

ARMY RESEARCH LABORATORY

An Evanescent Wave Fluorescence Fiber-Optic Flow Sensor for Resin Transfer Molding

by Bruce K. Fink, Roopesh Mathur, and Suresh G. Advani

ARL-TR-2240

June 2000

Approved for public release; distribution is unlimited.

20000627 117

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Abstract

An evanescent wave fluorescence-based fiber-optic flow sensor is being investigated. This sensor is based on the interaction of a laser beam in a bare optical fiber with fluorescent probe molecules present in the resin flowing in the direction of the fiber. The electric field of the monochromatic light waves traveling in the fiber by total internal reflection penetrates outside the fiber and is called the evanescent wave field. A fluorescent probe molecule within the depth of penetration gets excited by this field and emits a characteristic fluorescent radiation that is coupled back into the fiber by the principle of reciprocity of optics. If the light at the end of the fiber is filtered for the fluorescent radiation and the intensity is recorded, it gives an estimate of the number of fluorescent probe molecules in contact with the fiber and, hence, the extent to which the fiber is covered with the resin. Preliminary experiments have shown that there is a linear correlation between the peak intensity and the length of fiber in contact with the fluid. A laboratory setup has been assembled at the University of Delaware (UD), using a photomultiplier-tube-based detector, and various experiments have been conducted to assess the effect of covered fiber length on the intensity of fluorescence using the evanescent mode of sensing and on the uses of distal mode sensing of fluorescence for detection of flow.

Acknowledgments

This research was supported in part by the U.S. Army Research Laboratory (ARL)-sponsored Composite Materials Research Program at the University of Delaware. The authors would like to acknowledge Dr. George H. Watson and Mr. Ranjit D. Pradhan of the Department of Physics, University of Delaware, for aiding in the construction of the experimental facility at the University of Delaware. Mr. Sean Gallagher carried out the experiments at Delaware. The preliminary experiments were performed at the Polymers Division (National Institute of Standards and Technology [NIST]) with the help of Dr. Richard Parnas and Dr. Joy Dunkers (NIST), Dr. Dara Woerdman (Johns Hopkins University), and Mr. Robert Lowry (NIST).

INTENTIONALLY LEFT BLANK.

Table of Contents

	<u>Page</u>
Acknowledgments.....	iii
List of Figures.....	vii
1. Introduction	1
2. Theory	3
3. Experimental Setup.....	5
4. Experiments	6
5. Results and Conclusions	8
6. References	13
Distribution List	17
Report Documentation Page.....	37

INTENTIONALLY LEFT BLANK.

List of Figures

<u>Figure</u>	<u>Page</u>
1. Schematic of Experimental Setup.....	5
2. Plot of Intensities of Fluorescence Detected Using a CCD Detector Array With Wavelengths of Light for Different Lengths of Fiber Covered.....	8
3. Plot of Peak Fluorescent Intensity at 570 nm Detected Using a CCD Detector at NIST for Different Lengths of Fiber Covered by a Solution of Rhodamine B in Ethanol	9
4. Plot of Change in Intensity Detected as Fluorescent Dye Flows Past the Tip of the Optical Fiber.....	9
5. Plot of Peak Fluorescent Intensity at 570 nm Detected Using a Photon Counter for Different Lengths of Optical Fiber Covered by a Solution of Rhodamine B in Ethanol (Experiments 1 and 2)	10
6. Plot of Peak Fluorescent Intensity at 570 nm Detected Using a Photon Counter for Different Lengths of Optical Fiber Covered by a Solution of Rhodamine B in Ethanol (Experiment 3)	11
7. Plot of Peak Fluorescent Intensity at 570 nm Detected Using a Photon Counter for Different Lengths of Optical Fiber Covered by a Solution of Rhodamine B in Ethanol (Experiments 4 and 5)	11

INTENTIONALLY LEFT BLANK.

1. Introduction

Resin transfer molding (RTM) is a versatile and economic process for the manufacture of polymer composites. RTM is finding increasing acceptance in the fabrication of large and complex parts. Due to their high strength-to-weight ratio, composites have been developed for a number of industrial and aerospace applications as an attractive alternative to conventional metallic parts. However there is a significant need to improve the quality and process control of the RTM processes. The variability of processing conditions and the state of the raw materials cause large part-to-part variations. Thus, there is a need to improve the efficiency and reliability of composite processing.

Modeling and simulation have been used with some success to gain insight into the complex phenomena during flow and cure of resin. The liquid-injection molding simulation software (LIMS) developed at the University of Delaware has been used to predict the occurrence of dry spots occurring when resin flows in molds with complex geometries [1–6].

Another way to improve the efficiency and reliability of a manufacturing process is through the implementation of an on-line sensing-and-control system. This would allow the production of parts with consistently high quality. Hence, there has been considerable work done in the area of on-line sensing techniques. A number of in-situ sensors have been developed for the composite manufacturing processes such as electromagnetic, ultrasonic, spectrometric, and fluorescence sensors [7, 8].

The changes in electromagnetic responses between sensing elements, separated spatially in the mold, as the resin flows and cures have been widely used in many sensors [9–13]. As the resin flows between the elements, it completes an electrical circuit, providing the signal that the resin has reached that point. As the resin cures, there is a change in the permittivity due to decreasing ionic mobility of the adventitious ions, and this can be correlated to the state of the cure.

Ultrasonic wave-based techniques have been used as tools to detect the cure of epoxies [14, 15]. Ultrasonic waves are passed through the composite part, and the phase velocity and attenuation are measured. As the resin cures the changes in elastic, bulk and relaxation moduli of the resin change, thus changing the speed of propagation, as well as damping of the ultrasonic waves. Some common problems associated with this technique are the low signal-to-noise ratio, dispersion and scattering of the waves, and limitations on the temperature and pressure of operation.

Spectroscopic techniques have been used to detect the cure of composite parts [15–24]. Some of these techniques are ultraviolet (UV)-visible (Vis) and infrared (IR) spectroscopy, fluorescence spectroscopy, and Raman spectroscopy. All of these techniques involve the scattering interaction of a monochromatic beam of light, usually from a laser or a filtered incandescent lamp with the material. The intensity and wavelength of the scattered light yields information about the material under study. In IR spectroscopy, each bond in the resin system has its characteristic peak in the absorption spectrum. Thus, as some bonds form and others get broken during the curing process, the intensities at the corresponding peaks change. In UV-Vis and fluorescence spectroscopy, the light photon excites the molecule to a characteristic energy level. The molecule then de-excites to a lower energy level, emitting a characteristic photon. In a resin system, as the monomer molecules cross-link, the vibrational and translational degrees of freedom get restricted. Thus, the amount of energy available for excitation is higher. This leads to increasing intensity of the emission spectrum, as well as a blue shift as the wavelength of the photons decreases. In Raman spectroscopy, the excitation photon does not have enough energy to excite the molecule to the next energy level. Hence, the energy absorption lifts the photon to a virtual vibrational energy level below the first electronic state. Within a short time, it returns to a stable energetic level in the ground electronic state. If this state is not the same as the original state, then the emission photon has a different wavelength than the excitation light. This shift is called the Raman shift and is characteristic of the molecule. The intensity of the Raman spectrum is directly proportional to the concentration of the chemical species and related to the temperature of the specimen [20]. Hence resin cure can be detected by measuring the decreasing concentration of the epoxide. All these spectroscopic techniques are noncontact; work by direct

molecular-level interaction; and, hence, provide a primary measure of cure. However, the effects of the temperature on the spectra obtained have to be compensated in order to get accurate data.

Fiber optics have been used for remote in-situ spectroscopy [20–36]. The excitation beam is conveyed by the fiber to the region of interest; hence, the fiber optic sensor can be used as both a surface sensor and as an embedded sensor in composites processing. The size of the fiber-optic probe is comparable to the size of the reinforcement fibers in composites. Hence, the interference effects are minimal. The two modes of sensing using fiber optics are (1) the distal mode and (2) the evanescent mode of sensing. In the distal mode, the end of the sensor is in contact in the specimen and is used to sense in a small volume surrounding the tip. In evanescent wave sensing, the interaction of the evanescent electric field of the monochromatic light propagating in the fiber with the surroundings is used for sensing. Thus, the full length of the fiber acts as a probe. It is expected that, as the fiber gets covered, the intensity of the detected signal will increase. In earlier work [35–37], a corresponding blue shift in peak intensity was seen as resin cure progressed. This enables the development of a inexpensive fiber-optic flow and cure sensor, which can be used to investigate the flow into fiber bundles and flow in molds with complex geometry. Thus, fiber-optic evanescent wave sensors have been investigated in an ongoing collaboration between the U.S. Army Research Laboratory (ARL) and the National Institute of Standards and Technology (NIST).

A fiber-optic evanescent wave-based flow sensor is presented here. An argon ion laser was made to interact with a fluorescent dye solution flowing along the length of the fiber optic, and the resultant signal from the fluorescence interaction was monitored using an intelligent photo sensor. An experiment based on distal mode sensing was also conducted.

2. Theory

Optical fibers transmit light by total internal reflection. Light focused on the end face of the fiber intersects the fiber-medium interface at an angle determined by Snell's law. If the refractive index of the medium is less than that of the fiber, then there exists a critical angle of

incidence beyond which the light gets reflected back into the fiber. Thus, light propagating in the fiber at an angle greater than this propagates through the fiber. The electric field amplitude of the guided wave decays exponentially in the medium.

The evanescent wave fluorescent wave sensor is based on the interaction of the fluorescent dye molecules with the evanescent electric field. It is necessary that the refractive index of the sensor be higher than that of the surrounding medium. At the interface between the wave guide and the medium, the light suffers total internal reflection. The evanescent field arises from the interference between the electric fields of the incoming and the reflected rays. The evanescent wave extends beyond the reflecting interface into the surrounding medium and decays exponentially in amplitude. The distance to which the electric field decays to $(1/e)$ its original value is called the depth of penetration. This depth of penetration is given by

$$d_p = \frac{\lambda}{2\pi(\sin^2 \theta - (n_2/n_1)^2)^{1/2}}, \quad (1)$$

where λ is the wavelength of the light, n_1 is the refractive index of the fiber, n_2 is the index of the medium, and θ is the angle of incidence of the propagating light at the interface. Values for d_p are of the order of 100–10,000 nm.

We select the angles of incidence at the fiber front to be less than the critical angle so that there are no losses at the face. The amplitude decays exponentially with the distance. The probability of fluorescence is dependent on the product of quantum efficiency of fluorescence and the probability of absorption of the evanescent photon. It is estimated that approximately half the light is emanating from fluorescence at a distance z , where the evanescent wave amplitude is significant. The efficiency of collection and transmission of the fluorescence is dependent on whether the angle in the fiber is greater than the critical angle or not. Almost all the fluorescence in the fiber will be lost for angles less than the critical angle, as can be expected. By the principle of reciprocity of optics, one can expect that, if the emission of the excited molecule itself is evanescent, then the fluorescent photons that get into the fiber will get

internally reflected and will reach the detector, whereas the fluorescent light that gets refracted into the fiber by the principles of conventional ray optics will lose intensity rapidly with each successive reflection as part of the ray gets refracted into the medium and will therefore be very weak at the detector. Hence, the chief component of the detected fluorescence at the detector end will be the evanescent wave fluorescence. Since the intensity of the electric field of the monochromatic light is approximately the same at every point on the fiber where the laser beam reflects off the fiber-medium interface and nearly all the evanescent wave photons reach the detector, there is a linear correlation between the intensity detected and the length of the fiber in contact with the fluorescent solution. However, there will be a sudden increase in intensity as the conventional fluorescent rays that enter the fiber very near the detector end have not dissipated through losses.

3. Experimental Setup

An optical bench (Figure 1) was constructed for the flow monitoring experiments. The experimental setup consisted of an Ar+ laser, a system of mirrors, beam splitter, 20X microscope objective and a fiber coupler to couple the laser light into the NIST-supplied leaded glass fiber-optic cable.

Figure 1. Schematic of Experimental Setup.

The detection system at the University of Delaware consisted of a laser filter, monochromator, and a intelligent photosensor module (Hammamatsu HC-135 sensor). The wavelength on the monochromator was set using a stepper motor interfaced to the shaft using a flexible coupling. The stepper motor and the intelligent photosensor were interfaced to a PC (P5-166) for control and data acquisition purposes.

The intelligent photosensor combines the sensitivity of a photomultiplier tube with the intelligence of a microcontroller to provide a flexible and sensitive detector that can be interfaced to the computer very easily using a standard RS-232 cable to the serial port. The detector module acquires the signal by counting the number of photons as they enter the input window. This is the most sensitive technique available for light measurement. The photon-counting sensor has a large active area of diameter 21 mm for light gathering. The photomultiplier tube does the photon counting using a series of cascade circuits that generate thousands of electrons for every photon impinging on the light gathering area. The photomultiplier tube is powered by an onboard high-voltage Cockcroft-Walton power supply. This is used to limit current consumption and prevent unwanted temperature rise of the assembly. The photosensor is powered by a direct-current (DC) power supply rated at a voltage of 5 V.

The light signal from the photomultiplier tube takes the form of very high current pulses. These pulses are amplified and converted to digital pulses with a high-speed amplifier and discriminator. They are then prescaled by a value of four before counting, which increases the dynamic range without using excessive power. These pulses are counted using by the microcontroller. The HC-135 integrates all the necessary components required for photon counting in a compact cylindrical body of diameter 1.35 in and length of 5 in.

4. Experiments

A fiber-optic flow sensor can be implemented in two modes of sensing. In the first mode, called distal mode sensing, the fiber-optic sensor is a point sensor. The optical fiber acts as a conduit for the laser beam to reach a point in space. When the flow containing fluorescent dye

reaches the tip of the fiber, which is illuminated by the laser beam, the dye molecules get stimulated and emit fluorescent photons. This radiation gets conducted back along the fiber and goes to the detector, which is set up to receive only those photons of the wavelength corresponding to the peak of the spectrum of fluorescence of the dye. The change in signal immediately indicates that the flow has reached that point. In the second mode of sensing, the evanescent mode, the entire length of the optical fiber acts as a sensor. The dye is made to flow along the length of the fiber and the change in signal recorded as the optical fiber gets progressively covered.

A number of experiments were carried out to detect the flow of a solution of Rhodamine B dissolved in ethanol to a concentration of 10^{-6} M. The optical fiber used, that was supplied by the Polymers Division, NIST, had a high refractive index of 1.6. The intensity of background light was measured using the photon counter with the lights off. The "dark count" of the detector (i.e., the photon counts obtained when the detector is closed off to all sources of external light using a cap) was found to be of the order of 150 counts/second. The background and fluorescent photon counts were of the order of 100,000 counts/second. Hence, the dark count was neglected in subsequent calculations. The background count was subtracted from the subsequent readings in order to obtain an accurate estimate of the fluorescent light reaching the detector. The monochromator was set to 570 nm, which is the maximum of the spectrum obtained for the fluorescence of Rhodamine B dye dissolved in ethanol. The laser was turned on, and the background count was recorded to give a baseline for subsequent readings. In the first series of experiments for distal mode sensing, the optical fiber was suspended inside the tube and the fluorescent dye solution was injected from the bottom until it reached the fiber tip. At that point, the change in the counts was recorded. This change in counts is plotted.

A number of experiments were performed to evaluate the evanescent mode of sensing. The optical fiber was run through the tube and clamped at the end. The tip of the fiber extending below the tube was blackened in order to prevent background light from getting conducted to the detector through the fiber. A centimeter scale was attached to the tube. The dye solution was injected along the length of the fiber. At every centimeter graduation, the photon count was

recorded until the tube filled up completely. The background count was subtracted and the fluorescent count plotted against length of fiber covered.

A few preliminary experiments were conducted at NIST in order to explore use of the fiber-optic flow sensor. A charged coupling device (CCD) camera was used for detection of fluorescent intensities at different wavelengths. The fluorescent spectra were recorded as the fiber length was covered progressively. The spectra are shown in Figure 2. As can be observed, the peak intensity shows an increase. When plotted against the length of fiber covered the peak intensity shows a linear variation with a jump at the end (Figure 3).

Figure 2. Plot of Intensities of Fluorescence Detected Using a CCD Detector Array With Wavelengths of Light for Different Lengths of Fiber Covered. (Experiment Conducted at NIST.)

5. Results and Conclusions

The results from the various experiments were plotted for both the distal mode (Figure 4) and the evanescent mode experiments. In the experiments with distal mode sensing, a significant increase in signal was observed as the flow reached the tip of the optical fiber. The data from the

Figure 3. Plot of Peak Fluorescent Intensity at 570 nm Detected Using a CCD Detector at NIST for Different Lengths of Fiber Covered by a Solution of Rhodamine B in Ethanol.

Figure 4. Plot of Change in Intensity Detected as Fluorescent Dye Flows Past the Tip of the Optical Fiber.

experiments demonstrates that a fiber-optic point flow sensor is feasible. During the filling process in mold filling and cure, feedback from a point sensor can provide vital information for on-line control and for triggering decision points.

In the evanescent mode of sensing using optical fibers (Figures 5–7), it was observed that, as the fiber was covered by the dye, there was an increase in signal that was fairly linear in nature. This linearity is predicted by the theory of the evanescent wave fiber-optic sensors. The abrupt increase in signal at the end can be caused by the bulk fluorescence of the dye solution due to leakage of light from the optical fiber. This bulk fluorescence usually dissipates through repeated refractions and reflections at the uncovered part of the surface of the optical fiber and does not reach the detector. As the flow nears the detector, the numerous photons of bulk fluorescence have a smaller distance to travel to register at the detector. Hence, the photon count registers an increase. The intensity of the bulk fluorescence is proportional to the number of dye molecules in the volume surrounding it and, hence, to the length of fiber covered. Thus, the linearity of the signal is still preserved.

Figure 5. Plot of Peak Fluorescent Intensity at 570 nm Detected Using a Photon Counter for Different Lengths of Optical Fiber Covered by a Solution of Rhodamine B in Ethanol (Experiments 1 and 2).

Figure 6. Plot of Peak Fluorescent Intensity at 570 nm Detected Using a Photon Counter for Different Lengths of Optical Fiber Covered by a Solution of Rhodamine B in Ethanol (Experiment 3).

Figure 7. Plot of Peak Fluorescent Intensity at 570 nm Detected Using a Photon Counter for Different Lengths of Optical Fiber Covered by a Solution of Rhodamine B in Ethanol (Experiments 4 and 5).

The experiments show that an evanescent wave fluorescence fiber-optic sensor is a distinct possibility. The linearity of the signal can enable the detection of flow in a mold filling process in any given direction in an "analog" fashion. The reaction time is very small, and the optical fiber may be woven into the preform. This would enable the sensing of flow in complicated molds and in molds for manufacturing thick parts, where the sensors currently in use, which are surface mounted, are inadequate. Further, the optical fiber is of the same size as most preform tows and it would not affect the resin flow. In fact, it may be used for monitoring strains due to loading in the composite part, after manufacture.

6. References

1. Bruschke, M., and S. G. Advani. "A Finite Element/Control Volume Approach to Mold Filling in Anisotropic Porous Media." *Polymer Composites*, vol. 11, pp. 398–405, 1990.
2. Bruschke, M. V., and S. G. Advani. "RTM: Filling Simulation of Complex Three-Dimensional Shell-Like Structures." *SAMPE Quarterly*, vol. 23, no. 1, pp. 2–11, 1991.
3. Bruschke, M. V., and S. G. Advani. "A Numerical Approach to Model Non-Isothermal, Viscous Flow With Free Surfaces Through Fibrous Media." *International Journal of Numerical Methods in Fluids*, vol. 19, pp. 575–603, 1994.
4. Liu, D., S. Bickerton, and S. G. Advani. "Modeling and Simulation of RTM: Gate Control, Venting and Dry Spot Prediction." *Composites Part A*, vol. 27A, pp. 135–141, 1996.
5. Maier, R. S., T. F. Rohaly, S. G. Advani, and K. D. Fickie. "A Fast Numerical Method for Isothermal Resin Transfer Mold Filling." *International Journal of Numerical Methods in Engineering*, vol. 39, pp. 1405–1422, 1996.
6. Fong, L. L., B. Liu, R. R. Varma, and S. G. Advani. "Liquid Injection Molding Simulation User Manual, Version 3.4." Technical Report, Center for Composite Materials, University of Delaware, 1996.
7. Hunston, D. L., W. McDonough, B. Fanconi, F. Wang, F. Phelan, and M. Chiang. "Assessment of the State of the Art for Process Monitoring Sensors for Polymer Composites." NISTIR 4514, National Institute of Standards and Technology, pp. 73–108, 1991.
8. Jang, B. Z., and W. K. Shih. "Techniques for Cure Monitoring of Thermoset Resins and Composites - A Review." *1990 Materials and Manufacturing Processes*, vol. 5, no. 2, pp. 201–331.
9. Ciriscioli, P. R., and G. S. Springer. "Dielectric Cure Monitoring - A Critical Review." *34th International SAMPE Symposium Proceedings*, p. 312, 1989.
10. Fink, B. K., S. M. Walsh, D. C. DeSchepper, J. W. Gillespie, Jr., R. L. McCullough, R. C. Don, and B. J. Waibel. "Advances in Resin Transfer Molding Flow Monitoring Using SMARTWEAVE Sensors." *Proceedings of the ASME International Mechanical Engineering Conference*, pp. 999–1015, 1995.

11. Mijovic, J., J. M. Kenny, B. K. Fink, S. M. Walsh, D. C. DeSchepper, J. W. Gillespie, Jr., R. L. McCullough, R. C. Don, and B. J. Waibel. "The Principles of Dielectric Measurements for In Situ Monitoring of Composite Processing." *Composites Sciences and Technology*, vol. 49, p. 277, 1993.
12. England, K. M., J. W. Gillespie, Jr., and B. K. Fink. "In-Situ Sensing of Viscosity by Direct Current Measurements." *Proceedings of the International Mechanical Engineering Congress and Expo*, American Society of Mechanical Engineers, 1996.
13. Schwab, S., R. L. Levy, and G. G. Glover. "Sensor System for Monitoring Impregnation and Cure During Resin Transfer Molding." *Polymer Composites*, vol. 17, no. 2, 1996.
14. Lindrose, A. M. "Ultrasonic Wave and Moduli Changes in a Curing Epoxy Resin." *Experimental Mechanics*, p. 227, July 1978.
15. Tuegel, E. J., and T. H. Hahn. "Ultrasonic Cure Characterisation of Epoxy Resins: Constitutive Modeling." *Advances in Modeling of Composites Processes*, 1985.
16. Pyun, K., C. Sung. Network Structure in Diamine-Cured Tetrafunctional Epoxy by UV-Visible and Fluorescence Spectroscopy." *Journal of the American Institute of Chemical Engineers*, 1991.
17. Yu, W., and C. Sung. "Excitation Spectroscopy of a Reactive Label for Characterization of the Cure Process in an Epoxy Network." *Macromolecules*, vol. 23, pp. 386–390, 1990.
18. Sung, C., E. Pyun, and H. L. Sun. "Characterization of Epoxy Cure by UV-Visible and Fluorescence Spectroscopy: Azochromophoric Labelling Approach." *Macromolecules*, vol. 19, pp. 2922–2932, 1986.
19. Kim, Y. S., and C. Sung. "UV and Flourescence Characterization of Styrene and Methyl Methacrylate Polymerization." *Journal of Applied Polymer Science*, vol. 57, pp. 363–370, 1995.
20. Stroeks, A., M. Shmorhun, A. M. Jamieson, and R. Simha. "Cure Monitoring of Epoxy Resins by Excimer Flourescence." *Polymer*, vol. 29, pp. 467–470, March 1988.
21. Stellman, C. M., J. Aust, and M. Myrick. "In-Situ Spectroscopic Study of Microwave Polymerisation." *Applied Spectroscopy*, vol. 49, no. 3, pp. 392–394, 1995.
22. Paik, H., and N. Sung. "Fiberoptic Intrinsic Flourescence for In-Situ Cure Monitoring of Amine Cured Epoxy and Composites." *Polymer Engineering and Science*, vol. 34, no. 12, pp. 1025–1031, 1994.

23. Radhakrishnan, S., and R. A. Pethrick. "Continuous UV Cure Monitoring and Dielectric Properties of Photocross-Linked Epoxy-Acrylate Resins." *Polymer Engineering and Science*, vol. 51, pp. 863–871, 1994.
24. Lyon, R. E., K. E. Chike, and S. M. Angel. "In-Situ Cure Monitoring of Epoxy Resins Using Fiber Optic Raman Spectroscopy." *Journal of Applied Polymer Science*, vol. 53, pp. 1805–1812, 1994.
25. Mayinger, F. "Optical Measurements, Techniques and Applications." Chap. 9, Springer-Verlag, 1994.
26. Wang, F. W., and B. Fanconi. "In-Situ Characterization of the Interface of Glass Reinforced Composites." National Bureau of Standards Internal Report No. 87-3581, 1987.
27. Wang, F. W., R. E. Lowry, and B. M. Fanconi. "Novel Fluorescence Method for Cure Monitoring of Epoxy Resins." *Polymer*, vol. 27, pp. 1529–1532, 1986.
28. Blair, D. S., L. W. Burgess, and A. M. Brodsky. "Study of Analyte Diffusion Into a Silicone-Clad Fiber-Optic Chemical Sensor by Evanescent Wave Spectroscopy." *Applied Spectroscopy*, vol. 49, no. 11, 1995.
29. Fuh, M. R. S., L. W. Burgess, and G. D. Christian. "Single Fiber-Optic Fluorescence Enzyme-Based Sensor." *Analytical Chemistry*, vol. 60, pp. 433–435, 1988.
30. Degrandpre, M. D., and L. W. Burgess. "A Fiber Optic FT-NIR Evanescent Field Absorbance Sensor." *Applied Spectroscopy*, vol. 44, no. 2, pp. 273–279, 1990.
31. Conzen, J. P., J. Burck, H. J. Ache. "Characterization of a Fiber-Optic Evanescent Wave Absorbance Sensor for Nonpolar Organic Compounds." *Applied Spectroscopy*, vol. 47, no. 3, pp. 753–763, 1993.
32. Young, P. R., M. A. Druy, W. A. Stevenson, and D. A. Compton. "In-Situ Composite Cure Monitoring Using Infrared Transmitting Optical Fibers." *SAMPE Journal*, vol. 25, no. 2, pp. 11–16, 1989.
33. Ahn, S. H., W. L. Lee, and G. S. Springer. "Measurement of the Three-Dimensional Permeability of Fiber Preforms Using Embedded Fiber Optic Sensors." *Journal of Composite Materials*, vol. 29, no. 6, 1995.
34. Woerdman, D. L., and R. S. Parnas. "Cure Monitoring in RTM Using Fluorescence." *Plastics Engineering*, October 1995.

35. Woerdeman, D. L., K. L. Flynn, and R. S. Parnas. "Evanescence Wave Optical Fiber Sensors for Monitoring and Control of the Liquid Molding Process." *Proceedings of the 9th International Conference on Automated Composites*, Nottingham, England, September 1995.
36. Woerdeman, D. L., and R. S. Parnas. "Cure Monitoring With Evanescence Wave Fluorescence Sensor." Annual Technical Conference of the Society of Plastics Engineers 1995, pp. 2805–2811, 1995.

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	DEFENSE TECHNICAL INFORMATION CENTER DTIC DDA 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218	1	DIRECTOR US ARMY RESEARCH LAB AMSRL D D R SMITH 2800 POWDER MILL RD ADELPHI MD 20783-1197
1	HQDA DAMO FDT 400 ARMY PENTAGON WASHINGTON DC 20310-0460	1	DIRECTOR US ARMY RESEARCH LAB AMSRL DD 2800 POWDER MILL RD ADELPHI MD 20783-1197
1	OSD OUSD(A&T)/ODDDR&E(R) R J TREW THE PENTAGON WASHINGTON DC 20301-7100	1	DIRECTOR US ARMY RESEARCH LAB AMSRL CS AS (RECORDS MGMT) 2800 POWDER MILL RD ADELPHI MD 20783-1145
1	DPTY CG FOR RDA US ARMY MATERIEL CMD AMCRDA 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001	3	DIRECTOR US ARMY RESEARCH LAB AMSRL CI LL 2800 POWDER MILL RD ADELPHI MD 20783-1145
1	INST FOR ADVNCED TCHNLGY THE UNIV OF TEXAS AT AUSTIN PO BOX 202797 AUSTIN TX 78720-2797		<u>ABERDEEN PROVING GROUND</u>
1	DARPA B KASPAR 3701 N FAIRFAX DR ARLINGTON VA 22203-1714	4	DIR USARL AMSRL CI LP (BLDG 305)
1	NAVAL SURFACE WARFARE CTR CODE B07 J PENNELLA 17320 DAHlgren RD BLDG 1470 RM 1101 DAHlgren VA 22448-5100		
1	US MILITARY ACADEMY MATH SCI CTR OF EXCELLENCE DEPT OF MATHEMATICAL SCI MADN MATH THAYER HALL WEST POINT NY 10996-1786		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	DIRECTOR US ARMY RESEARCH LAB AMSRL CP CA D SNIDER 2800 POWDER MILL RD ADELPHI MD 20783-1145	1	COMMANDER US ARMY MATERIEL CMD AMXMI INT 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001
1	DIRECTOR US ARMY RESEARCH LAB AMSRL OP SD TA 2800 POWDER MILL ROAD ADELPHI MD 20783-1145	2	COMMANDER US ARMY ARDEC AMSTA AR AE WW E BAKER J PEARSON PICATINNY ARSENAL NJ 07806-5000
3	DIRECTOR US ARMY RESEARCH LAB AMSRL OP SD TL 2800 POWDER MILL ROAD ADELPHI MD 20783-1145	1	COMMANDER US ARMY ARDEC AMSTA AR TD C SPINELLI PICATINNY ARSENAL NJ 07806-5000
1	DIRECTOR US ARMY RESEARCH LAB AMSRL OP SD TP 2800 POWDER MILL ROAD ADELPHI MD 20783-1145	1	COMMANDER US ARMY ARDEC AMSTA AR FSE T GORA PICATINNY ARSENAL NJ 07806-5000
2	DIRECTOR US ARMY RESEARCH LAB AMSRL OP CI AD TECH PUB BR RECORDS MGMT ADMIN 2800 POWDER MILL ROAD ADELPHI MD 20783-1197	6	COMMANDER US ARMY ARDEC AMSTA AR CCH A W ANDREWS S MUSALLI R CARR M LUCIANO E LOGSDEN T LOUZEIRO PICATINNY ARSENAL NJ 07806-5000
1	HQDA DAMI FIT NOLAN BLDG WASHINGTON DC 20310-1025	4	COMMANDER US ARMY ARDEC AMSTA AR CC G PAYNE J GEHBAUER C BAULIEU H OPAT PICATINNY ARSENAL NJ 07806-5000
1	DIRECTOR DA OASARDA SARD SO 103 ARMY PENTAGON WASHINGTON DC 20310-0103		
1	DEPUTY ASST SCY FOR R&T SARD TT RM 3EA79 THE PENTAGON WASHINGTON DC 20301-7100		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	COMMANDER US ARMY ARDEC AMSTA AR CCH P J LUTZ PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR FSP A P KISATSKY PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR FSF T C LIVECCHIA PICATINNY ARSENAL NJ 07806-5000	2	COMMANDER US ARMY ARDEC AMSTA AR CCH C H CHANIN S CHICO PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR QAC T C C PATEL PICATINNY ARSENAL NJ 07806-5000	9	COMMANDER US ARMY ARDEC AMSTA AR CCH B P DONADIA F DONLON P VALENTI C KNUTSON G EUSTICE S PATEL G WAGNECZ R SAYER F CHANG PICATINNY ARSENAL NJ 07806-5000
2	COMMANDER US ARMY ARDEC AMSTA AR M D DEMELLA F DIORIO PICATINNY ARSENAL NJ 07806-5000		
3	COMMANDER US ARMY ARDEC AMSTA AR FSA A WARNASH B MACHAK M CHIEFA PICATINNY ARSENAL NJ 07806-5000	6	COMMANDER US ARMY ARDEC AMSTA AR CCL F PUZYCKI R MCHUGH D CONWAY E JAROSZEWSKI R SCHLENNER M CLUNE PICATINNY ARSENAL NJ 07806-5000
2	COMMANDER US ARMY ARDEC AMSTA AR FSP G M SCHIKSNIS D CARLUCCI PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR QACT D RIGOGLIOSO PICATINNY ARSENAL NJ 07806-5000

<u>NO. OF COPIE</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	COMMANDER US ARMY ARDEC AMSTA AR SRE D YEE PICATINNY ARSENAL NJ 07806-5000	2	PEO FIELD ARTILLERY SYSTEMS SFAE FAS PM H GOLDMAN T MCWILLIAMS PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR WET T SACHAR BLDG 172 PICATINNY ARSENAL NJ 07806-5000	6	PM SADARM SFAE GCSS SD COL B ELLIS M DEVINE R KOWALSKI W DEMASSI J PRITCHARD S HROWNAK PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC SMCAR ASF PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC PRODUCTION BASE MODERN ACTY AMSMC PBM K PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR WEL F INTELLIGENCE SPECIALIST M GUERRIERE PICATINNY ARSENAL NJ 07806-5000	3	COMMANDER U S ARMY TACOM PM TACTICAL VEHICLES SFAE TVL SFAE TVM SFAE TVH 6501 ELEVEN MILE RD WARREN MI 48397-5000
11	PROJECT MANAGER TANK MAIN ARMAMENT SYSTEMS SFAE GSSC TMA R MORRIS C KIMKER D GUZOWICZ E KOPACZ R ROESER R DARCY R MCDANOLDS L D ULISS C ROLLER J MCGREEN B PATTER PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER U S ARMY TACOM PM ABRAMS SFAE ASM AB 6501 ELEVEN MILE RD WARREN MI 48397-5000
		1	COMMANDER U S ARMY TACOM PM BFVS SFAE ASM BV 6501 ELEVEN MILE RD WARREN MI 48397-5000

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	COMMANDER U S ARMY TACOM PM AFAS SFAE ASM AF 6501 ELEVEN MILE RD WARREN MI 48397-5000	1	COMMANDER U S ARMY TACOM PM GROUND SYSTEMS INTEGRATION SFAE GCSS W GSI R LABATILLE 6501 ELEVEN MILE RD WARREN MI 48397-5000
2	COMMANDER U S ARMY TACOM PM SURV SYS SFAE ASM SS T DEAN SFAE GCSS W GSI M D COCHRAN 6501 ELEVEN MILE RD WARREN MI 48397-5000	1	COMMANDER U S ARMY TACOM CHIEF ABRAMS TESTING SFAE GCSS W AB QT T KRASKIEWICZ 6501 ELEVEN MILE RD WARREN MI 48397-5000
1	COMMANDER U S ARMY TACOM PM RDT&E SFAE GCSS W AB J GODELL 6501 ELEVEN MILE RD WARREN MI 48397-5000	1	COMMANDER US ARMY TACOM AMSTA SF WARREN MI 48397-5000
1	COMMANDER U S ARMY TACOM PM SURVIVABLE SYSTEMS SFAE GCSS W GSI H M RYZYI 6501 ELEVEN MILE RD WARREN MI 48397-5000	1	COMMANDER SMCWV QAE Q B VANINA BLDG 44 WATERVLIET ARSENAL WATERVLIET NY 12189-4050
1	COMMANDER U S ARMY TACOM PM BFV SFAE GCSS W BV S DAVIS 6501 ELEVEN MILE RD WARREN MI 48397-5000	14	COMMANDER US ARMY TACOM ASMTA TR R J CHAPIN R MCCLELLAND D THOMAS J BENNETT D HANSEN AMSTA JSK S GOODMAN J FLORENCE K IYER J THOMSON AMSTA TR D D OSTBERG L HINOJOSA B RAJU AMSTA CS SF H HUTCHINSON F SCHWARZ WARREN MI 48397-5000
1	COMMANDER U S ARMY TACOM PM LIGHT TACTICAL VEHICLES AMSTA TR S AJ J MILLS MS 209 6501 ELEVEN MILE RD WARREN MI 48397-5000		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	COMMANDER SMCWV SPM T MCCLOSKEY BLDG 253 WATERVLIET ARSENAL WATERVLIET NY 12189-4050	4	DIRECTOR US ARMY CECOM NIGHT VISION AND ELECTRONIC SENSORS DIRECTORATE AMSEL RD NV CM CCD R ADAMS R MCLEAN A YINGST AMSEL RD NV VISPA E JACOBS 10221 BURBECK RD FT BELVOIR VA 22060-5806
10	BENET LABORATORIES AMSTA AR CCB R FISCELLA G D ANDREA M SCAVULO G SPENCER P WHEELER K MINER J VASILAKIS G FRIAR R HASENBEIN SMCAR CCB R S SOPOK WATERVLIET NY 12189	2	CDR USA AMCOM AVIATION APPLIED TECH DIR J SCHUCK FT EUSTIS VA 23604-5577
2	TSM ABRAMS ATZK TS S JABURG W MEINSHAUSEN FT KNOX KY 40121	1	U S ARMY CRREL P DUTTA 72 LYME RD HANOVER NH 03755
3	ARMOR SCHOOL ATTN ATZK TD R BAUEN J BERG A POMEY FT KNOX KY 40121	1	US ARMY CERL R LAMPO 2902 NEWMARK DR CHAMPAIGN IL 61822
2	HQ IOC TANK AMMO TEAM AMSIO SMT R CRAWFORD W HARRIS ROCK ISLAND IL 61299-6000	2	U S ARMY CORP OF ENGINEERS CERD C T LIU CEW ET T TAN 20 MASS AVE NW WASHINGTON DC 20314
1	DIRECTOR U S ARMY AMCOM SFAE AV RAM TV D CALDWELL BUILDING 5300 REDSTONE ARSENAL AL 35898	10	DIRECTOR US ARMY NATL GRND INTEL CTR D LEITER S EITELMAN M HOLTUS M WOLFE S MINGLEDORF H C ARDLEIGH J GASTON W GSTATTENBAUER R WARNER J CRIDER 220 SEVENTH STREET NE CHARLOTTESVILLE VA 22091

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
6	US ARMY SBCCOM SOLDIER SYSTEMS CENTER BALLISTICS TEAM J WARD MARINE CORPS TEAM J MACKIEWICZ BUS AREA ADVOCACY TEAM W HASKELL SSCNC WST W NYKVIST T MERRILL S BEAUDOIN KANSAS ST NATICK MA 01760-5019	1	COMMANDANT U S ARMY FIELD ARTILLERY CTR AT FT SILL ATFS CD LTC BUMGARNER FT SILL OK 73503 5600
1	US ARMY COLD REGIONS RSCH & ENGRNG LAB P DUTTA 72 LYME RD HANOVER NH 03755	1	CHIEF USAIC LTC T J CUMMINGS ATZB COM FT BENNING GA 31905-5800
1	SYSTEM MANAGER ABRAMS BLDG 1002 RM 110 ATZK TS LTC J H NUNN FT KNOX KY 40121	1	NAVAL AIR SYSTEMS CMD J THOMPSON 48142 SHAW RD UNIT 5 PATUXENT RIVER MD 20670
9	US ARMY RESEARCH OFFICE A CROWSON J CHANDRA H EVERETT J PRATER R SINGLETON G ANDERSON D STEPP D KISEROW J CHANG PO BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211	1	NAVAL SURFACE WARFARE CTR DAHLGREN DIV CODE G06 DAHLGREN VA 22448
1	DIRECTORATE OF CMBT DEVELOPMENT C KJORO 320 ENGINEER LOOP STE 141 FT LEONARD WOOD MO 65473-8929	1	NAVAL SURFACE WARFARE CTR TECH LIBRARY CODE 323 17320 DAHLGREN RD DAHLGREN VA 22448
3		3	NAVAL RESEARCH LAB I WOLOCK CODE 6383 R BADALIANCE CODE 6304 L GAUSE WASHINGTON DC 20375
1		1	NAVAL SURFACE WARFARE CTR CRANE DIVISION M JOHNSON CODE 20H4 LOUISVILLE KY 40214-5245
2		2	COMMANDER NAVAL SURFACE WARFARE CTR CADEROCK DIVISION R PETERSON CODE 2020 M CRITCHFIELD CODE 1730 BETHESDA MD 20084
2		2	NAVAL SURFACE WARFARE CTR U SORATHIA C WILLIAMS CD 6551 9500 MACARTHUR BLVD WEST BETHESDA MD 20817

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	DAVID TAYLOR RESEARCH CTR SHIP STRUCTURES & PROTECTION DEPARTMENT CODE 1702 J CORRADO BETHESDA MD 20084	1	NAVSEA OJRI PEO DD21 PMS500 G CAMPONESCHI 2351 JEFFERSON DAVIS HWY ARLINGTON VA 22242-5165
2	DAVID TAYLOR RESEARCH CTR R ROCKWELL W PHYILLAER BETHESDA MD 20054-5000	1	EXPEDITIONARY WARFARE DIV N85 F SHOUP 2000 NAVY PENTAGON WASHINGTON DC 20350-2000
1	OFFICE OF NAVAL RESEARCH D SIEGEL CODE 351 800 N QUINCY ST ARLINGTON VA 22217-5660	1	AFRL MLBC 2941 P STREET RM 136 WRIGHT PATTERSON AFB OH 45433-7750
8	NAVAL SURFACE WARFARE CTR J FRANCIS CODE G30 D WILSON CODE G32 R D COOPER CODE G32 J FRAYSSE CODE G33 E ROWE CODE G33 T DURAN CODE G33 L DE SIMONE CODE G33 R HUBBARD CODE G33 DAHLGREN VA 22448	1	AFRL MLSS R THOMSON 2179 12TH STREET RM 122 WRIGHT PATTERSON AFB OH 45433-7718
1	NAVAL SEA SYSTEMS CMD D LIESE 2531 JEFFERSON DAVIS HIGHWAY ARLINGTON VA 22242-5160	2	AFRL F ABRAMS J BROWN BLDG 653 2977 P STREET STE 6 WRIGHT PATTERSON AFB OH 45433-7739
1	NAVAL SURFACE WARFARE M LACY CODE B02 17320 DAHLGREN RD DAHLGREN VA 22448	1	AFRL MLS OL 7278 4TH STREET BLDG 100 BAY D L COULTER HILL AFB UT 84056-5205
1	OFFICE OF NAVAL RES J KELLY 800 NORTH QUINCEY ST ARLINGTON VA 22217-5000	1	OSD JOINT CCD TEST FORCE OSD JCCD R WILLIAMS 3909 HALLS FERRY RD VICKSBURG MS 29180-6199
2	NAVAL SURFACE WARFARE CTR CARDEROCK DIVISION R CRANE CODE 2802 C WILLIAMS CODE 6553 3A LEGGETT CIR BETHESDA MD 20054-5000	1	DEFENSE NUCLEAR AGENCY INNOVATIVE CONCEPTS DIV R ROHR 6801 TELEGRAPH RD ALEXANDRIA VA 22310-3398

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	WATERWAYS EXPERIMENT D SCOTT 3909 HALLS FERRY RD SC C VICKSBURG MS 39180	5	DIRECTOR LAWRENCE LIVERMORE NATL LAB R CHRISTENSEN S DETERESA F MAGNESS M FINGER MS 313 M MURPHY L 282 PO BOX 808 LIVERMORE CA 94550
3	DARPA M VANFOSSEN S WAX L CHRISTODOULOU 3701 N FAIRFAX DR ARLINGTON VA 22203-1714	7	NIST R PARNAS J DUNKERS M VANLANDINGHAM MS 8621 J CHIN MS 8621 D HUNSTON MS 8543 J MARTIN MS 8621 D DUTHINH MS 8611 100 BUREAU DR GAITHERSBURG MD 20899
2	SERDP PROGRAM OFC PM P2 C PELLERIN B SMITH 901 N STUART ST SUITE 303 ARLINGTON VA 22203	1	OAK RIDGE NATL LAB C EBERLE MS 8048 PO BOX 2009 OAK RIDGE TN 37831
1	FAA MIL HDBK 17 CHAIR L ILCEWICZ 1601 LIND AVE SW ANM 115N RENTON VA 98055	1	OAK RIDGE NATL LAB C D WARREN MS 8039 PO BOX 2009 OAK RIDGE TN 37922
2	FAA TECH CENTER D OPLINGER AAR 431 P SHYPRYKEVICH AAR 431 ATLANTIC CITY NJ 08405	4	DIRECTOR SANDIA NATL LABS APPLIED MECHANICS DEPT DIVISION 8241 W KAWAHARA K PERANO D DAWSON P NIELAN PO BOX 969 LIVERMORE CA 94550-0096
1	OFC OF ENVIRONMENTAL MGMT U S DEPT OF ENERGY P RITZCOVAN 19901 GERMANTOWN RD GERMANTOWN MD 20874-1928	1	LAWRENCE LIVERMORE NATIONAL LAB M MURPHY PO BOX 808 L 282 LIVERMORE CA 94550
1	LOS ALAMOS NATL LAB F ADDESSIO MS B216 PO BOX 1633 LOS ALAMOS NM 87545		
1	OAK RIDGE NATL LAB R M DAVIS PO BOX 2008 OAK RIDGE TN 37831-6195		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
3	NASA Langley Research CTR MS 266 AMSRL VS W ELBER F BARTLETT JR G FARLEY HAMPTON VA 23681-0001	1	GRAPHITE MASTERS INC J WILLIS 3815 MEDFORD ST LOS ANGELES CA 90063-1900
1	NASA Langley Research CTR T GATES MS 188E HAMPTON VA 23661-3400	1	ADVANCED GLASS FIBER YARNS T COLLINS 281 SPRING RUN LN STE A DOWNTON PA 19335
1	USDOT FEDERAL RAILROAD RDV 31 M FATEH WASHINGTON DC 20590	1	COMPOSITE MATERIALS INC D SHORTT 19105 63 AVE NE PO BOX 25 ARLINGTON WA 98223
1	DOT FHWA J SCALZI 400 SEVENTH ST SW 3203 HNG 32 WASHINGTON DC 20590	1	COMPOSITE MATERIALS INC R HOLLAND 11 JEWEL COURT ORINDA CA 94563
1	FHWA E MUNLEY 6300 GEORGETOWN PIKE MCLEAN VA 22101	1	COMPOSITE MATERIALS INC C RILEY 14530 S ANSON AVE SANTA FE SPRINGS CA 90670
1	CENTRAL INTELLIGENCE AGENCY OTI WDAG GT W L WALTMAN PO BOX 1925 WASHINGTON DC 20505	2	COMPOSIX D BLAKE L DIXON 120 O NEILL DR HEBRUN OHIO 43025
1	MARINE CORPS INTEL ACTY D KOSITZKE 3300 RUSSELL RD SUITE 250 QUANTICO VA 22134-5011	4	CYTEC FIBERITE R DUNNE D KOHLI M GILLIO R MAYHEW 1300 REVOLUTION ST HAVRE DE GRACE MD 21078
1	NATL GRND INTELLIGENCE CTR DIRECTOR IANG TMT 220 SEVENTH ST NE CHARLOTTESVILLE VA 22902-5396	2	SIMULA J COLTMAN R HUYETT 10016 S 51ST ST PHOENIX AZ 85044
1	DIRECTOR DEFENSE INTELLIGENCE AGENCY TA 5 K CRELLING WASHINGTON DC 20310	1	SIOUX MFG B KRIEL PO BOX 400 FT TOTTEN ND 58335

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	PROTECTION MATERIALS INC M MILLER F CRILLEY 14000 NW 58 CT MIAMI LAKES FL 33014	1	BATTELLE C R HARGREAVES 505 KING AVE COLUMBUS OH 43201-2681
3	FOSTER MILLER J J GASSNER M ROYLANCE W ZUKAS 195 BEAR HILL RD WALTHAM MA 02354-1196	2	BATTELLE NATICK OPERATIONS J CONNORS B HALPIN 209 W CENTRAL ST STE 302 NATICK MA 01760
1	ROM DEVELOPMENT CORP R O MEARA 136 SWINEBURNE ROW BRICK MARKET PLACE NEWPORT RI 02840	1	BATTELLE NW DOE PNNL T HALL MS K231 BATTELLE BLVD RICHLAND WA 99352
2	TEXTRON SYSTEMS T FOLTZ M TREASURE 201 LOWELL ST WILMINGTON MA 08870-2941	3	PACIFIC NORTHWEST LAB M SMITH G VAN ARSDALE R SHIPPELL PO BOX 999 RICHLAND WA 99352
1	JPS GLASS L CARTER PO BOX 260 SLATER RD SLATER SC 29683	1	ARMTEC DEFENSE PRODUCTS S DYER 85 901 AVE 53 PO BOX 848 COACHELLA CA 92236
1	O GARA HESS & EISENHARDT M GILLESPIE 9113 LESAIN DR FAIRFIELD OH 45014	2	ADVANCED COMPOSITE MATLS CORP P HOOD J RHODES 1525 S BUNCOMBE RD GREER SC 29651-9208
2	MILLIKEN RESEARCH CORP H KUHN M MACLEOD PO BOX 1926 SPARTANBURG SC 29303	2	GLCC INC J RAY M BRADLEY 103 TRADE ZONE DR STE 26C WEST COLUMBIA SC 29170
1	CONNEAUGHT INDUSTRIES INC J SANTOS PO BOX 1425 COVENTRY RI 02816	2	AMOCO PERFORMANCE PRODUCTS M MICHNO JR J BANISAKAS 4500 MCGINNIS FERRY RD ALPHARETTA GA 30202-3944

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	SAIC M PALMER 2109 AIR PARK RD S E ALBUQUERQUE NM 87106	1	PROJECTILE TECHNOLOGY INC 515 GILES ST HAVRE DE GRACE MD 21078
1	SAIC ATTN G CHRYSSOMALLIS 3800 W 80TH ST STE 1090 BLOOMINGTON MN 55431	1	CUSTOM ANALYTICAL ENG SYS INC A ALEXANDER 13000 TENSOR LN NE FLINTSTONE MD 21530
1	AAI CORPORATION DR T G STASTNY PO BOX 126 HUNT VALLEY MD 21030-0126	2	LORAL VOUGHT SYSTEMS G JACKSON K COOK 1701 W MARSHALL DR GRAND PRAIRIE TX 75051
1	JOHN HEBERT PO BOX 1072 HUNT VALLEY MD 21030-0126	5	AEROJET GEN CORP D PILLASCH T COULTER C FLYNN D RUBAREZUL M GREINER 1100 WEST HOLLYVALE ST AZUSA CA 91702-0296
12	ALLIANT TECHSYSTEMS INC C CANDLAND C AAKHUS R BECKER B SEE N VLAHAKUS R DOHRN S HAGLUND D FISHER W WORRELL R COPENHAFER M HISSONG D KAMDAR 600 2ND ST NE HOPKINS MN 55343-8367	3	HEXCEL INC R BOE F POLICELLI J POESCH PO BOX 98 MAGNA UT 84044
3	ALLIANT TECHSYSTEMS INC J CONDON E LYNAM J GERHARD WV01 16 STATE RT 956 PO BOX 210 ROCKET CENTER WV 26726-0210	3	HERCULES INC G KUEBEKER J VERMEYCHUK B MANDERVILLE JR HERCULES PLAZA WILMINGTON DE 19894
1	APPLIED COMPOSITES W GRISCH 333 NORTH SIXTH ST ST CHARLES IL 60174	1	BRIGS COMPANY J BACKOFEN 2668 PETERBOROUGH ST HERDON VA 22071-2443
		1	ZERNOW TECHNICAL SERVICES L ZERNOW 425 W BONITA AVE STE 208 SAN DIMAS CA 91773

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	OLIN CORPORATION FLINCHBAUGH DIV E STEINER B STEWART PO BOX 127 RED LION PA 17356	1	BOEING R BOHLMANN PO BOX 516 MC 5021322 ST LOUIS MO 63166-0516
1	OLIN CORPORATION L WHITMORE 10101 9TH ST NORTH ST PETERSBURG FL 33702	2	BOEING DEFENSE AND SPACE GRP W HAMMOND J RUSSELL S 4X55 PO BOX 3707 SEATTLE WA 98124-2207
1	DOW UT S TIDRICK 15 STERLING DR WALLINGFORD CT 06492	2	BOEING ROTORCRAFT P MINGURT P HANDEL 800 B PUTNAM BLVD WALLINGFORD PA 19086
5	SIKORSKY AIRCRAFT G JACARUSO T CARSTENSAN B KAY S GARBO M S S330A J ADELMANN 6900 MAIN ST PO BOX 9729 STRATFORD CT 06497-9729	1	BOEING DOUGLAS PRODUCTS DIV L J HART SMITH 3855 LAKEWOOD BLVD D800 0019 LONG BEACH CA 90846-0001
1	PRATT & WHITNEY D HAMBRICK 400 MAIN ST MS 114 37 EAST HARTFORD CT 06108	1	LOCKHEED MARTIN S REEVE 8650 COBB DR D 73 62 MZ 0648 MARIETTA GA 30063-0648
1	AEROSPACE CORP G HAWKINS M4 945 2350 E EL SEGUNDO BLVD EL SEGUNDO CA 90245	1	LOCKHEED MARTIN SKUNK WORKS D FORTNEY 1011 LOCKHEED WAY PALMDALE CA 93599-2502
2	CYTEC FIBERITE M LIN W WEB 1440 N KRAEMER BLVD ANAHEIM CA 92806	1	LOCKHEED MARTIN R FIELDS 1195 IRWIN CT WINTER SPRINGS FL 32708
1	HEXCEL T BITZER 11711 DUBLIN BLVD DUBLIN CA 94568	1	MATERIALS SCIENCES CORP B W ROSEN 500 OFFICE CENTER DR STE 250 FORT WASHINGTON PA 19034

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	NORTHROP GRUMMAN CORP ELECTRONIC SENSORS & SYSTEMS DIV E SCHOCH 1745A WEST NURSERY RD MAILSTOP V 16 LINTHICUM MD 21090	2	GENERAL DYNAMICS LAND SYSTEMS D REES M PASIK PO BOX 2074 WARREN MI 48090-2074
2	NORTHROP GRUMMAN ENVIRONMENTAL PROGRAMS R OSTERMAN A YEN 8900 E WASHINGTON BLVD PICO RIVERA CA 90660	1	GENERAL DYNAMICS LAND SYSTEMS DIVISION D BARTLE PO BOX 1901 WARREN MI 48090
1	UNITED DEFENSE LP PO BOX 359 D MARTIN SANTA CLARA CA 95052	1	GENERAL DYNAMICS LAND SYSTEMS MUSKEGON OPERATIONS W SOMMERS JR 76 GETTY ST MUSKEGON MI 49442
1	UNITED DEFENSE LP PO BOX 58123 G THOMAS SANTA CLARA CA 95052	1	GENERAL DYNAMICS AMPHIBIOUS SYS SURVIVABILITY LEAD G WALKER 991 ANNAPOLIS WAY WOODBRIDGE VA 22191
2	UNITED DEFENSE LP MAIL DROP M53 R BARRETT V HORVATICH 328 W BROKAW RD SANTA CLARA CA 95052-0359	5	INSTITUTE FOR ADVANCED TECH T KIEHNE H FAIR P SULLIVAN W REINECKE I MCNAB 4030 2 W BRAKER LN AUSTIN TX 78759
3	UNITED DEFENSE LP GROUND SYSTEMS DIVISION M PEDRAZZI MAIL DROP N09 A LEE MAIL DROP N11 M MACLEAN MAIL DROP N06 1205 COLEMAN AVE SANTA CLARA CA 95052	2	CIVIL ENGR RSCH FOUNDATION H BERNSTEIN PRESIDENT R BELLE 1015 15TH ST NW STE 600 WASHINGTON DC 20005
4	UNITED DEFENSE LP 4800 EAST RIVER RD R BRYNSVOLD P JANKE MS170 T GIOVANETTI MS236 B VAN WYK MS389 MINNEAPOLIS MN 55421-1498	1	ARROW TECH ASSO 1233 SHELBURNE RD STE D 8 SOUTH BURLINGTON VT 05403-7700

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	CONSULTANT R EICHELBERGER 409 W CATHERINE ST BEL AIR MD 21014-3613	1	UNIVERSITY OF UTAH DEPT OF MECH & INDUSTRIAL ENGR S SWANSON SALT LAKE CITY UT 84112
1	UCLA MANE DEPT ENGR IV H THOMAS HAHN LOS ANGELES CA 90024-1597	2	PENNSYLVANIA STATE UNIV R MCNITT C BAKIS 227 HAMMOND BLDG UNIVERSITY PARK PA 16802
2	U OF DAYTON RESEARCH INSTUTE RAN Y KIM AJIT K ROY 300 COLLEGE PARK AVE DAYTON OH 45469-0168	1	PENNSYLVANIA STATE UNIV RENATA S ENGEL 245 HAMMOND BLDG UNIVERSITY PARK PA 16801
1	MIT P LAGACE 77 MASS AVE CAMBRIDGE MA 01887	1	PURDUE UNIVERSITY SCHOOL OF AERO & ASTRO C T SUN W LAFAYETTE IN 47907-1282
1	IIT RESEARCH CENTER D ROSE 201 MILL ST ROME NY 13440-6916	1	STANFORD UNIVERSITY DEPARTMENT OF AERONAUTICS AND AEROBALLISTICS DURANT BUILDING S TSAI STANFORD CA 94305
1	GEORGIA TECH RESEARCH INSTITUTE GEORGIA INSTITUTE OF TECHNOLOGY P FRIEDERICH ATLANTA GA 30392	1	UNIVERSITY OF DAYTON J M WHITNEY COLLEGE PARK AVE DAYTON OH 45469-0240
1	MICHIGAN ST UNIVERSITY R AVERILL 3515 EB MSM DEPT EAST LANSING MI 48824-1226	7	UNIVERSITY OF DELAWARE CTR FOR COMPOSITE MATERIALS J GILLESPIE M SANTARE G PALMESE S YARLAGADDA S ADVANI D HEIDER D KUKICH 201 SPENCER LABORATORY NEWARK DE 19716
1	UNIVERSITY OF KENTUCKY LYNN PENN 763 ANDERSON HALL LEXINGTON KY 40506-0046		
1	UNIVERSITY OF WYOMING D ADAMS PO BOX 3295 LARAMIE WY 82071		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	UNIVERSITY OF ILLINOIS AT URBANA CHAMPAIGN NATL CENTER FOR COMPOSITE MATERIALS RESEARCH 216 TALBOT LABORATORY J ECONOMY 104 S WRIGHT ST URBANA IL 61801		<u>ABERDEEN PROVING GROUND</u>
3	THE UNIVERSITY OF TEXAS AT AUSTIN CENTER FOR ELECTROMECHANICS J PRICE A WALLS J KITZMILLER 10100 BURNET RD AUSTIN TX 78758-4497	1	COMMANDER US ARMY MATERIEL SYS ANALYSIS P DIETZ 392 HOPKINS RD AMXSY TD APG MD 21005-5071
3	VA POLYTECHNICAL INSTITUTE & STATE UNIVERSITY DEPT OF ESM M W HYER K REIFSNIDER R JONES BLACKSBURG VA 24061-0219	1	DIRECTOR US ARMY RESEARCH LAB AMSRL OP AP L APG MD 21005 5066
1	NORTH CAROLINA STATE UNIVERSITY CIVIL ENGINEERING DEPT W RASDORF PO BOX 7908 RALEIGH NC 27696-7908	115	DIR USARL AMSRL CI AMSRL CI H W STUREK AMSRL CI S A MARK AMSRL CS IO FI M ADAMSON AMSRL SL B J SMITH AMSRL SL BA AMSRL SL BL D BELY R HENRY AMSRL SL BG A YOUNG AMSRL SL I AMSRL WM B A HORST E SCHMIDT AMSRL WM BA W D AMICO F BRANDON AMSRL WM BC P PLOSTINS D LYON J NEWILL S WILKERSON A ZIELINSKI AMSRL WM BD B FORCH R FIFER R PESCE RODRIGUEZ B RICE
1	UNIVERSITY OF MARYLAND DEPT OF AEROSPACE ENGINEERING ANTHONY J VIZZINI COLLEGE PARK MD 20742		
1	DREXEL UNIVERSITY ALBERT S D WANG 32ND AND CHESTNUT STREETS PHILADELPHIA PA 19104		
1	SOUTHWEST RSCH INSTITUTE ENGR & MATL SCIENCES DIV J RIEGEL 6220 CULEBRA RD PO DRAWER 28510 SAN ANTONIO TX 78228-0510		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
<u>ABERDEEN PROVING GROUND (CONT)</u>			<u>ABERDEEN PROVING GROUND (CONT)</u>
AMSRL WM BE		AMSRL WM MB	
G WREN		E RIGAS	
C LEVERITT		J SANDS	
D KOOKER		D SPAGNUOLO	
AMSRL WM BR		W SPURGEON	
C SHOEMAKER		J TZENG	
J BORNSTEIN		E WETZEL	
AMSRL WM M		A ABRAHAMIAN	
D VIECHNICKI		M BERMAN	
G HAGNAUER		A FRYDMAN	
J MCCUALEY		T LI	
B TANNER		W MCINTOSH	
AMSRL WM MA		E SZYMANSKI	
R SHUFORD		AMRSL WM MC	
P TOUCHET		J BEATTY	
N BECK TAN		J SWAB	
D FLANAGAN		E CHIN	
L GHIORSE		J MONTGOMERY	
D HARRIS		A WERESCZCAK	
S MCKNIGHT		J LASALVIA	
P MOY		J WELLS	
S NGYUEN		AMSRL WM MD	
P PATTERSON		W ROY	
G RODRIGUEZ		S WALSH	
A TEETS		AMSRL WM T	
R YIN		B BURNS	
AMSRL WM MB		AMSRL WM TA	
B FINK		W GILLICH	
J BENDER		T HAVEL	
T BLANAS		J RUNYEON	
T BOGETTI		M BURKINS	
R BOSSOLI		E HORWATH	
L BURTON		B GOOCH	
K BOYD		W BRUCHEY	
S CORNELISON		AMSRL WM TC	
P DEHMER		R COATES	
R DOOLEY		AMSRL WM TD	
W DRYSDALE		A DAS GUPTA	
G GAZONAS		T HADUCH	
S GHIORSE		T MOYNIHAN	
D GRANVILLE		F GREGORY	
D HOPKINS		A RAJENDRAN	
C HOPPEL		M RAFTENBERG	
D HENRY		M BOTELER	
R KASTE		T WEERASOORIYA	
M KLUSEWITZ		D DANDEKAR	
M LEADORE		A DIETRICH	
R LIEB			

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND (CONT)

AMSRL WM TE

A NIILER

J POWELL

AMSRL SS SD

H WALLACE

AMSRL SS SE R

R CHASE

AMSRL SS SE DS

R REYZER

R ATKINSON

AMSRL SE L

R WEINRAUB

J DESMOND

D WOODBURY

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	R MARTIN MÆRL LTD TAMWORTH RD HERTFORD SG13 7DG UK	2	ROYAL MILITARY COLLEGE OF SCIENCE SHRIVENHAM D BULMAN B LAWTON SWINDON WILTS SN6 8LA UNITED KINGDOM
1	PW LAY SMC SCOTLAND DERA ROSYTH ROSYTH ROYAL DOCKYARD DUNFERMLINE FIFE KY 11 2XR UK	1	SWISS FEDERAL ARMAMENTS WKS WALTER LANZ ALLMENDSTRASSE 86 3602 THUN SWITZERLAND
1	T GOTTESMAN CIVIL AVIATION ADMINISTRATION PO BOX 8 BEN GURION INTERNL AIRPORT LOD 70150 ISREAL	1	PROFESSOR SOL BODNER ISRAEL INSTITUTE OF TECHNOLOGY FACULTY OF MECHANICAL ENGR HAIFA 3200 ISRAEL
1	S ANDRE AEROSPATIALE A BTE CC RTE MD132 316 ROUTE DE BAYONNE TOULOUSE 31060 FRANCE	1	DSTO ATERIALS RESEARCH LAB DR NORBERT BURMAN NAVAL PLATFORM VULNERABILITY SHIP STRUCTURES & MATERIALS DIV PO BOX 50 ASCOT VALE VICTORIA AUSTRALIA 3032
1	J BAUER DAIMLER BENZ AEROSPACE D 81663 MUNCHEN MUNICH GERMANY	1	PROFESSOR EDWARD CELENS ECOLE ROYAL MILITAIRE AVE DE LA RENAISSANCE 30 1040 BRUXELLE BELGIQUE
3	DRA FORT HALSTEAD PETER N JONES DAVID SCOTT MIKE HINTON SEVEN OAKS KENT TN 147BP UNITED KINGDOM	1	DEF RES ESTABLISHMENT VALCARTIER ALAIN DUPUIS 2459 BOULEVARD PIE XI NORTH VALCARTIER QUEBEC CANADA PO BOX 8800 COURCELETTE GOA IRO QUEBEC CANADA
1	MR FRANCOIS LESAGE DEFENSE RESEARCH ESTAB VALCARTIER PO BOX 8800 COURSELETTE QUEBEC COA IRO CANADA		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
----------------------	---------------------	----------------------	---------------------

- | | | | |
|---|---|---|--|
| 1 | INSTITUT FRANCO ALLEMAND DE RECHERCHES DE SANIT LOUIS DE MARC GIRAUD RUE DU GENERAL CASSAGNOU BOITE POSTALE 34 F 68301 SAINT LOUIS CEDEX FRANCE | 1 | ERNST MACH INSTITUT EMI DIRECTOR HAUPTSTRASSE 18 79576 WEIL AM RHEIN GERMANY |
| 1 | J MANSON ECOLE POLYTECH DMX LTC CH 1015 LAUSANNE SWITZERLAND | 1 | ERNST MACH INSTITUT EMI DR ALOIS STILP ECKERSTRASSE 4 7800 FREIBURG GERMANY |
| 1 | TNO PRINS MAURITS LAB DR ROB IJSELSTEIN LANGE KLEIWEG 137 PO BOX 45 2280 AA RIJSWIJK THE NETHERLANDS | 1 | DR IR HANS PASMAN TNO DEFENSE RESEARCH POSTBUS 6006 2600 JA DELFT THE NETHERLANDS |
| 2 | FOA NAT L DEFENSE RESEARCH ESTAB DR BO JANZON R HOLMLIN DIR DEPT OF WEAPONS & PROTECTION S 172 90 STOCKHOLM SWEDEN | 1 | DR BITAN HIRSCH TACHKEMONY ST 6 NETAMUA 42611 ISRAEL |
| 2 | DEFENSE TECH & PROC AGENCY GRND MR I CREWTHER GENERAL HERZOG HAUS 3602 THUN SWITZERLAND | 1 | PROF DR MANFRED HELD DEUTSCHE AEROSPACE AG DYNAMICS SYSTEMS PO BOX 1340 D 86523 SCHROBENHAUSEN GERMANY |
| 1 | MINISTRY OF DEFENCE RAFAEL DR MEIR MAYSELESS ARMAMENT DEVELOPMENT AUTH PO BOX 2250 HAIFA 31021 ISRAEL | | |
| 1 | DR AKE PERSSON DYNAMIC RESEARCH AB PARADISGRND 7 S 151 36 SODERTALJE SWEDEN | | |

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 0704-0188, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)			2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
			June 2000	Final, Mar 95 - Jan 96	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS		
An Evanescent Wave Fluorescence Fiber-Optic Flow Sensor for Resin Transfer Molding			AH42		
6. AUTHOR(S)					
Bruce K. Fink, Roopesh Mathur,* and Suresh G. Advani*					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER		
U.S. Army Research Laboratory ATTN: AMSRL-WM-MB Aberdeen Proving Ground, MD 21005-5069			ARL-TR-2240		
9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES					
*University of Delaware, Newark, DE 19716					
12a. DISTRIBUTION/AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE		
Approved for public release; distribution is unlimited.					
13. ABSTRACT (Maximum 200 words)					
<p>An evanescent wave fluorescence-based fiber-optic flow sensor is being investigated. This sensor is based on the interaction of a laser beam in a bare optical fiber with fluorescent probe molecules present in the resin flowing in the direction of the fiber. The electric field of the monochromatic light waves traveling in the fiber by total internal reflection penetrates outside the fiber and is called the evanescent wave field. A fluorescent probe molecule within the depth of penetration gets excited by this field and emits a characteristic fluorescent radiation that is coupled back into the fiber by the principle of reciprocity of optics. If the light at the end of the fiber is filtered for the fluorescent radiation and the intensity is recorded, it gives an estimate of the number of fluorescent probe molecules in contact with the fiber and, hence, the extent to which the fiber is covered with the resin. Preliminary experiments have shown that there is a linear correlation between the peak intensity and the length of fiber in contact with the fluid. A laboratory setup has been assembled at the University of Delaware (UD), using a photomultiplier-tube-based detector, and various experiments have been conducted to assess the effect of covered fiber length on the intensity of fluorescence using the evanescent mode of sensing and on the uses of distal mode sensing of fluorescence for detection of flow.</p>					
14. SUBJECT TERMS				15. NUMBER OF PAGES	
resin transfer molding, fiber optics, flow sensors				42	
				16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT		18. SECURITY CLASSIFICATION OF THIS PAGE		19. SECURITY CLASSIFICATION OF ABSTRACT	
UNCLASSIFIED		UNCLASSIFIED		UNCLASSIFIED	
				20. LIMITATION OF ABSTRACT	
				UL	

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-2240 (Fink) Date of Report June 2000

2. Date Report Received _____

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.) _____

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.) _____

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate. _____

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) _____

Organization _____

CURRENT
ADDRESS

Name _____ E-mail Name _____

Street or P.O. Box No. _____

City, State, Zip Code _____

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below.

Organization _____

OLD
ADDRESS

Name _____

Street or P.O. Box No. _____

City, State, Zip Code _____

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

**DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL WM MB
ABERDEEN PROVING GROUND MD 21005-5069**

**NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES**

A vertical stack of eight horizontal black bars of varying lengths, used for postal processing.