Réponses aux questions

Joseph El-Forzli Arthur Renard

1. Vecteur

- **P1.1** Comment représentez-vous ces vecteurs? Comment sont-ils organisés : quels attributs? quelles méthodes? quels droits d'accès?
 - Par des *vector*. L'unique attribut utilisé est un *vector*, les méthodes utilisées sont celles demandées en exercice, les droits d'accès sont publics.
- P1.2 Quel choix avez vous fait pour les opérations entre vecteurs de dimensions différentes?
 - Une exception est lancée.

2. Modularisation

3. Révision des vecteurs

- P4.1 Avez-vous ajouté un constructeur de copie? Pourquoi (justifiez votre choix)?
 - Non pour le moment ça n'a pas d'intérêt.
- **P4.2** Si l'on souhaitait ajouter un constructeur par coordonnées sphériques (deux angles et une longueur) pour les vecteurs de dimension 3,
 - (a) que cela impliquerait-il au niveau des attributs de la classe?
 - Il faudrait verifier que les coordonnées theta phi pour qu'ils appartiennent a $[0\ 2pi[\ x\ [0\ pi[\ x\]$
 - (b) quelle serait la difficulté majeure (voire l'impossibilité) de sa réalisation en C++? (C'est d'ailleurs pour cela qu'on ne vous demande pas de faire un tel constructeur!)
 - On aurait deux constructeurs de Vecteur qui prendrait les mêmes arguments. Cela n'est pas possible en C++, le programme ne saurait pas quelle constructeur appelé. -> On ne peut pas surcharger les constructeurs s'ils prennent les mêmes attributs.
- P4.3 Quels opérateurs avez vous introduits?
 - Les opérateurs "operator«", "operator!=" et "operator==" pour afficher les Vecteur et les comparer.

4. Matrice 3x3

5. Premières Toupies

- **P6.1** Comment se situe cette classe par rapport à la classe *Toupie* précédemment définie?
 - C'est une sous classe de *Toupie*, en effet *ConeSimple* est avant tout une toupie.

6. Intégrateurs

- P7.1 Comment avez vous conçu votre classe Intégrateur?
 - Nous n'avons pas coder une classe *Intégrateur* mais une classe *Intégrable*. Au lieu de voir un intégrateur comme un moyen de faire évoluer les toupies, nous avons vu les toupies comme des objets "intégrables". Notre classe *intégrable* possède donc deux vecteurs (P et dP), une équation d'évolution virtuelle et différents intégrateurs.
- P7.2 Quelle est la relation entre les classes Intégrateur et Intégrateur Euler Cromer?
 - Il n'y a donc pas de classe *Intégrateur*, mais *Euler Cromer* est une méthode de la classe *Intégrable*.

7. Système

- **P8.1** En termes de POO, quelle est donc la nature de la méthode dessine()?
 - C'est une méthode héritée de la classe dessinable (mère de système)
- P8.2 Quelle est la bonne façon de le faire dans un cadre de programmation orientée-objet?

- Il faut override la méthode Dessinable : :dessine()
- **P8.3** A quoi faut-il faire attention pour les classes contenant des pointeurs? Quelles solutions peut-on envisager?
 - Il ne faut pas oublier de delete toutes les *toupies.
- P8.4 Comment représentez vous la classe Système?
 - La classe système est représentée par l'ensemble des toupies et balles vers lesquelles elle pointe.

8. Première simulation (mode texte)

9. Graphisme

10. Indicateurs (invariants, traces)

- P11.1 Dans quelle(s) classe(s)/fichier(s) mettez-vous ces méthodes/fonctions?
 - Dans *Toupie*, en effet l'énergie, le moment cinétique et les grandeurs du produit mixte ne sont pas des valeurs propres à certaines toupies, seul leur "côté invariant" l'est. De plus, il pourrait être intéressant d'observer comment se comportent ces valeurs avec des toupies qui les font varier.

11. Toupies générales

12. Autres intégrateurs

- **P13.1** Où cela s'intègre-t-il dans votre projet/conception? Quels changements cela engendre-t-il (ou pas)?
 - Les intégrateurs s'intègrent dans *Intégrable* comme méthodes supplémentaires. Cela n'implique aucun changement, il suffit de rajouter les intégrateurs dans les options de démarrage du programme.