

Informe sobre Taller de Análisis de Complejidad Temporal y Experimentos

Integrantes:

- Manuel Quintero
- Juan Esteban Gallo
- Daniela Llano
- David Erazo

Análisis de algoritmos - Complejidad temporal

Línea	Instrucción		
	QuickSort(A,p,r)		
1	if p < r		
2	q = Partition(A,p,r)		
3	QuickSort(A,p,q-1)		
4	QuickSort(A,q+1,r)		

Línea	Instrucción	
	Randomized-QS(A,p,r)	
1	if p < r	
2	q = Rand-Parti(A,p,r)	
3	Randomized-QS(A,p,q-1)	
4	Randomized-QS(A,q+1,r)	

Línea	Instrucción	# veces que se ejecuta
	<pre>Partition(A,p,r)</pre>	
1	x = A[r]	1
2	i = p - 1	1
3	for j = p to r - 1	n + 1
4	if A[j] <u><</u> x	n
5	i = i + 1	n
6	$A[i] \; \leftrightarrow \; A[j]$	n
7	$A[i+1] \leftrightarrow A[r]$	4
8	return i + 1	1

$$T(n) = 4n+9$$
$$O(n) = n$$

Línea	Instrucción	# veces que se ejecuta
	Rand-Parti(A,p,r)	
1	i = Random(p,r)	1
2	$A[r] \leftrightarrow A[i]$	4
3	return Partition(A,p,r)	n

$$T(n) = n+5$$
$$O(n) = n$$

En este paso decidimos utilizar el análisis ya planteado en el libro "Introduction to Algorithms" Third Edition de Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest y Clifford Stein.

Quicksort peor caso:
$$T(n) = \Theta(n^2)$$

$$T(n) = T(n-1) + T(0) + \Theta (4n + 9),$$
 $T(0) = 0 y \Theta (4n+9) = \Theta (n)$
= $T(n-1) + n$

$$T(n-1) = T(n-2) + 2n-1$$

$$T(n-2) = T(n-3) + 3n-1$$

$$T(n-3) = T(n-4) + 4n-6$$

Con esto se puede deducir:

$$T(n-i-1) = T(n-i) + in -(i*(i-1))/2,$$
 $i = n-1,$ $n-i = 1,$ $T(n-i) = T(1)$
 $T(n-i-1) = T(i) + (n^2 - n) - (n^2 - 3n + 2)/2$
 $= 1 + (n^2 + n - 2)/2$

 $//\Theta(n^2)$

Quicksort mejor caso: $T(n) = 2T(n/2) + \Theta(n)$

Aplicando el teorema del maestro:

$$f(n) = n^{log2} = n$$
, entonces $T(n) = (n*logn)$

O tambien se puede analizar el mejor caso asi:

Diseño de experimentos

1. <u>Unidad experimental:</u>

• Los 1000 arreglos de cada potencia

2. <u>Variables de respuesta:</u>

• Tiempo de respuesta del algoritmo.

3. Factores controlables:

- Procesador del equipo donde se procede la ejecución
- Memoria Ram del equipo donde se procede la ejecución
- Cantidad de núcleos con los que cuenta el equipo
- Rango de elementos del arreglo

4. Factores no controlables:

- Procesos que ejecuta el sistema operativo mientras se lleva a cabo el experimento
- Fragmentación de la memoria del disco duro del equipo
- Fragmentación de la memoria RAM

5. Factores estudiados:

- Tipo de algoritmo.
- Estado del arreglo.
- Tamaño del arreglo

6. Niveles:

En este experimento se decidió elegir como factores de estudio los siguientes niveles:

La siguiente tabla (Tabla.1) representa la cantidad de algoritmos

Tipos de algoritmos		
Quick Sort		
Randomized Quick Sort		

La siguiente tabla (Tabla.2) representa el orden que presentaron los elementos

Orden de elementos

Aleatorizado
No ascendente
No descendente

(Tabla.2)

La siguiente tabla (Tabla.3) representa la cantidad de elementos de entrada

Tamaño del arreglo
10
10^2
10^3
10^4
10^5

(Tabla. 3)

7. Tratamientos:

En el siguiente experimento se medirá el nivel de efectividad en términos de velocidad de los métodos mencionados. Los tratamientos se dividirán entre los niveles ya previamente mencionados siendo los siguientes :

Tipos de algoritmos	Cantidad de elementos	Orden de elementos	Tratamiento
QS	10	Aleatorizado	1
		No ascendente	2
		No descendente	3

		Aleatorizado	4
	10^2	No ascendente	5
		No descendente	6
	10^3	Aleatorizado	7
		No ascendente	8
		No descendente	9
	10^4	Aleatorizado	10
		No ascendente	11
		No descendente	12
		Aleatorizado	13
	10^5	No ascendente	14
		No descendente	15
		Aleatorizado	16
	10	No ascendente	17
		No descendente	18
	10^2	Aleatorizado	19
		No ascendente	20
		No descendente	21
POS	10^3	Aleatorizado	22
RQS		No ascendente	23
		No descendente	24
	10^4	Aleatorizado	25
		No ascendente	26
		No descendente	27
	10^5	Aleatorizado	28
		No ascendente	29
		No descendente	30

Al momento se han analizado las diferentes situaciones a la cual se va enfrentar el experimento al cabo del tiempo, por un lado

- ¿Qué etapas del análisis y diseño de experimentos se han llevado a cabo hasta el momento? ¿Cuáles hacen falta?

En este caso hemos realizado las etapas de planeación y realización, debido a que estas actividades son las indicadas para entender, delimitar el problema y seleccionar variables de respuesta y factores. Terminamos esta etapa definiendo los tratamientos a realizar y la organización del trabajo experimental.

Nos hace falta realizar las etapas de análisis, interpretación, control y conclusiones finales.

- El objetivo del anterior experimento en cual categoría de objetivos de experimentos clasificaría? Explique brevemente.

El objetivo del experimento estaría ubicado en la categoría de *Diseños para estudiar* el efecto de varios factores sobre una o más variables de respuesta, debido a que en este caso estamos comparando según los factores de tamaño y velocidad en los algoritmos, para saber cual es más eficiente.