An introduction to survival analysis

Georg Wölflein

School of Computer Science, University of St Andrews

January 15, 2022

Contents

1 Time-to-event data

We can measure **time** in:

- years
- months
- seconds

We can measure **time** in:

- years
- months
- seconds

The **event** could be:

- death from disease
- product failure
- losing a customer

We can measure **time** in:

- years
- months
- seconds

The **event** could be:

- death from disease
- product failure
- losing a customer

must be a binary variable

We can measure time in:

- years
- months
- seconds

The **event** could be:

```
death from disease
product failure
losing a customer

must be a binary variable
```

yes/no

TTE data consists of (time, event) tuples.

Time-to-event (TTE) data

TTE analysis is also known as:

- survival analysis
- failure time analysis
- reliability theory (engineering)
- duration modelling (economics)
- event history analysis (sociology)

Time-to-event (TTE) data

TTE analysis is also known as:

- survival analysis
- failure time analysis
- reliability theory (engineering)
- duration modelling (economics)
- event history analysis (sociology)

Use cases for TTE analysis:

TODO

A randomised controlled trial (n = 4) was conducted to assess the efficacy of drug ABC in treating Covid-19. This is what happened to the patients:

patient	received ABC?	outcome
1	yes	died from Covid-19 on day 14
2	no	dropped out of the study after day 3
3	yes	died by a lightning stroke on day 5
4	no	survived the study (90 days)

patient	received ABC?	outcome
1	yes	died from Covid-19 on day 14
2	no	dropped out of the study after day 3
3	yes	died by a lightning stroke on day 5
4	no	survived the study (90 days)

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

patient	received ABC?	outcome
1	yes	died from Covid-19 on day 14
2	no	dropped out of the study after day 3
3	yes	died by a lightning stroke on day 5
4	no	survived the study (90 days)

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

patient	tim
1	14
	_

patient	tıme	event
1	14	yes
2	?	?
3	?	?
4	?	no

Time-to-event data

patient	received ABC?	outcome
1	yes	died from Covid-19 on day 14
2	no	dropped out of the study after day 3
3	yes	died by a lightning stroke on day 5
4	no	survived the study (90 days)

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

Time-to-event data				
	patient	time	event	
	1	14	yes	
	2	[0, 3]	no	
	3	[0,5)	no	
	4	[0, 30]	no	

Censoring

We just saw an example of right-censored data.

Survival function

$$S(t) = \Pr(T > t)$$

Supposing an individual survived until time t, the **hazard function** expresses the probability of surviving an additional time dt.

Hazard function

$$\lambda(t) = \lim_{dt \to 0} \frac{\Pr\left(t \le T \le dt | T \ge t\right)}{dt} = \lim_{dt \to 0} \frac{\Pr\left(t \le T \le dt\right)}{dt \cdot S(t)}$$