Matplotlib

Document: https://matplotlib.org

Setup

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
```

df = pd.read_csv('_/content/Economy_of_US.csv')
df

	Year	GDP_PPP	GDP_PerCapita_PPP	GDP_Nominal	GDP_PerCapita_Nominal	GDP_(
0	1980	2857.3	12552.9	2857.3	12552.9	
1	1981	3207.0	13948.7	3207.0	13948.7	
2	1982	3343.8	14405.0	3343.8	14405.0	
3	1983	3634.0	15513.7	3634.0	15513.7	
4	1984	4037.7	17086.4	4037.7	17086.4	
5	1985	4339.0	18199.3	4339.0	18199.3	
6	1986	4579.6	19034.8	4579.6	19034.8	
7	1987	4855.3	20001.0	4855.3	20001.0	
8	1988	5236.4	21376.0	5236.4	21376.0	
9	1989	5641.6	22814.1	5641.6	22814.1	
10	1990	5963.1	23848.0	5963.1	23848.0	
11	1991	6158.1	24302.8	6158.1	24302.8	
12	1992	6520.3	25392.9	6520.3	25392.9	
13	1993	6858.6	26364.2	6858.6	26364.2	
14	1994	7287.3	27674.0	7287.3	27674.0	
15	1995	7639.8	28671.5	7639.8	28671.5	
16	1996	8073 1	29947 0	8073 1	29947 0	

. •		55.5			
17	1997	8577.6	31440.1	8577.6	31440.1
18	1998	9062.8	32833.7	9062.8	32833.7
19	1999	9631.2	34496.2	9631.2	34496.2
20	2000	10251.0	36312.8	10251.0	36312.8
21	2001	10581.9	37101.5	10581.9	37101.5
22	2002	10929.1	37945.8	10929.1	37945.8
23	2003	11456.5	39405.4	11456.5	39405.4
24	2004	12217.2	41641.6	12217.2	41641.6
25	2005	13039.2	44034.3	13039.2	44034.3
26	2006	13815.6	46216.9	13815.6	46216.9
27	2007	14474.3	47943.4	14474.3	47943.4
28	2008	14769.9	48470.6	14769.9	48470.6
29	2009	14478.1	47102.4	14478.1	47102.4
30	2010	15049.0	48586.3	15049.0	48586.3
31	2011	15599.7	50008.1	15599.7	50008.1
32	2012	16254.0	51736.7	16254.0	51736.7
33	2013	16843.2	53245.5	16843.2	53245.5
34	2014	17550.7	55083.5	17550.7	55083.5
35	2015	18206.0	56729.7	18206.0	56729.7
36	2016	18695.1	57840.0	18695.1	57840.0
37	2017	19479.6	59885.7	19479.6	59885.7
38	2018	20527.2	62769.7	20527.2	62769.7
39	2019	21372.6	65051.9	21372.6	65051.9
40	2020	20893.8	63078.5	20893.8	63078.5
41	2021	22996.1	69227.1	22996.1	69227.1
42	2022	25035.2	75179.6	25035.2	75179.6
43	2023	26185.2	78421.9	26185.2	78421.9
44	2024	27057.2	80779.3	27057.2	80779.3
45	2025	28045.3	83463.2	28045.3	83463.2

46	2026	29165.5	86521.2	29165.5	86521.2
47	2027	30281.5	89546.4	30281.5	89546.4

A simple splot

```
plt.plot(df['Year'], df['GDP_Growth'])
plt.xlabel('Year')
plt.ylabel('GDP GRowth')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')

Change markers

```
plt.plot(df['Year'], df['GDP_Growth'], 'o')
plt.xlabel('Year')
plt.ylabel('GDP GRowth')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')

0

0.06


```
markers = ['o', '*', '.', ',', 'x', 'X', '+', 'P', 's', 'D', 'd', 'p', 'H', 'h', '
for m in markers:
    print(m)
    plt.plot(df['Year'], df['GDP_Growth'], m)
    plt.xlabel('Year')
    plt.ylabel('GDP GRowth')
    plt.title('Economy of US')
    plt.show()
```

Economy of US

*

•

Economy of US

•

Change line style

```
line = ['-',':','--','-.']
for l in line:
  print(l)
  l = 'o' + l + 'r'
  plt.plot(df['Year'], df['GDP_Growth'], l)
  plt.xlabel('Year')
  plt.ylabel('GDP GRowth')
  plt.title('Economy of US')
  plt.show()
```


Change color

```
color = ['r','g','b','c','m','y','k','w']
for c in color:
  print(c)
  c = 'o:' + c
  plt.plot(df['Year'], df['GDP_Growth'], c)
  plt.xlabel('Year')
  plt.ylabel('GDP GRowth')
  plt.title('Economy of US')
  plt.show()
```


b

Economy of US

Change marker size


```
plt.plot(df['Year'], df['GDP_Growth'], marker = '^', ms = 15)
plt.xlabel('Year')
plt.ylabel('GDP GRowth')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')

Scatter plot


```
plt.plot(df['Year'], df['GDP_Growth'], 'o')
plt.xlabel('Year')
plt.ylabel('GDP GRowth')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')


```
plt.scatter(df['Year'], df['GDP_Growth'])
plt.xlabel('Year')
plt.ylabel('GDP GRowth')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')

▼ colorbar


```
plt.scatter(df['Year'], df['GDP_Growth'], c=df['Inflation'], cmap='hot')
plt.colorbar()
plt.xlabel('Year')
plt.ylabel('GDP GRowth')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')

▼ size


```
plt.scatter(df['Year'], df['GDP_Growth'], s= df['Unemployment']*1000)
plt.xlabel('Year')
plt.ylabel('GDP GRowth')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')

colorbar and size


```
plt.scatter(df['Year'], df['GDP_Growth'], c=df['Inflation'], cmap='hot', alpha = 0
plt.colorbar()
plt.xlabel('Year')
plt.ylabel('GDP GRowth')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')


```
plt.bar(df['Year'], df['GDP_Growth'])
plt.xlabel('Year')
plt.ylabel('GDP GRowth')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')


```
plt.hist(df['GDP_Growth'])
plt.xlabel('GDP Growth')
plt.ylabel('Counts')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')


```
plt.hist(df['GDP_Growth'], bins = 50)
plt.xlabel('GDP Growth')
plt.ylabel('Counts')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')

▼ Pie plot

```
df['Inflation_Change'].value_counts()
```

Decrease 23 Increase 21 No change 3

Name: Inflation_Change, dtype: int64

plt.pie(df['Inflation_Change'].value_counts(), labels = ['Decrease', 'Increase', 'I
plt.legend()
plt.title('Economy of US')

Text(0.5, 1.0, 'Economy of US')

Economy of US


```
plt.pie(df['Inflation_Change'].value_counts(), labels = ['Decrease', 'Increase', 'Inc
```

Text(0.5, 1.0, 'Economy of US')

Economy of US

▼ Box plot

```
plt.boxplot(df['Inflation'])
plt.ylabel('Inflation')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')

▼ Violinplot

```
plt.violinplot(df['Inflation'])
plt.ylabel('Inflation')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')

Multiplots

```
plt.plot(df['Year'], df['GDP_Growth'])
plt.plot(df['Year'], df['Inflation'])
plt.plot(df['Year'], df['Unemployment'])
plt.xlabel('Year')
plt.title('Economy of US')
```

Text(0.5, 1.0, 'Economy of US')

Add legend

```
plt.plot(df['Year'], df['GDP_Growth'], label = 'GDP_Growth')
plt.plot(df['Year'], df['Inflation'], label = 'Inflation' )
plt.plot(df['Year'], df['Unemployment'], label = 'Unemployment')
plt.xlabel('Year')
plt.ylabel('Economy')
plt.grid()
plt.legend()
```

<matplotlib.legend.Legend at 0x7f27844e3e20>

Change arrangement

```
plt.subplot(3, 1, 1)
plt.plot(df['Year'], df['GDP_Growth'], label = 'GDP_Growth')
plt.legend()
plt.xlabel('Year')
plt.ylabel('Economy')
plt.subplot(3, 1, 2)
plt.plot(df['Year'], df['Inflation'], label = 'Inflation' )
plt.legend()
plt.xlabel('Year')
plt.ylabel('Economy')
plt.subplot(3, 1, 3)
plt.plot(df['Year'], df['Unemployment'], label = 'Unemployment')
plt.legend()
plt.xlabel('Year')
plt.ylabel('Economy')
plt.grid()
```



```
plt.subplot(1, 3, 1)
plt.plot(df['Year'], df['GDP_Growth'], label = 'GDP_Growth')
plt.legend()
plt.xlabel('Year')
plt.ylabel('Economy')
plt.subplot(1, 3, 2)
plt.plot(df['Year'], df['Inflation'], label = 'Inflation' )
plt.legend()
plt.xlabel('Year')
plt.subplot(1, 3, 3)
plt.plot(df['Year'], df['Unemployment'], label = 'Unemployment')
plt.legend()
plt.xlabel('Year')
plt.grid()
```


Colab paid products - Cancel contracts here

×