Function Approximation

Judd Chapter 6

David Childers (thanks to Y. Kryukov, K. Judd, and U. Doraszelski)

CMU, Tepper School of Business

Mar 27-29, 2023

The Plan

- Motivation
- Local approximations; Taylor, Pade, logs
- Interpolation
 - Polynomials
 - Splines
- Next Class: More Global Methods
 - Projection and Regression
 - Orthogonal basis functions
 - Multi-dimensional approaches

Motivation, example 1

Bellman's functional equation:

$$V(k) = \max_{k' \ge 0} \pi(k) + \beta V(k')$$

• Want to find $V(\cdot)$, e.g. via fixed-point iteration:

$$V^{k+1}(k) = \max_{k' \ge 0} \pi(k) + \beta V^k(k')$$
 (*)

- To find max, we need $V^{k}\left(k'\right)$ or its derivative, at any k'
 - \bullet We need a differentiable approximation $\hat{V}\left(\cdot\right)$
- ullet Don't want to compute exact $V^{k}\left(k
 ight)$ for too many values of k
 - Instead, use them to construct the approximation

Motivation, example 2

- Have utility function $u(x_1, x_2)$, want Demand for good 1
- Need to find $D_1(p_1) = D(p_1, \bar{p}_2)$, where

$$D(p) = \arg\max u(x_1, x_2)$$
 subject to : $p_1x_1 + \bar{p}_2x_2 \leq B$ (**)

- Will need to evalute $D_1(p_1)$ at many points, e.g. when integrating for CS, or solving monopolist's problem
- Want to solve (**) for a few points, and
 - Construct an accurate approximation to $D_1(p_1)$
 - That is easy to integrate or differentiate analytically (i.e. a polynomial)

Approximation stages

- **①** Choose approach (family \mathcal{F}_m of approximating functions, eg polynomials of degree m)
- Obtain "data" for estimation
 - Choose *n* functionals: $f_i(y()) \in \mathbb{R}$ to evaluate
 - ullet E.g., choose node(s) x_i and obtain $y_i \equiv y\left(x_i
 ight)$
 - Data may also contain derivatives $y'\left(x_{i}\right)$ or integrals $\int f_{i}(x)y(x)dx$
- **3** Map data to (representation of) $\hat{y}(.) \in \mathcal{F}_m$ e.g. coefficients
- Evaluation: plug in any x, get back $\hat{y}(x)$
 - "Approximation" could refer to any of these stages
- Each stage is repeated more frequently than previous ones

Local approximation: Taylor series

• Degree n Taylor approximation to f(x) around x_0 :

$$t(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n$$

- Error grows rapidly with $|x_0 x|$; declines with n within the convergence radius r
- Theorem 6.1.2: $r \leq$ distance to nearest singularity of f
- Singularity: x such that $f^{(n)}(x) = \infty$

Example:

- $f(x) = x^{\frac{1}{3}}$ has a singularity at x = 0.
- \Rightarrow Taylor series expansion around $x_0 = 1$ breaks down outside [0,2]

Taylor approximation around x = 1

Pade approximation

- Taylor: polynomial of degree n, $t^{(i)}(x_0) = f^{(i)}(x_0)$, $i \leq n$
- Pade: rational function:

$$r(x) = p(x)/q(x)$$

p(x) – polynomial of degree n; q(x) – of degree m

 Coeff's of p and q – determined from a system of linear equations:

$$\frac{d^k}{dx^k}(p - f * q)(x_0) = 0, \quad k = 0, \dots, m + n$$

- More accurate than Taylor, not affected by singularities
- Read Judd on simplifying the implementation

Log-Linearization: one example

Linear approximation to % deviations (from steady state)

- Take a production function: $y_t = z_t k_t^{\alpha}$.
 - Take logs: $\ln y_t = \ln z_t + \alpha \ln k_t$
 - Now exactly linear
- To interpret: compare to linearization in levels
- We know the steady state: (y^*, z^*, k^*)
 - Taylor around it: $\ln y_t \approx \ln y^* + (y_t y^*)/y^*$
 - Same for $\ln z_t$, $\ln k_t$
- Plug these into log of production function. Use $\ln y^* = \ln z^* + \alpha \ln k^*$ to derive:

$$\frac{y_t - y^*}{y^*} \approx \frac{z_t - z^*}{z^*} + \alpha \frac{k_t - k^*}{k^*}$$

Log-Linearization: another example

- Implicit function: y(x) defined by f(y,x) = 0
- Implicit function theorem:

$$\frac{dy}{dx} = -\frac{\partial f/\partial x}{\partial f/\partial y} = -\frac{f_x}{f_y}$$

• Use the fact that $d \ln x = dx/x$:

$$d\ln y = -\frac{x}{y}\frac{f_x}{f_y} * d\ln x$$

Approximation:

$$\ln y - \ln y_0 \approx -\frac{x_0 f_x (y_0, x_0)}{y_0 f_y (y_0, x_0)} (\ln x - \ln x_0)$$

Example of local methods

Exercise 6.1:
$$f(x) = \left(x^{\frac{1}{2}} + 1\right)^{\frac{2}{3}}$$
, $x_0 = 1$.

• Degree 1 and 2 Taylor series approximation:

$$t_1(x) = 2^{\frac{2}{3}} \left(1 + \frac{1}{6} (x - 1) \right),$$

$$t_2(x) = 2^{\frac{2}{3}} \left(1 + \frac{1}{6} (x - 1) - \frac{7}{144} (x - 1)^2 \right),$$

Padé approximation (1,1):

$$r(x) = 2^{\frac{2}{3}} \frac{24 + 11(x - 1)}{24 + 7(x - 1)}.$$

• Log-linear approximation ($\ln x_0 = 0$):

$$l_1(x) = 2^{\frac{2}{3}} \left(1 + \frac{1}{6} \ln(x) \right)$$

Local methods: Pros and Cons

- Cons: Obvious
 - Limited radius of convergence
 - Moderate accuracy within radius
 - Need derivatives, can't handle kinks or discontinuities
- Pros:
 - Linear functional forms allow fast calculations by linear algebra even in extremely high dimensions
 - Can leverage fast first order solutions to solve higher order
 - Huge speed gains, good automated software make this first choice
 - At worst, use for rapid prototyping and good initial guess for global methods

Global methods: introduction

Polynomial approximation: $f(x) \approx \sum_{j=0}^{m} a_j p_j(x) = \hat{f}(x; a)$

- Pick n nodes x_i , compute $f(x_i)$
- ② Pick coefficients a to minimize $\left| f\left(x_{i} \right) \hat{f}\left(x_{i} \right) \right|$'s
 - n = m + 1 interpolation, can fit $f(x_i)$'s exactly
 - n > m + 1 regression, typically least squares
 - Unlike Econometrics, we can pick x_i 's and $p_j(\cdot)$'s

Splines: piece-wise polynomials (of low degree)

- split x interval into $\inf x = x_0 < x_1 < ... < x_m = \sup x$
- On each $[x_j, x_{j+1}]$, $\hat{f}(x) = \hat{f}_j(x)$ is a low-order polynomial.
- Impose continuity: $\hat{f}_{j-1}(x_j) = \hat{f}_j(x_j) = f(x_j)$, smoothness: $\hat{f}'_{j-1}(x_j) = \hat{f}'_j(x_j)$, etc.

Polynomial approximation by interpolation

- Have 'data': x_i , $y_i = f(x_i)$, i = 1, ..., n
- Find a polynomial of degree n-1 that satisfies

$$p(x_i) = y_i, \quad i = 1, \ldots, n.$$

• n conditions $\Rightarrow n$ linear equations pinning down the n coefficients of $p(\cdot)$:

$$a_0 + a_1 x_i + a_2 x_i^2 + ... + a_{n-1} x_i^{n-1} = y_i, i = 1, ..., n$$

- System of linear equations Va = y
- ullet V= Vandermonde matrix, often has large condition number
- Lots of computation for new y_i 's (solving Va = y); few computations to evaluate p(x) for an arbitrary x
- Precompute QR if repeatedly computing coefficients w/ new data at same points
 - $O(n^3)$ overhead for $O(n^2)$ per step

Direct approach: Lagrange interpolation

- If coefficients not needed, can avoid computing them completely
- Explicit solution to $p(x_i) = y_i$ equations:

$$p(x) = \sum_{i=1}^{n} y_i l_i(x),$$

where

$$l_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}.$$

- Note that $l_i(x_i) = 1$, $l_i(x_j) = 0$ if $i \neq j$.
- In practice, do not compute directly: slow and unstable

Better implementation: Barycentric formula

- Use Barycentric Formula to find polynomial interpolation
- Set $p(x_i) = y_i$ and for all other x

$$p(x) = \sum_{i=1}^{n} \frac{\lambda_i y_i}{x - x_i} / \sum_{i=1}^{n} \frac{\lambda_i}{x - x_i}$$

where

$$\lambda_i(x) = \frac{1}{\prod_{j \neq i} (x_i - x_j)}.$$

- $O(n^2)$ to get weights λ_i , then O(n) per evaluation
 - ullet Same order as if polynomial known even w/ new data y_i
- Is polynomial interpolation a good idea? Depends on choice of x_i

Problems with polynomial interpolation

Figure 6.6 Nonconvergence of interpolation example

- Runge Phenomenon: interpolation at evenly spaced points
- \bullet Interpolation may diverge even if true function $\infty-differentiable$
- Solution: use stable point set, non-polynomial functions, or projection instead of interpolation

Possible improvement: Hermite interpolation

- Have data: x_i , $y_i = f(x_i)$, $y'_i = f'(x_i)$, i = 1, ..., n
- Find a polynomial of degree 2n-1 that satisfies

$$p(x_i) = y_i, \quad p'(x_i) = y'_i \quad i = 1, ..., n.$$

2n conditions $\Rightarrow 2n$ linear equations to pin down the 2n coefficients of p.

• Explicit solution:

$$p(x) = \sum_{i=1}^{n} y_i h_i(x) + \sum_{i=1}^{n} y_i' \tilde{h}_i(x),$$

where

$$\tilde{h}_i(x) = (x - x_i) [l_i(x)]^2,
h_i(x) = (1 - 2l'_i(x_i)(x - x_i)) [l_i(x)]^2.$$

Note
$$l_i'(x_i) = \sum_{j \neq i} \frac{1}{x_i - x_i}$$
.

Major improvement: Good point sets

- Optimal point set depends on true and approximating functions, desired convergence class
- For polynomials on [-1,1], smooth functions, uniform approximation, near best are Chebyshev points

$$x_i = \cos(\frac{i\pi}{n}) \ \{i \in 0 \dots n\}$$

• Thm: Let f(x) have k^{th} derivative with total variation V and let $\hat{f}_n(x)$ be interpolation using n+1 Chebyshev points

$$\left\|\hat{f}_n(x) - f(x)\right\|_{\infty} \le \frac{4V}{\pi k(n-k)^k}$$

• Many other desirable computational properties: next class

Alternative for general point sets: Splines

A function s(x) on [a,b] is a spline if:

- There is a grid of points (nodes or knots) $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b, \ldots$
- ... such that s(x) is a polynomial of degree k on each subinterval $[x_{i-1},x_i]$, $i=1,2,\ldots,n,\ldots$
- ... and $s(x) \in \mathbf{C}^{k-1}$ (continuously differentiable to k-1 order)
- Order of the spline can be defined as k or k+1
- Linear spline: Piecewise linear, "connecting the dots."
- Cubic spline: $s(x) = a_i + b_i x + c_i x^2 + d_i x^3$.
- Low cost of computation: efficient sparse matrix algorithms
- Rapid convergence when $|x_{i-1} x_i| \to 0$ rate = k-1 if $f \in \mathbf{C}^{k-1}$
- Good for functions that are not \mathbb{C}^{∞}

Example: cubic spline

$$s(x) = a_i + b_i x + c_i x^2 + d_i x^3$$
 on $[x_{i-1}, x_i]$.

• 2*n* interpolation conditions:

$$y_i = a_i + b_i x_i + c_i x_i^2 + d_i x_i^3, \quad i = 1, ..., n,$$

 $y_i = a_{i+1} + b_{i+1} x_i + c_{i+1} x_i^2 + d_{i+1} x_i^3, \quad i = 0, ..., n-1,$

• 2n-2 derivative conditions:

$$b_i + 2c_i x_i + 3d_i x_i^2 = b_{i+1} + 2c_{i+1} x_i + 3d_{i+1} x_i^2, i = 1, \dots, n-1$$

$$2c_i + 6d_i x_i = 2c_{i+1} + 6d_{i+1} x_i, \quad i = 1, \dots, n-1.$$

• Need 2 end conditions. E.g., the secant Hermite spline:

$$s'(x_0) = \frac{y_1 - y_0}{x_1 - x_0}, \quad s'(x_n) = \frac{y_n - y_{n-1}}{x_n - x_{n-1}},$$

• 4n linear equations identify the 4n coefficients of s.

More splines

B-splines (de Boor (1978)): good for deriving analytical results about other splines

- A basis of orthogonal functions
- Each function is non-zero over two adjacent intervals
- ullet Recursive formulation \Rightarrow increasing smoothness

Shape-preserving splines:

- Concave data might lead to non-concave spline
- Schumaker procedure
- Intermediate nodes $z_i \in [x_{i-1}, x_i]$, data on $f'(x_i)$

Recap of approximations

- Want f(x) for many different x's
 - ullet $f\left(\cdot\right)$ takes a long time to evaluate
 - \Rightarrow use approximation $\hat{f}(x) = \sum_{k=0}^{m} a_k p_k(x)$
- Want to find a_k with as little data as possible:
 - Local around x_0 : $f(x_0)$, $f'(x_0)$, $f''(x_0)$, ..., $f^{(n)}(x_0)$
 - Global: $f(x_1)$, $f(x_2)$, ..., $f(x_n)$
- Similar to prediction in Econometrics
 - But econometrics uses observational data
 - Here, we can "design the experiment"
- Smart choice of polynomials $p_k(\cdot)$ and nodes x_i .

Basis Function Methods

- Represent function by finite set of coefficients on known set of functions $\phi_k()$
- Approximation: $p(x) = \sum_{k=0}^{n} a_k \phi_k(x)$
- Mean Square (L^2) approximation:

$$\min_{a} \int \left[f(x) - p(x) \right]^{2} w(x) dx \Leftrightarrow \min_{a} \|f - p\|_{2}$$

• Uniform (L^{∞}) approximation:

$$\min_{a} \sup_{x} |f(x) - p(x)| \Leftrightarrow \min_{a} ||f - p||_{\infty}$$

- Usually don't target optimal uniform approximation directly For many classes (Chebyshev, B-spline, Wavelet, Fourier), good L^2 approx implies good L^∞
- Derivatives may not converge

Orthogonal bases

• Define (w(x)) weighted inner product:

$$\langle f, g \rangle = \int f(x)g(x)w(x)dx.$$

- The family of functions $\{\phi_k\}$ is **mutually orthogonal** iff $\langle \phi_k, \phi_m \rangle = 0$ for all $k \neq m$.
 - They span a subspace within the space of functions
- \bullet Optimal L^2 approximation has simple formula when ϕ_k orthogonal
 - $\bullet \ a_k^* = \frac{\langle f, \phi_k \rangle}{\langle \phi_k, \phi_k \rangle}$
 - Can calculate separately by direct computation of integral
- Orthogonality also leads to better conditioning when regression approach used

Why orthonormality?

- Complete orthonormal basis gives mean square representation
- Parseval's theorem:
 - Let $||f||_2^2 := \int f(x)^2 w(x) dx < \infty$ and $\{\phi_k\}_{k=1}^{\infty}$ be a complete o.n.b. Then

$$\left\| \sum_{k=1}^{N} \langle f, \phi_k \rangle \, \phi_k - f \right\|_2^2 = \sum_{k=N+1}^{\infty} a_k^2$$

- Allows representation of continuum by countable family
 - and good, quantifiable approximation by finite family
- L^2 good enough for some things
 - Integrals, some functional equations, not pointwise convergence
- \bullet Compare Weierstrass's theorem: Let f continuous, then $\inf_{p_N}\sup_x |f(x)-p_N(x)|\to 0$
- Fine, but no speed results, sequence may depend on (unknown) f

From convergence to rates

- When does projection representation ensure pointwise convergence?
- Function must live in strict subset of L^2
- Many many classes exist, usually "smoothness conditions"
 - ullet \mathcal{C}^k k-times continuously differentiable,
 - Sobolev: $W^{p,k}:=\left\{f:\left\|\frac{d^k}{dx}f(x)\right\|_p<\infty\right\}$
 - $\bullet \ \ \mathsf{Holder:} \ \ \Lambda^\alpha := \left\{ f: \sup_{x,y} |\tfrac{d^{\lfloor a \rfloor}}{dx} f(y) \tfrac{d^{\lfloor a \rfloor}}{dx} f(x)| \leq C d(x,y)^{a-\lfloor a \rfloor} \right\}$
 - See also: Besov, Bounded Variation, Reproducing Kernel Hilbert Spaces, etc
- Each class admits rates in some norms for some basis set
- Technique: demonstrate class membership by analytical methods (eg map preserves derivatives or integrals, etc)
- Then use suitable basis given class knowledge

Orthogonal families

Family	w(x)	Domain	definition
Legendre	1	[-1, 1]	$P_n(x) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} \left((1 - x^2)^n \right)$
Chebyshev	$(1-x^2)^{-\frac{1}{2}}$		$T_n(x) = \cos\left(n\cos^{-1}(x)\right)$
Laguerre	e^{-x}	- '	$L_n(x) = \frac{e^x}{n!} \frac{d^n}{x^n} (x^n e^{-x})$
Hermite	e^{-x^2}	$(-\infty,\infty)$	$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} \left(e^{-x^2} \right)$
Fourier	1	$[-\pi,\pi]$	$\frac{1}{2}$; $\cos(nx)$; $\sin(mx)$
Wavelet	1	[-1, 1]	No closed form

- Look for domain and shape that fits your application
- Chebyshev is a common choice in Economics
- Fourier is used for periodic functions, rare in Econ
- Useful polynomial families have recurrence formulas:

•
$$\phi_0(x) = 1$$
, $\phi_1(x) = x$
• $\phi_{k+1}(x) = [c_{k+1}x + d_{k+1}]\phi_k(x) + e_{k+1}\phi_{k-1}(x)$

Details: Legendre

David Childers (CMU)

Details: Chebyshev

Figure 6.1 Chebyshev polynomials

Details: Laguerre

Details: Hermite

Figure 6.4 Hermite polynomials

Regression Approach to Finding Coefficients

- Set-up (at beginning of code):
 - **1** Choose functions $\phi(\cdot)$, order n, and # of nodes $m \geq n+1$
 - 2 Select nodes z_k in the function's support, k = 1, ..., m: polynomial zeros, or just a uniform grid

 - $\textbf{ Evaluate function } \phi_{j}\left(z_{k}\right), \ j=0,...,n; \\ \textbf{ store them as a matrix } X:X_{kj}=\left\{\phi_{j}\left(z_{k}\right)\right\}$
- **2 Estimation** of coefficients $a = [a_0, ..., a_m]$:
 - Evaluate $y_k = f(x_k)$; form them into vector Y

 - **3** If m > n + 1, solve (X'X) a = X'Y
- **3** Evaluation of $\hat{f}(\bar{x})$ an for an arbitrary \bar{x}
 - **1** Map \bar{x} into \bar{z} (i.e. into the support of ϕ)
 - **2** Compute $\phi_{i}(\bar{z})$'s; recursive formula will save time
 - **3** Compute $\hat{f}(\bar{x}) = \sum_{j=0}^{n} a_j \phi_j(\bar{z})$

Properties of regression approach

- When m=n, this is just interpolation: accurate for Chebyshev on Chebyshev points (or Fourier on uniform grid), not otherwise
- In both cases, interpolation system solved in $n \log(n)$ time by Fast Fourier Transform
- Choose n >> m for general case to converge to projection coefficients
- Accuracy of order n projection depends on f and $\{\phi\}$
- For polynomials: Jackson and Bernstein inequalities:

$$\inf_{p_n} |f - p_n| \le C n^{-(k+a)}$$

holds iff f has k derivatives which are a-Holder-continuous

• Use theory to derive properties, pick suitable class

Changing (bounded) domain

Linear change of variable preserves orthogonality:

- [a,b] to [-1,1]: $z = -1 + 2\frac{x-a}{b-a}$
- $[a, +\infty]$ to $[0, +\infty]$: $\frac{1}{\lambda}(x-a)$
 - ullet λ helps match the area of curvature of the polynomial

Other useful transformations:

- $(-\infty, +\infty)$ to $(0, +\infty)$: e^x
- $(0, +\infty)$ to $(-\infty, +\infty)$: $\ln x$
- $(-\infty, +\infty)$ to [0,1]: $1/(e^{-x}+1)=$ the logistic function
- [0,1] to $(-\infty,+\infty)$: inverted logistic function

Changing unbounded domain

- Laguerre: $[0, \infty)$. Hermite: $(-\infty, +\infty)$
- Math will work without change of domain
- But polynomials have curvature and extrema concentrated in a neighborhood of 0
 - E.g. Laguerre deg. 4 no extrema outside [0, 10]
- If f(x) has most curvature happening on $[0, \bar{X}]$, it might make sense to rescale: $z = x (10/\bar{X})$
- You can experiment with rescaling to obtain the best fit

Nonlinear regression approach

- Nothing in principle requires using sum of basis functions
- Can choose nonlinear class, find parameters by nonlinear least squares
- Adaptive regression splines: choose knot points and coefficients
- Neural networks: repeatedly compose linear and nonlinear maps
 - Single neuron j is $F_j(\sum_{k=1}^n x_{jk}\beta_{jk})$ for pointwise nonlinear function like $F(x) = \max(x,0)$ or logit(x) with inputs x_{jk} and weights β_{jk}
 - A set of neurons form a layer, and are used as inputs to another set of neurons
- Optimization problem harder, so choose only if nonlinear class gives much better approx of true function
 - Adaptive splines improve rates for Bounded Variation functions
 - Neural nets perform well for high-dimensional, irregular functions: space of images, sounds, text

Adaptive methods

- Start with initial grid,
- Use one of above methods to approximate
- Pick new points, compare approximation and truth
- Increase order of approximation based on errors
 - Especially useful if easy to refine: e.g. splines, wavelets
 - Alternative: penalized or thresholded approximation
 - Find coefficients, then remove small ones
 - or use procedure that gives only small set of coefs (eg LASSO)
 - Result: much smaller set of coefficients
 - Useful if next step has costs depending on number
 - Accuracy cost low if true function sparse in basis
 - Only a few (knots, wavelets etc) matter:
 - True if function has small set of spikes/inflections
 - E.g. Models with hard constraints can give sharp breaks

Wavelets

- Bespoke basis functions designed for fast optimal approximation
- Start with pair $\phi(x)$ $\psi(x)$ father and mother wavelet (or scaling function and wavelet)
- Scaling function self-similar: $\phi(x) = \sum_{k=1}^{n} a_k \phi(2x k)$
- Wavelet $\psi(x) = \sum_{k=1}^{m} b_k \phi(2x k)$
- $\{\phi_{j,k}(x)=2^{-j/2}\phi(2^{-j}x-k)\}\ \{\psi_{j,k}(x)=2^{-j/2}\psi(2^{-j}x-k)\}$ are basis collection
- \bullet $\it n$ coefs calculated recursively in $O(\it n)$ time by cascade algorithm
- Can choose so compactly supported, orthogonal, approximate smooth/nonsmooth functions
- ullet In adaptive methods, use only large coefs o good approx if function has nonsmooth area, like edge
- Many families available for different applications

Multi-dimensional approximation

$$F(x): \mathbb{R}^m \to \mathbb{R}$$

- Lagrange interpolation requires careful choice of nodes
 - Otherwise, coefficient equations can become singular
- Tensor products of orth. functions in each x_i

$$\{\phi_k(x_1)\}_{k=0}^n \otimes \{\psi_j(x_2)\}_{j=0}^n := \{\{\phi_k(x_1)\psi_j(x_2)\}_{j=0}^n\}_{k=0}^n$$

- Curse of dimensionality: n^m coefficients
- Complete polynomials: $\sum_{i=1}^{n} j_i \leq m$
 - less coefficients, same precision
- *Neural networks*: split function into lower-dimensional ones: $F(x_1, x_2, x_3, x_4) = \tilde{F}(\tilde{f}_1(x_1, x_2), \tilde{f}_2(x_3, x_4))$
- Machine Learning methods: Gaussian Process & RKHS, etc

Sparse grids approach

If multidimensional function has many cross-partial derivatives

$$\left\|\frac{\partial^{\bar{a}}}{dx_1\dots dx_m}f(.)\right\|<\infty$$

for
$$\bar{\alpha} = \alpha_1 \dots \alpha_m$$
 with $\sup_{j \in 1 \dots m} \alpha_j < k$

- Then interactions are "not too strong"
- Can use many fewer grid points away from axes when interpolating than, e.g., tensor product Chebyshev
- Can efficiently construct Sparse grids for interpolation which yield accurate approximation with only polynomial, not exponential dependence on dimension
- Result is Smolyak polynomial (or spline) approximation

Reproducing Kernel Hilbert Spaces

- Complete normed space \mathcal{H}_K of functions $F: \mathcal{X} \to \mathbb{R}$ with inner product \langle , \rangle_K , in which norm convergence implies pointwise convergence
- Has reproducing kernel $k(s,t): \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ s.t. $f(s) = \langle f(.), k(s,.) \rangle_K$
- ullet Different k define functions of different shapes, smoothness
 - "Gaussian kernel" $k(s,t) = C \exp(-\frac{d(s,t)^2}{2\sigma^2})$
 - ullet Defined for any metric space ${\mathcal X}$
 - Good for high-dimensional or strange spaces
 - $oldsymbol{\cdot}$ $\mathcal X$ can be images, text, other functions, etc
 - Smoothing splines: $\mathcal{H}_K = \mathcal{W}^{2,2k} \langle f, f \rangle_K = \int (f'')^2(x) dx$

Reproducing Kernel Hilbert Spaces: smoothing

- Optimal regression $\inf_{f \in \mathcal{H}_K} (\sum_{i=1}^m (y_i f(x_i))^2 + C \langle f, f \rangle_K)$
 - Solution $f = \sum_{i=1}^{m} a_i k(x_i, .)$ where a_i have simple expression
- Cost is $O(m^3)$, independent of dimension of ${\mathcal X}$
 - Can be improved in some cases
 - ullet If \mathcal{H}_K is smoothing splines, get HP filter
- Equivalent to posterior mean of Gaussian Process prior
 - Using data (y_i, x_i) and Gaussian likelihood
- This is prior over functions f(x) where marginals $(f(x_i), f(x_2), \dots, f(x_n)) \sim N(0, K)$
- $[K]_{ij} := K(x_i, x_j)$ kernel function is covariance matrix of process
- Bayesian interpretation: best guess of function given data
- Also allows calculating uncertainty in approximation

Python tools

- scipy.interpolate offers variety of spline methods
 - Linear: numpy.interp, CubicSpline, B-splines: make_interp_spline,
 - Also monotone, 2D, N-D spline on regular, irregular grids
- chebpy or pychebfun: tools for efficient computation with polynomial and basis methods and applications
 - Treat functions as objects, w/ adaptive Chebyshev representations
- Specialized libraries for GPs: GPyTorch, sklearn. gaussian_process, Signal Processing and Wavelets: scipy.signal, Smolyak, etc
- To learn, read help and try to replicate with your own code
- You can use these in your research, but not in PS3

Julia tools

- interpolate() in Interpolations.jl
 - Piecewise constant, linear, quadratic, cubic spline
 - Fast on even grids: use other libraries for alternative splines
 - See QuantEcon for code examples
- ApproxFun system has huge set of tools for efficient computation with polynomial and basis methods and applications
 - Treats functions as objects, w/ adaptive Chebyshev representations
- Wavelets.jl, other specialized packages for GPs, Smolyak, etc
- To learn, read help and try to replicate with your own code
- You can use these in your research, but not in PS3

Matlab tools

- interp1(), interp2(), interpn()
 - Piecewise constant, linear, or cubic spline
 - Combines estimation and evaluation steps
 - very slow
- spline() can save estimated coefficients for later use in evaluation
- CompEcon has Chebyshev estimation and evaluation tools
- Chebfun system has huge set of tools for efficient computation with Chebyshev methods and applications
- Wavelet toolbox for wavelets, GPStuff for Gaussian Processes
- To learn, read help and try to replicate with your own code
- You can use these in your research, but not in PS3

References 1

- Judd Ch. 6
- Global Polynomials
 - Trefethen, Lloyd N. Approximation Theory and Approximation <u>Practice</u> 2013. http://www.chebfun.org/ATAP/
 - Boyd, John P. Chebyshev and Fourier Spectral Methods 2nd ed. Dover, 2000. http://www-personal.umich.edu/~jpboyd/ BOOK_Spectral2000.html
- Taylor Expansion
 - Fernandez-Villaverde, J., Rubio-Ramirez, J.F., & Schorfheide,
 F. "Solution and Estimation Methods for DSGE Models"
 Handbook of Macroeconomics Volume 2A, Ch 9. Elsevier, 2016.

References, ctd

- Spline and RKHS
 - Algorithms and actual code called by Matlab for splines are in:
 - de Boor, Carl. A Practical Guide to Splines Rev. Ed. 2001.
 - Smoothing splines and RKHSs, classic reference:
 - Wahba, Grace. Spline Models for Observational Data 1991.
- Gaussian Process methods:
 - Rasmussen, Carl & Christopher Williams.
 Gaussian Processes for Machine Learning MIT, 2006.
 http://www.gaussianprocess.org/gpml/
- Wavelets (and Fourier)
 - Mallat, Stephane. <u>A Wavelet Tour of Signal Processing:</u> The Sparse Way, 3rd ed. Elsevier, 2009.
 - G. Peyré. The Numerical Tours of Signal Processing, 2011. https://www.numerical-tours.com/