Практическая работа 6. Построение геометрического фрактала

Цель работы: Познакомиться с понятием «фрактал», изучить способы описания и генерации фрактальных объектов.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Понятие «фрактал»

Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал образовано от латинского fractus и в переводе означает состоящий из фрагментов. Оно было предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался.

Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале.

Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому"

Геометрические фракталы

Геометрические фракталы являются наиболее наглядными. Их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой *генератором*. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Рассмотрим один из таких фрактальных объектов – триадную кривую Коха. Построение кривой начинается с отрезка единичной длины (0-е поколение). Далее каждое звено (в нулевом поколении один отрезок) заменяется на *образующий элемент*, обозначенный на рис.1 через n=1. В результате такой замены получается следующее поколение кривой. В 1-ом поколении - это кривая из четырех прямолинейных звеньев, каждое длиной по 1/3. Для получения 3-го поколения проделываются те же действия – каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. Кривая n-го поколения при любом конечном n называется *предфракталом*. На рис.1 представлены пять поколений кривой. При n стремящемся к бесконечности кривая Коха становится фрактальным объектом.

Рис. 1. Кривая Коха

Пример построения геометрического фрактала

Для удобства при построении геометрических фракталов точки на плоскости будем представлять комплексными числами (в этом случае все множество точек фрактала можно описать одномерным массивом).

Построение треугольника Серпинского (метод IFS)

$$j := \sqrt{-1}$$
 Мнимая единица

Детерминированный алгоритм

$$T:=\begin{pmatrix} 0.5 & 0 & 0 & 0 & 0.5 & 0\\ 0.5 & 0 & 0.5 & 0 & 0.5 & 0\\ 0.5 & 0 & 0.25 & 0 & 0.5 & \sqrt{\frac{3}{4}} \end{pmatrix} \qquad \textbf{Матрица коэффициентов аффинных преобразований}$$

Функция, выполняющая однократное применение IFS, заданного матрицей T, на множестве X

$$\begin{aligned} & \text{affin}(X,M) \coloneqq \left| \begin{array}{l} \text{for } r \in 0.. \, \text{row} \, s(X) - 1 \\ & \text{for } i \in 0.. \, \text{row} \, s(M) - 1 \\ & \left| \begin{array}{l} \text{re} \leftarrow M_{i,\,0} \cdot \text{Re} \Big(X_r \Big) + M_{i,\,1} \cdot \text{Im} \Big(X_r \Big) + M_{i,\,2} \\ & \text{im} \leftarrow M_{i,\,3} \cdot \text{Re} \Big(X_r \Big) + M_{i,\,4} \cdot \text{Im} \Big(X_r \Big) + M_{i,\,5} \\ & Y_{rows(M) \cdot r+i} \leftarrow re + j \cdot \text{im} \\ & Y \end{aligned} \right. \end{aligned}$$

Функция, выполняющая n итераций применения IFS

$$\begin{aligned} \text{Fractal(n)} &\coloneqq & \left| \begin{array}{l} X_0 \leftarrow 0 + 0 \cdot j \\ &\text{for } i \in 1..n \\ &X \leftarrow \text{affin}(X,T) \\ X \end{aligned} \right. \end{aligned}$$

Рандомизированный алгоритм

Функция, выполн яющая однократное применение одного случайным образом выбранного аффинного преобразования, заданного матрицей T, на множестве X

$$\begin{aligned} & \text{afinRnd}(X,M) \coloneqq \left| \begin{array}{l} i \leftarrow \text{floor}(\text{rnd}(\text{row}\,\text{s}(M))) \\ & \text{re} \leftarrow M_{i,\,0} \cdot \text{Re}(X) + M_{i,\,1} \cdot \text{Im}(X) + M_{i,\,2} \\ & \text{im} \leftarrow M_{i,\,3} \cdot \text{Re}(X) + M_{i,\,4} \cdot \text{Im}(X) + M_{i,\,5} \\ & \text{re} + j \cdot \text{im} \end{array} \right. \end{aligned}$$

 $N \coloneqq 10000 \quad i \coloneqq 1..\,N$ Число итераций (размер множества)

 $X_0 := rnd(1) + j \cdot rnd(1)$ Начальная точка

 $X_i \coloneqq a fin Rnd \Big(X_{i-1}, T\Big)$ Построение множества точек фрактала

