

Minne.			
	-	4	-
U	-	1	P
-		•	w

= (0.7)(0.90)/(0.65) = 0.969

_		le .	
	2	t	0
الساة	a	٤.	6

/ /

3 The product rule is P(A,B) = P(A1B) P(B)
Base (ase: P(x, x).P(x,1x) P(x) per product rule
Let us now consider P(x,xn) = P(x,1x2,xn)P(x2,uxn)
We assume the falousing, which is the chain rule:
P(x, x,) = P(x,1x, x,) P(x, x)
$= \pi P(x_n x_1 \dots x_{n-1}) = \pi P(x_k \cap x_i)$
Let us atknot to prove for Xam
P(X X)= P(V XV V) D(V V) Product
TIP(YnullyYa) = P(XatilXx.Xa) = P(X
P(Xn,11x,1,x,)P(Xn1x,,x,n)=P(Xn,11x,,x,n)P(X,,x,n)
$\pi P(X_n X_n, Y_{n+1})$
ling by induction, we have show the
Equality of left and vignt sides and
prove the correctness.

	-)	ê
(27	1	1

Date / /
W X, Y, Z are random variables
a X Y are unconditionally independent
Per unconditional independence, we have:
P(X,Y) : P(X)P(Y)
We can consider the 2 following BN's:
\otimes
2
This implies X, Y are conditionally dependent great
however we can also have:
\otimes \otimes \otimes
The above implies no relation between
X, Y, or Z. Thus, we cannot always assume
new 7 will make X, Y conditionally independent
(B) X, Y conditionally inservendent given 7
The definition is thus P(X, Y1Z) = P(X1Z)P(Y1Z)
In close, we were given 4 cases of 3
Configurations + that show conditional independence
given 2. They are the following:
A + B -> C. where B not observed
A -> B + C 8 or descendent absenced
A > B + C 8 or descendent observed

Now consider that we implement the
"Common Effect" Structure line so:
"Common Bree
X
ŧ
Then, per lecture, given that 2 is observed, we find that
those two events X and Y are not unconditionally
independent of each other, at least, not always
assumed By counterexample, we dispet this notion.
asumed by control
5 a) P(F, G) = P(F) P(G).
Forlse, FAH & MHG are active pathing, so not guaranteed
6) P(A, T) = P(A)P(T)
True, The two paths AMRT and AMHT are both rective
0) P(A, TIR, G) = P(A)R, G) P(TIR, G)
False, G being observed makes AMHT active
1) P(F,T/R) = P(F/R) P(T/R)
False, the path FMH is active, so no independence
e) P(A, MIG) = P(AIG) P(MIG)
False, M directly after A, so is attented by A

Date / /
(c) (A)
BOO
A.
B, C, D all depend on A
However, given A, all 3 aire independent
- A only needs four parameters, technically 3 values
A=4
$B_{1}C_{1}O = O(4.3 \cdot 5) = GO$
60 +4 = 61
\mathcal{B}
B, C, D all have 4 parameters, tech 5 values
A has 4 values, dependent on P.C.D
B, C, D = 4 + 4 + 4
A= 0(4.1.53) = 4.125=500
12 +500 = 512