(469)

(489)

unktion i(h) mit einer neuen geographischen breite: jedes i in der Zwischenzumme ZW (s. Z.l.) die Berechnung der Integrandenwerden soll. Es erfolgt dann bei jedem Integrationsschritt in (12a), dh. für die auf dem Lichtweg von P nach P_s durchlautene Höhendifferenz h verteilt

$$\phi^{\dagger} = \phi^{\dagger - 1} + \frac{V}{\phi^{D} - \phi^{DZ}} \cdot qV^{\dagger}$$

Basic - Kleincomputerprogramm für die geographischen Koordinaten des Punk-Mit dem Näherungsvertahren 4.4.1.1. erhält man wie beschrieben mit dem 🖰

"SI .8E . ES = ^Sdø

 $y^{LS} = 10$. So, Oe, Oei]. Länge

: briw .[.S.M aus (ol) tiM

M 1.6164-066 = 24A

Wit diesem ϕ_{Pg} and dem bereits bekannten $\phi_{Pg} = 52$ ° 28° 32" wird durch

is Näherung \overline{M} . S.1. S. \overline{M} = $\frac{1 \cdot 29}{m \cdot 6.205E} - \frac{1}{3.205E} - \frac{29}{3.6} = \frac{1.28}{3.6}$

punkte" der Lichtkurve von - 1.28 Bogensekunden je Meter Höhenänderung ent-Das entspricht einer Anderung der geographischen Breite φ entlang der "Fuß-

in (12a) eingesetzt. Die Neuberechnung des Integranden bei jedem Integrations-Kleincomputerprogramm wie in M.3.2.1. wird jetzt $R_{\rm Pg}$ statt $R_{\rm p}$ als Eingangsgröße Bei der verbeszerten Neuberechnung des Refraktionsfeilwinkels $\Theta_{\rm b}$ mit dem \rightarrow lang der Lichtkurve von P. nach P.

 $\Theta^{P} = -0 \circ IL, S4.$ Es ergibt sich dann : (s.o.), indem dieser als Eingangsgröße im \rightarrow Rechenprogramm eingeführt wird. schritt erfolgt jetzt mit Rücksicht auf den Wert der Näherung 11.4.1.2. : - I.-28/m

Des ist ein beträchtlicher Unterschied von I II zum in 18.3.2.1. berechneten Wert.

serten Θ_{b}) (auch bzgl. Θ_{a}) s.u.) erneut durchgeführt werden. Die Berechnungen der Zeitpunkte in 11.3. müssen deswegen mit diesem verbes-

M.A.2. Neuberechnung des Refraktionsfeilwinkels 🖰

der Beobachter befinde sich in P_{S} . Er empfängt einen Lichtstrahl der in S in Bei der Berechnung des Winkels $\Theta_{a)}$ in M.3.2.2. wird ebenfalls angenommen,

obertläche bestimmt werden, um eine lineare Näherung wie in M.4.1.2. beschriedeodraphischen Koordinaten des "Fußpunktes" S_F des Punktes 5 auf der Erdder Höhe H = 86000 m in die Erdatmosphäre eindringt. Es müssen daher die

ben , für den Lichtstrahl von S nach P_S durchzuführen.

M.4.2.1. Bestimmung der geographischen Koordinaten des Punktes Sp.

müssen zunächst die Größen T_{Ps}, "_{Ps}, w und t_{Ps} in 1. Näherung berechnet M.4.2.1.1. Um des Näherungsverfahren wie in W.4.1.1. anwenden zu können,

werden. Aus der Skizze SI läßt sich ablesen:

 $(80 - 90) = W_{eg}$

$$T_{Ps} = 90^{\circ} - \frac{\Theta_{ab}}{2} - \arcsin\left(\frac{R_{Ps}}{R} + \frac{H}{H} \cdot \cos\left(\frac{\Theta_{ab}}{2}\right)\right)$$