Problem #1: (35 pts)

Consider the problem of inserting the **keys 10, 22, 31, 4, 15, 28, 17, 88, and 59** into a hash table of length 11 (**TableSize = 11**) using open addressing with the standard hash function $h(k) = k \mod T$ ableSize. Illustrate the result of inserting these keys using:

(a) Linear probing.

(h (key) + i) % TableSize

value	22	88			4	15	28	17	59	31	10
Index	0	1	2	3	4	5	6	7	8	9	10

$$h(17) + 1 \% 11 = 7$$

$$h(88) + 1 \% 11 = 1$$

$$h(59) + 4 \% 11 = 8$$

(b) Quadratic probing with quadratic probe function c(i) = 3i2 + i.

٧	alue	22		28	59	4	17	15	88		31	10
	Index	0	1	2	3	4	5	6	7	8	9	10

$$h(15) + 3(1)2 + 1 \% 11 = 0$$

$$h(15) + 3(2)2 + 2 \% 11 = 6$$

$$h(17) + 3(1)2 + 1 \% 11 = 2$$

$$h(17) + 3(2)2 + 2 \% 11 = 9$$

$$h(88) + 3(1)2 + 1 \% 11 = 7$$

$$h(59) + 3(1)2 + 1 \% 11 = 0$$

PID: 3816842

(c) Double hashing with u(k) = k and $v(k) = i + (k \text{ mod}(TableSize} - 1))$.

$$u(k) = k$$
 and $v(k) = 1 + (k \% (TableSize - 1))$

$$u(k) + i * (1 + (v(k) % (TableSize - 1)) % TableSize$$

value	22	28	59	17	4	15		28	88	31	10
Index	0	1	2	3	4	5	6	7	8	9	10

$$u(10) \% 11 = 10$$

$$u(22) \% 11 = 0$$

$$u(31) \% 11 = 9$$

$$u(15) \% 11 = 4$$

$$u(15) + (1) * (1 + (v(15) % (11 -1)) % 11 = 10$$

$$u(15) + (2) * (1 + (v(15) % (11 -1)) % 11 = 5$$

$$u(28) + (1) * (1 + (v(28) % (11 -1)) % 11 = 4$$

$$u(28) + (2) * (1 + (v(28) % (11 -1)) % 11 = 7$$

$$u(17) + (1) * (1 + (v(17) % (11 -1)) % 11 = 3$$

$$u(88) + (1) * (1 + (v(88) % (11 -1)) % 11 = 8$$

$$u(59) \% 11 = 4$$

$$u(59) + (1) * (1 + (v(59) % (11 -1)) % 11 = 3$$

$$u(59) + (2) * (1 + (v(59) % (11 -1)) % 11 = 2$$

Joseph Martinez PID: 3816842

Problem #2: (30 pts)

(a) Given a sorted array of N distinct integers that has been rotated an unknown number of times. Implement (in Java) an efficient algorithm that finds an element in the array.

PLEASE REVIEW JAVA IMPLEMENTATION

(b) What is the running time complexity of your algorithm? Note: You may assume that the array was originally sorted in increasing order. Example:

The running time is O(log n)

Finding the pivot is: O(log n)

Calling the binary search on the partitioned array: O(log n)

Input:

Find 5 in array (15 16 19 20 25 1 3 4 5 7 10 14)

Output:

8 (the index of 5 in the array)

Problem #3: (35 pts)

(a) Given an unsorted array A[1...n] of distinct integers numbers and is given a nonnegative integer number, k, k < n. You need to find an element from A such that its rank is k, i.e., there are exactly (k-1) numbers less than or equal to that element.

```
Example:
```

```
Input:
```

```
A = [1^*, -3^*, 4^*, 3^*, 12^*, 20^*, 30^*, 7^*, 14^*, -1^*, 0^*] and k = 8.
```

Output:

```
-3, -1, 0, 1, 3, 4, 7, 12, 14, 20, 30
```

12, since 7, -3, -1, 0, 4, 3, 1 (8-1=7 numbers) are all less than or equal to 12

Suggest **a sub-quadratic** running time complexity algorithm (only pseudo code) to solve this problem. Justify.

```
//We can first sort the array using any O(n \log n) algorithm. We use a Merge Sort, as this algorithm provides a warranty that the worst case is O(n \log n). The printing of the element will take O(n).
```

```
//Thus we have O( n log n ) + O ( n )
public static void function ( list , k)
```

```
list sortedList = mergeSort(list); // let us assume that merge sort return a sorted copy array if k > sortedList.length // check if k = list size.
```

break

```
print( k is equal to sortedList[ k -1 ] )
```

while n is **less than** the k

print (sortedList[n]) // print all the numbers that rank less or equal to k -1

n ++

Joseph Martinez PID: 3816842

(b) Given an array A of n + m elements. It is known that the first n elements in A are sorted and the last m elements in A are unsorted.

Suggest an algorithm (only pseudo code) to sort A in O($m \log m + n$) worst case running time complexity. Justify.

(c) The processing time of an algorithm is described by the following recurrence equation (assume the c is a positive constant):

```
T(n) = 3T(n/3) + 2cn; T(1) = 0
```

What is the running time complexity of this algorithm? Justify.

```
T(n) = 3T(n/3) + 2cn; T(1) = 0

a = 3, b = 3, d = 1

log_3 3 = 1

3 = 3^1 True thus T(n) is O( n log n )
```

Joseph Martinez PID: 3816842

- (d) You decided to improve insertion sort by using binary search to find the position p where the new insertion should take place.
- (d.1) What is the worst-case complexity of your improved insertion sort if you take account of **only the** comparisons made by the binary search?

O(n log n)

Binary search is O(log n) * number of shifting elements O(n)

(d.2) What is the worst-case complexity of your improved insertion sort if only swaps/inversions of the data values are taken into account?

Worst case is for the while whole algorithm is:

Inserting * (Binary Search + Shifting)

 $n_1 * (O(log n) + O(n_2))$

if only the swaps are taken into account we would have inserting number of element (n) and number of swaps (n):

 $O(n) * O(n) = O(n^2)$