

Hydraulische Formelsammlung

Verfasser: Houman Hatami

Tel.: +49-9352-18-1225 Fax: +49-9352-18-1293 houman.hatami@boschrexroth.de

INHALTSVERZEICHNIS

BEZIEHUNGEN ZWISCHEN EINHEITEN	4
WICHTIGE KENNWERTE VON DRUCKFLÜSSIGKEITEN	6
ALLGEMEINE HYDRAULISCHE BEZIEHUNGEN	7
Kolbendruckkraft	7
KOLBENKRÄFTE	
HYDRAULISCHE PRESSE	
Kontinuitätsgleichung	
Kolbengeschwindigkeit	
Druckübersetzer	8
HYDRAULISCHE SYSTEMKOMPONENTE	9
HYDROPUMPE	9
HYDROMOTOR	
Hydromotor variabel	
Hydromotor konstant	
Hydromotoreigenfrequenz	
HYDROZYLINDER	
DifferentialzylinderGleichgangzylinder	
Zylinder in Differentialschaltung	
Zylinder in Dinerentialschaltung	
Zylindereigenfrequenz bei Gleichgangzylinder	
Zylindereigenireguenz bei Plungerzylinder	10
Zylindereigenfrequenz bei Plungerzylinder	
, , , , , , , , , , , , , , , , , , , ,	20 MEN-
ROHRLEITUNGEN	20 MEN- 21
ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT POSITIVER LAST	20 MEN2122
ROHRLEITUNGEN	
ROHRLEITUNGEN	
ROHRLEITUNGEN	20 MEN21232425
ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST	MEN2123242526
ROHRLEITUNGEN ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST	MEN212324252627
ROHRLEITUNGEN ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST	MEN21232425262728
ROHRLEITUNGEN ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST HYDRAULIKMOTOR MIT EINER POSITIVEN LAST	20 MEN2123242526272829
ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST. DIFFERENTIALZYLINDER EINFAHREND MIT POSITIVER LAST. DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST. DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST. DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST. DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST. DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST. DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST. HYDRAULIKMOTOR MIT EINER POSITIVEN LAST. HYDRAULIKMOTOR MIT EINER NEGATIVEN LAST.	MEN
ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST HYDRAULIKMOTOR MIT EINER POSITIVEN LAST ERMITTLUNG DER REDUZIERTEN MASSEN VERSCHIEDENE SYSTEMEN	MEN
ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN	MEN
ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN	MEN
ROHRLEITUNGEN ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST HYDRAULIKMOTOR MIT EINER POSITIVEN LAST HYDRAULIKMOTOR MIT EINER NEGATIVEN LAST ERMITTLUNG DER REDUZIERTEN MASSEN VERSCHIEDENE SYSTEMEN LINEARE ANTRIEBE Primäranwendungen (Energiemethode) Punktmasse bei linearen Bewegungen	MEN
ROHRLEITUNGEN ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST HYDRAULIKMOTOR MIT EINER POSITIVEN LAST HYDRAULIKMOTOR MIT EINER NEGATIVEN LAST ERMITTLUNG DER REDUZIERTEN MASSEN VERSCHIEDENE SYSTEMEN LINEARE ANTRIEBE Primäranwendungen (Energiemethode) Punktmasse bei linearen Bewegungen Verteilte Masse bei lineare Bewegungen	MEN
ROHRLEITUNGEN ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST HYDRAULIKMOTOR MIT EINER POSITIVEN LAST HYDRAULIKMOTOR MIT EINER NEGATIVEN LAST ERMITTLUNG DER REDUZIERTEN MASSEN VERSCHIEDENE SYSTEMEN LINEARE ANTRIEBE Primäranwendungen (Energiemethode) Punktmasse bei linearen Bewegungen	MEN
ROHRLEITUNGEN ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST. DIFFERENTIALZYLINDER EINFAHREND MIT POSITIVER LAST. DIFFERENTIALZYLINDER AUSFAHREND MIT NEGATIVER LAST. DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST. DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST. DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST. DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST. DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST. DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST. HYDRAULIKMOTOR MIT EINER POSITIVEN LAST. HYDRAULIKMOTOR MIT EINER NEGATIVEN LAST. ERMITTLUNG DER REDUZIERTEN MASSEN VERSCHIEDENE SYSTEMEN. LINEARE ANTRIEBE. Primäranwendungen (Energiemethode) Punktmasse bei linearen Bewegungen. Verteilte Masse bei lineare Bewegungen. ROTATION.	20 MEN212324252627283031323333333333
ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND VOLUI STRÖME UNTER POS. UND NEG. LASTEN DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER LAST HYDRAULIKMOTOR MIT EINER POSITIVEN LAST HYDRAULIKMOTOR MIT EINER NEGATIVEN LAST ERMITTLUNG DER REDUZIERTEN MASSEN VERSCHIEDENE SYSTEMEN LINEARE ANTRIEBE Primäranwendungen (Energiemethode) Punktmasse bei linearen Bewegungen Verteilte Masse bei linearen Bewegungen ROTATION KOMBINATION AUS LINEARER UND ROTATORISCHER BEWEGUNG	20 MEN2122232425262728303132333335363739

Vertrieb Branche Metallurgie

Formelsammlung Hydraulik	
HYDROSPEICHER	40
WÄRMETAUSCHER (ÖL-WASSER)	41
AUSLEGUNG EINES VENTILS	43

Beziehungen zwischen Einheiten

Dezienang	gen zwischen Ei		
Größe	Einheit	Symbol	Beziehung
Längen	Mikrometer	μ m	1μm = 0,001mm
	Millimeter	mm	1mm = 0,1cm = 0,01dm = 0,001m
	Zentimeter	cm	1cm = 10mm = 10.000μm
	Dezimeter	dm	1dm = 10cm = 100mm = 100.000μm
	Meter	m	1m = 10dm = 100cm = 1.000mm = 1.000.000μm
	Kilometer	km	1km = 1.000m = 100.000cm = 1.000.000mm
Flächen	Quardratzentimeter	cm ²	$1 \text{cm}^2 = 100 \text{mm}^2$
	Quadratdezimeter	dm ²	$1 dm^2 = 100 cm^2 = 10.000 mm^2$
	Quadratmeter	m^2	$1m^2 = 100dm^2 = 10.000cm^2 = 1.000.000mm^2$
	Ar	а	$1a = 100m^2$
	Hektar	ha	1ha = 100a = 10.000m ²
	Quadratkilometer	km ²	$1 \text{km}^2 = 100 \text{ha} = 10.000 \text{a} = 1.000.000 \text{m}^2$
Volumen	Kubikzentimeter	cm ³	$1 \text{cm}^3 = 1.000 \text{mm}^3 = 1 \text{ml} = 0,001 \text{l}$
	Kubikdezimeter	dm ³	$1 \text{dm}^3 = 1.000 \text{cm}^3 = 1.000.000 \text{mm}^3$
	Kubikmeter	m^3	$1 \text{m}^3 = 1.000 \text{dm}^3 = 1.000.000 \text{cm}^3$
	Milliliter	ml	$1mI = 0.001I = 1cm^3$
	Liter	I	$1I = 1.000 \text{ mI} = 1 \text{dm}^3$
	Hektoliter	hl	1hl = 100l = 100dm ³
Dichte	Gramm/	$\frac{g}{\text{cm}^3}$	$1\frac{g}{cm^3} = 1\frac{kg}{dm^3} = 1\frac{t}{m^3} = 1\frac{g}{ml}$
	Kubikzentimeter		
Kraft	Noveton	N	Loren I
Gewichtskraft	Newton	N	$1N = 1 \frac{kg \bullet m}{s^2} = 1 \frac{J}{m}$
Cowioniskiak			1daN = 10N
Drehmoment	Newtonmeter	Nm	1Nm = 1J
Druck	Pascal	Pa	1Pa = 1N/m ² = 0,01mbar = $\frac{1kg}{m \cdot s^2}$
	Bar	Bar	"
	$psi = \frac{pound}{}$		$1bar = 10\frac{N}{cm^2} = 100.000\frac{N}{m^2} = 10^5 Pa$
	$psi = \frac{pound}{inch^2}$	Psi	•
	$\frac{kp}{cm^2}$		1psi = 0,06895 bar
	cm^2		$1\frac{kp}{cm^2} = 0.981bar$
			ст

Masse	Milligramm	mg	1mg = 0,001g
	Gramm	g	1g = 1.000mg
	Kilogramm	kg	1 kg = 1000 g = 1.000.000 mg
	Tonne	t	1t = 1000kg = 1.000.000g
	Megagramm	Mg	1Mg = 1t
Beschleunigung	Meter/	$\frac{m}{s^2}$	$1\frac{m}{s^2} = 1\frac{N}{kg}$
	Sekundenquadrat	3	$1g = 9.81 \text{ m/s}^2$
			19 - 0,01 1100
Winkel-	Eins/ Sekunde	1/s	ω = 2•π•n n in 1/s
geschwindigkeit	Radiant/ Sekunde		
		$\frac{\text{rad}}{\text{s}}$	
Leistung	Watt	W	$1W = 1 \frac{Nm}{s} = 1 \frac{J}{s} = 1 \frac{kg \bullet m}{s^2} \bullet \frac{m}{s}$
	Newtonmeter/ Sekunde	Nm/s	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Joule/ Sekunde	J/s	
Arbeit/ Energie	Wattsekunde	Ws	$1Ws = 1Nm = 1 \frac{kg \bullet m}{s^2} \bullet m = 1J$
Wärmemenge	Newtonmeter	Nm	$\frac{1}{s^2}$
	Joule	J	
	Kilowattstunde	kWh	1kWh = 1.000 Wh = 1000•3600Ws = 3,6•10 ⁶ Ws
	Kilojoule	kJ	$= 3,6 \cdot 10^3 \text{kJ} = 3600 \text{kJ} = 3,6 \text{MJ}$
	Megajoule	MJ	
Mechanische-	Newton/	$\frac{N}{mm^2}$	$1\frac{N}{mm^2} = 10bar = 1MPa$
Spannung	Millimeterquadrat	11111	mm ²
Ebener-	Sekunde	,,	1'' = 1'/60
Winkel	Minute	,	1' = 60''
	Grad	0	$1^{\circ} = 60' = 3600'' = \frac{\pi}{180^{\circ}} \text{rad}$
	Radiant	rad	
			1rad = 1m/m = 57,2957°
			$1 \text{rad} = 180^{\circ}/\pi$
Drehzahl	Eins/Sekunde	1/s	1
2701120111	Eins/Minute	1/3 1/min	$\frac{1}{s} = s^{-1} = 60 \text{min}^{-1}$
		.,	11 1
			$\frac{1}{\min} = \min^{-1} = \frac{1}{60s}$

Wichtige Kennwerte von Druckflüssigkeiten

	HLP	HFC	HFA (3%)	HFD
Dichte bei 20°C [kg/m³]	880	1085	1000	925
Kinematische Viskosität bei 40°C [mm²/s]	10-100	36-50	0,7	15-70
Kompressions Modul E bei 50°C [Bar]	12000-14000	20400-23800	15000- 17500	18000- 21000
Spezifische Wärme bei 20°C [kJ/kgK]	2,1	3,3	4,2	1,3-1,5
Wärmeleitfähigkeit bei 20°C [W/mK]	0,14	0,4	0,6	0,11
Optimale Temperaturen [°C]	40-50	35-50	35-50	35-50
Wassergehalt	0	40-50	80-97	0
Kavitationsneigung	gering	stark	Sehr stark	gering

Allgemeine hydraulische Beziehungen

Kolbendruckkraft

Abbildung	Gleichung / Gleichungsumstellung	Formelzeichen / Einheiten
F	$F = 10 \bullet p \bullet A$ $F = p \bullet A \bullet \eta \bullet 10$ $A = \frac{d^2 \bullet \pi}{4}$ $d = \sqrt{\frac{4 \bullet F \bullet 0,1}{\pi \bullet p}}$ $p = 0,1 \bullet \frac{4 \bullet F}{\pi \bullet d^2}$	F = Kolbendruckkraft[N] p = Flüssigkeitsdruck[bar] A = Kolbenfläche[cm²] d = Kolbendurchmesser[cm] η = Wirkungsgrad Zylinder

Kolbenkräfte

Abbildung	Gleichung / Gleichungsumstellung	Formelzeichen / Einheiten
F F	$F = p_e \bullet A \bullet 10$ $F = p_e \bullet A \bullet \eta \bullet 10$ $A = \frac{\mathrm{d}^2 \bullet \pi}{4}$ A Für Kreisringfläche: $A = \frac{(\mathrm{D}^2 - \mathrm{d}^2) \bullet \pi}{4}$	F = Kolbendruckkraft[N] p _e = Überdruck auf den Kolben[bar] A = Wirksame Kolbenfläche[cm²] d = Kolbendurchmesser[cm] η = Wirkungsgrad Zylinder

Hydraulische Presse

Abbildung	Gleichung / Gleichungsumstellung	Formelzeichen / Einheiten
A ₂	$\frac{F_1}{A_1} = \frac{F_2}{A_2}$ $F_1 \bullet s_1 = F_2 \bullet s_2$ $\varphi = \frac{F_1}{F_2} = \frac{A_1}{A_2} = \frac{s_2}{s_1}$	$\begin{split} F_1 &= Kraft \ am \ Pumpenkolben[N] \\ F_2 &= Kraft \ am \ Arbeitskolben[N] \\ A_1 &= Fläche \ des \ Pumpenkolbens \ [cm^2] \\ A_2 &= Fläche \ des \ Arbeitskolbens \ [cm^2] \\ s_1 &= Weg \ des \ Pumpenkolbens \ [cm] \\ s_2 &= Weg \ des \ Arbeitskolbens \ [cm] \\ \phi &= \ddot{U}bersetzungsverhältnis \end{split}$

Kontinuitätsgleichung

Abbildung	Gleichung / Gleichungsumstellung	Formelzeichen / Einheiten
$Q_1 = A_1$ $A_2 = Q_2$ $V_1 = V_2$	$Q_{1} = Q_{2}$ $Q_{1} = A_{1} \bullet v_{1}$ $Q_{2} = A_{2} \bullet v_{2}$ $A_{1} \bullet v_{1} = A_{2} \bullet v_{2}$	$Q_{1,2}$ = Volumenströme [cm³/s, dm³/s, m³/s] $A_{1,2}$ = Querschnittsflächen [cm², dm², m²] $v_{1,2}$ = Strömungsgeschwindigkeiten [cm/s, dm/s, m/s]

Kolbengeschwindigkeit

Abbildung	Gleichung / Gleichungsumstellung	Formelzeichen / Einheiten
Q, V ₂	$v_{1} = \frac{Q_{1}}{A_{1}}$ $v_{2} = \frac{Q_{2}}{A_{2}}$ $A_{1} = \frac{d^{2} \cdot \pi}{4}$ $A_{2} = \frac{(D^{2} - d^{2}) \cdot \pi}{4}$	$v_{1,2}$ = Kolbengeschwindigkeit [cm/s] $Q_{1,2}$ = Volumenstrom [cm ³ /s] A_1 = Wirksame Kolbenfläche (Kreis) [cm ²] A_2 = Wirksame Kolbenfläche (ring) [cm ²]

Druckübersetzer

Abbildung	Gleichung / Gleichungsumstellung	Formelzeichen / Einheiten
P A ₁	$p_1 \bullet A_1 = p_2 \bullet A_2$	p_1 = Druck im kleinen Zylinder [bar] A_1 = Kolbenfläche [cm²] p_2 = Druck am großen Zylinder [bar] A_2 = Kolbenfläche [cm²]

Hydraulische Systemkomponente

Hydropumpe

$$Q = \frac{V \bullet n \bullet \eta_{vol}}{1000} \text{ [l/min]}$$

$$P_{an} = \frac{p \bullet Q}{600 \bullet \eta_{ges}} [kW]$$

$$M = \frac{1{,}59 \bullet V \bullet \Delta p}{100 \bullet \eta_{\mathrm{mh}}} \text{[Nm]}$$

$$\eta_{\mathrm{ges}} = \eta_{\mathrm{vol}} \bullet \eta_{\mathrm{mh}}$$

Q = Volumenstrom [I/min]

V = Nennvolumen [cm³]

n = Antriebsdrehzahl der Pumpe [min⁻¹]

P_{an} = Antriebsleistung [kW]

p = Betriebsdruck [bar]

M = Antriebsmoment [Nm]

 η_{ges} = Gesamtwirkungsgrad (0,8-0,85)

 η_{vol} = volumetr. Wirkungsgrad (0,9-0,95)

 η_{mh} = hydr.-mechanischer Wirkungsgrad(0,9-0,95)

Hydromotor

$$Q = \frac{V \bullet n}{1000 \bullet \eta_{\text{vol}}}$$

$$n = \frac{Q \bullet \eta_{vol} \bullet 1000}{V}$$

$$M_{ab} = \frac{\Delta p \bullet V \bullet \eta_{mh}}{20 \bullet \pi} = 1,59 \bullet V \bullet \Delta p \bullet \eta_{mh} \bullet 10^{-2}$$

$$P_{ab} = \frac{\Delta p \bullet Q \bullet \eta_{ges}}{600}$$

Q = Volumenstrom [I/min]

V = Nennvolumen [cm³]

n = Antriebsdrehzahl der Pumpe [min⁻¹]

η_{ges} = Gesamtwirkungsgrad (0,8-0,85)

 η_{vol} = volumetr. Wirkungsgrad (0,9-0,95)

 η_{mh} = hydr.-mechanischer Wirkungsgrad (0,9-0,95)

Δp = druckdifferenz zwischen Eingang und

Ausgang des Motors [bar]

9

P_{ab} = Abtriebsleistung des Motors [kW]

M_{ab} = Abtriebsdrehmoment [Nm]

Hydromotor variabel

$$M_d = \frac{30000}{\pi} \bullet \frac{P}{n}$$

$$P = \frac{\pi}{30000} \bullet M_d \bullet n$$

$$n = \frac{30000}{\pi} \bullet \frac{P}{M_d}$$

$$M_{d} = \frac{M_{d \max}}{i \bullet \eta_{Getr}}$$

$$n = \frac{n_{\text{max}}}{i}$$

$$\Delta p = 20\pi \bullet \frac{M_d}{V_g \bullet \eta_{mh}}$$

$$Q = \frac{V_g \bullet n}{1000 \bullet \eta_{vol}}$$

$$Q_{P} = \frac{V_{g} \bullet n \bullet \eta_{vol}}{1000}$$

$$P = \frac{Q \bullet \Delta p}{600 \bullet \eta_{ges}}$$

M_d = Drehmoment [Nm]

P = Leistung [kW]

n = Drehzahl [min⁻¹]

M_{dmax} = Drehmoment max [Nm]

i = Getriebeübersetzung

 η_{Getr} = Getriebewirkungsgrad

η_{mh} = Mech./Hydr. Wirkungsgrad

 η_{vol} = Vol. Wirkungsgrad

V_g = Fördervolumen [cm³]

Hydromotor konstant

$$M_d = \frac{30000}{\pi} \bullet \frac{P}{n}$$

$$P = \frac{\pi}{30000} \bullet M_d \bullet n$$

$$n = \frac{30000}{\pi} \bullet \frac{P}{M_d}$$

$$M_{d} = \frac{M_{d \, max}}{i \bullet \eta_{Getr}}$$

$$n = \frac{n_{\text{max}}}{i}$$

$$\Delta p = 20\pi \bullet \frac{M_d}{V_g \bullet \eta_{mh}}$$

$$Q = \frac{V_g \bullet n}{1000 \bullet \eta_{vol}}$$

$$Q_{P} = \frac{V_{g} \bullet n \bullet \eta_{vol}}{1000}$$

$$P = \frac{Q \bullet \Delta p}{600 \bullet \eta_{ges}}$$

 M_d = Drehmoment [Nm]

P = Leistung [kW]

n = Drehzahl [min⁻¹]

M_{dmax} = Drehmoment max [Nm]

i = Getriebeübersetzung

 $\eta_{\text{Getr}} = Getriebewirkungsgrad$

η_{mh} = Mech./Hydr. Wirkungsgrad

 η_{vol} = Vol. Wirkungsgrad

 $V_g = F\"{o}rdervolumen [cm^3]$

Hydromotoreigenfrequenz

$$\omega_0 = \sqrt{\frac{2 \bullet E}{J_{red}} \bullet \frac{(\frac{V_G}{2\pi})^2}{(\frac{V_G}{2} + V_R)}}$$

$$\mathbf{f}_0 = \frac{\omega_0}{2\pi}$$

V_G = Schluckvolumen [cm³]

 ω_0 = Eigenkreisfrequenz [1/s]

 $f_0 = Eigenfrequenz [Hz]$

 J_{red} = Trägheitsmoment red. [kgm²]

 $E_{\ddot{o}l} = 1400 \text{ N/mm}^2$

V_R = Volumen der Leitung [cm³]

Hydrozylinder

$$A = \frac{{d_1}^2 \bullet \pi}{400} = \frac{{d_1}^2 \bullet 0,785}{100} [\text{cm}^2]$$

$$A_{st} = \frac{{d_2}^2 \bullet 0,785}{100} [cm^2]$$

$$A_R = \frac{(d_1^2 - d_2^2) \bullet 0,785}{100} [\text{cm}^2]$$

$$F_{D} = \frac{p \bullet d_{1}^{2} \bullet 0,785}{10000} \text{[kN]}$$

$$F_z = \frac{p \bullet (d_1^2 - d_2^2) \bullet 0,785}{10000} [kN]$$

$$v = \frac{h}{t \bullet 1000} = \frac{Q}{A \bullet 6} \text{ [m/s]}$$

$$Q_{th} = 6 \bullet A \bullet v = \frac{V}{t} \bullet 60 \text{ [I/min]}$$

$$Q = \frac{Q_{th}}{\eta_{vol.}}$$

$$V = \frac{A \bullet h}{10000} [I]$$

$$t = \frac{A \bullet h \bullet 6}{Q \bullet 1000} \text{ [s]}$$

 d_1 = Kolbendurchmesser [mm]

d₂ = Kolbenstangendurchmesser [mm]

p = Betriebsdruck [bar]

v = Hubgeschwindigkeit [m/s]

V = Hubvolumen [I]

Q = Volumenstrom mit Berücksichtigung der Leckagen [l/min]

Q_{th} = Volumenstrom ohne Berücksichtigung der Leckagen [l/min]

 η_{vol} = volumetrischer Wirkungsgrad (ca. 0,95)

h = Hub [mm]

t = Hubzeit [s]

Differentialzylinder

$$d_{K} = 100 \bullet \sqrt{\frac{4 \bullet F_{D}}{\pi \bullet p_{K}}}$$

$$p_{K} = \frac{4 \cdot 10^{4} \cdot F_{D}}{\pi \cdot d_{K}^{2}}$$

$$p_{St} = \frac{4 \cdot 10^4 \cdot F_Z}{\pi \cdot (d_K^2 - d_{St}^2)}$$

$$\varphi = \frac{{d_{K}}^{2}}{({d_{K}}^{2} - {d_{St}}^{2})}$$

$$Q_{K} = \frac{6 \bullet \pi}{400} \bullet v_{a} \bullet d_{K}^{2}$$

$$Q_{St} = \frac{6 \bullet \pi}{400} \bullet v_e \bullet (d_K^2 - d_{St}^2)$$

$$v_{e} = \frac{Q_{St}}{\frac{6\pi}{400} \bullet (d_{K}^{2} - d_{St}^{2})}$$

$$v_{a} = \frac{Q_{K}}{\frac{6\pi}{400} \bullet d_{K}^{2}}$$

$$\operatorname{Vol}_{p} = \frac{\pi}{4 \bullet 10^{6}} \bullet d_{\operatorname{St}}^{2} \bullet h$$

$$Vol_{F} = \frac{\pi}{4 \cdot 10^{6}} \cdot h \cdot (d_{K}^{2} - d_{St}^{2})$$

 d_K = Kolbendurchmesser [mm]

d_{st} = Stangendurchmesser [mm]

 $F_D = Druckkraft [kN]$

 $F_z = Zugkraft [kN]$

p_K = Druck auf der Kolbenseite [bar]

φ = Flächenverhältnis

Q_K = Volumenstrom Kolbenseite [I/min]

Q_{St} = Volumenstrom Stangenseite [I/min]

v_a = Ausfahrgeschwindigkeit [m/s]

v_e = Einfahrgeschwindigkeit [m/s]

Vol_p = Pendelvolumen [I]

Vol_F = Füllvolumen [I]

h = Hub [mm]

Gleichgangzylinder

$$p_{A} = \frac{4 \cdot 10^{4}}{\pi} \cdot \frac{F_{A}}{(d_{K}^{2} - d_{StA}^{2})}$$

$$p_{B} = \frac{4 \bullet 10^{4}}{\pi} \bullet \frac{F_{B}}{(d_{K}^{2} - d_{StB}^{2})}$$

$$Q_{A} = \frac{6 \bullet \pi}{400} \bullet V_{a} \bullet (d_{K}^{2} - d_{StA}^{2})$$

$$Q_{B} = \frac{6 \bullet \pi}{400} \bullet V_{b} \bullet (d_{K}^{2} - d_{StB}^{2})$$

$$v_{e} = \frac{Q_{St}}{\frac{6\pi}{400} \bullet (d_{K}^{2} - d_{St}^{2})}$$

$$v_a = \frac{Q_K}{\frac{6\pi}{400} \bullet d_K^2}$$

$$\operatorname{Vol}_{p} = \frac{\pi}{4 \bullet 10^{6}} \bullet d_{St}^{2} \bullet h$$

$$\operatorname{Vol}_{FA} = \frac{\pi}{4 \bullet 10^{6}} \bullet h \bullet (d_{K}^{2} - d_{StA}^{2})$$

$$Vol_{FB} = \frac{\pi}{4 \cdot 10^6} \cdot h \cdot (d_K^2 - d_{StB}^2)$$

 $d_K = Kolbendurchmesser [mm]$

d_{stA} = Stangendurchmesser A-Seite [mm]

 d_{stB} = Stangendurchmesser B-Seite [mm]

 $F_A = Kraft A [kN]$

 $F_B = Kraft B [kN]$

p_A = Druck auf der A-Seite [bar]

p_B = Druck auf der B-Seite [bar]

Q_A = Volumenstrom A-Seite [I/min]

Q_B = Volumenstrom B-Seite [I/min]

v_a = Geschwindigkeit a [m/s]

v_b = Geschwindigkeit b [m/s]

Vol_p = Pendelvolumen [I]

Vol_{FA} = Füllvolumen A [I]

Vol_{FB} = Füllvolumen B [I]

Zylinder in Differentialschaltung

$$d_{st} = 100 \bullet \sqrt{\frac{4 \bullet F_D}{\pi \bullet p_{St}}}$$

$$p_{K} = \frac{4 \bullet 10^{4} \bullet F_{D}}{\pi \bullet d_{St}^{2}}$$

$$p_{St} = \frac{4 \cdot 10^{4} \cdot F_{Z}}{\pi \cdot (d_{K}^{2} - d_{St}^{2})}$$

$$Q = \frac{6 \bullet \pi}{400} \bullet v_a \bullet d_{St}^2$$

Ausfahren:

$$v_a = \frac{Q_P}{\frac{6\pi}{400} \bullet d_{St}^2}$$

$$Q_K = \frac{Q_P \bullet d_K^2}{d_{St}^2}$$

$$Q_{St} = \frac{Q_{P} \bullet (d_{K}^{2} - d_{St}^{2})}{d_{St}^{2}}$$

Einfahren:

$$v_{e} = \frac{Q_{P}}{\frac{6\pi}{400} \bullet (d_{K}^{2} - d_{St}^{2})}$$

 $Q_{St}=Q_P$

$$Q_K = \frac{Q_P \bullet d_K^2}{(d_K^2 - d_{St}^2)}$$

$$\operatorname{Vol}_{p} = \frac{\pi}{4 \cdot 10^{6}} \cdot d_{St}^{2} \cdot h$$

$$Vol_{F} = \frac{\pi}{4 \cdot 10^{6}} \cdot h \cdot (d_{K}^{2} - d_{St}^{2})$$

d_K = Kolbendurchmesser [mm]

d_{st} = Stangendurchmesser [mm]

F_D = Druckkraft [kN]

 $F_z = Zugkraft [kN]$

p_K = Druck auf der Kolbenseite [bar]

p_{St} = Druck auf der Stangenseite [bar]

h = Hub [mm]

Q_K = Volumenstrom Kolbenseite [I/min]

Q_{St} = Volumenstrom Stangenseite [I/min]

Q_P = Pumpenförderstrom [I/min]

v_a = Ausfahrgeschwindigkeit [m/s]

v_e = Einfahrgeschwindigkeit [m/s]

Vol_p = Pendelvolumen [I]

Vol_F = Füllvolumen [I]

16

Zylindereigenfrequenz bei Differentialzylinder

$$A_K = \frac{d_K^2 \pi}{\frac{4}{100}}$$

$$A_{R} = \frac{(d_{K}^{2} - d_{St}^{2})\pi}{\frac{4}{100}}$$

$$V_{RK} = \frac{d_{RK}^2 \pi}{4} \bullet \frac{L_K}{1000}$$

$$V_{RSt} = \frac{d_{RSt}^2 \pi}{4} \bullet \frac{L_{St}}{1000}$$

$$m_{_{RK}} = \frac{V_{_{RK}} \bullet \rho_{\ddot{0}}}{1000}$$

$$m_{\text{RSt}} = \frac{V_{\text{RSt}} \bullet \rho_{\text{\"ol}}}{1000}$$

$$h_{k} = \frac{\left(\frac{A_{R} \bullet h}{\sqrt{A_{R}^{3}}} + \frac{V_{RSt}}{\sqrt{A_{R}^{3}}} - \frac{V_{RK}}{\sqrt{A_{K}^{3}}}\right)}{\left(\frac{1}{\sqrt{A_{R}}} + \frac{1}{\sqrt{A_{K}}}\right)}$$

$$\omega_{0} = \sqrt{\frac{1}{m} \bullet (\frac{A_{K}^{2} \bullet E_{\bar{O}L}}{A_{K} \bullet h_{K}} + V_{RK}} + \frac{A_{R}^{2} \bullet E_{\bar{O}l}}{A_{R} \bullet (h - h_{K})} + V_{RSt}})$$

$$f_0 = \frac{\omega_0}{2\pi}$$

$$m_{\text{ölred}} = m_{\text{RK}} \left(\frac{d_{\text{K}}}{d_{\text{RK}}} \right)^4 + m_{\text{RSt}} \left(\frac{1}{d_{\text{RSt}}} \sqrt{\frac{400 \bullet A_{\text{R}}}{\pi}} \right)$$

A_K = Kolbenfläche [cm²]

 A_R = Kolbenringfläche [cm²]

d_K = Kolbendurchmesser [mm]

d_{St} = Kolbenstangendurchmesser [mm]

d_{RK} = NW- Kolbenseite [mm]

L_K = Länge Kolbenseite [mm]

d_{RSt} = NW-Stangenseite [mm]

L_{St} = Länge Stangenseite [mm]

h = Hub [cm]

V_{RK} = Volumen der Leitung Kolbenseite [cm³]

V_{RSt} = Volumen der Leitung Stangenseite [cm³]

m_{RK} = Masse des Öles in der Leitung

Kolbenseite [kg]

m_{RSt} = Masse des Öles in der Leitung

Stangenseite [kg]

h_K = Position bei minimaler Eigenfrequenz

[cm]

f₀ = Eigenfrequenz [Hz]

 ω_0 = Kreisfrequenz

$$\omega_{01} = \omega_0 \bullet \sqrt{\frac{m_{red}}{m_{\ddot{o}lred} + m_{red}}}$$

$$f_{01} = \frac{\omega_{01}}{2\pi}$$

Zylindereigenfrequenz bei Gleichgangzylinder

$$A_{R} = \frac{(d_{K}^{2} - d_{St}^{2})\pi}{\frac{4}{100}}$$

$$V_{R} = \frac{d_{RK}^{2}\pi}{4} \bullet \frac{L_{K}}{1000}$$

$$m_{R} = \frac{V_{R} \bullet \rho_{\ddot{o}l}}{1000}$$

$$\omega_0 = 100 \bullet \sqrt{\frac{2 \bullet E_{\ddot{o}l}}{m_{red}} \bullet (\frac{A_R^2}{\frac{A_R \bullet h}{10} + V_{RSt}})}$$

Gleichung gilt nur für die Mittelstellung des Gleichgangzylinders

Eigenfrequenz einer beliebigen Position kann mit der Gleichung für den Differenzialzylinder berechnet werden (wie auf der Seite 17 jedoch AK=AR)

$$\mathbf{f}_0 = \frac{\omega_0}{2\pi}$$

$$m_{\text{ölred}} = 2 \bullet m_{\text{RK}} \! \left(\frac{1}{d_{\text{R}}} \sqrt{\frac{400 \bullet A_{\text{R}}}{\pi}} \right)^4$$

$$\omega_{01} = \omega_0 \bullet \sqrt{\frac{m_{red}}{m_{olred} + m_{red}}}$$

$$f_{01} = \frac{\omega_{01}}{2\pi}$$

A_R = Kolbenringfläche [cm²]

d_K = Kolbendurchmesser [mm]

d_{St} = Kolbenstangendurchmesser [mm]

 $d_R = NW [mm]$

L_K = Länge Kolbenseite [mm]

h = Hub [mm]

V_R = Volumen der Leitung [cm³]

m_R = Masse des Öles in der Leitung [kg]

f₀ = Eigenfrequenz

 ω_0 = Kreisfrequenz

Zylindereigenfrequenz bei Plungerzylinder

$$A_K = \frac{{d_K}^2 \pi}{\frac{4}{100}}$$

$$V_{R} = \frac{d_{K}^{2}\pi}{4} \bullet \frac{L_{K}}{1000}$$

$$m_{R} = \frac{V_{R} \bullet \rho_{\ddot{o}l}}{1000}$$

$$\omega_0 = 100 \bullet \sqrt{\frac{E_{\partial l}}{m_{red}} \bullet (\frac{A_K^2}{A_K \bullet h + V_{RSt}})}$$

$$f_0 = \frac{\omega_0}{2\pi}$$

$$m_{\text{olred}} = 2 \bullet m_R \left(\frac{d_K}{d_R}\right)^4$$

$$\omega_{01} = \omega_0 \bullet \sqrt{\frac{m_{red}}{m_{\"{olred}} + m_{red}}}$$

$$f_{01} = \frac{\omega_{01}}{2\pi}$$

 $A_K = Kolbenfläche [cm^2]$

d_K = Kolbendurchmesser [mm]

d_R = Durchmesser Rohrleitung[mm]

L_K = Länge Kolbenseite [mm]

L_R = Leitungslänge [mm]

h = Hub [mm]

V_R = Volumen der Leitung [cm³]

M_R = Masse des Öles in der Leitung [kg]

f₀ = Eigenfrequenz

 ω_0 = Kreisfrequenz

Rohrleitungen

$$\Delta p = \lambda \bullet \frac{1 \bullet \rho \bullet v^2 \bullet 10}{d \bullet 2}$$

$$\lambda_{\text{lam.}} = \frac{64}{\text{Re}}$$

$$\lambda_{turb.} = \frac{0.316}{\sqrt[4]{\text{Re}}}$$

$$Re = \frac{\mathbf{v} \bullet \mathbf{d}}{v} \bullet 10^3$$

$$v = \frac{Q}{6 \cdot d^2 \cdot \frac{\pi}{4}} \cdot 10^2$$

$$d = \sqrt{\frac{400}{6 \bullet \pi} \bullet \frac{Q}{v}}$$

 Δp = Druckverlust bei gerader Rohrleitung [bar]

 ρ = Dichte [kg/dm³] (0,89)

 $\lambda = Rohrreibungszahl$

 $\lambda_{lam.}$ = Rohrreibungszahl für laminare Strömung

 $\lambda_{turb.}$ = Rohrreibungszahl für turbulente Strömung

I = Leitungslänge [m]

v = Strömungsgeschwindigkeit in der Leitung [m/s]

d = Innendurchmesser der Rohrleitung [mm]

 $v = \text{Kinematischer Viskosität [mm}^2/s]$

Q = Volumenstrom in der Rohrleitung [l/min]

Anwendungsbeispiele zur Bestimmung der Zylinderdrücke und Volumenströme unter pos. und neg. Lasten

Nomenklatur

Parameter	Symbolik	Einheiten
Beschleunigung / Verzögerung	A	m/s ²
Zylinderfläche	A ₁	cm²
Ringfläche	A ₂	cm²
Flächenverhältnis	φ =A₁/A ₂	-
Gesamtkraft	F _T	daN
Beschleunigungskraft	F _a =0,1∙m•a	daN
Äußere Kräfte	FE	daN
Reibkräfte (Coulombsche Reibung)	Fc	daN
Dichtungsreibung	F _R	daN
Gewichtskraft	G	daN
Masse	$m = \frac{G}{g} + m_K$	kg
Kolbenmasse	m _K	kg
Volumenstrom	Q=0,06•A•v _{max}	l/min
	V _{max}	cm/s
Drehmoment	T=α•J+ T _L	Nm
Lastmoment	TL	Nm
Winkelbeschleunigung	α	rad/s ²
Massenträgheitsmoment	J	kgm²

Differentialzylinder ausfahrend mit positiver Last

Auslegung:

$$F_T = F_a + F_R + F_C + F_E$$
 [daN]

Gegebene Parameter

 $F_T = 4450 \text{ daN}$

 $P_S = 210 \text{ bar}$

 $P_T = 5,25 \text{ bar}$

 $A_1 = 53,50 \text{ cm} 2$

 $A_2 = 38,10 \text{ cm}2$

 $\varphi = 1,40$

 $v_{max} = 30,00 \text{ cm/s}$

 $==> p_1 \text{ und } p_2$

$$p_1 = \frac{p_S A_2 + R^2 [F_T + (p_T A_2)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_2 = p_T + \frac{p_S - p_1}{\varphi^2} \text{ bar}$$

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_1 .

Q= 0,06•A₁•v_{max} I/min

$$Q_{\rm N} = Q \sqrt{\frac{35}{p_{\rm S} - p_{\rm I}}} \quad \text{l/min}$$

Auswahl eines Servoventils 10% größer als berechnete Nennvolumenstrom.

Berechnung:

$$p_1 = \frac{210 \bullet 38,1 + 1,4^2 [4450 + (5,25 \bullet 38,1)]}{38,1(1+1,4^3)} = 120bar$$

$$p_2 = 5,25 + \frac{210 - 120}{1.4^2} = 52bar$$

Q= 0,06•53,5•30=96 I/min

$$Q_{\rm N} = 96\sqrt{\frac{35}{210 - 120}} = 601 / \min$$

Differentialzylinder einfahrend mit positiver Last

Auslegung:

$$F_T = F_a + F_R + F_C + F_E$$
 [daN

Gegebene Parameter

 $F_T = 4450 \text{ daN}$

 $P_S = 210 \text{ bar}$

 $P_T = 5,25 \text{ bar}$

 $A_1 = 53,50 \text{ cm} 2$

 $A_2 = 38,10 \text{ cm} 2$

 $\varphi = 1,40$

 $v_{max} = 30,00 \text{ cm/s}$

 $==> p_1 \text{ und } p_2$

$$p_2 = \frac{(p_S A_2 \varphi^3) + F_T + (p_T A_2 \varphi)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_{\rm l} = p_{\rm T} + [(p_{\rm S} - p_{\rm 2}) \varphi^{\rm 2}]$$
 bar

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_1 .

 $Q = 0.06 \cdot A_2 \cdot v_{max}$ I/min

$$Q_{N} = Q \sqrt{\frac{35}{p_{s} - p_{2}}} \quad I/min$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_2 = \frac{(210 \bullet 38, 1 \bullet 1, 4^2) + 4450 + (5, 25 \bullet 38, 1 \bullet 1, 4)]}{38, 1(1 + 1, 4^3)} = 187bar$$

$$p_1 = 5.25 + [(210 - 187)1.4^2] = 52bar$$

Q= 0.06•38,1•30=69 I/min

$$Q_N = 96\sqrt{\frac{35}{210 - 187}} = 841 / \min$$

Differentialzylinder ausfahrend mit negativer Last

Auslegung:

$$F_T = F_a + F_R - G$$
 [daN]

Gegebene Parameter

 $F_T = -2225 \text{ daN}$

 $P_S = 175 \text{ bar}$

 $P_T = 0$ bar

 $A_1 = 81,3 \text{ cm}^2$ $A_2 = 61,3 \text{ cm}^2$

 $\varphi = 1,3$

 $v_{max} = 12,7 \text{ cm/s}$

==> p₁ und p₂

$$p_1 = \frac{p_S A_2 + \varphi^2 [F_T + (p_T A_2)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_2 = p_T + \frac{p_S - p_1}{\varphi^2} \text{ bar}$$

Überprüfung der Zylinderdimensionier- ung und Berechnung des Nenn-volumenstromes Q_N, in Abhängigkeit des Lastdruckes p₁.

$$Q = 0.06 \bullet A_1 \bullet v_{max}$$
 I/min

$$Q_{N} = Q \sqrt{\frac{35}{p_{S} - p_{1}}} \quad \text{l/min}$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_1 = \frac{175 \cdot 61,3 + 1,3^2 [-2225 + (0 \cdot 61,3)]}{61,3(1+1,3^3)} = 36bar$$

$$p_2 = 0 + \frac{175 - 36}{1.3^2} = 82bar$$

Q= 0,06•81,3•12,7=62 I/min

$$Q_{\rm N} = 62\sqrt{\frac{35}{175 - 36}} = 311 \, / \, min$$

Differentialzylinder einfahrend mit negativer Last

Auslegung:

 $F_T = F_a + F_R - G$ [daN]

Gegebene Parameter

 $F_T = -4450 \text{ daN}$

 $P_S = 210 \text{ bar}$

 $P_T = 0$ bar

 $A_1 = 81,3 \text{ cm}^2$

 $A_2 = 61,3 \text{ cm}^2$

 $\phi = 1,3$

 $v_{max} = 25,4$ cm/s

 $==> p_1 \text{ und } p_2$

$$p_2 = \frac{(p_S A_2 \varphi^3) + F_T + (p_T A_2 \varphi)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_{\rm l} = p_{\rm T} + [(p_{\rm S} - p_{\rm 2}) \varphi^{\rm 2}]$$
 bar

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_1 .

 $Q = 0.06 \bullet A_2 \bullet v_{max}$ I/min

$$Q_{\rm N} = Q \sqrt{\frac{35}{p_{\scriptscriptstyle S} - p_{\scriptscriptstyle 2}}} \quad \text{l/min}$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_2 = \frac{(210 \bullet 61, 3 + 1, 3^2) - 4450 + (0 \bullet 61, 3 \bullet 1, 3)]}{61, 3(1 + 1, 3^3)} = 122bar$$

$$p_1 = 0 + [(210 - 122)] = 149bar$$

Q= 0,06•61,3•25,4=93 l/min

$$Q_N = 93\sqrt{\frac{35}{210 - 122}} = 591 / \min$$

Differentialzylinder ausfahrend auf einer schiefen Ebene mit positiver Last

Auslegung:

 $F_T = F_a + F_E + F_S + [G \cdot (\mu \cdot \cos \alpha + \sin \alpha)] daN$

Gegebene Parameter

 $F_T = 2225 \text{ daN}$

 $P_{S} = 140 \text{ bar}$

 $P_{T} = 3.5 \text{ bar}$

 $A_1 = 31,6 \text{ cm}^2$

 $A_2 = 19,9 \text{ cm}^2$

 $\phi = 1,6$

 $v_{max} = 12,7 \text{ cm/s}$

 $==> p_1 \text{ und } p_2$

$$p_1 = \frac{p_S A_2 + \varphi^2 [F + (p_T A_2)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_2 = p_T + \frac{p_S - p_1}{\varphi^2} \text{ bar}$$

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N, in Abhängigkeit des Lastdruckes p₁.

 $Q = 0.06 \bullet A_1 \bullet v_{max}$ I/min

$$Q_{\rm N} = Q \sqrt{\frac{35}{p_{\rm S} - p_{\rm I}}} \quad \text{l/min}$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_1 = \frac{(140 \bullet 19.9) + 1.6^2[2225 + (3.5 \bullet 19.9)]}{19.9(1 + 1.6^3)} = 85bar$$

$$p_2 = 35 + \frac{140 - 85}{1,6^2} = 25bar$$

Q= 0,06•31,6•12,7=24 I/min

$$Q_{\rm N} = 24\sqrt{\frac{35}{140 - 85}} = 19$$
 I/min

Differentialzylinder einfahrend auf einer schiefen Ebene mit positiver Last

Auslegung:

$$F_T = F_a + F_E + F_S + [G \cdot (\mu \cdot \cos \alpha + \sin \alpha)] daN$$

Gegebene Parameter

 $F_{T} = 1780 \text{ daN}$

 $P_S = 140 \text{ bar}$

 $P_T = 3.5 \text{ bar}$

 $A_1 = 31,6 \text{ cm}^2$

 $A_2 = 19,9 \text{ cm}^2$

 $\varphi = 1,6$

 $v_{max} = 12,7 \text{ cm/s}$

 $==> p_1 \text{ und } p_2$

$$p_2 = \frac{(p_S A_2 \varphi^3) + F + (p_T A_2 \varphi)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_1 = p_T + [(p_S - p_2)\varphi^2]$$
 bar

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N, in Abhängigkeit des Lastdruckes p₁.

 $Q = 0.06 \bullet A_2 \bullet v_{max}$ I/min

$$Q_{\rm N} = Q \sqrt{\frac{35}{p_s - p_2}} \quad \text{l/min}$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_2 = \frac{(140 \bullet 19.9 \bullet 1.6^3) + 1780 + [3.5 \bullet 19.9 \bullet 1.6)]}{19.9(1 + 1.6^3)} = 131bar$$

$$p_1 = 3.5 + [(140 - 131) \cdot 1.6^2 = 26bar$$

Q= 0,06•19,9•12,7=15 I/min

$$Q_N = 15\sqrt{\frac{35}{140 - 131}} = 30$$
 I/min

Differentialzylinder ausfahrend auf einer schiefen Ebene mit negativer Last

Auslegung:

$$F_T = F_a + F_E + F_R + [G \cdot (\mu \cdot \cos \alpha - \sin \alpha)] daN$$

Gegebene Parameter

 $F_T = -6675 \text{ daN}$

 $P_S = 210 \text{ bar}$

 $P_T = 0$ bar

 $A_1 = 53,5 \text{ cm}^2$

 $A_2 = 38,1 \text{ cm}^2$

 $\varphi = 1,4$

 $v_{max} = 25,4 \text{ cm/s}$

 $==> p_1 \text{ und } p_2$

$$p_1 = \frac{p_S A_2 + \varphi^2 [F + (p_T A_2)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_2 = p_T + \frac{p_S - p_1}{\varphi^2} \text{ bar}$$

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_1 .

 $Q=0.06 \bullet A_1 \bullet v_{max}$ I/min

$$Q_{\rm N} = Q \sqrt{\frac{35}{p_{\rm S} - p_{\rm I}}} \quad \text{I/min}$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_1 = \frac{(210 \bullet 106) + 1,2^2[-6675 + (0 \bullet 106)]}{106(1 + 1,4^3)} = 131bar$$

Vorsicht!!!

Negative Belastung führt zu Zylinderkavitation. Vorgegebene Parameter durch Erhöhung der Zylinder-Nenngröße, oder des Systemdrucks, oder Reduzierung der erforderlichen Gesamtkraft verändern.

$$A_1 = 126 \text{ cm}^2$$
 $A_2 = 106 \text{ cm}^2$ $R=1,2$

$$p_2 = \frac{210 - 44}{1,2^2} = 116bar$$

$$Q_{\rm N} = 192 \sqrt{\frac{35}{210-44}} = 88 \text{ l/min}$$

Differentialzylinder einfahrend auf einer schiefen Ebene mit negativer Last

Auslegung:

$$F = F_a + F_E + F_R + [G \cdot (\mu \cdot \cos \alpha - \sin \alpha)] daN$$

Gegebene Parameter

F = -6675 daN

 $P_S = 210 \text{ bar}$

 $P_T = 0$ bar

 $A_1 = 53,5 \text{ cm}^2$

 $A_2 = 38,1 \text{ cm}^2$

 $\phi = 1.4$

 $v_{max} = 25,4$ cm/s

 $==> p_1 \text{ und } p_2$

$$p_2 = \frac{(p_S A_2 \varphi^3) + F + (p_T A_2 \varphi)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_1 = p_T + [(p_S - p_2)\varphi^2]$$
 bar

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_2 .

 $Q=0.06 \bullet A_2 \bullet v_{max}$ I/min

$$Q_{\rm N} = Q \sqrt{\frac{35}{p_{\rm S} - p_{\rm 2}}} \quad \text{l/min}$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_2 = \frac{(210 \bullet 38, 1 \bullet 1, 4^3) + [-6675 + (0 \bullet 38, 1 \bullet 1, 4)]}{38, 1(1 + 1, 4^3)} = 107bar$$

$$p_1 = 0 + [(210 - 107) \bullet 1,4^2] = 202bar$$

Q= 0,06•38,1•25,4=58 l/min

$$Q_{\rm N} = 58\sqrt{\frac{35}{210-107}} = 34 \text{ l/min}$$

Hydraulikmotor mit einer positiven Last

Auslegung:

$$\mathsf{T} = \alpha \bullet \mathsf{J} + \mathsf{T}_\mathsf{L} \qquad [\mathsf{Nm}]$$

Gegebene Parameter

T = 56,5 Nm

 $P_S = 210 \text{ bar}$

 $P_T = 0$ bar

 $D_{\rm M} = 82 \, {\rm cm}^3/{\rm rad}$

 ω_{M} = 10 rad/s

 $==> p_1 \text{ und } p_2$

$$p_1 = \frac{p_S + p_T}{2} + \frac{10\pi T}{D_M} \text{ bar}$$

$$\boldsymbol{p}_2 = \boldsymbol{p}_S - \boldsymbol{p}_1 + \boldsymbol{p}_T$$
 bar

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N, in Abhängigkeit des Lastdruckes p₁.

$$Q_M = 0.01 \bullet \omega_M \bullet D_M$$
 I/min

$$Q_{N} = Q_{M} \sqrt{\frac{35}{p_{S} - p_{I}}} \quad \text{l/min}$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_1 = \frac{210 + 0}{2} + \frac{10 \bullet \pi \bullet 56,5}{82} = 127 \text{bar}$$

$$p_2 = 210 - 127 + 0 = 83bar$$

Q_M= 0,01•10•82=8,2 l/min

$$Q_N = 8.2 \sqrt{\frac{35}{210 - 127}} = 5.3 \text{ l/min}$$

Hydraulikmotor mit einer negativen Last

Auslegung:

$$T = \alpha \bullet J - T_L$$
 [Nm]

Gegebene Parameter

T = -170 Nm

 $P_S = 210 \text{ bar}$

 $P_T = 0$ bar

 $D_{\rm M} = 82 \text{ cm}^3/\text{rad}$

 ω_{M} = 10 rad/s

 $==> p_1 \text{ und } p_2$

$$p_{_{1}}=\frac{p_{_{S}}+p_{_{T}}}{2}+\frac{10\pi T}{D_{_{M}}}\text{ bar }$$

$$\boldsymbol{p}_2 = \boldsymbol{p}_S - \boldsymbol{p}_1 + \boldsymbol{p}_T \text{ bar }$$

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_1 .

$$Q_M = 0.01 \bullet \omega_M \bullet D_M$$
 I/min

$$Q_{\rm N} = Q_{\rm M} \sqrt{\frac{35}{p_{\scriptscriptstyle S} - p_{\scriptscriptstyle 1}}} \quad \text{l/min}$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_1 = \frac{210 + 0}{2} + \frac{10 \bullet \pi \bullet (-170)}{82} = 40bar$$

$$p_2 = 210 - 40 + 0 = 170$$
bar

Q_M= 0,01•10•82=8,2 l/min

$$Q_N = 8.2 \sqrt{\frac{35}{210 - 40}} = 3.6 \text{ l/min}$$

Ermittlung der reduzierten Massen verschiedene Systemen

Für die Auslegung der benötigten Kräften eines Hydrauliksystems muss man die verschiedene Komponenten (Zylinder / Motoren ...) dimensionieren, damit die Beschleunigung, Bremsen einer Masse richtig und gezielt erfolgt.

Durch die Mechanik des Systems werden die Hübe der Zylinder und Motoren bestimmt.

Geschwindigkeit- und Kraftberechnungen müssen durchgeführt werden.

Durch die Festlegung der reduzierten Masse eines Systems können Aussagen über die Beschleunigung und deren Auswirkung auf das System getroffen werden.

Die reduzierte Masse (M) ist eine Punktmasse, die die gleichen Kräfte- und Beschleunigskomponenten auf das richtige System ausübt, wie die normale Masse.

Für rotatorische Systeme ist die reduzierte Trägheitsmoment (I_e) zu betrachten.

Bei Überlegungen mit Weg-Meßsysteme oder Anwendungen mit Abbremsen einer Masse muß zuerst die reduzierte Masse festgelegt werden!

Für die Bestimmung der Beschleunigungskräfte verwendet man die 2. Newtonsche Grundgesetz.

 $F = m \cdot a$

F= Kraft [N]

m= Masse [kg]

 \overrightarrow{a}

a= Beschleunigung [m/s²]

Für rotatorische Bewegungen verwendet man die folgende Gleichung.

$$\Gamma = \mathbf{I} \bullet \theta''$$

 Γ = Drehmoment [Nm]

Í= Trägheitsmoment [kgm²]

 θ'' = Winkelbeschleunigung [rad/s²]

Lineare Antriebe

Primäranwendungen (Energiemethode)

Die Masse m ist eine Punktmasse und die Stange I ist Gewichtslos. Die Zylinderachse ist rechtwinklig zu der Stange I.

Beziehungen zwischen Zylinder und Stange lauten:

$$\theta' = \frac{V_c}{r} = \frac{V_m}{1}$$

$$\theta'' = \frac{a_c}{r} = \frac{a_m}{l}$$

Benötigte Drehmoment für die Beschleunigung der Masse.

$$\Gamma = IX \theta'' = F \bullet r$$

$$= m \bullet l^2 X \theta'' \qquad I = m \bullet l^2$$

$$= m \bullet l^2 X \frac{a_m}{l} \qquad \theta'' = \frac{a_m}{l}$$

$$= m \bullet lX a_m$$

$$= F = \frac{m \bullet l \bullet a_m}{r} = m \bullet i \bullet a_m \qquad i = \frac{l}{r}$$

m•i kann als Bewegung der Masse m betrachtet werden.

$$F = m \bullet i \bullet a_m = m \bullet i \bullet \frac{1 \bullet a_c}{r} = m \bullet i^2 \bullet a_c = M \bullet a_c \qquad \qquad \text{mit} \qquad \frac{a_c}{r} = \frac{a_m}{1}$$

F= Zylinderkraft

M= reduzierte Masse

a_c= Beschleunigung der Zylinderstange

$$M = m \bullet i^2$$

Das gleiche Ergebnis kann mit Hilfe der Energiemethode (kinetische Energie der Masse m) erzielt werden. Die Abhängigkeit der Massenbewegung mit der Zylinderbewegung kann mit Hilfe der Geometrie des Systems bestimmt werden.

Energie der Masse:

$$KE = \frac{1}{2}I \bullet \theta'^2 = \frac{1}{2}m \bullet l^2 \bullet \theta'^2 \qquad (l=m \bullet i^2)$$

$$= \frac{1}{2} m \cdot l^{2} \cdot \left(\frac{v_{c}}{r}\right)^{2} \qquad (v_{c} = r \cdot \theta')$$

$$= \frac{1}{2} m \cdot \frac{l^{2}}{r^{2}} \cdot v_{c}^{2}$$

$$= \frac{1}{2} M \cdot v_{c}^{2} \qquad M = m \cdot i^{2} \text{ und } i = l/r$$

Punktmasse bei linearen Bewegungen

v ist die Horizontalkomponente von v´. v´ ist rechtwinklig zu der Stange I.

Energiemethode:

$$KE = \frac{1}{2}I \bullet \theta'^2 = \frac{1}{2}m \bullet l^2 \bullet \theta'^2$$

$$= \frac{1}{2}m \bullet l^2 \bullet \left(\frac{v'}{r}\right)^2$$

$$= \frac{1}{2}m \bullet \frac{l^2}{r^2} \bullet v'^2$$

$$= \frac{1}{2}m \bullet i^2 \bullet v'^2$$

mit v=v´•cosα

==> KE =
$$\frac{1}{2}$$
 m•i²•v'²

$$= \frac{1}{2} \frac{m • i^2}{(\cos \alpha)^2} • v^2 = \frac{1}{2} M • v^2$$
mit M = $m \frac{i^2}{(\cos \alpha)^2}$ ==> M ist Positionsabhängig
Wenn: α = 0 dann, α =1 und M=mi²

$$\alpha$$
=90° dann, $\cos\alpha$ =0 und M= ∞
$$\alpha$$
=30° dann, $\cos\alpha$ = $\pm0,866$ und $M\alpha$ = $m\frac{i^2}{0.75}$

Wenn ein Zylinder eine Masse wie im vorherigen Bild bewegt, und die Bewegung zwischen -30° und +30° ist, müssen die Beschleunigungs- und Abbremskräfte im Drehpunkt mit reduzierte Masse, die zwei mal größer ist als im neutralen Punkt gerechnet werden.

Verteilte Masse bei lineare Bewegungen

Betrachtet man die gleiche Stange I mit der Masse m kann man auch hier die reduzierte Masse der Stange berechnen.

$$KE = \frac{1}{2}I \bullet \theta'^2 = \frac{1}{2}X \bullet \frac{1}{3}m \bullet 1^2 \bullet \theta'^2$$

$$= \frac{1}{2}X \bullet \frac{1}{3}m \bullet 1^2 \bullet \left(\frac{\mathbf{v}'}{\mathbf{r}}\right)^2$$

$$= \frac{1}{2}X \bullet \frac{1}{3}m \bullet \frac{1^2}{\mathbf{r}^2} \bullet \mathbf{v}'^2$$

$$= \frac{1}{2}X \bullet \frac{1}{3}m \bullet \mathbf{i}^2 \bullet \mathbf{v}'^2$$

$$= \frac{1}{2}X \bullet \frac{1}{3}m \bullet \mathbf{i}^2 \bullet \mathbf{v}'^2$$

mit v=v´•cosα

$$= \frac{1}{2} \mathbf{X} \bullet \frac{1}{3} \bullet \frac{\mathbf{m} \bullet \mathbf{i}^2}{(\cos \mathbf{a})^2} \bullet \mathbf{v}^2 = \frac{1}{3} \bullet \mathbf{M} \bullet \mathbf{v}^2$$

$$M = \frac{1}{2} \bullet \frac{m \bullet i^2}{(\cos a)^2}$$

Rotation

Betrachtet man nun eine rotierende Masse mit einem Trägheitsmoment I, angetrieben mit einem Motor (Verhältnis D/d).

$$\begin{split} \text{KE} = & \frac{1}{2} \mathbf{I} \bullet \theta'^2{}_{\text{m}} = \frac{1}{2} \mathbf{I} \bullet (\theta' \bullet \frac{d}{D})^2 & \text{I= Tr\"{a}gheitsmoment [kgm}^2] \\ = & \frac{1}{2} \mathbf{I} \bullet \left(\frac{d}{D}\right)^2 \bullet \theta'^2 & \theta' = \text{Winkelbeschleunigung [rad/s}^2] \\ = & \frac{1}{2} \mathbf{I} \bullet \mathbf{i}^2 \bullet \theta'^2 & \text{I}_{\text{e}} = \mathbf{I} \bullet \mathbf{i}^2 \\ = & \frac{1}{2} \mathbf{I}_{\text{e}} \bullet \theta'^2 & \text{I}_{\text{e}} = \mathbf{I} \bullet \mathbf{i}^2 \\ & \text{i=d/D} \end{split}$$

Wenn Getriebe eingesetzt werden muß i berücksichtigt werden.

Wenn i=D/d dann ist I_e=I/i²

Kombination aus linearer und rotatorischer Bewegung

Eine Masse m wird hier mit einem Rad mit dem Radius r bewegt. Das Rad ist gewichtslos.

$$KE = \frac{1}{2} m \cdot v^{2}$$

$$= \frac{1}{2} m \cdot (r \cdot \theta')^{2} \qquad v = r \cdot \theta'$$

$$= \frac{1}{2} m \cdot r^{2} \cdot \theta'^{2}$$

$$= \frac{1}{2} I_{e} \cdot \theta'^{2} \qquad I_{e} = m \cdot r^{2}$$

Hydraulische Widerstände

Der Widerstand einer Querschnittsverengung ist die Änderung des anliegenden Druckunterschiedes Δp zur entsprechenden Volumenstromänderung.

Blendengleichung

$$Q_{\textit{Blende}} = 0.6 \bullet \alpha_{\textit{K}} \bullet \frac{d_{\textit{B}}^{2} \bullet \pi}{4} \bullet \sqrt{\frac{2 \bullet \Delta p}{\rho}}$$

 α_K = Durchflußzahl (0,6-0,8)

 $\rho = 0.88 \, [kg/dm^3]$

d_B = Blendendurchmesser [mm]

 $\Delta p = Druckdifferenz [bar]$

Q_{Blende}= [I/min]

Drosselgleichung

$$Q_{Drossel} = \frac{\pi \bullet r^4}{8 \bullet \eta \bullet 1} \bullet (p_1 - p_2)$$

η=ρ•ν

 $Q_{Drossel} = [m^3/s]$

 η = Dynamische Viskosität [kg/ms]

I = Drossellänge [m]

r = Radius [m]

v = kinematische Viskosität [m²/s]

 $\rho = 880 \, [kg/m^3]$

Hydrospeicher

$$\Delta V = V_0 \left(\frac{p_0}{p_1}\right)^{\frac{1}{\kappa}} \bullet \left[1 - \left(\frac{p_1}{p_2}\right)^{\frac{1}{\kappa}}\right]$$

$$p_2 = \frac{p_1}{\left[1 - \frac{\Delta V}{V_0 \left(\frac{p_0}{p_1}\right)^{\frac{1}{\kappa}}}\right]^{\kappa}}$$

$$V_0 = \frac{\Delta V}{\left(\frac{p_0}{p_1}\right)^{\frac{1}{\kappa}} \bullet \left[1 - \left(\frac{p_1}{p_2}\right)^{\frac{1}{\kappa}}\right]}$$

 κ = 1,4 (adiabatische Verdichtung)

 $\Delta V = Nutzvolumen [I]$

V₀ = Speichergröße [I]

p₀ = Gasfülldruck [bar]

p₁ = Betriebsdruck min [bar] (Druckabfall am Ventil)

p₂ = Betriebsdruck max [bar]

$$p_0 = <0,9*P_1$$

Bei druckgeregelte Pumpen ein Speicher im

Druckkreislauf vorsehen!

Schwenkzeit der Pumpe t_{SA} aus Pumpenkatalog.

$$\Delta V = Q \bullet t_{SA}$$

Wärmetauscher (Öl-Wasser)

$$ETD = t_{ol} - t_{K}$$

$$p_{01} = \frac{P_V}{ETD}$$

$$\Delta t_{_K} = \frac{14 \bullet P_{_V}}{V_{_K}}$$

Berechnung von $\Delta t_{\ddot{O}I}$ ist je nach Druckflüssigkeit verschieden.

V_{Öl} = Ölstrom [I/min]

P_V = Verlustleistung [kW]

t_{Öl} = Eintrittstemperatur Öl [°C]

 $\Delta t_{\text{OI}} = \text{Abk\"{u}hlung des \"{Ols}}[K]$

t_K = Eintrittstemperatur Kühlwasser [°C]

∆t_K = Erwärmung des Kühlwassers [K]

V_K = Kühlwasserstrom [l/min]

ETD = Eintritts-Temperatur-Differenz [K]

p₀₁ = spez. Kühlleistung [kW/h]

Aus dem errechneten Wert p_{01} kann man aus Diagrammen der verschiedenen Hersteller die Nenngröße der Wärmetauscher bestimmen.

Beispiel AB-Normen:

Auslegung eines Ventils

Aus den Zylinderdaten und den Ein- und Ausfahrgeschwindigkeiten lässt sich der erforderliche Volumenstrom berechnen.

P= P_S Systemdr.-P_LLastdr.-P_TRücklaufdr.

(Lastdruck
$$\approx \frac{2}{3}$$
*Systemdruck)

Bei optimalen Wirkungsgrad.

 F_T = Lastkraft [daN]

P_S = Systemdruck [bar]

P_T = Rücklaufdruck [bar]

A₁ = Kolbenfläche cm2

 A_2 = Ringfläche cm2

φ = Flächenverhältniss Zylinder

 v_{max} = Ausfahrgeschwindigkeit des Zylinders cm/s

 \rightarrow p₁ und p₂

$$p_2 = \frac{(p_S A_2 \varphi^3) + F_T + (p_T A_2 \varphi)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_1 = p_T + [(p_S - p_2)\varphi^2]$$
 bar

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_1 .

$$Q = 0.06 \bullet A_2 \bullet v_{max}$$
 I/min

$$Q_N = Q \sqrt{\frac{X}{p_s - p_2}} \quad \text{l/min}$$

X= 35 (Servoventil) Druckabfall über eine Steuerkante

X= 35 (Propventil) Druckabfall über eine Steuerkante (Propventil mit Hülse)

X= 5 (Propventil) Druckabfall über eine Steuerkante (Propventil ohne Hülse)

Auswahl eines Ventils 10% größer als der berechnete Nennvolumenstrom.