Data Science Fundamentals: CE 364

Course Lecturer Vincent M. Nofong, Ph.D.

Computer Science and Engineering Department University of Mines and Technology, Tarkwa - Ghana

June 26, 2024

Outline

- Who I am
- Course Information and Outline of CE 364
- Expected Learning Outcomes
- Rules
- Chapter One: Introduction

About me

- Name: Vincent M. Nofong, PhD
- Email: vnofong@umat.edu.gh
- Personal Website: https://vincentnofong.com/
- Uni website: https://www.umat.edu.gh/staffinfo/ staffDetailed.php?contactID=385
- Office hours (Working days): 09:00 am 16:00 pm GMT
- Research interest: data mining, trend prediction, classification, bioinformatics, artificial intelligence, machine learning

Course Information (CE 364)

- Credit hours: 2
- Attendance: 10%
- Continuous Assessment: 30%
 - Quizzes two or three
 - Programming assignment one
 - Marking will be one-on-one code explanation and modification
- End of Semester: **60**%

Course Outline (CE 364)

- Introduction and Data Exploration
- Classification
- Regression Methods
- Association Analysis
- Clustering
- Text Mining
- Time Series Forecasting
- 8 Anomaly Detection
- Model Evaluation and Feature Selection
- Data Visualization and Data Ethics

Expected Learning Outcomes (CE 364)

Students should understand and be able to:

- **1** Explain the fundamental concepts in data science.
- 2 Apply data science techniques for knowledge discovery from data.
- 3 Present and communicate knowledge discovered from data effectively.
- 4 Utilize various data science tools and software for data analysis.
- 5 Implement machine learning algorithms for predictive modeling.
- 6 Conduct data preprocessing and cleaning to prepare datasets for analysis.
- ▼ Interpret and evaluate the results of data science experiments.
- Develop visualizations to represent data insights and findings.
- Integrate data science methods into real-world problem-solving scenarios.
- Understand ethical considerations and best practices in data science.

Reference Materials

- I Kroese, Dirk P., Zdravko Botev, and Thomas Taimre. Data science and machine learning: mathematical and statistical methods. Chapman and Hall/CRC, 2023.
- Notu, Vijay, and Bala Deshpande. Data science: concepts and practice. Morgan Kaufmann, 2018.
- Grus, Joel. Data science from scratch: first principles with python. O'Reilly Media, 2019.
- Aggarwal, Charu C. Data mining: the textbook. Vol. 1. New York: Springer, 2015.
- Zaki, Mohammed J., and Wagner Meira. Data mining and analysis: fundamental concepts and algorithms. Cambridge University Press, 2014.

Rules

- Feel free to ask questions in class, unless they are too "personal".
- 2 Students should not be late for lectures or practicals.
- 3 Students should attend all lectures and practicals.
- In case you are unable to attend lectures or will be late, send me an email at least 30 minutes before lectures.
- 5 Students should do and submit all assignments before the given deadline.
- Unless otherwise permitted, students should not use their mobile phones in class note usage of Laptops/Desktops is permitted.

What is Classification?

What is Classification?

- Classification is the process of categorizing objects or instances into predefined groups or classes based on their attributes and characteristics
- It is referred to as supervised learning because an example data set is used to learn the structure of the groups.
- It involves using algorithms (techniques) to identify which category an item belongs to among several possible options.

Examples: (A) Movie Preference Prediction

Compare Preferences:

- Analyze the person's likes and preferences.
- Compare these with the preferences of people who like the movie and those who do not.

Make a Prediction:

- Determine which group the person is more similar to.
- Based on this comparison, predict whether the person will like the movie or not.

Examples: (B) Hand Written Character Prediction

Compare Features:

- Analyze the features of the handwritten character.
- Compare these with the features of several known handwritten characters.

Make a Prediction:

- Determine which character group the handwritten character is more similar to.

Examples: (C) News Article Topic Categorization

Compare Features:

- Analyze the features of the news article.
- Compare these features with those of articles in known categories (e.g., sports, entertainment, politics).

Make a Prediction:

- Determine which topic category the news article is more similar to.
- Based on this comparison, predict the topic of the news article.

Phases of Classification

Most classification algorithms typically have two phases:

Training phase

In this phase, a training model is constructed from the training instances.

Testing phase

■ In this phase, the training model is used to determine the class label (or group identifier) of one or more unseen test instances.

Typical Data Used in Classification

- Data is usually stored in a table.
- Instance/Record: A row in the table.
- Dimension/Attribute/Variable: A column in the table.
- Value: The data in a cell.
- Target Attribute: The attribute to be predicted.

Goal of Classification

- Predict the value of the target attribute for new data.
- Example: Given the training data in the table below, what is the highest educational level of Victoria?

		NAME	AGE	INCOME	GENDER	EDUCATION
	Γ	John	69	1	Male	Ph.D.
Training		Lucia	44	20	Female	Master
data		Paul	33	25	Male	Ph.D.
		Daisy	20	50	Female	High school
	L	Jack	15	10	Male	High school
		Victoria	35	50	Female	????????

Building/Using a Classifier

- A classifier is a model firstly built from the training data.
- The model is then used to predict the values of the target attribute based on the values of other attributes as shown below.

What is a Good Classifier?

A good classifier:

- Can perform predictions for new records.
- Can perform accurate predictions.

Performance Measures:

- Accuracy: Number of correct predictions

 Number of records
- Precision: Number of correct predictions
 Number of predictions
- Other Measures:
 - Recall
 - F1 Score
 - ROC-AUC

Classification vs Regression

- Classification: Target attribute is a discrete value (e.g., fraud or not fraud).
- **Regression:** Target attribute is a continuous value (e.g., weight of a person).

Suitability:

- Classification works well for predicting binary or nominal attributes.
- It may not work as well for ordinal (e.g. small, medium, larger) or hierarchical (e.g. human, mammal, animal,) attributes.

Interpretable and Complex Classifiers:

- Some classifiers indicate the criteria used to distinguish between classes (e.g., decision trees, some associative classifiers).
- Other classifiers, such as neural networks, may be difficult for humans to interpret despite their effectiveness.

Types Classifiers:

- Decision Trees (CART, ID3, C4.5)
- Neural Networks / Deep Learning
- Support Vector Machines (SVM)
- Naïve Bayes Classifier
- Associative Classifiers, etc.

We will discuss a few

Applications of Classification

Applications of Classification

There are several applications of classification:

- Customer Target Marketing
- Medical Disease Management
- Document Categorization and Filtering
- Multimedia Data Analysis
- Detecting Malignant Human Cells
- Identifying Legitimate or Fraudulent Credit Card Transactions
- Determining the Topic of a News Article (e.g., sports, entertainment, weather)
- Predicting Political Views, Age, and Gender on Social Networks

Types of Classifiers: Decision Trees

- A classification methodology where the classification process is modeled using a set of hierarchical decisions on feature variables, arranged in a tree-like structure.
- The decision at a node, known as the *split criterion*, is typically a condition on one or more feature variables in the training data.
- This criterion divides the training data into two or more parts.

Types of Classifiers: Decision Trees Goal of Splitting:

■ The aim is to identify a split criterion that reduces the "mixing" of class variables in each branch of the tree as much as possible.

Types of Splits:

- Univariate Splits: Use only one attribute as the split criterion.
- **Multivariate Splits:** Use more than one attribute in the split criterion.

For a given dataset, several decision trees with different attributes may be created.

Types of Classifiers: Decision Trees

- For a given dataset, several decision trees with different attributes may be created.
- Which tree is better?

Types of Classifiers: Decision Trees Vocabulary on Decision Trees

Types of Classifiers: Decision Trees Using Decision Trees for Prediction (1/6)

Types of Classifiers: Decision Trees Using Decision Trees for Prediction (2/6)

Types of Classifiers: Decision Trees Using Decision Trees for Prediction (3/6)

Types of Classifiers: Decision Trees Using Decision Trees for Prediction (4/6)

Types of Classifiers: Decision Trees Using Decision Trees for Prediction (5/6)

Types of Classifiers: Decision Trees Using Decision Trees for Prediction (6/6)

Types of Classifiers: Decision Trees How Decision Trees are Built - Hunt's Algorithm (1/8)

- Let D_t be the set of records reaching a node t.
- Initially, D_t includes all records in the database.
- Procedure:
- If all records in D_t belong to the same class y_t , then node t becomes a leaf with the label y_t .
- If D_t is empty, then node t becomes a leaf node with the default class y_d .
- If records in D_t belong to multiple classes, node t becomes a decision node, and an attribute is used to split the records.

Types of Classifiers: Decision Trees How Decision Trees are Built - Hunt's Algorithm (2/8)

Training data Refund Marital Taxable Cheat **Status** Income Yes Single 125K No No Married 100K No No Single 70K No Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No Yes Divorced 220K No 85K No Single Yes No Married 75K No No Sinale 90K Yes

The target attribute is « cheat »

The records do not belong to the same class (we have **Yes** and **No** for the **« Cheat »** attribute).

We can choose the « refund » atribute to try to separate the records.

Types of Classifiers: Decision Trees How Decision Trees are Built - Hunt's Algorithm (3/8)

If « refund = Yes » then all records belong to the same class (« Cheat = No »)

Hence, we create a leaf node « don't cheat ».

			Т	raining	data		
		Tid	Refund	Marital Status	Taxable Income	Cheat	
		1	Yes	Single	125K	No	
		2	No	Married	100K	No	
		3	No	Single	70K	No	
l		4	Yes	Married	120K	No	
		5	No	Divorced	95K	Yes	
		6	No	Married	60K	No	
I		7	Yes	Divorced	220K	No	
•	Ī	8	No	Single	85K	Yes	
		9	No	Married	75K	No	
		10	No	Single	90K	Yes	

Types of Classifiers: Decision Trees How Decision Trees are Built - Hunt's Algorithm (4/8)

If « refund = No » then all records do not belong to the same class.

Hence, we must create a decision node. We can choose the attribute « marital status ».

Training data

			railling	uata		
	Tid	Refund	Marital Status	Taxable Income	Cheat	
	1	Yes	Single	125K	No	
ı	2	No	Married	100K	No	Т
ı	3	No	Single	70K	No	
	4	Yes	Married	120K	No	
ı	5	No	Divorced	95K	Yes	
	6	No	Married	60K	No	
	7	Yes	Divorced	220K	No	
	8	No	Single	85K	Yes	
	9	No	Married	75K	No	l
	10	No	Single	90K	Yes	

Types of Classifiers: Decision Trees How Decision Trees are Built - Hunt's Algorithm (5/8)

If « refund = No » and « Marital status = single or divorced » not all records are of the same class.

We can create a node « income » to try to separate the records

Training data

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Types of Classifiers: Decision Trees How Decision Trees are Built - Hunt's Algorithm (6/8)

Types of Classifiers: Decision Trees How Decision Trees are Built - Hunt's Algorithm (7/8)

Types of Classifiers: Decision Trees

How Decision Trees are Built - Hunt's Algorithm (8/8)

Types of Classifiers: Decision Trees How to choose the attributes for building a decision tree?

- The "Greedy" Approach:
 - Decision trees are built by always choosing the attribute that best separates the data using a single attribute.
 - The goal is to obtain the best possible tree, though it is not guaranteed.
- Challenges:
 - It is sometimes possible to separate records using many different attributes.
 - Deciding when to stop growing the tree. Should we use a small tree or a very large tree?
 - Determining the criterion to use for separating records depends on attributes

Types of Classifiers: Decision Trees How to choose the attributes for building a decision tree? For nominal attributes:

■ Binary split: only two branches, we must find the best way to separate the records

■ Multiple splits: a branch for each value.

Types of Classifiers: Decision Trees How to choose the attributes for building a decision tree? For ordinal attributes:

■ Multiple split: a branch for each value

■ Binary split: two branches. The order between values must be respected

Types of Classifiers: Decision Trees How to choose the attributes for building a decision tree? For continuous attributes:

Separate the continuous attribute values into several distinct ranges.

■ Make a binary decision based on the continuous attribute.

Types of Classifiers: Decision Trees

Why Use Decision Trees?

- Easy to Understand: Small trees are easy for humans to interpret.
- Fast Building Process: Building a decision tree is very fast.
 - Complexity: $O(n \times d \times log(d))$ where n is the number of attributes, and d is the number of records.
- Efficient Classification: Classifying new instances is extremely fast.
 - Complexity: O(w) where w is the tree depth.

Types of Classifiers: Decision Trees Why Use Decision Trees? (2/2)

- Comparable Accuracy: Accuracy is similar to other classifiers for simple data.
- **Noise Tolerance:** Decision trees can be quite tolerant of noise in the data.
- Overfitting Avoidance: With certain techniques, decision trees can avoid the problem of overfitting.