(tw#5

PBHS 32100 / STAT 22401 Winter 2024 J. Dignam

A Generalized Approach for Many Model Types

Noting and taking advantage of commonalities among linear models for different response variable types, Nelder and Wedderburn and later McCullagh (UChicago) and Nelder developed **Generalized Linear Models**

This approach generalizes many types of models into one framework, unifying theory and estimation methods

Recall that in linear regression, the (conditional) mean of the response Y is related to covariates directly via the linear function $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots \beta_p X_p$. The variance on the prediction is from the Gaussian (normal) distribution

A Generalized Approach for Many Model Types

Another approach:

For each model relating Y to predictors X, one can specify

- The link function $h(\cdot)$, which specifies the relationship between the linear prediction equation $(X\beta)$, or the linear predictor and E(Y|X), the conditional mean of Y
- \bullet The probability distribution for the error term ϵ of the model, equivalently, the variance of Y

Then, a unified theory and single estimation approach subsumes a wide variety of models

A Generalized Approach for Many Model Types

- A Few of the Several Types of GLMs:

Response	Link Function	Error Term	Model
Continuous ($pprox$ normal)	identity	normal	linear
Integer counts	natural log	Poisson	Poisson
Integer counts	natural log	negative binomial	negative binomial
0/1 discrete	logit	binomial	logistic
polychotomous discrete	logit	multinomial	multinomial logistic
real valued, non-negative	inverse	gamma	survival (time to event)

- Note: link function addresses "How does the linear predictor $X\beta$ relate to E(Y)?"

Poisson regression is used to model count variables as outcome.

The outcome (i.e., the count variable) in a Poisson regression cannot take on negative values (but can equal 0).

Poisson Distribution:

The probability distribution function of Y is:

$$\Pr(Y = Y) = \frac{e^{-\lambda} \lambda^y}{x!}, y = 0, 1, 2, \dots$$

A single parameter defines the Poisson distribution:

$$E(Y) = \lambda \quad (>0)$$
$$var(Y) = \lambda$$

Poisson Distribution

A **Poisson random variable** is an (integer) count variable over a large population relative to the number of events

Example: Suppose that, on average, there are 3 fatal traffic accidents in Chicago on a holiday weekend

- ullet let random variable Y= the number of fatalities during the holiday
- the parameter λ is the mean of Y, \to here, $\lambda=3$ What is the probability of 5 fatalities during the holiday?

$$\Pr(Y=5) = \frac{e^{-3}3^5}{5!} = 0.101$$

3 fatalities?

$$\Pr(Y=3) = \frac{e^{-3}3^3}{3!} = 0.224$$

A Poisson regression model is sometimes known as a **log-linear model**, and it takes the form:

$$\log (E(Y|X)) = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p.$$

Note that

$$\log (E(Y|X)) \neq E(\log(Y|X))$$

- ullet The latter is OLS using log transformation on Y, as we fit earlier.
- The predicted mean of the Poisson model on the count scale is

$$E(Y|X) = \exp(\beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p).$$

A strong assumption in Poisson regression is that **conditional on the predictors**, **the mean and variance of the outcome are equal**, i.e., **following the Poisson dist'n**.

Examples of Poisson observations, random variables

- 1. The number of persons per year killed by mule or horse kicks, as collected from 20 volumes of Preussischen Statistik on 10 Prussian army corps in the late 1800s (Bortkiewicz, 1898).
- 2. The number of people in line at the grocery store. Predictors may include the time of day, whether a special event (e.g., holiday, big sporting event) is three or fewer days away, etc. Problems involving queueing theory frequently involve the Poisson distribution
- 3. The number of awards earned by students in a high school. Predictors include the type of program in which students were enrolled (vocational, general or academic), exam scores, and other factors.

Data are recorded as event counts in some sample size N, and usually N >> events.

Examples of Poisson observations, random variables

A second major use of Poisson regression in Public Health and Epidemiology is in relation to disease incidence over time

- We are interested in disease counts in relation to exposure time.
 Many deleterious exposures, as well as natural factors such as aging, will have bearing on the event count and must be accounted for when, say, comparing groups.
- Thus, rather than denominator N for a sample, the relevant denominator is the sum of exposure time over all N individuals, known as person-time Rather than proportions, we have rates per unit of time at risk.
- This approach also accommodates different lengths of at risk time that may naturally occur.

We will review these types of Poisson models later

We illustrate Poisson regression using Example 3 above (school awards):

- num_awards is the outcome variable and indicates the number of awards earned by students at a high school in a given year,
- math is a continuous predictor variable and represents students' scores on their math final exam, and
- prog is a categorical predictor variable with three levels indicating the type of program in which the students were enrolled.

For Poisson regression, we assume that the outcome variable number of awards, conditioned on the predictor variables, will have roughly equal mean and variance.

Poisson Regression - Assumptions

Examining the mean numbers of awards by program type suggests that program type is a good candidate predictor. Additionally, the means and variances are similar within each program (Poisson assumption).

- . use http://www.ats.ucla.edu/stat/stata/dae/poisson_sim, clear
- . sum num_awards

Variable	Obs	Mean	Std. Dev.	. Min	Max
num_awards	200	.63	1.052921	0	6

. tabstat num_awards, by(prog) stats(mean sd n) $\,$

Summary for variables: num_awards

by categories of: prog (type of program)

prog	mean	sd	N
	+		
general	.2	.4045199	45
academic	1	1.278521	105
vocation	.24	.5174506	50
	+		
Total	.63	1.052921	200

- . histogram num_awards, discrete freq
- . qnorm num_awards

Can we use OLS here? Normality assumption not met. Count outcome variables are sometimes log-transformed and analyzed using OLS regression. However, more than half of the data (124 students) have zero awards

Poisson Regression - Null model

. poisson num_	awards						
Poisson regres	sion			LR chi2	of obs 2(0) chi2	=	0.00
Log likelihood					R2		
num_awards		Std. Err.	z	P> z	[95%	Conf.	Interval]
_cons	4620355	.0890871	-5.19	0.000	6366	6429	287428
.* output on c							
num_awards	Inc. Rate	Std. Err.	z	P> z	[95%	Conf.	Interval]
	.63						

constant term here is just mean overall. First model is on natural log(mean counts) scale, second is on mean counts scale

Poisson Regression - Program type as a Predictor

- categories for program ('general program' is baseline/reference group)

. poisson num_awards acad voc

```
Iteration 0: log likelihood = -205.26518
Iteration 1: log likelihood = -205.25743
Iteration 2: log likelihood = -205.25743
```

Poisson regress	sion			Number o	of obs =	200
				LR chi2(2) =	53.21
				Prob > c	hi2 =	0.0000
Log likelihood	= -205.25743	3		Pseudo R	.2 =	0.1147
num_awards	Coef.			P> z		Interval]
acad voc	1.609438	.3473253	4.63 0.41	0.000 0.679	.9286925 6819415	2.290183 1.046584
_cons	-1.609438	.3333333	-4.83	0.000	-2.262759	9561164

Poisson Regression - Program type as a Predictor

coefficients are used to predict log of mean counts by group. Note that

- a. $\exp(\beta_0) = \exp(-1.6094) = .200$ mean awards for general education group
- b. $\exp(\beta_0+\beta_{voc})=\exp(-1.6094+.1823)=.24$ mean awards for vocational group
- c. $\exp(\beta_0+\beta_{acad})=\exp(-1.6094+1.6084)=1.0$ mean awards for academic group

These are the same means for the general, vocational, and academic programs as shown in table earlier

Poisson Regression - Program type as a Predictor

Same model on the mean count scale. The β coefficients here are the incidence rate ratios (IRR)

```
. poisson num_awards acad voc, irr
```

. . .

Poisson regres	ssion			Number of	f obs =	200
				LR chi2(2	2) =	53.21
				Prob > ch	ni2 =	0.0000
Log likelihood	d = -205.2574	3 		Pseudo R2	2 =	0.1147
num_awards		Std. Err.	z	P> z	[95% Conf.	Interval]
acad	4.999999	1.736626	4.63	0.000	2.531197	9.876743
voc	1.2	.5291501	0.41	0.679	.5056343	2.847906
_cons	.2000001	.0666667	-4.83	0.000	.104063	.3843828

Note: _cons estimates baseline incidence rate.

Here, the coefficient for voc is the ratio of mean counts for vocational vs general; coefficient for acad is the ratio of means for academic vs general. Coefficients give the *multiplicative* effect

Poisson Regression - Adding Math Score to Model

. poisson num_awards acad voc math

```
Iteration 0: log likelihood = -182.75759
Iteration 1: log likelihood = -182.75225
Iteration 2: log likelihood = -182.75225
```

Poisson regress	sion			Numbe	r of obs	=	200
				LR ch	i2(3)	=	98.22
				Prob	> chi2	=	0.0000
Log likelihood	= -182.7522	5		Pseud	o R2	=	0.2118
num_awards	Coef.	Std. Err.	z	P> z			Interval]
acad	1.083859	.358253	3.03	0.002	.3816		1.786022
voc	.3698092	.4410703	0.84	0.402	4946	727	1.234291
math	.0701524	.0105992	6.62	0.000	.0493	783	.0909265
_cons	-5.247124	.6584531	-7.97	0.000	-6.537	669	-3.95658

Poisson Regression - Model and Coefficients

Results (βs) are increase/decrease in log(counts) on an additive scale. Again, to get relative increase in counts per unit of X on a multiplicative scale, we request the incidence rate ratio:

. poisson num_awards acad voc math, irr

. . . Iteration 2: $\log likelihood = -182.75225$

Poisson regression					Numbe	r of obs	=	200
					LR ch	i2(3)	=	98.22
					Prob	> chi2	=	0.0000
Log likelihoo	od =	-182.7522	5		Pseud	o R2	=	0.2118
num_awards	•	IRR	Std. Err.	z	P> z			Interval]
acad		2.956065	1.059019	3.03	0.002	1.464	767	5.965674
voc	1	1.447458	.6384309	0.84	0.402	.6097	705	3.435942
math	1	1.072672	.0113695	6.62	0.000	1.050	618	1.095188
_cons	1	.0052626	.0034652	-7.97	0.000	.0014	479	.0191284

Note: $_{cons}$ estimates baseline incidence rate.

Poisson Regression - Model and Coefficients

num_awards		Std. Err.		P> z		Interval]
acad voc math	2.956065 1.447458	1.059019 .6384309 .0113695	3.03 0.84 6.62	0.002 0.402 0.000	1.464767 .6097705 1.050618	5.965674 3.435942 1.095188
_cons	.0052626	.0034652	-7.97	0.000	.0014479	.0191284

This model indicates:

- academic program has a 2.95 fold greater mean awards than general program. Smaller than before after adjusting for continuous math score
- vocational program has a nonsignificant 1.45 fold greater mean awards than general program
- per point of math score, mean awards goes up by a small but significant amount 1.07 or about 7%

Poisson Regression - Model Fit

To help assess the fit of the model, the estat gof command can be used to obtain the goodness-of-fit χ^2 test. This is **not** a test of the model coefficients, but rather a test of the model form: Does the Poisson model form fit our data? Thus, large p-value indicates good fit.

A statistically significant (small p-value) here would indicate that the data do not fit the model well. In that situation, we may try to determine if there are omitted predictor variables, if our linearity assumption holds and/or if the conditional mean and variance of outcome are very different.

Fitting GLMs

An alternative way to fit Poission regression is using the "glm" function (Stata or R), specifying which "family" to use, default is linear regression and "binomial" is logistic regression (for binary outcome).

```
. glm num_awards math acad voc, family(poisson)
               log\ likelihood = -187.46951
Iteration 0:
               log likelihood = -182.75816
Iteration 1:
               log likelihood = -182.75225
Iteration 2:
Iteration 3:
               log\ likelihood = -182.75225
Generalized linear models
                                                   No. of obs
                                                                            200
Optimization
                 : ML
                                                   Residual df
                                                                            196
                                                   Scale parameter =
                                                                             1
Deviance
                 = 189.4496199
                                                   (1/df) Deviance = .9665797
                                                   (1/df) Pearson = 1.082366
Pearson
                 = 212.1437315
Variance function: V(u) = u
                                                   [Poisson]
Link function
                 : g(u) = ln(u)
                                                   [Log]
                                                   AIC
                                                                   = 1.867523
```

BIC

= -849.0206

Log likelihood

= -182.7522516

num_awards	Coef.	OIM Std. Err.	z	P> z		Interval]
math	.0701524	.0105992	6.62	0.000	.0493783	.0909265
acad	1.083859	.358253	3.03	0.002	.3816961	1.786022
voc	.3698092	.4410703	0.84	0.402	4946727	1.234291
_cons	-5.247124	.6584531	-7.97	0.000	-6.537669	-3.95658

- Estimates are same as earlier. Again, β s are are in log(counts) on an additive scale.
- Models fit by separate computer modules for logistic, Poisson, etc can all be fit in a GLM framework.

Poisson Regression with Continuous Predictors

- The previous example, without the continuous math score, could be accommodated by frequency table methods for estimation and testing, although this would get unwieldy with more categorical predictors forming a multidimensional table
- We were able to add a continuous predictor, which cannot be represented by frequencies unless we 'bin' the scores into some categories.
- We can have any combination of categorical, ordinal, and continuous predictors in the Poisson model
- Ex How does approval of new drugs for chronic diseases relate to disease prevalence and monetary expenditure? New drug approvals are relatively uncommon and in 'count' form

Poisson Regression with Continuous Predictors

The data (1990s- mid 2000s, from C &H):

. list, noobs clean

		expend	prev	drugs	Disease_Area
		198.4	8976	6	Ischemic Heart Disease
		80.2	874	3	Lung Cancer
ions	Correlation	1049.6	1303	21	HIV/AIDS
10110		222.6	18092	2	Alcohol Use
drugs prev expend		108.5	9467	2	Cerebrovascular Disease
+		48.9	4271	1	COPD
s 1.0000	drugs	149.5	12785	7	Depression
1	prev	278.4	37850	13	Diabetes
nd 0.7850 -0.0474 1.0000	expend	151.3	12345	5	${\tt Osteoarthritis}$
		442.1	4000	1	Drug abuse
		344.1	8931	9	Dementia
		41.8	15919	3	Asthma
		70.6	1926	2	Colon Cancer
		40.1	2020	4	Prostate Cancer
		159.5	2262	9	Breast Cancer
		35	2418	2	Bipolar Disorder

Poisson Regression with Continuous Predictors

The data (1990s- mid 2000s, from C &H):

.. scatter drugs expend

Log counts scale:

. poisson drugs prev expend

```
Iteration 0: log likelihood = -38.407767
Iteration 1: log likelihood = -38.07115
Iteration 2: log likelihood = -38.070036
Iteration 3: log likelihood = -38.070036
```

Poisson regression	Number of obs	=	16
	LR chi2(2)	=	38.88
	Prob > chi2	=	0.0000
Log likelihood = -38.070036	Pseudo R2	=	0.3381

	drugs	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
•	prev expend _cons	.000027	9.51e-06 .0003008 .2073627	2.84 6.64 4.23	0.005 0.000 0.000	8.37e-06 .0014084 .4713334	.0000456 .0025877 1.28418

counts scale:

. poisson drugs prev expend, irr

```
Iteration 0: log likelihood = -38.407767
Iteration 1: log likelihood = -38.07115
Iteration 2: log likelihood = -38.070036
Iteration 3: log likelihood = -38.070036
```

Poisson regression

	Number of obs	=	16
	LR chi2(2)	=	38.88
	Prob > chi2	=	0.0000
Log likelihood = -38.070036	Pseudo R2	=	0.3381

drugs	IRR	Std. Err.	z	P> z	[95% Conf.	Interval]
prev	1.000027	9.51e-06	2.84	0.005	1.000008	1.000046
expend		.0003014	6.64	0.000	1.001409	1.002591
_cons	2.405498	.4988105	4.23	0.000	1.602129	3.611706

Note: _cons estimates baseline incidence rate.

Predictions:

. predict dhat (option n assumed; predicted number of events)

•

. list, clean

	disease	drugs	prev	expend	dhat
1.	Ischemic Heart Disease	6	8976	198.4	4.5564
2.	Lung Cancer	3	874	80.2	2.8909
3.	HIV/AIDS	21	1303	1049.6	20.2890
4.	Alcohol Use	2	18092	222.6	6.1168
5.	Cerebrovascular Disease	2	9467	108.5	3.8581
6.	COPD\$^a\$	1	4271	48.9	2.9766
7.	Depression	7	12785	149.5	4.5799
8.	Diabetes	13	37850	278.4	11.6587
9.	Osteoarthritis	5	12345	151.3	4.5421
10.	Drug abuse	1	4000	442.1	6.4824
11.	Dementia	9	8931	344.1	6.0887
12.	Asthma	3	15919	41.8	4.0193
13.	Colon Cancer	2	1926	70.6	2.9177
14.	Prostate Cancer	4	2020	40.1	2.7522
15.	Breast Cancer	9	2262	159.5	3.5167
16.	Bipolar Disorder	2	2418	35	2.7537

Fitting GLMs - considering alternate models

We have have circumstances where Poisson model is not correct for count data, for example:

- When the variance exceeds the mean, we have an overdispersed Poisson random variable - which may be better modeled by the negative binomial distribution
- When we have more than the expected number of cases with count of zero, we have a *zero-inflated* Poisson, a hybrid model that Stata or R can fit.

We examine the dataset relating <u>school absence days</u> to various factors including mathematics exam scores (Notes on transformations) to contrast some alternate models, all of which can be fit by a GLM procedure

Alternate Models

Looking at mean & variance of the response - not Poisson?

. sum daysabs Variable			Std. Dev.		Max
·	314			0	35
·			Std. Dev.		
daysabs	40		8.201157		34
-> prog = 2 Variable			Std. Dev.		Max
daysabs			7.446304	0	35
-> prog = 3 Variable			Std. Dev.		Max
daysabs		2.672897	3.733519	0	19

Alternate Models

Fit the Poisson model

. poisson daysabs math prog2 prog3

```
Iteration 0: log likelihood = -1328.6751
Iteration 1: log likelihood = -1328.6425
Iteration 2: log likelihood = -1328.6425
```

Poisson regression	Number of obs	=	314
	LR chi2(3)	=	443.73
	Prob > chi2	=	0.0000
Log likelihood = -1328.6425	Pseudo R2	=	0.1431

daysabs | Coef Std Frr z Polz| [95% Conf Interval]

 daysabs					[95% Conf.	Interval]
·					0086332	0049835
prog2	4398975	.056672	-7.76	0.000	5509725	3288224
prog3	-1.281364	.0778898	-16.45	0.000	-1.434025	-1.128703
_cons	2.651974	.0607367	43.66	0.000	2.532932	2.771015

Alternate Models

Fit the Negative Binomial model (note: for this dist'n, variance increases as mean increases)

```
. nbreg daysabs math prog2 prog3
```

Iteration 4:

```
Fitting Poisson model:
               log likelihood = -1328.6751
Iteration 0:
               log\ likelihood = -1328.6425
Iteration 1:
               log likelihood = -1328.6425
Iteration 2:
Fitting constant-only model:
Iteration 0:
               log likelihood = -899.27009
Iteration 1:
               log likelihood = -896.47264
               log\ likelihood = -896.47237
Iteration 2:
Iteration 3:
               log\ likelihood = -896.47237
Fitting full model:
Iteration 0:
               log likelihood = -870.49809
               log likelihood = -865.90381
Iteration 1:
Iteration 2:
               log likelihood = -865.62942
               log likelihood = -865.6289
Iteration 3:
```

log likelihood = -865.6289

Negative binomial regression					of obs =	314
		LR chi	2(3) =	61.69		
Dispersion	= mean			Prob >	chi2 =	0.0000
Log likelihood	= -865.6289	9		Pseudo	R2 =	0.0344
daysabs					[95% Conf.	Interval]
math	005993	.0025072	-2.39	0.017	010907	001079
prog2	44076	.182576	-2.41	0.016	7986025	0829175
prog3	-1.278651	.2019811	-6.33	0.000	-1.674526	882775
	2.615265			0.000	2.230423	
/lnalpha	0321895	.1027882			2336506	.1692717
alpha	.9683231			.7916384	1.184442	
LR test of alpha=0: chibar2(01) = 926.03						

Note: Poisson is a special case when $\alpha=0$ - test above is for $H_0:\alpha=0$, which is rejected (BTW: test stat. is 2(difference in log likelihoods between models) or 2(-865.6289 - -1328.6425) = 926.03).

Fitting same models using GLMs

. glm daysabs math prog2 prog3, family(nbinomial)

```
Iteration 0: log likelihood = -873.19828
```

. . .

Iteration 3: log likelihood = -865.67793

Generalized linea	r models			Number	of obs =	314
Optimization	: ML			Residu	al df =	310
				Scale	parameter =	1
Deviance	= 350.975	51541		(1/df)	Deviance =	1.132178
Pearson	= 331.175	7302		(1/df)	Pearson =	1.068309
Variance function	ı+(1)u^2		[Neg.	Binomial]		
Link function : $g(u) = ln(u)$				[Log]		
				AIC	=	5.53935
Log likelihood	= -865.677	'9288		BIC	=	-1431.337
daysabs		Std. Err.		P> z	[95% Conf.	Interval]
math -	.0059875		-2.36	0.018	0109689	0010061
prog2 -	.4407535	.1852477	-2.38	0.017	8038322	0776747
prog3 -	1.278633	.2047766	-6.24	0.000	-1.679988	8772782
_cons	2.615011	.1991968	13.13	0.000	2.224593	3.00543

. glm daysabs math prog2 prog3, family(Poisson)

Iteration 0: log likelihood = -1349.4476

. . .

Iteration 3: log likelihood = -1328.6425

Generalized lin		Numbe	r of obs =	314		
Optimization	: ML			Resid	ual df =	310
				Scale	parameter =	1
Deviance	= 1773.9	53438		(1/df) Deviance =	5.72243
Pearson	= 2045.6	65589		(1/df) Pearson =	6.59889
Variance functi	on: V(u) = 1	u		[Pois	son]	
Link function		[Log]				
				AIC	=	8.488169
Log likelihood = -1328.642493				BIC	=	-8.358387
1		OIM				
daysabs	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
math	0068084	.0009311	-7.31	0.000	0086332	0049835
prog2	4398975	.056672	-7.76	0.000	5509725	3288224
prog3	-1.281364	.0778898	-16.45	0.000	-1.434025	-1.128703
_cons	2.651974	.0607367	43.66	0.000	2.532932	2.771015

Fitting GLMs

linear models on two response scales - raw and square root

. glm daysabs math prog2 prog3, family(Gaussian)

Iteration 0: log	likelihoo	d = -1029.5	5558			
Generalized linear	models			Number	of obs =	314
Optimization :	ML			Residu	al df =	310
				Scale	parameter =	41.78862
Deviance =	12954.47	351		(1/df)	Deviance =	41.78862
Pearson =	12954.47	351		(1/df)	Pearson =	41.78862
Variance function:	V(u) = 1			[Gauss	ian]	
Link function :	g(u) = u			[Ident	ity]	
				AIC	=	6.583158
Log likelihood =	-1029.555	844		BIC	=	11172.16
		OIM				
daysabs	Coef.		z		[95% Conf.	<pre>Interval]</pre>
math	 0435858		-2.90	0.004	0730848	0140868
prog2 -	3.81316	1.138453	-3.35	0.001	-6.044487	-1.581833
prog3 -7	.384937	1.215351	-6.08	0.000	-9.76698	-5.002893
_cons 1	2.60373	1.224692	10.29	0.000	10.20338	15.00409

. glm sq_daysabs math prog2 prog3, family(Gaussian)

Iteration 0: log likelihood = -517.57805								
Generalized line	ar models			Numbe	r of obs =	314		
Optimization	: ML			Resid	ual df =	310		
				Scale	parameter =	1.602587		
Deviance	= 496.80	19054		(1/df) Deviance =	1.602587		
Pearson	= 496.80	19054		(1/df) Pearson =	1.602587		
Variance function	on: V(u) = 0	1		[Gaus	sian]			
Link function	: g(u) = u	1		[Iden	tity]			
						3.322153		
Log likelihood	= -517.578	30451		BIC	=	-1285.51		
		OIM						
sq_daysabs	Coof		7	DNIZI	[95% Conf.	Intorvall		
sq_daysabs		sta. EII.	<u></u>	F/ Z	[95% CONI.	incervaij		
math	0086047	.0029474	-2.92	0.004	0143815	0028279		
prog2	8568447	.2229446	-3.84	0.000	-1.293808	4198813		
prog3	-1.726006	.2380035	-7.25	0.000	-2.192484	-1.259528		
_cons	3.447068	.2398328	14.37	0.000	2.977004	3.917131		

- **Note:** This is identical to ordinary MLR model mentioned in last lecture

Summary – Poisson Regression and GLMs

A Poisson data-based model is useful for many phenomena, but has a strong theoretical assumption that conditional mean and variance of the outcome variable are equal

When there seems to be an issue of bad fit, we should first check if our model is appropriately specified, such as omitted variables and functional forms.

The assumption that the conditional variance is equal to the conditional mean should be checked. There are alternative variations on Poisson regression that may work