Nicholas Langevin (111 184 631)

Alexandre Turcotte (111 172 613)

 $\begin{array}{c} {\rm Math\acute{e}matiques~actuarielles~IARD~1} \\ {\rm ACT\text{-}2005} \end{array}$

Travail pratique 2

Travail présenté à Andrew Luong

École d'actuariat Université Laval Automne 2018

Question 1

Méthode de vraisemblance avec données complètes

a) Estimation des paramètres

Les données utilisées pour ce problème se trouvent dans l'annexe sous la question 1. À partir de ces données, il a été possible d'estimer les paramètres μ et σ d'une loi log normale à partir de la méthode de vraisemblance, car le jeu de données donne de l'information sur la distribution de X, soit $f_X(x)$, $S_X(x)$ et $F_X(x)$. Les étapes à suivrent sont donc les suivantes :

- Déterminer la fonction $g(X, \mu, \sigma)$.
- Appliquer la vraisemblance $L(\theta) = \prod_{i=1}^n g(X,\mu,\sigma)$
- Appliquer la log vraisemblance $l(\theta) = In(L(\theta)) = In(\prod_{i=1}^{n} g(X, \mu, \sigma))$
- Dériver selon $\mu : \frac{d}{d\mu}l(\theta)$
- Dériver selon $\sigma: \frac{d}{d\sigma}l(\theta)$
- Isoler les paramètres

Mettre chacune des étapes intermédiaires + calculs + SAS surment Mettre le code dans l'annexe

Les estimateurs de la loi log normale, selon la méthode de vraisemblance, sont $\hat{\mu} = ????$ et $\hat{\sigma} = ????$.

[1] 1500 6000 3500 3800 1800 5500 4800 4200 3900 3000

	mu	sigma
1	8.1618	0.4278

Table 1: Paramètres estimés d'une loi log-normale à l'aide du maximum de vraisemblance

b) Détermination des primes stop-loss

En ayant obtenu les estimés des paramètres à la question a), il est maintenant possible d'effectuer divers calculs puisque la distribution du modèle est maintenant connu. Par conséquent, il est possible de calculer la prime stop-loss $E[(X-d)_+]$, et ce, pour différentes valeurs de déductible, soit $d=2000, 2100, \ldots, 3000$ (accroissement par tranche de 100).

il faut faire une intégrale - méthode analytique

Expliquer un peu la démarche et mettre résultats au fur à mesure ici

Mettre commentaires (impact d'augmenter d, probabblement que la prime va diminuer)

c) Détermination des primes limited loss

Maintenant, toujours en utilisant les paramètres estimés en a), il faut désormais calculer les primes limited loss, sans déductible, et ce, pour différentes limites supérieure, soit $u = 3000, 3100, \ldots, 4000$ (accroissement par tranche de 100).

	d	Prime
1	2000	1872.5736
2	2100	1783.0847
3	2200	1695.7633
4	2300	1610.7845
5	2400	1528.3012
6	2500	1448.4425
7	2600	1371.3131
8	2700	1296.9934
9	2800	1225.5400
10	2900	1156.9871
11	3000	1091.3484

Table 2: Valeurs de la prime STOP-LOSS pour chaque déductible d donnée

Expliquer un peu la démarche et mettre résultats au fur à mesure ici Mettre commentaires (impact d'augmenter d, probablement que la prime va diminuer)

	u	Prime
1	3000	2748.9541
2	3100	2811.6843
3	3200	2871.5287
4	3300	2928.5251
5	3400	2982.7242
6	3500	3034.1882
7	3600	3082.9884
8	3700	3129.2039
9	3800	3172.9195
10	3900	3214.2249
_11	4000	3253.2129

Table 3: Valeurs de l'espérance limitée pour chaque limite u donnée

d) Détermination de la prime stop-loss par simulation avec un déductible d=2000

Il est également possible d'approximer la prime stop-loss par simulation. Alors, il est possible de tirer un échantillon de loi log-normale suffisament grand pour estimer la prime stop-loss. Cela a été fait avec un $m=100\,000,\,500\,000$ et 1 000 000.

commentaire et comparaison avec b)

	m	approximation
1	100000	1870.3686
2	500000	1871.5951
3	1000000	1874.4056

Table 4: Valeurs approximées par simulations de la prime STOP-LOSS ayant un déductible de 2000

Annexe

Question 1

a) Estimation des paramètres

```
# Données utilisées afin de compléter le numéro 1
data <- c(1500, 6000, 3500, 3800, 1800, 5500, 4800, 4200, 3900, 3000)
## [1] 1500 6000 3500 3800 1800 5500 4800 4200 3900 3000
# Code SAS permettant d'estimer les paramètres de la loi log-normale
#par la méthode du maximum de vraisemblance
data MLE;
input t cens;
datalines;
1500 1
6000 1
3500 1
3800 1
1800 1
5500 1
4800 1
4200 1
3900 1
3000 1
run;
proc lifereg data=MLE;
    Model t*cens(0)= /covb dist=lnormal;
run;
```

b) Détermination des primes stop-loss

c) Détermination des primes limited loss

d) Détermination de la prime stop-loss par simulation avec un déductible d = 2000

```
# Valeurs du déductible d à utiliser
d \leftarrow d[1]
# Nombre de simulations
m < -c(1e5, 5e5, 1e6)
# Simuler un échantillon de m simulations de la log log-normale
# avec les paramètres estimés en a)
simul <- function(x) rlnorm(x, meanlog = mu, sdlog = sigma)</pre>
simulation <- sapply(1:3, function(i) simul(m[i]))</pre>
# Approximer la prime STOP-LOSS ayant un déductible de 2000 par simulation
approximation <- sapply(1:3, function(x)</pre>
                     mean(sapply(1:m[x], function(i)
                         max(0, simulation[[x]][i] - 2000))))
approx <- data.frame(m, approximation)</pre>
# Présenter les valeurs approximées de la prime STOP-LOSS ayant un déductible de 2000
library(xtable)
options(xtable.comment = FALSE)
```

```
xtable(approx, caption = "Valeurs approximées par simulations de la prime STOP-LOSS ayant un déductible
    align = c("c", "c", "c"),
    digits = c(0, 0, 4))
```