Table S2: Overview of datasets analysed

Accession numbers	Species/ Strain	Library type	RNA Selection	Instrument	Read length	Layout	Adapter	Stages Analyzed	Runs	Study
ERP105548	<i>Pb</i> ANKA	U	Oligo-dT	Illumina HiSeq 2500	100	PE	Nextera	Sp, L	ERR2216044 ERR2216045 ERR2216046 ERR2216047 ERR2216049 ERR2216050 ERR2216051 ERR2216052 ERR2216053 ERR2216054 ERR2216055	[1]
SRP250329	PbANKA	U	cDNA	Illumina HiSeq 4000	50	SE	SMART- Seq	Sp, L	SRR11142813 SRR11142815 SRR11142816 SRR11142817 SRR11142818 SRR11142820 SRR11142821 SRR11142823 SRR11142824 SRR11142825 SRR11142826 SRR11142827 SRR11142828 SRR11142836 SRR11142837 SRR11142839 SRR11142839 SRR11142840 SRR11142840	[2]
SRP027529/ ERP004740	Pb	U		Illumina Genome Analyzer IIx	76	SE/PE	Truseq	R, T, Sch, G, O	SRR935544 SRR935549 SRR935553 SRR935554 SRR935555 SRR935557 SRR935558 SRR935559 ERR435801 ERR435802 ERR435803 ERR435804	[3]

SRP099925	<i>Pb</i> ANKA	S (BS2- 3) / SR (BS1)	Poly(A)	Illumina HiSeq 2500	100	PE		ABS (mixed)	SRR5260544 SRR5260545 SRR5260546	[4]
SRP197607	<i>Pb</i> ANKA	SR	PCR	Illumina NextSeq	75	PE	KAPA	G	SRR9041561 SRR9041562	[5]
SRP073801	<i>Pb</i> ANKA	SR	cDNA	500 Illumina HiSeq 2500	100	PE	NEBNext	0	SRR3437923 SRR3437924 SRR3437937 SRR3437938 SRR3437953 SRR3437954	[6]
SRP090611	PfNF54 and 3D7	SR	Random	Illumina NextSeq 550	150	SE	Truseq	G, Sp	SRR5146305 SRR5146306 SRR5146307 SRR5146308 SRR5150409 SRR5150410	[7]
SRP142460	Pf3D7	SR	cDNA	Illumina HiSeq 2500	100	SE	Truseq	Sp	SRR7059093 SRR7059094 SRR7059095	[8]
SRP048710	Pf K1	SR	cDNA	Illumina MiSeq		PE	Truseq	R, T, Sch	SRR1605330 SRR1605331 SRR1605332 SRR1605333 SRR1605334 SRR1605335	[9]
SRP211863	PfNF54	SR	cDNA	Illumina HiSeq X Ten	150	PE	KAPA AGATCG GAAGAG C AAGATC GGAAGA GC	R, T, Sch	SRR9592132 SRR9592133 SRR9592134 SRR9592135 SRR9592136 SRR9592137	[10]
SRP069075	Pf3D7	SR	cDNA	Illumina HiSeq 2500		SE	TruSeq	G	SRR3134662 SRR3134663 SRR3134664 SRR3134665 SRR3134666	unpublished

								SRR3134667	
SRP100893	Pv	U	Random	Illumina HiSeq 2000 (NextSeq)	PE	TruSeq	Sp	SRR5298172 SRR5298173 SRR5298174 SRR5298175 SRR5298176 SRR5298177 SRR5298179 SRR5298180 SRR5298180 SRR5298181 SRR5298182 SRR5298182 SRR5298183 SRR5298184 SRR5298185 SRR5298185 SRR5298189 SRR5298189 SRR5298189	[11]
SRP046739	Pv	U	cDNA	Illumina 100 HiSeq 2000	PE	TruSeq	Blood stages	SRR1571697 SRR1571698 SRR1571699 SRR1571700 SRR1571701 SRR1571702 SRR1571703 SRR1571704 SRR1571705 SRR1571706 SRR1571707 SRR1571707 SRR1571709 SRR1571710 SRR1571710 SRR1571711	[12]

S: stranded, SR: stranded reverse, U: unstranded, SE: single end, PE: paired end, oligo-dT: oligo-deoxythymidine, Sp: Sporozoite, L: liver stages, R: ring, T: trophozoite, Sch: schizont, G: gametocyte, O: ookinete, ABS: asexual blood stages

References

- 1. Caldelari R, Dogga S, Schmid MW, Franke-Fayard B, Janse CJ, Soldati-Favre D, et al. Transcriptome analysis of Plasmodium berghei during exo-erythrocytic development. Malar J. 2019;18:330.
- 2. Toro-Moreno M, Sylvester K, Srivastava T, Posfai D, Derbyshire ER. RNA-seq analysis illuminates the early stages of plasmodium liver infection. MBio. 2020;11.
- 3. Otto TD, Böhme U, Jackson AP, Hunt M, Franke-Fayard B, Hoeijmakers WAM, et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol. 2014.
- 4. Yeoh LM, Goodman CD, Mollard V, McFadden GI, Ralph SA. Comparative transcriptomics of female and male gametocytes in Plasmodium berghei and the evolution of sex in alveolates. BMC Genomics. 2017;18:1–16.
- 5. Pandey R, Abel S, Boucher M, Holder AA, Le Roch KG, Tewari R. Plasmodium Condensin Core Subunits SMC2/SMC4 Mediate Atypical Mitosis and Are Essential for Parasite Proliferation and Transmission. Cell Rep. 2020;30.
- 6. Modrzynska K, Pfander C, Chappell L, Yu L, Suarez C, Dundas K, et al. A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle. Cell Host Microbe. 2017;21:11–22.
- 7. Zanghì G, Vembar SS, Baumgarten S, Ding S, Guizetti J, Bryant JM, et al. A Specific PfEMP1 Is Expressed in P. falciparum Sporozoites and Plays a Role in Hepatocyte Infection. Cell Rep. 2018;22:2951–63.
- 8. Lindner SE, Swearingen KE, Shears MJ, Walker MP, Vrana EN, Hart KJ, et al. Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites. Nat Commun 2019 101. 2019;10:1–13.
- 9. Shaw PJ, Chaotheing S, Kaewprommal P, Piriyapongsa J, Wongsombat C, Suwannakitti N, et al. Plasmodium parasites mount an arrest response to dihydroartemisinin, as revealed by whole transcriptome shotgun sequencing (RNA-seq) and microarray study. BMC Genomics. 2015;16:1–14.
- 10. Fan Y, Shen S, Wei G, Tang J, Zhao Y, Wang F, et al. Rrp6 regulates heterochromatic gene silencing via norna ruf6 decay in malaria parasites. MBio. 2020;11.
- 11. Muller I, Jex AR, Kappe SHI, Mikolajczak SA, Sattabongkot J, Patrapuvich R, et al. Transcriptome and histone epigenome of Plasmodium vivax salivary-gland sporozoites point to tight regulatory control and mechanisms for liver-stage differentiation in relapsing malaria. Int J Parasitol. 2019;49:501–13.
- 12. Zhu L, Mok S, Imwong M, Jaidee A, Russell B, Nosten F, et al. New insights into the Plasmodium vivax transcriptome using RNA-Seq. Sci Reports 2016 61. 2016;6:1–13.