Here is our simple (single-level, non-hierarchical) Bayes net for regression:

 Here is our simple (single-level, non-hierarchical) Bayes net for regression:

 Here is our simple (single-level, non-hierarchical) Bayes net for regression:

Here is a version of it using plate notation:

 Here is our simple (single-level, non-hierarchical) Bayes net for regression:

Here is a version of it using plate notation:

 Here is our simple (single-level, non-hierarchical) Bayes net for regression:

Here is a version of it using plate notation:

Plate notation for hierarchical models

 Our multi-level/mixed-effects/ hierarchical model (with one level of hierarchy):

Plate notation for hierarchical models

- Our multi-level/mixed-effects/
 hierarchical model (with one level
 of hierarchy):
 - The same model,
 using plate notation:

$$b \sim N(0, \Sigma_b)$$

$$b \sim N(0, \Sigma_b)$$

$$\eta = (\beta + b) x$$

$$b \sim N(0, \Sigma_b)$$

$$\eta = (\beta + b) x$$

$$\hat{y} \mid x = l^{-1}(\eta)$$

Multi-level GLM assumptions:

$$b \sim N(0, \Sigma_b)$$

$$\eta = (\beta + b) x$$

$$\hat{y} \mid x = l^{-1}(\eta)$$

 $P(Y|\hat{y})$ follows an *exponential* family

Multi-level GLM assumptions:

$$b \sim N(0, \Sigma_b)$$

$$\eta = (\beta + b) x$$

$$x = 1 - 1(\alpha)$$

$$\widehat{y} \mid x = l^{-1}(\eta)$$

 $P(Y|\widehat{y})$ follows an *exponential* family

And for multi-level linear regression,

Multi-level GLM assumptions:

$$b \sim N(0, \Sigma_b)$$

$$\eta = (\beta + b) x$$

$$x - 1^{-1}(n)$$

$$\widehat{y} \mid x = l^{-1}(\eta)$$

 $P(Y|\widehat{y})$ follows an *exponential* family

And for *multi-level linear regression*,

$$l(\eta) = \eta$$
 (the link function is the identity function)

Multi-level GLM assumptions:

$$b \sim N(0, \Sigma_b)$$

$$\eta = (\beta + b) x$$

$$\widehat{y} \mid x = l^{-1}(\eta)$$

 $P(Y|\widehat{y})$ follows an *exponential* family

And for *multi-level linear regression*,

$$l(\eta) = \eta$$
 (the link function is the identity function)

$$y \mid \hat{y} \sim N(\hat{y}, \sigma^2)$$

Credit-assignment problems and regression

- Example:
 - x_1 : how long a student studies for an exam
 - x₂: a student's proclivity toward the subject matter
 - y: the student's score on the exam

Random effects as a "credit-assignment" confound

The rule for random effects for a predictor

The rule for random effects for a predictor

 If the average value of a predictor x varies between groups in a random-effects factor F, include a random intercept for F

The rule for random effects for a predictor

- If the average value of a predictor x varies between groups in a random-effects factor F, include a random intercept for F
- If the value of a predictor x varies **within** groups in a random-effects predictor F, include a **random slope of** x for F

Within-subject, between-items experiment design

Barr et al. analysis of different models

Table 1Summary of models considered and associated lmer syntax.

No. Model	lmer model syntax
(1) $Y_{si} = \beta_0 + \beta_1 X_i + e_{si}$	n/a (Not a mixed-effects model)
(2) $Y_{si} = \beta_0 + S_{0s} + \beta_1 X_i + e_{si}$	$ ext{Y} \sim ext{X+(1 Subject)}$
(3) $Y_{si} = \beta_0 + S_{0s} +$	Y \sim X+(1 + X Subject)
$(\beta_1 + S_{1s})X_i + e_{si}$	
(4) $Y_{si} = \beta_0 + S_{0s} + I_{0i} +$	$Y \sim X+(1 + X Subject) + (1 Item)$
$(\beta_1 + S_{1s})X_i + e_{si}$	
(5) $Y_{si} = \beta_0 + S_{0s} + I_{0i} + \beta_1 X_i + e_{si}$	$Y \sim X + (1 Subject) + (1 Item)$
$(6)^a$ As (4) , but S_{0s} , S_{1s}	$Y \sim X+(1 Subject) + (0 + X $
independent	Subject) + (1 Item)
$(7)^a Y_{si} = \beta_0 + I_{0i} +$	$Y \sim X + (0 + X Subject) + (1 Item)$
$(\beta_1 + S_{1s})X_i + e_{si}$	

^a Performance is sensitive to the coding scheme for variable *X* (see Online Appendix).

Performance for **between-items** designs

Type 1 error, power, and corrected power

N _{items}	Type I		Power		Power'	
	12	24	12	24	12	24
Type I: Error at or near $\alpha = .05$				_		
min-F'	.044	.045	.210	.328	.328	.328
LMEM, maximal, χ_{IR}^2	.070	.058	.267	.364	.223	.342
LMEM, no random correlations, χ_{IR}^2	.069	.057	.267	.363	.223	.343
LMEM, no within-unit intercepts, χ_{IR}^{2a}	.081	.065	.288	.380	.223	.342
LMEM, maximal, t	.086	.065	.300	.382	.222	.343
LMEM, no random correlations, t	.086	.064	.300	.382	.223	.343
LMEM, no within-unit intercepts, t ^a	.100	.073	.323	.401	.222	.342
$F_1 \times F_2$.063	.077	.252	.403	.224	.337
Type 1: Error far exceeding $\alpha = .05$						
LMEM, random intercepts only, χ_{IR}^2	.102	.111	.319	.449	.216	.314
LMEM, random intercepts only, t	.128	.124	.360	.472	.472	.314
LMEM, no random correlations, MCMC ^a	.172	.192	.426	.582		
LMEM, random intercepts only, MCMC	.173	.211	.428	.601		
F_1	.421	.339	.671	.706	.134	.212

^a Performance is sensitive to coding of the predictor (see the Online Appendix); simulations use deviation coding.

Performance for within-items designs

N _{items}	Type I		Power		Power'	
	12	24	12	24	12	24
Type I: Error at or near $\alpha = .05$						
min-F'	.027	.031	.327	.512	.327	.512
LMEM, maximal, χ_{IR}^2	.059	.056	.460	.610	.433	.591
LMEM, no random correlations, χ_{IR}^2	.059	.056	.461	.610	.432	.593
LMEM, no within-unit intercepts, χ_{IR}^{2a}	.056	.055	.437	.596	.416	.579
LMEM, maximal, t	.072	.063	.496	.629	.434	.592
LMEM, no random correlations, t	.072	.062	.497	.629	.432	.593
LMEM, no within-unit intercepts, t ^a	.070	.064	.477	.620	.416	.580
$F_1 \times F_2$.057	.072	.440	.643	.416	.578
Type I: Error far exceeding $\alpha = .05$						
F_1	.176	.139	.640	.724	.345	.506
LMEM, no random correlations, MCMC ^a	.187	.198	.682	.812		
LMEM, random intercepts only, MCMC	.415	.483	.844	.933		
LMEM, random intercepts only, χ_{IR}^2	.440	.498	.853	.935	.379	.531
LMEM, random intercepts only, t	.441	.499	.854	.935	.379	.531

^a Performance is sensitive to coding of the predictor (see the Online Appendix); simulations use deviation coding.

Anti-conservativity of model selection

