目录

第六章	样本及抽样分布	3
6.1	总体与样本	3
6.2	样本分布函数 直方图	6
6.3	样本函数与统计量	10
6.4	抽样分布	14
	6.4.1 三个重要分布	14
	6.4.2 正态总体统计量的分布	19

2 目录

第六章 样本及抽样分布

概率论与数理统计

概 率 论: 给定概率分布, 研究数据出现概率.

数理统计: 给定部分观测数据, 研究概率分布.

6.1 总体与样本

总体、个体与样本

数理统计中,称研究问题所涉及对象的全体为总体,总体中的每个成员为个体.从总体中抽取若干个个体的过程称为抽样,从总体中抽出的若干个体称为样本,样本中所含个体的数量称为样本容量.

例 1. 研究某工厂生产的电视机的寿命:

• 总体: 工厂生产的电视机的全体

• 个体: 工厂生产的每台电视机

● 样本: 从全部电视机中抽取的一些样品

总体、个体与样本

实际处理中,我们真正关心的并不一定是总体或个体本身,而真正关心的是总体或个体的某项数量指标. 故也将总体理解为那些研究对象的某项数量指标的全体.

例 2. 研究某工厂生产的电视机的寿命:

- 总体: 工厂生产的电视机的寿命的全体
- 个体: 工厂生产的每台电视机的寿命

例 3. 研究某地区所有家庭的年收入:

- 总体: 所有家庭的年收入的全体
- 个体: 每个家庭的年收入

总体分布

对一个总体,如果用 X 表示其数量指标,则我们随机地抽取个体时,X 就构成总体上的一个随机变量. X 的分布称为总体分布. 总体的特性是由总体分布来刻画的. 因此,常把总体和总体分布视为同义语.

总体分布

如果总体包含的个体数量是有限的,则称该总体为有限总体. 否则称该总体为无限总体. 有限总体的分布是离散型的,且分布通常与总体所含个体数量有关系,研究起来比较困难. 故总体所含的个体数量很大时,一般近似视之为无限总体.

6.1 总体与样本 5

样本的二重性

假设 X_1, X_2, \dots, X_n 是从总体 X 中取出的样本,

1. 在对这些样本进行观测之前, X_1, \dots, X_n 是相互独立的随机变量,均服从总体分布;

2. 一旦对样本进行观测, X_1, \dots, X_n 即为确定的一组数值.

从而样本兼有随机变量和确定数值两种属性. 有时为了区分,也将 X_1, X_2, \dots, X_n 的观测值记为 X_1, X_2, \dots, X_n ,称为样本值.

简单随机抽样

一个抽样方法被称为简单随机抽样,如果该抽样方法所得到的样本具有:

- 1. 随机性:总体中每一个个体都有同等机会被选入样本,这意味着每一样品 X_i 与总体 X 同分布.
- 2. 独立性: 样本中每一个样品取值不影响其他样品的取值, 也不受其他样品取值的影响, 这意味着 X_1, X_2, \dots, X_n 相互独立.

由简单随机抽样得到的样本称为简单随机样本.

样本分布

假设总体 X 服从离散型分布

$$P\{X=x\}=p(x)$$

则 X_1, X_2, \dots, X_n 的联合分布律为

$$P\{X_1 = x_1, X_2 = x_2, \dots, X_n = x_n\}$$

= $p(x_1)p(x_2)\cdots p(x_n).$

样本分布

假设总体 X 服从连续型分布且密度函数为

f(x)

则 X_1, X_2, \dots, X_n 的联合概率密度为

$$g(x_1,\dots,x_n)=f(x_1)f(x_2)\dots f(x_n).$$

6.2 样本分布函数 直方图

样本分布函数

我们把总体的分布函数

$$F(x) = P(X \le x)$$

称为总体分布函数. 从总体中抽取容量为 n 的样本得到 n 个样本观测值, 若样本容量 n 较大,则相同的 n 观测值可能重复出现若干次,为此.

样本分布函数

将观测值整理,并写出下面的样本频率分布表:

观测值	X ₍₁₎	X ₍₂₎	•••	X _(l)	总计
频数	n_1	n_2	•••	n_l	n
频率	f_1	f_2	•••	fι	1

其中 $x_{(1)} < x_{(2)} < \cdots < x_{(l)}$ ($l \le n$),

$$f_i = \frac{n_i}{n}$$
 ($i = 1, 2, \dots, l$), $\sum_{i=1}^{l} n_i = n$, $\sum_{i=1}^{l} f_i = 1$.

样本分布函数

定义 1. 设函数

$$F_n(x) = \begin{cases} 0, & x < x_{(1)} \\ \sum_{x_{(i)} \le x} f_i, & x_{(i)} \le x < x_{(i+1)}, & (i = 1, 2, \dots, l-1) \\ 1, & x \ge x_{(l)} \end{cases}$$

其中和式 $\sum_{x(i) \le x}$ 是对小于或等于 x 的一切 $x_{(i)}$ 的频率 f_i 求和, 则称 $F_n(x)$ 为样本分布函数或经验分布函数.

样本分布函数

样本分布函数 $F_n(x)$ 具有下列性质:

- 1. $0 \le F_n(x) \le 1$;
- 2. $F_n(x)$ 是非减函数;
- 3. $F_n(-\infty) = 0$, $F_n(+\infty) = 1$;
- 4. $F_n(x)$ 在每个观测值 $x_{(i)}$ 处是右连续的, 点 $x_{(i)}$ 是 $F_n(x)$ 的跳跃间断点, $F_n(x)$ 在该点的 跃度就等于频率 f_i ,

样本分布函数

样本分布函数

对于任意的实数 x, 总体分布函数 F(x) 是事件 $\{X \le x\}$ 的概率; 样本分布函数 $F_n(x)$ 是事件 $\{X \le x\}$ 的频率. 根据伯努利大数定律可知, 当 $n \to \infty$ 时, 对于任意的正数 ε , 有

$$\lim_{n\to\infty} P\left\{|F_n(x)-F(x)|<\varepsilon\right\}=1.$$

定理 (格利文科定理). 设 x_1, x_2, \ldots, x_n 是取自总体分布函数为 F(x) 的样本, $F_n(x)$ 是其经验分布函数, 当 $n \to \infty$ 时, 有

$$P\left\{\sup_{-\infty< x<+\infty}|F_n(x)-F(x)|\to 0\right\}=1.$$

该定理表明, 当 n 相当大时, 样本分布函数是总体分布函数 F(x) 的一个良好的近似.

作频率分布直方图的步骤

- 1. 找出样本观测值 x_1, x_2, \cdots, x_n 中的最小值与最大值, 分别记作 x_1^* 与与 x_n^* , 即 $x_1^* = \min \{x_1, x_2, \cdots, x_n\}, \quad x_n^* = \max \{x_1, x_2, \cdots, x_n\}.$
- 2. 适当选取略小于 x_1^* 的数 α 与略大于 x_n^* 的数 b, 并用分点

$$a = t_0 < t_1 < t_2 < \cdots < t_{l-1} < t_l = b$$

把区间 (a,b) 分成 l 个子区间

$$[t_0,t_1),[t_1,t_2),\cdots,[t_{i-1},t_i),\cdots,[t_{i-1},t_i).$$

第 i 个子区间的长度为 $\Delta t_i = t_i - t_{i-1}, i = 1, 2, \dots, l$.

3. 把所有样本观测值逐个分到各子区间内,并计算样本观测值落在各子区间内的频数 n_i 及 频率 $f_i = \frac{n_i}{n} (i = 1, 2, \cdots, l)$.

9

作频率分布直方图的步骤

- 4. 在 Ox 轴上截取各子区间,并以各子区间为底,以 $\frac{f_i}{t_i-t_{i-1}}$ 为高作小矩形,这样作出的所有 小矩形就构成了直方图
- 注记。(1) 各个小矩形的面积 ΔS_i 就等于样本观测值落在该子区间内的频率,即

$$\Delta S_i = (t_i - t_{i-1}) \frac{f_i}{t_i - t_{i-1}} = f_i \quad (i = 1, 2, \dots, l).$$

(2) 所有小矩形的面积的和等于 1:

$$\sum_{i=1}^{l} \Delta S_i = \sum_{i=1}^{l} f_i = 1.$$

直方图

例 **1.** 为研究某厂工人生产某种产品的能力, 我们随机调查了 20 位工人某天生产的该种产品的数量, 数据如下

160	196	164	148	170
175	178	166	181	162
161	168	166	162	172
156	170	157	162	154

写出产品数量的频率分布表,并作直方图.

直方图

解. 因为样本观测值中最小值为 148,最大值为 196,所以我们把数据的分布间确定为 (147,197), 并将区间分为 5 个子区间

[147, 157), [157, 167), [167, 177), [177, 187), [187, 197),

由此得频率分布表:

组序	分组区间	频数	频率
1	[147,157)	4	0.20
2	[157,167)	8	0.40
3	[167,177)	5	0.25
4	[177,187)	2	0.10
5	[187,197)	1	0.05
合计		20	1

直方图

根据频率分布表作出直方图:

6.3 样本函数与统计量

统计量

在实际问题中,总体分布一般是未知的,我们常常事先假定总体分布的类型,再通过取样的方式确定分布中的未知参数。此时这些未知参数常常写成样本的函数。

定义 **1.** 若样本函数 $g(X_1, \ldots, X_n)$ 不含有任何未知参数,则称这类函数为统计量.

11

统计量

例如:研究某城市居民的收入情况,事先假定该城市居民的年收入 X 服从正态分布 $N(\mu, \sigma^2)$,其中 μ 与 σ^2 都是未知参数.在抽取样本 X_1, X_2, \cdots, X_n 的情况下,一般用样本平均值

$$\frac{X_1 + X_2 + \dots + X_n}{n}$$

近似估计 μ ,该平均值就是一个统计量.

统计量

作为对比,以下函数含有问题中的未知参数,因此不是统计量

$$\frac{X_1 + X_2 + \dots + X_n}{n\sigma},$$

$$\frac{X_1 + X_2 + \dots + X_n}{n} - \mu.$$

常用统计量

定义 **2.** 对样本 X_1, X_2, \dots, X_n , 称

$$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{X_1 + X_2 + \dots + X_n}{n}$$

为样本均值.

常用统计量

定义 **3.** 对样本 X_1, X_2, \dots, X_n , 称

$$S^2 := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

为样本方差:称

$$S := \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

为样本标准差.

常用统计量

样本方差的性质:

$$S^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2} \right).$$

例 1. 已知样本值为 (2,-1,0,-2,0), 求 \overline{X} 和 S^2 .

解.
$$\overline{X} = -\frac{1}{5}$$
 和 $S^2 = \frac{11}{5}$.

练习 **1.** 已知样本值为 (0,1,3,-3,-2), 求 \overline{X} 和 S^2 .

解.
$$\overline{X} = -\frac{1}{5}$$
 和 $S^2 = \frac{57}{10}$.

常用统计量

定义 **4.** 对样本
$$X_1, X_2, \cdots, X_n$$
 及正整数 k ,称
$$A_k := \frac{1}{n} \sum_{i=1}^n X_i^k = \frac{X_1^k + X_2^k + \cdots + X_n^k}{n}$$

为 样本 k 阶原点矩; 对 $k \ge 2$, 称

$$M_k := \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^k$$

为 样本 k 阶中心矩.

大样本的均值

大数定律的结论: 大量同分布随机变量的算数平均数依概率收敛于它们的期望.

6.3 样本函数与统计量

13

定理 **1.** 设 X_1, X_2, \dots, X_n 是来自均值为 μ 、方差为 σ^2 的总体的简单样本,总体的 k 阶原点 矩存在且为 $E(X^k) = \mu_k$,则

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k \xrightarrow{P} \mu_k, \quad k = 1, 2, \cdots,$$

注记。由第五章中关于依概率收敛的序列的性质知道

$$g(A_1,A_2,\cdots,A_k) \stackrel{P}{\longrightarrow} g(\mu_1,\mu_2,\cdots,\mu_k),$$

其中 q 为连续函数.

均值的大样本分布

中心极限定理的常用结论:

大量同分布随机变量的和、平均值近似服从正态分布.

定理 **2.** 设 X_1, X_2, \dots, X_n 是来自均值为 μ 、方差为 σ^2 的总体的简单样本,则当 n 充分大时,近似地有

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$

复习与提高

选择。设总体 $X \sim B(1,p)$,其中参数 $p \in (0,1)$ 未知。 X_1,X_2,X_3 是来自总体 X 的简单随机样本, \overline{X} 为样本均值,则下列选项中不是统计量的为 (B)

(A)
$$\min\{X_1, X_2, X_3\}$$

(B)
$$X_1 - (1-p)\overline{X}$$

(C)
$$\max\{X_1, X_2, X_3\}$$

(D)
$$X_3 - 3\overline{X}$$

6.4.1 三个重要分布

统计学的三大分布

统计量的分布称为抽样分布.

在使用统计量进行统计推断时常需知道它的分布. 当总体的分布函数已知时, 抽样分布是确定的, 然而要求出统计量的精确分布, 一般来说是困难的.

以下三个来自正态分布的抽样分布

$$\chi^2$$
 分布, t 分布, F 分布

称为统计学的三大分布.

χ² 分布

定义 **1.** 设 X_1, X_2, \cdots, X_n 相互独立,都服从标准正态分布,则

$$\chi^2 = \sum_{i=1}^n X_i^2 = X_1^2 + X_2^2 + \dots + X_n^2$$

称为服从自由度为 n 的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n)$. 此处的自由度指定义右端包含独立随机变量的个数.

定理 **1.** n 个自由度的 χ^2 分布的概率密度函数为:

$$f(x) = \begin{cases} \frac{1}{2^{n/2} \Gamma(n/2)} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, & x > 0; \\ 0, & x \le 0. \end{cases}$$

χ² 分布的概率密度函数

χ^2 分布的性质

- 1. 若 X 服从标准正态分布, $\chi^2 = X^2$,则 χ^2 服从 1 个自由度的 χ^2 分布,即 $\chi^2 \sim \chi^2(1).$
- 2. 可加性:设 $\chi_1^2 \sim \chi^2(n_1)$, $\chi_2^2 \sim \chi^2(n_2)$, 且两者相互独立,则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2).$

注记。此结论可推广: 设 $X_i \sim \chi^2(n_i)$ $(i=1,2,\cdots,k)$ 且相互独立,则

$$\sum_{i=1}^k X_i \sim \chi^2 \left(\sum_{i=1}^k n_i \right).$$

χ^2 分布的性质

3. χ^2 分布的数字特征: $E(\chi^2(n)) = n$, $D(\chi^2(n)) = 2n$.

证明. 因 $X_i \sim N(0,1)$, 故 $E(X_i^2) = D(X_i) = 1$, $E(X_i^4) = 3$, $i = 1, 2, \dots, n$, 因此 $E(\chi^2) = E\left(\sum_{i=1}^n X_i^2\right) = \sum_{i=1}^n E(X_i^2) = n.$

又

$$D(X_i^2) = E(X_i^4) - [E(X_i^2)]^2 = 3 - 1 = 2.$$

由于 X_1, X_2, \cdots, X_n 相互独立, 所以 $X_1^2, X_2^2, \cdots, X_n^2$ 也相互独立, 于是

$$D(\chi^2) = D\left(\sum_{i=1}^n X_i^2\right) = \sum_{i=1}^n D(X_i^2) = 2n.$$

 χ^2 分布的分位点

定义 **2.** 设有分布函数 F(x), 对给定的 $\alpha(0 < \alpha < 1)$, 若有

$$P\{X > x_{\alpha}\} = \alpha$$

则称点 x_{α} 为 F(x) 的上 α 分位点.

当 F(x) 有概率密度 f(x) 时, 上式可写成

$$P\left\{X>x_{\alpha}\right\}=\int_{x_{\alpha}}^{+\infty}f(x)\mathrm{d}x=\alpha.$$

 χ^2 分布的分位点

定义 **3.** 对给定的 $\alpha \in (0,1)$, 称满足条件

$$P\{\chi^2(n)>\chi^2_\alpha(n)\}=\alpha$$

的点 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 分布的上 α 分位点.

例 **1.** 设 $\alpha = 0.05$, n = 20, 查表得

$$\chi^2_{0.05}(20) = 31.41.$$

t 分布

定义 4. 设两个随机变量 X,Y 相互独立,并且

$$X \sim N(0,1), \qquad Y \sim \chi^2(n).$$

则称

$$T := \frac{X}{\sqrt{Y/n}}$$

为服自由度为从 n 的 t 分布, 记为 $T \sim t(n)$.

定理 **2.** 具有 n 个自由度的 t 分布的概率密度函数为:

$$f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \cdot \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}.$$

注记。 t 分布的概率密度函数为偶函数.

t 分布的概率密度函数

注记. t 分布与标准正态分布的关系: $t(\infty) = N(0,1)$.

t 分布的分为点

设 $T \sim t(n)$. 对给定的 $\alpha \in (0,1)$, 称满足条件

$$P\{T > t_{\alpha}(n)\} = \alpha$$

的点 $t_{\alpha}(n)$ 为 t(n) 分布的上 α 分位点.

例 **2.** $t_{0.05}(10) = 1.812$

性质. $t_{1-\alpha}(n) = -t_{\alpha}(n)$,

F 分布

定义 **5.** 设两个随机变量 Y_1, Y_2 相互独立, 并且

$$Y_1 \sim \chi^2(m), \quad Y_2 \sim \chi^2(n)$$

则

$$F:=\frac{Y_1/m}{Y_2/n}\sim F(m,n).$$

称为自由度为 m 和 n 的 F 分布, 记为 $F \sim F(m, n)$.

定理 3. 自由度为 m 和 n 的 F 分布的概率密度为

$$f(x) = \begin{cases} \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \cdot \Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}\right)^{\frac{m}{2}} x^{\frac{m}{2}-1} \left(1 + \frac{m}{n}x\right)^{-\frac{m+n}{2}}, & x > 0; \\ 0, & x \leq 0. \end{cases}$$

F 分布的密度函数

F 分布的性质

F 分布的性质:

- 1. 若 $F \sim F(m, n)$, 则 $1/F \sim F(n, m)$.
- 2. 若 $T \sim t(n)$, 则 $T^2 \sim F(1,n)$.

图 6.1: F 分布的密度函数

F 分布的分位点

设 $F \sim F(m,n)$. 对给定的 $\alpha \in (0,1)$, 称满足条件

$$P\{F > F_{\alpha}(m,n)\} = \alpha$$

的点 $F_{\alpha}(m,n)$) 为 F(m,n) 分布的上 α 分位点.

性质.
$$F_{1-\alpha}(\mathbf{m},n) = \frac{1}{F_{\alpha}(n,\mathbf{m})}$$
.

例 3. $F_{0.95}(15,10) = 1/F_{0.05}(10,15) = 1/2.54 = 0.394$.

6.4.2 正态总体统计量的分布

单个正态总体的统计量的分布

定理 **4.** 设 X_1, X_2, \dots, X_n 是取自正态总体 $N(\mu, \sigma^2)$ 的样本. 则 \overline{X} 与 S^2 相互独立, 且有

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1), \qquad \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1).$$

正态总体统计量的分布

研究数理统计的问题时,往往需要知道所讨论的统计量

$$g(X_1, X_2, \cdots, X_n)$$

的分布.

一般说来,要确定某个统计量的分布是困难的,有时甚至是不可能的.然而,对于总体服从正态分布的情形已经有了详尽的研究.

下面我们讨论服从正态分布的总体的统计量的分布.

假设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, 即它们是独立同分布的, 皆服从 $N(\mu, \sigma^2)$ 分布, 样本均值与样本方差分别是

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

正态总体统计量的分布

定理 **5.** 设总体 X 服从正态分布 $N(\mu, \sigma^2)$, 则 $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$, 即

$$\frac{(\overline{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1).$$

证明. 因为随机变量 X_1, X_2, \dots, X_n 相互独立, 并且与总体 X 服从相同的正态分布 $N(\mu, \sigma^2)$, 所以由正态分布的性质可知, 它们的线性组合

21

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} \frac{1}{n} X_i$$

服从正态分布 $N\left(\mu, \frac{\sigma^2}{n}\right)$, 即 $\frac{(\overline{X}-\mu)\sqrt{n}}{\sigma} \sim N(0,1)$.

正态总体统计量的分布

定理 **6.** 设总体 X 服从正态分布 $N(\mu, \sigma^2)$, 则

- 1. 样本均值 \overline{X} 与样本方差 S^2 相互独立;
- 2. 统计量 $X^2 = \frac{(n-1)S^2}{\sigma^2}$ 服从自由度为 n-1 的 X^2 分布, 即

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).$$

这个定理的证明从略. 我们仅对自由度做一些说明.

正态总体统计量的分布

由样本方差 S^2 的定义易知

$$(n-1)S^2 = \sum_{i=1}^n (X_i - \overline{X})^2$$
,

所以统计量

$$\chi^{2} = \frac{(n-1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \sum_{i=1}^{n} \left(\frac{X_{i} - \overline{X}}{\sigma} \right)^{2}$$

虽然是 n 个随机变量的平方和, 但是这些随机变量不是相互独立的, 因为它们的和恒等于零:

$$\sum_{i=1}^{n} \frac{X_i - \overline{X}}{\sigma} = \frac{1}{\sigma} \left(\sum_{i=1}^{n} X_i - n \overline{X} \right) = 0.$$

由于受到一个条件的约束, 所以自由度为 n-1.

正态总体统计量的分布

例 **4.** 设 X_1, X_2, \dots, X_n 是来自 $N(\mu, \sigma^2)$ 的样本, 证明: 统计量

$$T = \frac{(\overline{X} - \mu)\sqrt{n}}{S} \sim t(n-1).$$

分析: t 分布的定义为

$$T:=\frac{X}{\sqrt{Y/n}},\ X\sim N(0,1),\ Y\sim \chi^2(n).$$

由定理 5 知, 统计量

$$u = \frac{(\overline{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1).$$

又由定理 6 知, 统计量

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).$$

正态总体统计量的分布

证明. 由定理 5 知, 统计量

$$u = \frac{(\overline{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1).$$

又由定理 6 知, 统计量

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).$$

因为 \overline{X} 与 S^2 相互独立, 所以 $u=\frac{(\overline{X}-\mu)\sqrt{n}}{\sigma}$ 与 $\chi^2=\frac{(n-1)S^2}{\sigma^2}$ 也相互独立. 于是, 由 t 分布的定义可知, 统计量

$$T = \frac{u}{\sqrt{\frac{\chi^2}{n-1}}} = \frac{\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2/\sigma^2}{n-1}}} = \frac{(\overline{X} - \mu)\sqrt{n}}{S} \sim t(n-1).$$

23

正态总体统计量的分布

定理 **7.** 设 X_1, X_2, \dots, X_{n_1} 是来自 $N(\mu_1, \sigma^2), Y_1, Y_2, \dots, Y_{n_2}$ 是来自 $N(\mu_2, \sigma^2)$ 的两个独立 样本 (指随机变量 $(X_1, X_2, \cdots, X_{n_1})$ 和 $(Y_1, Y_2, \cdots, Y_{n_2})$ 相互独立), 记

$$\begin{split} \overline{X} &= \frac{1}{n_1} \sum_{i=1}^{n_1} X_i, \ \overline{Y} = \frac{1}{n_2} \sum_{j=1}^{n_2} Y_j, \ S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} \left(X_i - \overline{X} \right)^2, \\ S_2^2 &= \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} \left(Y_j - \overline{Y} \right)^2, \ S_{\omega}^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{n_1 + n_2 - 2}, \ S_{\omega} = \sqrt{S_{\omega}^2}, \end{split}$$

证明: 统计量

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t (n_1 + n_2 - 2)$$

正态总体统计量的分布

证明, 由定理 5 可知, 统计量

$$\overline{X} \sim N\left(\mu_1, \frac{\sigma^2}{n_1}\right), \quad \overline{Y} \sim N\left(\mu_2, \frac{\sigma^2}{n_2}\right),$$

且 \overline{X} 与 \overline{Y} 相互独立,由正态分布的性质知

$$\overline{X} - \overline{Y} \sim N \left(\mu_1 - \mu_2, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2} \right)$$

即

$$U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{\rho_1} + \frac{1}{\rho_2}}} \sim N(0, 1).$$

正态总体统计量的分布

又由定理 6 知

$$\frac{(n_1-1)S_1^2}{\sigma^2} \sim \chi^2(n_1-1), \frac{(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_2-1).$$

因为 S_1^2 与 S_2^2 相互独立, 所以由 χ^2 分布的可加性可知, 统计量

$$V = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2 (n_1 + n_2 - 2).$$

因为 \overline{X} 与 S_1^2 相互独立, \overline{Y} 与 S_2^2 相互独立, 所以统计量 U 与 V 也相互独立, 于是, 由 t 分布的定义可知, 统计量

$$T = \frac{U}{\sqrt{\frac{V}{n_1 + n_2 - 2}}} = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t (n_1 + n_2 - 2).$$

正态总体统计量的分布

例 5 (续上例). 记

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2$$
 $S_2^2 = \frac{1}{n_2 - 1} \sum_{j=1}^{n_2} (Y_j - \overline{Y})^2$

则
$$F = S_1^2/S_2^2 \sim F(n_1 - 1, n_2 - 1)$$

证明. 由定理6知

$$\frac{(n_1-1)S_1^2}{\sigma^2} \sim \chi^2(n_1-1), \ \frac{(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_2-1)$$

由假设, S_1^2 , S_2^2 相互独立, 则由 F 分布的定义知

$$\frac{(n_1-1)S_1^2}{(n_1-1)\sigma^2} / \frac{(n_2-1)S_2^2}{(n_2-1)\sigma^2} = \frac{S_1^2}{S_2^2} \sim F(n_1-1, n_2-1)$$

正态总体统计量的分布

注记。若两个正态分布的方差 σ_1^2 与 σ_2^2 不相等,则统计量 $F = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1,n_2-1)$

本节所介绍的几个分布以及几个重要结论,在下面各章中都起着重要的作用. 应注意,它们都是在总体为正态这一基本假定下得到的.