

CIRCUITOS TRANSITÓRIOS DE 1ª ORDEM APLICAÇÕES DE CIRCUITOS RC E RL

Entre os vários dispositivos para os quais existem aplicações para circuitos RC e RL, temos filtragem em fontes de alimentação CC, circuitos de suavização para comunicação digital, diferenciadores, integradores, circuitos de retardo e circuitos a relé. Algumas dessas aplicações tiram proveito das constantes de tempo curtas ou longas dos circuitos RC ou RL.

Circuitos de retardo

Um circuito RC pode ser usado para fornecer vários tipos de retardos de tempo. A figura 1 ilustra um circuito destes, que é formado basicamente por um circuito RC com o capacitor conectado em paralelo com uma lâmpada de neon. A fonte de tensão pode fornecer tensão suficiente para acender a lâmpada. Quando a chave é fechada, a tensão no capacitor aumenta gradualmente em direção a 110V em uma taxa determinada pela constante de tempo do circuito, $(R_1 + R_2)C$. A lâmpada atuará como um circuito aberto e não emitirá luz até que a tensão nela exceda determinado nível, digamos 70V, e quando esse nível for atingido, a lâmpada acende e o capacitor descarrega por meio dela. Em virtude da baixa resistência da lâmpada quando está ligada, a tensão no capacitor cai rapidamente e a lâmpada apaga. A lâmpada atua novamente como um circuito aberto e o capacitor recarrega. Ajustando R_2 , podemos introduzir retardos longos ou curtos no circuito e fazer a lâmpada acender, recarregar e acender repetidamente a cada constante de tempo $t = (R_1 + R_2)C$, pois leva um período t para que a tensão no capacitor fique suficientemente alta para acendê-la ou suficientemente baixa para desligá-la.

Figura 1 - Um circuito de retardo RC.

Os sinalizadores intermitentes encontrados comumente em canteiros de obras de rodovias são um exemplo da utilidade de um circuito de retardo RC como este.

CIRCUITOS TRANSITÓRIOS DE 1º ORDEM APLICAÇÕES DE CIRCUITOS RC E RL

EXERCÍCIO 1

Considere o circuito da figura 1 e suponha que R_1 = 1,5 $M\Omega$, 0 < R_2 < 2,5 $M\Omega$. (a) Calcule os limites extremos da constante de tempo do circuito. (b) Quanto tempo leva para a lâmpada brilhar pela primeira vez após a chave ser fechada? Parta do pressuposto de que R_2 é o valor maior.

Flash eletrônico para câmeras fotográficas

Um *flash* eletrônico é um exemplo comum de um circuito RC. Essa aplicação explora a capacidade de o capacitor se opor a qualquer mudança abrupta na tensão. A figura 2 mostra um circuito simplificado, que consiste, basicamente, em uma fonte de tensão CC de alta tensão, um resistor limitador de corrente R_1 de alto valor e um capacitor C em paralelo com a lâmpada do *flash* de baixa resistência, R_2 . Quando a chave se encontra na posição 1, o capacitor carrega lentamente em decorrência da constante de tempo grande ($c_1 = R_1C$). Conforme ilustrado na figura 3a, a tensão no capacitor aumenta gradualmente, de zero até Vs, enquanto sua corrente diminui gradualmente de $I_1 = Vs/R_1$ até zero. O tempo de carga é aproximadamente cinco vezes a constante de tempo:

$$t_{carga} = 5 R_1 C$$

Figura 2 – Circuito para um *flash* fornecendo carga lenta na posição 1 e descarga rápida na posição 2.

Com a chave na posição 2, a tensão no capacitor é descarregada. A baixa resistência R_2 da lâmpada do *flash* permite uma corrente de descarga elevada com pico $I_2 = Vs/R_2$ em um curto espaço de tempo, conforme representado na 3b. A descarga acontece em aproximadamente cinco vezes a constante de tempo:

$$t_{descarga} = 5 R_2 C$$

CIRCUITOS TRANSITÓRIOS DE 1º ORDEM APLICAÇÕES DE CIRCUITOS RC E RL

Portanto, o circuito RC simples da figura 2 fornece um pulso de corrente elevada de curta duração. Um circuito como este também pode ser aplicado em soldagem elétrica por pontos e em válvulas de transmissão de radares.

Figura 3 (a) Tensão no capacitor mostrando carga lenta e descarga rápida; (b) corrente no capacitor mostrando corrente de carga baixa $I_1 = Vs/R_1$ e corrente de descarga elevada $I_2 = Vs/R_2$.

EXERCÍCIO 2

Um flash eletrônico tem um resistor limitador de corrente de 6 k Ω e um capacitor eletrolítico de 2.000 μ F carregado a 240V. Se a resistência da lâmpada for de 12 Ω , determine: (a) a corrente de pico na carga; (b) o tempo necessário para o capacitor se carregar completamente; (c) a corrente de descarga de pico; (d) a energia total armazenada no capacitor; e (e) a potência média dissipada pela lâmpada.

Circuitos a Relé

Uma chave controlada magneticamente é chamada relé, que é, basicamente, um dispositivo eletromagnético usado para abrir ou fechar uma chave que controla outro circuito. A figura 4a mostra um circuito a relé comum. O circuito a relé é um circuito RL como aquele mostrado na figura 4b, onde R e L são a resistência e a indutância da bobina. Quando a chave S_1 da figura 4a for fechada, o circuito a relé é energizado, fazendo que a corrente na bobina aumente gradualmente e produza um campo magnético. Finalmente, o campo magnético será suficientemente forte para atrair o contato móvel no outro circuito e fechar a chave S_2 . Nesse ponto, diz-se que o relé é armado. O intervalo de tempo t_d entre o fechamento das chaves S_1 e S_2 é denominado tempo de retardo do relé.

Os relés foram usados originalmente nos primeiros circuitos digitais e ainda são empregados para chaveamento de circuitos de alta potência.

CIRCUITOS TRANSITÓRIOS DE 1º ORDEM APLICAÇÕES DE CIRCUITOS RC E RL

Figura 4 - Um circuito a relé.

EXERCÍCIO 3

A bobina de certo relé é acionada por uma bateria de 12V. Se a bobina tiver uma resistência de 150Ω , uma indutância de 30 mH e a corrente necessária para armá-lo for de 50 mA, calcule o tempo de retardo do relé.