编译原理作业四 白晋斌

171860607 810594956@qq.com

P164: 4.6.2 (中文版厚书) P153: 4.6.2 (中文版薄书)

练习4.6.2: 为练习4.2.1 中的(增广)文法构造 SLR 项集。计算这些项集的 GOTO 函数。给

出这个文法的语法分析表。这个文法是 SLR 文法吗?

文法如下:

 $S \rightarrow S S + |SS| * |a|$

提取左公因子,得:

 $S \rightarrow SSA|a$

A -> + | *

消除左递归,得:

S -> aB

 $B \rightarrow aBAB | \varepsilon$

A -> + | *

构造 FRIST 集与 FOLLOW 集:

 $FIRST(S)={a}$

FIRST(B)= $\{a, \varepsilon\}$

FIRST(A)={+,*}

FOLLOW(S)={\$}

FOLLOW(B)={\$,+,*}

 $FOLLOW(A) = \{\$, a\}$

因此得增广文法:

- (0) S' -> S
- (1) S -> aB
- (2) B -> aBAB
- (3) B $\rightarrow \epsilon$
- (4) A -> +
- (5) A -> *

项集闭包:

项集*I*₀: S'->·S S->·aB

项集*I*₁: S'->S·

项集I2: S->a·B B->·aBAB B->·

项集I3: S->aB·

项集I₄: B->a·BAB B->·aBAB B->·

项集I₅: B->aB·AB A->·+ A->·*

项集I₆: B->aBA·B B->·aBAB B->·

项集I₇: A->+·

项集I₈: A->*·

项集I₉: B->aBAB·

GOTO 函数:

 $GOTO(I_0,S)=I_1$

 $GOTO(I_0,a)=I_2$

 $GOTO(I_2,B)=I_3$

 $GOTO(I_2,a)=I_4$

 $GOTO(I_4,B)=I_5$

GOTO(I_4 ,a)= I_4

COTO(14,4) 14

 $GOTO(I_5,A)=I_6$

 $\mathsf{GOTO}(I_5,+)=I_7$

GOTO(I_5 ,*)= I_8

GOTO(I_6 ,B)= I_9

GOTO(I_6 ,a)= I_4

 $GOTO(I_1,\$)=accept$

项集规范族如图:

语法分析表:

状态	ACTION				GOTO		
	а	+	*	\$	S	Α	В
0	s2				1		
1				accept			
2	s4	r3	r3	r3			3
3				r1			
4	s4	r3	r3	r3			5
5		s7	s8			6	
6	s4	r3	r3	r3			9
7	r4			r4			
8	r5			r5			
9		r2	r2	r2			

因为 SLR 分析表没有冲突,所以这个文法是 SLR 文法.

P164: 4.6.3 (中文版厚书) P153: 4.6.3 (中文版薄书)

练习 4. 6. 3: 利用练习 4. 6. 2 得到的语法分析表,给出处理输入 aa * a + 时的各个动作。

	栈	符号	输入	动作
(1)	0		aa*a+\$	移入
(2)	02	а	a*a+\$	移入
(3)	0 2 4	aa	*a+\$	根据 B -> ε归约
(4)	0245	aaB	*a+\$	移入
(5)	02458	aaB*	a+\$	根据 A->*归约
(6)	02456	aaBA	a+\$	移入
(7)	024564	aaBAa	+\$	根据 B -> ε归约
(8)	0245645	aaBAaB	+\$	移入
(9)	02456457	aaBAaB+	\$	根据 A-> +归约
(10)	02456456	aaBAaBA	\$	根据 B -> ε归约
(11)	024564569	aaBAaBAB	\$	根据 B -> aBAB 归约
(12)	024569	aaBAB	\$	根据 B -> aBAB 归约
(13)	023	аВ	\$	根据 S -> aB 归约
(14)	01	S	\$	accept

P165: 4.6.6 (中文版厚书) P154: 4.6.6 (中文版薄书)

练习 4.6.6: 说明下面的文法

 $S \rightarrow S A \mid A$

 $A \rightarrow a$

是 SLR(1)的, 但不是 LL(1)的。

该文法生成的 SLR 语法分析表没有冲突,故该文法是 SLR(1)的; S->SA 与 S->A 均能导出 a 开头的串,所以该文法不是 LL(1)的.

证明如下:

先求语法分析表:

无左公因子.

消除左递归,得:

S -> AB

 $B \rightarrow S | \varepsilon$

A -> a

构造 FRIST 集与 FOLLOW 集:

FIRST(S)={a}

FIRST(B)= $\{a, \varepsilon\}$

FIRST(A)={a}

FOLLOW(S)={\$}

FOLLOW(B)={\$}

 $FOLLOW(A) = \{\$, a\}$

因此得增广文法:

(0) S' -> S

(1) S -> aB

(2) B -> S

(3) B -> ϵ

(4) A -> a

项集闭包:

项集*I*₀: S'->·S S->·aB

项集I₁: S'->S·

项集*I*₂: S->a·B B->·S B->· S->·aB

项集I₃: S->aB·

项集I₄: B->S·

GOTO 函数:

 $GOTO(I_0,S)=I_1$

 $GOTO(I_0,a)=I_2$

 $GOTO(I_2,B)=I_3$

 $GOTO(I_2,S)=I_4$

 $GOTO(I_2,a)=I_2$

 $GOTO(I_1,\$)=accept$

项集规范族如图:

语法分析表:

状态	ACT	ION	GOTO					
	а	\$	S	Α	В			
0	s2		1					
1		accept						
2	s2	r3	4		3			
3		r1						
4		r2						

因为 SLR 分析表没有冲突,所以这个文法是 SLR 文法.

接下来说明该文法不是 LL(1)的:

由 LL(1)文法的定义知:

对文法的任意两个产生式 $A \rightarrow \alpha \mid 6$

- 不存在终结符号 α 使得 α 和 β 都可推导出以 α 开头的串
- α和 β最多只有一个可推导出空串
- 如果 θ 可推导出空串,那么 α 不能推导出以 FOLLOW(A) 中任何终结符号开头的 串 等价于
- FIRST(α) ∩ FIRST(β) = Φ (条件一、二)
- 如果 $\epsilon \in FIRST(\theta)$,那么 $FIRST(\alpha) \cap FOLLOW(A) = Φ$; 反之亦然 (条件三)

FIRST(S)={a}, FIRST(A)={a},显然 S->SA 与 S->A 均能导出 a 开头的串,所以该文法不是 LL(1)的.此外,我们也可以通过构造预测分析表来判断该文法不是 LL(1)的.