CHAPTER 11

Section 11.1

1.

a.
$$MSA = \frac{30.6}{4} = 7.65$$
, $MSE = \frac{59.2}{12} = 4.93$, $f_A = \frac{7.65}{4.93} = 1.55$. Since 1.55 is not $\geq F_{.05,4,12} = 3.26$, don't reject H_{oA} . There is no difference in true average tire lifetime due to different makes of cars.

b.
$$MSB = \frac{44.1}{3} = 14.70$$
, $f_B = \frac{14.70}{4.93} = 2.98$. Since 2.98 is not $\geq F_{.05,3,12} = 3.49$, don't reject H_{oB} . There is no difference in true average tire lifetime due to different brands of tires.

2.

a.
$$x_{1\bullet} = 163$$
, $x_{2\bullet} = 152$, $x_{3\bullet} = 142$, $x_{4\bullet} = 146$, $x_{\bullet 1} = 215$, $x_{\bullet 2} = 188$, $x_{\bullet 3} = 200$, $x_{\bullet \bullet} = 603$, $\Sigma \Sigma x_{ij}^2 = 30,599$, $CF = \frac{(603)^2}{12} = 30,300.75$, so $SST = 298.25$, $SSA = \frac{1}{3} \left[(163)^2 + (152)^2 + (142)^2 + (146)^2 \right] - 30,300.75 = 83.58$, $SSB = 30,392.25 - 30,300.75 = 91.50$, $SSE = 298.25 - 83.58 - 91.50 = 123.17$.

Source	Df	SS	MS	F
A	3	83.58	27.86	1.36
В	2	91.50	45.75	2.23
Error	6	123.17	20.53	
Total	11	298.25		

 $F_{.05,3,6} = 4.76$, $F_{.05,2,6} = 5.14$. Since neither f is greater than the appropriate critical value, neither H_{oA} nor H_{oB} is rejected.

b.
$$\hat{\boldsymbol{m}} = \overline{x}_{\bullet \bullet} = 50.25$$
, $\hat{\boldsymbol{a}}_1 = \overline{x}_{1 \bullet} - \overline{x}_{\bullet \bullet} = 4.08$, $\hat{\boldsymbol{a}}_2 = .42$, $\hat{\boldsymbol{a}}_3 = -2.92$, $\hat{\boldsymbol{a}}_4 = -1.58$, $\hat{\boldsymbol{b}}_1 = \overline{x}_{\bullet 1} - \overline{x}_{\bullet \bullet} = 3.50$, $\hat{\boldsymbol{b}}_2 = -3.25$, $\hat{\boldsymbol{b}}_3 = -.25$.

Chapter 11: Multifactor Analysis of Variance

3.
$$x_{1\bullet} = 927$$
, $x_{2\bullet} = 1301$, $x_{3\bullet} = 1764$, $x_{4\bullet} = 2453$, $x_{\bullet 1} = 1347$, $x_{\bullet 2} = 1529$, $x_{\bullet 3} = 1677$, $x_{\bullet 4} = 1892$, $x_{\bullet \bullet} = 6445$, $\Sigma\Sigma x_{ij}^2 = 2,969,375$,
$$CF = \frac{\left(6445\right)^2}{16} = 2,596,126.56$$
, $SSA = 324,082.2$, $SSB = 39,934.2$, $SST = 373,248.4$, $SSE = 9232.0$

a.

Source	Df	SS	MS	${f F}$
Α	3	324,082.2	108,027.4	105.3
В	3	39,934.2	13,311.4	13.0
Error	9	9232.0	1025.8	
Total	15	373,248.4		

Since $F_{.01.3.9} = 6.99$, both H_{oA} and H_{oB} are rejected.

b.
$$Q_{.01,4,9} = 5.96$$
, $w = 5.96\sqrt{\frac{1025.8}{4}} = 95.4$
i: 1 2 3 4
 $\overline{x}_{i\bullet}$: 231.75 325.25 441.00 613.25

All levels of Factor A (gas rate) differ significantly except for 1 and 2

c.
$$w = 95.4$$
, as in b
i: 1 2 3 4
 $\overline{x}_{\bullet j}$: 336.75 382.25 419.25 473

Only levels 1 and 4 appear to differ significantly.

4.

a. After subtracting 400, $x_{1\bullet} = 151$, $x_{2\bullet} = 137$, $x_{3\bullet} = 125$, $x_{4\bullet} = 124$, $x_{\bullet 1} = 183$, $x_{\bullet 2} = 169$, $x_{\bullet 3} = 185$, $x_{\bullet \bullet} = 537$, SSA = 159.98, SSB = 38.00, SST = 238.25, SSE = 40.67.

Source	Df	SS	MS	f	F.05
Α	3	159.58	53.19	7.85	4.76
В	2	38.00	19.00	2.80	5.14
Error	6	40.67	6.78		
Total	11	238.25			

- **b.** Since $7.85 \ge 4.76$, reject H_{oA} : $\boldsymbol{a}_1 = \boldsymbol{a}_2 = \boldsymbol{a}_3 = \boldsymbol{a}_4 = 0$: The amount of coverage depends on the paint brand.
- c. Since 2.80 is not ≥ 5.14 , do not reject H_{oA} : $\boldsymbol{b}_1 = \boldsymbol{b}_2 = \boldsymbol{b}_3 = 0$. The amount of coverage does not depend on the roller brand.
- **d.** Because H_{oB} was not rejected. Tukey's method is used only to identify differences in levels of factor A (brands of paint). $Q_{.05,4,6} = 4.90$, w = 7.37.

i: 4 3 2 1
$$\overline{x}_{i\bullet}$$
: 41.3 41.7 45.7 50.3

Brand 1 differs significantly from all other brands.

5.

Source	Df	SS	MS	f
Angle	3	58.16	19.3867	2.5565
Connector	4	246.97	61.7425	8.1419
Error	12	91.00	7.5833	
Total	19	396.13		

$$H_0: \mathbf{a}_1 = \mathbf{a}_2 = \mathbf{a}_3 = \mathbf{a}_4 = 0;$$

 H_a : at least one \boldsymbol{a}_i is not zero.

 $f_A=2.5565 < F_{.01,3,12}=5.95$, so fail to reject ${\rm H_o}$. The data fails to indicate any effect due to the angle of pull.

a.
$$MSA = \frac{11.7}{2} = 5.85$$
, $MSE = \frac{25.6}{8} = 3.20$, $f = \frac{5.85}{3.20} = 1.83$, which is not significant at level .05.

b. Otherwise extraneous variation associated with houses would tend to interfere with our ability to assess assessor effects. If there really was a difference between assessors, house variation might have hidden such a difference. Alternatively, an observed difference between assessors might have been due just to variation among houses and the manner in which assessors were allocated to homes.

7.

a.
$$CF = 140,454, SST = 3476,$$

$$SSTr = \frac{(905)^2 + (913)^2 + (936)^2}{18} - 140,454 = 28.78,$$

$$SSBl = \frac{430,295}{3} - 140,454 = 2977.67, SSE = 469.55, MSTr = 14.39, MSE = 13.81, f_{Tr} = 1.04, which is clearly insignificant when compared to $F_{.05,2,51}$.$$

b. $f_{Bl} = 12.68$, which is significant, and suggests substantial variation among subjects. If we had not controlled for such variation, it might have affected the analysis and conclusions.

8.

a.
$$x_{1\bullet}=4.34$$
, $x_{2\bullet}=4.43$, $x_{3\bullet}=8.53$, $x_{\bullet\bullet}=17.30$, $SST=3.8217$,
$$SSTr=1.1458, \ SSBl=\frac{32.8906}{3}-9.9763=.9872, \ SSE=1.6887 \,,$$

$$MSTr=.5729 \,, \ MSE=.0938 \,, \text{f}=6.1. \ \text{Since} \ 6.1 \geq F_{.05,2,18}=3.55 \,, \text{H}_{oA} \,\, \text{is}$$
 rejected; there appears to be a difference between anesthetics.

b. $Q_{.05,3,18}=3.61$, w = .35. $\overline{x}_{1\bullet}=.434$, $\overline{x}_{2\bullet}=.443$, $\overline{x}_{3\bullet}=.853$, so both anesthetic 1 and anesthetic 2 appear to be different from anesthetic 3 but not from one another.

Chapter 11: Multifactor Analysis of Variance

Source	Df	SS	MS	f
Treatment	3	81.1944	27.0648	22.36
Block	8	66.5000	8.3125	6.87
Error	24	29.0556	1.2106	
Total	35	176.7500		

 $F_{.05,3,24} = 3.01$. Reject $H_{\rm o}$. There is an effect due to treatments.

$$Q_{.05,4,24} = 3.90$$
; $w = (3.90)\sqrt{\frac{1.2106}{9}} = 1.43$

$$\begin{array}{cccc}
1 & 4 & 3 & 2 \\
8.56 & 9.22 & 10.78 & 12.44
\end{array}$$

10.

Source	Df	SS	MS	f
Method	2	23.23	11.61	8.69
Batch	9	86.79	9.64	7.22
Error	18	24.04	1.34	
Total	29	134.07		

2

 $F_{.01,2,18} = 6.01 < 8.69 < F_{.001,2,18} = 10.39$, so .001 < p-value < .01, which is significant. At least two of the curing methods produce differing average compressive strengths. (With pvalue < .001, there are differences between batches as well.)

$$Q_{.05,3,18} = 3.61$$
; $w = (3.61)\sqrt{\frac{1.34}{10}} = 1.32$
Method A Method B Method C
29.49 31.31 31.40

Methods B and C produce strengths that are not significantly different, but Method A produces strengths that are different (less) than those of both B and C.

11. The residual, percentile pairs are (-0.1225, -1.73), (-0.0992, -1.15), (-0.0825, -0.81), (-0.0758, -0.55), (-0.0750, -0.32), (0.0117, -0.10), (0.0283, 0.10), (0.0350, 0.32), (0.0642, 0.55), (0.0708, 0.81), (0.0875, 1.15), (0.1575, 1.73).

Normal Probability Plot

The pattern is sufficiently linear, so normality is plausible.

12. $MSB = \frac{113.5}{4} = 28.38$, $MSE = \frac{25.6}{8} = 3.20$, $f_B = 8.87$, $F_{.01,4,8} = 7.01$, and since $8.87 \ge 7.01$, we reject H_0 and conclude that $\mathbf{S}_B^2 > 0$.

13.

- **a.** With $Y_{ij}=X_{ij}+d$, $\overline{Y}_{i\bullet}=\overline{X}_{i\bullet}+d$, $\overline{Y}_{\bullet j}=\overline{X}_{\bullet j}+d$, $\overline{Y}_{\bullet \bullet}=\overline{X}_{\bullet \bullet}+d$, so all quantities inside the parentheses in (11.5) remain unchanged when the Y quantities are substituted for the corresponding X's (e.g., $\overline{Y}_{i\bullet}-\overline{Y}_{\bullet \bullet}=\overline{X}_{i\bullet}-\overline{X}_{\bullet \bullet}$, etc.).
- **b.** With $Y_{ij} = cX_{ij}$, each sum of squares for Y is the corresponding SS for X multiplied by c^2 . However, when F ratios are formed the c^2 factors cancel, so all F ratios computed from Y are identical to those computed from X. If $Y_{ij} = cX_{ij} + d$, the conclusions reached from using the Y's will be identical to those reached using the X's.

14.
$$E(\overline{X}_{i\bullet} - \overline{X}_{\bullet\bullet}) = E(\overline{X}_{i\bullet}) - E(\overline{X}_{\bullet\bullet}) = \frac{1}{J} E\left(\sum_{j} X_{ij}\right) - \frac{1}{IJ} E\left(\sum_{i} \sum_{j} X_{ij}\right)$$
$$= \frac{1}{J} \sum_{j} (\mathbf{m} + \mathbf{a}_{i} + \mathbf{b}_{j}) - \frac{1}{IJ} \sum_{i} \sum_{j} (\mathbf{m} + \mathbf{a}_{i} + \mathbf{b}_{j})$$
$$= \mathbf{m} + \mathbf{a}_{i} + \frac{1}{J} \sum_{j} \mathbf{b}_{j} - \mathbf{m} - \frac{1}{I} \sum_{i} \mathbf{a}_{i} - \frac{1}{J} \sum_{j} \mathbf{b}_{j} = \mathbf{a}_{i}, \text{ as desired.}$$

Chapter 11: Multifactor Analysis of Variance

a.
$$\Sigma a_i^2 = 24$$
, so $\Phi^2 = \left(\frac{3}{4}\right)\left(\frac{24}{16}\right) = 1.125$, $\Phi = 1.06$, $n_1 = 3$, $n_2 = 6$, and from figure 10.5, power $\approx .2$. For the second alternative, $\Phi = 1.59$, and power $\approx .43$.

b.
$$\Phi^2 = \left(\frac{1}{J}\right) \sum \frac{\boldsymbol{b}_j^2}{\boldsymbol{s}^2} = \left(\frac{4}{5}\right) \left(\frac{20}{16}\right) = 1.00$$
, so $\Phi = 1.00$, $\boldsymbol{n}_1 = 4$, $\boldsymbol{n}_2 = 12$, and power $\approx .3$.

Section 11.2

16.

a.

Source	Df	SS	MS	f
Α	2	30,763.0	15,381.50	3.79
В	3	34,185.6	11,395.20	2.81
AB	6	43,581.2	7263.53	1.79
Error	24	97,436.8	4059.87	
Total	35	205,966.6		

b. $f_{AB} = 1.79$ which is not $\geq F_{.05,6,24} = 2.51$, so H_{oAB} cannot be rejected, and we conclude that no interaction is present.

c.
$$f_A = 3.79$$
 which is $\geq F_{.05,2,24} = 3.40$, so H_{oA} is rejected at level .05.

d.
$$f_B = 2.81$$
 which is not $\geq F_{.05,3,24} = 3.01$, so H_{oB} is not rejected.

Only times 2 and 3 yield significantly different strengths.

Chapter 11: Multifactor Analysis of Variance

a.

a.						
	Source	Df	SS	MS	f	F.05
	Sand	2	705	352.5	3.76	4.26
	Fiber	2	1,278	639.0	6.82*	4.26
	Sand&Fiber	4	279	69.75	0.74	3.63
	Error	9	843	93.67		
	Total	17	3,105			

There appears to be an effect due to carbon fiber addition.

b.

Source	Df	SS	MS	f	F.05
Sand	2	106.78	53.39	6.54*	4.26
Fiber	2	87.11	43.56	5.33*	4.26
Sand&Fiber	4	8.89	2.22	.27	3.63
Error	9	73.50	8.17		
Total	17	276.28			

There appears to be an effect due to both sand and carbon fiber addition to casting hardness.

c.

Sand%	0	15	30	0	15	30	0	15	30
Fiber%	0	0	0	0.25	0.25	0.25	0.5	0.5	0.5
$\overline{\overline{x}}$	62	68	69.5	69	71.5	73	68	71.5	74

The plot below indicates some effect due to sand and fiber addition with no significant interaction. This agrees with the statistical analysis in part ${\bf b}$

Source	Df	SS	MS	f	F.05	$F_{.01}$
Formulation	1	2,253.44	2,253.44	376.2**	4.75	9.33
Speed	2	230.81	115.41	19.27**	3.89	6.93
Formulation & Speed	2	18.58	9.29	1.55	3.89	6.93
Error	12	71.87	5.99			
Total	17	2,574.7				

- There appears to be no interaction between the two factors.
- **b.** Both formulation and speed appear to have a highly statistically significant effect on
- **c.** Let formulation = Factor A and speed = Factor B.

For Factor A:

$$m_{\bullet} = 187.03$$
 $m_{\bullet} = 164.66$

For Factor B: $\mathbf{m}_1 = 177.83$ $\mathbf{m}_2 = 170.82$ $\mathbf{m}_3 = 178.88$

$$170.82 \quad \mathbf{m}_3 = 178.88$$

For Interaction:

$$\mathbf{m}_{1} = 189.47$$
 $\mathbf{m}_{2} = 180.6$ $\mathbf{m}_{3} = 191.03$

$$m_3 = 191.03$$

$$m_{1} = 166.2$$

$$\mathbf{m}_{21} = 166.2$$
 $\mathbf{m}_{22} = 161.03$ $\mathbf{m}_{33} = 166.73$

overall mean:

$$m = 175.84$$

$$= m - m$$

$$\mathbf{a}_1 = 11.19$$

$$a_i = m_i - m$$
: $a_1 = 11.19$ $a_2 = -11.18$

$$\mathbf{b}_{j} = \mathbf{m}_{j} - \mathbf{m}$$
: $\mathbf{b}_{1} = 1.99$ $\mathbf{b}_{2} = -5.02$ $\mathbf{b}_{3} = 3.04$

$$b_1 = 1.99$$

$$b_2 = -5.02$$

$$b_3 = 3.04$$

$$y_{ij} = \mathbf{m}_{ij} - (\mathbf{m} + \mathbf{a}_i + \mathbf{b}_j).$$

$$y_{11} = .45$$

$$y_{11} = .45$$
 $y_{12} = -1.41$ $y_{13} = .96$

$$y_{21} = -.45$$

$$y_{21} = -.45$$
 $y_{22} = 1.39$ $y_{23} = -.97$

$$y_{23} = -.97$$

d.

Observed	Fitted	Residual	Observed	Fitted	Residual
189.7	189.47	0.23	161.7	161.03	0.67
188.6	189.47	-0.87	159.8	161.03	-1.23
190.1	189.47	0.63	161.6	161.03	0.57
165.1	166.2	-1.1	189.0	191.03	-2.03
165.9	166.2	-0.3	193.0	191.03	1.97
167.6	166.2	1.4	191.1	191.03	0.07
185.1	180.6	4.5	163.3	166.73	-3.43
179.4	180.6	-1.2	166.6	166.73	-0.13
177.3	180.6	-3.3	170.3	166.73	3.57

Chapter 11: Multifactor Analysis of Variance

e.

i	Residual	Percentile	z-percentile
1	-3.43	2.778	-1.91
2	-3.30	8.333	-1.38
3	-2.03	13.889	-1.09
4	-1.23	19.444	-0.86
5	-1.20	25.000	-0.67
6	-1.10	30.556	-0.51
7	-0.87	36.111	-0.36
8	-0.30	41.667	-0.21
9	-0.13	47.222	-0.07
10	0.07	52.778	0.07
11	0.23	58.333	0.21
12	0.57	63.889	0.36
13	0.63	69.444	0.51
14	0.67	75.000	0.67
15	1.40	80.556	0.86
16	1.97	86.111	1.09
17	3.57	91.667	1.38
18	4.50	97.222	1.91

Normal Probability Plot of ANOVA Residuals

The residuals appear to be normally distributed.

Chapter 11: Multifactor Analysis of Variance

a.

			j		
	$x_{ij\bullet}$	1	2	3	$x_{i \bullet \bullet}$
	1	16.44	17.27	16.10	49.81
i	2	16.24	17.00	15.91	49.15
	3	16.80	17.37	16.20	50.37
	$X_{\bullet j \bullet}$	49.48	51.64	48.21	$x_{\bullet \bullet \bullet} = 149.33$
					CF = 1238.8583

Thus SST = 1240.1525 - 1238.8583 = 1.2942,

$$SSE = 1240.1525 - \frac{2479.9991}{2} = .1530$$
,

$$SSA = \frac{(49.81)^2 + (49.15)^2 + (50.37)^2}{6} - 1238.8583 = .1243, SSB = 1.0024$$

Source	Df	SS	MS	f	$F_{.01}$
Α	2	.1243	.0622	3.66	8.02
В	2	1.0024	.5012	29.48*	8.02
AB	4	.0145	.0036	.21	6.42
Error	9	.1530	.0170		
Total	17	1.2942			

 H_{oAB} cannot be rejected, so no significant interaction; H_{oA} cannot be rejected, so varying levels of NaOH does not have a significant impact on total acidity; H_{oB} is rejected: type of coal does appear to affect total acidity.

b.
$$Q_{.01,3,9} = 5.43$$
, $w = 5.43\sqrt{\frac{.0170}{6}} = .289$
 $j: 3 1 2$
 $\overline{X}_{\bullet j \bullet} 8.035 8.247 8.607$

Coal 2 is judged significantly different from both 1 and 3, but these latter two don't differ significantly from each other.

Chapter 11: Multifactor Analysis of Variance

20.
$$x_{11\bullet} = 855$$
, $x_{12\bullet} = 905$, $x_{13\bullet} = 845$, $x_{21\bullet} = 705$, $x_{22\bullet} = 735$, $x_{23\bullet} = 675$, $x_{1\bullet\bullet} = 2605$, $x_{2\bullet\bullet} = 2115$, $x_{\bullet1\bullet} = 1560$, $x_{\bullet2\bullet} = 1640$, $x_{\bullet3\bullet} = 1520$, $x_{\bullet\bullet\bullet} = 4720$, $\Sigma\Sigma\Sigma x_{ijk}^2 = 1,253,150$, CF = 1,237,688.89, $\Sigma\Sigma x_{ij\bullet}^2 = 3,756,950$, which yields the accompanying ANOVA table.

Source	Df	SS	MS	f	$F_{.01}$
Α	1	13,338.89	13,338.89	192.09*	9.93
В	2	1244.44	622.22	8.96*	6.93
AB	2	44.45	22.23	.32	6.93
Error	12	833.33	69.44		
Total	17	15,461.11			

Clearly, f_{AB} = .32 is insignificant, so H_{oAB} is not rejected. Both H_{oA} and H_{oB} are both rejected, since they are both greater than the respective critical values. Both phosphor type and glass type significantly affect the current necessary to produce the desired level of brightness.

21.

a.
$$SST = 12,280,103 - \frac{(19,143)^2}{30} = 64,954.70$$
,
 $SSE = 12,280,103 - \frac{(24,529,699)}{2} = 15,253.50$,
 $SSA = \frac{122,380,901}{10} - \frac{(19,143)^2}{30} = 22,941.80$, $SSB = 22,765.53$,
 $SSAB = 64,954.70 - [22,941.80 + 22,765.53 + 15,253.50] = 3993.87$

Source	Df	SS	MS	${f f}$
Α	2	22,941.80	11,470.90	$\frac{11,47090}{499.23} = 22.98$
В	4	22,765.53	5691.38	$\frac{569138}{499.23} = 11.40$
AB	8	3993.87	499.23	.49
Error	15	15,253.50	1016.90	
Total	29	64,954.70		

b. f_{AB} = .49 is clearly not significant. Since $22.98 \ge F_{.05,2,8} = 4.46$, H_{oA} is rejected; since $11.40 \ge F_{.05,4,8} = 3.84$, H_{oB} is also rejected. We conclude that the different cement factors affect flexural strength differently and that batch variability contributes to variation in flexural strength.

22. The relevant null hypotheses are H_{0A} : $\mathbf{a}_1 = \mathbf{a}_2 = \mathbf{a}_3 = \mathbf{a}_4 = 0$; H_{0B} : $\mathbf{s}_B^2 = 0$; H_{0AB} : $\mathbf{s}_G^2 = 0$.

$$SST = 11,499,492 - \frac{(16,598)^2}{24} = 20,591.83,$$

$$SSE = 11,499,492 - \frac{(22,982,552)}{2} = 8216.0,$$

$$SSA = \left[\frac{(4112)^2 + (4227)^2 + (4122)^2 + (4137)^2}{6} \right] - \frac{(16,598)^2}{24} = 1387.5,$$

$$SSB = \left[\frac{(5413)^2 + (5621)^2 + (5564)^2}{8} \right] - \frac{(16,598)^2}{24} = 2888.08,$$

$$SSAB = 20,591.83 - [8216.0 + 1387.5 + 2888.08] = 8216.25$$

Source	Df	SS	MS	${f f}$	F.05
Α	3	1,387.5	462.5	$\frac{MSA}{MSAB} = .34$	4.76
В	2	2,888.08	1,444.04	$\frac{MSB}{MSAB} = 1.07$	5.14
AB	6	8,100.25	1,350.04	$\frac{MSAB}{MSE} = 1.97$	3.00
Error	12	8,216.0	684.67		
Total	23	20,591.83			

Interaction between brand and writing surface has no significant effect on the lifetime of the pen, and since neither f_A nor f_B is greater than its respective critical value, we can conclude that neither the surface nor the brand of pen has a significant effect on the writing lifetime.

23. Summary quantities include $x_{1 \bullet \bullet} = 9410$, $x_{2 \bullet \bullet} = 8835$, $x_{3 \bullet \bullet} = 9234$, $x_{\bullet 1 \bullet} = 5432$, $x_{\bullet 2 \bullet} = 5684$, $x_{\bullet 3 \bullet} = 5619$, $x_{\bullet 4 \bullet} = 5567$, $x_{\bullet 3 \bullet} = 5177$, $x_{\bullet \bullet \bullet} = 27,479$, CF = 16,779,898.69, $\Sigma x_{i \bullet \bullet}^2 = 251,872,081$, $\Sigma x_{\bullet j \bullet}^2 = 151,180,459$, resulting in the accompanying ANOVA table.

Source	Df	SS	MS	f
Α	2	11,573.38	5786.69	$\frac{MSA}{MSAB} = 26.70$
В	4	17,930.09	4482.52	$\frac{MSB}{MSAB} = 20.68$
AB	8	1734.17	216.77	$\frac{MSAB}{MSE} = 1.38$
Error	30	4716.67	157.22	
Total	44	35,954.31		

Since $1.38 < F_{.01,8,30} = 3.17$, H_{oG} cannot be rejected, and we continue:

 $26.70 \ge F_{.01,2,8} = 8.65$, and $20.68 \ge F_{.01,4,8} = 7.01$, so both H_{oA} and H_{oB} are rejected.

Both capping material and the different batches affect compressive strength of concrete cylinders.

24.

$$\mathbf{a.} \quad E(\overline{X}_{i..} - \overline{X}_{..}) = \frac{1}{JK} \sum_{j} \sum_{k} E(X_{ijk}) - \frac{1}{IJK} \sum_{i} \sum_{j} \sum_{k} E(X_{ijk})$$

$$= \frac{1}{JK} \sum_{j} \sum_{k} (\mathbf{m} + \mathbf{a}_{i} + \mathbf{b}_{j} + \mathbf{g}_{ij}) - \frac{1}{JK} \sum_{i} \sum_{j} \sum_{k} (\mathbf{m} + \mathbf{a}_{i} + \mathbf{b}_{j} + \mathbf{g}_{ij}) = \mathbf{m} + \mathbf{a}_{i} - \mathbf{m} = \mathbf{a}_{i}$$

b.
$$E(\hat{\boldsymbol{g}}_{ij}) = \frac{1}{K} \sum_{k} E(X_{ijk}) - \frac{1}{JK} \sum_{j} \sum_{k} E(X_{ijk}) - \frac{1}{IK} \sum_{i} \sum_{k} E(X_{ijk}) + \frac{1}{IJK} \sum_{i} \sum_{j} \sum_{k} E(X_{ijk})$$
$$= \boldsymbol{m} + \boldsymbol{a}_{i} + \boldsymbol{b}_{j} + \boldsymbol{g}_{ij} - (\boldsymbol{m} + \boldsymbol{a}_{i}) - (\boldsymbol{m} + \boldsymbol{b}_{j}) + \boldsymbol{m} = \boldsymbol{g}_{ij}$$

25. With
$$\mathbf{q} = \mathbf{a}_{i} - \mathbf{a}_{i}'$$
, $\hat{\mathbf{q}} = \overline{X}_{i..} - \overline{X}_{i'..} = \frac{1}{JK} \sum_{j} \sum_{k} (X_{ijk} - X_{i'jk})$, and since $i \neq i'$, X_{ijk} and $X_{i'jk}$ are independent for every j, k. Thus $Var(\hat{\mathbf{q}}) = Var(\overline{X}_{i..}) + Var(\overline{X}_{i'..}) = \frac{\mathbf{s}^{2}}{JK} + \frac{\mathbf{s}^{2}}{JK} = \frac{2\mathbf{s}^{2}}{JK}$ (because $Var(\overline{X}_{i..}) = Var(\overline{\mathbf{e}}_{i..})$ and $Var(\mathbf{e}_{ijk}) = \mathbf{s}^{2}$) so $\hat{\mathbf{s}}_{\hat{\mathbf{q}}} = \sqrt{\frac{2MSE}{JK}}$. The appropriate number of d.f. is IJ(K – 1), so the C.I. is $(\overline{x}_{i..} - \overline{x}_{i'..}) \pm t_{\mathbf{a}/2, JJ(K-1)} \sqrt{\frac{2MSE}{JK}}$. For the data of exercise 19, $\overline{x}_{2..} = 49.15$, $\overline{x}_{3..} = 50.37$, MSE = .0170, $t_{.025,9} = 2.262$, J = 3, K = 2, so the C.I. is $(49.15 - 50.37) \pm 2.262 \sqrt{\frac{.0370}{6}} = -1.22 \pm .17 = (-1.39, -1.05)$.

26.

a.
$$\frac{E(MSAB)}{E(MSE)} = 1 + \frac{Ks_G^2}{s^2} = 1$$
 if $s_G^2 = 0$ and $s_G^2 > 0$, so $\frac{MSAB}{MSE}$ is the appropriate F ratio.

b.
$$\frac{E(MSA)}{E(MSAB)} = \frac{\mathbf{s}^2 + K\mathbf{s}_G^2 + JK\mathbf{s}_A^2}{\mathbf{s}^2 + K\mathbf{s}_G^2} = 1 + \frac{JK\mathbf{s}_A^2}{\mathbf{s}^2 + K\mathbf{s}_G^2} = 1 \text{ if } \mathbf{s}_A^2 = 0 \text{ and } > 1 \text{ if }$$
$$\mathbf{s}_A^2 > 0 \text{, so } \frac{MSA}{MSAB} \text{ is the appropriate F ratio.}$$

Section 11.3

27.

a.					
Source	Df	SS	MS	f	$F_{.05}$
Α	2	14,144.44	7072.22	61.06	3.35
В	2	5,511.27	2755.64	23.79	3.35
C	2	244,696.39	122.348.20	1056.24	3.35
AB	4	1,069.62	267.41	2.31	2.73
AC	4	62.67	15.67	.14	2.73
BC	4	331.67	82.92	.72	2.73
ABC	8	1,080.77	135.10	1.17	2.31
Error	27	3,127.50	115.83		
Total	53	270,024.33			

- **b.** The computed f-statistics for all four interaction terms are less than the tabled values for statistical significance at the level .05. This indicates that none of the interactions are statistically significant.
- **c.** The computed f-statistics for all three main effects exceed the tabled value for significance at level .05. All three main effects are statistically significant.
- **d.** $Q_{.05,3,27}$ is not tabled, use $Q_{.05,3,24} = 3.53$, $w = 3.53 \sqrt{\frac{115.83}{(3)(3)(2)}} = 8.95$. All three levels differ significantly from each other.

28.

Source	Df	SS	MS	f	F.01
A	3	19,149.73	6,383.24	2.70	4.72
В	2	2,589,047.62	1,294,523.81	546.79	5.61
C	1	157,437.52	157,437.52	66.50	7.82
AB	6	53,238.21	8,873.04	3.75	3.67
AC	3	9,033.73	3,011.24	1.27	4.72
BC	2	91,880.04	45,940.02	19.40	5.61
ABC	6	6,558.46	1,093.08	.46	3.67
Error	24	56,819.50	2,367.48		
Total	47	2,983,164.81			

The statistically significant interactions are AB and BC. Factor A appears to be the least significant of all the factors. It does not have a significant main effect and the significant interaction (AB) is only slightly greater than the tabled value at significance level .01

Chapter 11: Multifactor Analysis of Variance

29. I = 3, J = 2, K = 4, L = 4;
$$SSA = JKL\sum (\overline{x}_{i...} - \overline{x}_{...})^2$$
; $SSB = IKL\sum (\overline{x}_{.j..} - \overline{x}_{...})^2$; $SSC = IJL\sum (\overline{x}_{.k.} - \overline{x}_{...})^2$.

For level A:
$$\overline{x}_{1...} = 3.781$$
 $\overline{x}_{2...} = 3.625$ $\overline{x}_{3...} = 4.469$

For level B:
$$\bar{x}_{1...} = 4.979$$
 $\bar{x}_{2...} = 2.938$

For level C:
$$\overline{x}_{..1} = 3.417$$
 $\overline{x}_{..2} = 5.875$ $\overline{x}_{..3} = .875$ $\overline{x}_{..4} = 5.667$

$$\bar{x} = 3.958$$

a.

Source	Df	SS	MS	f	F.05*
A	2	12.907	6.454	1.04	3.15
В	1	99.976	99.976	16.09	4.00
C	3	393.436	131.145	21.10	2.76
AB	2	1.646	.823	.13	3.15
AC	6	71.021	11.837	1.90	2.25
BC	3	1.542	.514	.08	2.76
ABC	6	9.805	1.634	.26	2.25
Error	72	447.500	6.215		
Total	95	1,037.833			

^{*}use 60 df for denominator of tabled F.

c. Factor B and C main effects are significant at the level .05

d.
$$Q_{.05,4,72}$$
 is not tabled, use $Q_{.05,4,60} = 3.74$, $w = 3.74 \sqrt{\frac{6.215}{(3)(2)(4)}} = 1.90$.

Machine: 3 1 4 2

Mean: .875 3.417 5.667 5.875

b. No interaction effects are significant at level .05

Chapter 11: Multifactor Analysis of Variance

a. See ANOVA table

b.

Source	Df	SS	MS	f	$F_{.05}$
A	3	.22625	.075417	77.35	9.28
В	1	.000025	.000025	.03	10.13
C	1	.0036	.0036	3.69	10.13
AB	3	.004325	.0014417	1.48	9.28
AC	3	.00065	.000217	.22	9.28
BC	1	.000625	.000625	.64	10.13
ABC	3	.002925	.000975		
Error					
Total	15	.2384			

The only statistically significant effect at the level .05 is the factor A main effect: levels of nitrogen.

c.
$$Q_{.05,4,3} = 6.82$$
; $w = 6.82 \sqrt{\frac{.002925}{(2)(2)}} = .1844$.
1 2 3 4
1.1200 1.3025 1.3875 1.4300

Chapter 11: Multifactor Analysis of Variance

31.

x_{ij} .	B_1	\mathbf{B}_2	\mathbf{B}_3
A_1	210.2	224.9	218.1
\mathbf{A}_2	224.1	229.5	221.5
A_3	217.7	230.0	202.0
$X_{.j.}$	652.0	684.4	641.6

$\mathcal{X}_{i.k}$	A_1	A_2	A_3
C_1	213.8	222.0	205.0
C_2	225.6	226.5	223.5
C_3	213.8	226.6	221.2
$X_{i.}$	653.2	675.1	649.7

$\mathcal{X}_{.jk}$	C_1	C_2	C_3
B_1	213.5	220.5	218.0
${f B}_2$	214.3	246.1	224.0
\mathbf{B}_3	213.0	209.0	219.6
<i>xk</i>	640.8	675.6	661.6

$$\Sigma\Sigma x_{ij.}^2 = 435,382.26$$
 $\Sigma\Sigma x_{i.k}^2 = 435,156.74$ $\Sigma\Sigma x_{.jk}^2 = 435,666.36$ $\Sigma x_{.j.}^2 = 1,305,157.92$ $\Sigma x_{i..}^2 = 1,304,540.34$ $\Sigma x_{..k}^2 = 1,304,774.56$

Also, $\Sigma\Sigma\Sigma x_{ijk}^2 = 145,386.40$, $x_{...} = 1978$, CF = 144,906.81, from which we obtain the

ANOVA table displayed in the problem statement. $F_{.01,4,8}=7.01$, so the AB and BC interactions are significant (as can be seen from the p-values) and tests for main effects are not appropriate.

Chapter 11: Multifactor Analysis of Variance

$$\mathbf{a.} \quad \text{Since } \frac{E(MSABC)}{E(MSE)} = \frac{\mathbf{s}^2 + L\mathbf{s}_{ABC}^2}{\mathbf{s}^2} = 1 \text{ if } \mathbf{s}_{ABC}^2 = 0 \text{ and } > 1 \text{ if } \mathbf{s}_{ABC}^2 > 0,$$

$$\frac{MSABC}{MSE} \text{ is the appropriate F ratio for testing } H_0 : \mathbf{s}_{ABC}^2 = 0 \text{ . Similarly, } \frac{MSC}{MSE} \text{ is the F ratio for testing } H_0 : \mathbf{s}_C^2 = 0; \frac{MSAB}{MSABC} \text{ is the F ratio for testing } H_0 : all$$

$$\mathbf{g}_{ij}^{AB} = 0; \text{ and } \frac{MSA}{MSAC} \text{ is the F ratio for testing } H_0 : all \quad \mathbf{a}_i = 0.$$

b.

Source	Df	SS	MS	f	$\mathbf{F}_{.01}$
A	1	14,318.24	14,318.24	$\frac{MSA}{MSAC} = 19.85$	98.50
В	3	9656.4	3218.80	$\frac{MSB}{MSBC} = 6.24$	9.78
C	2	2270.22	1135.11	$\frac{MSC}{MSE} = 3.15$	5.61
AB	3	3408.93	1136.31	$\frac{MSAB}{MSABC} = 2.41$	9.78
AC	2	1442.58	721.29	$\frac{MSAC}{MSABC} = 2.00$	5.61
BC	6	3096.21	516.04	$\frac{MSBC}{MSE} = 1.43$	3.67
ABC	6	2832.72	472.12	$\frac{MSABC}{MSE} = 1.31$	3.67
Error	24	8655.60	360.65		
Total	47				

Total 47

At level .01, no H_o 's can be rejected, so there appear to be no interaction or main effects present.

33.

Source	Df	SS	MS	f
A	6	67.32	11.02	
В	6	51.06	8.51	
C	6	5.43	.91	.61
Error	30	44.26	1.48	
Total	48	168.07		

Since $.61 < F_{.05,6,30} = 2.42$, treatment was not effective.

123456
$$x_{i..}$$
1442052722938598 $x_{.j.}$ 171199147221177182 $x_{..k}$ 180161186171169230

Thus
$$x_{...} = 1097$$
, $CF = \frac{(1097)^2}{36} = 33,428.03$, $\Sigma\Sigma x_{ij(k)}^2 = 42,219$, $\Sigma x_{i...}^2 = 239,423$, $\Sigma x_{.i.}^2 = 203,745$, $\Sigma x_{.k}^2 = 203.619$

Source	Df	SS	MS	f
A	5	6475.80	1295.16	
В	5	529.47	105.89	
C	5	508.47	101.69	1.59
Error	20	1277.23	63.89	
Total	35	8790.97		

Since 1.59 is not $\geq F_{.05,5,20} = 2.71$, H_{oC} is not rejected; shelf space does not appear to affect sales.

35.

	1	2	3	4	5	
X_{i}	40.68	30.04	44.02	32.14	33.21	$\Sigma x_{i}^2 = 6630.91$
$X_{.j.}$	29.19	31.61	37.31	40.16	41.82	$\Sigma x_{.j.}^2 = 6605.02$
\mathcal{X}_{k}	36.59	36.67	36.03	34.50	36.30	$\Sigma x_{k}^2 = 6489.92$
$x_{} = 180.09$, CF = 1297.30, $\Sigma \Sigma x_{ij(k)}^2 = 1358.60$						

Source	Df	SS	MS	f
A	4	28.89	7.22	10.78
В	4	23.71	5.93	8.85
\mathbf{C}	4	0.69	0.17	0.25
Error	12	8.01	.67	
Total	24	61.30		

 $F_{4,12} = 3.26$, so both factor A (plant) and B(leaf size) appear to affect moisture content, but factor C (time of weighing) does not.

Chapter 11: Multifactor Analysis of Variance

Source	Df	SS	MS	f	F _{.01} *
A (laundry treatment)	3	39.171	13.057	16.23	3.95
B (pen type)	2	.665	.3325	.41	4.79
C (Fabric type)	5	21.508	4.3016	5.35	3.17
AB	6	1.432	.2387	.30	2.96
AC	15	15.953	1.0635	1.32	2.19
BC	10	1.382	.1382	.17	2.47
ABC	30	9.016	.3005	.37	1.86
Error	144	115.820	.8043		
Total	215	204.947			

^{*}Because denominator degrees of freedom for 144 is not tabled, use 120. At the level .01, there are two statistically significant main effects (laundry treatment and fabric type). There are no statistically significant interactions.

Chapter 11: Multifactor Analysis of Variance

Source	Df	MS	f	F.01*
A	2	2207.329	2259.29	5.39
В	1	47.255	48.37	7.56
C	2	491.783	503.36	5.39
D	1	.044	.05	7.56
AB	2	15.303	15.66	5.39
AC	4	275.446	281.93	4.02
AD	2	.470	.48	5.39
BC	2	2.141	2.19	5.39
BD	1	.273	.28	7.56
CD	2	.247	.25	5.39
ABC	4	3.714	3.80	4.02
ABD	2	4.072	4.17	5.39
ACD	4	.767	.79	4.02
BCD	2	.280	.29	5.39
ABCD	4	.347	.355	4.02
Error	36	.977		
Total	71	_		_

*Because denominator d.f. for 36 is not tabled, use d.f. = 30

SST = (71)(93.621) = 6,647.091. Computing all other sums of squares and adding them up = 6,645.702. Thus SSABCD = 6,647.091 - 6,645.702 = 1.389 and

$$MSABCD = \frac{1.389}{4} = .347$$
.

At level .01 the statistically significant main effects are A, B, C. The interaction AB and AC are also statistically significant. No other interactions are statistically significant.

Section 11.4

38.

•
a.

Treatment Condition	X _{ijk} .	1	2	Effect Contrast	$SS = \frac{(contrast)^2}{16}$
$(1) = x_{111.}$	404.2	839.2	1991.0	3697.0	
$a = x_{211.}$	435.0	1151.8	1706.0	164.2	1685.1
$b = x_{121}$	549.6	717.6	83.4	583.4	21,272.2
$ab = x_{221.}$	602.2	988.4	80.8	24.2	36.6
$c = x_{112.}$	339.2	30.8	312.6	-285.0	5076.6
$ac = x_{212}$	378.4	52.6	270.8	-2.6	.4
$bc = x_{122.}$	473.4	39.2	21.8	-41.8	109.2
$abc = x_{222.}$	515.0	41.6	2.4	-19.4	23.5

$$\Sigma\Sigma\Sigma\Sigma x_{ijkl}^2 = 882,573.38;$$
 $SST = 882,573.38 - \frac{(3697)^2}{16} = 28,335.3$

b. The important effects are those with small associated p-values, indicating statistical significance. Those effects significant at level .05 (i.e., p-value < .05) are the three main effects and the speed by distance interaction.

Chapter 11: Multifactor Analysis of Variance

39.

Condition	Total	1	2	Contrast	$SS = \frac{(contrast)^2}{24}$
111	315	927	2478	5485	
211	612	1551	3007	1307	A = 71,177.04
121	584	1163	680	1305	B = 70,959.38
221	967	1844	627	199	AB = 1650.04
112	453	297	624	529	C = 11,660.04
212	710	383	681	-53	AC = 117.04
122	737	257	86	57	BC = 135.38
222	1107	370	113	27	ABC = 30.38

a.
$$\hat{\boldsymbol{b}}_{1} = \overline{x}_{2...} - \overline{x}_{...} = \frac{584 + 967 + 737 + 1107 - 315 - 612 - 453 - 710}{24} = 54.38$$

$$\hat{\boldsymbol{g}}_{11}^{AC} = \frac{315 - 612 + 584 - 967 - 453 + 710 - 737 + 1107}{24} = 2.21;$$

$$\hat{\boldsymbol{g}}_{21}^{AC} = -\hat{\boldsymbol{g}}_{11}^{AC} = 2.21.$$

b. Factor SS's appear above. With $CF = \frac{5485^2}{24} = 1,253,551.04$ and $\Sigma\Sigma\Sigma\Sigma_{ijkl}^2 = 1,411,889$, SST = 158,337.96, from which SSE = 2608.7. The ANOVA table appears in the answer section. $F_{.05,1,16} = 4.49$, from which we see that the AB interaction and all the main effects are significant.

Chapter 11: Multifactor Analysis of Variance

a. In the accompanying ANOVA table, effects are listed in the order implied by Yates' algorithm. $\Sigma\Sigma\Sigma\Sigma\Sigma_{ijklm}^2 = 4783.16$, $x_{min} = 388.14$, so

$$SST = 4783.16 - \frac{368.14^2}{32} = 72.56$$
 and $SSE = 72.56 - (sum of all other SS's) = 35.85.$

Source	Df	SS	MS	f
A	1	.17	.17	< 1
В	1	1.94	1.94	< 1
C	1	3.42	3.42	1.53
D	1	8.16	8.16	3.64
AB	1	.26	.26	< 1
AC	1	.74	.74	< 1
AD	1	.02	.02	< 1
BC	1	13.08	13.08	5.84
BD	1	.91	.91	< 1
CD	1	.78	.78	< 1
ABC	1	.78	.78	< 1
ABD	1	6.77	6.77	3.02
ACD	1	.62	.62	< 1
BCD	1	1.76	1.76	< 1
ABCD	1	.00	.00	< 1
Error	16	35.85	2.24	
Total	31			

b. $F_{.05,1,16} = 4.49$, so none of the interaction effects is judged significant, and only the D main effect is significant.

41.
$$\Sigma\Sigma\Sigma\Sigma x_{ijklm}^2 = 3,308,143$$
, $x_{....} = 11,956$, so $CF = \frac{(11,956)^2}{48} = 2,979,535.02$, and

SST = 328,607.98. Each SS is $\frac{(effect conrast)^2}{48}$ and SSE is obtained by subtraction. The

ANOVA table appears in the answer section. $F_{.05,1,32} \approx 4.15$, a value exceeded by the F ratios for AB interaction and the four main effects.

Chapter 11: Multifactor Analysis of Variance

42.
$$\Sigma\Sigma\Sigma\Sigma x_{ijklm}^2 = 32,917,817$$
, $x_{....} = 39,371$, $SS = \frac{(contrast)^2}{48}$, and error d.f. = 32.

Effect MS	S f	Effect	MS	f
A 16,17	0.02 3.42	BD	3519.19	< 1
B 332,16	67.69 70.17	CD	4700.52	< 1
C 43,14	0.02 9.11	ABC	1210.02	< 1
D 20,46	0.02 4.33	ABD	15,229.69	3.22
AB 1989	2.19 < 1	ACD	1963.52	< 1
AC 776.	02 < 1	BCD	10,354.69	2.19
AD 16,17	0.02 3.42	ABCD	1692.19	< 1
BC 3553	<.52	Error	4733.69	

 $F_{.01,1,32} \approx 7.5$, so only the B and C main effects are judged significant at the 1% level.

43.

Condition/E ffect	$SS = \frac{(contrast)^2}{16}$	f	Condition/ Effect	$SS = \frac{(contrast)^2}{16}$	f
(1)			D	414.123	1067.33
\mathbf{A}	.436	1.12	AD	.017	< 1
В	.099	< 1	BD	.456	< 1
AB	.497	1.28	ABD	.055	
\mathbf{C}	.109	< 1	CD	2.190	5.64
\mathbf{AC}	.078	< 1	ACD	1.020	
BC	1.404	3.62	BCD	.133	
ABC	.051		ABCD	.681	

SSE = .051 + .055 + 1.020 + .133 + .681 = 1.940, d.f. = 5, so MSE = .388. $F_{.05,1,5} = 6.61$, so only the D main effect is significant.

44.

- **a.** The eight treatment conditions which have even number of letters in common with abcd and thus go in the first (principle) block are (1), ab, ac, bc, ad, bd, cd, and abd; the other eight conditions are placed in the second block.
- **b.** and **c.**

$$x_{\text{....}}=1290$$
, $\Sigma\Sigma\Sigma\Sigma x_{ijkl}^2=105,\!160$, so SST = 1153.75. The two block totals are 639 and 651, so $SSBl=\frac{639^2}{8}+\frac{651^2}{8}-\frac{1290^2}{16}=9.00$, which is identical (as it must be here) to SSABCD computed from Yates algorithm.

Condition/Effect	Block	$SS = \frac{(contrast)^2}{16}$	f
(1)	1		
\mathbf{A}	2	25.00	1.93
В	2	9.00	< 1
AB	1	12.25	< 1
C	2	49.00	3.79
AC	1	2.25	< 1
BC	1	.25	< 1
ABC	2	9.00	
D	2	930.25	71.90
AD	1	36.00	2.78
BD	1	25.00	1.93
ABD	2	20.25	
CD	1	4.00	< 1
ACD	2	20.25	
BCD	2	2.25	
ABCD =Blocks	1	9.00	
Total		1153.75	

SSE = 9.0 + 20.25 + 20.25 + 2.25 = 51.75; d.f. = 4, so MSE = 12.9375, $F_{.05,1,4} = 7.71$, so only the D main effect is significant.

- **45.**
- **a.** The allocation of treatments to blocks is as given in the answer section, with block #1 containing all treatments having an even number of letters in common with both ab and cd, etc.

b.
$$x_{....} = 16,898$$
, so $SST = 9,035,054 - \frac{16,898^2}{32} = 111,853.88$. The eight $block \times replication$ totals are $2091 \ (= 618 + 421 + 603 + 449$, the sum of the four observations in block #1 on replication #1), 2092 , 2133 , 2145 , 2113 , 2080 , 2122 , and 2122 , so $SSBl = \frac{2091^2}{4} + ... + \frac{2122^2}{4} - \frac{16,898^2}{32} = 898.88$. The remaining SS's as well as all F ratios appear in the ANOVA table in the answer section. With $F_{.01,112} = 9.33$, only the A and B main effects are significant.

- 46. The result is clearly true if either defining effect is represented by either a single letter (e.g., A) or a pair of letters (e.g. AB). The only other possibilities are for both to be "triples" (e.g. ABC or ABD, all of which must have two letters in common.) or one a triple and the other ABCD. But the generalized interaction of ABC and ABD is CD, so a two-factor interaction is confounded, and the generalized interaction of ABC and ABCD is D, so a main effect is confounded.
- **47.** See the text's answer section.

a. The treatment conditions in the observed group are (in standard order) (1), ab, ac, bc, ad, bd, cd, and abcd. The alias pairs are {A, BCD}, {B, ACD}, {C, ABD}, {D, ABC}, {AB, CD}, {AC, BD}, and {AD, BC}.

b.

	A	В	C	D	AB	AC	AD
(1) = 19.09	-	-	-	-	+	+	+
Ab = 20.11	+	+	-	-	+	-	-
Ac = 21.66	+	-	+	-	-	+	-
Bc = 20.44	-	+	+	-	-	-	+
Ad = 13.72	+	-	-	+	-	-	+
Bd = 11.26	-	+	-	+	-	+	-
Cd = 11.72	-	-	+	+	+	-	-
Abcd = 12.29	+	+	+	+	+	+	+
Contrast	5.27	-2.09	1.93	-32.31	-3.87	-1.69	.79
SS	3.47	.55	.47	130.49	1.87	.36	.08
f	4.51	< 1	< 1	169.47	SSE=2	2.31	MSE=.770

 $F_{.05,1,3} = 10.13$, so only the D main effect is judged significant.

Chapter 11: Multifactor Analysis of Variance

		A	В	C	D	E	AB	AC	AD	AE	BC	BD	BE	CD	CE	DE
a	70.4	+	-	-	-	-	-	-	-	-	+	+	+	+	+	+
b	72.1	-	+	-	-	-	-	+	+	+	-	-	-	+	+	+
c	70.4	-	-	+	-	-	+	-	+	+	-	+	+	-	-	+
abc	73.8	+	+	+	-	-	+	+	-	-	+	-	-	-	-	+
d	67.4	-	-	-	+	-	+	+	-	+	+	-	+	-	+	-
abd	67.0	+	+	-	+	-	+	-	+	-	-	+	-	-	+	-
acd	66.6	+	-	+	+	-	-	+	+	-	-	-	+	+	-	-
bcd	66.8	-	+	+	+	-	-	-	-	+	+	+	-	+	-	-
e	68.0	-	-	-	-	+	+	+	+	-	+	+	-	+	-	-
abe	67.8	+	+	-	-	+	+	-	-	+	-	-	+	+	-	-
ace	67.5	+	-	+	-	+	-	+	-	+	-	+	-	-	+	-
bce	70.3	-	+	+	-	+	-	-	+	-	+	-	+	-	+	-
ade	64.0	+	-	-	+	+	-	-	+	+	+	-	-	-	-	+
bde	67.9	-	+	-	+	+	-	+	-	-	-	+	+	-	-	+
cde	65.9	-	-	+	+	+	+	-	-	-	-	-	-	+	+	+
abcde	68.0	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Thus
$$SSA = \frac{(70.4 - 72.1 - 70.4 + ... + 68.0)^2}{16} = 2.250$$
, $SSB = 7.840$, $SSC = .360$, SSD

= 52.563, SSE = 10.240, SSAB = 1.563, SSAC = 7.563, SSAD = .090, SSAE = 4.203, SSBC = 2.103, SSBD = .010, SSBE = .123, SSCD = .010, SSCE = .063, SSDE = 4.840, Error SS = sum of two factor SS's = 20.568, Error MS = 2.057, $F_{.01,1,10} = 10.04$, so only the D main effect is significant.

Supplementary Exercises

50.

Source	Df	SS	MS	f
Treatment	4	14.962	3.741	36.7
Block	8	9.696		
Error	32	3.262	.102	
Total	44	27.920		

$$H_0: {\pmb a}_1 = {\pmb a}_2 = {\pmb a}_3 = {\pmb a}_4 = {\pmb a}_5 = 0 \text{ will be rejected if } f = \frac{MSTr}{MSE} \ge F_{.05,4,32} = 2.67 \ .$$

Because $36.7 \ge 2.67$, H_o is rejected. We conclude that expected smoothness score does depend somehow on the drying method used.

Source	Df	SS	MS	\mathbf{f}
A	1	322.667	322.667	980.38
В	3	35.623	11.874	36.08
AB	3	8.557	2.852	8.67
Error	16	5.266	.329	
Total	23	372.113		

We first test the null hypothesis of no interactions (H_0 : $\mathbf{g}_{ij} = 0$ for all I, j). H_0 will be

rejected at level .05 if
$$f_{AB}=\frac{MSAB}{MSE} \geq F_{.05,3,16}=3.24$$
 . Because $8.67 \geq 3.24$, $H_{\rm o}$ is

rejected. Because we have concluded that interaction is present, tests for main effects are not appropriate.

52. Let $X_{ij} =$ the amount of clover accumulation when the ith sowing rate is used in the jth plot = $\mathbf{m} + \mathbf{a}_i + \mathbf{b}_j + e_{ij}$. $H_0: \mathbf{a}_1 = \mathbf{a}_2 = \mathbf{a}_3 = \mathbf{a}_4 = 0$ will be rejected if $f = \frac{MSTr}{MSE} \ge F_{\mathbf{a},I-1,(I-1)(J-1)} = F_{.05,3,9} = 3.86$

_	Source	Df	SS	MS	f
	Treatment	3	3,141,153.5	1,040,751.17	2.28
	Block	3	19,470,550.0		
	Error	9	4,141,165.5	460,129.50	
	Total	15	26,752,869.0		

Because 2.28 < 3.86, H_o is not rejected. Expected accumulation does not appear to depend on sowing rate.

Chapter 11: Multifactor Analysis of Variance

53. Let A = spray volume, B = belt speed, C = brand.

Condition	Total	1	2	Contrast	$SS = \frac{(contrast)^2}{16}$
(1)	76	129	289	592	21,904.00
A	53	160	303	22	30.25
В	62	143	13	48	144.00
AB	98	160	9	134	1122.25
C	88	-23	31	14	12.25
AC	55	36	17	-4	1.00
BC	59	-33	59	-14	12.25
ABC	101	42	75	16	16.00

The ANOVA table is as follows:

Effect	Df	MS	f
A	1	30.25	6.72
В	1	144.00	32.00
AB	1	1122.25	249.39
\mathbf{C}	1	12.25	2.72
\mathbf{AC}	1	1.00	.22
BC	1	12.25	2.72
ABC	1	16.00	3.56
Error	8	4.50	
Total	15		

 $F_{.05,1,8}=5.32$, so all of the main effects are significant at level .05, but none of the interactions are significant.

Chapter 11: Multifactor Analysis of Variance

54. We use Yates' method for calculating the sums of squares, and for ease of calculation, we divide each observation by 1000.

Condition	Total	1	2	Contrast	$SS = \frac{(contrast)^2}{8}$
(1)	23.1	66.1	213.5	317.2	-
A	43.0	147.4	103.7	20.2	51.005
В	71.4	70.2	24.5	44.6	248.645
AB	76.0	33.5	-4.3	-12.0	18.000
C	37.0	19.9	81.3	-109.8	1507.005
AC	33.2	4.6	-36.7	-28.8	103.68
BC	17.0	-3.8	-15.3	-118.0	1740.5
ABC	16.5	5	3.3	18.6	43.245

We assume that there is no three-way interaction, so the MSABC becomes the MSE for ANOVA:

Source	df	MS	f	
A	1	51.005	1.179	
В	1	248.645	5.750*	
AB	1	18.000	< 1	
C	1	1507.005	34.848*	
AC	1	103.68	2.398	
BC	1	1740.5	40.247*	
Error	1	43.245		
Total	8			

With $F_{.05,1,8}=5.32$, the B and C main effects are significant at the .05 level, as well as the BC interaction. We conclude that although binder type (A) is not significant, both amount of water (B) and the land disposal scenario (C) affect the leaching characteristics under study., and there is some interaction between the two factors.

a.

					Effect	
Effect	%Iron	1	2	3	Contrast	SS
	7	18	37	174	684	
A	11	19	137	510	144	1296
В	7	62	169	50	36	81
AB	12	75	341	94	0	0
C	21	79	9	14	272	4624
AC	41	90	41	22	32	64
BC	27	165	47	2	12	9
ABC	48	176	47	-2	-4	1
D	28	4	1	100	336	7056
AD	51	5	13	172	44	121
BD	33	20	11	32	8	4
ABD	57	21	11	0	0	0
CD	70	23	1	12	72	324
ACD	95	24	1	0	-32	64
BCD	77	25	1	0	-12	9
ABCD	99	22	-3	-4	-4	1

We use estimate = $\frac{contrast}{2^p}$ when n = 1 (see p 472 of text) to get

$$\hat{\boldsymbol{a}}_1 = \frac{144}{2^4} = \frac{144}{16} = 9.00, \ \hat{\boldsymbol{b}}_1 = \frac{36}{16} = 2.25, \ \hat{\boldsymbol{d}}_1 = \frac{272}{16} = 17.00,$$

$$\hat{g}_1 = \frac{336}{16} = 21.00$$
. Similarly, $(\hat{ab})_{11} = 0$, $(\hat{ad})_{11} = 2.00$, $(\hat{ag})_{11} = 2.75$,

$$\left(\hat{\boldsymbol{b}}\boldsymbol{d}\right)_{11} = .75, \left(\hat{\boldsymbol{b}}\boldsymbol{g}\right)_{11} = .50, \text{ and } \left(\hat{\boldsymbol{d}}\boldsymbol{g}\right)_{11} = 4.50.$$

b.

The plot suggests main effects A, C, and D are quite important, and perhaps the interaction CD as well. (See answer section for comment.)

56. The summary quantities are:

j
$$x_{ij\bullet} = 1 = 2 = 3 = x_{i\bullet\bullet}$$

$$1 = 6.2 = 4.0 = 5.8 = 16.0$$

$$2 = 7.6 = 6.2 = 6.4 = 20.2$$

$$x_{\bullet j\bullet} = 13.8 = 10.2 = 12.2 = x_{\bullet \bullet \bullet} = 36.2$$

$$CF = \frac{(36.2)^2}{30} = 43.6813, \ \Sigma\Sigma\Sigma x_{ijk}^2 = 45.560, \text{ so}$$

$$SST = 45.560 - 43.6813 = 1.8787,$$

$$SSE = 45.560 - \frac{225.24}{5} = .5120, \ SSA = \frac{(16.0)^2 + (20.2)^2}{15} - CF = .5880,$$

$$SSB = \frac{(13.8)^2 + (10.2)^2 + (12.2)^2}{10} - CF = .6507,$$

and by subtraction, SSAB = .128

Analysis of	Variance	for Ave	rage Bud	Rating
Source	DF	SS	MS	F
Health	1	0.5880	0.5880	27.56
рH	2	0.6507	0.3253	15.25
Interaction	2	0.1280	0.0640	3.00
Error	24	0.5120	0.0213	
Total	29	1.8787		

Since 3.00 is not $\geq F_{.05,2,24}=3.40$, we fail to reject the no interactions hypothesis, and we continue: $27.56 \geq F_{.05,1,24}=4.26$, and $15.25 \geq F_{.05,2,24}=3.40$, so we conclude that both the health of the seedling and its pH level have an effect on the average rating.

Chapter 11: Multifactor Analysis of Variance

57. The ANOVA table is:

Source	df	SS	MS	f	$F_{.01}$
A	2	34,436	17,218	436.92	5.49
В	2	105,793	52,897	1342.30	5.49
C	2	516,398	258,199	6552.04	5.49
AB	4	6,868	1,717	43.57	4.11
AC	4	10,922	2,731	69.29	4.11
BC	4	10,178	2,545	64.57	4.11
ABC	8	6,713	839	21.30	3.26
Error	27	1,064	39		
Total	53	692,372			

All calculated f values are greater than their respective tabled values, so all effects, including the interaction effects, are significant at level .01.

58.

Source	df	SS	MS	f	F.05
A(pressure)	1	6.94	6.940	11.57*	4.26
B(time)	3	5.61	1.870	3.12*	3.01
C(concen.)	2	12.33	6.165	10.28*	3.40
AB	3	4.05	1.350	2.25	3.01
AC	2	7.32	3.660	6.10*	3.40
BC	6	15.80	2.633	4.39*	2.51
ABC	6	4.37	.728	1.21	2.51
Error	24	14.40	.600		
Total	47	70.82			

There appear to be no three-factor interactions. However both AC and BC two-factor interactions appear to be present.

59. Based on the p-values in the ANOVA table, statistically significant factors at the level .01 are adhesive type and cure time. The conductor material does not have a statistically significant effect on bond strength. There are no significant interactions.

Chapter 11: Multifactor Analysis of Variance

Source	df	SS	MS	f	F.05
A (diet)	2	18,138	9.69.0	28.9*	≈ 3.32
B (temp.)	2	5,182	2591.0	8.3*	≈ 3.32
Interaction	4	1,737	434.3	1.4	≈ 2.69
Error	36	11,291	313.6		
Total	44	36,348			

Interaction appears to be absent. However, since both main effect f values exceed the corresponding F critical values, both diet and temperature appear to affect expected energy intake.

61.
$$SSA = \sum_{i} \sum_{j} (\overline{X}_{i...} - \overline{X}_{...})^2 = \frac{1}{N} \sum_{i...} X_{i...}^2 - \frac{X_{...}^2}{N}$$
, with similar expressions for SSB, SSC, and SSD, each having N – 1 df.

$$SST = \sum_{i} \sum_{j} (X_{ij(kl)} - \overline{X}_{...})^2 = \sum_{i} \sum_{j} X_{ij(kl)}^2 - \frac{X_{...}^2}{N} \text{ with N}^2 - 1 \text{ df, leaving}$$

$$N^2 - 1 - 4(N - 1) \text{ df for error.}$$

1
 2
 3
 4
 5

$$\sum x^2$$
 $x_{i...}$:
 482
 446
 464
 468
 434
 1,053,916

 $x_{.j..}$:
 470
 451
 440
 482
 451
 1,053,626

 $x_{..k.}$:
 372
 429
 484
 528
 481
 1,066,826

 $x_{...l}$:
 340
 417
 466
 537
 534
 1,080,170

Also,
$$\Sigma\Sigma x_{ij(kl)}^2 = 220,378$$
, $x_{...} = 2294$, and CF = 210,497.44

Source	df	SS	MS	f	$\mathbf{F}_{.05}$
A	4	285.76	71.44	.594	3.84
В	4	227.76	56.94	.473	3.84
C	4	2867.76	716.94	5.958*	3.84
D	4	5536.56	1384.14	11.502*	3.84
Error	8	962.72	120.34		
Total	24				

H_{oA} and H_{oB} cannot be rejected, while while H_{oC} and H_{oD} are rejected.