中国科学技术大学 2021 年研究生入学考试线性代数 与解析几何试题

1. 填空题.

- (1) 已知空间中三个点 A = (1,1,1), B = (2,1,2), C = (1,-1,0), 则三角形 $\triangle ABC$ 的面积为____. 已知点 (0,a,1) 与 A,B,C 共面,则 a =___.
- (2) 空间中直线 $l_1: x-1=2-y=z$ 绕 $l_2: y=z=0$ 旋转所得的旋转面的一般方程为___.
- (3) 方阵 $A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 3 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{pmatrix}$ 的逆矩阵为___. 行列式 $\det \begin{pmatrix} I_n & 2I_n \\ 2I_n & 2I_n \end{pmatrix} =$ ___. 其中 I_n 表示 n 阶单位阵
- (4) 已知实系数二次型 $Q(x,y,z) = 2x^2 + 2y^2 + 2z^2 xy byz$ 是正定的,则系数 b 的取值范围为 .
- (5) 设 $A = \begin{pmatrix} 5 & 1 & 1 \\ 9 & 8 & 3 \\ 2 & 7 & 3 \end{pmatrix}$, |A| 第二行元素的代数余子式为 A_{21}, A_{22}, A_{23} , 则 $A_{21} A_{22} + 2A_{23} =$ __.
- (6) 设 $\mathbb{R}_2[x]$ 为全体次数不超过 2 的实系数多项式及零多项式生成的线性空间,考虑线性变换 $\mathcal{A}=x\frac{\mathrm{d}}{\mathrm{d}x}:\mathbb{R}_2[x]\longrightarrow\mathbb{R}_2[x]$,则 \mathcal{A} 的最小多项式为___.
- 2. 给定四维向量组

$$\alpha_1 = (1, 2, -1, 1), \alpha_2 = (1, 3, -1, 2), \alpha_3 = (2, 5, 0, 5), \alpha_4 = (5, 12, 1, 13)$$

试求出其所有的极大线性无关组.

3. 给定二次曲面在空间直角坐标系下的方程为 $y^2 + \sqrt{2}xy + yz - 2y + 5 = 0$, 试用正交变换以及平移变换将其化为标准方程,并判断这是什么类型的曲面.

4. 设 $\mathbb{R}_3[x]$ 为由全体次数不超过 3 的实系数多项式以及零多项式生成的线性空间,对任意 $f(x), g(x) \in \mathbb{R}_3[x]$, 定义

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx$$

- (1) 证明: (f,g) 定义了 $\mathbb{R}_3[x]$ 上的内积结构.
- (2) 在上述内积下,对基 $\{1, x, x^2, x^3\}$ 按顺序进行 Gram-Schmidt 正交化,将其变成标准正交基.
- 5. 设 A, B 为 n 阶实对称矩阵,其中 A 是正定矩阵,证明: 当正实数 a 充分大时,矩阵 aA+B 总是正定矩阵.
- 6. 设 A 为 n 阶复矩阵,证明: 对任意的正整数 $N, M \geq n$, 总有 $\mathrm{rank}(A^N) = \mathrm{rank}(A^M)$.
- 7. 已知 A, B, C, D 均为 n 阶方阵, 且 BD = DB. 证明:

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(DA - BC).$$