Introduction:

The data set I chose is Movie dataset

Here are some notes and comments about this datasets: This data set contains information about 10,000 movies collected from The Movie Database (TMDb), including user ratings and revenue.

Certain columns, like 'cast' and 'genres', contain multiple values separated by pipe (|) characters.

There are some odd characters in the 'cast' column. Don't worry about cleaning them. You can leave them as is.

The final two columns ending with "_adj" show the budget and revenue of the associated movie in terms of 2010 dollars, accounting for inflation over time.

The questions about this dataset:

- 1. Does higher budget mean higher popularity? Is there a coefficent relationship?
- 2. Will the runtime affect the vote count and popularity?
- 3. Higher popularity means higher profits?
- 4. What Features are Associate with Top 10 Revenue Movies?
- 5. Which genres are most popular from year to year?

Data Wrangling:

Get familiar with the data types, data structure. I did delete the duplicates and unuseful columns like imdb_id,homepage etc.

When handling the missing data. I use two ways: for all the missing data with data type object, i fill the null with string "missing". For budget, datatype integer, I fill 0 with np.NAN.

```
from google.colab import drive
drive.mount('/content/drive')

# Import all the libraries which will be used later
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
```

load in data and print out the head
df=pd.read_csv('/content/drive/MyDrive/Colab Notebooks/tmdb-movies.csv')
df.head()

	original_title	revenue	budget	popularity	imdb_id	id	
Chris Pr Howa	Jurassic World	1513528810	150000000	32.985763	tt0369610	135397	0
Hardy Thei By	Mad Max: Fury Road	378436354	150000000	28.419936	tt1392190	76341	1
Wood Jar Winsle	Insurgent	295238201	110000000	13.112507	tt2908446	262500	2
F Harr Fisher A	Star Wars: The Force Awakens	2068178225	200000000	11.173104	tt2488496	140607	3
Vin Die Walk Statham	Furious 7	1506249360	190000000	9.335014	tt2820852	168259	4

5 rows × 21 columns

check the rows and columns of this dataset
df.shape

(10866, 21)

check datatypes to see if there are some wrongly categorized types
df.dtypes

id int64
imdb_id object
popularity float64

budget int64 revenue int64 original_title object cast object homepage object director object tagline object keywords object overview object runtime int64 genres object production companies object release date object int64 vote count vote average float64 release_year int64 budget adj float64 revenue adj float64

dtype: object

check each columns number of unique values df.nunique()

> id 10865 imdb id 10855 popularity 10814 budget 557 revenue 4702 original title 10571 10719 cast homepage 2896 director 5067 tagline 7997 keywords 8804 overview 10847 runtime 247 genres 2039 7445 production companies 5909 release date vote_count 1289 vote_average 72 56 release_year 2614 budget_adj revenue adj 4840

dtype: int64

statistic values for this data df.describe()

vote _.	runtime	revenue	budget	popularity	id	
10866.	10866.000000	1.086600e+04	1.086600e+04	10866.000000	10866.000000	count
217.	102.070863	3.982332e+07	1.462570e+07	0.646441	66064.177434	mean
575.	31.381405	1.170035e+08	3.091321e+07	1.000185	92130.136561	std
10.	0.000000	0.000000e+00	0.000000e+00	0.000065	5.000000	min
17.	90.000000	0.000000e+00	0.000000e+00	0.207583	10596.250000	25%
20	00 000000	U UUUUUU~±UU	U UUUUUU~±UU	U 3030EE	30880 000000	E00%
						info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10866 entries, 0 to 10865
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype		
0	id	10866 non-null	int64		
1	imdb_id	10856 non-null	object		
2	popularity	10866 non-null	float64		
3	budget	10866 non-null	int64		
4	revenue	10866 non-null	int64		
5	original_title	10866 non-null	object		
6	cast	10790 non-null	object		
7	homepage	2936 non-null	object		
8	director	10822 non-null	object		
9	tagline	8042 non-null	object		
10	keywords	9373 non-null	object		
11	overview	10862 non-null	object		
12	runtime	10866 non-null	int64		
13	genres	10843 non-null	object		
14	<pre>production_companies</pre>	9836 non-null	object		
15	release_date	10866 non-null	object		
16	vote_count	10866 non-null	int64		
17	vote_average	10866 non-null	float64		
18	release_year	10866 non-null	int64		
19	budget_adj	10866 non-null	float64		
20	revenue_adj	10866 non-null	float64		
dtypes: float64(4), int64(6), object(11)					

df.isnull().sum()

memory usage: 1.7+ MB

```
id
                            0
imdb_id
                           10
popularity
                            0
                            0
budget
revenue
                            0
                            0
original_title
                           76
cast
homepage
                         7930
director
                           44
tagline
                         2824
                         1493
keywords
overview
                            4
                            0
runtime
```

```
23
    genres
    production_companies
                             1030
     release date
                                0
                                0
    vote count
                                0
    vote_average
     release year
                                0
    budget_adj
                                0
                                0
     revenue adj
    dtype: int64
# drop unuseful columns
df.drop(['id','imdb id', 'homepage','overview'],axis=1,inplace=True) # do not forg
# Ways to handle missing data
# For all missing data with object as datatype , I fill in with string "missing"
df['cast'].fillna('missing',inplace=True )
df['director'].fillna('missing',inplace=True)
df['tagline'].fillna('missing',inplace=True)
df['keywords'].fillna('missing',inplace=True)
df['genres'].fillna('missing',inplace=True)
df['production companies'].fillna('missing',inplace=True)
df['budget'] = df['budget'].replace(0, np.NAN)
# although there is no null in budget, but we would find there is a problem when we
# Will deal with all the 0 value in budget later.
# confirm the data
df.isnull().sum()
    popularity
                                0
                             5696
    budget
     revenue
                                0
    original title
                                0
    cast
                                0
    director
                                0
                                0
    tagline
    keywords
                                0
                                0
     runtime
                                0
    genres
                                0
    production_companies
                                0
     release date
                                0
    vote_count
                                0
    vote_average
                                0
     release_year
                                0
    budget_adj
                                0
     revenue_adj
    dtype: int64
# check if there are some duplicates
df.duplicated().sum()
    1
# drop the duplicates
df.drop duplicates(inplace=True)
                                    # do not forget inplace = True
```

confirm again
df.duplicated().sum()

0

visulize each variables
df.hist(figsize=(15,15));

Exploration with Visuals and Conclusions

Question 1. Does higher budget mean higher popularity? Is there a coefficent relationship?

```
# plot the relation between budget and popularity
x = df['budget']
y = df['popularity']

plt.scatter(x,y)
plt.title('Average Popularity by Different budget',fontsize=12)
plt.xlabel('budgete',fontsize=10)
plt.ylabel('popularity',fontsize=10)
```

Text(0, 0.5, 'popularity')

We can not see very strong relatioship between the budget and the popularity from above plot. Let's try to compare the data in another way: create two groups based on median value of budget

```
# based on median budget value to divide the budget into two groups : low and high
m = df['budget'].median()
low_budg = df.query('budget < {}'.format(m))
high_budg = df.query('budget >= {}'.format(m))

# check low budget and high budget mean values respectively
mean_popularity_of_low_budget = low_budg['popularity'].mean()
mean_popularity_of_high_budget = high_budg['popularity'].mean()

# create a bar chart with the values we get above
locations = [1,2]
heights = [mean_popularity_of_low_budget , mean_popularity_of_high_budget]
labels=['low','high']
plt.bar(locations, heights, tick_label = labels)
plt.title('Average Popularity by Different Budget')
```

```
plt.xlabel('Budgets')
plt.ylabel('Average Popularity')
```

Text(0, 0.5, 'Average Popularity')

increase_percentage = (mean_popularity_of_high_budget - mean_popularity_of_low_budget increase_percentage

55.50933772947093

```
# here I will create 3 groups with query(). <60 min: short , 60 min <= <= - 120
short = df.query('runtime < {}'.format(100))
medium = df.query('runtime < {}'.format(200))
long = df.query('runtime > {}'.format(200))

# check mean popularity of different movie lengths
mean_popularity_of_short = short['popularity'].mean()
mean_popularity_of_medium = medium['popularity'].mean()
mean_popularity_of_long = long['popularity'].mean()

locations = [1,2,3]
heights = [mean_popularity_of_short, mean_popularity_of_medium, mean_popularity_of_labels=['low', 'medium', 'high']
plt.bar(locations, heights, tick_label = labels)
plt.title('Average Popularity by Different Runtime')
plt.xlabel('Runtime')
plt.ylabel('Average Popularity')
```

Text(0, 0.5, 'Average Popularity')

The movies should not be too long or too short. Medium length is better to gain higher popularity. But above bar chart is hard to tell the best length of runtime. Scatter plot may be a better choice.

```
# plot the relation between runtime and popularity
x = df['runtime']
y = df['popularity']

plt.scatter(x,y)

plt.title('Average Popularity by Different Runtime',fontsize=12)
plt.xlabel('runtime',fontsize=10)
plt.ylabel('popularity',fontsize=10)
```

Text(0, 0.5, 'popularity')

Conclusion Q2:

Combine two plots above, we can not simply say, the longer runtime, the more popular the movies are.

If the movies are within 200 minutes, it will be more popular. Once the movies run over 200 minutes, it's hard for them to gain high popularity

Q3: Higher popularity means higher profits?

we need to get the mean of popularity

```
m_popularity = df['popularity'].median()
lower_popularity = df.query('popularity < {}'.format(m_popularity))
higher popularity = df.query('popularity >= {}'.format(m_popularity))
```

Double-click (or enter) to edit

```
# create a new column called profit. profit = Revenue - budget
df['profit'] = df['revenue'] - df['budget']
#df['profit'].head(20)
#df.head()
# average net profit for low popularity and high popularity
mean profit of low popularity = lower popularity['profit'].mean()
mean profit of high popularity = higher popularity['profit'].mean()
# df.head()
# create a bar chart with the values we get above
locations = [1,2]
heights = [mean profit of low popularity, mean profit of high popularity]
labels=['low','high']
plt.bar(locations, heights, tick label = labels)
plt.title('Average profit by Different Popularity')
plt.xlabel('Popularity')
plt.ylabel('Average Profit')
```


Conclusion for Question 3: as we can see above, higher popularity does make much higher average profits.

4. What Features are Associate with Top 10 Revenue Movies?

```
top10 revenue = df.nlargest(10, 'revenue')
```

top10_revenue.hist(figsize=(12,12))

```
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f1aae1811d0>,
         <matplotlib.axes._subplots.AxesSubplot object at 0x7f1aad258cd0>,
         <matplotlib.axes. subplots.AxesSubplot object at 0x7f1aad2253d0>],
        [<matplotlib.axes._subplots.AxesSubplot object at 0x7flaad1dc790>,
         <matplotlib.axes. subplots.AxesSubplot object at 0x7flaad191bd0>,
         <matplotlib.axes. subplots.AxesSubplot object at 0x7f1aad156110>],
        [<matplotlib.axes._subplots.AxesSubplot object at 0x7flaad10c650>,
         <matplotlib.axes. subplots.AxesSubplot object at 0x7flaad0c3a90>,
         <matplotlib.axes. subplots.AxesSubplot object at 0x7flaad0c3ad0>],
        [<matplotlib.axes. subplots.AxesSubplot object at 0x7flaad088110>,
         <matplotlib.axes. subplots.AxesSubplot object at 0x7f1aad075a10>,
         <matplotlib.axes. subplots.AxesSubplot object at 0x7f1abd5bde90>]],
       dtype=object)
          popularity
                                          budget
                                                                         revenue
5
4
                                                              3
                                3
3
                                2
                                                              2
2
                                1
                                                              1
1
0
                                                              0
       10
                      30
                                     1.5
                                                   2.5
              20
                                                                           2.0
                                                                                  2.5
                                            2.0
                                                       le8
                                                                                     le9
           runtime
                                                                       vote average
                                         vote count
4
                              2.0
                                                              3
3
                              1.5
                                                              2
2
                              1.0
                                                              1
1
                              0.5
0
                              0.0
  100
      120
           140
                    180
                                     4000
                                            6000
                                                   8000
                                                                    6.75
                                                                         7.00
                                                                             7.25
                                                                                  7.50
                                         budget_adj
                                                                       revenue adj
         release_year
4
                              2.0
3
                              1.5
                                                              3
2
                              1.0
                                                              2
1
                              0.5
                                                              1
0
                              0.0
                                                              0
                 2010
     2000
           2005
                       2015
                                     1.5
                                             20
                                                    2.5
                                                                     1.5
                                                                           20
                                                                                  2.5
                                                                                     1e9
            profit
3
2
1
0
  1.0
                       2.5
         1.5
                2.0
                        1e9
```

Double-click (or enter) to edit

Conclusion for question 4:

There are some characteristics we can conclude from the top 10 movies. Runtime ranges from 100 mins to 200 mins. The released year are between 1995 to 2015.

5. Which genres are most popular from year to year?

```
#The following function can give all the counts for per category
def extract data(column name):
    data = df[column_name].str.cat(sep = '|') # put all the genres into a long str:
    # Create pandas series and store the values separately
    data = pd.Series(data.split('|')) # split the genres by |
    # Display value count in descending order
    count = data.value counts(ascending = False) # count the occurrence of each ger
    return count
# use the function created above to split genres and count the occurrence of each (
genre count = extract data('genres')
#create a separate dataframe to plot
df genre counts = pd.DataFrame({'genres': genre count.index, 'count': genre count.'
#df genre counts
f, ax = plt.subplots(figsize=(23, 9))
# use the dataframe just created as the input data
sns.barplot(x = 'count', y = 'genres', data=df_genre_counts) # how to get the data
ax.set title(' occurences per genre ')
ax.set xlabel('occurrences')
ax.set_ylabel('genres')
plt.show()
```


director_count = extract_data('director')
director_count

Woody Allen	46
missing	44
Clint Eastwood	34
Martin Scorsese	31
Steven Spielberg	30
Mike Maguire	1
Tom Kuntz	1
John Simpson	1
Simon Hunter	1
Harold P. Warren	1
Length: 5363, dtype:	int64

```
movie_count = df['release_year'].value_counts()
# movie_count.plot(xlabel='year',ylabel='number of movies',title='Number of Movies
fig = plt.figure()
plt.plot(movie_count)
fig.suptitle('Number of Movies Released Each Year',fontsize=20)
plt.xlabel('year',fontsize=18)
plt.ylabel('number of movies',fontsize=18)
```

Text(0, 0.5, 'number of movies')

Number of Movies Released Each Year

Throught above two plots, we can see The top 5 genres are Drama, Comedy, Action, Horror and Adventrue The number of movies increased along the time.

The following is a really comprehensive plot. It shows the revenue and budget fo # genres are so specific, I will just take the first genre for each movie instead (

```
Movie Data Analyze.ipynb - Colaboratory
df['genre'] = df['genres'].apply(lambda x: x.split('|')[0])
# plot all the genre types for each year with the budget and revenue
genre_year = df.groupby(['genre', 'release_year']).mean().sort_index()
df gyBudget = genre year.pivot table(index=['genre'], columns=['release year'], va
df gyBudget = genre year.pivot table(index=['genre'], columns=['release year'], va
df gyGross = genre year.pivot table(index=['genre'], columns=['release year'], val
f, [axA, axB] = plt.subplots(figsize=(40, 20), nrows=2)
cmap = sns.cubehelix palette(start=1.5, rot=1.5, as cmap=True)
sns.heatmap(df gyBudget, xticklabels=3, cmap=cmap, linewidths=0.05, ax=axA)
sns.heatmap(df gyGross, xticklabels=3, cmap=cmap, linewidths=0.05, ax=axB)
axA.set title('budget x genre x year')
axA.set xlabel('release years')
axA.set ylabel('genres')
axB.set title('revenue x genre x year')
axB.set xlabel('release years')
axB.set ylabel('genres')
plt.show()
```


Conclusion for Question 5: As the time goes, we have a wider range of movies and genres to choose from. From 1984 to 2014, there are more and more high budget, high revenue movies. But compared to the budgets,

- Conclusion:

Thriller -

Based on the analysis I did above, we can make the following summarizations:

- 1. The quantity and range of movie gets larger. We have more choices to choose from as an audience.
- 2. We can not say high budget guarantees high popularity. But for movies with higher budgets do produce higher average popularity.
- 3. To produce a more popular movie, the runtime should be best around 150 mins; Drama, Comedy, Action, these genres would be preferable.

Limitations:

- 1. These are factors that makes the movies become popular and successful. But we should also notice the limitations. There are some missing data and many erroreous zeros which may affect the analysis.
 - 2. It's hard for us to know how the vote_counts and popularity are measured.
 - 3. For foreign movies, currecy is not indicated. inflation over the years should also be taken into consideration.

Reference:

- 1. <a href="https://pandas.pydata.org/pandas-pydata.org/pandas.pydata.pydata.pydata.org/pandas.pydata.
- 2. https://www.kaggle.com/diegoinacio/imdb-genre-based-analysis
- 3. https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.apply.html
- 4. https://pandas.pydata.org/pandas-docs/stable/visualization.html

✓ 0s completed at 10:22 AM

×