# **Machine Learning**

**Supervised Machine Learning – Regression** 

Part 2: Model Flexibility, Overfitting, Bias-Variance Trade-Off

# Parametric Modeling – Part 2

### **Parametric Modeling**

Consider that *f* can take the parametric form

$$f(x) \approx m(x; a) \ \forall x \in I, a \in H$$

#### **Training:**

- 1. Identify parametric model m
- 2. Identify model parameters *a*

### **Training the Parameters (recap)**

Assume the simplified case that true m is known.

Then, to train  $\hat{f}$  is to train the parameters of the model, a, which can take values in set H.

Given training data  $S = \{(y_n, x_n)\}_{n=1}^N$  and loss function L, we train

$$\hat{f}(\mathbf{x}) = m(\mathbf{x}; \widehat{\mathbf{a}})$$

where

$$\hat{a} = \operatorname{argmin}_{b \in H} L(b; S)$$

We call this "fitting the model parameters to the training data."

For MSE training, 
$$L(\boldsymbol{b}, S) = \frac{1}{N} \sum_{n=1}^{N} (y_n - m(\boldsymbol{x}_n; \boldsymbol{b}))^2$$

Other loss functions?

#### Better parameter training:

- Fewer parameters
- More training data N
- Lower noise variance,  $\sigma_{\epsilon}^2$

# **Identifying Model**

- True knowledge of m in f is rarely the case. Needs domain expertise and simple f.
- Need to select hypothetical model  $\widehat{m}$  (call it <u>hypothesis</u>) to approximate the true m in f

## **Model Flexibility**

• Affine model:

$$m(x, a) = a_0 + a_1 x_1 + a_2 x_2$$

• Quadratic model:

$$m'(\mathbf{x}, \mathbf{a}) = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_1 x_2 + a_4 x_1^2 + a_5 x_2^2$$

• It holds that:

$$m(\mathbf{x}, [a_0, a_1, a_2]^T) = m'(\mathbf{x}, [a_0, a_1, a_2, a_3 = 0, a_4 = 0, a_5 = 0]^T)$$

- m' is more "flexible" than m
  - m' has more parameters than m
  - m' can become m for certain parameter configuration

### **Select Hypothesis and Train Parameters – Considerations**

We want  $\hat{f}(x) = \widehat{m}(x; \widehat{a}) \approx f(x) = m(x; a)$ .

What if *m* is more flexible than  $\widehat{m}$ ?

What if  $\widehat{m}$  is more flexible than m?

What is more important, to select  $\widehat{m}$  correctly or to train  $\widehat{a}$  well?

Place in order of preference:

- $\square$   $\widehat{m} = m$ , poor parameter training
- $\square$   $\widehat{m}$  more flexible than m, excellent parameter training
- $\square$   $\widehat{m}$  less flexible than m, poor parameter training
- $\square$   $\widehat{m} = m$ , excellent parameter training
- $\square$   $\widehat{m}$  less flexible than m, excellent parameter training

### **Select Hypothesis and Train Parameters – Considerations**

We want  $\hat{f}(x) = \widehat{m}(x; \widehat{a}) \approx f(x) = m(x; a)$ .

Given ample low-noise training data...

- $\square$  Overestimate flexibility of m?
- $\square$  Underestimate flexibility of m?

Given limited and or highly-noisy training data...

- $\square$  Overestimate flexibility of m?
- $\Box$  Underestimate flexibility of m?

 $d=1;\ m(x;\boldsymbol{a})\ \text{is 3}^{\text{rd}}\ \text{degree polynomial (4 parameters)};\ f(x)=m(x;\boldsymbol{a})+\epsilon;\ E\{\epsilon^2\}=\sigma^2_\epsilon$ 

#### **Model Estimation:**

 $\widehat{m}$  estimated as:

- 2<sup>nd</sup> deg. poly. (3 param.)
- 3<sup>rd</sup> deg. poly. (4 param.)
- 4<sup>th</sup> deg. poly. (5 param.)

#### Mod. Est. Quality:

2<sup>nd</sup> deg. too low 3<sup>rd</sup> deg. is correct 4<sup>th</sup> deg. can be



#### Param. Training:

 $\widehat{m}$  fitted with:

- N=50 samples
- $\sigma_{e} = 0.01$

#### Param. Tr. Quality:

Enough low-noise data. All models train well.

Correct and highflexibility trained models perform best.

 $d=1;\ m(x;\boldsymbol{a})\ \text{is 3}^{\text{rd}}\ \text{degree polynomial (4 parameters)};\ f(x)=m(x;\boldsymbol{a})+\epsilon;\ E\{\epsilon^2\}=\sigma^2_\epsilon$ 

#### Model Estimation:

#### $\widehat{m}$ estimated as:

- 2<sup>nd</sup> deg. poly. (3 param.)
- 3<sup>rd</sup> deg. poly. (4 param.)
- 4<sup>th</sup> deg. poly. (5 param.)

#### Mod. Est. Quality:

2<sup>nd</sup> deg. too low 3<sup>rd</sup> deg. is correct 4<sup>th</sup> deg. can be



#### Param. Training:

#### $\widehat{m}$ fitted with:

- N=5 samples
- $\sigma_{\epsilon} = 0.1$

#### Param. Tr. Quality:

Limited noisy data. Flexible models do not train well.

Moderately-trained low-flexibility model performs better (!) than poorly-trained correct-flexibility and high-flexibility models.

 $d=1;\ m(x;\boldsymbol{a})\ \text{is 3}^{\text{rd}}\ \text{degree polynomial (4 parameters)};\ f(x)=m(x;\boldsymbol{a})+\epsilon;\ E\{\epsilon^2\}=\sigma^2_\epsilon$ 

#### **Model Estimation:**

 $\widehat{m}$  estimated as:

- 2<sup>nd</sup> deg. poly. (3 param.)
- 3<sup>rd</sup> deg. poly. (4 param.)
- 4<sup>th</sup> deg. poly. (5 param.)

#### Mod. Est. Quality:

2<sup>nd</sup> deg. too low 3<sup>rd</sup> deg. is correct 4<sup>th</sup> deg. can be



#### Param. Training:

 $\widehat{m}$  fitted with:

- N=5 samples
- $\sigma_{\epsilon} = 0.01$

#### Param. Tr. Quality:

Limited low-noise data. Still, high-flexibility model does not train very well.

Correct-flexibility trained model performs best.

 $d=1;\ m(x;\boldsymbol{a})\ \text{is 3}^{\text{rd}}\ \text{degree polynomial (4 parameters)};\ f(x)=m(x;\boldsymbol{a})+\epsilon;\ E\{\epsilon^2\}=\sigma^2_\epsilon$ 

#### **Model Estimation:**

#### $\widehat{m}$ estimated as:

- 2<sup>nd</sup> deg. poly. (3 param.)
- 3<sup>rd</sup> deg. poly. (4 param.)
- 4<sup>th</sup> deg. poly. (5 param.)

#### Mod. Est. Quality:

2<sup>nd</sup> deg. too low 3<sup>rd</sup> deg. is correct 4<sup>th</sup> deg. can be



#### Param. Training:

#### $\widehat{m}$ fitted with:

- N=50 samples
- $\sigma_{e} = 0.1$

#### Param. Tr. Quality:

Enough noisy data. High-flexibility model does not train very well.

Correct-flexibility trained model performs best.

## **Overfitting**

- For any  $\widehat{m}$ ,  $\widehat{a}$  is optimized so that  $\widehat{f}(x) = \widehat{m}(x; \widehat{a})$  fits the training data as closely as allowed by the  $\widehat{m}$ .
- If  $\widehat{m}$  is flexible,  $\widehat{f}(x)$  will fit well the training data.
- This is positive, for many and/or low-noise data.
- This is negative, for limited and/or noisy data.
- Overfitting: The trained model  $\hat{f}$  overfits data and captures the noise within it. For high noise intensity, overfitted model fails to represent m and express other "unseen" data ("generalize").



# Overfitting (cont'd)



## **Measuring Model Accuracy**

- $\square$  Consider  $\hat{f}(\mathbf{x}) = \widehat{m}(\mathbf{x}; \mathbf{a})$  trained on data  $S_{tr} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ .
- $\square$  We could examine MSE on  $S_{tr}$ .

$$MSE_{tr} = \frac{1}{|S_{tr}|} \sum_{(y,x) \in S_{tr}} |y - \hat{f}(x)|^2$$

- ☐ This will be low. This is exactly what parameter training/fitting optimized.
- $\square$  Instead, we should examine MSE on fresh (unseen) <u>test data</u>  $S_{te} = \{(x_i, y_i)\}_{i=1}^M$ :

$$MSE_{te} = \frac{1}{|S_{te}|} \sum_{(y,x) \in S_{te}} |y - \hat{f}(x)|^2$$

 $d=1; m(x; \boldsymbol{a})$  is 3<sup>rd</sup> degree polynomial (4 parameters);  $f(x)=m(x; \boldsymbol{a})+\epsilon; E\{\epsilon^2\}=\sigma_\epsilon^2$ 



- Fitting well the training data.
- Slightly overfitting as *d* increases because of enough training data and low noise intensity. Limited effect on test-MSE.

Param. Training: N=50 samples;  $\sigma_{\epsilon}^2 = 0.01$ 

Moderate fitting to training data

Dr. Panos Markopoulos (panos@utsa.edu)

(underfitting).

 $d=1;\ m(x;\boldsymbol{a})\ \text{is 3}^{\text{rd}}\ \text{degree polynomial (4 parameters)};\ f(x)=m(x;\boldsymbol{a})+\epsilon;\ E\{\epsilon^2\}=\sigma_\epsilon^2$ 



Pronounced overfitting as *d* increases due to limited data. test-MSE increases fast.

- Moderate fitting to training data (underfitting).
- $\widehat{m}$  not flexible enough to express m.
- Increased train-MSE AND test-MSE

Param. Training: N=20 samples;  $\sigma_{\epsilon}^2 = 0.01$ 

 $d=1;\ m(x;\boldsymbol{a})\ \text{is 3}^{\text{rd}}\ \text{degree polynomial (4 parameters)};\ f(x)=m(x;\boldsymbol{a})+\epsilon;\ E\{\epsilon^2\}=\sigma^2_\epsilon$ 



- $\widehat{m}$  not flexible enough to express m.
- Increased train-MSE AND test-MSE



Param. Training: N=20 samples;  $\sigma_{\epsilon}^2 = 1$ 

- Moderate fitting to data (higher train-MSE floor), even for high d, due to high  $\sigma_{\epsilon}^2$ .
- Yet, higher test-MSE than before due to capturing part of the highintensity noise.

#### • <u>Previous figure:</u>

Overfitting (low train-MSE) at high d, capturing most of the low-intensity noise. High test-MSE.

#### • This figure:

Moderate fitting (higher train-MSE) at high *d*, capturing part of the high-intensity noise. Higher test-MSE.

 $d=1;\ m(x;\boldsymbol{a})\ \text{is 3}^{\text{rd}}\ \text{degree polynomial (4 parameters)};\ f(x)=m(x;\boldsymbol{a})+\epsilon;\ E\{\epsilon^2\}=\sigma_\epsilon^2$ 



- $\widehat{m}$  not flexible enough to express m.
- Increased train-MSE AND test-MSE



- Low fitting to data (flat train-MSE floor), even for high d, due to both low N and high  $\sigma_{\epsilon}^{2}$ .
- Captures little of the high-intensity noise, which is averaged out due to high *N*. Low test-MSE.

Param. Training: N=50 samples;  $\sigma_{\epsilon}^2 = 1$ 



# **Measuring Model Accuracy**



## **How to Combat Overfitting?**

#### Buy better training data:

- More examples
- Less noise

#### Fixed training data:

- Lower hypothesis flexibility
- Suboptimal parameter fitting



#### **Bias and Variance**

- $\square$  Assume that you have chosen  $\widehat{m}$  and you train the model over **random** dataset S to obtain  $\widehat{f}$ .
- $\square$  For any unseen input x and corresponding output  $y(x) = f(x) + \epsilon$ , the model exhibits:
  - ☐ Bias:

☐ Variance:

☐ MSE:

Mean over S

$$\operatorname{Bias}_{S}\left(\hat{f}(\boldsymbol{x})\right) = f(\boldsymbol{x}) - E_{S}\left[\hat{f}(\boldsymbol{x})\right]$$

Bias: Error of  $\hat{f}(x)$  to express f(x), in the mean over S.

$$Var_{S}(\hat{f}(x)) = E_{S}[\hat{f}(x) - E_{S}[\hat{f}(x)])^{2}$$

Variance of trained  $\hat{f}(x)$ , over S.

$$MSE_{S,\epsilon}\left(\hat{f}_S(x)\right) = E_{S,\epsilon}\left[\left(y(x) - \hat{f}(x)\right)^2\right]$$

SE attained by trained  $\hat{f}(x)$  on unseen x, in the mean over S and error in y(x).

### Bias and Variance (cont'd)

Simplify notation:  $Bias(\hat{f}) = f - E[\hat{f}], Var(\hat{f}) = E[(\hat{f} - E[\hat{f}])^2], \text{ and } MSE(\hat{f}) = E[(y - \hat{f})^2]$ 

Then we find:

$$MSE_{S,\epsilon} = E\left[\left(y - \hat{f}\right)^{2}\right] = E\left[\left(f + \epsilon - \hat{f}\right)^{2}\right] = E\left[\left(f - \hat{f}\right)^{2} + \epsilon^{2} + 2\epsilon\left(f - \hat{f}\right)\right]$$
$$= E\left[\left(f - \hat{f}\right)^{2}\right] + E\left[\epsilon^{2}\right] + 2E\left[\left(f - \hat{f}\right)\epsilon\right] = E\left[\left(f - \hat{f}\right)^{2}\right] + \sigma_{\epsilon}^{2}$$

In turn we find:

$$E\left[\left(f-\hat{f}\right)^{2}\right] = E\left[f^{2} + \hat{f}^{2} - 2f\hat{f}\right] = f^{2} + E\left[\hat{f}^{2}\right] - 2fE\left[\hat{f}\right]$$

$$= f^{2} + E\left[\hat{f}^{2}\right] - 2fE\left[\hat{f}\right] + E\left[\hat{f}\right]^{2} - E\left[\hat{f}\right]^{2} - 2E\left[\hat{f}\right]^{2} + 2E\left[\hat{f}\right]^{2}$$

$$= f^{2} + E\left[\hat{f}^{2} + E\left[\hat{f}\right]^{2} - 2E\left[\hat{f}\right]^{2}\right] - 2fE\left[\hat{f}\right] + E\left[\hat{f}\right]^{2}$$

$$= (f - E\left[\hat{f}\right])^{2} + E\left[\hat{f}^{2} + E\left[\hat{f}\right]^{2} - 2E\left[\hat{f}\right]\hat{f}\right] = (f - E\left[\hat{f}\right])^{2} + E\left[(\hat{f} - E\left[\hat{f}\right])^{2}\right] = Bias^{2}(\hat{f}) + Var(\hat{f})$$

## Bias and Variance (cont'd)

We proved that, for any given x, the MSE is:

$$MSE_{S,\epsilon}(\hat{f}(x)) = \left(Bias_S(\hat{f}(x))\right)^2 + Var_S(\hat{f}(x)) + \sigma_{\epsilon}^2$$

The mean MSE over all (random) unseen data is:

$$MSE = E_{x} \left[ MSE_{S,\epsilon} \left( \hat{f}(x) \right) \right] = E_{x} \left[ \left( Bias_{S} \left( \hat{f}(x) \right) \right)^{2} + Var_{S} \left( \hat{f}(x) \right) \right] + \sigma_{\epsilon}^{2}$$

### Bias and Variance (cont'd)

☐ We proved that the MSE is:

$$MSE = E_{x} \left[ \left( Bias_{S} \left( \hat{f}(x) \right) \right)^{2} + Var_{S} \left( \hat{f}(x) \right) \right] + \sigma_{\epsilon}^{2}$$

$$MSE = \underbrace{E_{x} \left[ \left( f(x) - E_{S} \left[ \hat{f}(x) \right] \right)^{2} \right]}_{B} + \underbrace{E_{x} \left[ E_{S} \left[ \left( \hat{f}(x) - E_{S} \left[ \hat{f}(x) \right] \right)^{2} \right] \right]}_{V} + \sigma_{\epsilon}^{2}$$

- ☐ How to reduce MSE?
  - $\Box$  Consider  $\sigma_{\epsilon}^2$  given.
  - ☐ Reduce Bias and/or Variance.
  - ☐ Two things to tune: hypothesis and number of training data.

### **High Bias**

$$MSE = \underbrace{E_{x} \left[ \left( f(x) - E_{S} \left[ \hat{f}(x) \right] \right)^{2} \right]}_{B} + \underbrace{E_{x} \left[ E_{S} \left[ \left( \hat{f}(x) - E_{S} \left[ \hat{f}(x) \right] \right)^{2} \right] \right]}_{V} + \sigma_{\epsilon}^{2}$$

#### High B:

- Over the unseen points (in the mean), over the possible training datasets of size N (in the mean), your model is far from true f.
- $\square$  This is because hypothesis  $\widehat{m}$  is too rigid (not flexible enough).
- $\square$  Cannot fit true f and generalize to unseen data.

#### Remedy:

 $\square$  For fixed *N*, increase the flexibility (e.g., #parameters) of  $\widehat{m}$ .

### **Example 4 – High Bias**

True:  $f(x) = 3x^3 + 2x^2 + 3x$ . Hypothesis: line (simpler). N = 12,  $\sigma_{\epsilon} = 5$ .



Model cannot fit the training data (underfitting).

$$B = \frac{E_x}{\left[ \left( f(x) - E_S \left[ \hat{f}(x) \right] \right)^2 \right]}$$



from the mean model (over all training datasets of size *N*). Both model instances and mean model are far from the true *f*.

### **Example 4 - Increase Data**

Same simple hypothesis. Increase N = 64.



Still underfitting.



- Bias remains. Variance (and, thus, MSE) somewhat decreased.
- Increasing the amount of data typically drops variance.

### **Example 4 - Increase Flexibility**

Keep N = 12 data. Increase flexibility to deg-3 polynomial.



- Fits data better, but not all of them and not perfectly.
- Since  $\sigma > 0$  this is good; the model can generalize.



- Bias eliminated.
- Variance remains.

### **High Variance**

$$MSE = \underbrace{E_{x} \left[ \left( f(x) - E_{S} \left[ \hat{f}(x) \right] \right)^{2} \right]}_{B} + \underbrace{E_{x} \left[ E_{S} \left[ \left( \hat{f}(x) - E_{S} \left[ \hat{f}(x) \right] \right)^{2} \right] \right]}_{V} + \sigma_{\epsilon}^{2}$$

#### High *V*:

- Over the unseen points (in the mean), model instances across different training datasets of size N deviate a lot from the mean model (in the mean).
- ☐ This is because our hypothesis is too flexible and overfits to each specific training dataset.
- $\square$  Each training dataset contains error and deviates from true f.
- $\Box$  Thus, overfitted model is far from the true f and cannot express unseen data (generalize).

#### Remedy:

- ☐ For same number of data, reduce flexibility to reduce variance.
- ☐ For same hypothesis, increase the number of data to reduce variance.

### **Example 5 - High Variance**

True:  $f(x) = 2x^2 + 3x + 4$ . Hypothesis: deg-6 polynomial (more complex). N = 12,  $\sigma = 5$ .



Model fits more to the training data than true *f*. **Overfitting.** 



- The mean model (over all datasets of size *N*) matches the true *f*. Minimal Bias.
- But each **model instance** is far from the mean model and the true *f*. **High Variance**.

### **Example 5 - Increase Data**

Same flexible hypothesis. **Increase** N = 32.



Model cannot fit to training data. Not complex enough for increased N. Model balances among training data, staying closer to the true f.



- The mean model matches the true f. No Bias.
- Now each model instance is closer to the mean model and the true f. Variance reduced.

### **Example 5 - Reduce Flexibility**

Keep same N. Reduce flexibility to deg-4 polynomial.



Model cannot fit to all training data. Not complex enough. Model balances among training data, staying closer to the true *f*.



- The mean model almost the true f. Low bias.
- Each **model instance** is closer to the mean model and the true *f*. **Variance reduced.**

# **Example 5 - Correct Hypothesis**

For correct hypothesis, even N = 6 suffices. More training data will be better of course.





$$N = 32$$

#### **Bias-Variance Trade-Off**



- ☐ For lower model flexibility,
  - □ Some very little bias exists. Simple model underfits.
  - ☐ Assuming enough data, variance is low.
  - ☐ Therefore, MSE is low.
- ☐ As flexibility increases to the best spot,
  - ☐ Bias further reduces.
  - ☐ Variance starts increasing but remains low.
  - ☐ MSE remains low.
- ☐ As flexibility increases excessively,
  - ☐ Variance increases. Flexible model overfits to training data.
  - ☐ Bias remains low.
  - ☐ Following the variance, MSE increases.

## **Bias-Variance Trade-Off (cont'd)**



- ☐ For lower model flexibility,
  - ☐ Bias is very high. Sever underfitting.
  - ☐ Assuming enough data, variance is low.
  - ☐ Following the bias, MSE is very high.
- ☐ As flexibility increases toward the best spot,
  - ☐ Bias rapidly drops.
  - ☐ Variance remains low.
  - ☐ MSE rapidly drops, following the bias.
- ☐ As flexibility starts increasing excessively,
  - ☐ Bias remains low.
  - ☐ Variance starts increasing. As #parameters increase, while *N* remains fixed, mild overfitting starts appearing.
  - ☐ Following the variance, MSE starts increasing.

### **Bias-Variance Trade-Off (cont'd)**



Moderately complex f.

- ☐ For low flexibility,
  - ☐ Bias is very high, leading to high MSE. Underfitting.
  - ☐ Assuming enough data, variance is low.
- $\square$  As flexibility increases to the best spot (complexity of true f),
  - ☐ Bias drops drastically.
  - ☐ Variance starts increasing but remains relatively low.
  - ☐ Following the bias, MSE drops drastically.
- ☐ As flexibility increases excessively,
  - ☐ Given data are not enough any more to sustain low variance. Model too flexible for the given amount of data. Variance increases. Overfitting.
  - ☐ Bias remains low.
  - ☐ Following the variance, MSE increases.

## **Bias-Variance Trade-Off (cont'd)**



- ☐ Figure expresses what is known as Bias-Variance Trade-Off.
- ☐ We want to be about where Bias and Variance meet.
- ☐ But we do not have the Bias/Variance curves when we design/train the model...
  - $\square$  This is why we wish we have a good guess of what the true f complexity is.