

Downstream I

 $m_{J/\psi K_{\rm S}^0} \frac{5500}{({
m MeV}/c^2)}$

b-flavour tagging in pp collisions

Alex Birnkraut on behalf of the LHCb collaboration

Basics

Introduction

Measurements of flavour oscillations and time-dependent *CP* asymmetries in neutral *B* meson systems require knowledge of the *b* quark flavour at production. This identification is performed by the Flavour Tagging (FT). [1,2]

Two independent classes of algorithms

same side taggers (SS)

use charged particles created in the fragmentation process of the *b* quark of the signal *B* meson

- kaon for B_s^0
 - \rightarrow SS kaon / SS kaon nnet
- pion for B^0
- \rightarrow SS pion / SS pion BDT
- proton for B^0
- \rightarrow SS proton

opposite side taggers (OS)

exploit the non-signal b quark of the initial $b\overline{b}$ pair

- overall charge of the secondary vertex (SV)

 → OS vertex charge
- lepton from semi-leptonic b hadron decays
 → OS muon / OS electron
- kaon from the b → c → s decay chain
 OS kaon / OS kaon nnet
- D meson from the b → c decay chain
 → OS charm

Each tagger provides a decision d on the initial flavour ("tag") and a probability to be wrong, η .

Flavour Tagging characteristics

mistag

fraction of events with a wrong tagging decision

$$\omega = rac{N_{ ext{wrong}}}{N_{ ext{right}} + N_{ ext{wrong}}}$$

tagging efficiency

fraction of events with a tagging decision

$$oldsymbol{arepsilon}_{\mathsf{tag}} = rac{oldsymbol{N}_{\mathsf{right}} + oldsymbol{N}_{\mathsf{wrong}}}{oldsymbol{N}_{\mathsf{all}}}$$

• effective tagging efficiency represents the statistical reduction factor of a sample in a tagged analysis

$$arepsilon_{ ext{eff}} = arepsilon_{ ext{tag}} \left(1 - 2\omega
ight)^2$$

Calibration

Mistag calibration

$$\omega(\eta) = p_0 + p_1(\eta - \langle \eta \rangle)$$
measured estimated mean ev-by-ev mistag estimated mistag

Several flavour-specific decay channels are used

- $B^+ \to J/\psi \, K^+, B^+ \to D^0 \pi^+$ charged channels: extract ω by comparing tag decision with charge of the final state
- $B^0 \to J/\psi \, K^{*0}$, $B^0 \to D^{*-} \mu^+ \nu_\mu$, $B^0_s \to D^-_s \pi^+$, ... neutral channels: full time-dependent analysis to extract ω from the mixing asymmetry

$$\mathcal{A}_{\mathsf{mix}}(t) \propto (1-2\omega) \cos(\Delta m_{d/s} t)$$

Flavour Tagging in Run I

Handling for analyses

- one calibration per tagger valid for all channels
- systematic uncertainties from
 - calibration methods
 - results in different control channels
- "ad-hoc" calibration from specific control channels for analyses dominated by FT uncertainty

Highlights of successful FT uses

• *CP* violation in $\overline B{}^0_s o J/\psi \, \pi^+ \pi^-$

- analysis on 2011 data: $arepsilon_{ ext{eff}} = 2.43\,\%$ [3]
- full Run I analysis: $\varepsilon_{\rm eff} = 3.89 \,\%$ [4]
- newest analysis profited from
 - → including SS kaon nnet tagger
 → re-optimisation of OS algorithms
- *CP* violation in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$

- analysis on 2011 data: $arepsilon_{ ext{eff}} = 5.07\,\%$
- SS kaon nnet adds more than $1.3\,\%$ to $arepsilon_{ ext{eff}}$ [5]

- *CP* violation in $B^0 \rightarrow J/\psi K_s^0$ (sin 2 β)
 - analysis on 2011 data: $\varepsilon_{\rm eff} = 2.38\,\%$ [6]
 - full Run I analysis: $\varepsilon_{\rm eff}=3.02\,\%$ [7] ightarrow SS pion tagger adds more than 0.376 % to $\varepsilon_{\rm eff}$

- precision analysis ightarrow "ad-hoc" FT calibration
- \rightarrow OS algorithms calibrated with $B^+ \rightarrow J/\psi K^+$
- ightarrow SS pion calibrated with $B^0
 ightarrow J/\psi \, K^{*0}$
- *CP* violation in $B_s^0 \rightarrow J/\psi K_s^0$
 - not possible to exclude B^0 events in selection

- B_s^0 events: $\varepsilon_{\mathrm{eff}} = 4.00 \%$ [8]
- B^0 events: $arepsilon_{ ext{eff}}=2.62\,\%$ [8]
- → small contribution of SS kaon for B⁰ due to:
 same-side protons misidentified as kaons
- kaons from same-side K^* (892)
- \Rightarrow kaons have opposite charge for B^0 : tagging decision has to be inverted

Developments

OS charm tagger (preliminary)

• reconstruct $D^0/D^\pm/D^*$ decays related to OS b decay

Decay mode	Relative $arepsilon_{tag}$	Relative $arepsilon_{ ext{eff}}$
$D^0 o K^-\pi^+$	10.0 %	24.0 %
$D^0 o K^-\pi^+\pi^+\pi^-$	5.9 %	8.4 %
$D^+ o K^-\pi^+\pi^+$	10.3 %	2.6 %
D^0 , $D^+ o K^-\pi^+ X$	69.7 %	61.5 %
D^0 , $D^+ o K^-e^+X$	0.5 %	0.2 %
D^0 , $D^+ o K^-\mu^+ X$	3.4 %	0.3 %
$\Lambda_c^+ o p^+ K^- \pi^+$	0.2 %	2.4 %

- one boosted decision tree (BDT) for each mode [9]
- clean measure of *B* meson flavour (low mistag)
- ullet stand-alone tagging power of $\epsilon_{
 m eff}=0.30\,\%$ to $0.40\,\%$

SS pion calibration

- calibration performed with $B^0 o J/\psi \, K^{*0}$
- full evaluation of systematic uncertainties
- used for the first time in the measurements of
 - $\sin(2\beta)$ with $B^0 o J/\psi \, K_S^0$
 - \Rightarrow precision comparable to B-factories
 - $\Rightarrow \ arepsilon_{ ext{eff}}^{ ext{SS}\pi} = 0.38 \,\%$
 - sin(2 $eta_{
 m eff}$) with $B^0 o J\!/\psi\,\pi^+\pi^-$
 - $\Rightarrow \varepsilon_{\rm eff}^{\rm SS\pi} = 0.54 \%$

SS kaon tagging using neural nets (NN)

basic idea: use two NN

– first NN distinguishes between:

- 1. fragmentation tracks
- ⇒ signal for SS kaon nnet
- 2. underlying event tracks

- receives up to 3 candidates
- assigns final tag and mistag [10]
- SS kaon nnet tagger is a great success, compared to the previous cut-based SS kaon it gives
 - $B_s^0 o D_s^- \pi^+$: 50 % relative improvement in $arepsilon_{ ext{eff}}$
 - $B_s^0 o J/\psi \, \phi$: 41 % relative improvement in $arepsilon_{ ext{eff}}$

References

- [1] LHCb Collaboration, R. Aaij et. al., Opposite-side flavour tagging of B mesons at the LHCb experiment, Eur. Phys. J. C72 (2012) 2022
- [2] LHCb Collaboration, R. Aaij et. al., Optimization and calibration of the same-side kaon tagging algorithm using hadronic B_s⁰ decays in 2011 data, LHCb-CONF-2012-033
 [3] LHCb Collaboration, R. Aaij et. al., Measurement of the CP-violating phase φ_s in B_s⁰ →
- $J/\psi \pi^+\pi^-$ decays, Phys.Lett. B713 (2012) 378-386 [4] LHCb Collaboration, R. Aaij et. al., Measurement of the CP-violating phase ϕ_S in $\overline{B}_S^0 \to$
- $J/\psi \pi^+\pi^-$ decays, Phys.Lett. B736 (2014) 186 [5] LHCb Collaboration, R. Aaij et. al., Measurement of CP asymmetry in $B_s^0 \to D_s^\mp K^\pm$ decays, JHEP 1411 (2014) 060
- [6] LHCb Collaboration, R. Aaij et. al., Measurement of the time-dependent CP asymmetry in $B^0 \to J/\psi \, K_S^0$ decays, Phys.Lett. B721 (2013) 24-31
- [7] LHCb Collaboration, R. Aaij et. al., Measurement of CP violation in $B^0 \to J/\psi \, K_S^0$ decays, Phys.Rev.Lett. 115 (2015) 031601
- [8] LHCb Collaboration, R. Aaij et. al., Measurement of the time-dependent CP asymmetries in $B^0_s \to J/\psi \, K^0_S$, JHEP 1506 (2015) 131
- [9] LHCb Collaboration, R. Aaij et. al., *B flavor tagging using reconstructed charm decays at the LHCb experiment*, LHCb-PAPER-2015.027
- [10] G. A. Krocker, Development and calibration of a same side kaon tagging algorithm and measurement of the $B_S^0 \overline{B}_S^0$ oscillation frequency Δm_S at the LHCb experiment, PhD thesis, Heidelberg U., Sep, 2013, CERN-THESIS-2013-213