Nombres complexes

Exercice @: rattrapage 2018

- **1.** Résoudre dans \mathbb{C} l'équation $z^2 2\sqrt{2}z + 4 = 0$.
- 2. Dans le plan complexe est rapport à un repère orthonormé direct $(0; \vec{u}; \vec{v})$, on considère le point A d'affixe $a = \sqrt{2(1-i)}$ et la rotation R de centre O et
- a. Écrire a sous forme trigonométrique.
- **b.** Vérifier que l'affixe du point B l'image du point A par la rotation R est : $b = 2\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right)$. **3.** On considère le point C d'affixe c = 1 + i.
- **a.** Montrer que: $b^2 c^2 = 2\sqrt{3}$.
- **b.** Soit t la translation de vecteur \overrightarrow{OC} et D l'image de B par la translation t .Montrer que: OD = |b + c|.
- c. En déduire que: $OD \times BC = 2\sqrt{3}$.

Exercice @

- 1. On considère dans C le polynôme défini par: $P(z) = z^3 - 2(2+i)z^2 + 8(2+i)z - 32i.$
- a. Montrer que l'équation P(z) = 0 admet une solution imaginaire pure $z_0 = \lambda i$ où $\lambda \in \mathbb{R}$ à déterminer.
- **b.** Trouver les nombres α et β tel que : $P(z) = (z - z_0)(z^3 + \alpha z + b).$
- 2. Résoudre dans l'ensemble des nombres complexes l'équation : $z^2 - 4z + 16 = 0$
- 3. Dans le plan complexe rapporté a un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on considère les points A et B d'affixes respectives $a = 2 - 2\sqrt{3}i$ et $b = 2\sqrt{3} + 2i$.
- a. Ecrire a et b sous forme trigonométrique, et vérifier que a^{21} est un nombre réel.
- **b.** Montrer que *OAB* est un triangle rectangle et isocèle en 0.
- **4.** a. Déterminer l'affixe du point E l'image du point A par la translation t de vecteur OB.
- b. Montrer que OAEB est un carré.
- **5.** On considère la rotation *R* de centre *B* et d'angle $-\frac{\pi}{2}$ et qui transforme M(z) en M'(z')
- a. Montrer que $z' = -iz + 2\sqrt{3} 2 + (2 + 2\sqrt{3})i$.
- b. Déduire que l'affixe du point C l'image du point A par la rotation R est $c = -2 + 2\sqrt{3}i$.
- **6.** Soit le point D d'affixe $d = 6 + 2\sqrt{3}i$.
- a. Montrer que les points O, B et D sont alignés.
- **b.** Donner l'écriture exponentielle de $\frac{d-c}{d-c}$, puis en déduire la nature du triangle ADC.

Exercice 3: rattrapage 2022

Dans le plan complexe est rapport à un repère orthonormé direct $(0; \vec{u}; \vec{v})$, on considère les points A, B et C d'affixes respectives $Z_A = 1 + 5i$, $Z_B = 1 - 5i$ et $Z_C = 1 + 5i$ 5 - 3i.

1. Déterminer le nombre complexe Z_D affixe du point D

milieu du segment [AC].

2. Soit h l'homothétie de centre A et de rapport $\frac{1}{2}$. Déterminer le nombre complexe Z_E affixe du point El'image de *B* par *h*.

- 3. On considère la rotation R de centre C et d'angle $\left(-\frac{\pi}{2}\right)$, déterminer l'image de B par R.
- 4. Soit F le point d'affixe $Z_F = -1 + i$. a. Vérifier que $\frac{Z_D Z_A}{Z_F Z_A} \times \frac{Z_F Z_E}{Z_D Z_E} = -1$.
 - **b.** En déduire $(\overrightarrow{AF}; \overrightarrow{AD}) + (\overrightarrow{ED}; \overrightarrow{EF}) \equiv \pi[2\pi]$.
 - c. Déterminer la forme trigonométrique du nombre $\frac{Z_E - Z_F}{Z_A - Z_F}$ et déduire la nature triangle *AEF*.
- d. Déduire que les points A, D, E et F appartiennent à un cercle dont on déterminera un diamètre.

Exercice @: Normale 2015

- **I.** On considère le nombre complexe $a = 2 + \sqrt{2} + i\sqrt{2}$.
- 1. Montrer que $|a| = 2\sqrt{2 + \sqrt{2}}$.
- 2. Vérifier que $a = 2\left(1 + \cos\frac{\pi}{4}\right) + 2i\sin\frac{\pi}{4}$.
- 3. a. En linéarisant $\cos^2\theta$, θ est un nombre réel, montrer que : $1 + \cos 2\theta = 2\cos^2 \theta$.
- **b.** Montrer que $a = 4\cos^2\frac{\pi}{8} + 4i\cos\frac{\pi}{8}\sin\frac{\pi}{8}$. (On rappelle que $sin2\theta = 2cos\theta sin\theta$)
- c. Montrer que $4\cos\frac{\pi}{8}\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)$ est une forme trigonométrique du nombre a.
- II.On considère, dans le plan complexe rapporté à un repère orthonormé direct $(0, \overrightarrow{e_1}, \overrightarrow{e_2})$, les deux points Ω et A d'affixes respectives ω et a tels que : $\omega = \sqrt{2}$ et $\alpha =$ $2 + \sqrt{2} + i\sqrt{2}$ et la rotation R de centre Ω est d'angle $\frac{\pi}{2}$.
- 1. Montrer que l'affixe b du point B image du point A par la rotation R est 2i.
- 2. Déterminer l'ensemble des points M d'affixe z tel que |z - 2i| = 2.

Exercice 5

- 1. Résoudre dans \mathbb{C} l'équation : $z^2 \sqrt{2}z + 1 = 0$.
- **2.** On pose $a = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$. Écrire a sous forme trigonométrique puis en déduire que a^8 est un nombre réel.
- 3. Dans le plan complexe est rapport à un repère orthonormé direct $(0; \vec{u}; \vec{v})$; on considère les points A, B et C d'affixes respectives a, b et c tels que: $b = \sqrt{2} + 1 + i$ et $c = \bar{b}$. Soit z l'affixe du point M du plan et z' l'affixe du point M' image de M par la rotation R de centre O et d'angle $\frac{\pi}{4}$.
- a. Montrer que z' = az.
- Vérifier que le point B est l'image du point C par la rotation R et en déduire la nature du triangle OBC.
- En déduire que $arg(b) \equiv \frac{1}{2} arg(a) [2\pi]$ puis déterminer un argument du nombre complexe b.
- **4.** On pose $h = cos\left(\frac{\pi}{8}\right) + isin\left(\frac{\pi}{8}\right)$, montrer que: $h^4 +$ $a^{8} + \sqrt{2} = b$.