國立成功大學 工科系統微積分(一) 期末考 1月 12 日, 2016

課程代碼: F115611 授課教師: 蕭仁傑

學生姓名:		
學生證號碼:		
研討課班級/助教姓名:		

Instructions:

- 1. There are 6 pages (including the cover page), 15 problems in this exam.
- 2. You have **110 minutes** to work on the exam.
- 3. Do **NOT** start the exam until you are told to do so.
- 4. Only the answers written above the answer lines will be graded.
- 5. Please have your **student ID** card ready.
- 6. No textbook, notes, calculator, or sketching sheets are allowed.
- 7. You may want to use the back of the exam pages for computations.

Page:	1	2	3	4	5	Total
Points:	28	28	20	14	10	100
Score:						

- 1. Evaluate the following integrals.
 - (a) (7 points)

$$\int_{1}^{e} \frac{\ln x}{x} \, dx =$$

A. $\frac{1}{e}$ **B.** 1 **C.** $\frac{1}{2}$ **D.** e-1 **E.** e+1.

(a) _____

Solution: C. $\frac{1}{2}$

(b) (7 points)

$$\int_{1}^{2} 3^t dt =$$

A. $\frac{6}{\ln 3}$ **B.** $2 \ln 3$ **C.** $\frac{2}{\ln 3}$ **D.** $6 \ln 3$ **E.** 6.

(b) _____

Solution: A. $\frac{6}{\ln 3}$

(c) (7 points)

$$\int_0^{\frac{1}{2}} \frac{1}{x-1} \, dx =$$

A. $-\ln 2 - 1$ **B.** $1 - \ln 2$ **C.** $\ln 2$ **D.** $-\ln 2$ **E.** $\ln 2 - 1$.

(c) _____

Solution: D. $-\ln 2$

(d) (7 points)

$$\int_0^{\ln 2} e^x \sqrt{e^x - 1} \, dx =$$

A. $\frac{1}{3}$ **B.** $\frac{3}{2}$ **C.** $\frac{1}{2}$ **D.** 2 **E.** $\frac{2}{3}$.

(d) _____

Solution: E. $\frac{2}{3}$

- 2. Evaluate the following integrals.
 - (a) (7 points)

$$\int_0^{\frac{\pi}{4}} \sec x \tan x \, dx =$$

A. $\sqrt{2} - 1$ **B.** $\frac{1}{2}(\sqrt{2} - 1)$ **C.** 1 **D.** $\frac{\sqrt{2}}{2} - 1$ **E.** $\frac{\sqrt{2}}{2}$.

(a) _____

Solution: A. $\sqrt{2}-1$

(b) (7 points)

$$\int_0^{\frac{\pi}{2}} \cos^5 x \sin x \, dx =$$

A. $-\frac{1}{6}$ **B.** $\frac{1}{6}$ **C.** $-\frac{1}{4}$ **D.** $\frac{1}{4}$ **E.** $\frac{1}{5}$.

(b) _____

Solution: B. $\frac{1}{6}$

(c) (7 points)

$$\int_0^{\frac{\pi}{4}} \cos^2 x \, dx =$$

A. $\frac{1}{4} + \frac{\pi}{4}$ **B.** $\frac{1}{2} + \frac{\pi}{4}$ **C.** $\frac{1}{2} + \frac{\pi}{8}$ **D.** $\frac{1}{4} + \frac{\pi}{8}$ **E.** $\frac{1}{8} + \frac{\pi}{4}$.

(c) _____

Solution: D. $\frac{1}{4} + \frac{\pi}{8}$

(d) (7 points)

$$\int_{1}^{\sqrt{3}} \frac{1}{1+x^2} \, dx =$$

A. $\frac{\pi}{12}$ B. $\frac{\pi}{4}$ C. $\frac{\pi}{6}$ D. $\frac{\pi}{2}$ E. $\frac{\pi}{3}$.

(d) _____

Solution: A. $\frac{\pi}{12}$

- 3. (6 points) If $f(x) = x + e^x$, find $(f^{-1})'(1)$.
 - **A.** 1 **B.** $\frac{1}{2}$ **C.** e+1 **D.** $\frac{1}{e+1}$ **E.** 2.

3. _____

Solution: B. $\frac{1}{2}$

- 4. Let $f(x) = -xe^{-x}$.
 - (a) (7 points) Find the limit

$$\lim_{x \to \infty} f(x) =$$

A. 1 **B.** -1 **C.** 0 **D.** ∞ **E.** $-\infty$.

(a) _____

Solution: C. 0

(b) (7 points) Find the value of the improper integral (if it is convergent)

$$\int_0^\infty f(x) \, dx =$$

A. 1 **B.** -1 **C.** 0 **D.** ∞ **E.** $-\infty$.

(b) _____

Solution: B. -1

5. (7 points)

$$\int_{-4}^{1} \frac{x-9}{(x+5)(x-2)} \, dx =$$

A. $3 \ln 6 - 3$ **B.** $4 \ln 6$ **C.** $2 \ln 6$ **D.** $4 \ln 6 - 2$ **E.** $3 \ln 6$.

5. _____

Solution: E. $3 \ln 6$

6. (7 points) Find the length of the curve $y = \ln(\sec x), 0 \le x \le \frac{\pi}{6}$.

A. $\ln \frac{2}{\sqrt{3}}$ **B.** $\ln \frac{1}{\sqrt{3}} - 1$ **C.** $\ln \frac{2}{\sqrt{3}} - 1$ **D.** $\ln \sqrt{3}$ **E.** $\ln \frac{1}{\sqrt{3}}$.

6. _____

Solution: D. $\ln \sqrt{3}$

7. (a) (5 points)

$$\int \tan^{-1} x \, dx =$$

(a) _____

Solution: $x \tan^{-1} x - \frac{1}{2} \ln(1 + x^2) + C$

(b) (5 points)

$$\int \sqrt{1-x^2} \, dx =$$

(b) _____

Solution: $\frac{1}{2}(x\sqrt{1-x^2}+\sin^{-1}x)+C$