

Deep Learning

Einführung - Thema 2

Silas Hoffmann

13. April 2020

Fachhochschule Wedel

Deep Learning

020-04-13

Einführung - Thema 2

Silas Hoffmann 13. April 2020 Fashbulushulu Webl

Deep Learning

2020-04-13

Geschichtliche Entwicklung

McCulloch-Pitts-Neuron

Deep Learning

Geschichtliche Entwicklung

McCulloch-Pitts-Neuron

Geschichtliche Entwicklung

McCulloch-Pitts-Neuron

Zusammenhang - Biologisches Neuron

Schematic of a biological neuron.

Deep Learning

13

2020-04

Geschichtliche Entwicklung

└─McCulloch-Pitts-Neuron

__Zusammenhang - Biologisches Neuron

- 1. Dendriten: Nehmen Infos auf
 - besizten Rezeptoren und Signale anderer Dendriten aufzunehmen
- 2. Signale: bewirken elektrische Veränderungen
 - werden vom Zellkern (Soma) interpretiert / verarbeitet
 - $\,-\,$ Zellkern sammelt Infos, speichert diese im Axonhügel
- 3. Ursprung vom Axon / Neuriten
- 4. Wenn Signal stark genug: an Axon weitergeleitet
 - auch als Aktionspotential bezeichnet
 - Signal am Ende über Axonterminale per Neurotransmitter mit nächste Dendriten verbunden

MP-Neuron

- Modell soll Funktionalität des biologischen Neurons imitieren
- Klassifizierungsproblem als grundlegende Problemstellung
- Lineare Entscheidungsfunktion zur binären Klassifizierung verwendet

Example of a linear decision boundary for binary classification.

Deep Learning

13

2020-04

Geschichtliche Entwicklung

☐ McCulloch-Pitts-Neuron ☐ MP-Neuron

Lowerie of a least decide bount to the country of t

Modell soll Funktionalität des

biologischen Neurons imitiere Klassifizierungsproblem als grundlegende Problematellun

- 1. 1943: Warren McCulloch & Walter Pitts
- 2. soll biologisches Neuron imitieren
- 3. Klassifizierungsproblem: anhand vom geg. Merkmalsvektor entscheiden ob Objekt X in Klasse K liegt
- 4. hier lediglich binäre Klassifikation
 - Unterscheidung nur zwischen zwei Klassen
 - Sonderfall dieses Modells: nur boolesche Eingabewerte
- 5. muss mittels linearer Entscheidungsfunktion definierbar sein

Aufbau und Funktionsweise

$$g(x_1, x_2, \dots, x_n) = g(x) = \sum_{i=1}^n x_i$$
 $f(g(x)) = \begin{cases} 1 & \text{if } g(x) \ge \theta \\ 0 & \text{if } g(x) < \theta \end{cases}$

Deep Learning

2020-04-13

Geschichtliche Entwicklung -McCulloch-Pitts-Neuron

1. beliebig viele Eigabewerte

- müssen boolescher Natur sein

-Aufbau und Funktionsweise

- 2. Arbeitsschritte:
 - Alle Werte aufaddiert (Fkt. g)
 - Fkt. f prüft ob Schwellwert überschritten

Notation AND-Gatter

Deep Learning

Geschichtliche Entwicklung

McCulloch-Pitts-Neuron

Notation AND-Gatter

2020-04-13

Notation AND-Gatter

1. Anhand von Grafik erläutern

Notation OR-Gatter

Deep Learning

Geschichtliche Entwicklung

McCulloch-Pitts-Neuron

Notation OR-Gatter

2020-04-13

1. Anhand von Grafik erläutern, auch im 3d - Raum möglich

Nachteile

- Keine kontinuierlichen Eingabewerte (nur boolesche Werte)
- Schwelle muss manuell gesetzt werden, keine automatische Aktualisierung vorgesehen
- Keine Priorisierungsmöglichkeit der Eingabewerte möglich
- Funktionen müssen durch lineare Entscheidungsfunktion getrennt werden können

Deep Learning

13

2020-04

—Geschichtliche Entwicklung

McCulloch-Pitts-Neuron
Nachteile

· Funktionen müssen durch lineare Entscheidungsfunktion getren

Aktualisierung vorgesehen

- 1. keine kontinuierlichen Eignabewerte
 - nur boolesche Werte
 - Schwierig für komplexe Anwendungen
 - siehe Bilderkennung Farbwerte
- 2. Schwelle muss manuelle gesetzt werden
 - Sprich kein Lernalgorithmus vorhanden
- 3. Keine Priorisierungsmöglichkeiten
 - siehe Gewichtete Eingaben
- 4. Funktionen durch lineare Entscheidungsfunktion getrennt
 - schwierig bei überlappenden Cluster
 - keine Polynome wie bei späteren Entwicklungen möglich
- 5. auch gedeckelte Fkt. wie XOR können nicht dargestellt werden
 - Schwelle muss genau getroffen werden

Geschichtliche Entwicklung

Perceptron

Deep Learning

To Geschichtliche Entwicklung

Perceptron

Geschichtliche Entwicklung

Perceptron

Perceptron

- Ähnliche
 Aktivierungsfunktion wie beim MP-Neuron
- Jedoch gewichtete
 Eingabewerte

Unit step function.

$$\mathbf{v} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \qquad \begin{aligned} z &= w_1 x_1 + \dots + w_m x_m \\ &= \sum_{j=1}^m x_j w_j \\ &= \mathbf{w}^T \mathbf{x} \end{aligned}$$

Deep Learning
Geschichtliche Entwicklung
Perceptron
Perceptron

- 1. 1958: US-amerikanische Psychologe / Informatiker Frank Rosenblatt
- 2. älteste heutzutage noch genutzte NN
- 3. inspiriert vom Auge einer Fliege
- Flugrichtung Entscheidungen teils direkt im Auge getroffen
- 4. Weiterentwicklung der MP-Zelle
- 5. Eingabewerte mit Gewichten priorisiert
 - Auf Formel verweisen
- 6. Gleich bleibt jedoch die binäre Klassifikation
 - Verweis auf Unit step function
 - hier jedoch nicht Wahrheitswerte sondern -1 und 1

Aufbau

Schematic of Rosenblatt's perceptron.

$$g(z) = \begin{cases} 0 & \text{if } z \le 0 \\ 1 & \text{if } z > 0 \end{cases}$$

$$z = \mathbf{w_0 x_0} + w_1 x_1 + \dots + w_m x_m$$

$$= \sum_{j=0}^m x_j w_j$$

$$= w^T x$$

Geschichtliche Entwicklung
Perceptron
Aufbau

- 1. Grafik erläutern
- 2. Konvention:

Deep Learning

- erleichtert später Notation der Lernregel
- Schwellwert auf andere Seite der z-Wert Gleichung ziehen

Lernregel - Ablauf

- Modell übernimmt selbst die Anpassung der Gewichte
- Test mittels einer Menge von gelabelten Trainingsdatensätzen

Grober Ablauf

- Initialisiere die Gewichte mit einem sehr kleinen Wert oder 0.
- Für jeden Datensatz der Menge von Trainingsdatensätzen:
 - Berechne den Ausgabewert des Systems
 - Gleiche die Gewichte an

1. Rosenblatt erfindet lernenden Algorithmus

13

- 2. Auf Menge von Trainingsdatensätzen zurückgegriffen
 - Datensätze bestehen aus Ein- und erwarteten Ausgabewerten
 - in Literatur auch *gelabelte* Werte genannt
- 3. Lernalgorithmus grobe Zusammenfassung
 - Gewichte mit kleinem Wert / 0 vorinitialisieren
 - Datensätze durchiterieren
 - Ausgabewert berechnenGewichte angleichen

Lernregel - Formel

Angleichung der Gewichte

- Gewichte komponentenweise angleichen: $w_i := w_i + \Delta w_i$
- Gewichtsänderung: $\Delta w_i = \eta \left(\text{target}^{(i)} \text{output}^{(i)} \right) x_i^{(i)}$
- Beispiel Iteration mit zweidimensionalem Trainingsvektor:

$$\Delta w_0 = \eta(\mathsf{target}^{(i)} - \mathsf{output}^{(i)})$$

$$\Delta w_1 = \eta(\mathsf{target}^{(i)} - \mathsf{output}^{(i)}) \ x_1^{(i)}$$

$$\Delta w_2 = \eta(\mathsf{target}^{(i)} - \mathsf{output}^{(i)}) \ x_2^{(i)}$$

1. Erste Formel auf Slide beschreiben

13

- Gewichte können zu Gewichtsvektor zusammengezogen werden
 - hier komponentenweise betrachtet
- Delta (Dreieck) wird stets als Änderung verstanden
- 2. Exponent i hierbei jeweils als Index des Trainingsvektors in Menge
- 3. Lernalgorithmus arbeitet inkrementell
 - Lernrate (eta) bestimmt wie stark die Gewichte pro Durchlauf angeglichen werden
 - Differenz mit Lernrate und Eingabewert multipliziert
- 4. Iteration mit 2d Eingabevektor
 - w0 hierbei der Schwellwert selbst
 - Faktor x weggelassen da bereits gleich 1
 - Nutzung der beschriebenen Notation

Lernregel - Trainingsbeispiele

Gewichtsänderung

$$\Delta w_j = \eta \left(\mathsf{target}^{(i)} - \mathsf{output}^{(i)} \right) x_i^{(i)}$$

• Trainingsdatensatz richtig erkannt:

$$\Delta w_j = \eta ((-1^{(i)}) - (-1^{(i)})) \ x_j^{(i)} = 0$$
$$\Delta w_j = \eta (1^{(i)} - 1^{(i)}) \ x_j^{(i)} = 0$$

• Trainingsdatensatz falsch erkannt:

$$\Delta w_j = \eta (1^{(i)} - (-1^{(i)})) \ x_j^{(i)} = \eta(2) \ x_j^{(i)}$$
$$\Delta w_j = \eta ((-1^{(i)}) - 1^{(i)}) \ x_i^{(i)} = \eta(-2) \ x_i^{(i)}$$

Geschichtliche Entwicklung

Perceptron

2020-04-13

Perceptron
Lernregel - Trainingsbeispiele

Grands Sanderseg $\Delta u_0 = u_0 \left(\exp(i\theta) - \exp(i\theta)^2 \right) g^{(1)}$ • Training determine in the grands: $\Delta u_0 = u_0 \left(-1^2 \right) - \left(-1^{(0)} \right) \right) g^{(0)} = 0$ $\Delta u_0 = u_0^2 \left(-1^2 \right) g^{(0)} = 0$ • Training determine facility determine: $u_0 = u_0^2 \left(-1^2 \right) g^{(0)} = u_0^2 \left(-1^2 \right) g^{(0)} = u_0^2 \left(-1^2 \right) g^{(0)} = u_0^2 \right) g^{(0)}$

 $\Delta w_j = \eta((-1^{(i)}) - 1^{(i)}) \times_j^{(i)} = \eta(-2) \times_j^{(i)}$

Lernregel - Trainingsbeispiele

- 1. Erinnerung: erst target dann output
- 2. Richtig erkannt
 - Generell Ausgabe 0, keine Änderung
 - Beide Falsch: -1
 - Beide Richtig: +1
- 3. Falsch erkannt
 - output zu klein
 - ullet erwartetet +1 bekommen -1
 - Positiver (Differenz-)Faktor
 - output zu groß
 - ullet erwartetet -1 bekommen +1
 - Negativer (Differen-)Faktor

Geschichtliche Entwicklung

Adeline

ADAptive **LIN**ear **E**lement

Deep Learning

Geschichtliche Entwicklung

Adeline

ADAptive LINear Element

- 1. 1959: Stanford Prof. Bernard Widrow & Elektroingenieur Marcian Edward Hoff
- 2. ADELINE: ADAptive LINear Element
- 3. Modell: Verzicht auf Einheitssprungfunktion bei Angleichung der Gewichte
 - Stattdessen lineare Aktierungsfunktion
 - erstmal nur Identitätsfunktion verwendet
 - Entscheidungsfunktion für output weiterhin verwendet

Delta-Regel

- Leralgorithmus durch Erfinder geprägt
- auch unter Least-Mean-Square-Algrithmus bekannt
- Wesentlicher Vorteil: Ableitbare Kostenfunktion

Notation

$$J(w) = rac{1}{2} \sum (\mathsf{target}^{(i)} - \mathsf{output}^{(i)})^2 \qquad \mathsf{output}^{(i)} \in \mathbb{R}$$

Deep Learning

Geschichtliche Entwicklung

Adeline
Delta-Regel

1. Auch unter Least-Mean-Square-Algorithmus bzw.

Regressionsquadratsumme bekannt

- noch heute relevant
- 2. Funktion stellt Kostenfunktion dar
 - Fehler bei Kostenfunktion soll mithilfe der Lernregel minimiert werden
- 3. Vorteil dieses Ansatzes: Ableitbare Kostenfunktion
- 4. Formel erläutern:

- Differenz quadriert um Vorzeichen zu verlieren
- Faktor 1 / 2 vorschieben um Ableitung einfacher zu gestalten
- über alle Trainingsdatensätze der Menge iterieren
 - Größe i
- 5. Für genaueres Verständnis erstmal Einschub mit Gradientenverfahren

• Ziel: Gradientenvektor für bestimmten Input bestimmen:

$$\nabla J \equiv \left(\frac{\partial J}{\partial w_1}, \dots, \frac{\partial J}{\partial w_m}\right)^T$$
.

Schematic of gradient descent.

Deep Learning
Geschichtliche Entwicklung
Adeline
Gradientenverfahren

- 1. Wesentlicher Nachteil der Sprungfunktion: Nicht stetig & damit nicht differenzierbar
- 2. Adeline verwendet Identitätsfunktion
- 3. Abbildung erläutern, Metapher: Ball rollt Hügel herunter
 - Abbildung erstmal nur mit einem einzelnen Gewicht geplottet
 - Ableitung an einer bestimmten Stelle gleich der Steigung
 - Gradientenvektor gibt diese Richtung an
 - Mehrdimensional wenn mehreren Eingabeargumenten vorhanden
 - Steigung muss invertiert werden
- 4. Es folgt: Exkurs Partielle Ableitungen

Partielle Ableitungen

- Differenzieren von Funktionen mit mehreren Eingabewerten
- Beispiel: $z = f(x) = x^2 + y^2$

Partielle Ableitung - Notation

 $\frac{\partial AbzuleitendeFkt.}{\partial BetrachteteKomponente}$

Deep Learning

Geschichtliche Entwicklung

└─Adeline

2020-04

Partielle Ableitungen

Partielle Ableitungen

1. Notation: Bruch

- Zähler: Abzuleitende Funktion

- Nenner: Betrachtete Komponente

2. Abbildung: Fkt. geplottet mit 2 Eingabekomponenten

- Funktion: $z = f(x) = x^2 + y^2$

- Metapher: Blickwinkel erläutern

- nächste Folie miteinbeziehen

Ableitung - Beispiel

$$z = f(x, y) = x^{2} + y^{2}$$
$$\frac{\partial z}{\partial x} = 2x \qquad \frac{\partial z}{\partial y} = 2y$$

1. Metapher: Blickwinkel erläutern

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

- 1. Lernrate kann als Schrittweite verstanden werden
- 2. Zwei mögliche Probleme:
 - Overshooting: Schrittweite zu groß Minimum wird nicht erkannt
 - Lokales Minimum wird gefunden Globales bleibt unerkannt
- 3. Gradientenabstieg bisher nur in 2 Dimensionen (siehe nächste Folie

Deep Learning

Geschichtliche Entwicklung
Adeline
Gradientenverfahren

- 1. Abbildung: Gradientenabstieg in 3 Dimensionen geplottet
- 2. Hier Ball-Metapher dargestellt
- 3. Es folgt kompletter Durchlauf des Gradientenabsiegs

Deep Learning
Geschichtliche Entwicklung
Adeline
Gradientenverfahren

- 1. Abbildung: Gradientenabstieg in 3 Dimensionen geplottet
- 2. Hier durchgeführter Gradientenabstieg

Gradientenverfahren - Anwendung

Gradientenvektor

$$\nabla J \equiv \left(\frac{\partial J}{\partial w_1}, \dots, \frac{\partial J}{\partial w_m}\right)^T.$$

• Allgemein: Vektorielle Darstellung

$$\Delta w = -\eta \nabla J(w)$$

• Für die jeweiligen Gewichte: Komponentenweise Darstellung

$$\Delta w_j = -\eta \frac{\partial J}{\partial w_j}$$

• Angleichung der Gewichte $w = w + \Delta w$

- 1. Gradientenvektor: Richtung des Abstiegs
 - mit Nabla dargestellt (Dreieck)
 - kann auch mehrdimensional sein
- 2. Vektorielle Darstellung

- Eingabeparameter werden als Vektor verstanden
- mit Gradientenvektor und Negativer Lernrate verrechnet / multipliziert
- 3. Komponentenweise Darstellung
 - negative Lernrate mit partieller Ableitung verrechnet
- 4. Angleichung der Gewichte:
 - wie schon bei vorherigen Modellen
 - Mathematische Darstellung: $w = w + \Delta w$

Kostenfunktion ableiten

$$\frac{\partial J}{\partial w_{j}} = \frac{\partial}{\partial w_{j}} \frac{1}{2} \sum_{i} (t^{(i)} - o^{(i)})^{2}
= \frac{1}{2} \sum_{i} \frac{\partial}{\partial w_{j}} (t^{(i)} - o^{(i)})^{2}
= \frac{1}{2} \sum_{i} 2(t^{(i)} - o^{(i)}) \frac{\partial}{\partial w_{j}} (t^{(i)} - o^{(i)})
= \sum_{i} (t^{(i)} - o^{(i)}) \frac{\partial}{\partial w_{j}} (t^{(i)} - \sum_{j} w_{j} x_{j}^{(i)})
= \sum_{i} (t^{(i)} - o^{(i)}) (-x_{j}^{(i)})$$

Deep Learning

Geschichtliche Entwicklung

2020-04-13

—Adeline └─Kostenfunktion ableiten Generalization abdition
$$\begin{split} \frac{\partial J}{\partial m_0} &= \frac{\partial}{\partial m_0} \frac{1}{2} \sum_i (t^{(i)} - a^{(i)})^2 \\ &= \frac{1}{2} \sum_{i,j} \frac{\partial}{\partial m_j} (a^{(i)} - a^{(j)})^2 \\ &= \frac{1}{2} \sum_{i,j} \frac{\partial}{\partial m_j} (a^{(i)} - a^{(j)})^2 \\ &= \sum_i (a^{(i)} - a^{(j)}) \frac{\partial}{\partial m_j} (t^{(i)} - a^{(i)}) \\ &= \sum_i (a^{(i)} - a^{(j)}) \frac{\partial}{\partial m_j} \left(a^{(i)} - \sum_j - m_j^{(i)} \right) \\ &= \sum_i (a^{(i)} - a^{(j)}) \frac{\partial}{\partial m_j} \left(a^{(i)} - \sum_j - m_j^{(i)} \right) \end{split}$$

- 1. Ableiten der bisher vorgestellten Kostenfuntion (Least-Mean-Square)
- 2. Summe und Faktor vorziehen
- 3. Kettenregel anwenden
 - äußere Ableitung bereits bestimmt (Vorfaktor 2)
 - innere Ableitung steht noch aus
- 4. Faktor 2 kann vorgezogen werden, wird mit 1/2 verrechnet
- 5. Ursprüngliche Notation für die Ausgabe wird eingesetzt:
 - Ausgabe: $\sum_{i} w_{i} x_{i}^{(i)}$
- 6. Summe aufgelöst
 - es wird nach w_i abgeleitet
 - alle Summanden in denen dieser Faktor nicht vorkommt entfallen

Aktuelle Entwicklung

Backpropagation

Deep Learning —Aktuelle Entwicklung —Backpropagation

Aktuelle Entwicklung

Backpropagation

Notation

Deep Learning

Aktuelle Entwicklung
Backpropagation
Notation

- 1. I: Exponent, steht für die Schicht
 - I 1, weil man stets von hinten nach vorne schaut
- 2. Eingabe wird auch als eigene Schicht verstanden
- 3. j: Index Zielneuron
- 4. k: Index Startneuron

Notation

$$a'_j = \sigma \left(\sum_k w'_{jk} a'_{k-1} + b'_j \right) \Rightarrow a' = \sigma(z')$$

 $z' = w' a'^{-1} + b'$

Deep Learning

-Aktuelle Entwicklung

Backpropagation
Notation

- 1. Ähnlich zu Gewichtsnotation
 - I bezieht sich hierbei jedoch auf aktuelle Schicht
 - j wie gehabt Index in Schicht
 - Notation gilt auch für Aktivierung a
- 2. Wichtig: σ bezieht sich auf Vektor \Rightarrow Vektorielle Funktion
- 3. Jede Komponente einzeln mit σ verarbeitet
- 4. Abstraktion vom Ausgabewert vor der Aktivierungsfkt
 - Unterschied zwischen Aktivierung und Z-Wert erläutern
 - hilft später beim Ableiten

Backpropagation

- Kostenfunktion soll minimiert werden.
- Ziel: Optimale Gewichte und Schwellwerte finden
- Grobe Vorgehensweise: Iterativer Prozess
 - Fehlervektor der letzten Schicht berechnen
 - Fehler schichtweise zum Eingabelayer zurückführen
 - Parameter schichtweise nach Gradienten angleichen

2020-04-13

Kontenfunktion will minimisert worden
Ziel Optimale Gauciets und Schwallbarte finden
Code Norphemenie Iterative Prazess
Fallwarder des dieser Schick benedene
Fallwarder des dieser Schick benedene
Fallwarder des desse Schick benedene

- 1. 1970er entwickelt, 1986 von Rummelhart, Hilten und Williams in Paper bekannt gemacht
- 2. Kostenfunktion wie bei Gradientenabstieg / Adeline
 - Unterschied: Hier mehrschichtiges Netz
 - Gradientenabstieg grob erläutert, ausgeblieben -
 - Anwendung im mehrschichtigen Netz und mehrdimensionale Kostenfunktion
- 3. Fehlervektor der letzten Schicht berechnen
 - Fehler schichtweise zum Eingabelayer zurückführen
- 4. Parameter schichtweise nach Gradienten angleichen

Fehler - Ausgabeschicht

$$\delta_{j}^{L} = \frac{\partial C}{\partial z_{j}^{L}}$$

$$= \sum_{k} \frac{\partial C}{\partial a_{k}^{L}} \frac{\partial a_{k}^{L}}{\partial z_{j}^{L}}$$

$$= \frac{\partial C}{\partial a_{j}^{L}} \frac{\partial a_{j}^{L}}{\partial z_{j}^{L}}$$

$$= \frac{\partial C}{\partial a_{j}^{L}} \sigma'(z_{j}^{L})$$

Anmerkung: Kettenregel

$$\frac{d}{dx}[f(u)] = \frac{d}{du}[f(u)]\frac{du}{dx}$$

- **C**: Kostenfunktion
- y: Erwartete Ausgabe

- 1. Baum nur für Netz mit einer einzigen Aktivierung repräsentativ
- 2. Zusammenhang mit Kettenregel erläutern
- 3. Großes L immer für Ausgabeschicht
- 4. Summfunktion: für mehrere Neuronen pro Schicht generalisiert

Fehler - Ausgabeschicht

Zusammenfassung

Um den Fehlervektor der letzten Schicht zu bestimmen:

$$\delta^L = \nabla_a C \odot \sigma'(z^L)$$

• Äquivalent zu:

$$\delta^L = (a^L - y) \odot \sigma'(z^L)$$

• Um die Fehler komponentenweise zu bestimmen:

$$\delta_j^L = \frac{\partial C}{\partial a_i^L} \sigma'(z_j^L)$$

1. Um den Fehlervektor der letzten Schicht zu bestimmen:

$$\delta^L = \nabla_a C \odot \sigma'(z^L)$$

- $\nabla_a C$ entspricht dabei Vektor aller $\frac{\partial C}{\partial a^l}$ einer Schicht
- O: Hadamard-Produkt
 Komponentenweise Multiplikation zweier Vektoren
- Ausgabe ebenfalls wieder ein Vektor
- 2. Äquivalent zu: $\delta^L = (a^L y) \odot \sigma'(z^L)$ - $(a^L - y)$ Ausgabe des Systems minus erwartete Ausgabe
- 3. Um die Fehler komponentenweise zu bestimmen: $\delta_j^L = \frac{\partial C}{\partial a_i^L} \sigma'(z_j^L)$

Fehler - Zwischenschicht

- Zusammenhang zwischen Fehler zweier Schichten herleiten
- Es gilt: $\delta_i^l = \partial C/\partial z_i^l$ sowie $\delta_k^{l+1} = \partial C/\partial z_k^{l+1}$

$$\delta_{j}^{l} = \frac{\partial C}{\partial z_{j}^{l}}$$

$$= \sum_{k} \frac{\partial C}{\partial z_{k}^{l+1}} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}}$$

$$= \sum_{k} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}} \delta_{k}^{l+1}$$

$$w^{l+1} = \sum_{k} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}} \delta_{k}^{l+1}$$

$$w^{l} = \sum_{k} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}} \delta_{k}^{l+1}$$

$$w^{l} = \sum_{k} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}} \delta_{k}^{l+1}$$

- 1. Um von letzter Schicht auf vorherige Fehler zu schließen: $\delta_{k}^{l+1} = \partial C/\partial z_{k}^{l+1}$
- 2. Baum: Netz-Ausschnitt mit nur einem Neuron pro Schicht
- 3. Über Kettenregel wird nach aktuellem Z-Wert abgeleitet
- 4. Reihenfolge vertauscht
 - Letzter Term mit Definition $\delta_{\nu}^{l+1} = \partial C/\partial z_{\nu}^{l+1}$ ausgetauscht

Fehler - Zwischenschicht

$$z_k^{l+1} = \sum_j w_{kj}^{l+1} a_j^l + b_k^{l+1} = \sum_j w_{kj}^{l+1} \sigma(z_j^l) + b_k^{l+1}$$
$$\frac{\partial z_k^{l+1}}{\partial z_j^l} = w_{kj}^{l+1} \sigma'(z_j^l)$$

Zusammenfassung

- Komponentenweise Darstellung: $\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} \sigma'(z_j^l)$
- Vektorielle Darstellung: $\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$

- . Zwischenschritt: Z-Wert des nächsten Layers
 - Definition Z-Wert eingesetzt
 - Aktivierung wird mit Sigma-Funktion ausgetauscht
- 2. Diese Gleichung wird nun nach ∂z_j^I abgeleitet
- 3. Komponentenweise Darstellung: $\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} \sigma'(z_j^l)$
 - vorherigen Zwischenschritte wurden wieder in die ursprüngliche Form eingesetzt $\sum_k \frac{\partial z_k^{l+1}}{\partial z_j^l} \delta_k^{l+1}$
- Reihenfolge der Faktoren wurde lediglich etwas verändert
- 4. Vektorielle Darstellung: $\delta^{l} = ((w^{l+1})^{T} \delta^{l+1}) \odot \sigma'(z^{l})$
 - Summfunktion durch Vektormultiplikation ausgetauscht

Fehler - Schwellwerte & Gewichte

$$z'_{k} = \sum_{i} w'_{ki} a'_{i}^{-1} + b'_{k} = \sum_{i} w'_{ki} \sigma(z'_{i}^{-1}) + b'_{k}$$

Schwellwerte

$$\frac{\partial C}{\partial b_j^l} = \frac{\partial C}{\partial z_j^l} \frac{\partial z_j^l}{\partial b_j^l} = \delta_j$$

Gewichte

$$\frac{\partial C}{\partial w_{jk}^I} = \frac{\partial C}{\partial z_j^I} \frac{\partial z_j^I}{\partial w_{jk}^I} = a_k^{I-1} \delta_j^I$$

Deep Learning

-Aktuelle Entwicklung
--Backpropagation

$$\begin{split} z_i^t &= \sum_j u_{ij}^t e_{ij}^{t-1} + k_i^t = \sum_j u_{ij}^t e_{ij}^{t-1} + k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^{t-1} + k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t - k_i^t \cdot k_i^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t \\ & = \sum_j u_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t e_{ij}^t \\ & = \sum_j u_{ij}^t e_{ij}^t e$$

Fehler - Schwellwerte & Gewichte

Fehler - Schwellwerte & Gewichte

- 1. Bisher nur die Ableitung nach Z-Wert betrachtet
 - Nun nach Schwellwerten & Gewichten
- 2. Kettenregel: Ableitung nach dem Z-Wert vor Ableitung nach Gewicht / Schwellwert schalten
- 3. Schwellwerte: der hintere Bruch entfällt komplett
 - vordere Teil $\frac{\partial \mathcal{C}}{\partial z_{\cdot}^{l}}$ entspricht bereits δ_{j}^{l}
- 4. **Gewichte**: obere Z-Wert Gleichung nach Gewicht abgeleitet
 - $w_{kj}^l a_i^{l-1} \rightarrow a_k^{l-1}$
 - Fehler per Kettenregel angehängt

Anwendung

- Menge an Trainingsdatensätzen auswählen
- Für jeden einzelnen Datensatz:
 - 1. **Feedforward**: Z-Wert und Aktivierung für jede Schicht $l = 2, 3, \dots, L$ berechnen.

• Z-Wert:
$$z^{x,l} = w^l a^{l-1} + b^l$$

• Aktivierung
$$a^{x,l} = \sigma(z^l)$$

2. **Ausgabe-Fehler** $\delta^{x,L}$: Fehlervektor der Ausgabeschicht berechnen.

•
$$\delta^L = \nabla_a C \odot \sigma'(z^L)$$

 Backpropagation-Fehler: Rückwirkend Fehlervektor aller Schichten berechnen.

•
$$\delta^{x,l} = ((w^{l+1})^T \delta^{x,l+1}) \odot \sigma'(z^{x,l})$$

• **Gradientenabstieg**: Gewichte und Schwellwerte getrennt anpassen.

• Gewichte:
$$w^l \to w^l - \frac{\eta}{m} \sum_{x} \delta^{x,l} (a^{x,l-1})^T$$

• Schwellwerte:
$$b^l \rightarrow b^l - \frac{\eta}{\pi} \sum_{x} \delta^{x,l}$$

Deep Learning

Aktuelle Entwicklung

Backpropagation

Anwendung

Menge an Trainingsdatensätzen auswählen
 Für ieden einzelnen Datensatz:

Fur jeden einzelnen Datenastz:
 Feedforward: Z-Wert und Aktivierung für jede Schicht
 I = 2, 3, ..., L berechnen.

Aktivierung x^{*,i} = σ(xⁱ)
 Ausgabe-Fehler δ^{*,i}: Fehlervektor der Ausgabeschicht berechn

• $\delta^1 = \nabla_x C \odot \sigma'(z^1)$ 3. Backpropagation-Fehler: Ruckwirkend Fehlenvektor aller Schichte

Gradientenabstieg: Gewichte und Schwellwerte getrennt anpasses
 Gewichte: wⁱ → w^j − π/π Σ_c δ^{c,i}(x^{c,i+1})^T
 Schwellwerte: bⁱ → bⁱ − π/π Σ Σ δ^{c,i}

- 1. Menge an Trainingsdatensätzen auswählen
 - Siehe Stachastischer Gradientenabstieg
- 2. Für jeden Datensatz
 - Feedforward Aktivierungsvektor / Z-Wert jeder Schicht berechnen
 - Ausgabe-Fehler: Fehler letzter Schicht berechnen
 - Backpropagation-Fehler: Ausgehend von letzter Schicht Fehler bis hin zur Ersten berechnen
- 3. Gradientenabstieg mit Ergebnissen

- Gewichte:
$$w^l \to w^l - \frac{\eta}{m} \sum_{x} \delta^{x,l} (a^{x,l-1})^T$$

- hintere Teil: durchschnittlicher Fehler über alle m Trainingsdatensätze
- Lernrate als Faktor davorgehängt
- Schwellwerte: $b^l \to b^l \frac{\eta}{m} \sum_{x} \delta^{x,l}$

Aktuelle Entwicklung

Convolutional Neural Network

Deep Learning

Aktuelle Entwicklung
Convolutional Neural Network

Aktuelle Entwicklung

Convolutional Neural Network

Biologische Zellarten

A Simple cell

B Complex cell

Deep Learning

2020-04-13

-Aktuelle Entwicklung

Convolutional Neural Network

Biologische Zellarten

- 1. 1962: zwei Neurophysiologen Torsten Wiesel und David Hubel
- 2. Konzept der simple und complex cells
 - nicht positionsbunden spatial invariance, räumliche Invarianz
- 3. Arten von Zellen zur Erkennung einfacher Kanten und Balken
 - simple cells: ist Positionsgebunden
 - complex cells: Muster können an beliebigen Positionen auftauchen
- 4. 1962: Konzept wie im Bild
- 5. 1980er Dr. Kunihiko Fukushima: erstes Modell nach diesem Konzept

Anfänge

- Yann LeCun: erstes Modell zum Erkennen von Handschrift
- Verwendung von MNIST database of handwritten digits
 - 60.000 Trainingsdatensätze
 - 10.000 zum Berechnen des Fehlers

Deep Learning

13

2020-04-

-Aktuelle Entwicklung

Yann LeCun: erstes Modell zum Erkennen von Handschri

Convolutional Neural Network
Anfänge

- 1. Pioniere, fr. Informatiker Yann LeCun
- 2. Bekannteste Ausarbeitung über CNN für Handschriften
- 3. Verwendung von MNIST database of handwritten digits
 - 60.000 Trainingsdatensätze
 - 10.000 zum Berechnen des Fehlers
 - unterschiedliche Personen für Trainings- und Evaluierungsdatensätze
- 4. soll erkennen ob ein Bild zu einer (oder mehreren) bestimmten Klasse(n) gehört
 - von low-level Eigenschaften auf komplexe Formen schließen
- 5. Covolutional NN: zwei wesentliche Komponenten
 - Convolutional layer: Filter
 - Pooling Layer: Aggregations-Schichten
 - wiederholen sich abwechselnd

Convolutinal Layer - Filter

- Mehrdimensionales Array mit Farbwerten zur Repräsentation im Rechner
- Durch Filter auf bestimmte Low-Level Eigenschaften schließen

Deep Learning

Aktuelle Entwicklung

Convolutional Neural Network

Convolutinal Layer - Filter

1. Array als Eingabe

2020-04-

- Repräsentiert die Pixel im Bild
- 2. Farbwertearray kann pro Pixel mehrere Werte enthalten
 - entsprechend eventuell auch mehrere Dimensionen im Array
- 3. Fenster läuft Eingabematrix ab
 - dadurch simple Formen erkennen
 - Beispiel folgt
- 4. Hidden Layer kann als Ansammlung von low-level Merkmalen verstanden werden

Filter

Generell

- Besitzt feste Pixelgröße (Kernelsize) & Schrittweite
- Scannt Bild Zeilenweise
- Padding legt Verfahren für Rand des Bildes fest
- Ausgabe wird activation oder feature map genannt

Praxis

- Jeder Filter generiert eigene Ausgabematrix
- Nächster Convolutional Layer verwendet Ausgabematrizen als Input
- Ausgabe wird in *Pooling Layer* gesteckt

- 1. Bsp. Filter 2 x 2, Schrittweite: 2 führt zu Halbierung der InputMatrix
 - Im Bsp. hängen immer 4 Pixel an einem Filter, die Eingabematrix wird gefaltet (convolute)
- 2. Filter generieren eigene Ausgabematrix
- 3. Filter können auch auf Filter folgen
- 4. von Filtern generierte Ausgaben werden auch *activation map* oder *feature map* genannt

Filter - Funktionsweise

Deep Learning

Aktuelle Entwicklung

Convolutional Neural Network
Filter - Funktionsweise

- 1. Bild erläutern
 - Beispiel: Ziffer 7
 - Strich am oberen Rand
 - Gewichtsmatrix hier getrennt aufgeführt
 - rot: negative Werte
 - grün: positive Werte
- 2. Dieses Feature (oberer Strich) kann aber auch bei anderen Ziffern auftauchen
 - Bsp. schlecht geschriebene Ziffer Null
- 3. Erkannte Merkmale können von weiteren Filtern genutzt werden
 - erinnert an ganz alte Prinzipien
 - wie schonn beim Adeline Modell, hier jedoch mit mehreren Schichten

Pooling Layer

13 2020-04-

Deep Learning

1. Pooling Layer - aggregiert Ergebnisse von Convolutional Layern

Aktuelle Entwicklung

-Pooling Layer

- Zweck: nur die relevantesten Signale an die nächste Schicht weitergeben

Convolutional Neural Network

 Aggregiert die Ergebnisse von Convolutional Layern Nur die relevantesten Signale an nächste Schicht weitergebe

- weiter reduziert wird, erhöht sich die Anzahl der Filter zur Erkennung von übergeordneten Signalen zunehmend
- 3. Verschiedene Pooling-Mechanismen:
 - MaxPooling:
 - am weitesten verbreitet

2. während die Größe des Inputs durch die Faltungen und das Pooling immer

- maximale Eingabewert wird weitergegeben
- fractional max pooling
- lp pooling
- mean pooling - stochastic pooling

spatial pooling

• Aggregiert die Ergebnisse von Convolutional Layern Ziele • Nur die relevantesten Signale an nächste Schicht weitergeben Anzahl der Parameter im Netz reduzieren

• MaxPooling Layer am weitesten verbreitet

Fully Connected Layer

- Ausgagngspunkt: High-Level Merkmale bereits durch frühere Schichten erkannt
- Alle Neuronen der Ausgabeschicht sowie dieser Merkmale alle direkt miteinander verbunden
- Ausgabe sollte mit den richtigen Gewichten / Schwellwerten relativ eindeutige Ausgaben generieren

Deep Learning

13

2020-04-

—Aktuelle Entwicklung

Convolutional Neural Network

Fully Connected Layer

Fully Connected Laver

- 1. auch dense Layer genannt
- 2. Ausgagngspunkt: *High-Level* Merkmale bereits durch frühere Schichten erkannt
 - Neuronen halten diese Eigenschaften
- 3. Ausgabeneuronen repräsentieren verschienden Klassen
 - siehe Klassifizierungsproblem
 - Fully connected Layer: stellt verbindung zwischen letztem hidden Layer und Ausgabelayer bereit
- 4. Beispiel: Schnörkel zu Ziffern interpretieren
 - 10 dimensionaler Ausgabevektor bei Ziffern

Deep Learning

Einführung - Thema 2

Silas Hoffmann

13. April 2020

Fachhochschule Wedel

Alle Meterialen sind unter folgender URL zu finden: https://github.com/derMacon/deeplearning_seminar

Deep Learning

https://github.com/derMacon/deeplearning_seminar

Alle Meterialen sind unter folgender URL zu finden:

References i

3Blue1Brown - Videokurs zur Einführung in die Neuralen Netze.

https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi.

Aufgerufen am: 16-03-2020.

Übersicht - verschiedene Architekturen.

https://www.asimovinstitute.org/neural-network-zoo/. Aufgerufen am: 22-03-2020.

Definition Klassifizierungssproblem. http://ekpwww.physik.uni-karlsruhe.de/~tkuhr/ HauptseminarWS1112/Keck_handout.pdf. Aufgerufen am: 15-03-2020.

Deep Learning

2020-04-13

-References

https://www.youtube.com/watch?v=aircAruvwNDsklist= ptzsqchcurrqcmsunnl_grocotx_zcJs-3p4. Aufgerufen arr: 16-03-2020.

38lue1Brown - Videokurs zur Einführung in die Neuralen Netze.

- https://www.asimovinstitute.org/neural-network-zoo/ Aufgerufen am: 22-03-2020.

 Definition Klassifizierungsagroblem.
 - binneon Kusannerungusposem. http://ekpsev.physik.uni-karlsruhe.de/-tkuhr/ EsuptreninarW11112/Weck_handout.pdf. Aufszeries.ser. 15.0%2020.

References ii

Einführung Convolutional neural network. https://adeshpande3.github.io/A-Beginner% 27s-Guide-To-Understanding-Convolutional-Neural-Networks/.

Aufgerufen am: 18-03-2020.

Öffentliche Datensätze - Übersicht. https://github.com/awesomedata/awesome-public-datasets.

Aufgerufen am: 18-03-2020.

Funktionsweise - CNN.

Aufgerufen am: 18-03-2020.

Funktionsweise - CNN.

https://bit.ly/2QGK0Ej.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890437/. Aufgerufen am: 18-03-2020.

Glientliche Datensätze - Übersicht https://github.com/avezomedata/avezome-public-datazets. Aufgerufen am: 18-03-2020 -References https://www.mcbi.nlm.nih.gov/pmc/articles/PMC1890437/ Aufgerufen am: 18-03-2020 Funktionsweise - CNN httms://bit.lv/20GKOE1

Einführung Convolutional neural network. https://adephpande3.github.io/A-Beginner% 27s-Guide-To-Understanding-Convolutional-Neural-Networks/

Deep Learning

References iii

Geschichte der Convolutional neuronalen Netze. https://glassboxmedicine.com/2019/04/13/

a-short-history-of-convolutional-neural-networks/.

Aufgerufen am: 18-03-2020.

Khan Academy - Partielle Ableitungen (Funktion mit zwei Eingabewerten.

https://www.youtube.com/watch?v=1CMDS4-PKKQ&t=542s. Aufgerufen am: 16-03-2020.

Künstliche Neuronale Netzwerke und Deep Learning - Stefan Stelle. https://www.htwsaar.de/wiwi/fakultaet/personen/profile/selle-stefan/Selle2018e_Kuenstliche_Neuronale_Netzwerke.pdf/at_download/file.

Aufgerufen am: 24-03-2020.

Deep Learning

2020-04-13

-References

es iii

- Geschichte der Convolutional neuronalen Netze. https://glassboxmedicime.com/2010/04/13/ a-short-history-of-convolutional-neural-networks/ Aufgerufen am: 18-03-2020.
- Khan Academy Partielle Ableitungen (Funktion mit zwei Eingabewerten. https://www.youtube.com/watch?v=1CHDS4-PHXQRt=542x Aufgerulen.am: 16-03-2020.
- Künstliche Neuronale Netzwerke und Deep Learning Stefan Stelle https://www.htwmar.de/wiwi/fakultaet/personen/ profile/selle-retfan/Selle/Dolfe-Kunsmiliche_Neuronale Netzwerke.pdf/at_dounloud/file. Aufgenfen z.2-4-03-2020.

References iv

McCulloch-Pitts Neuron. https://towardsdatascience.com/ mcculloch-pitts-model-5fdf65ac5dd1.

Single-Layer Neural Networks and Gradient Descent. https://sebastianraschka.com/Articles/2015_ singlelayer_neurons.html. Aufgerufen am: 14-03-2020.

M. Nielsen.

Determination Press, 2015.

Neural Networks and Deep Learning.

Aufgerufen am: 14-03-2020. Perceptron - Python Implementierung. https://github.com/rasbt/mlxtend/blob/master/mlxtend/ classifier/perceptron.py. Aufgerufen am: 16-03-2020.

Deep Learning McCulloch-Pitts Neuron. httms://towardsdatascience.com/ mcculloch-pitts-model-5fdf65ac5dd1 Perceptron - Python Implementierung. https://github.com/rasbt/mlxtend/blob/master/mlxtend/ classifier/perceptron.pv. Single-Layer Neural Networks and Gradient Descent -References https://sebastiamraschka.com/Articles/2015, singlelayer neurons.html. Aufgerufen am: 14-03-2020. M Nieben Neural Networks and Deep Learning.