	Utech
Name:	A
Roll No.:	A Street of Knowledge End Explaint
Invigilator's Signature :	•••••

CS/B.Tech (NEW)/SEM-2/PH-201/2013 2013 PHYSICS - I

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) The time period of a simple pendulum of infinite length is given by
 - a) finite

- b) zero
- c) infinite
- d) none of these.
- ii) The velocity with which a wave advances in a medium is called
 - a) phase velocity
- b) group velocity
- c) wave velocity
- d) none of these.

2173 [Turn over

CS/B.Tech (NEW)/SEM-2/PH-201/2013

- iii) If v_g be the group velocity of the wave group representing a particle moving with velocity v, then
 - a) $v_g > v$

b) $v > v_0$

c) $v_q = v$

- d) $v_g = \frac{1}{v}$.
- iv) For SC structure atomic packing factor is
 - a) 74%

b) 52%

c) 68%

- d) 47%.
- v) Which one of the following is a biaxial crystal?
 - a) Calcite

- b) Quartz
- c) Argonite
- d) None of these.
- vi) Young's double slit experiment is based on
 - a) division of wavefront
 - b) division of amplitude
 - c) division of both amplitude and wavefront
 - d) none of these.
- vii) When interference takes place at some region, light energy is
 - a) created
- b) destroyed
- c) redistributed
- d) none of these.
- viii) The central spot of a Newton's ring experiment with a monochromatic light is
 - a) bright

b) dark

c) white

d) none of these.

ix)		angle between the rization of a beam of pla	_	nes of vibration and olarized light is
	a)	90°	b)	45°
	c)	0°	d)	180°.
x)	How fast a particle must travel so that its mass become thrice its rest mass?			
	a)	0·5 c	b)	2 c
	c)	$\frac{\sqrt{3}}{2}$ c	d)	$\frac{2\sqrt{2}}{3}$ c.
xi)	The	rest mass of photon is		
	a)	p/c	b)	hv/c^2
	c)	E/c^2	d)	0
xii)	The colour of the laser output in case of ruby laser is			
	a)	violet	b)	blue
	c)	red	d)	green.
xiii)	X-ra	ys are		
	a)	elastic waves	b)	electromagnetic waves
	c)	stationary waves	d)	radio waves.
xiv)	Orig	in of continuous X-ray	is du	e to the process of
	a)	ionization	b)	inner orbital transition
	c)	bremsstrahling	d)	none of these.
xv)		sible light is used to stu apton shift will be	ıdy C	Compton scattering then

- a) negative
- b) more positive than what is observed with X-rays
- c) zero
- d) positive but not detectable in the visible window.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 15$
- 2. a) What are the characteristics of S.H.M. ? Define time period and frequency.
 - b) Establish the differential equation of harmonic motion and solve it. 2+3
- 3. a) Find the atomic packing factor for an FCC and BCC lattice.
 - b) Describe the origin of characteristic *X*-ray. 2 + 3
- 4. Explain the nature of change in the fringe in Newton's ring experiment when
 - i) some oil is placed between the glass plate and the plano-convex lens, and
 - ii) the plano-convex lens is gradually moved away from the glass plate. 2+3
- 5. a) Why is X-ray diffraction used for crystal structure analysis and not common visible light?
 - b) Why in case of moving electrons quantum mechanics is used while for moving cars we use Newtonian mechanics?
 - c) What features of photoelectric effect cannot be explained from wave theory of light? 1+2+2
- 6. a) What is Compton effect?
 - b) Calculate the Compton wavelength for an electron.
 - c) Why does the unmodified line appear in Compton scattering? 1 + 2 + 2

2173 4

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. 3

- $3 \times 15 = 45$
- 7. a) Write down the differential equation of damped oscillation. Solve it for underdamped motion. 1 + 3
 - b) The equation for displacement of a point of a damped oscillator is given by $X = 5e^{-0.25t} \sin(\pi/2)t$ metre. Find the velocity of the oscillating point at t = T/4 and T, where T is the time period of oscillation. 2 + 2
 - c) Define logarithmic decrement λ and relaxation time τ . Find expression for these terms. 2+2
 - d) Give a graphical comparison among underdamped, overdamped and critically damped harmonic motion. 3
- 8. a) Calculate the distance between the adjacent parallel planes of the type [100], [110] and [111] in an FCC lattice of lattice constant *a*. Check the validity of the statement "The most closely packed planes are the most widely spaced".

 3 + 3
 - b) Establish the relation between lattice constant and density of a material of a simple cubic crystal. 5
 - c) If an *X*-ray tube is subjected to a potential difference of 50 kV and the corresponding current is 8 mA, then find out
 - i) the number of electrons striking per second the target material,
 - ii) minimum wavelength of the X-ray produced. 2 + 2

CS/B.Tech (NEW)/SEM-2/PH-201/2013

- 9. a) What is missing order in case of double slit diffraction pattern?
 - b) A diffraction grating, 2 cm wide is just able to resolve sodium D-lines (having wavelengths 589 nm and 589·6 nm) in second order. Find the number of rulings per mm.
 - c) Obtain an expression for resultant intensity and hence find the conditions for maxima and minima in a single-slit Fraunhofer diffraction process.
 - d) What is retardation plate? A plane polarized light of wavelength 600 nm changes to a circularly polarized light on passing through a quartz crystal cut parallel to optic axis. Calculate the minimum thickness to produce such effect. Given $\left(\mu_e \mu_0\right) = 0.005$. 1+2
 - e) Find the state of polarization when the x and y components of the electric field are given by $E_x = E_0 \sin (wt + kz)$ and $E_y = E_0 \cos (wt + kz)$. 2
- 10. a) What are positive and negative crystals? Describe the construction of Nicol prism.
 - Explain Fraunhofer diffraction by a single-slit with necessary theory. Point out also the graphical representation of intensity distribution.
 - c) The diameter of the nth Newton's ring changes from $1\cdot 2$ to 1 cm, when the air space between the lens and the plate is replaced by a transparent liquid. Find the refractive index of the liquid.

- 11. a) Define plane of vibration and plane of polarization.
 - / 3
 - b) Describe an experiment to prove that light waves are transverse.
 - c) The displacement of a particle of mass 0.2 kg executing S.H.M. is indicated by $y = 10 \sin \left(\frac{\pi}{3}t \frac{\pi}{12}\right)m$. Calculate
 - i) amplitude
 - ii) the angular velocity
 - iii) the time period
 - iv) the maximum velocity
 - v) maximum acceleration.

5

- d) Calculate the atomic packing fraction and atoms per unit cell in crystals having body centred cubic structure considering the atoms as hard sphere.
- 12. a) Illustrate spontaneous emission and stimulated emission. Describe in brief why stimulated emission generates highly intense coherent beam. 3+2
 - b) A beam of *X*-rays of wavelength 0.842 Å is incident on a crystal at a glancing angle of 8° 35^{I} when first order Bragg's reflection occurs. Calculate the distance between two consecutive crystal planes.

CS/B.Tech (NEW)/SEM-2/PH-201/2013

- c) Derive an expression for lattice constant of a crystal in terms of its molecular weight, density and number of atoms per unit cell.
- d) Find out the number of photons required to be emitted per second to give output power 2 mW corresponding to wavelength 632.8 nm.
- e) The primitives of a crystal are $1\cdot 2$ Å, $1\cdot 8$ Å, 2 Å along the three axes. A plane with Miller indices (231) cuts intercepts $1\cdot 2$ Å along *X*-axis. What will be the lengths of intercepts along *Y* and *Z*-axes ?

2173 8