Практическая работа № 3

Изучение структуры и базовых средств вычислительных сетей с использованием эмулятора NetEmul.

Цель работы:

В ходе практической работы закрепить знания о структуре и базовых элементах вычислительных сетей.

Ознакомиться с программой эмуляции NetEmul для визуализации работы вычислительных сетей и облегчения понимания происходящих в них процессов передачи данных.

Теоретическая часть

Выполнение практической работы предполагает наличие начальных знаний компьютерных сетей и принципов их работы.

Компьютерная сеть - это совокупность компьютеров, взаимосвязанных через каналы передачи данных для обеспечения обмена информацией и коллективного доступа пользователей к аппаратным, программным и информационным ресурсам сети.

В качестве базовых составляющих компьютерных сетей принято выделять следующие элементы:

- сетевые средства и службы (компьютеры с установленным специальным программным обеспечением);
- соединители и устройства для передачи данных;
- сетевые протоколы.

Сетевые средства и устройства для передачи данных составляют техническое обеспечение вычислительных сетей (серверы, рабочие станции, модемы, концентраторы, коммутаторы и маршрутизаторы).

Рабочая станция (work station) — это компьютер, оснащенный собственной операционной системой для обеспечения пользователя всем необходимым при решении прикладных задач, и функционирующий как в сетевом, так и локальном режимах.

Сервер (server) – это многопользовательский компьютер, выделенный для обработки запросов от всех рабочих станций сети, предоставляющий этим станциям доступ к общим системным ресурсам (вычислительным мощностям, базам данных, библиотекам программ, принтерам, факсам и т. д.) и распределяющий эти ресурсы.

Модем — устройство, применяющееся в системах связи для физического сопряжения информационного сигнала со средой его распространения. Модем, как правило, используется для подключения компьютера к сети Internet через телефонную линию.

Сетевой концентратор (англ. hub — центр) — устройство для объединения компьютеров в сеть с применением кабельной инфраструктуры типа витая пара. Концентраторы организуют для подключённых устройств разделяемую среду передачи данных.

Сетевой коммутатор (англ. switch — переключатель) — это устройство, используемое в сетях передачи пакетов, предназначенное для объединения

нескольких сегментов. Сетевой коммутатор передает данные от одного порта к другому на основе информации, содержащейся в пакете.

Маршрутизатор — соединяет между собой несколько локальных сетей и предназначен для поиска наиболее оптимального пути до клиента в сети.

Физический интерфейс (называемый также портом) определяется набором электрических связей и характеристиками сигналов.

Сетевые протоколы (называемые также *погическими интерфейсами*) — это набор информационных сообщений, а также набор правил, определяющих логику обмена этими сообщениями.

Архитектура — это концепция, определяющая взаимосвязь, структуру и функции взаимодействия рабочих станций в сети. Архитектура предусматривает логическую, функциональную и физическую организации технических и программных средств сети.

В основном выделяют два вида архитектур:

- Одноранговая архитектура;
- Архитектура на основе сервера.

Локальная вычислительная сеть (англ. LAN – Lokal Area Network) относится к географически ограниченным (территориально или производственно) аппаратно-программным реализациям, в которых несколько компьютерных систем связаны друг с другом с помощью соответствующих средств коммуникаций и работают под управлением сетевой операционной системы и сетевого программного обеспечения.

Топология – это описание физических соединений в сети, указывающее, каким образом рабочие станции могут связываться между собой.

Все локальные вычислительные сети строятся на основе трёх базовых топологий: шина(bus); звезда(star); кольцо(ring).

Для изучения основ построения вычислительных сетей и понимания, происходящих в них процессов в лабораторной работе предлагается использовать программу NetEmul. Программа NetEmul была создана для моделирования и визуализации работы компьютерных сетей. Кроме обучения, программа открывает широкие возможности для экспериментов и их наглядного отображения. Программа свободно распространяется и является бесплатной.

Загрузить программу NetEmul рекомендуется на сайте http://netemul.sourceforge.net. Следуя рекомендациям разработчика по установке, интерфейс программы должен иметь вид, представленный на рисунке1.

Интерфейс программы содержит следующие элементы:

- Главное меню программы;
- Панель устройств (отмечена цифрой 1);
- Панель параметров (отмечена цифрой 2)
- Сцена рабочая область программы.

Рис.1 Интерфейс программы NetEmul

Главное меню служит для настройки работы программы и состоит из элементов: Файл, Правка, Вид, Объект, Сервис, Скрипты, Помощь.

 Φ айл - позволяет создать новый проект, сохранить, загрузить или распечатать его, а также запустить просмотр модели сети.

Правка - служит для отмены или возврата действия пользователя.

 $Bu\partial$ - используется для включения или отключения панелей программы.

Объект - полностью копирует функции контекстного меню, которое вызывается по нажатию правой кнопки мыши. Важно отметить, что данный пункт становится активным лишь после того, как будет выделен какой-либо из объектов на сцене;

Сервис - позволяет просмотреть общую статистику для всей сети, в которой указывается количество каждого из устройств и общий трафик;

Скрипты – позволяет создавать сценарии;

Помощь - содержит сведения об авторах и краткую справку по использованию программы NetEmul.

Панель управления устройствами (рис.2) предназначена для добавления и перемещения на сцене сетевых устройств.

Рис.2. Панель устройств

Описание элементов панели (слева-направо):

 № Перемещение объектов – позволяет перемещать устройства по сцене;

- ▶ Вставить текстовую надпись позволяет добавить текстовую заметку на сцену;
- ▶ Создать соединение позволяет соединять устройства в сети;
- Добавить Компьютер установка персонального компьютера на сцену;
- Добавить Концентратор установка сетевого концентратора (hub) на сцену;
- ➤ Добавить Коммутатор установка сетевого коммутатора (switch) на сцену;
- ➤ Добавить Маршрутизатор установка сетевого маршрутизатора (router) на сцену;
- У Отправить данные используется для проверки работоспособности сети;
- *▶ Остановить симуляцию* останавливает запущенную передачу данных в сети.

Панель параметров (рис.3) предназначена для настройки отдельно взятого устройства в сети.

Рис.3 Панель параметров

Для каждого из сетевых устройств используются собственные настройки. Поэтому не все пункты будут активны для каждого из устройств в сети.

Описание пунктов панели (слева-направо):

- ▶ Показать свойства вызывает диалоговое окно со свойствами сетевого устройства. Например, для компьютера это шлюз; для концентратора и коммутатора количество портов и МАСадреса в сети; для маршрутизатора количество портов и включение или выключение маршрутизации.
- ▶ Редактирование интерфейсов пункт меню, с помощью которого задаются IP-адреса и маски подсети. Используется для настройки компьютера и машрутизатора.
- Установленные программы − с помощью данного пункта можно присвоить компьютеру и маршрутизатору свойство сервера или клиента;
- ➤ Таблица маршрутизации с помощью данного пункта можно задать правила маршрутизации;
- ➤ ARP-таблица позволяет задать соответствие между IPадресами и MAC-адресами устройства;

➤ Журнал устройства — с помощью данного пункта можно просмотреть подробный журнал событий устройства в сети, где отображаются проходящие через него пакеты при передаче данных.

Ниже приведены примеры диалоговых окон программы (рис.4,).

Рис.4 Диалоговое окно «Интерфейсы»

Рис.5 Диалоговое окно «Свойства» компьютера

Рис.6 Диалоговое окно «Свойства» коммутатора и маршрутизатора

Рис.7 Диалоговое окно «Создать соединение»

Пример работы с программой NetEmul

Задание: используя программу NetEmul построить одноранговую локальную сеть, состоящую из двух компьютеров и концентратора.

Необходимо:

- 1. Создать новый проект.
- 2. Добавить на рабочую область два компьютера и один концентратор.
- 3. Присвоить каждому компьютеру IP-адрес.
- 4. Создать соединение компьютеров с концентратором.
- 5. Проверить работоспособность сети.
- 6. Сохранить выполненный проект.

Ход выполнения задания

- 1. Загружаем и запускаем программу NetEmul.
- 2. Выполним русификацию программы (при необходимости) командой **Сервис-Настройки (Settings),** как показано на рис. 8.

Рис.8

- 3. Создаем новый проект командой Файл-Новый.
- 4. Добавляем устройства на рабочую область:
 - На панели устройств выбираем объект «Компьютер» и щелкнув левой кнопкой мыши на свободные клетки поля добавляем устройства;
 - Аналогично добавляем на рабочую область устройство «Концентратор».
 - В результате действий рабочая область будет иметь вид, представленный на рис.9.

Рис.9

- 5. Присвоим каждому компьютеру ІР-адрес:
 - Выделяем компьютер, щелкнув на него левой кнопкой мыши;
 - На панели параметров выбираем пункт «Редактировать интерфейсы»;
 - В появившемся окне в строке «IP-Адрес» введем IP-адрес 192.168.0.1 и нажимаем последовательно кнопки «Применить» и «ОК»;
 - Аналогичным образом присвоим IP-адрес 192.168.0.2 второму компьютеру.
- 6. Выполним соединение устройств:
 - На панели инструментов выберем пункт «Создать соединение»;
 - Наводим курсор на устройство «Концентратор» и, зафиксировав левую кнопку мыши, проводим линию до первого компьютера, после чего следует отпустить кнопку;
 - В появившемся диалоговом окне настроек интерфейсов выбираем в левой колонке пункт «LAN1» и нажимаем кнопку «Соединить»;

• Аналогичным образом соединяем концентратор со вторым компьютером, выбрав в диалоговом окне настроек интерфейсов в левой колонке пункт «LAN2».

Вид рабочей области представлен на рис.10.

Рис.10

7. Проверяем работоспособность сети:

- На панели устройств выберем пункт «Отправить данные»;
- Наведем курсор на первый компьютер и нажимаем левую кнопку;
- В появившемся диалоговом окне «Отправка» выберем ТСР протокол и установим необходимый объем данных для передачи, после чего нажимаем кнопку «Далее»;
- Наводим курсор на второй компьютер и нажимаем левую кнопку мыши;
- В появившемся диалоговом окне «Отправка» выберем интерфейс приемника «eth0» и нажимаем кнопку «Отправка»;
- В случае верной настройки сети, по линиям, которые соединяют устройства, начнется передача данных. Процесс передачи данных представлен в программе в виде точек (рис.11).

8. Сохраняем файл проекта командой Файл, Сохранить.

В дальнейшем проект сети может быть использован для проведения исследований и манипуляций с настройками.

Рис.11

Задания на лабораторную работу

Задание 1.

Используя программу NetEmul исследовать локальную сеть (рис.12), состоящую из четырех компьютеров и концентратора.

Рис.12

Необходимо:

- 1. Создать новый проект.
- 2. Добавить на рабочую область устройства.

- 3. Присвоить компьютерам IP-адреса: 192.168.0.1; 192.168.0.2; 192.168.0.3; 192.168.0.4.
- 4. Создать соединение компьютеров с концентратором.
- 5. Проверить работоспособность сети.
- 6. Сохранить выполненный проект (представить скриншот).
- 7. Проанализировать процессы передачи данных в сети.

Задание 2.

Используя программу NetEmul исследовать локальную сеть (рис.13), состоящую из четырех компьютеров и коммутатора.

Рис.13

Необходимо:

- 1. Создать новый проект.
- 2. Добавить на рабочую область устройства.
- 3. Присвоить компьютерам IP-адреса: 192.168.0.1; 192.168.0.2; 192.168.0.3; 192.168.0.4.
- 4. Создать соединение компьютеров с коммутатором.
- 5. Проверить работоспособность сети для выбранных пар компьютеров.
- 6. Сохранить выполненный проект (представить скриншот).
- 7. Проанализировать процессы передачи данных в сети согласно таблице коммутации коммутатора.

Задание 3.

Используя программу NetEmul исследовать локальную сеть (рис.14), которая разделена на три виртуальные подсети.

Необходимо:

- 1. Создать новый проект.
- 2. Добавить на рабочую область устройства.
- 3 Задать собственное имя подсетям:
 - На панели инструментов выберите объект «Текстовая надпись»;

- Нажать левую кнопку мыши над коммутатором на рабочей области;
- В появившемся поле желтого цвета задать имя «LAN1»;
- Аналогичным образом задать имя «LAN2» для второй подсети и для третьей подсети.
- 4. Присвоить компьютерам ІР-адреса:
 - для LAN1: 192.168.1.2; 192.168.1.3;
 - для LAN2: 192.168.2.2; 192.168.2.3;
 - для LAN3: 192.168.3.2; 192.168.3.3.
- 5. Создать соединение устройств согласно схеме на рис.14.
- 6. Выполнить настройки маршрутизатора:
 - Выделить маршрутизатор, щелкнув на него левой кнопкой мыши;
 - На панели параметров выберать пункт «Редактировать интерфейсы»;
 - В появившемся окне в «Интерфейс» перейти на вкладку LAN1 и в строке «IP-адрес» ввести 192.168.1.1;
 - Перейти на вкладку LAN2 и таким же образом задать IP-адрес 192.168.2.1;
 - Перейти на вкладку LAN3 и таким же образом задать IP-адрес 192.168.3.1;
 - Нажать кнопку «ОК» для закрытия окна и сохранения изменений.
 - Выделить маршрутизатор, щелкнув на него правой кнопкой мыши, и в контекстном меню выбрать пункт «Свойства»;
 - Поставить флажок напротив пункта «Включить маршрутизацию», и нажать кнопку «ОК» для сохранения изменений.
- 7. Проверить работоспособность сети для выбранных пар компьютеров из разных подсетей.
- 8. Сохранить выполненный проект (представить скриншот).
- 7. Проанализировать процессы передачи данных в сети.

Рис.14

Содержание отчёта

В отчёте необходимо указать:

- 1. Цель работы.
- 2. Ход работы, включающий следующие материалы:
 - содержание задания;
 - описание результатов исследования;
 - прилагаемые скриншоты.
- 3. Выводы.

Примеры контрольных вопросов

- 1. Что входит в состав технических средств компьютерных сетей.
- 2. Назначение концентратора в компьютерной сети.
- 3. Назначение коммутатора в компьютерной сети.
- 4. Каким образом определить номер сети в IP адресе.
- 5. Какая информация содержится в таблице коммутации.
- 6. Какая информация содержится в таблице маршрутизации.
- 7. Что такое основной шлюз.
- 8. Для чего предназначен протокол ARP.
- 9. Что такое разделяемая среда.
- 10. Что такое дейтаграммная передача данных.
- 11. Назначение протокола UDP.
- 12. Назначение протокола ТСР.
- 13. Топологии компьютерных сетей.