Lecture 11

Model Selection

STAT 8020 Statistical Methods II September 13, 2019

> Whitney Huang Clemson University

Notes

Agenda

- Variable Selection Criteria
- 2 Automatic Search Procedures

Notes			

Variable Selection

- What is the appropriate subset size?
- What is the best model for a fixed size?

Model Selection	
CLEMS N	

Notes			

Mallows' C_p Criterion

$$\begin{split} (\hat{Y}_i - \mu_i)^2 &= (\hat{Y}_i - \mathrm{E}(\hat{Y}_i) + \mathrm{E}(\hat{Y}_i) - \mu_i)^2 \\ &= \underbrace{(\hat{Y}_i - \mathrm{E}(\hat{Y}_i))^2}_{\text{Variance}} + \underbrace{(\mathrm{E}(\hat{Y}_i) - \mu_i)^2}_{\text{Bias}^2}, \end{split}$$

where $\mu_i = E(Y_i|X_i = x_i)$

- Mean squared prediction error (MSPE): $\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathrm{E}(\hat{Y}_i) \mu_i)^2$
- ullet C_p criterion measure:

$$\begin{split} \Gamma_p &= \frac{\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathbf{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2} \\ &= \frac{\sum \mathsf{Var}_{\mathsf{pred}} + \sum \mathsf{Bias}^2}{\mathsf{Var}_{\mathsf{error}}} \end{split}$$

Notes

Notes

Notes

C_p Criterion

- $\bullet \ \, \text{Do not know} \,\, \sigma^2 \,\, \text{nor numerator} \\$
- \bullet Use $\mathsf{MSE}_{X_1,\cdots,X_{p-1}} = \mathsf{MSE_F}$ as the estimate for σ
- For numerator:
 - Can show $\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 = p\sigma^2$
 - Can also show $\textstyle\sum_{i=1}^n (\mathrm{E}(\hat{Y}_i) \mu_i)^2 = \mathrm{E}(\mathsf{SSE_F}) (n-p)\sigma^2$
 - $\Rightarrow C_p = \frac{\text{SSE}-(n-p)\text{MSE}_{\text{F}} + p\text{MSE}_{\text{F}}}{\text{MSE}_{\text{F}}}$

Model Selection								
ור	П	E	λ	45	S	á	1	J
N		٧	Ε	R	S		Ť	Ý

ariable Selection

Automatic Searc

C_p Criterion Cont'd

Recall

$$\Gamma_{p} = \frac{\sum_{i=1}^{n} \sigma_{\hat{Y}_{i}}^{2} + \sum_{i=1}^{n} (\mathbf{E}(\hat{Y}_{i}) - \mu_{i})^{2}}{\sigma^{2}}$$

- When model is correct $E(C_p) \approx p$
- When plotting models against p
 - $\bullet \ \, \text{Biased models will fall above} \,\, C_p = p$
 - Unbiased models will fall around line $C_p = p$
 - By definition: C_p for full model equals p

Model Selection				
CLEMS#N				
NIVERSITY				
Variable Selection Criteria				

...

Adjusted R² Criterion

Adjusted R^2 , denoted by $R^2_{\rm adj}$, attempts to take account of the phenomenon of the R^2 automatically and spuriously increasing when extra explanatory variables are added to the model.

$$R_{\mathsf{adj}}^2 = 1 - \frac{\mathsf{SSE}/(n-p-1)}{\mathsf{SST}/(n-1)}$$

- Choose model which maximizes $R^2_{\rm adj}$
- Same approach as choosing model with smallest MSE

Model Selection
CLEMS N
Variable Selection Criteria

Predicted	Residual	Sum	of	Squares	PRESS	Criterion
1 1 Calotca	Hesiadai	Ouiii	٠.	Oqualco	INLUU	Citterior

- For each observation i, predict Y_i using model generated from other n-1 observations
- $PRESS = \sum_{i=1}^{n} (Y_i \hat{Y}_{i(i)})^2$
- Want to select model with small PRESS

Model Selection
CLEMS#N
Variable Selection Criteria

N	otes	

Notes

Other Approaches

Akaikeâs information criterion (AIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + 2k$$

Bayesian information criterion (BIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + k\log(n)$$

• Can be used to compare non-nested models

Notes				

Automatic Search Procedures

- Forward Selection
- Backward Elimination
- Stepwise Search
- All Subset Selection

Model Selection
CLEMS N
Automatic Search Procedures
11.10

Notes		
Notes		
Notes		
Notes		