Reinforcement Learning Theory

Paulo Rauber

2024

1 Asymptotic analysis

Consider a function $f: \mathbb{N} \to \mathbb{R}$.

Definition 1.1. For every $m \in \mathbb{N}$, $\inf_{n \geq m} f(n)$ is the largest $r \in [-\infty, \infty]$ such that $r \leq f(n)$ for every $n \geq m$.

Definition 1.2. For every $m \in \mathbb{N}$, $\sup_{n \ge m} f(n)$ is the smallest $r \in [-\infty, \infty]$ such that $r \ge f(n)$ for every $n \ge m$.

Definition 1.3. The limit inferior $\liminf_{n\to\infty} f(n)$ is defined by

$$\liminf_{n \to \infty} f(n) = \lim_{m \to \infty} \inf_{n > m} f(n).$$

Since the function g given by $g(m) = \inf_{n>m} f(n)$ is non-decreasing, the limit exists in $[-\infty, \infty]$.

Proposition 1.1. If $z < \liminf_{n \to \infty} f(n)$, then z < f(n) for all sufficiently large $n \in \mathbb{N}$.

Proposition 1.2. If $z > \liminf_{n \to \infty} f(n)$, then z > f(n) for infinitely many $n \in \mathbb{N}$.

Definition 1.4. The limit superior $\limsup_{n\to\infty} f(n)$ is defined by

$$\limsup_{n\to\infty} f(n) = \lim_{m\to\infty} \sup_{n\geq m} f(n).$$

Since the function g given by $g(m) = \sup_{n \ge m} f(n)$ is non-increasing, the limit exists in $[-\infty, \infty]$.

Proposition 1.3. If $z > \limsup_{n \to \infty} f(n)$, then z > f(n) for all sufficiently large $n \in \mathbb{N}$.

Proposition 1.4. If $z < \limsup_{n \to \infty} f(n)$, then z < f(n) for infinitely many $n \in \mathbb{N}$.

Proposition 1.5. For every $m \in \mathbb{N}$, the infimum, limit inferior, limit superior, and supremum are related by

$$\inf_{n \ge m} f(n) \le \liminf_{n \to \infty} f(n) \le \limsup_{n \to \infty} f(n) \le \sup_{n \ge m} f(n).$$

Definition 1.5. The function f is said to converge in $[-\infty, \infty]$ if and only if

$$\liminf_{n \to \infty} f(n) = \limsup_{n \to \infty} f(n).$$

Definition 1.6. The set of asymptotically positive function \mathscr{F} is defined by

$$\mathscr{F} = \{f : \mathbb{N} \to \mathbb{R} \mid \text{there is an } m \in \mathbb{N} \text{ such that } f(n) > 0 \text{ for every } n \geq m \}.$$

Definition 1.7. For every $f \in \mathscr{F}$ and $g \in \mathscr{F}$, let $(f/g) \in \mathscr{F}$ be given by

$$(f/g)(n) = \begin{cases} f(n)/g(n), & \text{if } g(n) \neq 0, \\ 0, & \text{if } g(n) = 0. \end{cases}$$

For convenience, we often write (f/g)(n) as f(n)/g(n), since (f/g)(n) = f(n)/g(n) for all sufficiently large $n \in \mathbb{N}$.

Definition 1.8. If $g \in \mathcal{F}$, then the following subsets of \mathcal{F} are defined:

$$\begin{split} o(g) &= \left\{ f \in \mathscr{F} \mid \limsup_{n \to \infty} \frac{f(n)}{g(n)} = 0 \right\}, \\ O(g) &= \left\{ f \in \mathscr{F} \mid \limsup_{n \to \infty} \frac{f(n)}{g(n)} < \infty \right\}, \\ \Omega(g) &= \left\{ f \in \mathscr{F} \mid \liminf_{n \to \infty} \frac{f(n)}{g(n)} > 0 \right\}, \\ \omega(g) &= \left\{ f \in \mathscr{F} \mid \liminf_{n \to \infty} \frac{f(n)}{g(n)} = \infty \right\}, \\ \Theta(g) &= O(g) \cap \Omega(g). \end{split}$$

Consider a real number a > 0.

Example 1.1. Since $\lim_{n\to\infty} an/n^2 = \lim\sup_{n\to\infty} an/n^2 = \lim\inf_{n\to\infty} an/n^2 = 0$:

- $(n \mapsto an) \in o(n \mapsto n^2)$, often written as $an \in o(n^2)$.
- $(n \mapsto an) \in O(n \mapsto n^2)$, often written as $an \in O(n^2)$.
- $(n \mapsto an) \notin \Omega(n \mapsto n^2)$, often written as $an \notin \Omega(n^2)$.
- $(n \mapsto an) \notin \omega(n \mapsto n^2)$, often written as $an \notin \omega(n^2)$.
- $(n \mapsto an) \notin \Theta(n \mapsto n^2)$, often written as $an \notin \Theta(n^2)$.

Example 1.2. Since $\lim_{n\to\infty} n^2/an = \lim \sup_{n\to\infty} n^2/an = \lim \inf_{n\to\infty} n^2/an = \infty$:

- $(n \mapsto n^2) \notin o(n \mapsto an)$, often written as $n^2 \notin o(an)$.
- $(n \mapsto n^2) \notin O(n \mapsto an)$, often written as $n^2 \notin O(an)$.
- $(n \mapsto n^2) \in \Omega(n \mapsto an)$, often written as $n^2 \in \Omega(an)$.
- $(n \mapsto n^2) \in \omega(n \mapsto an)$, often written as $n^2 \in \omega(an)$.
- $(n \mapsto n^2) \notin \Theta(n \mapsto an)$, often written as $n^2 \notin \Theta(an)$.

Example 1.3. Since $\lim_{n\to\infty} an^2/n^2 = \limsup_{n\to\infty} an^2/n^2 = \liminf_{n\to\infty} an^2/n^2 = a$:

- $(n \mapsto an^2) \notin o(n \mapsto n^2)$, often written as $an^2 \notin o(n^2)$.
- $(n \mapsto an^2) \in O(n \mapsto n^2)$, often written as $an^2 \in O(n^2)$.
- $(n \mapsto an^2) \in \Omega(n \mapsto n^2)$, often written as $an^2 \in \Omega(n^2)$.
- $(n \mapsto an^2) \notin \omega(n \mapsto n^2)$, often written as $an^2 \notin \omega(n^2)$.
- $(n \mapsto an^2) \in \Theta(n \mapsto n^2)$, often written as $an^2 \in \Theta(n^2)$.

Proposition 1.6. For every $f \in \mathscr{F}$ and $g \in \mathscr{F}$, unless the product on the right side below is $0 \cdot \infty$ or $\infty \cdot 0$,

$$\limsup_{n \to \infty} f(n)g(n) \le \left(\limsup_{n \to \infty} f(n)\right) \left(\limsup_{n \to \infty} g(n)\right).$$

Proposition 1.7. For every $f \in \mathscr{F}$ and $g \in \mathscr{F}$, unless the product on the right side below is $0 \cdot \infty$ or $\infty \cdot 0$,

$$\liminf_{n \to \infty} f(n)g(n) \ge \left(\liminf_{n \to \infty} f(n)\right) \left(\liminf_{n \to \infty} g(n)\right).$$

Proposition 1.8. If $f \in \mathscr{F}$ and $\liminf_{n \to \infty} f(n) > 0$, then

$$\limsup_{n \to \infty} \frac{1}{f(n)} = \frac{1}{\liminf_{n \to \infty} f(n)},$$

where $1/\infty$ is used to denote 0 on the right side above.

Proof. If $\liminf_{n\to\infty} f(n) = \infty$, then $\lim_{n\to\infty} f(n) = \infty$ and $\limsup_{n\to\infty} 1/f(n) = \lim_{n\to\infty} 1/f(n) = 0$.

If $\liminf_{n\to\infty} f(n) < \infty$, consider the function g given by $g(m) = \inf_{n\geq m} f(n) < \infty$, which is non-decreasing. Because $\lim_{m\to\infty} g(m) = \liminf_{n\to\infty} f(n) > 0$, there is an $N \in \mathbb{N}$ such that g(m) > 0 for every $m \geq N$, which also implies f(n) > 0 for every $n \geq N$. For every $m \in \mathbb{N}$, since the smaller the denominator the larger the fraction,

$$\sup_{n \geq \max(N,m)} \frac{1}{f(n)} = \frac{1}{\inf_{n \geq \max(N,m)} f(n)}.$$

By taking the limit when $m \to \infty$, since both sides are non-increasing with respect to m,

$$\limsup_{n \to \infty} \frac{1}{f(n)} = \lim_{m \to \infty} \sup_{n > \max(N,m)} \frac{1}{f(n)} = \lim_{m \to \infty} \frac{1}{\inf_{n > \max(N,m)} f(n)} = \frac{1}{\liminf_{n \to \infty} f(n)}.$$

Proposition 1.9. If $f \in \mathscr{F}$ and $\limsup_{n \to \infty} f(n) < \infty$, then

$$\liminf_{n \to \infty} \frac{1}{f(n)} = \frac{1}{\limsup_{n \to \infty} f(n)},$$

where 1/0 is used to denote ∞ on the right side above.

Proof. If $\limsup_{n\to\infty} f(n) = 0$, then $\lim_{n\to\infty} f(n) = 0$ and $\liminf_{n\to\infty} 1/f(n) = \lim_{n\to\infty} 1/f(n) = \infty$.

If $\limsup_{n\to\infty} f(n) > 0$, consider the function g given by $g(m) = \sup_{n\geq m} f(n) > 0$, which is non-increasing. Because $\lim_{m\to\infty} g(m) = \limsup_{n\to\infty} f(n) < \infty$, there is an $N \in \mathbb{N}$ such that $g(m) < \infty$ for every $m \geq N$. For every $m \in \mathbb{N}$, since the larger the denominator the smaller the fraction,

$$\inf_{n \ge \max(N,m)} \frac{1}{f(n)} = \frac{1}{\sup_{n \ge \max(N,m)} f(n)}.$$

By taking the limit when $m \to \infty$, since both sides are non-decreasing with respect to m,

$$\liminf_{n \to \infty} \frac{1}{f(n)} = \lim_{m \to \infty} \inf_{n \ge \max(N,m)} \frac{1}{f(n)} = \lim_{m \to \infty} \frac{1}{\sup_{n \ge \max(N,m)} f(n)} = \frac{1}{\limsup_{n \to \infty} f(n)}.$$

Consider the functions $f \in \mathcal{F}$, $g \in \mathcal{F}$, and $h \in \mathcal{F}$.

Proposition 1.10. If $f \in \mathscr{F}$, then $f \in O(f)$, $f \in \Omega(f)$, and $f \in \Theta(f)$. Furthermore, $o(f) \subseteq O(f)$ and $\omega(f) \subseteq \Omega(f)$.

Proposition 1.11. If $f \in o(g)$ and $g \in o(h)$, then $f \in o(h)$.

Proof. By Proposition 1.6,

$$0 \leq \limsup_{n \to \infty} \frac{f(n)}{h(n)} = \limsup_{n \to \infty} \frac{f(n)g(n)}{g(n)h(n)} \leq \left(\limsup_{n \to \infty} \frac{f(n)}{g(n)}\right) \left(\limsup_{n \to \infty} \frac{g(n)}{h(n)}\right) = 0.$$

Proposition 1.12. If $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$.

Proof. By Proposition 1.6,

$$\limsup_{n\to\infty}\frac{f(n)}{h(n)}=\limsup_{n\to\infty}\frac{f(n)g(n)}{g(n)h(n)}\leq \left(\limsup_{n\to\infty}\frac{f(n)}{g(n)}\right)\left(\limsup_{n\to\infty}\frac{g(n)}{h(n)}\right)<\infty.$$

Proposition 1.13. If $f \in \Omega(g)$ and $g \in \Omega(h)$, then $f \in \Omega(h)$.

Proof. By Proposition 1.7,

$$\liminf_{n \to \infty} \frac{f(n)}{h(n)} = \liminf_{n \to \infty} \frac{f(n)g(n)}{g(n)h(n)} \ge \left(\liminf_{n \to \infty} \frac{f(n)}{g(n)} \right) \left(\liminf_{n \to \infty} \frac{g(n)}{h(n)} \right) > 0.$$

Proposition 1.14. If $f \in \omega(g)$ and $g \in \omega(h)$, then $f \in \omega(h)$.

Proof. By Proposition 1.7,

$$\infty \geq \liminf_{n \to \infty} \frac{f(n)}{h(n)} = \liminf_{n \to \infty} \frac{f(n)g(n)}{g(n)h(n)} \geq \left(\liminf_{n \to \infty} \frac{f(n)}{g(n)} \right) \left(\liminf_{n \to \infty} \frac{g(n)}{h(n)} \right) = \infty.$$

Proposition 1.15. If $f \in \Theta(g)$ and $g \in \Theta(h)$, then $f \in \Theta(h)$.

Proof. Since $f \in O(g)$ and $g \in O(h)$, we have $f \in O(h)$. Since $f \in \Omega(g)$ and $g \in \Omega(h)$, we have $f \in \Omega(h)$.

Theorem 1.1. If $f \in \mathscr{F}$ and $g \in \mathscr{F}$, then

- $f \in O(g)$ if and only if $g \in \Omega(f)$.
- $f \in o(g)$ if and only if $g \in \omega(f)$.

Proof. If $f \in O(g)$ and $f \notin o(g)$, then $\limsup_{n \to \infty} f(n)/g(n) \in (0, \infty)$. In that case, $g \in \Omega(f)$, since

$$\liminf_{n\to\infty}\frac{g(n)}{f(n)}=\frac{1}{\limsup_{n\to\infty}f(n)/g(n)}>0.$$

If $f \in O(g)$ and $f \in o(g)$, then $\limsup_{n \to \infty} f(n)/g(n) = 0$ and $\liminf_{n \to \infty} g(n)/f(n) = \infty$, so that $g \in \omega(f)$. If $g \in \Omega(f)$ and $g \notin \omega(f)$, then $\liminf_{n \to \infty} g(n)/f(n) \in (0, \infty)$. In that case, $f \in O(g)$, since

$$\limsup_{n \to \infty} \frac{f(n)}{g(n)} = \frac{1}{\liminf_{n \to \infty} g(n)/f(n)} < \infty.$$

If $g \in \Omega(f)$ and $g \in \omega(f)$, then $\liminf_{n \to \infty} g(n)/f(n) = \infty$ and $\limsup_{n \to \infty} f(n)/g(n) = 0$, so that $f \in o(g)$. \square

Proposition 1.16. If $f \in \mathscr{F}$ and $g \in \mathscr{F}$, then $f \in \Theta(g)$ if and only if $g \in \Theta(f)$.

Proof. If $f \in \Theta(g)$, then $f \in O(g)$ implies $g \in \Omega(f)$ and $f \in \Omega(g)$ implies $g \in O(f)$; and vice versa.

Definition 1.9. The following binary relations are defined on the set \mathscr{F} :

- $f \prec g$ if and only if $f \in o(g)$.
- $f \lesssim g$ if and only if $f \in O(g)$.
- $f \gtrsim g$ if and only if $f \in \Omega(g)$.
- $f \succ g$ if and only if $f \in \omega(g)$.
- $f \sim g$ if and only if $f \in \Theta(g)$.

Proposition 1.17. The binary relations \prec and \succ are strict preorders.

Proof. By the definition of strict preoder:

- It is false that $f \prec f$. If $f \prec g$ and $g \prec h$, then $f \prec h$.
- It is false that $f \succ g$. If $f \succ g$ and $g \succ h$, then $f \succ h$.

Proposition 1.18. The binary relations \lesssim and \gtrsim are preorders.

Proof. By the definition of preorder:

- It is true that $f \lesssim f$. If $f \lesssim g$ and $g \lesssim h$, then $f \lesssim h$.
- It is true that $f \succsim f$. If $f \succsim g$ and $g \succsim h$, then $f \succsim h$.

Proposition 1.19. The binary relation \sim is an equivalence relation.

Proof. It is true that $f \sim f$. If $f \sim g$, then $g \sim f$; if $g \sim f$, then $f \sim g$. If $f \sim g$ and $g \sim h$, then $f \sim h$.

Proposition 1.20. The binary relations defined on the set \mathscr{F} are related by the following:

- 1. If $f \prec g$, then $f \lesssim g$.
- 2. If $f \succ g$, then $f \succsim g$.
- 3. If $f \preceq g$ and $g \preceq f$, then $f \sim g$.
- 4. If $f \gtrsim g$ and $g \gtrsim f$, then $f \sim g$.

- 5. If $f \prec g$, then not $f \succsim g$.
- 6. If $f \succ g$, then not $f \lesssim g$.

Proof. The first two claims follow from Proposition 1.10; the next two follow from Theorem 1.1; and the last two follow from the fact that $\liminf_{n\to\infty} f(n)/g(n) \le \limsup_{n\to\infty} f(n)/g(n)$.

Definition 1.10. Let $A \in \{o, O, \Omega, \omega, \Theta\}$. For any functions $f : \mathbb{N} \to \mathbb{R}$, $g : \mathbb{N} \to \mathbb{R}$, and $h \in \mathscr{F}$,

$$f(n) = g(n) + A(h(n))$$

denotes that there is a function $l \in A(h)$ such that f = g + l.

Consider a function $f \in \mathcal{F}$.

Example 1.4. If a > 0, then $f(n) = \Theta(af(n))$. In order to see this, note that f = 0 + f and $f \in \Theta(af)$, since

$$0 < \liminf_{n \to \infty} \frac{f(n)}{af(n)} = \limsup_{n \to \infty} \frac{f(n)}{af(n)} = \frac{1}{a} < \infty.$$

Example 1.5. If $f(n) = n^2 + O(n^2)$, then $f(n) = \Theta(n^2)$. Suppose that there is an $l \in O(n \mapsto n^2)$ such that $f(n) = n^2 + l(n)$ for every $n \in \mathbb{N}$. In that case,

$$\begin{split} &\limsup_{n\to\infty}\frac{f(n)}{n^2}=\limsup_{n\to\infty}\frac{n^2+l(n)}{n^2}=1+\limsup_{n\to\infty}\frac{l(n)}{n^2}<\infty,\\ &\liminf_{n\to\infty}\frac{f(n)}{n^2}=\liminf_{n\to\infty}\frac{n^2+l(n)}{n^2}=1+\liminf_{n\to\infty}\frac{l(n)}{n^2}>0, \end{split}$$

so that $f \in \Theta(n \mapsto n^2)$. Since f = 0 + f and $f \in \Theta(n \mapsto n^2)$, we have $f(n) = \Theta(n^2)$.

2 Subgaussian random variables

For details about the notation employed below, see the measure-theoretic probability notes by the same author. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a constant $\sigma > 0$.

Definition 2.1. A random variable $X: \Omega \to \mathbb{R}$ is 0-subgaussian if and only if $\mathbb{P}(X=0) = 1$.

Definition 2.2. A random variable $X: \Omega \to \mathbb{R}$ is σ -subgaussian if and only if, for every $\lambda \in \mathbb{R}$,

$$\mathbb{E}\left(e^{\lambda X}\right) \le e^{\frac{\lambda^2 \sigma^2}{2}}.$$

Proposition 2.1. If a random variable $X: \Omega \to \mathbb{R}$ is σ -subgaussian, then, for every $\lambda \in \mathbb{R}$,

$$\mathbb{E}\left(e^{\lambda|X|}\right) \le 2e^{\frac{\lambda^2\sigma^2}{2}}.$$

Proof. For every $\lambda \in \mathbb{R}$, note that $e^{\lambda |X|} = e^{\lambda X} \mathbb{I}_{\{X \geq 0\}} + e^{-\lambda X} \mathbb{I}_{\{X < 0\}}$. Since $e^x > 0$ for every $x \in \mathbb{R}$, note that $\mathbb{E}\left(e^{\lambda X} \mathbb{I}_{\{X \geq 0\}}\right) \leq \mathbb{E}\left(e^{\lambda X}\right) \leq e^{\frac{\lambda^2 \sigma^2}{2}}$ and $\mathbb{E}\left(e^{-\lambda X} \mathbb{I}_{\{X < 0\}}\right) \leq \mathbb{E}\left(e^{-\lambda X}\right) \leq e^{\frac{(-\lambda)^2 \sigma^2}{2}} = e^{\frac{\lambda^2 \sigma^2}{2}}$. Therefore,

$$\mathbb{E}\left(e^{\lambda |X|}\right) = \mathbb{E}\left(e^{\lambda X}\mathbb{I}_{\{X \geq 0\}}\right) + \mathbb{E}\left(e^{-\lambda X}\mathbb{I}_{\{X < 0\}}\right) \leq 2e^{\frac{\lambda^2\sigma^2}{2}}.$$

Proposition 2.2. If a random variable $X:\Omega\to\mathbb{R}$ is σ -subgaussian, then $\mathbb{E}(X)=0$.

Proof. Recall that $e^x \ge x+1$ for every $x \in \mathbb{R}$. Therefore, $\mathbb{E}(e^{|X|}) \ge \mathbb{E}(|X|) + 1$ and $\mathbb{E}(|X|) \le 2e^{\frac{\sigma^2}{2}} - 1$. For every $\lambda \in \mathbb{R}$, recall that the function $\phi : \mathbb{R} \to \mathbb{R}$ given by $\phi(x) = e^{\lambda x}$ is convex. By Jensen's inequality,

$$e^{\lambda \mathbb{E}(X)} = \phi(\mathbb{E}(X)) \le \mathbb{E}(\phi(X)) = \mathbb{E}(e^{\lambda X}) \le e^{\frac{\lambda^2 \sigma^2}{2}},$$

so that $\lambda \mathbb{E}(X) \leq \lambda^2 \sigma^2/2$ for every $\lambda \in \mathbb{R}$. If $\lambda < 0$, then $\mathbb{E}(X) \geq \lambda \sigma^2/2$. If $\lambda > 0$, then $\mathbb{E}(X) \leq \lambda \sigma^2/2$. Therefore,

$$0 = \lim_{\lambda \to 0^{-}} \frac{\lambda \sigma^{2}}{2} \le \mathbb{E}(X) \le \lim_{\lambda \to 0^{+}} \frac{\lambda \sigma^{2}}{2} = 0.$$

Proposition 2.3. If a random variable $X : \Omega \to \mathbb{R}$ is σ -subgaussian, then $Var(X) \leq \sigma^2$.

Proof. Recall that $e^x = \sum_{n=0}^{\infty} x^n/n!$ for every $x \in \mathbb{R}$. Therefore, for every $\lambda \geq 0$ and $k \in \mathbb{N}$,

$$e^{\lambda|X|} = \sum_{n=0}^{\infty} \frac{\lambda^n |X|^n}{n!} \ge \sum_{n=0}^k \frac{\lambda^n |X|^n}{n!} = \sum_{n=0}^k \left| \frac{\lambda^n X^n}{n!} \right| \ge \left| \sum_{n=0}^k \frac{\lambda^n X^n}{n!} \right|.$$

Since $\mathbb{E}\left(e^{\lambda|X|}\right)<\infty$, note that $\mathbb{E}(|X|^k)<\infty$ for every $k\in\mathbb{N}$. By the dominated convergence theorem,

$$\mathbb{E}\left(e^{\lambda X}\right) = \mathbb{E}\left(\sum_{n=0}^{\infty} \frac{\lambda^n X^n}{n!}\right) = \sum_{n=0}^{\infty} \frac{\lambda^n \mathbb{E}\left(X^n\right)}{n!} = 1 + \frac{\lambda^2 \mathbb{E}\left(X^2\right)}{2} + \sum_{n=3}^{\infty} \frac{\lambda^n \mathbb{E}\left(X^n\right)}{n!},$$

where we also used the fact that $\mathbb{E}(X) = 0$.

For every $\lambda \in [0,1]$, note that $\lambda^{2n} \leq \lambda^4$ for every $n \geq 2$. Therefore, for every $\lambda \in [0,1]$,

$$e^{\frac{\lambda^2\sigma^2}{2}} = \sum_{n=0}^{\infty} \frac{\lambda^{2n}\sigma^{2n}}{2^n n!} = 1 + \frac{\lambda^2\sigma^2}{2} + \sum_{n=2}^{\infty} \frac{\lambda^{2n}\sigma^{2n}}{2^n n!} \leq 1 + \frac{\lambda^2\sigma^2}{2} + \lambda^4 \sum_{n=2}^{\infty} \frac{\sigma^{2n}}{2^n n!} \leq 1 + \frac{\lambda^2\sigma^2}{2} + \lambda^4 e^{\frac{\sigma^2}{2}}.$$

For every $\lambda \in [0,1]$, by the definition of a σ -subgaussian random variable,

$$\frac{\lambda^2 \mathbb{E}\left(X^2\right)}{2} + \sum_{n=3}^{\infty} \frac{\lambda^n \mathbb{E}\left(X^n\right)}{n!} \le \frac{\lambda^2 \sigma^2}{2} + \lambda^4 e^{\frac{\sigma^2}{2}}.$$

For every $\lambda \in (0,1]$, by multiplying both sides by $2/\lambda^2$,

$$\mathbb{E}\left(X^{2}\right) + 2\sum_{n=3}^{\infty} \frac{\lambda^{n-2}\mathbb{E}\left(X^{n}\right)}{n!} \leq \sigma^{2} + 2\lambda^{2}e^{\frac{\sigma^{2}}{2}}.$$

By taking the limit of both sides when $\lambda \to 0^+$,

$$\mathbb{E}\left(X^2\right) + 2\lim_{\lambda \to 0^+} \sum_{n=3}^{\infty} \frac{\lambda^{n-2}\mathbb{E}\left(X^n\right)}{n!} \leq \sigma^2 + 2e^{\frac{\sigma^2}{2}} \lim_{\lambda \to 0^+} \lambda^2 = \sigma^2.$$

If the limit on the left side above is zero, then $\mathbb{E}(X^2) \leq \sigma^2$. In that case, considering that $\mathbb{E}(X) = 0$, note that $\text{Var}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \mathbb{E}(X^2) \leq \sigma^2$, so that the proof will be complete. For every $\lambda \in (0,1]$,

$$\left|\sum_{n=3}^{\infty} \frac{\lambda^{n-2} \mathbb{E}\left(X^{n}\right)}{n!}\right| = \lambda \left|\sum_{n=3}^{\infty} \frac{\lambda^{n-3} \mathbb{E}\left(X^{n}\right)}{n!}\right| \leq \lambda \sum_{n=3}^{\infty} \frac{\lambda^{n-3} \left|\mathbb{E}\left(X^{n}\right)\right|}{n!}.$$

For every $k \in \mathbb{N}$ and $\lambda \in (0,1]$, note that $\mathbb{E}(X^k) \leq \mathbb{E}(|X|^k) < \infty$ and $\lambda^k \leq 1$. Therefore,

$$\left|\sum_{n=3}^{\infty}\frac{\lambda^{n-2}\mathbb{E}\left(X^{n}\right)}{n!}\right|\leq\lambda\sum_{n=3}^{\infty}\frac{\lambda^{n-3}\mathbb{E}\left(\left|X\right|^{n}\right)}{n!}\leq\lambda\sum_{n=3}^{\infty}\frac{\mathbb{E}\left(\left|X\right|^{n}\right)}{n!}\leq\lambda\mathbb{E}(e^{\left|X\right|})\leq2\lambda e^{\frac{\sigma^{2}}{2}},$$

so that

$$0 \leq \lim_{\lambda \to 0^+} \left| \sum_{n=3}^{\infty} \frac{\lambda^{n-2} \mathbb{E} \left(X^n \right)}{n!} \right| \leq 2 e^{\frac{\sigma^2}{2}} \lim_{\lambda \to 0^+} \lambda = 0.$$

Proposition 2.4. If a random variable $X : \Omega \to \mathbb{R}$ is σ -subgaussian, then cX is $|c|\sigma$ -subgaussian for every $c \in \mathbb{R}$. *Proof.* This proposition is trivial if c = 0. If $c \neq 0$, cX is a random variable and, for every $\lambda \in \mathbb{R}$,

$$\mathbb{E}(e^{\lambda(cX)}) = \mathbb{E}(e^{(\lambda c)X}) \le e^{\frac{(\lambda c)^2 \sigma^2}{2}} = e^{\frac{\lambda^2 c^2 \sigma^2}{2}} = e^{\frac{\lambda^2 |c|^2 \sigma^2}{2}} = e^{\frac{\lambda^2 |c| \sigma^2}{2}}.$$

Consider the constants $\sigma_1 > 0$ and $\sigma_2 > 0$.

Proposition 2.5. If the random variable $X_1: \Omega \to \mathbb{R}$ is σ_1 -subgaussian, the random variable X_2 is σ_2 -subgaussian, and X_1 and X_2 are independent, then $X_1 + X_2$ is $\sqrt{\sigma_1^2 + \sigma_2^2}$ -subgaussian.

Proof. For every $\lambda \in \mathbb{R}$, because $e^{\lambda X_1}$ and $e^{\lambda X_2}$ are independent and \mathbb{P} -integrable,

$$\mathbb{E}(e^{\lambda(X_1 + X_2)}) = \mathbb{E}(e^{\lambda X_1 + \lambda X_2}) = \mathbb{E}(e^{\lambda X_1}e^{\lambda X_2}) = \mathbb{E}(e^{\lambda X_1})\mathbb{E}(e^{\lambda X_2}) \le e^{\frac{\lambda^2 \sigma_1^2}{2}} e^{\frac{\lambda^2 \sigma_2^2}{2}} = e^{\frac{\lambda^2 (\sigma_1^2 + \sigma_2^2)}{2}},$$

so that the random variable $X_1 + X_2$ is $\sqrt{\sigma_1^2 + \sigma_2^2}$ -subgaussian.

Proposition 2.6. If the random variable $X_1:\Omega\to\mathbb{R}$ is σ_1 -subgaussian and the random variable X_2 is σ_2 -subgaussian, then X_1+X_2 is $(\sigma_1+\sigma_2)$ -subgaussian.

Proof. Note that $\mathbb{E}\left(|e^{\lambda X_1}|^p\right) = \mathbb{E}\left(e^{\lambda p X_1}\right) < \infty$ and $\mathbb{E}\left(|e^{\lambda X_2}|^q\right) = \mathbb{E}\left(e^{\lambda q X_2}\right) < \infty$ for every $\lambda \in \mathbb{R}, p \ge 1$, and $q \ge 1$. By Hölder's inequality, if p > 1 and $p^{-1} + q^{-1} = 1$, then

$$\mathbb{E}(e^{\lambda(X_1 + X_2)}) = \mathbb{E}(e^{\lambda X_1 + \lambda X_2}) = \mathbb{E}(e^{\lambda X_1}e^{\lambda X_2}) \leq \mathbb{E}(|e^{\lambda X_1}|^p)^{\frac{1}{p}} \mathbb{E}(|e^{\lambda X_2}|^q)^{\frac{1}{q}} = \mathbb{E}(e^{\lambda p X_1})^{\frac{1}{p}} \mathbb{E}(e^{\lambda q X_2})^{\frac{1}{q}}.$$

By the definition of subgaussian random variables,

$$\mathbb{E}(e^{\lambda(X_1+X_2)}) \le \left(e^{\frac{\lambda^2 p^2 \sigma_1^2}{2}}\right)^{\frac{1}{p}} \left(e^{\frac{\lambda^2 q^2 \sigma_2^2}{2}}\right)^{\frac{1}{q}} = e^{\frac{\lambda^2 p \sigma_1^2}{2}} e^{\frac{\lambda^2 q \sigma_2^2}{2}} = e^{\frac{\lambda^2}{2} \left(p\sigma_1^2 + q\sigma_2^2\right)}.$$

Let $p = (\sigma_1 + \sigma_2)/\sigma_1$ and $q = (\sigma_1 + \sigma_2)/\sigma_2$, so that p > 1 and $p^{-1} + q^{-1} = 1$. In that case, for every $\lambda \in \mathbb{R}$,

$$\mathbb{E}(e^{\lambda(X_1+X_2)}) < e^{\frac{\lambda^2}{2} \left(\frac{\sigma_1+\sigma_2}{\sigma_1}\sigma_1^2 + \frac{\sigma_1+\sigma_2}{\sigma_2}\sigma_2^2\right)} = e^{\frac{\lambda^2}{2} \left(\sigma_1^2 + 2\sigma_1\sigma_2 + \sigma_2^2\right)} = e^{\frac{\lambda^2(\sigma_1+\sigma_2)^2}{2}}.$$

so that the random variable $X_1 + X_2$ is $(\sigma_1 + \sigma_2)$ -subgaussian.

Proposition 2.7. If a random variable $X : \Omega \to \mathbb{R}$ has a normal distribution with mean 0 and variance 1, then X is 1-subgaussian.

Proof. For every $\lambda \in \mathbb{R}$, considering a probability density function for the random variable X,

$$\mathbb{E}\left(e^{\lambda X}\right) = \int_{\mathbb{R}} e^{\lambda x} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \operatorname{Leb}(dx) = \int_{\mathbb{R}} \frac{e^{\lambda x - \frac{x^2}{2}}}{\sqrt{2\pi}} \operatorname{Leb}(dx) = e^{\frac{\lambda^2}{2}} \int_{\mathbb{R}} \frac{e^{-\frac{(x-\lambda)^2}{2}}}{\sqrt{2\pi}} \operatorname{Leb}(dx) = e^{\frac{\lambda^2}{2}}.$$

where we used the fact that $\lambda x - \frac{x^2}{2} = -\frac{(x-\lambda)^2}{2} + \frac{\lambda^2}{2}$ and recognized a probability density function for a random variable that has a normal distribution with mean λ and variance 1.

Proposition 2.8. If a random variable $X: \Omega \to \mathbb{R}$ has a normal distribution with mean 0 and variance σ^2 , then X is σ -subgaussian.

Proof. Recall that X/σ has a normal distribution with mean 0 and variance $\sigma^2/\sigma^2=1$. Therefore, X/σ is 1-subgaussian, so that $\sigma\frac{X}{\sigma}=X$ is $|\sigma|$ -subgaussian.

Lemma 2.1 (Hoeffding's lemma). If $X : \Omega \to \mathbb{R}$ is a random variable such that $\mathbb{E}(X) = 0$ and $\mathbb{P}(X \in [a, b]) = 1$ for some a < b, then X is (b - a)/2-subgaussian.

3 Concentration of measure

Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a constant $\sigma > 0$.

Theorem 3.1. If $X: \Omega \to \mathbb{R}$ is a σ -subgaussian random variable, then, for every $\epsilon \geq 0$,

$$\mathbb{P}(X \le -\epsilon) \le e^{-\frac{\epsilon^2}{2\sigma^2}},$$

$$\mathbb{P}(X \ge \epsilon) \le e^{-\frac{\epsilon^2}{2\sigma^2}},$$

$$\mathbb{P}(|X| \ge \epsilon) \le 2e^{-\frac{\epsilon^2}{2\sigma^2}}.$$

Proof. Recall that the function $g: \mathbb{R} \to [0, \infty]$ given by $g(x) = e^{\lambda x}$ is non-decreasing for every $\lambda \geq 0$. For every $\epsilon \in \mathbb{R}$, by Markov's inequality,

$$\mathbb{E}(e^{-\lambda X}) = \mathbb{E}(g(-X)) \ge g(\epsilon)\mathbb{P}(-X \ge \epsilon) = e^{\lambda \epsilon}\mathbb{P}(X \le -\epsilon),$$

$$\mathbb{E}(e^{\lambda X}) = \mathbb{E}(g(X)) \ge g(\epsilon)\mathbb{P}(X \ge \epsilon) = e^{\lambda \epsilon}\mathbb{P}(X \ge \epsilon).$$

For every $\epsilon \in \mathbb{R}$ and $\lambda \geq 0$, since X is a σ -subgaussian random variable and $e^{\lambda \epsilon} > 0$,

$$\mathbb{P}(X \le -\epsilon) \le \frac{\mathbb{E}(e^{-\lambda X})}{e^{\lambda \epsilon}} \le \frac{e^{\frac{(-\lambda)^2 \sigma^2}{2}}}{e^{\lambda \epsilon}} = e^{\frac{\lambda^2 \sigma^2}{2} - \lambda \epsilon},$$

$$\mathbb{P}(X \ge \epsilon) \le \frac{\mathbb{E}(e^{\lambda X})}{e^{\lambda \epsilon}} \le \frac{e^{\frac{\lambda^2 \sigma^2}{2}}}{e^{\lambda \epsilon}} = e^{\frac{\lambda^2 \sigma^2}{2} - \lambda \epsilon}.$$

For every $\epsilon \geq 0$, let $\lambda = \epsilon/\sigma^2$, so that $\lambda \geq 0$. In that case,

$$\begin{split} \mathbb{P}(X \leq -\epsilon) &\leq e^{\frac{\epsilon^2}{\sigma^4} \frac{\sigma^2}{2} - \frac{\epsilon^2}{\sigma^2}} = e^{\frac{\epsilon^2}{2\sigma^2} - \frac{\epsilon^2}{\sigma^2}} = e^{\frac{\epsilon^2}{\sigma^2} \left(\frac{1}{2} - 1\right)} = e^{-\frac{\epsilon^2}{2\sigma^2}}, \\ \mathbb{P}(X > \epsilon) &< e^{\frac{\epsilon^2}{\sigma^4} \frac{\sigma^2}{2} - \frac{\epsilon^2}{\sigma^2}} = e^{\frac{\epsilon^2}{2\sigma^2} - \frac{\epsilon^2}{\sigma^2}} = e^{\frac{\epsilon^2}{\sigma^2} \left(\frac{1}{2} - 1\right)} = e^{-\frac{\epsilon^2}{2\sigma^2}}. \end{split}$$

Therefore, for every $\epsilon \geq 0$,

$$\mathbb{P}\left(|X| > \epsilon\right) = \mathbb{P}\left(\left\{X < -\epsilon\right\} \cup \left\{X > \epsilon\right\}\right) < \mathbb{P}\left(X < -\epsilon\right) + \mathbb{P}\left(X > \epsilon\right) < 2e^{-\frac{\epsilon^2}{2\sigma^2}}.$$

Proposition 3.1. If $X: \Omega \to \mathbb{R}$ is a σ -subgaussian random variable, then, for every $\delta \in (0,1]$,

$$\mathbb{P}\left(X \le -\sqrt{2\sigma^2 \log(1/\delta)}\right) \le \delta,$$

$$\mathbb{P}\left(X \ge \sqrt{2\sigma^2 \log(1/\delta)}\right) \le \delta,$$

$$\mathbb{P}\left(|X| \ge \sqrt{2\sigma^2 \log(2/\delta)}\right) \le \delta.$$

Proof. Let $\delta \in (0,1]$. If $\epsilon = \sqrt{2\sigma^2 \log(1/\delta)}$, then $\epsilon \geq 0$ and $\delta = e^{-\frac{\epsilon^2}{2\sigma^2}}$, which implies the first two inequalities. If $\epsilon = \sqrt{2\sigma^2 \log(2/\delta)}$, then $\epsilon \geq 0$ and $\delta = 2e^{-\frac{\epsilon^2}{2\sigma^2}}$, which implies the last inequality.

Proposition 3.2. If $X: \Omega \to \mathbb{R}$ is a σ -subgaussian random variable, then, for every $\delta \in (0,1]$,

$$\mathbb{P}\left(X > -\sqrt{2\sigma^2 \log(1/\delta)}\right) \ge 1 - \delta,$$

$$\mathbb{P}\left(X < \sqrt{2\sigma^2 \log(1/\delta)}\right) \ge 1 - \delta,$$

$$\mathbb{P}\left(|X| < \sqrt{2\sigma^2 \log(2/\delta)}\right) \ge 1 - \delta.$$

Proof. These inequalities follow from Proposition 3.1 and the fact that $\mathbb{P}(F^c) = 1 - \mathbb{P}(F)$ for every $F \in \mathcal{F}$.

Consider a sequence of independent random variables $(X_k : \Omega \to \mathbb{R} \mid k \in \mathbb{N}^+)$, each of which has the same law as a random variable $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mu = \mathbb{E}(X)$.

Definition 3.1. For every $t \in \mathbb{N}^+$, the sample mean $M_t : \Omega \to \mathbb{R}$ after t observations is given by

$$M_t(\omega) = \frac{1}{t} \sum_{k=1}^t X_k(\omega).$$

Proposition 3.3. For every $t \in \mathbb{N}^+$, $\mathbb{E}(M_t) = \mu$ and $Var(M_t) = Var(X)/t$.

Proof. Recall that $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ is a vector space over \mathbb{R} , so that $M_t \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. By the linearity of expectation,

$$\mathbb{E}\left(M_{t}\right) = \mathbb{E}\left(\frac{1}{t}\sum_{k=1}^{t}X_{k}\right) = \frac{1}{t}\sum_{k=1}^{t}\mathbb{E}(X_{k}) = \frac{1}{t}t\mu.$$

For every $c \in \mathbb{R}$ and $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, recall that

$$Var(cY) = \mathbb{E}((cY)^2) - \mathbb{E}(cY)^2 = \mathbb{E}(c^2Y^2) - (c\mathbb{E}(Y))^2 = c^2\mathbb{E}(Y^2) - c^2\mathbb{E}(Y)^2 = c^2Var(Y).$$

Therefore, because the random variables $(X_k \mid k \in \mathbb{N}^+)$ are independent and identically distributed,

$$\operatorname{Var}(M_t) = \operatorname{Var}\left(\frac{1}{t}\sum_{k=1}^t X_k\right) = \frac{1}{t^2}\operatorname{Var}\left(\sum_{k=1}^t X_k\right) = \frac{1}{t^2}\sum_{k=1}^t \operatorname{Var}(X_k) = \frac{1}{t^2}t\operatorname{Var}(X).$$

Proposition 3.4. For every $t \in \mathbb{N}^+$ and $\epsilon > 0$,

$$\mathbb{P}(|M_t - \mu| \ge \epsilon) \le \frac{\operatorname{Var}(X)}{t\epsilon^2}.$$

Proof. By Chebyshev's inequality, for every $\epsilon \geq 0$,

$$\frac{\operatorname{Var}(X)}{t} = \operatorname{Var}(M_t) = \mathbb{E}(|M_t - \mu|^2) \ge \epsilon^2 \mathbb{P}(|M_t - \mu| \ge \epsilon).$$

Proposition 3.5. If $X - \mu$ is a σ -subgaussian random variable, then, for every $t \in \mathbb{N}^+$ and $\epsilon > 0$,

$$\mathbb{P}(|M_t - \mu| \ge \epsilon) \le \frac{\sigma^2}{t\epsilon^2}.$$

Proof. This proposition is a consequence of Proposition 2.3 and Proposition 3.4, since

$$\sigma^2 \ge \operatorname{Var}(X - \mu) = \mathbb{E}((X - \mu)^2) - \mathbb{E}(X - \mu)^2 = \operatorname{Var}(X) - (\mathbb{E}(X) - \mu)^2 = \operatorname{Var}(X).$$

Proposition 3.6. If $X - \mu$ is a σ -subgaussian random variable, then, for every $t \in \mathbb{N}^+$ and $\epsilon \geq 0$,

$$\mathbb{P}(M_t \le \mu - \epsilon) \le e^{-\frac{t\epsilon^2}{2\sigma^2}},$$

$$\mathbb{P}(M_t \ge \mu + \epsilon) \le e^{-\frac{t\epsilon^2}{2\sigma^2}},$$

$$\mathbb{P}(|M_t - \mu| \ge \epsilon) \le 2e^{-\frac{t\epsilon^2}{2\sigma^2}},$$

Proof. Recall that $\mathbb{E}(X - \mu) = 0$ and $Var(X - \mu) = Var(X)$. For every $t \in \mathbb{N}^+$,

$$M_t - \mu = \left(\frac{1}{t} \sum_{k=1}^t X_k\right) - \frac{1}{t} t \mu = \frac{1}{t} \sum_{k=1}^t (X_k - \mu).$$

Because $(X_k - \mu \mid k \in \mathbb{N}^+)$ are independent σ -subgaussian random variables, Proposition 2.5 guarantees that $\sum_{k=1}^{t} (X_k - \mu)$ is $(\sigma \sqrt{t})$ -subgaussian and Proposition 2.4 that $M_t - \mu$ is (σ / \sqrt{t}) -subgaussian. By Theorem 3.1,

$$\begin{split} \mathbb{P}\left(M_t - \mu \leq -\epsilon\right) &\leq e^{-\frac{\epsilon^2}{2(\sigma/\sqrt{t})^2}} = e^{-\frac{\epsilon^2}{2(\sigma^2/t)}} = e^{-\frac{t\epsilon^2}{2\sigma^2}}, \\ \mathbb{P}\left(M_t - \mu \geq \epsilon\right) &\leq e^{-\frac{\epsilon^2}{2(\sigma/\sqrt{t})^2}} = e^{-\frac{\epsilon^2}{2(\sigma^2/t)}} = e^{-\frac{t\epsilon^2}{2\sigma^2}}, \\ \mathbb{P}(|M_t - \mu| \geq \epsilon) &\leq 2e^{-\frac{\epsilon^2}{2(\sigma/\sqrt{t})^2}} = 2e^{-\frac{\epsilon^2}{2(\sigma^2/t)}} = 2e^{-\frac{t\epsilon^2}{2\sigma^2}}. \end{split}$$

Proposition 3.7. If $X - \mu$ is a σ -subgaussian random variable, then, for every $t \in \mathbb{N}^+$ and $\delta \in (0, 1]$,

$$\mathbb{P}\left(M_t \le \mu - \sqrt{2\sigma^2 \log(1/\delta)/t}\right) \le \delta,$$

$$\mathbb{P}\left(M_t \ge \mu + \sqrt{2\sigma^2 \log(1/\delta)/t}\right) \le \delta,$$

$$\mathbb{P}(|M_t - \mu| \ge \sqrt{2\sigma^2 \log(2/\delta)/t}) \le \delta.$$

Proof. Let $\delta \in (0,1]$. If $\epsilon = \sqrt{2\sigma^2 \log(1/\delta)/t}$, then $\epsilon \ge 0$ and $\delta = e^{-\frac{t\epsilon^2}{2\sigma^2}}$, which implies the first two inequalities. If $\epsilon = \sqrt{2\sigma^2 \log(2/\delta)/t}$, then $\epsilon \ge 0$ and $\delta = 2e^{-\frac{t\epsilon^2}{2\sigma^2}}$, which implies the last inequality.

Proposition 3.8. If $X - \mu$ is a σ -subgaussian random variable, then, for every $t \in \mathbb{N}^+$ and $\delta \in (0, 1]$,

$$\mathbb{P}\left(M_t > \mu - \sqrt{2\sigma^2 \log(1/\delta)/t}\right) \ge 1 - \delta,$$

$$\mathbb{P}\left(M_t < \mu + \sqrt{2\sigma^2 \log(1/\delta)/t}\right) \ge 1 - \delta,$$

$$\mathbb{P}(|M_t - \mu| < \sqrt{2\sigma^2 \log(2/\delta)/t}) \ge 1 - \delta.$$

Proof. These inequalities follow from Proposition 3.7 and the fact that $\mathbb{P}(F^c) = 1 - \mathbb{P}(F)$ for every $F \in \mathcal{F}$.

Theorem 3.2 (Hoeffding's inequality). Consider a sequence of independent random variables $(Y_k : \Omega \to \mathbb{R} \mid k \in \mathbb{N}^+)$ and suppose that there are constants $a_k \in \mathbb{R}$ and $b_k \in \mathbb{R}$ such that $a_k < b_k$ and $\mathbb{P}(Y_k \in [a_k, b_k]) = 1$ for every $k \in \mathbb{N}^+$. In that case, for every $t \in \mathbb{N}^+$ and $\epsilon \geq 0$,

$$\mathbb{P}\left(\frac{1}{t}\sum_{k=1}^{t}(Y_k - \mathbb{E}(Y_k)) \ge \epsilon\right) \le e^{-\frac{2t^2\epsilon^2}{\sum_{k=1}^{t}(b_k - a_k)^2}}.$$

Proof. For every $k \in \mathbb{N}^+$, note that $\mathbb{E}(Y_k - \mathbb{E}(Y_k)) = 0$ and $\mathbb{P}((Y_k - \mathbb{E}(Y_k)) \in [a_k - \mathbb{E}(Y_k), b_k - \mathbb{E}(Y_k)]) = 1$, so that $Y_k - \mathbb{E}(Y_k)$ is $(b_k - a_k)/2$ -subgaussian by Lemma 2.1. Because $(Y_k - \mathbb{E}(Y_k) \mid k \in \mathbb{N}^+)$ are independent random variables, Proposition 2.5 guarantees that $\sum_{k=1}^t (Y_k - \mathbb{E}(Y_k))$ is $\sqrt{\sum_{k=1}^t (b_k - a_k)^2/4}$ -subgaussian and Proposition 2.4 that $\sum_{k=1}^t (Y_k - \mathbb{E}(Y_k))/t$ is $\sqrt{\sum_{k=1}^t (b_k - a_k)^2/(4t^2)}$ -subgaussian. By Theorem 3.1,

$$\mathbb{P}\left(\frac{1}{t}\sum_{k=1}^{t}(Y_k - \mathbb{E}(Y_k)) \ge \epsilon\right) \le e^{-\frac{\epsilon^2}{2\left(\sqrt{\sum_{k=1}^{t}(b_k - a_k)^2/(4t^2)}\right)^2}} = e^{-\frac{\epsilon^2}{2t^2}\sum_{k=1}^{t}(b_k - a_k)^2} = e^{-\frac{2t^2\epsilon^2}{\sum_{k=1}^{t}(b_k - a_k)^2}}.$$

Theorem 3.3 (Bretagnolle-Huber-Carol inequality). Suppose that there is an $m \in \mathbb{N}^+$ such that $X(\omega) \in \{1, \ldots, m\}$ for every $\omega \in \Omega$. Consider a vector $p \in [0, 1]^m$ such that $p_i = \mathbb{P}(X = i)$ for every $i \in \{1, \ldots, m\}$ and a random vector $P_t : \Omega \to [0, 1]^m$ such that $P_{t,i} = 1/t \sum_{k=1}^t \mathbb{I}_{\{X_k = i\}}$ for every $t \in \mathbb{N}^+$ and $i \in \{1, \ldots, m\}$. For every $\delta \in (0, 1]$,

$$\mathbb{P}\left(||P_t - p||_1 \ge \sqrt{2\left(\log(1/\delta) + m\log(2)\right)/t}\right) \le \delta.$$

П

Proof. Recall that $|a| = \max(a, -a)$ for every $a \in \mathbb{R}$. Therefore, for every $t \in \mathbb{N}^+$,

$$||P_t - p||_1 = \sum_{i=1}^m |P_{t,i} - p_i| = \sum_{i=1}^m \max_{\lambda_i \in \{-1,1\}} \lambda_i (P_{t,i} - p_i) = \max_{\lambda \in \{-1,1\}^m} \sum_{i=1}^m \lambda_i (P_{t,i} - p_i).$$

For every $t \in \mathbb{N}^+$, by expanding the previous expression and exchanging the order of the summations,

$$\|P_t - p\|_1 = \max_{\lambda \in \{-1,1\}^m} \sum_{i=1}^m \lambda_i \left(\frac{1}{t} \sum_{k=1}^t \mathbb{I}_{\{X_k = i\}} - \frac{1}{t} \sum_{k=1}^t p_i \right) = \max_{\lambda \in \{-1,1\}^m} \frac{1}{t} \sum_{k=1}^t \sum_{i=1}^m \lambda_i \mathbb{I}_{\{X_k = i\}} - \lambda_i p_i.$$

For every $k \in \{1, \dots, t\}$ and $\lambda \in \{-1, 1\}^m$, let $Y_k^{(\lambda)} = \sum_{i=1}^m \lambda_i \mathbb{I}_{\{X_k = i\}} = \lambda_{X_k}$, so that $|Y_k^{(\lambda)}| \le 1$ and

$$\mathbb{E}\left(Y_k^{(\lambda)}\right) = \mathbb{E}\left(\sum_{i=1}^m \lambda_i \mathbb{I}_{\{X_k=i\}}\right) = \sum_{i=1}^m \lambda_i \mathbb{P}(X_k=i) = \sum_{i=1}^m \lambda_i \mathbb{P}(X=i) = \sum_{i=1}^m \lambda_i p_i.$$

For every $t \in \mathbb{N}^+$, by rewriting a previous expression,

$$||P_t - p||_1 = \max_{\lambda \in \{-1,1\}^m} \frac{1}{t} \sum_{k=1}^t \left(Y_k^{(\lambda)} - \mathbb{E}\left(Y_k^{(\lambda)} \right) \right).$$

Therefore, for every $t \in \mathbb{N}^+$ and $\epsilon \geq 0$,

$$\left\{\|P_t - p\|_1 \ge \epsilon\right\} = \left\{\max_{\lambda \in \{-1,1\}^m} \frac{1}{t} \sum_{k=1}^t \left(Y_k^{(\lambda)} - \mathbb{E}\left(Y_k^{(\lambda)}\right)\right) \ge \epsilon\right\} = \bigcup_{\lambda \in \{-1,1\}^m} \left\{\frac{1}{t} \sum_{k=1}^t \left(Y_k^{(\lambda)} - \mathbb{E}\left(Y_k^{(\lambda)}\right)\right) \ge \epsilon\right\}.$$

By employing a union bound, Theorem 3.2, and the fact that the set $\{-1,1\}^m$ has 2^m elements,

$$\mathbb{P}\left(\|P_t - p\|_1 \ge \epsilon\right) \le \sum_{\lambda \in \{-1,1\}^m} \mathbb{P}\left(\frac{1}{t} \sum_{k=1}^t \left(Y_k^{(\lambda)} - \mathbb{E}\left(Y_k^{(\lambda)}\right)\right) \ge \epsilon\right) \le \sum_{\lambda \in \{-1,1\}^m} e^{-\frac{t\epsilon^2}{2}} = 2^m e^{-\frac{t\epsilon^2}{2}}$$

Let $\delta \in (0,1]$. If $\epsilon = \sqrt{2(\log(1/\delta) + m\log(2))/t}$, then $\epsilon \ge 0$ and $\delta = 2^m e^{-\frac{t\epsilon^2}{2}}$. Therefore,

$$\mathbb{P}\left(||P_t - p||_1 \ge \sqrt{2\left(\log(1/\delta) + m\log(2)\right)/t}\right) \le \delta.$$

4 Stochastic bandits

Definition 4.1. A set of actions \mathcal{A} is a non-empty subset of \mathbb{N} .

Definition 4.2. For a set of actions \mathcal{A} , consider a sequence of probability measures $\nu = (P_a \mid a \in \mathcal{A})$ on the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. If $h : \mathbb{R} \to \mathbb{R}$ is a $\mathcal{B}(\mathbb{R})$ -measurable function and there is a constant $c \in [0, \infty)$ such that $\int_{\mathbb{R}} |h(x)| P_a(dx) \leq c$ for every action $a \in \mathcal{A}$, then h is ν -integrable.

Definition 4.3. For a set of actions \mathcal{A} , consider a sequence of probability measures $\nu = (P_a \mid a \in \mathcal{A})$ on the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. If the identity function is ν -integrable, the mean μ_a^{ν} of action a is defined by $\mu_a^{\nu} = \int_{\mathbb{R}} x \ P_a(dx)$ and the supremum mean μ_*^{ν} is defined by $\mu_*^{\nu} = \sup_a \mu_a^{\nu}$. If $\mu_a^{\nu} = \mu_*^{\nu}$ for some action $a \in \mathcal{A}$, then ν is a stochastic bandit for the set of actions \mathcal{A} .

Proposition 4.1. If $\nu = (P_a \mid a \in \mathcal{A})$ is a stochastic bandit for the set of actions \mathcal{A} , then there is a constant $c \in [0, \infty)$ such that $\mu_a^{\nu} \in [-c, c]$ for every action $a \in \mathcal{A}$.

Proof. Since the identity function is ν -integrable, there is a constant $c \in [0, \infty)$ such that $\int_{\mathbb{R}} |x| \ P_a(dx) \le c$ for every action $a \in \mathcal{A}$. Therefore, $|\mu_a^{\nu}| = |\int_{\mathbb{R}} x \ P_a(dx)| \le \int_{\mathbb{R}} |x| \ P_a(dx) \le c$ for every action $a \in \mathcal{A}$.

Definition 4.4. For a set of actions \mathcal{A} , a policy π is a sequence of functions $(\pi_t : \mathbb{R}^t \to \mathcal{A} \mid t \in \mathbb{N}^+)$, where the so-called policy π_t for time step t is $\mathcal{B}(\mathbb{R}^t)$ -measurable.

Proposition 4.2. For a set of actions \mathcal{A} , a stochastic bandit $\nu = (P_a \mid a \in \mathcal{A})$, and a policy $\pi = (\pi_t \mid t \in \mathbb{N}^+)$, there is a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ carrying a stochastic process $(X_t : \Omega \to \mathbb{R} \mid t \in \mathbb{N})$ such that $\mathbb{E}(|X_t|) < \infty$ and

$$\mathbb{P}\left(X_{t} \in B \mid X_{0}, \dots, X_{t-1}\right) = P_{A_{t}}(B)$$

almost surely for every $t \in \mathbb{N}^+$ and $B \in \mathcal{B}(\mathbb{R})$, where $A_t = \pi_t(X_0, \dots, X_{t-1})$. Additionally, if a function $h : \mathbb{R} \to \mathbb{R}$ is ν -integrable, then $\mathbb{E}(|h(X_t)|) < \infty$ for every $t \in \mathbb{N}^+$.

Proof. By Kolmogorov's extension theorem, there is a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ carrying a countable set of independent random variables $\{Z_{t,a}: \Omega \to \mathbb{R} \mid t \in \mathbb{N}^+ \text{ and } a \in \mathcal{A}\}$ such that $\mathbb{P}(Z_{t,a} \in B) = P_a(B)$ for every $t \in \mathbb{N}^+$, $a \in \mathcal{A}$, and $B \in \mathcal{B}(\mathbb{R})$. For every $t \in \mathbb{N}^+$, let $A_t : \Omega \to \mathcal{A}$ and $X_t : \Omega \to \mathbb{R}$ be given by

$$A_t(\omega) = \pi_t(X_0(\omega), \dots, X_{t-1}(\omega)),$$

$$X_t(\omega) = Z_{t,A_t(\omega)}(\omega) = \sum_a \mathbb{I}_{\{A_t = a\}}(\omega) Z_{t,a}(\omega),$$

where $X_0: \Omega \to \mathbb{R}$ is given by $X_0(\omega) = 0$.

For every $t \in \mathbb{N}^+$, let $\mathcal{F}_{t-1} = \sigma\left(\bigcup_{k < t, a} \sigma(Z_{k, a})\right)$. For every $t \in \mathbb{N}^+$ and $a \in \mathcal{A}$, note that $\sigma(\mathbb{I}_{\{A_t = a\}}) \subseteq \sigma(A_t) \subseteq \sigma(X_0, \dots, X_{t-1}) \subseteq \mathcal{F}_{t-1}$. Because \mathcal{F}_{t-1} and $\sigma(Z_{t, a})$ are independent, so are $\mathbb{I}_{\{A_t = a\}}$ and $Z_{t, a}$.

Therefore, if a function $h: \mathbb{R} \to \mathbb{R}$ is ν -integrable, then $\mathbb{E}(|h(X_t)|) < \infty$ for every $t \in \mathbb{N}^+$, since

$$\mathbb{E}\left(|h(X_t)|\right) = \sum_a \mathbb{E}\left(\mathbb{I}_{\{A_t = a\}} |h(Z_{t,a})|\right) = \sum_a \mathbb{E}\left(\mathbb{I}_{\{A_t = a\}}\right) \mathbb{E}\left(|h(Z_{t,a})|\right) = \sum_a \mathbb{P}(A_t = a) \int_{\mathbb{R}} |h(x)| \ P_a(dx) \le c < \infty.$$

In particular, because the identity function is ν -integrable, $\mathbb{E}(|X_t|) < \infty$ for every $t \in \mathbb{N}^+$. By definition, almost surely for every $t \in \mathbb{N}^+$ and $B \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{P}\left(X_{t} \in B \mid X_{0}, \dots, X_{t-1}\right) = \mathbb{E}\left(\mathbb{I}_{\left\{X_{t} \in B\right\}} \mid \sigma(X_{0}, \dots, X_{t-1})\right).$$

For every $t \in \mathbb{N}^+$ and $B \in \mathcal{B}(\mathbb{R})$, note that $\{X_t \in B\} = \bigcup_a \{A_t = a\} \cap \{Z_{t,a} \in B\}$. Therefore, almost surely,

$$\mathbb{P}(X_t \in B \mid X_0, \dots, X_{t-1}) = \sum_{a} \mathbb{E}\left(\mathbb{I}_{\{A_t = a\}} \mathbb{I}_{\{Z_{t,a} \in B\}} \mid \sigma(X_0, \dots, X_{t-1})\right).$$

For every $t \in \mathbb{N}^+$ and $a \in \mathcal{A}$, recall that $\mathbb{I}_{\{A_t = a\}}$ is $\sigma(X_0, \dots, X_{t-1})$ -measurable. Therefore, almost surely,

$$\mathbb{P}(X_t \in B \mid X_0, \dots, X_{t-1}) = \sum_{a} \mathbb{I}_{\{A_t = a\}} \mathbb{E}\left(\mathbb{I}_{\{Z_{t,a} \in B\}} \mid \sigma(X_0, \dots, X_{t-1})\right).$$

Since $\sigma(X_0, \ldots, X_{t-1}) \subseteq \mathcal{F}_{t-1}$ and $\sigma(\mathbb{I}_{\{Z_{t,a} \in B\}}) \subseteq \sigma(Z_{t,a})$ are independent, almost surely,

$$\mathbb{P}(X_t \in B \mid X_0, \dots, X_{t-1}) = \sum_{a} \mathbb{I}_{\{A_t = a\}} \mathbb{E}\left(\mathbb{I}_{\{Z_{t,a} \in B\}}\right) = \sum_{a} \mathbb{I}_{\{A_t = a\}} P_a(B) = P_{A_t}(B).$$

Definition 4.5. The canonical space (Ω, \mathcal{F}) that carries the reward process $X = (X_t \mid t \in \mathbb{N})$ is a measurable space such that $\Omega = \mathbb{R}^{\infty}$. Furthermore, for every $t \in \mathbb{N}$, the function $X_t : \Omega \to \mathbb{R}$ is given by $X_t(\omega) = \omega_t$ and the σ -algebra \mathcal{F} on Ω is given by $\mathcal{F} = \sigma(X_0, X_1, \ldots)$.

Theorem 4.1. For every set of actions \mathcal{A} , stochastic bandit $\nu = (P_a \mid a \in \mathcal{A})$, and policy $\pi = (\pi_t \mid t \in \mathbb{N}^+)$, there is a probability measure $\mathbb{P}^{\nu,\pi}$ on the the canonical space (Ω,\mathcal{F}) that carries the reward process $X=(X_t\mid t\in\mathbb{N})$ such that $\mathbb{E}^{\nu,\pi}(|X_t|) < \infty$ and

$$\mathbb{P}^{\nu,\pi} (X_t \in B \mid X_0, \dots, X_{t-1}) = P_{A_t}(B)$$

almost surely for every $t \in \mathbb{N}^+$ and $B \in \mathcal{B}(\mathbb{R})$, where $A_t = \pi_t(X_0, \dots, X_{t-1})$. Additionally, if a function $h : \mathbb{R} \to \mathbb{R}$ is ν -integrable, then $\mathbb{E}^{\nu,\pi}(|h(X_t)|) < \infty$ for every $t \in \mathbb{N}^+$. The probability triple $(\Omega, \mathcal{F}, \mathbb{P}^{\nu,\pi})$ is called a canonical triple for the stochastic bandit ν under the policy π .

Proof. Proposition 4.2 ensures that there is a probability triple $(\tilde{\Omega}^{\nu,\pi}, \tilde{\mathcal{F}}^{\nu,\pi}, \tilde{\mathbb{P}}^{\nu,\pi})$ carrying a stochastic process $(\tilde{X}_t^{\nu,\pi}: \tilde{\Omega}^{\nu,\pi} \to \mathbb{R} \mid t \in \mathbb{N})$ such that, almost surely,

$$\tilde{\mathbb{P}}^{\nu,\pi}\left(\tilde{X}_t^{\nu,\pi} \in B \mid \tilde{X}_0^{\nu,\pi}, \dots, \tilde{X}_{t-1}^{\nu,\pi}\right) = P_{\tilde{A}_t}(B)$$

for every $t \in \mathbb{N}^+$ and $B \in \mathcal{B}(\mathbb{R})$, where $\tilde{A}_t = \pi_t(\tilde{X}_0^{\nu,\pi}, \dots, \tilde{X}_{t-1}^{\nu,\pi})$. Consider the function $\tilde{X}^{\nu,\pi} : \tilde{\Omega}^{\nu,\pi} \to \Omega$ given by $\tilde{X}^{\nu,\pi}(\tilde{\omega}) = (\tilde{X}_t^{\nu,\pi}(\tilde{\omega}) \mid t \in \mathbb{N})$. The function $\tilde{X}^{\nu,\pi}$ is $\tilde{\mathcal{F}}^{\nu,\pi}/\mathcal{F}$ measurable, so that the function $\mathbb{P}^{\nu,\pi}:\mathcal{F}\to[0,1]$ defined by

$$\mathbb{P}^{\nu,\pi}(F) = \tilde{\mathbb{P}}^{\nu,\pi}\left(\left(\tilde{X}^{\nu,\pi}\right)^{-1}(F)\right) = \tilde{\mathbb{P}}^{\nu,\pi}\left(\left\{\tilde{\omega} \in \tilde{\Omega}^{\nu,\pi} \mid \tilde{X}^{\nu,\pi}(\tilde{\omega}) \in F\right\}\right)$$

is a probability measure on the measurable space (Ω, \mathcal{F}) .

In order to show that $\tilde{X}^{\nu,\pi}$ is $\sigma(\tilde{X}_0^{\nu,\pi},\ldots,\tilde{X}_t^{\nu,\pi})/\sigma(X_0,\ldots,X_t)$ -measurable for every $t\in\mathbb{N}^+$, let \mathcal{I}_t be given by

$$\mathcal{I}_t = \left\{ \bigcap_{k=0}^t \{ X_k \in B_k \} \mid B_k \in \mathcal{B}(\mathbb{R}) \text{ for every } k \in \{0, \dots, t\} \right\},\,$$

so that \mathcal{I}_t is a π -system on Ω such that $\sigma(\mathcal{I}_t) = \sigma(X_0, \dots, X_t)$. For every $t \in \mathbb{N}^+$ and $I_t \in \mathcal{I}_t$,

$$(\tilde{X}^{\nu,\pi})^{-1}(I_t) = (\tilde{X}^{\nu,\pi})^{-1} \left(\bigcap_{k=0}^t \{X_k \in B_k\} \right) = \bigcap_{k=0}^t (\tilde{X}^{\nu,\pi})^{-1} \left(\{X_k \in B_k\} \right) = \bigcap_{k=0}^t \{\tilde{X}_k^{\nu,\pi} \in B_k\},$$

which uses the fact that

$$(\tilde{X}^{\nu,\pi})^{-1}\left(\left\{X_k \in B_k\right\}\right) = \left\{\tilde{\omega} \in \tilde{\Omega}^{\nu,\pi} \mid \tilde{X}^{\nu,\pi}(\tilde{\omega}) \in \left\{\omega \in \Omega \mid \omega_k \in B_k\right\}\right\} = \left\{\tilde{X}_k^{\nu,\pi} \in B_k\right\}.$$

Since $(\tilde{X}^{\nu,\pi})^{-1}(I_t) \in \sigma(\tilde{X}_0^{\nu,\pi},\ldots,\tilde{X}_t^{\nu,\pi})$ for every $I_t \in \mathcal{I}_t$, $\tilde{X}^{\nu,\pi}$ is $\sigma(\tilde{X}_0^{\nu,\pi},\ldots,\tilde{X}_t^{\nu,\pi})/\sigma(X_0,\ldots,X_t)$ -measurable. For every $t \in \mathbb{N}^+$ and $H_{t-1} \in \sigma(X_0,\ldots,X_{t-1})$, let $\tilde{H}_{t-1} = (\tilde{X}^{\nu,\pi})^{-1}(H_{t-1})$. For every $B \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{X_t \in B\}}\mathbb{I}_{H_{t-1}}\right) = \mathbb{P}^{\nu,\pi}\left(\{X_t \in B\} \cap H_{t-1}\right) = \tilde{\mathbb{P}}^{\nu,\pi}\left((\tilde{X}^{\nu,\pi})^{-1}(\{X_t \in B\}) \cap (\tilde{X}^{\nu,\pi})^{-1}(H_{t-1})\right).$$

Because $\tilde{H}_{t-1} \in \sigma(\tilde{X}_0^{\nu,\pi},\ldots,\tilde{X}_{t-1}^{\nu,\pi})$

$$\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{X_t \in B\}}\mathbb{I}_{H_{t-1}}\right) = \tilde{\mathbb{P}}^{\nu,\pi}\left(\{\tilde{X}_t^{\nu,\pi} \in B\} \cap \tilde{H}_{t-1}\right) = \tilde{\mathbb{E}}^{\nu,\pi}\left(\mathbb{I}_{\{\tilde{X}_t^{\nu,\pi} \in B\}}\mathbb{I}_{\tilde{H}_{t-1}}\right) = \tilde{\mathbb{E}}^{\nu,\pi}\left(P_{\tilde{A}_t}(B)\mathbb{I}_{\tilde{H}_{t-1}}\right),$$

where $\tilde{A}_t = \pi_t(\tilde{X}_0^{\nu,\pi}, \dots, \tilde{X}_{t-1}^{\nu,\pi})$. Therefore,

$$\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{X_t\in B\}}\mathbb{I}_{H_{t-1}}\right)=\tilde{\mathbb{E}}^{\nu,\pi}\left(\sum_a\mathbb{I}_{\{\tilde{A}_t=a\}}P_a(B)\mathbb{I}_{\tilde{H}_{t-1}}\right)=\sum_aP_a(B)\tilde{\mathbb{P}}^{\nu,\pi}\left(\{\tilde{A}_t=a\}\cap \tilde{H}_{t-1}\right).$$

For every $a \in \mathcal{A}$, note that $\mathbb{P}^{\nu,\pi}(\{A_t = a\} \cap H_{t-1})$ is given by

$$\mathbb{P}^{\nu,\pi}\left(\{A_t = a\} \cap H_{t-1}\right) = \tilde{\mathbb{P}}^{\nu,\pi}\left((\tilde{X}^{\nu,\pi})^{-1}(\{A_t = a\}) \cap (\tilde{X}^{\nu,\pi})^{-1}(H_{t-1})\right) = \tilde{\mathbb{P}}^{\nu,\pi}\left(\{\tilde{A}_t = a\} \cap \tilde{H}_{t-1}\right),$$

which uses the fact that

$$(\tilde{X}^{\nu,\pi})^{-1}(\{A_t = a\}) = \{\tilde{\omega} \in \tilde{\Omega}^{\nu,\pi} \mid \tilde{X}^{\nu,\pi}(\tilde{\omega}) \in \{\omega \in \Omega \mid \pi_t(\omega_0, \dots, \omega_{t-1}) = a\}\} = \{\tilde{A}_t = a\}.$$

Finally, for every $t \in \mathbb{N}^+$, $H_{t-1} \in \sigma(X_0, \dots, X_{t-1})$, $B \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{X_t \in B\}} \mathbb{I}_{H_{t-1}} \right) = \sum_a P_a(B) \mathbb{P}^{\nu,\pi} \left(\{A_t = a\} \cap H_{t-1} \right) = \mathbb{E}^{\nu,\pi} \left(P_{A_t}(B) \mathbb{I}_{H_{t-1}} \right).$$

Because $P_{A_t}(B)$ is $\sigma(X_0, \ldots, X_{t-1})$ -measurable, almost surely

$$\mathbb{P}^{\nu,\pi} (X_t \in B \mid X_0, \dots, X_{t-1}) = \mathbb{E}^{\nu,\pi} (\mathbb{I}_{\{X_t \in B\}} \mid \sigma(X_0, \dots, X_{t-1})) = P_{A_t}(B).$$

For every $t \in \mathbb{N}^+$, consider the law $\mathcal{L}_t : \mathcal{B}(\mathbb{R}) \to [0,1]$ given by

$$\mathcal{L}_{t}(B) = \mathbb{P}^{\nu,\pi}(X_{t} \in B) = \tilde{\mathbb{P}}^{\nu,\pi}\left((\tilde{X}^{\nu,\pi})^{-1}\left(\{X_{t} \in B\}\right)\right) = \tilde{\mathbb{P}}^{\nu,\pi}(\tilde{X}_{t}^{\nu,\pi} \in B).$$

If a function $h: \mathbb{R} \to \mathbb{R}$ is ν -integrable, then $\mathbb{E}^{\nu,\pi}(|h(X_t)|) < \infty$ for every $t \in \mathbb{N}^+$, since

$$\mathbb{E}^{\nu,\pi}\left(|h(X_t)|\right) = \int_{\mathbb{P}} |h(x)| \ \mathcal{L}_t(dx) = \tilde{\mathbb{E}}^{\nu,\pi}\left(|h(\tilde{X}_t^{\nu,\pi})|\right) < \infty.$$

In particular, because the identity function is ν -integrable, $\mathbb{E}^{\nu,\pi}(|X_t|) < \infty$ for every $t \in \mathbb{N}^+$.

For the remaining, consider a set of actions \mathcal{A} , a stochastic bandit $\nu = (P_a \mid a \in \mathcal{A})$, a policy $\pi = (\pi_t \mid t \in \mathbb{N}^+)$, and let $(\Omega, \mathcal{F}, \mathbb{P}^{\nu, \pi})$ be a canonical triple for the stochastic bandit ν under the policy π .

Proposition 4.3. For every $t \in \mathbb{N}^+$, if a function $h : \mathbb{R} \to \mathbb{R}$ is ν -integrable, then

$$\mathbb{E}^{\nu,\pi} (h(X_t) \mid X_0, \dots, X_{t-1}) = \sum_a \mathbb{I}_{\{A_t = a\}} \int_{\mathbb{R}} h(x) P_a(dx)$$

almost surely, where $A_t = \pi_t(X_0, \dots, X_{t-1})$.

Proof. Since the function $h: \mathbb{R} \to \mathbb{R}$ is ν -integrable, recall that $\mathbb{E}^{\nu,\pi}(|h(X_t)|) < \infty$ for every $t \in \mathbb{N}^+$. First, suppose that $h = \mathbb{I}_B$ for some $B \in \mathcal{B}(\mathbb{R})$. Because $\mathbb{I}_B(X_t) = \mathbb{I}_{\{X_t \in B\}}$, almost surely,

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_B(X_t) \mid X_0, \dots, X_{t-1} \right) = P_{A_t}(B) = \sum_a \mathbb{I}_{\{A_t = a\}} P_a(B) = \sum_a \mathbb{I}_{\{A_t = a\}} \int_{\mathbb{R}} \mathbb{I}_B(x) \ P_a(dx).$$

Next, suppose that h is a simple function that can be written as $h = \sum_{k=1}^m b_k \mathbb{I}_{B_k}$ for some fixed $b_1, b_2, \dots, b_m \in [0, \infty]$ and $B_1, B_2, \dots, B_m \in \mathcal{B}(\mathbb{R})$. Almost surely,

$$\mathbb{E}^{\nu,\pi}\left(\sum_{k=1}^{m}b_{k}\mathbb{I}_{B_{k}}(X_{t})\mid X_{0},\ldots,X_{t-1}\right)=\sum_{k=1}^{m}b_{k}\sum_{a}\mathbb{I}_{\{A_{t}=a\}}\int_{\mathbb{R}}\mathbb{I}_{B_{k}}(x)\ P_{a}(dx)=\sum_{a}\mathbb{I}_{\{A_{t}=a\}}\int_{\mathbb{R}}\sum_{k=1}^{m}b_{k}\mathbb{I}_{B_{k}}(x)\ P_{a}(dx).$$

Next, suppose that h is a non-negative $\mathcal{B}(\mathbb{R})$ -measurable function. For any $k \in \mathbb{N}$, consider the simple function $h_k = \alpha_k \circ h$, where α_k is the k-th staircase function. Almost surely, since $h_k(X_t) \uparrow h(X_t)$,

$$\mathbb{E}^{\nu,\pi} (h(X_t) \mid X_0, \dots, X_{t-1}) = \mathbb{E}^{\nu,\pi} \left(\lim_{k \to \infty} h_k(X_t) \mid X_0, \dots, X_{t-1} \right) = \lim_{k \to \infty} \mathbb{E}^{\nu,\pi} (h_k(X_t) \mid X_0, \dots, X_{t-1}).$$

Since $h_k \uparrow h$, by the monotone-convergence theorem, almost surely

$$\mathbb{E}^{\nu,\pi} (h(X_t) \mid X_0, \dots, X_{t-1}) = \lim_{k \to \infty} \sum_a \mathbb{I}_{\{A_t = a\}} \int_{\mathbb{R}} h_k(x) \ P_a(dx) = \sum_a \mathbb{I}_{\{A_t = a\}} \int_{\mathbb{R}} \lim_{k \to \infty} h_k(x) \ P_a(dx).$$

Finally, suppose that $h = h^+ - h^-$ is a $\mathcal{B}(\mathbb{R})$ -measurable function. Almost surely,

$$\mathbb{E}^{\nu,\pi} (h(X_t) \mid X_0, \dots, X_{t-1}) = \left(\sum_a \mathbb{I}_{\{A_t = a\}} \int_{\mathbb{R}} h^+(x) \ P_a(dx) \right) - \left(\sum_a \mathbb{I}_{\{A_t = a\}} \int_{\mathbb{R}} h^-(x) \ P_a(dx) \right).$$

By the linearity of the integral, almost surely,

$$\mathbb{E}^{\nu,\pi} (h(X_t) \mid X_0, \dots, X_{t-1}) = \sum_a \mathbb{I}_{\{A_t = a\}} \int_{\mathbb{R}} (h^+(x) - h^-(x)) P_a(dx) = \sum_a \mathbb{I}_{\{A_t = a\}} \int_{\mathbb{R}} h(x) P_a(dx).$$

Proposition 4.4. If $t \in \mathbb{N}^+$ and $A_t = \pi_t(X_0, \dots, X_{t-1})$, then $\mathbb{E}^{\nu,\pi}(X_t \mid A_t) = \mu_{A_t}^{\nu}$ almost surely.

Proof. For every $t \in \mathbb{N}^+$, $\mathbb{E}^{\nu,\pi}(|X_t|) < \infty$ and A_t is $\sigma(X_0, \dots, X_{t-1})$ -measurable. Therefore, almost surely,

$$\mathbb{E}^{\nu,\pi} \left(X_t \mid A_t \right) = \mathbb{E}^{\nu,\pi} \left(\mathbb{E}^{\nu,\pi} \left(X_t \mid X_0, \dots, X_{t-1} \right) \mid A_t \right) = \sum_a \mathbb{I}_{\{A_t = a\}} \int_{\mathbb{R}} x \ P_a(dx) = \sum_a \mathbb{I}_{\{A_t = a\}} \mu_a^{\nu} = \mu_{A_t}^{\nu},$$

by the tower property, Proposition 4.3 applied to the identity function, and taking out what is known.

Proposition 4.5. If $t \in \mathbb{N}^+$ and $A_t = \pi_t(X_0, \dots, X_{t-1})$, then

$$\mathbb{E}^{\nu,\pi}\left(X_{t}\right) = \mathbb{E}^{\nu,\pi}\left(\mathbb{E}^{\nu,\pi}\left(X_{t}\mid A_{t}\right)\right) = \mathbb{E}^{\nu,\pi}\left(\mu_{A_{t}}^{\nu}\right) = \sum_{a} \mu_{a}^{\nu}\mathbb{P}^{\nu,\pi}\left(A_{t}=a\right).$$

Definition 4.6. For every $t \in \mathbb{N}^+$, the total reward S_t after t time steps is given by $S_t = \sum_{k=1}^t X_k$.

Definition 4.7. For every $t \in \mathbb{N}^+$, the regret $R_t^{\nu,\pi}$ of policy π on ν after t time steps is given by

$$R_t^{\nu,\pi} = t\mu_*^{\nu} - \sum_{k=1}^t \mathbb{E}^{\nu,\pi} (X_k).$$

Definition 4.8. For every action $a \in \mathcal{A}$, the suboptimality gap is defined by $\Delta_a^{\nu} = \mu_*^{\nu} - \mu_a^{\nu}$, so that $\Delta_a^{\nu} \geq 0$.

Definition 4.9. The number of times $T_{t,a}^{\pi}: \Omega \to \{0,\ldots,t\}$ that policy π selects $a \in \mathcal{A}$ by time $t \in \mathbb{N}^+$ is given by

$$T_{t,a}^{\pi}(\omega) = \sum_{k=1}^{t} \mathbb{I}_{\{A_k = a\}}(\omega),$$

where $A_k = \pi_k(X_0, \dots, X_{k-1})$ for every $k \leq t$. Note that $\sum_a T_{t,a}^{\pi}(\omega) = t$ for every $\omega \in \Omega$.

Definition 4.10. The average reward $M_{t,a}^{\pi}:\Omega\to\mathbb{R}$ that policy π observes for $a\in\mathcal{A}$ by time $t\in\mathbb{N}^+$ is given by

$$M_{t,a}^{\pi}(\omega) = \frac{1}{T_{t,a}^{\pi}(\omega)} \sum_{k=1}^{t} X_k(\omega) \mathbb{I}_{\{A_k = a\}}(\omega)$$

whenever $T_{t,a}^{\pi}(\omega) > 0$, where $A_k = \pi_k(X_0, \dots, X_{k-1})$ for every $k \leq t$.

Theorem 4.2. For every $t \in \mathbb{N}^+$, the regret $R_t^{\nu,\pi}$ of policy π on ν after t time steps is given by

$$R_t^{\nu,\pi} = \sum \Delta_a^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right).$$

Proof. For every $t \in \mathbb{N}^+$, let $A_k = \pi_k(X_0, \dots, X_{k-1})$ for every $k \leq t$, so that $\mathbb{E}^{\nu,\pi}(T_{t,a}^{\pi}) = \sum_{k=1}^{t} \mathbb{P}^{\nu,\pi}(A_k = a)$ and

$$\sum_{a} \mathbb{E}^{\nu,\pi}(T_{t,a}^{\pi}) = \sum_{a} \sum_{k=1}^{t} \mathbb{P}^{\nu,\pi}(A_k = a) = \sum_{k=1}^{t} \sum_{a} \mathbb{P}^{\nu,\pi}(A_k = a) = t.$$

By the definition of the regret $R_t^{\nu,\pi}$ of policy π on ν after t time steps.

$$R_t^{\nu,\pi} = t\mu_*^{\nu} - \sum_{k=1}^t \mathbb{E}^{\nu,\pi} (X_k) = \sum_{k=1}^t \sum_a \mu_*^{\nu} \mathbb{P}^{\nu,\pi} (A_k = a) - \sum_{k=1}^t \sum_a \mu_a^{\nu} \mathbb{P}^{\nu,\pi} (A_k = a).$$

By rearranging terms and the definition of suboptimality gap.

$$R_t^{\nu,\pi} = \sum_{k=1}^t \sum_a (\mu_*^{\nu} - \mu_a^{\nu}) \mathbb{P}^{\nu,\pi} (A_k = a) = \sum_a \Delta_a^{\nu} \sum_{k=1}^t \mathbb{P}^{\nu,\pi} (A_k = a) = \sum_a \Delta_a^{\nu} \mathbb{E}^{\nu,\pi} (T_{t,a}^{\pi}).$$

Proposition 4.6. If $t \in \mathbb{N}^+$, then $R_t^{\nu,\pi} \geq 0$.

Proof. Since $\Delta_a^{\nu} \geq 0$ and $\mathbb{E}^{\nu,\pi}\left(T_{t,a}^{\pi}\right) \geq 0$ for every $a \in \mathcal{A}$ and $t \in \mathbb{N}^+$, the claim is a consequence of Theorem 4.2. \square

Proposition 4.7. Consider an action $a^* \in \mathcal{A}$ such that $\mu_{a^*}^{\nu} = \mu_*^{\nu}$. If $\pi_t = a^*$ for every $t \in \mathbb{N}^+$, then $R_t^{\nu,\pi} = 0$.

Proof. For every $t \in \mathbb{N}^+$, note that $T^{\pi}_{t,a} = 0$ for every $a \neq a^*$. Therefore,

$$R_t^{\nu,\pi} = \sum_a \Delta_a^{\nu} \mathbb{E}^{\nu,\pi}(T_{t,a}^{\pi}) = \Delta_{a^*}^{\nu} \mathbb{E}^{\nu,\pi}(T_{t,a^*}^{\pi}) = (\mu_*^{\nu} - \mu_{a^*}^{\nu}) \mathbb{E}^{\nu,\pi}(T_{t,a^*}^{\pi}) = 0.$$

Proposition 4.8. For every $t \in \mathbb{N}^+$, let $A_k = \pi_k(X_0, \dots, X_{k-1})$ for every $k \leq t$. If $R_t^{\nu, \pi} = 0$, then $\mu_{A_k}^{\nu} = \mu_*^{\nu}$ almost surely for every k < t.

Proof. For every $t \in \mathbb{N}^+$, by Theorem 4.2,

$$R_t^{\nu,\pi} = \sum_a \Delta_a^{\nu} \mathbb{E}^{\nu,\pi}(T_{t,a}^{\pi}) = \sum_a \Delta_a^{\nu} \sum_{k=1}^t \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{A_k=a\}} \right) = \sum_{k=1}^t \mathbb{E}^{\nu,\pi} \left(\sum_a \mathbb{I}_{\{A_k=a\}} \Delta_a^{\nu} \right) = \sum_{k=1}^t \mathbb{E}^{\nu,\pi} \left(\Delta_{A_k}^{\nu} \right).$$

Suppose that $\mathbb{P}^{\nu,\pi}\left(\mu_{A_k}^{\nu}=\mu_*^{\nu}\right)<1$ for some $k\leq t$, so that $\mathbb{P}^{\nu,\pi}\left(\mu_{A_k}^{\nu}<\mu_*^{\nu}\right)>0$ and $\mathbb{P}^{\nu,\pi}\left(\Delta_{A_k}^{\nu}>0\right)>0$. In that case, $\mathbb{E}^{\nu,\pi}\left(\Delta_{A_k}^{\nu}\right)>0$, so that $R_t^{\nu,\pi}>0$.

For convenience, let $R_0^{\nu,\pi} = 0$.

Proposition 4.9. If $R_t^{\nu,\pi} = o(t)$, then

$$\mu_*^{\nu} = \lim_{t \to \infty} \frac{1}{t} \sum_{k=1}^{t} \mathbb{E}^{\nu, \pi} \left(X_k \right).$$

Proof. Since $R^{\nu,\pi}: \mathbb{N} \to \mathbb{R}$ is asymptotically positive by assumption,

$$0 = \limsup_{t \to \infty} \frac{R_t^{\nu, \pi}}{t} \ge \liminf_{t \to \infty} \frac{R_t^{\nu, \pi}}{t} \ge 0,$$

so that

$$0 = \lim_{t \to \infty} \frac{R_t^{\nu,\pi}}{t} = \lim_{t \to \infty} \mu_*^{\nu} - \frac{1}{t} \sum_{k=1}^t \mathbb{E}^{\nu,\pi} \left(X_k \right) = \mu_*^{\nu} - \lim_{t \to \infty} \frac{1}{t} \sum_{k=1}^t \mathbb{E}^{\nu,\pi} \left(X_k \right).$$

Definition 4.11. The number of times $T_{t,*}^{\nu,\pi}:\Omega\to\{0,\ldots,t\}$ that policy π selects an optimal action on the stochastic bandit ν by time step $t\in\mathbb{N}^+$ is given by

$$T_{t,*}^{\nu,\pi}(\omega) = \sum_{k=1}^t \mathbb{I}_{\{\mu_{A_k}^{\nu} = \mu_*^{\nu}\}}(\omega) = \sum_{k=1}^t \mathbb{I}_{\{\Delta_{A_k}^{\nu} = 0\}}(\omega),$$

where $A_k = \pi_k(X_0, \dots, X_{k-1})$ for every $k \leq t$.

Proposition 4.10. The number of times $T_{t,*}^{\nu,\pi}:\Omega\to\{0,\ldots,t\}$ that policy π selects an optimal action on the stochastic bandit ν by time step $t\in\mathbb{N}^+$ is given by

$$T_{t,*}^{\nu,\pi}(\omega) = \sum_{a|\Delta_a^{\nu}=0} T_{t,a}^{\pi}(\omega).$$

Proof. For every $t \in \mathbb{N}^+$, let $A_k = \pi_k(X_0, \dots, X_{k-1})$ for every $k \leq t$. In that case,

$$\{\Delta_{A_k}^{\nu} = 0\} = \bigcup_a \{A_k = a \text{ and } \Delta_a^{\nu} = 0\} = \bigcup_{a \mid \Delta_a^{\nu} = 0} \{A_k = a\},$$

so that

$$T_{t,*}^{\nu,\pi}(\omega) = \sum_{k=1}^t \mathbb{I}_{\{\Delta_{A_k}^{\nu} = 0\}}(\omega) = \sum_{k=1}^t \sum_{a \mid \Delta_a^{\nu} = 0} \mathbb{I}_{\{A_k = a\}}(\omega) = \sum_{a \mid \Delta_a^{\nu} = 0} \sum_{k=1}^t \mathbb{I}_{\{A_k = a\}}(\omega) = \sum_{a \mid \Delta_a^{\nu} = 0} T_{t,a}^{\pi}(\omega).$$

Proposition 4.11. If the set of actions \mathcal{A} is finite and $R_t^{\nu,\pi} = o(t)$, then

$$\lim_{t \to \infty} \frac{\mathbb{E}^{\nu,\pi} \left(T_{t,*}^{\nu,\pi} \right)}{t} = 1.$$

Proof. By Theorem 4.2,

$$0 = \lim_{t \to \infty} \frac{R_t^{\nu,\pi}}{t} = \lim_{t \to \infty} \frac{\sum_a \Delta_a^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right)}{t} = \lim_{t \to \infty} \sum_a \Delta_a^{\nu} \frac{\mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right)}{t} = \sum_a \Delta_a^{\nu} \lim_{t \to \infty} \frac{\mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right)}{t},$$

so that $\lim_{t\to\infty} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi}\right)/t = 0$ whenever $\Delta_a^{\nu} > 0$. Therefore,

$$0 = \sum_{a \mid \Delta_x^{\nu} > 0} \lim_{t \to \infty} \frac{\mathbb{E}^{\nu, \pi} \left(T_{t, a}^{\pi} \right)}{t} = \lim_{t \to \infty} \sum_{a \mid \Delta_x^{\nu} > 0} \frac{\mathbb{E}^{\nu, \pi} \left(T_{t, a}^{\pi} \right)}{t}.$$

For every $t \in \mathbb{N}^+$, recall that $\sum_a T_{t,a}^{\pi} = t$. By Proposition 4.10,

$$t = \sum_{a} \mathbb{E}^{\nu,\pi}(T^{\pi}_{t,a}) = \sum_{a \mid \Delta^{\nu}_{a} = 0} \mathbb{E}^{\nu,\pi}(T^{\pi}_{t,a}) + \sum_{a \mid \Delta^{\nu}_{a} > 0} \mathbb{E}^{\nu,\pi}(T^{\pi}_{t,a}) = \mathbb{E}^{\nu,\pi}\left(T^{\nu,\pi}_{t,*}\right) + \sum_{a \mid \Delta^{\nu}_{a} > 0} \mathbb{E}^{\nu,\pi}(T^{\pi}_{t,a}),$$

so that

$$\sum_{a\mid\Delta^{\nu}>0} \frac{\mathbb{E}^{\nu,\pi}\left(T_{t,a}^{\pi}\right)}{t} = 1 - \frac{\mathbb{E}^{\nu,\pi}\left(T_{t,*}^{\nu,\pi}\right)}{t}.$$

Therefore, considering a previous equation,

$$0 = \lim_{t \to \infty} 1 - \frac{\mathbb{E}^{\nu, \pi} \left(T_{t, *}^{\nu, \pi} \right)}{t} = 1 - \lim_{t \to \infty} \frac{\mathbb{E}^{\nu, \pi} \left(T_{t, *}^{\nu, \pi} \right)}{t}.$$

Since $\mathbb{E}^{\nu,\pi}\left(T_{t,*}^{\nu,\pi}\right) > 0$ for some $t \in \mathbb{N}^+$ and $\mathbb{E}^{\nu,\pi}\left(T_{t,*}^{\nu,\pi}\right) \leq \mathbb{E}^{\nu,\pi}\left(T_{t,*}^{\nu,\pi}\right)$, note that $\mathbb{E}^{\nu,\pi}\left(T_{t,*}^{\nu,\pi}\right) = \Theta(t)$.

Definition 4.12. For a set of actions \mathcal{A} , an environment class \mathcal{E} is a set of stochastic bandits for \mathcal{A} .

Definition 4.13. For a set of actions \mathcal{A} and an environment class \mathcal{E} , consider a probability triple $(\mathcal{E}, \mathcal{G}, \mathbb{Q})$ such that $R_t^{\cdot,\pi}: \mathcal{E} \to [0,\infty]$ is \mathcal{G} -measurable for every policy π and time step $t \in \mathbb{N}^+$. The Bayesian regret B_t^{π} of policy π after $t \in \mathbb{N}^+$ time steps is given by

$$B_t^{\pi} = \int_{\mathcal{E}} R_t^{\nu,\pi} Q(d\nu).$$

Definition 4.14. The stochastic bandit $\nu = (P_a \mid a \in \mathcal{A})$ is σ -subgaussian if, for every $a \in \mathcal{A}$, the random variable Z_a on the probability triple $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_a)$ given by $Z_a(x) = x - \mu_a^{\nu}$ is σ -subgaussian. Note that $\mathbb{E}_a(Z_a) = 0$.

5 Explore-then-commit

Definition 5.1. If $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$ is a sequence of real numbers, then $\arg \max_n x_n$ is given by

$$\arg\max_{n} x_n = \inf(\{m \in \mathbb{N} \mid x_m = \sup_{n} x_n\}).$$

Note that $\arg \max_n x_n \in \mathbb{N} \cup \{\infty\}$, since $\inf(\emptyset) = \infty$.

Consider a measurable space (Ω, \mathcal{F}) and a stochastic process $(Y_n : \Omega \to \mathbb{R} \mid n \in \mathbb{N})$.

Definition 5.2. The function $\arg \max_n Y_n : \Omega \to \mathbb{N} \cup \{\infty\}$ is given by

$$\left(\arg\max_{n} Y_{n}\right)(\omega) = \arg\max_{n} Y_{n}(\omega).$$

Proposition 5.1. The function $\arg \max_n Y_n : \Omega \to \mathbb{N} \cup \{\infty\}$ is \mathcal{F} -measurable.

Proof. Recall that the function $\sup_n Y_n$ is \mathcal{F} -measurable, so that the function $Z_m: \Omega \to \mathbb{N} \cup \{\infty\}$ given by

$$Z_m(\omega) = m \mathbb{I}_{\{Y_m = \sup_n Y_n\}}(\omega) + \infty \mathbb{I}_{\{Y_m \neq \sup_n Y_n\}}(\omega) = \begin{cases} m, & \text{if } Y_m(\omega) = \sup_n Y_n(\omega), \\ \infty, & \text{if } Y_m(\omega) \neq \sup_n Y_n(\omega) \end{cases}$$

is \mathcal{F} -measurable for every $m \in \mathbb{N}$. Furthermore, recall that the function $\inf_m Z_m$ is \mathcal{F} -measurable and note that

$$\inf_{m} Z_{m}(\omega) = \inf\left(\left\{m \in \mathbb{N} \mid Y_{m}(\omega) = \sup_{n} Y_{n}(\omega)\right\}\right) = \arg\max_{n} Y_{n}(\omega) = \left(\arg\max_{n} Y_{n}\right)(\omega).$$

Consider a number of actions $n \in \mathbb{N}^+$, a set of actions $\mathcal{A} = \{1, \dots, n\}$, a stochastic bandit $\nu = (P_a \mid a \in \mathcal{A})$, a policy $\pi = (\pi_t \mid t \in \mathbb{N}^+)$, and let $(\Omega, \mathcal{F}, \mathbb{P}^{\nu, \pi})$ be a canonical triple for the stochastic bandit ν under the policy π .

Definition 5.3. A policy π implements explore-then-commit with $m \in \mathbb{N}^+$ exploration steps if, for every $t \in \mathbb{N}^+$,

$$\pi_t(X_0, \dots, X_{t-1}) = \begin{cases} ((t-1) \bmod n) + 1, & \text{if } t \le mn, \\ \arg \max_a M_{mn,a}^{\pi}, & \text{if } t > mn. \end{cases}$$

Note that $M_{t,a}^{\pi}$ is well-defined for every $t \geq n$ and $a \in \mathcal{A}$.

Proposition 5.2. If the policy π implements explore-then-commit with $m \in \mathbb{N}^+$ exploration steps and $t \leq mn$, then $\mathbb{P}^{\nu,\pi}(X_t \in B) = P_{a_t}(B)$ for every $B \in \mathcal{B}(\mathbb{R})$, where $a_t = ((t-1) \mod n) + 1$.

Proof. For every $t \in \mathbb{N}^+$ such that $t \leq mn$, let $A_t = \pi_t(X_0, \dots, X_{t-1})$, so that $A_t = a_t$. For every $B \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{P}^{\nu,\pi}(X_t \in B) = \mathbb{E}^{\nu,\pi}\left(\mathbb{E}^{\nu,\pi}\left(\mathbb{E}_{\{X_t \in B\}} \mid X_0, \dots, X_{t-1}\right)\right) = \mathbb{E}^{\nu,\pi}\left(P_{A_t}(B)\right) = \mathbb{E}^{\nu,\pi}\left(P_{a_t}(B)\right) = P_{a_t}(B).$$

Proposition 5.3. If the policy π implements explore-then-commit with $m \in \mathbb{N}^+$ exploration steps, then the random variables X_0, X_1, \ldots, X_{mn} are independent in $(\Omega, \mathcal{F}, \mathbb{P}^{\nu, \pi})$.

Proof. Note that X_0 and X_1 are independent because $\sigma(X_0) = \{\emptyset, \Omega\}$. Suppose that X_0, X_1, \dots, X_t are independent for some $t \in \mathbb{N}^+$ such that t < mn. We will show that X_0, X_1, \dots, X_{t+1} are independent.

For every $B_0, B_1, \ldots, B_{t+1} \in \mathcal{B}(\mathbb{R})$, by taking out what is known,

$$\mathbb{P}^{\nu,\pi} \left(\bigcap_{k=0}^{t+1} \{ X_k \in B_k \} \right) = \mathbb{E}^{\nu,\pi} \left(\prod_{k=0}^{t+1} \mathbb{I}_{\{X_k \in B_k\}} \right) = \mathbb{E}^{\nu,\pi} \left(\prod_{k=0}^{t} \mathbb{I}_{\{X_k \in B_k\}} \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{X_{t+1} \in B_{t+1}\}} \mid X_0, \dots, X_t \right) \right).$$

Let $a_{t+1} = (t \mod n) + 1$, so that $\pi_{t+1}(X_0, \dots, X_t) = a_{t+1}$. In that case,

$$\mathbb{P}^{\nu,\pi} \left(\bigcap_{k=0}^{t+1} \{ X_k \in B_k \} \right) = \mathbb{E}^{\nu,\pi} \left(\left(\prod_{k=0}^t \mathbb{I}_{\{X_k \in B_k\}} \right) P_{a_{t+1}}(B_{t+1}) \right) = \mathbb{E}^{\nu,\pi} \left(\prod_{k=0}^t \mathbb{I}_{\{X_k \in B_k\}} \right) P_{a_{t+1}}(B_{t+1}).$$

By Proposition 5.2 and because X_0, X_1, \ldots, X_t are independent by assumption,

$$\mathbb{P}^{\nu,\pi} \left(\bigcap_{k=0}^{t+1} \left\{ X_k \in B_k \right\} \right) = \mathbb{P}^{\nu,\pi} \left(\bigcap_{k=0}^{t} \left\{ X_k \in B_k \right\} \right) \mathbb{P}^{\nu,\pi} \left(X_{t+1} \in B_{t+1} \right) = \prod_{k=0}^{t+1} \mathbb{P}^{\nu,\pi} \left(X_k \in B_k \right).$$

Proposition 5.4. If the policy π implements explore-then-commit with $m \in \mathbb{N}^+$ exploration steps and ν is a 1-subgaussian stochastic bandit, then $X_t - \mu_{a_t}^{\nu}$ is 1-subgaussian for every $t \leq mn$, where $a_t = ((t-1) \mod n) + 1$.

Proof. For every $a \in \mathcal{A}$, recall that the random variable Z_a on the probability triple $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_a)$ is 1-subgaussian, where $Z_a(x) = x - \mu_a^{\nu}$. By Proposition 5.2, the law of X_t is P_{a_t} for every $t \in \{1, \dots, mn\}$. For every $\lambda \in \mathbb{R}$,

$$\mathbb{E}^{\nu,\pi}\left(e^{\lambda\left(X_t-\mu_{a_t}^{\nu}\right)}\right)=\int_{\mathbb{R}}e^{\lambda\left(x_t-\mu_{a_t}^{\nu}\right)}P_{a_t}(dx_t)=\int_{\mathbb{R}}e^{\lambda Z_{a_t}(x_t)}P_{a_t}(dx_t)=\mathbb{E}_{a_t}\left(e^{\lambda Z_{a_t}}\right)\leq e^{\frac{\lambda^2}{2}}.$$

Theorem 5.1. If the policy π implements explore-then-commit with $m \in \mathbb{N}^+$ exploration steps and ν is a 1-subgaussian stochastic bandit, for every $t \in \mathbb{N}^+$ such that $t \geq mn$,

$$R_t^{\nu,\pi} \le \left(m \sum_{a=1}^n \Delta_a^{\nu} \right) + (t - mn) \sum_{a=1}^n \Delta_a^{\nu} e^{-\frac{m(\Delta_a^{\nu})^2}{4}}.$$

Proof. For every $k \in \mathbb{N}^+$, let $A_k = \pi_k(X_0, \dots, X_{k-1})$. For every $a \in \mathcal{A}$,

$$T_{mn,a}^{\pi}(\omega) = \sum_{k=1}^{mn} \mathbb{I}_{\{A_k = a\}}(\omega) = \sum_{k=1}^{mn} \mathbb{I}_{\{((k-1) \bmod n) + 1 = a\}}(\omega) = m.$$

Theorem 4.2 completes the proof for the case where t = mn, since (t - mn) = 0 and

$$R_{mn}^{\nu,\pi} = \sum_{a=1}^{n} \Delta_a^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{mn,a}^{\pi} \right) = m \sum_{a=1}^{n} \Delta_a^{\nu}.$$

Consider a time step $t \in \mathbb{N}^+$ such that t > mn. In that case,

$$T_{t,a}^{\pi}(\omega) = \sum_{k=1}^{mn} \mathbb{I}_{\{A_k = a\}}(\omega) + \sum_{k=mn+1}^{t} \mathbb{I}_{\{A_k = a\}}(\omega) = m + (t - mn) \mathbb{I}_{\{a = \arg\max_{a'} M_{mn,a'}^{\pi}\}}(\omega).$$

Because ties are possible, for every $a \in \mathcal{A}$ and t > mn,

$$\mathbb{E}^{\nu,\pi}(T_{t,a}^{\pi}) = m + (t - mn)\mathbb{P}^{\nu,\pi}\left(a = \arg\max_{a'} M_{mn,a'}^{\pi}\right) \le m + (t - mn)\mathbb{P}^{\nu,\pi}\left(M_{mn,a}^{\pi} \ge \sup_{a'} M_{mn,a'}^{\pi}\right).$$

Let a^* denote an action such that $\mu_{a^*}^{\nu} = \mu_*^{\nu}$. For every $a \in \mathcal{A}$ and t > mn,

$$\mathbb{P}^{\nu,\pi}\left(M^\pi_{mn,a} \geq \sup_{a'} M^\pi_{mn,a'}\right) = \mathbb{P}^{\nu,\pi}\left(\bigcap_{a'} \{M^\pi_{mn,a} \geq M^\pi_{mn,a'}\}\right) \leq \mathbb{P}^{\nu,\pi}\left(M^\pi_{mn,a} \geq M^\pi_{mn,a^*}\right).$$

For every $a \in \mathcal{A}$ and t > mn, by adding Δ_a^{ν} to both sides of the inequality that defines an event,

$$\mathbb{P}^{\nu,\pi} \left(M_{mn,a}^{\pi} \geq \sup_{a'} M_{mn,a'}^{\pi} \right) \leq \mathbb{P}^{\nu,\pi} \left(M_{mn,a}^{\pi} - M_{mn,a^*}^{\pi} \geq 0 \right) = \mathbb{P}^{\nu,\pi} \left(M_{mn,a}^{\pi} - M_{mn,a^*}^{\pi} + (\mu_{a^*}^{\nu} - \mu_a^{\nu}) \geq \Delta_a^{\nu} \right),$$

so that

$$\mathbb{P}^{\nu,\pi} \left(M_{mn,a}^{\pi} \ge \sup_{a'} M_{mn,a'}^{\pi} \right) \le \mathbb{P}^{\nu,\pi} \left(\left(M_{mn,a}^{\pi} - \mu_a^{\nu} \right) - \left(M_{mn,a^*}^{\pi} - \mu_{a^*}^{\nu} \right) \ge \Delta_a^{\nu} \right).$$

For every $a \in \mathcal{A}$, by the definition of the average reward $M_{mn,a}^{\pi}$ that policy π observes for a by time mn,

$$M_{mn,a}^{\pi}(\omega) - \mu_a^{\nu} = \left(\frac{1}{m} \sum_{i=0}^{m-1} X_{a+in}(\omega)\right) - \frac{1}{m} \sum_{i=0}^{m-1} \mu_a^{\nu} = \frac{1}{m} \sum_{i=0}^{m-1} \left(X_{a+in}(\omega) - \mu_a^{\nu}\right).$$

Proposition 5.4 guarantees that $X_{a+in} - \mu_a^{\nu}$ is 1-subgaussian for every $a \in \{1, \dots, n\}$ and $i \in \{0, \dots, m-1\}$, since $((a+in-1) \bmod n)+1=a$. Proposition 5.3 guarantees that $X_a, X_{a+n}, \dots, X_{a+(m-1)n}$ are independent. Therefore, $\sum_{i=0}^{m-1} (X_{a+in} - \mu_a^{\nu})$ is \sqrt{m} -subgaussian, which implies that $M_{mn,a}^{\pi} - \mu_a^{\nu}$ is $1/\sqrt{m}$ -subgaussian. Since this applies for every $a \in \mathcal{A}$, we also conclude that $M_{mn,a^*}^{\pi} - \mu_{a^*}^{\nu}$ is $1/\sqrt{m}$ -subgaussian. For every $a \in \mathcal{A}$, note that $M_{mn,a}^{\pi} - \mu_a^{\nu}$ is $\sigma(X_a, X_{a+n}, \dots, X_{a+(m-1)n})$ -measurable. By Proposition 5.3, if $a \neq a^*$, then $(M_{mn,a}^{\pi} - \mu_a^{\nu})$ and $-(M_{mn,a^*}^{\pi} - \mu_{a^*}^{\nu})$ are independent, which further implies that $(M_{mn,a}^{\pi} - \mu_a^{\nu}) - (M_{mn,a^*}^{\pi} - \mu_{a^*}^{\nu})$ is $\sqrt{2/m}$ -subgaussian. If $a = a^*$, then $(M_{mn,a}^{\pi} - \mu_a^{\nu}) - (M_{mn,a^*}^{\pi} - \mu_a^{\nu}) - (M_{mn,a^*}^{\pi} - \mu_a^{\nu}) = 0$, and therefore also $\sqrt{2/m}$ -subgaussian. By Theorem 3.1, since $\Delta_a^{\nu} \geq 0$,

$$\mathbb{P}^{\nu,\pi}\left(M^\pi_{mn,a} \geq \sup_{a'} M^\pi_{mn,a'}\right) \leq e^{-\frac{(\Delta^\nu_a)^2}{2\left(\sqrt{2/m}\right)^2}} = e^{-\frac{m(\Delta^\nu_a)^2}{4}}.$$

By returning to a previous inequality, for every $a \in \mathcal{A}$ and t > mn,

$$\mathbb{E}^{\nu,\pi}(T_{t,a}^{\pi}) \le m + (t - mn)e^{-\frac{m(\Delta_a^{\nu})^2}{4}}.$$

For every t > mn, Theorem 4.2 once again completes the proof, since

$$R_t^{\nu,\pi} = \sum_{a=1}^n \Delta_a^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right) \leq \sum_{a=1}^n \Delta_a^{\nu} \left(m + (t-mn)e^{-\frac{m(\Delta_a^{\nu})^2}{4}} \right) = \left(m \sum_{a=1}^n \Delta_a^{\nu} \right) + (t-mn) \sum_{a=1}^n \Delta_a^{\nu} e^{-\frac{m(\Delta_a^{\nu})^2}{4}}.$$

In order to minimize the regret, the previous result suggests that the exploration factor m should balance between the first term (non-decreasing with respect to m) and the second term (non-increasing with respect to m). This is a specific instance of the so-called exploration-exploitation trade-off.

Proposition 5.5. Consider a 1-subgaussian stochastic bandit $\nu = (P_1, P_2)$. Let $\Delta = \max(\Delta_1^{\nu}, \Delta_2^{\nu})$, and suppose that $\Delta > 0$. For some $t \in \mathbb{N}^+$, let m = 1 if $t \leq 4/\Delta^2$ and let $m = \left\lceil \frac{4}{\Delta^2} \log\left(\frac{t\Delta^2}{4}\right) \right\rceil$ if $t > 4/\Delta^2$. If π is a policy that implements explore-then-commit with m exploration steps, then

$$R_t^{\nu,\pi} \le \Delta + \frac{4}{\sqrt{e}}\sqrt{t}.$$

Proof. First, consider some $t \in \mathbb{N}^+$ such that $t \leq 4/\Delta^2$, so that m = 1. By Theorem 4.2, since $\Delta \leq 2/\sqrt{t}$,

$$R_t^{\nu,\pi} = \sum_{a=1}^2 \Delta_a^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right) \leq \Delta \sum_{a=1}^2 \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right) = \Delta \mathbb{E}^{\nu,\pi} \left(\sum_{a=1}^2 T_{t,a}^{\pi} \right) = t\Delta \leq t \frac{2}{\sqrt{t}} = 2\sqrt{t}.$$

Second, consider some $t \in \mathbb{N}^+$ such that $t > 4/\Delta^2$, so that $m = \left\lceil \frac{4}{\Delta^2} \log \left(\frac{t\Delta^2}{4} \right) \right\rceil$. Note that $m \ge 1$ and

$$m\Delta = \Delta \left\lceil \frac{4}{\Delta^2} \log \left(\frac{t\Delta^2}{4} \right) \right\rceil \le \Delta \left(1 + \frac{4}{\Delta^2} \log \left(\frac{t\Delta^2}{4} \right) \right) = \Delta + \frac{4}{\Delta} \log \left(\frac{t\Delta^2}{4} \right).$$

Consider the case where t < 2m. By Theorem 4.2,

$$R_t^{\nu,\pi} = \Delta_1^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{t,1}^{\pi} \right) + \Delta_2^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{t,2}^{\pi} \right) \leq m \Delta.$$

Now consider the case where $t \geq 2m$. By Theorem 5.1,

$$R_t^{\nu,\pi} \le m\Delta + (t-2m)\Delta e^{-\frac{m\Delta^2}{4}} \le m\Delta + t\Delta e^{-\frac{m\Delta^2}{4}}$$

Because the function $f:(0,\infty)\to (0,\infty)$ given by $f(x)=t\Delta e^{-\frac{x\Delta^2}{4}}$ is decreasing,

$$t\Delta e^{-\frac{m\Delta^2}{4}} = f(m) = f\left(\left\lceil\frac{4}{\Delta^2}\log\left(\frac{t\Delta^2}{4}\right)\right\rceil\right) \leq f\left(\frac{4}{\Delta^2}\log\left(\frac{t\Delta^2}{4}\right)\right) = t\Delta e^{-\log\left(\frac{t\Delta^2}{4}\right)} = \frac{4}{\Delta}.$$

Therefore, for every $t \in \mathbb{N}^+$ such that $t > 4/\Delta^2$,

$$R_t^{\nu,\pi} \le m\Delta + t\Delta e^{-\frac{m\Delta^2}{4}} \le \Delta + \frac{4}{\Delta} \log\left(\frac{t\Delta^2}{4}\right) + \frac{4}{\Delta}.$$

Consider the function $g:(0,\infty)\to\mathbb{R}$ given by $g(x)=x\log(4t/x^2)+x$, so that $g(4/\Delta)=(4/\Delta)\log\left(t\Delta^2/4\right)+4/\Delta$. Note that $g(x)=x\log(4t)-2x\log(x)+x$, $g'(x)=\log(4t)-2\log(x)-1$, and g''(x)=-2/x. The second derivative test guarantees that $g(x)\leq g\left(2\sqrt{t}/\sqrt{e}\right)=4\sqrt{t}/\sqrt{e}$ for every $x\in(0,\infty)$. Therefore, for every $t\in\mathbb{N}^+$,

$$R_t^{\nu,\pi} \le \Delta + \frac{4}{\sqrt{e}}\sqrt{t}.$$

The previous result suggests a specific number of exploration steps for a policy that implements explore-thencommit. However, this policy is only suitable for a fixed horizon and a fixed suboptimality gap.

6 Restarts

Consider a number of actions $n \in \mathbb{N}^+$, a set of actions $\mathcal{A} = \{1, \dots, n\}$, a stochastic bandit $\nu = (P_a \mid a \in \mathcal{A})$, a policy $\pi = (\pi_t \mid t \in \mathbb{N}^+)$, and let $(\Omega, \mathcal{F}, \mathbb{P}^{\nu, \pi})$ be a canonical triple for the stochastic bandit ν under the policy π .

Definition 6.1. A policy π restarts to the policy π' after $t \in \mathbb{N}$ steps if, for all $k \in \mathbb{N}^+$ and $(x_0, \dots, x_{t+k-1}) \in \mathbb{R}^{t+k}$,

$$\pi_{t+k}(x_0,\ldots,x_{t+k-1}) = \pi'_k(0,x_{t+1},\ldots,x_{t+k-1}).$$

Proposition 6.1. If a policy π restarts to the policy π' after $t \in \mathbb{N}$ steps, then

$$\mathbb{P}^{\nu,\pi}(X_{t+1} \in B_1, \dots, X_{t+k} \in B_k) = \mathbb{P}^{\nu,\pi'}(X_1 \in B_1, \dots, X_k \in B_k)$$

for every $k \in \mathbb{N}^+$ and $B_1, \ldots, B_k \in \mathcal{B}(\mathbb{R})$.

Proof. Consider the case where k = 1. For every $B_1 \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{P}^{\nu,\pi} \left(X_{t+1} \in B_1 \right) = \mathbb{E}^{\nu,\pi} \left(\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{X_{t+1} \in B_1\}} \mid X_0, \dots X_t \right) \right) = \mathbb{E}^{\nu,\pi} \left(P_{A_{t+1}}(B_1) \right),$$

where $A_{t+1} = \pi_{t+1}(X_0, \dots, X_t) = \pi'_1(0)$. Because A_{t+1} is a constant function,

$$\mathbb{P}^{\nu,\pi}\left(X_{t+1} \in B_1\right) = P_{\pi_1'(0)}(B_1) = \mathbb{E}^{\nu,\pi'}\left(P_{\pi_1'(0)}(B_1)\right) = \mathbb{E}^{\nu,\pi'}\left(P_{\pi_1'(X_0)}(B_1)\right) = \mathbb{P}^{\nu,\pi'}\left(X_1 \in B_1\right).$$

In order to employ induction, suppose that there is a $k \in \mathbb{N}^+$ such that, for every $B_1, \ldots, B_k \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{P}^{\nu,\pi} (X_{t+1} \in B_1, \dots, X_{t+k} \in B_k) = \mathbb{P}^{\nu,\pi'} (X_1 \in B_1, \dots, X_k \in B_k).$$

In that case, there is a probability measure $\mathcal{L}:\mathcal{B}(\mathbb{R}^k)\to[0,1]$ on the measurable space $(\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ such that

$$\mathcal{L}(B_1 \times \dots \times B_k) = \mathbb{P}^{\nu,\pi} (X_{t+1} \in B_1, \dots, X_{t+k} \in B_k) = \mathbb{P}^{\nu,\pi'} (X_1 \in B_1, \dots, X_k \in B_k)$$

for every $B_1, \ldots, B_k \in \mathcal{B}(\mathbb{R})$, so that \mathcal{L} is the joint law of $(X_{t+1}, \ldots, X_{t+k})$ and the joint law of (X_1, \ldots, X_k) . For every $B_1, \ldots, B_{k+1} \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{P}^{\nu,\pi}\left(X_{t+1} \in B_1, \dots, X_{t+k+1} \in B_{k+1}\right) = \mathbb{E}^{\nu,\pi}\left(\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{X_{t+1} \in B_1, \dots, X_{t+k} \in B_k\}}\mathbb{I}_{\{X_{t+k+1} \in B_{k+1}\}} \mid X_0, \dots, X_{t+k}\right)\right),$$

$$\mathbb{P}^{\nu,\pi'}\left(X_1 \in B_1, \dots, X_{k+1} \in B_{k+1}\right) = \mathbb{E}^{\nu,\pi'}\left(\mathbb{E}^{\nu,\pi'}\left(\mathbb{I}_{\{X_1 \in B_1, \dots, X_k \in B_k\}}\mathbb{I}_{\{X_{k+1} \in B_{k+1}\}} \mid X_0, \dots, X_k\right)\right).$$

By taking out what is known,

$$\mathbb{P}^{\nu,\pi} \left(X_{t+1} \in B_1, \dots, X_{t+k+1} \in B_{k+1} \right) = \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{X_{t+1} \in B_1, \dots, X_{t+k} \in B_k\}} P_{A_{t+k+1}}(B_{k+1}) \right),$$

$$\mathbb{P}^{\nu,\pi'} \left(X_1 \in B_1, \dots, X_{k+1} \in B_{k+1} \right) = \mathbb{E}^{\nu,\pi'} \left(\mathbb{I}_{\{X_1 \in B_1, \dots, X_k \in B_k\}} P_{A'_{k+1}}(B_{k+1}) \right),$$

where $A_{t+k+1} = \pi_{t+k+1}(X_0, \dots, X_{t+k})$ and $A'_{k+1} = \pi'_{k+1}(0, X_1, \dots, X_k)$. Since $A_{t+k+1} = \pi'_{k+1}(0, X_{t+1}, \dots, X_{t+k})$,

$$\mathbb{P}^{\nu,\pi} (X_{t+1} \in B_1, \dots, X_{t+k+1} \in B_{k+1}) = \mathbb{E}^{\nu,\pi} (f(X_{t+1}, \dots, X_{t+k})),$$
$$\mathbb{P}^{\nu,\pi'} (X_1 \in B_1, \dots, X_{k+1} \in B_{k+1}) = \mathbb{E}^{\nu,\pi'} (f(X_1, \dots, X_k)),$$

where the function $f: \mathbb{R}^k \to [0,1]$ is given by

$$f(x) = \left(\prod_{i=1}^{k} \mathbb{I}_{B_i}(x_i)\right) P_{\pi'_{k+1}(0,x_1,\dots,x_k)}(B_{k+1}).$$

Since \mathcal{L} is the joint law of $(X_{t+1}, \ldots, X_{t+k})$ and the joint law of (X_1, \ldots, X_k) ,

$$\mathbb{P}^{\nu,\pi}\left(X_{t+1} \in B_1, \dots, X_{t+k+1} \in B_{k+1}\right) = \int_{\mathbb{R}^k} f(x)\mathcal{L}(dx) = \mathbb{P}^{\nu,\pi'}\left(X_1 \in B_1, \dots, X_{k+1} \in B_{k+1}\right).$$

Proposition 6.2. If a policy π restarts to the policy π' after $t \in \mathbb{N}^+$ steps, for every $h \in \mathbb{N}^+$,

$$R_{t+h}^{\nu,\pi} = R_t^{\nu,\pi} + R_h^{\nu,\pi'}$$
.

Proof. For every $h \in \mathbb{N}^+$, by definition of the regret $R_{t+h}^{\nu,\pi}$,

$$R_{t+h}^{\nu,\pi} = (t+h)\mu_*^{\nu} - \sum_{k=1}^{t+h} \mathbb{E}^{\nu,\pi}(X_k) = \left(t\mu_*^{\nu} - \sum_{k=1}^{t} \mathbb{E}^{\nu,\pi}(X_k)\right) + \left(h\mu_*^{\nu} - \sum_{k=t+1}^{t+h} \mathbb{E}^{\nu,\pi}(X_k)\right).$$

By definition of the regret $R_t^{\nu,\pi}$ and changing the indices of the second summation,

$$R_{t+h}^{\nu,\pi} = R_t^{\nu,\pi} + \left(h\mu_*^{\nu} - \sum_{k=1}^h \mathbb{E}^{\nu,\pi}(X_{t+k})\right).$$

By Proposition 6.1, we know that $\mathbb{P}^{\nu,\pi}(X_{t+k} \in B) = \mathbb{P}^{\nu,\pi'}(X_k \in B)$ for every $k \in \mathbb{N}^+$ and $B \in \mathcal{B}(\mathbb{R})$. Therefore, $\mathbb{E}^{\nu,\pi}(X_{t+k}) = \mathbb{E}^{\nu,\pi'}(X_k)$ for every $k \in \mathbb{N}^+$ and

$$R_{t+h}^{\nu,\pi} = R_t^{\nu,\pi} + \left(h\mu_*^{\nu} - \sum_{k=1}^h \mathbb{E}^{\nu,\pi'}(X_k)\right) = R_t^{\nu,\pi} + R_h^{\nu,\pi'}.$$

Definition 6.2. Consider a sequence of policies $(\pi^{(k)} \mid k \in \mathbb{N}^+)$ and a sequence of positive natural numbers $(h_k \in \mathbb{N}^+ \mid k \in \mathbb{N}^+)$. For every $k \in \mathbb{N}^+$, suppose that the policy $\pi^{(k)}$ restarts to the policy $\pi^{(k+1)}$ after h_k steps. If $\pi = \pi^{(1)}$, we say that policy π restarts to the sequence of policies $(\pi^{(k)} \mid k \in \mathbb{N}^+)$ given the sequence of relative steps $(h_k \mid k \in \mathbb{N}^+)$.

Proposition 6.3. If the policy π restarts to the sequence of policies $(\pi^{(k)} \mid k \in \mathbb{N}^+)$ given the sequence of relative steps $(h_k \in \mathbb{N}^+ \mid k \in \mathbb{N}^+)$, for every $l \in \mathbb{N}^+$,

$$R_{\sum_{k=1}^{l} h_k}^{\nu, \pi} = \sum_{k=1}^{l} R_{h_k}^{\nu, \pi^{(k)}}.$$

Proof. If l = 1, then $R_{h_1}^{\nu,\pi} = R_{h_1}^{\nu,\pi^{(1)}}$. By Proposition 6.2, if l > 1, then

$$R_{\sum_{k=1}^{l}h_{k}}^{\nu,\pi} = R_{\sum_{k=1}^{l}h_{k}}^{\nu,\pi^{(1)}} = R_{h_{1}}^{\nu,\pi^{(1)}} + R_{\sum_{k=2}^{l}h_{k}}^{\nu,\pi^{(2)}} = \dots = \sum_{k=1}^{l} R_{h_{k}}^{\nu,\pi^{(k)}}.$$

Proposition 6.4. If the policy π restarts to the sequence of policies $(\pi^{(k)} \mid k \in \mathbb{N}^+)$ given the sequence of relative steps $(h_k \in \mathbb{N}^+ \mid k \in \mathbb{N}^+)$ and there is a function $f: \mathbb{N}^+ \to [0, \infty)$ such that $R_{h_k}^{\nu, \pi^{(k)}} \leq f(h_k)$ for every $k \in \mathbb{N}^+$, then

$$R_t^{\nu,\pi} \le \sum_{k=1}^{p_t} f(h_k)$$

for every $t \in \mathbb{N}^+$, where $p_t = \min\{l \in \mathbb{N}^+ \mid \sum_{k=1}^l h_k \ge t\}$ is the number of restarts by time step t.

Proof. For every $t \in \mathbb{N}^+$, let $p_t = \min\{l \in \mathbb{N}^+ \mid \sum_{k=1}^l h_k \ge t\}$, so that $\sum_{k=1}^{p_t} h_k \ge t$. By Proposition 6.3,

$$R_t^{\nu,\pi} \leq R_{\sum_{k=1}^{p_t} h_k}^{\nu,\pi} = \sum_{k=1}^{p_t} R_{h_k}^{\nu,\pi^{(k)}} \leq \sum_{k=1}^{p_t} f(h_k).$$

The previous result can be used to provide a regret upper bound based on the regret upper bounds of policies suitable for fixed horizons. This is exemplified by the so-called doubling trick, which is presented below.

Proposition 6.5. If the policy π restarts to the sequence of policies $(\pi^{(k)} \mid k \in \mathbb{N}^+)$ given the sequence of relative steps $(2^{k-1} \mid k \in \mathbb{N}^+)$ and $R_{2^{k-1}}^{\nu,\pi^{(k)}} \leq \sqrt{2^{k-1}}$ for every $k \in \mathbb{N}^+$, then, for every $t \in \mathbb{N}^+$,

$$R_t^{\nu,\pi} \le 2(1+\sqrt{2})\sqrt{t}.$$

Proof. For every $t \in \mathbb{N}^+$, let $p_t = \min\{l \in \mathbb{N}^+ \mid \sum_{k=1}^l 2^{k-1} \ge t\}$, so that $p_t = \lceil \log_2(t+1) \rceil$. By Proposition 6.4,

$$R_t^{\nu,\pi} \le \sum_{k=1}^{p_t} \sqrt{2^{k-1}} = \sum_{k=1}^{p_t} (\sqrt{2})^{k-1} = \frac{(\sqrt{2})^{p_t} - 1}{\sqrt{2} - 1} \le \frac{(\sqrt{2})^{p_t}}{\sqrt{2} - 1}.$$

Since $p_t \le \log_2(t+1) + 1 = \log_2(t+1) + \log_2(2) = \log_2 2(t+1)$ and $1 + 1/t \le 2$,

$$R_t^{\nu,\pi} \leq \frac{(\sqrt{2})^{\log_2 2(t+1)}}{\sqrt{2}-1} = \frac{\sqrt{2(t+1)}}{\sqrt{2}-1} = \frac{1}{\sqrt{2}-1} \sqrt{2t\left(1+\frac{1}{t}\right)} \leq \frac{\sqrt{4t}}{\sqrt{2}-1} = \frac{2\sqrt{t}}{\sqrt{2}-1}.$$

Note that doubling the horizon after each restart is not generally appropriate.

7 Action times

Consider a number of actions $n \in \mathbb{N}^+$, a set of actions $\mathcal{A} = \{1, \dots, n\}$, a stochastic bandit $\nu = (P_a \mid a \in \mathcal{A})$, a policy $\pi = (\pi_t \mid t \in \mathbb{N}^+)$, and a canonical triple $(\Omega, \mathcal{F}, \mathbb{P}^{\nu, \pi})$ for the stochastic bandit ν under the policy π . Furthermore, let $(\mathcal{F}_t)_t$ denote the natural filtration of the reward process $(X_t \mid t \in \mathbb{N})$, so that $\mathcal{F}_t = \sigma(X_0, \dots, X_t)$ for every $t \in \mathbb{N}$.

Definition 7.1. The time $C_{m,a}^{\pi}:\Omega\to\mathbb{N}^+\cup\{\infty\}$ until policy π selects $a\in\mathcal{A}$ exactly $m\in\mathbb{N}^+$ times is given by

$$C_{m,a}^{\pi}(\omega) = \inf\left(\left\{t \in \mathbb{N}^+ \mid T_{t,a}^{\pi}(\omega) \ge m\right\}\right).$$

If $t \in \mathbb{N}^+$ and $C_{m,a}^{\pi}(\omega) = t$, then $\pi_t(X_0(\omega), \dots, X_{t-1}(\omega)) = a$ and $C_{m+1,a}^{\pi}(\omega) > t$.

Proposition 7.1. The time $C_{m,a}^{\pi}:\Omega\to\mathbb{N}^+\cup\{\infty\}$ until π selects $a\in\mathcal{A}$ exactly $m\in\mathbb{N}^+$ times is a stopping time.

Proof. Recall that $C_{m,a}^{\pi}$ is a stopping time if $\{C_{m,a}^{\pi} \leq t\} \in \mathcal{F}_t$ for every $t \in \mathbb{N} \cup \{\infty\}$. If t = 0, then $\{C_{m,a}^{\pi} \leq 0\} = \emptyset$. If $t \in \mathbb{N}^+$, then $\{C_{m,a}^{\pi} \leq t\} = \{T_{t,a}^{\pi} \geq m\}$ and $\{T_{t,a}^{\pi} \geq m\} \in \mathcal{F}_{t-1}$. If $t = \infty$, then $\{C_{m,a}^{\pi} \leq \infty\} = \Omega$.

Definition 7.2. For every $a \in \mathcal{A}$ and $m \in \mathbb{N}^+$, the function $X_{C_{m,a}^{\pi}}: \Omega \to \mathbb{R}$ is given by

$$X_{C_{m,a}^{\pi}}(\omega) = \begin{cases} X_{C_{m,a}^{\pi}(\omega)}(\omega), & \text{if } C_{m,a}^{\pi}(\omega) < \infty, \\ 0, & \text{if } C_{m,a}^{\pi}(\omega) = \infty. \end{cases}$$

Recall that $X_{C_{m,a}^{\pi}}$ is \mathcal{F} -measurable because $(X_t \mid t \in \mathbb{N})$ is adapted to $(\mathcal{F}_t)_t$ and $C_{m,a}^{\pi}$ is a stopping time.

Definition 7.3. For every $a \in \mathcal{A}$, the constant policy $\pi^{(a)} = (\pi_t^{(a)} \mid t \in \mathbb{N}^+)$ is given by $\pi_t^{(a)} = a$ for every $t \in \mathbb{N}^+$.

Proposition 7.2. For every $a \in \mathcal{A}$, $m \in \mathbb{N}^+$, and $B_1, \ldots, B_m \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{P}^{\nu,\pi^{(a)}}(X_1 \in B_1, \dots, X_m \in B_m) = \prod_{k=1}^m P_a(B_k).$$

Proof. For every $a \in \mathcal{A}$, $m \in \mathbb{N}^+$, and $B_1, \ldots, B_m \in \mathcal{B}(\mathbb{R})$, if the empty product denotes one,

$$\mathbb{P}^{\nu,\pi^{(a)}}(X_1 \in B_1, \dots, X_m \in B_m) = \mathbb{E}^{\nu,\pi^{(a)}} \left(\mathbb{E}^{\nu,\pi^{(a)}} \left(\left(\prod_{k=1}^{m-1} \mathbb{I}_{\{X_k \in B_k\}} \right) \mathbb{I}_{\{X_m \in B_m\}} \mid X_0, \dots, X_{m-1} \right) \right).$$

By taking out what is known and using the fact that $\pi_m^{(a)}(X_0,\ldots,X_{m-1})=a$,

$$\mathbb{P}^{\nu,\pi^{(a)}}(X_1 \in B_1, \dots, X_m \in B_m) = P_a(B_m)\mathbb{E}^{\nu,\pi^{(a)}}\left(\prod_{k=1}^{m-1} \mathbb{I}_{\{X_k \in B_k\}}\right).$$

Therefore, $\mathbb{P}^{\nu,\pi^{(a)}}(X_1 \in B_1) = P_a(B_1)$. Suppose that the proposition is true for some $m-1 \in \mathbb{N}^+$. In that case,

$$\mathbb{P}^{\nu,\pi^{(a)}}(X_1 \in B_1, \dots, X_m \in B_m) = P_a(B_m)\mathbb{P}^{\nu,\pi^{(a)}}(X_1 \in B_1, \dots, X_{m-1} \in B_{m-1}) = \prod_{k=1}^m P_a(B_k).$$

Proposition 7.3. For every $a \in \mathcal{A}$, $m \in \mathbb{N}^+$, and $t \in \mathbb{N}^+$, if $h : \mathbb{R} \to \mathbb{R}$ is $\mathcal{B}(\mathbb{R})$ -measurable, then the function $\mathbb{I}_{\{C_{m,a}^{\pi}=t\}} \prod_{k=1}^{m-1} h(X_{C_{k,a}^{\pi}})$ is \mathcal{F}_{t-1} -measurable.

Proof. For every $a \in \mathcal{A}$, $k \in \mathbb{N}^+$, and $t_k \in \mathbb{N}^+$, note that $\{C_{k,a}^{\pi} = t_k\} = \{C_{k,a}^{\pi} \le t_k\} \cap \{C_{k,a}^{\pi} \le t_k - 1\}^c$, so that $\{C_{k,a}^{\pi} = t_k\} \in \mathcal{F}_{t_k-1}$. For every $\omega \in \Omega$, $m \in \mathbb{N}^+$, and $t \in \mathbb{N}^+$, if $C_{m,a}^{\pi}(\omega) = t$, then $C_{1,a}^{\pi}(\omega) < \cdots < C_{m,a}^{\pi}(\omega) = t$, so

$$\mathbb{I}_{\{C_{m,a}^{\pi}=t\}} \prod_{k=1}^{m-1} h(X_{C_{k,a}^{\pi}}) = \mathbb{I}_{\{C_{m,a}^{\pi}=t\}} \left(\prod_{k=1}^{m-1} \sum_{t_k < t} \mathbb{I}_{\{C_{k,a}^{\pi}=t_k\}} h(X_{t_k}) \right).$$

If $k \in \mathbb{N}^+$ and $t_k \leq t$, then $\mathbb{I}_{\{C_{k,a}^{\pi} = t_k\}}$ is \mathcal{F}_{t-1} -measurable. If $t_k < t$, then $h(X_{t_k})$ is also \mathcal{F}_{t-1} -measurable.

Proposition 7.4. For every $a \in \mathcal{A}$ and $m \in \mathbb{N}^+$, if a function $h : \mathbb{R} \to [0, \infty]$ is ν -integrable, then

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} < \infty\}} \prod_{k=1}^{m} h(X_{C_{k,a}^{\pi}}) \right) \leq \mathbb{E}^{\nu,\pi^{(a)}} \left(\prod_{k=1}^{m} h(X_k) \right)$$

whenever $\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C_{m,a}^{\pi}=t\}}\prod_{k=1}^{m}h(X_{C_{k,a}^{\pi}})\right)<\infty$ for every $t\in\mathbb{N}^{+}$.

Proof. For every $a \in \mathcal{A}$ and $t \in \mathbb{N}^+$, if h is ν -integrable, then $\mathbb{E}^{\nu,\pi^{(a)}}(h(X_t)) < \infty$. Therefore, for every $m \in \mathbb{N}^+$,

$$\mathbb{E}^{\nu,\pi^{(a)}} \left(\prod_{k=1}^m h(X_k) \right) = \prod_{k=1}^m \mathbb{E}^{\nu,\pi^{(a)}} \left(h(X_k) \right) = \prod_{k=1}^m \int_{\mathbb{R}} h(x) \ P_a(dx) = \left(\int_{\mathbb{R}} h(x) \ P_a(dx) \right)^m,$$

which uses the fact that X_1, \ldots, X_m are independent and identically distributed with respect to $\mathbb{P}^{\nu, \pi^{(a)}}$. For every $a \in \mathcal{A}$ and $m \in \mathbb{N}^+$, if the empty product denotes one,

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C^\pi_{m,a} < \infty\}} \prod_{k=1}^m h(X_{C^\pi_{k,a}}) \right) = \sum_{t \in \mathbb{N}^+} \mathbb{E}^{\nu,\pi} \left(\left(\mathbb{I}_{\{C^\pi_{m,a} = t\}} \prod_{k=1}^{m-1} h(X_{C^\pi_{k,a}}) \right) h(X_t) \right).$$

Since each expectation on the right side above is finite by assumption, by taking out what is known,

$$\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C^{\pi}_{m,a}<\infty\}}\prod_{k=1}^{m}h(X_{C^{\pi}_{k,a}})\right) = \sum_{t\in\mathbb{N}^{+}}\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C^{\pi}_{m,a}=t\}}\prod_{k=1}^{m-1}h(X_{C^{\pi}_{k,a}})\mathbb{E}^{\nu,\pi}\left(h(X_{t})\mid X_{0},\ldots,X_{t-1}\right)\right).$$

By Proposition 4.3, if $A_t = \pi_t(X_0, \dots, X_{t-1})$, then almost surely

$$\mathbb{E}^{\nu,\pi} (h(X_t) \mid X_0, \dots, X_{t-1}) = \sum_{a'} \mathbb{I}_{\{A_t = a'\}} \int_{\mathbb{R}} h(x) P_{a'}(dx).$$

For every $\omega \in \Omega$, recall that $C_{m,a}^{\pi}(\omega) = t$ implies $A_t(\omega) = a$. Therefore, almost surely,

$$\mathbb{I}_{\{C_{m,a}^{\pi}=t\}} \mathbb{E}^{\nu,\pi} \left(h(X_t) \mid X_0, \dots, X_{t-1} \right) = \mathbb{I}_{\{C_{m,a}^{\pi}=t\}} \int_{\mathbb{R}} h(x) \ P_a(dx).$$

By returning to a previous equation,

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} < \infty\}} \prod_{k=1}^{m} h(X_{C_{k,a}^{\pi}}) \right) = \left(\int_{\mathbb{R}} h(x) \ P_{a}(dx) \right) \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} < \infty\}} \prod_{k=1}^{m-1} h(X_{C_{k,a}^{\pi}}) \right).$$

The proposition is true for m = 1, since

$$\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C_{1,a}^{\pi}<\infty\}}h(X_{C_{1,a}^{\pi}})\right) = \left(\int_{\mathbb{R}}h(x)\ P_{a}(dx)\right)\mathbb{P}^{\nu,\pi}\left(C_{1,a}^{\pi}<\infty\right) \leq \int_{\mathbb{R}}h(x)\ P_{a}(dx).$$

If the proposition is true for some $m-1\in\mathbb{N}^+$, because $C^\pi_{m,a}(\omega)<\infty$ implies $C^\pi_{m-1,a}(\omega)<\infty$ for every $\omega\in\Omega$,

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C^\pi_{m,a} < \infty\}} \prod_{k=1}^m h(X_{C^\pi_{k,a}}) \right) \leq \left(\int_{\mathbb{R}} h(x) \ P_a(dx) \right) \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C^\pi_{m-1,a} < \infty\}} \prod_{k=1}^{m-1} h(X_{C^\pi_{k,a}}) \right) \leq \left(\int_{\mathbb{R}} h(x) \ P_a(dx) \right)^m.$$

Proposition 7.5. If ν is a 1-subgaussian stochastic bandit and $\lambda \in \mathbb{R}$, then the function $h : \mathbb{R} \to [0, \infty]$ given by $h(x) = e^{\lambda x}$ is ν -integrable. Furthermore, for every $a \in \mathcal{A}$, $m \in \mathbb{N}^+$, and $t \in \mathbb{N}^+$,

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi}=t\}} \prod_{k=1}^{m} h(X_{C_{k,a}^{\pi}}) \right) < \infty.$$

Proof. If ν is a 1-subgaussian stochastic bandit, recall that the random variable Z_a on the probability triple $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_a)$ given by $Z_a(x) = x - \mu_a^{\nu}$ is 1-subgaussian for every $a \in \mathcal{A}$. For every $\lambda \in \mathbb{R}$,

$$\int_{\mathbb{R}} e^{\lambda x}\ P_a(dx) = \int_{\mathbb{R}} e^{\lambda (Z_a(x) + \mu_a^\nu)}\ P_a(dx) = e^{\lambda \mu_a^\nu} \int_{\mathbb{R}} e^{\lambda Z_a(x)}\ P_a(dx) \leq e^{\lambda \mu_a^\nu} e^{\frac{\lambda^2}{2}}.$$

By Proposition 4.1, there is a constant $c \in [0, \infty)$ such that $\mu_a^{\nu} \in [-c, c]$ for every $a \in \mathcal{A}$. Therefore, the function $h : \mathbb{R} \to [0, \infty]$ given by $h(x) = e^{\lambda x}$ is ν -integrable.

Let $a \in \mathcal{A}$ and $t \in \mathbb{N}^+$. We will use induction to show that, for every $m \in \mathbb{N}^+$ and $\lambda \in \mathbb{R}$,

$$\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C_{m,a}^{\pi} \leq t\}} e^{\lambda \sum_{k=1}^{m} X_{C_{k,a}^{\pi}}}\right) < \infty.$$

Consider the case where m=1. For every $\lambda \in \mathbb{R}$, since $\mathbb{E}^{\nu,\pi}(e^{\lambda X_{t'}}) < \infty$ for every $t' \in \mathbb{N}^+$,

$$\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C^\pi_{1,a}\leq t\}}e^{\lambda X_{C^\pi_{1,a}}}\right) = \sum_{t'\leq t}\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C^\pi_{1,a}=t'\}}e^{\lambda X_{t'}}\right) \leq \sum_{t'\leq t}\mathbb{E}^{\nu,\pi}\left(e^{\lambda X_{t'}}\right) < \infty.$$

Suppose that there is an $m-1 \in \mathbb{N}^+$ such that, for every $\lambda' \in \mathbb{R}$,

$$\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C^\pi_{m-1,a}\leq t\}}e^{\lambda'\sum_{k=1}^{m-1}X_{C^\pi_{k,a}}}\right)<\infty.$$

For every $\lambda \in \mathbb{R}$, since $\mathbb{I}_{\{C_{m,a}^{\pi} \leq t\}} = \mathbb{I}_{\{C_{m-1,a}^{\pi} \leq t\}} \mathbb{I}_{\{C_{m,a}^{\pi} \leq t\}}$,

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} \leq t\}} e^{\lambda \sum_{k=1}^{m} X_{C_{k,a}^{\pi}}} \right) = \mathbb{E}^{\nu,\pi} \left(\left(\mathbb{I}_{\{C_{m-1,a}^{\pi} \leq t\}} e^{\lambda \sum_{k=1}^{m-1} X_{C_{k,a}^{\pi}}} \right) \left(\mathbb{I}_{\{C_{m,a}^{\pi} \leq t\}} e^{\lambda X_{C_{m,a}^{\pi}}} \right) \right).$$

If $\lambda' = 2\lambda$, by the inductive hypothesis,

$$\mathbb{E}^{\nu,\pi} \left(\left(\mathbb{I}_{\{C_{m-1,a}^{\pi} \le t\}} e^{\lambda \sum_{k=1}^{m-1} X_{C_{k,a}^{\pi}}} \right)^{2} \right) = \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m-1,a}^{\pi} \le t\}} e^{\lambda' \sum_{k=1}^{m-1} X_{C_{k,a}^{\pi}}} \right) < \infty.$$

Since $\mathbb{E}^{\nu,\pi}(e^{\lambda'X_{t'}}) < \infty$ for every $t' \in \mathbb{N}^+$,

$$\mathbb{E}^{\nu,\pi}\left(\left(\mathbb{I}_{\{C^\pi_{m,a}\leq t\}}e^{\lambda X_{C^\pi_{m,a}}}\right)^2\right) = \mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C^\pi_{m,a}\leq t\}}e^{\lambda' X_{C^\pi_{m,a}}}\right) = \sum_{t'\leq t}\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C^\pi_{m,a}=t'\}}e^{\lambda' X_{t'}}\right) \leq \sum_{t'\leq t}\mathbb{E}^{\nu,\pi}\left(e^{\lambda' X_{t'}}\right) < \infty.$$

By the Schwarz inequality, for every $\lambda \in \mathbb{R}$,

$$\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C^\pi_{m,a}\leq t\}}e^{\lambda\sum_{k=1}^m X_{C^\pi_{k,a}}}\right)<\infty.$$

Therefore, for every $a \in \mathcal{A}$, $m \in \mathbb{N}^+$, $t \in \mathbb{N}^+$, and $\lambda \in \mathbb{R}$, if $h : \mathbb{R} \to [0, \infty]$ is given by $h(x) = e^{\lambda x}$.

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} = t\}} \prod_{k=1}^{m} h(X_{C_{k,a}^{\pi}}) \right) \leq \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} \leq t\}} \prod_{k=1}^{m} h(X_{C_{k,a}^{\pi}}) \right) = \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} \leq t\}} e^{\lambda \sum_{k=1}^{m} X_{C_{k,a}^{\pi}}} \right) < \infty.$$

Proposition 7.6. If ν is a 1-subgaussian stochastic bandit, then, for every $a \in \mathcal{A}$, $m \in \mathbb{N}^+$, and $\lambda \in \mathbb{R}$,

$$\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C^\pi_{m,a}<\infty\}}e^{\frac{\lambda}{m}\sum_{k=1}^m(X_{C^\pi_{k,a}}-\mu^\nu_a)}\right)\leq e^{\frac{\lambda^2}{2m}}.$$

Proof. For some $m \in \mathbb{N}^+$ and $\lambda \in \mathbb{R}$, consider the function $h : \mathbb{R} \to [0, \infty]$ given by $h(x) = e^{\frac{\lambda}{m}x}$, which is ν -integrable by Proposition 7.5. Recall that, for every $a \in \mathcal{A}$ and $t \in \mathbb{N}^+$,

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} = t\}} \prod_{k=1}^{m} h(X_{C_{k,a}^{\pi}}) \right) < \infty.$$

For every $a \in \mathcal{A}$, consider the function $h_a : \mathbb{R} \to [0, \infty]$ given by $h_a(x) = e^{\frac{\lambda}{m}(x-\mu_a^{\nu})} = h(x)e^{-\frac{\lambda}{m}\mu_a^{\nu}}$. Since h is ν -integrable, h_a is also ν -integrable. Furthermore, for every $t \in \mathbb{N}^+$,

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} = t\}} \prod_{k=1}^{m} h_a(X_{C_{k,a}^{\pi}}) \right) = \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} = t\}} \prod_{k=1}^{m} h(X_{C_{k,a}^{\pi}}) \right) e^{-\lambda \mu_a^{\nu}} < \infty.$$

By Proposition 7.4,

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} < \infty\}} \prod_{k=1}^{m} h_a(X_{C_{k,a}^{\pi}}) \right) \leq \mathbb{E}^{\nu,\pi^{(a)}} \left(\prod_{k=1}^{m} h_a(X_k) \right).$$

By rewriting the previous inequality, for every $a \in \mathcal{A}$, $m \in \mathbb{N}^+$, and $\lambda \in \mathbb{R}$,

$$\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C_{m,a}^{\pi}<\infty\}}e^{\frac{\lambda}{m}\sum_{k=1}^{m}(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu})}\right)\leq \mathbb{E}^{\nu,\pi^{(a)}}\left(e^{\frac{\lambda}{m}\sum_{k=1}^{m}(X_{k}-\mu_{a}^{\nu})}\right).$$

Since $X_1 - \mu_a^{\nu}, \dots, X_m - \mu_a^{\nu}$ are independent 1-subgaussian random variables with respect to $\mathbb{P}^{\nu,\pi^{(a)}}$, the random variable $\sum_{k=1}^m (X_k - \mu_a^{\nu})$ is \sqrt{m} -subgaussian, which implies that $(1/m) \sum_{k=1}^m (X_k - \mu_a^{\nu})$ is $1/\sqrt{m}$ -subgaussian. Therefore, by the definition of a $1/\sqrt{m}$ -subgaussian random variable,

$$\mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{C_{m,a}^{\pi}<\infty\}}e^{\frac{\lambda}{m}\sum_{k=1}^{m}(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu})}\right)\leq \mathbb{E}^{\nu,\pi^{(a)}}\left(e^{\lambda\frac{1}{m}\sum_{k=1}^{m}(X_{k}-\mu_{a}^{\nu})}\right)\leq e^{\frac{\lambda^{2}}{2m}}.$$

Proposition 7.7. If ν is a 1-subgaussian stochastic bandit, then, for every $a \in \mathcal{A}$, $m \in \mathbb{N}^+$, and $\epsilon \geq 0$,

$$\mathbb{P}^{\nu,\pi} \left(C_{m,a}^{\pi} < \infty, \frac{1}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_{a}^{\nu}) \le -\epsilon \right) \le e^{-\frac{m\epsilon^{2}}{2}},$$

$$\mathbb{P}^{\nu,\pi} \left(C_{m,a}^{\pi} < \infty, \frac{1}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_{a}^{\nu}) \ge \epsilon \right) \le e^{-\frac{m\epsilon^{2}}{2}}.$$

Proof. For every $a \in \mathcal{A}$, $m \in \mathbb{N}^+$, $\epsilon \in \mathbb{R}$, and $\lambda \geq 0$,

$$\mathbb{I}_{\{C_{m,a}^{\pi}<\infty\}}e^{-\frac{\lambda}{m}\sum_{k=1}^{m}(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu})}\geq \mathbb{I}_{\{C_{m,a}^{\pi}<\infty\}}e^{-\frac{\lambda}{m}\sum_{k=1}^{m}(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu})}\mathbb{I}_{\{-\frac{1}{m}\sum_{k=1}^{m}(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu})\geq\epsilon\}},$$

$$\mathbb{I}_{\{C_{m,a}^{\pi}<\infty\}}e^{\frac{\lambda}{m}\sum_{k=1}^{m}(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu})}\geq \mathbb{I}_{\{C_{m,a}^{\pi}<\infty\}}e^{\frac{\lambda}{m}\sum_{k=1}^{m}(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu})}\mathbb{I}_{\{\frac{1}{m}\sum_{k=1}^{m}(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu})\geq\epsilon\}}.$$

Since the function $g: \mathbb{R} \to [0, \infty]$ given by $g(x) = e^{\lambda x}$ is non-decreasing for $\lambda \geq 0$,

$$\mathbb{I}_{\{C_{m,a}^{\pi}<\infty\}}e^{-\frac{\lambda}{m}\sum_{k=1}^{m}(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu})} \geq \mathbb{I}_{\{C_{m,a}^{\pi}<\infty\}}e^{\lambda\epsilon}\mathbb{I}_{\{-\frac{1}{m}\sum_{k=1}^{m}(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu})\geq\epsilon\}},$$

$$\mathbb{I}_{\{C_{m,a}^{\pi}<\infty\}}e^{\frac{\lambda}{m}\sum_{k=1}^{m}(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu})} \geq \mathbb{I}_{\{C_{m,a}^{\pi}<\infty\}}e^{\lambda\epsilon}\mathbb{I}_{\{\frac{1}{m}\sum_{k=1}^{m}(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu})\geq\epsilon\}}.$$

By taking expectations of both sides of the inequalities above,

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} < \infty\}} e^{-\frac{\lambda}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_{a}^{\nu})} \right) \ge e^{\lambda \epsilon} \mathbb{P}^{\nu,\pi} \left(C_{m,a}^{\pi} < \infty, -\frac{1}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_{a}^{\nu}) \ge \epsilon \right),$$

$$\mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} < \infty\}} e^{\frac{\lambda}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_{a}^{\nu})} \right) \ge e^{\lambda \epsilon} \mathbb{P}^{\nu,\pi} \left(C_{m,a}^{\pi} < \infty, \frac{1}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_{a}^{\nu}) \ge \epsilon \right).$$

By Proposition 7.6, for every $a \in \mathcal{A}$, $m \in \mathbb{N}^+$, and $\lambda \geq 0$,

$$\begin{split} \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} < \infty\}} e^{-\frac{\lambda}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_{a}^{\nu})} \right) &\leq e^{\frac{(-\lambda)^{2}}{2m}}, \\ \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{C_{m,a}^{\pi} < \infty\}} e^{\frac{\lambda}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_{a}^{\nu})} \right) &\leq e^{\frac{\lambda^{2}}{2m}}. \end{split}$$

By rewriting the previous inequalities,

$$\mathbb{P}^{\nu,\pi} \left(C_{m,a}^{\pi} < \infty, \frac{1}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_a^{\nu}) \le -\epsilon \right) \le e^{\frac{\lambda^2}{2m} - \lambda \epsilon},$$

$$\mathbb{P}^{\nu,\pi} \left(C_{m,a}^{\pi} < \infty, \frac{1}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_a^{\nu}) \ge \epsilon \right) \le e^{\frac{\lambda^2}{2m} - \lambda \epsilon}.$$

For every $\epsilon \geq 0$, let $\lambda = \epsilon m$, so that $\lambda \geq 0$. In that case,

$$\mathbb{P}^{\nu,\pi} \left(C_{m,a}^{\pi} < \infty, \frac{1}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_{a}^{\nu}) \le -\epsilon \right) \le e^{-\frac{m\epsilon^{2}}{2}},$$

$$\mathbb{P}^{\nu,\pi} \left(C_{m,a}^{\pi} < \infty, \frac{1}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_{a}^{\nu}) \ge \epsilon \right) \le e^{-\frac{m\epsilon^{2}}{2}}.$$

Proposition 7.8. If ν is a 1-subgaussian stochastic bandit, then, for every $a \in \mathcal{A}$, $m \in \mathbb{N}^+$, and $\delta \in (0,1]$,

$$\mathbb{P}^{\nu,\pi} \left(C_{m,a}^{\pi} < \infty, \frac{1}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_a^{\nu}) \le -\sqrt{\frac{2\log(1/\delta)}{m}} \right) \le \delta,$$

$$\mathbb{P}^{\nu,\pi} \left(C_{m,a}^{\pi} < \infty, \frac{1}{m} \sum_{k=1}^{m} (X_{C_{k,a}^{\pi}} - \mu_a^{\nu}) \ge \sqrt{\frac{2\log(1/\delta)}{m}} \right) \le \delta.$$

Proof. Let $\delta \in (0,1]$. If $\epsilon = \sqrt{2\log(1/\delta)/m}$, then $\epsilon \ge 0$ and $\delta = e^{-\frac{m\epsilon^2}{2}}$, which implies the two inequalities.

Upper confidence bounds

Consider a number of actions $n \in \mathbb{N}^+$, a set of actions $\mathcal{A} = \{1, \dots, n\}$, a stochastic bandit $\nu = (P_a \mid a \in \mathcal{A})$, a policy $\pi = (\pi_t \mid t \in \mathbb{N}^+)$, and a canonical triple $(\Omega, \mathcal{F}, \mathbb{P}^{\nu, \pi})$ for the stochastic bandit ν under the policy π .

Definition 8.1. The upper confidence bound $U_{t,a}^{\pi,\delta}:\Omega\to\mathbb{R}$ that policy π induces for action $a\in\mathcal{A}$ by time step $t \in \mathbb{N}^+$ with error $\delta \in (0,1)$ is given by

$$U_{t,a}^{\pi,\delta}(\omega) = M_{t,a}^{\pi}(\omega) + \sqrt{\frac{2\log(1/\delta)}{T_{t,a}^{\pi}(\omega)}}$$

whenever $T_{t,a}^{\pi}(\omega) > 0$. Intuitively, the role of $U_{t,a}^{\pi,\delta}$ is to overestimate μ_a^{ν} with high probability when δ is small.

Proposition 8.1. The upper confidence bound $U_{t,a}^{\pi,\delta}:\Omega\to\mathbb{R}$ that policy π induces for action $a\in\mathcal{A}$ by time step $t \in \mathbb{N}^+$ with error $\delta \in (0,1)$ is given by

$$U_{t,a}^{\pi,\delta}(\omega) = \frac{1}{m} \sum_{k=1}^{m} X_{C_{k,a}^{\pi}}(\omega) + \sqrt{\frac{2\log(1/\delta)}{m}}$$

whenever $T_{t,a}^{\pi}(\omega) = m$ for some $m \in \mathbb{N}^+$.

Proof. Let $\omega \in \Omega$, $a \in \mathcal{A}$, $t \in \mathbb{N}^+$, and $m \in \mathbb{N}^+$. If $T_{t,a}^{\pi}(\omega) = m$, then $C_{k,a}^{\pi}(\omega) \leq t$ for every $k \leq m$, so that

$$\sum_{k=1}^{m} X_{C_{k,a}^{\pi}}(\omega) = \sum_{k=1}^{m} X_{C_{k,a}^{\pi}}(\omega) \mathbb{I}_{\{C_{k,a}^{\pi} \leq t\}}(\omega) = \sum_{k=1}^{m} X_{C_{k,a}^{\pi}}(\omega) \sum_{t'=1}^{t} \mathbb{I}_{\{C_{k,a}^{\pi} = t'\}}(\omega) = \sum_{t'=1}^{t} X_{t'}(\omega) \sum_{k=1}^{m} \mathbb{I}_{\{C_{k,a}^{\pi} = t'\}}(\omega).$$

Note that $\{C_{k,a}^{\pi}=t'\}\cap\{C_{k',a}^{\pi}=t'\}=\emptyset$ if $k\neq k'$ and $t'\in\mathbb{N}^+$. Let $t'\leq t$ and $A_{t'}=\pi_{t'}(X_0,\ldots,X_{t'-1})$. Since $A_{t'}(\omega)=a$ if and only $C_{k,a}^{\pi}(\omega)=t'$ for some $k\leq m$,

$$\sum_{k=1}^m X_{C_{k,a}^\pi}(\omega) = \sum_{t'=1}^t X_{t'}(\omega) \mathbb{I}_{\bigcup_{k=1}^m \{C_{k,a}^\pi = t'\}}(\omega) = \sum_{t'=1}^t X_{t'}(\omega) \mathbb{I}_{\{A_{t'} = a\}}(\omega).$$

Therefore, for every $\delta \in (0,1)$,

$$U_{t,a}^{\pi,\delta}(\omega) = \frac{1}{T_{t,a}^{\pi}(\omega)} \sum_{k=1}^{t} X_k(\omega) \mathbb{I}_{\{A_k = a\}}(\omega) + \sqrt{\frac{2\log(1/\delta)}{T_{t,a}^{\pi}(\omega)}} = \frac{1}{m} \sum_{k=1}^{m} X_{C_{k,a}^{\pi}}(\omega) + \sqrt{\frac{2\log(1/\delta)}{m}}.$$

Definition 8.2. A policy π implements upper confidence bounds with error $\delta \in (0,1)$ if, for every $t \in \mathbb{N}^+$,

$$\pi_t(X_0, \dots, X_{t-1}) = \begin{cases} t, & \text{if } t \le n, \\ \arg \max_a U_{t-1, a}^{\pi, \delta}, & \text{if } t > n. \end{cases}$$

Note that $U_{t-1,a}^{\pi,\delta}$ is well-defined for every time step t > n and action $a \in \mathcal{A}$.

Theorem 8.1. If ν is a 1-subgaussian stochastic bandit and the policy π implements upper confidence bounds with error $\delta = 1/t^2$ for some $t \in \mathbb{N}^+$, then

$$R_t^{\nu,\pi} \le \left(3\sum_{a=1}^n \Delta_a^{\nu}\right) + \sum_{a|\Delta^{\nu}>0} \frac{16\log(t)}{\Delta_a^{\nu}}.$$

Proof. If $t \leq n$, then $T_{t,a}^{\pi} \leq 1$ for every $a \in \mathcal{A}$, so that $R_t^{\nu,\pi} = \sum_a \Delta_a^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right) \leq \sum_a \Delta_a^{\nu}$. Let t > n and consider an action $a \in \mathcal{A}$ such that $\Delta_a^{\nu} > 0$. For every $m \in \mathbb{N}^+$, since $T_{t,a}^{\pi} \leq t$,

$$\mathbb{E}^{\nu,\pi}\left(T^\pi_{t,a}\right) = \mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{T^\pi_{t,a}>m\}}T^\pi_{t,a}\right) + \mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{T^\pi_{t,a}\leq m\}}T^\pi_{t,a}\right) \leq t\mathbb{P}^{\nu,\pi}\left(T^\pi_{t,a}>m\right) + m.$$

31

Let $\delta = 1/t^2$ and $m = \lceil 8 \log(1/\delta)/(\Delta_a^{\nu})^2 \rceil$, so that $m \in \mathbb{N}^+$. Furthermore, consider the event E given by

$$E = \left\{ \frac{1}{m} \sum_{k=1}^{m} X_{C_{k,a}^{\pi}} + \sqrt{\frac{2\log(1/\delta)}{m}} < \mu_{*}^{\nu} \right\}.$$

Because the events E and E^c are disjoint,

$$\mathbb{P}^{\nu,\pi} (T_{t,a}^{\pi} > m) = \mathbb{P}^{\nu,\pi} (\{T_{t,a}^{\pi} > m\} \cap E) + \mathbb{P}^{\nu,\pi} (\{T_{t,a}^{\pi} > m\} \cap E^c).$$

We will consider the two terms on the right side of the equation above separately.

First, consider an action $a^* \in \mathcal{A}$ such that $\mu_{a^*}^{\nu} = \mu_*^{\nu}$, so that $a^* \neq a$. Furthermore, consider an $\omega \in E$ such that $T_{t,a}^{\pi}(\omega) > m$. In order to find a contradiction, suppose that $\mu_*^{\nu} < U_{t'-1,a^*}^{\pi,\delta}(\omega)$ for every $t' \in \mathbb{N}^+$ such that $n < t' \leq t$. Since $T_{t,a}^{\pi}(\omega) > m$, there is a $t' \in \mathbb{N}^+$ such that $C_{m+1,a}^{\pi}(\omega) = t'$ and $n < t' \leq t$. Therefore,

$$\pi_{t'}(X_0(\omega), \dots, X_{t'-1}(\omega)) = \arg\max_{a'} U_{t'-1, a'}^{\pi, \delta}(\omega) = a.$$

By Proposition 8.1, since $T^{\pi}_{t'-1,a}(\omega) = m$ and $\omega \in E$,

$$U_{t'-1,a}^{\pi,\delta}(\omega) = \frac{1}{m} \sum_{k=1}^{m} X_{C_{k,a}^{\pi}}(\omega) + \sqrt{\frac{2\log(1/\delta)}{m}} < \mu_{*}^{\nu} < U_{t'-1,a^{*}}^{\pi,\delta}(\omega),$$

which is a contradiction because $U_{t'-1,a}^{\pi,\delta}(\omega) = \sup_{a'} U_{t'-1,a'}^{\pi,\delta}(\omega)$.

Therefore, if $\omega \in E$ and $T^{\pi}_{t,a}(\omega) > m$, then $\mu^{\nu}_* \geq U^{\pi,\delta}_{t'-1,a^*}(\omega)$ for some $t' \in \mathbb{N}^+$ such that $n < t' \leq t$. Consequently, there is an $m' \in \mathbb{N}^+$ such that $m' \leq t$ and $T^{\pi}_{t,a^*}(\omega) \geq m'$ and

$$\mu_*^{\nu} \ge \frac{1}{m'} \sum_{k=1}^{m'} X_{C_{k,a^*}^{\pi}}(\omega) + \sqrt{\frac{2\log(1/\delta)}{m'}}.$$

From the previous statement,

$$\mathbb{P}^{\nu,\pi}\left(\left\{T_{t,a}^{\pi} > m\right\} \cap E\right) \leq \mathbb{P}^{\nu,\pi}\left(\bigcup_{m' \leq t} \left\{T_{t,a^*}^{\pi} \geq m', \mu_*^{\nu} \geq \frac{1}{m'} \sum_{k=1}^{m'} X_{C_{k,a^*}^{\pi}} + \sqrt{\frac{2\log(1/\delta)}{m'}}\right\}\right).$$

By the union bound, the fact that $T^{\pi}_{t,a^*}(\omega) \geq m'$ implies $C^{\pi}_{m',a^*}(\omega) < \infty$, and Proposition 7.8,

$$\mathbb{P}^{\nu,\pi}\left(\left\{T_{t,a}^{\pi} > m\right\} \cap E\right) \leq \sum_{m' \leq t} \mathbb{P}^{\nu,\pi}\left(C_{m',a^*}^{\pi} < \infty, \mu_*^{\nu} \geq \frac{1}{m'} \sum_{k=1}^{m'} X_{C_{k,a^*}^{\pi}} + \sqrt{\frac{2\log(1/\delta)}{m'}}\right) \leq t\delta.$$

Second, consider an $\omega \in E^c$ such that $T_{t,a}^{\pi}(\omega) > m$. Since $C_{m,a}^{\pi}(\omega) < \infty$,

$$\mathbb{P}^{\nu,\pi}\left(\left\{T_{t,a}^{\pi}>m\right\}\cap E^{c}\right)\leq \mathbb{P}^{\nu,\pi}\left(\left\{C_{m,a}^{\pi}<\infty\right\}\cap E^{c}\right)=\mathbb{P}^{\nu,\pi}\left(C_{m,a}^{\pi}<\infty,\frac{1}{m}\sum_{k=1}^{m}X_{C_{k,a}^{\pi}}+\sqrt{\frac{2\log(1/\delta)}{m}}\geq\mu_{*}^{\nu}\right).$$

By subtracting $\mu_a^{\nu} + \sqrt{2\log(1/\delta)/m}$ from both sides of an inequality above and the definition of Δ_a^{ν} ,

$$\mathbb{P}^{\nu,\pi}\left(\left\{T_{t,a}^{\pi}>m\right\}\cap E^{c}\right)\leq \mathbb{P}^{\nu,\pi}\left(C_{m,a}^{\pi}<\infty,\frac{1}{m}\sum_{k=1}^{m}\left(X_{C_{k,a}^{\pi}}-\mu_{a}^{\nu}\right)\geq \Delta_{a}^{\nu}-\sqrt{\frac{2\log(1/\delta)}{m}}\right).$$

Since $m \ge 8\log(1/\delta)/(\Delta_a^{\nu})^2$, note that $\sqrt{2\log(1/\delta)/m} \le \Delta_a^{\nu}/2 = \Delta_a^{\nu} - \Delta_a^{\nu}/2$ and

$$\Delta_a^{\nu} - \sqrt{\frac{2\log(1/\delta)}{m}} \ge \frac{\Delta_a^{\nu}}{2}.$$

Therefore, by the previous inequality and Proposition 7.7,

$$\mathbb{P}^{\nu,\pi}\left(\left\{T_{t,a}^{\pi} > m\right\} \cap E^{c}\right) \leq \mathbb{P}^{\nu,\pi}\left(C_{m,a}^{\pi} < \infty, \frac{1}{m}\sum_{k=1}^{m}\left(X_{C_{k,a}^{\pi}} - \mu_{a}^{\nu}\right) \geq \frac{\Delta_{a}^{\nu}}{2}\right) \leq e^{-\frac{m(\Delta_{a}^{\nu})^{2}}{8}}.$$

By returning to a previous equation,

$$\mathbb{P}^{\nu,\pi} \left(T_{t,a}^{\pi} > m \right) = \mathbb{P}^{\nu,\pi} \left(\left\{ T_{t,a}^{\pi} > m \right\} \cap E \right) + \mathbb{P}^{\nu,\pi} \left(\left\{ T_{t,a}^{\pi} > m \right\} \cap E^{c} \right) \le t\delta + e^{-\frac{m(\Delta_{a}^{\nu})^{2}}{8}}.$$

By returning to a previous inequality, since $\delta = 1/t^2$,

$$\mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right) \le t \mathbb{P}^{\nu,\pi} \left(T_{t,a}^{\pi} > m \right) + m \le t e^{-\frac{m(\Delta_{a}^{\nu})^{2}}{8}} + m + 1.$$

Since $m \ge 8 \log(1/\delta)/(\Delta_a^{\nu})^2$ implies $-m(\Delta_a^{\nu})^2/8 \le \log \delta$

$$\mathbb{E}^{\nu,\pi}\left(T_{t,a}^{\pi}\right) \le t\delta + m + 1 = \frac{1}{t} + m + 1 \le 2 + m \le 3 + \frac{8\log(1/\delta)}{(\Delta_{\rho}^{\nu})^2} = 3 + \frac{16\log(t)}{(\Delta_{\rho}^{\nu})^2}.$$

For every t > n, since $\mathbb{E}^{\nu,\pi}\left(T_{t,a}^{\pi}\right) \leq 3 + 16\log(t)/(\Delta_a^{\nu})^2$ for every $a \in \mathcal{A}$ such that $\Delta_a^{\nu} > 0$,

$$R_t^{\nu,\pi} = \sum_{a \mid \Delta_a^{\nu} > 0} \Delta_a^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right) \leq \sum_{a \mid \Delta_a^{\nu} > 0} \Delta_a^{\nu} \left(3 + \frac{16 \log(t)}{(\Delta_a^{\nu})^2} \right) = \left(3 \sum_{a=1}^n \Delta_a^{\nu} \right) + \sum_{a \mid \Delta_a^{\nu} > 0} \frac{16 \log(t)}{\Delta_a^{\nu}}.$$

Theorem 8.2. If ν is a 1-subgaussian stochastic bandit and the policy π implements upper confidence bounds with error $\delta = 1/t^2$ for some $t \in \mathbb{N}^+$, then

$$R_t^{\nu,\pi} \le 8\sqrt{tn\log(t)} + 3\sum_{a=1}^n \Delta_a^{\nu}.$$

Proof. If $t \leq n$, then $T^{\pi}_{t,a} \leq 1$ for every $a \in \mathcal{A}$, so that $R^{\nu,\pi}_t = \sum_a \Delta^{\nu}_a \mathbb{E}^{\nu,\pi} \left(T^{\pi}_{t,a} \right) \leq \sum_a \Delta^{\nu}_a$. Let t > n. For every $\Delta > 0$, since $\sum_a \mathbb{E}^{\nu,\pi} \left(T^{\pi}_{t,a} \right) = t$,

$$R_t^{\nu,\pi} = \left(\sum_{a \mid \Delta_a^{\nu} < \Delta} \Delta_a^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right) \right) + \left(\sum_{a \mid \Delta_a^{\nu} \geq \Delta} \Delta_a^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right) \right) \leq t\Delta + \sum_{a \mid \Delta_a^{\nu} \geq \Delta} \Delta_a^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right).$$

From the proof of Theorem 8.1, recall that $\mathbb{E}^{\nu,\pi}\left(T_{t,a}^{\pi}\right) \leq 3 + 16\log(t)/(\Delta_a^{\nu})^2$ if $\Delta_a^{\nu} > 0$. Therefore,

$$R_t^{\nu,\pi} \le t\Delta + \sum_{a \mid \Delta_a^{\nu} \ge \Delta} \Delta_a^{\nu} \left(3 + \frac{16\log(t)}{(\Delta_a^{\nu})^2} \right) \le t\Delta + \left(\sum_{a \mid \Delta_a^{\nu} \ge \Delta} \frac{16\log(t)}{\Delta_a^{\nu}} \right) + 3\sum_{a=1}^n \Delta_a^{\nu}.$$

Let $\Delta = \sqrt{16n\log(t)/t}$, so that $\Delta > 0$. Since $\Delta_a^{\nu} \geq \Delta$ implies $16\log(t)/\Delta_a^{\nu} \leq 16\log(t)/\Delta$,

$$R_t^{\nu,\pi} \leq t\Delta + \frac{16n\log(t)}{\Delta} + 3\sum_{a=1}^n \Delta_a^{\nu} = \sqrt{t}\sqrt{16n\log(t)} + \sqrt{t}\sqrt{16n\log(t)} + 3\sum_{a=1}^n \Delta_a^{\nu} = 8\sqrt{tn\log(t)} + 3\sum_{a=1}^n \Delta_a^{\nu}.$$

9 Relative entropy

Consider probability measures \mathbb{P} and \mathbb{Q} on a measurable space (Ω, \mathcal{F}) .

Proposition 9.1. If λ_1 and λ_2 are σ -finite measures on (Ω, \mathcal{F}) , then $\lambda = \lambda_1 + \lambda_2$ is a σ -finite measure on (Ω, \mathcal{F}) .

Proof. Clearly, $\lambda(\emptyset) = \lambda_1(\emptyset) + \lambda_2(\emptyset) = 0$. For any sequence $(F_n \in \mathcal{F} \mid n \in \mathbb{N})$ such that $F_n \cap F_m = \emptyset$ for $n \neq m$,

$$\lambda\left(\bigcup_{n}F_{n}\right) = \lambda_{1}\left(\bigcup_{n}F_{n}\right) + \lambda_{2}\left(\bigcup_{n}F_{n}\right) = \sum_{n}\lambda_{1}\left(F_{n}\right) + \lambda_{2}\left(F_{n}\right) = \sum_{n}\lambda\left(F_{n}\right).$$

Consider a sequence $(F_n^1 \in \mathcal{F} \mid n \in \mathbb{N})$ such that $\bigcup_n F_n^1 = \Omega$ and $\lambda_1(F_n^1) < \infty$ for every $n \in \mathbb{N}$. Analogously, consider a sequence $(F_n^2 \in \mathcal{F} \mid n \in \mathbb{N})$ such that $\bigcup_n F_n^2 = \Omega$ and $\lambda_2(F_n^2) < \infty$ for every $n \in \mathbb{N}$. Let $F_{i,j} = F_i^1 \cap F_j^2$, so that $\bigcup_{i,j} F_{i,j} = \Omega$ and $\lambda(F_{i,j}) = \lambda_1(F_i^1 \cap F_j^2) + \lambda_2(F_i^1 \cap F_j^2) \leq \lambda_1(F_i^1) + \lambda_2(F_j^2) < \infty$. Because the set $\{F_{i,j} \mid i \in \mathbb{N} \text{ and } j \in \mathbb{N}\}$ is countable, λ is a σ -finite measure on (Ω, \mathcal{F}) .

Proposition 9.2. There is a σ -finite measure λ on (Ω, \mathcal{F}) such that $\mathbb{P} \ll \lambda$ and $\mathbb{Q} \ll \lambda$.

Proof. Let $\lambda: \mathcal{F} \to [0, \infty]$ be given by $\lambda(F) = \mathbb{P}(F) + \mathbb{Q}(F)$. Because \mathbb{P} and \mathbb{Q} are σ -finite measures on (Ω, \mathcal{F}) , λ is a σ -finite measure on (Ω, \mathcal{F}) . If $\lambda(F) = 0$, then $\mathbb{P}(F) = 0$ and $\mathbb{Q}(F) = 0$. Therefore, $\mathbb{P} \ll \lambda$ and $\mathbb{Q} \ll \lambda$.

Proposition 9.3. For every σ -finite measure λ on (Ω, \mathcal{F}) such that $\mathbb{P} \ll \lambda$ and $\mathbb{Q} \ll \lambda$, there is an \mathcal{F} -measurable function $p:\Omega\to[0,\infty)$ such that $p=d\mathbb{P}/d\lambda$ almost everywhere and an \mathcal{F} -measurable function $q:\Omega\to[0,\infty)$ such that $q = d\mathbb{Q}/d\lambda$ almost everywhere.

Proof. This is a direct consequence of the Radon-Nikodym theorem.

Definition 9.1. Consider an \mathcal{F} -measurable function $p:\Omega\to[0,\infty)$ and an \mathcal{F} -measurable function $q:\Omega\to[0,\infty)$. The \mathcal{F} -measurable function $p \log (p/q) : \Omega \to \mathbb{R}$ is defined by

$$\left(p\log\left(\frac{p}{q}\right)\right)(\omega) = \begin{cases} p(\omega)\log(p(\omega)/q(\omega)), & \text{if } p(\omega)q(\omega) > 0, \\ 0, & \text{if } p(\omega)q(\omega) = 0. \end{cases}$$

Definition 9.2. Consider a σ -finite measure λ on (Ω, \mathcal{F}) such that $\mathbb{P} \ll \lambda$ and $\mathbb{Q} \ll \lambda$. Let $p = d\mathbb{P}/d\lambda$ almost everywhere and $q = d\mathbb{Q}/d\lambda$ almost everywhere. The relative entropy $D(\mathbb{P}, \mathbb{Q})$ between \mathbb{P} and \mathbb{Q} under λ is given by

$$D(\mathbb{P}, \mathbb{Q}) = \int_{\Omega} p \log \left(\frac{p}{q}\right) d\lambda$$

whenever $p \log (p/q)$ is λ -integrable and $\mathbb{P}(q=0)=0$. Otherwise, $D(\mathbb{P},\mathbb{Q})=\infty$.

The relative entropy is also called Kullback-Leibler divergence.

Proposition 9.4. If λ_1 is a σ -finite measure on (Ω, \mathcal{F}) such that $\mathbb{P} \ll \lambda_1$ and $\mathbb{Q} \ll \lambda_1$ and λ_2 is a σ -finite measure on (Ω, \mathcal{F}) such that $\mathbb{P} \ll \lambda_2$ and $\mathbb{Q} \ll \lambda_2$, then the relative entropy $D(\mathbb{P}, \mathbb{Q})$ between \mathbb{P} and \mathbb{Q} under λ_1 is equal to the relative entropy $D(\mathbb{P},\mathbb{Q})$ between \mathbb{P} and \mathbb{Q} under λ_2 .

Proof. Let $p_1 = d\mathbb{P}/d\lambda_1$ almost everywhere, $q_1 = d\mathbb{Q}/d\lambda_1$ almost everywhere, $p_2 = d\mathbb{P}/d\lambda_2$ almost everywhere, and $q_2 = d\mathbb{Q}/d\lambda_2$ almost everywhere. Recall that $\lambda = \lambda_1 + \lambda_2$ is a σ -finite measure on (Ω, \mathcal{F}) . Since $\lambda_1 \ll \lambda$ and $\lambda_2 \ll \lambda$, let $l_1 = d\lambda_1/d\lambda$ almost everywhere and $l_2 = d\lambda_2/d\lambda$ almost everywhere. Since $\mathbb{P} \ll \lambda$ and $\mathbb{Q} \ll \lambda$, let $p = d\mathbb{P}/d\lambda$ almost everywhere and $q = d\mathbb{Q}/d\lambda$ almost everywhere. By the Radon-Nikodym chain rule, $p = p_1 l_1 = p_2 l_2$ almost everywhere and $q = q_1 l_1 = q_2 l_2$ almost everywhere.

We will first show that $p_1 \log (p_1/q_1)$ is λ_1 -integrable if and only if $p_2 \log (p_2/q_2)$ is λ_2 -integrable.

If $p_1 \log (p_1/q_1)$ is λ_1 -integrable or $p \log (p/q)$ is λ -integrable,

$$\int_{\Omega} p_1 \log \left(\frac{p_1}{q_1} \right) d\lambda_1 = \int_{\Omega} l_1 \left(p_1 \log \left(\frac{p_1}{q_1} \right) \right) d\lambda = \int_{\Omega} p_1 l_1 \log \left(\frac{p_1 l_1}{q_1 l_1} \right) d\lambda = \int_{\Omega} p \log \left(\frac{p}{q} \right) d\lambda < \infty.$$

If $p_2 \log (p_2/q_2)$ is λ_2 -integrable or $p \log (p/q)$ is λ -integrable.

$$\int_{\Omega} p_2 \log \left(\frac{p_2}{q_2} \right) d\lambda_2 = \int_{\Omega} l_2 \left(p_2 \log \left(\frac{p_2}{q_2} \right) \right) d\lambda = \int_{\Omega} p_2 l_2 \log \left(\frac{p_2 l_2}{q_2 l_2} \right) d\lambda = \int_{\Omega} p \log \left(\frac{p}{q} \right) d\lambda < \infty.$$

Therefore, $p_1 \log (p_1/q_1)$ is λ_1 -integrable if and only if $p_2 \log (p_2/q_2)$ is λ_2 -integrable, In that case,

$$\int_{\Omega} p_1 \log \left(\frac{p_1}{q_1} \right) \ d\lambda_1 = \int_{\Omega} p \log \left(\frac{p}{q} \right) \ d\lambda = \int_{\Omega} p_2 \log \left(\frac{p_2}{q_2} \right) \ d\lambda_2.$$

It remains to show that $\mathbb{P}(q_1=0)=0$ if and only if $\mathbb{P}(q_2=0)=0$, which follows from the fact that

$$\mathbb{P}(q=0) = \int_{\{q_1l_1=0\}} p_1l_1 \ d\lambda = \int_{\{q_1l_1=0,p_1l_1>0\}} p_1l_1 \ d\lambda = \int_{\{q_1=0,p_1l_1>0\}} p_1l_1 \ d\lambda = \int_{\{q_1=0\}} p_1 \ d\lambda_1 = \mathbb{P}(q_1=0),$$

$$\mathbb{P}(q=0) = \int_{\{q_2l_2=0\}} p_2l_2 \ d\lambda = \int_{\{q_2l_2=0,p_2l_2>0\}} p_2l_2 \ d\lambda = \int_{\{q_2=0,p_2l_2>0\}} p_2l_2 \ d\lambda = \int_{\{q_2=0\}} p_2l_2 \ d\lambda = \mathbb{P}(q_2=0).$$

Proposition 9.5. Consider a σ -finite measure λ on (Ω, \mathcal{F}) such that $\mathbb{P} \ll \lambda$ and $\mathbb{Q} \ll \lambda$. Let $p = d\mathbb{P}/d\lambda$ almost everywhere and $q = d\mathbb{Q}/d\lambda$ almost everywhere. If $D(\mathbb{P}, \mathbb{Q}) < \infty$, then $\lambda(p > 0, q = 0) = 0$.

Proof. If $D(\mathbb{P},\mathbb{Q}) < \infty$, then $\mathbb{P}(q=0) = 0$. Since $p = d\mathbb{P}/d\lambda$ almost everywhere,

$$0 = \mathbb{P}(q = 0) = \int_{\{q = 0\}} p \ d\lambda = \int_{\Omega} \mathbb{I}_{\{p > 0, q = 0\}} p \ d\lambda,$$

so that $\lambda(\mathbb{I}_{\{p>0,q=0\}}p>0)=0$. Since $\{\mathbb{I}_{\{p>0,q=0\}}p>0\}=\{p>0,q=0\}$, we have $\lambda(p>0,q=0)=0$.

Proposition 9.6. Consider a σ -finite measure λ on (Ω, \mathcal{F}) such that $\mathbb{P} \ll \lambda$ and $\mathbb{Q} \ll \lambda$. Let $p = d\mathbb{P}/d\lambda$ almost everywhere and $q = d\mathbb{Q}/d\lambda$ almost everywhere. If $D(\mathbb{P}, \mathbb{Q}) < \infty$, then $\int_{\Omega} pq \ d\lambda > 0$ and $\int_{\{pq>0\}} q \ d\lambda > 0$.

Proof. If $D(\mathbb{P},\mathbb{Q})<\infty$, then $\mathbb{P}(q=0)=\int_{\{q=0\}}p\ d\lambda=0$. Therefore,

$$1 = \mathbb{P}(\Omega) = \int_{\Omega} p \ d\lambda = \int_{\{q=0\}} p \ d\lambda + \int_{\{q>0\}} p \ d\lambda = \int_{\{pq>0\}} p \ d\lambda,$$

so that $\lambda(pq>0)>0$. Consequently, $\int_{\Omega}pq\ d\lambda>0$ and $\int_{\{pq>0\}}q\ d\lambda>0$.

Proposition 9.7. The relative entropy $D(\mathbb{P}, \mathbb{Q})$ between \mathbb{P} and \mathbb{Q} is non-negative.

Proof. Consider a σ -finite measure λ on (Ω, \mathcal{F}) such that $\mathbb{P} \ll \lambda$ and $\mathbb{Q} \ll \lambda$. Let $p = d\mathbb{P}/d\lambda$ almost everywhere and $q = d\mathbb{Q}/d\lambda$ almost everywhere. It is sufficient to show that the relative entropy $D(\mathbb{P}, \mathbb{Q})$ between \mathbb{P} and \mathbb{Q} under λ is non-negative when $D(\mathbb{P}, \mathbb{Q}) < \infty$. In that case, because $p = d\mathbb{P}/d\lambda$ almost everywhere,

$$D(\mathbb{P},\mathbb{Q}) = \int_{\Omega} p \log \left(\frac{p}{q}\right) \ d\lambda = \int_{\{pq>0\}} p \log \left(\frac{p}{q}\right) \ d\lambda = \int_{\{pq>0\}} -\log \left(\frac{q}{p}\right) \ d\mathbb{P}.$$

Consider the measure space $(A, \mathcal{F}_A, \mathbb{P}_A)$ restricted to $A = \{pq > 0\}$ and recall that

$$D(\mathbb{P}, \mathbb{Q}) = \int_{\{pq > 0\}} -\log\left(\frac{q}{p}\right) d\mathbb{P} = \int_{A} -\log\left(\frac{q_{|A|}}{p_{|A|}}\right) d\mathbb{P}_{A}.$$

Note that the restricted function $q_{|A}/p_{|A}:A\to(0,\infty)$ is \mathbb{P}_A -integrable, since

$$\int_A \frac{q_{|A}}{p_{|A}} \ d\mathbb{P}_A = \int_{\{pq>0\}} \frac{q}{p} \ d\mathbb{P} = \int_{\{pq>0\}} p \frac{q}{p} \ d\lambda = \int_{\{pq>0\}} q \ d\lambda \leq \int_{\Omega} q \ d\lambda = \mathbb{Q}(\Omega) = 1.$$

By Jensen's inequality, because the function $\phi:(0,\infty)\to\mathbb{R}$ given by $\phi(x)=-\log(x)$ is convex,

$$D(\mathbb{P}, \mathbb{Q}) \ge -\log\left(\int_A \frac{q_{|A|}}{p_{|A|}} d\mathbb{P}_A\right) \ge -\log(1) = 0.$$

Theorem 9.1 (Bretagnolle-Huber inequality). If $F \in \mathcal{F}$, then $\mathbb{P}(F) + \mathbb{Q}(F^c) \geq e^{-D(\mathbb{P},\mathbb{Q})}/2$.

Proof. It is sufficient to show that if $F \in \mathcal{F}$, then $\mathbb{P}(F) + \mathbb{Q}(F^c) \geq e^{-D(\mathbb{P},\mathbb{Q})}/2$ when $D(\mathbb{P},\mathbb{Q}) < \infty$.

Consider a σ -finite measure λ on (Ω, \mathcal{F}) such that $\mathbb{P} \ll \lambda$ and $\mathbb{Q} \ll \lambda$. Let $p = d\mathbb{P}/d\lambda$ almost everywhere and $q = d\mathbb{Q}/d\lambda$ almost everywhere. Since $p + q = \min(p, q) + \max(p, q)$,

$$1 = \frac{1}{2} \left(\mathbb{P}(\Omega) + \mathbb{Q}(\Omega) \right) = \frac{1}{2} \int_{\Omega} \left(p + q \right) \ d\lambda = \frac{1}{2} \int_{\Omega} \left(\min(p, q) + \max(p, q) \right) \ d\lambda \geq \frac{1}{2} \int_{\Omega} \max(p, q) \ d\lambda.$$

Since $\min(p,q) \max(p,q) = pq$ and $\min(p,q)$ and $\max(p,q)$ are λ -integrable, by the Schwarz inequality,

$$\left(\int_{\Omega} \sqrt{pq} \ d\lambda\right)^2 = \left(\int_{\Omega} \sqrt{\min(p,q)} \sqrt{\max(p,q)} \ d\lambda\right)^2 \leq \left(\int_{\Omega} \min(p,q) \ d\lambda\right) \left(\int_{\Omega} \max(p,q) \ d\lambda\right).$$

Considering a previous inequality,

$$\frac{1}{2} \left(\int_{\Omega} \sqrt{pq} \ d\lambda \right)^2 \leq \frac{1}{2} \left(\int_{\Omega} \min(p,q) \ d\lambda \right) \left(\int_{\Omega} \max(p,q) \ d\lambda \right) \leq \int_{\Omega} \min(p,q) \ d\lambda.$$

Note that, for every $F \in \mathcal{F}$,

$$\mathbb{P}(F) + \mathbb{Q}(F^c) = \int_F p \ d\lambda + \int_{F^c} q \ d\lambda \geq \int_F \min(p,q) \ d\lambda + \int_{F^c} \min(p,q) \ d\lambda = \int_\Omega \min(p,q) \ d\lambda.$$

Considering a previous inequality, for every $F \in \mathcal{F}$,

$$\mathbb{P}(F) + \mathbb{Q}(F^c) \ge \frac{1}{2} \left(\int_{\Omega} \sqrt{pq} \ d\lambda \right)^2.$$

Note that $\int_{\Omega} pq \ d\lambda > 0$ implies $\int_{\Omega} \sqrt{pq} \ d\lambda > 0$. Since $x^2 = e^{2\log(x)}$ for every $x \in (0, \infty)$,

$$\mathbb{P}(F) + \mathbb{Q}(F^c) \ge \frac{1}{2} e^{2\log(\int_{\Omega} \sqrt{pq} \ d\lambda)}.$$

Consider the measure space $(A, \mathcal{F}_A, \mathbb{P}_A)$ restricted to $A = \{pq > 0\}$. Note that the restricted function $\sqrt{q_{|A}/p_{|A}}: A \to (0, \infty)$ is \mathbb{P}_A -integrable, since

$$\int_A \sqrt{\frac{q_{|A}}{p_{|A}}} \ d\mathbb{P}_A = \int_{\{pq>0\}} \sqrt{\frac{q}{p}} \ d\mathbb{P} = \int_{\{pq>0\}} p \sqrt{\frac{q}{p}} \ d\lambda = \int_{\{pq>0\}} \sqrt{pq} \ d\lambda \leq \int_{\Omega} \sqrt{pq} \ d\lambda.$$

By Jensen's inequality, because the function $\phi:(0,\infty)\to\mathbb{R}$ given by $\phi(x)=-\log(x)$ is convex,

$$-\log\left(\int_{\Omega}\sqrt{pq}\ d\lambda\right) = -\log\left(\int_{\{pq>0\}}\sqrt{pq}\ d\lambda\right) = -\log\left(\int_{A}\sqrt{\frac{q_{|A}}{p_{|A}}}\ d\mathbb{P}_{A}\right) \leq \int_{A}-\log\sqrt{\frac{q_{|A}}{p_{|A}}}\ d\mathbb{P}_{A}.$$

Therefore,

$$\log\left(\int_{\Omega}\sqrt{pq}\ d\lambda\right) \geq \int_{\{pq>0\}}\log\sqrt{\frac{q}{p}}\ d\mathbb{P} = -\frac{1}{2}\int_{\{pq>0\}}p\log\left(\frac{p}{q}\right)\ d\lambda = -\frac{1}{2}D(\mathbb{P},\mathbb{Q}).$$

Considering a previous inequality,

$$\mathbb{P}(F) + \mathbb{Q}(F^c) \ge \frac{1}{2} e^{2\log(\int_{\Omega} \sqrt{pq} \ d\lambda)} \ge \frac{1}{2} e^{-D(\mathbb{P},\mathbb{Q})}.$$

10 Divergence decomposition

Consider a number of actions $n \in \mathbb{N}^+$, a set of actions $\mathcal{A} = \{1, \dots, n\}$, a stochastic bandit $\nu = (P_a \mid a \in \mathcal{A})$, a policy $\pi = (\pi_t \mid t \in \mathbb{N}^+)$, and a canonical triple $(\Omega, \mathcal{F}, \mathbb{P}^{\nu, \pi})$ for the stochastic bandit ν under the policy π .

Definition 10.1. For every $t \in \mathbb{N}^+$, the joint law $\mathcal{L}_{1:t}^{\nu,\pi} : \mathcal{B}(\mathbb{R}^t) \to [0,1]$ is the measure on $(\mathbb{R}^t, \mathcal{B}(\mathbb{R}^t))$ given by

$$\mathcal{L}_{1:t}^{\nu,\pi}(\Gamma) = \mathbb{P}^{\nu,\pi}\left((X_1,\ldots,X_t) \in \Gamma\right).$$

Proposition 10.1. There is a σ -finite measure λ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $P_a \ll \lambda$ for every $a \in \mathcal{A}$.

Proof. Let $\lambda: \mathcal{B}(\mathbb{R}) \to [0,\infty]$ be given by $\lambda(B) = \sum_a P_a(B)$. Because P_a is a σ -finite measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ for every $a \in \mathcal{A}$, λ is a σ -finite measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. If $\lambda(B) = 0$, then $P_a(B) = 0$ for every $a \in \mathcal{A}$, so that $P_a \ll \lambda$. \square

Proposition 10.2. Consider a σ -finite measure λ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $P_a \ll \lambda$ for every $a \in \mathcal{A}$. Let $p_a = dP_a/d\lambda$ almost everywhere for every $a \in \mathcal{A}$. For every $t \in \mathbb{N}^+$, consider the function $p_{1:t}^{\nu,\pi} : \mathbb{R}^t \to [0,\infty)$ given by

$$p_{1:t}^{\nu,\pi}(x_1,\ldots,x_t) = \prod_{k=1}^t p_{\pi_k(x_0,\ldots,x_{k-1})}(x_k),$$

where $x_0 = 0$. If λ^t is the product measure $\lambda \times \cdots \times \lambda$ on $(\mathbb{R}^t, \mathcal{B}(\mathbb{R}^t))$, then $p_{1:t}^{\nu,\pi} = d\mathcal{L}_{1:t}^{\nu,\pi}/d\lambda^t$ almost everywhere.

Proof. Consider the case where t=1. For every $B \in \mathcal{B}(\mathbb{R})$, since $\pi_1(X_0)=\pi_1(0)$,

$$\mathcal{L}_{1:1}^{\nu,\pi}(B) = \mathbb{P}^{\nu,\pi}\left(X_1 \in B\right) = \mathbb{E}^{\nu,\pi}\left(P_{\pi_1(X_0)}(B)\right) = P_{\pi_1(0)}(B) = \int_B p_{\pi_1(0)} \ d\lambda = \int_B p_{1:1}^{\nu,\pi} \ d\lambda^1.$$

In order to employ induction, suppose there is a $t-1 \in \mathbb{N}^+$ such that $p_{1:t-1}^{\nu,\pi} = d\mathcal{L}_{1:t-1}^{\nu,\pi}/d\lambda^{t-1}$ almost everywhere. Since $p_{1:t}^{\nu,\pi} : \mathbb{R}^t \to [0,\infty)$ is $\mathcal{B}(\mathbb{R}^t)$ -measurable, consider the measure $\mathcal{L}_{1:t} : \mathcal{B}(\mathbb{R}^t) \to [0,\infty]$ given by

$$\mathcal{L}_{1:t}(\Gamma) = \int_{\Gamma} p_{1:t}^{\nu,\pi} \ d\lambda^t.$$

Recall that $\mathcal{I}_t = \{B_1 \times \dots \times B_t \mid B_k \in \mathcal{B}(\mathbb{R}) \text{ for every } k \in \{1, \dots, t\}\}$ is a π -system on \mathbb{R}^t such that $\sigma(\mathcal{I}_t) = \mathcal{B}(\mathbb{R}^t)$. Therefore, if we show that $\mathcal{L}_{1:t}(I_t) = \mathcal{L}_{1:t}^{\nu,\pi}(I_t)$ for every $I_t \in \mathcal{I}_t$, then $\mathcal{L}_{1:t} = \mathcal{L}_{1:t}^{\nu,\pi}$, so that the proof will be complete. Consider a set $I_t \in \mathcal{I}_t$ given by $I_t = B_1 \times \dots \times B_t$. Because $\mathcal{L}_{1:t}^{\nu,\pi}$ is the joint law of X_1, \dots, X_t ,

$$\mathcal{L}_{1:t}^{\nu,\pi}(I_t) = \mathbb{P}^{\nu,\pi}\left(X_1 \in B_1, \dots, X_t \in B_t\right) = \mathbb{E}^{\nu,\pi}\left(\mathbb{I}_{\{X_1 \in B_1, \dots, X_{t-1} \in B_{t-1}\}}\mathbb{I}_{\{X_t \in B_t\}}\right).$$

Let $A_t = \pi_t(X_0, \dots, X_{t-1})$. By taking out what is known,

$$\mathcal{L}_{1:t}^{\nu,\pi}(I_t) = \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{X_1 \in B_1, \dots, X_{t-1} \in B_{t-1}\}} \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{X_t \in B_t\}} \mid X_0, \dots, X_{t-1} \right) \right) = \mathbb{E}^{\nu,\pi} \left(\mathbb{I}_{\{X_1 \in B_1, \dots, X_{t-1} \in B_{t-1}\}} P_{A_t}(B_t) \right).$$

Because $\mathcal{L}_{1:t-1}^{\nu,\pi}$ is the joint law of X_1,\ldots,X_{t-1} ,

$$\mathcal{L}_{1:t}^{\nu,\pi}(I_t) = \int_{\mathbb{R}^{t-1}} \mathbb{I}_{B_1 \times \dots \times B_{t-1}}(x_{1:t-1}) P_{\pi_t(0,x_{1:t-1})}(B_t) \, \mathcal{L}_{1:t-1}^{\nu,\pi}(dx_{1:t-1}).$$

By the inductive hypothesis and since $p_{\pi_t(0,x_{1:t-1})} = dP_{\pi_t(0,x_{1:t-1})}/d\lambda$ almost everywhere for every $x_{1:t-1} \in \mathbb{R}^{t-1}$,

$$\mathcal{L}_{1:t}^{\nu,\pi}(I_t) = \int_{\mathbb{R}^{t-1}} \mathbb{I}_{B_1 \times \dots \times B_{t-1}}(x_{1:t-1}) p_{1:t-1}^{\nu,\pi}(x_{1:t-1}) \left(\int_{\mathbb{R}} \mathbb{I}_{B_t}(x_t) p_{\pi_t(0,x_{1:t-1})}(x_t) \ \lambda(dx_t) \right) \ \lambda^{t-1}(dx_{1:t-1}).$$

Since $p_{1:t}^{\nu,\pi}(x_{1:t}) = p_{1:t-1}^{\nu,\pi}(x_{1:t-1})p_{\pi_t(0,x_{1:t-1})}(x_t)$ for every $x_{1:t} \in \mathbb{R}^t$ and Fubini's theorem,

$$\mathcal{L}_{1:t}^{\nu,\pi}(I_t) = \int_{\mathbb{R}^{t-1}} \int_{\mathbb{R}} \mathbb{I}_{B_1 \times \dots \times B_t}(x_{1:t}) p_{1:t}^{\nu,\pi}(x_{1:t}) \ \lambda(dx_t) \ \lambda^{t-1}(dx_{1:t-1}) = \int_{I_t} p_{1:t}^{\nu,\pi} \ \lambda^t = \mathcal{L}_{1:t}(I_t).$$

Theorem 10.1. If $\nu' = (P'_a \mid a \in \mathcal{A})$ is a stochastic bandit such that $D(P_a, P'_a) < \infty$ for every $a \in \mathcal{A}$ and $t \in \mathbb{N}^+$,

$$D(\mathcal{L}_{1:t}^{\nu,\pi},\mathcal{L}_{1:t}^{\nu',\pi}) = \sum_{a} D(P_a, P_a') \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right).$$

Proof. Consider the σ -finite measure $\lambda: \mathcal{B}(\mathbb{R}) \to [0,\infty]$ on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ given by $\lambda(B) = \sum_a P_a(B) + P'_a(B)$. Note that $P_a \ll \lambda$ and $P'_a \ll \lambda$ for every $a \in \mathcal{A}$. Let $p_a = dP_a/d\lambda$ almost everywhere and $p'_a = dP'_a/d\lambda$ almost everywhere for every $a \in \mathcal{A}$. For every $t \in \mathbb{N}^+$, consider the functions $p_{1:t}^{\nu,\pi}: \mathbb{R}^t \to [0,\infty)$ and $p_{1:t}^{\nu',\pi}: \mathbb{R}^t \to [0,\infty)$ given by

$$p_{1:t}^{\nu,\pi}(x_1,\ldots,x_t) = \prod_{k=1}^t p_{\pi_k(x_0,\ldots,x_{k-1})}(x_k),$$

$$p_{1:t}^{\nu',\pi}(x_1,\ldots,x_t) = \prod_{k=1}^t p'_{\pi_k(x_0,\ldots,x_{k-1})}(x_k),$$

where $x_0 = 0$. Recall that $p_{1:t}^{\nu,\pi} = d\mathcal{L}_{1:t}^{\nu,\pi}/d\lambda^t$ almost everywhere and $p_{1:t}^{\nu',\pi} = d\mathcal{L}_{1:t}^{\nu',\pi}/d\lambda^t$ almost everywhere, where λ^t is the product measure $\lambda \times \cdots \times \lambda$ on $(\mathbb{R}^t, \mathcal{B}(\mathbb{R}^t))$. Furthermore, recall that $\mathcal{L}_{1:t}^{\nu,\pi} \ll \lambda^t$ and $\mathcal{L}_{1:t}^{\nu',\pi} \ll \lambda^t$. For every $k \in \mathbb{N}^+$, let $A_k = \pi_k(X_0, \dots, X_{k-1})$. For every $t \in \mathbb{N}^+$, let D_t be given by

$$D_t = \sum_a D(P_a, P_a') \mathbb{E}^{\nu, \pi} \left(T_{t, a}^{\pi} \right) = \sum_{k=1}^t \mathbb{E}^{\nu, \pi} \left(\sum_a \mathbb{I}_{\{A_k = a\}} D(P_a, P_a') \right) = \sum_{k=1}^t \mathbb{E}^{\nu, \pi} \left(D(P_{A_k}, P_{A_k}') \right) < \infty.$$

Consider the case where t = 1. Since $P_a(p'_a = 0) = 0$ for every $a \in \mathcal{A}$,

$$\mathcal{L}_{1:1}^{\nu,\pi}(p_{1:1}^{\nu',\pi}=0) = \mathcal{L}_{1:1}^{\nu,\pi}(p_{\pi_1(0)}'=0) = P_{\pi_1(0)}(p_{\pi_1(0)}'=0) = 0.$$

Since $A_1 = \pi_1(X_0) = \pi_1(0)$,

$$D_1 = \mathbb{E}^{\nu,\pi} \left(D(P_{A_1}, P'_{A_1}) \right) = D\left(P_{\pi_1(0)}, P'_{\pi_1(0)} \right) = \int_{\mathbb{R}} p_{\pi_1(0)} \log \left(\frac{p_{\pi_1(0)}}{p'_{\pi_1(0)}} \right) d\lambda = \int_{\mathbb{R}} p_{1:1}^{\nu,\pi} \log \left(\frac{p_{1:1}^{\nu,\pi}}{p_{1:1}^{\nu',\pi}} \right) d\lambda^1,$$

so that $p_{1:1}^{\nu,\pi} \log \left(p_{1:1}^{\nu,\pi}/p_{1:1}^{\nu',\pi} \right)$ is λ^1 -integrable and $D_1 = D(\mathcal{L}_{1:1}^{\nu,\pi}, \mathcal{L}_{1:1}^{\nu',\pi})$.

In order to employ induction, suppose that $D_{t-1} = D(\mathcal{L}_{1:t-1}^{\nu,\pi}, \mathcal{L}_{1:t-1}^{\nu',\pi})$ for some $t-1 \in \mathbb{N}^+$.

For every $x_{1:t} \in \mathbb{R}^t$, if $p_{1:t}^{\nu,\pi}(x_{1:t}) > 0$ and $p_{1:t}^{\nu',\pi}(x_{1:t}) = 0$, then $p_{1:t-1}^{\nu,\pi}(x_{1:t-1}) > 0$ and there is an action $a_t \in \mathcal{A}$ such that $p_{a_t}(x_t) > 0$. Furthermore, $p_{1:t-1}^{\nu',\pi}(x_{1:t-1}) = 0$ or $p_{1:t-1}^{\nu',\pi}(x_{1:t-1}) > 0$ and $p_{a_t}'(x_t) = 0$. Therefore,

$$\left\{p_{1:t}^{\nu,\pi}>0,p_{1:t}^{\nu',\pi}=0\right\}\subseteq\left(\left\{p_{1:t-1}^{\nu,\pi}>0,p_{1:t-1}^{\nu',\pi}=0\right\}\times\mathbb{R}\right)\cup\left(\bigcup_{a_t}\left\{p_{1:t-1}^{\nu,\pi}>0,p_{1:t-1}^{\nu',\pi}>0\right\}\times\left\{p_{a_t}>0,p_{a_t}'=0\right\}\right).$$

Let $l_t = \lambda^t \left(p_{1:t}^{\nu,\pi} > 0, p_{1:t}^{\nu',\pi} = 0 \right)$. By an union bound,

$$l_t \leq \lambda^t \left(\left\{ p_{1:t-1}^{\nu,\pi} > 0, p_{1:t-1}^{\nu',\pi} = 0 \right\} \times \mathbb{R} \right) + \sum_{a_t} \lambda^t \left(\left\{ p_{1:t-1}^{\nu,\pi} > 0, p_{1:t-1}^{\nu',\pi} > 0 \right\} \times \left\{ p_{a_t} > 0, p_{a_t}' = 0 \right\} \right).$$

Since λ^t is the product measure $\lambda \times \cdots \times \lambda$ on $(\mathbb{R}^t, \mathcal{B}(\mathbb{R}^t))$,

$$l_t \leq \lambda^{t-1} \left(p_{1:t-1}^{\nu,\pi} > 0, p_{1:t-1}^{\nu',\pi} = 0 \right) \lambda(\mathbb{R}) + \sum_{a_t} \lambda^{t-1} \left(p_{1:t-1}^{\nu,\pi} > 0, p_{1:t-1}^{\nu',\pi} > 0 \right) \lambda \left(p_{a_t} > 0, p_{a_t}' = 0 \right).$$

Since $D_{t-1} = D(\mathcal{L}_{1:t-1}^{\nu,\pi}, \mathcal{L}_{1:t-1}^{\nu',\pi}) < \infty$ by the inductive hypothesis, note that $\lambda^{t-1} \left(p_{1:t-1}^{\nu,\pi} > 0, p_{1:t-1}^{\nu',\pi} = 0 \right) = 0$. Since $D(P_{a_t}, P'_{a_t}) < \infty$, recall that $\lambda \left(p_{a_t} > 0, p'_{a_t} = 0 \right) = 0$. Therefore, $\lambda^t \left(p_{1:t}^{\nu,\pi} > 0, p_{1:t}^{\nu',\pi} = 0 \right) = l_t = 0$.

Since $\mathcal{L}_{1:t}^{\nu,\pi} \ll \lambda^t$, note that $\mathcal{L}_{1:t}^{\nu,\pi}(p_{1:t}^{\nu,\pi} > 0, p_{1:t}^{\nu',\pi} = 0) = 0$. Therefore, completing this step,

$$0 = \mathcal{L}_{1:t}^{\nu,\pi}(p_{1:t}^{\nu,\pi} > 0, p_{1:t}^{\nu',\pi} = 0) = \int_{\{p_{1:t}^{\nu,\pi} > 0, p_{1:t}^{\nu',\pi} = 0\}} p_{1:t}^{\nu,\pi} \ d\lambda^t = \int_{\{p_{1:t}^{\nu',\pi} = 0\}} p_{1:t}^{\nu,\pi} \ d\lambda^t = \mathcal{L}_{1:t}^{\nu,\pi}(p_{1:t}^{\nu',\pi} = 0).$$

It remains to show that $p_{1:t}^{\nu,\pi}\log\left(p_{1:t}^{\nu,\pi}/p_{1:t}^{\nu',\pi}\right)$ is λ^t -integrable and that

$$D_t = \int_{\mathbb{R}^t} p_{1:t}^{\nu,\pi} \log \left(\frac{p_{1:t}^{\nu,\pi}}{p_{1:t}^{\nu',\pi}} \right) d\lambda^t.$$

Since $\mathcal{L}_{1:t-1}^{\nu,\pi}$ is the joint law of X_1,\ldots,X_{t-1} ,

$$D_t = D_{t-1} + \mathbb{E}^{\nu,\pi} \left(D(P_{A_t}, P'_{A_t}) \right) = D_{t-1} + \int_{\mathbb{R}^{t-1}} D(P_{\pi_t(0, x_{1:t-1})}, P'_{\pi_t(0, x_{1:t-1})}) \, \mathcal{L}_{1:t-1}^{\nu,\pi} (dx_{1:t-1}).$$

Since $D(P_a, P'_a) < \infty$ for every $a \in \mathcal{A}$,

$$D_t = D_{t-1} + \int_{\mathbb{R}^{t-1}} \int_{\mathbb{R}} p_{\pi_t(0,x_{1:t-1})}(x_t) \log \left(\frac{p_{\pi_t(0,x_{1:t-1})}(x_t)}{p'_{\pi_t(0,x_{1:t-1})}(x_t)} \right) \lambda(dx_t) \mathcal{L}_{1:t-1}^{\nu,\pi}(dx_{1:t-1}).$$

Since $p_{1:t-1}^{\nu,\pi} = d\mathcal{L}_{1:t-1}^{\nu,\pi}/d\lambda^{t-1}$ almost everywhere and $p_{1:t}^{\nu,\pi}(x_{1:t}) = p_{1:t-1}^{\nu,\pi}(x_{1:t-1})p_{\pi_t(0,x_{1:t-1})}(x_t)$,

$$D_{t} = D_{t-1} + \int_{\mathbb{R}^{t-1}} \int_{\mathbb{R}} p_{1:t}^{\nu,\pi}(x_{1:t}) \log \left(\frac{p_{\pi_{t}(0,x_{1:t-1})}(x_{t})}{p'_{\pi_{t}(0,x_{1:t-1})}(x_{t})} \right) \lambda(dx_{t}) \lambda^{t-1}(dx_{1:t-1}).$$

Since the function under consideration is λ^t -integrable, by Fubini's theorem,

$$D_t = D_{t-1} + \int_{\mathbb{R}^t} p_{1:t}^{\nu,\pi}(x_{1:t}) \log \left(\frac{p_{\pi_t(0,x_{1:t-1})}(x_t)}{p'_{\pi_t(0,x_{1:t-1})}(x_t)} \right) \lambda^t(dx_{1:t}).$$

Since $p_{1:t}^{\nu,\pi} = d\mathcal{L}_{1:t}^{\nu,\pi}/d\lambda^t$ almost everywhere and $\mathcal{L}_{1:t}^{\nu,\pi}$ is the joint law of X_1,\ldots,X_t ,

$$D_{t} = D_{t-1} + \int_{\mathbb{R}^{t}} \log \left(\frac{p_{\pi_{t}(0,x_{1:t-1})}(x_{t})}{p'_{\pi_{t}(0,x_{1:t-1})}(x_{t})} \right) \mathcal{L}_{1:t}^{\nu,\pi}(dx_{1:t}) = D_{t-1} + \mathbb{E}^{\nu,\pi} \left(\log \left(\frac{p_{A_{t}}(X_{t})}{p'_{A_{t}}(X_{t})} \right) \right).$$

By the inductive hypothesis, since $p_{1:t-1}^{\nu,\pi} = d\mathcal{L}_{1:t-1}^{\nu,\pi}/d\lambda^{t-1}$ almost everywhere,

$$D_{t-1} = \int_{\mathbb{R}^{t-1}} \log \left(\frac{p_{1:t-1}^{\nu,\pi}(x_{1:t-1})}{p_{1:t-1}^{\nu',\pi}(x_{1:t-1})} \right) \mathcal{L}_{1:t-1}^{\nu,\pi}(dx_{1:t-1}) = \mathbb{E}^{\nu,\pi} \left(\log \left(\frac{p_{1:t-1}^{\nu,\pi}(X_1,\dots,X_{t-1})}{p_{1:t-1}^{\nu',\pi}(X_1,\dots,X_{t-1})} \right) \right).$$

By the definition of the functions $p_{1:t-1}^{\nu,\pi}$ and $p_{1:t-1}^{\nu',\pi}$

$$D_{t-1} = \mathbb{E}^{\nu,\pi} \left(\log \left(\prod_{k=1}^{t-1} \frac{p_{A_k}(X_k)}{p'_{A_k}(X_k)} \right) \right) = \sum_{k=1}^{t-1} \mathbb{E}^{\nu,\pi} \left(\log \left(\frac{p_{A_k}(X_k)}{p'_{A_k}(X_k)} \right) \right).$$

By combining the equation above with a previous equation,

$$D_t = \sum_{k=1}^t \mathbb{E}^{\nu,\pi} \left(\log \left(\frac{p_{A_k}(X_k)}{p_{A_k}'(X_k)} \right) \right) = \mathbb{E}^{\nu,\pi} \left(\log \left(\prod_{k=1}^t \frac{p_{A_k}(X_k)}{p_{A_k}'(X_k)} \right) \right) = \mathbb{E}^{\nu,\pi} \left(\log \left(\frac{p_{1:t}^{\nu,\pi}(X_1,\ldots,X_t)}{p_{1:t}^{\nu',\pi}(X_1,\ldots,X_t)} \right) \right).$$

Because $\mathcal{L}_{1:t}^{\nu,\pi}$ is the joint law of X_1,\ldots,X_t and $p_{1:t}^{\nu,\pi}=d\mathcal{L}_{1:t}^{\nu,\pi}/d\lambda^t$ almost everywhere,

$$D_t = \int_{\mathbb{R}^t} \log \left(\frac{p_{1:t}^{\nu,\pi}(x_{1:t})}{p_{1:t}^{\nu',\pi}(x_{1:t})} \right) \ \mathcal{L}_{1:t}^{\nu,\pi}(dx_{1:t}) = \int_{\mathbb{R}^t} p_{1:t}^{\nu,\pi}(x_{1:t}) \log \left(\frac{p_{1:t}^{\nu,\pi}(x_{1:t})}{p_{1:t}^{\nu',\pi}(x_{1:t})} \right) \ \lambda^t(dx_{1:t}),$$

which implies that $p_{1:t}^{\nu,\pi} \log \left(p_{1:t}^{\nu,\pi}/p_{1:t}^{\nu',\pi} \right)$ is λ^t -integrable and that $D_t = D(\mathcal{L}_{1:t}^{\nu,\pi}, \mathcal{L}_{1:t}^{\nu',\pi})$.

11 Minimax lower bounds

Consider a number of actions $n \in \mathbb{N}^+$ and an environment class \mathcal{E} for the set of actions $\mathcal{A} = \{1, \dots, n\}$. Let $(\Omega, \mathcal{F}, \mathbb{P}^{\nu, \pi})$ denote a canonical triple for a stochastic bandit $\nu \in \mathcal{E}$ and a policy $\pi = (\pi_t : \mathbb{R}^t \to \mathcal{A} \mid t \in \mathbb{N}^+)$.

Definition 11.1. The worst-case regret $R_t^{\mathcal{E},\pi}$ of policy π on the class \mathcal{E} after $t \in \mathbb{N}^+$ time steps is given by

$$R_t^{\mathcal{E},\pi} = \sup_{\nu \in \mathcal{E}} R_t^{\nu,\pi}.$$

Definition 11.2. The minimax regret $R_t^{\mathcal{E},*}$ of the class \mathcal{E} after $t \in \mathbb{N}^+$ time steps is given by

$$R_t^{\mathcal{E},*} = \inf_{\pi} R_t^{\mathcal{E},\pi}.$$

Definition 11.3. A policy π is minimax optimal on the environment class \mathcal{E} after t time steps if $R_t^{\mathcal{E},\pi} = R_t^{\mathcal{E},*}$.

Definition 11.4. For a number of actions $n \in \mathbb{N}^+$, a Gaussian bandit with variance σ^2 is a stochastic bandit $\nu = (P_a \mid a \in \mathcal{A})$ such that

$$P_a(B) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_B e^{-\frac{(x-\mu_a^{\nu})^2}{2\sigma^2}} \operatorname{Leb}(dx)$$

for every $a \in \mathcal{A}$ and $B \in \mathcal{B}(\mathbb{R})$, where π denotes the circle constant (as opposed to a policy).

Definition 11.5. For number of actions $n \in \mathbb{N}^+$, the set of Gaussian bandits with variance σ^2 is denoted by $\mathcal{E}_N^{n,\sigma^2}$.

Theorem 11.1. The minimax regret $R_t^{\mathcal{E}_{\mathcal{N}}^{n,1},*}$ of the environment class $\mathcal{E}_{\mathcal{N}}^{n,1}$ after t>1 time steps is at least

$$R_t^{\mathcal{E}_{\mathcal{N}}^{n,1},*} \ge \frac{1}{27}\sqrt{(n-1)t}.$$

Proof. The claim is trivial if n=1. Therefore, suppose that n>1. For some t>1, let $\Delta=\sqrt{(n-1)/4t}$ and consider an arbitrary policy $\pi=(\pi_t:\mathbb{R}^t\to\mathcal{A}\mid t\in\mathbb{N}^+)$ for the set of actions $\mathcal{A}=\{1,\ldots,n\}$.

Let $\nu = (P_a \mid a \in \mathcal{A})$ denote a Gaussian bandit with variance 1 such that $\mu_1^{\nu} = \Delta$ and $\mu_a^{\nu} = 0$ for every a > 1. Note that $\Delta_1^{\nu} = 0$ and $\Delta_a^{\nu} = \mu_*^{\nu} - \mu_a^{\nu} = \Delta$ for every a > 1. By Theorem 4.2,

$$R_{t}^{\nu,\pi} = \sum_{a} \Delta_{a}^{\nu} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right) = \Delta \sum_{a \geq 1} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right) = \Delta \left(t - \mathbb{E}^{\nu,\pi} \left(T_{t,1}^{\pi} \right) \right) = \Delta \mathbb{E}^{\nu,\pi} \left(t - T_{t,1}^{\pi} \right),$$

where we used the fact that $t = \sum_{a} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right) = \mathbb{E}^{\nu,\pi} \left(T_{t,1}^{\pi} \right) + \sum_{a>1} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right)$. By Markov's inequality,

$$R_t^{\nu,\pi} = \Delta \mathbb{E}^{\nu,\pi} \left(t - T_{t,1}^\pi \right) \geq \Delta \frac{t}{2} \mathbb{P}^{\nu,\pi} \left(t - T_{t,1}^\pi \geq \frac{t}{2} \right) = \Delta \frac{t}{2} \mathbb{P}^{\nu,\pi} \left(T_{t,1}^\pi \leq \frac{t}{2} \right).$$

Let $a' \in \mathcal{A}$ denote an action such that a' > 1 and $\mathbb{E}^{\nu,\pi}\left(T^\pi_{t,a'}\right) = \min_{a>1} \mathbb{E}^{\nu,\pi}\left(T^\pi_{t,a}\right)$. Let $\nu' = (P'_a \mid a \in \mathcal{A})$ denote a Gaussian bandit with variance 1 such that $\mu^{\nu'}_{a'} = 2\Delta$ and $\mu^{\nu'}_{a} = \mu^{\nu}_{a}$ for every $a \neq a'$. Note that $\Delta^{\nu'}_{1} = \Delta$, $\Delta^{\nu'}_{a'} = 0$, and $\Delta^{\nu'}_{a} = 2\Delta$ for every a > 1 such that $a \neq a'$. By Theorem 4.2,

$$R_t^{\nu',\pi} = \sum_a \Delta_a^{\nu'} \mathbb{E}^{\nu',\pi} \left(T_{t,a}^\pi \right) = \Delta \mathbb{E}^{\nu',\pi} \left(T_{t,1}^\pi \right) + 2\Delta \sum_{a>1 \mid a\neq a'} \mathbb{E}^{\nu',\pi} \left(T_{t,a}^\pi \right) \geq \Delta \mathbb{E}^{\nu',\pi} \left(T_{t,1}^\pi \right).$$

By Markov's inequality and since $\mathbb{P}^{\nu',\pi}\left(T_{t,1}^{\pi} \geq t/2\right) \geq \mathbb{P}^{\nu',\pi}\left(T_{t,1}^{\pi} > t/2\right)$,

$$R_t^{\nu',\pi} \geq \Delta \mathbb{E}^{\nu',\pi}\left(T_{t,1}^\pi\right) \geq \Delta \frac{t}{2} \mathbb{P}^{\nu',\pi}\left(T_{t,1}^\pi \geq \frac{t}{2}\right) \geq \Delta \frac{t}{2} \mathbb{P}^{\nu',\pi}\left(T_{t,1}^\pi > \frac{t}{2}\right).$$

By combining the previous inequalities,

$$R_t^{\nu,\pi} + R_t^{\nu',\pi} \ge \Delta \frac{t}{2} \mathbb{P}^{\nu,\pi} \left(T_{t,1}^{\pi} \le \frac{t}{2} \right) + \Delta \frac{t}{2} \mathbb{P}^{\nu',\pi} \left(T_{t,1}^{\pi} > \frac{t}{2} \right).$$

Because the random variable $T_{t,1}^{\pi}$ is $\sigma(X_1,\ldots,X_{t-1})$ -measurable, recall that there is a $\mathcal{B}(\mathbb{R}^{t-1})/\mathcal{B}(\mathbb{R})$ -measurable function $f_{t-1}^{\pi}:\mathbb{R}^{t-1}\to\mathbb{R}$ such that $T_{t,1}^{\pi}(\omega)=f_{t-1}^{\pi}(X_1(\omega),\ldots,X_{t-1}(\omega))$ for every $\omega\in\Omega$. If $\mathcal{L}_{1:t-1}^{\nu,\pi}$ denotes the joint law of X_1,\ldots,X_{t-1} under $\mathbb{P}^{\nu',\pi}$,

$$R_t^{\nu,\pi} + R_t^{\nu',\pi} \geq \Delta \frac{t}{2} \mathcal{L}_{1:t-1}^{\nu,\pi} \left(f_{t-1}^{\pi} \leq \frac{t}{2} \right) + \Delta \frac{t}{2} \mathcal{L}_{1:t-1}^{\nu',\pi} \left(f_{t-1}^{\pi} > \frac{t}{2} \right) = \Delta \frac{t}{2} \left(\mathcal{L}_{1:t-1}^{\nu,\pi}(F) + \mathcal{L}_{1:t-1}^{\nu',\pi}(F^c) \right),$$

where $F = \{f_{t-1}^{\pi} \le t/2\}$ is a set such that $F \in \mathcal{B}(\mathbb{R}^{t-1})$. By Theorem 9.1,

$$R_t^{\nu,\pi} + R_t^{\nu',\pi} \ge \Delta \frac{t}{2} \left(\frac{e^{-D(\mathcal{L}_{1:t-1}^{\nu,\pi}, \mathcal{L}_{1:t-1}^{\nu',\pi})}}{2} \right) = \Delta \frac{t}{4} e^{-D(\mathcal{L}_{1:t-1}^{\nu,\pi}, \mathcal{L}_{1:t-1}^{\nu',\pi})}.$$

For every $a \in \mathcal{A}$, P_a and P'_a are Gaussian measures with variance 1, so that $D(P_a, P'_a) = (\mu_a^{\nu} - \mu_a^{\nu'})^2/2$. By Theorem 10.1, since $\mu_a^{\nu} = \mu_a^{\nu'}$ for every $a \neq a'$,

$$D(\mathcal{L}_{1:t-1}^{\nu,\pi},\mathcal{L}_{1:t-1}^{\nu',\pi}) = \sum_{a} D(P_a, P_a') \mathbb{E}^{\nu,\pi} \left(T_{t-1,a}^{\pi} \right) = D(P_{a'}, P_{a'}') \mathbb{E}^{\nu,\pi} \left(T_{t-1,a'}^{\pi} \right) = 2\Delta^2 \mathbb{E}^{\nu,\pi} \left(T_{t-1,a'}^{\pi} \right) \leq 2\Delta^2 \mathbb{E}^{\nu,\pi} \left(T_{t,a'}^{\pi} \right).$$

Since $t = \sum_{a} \mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right)$ and $\mathbb{E}^{\nu,\pi} \left(T_{t,a}^{\pi} \right) \geq \mathbb{E}^{\nu,\pi} \left(T_{t,a'}^{\pi} \right)$ for every a > 1 such that $a \neq a'$,

$$t = \mathbb{E}^{\nu,\pi} \left(T^{\pi}_{t,1} \right) + \mathbb{E}^{\nu,\pi} \left(T^{\pi}_{t,a'} \right) + \sum_{a > 1 \mid a \neq a'} \mathbb{E}^{\nu,\pi} \left(T^{\pi}_{t,a} \right) \geq \mathbb{E}^{\nu,\pi} \left(T^{\pi}_{t,a'} \right) + (n-2) \mathbb{E}^{\nu,\pi} \left(T^{\pi}_{t,a'} \right) = (n-1) \mathbb{E}^{\nu,\pi} \left(T^{\pi}_{t,a'} \right),$$

so that $\mathbb{E}^{\nu,\pi}\left(T_{t,a'}^{\pi}\right) \leq t/(n-1)$. Therefore, $D(\mathcal{L}_{1:t-1}^{\nu,\pi},\mathcal{L}_{1:t-1}^{\nu',\pi}) \leq (2\Delta^2 t)/(n-1)$. By returning to a previous inequality,

$$R_t^{\nu,\pi} + R_t^{\nu',\pi} \geq \Delta \frac{t}{4} e^{-D(\mathcal{L}_{1:t-1}^{\nu,\pi},\mathcal{L}_{1:t-1}^{\nu',\pi})} \geq \Delta \frac{t}{4} e^{-\frac{2\Delta^2 t}{n-1}}.$$

Since $\max(x,y) \ge (x+y)/2$ for every $x \in \mathbb{R}$ and $y \in \mathbb{R}$ and $\Delta = \sqrt{(n-1)/4t}$,

$$\max(R_t^{\nu,\pi}, R_t^{\nu',\pi}) \ge \frac{R_t^{\nu,\pi} + R_t^{\nu',\pi}}{2} \ge \Delta \frac{t}{8} e^{-\frac{2\Delta^2 t}{n-1}} = \frac{e^{-\frac{1}{2}}}{16} \sqrt{(n-1)t} \ge \frac{1}{27} \sqrt{(n-1)t}.$$

In summary, we have shown that for every policy π , number of actions n>1, and time step t>1, it is possible to find Gaussian bandits ν and ν' with variance 1 such that either $R_t^{\nu,\pi} \geq \sqrt{(n-1)t}/27$ or $R_t^{\nu',\pi} \geq \sqrt{(n-1)t}/27$. Therefore, for every policy π , number of actions $n\in\mathbb{N}^+$, and time step t>1, we know that $R_t^{\mathcal{E}_N^{n,1},\pi}\geq \sqrt{(n-1)t}/27$. Consequently, $R_t^{\mathcal{E}_N^{n,1},\pi} = \inf_{\pi} R_t^{\mathcal{E}_N^{n,1},\pi} \geq \sqrt{(n-1)t}/27$.

Acknowledgements

I would like to thank Daniel Valesin for the ideas behind some of the proofs found in these notes.

License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License **()**Sec.

References

- [1] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. Introduction to algorithms. MIT press, 2022.
- [2] Kaczor, W.J., Nowak, M.T. Problems in Mathematical Analysis I. American Mathematical Society, 2000.
- [3] Lattimore, T., and Szepesvári, C. Bandit algorithms. Cambridge University Press, 2020.
- [4] Pollard, D. A User's Guide to Measure Theoretic Probability. Cambridge University Press, 2002.
- [5] Rivasplata, O. Subgaussian random variables: An expository note. 2012.
- [6] Wainwright, M. J. High-Dimensional Statistics A Non-Asymptotic Viewpoint. Cambridge University Press,