1 Lista de exercícios: Aplicações da integral. Volume de Sólidos de Revolução

1.1 Volume de sólido obtido pela rotação, em torno do eixo x, de um conjunto A

- 1. Calcule o volume do sólido obtido pela rotação, em torno do eixo x, do conjunto de todos os pares (x,y) tais que
 - a) $1 \le x \le 3 \text{ e } 0 \le y \le x$.
 - b) $\frac{1}{2} \le x \le 2$ e $0 \le y \le \frac{1}{x^2}$.
 - c) $1 \le x \le 4 \text{ e } 0 \le y \le \sqrt{x}$.
 - d) $2x^2 + y^2 \le 1$ e $y \ge 0$.
 - e) $y \ge 0.1 \le x \le 2$ e $x^2 y^2 \ge 1$.
 - f) $0 \le x \le 1$ e $\sqrt{x} \le y \le 3$.
 - g) $x^2 \le y \le x$.
 - h) $0 \le y \le x e^{2} + y^{2} \le 2$.
 - i $y \ge x^2 e^{-x^2} + y^2 \le 2$.
 - j) $1 \le x^2 + y^2 \le 4$ e $y \ge 0$.
 - 1) $\frac{1}{x} \le y \le 1$ e $1 \le x \le 2$.
 - m) $x^2 + (y-2)^2 \le 1$.
- 2. (Teorema de Papus para a elipse) Considere o conjunto A de todos os pontos (x, y) tais que

$$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} \le 1 \quad (a > 0 \text{ e } b > 0)$$
 (1)

e situado no semiplano $y \ge 0$. Mostre que o volume do sólido obtido pela rotação, em torno do eixo x, do conjunto A é igual ao produto da área da elipse pelo comprimento da circunferência gerada, na rotação, pelo centro $(\alpha, beta)$ desta elipse.

3. Considere um triângulo isósceles situado no semiplano $y \ge 0$ e com base paralela ao eixo x. Mostre que o volume do sólido obtido pela rotação deste triângulo, em torno do eixo x, é igual ao produto da área deste triângulo pelo comprimento da circunferência gerada, na rotação, pelo baricentro do triângulo.

1.2 Volume de sólido obtido pela rotação, em torno do eixo do y, de um conjunto A

1. Calcule o volume do sólido obtido pela rotação, em torno do eixo y, do conjunto de todos os (x,y) tais que

- a) $1 \le x \le e \ e \ 0 \le y \le \ln x$.
- b) $0 \le x \le 8 \text{ e } 0 \le y \le \sqrt[3]{x}$.
- c) $1 \le x \le 2$ e $0 \le y \le x^2 1$.
- d) $0 \le x \le \pi \ e \ 0 \le y \le \sin x$.
- e) $0 \le x \le 1$ e $0 \le y \le \arctan x$.
- f) $1 \le x \le 4$ e $1 \le y \le \sqrt{x}$.
- g) $y^2 \le 2x x^2$, $y \ge 0$.
- h) $0 \le x \le 2$, $y \ge \sqrt{x-1}$ e $0 \le y \le x^2$.
- 2. Calcule o volume do sólido obtido pela rotação, em torno do eixo y, do conjunto de todos os (x, y) tais que
 - a) $0 \le x \le 6$, $0 \le y \le 2$ e $y \ge \sqrt{x-2}$.
 - b) $\sqrt{x} \le y \le -x + 6, x \ge 0.$
 - c) $0 \le x \le e, 0 \le y \le 2 \text{ e } y \ge \ln x.$
 - d) $y^2 \le x \le \sqrt{y}$.
 - e) $0 \le x \le 1$, $x \le y \le x^2 + 1$.
- 3. (Volume de sólido de revolução em torno do eixo y) Suponha f estritamente crescente e com derivada contínua em [a,b], $a \ge 0$ e f(a) = 0. Seja $g:[0,f(b)] \to [a,b]$ a função inversa de f.
 - a) Verifique que o volume do sólido obtido pela rotação, em torno do eixo *y*, do conjunto

$$A = \{(x, y) \in \mathbb{R}^2 / a \le x \le b, 0 \le y \le f(x)\}$$

é igual a

$$\pi b^2 f(b) - \pi \int_0^{f(b)} [g(y)]^2 dy.$$

b) Mostre que

$$\pi b^{2} f(b) - \pi \int_{0}^{f(b)} [g(y)]^{2} dy = 2\pi \int_{a}^{b} x f(x) dx$$

(Sugestão: Faça a mudança de variável y=f(x) e depois integre por partes.)

c) Conclua que o volume mencionado em *a*) é

volume =
$$2\pi \int_{a}^{b} x f(x) dx$$

2