4. FLUID KINEMAT

FLUID KINEMATICS: Study of the fluid flow without considering the forces causing the flow.

APPROACHES		
LAGRANGIAN APPROACH	EULERIAN APPROACH	
Partial Oriented Approach	Position Oriented Approach	
$\overrightarrow{S} = f(\overrightarrow{S_0}, t)$	$\overrightarrow{S} = f(\overrightarrow{P}, t)$	
Where, \overrightarrow{S} = Identity of Partial,	$Where, \overrightarrow{S} = Identity of Partial,$	
$\overrightarrow{S_0}$ = Initial Identity of Partial	\overrightarrow{P} = Position Vector or Space Coordinates	
Conservations Laws are applied to partials	Conservations Laws are applied to Control volume	
It's system approach	It's Control volume approach	
	Most Commonly used due to simplicity of analysis.	

VELOCITY: Time rate of change of displacement. It's vector quantity.

+ 220 c11 1v 1 mio and of change of displacements is 8 + over quantity.		
Velocity in Cartesian Co-Ordinate System (x, y, z) ,	Velocity in Cylindrical Polar Co-Ordinate System (r, θ, z) ,	
$\overrightarrow{V} = u\hat{\imath} + v\hat{\jmath} + w\hat{k} = f(x, y, z, t)$	$\overrightarrow{V} = V_r \hat{\imath} + V_\theta \hat{\jmath} + V_z \hat{k} = f(r, \theta, z, t)$	
$u = \frac{dx}{dt} = f_1(x, y, z, t)$	$V_r = \frac{dr}{dt} = f_1(r, \theta, z, t)$	
$v = \frac{dy}{dt} = f_2(x, y, z, t)$	$V_{\theta} = r \frac{d\theta}{dt} = f_2(r, \theta, z, t)$	
$w = \frac{dz}{dt} = f_3(x, y, z, t)$	$V_z = \frac{dz}{dt} = f_3(r, \theta, z, t)$	

CLASSIFICATION OF FLOW		
STEADY FLOW	UNIFORM FLOW	
It's Flow in which velocity and other hydrodynamic	It's Flow in which velocity doesn't fluctuate or change	
parameters don't fluctuate w. r. t. time. $\overrightarrow{V} \neq f(t)$	w. r. t. Space. $\overrightarrow{V} \neq f(x, y, z)$	
VISCOUS FLOW	1D, 2D, 3D	
It's Flow in which Newtons Law is valid. It's non	It's Flow in which Flow is function of No. of Space	
uniform flow. Because $u = f(y)(du/dy \ term)$	Parameters.	

MASS FLOW RATE (\dot{m}): Amount of mass crossing a section per unit time.

 $\dot{m} = \rho AV$, Where V = Avg. Velocity of flow through the cross section

VOLUME FLOW RATE/ DISCHARGE (Q): Amount of volume crossing a section per unit time.

 $Q = AV = \dot{m} / \rho$, Where V = Avg. Velocity of flow through the cross section

CONTINUITY EQUATION: The result of law of conservation of mass in a fluid flow is continuity equation.

Continuity equation in cartesian co-ordinate system: $\nabla \cdot \left(\rho \ \overrightarrow{V} \right) + \dot{\rho} = 0$

For Steady flow in cartesian co-ordinate system: $\nabla \cdot (\rho \overrightarrow{V}) = 0$ For Incompressible $\nabla \cdot \overrightarrow{V} = 0$

 $\overline{\text{CONSERVATION OF MASS: } \dot{m}_{in} - \dot{m}_{out} = \dot{m}_{gen}}$

 $\dot{m}_{in} = \dot{m}_{out} \Rightarrow (\rho AV)_{in} = (\rho AV)_{out}$ (: Neither mass generation nor mass consumtion)

ACCELERATION: Time rate of change of velocity.

Velocity in Cartesian Co-Ordinate System
$$(x,y,z)$$
, $\overline{a}' = a_x \hat{i} + a_y \hat{j} + a_z \hat{k} = g(x,y,z,t)$ $\overline{V}' = a_r \hat{i} + a_\theta \hat{j} + a_z \hat{k} = g(r,\theta,z,t)$ $\overline{V}' = a_r \hat{i} + a_\theta \hat{j} + a_z \hat{k} = g(r,\theta,z,t)$ $a_r = \frac{dV_r}{dt} = g_1(r,\theta,z,t)$ $a_r = \frac{dV_r}{dt} = g_2(r,\theta,z,t)$ $a_r = \frac{dV_$

$$du = (\delta u)_x + (\delta u)_y + (\delta u)_z + (\delta u)_t = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz + \frac{\partial u}{\partial t} dt \Rightarrow \frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} + \frac{\partial u}{\partial z} \frac{dz}{dt} + \frac{\partial u}{\partial t} \frac{dz}{dt}$$

$$a_x = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} + \frac{\partial u}{\partial t}$$

$$a_y = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + \frac{\partial v}{\partial t}$$

$$a_z = u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} + \frac{\partial w}{\partial t}$$

MATERIAL DERIVATIVE: $DM/Dt = (\overrightarrow{V} \cdot \nabla) M + \dot{M}$

Local/ Temporal Change Terms: M	Convective Change Terms: (\overrightarrow{V})	$\cdot \nabla) M$
---------------------------------	---	--------------------

$$a_{r} = V_{r} \frac{\partial V_{r}}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_{r}}{\partial \theta} + V_{z} \frac{\partial V_{r}}{\partial z} + \frac{\partial V_{r}}{\partial t} \qquad a_{\theta} = V_{r} \frac{\partial V_{\theta}}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta} + V_{z} \frac{\partial V_{\theta}}{\partial z} + \frac{\partial V_{\theta}}{\partial t} \qquad a_{z} = V_{r} \frac{\partial V_{z}}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_{z}}{\partial \theta} + V_{z} \frac{\partial V_{z}}{\partial z} - \frac{V_{\theta}V_{r}}{r} (Coriolli.) \qquad + \frac{\partial V_{z}}{\partial t}$$

$$a_{\theta} = V_{r} \frac{\partial V_{\theta}}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta} + V_{z} \frac{\partial V_{\theta}}{\partial z} + \frac{\partial V_{\theta}}{\partial t} - \frac{V_{\theta}V_{r}}{r} (Coriolli.)$$

$$a_z = V_r \frac{\partial V_z}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_z}{\partial \theta} + V_z \frac{\partial V_z}{\partial z} + \frac{\partial V_z}{\partial t}$$

STREAM LINE: A set of imaginary curves drawn in a flow field at given instant of time such that tangent at any point represent the direction of velocity vector for the same position.

STREAM TUBE: A bundle of stream line forming a passage through which flow can be visualized.

PROPERTIES OF STREAMLINES AND STREAM TUBES:

- 1. The streamlines cannot intersect each other nor can a streamline interest itself.
- 2. Flow is possible only along the stream line. It's impossible across stream line.
- In Steady flow streamlines don't fluctuate w. r. t. time

2. In Steway 116 W Strommings don't individual W. 1. t. time.	
EQUATION OF STREAM LINES:	dx dy dz
$\overrightarrow{V} \times d\overrightarrow{S} = 0$ (Because Both are in same direction)	$\frac{u}{u} = \frac{u}{v} = \frac{u}{w}$
Slope of stream line = Slope of velocity vector	

ACCELERATIONS W.R.T. STREAM LINES: There are two mutually perpendicular accelerations developed,

 $a = \sqrt{a_s^2 + a_n^2}$ $a_s = \frac{\partial V_s}{\partial t} + V_s \frac{\partial V_s}{\partial s}$ $a_n = \frac{\partial V_n}{\partial t} + V_s \frac{V_s^2}{r}$ 1. Tangential Acceleration (a_s) Normal Acceleration (a_n)

PATH LINE: The path travelled by a particular particle (Lagrangian Approach) in a flow field over a period of time. PROPERTIES OF PATH LINES:

- The Path lines can be intersected each other and it can interest itself but only in unsteady flow.
- In Steady flow Path lines don't fluctuate w. r. t. time and Path lines = Stream lines.

STREAK LINES: It's instantaneous line obtained by joining position of different fluid particles which have sequentially passed thorough same point in the flow. E.g. Die injected in the flow.

TIMELINE: A set of curves drawn in a flow field which represent the positions of a set of neighbouring particles at which various instance of times. E.g. hydrogen bubbles forming velocity profiles.

Timelines help in understanding the uniformity or non-uniformity of a flow.

DEFORMATIONS & ROTATIONS:

CIRCULATION (Γ): The line integral of tangential component of velocity	$\Gamma = \oint \overrightarrow{V} \cdot d\overrightarrow{S} = \iint \overrightarrow{\xi} \cdot d\overrightarrow{A}$
taken across a closed contour is known as circulation.	$\mathbf{r} = \mathbf{y} \mathbf{v} \mathbf{u} \mathbf{s} = \mathbf{j} \mathbf{j} \mathbf{v} \mathbf{u} \mathbf{s}$

NOTE: Intensity of circulation per unit area is known as vorticity.

CLASSIFICATION OF FLOW BASED ON ROTATION			
ROTATIONAL FLOW	IRROTATIONAL FLOW		
A Flow in which Fluid Element rotates about it's mass	A Flow in which Fluid Element doesn't rotates about		
centre.	it's mass centre.		
$\overrightarrow{\xi} \neq 0$	$\overrightarrow{\xi} = \Gamma = \overrightarrow{\omega} = 0$		

Flux P of Q is defined as $P = \iint \overrightarrow{Q} \cdot d\overrightarrow{A}$

STREAM FUNCTION (ψ):

A function defined in a 2D Flow field such that it takes a constant value along a particular stream line.

For Given Stream Line, $d\psi = 0$ & $u = -\frac{\partial \psi}{\partial y}$, $v = \frac{\partial \psi}{\partial x}$ $|\Delta \psi| = q = Q/\text{width}$ Note: Sign is not an issue.

- 1. The difference in stream function gives the discharge per unit width between corresponding stream lines.
- 2. Discharge per unit width across any section between two given stream lines is a constant.

POTENTIAL FUNCTION (\emptyset): $\vec{\xi} = \nabla \times \vec{V} = \vec{0}$ (Irrotational Flow) $\Rightarrow \vec{V} = \nabla \cdot \emptyset$ (From the Maths Basics) Irrotational flow is also called as potential flow (From the above equation).

$\emptyset = f(x, y, z)$	дØ	дØ	∂Ø	Note: Negative Sign represents that the flow takes place in
	$u = -\frac{\partial}{\partial x}, v =$	$=-\frac{1}{\partial y},z$	$=-\frac{1}{\partial z}$	the direction of decrease in potential. Sign is not an issue.

EQUIPOTENTIAL LINES: A set of curves along which \emptyset takes constant value. $d\emptyset = 0$

$$d\emptyset = \frac{\partial \emptyset}{\partial x} dx + \frac{\partial \emptyset}{\partial y} + dy = u \ dx + v \ dy$$

$$\left(\frac{dy}{dx}\right)_{EPL} \left(\frac{dy}{dx}\right)_{StreamLine} = -1, \left(\frac{dy}{dx}\right)_{EPL} = -\frac{u}{v}$$

The stream lines and equipotential lines are orthogonal to each other except stagnation point.

FLOWNET: A grid formed by drawing stream lines and equipotential lines is known as flow net.

STAGNATION POINT: The Point in a flow field at which all the components of velocity drop down to zero.

• At the stagnation point velocity is zero. So, we can't define Slope of equipotential Lines and Slope of stream lines at stagnation point.

LAPLACE EQUATION FOR STREAM FUNCTIONS AND POTENTIAL FUNCTIONS:

$$\nabla^2 \emptyset = 0$$

Laplace equation (Above Equation) represents possible case of incompressible and irrotational flow.

$$\nabla^2 \psi = \mathbf{0}$$

Laplace equation (Above Equation) represents possible case of irrotational flow.