



### **Final Project**

NAME: DHARAN.N

DEPT.: ARTIFICIAL INTELLIGENCE AND DATA SCIENCE 3RD YEAR.

NAAN MUDHALVAN ID: au821721243013.

COLLEGE: SIR ISSAC NEWTON COLLEGE OF ENGINEERING AND TECHNOLOGY.



3/21/2024 Annual Review 1

# HEART DISEASE PREDICTION USING LOGISTIC REGRESSION

## **AGENDA**

- >PROBLEM STATEMENT.
- >PROJECT OVERVIEW.
- >WHO ARE THE END USERS?
- >SOLUTION AND ITS VALUE PROPOSITION.
- >THE WOW IN THE SOLUTION.
- >MODELLING.
- >DATA VISUALIZATION.
- >RESULT.



## PROBLEM STATEMENT

- ➤ Heart disease remains one of the leading causes of death worldwide, emphasizing the importance of early detection and prevention.
- Machine learning techniques offer promising avenues for predicting heart disease based on various risk factors, aiding healthcare professionals in making informed decisions and improving patient outcomes.



## PROJECT OVERVIEW

- The primary objective of this project is to build a reliable and accurate predictive model capable of assessing an individual's risk of heart disease using logistic regression analysis.
- ➤ By analyzing various risk factors such as age, gender, cholesterol levels, and blood pressure, the model aims to provide healthcare professionals with valuable insights for early intervention and personalized care.



## WHO ARE THE END USERS?

- **1.Healthcare Providers:** Physicians, cardiologists, and nurses who use the model to assess patients' risk of heart disease and guide treatment decisions.
- **2.Medical Researchers:** Researchers analyzing heart disease trends and risk factors within populations.
- **3.Healthcare Administrators:** Hospital administrators and policymakers using the model to allocate resources and plan public health initiatives.
- **4.Patients:** Individuals benefiting from personalized care and early interventions to reduce their risk of heart disease.
- **5.Health Insurance Companies:** Insurers leveraging the model to assess policyholders' risk profiles and develop tailored wellness programs.

3/21/2024 Annual Review

## SOLUTION AND ITS VALUE PROPOSITION

- Our solution involves developing a predictive model using logistic regression to assess an individual's risk of heart disease based on demographic and clinical data.
- By analyzing factors such as age, gender, cholesterol levels, and blood pressure, our model predicts the likelihood of heart disease occurrence, enabling timely interventions and personalized care.

#### **Value Proposition:**

- **1.Early Detection:** Identifying heart disease risk early, allowing timely interventions.
- 2.Personalized Care: Tailoring treatment plans based on individual risk profiles.
- **3.Resource Optimization:** Efficient allocation of resources for targeted interventions.
- 4.Data-Driven Insights: Informing research and public health policies.
- **5.Cost Savings:** Reducing healthcare costs associated with heart disease.



# THE WOW IN THE SOLUTION

- **1.Precision Early Detection:** Pinpointing heart disease risk with unparalleled accuracy, ensuring timely interventions and saving lives.
- **2.Personalized Proactive Care:** Crafting bespoke treatment plans tailored to individuals' unique risk profiles, empowering patients to take proactive control of their health.
- **3.Resource Efficiency Redefined:** Maximizing healthcare resources by targeting interventions precisely where they're needed most, optimizing outcomes and minimizing waste.
- **4.Insights that Drive Impact:** Unveiling deep insights into heart disease trends and risk factors, guiding policymakers and researchers to enact transformative public health strategies.
- **5.Cost-Effective Innovation:** Revolutionizing healthcare economics by curbing costs associated with heart disease treatment through proactive prevention and early intervention.

# **MODELLING**

- 1.We load the heart disease dataset and preprocess it by dropping any rows with missing values.
- 2. We select relevant features (e.g., age, gender, cholesterol levels, blood pressure) and the target variable (heart disease status).
- 3.We split the dataset into training and testing sets to evaluate the model's performance.
- 4. We scale the features using StandardScaler to ensure they have a similar scale, which is important for logistic regression.
- 5. We train a logistic regression model using the training data.
- 6.We evaluate the trained model's performance using accuracy and classification report metrics on the testing set.

## DATA VISUALIZATION





3/21/2024 Annual Review

# RESULTS

#### **1.Class 0 (Positive Class)**:

**1. Precision**: 0.85

**2. Recall**: 0.99

**3. F1-score**: 0.92

**4. Support**: 951

#### 2. Class 1 (Negative Class):

**1. Precision**: 0.61

**2. Recall**: 0.88

**3. F1-score**: 0.14

**4. Support**: 175

Therefore, The overall accuracy of the model is **0.85**.

| The details f                         | or confusion precision |              |                      | support              |  |
|---------------------------------------|------------------------|--------------|----------------------|----------------------|--|
| 0<br>1                                | 0.85<br>0.61           | 0.99<br>0.08 | 0.92<br>0.14         | 951<br>175           |  |
| accuracy<br>macro avg<br>weighted avg | 0.73<br>0.82           | 0.54<br>0.85 | 0.85<br>0.53<br>0.80 | 1126<br>1126<br>1126 |  |