DML Applications

Fanisi Mbozi, Gabrielle Péloquin-Skulski and Clemente Sánchez

Recent Developments in Political Methodology | September 29th, 2025

- DML has the advantage of relaxing parametric assumptions.
 - · Don't need to assume constant treatment effect
 - Don't need to assume linearity

- DML has the advantage of relaxing parametric assumptions.
 - Don't need to assume constant treatment effect.
 - Don't need to assume linearity
- DML has the disadvantage of assumptions on the outcome model and the propensity score model.

- DML has the advantage of relaxing parametric assumptions.
 - · Don't need to assume constant treatment effect
 - Don't need to assume linearity
- DML has the disadvantage of assumptions on the outcome model and the propensity score model.
- Experimental design: treatment is random, so the propensity score is known and outcome model can *afford* to be misspecified.

- DML has the advantage of relaxing parametric assumptions.
 - · Don't need to assume constant treatment effect
 - Don't need to assume linearity
- DML has the disadvantage of assumptions on the outcome model and the propensity score model.
- Experimental design: treatment is random, so the propensity score is known and outcome model can *afford* to be misspecified.
- Observational design: both the outcome and propensity score must be correctly specified, because rate of convergence is slow.

Causal Model Choice

Partially Linear Regression

- Continuous treatment
- No heterogeneous treatment effects
- No functional form assumption for controls
- · Command: DoubleMLPLR

Interactive Regression Model

- · Dichotomous treatment
- Allows heterogeneous treatment effects
- No functional form assumption for controls
- · Command: DoubleMLIRM

Causal Model Choice

- No heterogeneous treatment effects
- · No functional form assumption for controls
- · Command: DoubleMLPLR

- Allows heterogeneous treatment effects
- · No functional form assumption for controls
- · Command: DoubleMLIRM

· Clustered Data: DML assumes i.i.d.; assign whole clusters to folds and use cluster-robust SEs (Command: DoubleMLClusterData).

Experimental design

Platas and Raffler (2021): Closing the Gap

Experiment on the effects of providing information in dominant party regimes.

- · Information asymmetry in dominant party regimes (in favor of the regime).
- Can provision of information about all parties (especially opposition ones), reduce the asymmetry in terms of voter knowledge, opposition likability or vote intentions.
- 11 constituencies in Uganda. Within each constituency randomly assign some villages to a screening of parliamentary candidate debates.
 - Constituency Fixed Effects
 - Cluster SE at village level

Main relationship:

- · Vote intention \sim Received Informational Treatment (0/1)
- · Vote (Incumbent/Opposition/Indep.) ∼ Treatment + Treatment x Covariates.

Main relationship:

- · Vote intention \sim Received Informational Treatment (0/1)
- \cdot Vote (Incumbent/Opposition/Indep.) \sim Treatment + Treatment x Covariates.

DML application for experiment

Robustness and Application Notes

• The result we replicated have a binary treatment and outcome. The classification versions of the machine learning models will likely perform better here.

Robustness and Application Notes

- The result we replicated have a binary treatment and outcome. The classification versions of the machine learning models will likely perform better here.
- For the DoubleMLIRM function, treatment is assumed to be binary, so the learner used to model the propensity score HAS to be a classification learner, not a regression one (e.g. use classif.cv_glmnet instead of regr.cv_glmnet).

Robustness and Application Notes

- The result we replicated have a binary treatment and outcome. The classification versions of the machine learning models will likely perform better here.
- For the DoubleMLIRM function, treatment is assumed to be binary, so the learner used to model the propensity score HAS to be a classification learner, not a regression one (e.g. use classif.cv_glmnet instead of regr.cv_glmnet).
- Just make a mental note that such differences in data type matter for exploring pairs of learners when using IRM vs. PLR.

Observational design

Motivating the Machine: Which Brokers do Parties Pay?

• How do elites compensate brokers for their help during elections?

- How do elites compensate brokers for their help during elections?
- While some might act due to ideological commitments, the literature suggests that most of them require material incentives.

- How do elites compensate brokers for their help during elections?
- While some might act due to ideological commitments, the literature suggests that most of them require material incentives.
- Little evidence of compensation by the literature, and what little there is focuses exclusively in the campaign season.

- · How do elites compensate brokers for their help during elections?
- While some might act due to ideological commitments, the literature suggests that most of them require material incentives.
- Little evidence of compensation by the literature, and what little there is focuses exclusively in the campaign season.
- Immediately after the election elites reward brokers that have delivered votes, but later on they reward brokers with connections.

Motivating the Machine: Which Brokers do Parties Pay?

- · How do elites compensate brokers for their help during elections?
- While some might act due to ideological commitments, the literature suggests that most of them require material incentives.
- Little evidence of compensation by the literature, and what little there is focuses exclusively in the campaign season.
- Immediately after the election elites reward brokers that have delivered votes, but later on they reward brokers with connections.

Design

• Survey of 1,000 party brokers in Ghana.

Motivating the Machine: Which Brokers do Parties Pay?

- · How do elites compensate brokers for their help during elections?
- While some might act due to ideological commitments, the literature suggests that most of them require material incentives.
- Little evidence of compensation by the literature, and what little there is focuses exclusively in the campaign season.
- Immediately after the election elites reward brokers that have delivered votes, but later on they reward brokers with connections.

Design

- Survey of 1,000 party brokers in Ghana.
- · Condition on observables.

Main relationship:

- \cdot T5: Payment immediately after election \sim Vote swing
- T6: Payment after two years ~ Number of connections

Main relationship:

- \cdot T5: Payment immediately after election \sim Vote swing
- T6: Payment after two years ~ Number of connections

Additional:

- Matrix of covariates
- Constituency fixed effects
- SEs clustered at the polling station

Main relationship:

- T5: Payment immediately after election \sim Vote swing
- T6: Payment after two years ~ Number of connections

Additional:

- Matrix of covariates
- Constituency fixed effects
- · SEs clustered at the polling station

> etable(model_replication_t5, model_replication_t6)					
			model_repl:	catio 6	
Dependent Var.:		pat_immed		t_after2	
Constant		(0.0907)	8.4557***	(8.1059)	
npp12to16_ps_swing.NEW	0.7817*	(0.3213)	-0.0481	(0.3241)	
cpgn_brok_index	8.8071	(0.0054)		(0.0081)	
cxn_up_percentage_correct_full	8.1042	(0.0953)	8.2944★	(8.1143)	
cxn_down_percentage_correct_full	0.1680*	(0.0779)	-0.1010	(0.0869)	
age	0.8011	(0.0012)	-0.0038*	(0.8017)	
fenale	0.8494	(0.0311)	8.2782***	(8.8417)	
chief_relative	0.0598.	(0.0324)	0.0244	(0.0344)	
constexec_relative	0.1299.	(0.0709)	0.0691	(0.0580)	
da_relative	-0.0593.	(0.0334)	0.0033	(8.8476)	
mpdce_relative	-0.0508	(0.0464)	-0.0918	(0.0739)	
local_eth_minority	0.0036	(0.0276)	-0.0393	(0.0347)	
lives_outside_ps	-0.0131	(0.0415)	0.0164	(8.8620)	
petty_trader	8.8093	(0.0377)	0.0439	(0.0541)	
formal_sector	0.0212	(0.0284)	-0.0686.	(0.0394)	
asset_index	0.0162.	(0.0082)	-0.0200.	(8.8189)	
years_active_npp	8.8010	(0.0021)	-0.0029	(8.8020)	
years_comm	0.8010	(0.0008)	0.0022.	(0.0013)	
km_to_capital_wave1	3.65e-5	(0.0023)	-0.0010	(8.8023)	
wealth_index_2km.x	-0.0347	(0.0342)	-0.0171	(0.0337)	
bio_educ_2	-8.8084	(0.0227)	0.0039	(0.0348)	
bio_educ_3	0.0379	(0.0491)	0.0306	(0.8617)	

(.114)

DML application for observational study

Five-fold cross-fitting and 20 repetitions

Balance of covariates

General propensity approach

General propensity approach

Conclusions

• Learner choice matters — compare multiple learners.

- Learner choice matters compare multiple learners.
- Tuning parameters matter more repetitions = more stable estimate; more folds = less overfitting.

- Learner choice matters compare multiple learners.
- Tuning parameters matter more repetitions = more stable estimate; more folds = less overfitting.
- Divergence across learners indicates sensitivity to functional form.

- Learner choice matters compare multiple learners.
- Tuning parameters matter more repetitions = more stable estimate; more folds = less overfitting.
- · Divergence across learners indicates sensitivity to functional form.
- Differences with OLS suggest (1) treatment effect heterogeneity, (2) nonlinearity, or (3) limited overlap.

- Learner choice matters compare multiple learners.
- Tuning parameters matter more repetitions = more stable estimate; more folds = less overfitting.
- · Divergence across learners indicates sensitivity to functional form.
- Differences with **OLS** suggest (1) treatment effect heterogeneity, (2) nonlinearity, or (3) limited overlap.
- Random assignment ensures the propensity score model is correct, eliminating possibility of bias.

- Learner choice matters compare multiple learners.
- Tuning parameters matter more repetitions = more stable estimate; more folds = less overfitting.
- · Divergence across learners indicates sensitivity to functional form.
- Differences with **OLS** suggest (1) treatment effect heterogeneity, (2) nonlinearity, or (3) limited overlap.
- Random assignment ensures the propensity score model is correct, eliminating possibility of bias.
- Binary vs. continuous treatments rely on different estimators (AIPW vs. PLR).

- Learner choice matters compare multiple learners.
- Tuning parameters matter more repetitions = more stable estimate; more folds = less overfitting.
- · Divergence across learners indicates sensitivity to functional form.
- Differences with OLS suggest (1) treatment effect heterogeneity, (2) nonlinearity, or (3) limited overlap.
- Random assignment ensures the propensity score model is correct, eliminating possibility of bias.
- Binary vs. continuous treatments rely on different estimators (AIPW vs. PLR).
- Standard DML assumes i.i.d.; clustering requires adjustments.

Appendix

Repeating estimation 100 times (Brierley and Nathan, 2022)

DML with continuous treatment and i.i.d. SEs

```
_ R Code -
data dml <- data |>
  # turn into data table
  as.data.table() |>
  # create the DML data object
  DoubleMLData$new(y col = outcome,
                   d_{cols} = treatment.
                   x cols = c(covariates, dummies))
# define learner as random forest
learner <- lrn("regr.ranger")</pre>
# obtain two clones of the learner
ml l sim <- learner$clone()</pre>
ml m sim <- learner$clone()</pre>
dml object <- data dml |>
  # specify the learners
  DoubleMLPLR$new(ml l = ml l sim, ml m = ml m sim,
                   # use 5-fold cross-fitting and 20 rounds
                  n_folds=5, n_folds=20)
# fit the model
dml object$fit()
# extract the coefficients and standard errors
coefficients <- tibble(estimate = dml object$coef, se = dml object$se)
```

DML with continuous treatment and clustering

```
R Code -
data dml <- data |>
  # turn into data.table
  as.data.table() |>
 # create the DML data object (note the change in function)
  DoubleMLClusterData$new(y col = outcome,
                           d cols = treatment,
                           x_{cols} = c(covariates, dummies),
                           # kev change
                           cluster cols = clusters)
# define learner as random forest
learner <- lrn("regr.ranger")</pre>
# obtain two clones of the learner
ml l sim <- learner$clone()</pre>
ml m sim <- learner$clone()</pre>
dml object <- data dml |>
  # specify the learners
  DoubleMLPLR$new(ml_l = ml_l_sim, ml_m = ml_m_sim,
                   # use 5-fold cross-fitting and 20 rounds
                   n \text{ folds=5}, n \text{ rep=20}
# fit the model
dml object$fit()
# extract the coefficients and standard errors
coefficients <- tibble(estimate = dml_object$coef, se = dml object$se)</pre>
```

DML Interactive Regression Model and Clustering

```
_____ R Code _____
data dml <- data |>
  # turn into data table
  as.data.table() |>
  # create the DML data object (note the change in function)
  DoubleMLClusterData$new(y col = outcome,
                          d cols = treatment,
                          x cols = c(covariates, dummies).
                          # kev change
                          cluster cols = clusters)
# define learner as random forest
learner <- lrn("classif.ranger")</pre>
# obtain two clones of the learner
ml g = learner$clone() # outcome model
ml m = learner$clone() # treatment model-must be classification learner
dml object <- data dml |>
  # specify the learners
  DoubleMLIRM$new(dml cl obj, ml_g, ml_m, n_folds=5)
# fit the model
dml object$fit()
# extract the coefficients and standard errors
coefficients <- tibble(estimate = dml object$coef, se = dml object$se)
```