1 Rachunek λ z typami prostymi

Przedstawimy system rachunku λ z typami prostymi w stylu de Bruijna [BDS13; SU06]. Zgodnie z [HS08, roz. 13E] odpowiada on najsłabszemu z *czystych systemów typów* (ang. *pure type systems*, PTS) w myśl klasyfikacji zaproponowanej przez Henka Barendregta w [Bar91]. Klasyfikację tę obrazuje Rysunek 1; kierunek krawędzi oznacza na nim zawieranie w sensie możliwości wyrażenia słabszego systemu przez system wzbogacony o nowe typy.

Rysunek 1: Kostka lambda H. Barendregta

1.1 Typy proste

Niech U będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych $p,\ q,\ \dots$ (być może indeksowanych liczbami naturalnymi), które będziemy nazywali zmiennymi typowymi.

Definicja 1. (Typy proste)

Typami prostymi będziemy określali najmniejszy w sensie mnogościowym zbiór wyrażeń taki, że:

- T1. Jeśli p jest zmienną typową, to p jest typem prostym.
- T2. Jeśli τ i σ są typami prostymi, to $(\tau \to \sigma)$ jest typem prostym.

Typy proste zbudowane tylko wedle reguły T1. nazywamy typami *atomowy*mi, zaś wyrażenia zbudowe wedle reguły T2. – typami funkcyjnymi. Zbiór typów prostych określony w myśl powyższej definicji będziemy oznaczali przez \mathbf{T}_{\rightarrow} . Późniejsze litery alfabetu greckiego, tj. σ , τ , ρ , ... będą służyły nam za zmienne metasyntaktyczne do oznaczania typów prostych. Dla lepszej czytelności będziemy pomijali najbardziej zewnętrzne nawiasy. Konstruktor typu \rightarrow wiąże prawostronnie; oznacza to, że typy $\tau \rightarrow \sigma \rightarrow \theta$ oraz $\tau \rightarrow (\sigma \rightarrow \theta)$ będziemy uznawali za tożsame.

Typy proste ujęte Definicją 1 mają strukturę drzewa binarnego. Wysokość takiego drzewa będziemy nazywali *stopniem* typu. Precyzyjnie ujmuje to pojęcie poniższa definicja.

Definicja 2. (Stopień typu)

Stopniem typu nazywamy funkcję $\delta: \mathbf{T}_{\rightarrow} \longrightarrow \mathbb{N}$ taką, że

$$\delta(p) = 0$$
, gdzie p jest typem atomowym,
 $\delta(\tau \to \sigma) = 1 + \max(\delta(\tau), \delta(\sigma))$.

1.2 Pseudotermy

Niech V będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych x, y, \ldots (indeksowanych być może liczbami naturalnymi). Elementy takiego zbioru będziemy nazywali λ -zmiennymi.

Definicja 3. (Pseudo-pretermy)

Pseudo-pretermamibędziemy nazywali najmniejszy (w sensie mnogościowym) zbiór $\tilde{\Lambda}_{\rm T}$ taki, że:

PT1. Jeśli $x \in V$, to $x \in \tilde{\Lambda}_T$.

PT2. Jeśli $M \in \tilde{\mathbf{\Lambda}}_{\mathrm{T}}$ i $N \in \tilde{\mathbf{\Lambda}}_{\mathrm{T}}$, to $(MN) \in \tilde{\mathbf{\Lambda}}_{\mathrm{T}}$.

PT3. Dla dowolnych $x \in V$, $\sigma \in \mathbf{T}_{\rightarrow}$, $M \in \tilde{\mathbf{\Lambda}}_{T}$ mamy, że $(\lambda x^{\sigma}.M) \in \tilde{\mathbf{\Lambda}}_{T}$.

Wyrażenia postaci PT2. nazywamy aplikacjami M do N, zaś wyrażenia postaci PT3. – λ -abstrakcjami, gdzie o wszystkich podtermach termu M mówi się, że są w zasięgu λ -abstraktora, zaś o λ -zmiennej x mówi się, że jest nim związana.

Za zmienne metasyntaktyczne obieramy duże litery alfabetu łacińskiego M, N, \ldots Podobnie jak w podrozdziale 1.1 stosujemy konwencję o opuszczaniu najbardziej zewnętrznych nawiasów. Aplikacja termów wiąże lewostronnie; oznacza to, że będziemy utożsamiali ze sobą wyrażenia MNP oraz (MN)P.

Definicja 4. (Zmienne wolne)

Dla pseudo-pretermu M określamy zbiór pseudo-pretermów wolnych FV w nastepujący sposób:

$$FV(x) = \{x\}$$

$$FV(\lambda x^{\sigma}. P) = FV(P) \setminus \{x\}$$

$$FV(PQ) = FV(P) \cup FV(Q)$$

Jesli $FV(M) = \emptyset$, to mówimy, że M jest domkniecite.

Definicja 5. (Podstawienie)

Podstawieniem~[x/N] pseudo-pretermu N za λ -zmienną x w M nazwamy zdefiniowane następująco przekształcenie:

$$x[x/N] = N,$$

$$y[x/N] = y,$$

$$(PQ)[x/N] = P[x/N]Q[x/N],$$

$$(\lambda y^{\sigma}. P)[x/N] = \lambda y^{\sigma}. P[x/N],$$

$$\text{gdzie } x \neq y \text{ i } y \notin FV(N).$$

Zachodzą następujące fakty:

Fakt 1. (a) Jeśli $x \notin FV(M)$, to M[x/N] jest poprawnym podstawieniem i M[x/N] = M.

- (b) Jeśli M[x/N] jest poprawnym podstawieniem, to $y \in FV(M[x/N])$ wtw, gdy albo $y \in FV(M)$ i $x \neq y$, albo $y \in FV(N)$ i $x \in FV(M)$.
- (c) Podstawienie M[x/x] jest poprawne i M[x/x] = M.
- (d) Jeśli M[x/y] jest poprawnym podstawieniem, to M[x/y] ma tę samą długość, co M.

Fakt 2. Powiedzmy, że M[x/N] jest poprawnym podstawieniem i N[y/L] i M[x/N][y/L] są poprawnymi podstawieniami, gdzie $x \neq y$. Jeśli $x \notin FV(L)$ lub $y \notin FV(M)$, to M[y/L] i M[y/L][x/N[y/L]] jest poprawnym podstawieniem oraz

$$M[x/N][y/L] = M[y/L][x/N[y/L]].$$

Fakt 3. Jesli M[x/y] jest poprawnym postawieniem i $y \notin FV(M)$, to M[x/y][y/x] jest poprawnym podstawieniem oraz M[x/y][y/x] = M.

Definicja 6. (α -konwersja)

 α -konwersją nazywamy najmniejszą (w sensie mnogościowym) zwrotną i przechodnią relację binarną = $_{\alpha}$ określoną na zbiorze pseudotermów $\tilde{\mathbf{\Lambda}}_{\mathrm{T}}$ spełniającą poniższe warunki:

- (a) Jeśli $y \notin FV(M)$ i M[x/y] jest poprawnym podstawieniem, to $\lambda x. M =_{\alpha} \lambda y. M[x/y]$.
- (b) Jeśli $M =_{\alpha} N$, to dla każdej λ -zmiennej x mamy $\lambda x. M =_{\alpha} \lambda x. N$.
- (c) Jeśli M = N, to MZ = NZ.
- (d) Jeśli M = N, to ZM = ZN.

Fakt 4. $Relacja =_{\alpha} jest symetryczna$.

Fakt 5. = $_{\alpha}$ jest relacją równoważności.

Fakt 6. Jeśli
$$M =_{\alpha} N$$
, to $FV(M) = FV(N)$.

Dysponując powyższymi rozstrzygnięciami otrzymujemy wygodne utożsamienie pseudo-pretermów, które różnią się między sobą tylko zmiennymi związanymi.

Definicja 7. (Pseudotermy)

Klasy abstrakcji relacji α -konwersji nazywamy *pseudotermami*. Zbiór wszystkich pseudotermów oznaczamy następująco:

$$\mathbf{\Lambda}_{\mathrm{T}} = \left\{ [M]_{\alpha} \mid M \in \tilde{\mathbf{\Lambda}}_{\mathrm{T}} \right\}$$

Nadużywając notacji będziemy odnosili się do pseudotermów tylko przez ich reprezentantów: zamiast $[\lambda x^{\sigma}.M]_{\alpha}$ będziemy pisali krótko $\lambda x^{\sigma}.M$.

1.3 Typowalność

Definicja 8. (Kontekst)

Kontekstem nazywamy skończoną funkcję częściową $\Gamma: V \longrightarrow \mathbf{T}_{\rightarrow}$, czyli zbiór par postaci $\Gamma = \{x_1^{\tau_1}, \ldots, x_n^{\tau_n}\}$, gdzie $(x_i^{\tau_i}) = (x_i, \tau_i)$ oraz $x_i \neq x_j$ dla $i \neq j$. Zbiór

$$dom(\Gamma) = \{x \in V \mid \exists \tau (x^{\tau} \in \Gamma)\}\$$

nazywamy dziedziną kontekstu Γ , zaś

$$rg(\Gamma) = \{ \tau \in \mathbf{T}_{\rightarrow} \mid \exists x (x^{\tau} \in \Gamma) \}$$

- -zakresem kontekstu Γ . Piszemy:
 - $x_1^{\tau_1}$, $x_2^{\tau_2}$ zamiast $\{x_1^{\tau_1}, x_2^{\tau_2}\}$, o ile $x_1^{\tau_1}$ i $x_2^{\tau_2}$ są różne,
 - $-\Gamma$, x^{τ} zamiast $\Gamma \cup \{x^{\tau}\}$, o ile $x^{\tau} \notin \Gamma$,
 - $-\Gamma$, Δ zamiast $\Gamma \cup \Delta$, o ile $\Gamma \cap \Delta = \emptyset$.

Okreslimy teraz system przypisywania typów do pseudotermów w stylu dedukcji naturalnej. Sekwentami w tym systemie będziemy nazywali wyrażenia postaci $\Gamma \vdash M^{\sigma}$, gdzie $M \in \Lambda_{\Gamma}$, $\sigma \in \mathbf{T}_{\rightarrow}$, zaś Γ jest pewnym kontekstem.

Wprowadzamy następujące reguły dowodzenia:

$$\frac{\Gamma, x^{\varphi} \vdash M^{\psi}}{\Gamma \vdash (\lambda x^{\varphi} \cdot M)^{\varphi \to \psi}} \text{ (Abs)}, \quad \frac{\Gamma \vdash M^{\varphi \to \psi} \quad \Gamma \vdash N^{\varphi}}{\Gamma \vdash (MN)^{\psi}} \text{ (App)}.$$

Definicja 9. (Typowalność)

Mówimy, że pseudoterm M jest typu σ w kontekście Γ (jest typowalny), jeśli istnieje skończone drzewo sekwentów spełniające poniższe warunki:

- P1. W korzeniu drzewa znajduje się sekwent $\Gamma \vdash M^{\sigma}$.
- P2. Liście są aksjomatami, tj. sekwentami postaci $\Gamma, x^{\sigma} \vdash x^{\sigma}$.
- P3. Każdego rodzica można otrzymać z jego dzieci przez zastosowanie którejś z reguł wyprowadzania nowych sekwentów.

Tak określone drzewo będziemy nazywali wyprowadzeniem typu i pisali $\Gamma \vdash M^{\sigma}$. Otrzymujemy ostateczne określenie λ -termów w omawianym systemie.

Definicja 10. (λ -termy)

Wszystkie typowalne pseudotermy w pewnym kontekście Γ nazywamy λ -termami (z typami prostymi w kontekście Γ).

Uwaga. λ -term w kontekście Γ_1 może nie być typowalny w innym kontekście Γ_2 .

Zachodzą następujące fakty:

Fakt 7. (o odwracaniu)

- I1. Jeśli $\Gamma \vdash x^{\sigma}$, to $x^{\sigma} \in \Gamma$.
- I2. Jeśli $\Gamma \vdash MN^{\sigma}$, to istnieje typ $\tau \in \mathbf{T} \to taki$, że $\Gamma \vdash M^{\tau \to \sigma}$ i $\Gamma \vdash N^{\tau}$.
- I3. Jesli $\Gamma \vdash \lambda x^{\tau}$. M^{σ} , to istnieje typ $\rho \in \mathbf{T} \to taki$, $\dot{z}e \ \sigma \equiv \tau \to \rho \ oraz \ \Gamma, \ x^{\tau} \vdash M^{\rho}$.

Dowód. I1. Przypuśćmy, że $\Gamma \vdash x^{\sigma}$. Ostatni wierzchołek w wyprowadzeniu nie może być uzyskany przez żadne z określonych reguł dowodzenia, zatem musi to być aksjomat, tj. $x^{\sigma} \in \Gamma$. Podobnie I2. i I3..

Fakt 8. (o podstawianiu) Jeśli
$$\Gamma$$
, $x^{\sigma} \vdash M^{\tau}$ oraz $\Gamma \vdash N^{\sigma}$, to $\Gamma \vdash M[x/N]^{\tau}$.

Dowód. Dowód przez indukcję strukturalną względem M.

W danym kontekście każdy $\lambda\text{-term}$ ma jednoznacznie przypisany typ, co stwierdza następujące twierdzenie:

Fakt 9. Jesli $\Gamma \vdash M^{\sigma}$ oraz $\Gamma \vdash M^{\tau}$, to $\sigma = \tau$.

Dowód. Dowód przez indukcję strukturalną względem M.

Uwaga 1. (Adnotacje typowe) Mówiąc o λ -termach i nie podając żadnego związanego z nimi kontekstu Γ będziemy implicite zakładali, że istnieje pewien kontekst w którym są one typowalne. Wspólny dla λ -termów M^{σ} i N^{τ} kontekst Γ będziemy notowali pisząc $M,\ N \in \mathbf{\Lambda}^{\Gamma}_{\mathbf{T}}$. Ze względu na Fakt 9 mając określony kontekst Γ będziemy bez utraty jednoznaczności omijać adnotacje typowe dla λ -termów pisząc po prostu M w miejsce M^{σ} , gdy z kontekstu jasne będzie, że nie chodzi o pseudotermy.

Typ dowolnego λ -termu będziemy w ramach konwencji notowali używając adnotacji typowej umieszczonej w górnym indeksie. Dla przykładu, pisząc $(M^{\sigma \to \tau} N^{\sigma})^{\tau}$ będziemy mieli na myśli, że λ -term jest w pewnym kontekście Γ typu τ .

Rozważmy następujące przykłady:

Przykład 1. Niech $\Gamma = \{x^{\sigma}, y^{\tau}\}$. Pokażemy, że $K = \lambda x^{\sigma} y^{\tau}. x$ ma typ $\sigma \to \tau \to \sigma$. Istotnie,

$$\frac{x^{\sigma}, y^{\tau} \vdash x^{\sigma}}{x^{\sigma} \vdash (\lambda y^{\tau}. x)^{\tau \to \sigma}} \text{ (Abs)}$$
$$\vdash (\lambda x^{\sigma} \lambda y^{\tau}. x)^{\sigma \to \tau \to \sigma} \text{ (Abs)}$$

Przykład 2. Niech $\Gamma = \{x^{\tau \to \rho}, y^{\sigma \to \tau}, z^{\sigma}\}$. Wówczas

$$\frac{\Gamma \vdash z^{\sigma} \qquad \Gamma \vdash y^{\sigma \to \tau}}{\Gamma \vdash yz^{\tau}} \text{ (App)} \qquad \Gamma \vdash x^{\tau \to \rho} \text{ (App)}$$

$$\frac{\Gamma \vdash x(yz)^{\rho}}{x^{\tau \to \sigma}, y^{\sigma \to \rho} \vdash (\lambda z^{\sigma}. x(yz))^{\sigma \to \rho}} \text{ (Abs)}$$

$$\frac{x^{\tau \to \rho} \vdash (\lambda y^{\sigma \to \tau} \lambda z^{\sigma}. x(yz))^{(\sigma \to \tau) \to \sigma \to \rho}}{(\lambda z^{\sigma}. x(yz))^{(\sigma \to \tau) \to \sigma \to \rho}} \text{ (Abs)}$$

$$\frac{(\lambda z^{\tau \to \rho} \lambda y^{\sigma \to \tau} \lambda z^{\sigma}. x(yz))^{(\tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho}}{(\lambda z^{\tau \to \rho})^{\sigma \to \tau} \lambda z^{\sigma}. x(yz)^{(\tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho}} \text{ (Abs)}$$

Zauważmy, że term $\lambda x^{\tau \to \rho} \lambda y^{\sigma \to \tau} \lambda z^{\sigma} . x(yz)$ odpowiada operacji złożenia funkcji.

Uwaga 2. Widzimy, że wyprowadzanie typu odpowiada w gruncie rzeczy konstrukcji λ -termu. Ponieważ każde wyprowadzenie musi być skończone, typowalne są tylko pseudotermy skończonej długości.

Przykład 3. Nie wszystkie pseudotermy są typowalne w rachunku λ z typami prostymi. Istotnie, przypuśćmy że $\omega = (\lambda x^{\sigma \to \sigma}. xx)$ jest typowalny. Wówczas dla kontekstu Γ mamy $x^{\sigma \to \sigma} \in \Gamma$. Ponieważ ω zawiera w sobie podterm (xx), to w wyprowadzeniu musiał on zostać otrzymany przez zastosowanie reguły (App). Wówczas $x^{\sigma} \in \Gamma$ i $x^{\sigma \to \sigma} \in \Gamma$, co nie jest możliwe, bo Γ musiałby nie być prawidłowo określonym kontekstem.

Przykład 3 wskazuje, że rachunek λ z typami prostymi nie ma wystarczających środków wyrazu, aby definiować w nim funkcje rekurencyjne. W rachunku λ bez typów definicje takie są osiągane za pomocą kombinatorów punktu stałego, które w rachunku λ z typami prostymi nie są typowalne właśnie ze względu na fakt, że nie jest możliwe wyprowadzenie typu dla aplikacji termu do samego siebie.

1.4 Redukcja

Definicja 11. (Zgodność)

Relację R na zbiorze pseudotermów $\tilde{\mathbf{\Lambda}}_T$ nazywamy zgodnq, jeśli dla $M,\,N,\,Z\in\tilde{\mathbf{\Lambda}}_T$ spełnia ona następujące warunki:

- i) Jeśli MRN, to $(\lambda x^{\sigma}. M) R (\lambda x^{\sigma}. N)$ dla dowolnych $x \in V$ i $\sigma \in T_{\rightarrow}$.
- ii) Jeśli MRN, to (MZ)R(NZ).
- iii) Jeśli MRN, to (ZM)R(ZN).

Przy powyższych ustaleniach kongruencją będziemy nazywali każdą zgodną relację równowazności na $\tilde{\Lambda}_{\rm T}$, zaś redukcją – każdą zgodną, zwrotną i przechodnią relację na $\tilde{\Lambda}_{\rm T}$.

Definicja 12. (β -redukcja)

 β -redukcją nazywamy najmniejsza w sensie mnogościowym zgodną relację binarną \longrightarrow_{β} określoną zbiorze na pseudotermów $\tilde{\Lambda}_{\rm T}$ za pomocą podstawienia

$$(\lambda x^{\sigma}. P)Q \longrightarrow_{\beta} P[x/Q].$$

 β -redeksami bedziemy nazywali wyrażenia postaci $(\lambda x^{\sigma}. M)N$, zaś rezultat ich β -redukcji w postaci termu $M[x/N] - \beta$ -reduktem.

Nadużywając notacji, z każdym β -redeksem Δ postaci $(\lambda x^{\tau}. P^{\rho})R$ będziemy wiązali jego stopień i pisali $\delta((\lambda x^{\tau}. P^{\rho})R) = \delta(\tau \to \rho)$, gdzie występująca po prawej stronie równości δ jest określona w myśl Definicji 2. Dysponując tą konwencją możemy określić pojęcie stopnia dowolnego λ -termu.

Definicja 13. (stopień λ -termu)

Stopniem d(M) λ -termu M nazywamy supremum zbioru stopni β -redeksów, które są zawarte w M, czyli

$$d(M) = \sup \{\delta(N) \mid N \text{ jest } \beta\text{-redeksem w } M\}.$$

Uwaga. Z każdym β-redeksem Δ związane są więc dwa rodzaje stopni: stopień d(Δ) jako λ -termu w myśl Defnicji 13 i stopień β -redeksu $\delta(\Delta)$.

Określamy następujące relacje:

- B1. $\longrightarrow_{\beta}^{+}$ jest przechodnim domknięciem relacji \longrightarrow_{β} w zbiorze pseudotermów $\tilde{\Lambda}_{T}$.
- B2. $\longrightarrow_{\beta}^*$ jest domknięciem przechodnio-zwrotnim w $\tilde{\mathbf{\Lambda}}_{\mathrm{T}}$ relacji \longrightarrow_{β} (jest reduk-cjq).
- B3. = $_{\beta}$ jest najmniejszą relację równowazności zawierającą relację \longrightarrow_{β} (jest kongruencją).

Definicja 14. (Postać normalna)

Powiemy, że λ -term M jest w postaci normalnej, jeśli żadna z jego podformuł nie jest β -redeksem. Przez NF $_{\beta}$ będziemy oznaczali zbiór wszystkich λ -termów w postaci normalnej.

Definicję postaci normalnej można ująć w alternatywny sposób w postaci Faktu 10.

Fakt 10. M ma postać normalną, jeśli $M =_{\beta} N$ dla pewnego N, który jest w postaci normalnej.

Uwaga. Fakt, że = $_{\beta}$ jest relacją równoważności może rodzić pokusę, aby utożsamić ze sobą wszystkie postacie normalne danego λ -termu. Z Twierdzenia 3 wynika jednak, że jest to zupełnie zbędne, bowiem o ile tylko λ -term jest normalizowalny, to wiemy, że posiada dokładnie jedną postać normalną i każde takie utożsamienie byłoby trywialne.

Definicja 15. (η -redukcja)

 $\eta\text{-redukcją}$ nazywamy najmniejszą (w sensie mnogościowym) zgodnąrelację w $\pmb{\Lambda}_{\mathrm{T}}$ taką, że

$$\lambda x^{\sigma}. Mx \longrightarrow_n M,$$

o ile $x \notin FV(M)$.

Zdefiniowane powyżej β - i η -redukcje zachowują typ, jak stwierdza Fakt 11. Własność ta pozwala sensownie mówić o redukcji λ -termów.

Fakt 11. (o poprawności redukcji) Jeśli $\Gamma \vdash M^{\sigma}$ i $M \longrightarrow_{\beta\eta}^{*} N$, to $\Gamma \vdash N^{\sigma}$. Dowód. [BDS13, tw. 1B.14].

1.5 Normalizacja

Powiemy, że λ -term M ma własność:

- (słabej) normalizacji (symbolicznie: $M \in WN_{\beta}$) wtedy i tylko wtedy, gdy istnieje ciąg β -redukcji rozpoczynający się od M i kończący się termem w postaci normalnej N.
- silnej normalizacji (symbolicznie: $M \in SN_{\beta}$), jeśli wszystkie ciągi β -redukcji rozpoczynające się od M są skończone.

Uwaga.Z powyższego określenia widzimy, że własność SN_β pociąga za sobą własność $\mathrm{WN}_\beta.$

Definicja 16. (Strategia redukcji)

Strategią redukcji nazywamy odwzorowanie $F: \Lambda_T \longrightarrow \Lambda_T$ takie, że F(M) = M, gdy M jest w postaci normalnej i $M \longrightarrow_{\beta} F(M)$ w przeciwnym wypadku. Mówimy, że strategia F jest normalizująca, jeśli dla każdego $M \in WN_{\beta}$ istnieje $i \in \mathbb{N}$ takie, że $F^i(M)$ jest w postaci normalnej.

Z puktu widzenia praktyki obliczeniowej istotny jest podział strategi redukcji ze względu na kolejność w jakiej redukowane będą podwyrażenia λ -termów. Wyróżniamy:

- strategie ścisłe (ang. strict), w których każdy λ -term przed aplikacją jest redukowany do postaci normalnej,
- strategie nieścisłe (ang. non-strict), w których dopuszcza się aplikowanie λ -termów, które można dalej zredukować.

Przykład 4. Niech K = $\lambda xy. x$, I = $\lambda x. x$, 0 = $\lambda xy. y$. Rozważmy następujące ciągi redukcji:

(a) Redukcja strategią scisłą:

$$KI((\lambda mnxy. mx(nxy))00) \longrightarrow_{\beta} KI((\lambda nxy. 0x(nxy))0) \longrightarrow_{\beta}$$
$$\longrightarrow_{\beta} KI((\lambda xy. 0x(0xy))) \longrightarrow_{\beta} KI((\lambda xy. 0xy)) \longrightarrow_{\beta} KI0) \longrightarrow_{\beta} I$$

(b) Redukcja strategia nieścisła:

$$KI((\lambda mnxy.mx(nxy))00) \longrightarrow_{\beta} I$$

Twierdzenie 1. (Własność WN_{β}) Wszystkie λ -termy mają postać normalną.

 $Dow \acute{o}d.$ Pokażemy, że dla dowolnego $\lambda\text{-termu}\ M$ istnieje normalizująca strategia redukcji.

Oznaczmy przez $R_{\beta}(M)$ zbiór β -redeksów znajdujących się w M. Jeśli $M \in NF_{\beta}$, to $R_{\beta}(M) = \emptyset$ i twierdzenie zachodzi w sposób trywialny. Jeśli $M \notin NF_{\beta}$, to

istnieje w M przynajmniej jeden β -redeks. Z Uwagi 2 M jest skończonej długości, więc $R_{\beta}(M)$ jest skończony. Możemy więc wybrać z M β -redeks znajdujący się (rozpoczynający się) w M najbardziej na prawo. Oznaczmy taki β -redeks przez Δ .

Niech δ_M będzie stopniem M (Definicja 13). Ponieważ wiele redeksów w M może mieć ten sam stopień δ_M , przez n_M oznaczmy liczbę wystąpień redeksów stopnia δ_M w M.

Niech F będzie strategią redukcji polegającą na β -redukowaniu redeksu Δ wybranego jak wyżej i niech M' = F(M). Zauważmy, że $n_M < n_{M'}$, gdyż strategia F eliminuje Δ z M' i może prowadzić do powstania redeksów tylko mniejszego stopnia. Istotnie, ilość redeksów w M może zwiększyć się na skutek β -redukcji tylko w jeden z poniższych sposobów:

- i) powstanie nie występujących wcześniej redeksów.
- ii) powielenie już istniejących redeksów.

W przypadku i)

(a) Redukcja $(\lambda x^{\rho \to \mu} \dots x P^{\rho} \dots)(\lambda y^{\rho}, Q^{\mu})^{\rho \to \mu}$ do nowego redeksu $(\dots (\lambda y^{\rho}, Q^{\mu})P^{\rho}\dots)$. $M[x/Q]^{\tau}$

(b) Redukcja $(\lambda x^{\tau} \lambda y^{\rho}. P^{\sigma}) M^{\tau} N^{\rho}$ do nowego redeksu postaci $(\lambda y^{\rho}. P[x/M]^{\sigma}) N^{\rho}$.

(c) Redukcja $(\lambda x^{\tau\to\rho}.x)(\lambda y^\tau.M^\rho)N^\tau$ do nowego redeksu $(\lambda y^\tau.M^\rho)N^\tau.$

Rysunek 2: Grafy odpowiadające wszystkim możliwościom w których powstają nowe $\beta\text{-redeksy}$

Twierdzenie 1 można istotnie wzmocnić. Okazuje się, że biorąc dowolny λ -term możemy mieć nie tylko pewność, że można go zredukować do postaci normalnej, ale że obierając dowolną strategię redukcja zakończy się po skończonej liczbie kroków.

Twierdzenie 2. (Własność SN_{β}) Wszystkie λ -termy mają własność silnej normalizacji.

Dowód. [SU06, tw. 3.5.5].

Twierdzenie 3. (Własność Churcha-Russera)

- CR1. Niech $M, N_1, N_2 \in \mathbf{\Lambda}_T^{\Gamma}$. Wówczas jeśli $M \longrightarrow_{\beta\eta}^{*} N_1$ i $M \longrightarrow_{\beta\eta}^{*} N_2$, to istnieje $Q \in \mathbf{\Lambda}_T^{\Gamma}$ takie, że $N_1 \longrightarrow_{\beta\eta}^{*} Q$ i $N_2 \longrightarrow_{\beta\eta}^{*} Q$.
- CR2. Niech $M, N \in \mathbf{\Lambda}_T^{\Gamma}$. Wówczas jeśli $M = \beta \eta N$, to istnieje $Q \in \mathbf{\Lambda}_T^{\Gamma}$ takie, że $M \longrightarrow_{\beta \eta}^* Q$ i $N \longrightarrow_{\beta \eta}^* Q$.

Dowód. [SU06, p. 3.6.3]

Poprawność redukcji (Fakt 11), własność silnej normalizacji (Twierdzenie 2) i własność Churcha-Russera (Twierdzenie 3) razem oznaczają, że każda strategia redukcji jest normalizująca, zaś konsekwentne redukowane λ -termu prowadzi zawsze do tej samej postaci normalnej.

Literatura

- [Bar91] Henk Barendregt. "Introduction to generalized type systems". In: Journal of Functional Programming 1.2 (1991), pp. 125–154. DOI: 10.1017/S0956796800020025.
- [BDS13] Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types. Perspectives in Logic. Cambridge University Press, 2013. DOI: 10.1017/CB09781139032636.
- [HS08] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An Introduction. 2nd ed. New York, NY, USA: Cambridge University Press, 2008. ISBN: 0521898854, 9780521898850.
- [SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism, Volume 149 (Studies in Logic and the Foundations of Mathematics). New York, NY, USA: Elsevier Science Inc., 2006. ISBN: 0444520775.