

The state of the s

AVO TON	1802	4744		1698	16/1	1670	1645	1645	1645	1645	1645	1623	1634	1021	1014	13/8	1550	1008	1550	1261	13.10	1506	200
70/			0	0	ا (0	0	0	0	0	6	, c					> -	- c	0			0 0	7
Ϋ́	2 0			5	>	0	0	0	0	0	c	,	,							> <			7
CIL	2	, c		5	7	5	0	~-	~	-	0		, c		> -	- c			> 4	- c			,
R	-	, c			5	5	0	0	0	0	0	c)	0		٥	7	- -	-)	7	- 0	,
R.	C)				>	-	0	~	-	0	0) <)			,	0	,
ReO	0	0) <			9	0	0	0	0	0	0	6)	0			0)	0) 0	0	
Z	0	C) <			0	٥	0	0	0	0	0	c	c))	0	0) 0	0	C	0	
Mn	0	c)			0	0	0	0	0	-	0	0	C	0	0	0	0	-	0	-	0	
La	0	-	c	, -	- c		0	0	0	0	0	-	-	-	0	0	0	0	-	0	0	0	
٥	0	0	c)) c		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
드	0	0	c	ء اد) c		>	0	0	0	0	0	0	0	0	0	0	~	0	0	0	0	7
В	0	0	c) c)		>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Fe	-	-	_	-	· c		>	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	
En	0	0	0	0	- c)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ਹ	0	0	0	0			٥	0	0	0	0	0	ļ	0	0	1	0	0	0	-	0	_	
<u>ဒ</u>	_	0	-	_	-	7	- -		-	0	0	0	0	0	0	+	0	0	0	0	0	0	
ပ်	0	0	0	+	-	╁	╬	+	\dashv		0	0	0	0	0	0	0	0	0	0	0	0	
လ	0	0 (0	+	╁	+	+	\dashv	\dashv	-	0	0	0	0	0	0	0	_	0	0	0	0	
၁ P၁	1	0	0	0	-	+	╁	+	\dashv	\dashv	0		0	_	_	0	0	0	~	0	0	_	
Ca	0	0	0	0	+	╁	+	+	+	\dashv	-	0	0	0	0	0	0	0	0	0	0	0	
Bi	0 0	1	1 0	0	10	+	+-	+	\dashv	\pm	\dashv	0	0	0	1	0	1	0	0	0	0		
	\dashv		<u>`</u>		<u> </u>							0	0	7	0	7	0	0	0	_	_	0	

The first of the control of the cont

7 40

46 ~					3/8				*,	·
4	Metal	Metal Electro- negativity Atomic		Atomic Radius Covalent Radius		Atomi	c Ioniza	ation Po	Electron Affinity	
\sim	Bi	1.67	1.7	1.46	7.29	7.29	16.16	25.56	45.3	0.95
4	Ca	1.04	1.97	1.74	6.11	6.11	11.9	50.908	67.1	0.18
	Cd	1.46	1.54	1.48	9	8.99	16.91	37.48	NA	NA
	Се	1.06	1.81	1.65	5.53	5.47	10.85	20.2	36.72	NA
	Со	1.7	1.3	NA	7.87	7.86	17.06	33.5	51.3	0.662
	Cr	1.56	1.27	NA	6.76	6.76	16.5	30.96	49.1	0.666
	Cs	0.86	2.67	2.25	3.89	3.89	25.1	NA	NA	0.47
	Cu	1.75	1.28	1.38	7.73	7.726	20.29	36.83	55.2	1.235
	Eu	1.01	2.04	1.85	5.68	5.67	11.25	24.9	NA	NA
	Fe	1.64	0.68	0.72	7.9	7.87	16.18	30.65	54.8	0.151
	Ga	1.82	1.4	1.26	6	6	20.51	30.71	64	0.3
	In	1.49	1.66	144	5.79	5.78	18.87	28.03	54	0.3
	Ir	1.55	1.36	NA	9	9.1	NA	NA	NA	1.565
	La	1.08	1.86	1.69	5.61	5.57	11.06	19.1	NA	NA
	Mn	1.6	1.26	NA	7.43	7.43	15.64	33.66	51.2	NA
	Ni	1.75	1.24	NA	7.63	7.63	18.17	35.17	54.9	1.156
	Pb	1.55	1.75	1.47	7.417	7.416	15.032	31.94	42.32	NA
	Re	1.46	1.37	NA	7.87	7.9	NA	NA	NA	0.15
	Rh	1.45	1.34	NA	7.46	7.46	18.08	31.06	NA	1.13 7
	Ru	1.42	1.33	NA	7.37	7.37	16.76	28.47	NA	1.05
	Sb	1.82	1.5	1.38	8.641	8.64	16.53	25.3	44.2	NA
	Sn	1.72	1.5	1.41	7.344	7.34	14.63	30.5	40.7	NA
	Ti	1.32	1.45	1.36	6.82	6.82	13.58	27.49	43.26	0.079
	Yb	1.06	1.93	1.7	6.22	6.25	12.17	25	NA	0.5
	Zn	1.66	1.38	1.31	9.39	9.394	17.964	39.722	59.4	NA
	Zr	1.22	1.6	1.48	6.835	6.84	13.13	22.99	34.34	NA

Fig. 3

Fig. 4

70 CC-Space 74 Partition CC-Space into c₁ clusters • G_i uniformly sampled from c₁ clusters **76** Gen i S₁= Experiment (G_i) Assign scores to CC-Space by clusters 80 (one cluster, one score) Select parents of G_{i+1} biased to high score clusters (uniformly sampling within a cluster) • Repartition CC-Space into c1 clusters (on the reduced space) 82 G_{i+1} uniformly sampled from c₁ clusters Gen i

Fig. 6

Fig. 10

Fig. 11

