Mатематика для Data Science

Задача выравнивания

Владимир Анатольевич Судаков доктор технических наук, Профессор кафедры 806 МАИ sudakov@ws-dss.com

Telegram: @vladimir_255

Выравнивание статистических рядов

- Во всяком статистическом распределении неизбежно присутствуют элементы случайности, связанные с тем. что число наблюдений ограничено, что произведены именно те, а не другие опыты, давшие именно те, а не другие результаты.
- Только при очень большом числе наблюдений эти элементы случайности сглаживаются, и случайное явление обнаруживает в полной мере присущую ему закономерность.
- На практике мы почти никогда не имеем дела с таким большим числом наблюдений и вынуждены считаться с тем, что любому статистическому распределению свойственны в большей или меньшей, мере черты случайности.
- Поэтому при обработке статистического материала часто приходится решать вопрос о том, как подобрать для данного статистического ряда теоретическую кривую распределения, выражающую лишь существенные черты статистического материала, но не случайности, связанные с недостаточным объемом экспериментальных данных. Такая задача называется задачей выравнивания (сглаживания) статистических рядов.
- Задача выравнивания заключается в том, чтобы подобрать теоретическую плавную кривую распределения, с той или иной точки зрения наилучшим образом описывающую данное статистическое распределение.

Как выравнивать?

Как правило, принципиальный вид теоретической кривой выбирается заранее из соображений, связанных с существом задачи, а в некоторых случаях просто с внешним видом статистического распределения. Аналитическое выражение выбранной кривой распределения зависит от некоторых параметров; задача выравнивания статистического ряда переходит в задачу рационального выбора тех значений параметров, при которых соответствие между статистическим и теоретическим распределениями оказывается наилучшим.

Например,

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{(x-m)^2}{2\sigma^2}} \tag{1}$$

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, \text{при } \alpha \le x \le \beta \\ 0, \text{при } x < \alpha \text{ или } x > \beta \end{cases}$$
 (2)

Что это за законы? Что будем подбирать?

Требуемые ограничения

$$f(x) \geq 0$$

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

Метод моментов

- Согласно методу моментов, параметры a, b, . . . выбираются с таким расчетом, чтобы несколько важнейших числовых характеристик (моментов) теоретического распределения были равны соответствующим статистическим характеристикам.
- Например, если теоретическая кривая *f(x)* зависит только от двух параметров *a* и *b*, эти параметры выбираются так, чтобы математическое ожидание и дисперсия теоретического распределения совпадали с соответствующими статистическими характеристиками.
- Если кривая *f(x)* зависит от трех параметров, можно подобрать их так, чтобы совпали первые три момента, и т. д.
- При выравнивании статистических рядов может оказаться полезной специально разработанная система кривых Пирсона, каждая из которых зависит в общем случае от четырех параметров. При выравнивании эти параметры выбираются с тем расчетом, чтобы сохранить первые четыре момента статистического распределения (математическое ожидание, дисперсию, третий и четвертый моменты).

Пример

• С целью исследования закона распределения ошибки измерения дальности с помощью радиодальномера произведено 400 измерений дальности. Результаты опытов представлены в виде статистического ряда:

$I_i(M)$	20; 30	30; 40	40; 50	50; 60	60; 70	70; 80	80; 90	90; 100
m_{l}	21	72	66	38	51	56	64	32
p_l^*	0,052	0,180	0,165	0,095	0,128	0,140	0,160	0,080

Решение

https://colab.research.google.com/drive/1Ce0rPKw1jd U7mRzOkgNRiKIIn68XDzR0

Критерии согласия

Допустим, что данное статистическое распределение выравнено с помощью некоторой теоретической кривой

- Как бы хорошо, ни была подобрана теоретическая кривая, между нею и статистическим распределением неизбежны некоторые расхождения.
- Вопрос: объясняются ли эти расхождения только случайными обстоятельствами, связанными с ограниченным числом наблюдений, или они являются существенными и связаны с тем, что подобранная нами кривая плохо выравнивает данное статистическое распределение?
- Для ответа служат «критерии согласия».

Идея метода

- Гипотеза H: случайная величина X подчиняется некоторому определенному закону распределения. Этот закон может быть задан в той или иной форме: например, в виде функции распределения F(x) или в виде плотности распределения f(x), или же в виде совокупности вероятностей p_i , где p_i вероятность того, что величина X попадет в пределы i-го разряда.
- рассмотрим величину *U*, характеризующую степень расхождения теоретического и статистического распределений.
- Величина *U* может быть выбрана различными способами; например, в качестве *U* можно взять сумму квадратов отклонений теоретических вероятностей *p_i* от соответствующих частот *p_i** или же сумму тех же квадратов с некоторыми коэффициентами («весами»), или же максимальное отклонение статистической функции распределения *F*(x)* от теоретической *F(x)* и т. д. Допустим, что величина *U* выбрана тем или иным способом. Очевидно, это есть некоторая *случайная величина*.

Идея метода (2)

- Закон распределения случайной величины *U* зависит от закона распределения случайной величины *X*, над которой производились опыты, и от числа опытов *n*. Если гипотеза *H* верна, то закон распределения величины *U* определяется законом распределения величины X (функцией F(x)) и числом *n*.
- Допустим, что этот закон распределения нам известен. В результате данной серии опытов обнаружено, что выбранная нами мера расхождения *U* приняла некоторое значение *u*.
- Можно ли объяснить это случайными причинами или же это расхождение слишком велико и указывает на наличие существенной разницы между теоретическим и статистическим распределениями и, следовательно, на непригодность гипотезы *H*?

Идея метода (3)

 Предположим, что гипотеза *H* верна, и вычислим в этом предположении вероятность того, что за счет случайных причин, связанных с недостаточным объемом опытного материала, мера расхождения *u* окажется не меньше, чем наблюденное нами в опыте значение. Вычислим вероятность события:

$$U \ge u$$

- Если эта вероятность весьма мала, то гипотезу следует отвергнуть как мало правдоподобную
- Если же эта вероятность значительна, следует признать, что экспериментальные данные не противоречат гипотезе **H**.

Как следует выбирать U?

При некоторых способах ее выбора закон распределения величины U обладает весьма простыми свойствами при достаточно большом n практически не зависит от функции F(x).

Критерий Хи-квадрат Пирсона

Произведено *n* независимых опытов, в каждом из которых случайная величина *X* приняла определенное значение. Результаты опытов сведены в *k* разрядов и оформлены в виде статистического ряда:

 Зная теоретический закон распределения, можно найти теоретические вероятности попадания случайной величины в каждый из разрядов:

$$p_1, p_2, ... p_k$$

• В качестве меры возьмем

$$U = \sum_{i=1}^{k} c_i (p_i^* - p_i)^2$$

Критерий Хи-квадрат Пирсона (2)

- Коэффициенты c_i («веса» разрядов) вводятся потому, что в общем случае отклонения, относящиеся к различным разрядам, нельзя считать равноправными по значимости.
- Одно и то же по абсолютной величине отклонение $p_i^* p_i$ может быть мало значительным, если сама вероятность p_i велика, и очень заметным, если она мала. Поэтому естественно «веса» c_i взять обратно пропорциональными вероятностям разрядов p_i .
- Если положить

$$c_i = \frac{n}{p_i}$$

то при больших \mathbf{n} закон распределения величины \mathbf{U} обладает весьма простыми свойствами:

он практически не зависит от функции распределения F(x) и от числа опытов n, а зависит только от числа разрядов k,

Этот закон при увеличении $m{n}$ приближается к «распределению χ^2 »

Мера расхождения

$$\chi^{2} = n \sum_{i=1}^{k} \frac{(p_{i}^{*} - p_{i})^{2}}{p_{i}} \qquad U = \chi^{2} = \sum_{i=1}^{k} \frac{(m_{i} - p_{i})^{2}}{np_{i}}$$

 χ^2 с r степенями свободы — это распределение суммы квадратов r независимых случайных величин, каждая из которых подчинена нормальному закону с мат.ожиданием = 0 и дисперсией = 1. Плотность распределения:

$$f_r(u) = egin{cases} rac{1}{r} u^{rac{r}{2}-1} e^{-rac{u}{2}} & ext{при } u > 0 \ 0 & ext{при } u \leq 0 \end{cases}$$

где $\Gamma(\alpha)=\int_0^\infty t^{\alpha-1}\,e^{-t}\,dt$ – гамма функция. мат.ожидание $\mathrm{M}[U]=r$ и дисперсия D[U]=2r.

Функция плотности распределения χ^2

Как определить число степеней свободы

- Распределение χ^2 зависит от параметра r, называемого числом «степеней свободы» распределения. Число «степеней свободы» r равно числу разрядов k минус число независимых условий («связей»), наложенных на частоты p_i .
- Примеры условий:

$$\sum_{i=1}^k p_i^* = 1$$

$$\sum_{i=1}^k \tilde{x}_i p_i^* = m_x$$

$$\sum_{i=1}^{k} (\tilde{x}_i - m_x^*)^2 p_i^* = D_x$$

Как посчитать критерий

https://colab.research.google.com/drive/1EuF6rmUqZt t8EQEThsVeiSbNZ8G7TKcx

Смысл p-value

- Распределение χ^2 дает возможность оценить степень согласованности теоретического и статистического распределений,
- lacktriangle Будем исходить из того, что величина **X** действительно распределена по закону **F** (x).
- Тогда вероятность **p** (**p**-value), есть вероятность того, что за счет чисто случайных причин мера расхождения теоретического и статистического распределений будет не меньше, чем фактически наблюденное в данной серии опытов значение χ^2 .
- Если эта вероятность, p весьма мала (настолько мала, что событие с такой вероятностью можно считать практически невозможным), то результат опыта следует считать противоречащим гипотезе H о том, что закон распределения величины X есть F(x).
- Эту гипотезу следует отбросить как неправдоподобную. Напротив, если вероятность **р** сравнительно велика, можно признать расхождения между теоретическим и статистическим распределениями несущественными и отнести их за счет случайных причин. Гипотезу **H** о том, что величина **X** распределена по закону **F** (х), можно считать правдоподобной или, по крайней мере, не противоречащей опытным данным.

Смысл p-value

На сколько должно быть мало p-value?

- Вопрос неопределенный; он не может быть решен из математических соображений, так же как и вопрос о том, насколько мала должна быть вероятность события для того, чтобы считать его практически невозможным.
- На практике, если **р** оказывается меньшим чем 0,1, рекомендуется проверить эксперимент, если возможно повторить его и в случае, если заметные расхождения снова появятся, пытаться искать более подходящий для описания статистических данных закон распределения.
- С помощью критерия χ^2 (или любого другого критерия согласия) можно только в некоторых случаях **опровергнуть** выбранную гипотезу **H** и отбросить ее как явно несогласную с опытными данными.
- Если же вероятность **р** велика, то этот факт сам по себе ни в коем случае не может считаться доказательством справедливости гипотезы **H**, а указывает только на то, что гипотеза не противоречит опытным данным.

Критерий Колмогорова

$$D = \max |F^*(x) - F(x)|$$

Какова бы ни была функция распределения F(x) непрерывной случайной величины X, при неограниченном возрастании числа независимых наблюдений n вероятность неравенства

$$D\sqrt{n} \ge \lambda$$

стремится к пределу

$$P(\lambda) = 1 - \sum_{k=-\infty}^{\infty} (-1)^k e^{-2k^2 \lambda^2}$$

Как посчитать критерий Колмогорова

https://colab.research.google.com/drive/1g9aS5RpoBYB-xcwreZ0TCns0RBBL-mdv

Критерий Колмогорова. Когда применим?

- можно применять только в случае, когда гипотетическое распределение *F(x)* полностью известно заранее из каких-либо теоретических соображений, т. е. когда известен не только вид функции распределения *F (x)*, но и все входящие в нее параметры.
- Такой случай сравнительно редко встречается на практике. Обычно из теоретических соображений известен только общий вид функции *F(x)*, а входящие в нее числовые параметры определяются по данному статистическому материалу.
- При применении критерия χ² это обстоятельство учитывается соответствующим уменьшением числа степеней свободы распределения χ². Критерий А. Н. Колмогорова такого согласования не предусматривает. Если все же применять этот критерий в тех случаях, когда параметры теоретического распределения выбираются по статистическим данным, критерий дает заведомо завышенные значения вероятности Р(X); поэтому мы в ряде случаев рискуем принять как правдоподобную гипотезу, в действительности плохо согласующуюся с опытными данными.