Version Spaces

1. A version space describes a set of hypotheses. How is this set defined?

Decision Tree Learning

For the following questions, assume a top-down decision tree learning algorithm using information gain as we discussed it in class.

1. Correct or false: The ordering of the examples influences the decision tree that the algorithm returns. Justify your answer!

3 pts.

2. Correct or false: If the examples have N attributes (all of which are binary), then the maximum number of nodes (with attribute tests) in a learned tree is 2^N-1 . Justify your answer!

3 pts.

3. Correct or false: Assume that there is at least one decision tree h with $Err_S(h) = 0$. The decision tree learning algorithm returns a tree that is consistent with the data and that has the minimum number of nodes.

Perceptrons

1. Imagine the following situation: You train a perceptron (with b=0) on a dataset and you notice that it made e updates. You know that all feature vectors \vec{x}_i in the training set have Euclidean length one. What can you conclude about the (geometric) margin δ ?

Optimal (Hard-Margin) Hyperplanes

The following graph has 9 points and three hyperplanes plotted into a coordinate system. "+" stands for a positive example, "x" for a negative example.

1. Which of the three hyperplanes is the maximum-margin hyperplane? Justify your answer by giving the definition of "maximum-margin hyperplane"!

3 pts.

2. Which of the points are support vectors? Mark them with "1" in the plot!

3.	Which of the points are guaranteed to not be misclassified in leave-one-out testing? Mark them with "2" in the plot! Justify your answer with a one sentence explanation!	
	•	3 pts.
4.	Indicate in the plot which distances are - by definition of maximum-margin hyperplanes - exactly equal to the size of the margin!	
	perplanes - exactly equal to the size of the margin:	3 pts.

5. Given is a training sample $S=((\vec{x}_1,y_1),...,(\vec{x}_n,y_n) \text{ with } \vec{x}_i \in \Re^N \text{ and } y_i \in \{-1,+1\}$. Transform each vector $\vec{x}_i=(x_1,...,x_N)$ to a vector $\vec{x}_i'=(x_1,...,x_N,0,...,0,1,0,...0)$ with the 1 in the (N+i)-th position. Prove that this construction always leads to a linearly separable dataset (ie. $S=((\vec{x}_1',y_1),...,(\vec{x}_n',y_n)$ is linearly separable)! 10 pts.

Soft-Margin Support Vector Machines

1. Discuss two reasons for using a soft-margin SVM instead of a hard-margin SVM!

6 pts.

2. How do training error and margin of a soft-margin SVM (generally) change for different values of C?

6 pts.

As a reminder, here is the primal soft-margin SVM optimization problem:

$$min_{\vec{w},b\vec{\xi}} = \frac{1}{2}\vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_{i}$$

$$s.t. \qquad y_{1}(\vec{w} \cdot \vec{x}_{1} + b) \ge 1 - \xi_{1} \text{ and } \xi_{1} \ge 0$$
(2)

s.t.
$$y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \text{ and } \xi_1 \ge 0$$
 (2)

$$y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \text{ and } \xi_n \ge 0$$
 (4)

7 Kernels

Let $K(\vec{x}_i, \vec{x}_j)$ be a kernel so that for all \vec{x}_i and \vec{x}_j : $K(\vec{x}_i, \vec{x}_j) = \phi(\vec{x}_i) \cdot \phi(\vec{x}_j)$. $\phi(\vec{x})$ is called the image of \vec{x} .

1. Name two reasons for why it might be beneficial to use a kernel!

6 pts.

2. Given two points \vec{x}_i and \vec{x}_j in input space, show how you can compute the Euclidian distance between their images in feature space $\phi(\vec{x}_i)$ and $\phi(\vec{x}_j)$ without computing ϕ explicitly.