CSC 212: Data Structures and Abstractions Dynamic (Growing/Resizing) Arrays

Marco Alvarez

Department of Computer Science and Statistics University of Rhode Island

Fall 2020

Quick notes

- Review Pointers and Dynamic Memory Allocation
- Programming Assignment 1
 - Jue tonight (2/8)
 - ✓ Submit up to 3 days late @ 10% penalty per day late
- Programming Assignment 2
 - Recommend learning vector of pairs std::vector<std::pair>>
 - ✓ Introducing at the end of this lecture

Arrays

Arrays

An array is a **contiguous** sequence of elements of the **same type**

Each element can be accessed using its **index**

array name: A array length: n

0 1 2 3 n-1
A[0] A[1] A[2] A[3] ... A[n-1]

all elements of the same data type

Declaration

```
// array declaration by specifying size
int myarray1[100];
// can also declare an array of user specified
// size (must be const for many compilers!)
int n = 8;
int myarray2[n];
// can declare and initialize elements
double arr[] = \{10.0, 20.0, 30.0, 40.0\};
// compiler figures the right size
// a different way
int arr[5] = \{ 1, 2, 3 \};
// compiler creates an array of length 5 and
// initializes first 3 elements
```

Static arrays

So far ... we have seen examples of arrays, allocated in the stack (fixed length)

```
// array declaration by specifying size
int myarray1[100];
```

You can allocate memory dynamically, allocated in the heap (still fixed length)

```
int *myarray = new int [100];
// ...
// work with the array
// ...
delete [] myarray;
```

Memory layout of C/C++ programs

Live coding demo (static arrays — stack and heap)

C++ (gcc 4.8, C++11) EXPERIMENTAL! known limitations

```
1 int main() {
2    float var1;
3    double var2;
4    int static_array[10];
5    int *static_array_heap = new int [20];
6    // ...
7    // work with the array
8    // ...
9    delete [] static_array_heap;
10 }
```

Edit this code

- line that just executed
- next line to execute

View this code in PythonTutor!

A few notes ...

- · Creating variables in the stack:
 - variables are automatically created and freed
 - variables only exist while the function is running
 - ✓ faster and good for small local variables
- · Allocating memory in the heap:
 - y memory is allocated at runtime
 - ✓ programmer is responsible for allocating/deallocating memory
 - variables can be accessed globally (in the program)
 - √ memory may become fragmented
 - ✓ slower but good for large variables

What if ...?

- We don't know the max size of an array before running the program
 - v user specified inputs/decisions
 - ✓ e.g. read an image or video and display
- The sequence changes over time (during the execution of the program)
 - ✓ e.g. you develop a text editor and represent the sequence of characters as an array

Which data structure (studied so far) would you use on each case?

Dynamic Arrays (resizing, growing)

Dynamic Arrays

- Dynamically allocated arrays that change their size over time
 - ✓ can **grow** automatically
 - ✓ can **shrink** automatically
- Operations on arrays (we could have more, but these are enough for the purposes of this lecture)

```
√
 append 
√
 remove_last 
√
 get 
-

\Theta(1)

√
 set 
-

\Theta(1)
```

First try ...

- Start with an empty array
- For every append:
 - ✓ increase the size of the array by 1 then write the new element
- For every remove_last:
 - ✓ remove the last element and then decrease the size of the array by 1
- . Demo ...

Analyzing the cost (grow by 1)

- Count array accesses (reads and writes) of adding first *n* elements
 - will ignore the cost of allocating/deallocating arrays

n	append	copy

each row indicates the number of **reads and writes** necessary for appending an element into an **existing array of length n**

$$n + \sum_{i=0}^{n-1} 2i = n + n^2 - n$$

$$\Theta(n^2)$$

Lets try again ...

- If array is **full**, create an array of **twice the size**\(\text{repeated doubling} \)
- If array is one-quarter full, halve the size
 - √ more efficient
 - why not halving when array is one-half full?

append - remove - append - remove - append - remove...

Demo ...

Analyzing the cost (doubling the array)

- Count array accesses (reads and writes) of adding first $n = 2^i$ elements
 - will ignore the cost of allocating/deallocating arrays

n	append	copy

each row indicates the number of **reads and writes** necessary for appending an element into an **existing array of length n**

$$n + \sum_{i=1}^{\log n} 2^i = n + 2^{\log n + 1} - 1$$

$$\Theta(n) = \sum_{i=0}^{n} c^{i} = \frac{c^{n+1}-1}{c-1}$$

Worst-case and average-case

Analysis for appending a single element using increase-by-1

Analysis for appending a single element using repeated doubling