Rare-Variant Association Testing for Exome Data

The Sequence Kernel Association Test

Sequence Kernel Association Test (SKAT)

- Gene-level (or SNP set) analysis approach
- Tests an association between SNP sets and continuous or discrete phenotypes
- Bypasses the problem of different tagging SNPs being associated with outcomes of interest across ethnic groups

SKAT Main Effects Model

$$Y_i = \alpha_0 + \alpha' X_i + \beta' G_i + \epsilon_i$$

- Y_i = outcome for subject i
- α_o = intercept term
- X_i = vector of non-genetic covariates
- G_i = vector of genotypes
- ε_i = error term; follows any distribution with mean 0 and variance σ^2
- Assume each β_j , j=1,...,p, follows an arbitrary distribution with mean 0 and variance $\mathbf{w}_i \mathbf{\tau}$
 - Where the weights (w_i) are specified by the user

SKAT basics

- Testing H_0 : $\beta = 0$ is equivalent to testing H_0 : $\tau = 0$
- The score test for variance component in the corresponding mixed model is of the form:

$$Q_{\rho} = (1 - \rho) Q_{s} + \rho Q_{B}$$

— where ρ is the parameter of the unified test, Q_S is a test statistic of SKAT, and Q_B is a score test statistic of weighted burden test

Kernel

- There are pre-specified 6 types of kernels:
 - "linear"
 - "linear.weighted"
 - "IBS"
 - "IBS.weighted"
 - "quadratic"
 - "2wayIX"
- You can use one of them or you can give your own kernel matrix as a parameter.

Default Kernel

- The default kernel is the weighted linear kernel
- The kernel matrix for the weighted linear kernel is

K = GWWG

Where G is the n x p matrix of genotype data and
 W is the p x p diagonal matrix of the weights corresponding to each variant.

Q Statistic

$$Q_{\rho} = (1 - \rho) Q_{s} + \rho Q_{B}$$

 The Q statistic has a mixture of chi-squared distribution under the null hypotheses that can be evaluated explicitly and used as a reference distribution to compute the pvalues.

Weights

- The matrix W is a diagonal matrix that contains the weights of the p variants
- Good choices of weights can improve power
- Weights are pre-specified
- If weight j is large, then that variant makes a large contribution to the Q statistic
- Upweighting a causal variant (which is expected to have a large effect) can improve the power
- We don't know which variants are causal and thus we don't always know which weights to use

Weights

SKAT authors suggest using

$$\sqrt{w_j} = Beta(MAF_j; \alpha_1, \alpha_2)$$

• Beta PDF: $\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha,\beta)}$

Where B denotes the Beta function, alpha and beta (in our weight equation, alpha-1 and alpha-2) are shape parameters and the function is evaluated when x = MAF_j

Results

 The Q statistic and associated p-value will tell us if the SNP set is associated with the outcome.

• H_0 : $\tau = 0$, assesses whether there is any variance in the SNP set $(B_j s)$ from the mean of 0 in any (+/-) direction

Example

- The association between SNPs in the Chr9p21 region and the Gene Expression
- Predictor: SNPs in the Chr9p21 region (297 SNPs)
- Outcome: gene expression of the genes across the whole genome
- Single SNP Association Test
 - Gene expression=single SNP + random(family) (297 tests)
- Sequence Kernel (SNP set) association (SKAT)
 - Gene expression (after familiar adjustment)= All SNPs (1 test)

Single SNP Association Analysis Between CDKN2BAS and SNPs in the Chr9p21

Single SNP Association Analysis Between CDKN2BAS and SNPs in the Chr9p21

CDKN2BAS (SKAT p=0.429)

MAF	B SNP P CDKN2BAS
0.446317	8.58E-06
0.44901	8.93E-06
0.495097	9.34E-06
0.439054	1.07E-05
0.453232	1.09E-05
0.438996	1.11E-05
0.438958	1.13E-05
0.440362	1.28E-05
0.439493	1.51E-05
0.459316	1.52E-05
	0.446317 0.44901 0.495097 0.439054 0.453232 0.438996 0.438958 0.440362 0.439493

Specifying weights

- Beta (1, 25)
 - Up regulate rare variants and down regulate common variants
- Beta (1, 1)
 - Equal weights to all variants
- Beta (0.5, 0.5)
 - Madsen & Browning weight

$$\sqrt{w_j} = 1/\sqrt{MAF_j(1-MAF_j)}$$

Beta distributions

Beta functions for wj

Applying Different Weight to CDKN2BAS

	Beta (1, 25)	Beta (1, 1)	Beta (0.5, 0.5)
SKAT p value	0.429	0.0020	0.0021

Example p-values Adjusting Weight Changes Results Dramatically: Top Results with Weight beta (0.5, 0.5)

Transcript	N	Pvalue beta 1 25	Pvalue beta 1 1	Pvalue_ beta 0.5 0.5
ENST00000301908	801	0.036968216	0.000178972	0.000130954
ENST00000370551	801	0.684927084	0.000178319	0.000217497
ENST00000412318	801	0.112609677	0.000302452	0.00026976
ENST00000497037	801	0.241666486	0.000345966	0.00034696

Conclusion

- Choosing appropriate weight is very important in SKAT
- Beta (1, 25) gives very little weight, if any, to the common variants
- Beta (1, 1) has very little power picking up signals from rare variants
- Beta (0.5, 0.5) can pick up signals from both common and rare variants, but suffers from lower power.

Next Steps

- We've been working with Shawn Lee to test his SKAT programs for:
 - Gene-environment kernels (currently unweighted)
 - Gene-gene kernels (currently unweighted)
 - Meta-analysis subroutines (Meta-SKAT)
 - Modifications for family data