BML lecture #2: MCMC

http://github.com/rbardenet/bml-course

Rémi Bardenet

CNRS & CRIStAL, Univ. Lille, France

- 1 Introduction
- 2 Monte Carlo methods
- 3 The Metropolis-Hastings algorithm
- 4 Gibbs sampling
- 5 Hamiltonian Monte Carlo
- 6 Convergence diagnostics for MCMC

- 1 Introduction
- 2 Monte Carlo methods
- 3 The Metropolis-Hastings algorithm
- 4 Gibbs sampling
- **5** Hamiltonian Monte Carlo
- 6 Convergence diagnostics for MCMC

What comes to your mind when you hear "Monte Carlo"?

Expected utility requires computing integrals

Minimizing the posterior expected loss

If we partition $s = (s_o, s_u)$, then, given s_o , we choose

$$a^{\star} = \delta(s_o) = \underset{a \in \mathcal{A}}{\arg\min} \mathbb{E}_{s_u|s_o} L(a, s).$$

The bottleneck is computing integrals w.r.t. the posterior

► E.g. for binary prediction with 0-1 loss

$$y^* \in \operatorname*{arg\,max}_{y \in \{0,1\}} \int p(y|x, \theta) p(\theta|x_{1:n}, y_{1:n}) \mathrm{d} \theta$$

or for estimation with squared loss

$$\theta^* = \int \theta p(\theta|y_{1:n}) d\theta.$$

Numerical integration

Let π be a pdf w.r.t. $d\theta$.

The problem of numerical integration

Find T nodes (θ_t) and weights (w_t) so that

$$\int f(\theta)\pi(\theta)\mathrm{d}\theta \quad pprox \quad \sum_{t=1}^N w_t f(\theta_t), \quad \forall f \in \mathcal{C},$$

where C is a large class of functions.

A constraint for Bayesians: π is only known up to a constant

E.g. in estimation,

$$\pi(\theta) = p(\theta|y_{1:n}) \propto p(y_{1:n}|\theta)p(\theta) =: \pi_u(\theta).$$

Or in classification/regression,

$$\pi(\theta) = p(\theta|x_{1:n}, y_{1:n}) \propto p(y_{1:n}|x_{1:n}, \theta)p(\theta) =: \pi_u(\theta).$$

► For modern developments, see quasi-Monte Carlo integration Dick and Pilichshammer, 2010.

- 1 Introduction
- 2 Monte Carlo methods
- 3 The Metropolis-Hastings algorithm
- 4 Gibbs sampling
- **5** Hamiltonian Monte Carlo
- 6 Convergence diagnostics for MCMC

The Monte Carlo principle

Find a distribution on $\theta_1, \dots, \theta_T$ and weights w_t such that

$$\mathcal{E}_{\mathcal{T}}(f) = \sum_{t=1}^{T} w_t f(\theta_t) - \int f(\theta) \pi(\theta) d\theta$$

is small (with large probability, in quadratic mean, converges in law at some rate, etc.)

If you knew how to sample from π , you could take $\theta_t \sim \pi$ i.i.d., $w_t = 1/T$, and prove e.g.

$$\mathbb{P}\left(\mathcal{E}_{\mathcal{T}}(f) \geqslant \alpha \frac{\sigma(f)}{\sqrt{T}}\right) \leqslant \frac{1}{\alpha^2}, \quad \forall \alpha,$$

as soon as $\sigma(f)^2 := \mathbb{V}_{\pi}[f(\theta) - \int f(\theta)\pi(\theta)d\theta] < +\infty$.

Self-normalized importance sampling

- Let $\pi_u(\theta) = Z\pi(\theta)$ be the unnormalized target pdf.
- ▶ Sample $\theta_{1:T}$ i.i.d. from q, and take

$$w_t = \frac{\pi_u(\theta_t)}{q(\theta_t)} \times \left(\sum_{t=1}^T \frac{\pi_u(\theta_t)}{q(\theta_t)}\right)^{-1}$$

so that $\sum w_t = 1$.

► Then

- ▶ One can show that $\sqrt{T}\mathcal{E}_{T}(f) \to \mathcal{N}(0, \sigma_{NIS}^{2}(f))$.
- ▶ Problem is that for reasonable choices of $f, q, \pi, \log \sigma_{NIS}(f) \propto d$.

- 1 Introduction
- 2 Monte Carlo methods
- 3 The Metropolis-Hastings algorithm
- 4 Gibbs sampling
- **5** Hamiltonian Monte Carlo
- 6 Convergence diagnostics for MCMC

(Mostly) friendly faces

Figure: A subset of MCMC pioneers: N. Metropolis, S. Ulam, W. K. Hastings

Markov chain Monte Carlo (MCMC; (Robert and Casella, 2004))

The idea is to take (θ_t) to be an ergodic Markov chain with limiting distribution π , so that for $f \in L^1(\pi)$,

- ▶ A Markov chain is specified by its kernel $P(\theta, \theta')$.
- \blacktriangleright We often try to prove that, with weak conditions on π and f,

- and $\sigma^2(f)$ can be estimated; see (Douc, Moulines, and Stoffer, 2014).
- ▶ Most MCMC kernels are instances of the Metropolis-Hastings kernel.

$$P_{\mathsf{MH}}(\theta, \theta') = \alpha(\theta, \theta') q(\theta'|\theta) + \delta_{\theta}(\theta') \left[1 - \int \alpha(\theta, \vartheta) q(\vartheta|\theta) \right] d\vartheta,$$

where

$$\alpha(\theta, \theta') = 1 \wedge \frac{\pi(\theta')}{\pi(\theta)} \frac{q(\theta|\theta')}{q(\theta'|\theta)}.$$

The Metropolis-Hastings algorithm

```
\mathrm{MH}(\pi_u, q(\cdot|\cdot), \theta_0, T)
                 for t \leftarrow 1 to T
                               \theta \leftarrow \theta_{t-1}
                               \theta' \sim \mathbf{q}(.|\theta), \ u \sim \mathcal{U}_{(0,1)},
                             \rho = \frac{\pi(\theta')}{\pi(\theta)} \frac{q(\theta|\theta')}{q(\theta'|\theta)}.
                         if u < \rho,
5
                                            \theta_t \leftarrow \theta' \qquad \triangleright Accept
6
                                else \theta_t \leftarrow \theta \triangleright Reject
                   return (\theta_t)_{t=1,...,N_{\text{iter}}}
```

MH leaves π invariant

▶ We first show detailed balance, i.e., $\pi(\theta)P(\theta,\theta') = \pi(\theta')P(\theta',\theta)$.

 \blacktriangleright We deduce that P leaves π invariant.

▶ Note that if P_1 and P_2 leave π invariant, then so does

$$P_1P_2(\theta,\theta') = \int P_1(\theta,\vartheta)P_2(\vartheta,\theta')\mathrm{d}\vartheta.$$

➤ The MH error scales polynomially with the dimension; see https://statisfaction.wordpress.com/2018/05/15/scaling-of-mcmcwith-dimension-experiments/

- 1 Introduction
- 2 Monte Carlo methods
- 3 The Metropolis-Hastings algorithm
- 4 Gibbs sampling
- **5** Hamiltonian Monte Carlo
- 6 Convergence diagnostics for MCMC

The random scan Gibbs sampler

Consider MH with

$$q(\theta'|\theta) = rac{1}{d} \sum_{k=1}^d \pi(\theta_k|\theta_{\setminus k}), \quad \theta_{\setminus k} := (\theta_1, \dots, \theta_{k-1}, \theta_{k+1}, \dots, \theta_d).$$

▶ Then the probability of acceptance $\alpha(\theta, \theta')$ is always 1.

- ▶ In practice, the systematic scan Gibbs sampler is more common, which consists in repeatedly: drawing $\theta_1|\theta_{\setminus 1}$, then $\theta_2|\theta_{\setminus 2}$, etc. always conditioning on the newest values available of each θ_k .
- You can also partition θ in arbitrary blocks.

An example: Latent Dirichlet allocation

Collapsed Gibbs sampling for LDA

- 1 Introduction
- 2 Monte Carlo methods
- 3 The Metropolis-Hastings algorithm
- 4 Gibbs sampling
- 5 Hamiltonian Monte Carlo
- 6 Convergence diagnostics for MCMC

Hamiltonian dynamics is the source of inspiration

Hamilton's equations of motion

Consider a physical system described by Hamiltonian $H(x,\xi)$ in phase space $(x,\xi) \in \mathbb{R}^{2d}$. Then the trajectories are prescribed by

$$\dot{x}_i = \frac{\partial H}{\partial \xi_i} \qquad \dot{\xi}_i = -\frac{\partial H}{\partial x_i}.$$
 (1)

- ▶ Given an initial point (x, ξ) , solve (1) and denote the corresponding position in \mathbb{R}^{2d} at time t > 0 by $\Phi_t(x, \xi)$.
- ▶ (1) implies that $t \mapsto H(\Phi_t(x,\xi))$ is constant.
- $lackbox{\Phi}_t$ has an inverse, and $\int_A \mathrm{d}x\mathrm{d}\xi = \int_{\Phi_t(A)} \mathrm{d}x\mathrm{d}\xi$.
- As an example, consider $H(x,\xi) = \frac{1}{2}x^2 + \frac{1}{2}\xi^2$.

Hamiltonian Monte Carlo mimics a physical system

- ► Let $\log \pi(x, \xi) = \log \pi(x) + \frac{1}{2} \xi^T M(x) \xi$.
- For t > 0 fixed, consider the Markov kernel $P((x, \xi), (x, \xi'))$ corresponding to

$$\xi \sim \mathcal{N}(0, M(x)^{-1})$$

followed by

$$(x',\xi')=\varphi_T(x,\xi).$$

Then $\pi(x,\xi)$ is invariant for P, and so is its marginal $\pi(x)$.

- ► Integrating the Hamilton flow can lead to long jumps compared to MH with a Gaussian proposal, especially in high dimensions.
- In practice, φ_T has to be approximated, thus requiring an acceptance step. Paramaters like T have to be tuned, as in NUT (Hoffman and Gelman, 2014), which favors long jumps with no U-turns.

- 1 Introduction
- 2 Monte Carlo methods
- 3 The Metropolis-Hastings algorithm
- 4 Gibbs sampling
- **5** Hamiltonian Monte Carlo
- 6 Convergence diagnostics for MCMC

Figure: Taken from (Gelman et al., 2013)

We need to monitor both cross-chain and within-chain behavior.

Comparing P chains with overdispersed starting points

- ▶ The behaviour of the *P* traces should become similar.
- ► Always make visual sanity checks!
- ▶ Scalar estimates should converge to the same value.
- We can also compare the variance of a scalar estimate within- and across chains

The Gelman-Rubin diagnostic

- ▶ Choose an f of interest, e.g. $f(\theta) = \theta_1$.
- ► Compute $B := \frac{T}{P-1} \sum_{p=1}^{P} (\bar{f}_{\cdot p} \bar{f}_{\cdot \cdot})^2$.
- ► Compute $W := \frac{1}{P} \sum_{p=1}^{P} \left[\frac{1}{T-1} \sum_{t=1}^{T} (\bar{f}_{tp} \bar{f}_{\cdot p})^2 \right]$.
- Then check whether

$$\hat{R} = \sqrt{\frac{\frac{T-1}{T}W + \frac{1}{T}B}{W}} \in [1, 1.1].$$

More convergence diagnostics

Single-chain diagnostics

- ▶ The idea is to compare different chunks of a single chain.
- At stationarity, large chunks should be statistically hard to distinguish.
- ► The Geweke diagnostic tests this similarity (Gew04)

Effective sample size

- Autocorrelation in each chain is what increases the variance of scalar estimands, compared to i.i.d. draws from π .
- ▶ We can estimate this autocorrelation, and build an estimator for the ratio of the two variances $\widehat{ESS} \in [1, PT]$, called the *effective sample size*; see e.g. (Gelman et al., 2013, Section 11.5).

Conclusion

Take-home message

- MCMC approximates the integrals in the expected utility framework.
- ► Try to leverage the problem's structure to design your kernels.
- Otherwise, try standard kernels like HMC.
- Always monitor convergence.
- HMC with NUTS is the default choice in most probabilistic programming frameworks.
- MCMC is a rich research topic. Some keywords: Wang-Landau Langevin, equi-energy, hit-and-run, bouncy particle sampler.
- Besides Markov chains, checkout sequential Monte Carlo samplers (Del Moral, Doucet, and Jasra, 2006).
- Deterministic methods are also investigated: quasi-Monte Carlo methods (Dick and Pilichshammer, 2010) have the best convergence rates as soon as the integrand is smooth.

Conclusion

Take-home message

- MCMC approximates the integrals in the expected utility framework.
- ► Try to leverage the problem's structure to design your kernels.
- Otherwise, try standard kernels like HMC.
- Always monitor convergence.
- ► HMC with NUTS is the default choice in most probabilistic programming frameworks.
- ► MCMC is a rich research topic. Some keywords: Wang-Landau, Langevin, equi-energy, hit-and-run, bouncy particle sampler.
- Besides Markov chains, checkout sequential Monte Carlo samplers (Del Moral, Doucet, and Jasra, 2006).
- ▶ Deterministic methods are also investigated: quasi-Monte Carlo methods (Dick and Pilichshammer, 2010) have the best convergence rates as soon as the integrand is smooth.

- [1] P. Del Moral, A. Doucet, and A. Jasra. "Sequential Monte Carlo samplers". In: *Journal of the Royal Statistical Society: Series B* (Statistical Methodology) 68.3 (2006), pp. 411–436.
- [2] J. Dick and F. Pilichshammer. *Digital Nets and Sequences*. *Discrepancy Theory and Quasi-Monte Carlo Integration*. Cambridge University Press, 2010.
- [3] R. Douc, É. Moulines, and D. Stoffer. *Nonlinear time series*. Chapman-Hall, 2014.
- [4] A. Gelman et al. Bayesian data analysis. 3rd. CRC press, 2013.
- [5] M. D. Hoffman and A. Gelman. "The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.". In: Journal of Machine Learning Research 15.1 (2014), pp. 1593–1623.
- [6] C. P. Robert and G. Casella. Monte Carlo statistical methods. Springer, 2004.