TEOREMA 4.4 (McNaughton & Yamada, 1960). Siar una espressione regolare. Allora esiste un ε -NFA M tale che L(M) = L(r). Dimostroscome costruttive

PROOF. Costruiremo un ε-NFA siffatto, con un unico stato finale, per induzione sulla complessità strutturale dell'espressione regolare r.

Base: Ci sono tre casi base:

• l'automa:

riconosce il linguaggio $\{\varepsilon\}$;

- l'automa

riconosce il linguaggio \emptyset ;

• l'automa

riconosce il linguaggio $\{a\}$.

, Automa che viconosce un linguessio

Passo: Anche qui abbiamo tre casi da analizzare:

• $\mathbf{r} = \mathbf{r}_1 + \mathbf{r}_2$. Per i = 1, 2, sia M_i , con stato iniziale q_0^i e stato finale q_f^i l'automa che riconosce $L(r_i)$. L'esistenza di tali automi è assicurata dall'ipotesi induttiva. Il seguente automa, con stato iniziale q_0 e stato finale q_f riconosce il linguaggio $L(r) = L(r_1) \cup L(r_2)$:

• $\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2$. Per $\mathbf{i} = 1, 2$, sia M_i , con stato iniziale q_0^i e stato finale q_f^i l'automa che riconosce $L(r_i)$. L'esistenza di tali automi è assicurata dall'ipotesi induttiva. Il seguente automa, con stato iniziale q_0 e stato finale q_f riconosce il linguaggio $L(r_1)L(r_2)$:

• $\mathbf{r} = \mathbf{r}_1^*$. Sia M_1 , con stato iniziale \mathfrak{q}_0^1 e stato finale \mathfrak{q}_f^1 l'automa che riconosce $L(r_1)$. L'esistenza di tale automa è assicurata dall'ipotesi induttiva. Il seguente automa, con stato iniziale \mathfrak{q}_0 e stato finale \mathfrak{q}_f riconosce $L(r) = (L(r_1))^*$:

Le dimostrazioni che tali automi riconoscono esattamente i linguaggi a loro assegnati sono lasciate per esercizio. $\hfill\Box$