TIMBERVISION: A MULTI-TASK DATASET AND FRAMEWORK FOR LOG-COMPONENT SEGMENTATION AND TRACKING IN AUTONOMOUS FORESTRY OPERATIONS

Dataset Design

Creating a large-scale multi-task dataset and efficient semi-automatic annotation pipeline for trunk-component detection and tracking

Image Acquisition

- Affordable RGB sensors
- Multiple application scenarios
- Diverse locations and environmental conditions

Log-Component Annotation

- Efficient manual delineation
- Automatic inference of multitask Cut, Side and Bound annotations
- Largest trunk-segmentation dataset in terms of real images and annotation detail

Subset	Rec	Images	Trunks	Comp
Core	71	1 415	17 999	33 445
Loading	18	220	3 853	8 782
Harvesting	10	45	825	1 720
OpenSource	42	42	776	1 634
Tracking	13	266	1 900	3 708
TimberSeg*	10	35	940	2 049
	164	2 023	26 293	51 338

Table 1. TimberVision dataset statistics. Images are clustered into **Rec**ording sessions based on timestamps and GPS tags, ensuring a difference of at least two minutes and one hundred meters between them. Trunks are divided into their three **Comp**onent classes.

Scene-Parameter Annotation

- Object properties and recording context
- Quantifying data variability and sampling images

Experimental Evaluation

Combining oriented object detection and instance segmentation to robustly detect tree trunks under challenging conditions

Model Ablation

Evaluating multiple YOLOv8 model capacities and images sizes

Performance Evaluation

- By **scenario** and **component**
- Influence of scene parameters

		Core	Load	Harvest	Oper
OOD	Cut	83.0	79.5	80.4 47.1	80.8
	Side	59.8	66.3	47.1	45.0
ISEG		77.4		67.7	72.1
	Side	61.2	69.7	45.3	45.4

Table 4. Model performance as mAP⁵⁰⁻⁹⁵ for the classes *Cut* and *Side* for test and validation images of the **Core**, **Loading**, **Harvest**ing and **Open**Source subsets.

Task Fusion

Combining results for higher robustness and geometric cues

Multi-Object Tracking

Preserving **object identities** over time and **smoothing results** by tracking fused trunk instances

https://github.com/timbervision/timbervision

Performance Evaluation

- Evaluation on dedicated subset of videos at multiple framerates
- Multiple configurations of two tracking approaches

	IDF1	IDP	IDR	MOTA	mIoUc
ByteTrack	71.1	85.0	61.2	63.8	85.8
Bot-SORT	72.5	86.6	62.4	63.7	85.4
Optimized	72.9	86.0	63.2	65.2	85.1
Opt 10 fps	66.5	81.1	56.4	57.8	84.4

Table 4. Mean MOT results for default and optimized configurations on all *Tracking* sequences at a default frame rate of 30 fps.

Conclusion

Robust trunk segmentation and tracking performance across most scenarios as wells as external public image data

Outlook

- Hybrid model for oriented object detection and instance segmentation
- Combination of monocular approach with depth sensors