

Institutt for fysikk

Eksamensoppgave i TFY4115 FYSIKK

for MTNANO, MTTK og MTELSYS

Faglig kontakt under eksamen: Institutt for fysikk v/Arne Mikkelsen

Tlf.: 486 05 392

Eksamensdato: Lørdag 19. desember 2015

Eksamenstid: 09:00 - 13:00 Tillatte hjelpemidler (kode C):

Bestemt enkel godkjent kalkulator.

Rottmann: Matematisk formelsamling (norsk eller tysk utgave).

Vedlagt formelark.

Annen informasjon:

- 1. Prosenttallene i parentes etter hver oppgave angir hvor mye den vektlegges ved bedømmelsen.
- 2. Noen generelle faglige merknader:
 - Symboler er angitt i kursiv (f.eks. m for masse), enheter angis uten kursiv (f.eks. m for meter).
 - $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$ og $\hat{\mathbf{z}}$ er enhetsvektorer i henholdsvis x-, y- og z-retning.
 - Ved tallsvar kreves både tall og enhet.
- 3. I flervalgsspørsmålene er kun ett av svarene rett. Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt. Rett svar gir 5 poeng, galt svar eller flere svar gir 0 poeng, blank (ubesvart) gir 1 poeng.
- 4. Svar på flervalgsspørsmålene fører du på **siste ark** i dette oppgavesettet. Arket skal innleveres.
- 5. Oppgavene er utarbeidet av Arne Mikkelsen og vurdert av Magnus B. Lilledahl.

Målform/språk: Bokmål.

Antall sider (uten denne forsida): 7.

Antall sider vedlegg: 3.

	Ko	ntrollert av:		
Informasjon om trykking av eksamensoppgave:				
Originalen er: 2-sidig; sort/hvitt				
	Dat	JO .	Sign	

(blank side)

Oppgave 1. Flervalgsspørsmål (teller 50 %, hver oppgave teller like mye)

<u>1-1.</u> Figuren viser en parabolsk bane fra 1 til 5 for en ball som kastes i jordas tyngdefelt, men i fravær av luftfriksjon. Hva er retningen til ballens akselerasjon i punkt 2?

- A) Oppover og til høyre.
- B) Nedover og til venstre.
- C) Rett opp.
- D) Rett ned.
- E) Akselerasjonen er null.

<u>1-2.</u> Ei kule med masse 12 g skytes horisontalt inn i en fastmontert treblokk, og inntrengningsdybden blir 5,2 cm. Hastigheten til kula like før kollisjonen er 640 m/s. Den gjennomsnittlige nedbremsingskrafta fra treblokken på kula var:

- A) $4, 7 \cdot 10^6 \text{ N}$
- B) $4.7 \cdot 10^4 \text{ N}$
- C) 148 N
- D) 74 N
- E) Ikke mulig å bestemme, siden massen til treblokken er ukjent

1-3. Ei dame bruker ei varierende kraft F (i newton) som vist i figuren for å flytte en last en viss strekning s (i meter). Krafta F virker i samme retning som forflytningen s. Hva er totalt arbeid hun utfører?

- B) 200 J
- C) 2000 J
- D) 1000 J
- E) 500 J

<u>1-4.</u> En hul kloss A på 0,20 kg og en massiv kloss B på 2,0 kg kan skli friksjonsfritt på en horisontal overflate. Klossene er i ro ved t=0, så virker to like horisontale krefter på hver kloss i nøyaktig t=1,00 s og setter klossene i bevegelse. Når krafta på hver kloss fjernes etter 1,00 s, hvilken av de følgende påstander er riktig (der p er bevegelsesmengde og E kinetisk energi)?

A)
$$p_A = p_B \text{ og } E_A = E_B$$

D)
$$p_A < p_B \text{ og } E_A < E_B$$

B)
$$p_A < p_B \text{ og } E_A = E_B$$

E)
$$p_A = p_B \text{ og } E_A > E_B$$
.

C) $p_A = p_B \text{ og } E_A < E_B$

<u>1-5.</u> En kloss med masse 2m kolliderer fullstendig uelastisk med en kloss med masse 3m. Før kollisjonen har klossen med masse 2m hastighet v_0 mot den andre klossen, mens klossen med masse 3m ligger i ro. Etter kollisjonen har klossene felles hastighet v. Hvor mye mekanisk energi har gått tapt i kollisjonen?

A)
$$\frac{1}{3}mv_0^2$$

- B) $\frac{2}{5}mv_0^2$
- C) $\frac{3}{5}mv_0^2$

- D) $\frac{1}{2}mv_0^2$
- E) mv_0^2

<u>1-6.</u> Et sykkelhjul, ei massiv kule og ei hul kule (kuleskall) har alle samme masse og radius. Anta det vesentlige av hjulets masse er samla i felgen/dekket. Hver av dem roterer om en akse gjennom deres sentrum. Hvilken har det største og hvilken har det minste treghetsmomentet?

- A) Hjulet har den største, den massive kula har den minste
- B) Hjulet har den største, den hule kula har den minste
- C) Den hule kula har den største; den massive kula har den minste
- D) Den hule kula har den største; hjulet har den minste
- E) Den massive kula har den største, den hule kula har den minste.

<u>1-7.</u> En massiv sylinder roterer om sylinderaksen, som er horisontal. Rotasjonsretningen er vist i figuren. Under rotasjonen virker et netto kraftmoment $\vec{\tau}$ langs rotasjonsaksen, som vist. Sylinderen vil da

- A) øke rotasjonshastigheten
- B) redusere rotasjonshastigheten
- C) presesere om en horisontal akse
- D) presesere om en vertikal akse
- E) ingen av A-D vil skje

De to neste oppgavene er knyttet til følgende figur og tabell.

i	t_i/ms	x_i/mm	y_i/mm
1	0	130	792
2	33	140	791
3	67	151	789
4	100	163	786
5	133	176	783
6	167	190	780
7	200	206	776
8	233	222	771
9	267	241	766
10	300	261	759

Tabellen viser posisjon (x, y), målt i enheten millimeter (mm), og tid t, målt i enheten millisekunder (ms), for massesenteret til et legeme med radius r som ruller på utsiden av en kvartsirkel med radius R. Legemet har treghetsmoment $I_0 = c \cdot Mr^2$, der c er et tall mellom 0 og 1.

<u>1-8.</u> Legemets hastighet ved $t = t_2 = 0,033$ s er omtrent

- A) 0.03 m/s
- B) 0.1 m/s
- C) = 0.3 m/s
- D) 1 m/s
- E) 3 m/s

<u>1-9.</u> Anta at legemet har hastighet $v(\phi)$ i en posisjon som tilsvarer en viss vinkel ϕ (se figuren). Kriteriet for at legemet fortsatt har kontakt med underlaget er

- A) $\cos \phi \le v(\phi)^2/g(r+R)$
- B) $\cos \phi \ge v(\phi)^2/g(r+R)$
- C) $\cos \phi \le v(\phi)g(r+R)$
- D) $\cos \phi \ge v(\phi)g(r+R)$
- E) $\cos \phi \ge v(\phi)gR$

<u>1-10.</u> Ei vogn har stor nok hastighet til å trille rundt og fullføre en vertikaltstilt sirkelformet "loop" i tyngdefeltet. Hvilken figur viser riktige akselerasjonsvektorer på de fire stedene på loopen (nederst, øverst, venstre og høyre)? Se bort fra friksjon.

- <u>1-11.</u> En oscillator som består av en fjær og et dempeledd (dempet oscillator) påtvinges en svingning med frekvens ω . Etter innsvingingen er dempet ut, vil den tvungne svingningen ha en frekvens lik
 - A) den påtrykte frekvensen ω
 - B) frekvensen $\omega_{\rm d}$ til den dempede, fri oscillatoren
 - C) frekvensen ω_0 til den udempede, fri oscillatoren
 - D) alle over, fordi disse frekvensene er like
 - E) ingen av A-D er rett svar.

- <u>1-12.</u> Ei tung kule er hengt opp med tre stramme tau som vist. Snorkrafta i hvert tau er angitt med S_i . Hvilken av de følgende påstander er rett?
 - A) $S_1 > S_2 > S_3$
 - B) $S_2 > S_1 > S_3$
 - C) $S_2 > S_3 > S_1$
 - D) $S_3 > S_1 > S_2$
 - E) $S_1 > S_3 \text{ og } S_2 > S_3$

- <u>1-13.</u> Termodynamikkens første lov lyder dU = dQ dW. Vi betrakter reversible prosesser i ideell gass. For en isoterm prosess er alltid
 - A) dU = 0
 - B) dQ = 0
 - C) dW = 0
 - $D) \quad dQ + dW = 0$
 - E) Ingen av disse er rett svar.
- <u>1-14.</u> En ideell gass befinner seg i en tilstand 1 med volum V_1 . Når volumet minskes fra V_1 til V_2 i en **isoterm** prosess, gjøres et arbeid W_T på gassen. Hvis vi for den samme gassen i tilstand 1 minsker volumet fra V_1 til V_2 i en **adiabatisk** prosess, gjøres et arbeid $W_{\rm ad}$ på gassen. Alle W angitt i oppgaven regnes positive. Hvilken påstand er rett?
 - A) $W_{\rm ad} = W_T$
 - B) $W_{\rm ad} < W_T$
 - C) $W_{\rm ad} > W_T$
 - D) A, B eller C er rett avhengig av forholdet V_2/V_1
 - E) A, B eller C er rett avhengig av gassens starttemperatur.

1-15. Et termodynamisk system kan bli ført fra tilstand A til tilstand B langs de tre mulige prosesser vist i pVdiagrammet. Hvis tilstand B har høyere indre energi Uenn tilstand A, hvilken av prosessvegene i figuren har den største absoluttverdi |Q| for varmen som utveksles under prosessen?

- A) lik for alle prosesser
- B) prosess 1
- C) prosess 2
- D) prosess 3
- \mathbf{E}) det er ikke nok informasjon til å gi svar.

1-16. Figuren viser en reversibel kretsprosess der arbeidssubstansen er en gass. Hva kan du si om netto varme som tilføres arbeidssubstansen (fra omgivelsene) per syklus i denne kretsprosessen?

- A) Den er lik null.
- B) Den er negativ.
- \mathbf{C} Den er positiv.
- D) Svaret avhengig av hva slags type prosesser kretsen er sammensatt av.
- \mathbf{E}) Svaret avhengig av arbeidssubstansen (ideell gass eller annet).

1-17. Du har en mengde ideell gass i en beholder med faste vegger som umuliggjør ekspansjon eller kontraksjon av gassen. Hvis du dobler rms-hastigheten $(v_{\rm rms} = \sqrt{\langle v^2 \rangle})$ vil gasstrykket

- A) forbli uendra
- B) øke med en faktor $\sqrt{2}$
- C) øke med en faktor 2
- D) øke med en faktor 4
- E) øke med en faktor 16

1-18. Et ideelt "Carnotkjøleskap" holder konstant temperatur 4°C ("lavtemperaturreservoaret") i et rom der temperaturen er 19°C ("høytemperaturreservoaret"). Hva er verdi for kjøleskapets effektfaktor?

- A) 0,051
- B) 1.00
- C) 18,5
- D) 19,5
- E) 31

1-19. Figuren viser en reversibel kretsprosess for en ideell gass, bestående av en isobar, en isokor og en isentropisk (adiabatisk) prosess. Ranger entropiene S_a , S_b og S_c til den ideelle gassen i de tre hjørnene merket hhv. a, b og c. (Oppgitt: For isokor prosess er $dS = C_V dT/T$.)

<u>1-20.</u> En svært varm jernbit kastes i havet og får etterhvert havets temperatur. Hvilken av de følgende påstander angående denne prosessen er rett?

- A) Entropien avgitt av jernbiten er lik entropien mottatt av havet.
- B) Energien avgitt av jernbiten er større enn energien mottatt av havet.
- C) Netto entropiendring til systemet (jern pluss hav) er null.
- D) Havet øker sin entropi mer enn jernet taper entropi.
- E) Jernet taper mer entropi enn havet mottar.

1-21. En reversibel prosess 123 på en ideell gass er vist i et pV-diagram i figuren til høyre. Prosessen består av en isobar, en adiabat og en isoterm.

Hvordan ser denne prosessen ut i et TS-diagram?

1-22. En vegg mellom ei stue og et soverom har 15 mm tykke gipsplater på begge sider av et 75 mm tykt lag med glassvatt ("glava"). Stuetemperaturen er 22°C og soveromstemperaturen er $12^{\circ}\mathrm{C}$.

Varmeledningsevne: $\kappa_{gips} = 0.25 \,\mathrm{W/(m\,K)}$ og $\kappa_{\rm glava} = 0.035 \,\mathrm{W/(m\,K)}.$

Hvilken kurve (A,B,C,D,E) viser korrekt temperaturprofil gjennom veggen ved stasjonære (dvs. tidsuavhengige) forhold?

Den beskrevne oppstillingen gjelder de to neste spørsmålene. To vegger med svært stort areal i forhold til avstanden mellom dem har temperaturene $T_{\rm v}$ og $T_{\rm k}$ med $T_{\rm v} > T_{\rm k}$. Mellom veggene er det vakuum og vi antar at veggene stråler som sorte legemer. Netto utstrålt varmestrømtetthet, j_0 , ut fra den varme veggen $(T_{\rm v})$ til den kalde veggen er

$$j_0 = \sigma \left(T_{\rm v}^4 - T_{\rm k}^4 \right) \,.$$

Vi plasserer så inn ei tynn plate mellom de to veggene. Temperaturene $T_{\rm v}$ og $T_{\rm k}$ er uendra. Anta at plata stråler som et sort legeme og er i termisk likevekt med strålingen fra de to veggene. Det er ingen anna varmetransport enn stråling.

1-23. Temperaturen T til den innsatte plata er gitt ved

A) $T^2 = \frac{1}{2} (T_v^4 + T_k^4)$

D) $T^4 = \frac{1}{2} (T_v^4 + T_k^4)$

B) $T^4 = \frac{1}{4} (T_v^4 + T_v^4)$

E) $T^4 = \frac{1}{2} (T_v + T_k) (T_v^3 - T_k^3)$.

- C) $T^4 = \frac{1}{2} (T_v^4 T_k^4)$
- **1-24.** Etter plata er satt inn er netto varmestrømtetthet, j, ut fra den varme veggen $(T_{\rm v})$
- A) $j = j_0$ B) $j = \frac{1}{4}j_0$ C) $j = \frac{1}{3}j_0$ D) $j = \frac{2}{3}j_0$ E) $j = \frac{1}{2}j_0$

Side 6 av 7.

Oppgave 2. Skråplan (teller 11%)

<u>a.</u> Friksjon. En kile med masse m=30,0 kg er plassert på et skråplan som danner vinkelen $\theta=20,0\,^\circ$ med horisontalen, se figur. Ei kraft, \vec{F} , virker på kilen i horisontal retning. Kraftas størrelse er $|\vec{F}|=300\,\mathrm{N}$. Kinetisk friksjonskoeffisient mellom kilen og underlaget er $\mu=0,200$. Kilen beveger seg oppover skråplanet.

- a. Tegn frilegemediagram for kilen (alle krefter med angrepspunkt).
- **<u>b.</u>** Bestem normalkrafta $F_{\rm N}$ mot underlaget.
- **c.** Sett opp Newtons 2. lov og bestem kilens akselerasjon langs skråplanet.

Oppgave 3. Fallende stang (teller 16%)

Svarene i denne oppgaven uttrykkes med de aktuelle symbol.

Ei uniform (jamntykk) og tynn stang har lengden L og massen M. Den er dreibar om en horisontal, friksjonslaus akse (z-aksen) som går gjennom den ene enden. Stanga frigjøres fra ro (gis et neglisjerbart puff) i sin vertikale posisjon, og den vil da falle ned med en rotasjonsbevegelse. Prinsippet er vist i figuren, men her er ikke akslingen helt på enden av stanga og stanga er ikke tynn.

Stangas treghetsmoment om aksen er $I = \frac{1}{3}ML^2$.

Spørsmålene gjelder når stanga er i horisontal posisjon (stiplet i figuren):

- <u>a.</u> Bruk energibevaring til å finne stangas vinkelfart ω .
- **<u>b.</u>** Vis at størrelsen på stangas vinkelakselerasjon er gitt ved $\alpha = \frac{3}{2} \frac{g}{L}$.
- $\underline{\mathbf{c}}$. Bestem x og y-komponentene av akselerasjonen til stangas massesenter.

TIPS: Akselerasjon ved rotasjon kan dekomponeres i baneakselerasjon (tangentialakselerasjon) pluss sentripetalakselerasjon.

d. Bestem y-komponenten av krafta som virker på stanga fra omdreiningsaksen.

Oppgave 4. Kretsprosess (teller 23 %)

Figuren viser en kretsprosess ABCA med arbeidssubstans n mol av en enatomig ideell gass. AB=adiabat, BC=isobar, CA=isokor.

Oppgitte data:

Temperaturen T_A og volumet V_A i A kan tas for gitt.

 $V_{\rm B} = 3V_{\rm A}$.

Adiabatkonstanten for enatomig ideell gass:

 $\gamma = C_P / C_V = 5/3.$

 $\underline{\mathbf{a}}.$ Finn temperaturene T_{B} i B og T_{C} i C og vis at de kan uttrykkes

$$T_{\rm B} = T_{\rm A} \cdot 3 \cdot 3^{-\gamma} \qquad {\rm og} \qquad T_{\rm C} = T_{\rm A} \cdot 3^{-\gamma}.$$

<u>b</u>. Finn varmemengdene Q_{AB} , Q_{BC} og Q_{CA} uttrykt ved varmekapasiteter, n, γ og T_A .

c. Finn virkningsgraden η for prosessen (tallsvar).

 $\underline{\mathbf{d}}$. Hva er den maksimale virkningsgraden η_{max} for en varmekraftmaskin som arbeider mellom to reservoar med temperaturer lik henholdsvis den største og den minste temperatur som opptrer i den gitte kretsprosessen?

<u>e</u>. Beregn alle entropiendringene ΔS_{AB} , ΔS_{BC} og ΔS_{CA} .

GOD JUL!

FORMELLISTE.

Formlenes gyldighetsområde og de ulike symbolenes betydning antas å være kjent. Symbolbruk som i forelesningene.

____ Fysiske konstanter:

$$N_{\rm A} = 6,02 \cdot 10^{23} \,\mathrm{mol^{-1}}$$
 $\mathrm{u} = \frac{1}{12} \, m(^{12}\mathrm{C}) = \frac{10^{-3} \,\mathrm{kg/mol}}{N_{\rm A}} = 1,66 \cdot 10^{-27} \mathrm{kg}$ $k_{\rm B} = 1,38 \cdot 10^{-23} \,\mathrm{J/K}$ $R = N_{\rm A} k_{\rm B} = 8,31 \,\mathrm{J \, mol^{-1} K^{-1}}$ $\sigma = 5,67 \cdot 10^{-8} \,\mathrm{Wm^{-2} K^{-4}}$ $c = 2,9979 \cdot 10^{8} \,\mathrm{m/s}$ $h = 6,63 \cdot 10^{-34} \,\mathrm{Js}$ $0^{\circ}\mathrm{C} = 273 \,\mathrm{K}$ $g = 9,81 \,\mathrm{m/s^{2}}$

SI-enheter:

Fundamentale SI-enheter: meter (m) sekund (s) kilogram (kg) ampere (A) kelvin (K) mol

Noen avledete SI-enheter: newton (N) pascal (Pa) joule (J) watt (W) hertz (Hz)

Varianter: $kWh = 3.6 \,MJ \, m/s = 3.6 \,km/h \, atm = 1.013 \cdot 10^5 \,Pa \, 1 \,cal = 4.19 \,J$

____ Klassisk mekanikk:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}(\vec{r}, t)$$
 der $\vec{p}(\vec{r}, t) = m\vec{v} = m\dot{\vec{r}}$ $\vec{F} = m\vec{a}$

Konstant
$$\vec{a}$$
: $\vec{v} = \vec{v_0} + \vec{a}t$ $\vec{r} = \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{a}t^2$ $v^2 - v_0^2 = 2\vec{a} \cdot (\vec{r} - \vec{r_0})$

Konstant
$$\vec{\alpha}$$
: $\omega = \omega_0 + \alpha t$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$ $\omega^2 - \omega_0^2 = 2\alpha (\theta - \theta_0)$

Arbeid:
$$dW = \vec{F} \cdot d\vec{s}$$
 $W_{12} = \int_1^2 \vec{F} \cdot d\vec{s}$ Kinetisk energi: $E_k = \frac{1}{2}mv^2$

$$E_{\rm p}(\vec{r})=$$
 potensiell energi (tyngde: $mgh,~$ fjær: $\frac{1}{2}kx^2)$ $E=\frac{1}{2}m\vec{v}^2+E_{\rm p}(\vec{r})+$ friksjonsarbeide = konstant

Konservativ kraft:
$$\vec{F} = -\vec{\nabla} E_{\rm p}(\vec{r})$$
 f.eks. $F_x = -\frac{\partial}{\partial x} E_{\rm p}(x,y,z)$ Hookes lov (fjær): $F_x = -kx$

Tørr friksjon:
$$|F_{\rm f}| \leq \mu_{\rm s}\,F_\perp$$
 eller $|F_{\rm f}| = \mu_{\rm k}\,F_\perp$ Våt friksjon: $\vec{F}_{\rm f} = -k_{\rm f}\vec{v}$ eller $\vec{F}_{\rm f} = -bv^2\hat{v}$

Kraftmoment (dreiem
oment) om origo:
$$\vec{\tau} = \vec{r} \times \vec{F}$$
, Arbeid: d $W = \tau d\theta$

Betingelser for statisk likevekt:
$$\Sigma \vec{F}_i = \vec{0}$$
 $\Sigma \vec{\tau}_i = \vec{0}$, uansett valg av referansepunkt for $\vec{\tau}_i$

Massemiddelpunkt (tyngdepunkt):
$$\vec{R} = \frac{1}{M} \sum m_i \vec{r_i} \rightarrow \frac{1}{M} \int \vec{r} dm$$
 $M = \sum m_i$

Kraftimpuls:
$$\int_{\Delta t} \vec{F}(t) dt = m \Delta \vec{v}$$
 Alle støt: $\sum \vec{p}_i = \text{konstant}$ Elastisk støt: $\sum E_i = \text{konstant}$

$$\mbox{Vinkelhastighet:} \quad \vec{\omega} = \omega \,\, \hat{\mathbf{z}} \qquad |\, \vec{\omega} \,| = \omega = \dot{\phi} \qquad \mbox{Vinkelakselerasjon:} \,\, \vec{\alpha} = \mbox{d}\vec{\omega}/\mbox{d}t \qquad \alpha = \mbox{d}\omega/\mbox{d}t = \ddot{\phi}$$

Sirkelbev.:
$$v = r\omega$$
 Sentripetalaks.: $\vec{a} = -v\omega \hat{\mathbf{r}} = -\frac{v^2}{r}\hat{\mathbf{r}} = -r\omega^2\hat{\mathbf{r}}$ Baneaks.: $a_\theta = \frac{\mathrm{d}v}{\mathrm{d}t} = r\frac{\mathrm{d}\omega}{\mathrm{d}t} = r\alpha$

Spinn (dreieimpuls) og spinnsatsen:
$$\vec{L} = \vec{r} \times \vec{p}$$
 $\vec{\tau} = \frac{d\vec{L}}{dt}$, stive legemer: $\vec{L} = I \vec{\omega}$ $\vec{\tau} = I \frac{d\vec{\omega}}{dt}$

Spinn for rullende legeme:
$$\vec{L} = \vec{R}_{\rm cm} \times M \vec{V} + I_0 \vec{\omega}$$
, Rotasjonsenergi: $E_{\rm k,rot} = \frac{1}{2} \, I \, \omega^2$,

der treghetsmoment
$$I \stackrel{\text{def}}{=} \sum m_i r_i^2 \to \int r^2 dm$$
 med $r = \text{avstanden fra } m_i \text{ (d}m)$ til rotasjonsaksen.

Med aksen gjennom massemiddelpunktet: $I \rightarrow I_0$, og da gjelder:

kule:
$$I_0 = \frac{2}{5}MR^2$$
 kuleskall: $I_0 = \frac{2}{3}MR^2$ sylinder/skive: $I_0 = \frac{1}{2}MR^2$ åpen sylinder/ring: $I_0 = MR^2$ lang, tynn stav: $I_0 = \frac{1}{12}M\ell^2$ Parallellakseteoremet (Steiners sats): $I = I_0 + Mb^2$

Udempet svingning:
$$\ddot{x} + \omega_0^2 x = 0$$
 $T = \frac{2\pi}{\omega_0}$ $f_0 = \frac{1}{T} = \frac{\omega_0}{2\pi}$ Masse/fjær: $\omega_0 = \sqrt{\frac{k}{m}}$

Tyngdependel:
$$\ddot{\theta} + \omega_0^2 \sin \theta = 0$$
, der $\sin \theta \approx \theta$ Fysisk: $\omega_0 = \sqrt{\frac{mgd}{I}}$ Matematisk: $\omega_0 = \sqrt{\frac{g}{\ell}}$

Dempet svingning:
$$\ddot{x} + 2\gamma\dot{x} + \omega_0^2 x = 0$$
 Masse/fjær: $\omega_0 = \sqrt{k/m}$ $\gamma = b/(2m)$

$$\gamma < \omega_0$$
 Underkritisk dempet: $x(t) = A e^{-\gamma t} \cos(\omega_d t + \phi)$ med $\omega_d = \sqrt{\omega_0^2 - \gamma^2}$

$$\gamma > \omega_0$$
 Overkritisk dempet: $x(t) = A^+ e^{-\alpha^{(+)}t} + A^- e^{-\alpha^{(-)}t}$ med $\alpha^{(\pm)} = \gamma \pm \sqrt{\gamma^2 - \omega_0^2}$

Tvungne svingninger: $\ddot{x} + 2\gamma\dot{x} + \omega_0^2 x = f_0\cos\omega t$, med (partikulær)løsning når $t\gg\gamma^{-1}$:

$$x(t) = x_0 \cos(\omega t - \delta), \quad \text{der} \quad x_0(\omega) = \frac{f_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\gamma^2 \omega^2}} \qquad \tan \delta = \frac{2\gamma \omega}{\omega_0^2 - \omega^2}$$

"Rakettlikningen": $m(t) \frac{d\vec{v}}{dt} = \vec{F}_{\rm Y} + \beta \vec{u}_{\rm ex}$ der $\beta = \frac{{\rm d}m}{{\rm d}t}$ og $\vec{u}_{\rm ex} =$ utskutt masses hastighet relativ hovedmasse

Termisk fysikk:

n= antall mol $N=nN_{\rm A}=$ antall molekyler $n_{\rm f}=$ antall frihetsgrader

$$\alpha = \ell^{-1} d\ell/dT$$
 $\beta = V^{-1} dV/dT$

$$\Delta U = Q - W$$
 $C = \frac{1}{n} \frac{dQ}{dT}$ $C' = \frac{1}{m} \frac{dQ}{dT}$

$$pV = nRT = Nk_{\rm B}T$$
 $pV = N\frac{2}{3}\langle E_{\rm k}\rangle$ $\langle E_{\rm k}\rangle = \frac{1}{2}m\langle v^2\rangle = \frac{3}{2}k_{\rm B}T$ $W = p\Delta V$ $W = \int_1^2 p dV$

Ideell gass:
$$C_V = \frac{1}{2}n_f R$$
 $C_p = \frac{1}{2}(n_f + 2)R = C_V + R$ $\gamma = \frac{C_p}{C_V} = \frac{n_f + 2}{n_f}$ $dU = C_V n dT$

$$\mbox{Adiabat:} \quad Q = 0 \quad \mbox{ Ideell gass:} \quad pV^{\gamma} = \mbox{konst.} \quad TV^{\gamma-1} = \mbox{konst.} \quad T^{\gamma}p^{1-\gamma} = \mbox{konst.}$$

$$\mbox{Virkningsgrader for varmekraftmaskiner:} \quad \eta = \frac{W}{Q_{\rm inn}} \qquad \mbox{Carnot:} \ \eta_{\rm C} = 1 - \frac{T_{\rm L}}{T_{\rm H}} \qquad \mbox{Otto:} \ \eta_{\rm O} = 1 - \frac{1}{r^{\gamma - 1}}$$

$$\text{Effektfaktorer:} \quad \text{Kjøleskap:} \ \eta_{\text{K}} = \left| \frac{Q_{\text{inn}}}{W} \right| \overset{\text{Carnot}}{\longrightarrow} \frac{T_{\text{L}}}{T_{\text{H}} - T_{\text{L}}} \qquad \text{Varmepumpe:} \quad \eta_{\text{V}} = \left| \frac{Q_{\text{ut}}}{W} \right| \overset{\text{Carnot}}{\longrightarrow} \frac{T_{\text{H}}}{T_{\text{H}} - T_{\text{L}}}$$

Clausius:
$$\sum \frac{Q}{T} \le 0$$
 $\oint \frac{dQ}{T} \le 0$ Entropi: $dS = \frac{dQ_{rev}}{T}$ $\Delta S_{12} = \int_{1}^{2} \frac{dQ_{rev}}{T}$

1. og 2. hovedsetning:
$$dU = dQ - dW = TdS - pdV$$

Entropiendring
$$1 \to 2$$
 i en ideell gass: $\Delta S_{12} = nC_V \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1}$

Varmeledning:
$$\dot{Q} = \frac{\kappa A}{\ell} \Delta T = \frac{1}{R} \Delta T$$
 $j_x = -\kappa \frac{\partial T}{\partial x}$ $\vec{j} = -\kappa \vec{\nabla} T$ Varmeovergang: $j = \alpha \Delta T$

Stråling:
$$j_s = e\sigma T^4 = a\sigma T^4 = (1-r)\sigma T^4$$
 $j_s = \frac{c}{4}u(T)$

$$\text{Planck:} \quad j_{\text{s}}(T) = \int_{0}^{\infty} \eta(j_{\text{s}}, T) \mathrm{d}j_{\text{s}} \quad \text{der } j_{\text{s}} \text{'s frekvensspekter} = \eta(j_{\text{s}}, T) = \frac{\mathrm{d}j_{\text{s}}}{\mathrm{d}\lambda} = 2\pi hc^{2} \cdot \frac{\lambda^{-5}}{\exp\left(\frac{hc}{k_{\text{B}}T\lambda}\right) - 1}$$

Wiens forskyvningslov: $\lambda_{\text{max}} T = 2898 \,\mu\text{m} \,\text{K}$

Studieprogram	ı: MT
Kandidat nr.	
Dato:	Side*):
Antall ark:	

Svartabell for flervalgsspørsmål i oppgave 1.

Denne siden skal fylles ut, rives av og leveres inn, *) fortrinnsvis som side 1. Husk informasjonen øverst til høyre.

	L 2.51
Oppgave	Mitt svar
1-1	
1-2	
1-3	
1-4	
1-5	
1-6	
1-7	
1-8	
1-9	
1-10	
1-11	
1-12	
1-13	
1-14	
1-15	
1-16	
1-17	
1-18	
1-19	
1-20	
1-21	
1-22	
1-23	
1-24	

(blank side)