Funções Orgânicas Oxigenadas

Fábio Lima

Fábio Lima 1 (34)

Sumário

- 1 Funções Oxigenadas
- 2 Álcool
- 3 Enol
- 4 Fenol
- 5 Aldeídos
- 6 Cetonas
- Acidos Carboxílicos
- 8 Ésteres
- 9 Éteres
- 10 Anidridos

Fábio Lima 2 (34)

Funções Oxigenadas

Definição

- As funções oxigenadas são um grupo de compostos que possuem átomo de oxigênio ligado diretamente à cadeia carbônica.
- As diferentes funções oxigenadas são caracterizadas por um arranjo estrutural específico de átomos, denominado grupo funcional.
- Os grupos funcionais são responsáveis pelas propriedades de cada função orgânica.

Fábio Lima 4 (34)

Álcool

Álcool

Substâncias orgânicas que apresentam hidroxila ou oxidrila (-OH) ligada ao C saturado (sp^3) .

Fábio Lima 6 (34)

Fórmulas

Etanol

Fábio Lima 7 (34)

Aplicações

Metanol (álcool metílico): fórmula H₃C−OH, é produzido em escala industrial a partir de carvão e água, é usado como solventes em muitas reações e como matéria-prima em polímeros.

$$H_3C$$
 — OH

1,2,3-propanotriol (Glicerol): líquido xaroposo, incolor e adocicado, é obtido através de uma saponificação (reação que origina sabão) dos ésteres que constituem óleos e gorduras. Empregado na fabricação de tintas, cosméticos e na preparação de nitroglicerina (explosivo).

Etanol (álcool etílico): é usado como solvente na produção de bebidas alcoólicas, na preparação de ácido acético, éter, tintas, perfumes e como combustível de automóveis.

H₂C O

Fnóis

Enol

Substâncias orgânicas que apresentam hidroxila ou oxidrila (-OH) ligada ao C com uma dupla ligação.

Exemplo

$${}^{4}\text{CH}_{3}$$
 $- {}^{3}\text{CH}_{2}$ $- {}^{2}\text{CH}$ $- {}^{2}\text{CH}$ $--$ OH

But-1-en-1-ol

10 (34)

Fenóis

Fábio Lima 12 (34)

Tipos de fénois

Hidroxi Benzeno

Eugenol: Possui ação antisséptica e seus efeitos medicinais auxiliam no tratamento de náuseas, flatulências, indigestão e diarreia. Contém propriedades bactericidas, antivirais, e é também usado como anestésico e antisséptico para o alívio de dores de dente.

Fábio Lima

Aldeídos

Aldeído

Os aldeídos apresentam o grupo carbonila na extremidade da cadeia.

Fábio Lima 15 (34)

Exemplos de Aldeídos

Metanal

Metanal (Formaldeído): Conhecido como formol, o aldeído fórmico, de fórmula estrutural CH₂O, é utilizado na fabricação de desinfetantes e plásticos. Ademais, é importante no desenvolvimento de estudos científicos, uma vez que serve para conservação de cadáveres (fluido de embalsamamento).

Metanal

Fábio Lima 16 (34)

Fábio Lima 17 (34)

Cetonas

Cetonas

As cetonas apresentam o grupo carbonila, sendo este carbono secundário.

Fábio Lima 19 (34)

Propriedades Cetonas

- As cetonas possuem o grupo carbonila como grupo funcional.
- A carbonila das cetonas deve estar ligada a outros átomos de carbono, não podendo estar na extremidade da cadeia.
- As cetonas podem ser tanto de cadeia aberta quanto de cadeia fechada.
- Toda cetona possui sufixo -ona em sua nomenclatura oficial.
- O grupo carbonila aumenta o caráter polar das cetonas.
- A propanona, vendida como acetona, é amplamente utilizada com solvente e removedora de tinta e esmalte.
- As cetonas podem ser utilizadas na fabricação de perfumes e demais cosméticos devido a sua fragrância agradável.

Fábio Lima 20 (34)

Ácidos Carboxílicos

Ácidos Carboxílicos

Os ácidos carboxílicos são compostos caracterizados pela presença do grupo carboxila, formado pela união dos grupos carbonila e hidroxila.

Fábio Lima 22 (34)

Ácido Etanóico

O ácido etanoico, também conhecido como ácido acético, é um composto do grupo dos ácidos carboxílicos e é o constituinte principal do vinagre.

Fábio Lima 23 (34)

Para que servem os ácidos carboxílicos?

- **Síntese orgânica:** são utilizados como precursores na síntese de diversos compostos orgânicos, incluindo ésteres, amidas, anidridos e muitos outros. A reação de esterificação, por exemplo, ocorre por meio da conversão de ácidos carboxílicos em ésteres.
- **Produção de polímeros e resinas:** incluindo poliamidas (como o nylon e a resina poliéster) que têm aplicações em plásticos reforçados com fibra de vidro, uma fibra sintética feita com etileno (um polímero termoplástico) por um processo denominado polimerização.
- **Conservantes:** como exemplos, temos o ácido cítrico e o ácido ascórbico (vitamina C), utilizados como conservantes em alimentos para prolongar sua vida útil.
- **Aromatizantes:** contribuem para os sabores característicos de muiutos alimentos. O ácido acético, por exemplo, é encontrado no vinagre, enquanto o ácido butírico contribui para o sabor da manteiga.
- **Síntese de fármacos:** muitos medicamentos são sintetizados com base em ácidos carboxílicos ou seus derivados. Além disso, alguns deles têm aplicações diretas como medicamentos, como o ácido acetilsalicílico (aspirina).

Fábio Lima 24 (34)

Ésteres

Ésteres

Os ésteres orgânicos são caracterizados pelo grupo funcional:

Simplificadamente podemos considerar queos ésteres se originam a partir da substituição do hidrogênio do grupo OH de um ácido carboxílico por um radical orgânico (R).

Fábio Lima 26 (34)

Aplicação dos ésteres

- Ocomo aromatizantes e essências artificiais, usados em balas, bolachas e outros alimentos industrializados e também no setor de perfumaria e cosméticos.
- Na fabricação de fármacos como a aspirina.
- Na fabricação de biocombustível.
- Na fabricação de produtos de limpeza por reação de saponificação, tendo-se como produto sabão e glicerol.

Fábio Lima 27 (34)

Éteres

Éteres

Os éteres apresentam um átomo de oxigênio(O) ligado a dois radicais orgânicos. Seu grupo funcional é representado por:

 $R \longrightarrow O \longrightarrow R'$

Fábio Lima 29 (34)

 Éteres são usados como solventes de óleos, gorduras, resinas e na fabricação de seda artificial. Dentre as variadas aplicações dos éteres se destaca sua utilização na medicina que é muito importante, sendo usado como anestésico e na preparação de medicamentos.

$$CH_3 - O - CH_2 - CH_3$$

 Os éteres são compostos incolores, de cheiro agradável e pouco solúvel em água, em condições ambientes podem se apresentar na fase sólida, líquida ou gasosa.

Fábio Lima 30 (34

Anidridos

Anidridos

Os anidridos orgânicos são compostos derivados de reações de desidratação dos ácidos carboxílicos. Daí a origem de seu nome, pois anhydros, em grego, significa "sem água".

Fábio Lima 32 (34)

Anidridos

- Fabricação de corantes (anidrido etanoico)
- Matéria-prima para a produção de filmes fotográficos (anidrido etanoico);
- Matéria-prima para a fabricação de fibras têxteis (anidrido etanoico);
- Muito utilizados em sínteses orgânicas.

Fábio Lima 33 (34)

Fim da Aula

Bons Estudos !!!!

Fábio Lima 34 (34)