Lecture15: PMOSFET

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

NMOSFET

- In the NMOSFET, electrons are mobile carriers.
 - When V_{GS} is lower than V_{TH} , holes are depleted from the Si/SiO₂ interface.
 - When V_{GS} is larger than V_{TH} , electrons are collected at the Si/SiO₂ interface. (Electron inversion)
- Imagine its "dual" device with a negative V_{TH} .
 - When V_{GS} is larger than V_{TH} ($|V_{GS}| > |V_{TH}|$), electrons are depleted from the Si/SiO₂ interface.
 - When V_{GS} is smaller than V_{TH} ($|V_{GS}| < |V_{TH}|$), holes are collected at the Si/SiO₂ interface. (Hole inversion)
 - Is there such a device? Yes.

PMOSFET

The PMOSFET

- Example) $V_{TH,P} = -1.5$ V. Assume that V_S is 3 V. The gate voltage of 2 V does not turn on the transistor. 1 V turns on the transistor.
- The drain voltage is lower than the source voltage. In the usual operation condition, the drain current is negative.

How to fabricate it

- We need an n-type substrate.
 - Also two highly doped p-type regions are required.

Layout example

- Taken from Wikipedia
 - Draw its circuit schematic.

Biasing of PMOS devices

- Express the source current as a function of the drain voltage.
 - The absolute value of "gate overdrive" is 1.2 V.
 - It is not 0.6 V.

Do the same job with the gate voltage of 1.8 V.