Khatri-Rao Products and Conditions for the Uniqueness of PARAFAC Solutions for IxJxK Arrays

Heather M. Bush, REGISTRAT William S. Rayens, University of Kentucky

TRICAP – June 7, 2008

Outline

- Column and Orthogonal Complement (OC) Spaces
- Uniqueness questions and OC Spaces
- Results from OC Spaces

Uniqueness

- X is a 3-way array of order IxJxK
- PARAFAC decomposes the slices of the array as
 X_k=AC_kB^t + E_k
 - A_{IxR}; B_{JxR}; C_{KxR}
- Suppose there exists another decomposition
 X_k=GD_kH^t + E_k
 - ∘ G_{IxR}; H_{JxR}; D_{KxR}
- The decomposition is unique if every alternative satisfies: $G=A\Pi\Lambda_1$; $H=B\Pi\Lambda_2$; $D=C\Pi\Lambda_3$
 - Π is a permutation matrix and Λ_i is diagonal and $\Lambda_1\Lambda_2\Lambda_3=I_R$

KR Products

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & \mathbf{a}_1 \\ 0 & 1 & 0 & \mathbf{a}_2 \\ 0 & 0 & 1 & \mathbf{a}_3 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 & b_1 \\ 0 & 1 & 0 & b_2 \\ 0 & 0 & 1 & b_3 \end{pmatrix}$$

Summary

The decomposition is considered without error

$$X = (A \circ B)C^{t}$$

- KR products are full column rank (Liu and Sidiropoulos, 2001)
- The KR product is a basis for the column space
- Is the KR product (A

 B) the only KR product that generates the columns of X?
- The alternative is assumed to be X = (G₀H)D^t
- The component matrices are investigated in reduced form (characterizing the k-rank and rank)

Column Spaces

$$X = (A \circ B)C'$$

 The KR product representation of the PARAFAC suggests that the columns of X are linear combinations of the columns of the KR product

$$\boldsymbol{X} = \begin{bmatrix} \left(\boldsymbol{\mathsf{A}} \circ \boldsymbol{\mathsf{B}} \right) \boldsymbol{\mathsf{c}}_1^t & \left(\boldsymbol{\mathsf{A}} \circ \boldsymbol{\mathsf{B}} \right) \boldsymbol{\mathsf{c}}_2^t & \cdots & \left(\boldsymbol{\mathsf{A}} \circ \boldsymbol{\mathsf{B}} \right) \boldsymbol{\mathsf{c}}_k^t \end{bmatrix}_{\mathsf{IJxK}}$$

 So...the columns of X are generated from the columns of the KR product (A•B)

Investigating Column Spaces

- Replacement
 - Used when the elements can be switched without changing the column space
- Transformation
 - Used when one of the loading matrices has full-column rank

- Finding a non-trivial alternative basis for the column space implies a non-unique decomposition
 - Once one is found, all decompositions with that KR product can also be considered non-unique

Reduced Forms

Instead of considering loading matrices of the form

$$\begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 & a\alpha_1 + b\beta_1 \\ \alpha_2 & \beta_2 & \gamma_2 & a\alpha_2 + b\beta_2 \\ \alpha_3 & \beta_3 & \gamma_3 & a\alpha_3 + b\beta_3 \end{pmatrix}$$

loading matrices in reduced form were considered

$$\begin{pmatrix}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & 0
\end{pmatrix}$$

Key Elements Learned

- The KR product allows us to talk about decompositions in column space language
- The properties of symmetry that applied for the "slab" notation also apply
- Matrices and the resulting KR products can be considered in "reduced form".
- More to uniqueness than k-rank?

When k-rank didn't give the full story

- R = 4
- M_1 : rank = 3 and k-rank = 2
- **M**₂: rank = 3 and k-rank = 2
- M₃: full column rank (rank = k-rank = 4)

$$\begin{pmatrix}
1 & 0 & 0 & x \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & z
\end{pmatrix}
\qquad
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z
\end{pmatrix}
\qquad
\begin{pmatrix}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & 0
\end{pmatrix}$$

When k-rank didn't give the full story

(1	0	0	X			
0	0	0	0			
0	0	0	X			
0	0	0	0			
0	1	0	0			
0	0	0	0			
0	0	0	X			
0	0	0	0			
0	0	1	X			
Same position						

Different position

Orthogonal Complement Spaces (OCS)

What's different about an OCS approach?

Column Spaces and Orthogonal Complement Spaces

Column Space Approach

Orthogonal Complement Space Approach

Finding OC Constraints: The Steps

- Suppose you have A∘B
- 2. Assume that an alternative **A**°**B** exists, represented by **G**°**H**
- 3. Find basis vectors for the null space of (A°B)^t
- 4. Take the inner product of the columns of the **G**°**H** and the null space basis vectors
- 5. Set equal to 0 (orthogonal) and solve

The constraints that result will determine if non-trivial alternatives are possible

$$\mathbf{M_1} = \begin{pmatrix} 1 & 0 & 0 & \mathbf{a_1} \\ 0 & 1 & 0 & \mathbf{a_2} \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$M_2 = 0 1 0 b_2$$

$$\mathbf{M_1} = \begin{pmatrix} 1 & 0 & 0 & a_1 \\ 0 & 1 & 0 & a_2 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{M_2} = \begin{pmatrix} 1 & 0 & 0 & b_1 \\ 0 & 1 & 0 & b_2 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{M_2} = \begin{pmatrix} 1 & 0 & 0 & b_1 \\ 0 & 1 & 0 & b_2 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{bmatrix} \begin{bmatrix} 0 \\ -\frac{b_1 a_2}{b_2 a_1} \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0$$

1 0 0
$$a_1b_1$$

0 0 0 a_1b_3
0 0 0 a_2b_1
0 1 0 0
0 0 0 a_2b_3
0 0 0 0
0 0 0 0
0 0 1 0

$$\begin{bmatrix}
0 \\ 0 \\ -\frac{b_1 a_2}{b_3 a_1} \\
1 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0
\end{bmatrix}
\begin{bmatrix}
0$$

OCSA: OC Constraints

Non-Separable Constraints

$$\frac{h_2 g_1}{h_1 g_2} = \frac{b_2 a_1}{b_1 a_2}$$

Non-trivial transformations

Separable Constraints

$$\frac{g_1}{g_2} = \frac{a_1}{a_2},$$

$$\frac{h_1}{h_3} = \frac{b_1}{b_3}$$

Trivial transformations

OCSA: Utilizing Symmetry

- If an alternative KR product can be found that is nontrivial transformation, then all PARAFAC decompositions with that KR product are non-unique
- A PARAFAC decomposition is unique if every alternative KR product can only be a trivial transformation.

OCSA: When R = 4

k-rank (M ₁)	k-rank (M ₂)	rank(M₁)	rank(M ₂)	P/S Only?
2	2	2	2	No
2	2	2	3	No
2	2	3	3	Yes/No
2	3	2	3	No
2	3	3	3	Yes
2	4	2	4	Yes
2	4	3	4	Yes
3	3	3	3	Yes*
3	4	3	4	Yes

k-rank (M ₁)	rank(M ₁)	k-rank (M ₂)	rank(M ₂)	k-rank (M ₃)	rank(M ₃)	Uniqueness?
2	2	2	2	2	2	No
2	2	4	4	2	2	No
2	3	4	4	2	2	No
3	3	3	3	2	2	No
3	3	4	4	2	2	No
2	2	2	3	2	2	No
2	2	3	3	2	2	No
2	2	3	3	4	4	No
2	3	2	3	2	2	No
2	3	3	3	2	2	No
2	3	2	3	2	3	No/Yes
2	3	3	3	2	3	No/Yes
2	3	4	4	2	3	No/Yes
3	3	3	3	2	3	Yes
3	3	3	3	3	3	Yes*
3	3	4	4	2	3	Yes

OCSA: Conclusions for R = 4

- Necessary and Sufficient Conditions for uniqueness (when k-rank=rank)
 - A PARAFAC decomposition is unique if and only if r(M_i) + r(M_j) ≥ R + 2, for all i≠j
- Conditions for uniqueness
 - If two of the matrices have k-rank < rank, you will need to look at the number of OC constraints
 - Otherwise, A PARAFAC decomposition is unique if and only if
 r(M_i) + r(M_j) ≥ R + 2, for all i≠j

OCSA: Conclusions

- The OCSA provided a method for determining if alternative KR products could have non-trivial transformations
- The OC constraints offered an explanation of uniqueness when k-rank couldn't.
- Based on the OC constraints, it was possible to determine if PARAFAC decompositions were unique
- Being able to "look" at decomposition uniqueness provided necessary and sufficient conditions for uniqueness for R = 4, 5, and 6 (k-rank = rank)

Discussion

- The tools we have...
 - KR products allow the use of linear algebra
 - Simplification allows for a better "view" of the decomposition
 - The OCSA provides a straightforward approach for determining if decompositions are unique for any R
- We need...
 - A better "tool" for determining which alternatives are truly alternatives
 - With more information on the decompositions that are unique, it will be possible to provide further empirical evidence for what causes uniqueness
- It looks like the key to defining necessary and sufficient conditions could rest with orthogonal complement spaces

Selected References

- Harshman, R.A. 1972. Determination and proof of minimum uniqueness conditions for PARAFAC1. UCLA Working Papers in Phonetics 22: 111-117.
- Kruskal, J.B. 1977. Three-way arrays: Rank and uniqueness of trilinear decompositions with application to arithmetic complexity and statistics. *Linear Algebra Appl.* 18: 95-138.
- Bro, R. 1998. Multi-way Analysis in the Food Industry. Models, algorithms and Applications, Ph.D. Thesis, University of Amsterdam, The Netherlands.
- ten Berge, J.M. and Sidiropoulos, N.D. 2002. On uniqueness in CANDECOMP/PARAFAC. Psychometrika 67: 399-409.

Extra Slides

OC Spaces and Column Spaces

- Column Space of : 𝒯(A°B)
- Null Space of (A°B)^t: N((A°B)^t)
- All vectors orthogonal to [N((A°B)t)] are elements of C(A°B)
- So...we need to find an alternative KR product that has columns that are orthogonal to [X((A°B)t)]

Sample MAPLE Code

```
with(LinearAlgebra):
A:=Matrix(3,4,[[1,0,0,a[1]],[0,1,0,0],[0,0,1,a[3]]);
B:=Matrix(3,4,[[1,0,0,b[1]],[0,1,0,0],[0,0,1,b[3]]]);
AB:=Matrix(9,4,[convert((OuterProductMatrix(B[1..3,1],A[1..3,1])),Vector),convert((OuterProductMatrix(B[1..3,2],A[1..3,
                2])),Vector),convert((OuterProductMatrix(B[1..3,2],A[1..3,3])),Vector),convert((OuterProductMatrix(B[1..3,4],A[1..3,4])),Vector));
G:=Matrix(3,4,[[1,0,0,g[1]],[0,1,0,g[2]],[0,0,1,g[3]]);
H:=Matrix(3,4,[[1,0,0,h[1]],[0,1,0,h[2]],[0,0,1,h[3]]);
GH:=Matrix(9,4,[convert((OuterProductMatrix(H[1..3,1],G[1..3,1])),Vector),convert((OuterProductMatrix(H[1..3,2],G[1..3,2])),Vector),convert((OuterProductMatrix(H[1..3,3],G[1..3,3])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,3])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,3])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,3])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,3])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,3])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,3])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,3])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,3])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,3])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,4])),Vector),
                 4111.Vector(1):
NAB:=NullSpace(Transpose(AB));
eqns:={Multiply(Transpose(NAB[1]),GH[1..9,4])=0,Multiply(Transpose(NAB[2]),GH[1..9,4])=0,Multiply(Transpose(NAB[3]),GH[1..9,4])=0,Multiply(Transpose(NAB[4]),GH[1..9,4])=0,Multiply(Transpose(NAB[5]),GH[1..9,4])=0,a[1]<>0,a[2]
                 <>0.a[3]<>0.b[1]<>0.b[2]<>0.b[3]<>0);
solve(eqns);
```

OCSA: When R = 5 (k-rank = rank)

k-rank (M1)	k-rank (M2)	rank(M1)	rank(M2)	P/S Only?
2	2	2	2	No
2	3	2	3	No
2	4	2	4	No
2	5	2	5	Yes
3	3	3	3	No
3	4	3	4	Yes
3	5	3	5	Yes
4	4	4	4	Yes
4	5	4	5	Yes

k-rank (M1)	rank(M1)	k-rank (M2)	rank(M2)	k-rank (M3)	rank(M3)	Uniqueness?
2	2	2	2	2	2	No
2	2	3	3	2	2	No
2	2	4	4	2	2	No
2	2	5	5	2	2	No
3	3	3	3	2	2	No
3	3	4	4	2	2	No
3	3	5	5	2	2	No
4	4	4	4	2	2	No
4	4	5	5	2	2	No
2	2	5	5	3	3	No
3	3	3	3	3	3	No
3	3	4	4	3	3	No
3	3	5	5	3	3	No
4	4	4	4	3	3	Yes

OCSA: When R = 6 (k-rank = rank)

k-rank (M1)	k-rank (M2)	rank(M1)	rank(M2)	P/S Only?
2	2	2	2	No
2	3	2	3	No
2	4	2	4	No
2	5	2	5	No
2	6	2	6	Yes
3	3	3	3	No
3	4	3	4	No
3	5	3	5	Yes
3	6	3	6	Yes
4	4	4	4	Yes
4	5	4	5	Yes
4	6	4	6	Yes
5	5	5	5	Yes
5	6	5	6	Yes

k-rank (M1)	rank(M1)	k-rank (M2)	rank(M2)	k-rank (M3)	rank(M3)	Uniqueness?
2	2	2	2	2	2	N
2	2	3	3	2	2	N
2	2	4	4	2	2	N
2	2	5	5	2	2	N
2	2	6	6	2	2	N
3	3	3	3	2	2	N
3	3	4	4	2	2	N
3	3	5	5	2	2	N
3	3	6	6	2	2	N
4	4	4	4	2	2	N
4	4	5	5	2	2	N
4	4	6	6	2	2	N
5	5	5	5	2	2	N
5	5	6	6	2	2	N
3	3	3	3	3	3	N
3	3	4	4	3	3	N
3	3	5	5	3	3	N
3	3	6	6	3	3	N
4	4	4	4	3	3	N
4	4	5	5	3	3	N
4	4	6	6	3	3	N
5	5	5	5	3	3	Y
4	4	4	4	4	4	Y
4	4	5	5	4	4	Υ

Kruskal and Pairwise Combinations

•
$$k_A+k_B+k_C \ge 2R+2$$

•
$$k_C \le R$$

$$k_A+k_B \ge 2R + 2 - k_C$$

 $\ge 2R + 2 - R$
 $= R + 2$

$$r_A + r_B \ge 2R + 2$$