Machine Learning

Fall 2017

Structured Prediction

(structured perceptron, HMM, structured SVM)

Professor Liang Huang

(Chap. 17 of CIML)

Structured Prediction

- binary classification: output is binary
- multiclass classification: output is a number (small # of classes)
- structured classification: output is a structure (seq., tree, graph)
 - part-of-speech tagging, parsing, summarization, translation
 - exponentially many classes: search (inference) efficiency is crucial!

Generic Perceptron

- online-learning: one example at a time
- learning by doing
 - find the best output under the current weights
 - update weights at mistakes

Perceptron: from binary to structured

binary classification x x x yexact inference if $y \neq z$ $y \neq z$

multiclass classification

From Perceptron to SVM

Multiclass Classification

one weight vector ("prototype") for each class:

$$\mathbf{w} = (\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(M)}),$$

• multiclass decision rule: $\hat{y} = \operatorname*{argmax} w^{(z)} \cdot x$ (best agreement w/ prototype) $^{z \in 1...M}$

Q1: what about 2-class?

Q2: do we still need augmented space?

Multiclass Perceptron

 on an error, penalize the weight for the wrong class, and reward the weight for the true class

Convergence of Multiclass

0128466789

$$\mathbf{w} = (\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(M)}),$$

where $\mathbf{w}^{(i)}$ is used to calculate the functional margin for training example with label i;

for a given training example x and a label y, we define feature map function Φ as

$$\Phi(\mathbf{x}, y) = (\mathbf{0}^{(1)}, \dots, \mathbf{0}^{(y-1)}, \mathbf{x}, \mathbf{0}^{(y+1)}, \dots, \mathbf{0}^{(M)}).$$

such that $\mathbf{w} \cdot \mathbf{\Phi}(\mathbf{x}, y) = \mathbf{w}^{(y)} \cdot \mathbf{x}$.

We also define that, with a given training example x, the difference between two feature vectors for labels y and z as $\Delta \Phi$:

$$\Delta \Phi(\mathbf{x}, y, z) = \Phi(\mathbf{x}, y) - \Phi(\mathbf{x}, z).$$

update rule:

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{\Phi}(\mathbf{x}, y, z)$$

separability: for all
$$\exists \mathbf{u}, \text{ s.t. } \forall (\mathbf{x}, y) \in D, z \neq y$$

$$\mathbf{u} \cdot \Delta \Phi(\mathbf{x}, y, z) \ge \delta$$

Example: POS Tagging

- gold-standard: DT NN VBD DT NN y• the man bit the dog x
- current output: DT NN NN DT NN z the man bit the dog x $\Phi(x,z)$
- assume only two feature classes
 - tag bigrams
 - word/tag pairs

- weights ++: (NN,VBD) (VBD, DT) (VBD, bit)
 - weights --: (NN, NN) (NN, DT) (NN, bit)

 $\phi(x,y) - \phi(x,z)$

Structured Perceptron

Inputs:

Training set (x_i, y_i) for $i = 1 \dots n$

Initialization:

 $\mathbf{W} = 0$

Define:

$$F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \mathbf{\Phi}(x, y) \cdot \mathbf{W}$$

Algorithm:

For
$$t = 1 ... T$$
, $i = 1 ... n$
 $z_i = F(x_i)$
If $(z_i \neq y_i)$ $\mathbf{W} \leftarrow \mathbf{W} + \mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, z_i)$

Output:

Parameters W

Inference: Dynamic Programming

Python implementation

```
Complete this Python code implementing the Viterbi algorithm for part-of-speech tagging. It should print a
list of word/tag pairs, e.g. [('a', 'D'), ('can', 'N'), ('can', 'A'), ('can', 'V'), ('a', 'D'), ('can', 'N')].
from collections import defaultdict
                                                              Q: what about top-down
best = defaultdict(lambda : defaultdict(float))
                                                              recursive + memoization?
best[0]["<s>"] = 1
back = defaultdict(dict)
words = "<s> a can can can a can </s>".split()
tags = {"a": ["D"], "can": ["N", "A", "V"], "</s>": ["</s>"]}
                                                                # possible tags for each word
ptag = {"D": {"N": 1}, "V": {"</s>": 0.5, "D":0.5}, ... }
                                                                # ptag[x][y] = p(y | x)
pword = {"D": {"a": 0.5}, "N": {"can": 0.1}, ... }
                                                                \# pword[x][w] = p(w \mid x)
for i, word in enumerate (words [1:], 1):
                                                                # i=1,2...; word=a,can,...
    for tag in tags[word]:
        for prev in best[i-1] :
            if tag in ptag[prev] :
                score = best[i-1][prev]
                                         * ptag[prev][tag] * pword[tag][word]
                if score > best[i][tag]:
                    best[i][tag] = score
                    back[i][tag] = prev
def backtrack(i, tag):
    if i == 0:
        return []
```

return backtrack(i-1, back[i][tag]) + [(words[i], tag)]

print backtrack(len(words)-1, "</s>")[:-1]

8

12

13

14

18

19

20

22

23

24

26

Efficiency vs. Expressiveness

- the inference (argmax) must be efficient
 - either the search space GEN(x) is small, or factored
 - features must be local to y (but can be global to x)
 - e.g. bigram tagger, but look at all input words (cf. CRFs)

Averaged Perceptron

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$

Initialization: $W_0 = 0$

Define: $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$

Algorithm: For t = 1 ... T, i = 1 ... n $z_i = F(x_i)$ If $(z_i \neq y_i)$ $\mathbf{W}_{i+1} \leftarrow \mathbf{W}_i + \mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, z_i)$

Output: Parameters $\mathbf{W} = \sum_{j} \mathbf{W}_{j}$

- more stable and accurate results
- approximation of voted perceptron (Freund & Schapire, 1999)

Averaging Tricks

Daume (2006, PhD thesis)

sparse vector: defaultdict

Figure 2.3: The averaged structured perceptron learning algorithm.

Do we need smoothing?

- smoothing is much easier in discriminative models
- just make sure for each feature template, its subset templates are also included
 - e.g., to include $(t_0 w_0 w_{-1})$ you must also include
 - $(t_0 w_0) (t_0 w_{-1}) (w_0 w_{-1})$
 - and maybe also $(t_0 t_{-1})$ because t is less sparse than w

Convergence with Exact Search

- linear classification: converges iff. data is separable
- structured: converges iff. data separable & search exact
 - there is an oracle vector that correctly labels all examples
 - one vs the rest (correct label better than all incorrect labels)
- theorem: if separable, then # of updates $\leq \mathbb{R}^2 / \delta^2$ R: diameter

Geometry of Convergence Proof pt I

Geometry of Convergence Proof pt 2

parts I+2 => update bounds:

 $\leq R^2/\delta^2$

Experiments

Experiments: Tagging

- (almost) identical features from (Ratnaparkhi, 1996)
 - trigram tagger: current tag t_i , previous tags t_{i-1} , t_{i-2}
 - current word w_i and its spelling features
 - surrounding words W_{i-1} W_{i+1} W_{i-2} W_{i+2..}

Method	Error rate/%	Numits
Perc, avg, cc=0	2.93	10
Perc, noavg, cc=0	3.68	20
Perc, avg, cc=5	3.03	6
Perc, noavg, cc=5	4.04	17
ME, cc=0	3.4	100
ME, cc=5	3.28	200

Experiments: NP Chunking

- B-I-O scheme
- Rockwell International Corp.

's Tulsa unit)said it signed

BIOBO

a tentative agreement ...

B I I

- features:
 - unigram model
 - surrounding words and POS tags

Current word	w_i	$\&\ t_i$
Previous word	w_{i-1}	$\&~t_i$
Word two back	w_{i-2}	$\& t_i$
Next word	w_{i+1}	$\& t_i$
Word two ahead	w_{i+2}	$\& t_i$
Bigram features	w_{i-2}, w_{i-1}	$\& t_i$
	w_{i-1}, w_i	$\&\ t_i$
	w_i, w_{i+1}	$\&\ t_i$
	w_{i+1}, w_{i+2}	$\&\ t_i$
Current tag	p_{i}	$\&~t_i$
Previous tag	p_{i-1}	$\&~t_i$
Tag two back	p_{i-2}	$\& t_i$
Next tag	p_{i+1}	$\& t_i$
Tag two ahead	p_{i+2}	$\& t_i$
Bigram tag features	p_{i-2}, p_{i-1}	$\& t_i$
	p_{i-1}, p_i	$\&\ t_i$
	p_i, p_{i+1}	$\&\ t_i$
	p_{i+1}, p_{i+2}	$\&\ t_i$
Trigram tag features	p_{i-2},p_{i-1},p_i	$\&\ t_i$
	p_{i-1}, p_i, p_{i+1}	$\&\ t_i$
	p_i, p_{i+1}, p_{i+2}	$\& t_i$

Experiments: NP Chunking

results

Method	F-Measure	Numits
Perceptron, avg, cc=0	93.53	13
Perceptron, noavg, cc=0	93.04	35
Perceptron, avg, cc=5	93.33	9
Perceptron, noavg, cc=5	91.88	39
Max-ent, cc=0	92.34	900
Max-ent, cc=5	92.65	200

- (Sha and Pereira, 2003) trigram tagger
 - voted perceptron: 94.09% vs. CRF: 94.38%

Structured SVM

- structured perceptron: $w \cdot \Delta \phi(x,y,z) > 0$
- SVM: for all (x,y), functional margin $y(w \cdot x) \ge 1$
- structured SVM version 1: simple loss
 - for all (x,y), for all $z \neq y$, margin $w \cdot \Delta \varphi(x,y,z) \ge 1$
 - correct y has to score higher than any wrong z by I
- structured SVM version 2: structured loss
 - for all (x,y), for all $z \neq y$, margin $w \cdot \Delta \varphi(x,y,z) \ge \ell(y,z)$
 - correct y has to score higher than any wrong z by ℓ (y,z), a distance metric such as hamming loss

Loss-Augmented Decoding

- want for all z: $w \cdot \varphi(x,y) \ge w \cdot \varphi(x,z) + \ell(y,z)$
- same as: $w \cdot \varphi(x,y) \ge \max_z w \cdot \varphi(x,z) + \ell(y,z)$
- loss-augmented decoding: $argmax_z w \cdot \varphi(x,z) + \ell(y,z)$
- if ℓ (y,z) factors in z (e.g. hamming), just modify DP

```
CIML version
Algorithm 41 STOCHSUBGRADSTRUCTSVM(D, MaxIter, \lambda, \ell)
  1: w ← 0
                                                                                          // initialize weights
  _{2:} for iter = 1 \dots MaxIter do
         for all (x,y) \in D do
            \hat{\mathbf{y}} \leftarrow \operatorname{argmax}_{\hat{\mathbf{y}} \in \mathcal{Y}(\mathbf{x})} \mathbf{w} \cdot \phi(\mathbf{x}, \hat{\mathbf{y}}) + \ell(\mathbf{y}, \hat{\mathbf{y}})
                                                                            // loss-augmented prediction ← modified DP
            if \hat{y} \neq y then
           \boldsymbol{w} \leftarrow \boldsymbol{w} + \phi(\boldsymbol{x}, \boldsymbol{y}) - \phi(\boldsymbol{x}, \hat{\boldsymbol{y}})
                                                                                            // update weights ← should have learning rate!
            end if
            w \leftarrow w - \frac{\lambda}{N} w
                                                                    // shrink weights due to regularizer \lambda = 1/(2C)
         end for
                              very similar to Pegasos; but should use Pegasos framework instead
                                                                                  // return learned weights
 11: return w
```

Correct Version following Pegasos

- want for all z: $w \cdot \varphi(x,y) \ge w \cdot \varphi(x,z) + \ell(y,z)$
- same as: $w \cdot \varphi(x,y) \ge \max_z w \cdot \varphi(x,z) + \ell(y,z)$
- loss-augmented decoding: $argmax_z w \cdot \varphi(x,z) + \ell(y,z)$
- if ℓ (y,z) factors in z (e.g. hamming), just modify DP

```
Algorithm 41 STOCHSUBGRADSTRUCTSVM(D, MaxIter, \lambda, \ell)
  1: w \leftarrow 0
                                                                                                // initialize weights
  _{2:} for iter = 1 \dots MaxIter do
         for all (x,y) \in D do
             \boldsymbol{w} \leftarrow \boldsymbol{w} - 1/t \boldsymbol{w}
                                                                        // shrink weights due to regularizer
             \hat{y} \leftarrow \operatorname{argmax}_{\hat{y} \in \mathcal{Y}(x)} w \cdot \phi(x, \hat{y}) + \ell(y, \hat{y})
                                                                                 // loss-augmented prediction
           if \hat{y} \neq y then
                                                                                                                                 N=|D|, C is from SVM
                 \boldsymbol{w} \leftarrow \boldsymbol{w} + \text{NC/2t} \left( \phi(\boldsymbol{x}, \boldsymbol{y}) - \phi(\boldsymbol{x}, \hat{\boldsymbol{y}}) \right)
                                                                                                  // update weights
                                                                                                                                t += I for each example
             end if
         end for
     end for
 11: return w
                                                                                        // return learned weights
```

Struct. Perceptron vs Struct. SVM

tagging, ATIS (train: 488 sent); SVM < avg perc << perc

perceptron

```
epoch 1 updates 102, |W|=291, train_err 3.90%, dev_err 9.36% avg_err 6.14% epoch 2 updates 91, |W|=334, train_err 3.33%, dev_err 8.19% avg_err 4.97% epoch 3 updates 78, |W|=347, train_err 2.92%, dev_err 5.85% avg_err 4.97% epoch 4 updates 81, |W|=368, train_err 3.11%, dev_err 6.73% avg_err 5.85% epoch 5 updates 78, |W|=378, train_err 2.70%, dev_err 6.14% avg_err 5.56% epoch 6 updates 63, |W|=385, train_err 2.26%, dev_err 6.14% avg_err 5.56% epoch 7 updates 69, |W|=385, train_err 2.43%, dev_err 7.02% avg_err 5.56% epoch 8 updates 60, |W|=388, train_err 2.15%, dev_err 6.73% avg_err 5.56% epoch 9 updates 59, |W|=390, train_err 2.04%, dev_err 6.14% avg_err 5.56% epoch 10 updates 64, |W|=394, train_err 2.15%, dev_err 5.85% avg_err 5.26%
```

SVM C=1

```
epoch 1 updates 116, |W|=311, train_err 4.55%, dev_err 5.85% epoch 2 updates 82, |W|=328, train_err 3.05%, dev_err 4.97% epoch 3 updates 78, |W|=334, train_err 2.92%, dev_err 5.56% epoch 4 updates 77, |W|=339, train_err 2.92%, dev_err 5.26% epoch 5 updates 80, |W|=344, train_err 2.94%, dev_err 5.56% epoch 6 updates 73, |W|=345, train_err 2.75%, dev_err 4.68% epoch 7 updates 72, |W|=347, train_err 2.75%, dev_err 4.97% epoch 8 updates 75, |W|=352, train_err 2.86%, dev_err 4.97% epoch 9 updates 74, |W|=353, train_err 2.78%, dev_err 4.97% epoch 10 updates 72, |W|=354, train_err 2.78%, dev_err 4.97%
```

Structured Prediction