Efficient GMM estimation using incomplete data

Chris Muris (SFU)

July, 2016

Outline

Introduction

Problem

Contribution

Relation to the literature

Model

Main result

Estimation

Application: linear IV

Conclusion

Incomplete data

- An observation is incomplete if not all variables are observed
- Examples:
 - missing instruments

	Data					
	availability					
	1	2	3	4		
Instrument 1	Χ	Χ				
Instrument 2	Χ	•	Χ			

- unbalanced panels
- Incomplete observations may be informative
- An observation is missing if no moment function can be computed from the observed data

Contribution

This paper proposes a **framework** for handling incomplete data in a moment condition setting. Under a MAR assumption, I obtain:

- 1. A set of moment conditions for incomplete data
- 2. The **efficiency bound** for those moment conditions
- 3. An efficient estimator

Example: Linear IV

- Endogenous variables $X = (X_1, X_2)$
- Instruments W_1 and W_2
- Regression coefficient β_0 satisfies:

$$E\left(\begin{array}{c}W_1(y-X\beta_0)\\W_2(y-X\beta_0)\end{array}\right)=0\tag{1}$$

Missing data: both components of (1) available, or none

Example: Linear IV

Three strata based on data availability.

Stratum 1 Both instruments W_1 and W_2 are observed

Stratum 2 Only the instrument W_1 is observed

Stratum 3 Only W_2 is observed

- Efficient estimator optimally combines the information from all strata.
- No **identification** in stratum 2, but $E[W_1(y X\beta_0)] = 0$ is informative
- The approach is general:
 - arbitary number of strata
 - arbitrary set of moment conditions

Example: Dynamic panels

• Panel data AR(1) model:

$$y_{i,t} = \alpha_i + \rho y_{i,t-1} + u_{i,t}, \ 2 \le t \le T$$
 (2)

Arellano and Bond (1991) based on moment conditions

$$E(y_{i,t-s}\Delta u_{i,t}) = 0, \ t \ge 3, \ s \ge 2$$
 (3)

ullet If $y_{i,t}$ is not observed, then several components are unavailable

Example: Dynamic panels

	Unavailable components								
	None	$y_{i,1}$	<i>yi</i> ,4	$\left(y_{i,1},y_{i,4}\right)$	<i>y</i> i,2				
$y_{i,1}\Delta u_{i,3}$	Χ		Χ						
$y_{i,1}\Delta u_{i,4}$	Χ	•		•	Χ				
$y_{i,1}\Delta u_{i,5}$	Χ	•	•	•	Χ				
$y_{i,2}\Delta u_{i,4}$	Χ	Χ	•	•	•				
$y_{i,2}\Delta u_{i,5}$	Χ	Χ		•					
$y_{i,3}\Delta u_{i,5}$	Χ	Χ	•	•	Χ				

Table: Strata for dynamic panels.

Literature

- Missing data. Data is either complete, or completely missing. Robins et al. (1994), Hirano et al. (2003), Wooldridge (2007), Chen et al. (2008), Prokhorov and Schmidt (2009), Graham (2011)
 - My approach allows for an arbitrary number of strata
- Model-specific solutions. Methods for attrition in panels (Verbeek and Nijman, 1992; Hirano et al., 2001, Abrevaya, 2016), dynamic panels (Pacini and Windmeijer, 2015), partially observed instruments (Mogstad and Wiswall, 2012; Abrevaya and Donald, 2015)
 - My approach allows for an arbitrary set of moment conditions
- 3. **Imputation-based methods.** Dagenais (1973), Gourieroux and Monfort (1981), Dardanoni et al. (2011)
 - I do not rely on imputation

Outline

Introduction

Problem

Contribution

Relation to the literature

Model

Main result

Estimation

Application: linear IV

Conclusion

Model: complete data moments

- $Z = (Y_1', X')$ is a random vector
- β is an unknown parameter vector $(K \times 1)$
- $\psi(Z,\beta)$ is a vector of moment functions $(p \times 1, p \ge K)$

Assumption 1

$$E(\psi(Z,\beta)) = 0 \Leftrightarrow \beta = \beta_0$$

Model: data availability

- Not all elements of ψ are always observable
- J+1 strata of incompleteness
- D is an incomplete data indicator with J+1 outcomes $\{d_1,\cdots,d_{J+1}\}$
 - d_j is an $r \times r$ selection matrix that selects the elements of ψ that are observable
 - $d_{J+1} = O_r$
- Researcher observes $D\psi\left(Z,\cdot\right)$

Example: Linear IV

Moment conditions

$$E\left(\begin{array}{c}W_1(y-X\beta_0)\\W_2(y-X\beta_0)\end{array}\right)=0\tag{4}$$

• D takes one of J + 1 = 4 values

$$\left\{d_1 = \begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}, d_2 = \begin{bmatrix}1 & 0\\0 & 0\end{bmatrix}, d_3 = \begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}, d_4 = \begin{bmatrix}0 & 0\\0 & 0\end{bmatrix}\right\}$$

• $D = d_1$ corresponds to observing all variables:

$$d_1\psi(Z,\beta) = \begin{pmatrix} W_1(y - X\beta) \\ W_2(y - X\beta) \end{pmatrix}$$

• $D = d_2$ corresponds to observing only the first instrument

$$d_2\psi(Z,\beta) = \begin{pmatrix} W_1(y - X\beta_0) \\ 0 \end{pmatrix}$$

Model: MAR assumption

Assumption 2

Consider the following assumptions on the joint 'distribution of $Z = (Y_1, X)$ and D, and on the sampling process:

- 1. Random sampling: $\{(Z_i, D_i), i = 1, \dots, n\}$ is an independent and identically distributed sequence
- 2. Observed data: The researcher observes D_i , X_i , and $D_i\psi(Z_i,\beta)$ for all $\beta \in \mathcal{B}$
- 3. Missing at random: $Y_1 \perp D \mid X$
- 4. Overlap: There exists a $\kappa > 0$ such that

$$p_{j,0}(x) = P(D = d_j | X = x) \ge \kappa$$

for all $j = 1, \dots, J+1$ and for all $x \in supp(X)$

Model: MAR assumption

- For J=1 and $d_1=I_p$, Assumptions1+2 correspond to the standard MAR setup
- Missing at random (MAR):
 - data availability is randomly determined within subpopulations determined by X
 - point-identification of β_0 in missing data and program evaluation settings
- Missing completely at random (MCAR)
 - Special case with $X=1, Z\perp D$

Model: identification

Assumption 3

Every component of ψ is observable in at least one stratum, i.e. matrix $\sum_{i=1}^{J} d_i$ has full rank.

Example: bivariate mean estimation

$$E\left(\left[\begin{array}{c}X_1\\X_2\end{array}\right]-\left[\begin{array}{c}\mu_1\\\mu_2\end{array}\right]\right)=0\tag{5}$$

when only one variable is available for any observation:

$$D \in \left\{ d_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, d_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, d_3 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

• Differentiates the incomplete data model from a multi-valued treatment setup (e.g. Cattaneo, 2010)

Model: summary

- Moment condition setup
- Incomplete data indicator
- Missing at random + overlap
- Every component is observed at least once

Outline

Introduction

Problem

Contribution

Relation to the literature

Model

Main result

Estimation

Application: linear IV

Conclusion

Moment conditions (missing data)

- Graham (2011): missing data (J = 1 and $d_1 = I_p$)
- Assumptions 1-3 informationally equivalent to

$$E\left[\frac{1\left\{D=I_{p}\right\}}{\rho_{1,0}(X)}\psi\left(Z,\beta_{0}\right)\right]=0\tag{6}$$

$$E\left[\frac{1\{D=I_p\}}{p_{1,0}(X)}-1\bigg|X\right] = 0, (7)$$

where

$$p_{1,0}(x) = P(D = d_1 | X = x)$$

With incomplete data, (6) and (7) hold for each stratum

Moment conditions: selection probabilities

• For each $j \in \{1, \cdots, J\}$, define the stratum indicator

$$s_j = 1 \{ D = d_j \}.$$
 (8)

Selection probabilities are given by

$$p_{j,0}(x) = P(D = d_j | X = x)$$
 (9)

$$= E[s_j|X=x] \tag{10}$$

Analog of moment condition (7) rewrites that definition:

$$E\left[\frac{s_j}{p_{j,0}(X)} - 1 \middle| X\right] = 0 \tag{11}$$

Moment conditions: IPW

Analog of moment condition (6):

$$E\left[\frac{s_{j}}{p_{j,0}(X)}d_{j}\psi(Z,\beta_{0})\right]=0,$$
(12)

• Valid under Assumptions 1+2:

$$E\left[\frac{s_{j}}{p_{j,0}(X)}\psi(Z,\beta_{0})\right] = E_{X}\left[E\left[\frac{s_{j}}{p_{j,0}(X)}\psi(Z,\beta_{0})\right] \middle| X\right]$$

$$= E_{X}\left[E\left[\frac{s_{j}}{p_{j,0}(X)}\middle| X\right]E\left[\psi(Z,\beta_{0})\middle| X\right]\right]$$

$$= E_{X}\left[E\left[\psi(Z,\beta_{0})\middle| X\right]\right]$$

$$= E\left[\psi(Z,\beta_{0})\right] = 0.$$

Stacked moment conditions

To facilitate a GMM analysis, stack moment conditions across j.

$$E\begin{bmatrix} \frac{s_1}{\rho_{1,0}(X)} - 1 \\ \vdots \\ \frac{s_J}{\rho_{J,0}(X)} - 1 \end{bmatrix} X = 0$$
 (13)

$$E\left[\begin{bmatrix} \frac{s_1}{p_{1,0}(X)}d_1\\ \vdots\\ \frac{s_J}{p_{J,0}(X)}d_J \end{bmatrix}\psi(Z,\beta_0)\right] = 0 \tag{14}$$

Main result (notation)

- Moment function ψ has conditional expectation q(X), and conditional variance $\Sigma_0(X)$
- Selection probabilities are stacked into $R_0(X)$
- \bullet Λ_0 is the variance of stacked weighted moments
- Δ₂ selects the observed components

$$q(X) = E[\psi(Z,\beta_0)|X]$$
 (15)

$$\Sigma_0(X) = V[\psi(Z,\beta_0)|X]$$
 (16)

$$R_0(X) = diag(p_{1,0}(X), \cdots, p_{J,0}(X))$$
 (17)

$$\Delta_2 = \left[\begin{array}{ccc} d_1 & \cdots & d_J \end{array} \right]' \tag{19}$$

Main result

Theorem 4

Assume that (i) the distribution of Z has known, finite support; (ii) the moment conditions (13) and 14 hold; (iii) Λ_0 is invertible and Γ_0 has full rank; (iv) other regularity conditions hold (see e.g. Chamberlain (1989, Section 2). Then the Fisher information for β_0 is given by

$$I(\beta_0) = \Gamma_0' \Delta_2' \Lambda_0^{-1} \Delta_2 \Gamma_0.$$
 (20)

Main result: extension of missing data

Missing data bound is well-known:

$$I_{m}(\beta_{0}) = \Gamma_{0}^{'} \Lambda_{m,0}^{-1} \Gamma_{0}, \tag{21}$$

where

$$\Lambda_{m,0} = E\left[\frac{\Sigma_0(X)}{p_{1,0}(X)} + q(X)q(X)'\right],$$
 (22)

• Obtained as a special case of bound in Theorem 4 with J=1, $d_1=I$

Main result: MCAR

- Special case:
 - MCAR: X = 1
 - · Identification in each stratum
 - $d_1 = I_p$
- Information in each stratum is:

$$I_{j,mcar}(\beta_0) = p_{j,0} \Gamma_0' d_j \Sigma_0^{-1} d_j \Gamma_0$$
 (23)

Total information is:

$$I(\beta_0) = \sum_{j=1}^{J} I_{j,mcar}(\beta_0)$$
 (24)

• Information when discarding incomplete information:

$$I_{m}(\beta_{0}) = I_{1,mcar}(\beta_{0}), \qquad (25)$$

- Incomplete observations allow for more efficient estimation:
 - $I(\beta_0) I_m(\beta_0)$ is positive definite iff J > 1.

Efficiency (remarks)

- 1. Known finite support is not crucial, but used to derive the bound. Results in (Chamberlain, 1989, Section 3) establish that the bound applies to the general case.
- 2. The efficiency bound is for the derived moment conditions
 - 2.1 Is it the efficiency bound for Assumptions 1-3? Probably yes, no proof yet.
 - 2.2 additional moment conditions may be available, that are redundant with full data (Pacini and Windmeijer, 2015)

Outline

Introduction

Problem

Contribution

Relation to the literature

Model

Main result

Estimation

Application: linear IV

Conclusion

Estimation: selection probabilities

- Assume discrete X
- Estimator for the selection probabilities $p_{i,o}(x_l) = P(D = d_i | X = x_l)$ is

$$\hat{p}_{j}(x) = \frac{\sum_{i=1}^{n} 1\{D_{i} = d_{j}, X_{i} = x\}}{\sum_{i=1}^{n} 1\{X = x\}}.$$
 (26)

• Stack all selection probabilities in p_0 , with estimator \hat{p}

Estimation: parameter of interest

- Use the optimal GMM estimator with \hat{p} plugged in.
- $\bar{m}_n(p,\beta)$ is the sample analog of the available moment conditions:

$$\bar{m}_{n}(p,\beta) = \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} \frac{1\{D_{i}=d_{1}\}}{\hat{p}_{1}(X_{i})} \tilde{d}_{1} \psi(Z_{i},\beta) \\ \vdots \\ \frac{1}{n} \sum_{i=1}^{n} \frac{1\{D_{i}=d_{J}\}}{\hat{p}_{J}(X_{i})} \tilde{d}_{J} \psi(Z_{i},\beta) \end{bmatrix}, \qquad (27)$$

where $ilde{d}_j$ is the rectangular version of d_j (no zero rows)

• Plug-in GMM estimator $\hat{\beta}$ is

$$\hat{\beta} = \operatorname{argmin}_{\beta \in \mathcal{B}} \bar{m}_{n} (\hat{p}, \beta)' W_{n} \bar{m}_{n} (\hat{p}, \beta)$$
 (28)

for a weight matrix W_n

Estimation: large-sample distribution

Assumption 5

(i) The parameter space \mathcal{B} is compact, and β_0 is in the interior of \mathcal{B} ; (ii) the sequence of matrices W_n converges to $I(\beta_0)$; (iii) the moment function ψ is continuously differentiable on \mathcal{B} .

Theorem 6

Assume that the conditions of Theorem 5 are satisfied, and that Assumptions 1, 2, 3, and 5 hold. Then the limiting distribution of the two-step GMM estimator $\hat{\beta}$ in (28) is given by

$$\sqrt{n}\left(\hat{\beta}-\beta_0\right) \stackrel{p}{\to} \mathcal{N}\left(0,I^{-1}\left(\beta_0\right)\right).$$
(29)

Outline

Introduction

Problem

Contribution

Relation to the literature

Model

Main result

Estimation

Application: linear IV

Conclusion

Main result: linear IV

Linear IV model:

$$E[W_1(y - X\beta_0)] = E[W_2(y - X\beta_0)] = 0$$
 (30)

• Three outcomes for the missing data indicator:

$$D \in \left\{ d_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, d_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, d_3 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

- Efficient GMM estimator sets
 - \hat{p} as above
 - $\hat{\beta}$ from 4 weighted instruments

$$E\left[\frac{s_1}{\hat{p}_1(X)}W_1(y-X\beta_0)\right] = 0$$

$$E\left[\frac{s_1}{\hat{p}_1(X)}W_2(y-X\beta_0)\right] = 0$$

$$E\left[\frac{s_2}{\hat{p}_2(X)}W_1(y-X\beta_0)\right] = 0$$

$$E\left[\frac{s_3}{\hat{p}_3(X)}W_2(y-X\beta_0)\right] = 0$$

Main result: linear IV

- Set of instruments depends on observed data availability
- If strata are

$$D \in \left\{ d_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, d_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}
ight\},$$

then use instruments:

- $\frac{s_1}{\hat{p}_1(X)} W_1$ $\frac{s_2}{\hat{p}_2(X)} W_2$

Numerical results: setup

- Linear IV, one regressor X, two instruments (W_1, W_2)
- Data availability:
 - 1. Both instruments.
 - 2. Only W_1
 - 3. Only W_2
- Instruments both have a 50% of being missing, and

$$\mathsf{Var}\left(\begin{array}{c} X \\ \mathcal{W}_1 \\ \mathcal{W}_2 \end{array}\right) = \begin{pmatrix} 1 & 0.5 & 0.5 \\ 0.5 & 1 & \rho \\ 0.5 & \rho & 1 \end{pmatrix}.$$

• Instruments have correlation $\rho = Cov(W_1, W_2)$.

Numerical results

Figure: Asymptotic variance for various estimators of β_0 as a function of ρ , $p_1 = 0.5$.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■

Outline

Introduction

Problem

Contribution

Relation to the literature

Model

Main result

Estimation

Application: linear IV

Conclusion

Conclusion

- Framework for estimation using incomplete data
- Moment conditions and efficiency bound generalize those for missing data
- Efficient estimators are easy to implement
- Identification can be achieved even if it fails in each stratum of incompleteness