Ensemble

Framework of Ensemble

- Get a set of classifiers
- $f_1(x)$, $f_2(x)$, $f_3(x)$,

DD 相

They should be diverse.

- Aggregate the classifiers (properly)
- 在打王時每個人都有該站的位置

Ensemble: Bagging

Review: Bias v.s. Variance

Bagging your

This approach would be helpful when your model is complex, easy to overfit.

e.g. decision tree

Assume each object x is represented by a 2-dim vector ${x_1 \brack x_2}$

Can have more complex questions

number of branches, Branching criteria, termination criteria, base hypothesis

Experiment: Function of Miku

(1st column: x, 2^{nd} column: y, 3^{rd} column: output (1 or 0))

Random Forest

f ₄	×	0	×	0
f _s	0	×	0	×
f ₂	×	×	0	0
f ₁	0	0	×	×
train	x^1	x^2	× ₃	*

- Decision tree:
- Easy to achieve 0% error rate on training data
- If each training example has its own leaf
- Random forest: Bagging of decision tree
- Resampling training data is not sufficient
- Randomly restrict the features/questions used in each
- Out-of-bag validation for bagging
- Using RF = f₂+f₄ to test x¹
 Using RF = f₂+f₃ to test x²
 Using RF = f₁+f₄ to test x³
- Using RF = f_1+f_3 to test x^4
- Good error estimation Out-of-bag (OOB) error of testing set

Ensemble: Boosting

Improving Weak Classifiers

Boosting

Training data: $\{(x^1, \hat{y}^1), \cdots, (x^n, \hat{y}^n), \cdots, (x^N, \hat{y}^N)\}$ $\hat{y} = \pm 1 \text{ (binary classification)}$

- Guarantee:
- If your ML algorithm can produce classifier with error rate smaller than 50% on training data
- You can obtain 0% error rate classifier after boosting.
- Framework of boosting
- Obtain the first classifier $f_1(x)$
- Find another function $f_2(x)$ to help $f_1(x)$
- However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.
- We want $f_2(x)$ to be complementary with $f_1(x)$ (How?)
- Obtain the second classifier $f_2(x)$
- Finally, combining all the classifiers
- The classifiers are learned sequentially.

How to obtain different classifiers?

- Training on different training data sets
- How to have different training data sets
- Re-sampling your training data to form a new set
- Re-weighting your training data to form a new set
- In real implementation, you only have to change the cost/objective function

$$(x^1, \hat{y}^1, u^1)$$
 $u^1 = 4$ 0.4

$$(x^2, \hat{y}^2, u^2)$$
 $u^2 = 4$ 2.1

$$(x^3, \hat{y}^3, u^3)$$
 $u^3 = 4$ 0.7

$$L(f) = \sum_{n} l(f(x^n), \hat{y}^n)$$

$$L(f) = \sum_{n} u^{n} l(f(x^{n}), \hat{y}^{n})$$

Idea of Adaboost

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 ε_1 : the error rate of $f_1(x)$ on its training data

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n \quad \varepsilon_1 < 0.5$$

Changing the example weights from u_1^n to u_2^n such that

$$\frac{\sum_n u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5$$
 The performance of f_1 for new weights would be random.

Training $f_2(x)$ based on the new weights u_2^n

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

increase $u_2^n \leftarrow u_1^n$ multiplying d_1 If x^n correctly classified by $f_1\left(f_1(x^n)=\hat{y}^n\right)$ If x^n misclassified by $f_1(f_1(x^n) \neq \hat{y}^n)$

 $u_2^n \leftarrow u_1^n$ divided by d_1

decrease

 f_2 will be learned based on example weights u_2^n

What is the value of d_1 ?

$$\varepsilon_{1} = \frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} \qquad Z_{1} = \sum_{n} u_{1}^{n}$$

$$\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n}) \neq \hat{y}^{n} \qquad Z_{1} = \sum_{n} u_{1}^{n} \leftrightarrow u_{1}^{n} \leftrightarrow u_{1}^{n} \leftrightarrow u_{2}^{n} \leftrightarrow u_{1}^{n} \leftrightarrow u_{2}^{n} \leftrightarrow u$$

$$\frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1} = 2$$

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n$$

$$\frac{\sum_n u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} = 0.5 \quad f_1(x^n) = \hat{y}^n \quad u_2^n \leftarrow u_1^n \text{ multiplying } d_1$$

$$\frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1} = 2 \qquad \frac{\sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1} = 1$$

 $f_1(x^n) = \hat{y}^n \quad u_2^n \leftarrow u_1^n \text{ divided by } d_1$

$$\sum_{f_{1}(x^{n})=\hat{y}^{n}} u_{1}^{n}/d_{1} = \sum_{f_{1}(x^{n})\neq\hat{y}^{n}} u_{1}^{n}d_{1} \quad \frac{1}{d_{1}} \sum_{f_{1}(x^{n})=\hat{y}^{n}} u_{1}^{n} = d_{1} \quad \sum_{f_{1}(x^{n})\neq\hat{y}^{n}} u_{1}^{n}$$

$$\varepsilon_{1} = \frac{\sum_{f_{1}(x^{n})\neq\hat{y}^{n}} u_{1}^{n}}{Z_{1}} \qquad \frac{Z_{1}(1-\varepsilon_{1})}{Z_{1}(1-\varepsilon_{1})/d_{1} = Z_{1}\varepsilon_{1}} \qquad \frac{Z_{1}(1-\varepsilon_{1})}{d_{1} = \sqrt{(1-\varepsilon_{1})/\varepsilon_{1}}} > 1$$

Algorithm for AdaBoost

• Giving training data
$$\{(x^1,\hat{y}^1,u_1^1),\cdots,(x^n,\hat{y}^n,u_1^n),\cdots,(x^N,\hat{y}^N,u_1^N)\}$$

- $\hat{y}=\pm 1$ (Binary classification), $u_1^n=1$ (equal weights)
- For t = 1, ..., T:
- Training weak classifier $f_t(x)$ with weights $\{u_t^1, \cdots, u_t^N\}$
- ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \cdots, u_t^N\}$
- For n = 1, ..., N:
- If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$
- $u_{t+1}^n = u_t^n \times d_t = u_t^n \times \exp(\alpha_t)$ $d_t = \sqrt{(1 \varepsilon_t)/\varepsilon_t}$
- $u_{t+1}^n = u_t^n/d_t = u_t^n \times \exp(-\alpha_t)$ $\alpha_t = \ln \sqrt{(1 \varepsilon_t)/\varepsilon_t}$

$$u_{t+1}^n \leftarrow u_t^n \times exp(\qquad \alpha_t)$$

Algorithm for AdaBoost

• We obtain a set of functions: $f_1(x), \dots, f_t(x),$ $\dots, f_T(x)$

How to aggregate them?

Uniform weight:

•
$$H(x) = sign(\sum_{t=1}^{T} f_t(x))$$

Non-uniform weight:

•
$$H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$$

•
$$H(x) = sign(\sum_{t=1}^{I} f_t(x))$$
 Smaller error ε_t , larger weight for hon-uniform weight:
• $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$ final voting
$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$
 $\varepsilon_t = 0.1$ $\varepsilon_t = 0.4$

$$u_{t+1}^{n} = u_{t}^{n} \times exp(-\hat{y}^{n} f_{t}(x^{n}) \alpha_{t})$$
 $\alpha_{t} = 1.10$ $\alpha_{t} = 0.20$

• t=1

t=2
$$\alpha_1 = 0.42$$

Toy Example

T=3, weak classifier = decision stump

• t=3
$$\alpha_1 = 0.42$$

$$f_2(x):$$
 $\alpha_2 = 0.66$

Toy Example

• Final Classifier: $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

1		T.
+	_	
+		1
'	+	+

Warning of Math

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t f_t(x)\right) \quad \alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

As we have more and more f_t (T increases), H(x) achieves smaller and smaller error rate on training data.

Error Rate of Final Classifier

• Final classifier: $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

•
$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

g(x)

Training Data Error Rate

$$=\frac{1}{N}\sum_{n}\delta(H(x^{n})\neq\hat{y}^{n})$$

$$= \frac{1}{N} \sum_{n} \frac{\delta(\hat{y}^n g(x^n) < 0)}{}$$

$$\leq \frac{1}{N} \sum_{n} \frac{exp(-\hat{y}^{n}g(x^{n}))}{}$$

Training Data Error Rate

raining Data Error Rate
$$g(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$$

$$\leq \frac{1}{N} \sum_n exp(-\hat{y}^n g(x^n)) \left[= \frac{1}{N} Z_{T+1} \right]$$

$$\alpha_t = \ln \sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

 $\alpha_t = ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}$

 Z_t : the summation of the weights of training data for training f_t

What is
$$Z_{T+1} =$$
? $Z_{T+1} =$ $\sum_{n} u_{T+1}^{n}$ $u_{1}^{n} = 1$
$$u_{t+1}^{n} = u_{t}^{n} \times exp(-\hat{y}^{n}f_{t}(x^{n})\alpha_{t})$$
 $u_{t+1}^{n} = \prod_{t=1}^{T} exp(-\hat{y}^{n}f_{t}(x^{n})\alpha_{t})$

$$Z_{T+1} = \sum_{n} \prod_{t=1}^{r} exp(-\hat{y}^{n} f_{t}(x^{n}) \alpha_{t})$$

$$= \sum_{n} exp\left(-\hat{y}^{n} \sum_{t=1}^{T} f_{t}(x^{n}) \alpha_{t}\right)$$

Training Data Error Rate

$$\leq \frac{1}{N} \sum_{n} exp(-\hat{y}^n g(x^n)) = \frac{1}{N} Z_{T+1}$$

$$g(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$$

$$\alpha_t = ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}$$

 $Z_1=N \;\;$ (equal weights)

$$Z_t = Z_{t-1}\varepsilon_t exp(\alpha_t) + Z_{t-1}(1-\varepsilon_t)exp(-\alpha_t)$$

Misclassified portion in Z_{t-1} — Correctly classified portion in Z_{t-1}

$$= Z_{t-1}\varepsilon_t\sqrt{(1-\varepsilon_t)/\varepsilon_t} + Z_{t-1}(1-\varepsilon_t)\sqrt{\varepsilon_t/(1-\varepsilon_t)}$$

$$= Z_{t-1} \times 2\sqrt{\varepsilon_t(1-\varepsilon_t)} \qquad Z_{T+1} = N \prod_{t=1}^T 2\sqrt{\varepsilon_t(1-\varepsilon_t)}$$

Training Data Error Rate $\leq \prod_{t=1}^{T} 2\sqrt{\epsilon_t(1-\epsilon_t)}$

Smaller and smaller

End of Warning

Large Margin?

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t f_t(x)\right)$$

g(x)

Training Data Error Rate =

$$= \frac{1}{N} \sum_{n} \delta(H(x^{n}) \neq \hat{y}^{n})$$

$$\leq \frac{1}{N} \sum_{n} exp(-\hat{y}^{n}g(x^{n}))$$

$$= \prod_{t=1}^{T} 2\sqrt{\epsilon_{t}(1-\epsilon_{t})}$$

smaller as T increase Getting smaller and

To learn more ...

Introduction of Adaboost:

Freund; Schapire (1999). "A Short Introduction to Boosting"

Multiclass/Regression

- Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995.
- Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated predictions. In Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pages 80–91, 1998.

Gentle Boost

 Schapire, Robert; Singer, Yoram (1999). "Improved Boosting Algorithms Using Confidence-rated Predictions".

General Formulation of Boosting

- Initial function $g_0(x)=0$
- For t = 1 to T:
- Find a function $f_t(x)$ and α_t to improve $g_{t-1}(x)$

•
$$g_{t-1}(x) = \sum_{i=1}^{t-1} \alpha_i f_i(x)$$

•
$$g_{t-1}(x) = \sum_{i=1}^{t-1} \alpha_i f_i(x)$$

• $g_t(x) = g_{t-1}(x) + \alpha_t f_t(x)$

• Output: $H(x) = sign(g_T(x))$

What is the learning target of g(x)?

Minimize
$$L(g) = \sum_{n} l(\hat{y}^n, g(x^n)) = \sum_{n} exp(-\hat{y}^n g(x^n))$$

Gradient Boosting

- Find $\mathbf{g}(x)$, minimize $L(g) = \sum_n exp(-\hat{\mathbf{y}}^n g(x^n))$
- If we already have $g(x) = g_{t-1}(x)$, how to update g(x) ?

Gradient Descent:

Gradient Boosting

$$f_t(x) \Leftrightarrow \sum_{\text{Same direction}} \sum_n exp(-\hat{y}^n g_t(x^n))(\hat{y}^n)$$

We want to find $f_t(x)$ maximizing

$$\sum_{n} \frac{exp(-\hat{y}^{n}g_{t-1}(x^{n}))}{example weight u_{t}^{n}} \underbrace{Same sign}_{\text{Ninimize Error}}$$

$$u_t^n = exp(-\hat{y}^n g_{t-1}(x^n)) = exp\left(-\hat{y}^n \sum_{i=1}^{t-1} \alpha_i f_i(x^n)\right)$$

$$= \prod_{i=1}^{t-1} exp(-\hat{y}^n \alpha_i f_i(x^n)) \quad \text{Exactly the weights we obtain} \quad \text{in Adaboost}$$

Gradient Boosting

• Find $\mathbf{g}(x)$, minimize $L(g) = \sum_n exp(-\hat{\mathbf{y}}^n g(x^n))$

$$g_t(x) = g_{t-1}(x) + \alpha_t f_t(x)$$
 learning rate

Find $lpha_t$ minimzing $L(g_{t+1})$

$$L(g) = \sum_{n} exp(-\hat{y}^{n}(g_{t-1}(x) + a_{t}f_{t}(x)))$$

$$= \sum_{n} exp(-\hat{y}^{n}g_{t-1}(x))exp(-\hat{y}^{n}a_{t}f_{t}(x))$$

$$= \sum_{\hat{y}^{n} \neq f_{t}(x)} exp(-\hat{y}^{n}g_{t-1}(x^{n}))exp(\alpha_{t})$$

$$+ \sum_{\hat{y}^{n} = f_{t}(x)} exp(-\hat{y}^{n}g_{t-1}(x^{n}))exp(\alpha_{t})$$
Adaboo

 $lm\sqrt{(1-\varepsilon_t)/\varepsilon_t}$ $\frac{\partial L(g)}{\partial L(g)}$ $\partial \alpha_t$ $\alpha_t =$

Adaboost!

Cool Demo

http://arogozhnikov.github.io/2016/07/05/gradient _boosting_playground.html Ensemble: Stacking

