Rank-139 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 = 0$$

(0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) The point rank of the equation over GF(4) is 2743

General information

Number of lines	6
Number of points	29
Number of singular points	1
Number of Eckardt points	2
Number of double points	3
Number of single points	18
Number of points off lines	6
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{6}
Type of lines on points	$3^2, 2^3, 1^{18}, 0^6$

Singular Points

The surface has 1 singular points:

$$0: P_4 = \mathbf{P}(1, 1, 1, 1) = \mathbf{P}(1, 1, 1, 1)$$

The 6 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_1 = \mathbf{Pl}(1, 0, 1, 0, 0, 0)_3$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{4} = \mathbf{Pl}(1,0,0,0,1,0)_{26}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{17} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{17} = \mathbf{Pl}(0,0,1,0,1,0)_{32}$$

$$\ell_{3} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{38} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{38} = \mathbf{Pl}(0,0,1,1,1,1)_{198}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{25} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{25} = \mathbf{Pl}(1,1,0,0,1,1)_{177}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{85} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{85} = \mathbf{Pl}(1,1,1,0,0)_{16}$$

Rank of lines: (1, 4, 17, 38, 25, 85)

Rank of points on Klein quadric: (3, 26, 32, 198, 177, 16)

Eckardt Points

The surface has 2 Eckardt points:

$$0: P_0 = \mathbf{P}(1, 0, 0, 0) = \mathbf{P}(1, 0, 0, 0),$$

$$1: P_4 = \mathbf{P}(1, 1, 1, 1) = \mathbf{P}(1, 1, 1, 1).$$

Double Points

The surface has 3 Double points:

The double points on the surface are:

$$P_{11} = (0, 1, 1, 0) = \ell_0 \cap \ell_5$$

$$P_{26} = (0, 1, 0, 1) = \ell_1 \cap \ell_4$$

$$P_{38} = (0, 0, 1, 1) = \ell_2 \cap \ell_3$$

Single Points

The surface has 18 single points:

The single points on the surface are:

 $\begin{array}{l} 0: \ P_5 = (1,1,0,0) \ \text{lies on line ℓ_3} \\ 1: \ P_8 = (1,0,1,0) \ \text{lies on line ℓ_4} \\ 2: \ P_{12} = (1,1,1,0) \ \text{lies on line ℓ_0} \\ 3: \ P_{13} = (2,1,1,0) \ \text{lies on line ℓ_0} \\ 4: \ P_{14} = (3,1,1,0) \ \text{lies on line ℓ_0} \\ 5: \ P_{23} = (1,0,0,1) \ \text{lies on line ℓ_0} \\ 6: \ P_{27} = (1,1,0,1) \ \text{lies on line ℓ_1} \\ 7: \ P_{28} = (2,1,0,1) \ \text{lies on line ℓ_1} \\ 8: \ P_{29} = (3,1,0,1) \ \text{lies on line ℓ_1} \\ 9: \ P_{39} = (1,0,1,1) \ \text{lies on line ℓ_2} \end{array}$

10: $P_{40} = (2, 0, 1, 1)$ lies on line ℓ_2 11: $P_{41} = (3, 0, 1, 1)$ lies on line ℓ_2

12: $P_{47} = (2, 2, 1, 1)$ lies on line ℓ_3 13: $P_{52} = (3, 3, 1, 1)$ lies on line ℓ_3

 $13: P_{52} = (3,3,1,1)$ lies on line ℓ_3 $14: P_{59} = (2,1,2,1)$ lies on line ℓ_4

15: $P_{62} = (1, 2, 2, 1)$ lies on line ℓ_5

16: $P_{76} = (3, 1, 3, 1)$ lies on line ℓ_4

17: $P_{82} = (1, 3, 3, 1)$ lies on line ℓ_5

The single points on the surface are:

Points on surface but on no line

The surface has 6 points not on any line:

The points on the surface but not on lines are:

 $\begin{array}{lll} 0: \, P_{15} = (0,2,1,0) & 4: \, P_{53} = (0,0,2,1) \\ 1: \, P_{19} = (0,3,1,0) & 5: \, P_{69} = (0,0,3,1) \\ 2: \, P_{30} = (0,2,0,1) & & \\ 3: \, P_{34} = (0,3,0,1) & & \end{array}$

Line Intersection Graph

 $\begin{array}{c|c} 012345 \\ \hline 0 & 011001 \\ 1 & 101010 \\ 2 & 110100 \\ 3 & 001011 \\ 4 & 010101 \\ 5 & 100110 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_5
in point	P_0	P_0	P_{11}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_0	P_0	P_{26}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3
in point	P_0	P_0	P_{38}

Line 3 intersects

Line	ℓ_2	ℓ_4	ℓ_5
in point	P_{38}	P_4	P_4

Line 4 intersects

Line	ℓ_1	ℓ_3	ℓ_5
in point	P_{26}	P_4	P_4

Line 5 intersects

Line	ℓ_0	ℓ_3	ℓ_4
in point	P_{11}	P_4	P_4

The surface has 29 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$10: P_{23} = (1, 0, 0, 1)$	$20: P_{41} = (3, 0, 1, 1)$
$1: P_4 = (1, 1, 1, 1)$	$11: P_{26} = (0, 1, 0, 1)$	$21: P_{47} = (2, 2, 1, 1)$
$2: P_5 = (1, 1, 0, 0)$	$12: P_{27} = (1, 1, 0, 1)$	$22: P_{52} = (3, 3, 1, 1)$
$3: P_8 = (1,0,1,0)$	13: $P_{28} = (2, 1, 0, 1)$	$23: P_{53} = (0, 0, 2, 1)$
$4: P_{11} = (0, 1, 1, 0)$	$14: P_{29} = (3, 1, 0, 1)$	$24: P_{59} = (2, 1, 2, 1)$
$5: P_{12} = (1, 1, 1, 0)$	15: $P_{30} = (0, 2, 0, 1)$	$25: P_{62} = (1, 2, 2, 1)$
$6: P_{13} = (2, 1, 1, 0)$	$16: P_{34} = (0, 3, 0, 1)$	$26: P_{69} = (0, 0, 3, 1)$
$7: P_{14} = (3, 1, 1, 0)$	17: $P_{38} = (0, 0, 1, 1)$	$27: P_{76} = (3, 1, 3, 1)$
$8: P_{15} = (0, 2, 1, 0)$	$18: P_{39} = (1,0,1,1)$	$28: P_{82} = (1, 3, 3, 1)$
$9: P_{19} = (0, 3, 1, 0)$	$19: P_{40} = (2, 0, 1, 1)$	