# Heurística Glotona para el Problema de Zonificación Agrícola

Fernanda Flores<sup>1</sup> Diego García Tinajero<sup>1</sup> Jannet Tamayo<sup>1</sup> Adrián Martínez<sup>1</sup> Iván Vega<sup>1</sup> Aldo Rangel 1

<sup>1</sup>Centro de Investigación en Matemáticas A.C. Avenidad de la plenitud 103, Fracc. José Vasconcelos CP 20200, Aguascalientes, Ags.

#### Resumen

Palabras clave: Metaheurística, Zonificación Agrícola

#### I. Introducción

El Problema de Zonificación de Sitio Específico (SSMZ) pertenece a la rama de la agricultura de precisión, y en general tiene como objetivo mejorar el rendimiento de los cultivos considerando las propiedades específicas del suelo. Siendo más específicos, el SSMZ busca dividir un terreno en zonas homogéneas con respecto a algún nutriente o característica, de modo que se pueden tomar mejores decisiones respecto a los fertilizantes, semillas, riego y todo tipo de factores que favorezcan la producción del campo.

#### II. Marco teórico

Este tipo de problema se ha abordado desde diferentes enfoques tales como k-means, Fuzzy k-means, programación entera y estimación de distribuciones sin embargo lo más reciente que se ha propuesto es un método heurístico con el cual se busca obtener la menor cantidad de regiones ortogonales respetando un criterio de homogeneidad ( $\alpha$ ), su funcionamiento consta de tomar un punto inicial de la parcela o terreno dividido y posteriormente en cada iteración se decide si el área adyacente se une a la inicial, subsecuentemente se generan las diferentes zonas respetando el criterio de homogeneidad y seleccionando solamente vecinos con los cuales la región cumpla la ortogonalidad. Este método cuenta con y variantes en el criterio de selección del área inicial y la dirección de búsqueda. A pesar de que este método genera soluciones factibles en tiempos reducidos se tiene el objetivo de buscar alguna mejora significativa.

## III. Metodología

## III.1. Alternativa 1

Esta alternativa consiste en elegir como vértice inicial a aquel que tenga la menor varianza con respecto de sus vecinos (N1) con la finalidad de que éste tenga la mayor probabilidad de reetiquetar a

sus vecinos. Para esto se realiza un preprocesamiento de la instancia en la cual se obtiene la varianza de cada vértice y seleccionamos como inicial a aquel tal que:

$$\min_{z_i} \left[ \frac{1}{tam(Z_i) - 1} \sum_{z \in Z_i} (z - \mu_i)^2 \right]$$

Donde:

- $\blacksquare \ \mu_i = \frac{1}{tam(Z_i)} \sum_{z \in Z_i} z$
- $Z_i$  es el conjunto del vértice  $z_i$  y sus vecinos N1

La figura 1 ejemplifica este procedimiento.

| 2 | 5 | 5 | 3 |
|---|---|---|---|
| 8 | 1 | 5 | 2 |
| 5 | 4 | 5 | 5 |
| 2 | 3 | 1 | 5 |

| 9     | 4.25  | 1     | 2.333 |
|-------|-------|-------|-------|
| 10    | 6.3   | 3.8   | 2.25  |
| 6.25  | 2.8   | 3     | 2.25  |
| 2.333 | 1.667 | 3.667 | 5.333 |

Figura 1. Ejemplo de elección del vértice inicial con una instancia de 4x4 (lado izquierdo) y la varianza de cada vértice con sus vecinos N1 donde se marca el vértice con menor varianza (lado derecho)

No hay cambios con respecto al vecindario comparado con el algoritmo original y se seleccionan los siguientes vértices no visitados en orden lexicográfico de los vecinos (N) del vértice anterior. Si todos los vértices vecinos (N) ya han sido visitados se selecciona el primer vértice no visitado en orden lexicográfico.

#### III.2. Alternativa 2

El principal aporte de esta alternativa consiste en que antes de hacer la zonificación, el algoritmo evalúa la cantidad de vecinos que pudieran pertenecer a la misma zona en cada uno de los puntos. Esta información se convertirá en la directriz de la secuencia de evaluación de puntos, siendo el siguiente punto a visitar (vértice), el punto (ya perteneciente a la zona) con mayor cantidad de vecinos que pudieran incorporarse a la zona. Si este punto ya ha sido visitado, se elige el siguiente en orden lexicográfico.

Se contemplaron 3 casos diferentes, descritos a continuación:

1. Para que un vecino sea contabilizado como miembro potencial de la zona de un punto, se requiere que la homogeneidad adquiera un valor igual o mayor a  $\alpha$ , o que la homogeneidad mantenga o incremente su valor (en el supuesto de que el vecino evaluado se incorpore a la zona). Así también, se acepta la incorporación de un punto a la zona bajo el mismo criterio.

- 2. Para que un vecino sea contabilizado como miembro potencial de la zona de un punto, se requiere que la homogeneidad adquiera un valor igual o mayor a  $\alpha$ , o que la homogeneidad mantenga o incremente su valor (en el supuesto de que el vecino evaluado se incorpore a la zona). Por otro lado, para que un vecino sea incorporado a la zona de un punto, se requiere que la homogeneidad adquiera un valor igual o mayor a  $\alpha$ .
- 3. Para que un vecino sea contabilizado como miembro potencial de la zona de un punto, se requiere que la homogeneidad adquiera un valor igual o mayor a  $\alpha$  (en el supuesto de que el vecino evaluado se incorpore a la zona). Así también, se acepta la incorporación de un punto a la zona bajo el mismo criterio.

En todos los casos, se procuró que las zonas generadas fueran ortogonales.

# IV. Experimentación y discusión de resultados

#### IV.1. Alternativa 1

Se implementó esta alternativa y el algoritmo original para tener un punto de comparación. Se utilizaron las instancias reales (ph, mo (materia orgánica), fósforo y bases) con valores de  $\alpha$  que iban desde 0.2 hasta 0.4, e instancias ficticias de clase 5 con valores de  $\alpha$  de 0.5, 0.7 y 0.9. Se tenía un total de 13 instancias reales y 30 ficticias, contando las variaciones de las alphas. Para obtener los resultados se utilizó un computador con procesador AMD Ryzen(TM) 5 5600x @3.7GHz con 15.9GB de RAM. Los resultados completos se encuentran en la sección de Anexo VII.1.

| Instancias | # Instancias | Menor $Z_{k,\alpha}^A$ | Mismo $Z_{k,\alpha}^A$ | Menor tiempo |
|------------|--------------|------------------------|------------------------|--------------|
| Clase 5    | 30           | 0.4                    | 0.1                    | 0.2333       |
| Reales     | 13           | 0.3077                 | 0.2307                 | 0.3846       |

Tabla 1. Porcentaje de instancias en las que se obtuvo menor cantidad de zonas, misma cantidad de zonas y menor tiempo de ejecución sobre el número total de instancias

Al observar los resultados de la Tabla 1, se tiene que en 40 % de las instancias de clase 5 se obtuvo una solución con un número menor de zonas, por otro lado solo el 30.7 % de las instancias reales se mejoró en este aspecto. Cabe resaltar que si se suman los casos con menor número y mismo número de zonas se tiene un porcentaje de alrededor 50 % en ambos tipos de instancias, lo que podría indicar que éste algoritmo tiene un rendimiento consistente comparado con el algoritmo original.

Por otro lado, en cuestión al tiempo el algoritmo solo mejoró el 23.33 % de las veces en las instancias de clase 5 y 38.46 % en las instancias reales. Pero la diferencia de tiempos no es muy diferente entre ambos.

Se puede decir que de manera general el algoritmo original es mejor que ésta alternativa pues la mayoría de las veces es más rápido y obtiene un número menor de zonas. Pero si observamos solo los resultados de la clase reales, en específico a los correspondientes con materia orgánica (ver Figura 2) y ph, esta alternativa es consistentemente mejor al algoritmo original. Lo que podría decirnos que esta alternativa es mejor en ciertos casos específicos, pero se necesita una revisión exhaustiva para corroborarlo.



Figura 2. Comparación de soluciones de materia orgánica con alfa de 0.4. (a) Mapa temático de la instancia. (b) Solución obtenida usando el algoritmo original. (c) Solución obtenida usando el algoritmo alternativo

#### IV.2. Alternativa 2

Para cada uno de los casos planteados, se evaluaron dos opciones diferentes:

- 1. Iniciar en el punto con índices (0,0).
- 2. Iniciar en el punto con mayor cantidad de vecinos que pudieran incorporarse a la zona del punto.

Se implementó el algoritmo para múltiples instancias, reales y ficticias, bajo diferentes valores de  $\alpha$  (ver resultados completos en VII.2). Se utilizó un equipo con procesador 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz con 7.65GB de RAM utilizable.

En comparación con los resultados publicados por Velasco, et al. (2021), se encontró que la alternativa 2 planteada en este trabajo igualó la cantidad de zonas en 26 situaciones; y se mejoró en 14, de un total de 190 (ver Figura 3, comparación gráfica para instancias reales). Es importante señalar, que en otras tantas situaciones, el algoritmo implementado en este trabajo obtuvo resultados bastante cercanos a la cantidad mínima de zonas encontradas con el uso de algoritmos de estimación de distribución (Velasco, et al., 2021). Además, el tiempo computacional fue menor.

La Tabla 2 muestra un resumen de las mejoras obtenidas con las instancias no reales. Donde para cada clase se probaron 10 instancias con tres distintos valores de  $\alpha$ .

Puede apreciarse que esta alternativa representa una importante mejora para A1 (selección de vértices en orden lexicográfico) y A3 (selección de vértice de acuerdo al efecto de éste sobre el valor de la homogeneidad), sobre todo para las instancias de mayores dimensiones.

Por otro lado, resulta inquietante que, en comparación con la menor cantidad de zonas obtenidas mediante A2 (selección aleatoria de vértices), se encontraron pocas mejoras. Aunque, al ser A2 un método aleatorio, el promedio de zonas encontradas es superior a la cantidad obtenida con la Alternativa 2 sugerida en este trabajo.

## V. Conclusiones

Se retoma el comentario de la experimentación de la Alternativa 1, donde parece ser una implementación con resultados y eficiencia similares al original, sin olvidar que muestra mejoría en algunas



Figura 3. Soluciones obtenidas con distintos valores de  $\alpha$  para instancia real de (a) materia orgánica, (b) pH, (c) fósforo y (d) suma de bases.

instancias específicas.

Para el caso de la Alternativa 2, puesto que no se tiene un patrón de mejora con respecto al algoritmo propuesto por Velasco, et al. (2021), se sugiere que se realice una caracterización de las instancias antes de implementar el algoritmo de zonificación. Esto podría llevar a identificar componentes en las instancias que pudieran relacionarse con el hecho de que se obtengan mejores resultados con uno u otro algoritmo.

Además, por las opciones analizadas en la Alternativa 2, siguiendo la selección de vértices propuesta, parece ser poco faverecedor la selección de un punto de inicio.

# VI. Referencias

 Velasco, J., Vicencio, S., Lozano, J. A., & Cid-Garcia, N. M. (2021). Delineation of site-specific management zones using estimation of distribution algorithms. International Transactions in Operational Research. https://doi.org/10.1111/itor.12970

|       |          | Porcentaje | de instancias n | nejoradas* con | respecto a: |
|-------|----------|------------|-----------------|----------------|-------------|
| Clase | $\alpha$ | EDA        | A1              | A2             | A3          |
|       | 0.5      | 10         | 60              | 0              | 60          |
| 1     | 0.9      | 0          | 50              | 0              | 30          |
| 1     | 0.7      | 30         | 80              | 30             | 60          |
|       | Total    | 13.3333333 | 63.3333333      | 10             | 50          |
|       | 0.5      | 0          | 90              | 0              | 70          |
| 2     | 0.9      | 0          | 70              | 10             | 70          |
| 2     | 0.7      | 10         | 100             | 0              | 80          |
|       | Total    | 3.33333333 | 86.6666667      | 3.33333333     | 73.3333333  |
|       | 0.5      | 0          | 90              | 0              | 100         |
| 3     | 0.9      | 0          | 90              | 0              | 70          |
| 3     | 0.7      | 10         | 80              | 30             | 80          |
|       | Total    | 3.33333333 | 86.6666667      | 10             | 83.3333333  |
|       | 0.5      | 0          | 80              | 10             | 90          |
| 4     | 0.9      | 0          | 100             | 0              | 70          |
| 4     | 0.7      | 0          | 90              | 0              | 100         |
|       | Total    | 0          | 90              | 3.33333333     | 86.6666667  |
|       | 0.5      | 0          | 100             | 0              | 100         |
| 5     | 0.9      | 0          | 90              | 10             | 70          |
|       | 0.7      | 50         | 100             | 0              | 100         |
|       | Total    | 16.6666667 | 96.6666667      | 3.33333333     | 90          |

<sup>\*</sup>Instancias en las que se obtuvo menor cantidad de zonas en comparación a los métodos señalados.

Tabla 2. Porcentaje de instancias en las que se obtuvo menor cantidad de zonas para cada clase y distintos valores de  $\alpha$ , y sobre el número total de instancias probadas.

# VII. Anexo

# VII.1. Resultados Alternativa 1

# VII.2. Resultados Alternativa 2

| Instancia  | 0.       | Alg     | oritmo O         | riginal    | l l     | Alternati        | va 1       |
|------------|----------|---------|------------------|------------|---------|------------------|------------|
| Histancia  | $\alpha$ | H       | $Z_{k,\alpha}^A$ | Tiempo (s) | H       | $Z_{k,\alpha}^A$ | Tiempo (s) |
|            | 0.5      | 0.5097  | 56               | 11.015     | 0.5087  | 58               | 11.243     |
| Clase 5-1  | 0.7      | 0.70418 | 73               | 11.7145    | 0.70475 | 77               | 11.728     |
|            | 0.9      | 0.9014  | 149              | 13.61      | 0.9     | 163              | 14.244     |
|            | 0.5      | 0.5073  | 69               | 11.278     | 0.5099  | 77               | 9.705      |
| Clase 5-2  | 0.7      | 0.70056 | 86               | 11.8825    | 0.70032 | 87               | 12.3275    |
|            | 0.9      | 0.9004  | 180              | 14.205     | 0.9001  | 172              | 14.542     |
|            | 0.5      | 0.5024  | 63               | 10.669     | 0.5018  | 61               | 10.911     |
| Clase 5-3  | 0.7      | 0.70231 | 86               | 12.1953    | 0.70767 | 81               | 12.3252    |
|            | 0.9      | 0.9009  | 163              | 14.475     | 0.9009  | 167              | 14.649     |
|            | 0.5      | 0.5024  | 63               | 10.872     | 0.5018  | 61               | 10.933     |
| Clase 5-4  | 0.7      | 0.70231 | 86               | 12.2513    | 0.70767 | 81               | 12.3035    |
|            | 0.9      | 0.9009  | 163              | 14.251     | 0.9009  | 167              | 14.664     |
|            | 0.5      | 0.5021  | 62               | 11.426     | 0.5018  | 71               | 11.117     |
| Clase 5-5  | 0.7      | 0.70013 | 93               | 12.2383    | 0.70418 | 93               | 12.928     |
|            | 0.9      | 0.9005  | 172              | 14.464     | 0.9006  | 168              | 14.901     |
|            | 0.5      | 0.5039  | 59               | 10.939     | 0.5025  | 61               | 11.179     |
| Clase 5-6  | 0.7      | 0.7007  | 70               | 11.7725    | 0.7005  | 74               | 12.3548    |
|            | 0.9      | 0.9004  | 147              | 13.831     | 0.9004  | 147              | 14.287     |
|            | 0.5      | 0.5018  | 60               | 11.249     | 0.5006  | 48               | 10.377     |
| Clase 5-7  | 0.7      | 0.70192 | 66               | 11.7279    | 0.70216 | 69               | 11.8454    |
|            | 0.9      | 0.9012  | 145              | 13.818     | 0.9011  | 143              | 14.18      |
|            | 0.5      | 0.5029  | 59               | 10.85      | 0.5028  | 56               | 10.795     |
| Clase 5-8  | 0.7      | 0.70522 | 72               | 12.2243    | 0.7016  | 70               | 11.9869    |
|            | 0.9      | 0.9008  | 162              | 13.871     | 0.9002  | 162              | 14.6588    |
|            | 0.5      | 0.5049  | 63               | 10.646     | 0.507   | 70               | 11.002     |
| Clase 5-9  | 0.7      | 0.70155 | 86               | 12.3537    | 0.70239 | 90               | 11.8773    |
|            | 0.9      | 0.9008  | 167              | 13.643     | 0.9001  | 172              | 14.019     |
|            | 0.5      | 0.5012  | 65               | 10.853     | 0.5036  | 62               | 11.347     |
| Clase 5-10 | 0.7      | 0.70256 | 101              | 12.3537    | 0.70103 | 100              | 12.2171    |
|            | 0.9      | 0.9009  | 171              | 14.016     | 0.9003  | 174              | 14.342     |

Tabla 3. Resultados de la Alternativa 1 en las instancias de clase 5

| Instancia  | α   | Algo    | oritmo O           | riginal    | l A     | Alternati          | va 1       |
|------------|-----|---------|--------------------|------------|---------|--------------------|------------|
| Ilistancia | α   | Н       | $Z_{k,\alpha}^{A}$ | Tiempo (s) | H       | $Z_{k,\alpha}^{A}$ | Tiempo (s) |
|            | 0.2 | 0.33291 | 2                  | 0.01201    | 0.27124 | 2                  | 0.01201    |
| Bases      | 0.3 | 0.33291 | 2                  | 0.01401    | 0.31669 | 3                  | 0.01301    |
| Dases      | 0.4 | 0.4578  | 5                  | 0.01401    | 0.45485 | 5                  | 0.01301    |
|            | 0.5 | 0.50785 | 5                  | 0.01501    | 0.50607 | 8                  | 0.01501    |
|            | 0.2 | 0.76942 | 2                  | 0.01201    | 0.76568 | 3                  | 0.01201    |
| Fosforo    | 0.3 | 0.76942 | 2                  | 0.01301    | 0.76568 | 3                  | 0.01301    |
| FOSIOIO    | 0.4 | 0.76942 | 2                  | 0.01401    | 0.76568 | 3                  | 0.01201    |
|            | 0.5 | 0.76942 | 2                  | 0.01301    | 0.76568 | 3                  | 0.01201    |
| МО         | 0.1 | 0.17539 | 4                  | 0.01301    | 0.16302 | 3                  | 0.01301    |
| MO         | 0.4 | 0.42131 | 7                  | 0.01701    | 0.40429 | 5                  | 0.01601    |
|            | 0.1 | 0.19243 | 3                  | 0.01201    | 0.14479 | 2                  | 0.01301    |
| ph         | 0.2 | 0.24819 | 3                  | 0.01201    | 0.23588 | 3                  | 0.01301    |
|            | 0.4 | 0.45529 | 5                  | 0.01201    | 0.43355 | 4                  | 0.01201    |

Tabla 4. Resultados de la Alternativa 1 en las instancias reales

|           |           |           |           | ě         | SB        |           |           |           |           |           |           |           |           | ,         | D         |           |           |           |           |           |           |           |           | pn        | ;<br>E    |           |           |           |           |           |           |           |           | 2         | OM<br>M   |           |           |            |           | Instancia   |        |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-------------|--------|
| 0.1       | 0.2       | 0.3       | 0.4       | 0.5       | 0.6       | 0.7       | 0.8       | 0.9       | -         | 0.1       | 0.2       | 0.3       | 0.4       | 0.5       | 0.6       | 0.7       | 0.8       | 0.9       | 1         | 0.1       | 0.2       | 0.3       | 0.4       | 0.5       | 0.6       | 0.7       | 0.8       | 0.9       | 1         | 0.1       | 0.2       | 0.3       | 0.4       | 0.5       | 0.6       | 0.7       | 0.8       | 0.9        | 1         | Ω           |        |
| 0.320499  | 0.320499  | 0.320499  | 0.434388  | 0.519739  | 0.633679  | 0.707475  | 0.824653  | 0.90153   | 0.90153   | 0.349721  | 0.349721  | 0.769429  | 0.769429  | 0.769429  | 0.769429  | 0.769429  | 0.811362  | 0.9032    | 0.992069  | 0.160913  | 0.311515  | 0.378784  | 0.513955  | 0.513955  | 0.634613  | 0.707586  | 0.809357  | 0.915092  | 0.945892  | 0.15391   | 0.202948  | 0.326553  | 0.406142  | 0.502303  | 0.632627  | 0.740834  | 0.811326  | 0.907879   | 0.978401  | Н           |        |
| 2         | 2         | 2         | 3         | 5         | 7         | 10        | 11        | 20        | 20        | 2         | 2         | 2         | 2         | 2         | 2         | 2         | 3         | 6         | 28        | 3         | 5         | 5         | 5         | 5         | 6         | 7         | 10        | 16        | 18        | 5         | 7         | 6         | 9         | 9         | 10        | 12        | 17        | 17         | 33        | Z           | 2      |
| 0.1241424 | 0.1373281 | 0.1550696 | 0.1451743 | 0.1489117 | 0.1560698 | 0.1312201 | 0.122952  | 0.1120985 | 0.1395502 | 0.1167359 | 0.1214423 | 0.1233535 | 0.1144028 | 0.1416802 | 0.1216359 | 0.1415827 | 0.1094306 | 0.1312408 | 0.1525311 | 0.1285853 | 0.1472354 | 0.1724918 | 0.1310036 | 0.1160986 | 0.1571653 | 0.1485827 | 0.2064764 | 0.1160433 | 0.1556685 | 0.1088686 | 0.1190145 | 0.1614006 | 0.1432524 | 0.1117556 | 0.1380074 | 0.1669271 | 0.1663792 | 0.182241   | 0.1160486 | Tiempo(s)   | Caso   |
| 0.194689  | 0.307745  | 0.34059   | 0.414045  | 0.517772  | 0.606525  | 0.72144   | 0.826322  | 0.849693  | 0.841321  | 0.349721  | 0.349721  | 0.769429  | 0.769429  | 0.769429  | 0.769429  | 0.769429  | 0.811362  | 0.9032    | 0.992069  | 0.160913  | 0.311515  | 0.378784  | 0.513955  | 0.513955  | 0.634613  | 0.707586  | 0.807307  | 0.916148  | 0.969643  | 0.117348  | 0.23658   | 0.315568  | 0.414086  | 0.534108  | 0.632627  | 0.735097  | 0.814376  | 0.888143   | 0.888143  | Н           | so 1   |
| 2         | ω         | 3         | 7         | 8         | 7         | 14        | 15        | 17        | 16        | 2         | 2         | 2         | 2         | 2         | 2         | 2         | 3         | 6         | 28        | 3         | 5         | 5         | 5         | 5         | 6         | 7         | =         | 17        | 20        | 4         | 5         | ∞         | 6         | 9         | 10        | 12        | 16        | 21         | 21        | Z Z         | 2      |
| 0.1045465 | 0.1583009 | 0.1293263 | 0.1144812 | 0.1231797 | 0.1126456 | 0.1526353 | 0.1494725 | 0.1487651 | 0.2257771 | 0.1530359 | 0.1351056 | 0.1109827 | 0.1389556 | 0.1132293 | 0.1181688 | 0.1137831 | 0.1378682 | 0.1204982 | 0.149404  | 0.1071177 | 0.1796589 | 0.1564267 | 0.1300361 | 0.1322725 | 0.1158864 | 0.157398  | 0.1313088 | 0.1546817 | 0.2007465 | 0.128052  | 0.1228969 | 0.1617532 | 0.1473958 | 0.1056437 | 0.1385982 | 0.110415  | 0.1556082 | 0.2038858  | 0.1483462 | Tiempo(s)   | ,      |
| 0.154183  | 0.307613  | 0.307613  | 0.403385  | 0.509899  | 0.622865  | 0.703611  | 0.842615  | 0.925914  | -         | 0.349721  | 0.349721  | 0.769429  | 0.769429  | 0.769429  | 0.769429  | 0.769429  | 0.811362  | 0.9032    | 1         | 0.160913  | 0.311515  | 0.378784  | 0.513955  | 0.513955  | 0.634613  | 0.707586  | 0.811299  | 0.912714  | 1         | 0.15391   | 0.202948  | 0.326553  | 0.406142  | 0.502303  | 0.632627  | 0.740834  | 0.811326  | 0.908722   | 1         | Н           |        |
| 3         | з         | 3         | 7         | 8         | 9         | 12        | 15        | 15        | 40        | 2         | 2         | 2         | 2         | 2         | 2         | 2         | 3         | 6         | 32        | 3         | 5         | 5         | 5         | 5         | 6         | 7         | 10        | 16        | 19        | 5         | 7         | 6         | 9         | 9         | 10        | 12        | 17        | 18         | 40        | Z           | 2      |
| 0.1434805 | 0.1203506 | 0.1121988 | 0.118721  | 0.1341252 | 0.1083066 | 0.1078627 | 0.1217525 | 0.120677  | 0.1724885 | 0.1570482 | 0.1263072 | 0.119257  | 0.1506371 | 0.1225317 | 0.1295493 | 0.1312902 | 0.14253   | 0.1641357 | 0.2046618 | 0.1154101 | 0.1670449 | 0.1956832 | 0.1576846 | 0.1847873 | 0.2425144 | 0.1466901 | 0.1533203 | 0.2104084 | 0.1547587 | 0.1288636 | 0.155556  | 0.1634853 | 0.1615517 | 0.1995795 | 0.1218085 | 0.1162319 | 0.1207671 | 0.1334796  | 0.1129107 | Tiempo(s)   |        |
| 0.194689  | 0.307745  | 0.34059   | 0.414045  | 0.517772  | 0.606849  | 0.72144   | 0.833079  | 0.908167  | -         | 0.349721  | 0.349721  | 0.769429  | 0.769429  | 0.769429  | 0.769429  | 0.769429  | 0.811362  | 0.9032    | 1         | 0.160913  | 0.311515  | 0.378784  | 0.513955  | 0.513955  | 0.634613  | 0.707586  | 0.815684  | 0.91318   | 1         | 0.117348  | 0.23658   | 0.315568  | 0.414086  | 0.534108  | 0.632627  | 0.735097  | 0.814376  | 0.907879   | 1         | Н           | Caso 2 |
| 2         | 3         | 3         | 7         | 8         | 10        | 14        | 14        | 15        | 40        | 2         | 2         | 2         | 2         | 2         | 2         | 2         | 3         | 6         | 32        | 3         | 5         | 5         | 5         | 5         | 6         | 7         | 11        | 17        | 20        | 4         | 5         | 8         | 6         | 9         | 10        | 12        | 16        | 17         | 40        | Z Coperon 2 | 2      |
| 0.108114  | 0.1544132 | 0.189821  | 0.1514249 | 0.109288  | 0.1209691 | 0.1363568 | 0.140583  | 0.1758709 | 0.1146646 | 0.1637237 | 0.1323962 | 0.159224  | 0.1209741 | 0.1073887 | 0.1451859 | 0.1267347 | 0.121547  | 0.1846185 | 0.2010987 | 0.1091044 | 0.1101835 | 0.1599822 | 0.1791065 | 0.1206648 | 0.1411655 | 0.1091454 | 0.1282189 | 0.1544631 | 0.1445291 | 0.1449244 | 0.1367173 | 0.1324816 | 0.1129935 | 0.1105285 | 0.113677  | 0.1056416 | 0.1826751 | 0.2986488  | 0.129324  | Tiempo(s)   | ,      |
| 0.154183  | 0.307613  | 0.378093  | 0.403385  | 0.509899  | 0.642334  | 0.703611  | 0.842615  | 0.907915  | -         | 0.349721  | 0.349721  | 0.769429  | 0.769429  | 0.769429  | 0.769429  | 0.769429  | 0.811362  | 0.9032    | 1         | 0.160913  | 0.311515  | 0.378784  | 0.513955  | 0.513955  | 0.634613  | 0.703604  | 0.811299  | 0.914843  | 1         | 0.15391   | 0.202948  | 0.326553  | 0.406142  | 0.502303  | 0.632627  | 0.740834  | 0.811326  | 0.909806   | 1         | Н           |        |
| 3         | 3         | 4         | 7         | 8         | 8         | 12        | 15        | 14        | 40        | 2         | 2         | 2         | 2         | 2         | 2         | 2         | 3         | 6         | 32        | 3         | 5         | 5         | 5         | 5         | 6         | 10        | 10        | 16        | 19        | 5         | 7         | 6         | 9         | 9         | 10        | 12        | 17        | 20         | 40        | Z           | 2      |
| 0.1541567 | 0.1339195 | 0.1485965 | 0.1093907 | 0.1124635 | 0.113863  | 0.1442368 | 0.1407378 | 0.1089079 | 0.0872188 | 0.1468682 | 0.1138325 | 0.1139467 | 0.1890817 | 0.1475701 | 0.1411908 | 0.1409431 | 0.1272211 | 0.1064968 | 0.103152  | 0.1657422 | 0.1087108 | 0.1213012 | 0.1237295 | 0.1500161 | 0.1138678 | 0.1199472 | 0.1394033 | 0.134078  | 0.1335185 | 0.1658835 | 0.1258924 | 0.1095645 | 0.1317947 | 0.1372032 | 0.1720219 | 0.1536179 | 0.1712945 | 0.1602638  | 0.0994723 | Tiempo(s)   |        |
| 0.194689  | 0.307745  | 0.305926  | 0.414045  | 0.517772  | 0.630878  | 0.72144   | 0.82284   | 0.904726  | 1         | 0.349721  | 0.349721  | 0.769429  | 0.769429  | 0.769429  | 0.769429  | 0.769429  | 0.811362  | 0.9032    | 1         | 0.160913  | 0.311515  | 0.378784  | 0.513955  | 0.513955  | 0.634613  | 0.703604  | 0.808683  | 0.915092  | 1         | 0.117348  | 0.23658   | 0.315568  | 0.414086  | 0.517352  | 0.632627  | 0.735097  | 0.814376  | 0.911599   | 1         | н           | Caso 3 |
| 2         | 3         | 3         | 7         | 8         | 7         | 14        | 13        | 15        | 40        | 2         | 2         | 2         | 2         | 2         | 2         | 2         | 3         | 6         | 32        | 3         | 5         | 5         | 5         | 5         | 6         | 10        | =         | 16        | 20        | 4         | 5         | 8         | 6         | 7         | 10        | 12        | 16        | 21         | 40        | Z           | 1      |
| 0.1403713 | 0.1310973 | 0.1658127 | 0.1780071 | 0.194032  | 0.1247587 | 0.1657805 | 0.1285841 | 0.107589  | 0.1045842 | 0.1380827 | 0.1928997 | 0.1571538 | 0.1478617 | 0.1214671 | 0.1323707 | 0.1469927 | 0.2002203 | 0.1305513 | 0.0907094 | 0.1472409 | 0.1749399 | 0.1080024 | 0.1283083 | 0.1102576 | 0.1272643 | 0.1245487 | 0.114342  | 0.1528463 | 0.1035273 | 0.15605   | 0.1158981 | 0.1168082 | 0.1328204 | 0.1371121 | 0.1519809 | 0.1044679 | 0.105685  | 0.11811114 | 0.0994363 | Tiempo(s)   |        |

|       |          |          |          |        | Cas       | 100      |        |           |          |          | Caso 2    | 5 2      |          |            |          |          | Caso      | 0.3      |          |           |
|-------|----------|----------|----------|--------|-----------|----------|--------|-----------|----------|----------|-----------|----------|----------|------------|----------|----------|-----------|----------|----------|-----------|
| į     | [        |          |          | Opción | ⊢ L       |          | Opción | ~ [       |          | Opción 1 |           |          | Opción 2 |            |          | Opción 1 |           | 0        | Opción 2 | L. I      |
| Clase | -        | σ        | H        | Z      | Tiempo(s) | н        | Z      | Tiempo(s) | Н        | Z        | Tiempo(s) | H        | Z        | Tiempo(s)  | Н        | Z        | Tiempo(s) | Н        | Z        | Tiempo(s) |
|       | 1        |          | 0.513825 | 5      | 0.1096122 | 0.513825 | 5      | 0.1134515 | 0.513825 | 2        | 0.1067512 | 0.513825 | 5        | 0.109993   | 0.525128 | 9        | 0.1025338 | 0.525128 | 9        | 0.1102362 |
|       | 2        |          | 0.502303 | 6      | 0.1091883 | 0.534108 | 6      | 0.1078417 | 0.502303 | 6        | 0.1087184 | 0.534108 | 6        | 0.0990648  | 0.502303 | 6        | 0.1058512 | 0.517352 | 7        | 0.1050723 |
|       | 3        |          | 0.533436 | 6      | 0.1107924 | 0.508043 | 7      | 0.1102493 | 0.545513 | 9        | 0.1056998 | 0.508043 | 7        | 0.110245   | 0.545513 | 9        | 0.1060014 | 0.515347 | 01       | 0.1059804 |
|       | 4        |          | 0.527882 | ∞      | 0.1160333 | 0.529394 | 7      | 0.108274  | 0.527882 | ∞        | 0.1110961 | 0.529394 | 7        | 0.114929   | 0.545765 | 7        | 0.108526  | 0.555397 | 7        | 0.1030684 |
|       | 5        | 4        | 0.532241 | 6      | 0.1071782 | 0.519527 | ∞      | 0.1149993 | 0.532241 | 6        | 0.0954435 | 0.519527 | ∞        | 0.1070693  | 0.53155  | ∞        | 0.1020319 | 0.519527 | ∞        | 0.1105859 |
|       | 9        | C:0      | 0.504099 | 11     | 0.1154549 | 0.516788 | 7      | 0.1179967 | 0.504099 | =        | 0.1081159 | 0.516788 | 7        | 0.1053023  | 0.573136 | 6        | 0.093497  | 0.577449 | 7        | 0.1080682 |
|       | 7        |          | 0.51691  | Ξ      | 0.1047249 | 0.529665 | 10     | 0.1130793 | 0.51691  | =        | 0.1040275 | 0.529665 | 01       | 0.1073205  | 0.507809 | 01       | 0.1026077 | 0.507183 | 01       | 0.1024656 |
|       | ∞        |          | 0.500888 | 9      | 0.1081944 | 0.500888 | 9      | 0.1150739 | 0.500888 | 9        | 0.0963671 | 0.500888 | 9        | 0.1102483  | 0.500888 | 9        | 0.1064982 | 0.500888 | 9        | 0.1119986 |
|       | 6        |          | 0.530047 | =      | 0.1100693 | 0.55513  | Ξ      | 0.113297  | 0.530047 | =        | 0.1010661 | 0.55513  | =        | 0.0939796  | 0.551807 | 12       | 0.102     | 0.55513  | =        | 0.1070712 |
|       | 10       |          | 0.612965 | 7      | 0.1027234 | 0.549128 | 9      | 0.1220818 | 0.607785 | ∞        | 0.1010633 | 0.556605 | ∞        | 0.0998874  | 0.506623 | ∞        | 0.1010633 | 0.632917 | 9        | 0.1100669 |
|       | -        |          | 0.74945  | 12     | 0.1092122 | 0.74945  | 12     | 0.1122525 | 0.74945  | 12       | 0.1101174 | 0.74945  | 12       | 0.1082957  | 0.74945  | 12       | 0.0924625 | 0.74945  | 12       | 0.105068  |
|       | 2        |          | 0.740834 | 12     | 0.1139402 | 0.735097 | 12     | 0.108669  | 0.740834 | 12       | 0.1073542 | 0.735097 | 12       | 0.1101243  | 0.740834 | 12       | 0.1033654 | 0.735097 | 12       | 0.1030679 |
|       | 3        |          | 0.718569 | 16     | 0.1200743 | 0.718454 | 15     | 0.1170077 | 0.757701 | 15       | 0.109062  | 0.718454 | 15       | 0.1090734  | 0.7357   | 13       | 0.0966532 | 0.750517 | 13       | 0.1061907 |
|       | 4        |          | 0.701909 | 6      | 0.1299996 | 0.712668 | 10     | 0.1130686 | 0.701909 | 6        | 0.1082509 | 0.733782 | 10       | 0.1050229  | 0.710933 | ∞        | 0.1040647 | 0.710214 | 6        | 0.1000705 |
|       | 5        |          | 0.750649 | 12     | 0.1179998 | 0.710707 | 14     | 0.1140666 | 0.750649 | 12       | 0.1019964 | 0.710707 | 14       | 0.1176615  | 0.750649 | 12       | 0.1040099 | 0.717067 | 12       | 0.1049988 |
| -     | 9        | <u> </u> | 0.707445 | 11     | 0.1164515 | 0.707445 | Ξ      | 0.1122882 | 0.707445 | Ξ        | 0.1088588 | 0.707445 | Ξ        | 0.1036789  | 0.705507 | =        | 0.1330693 | 0.705507 | =        | 0.1099992 |
|       | 7        |          | 0.703491 | 13     | 0.1120901 | 0.711499 | 17     | 0.1055853 | 0.703491 | 13       | 0.0973301 | 0.70339  | 91       | 0.1099842  | 0.707211 | 15       | 0.1050684 | 0.706159 | 41       | 0.1010716 |
|       | ∞        |          | 0.728657 | 7      | 0.1134205 | 0.72416  | ∞      | 0.1085205 | 0.728657 | 7        | 0.1073928 | 0.726793 | ∞        | 0.1080792  | 0.730513 | 7        | 0.1052878 | 0.723653 | ∞        | 0.106338  |
|       | 6        |          | 0.705789 | 12     | 0.113076  | 0.7083   | 17     | 0.1077876 | 0.706339 | 14       | 0.110249  | 0.7083   | 17       | 0.1043098  | 0.72245  | 15       | 0.0991976 | 0.713538 | 15       | 0.1040258 |
|       | 10       |          | 0.759131 | 6      | 0.1150672 | 0.767465 | 11     | 0.1082718 | 0.72921  | 6        | 0.0980978 | 0.767465 | ==       | 0.1081498  | 0.721315 | 10       | 0.1039979 | 0.75368  | =        | 0.1111984 |
|       | -        |          | 0.913036 | 20     | 0.1130698 | 0.893147 | 20     | 0.109071  | 0.918548 | 20       | 0.1017954 | 0.929124 | 21       | 0.0979412  | 0.918548 | 20       | 0.1056197 | 0.918553 | 22       | 0.1072044 |
|       | 2        |          | 0.907879 | 17     | 0.1120129 | 0.888143 | 21     | 0.1110785 | 0.908722 | 18       | 0.1064737 | 0.907879 | 17       | 0.11111152 | 0.909806 | 20       | 0.105175  | 0.911599 | 21       | 0.1002481 |
|       | 3        |          | 0.751972 | 18     | 0.1050189 | 0.902897 | 22     | 0.113034  | 0.903638 | 24       | 0.1096745 | 0.902897 | 22       | 0.1100526  | 0.903638 | 24       | 0.0980816 | 0.906694 | 24       | 0.097069  |
|       | 4        |          | 0.90997  | 24     | 0.1128433 | 0.794911 | 18     | 0.1140697 | 0.90997  | 24       | 0.1131151 | 0.90997  | 24       | 0.119472   | 0.900346 | 22       | 0.0930767 | 0.900346 | 22       | 0.0940695 |
|       | 5        | 0        | 0.9113   | 24     | 0.1070683 | 0.914785 | 23     | 0.112999  | 0.908119 | 24       | 0.0990674 | 0.914785 | 23       | 0.1130695  | 0.913048 | 25       | 0.0940681 | 0.914785 | 23       | 0.0930271 |
|       | 9        | }        | 0.91087  | 17     | 0.1030743 | 0.912505 | 16     | 0.1150002 | 0.91087  | 17       | 0.1119995 | 0.913892 | 18       | 0.121999   | 0.908577 | 17       | 0.0974255 | 0.91277  | 18       | 0.1010706 |
|       | 7        |          | 0.900059 | 23     | 0.1068184 | 0.874114 | 26     | 0.1080005 | 0.900059 | 23       | 0.1091166 | 0.902874 | 23       | 0.1230676  | 0.907969 | 25       | 0.0929294 | 0.900341 | 24       | 0.0920718 |
|       | <b>«</b> |          | 0.904061 | 17     | 0.1116846 | 0.906036 | 19     | 0.1152422 | 0.904061 | 17       | 0.1104312 | 0.919951 | 17       | 0.1200686  | 0.908082 | 18       | 0.1113019 | 0.923591 | 19       | 0.1020715 |
|       | 6        |          | 0.920236 | 26     | 0.0991163 | 0.920117 | 25     | 0.1081762 | 0.922097 | 24       | 0.1100693 | 0.920117 | 25       | 0.112004   | 0.922097 | 24       | 0.0945115 | 0.920117 | 25       | 0.0959926 |
|       | 10       |          | 0.901301 | 27     | 0.1052206 | 0.842314 | 16     | 0.1099994 | 0.905206 | 21       | 0.1034715 | 0.906028 | 22       | 0.1110759  | 0.912926 | 21       | 0.0914047 | 0.905213 | 18       | 0.1180916 |
|       |          |          |          |        |           |          |        |           | =        |          |           |          |          |            |          |          |           |          |          |           |

Tabla 8. Resultados de la implementación de la Alternativa 2 para instancias de la clase 1.

<sub>∞</sub> 7 6 S 4 ယ 2 5 × 7 6 S ယ 2 10 9 ∞ 7 6 S 4 9 9 w 2 0 0.9 0.7 0.5 0.512616 0.522108 0.700712 0.706152 0.50218 49 4 4 45 46 22 26 28 21 21 21 21 17 19 42 35 6 5 28 27 15 16 1.2304387 1.277108 1.2485566 1.2776561 1.2185285 1.2542961 1.2485731 1.2953465 1.4125588 1.2570856 1.2532732 .2446949 1.2456825 1.1769106 1.2642238 .4260352 .2465062 .2062957 .2564147 .2641194 1.2614 1966655 0.534313 0.901552 0.902891 0.9025820.705946 0.711527 0.700985 0.514375 0.501104 0.502401 0.531864 0.511114 0.520128 0.905565 0.706318 0.709968 0.710495 0.511809 0.895633 0.904579 0.905105 0.902729 0.708377 0.704215 47 51 45 31 23 56 4 42 46 47 19 23 24 26 27 18 21 25 4 23 16 17 1.2584383 1.2481649 1.2744901 1.2921343 1.3466415 1.2498934 1.2491891 1.226954 1.2587881 1.2769186 1.1831708 1.1956761 1.2208745 1.1940317 1.2665825 1.2517571 .2853074 .2720582 .2904692 1.265466 .2308733 .2594194 .2533231 .2991688 .2827463 0.706152 0.90192 0.903726 0.713317 0.707591 0.709918 0.512616 0.533069 0.507411 0.510699 0.522108 0.519373 0.90517 0.700712 0.700658 0.50218 0.909415 0.902857 0.711449 0.535738 47 42 42 4 35 45 6 46 45 22 28 20 27 28 16 27 21 21 21 4 14 15 21 17 13 17 15 19 1.3487365 1.2442794 1.2738132 1.2703791 1.2801354 1.2634454 1.6247272 1.6274104 .2215385 1.2783628 1.3007479 1.2435942 1.2419829 .2101095 1.2510946 1.2483115 .3664012 .4969032 .2631516 .2457674 .3075175 .2690258 1.278609 .1978664 .3032227 .2270951 0.901358 0.904134 0.706318 0.711527 0.715689 0.709968 0.710495 0.5069830.514375 0.502401 0.531864 0.511114 0.901998 0.9095820.909415 0.901317 0.705946 0.708377 0.704215 0.700985 0.501104 0.52569 0.904579 0.901837 0.904931 0.506126 0.520128 42 46 47 45 42 35 45 38 49 43 19 23 24 26 31 18 27 23 18 21 = 16 17 25 14 23 19 18 15 1.1927671 1.1790702 1.2377734 1.3089478 1.2946925 1.2392511 1.2399101 1.2609479 1.316483 1.2817504 1.2248154 1.3199005 1.2783282 1.3240385 1.2181885 1.2599387 .2756686 1.2341592 1.2661963 1.2621636 1.3554924 1.2506549 .2046039 1.2915769 .2544184 1.315021 1.2103984 0.901564 0.901694 0.901155 0.9028310.715094 0.711714 0.705362 0.709631 0.704637 0.707042 0.503589 0.528429 0.511316 0.506967 0.508097 0.90551 0.71631 0.904445 0.90108 0.705258 0.704148 0.511284 0.529262 0.516596 4 23 27 22 50 43 37 43 36 46 4 22 19 33 15 27 19 21 13 4 4 20 \$ 16 16 18 18 1.3351686 1.1963263 1.1424437 1.1111248 1.1781931 1.1814382 1.1710579 1.1837869 1.1590767 1.0745471 1.0916305 1.1296892 1.1024444 1.0583792 1.1811993 1.2491536 1.1399095 1.2495396 1.2158933 1.1518199 1.1432402 1.1637609 1.2970502 1.130372 .2468138 0.712238 0.90064 0.900225 0.714932 0.720208 0.71069 0.727235 0.703015 0.71286 0.51421 0.5145680.504771 0.530456 0.902196 0.906383 0.515977 0.529188 46 4 36 20 24 24 26 27 20 21 22 23 1.1411211 1.1118674 1.1761684 1.1527829 1.1228261 1.1467874 1.1147034 1.1572959 1.1570034 1.1771994 1.1248994 1.1641715 1.1580243 1.1758478 1.2486479 1.218286 1.2213054 1.2286117 1.1617255 1.0992975

2

Tabla 10. Resultados de la implementación de la Alternativa 2 para instancias de la clase 2

|       |    |    |          |        | Cas       | 30 1     |          |           |          |          | Caso 2    | 0.2      |          |           |          |          | Caso      | 10.3     |          |           |
|-------|----|----|----------|--------|-----------|----------|----------|-----------|----------|----------|-----------|----------|----------|-----------|----------|----------|-----------|----------|----------|-----------|
|       |    |    |          | Opción | 1         |          | Opción 2 | ~         |          | Opción 1 |           |          | Opción 2 |           |          | Opción 1 |           |          | Opción 2 |           |
| Clase | -  | σ  | н        | Z      | Tiempo(s) | н        | Z        | Tiempo(s) | Н        | Z        | Tiempo(s) | н        | Z        | Tiempo(s) | Н        | Z        | Tiempo(s) | н        | Z        | Tiempo(s) |
|       | -  |    | 0.505446 | 28     | 4.4788024 | 0.509116 | 59       | 4.6358979 | 0.505446 | 28       | 4.1127872 | 0.509116 | 59       | 4.1556799 | 0.509559 | 59       | 4.1247144 | 0.504965 | 25       | 3.9216073 |
|       | 2  |    | 0.500476 | 28     | 5.7461147 | 0.50125  | 28       | 6.4133472 | 0.500476 | 28       | 4.0629799 | 0.50125  | 28       | 4.4068956 | 0.501053 | 24       | 4.0094686 | 0.50125  | 28       | 3.996381  |
|       | æ  |    | 0.501688 | 25     | 10.995124 | 0.510286 | 27       | 10.905665 | 0.50039  | 32       | 4.1274083 | 0.510286 | 27       | 4.2736404 | 0.502237 | 29       | 4.0871093 | 0.504602 | 30       | 4.0692489 |
|       | 4  |    | 0.504375 | 26     | 11.196515 | 0.515971 | 23       | 10.482589 | 0.504375 | 26       | 4.2254825 | 0.515971 | 23       | 4.4079375 | 0.519316 | 25       | 4.090759  | 0.519316 | 25       | 4.1244121 |
|       | 5  | ų. | 0.516903 | 17     | 8.2949116 | 0.509215 | 22       | 10.626235 | 0.5195   | 19       | 4.218446  | 0.509215 | 22       | 4.2293551 | 0.50988  | 24       | 4.0871329 | 0.505903 | 17       | 4.0511041 |
|       | 9  |    | 0.520442 | 34     | 4.1467113 | 0.505858 | 31       | 10.466486 | 0.520442 | 34       | 4.1307542 | 0.505858 | 31       | 4.1578445 | 0.508334 | 32       | 4.0977647 | 0.504749 | 27       | 4.0145276 |
|       | 7  |    | 0.515182 | 23     | 4.1217484 | 0.504094 | 23       | 10.366813 | 0.515182 | 23       | 4.1135573 | 0.51723  | 28       | 4.1379259 | 0.518668 | 30       | 4.0085244 | 0.508329 | 22       | 3.9537907 |
|       | ∞  |    | 0.508734 | 24     | 4.1569135 | 0.503671 | 19       | 10.412656 | 0.508734 | 24       | 4.2811141 | 0.503671 | 19       | 4.1599247 | 0.516708 | 22       | 4.2629709 | 0.506091 | 81       | 4.132432  |
|       | 6  |    | 0.521519 | 25     | 4.1474056 | 0.504949 | 28       | 10.74106  | 0.521519 | 25       | 4.401417  | 0.504949 | 28       | 4.1606886 | 0.518797 | 59       | 4.2290423 | 0.519931 | 27       | 4.1638358 |
|       | 10 |    | 0.50344  | 33     | 4.1479974 | 0.501755 | 32       | 10.832868 | 0.522798 | 25       | 4.1938753 | 0.501755 | 32       | 4.1454406 | 0.505323 | 34       | 4.1010311 | 0.506147 | 28       | 4.092618  |
|       | -  |    | 0.703463 | 35     | 4.136308  | 0.706522 | 35       | 5.6357028 | 0.703463 | 35       | 4.3683693 | 0.706522 | 35       | 4.1872096 | 0.7038   | 42       | 4.0703733 | 0.708299 | 43       | 4.1265912 |
|       | 2  |    | 0.70485  | 34     | 4.4510989 | 0.700479 | 37       | 4.5452642 | 0.70485  | 34       | 4.4301677 | 0.700479 | 37       | 4.2360785 | 0.703046 | 38       | 4.2437108 | 0.70314  | 38       | 4.2665653 |
|       | е  |    | 0.702263 | 31     | 4.3185239 | 0.712358 | 29       | 4.2711377 | 0.708529 | 27       | 4.2839603 | 0.712358 | 29       | 4.0111239 | 0.706754 | 28       | 4.229497  | 0.702342 | 31       | 4.1178153 |
|       | 4  |    | 0.704905 | 31     | 4.1734009 | 0.705004 | 32       | 4.4532568 | 0.704905 | 31       | 4.3791521 | 0.705004 | 32       | 4.1599402 | 0.704775 | 32       | 4.3050392 | 0.704874 | 33       | 4.2434344 |
|       | 2  |    | 0.70242  | 28     | 4.1948185 | 0.704875 | 21       | 4.4552872 | 0.701836 | 56       | 4.3287675 | 0.704875 | 21       | 4.1342831 | 0.703659 | 28       | 4.3597417 | 0.703013 | 25       | 4.0835359 |
| ·     | 9  |    | 0.700718 | 32     | 4.2470291 | 0.708633 | 35       | 4.4247563 | 0.700718 | 32       | 4.1751666 | 0.708633 | 35       | 4.0869789 | 0.709341 | 32       | 4.437474  | 0.709325 | 33       | 3.9921451 |
|       | 7  |    | 0.717855 | 42     | 4.1568711 | 0.706142 | 39       | 4.4293749 | 0.717855 | 42       | 4.2312229 | 0.703322 | 4        | 4.2052252 | 0.706161 | 38       | 7.7485509 | 0.701779 | 38       | 3.902065  |
|       | ∞  |    | 0.709118 | 34     | 4.1388121 | 0.702967 | 25       | 4.4343033 | 0.701282 | 31       | 4.1451557 | 0.702967 | 25       | 4.0922625 | 0.705607 | 29       | 9.9869344 | 0.706691 | 24       | 4.0310905 |
|       | 6  |    | 0.706663 | 33     | 4.2860119 | 0.705461 | 32       | 4.8012288 | 0.706663 | 33       | 4.2850637 | 0.705461 | 32       | 4.2823017 | 0.71121  | 33       | 7.7427654 | 0.706772 | 33       | 3.98786   |
|       | 10 |    | 0.706432 | 40     | 4.7381647 | 0.704054 | 39       | 4.5883381 | 0.702342 | 41       | 4.1181724 | 0.704054 | 39       | 4.0809596 | 0.704393 | 14       | 3.8210373 | 0.705377 | 32       | 3.8778703 |
|       | -  |    | 0.900484 | 80     | 8.9525235 | 0.901654 | 77       | 4.7512412 | 0.900484 | 80       | 4.1836836 | 0.900484 | 80       | 4.2223859 | 0.900955 | 78       | 3.5127976 | 0.90117  | 81       | 3.5512309 |
|       | 2  |    | 0.902297 | 70     | 11.006146 | 0.902559 | 99       | 4.6329517 | 0.902995 | 99       | 4.2097843 | 0.902382 | 63       | 4.2004056 | 0.901357 | 62       | 5.0082641 | 0.900219 | 62       | 3.6329315 |
|       | 3  |    | 0.901128 | 49     | 10.86939  | 0.901435 | 99       | 4.4717052 | 0.901252 | 19       | 9.700331  | 0.900966 | 62       | 4.0965657 | 0.900022 | 99       | 9.5059922 | 0.900962 | 62       | 3.6555395 |
|       | 4  |    | 0.90265  | 99     | 5.1557586 | 0.906213 | 99       | 4.6063569 | 0.90265  | 99       | 7.3605452 | 0.902086 | 99       | 5.5819392 | 0.904591 | 49       | 9.7211483 | 0.904385 | 62       | 5.3490269 |
|       | 5  | 00 | 0.902631 | 69     | 4.2825217 | 0.903136 | 71       | 4.5000842 | 0.90246  | 9        | 4.3032224 | 0.902598 | 69       | 9.7328005 | 0.903156 | 99       | 9.2760718 | 0.903192 | 29       | 8.873888  |
|       | 9  | }  | 0.903762 | 99     | 4.178293  | 0.904206 | 89       | 4.479053  | 0.903762 | 99       | 6.3451741 | 0.904721 | 49       | 4.770189  | 0.904445 | 63       | 9.6381657 | 0.903718 | 63       | 3.7447016 |
|       | 7  |    | 0.90083  | 29     | 4.1024351 | 0.901385 | 69       | 4.5752947 | 0.90083  | 29       | 7.7938008 | 0.90083  | 29       | 4.1284721 | 0.901248 | 62       | 4.954787  | 0.901031 | 29       | 3.7019145 |
|       | ∞  |    | 0.901262 | 61     | 4.1368871 | 0.892501 | 70       | 4.4156935 | 0.90169  | 57       | 4.1846871 | 0.901931 | 28       | 5.3771288 | 0.901398 | 55       | 3.7088678 | 0.901742 | 99       | 3.6973536 |
|       | 6  |    | 0.907187 | 58     | 4.2753096 | 0.905709 | 64       | 4.5732851 | 0.907187 | 58       | 4.2888665 | 0.900303 | 09       | 10.718683 | 0.900305 | 59       | 3.8186927 | 0.900421 | 58       | 9.0240562 |
|       | 10 |    | 0.902474 | 77     | 4.1249385 | 0.902893 | 80       | 4.2258456 | 0.902412 | 77       | 4.0856035 | 0.902551 | 81       | 4.1435597 | 0.902811 | 92       | 3.7325127 | 0.901842 | 75       | 5.0805118 |
|       |    |    |          |        |           |          |          |           |          |          |           |          |          |           |          |          |           |          |          |           |

Tabla 12. Resultados de la implementación de la Alternativa 2 para instancias de la clase 3.

ယ 2 6 9 <sub>∞</sub> 7 6 S 4 ယ 2 10 9 <sub>∞</sub> 6 S 4 10 9 <sub>∞</sub> 7 S w 0.9 0.7 0.5 0.700103 0.710373 0.70391 0.501862 0.504482 0.506431 0.902489 0.900694 0.705712 0.703214 98 97 85 90 90 91 <del>1</del>04 4 42 4 42 43 48 33 4 37 89 97 82 53 45 52 48 36 30 29 46 39 30 16.067581 17.148596 17.211255 14.795332 14.438384 14.192094 14.770347 14.140031 14.151887 14.513469 16.233491 16.547196 15.858477 15.734173 15.116908 14.724402 14.535499 17.015782 16.541967 16.949175 15.68166 15.700245 14.64244 15.6969 0.901898 0.901197 0.900549 0.704247 0.707618 0.701648 0.704356 0.504259 0.5000590.5026330.503604 0.901820.9005610.706135 0.704515 0.901627 0.901776 0.904872 0.709783 0.707473 0.518991 0.506007 96 95 48 42 40 43 25 33 37 31 37 90 105 99 85 89 <u>7</u> 98 89 48 52 4 46 50 52 35 39 23 40 28 13.940772 19.451807 19.948287 21.657188 23.035976 35.23091 14.25729 34.198679 33.472571 21.707453 13.479327 13.121267 22.876151 13.122737 14.163135 13.141306 19.009657 19.261613 13.143315 12.927308 13.046738 13.331185 12.929776 22.898692 17.531469 12.945138 0.501862 0.9015250.705712 0.700103 0.708603 0.702402 0.504482 0.700125 0.70391 0.503530.505874 89 98 98 89 87 90 89 97 97 85 4 53 51 48 36 43 45 51 52 50 33 36 30 43 29 46 34 37 39 32 20.378617 23.105696 13.703086 14.101285 13.415784 13.513195 13.581842 13.291347 13.674672 13.712735 13.412545 13.464527 13.939955 20.48177 25.007629 14.044769 13.151695 13.910571 13.960592 13.409975 13.881094 0.901898 0.904891 0.5000590.5026330.506556 0.902192 0.9020050.901622 0.9005950.901687 0.900185 0.704247 0.707618 0.701648 0.706135 0.705744 0.701931 0.704515 0.704356 0.504259 0.505193 0.500963 0.504103 0.518991 0.506007 90 105 99 85 88 91 94 102 98 85 48 48 52 42 4 50 4 40 52 43 25 35 33 39 23 4 37 28 31 37 22.373064 21.732522 21.210105 13.823334 14.184848 14.198965 23.020756 14.213347 14.251409 22.462147 15.225595 13.88934 13.949888 14.470768 16.609286 23.192771 13.254226 13.216463 13.438088 13.637157 17.304849 22.392668 13.874252 13.634773 13.586516 13.926548 13.305491 14.193925 0.901683 0.706262 0.704351 0.901107 0.902421 0.703127 0.700906 0.501608 0.5005130.507519 0.505415 0.512312 0.501755 0.901775 0.901626 0.90452 0.704985 0.702449 0.701546 0.702768 0.704333 0.900699 0.900782 0.506152 0.505863 0.500764 112 87 47 47 31 91 107 88 83 93 107 97 90 53 46 35 49 4 4 50 48 31 29 27 37 21 48 35 31 4 11.36408 14.202609 11.446533 11.104644 11.375104 19.021555 16.292423 11.473193 11.262242 11.43705 18.262043 19.965172 12.194281 12.500778 20.285753 13.679847 17.943224 12.744267 23.004642 13.343678 12.37309 12.304244 24.228313 12.275716 12.826447 12.274579 12.91573 0.901309 0.901647 0.704648 0.502263 0.5054630.5006230.509212 0.704433 0.706236 0.702795 0.707143 0.901669 0.901201 0.900681 0.703409 0.70656 0.90088101 100 84 86 94 93 105 98 85 4 49 52 4 35 47 49 4 48 50 27 33 30 40 33 4 38 32 35 4 21.926446 33.802672 12.282284 28.719774 24.858566 11.448938 11.362444 12.755185 17.585013 18.185198 11.47736 12.055168 19.751459 12.079309 11.991932 12.073521 15.019198 24.00408 12.287291 12.271796 30.322176

labla 14. Resultados de la implementación de la Alternativa 2 para instancias de la clase 4

|        | Tiemno(s) | 140.04389 | 81.138338 | 107.42197 | 82.818934 | 105.89516 | 120.62664 | 76.459689 | 160.89221 | 160.03645 | 173.09535 | 99.155539 | 78.0983   | 79.646325 | 79.033757 | 72.382811 | 73.986059 | 80.263773 | 80.995098 | 85.877273 | 171.06583 | 149.32656 | 148.0123  | 160.80636 | 152.91214 | 147.12251 | 169.68639 | 162.63893 | 137.38942 | 152.2919  | 157.03594 |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|        | Opción 2  | 52        | 89        | 59        | 59        | 99        | 56        | 51        | 56        | 29        | 9         | 18        | 93        | 83        | 83        | 83        | 77        | 58        | 73        | 84        | 96        | 147       | 170       | 160       | 160       | 163       | 150       | 149       | 155       | 163       | 166       |
| 5.3    | н         | 0.501151  | 0.503695  | 0.503778  | 0.503778  | 0.503017  | 0.503986  | 0.501543  | 0.503727  | 0.507244  | 0.50179   | 0.708349  | 0.701514  | 0.702659  | 0.702659  | 0.702734  | 0.701957  | 0.701673  | 0.702857  | 0.700355  | 0.701706  | 0.901599  | 0.900482  | 0.901382  | 0.901382  | 0.900278  | 0.901385  | 0.900172  | 0.901498  | 0.900755  | 0.901812  |
| Caso 3 | Tiemno(s) | 153.71264 | 164.58552 | 89.041117 | 81.177787 | 81.204223 | 78.999414 | 78.096428 | 108.77813 | 142.00313 | 173.70817 | 188.60629 | 189.46609 | 195.48133 | 193.62145 | 191.64898 | 193.62357 | 189.56279 | 192.0038  | 189.1431  | 192.85005 | 175.95539 | 168.77278 | 177.04266 | 174.86516 | 180.04785 | 182.43816 | 185.05082 | 168.75111 | 180.70613 | 163.7618  |
|        | Opción 1  | 54        | 19        | 59        | 59        | 53        | 19        | 45        | 57        | 28        | 09        | 77        | 91        | 83        | 83        | 82        | 9/        | 09        | 73        | 48        | 91        | 152       | 171       | 159       | 159       | 168       | 147       | 148       | 151       | 170       | 171       |
|        | <u> </u>  | 0.505539  | 0.500927  | 0.503255  | 0.503255  | 0.500431  | 0.506253  | 0.502803  | 0.506841  | 0.504864  | 0.501861  | 0.711975  | 0.705116  | 0.702735  | 0.702735  | 0.701832  | 0.70268   | 0.701866  | 0.702857  | 0.702043  | 0.702197  | 0.900553  | 0.900815  | 0.901438  | 0.901438  | 0.900398  | 0.901276  | 0.900055  | 0.90177   | 0.900755  | 0.901573  |
|        | Tiemno(s) | 71.904896 | 69.817688 | 70.06826  | 70.35204  | 71.570264 | 73.936126 | 70.331185 | 71.314719 | 70.412629 | 71.732018 | 71.289109 | 70.227589 | 69.852118 | 70.220146 | 73.367421 | 73.757112 | 71.130888 | 71.292072 | 70.04355  | 69.5841   | 71.233584 | 69.839042 | 72.528739 | 71.299883 | 86.631135 | 83.991622 | 86.245764 | 83.925485 | 77.311608 | 84.558825 |
|        | Opción 2  | 46        | 63        | 53        | 53        | 19        | 51        | 50        | 48        | 65        | 69        | 92        | 87        | 78        | 78        | 88        | 49        | 69        | 73        | 16        | 16        | 149       | 175       | 164       | 164       | 179       | 146       | 150       | 153       | 168       | 163       |
| 2      | )<br>H    | 0.50189   | 0.506346  | 0.501414  | 0.501414  | 0.504692  | 0.503331  | 0.501315  | 0.501525  | 0.500516  | 0.501613  | 0.700364  | 0.700314  | 0.702937  | 0.702937  | 0.701743  | 0.701545  | 0.701688  | 0.700659  | 0.702009  | 0.701018  | 0.900589  | 0.900375  | 0.901506  | 0.901506  | 0.900878  | 0.901063  | 0.901447  | 0.900831  | 0.900464  | 0.901473  |
| Caso 2 | Temno(s)  | 75.204158 | 81.403625 | 74.394496 | 71.47052  | 72.195673 | 72.876595 | 96.13877  | 72.391612 | 69.741434 | 79.057383 | 72.186731 | 69.202243 | 69.80619  | 69.943311 | 70.687114 | 70.303132 | 70.349437 | 71.321469 | 70.862654 | 70.426538 | 72.042259 | 75.758123 | 73.044608 | 72.00731  | 71.812596 | 71.323437 | 71.031976 | 71.734725 | 10.980751 | 70.984585 |
|        | Opción 1  | 4         | 57 8      | 52 7      | . 25      | 59 7      | 2 09      | 48        | 57 7      | 53 6      | 2 99      | 71 7      | 81 6      | 83        | 83 6      | 80 7      | 09        | 2 29      | 73 7      | 7 67      | 83 7      | 147 7     | 7 271     | 164 7     | 164       | 168 7     | 152 7     | 142 7     | 165 7     | 160 7     | 163 7     |
|        | ľо _      | 0.508806  | 0.500856  | 0.506694  | 0.506694  | 0.502874  | 0.503249  | 0.502395  | 0.506253  | 0.5039    | 0.501251  | 0.705308  | 0.700438  | 0.702135  | 0.702135  | 0.701138  | 0.700621  | 0.702207  | 0.700659  | 0.701143  | 0.701957  | 0.901776  | 0.900375  | 0.90197   | 0.90197   | 0.900857  | 0.901031  | 0.901947  | 0.900392  | 0.900482  | 0.901473  |
|        | Temno(s)  | +         | 92.597527 | 93.942539 | 94.141301 | 96.217869 | 95.402564 | 94.006546 | 106.12673 | 8568.901  | 94.853678 | 94.682987 | 92.761372 | 95.013755 | 107.58539 | 95.327701 | 96.251402 | 94.191517 | 92.857337 | 94.338359 | 94.980849 | 92.758287 | 94.066284 | 92.34968  | 95.378578 | 93.9486   | 94.107419 | 94.945409 | 96.307781 | 96.196429 | 95.035121 |
|        | Opción 2  | 46 9      | 63 9      | 53 9      | 53 9      | 6 19      | 51 9      | 90 9      | 54 1      | 54        | 6 69      | 6 92      | 87 9      | 82 9      | 82 1      | 88        | 64        | 6 69      | 73 9      | 85 9      | 91 9      | 149 9     | 185 9     | 164       | 164 9     | 179       | 162 9     | 150 9     | 160       | 169       | 921       |
|        | O H       | 0.50189   | 0.506346  | 0.501414  | 0.501414  | 0.504692  | 0.503331  | 0.501315  | 0.508924  | 0.503717  | 0.501613  | 0.700364  | 0.702848  | 0.7018    | 0.7018    | 0.701743  | 0.70156   | 0.701688  | 0.700659  | 0.701717  | 0.701018  | 0.900589  | 0.900574  | 0.901506  | 0.901506  | 0.900222  | 0.900795  | 0.901447  | 0.902022  | 900006.0  | 0.900767  |
| Caso   | Tiemno(s) | 78.429997 | 82.31026  | 83.48427  | 83.754679 | 88.282339 | 87.144271 | 85.512005 | 88.005559 | 89.98512  | 90.646683 | 91.83895  | 92.448283 | 94.706961 | 93.494226 | 92.702928 | 93.368037 | 93.408339 | 93.582319 | 94.495653 | 90.488278 | 92.820053 | 94.096815 | 90.441325 | 94.492291 | 92.833452 | 93.913245 | 91.608374 | 94.598579 | 79.599149 | 73.806921 |
|        | Opción 1  | 4         | 57        | 52        | 52        | 59        | 09        | 84        | 57        | 53        | 09        | 71        | 62        | 83        | 83        | 08        | 09        | 19        | 75        | 62        | 95        | 147       | 180       | 164       | 164       | 168       | 156       | 142       | 158       | 154       | . 0/1     |
|        | 0         | 0.508806  | 0.500856  | 0.506694  | 0.506694  | 0.502874  | 0.503249  | 0.502395  | 0.506253  | 0.5039    | 0.501794  | 0.705308  | 0.701056  | 0.702135  | 0.702135  | 0.701138  | 0.700621  | 0.702207  | 0.701218  | 0.701143  | 0.703388  | 0.901776  | 0.90035   | 0.90197   | 0.90197   | 0.900857  | 0.901095  | 0.901947  | 0.901784  | 0.900812  | 0.901498  |
|        | č         |           | 1         |           |           | , v       |           |           |           |           |           |           |           | <u> </u>  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
|        | -         | -         | 2         | е         | 4         | S         | 9         | 7         | ∞         | 6         | 10        | -         | 2         | е         | 4         | 5         | 9         | 7         | ∞         | 6         | 10        | -         | 2         | 8         | 4         | 5         | 9         | 7         | ∞         | 6         | 10        |
|        | Clase     |           |           |           |           |           |           |           |           |           |           |           |           |           |           | ų         | J.        |           |           |           |           |           |           |           |           | •         |           |           |           |           |           |

Tabla 16. Resultados de la implementación de la Alternativa 2 para instancias de la clase 5.