Lineární algebrou za energetické úspory IV: souřadnice vůči bázi, operace s maticemi

Medicínské výzkumy ukázaly, že studium Lineární algebry je funkční prevencí před onemocněním koronavirem: dokonce mezi lineárněalgebraickými schopnostmi a odolností prý existuje přímá (=lineární!) úměra.

Opakování z minula Buď te
$$\vec{v_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \vec{v_3} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
 vektory v lineárním prostoru \mathbb{R}^4 nad \mathbb{R} a označme

 $B_1 = (\vec{v_1}, \vec{v_2}, \vec{v_3}).$

1. Ukažte, že je seznam B_1 lineárně nezávislý. [Vyřeším soustavu s vektory ve sloupcích na levé straně a samými nulami na pravé

Seznam B_1 tedy tvoří uspořádanou bázi podprostoru $L = \operatorname{span}(B_1) \subseteq \mathbb{R}^4$.

2. Vyberte z množiny
$$\left\{ \begin{pmatrix} -2\\2\\1\\1 \end{pmatrix}, \begin{pmatrix} 5\\0\\2\\7 \end{pmatrix}, \begin{pmatrix} 2\\2\\3\\8 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\3 \end{pmatrix} \right\}$$
 ty vektory, které leží v L .
$$\left[\left\{ \begin{pmatrix} -2\\2\\1\\1 \end{pmatrix}, \begin{pmatrix} 5\\0\\2\\7 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\3 \end{pmatrix} \right\}$$

3. Ukažte, že množina C sestávající z vektorů vybraných v předchozím bodě je lineárně nezávislá.

Rozmyslete si, že díky bodu 3 můžeme tvrdit, že množina C tvoří bázi prostoru L. Uspořádejte množinu C do uspořádaného seznamu (báze) B_2 , a to vzestupně podle hodnot v druhé souřadnici vektorů (tedy první bude vektor s nejnižší hodnotou v druhé souřadnici, poté s druhou nejnižší atd.). Vektory seznamu B_2 označme postupně $\vec{w_1}, \vec{w_2}, \vec{w_3}$.

4. Určete
$$\vec{u}_i = \mathbf{coord}_{B_1}\left(\vec{w_i}\right)$$
 pro $i = 1, 2, 3$. $\left[\mathbf{coord}_{B_1}\left(\vec{w_1}\right) = \begin{pmatrix} 2\\0\\3 \end{pmatrix}, \mathbf{coord}_{B_1}\left(\vec{w_2}\right) = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \mathbf{coord}_{B_1}\left(\vec{w_3}\right) = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}\right]$

5. Je množina $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\} \subseteq \mathbb{R}^3$ lineárně nezávislá? Dá se odpověď zjistit bez počítání (například jen pomocí výsledků z předchozích cvičení)? [Ano. Lin. (ne)závislost nezáleží na volbě báze, takže je jedno, jestli zjišťuji (ne)
závislost pro sloupcové vektory (coord $_{K_4}(\vec{w_i})$) ve cvič. 2 nebo pro sloupcové vektory $\operatorname{coord}_{B_1}(\vec{w_i})$ ze cvič. 4.]

6. Určete
$$\vec{t}_i = \mathbf{coord}_{B_2}\left(\vec{w_i}\right)$$
 pro $i = 1, 2, 3$.

$$[t_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, t_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, t_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}]$$

7. Určete množiny, pro které platí, že M_i je bází prostoru span (M_i) . Určete příslušné dimenze dim (span (M_i)). (Pracujeme v prostoru $\mathbb{R}[x]$ nad tělesem \mathbb{R}):

(a)
$$M_1 = \{x^2, x, 1\}$$

(c)
$$M_3 = \{x^2 + 3x + 2\}$$

(e)
$$M_5 = \{x+2, x+1\}$$

(b)
$$M_2 = \{x^2, 3x, 2\}$$

(d)
$$M_4 = \{x^2 + x, x + 1\}$$

(c)
$$M_3 = \{x^2 + 3x + 2\}$$
 (e) $M_5 = \{x + 2, x + 1\}$
(d) $M_4 = \{x^2 + x, x + 1\}$ (f) $M_6 = \{x^2, x^2 + x, 2x, x + 2\}$

 [Všechny až na M_6 , protože ta je lineárně závislá. Všimněte si, že $\mathrm{span}\,(M_1) = \mathrm{span}\,(M_2) = \mathrm{span}\,(M_6) = \mathbb{R}^{\leq 2}\,[x], \, \dim(\mathrm{span}(M_3)) = 1, \, \dim(\mathrm{span}(M_4)) = 2, \, \dim(\mathrm{span}(M_5)) = 2]$

8. Položme $\vec{p} = x^2 + 3x + 2$. Pokud je množina M_i z předchozího cvičení bází span (M_i) a zároveň $\vec{p} \in \text{span}(M_i)$, $[\operatorname{coord}_{M_1}(\vec{p}) = \begin{pmatrix} 1\\3\\2 \end{pmatrix}, \operatorname{coord}_{M_2}(\vec{p}) = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \operatorname{coord}_{M_3}(\vec{p}) = \begin{pmatrix} 1\\1 \end{pmatrix}, \operatorname{coord}_{M_4}(\vec{p}) = \begin{pmatrix} 1\\2 \end{pmatrix}]$ určete coord $_{\mathbf{M_i}}(\vec{p})$.

Operace s maticemi Operace sčítání, odčítání a násobení skalárem jsou na maticích definovány vcelku přirozeně. Dobrá grafická pomůcka pro méně intuitivní násobení matic je popsána zde.

- 9. Mějme tři matice $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 2 & 3 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 2 & 2 \\ 1 & 3 \\ 2 & 4 \end{pmatrix}$. S maticemi obecně umíme 3 operace: $+, -, \times$.
 - (a) Kolik s výchozími třemi maticemi existuje různých zadání tvaru "matice operace matice" (tj. např. $\mathbf{A} \times \mathbf{B}$)?
 - (b) Kolik z nich dává smysl (tj. příslušná operace je definována; např. součet $\mathbf{A} + \mathbf{B}$ definován není)? [11]
 - (c) Ta zadání, která mají smysl, spočítejte nad tělesem \mathbb{Z}_5 .

•
$$\mathbf{A} + \mathbf{A} = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}$$

• $\mathbf{matice} \, \mathbf{X} - \mathbf{matice} \, \mathbf{X} = \mathbf{O}_{\substack{\text{stejn\'eto} \\ \text{rozm\'er\'u}}} \mathbf{B} \times \mathbf{C} = \begin{pmatrix} 0 & 3 \\ 3 & 3 \end{pmatrix}$

• $\mathbf{A} \times \mathbf{B} = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 4 & 1 \end{pmatrix}$
• $\mathbf{C} \times \mathbf{B} = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 1 & 3 \\ 2 & 3 & 0 \end{pmatrix}$

• $\mathbf{C} \times \mathbf{A} = \begin{pmatrix} 4 & 4 \\ 2 & 1 \\ 4 & 3 \end{pmatrix}$
• $\mathbf{C} \times \mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

10. Dokažte nebo vyvraťte protipříkladem následující tvrzení: Tvoří-li v reálném prostoru \mathbb{R}^3 seznam vektorů $S = (\vec{v_1}, \vec{v_2}, \vec{v_3})$ jeho uspořádanou bázi a pro vektor \vec{w} platí $\mathbf{coord}_S(\vec{w}) = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, pak je množina $\{\vec{v_1}, \vec{v_2}, \vec{w}\}$ též bází \mathbb{R}^3 .