Solution to Practice 1n

$$\mathbf{B1(a)}\ L(t(a_1+b_1x+c_1x^2)+(a_2+b_2x+c_2x^2)) = L((ta_1+a_2)+(tb_1+b_2)x+(tc_1+c_2)x^2) = \begin{bmatrix} ta_1+a_2\\tb_1+b_2\\tc_1+c_2 \end{bmatrix} = t \begin{bmatrix} a_1\\b_1\\c_1 \end{bmatrix} + \begin{bmatrix} a_2\\b_2\\c_2 \end{bmatrix} = tL(a_1+b_1x+c_1x^2) + L(a_2+b_2x+c_2x^2)$$

B1(b) $L(t(a_1+b_1x+c_1x^2)+(a_2+b_2x+c_2x^2))=L((ta_1+a_2)+(tb_1+b_2)x+(tc_1+c_2)x^2)=(tb_1+b_2)+2(tc_1+c_2)=tb_1+2tc_1+b_2+2c_2=t(b_1+2c_1)+(b_2+2c_2)=tL(a_1+b_1x+c_1x^2)+L(a_2b_2x+c_2x^2)$

$$\mathbf{B1(c)} \ L\left(t\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}\right) = L\left(\begin{bmatrix} ta_1 + a_2 & tb_1 + b_2 \\ tc_1 + c_2 & td_1 + d_2 \end{bmatrix}\right) = 0 = t(0) + 0 = tL\left(\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}\right) + L\left(\begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}\right)$$

 $\begin{aligned} \mathbf{B1(d)} \ L\left(t \begin{bmatrix} a_1 & 0 \\ 0 & b_1 \end{bmatrix} + \begin{bmatrix} a_2 & 0 \\ 0 & b_2 \end{bmatrix}\right) &= L\left(\begin{bmatrix} ta_1 + a_2 & 0 \\ 0 & tb_1 + b_2 \end{bmatrix}\right) = (ta_1 + a_2) + (ta_1 + a_2 + tb_1 + b_2)x + (tb_1 + b_2)x^2 &= (ta_1 + (ta_1 + tb_1)x + tb_1x^2) + (a_2 + a_2)x + b_2x^2) \\ &= t(a_1 + (a_1 + b_1)x + b_1x^2) + (a_2 + (a_2 + b_2)x + b_2x^2) \\ &= tL\left(\begin{bmatrix} a_1 & 0 \\ 0 & b_1 \end{bmatrix}\right) + L\left(\begin{bmatrix} a_2 & 0 \\ 0 & b_2 \end{bmatrix}\right) \end{aligned}$

$$\begin{aligned} \mathbf{B1(e)} \ L\left(t\left[\begin{array}{cc} a_1 & b_1 \\ c_1 & d_1 \end{array}\right] + \left[\begin{array}{cc} a_2 & b_2 \\ c_2 & d_2 \end{array}\right]\right) &= L\left(\left[\begin{array}{cc} ta_1 + a_2 & tb_1 + b_2 \\ tc_1 + c_2 & td_1 + d_2 \end{array}\right]\right) = \\ \left[\begin{array}{cc} (ta_1 + a_2) - (tb_1 + b_2) & (tb_1 + b_2) - (tc_1 + c_2) \\ (tc_1 + c_2) - (td_1 + d_2) & (td_1 + d_2) - (ta_1 + a_2) \end{array}\right] &= t\left[\begin{array}{cc} a_1 - b_1 & b_1 - c_1 \\ c_1 - d_1 & d_1 - a_1 \end{array}\right] + \\ \left[\begin{array}{cc} a_2 - b_2 & b_2 - c_2 \\ c_2 - d_2 & d_2 - a_2 \end{array}\right] &= tL\left(\left[\begin{array}{cc} a_1 & b_1 \\ c_1 & d_1 \end{array}\right]\right) + L\left(\left[\begin{array}{cc} a_2 & b_2 \\ c_2 & d_2 \end{array}\right]\right) \end{aligned}$$

$$\begin{aligned} \mathbf{B1(f)} \ L\left(t\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}\right) &= L\left(\begin{bmatrix} ta_1 + a_2 & tb_1 + b_2 \\ tc_1 + c_2 & td_1 + d_2 \end{bmatrix}\right) = (ta_1 + a_2 + tb_1 + b_2 + tc_1 + c_2 + td_1 + d_2)x^2 \\ &= ta_1x^2 + a_2x^2 + tb_1x^2 + b_2x^2 + tc_1x^2 + c_2x^2 + td_1x^2 + d_2x^2 \\ &= t(a_1 + b_1 + c_1 + d_1)x^2 + (a_2 + b_2 + c_2 + d_2)x^2 \\ &= tL\left(\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}\right) + L\left(\begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}\right) \end{aligned}$$

B1(g) Using properties of the transpose (Theorem 3.1.2), we have that $T(tA + B) = (tA + B)^T = (tA)^T + B^T = tA^T + B^T = tT(A) + T(B)$.

B2(a) L is not linear. Consider, for example, that $L(1) = L(1+0x+0x^2+0x^3) = \sqrt{1^2+0^2+0^2+0^2} = 1$ and $L(x) = L(0+x+0x^2+0x^3) = \sqrt{0^2+1^2+0^2+0^2} = 1$, so L(1)+L(x) = 2, but $L(1+x) = L(1+x+0x^2+0x^3) = \sqrt{1^2+1^2+0^2+0^2} = \sqrt{2}$, so $L(1)+L(x) \neq L(1+x)$.

B2(b) M is not linear. Consider, for example, that $L(1 + 2x + 3x^2) = 2^2 - 4(1)(3) = -8$ and $L(2 + 3x + 4x^2) = 3^2 - 4(2)(4) = -23$, so $L(1 + 2x + 3x^2) + 2x^2 + 2x^2 + 3x^2 + 3x^2$

 $L(2+3x+4x^2)=-8-23=-31$. But $L(1+2x+3x^2+2+3x+4x^2)=L(3+5x+7x^2)=5^2-4(3)(7)=-59$. So $L(1+2x+3x^2)+L(2+3x+4x^2)\neq L(1+2x+3x^2+2+3x+4x^2)$.

$$\begin{aligned} \mathbf{B2(c)} \ N \ \text{is linear.} \ N \left(t \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \right) &= N \left(\begin{bmatrix} tx_1 + y_1 \\ tx_2 + y_2 \\ tx_3 + y_3 \end{bmatrix} \right) \\ &= \begin{bmatrix} tx_1 + y_1 - tx_3 - y_3 & 0 \\ tx_2 + y_2 & tx_2 - y_2 \end{bmatrix} = \begin{bmatrix} tx_1 - tx_3 & 0 \\ tx_2 & tx_2 \end{bmatrix} + \begin{bmatrix} y_1 - y_3 & 0 \\ y_2 & y_2 \end{bmatrix} = \\ t \begin{bmatrix} x_1 - x_3 & 0 \\ x_2 & x_2 \end{bmatrix} + \begin{bmatrix} y_1 - y_3 & 0 \\ y_2 & y_2 \end{bmatrix} = tN \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) + N \left(\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \right) \end{aligned}$$

$$\mathbf{B2(d)} \ L \text{ is linear.} \ L(tA+B) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} (tA+B) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} tA + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} B = tL(A) + L(B)$$

 $\mathbf{B2(e)}\ T \text{ is not linear. Consider, for example, that } T\left(\left[\begin{array}{c}1&2\\3&4\end{array}\right]\right) = 1 + 2x + 6x^2$ and $T\left(\left[\begin{array}{c}2&3\\4&5\end{array}\right]\right) = 2 + 6x + 24x^2, \text{ so } T\left(\left[\begin{array}{c}1&2\\3&4\end{array}\right]\right) + T\left(\left[\begin{array}{c}2&3\\4&5\end{array}\right]\right) = (1 + 2x + 6x^2) + (2 + 6x + 24x^2) = 3 + 8x + 30x^2. \text{ But } T\left(\left[\begin{array}{c}1&2\\3&4\end{array}\right] + \left[\begin{array}{c}2&3\\4&5\end{array}\right]\right) = T\left(\left[\begin{array}{c}3&5\\7&9\end{array}\right]\right) = 3 + 15x + 105x^2. \text{ And so we see that } T\left(\left[\begin{array}{c}1&2\\3&4\end{array}\right]\right) + T\left(\left[\begin{array}{c}2&3\\3&4\end{array}\right]\right) + T\left(\left[\begin{array}{c}2&3\\3&4\end{array}\right]\right) \neq T\left(\left[\begin{array}{c}1&2\\3&4\end{array}\right] + \left[\begin{array}{c}2&3\\4&5\end{array}\right]\right)$

D3(a) Let \mathbb{V} and \mathbb{W} be vector spaces and $L : \mathbb{V} \to \mathbb{W}$ be a linear mapping. Suppose that $\{L(\mathbf{v}_1), \ldots, L(\mathbf{v}_k)\}$ is linearly independent. Consider the equation

$$t_1\mathbf{v}_1 + \dots + t_k\mathbf{v}_k = \mathbf{0}_{\mathcal{V}}$$

Since $L(\mathbf{0}_{\mathcal{V}}) = \mathbf{0}_{\mathcal{W}}$, we have that $L(t_1\mathbf{v}_1 + \cdots + t_k\mathbf{v}_k) = \mathbf{0}_{\mathcal{W}}$. But, using the linearity properties of L, this means that

$$t_1L(\mathbf{v}_1) + \cdots + t_kL(\mathbf{v}_k) = \mathbf{0}_{\mathcal{W}}$$

Since the set $\{L(\mathbf{v}_1), \ldots, L(\mathbf{v}_k)\}$ is linearly independent, the only solution to this equation is $t_1 = \cdots = t_k = 0$. This means we have shown that the only solution to the equation $t_1\mathbf{v}_1 + \cdots + t_k\mathbf{v}_k = \mathbf{0}_{\mathcal{V}}$ is $t_1 = \cdots = t_k = 0$. Which means that the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly independent.

D3(b) There are many examples of this. One easy thing to do is to map one of your vectors to the zero vector, since any set containing the zero vector is lin-

early dependent. For example, let
$$\mathbb{V} = \mathbb{W} = \mathbb{R}^3$$
, and let $L : \mathbb{V} \to \mathbb{W}$ be defined by $L \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$. Then L is linear, since $L \left(t \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \right) = L \left(\begin{bmatrix} tx_1 + y_1 \\ tx_2 + y_2 \\ tx_3 + y_3 \end{bmatrix} \right) = \begin{bmatrix} tx_1 + y_1 \\ tx_2 + y_2 \\ 0 \end{bmatrix} = t \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ 0 \end{bmatrix} = tL \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) + L \left(\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \right)$. We note that the set $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ is linearly independent, but the set $\left\{ L \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right), L \left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right), L \left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) \right\} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$ is linearly dependent.