

CBM2080/CBM1180/CBM1183/CBM2075 Datasheet

Chipsbank Microelectronics Co., Ltd.

West 8 Floor, IER Building, South Area, High-tech Industrial Park, Shenzhen, P.R. China, 518057 Tel: 086-0755-86110580

Fax: 086-0755-86110570 Email: <u>info@chipsbank.com</u> URL: <u>http://www.chipsbank.com</u>

contained herein.

Copyright by Chipsbank Microelectronics Co., Ltd all rights reserved.

Contents

1	DESCRIPTION	. 1
2	FEATURES	. 1
3	BLOCK DIAGRAM	
4	PIN ASSIGNMENT	. 4
4.1	TQFP48 (TOP SIDE)	. 4
	CBM2080L/CBM1180L LQFP64 (TOP SIDE)	
5	PIN DESCRIPTION	
6	ELECTRICAL CHARACTERISTICS	.9
6.1	ABSOLUTE MAXIMUM RATINGS	.9
6.2	RECOMMENDED OPERATING CONDITIONS	.9
6.3	STATIC CHARACTERISTICS	.9
6.4	DYNAMIC CHARACTERISTICS	10
7	TYPICAL APPLICATION	12
8	MECHANICAL DIMENSIONS	13
8.1	48-PIN CBM2080/CBM1180 PACKAGE OUTLINE DIMENSION	
8.2	64-PIN CBM2080L/CBM1180L MODE PACKAGE OUTLINE DIMENSION	14
9	COPYRIGHT NOTICE	15

1 Description

Fastest & Securest USB 2.0/USB1.1 Flash Disk Controller with dedicated 32-bit microprocessor

The CBM2080 is the fastest, securest USB 2.0 Flash Disk controller on the market. With dual-channel mode enabled, CBM2080 can reach theoretical flash access speed limit of 22MByte/s for read and 20MByte/s for write. For CBM1180/CBM1183, it can reach 1.0Mbytes/s write and 1.1Mbytes/s read.

The on-the-fly ECC engine is capable of correcting up to 3bytes (24bits), detect 4 or more bytes errors per 528bytes page . For data security, CBM2080/CBM1180/CBM1183 are designed with both hardware and software data protection technology to prevent data corruption even if it is powered off or unplugged during data transfer.

The CBM2080/CBM1180 supports all NAND/MLC/AG-AND flash memory available in the market, and the CBM1183 supports all NAND/MLC flash memory available in the market. New flash can be supported by software re-configuration.

The CBM2080/CBM1180/CBM1183 runs smoothly with all available hosts and PC platforms. Complied with USB specification rev. 2.0, the CBM2080/CBM1180 can be supported without additional driver under Win XP, Win 2000, Windows Me, Mac OS and Linux OS. With device driver installed, it can support Win 98/98SE as well. Comprehensive applications, such as PC boot up, disk partitions, password check for security disk, are available as part of our mass production software package.

The USB2.0 flash disk controller CBM2080 is Pin to pin compatible with USB1.1 flash disk controller CBM1180/CBM1183, This enables the manufacturers to have the exactly same BOM and PCB layout for both USB1.1 and USB2.0 flash disk product.

The CBM2080/CBM1180/CBM1183 are available in 48-pin TQFP and 64-pin LQFP package, which are thinnest and smallest on the market. The 48-pin CBM2080/CBM1180 CBM1183 supports up to 4 flash chips and the 64-pin CBM2080L/CBM1180L CBM1183L supports up to 8 flash chips. Customers can choose different packages to meet their design requirement.

The CBM2075 is a cost-effective general purpose USB2.0 device controller with embedded 32-bit microprocessor. With 16 GPIO ports, it is available in 48-pin TQFP package.

2 Features

■ USB Interface

High-speed USB 2.0 interface; backward compatible with USB 1.1 Integrated USB 2.0/USB1.1 PHY and controller

■ Fastest data transfer rate on the market

CBM2080:

Dual-channel mode: 22MB/s for Read, 20MB/s for Write Single-channel mode: 11MB/s for Read, 10MB/s for Write CBM1180 CBM1183: 1.1MB/s for Read, 1.0MB/s for Write (No difference between Dual and single channel mode)

On-the-fly ECC built-in Hardware enhances reliability

ECC for Binary NAND flash: 3-24 bit/page (1 page = 528 bytes)

ECC for MLC NAND flash: 6-24 bit/page

ECC for AG-AND flash: 6-24 bit/page

■ Hardware & Software Data Protection Technology

Prevent data corruption even if it is powered off or unplugged during data transfer.

■ NAND, AG-AND & MLC Flash Interface

Supports Samsung & Toshiba NAND flash memories
Supports Toshiba & Sandisk MLC flash memories
Supports Renesas AG-AND flash memories
Supports Infenion / Hynix flash memories
Supports ST Microelectronics flash memories
Supports Micron / Actrans flash memories
Software configuration to support various new flash memories
Supports up to 8 flash chips.

■ Proprietary 32-bit CISC microprocessor feature

Proprietary 32-bit CISC processor for USB protocol processing and flash access.

Single cycle instruction period

- Write-protect switch for security
- Integrated 3.3v to 1.8v voltage regulator
- LED indicator to show access status

Three modes: Busy, waiting, and off

- Disk partitions and password check for security disk available
- PC boot up as USB Zip Disk and USB Hard Disk
- Auto run function
- USB suspend and resume
- Low power dissipation

Operating current 50mA (Bus power compatible)

- Leading 0.18um CMOS technology
- 48-pin TQFP /64-pin LQFP package

48-pin CBM2080/CBM1180/CBM1183 supports up to 4 Flash Chips 64-pin CBM2080L/CBM1180L/CBM1183L supports up to 8 Flash Chips

■ Windows, Mac and Linux compatible

3 Block Diagram

4 Pin Assignment

4.1 TQFP48 (Top Side)

4.2 LQFP64 (Top Side)

5 Pin Description

Brief CBM2080/CBM1180/CBM1183 pin functions are shown in the following tables.

I : Input signalO : Output signalI/O : Bi-direction signal

PWR: Power signalGND: Ground signal

CBM2080 & CBM1180 & CBM2075 LQFP64 / TQFP48 Pin Description

CBMxx80L LQFP64 Pin No.	CBMxx80/ CBM2075 TQFP48 Pin No.	Pin Name	Туре	Description
63	1	FDATA0_7 GPIO7	I/O	Group 0 Flash Data Bus - bit 7 General I/O port 7
64	_	TXD	0	Serial port data out
1	_	RXD	I	Serial port data in
2	_	FCEN4	0	Flash Chip Enable - Chip 4 (active low)
3	2	VSS	GND	Padring 3.3V / Logic 1.8V Ground
4	3	VDD33	PWR	Padring 3.3V Power
5	4	DM	I/O	USB Data Negative Pin
6	_	nc		
7	5	DP	I/O	USB Data Positive Pin
8	6	RREF	I	Connect External Resister for current reference
9	7	VD33A	PWR	Analog 3.3V Power
10	_	VD33A	PWR	Analog 3.3V Power
11	8	VS33A	GND	Analog 3.3V Ground
12	_	VS33A	GND	Analog 3.3V Ground
13	9	VSSA	GND	Analog 1.8V Ground
14	10	XI	I	Crystal Input (12 MHz)

		-		
15	11	ХО	0	Crystal Output
16	12	VDDA	PWR	Analog 1.8V Power
17	_	GPI0	I/O	General Input port 0
18	_	GPI1	I/O	General Input port 1
19	13	WP	I	Write Protect Switch Input
20	14	RESET_	I	Reset Sign (active low)
21	15	FWRN1	0	Group 1 Flash Write Enable (active low)
22	16	FRDN1	0	Group 1 Flash Read Enable (active low)
23	17	LED	0	LED Indication
24	18	FRB1 GPI5	I	Group 1 Flash Ready_Busy General Input port 5
25	19	TEST_MODE	I	Test Mode Enable Pin
26	20	BT_SEL	I	Boot up selection
27	21	FDATA1_0 GPIO8	I/O	Group 1 Flash Data Bus - bit 0 General I/O port 8
28	22	FDATA1_1 GPIO9	I/O	Group 1 Flash Data Bus - bit 1 General I/O port 9
29	23	FDATA1_2 GPIO10	I/O	Group 1 Flash Data Bus - bit 2 General I/O port 10
30	24	FDATA1_3 GPIO11	I/O	Group 1 Flash Data Bus - bit 3 General I/O port 11
31	_	GPI2	I/O	General Input port 2
32	_	GPI3	I/O	General Input port 3
33	_	FCEN5	0	Flash Chip Enable - Chip 5(active low)
34	25	FDATA1_4 GPIO12	I/O	Group 1 Flash Data Bus - bit 4 General I/O port 12
35	26	FDATA1_5 GPIO13	I/O	Group 1 Flash Data Bus - bit 5 General I/O port 13
36	_	FCEN3	0	Flash Chip Enable - Chip 3 (active low)
37	27	VDD33	PWR	Padring 3.3V Power
38	28	FDATA1_6 GPIO14	I/O	Group 1 Flash Data Bus - bit 6 General I/O port 14
39	29	FDATA1_7 GPIO15	I/O	Group 1 Flash Data Bus - bit 7 General I/O port 15
40	30	FALE1 GPO3	0	Group 1 Flash Address Latch Enable General Output port 3

41	31	FCLE1 GPO4	0	Group 1 Flash Command Latch Enable General Output port 4
42	_	FCEN6	0	Flash Chip Enable - Chip 6 (active low)
43	32	FRB0 GPI4	I	Group 0 Flash Ready_Busy General Input port 4
44	_	FCEN2	0	Flash Chip Enable - Chip 2 (active low)
45	33	FCLE0 GPO0	0	Group 0 Flash Command Latch Enable General Output port 0
46	34	FALE0 GPO1	0	Group 0 Flash Address Latch Enable General Output port 1
47	35	VSS	GND	Padring 3.3V / Logic 1.8V Ground
48	36	FCEN0	0	Flash Chip Enable - Chip 0 (active low)
49	_	FCEN1	0	Flash Chip Enable - Chip 1 (active low)
50	37	FWRN0	0	Group 0 Flash Write Enable (active low)
51	38	FRDN0	0	Group 0 Flash Read Enable (active low)
52	39	FDATA0_0 GPIO0	I/O	Group 0 Flash Data Bus - bit 0 General I/O port 0
53	40	FDATA0_1 GPIO1	I/O	Group 0 Flash Data Bus - bit 1 General I/O port 1
54	41	FDATA0_2 GPIO2	I/O	Group 0 Flash Data Bus - bit 2 General I/O port 2
55	42	FDATA0_3 GPIO3	I/O	Group 0 Flash Data Bus - bit 3 General I/O port 3
56	43	VSS33R	GND	Regulator 3.3V Ground
57	44	VREF18	PWR	Regulator 1.8V Out
58	45	VDD33R	PWR	Regulator 3.3V Power
59	_	FCEN7	0	Flash Chip Enable - Chip 7 (active low)
60	46	FDATA0_4 GPIO4	I/O	Group 0 Flash Data Bus - bit 4 General I/O port 4
61	47	FDATA0_5 GPIO5	I/O	Group 0 Flash Data Bus - bit 5 General I/O port 5
62	48	FDATA0_6 GPIO6	I/O	Group 0 Flash Data Bus - bit 6 General I/O port 6

6 Electrical Characteristics

6.1 Absolute maximum ratings

In accordance with the Absolute Maximum Rating System (IEC 60134).

symbol	parameter	conditions		min	max	unit												
VCCA	analog supply voltage															-0.5	5.5	٧
VCCD	digital supply voltage							-0.5	4.5	٧								
VI	input voltage					-0.5	5.5	٧										
Vesd	electrostatic ILI <		DP, DM and GND pins	-4000	+4000	V												
vesu	discharge voltage[1]	discharge voltage[1]	discharge voltage[1]	discharge voltage[1]	discharge voltage[1] 1 A other pins		-2000	+2000	٧									
Tstg	storage temperature			-40	+125	$^{\circ}$												

^[1] Equivalent to discharging a 100 pF capacitor via a 1.5 k resistor (Human Body Model).

6.2 Recommended operating conditions

symbol	Parameter	conditions	min	Тур	max	Unit
VCCA	analog supply voltage		3.0	3.3	3.6	V
VCCD	digital supply voltage		3.0	3.3	3.6	V
VI	input voltage		0	-	VCCD	V
\/I/AI/O\	input voltage on analog I/O pins DP DM	Low/Full speed	0	3.3	3.6	V
VI(AI/O)		High speed	0	400	-	mV
Tamb	ambient temperature		0	-	+70	$^{\circ}$

6.3 Static characteristics

All parameters are measured at VCCA = VCCD = 3.0 to 3.6 V; VAGND = VDGND = 0 V; Tamb = 40 to 85 $^{\circ}$ C;

symbol	Parameter	Conditions	min	Тур	max	Unit
ICC	operating supply current	Full-speed transmitting and receiving;	ı	29.5	-	mA
100		high-speed transmitting and receiving	ı	50		IIIA
ICC(susp)	suspend supply current	in suspend mode	1	500		uA

6.4 Dynamic characteristics

All parameters are measured at VCCA = VCCD = 3.0 to 3.6 V; VAGND = VDGND = 0 V; Tamb = 40 to 85 $^{\circ}$ C ;

symbol	Parameter	conditions	min	Tvn	max	Unit
Syllibol	Farailletei	Conditions		Тур	IIIax	Ollit
Ts(FDATA*)	FDATA* setup time relative to rising FWRN* edge		ı	33	ı	ns
Th(FDATA*)	FDATA* hold time relative to falling FWRN* edge		ı	33	ı	ns
Ts (FCLE*)	FCLE* setup time relative to falling FWRN* edge		ı	33	ı	ns
Th (FCLE*)	FCLE* hold time relative to rising FWRN* edge		ı	33	ı	ns
Ts (FALE*)	FALE* setup time relative to falling FWRN* edge		ı	33	ı	ns
Th (FALE*)	FALE* hold time relative to rising FWRN* edge		ı	33	ı	ns
Ts (FCEN*)	FCEN* setup time relative to falling FWRN* edge		ı	99	ı	ns
Tpw (FWRN*)	FWRN* Pulse Width		-	33	-	ns
Thh (FWRN*)	FWRN* high hold time		ı	33	ı	ns
Ta(FDATA*)	FDATA* access time relative to falling FRDN* edge		ı	ı	40	ns
Tpw (FRDN*)	FWRN* Pulse Width		-	33	ı	ns
Thh (FRDN*)	FWRN* high hold time		-	33	-	ns

Timing diagram for Writing of Data

Timing diagram for Reading of Data

7 Typical Application

8 Mechanical Dimensions

8.1 48-Pin CBM2080/CBM1180/CBM1183 Package Outline Dimension

8.2 64-Pin CBM2080L/CBM1180L/CBM1183L Mode Package Outline Dimension

9 Copyright Notice

Copyright 2004 by Chipsbank Microelectronics Co. Ltd. All Rights Reserved.

Right to make changes —Chipsbank Microelectronics Co., Ltd reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. The information contained in this manual is provided for the general use by our customers. Our customers should be aware that the personal computer field is the subject of many patents. Our customers should ensure that they take appropriate action so that their use of our products does not infringe upon any patents. It is the policy of Chipsbank Microelectronics Co., Ltd. to respect the valid patent rights of third parties and not to infringe upon or assist others to infringe upon such rights.

This manual is copyrighted by Chipsbank Microelectronics Co., Ltd. You may not reproduce, transmit, transcribe, store in a retrieval system, or translate into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, any part of this publication without the expressly written permission from Chipsbank Microelectronics Co., Ltd.