Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №2 по дисциплине «Компьютерные сети»

Выполнил студент: Бочкарев Илья Алексеевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2023 г.

Содержание

1	По	становка задачи	2
2	Tec	ррия	2
3	Pea	ализация	2
4	Pes	зультаты	2
5	Об	суждение	8
C	¦пи	сок иллюстраций	
	1	Сеть с линейной топологией	3
	2	Поврежденная сеть с линейной топологией	4
	3	Сеть с кольцевой топологией	5
	4	Поврежденная сеть с кольцевой топологией	6
	5	Сеть со звездной топологией	7
	6	Поврежденная сеть со звездной топологией	8
C	пи	сок таблиц	
	1	Список путей в сети с линейной топологией	3
	2	Список путей в поврежденнной сети с линейной топологией	4
	3	Список путей в сети с кольцевой топологией	5
	4	Список путей в поврежденнной сети с кольцевой топологией	6
	5	Список путей в сети со звездной топологией	7
	6	Список путей в поврежденнной сети со звездной топологией	8

1 Постановка задачи

Требуется реализовать протокол маршрутизации OSPF (Open Shortest Path First). Проверить его работоспособность на следующих видах топологий сети: линейная, кольцевидная и звёздная.

2 Теория

OSPF (Open Shortest Path First) — протокол динамической маршрутизации, основанный на технологии отслеживания состояния канала и использующий для нахождения кратчайшего пути алгоритм Дейкстры. Описание работы протокола.

- После включения маршрутизаторов протокол ищет непосредственно подключенных соседей и устанавливает с ними «дружеские» отношения.
- Затем они обмениваются друг с другом информацией о подключенных и доступных им сетях. То есть они строят карту сети (топологию сети). Данная карта одинакова на всех маршрутизаторах.
- На основе полученной информации запускается алгоритм SPF (Shortest Path First), который рассчитывает оптимальный маршрут к каждой сети. Данный процесс похож на построение дерева, корнем которого является сам маршрутизатор, а ветвями пути к доступным сетям.

3 Реализация

Весь код написан на языке Python (версии 3.9.5). Ссылка на GitHub с исходным кодом.

4 Результаты

Количество узлов во всех топологиях равно 5. Рассмотриваем линейную топологию с радиусом соединения 5, кольцевую топологию с радиусом соединения 6, звездную топологию с радиусом соединения 5.

Для сети с линейной топологией имитируем падение одного из некрайних узлов и перенумируем оставшиеся узлы сети. Для сети с кольцевой

топологией Имитируем падение случайного узла и перенумируем оставшиеся узлы сети. Для сети со звездной топологией имитируем падение центрального узла.

Результаты приведены ниже.

Рис. 1: Сеть с линейной топологией

Таблица 1: Список путей в сети с линейной топологией

	0	1	2	3	4	
0	0	0-1	0-1-2	0-1-2-3	0-1-2-3-4	
1	1-0	1	1-2	1-2-3	1-2-3-4	
2	2-1-0	2-1	2	2-3	2-3-4	
3	3-2-1-0	3-2-1	3-2	3	3-4	
4	4-3-2-1-0	4-3-2-1	4-3-2	4-3	4	

Рис. 2: Поврежденная сеть с линейной топологией

Таблица 2: Список путей в поврежденнной сети с линейной топологией

	0	1	2	3
0	0	0-1	-	-
1	1-0	1	-	-
2	-	-	2	2-3
3	-	-	3-2	3

Рис. 3: Сеть с кольцевой топологией

Таблица 3: Список путей в сети с кольцевой топологией

	0	1	2	3	4
0	0	0-1	0-1-2	0-4-3	0-4
1	1-0	1	1-2	1-2-3	1-0-4
2	2-1-0	2-1	2	2-3	2-3-4
3	3-4-0	3-2-1	3-2	3	3-4
4	4-0	4-0-1	4-3-2	4-3	4

Рис. 4: Поврежденная сеть с кольцевой топологией

Таблица 4: Список путей в поврежденнной сети с кольцевой топологией

	0	1	2	3
0	0	0-1	0-3-2	0-3
1	1-0	1	1-0-3-2	1-0-3
2	2-3-0	2-3-0-1	2	2-3
3	3-0	3-0-1	3-2	3

Рис. 5: Сеть со звездной топологией

Таблица 5: Список путей в сети со звездной топологией

	0	1	2	3	4
0	0	0-4-1	0-4-2	0-4-3	0-4
1	1-4-0	1	1-4-2	1-4-3	1-4
2	2-4-0	2-4-1	2	2-4-3	2-4
3	3-4-0	3-4-1	3-4-2	3	3-4
4	4-0	4-1	4-2	4-3	4

Рис. 6: Поврежденная сеть со звездной топологией

Таблица 6: Список путей в поврежденнной сети со звездной топологией

		0	1	2	3
	0	0	-	1	-
	1	-	1	-	-
	2	-	-	2	-
Ì	3	-	-	-	3

5 Обсуждение

Из полученных результатов можно заметить следующее. Сеть с линейной топологией крайне чувствительна к потерям некраевых узлов сети, потеря одного такого узла ведёт к появлению недостижимых узлов. Кроме того, максимальная длина пути равна n-1, где n- количество узлов. Сеть с кольцевидной топологией менее чувствительна к потерям узлов, при потере любого узла она становится сетью с линейной топологией. Кроме того, максимальная длина пути равна $\lfloor n/2 \rfloor$, где n- количество узлов. Сеть со звёздной топологией наименее чувствительна к потере узлов до тех пор, пока это не центральный узел. В случае потери центрального узла любая пара других узлов становится недостижима. Кроме того, максимальная длина пути в равна 2.