Digital Image Processing - Homework Assignment#1

B13902022 賴昱錡

Due: 10/13/2025

1 Exercise 1 - Scaling

- 1.1
- 1.2
- 1.3

1.4 Bicubic Interpolation

Bicubic interpolation estimates a value at a 2D grid point using a 4×4 neighborhood (16 points) for smoother results. It extends 1D cubic splines separably:

1. For each of 4 rows, compute 1D cubic interpolation across 4 columns using offset t:

$$p_k = \sum_{m=0}^{3} c_m(t) \cdot f(i+m-1, j+k-1), \quad k = 0...3$$

(e.g., Catmull-Rom basis: $c_0(t) = -0.5t^3 + t^2 - 0.5t$, etc.)

2. Interpolate the 4 p_k vertically using offset s:

$$p(x,y) = \sum_{k=0}^{3} c_k(s) \cdot p_k.$$

This approximates a degree-3 surface, reducing blur/artifacts in tasks like image scaling. In bilinear interpolation, we uses 2×2 neighborhood (4 points) for linear weighting:

$$p(x,y) = (1-t)(1-s)f(i,j) + t(1-s)f(i+1,j) + (1-t)sf(i,j+1) + tsf(i+1,j+1).$$

Separable: horizontal linears, then vertical.

The comparison between the complexity of two methods can be summarized as follows, we can see bicubic trades $\sim 4 \times$ computations for better detail preservation; bilinear prioritizes speed.

Aspect	Bilinear	Bicubic
Pixels Used	4 (2×2)	16 (4×4)
Operations	$\sim 4 \text{ mult} + \sim 2 \text{ add}$	$\sim 20 \text{ mult } + \sim 15 \text{ add } (4 \times 1)$
per Pixel		cubic horiz + 1 vert)
Speed	Very fast $(O(1)$, real-time	4 $5 \times$ slower $(O(1), \text{ but})$
	ok)	higher cost)
Quality	Basic, can blur	Sharper, smoother gradi-
		ents

2 Exercise 2 - Distortion

2.1

1. Brown-Conrady Model of Radial Distortion

The Brown–Conrady model expresses the relation between the ideal (undistorted) image point (x, y) and the distorted image point (x_d, y_d) as:

$$x_d = x \cdot (1 + k_1 r^2 + k_2 r^4 + k_3 r^6 + \dots)$$

$$y_d = y \cdot (1 + k_1 r^2 + k_2 r^4 + k_3 r^6 + \dots)$$

where:

- (x,y) are normalized image coordinates (centered at the principal point),
- $r^2 = x^2 + y^2$ is the squared radial distance from the optical axis,
- k_1, k_2, k_3, \ldots are the radial distortion coefficients.

The sign and magnitude of the coefficients determine whether the lens exhibits barrel distortion or pincushion distortion.

2. Barrel Distortion

- **Definition:** Straight lines appear to bulge outwards, like the sides of a barrel.
- Mathematical explanation: Occurs when $k_1 < 0$ (dominant case). The scaling factor

$$1 + k_1 r^2 + k_2 r^4 + \dots$$

becomes smaller as r increases. Thus, points farther from the image center are mapped closer inward, compressing the edges and making straight lines look convex.

Typical example: wide-angle or fisheye lenses.

3. Pincushion Distortion

- **Definition:** Straight lines appear to bend inward, like the edges of a pincushion.
- Mathematical explanation: Occurs when $k_1 > 0$ (dominant case). The scaling factor

$$1 + k_1 r^2 + k_2 r^4 + \dots$$

grows with r. Thus, points farther from the image center are pushed outward, stretching the edges and making straight lines bow inward.

Typical example: telephoto lenses.

4. Visual Summary

- If the radial factor decreases with r: Barrel distortion $(k_1 < 0)$.
- If the radial factor increases with r: **Pincushion distortion** $(k_1 > 0)$.
- 2.2
- 2.3
- 2.4