Formulas

$$= \frac{hc}{\lambda} - \frac{hc}{\lambda}$$

Planeles constant

Pe-broglie

rovelepoth

Eximitia energy of particle

E = P

2m < moss of particle

(b) P = \(\sqrt{2mE}\)

= V2mVq

Photo electric effect.

Photoelectric emission is the release of electrons from the surface of a metal when electro magnetic radiation (light) is incident on its surface

Ep (Energy of a photon) = hf = hc

Important points about photoelectric emmission

- 1) If photoemission takes place, it does so instruction toneously
- 2) Photoemission takes place only if the frequency of the incident radiation is above a certain minimum value called thershold frequency, for L> = n50 on hc
- 3 Different metals have different threshold frequencies
- (4) wheather or not emission takes place depends only on (2), it soes not depend on intensity of the radiation

- (5) For a given frequency the rate of emission is propartional to the intensity of the radiation.
- · A photon is the special name given to quantum (discrete packet) of energy when the energy is in form of electromagnetic radiation
- The work function energy & is the minimum armount of energy necessary for on electron to excaply from the surface.

· K. E mat = hf - hfo y = ml + C

K.Emac re f graph
- gradient = h
- y-intercept = - h fo

• K. E max = $\frac{hC}{\lambda} - \frac{hC}{\lambda o}$ $y = mC \pm C$

K. Emac re it graph
- gradient = hc
- y-intercept = -hc

<u>Le Broglie warelength</u> -0-89 -1-5	
- 0-89 - 1-5	ર્જ ————————————————————————————————————
de broghie Permentium of the portrele -3.9 -3.9	teV
• \(\(\sigma = \frac{\h}{\h} \)	
de broghie P mamentium of the fortiele	
-13.6	el- Celectron
	1
· Electrons in an atom can only have specific energy	y herels
· for on electron to pump to a higher- must goin exactly a certain energy	
· After a short time it will return to a for doing this, it must release energy by emmitting a photon of electromagn	lover level, which it bosses ette radiation
The energy of that photon = E2- energy of that photon = H2- energy of higher level	E = DE energy of lover level
wordength of emitted NE radiation	

· Each of these transitions are of a pertular I and for ond thus correspond to action where line in the spectrum, thus this can be used to identify presence of a particular element.

· $A = \frac{h}{P}$ de brogle vanelingth

word for derivation

$$K: E = \frac{1}{2} m v^{2} \times \frac{m}{m}$$

$$K: E = \frac{(h v)^{2}}{2 m}$$

$$P = mV$$

$$R = \frac{P^2}{2m}$$

$$P = \sqrt{2x} R E x m$$

$$= \sqrt{2x} n V x q$$

$$K \cdot E = \frac{1}{2} M V^{2}$$

$$K \cdot E = \frac{M V^{2}}{2} \times \frac{M}{M} = \frac{M^{2} V^{4}}{2 M}$$

$$P = M V$$

$$\therefore K \cdot E = \frac{(P)^{4}}{2 M}$$

$$P = \sqrt{2 M K E}$$

$$= \sqrt{2 M V Y}$$

2) Proof of particles behaving like mares

Screen looks like this:

Cocentric ring shows diffraction pattern.

(a)	(a) Explain how the line spectrum of hydrogen provides evidence for the existence of discrete electron energy levels in atoms.	
	Each line in the spectrum, represents photon of a	Us
	specific energy, a photon is released as a rosult of this evergy change of electron, this specific energy	
	of this every change of electron, this exectic energy	
	of which photon is released is the change in the	
	sevet lord of energy. [3]	
(c) The light in a beam has a continuous spectrum of wavelengths from 400 nm to 700 nm. The light is incident on some cool hydrogen gas, as illustrated in Fig. 7.2.		
	incident light cool hydrogen gas emergent light	
	Fig. 7.2	
Using the values of wavelength in (b) , state and explain the appearance of the spectrum of the emergent light.		
Two dark lines will be observed in the continouse		
spectrum electrons in the gas absorb photons with every		
egnal to that of the excitation energy and while		
	acceptation, the light photons are re emmitted in all	
	the directions	
	[4]	
-		_