Chapter 2

Linear Transformations

The operations which define a vector space are vector addition and scalar multiplication. A nice function between vector spaces is one which preserves these operations, in the following sense.

Definition. For positive integers n and m, a function $L: \mathbb{R}^n \to \mathbb{R}^m$ is *linear* if

• $L(x_1 + x_2) = L(x_1) + L(x_2)$ for all $x_1, x_2 \in \mathbb{R}^n$.

•
$$L(cx) = cL(x)$$
 for all $c \in \mathbb{R}$, $v \in \mathbb{R}^n$.

Example. The function $L: \mathbb{R}^2 \to \mathbb{R}^3$ by

$$L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x \\ x+y \\ x+3y \end{pmatrix}$$

is linear.

We can define what it means for a function $L: V \to W$ to be linear for any vector spaces V and W, but we will restrict our attention to \mathbb{R}^n and \mathbb{R}^m .

Note that if *L* is linear, then $L(\mathbf{0}) = \mathbf{0}$.

Example. The function $L: \mathbb{R}^3 \to \mathbb{R}^2$ by

$$L\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ z+1 \end{pmatrix}$$

is *not* linear. Note that
$$L \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.

Example. For any positive integers n and m, the function $L : \mathbb{R}^n \to \mathbb{R}^m$ by $L(v) = \mathbf{0}$ is linear.

To help us analyze linear functions, we will work with the *standard basis*.

Definition. The *standard basis* for \mathbb{R}^n is $S = \{e_1, e_2, \dots, e_n\}$, where

$$e_1 = egin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

:

$$e_n = egin{pmatrix} 0 \ 0 \ 0 \ dots \ 1 \end{pmatrix}$$

Example. In \mathbb{R}^3 , the standard basis is

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Ø

Note that if $x = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$, then we can write

$$x = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}$$
$$= x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$= xe_1 + ye_2 + ze_3$$

The standard basis is a *basis* because any element of \mathbb{R}^n can be built up from the elements; for any $x \in \mathbb{R}^n$:

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 e_1 + x_2 e_2 + \dots x_n e_n.$$

Now, suppose that $L: \mathbb{R}^3 \to \mathbb{R}$ is linear. Let $a = L(e_1)$, $b = L(e_2)$ and $c = L(e_3)$. Then, for any $x = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$, we have

$$L(x) = L(xe_1 + ye_2 + ze_3)$$

= $L(xe_1) + L(ye_2) + L(ze_3)$
= $xL(e_1) + yL(e_2) + zL(e_3)$
= $ax + by + cz$

We will introduce some notation to rewrite this result in a nicer form.

Let $a = (a_1, a_2, ..., a_n)$ be a list of n numbers; this is known as a **row vector**. Given a row vector $a = (a_1, a_2, ..., a_n)$ and a column vector $b = a_1, a_2, ..., a_n$

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$
, we define the *product ab* to be

$$ab = a_1b_1 + a_2b_2 + \cdots + a_nb_n.$$

Example.

$$(2,5,3) \begin{pmatrix} 7 \\ 9 \\ 2 \end{pmatrix} = 2 \cdot 7 + 5 \cdot 9 + 3 \cdot 2 = 65.$$

What we showed before is that for a linear function $L: \mathbb{R}^3 \to \mathbb{R}$, if $a = (L(e_1), L(e_2), L(e_3))$ then L(x) = ax for any $x \in \mathbb{R}^3$.

Proposition. Let $L : \mathbb{R}^n \to \mathbb{R}$ be linear, and let

$$a = (L(e_1), L(e_2), \ldots, L(e_n)).$$

Then

$$L(x) = ax$$

for any $x \in \mathbb{R}^n$.

Conversely, any function $L: \mathbb{R}^n \to \mathbb{R}$ of the form

$$L(x) = ax$$

for some row vector a is linear.

Example. •
$$L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2x - 5y + 7z$$
 is linear. Here $a = (2, -5, 7)$.
• $L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2x + 3y + 2z + 4$ is not linear.
• $L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3x + 4yz$ is not linear.

•
$$L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2x + 3y + 2z + 4$$
 is not linear.

•
$$L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3x + 4yz$$
 is not linear.

There is a similar characterization of linear functions $L: \mathbb{R}^n \to \mathbb{R}^m$. We will again consider $A = (L(e_1), L(e_2), \dots, L(e_n))$, but now each $L(e_i)$ is a column vector. *A* will be an array of numbers.

Example. Let
$$L: \mathbb{R}^3 \to \mathbb{R}^2$$
 by $L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + 3y - z \\ x + 5z \end{pmatrix}$. Then $L(e_1) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $L(e_2) = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ and $L(e_3) = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$. We get

$$A = (L(e_1), L(e_2), \dots, L(e_n)) = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 5 \end{pmatrix}$$

Definition. An $m \times n$ matrix is an array of numbers with m rows and n columns.

Example.

$$\begin{pmatrix} 2 & 4 & -3 & 4 \\ 0 & 1 & 3 & 9 \\ 2 & 5 & 1 & 1 \end{pmatrix}$$

is a 3×4 matrix. \square

If A is a matrix, we write a_{ij} to represent the number in the ith row and the *j*th column.

Example. If

$$A = \begin{pmatrix} 2 & 4 & 9 \\ 1 & -3 & 8 \end{pmatrix},$$

then $a_{2,1} = 1$. Ø

If $L: \mathbb{R}^n \to \mathbb{R}^m$ is linear and $A = (L(e_1), L(e_2), \dots, L(e_n))$, then A is an $m \times n$ matrix. For $x \in \mathbb{R}^n$ we want to define the product Ax so that L(x) = Ax.

Definition. Let *A* be an $m \times n$ matrix, we can write $A = (a_1, \dots, a_n)$ for

vectors
$$a_i \in \mathbb{R}^m$$
. For $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$, we define

$$Ax = x_1a_1 + \cdots + x_na_n.$$

Example.

$$\begin{pmatrix} 3 & 2 & 4 \\ 2 & 5 & 9 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix} = 3 \begin{pmatrix} 3 \\ 2 \end{pmatrix} + 5 \begin{pmatrix} 2 \\ 5 \end{pmatrix} + 7 \begin{pmatrix} 4 \\ 9 \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \end{pmatrix} + \begin{pmatrix} 10 \\ 25 \end{pmatrix} + \begin{pmatrix} 28 \\ 63 \end{pmatrix} = 2 \begin{pmatrix} 47 \\ 94 \end{pmatrix}$$

Notice that to multiply Ax, the number of columns of A must equal the number of elements in x.

Proposition. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be linear, and let

$$A = (L(e_1), L(e_2), \dots, L(e_n)).$$

Then A is an $m \times n$ matrix, and

$$L(x) = Ax$$

for any $x \in \mathbb{R}^n$.

Conversely, any function $L: \mathbb{R}^n \to \mathbb{R}^m$ of the form

$$L(\mathbf{x}) = A\mathbf{x}$$

for some $m \times n$ matrix A is linear.

Example. The function

$$L: \mathbb{R}^3 \to \mathbb{R}^2$$

by

$$L\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ x+2y+3z \end{pmatrix}$$

is linear. We have

$$L\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\1 \end{pmatrix} \tag{2.0}$$

$$L\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\2 \end{pmatrix} \tag{2.0}$$

$$L\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\3 \end{pmatrix},\tag{2.0}$$

so letting

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix},$$

we get

$$L\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

 \square

Ø

Example. The function $L: \mathbb{R}^2 \to \mathbb{R}^3$ by

$$L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 3x - y \\ 4y \end{pmatrix}$$

is linear. We have

$$A = \left(L \begin{pmatrix} 1 \\ 0 \end{pmatrix} L \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 1 & 2 \\ 3 & -1 \\ 0 & 4 \end{pmatrix}$$

and L(x) = Ax.

Example. The function

$$L: \mathbb{R}^3 \to \mathbb{R}^2$$

by

$$L\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + 3z \\ 4x + 5y + 6z \end{pmatrix}.$$

is linear. (Note the connection between the matrix and the resulting value of L.)

Example. Suppose
$$L: \mathbb{R}^2 \to \mathbb{R}^3$$
 is linear, $L \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $L \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$. Then

$$L\begin{pmatrix} 3\\1 \end{pmatrix} = 3L\begin{pmatrix} 1\\0 \end{pmatrix} + 1L\begin{pmatrix} 0\\1 \end{pmatrix} \tag{2.0}$$

$$=3\begin{pmatrix}1\\1\\1\end{pmatrix}+1\begin{pmatrix}2\\1\\3\end{pmatrix}\tag{2.0}$$

$$= \begin{pmatrix} 5\\4\\6 \end{pmatrix}. \tag{2.0}$$

More generally, we have L(x) = Ax, where

$$A = \left(L \begin{pmatrix} 1 \\ 0 \end{pmatrix} L \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 3 \end{pmatrix}$$

We now see that $L : \mathbb{R}^n \to \mathbb{R}^m$ is linear exactly when each component of L(x) is of the form $a_1x_1 + \cdots + a_nx_n$ for constants a_1, \ldots, a_n .