Проверка библиотеки

Для проверки библиотеки написан скрипт Test_keras_mnist.py.

Для загрузки данных используется библиотека mnist (https://github.com/datapythonista/mnist).

Использовалась двухслойная полносвязная сеть с числом нейронов скрытого слоя = 300, сигмоидом в качестве активационной функции на скрытом слое, функцией softmax на выходном слое. В качестве ошибки используется кросс-энтропия. Число эпох = 50. Размер пачки для пакетного режима = 32.

Результат:

Cross entropy = 0.101932216729 Accuracy = 0.9667

Вывод: задача решается, библиотека работает корректно.

Загрузка данных

Для разделения данных на тренировочную и тестовую выборку используется скрипт Separator.py. Также этот скрипт масштабирует все изображения к размеру 128х128. На выходе получаются две папки с изображениями.

На вход нейронной сети изображения подаются непосредственно из папки. Для этих целей используется ImageDataGenerator из библиотеки Keras. ImageDataGenerator так же может осуществлять предобработку изображений. В рассматриваемой работе используется нормализация по входу:

$$z = \frac{x - \mu}{\sigma}$$

x — значение пикселя, μ — среднее значение пикселей изображения, σ — среднеквадратичное отклонение пикселей изображения.

Тестовые конфигурации сетей

Активационная функция на выходном слое – softmax. В качестве ошибки используется кросс-энтропия. Обучение прекращается либо при достижении 100 эпох, либо если точность не улучшается на протяжении трех эпох. Пакетный режим обучения. Размер пачки – 32. Все модели сохраняются. Продолжить использование модели можно используя скрипт LoadModel.py.

1. Lab02_net01.py

2. Lab02 net02.py

Результаты экспериментов

Номер конфигурации	Общее время выполнения	Точность на тестовом
	(c)	наборе (%)
1	247	0.4417
2	186	0.4462
3	459	0.3685