МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Ряды

Методические указания по решению задач

Санкт-Петербург

2008

Блинова И.В., Виноградова Т.Н., Кубенский А.А., Панкратова Т.Ф., Петрашень А.Г., Попов И.Ю. Ряды / Методические указания по решению задач. СПб: СПбГУ ИТМО, 2008. 50 с.

Пособие предполагается использовать для самостоятельной работы студентов по теме «Ряды». Предназначено студентам всех специальностей и преподавателям.

Рекомендовано к печати Советом естественнонаучного факультета 23.12.2008 (протокол N 5)

В 2007 году СПбГУ ИТМО стал победителем конкурса инновационных образовательных программ вузов России на 2007–2008 годы. Реализация инновационной образовательной программы «Инновационная подготовки специалистов нового поколения в области информационных и оптических технологий» позволит выйти на качественно новый уровень удовлетворить возрастающий подготовки выпускников И специалистов В информационной, оптической И других высокотехнологичных отраслях экономики.

- © Санкт-Петербургский государственный университет информационных технологий, механики и оптики, 2008
- © Блинова И.В., Виноградова Т.Н., Кубенский А.А., Панкратова Т.Ф., Петрашень А.Г., Попов И.Ю., 2008

1. Вычисление суммы ряда по определению

В примерах этого раздела для каждого ряда $\sum_{n=1}^{\infty} u_n$ требуется вычислить n -ю частичную сумму $S_n = \sum_{k=1}^n u_k$, установить, имеет ли последовательность $\left\{S_n\right\}_{n=1}^{\infty}$ предел, и вычислить этот предел, если он существует.

Упражнения:

1.
$$1+2+...+n+...$$
; 2. $\sum_{n=1}^{\infty}(-1)^{n+1}\cdot 2$; 3. $\sum_{n=1}^{\infty}\left(\sqrt{n}-\sqrt{n+1}\right)$; 4. $\sum_{n=1}^{\infty}\frac{1}{n(n+1)}$; 5. $\sum_{n=2}^{\infty}\frac{1}{(n-1)(n+1)}$; 6. $\sum_{n=1}^{\infty}\frac{1}{n(n+3)}$; 7. $\sum_{n=1}^{\infty}\frac{1}{(2n-1)(2n+1)}$; 8. $\sum_{n=1}^{\infty}\frac{1}{(3n-2)(3n+1)}$; 9. $\sum_{n=1}^{\infty}\frac{2n+1}{n^2(n+1)^2}$; 10. $\sum_{n=1}^{\infty}\frac{n^2+3n+1}{n^2(n+1)^2}$; 11. $\sum_{n=1}^{\infty}(-1)^{n+1}(0,3)^n$; 12. $1-2\sum_{n=1}^{\infty}\frac{1}{3^n}$; 13. $\sum_{n=0}^{\infty}(-1,1)^n$; 14. $\sum_{n=0}^{\infty}\frac{3^n+7^n}{21^n}$; 15. $\sum_{n=0}^{\infty}\frac{5^n+2^n}{10^n}$; 16. $\sum_{n=0}^{\infty}\frac{2\cdot 3^n+3\cdot 2^{n-1}}{6^n}$; 17. $\sum_{n=1}^{\infty}\frac{3^{n+1}-4\cdot 5^n}{15^{n-1}}$; 18. $\sum_{n=1}^{\infty}\frac{5^{n+1}-2^n}{10^{2n-1}}$;

19.
$$\sum_{n=2}^{\infty} \frac{4^{n-1} + 3^{2n+1}}{6^{2n-2}};$$
 20.
$$\sum_{n=2}^{\infty} \frac{7^{n-2} + 3^{2n-1}}{21^{2n+1}};$$

$$\frac{n-2+3^{2n-1}}{21^{2n+1}}; 21. \sum_{n=1}^{\infty} \frac{2^{n-1} \cdot n-1}{2^n};$$

22.
$$\sum_{n=1}^{\infty} \frac{3 \cdot 5^{n+1} - 2^{2n+1}}{10^{n-1}}; \quad 23. \sum_{n=1}^{\infty} \left((-1)^{n-1} + \left(\frac{2}{3} \right)^n \right);$$

24.
$$\sum_{n=1}^{\infty} \left(\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n} \right).$$

2. Необходимый признак сходимости ряда

В примерах этого раздела требуется проверить, выполняется ли необходимый признак сходимости ряда, т.е. равен ли нулю предел общего члена ряда при стремлении его номера к бесконечности.

Примеры: 1.
$$\sum_{n=1}^{\infty} \frac{n^3-1}{2n^3+5}$$
; $\lim_{n\to\infty} \frac{n^3-1}{2n^3+5} = \frac{1}{2}$.

<u>Ответ.</u> Необходимый признак сходимости не выполняется.

2.
$$\sum_{n=1}^{\infty} \frac{2n}{3^n}; \lim_{n \to \infty} \frac{2n}{3^n} = \lim_{n \to \infty} \frac{2}{3^n \ln 3} = 0.$$

Ответ. Необходимый признак сходимости выполнен.

25.
$$\sum_{n=1}^{\infty} \frac{3n}{3n-1}$$
; 26. $\sum_{n=0}^{\infty} \frac{4n+3}{17n+7}$; 27. $\sum_{n=1}^{\infty} \sin \frac{1}{n}$; 28. $\sum_{n=1}^{\infty} \cos \frac{1}{n}$; 29. $\sum_{n=1}^{\infty} \operatorname{tg} \frac{2n+1}{(n+2)^2}$; 30. $\sum_{n=0}^{\infty} \frac{n+3}{(n+7)^2}$; 31. $\sum_{n=0}^{\infty} \frac{n^2+1}{3n^2+1}$; 32. $\sum_{n=0}^{\infty} \frac{n^2+6}{4n^2+5}$; 33. $\sum_{n=1}^{\infty} \sqrt[n]{e}$; 34. $\sum_{n=1}^{\infty} \ln \left(1 + \frac{15n^9}{(n^2+3)^5}\right)$; 35. $\sum_{n=1}^{\infty} \frac{4\sqrt{n}}{\sqrt{n+1+6}}$; 36. $\sum_{n=1}^{\infty} \frac{2^n+n}{3\cdot 2^n+n^3}$; 37. $\sum_{n=1}^{\infty} \frac{2^n}{n^{100}}$; 38. $\sum_{n=1}^{\infty} \frac{n^n}{n!}$; 39. $\sum_{n=1}^{\infty} n \cdot \operatorname{arctg} \frac{1}{n}$; 40. $\sum_{n=1}^{\infty} n \cdot \sin \frac{\pi}{2^n}$.

3. Достаточные признаки сходимости рядов

В примерах этого раздела надо установить, сходится ли данный ряд, используя достаточные признаки сходимости рядов с положительными членами.

а) Признаки сравнения рядов. Для установления сходимости данного ряда надо подобрать сходящийся ряд с бо'льшими членами, а для установления расходимости – подобрать расходящийся ряд с ме'ньшими членами. Чаще всего сравнивают члены данного ряда с членами какойнибудь геометрической прогрессии или с членами гармонического или обобщённого гармонического ряда. Можно использовать также признак сравнения рядов в предельной форме.

Примеры: 1.
$$\sum_{n=1}^{\infty} \frac{1}{3n \cdot 4^{2n+1}}$$
; $u_n = \frac{1}{3n \cdot 4^{2n+1}} \le \frac{1}{3 \cdot 4^{2n+1}} = \frac{1}{12 \cdot (16)^n}$. Ряд

 $\sum_{i=1}^{\infty} \frac{1}{12 \cdot (16)^n}$ сходится, т.к. его члены образуют бесконечно убывающую

геометрическую прогрессию, а значит, сходится и данный ряд.

2.
$$\sum_{n=1}^{\infty} \frac{n+3}{\sqrt{n+1}(n+2)}; \ u_n = \frac{n+3}{\sqrt{n+1}(n+2)} \ge \frac{n+2}{\sqrt{n+1}(n+2)} = \frac{1}{\sqrt{n+1}}.$$

Ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$ расходится как обобщённый гармонический ряд с

показателем степени меньшим единицы, а следовательно, расходится и данный ряд.

б) <u>Признак Даламбера</u> часто удобно применять в предельной форме.

Пример:
$$\sum_{n=1}^{\infty} \frac{3n}{5^{n+1}}$$
; $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{3(n+1)\cdot 5^{n+1}}{5^{n+2}\cdot 3n} = \frac{1}{5}$.

Данный ряд сходится.

в) Интегральный признак Коши

Пример:
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln(n+1)}$$
; $\int_{1}^{+\infty} \frac{dx}{(x+1)\ln(x+1)} = \ln\ln(x+1)\Big|_{1}^{+\infty} = +\infty$.

Интеграл, а следовательно, и ряд расходится.

Упражнения:

41.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(1+n^2)}};$$
 42. $\sum_{n=1}^{\infty} \frac{2}{3n+2};$

42.
$$\sum_{n=1}^{\infty} \frac{2}{3n+2}$$

43.
$$\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{n^3}}$$
;

44.
$$\sum_{n=1}^{\infty} \frac{1}{4\sqrt{n}+3};$$

44.
$$\sum_{n=1}^{\infty} \frac{1}{4\sqrt{n}+3}$$
; **45.** $\sum_{n=0}^{\infty} \frac{1}{(2n+1)2^{2n+1}}$; **46.** $\sum_{n=1}^{\infty} \frac{n+1}{n(n+2)}$;

46.
$$\sum_{n=1}^{\infty} \frac{n+1}{n(n+2)}$$
;

$$47. \sum_{n=1}^{\infty} 2^n \cdot \sin \frac{\pi}{2^n};$$

48.
$$\sum_{n=1}^{\infty} 2^{2n} \cdot \mathsf{tg} 5^{-n}$$
;

47.
$$\sum_{n=1}^{\infty} 2^n \cdot \sin \frac{\pi}{2^n}$$
; **48.** $\sum_{n=1}^{\infty} 2^{2n} \cdot tg5^{-n}$; **49.** $\sum_{n=1}^{\infty} \frac{\ln(7^n+1) - n\ln 7}{tg6^{-n}}$;

50.
$$\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)}$$
;

$$51. \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \cdot \sin \frac{1}{n}$$

5

50.
$$\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)}$$
; **51.** $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \cdot \sin \frac{1}{n}$; **52.** $\sum_{n=0}^{\infty} \frac{1}{n^2 - 4n + 5}$;

53.
$$\sum_{n=1}^{\infty} \frac{(n+5)^{10}}{(n^2+100)^6}; \quad 54. \sum_{n=1}^{\infty} \frac{1+n^2}{1+n^3};$$

54.
$$\sum_{n=1}^{\infty} \frac{1+n^2}{1+n^3};$$

$$55. \sum_{n=1}^{\infty} \frac{\sqrt{n^{16} + 5}}{(n^3 + 50)^3};$$

56.
$$\sum_{n=1}^{\infty} \operatorname{tg} \frac{5n^2 + 2}{(n^2 + 2)^2}$$
; **57.** $\sum_{n=1}^{\infty} \left(\frac{4}{3^n} + \frac{3}{n^3} \right)$; **58.** $\sum_{n=0}^{\infty} \frac{n^2 + 2^n}{n^3 + 3^n}$.

57.
$$\sum_{n=1}^{\infty} \left(\frac{4}{3^n} + \frac{3}{n^3} \right);$$

58.
$$\sum_{n=0}^{\infty} \frac{n^2 + 2^n}{n^3 + 3^n}$$

б) Признак Даламбера.

59.
$$\sum_{n=1}^{\infty} \frac{5n}{4^n}$$
;

60.
$$\sum_{n=1}^{\infty} \frac{na^n}{(n+1)^3 b^n} \ (a > 0, \ b > 0, \ a \neq b);$$

61.
$$\sum_{n=1}^{\infty} \sin \frac{n^3}{5^n}$$
;

62.
$$\sum_{n=1}^{\infty} \operatorname{tg} \frac{n(n-1)}{7^n}$$
; **63.** $\sum_{n=1}^{\infty} \frac{2^n}{n!}$;

63.
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$
;

64.
$$\sum_{n=1}^{\infty} \frac{(n+1)!}{4^n};$$

65.
$$\sum_{n=1}^{\infty} \frac{n^5}{5^n}$$
;

66.
$$\sum_{n=1}^{\infty} \frac{n^3}{(n+1)!};$$

67.
$$\sum_{n=1}^{\infty} \frac{n^{100}}{3^n};$$

68.
$$\sum_{n=2}^{\infty} \frac{(3n+1) \cdot 3^{n+1}}{n^2 - 1}$$
; **69.** $\sum_{n=1}^{\infty} \frac{n^n}{n!}$;

$$69. \sum_{n=1}^{\infty} \frac{n^n}{n!}$$

70.
$$\sum_{n=1}^{\infty} \frac{3^{n^2-1}}{2^{n^2} \sqrt{n}};$$

71.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(3n)!}$$
;

72.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{2^{n^2}}$$
;

73.
$$\sum_{n=1}^{\infty} \frac{n^3}{2^n \sqrt{n}}$$
;

73.
$$\sum_{n=1}^{\infty} \frac{n^3}{2^n \sqrt{n}}$$
; 74. $\sum_{n=1}^{\infty} \frac{(n+1)!}{(2n)!!}$; $(2n)!! = 2 \cdot 4 \cdot ... \cdot (2n)$; 75. $\sum_{n=1}^{\infty} \frac{n!}{(2n-1)!!}$.

75.
$$\sum_{n=1}^{\infty} \frac{n!}{(2n-1)!!}.$$

в) Интегральный признак Коши.

76.
$$\sum_{n=1}^{\infty} \frac{n}{1+n^2};$$

77.
$$\sum_{n=1}^{\infty} \frac{1}{1+n^2}$$
;

78.
$$\sum_{n=1}^{\infty} \frac{1}{3n^2 + 4}$$
;

79.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}$$
;

80.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln^3 n}$$
;

81.
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$
;

82.
$$\sum_{n=0}^{\infty} \frac{1}{\sqrt{1+3n}}$$
;

82.
$$\sum_{n=0}^{\infty} \frac{1}{\sqrt{1+3n}}$$
; 83. $\sum_{n=0}^{\infty} \frac{1}{\sqrt[3]{(n+2)^2}}$; 84. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{3n-2}}$;

84.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{3n-2}};$$

85.
$$\sum_{n=3}^{\infty} \frac{1}{\sqrt[3]{(2-n)^4}}$$

85.
$$\sum_{n=3}^{\infty} \frac{1}{\sqrt[3]{(2-n)^4}};$$
 86. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{(2n+1)^5}};$ **87.** $\sum_{n=1}^{\infty} ne^{-n^2};$

87.
$$\sum_{n=1}^{\infty} n e^{-n^2}$$
;

88.
$$\sum_{n=1}^{\infty} \frac{e^{-\sqrt{n}}}{\sqrt{n}}$$
;

89.
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)^3}$$
;

90.
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)(2n+3)};$$

91.
$$\sum_{n=1}^{\infty} \left(\frac{1}{(n+1)\ln^2(n+1)} + \frac{1}{\sqrt{n+1}} \right)$$
; **92.** $\sum_{n=1}^{\infty} \frac{1}{(an+b)^3}$, $a > 0$, $b \ne a$.

92.
$$\sum_{n=1}^{\infty} \frac{1}{(an+b)^3}$$
, $a > 0$, $b \ne a$

4. Абсолютная и неабсолютная (условная) сходимость ряда

В примерах этого раздела надо установить, сходится ли данный ряд абсолютно, неабсолютно (условно) или расходится.

Примеры: 1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$
. Ряд из модулей $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^3} \right| = \sum_{n=1}^{\infty} \frac{1}{n^3}$ сходится.

Следовательно, данный ряд сходится абсолютно.

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{3n+2}}$$
. Ряд из модулей $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{\sqrt[3]{3n+2}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{3n+2}}$ расходится,

но члены его монотонно убывают с ростом n и $\lim_{n\to\infty} \frac{1}{\sqrt[3]{3n+2}} = 0$.

Следовательно, по признаку Лейбница данный ряд сходится неабсолютно (условно).

3.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{2n+5}$$
. Общий член ряда $u_n = (-1)^n \frac{n+2}{2n+5}$.

 $\lim_{n \to \infty} |u_n| = \lim_{n \to \infty} \frac{n+2}{2n+5} = \frac{1}{2} \implies \lim_{n \to \infty} u_n \neq 0$, т.е. не выполнен необходимый признак сходимости ряда. \implies Ряд расходится.

Упражнения:

93.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
; 94. $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1}$; 95. $\sum_{n=1}^{\infty} \frac{(-1)^n}{(3n)^2}$; 96. $\sum_{n=1}^{\infty} \frac{(-1)^n n}{3^n}$; 97. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \cdot 2^n}$; 98. $\sum_{n=1}^{\infty} \frac{(-1)^n (n^2+1)}{2n^2+3}$;

99.
$$\sum_{n=1}^{\infty} (-1)^n \left(1 + \frac{2}{n} \right);$$
 100. $\sum_{n=1}^{\infty} \frac{(-1)^n}{an+b}, a > 0, b > 0;$ **101.** $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n};$

102.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}};$$
 103.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n+1}};$$
 104.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n}{n+1}\right)^n;$$

105.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{n+1} \right)^n$$
; **106.** $\sum_{n=1}^{\infty} (-1)^n n \sin \frac{\pi}{2^n}$; **107.** $\sum_{n=1}^{\infty} (-1)^n \left(1 - \cos \frac{1}{n} \right)$;

108.
$$\sum_{n=1}^{\infty} \frac{\sin n\alpha}{3n^2 + 4}, \ \alpha - \text{const}; \qquad 109. \sum_{n=1}^{\infty} \frac{a \sin n\alpha + b \cos n\alpha}{2^n}, \ a, b, \alpha - \text{const}.$$

5. Исследование сходимости ряда

В примерах этого раздела, используя необходимый или какой-либо из достаточных признаков сходимости, надо выяснить вопрос о сходимости ряда. Если данный ряд знакопеременный, то требуется установить тип сходимости: абсолютная или неабсолютная (условная).

Примеры:

1. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$. Так как рассматриваемый ряд не является положительным,

составляем ряд из абсолютных величин $\sum_{n=1}^{\infty} \frac{1}{n^3}$. В силу сходимости этого ряда исходный ряд сходится абсолютно.

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[4]{2n^3+5n+1}}$$
. Общий член ряда составленного из модулей

$$a_n = \frac{1}{\sqrt[4]{2n^3 + 5n + 1}}$$
 при больших n эквивалентен $a_n \square \frac{1}{n^{3/4}}$. Отсюда

видно, что $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{a^{3/4}} = 0$ и члены ряда монотонно убывают. Откуда согласно признаку Лейбница следует неабсолютная сходимость исходного ряда.

3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (2n-1)}{\sqrt[3]{8n^3+1}}$$
. Так как $\lim_{n\to\infty} |a_n| = \lim_{n\to\infty} \frac{(2n-1)}{\sqrt[3]{27n^3+1}} = \frac{2}{3} \neq 0$

необходимый признак сходимости ряда не выполнен и ряд расходится.

Упражнения:

110.
$$\sum_{n=1}^{\infty} \frac{2n+1}{3n+4};$$
111.
$$\sum_{n=1}^{\infty} \frac{3n+2}{\sqrt{2n^3+n^2+3}};$$
112.
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)(2n-1)};$$
113.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{2n-7};$$
114.
$$\sum_{n=1}^{\infty} \frac{1}{n(3n+4)};$$
115.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n+n^{100}};$$
116.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3n^2-5n+1};$$
117.
$$\sum_{n=1}^{\infty} \frac{1}{5^{-n}+1000};$$
118.
$$\sum_{n=1}^{\infty} \frac{1}{1000n+1};$$
119.
$$\sum_{n=1}^{\infty} \frac{(-1)^n(n+3)}{10^{20}n+2};$$
120.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)(5n-4)};$$
121.
$$\sum_{n=0}^{\infty} \frac{2+(-1)^n}{2^n};$$
122.
$$\sum_{n=1}^{\infty} \frac{3^n+5^n}{4^n};$$
123.
$$\sum_{n=1}^{\infty} \frac{(-1)^n(n^{100}+1)}{2^n};$$
124.
$$\sum_{n=1}^{\infty} \frac{(5n+1)3^{n-1}}{n^2+3};$$

125.
$$\sum_{n=1}^{\infty} \frac{4n+5}{2^n(n^2+1)};$$

126.
$$\sum_{n=1}^{\infty} \frac{2^{n^2} (2n+1)}{3^{n^2}};$$

127.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^4}{\left(n^2+1\right)^3}$$
;

128.
$$\sum_{n=1}^{\infty} \frac{n^4}{(n^2+6)^2};$$

129.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (3n+4)}{2^{n-10}};$$

130.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+3)}}$$
;

131.
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+3}}$$
;

132.
$$\sum_{n=1}^{\infty} \frac{n}{(n^2+3)^{3/2}};$$

133.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{3n^2 + 7}};$$

134.
$$\sum_{n=1}^{\infty} \frac{n^2 + 4}{\sqrt[3]{n^7}};$$

135.
$$\sum_{n=1}^{\infty} \sqrt[n]{0.0001}$$
;

136.
$$\sum_{n=1}^{\infty} (-1)^n \left[1 - \cos \frac{2}{n} \right];$$

137.
$$\sum_{n=1}^{\infty} \frac{3n+1}{\sqrt{n2^n}}$$
;

138.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+100};$$

139.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \sin \frac{\pi}{n}$$
;

$$140 \quad \sum_{n=1}^{\infty} \frac{\cos \frac{\pi n}{3}}{2^n};$$

141.
$$\sum_{n=1}^{\infty} \frac{\cos \frac{\pi n}{3}}{n^2}$$
;

142.
$$\sum_{n=1}^{\infty} \sqrt{n} \sin \frac{1}{\sqrt[3]{n^5}}$$
;

$$143. \quad \sum_{n=1}^{\infty} \sin \frac{\pi}{2^n};$$

144.
$$\sum_{n=1}^{\infty} \sin n^2$$
;

145.
$$\sum_{n=1}^{\infty} \frac{\sin \frac{\pi n}{4}}{n^2}$$
;

146.
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{4}{n}$$
;

147.
$$\sum_{n=1}^{\infty} n^{-3} \sin \frac{\pi n}{4}$$
;

148.
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$$
;

$$149. \sum_{n=1}^{\infty} tg \frac{\pi}{4n};$$

150.
$$\sum_{n=1}^{\infty} \frac{\sin na}{(\ln 5)^n}$$
;

151.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{(2n+1)!};$$

152.
$$\sum_{n=1}^{\infty} \frac{2^n (n^3 + 1)}{n!}$$
; 153. $\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{n!}$;

153.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{n!}$$

154.
$$\sum_{n=1}^{\infty} \frac{n!}{2^n(n+4)}$$
;

155
$$\sum_{n=1}^{\infty} \frac{2^n (n+1)(n+2)}{n!}$$
; 156. $\sum_{n=1}^{\infty} \frac{n^2}{(2n+1)!}$;

156.
$$\sum_{n=1}^{\infty} \frac{n^2}{(2n+1)!}$$
;

157.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n! (4n^2 + 6)}{(2n)!};$$

158.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n!}{(2n+1)5^n};$$

159.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{n^n}$$

159.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{n^n}; \qquad \qquad \mathbf{160.} \sum_{n=1}^{\infty} (-1)^n \frac{2n-3}{(3n+4)^{100}\sqrt{n}};$$

161.
$$\sum_{n=1}^{\infty} (-1)^{\frac{n(n-1)}{2}} \frac{n^{1000}}{5^n}$$
;

161.
$$\sum_{n=1}^{\infty} (-1)^{\frac{n(n-1)}{2}} \frac{n^{1000}}{5^n}; \quad 162. \sum_{n=1}^{\infty} (-1)^{n-1} \left[\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \right]^p;$$

163.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+(-1)^n)^p};$$
 164.
$$\sum_{n=1}^{\infty} \frac{(\sin x)^n}{n}, \ x \in (0,2\pi);$$

165.
$$\sum_{n=1}^{\infty} \frac{n(n-1)(n-2)....(n-m+1)}{n!};$$
 166.
$$\sum_{n=1}^{\infty} \frac{a^n n!}{n^n};$$

167.
$$\sum_{n=1}^{\infty} \left(\frac{4}{2} + \frac{4 \cdot 7}{2 \cdot 6} + \frac{4 \cdot 7 \cdot 10}{2 \cdot 6 \cdot 10} + \dots \right);$$

168.
$$\sum_{n=1}^{\infty} (\sqrt{2} - \sqrt[3]{2})(\sqrt{2} - \sqrt[5]{2})(\sqrt{2} - \sqrt[7]{2})...(\sqrt{2} - \sqrt{2}n + \sqrt[1]{2});$$

169.
$$\sum_{n=1}^{\infty} \frac{n^2}{\left(2 + \frac{1}{n}\right)^n}; \qquad 170. \sum_{n=1}^{\infty} \frac{n^{n + \frac{1}{n}}}{\left(n + \frac{1}{n}\right)^n}; \qquad 171. \sum_{n=2}^{\infty} \left(\frac{n-1}{n+1}\right)^{n(n+1)}$$

172.
$$\sum_{n=1}^{\infty} \frac{n!e^n}{n^{n+p}}.$$

6. Ряды с комплексными членами

В примерах этого раздела следует исследовать нижеприведенные ряды на сходимость. В силу того, что для комплексных чисел не определено отношение порядка (понятие больше - меньше), при исследовании рядов следует выделить вещественную и мнимую части его общего члена, после чего исследовать на сходимость их по отдельности. Если же производится исследование на абсолютную сходимость, то в этом случае можно непосредственно исследовать ряд, составленный из абсолютных величин.

Примеры: 1.
$$\sum_{n=1}^{\infty} \left(\frac{1-i}{3+2i}\right)^n$$
.

Настоящий ряд представляет геометрическую прогрессию со знаменателем

$$q = \frac{1-i}{3+2i} = \frac{(1-i)(3-2i)}{|3+2i|^2} = \frac{1-5i}{13}.$$

Так как $|q| = \sqrt{2/13} < 1$, то ряд, составленный из модулей членов исходного ряда, является бесконечно убывающей геометрической прогрессий. Следовательно, исходный ряд сходится абсолютно.

2.
$$\sum_{n=1}^{\infty} \left[\frac{1}{n^2} + i \frac{(-1)^n}{n} \right]$$
.

Вещественная и мнимая части этого ряда: $\sum_{n=1}^{\infty} \frac{1}{n^2}$ и $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, первый из

которых сходится, тогда как второй сходится неабсолютно. В результате исходный ряд сходится неабсолютно.

Упражнения:

173.
$$\sum_{n=1}^{\infty} \frac{\cos n + i \sin n}{n^2}; \quad 174. \sum_{n=1}^{\infty} \left[\frac{(-1)^n}{\sqrt{n}} + i \frac{1}{n^2 + 1} \right]; \quad 175. \sum_{n=1}^{\infty} \frac{(1 - 2i)^n}{5^n};$$
176.
$$\sum_{n=1}^{\infty} \left[\frac{1}{n+1} + i \frac{n^2 + 1}{4n^2 + 2n + 1} \right]; \quad 177. \sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n^3 + 1} + i \frac{n^2 + 1}{3n^4 + 2n + 5} \right];$$
178.
$$\sum_{n=1}^{\infty} \left(\frac{3 + 4i}{7} \right)^{n^2}; \quad 179. \sum_{n=1}^{\infty} \frac{(2 + i)^n}{n!}; \quad 180. \sum_{n=1}^{\infty} \left(\frac{3 + i}{2 - 3i} \right)^n;$$
181.
$$\sum_{n=1}^{\infty} \frac{(3 - i)^n}{4^n}; \quad 182. \sum_{n=1}^{\infty} \frac{(2 + 4i)^n}{5^n n}.$$

7. Область сходимости функционального ряда

Область абсолютной сходимости функционального ряда можно установить с помощью признаков Даламбера или радикального признака Коши, причем характер сходимости на концах и области сходимости, где упомянутые выше признаки не применимы, следует установить с помощью исследования сходимости рядов, полученных подстановкой граничных точек области сходимости в исходный ряд.

Примеры: 1.
$$\sum_{n=0}^{\infty} \frac{7^n}{(2n+1)(x-2)^n}$$

Применяя к ряду, составленному из абсолютных величин, признак Даламбера, получим

$$\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n \to \infty} \frac{\frac{7^{n+1}}{(2n+3)(x-2)^{n+1}}}{\frac{7^n}{(2n+3)(x-2)^n}} = \frac{7}{|x-2|} \lim_{n \to \infty} \frac{2n+1}{2n+3} = \frac{7}{|x-2|}$$

Тогда область абсолютной сходимости ряда есть совокупность точек, удовлетворяющих неравенству $\frac{7}{|x-2|} < 1$ или x > 9 и x < -5.

Если теперь подставить граничные точки x=9 и x=-5 в исходный ряд, то, соответственно, получим два ряда $\sum_{n=0}^{\infty} \frac{1}{(2n+1)}$ и $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)}$, первый из которых расходится, тогда как второй сходится неабсолютно.

$$2. \sum_{n=1}^{\infty} \frac{1}{(2n+1)} \left(\frac{x+1}{x} \right)^n.$$

Применив к ряду, составленному из абсолютных величин, признак Даламбера, получим, что область абсолютной сходимости ряда определяется неравенством $\left|\frac{x+1}{x}\right| < 1$ или $x < -\frac{1}{2}$. При $x = -\frac{1}{2}$ для исходного ряда имеем $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)}$, то есть ряд сходится неабсолютно.

Упражнения:

183.
$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{|x|}{x} \right)^n$$
; 184. $\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{x}{2x+1} \right)^n$; 185. $\sum_{n=1}^{\infty} \frac{x^n (1-x)^n}{n^2}$; 186. $\sum_{n=1}^{\infty} \frac{x^n}{1-x^n}$; 187. $\sum_{n=1}^{\infty} ne^{-nx}$; 188. $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$; 189. $\sum_{n=1}^{\infty} \frac{3n-2}{(2x+1)^n}$; 190. $\sum_{n=1}^{\infty} \frac{2n+5}{(3x+4)^n}$; 191. $\sum_{n=1}^{\infty} \frac{2n+5}{(x-6)^n}$; 192. $\sum_{n=1}^{\infty} \left[x^n + (2x)^{-n} \right]$.

8. Сумма функционального ряда

Сумму функционального ряда можно найти, если его с помощью алгебраических преобразований или операций дифференцирования или интегрирования свести к ряду, сумма которого известна. Однако, в силу того, что операции дифференцирования и интегрирования можно применять только внутри интервала сходимости, предварительно надо определить область сходимости согласно тому, как это было описано в предыдущем разделе.

Примеры: 1.
$$\sum_{n=1}^{\infty} \frac{(1+2x)^n}{x^{n+1}}$$
.

Ряд этот в области $\left| \frac{1+2x}{x} \right| < 1 \left(-1 < x < -\frac{1}{3} \right)$ представляет бесконечно

убывающую геометрическую прогрессию со знаменателем $q = \frac{1+2x}{x}$.

Поэтому $S = -\frac{1+2x}{1+x}$.

2.
$$S(x) = x - \frac{x^2}{4} + \frac{x^3}{9} - \frac{x^4}{16} + \frac{x^5}{25} - \frac{x^6}{36} + \frac{x^7}{49} + \dots$$

 $u(x) = \frac{x^n}{n^2}$ (n = 1, 2, 3, ...), то очевидно, что этот ряд сходится при |x| < 1.

Если почленно продифференцировать этот ряд, и полученное выражение домножить на x, то получим

$$xS'(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \frac{x^7}{49} + \dots = \ln(x+1)$$

Следовательно, $S(x) = \int_{t}^{x} \frac{\ln(t+1)}{t} dt$. (Полученный интеграл относится

к классу «неберущихся», то есть он не выражается через элементарные функции).

193.
$$\sum_{n=1}^{\infty} \frac{(2x)^n}{3^n}$$
; 194. $\sum_{n=1}^{\infty} \frac{(3x^2)^n}{4^n}$; 195. $\sum_{n=1}^{\infty} \frac{1}{x^n}$; 196. $\sum_{n=1}^{\infty} \frac{5}{(3x)^n}$; 197. $\sum_{n=1}^{\infty} \frac{4}{(2x^3)^n}$; 198. $\sum_{n=1}^{\infty} \frac{(1+x)^n}{3^{2n}}$; 199. $\sum_{n=1}^{\infty} \frac{1}{(5-x)^n}$; 200. $\sum_{n=1}^{\infty} \frac{(3+x)^n}{x^{n+1}}$; 201. $\sum_{n=1}^{\infty} \frac{(2-x)^n}{(5x)^n}$; 202. $\sum_{n=1}^{\infty} (1+x^2)^n$; 203. $\sum_{n=1}^{\infty} (4-x^2)^n$; 204. $\sum_{n=1}^{\infty} (\ln x)^n$;

205.
$$\sum_{n=1}^{\infty} \sin^n x$$
; **206.** $\sum_{n=1}^{\infty} e^{-nx}$;

207.
$$\frac{x^3}{3} - \frac{x^4}{8} + \frac{x^5}{15} - \frac{x^6}{24} + \frac{x^7}{35} - \dots$$
;
208. $\frac{x}{2} + \frac{x^2}{6} - \frac{x^3}{12} + \frac{x^4}{20} - \frac{x^5}{30} + \frac{x^6}{42} - \frac{x^7}{56} + \dots$;
209. $x^2 - \frac{2x^3}{3} + \frac{2x^4}{3} - \frac{4x^5}{5} + \frac{16x^6}{15} - \frac{32x^7}{21} + \dots$;
210. $-\frac{1}{3x} + \frac{3x}{2} - \frac{3x^2}{2} + \frac{9x^3}{4} - \frac{81x^4}{20} + \frac{81x^5}{10} - \frac{243x^6}{14} + \dots$;
211. $x - \frac{x^3}{18} - \frac{x^5}{600} - \frac{x^7}{35280} + \frac{x^9}{3265920} \dots$;
212. $-\frac{1}{x^2} - \frac{1}{2} + \frac{x^2}{8} - \frac{x^4}{144} + \frac{x^6}{5760} \dots$

9. Равномерная сходимость функционального ряда

Для установления равномерной сходимости функционального ряда можно воспользоваться признаком Вейерштрасса, согласно которому если на интервале (a,b) справедлива оценка $|u_n(x) < c_n|$ и числовой ряд $\sum_{n=1}^{\infty} c_n$ сходится, то ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно на этом интервале. Иногда равномерную сходимость ряда удается установить с помощью оценки его остатка после n – ого члена.

Примеры: 1.
$$\sum_{n=0}^{\infty} \frac{1}{n^3 + \sin^2 nx} - \infty < x < \infty$$
.

Ряд сходится равномерно на этом интервале, так как для общего члена ряда при всех x справедлива оценка $\frac{1}{n^3 + \sin^2 nx} < \frac{1}{n^3}$ и ряд $\sum_{n=0}^{\infty} \frac{1}{n^3}$ сходится.

2.
$$\sum_{n=0}^{\infty} x^n$$
 $0 < x < 1$.

Так как последовательность x^n образует геометрическую прогрессию, то в указанном интервале сумма ряда равна $S(x) = \frac{1}{1-x}$, а n-ая частичная

сумма ряда - $S_n(x) = \frac{1-x^n}{1-x}$ и для остатка после n – ого члена можно

написать $R_n(x) = S(x) - S_n(x) = \frac{x^n}{1-x}$. Отсюда видно, что $\lim_{x \to 1-0} R_n(x) = \infty$ и, следовательно, слева от точки x=1 не существует такого $\varepsilon > 0$, чтобы $|R_n(x)| < \varepsilon$ при n > N. Откуда следует неравномерная сходимость ряда в указанном интервале. Отметим, что рассматриваемый ряд будет сходиться равномерно на интервале $|x| \le 1 - \delta$ ($\delta < 0$). Действительно, в этом случае

$$R_n(x) = \frac{x^n}{1-x} < \frac{(1-\delta)^n}{\delta}$$
 и, следовательно, при $n < N = \left\lceil \frac{\ln(\varepsilon \delta)}{\ln(1-\delta)} \right\rceil$

(квадратные скобки означают целую часть выражения) для остатка ряда справедлива оценка $|R_n(x)| < \varepsilon$ и ряд сходится равномерно.

Упражнения:

213.
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$
 $x \in [1,10];$ **214.** $\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$, $x \in (-\infty,\infty);$

215.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{(1+x^2)^n}, \quad x \in (-\infty, \infty); \qquad \textbf{216.} \ \sum_{n=1}^{\infty} \frac{\sin nx}{2^n}, \quad x \in (-\infty, \infty);$$

217.
$$\sum_{n=1}^{\infty} \frac{e^{-n^2 x^2}}{n^2}$$
, $x \in (-\infty, \infty)$; **218.** $\sum_{n=1}^{\infty} \frac{1}{n^3 + \cos x}$, $x \in [0, 2\pi]$;

219.
$$\sum_{n=1}^{\infty} \frac{x}{1 + n^4 x^2}$$
, $x \in [0, \infty)$; **220.** $\sum_{n=1}^{\infty} x^2 e^{-nx}$, $x \in [0, \infty)$;

221.
$$\sum_{n=1}^{\infty} arctg \frac{2x}{x^2 + n^3}$$
, $x \in (-\infty, \infty)$; **222.** $\sum_{n=1}^{\infty} x^n (1-x)^n$, $x \in [0,1]$;

223.
$$\sum_{n=1}^{\infty} x^2 (1-x^2)^{n-1}, \quad x \in \left(-\sqrt{2}, \sqrt{2}\right);$$

224.
$$\sum_{n=1}^{\infty} (x^{2n} - x^{2n+2}), \quad x \in (-1,1); \quad \textbf{225.} \sum_{n=1}^{\infty} 2^n \sin \frac{1}{3^n x}, \quad x \in (0,\infty);$$

226.
$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$$
, $x \in (-\infty, \infty)$; **227.** $\sum_{n=1}^{\infty} \frac{1}{n^2 + \cos^2 x}$, $x \in (-\infty, \infty)$;

228.
$$\sum_{n=1}^{\infty} \frac{x^3}{(1+x^2)^n}$$
, $x \in (-\infty,\infty)$; **229.** $\sum_{n=1}^{\infty} \frac{x^n}{n3^n}$, $x \in [0,3]$;

230.
$$\sum_{n=1}^{\infty} \frac{nx}{1+n^5x^2}$$
, $x \in (-\infty,\infty)$; **231.** $\sum_{n=1}^{\infty} ne^{-nx}$, $x \in [0,\infty)$.

10. Область сходимости степенного ряда

В примерах этого раздела надо определить промежутки сходимости, используя признак Даламбера, и, исследовав сходимость на границе промежутка, определить область сходимости ряда.

Пример:
$$\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 3^n}$$
, $\lim_{n \to \infty} \frac{|u_{n+1}(x)|}{|u_n(x)|} = \lim_{n \to \infty} \frac{|x|^{n+1} n \cdot 3^n}{(n+1) \cdot 3^{n+1} |x|^n} = \frac{|x|}{3}$.

Промежуток сходимости определяется из условия $\frac{|\mathcal{X}|}{3} < 1$, откуда $|\mathcal{X}| < 3$. При x=3 ряд расходится, при x=-3 - сходится. Область сходимости [3,3).

Упражнения: 232.
$$\sum_{n=1}^{\infty} \frac{x^n}{3n+2}$$
;
233. $\sum_{n=1}^{\infty} \frac{x^n}{4n-1}$;
234. $\sum_{n=1}^{\infty} \frac{(x+1)^n}{2n-1}$;

235.
$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n+4}$$
; **236.** $\sum_{n=1}^{\infty} \frac{(x-2)^n}{3n+1}$; **237.** $\sum_{n=1}^{\infty} (2n+1)(x+2)^n$;

238.
$$\sum_{n=1}^{\infty} (4n-3)(x-1)^n$$
; **239.** $\sum_{n=1}^{\infty} (n+3)(x-2)^n$; **240.** $\sum_{n=1}^{\infty} 10^n x^n$;

241.
$$\sum_{n=1}^{\infty} \frac{x^n}{2^{n-1}}$$
; **242.** $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 10^{n-1}}$; **243.** $\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$;

244.
$$\sum_{n=1}^{\infty} 2^{n-1} x^{2(n-1)}$$
; **245.** $\sum_{n=1}^{\infty} \frac{x^n}{(m+1)(m+2)...(m+n)}$, $m > 0$;

246.
$$\sum_{n=0}^{\infty} \frac{(x+1)^n}{2^n(n+1)(n+2)};$$
 247. $\sum_{n=2}^{\infty} (n-1)3^{n-1}x^{2n};$ **248.** $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{5^{n+1}};$

249.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{5^n}$$
; **250.** $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{(2n-1)3^n}$; **251.** $\sum_{n=1}^{\infty} \frac{2^{n-1}x^{n-1}}{(2n-1)^2\sqrt{3^{n-1}}}$;

252.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)(2n-1)!}$$
; **253.** $\sum_{n=1}^{\infty} \frac{n!}{n^n} (x-2)^n$; **254.** $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^n$.

11. Почленное дифференцирование и интегрирование рядов

Для отыскания суммы ряда в примерах этого раздела нужно использовать свойство возможности почленного дифференцирования и интегрирования степенных рядов внутри их промежутка сходимости. Применяя это свойство (может быть, и не один раз в одном и том же примере), можно найти ряд, сумма которого находится достаточно просто. Применяя обратное действие, находим сумму данного ряда. Сходимость ряда на границе области сходимости не исследуется

Примеры: 1.
$$\sum_{n=1}^{\infty} \frac{x^{2n+1}}{2n+2}$$
.

Обозначим
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n+1}}{2n+2}, \quad \text{тогда} \qquad x \cdot S(x) = \sum_{n=1}^{\infty} \frac{x^{2n+2}}{2n+2},$$

$$\left[x \cdot S(x)\right]' = \sum_{n=1}^{\infty} x^{2n+1} \quad \text{при} \quad |x| < 1. \quad \left[x \cdot S(x)\right]' = \frac{x^3}{1-x^2}, \quad \text{а} \quad \text{тогда}$$

$$x \cdot S(x) = \int_0^x \frac{t^3 dt}{1-t^2} = -\frac{x^2}{2} - \frac{1}{2} \ln(1-x^2).$$

$$S(x) = \begin{cases} -\frac{1}{2} \left(x + \frac{\ln(1-x^2)}{x}\right) & \text{при } x \neq 0 \quad u \mid x \mid < 1, \\ 0 & \text{при } x = 0 \end{cases}$$

<u>Примечание</u>: S(x) = 0 получаем, положив x = 0 во всех членах данного ряда.

2.
$$\sum_{n=4}^{\infty} (n-3)x^{n+1}$$
; пусть $S(x) = \sum_{n=4}^{\infty} (n-3)x^{n+1}$, $S(0) = 0$. При $x \neq 0$ $\frac{S(x)}{x^5} = \sum_{n=4}^{\infty} (n-3)x^{n-4}$; $\sigma(x) = \int_0^x \frac{S(t)}{t^5} dt = \sum_{n=4}^{\infty} x^{n-3} = \frac{x}{1-x}$; $\frac{S(x)}{x^5} = \sigma'(x) = \frac{1}{(1-x)^2}$, откуда $S(x) = \frac{x^5}{(1-x)^2}$ при $|x| < 1$.

12. Разложение функции в ряд Маклорена (по определению)

В примерах этого раздела надо найти первые несколько членов разложения данной функции в ряд Маклорена. Число производных, которые необходимо вычислить, определяется условиями задачи.

<u>Пример</u>: $f(x) = e^{\arcsin x}$. Найти первые три отличных от нуля члена разложения этой функции в ряд Маклорена.

$$f(0) = 1; f'(x) = e^{\arcsin x} \cdot \frac{1}{\sqrt{1 - x^2}}; f'(0) = 1.$$

$$f''(x) = e^{\arcsin x} \cdot \frac{1}{1 - x^2} + \frac{x}{\sqrt{(1 - x^2)^3}} \cdot e^{\arcsin x}; f''(0) = 1.$$

$$e^{\arcsin x} = 1 + x^2 + \frac{x^2}{2} + \dots$$

Упражнения:

Найти первые три отличных от нуля члена разложения в ряд Маклорена следующих функций:

272.
$$\ln(1+e^{x})$$
; 273. $\ln(1+\sin x)$; 274. $e^{\frac{1}{1+x}}$; 275. e^{arctgx} ; 276. $e^{\sin x}$; 277. $e^{\cos x}$; 278. $\frac{e^{x}}{\cos x}$; 279. $-\ln\cos x$; 280. $\cos^{n} x$; 281. $\cot^{n} x$; 282. $\sqrt{1+4x+12x^{2}}$; 283. $e^{x\sin x}$; 284. $e^{\frac{x}{\cos x}}$; 285. $(1+x)^{x}$; 286. $\frac{1}{2}\ln\frac{1+\sin x}{1-\sin x}$.

13. Разложение функции в ряд Тейлора с использованием известных рядов

В примерах этого раздела надо использовать для разложения заданной функции в ряд Тейлора известные разложения функции в ряд Маклорена. Для этого надо произвести замену независимой переменной так, чтобы новая независимая переменная менялась не в окрестности заданной точки x_0 , а в окрестности нуля. Кроме того, в случае необходимости надо выделить постоянную величину так, чтобы получить уже известное разложение функции в ряд Маклорена. Наконец, надо определить область, в которой данное разложение имеет место.

Пример: $f(x) = \ln(2+3x)$, $x_0 = 2$. Вводим новую независимую переменную y по формуле y = x - 2. Когда x меняется в окрестности $x_0 = 2$, y меняется в окрестности нуля.

$$\ln(2+3x) = \ln\left[2+3(y+2)\right] = \ln(8+3y) = \ln 8 + \ln(1+\frac{3}{8}y) = \ln 8 + \ln(1+x), \text{ где}$$

$$x = \frac{3}{8}y. \text{ Известно, что } \ln(1+z) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n} \text{ при } -1 < z \le 1;$$
тогда
$$\ln(2+3x) = \ln 8 + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{3^n(x-2)^n}{8^n \cdot n}.$$

Разложение имеет место при $-1 < \frac{3}{8}(x-2) \le 2$, откуда $-\frac{2}{8} < x \le \frac{14}{3}$.

Упражнения:

326. $(5-3x)^{\frac{3}{2}}$, $x_0 = -3$.

а) Разложить следующие функции в ряд Тейлора при заданном начальном значении аргумента x_0 :

287.
$$e^{x}$$
, $x_{0} = -2$; 288. e^{-3x} , $x_{0} = 1$; 292. 4^{-x} , $x_{0} = 2$; 293. 3^{-5x} , $x_{0} = -1$; 294. 3^{3x} , $x_{0} = -2$ 295. 4^{-2x} , $x_{0} = 1$; 297. $\sin \frac{\pi x}{4}$, $x_{0} = 2$; 298. $\sin \frac{\pi x}{2}$, $x_{0} = -2$; 299. $\sin \frac{\pi x}{3}$, $x_{0} = 3$; 300. $\cos \frac{\pi x}{3}$, $x_{0} = \frac{3}{2}$; 301. $\sin 2x$, $x_{0} = \frac{\pi}{3}$; 302. $\sin 3x$, $x_{0} = \frac{\pi}{3}$; 303. $\cos 3x$, $x_{0} = \frac{\pi}{2}$; 304. $\cos 2x$, $x_{0} = \frac{\pi}{4}$; 305. $\cos^{2} x$, $x_{0} = 1$; 306. $\sin^{2} x$, $x_{0} = \frac{\pi}{4}$; 307. $\ln(2+x)$, $x_{0} = 2$; 310. $\ln(2+x)$, $x_{0} = -2$; 311. $\ln(2x-3)$, $x_{0} = 3$; 312. $\ln(1-5x)$, $x_{0} = -2$; 313. $\ln(3x+4)$, $x_{0} = 1$; 314. $\log_{2}(2-5x)$, $x_{0} = -1$; 315. $\log_{3}(2x+1)$, $x_{0} = 2$; 316. $\lg(4-x)$, $x_{0} = 2$; 317. $\sqrt[3]{x-1}$, $x_{0} = 3$; 318. $\sqrt[3]{3-x}$, $x_{0} = 1$; 319. $\frac{1}{2-x}$, $x_{0} = 5$; 320. $\frac{1}{x}$, $x_{0} = 3$; 321. $\frac{1}{3-x}$, $x_{0} = 1$; 322. $\frac{1}{1+2x}$, $x_{0} = 2$; 323. $\sqrt{x^{3}}$, $x_{0} = 2$; 324. $(2x+3)^{\frac{4}{3}}$, $x_{0} = -1$; 325. $(3x-2)^{\frac{3}{7}}$, $x_{0} = 2$;

- б) Разложить следующие функции в ряд Маклорена:
- **327.** e^{2x^2} ; **328.** $\sin^2 x$; **329.** $\cos^2 x$; **330.** $\ln(10+x)$;

331.
$$\frac{1}{x+1}$$
; 332. $\frac{1}{\sqrt{1+x^3}}$; 333. $\sqrt[3]{3-x}$; 334. $\frac{1}{\sqrt{1-x^2}}$; 335. $\int_{0}^{x} e^{-t^2} dt$; 336. $\int_{0}^{x} \sqrt{1+t^3} dt$; 337. $\int_{0}^{x} \frac{\sqrt[4]{1+t^4}-1}{t^2} dt$; 338. $\int_{0}^{x} \frac{arctgt}{t} dt$.

14. Арифметические действия с рядами

В примерах этого раздела надо разложить заданную функцию в ряд Тейлора (или Маклорена, если не указано начальное значение аргумента), используя действия с рядами: сложение, умножение, деление. Если вычислить общий член затруднительно, можно ограничиться вычислением нескольких первых членов ряда.

<u>Примеры:</u>

$$\frac{1. \ xchx - shx = x \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} - \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = \\
= \sum_{n=0}^{\infty} x^{2n+1} \left[\frac{1}{(2n)!} - \frac{1}{(2n+1)!} \right] = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n-1)!(2n+1)!}, \quad -\infty < x < +\infty$$

$$2. \ e^{x} \ln(1-x) = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \cdot \sum_{n=1}^{\infty} \left(-\frac{x^{n}}{n} \right) = -\sum_{n=1}^{\infty} x^{n} \left[\frac{1}{(n-1)!1} + \frac{1}{(n-2)!2} + \dots + \frac{1}{1!(n-1)} + \frac{1}{0!n} \right] = -\sum_{n=1}^{\infty} \frac{x^{n}}{(n-1)!} \left[1 + \frac{n-1}{2} + \frac{(n-1)(n-2)}{3} + \dots + \frac{(n-1)(n-2)\dots 2}{n-1} + \frac{(n-1)!}{n} \right], \quad |x| < 1.$$

Упражнения:

Упражнения:340.
$$\sin 3x \cdot \cos 7x$$
;341. $\cos x \cdot \cos 5x$;342. $\sin 3x \cdot \sin 2x$;343. $(x + ctgx) \cdot \sin x$;344. $(x - tgx) \cdot \cos x$;345. $\sin \left(x + \frac{\pi}{17}\right)$;346. $(1 - x)e^x$;347. $x \cdot \ln(1 - x)$;348. $(1 + x)\ln(1 + x)$;349. $\frac{1 - a^{-x}}{x}$;350. $\frac{1 - e^{-x^2}}{x^2}$;351. $\frac{e^{x^3} - e^{-x^3}}{2x^3}$;352. $xarctgx - \ln \sqrt{1 + x^2}$;353. $\frac{1 + x}{\sqrt{1 - x}}$;354. $\ln(x^2 - 3x + 2)$;355. $\ln \sqrt[3]{\frac{1 + 2x}{1 + x}}$;356. $\frac{(1 + x)^2}{x} \ln(1 + x)$;357. $\frac{\ln(1 + x)}{1 + x}$;358. $\frac{3 - x}{1 - x^2}$;359. $x^3 + \ln(2 - x)$, $x_0 = 1$;

360. $x^2 + 2 + \sin 2x$, $x_0 = \frac{\pi}{2}$; **361.** $e^{-x} + 2x + 1$, $x_0 = -1$;

362.
$$x^2 + 1 + \frac{1}{x}$$
, $x_0 = 1$; **363.** $\ln^2(1-x)$; **364.** $arctg^2x$;

365.
$$e^{-x} \sin x$$
; **366.** $\frac{arctgx}{e^x}$;

367. $\sqrt{1+2x+3x^2+...+nx^{n-1}+...}$, <u>Указание</u>: найти сумму подкоренного ряда, используя почленное интегрирование степенных рядов.

368. $\ln(x+\sqrt{1+x^2})$, <u>Указание</u>: найти ряд для производной.

369. $arctg \frac{a-x}{a+x}$, a > 0, <u>Указание</u>: найти ряд для производной.

370.
$$\frac{x}{1+x-2x^2}$$
; **371.** $\frac{1}{\cos x}$; **372.** $\frac{\sqrt{1-x^2}-1}{\ln(1-x)}$; **373.** $\frac{x^2+x+1}{(1-x)^2(x-2)}$.

15. Интегрирование дифференциальных уравнений с помощью рядов

Одним из методов решения дифференциальных уравнений является попытка отыскать это решение y(x) в виде степенного ряда

$$y(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k = \sum_{k=0}^{\infty} \frac{y^{(k)}(x_0)}{k!} (x - x_0)^k,$$

коэффициенты которого можно определить различными способами. При этом производим только формальное вычисление коэффициентов, т.е. вопрос о сходимости ряда не исследуется.

<u>Способ 1</u>. Степенной ряд с неопределенными коэффициентами подставляем в уравнение и пробуем отыскать коэффициенты из условия, что уравнение при подстановке обращается в тождество.

Пример 1:
$$xy$$
"- $y=0$, $y(0)=0$, $y'(0)=1$
Пусть $y=\sum_{n=0}^{\infty}a_nx^n$; тогда y "= $\sum_{n=2}^{\infty}a_n\cdot n(n-1)x^{n-2}$; $\sum_{n=2}^{\infty}a_n\cdot n(n-1)x^{n-1}-\sum_{n=0}^{\infty}a_nx^n=0$.

Заменив индекс суммирования в первом ряде $\sum_{k=2}^{\infty} a_k \cdot k(k-1)x^{k-1}$ и положив k-1=n , получим $\sum_{n=1}^{\infty} a_{n+1} \cdot (n+1)nx^n - \sum_{n=0}^{\infty} a_nx^n = 0$.

Из начальных условий имеем $a_0=0$ и $a_1=1$. Приравняв коэффициенты при одинаковых степенях x нулю, получим при $n\ge 1$ $a_{n+1}(n+1)n-a_n=0$.

Тогда
$$a_{n+1} = \frac{a_n}{n(n+1)}$$
; откуда $a_n = \frac{1}{n(n-1)^2 \dots 2^2 \cdot 1} = \frac{1}{n!(n-1)!}$; $y = \sum_{n=1}^{\infty} \frac{x^n}{n!(n-1)!}$.

Способ 2. Пусть требуется найти решение уравнения y'' = f(x, y, y'), удовлетворяющее условиям $y(x_0) = y_0$, $y'(x_0) = y_1$, причем функция f(x,y,y') в точке (x_0,y_0,y_1) имеет частные производные любого порядка. Тогда коэффициенты $y^{(k)}(x_0)$ искомого степенного ряда определяются путем последовательного дифференцирования исходного уравнения и подстановки в него x_0 и найденных уже значений $y'(x_0)$, $y''(x_0)$,...

В примерах этого раздела требуется найти решение данных дифференциальных уравнений в виде степенного ряда или, где это указано, найти первые члены такого ряда.

Упражнения:

374.
$$y' = x^2 + y^2$$
, $y(0) = 0$, $\partial o x^7$;
375. $y' = y^2 + x^3$, $y(0) = \frac{1}{2}$, $\partial o x^5$;
376. $y' = x + x^2 + y^2$, $y(0) = 1$, $\partial o x^3$;
377. $y' = 1 + x - y^2$, $y(0) = 1$, $\partial o x^4$;
378. $y'' = yy' - x^2$, $y(0) = 1$, $y'(0) = 1$, $\partial o x^3$;
379. $y'' - xy = 0$, $y(0) = 1$, $y'(0) = -1$;
380. $y'' + xy = 0$, $y(0) = A$, $y'(0) = B$;

381.
$$y''-xy'-y=0$$
, $y(0)=1$, $y'(0)=0$;
382. $y''+xy'+y=0$, $y(0)=0$, $y'(0)=1$;
383. $y''=xy'-y+1$, $y(0)=0$, $y'(0)=0$;
384. $y''+xy'-y=0$, $y(0)=1$, $y'(0)=1$;
385. $y''+xy'+y+1=0$, $y(0)=1$, $y'(0)=0$;
386. $(1+x^2)y''+xy'-y=0$, $y(0)=y'(0)=1$;
387. $xy''+y'+xy=0$, $y(0)=1$, $y'(0)=0$;
388. $y''=xy'-y+e^x$, $y(0)=1$, $y'(0)=0$;
389. $y''+xy'+y-e^x=0$, $y(0)=1$, $y'(0)=0$.

16. Приближенные вычисления с использованием рядов

Для приближенного вычисления некоторых чисел с заданной степенью точности можно использовать разложение функции в степенной ряд. Выбрав такую функцию и найдя нужное значение аргумента, определим, сколько членов разложения необходимо взять для того, чтобы данное число можно было бы вычислить с требуемой степенью точности. Для этого используем оценку по абсолютной величине суммы остатка ряда каким-либо из рассмотренных в теоретическом курсе способом.

Примеры: 1. Вычислить
$$\sin 18^{\circ}$$
с точностью до $\varepsilon = 10^{-4}$.
$$\sin x = \sum_{m=0}^{\infty} (-1)^m \frac{x^{2m+1}}{(2m+1)!} = \sum_{m=1}^{\infty} (-1)^{m-1} \frac{x^{2m-1}}{(2m-1)!};$$

$$\sin 18^{\circ} = \sin \frac{\pi}{10} = \sum_{m=1}^{\infty} (-1)^{m-1} \frac{\left(\frac{\pi}{10}\right)^{2m-1}}{(2m-1)!} =$$

$$= \sum_{m=1}^{n} (-1)^{m-1} \frac{\left(\frac{\pi}{10}\right)^{2m-1}}{(2m-1)!} + \sum_{m=n+1}^{\infty} (-1)^{m-1} \frac{\left(\frac{\pi}{10}\right)^{2m-1}}{(2m-1)!}.$$

Так как остаток ряда есть знакочередующийся ряд, который сходится, то его сумма R_n имеет знак первого члена этого остатка и абсолютная величина этой суммы меньше его абсолютной величины. Подберем n из условия

$$\left(\frac{\pi}{10}\right)^{2n+1} \cdot \frac{1}{(2n+1)!} < 10^{-4}; \ n=3.$$

Тогда
$$\sin 18^\circ = \sin \frac{\pi}{10} = \frac{\pi}{10} - \left(\frac{\pi}{10}\right)^3 \cdot \frac{1}{3!} + \left(\frac{\pi}{10}\right)^5 \cdot \frac{1}{5!} =$$

= 0,31416·(1-0,01645+0,00008) = 0,30902.

Расчет ведем с точностью до 10-5; округлив результат, получим $\sin 18^{\circ} = 0.3090$.

2. Вычислить $\sqrt[4]{e}$ с точностью до $\varepsilon = 10^{-3}$.

$$e^{x} = \sum_{m=0}^{\infty} \frac{x^{m}}{m!}$$
. При $x = \frac{1}{4}$, $\sqrt[4]{e} = \sum_{m=0}^{\infty} \frac{1}{4^{m}m!} = \sum_{m=0}^{n} \frac{1}{4^{m}m!} + R_{n}$,

где
$$R_n = \sum_{m=n+1}^{\infty} \frac{1}{4^m m!}$$
.

Так как $\frac{a_{m+1}}{a_m} = \frac{1}{4(m+1)}$, то $R_n \le a_{n+1} \cdot \frac{1}{1-q}$, где $q = \frac{1}{4(n+1)}$. фиксированном *п*.

$$R_n \le a_{n+1} \cdot \frac{1}{1-q} = \frac{1}{4^{n+1}(n+1)!} \cdot \frac{1}{\left\lceil 1 - \frac{1}{4(n+1)} \right\rceil} = \frac{1}{4^n n! (4n+3)} < 10^{-3},$$
 откуда $n = 3$.

Тогда
$$\sqrt[4]{e} = 1 + \frac{1}{4} + \left(\frac{1}{4}\right)^2 \cdot \frac{1}{2!} + \left(\frac{1}{4}\right)^3 \cdot \frac{1}{3!} = 1 + 0,2500 + 0,0312 + 0,0026 = 1,2838.$$

Расчет ведем с точностью до 10^{-4} . Округлив, получим $\sqrt[4]{e} = 1,284$.

Упражнения:

Вычислить данные числа с указанной степенью точности $\mathcal E$.

390.
$$\cos 10^{\circ}$$
, $\varepsilon = 10^{-4}$; 391. $\sqrt[3]{30}$, $\varepsilon = 10^{-3}$; 392. $\int_{0}^{\frac{1}{4}} e^{-x^{2}} dx$, $\varepsilon = 10^{-4}$; 393. $\sqrt[3]{e}$, $\varepsilon = 10^{-3}$; 394. $\ln 2$, $\varepsilon = 10^{-4}$; 395. $\int_{0}^{\frac{1}{3}} \frac{dx}{\sqrt{1+x^{4}}}$, $\varepsilon = 10^{-4}$; 396. $\frac{1}{\sqrt[4]{e}}$, $\varepsilon = 10^{-4}$; 397. $\cos 1^{\circ}$, $\varepsilon = 10^{-4}$; 398. $\int_{0}^{1} \frac{x^{3}}{\sqrt[3]{8+x^{8}}} dx$, $\varepsilon = 10^{-4}$; 399. $\ln 5$, $\varepsilon = 10^{-4}$; 400. $\sqrt[5]{33}$, $\varepsilon = 10^{-5}$; 401. $\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{x} dx$, $\varepsilon = 10^{-3}$;

399.
$$\ln 5$$
, $\varepsilon = 10^{-4}$; **400.** $\sqrt[5]{33}$, $\varepsilon = 10^{-5}$; **401.** $\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{x} dx$, $\varepsilon = 10^{-3}$;

402.
$$\ln 13$$
, $\varepsilon = 10^{-3}$; **403.** $\sqrt[3]{70}$, $\varepsilon = 10^{-3}$; **404.** $\int_{0}^{\frac{1}{2}} \sin x^{3} dx$, $\varepsilon = 10^{-6}$;

405.
$$\sqrt{e}$$
, $\varepsilon = 10^{-3}$; **406.** $\sin 10^{\circ}$, $\varepsilon = 10^{-4}$; **407.** $\int_{0}^{\frac{1}{10}} \frac{\ln(1+x)}{x} dx$, $\varepsilon = 10^{-3}$;

408.
$$\ln 3$$
, $\varepsilon = 10^{-4}$; **409.** $\sin 1^{\circ}$, $\varepsilon = 10^{-4}$; **410.** $\int_{0}^{\frac{1}{2}} \frac{arctgx}{x} dx$, $\varepsilon = 10^{-3}$;

411.
$$\int_{0}^{\frac{1}{2}} \sqrt{1+x^{3}} dx$$
, $\varepsilon = 10^{-5}$; 412. $\ln 10$, $\varepsilon = 10^{-3}$; 413. $\ln 6$, $\varepsilon = 10^{-4}$; 414. $\ln 17$, $\varepsilon = 10^{-3}$; 415. $\cos 5^{\circ}$, $\varepsilon = 10^{-4}$; 416. $\sin 5^{\circ}$, $\varepsilon = 10^{-4}$; 417. $\sqrt[3]{130}$, $\varepsilon = 10^{-3}$; 418. $\sqrt[10]{1027}$, $\varepsilon = 10^{-5}$; 419. $\ln 4$, $\varepsilon = 10^{-4}$; 420. $\int_{0}^{1} \sin x^{2} dx$, $\varepsilon = 10^{-3}$; 421. $\int_{0}^{\frac{1}{3}} e^{-\frac{x^{2}}{2}} dx$, $\varepsilon = 10^{-5}$; 422. $\int_{0}^{\frac{1}{5}} \sqrt[3]{1+x^{2}} dx$, $\varepsilon = 10^{-5}$; 423. $\sqrt{1,005}$, $\varepsilon = 10^{-5}$; 424. $\sqrt[3]{1,0012}$, $\varepsilon = 10^{-6}$; 425. $\int_{0}^{\frac{1}{2}} \cos \frac{x^{2}}{4} dx$, $\varepsilon = 10^{-6}$.

17. Ряды Фурье

В задачах этого раздела требуется разложить представленные графически или аналитически заданные функции в ряды гармоник.

а) Разложить функцию в тригонометрический ряд Фурье.

Пример:

Для разложения функции в ряд надо знать период T разложения, частоту $\omega\!=\!\frac{2\pi}{T}$ и аналитическое задание функции на промежутке длины T ,

например, на отрезке $\left[-\frac{T}{2}; \frac{T}{2}\right]$. Из графика видно, что T=2 , $\omega=\pi$,

$$f(x) = \begin{cases} 1, & npu-1 < x < 0 \\ 1-x, & npu < x < 1 \end{cases}$$

при этом на промежутке [-1;1] выполнены условия Дирихле. Разложение функции в ряд гармоник производится по формуле

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\omega x + b_n \sin n\omega x$$

где $\omega = \frac{2\pi}{T}$, а коэффициенты разложения a_n и b_n вычисляются по формулам

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \cos n\omega x dx$$
и $b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \sin n\omega x dx$

В нашем примере

$$a_n = \frac{2}{2} \int_{-1}^{1} f(x) \cos n\pi x dx = \int_{-1}^{0} \cos n\pi x dx + \int_{0}^{1} (1-x) \cos n\pi x dx = \frac{1}{n^2 \pi^2} \left[1 - (-1)^n \right]$$

$$n = 1, 2, 3, \dots$$

коэффициент a_0 приходится вычислять отдельно, так как в формуле

$$a_n = \frac{1}{n^2 \pi^2} [1 - (-1)^n] n$$
 не может быть равно 0.

$$a_0 = \int_{-1}^{1} f(x)dx = \int_{-1}^{0} dx + \int_{0}^{1} (1-x)dx = \frac{3}{2};$$

$$b_n = \frac{2}{2} \int_{-1}^{1} f(x) \sin n\pi x dx = \int_{-1}^{0} \sin n\pi x dx + \int_{0}^{1} (1-x) \sin n\pi x dx = (-1)^n \frac{1}{n\pi}$$

$$n = 1, 2, 3, ...;$$

$$f(x) = \frac{3}{4} + \sum_{n=1}^{\infty} \frac{1}{n^2 \pi^2} \left[1 - (-1)^n \right] \cos n\pi x + \frac{(-1)^n}{n\pi} \sin n\pi x$$

426.

428.

429.

 $f(x) = |\sin x|, (-\pi, \pi];$

431.
$$f(x) = \begin{cases} -1-x, & x \in (-1,0] \\ 1-x, & x \in (0,1] \end{cases}$$

432.

434.

435.

$$f(x) = x, x \in (-1,1];$$

437.

$$f(x) = \begin{cases} 1, & x \in (-\pi; 0] \\ \cos x, & x \in (0; \pi] \end{cases}$$

438.

$$f(x) = \begin{cases} x + \frac{\pi}{2}, & x \in \left[-\frac{\pi}{2}; 0\right] \\ x - \frac{\pi}{2}, & x \in \left[0; \frac{\pi}{2}\right] \end{cases}$$

439.

440.

442. $f(x)=1+e^{-x}, x \in (0;\pi];$

443.

- **445.** $f(x) = x^2, x \in (0, 2\pi];$
- 444.
- $f(x) = \begin{cases} 1 x, x \in (-1, 0], \\ 1 + x, x \in (0, 1], \end{cases}$
- $\begin{array}{c|c}
 & \pi \\
 \hline
 & \pi \\
 & \pi \\
 \hline
 & \pi \\
 & \pi \\
 \hline
 & \pi \\
 \hline
 & \pi \\
 & \pi \\
 \hline
 & \pi \\
 \hline
 & \pi \\
 \hline
 & \pi \\
 & \pi$
- $f(x) = \begin{cases} 0, & x \in (-\pi; 0] \\ \sin x, & x \in (0; \pi] \end{cases}$
- **449.** $f(x) = x, x \in (-3,3)$;

450.

- **451.** $f(x) = \sin ax, (-\pi; \pi],$ *а* - не целое;
- $f(x) = \cos ax, (-\pi; \pi],$ **452.** *а* - не целое;
- **453.**
- $f(x) = \begin{cases} x + \frac{\pi}{2}, & x \in \left(-\frac{\pi}{2}; 0\right], \\ \pi, & x \in \left(0; \frac{\pi}{2}\right], \end{cases}$ $455. \quad f(x) = x^2, \quad x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right);$ 454.
- **456.** $f(x) = \cos \frac{2}{3}x, \ x \in \left(0; \frac{3}{2}\pi\right);$
- **457.**

- б) Разложить функцию в тригонометрический ряд по синусам или по косинусам.
- **458.** $f(x) = x(\pi x), x \in (0, \pi),$ по синусам;
- **459.** $f(x) = \cos 4x, \ x \in \left(0; \frac{\pi}{4}\right),$

460.

по синусам; 461.

по синусам;

462.

по косинусам;

463.

по синусам;

по косинусам; 464.

466.

по косинусам;

по косинусам;

467.

по косинусам;

по косинусам;

468.
$$f(x) = \sin 3x, x \in \left[0; \frac{\pi}{3}\right],$$
 по косинусам;

469.

$$f(x) = \begin{cases} \cos\frac{\pi x}{l}, & x \in \left[0; \frac{l}{2}\right] \\ 0, & x \in \left[\frac{l}{2}; l\right] \end{cases},$$

470. $f(x) = \begin{cases} 0, x \in (0;1] \\ (x-1)^2, & x \in (1;2] \end{cases}$

по синусам;

по синусам;

471.
$$f(x) = 2x - 3, x \in (0;1],$$
 по синусам;

472.

по косинусам;

474.

по синусам;

476.
$$f(x) = 2 - x$$
, $x \in (0,2]$, no cuhycam;

478.
$$f(x) = x^2, x \in (0; \pi],$$
 по синусам;

480.
$$f(x)=1-x^2, x \in \left(0; \frac{\pi}{2}\right],$$

по косинусам.

473.

по синусам;

475.

$$f(x) = \begin{cases} 1, & x = 0 \\ \text{линейная}, & x \in (0, 2h] \\ 0, & x \in (2h, \pi] \end{cases}$$

f(x) - непрерывная на $\left[0;\pi\right]$ функция, $2h < \pi$, по косинусам;

477. $f(x) = \frac{\pi}{4} - \frac{x}{2}, x \in (0, \pi),$

по косинусам:

479.
$$f(x) = \begin{cases} 0, x \in (0;1] \\ (x-1)^2, x \in (1;2] \end{cases}$$

по косинусам:

18. Тригонометрические ряды в комплексной форме

В примерах этого раздела требуется разложить данную функцию в ряд Фурье, записанный в комплексной форме:

$$f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{in\omega x},$$

где c_n вычисляются по формуле $c_n = \frac{1}{T} \int_T^{\frac{\pi}{2}} f(x) e^{-in\omega x} dx$.

<u>Пример</u>: $f(x) = \begin{cases} 1, & x \in (-\pi; 0] \\ \sin x, & x \in (0; \pi] \end{cases}$ $T = 2\pi, \ \omega = 1;$

$$c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx = \frac{1}{2\pi} \left[\int_{-\pi}^{0} e^{-inx}dx + \int_{0}^{\pi} \sin x e^{-inx}dx \right] =$$

$$= \frac{1}{2\pi} \left[\int_{-\pi}^{0} e^{-inx}dx + \int_{0}^{\pi} \frac{e^{ix} - e^{-ix}}{2i} e^{-inx}dx \right] = \frac{1}{2\pi} \left[\frac{(-1)^{n-1} - 1}{n^{2} - 1} + \frac{-1 - (-1)^{n}}{n} \right]$$

Отдельно считаем коэффициенты c_0, c_1, c_{-1} ,

 $n = \pm 2, \pm 3,...$

$$c_{0} = \frac{1}{2\pi} \left[\int_{-\pi}^{0} dx + \int_{0}^{\pi} \sin x dx \right] = \frac{1}{2\pi} (\pi + 2)$$

$$c_{1} = \frac{1}{2\pi} \left[\int_{-\pi}^{0} e^{-ix} dx + \int_{0}^{\pi} \sin x e^{-ix} dx \right] = i \frac{4 - \pi}{4\pi}$$

$$c_{-1} = \frac{1}{2\pi} \left[\int_{-\pi}^{0} e^{ix} dx + \int_{0}^{\pi} \sin x e^{ix} dx \right] = i \frac{\pi - 4}{4\pi}$$

$$f(x) = \frac{1}{2\pi} \sum_{n=-\infty}^{-2} \left[\frac{(-1)^{n-1} - 1}{n^{2} - 1} + i \frac{1 - (-1)^{n}}{n} \right] e^{nxi} + i \frac{\pi - 4}{4\pi} e^{-xi} + \frac{\pi + 2}{2\pi} + i \frac{4 - \pi}{4\pi} e^{xi} + \frac{1}{2\pi} \sum_{n=2}^{\infty} \left[\frac{(-1)^{n-1} - 1}{n^{2} - 1} + i \frac{1 - (-1)^{n}}{n} \right] e^{nxi}$$

Упражнения:

481.
$$f(x) = \begin{cases} \sin x, & x \in [-\pi; 0] \\ x, & x \in (0; \pi] \end{cases}$$
482. $f(x) = \begin{cases} \cos x, & x \in [-\pi; 0] \\ \sin x, & x \in (0; \pi] \end{cases}$
483. $f(x) = \begin{cases} \cos x, & x \in [-\pi; 0] \\ 0, & x \in (0; \pi] \end{cases}$
484. $f(x) = \begin{cases} x, & x \in [-\pi; 0] \\ e^x, & x \in (0; \pi] \end{cases}$
485. $f(x) = \begin{cases} \sin 2x, & x \in [-\pi; 0] \\ e^{2x}, & x \in (0; \pi] \end{cases}$
486. $f(x) = \begin{cases} 0, & x \in [-\pi; 0] \\ e^{-2x}, & x \in (0; \pi] \end{cases}$
487. $f(x) = \begin{cases} 1, & x \in [-\pi; 0] \\ e^{2x}, & x \in (0; \pi] \end{cases}$
488. $f(x) = \begin{cases} e^{-x}, & x \in [-\pi; 0] \\ 1 + x, x \in (0; \pi] \end{cases}$

19. Интеграл Фурье

Если функция определена и абсолютно интегрируема на $(-\infty; +\infty)$ и на любом конечном промежутке удовлетворяет условиям Дирихле, то можно представить эту функцию ее интегралом Фурье.

В примерах этого раздела надо представить данные функции их интегралами Фурье.

Пример:
$$f(x) = \begin{cases} 1, & npu-1 \le x \le 1 \\ 0, & npu \ x < -1 \ unu \ x > 1 \end{cases}$$

Так как f(x) четная функция, то

$$f(x) = \frac{2}{\pi} \int_{0}^{+\infty} \left[\cos zx \int_{0}^{+\infty} f(u) \cos zu du \right] dz = \frac{2}{\pi} \int_{0}^{+\infty} \left[\cos zx \int_{0}^{1} \cos zu du \right] dz =$$

$$= \frac{2}{\pi} \int_{0}^{+\infty} \frac{\sin z \cos zx}{x} dz$$

489.
$$f(x) = \begin{cases} 1, & 0 < x < 1 \\ \frac{1}{2}, x = 0, x = 1; \\ 0, & x < 0, x > 1 \end{cases}$$

491.
$$f(x) = \begin{cases} |x|, & |x| \le 2 \\ 0, & |x| > 2 \end{cases}$$

493.
$$f(x) = \begin{cases} x-1, & 0 \le x \le 1 \\ -1-x, -1 \le x < 0; \\ 0, & |x| > 1 \end{cases}$$
494.
$$f(x) = \begin{cases} 1-x, & 0 \le x \le 1 \\ 1+x, -1 \le x < 0; \\ 0, & |x| > 1 \end{cases}$$
495.
$$f(x) = \begin{cases} 1-\frac{x}{2}, & 0 \le x < 2 \\ 1+\frac{x}{2} - 2 \le x < 0 \end{cases}$$
496.
$$f(x) = \begin{cases} \sin x, |x| \le \pi \\ 0, |x| > \pi \end{cases}$$

495.
$$f(x) = \begin{cases} 1 - \frac{x}{2}, & 0 \le x < 2 \\ 1 + \frac{x}{2}, -2 \le x < 0; \\ 0, & |x| > 2 \end{cases}$$

497.
$$f(x) = \begin{cases} \cos x, & |x| \le \frac{\pi}{2} \\ 0, & |x| > \frac{\pi}{2} \end{cases}$$

499.
$$f(x) = \begin{cases} e^{-x}, & 0 \le x \le 1 \\ -e^{x}, & -1 \le x < 0; \\ 0, & |x| > 1 \end{cases}$$
501.
$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x = 0; \\ -e^{x}, & x < 0 \end{cases}$$
503.
$$\begin{cases} x + 1, & 1 \le x \le 1 \end{cases}$$

501.
$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x = 0 \\ -e^{x}, & x < 0 \end{cases}$$

503.
$$f(x) = \begin{cases} x+1, & -1 \le x \le -\frac{1}{2} \\ 1, & |x| < \frac{1}{2} \\ 1-x, & \frac{1}{2} \le x \le 1 \\ 0, & |x| > 1 \end{cases}$$

490.
$$f(x) = \begin{cases} x, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$

492.
$$f(x) = \begin{cases} -1, & 0 < x \le 2 \\ 1, -2 \le x \le 0 \\ 0, & |x| > 2 \end{cases}$$

494.
$$f(x) = \begin{cases} 1-x, & 0 \le x \le 1 \\ 1+x, -1 \le x < 0; \\ 0, & |x| > 1 \end{cases}$$

496.
$$f(x) = \begin{cases} \sin x, & |x| \le \pi \\ 0, & |x| > \pi \end{cases}$$
;

498.
$$f(x) = \begin{cases} \sin|x|, & |x| < \frac{\pi}{2} \\ 0, & |x| \ge \frac{\pi}{2} \end{cases}$$

500.
$$f(x) = \begin{cases} e^{-|x|}, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$

502.
$$f(x) = \begin{cases} (x-1)^2, & 0 \le x \le 2 \\ 0, & x < 0, & x > 2 \end{cases}$$

20. Преобразование Фурье

В примерах данного раздела требуется найти образ Фурье данной функции, используя преобразование Фурье.

Пример:
$$f(x) = \begin{cases} e^{x} \sin x, & x \in (-\infty, 0] \\ 0, & x \in (0, +\infty) \end{cases}$$

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-i\omega x} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{x} \sin x e^{-i\omega x} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{x} \frac{e^{xi} - e^{-xi}}{2i} e^{-i\omega x} dx = \frac{1}{\sqrt{2\pi}} \frac{1}{2i} \left[\frac{1}{1 + i - i\omega} - \frac{1}{1 - i - i\omega} \right] = \frac{\omega^{2} - 2 - 2i\omega}{\sqrt{2\pi} (4 + \omega^{2})}$$

504.
$$f(x) = \begin{cases} e^x, & x \in (-\infty, 0] \\ 0, & x \in (0, +\infty) \end{cases}$$
; **505.** $f(x) = \begin{cases} e^x, & x \in [-\pi, \pi] \\ 0, & x \notin [-\pi, \pi] \end{cases}$

506.
$$f(x) = \begin{cases} e^{2x}, & x \in (-\infty, 0] \\ e^{-2x}, & x \in (0, +\infty) \end{cases}$$

508.
$$f(x) = \begin{cases} \sin x, & x \in [-\pi, \pi] \\ 0, & x \notin [-\pi, \pi] \end{cases}$$

508.
$$f(x) = \begin{cases} \sin x, & x \in [-\pi, \pi] \\ 0, & x \notin [-\pi, \pi] \end{cases}$$

510.
$$f(x) = \begin{cases} e^x + e^{-x}, & x \in [-\pi, \pi] \\ 0, & x \notin [-\pi, \pi] \end{cases}$$

512.
$$f(x) = \begin{cases} e^{\pi + x} \sin x, & x \in [-\pi, 0] \\ 0, & x \notin [-\pi, 0] \end{cases}$$

514.
$$f(x) = \begin{cases} \cos 2x, & x \in \left[0, \frac{\pi}{2}\right] \\ 0, & x \notin \left[0, \frac{\pi}{2}\right] \end{cases}$$
, **515.**
$$f(x) = \begin{cases} 0, & x \in (-\infty, 0] \\ e^{-2x}, & x \in (0, +\infty) \end{cases}$$

516.
$$f(x) = \begin{cases} e^x \cos x, & x \in (-\infty, 0] \\ e^{-x} \sin x, & x \in (0, +\infty) \end{cases}$$

505.
$$f(x) = \begin{cases} e^x, & x \in [-\pi, \pi] \\ 0, & x \notin [-\pi, \pi] \end{cases}$$

507.
$$f(x) = \begin{cases} e^x \sin x, & x \in (-\infty, 0] \\ e^{-x} \sin x, & x \in (0, +\infty) \end{cases}$$

$$\begin{aligned}
\mathbf{0}, \ x \in (0, +\infty) \\
\mathbf{506.} \ f(x) &= \begin{cases} e^{2x}, \ x \in (-\infty, 0] \\ e^{-2x}, \ x \in (0, +\infty) \end{cases}; \\
\mathbf{507.} \ f(x) &= \begin{cases} e^{x} \sin x, \ x \in (-\infty, 0] \\ e^{-x} \sin x, \ x \in (0, +\infty) \end{cases}; \\
\mathbf{508.} \ f(x) &= \begin{cases} \sin x, \ x \in [-\pi, \pi] \\ 0, \ x \notin [-\pi, \pi] \end{cases}; \\
\mathbf{509.} \ f(x) &= \begin{cases} \sin x + \cos x, \ x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \\ 0, \ x \notin [-\frac{\pi}{2}, \frac{\pi}{2}] \end{cases};
\end{aligned}$$

510.
$$f(x) = \begin{cases} e^x + e^{-x}, & x \in [-\pi, \pi] \\ 0, & x \notin [-\pi, \pi] \end{cases}$$
 511. $f(x) = \begin{cases} 0, & x \in (-\infty, 0] \\ e^{-x} \cos x, & x \in (0, +\infty) \end{cases}$

512.
$$f(x) = \begin{cases} e^{\pi + x} \sin x, & x \in [-\pi, 0] \\ 0, & x \notin [-\pi, 0] \end{cases}$$
 513. $f(x) = \begin{cases} \sin x, & x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \\ 0, & x \notin [-\frac{\pi}{2}, \frac{\pi}{2}] \end{cases}$

5.
$$f(x) = \begin{cases} 0, & x \in (-\infty, 0] \\ e^{-2x}, & x \in (0, +\infty) \end{cases}$$

Литература

- **1.** Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. М.: Наука, 1966, т.П.
- **2.** Пискунов Н.С. Дифференциальное и интегральное исчисления. М.: Физматгиз, 1963.
 - **3.** Воробьев Н.Н. Теория рядов. М.: Наука, 1970.
- **4.** Кожевников Н.И., Краснощекова Т.И., Шишкин Н.Е. Ряды и интеграл Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа. М.: Наука, 1964.
- **5.** Берман Г.Н. Сборник задач и упражнений по курсу математического анализа. М.: Наука, 1980.
- **6.** Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Наука, 1966.

Ответы

1.Расходится. **2.**Расходится. **3.**Расходится. **4.**S = 1. **5.** $S = \frac{3}{4}$. **6.** $S = \frac{11}{12}$. 7. $S = \frac{1}{2}$. 8. $S = \frac{1}{3}$. 9. S = 1. 10. S = 2. 11. $S = \frac{3}{13}$. 12. S = 0. 13. Расходится. 14. $S = \frac{8}{3}$. 15. $S = \frac{3}{4}$. 16. $S = \frac{25}{4}$. 17. S = -18,75. 18. $S = \frac{2260}{931}$. 19. $S = \frac{73}{8}$. **20.** $S = \frac{25}{144.93}$. **21.**Расходится. **22.** $S = \frac{410}{3}$. **23.**Расходится. **24.** $S = 1 - \sqrt{2}$. **25.**Нет. **26.**Нет. **27.**Да. **28.**Нет. **29.**Да. **30.**Да. **31.**Нет. **32.**Нет. **33.**Нет. **34.**Да. **35.**Нет. **36.**Нет. **37.**Нет. **38.**Нет. **39.**Нет. **40.**Да. **41.**Сходится. **42.**Расходится. **43.** Расходится. **44.** Расходится. **45.** Сходится. **46.** Расходится. 47.Сходится. **48.**Сходится. **49.**Сходится. **50.**Расходится. **51.**Сходится. **52.**Сходится. 53.Сходится. 54. Расходится. 55. Расходится. **56.**Сходится. 57.Сходится. **58.**Сходится. **59.**Сходится. **60.**Сходится, если a < b; расходится, если a > b. **61.**Сходится. **62.**Сходится. **63.**Сходится. 64.Сходится. 65.Сходится. **66.**Сходится. **67.**Сходится. **68.**Расходится. 69. Расходится. 70. Расходится. **72.**Сходится. 73.Сходится. **74.**Сходится. **71.**Сходится. 75.Сходится. **76.** Расходится. 77.Сходится. **78.**Сходится. 79.Сходится. **80.**Сходится. 82. Расходится. **81.**Сходится. 83. Расходится. 84. Расходится. **85.**Сходится. **86.**Сходится. **87.**Сходится. **88.**Сходится. **89.**Сходится. **90.**Сходится. **91.** Расходится. **92.**Сходится. 93.Сходится неабсолютно. 94.Сходится неабсолютно. 95.Сходится абсолютно. 96.Сходится абсолютно. 97.Сходится **99.** Расходится. абсолютно. **98.** Расходится. **100.**Сходится неабсолютно. 102.Сходится 101.Сходится неабсолютно. неабсолютно. 103.Сходится неабсолютно. **104.** Расходится. **105.**Сходится абсолютно. **106.**Сходится абсолютно. 107. Сходится абсолютно. 108. Сходится абсолютно. 109. Сходится абсолютно. 110.Сходится. 111.Расходится. 112.Сходится. 113.Расходится. **114.**Сходится. 115.Сходится абсолютно. 116.Сходится абсолютно. 117. Расходится. 118. Расходится. 119. Расходится. 120. Сходится абсолютно. 121.Сходится. 122.Расходится. 123.Сходится абсолютно. 124.Расходится. **125.**Сходится. **126.**Сходится. **127.**Сходится. **128.**Расходится. **129.**Сходится абсолютно. 130. Расходится. 131. Сходится. 132. Сходится. 133. Расходится. 134. Расходится. 135. Расходится. 136. Расходится. 137. Сходится. 138. Сходится **139.**Сходится неабсолютно. неабсолютно. 140.Сходится абсолютно. **142.**Сходится. 143.Сходится. 141.Сходится абсолютно. 144. Расходится. 145.Сходится абсолютно **146.**Сходится. 147.Сходится абсолютно. 149. Расходится. **148.**Сходится. **150.**Сходится абсолютно. **151.**Сходится **152.**Сходится. 154. Расходится. абсолютно. **153.**Сходится абсолютно. **155.**Сходится. **156.**Сходится. **157.**Сходится абсолютно. 158. Расходится. 159.Сходится абсолютно. **160.**Сходится неабсолютно. **161.**Сходится

абсолютно. **162.**Сходится абсолютно при p > 2 и неабсолютно 0 . 163. Сходится абсолютно при <math>p > 1 и неабсолютно при 0 .**164.**Сходится абсолютно. **165.**Сходится абсолютно при $m \ge 0$ и неабсолютно -1 < m < 0. **166.**Сходится при a < e, расходится при **167.**Сходится. **168.**Сходится. **169.**Сходится. **170.**Расходится. **171.**Сходится. при p > 3/2. **173.**Сходится абсолютно. 174.Сходится **172.**Сходится 175.Сходится абсолютно. **176.**Расходится. неабсолютно. 177.Сходится абсолютно. 178. Сходится абсолютно. 179. Сходится абсолютно. 180. Сходится абсолютно. 181. Сходится абсолютно. 182. Сходится абсолютно. 183. Сходится при $-\infty < x < 0$. **184.**Сходится абсолютно при $x \in \left(-\frac{1}{2}; \frac{1}{2}\right)$. **185.**Сходится абсолютно при $x \in \left[\frac{1-\sqrt{5}}{2}; \frac{1+\sqrt{5}}{2}\right]$. **186.**Сходится абсолютно при |x| < 1. **187.**Сходится абсолютно при x > 0. **188.**Сходится абсолютно. **189.**Сходится при $x \in \left(-\infty; -\frac{1}{2} \mid \bigcup [0; +\infty) \right)$. **190.**Сходится при $x \in \left(-\infty; -\frac{5}{3} \mid \bigcup [-1; +\infty) \right)$. **191.**Сходится при $x \in (-\infty; -5) \cup (7; +\infty)$. **192.**Сходится при $x \in \left(-1; -\frac{1}{2} \mid \bigcup \mid \frac{1}{2}; 1\right)$. **193.**Сходится при $|x| \le \frac{3}{2}$; $S(x) = \frac{2x}{3-2x}$. 194. Сходится при $|x| \le \frac{2}{\sqrt{3}}$; $S(x) = \frac{3x^2}{4-3x^2}$. 195. Сходится при $|x| \ge 1$; $S(x) = \frac{1}{x-1}$. **196.**Сходится при $|x| \ge \frac{1}{2}$; $S(x) = \frac{5}{2x-1}$. **197.**Сходится при $|x| > \frac{1}{\sqrt[3]{2}}$; $S(x) = \frac{4}{2x^3 - 1}$. **198.**Сходится при $x \in (-10, 8)$; $S(x) = \frac{1-x}{2-x}$. 199. Сходится при $x \in (-\infty, 4) \cup (6, +\infty)$; $S(x) = \frac{1}{x-1}$. **200.**Сходится при $x \in \left(-\infty; -\frac{3}{2}\right);$ $S(x) = -\frac{3+x}{3x}$. **201.**Сходится $x \in \left(-\infty; -\frac{1}{2}\right) \cup \left(\frac{1}{3}; +\infty\right); \ S(x) = \frac{2-x}{2(3x-1)}.$ 202. Расходится при всех x. **203.**Сходится при $x \in (-\sqrt{5}; -\sqrt{3}) \cup (\sqrt{3}; \sqrt{5}); S(x) = \frac{4-x^2}{x^2-x^2}$

204.Сходится при
$$x \in \left(-\frac{1}{e};e\right);$$
 $S(x) = \frac{\ln x}{\ln x - 1}.$ 205.Сходится при $x > 0$ $x \neq \frac{\pi(2k+1)}{2}, k = 0, \pm 1, \pm 2, \pm 3, ...;$ $S(x) = \frac{\sin x}{1-\sin x}.$ 206.Сходится при $x > 0$ $S(x) = \frac{1}{e^x - 1}.$ 207.Сходится при $|x| < 1;$ $S(x) = \int x \ln(x+1) dx = \frac{x}{2} - \frac{x}{4} - \frac{\ln(x+1)}{2} + x + \frac{x^2 \ln(x+1)}{2}.$ 208.Сходится при $|x| < \frac{1}{2};$ $S(x) = \int \ln(x+1) dx = \frac{x}{x} - \frac{\ln(x+1)}{x} + \frac{x^2 \ln(x+1)}{2}.$ 209.Сходится при $|x| < \frac{1}{2};$ $S(x) = \int \ln(1+2x) dx = \frac{(1+2x)(\ln(1+2x)-1)}{2}.$ 210.Сходится при $|x| < \frac{1}{3};$ $S(x) = \frac{(1+3x)(\ln(1+3x)-1)}{3x}.$ 211.Сходится при всех x ; $S(x) = \int \frac{\sin x}{x} dx.$ 212.Сходится равномерно. 217.Сходится равномерно. 217.Сходится равномерно. 221.Сходится равномерно. 222.Сходится равномерно. 222.Сходится равномерно. 223.Сходится равном

258.
$$S(x) = \begin{cases} \frac{1}{2x^2} \ln \frac{1+x}{1-x} - \frac{x^3}{5} - \frac{x}{3} - \frac{1}{x}; & |x| < 1; & x \neq 0 \\ 0; & x = 0 \end{cases}$$

259.
$$S(x) = \frac{1}{(x-1)^2}$$
; $|x| < 1$. **260.** $S(x) = \frac{x^8}{(x-1)^2}$; $|x| < 1$.

260.
$$S(x) = \frac{x^8}{(x-1)^2}$$
; $|x| < 1$.

261.
$$S(x) = \frac{1+x^2}{(1-x^2)^2}$$
; $|x| < 1$.

261.
$$S(x) = \frac{1+x^2}{(1-x^2)^2}$$
; $|x| < 1$. **262.** $S(x) = \frac{x^2(5-4x)}{(1-x)^2}$; $|x| < 1$.

263.
$$S(x) = \frac{1}{(1-3x)^2}$$
; $|x| < \frac{1}{3}$

263.
$$S(x) = \frac{1}{(1-3x)^2}$$
; $|x| < \frac{1}{3}$. **264.** $S(x) = \begin{cases} \left(\frac{1}{x} - 1\right) \ln(1-x) + 1; & |x| < 1; & x \neq 0 \\ 0; & x = 0 \end{cases}$.

265.
$$S(x) = -\frac{1}{2}x\ln(1-x^2) + x + \frac{1}{2}\ln\frac{1-x}{1+x}$$
; $|x| < 1$.

266.
$$S(x) = -\frac{1}{3}x\ln(1-x^3) + x + \frac{1}{3}\ln(1-x) - \frac{1}{6}\ln(x^2+x+1) - \frac{1}{6}\ln(x^2+x+1)$$

$$-\frac{1}{\sqrt{3}}(arctg\frac{2x+1}{\sqrt{3}}-\frac{\pi}{6}); |x|<1.$$

267.
$$S(x) = \begin{cases} \frac{1}{x} - \frac{x}{6} + \frac{1}{2x^2} \ln \frac{1-x}{1+x} - \frac{1}{2x} \ln (1-x^2); & |x| < 1; & x \neq 0 \\ 0; & x = 0 \end{cases}$$

268.
$$S(x) = \frac{1}{(1-x)^3}$$
; $|x| < 1$.

269.
$$S(x) = \frac{2x}{(1-x)^3}$$
; $|x| < 1$.

270.
$$S(x) = \frac{x^2(15-10x^2+3x^4)}{(1-x^2)^3}$$
; $|x| < 1$.

271.
$$S(x) = \frac{1}{2}x \left[(1-x^2)\ln(1-x) + x + \frac{1}{2}x^2 \right]; |x| < 1.$$

272.
$$\ln(1+e^x) = \ln 2 + \frac{x}{2} + \frac{x^2}{8} + \dots$$

273.
$$\ln(1+\sin x) = x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$$

274.
$$e^{\frac{1}{1+x}} = e(1-x+\frac{3}{2}x^2+...)$$
.

275.
$$e^{arctgx} = 1 + x + \frac{x^2}{2} + \dots$$

276.
$$e^{\sin x} = 1 + x + \frac{x^2}{2} + \dots$$

277.
$$e^{\cos x} = e(1 - \frac{x^2}{2} + \frac{x^4}{6} - \dots)$$
.

278.
$$\frac{e^x}{\cos x} = 1 + x + x^2 + \dots$$

279.
$$-\ln \cos x = \frac{x^2}{2} + \frac{x^4}{12} + \frac{x^6}{45} + \dots$$

280.
$$\cos^n x = 1 - \frac{n}{2}x^2 + \frac{n(3n-2)}{24}x^4 + \dots$$
 281. $\cot^2 x = 1 + x^2 + \frac{x^4}{3} + \dots$

281.
$$ch^2x = 1 + x^2 + \frac{x^4}{3} + \dots$$

282.
$$\sqrt{1+4x+12x^2} = 1+2x+4x^2+\dots$$
 283. $e^{x\sin x} = 1+x^2+\frac{x^4}{3}+\dots$

283.
$$e^{x\sin x} = 1 + x^2 + \frac{x^4}{3} + \dots$$

284.
$$e^{\frac{x}{\cos x}} = 1 + x + \frac{x^2}{2} + \dots$$

285.
$$(1+x)^x = 1 + x^2 - \frac{x^3}{3} + \dots$$

286.
$$\frac{1}{2} \ln \frac{1 + \sin x}{1 - \sin x} = x + \frac{x^3}{6} + \frac{x^5}{24} + \dots$$
 287. $\frac{1}{e^2} \sum_{n=0}^{\infty} \frac{(x+2)^n}{n!}, -\infty < x < +\infty.$

288.
$$\frac{1}{e^3} \sum_{n=0}^{\infty} \frac{(-1)^n 3^n (x-1)^n}{n!}, -\infty < x < +\infty.$$

289.
$$e^3 \sum_{n=0}^{\infty} \frac{2^n (x - \frac{3}{2})^n}{n!}$$
, $-\infty < x < +\infty$. **290.** $\frac{1}{e} \sum_{n=0}^{\infty} \frac{(x-1)^{2n}}{n!}$, $-\infty < x < +\infty$.

291.
$$8\sum_{n=0}^{\infty} \frac{(3\ln 2)^n (x-1)^n}{n!}, -\infty < x < +\infty$$
.

292.
$$\frac{1}{16} \sum_{n=0}^{\infty} (-1)^n \frac{\ln^n 4}{n!} (x-2)^n$$
, $-\infty < x < +\infty$.

293.
$$3^5 \sum_{n=0}^{\infty} (-1)^n \frac{(5 \ln 3)^n}{n!} (x+1)^n, -\infty < x < +\infty$$
.

294.
$$3^{-6} \sum_{n=0}^{\infty} \frac{(3 \ln 3)^n (x+2)^n}{n!} (x+1)^n, -\infty < x < +\infty.$$

295.
$$\frac{1}{16} \sum_{n=0}^{\infty} (-1)^n \frac{2^n \ln^n 4}{n!} (x-1)^n, -\infty < x < +\infty.$$

296.
$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{\ln^n 2}{n!} (x+2)^{2n}, -\infty < x < +\infty.$$

297.
$$\sum_{n=0}^{\infty} (-1)^n \left(\frac{\pi}{4}\right)^{2n} \frac{(x-2)^{2n}}{(2n)!}, -\infty < x < +\infty.$$

298.
$$\sum_{n=0}^{\infty} (-1)^n \left(\frac{\pi}{2}\right)^{2n+1} \frac{(x+2)^{2n+1}}{(2n+1)!}, -\infty < x < +\infty.$$

299.
$$\sum_{n=0}^{\infty} (-1)^{n+1} \left(\frac{\pi}{3} \right)^{2n+1} \frac{(x-3)^{2n+1}}{(2n+1)!}, -\infty < x < +\infty.$$

300.
$$\sum_{n=0}^{\infty} (-1)^{n+1} \left(\frac{\pi}{3}\right)^{2n+1} \frac{\left(x-\frac{3}{2}\right)^{2n+1}}{(2n+1)!}, -\infty < x < +\infty.$$

301.
$$\frac{\sqrt{3}}{2} + \sum_{n=1}^{\infty} \frac{(-1)^n 2^{2n-2}}{n(2n-1)!} \left[n \left(x - \frac{\pi}{3} \right)^{2n-1} + \sqrt{3} \left(x - \frac{\pi}{3} \right)^{2n} \right], -\infty < x < +\infty.$$

302.
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{3^{2n+1} \left(x - \frac{\pi}{3}\right)^{2n+1}}{(2n+1)!}, -\infty < x < +\infty.$$

303.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^{2n-1} \left(x - \frac{\pi}{2}\right)^{2n-1}}{(2n-1)!}, -\infty < x < +\infty.$$

304.
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{2^{2n+1} \left(x - \frac{\pi}{4}\right)^{2n+1}}{(2n+1)!}, -\infty < x < +\infty.$$

305.
$$1 + \sum_{n=1}^{\infty} \frac{(-1)^n 2^{2n-1} (x-\pi)^{2n}}{(2n)!}, -\infty < x < +\infty.$$

306.
$$\frac{1}{2} \left[1 + \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n+1} \left(x - \frac{\pi}{4} \right)^{2n+1}}{(2n+1)!} \right], -\infty < x < +\infty.$$

307.
$$\ln 4 + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-2)^n}{4^n n}, -2 < x \le 6.$$

308.
$$\ln 5 + \sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{2}{5}\right)^n \frac{(x-1)^n}{n}, -\frac{3}{2} < x \le \frac{7}{2}.$$

309.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x+1)^n}{n}, -2 < x \le 0.$$

310.
$$\ln 19 - \sum_{n=1}^{\infty} \left(\frac{3}{19}\right)^n \frac{(x+5)^n}{n}, -\frac{34}{3} < x \le \frac{4}{3}.$$

311.
$$\ln 3 + \sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{2}{3}\right)^n \frac{\left(x-3\right)^n}{n}, \frac{3}{2} < x \le \frac{9}{2}.$$

312.
$$\ln 11 - \sum_{n=1}^{\infty} \left(\frac{5}{11}\right)^n \frac{\left(x+2\right)^n}{n}, -\frac{21}{5} \le x < \frac{1}{5}$$
.

313.
$$\ln 7 + \sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{3}{7}\right)^n \frac{(x-1)^n}{n}, -\frac{4}{3} < x \le \frac{10}{3}.$$

314.
$$\frac{1}{\ln 2} \left(\ln 7 - \sum_{n=1}^{\infty} \left(\frac{5}{7} \right)^n \frac{(x+1)^n}{n} \right), -\frac{12}{5} \le x < \frac{2}{5}.$$

315.
$$\frac{1}{\ln 3} \left(\ln 5 + \sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{2}{5} \right)^n \frac{(x-2)^n}{n} \right), -\frac{1}{2} < x \le \frac{9}{2}.$$

316.
$$\frac{1}{\ln 10} \left[\ln 2 - \sum_{n=1}^{\infty} \frac{(x-2)^n}{2^n n} \right], \ 0 \le x < 4.$$

317.
$$\sqrt[3]{2}\left(1+\frac{1}{6}(x-3)+\sum_{n=2}^{\infty}(-1)^{n-1}\frac{2\cdot 5...(3n-4)}{6^n n!}(x-3)^n\right), 1 < x < 5.$$

318.
$$\sqrt[3]{2}\left(1-\frac{1}{6}(x-1)-\sum_{n=2}^{\infty}\frac{2\cdot 5...(3n-4)}{6^n n!}(x-1)^n\right), -1 < x < 3.$$

319.
$$-\frac{1}{3}\sum_{n=0}^{\infty}(-1)^n\frac{(x-5)^n}{3^n}$$
, $2 < x < 8$. **320.** $\frac{1}{3}\sum_{n=0}^{\infty}(-1)^n\frac{(x-3)^n}{3^n}$, $0 < x < 6$.

320.
$$\frac{1}{3} \sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^n}{3^n}, \ 0 < x < 6$$

321.
$$\frac{1}{2}\sum_{n=0}^{\infty} \frac{(x-1)^n}{2^n}$$
, $-1 < x < 3$.

321.
$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{(x-1)^n}{2^n}$$
, $-1 < x < 3$. **322.** $\sum_{n=0}^{\infty} (-1)^n \frac{2^n}{5^{n+1}} (x-2)^n$, $-\frac{1}{2} < x < \frac{9}{2}$.

323.
$$2\sqrt[3]{2}\left(1+\frac{3}{4}\left((x-2)+\frac{(x-2)^2}{8}+\sum_{n=3}^{\infty}\frac{(-1)^n(2n-5)}{n!2^{2n-2}}(x-2)^n\right)\right)$$
, $0 < x < 4$.

324.
$$1 + \sum_{n=1}^{\infty} (-1)^n \left(\frac{2}{3}\right)^n \frac{4 \cdot 7 \dots (3n+1)}{n!} (x+1)^n, -\frac{3}{2} < x < -\frac{1}{2}.$$

325.
$$\frac{1}{\sqrt[3]{64}} \left(1 + \sum_{n=1}^{\infty} (-1)^n \left(\frac{3}{28} \right)^n \frac{3 \cdot 10 \dots (7n-4)}{n!} (x-2)^n \right), \frac{2}{3} < x < \frac{10}{3}$$
.

326.
$$14^2\sqrt{14}\left(1-\frac{15}{28}(x+3)+\frac{15\cdot 9}{2^22!!4^2}(x+3)^2-\frac{15\cdot 3^3}{2^33!!4^3}(x+3)^3-\frac{15\cdot 3^3}{2^33!4^3}(x+3)^3-\frac{15\cdot 3^3}{2^33!4^3}(x+3)^3$$

$$-15\sum_{n=4}^{\infty} \frac{3^n (2n-7)!!}{28^n n!} (x+3)^n$$
, $-\frac{23}{3} < x < \frac{5}{3}$.

327.
$$\sum_{n=0}^{\infty} \frac{2^n x^{2n}}{n!}, -\infty < x < +\infty$$
.

327.
$$\sum_{n=1}^{\infty} \frac{2^n x^{2n}}{n!}$$
, $-\infty < x < +\infty$. $328. \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(2x)^{2n}}{(2n)!}$, $-\infty < x < +\infty$.

329.
$$1 + \frac{1}{2} \sum_{n=1}^{\infty} (-1)^n \frac{2^{2n}}{(2n)!} x^{2n}, -\infty < x < +\infty.$$

330.
$$\ln 10 + \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{10^{n+1}(n+1)}, -10 < x \le 10.$$

331.
$$\sum_{n=0}^{\infty} (-1)^n x^n$$
, $|x| < 1$.

332.
$$1+\sum_{n=1}^{\infty}(-1)^n\frac{(2n-1)!!}{2^nn!}x^{3n}, |x|<1$$
.

333.
$$2\left(1-\frac{x^3}{24}-\frac{1}{3}\sum_{n=2}^{\infty}\frac{2\cdot 5...(3n-4)}{3^{n-1}2^{3n}n!}x^{3n}\right)$$
, **334.** $1+\sum_{n=1}^{\infty}\frac{(2n-1)!!}{2^nn!}x^{2n}$, $|x|<1$.

334.
$$1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{2^n n!} x^{2n}, |x| < 1.$$

335.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{n!(2n+1)}, -\infty < x < +\infty$$
.

336.
$$x + \frac{x^4}{8} - \sum_{n=2}^{\infty} (-1)^n \frac{(2n-3)!!}{2^n n! (3n+1)} x^{3n+1}, |x| < 1.$$

$$337. \frac{x^3}{12} - \sum_{n=2}^{\infty} (-1)^n \frac{3 \cdot 7 \dots (4n-5)}{4^n (4n-1) n!} x^{4n-1}, |x| < 1. \quad 338. \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)^2}, |x| \le 1.$$

339.
$$\frac{1}{2}\sum_{n=1}^{\infty}(-1)^{n+1}\frac{1+5^{2n-1}}{(2n-1)!}x^{2n-1}, -\infty < x < +\infty$$
.

340.
$$\frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{10^{2n-1} - 4^{2n-1}}{(2n-1)!} x^{2n-1}, -\infty < x < +\infty.$$

341.
$$\frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{4^{2n} + 6^{2n}}{(2n)!} x^{2n}, -\infty < x < +\infty.$$

342.
$$\frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{5^{2n}-1}{(2n)!} x^{2n}, -\infty < x < +\infty.$$

343.
$$1 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n-1}{(2n)!} x^{2n}$$
.

344.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n}{(2n+1)!} x^{2n+1}.$$

345.
$$\sum_{n=0}^{\infty} (-1)^n \left[\frac{\sin \frac{\pi}{17}}{(2n)!} \chi^{2n} + \frac{\cos \frac{\pi}{17}}{(2n+1)!} \chi^{2n+1} \right], -\infty < x < +\infty.$$

346.
$$1 - \sum_{n=2}^{\infty} \frac{n-1}{n!} x^n, -\infty < x < +\infty.$$
 347. $-\sum_{n=1}^{\infty} \frac{x^{n+1}}{n}, -1 \le x < 1.$

347.
$$-\sum_{n=1}^{\infty} \frac{x^{n+1}}{n}, -1 \le x < 1$$

348.
$$x + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{n+1}}{n(n+1)}, -\infty < x < +\infty.$$
 349. $\sum_{n=0}^{\infty} (-1)^n \frac{\ln^{n+1} a}{(n+1)!} x^n, x \neq 0.$

349.
$$\sum_{n=0}^{\infty} (-1)^n \frac{\ln^{n+1} a}{(n+1)!} x^n, \ x \neq 0.$$

350.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2(n-1)}}{n!}, x \neq 0.$$

351.
$$\sum_{n=0}^{\infty} \frac{x^{6n}}{(2n+1)!}, x \neq 0.$$

352.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n}}{2n(2n-1)}, |x| < 1.$$

353.
$$1 + \frac{3}{2}x + \sum_{n=2}^{\infty} \frac{(2n-1)!!}{2^n \cdot n!} x^n, |x| < 1.$$

354.
$$\ln 2 - \sum_{n=1}^{\infty} \left(1 + \frac{1}{2^n}\right) \frac{x^n}{n}, |x| < 1$$
.

355.
$$\frac{1}{3}\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n-1}{n} x^n, |x| < \frac{1}{2}$$
.

356.
$$1 + \frac{3}{2}x + 2\sum_{n=2}^{\infty} (-1)^n \frac{x^n}{(n-1)n(n+1)}, -1 < x \le 1, x \ne 0.$$

357.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n, -1 < x \le 1.$$

358.
$$\sum_{n=0}^{\infty} [1+2(-1)^n] x^n, |x| < 1.$$

359.
$$1+2(x-1)+\frac{5}{2}(x-1)^2+\frac{2}{3}(x-1)^3-\sum_{n=4}^{\infty}\frac{(x-1)^n}{n},\ 0< x\leq 2$$
.

360.
$$\frac{\pi^2}{4} + 2 + (\pi - 2)(x - \frac{\pi}{2}) + (x - \frac{\pi}{2})^2 + \sum_{n=1}^{\infty} (-1)^n \frac{2^{2n+1}}{(2n+1)!} (x - \frac{\pi}{2})^{2n+1}$$
,

$$-\infty < x < +\infty$$
.

361.
$$e-1-(e-2)(x+1)+\sum_{n=2}^{\infty}(-1)^n\frac{(x+1)^n}{n!}, -\infty < x < +\infty$$
.

362.
$$3+(x-1)+2(x-1)^2+\sum_{n=3}^{\infty}(-1)^n(x-1)^n, \ 0< x<2$$
.

363.
$$\sum_{n=1}^{\infty} \frac{2}{n+1} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^{n+1}, -1 \le x < 1.$$
364.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} \left(1 + \frac{1}{3} + \dots + \frac{1}{2n-1} \right) x^{2n}, |x| \le 1.$$
365.
$$x + \sum_{n=1}^{\infty} \left(-\frac{1}{2n-1} + \frac{1}{2n-1} + \dots + \frac{1}{2n-1} \right) x^{2n} = \dots + (-1)^{n-1} x^{$$

365.
$$x + \sum_{n=1}^{\infty} \left(-\frac{1}{(2n-1)!1!} + \frac{1}{(2n-3)!3!} - \dots + (-1)^n \frac{1}{1!(2n-1)!} \right) x^{2n} + \left(\frac{1}{(2n)!1!} - \frac{1}{(2n-2)!3!} + \dots + (-1)^{n-1} \frac{1}{2!(2n-1)!} + (-1)^n \frac{1}{0!(2n+1)!} \right) x^{2n+1}, \\ -\infty < x < +\infty.$$

366.
$$x + \sum_{n=1}^{\infty} \left(-\frac{1}{1 \cdot (2n-1)!} + \frac{1}{3 \cdot (2n-3)!} - \dots + (-1)^n \frac{1}{(2n-1) \cdot 1!} \right) x^{2n} + \left(\frac{1}{1 \cdot (2n)!} - \frac{1}{3 \cdot (2n-2)!} + \dots + (-1)^n \frac{1}{(2n-1)!0!} \right) x^{2n+1}, \quad |x| < 1.$$

367.
$$\sum_{n=0}^{\infty} x^n$$
, $|x| < 1$.

368.
$$x + \sum_{n=1}^{\infty} (-1)^n \frac{(2n-1)!!}{2^n n! (2n+1)} x^{2n+1}, |x| < 1.$$

369.
$$\frac{\pi}{4} + \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{a^{2n+1}(2n-1)}$$
. **370.** $\frac{1}{3} \sum_{n=1}^{\infty} [1-(-1)^n 2^n] x^n$.

370.
$$\frac{1}{3}\sum_{n=1}^{\infty} [1-(-1)^n 2^n] x^n$$
.

371.
$$1 + \frac{x^2}{2} + \frac{5}{24}x^4 + \dots$$

372.
$$\frac{1}{2}x - \frac{1}{4}x^2 + \dots$$

373.
$$-\sum_{n=a}^{\infty} \left(-3 + 3n + \frac{7}{2^{n+1}} \right) x^n$$
.

374.
$$y = \frac{1}{3}x^3 + \frac{1}{63}x^7 + \dots$$

375.
$$y = \frac{1}{2} + \frac{1}{4}x + \frac{1}{8}x^2 + \frac{1}{16}x^3 + \frac{9}{32}x^4 + \frac{21}{320}x^5 + \dots$$
 376. $y = 1 + x + \frac{3}{2}x^2 + \frac{5}{3}x^3 + \dots$

376.
$$y = 1 + x + \frac{3}{2}x^2 + \frac{5}{3}x^3 + \dots$$

377.
$$y=1+\frac{x^2}{2}-\frac{x^3}{3}+\frac{x^4}{6}+\dots$$

378.
$$y = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots$$

379.
$$y=1-x+\sum_{n=1}^{\infty}\left[\frac{x^{3n}}{2\cdot 3\cdot 5\cdot 6...(3n-1)\cdot 3n}-\frac{x^{3n+1}}{3\cdot 4\cdot 6\cdot 7...3n\cdot (3n+1)}\right]$$
.

380.
$$y = A + Bx +$$

$$+\sum_{n=1}^{\infty} (-1)^n \left[\frac{A}{2 \cdot 3 \cdot 5 \cdot 6 \dots (3n-1) \cdot 3n} x^{3n} - \frac{B}{3 \cdot 4 \cdot 6 \cdot 7 \dots 3n \cdot (3n+1)} x^{3n+1} \right].$$

381.
$$y = \sum_{n=0}^{\infty} \frac{1}{2^n n!} x^{2n}$$
.

382.
$$y = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!!}$$
.

383.
$$y = \frac{1}{2}x^2 + \sum_{n=2}^{\infty} \frac{(2n-3)!!}{(2n)!} x^{2n}$$
. **384.** $y = 1 + x + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n}}{2^n n! (2n-1)}$.

384.
$$y=1+x+\sum_{n=1}^{\infty}\frac{(-1)^{n+1}x^{2n}}{2^n n!(2n-1)}$$
.

385.
$$y = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{2^{n-1} n!}$$
. **386.** $y = 1 + x + \frac{1}{2} x^2 + \sum_{n=2}^{\infty} (-1)^{n-1} \frac{(2n-3)!!}{2^n n!} x^{2n}$.

387.
$$y = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2^{2n}(n!)^2}$$
.

388. $y = 1 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \frac{1}{2^{2n}(n!)^2}$.

+ $\sum_{n=3}^{\infty} \frac{(2n-4) + (2n-4)(2n-6) + ... + (2n-4)(2n-6) ... + (2n-1)!}{(2n-1)!} x^{2n-1} + \frac{(2n-3) + (2n-3)(2n-5) + ... + (2n-3)(2n-5) ... + (2n-3)(2n-5)}{(2n)!}$

389.
$$y=1+\frac{1}{3!}x^3+\frac{1}{4!}x^4+$$

$$+\sum_{n=5}^{\infty} \frac{(n-1)!!}{n!} \left(\frac{1}{(n-1)!!} - \frac{1}{(n-3)!!} + \dots + \frac{(-1)^{\frac{n+1}{2}}}{(n-2\frac{n+1}{2}+3)!!} \right) x^{n}.$$

393. 1,396. **390.** 0,9848. **391.**3,107. **392.** 0,2449. **394.** 0,6931. **396.** 0,7788. **397.** 0,9998. **395.** 0,3329. **398.** 0,1233. **399.** 1,6094. **400.** 2,01234. **401.** 0,759. **402.** 2,565. **403.** 4,121. **404.** 0,015609. **406.** 0,1736. **407.** 0,098. **408.** 1,0986. **411.** 0,50768. **412.** 2,303. **413.** 1,7918. **405.** 1,649. **409.** 0,0175.

414. 2,833. **410.** 0,487. **415.** 0,9962. **417.** 5,066. **416.** 0,0872. **418.** 2,00059. **419.** 1,3863.

420. 0,311. **421.** 0,32726. **422.** 0,20088. **423.** 1,00250. **424.** 1,000400.

425. 0,499805.

426.
$$\frac{3\pi}{8} + \sum_{n=1}^{\infty} \frac{1}{2\pi n^2} \left[1 - (-1)^n \right] \cos 2nx + \frac{(-1)^{n+1}}{2n} \sin 2nx$$
.

427.
$$\frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{1}{n} + \frac{2}{\pi n^2} \sin \frac{n\pi}{2} \right) \sin \frac{n\pi}{2} x$$
. **428.** $\frac{2}{3} - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin^2 \frac{n\pi}{3} \cos^2 \frac{n\pi}{3} x$.

429.
$$\sum_{n=1}^{\infty} \frac{2\left[1-(-1)^n\right]}{n^2\pi^2} \cos\frac{n\pi}{2} x + \frac{(-1)^n-3}{n\pi} \sin\frac{n\pi}{2} x.$$

430.
$$\frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} \cos 2nx$$
. **431.** $\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin n\pi x}{n}$.

432.
$$\sum_{n=1}^{\infty} \frac{2}{\pi (2n-1)^2} \cos 2(2n-1)x - \frac{1}{2n-1} \sin 2(2n-1)x.$$

433.
$$\frac{2}{\pi} \sum_{n=1}^{\infty} \left(-\frac{1}{n} + \frac{2}{\pi n^2} \sin \frac{n\pi}{2} \right) \sin \frac{n\pi}{2} x$$
.

434.
$$\frac{3}{2} + \sum_{n=1}^{\infty} \frac{2}{\pi^2 n^2} \left[(-1)^n - 1 \right] \cos \frac{n\pi}{2} x - \frac{2}{\pi n} \sin \frac{n\pi}{2} x$$
.

435.
$$\frac{1}{2} - \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2n-1)\pi x}{(2n-1)^2}$$
. **436.** $-\frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^n \frac{\sin n\pi x}{n}$.

437.
$$\frac{1}{2} + \frac{1}{2}\cos x - \frac{2}{\pi}\sin x + \frac{1}{\pi}\sum_{n=2}^{\infty} \left[\frac{(-1)^n - 1}{n} + \frac{n(1 + (-1)^n)}{n^2 - 1} \right] \sin nx$$
.

438.
$$-\sum_{n=1}^{\infty} \frac{\sin 2nx}{n}$$
. 439. $\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin n\pi x$.

440.
$$\frac{7}{8}\pi + \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{2\pi n^2} \cos 2nx - \frac{1}{2n} \sin 2nx$$
.

441.
$$\frac{l}{2} + \frac{4l}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos \frac{(2n-1)\pi x}{l}$$
.

442.
$$1 + \frac{1}{\pi} (1 - e^{-\pi}) + \frac{2}{\pi} (1 - e^{-\pi}) \sum_{n=1}^{\infty} \frac{1}{4n^2 + 1} (\cos 2nx + 2n \sin 2nx).$$

443.
$$\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin \frac{(2n-1)\pi x}{2}$$
.

444.
$$2\sum_{n=1}^{\infty} \frac{-2}{\pi(2n-1)^2} \cos(2n-1)x + \frac{\sin(2n-1)x}{2n-1}$$
.

445.
$$\frac{4}{3}\pi^2 + 4\sum_{n=1}^{\infty} \frac{\cos nx}{n^2} - \frac{\pi}{n} \sin nx$$
. **446.** $\frac{3}{2} - \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}$.

447.
$$-\sum_{n=1}^{\infty} \frac{\sin 4(2n-1)x}{2n-1}.$$
 448.
$$\frac{1}{\pi} + \frac{1}{2}\sin x - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}.$$

449.
$$-\frac{6}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{n\pi}{3} x$$
.

450.
$$\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{2}{\pi (2n-1)^2} \cos(2n-1)\pi x + \frac{1}{2n-1} \sin(2n-1)\pi x$$
.

451.
$$\frac{2\sin ax}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2 - a^2} \sin nx$$
. **452.** $\frac{\sin ax}{a\pi} \left(1 - 2a^2 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2 - a^2} \right)$.

453.
$$\frac{1}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin 2n\pi x$$
. **454.** $\frac{5}{8} \pi + \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{2\pi n^2} \cos 2nx + \frac{1 - 2(-1)^n}{2n} \sin 2nx$.

455.
$$\frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos 2nx$$
. **456.** $\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{n}{4n^2 - 1} \sin \frac{4n}{3}x$.

457.
$$\sum_{n=1}^{\infty} \left| \frac{3}{2n^2\pi^2} \cos\left(\frac{4n\pi}{3} - 1\right) + \frac{1}{n\pi} \sin\frac{4n\pi}{3} \right| \cos\frac{2n\pi x}{3} +$$

$$+\left[\frac{1}{n\pi}\left(1+\cos\frac{4n\pi}{3}\right)-\frac{3}{2n^2\pi^2}\sin\frac{4n\pi}{3}\right]\sin\frac{2n\pi x}{3}$$

458.
$$\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)^3}$$
. **459.** $\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{n}{4n^2-1} \sin 8nx$.

460.
$$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \left[1 + \frac{2(-1)^n}{\pi(2n-1)} \right] \sin \frac{\pi(2n-1)x}{2}$$
. **461.** $\frac{1}{2} - \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos \pi(2n-1)x}{(2n-1)^2}$.

462.
$$-\frac{3}{8}\pi - \frac{4}{\pi}\sum_{n=1}^{\infty}\frac{1}{n^2}\sin\frac{3}{4}n\pi\sin\frac{n\pi}{4}\cos nx$$
.

463.
$$2\sum_{n=1}^{\infty} \frac{1}{2n-1} \left[1 + \frac{2(-1)^n}{\pi(2n-1)} \right] \sin(2n-1)x$$
.

464.
$$\frac{\pi}{4} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2(2n-1)x}{(2n-1)^2}$$
.

465.
$$\frac{1}{4} + \frac{4}{\pi} \sum_{n=1}^{\infty} \left(\frac{1}{n} \sin \frac{n\pi}{2} - \frac{2}{\pi n^2} \sin \frac{3n\pi}{4} \sin \frac{n\pi}{4} \right) \cos \frac{n\pi}{2} x$$
.

466.
$$\frac{3}{8}\pi + \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{\pi}{2n} \sin \frac{n\pi}{2} + \frac{1}{n^2} \left(1 - \cos \frac{n\pi}{2} \right) \right) \cos nx$$
.

467.
$$\frac{3}{8}\pi + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{3n\pi}{4} \sin \frac{n\pi}{4} \cos nx$$
.

468.
$$\frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos 6nx}{4n^2 - 1}$$
. **469.** $\frac{1}{\pi} \sin \frac{\pi}{l} x + \frac{2}{\pi} \sum_{n=2}^{\infty} \frac{n - \sin \frac{n\pi}{2}}{n^2 - 1} \sin \frac{n\pi}{l} x$.

470.
$$\frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^n \left[\left(\frac{8}{n^3 \pi^2} - \frac{1}{n} \right) - \frac{8}{n^3 \pi^2} \cos \frac{n\pi}{2} \right] \sin \frac{n\pi}{2} x$$
.

471.
$$\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n - 3}{n} \sin n\pi x$$
. 472. $\frac{1}{2} - \frac{16}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{3n\pi}{4} \sin \frac{n\pi}{4} \cos \frac{n\pi}{4} x$.

473.
$$\frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{\pi}{2n} + \frac{1}{n^2} \sin \frac{n\pi}{2} \right) \sin nx$$
. **474.** $-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left[(-1)^n + \frac{2}{n\pi} \sin \frac{n\pi}{2} \right] \sin \frac{n\pi}{4} x$.

475.
$$\frac{h}{\pi} - \frac{2}{h\pi} \sum_{n=1}^{\infty} \frac{\sin^2 hn}{n^2} \cos nx$$
. 476. $\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n\pi}{2} x$.

477.
$$\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos(2n-1)x$$
. **478.** $\frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{2}{n^3} (1-(-1)^n) - \frac{\pi^2}{n} (-1)^n \right) \sin nx$.

479.
$$\frac{1}{6} - \frac{8}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{(-1)^n}{n^2} + \frac{2}{\pi n^3} \sin \frac{n\pi}{2} \right) \cos \frac{n\pi}{2} x$$
 480. $1 - \frac{\pi^2}{12} - \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos 2nx$.

481.
$$\frac{1}{2\pi} \sum_{n=-\infty}^{-2} \left[\frac{1 - (-1)^n}{n^2 - 1} + \frac{(-1)^n - 1}{n^2} + \frac{(-1)^n \pi}{n} i \right] e^{inx} + \left(-\frac{1}{\pi} + \frac{3}{4}i \right) e^{-ix} + \frac{1}{4}\pi - \frac{1}{\pi} + \frac{1}{4}\pi - \frac{1}$$

$$+\left(-\frac{1}{\pi}-\frac{3}{4}i\right)e^{ix}+\frac{1}{2\pi}\sum_{n=2}^{\infty}\left[\frac{1+(-1)^n}{n^2-1}+\frac{(-1)^n-1}{n^2}+\frac{(-1)^n\pi}{n}i\right]e^{inx}$$
.

482.
$$\frac{1}{2\pi} \sum_{n=-\infty}^{-2} \left[\frac{(-1)^{n-1}-1}{n^2-1} + \frac{\left[1+(-1)^n\right]n}{n^2-1}i \right] e^{inx} + \frac{1}{4}(1-i)e^{-ix} + \frac{1}{\pi} + \frac{1}{\pi} e^{-ix} + \frac{1}{\pi}$$

$$+\frac{1}{4}(1+i)e^{ix}+\frac{1}{2\pi}\sum_{n=2}^{\infty}\left[\frac{(-1)^{n-1}-1}{n^2-1}+\frac{\left[1+(-1)^n\right]n}{n^2-1}i\right]e^{inx}.$$

$$\begin{aligned} & 483. \ \, \frac{1}{2\pi} \sum_{n=-\infty}^{-2} \frac{(1+(-1)^n)n}{n^2-1} i e^{inx} + \frac{1}{4} e^{-ix} + \frac{1}{4} e^{ix} + \frac{1}{2\pi} \sum_{n=2}^{\infty} \frac{(1+(-1)^n)n}{n^2-1} i e^{inx} \,. \\ & 484. \ \, \frac{1}{2\pi} \sum_{n=-\infty}^{-1} \left[\frac{1-(-1)^n}{n^2} + \frac{(-1)^n e^{\pi}-1}{n^2+1} + \left(\frac{(-1)^n \pi}{n} + \frac{(-1)^n e^{\pi}-1}{n^2+1} \cdot n \right) i \right] e^{inx} \,+ \\ & + \frac{1}{2\pi} \left[e^{\pi} - \frac{\pi^2}{2} - 1 \right] + \\ & + \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left[\frac{1-(-1)^n}{n^2} + \frac{(-1)^n e^{\pi}-1}{n^2+1} + \left(\frac{(-1)^n \pi}{n} + \frac{(-1)^n e^{\pi}-1}{n^2+1} \cdot n \right) i \right] e^{inx} \,. \\ & 485. \ \, \frac{1}{2\pi} \sum_{n=-\infty}^{-3} \left[\frac{2(1-(-1)^n)}{n^2-4} + \frac{2((-1)^n e^{2\pi}-1)}{n^2+4} + \frac{(-1)^n e^{2\pi}-1}{n^2+4} n i \right] e^{inx} \,+ \\ & + \frac{1}{8\pi} \left(e^{2\pi}-1 + (1+2\pi-e^{2\pi})i \right) e^{-2n} + \frac{1}{10\pi} \left(-\frac{26}{3} - 2e^{2\pi} + (1+e^{2\pi})i \right) e^{inx} \,+ \\ & + \frac{e^{2\pi}-1}{4\pi} - \frac{1}{10\pi} \left(\frac{26}{3} e^{2\pi} + 2e^{2\pi} + (1+e^{2\pi})i \right) e^{in} + \frac{1}{8\pi} \left(e^{2\pi}-1 + (e^{2\pi}-1-2\pi)i \right) e^{2ix} \,+ \\ & + \frac{1}{2\pi} \sum_{n=3}^{\infty} \left[\frac{2(1-(-1)^n}{n^2-4} + \frac{2((-1)^n e^{2\pi}-1)}{n^2+4} + \frac{(-1)^n e^{2\pi}-1}{n^2+4} n i \right] e^{inx} \,. \\ & 486. \ \, \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left[\frac{2(1-(-1)^n e^{-2\pi})}{n^2+4} + \left(\frac{(-1)^n e^{-2\pi}-1}{n^2+4} - \frac{1}{n^2+4} n \right) i \right] e^{inx} \,+ \\ & + \frac{1}{2} + \frac{1}{4\pi} \left(e^{2\pi}-1 \right) + \frac{1}{2\pi} \sum_{n=1}^{\infty} \left[\frac{2((-1)^n e^{2\pi}-1)}{n^2+4} + \left(\frac{(-1)^n e^{2\pi}-1}{n^2+4} - \frac{(-1)^n e^{2\pi}-1}{n^2+4} n \right) i \right] e^{inx} \,+ \\ & + \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left[\frac{(-1)^n e^{\pi}-1}{n^2+1} + \frac{(-1)^n -1}{n^2+1} + \left(\frac{(-1)^n e^{2\pi}-1}{n^2+1} + \frac{(-1)^n -1 + (-1)^n \pi}{n} \right) i \right] e^{inx} \,+ \\ & + \frac{1}{2\pi} \left[-1 + e^{\pi} + \pi + \frac{\pi^2}{2} \right] + \\ & + \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left[\frac{(-1)^n e^{\pi}-1}{n^2+1} + \frac{(-1)^n -1}{n^2} + \left(\frac{1 - (-1)^n e^{\pi}}{n^2+1} + \frac{(-1)^n -1 + (-1)^n \pi}{n} \right) i \right] e^{inx} \,. \\ & 489. \ \, \frac{2}{\pi} \int_0^{\infty} \frac{1}{2} \sin \frac{\pi}{2} \cos \frac{1 - 2x}{2} \cos \frac{1 - 2x}{2} dz \,. \qquad \, 490. \ \, \frac{2}{\pi} \int_0^{+\infty} \frac{\sin^2 z}{2} \sin z - \frac{1}{z} \cos z \right) \sin xz dz \,. \\ & 491. \ \, \frac{8}{\pi} \int_0^{\infty} \frac{\sin^2 z}{2} \left(2z \cos z - \sin z \right) \cos xz dz \,. \qquad \, 492. \ \, \frac{4}{\pi} \int_0^{+\infty} \frac{\sin^2 z}{2} \sin z - \frac{1}{2} \cos z \right) \sin xz dz \,. \\ \end{split}$$

493.
$$\frac{2}{\pi} \int_{0}^{+\infty} \left(\frac{1}{z} - \frac{\sin z}{z^2} \right) \sin xz dz.$$

494.
$$\frac{4}{\pi} \int_{0}^{+\infty} \frac{1}{z^2} \sin^2 \frac{z}{2} \cos xz dz$$
.

$$495. \frac{2}{\pi} \int_0^{+\infty} \frac{\sin^2 z}{z^2} \cos xz dz.$$

$$496. -\frac{2}{\pi} \int_0^{+\infty} \frac{\sin \pi z}{z^2 - 1} \sin xz dz.$$

497.
$$-\frac{2}{\pi} \int_{0}^{+\infty} \frac{\cos \frac{\pi}{2}z}{z^2-1} \cos xz dz$$
.

498.
$$\frac{2}{\pi} \int_{0}^{+\infty} \frac{z \sin \frac{\pi}{2} z - 1}{z^2 - 1} \cos xz dz$$
.

499.
$$\frac{2}{\pi} \int_{0}^{+\infty} \left[\frac{z}{1+z^2} - \frac{z \cos z + \sin z}{e(1+z^2)} \right] \sin xz dz$$
.

500.
$$\frac{2}{\pi} \int_{0}^{+\infty} \left[\frac{1}{1+z^2} + \frac{z \sin z - \cos z}{e(1+z^2)} \right] \cos xz dz$$
.

501.
$$\frac{2}{\pi} \int_{0}^{+\infty} \frac{z}{1+z^2} \sin xz dz$$
.

502.
$$\frac{2}{\pi} \int_{0}^{+\infty} \frac{\cos(1-x)z}{z^3} [(z^2-2)\sin z + 2z\cos z] dz$$
.

503.
$$\frac{2}{\pi} \int_{0}^{+\infty} \left[\frac{1}{2z} \sin \frac{z}{2} + \frac{2}{z^2} \sin \frac{3z}{4} \sin \frac{z}{4} \right] \cos xz dz$$
.

504.
$$\frac{1+\omega i}{\sqrt{2\pi}(1+\omega^2)}$$
.

505.
$$\sqrt{\frac{2}{\pi}} \frac{1}{1+\omega^2} \left[sh\pi \cos \pi\omega + \omega ch\pi \sin \pi\omega + (\omega sh\pi \cos \pi\omega - ch\pi \sin \pi\omega)i \right].$$

506.
$$\frac{4}{\sqrt{2\pi}(4+\omega^2)}$$
.

507.
$$\frac{-4\omega i}{\sqrt{2\pi}(4+\omega^2)}$$

506.
$$\frac{4}{\sqrt{2\pi}(4+\omega^2)}$$
. 507. $\frac{-4\omega i}{\sqrt{2\pi}(4+\omega^2)}$. 508. $-\sqrt{\frac{2}{\pi}}\frac{\sin \pi \omega}{1-\omega^2}i$..

$$509. \sqrt{\frac{2}{\pi}} \frac{\cos \frac{\pi}{2} \omega}{1 - \omega^2} (1 - \omega i).$$

509.
$$\sqrt{\frac{2}{\pi}} \frac{\cos \frac{\pi}{2} \omega}{1 - \omega^2} (1 - \omega i)$$
. **510.** $2\sqrt{\frac{2}{\pi}} \frac{sh\pi \cos \pi\omega + \omega ch\pi \sin \pi\omega}{1 + \omega^2}$.

511.
$$\frac{1}{\sqrt{2\pi}} \frac{2 + \omega^2 - \omega^3 i}{4 + \omega^4}$$
.

512.
$$-\frac{1}{\sqrt{2\pi}} \frac{\left(e^{\pi} + \cos\pi\omega\right)\left(2 - \omega^{2}\right) - 2\omega\sin\pi\omega + \left[2\omega\left(e^{\pi} + \cos\pi\omega\right) + \left(2 - \omega^{2}\right)\sin\pi\omega\right]i}{4 + \omega^{4}}.$$

513.
$$\frac{-2\omega\cos\frac{\pi}{2}\omega}{\sqrt{2\pi}\left(1-\omega^2\right)}i.$$

514.
$$\frac{\omega \left[\sin \frac{\pi}{2}\omega + \left(1 + \cos \frac{\pi}{2}\omega\right)i\right]}{\sqrt{2\pi}\left(4 - \omega^2\right)}.$$

515.
$$\frac{2-\omega i}{\sqrt{2\pi}(4+\omega^2)}.$$

516.
$$\frac{4+\omega(\omega^2-2)i}{\sqrt{2\pi}(4+\omega^4)}$$
.

СОДЕРЖАНИЕ

1. Вычисление суммы ряда по определению.	3
2. Необходимый признак сходимости ряда	
 Достаточные признаки сходимости рядов. 	4
4. Абсолютная и неабсолютная (условная) сходимость ряда	7
5. Исследование сходимости ряда.	8
 Ряды с комплексными членами. 	. 10
7. Область сходимости функционального ряда	. 11
8. Сумма функционального ряда	. 12
9. Равномерная сходимость функционального ряда	. 14
10. Область сходимости степенного ряда	. 16
11. Почленное дифференцирование и интегрирование рядов	. 16
12. Разложение функции в ряд Маклорена (по определению)	. 18
13. Разложение функции в ряд Тейлора с использованием известных рядов	3.18
14. Арифметические действия с рядами.	. 20
15. Интегрирование дифференциальных уравнений с помощью рядов	. 21
16. Приближенные вычисления с использованием рядов.	. 23
17. Ряды Фурье	. 25
18. Тригонометрические ряды в комплексной форме	. 29
19. Интеграл Фурье.	. 30
20. Преобразование Фурье.	. 31
Литература	. 33
Ответы.	. 34

В 2007 году СПбГУ ИТМО стал победителем конкурса инновационных образовательных программ вузов России на 2007-2008 годы. Реализация образовательной программы инновационной «Инновационная подготовки специалистов нового поколения в области информационных и оптических технологий» позволит выйти на качественно новый уровень выпускников удовлетворить возрастающий подготовки И информационной, оптической других специалистов В высокотехнологичных отраслях экономики.

КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Кафедра высшей математики – крупнейшая в Санкт-Петербургском государственном университете информационных технологий, механики и оптики. С момента основания на ней работали такие выдающиеся ученые, И.П.Натансон, В.А. Тартаковский, В.Н.Попов, И.А.Молотков, А.Г.Аленицын, В.В.Жук другие. Научные И интересы сотрудников покрывают практически все разделы математики. На кафедре сложилась мощная научная школа по математическому моделированию сложных физических систем. В последнее время активно развивается направление, связанное с нанофизикой и нанотехнологиями, квантовым компьютером и квантовыми коммуникациями. Сотрудники кафедры активно участвуют в международных научных конференциях, работают в рамках Российских и международных научных проектов. Сложилось тесное научное сотрудничество с Санкт-Петербургским государственным университетом, Петербургским отделением Математического института имени В.А.Стеклова РАН, лабораторией физикохимии наносистем Института химии силикатов РАН и другими научными центрами как в России, так и за рубежом: университетами Марселя и Тулона (Франция), Ювяскиля (Финляндия), Гумбольдтовским университетом Берлина (Германия).

Блинова И.В., Виноградова Т.Н., Кубенский А.А., Панкратова Т.Ф., Петрашень А.Г., Попов И.Ю. Ряды. Методические указания по решению задач

В авторской редакции

Компьютерный набор и верстка

Попов И.Ю.

Дизайн обложки

Попов И.Ю.

Редакционно-издательский отдел Санкт-Петербургского государственного университета информационных технологий, механики и оптики

Зав.РИО

Гусарова Н.Ф.

Лицензия ИД N 00408 от 05.11.99

Подписано к печати 24.12.08.

Заказ 1391

Отпечатано на ризографе

Тираж 100 экз.