Kolmogorov の拡張定理の証明

関根・深澤研究室 平井祐紀

2016年6月1日

T を任意の集合とし、 $(X_t)_{t\in T}$ を位相空間としたとき、積空間 $\prod_{t\in T} X_t$ 上に確率測度を構成する方法を考えよう. $\Lambda_1\subset \Lambda_2\subset T$ に対して、

$$\operatorname{pr}_{\Lambda_1,\Lambda_2}: \prod_{t\in\Lambda_2} X_t \longrightarrow \prod_{t\in\Lambda_1} X_t$$

$$\omega \longmapsto \omega|_{\Lambda_1}$$

と定義する. (すなわち, pr は射影である.) 特に $\operatorname{pr}_{\Lambda,T}=\operatorname{pr}_{\Lambda}$ と書くことにする. このとき明らかに $\operatorname{pr}_{\Lambda_1}=\operatorname{pr}_{\Lambda_1,\Lambda_2}\circ\operatorname{pr}_{\Lambda_2}$ である. 可測空間の族 $(X_t,\mathscr{A}_t)_{t\in T}$ が与えられたとき,射影 $\operatorname{pr}_t\colon \prod_{t\in T} X_t\to X_t$ の族 に対して $\bigotimes_{t\in T}\mathscr{A}_t:=\sigma(\operatorname{pr}_t;t\in T)$ と定義する. 特に $X_t=\mathbb{R}^d$ かつ $T=[0,\infty[$ としたとき,これは確率過程論に出てくる cylindrical σ -algebra と同様のものである.

定理 1 (Kolmogorov の拡張定理). T を任意の集合とし、 $(X_t)_{t\in T}$ を Polish 空間の族とする. 任意の有限集合 $\Lambda \subset T$ に対して $\left(\prod_{t\in \Lambda} X_t, \bigotimes_{t\in \Lambda} \mathfrak{B}(X_t)\right)$ 上の確率測度 μ_{Λ} が与えられており、それらは両立条件を満たすとする. (i.e. $\Lambda_1 \subset \Lambda_2 \subset T$ を満たす任意の有限集合に対して

$$\mu_{\Lambda_1}(A) = \mu_{\Lambda_2}\left(\operatorname{pr}_{\Lambda_2,\Lambda_1}^{-1}(A)\right), \quad A \in \bigotimes_{t \in \Lambda_1} \mathscr{B}(X_t)$$

が成り立つ.) このとき、 $(\prod_{t\in T}X_t, \bigotimes_{t\in T}\mathcal{B}(X_t))$ 上の確率測度 μ で任意の有限集合 $\Lambda\subset T$ に対して

$$\mu(\operatorname{pr}_{\Lambda}^{-1}(E)) = \mu_{\Lambda}(E), \quad \forall E \in \bigotimes_{t \in \Lambda} \mathcal{B}(X_t)$$

を満たすものがただ一つ存在する.

定理の証明に入る前に、以下の有用な補題を証明しておく.

補題 2. $(X_t)_{t\in T}$ を Hausdorff 空間の族とする*1. $\Lambda_0\subset\Lambda_1\subset\cdots$ を T の有限部分集合列とする. 空でない コンパクト集合列 $(K_n)\in\prod_{n\in\mathbb{N}}\mathfrak{P}\left(\prod_{t\in\Lambda_n}X_t\right)$ に対して $C_n=\operatorname{pr}_{\Lambda_n}^{-1}(K_n)\subset\prod_{t\in T}X_t$ とおく. このとき,

$$C_0 \supset C_1 \supset \cdots \Longrightarrow \bigcap_{n \in \mathbb{N}} C_n \neq \emptyset$$

が成り立つ.

 $^{*^{1}}T_{1}$ 空間でもよいと思われる.

証明. $\Lambda = \bigcup_n \Lambda_n$ と書くことにする. 射影 $\operatorname{pr}_{\Lambda_n}$ は全射だから, $K_n = \operatorname{pr}_{\Lambda_n} \operatorname{pr}_{\Lambda_n}^{-1}(K_n) = \operatorname{pr}_{\Lambda_n}(C_n)$ となることに注意しておく. 仮定より

$$K_n = \operatorname{pr}_{\Lambda_n}(C_n) \supset \operatorname{pr}_{\Lambda_n}(C_{n+1}) = \operatorname{pr}_{\Lambda_n,\Lambda_{n+1}} \operatorname{pr}_{\Lambda_{n+1}}(C_{n+1}) = \operatorname{pr}_{\Lambda_n,\Lambda_{n+1}}(K_{n+1})$$

が成り立つ.

$$F_n^{(0)} = \operatorname{pr}_{\Lambda_0, \Lambda_n}(K_n) \subset \prod_{t \in \Lambda_n} X_t$$

とおけば,これはコンパクト集合である. $(F_n^{(0)})$ は有限交叉性を持つので, $F_1^{(0)}$ のコンパクト性より $\bigcap_n F_n^{(0)} \neq \emptyset$ となる. $x_0 \in \bigcap_n F_n^{(0)}$ を一つ選んで

$$F_n^{(1)} = \operatorname{pr}_{\Lambda_1, \Lambda_n}(K_n) \cap \operatorname{pr}_{\Lambda_0, \Lambda_1}^{-1}(x_0) \quad (n \ge 1)$$

と定めれば、 $F_n^{(1)}$ は空でないコンパクト集合となる。実際 $\prod_{t\in T}X_t$ はまた Hausdorff 空間なので、 $\{x_0\}$ は 閉集合である。これより $F_n^{(1)}$ はコンパクト集合と閉集合の共通部分であるから、コンパクト集合である。空でないことについては

$$x_0 \in \operatorname{pr}_{\Lambda_0,\Lambda_n}(K_n) = \operatorname{pr}_{\Lambda_0,\Lambda_1} \operatorname{pr}_{\Lambda_1,\Lambda_n}(K_n)$$

であることに注意すれば分かる *2 . このとき $\bigcap_n F_n^{(1)}$ が空でないことが分かるので、同様の作業を繰り返して

$$x_k \in \bigcap_{n \ge k} \operatorname{pr}_{\Lambda_k, \Lambda_n}(K_n) \cap \operatorname{pr}_{\Lambda_k, \Lambda_{k+1}}^{-1}(x_k) \subset K_k$$

を満たす列 $(x_k) \in \prod_{t \in \Lambda} X_t$ を得る. この列はその構成法より両立条件

$$\operatorname{pr}_{\Lambda_k,\Lambda_{k+1}}(x_{k+1}) = x_k, \quad k \in \mathbb{N}$$

を満たす. $\omega \in \prod_{t \in T} X_t$ を $\operatorname{pr}_{\Lambda}^{-1}((x_k))$ から一つ選べば,任意の $n \in \mathbb{N}$ に対して $\omega \in \operatorname{pr}_{\Lambda_n}^{-1}(K_n) = C_n$ となり $\omega \in \bigcap_n C_n$ が成立.

Proof of theorem 1.

$$\mathscr{C} = \left\{ \operatorname{pr}_{\Lambda}^{-1}(B) \;\middle|\; \Lambda \subset T \;$$
は有限集合かつ $B \in \mathscr{B} \left(\prod_{t \in \Lambda} X_t\right) \right\}$

とおけば \mathscr{C} は集合半代数であり、 $\sigma(\mathscr{C}) = \bigotimes_{t \in T} \mathscr{B}(X_t)$ が成り立つ. \mathscr{C} 上の有限加法的(確率)測度 μ を

$$\mu(\operatorname{pr}_{\Lambda}^{-1}(E)) = \mu_{\Lambda}(E), \quad \Lambda \subset T$$
 は有限集合, $B \in \mathcal{B}\left(\prod_{t \in \Lambda} X_t\right)$

で定める. Carathéodory の拡張定理より、 μ が $\mathcal C$ 上可算加法的であること*3、特に \emptyset において連続であることを示せばよい*4. ここではその対偶を示すことにしよう. $A_0 \supset A_1 \supset \cdots$ なる $\mathcal C$ の元の列に対して、

$$\mu(A_n) \to \alpha > 0$$

^{*2} 一般に、写像 $f: X \to Y$ と $A \subset X$ について、 $y \in f(A)$ は $A \cap f^{-1}(y) \neq \emptyset$ と同値なのであった.

^{*3} Bogachev [1, 1.3.10 Proposition]

^{*4} Bogachev [1, 1.3.3. Proposition]

が成り立つと仮定したとき, $\bigcap_n A_n \neq \emptyset$ であることを言えばよい.これらが $\Lambda_0 \subset \Lambda_1 \subset \cdots$ なる T の有限部分集合によって $A_n = \operatorname{pr}_{\Lambda_n}^{-1}(E_n)$ と表現されているとしても一般性を失わない.Polish 空間上の有限測度はRadon 測度であるから*5,適当なコンパクト集合 $K_n \in \mathcal{B}$ $(\prod_{t \in \Lambda_n} X_t)$ をとれば

$$\mu_{\Lambda_n}(E_n \setminus K_n) < \frac{\alpha}{2^{n+1}}$$

が成立する. $B_n = \operatorname{pr}_{\Lambda_n}^{-1}(K_n) \in \mathscr{C}$ とおけば,

$$B_n \subset A_n, \quad \mu(A_n \setminus B_n) = \mu_{\Lambda_n}(E_n \setminus K_n) < \frac{\alpha}{2^{n+1}}$$

となる. ここで $C_n = \bigcap_{k=0}^n B_k$ とおけば

$$\mu(C_n) = \mu(A_n) - \mu(A_n \setminus C_n) \ge \mu(A_n) - \mu\left(\bigcup_{k=0}^n A_k \setminus B_k\right)$$

$$\ge \mu(A_n) - \sum_{k=0}^n \mu(A_k \setminus B_k) \ge \frac{\alpha}{2}$$

となるから, $C_n \neq \emptyset$ で (C_n) は減少列である.先ほどの補題を用いれば $\bigcap_n A_n \supset \bigcap_n C_n \neq \emptyset$ が示される.

最後に、定理の証明中で用いた「Polish 空間上の任意の確率測度は Radon 測度である」という事実を証明する. 念のため、Radon 測度の定義の復習から始める.

定義 3. X を Haudorff 空間とし、 $\mu: \mathcal{B}(X) \to [0,\infty]$ を測度とする. μ は次の条件を満たすとき、Radon 測度であるという.

- (i) 任意のコンパクト集合 $K \subset X$ について $\mu(K) < \infty$ が成り立つ. (局所有限性)
- (ii) 任意の $B\in\mathfrak{B}(X)$ と任意の $\varepsilon>0$ に対して,あるコンパクト集合 K で $\mu(B\setminus K)<\varepsilon$ を満たすものが存在する.(内正則性)

命題 4. X を Polish 空間とする. $(X, \mathfrak{B}(X))$ 上の非負有限測度は Radon 測度である.

証明. $d: X \times X \to \mathbb{R}$ は (X,d) の位相と整合的で、(X,d) が完備となるような距離関数とする. μ は有限測度だから局所有限性は明らかであり、内正則性のみを示せばよい.

Step 1: 任意の $A \in \mathcal{B}(X)$ が開集合で外側から、閉集合で内側から近似できることの証明。まずは、 μ が次の条件を満たすことを証明する*6.

^{*5} X において $(X,\mathfrak{B}(X))$ 上の非負測度 μ は次の条件を満たすとき, μ を非負 Radon 測度と呼ぶ:(i) 任意の $B\in\mathfrak{B}(X)$ と任意の $\varepsilon>0$ に対して,あるコンパクト集合 K で $\mu(B\setminus K)<\varepsilon$ を満たすものが存在する,(ii) 任意のコンパクト集合 K で $\mu(K)<\infty$ が成り立つ

^{*6} 主張 1 の証明には、X が距離空間であることしか用いていない点に注意.

主張1

任意の $B \in \mathfrak{B}(X)$ と任意の ε に対して、閉集合 F_{ε} と開集合 U_{ε} で $F_{\varepsilon} \subset B \subset U_{\varepsilon}$

$$\mu(U_{\varepsilon} \setminus F_{\varepsilon}) < \varepsilon$$

を満たすものが存在する.

$$\mathcal{A} = \{A \in \mathcal{B}(X) \mid A \text{ は主張 } 1 \text{ の条件を満たす } \}$$

と定義する. このとき、 ${\mathfrak A}$ が閉集合全体を含む σ -加法族であることを示す. $A\in {\mathfrak B}(X)$ が閉集合なら、 $F_{\varepsilon}=A$ とすればよい. さらに

$$U^n = \left\{ x \in X \mid d(x, A) < \frac{1}{n} \right\}$$

とおけば、 $\bigcap_n U_n = A$ であり*7, μ は有限測度だから

$$\mu(U^n) \xrightarrow[n \to \infty]{} \mu(A)$$

となる.

$$\mu(U^n \setminus A) < \varepsilon$$

 $table U^n \in U_{\varepsilon}$ but ball,

$$\mu(U_{\varepsilon} \setminus F_{\varepsilon}) = \mu(U_{\varepsilon} \setminus A) < \varepsilon$$

が成り立つ. すなわち, 任意の閉集合は & の元である.

次に、 ${\it A}$ が ${\it \sigma}$ -加法族であることを示す。 ${\it A}\in {\it A}$ に対して主張 ${\it 1}$ の条件を満たす ${\it U}_{\it \varepsilon},\, {\it F}_{\it \varepsilon}$ を選ぶ。このとき ${\it X}\setminus {\it F}_{\it \varepsilon}\subset {\it X}\setminus {\it A}\subset {\it X}\setminus {\it U}_{\it \varepsilon}$ かつ

$$\mu([X \setminus U_{\varepsilon}] \setminus [X \setminus F_{\varepsilon}]) = \mu(F_{\varepsilon} \setminus U_{\varepsilon}) < \varepsilon$$

が成立. $X\setminus F_\varepsilon$ は開集合, $X\setminus U_\varepsilon$ は閉集合なので, $X\setminus A\in\mathscr{A}$ が分かる. X 自身は X の開集合なので, 先ほどの議論より $X\in\mathscr{A}$ である. あとは \mathscr{A} が可算個の合併をとる操作について閉じていることを示せばよい. $(A_n)_{n\in\mathbb{N}}$ を \mathscr{A} の元の族, $\varepsilon>0$ とする. 各 $n\in\mathbb{N}$ について, $F_n\subset A_n\subset U_n$ かつ

$$\mu(U_n \setminus F_n) < \frac{\varepsilon}{2^{n+1}}$$

を満たす開集合 U_n と閉集合 F_n を選ぶ.ここで $U=\bigcup_n U_n$ と定義すれば,U は $\bigcup_n A_n\subset U$ を満たす開集合である.また $C_k=\bigcup_{n=0}^k F_n$ と定めると,各 C_k は閉集合であって $C_k\subset\bigcup_n A_n$ となる.いま C_k は増大列だから

$$\lim_{k \to \infty} \mu(C_k) = \mu\left(\bigcup_{k \in \mathbb{N}} C_k\right)$$

が成り立つ. さらに μ の有限性に注目すれば

$$\lim_{k \to \infty} \mu(U \setminus C_k) = \mu(U) - \lim_{k \to \infty} \mu(C_k) = \mu(U) - \mu\left(\bigcup_{k \in \mathbb{N}} C_k\right) = \mu\left(U \setminus \bigcup_{k \in \mathbb{N}} C_k\right)$$
(1)

^{*7} A は閉集合である.

 U_n, F_n の選び方より

$$\mu\left(\bigcup_{n\in\mathbb{N}} [U_n\setminus F_n]\right) \leq \sum_{n\in\mathbb{N}} \mu(U_n\setminus F_n) < \sum_{n\in\mathbb{N}} \frac{\varepsilon}{2^{n+1}} = \varepsilon$$

であるから, $U\setminus \bigcup_{k\in\mathbb{N}} C_k\subset \bigcup_{n\in\mathbb{N}} [U_n\setminus F_n]$ に注意すれば

$$\mu\left(U\setminus\bigcup_{k\in\mathbb{N}}C_k\right)\leq\mu\left(\bigcup_{n\in\mathbb{N}}\left[U_n\setminus F_n\right]\right)<\varepsilon\tag{2}$$

を得る. (1) と (2) から、十分大きな n について

$$\mu(U \setminus C_n) < \varepsilon$$

となることが分かる.そこで開集合 U_ε および閉集合 F_ε を $U=U_\varepsilon$, $C_n=F_\varepsilon$ と定義すれば $F_\varepsilon\subset\bigcup_n A\subset U_\varepsilon$ かつ

$$\mu(U_{\varepsilon} \setminus F_{\varepsilon}) < \varepsilon$$

が成立. よって $\bigcup_n A_n \in \mathcal{A}$ も示された.

以上の議論により、 $\mathscr{A}=\mathfrak{B}(X)$ の証明が完了した。これはすなわち、主張 1 が成り立つということに他ならない。

 $Step 2: \mu$ が緊密であることの証明. このステップでは、次の主張を証明する.

主張 2

任意の $\varepsilon > 0$ に対して、あるコンパクト集合 K_{ε} で

$$\mu(X \setminus K_{\varepsilon}) < \varepsilon$$

を満たすものが存在する.

 $\varepsilon>0$ を任意の固定する. $(U_j^n)_{j\in\mathbb{N}}$ を半径 $\varepsilon/2^n$ の開級の族で,X の被覆となっているようなものとする*8. μ の可算加法性より

$$\lim_{j \to \infty} \mu\left(\bigcup_{k=1}^{j} U_k^n\right) = \mu(X)$$

が成立. さらに μ の有限性より,

$$\lim_{j \to \infty} \mu\left(X \setminus \bigcup_{k=1}^{j} U_k^n\right) = \mu(X) - \lim_{j \to \infty} \mu\left(\bigcup_{k=1}^{j} U_k^n\right) = 0$$

となる. これより、十分大きな m_n をとれば

$$\mu\left(X\setminus\bigcup_{k=1}^{m_n}U_k^n\right)<\frac{\varepsilon}{2^{n+1}}$$

が成り立つ。ここで $W_n = \bigcup_{k=1}^{m_n} U_k^n$ および $W = \bigcap_{n \in \mathbb{N}} W_n$ と定義する。このとき,W が全有界*9であることを示す。 $\delta > 0$ に対して, $\varepsilon/2^{k_\delta} < \delta$ となるような $k = k(\delta)$ をとる。このとき, $W \subset W_k = \bigcup_{j=1}^{m_k} U_j^m$ と

 $^{^{*8}}$ 可分距離空間は Lindelöf 空間なので、このような族が取れる.

^{*9} X を距離空間とする. 任意の $\varepsilon>0$ に対して有限個の $a_0,\ldots,a_n\in X$ で $X=\bigcup_{i=0}^n U_\varepsilon(a_i)$ を見たすものが存在するとき,X は全有界であるという. よく知られているように,距離空間 X がコンパクトであることは,完備かつ全有界であることと同値である.

なり W は半径 $\varepsilon/2^k$ の開球で覆われる. すなわち、W は全有界である. X は完備距離空間だから、その閉包 $\overline{W}=:K$ はコンパクト集合である. また、W の定義より

$$\mu(X \setminus K) \le \mu(X \setminus W) = \mu\left(\bigcup_{n \in \mathbb{N}} [X \setminus W_n]\right) \le \sum_{n \in \mathbb{N}} \mu(X \setminus W_n) < \sum_{n \in \mathbb{N}} \frac{\varepsilon}{2^{n+1}} = \varepsilon$$

となる. すなわち, 主張2が成立する.

 $Step\ 3: \mu$ の内正則性の証明. $B\in \mathcal{B}(X)$ および $\varepsilon>0$ とする. このとき, step1 の議論から閉集合 $F\subset B$ で

$$\mu(B \setminus F) < \frac{\varepsilon}{2}$$

を満たすものがとれる. また step2 の議論から、コンパクト集合 K で

$$\mu(X\setminus K)<\frac{\varepsilon}{2}$$

なるものがとれる.ここで $K'=F\cap K$ とすれば,K' は $K'\subset B$ なるコンパクト集合であり* 10 ,さらに次の不等式を満たす.

$$\mu(B \setminus K') \leq \mu(B \setminus K) + \mu(B \setminus F) \leq \mu(X \setminus K) + \mu(B \setminus F) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

これより、 μ の内正則性が示された.

参考文献

- [1] Vladimir I. Bogachev. Measure Theory. Springer-Verlag Berlin Heidelberg, 2007.
- [2] 小谷眞一. 測度と確率. 岩波書店, 2005.
- [3] Laurent Schwartz. Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Tata Institute Monographs on Mathematics & Physics. Oxford University Press, 1974.

^{*10} コンパクト集合と閉集合の共通部分はコンパクト集合である.