DEVOIR SURVEILLÉ

E.P.U. de Nice Sophia-Antipolis C.i.p.1

La présentation et la rédaction interviennent pour une part importante dans la notation.

CALCULATRICES INTERDITES

Exercice I

Dérivation. 2 questions indépendantes :

1) On considère les 4 fonctions définies par :

$$f_1(x) = x^{10}$$
; $f_2(x) = 10^x$; $f_3(x) = \tan(\cos x)$; $f_4(x) = \sqrt{\arccos(x)}$.

a) Déterminer les 2 ensembles de définition de f₃ et de f₄.

b) Déterminer les 4 expressions des dérivées $f'_k(x)$.

2) Soit $f:(x,y)\mapsto x\arctan(2x+y^2)$.

Déterminer l'ensemble de définition \mathcal{D}_f de f et les 2 dérivées partielles premières $\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)$.

Exercice II

Intégration. 2 questions indépendantes :

1) Calculer

$$I_1 = \int_1^2 x^2 \sqrt{2 + x^3} \, dx$$
 , $I_2 = \int_0^{\frac{\pi}{2}} \cos^4 x \, \sin x \, dx$, $I_3 = \int_0^{\frac{\pi}{2}} \cos^4 x \, dx$.

2) Soit
$$u_n = \sqrt[n]{\prod_{k=1}^n \left(1 + \frac{k}{n}\right)}$$
.

a) Que vaut $\ln u_n$? Interpréter $\ln u_n$ comme une valeur moyenne.

b) En déduire : $\lim_{n\to+\infty} \ln u_n$ puis $\lim_{n\to+\infty} u_n$.

Exercice III

Deux équations différentielles (les 2 questions sont indépendantes) :

1) Résoudre l'équation différentielle : $y'' + y' + 2y = xe^x$.

2) On considère un solide de masse m , suspendu à un ressort de raideur k; on supposera que la force de résistance due à l'air , est (en norme) proportionnelle à la vitesse , f désignant alors le coefficient de proportionnalité dit de frottement

On repère la position du solide à l'instant t par l'abscisse x(t) de son centre de gravité G relativement au repère (O, \overrightarrow{i}) , O étant confondu avec G quand il n'y pas tension du ressort .

a) Prouver que x vérifie l'équation différentielle : mx''(t) + fx'(t) + kx(t) = mg.

b) La résoudre dans le cas où :

m=1kg; f=3 (N.sec/m); k=5(N/m) et en prenant g=10m/(sec)². Déterminer $\lim_{t\to +\infty} x(t)$.

