But what makes a neuron *compute*?

Excitability arises from ion channel nonlinearity

- voltage dependent
- transmitter dependent (synaptic)
- Ca dependent
- mechanosensitive

Best pics are all from Dayan and Abbott, Theoretical Neuroscience

Parallel paths for different ions to cross membrane

New equivalent circuit:

Variable conductance

Persistent conductance

n describes a subunit

n describes a subunit

n is open probability 1-n is closed probability

 $P_K \sim n^4$

n describes a subunit

$$n$$
 is open probability $1-n$ is closed probability

Transitions between states occur at voltage dependent rates

$$\alpha_n(V)$$
 $C \to O$
 $\beta_n(V)$ $O \to C$

$$\beta_n(V)$$
 $O \rightarrow C$

$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n$$

Dynamics of activation: persistent conductance

$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n$$

We can rewrite:

$$\tau_n(V)\frac{dn}{dt} = n_{\infty}(V) - n$$

where

$$\tau_n(V) = \frac{1}{\alpha_n(V) + \beta_n(V)}$$

$$n_{\infty}(V) = \frac{\alpha_n(V)}{\alpha_n(V) + \beta_n(V)}$$

Transient conductances

m and h have opposite voltage dependences: depolarization increases m, activation hyperpolarization increases h, deinactivation

Dynamics of activation and inactivation

$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n$$

$$\frac{dm}{dt} = \alpha_m(V)(1-m) - \beta_m(V)m$$

$$\frac{dh}{dt} = \alpha_h(V)(1-h) - \beta_h(V)h$$

So will get equivalent forms as for n...

$$\tau_n(V)\frac{dn}{dt} = n_{\infty}(V) - n$$

V-dependent conductances

$$g_K(V) = \overline{g}_K n^4$$

$$g_{Na}(V) = \overline{g}_{Na} m^3 h$$

Putting it together

Ohm's law: V = IR and Kirchhoff's law

$$C_m \frac{dV}{dt} = \sum_i g_i (V - E_i) + I_e$$

Capacitative current

Ionic currents

Externally applied current

Hodgkin and Huxley's Nobel equation

$$C_m \frac{dV}{dt} = -\sum_i g_i (V - E_i) + I_e$$

$$-C_m \frac{dV}{dt} = g_L(V - E_L) + \bar{g}_K n^4 (V - E_K) + \bar{g}_{Na} m^3 h(V - E_{Na}) - I_e$$

$$\frac{dn}{dt} = \alpha_n(V)(1 - n) - \beta_n(V)n$$

$$\frac{dm}{dt} = \alpha_m(V)(1 - m) - \beta_m(V)m$$

$$\frac{dh}{dt} = \alpha_h(V)(1 - h) - \beta_h(V)h$$

Dynamics of activation and inactivation

This is where each variable is going

This is how fast it gets there

Dynamics of activation and inactivation

$$\tau_n(V)\frac{dn}{dt} = n_{\infty}(V) - n$$

This is where each variable is going

This is how fast it gets there

Anatomy of a spike

$$g_K(V) = \overline{g}_K n^4$$

 $g_{Na}(V) = \overline{g}_{Na} m^3 h$

Anatomy of a spike

Where to from here?

Biophysical realism
Ion channel physics
Additional channels
Geometry

Simplified models
Fundamental dynamics
Analytical tractability