

UM2324 User manual

STM32 Nucleo-64 boards with STM32G07xRB MCUs

Introduction

The STM32 Nucleo-64 boards (NUCLEO-G070RB and NUCLEO-G071RB) provide an affordable and flexible way for users to try out new concepts and build prototypes with the STM32 microcontroller, which provide various combinations of performance, power consumption and features.

Arduino™ Uno V3 connectivity and ST morpho headers provide easy means of expanding the functionality of the Nucleo open development platform with a wide choice of specialized shields.

The STM32 Nucleo-64 boards do not require any separate probe, as it integrates the ST-LINK/V2-1 debugger/programmer. The STM32 Nucleo-64 boards come with the comprehensive free STM32 software libraries and examples that are available with the STM32Cube package.

Figure 1. NUCLEO-G070RB/NUCLEO-G071RB top view

Picture is not contractual.

October 2018 UM2324 Rev 2 1/44

Contents UM2324

Contents

1	Featu	es 6			
2	Prod	ict marking			
3	Orde	ring information	7		
4	Conv	ventions	7		
5	Quic	k start	8		
	5.1	Getting started	8		
	5.2	System requirements	8		
	5.3	Development toolchains	8		
6	Hard	ware layout and configuration	9		
	6.1	NUCLEO-G070RB or NUCLEO-G071RB board mechanical drawing1	1		
	6.2	Default board configuration1	1		
	6.3	Cut able PCB1	1		
	6.4	Embedded ST-LINK/V2-1	2		
		6.4.1 Drivers	3		
		6.4.2 ST-LINK/V2-1 firmware upgrade	3		
		6.4.3 Using the ST-LINK/V2-1 to program/debug the STM32 on board 1	3		
		6.4.4 Using ST-LINK/V2-1 to program/debug an external STM32 application 1	4		
	6.5	Power supply and power selection	5		
		6.5.1 External power supply input	5		
		6.5.2 External power supply output:	0		
	6.6	Programming/debugging when the power supply is not from ST-LINK 2	0		
	6.7	OSC clock sources	1		
		6.7.1 LSE: OSC 32 kHz clock supply	1		
		6.7.2 HSE: OSC 8 MHz clock supply	2		
	6.8	Reset sources			
	6.9	UART2 communication	3		
	6.10	LEDs	3		
	6.11	Push buttons	4		

JM2324	Contents

	6.12	I _{DD} measurement	. 24
	6.13	Jumper configuration	. 24
	6.14	Configuration of the solder bridges	. 25
7	Conn	nectors	. 27
	7.1	USB Micro-B connector CN2	. 27
	7.2	Arduino Uno V3 connectors	. 28
	7.3	ST morpho connectors CN7 and CN10	. 31
Appendi	ix A N	IUCLEO-G070RB or NUCLEO-G071RB I/O assignment	. 33
Appendi	ix B E	lectrical schematics	. 35
8	Revis	sion history	. 43

List of tables UM2324

List of tables

Table 1.	Ordering information	7
Table 2.	Codification explanation	
Table 3.	ON/OFF conventions	7
Table 4.	Default jump settings	11
Table 5.	ST-LINK jumper configuration	12
Table 6.	Debug connector CN11 (SWD)	14
Table 7.	Power supply capabilities	16
Table 8.	UART2 pins	23
Table 9.	Jumper configuration	24
Table 10.	Solder bridge configurations and settings	
Table 11.	USB micro-B pinout	27
Table 12.	Arduino connector pinout	30
Table 13.	NUCLEO-G070RB or NUCLEO-G071RB I/O assignment	33
Table 14	Document revision history	43

UM2324 List of figures

List of figures

Figure 1.	NUCLEO-G070RB/NUCLEO-G071RB top view	1
Figure 2.	Hardware Block Diagram	9
Figure 3.	Top layout	10
Figure 4.	Bottom layout	
Figure 5.	NUCLEO-G070RB or NUCLEO-G071RB board mechanical drawing	11
Figure 6.	USB composite device	
Figure 7.	NUCLEO-G070RB or NUCLEO-G071RB connections image	14
Figure 8.	ST-Link connections image	15
Figure 9.	STLK power source	17
Figure 10.	JP2 [3-4]: STLK power source	18
Figure 11.	JP2 [5-6]: STLK power source	19
Figure 12.	JP2 [7-8]: CHG power source	20
Figure 13.	USB micro-B connector CN2 (front view)	27
Figure 14.	Arduino connectors	
Figure 15.	NUCLEO-G070RB Arduino connector pinout	29
Figure 16.	NUCLEO-G071RB Arduino connector pinout	29
Figure 17.	ST morpho connectors	
Figure 18.	NUCLEO-G070RB ST morpho connector pinout	
Figure 19.	NUCLEO-G071RB ST morpho connector pinout	
Figure 20.	Top	
Figure 21.	STM32_microcontroller_IOs	
Figure 22.	STM32_microcontroller_PWR	
Figure 23.	Arduino extension connectors	
Figure 24.	Power	40
Figure 25.	ST_LINK_V2-1	41
Figure 26.	HW Mechanical Parts	42

UM2324 Rev 2 5/44

Features UM2324

1 Features

The STM32 Nucleo board offers the following features:

- STM32 microcontroller in LQFP64 package
- 1 user LED shared with Arduino™
- 1 user and 1 reset push-buttons
- 32.768 kHz LSE crystal oscillator
- Board expansion connectors:
 - Arduino[™] Uno V3
 - ST morpho extension pin headers for full access to all STM32 I/Os
- Flexible power-supply options:
 - ST-LINK USB VBUS or external sources (3.3 V, 5 V, 7 V to 12 V)
- On-board ST-LINK/V2-1 debugger and programmer with USB reenumeration capability.
- Three different interfaces supported on USB:
 - mass storage
 - virtual COM port
 - debug port
- Comprehensive free software libraries and examples available with the STM32Cube MCU Package
- Support of a wide choice of Integrated Development Environments (IDEs) including IAR[™], Keil[®], GCC-based IDEs

2 Product marking

Evaluation tools marked as 'ES' or 'E' are not yet qualified and therefore they are not ready to be used as reference design or in production. Any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering sample tools as reference design or in production.

'E' or 'ES' marking examples of location:

- On the targeted STM32 that is soldered on the board (for illustration of STM32 marking, refer to the section 'Package characteristics' of the STM32 datasheet at www.st.com).
- Next to the evaluation tool ordering part number, that is stuck or silk-screen printed on the board.

This board features a specific STM32 device version which allows the operation of any stack or library. This STM32 device shows a "U" marking option at the end of the standard part number and is not available for sales.

3 Ordering information

To order the STM32 Nucleo-64 board corresponding to the targeted STM32, refer to *Table 1*.

Table 1. Ordering information

Order code	Target STM32
NUCLEO-G070RB	STM32G070RBT6
NUCLEO-G071RB	STM32G071RBT6

The meaning of the NUCLEO-G071RB codification is explained in *Table 2*.

Table 2. Codification explanation

NUCLEO-G071RB	Description	Example: NUCLEO-G071RB
GXXX	STM32 Product line	STM32G071
R	STM32 package pin count	64 pins
В	STM32 Flash memory size	128 Kbytes

This order code is mentioned on a sticker placed on top side of the board.

4 Conventions

Table 3 provides the conventions used for the ON and OFF settings in the present document.

Table 3. ON/OFF conventions

Convention	Definition	
Jumper JPx ON	Jumper fitted	
Jumper JPx OFF	Jumper not fitted	
Solder bridge SBx ON	SBx connections closed by solder or 0 ohm resistor	
Solder bridge SBx OFF	SBx connections left open	

In this document the references for all information that is common to all sale types, are 'STM32 Nucleo-64 board' and 'STM32 Nucleo-64 boards'.

UM2324 Rev 2 7/44

Quick start UM2324

5 Quick start

This section describes how to start a development quickly using the STM32 NUCLEO-G070RB or NUCLEO-G071RB board.

Before installing and using the product, accept the Evaluation Product License Agreement from the www.st.com/epla web page.

For more information on the STM32 Nucleo board and to access the demonstration software, visit www.st.com/stm32nucleo website.

5.1 Getting started

The STM32 NUCLEO-G070RB or NUCLEO-G071RB board is a low-cost and easy-to-use development kit to quickly evaluate and start a development with an STM32 microcontroller in QFP64 package. To start using this board, follow the steps below:

- 1. Check the jumper position on the board, CN4 (STLK) on [1-2], [3-4], JP2 (PWR) on [1-2], JP3 (IDD) on.
- 2. For a correct identification of all device interfaces from the host PC, install the Nucleo USB driver available on the www.st.com/stm32nucleo web page, prior to connecting the board.
- 3. To power the board, connect the STM32 NUCLEO-G070RB or NUCLEO-G071RB to a PC with a USB cable 'type-A to micro-B' through the USB connector CN2. As a result green LED LD3 (PWR) lights up, LD1 (COM) blinks.
- 4. Press user button B1 (blue).
- 5. Observe that the blinking frequency of the three green LED LD4 changes, by clicking on the button B1.
- 6. The demonstration software and several software examples that allow the user to use the Nucleo features are available at the www.st.com/stm32nucleo.

5.2 System requirements

- Windows[®] OS (7, 8 and 10), Linux[®] or macOS^{®(a)}
- USB Type-A to Micro-B cable

5.3 Development toolchains

- Keil[®]: MDK-ARM^(b)
- IAR[™]: EWARM^(b)
- GCC-based IDEs

a. macOS® is a trademark of Apple Inc., registered in the U.S. and other countries.

b. On Windows only

6 Hardware layout and configuration

The STM32 NUCLEO-G070RB and NUCLEO-G071RB boards are designed around the STM32 microcontrollers in a 64-pin LQFP package.

Figure 2 illustrates the connections between the STM32 and its peripherals (STLINK/V2-1, pushbutton, LED, and morpho connectors).

Figure 3 and *Figure 4* help the user to locate these features on the NUCLEO-G070RB or NUCLEO-G071RB.

Figure 2. Hardware Block Diagram

UM2324 Rev 2 9/44

Figure 3. Top layout

Figure 4. Bottom layout

10/44

6.1 NUCLEO-G070RB or NUCLEO-G071RB board mechanical drawing

Figure 5. NUCLEO-G070RB or NUCLEO-G071RB board mechanical drawing

6.2 Default board configuration

I_{DD} measurement

Jumper Definition Default position Comment CN4 ON [1-2] ON[3-4] SWD interface On-board ST-LINK/V2-1 debugger JP2 5 V Power selection 5 V from ST-LINK ON [1-2] JP1 STLK Reset **OFF** No STLK Reset

ON

Table 4. Default jump settings

6.3 Cut able PCB

JP3

The NUCLEO-G070RB or NUCLEO-G071RB board is divided into two parts: ST-Link part and target MCU part. ST-Link part PCB is cuttable to reduce board size. In this case the rest target MCU part is only powered by VIN, E5V & 3.3V on morpho connectors CN7 or VIN & 3.3V on Arduino connector CN6. And it is still possible to use ST-Link part to program the main MCU using wires between CN7 and SWD signals available on morpho connectors.

UM2324 Rev 2 11/44

STM32 VDD current measurement

6.4 Embedded ST-LINK/V2-1

The ST-LINK/V2-1 programming and debugging tool is integrated on the NUCLEO. Compared to ST-LINK/V2 the changes are listed below.

The new features supported on ST-LINK/V2-1:

- USB software re-enumeration
- Virtual COM port interface on USB
- Mass storage interface on USB
- Registers R/W interface on USB (Not available on NUCLEO)
- USB power management request for more than 100 mA power on USB

The features no more supported on ST-LINK/V2-1:

- SWIM interface
- Minimum application voltage supported by Nucleo limited to 3V
- Standalone version doesn't exist (only Nucleo and future discovery support V2-1)

For all general information concerning debugging and programming features common between V2 and V2-1 please refer to ST-LINK/V2 User Manual UM1075.

The embedded ST-LINK/V2-1 is usable in two different ways according to the jumper states (refer to *Table 5*):

- Program/debug the STM32 on board,
- Program/debug an STM32 in an external application board using a cable connected to SWD connector.

CN Definition Default position Comment

CN4 T_SWCLK / T_SWDIO ON [1-2] ON[3-4] ST-LINK/V2-1 functions enabled for onboard programming (default)

CN4 T_SWCLK / T_SWDIO OFF [1-2] OFF[3-4] ST-LINK/V2-1 functions enabled from external connector (SWD supported)

Table 5. ST-LINK jumper configuration

6.4.1 Drivers

Before connecting the STM32 NUCLEO-G070RB or NUCLEO-G071RB board to a Windows[®] PC (7, 8 and 10) through USB, install the driver for the ST-LINK/V2-1 that is available at the *www.st.com* website.

In case the STM32 Nucleo-64-P board is connected to the PC before installing the driver, the PC device manager may report some Nucleo interfaces as 'Unknown'. To recover from this situation, after installing the dedicated driver, the association of 'Unknown' USB devices found on the STM32 Nucleo-64-P board to this dedicated driver, must be updated in the device manager manually.

Note: It is recommended to proceed by using USB Composite Device, as shown in Figure 6.

6.4.2 ST-LINK/V2-1 firmware upgrade

The ST-LINK/V2-1 embeds a firmware upgrade mechanism for in-situ upgrade through the USB port. As the firmware may evolve during the lifetime of the ST-LINK/V2-1 product (for example new functionalities, bug fixes, support for new microcontroller families), it is recommended to keep the ST-LINK/V2-1 firmware up to date before starting to use an STM32 NUCLEO-G070RB or NUCLEO-G071RB board. The latest version of this firmware is available at the www.st.com website.

6.4.3 Using the ST-LINK/V2-1 to program/debug the STM32 on board

To program the STM32 on board, simply plug in the two jumpers on CN4, as shown in *Figure 7* in pink, but do not use the CN11 connector as that could disturb communication with the STM32 Microcontroller of the NUCLEO.

57

UM2324 Rev 2 13/44

Figure 7. NUCLEO-G070RB or NUCLEO-G071RB connections image

6.4.4 Using ST-LINK/V2-1 to program/debug an external STM32 application

It is very easy to use the ST-LINK/V2-1 to program the STM32 on an external application. Simply remove the 2 jumpers from CN4 as shown in *Figure 8*, and connect your application to the CN11 debug connector according to *Table 6*.

Note: SB19 must be OFF if you use CN11 pin 5 in your external application.

Table 6. Debug connector CN11 (SWD)

Pin	CN11	Designation
1	VDD_TARGET	VDD from application
2	SWCLK	SWD clock
3	GND	Ground
4	SWDIO	SWD data input/output
5	NRST	RESET of target MCU
6	SWO	Reserved

Figure 8. ST-Link connections image

6.5 Power supply and power selection

6.5.1 External power supply input

The STM32 NUCLEO-G070RB or NUCLEO-G071RB board is designed to be powered by several DC power supply. It is possible to supply the STM32 NUCLEO-G070RB or NUCLEO-G071RB board with any of the following sources:

- 5V USB STLK from ST-LINK USB connector
- VIN (7 V 12 V) from Arduino connector or ST morpho connector
- E5V from ST morpho connector
- 5V_USB_CHG from ST-LINK USB
- 3.3 V on Arduino connector or ST morpho connector

Note:

If an external 5 V DC power source is used, the Nucleo board must be powered by a power supply unit or by an auxiliary equipment complying with the standard EN-60950-1: 2006+A11/2009 and must be safety extra low voltage (SELV) with limited power capability.

The power supply capabilities are showed in *Table 7*.

UM2324 Rev 2 15/44

Table 7. Power supply capabilities

Input power	Connector pins	Voltage range	Max current	Limitation
5V_USB_STLK	CN2 PIN1	4.75 V to 5.25 V	500 mA	Max current depends on the USB enumeration: – 100 mA without enumeration – 500 mA with enumeration OK
VIN	CN6 pin 8 CN7 pin 24	7 V to 12 V	800 mA	From 7 V to 12 V only and input current capability is linked to input voltage: - 800 mA input current when VIN=7 V - 450 mA input current when 7 V <vin<9 -="" 10="" 300="" current="" input="" ma="" v="" when="">VIN>9 V - less than 300 mA input current when VIN>10 V</vin<9>
E5V	CN7 pin 6	4.75 V to 5.25 V	500 mA	
5V_USB_CHG	CN2 pin 1	4.75 V to 5.25 V	500 mA	Max current depends on the USB wall charger used to powered the Nucleo board
3V3	CN6 pin 4 CN7 pin 16 JP3 pin 1	3 V to 3.6 V	-	Used when ST-LINK part of PCB not used or remove SB1 and SB19

5V_ST_LINK is a DC power with limitation from ST-LINK USB connector (USB type Micro-B connector of ST-LINK/V2-1). In this case JP2 jumper must be on pins 1 and 2 to select STLK power source on silkscreen of JP2. This is the default setting. If the USB enumeration succeeds, the STLK power is enabled, by asserting the PWR_ENn signal (from STM32F103CBT6). This pin is connected to a power switch STMPS2141STR, which Powers the board. This power switch also features a current limitation to protect the PC in case of a short-circuit on board (more than 750 mA).

The STM32 NUCLEO-G070RB or NUCLEO-G071RB board and its shield is powerable from the ST-LINK USB connector CN2, but only ST-LINK circuit is powered before USB enumeration, because the host PC only provides 100 mA to the board at that time. During the USB enumeration, the STM32 NUCLEO-G070RB or NUCLEO-G071RB board requires 500 mA of current from the host PC. If the host is able to provide the required power, the enumeration ends by a 'SetConfiguration' command and then, the power transistor STMPS2141STR is switched ON, the green LED LD3 is turned ON, thus the STM32 NUCLEO-G070RB or NUCLEO-G071RB board and its shield request no more than 500 mA current. If the host is not able to provide the required current, the enumeration fails. Therefore the power switch STMPS2141STR stays OFF and the MCU part including the extension board is not powered. As a consequence the green LED LD3 stays turned OFF. In this case it is mandatory to use an external power supply.

USB power: STLK configuration: jumper JP2 [1-2] must be connected as showed in *Figure 9*.

Figure 9. STLK power source

VIN is the 7 V to 12 V DC power from Arduino CN6 pin 8 named VIN on Arduino connector silkscreen or from ST morpho connector CN7 pin 24. In this case JP2 jumper must be on pins 3 and 4 to select VIN power source on silkscreen of JP2. In that case the DC power comes from the power supply through the Arduino Uno V3 battery shield (compatible with Adafruit PowerBoost 500 shield).

UM2324 Rev 2 17/44

VIN configuration: jumper JP2 [3-4] must be connected as showed in Figure 10.

Figure 10. JP2 [3-4]: STLK power source

E5V is the DC power coming from external (5V DC power from ST morpho connector CN7 pin 6). In this case JP2 jumper must be on pins 5 and 6 to select E5V power source on silkscreen of JP2.

E5V configuration: Jumper JP2 [5-6] must be connected as showed in Figure 11.

Figure 11. JP2 [5-6]: STLK power source

5V_USB_CHARGER is the DC power charger connected to USB ST-LINK (CN2). To select the CHG power source on silkscreen of JP2, the jumper of JP2 must be on pins 7 and 8. In this case, if the STM32 NUCLEO-G070RB or NUCLEO-G071RB board is powered by an external USB charger the debug is not available. If the PC is connected instead of the charger, the limitation is no more effective, in this case the PC could be damaged.

UM2324 Rev 2 19/44

MB1360C CN₂ **USB STLK** JP2 PIN 7/8 ON S222 PWM/MOSI/D11 n/stm32nucleo PWM/CS/D10 PWM/D6 PWM/D5 D4 PWM/D3 TX/D1 RX/D0

CHG configuration: jumper JP2 [7-8] must be connected as showed in Figure 12.

Figure 12. JP2 [7-8]: CHG power source

6.5.2 External power supply output:

- 5V: The 5V (CN6 pin 5 or CN7 pin 18) is usable as output power supply for an Arduino shield or an extension board, when the NUCLEO-G070RB or NUCLEO-G071RB board is powered by USB, VIN or E5V. In this case the maximum current allowed is showed in Table 7.
- 3.3V: on CN6 pin 4 or CN7 pin 16 is usable as power supply output. The current is limited by the maximum current capability of the regulator U6 (LDL112PV33R from STMicroelectronics). In this condition the maximum consumption of the STM32 NUCLEO-G070RB or NUCLEO-G071RB board and the connected shield must be less than 500 mA.

6.6 Programming/debugging when the power supply is not from ST-LINK

VIN or E5V is usable as an external power supply in case the current consumption of the STM32 NUCLEO-G070RB or NUCLEO-G071RB board and its extension boards exceed the allowed current on the USB. In such condition it is still possible to use the USB for communication, programming or debugging only. In this case it is mandatory to power the board first using VIN or E5V then to connect the USB cable to the PC. Proceeding this way

20/44 UM2324 Rev 2

MSv48506V1

the enumeration succeeds, thanks to the external power source. The following power sequence procedure must be respected:

- 1. Connect jumper JP2 between pins 3 and 4 for VIN or pins 5 and 6 for E5V
- 2. Connect the external power source to VIN or E5V
- 3. Power ON the external power supply 7 V < VIN < 12 V to VIN, or 5 V for E5V
- 4. Check that the green LED LD3 is turned ON
- 5. Connect the PC to the USB connector CN2

If this sequence is not respected, the board may be powered by VBUS first from the ST-LINK, with the following risks:

- If more than 500 mA current is needed by the board, the PC may be damaged or the current supplied may be limited by the PC. As a consequence the board is not powered correctly.
- 500 mA is requested at the enumeration (since SB15 must be OFF): this request is
 rejectable and the enumeration does not succeed if the PC does not provide such
 current, consequently the board is not power supplied (LED LD3 remains OFF).

6.7 OSC clock sources

Three clock sources are listed below:

- LSE which is the 32.768 kHz crystal for the STM32 embedded RTC
- MCO which is the 8 MHz clock from the ST-LINK MCU for the STM32 microcontroller
- HSE which is the 8 MHz oscillator for the STM32 microcontroller. This clock is not implemented on the STM32 NUCLEO-G070RB or NUCLEO-G071RB board

6.7.1 LSE: OSC 32 kHz clock supply

There are three ways to configure the pins corresponding to the low-speed clock (LSE):

- LSE on-board X2 crystal (Default configuration). Refer to crystal design guide for STM8S, STM8A and STM32 microcontrollers Application note (AN2867) for crystal design guide for STM32 microcontrollers. It is recommended to use NX3215SA manufactured by NDK (32.768 kHz, 6 pF, 20 ppm).
- 2. Oscillator from external to PC14 input: from external oscillator through pin 25 of the CN7 connector. The following configuration is needed:
 - SB23 ON
 - R31 and R32 removed
- LSE not used: PC14 and PC15 are used as GPIOs instead as low-speed clock. The following configuration is needed:
 - SB23 and SB24 ON
 - R31 and R32 removed

UM2324 Rev 2 21/44

6.7.2 HSE: OSC 8 MHz clock supply

There are four ways to configure the pins corresponding to the external high-speed clock (HSE):

- HSE not used (default): PF0 and PF1 are used as GPIOs instead of as clock. The configuration must be:
 - SB25 and SB27 ON
 - SB17 (MCO) OFF
 - R33 and R34 OFF
- MCO from ST-LINK: MCO output of ST-LINK is used as input clock. This frequency cannot be changed, it is fixed at 8 MHz and connected to the PF0-OSC_IN of STM32 microcontroller. The configuration must be:
 - SB17 ON
 - SB25 and SB27 OFF
 - R33 and R34 OFF
- HSE on-board oscillator from X3 crystal (not provided): for typical frequencies and its capacitors and resistors, refer to the STM32 microcontroller datasheet and to the Oscillator design guide for STM8S, STM8A and STM32 microcontrollers Application note (AN2867) for the oscillator design guide. The X3 crystal has the following characteristics: 8 MHz, 8 pF, 20 ppm. It is recommended to use NX3225GD-8.000M-EXS00A-CG04874 manufactured by NIHON DEMPA KOGYO CO., LTD. The configuration must be:
 - SB25 and SB27 OFF
 - R33 and R34 soldered
 - C24 and C25 soldered with 10 pF capacitors
 - SB17 OFF
- Oscillator from external PF0: from an external oscillator through the pin 29 of the CN7 connector. The configuration must be:
 - SB25 ON
 - SB17 OFF
 - R33 and R34 removed

6.8 Reset sources

22/44

The reset signal of the STM32 NUCLEO-G070RB or NUCLEO-G071RB board is active low and the reset sources include:

- Reset button B2
- Embedded ST-LINK/V2-1
- Arduino Uno V3 connector from CN6 pin 3
- ST morpho connector CN7 pin 14

UM2324 Rev 2

6.9 UART2 communication

The UART2 interface of the STM32 is connectible to:

- The ST-LINK/V2-1 MCU
- The ST morpho connector (CN10 pin 6 and pin 34)

Table 8. UART2 pins

Pin name	Function	Virtual COM port (default configuration)	ST morpho connection
PA2	UART2 TX	SB16 ON	SB16 OFF
PA3	UART2 RX	SB18 ON	SB18 OFF

6.10 LEDs

Four LEDs are available on the STM32 NUCLEO-G070RB or NUCLEO-G071RB board. The four LEDs are located on the top side of the board.

- LD1 COM: LD1 is a bi-color LED. LD1 default status is red. LD1 turns to green to indicate that communication is in progress between the PC and the ST-LINK/V2-1 as follow:
 - Slow blinking red and off: at power-on before USB initialization
 - Fast blinking red and off: after the first correct communication between the PC and the STLINK/V2-1 (enumeration)
 - Red LED on: when initialization between the PC and the ST-LINK/V2-1 is successfully ended
 - Green LED on: after successful STM32 communication initialization
 - Blinking red and green: during communication with STM32
 - Green on: communication well ended
 - Orange on: communication ended with failure
- LD2: 5V_USB_CHG: this red LED switch ON when overcurrent is detected on USB VBUS. The LED gives the information that more than 500 mA is requested on VBUS. In this case it is recommended to supply the board with E5V, VIN or in USB_CHARGER mode.
- 3. LD3: 5V_PWR: this green LED is ON when the STM32 NUCLEO-G070RB or NUCLEO-G071RB board is powered by a 5 V source.
- 4. LD4 USER: this green LED is a user LED connected to Arduino signal D13 corresponding to STM32 I/O PA5. To light the LED a high-logic state '1' has to be written in the corresponding GPIO. A transistor is used to drive the LED when the I/O voltage is 1.8 V. LD4 consumption does not impact the VDD STM32 power measurement, since LD4 is isolated from it.

UM2324 Rev 2 23/44

6.11 Push buttons

- B1 USER: User and Wake-Up button connected to the I/O PC13 (Pin 3) of the STM32 Microcontroller.
- B2 RESET: Pushbutton connected to NRST is used to RESET the STM32 Microcontroller.

The blue and black plastic hats placed on these pushbuttons are removable if necessary when a shield or an application board is plugged on top of Nucleo. This avoids pressure on the buttons and consequently a possible permanent Target MCU RESET.

6.12 I_{DD} measurement

Jumper JP3, labeled IDD, allows the consumption of STM32 Microcontroller to be measured by removing the jumper and connecting an ammeter.

- Jumper on: STM32 Microcontroller is powered (default).
- Jumper off: an ammeter must be connected to measure STM32 microcontroller current. If there is no ammeter, STM32 microcontroller is not powered.

6.13 Jumper configuration

The default jumper positions are showed in *Table 4*: Default jumper settings. *Table 9* describes the other available jumper settings.

Jumper / CN	Function	State ⁽¹⁾	Comment
CN4	T_SWCLK T_SWDIO	ON [1-2] ON [3-4]	ST-LINK/V2-1 enable for on-board MCU debugger
CN4		OFF [1-2] OFF [3-4]	ST-LINK/V2-1 functions enabled for external CN2 connector
JP4/JP5	GND	ON	GND probe
	5 V Power selection	ON [1-2]	5 V from ST-LINK
		ON [3-4]	5 V from VIN 7 V to 12 V
JP2		ON [5-6]	5 V from E5V
		ON [7-8]	5 V from USB_CHG
		OFF	No 5 V power
JP1	STLK Reset	ON [1-2]	STLK Reset
JFI		OFF	No STLK Reset
	I _{DD} measurement	ON [1-2]	VDD = 3.3 V
JP3		OFF	To connect external source (ULPBench probe as an example)

Table 9. Jumper configuration

^{1.} Default jumper state is shown in bold.

6.14 Configuration of the solder bridges

Table 10 shows the solder bridge configurations and settings.

Table 10. Solder bridge configurations and settings

Definition	Bridge	State ⁽¹⁾	Comment
SWD interface (default))	SB7/SB9 /SB11/SB13	ON	Reserved, do not modify.
SWD interface (reserved)	SB6/SB8 /SB10/SB12	OFF	Reserved, do not modify.
UART2 interface (reserved)	SB16/SB18	ON	UART2 connect STLK and MCU on board
UART2 interface (reserved)	SB16/SB18	OFF	UART2 is used as GPIOs
Allowed current	SB15	ON	Allowed current through CN2: 100 mA max
through CN2 Setting		OFF	Allowed current through CN2: 300 mA max
MCO	SB17	ON	MCO from STLK provide 8 MHz CLK to MCU
		OFF	MCO from STLK floating
3.3 V LDO	SB1	ON	U6 LDO output provides 3.3 V
output		OFF	U6 LDO output does not provide 3.3 V
Power (reserved)	SB29/SB30	ON	PD8 is used as VDD,PD9 is used as GND
		OFF	PD8 and PD9 is used as GPIOs
\ (D.A.T.	SB26	ON	VDD provides power to VBAT
VBAT		OFF	VDD does not provide power to VBAT
AVDD	SB28	ON	VDD provides power to AVDD
AVDD		OFF	VDD does not provide power to AVDD
ACND	SB31	ON	AGND connects to GND
AGND		OFF	AGND does not connect to GND
HSE CLK	SB25/SB27	ON(R33/R34 OFF)	PF0/PF1 works as GPIOs
selection		OFF	PF0/PF1 works as HSE pins
LSE CLK selection	SB23/SB24	ON(R31/R32 OFF)	PC14/PC15 works as GPIOs
		OFF	PC14/PC15 works as LSE pins
ADC/IIC	SB2/SB3/SB4/SB5	SB3/SB4 ON, SB2/SB5 OFF	CN8 PIN5/6 works as ADC
		SB3/SB4 OFF, SB2/SB5 ON	CN8 PIN5/6 works as IIC

UM2324 Rev 2 25/44

Table 10. Solder bridge configurations and settings (continued)

Definition	Bridge	State ⁽¹⁾	Comment
User LED	SB22	ON	PA5 controls LD4
		OFF	LD4 is isolated
AVDD	SB21	ON	AVDD connects to CN5 PIN8
		OFF	AVDD disconnects to CN5 PIN8

^{1.} Default jumper state is shown in bold.

UM2324 Connectors

7 Connectors

Seven connectors are implemented on the STM32 Nucleo-64-P board:

- CN2: ST-LINK USB connector
- CN5, CN6, CN8 and CN9: Arduino Uno V3 connectors
- CN7 and CN10: ST morpho connectors

7.1 USB Micro-B connector CN2

The USB connector CN2 is used to connect the embedded ST-LINK/V2-1 to the PC for programming and debugging the STM32 NUCLEO-G070RB or NUCLEO-G071RB board microcontroller.

Figure 13. USB micro-B connector CN2 (front view)

The related pinout for the USB ST-LINK connector is listed in *Table 11*.

Pin Pin ST-LINK Connector Signal name **Function** number name MCU pin 5V STLINK / **VBUS** 5 V power 5V_USB_CHG 2 DM (D-) STLINK_USB_D_N PA11 USB diff. pair M CN₂ 3 DP (D+) STLINK USB D P USB diff. pair P PA12 4 ID 5 **GND GND**

Table 11. USB micro-B pinout

Connectors UM2324

7.2 Arduino Uno V3 connectors

The Arduino connectors CN5, CN6, CN8 and CN9 (see *Figure 14*) are female connectors compatible with Arduino standard. Most shields designed for Arduino fit to the NUCLEO-G070RB or NUCLEO-G071RB board.

The Arduino connectors on STM32 NUCLEO-G070RB or NUCLEO-G071RB board support the Arduino Uno V3.

Figure 14. Arduino connectors

UM2324 Connectors

The related pinout for Arduino connector is showed in *Figure 15* and *Figure 16* and listed in *Table 12*.

Figure 15. NUCLEO-G070RB Arduino connector pinout

Note:

Note: Arduino Uno V3 D0 and D1 signals are connected by default on USART1 (MCU I/O PC4 and PC5).

UM2324 Rev 2 29/44

Connectors UM2324

Table 12. Arduino connector pinout

Connector	Pin number	Pin name	Signal name	STM32 pin	Function
CN6	1	NC	-	-	Reserved for test
	2	IOREF	-	-	I/O reference
	3	NRST	NRST	NRST	RESET
	4	3V3	-	-	3.3 V input/output
	5	5V	-	-	5 V output
	6	GND	-	-	GND
	7	GND	-	-	GND
	8	VIN	-	-	7 V to 12 V power input
	1	A0	ADC	PA0	ARD_A0_IN0
	2	A1	ADC	PA1	ARD_A1_IN1
ONO	3	A2	ADC	PA4	ARD_A2_IN4
CN8	4	A3	ADC	PB1	ARD_A3_IN9
	5	A4	ADC	PB9 or PB11	ARD_A4_IN15 I2C_1_SCL
	6	A5	ADC	PB8 or PB12	ARD_A5_IN16 I2C_1_SDA
	10	SCL/D15	ARD_D15	PB8	I2C_1_SCL
	9	SDA/D14	ARD_D14	PB9	I2C_1_SDA
	8	AVDD	VREF+	-	VREF+
	7	GND	-	-	GND
0115	6	SCK/D13	ARD_D13	PA5	SPI_1_SCK
CN5	5	MISO/D12	ARD_D12	PA6	SPI_1_MISO
	4	PWM/MOSI/D11	ARD_D11	PA7	SPI_1_MOSI TIM_14_CH1
	3	PWM/CS/D10	ARD_D10	PB0	SPI_1_NSS TIM_3_CH3
	2	PWM/D9	ARD_D9	PC7	TIM_3_CH2
	1	D8	ARD_D8	PA9	Ю
	8	D7	ARD_D7	PA8	Ю
	7	PWM/D6	ARD_D6	PB14	TIM_15_CH1
	6	PWM/D5	ARD_D5	PB4	TIM_3_CH1
	5	D4	ARD_D4	PB5	Ю
CN9	4	PWM/D3	ARD_D3	PB3	TIM_1_CH2
	3	D2	ARD_D2	PA10	Ю
	2	TX/D1	ARD_D1	PC4	UART_1_TX
	1	RX/D0	ARD_D0	PC5	UART_1_RX

UM2324 Connectors

7.3 ST morpho connectors CN7 and CN10

The ST morpho connectors CN7 and CN10 are male pin headers accessible on both sides of the STM32 NUCLEO-G070RB or NUCLEO-G071RB board (see *Figure 17*). All signals and power pins, except VDD_CORE 1.2 V of the STM32, are available on the ST morpho connectors. These connectors can also be probed by an oscilloscope, logical analyzer or voltmeter.

Figure 17. ST morpho connectors

UM2324 Rev 2 31/44

Connectors UM2324

The related pinout and the MCU assignment for the ST morpho connectors are listed in *Figure 18* and *Figure 19*.

Figure 18. NUCLEO-G070RB ST morpho connector pinout

Note: Arduino Uno V3 D0 and D1 signals are connected by default on USART1 (MCU I/O PA2 and PA3).

Appendix A NUCLEO-G070RB or NUCLEO-G071RB I/O assignment

Table 13. NUCLEO-G070RB or NUCLEO-G071RB I/O assignment

Pin No	Pin name	Signal or label	Main feature / optional feature (SB)
1	PC11	PC11	Ю
2	PC12	PC12	IO
3	PC13	PC13	User Button/IO
4	PC14 - OSC32_IN	PC14 - OSC32_IN	LSE CLK/IO
5	PC15 - OSC32_OUT	PC15 - OSC32_OUT	LSE CLK/IO
6	PF3 - VBAT	VBAT	PWR VBAT
7	PF4 - VREF+	AVDD	PWR AVDD
8	VDD_1	VDD	PWR VDD
9	VSS_1	GND	PWR GND
10	PF0 - OSC_IN	PF0 - OSC_IN	HSE CLK/IO
11	PF1 - OSC_OUT	PF1 - OSC_OUT	HSE CLK/IO
12	PF2 - NRST	PF2 - NRST	RESET
13	PC0	PC0	Ю
14	PC1	PC1	Ю
15	PC2	PC2	Ю
16	PC3	PC3	Ю
17	PA0	PA0	ARD_A0_IN0
18	PA1	PA1	ARD_A1_IN1
19	PA2	UART2_TX	STLK_RX
20	PA3	UART2_RX	STLK_TX
21	PA4	PA4	ARD_A2_IN4
22	PA5	PA5	ARD_D13 SPI_1_SCK
23	PA6	PA6	ARD_D12 SPI_1_MISO
24	PA7	PA7	ARD_D11 SPI_1_MOSI TIM_14_CH1
25	PC4	PC4	ARD_D1 UART_1_TX
26	PC5	PC5	ARD_D0 UART_1_RX
27	PB0	PB0	ARD_D10 SPI_1_NSS TIM_3_CH3
28	PB1	PB1	ARD_A3_IN9
29	PB2	PB2	Ю
30	PB10	PB10	Ю
31	PB11	PB11	ARD_A4_IN15

Table 13. NUCLEO-G070RB or NUCLEO-G071RB I/O assignment (continued)

Pin No	Pin name	Signal or label	Main feature / optional feature (SB)
32	PB12	PB12	ARD_A5_IN16
33	PB13	PB13	IO
34	PB14	PB14	ARD_D6 TIM_15_CH1
35	PB15	PB15	IO
36	PA8	PA8	ARD_D7
37	PA9	PA9	ARD_D8
38	PC6	PC6	IO
39	PC7	PC7	ARD_D9 TIM_3_CH2
40	PD8	PD8	IO
41	PD9	PD9	IO
42	PA10	PA10	ARD_D2
43	PA11	PA11	IO
44	PA12	PA12	IO
45	PA13	TMS	SWDIO
46	PA14 - BOOT0	TCK	SWCLK
47	PA15	PA15	IO
48	PC8	PC8	IO
49	PC9	PC9	IO
50	PD0	PD0	IO
51	PD1	PD1	IO
52	PD2	PD2	IO
53	PD3	PD3	IO
54	PD4	PD4	IO
55	PD5	PD5	IO
56	PD6	PD6	IO
57	PB3	PB3	ARD_D3 TIM_1_CH2
58	PB4	PB4	ARD_D5 TIM_3_CH1
59	PB5	PB5	ARD_D4
60	PB6	PB6	IO
61	PB7	PB7	IO
62	PB8	PB8	ARD_D15 I2C_1_SCL
63	PB9	PB9	ARD_D14 I2C_1_SDA
64	PC10	PC10	IO

UM2324 Electrical schematics

Appendix B Electrical schematics

This section provides the design schematics for the STM32 Nucleo-64 board features.

- NUCLEO-G071RB board:
 - Figure 20: Top
 - Figure 21: STM32_microcontroller_IOs
 - Figure 22: STM32_microcontroller_PWR
 - Figure 23: Arduino extension connectors
 - Figure 24: Power
 - Figure 25: ST_LINK_V2-1
 - Figure 26: HW Mechanical Parts

UM2324 Rev 2 35/44

UM2324 Rev 2

UM2324 Revision history

8 Revision history

Table 14. Document revision history

Date	Revision	Changes
24-Oct-2018	1	Initial version
26-Oct-2018	2	Added NUCLEO-G070RB board to document.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved