Riemannian Manifolds

Labix

July 19, 2024

Abstract

Contents

1	Rie	mannian Metrics
	1.1	mannian Metrics The Riemannian Metric
	1.2	Lengths and Angles
	1.3	Musical Isomorphism
	1.4	Bundle Metric
2 Co	Con	nnections and Parallel Transports
		Affine Connections
	2.2	Parallel Transports
	2.3	The Levi-Civita Connection

1 Riemannian Metrics

1.1 The Riemannian Metric

Definition 1.1.1: Riemannian Metric

Let M be a smooth manifold. A Riemannian metric on M is a function $g:TM\times TM\to \mathbb{R}$ such that for each $p\in M$, the restriction of g to $T_pM\times T_pM$, denoted g_p has the following properties.

- Symmetric: $g_p(X_p, Y_p) = g_p(Y_p, X_p)$ for all $X_p, Y_p \in T_pM$
- Positive Definite: $g_p(X_p,X_p)>0$ for all $X_p\in T_pM$ with $X_p\neq 0$
- Bilinearity: $g_p(aX_p+bY_p,Z_p)=ag_p(X_p,Z_p)+bg_p(Y_p,Z_p)$ and $g_p(X_p,aY_p+bZ_p)=ag_p(X_p,Y_p)+bg_p(X_p,Z_p)$

Definition 1.1.2: Riemannian Manifold

A Riemannian manifold (M, g) is a manifold M together with a Riemannian metric g on M.

Theorem 1.1.3

Every smooth manifold admits a Riemannian metric and hence is a Riemannian manifold.

Definition 1.1.4: Isometries

Let (M,g) and (N,h) be two Riemannian manifolds. We say that (M,g) and (N,h) are isometric if there exists a diffeomorphisms $f:M\to N$ such that

$$h \circ f = g$$

In this case f is said to be an isometry.

Definition 1.1.5: Local Isometries

Let (M,g) and (N,h) be two Riemannian manifolds. We say that they are locally isometric if for all $p \in M$, there exists an open neighbourhood $U \subseteq M$ of p and $V \subseteq N$ open and an isometry $f: U \to V$.

Definition 1.1.6: Flat Manifolds

Let (M,g) be a Riemannian manifold. We say that (M,g) is flat if it is locally isometric to \mathbb{R}^n with the standard metric.

In general, not every Riemannian manifold is flat. This can be shown once we discuss curvatures and torsions. However, this is true when n = 1.

Lemma 1.1.7

Every 1 dimensional Riemannian manifold is flat.

1.2 Lengths and Angles

Definition 1.2.1: Length of a Tangent Vector

Let (M,g) be a Riemannian manifold. Let $v \in T_p(M)$ be a tangent vector for $p \in M$. Define the length of v to be

$$|v|_q = \sqrt{g_p(v,v)}$$

Definition 1.2.2: Angle between two Tangent Vectors

Let (M,g) be a Riemannian manifold. Let $p \in M$. For $v,w \in T_pM$ two tangent vectors, define the angle between v and w to be the unique $\theta \in [0,\pi]$ such that

$$\cos(\theta) = \frac{g_p(v, w)}{|v|_q |w|_q}$$

Definition 1.2.3: Orthogonal Tangent Vectors

Let (M,g) be a Riemannian manifold. Let $p \in M$. We say that two tangent vectors $v,w \in T_pM$ are orthogonal if

$$g_p(v,w) = 0$$

Definition 1.2.4: Length of a Curve

Let (M,g) be a Riemannian manifold. Let $\gamma:(a,b)\to M$ be a curve. Define the length of the curve by

$$L(\gamma) = \int_{a}^{b} \sqrt{g_{\gamma(s)}(\gamma'(s), \gamma'(s))} \, ds$$

Definition 1.2.5: Angle between two Curves

Let (M,g) be a Riemannian manifold. Let $\gamma_1:(a,b)\to M$ and $\gamma_2:(c,d)\to M$ be two curves that intersecting at $p=\gamma_1(t_1)=\gamma_2(t_2)\in M$ and that $\gamma_1'(t_1)\neq 0$ and $\gamma_2'(t)\neq 0$. Define the angle between γ_1 and γ_2 at p to be the unique $\theta\in[0,\pi]$ such that

$$\cos(\theta) = \frac{g_p(X_{\gamma_1, p}, X_{\gamma_2, p})}{|X_{\gamma_1, p}|_g |X_{\gamma_2, p}|_g}$$

1.3 Musical Isomorphism

Definition 1.3.1: The Flat Map

Let (M,g) be a Riemannian manifold. Let $p \in M$. For each $X \in T_pM$, define the flat map

$$\flat: T_pM \to T_p^*M$$

by sending $X \in T_pM$ to the map $X^{\flat}: T_pM \to \mathbb{R}$ by $X^{\flat}(Y) = g_p(X,Y)$.

Theorem 1.3.2: The Musical Isomorphism

Let (M, g) be a Riemannian manifold. Let $p \in M$. Then the flat map

$$\flat: T_pM \to T_p^*M$$

is an isomorphism.

Definition 1.3.3: The Sharp Map

Let (M,g) be a Riemannian manifold. Let $p \in M$. Define the sharp map

$$\#: T_p^*M \to T_pM$$

to be the inverse of the flat map.

1.4 Bundle Metric

Definition 1.4.1: Bundle Metric

Let M be a topological manifold and $p: E \to M$ a vector bundle on M. Then a bundle metric on E is a section of $E^* \otimes E^*$ such that it is nondegenerate and symmetric.

In other words, a bundle metric is an assignment to each fibre, an inner product. Bilinearity is seen from $E^* \otimes E^*$, which is exactly the set of all bilinear forms $E \times E \to \mathbb{R}$.

Proposition 1.4.2

Let M be a smooth manifold. Then a Riemannian metric give rise to a bundle metric on TM. A bundle metric on TM gives rise to a Riemannian metric.

2 Connections and Parallel Transports

2.1 Affine Connections

Recall that for a smooth vector bundle $p: E \to M$, we denote the space of smooth sections on E by $\Gamma(E)$.

Definition 2.1.1: Connections

Let M be a smooth manifold. Let $p: E \to M$ be a smooth vector bundle. A connection on p is a map

$$\nabla : \mathfrak{X}(M) \times \Gamma(E) \to \Gamma(E)$$

where we denote $\nabla(V,T)$ by $\nabla_V(T)$, such that the following are true.

• $C^{\infty}(M)$ -linearity in first variable: For each $T \in \Gamma(E)$, the map $V \mapsto \nabla_V(T)$ is $C^{\infty}(M)$ -linear. This means that

$$\nabla_{fV+hW}(T) = f\nabla_V(T) + g\nabla_W(T)$$

for $V, W \in \mathfrak{X}(M)$, $f, g \in C^{\infty}(M)$.

• \mathbb{R} -linearity in second variable: For each $V \in \mathfrak{X}(M)$, the map $T \mapsto \nabla_V(T)$ is \mathbb{R} -linear. This means that

$$\nabla_V(\lambda T + \mu S) = \lambda \nabla_V(T) + \mu \nabla_V(S)$$

• Product rule: The map ∇ satisfies the following product rule:

$$\nabla_V(fT) = V(f) \cdot T + f\nabla_V(T)$$

Definition 2.1.2: Affine Connections

Let M be a smooth manifold. An affine connection of M is a connection

$$\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$$

on the tangent bundle TM.

The directional derivative is the canonical affine connection on \mathbb{R}^n . In fact, every smooth manifold has such a canonical connection that generalizes the directional derivative.

Theorem 2.1.3

Every smooth manifold admits an affine connection.

2.2 Covariant Derivatives

Definition 2.2.1: Vector Fields Along Curves

Let M be a smooth manifold. Let $\gamma:(a,b)\to M$ be a curve on M. A vector field along γ is a map $X:(a,b)\to TM$ such that

$$X(t) \in T_{\gamma(t)}(M)$$

for all $t \in (a, b)$.

Definition 2.2.2: Set of all Vector Fields Along Curves

Let M be a smooth manifold. Let $\gamma:(a,b)\to M$ be a curve on M. Denote the set of all

vector fields along γ by

 $\mathfrak{X}(\gamma) = \{X : (a,b) \to TM \mid X \text{ is a vector field along } \gamma\}$

Definition 2.2.3: Covariant Derivatives Along a Curve

Let M be a smooth manifold. Let $\gamma:(a,b)\to M$ be a curve on M. Let $\nabla:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ be an affine connection on M. The covariant derivative of γ is a map

$$D_t: \mathfrak{X}(\gamma) \to \mathfrak{X}(\gamma)$$

such that

- \mathbb{R} -linearity: $D_t(aV + bW) = aD_tV + bD_tW$ for $a, b \in \mathbb{R}$.
- Product rule: $D_t(fV) = f'V + fD_tV$ for $f \in C^{\infty}(a,b)$.
- Extendable: If $V \in \mathfrak{X}(\gamma)$ and there exists $\tilde{V} \in \mathfrak{X}(M)$ such that $\tilde{V}|_{\gamma(t)} = V(t)$ for all $t \in (a,b)$, then $D_t V = \nabla_{\gamma'(t)} \tilde{V}$.

Theorem 2.2.4

Let M be a smooth n-manifold. Let $\gamma:I\to M$ be a curve. Let ∇ be an affine connection on M. For $t\in I$, choose a chart $(U,\phi=(x^1,\ldots,x^n))$ for $\gamma(t)$. For any $V\in\mathfrak{X}(\gamma)$, write V locally around $\gamma(t)$ by

$$V(t) = \sum_{i=1}^{n} a_i(t) \frac{\partial}{\partial x^k} \bigg|_{\gamma(t)}$$

The covariant derivative defined locally by

$$D_t V|_{t_0} = \sum_{i=1}^n \left(\frac{da_i}{dt} \Big|_{t_0} \frac{\partial}{\partial x^i} \Big|_{\gamma(t_0)} + a_i(t_0) \nabla_{\gamma'(t_0)} \frac{\partial}{\partial x^i} \Big|_{\gamma(t_0)} \right)$$

is unique.

2.3 Parallel Transports

Definition 2.3.1: Parallel Vector Fields along a Curve

Let M be a smooth manifold. Let $\gamma: I \to M$ be a curve. Let $X: M \to TM$ be a vector field. We say that X is parallel along to γ if $D_tV=0$.

Theorem 2.3.2

Let M be a smooth manifold. Let $\gamma:I\to M$ be a curve. Let ∇ be an affine connection. Let $t_0\in I$ and $v_0\in T_{\gamma(t_0)}M$. Then there exists a unique parallel vector field V(t) along γ such that $V(t_0)=v_0$.

Definition 2.3.3: Parallel Transports

Let M be a smooth manifold. Let $\gamma:(a,b)\to M$ be a curve on M. Let $t_0,t\in(a,b)$. The map

$$P_{t_0,t}:T_{\gamma(t_0)}(M)\to T_{\gamma(t)}(M)$$

defined by $v \mapsto X(t)$ where X(t) is the unique parallel vector field along γ with $X(t_0) = v$.

2.4 The Levi-Civita Connection

3 Geodesics

Definition 3.0.1: Geodesics

A curve $\gamma:(a,b)\to M$ is called a geodesic if $D_t(\gamma'(t))=0$ for all $t\in(a,b)$.

4 Curvature

4.1 Gauss-Bonnet Theorem

Theorem 4.1.1: The Gauss-Bonnet Formula

Let (M,g) be an oriented smooth 2-manifold. Let γ be a positively oriented curved polygon in M and let Ω be its interior. Then

$$\int_{\Omega} K \, dA + \int_{\gamma} \kappa_N \, ds + \sum_{i=1}^k \varepsilon_i = 2\pi$$

where

- ullet K is the Gaussian curvature of g
- *dA* is the Riemannian volume form
- ε_i are the exterior angles of γ
- The second integral is taken with respect to arc length

Theorem 4.1.2: Gauss-Bonnet Theorem

Let (M,g) be an smooth compact 2-dimensional Riemannian manifold. Let K be the Gaussian curvature of M and let k_g be the geodesic curvature of ∂M . Then

$$\int_{M} K \, dA + \int_{\partial M} k_g \, ds = 2\pi \chi(M)$$

Corollary 4.1.3

Let (M,g) be an smooth compact 2-dimensional Riemannian manifold without boundary. Let K be the Gaussian curvature of M. Then

$$\int_{M} K \, dA = 2\pi \chi(M)$$