# Class 14: Pathway Analysis from RNA-Seq Results

Dani Baur (A16648266)

Here we run through a complete RNASeq analysis from counts to pathways and biological insight...

# **Data Import**

Load our data files:

```
metaFile <- "GSE37704 metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
Look at meta data:
  colData = read.csv(metaFile)
  head(colData)
         id
                 condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369
                  hoxa1_kd
5 SRR493370
                  hoxa1_kd
6 SRR493371
                  hoxa1_kd
```

```
countData = read.csv(countFile, row.names=1)
head(countData)
```

|                 | length  | SRR493366 | SRR493367 | SRR493368 | SRR493369 | SRR493370 |
|-----------------|---------|-----------|-----------|-----------|-----------|-----------|
| ENSG00000186092 | 918     | 0         | 0         | 0         | 0         | 0         |
| ENSG00000279928 | 718     | 0         | 0         | 0         | 0         | 0         |
| ENSG00000279457 | 1982    | 23        | 28        | 29        | 29        | 28        |
| ENSG00000278566 | 939     | 0         | 0         | 0         | 0         | 0         |
| ENSG00000273547 | 939     | 0         | 0         | 0         | 0         | 0         |
| ENSG00000187634 | 3214    | 124       | 123       | 205       | 207       | 212       |
|                 | SRR4933 | 371       |           |           |           |           |
| ENSG00000186092 |         | 0         |           |           |           |           |
| ENSG00000279928 |         | 0         |           |           |           |           |
| ENSG00000279457 |         | 46        |           |           |           |           |
| ENSG00000278566 |         | 0         |           |           |           |           |
| ENSG00000273547 |         | 0         |           |           |           |           |
| ENSG00000187634 | 2       | 258       |           |           |           |           |

Q. Complete the code below to remove the troublesome first column from countData

```
countData <- countData[,-1]
head(countData)</pre>
```

|                 | SRR493366 | SRR493367 | SRR493368 | SRR493369 | SRR493370 | SRR493371 |
|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| ENSG00000186092 | 0         | 0         | 0         | 0         | 0         | 0         |
| ENSG00000279928 | 0         | 0         | 0         | 0         | 0         | 0         |
| ENSG00000279457 | 23        | 28        | 29        | 29        | 28        | 46        |
| ENSG00000278566 | 0         | 0         | 0         | 0         | 0         | 0         |
| ENSG00000273547 | 0         | 0         | 0         | 0         | 0         | 0         |
| ENSG00000187634 | 124       | 123       | 205       | 207       | 212       | 258       |

**Q.** Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
to.keep.inds <- rowSums(countData) > 0
head(countData[to.keep.inds,])
```

|                 | SRR493366 | SRR493367 | SRR493368 | SRR493369 | SRR493370 | SRR493371 |
|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| ENSG00000279457 | 23        | 28        | 29        | 29        | 28        | 46        |
| ENSG00000187634 | 124       | 123       | 205       | 207       | 212       | 258       |
| ENSG00000188976 | 1637      | 1831      | 2383      | 1226      | 1326      | 1504      |
| ENSG00000187961 | 120       | 153       | 180       | 236       | 255       | 357       |
| ENSG00000187583 | 24        | 48        | 65        | 44        | 48        | 64        |
| ENSG00000187642 | 4         | 9         | 16        | 14        | 16        | 16        |

# Setup for DESeq

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

# Running DESeq

```
dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing

res <- results(dds)

dds

class: DESeqDataSet
dim: 19808 6
metadata(1): version
assays(4): counts mu H cooks
rownames(19808): ENSGOOOOO186092 ENSGOOOOO279928 ... ENSGOOOOO277475</pre>
```

#### ENSG00000268674

```
rowData names(22): baseMean baseVar ... deviance maxCooks colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371 colData names(3): id condition sizeFactor
```

**Q.** Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
summary(res)
```

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4393, 27%
outliers [1] : 0, 0%
low counts [2] : 1221, 7.6%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

## Visualization of results (volcano etc.)

```
plot( res$log2FoldChange, -log(res$padj))
```



Q. Improve this plot by completing the below code, which adds color and axis labels

```
mycols <- rep("gray", nrow(res) )
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"
inds <- (abs(res$padj) < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[inds] <- "blue"
plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(</pre>
```



# Add gene annotation data (gene names etc.)

**Q.** Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

| [1]  | "ACCNUM"   | "ALIAS"    | "ENSEMBL"     | "ENSEMBLPROT" | "ENSEMBLTRANS" |
|------|------------|------------|---------------|---------------|----------------|
| [6]  | "ENTREZID" | "ENZYME"   | "EVIDENCE"    | "EVIDENCEALL" | "GENENAME"     |
| [11] | "GENETYPE" | "GO"       | "GOALL"       | "IPI"         | "MAP"          |
| [16] | "OMIM"     | "ONTOLOGY" | "ONTOLOGYALL" | "PATH"        | "PFAM"         |
| [21] | "PMID"     | "PROSITE"  | "REFSEQ"      | "SYMBOL"      | "UCSCKG"       |
| [26] | "UNIPROT"  |            |               |               |                |

6

```
res$symbol = mapIds(org.Hs.eg.db,
                    keys=rownames(res),
                    keytype="ENSEMBL",
                    column="SYMBOL",
                    multiVals="first")
```

'select()' returned 1:many mapping between keys and columns

```
res$entrez = mapIds(org.Hs.eg.db,
                    keys=rownames(res),
                    keytype="ENSEMBL",
                    column="ENTREZID",
                    multiVals="first")
```

'select()' returned 1:many mapping between keys and columns

```
mapIds(org.Hs.eg.db,
res$name =
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="GENENAME",
                    multiVals="first")
```

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1\_kd vs control\_sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 9 columns

|                 | baseMean            | log2FoldChange      | lfcSE               | stat                | pvalue              |
|-----------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|                 | <numeric></numeric> | <numeric></numeric> | <numeric></numeric> | <numeric></numeric> | <numeric></numeric> |
| ENSG00000186092 | 0.0000              | NA                  | NA                  | NA                  | NA                  |
| ENSG00000279928 | 0.0000              | NA                  | NA                  | NA                  | NA                  |
| ENSG00000279457 | 29.9136             | 0.1792571           | 0.3248216           | 0.551863            | 5.81042e-01         |
| ENSG00000278566 | 0.0000              | NA                  | NA                  | NA                  | NA                  |
| ENSG00000273547 | 0.0000              | NA                  | NA                  | NA                  | NA                  |
| ENSG00000187634 | 183.2296            | 0.4264571           | 0.1402658           | 3.040350            | 2.36304e-03         |

| ENSG00000188976 | 1651.1881           | -0.6927205              | 0.0548465               | -12.630158 1.43989e-36      |
|-----------------|---------------------|-------------------------|-------------------------|-----------------------------|
| ENSG00000187961 | 209.6379            | 0.7297556               | 0.1318599               | 5.534326 3.12428e-08        |
| ENSG00000187583 | 47.2551             | 0.0405765               | 0.2718928               | 0.149237 8.81366e-01        |
| ENSG00000187642 | 11.9798             | 0.5428105               | 0.5215599               | 1.040744 2.97994e-01        |
|                 | padj                | symbol                  | entrez                  | name                        |
|                 | <numeric></numeric> | <character></character> | <character></character> | <character></character>     |
| ENSG00000186092 | NA                  | OR4F5                   | 79501                   | olfactory receptor f        |
| ENSG00000279928 | NA                  | NA                      | NA                      | NA                          |
| ENSG00000279457 | 6.87080e-01         | NA                      | NA                      | NA                          |
| ENSG00000278566 | NA                  | NA                      | NA                      | NA                          |
| ENSG00000273547 | NA                  | NA                      | NA                      | NA                          |
| ENSG00000187634 | 5.16278e-03         | SAMD11                  | 148398                  | sterile alpha motif $\dots$ |
| ENSG00000188976 | 1.76740e-35         | NOC2L                   | 26155                   | NOC2 like nucleolar         |
| ENSG00000187961 | 1.13536e-07         | KLHL17                  | 339451                  | kelch like family me        |
| ENSG00000187583 | 9.18988e-01         | PLEKHN1                 | 84069                   | pleckstrin homology         |
| ENSG00000187642 | 4.03817e-01         | PERM1                   | 84808                   | PPARGC1 and ESRR ind        |

## Save our results

ord <- order(res\$padj)
head(res[ord,])</pre>

log2 fold change (MLE): condition hoxa1\_kd vs control\_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 9 columns

|                 | baseMean            | log2FoldChange               | e lfcSE                          | : stat                         | pvalue                  |
|-----------------|---------------------|------------------------------|----------------------------------|--------------------------------|-------------------------|
|                 | <numeric></numeric> | <numeric></numeric>          | <pre>&lt; &lt; numeric&gt;</pre> | <pre><numeric></numeric></pre> | <numeric></numeric>     |
| ENSG00000117519 | 4483.63             | -2.42272                     | 0.0600016                        | -40.3776                       | 0                       |
| ENSG00000183508 | 2053.88             | 3.20196                      | 0.0724172                        | 44.2154                        | 0                       |
| ENSG00000159176 | 5692.46             | -2.31374                     | 0.0575534                        | -40.2016                       | 0                       |
| ENSG00000150938 | 7442.99             | -2.05963                     | 0.0538449                        | -38.2512                       | 0                       |
| ENSG00000116016 | 4423.95             | -1.88802                     | 0.0431680                        | -43.7366                       | 0                       |
| ENSG00000136068 | 3796.13             | -1.64979                     | 0.0439354                        | -37.5504                       | 0                       |
|                 | padj                | symbol                       | entrez                           |                                | name                    |
|                 | <numeric></numeric> | <character> &lt;</character> | character>                       |                                | <character></character> |
| ENSG00000117519 | 0                   | CNN3                         | 1266                             |                                | calponin 3              |
| ENSG00000183508 | 0                   | TENT5C                       | 54855                            | terminal n                     | ucleotidyl              |
| ENSG00000159176 | 0                   | CSRP1                        | 1465                             | cysteine and                   | nd glycine              |
| ENSG00000150938 | 0                   | CRIM1                        | 51232                            | cysteine r                     | ich transm              |
| ENSG00000116016 | 0                   | EPAS1                        | 2034                             | endothelia                     | l PAS doma              |
| ENSG00000136068 | 0                   | FLNB                         | 2317                             |                                | filamin B               |

```
write.csv(res[ord,], "deseq_results.csv")
```

#### Pathway analysis

```
library(pathview)
library(gage)
library(gageData)
```

#### **KEGG**

```
data(kegg.sets.hs)
  data(sigmet.idx.hs)
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                        "10720"
                                 "10941"
                                           "151531" "1548"
                                                               "1549"
                                                                        "1551"
                                           "1807"
 [9] "1553"
              "1576"
                        "1577"
                                  "1806"
                                                     "1890"
                                                               "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                  "3704"
                                           "51733"
                                                               "54575"
                                                                        "54576"
                                                     "54490"
[25] "54577"
              "54578"
                        "54579"
                                  "54600"
                                           "54657"
                                                     "54658"
                                                               "54659"
                                                                        "54963"
[33] "574537"
              "64816"
                        "7083"
                                  "7084"
                                           "7172"
                                                     "7363"
                                                               "7364"
                                                                        "7365"
[41] "7366"
              "7367"
                                  "7372"
                                           "7378"
                                                     "7498"
                                                               "79799"
                                                                        "83549"
                        "7371"
                        "9"
                                  "978"
[49] "8824"
               "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                         "10606"
                                   "10621"
                                            "10622"
                                                      "10623"
                                                                "107"
                                                                         "10714"
  [9] "108"
                                                                         "113"
                "10846"
                         "109"
                                   "111"
                                            "11128"
                                                      "11164"
                                                                "112"
                                                                         "159"
 [17] "114"
                "115"
                         "122481" "122622"
                                            "124583" "132"
                                                                "158"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                      "204"
                                                                "205"
                                                                         "221823"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721"
                                            "25885"
                                                      "2618"
                                                                "26289"
                                                                         "270"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                            "2977"
                                                      "2982"
                                                                "2983"
                                                                         "2984"
 [49] "2986"
                "2987"
                         "29922"
                                   "3000"
                                            "30833"
                                                      "30834"
                                                                "318"
                                                                         "3251"
 [57] "353"
               "3614"
                         "3615"
                                   "3704"
                                            "377841" "471"
                                                                "4830"
                                                                         "4831"
 [65] "4832"
                         "4860"
                                   "4881"
                                            "4882"
                                                      "4907"
                                                                         "50940"
                "4833"
                                                                "50484"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                            "5137"
                                                      "5138"
                                                                "5139"
                                                                         "5140"
```

```
[81] "5141"
               "5142"
                         "5143"
                                   "5144"
                                            "5145"
                                                      "5146"
                                                               "5147"
                                                                         "5148"
                                                                         "5169"
 [89] "5149"
               "5150"
                         "5151"
                                   "5152"
                                            "5153"
                                                      "5158"
                                                               "5167"
 [97] "51728"
               "5198"
                         "5236"
                                  "5313"
                                            "5315"
                                                      "53343"
                                                               "54107"
                                                                         "5422"
[105] "5424"
               "5425"
                         "5426"
                                   "5427"
                                            "5430"
                                                      "5431"
                                                               "5432"
                                                                         "5433"
[113] "5434"
               "5435"
                                   "5437"
                                            "5438"
                                                      "5439"
                                                               "5440"
                                                                         "5441"
                         "5436"
[121] "5471"
               "548644" "55276"
                                  "5557"
                                            "5558"
                                                      "55703"
                                                               "55811"
                                                                         "55821"
[129] "5631"
               "5634"
                         "56655"
                                  "56953"
                                            "56985"
                                                      "57804"
                                                               "58497"
                                                                         "6240"
[137] "6241"
               "64425"
                         "646625" "654364"
                                            "661"
                                                      "7498"
                                                               "8382"
                                                                         "84172"
[145] "84265"
               "84284"
                         "84618"
                                   "8622"
                                            "8654"
                                                      "87178"
                                                               "8833"
                                                                         "9060"
                                  "9533"
                         "953"
                                            "954"
                                                      "955"
                                                               "956"
                                                                         "957"
[153] "9061"
               "93034"
[161] "9583"
               "9615"
```

foldchanges = res\$log2FoldChange
names(foldchanges) = res\$entrez
head(foldchanges)

79501 <NA> <NA> <NA> <NA> <NA> 148398 NA NA 0.1792571 NA NA 0.4264571

keggres = gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)

#### \$names

[1] "greater" "less" "stats"

head(keggres\$less)

```
p.geomean stat.mean
hsa04110 Cell cycle
                                      7.077982e-06 -4.432593 7.077982e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.048017e-03 -3.112129 1.048017e-03
hsa04114 Oocyte meiosis
                                      2.563806e-03 -2.827297 2.563806e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa00010 Glycolysis / Gluconeogenesis 4.360092e-03 -2.663825 4.360092e-03
                                            q.val set.size
                                                        124 7.077982e-06
hsa04110 Cell cycle
                                      0.001160789
hsa03030 DNA replication
                                                        36 9.424076e-05
                                      0.007727742
hsa03013 RNA transport
                                      0.057291598
                                                        149 1.048017e-03
```

hsa04114 Oocyte meiosis 0.100589607 112 2.563806e-03 hsa03440 Homologous recombination 0.100589607 28 3.066756e-03 hsa00010 Glycolysis / Gluconeogenesis 0.119175854 65 4.360092e-03

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/daniellebaur/Desktop/bimm 143/class14

Info: Writing image file hsa04110.pathview.png



### Gene Ontology (GO)

```
data(go.sets.hs)
data(go.subs.hs)
gobpsets = go.sets.hs[go.subs.hs$BP]
gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
lapply(gobpres, head)
```

#### \$greater

|                                            | p.geomean    | ${\tt stat.mean}$ | p.val        |
|--------------------------------------------|--------------|-------------------|--------------|
| GO:0007156 homophilic cell adhesion        | 1.624062e-05 | 4.226117          | 1.624062e-05 |
| GO:0048729 tissue morphogenesis            | 5.407952e-05 | 3.888470          | 5.407952e-05 |
| GO:0002009 morphogenesis of an epithelium  | 5.727599e-05 | 3.878706          | 5.727599e-05 |
| GO:0030855 epithelial cell differentiation | 2.053700e-04 | 3.554776          | 2.053700e-04 |
| GO:0060562 epithelial tube morphogenesis   | 2.927804e-04 | 3.458463          | 2.927804e-04 |
| GO:0048598 embryonic morphogenesis         | 2.959270e-04 | 3.446527          | 2.959270e-04 |
|                                            | q.val se     | et.size           | exp1         |
| GO:0007156 homophilic cell adhesion        | 0.07102022   | 138 1.6           | 624062e-05   |
| GO:0048729 tissue morphogenesis            | 0.08348930   | 483 5.4           | 107952e-05   |
| GO:0002009 morphogenesis of an epithelium  | 0.08348930   | 382 5.7           | 727599e-05   |
| GO:0030855 epithelial cell differentiation | 0.16453464   | 299 2.0           | 053700e-04   |
| GO:0060562 epithelial tube morphogenesis   | 0.16453464   | 289 2.9           | 927804e-04   |
| GO:0048598 embryonic morphogenesis         | 0.16453464   | 498 2.9           | 959270e-04   |
|                                            |              |                   |              |

#### \$less

```
p.geomean stat.mean
                                                                      p.val
GO:0048285 organelle fission
                                        6.386337e-16 -8.175381 6.386337e-16
GO:0000280 nuclear division
                                        1.726380e-15 -8.056666 1.726380e-15
GO:0007067 mitosis
                                        1.726380e-15 -8.056666 1.726380e-15
GO:0000087 M phase of mitotic cell cycle 4.593581e-15 -7.919909 4.593581e-15
GO:0007059 chromosome segregation
                                        9.576332e-12 -6.994852 9.576332e-12
GO:0051301 cell division
                                        8.718528e-11 -6.455491 8.718528e-11
                                               q.val set.size
                                                                      exp1
GO:0048285 organelle fission
                                        2.516487e-12
                                                          386 6.386337e-16
GO:0000280 nuclear division
                                        2.516487e-12
                                                          362 1.726380e-15
GO:0007067 mitosis
                                        2.516487e-12
                                                          362 1.726380e-15
GO:0000087 M phase of mitotic cell cycle 5.021932e-12
                                                          373 4.593581e-15
GO:0007059 chromosome segregation
                                       8.375460e-09
                                                          146 9.576332e-12
GO:0051301 cell division
                                        6.354354e-08
                                                          479 8.718528e-11
```

#### \$stats

```
G0:0007156 homophilic cell adhesion 4.226117 4.226117 G0:0048729 tissue morphogenesis 3.888470 3.888470 G0:0002009 morphogenesis of an epithelium 3.878706 3.878706 G0:0030855 epithelial cell differentiation 3.554776 3.554776 G0:0060562 epithelial tube morphogenesis 3.458463 3.458463 G0:0048598 embryonic morphogenesis 3.446527 3.446527
```

#### **Reactome Analysis**

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8146"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

**Q.** What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?



The pathway with the most significant "Entities p-value" is the "regulation of PLK1 activity at G2/M transition" in the cell cycle. Yes, this matches the results from the KEGG results that indicated the cell cycle as well. Differences from the two methods could stem from how the data is collected and analyzed.