Национальный исследовательский университет "МЭИ" Институт радиотехники и электроники им. В. А. Котельникова Кафедра Основ Радиотехники

ОТЧЕТ

по лабораторной работе № 1 «Фазовая автоподстройка частоты» по дисциплине «Формирование радиосигналов»

Группа: ЭР-11-21

Бригада: № 3

Студент: Амарантиди М.М.

Преподаватель: Плутешко А.В.

Дата: 16.03.2025

Ход работы

1. Измерение характеристик ФД

Подадим колебание от внешнего генератора на вход опорной частоты. Синусоидальная форма напряжения. Частота 8 МГц. Средний уровень 1,6 В. Размах от минимума до максимума 3,0 В. Настроим средний уровень так, чтобы величина +Duty осциллограммы U_{on} была $50 \pm 2\%$. Подберем f_{on} так, чтобы частота биений на выходе ФД была в диапазоне от 40 до 60 кГц.

Рисунок 1 — Осциллограмма выходного напряжения ФД

2. Измерение характеристик ГУН

Установим частоту 8 МГц. Замкнём кольцо ФАПЧ. Изменяя опорную частоту с шагом ± 100 кГц, заполнили таблицу 1. Для измерения $E_{\rm упр}$ использовали мультиметр. В таблицу вносили только значения, соответствующие режиму синхронизма.

$f_{ m o\pi}$, М Γ ц	$f_{\Gamma m YH}$, М Γ ц	$E_{ m ynp}$, В
7.2	115.2	1.44
7.3	116.8	1.79
7.4	118.4	2.12
7.5	120	2.44
7.6	121.6	2.75
7.7	123.2	3.05
7.8	124.8	3.33
7.9	126.4	3.61
8.0	128	3.89
8.1	129.6	4.16
8.2	131.2	4.43

Таблица 1 — Характеристики управления частотой ГУН

3. Измерение полосы захвата

Рассчитаем $K_{\Gamma \rm YH}$ по двум точкам характеристики в окрестности $E_{\rm ynp} = 2.5~{\rm B}$:

$$K_{\Gamma \text{YH}} = \frac{f_{\Gamma \text{YH2}} - f_{\Gamma \text{YH1}}}{E_{\text{VIID}2} - E_{\text{VIID}1}} = \frac{(121.6 - 118.4) \cdot 10^6}{2.75 - 2.12} = 5.08 \text{ M}\Gamma \text{U/B}$$

Включили ЧМ модуляцию. Треугольная форма модуляции. Частота модуляции 500 Гц. Установим центральную частоту и девиацию так, чтобы частота менялась в пределах от $f_{\rm Muh}$ до $f_{\rm Makc}$

$$\begin{split} f_{\text{опмин}} - \left(E_{\text{упр мин}} + 0.1\right) \cdot \frac{K_{\Gamma \text{УH}}}{16} &= 7.8 \cdot 10^6 - (1.44 + 0.1) \cdot \frac{5.08 \cdot 10^6}{16} = 6.71 \text{ МГц} \\ f_{\text{опмакс}} + \left(5.1 - E_{\text{упр макс}}\right) \cdot \frac{K_{\Gamma \text{УH}}}{16} &= 8.2 \cdot 10^6 + (5.1 - 4.43) \cdot \frac{5.08 \cdot 10^6}{16} = 8.41 \text{ МГц} \end{split}$$

Меняя положение переключателя в поле RC-фильтр рассмотрим осциллограммы $E_{\Phi \mathrm{J}}(t)$:

Рисунок 2 — Осциллограмма напряжения на выходе $\Phi \not \perp E_{\Phi \not \perp}(t)$ для положения переключателя 4

Рисунок 3 — Осциллограмма напряжения на выходе Φ Д E_{Φ} Д(t) для положения переключателя 6

Расчет значений $K_{\Phi Д}$ и $T_{\Phi A \Pi \Psi}$:

$$K_{\Phi extstyle \Pi} = rac{E_{\Pi}}{\pi} = rac{5 \; extstyle B}{\pi} = 1.59 \; rac{ extstyle B}{ extstyle extstyle pag}$$

$$T_{\Phi extstyle \Pi extstyle H} = rac{16}{2\pi \cdot 1.59 \cdot 5.08 \cdot 10^6} = 0.315 \; extstyle MKC$$

К _{ФД} , В/рад	К _{ГУН} , МГц/В	$T_{\Phi A \Pi \Psi}$, мкс
1.59	5.08	0.315

Таблица 2 — Величины, определяющие поведение кольца ФАПЧ

Рисунок 5 — Оценка величины γ по осциллограмме $E\Phi Д(t)$ для положения переключателя 6

Определяем величину γ :

$$\gamma_4 = \frac{(1.76 - 1.6) \cdot 10^{-6}}{(2 - 1.76) \cdot 10^{-6}} = 0.66$$
$$\gamma_6 = \frac{(1.76 - 1.68) \cdot 10^{-6}}{(2 - 1.76) \cdot 10^{-6}} = 0.33$$

Для положения переключателей 4 и 6 определяем постоянную времени Φ НЧ T и нормированную постоянную времени Φ НЧ τ :

$$T_4 = 300 \cdot 2200 \cdot 10^{-12} = 0.66$$
 мкс $T_6 = 300 \cdot 6800 \cdot 10^{-12} = 2.04$ мкс $\tau_4 = \frac{T_4}{T_{\Phi \Lambda \Pi \Psi}} = \frac{0.66 \cdot 10^{-6}}{0.315 \cdot 10^{-6}} = 2.095$ $\tau_6 = \frac{T_6}{T_{\Phi \Lambda \Pi \Psi}} = \frac{2.04 \cdot 10^{-6}}{0.315 \cdot 10^{-6}} = 6.476$

Тогда: $\gamma_4 \approx 0.57 \ \gamma_6 \approx 0.34$

Положение	Экспериментальное	Теоретическое
переключателя	значение ү	значение ү
4	0.67	0.57
6	0.33	0.34

Таблица 3 — Экспериментальные и теоретические значения *γ*

4. Измерение переходных процессов по частоте

Настроим ЧМ модуляцию. Форма модуляции — меандр. Частота модуляции 5 кГц.

$$\frac{K_{\Gamma \text{УH}}}{16} \cdot 0.5 = 159 \, \text{к} \Gamma \text{ц}$$

Меняя положение переключателя в поле RC-фильтр рассмотрим формы переходных процессов $E_{\Phi \text{Д}}(t)$ и $E_{\text{упр}}(t)$ при увеличении постоянной времени фильтра:

Рисунок 6 — Переходной процесс $E_{\Phi \text{Д}}(t)$ для положения переключателя 2

Рисунок 7 — Переходной процесс $E_{\Phi \text{Д}}(t)$ для положения переключателя 3

Рисунок 8 — Переходной процесс $E_{\Phi \text{Д}}(t)$ для положения переключателя 4

Рисунок 9 — Переходной процесс $E_{\text{упр}}(t)$ для положения переключателя 2

Рисунок 10 — Переходной процесс $E_{\text{упр}}(t)$ для положения переключателя 3

Рисунок 11 — Переходной процесс $E_{\text{упр}}(t)$ для положения переключателя 4

5. Измерение переходных процессов по фазе

Выключили выход внешнего генератора и модуляцию. Настроили внешний генератор. Форма напряжения: меандр. Частота 5 кГц. Средний уровень 1.75 В. Размах от минимума до максимума 3.5 В. В качестве опорного колебания выбрали от внутреннего опорного генератора 8 МГц.

Рисунок 12 — Переходной процесс $E_{\Phi \text{Д}}(t)$ для положения переключателя 3

Рисунок 13 — Переходной процесс $E_{\text{упр}}(t)$ для положения переключателя 3

Вывод

Мы не можем добиться точного соответствия расчетных и экспериментальных графиков. Несмотря на это, между экспериментально построенными зависимостями и рассчитанными по дифференциальным уравнениям, можно заметить, что форма их процессов совпадает.

При определении величины γ были использованы маркеры, которые могли быть установлены недостаточно точно на осциллограммах $E_{\Phi \text{Д}}(t)$, что также является причиной несоответствия расчета и эксперимента.

Во время выполнения лабораторной работы различные шумы и помехи также могли негативно повлиять на точность измерений.

Примечание

Рисунок 14 — Переходные процессы при скачке опорной частоты на +375 к Γ ц

Рисунок 15 — Переходные процессы при скачке опорной частоты на -375 к Γ ц