

Data Warehouse & Business Intelligence Fundamentals

Todor Kichukov

todor.kichukov@bipartner.biz

https://www.facebook.com/groups/SUDWBI2022/

Faculty of Mathematics and Informatics
Sofia University
2022

Data Warehouse & Business Intelligence Fundamentals

Course Scope

- DW Concept
- DW Architecture
- DW Data Modeling
- Data Integration
- Gathering and Analyzing Requirements
- Business Intelligence
- Deployment, Support and Maintenance

Data Warehouse Data Modeling Part I

- Data Modeling Levels
- Data Modeling Techniques
- Data Types / Data Categorization
- Dimensional Modeling Fundamentals
 - Star schema
 - Fact table
 - Dimension table
 - Hierarchies
 - From 3NF to Dimensional
 - Four-Step Dimensional Design Process
- Terminology

Data Modeling Levels 1/2

- Conceptual Data Model
- Logical Data Model
- Physical Data Model

Feature	Conceptual	Logical	Physical
Entities	✓	✓	
Entity Relationships	✓	✓	
Attributes		✓	
Primary Keys		✓	✓
Foreign Keys		✓	✓
Tables			✓
Columns			✓
Column Data Types			✓

Data Modeling Levels 2/2

- Conceptual Data Model
- Logical Data Model
- Relational Data Model
- Physical Data Model

Feature	Conceptual	Logical	Relational	Physical
Concepts	✓			
Concept Relationships	✓			
Entities		✓		
Entity Relationships		✓		
Attributes		✓		
Unique Identifiers		✓		
- Views		✓		
Tables			✓	
Columns			✓	
Indexes			✓	
Table Relationships			✓	
Relational Views			✓	
Clusters				✓
Contexts				✓
Dimensions				✓
Directories				✓
Disk Groups				✓
External Tables				✓
Indexes				✓
Roles				✓
Rollback Segments				✓
Segments				✓
Sequences				✓
Stored Procedures				✓
Synonyms				✓
Tables				✓
Tablespaces				✓
Users				✓
Views				✓

Data Modeling Techniques

- Entity-Relationship Diagram?
- 1-2-[3]-4-5-6 NF (Normal Form) Normalized Data Model
- Dimensional (Denormalized, Star-Schema) Data Model
- Multidimensional (Cube) Data Model
- Data Vault Model

Data Types / Data Categorization

- Number Text Date
- Quantitative Qualitative
- Base Derived
- Detailed Aggregated
- Data Categories
 - Reference Data Nomenclatures, List of Values, Hierarchies, Flags, ...
 - Master Data People (Customers, Prospects, Employees, Vendors, Suppliers, ...), Places (Branches, Sales Territories, ...), Things (Products, Packages, Accounts, ...).
 - Transactional Data Events, Logs, Snapshots (Periodic, Accumulating) like Sales Orders, Invoices, Purchase Orders, Shipping Documents, Insurance Claims, ...

Dimensional Modeling Fundamentals Star Schema - Facts & Dimensions Together

- Simplicity, Symmetry
- Performance benefits

Legend: PK = primary key, FK = foreign key

Dimensional Modeling Fundamentals Fact Table

- Stores numerical measurements
- Row in the fact table = one measurement
- Grain = level of detail
- Fact = business measure (indicator); sometimes the term is used to represent the whole measurement (which usually is called event or snapshot)
- Additive Semi-Additive Non-Additive Facts
- Foreign Keys, Primary Key
- Fact Table Types
 - Transactions (Events)
 - Periodic Snapshots
 - Accumulating Snapshots

Dimensional Modeling Fundamentals Dimension Table

- Contains textual descriptors of the business; entry point to the fact tables
- Serves for grouping, filtering and report labeling
- Dimensions usually have less rows than fact tables, but more columns
- Single PK (artificially created, no business meaning, few exceptions)
- Usually 0 / 1 / many hierarchies built on every dimension

Dimensional Modeling Fundamentals Hierarchies

- Value-based, Level-based
- Balanced, Unbalanced, Ragged

Dimensional Modeling Fundamentals From 3NF to Dimensional

- 1. Separate its discrete business processes and model them separately
- 2. Select the N:M relationships that contain numeric facts and design them as fact tables
- 3. Denormalize the remaining tables into flat tables that join directly to the fact tables the dimensions

Dimensional Modeling Fundamentals Four-Step Dimensional Design Process (Kimball)

- 1. Select the business process (it usually leads to one fact table)
- 2. Declare the grain what exactly a fact row represents
- 3. Choose the dimensions
- 4. Identify the facts (measures, indicators)

Dimensional Modeling Fundamentals First Dive

- Factless Fact Table
- Date Dimension
 - Year
 - Half
 - Quarter
 - Month
 - (Week)
 - Day

Terminology

- Reference / Master / Transactional Data
- Fact table, fact, measure, indicator, measurement, grain
- Dimension table, hierarchy types

Project Work

- Today
 - Did you analyze the source model and the data?
 - Did you draft the CBS (source) logical model (on paper or electronically)?
 - Clarify all open questions
- Next steps
 - CBS (source) logical model
 - Staging Area logical model (draft)