

The 33rd Conference on

Computational Linguistics and Speech Processing

- October 15-16, 2021 Online and National Central University, Taiwan

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Yi-Chang Chen¹, Chun-Yen Cheng¹, Chien-An Chen¹, Ming-Chieh Sung¹, Yi-Ren Yeh²

- ¹ E.SUN Financial Holding Co., Ltd.
- ² Department of Mathematics, National Kaohsiung Normal University

Yi-Chang Chen (陳宜昌)

Chun-Yen Cheng (鄭俊彥)

Chien-An Chen (陳建安)

Ming-Chieh Sung (宋名傑)

Yi-Ren Yeh (葉倚任)

- applications of ASR:
 - voice-activated banking
 - meeting minutes transcription
 - voice content inspection
- HMM-based model v.s. End-to-end model (requires a huge amount of data)
- one of HMM-based model: kaldi
- Kaldi: acoustic model + language model
- language model of Kaldi: N-gram
 - lack of long-term contextual clues
 - produce many homo-phonic errors (e.g. 你「頭」票了嗎)

Introduction (2/2)

Computational Linguistics and Speech Processing

- Recently, many successful methods have been proposed in natural language processing, such as BERT.
- MLM also could be applied as a post-correction for speech recognition
 - detection model: finetuned BERT (token classification task)

0	0	0	0	0	0	0	1	1	0	0	0	0
玉	Ш	銀	行	您	好	很	糕	新	為	您	服	務

correction model (SIMPLE METHOD): MLM of BERT

玉	Ш	銀	行	您	好	很	[MASK]	[MASK]	為	您	服	務
---	---	---	---	---	---	---	--------	--------	---	---	---	---

Problem: only consider semantic info., not phonetic info.

Semantic Post-correction by MLM

The 33rd Conference on

Computational Linguistics and Speech Processing

Assume all errors were detected...

	Datasets			
	AISHELL-3	Wiki		
mask-all-and-replace-all	11.69 %	75.14 %		
mask-one-and-replace-one	9.89 %	73.84 %		
mask-all-and-replace-one	11.75~%	75.62 %		

Table 1: The correction accuracies for different masking and replacement strategies.

Phonetic MLM for Post-correction

The 33rd Conference on

Computational Linguistics and Speech Processing

DIMSIM: phonetic distance

- $S(c,c') \ge 0$
- S between two homo-phonic characters is 0
- S will be larger while the phonic difference is more significant

Phonetic MLM

$$\Psi(P_{candidate}, S(c_{error}, c_{candidate}))$$

$$= P_{candidate} \times exp(-\alpha \times S(c_{error}, c_{candidate})),$$

∘
$$S = 0 \Rightarrow \exp(-\alpha \times S) = 1$$

$$\circ$$
 S > 0 \Rightarrow exp(- α × S) < 1

Phonetic MLM for Post-correction: Result

Computational Linguistics and Speech Processing

- Data: AISHELL-3
- Grid search on α

$$\Psi(P_{candidate}, S(c_{error}, c_{candidate}))$$

$$= P_{candidate} \times exp(-\alpha \times S(c_{error}, c_{candidate})),$$
(2)

best: $\alpha = 500$

Result

CER of ASR = 9.1%

	(
	Pre.	Rec.	F_1	CER
MLM	0.099	0.061	0.075	10%
Ours ($\alpha = 500$)	0.404	0.179	0.248	8.3%

MLM:

Some Examples

The 33rd Conference on

Computational Linguistics and Speech Processing

ASR: 也山茶

高山茶

Phonetic MLM: 野山茶

ASR: 首領還並著

MLM: 首領還活著

Phonetic MLM: 首領還病著

ASR: 直任喜歡女生

MLM: 直接喜歡女生

Phonetic MLM: 直認喜歡女生

ASR: 我本來可以比了他的

MLM: 我本來可以殺了他的

Phonetic MLM: 我本來可以斃了他的

ASR: 想發展中國家提供廉價衛星

MLM: 為發展中國家提供廉價衛星

Phonetic MLM: 向發展中國家提供廉價衛星

ASR: 勸業積極備戰融資融券轉常規

MLM: 企業積極備戰融資融券轉常規

Phonetic MLM: 券業積極備戰融資融券轉常規

Recoverable Ability of Phonetic Distance

The 33rd Conference on

Computational Linguistics and Speech Processing

An error word of interest is unrecoverable if there exists a candidate that satisfies the following two conditions:

$$P_{error\ candidate} \ge P_{correct\ candidate}$$

and

$$S(C_{error}, C_{error\ candidate})$$

 $\leq S(C_{error}, C_{correct\ candidate}),$

MLM: we have 6,483 recoverable characters (~29.7 %)

Our method can refine 4,671 characters (~72.1%) correctly

- Computational Linguistics and Speech Processing
- We observe: Kaldi produces many homo-phonic errors
- A novel approach for post-correction: Phonetic MLM
 - semantic info. + phonetic info.
 - semantic info.: MLM
 - phonetic info.: DIMSIM phonic distance
 - o formula:

$$\Psi(P_{candidate}, S(c_{error}, c_{candidate}))$$

$$= P_{candidate} \times exp(-\alpha \times S(c_{error}, c_{candidate})),$$