# Лабораторная работа № 4.8А "Резонанс токов"

#### Кирилл Шевцов Б03-402

16.10.2025

#### Лабораторная установка



Рис. 1: Лабораторная установка

Задание предполагает снятие зависимости значений тока на учасках с амперметрами от индуктивности катушки. Согласно установке : амперметр  $A_1$  показывает общий ток в цепи,  $A_2$  - ток на участке с катушкой,  $A_3$  - ток на конденсаторе заданной заданной емкости C=120 мк $\Phi$ .

Напряжение подается от сети постоянным  $U=220~{\rm B},$  частота генератора также постоянна и равна  $\nu=50~{\rm \Gamma \mu}.$ 

Картину резонанса можно увидеть либо по минимальному току на амперметре  $A_1$ , либо на осциллорафе: резонансу соответсвует нулевой сдвиг фазы, то есть вырождение эллипса в наклонную прямую. Резонанс токов полагается исследовать на параллельном колебательном контуре, поскольку напряжение на участках цепи, параллельных включенному вольтметру, совпадают.

## Измерения и результаты

- 1. Резонанс токов для частоты  $\nu = 50 \, \Gamma$ ц. (рисунок 2b)
- 2. Будем медленно вдвигать сердечник в катушку индуктивности. Зафиксировав расстояние, на которое вдвинут сердечник, снимем показания амперметров  $A_1$ ,  $A_2$ ,  $A_3$ . Ток на учатках с катушкой, кондесатором и общий ток обозначим соответсвенно  $I_L$ ,  $I_C$ , I.

| x, cm     | 7.0   | 6.5   | 6.0   | 5.5   | 5.0   | 4.5   | 4.0   | 3.5   | 3.0   | 2.5   |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $I_L$ , A | 0.417 | 0.387 | 0.354 | 0.325 | 0.301 | 0.277 | 0.255 | 0.233 | 0.213 | 0.186 |
| $I_C$ , A | 0.401 | 0.395 | 0.392 | 0.393 | 0.386 | 0.398 | 0.395 | 0.395 | 0.398 | 0.391 |
| I, A      | 0.05  | 0.045 | 0.056 | 0.078 | 0.100 | 0.125 | 0.144 | 0.164 | 0.186 | 0.207 |

Таблица 1: снятие токов при вдвижении сердечника

Обозначим четкий диапазон перемещения дросселя  $\Delta = 1.5 \div 6.9$  см. Напряжение на ЛАТР поддерживаем постоянным и равным  $U_0 = (10 \pm 1)$  В. Частота лабораторного трансформатора  $\omega = (50 \pm 10)$   $\Gamma$ ц. Емкость конденсатора  $C = (120 \pm 10)$  мк $\Phi$ .





(а) до резонанса

(b) резонанс

Рис. 2: Показания на экране осциллографа

3. Построим графики зависимостей сил тока на рассмотренных участках от положения x сердечника. (по горизонтальной оси - расстояние, на которое сердечник выдвинут из катушки)



Рис. 3: зависимость силы тока от положения сердечника в катушке

Из результатов измерений видно, что сила тока на учатке с катушкой постоянно увеличивается, общий ток в цепи уменьшается. Сила тока на участке с конденсатором остается постоянной, поскольку она зависит только от частоты и напряжения генератора.

$$I_C = U_0 \omega C = 2\pi \nu C U_0 = 0.37 \pm 0.01 \text{ A}$$
 (1)

И последние два определяются соотношением

$$I_L = \frac{U_0}{\sqrt{(r_L)^2 + (\omega_0 L)^2}}, \quad I = I_L + I_C$$
 (2)

4. Резонансные значения тока на рассматриваемых участках цепи.

| $I_L^{res}$ , A | $I_C^{res}$ , A | $I^{res}$ , A | $\Delta I_L^{res}$ , A | $\Delta I_C^{res}$ , A | $\Delta I^{res}$ , A |  |
|-----------------|-----------------|---------------|------------------------|------------------------|----------------------|--|
| 0.428           | 0.419           | 0.049         | 0.001                  |                        |                      |  |

Таблица 2: резонансные токи на катушке, конденсаторе и в цепи

5. Рассчитаем добротность колебательного контура - через токи, и резонансное сопротивление - через полный ток и напряжение.

$$Q = \frac{I_C^{res}}{I^{res}} = \frac{0.428}{0.049} = 8.73 \pm 0.19, \quad \Delta Q = Q \left( \frac{\Delta I_C^{res}}{I_C^{res}} + \frac{\Delta I^{res}}{I^{res}} \right) = 0.022Q = 0.19$$
 (3)

$$R_{\Sigma} = \frac{U_0}{I^{res}} = \frac{10.00}{0.049} = 204.08 \pm 24.37 \text{ OM}, \quad \Delta R_{\Sigma} = R_{\Sigma} \left( \frac{\Delta U_0}{U_0} + \frac{\Delta I^{res}}{I^{res}} \right) = 0.12 R_{\Sigma} = 24.57 \text{ OM}$$
(4)

6. Рассчитаем индуктивность катушки  $L_{res}$  через емкость и частоты  $\nu = 50~\Gamma$ ц и  $\nu = 1000~\Gamma$ ц, а затем через добротность и емкость сделаем рассчет активного сопротивления катушки. Расчет для частоты  $\nu = 50~\Gamma$ ц.

$$L_{res} = \frac{1}{\omega^2 C} = 0.083 \pm 0.024 \ \Gamma_{\text{H}}, \quad \Delta L_{res} = L_{res} \left( \frac{2\Delta\omega}{\omega} + \frac{\Delta C}{C} \right) = 0.28 L_{res} = 0.024 \ \Gamma_{\text{H}}$$
 (5)

$$r_L = \frac{\omega L_{res}}{Q} = 3.02 \pm 0.49 \text{ OM}, \quad \Delta r_L = r_L \left(\frac{\Delta L_{res}}{2L_{res}} + \frac{\Delta C}{C} - \frac{\Delta Q}{Q}\right) = 0.20r_L = 0.63 \text{ OM}$$
 (6)

Расчет для частоты  $\nu = 1000 \, \Gamma$ ц.

$$L_{res} = \frac{1}{\omega^2 C} = 0.21 \pm 0.06 \text{ M}\Gamma\text{H}, \quad \Delta L_{res} = L_{res} \left(\frac{2\Delta\omega}{\omega} + \frac{\Delta C}{C}\right) = 0.28 L_{res} = 0.06 \text{ M}\Gamma\text{H}$$
 (7)

$$r_L = \frac{\omega L_{res}}{Q} = 0.15 \pm 0.03 \text{ OM}, \quad \Delta r_L = r_L \left(\frac{\Delta L_{res}}{2L_{res}} + \frac{\Delta C}{C} - \frac{\Delta Q}{Q}\right) = 0.20 r_L = 0.03 \text{ OM}$$
 (8)

7. Сравним полученные значения сопротивления и индуктивности со значениями, снятыми с моста E7-8 при частоте  $\nu=50$  и  $\nu=1000$   $\Gamma$ ц.

| Частота, Гц | Расчет                   | c E7-8             | Расчет с формулами и графиками |                 |  |  |
|-------------|--------------------------|--------------------|--------------------------------|-----------------|--|--|
| ν, Гц       | $L_{res}$ , м $\Gamma$ н | $r_L$ , Ом         | $L_{res}$ , м $\Gamma$ н       | $r_L$ , Ом      |  |  |
| 50          | $67.011 \pm 0.001$       | $1.937 \pm 0.001$  | $83.00 \pm 24.00$              | $3.02 \pm 0.63$ |  |  |
| 1000        | $60.610 \pm 0.001$       | $31.850 \pm 6.001$ | $0.21 \pm 0.06$                | $0.15 \pm 0.03$ |  |  |

Таблица 3: Сравнение с полученными данными

8. Угол между напряжением и током катушки (для частот 50 и 1000 Гц соответсвенно)

$$z_L = r_L + j\omega L, \quad tg\psi = \frac{\omega L}{r_L} = 8.63, \quad \psi = \arctan\frac{\omega L}{r_L} = 83.3^{\circ}$$
 (9)

$$z_L = r_L + j\omega L, \quad tg\psi = \frac{\omega L}{r_L} = 8.79, \quad \psi = \arctan\frac{\omega L}{r_L} = 83.5^{\circ}$$
 (10)

Иначе, напряжение опережает ток на катушке на 90 градусов (если элементы идеальные). Составляющие напряжения на катушке (для частот 50 и 1000 Гц).

$$U_{L_{act}} = U_0 \cdot \cos \psi = 10 \cdot 0.1166 = 1.166 \text{ B}, \quad U_{L_{react}} = U_0 \cdot \sin \psi = 10 \cdot 0.9931 = 9.931 \text{ B}$$

Для тока на конденсаторе (Аналогично для частот 50 и 1000 Гц)

$$z_C = -\frac{j}{\omega L}, \quad tg\psi = \frac{\omega L}{0} \to \infty, \quad \psi = -90^\circ, \quad I_C = 2\pi\nu C U_0$$
 (11)

Иначе, сила тока на конденсаторе опережает по фазе на 90 градусов с напряжением на конденсаторе. Для тока на катушке и активном сопротивлении (для частот 50 и 1000 Гц).

$$I_{act} = \frac{U_{act}}{r_L} = 0.37 \text{ A}, \quad I_{react} = \frac{U_{react}}{\omega L} = 0.381 \text{ A}, \quad I_C = 0.37 \text{ A}$$
 (12)

$$I_{act} = \frac{U_{act}}{r_L} = 7.44 \text{ A}, \quad I_{react} = \frac{U_{react}}{\omega L} = 7.474 \text{ A}, \quad I_C = 7.53 \text{ A}$$
 (13)

Диаграмма токов (множитель масштаба равен 0.1, все измерения умножаются на 10)



Рис. 4: Векторная диаграмма для токов

Параметры катушки по графику (для частот)

$$r_L = \frac{U_{L_{act}}}{I_L} = \frac{1.1166}{0.428} = 2,60 \text{ Om} \quad L = \frac{U_{L_{react}}}{\omega \cdot I_L} = \frac{9.931}{314.15 \cdot 0.428} = 0.074 \text{ Гн}$$
 (14)

#### 9. Сравнительная таблица

| Частота, Гц        | Расчет                   | c E7-8             | Расчет с гр              | афиками         | Расчет с диаграммой      |                 |  |
|--------------------|--------------------------|--------------------|--------------------------|-----------------|--------------------------|-----------------|--|
| $\nu$ , $\Gamma$ ц | $L_{res}$ , м $\Gamma$ н | $r_L$ , Ом         | $L_{res}$ , м $\Gamma$ н | $r_L$ , Ом      | $L_{res}$ , м $\Gamma$ н | $r_L$ , Om      |  |
| 50                 | $67.011 \pm 0.001$       | $1.937 \pm 0.001$  | $83.00 \pm 24.00$        | $3.02 \pm 0.63$ | $74 \pm 10$              | $2.60 \pm 0.01$ |  |
| 1000, Гц           | $60.01 \pm 10.00$        | $31.850 \pm 5.001$ | $0.21 \pm 0.006$         | $0.15 \pm 0.03$ | -                        | -               |  |

Таблица 4: Параметры катушки, измеренные разными способами

## Вывод

В работе были измерены зависимости силы тока на разных участках параллельного колебательного контура. Было показано, что при вдвижении сердечника в катушку ток на участке с конденсатором остается постоянным на протяжении всех измерений, и зависит лишь от напряжения ЛАТР и частоты генератора, на участке с катушкой все время уменьшается, поскольку при вдвижении в нее сердечника индуктивность уменьшается. Контур при резонансе токов удобно выбирать именно параллельным, поскольку необходимо удерживать постоянным только напряжение.