Bayesian Parameter Inference of Markov Population Model.

Master Thesis

Submitted by

Nhat-Huy Phung

at the

Modeling of Complex, Self-organising Systems

Department of Computer and Information Science

- 1. Supervised by: Jun-. Prof. Dr. Tatjana Petrov
- 2. Supervised by: Prof. Dr. Stefan Leue

Konstanz, 2020

Contents

1	Introduction							
	1.1	Motivation	1					
	1.2	Structure of the thesis	1					
2	Pre	reliminaries 2						
	2.1	Probabilistic model checking	2					
		2.1.1 Discrete-time probabilistic models	2					
		2.1.2 Temporal properties on probabilistic models	3					
		2.1.3 Parametric model and parameter synthesis	3					
	2.2	Bayesian Inference	3					
		2.2.1 Bayes' theorem	3					
		2.2.2 Posterior conjugation	3					
		2.2.3 Metropolis-Hastings algorithm	3					
		2.2.4 Selection of prior distribution	3					
	2.3	Bayesian verification	3					
0	ъ 1							
3	Rei	ated works	4					
4	Framework for parameter synthesis.							
	4.1	Model construction	5					
	4.2	Framework	5					
5	Cas	e study	6					
	5.1	Zeroconf	6					
	9	5.1.1 System description	6					
		5.1.2 Parametric model	6					
		5.1.3 Properties	6					
		5.1.4 Parameter synthesis	6					

	5.2	Defens	ase bees		. (
		5.2.1	System description		. 6			
		5.2.2	Parametric model		. 6			
		5.2.3	Parameter synthesis		. 6			
6	Conclusion 7							
	6.1	Summ	nary		. 7			
			re works		7			

Acknowledgements

To the completement of this thesis, I would like to describe my deep

Abstract

something

Introduction

1.1 Motivation

Markov population model.

In order to incorporate unknown features of the system, we introduce parametric models. Parameter synthesis is a relatively new research area [6] This thesis is structured as follow.

1.2 Structure of the thesis

- Chapter 1 introduces motivations and background for the research topic.
- Chapter 2 describes the most important definitions and theoretical background. In this chapter, we defines Discrete-Time Markov Chain formally. A brief introduction to Bayesian Inference is also included.
- Chapter 3 reviews the state-of-the-art works of other researchers on the problem of parameter synthesis.
- Chapter 4 describes the method.
- Chapter 5 describes the benchmark.
- Chapter 6 conclusion and future work.

Preliminaries

- probabilistic model checking
- parameter synthesis landscape
- bayesian inference of parameter

2.1 Probabilistic model checking

2.1.1 Discrete-time probabilistic models

Definition 2.1.1 (Discrete Time Markov Chain). A Discrete Time Markov Chain (DTMC) is a tuple $(S, \mathbf{P}, S_{init}, AP, L)$ [1]

- S is a countable non-emty set of states
- $P: S \times S \rightarrow [0,1]$ is the transition probability function, s.t

$$\sum_{s' \in S} \mathbf{P}(s, s') = 1$$

• $S_{init}: S \to [0,1]$ is the initial distribution, s.t

$$\sum_{s' \in S} S_{init}(s') = 1$$

- AP is a set of atomic propositions
- $L: S \to 2^{AP}$ is the labelling function on states.

2.1.2 Temporal properties on probabilistic models

Over CTL properties, we define the set of PCTL properties, in which we ask the probability to have a CTL property satisfied.

Definition 2.1.2 (PCTL syntax). The syntax of PCTL is defined as follow

$$\Phi ::== \text{true} \mid a \mid \Phi \mid \Phi \wedge \Phi \mid \Phi \vee \Phi \mid P_{\sim p}[\phi]$$

$$\phi ::== X\Phi \mid \Phi U \Phi$$

2.1.3 Parametric model and parameter synthesis

2.2 Bayesian Inference

- 2.2.1 Bayes' theorem
- 2.2.2 Posterior conjugation
- 2.2.3 Metropolis-Hastings algorithm

2.2.4 Selection of prior distribution

The selection of prior distribution has strong effect on the result [what result specifically?] of a Bayesian inference [Citation needed].

2.3 Bayesian verification

Related works

The current research progress on probabilistic model checking is studied thoroughly by Katoen and Baier et al [1]. Katoen et al. [6] briefly summarized important aspect of probabilistic model checking.

Polgreen et al [8] presents a method for bayesian inference of pMC parameters in

The definition and model checking of DTMC and pMC is studied by [1], [4], and [6].

Bayesian inference of pMC parameters is studied in [8] and [5]. In [8], the authors developed methods to synthesize parameters to satisfy a given set of PCTL properties. In [5], the authors presented methods to perform model checking of biological system using Bayesian statistic. The authors in [5] uses a Bayesian hypothesis test, where H_0 is the null hypothesis that the model satisfies a PCTL P, and alternative hypothesis H_1 is that the system does not satisfies P. Similar approach to the parameter estimation in this project is described by [3].

In this project, we use bee colony model semantics from [2]. The methods and implementation in this project is designed to extend the results of [2] and its tool DiPS [7]

Framework for parameter synthesis.

- 4.1 Model construction
- 4.2 Framework

Case study

5.1 Zeroconf

5.1.1 System description

Zero configuration protocol is as protocol widely used in the internet

- 5.1.2 Parametric model
- 5.1.3 Properties
- 5.1.4 Parameter synthesis
- 5.2 Defense bees
- 5.2.1 System description
- 5.2.2 Parametric model
- 5.2.3 Parameter synthesis

Conclusion

6.1 Summary

In this thesis we

6.2 Future works

Bibliography

- Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.
- [2] Matej Hajnal et al. "Data-Informed Parameter Synthesis for Population Markov Chains". In: *International Workshop on Hybrid Systems Biology*. Springer. 2019, pp. 147–164.
- [3] Faraz Hussain et al. "Automated parameter estimation for biological models using Bayesian statistical model checking". In: *BMC bioinformatics* 16.S17 (2015), S8.
- [4] Lisa Hutschenreiter, Christel Baier, and Joachim Klein. "Parametric Markov chains: PCTL complexity and fraction-free Gaussian elimination". In: arXiv preprint arXiv:1709.02093 (2017).
- [5] Sumit K Jha et al. "A bayesian approach to model checking biological systems". In: *International conference on computational methods in systems biology*. Springer. 2009, pp. 218–234.
- [6] Joost-Pieter Katoen. "The probabilistic model checking landscape". In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. 2016, pp. 31–45.
- [7] Gareth W Molyneux and Alessandro Abate. "ABC(SMC)²: Simultaneous Inference and Model Checking of Chemical Reaction Networks". In: *International Conference on Computational Methods in Systems Biology*. Springer. 2020, pp. 255–279.
- [8] Elizabeth Polgreen et al. "Data-efficient Bayesian verification of parametric Markov chains". In: *International Conference on Quantitative Evaluation of Systems*. Springer. 2016, pp. 35–51.