UNIT GROUPS OF COMMUTATIVE UNITAL RINGS

CHRISTOPHER R. MCMURDIE AND ADVISOR: DR. NICK ROGERS

ABSTRACT. In this paper we classify elements in U(R[x]), and then take a cursory look at how the unit functor interacts with quotients, at least in the special cases where we can get explicit results. First, we recall some results for $\mathbb{Z}/n\mathbb{Z}$.

1. Units of $\mathbb{Z}/n\mathbb{Z}$

Here, we recall the results about $U(\mathbb{Z}/n\mathbb{Z})$. For a complete treatment, see chapter 4 of [IR90]

Proposition 1.1. Suppose A, B are unital rings. Then $U(A \oplus B) = U(A) \times U(B)$.

Proof. Recall that $U(A \oplus B) = \{(a,b) | a \in A, b \in B \text{ and there exists } (u,v) \in A \oplus B \text{ such that } (a,b) \cdot (u,v) = (au,bv) = (1,1)\}$. This is the same set as

$$\{(a,b)|a\in U(A) \text{ and } b\in U(B)\}$$

which is just $U(A) \times U(B)$.

The strategy is then to express $\mathbb{Z}/n\mathbb{Z}$ in terms of its elementary divisor decomposition. It is essential only to know how to calculate the unit group of $\mathbb{Z}/p^k\mathbb{Z}$ for p prime and $k \geq 1$.

Theorem 1.2. Suppose $p \in \mathbb{Z}$ is prime. Then

$$U(\mathbb{Z}/p^k\mathbb{Z}) = \begin{cases} \mathbb{Z}/p^{k-1}\mathbb{Z} \oplus \mathbb{Z}/(p-1)\mathbb{Z} & p > 2, k \ge 2\\ \mathbb{Z}/p^{k-2}\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z} & p = 2, k \ge 2\\ \mathbb{Z}/(p-1)\mathbb{Z} & k = 1 \end{cases}$$

Theorem 1.3. Suppose $n = p_1^{e_1} \cdots p_k^{e_k}$. Then $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/p_1^{e_1}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/p_k^{e_k}\mathbb{Z}$.

Proof. This is a special case of Proposition 3.1.

Corollary 1.4. Suppose $n = 2^{e_0} p_1^{e_1} \cdots p_k^{e_k}$, p_i odd and distinct. Then

$$U(\mathbb{Z}/n\mathbb{Z}) = \begin{cases} \bigoplus_{i=1}^{k} (\mathbb{Z}/p_i^{e_i-1}\mathbb{Z} \oplus \mathbb{Z}/(p_i-1)\mathbb{Z}) & e_0 < 2\\ \mathbb{Z}/2\mathbb{Z} \bigoplus_{i=1}^{k} (\mathbb{Z}/p_i^{e_i-1}\mathbb{Z} \oplus \mathbb{Z}/(p_i-1)\mathbb{Z}) & e_0 = 2.\\ \mathbb{Z}/2^{e_0-2}\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \bigoplus_{i=1}^{k} (\mathbb{Z}/p_i^{e_i-1}\mathbb{Z} \oplus \mathbb{Z}/(p_i-1))\mathbb{Z} & e_0 > 2. \end{cases}$$

Date: May 2007.

Proof. This is an immediate consequence of Theorem's 1.3, 1.2 and Proposition 1.1. \Box

Corollary 1.5. Suppose $n = 2^{e_0} p_1^{e_1} \cdots p_k^{e_k}$ for odd distinct p_i prime. Then $U(\mathbb{Z}/n\mathbb{Z})$ is cyclic if, and only if, $n = 2, 4, p^e, 2p^e$.

Proof. In any case, e_0 must be either 0, 1 or 2: for $e_0 \geq 3$, we have that $U(\mathbb{Z}/2^{e_0}\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2^{e_0-2}\mathbb{Z}$, and these direct summands are not relatively prime. If k=1, then for odd p, $U(\mathbb{Z}/p^e\mathbb{Z}) = \mathbb{Z}/p^{e-1}\mathbb{Z} \oplus \mathbb{Z}/(p-1)\mathbb{Z}$, which is cyclic since p-1 and p^{e-1} are relatively prime. But p-1 is a positive even number, so $e_0 \neq 2$ in this case. This establishes the cases $2, 4, p^k, 2p^k$.

If $k \geq 2$, then $\mathbb{Z}/(p_i-1)\mathbb{Z}$ and $\mathbb{Z}/(p_j-1)\mathbb{Z}$ are both direct summands by the above corollary. However, p_i-1 and p_j-1 are both even, and hence not relatively prime. Thus, $k \leq 1$.

2. Unit Groups of Polynomial Rings

Given a ring R with 1, we can define a polynomial ring R[x] with one indeterminate in the following obvious way. $R[x] = \left\{\sum_{i=0}^{n} r_i x^i : n \in \mathbb{Z}^+, r_i \in R\right\}$, where $x^0 \equiv 1_R$. Addition is inherited from R by forcing $rx^i + sx^i = (r+s)x^i$, and extending by linearity. Multiplication is also inherited from R, by forcing distributivity and requiring that $rx^i \cdot sx^j = rsx^{i+j}$. We can iterate this process of adjoining an indeterminate, and consider $R[x_1, \dots, x_n]$, supposing that indeterminates commute with each other.

For the purposes of this section, a polynomial ring P will mean a commutative unital ring R, adjoined with a finite number of indeterminates. The degree of $p \in P$ is intuitively the largest number of indeterminates appearing in any term. For example, the degree of $3x^2y + y^3x^4 + 17x - y \in \mathbb{Z}[x,y]$ is 7, since the middle term is the product of 7 (not necessarily distinct) indeterminates.

Proposition 2.1. Suppose $p, q \in P$, and the base ring R of P has no zero-divisors. Then deg(pq) = deg(p) + deg(q).

Theorem 2.2. If P is a polynomial ring with base ring R, which has no zero-divisors, then U(P) = U(R).

Proof. The degree of $1_P = 1_R X^0$ is zero. Since the degree only increases under multiplication, no element $p \in P$ of degree greater than zero is invertible. The only remaining candidates are the constants, and this subring is isomorphic to R.

Corollary 2.3. If R is a field, then $U(P) = R^*$.

We have shown that the only interesting unit groups of polynomial rings occur when the base ring R has zero-divisors. We will show this can be improved, so that the only interesting cases occur when R has non-zero nilpotent elements. We will say that $n \in R$ is nilpotent of degree e if $n^e = 0$, and $n^k \neq 0$ for k < e.

Example 2.4. Suppose $R = \mathbb{Z}/4\mathbb{Z}$, and P = R[x]. Then 1 + 2x is a unit, and in fact self-inverse.

It turns out that it is fairly easy to classify all of the elements in U(R[x]) for R a unital ring, at least supposing that we know a little about R. In the following proof, we make great use of the fact that the coefficient of x^k of the product f(x)g(x) is given by $\sum_{i=0}^k f_{k-i}g_i$.

Proposition 2.5. If $f(x) = f_0 + f_1 x + \cdots + f_n x^n \in U(R[x])$, then f_n is nilpotent.

Proof. Let g(x)f(x) = 1, and let $d = \deg(g(x))$. Define $m_i = \min(i, n)$. Without loss of generality, we can assume that $d \ge n$ by interchanging f and g, if necessary.

Since nd > n, we have that

$$0 = g_{d+n} = -f_0^{-1} \sum_{l=1}^{m_{d+n}} g_{d+n-l} f_l = g_d f_n.$$

Inductively, we have that

$$0 \cdot f_n^i = g_{d+n-i} \cdot f_n^i = -f_0^{-1} \sum_{l=1}^{m_{d+n-i}} g_{d+n-i-l} f_n^i f_l = g_{d-i} f_n^{i+1}.$$

However, g_0 is a unit, and not a zero-divisor. It follows that $f_n^{d+1} = 0$, and f_n is nilpotent.

Lemma 2.6. Suppose $g(x) \in R[x]$, $n \in R$ is nilpotent. Then $g(x) \in U(R[x])$ if, and only if, $g(x) + nx^k \in U(R[x])$.

Proof. ⇒: Consider that
$$(g(x) + nx^k) \left(g^{-1}(x) \sum_{l=0}^{e-1} (-1)^l (nx^k g^{-1}(x))^l \right) = 1.$$

 \Leftarrow : Suppose $(g(x) + nx^k)q(x) = 1 = q(x)g(x) + nx^k q(x)$. Then set $f(x) = q(x) \sum_{i=0}^{e-1} (nx^k q(x))^i$. Then $g(x)f(x) = (1 - nx^k q(x)) \sum_{i=0}^{e-1} (nx^k q(x))^i = 1$.

Theorem 2.7. An element $f(x) = f_0 + f_1x + \cdots + f_nx^n \in R[x]$ is a unit if, and only if, $f_0 \in U(R)$ and $f_{i>0}$ is nilpotent in R.

Proof. \Rightarrow : Since f_n is nilpotent, we have that $f^{(n-1)}(x) := f(x) - f_n x^n \in U(R[x])$. Hence, f_{n-1} , the leading coefficient of $f^{(n-1)}(x)$ is nilpotent. Continuing in this fashion, we show that all coefficients $f_{i>0}$ are nilpotent, and that $f_0 \in U(R)$.

 \Leftarrow : Since $f_0 \in U(R) \subseteq U(R[x])$, we know that $f^{(1)}(x) = f_0 + f_1 x \in U(R[x])$. Continuing in this fashion, we have that $f^{(n)}(x) = f_0 + f_1 x + \dots + f_n x^n \in U(R[x])$.

Corollary 2.8. If R has no non-zero nilpotent elements, then U(R[x]) = U(R).

We will now show that theorem 2.7 extends to R adjoined with any number of indeterminates. We will use the notation that $X_R^1 = R[x_1]$, $X_R^2 = R[x_1, x_2]$, and so on. We omit the subscript when the base ring R is clear. First, a lemma.

Lemma 2.9. Suppose $f(x) = f_0 + \cdots + f_n x^n \in R[x]$. Then f(x) is nilpotent if, and only if, f_i is nilpotent for $0 \le i \le n$.

Proof. \Rightarrow : Write $0 = f(x)^k = (f^{(n-1)}(x) + f_n x^n)^k = f^{(n-1)}(x)^k + \dots + f_n^k x^{nk}$. Since x^{nk} is the highest degree, its only coefficient $f_n^k = 0$; hence, $f_n \in N(R)$. Since $f_n^k x^k \in N(R[x])$, and nilpotent elements form an ideal, we conclude that $f^{(n-1)}(x) \in N(R[x])$. Continuing in this fashion, we have that $f_i \in N(R)$ for all i.

 \Leftarrow : This follows since $f_i x^i \in N(R[x])$ (it has degree e_i) and the nilpotent elements form an ideal.

This result immediately extends to X_R^n by induction, i.e. $f \in X_R^n$ is nilpotent if, and only if, the coefficient of each term is nilpotent in R.

Theorem 2.10. Let X_R^n be a polynomial ring. Then $U(X_R^n) = \{f_0 + g(x_1, \dots, x_n) : g(0, \dots, 0) = 0, f_0 \in U(R), g_i \text{ nilpotent in } R \text{ for all } i \in \mathbb{N} \}.$

Proof. We will use the recursive definition for X^n , i.e. $X^n = X^{n-1}[x_n]$. Consider $f(x) \in U(X^n)$. By theorem 2.7, we have that $f_0 \in U(X^{n-1})$; so inductively, f_0 can be written in the form described. Consider that $f_i \in N(X^{n-1})$. Then by the remarks above, f_i can also be written in the above form. This proves that every element in $U(X^n)$ can be written in the above form; the converse is proved by lemma 2.6.

It remains to calculate the isomorphism class of U(R[x]), say in terms of U(R) and $\sqrt{0} = N(R)$, the nilpotent ideal of R. This seems to be a difficult problem, however. For reference, we provide the following characterization of N(R):

Proposition 2.11. Let R be a ring. Then $N(R) = \bigcap \{P \triangleleft R : P \text{ is prime in } R\}.$

Proof. Let $P = \bigcap \{P_i \triangleleft R : P \text{ is prime in } R\}$, and let N = N(R), the nilpotent ring. If $x \in N \setminus P$, then $x^k = 0 \in P$ for some k. Choose k' minimal so that $x^{k'} \in P$. Since P is prime, and $x \notin P$, $x^{k'-1} \in P$. This contradicts minimality, so that $N \subseteq P$.

Now, consider $i \notin N$. Define $\Sigma = \{I \lhd R : i^n \notin I \text{ for } n > 0\}$, and partially order Σ by set inclusion. By Zorn's Lemma, Σ has a maximal element, say M. We will show that M is prime.

Suppose $x, y \notin M$, and $xy \in M$. Since M is maximal, $i^m \in M + \langle x \rangle$, and $i^n \in M + \langle y \rangle$. Hence, $i^{m+n} \in (M + \langle x \rangle) \cap (M + \langle y \rangle)$. But this implies that $i^{m+n} \in M + xy = M$, contradicting that $M \in \Sigma$. Thus, M is prime.

Hence, if
$$i \notin N$$
, then $i \notin M \supseteq P$, i.e. $P \subseteq N$.

Example 2.12. Suppose $R = \mathbb{Z}/4\mathbb{Z}$. Then $U(R[x]) \cong (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}} \cong$

$$\langle \{a_i\}_{i \in \mathbb{N}} : a_i^2 = a_j^{-1} a_i^{-1} a_j a_i = 1, i, j \in \mathbb{N} \rangle$$

Proof. The isomorphism is $\phi: 1+2x^i \mapsto a_i$. Every unit can be written as

$$u(x) = 1 + 2x^{e_1} + \dots + 2x^{e_k}$$

for some choice of exponents (e_1, \ldots, e_k) . This has the unique representation as

$$\prod_{i} (1 + 2x^{e_i}).$$

Noticing commutativity, and that $(1+2x^k)^2=1$, the result follows.

3. Unit Groups of Quotients

If we consider unital rings R_1 , and R_2 and some ring-homomorphism $f: R_1 \to R_2$, then the following diagram commutes:

$$R_1 \xrightarrow{f} R_2$$

$$U \downarrow \qquad \qquad \downarrow U$$

$$U(R_1) \xrightarrow{f_*} U(R_2)$$

Here, f_* is simply f restricted to $U(R_1)$. It respects the product in $U(R_1)$ because f respects the product in R_1 ; it remains only to show that homomorphisms map units to units. So consider a unit $a \in R_1$, say $a \cdot b = 1$. Then $f(a \cdot b) = f(a) \cdot f(b) = f(1_{R_1}) = 1_{R_2}$, so indeed f(a) is a unit in R_2 . This establishes that U is a functor from the category of unital rings to the category of groups. Furthermore, f_* is injective (resp. surjective) if f is injective (surjective).

We would like to know how to express U(R/I) for any ideal $I \triangleleft R$. Unfortunately, for a general ring R this problem seems very hard. For one thing, we do not have a canonical way of representing I. If R is Noetherian then we can represent I uniquely in a primary decomposition $I = \bigcap_{i=1}^m I_i$. This is the well known Lasker-Noether theorem, and will be helpful in calculating U(R/I).

Proposition 3.1. Suppose R is a unital ring and $\{I_i : 1 \le i \le n\}$ are ideals in R. Furthermore, assume that $I_i + I_j = R$ for any i, j. Then

$$U(R/\cap_{i=1}^m I_i) \cong U(R/I_1) \times \cdots \times U(R/I_n).$$

Proof. The canonical monomorphism from $R/\bigcap_{i=1}^m I_i$ into $\bigoplus_{i=1}^m R/I_i$ is given by

$$f(r + \bigcap_{i=1}^{m} I_i) = (r + I_1, \dots, r + I_n).$$

This is onto by the Chinese Remainder Theorem. Hence, $R/\cap_{i=1}^m I_i \cong R/I_1 \oplus \cdots \oplus R_m$. The result then follows from Proposition 1.1.

Unfortunately, the minimal primary decomposition of some ideal I will not, in general, satisfy the hypothesis of the Chinese Remainder Theorem, and we cannot hope that the unit group will decompose so nicely.

Example 3.2.

$$U\left(\frac{(\mathbb{Z}/2\mathbb{Z})[x,y]}{\langle x^2\rangle \cap \langle y^2\rangle}\right) \not\cong U\left(\frac{(\mathbb{Z}/2\mathbb{Z})[x,y]}{\langle x^2\rangle}\right) \oplus U\left(\frac{(\mathbb{Z}/2\mathbb{Z})[x,y]}{\langle y^2\rangle}\right).$$

Proof. We see that

$$U\left(\frac{(\mathbb{Z}/2\mathbb{Z})[x,y]}{\langle x^2\rangle\cap\langle y^2\rangle}\right)=\{1,1+xy\},$$

while

$$\begin{array}{lcl} U\left(\frac{(\mathbb{Z}/2\mathbb{Z})[x,y]}{\langle x^2\rangle}\right) & = & \{1,1+x,1+xy,1+x+xy\} \\ U\left(\frac{(\mathbb{Z}/2\mathbb{Z})[x,y]}{\langle y^2\rangle}\right) & = & \{1,1+y,1+xy,1+x+xy\}. \end{array}$$

But $\mathbb{Z}/2\mathbb{Z} \not\cong \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$.

Remark. There is an injection from $U(R/\bigcap_{\alpha}I_{\alpha})$ into $\prod_{\alpha}U(R/I_{\alpha})$ for any collection of ideals.

We will use the following characterization of primary ideals in F[x]:

Proposition 3.3. Suppose $I \triangleleft F[x]$ is an ideal. Then I is primary if, and only if, $I = \langle f(x)^k \rangle$ for f(x) (monic) irreducible in F[x] and $k \in \mathbb{Z}^+$.

Proof. Suppose $a(x)b(x) \in I$, and $a(x) \notin I$. Since $f(x)^k$ divides a(x)b(x) but does not divide a(x), we know that f(x) divides b(x). It follows that $b(x)^k \in I$, and thus I is primary.

Conversely, since F[x] is a PID, write $I = \langle g(x) \rangle$ for g(x) a monic polynomial. Now, $g(x) = f_1(x)^{e_1} \cdots f_m(x)^{e_m}$, where $f_i(x)$ is monic irreducible. If m > 1, then consider that $f_1(x)^{e_1}, f_2(x)^{e_2} \cdots f_m(x)^{e_m} \notin I$ but their product is. This contradicts that I is primary, and hence m = 1. The result follows.

Lemma 3.4. Suppose R = F[x], for some field F. Then given primary ideals I_1, I_2 such that $\sqrt{I_1} \neq \sqrt{I_2}$, $I_1 + I_2 = R$.

Proof. We recall that the radical of a primary ideal is prime. Since R is a PID, $\sqrt{I_1} = \langle f_1(x) \rangle$, and $\sqrt{I_2} = \langle f_2(x) \rangle$ for distinct irreducible $f_i(x)$. Then, for some $k_1, k_2 \in \mathbb{Z}^+$, $I_1 + I_2$ is generated by $gcd(f_1(x)^{k_1}, f_2(x)^{k_2}) = 1$. Thus, $I_1 + I_2 = R$. \square

Remark. The requirement that F be a field is necessary.

Because of the previous lemma, and primary decomposition, we can use the chinese remainder theorem to establish the following result.

Theorem 3.5. Suppose R = F[x], and if $I \triangleleft R$ is any ideal, write $I = \bigcap_{i=1}^m I_i$ a minimal primary decomposition. Then

$$U(R/I) = U(R/I_1) \times \cdots \times U(R/I_m).$$

Proof. Follows from Proposition 3.1 and Lemma 3.4.

To find the unit group of F[x]/I for some ideal I, it suffices to calculate the unit group of $F[x]/I_i$ where I_i is primary. By proposition 3.3, we have a characterization of all such ideals.

Now, we change pace for a moment to develop an important isomorphism of quotient rings. The following lemma sets the stage.

Lemma 3.6. Let R and S be commutative rings with 1, such that S is a unitary R-module. Let $I \triangleleft R[x]$, and $s \in S$. Then

$$R[x]/I \xrightarrow{\phi_s} S/\langle \phi(I) \rangle$$

is a homomorphism where $\phi_s(f(x)) = f(s)$.

Proof. Since S is a unitary R-module, the substitution R[s] is defined; further, $\phi(1_R) = 1_S$ (since $s^0 = 1_S$). Let $i(x) \in I$, $r(x) \in R[x]$: then $\phi_s(r(x) + i(x)) = (r+i)(s) = r(s) + i(s) = r(s)$ since $i(s) \in \langle \phi(I) \rangle$. Thus, ϕ_s is well-defined, and clearly a homomorphism since it is evaluation at a point.

Suppose R[x] and S are PIDs. Then $I = \langle g(x) \rangle$, and $\langle \phi(I) \rangle = \langle g(s) \rangle$. Also, $\operatorname{Ker}(\phi_s) \lhd R[x]$ and contains I. Suppose $\operatorname{Ker}(\phi_s) = \langle k(x) \rangle$. Then k(x) divides g(x). Hence, when $g(x) = f(x)^k$ where f(x) is irreducible in R[x], then $k(x) = f(x)^j$ for some $0 \le j \le k$. Notice that ϕ_s is injective if and only if j = k.

Since $f(x)^j \in \text{Ker}(\phi_s)$, we see that $f(s)^j \in \langle f(s)^k \rangle$. Clearly, $f(s)^k \in \langle f(s)^j \rangle$; so in fact, $f(s)^j = f(s)^k \cdot u$, where $u \in U(S)$.

Take R = F, S = E[y], where E, F are fields. Here is the picture:

$$F[x]/\langle f(x)^k \rangle \xrightarrow{\phi_s} E[y]/\langle f(s)^k \rangle$$

Suppose that there exists $s \in E[y]$ such that $f(s) \in y + \langle y^k \rangle$. Then $f(s)^j = f(s)^k \cdot u$ implies that j = k. Hence, ϕ_s is injective, provided that such an s exists.

Theorem 3.7. Let F be a perfect field, and f(x) an irreducible polynomial in F[x]. Let E be the extension field E = F[x]/f(x). Then for each $k \in \mathbb{Z}^+$ there exists $s \in E[y]$ such that $f(s) \in y + \langle y^k \rangle$.

Proof. First, we note that since F is perfect, there exists a root $r \in E$ of f(x) such that $f'(r) \neq 0$. We proceed inductively. When k = 1, we can find s so that $f(s) = 0 \in y + \langle y \rangle$; we may choose s = r as above. When k = 2, we have that $f(g_1y + r) = f(r) + f'(r)g_1y \pmod{y^2}$. Hence, we can choose $g_1 = f'(r)^{-1}$.

So suppose that we have $G_{k-1}(y) = r + \frac{1}{f'(r)}y + \cdots + g_{k-1}y^{k-1} \in E[y]$ so that $f(G_{k-1}(y)) \equiv y \pmod{\langle y^k \rangle}$ and $f'(r) \neq 0$. We will construct a solution $G_k(y) = g_k y^k + G_{k-1}(y)$ so that $f(G_k(y)) \equiv y \pmod{\langle y^{k+1} \rangle}$. Expanding, we have that

$$f(g_k y^k + G_{k-1}(y)) \equiv f(G_{k-1}(y)) + f'(G_{k-1}(y))g_k y^k \pmod{\langle y^{k+1} \rangle}$$

$$\equiv (y + y^k \cdot h(y)) + f'(r)g_k y^k \pmod{\langle y^{k+1} \rangle}$$

$$\equiv y + (h(0) + f'(r)g_k)y^k \pmod{\langle y^{k+1} \rangle}$$

where $f(G_{k-1}(y)) = y^k \cdot h(y)$ in E[y]. Hence, we may choose $g_k = -\frac{h(0)}{f'(r)}$. This completes the induction and proves the result.

Corollary 3.8. Let F be a perfect field, and suppose f(x) is an irreducible polynomial in F[x]; let E be the field $F[x]/\langle f(x)\rangle$. Then

$$F[x]/\langle f(x)^k \rangle \cong E[y]/\langle y^k \rangle.$$

Proof. The previous theorem shows that there is an $s \in E[y]$ so that ϕ_s is a monomorphism by the discussion above. Let $d = \deg f(x)$. To show surjectivity, we consider two cases. First, suppose that F is a finite field; then the result follows because the two rings both have $|F|^{dk}$ elements. Now, suppose that F has characteristic 0. Then $F[x]/\langle f(x)^k \rangle$ is an F-vector space of dimension dk. More explicitly, each coset has a representative polynomial of degree less than dk, and hence can be uniquely represented as a dk-tuple of elements of F. Moreover, ϕ_s is an F-linear transformation into $E[y]/\langle y^k \rangle$, and is injective. It remains to see that $E[y]/\langle y^k \rangle$ has F-dimension dk. But this is clear, because $\dim_F(E) = d$. Thus, ϕ_s is surjective.

Corollary 3.9. Suppose F is a finite field, f(x), g(x) are irreducible, polynomials in F[x] and deg(f) = deg(g). Then

$$U(F[x]/\langle f(x)^k \rangle) \cong U(F[x]/\langle g(x)^k \rangle,$$

for all $k \in \mathbb{Z}^+$.

Proof. Recall that the extension fields $F[x]/\langle f(x)\rangle$ and $F[x]/\langle g(x)\rangle$ are isomorphic since F is finite; indeed, let $d = \deg(f)$. Then if $F = GF(p^n)$, both extension fields are $GF(p^{nd})$. Let E be a finite field $GF(p^{nd})$. From the previous proposition,

$$F[x]/\langle f(x)^k \rangle \cong E[x]/\langle x^k \rangle \cong F[x]/\langle g(x)^k \rangle$$

for all $k \in \mathbb{Z}^+$. The result follows immediately.

Remark. The corollary fails when F has characteristic 0, for in this case the extension fields need not be isomorphic. For example, $f(x) = x^2 - 2$ and $g(x) = x^2 + 1$ yield non-isomorphic extension fields of \mathbb{Q} .

Proposition 3.10. Suppose E is a field, and $k \in \mathbb{Z}^+$. Then

$$U(E[x]/\langle x^k \rangle) \cong E^* \times \{1 + a_1 x + \dots + a_{k-1} x^{k-1} : a_i \in E\}.$$

Proof. Let u(x), v(x) be units in $R = E[x]/\langle x^k \rangle$. Since $\langle x \rangle$ are the only nilpotent elements in R, $u(x) = u_0 + \cdots + u_{k-1}x^{k-1}$ where $u_0 \in E^*$, and similarly for v(x). Hence, we can factor $u(x) = u_0 \cdot (1 + \cdots + u_0^{-1}u_{k-1}x^{k-1})$ and v(x). The map ϕ that sends

$$u(x) \mapsto (u_0, 1 + \dots + u_0^{-1} u_{k-1} x^{k-1})$$

is an isomorphism from U(R) to $E^* \oplus \{1 + a_1x + \cdots + a_{k-1}x^{k-1} : a_i \in E\}.$

For the remainder of this section we will be concerned with the case when E is a finite field of order p^{nd} , and $R = E[x]/\langle x^k \rangle$. The group of polynomials $\{1 + a_1x + \cdots + a_{k-1}x^{k-1}\}$ under multiplication will be referred to as Q. Since $E = GF(p^{nd})$, $|Q| = E^{k-1} = p^{nd(k-1)}$; hence, Q is a finite abelian p-group. See appendix A for some useful facts about these groups. We will use them with little comment.

Definition 3.11. Consider $f(x) \in R$, and suppose $f(x) = f_0 + f_{i_1}x^{i_1} + \cdots + f_{i_l}x^{i_l}$, where m < n implies $i_m < i_n$ and f_{i_j} is non-zero in E for all j. We call i_1 the low degree of f, denoted Ldeg(f).

Proposition 3.12. Consider $u(x) \in Q$. If u(x) has low degree i, then u(x) has order p^a where

$$\left\lceil \frac{k}{p^a} \right\rceil \le i < \left\lceil \frac{k}{p^{a-1}} \right\rceil.$$

Proof. Consider $(1+u_ix^i+\cdots)^{p^a}$. Expanding, we have $(1+p^au_ix^i+\cdots)=(1+u_i^{p^a}x^{ip^a}+\cdots)$, since the E has characteristic p. Hence, u(x) is of order at most p^a whenever $ip^a \geq k$. Since i is an integer, we have $i \geq \left\lceil \frac{k}{p^a} \right\rceil$. If i is also $\geq \left\lceil \frac{k}{p^{a-1}} \right\rceil$, then the order is at most p^{a-1} .

Using only the above proposition and the facts about p-groups, we can easily calculate the isomorphism class of U(R). We illustrate the algorithm with two simple examples.

Example 3.13. Find $U\left((\mathbb{Z}/3\mathbb{Z})[x]/\langle (x^3+2x+1)^3\rangle\right)$.

Let $E = \mathrm{GF}(3^3)$. Then we know that $(\mathbb{Z}/3\mathbb{Z})[x]/\langle x^3 + 2x + 1 \rangle \cong E[x]/\langle x^3 \rangle$. Furthermore, since $\frac{k}{p} = \frac{3}{3} = 1$, we see that every non-identity element in Q has order 3. Since $|Q| = |E|^2 = 3^6$, we have that $Q \cong (\mathbb{Z}/3\mathbb{Z})^6$. Finally, $E^* \cong \mathbb{Z}/26\mathbb{Z}$, so that $U(R) \cong (\mathbb{Z}/26\mathbb{Z}) \oplus (\mathbb{Z}/3\mathbb{Z})^6$.

Example 3.14. Find the unit group of $E[x]/\langle x^6 \rangle$, where $E = GF(3^3)$.

We consider Q. We have:

$$\left\lceil \frac{6}{3^1} \right\rceil \le i < 6 \quad \Rightarrow \quad i \in \{2, 3, 4, 5\}$$
$$\left\lceil \frac{6}{3^2} \right\rceil \le i < 2 \quad \Rightarrow \quad i = 1.$$

So there are $|E^*| \cdot |E|^4 = 3^{12}(3^3 - 1)$ elements of order 9. It follows that $Q \cong (\mathbb{Z}/9\mathbb{Z})^3 \oplus (\mathbb{Z}/3\mathbb{Z})^9$ (see Appendix). Thus, the unit group is isomorphic to

$$(\mathbb{Z}/80\mathbb{Z}) \oplus (\mathbb{Z}/9\mathbb{Z})^3 \oplus (\mathbb{Z}/3\mathbb{Z})^9.$$

As in the first example, whenever we can conclude that $\lceil k/p \rceil = 1$, we can describe the unit group very simply. We summarize with the following theorem.

Theorem 3.15. Suppose $k \leq p$, where $F = GF(p^n)$, and f(x) is irreducible in F[x] of degree d. Then

$$U(F[x]/\langle f(x)^k \rangle) \cong U(F[x]/\langle f(x) \rangle) \oplus F[x]/\langle f(x)^{k-1} \rangle,$$

and both are $\mathbb{Z}/(p^{nd}-1)\mathbb{Z} \oplus (\mathbb{Z}/p\mathbb{Z})^{nd(k-1)}$.

Remark. One should notice the similarity with $U(\mathbb{Z}/p^k\mathbb{Z})$ for p an odd prime; indeed, for such p we have

$$U(\mathbb{Z}/p^k\mathbb{Z}) \cong U(\mathbb{Z}/p\mathbb{Z}) \oplus \mathbb{Z}/p^{k-1}\mathbb{Z}.$$

This is a nice analogy that breaks down in many cases, most often for large values of k. In a limited sense, the next section addresses this problem.

4. Power Series Rings

Suppose k is field, and let k[[x]] denote the ring of formal power series. Intuitively, we think of the ring k[[x]] as polynomials of infinite length with normal polynomial addition and multiplication; but precisely, we must regard elements $f \in k[[x]]$ as sequences $f = (k_i)_{i \in \mathbb{Z}^+}$, with component-wise addition and the obvious multiplication. In this section we will study the unit group of k[[x]] when $k = \mathbb{F}_p$, the finite field with p elements.

First, we can easily classify the units in k[[x]]: f is a unit if and only if f_0 is a unit in k, i.e. non-zero. In fact, $\langle x \rangle$ is a maximal ideal (since $k[[x]]/\langle x \rangle \cong k$ is a field); every proper ideal $I \triangleleft k[[x]]$ is contained in $\langle x \rangle$, so that k[[x]] is a local ring.

We see that $U(k[[x]]) = k^* \oplus Q$, where $Q = \{1 + xf(x) : f \in k[[x]]\}$. Consider any $0 \neq f \in U(k[[x]])$, so that Ldeg(1 + xf) = i > 0. If char(k) = 0, it follows that $Ldeg((1 + xf)^n) = i$ for all n. If char(k) = p, then $Ldeg((1 + xf)^n) = i$ when (p, n) = 1, and otherwise $Ldeg(f^n) = ip^a$ for some a. Thus every element in Q has infinite order, and clearly Q is not finitely generated. Hence, calculating U(k[[x]]) means finding canonical generators and relations for Q.

Example 4.1. Consider $\mathbb{F}_3[[x]]$. Then we have

$$1 + 2x = (1+x)^2(1+x^2)^2(1+x^3)^2(1+x^4)^2(1+x^6)^2(1+x^8)^2(1+x^9)^2 \cdots$$

Remark. It is true that 1 + 2x is a square in $\mathbb{F}_3[[x]]$. In general, $f(x) \in \mathbb{F}_p[[x]]$ can be written as

$$f(x) = cx^n \cdot q(x)$$

where $q(x) \in Q$. If n is even and c is a square in \mathbb{F}_p , then f(x) is a square in $\mathbb{F}_p[[x]]$. This is easily proved by inductively solving the system of equations induced by

$$q(x) = g(x)^2.$$

Since q(x) always has a square root, the condition is also necessary.

Lemma 4.2. Each $q(x) \in Q$ can be uniquely written as

$$q(x) = (1+x)^{\alpha_1} (1+x^2)^{\alpha_2} (1+x^3)^{\alpha_3} \cdots$$

where $\alpha_i \in \mathbb{Z}$ and $0 \leq \alpha_i < p$.

Proof. The existence of this factorization is obvious. So suppose that we have different factorizations for q(x), say

$$q(x) = (1+x)^{\beta_1} (1+x^2)^{\beta_2} (1+x^3)^{\beta_3} \cdots = (1+x)^{\alpha_1} (1+x^2)^{\alpha_2} (1+x^3)^{\alpha_3} \cdots$$

Choose the smallest $i \in \mathbb{N}^+$ such that $\beta_i \neq \alpha_i$. Then

$$(1) (1+x^i)^{\beta_i} (1+x^{i+1})^{\beta_{i+1}} \cdots = (1+x^i)^{\alpha_i} (1+x^{i+1})^{\alpha_{i+1}} \cdots$$

since both are equal to

$$\frac{q(x)}{\prod_{k=1}^{i-1} (1+x^k)^{\alpha_k}}.$$

Expanding each side of (1) we have

$$1 + \overline{\beta_i}x^i + O(x^{i+1}) = 1 + \overline{\alpha_i}x^i + O(x^{i+1})$$

where \overline{z} is just the image of $z \in \mathbb{Z}$ under the quotient map onto \mathbb{F}_p . But this implies that $\beta_i = \alpha_i$ since $0 \le \beta_i, \alpha_i < p$; hence, the factorization is unique.

Recall that for any $n \in \mathbb{N}$, $\nu_p(n) = a$ where p^a divides n but no larger power of p divides n.

Definition 4.3. For $n \in \mathbb{Z}$, we define

$$\rho(n) := \frac{n}{p^{\nu_p(n)}}.$$

Remark. We omit p from the notation, since our p will be fixed throughout.

Theorem 4.4. Consider $\mathbb{F}_p[[x]]$, and recall that its unit group decomposes as $\mathbb{F}_p^* \oplus Q$. Then

$$Q \cong \bigoplus_{\aleph_0} \mathbb{Z}_p,$$

where \mathbb{Z}_p is the p-adic integers.

Proof. Consider a general element $q(x) \in Q$. Then

$$q(x) = (1+x)^{\alpha_1} (1+x^2)^{\alpha_2} (1+x^3)^{\alpha_3} \cdots$$

where $\alpha_i \in \mathbb{Z}$ and $0 \le \alpha_i < p$. For clarity, we will write this in a vector notation:

$$q(x) = [\alpha_1, \alpha_2, \alpha_3, \ldots].$$

Consider the following map: $\phi: Q \to \bigoplus_{(i,p)=1} (\mathbb{Z}_p)_i$:

$$[\alpha_1, \alpha_2, \alpha_3, \ldots] \mapsto [\alpha_1 + \alpha_p \cdot p + \alpha_p^2 \cdot p^2 + \cdots, \ldots, \alpha_i + \alpha_{ip} \cdot p + \alpha_{ip^2} \cdot p^2 + \cdots, \ldots].$$

We will show that ϕ is an isomorphism. First, notice that it is identity preserving and surjective. It is a homomorphism because

$$(1+x^i)^{\alpha_i p} = (1+x^{ip})^{\alpha_i} (\in \mathbb{F}_p[[x]]) \quad \Leftrightarrow \quad (p\alpha_i) p^{\nu_p(i)} = \alpha_i p^{\nu_p(i)+1} (\in (\mathbb{Z}_p)_{\rho(i)}).$$

Finally, ϕ is injective because $q(x) = [\alpha_1, \alpha_2, \alpha_3, \ldots] \in \text{Ker}(\phi) \Leftrightarrow \alpha_i = 0$ for all $i \in \mathbb{N}^+$. The result follows immediately, since there are countably many integers relatively prime to p.

We will now clarify what we meant at the end of the last section. Since $\mathbb{F}_p[[x]]$ is the inverse limit of $\{\mathbb{F}_p[x]/\langle x^i\rangle\}_{i\in\mathbb{N}^+}$, and since the unit functor commutes with

inverse limit, every finite group

$$U(\mathbb{F}_p[x]/\langle x^k \rangle)$$

is realized as a quotient of $U(\mathbb{F}_p[[x]])$.

APPENDIX A. FINITE ABELIAN p-GROUPS

Here we prove some results about finite abelian p-groups, i.e. an abelian group A of order p^k . We eventually will give a complete description of any such group based on the orders of its elements. This is used to recognize the isomorphism class of Q in section 3.

Recall that in $\mathbb{Z}/p^k\mathbb{Z}$, there are $\phi(p^k) = p^k - p^{k-1}$ many elements of order p^k , where ϕ is the totient function. We would like to extend this idea to groups like $\mathbb{Z}/p^k\mathbb{Z} \oplus \mathbb{Z}/p^k\mathbb{Z}$, and eventually to all finite abelian p-groups.

Proposition A.1. Let $G = (\mathbb{Z}/p^k\mathbb{Z})^a$. Then there are $p^{ka} - p^{(k-1)a}$ elements in G of order p^k .

Proof. We proceed by induction on a. If a = 1, the result is as above. So consider

$$(\mathbb{Z}/p^k\mathbb{Z})^a = (\mathbb{Z}/p^k\mathbb{Z}) \oplus (\mathbb{Z}/p^k\mathbb{Z})^{a-1}.$$

We know that there are $p^k - p^{k-1}$ elements in the first component of order p^k ; these can be paired with any of the remaining $p^{k(a-1)}$ elements in the second component. If the first component contains one of the p^{k-1} elements of order less than p^k , we can still pair it with an element of order p^k in the second component. By induction, there are $p^{k(a-1)} - p^{(k-1)(a-1)}$ elements of this type. Thus, in total, we have

$$(p^k - p^{k-1})(p^{k(a-1)}) + p^{k-1}(p^{k(a-1)} - p^{(k-1)(a-1)}) = p^{ka} - p^{(k-1)a}.$$

Corollary A.2. Let $G = (\mathbb{Z}/p^k\mathbb{Z})^a$. Then there are

$$p^{ja} - p^{(j-1)a}$$

elements in G of order p^j .

Proof. Let i = k - j. Then there is an exact sequence

$$0 \longrightarrow \left(\mathbb{Z}/p^{j}\mathbb{Z}\right)^{a} \stackrel{\rho}{\longrightarrow} \left(\mathbb{Z}/p^{k}\mathbb{Z}\right)^{a} \longrightarrow \left(\mathbb{Z}/p^{i}\mathbb{Z}\right)^{a} \longrightarrow 0$$

where $\rho(z_k + \langle p^j \rangle) = z_k \cdot p^i + \langle p^k \rangle$ (applied to the k^{th} component). It follows that every element of order p^j in $(\mathbb{Z}/p^k\mathbb{Z})^a$ is the image of an element of order p^j in $(\mathbb{Z}/p^j\mathbb{Z})^a$, so the previous theorem implies the result.

Theorem A.3. Let A be a finite abelian p-group of order p^k . Then there exist numbers $e_i \in \mathbb{N}$, $1 \le i \le k$ so that

$$A \cong (\mathbb{Z}/p^k\mathbb{Z})^{e_k} \oplus \cdots \oplus (\mathbb{Z}/p\mathbb{Z})^{e_1}.$$

Furthermore, if $1 \le j \le k$, there are

$$n^{j\sum_{i=j}^{k}e_{i}+\sum_{i=1}^{j-1}ie_{i}}-n^{(j-1)\sum_{i=j}^{k}e_{i}+\sum_{i=1}^{j-1}ie_{i}}$$

elements of order p^{j} .

Proof. The first statement is a corollary of the classification of finite abelian groups. Consider that there are

$$p^{(j-1)\sum_{i=j}^{k} e_i + \sum_{i=1}^{j-1} ie_i}$$

elements of order less than p^j . Then the difference of this form at j+1 and j counts elements of order less than p^{j+1} and not less than p^j , i.e. elements of order p^j . \square

The usefulness of this formula for finding the isomorphism class of a given p-group is given when we factor the form; in particular, there are

$$p^{\sum_{i=1}^{k} ie_i - \sum_{i=1}^{k-(j-1)} ie_{i+(j-1)}} \left(p^{\sum_{i=j}^{k} e_i} - 1 \right)$$

elements of order p^j . Thus, particularly if $p \neq 2$, then knowing the number of elements of each order allows one to easily read off the exponents $\{e_i\}$, thus determining the isomorphism class.

References

- [AM69] M.F. Atiyah and L.G. MacDonald. *Introduction to Commutative Algebra*. Addison-Wesley Publishing Company, 1969.
- [IR90] Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern Number Theory. Number 84 in Graduate Texts in Mathematics. Springer-Verlag, second edition, 1990.
- [Ver03] Lekh R. Vermani. An Elementary Approach to Homological Algebra. Number 130 in Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, 2003.