Boolean Combinations of Weighted Voting Games

Juan Pablo Royo Sales

Universitat Politècnica de Catalunya

January 2020

- Introduction
- Preliminary Definitions
- Formal Definition BWVG
- Representational Complexity
- 5 Decision Problems in BWVG
- Shapley Value
- The Core

- Introduction
- Preliminary Definitions
- Formal Definition BWVG
- Representational Complexity
- Decision Problems in BWVG
- 6 Shapley Value
- 7 The Core

Introduction

Basic Notions

- Based on Boolean Combinations of Weighted Voting Games paper
 BWVG¹
- It is a natural Generalization over Weighted Voting Games
- Intuitively is a decision making process via multiple committees
- Each committee has the authority to decide the outcome "yes" or "no" about an issue.
- And each committee is a WVG
- Individuals can appear in multiple committees
- Different committees can have different Threshold values

¹Piotr Faliszewski, Edith Elkind, and Michael Wooldridge. 2009. Boolean combinations of weighted voting games. In Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems - Volume 1 (AAMAS '09). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 185–192.

Introduction

Questions to be answered?

- Which coalitions might be able to bring the goal about?
- How important is a particular individual with respect to the achievement of the goal?

Introduction

Goals of the Paper

- Formal Definition of BWVG
- Investigate Computational Properties of BWVG

- Introduction
- Preliminary Definitions
- 3 Formal Definition BWVG
- Representational Complexity
- Decision Problems in BWVG
- 6 Shapley Value
- The Core

Propositional Logic

- Let $\Phi = \{p, q, \dots\}$ be a fixed non-empty vocabulary of Boolean variables
- ullet Let ${\cal L}$ denote the set of formulas of propositional logic over Φ
- If " \vee " and " \wedge " are the only operators appearing in formula φ , se say that φ is **monotone**
- If $\xi \subseteq \Phi$, we write $\xi \models \varphi$ mean that φ is true satisfied by valuation ξ

Simple Games

- A coalitional game is Simple if $v(C) \in \{0,1\} \forall C \subseteq N$
- C wins if v(C) = 1 and C losses otherwise.
- A Simple Game is **monotone** if $v(C) = 1 \implies v(C') = 1$ for any $C \subseteq C'$.
- In this paper authors consider both monotone and non-monotone Simple Games.
- They assume games with finite numbers of players |N| = n, $N = \{1, ..., n\}$

Weighted Voting Games

- Given $N = \{1, \dots, n\}$ players
- A list of n weights $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$
- A threshold $T \in \mathbb{R}$
- When N is clear from the context $q = (T; w_1, ..., w_n)$ to denote a WVG g
- w(C) total weight of coalition C, $w(C) = \sum_{i \in C} w_i$
- Characteristic function given by v(C) = 1 if $w(C) \ge T$ and v(C) = 0 otherwise.
- If all Weights are non-negative the game is monotone.

Computational Complexity

- P, NP, coNP, Σ_2^p , Π_2^p
- D^p : A Language $L \in D^p$ if $L = L_1 \cap L_2$, for some language $L_1 \in NP$ and $L_2 \in coNP$
- D_2^p : A Language $L \in D_2^p$ if $L = L_1 \cap L_2$, for some language $L_1 \in \Sigma_2^p$ and $L_2 \in \Pi_2^p$
- A Language $L \in UP$ if its Characteristic Function is in #P

- Introduction
- Preliminary Definitions
- Second Second
- Representational Complexity
- Decision Problems in BWVG
- 6 Shapley Value
- The Core

Boolean Weighted Voting Games

Definition

A **BWVG** is a tuple $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$, where:

- $N = \{1, ..., n\}$ is a set of players;
- $\mathcal{G} = \{g^1, \dots, g^n\}$ is a Set of **WVG** over N, where jth game, g^j , is given by a vector of weights $w^j = (w_1^j, \dots, w_n^j)$ and a Threshold T^j . \mathcal{G} is called the **component games** of G;
- $\Phi = \{p^1, \dots, p^n\}$ Set of Propositional Variables, in which each p^j correspond with the **component** g^j ;
- φ is a propositional formula over Φ .

Shorthand Definition

Example:

 $\bullet \ g^1 \wedge g^2 \equiv \langle \textit{N}, \{g^1, g^2\}, \{p^1, p^2\}, p^1 \wedge p^2 \rangle$

Boolean Weighted Voting Games

Winning Coalition

We say that C is a wins G if:

$$\exists \xi_1 \subseteq \Phi_C : \forall \xi_2 \subseteq (\Phi \setminus \Phi_C) : \xi_1 \cup \xi_2 \models \varphi$$
 (1)

Intuitively 1

A coalition C wins if it is able to fix variables under its control in such a way that the goal formula φ is guaranteed to be **True**.

Notes

It is allowed BWVG to contain negative weights

- Introduction
- Preliminary Definitions
- Formal Definition BWVG
- Representational Complexity
- Decision Problems in BWVG
- 6 Shapley Value
- 7 The Core

Preliminaries

- Any Simple Game with n players can be represented as a K-Vector Weighted Voting Game for $k = O(2^n)$, and therefore as a **BWVG** with $O(2^n)$ component games \mathcal{G} .
- That worst-case unfortunately cannot be improved in BWVG
- But we are going to show that for some specific instance that captures realistic voting scenarios that can be improve with linear representation.

Proposition

The total number of Boolean weighted voting games with |N| = n and $|\varphi| = s$ is most $2^{O(sn^2 \log(sn))}$

Proof.

- Any weighted voting game² can be represented using Integer weights whose absolute values do not exceed $2^{O(n \log n)}$
- w.l.g. we assumed that $|\mathcal{G}| = |\Phi|$ and $|\Phi| \leq |\varphi| = s$
- Given a **BWVG** G with n players and $|\varphi| = s$, we can find a equivalent representation using $O(sn^2 \log n)$ bits to represent all weights in ALL components, plus another $O(s \log s)$ bits to represent \mathcal{G}, Φ and φ .
- Therefore, the total number of distinct games can be represented as **BWVG** with |N| = n and $|\varphi| = s$ is $2^{O(sn^2 \log(sn))}$

Theorem

Consider a **BWVG** $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ where $\mathcal{G} = \{g^1, g^2\}, g^1 = (k; 1, 0, \dots, 1, 0), g^2 = (k; 0, 1, \dots, 0, 1), |N| = 2k$ and $\varphi = p^1 \vee p^2$. To represent G as a conjunction of m weighted voting games requires $m \geq k/2$ component games \mathcal{G}

Proof.

- Poof by contradiction
- A coalition C to win in G has to contain either even players or odd players
- Any maximal losing coalition (MLC) in G is of the form $N \setminus \{2i, 2j - 1\}$ where $i, j \in \{1, \dots, k\}$, denote as $C_{i, j}$
- There are exactly k^2 MLC
- 2 MLC $C_{i,j}$ and $C_{i',j'}$ clashes if i = i' or j = j', if $C_{i,j} \cup C_{i',i'} \neq N$
- Suppose that G can be represented as $(N, \{h^1, ..., h^m\}, \{q^1, ..., q^m\}, q^1 \wedge \cdots \wedge q^m)$ with m < k/2
- Each component has to lose in at least one game h^1, \ldots, h^m . By pigeonhole principle, there must be at least 1 component game (w.l.g.) that is lost by at least 2k distinct MLC.

Proof Cont.

- Fix an arbitrary MLC $C_{i,j}$ that loses in h^1
- Among 2k MLCs that loses in h^1 there can be at most k-1 MLCs of the form $C_{i,j'}, j' \neq j$ and $C_{i',j}, i' \neq i$
- There must be a $C_{x,y}$ that loses in h^1 and don't clashes with $C_{i,j}$.
- Let $h^1 = (T; w_1, \dots, w_n)$, we have $w(N) w_{2i} w_{2i-1} < T; w(N) w_{2x} w_{2y-1} < T$ (2)
- Also, $C_{i,j} \setminus \{2y-1\} \cup \{2i\}$ and $C_{x,y} \setminus \{2y-1\} \cup \{2i\}$ are wining in G and hence in h^1

$$w(N) - w_{2j-1} - w_{2y-1} \ge T; w(N) - w_{2i} - w_{2x} \ge T$$
 (3)

Equation 2 and 3 give a contradiction Therefore $m \ge k/2$.

- Introduction
- Preliminary Definitions
- Formal Definition BWVG
- Representational Complexity
- 5 Decision Problems in BWVG
- 6 Shapley Value
- 7 The Core

Decision Problems in BWVG

Winning Coalitions

Given a game $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ and a coalition $C \subseteq N$, deciding whether C wins in G is Σ_2^p -complete. This results holds even if there are 2 players and the weights of all players in all components are in $\{0,1\}$. However, the problem is in P if the underlying formula is monotone.

Proof Sketch.

- By definition of Winning coalition of BWVG is easy to see that is in Σ_2^p for the general case
- In the case of monotonicity of propositional formula testing whether a Coalition C is winning we need to set all all the controlled variables by C in **True**, while All others in \perp .
- With formulas with few variables we can enumerate all possible truth assignments.
- For the case of unrestricted formulas we do a reduction from QSAT₂

Decision Problems in BWVG

Definition

i is a swing player for C in game G if C loses in G but $C \cup \{i\}$ wins in G. The problem of deciding if i is Swing Player or not, is easy if φ is monotone or its size is bounded by a constant, but in general is Computationally hard.

Swing Player

SWINGPLAYER is D_2^p -complete. This holds even for 3 players and all components are of the form $\{0,1\}$. However, the problem is in P if the underlying formula is monotone.

Decision Problems in BWVG

Proof Sketch.

- The case of monotone formulas follows directly from previous theorem of Winning Coalitions.
- We must exhibit 2 languages L_1 and L_2 , such that $L_1 \in \Sigma_2^p$, $L_2 \in \Pi_2^p$ and $SWINGPLAYER = L_1 \cap L_2$.

$$L_1 = \{ \langle G, C, i \rangle : C \cup \{i\} \text{ wins in } G \}$$
 (4a)

$$L_2 = \{ \langle G, C, i \rangle : C \text{ does not win in } G \}$$
 (4b)

- Clearly $L_1 \in \Sigma_2^p$ and $L_2 \in \Pi_2^p$
- By definition $SWINGPLAYER = L_1 \cap L_2$
- To show D_2^p -hardness a reduction can be provided from D_2^p -complete problem $SAT_2^{\Sigma} UNSAT_2^{\Sigma}$, which is a generalization of SAT UNSAT problem.

- Introduction
- Preliminary Definitions
- Formal Definition BWVG
- Representational Complexity
- Decision Problems in BWVG
- 6 Shapley Value
- The Core

Shapley Value

Shapley Value in BWVG

- In WVG it is known that computing Shapley Value is hard (#P-complete).
- This implies that the problem is as least as hard to BWVG
- However there is a poly-time algorithm for computing Shapley Value in WVG with unary-encoded weights.
- But this is not true for BWVG

Shapley Value

Shapley Value

Computing a player's Shapley value in a **BWVG** is #P-hard even if the game in question is a **VWVG** and all weights in all component games are in $\{0,1\}$.

Proof.

- For the probe it is use a reduction of X3C (Exact Cover by 3-Sets), where an instance of this problem is giving and a BWVG is constructed based on this.
- Given that there a q which is a swing player for exactly N_k combinations, where N_k is the number of exact covers of ε , and the size of each such coalition is exactly K.
- Hence the Shapley Value for the q player is exactly $N_k \frac{K!(\ell+1-K)!}{(\ell+1)!}$
- N_K can be compute given sh_q^G , ℓ , and K
- As computing N_K is #P-complete, it follows the statement.

Shapley Value

Poly-time

 Shapley value can be still computed in poly-time if both the weights are given in unary and the number of component games is bounded by a constant.

Shapley Value Poly-Time

Given a BWVG $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ and a player $p \in N$, Shapley value of p can be computed in time $O((n^2 + s)(4nW)^m)$, where $|\Phi| = m, |\varphi| = s, |W| = \max_{i,j} |w_i^j|$

- Introduction
- Preliminary Definitions
- Formal Definition BWVG
- Representational Complexity
- Decision Problems in BWVG
- Shapley Value
- The Core

The Core

The Core and BWVG

- Problem InCore we are given a BWVG G and a payoff vector x and we are asked if x belongs to G's core.
- Problem CoreNonEmpty we are given a BWVG G and we ask if its core is nonempty
- Problem Veto we are given a BWVG G and a player i and we ask if i is a veto player in G

The Core

InCore, CoreNonEmpty and Veto

InCore, CoreNonEmpty and Veto are Π_2^p -complete even if |N|=2 and all weights in all components games are either 0 or 1. However for non-negative weights these problems are in P if the underlying formulas are monotone.

Proof

Authors Do Not provide any proof due to space restrictions.

Thank you!!