

Path Representation Learning in Road Networks

Sean Bin Yang

AAU Thesis Defense

Supervisor: Prof. Bin Yang

Co-Supervisor: Assoc. Prof. Jilin Hu

Department of Computer Science

Technical Faculty of IT and Design, Aalborg University

AGENDA

01	Introduction
02	PathRank
03	Path InfoMax (PIM)
04	Temporal Path Representation Learning
05	LightPath
06	Conclusions and Future Work

AGENDA

01	Introduction
02	PathRank
03	Path InfoMax (PIM)
04	Temporal Path Representation Learning
05	LightPath
06	Conclusions and Future Work

Smart Transportation Applications

Nytory, 9000 Aalborg, Denmark

Send directions to your phone

Best route now due to traffic

Add destination

Leave now •

via Hadsundvej

via Nyhavnsgade

conditions **Details**

via E45

Home (AAU Busterminal (Sigrid Undsets)

×

℩

Options

12 min

7.3 km

12 min 8.4 km

14 min

10.1 km

Traffic **Analysis**

https://dailyhive.com

Traffic Cost **Estimation** Magasin Aalborg Den Lille Havfrue

Smart Transportation **Applications**

Recomme-

Path ndation

https://www.goog

le.com/maps

Routing

https://www.google.co

m/maps

Trajectory vs. Path

Trajectory, Harbin (Li et al., 2019)

Path, Road Network, Harbin

Path Representation Learning

What is Path Representation Learning?

Task-specific Path Representation

- Supervised Learning is a task-specific learning procedure.
 - Large amounts of labeled dataset

Why task-unspecific Path Representation?

- How to learn a task-unspecific path representation is nontrivial.
 - Taking advantage of a large amount of unlabeled data.

Task-Unspecific Representation Learning

 Unsupervised learning learns a task-unspecific representation, but mainly focus on graph data analysis.

DeepWalk (Perozzi et al., 2014)

InfoGraph (Sun et al., 2020)

View Generator

Probability

GNNs

Original

Key Node O Other Node Masked Node Dropped Node

Sample

Augmented

Path vs. Node/Graph Representation

How to Consider Temporal Information?

Importance of temporal information

(a) 8:00 a.m.

(b) 10:00 a.m.

Why Lightweight and Scalable PRL?

Poor Scalability w.r.t. Path Length

Mode size with different encoder layers

Encoder Layers L	12	24	48	96
Parameters (Millions)	29.85	55.07	105.51	206.40

Publications

- A. Sean Bin Yang, Bin Yang, "Learning to Rank Paths in Spatial Networks," ICDE 2020: 2006-2009.
- B. Sean Bin Yang, Chenjuan Guo, Bin Yang, "Context-Aware Path Ranking in Road Network," IEEE Trans. Knowl. Data Eng. 2022, 34(7): 3153-3168 (2022).
- C. Sean Bin Yang, Chenjuan Guo, Jilin Hu, Jian Tang, Bin Yang, "Unsupervised Path Representation Learning with Curriculum Negative Sampling," IJCAI 2021: 3286-3292.
- D. Sean Bin Yang, Chenjuan Guo, Jilin Hu, Bin Yang, Jian Tang, Christian S. Jensen, "Weakly-supervised Temporal Path Representation Learning with Contrastive Curriculum Learning," ICDE 2022: 2873-2885.
- E. Sean Bin Yang, Jilin Hu, Chenjuan Guo, Bin Yang, Christian S. Jensen, "LightPath: Lightweight and Scalable Path Representation Learning," 2022 (VLDB, in Submission).

AGENDA

01	Introduction
02	PathRank
03	Path InfoMax (PIM)
04	Temporal Path Representation Learning
05	LightPath
06	Conclusions and Future Work

Intuition

- Local Drivers often choose paths that are neither shortest nor fastest.
- Google Maps and TomTom, etc.

V. Ceikute and C. S. Jensen, "Routing service quality - local driverbehavior versus routing services," in 2013 IEEE 14th International Conference on Mobile Data Management, Milan, Italy, June 3-6, 2013 - Volume 1, 2013, pp. 97–106.

Problem Definition

- Given a set of N candidate paths P that connect the same source and destination and optimal contexts such as a departure time and driver identifier, we aim at:
 - Estimating a ranking score sim(P, P') for each candidate path $P'_i \in P$, P denotes the trajectory path;
 - Providing a ranked list of the candidate paths $< P_1', P_2', \cdots, P_N' >$, such that $sim(P, P_i') > sim(P, P_i')$ when $1 \le i < j \le N$.

PathRank

- Training Data Generation
- Vertex embedding
- Path Representation Learning
- Multi-task learning

 \widehat{sim}_i : Ranking Score Estimation

 \widehat{DI} : Travel Distance Estimation

 \widehat{TT} : Travel Time Estimation

 \widehat{Cost}_m : Travel Cost Estimation

Context Aware PathRank

- Departure time
- Driver ID

- Dataset
 - Aalborg, Denmark
- Evaluation Metrics
 - MAE, MARE
 - Kendall/Spearman's Rank Correlation Coefficient (τ, ρ)
- Baselines
 - Linear Regression (LR)
 - Lasso Regression
 - Support Vector Regression
 - Decision Tree Regression
 - Decision Tree Regression with AdaBoost
 - LSTM

Comparison with Regression Baselines

	Methods	MAE	MARE	τ	ρ
BF	LR	0.2640	0.4012	0.6879	0.7150
	Lasso	0.2876	0.4371	0.6245	0.6678
	SVR	0.2390	0.3632	0.6543	0.6683
	DT	0.2516	0.3824	0.6530	0.6777
	DTA	0.2686	0.4082	0.6784	0.7135
AF	LR	0.3430	0.5213	0.0864	0.0854
	Lasso	0.2955	0.4484	0.6260	0.6686
	SVR	0.3369	0.5120	0.0857	0.0846
	DT	0.4141	0.6284	0.4050	0.0693
	DTA	0.4301	0.6527	0.0812	0.0395
Deep	LSTM	0.2682	0.4076	0.4569	0.4619
Learning	PRC	0.0611	0.0929	0.8178	0.8454

AGENDA

01	Introduction
02	PathRank
03	Path InfoMax (PIM)
04	Temporal Path Representation Learning
05	LightPath
06	Conclusions and Future Work

Motivation-Unsupervised Path Representation

- Why Un-Supervised Path Representation Learning?
 - There are not many labelled data available
 - Labelling data is expensive and time consuming
 - Taking advantage of a large amount of unlabeled data
 - Enhancing the supervised-learning using pre-training

Motivation-Un-supervised Path Representation

Problem Definition

• Given a set of path P in graph G, Path Representation Learning (PRL) aims at learning a path representation vector $\mathbf{p_i} \in R^{D'}$ for each path $P_i \in P$.

$$PE_{\psi}: X_i \in R^{Z \times D} \to p_i \in R^{D'}$$

- ψ : learnable parameters for the path encoder
- Z: the length of path P_i
- D': dimension of the learned path representation vector p_i

Path InfoMax (PIM)

- PIM
 - Path Encoder
 - Path-Path Discriminator
 - Path-Node Discriminator

Encoder

: Take a sequence of nodes as input, output path representation.

Path-Path Discriminator: Take a negative and positive path representation pair (i.e. $\langle (p_i, \bar{p_j}), - \rangle$) as input and output the corresponding label.

Path-Node Discriminator: Take a negative and positive pair as input and output the corresponding label.

Path InfoMax (PIM)

- Curriculum Negative Sampling
 - Diversified Top-k shortest path algorithm is used to generate path from same source and destination.

- Datasets
 - Aalborg, Denmark
 - Harbin, China
- Downstream Tasks
 - Path Travel Time Estimation
 - MAE, MARE, MAPE
 - Path Ranking
 - MAE, Kendall / Spearman's Rank Correlation Coefficient (τ, ρ)
- Regression Model
 - Gaussian Process Regressor (GPR)

- BaseLines
 - Node2vec (Grover et al., 2016),
 - Deep Graph InfoMax (DGI) (Velickovic et al., 2019)
 - Graphical Mutual Information Maximization(GMI) (Peng et al., 2020)
 - Memory Bank (MB) (Wu et al., 2018)
 - InfoGraph (Sun et al., 2020)
 - BERT (Devlin et al., 2019)
 - PathRank (Yang et al., 2020)

Accuracy on Travel Time estimation and Ranking score estimation (Aalborg)

Method	Trave	I Time Estin	nation	P	Path Rankin	g
	MAE	MARE	MAPE	MAE	τ	ρ
Node2vec	121.43	0.27	31.04	0.18	0.66	0.70
DGI	192.63	0.42	82.44	0.54	0.49	0.52
GMI	136.58	0.30	50.81	0.23	0.58	0.61
MB	243.97	0.53	84.17	0.35	0.34	0.38
BERT	254.17	0.54	61.61	0.36	0.38	0.39
InfoGraph	132.28	0.29	39.47	0.17	0.69	0.73
PIM	76.10	0.16	17.28	0.12	0.72	0.76

- Effects of Pre-training
 - Less data but same performance
 - Same data but better performance
 - Enhance the supervised learning

AGENDA

UΙ	Introduction
02	PathRank
03	Path InfoMax (PIM)
04	Temporal Path Representation Learning
	Temporal Path Representation Learning

Motivation-Temporal Path Representation

- Why weakly-supervised path representation learning?
 - Use weak labels
 - Inexpensive to achieve (compare to "strong" task specific labels)
 - Relevant to departure times
 - Relevant to various downstream tasks
 - Examples: peak vs. off-peak hours; traffic congestion indices

Problem Definition

• Given a set of temporal paths $TP = \{tp_1, tp_2, ..., tp_n\}$, where each temporal path tp_i is with a weak label y_i , temporal path representation learning (TPRL) aims to learn a temporal path $tp_i \in TP$.

$$TPRL_{\psi}(tp_i): R^{d_{tem}} \times R^{M \times d} \rightarrow R^{d_h}$$

- ψ : learnable parameters for the path encoder
- M: is the total number of edges in the path
- d, d_{tem} , d_h : edge feature dimension, a departure time embedding, and a resulted temporal path representation.
- We propose a basic framework and an advanced framework to solve the problem.

Basic-Weakly-supervised Contrastive(WSC)

Temporal Path Encoder

- Train the temporal path encoder using contrastive learning to obtain generic temporal path representations (TPRS).
 - Positive Samples
 - Positive temporal paths are not only different representations of the same temporal path, but also include temporal paths that traverse the same path with the same weak label.
 - tp_1 is the positive samples
 - Negative Samples
 - Same paths but different weak labels
 - Different paths but the same weak labels
 - Different paths and different weak labels
 - tp_2 , tp_3 , tp_4 are the negative samples

Basic-Weakly-supervised Contrastive(WSC)

- Global contrastive loss
 - Pull closer TPRs with positive temporal path samples, while push away TPRs from negative temporal path samples.

Basic-Weakly-supervised Contrastive(WSC)

- Local contrastive loss
 - Pull closer TPRs with positive temporal edges samples, while push away TPRs from negative temporal edges samples.

Advanced-Contrastive Curriculum Learning (WSCCL)

Contrastive Curriculum Learning (CCL)

Step 1: Curriculum Sample Evaluation

Step 2: Curriculum Sample Selection

- Datasets
 - Aalborg, Denmark
 - Harbin, China
 - Chengdu, China
- Weak Labels
 - Peak hours and off-peak hours
 - Traffic congestion indices

- Downstream Tasks
 - Path Travel Time Estimation
 - u MAE; MARE; MAPE
 - Path Ranking
 - MAE; Kendall/Spearman's Rank Correlation Coefficient (τ, ρ)
 - Path Recommendation
 - Classification Accuracy (Acc.); Hit Rate (HR)
- Regression and Classification Model
 - Gradient Boosting Regressor (GBR)
 - Gradient Boosting Classifier (GBC)

BaseLines

- Unsupervised learning based
 - Node2vec (Grover et al., 2016)
 - Deep Graph InfoMax (DGI) (Velickovic et al., 2019)
 - Graphical Mutual Information Maximization(GMI) (Peng et al., 2020)
 - Memory Bank (MB) (Wu et al., 2018)
 - InfoGraph (Sun et al., 2020)
 - BERT (Devlin et al., 2019)
 - PIM (Yang et al., 2021)
- Supervised learning based
 - DeepGTT (Li et al., 2019)
 - HMTRL (Liu et al., 2021)
 - PathRank (Yang et al., 2020)

Performance Comparison (Aalborg)

Travel Tim	e Estimation	Path F	Ranking	Path Recommendation		
MAE	MAPE	τ	ρ	Acc.	HR	
63.82	45.67	0.23	0.60	0.79	0.51	
67.22	49.36	0.24	0.60	0.74	0.55	
70.61	52.40	0.24	0.59	0.78	0.53	
57.32	39.37	0.23	0.62	0.67	0.48	
71.96	45.42	0.26	0.49	0.60	0.43	
69.36	41.28	0.26	0.52	0.72	0.69	
57.66	39.34	0.22	0.60	0.79	0.82	
44.78	26.53	0.39	0.12			
40.59	21.81	0.17	0.65	0.80	0.86	
37.09	23.89	0.23	0.64	0.77	0.71	
31.66	31.39	0.15	0.68	0.82	0.88	
	MAE 63.82 67.22 70.61 57.32 71.96 69.36 57.66 44.78 40.59 37.09	63.82 45.67 67.22 49.36 70.61 52.40 57.32 39.37 71.96 45.42 69.36 41.28 57.66 39.34 44.78 26.53 40.59 21.81 37.09 23.89	MAE MAPE τ 63.82 45.67 0.23 67.22 49.36 0.24 70.61 52.40 0.24 57.32 39.37 0.23 71.96 45.42 0.26 69.36 41.28 0.26 57.66 39.34 0.22 44.78 26.53 0.39 40.59 21.81 0.17 37.09 23.89 0.23	MAE MAPE τ ρ 63.82 45.67 0.23 0.60 67.22 49.36 0.24 0.60 70.61 52.40 0.24 0.59 57.32 39.37 0.23 0.62 71.96 45.42 0.26 0.49 69.36 41.28 0.26 0.52 57.66 39.34 0.22 0.60 44.78 26.53 0.39 0.12 40.59 21.81 0.17 0.65 37.09 23.89 0.23 0.64	MAE MAPE τ ρ Acc. 63.82 45.67 0.23 0.60 0.79 67.22 49.36 0.24 0.60 0.74 70.61 52.40 0.24 0.59 0.78 57.32 39.37 0.23 0.62 0.67 71.96 45.42 0.26 0.49 0.60 69.36 41.28 0.26 0.52 0.72 57.66 39.34 0.22 0.60 0.79 44.78 26.53 0.39 0.12 40.59 21.81 0.17 0.65 0.80 37.09 23.89 0.23 0.64 0.77	

Temporal Enhanced PIM (Aalborg)

	Trav	el Time Es	timation	Path Ranking			
	MAE	MARE	MAPE	MAE	τ	ρ	
PIM-Temporal	42.27	0.19	27.95	0.19	0.65	0.70	
WSCCL	31.66	0.13	21.39	0.15	0.68	0.72	

AGENDA

01	Introduction
02	PathRank
03	Path InfoMax (PIM)
04	Temporal Path Representation Learning
05	LightPath
06	Conclusions and Future Work

LightPath

- Poor scalability w.r.t. path length
- Very large mode size

(a) Traditional Transformer Encoder

Sparse Path Auto-Encoder

- Sparsity operation
- Learnable path representation
- Sparse path encoder
- Path reconstruction decoder

Relational Reasoning PRL

- Dual Sparse Path Encoder
 - Construct Path Representations

Relational Reasoning PRL

- Relational Reasoning
 - Cross-Network Relational Reasoning
 - Cross-View Relational Reasoning

Global Local Knowledge Distillation (GLKD)

- To reduce mode size
 - Global-path representation Distillation
 - Local-edge Correlation Distillation

- Datasets
 - Aalborg, Denmark
 - Chengdu, China
- Downstream Tasks
 - Path Travel Time Estimation (MAE, MARE, MAPE)
 - Path Ranking (MAE, Kendall/Spearman's Rank Correlation Coefficient (τ, ρ))
- Regression Model
 - Gradient Boosting Regressor (GBR)
- Baselines
 - Node2vec,
 - MoCo
 - Toast; t2vec; NeuTraj
 - PIM
 - HMTRL; PathRank; LightPath-Sup

 Accuracy on Travel Time Estimation and Ranking Score Estimation

Method	Travel Time Estimation			Path Ranking					
	MAE	MARE	MAPE	MAE	τ	ρ			
Node2vec	154.07	0.20	25.22	0.24	0.59	0.64			
МоСо	146.29	0.19	21.60	0.25	0.53	0.57			
Toast	137.27	0.17	20.43	0.24	0.59	0.63			
t2vec	147.24	0.19	22.13	0.25	0.52	0.56			
NeuTraj	117.06	0.15	18.09	0.25	0.60	0.64			
PIM	102.09	0.14	14.92	0.20	0.63	0.67			
HMTRL	101.81	0.13	14.51	0.17	0.68	0.72			
PathRank	115.37	0.15	16.41	0.21	0.64	0.68			
LightPath-Sup	105.51	0.15	16.35	0.14	0.68	0.72			
LightPath	85.76	0.11	12.12	0.13	0.73	0.77			

• Model Scalability vs. Reduction Ratio (γ) and Path Length (N)

	LightPat	h											
N	$\gamma = 0$		$\gamma = 0.1$		$\gamma = 0.3$		$\gamma = 0.5$		$\gamma = 0.7$		$\gamma = 0.9$		D
	GFLOPs	gMem.	GFLOPs	gMem.	GFLOPs	gMem.	GFLOPs	gMem.	GFLOPs	gMem.	GFLOPs	gMem.	Para.
50	8.01	1.47	7.48	1.39	6.44	1.37	5.39	1.36	4.34	1.34	3.18	1.33	1.570
100	15.77	1.60	14.72	1.50	12.62	1.48	10.52	1.46	8.43	1.44	6.23	1.43	1.570
150	23.53	1.72	21.95	1.64	18.81	1.60	15.66	1.58	12.52	1.55	9.27	1.52	1.570
200	31.29	1.90	29.19	1.81	24.99	1.77	20.80	1.73	16.61	1.68	12.31	1.65	1.570
	LightPat	h w/o KD											
	$\gamma = 0$		$\gamma = 0.1$ $\gamma = 0.3$		$\gamma = 0.3$	$\gamma = 0.5$		y = 0.7		y = 0.9			Para.
	GFLOPs	gMem.	GFLOPs	gMem.	GFLOPs	gMem.	GFLOPs	gMem.	GFLOPs	gMem.	GFLOPs	gMem.	raia.
50	33.68	1.78	30.64	1.70	22.55	1.61	18.47	1.53	12.39	1.47	5.70	1.41	5.525
100	66.60	2.53	60.52	2.37	48.36	2.11	36.19	1.86	24.03	1.72	11.26	1.58	5.525
150	99.53	3.44	90.41	3.23	72.16	2.76	53.91	2.35	35.65	2.03	16.82	1.82	5.525
200	132.54	4.74	120.29	4.30	95.96	3.53	71.64	2.94	47.31	2.43	22.37	2.10	5.525

AGENDA

06	Conclusions and Future Work
05	LightPath
04	Temporal Path Representation Learning
03	Path InfoMax (PIM)
02	PathRank
01	Introduction

Challenges Addressed

- Address path ranking in supervised multi-task learning.
- Learn task-unspecific path representations through mutual information maximization.
- Learn temporal path representation through weaklysupervised contrastive curriculum learning.
- Address the lightweight and scalable path representation learning based on relational reasoning and knowledge distillation.

Future work

- Stochastic Path Representation Learning
- AutoPRL

Thanks! Q&A