Rank-264 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 + X_0 X_1^2 = 0$$

(0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) The point rank of the equation over GF(2) is 264

General information

Number of lines	5
Number of points	11
Number of singular points	0
Number of Eckardt points	2
Number of double points	0
Number of single points	9
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{5}
Type of lines on points	$3^2, 1^9$

Singular Points

The surface has 0 singular points:

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_5 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_5 = \mathbf{Pl}(0, 0, 1, 0, 1, 0)_{12}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{29} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{29} = \mathbf{Pl}(0, 0, 0, 1, 0, 1)_{25}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{Pl}(0, 0, 1, 1, 1, 1)_{32}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \mathbf{Pl}(1, 1, 1, 0, 1, 1)_{30}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{17} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{17} = \mathbf{Pl}(1, 1, 1, 1, 1, 0)_{18}$$

Rank of lines: (5, 29, 12, 10, 17)

Rank of points on Klein quadric: (12, 25, 32, 30, 18)

Eckardt Points

The surface has 2 Eckardt points:

$$0: P_{12} = \mathbf{P}(0, 0, 1, 1) = \mathbf{P}(0, 0, 1, 1), T = 1$$

1:
$$P_{14} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1)$$
. $T = 8$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 9 single points:

The single points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$ lies on line ℓ_0

1: $P_1 = (0, 1, 0, 0)$ lies on line ℓ_1

2: $P_4 = (1, 1, 1, 1)$ lies on line ℓ_2

 $3: P_5 = (1, 1, 0, 0)$ lies on line ℓ_2

4: $P_6 = (1, 0, 1, 0)$ lies on line ℓ_3

The single points on the surface are:

$5: P_8 = (1, 1, 1, 0)$ lies on line ℓ_4

6: $P_9 = (1, 0, 0, 1)$ lies on line ℓ_4

7: $P_{11} = (1, 1, 0, 1)$ lies on line ℓ_3

8: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_0

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

$$\begin{array}{c|c} 01234 \\ \hline 001100 \\ 110111 \\ 211000 \\ 301001 \\ 401010 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_{12}	P_{12}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_{12}	P_{12}	P_{14}	P_{14}

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1
in point	P_{12}	P_{12}

Line 3 intersects

Line	ℓ_1	ℓ_4
in point	P_{14}	P_{14}

Line 4 intersects

Line	ℓ_1	ℓ_3
in point	P_{14}	P_{14}

The surface has 11 points:

The points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$

 $4: P_6 = (1, 0, 1, 0)$

 $8: P_{12} = (0, 0, 1, 1)$

 $1: P_1 = (0, 1, 0, 0)$

9: $P_{13} = (1, 0, 1, 1)$ 10: $P_{14} = (0, 1, 1, 1)$

 $2: P_4 = (1, 1, 1, 1)$ $3: P_5 = (1, 1, 0, 0)$