EE290 Course Notes

Feynman Liang* Department of Statistics, UC Berkeley

Last updated: September 21, 2019

Contents

1	9/5/2019 1.1 Results from random matrix theory	
2	9/10/2019	4
3	9/12/2019 3.1 Planted cliques and semidefinite programming	7
Bi	Bibliography	

$1 \quad 9/5/2019$

1.1 Results from random matrix theory

Today we consider random matrices $Z=(Z_{ij})\in\mathbb{R}^{n\times n}$. IID matrix ensemble is when $Z_{ij}\sim P$ are drawn IID, and the Gaussian Orthogonal Ensemble (GOE) has $Z_{ii}\sim N(0,2)$ and $Z_{ij}=Z_{ji}\sim N(0,1)$ for $i\neq j$.

By convention, normalize and center so $\mathbb{E}Z_{ij} = 0$ and $\mathbb{E}Z_{ij}^2 = 1$.

Intuition: $||Z||_{op} \leq C\sqrt{n}$ with high probability.

Consider Gaussian orthogonal ensemble matrix: $Z_{ij} \sim N(0,1)$ and $Z_{ii} \sim N(0,2)$. View $Z = [Z_1, \ldots, Z_n]$ with $Z_i \sim N(0,I_n)$. Then

$$\mathbb{E}||Z_1||_2^2 = \mathbb{E}\left[\sum_{i=1}^n Z_{i1}^2\right] = n \tag{1}$$

$$Z_1^{\top} Z_2 = \sum_{i=1}^n Z_{i1} Z_{i2} \tag{2}$$

$$\mathbb{E}Z_1^{\top} Z_2 = 0 \tag{3}$$

$$\mathbb{E}(Z_1^{\top} Z_2)^2 = n \tag{4}$$

$$|Z_1^\top Z_2| \sim \sqrt{n} \tag{5}$$

$$\frac{Z_1^{\top} Z_2}{\|Z_1\| \|Z_2\|} \sim \frac{1}{\sqrt{n}} \tag{6}$$

Theorem 1 (Latala et al. (2006))

$$\sup_{i} \sum_{j=1}^{n} \mathbb{E}|Z_{ij}|^{2} \le k^{2}n \tag{7}$$

^{*}feynman@berkeley.edu $\sup_{j} \sum_{i=1}^{n} \mathbb{E} |Z_{ij}|^{2} \leq k^{2} n \tag{8}$

Fourth moment bound

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}|Z_{ij}|^{4} \le k^{4} n^{2} \tag{9}$$

Then $\mathbb{E}||Z||_{op} = O(k\sqrt{n})$

1.2 Gaussian Orthogonal Ensemble

 $||Z||_{op} = \sigma_{max} = \max_{||v||=1} v^{\top} Z v$ For any fixed $v \in S^{n-1}$, we have a Gaussian tail bound

$$v^{\top} Z v = \sum_{i} Z_{ii} v_i + \sum_{i < j} 2Z_{ij} v_i v_j \tag{10}$$

$$= N(0, \sum_{i} v_i^4 + \sum_{i < j} 4v_i^2 v_j^2)$$
(11)

$$\Pr(|v^{\top} Z v| > t) \le 2e^{-t^2/4} \tag{12}$$

Using an ϵ -net, can find a set of vectors V_{ϵ} such that

$$\max_{v \in V_{\epsilon}} |v^{\top} Z v| \ge (1 - 2\epsilon) \max_{|v| = 1} |z^{\top} Z v| \ge (1 - 2\epsilon)t \tag{13}$$

Then by a union bound

$$\Pr[\|Z\|_{op} \ge t] \le \Pr[\max_{v \in V_{\epsilon}} |v^{\top} Z v| \ge (1 - 2\epsilon)t]$$
(14)

$$\leq \sum_{v \in V_{\epsilon}} \Pr[|v^{\top} Z v| \geq (1 - 2\epsilon)t] \tag{15}$$

$$\leq 2|V|e^{-\frac{1}{4}(1-2\epsilon)^2t^2} \leq \delta$$
 (16)

If $|V| \leq c^n$, then

$$e^{c(n-ct^2)} \le e^{\log \delta} \tag{17}$$

$$\log \frac{1}{\delta} \le ct^2 - n \implies t \ge \sqrt{n + \log \frac{1}{\delta}} \tag{18}$$

Intuition: when dealing with infinite dimensional maximization (Rayleigh quotient for eigenvalue problem), can pass to ϵ -net for cardinality bloud.

Definition 2 (Covering)

 $V \subset S^{n-1}$ is called an ϵ -net if $\forall u \in S^{n-1}$, $\exists v \in V$ such that $||u-v||_2 \leq \epsilon$.

Theorem 3

 ϵ -net yields Eq. (13)

Definition 4 (Packing)

For $A \subset \mathbb{R}^d$, $V = \{v_i\}_{i=1}^n \subset A$ is an ϵ -packing if $\forall i \neq jJ$, $||v_i - v_j||_2 \geq \epsilon$.

Theorem 5

Maximal ϵ -packing is an ϵ -net.

Hence, we can lower bound the packing number (size of largest packing) by the covering number (size of the smallest covering). The following result gives an (obvious?) upper bound:

Lemma 6 (Volume ratio)

For any ϵ -packing $V \subset A$,

$$|V| \le \frac{Vol(A + \frac{\epsilon}{2}B)}{Vol(\frac{\epsilon}{2}B)} \tag{19}$$

where $B = \{x : ||x||_2 \le 1\}.$

Why is the diagonal not important? Let A = diag(Z). Then we have

$$||Z - A||_{op} \le ||Z||_{op} + ||A||_{op} \tag{20}$$

$$\max_{x \in S^{n-1}} ||Ax|| = \max_{i} |Z_{ii}| = O(\sqrt{2\log n})$$
(21)

So the diagonal term $||A||_{op}$ is an order of magnitude smaller that $||Z||_{op}$.

Example 7 (Planted clique)

Let $G \sim G(1/2, n, k)$. In other words, generate an Erdös-Renyi random graph from G(n, 1/2) and then randomly choose a set $K \subset [n]$ connect together to form a clique.

Goal: find K given G.

Theorem 8 (Alon et al. (1998))

For any $c, k = c\sqrt{n}$, then exists polytime algorithm such that it returns \hat{K} with $P(\hat{K} = K) \to 1$.

Let the adjacency matrix
$$A_{ij} = \begin{cases} 1 & (i,j) \in K \\ \operatorname{Bern}(1/2) & i \notin K \text{ or } j \notin K, i \neq j \text{ and define } W_{ij} = \begin{cases} 2A_{ij} - 1 & i \neq j \\ 0 & i = j \end{cases}$$

- 1. Find top eigenvector u of W
- 2. Let \tilde{K} index the k largest coordinates $|u_i|$
- 3. Thresholding

$$\hat{K} = \left\{ v \in [n] : d_{\tilde{K}}(v) \ge \frac{3k}{4} \right\} \tag{22}$$

$$d_{\tilde{K}}(v) = \sum_{j \in \tilde{K}} \mathbb{1}\{(j, v) \text{ connected}\}$$
(23)

Goal: show $|\tilde{K} \cap K| \ge (1 - \epsilon)k$ whp.

Note that $\mathbb{E}[W] = 1_k 1_k^\top - \operatorname{diag}(1_k)$ consists of 1s in $K \times K$ and 0 everywhere else. Let

$$W^* = 1_k 1_k^{\top} \tag{24}$$

$$v = \frac{1}{\sqrt{k}} 1_k \tag{25}$$

(26)

Notice thresholding over v exactly recovers K, so we want the top eigenvector u of W to be close to v. By Davis-Kahan,

$$\min_{s \in \{\pm 1\}} \|u + sv\|_2 \le \frac{\|W - W^*\|_{op}}{\lambda_1(W^*) - \lambda_2(W^*)}$$
(27)

Note $\lambda_1(W^*) = k$. Suppose extrema attained at s = -1, then

$$||W - W^*||_{op} \le ||W - \mathbb{E}W|| + \underbrace{||\mathbb{E}W - W^*||}_{=||\operatorname{diag} 1_k||=1} \le c\sqrt{n} + 1$$
(28)

By Weyl's inequality

$$|\lambda_2(W)| = |\lambda_2(W^*) - \lambda_2(W)| \le ||W^* - W||_{op} \le c\sqrt{n} + 1 \tag{29}$$

Finally

$$||u - v||_2 \le \frac{c\sqrt{n} + 1}{c\sqrt{n} - (c\sqrt{n} + 1)} \le \epsilon \tag{30}$$

NOTE: when you have bounded fourth moments, the rate is always $n^{-1/2}$! Deep result.

$2 \quad 9/10/2019$

Recall the planted clique from Alon et al. (1998): $G \sim G(1/2, n, k)$ is a random graph on V = [n] with some fully connected clique $K \subset [n]$ of cardinality |K| = k.

The adjacency matrix

$$A_{ij} = \begin{cases} 1 & \text{if } i, j \in K \\ \text{Bern}(1/2) & i \neq j \text{ ow} \end{cases}$$
 (31)

Let

$$W_{ij} = \begin{cases} 2A_{ij} & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$$
 (32)

Algorithm 1 of Alon et al. (1998):

- 1. Find top eigenvector of W, say u
- 2. Let \tilde{K} index the largest k coordinates $|u_i|$
- 3. Define $\hat{K} = \{v \in V : d_{\tilde{K}}(v) \geq \frac{3k}{4}\}$

Theorem 9 (Alon et al. (1998))

Algorithm 1 finds \hat{K} such that $\Pr[\hat{K} = K] \to 1$ as $n \to \infty$ if $k \ge c\sqrt{n}$ for sufficiently large c.

Proof. Note that $\mathbb{E}A$ is:

Figure 1: $\mathbb{E}A$ has ones in the upper $k \times k$ block, 0 on the diagonal, and 1/2 everywhere else

From this, we can easily see that the $\mathbb{E}W$ is:

reference for

this? 9-5

Figure 2: $\mathbb{E}W$ differs from $W^* = 1_k 1_k^{\mathsf{T}}$ only in the upper k diagonal

Note $\mathbb{E}W = 1_K 1_K^\top - \operatorname{diag}(1_K) \approx 1_K 1_K^\top = W^*$, which is good because we have seen that "differenes in the diagonal are asymptotically negligible."

Goal: show $|\tilde{K} \cap K| \ge (1 - \varepsilon)k$ whp, $\varepsilon = \varepsilon(c)$.

We first show the top eigenvector of W^* is close to u (the top eigenvector of W). Let $v = \frac{1}{\sqrt{k}} 1_K$ be the top eigenvector of W^* . Note $\lambda_1(W^*) = k$. By Davis-Kahan

 $\min_{s \in \{\pm 1\}} \|u + sv\|_2 \le \frac{\|W - W^*\|_2}{\lambda_1(w^*) - \lambda_2(w)} \tag{33}$

Note

$$||W - W^*|| \le ||W - \mathbb{E}W|| + ||\mathbb{E}W - W^*|| \le c\sqrt{n} + 1 \tag{34}$$

Also $\lambda_1(W^*) = k$ and

$$|\lambda_2(W)| \le |\lambda_2(W^*) - \lambda_2(W) \le ||W^* - W|| \tag{35}$$

So by Weyl's inequality

$$\min_{s \in \{\pm 1\}} \|u + sv\|_2 \le \frac{c\sqrt{n} + 1}{k - (c\sqrt{n} + 1)}$$
(36)

$$\leq \frac{c\sqrt{n}+1}{c\sqrt{n}-c\sqrt{n}+1} \leq \varepsilon \tag{37}$$

Aside: Davis-Kahan to get bound between difference of eigenvectors in 2-norm. Open problem to control others.

Next, if $|K| = k = |\tilde{K}|$ then $|K \setminus \tilde{K}| = |\tilde{K} \setminus K|$.

Figure 3: $|K| = |\tilde{K}| \implies |K \setminus \tilde{K}| = |\tilde{K} \setminus K|$ follows from elementary set theory

By definition of v

$$\varepsilon^{2} \ge \|u - v\|_{2}^{2} = \sum_{i \in K} (u_{i} - \frac{1}{\sqrt{k}})^{2} + \sum_{i \notin K} u_{i}^{2}$$
(38)

Lemma 10

If all $|u_i| \leq \frac{1}{2\sqrt{k}}$ for $i \notin \tilde{K}$, then

$$\varepsilon^2 \ge \sum_{i \in K \setminus \tilde{K}} \left(\frac{1}{\sqrt{k}} - u_i\right)^2 \ge \sum_{i \in K \setminus \tilde{K}} \frac{1}{4k} \tag{39}$$

This implies $|K \setminus \tilde{K}| \leq 4\varepsilon^2 k$.

Lemma 11

If the condition of the previous lemma does not hold, then $\exists i \in \tilde{K} \text{ with } |u_i| \geq \frac{1}{2\sqrt{k}}$. Then in fact $|u_i| \geq \frac{1}{2\sqrt{k}}$ for all $i \in \tilde{K}$ since

$$\varepsilon^2 \ge \sum_{i \in \tilde{K} \setminus K} u_i^2 \ge \sum_{i \in \tilde{K} \setminus K} \left(\frac{1}{2\sqrt{k}}\right)^2 = \sum_{i \in \tilde{K} \setminus K} \frac{1}{4k} \tag{40}$$

Hence $|\tilde{K} \setminus K| \le 4\varepsilon^2 k$

So we have achieved our goal.

To finish the proof, first assume $||u-v||_2 \le \varepsilon$. For $a \in K$,

$$d_{\tilde{K}}(a) \ge d_{\tilde{K} \cap K}(a) = |\tilde{K} \cap K| - 1 \ge (1 - \varepsilon')k \tag{41}$$

so for $a \in K$, we will get $a \in \hat{K}$.

Now if $a \notin K$,

$$d_{\tilde{K}}(a) \le \underbrace{d_{K}(a)}_{\sim \text{Binom}(k, 1/2)} + \underbrace{|\tilde{K} \setminus K|}_{\le \varepsilon' k} \approx \frac{k}{2} \pm c\sqrt{k}$$

$$\tag{42}$$

where \approx means concentration. To be concrete,

$$\Pr[\hat{K} \neq K] \le \Pr[\|u - v\|_2 \ge t] + \Pr[\exists a \notin K : d_K(a) \ge (\frac{3}{4} - \varepsilon')k]$$
(43)

$$\leq \Pr[\|W - \mathbb{E}W\| \geq c\sqrt{n}] + (n-k)\Pr[B(k,1/2) \geq (\frac{3}{4} - \varepsilon)k] \tag{44}$$

$$\leq ce^{-c'n} + (n-k) \tag{45}$$

Where above we used the multiplicative version of Chernoff bound (useful in combinatorial statistics):

Lemma 12 (Multiplicative Chernoff Bound)

{lem:mult-che

$$\Pr[X \ge (1+\delta)\mu] \le \begin{cases} e^{-\delta^2 \mu/3} & \delta \in [0,1] \\ e^{-\delta \mu/3} & \delta \ge 1 \end{cases}$$
(46)

$$\Pr[X \le (1 - \delta)\mu] \le e^{-\delta^2 \mu/2} \tag{47}$$

As $n \to \infty$, we see that $\Pr[\hat{K} = K] \to 1$.

Lemma 12 is self-normalizing: let $X = \sum_{i=1}^{n} X_i$ with X_i independent binary and $\mu = \mathbb{E}X$. Note that after applying, the RHS does not depend on n

AKS Algorithm 2: This algorithm is designed to handle the case when k is not big enough (recall algorithm 1 requires $k \ge c\sqrt{n}$). Search over all S with $|S| = C(c) = 2\log_2\frac{10}{c} + 2$. For each S:

Verify

- 1. Define $N^*(S) = \{v \in V : v \sim a, \forall a \in S\} \setminus S$
- 2. Run Algorithm 1 on the induced subgraph (which has distribution $G(1/2, N^*(S), K S)$), return $Q_S \cup S$
- 3. Output if $Q_S \cup S$ is a k-clique

Intuition: Suppose k=0 so there's no clique. Then $|N^*(S)| \sim B(n-s,2^{-s}) \approx \frac{n-s}{2^s}$ so the total number of nodes is much smaller (by order of 2^{-s}). However, the number of clique nodes in $N^*(S)$ is still relatively large, $\geq k-s$. Solving the critical equation (also for algorithm 1)

Track htis down

$$k - s \ge C\sqrt{\frac{n}{2^s}} \tag{48}$$

yields the expression for C(c).

Theorem 13

As long as $k \geq (2 + \varepsilon) \log_2 n$, then exhaustive search finds k with probability $\rightarrow 1$.

Proof. Exhaustive search will always find the clique, but it may return a clique that we didn't plant. So we need to guarantee there is no clique of size $(2 + \varepsilon) \log_2 n$ in G whp.

For $S \subset [n]$, |S| = k,

$$\Pr[S \text{ is clique}] = \frac{1}{2\binom{k}{2}} \tag{49}$$

$$\Pr[\exists S \subset [n] : S \text{ is clique}] \le \binom{n}{k} \frac{1}{2^{\binom{k}{2}}} \le (n2^{-(k-1)/2})^k \to 0$$
 (50)

(51)

as
$$n \to \infty$$
 $(k = (2 + \varepsilon) \log_2 n)$.

$3 \quad 9/12/2019$

3.1 Planted cliques and semidefinite programming

Recall the matrix W from before, which has 1s in the top $k \times k$ block, zero on the diagonal, and Rad(1/2) RVs elsewhere.

Recall the spectral method:

$$\hat{u}_{spec} = \underset{\|u\|^2 = k}{\operatorname{argmax}} \ u \in \mathbb{R}^n \ u^\top W u \tag{52}$$

This needs a cleaning step, which we analyzed previously.

How did they come up with this algorithm? Can we get more insight by analyzing htis method in a more principled framework? Yes, through maximum likelihood!

Consider an alterantive model where within clique we have connection probability p (instead of 1) and other connections with probability q (instead of 1/2), where $p \gg q$.

$$\hat{u}_{MLE} = \underset{\sum_{i} u_{i} = k}{\operatorname{argmax}}_{u \in \{0,1\}^{n}} u^{\top} W u$$
(53)

From this, we see that the spectral method is a continuous relaxation of the MLE integer program. To make this more precise, consider the SDP

$$\hat{X}_{spec} = \underset{\text{Tr } \bar{X} = k}{\operatorname{argmax}} \underset{\text{Tr } \bar{X} = k}{X \succeq 0} \langle W, X \rangle \tag{54}$$

If we let $X = uu^{\top}$, then we automatically have $X \succeq 0$ and additionally we have $\operatorname{Tr} X = ||u||_2^2$. Thus, the feasible set of Eq. (52) is the same as Eq. (54).

How do we know the optima of Eq. (54) is attained at a rank 1 matrix $X = uu^{\top}$? Since $X = \sum_{i} \lambda_{i} u_{i} u_{i}^{\top}$ ($\lambda_{i} \geq 0$) and optima are attained at extremal points, by linearity of $\langle W, X \rangle$ we can put all of the weight on a single λ_{i} corresponding to the top eigenvector of W.

How can we get Eq. (54) closer to Eq. (53)? Since Eq. (53) is more constrained, we can consider adding more constraints:

$$\tilde{X}_{MLE} = \operatorname{argmax}_{X} \langle W, X \rangle$$
 (55)

s.t.
$$X \succeq 0$$
 (56)

$$\operatorname{Tr} X = k \tag{57}$$

$$0 \le X \le J$$
 entrywise (58)

$$\langle X, J \rangle = k^2 \tag{59}$$

$$rank(X) = 1 (60)$$

where $J = 11^{\top}$.

The solution $X = uu^{\top}$ where $u \in \{0,1\}^n$, where u indexes the clique.

Conversely, we need to show that the feasible set coincides with Eq. (53). If $X \succeq 0$ and rank X = 1, then we can always write $X = uu^{\top}$. The trace constraint now reads $k = \text{Tr } X = \sum_i u_i^2$. The third constraint becomes $\langle X, J \rangle = k^2 \implies (\sum_i u_i)^2 = k^2$.

Proposition 14

The optima of Eq. (55) must satisfy: $u_i \in [-1,1]$, $\sum u_i^2 = k$, $(\sum_i u_i)^2 = k^2$, $\{u_i\} \in \{0,1\}^n$ or $\{u_i\} \in \{0,-1\}^n$.

In fact, the solution is $u = 1_k$ or $u = -1_k$.

The linear constraints in Eq. (55) are fine, but the rank constraints are difficult. Here is an easier candidate SDP:

$$\hat{X}_{SDP} = \operatorname{argmax}_{X} \langle W, X \rangle \tag{61}$$

s.t.
$$X \leq 0$$
 (62)

$$X \ge 0 \tag{63}$$

$$\operatorname{Tr} X = k \tag{64}$$

$$\langle X, J \rangle = k^2 \tag{65}$$

Notice we have dropped the rank constraint as well as the upper entrywise bound.

Theorem 15

 $\exists c > 0$ such that for $k \geq c\sqrt{n}$, Eq. (61) has unique maximizer $X^* = 1_k 1_k^{\top}$ with high probability.

Proof. We first show X^* is a maximizer.

$$\langle W, X^* \rangle = \mathbf{1}_k^\top W \mathbf{1}_k = k^2 - k \tag{66}$$

$$\langle W, X \rangle = \langle W + I, X \rangle - \operatorname{Tr} X$$
 (67)

$$\operatorname{Tr}(I - X) = \operatorname{Tr} X \le \langle J, X \rangle - \operatorname{Tr}(X)$$
 (68)

$$\underbrace{W+I \le J}_{X \ge 0} \Longrightarrow \langle J, X \rangle \ge \langle W+I, X \rangle \tag{69}$$

$$\therefore \operatorname{Tr}(I - X) = \operatorname{Tr} X < k^2 - k \tag{70}$$

The harder part is uniqueness. We will develop a general technique called dual certificate / KKT condition. Write the Lagrangian for the optimization problem. Introduce dual variables $S \succeq 0, \ B \geq 0, \ \eta \in \mathbb{R}$, $\lambda \in \mathbb{R}$ and

$$\mathcal{L}(X, S, B, \eta, \lambda) = \langle W, X \rangle + \langle S, X \rangle + \langle B, X \rangle + \eta \left(k \operatorname{Tr}(X) + \lambda (k^2 - \langle X, J \rangle) \right)$$
(71)

Notice

$$\max_{X \text{ feas}} \langle W, X \rangle = \max_{X} \min_{S, B, \eta, \lambda} \mathcal{L}$$
(72)

as desired. Since \mathcal{L} is linear, by Sion's minimax theorem we have

$$\max_{X} \min_{S,B,\eta,\lambda} \mathcal{L} = \min_{S,B,\eta,\lambda} \max_{X} \mathcal{L}$$
 (73)

Note $\langle S, X \rangle = \text{Tr}(S^{1/2}XS^{1/2}) \ge 0$ is non-negative. $\langle B, X \rangle$ is also trivially non-negative.

Lemma 16

The following conditions imply X^* is the unique maximizer:

{lem:x-star-u

- 1. Stationarity: $W + S + B \eta I \lambda J = 0$ (can't improve any more)
- 2. Primal/dual feasibility
- 3. Complementary slackness: $\langle S, X^* \rangle = 0$ and $\langle B, X^* \rangle = 0$.
- 4. Uniqueness: $\lambda_{n-1}(S) > 0$ (second smallest eigenvalue of S)

The first three conditions are the "KKT conditions." Together, they guarantee X is a maximizer.

Proof of Lemma 16. X^* is a maximizer: for feasible variables

$$\langle W, X \rangle \le \mathcal{L}(X, S, B, \eta, \lambda)$$
 feasible (74)

$$= \mathcal{L}(X^*, S, B, \eta, \lambda)$$
 stationarity (75)

$$=\langle W, X^* \rangle$$
 comp. slackness (76)

Uniqueness: Suppose X' satisfies $\langle W, X' \rangle = \langle W, X^* \rangle$. Then $\langle S, X' \rangle = 0$, and $\langle S, X^* \rangle = 0 \implies 1_k^\top S 1_k = 0 \implies S 1_k = 0$. In other words, 1_k is an eignevector with eigenvalue 0 for S. But condition (4) means that 1_k is the only eigenvector with eigenvalue 0, hence $X' = cX^*$ for some $c \in \mathbb{R}$. But by the constrant $\operatorname{Tr} X = k$, we must have $X' = X^*$.

Hence, if we can find (S, B, η, λ) satisfying Lemma 16, then we have a certificate that X^* is the unique maximizer

But how can we find this certificate? It's hard in general, but in this case we have an explicit construction.

$$B \ge 0, \quad \eta \in \mathbb{R}, \quad \lambda \in \mathbb{R}$$
 (77)

$$S = \eta I + \lambda J - B - W \succeq 0 \tag{78}$$

$$S1_k = 0, \quad \langle B, X^* \rangle = 0, \quad \lambda_{n-1}(S) > 0$$
 (79)

$$S1_k = 0 \implies \eta I_k + \lambda k 1 = B1_k + W1_k \tag{80}$$

 $X^* = 1_k 1_k^{\mathsf{T}}$. Since we want $\langle B, X^* \rangle = 0$, we want $B_{ij} = 0$ for $(i, j) \in K \times K$. This implies that $(B1_k)i = 0$ for $i \in K$. Let $y = W1_k$.

ith entry, $i \in K$, of Eq. (79) implies $\eta + k\lambda = (B1_k)_i + y_i = k - 1$. Then, choose $\eta = k - 1 - k\lambda$

Now for $i \notin K$, Eq. (79) implies $\lambda k = (B1_k)_i + y_i$. Construct $B = 1_k b^\top + b1_k^\top$ for some $b \in \mathbb{R}^n$ such that $b_i = 0$ for $i \in K$. Then $B1_k = kb$.

Fig 9.12.1

 $b_i = \lambda - \frac{y_i}{k}$ for all $i \notin k$. Check $B \ge 0 \implies b_i \ge 0$. Since $\lambda \ge \frac{y_i}{k}$ for all $i \in K$, $\lambda \ge \max_{i \notin K} \frac{y_i}{k}$. $y_i = W1_k$ which is a sum of Rad(1/2) RVs, so by concentration for some $\lambda \ge c$ this is satisfied whp.

BIBLIOGRAPHY BIBLIOGRAPHY

For the last part, we need to show $x^{\top}Sx > 0$ for all x such that $x^{\top}1_k = 0$. The exact formula for S is

$$S = \eta + \underbrace{\lambda x^{\top} J x}_{\geq O(\sqrt{n})} - \underbrace{x^{\top} B x}_{=0} - \underbrace{x^{\top} W x}_{\geq O(\sqrt{n})}$$

$$\tag{81}$$

$$\geq \frac{k}{2} - 1 - x^{\top} \mathbb{E}[W] x - \|W - \mathbb{E}W\|_{op}$$
(82)

$$\geq 0$$
 for suff large k (83)

Bibliography

Alon, N., M. Krivelevich, and B. Sudakov

1998. Finding a large hidden clique in a random graph. Random Structures & Algorithms, 13(3-4):457-466.

Latała, R. et al.

2006. Estimates of moments and tails of gaussian chaoses. The Annals of Probability, 34(6):2315–2331.