popper: choose a.

MATH 3339 Statistics for the Sciences Chapter 6

Wendy Wang wwang60@central.uh.edu

Lecture 12 - 3339

Outline

- Sampling Distributions
- $oldsymbol{2}$ Sampling Distribution of $ar{X}$
- $oldsymbol{3}$ Finding Probabilities for $ar{X}$
- $oldsymbol{4}$ Sampling Distribution of $\hat{oldsymbol{
 ho}}$

Sampling Distribution

Sampling Distribution for the sample mean

Sampling Distribution of size 2

From the five children, we want to list out all possible pairs of size 2 and determine their mean. Ages are 3,5, 9, 11, 14

	Pairs	Sample mean, \bar{x}		=
M=3+5+	(3,5)	4 = 3+5		
(M=-+>	(3,9)	$6 = \frac{3+9}{2}$		
	(3,11)	7		
= 8.4	(3, 14)	8.5		
	(5, 9)	7	sd(x)	
X=c(4,6,7,85	(5, 11)	8) (X)	
	['] (5, 14)	9.5		
12.5	(9, 11)	10		
11 2-11	(9, 14)	11.5		
$M_{\bar{X}} = 8.4$	(11, 14)	12.5 = 11+14		

The list above is a sampling distribution from a sample of 2 of \bar{x} , the possible values of the sample mean. What is the mean of the sample means, $\mu_{\bar{x}}$? What is the standard deviation of the sample means, $\nu_{\bar{x}}$?

Sampling Distribution of size 3

What about the sampling distribution of size 3 rom the family of five?

	Sets	X	3+++9
	(3, 5, 9)	5.6667	=
Mg= 5.6667+ 11.33	(3, 5, 11)	6.3333	
M x = 3-1	(3, 5, 14)	7.3333	
10	(3, 9, 11)	7.6667	1
- ^ //	(3, 9, 14)	8.6667	5d(x)=
= 8.4	(3, 11, 14)	9.3333	
	(5, 9, 11)	8.3333	
	(5, 9, 14)	9.3333	5+11+14
	(5, 11, 14)	10 =	2
	(9, 11, 14)	11.3333	

What is the mean of these means, $\mu_{\bar{X}}$? What is the standard deviation of these means, $\sigma_{\bar{Y}}$?

Sampling distribution

- When we describe distributions we use three characteristics:
 - ► Shape ∨
 - Center
 - Spread
- To describe the sampling distribution we can use the same three characteristics.
- This can be shown through histograms or numerical values.

Sampling Distribution of \bar{X}

large population; U, T Sample: n X

- Suppose that \bar{X} is the sample mean of a simple random sample of size n from a large population with mean μ and standard deviation σ .
- \bar{X} is a random variable because every time we take a random sample we will not get the same sample mean \bar{X} . Thus we want to know the **distribution** of the sample means \bar{X} .
- The center of the sample means (mean of the sample means) $\mu_{\bar{\chi}}$ is μ . Also called the **expected value**. $\mathcal{E}(\bar{\chi}) = \mathcal{M}$
- The spread of the sample means (standard deviation of the sample means) $\sigma_{\bar{Y}}$ is σ/\sqrt{n} .

sample means) $\partial \bar{\chi}$ is ∂/\sqrt{n} .

 $\int_{X} = \frac{1}{\sqrt{n}}$

UNIVERSITY of HOUSTON DEPARTMENT OF MATHEMATICS

Shape of the Sample Mean Distribution

 $\overline{\chi} \sim \mathcal{N}(\mathcal{M}_{\overline{z}} = \mathcal{M}, \mathcal{G} = \overline{\mathcal{G}})$

- If a population has a Normal distribution, then the sample mean \bar{X} of n independent observations also has a Normal distribution with mean μ and standard deviation σ/\sqrt{n} .
 - **Central limit theorem:** For <u>any</u> population, when <u>n</u> is large (n > 30), the sampling distribution of the sample mean \bar{X} is approximately a Normal distribution with mean μ and standard deviation σ/\sqrt{n} .

"CLT"

UNIVERSITY of HOUSTON DEPARTMENT OF MATHEMATICS

Example: Amount of Pepsi

Assume that cans of Pepsi are filled so that the actual amount have a mean $\mu=12$ oz and a standard deviation $\sigma=0.09$ oz. Suppose that a random sample of 4 cans are examined, describe the distribution of the sample means \bar{X} .

- \checkmark Center: $\mu_{\bar{X}} = \mu = 12$
- Spread: $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{0.09}{\sqrt{4}} = 0.045$
- Shape: Unknown because we do not know the original distribution and the sample size is small.

Example: Amount of Pepsi

Assume that cans of Pepsi are filled so that the actual amount have a mean $\mu=$ 12 oz and a standard deviation $\sigma=$ 0.09 oz. Suppose that a random sample of 100 cans are examined, describe the distribution of the sample means \bar{X} .

- Center: $\mu_{\bar{X}} = \mu$ 12
- Spread: $\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}} = \frac{0.09}{\sqrt{100}} = 0.009$
- Shape: Normal because we have a large sample thus we can apply the Central Limit Theorem.

Finding Probabilities

Assume that cans of Pepsi are filled so that the actual amount have a mean $\mu=12$ oz and a standard deviation $\sigma=0.09$ oz. Suppose that a random sample of 36 cans are examined, determine the **probability** that a sample of 36 cans **will have a sample mean amount**, \overline{X} of at least 12.01 oz.

- To find this probability we need to first describe the distribution:
 - Shape: Normal because of the Central Limit Theorem
 - ▶ Center: $E[\bar{X}] = \mu_{\bar{X}} = \mu = 12$
 - ▶ Spread: $SD[\bar{X}] = \sigma_{\bar{X}} = \sigma/\sqrt{n} = 0.09/\sqrt[3]{36} = 0.015$ this is the standard deviation we use.
- We want to know: $P(\bar{X} \ge 12.01)$

Finding Probabilities

Assume that cans of Pepsi are filled so that the actual amount have a mean $\mu=$ 12 oz and a standard deviation $\sigma=$ 0.09 oz. Suppose that a random sample of 36 cans are examined, determine the **probability** that a sample of 36 cans **will have a sample mean amount**, \bar{X} of at least 12.01 oz.

- To find this probability we need to first describe the distribution:
 - Shape: Normal because of the Central Limit Theorem
 - Center: $E[\bar{X}] = \mu_{\bar{x}} = \mu = 12$
 - ▶ Spread: $SD[\bar{X}] = \sigma_{\bar{X}} = \sigma/\sqrt{n} = 0.09/\sqrt{36} = 0.015$ this is the standard deviation we use.
- We want to know: $P(\bar{X} \ge 12.01)$

Finding Probabilities

Assume that cans of Pepsi are filled so that the actual amount have a mean $\mu=$ 12 oz and a standard deviation $\sigma=$ 0.09 oz. Suppose that a random sample of 36 cans are examined, determine the **probability** that a sample of 36 cans **will have a sample mean amount**, \bar{X} of at least 12.01 oz.

- To find this probability we need to first describe the distribution:
 - Shape: Normal because of the Central Limit Theorem
 - Center: $E[\bar{X}] = \mu_{\bar{X}} = \mu = 12$
 - Spread: $SD[\bar{X}] = \sigma_{\bar{x}} = \sigma/\sqrt{n} = 0.09/\sqrt{36} = 0.015$ this is the standard deviation we use.
- standard deviation we use.

 We want to know: $P(\bar{X} \ge 12.01)$ $X \sim N(12, 0.015)$ $= 1 P(X < 12.01) \Rightarrow 1-pnorm(12.01,12,.015)$ [1] 0.2524925
 - = 1- promo(12,0), 12,0,015)

UNIVERSITY OF HOUSTON DEPARTMENT OF MATHEMATICS

Notes about finding probabilities for \bar{X}

- We have a sample size n. Thus the standard deviation changes by that value $SD(\bar{X}) = \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$.
- The mean stays the same. $mean(\bar{X}) = \mu_{\bar{X}} = \mu$.
- If we know that the original distribution is Normal or we have a large enough sample (n > 30). We can use the Normal distributions to find the probabilities.

Orange Juice $> \times$ $\sim N(M=4.7, \sigma=0.40)$

An orange juice producer buys all his oranges from a large orange grove. The amount of juice squeezed from each of these oranges is approximately normally distributed, with a mean of 4.70 ounces and a standard deviation of 0.40 ounce. Suppose we take a random sample of 4 oranges and determine the mean of this sample. \bar{X} .

1. What is the shape of the sampling distribution of \bar{X} .

X will be Normal

2. What is the mean of the sampling distribution of \bar{X} .

(X~N(4.7,0,20) My=M=47

3. What is the standard deviation of the sampling distribution of \bar{X} .

 $\sqrt{\frac{1}{x}} = \sqrt{\frac{1}{x}} = \frac{140}{110} = 0.20$

4. What is the probability that the sample mean of the 4 oranges will \sim be at 4.5 or less?

 $\overline{X} \leqslant 4.5)$ = pnorm(4.5,4.7, 0.20) UNIVERSITY OF INDICED AT THE PROPERTY OF INDICED AT THE PROPERTY

Sample Proportions

- The population proportion is p a parameter. In some cases we do not know the population proportion, thus we use the sample proportion, p to estimate p.
- The sample proportion is calculated by: $\hat{p} = \frac{\hat{y}}{n}$
- *X* = the number of observations of interest in the sample or the number of "successes" in the sample.
- n =the sample size or number of observations.
- Note that $X \sim \text{Bin}(n, p)$ and can be approximated by the Normal distribution with $\mu_X = E(X) = np$ and $\sigma_X = SD(X) = \sqrt{np(1-p)}$ as long as $np \ge 10$ and $np(1-p) \ge 10$.
- Now we want to know how is $\hat{p} = \frac{\mathcal{K}}{n}$ distributed. Thus we want to know $\mu_{\hat{p}} = E(\hat{p})$ and $\sigma_{\hat{p}} = SD(\hat{p})$.

Example

- According to the National Retail Federation, 34% of taxpayers used computer software to do their taxes.
- A sample of 50 taxpayers was selected what do we expect the sample proportion \hat{p} to be?
- If we take other samples will the sample proportions always be the same value?
- If not what would \(\hat{p} \) be off by?

Shape of the distribution of \hat{p}

We can use the **Normal distribution** as long as

- $np \ge 10$ the number of successes are at least 10
- $n(1-p) \ge 10$ the number of failures are at least 10.

Center of the distribution of \hat{p}

- The center is the mean (expected value): $\mu_{\hat{p}} = p$ the proportion of success.
- $\hat{p} = \frac{X}{n}$ where X is the number of **successes** out of n observations. Thus X has a binomial distribution with parameters n and p.
- The mean of X is:

$$\mu_X = E(X) = np$$

• Thus the mean of \hat{p} is:

$$\mu_{\hat{p}} = E(\hat{p}) = E\left(\frac{X}{n}\right) = \frac{\mu_X}{n} = \frac{np}{n} = p$$

Spread of the distribution of \hat{p}

- The spread is the standard deviation $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$.
- The variance of X is:

$$\sigma_X^2 = Var(X) = np(1-p)$$

The variance of p̂ is:

$$\sigma_{\hat{p}}^2 = Var(\hat{p}) = Var\left(\frac{X}{n}\right) = \frac{Var(X)}{n^2} = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n}$$

$$\hat{p} \sim \mathcal{N}\left(\mathcal{M}\hat{p} = p, \nabla_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}\right)$$

if np >10 and n(1-p) >10

UNIVERSITY of HOUSTON DEPARTMENT OF MATHEMATICS

Sample Distribution of n = 50.

Summary Statistics

Mean of Sample Proportions 0.34244
Std Dev of Sample Proportions 0.06987
No.of Samples 1000

Sample Distribution of n = 125

Summary Statistics

Mean of Sample Proportions 0.34082 Std Dev of Sample Proportions 0.04375 No.of Samples 1000

Assumptions

- The sampled values must be random and independent of each other. This can be tested by 10% Condition: The sample size must be no larger than 10% of the population.
- The sample size, n must be large enough. This can be be tested by **Success** / **Failure Condition**: The sample size has to be big enough so that both np and n(1-p) at least 10.

Example for distribution of \hat{p}

P= 0.34

According to the National Retail Federation, 34% of taxpayers used computer software to do their taxes. A sample of 125 taxpayers was selected. What is the distribution of \hat{p} , the sample proportion of the 125 taxpayers that used computer software to do their taxes?

1. Check if we can use the Normal distribution.

- p = 0.34, n = 125
- \checkmark ► np = 125(0.34) = 42.5 > 0
- \sim n(1-p) = 125(1-0.34) = 125(0.66) = 82.5 > 100
 - Both np and n(1-p) are greater than 10 so we can use the Normal distribution.
- distribution. $\rho \sim \mathcal{N}(\mathcal{U})$ 2. The mean is: $\mu_{\hat{p}} = p = 0.34$. If we take a sample we "expect" 34% to have used computer software to do their taxes.
- 3. The standard deviation is:

$$\underline{\sigma_{\hat{p}}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.34(1-0.34)}{125}} = \underbrace{0.0424}_{\text{DEPARTMENT OF MATHEMATICS}}$$

Example continued $\Rightarrow \hat{p} \sim \mathcal{N}(0.34, 0.0424)$

According to the National Retail Federation, 34% of taxpayers used computer software to do their taxes. A sample of 125 taxpayers was selected. What is the probability that between 28% and 40% of the taxpayers from the sample of 125 used computer software to do their taxes?

1. We want: $P(0.28 < \hat{p} < 0.40)$

UNIVERSITY of HOUSTON
DEPARTMENT OF MATHEMATICS

The Social Media and Personal Responsibility Survey in 2010 found the 69% of parents are "friends" with their children on Facebook. A random sample of 140 parents was selected and we determined the proportion of parents from this sample, \hat{p} that are "friends" with their children on Facebook.

1. What is the shape of the sampling distribution of \hat{p} .

The Social Media and Personal Responsibility Survey in 2010 found the 69% of parents are "friends" with their children on Facebook. A random sample of 140 parents was selected and we determined the proportion of parents from this sample, \hat{p} that are "friends" with their children on Facebook.

2. What is the mean of the sampling distribution of \hat{p} .

The Social Media and Personal Responsibility Survey in 2010 found the 69% of parents are "friends" with their children on Facebook. A random sample of 140 parents was selected and we determined the proportion of parents from this sample, \hat{p} that are "friends" with their children on Facebook.

3. What is the standard deviation of the sampling distribution of \hat{p} .

The Social Media and Personal Responsibility Survey in 2010 found the 69% of parents are "friends" with their children on Facebook. A random sample of 140 parents was selected and we determined the proportion of parents from this sample, \hat{p} that are "friends" with their children on Facebook.

4. What is the probability that the sample proportion of 140 parents is greater than 72%?

Voting Questions

oting Questions
$$p > 16$$

O check assurption, $p(-p) > 10$

Suppose that 52% voted for a certain candidate. We take a random sample of 1500 likely voters. Determine the following probabilities.

1. What is the probability that the sample proportion is less than 0.50?

$$P \sim N(0.52) = \frac{0.52 \times (1-0.52)}{1500}$$

$$P(P < 0.50) = Prover(0.50, 0.52) = \frac{0.52 \times (1-0.52)}{1500}$$

2. What is the probability that the sample proportion is within 3% of the population proportion?