# In [1]: # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

| Out[2]: |        | date                       | BEN  | со   | EBE  | MXY  | NMHC | NO_2       | NOx        | ОХҮ  | O_3       | PI     |
|---------|--------|----------------------------|------|------|------|------|------|------------|------------|------|-----------|--------|
|         | 0      | 2006-<br>02-01<br>01:00:00 | NaN  | 1.84 | NaN  | NaN  | NaN  | 155.100006 | 490.100006 | NaN  | 4.880000  | 97.570 |
|         | 1      | 2006-<br>02-01<br>01:00:00 | 1.68 | 1.01 | 2.38 | 6.36 | 0.32 | 94.339996  | 229.699997 | 3.04 | 7.100000  | 25.820 |
|         | 2      | 2006-<br>02-01<br>01:00:00 | NaN  | 1.25 | NaN  | NaN  | NaN  | 66.800003  | 192.000000 | NaN  | 4.430000  | 34.419 |
|         | 3      | 2006-<br>02-01<br>01:00:00 | NaN  | 1.68 | NaN  | NaN  | NaN  | 103.000000 | 407.799988 | NaN  | 4.830000  | 28.260 |
|         | 4      | 2006-<br>02-01<br>01:00:00 | NaN  | 1.31 | NaN  | NaN  | NaN  | 105.400002 | 269.200012 | NaN  | 6.990000  | 54.180 |
|         |        |                            |      |      |      |      |      |            | •••        |      |           |        |
|         | 230563 | 2006-<br>05-01<br>00:00:00 | 5.88 | 0.83 | 6.23 | NaN  | 0.20 | 112.500000 | 218.000000 | NaN  | 24.389999 | 93.120 |
|         | 230564 | 2006-<br>05-01<br>00:00:00 | 0.76 | 0.32 | 0.48 | 1.09 | 0.08 | 51.900002  | 54.820000  | 0.61 | 48.410000 | 29.469 |
|         | 230565 | 2006-<br>05-01<br>00:00:00 | 0.96 | NaN  | 0.69 | NaN  | 0.19 | 135.100006 | 179.199997 | NaN  | 11.460000 | 64.680 |
|         | 230566 | 2006-<br>05-01<br>00:00:00 | 0.50 | NaN  | 0.67 | NaN  | 0.10 | 82.599998  | 105.599998 | NaN  | NaN       | 94.360 |
|         | 230567 | 2006-<br>05-01<br>00:00:00 | 1.95 | 0.74 | 1.99 | 4.00 | 0.24 | 107.300003 | 160.199997 | 2.01 | 17.730000 | 52.490 |

230568 rows × 17 columns

In [3]: data.head(10)

| $\sim$ |   | + | Гэ. | ι. |
|--------|---|---|-----|----|
| υ      | u | L | 13  | H  |
|        |   |   |     |    |

|   | date                       | BEN  | со   | EBE  | MXY       | NMHC | NO_2       | NOx        | ОХҮ   | O_3  | PM10       |
|---|----------------------------|------|------|------|-----------|------|------------|------------|-------|------|------------|
| 0 | 2006-<br>02-01<br>01:00:00 | NaN  | 1.84 | NaN  | NaN       | NaN  | 155.100006 | 490.100006 | NaN   | 4.88 | 97.570000  |
| 1 | 2006-<br>02-01<br>01:00:00 | 1.68 | 1.01 | 2.38 | 6.360000  | 0.32 | 94.339996  | 229.699997 | 3.04  | 7.10 | 25.820000  |
| 2 | 2006-<br>02-01<br>01:00:00 | NaN  | 1.25 | NaN  | NaN       | NaN  | 66.800003  | 192.000000 | NaN   | 4.43 | 34.419998  |
| 3 | 2006-<br>02-01<br>01:00:00 | NaN  | 1.68 | NaN  | NaN       | NaN  | 103.000000 | 407.799988 | NaN   | 4.83 | 28.260000  |
| 4 | 2006-<br>02-01<br>01:00:00 | NaN  | 1.31 | NaN  | NaN       | NaN  | 105.400002 | 269.200012 | NaN   | 6.99 | 54.180000  |
| 5 | 2006-<br>02-01<br>01:00:00 | 9.41 | 1.69 | 9.98 | 19.959999 | 0.44 | 142.199997 | 453.500000 | 11.31 | 5.99 | 89.190002  |
| 6 | 2006-<br>02-01<br>01:00:00 | NaN  | 1.28 | NaN  | NaN       | 0.57 | 94.320000  | 294.000000 | NaN   | 6.77 | 55.130001  |
| 7 | 2006-<br>02-01<br>01:00:00 | 0.27 | 1.51 | 0.28 | NaN       | 0.46 | 144.699997 | 385.299988 | NaN   | 5.30 | 80.150002  |
| 8 | 2006-<br>02-01<br>01:00:00 | NaN  | 2.65 | NaN  | NaN       | NaN  | 197.100006 | 673.099976 | NaN   | 2.64 | 142.500000 |
| 9 | 2006-<br>02-01<br>01:00:00 | NaN  | 1.30 | NaN  | NaN       | NaN  | 130.899994 | 282.000000 | NaN   | 5.14 | 49.029999  |

In [4]: data.tail(20)

Out[4]:

|        | date                       | BEN  | СО   | EBE  | MXY  | NMHC | NO_2       | NOx        | OXY  | O_3       | Pl     |
|--------|----------------------------|------|------|------|------|------|------------|------------|------|-----------|--------|
| 230548 | 2006-<br>05-01<br>00:00:00 | NaN  | 0.49 | NaN  | NaN  | 0.34 | 66.760002  | 79.610001  | NaN  | 22.760000 | 35.730 |
| 230549 | 2006-<br>05-01<br>00:00:00 | 0.94 | 0.72 | 1.54 | NaN  | 0.35 | 139.300003 | 207.899994 | NaN  | 9.960000  | 48.820 |
| 230550 | 2006-<br>05-01<br>00:00:00 | NaN  | 1.20 | NaN  | NaN  | NaN  | 162.600006 | 271.299988 | NaN  | 14.150000 | 83.309 |
| 230551 | 2006-<br>05-01<br>00:00:00 | NaN  | 0.92 | NaN  | NaN  | NaN  | 116.599998 | 165.399994 | NaN  | 17.410000 | 40.369 |
| 230552 | 2006-<br>05-01<br>00:00:00 | NaN  | 0.84 | NaN  | NaN  | 0.35 | 89.599998  | 128.300003 | NaN  | 19.100000 | 47.000 |
| 230553 | 2006-<br>05-01<br>00:00:00 | NaN  | 0.53 | NaN  | NaN  | NaN  | 56.740002  | 59.200001  | NaN  | 28.719999 | 53.400 |
| 230554 | 2006-<br>05-01<br>00:00:00 | NaN  | 0.85 | NaN  | NaN  | NaN  | 94.750000  | 166.000000 | NaN  | 15.840000 | 56.090 |
| 230555 | 2006-<br>05-01<br>00:00:00 | NaN  | 0.70 | NaN  | NaN  | NaN  | 97.629997  | 148.800003 | NaN  | 13.510000 | 48.849 |
| 230556 | 2006-<br>05-01<br>00:00:00 | 1.33 | 0.79 | 1.53 | NaN  | 0.28 | 112.400002 | 201.399994 | NaN  | 10.860000 | 75.430 |
| 230557 | 2006-<br>05-01<br>00:00:00 | NaN  | 0.49 | NaN  | NaN  | NaN  | 96.349998  | 150.399994 | NaN  | 22.299999 | 39.389 |
| 230558 | 2006-<br>05-01<br>00:00:00 | NaN  | 0.73 | NaN  | NaN  | NaN  | 92.019997  | 103.000000 | NaN  | 18.860001 | 40.439 |
| 230559 | 2006-<br>05-01<br>00:00:00 | NaN  | 0.55 | NaN  | NaN  | NaN  | 129.300003 | 188.300003 | NaN  | 14.120000 | 40.910 |
| 230560 | 2006-<br>05-01<br>00:00:00 | NaN  | 0.88 | NaN  | NaN  | NaN  | 121.199997 | 157.600006 | NaN  | 24.510000 | 50.070 |
| 230561 | 2006-<br>05-01<br>00:00:00 | NaN  | 0.43 | NaN  | NaN  | NaN  | 60.189999  | 68.529999  | NaN  | 32.779999 | 23.219 |
| 230562 | 2006-<br>05-01<br>00:00:00 | NaN  | 0.84 | NaN  | NaN  | NaN  | 102.400002 | 184.199997 | NaN  | 6.340000  | 57.910 |
| 230563 | 2006-<br>05-01<br>00:00:00 | 5.88 | 0.83 | 6.23 | NaN  | 0.20 | 112.500000 | 218.000000 | NaN  | 24.389999 | 93.120 |
| 230564 | 2006-<br>05-01<br>00:00:00 | 0.76 | 0.32 | 0.48 | 1.09 | 0.08 | 51.900002  | 54.820000  | 0.61 | 48.410000 | 29.469 |

|        | date                       | BEN  | СО   | EBE  | MXY  | NMHC | NO_2       | NOx        | OXY  | O_3       | PI     |
|--------|----------------------------|------|------|------|------|------|------------|------------|------|-----------|--------|
| 230565 | 2006-<br>05-01<br>00:00:00 | 0.96 | NaN  | 0.69 | NaN  | 0.19 | 135.100006 | 179.199997 | NaN  | 11.460000 | 64.680 |
| 230566 | 2006-<br>05-01<br>00:00:00 | 0.50 | NaN  | 0.67 | NaN  | 0.10 | 82.599998  | 105.599998 | NaN  | NaN       | 94.360 |
| 230567 | 2006-<br>05-01<br>00:00:00 | 1.95 | 0.74 | 1.99 | 4.00 | 0.24 | 107.300003 | 160.199997 | 2.01 | 17.730000 | 52.490 |

In [5]: data.describe()

| $\Omega$ | 1 | [5] | ١. |
|----------|---|-----|----|
| Ou       | ľ | Lフ」 | ٠  |

|       | BEN          | СО            | EBE          | MXY          | NMHC         | NO_2          |    |
|-------|--------------|---------------|--------------|--------------|--------------|---------------|----|
| count | 73979.000000 | 211665.000000 | 73948.000000 | 33422.000000 | 90829.000000 | 228855.000000 | 22 |
| mean  | 0.918488     | 0.576077      | 1.389325     | 3.766834     | 0.191565     | 60.600809     |    |
| std   | 1.283239     | 0.411184      | 1.895449     | 3.919799     | 0.147894     | 37.828635     |    |
| min   | 0.100000     | 0.000000      | 0.100000     | 0.150000     | 0.000000     | 0.570000      |    |
| 25%   | 0.200000     | 0.320000      | 0.520000     | 1.190000     | 0.090000     | 32.770000     |    |
| 50%   | 0.470000     | 0.480000      | 1.000000     | 2.540000     | 0.160000     | 54.000000     |    |
| 75%   | 1.120000     | 0.710000      | 1.500000     | 4.910000     | 0.250000     | 80.830002     |    |
| max   | 45.430000    | 8.920000      | 70.940002    | 66.900002    | 3.530000     | 526.000000    |    |
| 4     |              |               |              |              |              |               |    |

In [6]: np.shape(data)

Out[6]: (230568, 17)

In [7]: np.size(data)

Out[7]: 3919656

In [8]: data.isna()

| 0      | шf | ۲Г  | 8 | 1 : |
|--------|----|-----|---|-----|
| $\sim$ | u, | ~ 1 | • |     |
|        |    |     |   |     |

|        | date  | BEN   | СО    | EBE   | MXY   | NMHC  | NO_2  | NOx   | OXY   | O_3   | PM10  | PM25  | PXY   |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0      | False | True  | False | True  | True  | True  | False | False | True  | False | False | False | True  |
| 1      | False | True  | False |
| 2      | False | True  | False | True  | True  | True  | False | False | True  | False | False | True  | True  |
| 3      | False | True  | False | True  | True  | True  | False | False | True  | False | False | True  | True  |
| 4      | False | True  | False | True  | True  | True  | False | False | True  | False | False | True  | True  |
|        |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 230563 | False | False | False | False | True  | False | False | False | True  | False | False | True  | True  |
| 230564 | False |
| 230565 | False | False | True  | False | True  | False | False | False | True  | False | False | False | True  |
| 230566 | False | False | True  | False | True  | False | False | False | True  | True  | False | True  | True  |
| 230567 | False |
|        |       |       |       |       |       |       |       |       |       |       |       |       |       |

230568 rows × 17 columns

4

In [9]: data.dropna()

| _3 | 0_       | OXY   | NOx        | NO_2       | NMHC | MXY       | EBE  | СО   | BEN    | date                       |          |
|----|----------|-------|------------|------------|------|-----------|------|------|--------|----------------------------|----------|
| 00 | 5.99000  | 11.31 | 453.500000 | 142.199997 | 0.44 | 19.959999 | 9.98 | 1.69 | 9.41   | 2006-<br>02-01<br>01:00:00 | 5        |
| 00 | 2.45000  | 1.11  | 120.199997 | 59.910000  | 0.17 | 2.670000  | 1.24 | 0.79 | 1.69   | 2006-<br>02-01<br>01:00:00 | 22       |
| 00 | 4.78000  | 5.15  | 346.399994 | 117.699997 | 0.40 | 9.660000  | 2.64 | 1.47 | 2.35   | 2006-<br>02-01<br>01:00:00 | 25       |
| 00 | 5.92000  | 9.24  | 237.000000 | 92.059998  | 0.25 | 17.139999 | 7.92 | 0.85 | 4.39   | 2006-<br>02-01<br>02:00:00 | 31       |
| 00 | 2.28000  | 1.11  | 125.099998 | 60.189999  | 0.16 | 2.740000  | 1.24 | 0.79 | 1.93   | 2006-<br>02-01<br>02:00:00 | 48       |
|    |          |       |            |            |      |           |      |      |        |                            |          |
| 98 | 64.59999 | 1.00  | 51.689999  | 49.259998  | 0.10 | 0.430000  | 0.37 | 0.40 | 0.42   | 2006-<br>04-30<br>23:00:00 | 230538   |
| 00 | 17.67000 | 1.35  | 211.399994 | 63.220001  | 0.33 | 2.200000  | 1.53 | 0.94 | 1.63   | 2006-<br>04-30<br>23:00:00 | 230541   |
| 00 | 11.13000 | 3.92  | 343.500000 | 202.399994 | 0.26 | 7.960000  | 3.71 | 1.06 | 3.99   | 2006-<br>05-01<br>00:00:00 | 230547   |
| 00 | 48.41000 | 0.61  | 54.820000  | 51.900002  | 0.08 | 1.090000  | 0.48 | 0.32 | 0.76   | 2006-<br>05-01<br>00:00:00 | 230564   |
| 00 | 17.73000 | 2.01  | 160.199997 | 107.300003 | 0.24 | 4.000000  | 1.99 | 0.74 | 1.95   | 2006-<br>05-01<br>00:00:00 | 230567   |
| 1  |          |       |            |            |      |           |      | าร   | columi | ows × 17 o                 | 24758 rd |
|    |          |       |            |            |      |           |      |      |        | _                          |          |
|    |          |       |            |            |      |           |      |      |        | lumns                      | data.co  |

In [12]: dd=sd.head(20) dd

| Out | [12] | : |
|-----|------|---|
|     |      |   |

|    | BEN  | СО   | EBE  | MXY       | NMHC | NO_2       | NOx        |
|----|------|------|------|-----------|------|------------|------------|
| 0  | NaN  | 1.84 | NaN  | NaN       | NaN  | 155.100006 | 490.100006 |
| 1  | 1.68 | 1.01 | 2.38 | 6.360000  | 0.32 | 94.339996  | 229.699997 |
| 2  | NaN  | 1.25 | NaN  | NaN       | NaN  | 66.800003  | 192.000000 |
| 3  | NaN  | 1.68 | NaN  | NaN       | NaN  | 103.000000 | 407.799988 |
| 4  | NaN  | 1.31 | NaN  | NaN       | NaN  | 105.400002 | 269.200012 |
| 5  | 9.41 | 1.69 | 9.98 | 19.959999 | 0.44 | 142.199997 | 453.500000 |
| 6  | NaN  | 1.28 | NaN  | NaN       | 0.57 | 94.320000  | 294.000000 |
| 7  | 0.27 | 1.51 | 0.28 | NaN       | 0.46 | 144.699997 | 385.299988 |
| 8  | NaN  | 2.65 | NaN  | NaN       | NaN  | 197.100006 | 673.099976 |
| 9  | NaN  | 1.30 | NaN  | NaN       | NaN  | 130.899994 | 282.000000 |
| 10 | NaN  | 1.48 | NaN  | NaN       | 0.50 | 75.260002  | 248.899994 |
| 11 | NaN  | 1.41 | NaN  | NaN       | NaN  | 189.699997 | 402.299988 |
| 12 | NaN  | 1.40 | NaN  | NaN       | NaN  | 100.599998 | 326.799988 |
| 13 | NaN  | 1.46 | NaN  | NaN       | NaN  | 102.000000 | 360.299988 |
| 14 | 2.16 | 1.11 | 2.64 | NaN       | 0.30 | 105.800003 | 287.899994 |
| 15 | NaN  | 1.36 | NaN  | NaN       | NaN  | 121.300003 | 378.200012 |
| 16 | NaN  | 1.66 | NaN  | NaN       | NaN  | 113.699997 | 277.500000 |
| 17 | NaN  | 0.85 | NaN  | NaN       | NaN  | 89.820000  | 211.500000 |
| 18 | NaN  | 1.85 | NaN  | NaN       | NaN  | 165.300003 | 487.399994 |
| 19 | NaN  | 1.32 | NaN  | NaN       | NaN  | 82.029999  | 224.500000 |

# In [13]: dd.plot.bar()

Out[13]: <AxesSubplot:>



```
In [14]: dd.plot.bar(color='r')
```

#### Out[14]: <AxesSubplot:>



```
In [15]: dd.plot.scatter(x='CO',y='NO_2')
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='NO\_2'>



```
In [16]: dd.plot.pie(y='NO_2')
```

Out[16]: <AxesSubplot:ylabel='NO\_2'>



## In [17]: dd.plot.box()

#### Out[17]: <AxesSubplot:>



```
In [18]: dd.plot.hist()
```

Out[18]: <AxesSubplot:ylabel='Frequency'>



In [19]: dd.plot.line()

Out[19]: <AxesSubplot:>



```
In [20]: dd.plot.area()
```

### Out[20]: <AxesSubplot:>



In [21]: dd.plot.bar()

#### Out[21]: <AxesSubplot:>



In [22]: sns.pairplot(dd)

Out[22]: <seaborn.axisgrid.PairGrid at 0x1fd077e5370>



```
In [23]: sns.distplot(dd['NO_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[23]: <AxesSubplot:xlabel='NO\_2', ylabel='Density'>



```
In [24]: ds=data.fillna(20)
```

In [25]: | ssd=ds.head(20)

In [26]: sd1=ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO\_2', 'NOx']]

In [27]: sns.heatmap(ssd.corr())

Out[27]: <AxesSubplot:>



```
In [28]: x= ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
         y=ssd['station']
In [29]: | from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [30]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[30]: LinearRegression()
In [31]: print(lr.intercept_)
         28078958.65525758
In [32]: |
         coeff= pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
         coeff
Out[32]:
                 Co-efficient
            BEN
                  -29.171156
             CO
                  -5.131412
            EBE
                  28.505864
            MXY
                   1.684677
          NMHC
                   1.828117
           NO_2
                   0.527494
            NOx
                  -0.139827
         prediction = lr.predict(x_test)
In [33]:
         plt.scatter(y_test,prediction)
Out[33]: <matplotlib.collections.PathCollection at 0x1fd0e9da130>
               +2.8079e7
            50
            40
            30
            20
            10
```

0

-10

-20

15

10

20

25

30

+2.8079e7

```
In [34]: |print(lr.score(x_test,y_test))
         -4.323431728686542
In [35]: |lr.score(x_test,y_test)
Out[35]: -4.323431728686542
In [36]: |lr.score(x_train,y_train)
Out[36]: 0.3306654633277014
In [37]: from sklearn.linear_model import Ridge,Lasso
In [38]: | dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[38]: Ridge(alpha=10)
In [39]: |dr.score(x_test,y_test)
Out[39]: -1.4102806708085578
In [40]: dr.score(x_train,y_train)
Out[40]: 0.30215538527416785
In [41]: | la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[41]: Lasso(alpha=10)
In [42]: la.score(x_test,y_test)
Out[42]: -0.33194794859185217
In [43]: la.score(x_train,y_train)
Out[43]: 0.26660301130400976
         ElasticNet
In [44]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
```

```
en.fit(x_train,y_train)
```

Out[44]: ElasticNet()

```
In [45]: |print(en.coef_)
                                    0.44366156 0.
                                                                         0.49179139
         [ 0.17810316 -0.
                                                            0.2013933
          -0.1490344 ]
In [46]: |print(en.intercept_)
         28078998.730426773
In [47]:
         prediction=en.predict(x_test)
In [48]: |print(en.score(x_test,y_test))
         -1.3470095664773796
In [49]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [50]: from sklearn.linear_model import LogisticRegression
In [51]: feature_matrix = ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
         target vector=ssd['station']
In [52]: | feature_matrix.shape
Out[52]: (20, 7)
In [53]: |target_vector.shape
Out[53]: (20,)
In [54]: | from sklearn.preprocessing import StandardScaler
In [55]: | fs=StandardScaler().fit_transform(feature_matrix)
In [56]: logr= LogisticRegression()
         logr.fit(fs,target_vector)
Out[56]: LogisticRegression()
In [57]: observation =[[1.2,2.3,3.3,4.3,5.3,6.3,7.3]]
In [58]:
         prediction=logr.predict(observation)
         print(prediction)
         [28079009]
```

```
In [59]: logr.classes
Out[59]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079018, 28079019, 28079021, 28079035, 28079036, 28079038,
                28079039, 28079040], dtype=int64)
In [60]: |logr.predict_proba(observation)[0][0]
Out[60]: 0.07712065231736706
In [61]: | ged=data[['BEN','CO','EBE','MXY','NMHC','NO_2','NOx','OXY','O_3','PM10','PXY',
In [62]: d=ged.fillna(20)
In [63]: dg=d.head(100)
In [64]: | x=dg[['BEN','CO','EBE','MXY','NMHC','NO_2','NOx','OXY','O_3','PM10','PXY','SO_
         y=dg['station']
In [65]: print(len(x))
         print(len(y))
         100
         100
In [66]: | from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [67]: from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[67]: RandomForestClassifier()
In [68]: paramets = {'max_depth':[1,2,3,4,5,6,7],
                        'min_samples_leaf':[5,10,15,20,25,30,35],
                        'n_estimators':[10,20,30,40,50,60,70]}
```

```
plt.figure(figsize=(50,40))
                               plot_tree(rfc_best.estimators_[5],filled=True)
Out[72]: [Text(1046.25, 1956.96, 'X[13] <= 18.405\ngini = 0.944\nsamples = 46\nvalue =
                               [0, 1, 5, 3, 1, 3, 2, 4, 2, 1, 4, 2, 2, 5 n 7, 4, 4, 2, 0, 0, 5, 1, 1, 3, 4,
                               4]'),
                                  Text(465.0, 1522.080000000000, 'X[8] \le 5.69 \cdot i = 0.822 \cdot i = 14 \cdot i = 0.822 \cdot i = 14 \cdot i = 1.081 \cdot 
                               0, 0, 4]'),
                                 Text(232.5, 1087.2, 'gini = 0.734\nsamples = 9\nvalue = [0, 0, 0, 0, 0, 3, 0]
                               0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 4]'),
                                  0, 0, 0, 0, 4, 0, 0, 0 \setminus 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0]'),
                                 Text(1627.5, 1522.0800000000002, X[8] \le 4.875  oin = 0.919\nsamples = 32
                               \nvalue = [0, 1, 5, 3, 1, 0, 2, 4, 2, 1, 0, 2, 2, 5 \n7, 4, 0, 0, 0, 0, 0, 1,
                               1, 3, 4, 0]'),
                                 Text(1162.5, 1087.2, 'X[11] \le 13.495 \text{ ngini} = 0.842 \text{ nsamples} = 15 \text{ nvalue} =
                               0]'),
                                  Text(930.0, 652.3200000000002, 'gini = 0.494\nsamples = 5\nvalue = [0, 0, 4,
                               0, 0, 0, 0, 0, 0, 0, 0, 0, 5\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                                  Text(1395.0, 652.3200000000000, 'X[11] <= 22.125 \setminus 100 = 0.796 \ nsamples = 10
                               0, 0, 0, 0]'),
                                  Text(1162.5, 217.4400000000000, 'gini = 0.58\nsamples = 5\nvalue = [0, 1,
                               1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0\n6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                                  Text(1627.5, 217.44000000000005, 'gini = 0.625 \nsamples = 5 \nvalue = [0, 0, 0]
                               Text(2092.5, 1087.2, 'X[11] <= 11.32 \setminus gini = 0.866 \setminus gini = 17 
                                [0, 0, 0, 3, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0 \setminus 1, 4, 0, 0, 0, 0, 0, 1, 1, 3, 4,
                               0]'),
                                  Text(1860.0, 652.3200000000000, 'gini = 0.653 \setminus samples = 6 \setminus value = [0, 0, 0]
                               0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0\n0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0]'),
                                 0, 4, 0]'),
                                  Text(2092.5, 217.44000000000005, 'gini = 0.765 \setminus samples = 6 \setminus value = [0, 0, 0]
                               0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0\n0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0]'),
                                  Text(2557.5, 217.44000000000005, 'gini = 0.72\nsamples = 5\nvalue = [0, 0,
                               0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0\n1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0]')]
```

In [72]: from sklearn.tree import plot tree



# Conclusion: RandomForestClassifier() 0.3857142857142857 HIGH RANGE

| In | [ | ]: |  |
|----|---|----|--|
| In | [ | ]: |  |
| In | [ | ]: |  |