Capítulo 7

INTEGRAÇÃO DEFINIDA

7.1 Intodução

Neste capítulo introduziremos a noção de integral definida, cuja origem foi a formalização matemática da idéia do cálculo de áreas de regiões planas delimitadas pelos gráficos de funções. Observemos que somente "sabemos" calcular, efetivamente, a área de regiões limitadas por segmentos de retas como retângulos, triângulos ou composições destes. Como motivação, começaremos com um problema.

Problema: Sejam $f, g: [a,b] \longrightarrow \mathbb{R}$ funções contínuas.. Calcule a área da região plana R delimitada pelo gráfico das funções contínuas $y = f(x), y = g(x), a \le x \le b$.

Figura 7.1: Área da região dada no problema.

Solução do Problema: O subconjunto $P = \{x_0, x_1,, x_n\} \subset [a, b]$ é chamado de **partição** de ordem n do intervalo [a, b] se:

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b.$$

Subdividamos o intervalo [a,b] em n subintervalos, escolhendo os pontos da partição P. Formemos os seguintes subintervalos:

$$[x_0, x_1], [x_1, x_2], \dots, [x_{n-1}, x_n].$$

Denotemos qualquer destes subintervalos por $[x_{i-1}, x_i]$, i variando de 1 até n. Seja $\Delta x_i = x_i - x_{i-1}$ o comprimento do subintervalo $[x_{i-1}, x_i]$, i variando de 1 até n. Note que estes subintervalos não tem necessariamente o mesmo comprimento. Para cada i, variando de 1 até n,

consideremos o retângulo R_i limitado pelas retas $x=x_{i-1}$, $x=x_i$, $y=f(c_i)$ e $y=g(c_i)$, onde $c_i \in [x_{i-1},x_i]$.

Figura 7.2: Subdivisão da região.

Obtemos assim n retângulos R_i . É intuitivo que a soma das áreas dos n retângulos é uma "aproximação" da área da região R. Se n é muito grande ou, equivalentemente, se n cresce, então Δx_i ou seja a base do retângulo correspondente é muito pequena e a soma das áreas dos n retângulos aproxima-se cada vez mais da área da região R.

Figura 7.3: Subdivisão da região.

A área de cada R_i é $|f(c_i) - g(c_i)| \times \Delta x_i$ (base por altura); a soma S_n das áreas dos n retângulos é:

$$S_n = \sum_{i=1}^n |f(c_i) - g(c_i)| \Delta x_i.$$

 S_n é chamada soma de Riemann da função |f-g|. Denotemos por $|\Delta x_i|$ o maior dos Δx_i . A área de uma região plana R delimitada pelo gráfico das funções contínuas y=f(x), y=g(x) definidas no intervalo [a,b] e pelas retas x=a e x=b é:

$$A(R) = \lim_{|\Delta x_i| \to 0} \sum_{i=1}^{n} |f(c_i) - g(c_i)| \, \Delta x_i.$$

É possível provar, com rigor matemático que este limite sempre existe e é igual a área de R; mais ainda, este limite não depende da escolha da partição do intervalo [a,b] ou da escolha dos pontos c_i . Para mais detalhes veja a bibliografia intermediária e avançada.

Exemplo 7.1.

[1] Calcule a área da região limitada pelo gráfico da função $y=f(x)=x^2$, o eixo dos x e pelas retas x = 0 e x = 1.

Figura 7.4: Área limitada por $y = f(x) = x^2$.

O intervalo de integração é [0,1], $f(x)=x^2$ e g(x)=0; então $h(x)=|f(x)-g(x)|=x^2$.

a) Consideremos a seguinte partição de ordem 4 de [0, 1]:

$$x_0 = 0 < x_1 = \frac{1}{4} < x_2 = \frac{1}{2} < x_3 = \frac{3}{4} < x_4 = 1;$$

 $\Delta x_i = \frac{1}{4}$, para cada *i*.

Os subintervalos são: $[0, \frac{1}{4}]$, $[\frac{1}{4}, \frac{1}{2}]$, $[\frac{1}{2}, \frac{3}{4}]$ e $[\frac{3}{4}, 1]$. Se escolhemos $c_1 = 0$, $c_2 = \frac{1}{4}$, $c_3 = \frac{1}{2}$ e $c_4 = \frac{3}{4}$, então, $h(c_1) = 0$, $h(c_2) = \frac{1}{16}$, $h(c_3) = \frac{1}{4}$, $h(c_4) = \frac{9}{16}$; logo:

$$S_4 = \frac{1}{4} \times 0 + \frac{1}{4} \times \frac{1}{16} + \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{9}{16} = \frac{7}{32}.$$

Se escolhemos $c_1 = \frac{1}{4}$, $c_2 = \frac{1}{2}$, $c_3 = \frac{3}{4}$ e $c_4 = 1$:

Figura 7.5: Partição da região.

$$h(c_1) = \frac{1}{16}$$
, $h(c_2) = \frac{1}{4}$, $h(c_3) = \frac{9}{16}$, $h(c_4) = 1$; logo:

$$S_4 = \frac{1}{4} \times \frac{1}{16} + \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{9}{16} + \frac{1}{4} \times 1 = \frac{15}{32}.$$

É intuitivo que

$$\frac{7}{32} \le A(R) \le \frac{15}{32}.$$

b) Consideremos a seguinte partição de ordem n:

$$x_0 = 0 < x_1 = \frac{1}{n} < x_2 = \frac{2}{n} < x_3 = \frac{3}{n} < \dots < x_n = \frac{n}{n} = 1.$$

$$\Delta x_i = \frac{1}{n}.$$

Se escolhemos
$$c_1 = \frac{1}{n}$$
, $c_2 = \frac{2}{n}$, $c_3 = \frac{3}{n}$,...., $c_n = \frac{n}{n}$:

$$S_n = \frac{1}{n} \times \frac{1}{n^2} + \frac{1}{n} \times \frac{2^2}{n^2} + \frac{1}{n} \times \frac{3^2}{n^2} + \dots + \frac{1}{n} \times \frac{n^2}{n^2} = \frac{1}{n^3} (1^2 + 2^2 + 3^2 + \dots + n^2)$$
$$= \frac{(n+1)(2n+1)}{6n^2}.$$

Se escolhemos
$$c_1 = 0$$
, $c_2 = \frac{1}{n}$, $c_3 = \frac{2}{n}$,...., $c_n = \frac{n-1}{n}$:

$$S_n = \frac{1}{n^3} (1^2 + 2^2 + 3^2 + \dots + (n-1)^2) = \frac{(n-1)(2n-1)}{6n^2}.$$

Figura 7.6: Nova partição da região.

Então,
$$\frac{(n-1)(2n-1)}{6n^2} \le A(R) \le \frac{(n+1)(2n+1)}{6n^2}$$
. Por outro lado:

$$\lim_{n \to +\infty} \frac{(n-1)(2n-1)}{6n^2} = \lim_{n \to +\infty} \frac{(n+1)(2n+1)}{6n^2} = \frac{1}{3};$$

então,
$$A(R) = \frac{1}{3}$$
.

[2] Calcule a área da região limitada pelos gráficos das funções $f(x)=x^3$, $g(x)=9\,x$ e pelas retas x=0 e x=3.

Figura 7.7: Área limitada por $f(x) = x^3$, g(x) = 9x e pelas retas x = 0 e x = 3.

O intervalo de integração é [0,3]; então, $h(x) = |f(x) - g(x)| = 9x - x^3$, se $x \in [0,3]$.

a) Consideremos a seguinte partição de ordem 6 de [0,3]:

$$x_0 = 0 < x_1 = \frac{1}{2} < x_2 = 1 < x_3 = \frac{3}{2} < x_4 = 2 < x_5 = \frac{5}{2} < x_6 = 3;$$

 $\Delta x_i = \frac{1}{2}$, para cada *i*.

Se escolhemos $c_1 = 0$, $c_2 = \frac{1}{2}$, $c_3 = 1$, $c_4 = \frac{3}{2}$, $c_5 = 2$ e $c_6 = \frac{5}{2}$, obtemos: $h(c_1) = 0$, $h(c_2) = \frac{35}{8}$, $h(c_3) = 8$, $h(c_4) = \frac{81}{8}$, $h(c_5) = 10$ e $h(c_6) = \frac{55}{8}$ e,

$$S_6 = \frac{1}{2} \left(\frac{35}{8} + 8 + \frac{81}{8} + 10 + \frac{55}{8} \right) = \frac{315}{16}$$

b) Consideremos a seguinte partição de ordem n:

$$x_0 = 0 < x_1 = \frac{3}{n} < x_2 = \frac{6}{n} < x_3 = \frac{9}{n} < \dots < x_n = \frac{3n}{n} = 3.$$

 $\Delta x_i = \frac{3}{n}$. Seja $c_i = \frac{3i}{n}$, para todo i = 1, 2,n. Logo: $h(c_1) = 3^3 \left(\frac{1}{n} - \frac{1}{n^3}\right)$, $h(c_2) = 3^3 \left(\frac{2}{n} - \frac{8}{n^3}\right)$, $h(c_3) = 3^3 \left(\frac{3}{n} - \frac{27}{n^3}\right)$, $h(c_4) = 3^3 \left(\frac{4}{n} - \frac{64}{n^3}\right)$. Em geral:

$$h(c_i) = 3^3 \left[\frac{i}{n} - \frac{i^3}{n^3} \right],$$

e:

$$S_n = \sum_{i=1}^n h(c_i) \times \Delta x_i = \sum_{i=1}^n 3^3 \left[\frac{i}{n} - \frac{i^3}{n^3} \right] \times \frac{3}{n} = \sum_{i=1}^n \frac{3^4}{n^2} \left[i - \frac{i^3}{n^2} \right].$$

Lembrando que

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad e \quad \sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4},$$

temos $S_n = \frac{81}{4} \left[1 - \frac{1}{n^2} \right]$. Então, a área procurada é:

$$A(R) = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \frac{81}{4} \left(1 - \frac{1}{n^2} \right) = \frac{81}{4}.$$

7.2 Definição e Cálculo da Integral Definida

Definição 7.1. Sejam f uma função definida no intervalo [a,b], P uma partição qualquer do intervalo [a,b] e c_i um ponto qualquer em cada subintervalo definido pela partição. A **integral definida de** f **de** a **até** b \acute{e} denotada por:

$$\int_{a}^{b} f(x) \, dx$$

e definida por:

$$\int_{a}^{b} f(x) dx = \lim_{|\Delta x_i| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

se o limite existe.

Se o limite da definição existe, é independente das escolhas feitas, como no caso da definição de área. Portanto, deve ter sempre um único valor.

Se f é **contínua e não negativa em** [a,b] a definição de integral definida coincide com a definição de área da região R delimitada pelo gráfico de f, pelas retas x=a, x=b e pelo eixo dos x (q=0):

Figura 7.8: A região R.

$$R = \{(x, y) / a \le x \le b, \ 0 \le y \le f(x)\}$$

Neste caso teremos:

$$A(R) = \int_{a}^{b} f(x) \, dx$$

Os números *a* e *b* são chamados limites inferior e superior de integração.

Definição 7.2. *Uma função f definida em* [a,b] *é dita* **integrável em** [a,b] *se sua integral definida existe.*

Algumas das provas deste capítulo serão omitidas, pois fogem do objetivo destas notas. Um leitor interessado pode recorrer à bibliografia indicada.

Teorema 7.1. *Se a função f é contínua em* [a, b]*, então é integrável em* [a, b]*.*

Observemos que a recíproca deste teorema é falsa. Por exemplo, considere a função:

$$f(x) = \begin{cases} 1 & \text{se} \quad x \in [0, 1] \\ 0 & \text{se} \quad x \in (1, 2]. \end{cases}$$

Figura 7.9: Gráfico de f.

f é descontínua, mas a região limitada pelo gráfico de f, possui área igual a 1 no intervalo [0,1] e zero no intervalo (1,2]; logo, f é integrável.

Proposição 7.1. Se f e g são funções integráveis em [a,b], então:

1. Linearidade da Integral. $\alpha f + \beta g$ é função integrável em [a,b], para todo $\alpha, \beta \in \mathbb{R}$ e:

$$\int_{a}^{b} \left[\alpha f(x) + \beta g(x) \right] dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

2. Monotonicidade da Integral. Se $f(x) \ge g(x)$ em [a, b]; então,

$$\left| \int_{a}^{b} f(x) \, dx \ge \int_{a}^{b} g(x) \, dx \right|$$

3. |f| é integrável e:

$$\left| \left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} \left| f(x) \right| dx \right|$$

4. Sejam a < c < b e f uma função integrável em [a,c] e [c,b] respectivamente. Então f é integrável em [a,b] e:

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Para a prova, veja o apêndice. Até agora conhecemos a definição e as propriedades mais importantes da integral definida. Mostraremos, a seguir, como calculá -la.

Teorema 7.2. Fundamental do Cálculo.

Se f é uma função integrável em [a,b] e admite uma primitiva F(x) em [a,b], então:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

O teorema nos diz que para calcular a integral definida de uma função, basta procurar uma primitiva da função e avaliá-la nos limites de integração. A integral definida é um número real. Para a prova do teorema, veja o apêndice.

Notação:
$$F(x)\Big|_a^b = F(b) - F(a)$$
.

Corolário 7.3. Na hipótese do teorema 7.2 temos:

1.
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
.

2.
$$\int_{a}^{a} f(x) dx = 0$$
.

Exemplo 7.2.

Calcule as seguintes integrais definidas:

[1]
$$\int_0^1 \left[10 e^x + \frac{1}{\sqrt[4]{x}} \right] dx$$
.

Usando a linearidade, podemos escrever a integral como:

$$\int_{1}^{2} \left[10 e^{x} + \frac{1}{\sqrt[4]{x}} \right] dx = 10 \int_{1}^{2} e^{x} dx + \int_{1}^{2} \frac{dx}{\sqrt[4]{x}}.$$

Como:

$$F_1(x) = \int e^x dx = e^x$$
, e $F_2(x) = \int \frac{dx}{\sqrt[4]{x}} = \int x^{-1/4} dx = \frac{4(\sqrt[4]{x^3})}{3}$

Logo,

$$\int_{1}^{2} \left[10 e^{x} + \frac{1}{\sqrt[4]{x}} \right] dx = 10 \int_{1}^{2} e^{x} dx + \int_{1}^{2} \frac{dx}{\sqrt[4]{x}} = 10 F_{1}(x) \Big|_{1}^{2} + F_{2}(x) \Big|_{1}^{2}$$
$$= 10 \left(F_{1}(2) - F_{1}(1) \right) + \frac{4}{3} \left(F_{2}(2) - F_{2}(1) \right)$$
$$= 10 \left(e^{2} - e \right) + \frac{4}{3} \left(\sqrt[4]{8} - 1 \right).$$

[2]
$$\int_{e}^{e^2} ln(x) dx$$
.

Utilizamos integração por partes:

$$u = ln(x)$$
 $dv = dx$
 $du = \frac{dx}{x}$ $v = x;$

então: $F(x) = \int ln(x) dx = x ln(x) - x$; logo:

$$\int_{e}^{e^{2}} \ln(x) \, dx = F(x) \Big|_{e}^{e^{2}} = e^{2}.$$

[3]
$$\int_{-1}^{1} |sen(\pi x)| dx$$
.

Observamos que $sen(\pi x) \ge 0$ se $0 \le x \le 1$ e $sen(\pi x) \le 0$ se $-1 \le x \le 0$.

$$\int sen(\pi x) dx = -\frac{cos(\pi x)}{\pi} + c.$$

Logo, $F(x) = -\frac{\cos(\pi x)}{\pi}$, então:

$$\begin{split} \int_{-1}^{1} |sen(\pi \, x)| \, dx &= \int_{0}^{1} sen(\pi \, x) \, dx - \int_{-1}^{0} sen(\pi \, x) \, dx = F(x) \Big|_{0}^{1} - F(x) \Big|_{-1}^{0} \\ &= (F(1) - F(0)) - (F(0) - F(-1)) \\ &= \frac{4}{\pi}. \end{split}$$

[4]
$$\int_0^1 x\sqrt{2x^2+3}\,dx$$
.

Se $u = 2x^2 + 3$, então $\frac{du}{4} = x dx$.

$$\int x\sqrt{2x^2+3}\,dx = \frac{1}{4}\int \sqrt{u}\,du = \frac{u^{\frac{3}{2}}}{6} = \frac{\sqrt{(2x^2+3)^3}}{6} + c.$$

Logo, $F(x) = \frac{\sqrt{(2x^2 + 3)^3}}{6}$; então,

$$\int_0^1 x\sqrt{2x^2+3}\,dx = F(1) - F(0) = \frac{5\sqrt{5}}{6} - \frac{\sqrt{3}}{2}.$$

[5] Seja

$$f(x) = \begin{cases} \int_a^b t^x dt & \text{se } x \neq -1\\ \ln(\frac{b}{a}) & \text{se } x = -1. \end{cases}$$

Verifique se f é contínua em -1.

Calculando diretamente: $\int t^x dt = \frac{t^{x+1}}{x+1} + c$. Logo, $F(x) = \frac{t^{x+1}}{x+1}$; então:

$$\int_{a}^{b} t^{x} dt = F(b) - F(a) = \frac{b^{x+1} - a^{x+1}}{x+1}.$$

Por outro lado, aplicando L'Hôpital:

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} (b^{x+1} \ln(b) - a^{x+1} \ln(a))$$
$$= f(-1);$$

 $\log o$, f é contínua em -1.

7.3 Métodos para Calcular Integrais Definidas

Método de Substituição

Se u = g(x), então du = g'(x) dx; logo,

$$\int_{a}^{b} f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

Integração por Partes

$$\int_{a}^{b} f(x) g'(x) dx = f(x) g(x) \Big|_{a}^{b} - \int_{a}^{b} g(x) f'(x) dx$$

Exemplo 7.3.

[1] No exemplo [4] da página anterior, fizemos $u=2\,x^2+3$; logo, $\frac{du}{4}=x\,dx$. Se: x=0, então u=3; se x=1, então u=5. Assim:

$$\int_0^1 x\sqrt{2x^2+3} \, dx = \frac{1}{4} \int_3^5 \sqrt{u} \, du = \frac{u^{\frac{3}{2}}}{6} \bigg|_3^5 = \frac{5\sqrt{5}}{6} - \frac{\sqrt{3}}{2}.$$

[2] Calcule
$$\int_0^1 \frac{e^x \, dx}{e^{2x} + 4e^x + 4}$$
.

Fazamos $u=e^x$, então $e^{2x}+4\,e^x+4=u^2+4\,u+4=(u+2)^2$. Se x=0, então u=1; se x=1, então u=e. Utilizando frações parciais:

$$\int_0^1 \frac{e^x \, dx}{e^{2x} + 4e^x + 4} = \int_1^e \frac{du}{(u+2)^2} = -\frac{1}{u+2} \Big|_1^e = \frac{e-1}{3(e+2)}.$$

[3] Calcule
$$\int_0^4 \frac{dx}{1+\sqrt{x}}.$$

Se $u = \sqrt{x} + 1$, então $\sqrt{x} = u - 1$ e $du = \frac{dx}{2\sqrt{x}}$; logo, 2(u - 1) du = dx. Se: x = 0, então, u = 1; se x = 4, então, u = 3. Assim:

$$\int_0^4 \frac{dx}{1+\sqrt{x}} = 2\int_1^3 \frac{(u-1)}{u} \, du = 2\left(u - \ln(|u|)\right)\Big|_1^3 = 4 - 2\ln(3).$$

[4] Calcule
$$\int_{1}^{4} x \ln(x) dx$$
.

Usando o método de integração por partes temos: u = ln(x) e dv = x dx; então, $du = \frac{1}{x} dx$ e $v = \frac{x^2}{2}$. Assim

$$\int x \ln(x) \, dx = \frac{x^2 \ln(x)}{2} - \frac{x^2}{4}.$$

Logo:

$$\int_{1}^{4} x \ln(x) dx = \frac{x^{2} \ln(x)}{2} - \frac{x^{2}}{4} \Big|_{1}^{4} = 16 \ln(2) - \frac{15}{4}.$$

[5] Calcule
$$\int_0^{\frac{\pi}{2}} sen(2t) e^{sen(t)} dt.$$

Como $sen(2\,t)=2\,sen(t)\,cos(t)$, fazemos x=sen(t); logo, $dx=cos(t)\,dt$. Se t=0, então x=0; se $t=\frac{\pi}{2}$, então x=1. Assim:

$$\int_0^{\frac{\pi}{2}} sen(2t) e^{sen(t)} dt = 2 \int_0^1 x e^x dx.$$

Integrando por partes: u=x e $dv=e^x\,dx$, então du=dx e $v=e^x$; logo:

$$\int_0^{\frac{\pi}{2}} sen(2t) e^{sen(t)} dt = 2 \int_0^1 x e^x dx = 2 x e^x \Big|_0^1 - 2 \int_0^1 e^x dx = 2 \left(x e^x - e^x \right) \Big|_0^1 = 2.$$

[6] Calcule
$$\int_{\sqrt{3}}^{3} \frac{dx}{x\sqrt{x^2+9}}.$$

Usaremos o método de substituição trigonométrica.

Seja $x=3tg(\theta)$; observamos que $3tg(\theta)=\sqrt{3}$ e $3tg(\theta)=3$, implicam em $\theta=\frac{\pi}{6}$ e $\theta=\frac{\pi}{4}$; $dx=3sec^2(\theta)\,d\theta$; então, $\frac{dx}{x\sqrt{x^2+9}}=\frac{cosec(\theta)}{3}\,d\theta$.

$$\int_{\sqrt{3}}^{3} \frac{dx}{x\sqrt{x^2+9}} = \frac{1}{3} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc(\theta) \, d\theta = \frac{1}{3} \ln \left[\frac{2+\sqrt{3}}{1+\sqrt{2}} \right].$$

[7] Verifique que $\int_0^a \frac{f(x)}{f(x) + f(a-x)} dx = \frac{a}{2}$, sendo f tal que o integrando seja definido.

Seja
$$I = \int_0^a \frac{f(x)}{f(x) + f(a-x)} dx$$
. Fazendo $u = a - x$, então $du = -dx$:

$$I = -\int_{a}^{0} \frac{f(a-u)}{f(a-u) + f(u)} du = \int_{0}^{a} \frac{f(a-x)}{f(a-x) + f(x)} dx;$$

logo,

$$2I = \int_0^a \frac{f(x)}{f(x) + f(a-x)} dx + \int_0^a \frac{f(a-x)}{f(a-x) + f(x)} dx = \int_0^a dx = a.$$

[8] Usemos [7] para calcular $\int_{0}^{2} \frac{x^{2}}{x^{2}-2x+2} dx$.

$$\int_0^2 \frac{x^2}{x^2 - 2x + 2} \, dx = 2 \int_0^2 \frac{x^2}{2x^2 - 4x + 4} dx = 2 \int_0^2 \frac{x^2}{x^2 + (x - 2)^2} \, dx = 2.$$

Consideramos $f(x) = x^2$ em [5].

[9] Calcule $\int_0^1 x \operatorname{arct} g(x) dx$.

Integrando por partes u = arctg(x), dv = x dx; então, $du = \frac{dx}{x^2 + 1}$ e $v = \frac{x^2}{2}$;

$$\int_0^1 x \arctan(x) \, dx = \frac{x^2 \arctan(x)}{2} \bigg|_0^1 - \frac{1}{2} \int_0^1 \frac{x^2}{x^2 + 1} \, dx.$$

Agora calculamos:

$$\int_0^1 \frac{x^2}{x^2 + 1} \, dx.$$

Integramos a função racional. Logo,

$$\int_0^1 \frac{x^2}{x^2 + 1} \, dx = \int_0^1 \left[1 - \frac{1}{x^2 + 1} \right] dx = x - \operatorname{arct}g(x) \Big|_0^1 = 1 - \frac{\pi}{4}.$$

Então:

$$\int_0^1 x \arctan(x) dx = \frac{x^2 \arctan(x)}{2} \Big|_0^1 - \frac{1}{2} \left(1 - \frac{\pi}{4}\right) = \frac{1}{4} (\pi - 2).$$

Aplicação: Seja f uma função integrável sobre [-a, a]. Se f é uma função par:

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

Se f é uma função ímpar:

$$\int_{-a}^{a} f(x) \, dx = 0$$

De fato:

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx = -\int_{0}^{-a} f(x) dx + \int_{0}^{a} f(x) dx.$$

Façamos a seguinte substituição u = -x, então:

$$-\int_0^{-a} f(x) \, dx = \int_0^a f(-u) \, du.$$

Se f é uma função par, segue a) e se f é uma função ímpar, segue b).

Exemplo 7.4.

[1] Calcule
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{tg(x)}{x^6 + 4x^4 + 1} dx$$
.

A função
$$f(x) = \frac{tg(x)}{x^6 + 4x^4 + 1}$$
 é impar, logo: $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{tg(x)}{x^6 + 4x^4 + 1} \, dx = 0.$

Figura 7.10: Gráfico da função $f(x) = \frac{tg(x)}{x^6 + 4x^2 + 1}$.

[2] Calcule
$$\int_{-1}^{1} (x^2 + \cos(\pi x) + 1) dx$$
.

A função $f(x) = x^2 + cos(\pi x) + 1$ é par, logo:

$$\int_{-1}^{1} (x^2 + \cos(\pi x) + 1) \, dx = 2 \int_{0}^{1} (x^2 + \cos(\pi x) + 1) \, dx = \frac{8}{3}.$$

Figura 7.11: Gráfico da função $f(x) = x^2 + cos(\pi x) + 1$.

Construção de Primitivas 7.4

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua. Definamos a função:

$$g(x) = \int_{a}^{x} f(t) dt.$$

Por exemplo, se f(x) = cos(x), então $g(x) = \int_0^x cos(t) dt = sen(x)$; por outro lado observe que, g'(x) = cos(x) = f(x). Este fato pode ser generalizado. É o que estabelece o seguinte teorema.

Teorema 7.4.

Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função contínua. A função $g(x) = \int_a^x f(t) dt$ é derivável e:

$$g'(x) = f(x), ou, g'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

Este resultado implica que toda função contínua possui uma primitiva. Veja o apêndice para a prova. Existem funções integráveis que não possuem primitivas (não podem ser contínuas). Por exemplo, a função definida por f(x)=0 se $x\neq 0$ e f(0)=1; f não é derivada de nenhuma função $(g(x) = \int_a^x f(t) dt = 0$ para todo x).

Corolário 7.5.

Seja $g(x) = \int_a^{\alpha(x)} f(t) dt$, onde $f: I \longrightarrow \mathbb{R}$ é contínua e $\alpha: J \longrightarrow \mathbb{R}$ derivável; I e J são intervalos tais que $\alpha(J) \subset I$. Então g é derivável e:

$$g'(x) = f(\alpha(x)) \alpha'(x)$$

De fato. Seja $g=h\circ\alpha$ tal que $h(x)=\int_a^x f(t)\,dt$. Pelo teorema g é uma função derivável. Utilizando a regra da cadeia e o teorema novamente

$$g'(x) = \frac{dh}{dx}(\alpha(x)) \alpha'(x) = f(\alpha(x)) \alpha'(x).$$

Exemplo 7.5.

[1] Calcule $\frac{d}{dx} \int_0^x (2t^2 - t + 1) dt$. A função $f(t) = 2t^2 - t + 1$ é contínua em \mathbb{R} , pelo teorema anterior:

$$\frac{d}{dx} \int_0^x (2t^2 - t + 1)dt = 2x^2 - x + 1.$$

[2] Calcule $\frac{dy}{dx}$ se $y = \int_{3}^{x^2} (5t + 7)^{25} dt$.

Como $f(t)=(5\,t+7)^{25}$ é contínua em \mathbb{R} ; $\alpha(x)=x^2$ é derivável em \mathbb{R} e $Im(\alpha)\subset Dom(f)$. Pelo corolário anterior:

$$\frac{dy}{dx} = f(\alpha(x)) \alpha'(x) = 2 x f(x^2) = 2 x (5 x^2 + 7)^{25}.$$

[3] Calcule
$$y'$$
 se $y = \int_{-x}^{0} \sqrt{t^2 + 1} dt + \int_{0}^{3x+2} \sqrt{t^2 + 1} dt$.

Como $f(t) = \sqrt{t^2 + 1}$ é contínua em \mathbb{R} , $\alpha_1(x) = -x$ e $\alpha_2(x) = 3x + 2$ são funções deriváveis tais que $Im(\alpha_1)$, $Im(\alpha_2) \subset Dom(f)$, pelo corolário anterior:

$$y' = -f(\alpha_1(x)) \alpha_1'(x) + f(\alpha_2(x)) \alpha_2'(x) = \sqrt{x^2 + 1} + 3\sqrt{(3x + 2)^2 + 1}.$$

[4] Seja

$$F(x) = \int_0^x \frac{dt}{1+t^2} + \int_0^{\frac{1}{x}} \frac{dt}{1+t^2}, \ x \neq 0.$$

Mostre que F(x) é constante em $(-\infty,0)$ e em $(0,+\infty)$. Calcule tais constantes.

i) Seja
$$G(x)=\int_0^x \frac{dt}{1+t^2}$$
; então, $F(x)=G(x)+G\left(\frac{1}{x}\right)$.

Pelo Teorema Fundamental do Cálculo:

$$G'(x) = \frac{1}{1+x^2}$$
 e $F'(x) = G'(x) - \frac{1}{x^2}G'(\frac{1}{x}) = 0$,

 $(x \neq 0)$. Logo F'(x) = 0 e $F(x) = c_1$ se x > 0 e $F(x) = c_2$ se x < 0.

ii)
$$c_1 = F(1) = 2 \int_0^1 \frac{dt}{1+t^2} = \frac{\pi}{2}$$
; analogamente, $c_2 = -\frac{\pi}{2}$.

[5] A função:

$$S(x) = \int_0^x sen(\frac{\pi t^2}{2}) dt,$$

é chamada de **Fresnel** e aparece no estudo da difração de ondas de luz: Calcule $\lim_{x\to 0} \frac{S(x)}{x^3}$. O limite apresenta uma indeterminação do tipo $(\frac{0}{0})$; aplicamos L'Hôpital,

$$S'(x) = sen(\frac{\pi x^2}{2}); \text{ logo, } \lim_{x \to 0} \frac{S(x)}{x^2} = \lim_{x \to 0} \frac{S'(x)}{3x^2} = \frac{\pi}{6}.$$

Figura 7.12: Gráfico de S(x).

[6] A função:

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

é chamada função erro. Calcule a derivada de:

- i) $x \operatorname{erf}(x)$.
- ii) $erf(\sqrt{x})$.
- i) Pela regra do produto:

$$\frac{d}{dx}\big(x\,erf(x)\big)=erf(x)+x\,\frac{d}{dx}erf(x)=erf(x)+\frac{2\,x}{\sqrt{\pi}}\,e^{-x^2}.$$

ii)
$$f(t)=e^{-t^2}$$
 e $\alpha(x)=\sqrt{x}$; então, $f(\alpha(x))=e^{-x}$ e $\alpha'(x)=\frac{1}{2\sqrt{x}}$. Logo:

$$\frac{d}{dx}\operatorname{erf}(u) = \frac{2}{\sqrt{\pi}}f(\alpha(x))\alpha'(x) = \frac{e^{-x}}{\sqrt{\pi x}}.$$

Figura 7.13: Gráfico de erf(x).

[7] Calcule
$$g'$$
 se $g(x) = \int_0^{x^2} e^{-t^2} dt$.

Denotemos por $f(t) = e^{-t^2}$ e $\alpha(x) = x^2$; então, $f(\alpha(x)) = f(x^2) = e^{-x^4}$; logo: $g'(x) = 2xe^{-x^4}$.

Figura 7.14: Gráfico de g e g'.

[8] Se $x \operatorname{sen}(\pi x) = \int_0^{x^2} f(t) dt$, onde f é uma função contínua, calcule f(4).

Derivando a ambos os lados da igualdade:

$$\frac{d}{dx}\left[x\operatorname{sen}(\pi x)\right] = \frac{d}{dx}\left[\int_0^{x^2} f(t) \, dt\right]; \quad \operatorname{sen}(\pi x) - \pi x \cos(\pi x) = 2 f(x^2) x.$$

Para
$$x=2$$
, temos: $sen(2\pi)-2\pi cos(2\pi)=4f(4)$, $logo-2\pi=4f(4)$. Então, $f(4)=-\frac{\pi}{2}$.

7.5 Aplicações da Integral Definida

7.5.1 Aceleração, velocidade e posição

A relação entre aceleração, velocidade e a posição de uma partícula pode ser obtida utilizando diretamente o Teorema Fundamental do Cálculo.

Suponhamos que uma partícula move-se ao longo do gráfico da função com segunda derivada contínua x=x(t) com velocidade v=v(t), de classe C^1 e aceleração, a=a(t) em cada instante t. A aceleração da partícula é: $a(t)=\frac{dv}{dt}$. Pelo Teorema:

$$\int_{t_0}^t a(s) \, ds = \int_{t_0}^t \frac{dv}{ds} \, ds = v(t) - v(t_0);$$

então:

(1)
$$v(t) = \int_{t_0}^t a(s) ds + v(t_0).$$

Logo, conhecendo a aceleração e a velocidade inicial da partícula, podemos obter a velocidade em cada instante t. A velocidade da partícula é: $v(t) = \frac{dx}{dt}$. Pelo Teorema:

$$\int_{t_0}^t v(s) \, ds = \int_{t_0}^t \frac{dx}{ds} \, ds = x(t) - x(t_0);$$

então:

(2)
$$x(t) = \int_{t_0}^t v(s) ds + x(t_0).$$

 $D(t)=x(t)-x(t_0)$ é chamado o deslocamento da partícula. Logo, conhecendo a velocidade e a posição inicial da partícula, podemos obter sua posição em cada instante t. Um dos movimentos mais simples é quando a partícula tem aceleração constante: $a(t)=a_0$, para todo t. É comum nas aplicações considerar que o tempo inicial seja $t_0=0$. Denotando a velocidade e posição inicial respectivamente por $v(0)=v_0$ e $x(0)=x_0$, obtemos:

De (1):
$$v(t) = \int_0^t a_0 ds = a_0 t + v_0$$
 e de (2): $x(t) = \int_0^t v(s) ds + x_0 = \int_0^t (a_0 t + v_0) ds + x_0$. Logo,

$$x(t) = \frac{a_0}{2}t^2 + v_0t + x_0.$$

Neste caso, conhecendo a velocidade e a posição inicial da partícula obtemos sua trajetória.

No deslocamento vertical de uma partícula, escolhemos o eixo dos y do sistema de coordenadas para a posição. Consideramos para cima a parte positiva do eixo dos y. O efeito da gravidade na partícula é diminuir a altura bem como a sua velocidade. Desprezando a resistência do ar, a aceleração é constante a(t)=-g, onde $g=-9.8\,m/seg^2$ é a aceleração gravitacional na superfície da terra. Então:

$$v(t) = -9.8t + v_0$$
 e $x(t) = -4.9t^2 + v_0t + x_0$,

x(t) medido em metros.

Exemplo 7.6.

[1] A velocidade de um foguete é de $1000\,km/h$ após os primeiros $30\,seg$ de seu lançamento. Determine a distância percorrida pelo foguete.

Primeiramente, fazemos a conversão de km/h para m/seg multiplicando pela fração $\frac{1000}{3600}$, donde obtemos:

$$a_0 = \frac{1000 \times 1000}{30 \times 3600} \, m/seg^2 = 9.259 \, m/seg^2.$$

 $v_0=0$; logo $v(t)=9.259\,t$ e obtemos: $D(30)=9.259\times\frac{900}{2}=4166.5\,m$. O foguete nos primeiros $30\,seg$ percorre uma distância de $4166.5\,m$.

[2] Se uma bola é jogada diretamente para cima a partir do chão com velocidade inicial de $96\,m/seg$. Determine seu deslocamento.

Primeiramente, $x_0 = 0$ e $v_0 = 96$; logo, $v(t) = -9.8 \, t + 96$. A bola atinge sua altura máxima quando v = 0; então, a altura máxima é atingida no tempo: $t = \frac{96}{9.8} \cong 9.79 \, seg$. Logo,

$$x(9.79) = -4.9 \times (9.79)^2 + 96 \times 9.79 = 470.2 \, m.$$

Figura 7.15: .

7.6 Cálculo de Áreas

O cálculo da área de uma região plana pode ser feito via integral definida. A seguir, estudaremos as situações mais comuns.

Teorema 7.6.

Sejam $f, g : [a, b] \longrightarrow \mathbb{R}$ funções contínuas. A área de uma região plana R delimitada pelo gráfico das funções contínuas y = f(x), y = g(x) e pelas retas x = a e x = b é:

$$A(R) = \int_{a}^{b} |f(x) - g(x)| dx$$

Se $f(x) \ge 0$ e g(x) = 0, para todo $x \in [a, b]$, então:

$$A(R) = \int_{a}^{b} f(x) \, dx$$

onde:

$$R = \{(x, y) / a \le x \le b, \ 0 \le y \le f(x)\}$$

Figura 7.16: $R = \{(x, y) / a \le x \le b, 0 \le y \le f(x)\}.$

Se $f(x) \le 0$ e g(x) = 0, para todo $x \in [a, b]$, então:

$$A(R) = -\int_{a}^{b} f(x) \, dx$$

onde

$$R = \{(x, y) / a \le x \le b, f(x) \le y \le 0\}$$

Figura 7.17: $R = \{(x, y) / a \le x \le b, f(x) \le y \le 0\}$

Se $f(x) \ge g(x)$, para todo $x \in [a, b]$, então:

$$A(R) = \int_{a}^{b} [f(x) - g(x)] dx$$

onde

$$R = \{(x, y) / a \le x \le b, g(x) \le y \le f(x)\}$$

Figura 7.18: $R = \{(x, y) / a \le x \le b, g(x) \le y \le f(x)\}.$

Se $f(x) \ge g(x)$, $a \le x \le c$ e $g(x) \ge f(x)$, $c \le x \le b$; então, $R = R_1 \cup R_2$, onde:

$$R_1 = \{(x, y) / a \le x \le c, g(x) \le y \le f(x)\}$$
e
$$R_2 = \{(x, y) / c \le x \le b, f(x) \le y \le g(x)\}$$
e

$$A(R) = \int_{a}^{c} \left[f(x) - g(x) \right] dx + \int_{c}^{b} \left[g(x) - f(x) \right] dx$$

Figura 7.19: $R = R_1 \cup R_2$.

Exemplo 7.7.

[1] Se em 1970, foram utilizados 20.3 bilhões de barris de petróleo no mundo todo e se a demanda mundial de petróleo cresce exponencialmente a uma taxa de 9% ao ano, então a demanda A(t) anual de petróleo no tempo t é $A(t) = 20.3 \, e^{0.09t}$ (t = 0 em 1970). Se a demanda

continua crescendo a uma taxa de 9% ao ano, qual será a quantidade de petróleo consumida entre os anos de 1970 e 2005?

A quantidade de petróleo utilizada nesse período de tempo é a área sob a curva de demanda entre t=0 e t=35.

$$20.3 \int_0^{35} e^{0.09t} dt = 225.56 e^{0.09t} \Big|_0^{35} = 5038.02.$$

Logo, foram consumidos 5038.02 barris de petróleo.

Figura 7.20: A região do exemplo [1].

[2] Calcule a área da região limitada pelo eixo dos x e pelo gráfico de $y=4-x^2$. Neste problema g=0 e não são dados claramente os intervalos de integração; mas, as interseções com os eixos são os pontos: (0,4), (2,0) e (-2,0).

Figura 7.21: A região do exemplo [2].

Logo, $R=\{(x,y)\in\mathbb{R}^2\,/\,-2\leq x\leq 2,\quad 0\leq y\leq 4-x^2\}.$ Usando o fato de que a função é par:

$$A = \int_{-2}^{2} (4 - x^2) \, dx = 2 \int_{0}^{2} (4 - x^2) \, dx = 2 \left(4x - \frac{x^3}{3} \right) \Big|_{0}^{2} = \frac{32}{3} u.a.$$

- [3] Calcule a área da região limitada pelo eixo dos x e pelo gráfico de $y=4x^4-5x^2+1$. Determinemos a interseção da curva com os eixos coordenados:
- i) Fazendo x = 0; então, y = 1; o ponto de interseção é (0, 1).

ii) Fazendo y=0; então, $4\,x^4-5\,x^2+1=0$, clarametente x=-1 e x=1 são raizes do polinômio; logo, $4\,x^4-5\,x^2+1=(x-1)\,(x+1)\,(4\,x^2-1)$; os pontos de interseção são (1,0), (-1,0), $(\frac{1}{2},0)$ e $(-\frac{1}{2},0)$.

É fácil verificar que x=0 é ponto de máximo local e $x=\pm\sqrt{\frac{5}{8}}$ são pontos de mínimo local de f. Logo, $R=R_1\cup R_2\cup R_3$ onde:

$$R_{1} = \{(x,y) \in \mathbb{R}^{2} / -1 \le x \le -\frac{1}{2}, \quad 4x^{4} - 5x^{2} + 1 \le y \le 0\};$$

$$R_{2} = \{(x,y) \in \mathbb{R}^{2} / -\frac{1}{2} \le x \le \frac{1}{2}, \quad 0 \le y \le 4x^{4} - 5x^{2} + 1\} \text{ e}$$

$$R_{3} = \{(x,y) \in \mathbb{R}^{2} / \frac{1}{2} \le x \le 1, \quad 4x^{4} - 5x^{2} + 1 \le y \le 0\}.$$

Figura 7.22: Gráfico de $R=R_1\cup R_2\cup R_3$.

Logo,
$$A = -\int_{-1}^{-\frac{1}{2}} (4x^4 - 5x^2 + 1) dx + \int_{-\frac{1}{2}}^{\frac{1}{2}} (4x^4 - 5x^2 + 1) dx - \int_{\frac{1}{2}}^{1} (4x^4 - 5x^2 + 1) dx.$$

A função y é par. Usando a simetria da região, calculamos a área da região no primeiro e quarto quadrantes e multiplicamos o resultado por 2:

$$A = 2\left[\int_0^{\frac{1}{2}} (4x^4 - 5x^2 + 1) dx - \int_{\frac{1}{2}}^1 (4x^4 - 5x^2 + 1) dx\right] = 1u.a.$$

[4] Calcule a área da região limitada pelos gráficos de $y = x^2$ e y = x + 2.

Figura 7.23: A região do exemplo [4].

Novamente neste problema não são dados, claramente, os intervalos de integração.

i) Calculemos as interseções dos gráficos; em outras palavras, resolvamos o seguinte sistema de equações:

$$\begin{cases} y = x + 2 \\ y = x^2, \end{cases}$$

ou seja, resolvamos $x^2-x-2=0$; temos: x=-1 e x=2. Os pontos de interseção são (-1,1) e (2,4).

ii) Notemos que $x + 2 \ge x^2$ se $x \in [-1, 2]$; logo:

$$A = \int_{-1}^{2} (x + 2 - x^2) dx = \left[\frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{1}^{2} = \frac{7}{6} u.a.$$

[5] Calcule a área da região limitada pelos gráficos de $y = x^2 - x^4$ e $y = x^2 - 1$.

Figura 7.24: A região do exemplo [5].

i) Calculemos as interseções dos gráficos; em outras palavras, resolvamos o seguinte sistema de equações:

$$\begin{cases} y = x^2 - x^4 \\ y = x^2 - 1, \end{cases}$$

ou seja, resolvamos $x^4 - 1 = 0$; temos: x = -1 e x = 1. Os pontos de interseção são (-1,0) e (1,0).

ii) Notemos que $x^2-x^4 \geq x^2-1$ se $x \in [-1,1]$; utilizando a simetria da região:

$$A = \int_{-1}^{1} (-x^4 + 1) \, dx = 2 \int_{0}^{1} (-x^4 + 1) \, dx = \frac{8}{5} \, u.a.$$

[6] Calcule a área da região limitada pelos gráficos das seguintes curvas: $y^2 = a x$, $a y = x^2$, $y^2 = -a x$ e $a y = -x^2$ se a > 0. As curvas são parábolas.

Figura 7.25: A região do exemplo [6].

Pela simetria da região, podemos calcular a área da região situada no primeiro quadrante e multiplicar o resultado por 4.

- i) Observemos primeiro que $y^2=a\,x$ não é função de x.
- ii) Calculemos a interseção das curvas, resolvendo o sistema: 5

$$\begin{cases} y^2 = a x \\ x^2 = a y. \end{cases}$$

Então, $x^4 = a^2 y^2$; logo $x^4 - a^3 x = 0$, cujas raízes: x = 0 e x = a são os limites de integração. iii) A região no primeiro quadrante, cuja área queremos calcular é limitada superiormente pela função $y = \sqrt{a x}$ e inferiormente por $y = a x^2$, logo:

$$A = 4 \int_0^a \left[\sqrt{ax} - \frac{x^2}{a} \right] dx = 4 \left[\frac{2\sqrt{a^2 x^2} - x^3}{3a} \right]_0^a = \frac{4a^2}{3} u.a.$$

[7] Calcule a área da região limitada pelas curvas: y = cos(x) e $y = 1 - \frac{2x}{\pi}$.

Figura 7.26: A região do exemplo [7].

i) Calculemos as interseções das curvas: $\begin{cases} y &= cos(x) \\ y &= 1 - \frac{2\,x}{\pi}. \end{cases}$ Se x=0, então y=1, se $x=\frac{\pi}{2}$, então y=0 e se $x=\pi$, então y=-1; logo, temos os pontos (0,1) e $\left(\frac{\pi}{2},0\right]$ e $(\pi,-1)$.

ii) Pela simetria da região, podemos calcular a área da região situada no primeiro quadrante e multiplicar o resultado po 2.

$$A(R) = 2 \int_0^{\frac{\pi}{2}} \left[\cos(x) - 1 + \frac{2x}{\pi} \right] dx = 2 \left[\sec(x) + \frac{x(x-\pi)}{\pi} \right]_0^{\pi/2} = 2 \left[1 - \frac{\pi}{4} \right] u.a.$$

Observação Importante

Muitas vezes os problemas ficam mais simples de resolver se integramos em relação a y e não em relação a x. Podemos repetir o processo de partição num intervalo que fica no eixo dos y e a obtenção das somas de Riemann.

Seja R a região plana limitada pela direita pela função x=M(y), pela esquerda por x=N(y) e pelas retas y=c e y=d.

Figura 7.27: .

Não é difícil provar que se as funções M(y) e N(y) são contínuas em [c,d], então:

$$A = \int_{c}^{d} [M(y) - N(y)] dy$$

Por isso, para resolver os problemas de área é sempre indicado fazer o desenho da região correspondente.

Exemplo 7.8.

- [1] Calcule a área da região limitada pelas curvas $y^2 = 2x$ e y = x 4.
- i) As interseções das curvas são (2, -2) e (8, 4).

ii) Sejam
$$x = M(y) = y + 4$$
e $x = N(y) = \frac{y^2}{2}$.

Figura 7.28: A região do exemplo [1].

Então:

$$A = \int_{-2}^{4} \left[y + 4 - \frac{y^2}{2} \right] dy = \left[\frac{y^2}{2} + 4y - \frac{y^3}{6} \right]_{-2}^{4} = 18 u.a.$$

Sugerimos ao aluno fazer este problema integrando em relação a x, para "sentir" as dificuldades.

- [2] Calcule a área da região limitada pelas curvas $2\,y^2=x+4$ e $y^2=x$.
- i) As interseções das curvas são (4,2) e (4,-2).

ii) Sejam
$$x=M(y)=y^2$$
 e $x=N(y)=2\,y^2-4$.

Figura 7.29: A região do exemplo [2].

Então, pela simetria:

$$A = \int_{-2}^{2} [4 - y^{2}] dy = 2 \int_{0}^{2} [4 - y^{2}] dy = \frac{32}{3} u.a.$$

Exemplos Diversos

[1] Calcule a área da região limitada pelos gráficos de y=sen(x) e $y=sen(2\,x)$, $0\leq x\leq \pi$.

Figura 7.30: A região do exemplo [1].

Resolvendo sen(x) = sen(2x) = 2 sen(x) cos(x) para $x \in [0, \pi]$, temos que x = 0, $x = \frac{\pi}{3}$ e $x = \pi$. A interseção das curvas ocorre em (0,0), $(\frac{\pi}{3}, \frac{\sqrt{3}}{2})$ e $(\pi,0)$. Dividamos a região em duas:

$$R_1 = \{(x,y) / 0 \le x \le \frac{\pi}{3}, sen(x) \le y \le sen(2x)\},\$$

 $R_2 = \{(x,y) / \frac{\pi}{3} \le x \le \pi, sen(2x) \le y \le sen(x)\}.$

$$\operatorname{Ent} \tilde{\mathbf{a}} \mathsf{o} \text{, } A = \int_0^{\frac{\pi}{3}} \left[\operatorname{sen}(2\,x) - \operatorname{sen}(x) \right] dx + \int_{\frac{\pi}{2}}^{\pi} \left[\operatorname{sen}(x) - \operatorname{sen}(2\,x) \right] dx = \frac{5}{2} \, u.a.$$

[2] Calcule a área da região limitada pelo gráfico das curvas: $y = x^2 - x^4$ e $y = x - x^4$.

Figura 7.31: A região do exemplo [2].

Determinemos o intervalo de integração, resolvendo o sistema:

$$\begin{cases} y = x^2 - x^4 = x^2 (1 - x^2) \\ y = x - x^4 = x (1 - x^3). \end{cases}$$

Logo, x = 0 e x = 1; então, o intervalo de integração é [0, 1].

$$A = \int_0^1 \left[x - x^4 - \left(x^2 - x^4 \right) \right] dx = \int_0^1 \left[x - x^2 \right] dx = \left[\frac{x^2}{2} - \frac{x^3}{3} \right] \Big|_0^1 = \frac{1}{6} u.a.$$

[3] Calcule a área comum a $x^2 + y^2 \le 4x$ e $x^2 + y^2 \le 4$.

Figura 7.32: A região do exemplo [3].

Determinamos o intervalo de integração, resolvendo o sistema:

$$\begin{cases} x^2 + y^2 = 4 \\ x^2 + y^2 = 4x. \end{cases}$$

Então, x = 1 e $y = \pm \sqrt{3}$. A equação $x^2 + y^2 = 4x$ corresponde a um círculo de raio 2 centrado em (2,0); de fato, completando os quadrados obtemos: $(x-2)^2 + y^2 = 4$. Pela simetria da região, calculamos somente a área da região:

$$\{(x,y)/0 \le y \le \sqrt{3}, 1 \le x \le \sqrt{4-x^2}\}$$

no primeiro quadrante (em verde) e multiplicamos o resultado por quatro. Integrando em relação a y:

$$A = 4 \int_0^{\sqrt{3}} (\sqrt{4 - y^2} - 1) \, dy = 4 \left[\frac{y}{2} \sqrt{4 - y^2} - y \right]_0^{\sqrt{3}} = \left[\frac{8\pi}{3} - 2\sqrt{3} \right] u.a.$$

[4] Calcule a área da região limitada pelos gráficos das curvas: x=2 $y-y^2$ e y-x-2=0. Determinemos o intervalo de integração, resolvendo o sistema:

$$\begin{cases} x - 2y + y^2 = 0 \\ y - x - 2 = 0. \end{cases}$$

Então, y = -1 e y = 2. A interseção das curvas ocorre em (-3, -1) e (0, 2).

$$A = \int_{-1}^{2} (y - y^2 + 2) \, dy = \left[\frac{y^2}{2} - \frac{y^3}{3} + 2y \right]_{-1}^{2} = \frac{9}{2} \, u.a.$$

Figura 7.33: A região do exemplo [4].

[5] Calcule a área da região limitada pelos gráficos das seguintes curvas: $y = 7x^2 - 6x - x^3$ e y = 4x.

y=7 x^2-6 $x-x^3=x$ (1-x) (x-6); a curva intersecta o eixo dos x nos pontos (0,0), (1,0) e (6,0). Por outro lado, considerando y=7 x^2-6 $x-x^3$, temos y'=14 x-6-3 x^2 e y''=14-6 x; então, os pontos críticos $\frac{7+\sqrt{3}}{3}$ e $\frac{7-\sqrt{3}}{3}$ são, respectivamente, de máximo local e de mínimo local. Para obter as interseções das curvas, resolvemos o sistema:

$$\begin{cases} y = 7x^2 - 6x - x^3 \\ y = 4x; \end{cases}$$

logo, $7x^2 - 10x - x^3 = -x(x-2)(x-5) = 0$; as curvas se intersectam nos pontos de abscissas x = 0, x = 2 e x = 5.

Figura 7.34: A região do exemplo [5].

A região é subdividida em duas regiões R_1 e R_2 , onde:

$$R_1 = \{(x,y) / 0 \le x \le 2, 7x^2 - 6x - x^3 \le y \le 4x\},\$$

$$R_2 = \{(x,y) / 2 \le x \le 5, 4x \le y \le 7x^2 - 6x - x^3\}.$$

Logo:

$$A = \int_0^2 (10x - 7x^2 + x^3) dx + \int_5^2 \left[7x^2 - 10x - x^3 \right] dx$$

$$= 5x^2 - \frac{7x^3}{3} + \frac{x^4}{4} \Big|_0^2 - 5x^2 + \frac{7x^3}{3} - \frac{x^4}{4} \Big|_2^5$$

$$= \frac{16}{3} + \frac{63}{4} = \frac{253}{12} u.a.$$

[6] Calcule a área da região limitada pelos gráficos das seguintes curvas: $y=x^2-4\,x+4$ e $y=10-x^2$.

Figura 7.35: A região do exemplo [6].

As curvas se intersectam nos pontos de abscissas x=-1 e x=3; então:

$$A = \int_{-1}^{3} (10 - x^2 - x^2 + 4x - 4) \, dx = \int_{-1}^{3} (6 + 4x - 2x^2) \, dx = \frac{64}{3} u.a.$$

[7] Calcule a área limitada pela curva $(y-2)^2=x-1$, pela tangente a esta curva no ponto de ordenada y=3 e pelo eixo dos x.

Figura 7.36: A região do exemplo [7].

Se $y_0=3$, então $x_0=2$. A equação da reta tangente no ponto (2,3) é a equação da reta tangente é $y=y'(x_0)\,(x-2)+3$; para obter y', derivamos implicitamente em relação a x a equação $(y-2)^2=x-1$; temos: $2\,(y-2)\,y'=1$. No ponto (2,3), temos: $y'(2)=\frac{1}{2}$; logo, $2\,y-x-4=0$. Integrando em relação a y, teremos: $x=M(y)=(y-2)^2+1$, $x=N(y)=2\,y-4$ e

$$A = \int_0^3 ((y-2)^2 + 1 - (2y-4))dy = \int_0^3 (y^2 - 6y + 9) \, dy = 9 \, u.a.$$

[8] Determine a área da região limitada pela curva:

$$\frac{x^2}{a^2} + \sqrt[3]{\frac{y^2}{b^2}} = 1;$$

Figura 7.37: A região do exemplo [8].

As interseções com os eixos são (a,0), (-a,0), (0,b) e (0,-b). Como a curva é simétrica em relação aos eixos coordenados, podemos calcular a área da região situada no primeiro quadrante e multiplicar o resultado por 4. Então, consideramos:

$$y = \frac{b}{a^3} \sqrt{(a^2 - x^2)^3},$$

no primeiro quadrante. A área desta região é:

$$A = \frac{b}{a^3} \int_0^a \sqrt{(a^2 - x^2)^3} \, dx;$$

fazendo a mudança de variáveis: x = a sen(t), temos $0 \le t \le \frac{\pi}{2}$ e dx = a cos(t) dt:

$$A = \frac{b}{a^3} \int_0^a \sqrt{(a^2 - x^2)^3} \, dx = a \, b \int_0^{\frac{\pi}{2}} \cos^4(t) \, dt;$$

usando a identidade $cos^4(t) = \frac{3}{8} + \frac{cos(2t)}{2} + \frac{cos(4t)}{8}$,

$$A = a b \int_0^{\frac{\pi}{2}} \cos^4(t) dt = a b \int_0^{\frac{\pi}{2}} \left[\frac{3}{8} + \frac{\cos(2t)}{2} + \frac{\cos(4t)}{8} \right] dt = \frac{3\pi a b}{16} u.a.$$

A área pedida é: $A=4\,S=\frac{3\pi ab}{4}\,u.a.$

[9] Calcule a soma das áreas limitadas pela curva $y = x sen(\frac{x}{a})$ e o eixo dos x, sabendo que $x \in [0, n \pi a]$, sendo $n, a \in \mathbb{N}$.

Figura 7.38: A região do exemplo [9].

$$A = \int_0^{a\pi} x \operatorname{sen}\left(\frac{x}{a}\right) dx - \int_{a\pi}^{2a\pi} x \operatorname{sen}\left(\frac{x}{a}\right) dx + \dots + (-1)^{n+1} \int_{(n-1)a\pi}^{na\pi} x \operatorname{sen}\left(\frac{x}{a}\right) dx.$$

Vemos que $A = A_0 + \dots + A_{n-1}$, onde A_k é a área limitada pela curva, o eixo dos x, se $k \, a \, \pi \leq x \leq (k+1) \, a \, \pi \, e \, k = 0, 1 \dots n-1$, ou seja,

$$A_k = \int_{ka\pi}^{(k+1)a\pi} x \operatorname{sen}\left(\frac{x}{a}\right) dx,$$

considerando: $A_k = \left| \int_{ka\pi}^{(k+1)a\pi} x \, sen(\frac{x}{a}) \, dx \right|$, se k é ímpar. Integrando por partes temos:

$$A_k = \int_{ka\pi}^{(k+1)a\pi} x \, sen(\frac{x}{a}) \, dx = (2k+1) \, a^2 \pi \cos(k\pi).$$

Logo, $A = a^2 \pi (1 + 3 + 5 + \dots + (2n - 1)) = a^2 n^2 \pi u.a.$, pois, $1 + 3 + 5 + \dots + (2n - 1)$ é soma de termos de uma P.A.

[10] Calcule a área da região limitada pela astróide $\sqrt[3]{x^2} + \sqrt[3]{y^2} = \sqrt[3]{a^2}$, a > 0.

As interseções da curva com os eixos coordenados são (a,0), (-a,0), (0,a) e (0,-a). Pela simetria da curva, calculamos a área da região no primeiro quadrante e multiplicamos o resultado por 4.

Figura 7.39: A região do exemplo [10].

Seja
$$y = (\sqrt[3]{a^2} - \sqrt[3]{x^2})^{\frac{3}{2}}$$
; logo,

$$A = 4 \int_0^a \left[\sqrt[3]{a^2} - \sqrt[3]{x^2} \right]^{\frac{3}{2}} dx.$$

Fazendo a mudança $x = a sen^3(t)$, obtemos $y = a cos^3(t)$, $dx = 3 a sen^2(t) cos(t) dt$; então,

$$\left(\sqrt[3]{a^2} - \sqrt[3]{x^2}\right)^{\frac{3}{2}} dx = 3a^2 \cos^4(t) \sec^2(t) dt = 3a^2 \cos^4(t) (1 - \cos^2(t)) dt;$$

logo:

$$A = \frac{3a^2}{8} \int_0^{\frac{\pi}{2}} \left[-2\cos(4t) + \cos(2t) + 2 - \cos(6t) \right] dt = \frac{3a^2}{8} \pi u.a.$$

7.7 Volume de Sólidos de Revolução

Se giramos uma região plana em torno de uma reta, obtemos o que é chamado um sólido de revolução. A reta em torno da qual a região é girada chama-se eixo de revolução. Por exemplo, considere a seguinte região no plano:

Figura 7.40:

Girando a região em torno do eixo dos x, obtemos:

Figura 7.41: Sólido gerado pela região.

Exemplo 7.9.

[1] Seja R a região limitada pelas curvas y=x, $x=\pm 1$ e o eixo dos x. Se giramos a região R em torno do eixo dos x, obtemos:

Figura 7.42: A região e o sólido, respectivamemnte.

[2] Seja R a região limitada pelas curvas $y=x^2$ e y=1. Se giramos a região R em torno do eixo dos y, obtemos

Figura 7.43: A região e o sólido, respectivamente.

[3] Seja R a região limitada pelo gráfico de y=sen(x) para $x\in[0,2\,\pi]$ e o eixo dos x. Se giramos a região R em torno do eixo dos x obtemos o sólido do desenho à esquerda e se giramos a região R em torno do eixo dos y, obtemos o sólido do desenho à direita:

Figura 7.44: A região e os sólidos, respectivamente.

[4] Seja R a região limitada pelos gráficos de $y=x^2$, x=1, x=2 e pelo eixo dos x. Se giramos a região R em torno do eixo dos x, obtemos:

Figura 7.45: A região e o sólido, respectivamente.

7.7.1 Cálculo do Volume dos Sólidos

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua tal que $f(x)\geq 0$ em [a,b] e a região:

$$R = \{(x, y) / a \le x \le b, \ 0 \le y \le f(x)\}$$

Figura 7.46: A região e o sólido, respectivamente.

Figura 7.47:

Girando R_i em torno do eixo dos x obtemos um cilindro circular reto C_i de volume $f(c_i)^2 \times \Delta x_i \pi$.

Figura 7.48:

A soma dos volumes dos n cilindros é:

$$V_n = \pi \sum_{i=1}^n f(c_i)^2 \, \Delta x_i.$$

 V_n é uma aproximação do volume do sólido de revolução, quando Δx_i aproxima-se de 0, ou, equivalentemente, se n cresce. Intuitivamente estamos "preenchendo" o sólido de revolução

por cilindros de altura pequena, dos quais sabemos efetivamente calcular o volume. Seguindo o mesmo raciocínio utilizado quando definimos área de uma região plana, temos:

$$V(S) = \lim_{|\Delta x_i| \to 0} \pi \sum_{i=1}^{n} f(c_i)^2 \, \Delta x_i = \pi \int_a^b f(x)^2 \, dx,$$

se o limite existe.

É possível demonstrar que este limite sempre existe e é independente das escolhas feitas. Se a função f é negativa em algum subconjunto de [a,b], o sólido de revolução obtido a partir da região limitada pelo gráfico de f, o eixo dos x e as retas x=a e x=b coincide com o sólido de revolução obtido a partir da região limitada pelo gráfico de |f|, o eixo dos x e as retas x=a e x=b. O fato de que o integrando $f(x)^2 \geq 0$, implica em que seja válida a mesma fórmula para ambos os casos.

Figura 7.49:

Proposição 7.2. Sejam $f:[a,b] \longrightarrow \mathbb{R}$ uma função contínua tal que $f(x) \ge 0$ em [a,b] e a região:

$$R = \{(x, y) / a \le x \le b, \ 0 \le y \le f(x)\}$$

Considere o sólido de revolução S obtido girando a região ao redor do eixo dos x. Então o volume V(S) do sólido S é:

$$V(S) = \pi \int_{a}^{b} f(x)^{2} dx$$

Em geral, este processo, pode ser feito para qualquer região limitada pelos gráficos de funções contínuas.

Sejam $f,g:[a,b]\longrightarrow \mathbb{R}$ funções contínuas tais que $f(x)\geq g(x)\geq 0$ para todo $x\in [a,b]$ e a região:

$$R = \{(x, y) / a \le x \le b, g(x) \le y \le f(x)\}$$

Figura 7.50: $R = \{(x, y) / a \le x \le b, g(x) \le y \le f(x)\}.$

O volume do sólido de revolução S obtido girando R em torno do eixo dos x é:

$$V(S) = \pi \int_{a}^{b} \left[f(x)^{2} - g(x)^{2} \right] dx$$

De forma análoga, sejam $M,N:[c,d]\longrightarrow \mathbb{R}$ funções contínuas tais que $M(y)\geq N(y)$ para todo $y\in [c,d]$ e a região:

$$R = \{(x, y) / c \le y \le d, N(y) \le x \le M(y)\}$$

Figura 7.51: $R = \{(x, y) / c \le y \le d, N(y) \le x \le M(y)\}.$

O volume do sólido de revolução obtido girando R ao redor dos eixo dos y é:

$$V(S) = \pi \int_{c}^{d} \left[M(y)^{2} - N(y)^{2} \right] dy$$

Em particular, para a reta x = N(y) = 0, ou seja, o eixo dos y.

$$V(S) = \pi \int_{c}^{d} M(y)^{2} dy$$

Exemplo 7.10.

[1] Calcule o volume do sólido de revolução obtido girando em torno do eixo dos x a região limitada pela curva y=sen(x), $x\in[0,2\,\pi]$ e o eixo dos x.

Figura 7.52: Região e o sólido do exemplo [1].

Pela simetria do sólido, calculamos o volume da metade do sólido e multiplicamos o resultado por 2:

$$V(S) = 2\pi \int_0^{\pi} sen^2(x) dx = \pi^2 u.v.$$

[2] Calcule o volume do sólido de revolução obtido girando em torno do eixo dos x a região limitada pela curva $y = a \cosh\left(\frac{x}{a}\right), x \in [-b, b]$ e o eixo dos x, (a, b > 0).

Figura 7.53: Região e o sólido do exemplo [2].

Pela simetria do sólido, calculamos o volume da metade do sólido e multiplicamos o resultado por 2:

$$V(S) = 2a^{2}\pi \int_{0}^{b} \cosh^{2}\left(\frac{x}{a}\right) dx = \frac{a^{2}\pi}{2} \int_{0}^{b} \left[e^{2x/a} + e^{-2x/a} + 2\right] dx$$
$$= \frac{a^{2}\pi}{2} \left[2b + a \operatorname{senh}\left(\frac{2b}{a}\right)\right] u.v.$$

[3] Calcule o volume do sólido de revolução obtido girando em torno do eixo dos x a região limitada pela curva $y = \sqrt{a^2 - x^2}$, $-a \le x \le a$ e o eixo dos x.

$$V(S) = \pi \int_{-a}^{a} [\sqrt{a^2 - x^2}]^2 dx = \frac{4\pi a^3}{3} u.v.$$

Observe que o volume de revolução é o de uma esfera de raio a.

Figura 7.54: Região e o sólido do exemplo [3].

[4] Calcule o volume do sólido de revolução obtido girando em torno do eixo dos x a região limitada pelos gráficos de $4y = 13 - x^2$ e 2y = x + 5.

Figura 7.55: Região e o sólido do exemplo [4]

Os limites de integração são x = -3 e x = 1.

$$V(S) = \pi \int_{-3}^{1} \left(\left[\frac{13 - x^2}{4} \right]^2 - \left[\frac{x + 5}{2} \right]^2 \right) dx = \frac{\pi}{16} \int_{-3}^{1} \left[69 - 30 x^2 + x^4 - 40 x \right] dx = \frac{64 \pi}{5} u.v.$$

[5] Calcule o volume do sólido de revolução obtido girando em torno do eixo dos y a região limitada pelo gráfico de $(x-b)^2 + y^2 = a^2$, 0 < a < b.

Figura 7.56: Região e o sólido do exemplo [5].

Sejam $M(y)=b+\sqrt{a^2-y^2}$ e $N(y)=b-\sqrt{a^2-y^2}$. Os limites de integração são y=-a e y=a; então:

$$V(S) = \pi \int_{-a}^{a} \left[\left(M(y) \right)^{2} - \left(N(y) \right)^{2} \right] dy = 4 b \pi \int_{-a}^{a} \sqrt{a^{2} - y^{2}} \, dy.$$

Note que $2\int_{-a}^a \sqrt{a^2-y^2}\,dy$ é a área da região limitada por um círculo de raio a; logo, $V(S)=2\,\pi^2\,a^2\,b$. A superfície de revolução obtida é chamada toro.

[6] Calcule o volume do sólido de revolução obtido girando em torno do eixo dos x a região limitada pelo gráfico de $y=e^x$, $-1 \le x \le 1$ e o eixo dos x.

Figura 7.57: Região e o sólido do exemplo [5].

$$V(S) = \pi \int_{-1}^{1} e^{2x} dx = \frac{\pi (e^2 - e^{-2})}{2} u.v.$$

7.7.2 Outros Eixos de Revolução

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua tal que $f(x)\geq 0$, $x\in [a,b]$ e R a região limitada pelo gráfico de f, pelas retas x=a, x=b e y=l. Considere o sólido de revolução S obtido girando a região ao redor da reta y=l. Então, o volume V(S) do sólido S é:

$$V(S) = \pi \int_{a}^{b} (f(x) - l)^{2} dx$$

Analogamente, se a região R é determinada pelo gráfico da função contínua $x=N(y)\geq 0$, $y\in [c,d]$ e pelas retas y=c, y=d e x=r, então o volume do sólido de revolução obtido girando R ao redor da reta x=r é:

$$V(S) = \pi \int_{c}^{d} \left[N(y) - r \right]^{2} dy$$

Exemplo 7.11.

[1] Calcule o volume do sólido de revolução obtido girando em torno da reta y=4, a região limitada pela curva $y=x^2$, $1 \le x \le 2$ e pela reta y=-1.

Figura 7.58: Região e o sólido do exemplo [1].

$$V(S) = \pi \int_{1}^{2} [x^{2} + 1]^{2} dx = \frac{178 \pi}{15} u.v.$$

[2] Calcule o volume do sólido de revolução obtido girando em torno da reta x=-1 a região limitada pelo gráfico de $x=\frac{y^2}{2}+1$ e pelas retas $y=\pm 2$.

Figura 7.59: Região e o sólido do exemplo [2].

Os limites de integração são $y=\pm 2$.

$$V(S) = \pi \int_{-2}^{2} \left[\frac{y^2}{2} + 1 - (-1) \right]^2 dy = \frac{\pi}{4} \int_{-2}^{2} [y^2 + 4]^2 dy = \pi \left[4y + \frac{2y^3}{3} + \frac{y^5}{20} \right] \Big|_{-2}^{2} = \frac{448 \,\pi}{15} \, u.v.$$

[3] Calcule o volume do sólido de revolução obtido girando em torno da reta x=6 a região limitada pelo gráfico de $4\,x=y^2$ e pela reta x=4.

Figura 7.60: Região e o sólido do exemplo [3].

Os limites de integração são $y=\pm 4$.

$$V(S) = \pi \int_{-4}^{4} \left[\left(\frac{1}{4} y^2 - 6 \right)^2 - (4 - 6)^2 \right] dy = \frac{\pi}{16} \int_{-4}^{4} \left[y^4 - 48 y^2 + 512 \right] dy = \frac{768 \pi}{5} u.v.$$

[4] Determine o valor de a>0 tal que se a região limitada pelas curvas $y=1+\sqrt{x}\,e^{x^2}$, y=1 e x=a, girar em torno da reta y=1, o sólido gerado tenha volume igual a 2π . Para obter a, devemos resolver a equação:

$$2\pi = \pi \int_0^a x e^{2x^2} dx$$
 (*).

Fazendo $u=2\,x^2$, $du=4\,x\,dx$ em (*), obtemos:

$$2 = \frac{1}{4} \int_0^{2a^2} e^u \, du = \frac{e^{2a^2} - 1}{4},$$

donde $9 = e^{2a^2}$ e $a = \sqrt{ln(3)}$.

Figura 7.61: A região do exemplo [4].

7.7.3 Método das Arruelas

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ função contínua tal que $f(x)\geq 0$ em [a,b] e a região:

$$R = \{(x, y) / 0 \le a \le x \le b, \ 0 \le y \le f(x)\}.$$

Fazendo girar a região R ao redor dos eixo dos y , obtemos um sólido de revolução S. Se a>0, o sólido possui um espaço vazio internamente.

Figura 7.62:

Como antes, considere a seguinte partição do intervalo [a,b]: $a=x_0 < x_1 < x_2 < < x_n = b$. $\Delta x_i = x_i - x_{i-1}$ é o comprimento de cada subintervalo $[x_{i-1},x_i]$, i variando de 1 até n. Em cada subintervalo $[x_{i-1},x_i]$, escolha $c_i = \frac{x_i + x_{i-1}}{2}$, o ponto médio do subintervalo $[x_{i-1},x_i]$, i variando de 1 até n. Seja R_i o retângulo de altura $f(c_i)$ e base Δx_i , i variando de 1 até n. Fazendo girar R_i em torno do eixo dos y obtemos uma arruela cilíndrica A_i de raio médio c_i e altura $f(c_i)$.

Figura 7.63:

O volume de A_i é $2 \pi c_i f(c_i) \Delta x_i$. A soma dos volumes dos n cilindros é:

$$V_n = 2\pi \sum_{i=1}^n c_i f(c_i) \Delta x_i.$$

 V_n é uma aproximação do volume do sólido de revolução, quando Δx_i aproxima-se de 0, ou equivalentemente, se n cresce. Intuitivamente estamos "fatiando" o sólido de revolução por inúmeras arruelas de altura pequena, das quais sabemos efetivamente calcular o volume. Seguindo o mesmo raciocínio anterior, temos:

$$V(S) = \lim_{|\Delta x_i| \to 0} 2\pi \sum_{i=1}^{n} c_i f(c_i) \, \Delta x_i = 2\pi \int_a^b x f(x) \, dx,$$

se o limite existe. É possível demonstrar que este limite sempre existe e é independente das escolhas feitas. Em geral, este processo pode ser feito para qualquer região limitada pelos gráficos de funções contínuas. Sejam $f,g:[a,b]\longrightarrow \mathbb{R}$ funções contínuas tais que $f(x)\ge g(x)\ge 0$ para todo $x\in [a,b], a\ge 0$ e a região $R=\{(x,y)\,/\,a\le x\le b,\,g(x)\le y\le f(x)\}.$

Figura 7.64: $R = \{(x, y) / a \le x \le b, g(x) \le y \le f(x)\}$

O volume do sólido de revolução S obtido girando R em torno do eixo dos y é:

$$V(S) = 2\pi \int_{a}^{b} x \left(f(x) - g(x) \right) dx$$

Exemplo 7.12.

[1] Calcule o volume do sólido de revolução obtido girando em torno do eixo dos y a região limitada pelo gráfico de $y=sen(x), 0 \le x \le \pi$ e o eixo dos x.

Figura 7.65: Região e o sólido do exemplo [1].

O volume é:
$$V=2\,\pi\int_0^\pi x\,sen(x)\,dx=2\,\pi^2\,u.v.$$

[2] Calcule o volume do sólido de revolução obtido girando em torno do eixo dos y a região limitada pela curva $y=cos(x); \frac{\pi}{2} \leq x \leq 4 \, \pi$ e o eixo dos x.

Figura 7.66: Região e o sólido do exemplo [2].

O volume é $V=2\pi V_1$, onde:

$$V_1 = -\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} x \cos(x) dx + \int_{\frac{3\pi}{2}}^{\frac{5\pi}{2}} x \cos(x) dx - \int_{\frac{5\pi}{2}}^{\frac{7\pi}{2}} x \cos(x) dx + \int_{\frac{7\pi}{2}}^{4\pi} x \cos(x) dx.$$

Como
$$\int x \cos(x) dx = \cos(x) + x \sin(x) + c$$
, então, $V = 2\pi \left(1 + \frac{31\pi}{2}\right) u. v.$

[3] Calcule o volume do sólido de revolução obtido girando em torno do eixo dos y a região limitada pelas curvas $y=1-x^6$ e $y=x^4-1$, $0 \le x \le 1$.

Figura 7.67: Região e o sólido do exemplo [3].

$$V = 2\pi \int_0^1 x (2 - x^6 - x^4) dx = \frac{17\pi}{12} u.v.$$

[4] Calcule o volume do sólido de revolução obtido girando em torno do eixo dos y a região limitada pela curva $y=(x-1)^2$, $0 \le x \le 2$ e o eixo dos x.

Figura 7.68: Região e o sólido do exemplo [4].

$$V = 2\pi \int_0^2 x (x-1)^2 dx = \frac{4\pi}{3} u.v.$$

7.8 Cálculo do Comprimento de Arco

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função derivável. A porção AB do gráfico de f, comprendida entre os pontos: A=(a,f(a)) e B=(b,f(b)) é chamado **arco**. Nosso interesse é medir o comprimento deste arco. Se a curva é uma reta, para calcular o comprimento de arco s da reta, compreendido entre os pontos $(x_1,f(x_1))$ e $(x_2,f(x_2))$, usamos o Teorema de Pitágoras e obtemos:

$$\sqrt{(x_2-x_1)^2+(f(x_2)-f(x_1))^2}$$
.

Generalizando esta idéia para o gráfico da função contínua f, fazemos uma partição de ordem n do intervalo [a,b]: $a=x_0 < x_1 < < x_n = b$; denotamos por $Q_i = (x_i, f(x_i)), 1 \le i \le n$.

Figura 7.69:

Ligando cada Q_{i-1} a Q_i ($1 \le i \le n$) por um segmento de reta, obtemos uma linha poligonal formada pela reunião dos segmentos de reta. Como sabemos calcular o comprimento de cada

segmento de reta, sabemos calcular o comprimento da poligonal. Intuitivamente, o comprimento da poligonal é bastante próximo do comprimento do arco da curva; então:

$$L_n = \sum_{i=1}^n \sqrt{(x_i - x_{i-1})^2 + (f(x_i) - f(x_{i-1}))^2}$$

é o comprimento da poligonal. Aplicando o Teorema do Valor Médio a f em cada subintervalo $[x_{i-1},x_i]$, vemos que existe $c_i \in (x_{i-1},x_i)$ tal que $f(x_i)-f(x_{i-1})=f'(c_i)$ (x_i-x_{i-1}) , para cada i de 1 até n; logo,

$$L_n = \sum_{i=1}^n \sqrt{(x_i - x_{i-1})^2 + (f'(c_i)(x_i - x_{i-1}))^2} = \sum_{i=1}^n \sqrt{1 + (f'(c_i))^2} (x_i - x_{i-1})$$
$$= \sum_{i=1}^n \sqrt{1 + (f'(c_i))^2} \Delta x_i,$$

onde $\Delta x_i = x_i - x_{i-1}$. Novamente observamos que quando n cresce muito, Δx_i aproxima-se de zero e L_n aproxima-se do comprimento do arco. Se para cada partição do intervalo [a,b], os c_i são escolhidos como antes, temos que o comprimento do arco AB da curva é:

$$L_{AB} = \lim_{|\Delta x_i| \to 0} \sum_{i=1}^{n} \sqrt{1 + (f'(c_i))^2} \Delta x_i.$$

Se f'(x) é uma função contínua em [a, b], é possível provar que o limite anterior sempre existe e é igual a L, para qualquer escolha da partição e dos c_i . Em tal caso, temos que:

$$L = \int_a^b \sqrt{1 + (f'(x))^2} \, dx$$

Se a curva é o gráfico de uma função x=g(y) definida no intervalo [c,d], com as hipóteses anteriores, temos que:

Figura 7.70:

$$L = \int_c^d \sqrt{1 + (g'(y))^2} \, dy$$

Exemplo 7.13.

[1] Calcule o comprimento de arco da curva $y=\sqrt[3]{x^2}$ entre os pontos (8,4) e (27,9). Temos que:

Figura 7.71: Gráfico de $y = x^{2/3}$.

Então:

$$f(x) = \sqrt[3]{x^2}, \quad f'(x) = \frac{2}{3\sqrt[3]{x}} \quad e \quad \sqrt{1 + (f'(x))^2} = \frac{\sqrt{9x^{\frac{2}{3}} + 4}}{3\sqrt[3]{x}};$$

logo:
$$L = \frac{1}{3} \int_{8}^{27} \frac{\sqrt{9 x^{\frac{2}{3}} + 4}}{\sqrt[3]{x}} dx$$
. Seja $u = 9\sqrt[3]{x^2} + 4$; logo, $du = \frac{6}{\sqrt[3]{x}} dx$.

$$L = \frac{1}{18} \int_{40}^{85} \sqrt{u} \, du = \frac{5}{27} \left(17\sqrt{85} - 16\sqrt{10} \right) u.c.$$

(u.c. unidades de comprimento.)

[2] Calcule o comprimento de arco da curva $y = \frac{x^4}{4} + \frac{1}{8\,x^2}$ tal que $1 \le x \le 2$.

Primeiramente: $y' = f'(x) = x^3 - \frac{1}{4x^3}$; logo, $1 + (y')^2 = (x^3 + \frac{1}{4x^3})^2$ e $\sqrt{1 + (y')^2} = x^3 + \frac{1}{4x^3}$; então:

$$L = \int_{1}^{2} \left[x^{3} + \frac{1}{4x^{3}} \right] dx = \frac{2x^{6} - 1}{8x^{2}} \Big|_{1}^{2} = \frac{123}{32} u.c.$$

[3] Calcule o comprimento de arco da catenária $y = a \cosh(\frac{x}{a})$ no intervalo [-b, b], tal que (a, b > 0).

Figura 7.72: Gráfico da catenária.

 $y' = senh(\frac{x}{a})$; logo, $\sqrt{1 + {y'}^2} = cosh(\frac{x}{a})$; então:

$$L = \int_{-b}^{b} \cosh\left(\frac{x}{a}\right) dx = 2 a \operatorname{senh}\left(\frac{b}{a}\right) u.c.$$

[4] Calcule o comprimento de arco da curva y = ln(cos(x)) tal que $0 \le x \le \frac{\pi}{4}$.

Figura 7.73: Gráfico de y = ln(cos(x)).

y'=-tg(x). Logo, $\sqrt{1+(y')^2}=sec(x).$ Então:

$$L = \int_0^{\frac{\pi}{4}} \sec(x) \, dx = \ln(\sec(x) + tg(x)) \Big|_0^{\frac{\pi}{4}} = \ln(\sqrt{2} + 1) \, u.c.$$

7.9 Definição de Logaritmo Natural

Definição 7.3. A função $ln:(0,+\infty)\longrightarrow \mathbb{R}$ é definida por:

$$n(x) = \int_{1}^{x} \frac{dt}{t}$$

ln(x) é chamado logaritmo natural de x.

Proposição 7.3. Das propriedades da integral definida e do Teorema Fundamental do Cálculo, segue que:

1.
$$ln(1) = 0$$

4.
$$[ln(x)]' = \frac{1}{x}$$

2.
$$ln(x) < 0$$
 se $0 < x < 1$

3.
$$ln(x) > 0$$
 se $x > 1$

5. A função logarítmica é crescente.

7.9.1 Logaritmo como Área

Seja H_x a região limitada pelo gráfico da função $f(t) = \frac{1}{t}$, o eixo dos x e as retas t = 1 e t = x.

Figura 7.74: A região H_x .

Geometricamente, ln(x) é definido por

$$ln(x) = \left\{ egin{array}{ll} ext{área}(H_x) & ext{se} & 1 \leq x \\ - ext{área}(H_x) & ext{se} & 0 < x < 1. \end{array}
ight.$$

Se x=1, H_x é um segmento de reta; logo, a área $(H_x)=0$ e ln(1)=0. Por outro lado, verefiquemos que ln(xy)=ln(x)+ln(y), para todo $x,y\in(0,+\infty)$. De fato:

$$ln(xy) = \int_{1}^{xy} \frac{dt}{t} = \int_{1}^{x} \frac{dt}{t} + \int_{x}^{xy} \frac{dt}{t} = ln(x) + \int_{x}^{xy} \frac{dt}{t}.$$

Fazendo t = x s, tem-se, dt = x ds e:

$$\int_{x}^{xy} \frac{dt}{t} = \int_{1}^{y} \frac{ds}{s} = \ln(y).$$

 $ln(x^{\alpha})=\alpha\,ln(x);\,x>0$ e $\alpha\in\mathbb{R}.$ De fato $ln(x^{\alpha})=\int_{1}^{x^{\alpha}}\frac{dt}{t}.$ Fazendo $t=s^{\alpha}$, tem-se, $dt=\alpha\,s^{\alpha-1}\,ds$ e:

$$\int_{1}^{x^{\alpha}} \frac{dt}{t} = \alpha \int_{1}^{x} \frac{ds}{s} = \alpha \ln(x).$$

Em particular, $ln\left(\frac{x}{y}\right) = ln(x) - ln(y)$; x, y > 0.

$$ln(\frac{x}{y}) = ln(xy^{-1}) = ln(x) + ln(y^{-1}) = ln(x) - ln(y).$$

Podemos agora definir a função exponencial assim: $y = e^x$ se, e somente se x = ln(y). Todas as propriedades da função exponencial podem ser demonstradas a partir desta definição.

7.10 Trabalho

Consideremos uma partícula de massa m que se desloca ao longo de uma reta sob a influência de uma força F. Da segunda lei de Newton, sabemos que F é dada pelo produto da massa pela sua aceleração a: $F=m\times a$. Se a aceleração é constante, então a força também é constante. O trabalho W realizado pela partícula para deslocar-se ao longo de uma reta, percorrendo uma distância d é dado pelo produto da força pela distância: $W=F\times d$, W medido em J (Joule). Se uma força variável y=f(x) (f função contínua) atua sobre um objeto situado no ponto x do eixo dos x, o trabalho realizado por esta força quando o objeto se desloca de a até b ao longo deste eixo, é dado por:

$$W = \int_{a}^{b} f(x) \, dx$$

W medido em J (Joule).

De fato, suponhamos que a partícula desloca-se ao longo do eixo dos x de x=a até x=b. Consideremos a função contínua $f:[a,b] \longrightarrow \mathbb{R}$. Subdividamos o intervalo [a,b] efetuando uma partição de ordem n tal que os subintervalos $[x_{i-1},x_i]$ tem o mesmo comprimento $\Delta x=x_i-x_{i-1}$, para $1\leq i\leq n$. Seja $c_i\in [x_{i-1},x_i]$; a força no ponto c_i é $f(c_i)$. Se $\Delta x\to 0$, a função contínua f restrita ao subintervalo $[x_{i-1},x_i]$ é quase constante (varia muito pouco); então o trabalho W_i realizado pela partícula para mover-se de x_{i-1} até x_i é: $W_i\cong f(c_i)\times \Delta x$ e o trabalho total W_n , é $W_n\cong \sum_{i=1}^n f(c_i)\Delta x$. É possível provar, com rigor matemático, que o seguinte limite sempre existe e é igual ao trabalho W realizado pela partícula:

$$W = \lim_{n \to +\infty} W_n = \lim_{\Delta x \to 0} \sum_{i=1}^n f(c_i) \ \Delta x.$$

E mais ainda, este limite não depende da escolha da partição do intervalo ou da escolha dos pontos c_i .

7.11. EXERCÍCIOS 309

Exemplo 7.14.

[1] Uma partícula é localizada a uma distância de $x\,cm$ da origem. Uma força de $(x^4+2\,x^3+3\,x^2)\,N$ age sobre a partícula quando a mesma se move de x=1 até x=2. Qual é o trabalho realizado pela partícula para deslocar-se?

$$W = \int_{1}^{2} \left[x^4 + 2x^3 + 3x^2 \right] dx = \frac{207}{10} J.$$

[2] Qual é o trabalho realizado ao se esticar uma mola em 8 cm sabendo que a força de 1 N a estica em 1 cm? (N=Newton)

De acordo com a lei de Hooke, a força de y N que estica em x m a mola é dada por y = k x, onde k é uma constante. Como x = 0.01 m e y N = 1 N, temos k = 100 e y = 100 x. O trabalho realizado será:

 $W = \int_0^{0.08} 100 \, x \, dx = 0.32 \, J.$

[3] Energia Cinética: O trabalho realizado por uma força f atuando sobre uma partícula de massa m que se move de x_1 até x_2 é W. Usando a segunda lei de Newton, a regra da cadeia e considerando que v_1 e v_2 são as velocidades da partículas em x_1 e x_2 , obtemos:

$$W = \int_{x_1}^{x_2} f(x) dx = \frac{m v^2}{2} \Big|_{v_1}^{v_2} = \frac{m (v_2^2 - v_1^2)}{2},$$

pois, $f=m\,a=m\,\frac{dv}{dt}=m\,v\,\frac{dv}{dx}$. A expressão $\frac{m\,v^2}{2}$ é chamada energia cinética do corpo em movimento com velocidade v. Logo, o trabalho realizado por uma força f é igual à variação da energia cinética do corpo e o cálculo desta variação dará o trabalho realizado.

Qualquer fenômeno que possa ser estudado utilizando partições pode ser modelado por integrais definidas. Outras aplicações da integral definida podem ser encontradas nos exercícios.

7.11 Exercícios

1. Calcule as seguintes integrais usando o método de substituição:

(a)
$$\int_{-1}^{3} \sqrt{2x+3} \, dx$$
 (b) $\int_{0}^{\frac{\pi}{4}} \frac{\sec^{2}(x)}{e^{tg(x)}} \, dx$ (c) $\int_{0}^{\frac{\pi}{4}} \frac{\sec^{2}(x)}{e^{2x} + \cos(x)} \, dx$ (j) $\int_{0}^{1} (2x-1)^{100} \, dx$ (d) $\int_{0}^{\frac{\pi}{8}} \frac{\sec^{2}(2x)}{\sqrt{1+tg(2x)}} \, dx$ (l) $\int_{0}^{\frac{\pi}{8}} \frac{dx}{2x+3}$ (e) $\int_{0}^{\frac{\pi}{4}} \sec(x) \cos(x) \, dx$ (f) $\int_{0}^{1} \frac{e^{2x}}{e^{2x}+1} \, dx$ (m) $\int_{0}^{2} \frac{x^{2}}{\sqrt{x^{3}+1}} \, dx$ (g) $\int_{0}^{\frac{\pi}{4}} \sec(x) \ln(\cos(x)) \, dx$ (n) $\int_{0}^{1} e^{x} \sec(e^{x}) \, dx$

(o)
$$\int_{1}^{3} \frac{x-2}{(3x^2-12x+1)^4} dx$$

(p)
$$\int_{0}^{1} x^{2} e^{x^{3}} dx$$

(q)
$$\int_{1}^{2} \frac{x}{\sqrt[3]{x^2 + 1}} dx$$

(r)
$$\int_0^1 \frac{arcsen(x)}{\sqrt{1-x^2}} dx$$

(s)
$$\int_0^1 \frac{dx}{1 + \sqrt{x}}$$

(t)
$$\int_3^8 \frac{sen(\sqrt{x+1})}{\sqrt{x+1}} dx$$

(u)
$$\int_0^a (x-a) \sqrt{2 a x - x^2} dx$$
; $a \neq 0$

(v)
$$\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{6 - 5 \sec(x) + \sec^2(x)} dx$$

(w)
$$\int_{1}^{2} \frac{sen(ln(x))}{x} dx$$

(x)
$$\int_0^1 \frac{x^2}{\sqrt{x^6 + 4}} dx$$

2. Calcule as seguintes integrais usando o método de integração por partes:

(a)
$$\int_{0}^{1} x e^{-x} dx$$

(i)
$$\int_0^1 \frac{x \, e^x}{(x+1)^2} \, dx$$

(q)
$$\int_0^{\frac{\pi}{4}} x \sec^2(x) dx$$

(b)
$$\int_0^{\frac{\pi}{2}} e^{2x} sen(3x) dx$$
 (j) $\int_0^{\frac{\pi}{3}} x sec(x) tg(x) dx$ (r) $\int_0^1 arcsen(x) dx$

(j)
$$\int_0^{\frac{\pi}{3}} x \sec(x) tg(x) dx$$

(r)
$$\int_0^1 arcsen(x) dx$$

(c)
$$\int_0^{\pi} 3^x \cos(x) dx$$
 (k) $\int_1^4 \ln(\sqrt{x}) dx$ (s) $\int_0^{\frac{\pi}{3}} \sec^3(x) dx$

(k)
$$\int_{1}^{4} ln(\sqrt{x}) dx$$

(s)
$$\int_{0}^{\frac{\pi}{3}} sec^{3}(x) dx$$

(d)
$$\int_0^1 x^4 e^{-x} dx$$

(d)
$$\int_0^1 x^4 e^{-x} dx$$
 (l) $\int_1^{e^{\pi}} \cos(\ln(x)) dx$ (t) $\int_{-\pi}^{\pi} x \cos(x) dx$

(t)
$$\int_{-\pi}^{\pi} x \cos(x) \, dx$$

(e)
$$\int_{2}^{4} x \ln(\sqrt{x}) dx$$

(e)
$$\int_{2}^{4} x \ln(\sqrt{x}) dx$$
 (m) $\int_{0}^{1} (x^{2} - 1) e^{x} dx$ (u) $\int_{1}^{2} \sqrt{x} \ln(x) dx$

(u)
$$\int_{1}^{2} \sqrt{x} \ln(x) dx$$

(f)
$$\int_0^1 arctg(x) \, dx$$

(n)
$$\int_{1}^{4} e^{\sqrt{x}} dx$$

(f)
$$\int_0^1 arctg(x) dx$$
 (n) $\int_1^4 e^{\sqrt{x}} dx$ (v) $\int_0^{\frac{1}{2}} x arcsen(2x) dx$

(g)
$$\int_0^{\frac{1}{2}} \frac{x^3}{\sqrt{1-x^2}} dx$$

(o)
$$\int_{1}^{e} ln^{3}(x) dx$$

(w)
$$\int_{0}^{\frac{\pi}{2}} \cos^{3}(x) dx$$

(h)
$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} x \csc^2(x) dx$$

(p)
$$\int_{0}^{\frac{\pi^2}{4}} \cos(\sqrt{x}) dx$$
 (x) $\int_{0}^{0} x \sqrt{x+1} dx$

$$(x) \int_{-1}^{0} x \sqrt{x+1} \, dx$$

3. Calcule as seguintes integrais:

(a)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos(x) \ln(\operatorname{sen}(x)) dx$$

(f)
$$\int_0^1 \frac{x \, dx}{\sqrt{(x^2 + 4)^5}}$$

(b)
$$\int_0^1 x \, 5^x \, dx$$

(g)
$$\int_0^2 \frac{dx}{\sqrt{x^2 + 4x + 8}}$$

(c)
$$\int_{0}^{\sqrt[3]{\pi}} x^{5} \cos(x^{3}) dx$$

(h)
$$\int_0^{ln(3)} e^t \sqrt{9 - e^{2t}} dt$$

(d)
$$\int_0^{\frac{\pi}{3}} tg(x) \sec^3(x) dx$$

(i)
$$\int_{2}^{3} \frac{(x^2 + 2x) dx}{x^3 + 3x^2 - 4}$$

(e)
$$\int_0^{\pi} \cos(3x) \cos(4x) dx$$

(j)
$$\int_0^1 \frac{(x-3) dx}{(x^2+4x+3)^2}$$

7.11. EXERCÍCIOS

311

(k)
$$\int_{1}^{2} \frac{(x^4+1) dx}{x(x^2+1)}$$

(1)
$$\int_0^{\frac{\pi}{2}} \frac{(sen(x)\cos^2(x)) dx}{5 + \cos^2(x)}$$

(m)
$$\int_0^1 \frac{x^2 \, dx}{(x+1)^3}$$

(n)
$$\int_{1}^{2} \frac{dx}{4x^2 + 12x - 7}$$

(o)
$$\int_{1}^{3} \frac{(2x+3) dx}{x^3+3x}$$

(p)
$$\int_{2}^{3} \frac{(3x^2 - 4x + 5) dx}{(x - 1)(x^2 + 1)}$$

(q)
$$\int_0^1 \frac{x^3 dx}{\sqrt[3]{x^2 + 1}}$$

(r)
$$\int_0^1 \frac{\sqrt{x} \, dx}{x+1}$$

(s)
$$\int_0^8 \sqrt[3]{x} (x-1) dx$$

(t)
$$\int_{3}^{11} \frac{dx}{\sqrt{2x+3}}$$

(u)
$$\int_0^1 \frac{dx}{\sqrt{(1+x^2)^3}}$$

(v)
$$\int_{2}^{4} \frac{(2x^2+1)dx}{(x+1)^2(x+2)}$$

(w)
$$\int_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx$$

(x)
$$\int_0^{\pi} \frac{x \, dx}{4 - \cos^2(x)}$$

4. Calcule as seguintes derivadas:

(a)
$$\frac{d}{dx} \int_0^x (t^2 + 1)^{\frac{1}{3}} dt$$

(a)
$$\frac{d}{dx} \int_0^x (t^2 + 1)^{\frac{1}{3}} dt$$
 (d) $\frac{d}{dx} \int_0^x \sqrt{1 + t^4} dt$ (g) $\frac{d}{dx} \int_0^x (2^t + t^2) dt$

(g)
$$\frac{d}{dx} \int_0^x (2^t + t^2) dt$$

(b)
$$\frac{d}{dx} \int_0^x t \operatorname{sen}(t) dt$$

(b)
$$\frac{d}{dx} \int_0^x t \operatorname{sen}(t) dt$$
 (e) $\frac{d}{dx} \int_x^{e^x} \sqrt{1+t^2} dt$ (h) $\frac{d}{dx} \int_0^{x^3} \frac{t}{\sqrt{1+t^3}} dt$

(h)
$$\frac{d}{dx} \int_0^{x^3} \frac{t}{\sqrt{1+t^3}} dt$$

(c)
$$\frac{d}{dx} \int_{1}^{x} t \ln(t) dt$$

(c)
$$\frac{d}{dx} \int_1^x t \ln(t) dt$$
 (f) $\frac{d}{dx} \int_2^{x^2} \sin(t^2) dt$

- 5. Seja f uma função contínua em [a,b] e suponha que $\int_a^x f(t) dt = x$, para todo $x \in [a,b]$. Determine f e a.
- 6. A seguinte função é utilizada em Engenharia Elétrica:

$$Si(x) = \int_0^x \frac{sen(t)}{t} dt; \quad (x > 0).$$

Determine os pontos extremos e esboce seu gráfico.

- 7. O número $\mu = \frac{1}{b-a} \int_a^b f(x) dx$ é chamado valor médio da função f no intervalo [a,b]. Calcule o valor médio das funções nos intervalos indicados:
- (a) $f(x) = sen^2(x)$; $[0, \pi]$ (c) f(x) = ln(x); [1, 2] (e) $f(x) = \frac{cos(x)}{\sqrt{sen(x)}}$; $[0, \frac{\pi}{2}]$
- (b) f(x) = 5cos(x); $[-\pi, \pi]$ (d) $f(x) = \frac{x}{1+x^2}$; [0, 1] (f) $f(x) = x^2 e^x$; [0, 1]

8. Diga qual das integrais é maior, sem calculá-las:

(a)
$$\int_0^1 \sqrt{1+x^2} \, dx$$
 ou $\int_0^1 x \, dx$

(b)
$$\int_{1}^{2} e^{x^{2}} dx$$
 ou $\int_{1}^{2} e^{x} dx$.

9. Seja a>0 e suponha que f é uma função contínua no intervalo [-a,a]. Defina g em [-a,a] por:

$$g(x) = \int_0^{-x} f(t) dt + \int_0^x f(-t) dt,$$

para todo $x \in [-a, a]$.

- (a) Verifique que g'(x) = 0, para todo $x \in [-a, a]$.
- (b) Use a parte a) para verificar que g(x) = 0, para todo $x \in [-a, a]$.

(c) Conclua que:
$$\int_{-x}^{0} f(t) dt = \int_{0}^{x} f(-t) dt.$$

10. Calcule as seguintes integrais sem utilizar métodos de integração:

(a)
$$\int_{-10}^{10} \left[x^5 - 6x^9 + \frac{sen^3(x)}{(x^6 + x^4 + x^2 + 1)^4} \right] dx, \quad (b) \quad \int_{-\pi}^{\pi} \frac{sen(\sqrt[3]{x^7 + x^5 + x^3})}{x^4 + cos(x)} dx$$

11. Verifique que para todo $n, m \in \mathbb{Z}$:

(a)
$$\int_{-\pi}^{\pi} sen(m\,x) \, cos(n\,x) \, dx = 0$$
, (b) $\int_{-\pi}^{\pi} sen(m\,x) \, sen(n\,x) \, dx = \begin{cases} 0 & \text{se} & n \neq m \\ \pi & \text{se} & n = m \end{cases}$

(c)
$$\int_{-\pi}^{\pi} \cos(m x) \cos(n x) dx = \begin{cases} 0 & \text{se} \quad n \neq m \\ \pi & \text{se} \quad n = m \end{cases}$$

12. Calcule
$$\int_{-\pi}^{\pi} f(x) dx$$
, onde $f(x) = \begin{cases} sen(x) & \text{se } x \leq 0 \\ 1 - cos(x) & \text{se } x > 0 \end{cases}$

13. Seja $g(x) = \int_{\alpha_1(x)}^{\alpha_2(x)} f(t) dt$, onde $f: I \longrightarrow \mathbb{R}$ é contínua e $\alpha_i: J \longrightarrow \mathbb{R}$ são funções deriváveis (i=1,2); I e J intervalos tais que $\alpha_i(J) \subset I$. Verifique que:

$$g'(x) = f(\alpha_2(x)) \alpha_2'(x) - f(\alpha_1(x)) \alpha_1'(x).$$

14. Calcule
$$g'(x)$$
 se $g(x) = \int_{x^2+1}^{x^2+x} 2^{-t^2} dt$.

15. Calcule
$$g'(\frac{1}{2})$$
 se $g(x) = \int_{x^2}^{x^3} \frac{1}{t} dt$.

313

16. Seja
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 contínua. Sabendo que $\int_{-3}^3 f(t) \, dt = 4$, calcule $\int_1^4 f(5-2\,x) \, dx$

17. Seja $f(x) = \int_0^x \frac{e^{t^2}}{1+t^2} dt$. Verifique que f é uma função contínua ímpar e que $f(x) \ge x$, para todo x > 0.

18. Esboce o gráfico de
$$f(x) = \int_0^x 2 t \, e^{-t^2} \, dt$$

Áreas

Calcule a área sob o gráfico de y = f(x) entre x = a e x = b, esboçando cada região, se:

1.
$$f(x) = 1 - x^2$$
, $x = -1$, $x = 1$

2.
$$f(x) = x^3 - x$$
, $x = -1$, $x = 1$

3.
$$f(x) = x^3 - 4x^2 + 3x$$
, $x = 0$, $x = 2$

4.
$$f(x) = \frac{x-x^3}{3}, x = -1, x = 1$$

5.
$$f(x) = ln(x), x = 1, x = e$$

6.
$$f(x) = cos^2(x), x = 0, x = 2\pi$$

7.
$$f(x) = 2\sqrt{x-1}, x = 1, x = 10$$

8.
$$f(x) = x(x-5)^2$$
, $x = 0$, $x = 1$

9.
$$f(x) = \frac{5}{\sqrt{x+2}}, x = 0, x = 5$$

10.
$$f(x) = x\sqrt{4x^2 + 1}, x = 0, x = 2$$

11.
$$f(x) = |x|, x = -2, x = 6$$

12.
$$f(x) = (x+1)^3 + 1$$
, $x = -2$, $x = 0$

13.
$$f(x) = x^2 + 2x$$
, $x = -1$, $x = 3$

14.
$$f(x) = x^4 - x^2$$
, $x = -1$, $x = 1$

Calcule a área das regiões limitadas pelas seguintes curvas:

1.
$$y = x^2$$
, $y = 2x + \frac{5}{4}$

2.
$$y = -x^2 - 4$$
, $y = -8$

3.
$$y = 5 - x^2$$
, $y = x + 3$

4.
$$x = y^2$$
, $y = x + 3$, $y = -2$, $y = 3$

5.
$$y^3 = x, y = x$$

6.
$$y = -x^2 - 1$$
, $y = -2x - 4$

7.
$$x = y^2 + 1, y + x = 7$$

8.
$$y = 4 - x^2$$
, $y = x^2 - 14$

9.
$$y = x^3, y = \sqrt[3]{x}$$

10.
$$y = x^2$$
, $y = x^4$

11.
$$x = y^2 - 2$$
, $x = 6 - y^2$

12.
$$y = x|x|, y = x^3$$

13.
$$y = x + 4, y = \frac{x^2}{2}$$

14.
$$y^2 - y = x$$
, $y - y^2 = x$

15.
$$y = sen(x), y = cos(x), x = 0, x = \frac{\pi}{2}$$

16.
$$y = cos(x), y = 1 - cos(x), x = 0, x = \frac{\pi}{2}$$

17.
$$y = x^2 + 1, y = x + 1$$

18.
$$y = x^2 - x$$
, $y = sen(\pi x)$, $x = -1$, $x = 1$

19.
$$y = x^2$$
, $y = -x + 2$

20.
$$y = |x|, y = (x+1)^2 - 7, x = -4$$

21.
$$y = ln(|x|), |y| = 3$$

22.
$$y = cosh(x), y = senh(x), x = \pm 1$$

23.
$$y = ln(x), x = 1, y = 4$$

24.
$$y = x^4 - 2x^2$$
, $y = 2x^2$

25.
$$y = cos(x), y = cos^{2}(x), 0 \le x \le \pi$$

26.
$$y = e^x$$
, $y = e^{2x-1}$, $x = 0$

27.
$$2y(1+y^2)^3 - x = 0, y = 0, y = 1$$

28.
$$y = \frac{8}{x^2}$$
, $y = x$, $y = 8x$, $x > 0$

29.
$$y = x(x-3), y = x(3-x)$$

30.
$$y = \sqrt{\frac{1-x}{1+x}}$$
, $x = 0$, $x = 1$, $y = 0$

31.
$$y = \frac{sen(2x)}{2}$$
, $y = \frac{sen(2x)}{2} + sen(2x)$, $0 \le x \le \pi$

32.
$$y(x^2 + 4) = 4(2 - x)$$
 e os eixos coordenados

33.
$$y = \frac{1-x^2}{1+x^2}$$
 e o eixo dos x

34.
$$x - \sqrt{4y^2 - y^4} = 0$$
 e o eixo dos y

35.
$$y = \frac{1}{(2x+1)^2}$$
, $x = 1$, $x = 2$

36.
$$y = \frac{1}{\sqrt{2x+1}}, x = 0, x = 4$$

37.
$$y = e^{-x}$$
, $y = x + 1$, $x = -1$

38.
$$y = e^{-x}$$
, $y = \sqrt{x+1}$, $x = 1$

39.
$$y = e^x$$
, $y = 10^x$, $y = e^x$

40.
$$y = -x^3 + 2x^2 + 3x$$
, $y = -5x$

41.
$$x^2y = 3$$
, $4x + 3y - 13 = 0$

42.
$$x = y(y-3)^2, x = 0$$

43.
$$y = x^4 - 3x^2$$
, $y = x^2$

44.
$$x = 1 - y^2$$
, $x = y^2 - 1$

45.
$$y = x e^{-x}$$
, $y = 0$, $x = 0$, $x = c$, onde c é a abscissa do ponto de inflexão da curva

46.
$$y=x\,e^{-x^2},\,y=0,\,x=c$$
, onde c é o máximo

47.
$$y = \frac{ln(x)}{x}$$
, $y = 0$, $x = c$, onde c é o máximo

48.
$$x^2 - 2y + y^2 = 0$$
, $x^2 + y^2 = 1$

49.
$$x = 3y$$
, $x + y = 0$ e $7x + 3y = 24$

50.
$$x^2 = 4y, y = \frac{8}{x^2+4}$$

Volumes de Revolução

Determine o volume do sólido de revolução gerado pela rotação, em torno do eixo dos x, da região limitada pelas seguintes curvas:

1.
$$y = x + 1$$
, $x = 0$, $x = 2$, $y = 0$

2.
$$y = x^2 + 1$$
, $x = 0$, $y = 0$, $x = 2$

3.
$$y = x^2$$
. $y = x^3$

4.
$$y = cos(x), y = sen(x), x = 0, x = \frac{\pi}{4}$$

5.
$$x + y = 8$$
, $x = 0$, $y = 0$

6.
$$y = x^4$$
, $y = 1$, $x = 0$

7.
$$xy = 1$$
, $x = 2$, $y = 3$

8.
$$x^2 = y^3 e x^3 = y^2$$

9.
$$y = cos(2x), 0 \le x \le \pi$$

10.
$$y = x e^x$$
, $y = 0$ e $x = 1$

11. O triângulo de vértices (0,0), (0,2) e (4,2)

Determine o volume do sólido de revolução gerado pela rotação, em torno do eixo dos y, da região limitada pelas seguintes curvas:

12.
$$y = ln(x), y = -1, y = 2, x = 0$$

13.
$$y = 4 - x^2$$
, no primeiro quadrante

14.
$$x = 1 + sen(y), x = 0, y = \pm \frac{5\pi}{2}$$

15.
$$y^2 = 4x$$
, $y = 0$ e $x = 4$

16.
$$y = 1 - \frac{1}{x^4}$$
, $x = 1$, $y = 0$ e $y = \frac{15}{16}$

17.
$$9x^2 + 16y^2 = 144$$

18.
$$y = x^2 + 1$$
, $x = 0$ e $x = 2$

19.
$$y^2 = x$$
, $x = 2y$

20.
$$y = \sqrt{x^2 + 1}$$
, $x = 0$ e $x = 2$

21.
$$y = \sqrt[4]{4 - x^2}$$
, $x = 0$ e $x = 1$

315

Determine o volume do sólido de revolução gerado pela rotação, em torno a reta indicada, da região limitada pelas seguintes curvas:

22.
$$2x + y = 2$$
 e o eixo do

23.
$$y=e^x,\, 1\leq x\leq 2$$
; a reta $y=1$

24.
$$y = x^4$$
, $y = 1$; a reta $y = 2$

25.
$$y = \sqrt{x}, y = 1$$
 a reta $y = 1$

26.
$$y = 4 - x^2$$
, no primeiro quadrante; a reta $x = 2$

27.
$$y = 2x - x^2$$
; a reta $y = 0$

28.
$$y = 4 - x^2$$
, $y = 2$; a reta $y = 2$

29.
$$y = \sqrt{x}$$
, $y = 0$ e $x = 9$; a reta $x = 9$

Comprimento de Arco

Calcule os comprimentos de arco da seguintes curvas, entre os pontos indicados:

1.
$$y = 5x - 2$$
; $(-2, -12)$ e $(2, 8)$

2.
$$12 x y = 4 x^4 + 3$$
; $(1, \frac{7}{12})$ e $(3, \frac{109}{12})$

3.
$$x - \frac{y^3}{3} - \frac{1}{4y} = 0$$
; $(\frac{7}{12}, 1)$ e $(\frac{67}{24}, 3)$

4.
$$y = ln(x)$$
; (x, y) tal que $\sqrt{3} \le x \le \sqrt{8}$

5.
$$y = \frac{1}{6} (x^3 + \frac{3}{x}); (1, \frac{2}{3}) e(3, \frac{14}{3})$$

6.
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2^{\frac{2}{3}}$$

7.
$$y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$$
; (x, y) tal que $0 \le x \le 1$

8.
$$y = \int_4^x \sqrt{t-1} dt$$
, do ponto (4,0) até $(9, \int_4^9 \sqrt{t-1} dt)$

9.
$$y = \int_0^x t\sqrt{t^2 + 2} dt$$
, do ponto $(0,0)$ até 17. $y = ln(cos(x))$ de $x = 0$ a $x = \frac{\pi}{4}$ $(2, \int_0^2 t\sqrt{t^2 + 1} dt)$

10.
$$y = \int_1^x \sqrt{t^4 + t^2 - 1} dt$$
, do ponto $(1,0)$ até $(3, \int_1^3 \sqrt{t^4 + t^2 - 1} dt)$

11
$$y = \sqrt{x^3}$$
, do ponto $(0,0)$ até $(1,1)$

11.
$$y = \sqrt[3]{x^2}$$
, do ponto $(0,0)$ até $(1,1)$

12.
$$y = \frac{x^4}{8} + \frac{1}{4x^2}$$
, de $x = 1$ até $x = 3$

13.
$$y = \frac{2}{3}x^{\frac{3}{2}} - \frac{\sqrt{x}}{2}$$
, de $x = 1$ até $x = 4$

14.
$$y = ln(sen(x))$$
, de $x = \frac{\pi}{3}$ até $x = \frac{\pi}{2}$

15.
$$y = ln(sec(x))$$
, de $x = 0$ até $x = \frac{\pi}{3}$

16.
$$y = (1 - x^{\frac{2}{3}})^{\frac{3}{2}}$$
, de $x = \frac{1}{8}$ até $x = 1$

17.
$$y = ln(cos(x))$$
 de $x = 0$ a $x = \frac{\pi}{4}$

18.
$$y = 2\sqrt{x} \text{ de } x = 1 \text{ a } x = 2$$

19.
$$y = arcsen(e^{-x}) de x = 0 a x = 1$$

Logaritmo

- 1. Verifique que: $ln(x) = \int_0^{x-1} \frac{du}{u+1}$.
- 2. Verifique que: ln(x) = L(x) + R(x), onde $L(x) = (x-1) \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3$ e $R(x) = \int_{0}^{x-1} \frac{u^3}{u+1} du.$
- 3. Se x > 1 e $0 \le u \le x 1$, mostre que: $R(x) \le \frac{1}{4}(x 1)^4$. (R(x) do exercício [2]).
- 4. Usando os exercícios anteriores conclua que: $ln(x) \simeq L(x)$ com $E(x) = |ln(x) L(x)| \le$ $\frac{1}{4}(x-1)^4$. Equivalentemente, L(x) aproxima $\ln(x)$ superiormente, com erro E(x) não superior $\frac{1}{4}(x-1)^4$.
- 5. Calcule aproximadamente ln(1.2) e E(1.2).

- 6. Repita os exercícios 2, 3, 4 e 5 escrevendo: $\frac{1}{u+1} = 1 u + u^2 u^3 + u^4 \frac{u^5}{u+1}$.
- 7. Verifique que: $ln(x) \le x 1$. Quando vale a igualdade?
- 8. Verifique que $\frac{x}{1+x} \le ln(x+1) \le x$, para todo $x \ge 1$.

Trabalho

1. Uma partícula move-se ao longo do eixo dos x do ponto a até o ponto b sob a ação de uma força f(x), dada. Determine o trabalho realizado, sendo:

(a)
$$f(x) = x^3 + 2x^2 + 6x - 1$$
; $a = 1, b = 2$

(b)
$$f(x) = 8 + 2x - x^2$$
; $a = 0$, $b = 3$

(c)
$$f(x) = \frac{x}{(1+x^2)^2}$$
; $a = 1, b = 2$

(d)
$$f(x) = (x^3 + 2x^2 + 1)(3x^2 + 4)$$
; $a = 0, b = 1$

(e)
$$f(x) = x^2 sen(x)$$
; $a = 0$, $b = \frac{\pi}{2}$

(f)
$$f(x) = sen(x) + cos(x)$$
; $a = 0, b = \pi$

(g)
$$f(x) = e^{-x} sen(x)$$
; $a = 0$, $b = 50 \pi$

- 2. Uma bola de ferro é atraída por um imã com uma força de $12\,x^{-2}\,N$ quando a bola está a x metros do imã. Qual o trabalho realizado para empurrá-la no sentido contrário ao do imã, do ponto onde x=2 ao ponto onde x=6?
- 3. Uma partícula está localizada a uma distância de x metros da origem. Uma força de $(x^2 + 2x) N$ é aplicada sobre a partícula. Qual é o trabalho realizado para mover a partícula de x = 1 até x = 3?
- 4. Sobre uma partícula que se desloca sobre o eixo dos x atua uma força cuja componente na direção do deslocamento é $f(x) = \frac{2}{x^2}$. Calcule o trabalho realizado pela força quando a partícula se desloca de x=1 até x=2.
- 5. Uma mola tem comprimento de $25\,cm$ e uma força de $54\,N$ a estica $1.5\,cm$. Qual é o trabalho realizado para esticar a mola de $25\,cm$ a $45\,cm$?
- 6. Um imã atrai uma bola de ferro com uma força de $f(x) = \frac{15}{x^2}N$ quando a bola está a x metros do imã. Calcule o trabalho realizado para empurrá-la no sentido contrário ao do imã de um ponto onde x=3 a um ponto onde x=5.
- 7. Uma mola suportando um carro tem comprimento de $38\,cm$ e uma força de $36000\,N$ a comprime $1.5\,cm$. Calcule o trabalho realizado para comprimi-la de $38\,cm$ a $12\,cm$.
- 8. Duas cargas elétricas $e_1=100$ e $e_2=200$ se encontram no eixo dos x, respectivamente nos pontos $x_0=0$ e $x_1=1$ cm. Calcule o trabalho realizado para mover a segunda carga até o ponto $x_2=10$ cm. Sugestão: Use a segunda lei de Coulomb.

7.11. EXERCÍCIOS 317

9. Quando um gás se expande mum pistão cilíndrico de raio r, em qualquer instante de tempo a pressão é função do volume P=P(V). A força exercida pelo gás sobre o pistão é o produto da pressão pela área do pistão $F=\pi\,r^2\,P$.

Figura 7.75:

Verifique que o trabalho realizado pelo gás quando o volume se expande de V_1 a V_2 é:

$$W = \int_{V_1}^{V_2} P \, dV.$$

10. **Centro de massa:** Intuitivamente o centro de massa P de uma lâmina fina é o ponto da lâmina onde, se a levantamos a partir de P paralelamente a um plano horizontal ela permanece paralela (em equilíbrio) em relação ao plano onde foi levantada. $F = \pi r^2 P$.

Figura 7.76:

Considere uma lâmina com densidade uniforme no plano dada por:

$$R = \{(x, y) \in \mathbb{R}^2 / a \le x \le b, f(x) \le y \le g(x)\},\$$

onde f e g são funções contínuas em [a,b]. Pesquise na bibliografia e verifique que o centro de massa da lâmina, chamado de centróide de R, é o ponto $(\overline{x}, \overline{y})$ tal que:

$$\overline{x} = \frac{1}{A} \int_a^b x \left(f(x) - g(x) \right) dx, \qquad \overline{y} = \frac{1}{2A} \int_a^b \left(f^2(x) - g^2(x) \right) dx,$$

onde A é a área de R. Determine o centróide da lâmina R, determinada por:

(a)
$$y=x, y=x^2$$
 (c) $y=cos(2\,x), y=0$ e $x=\pm\frac{\pi}{4}$ (b) $y=3\,x+5, y=0, x=-1$ e $x=2$