- 1. 气缸中密封有空气,初态为 p_1 =0.2MPa, V_1 =0.4 m^3 ,缓慢膨胀到 V_2 =1 m^3 。请求出以下过程中气体作出的膨胀功。
- 1) 过程中 pV 保持不变;
- 2)过程中气体先遵循 $\{p\}_{MPa}$ =0.4-0.5 $\{V\}_{m}$ "膨胀到 V_{m} =0.7m3,再维持压力不变,膨胀 V_{2} =1m3。
- 2. 空气压缩机每分钟从大气中吸入温度 t_b =17C°,压力等于当地大气压力 p_b =0.1MPa 的空气 0.2m³,充入体积为 V=1m³ 的储气罐中。储气罐中原有空气的温度 t_1 =17C°,表压力 p_{e1} =0.1MPa。问经过多长时间储气罐内气体压力才能提高到 p_2 =0.9MPa,温度 t_2 =50C°? 充完气后,又将空气冷却至 t_b =17C°,求通过罐体的换热量(视为理想气体, R_g =287J/($kg\cdot K$) c_v =0.717kJ/kgK)。
- 3. 利用水蒸汽表,确定各状态点水的状态及 h、s 的值: 1)p=0.5MPa, t=200C°; 2)p=0.5MPa, v=0.5m³/kg; 3) t=250C°, x=0.5
- 4. 有 1kmol 的氮气,其状态由 p_1 =1MPa, T_1 =400K 变化到 p_2 =0.5MPa, T_2 =1000K,试求摩尔熵变量 Δ S_m: 1)比热容可近似为定值; 2)使用气体热力表计算。
- 5. 空气在某压气机中被压缩,压缩前空气的参数是: p_1 =0.1MPa, v_1 =0.845 m^3 /kg。压缩后的 参数是 p_2 =0.8MPa, v_2 =0.175 m^3 /kg。设在压缩过程中 1kg 空气的热力学能增加 139.0kJ 同时向外放出热量 50kJ。压气机每分钟产生压缩空气 10kg。求:
 - (1) 压缩过程中对 1kg 气体所作的体积变化功;
 - (2) 生产 1kg 的压缩空气所需的功(技术功);
 - (3) 带动此压气机要用多大功率的电动机?
- 6. 某一热机工作与 T_1 =2000K, T_2 =300K 的两个恒温热源之间,试问以下几种情况是否能实现? 是否是可逆循环?(1) Q_1 =2kJ, W_{net} =1.9kJ;(2) Q_1 =2kJ, Q_2 =0.3kJ;(3) Q_2 =0.8kJ, W_{net} =1.5kJ。
- 7. 将一根 m_m =0.8kg 的金属棒投入 m_w =20kg 的水中,初始时金属棒的温度 T_m =1060K,水的温度 T_w =295K。金属棒和水的比热容分别为 c_m =0.42kJ/(kg K)和 c_w =4.187kJ/(kg K),求:终温 T_f 和金属棒、水以及它们组成的孤立系熵变。设容器为绝热。
- 8. 110kg 水被一电加热器从 15℃加热到 50℃后又自然冷却到环境温度(15℃)。设加热器 维持 370K 不变,求:各个过程的作功能力(㶲)损失。
- $c_p = 4.186 \ 8 \ \text{kJ/(kg \cdot K)}$
- 9. 试将满足以下要求的多变过程表示在 p-v 和 T-s 图上(先标出四个基本热力过程): (1) 工质膨胀、吸热且降温; (2)工质压缩、放热且升温; (3)工质压缩,吸热,且升温; (4)工质压缩、降温且降压; (5)工质放热、降温且升压; (6)工质膨胀,且升压。
- 10. 现有 1 kg 蒸汽,由初态 $p_1 = 2 \text{MPa}$, $x_1 = 0.95$,定温膨胀到 $p_2 = 0.5 \text{MPa}$,求终态参数 t_2 、 v_2 、 h_2 、 s_2 及过程中对蒸汽所加入的热量 q_T 和过程中蒸汽对外界所作的膨胀功 w。