each packet can be a different size
 - The maximum packet size is fixed (some technologies limit packet sizes to 1,500 octets or less)

Why so many protocols?

Communication is difficult to understand

- Many sub-problems
 - Hardware failure
 - Network congestion
 - Packet delay or loss
 - Data corruption
 - Data duplication or inverted arrivals

Why so many protocols? (cont.)

- Divide & Conquer (sort of)
 - Divide the problem into pieces
 - Solve sub-problems separately
 - Combine into integrated whole
- Result is *layered protocols*
 - Separates protocol functionality
 - Each layer solves one part of the communication problem
 - Intended primarily for protocol designers
 - Set of layers is called a protocol stack

TCP/IP Model

TCP/IP or DOD

HTTP, SMTP, etc

Application

TCP, UDP, etc.

Transport

IP, ICMP, etc.

Internet (or Network)

Ethernet, ARP Network Interface (or Data Link)

CSMA/CD

Physical (or Hardware)

Network Layer

- Internet Protocol
 - Connection-less
 - "Best Effort" Delivery
 - No guarantee on order, delivery, duplication
 - Provides machine to machine communication
 - Routing
 - What path is followed by packets from source to destination
 - Congestion
 - Controls the number packets in each network
- Three basic components
 - Naming (addressing)
 - Data structure (packet structure)
 - Algorithm (how that packet moves through system)

Routing requires a Destination...

- Each system on a network must be addressable for packets to be delivered
 - IP Addresses provide this form of identification for all hosts in a TCP/IP system
 - 32-bit binary value
 - Values chosen to make routing efficient
 - Address is always divided into two parts
 - Prefix (network ID) identifies network to which host attaches
 - Suffix (host ID) identifies host on that network
 - Generally represents each octet in decimal separated by periods (dots)
 - EX: 192.168.0.23

Division into Suffix/Prefix

- Dividing an address into suffix/prefix is not as easy as it seems
 - Original scheme used notion of classes
 - Requirement for netid part of address to be exactly 1,2,3 bytes long is very problematic
 - Leads to
 - » poor utilization of assigned address space
 - » rapid depletion of address space
 - New scheme uses CIDR addressing and subnetting concepts to allow for:
 - Netid can be any number of bits long
 - Rather than simply 8, 16, or 24

CIDR Block/Subnet Mask

- If the division is then arbitrary, how do we determine where the division occurs?
 - IE which part is the netid and which part is the host id?

- An address mask is used
 - Store address mask with each route
 - AKA subnet mask
 - Send pair of (address, mask) whenever exchanging routing information
 - Known as a CIDR block

CIDR Notation

- Addresses written NUMBER/m
 - NUMBER is IP prefix
 - -m is "address mask" length
 - For example:

• IP Address: 192.60.128.0

• Subnet Mask: 255.255.252.0

• Now: 192.60.128.0/22

Addressing for Humans

- Symbolic names are easier to remember
 - Designed to remain the same even if the numeric address changes
 - Must be unique for each host on the Internet

 Requires an infrastructure to translate hostnames into IP addresses...

Domain Name System (DNS)

- Required to translate symbolic names to equivalent IP addresses
 - DNS implements a distributed database of name-to-address mappings for lookups
 - DNS also refers to the infrastructure used to support the distributed database of IP address to host name mappings

15

Transport Layer

- Provides end-to-end connection from application program to application program
 - Often handles reliability, flow control
 - Protocols are TCP and UDP

- Differentiate host applications on the same server using *port numbers*
 - Servers listen on ports
 - Clients connect to those ports to use servers

UDP vs TCP

UDP

- Connection-less
 - "Best Effort"
 - Delivery/Order not guaranteed

TCP

- Connection-oriented
 - notion of "virtual circuit"
 - Guarantees:
 - Delivery & Order

17

More on Ports!

- Server ports are well-known...
 - IE, port number 80 for HTTP
 - The server will listen on port 80
- However, client ports are
 - Generally use the range 1024 65535
 - The OS handles the client request for a port number
 - Temporary!
 - The port is used for the request to a server
 - If the app needs to reconnect, it will request a new port

Application Protocols

- Network applications run on end systems
 - They depend on the network to provide a service
 - ... but cannot run software on the network elements
- Network applications run on multiple machines
 - Different end systems communicate with each other
 - Software is often written by multiple parties
- Leading to a need to explicitly define a protocol
 - Types of messages (e.g., requests and responses)
 - Message syntax (e.g., fields, and how to delineate)
 - Semantics of the fields (i.e., meaning of the information)
 - Rules for when and how a process sends messages

Protocols

- Comparing Application Protocols
- Reflecting/reviewing the Application protocols
- Protocol Specification
 - Network/Application Protocol Specification
- Protocol Standardization
 - -IETF
 - -W3C

Comparing the Protocols

Commands and replies

- Telnet sends commands in binary, whereas the other protocols are text based
- Many of the protocols have similar request methods and response codes

Data types

- Telnet, and SMTP transmit text data in standard ASCII
- SMTP uses MIME standard for sending non-text data
 - HTTP incorporates some key aspects of MIME (e.g., classification of data formats)

Comparing the Protocols (Cont.)

Transport

- Telnet, FTP, SMTP, and HTTP all depend on reliable transport protocol
- Telnet, SMTP, and HTTP use a single TCP connection

State

- In Telnet and SMTP, the server retains information about the session with the client
- In contrast, HTTP servers are stateless

Reflecting on Application Protocols

- Protocols are tailored to the applications
 - Each protocol is customized to a specific need
- Protocols have many key similarities
 - Each new protocol was influenced by the previous ones
 - New protocols commonly borrow from the older ones
- Protocols depend on same underlying substrate
 - Ordered reliable stream of bytes (i.e., TCP)
 - Domain Name System (DNS)
- Relevance of the protocol standards process
 - Important for interoperability across implementations
 - Yet, not necessary if same party writes all of the software
 - ...which is increasingly common (e.g., P2P software)

Network Application Design

- Network Applications follow a series of architectural models:
 - Client/server
 - Peer to Peer
 - Hybrid Systems

Client/Server Model

- A client initiates a request and the server fulfills the request
 - Imagine going to a bar and ordering a beer

- Basic model
 - Server starts first and waits for contact
 - Clients start second and initiate contact

Characteristics of a Client

- Arbitrary application program
- Becomes client temporarily
- Can also perform other computations
- Invoked directly by user
- Runs locally on user's computer
- Actively initiates contact with a server
- Usually contacts one server at a time

Characteristics of a Server

- Special-purpose, privileged program
- Dedicated to providing one service
- Can handle multiple remote clients simultaneously
- Invoked automatically when system boots
- Executes "forever"
- Waits passively for client contact
- Accepts requests from arbitrary clients
- Needs powerful computer and operating system

Summary

- Discussed basic terminology, communication paradigms and protocol layering
- Explained the important elements of the network layer including addressing and the transport layer including protocols and port numbers
- Discussed and compare application protocols and introduce the standardization of protocols
- Introduced network programming architectural models including client/server and peer to peer
- Discussed general networking applications

Questions?

