MANUEL D'INSTRUCTIONS POUR TESTS

PORTÉE VHF

AIRBUS A320

Référence: MIT-A320-PVHF-2025-109

Classification: STANDARD / USAGE MAINTENANCE

Révision: 2.4

Date d'application: 24 mai 2025

Catégorie: Éléments électroniques de communication

Niveau d'urgence pour changement: Faible

1. INTRODUCTION

1.1 Objectif du document

Ce manuel fournit les instructions détaillées pour réaliser les tests de portée des systèmes de communication VHF sur les Airbus A320. Il est destiné aux techniciens de maintenance et aux inspecteurs qualifiés pour évaluer et valider les performances des systèmes de communication VHF.

1.2 Présentation du système

Les systèmes VHF de l'A320 comprennent: - 3 radios VHF (COM1, COM2, COM3) - Antennes associées - Panneaux de contrôle RMP (Radio Management Panel) - Système audio intégré - Interfaces avec les autres systèmes avioniques

Composants principaux: - Émetteurs-récepteurs VHF (8.33 kHz/25 kHz) - Antennes VHF (supérieure et inférieure) - Câblage et connecteurs RF - Panneaux de contrôle et interfaces utilisateur

1.3 Documentation associée

- Manuel de maintenance Airbus (AMM) 23-10-00
- Manuel de dépannage (TSM) 23-10-00
- Schémas des circuits RF (WDM) 23-10-00
- Bulletins de service applicables

2. PRÉPARATION AUX TESTS

2.1 Conditions préalables

Aéronef: - Stabilisé sur une aire dégagée - Alimentation électrique externe connectée - Systèmes avioniques sous tension - Disjoncteurs vérifiés selon liste

Environnement: - Zone de test avec ligne de vue dégagée - Absence d'interférences électromagnétiques significatives - Conditions météorologiques favorables (absence de précipitations) - Coordination avec les services de contrôle aérien

Sécurité: - Personnel informé des tests en cours - Communication établie entre équipes au sol et à bord - Équipement de protection individuelle porté - Procédures de sécurité radio respectées

2.2 Équipement nécessaire

Outillage standard: - Testeur de communication aéronautique (réf. IFR-4000) - Wattmètre RF calibré - Analyseur de spectre portable - GPS pour mesure précise des distances

Outillage spécifique: - Station mobile de test VHF (réf. VHF-TEST-A320) - Casques de communication aviation - Radios portatives pour coordination - Antennes de référence calibrées

Documentation: - Ce manuel d'instructions - Fiches d'enregistrement des résultats - Cartes topographiques de la zone de test - Certificats d'étalonnage des équipements de test

2.3 Configuration initiale

- 1. Vérifier que tous les disjoncteurs sont dans la position requise
- 2. Mettre sous tension les systèmes avioniques
- 3. Configurer les radios VHF selon les paramètres de test
- 4. Vérifier le fonctionnement de base des trois systèmes VHF
- 5. Établir la communication avec l'équipe mobile
- 6. Enregistrer les conditions météorologiques et environnementales

3. PROCÉDURES DE TEST

3.1 Test de puissance d'émission

Objectif: Vérifier la puissance de sortie RF des émetteurs VHF.

Procédure: 1. Connecter le wattmètre RF à la sortie de l'émetteur via le point de test 2. Configurer la radio sur la fréquence de test (121.500 MHz) 3. Activer l'émission (presser PTT) 4. Mesurer la puissance de sortie 5. Répéter pour chaque radio VHF (COM1, COM2, COM3)

Critères d'acceptation: - Puissance nominale: 25W - Tolérance: ±3W (22-28W) - Stabilité: <5% de variation sur 1 minute d'émission continue

3.2 Test de sensibilité de réception

Objectif: Vérifier la sensibilité des récepteurs VHF.

Procédure: 1. Connecter le générateur de signal RF au point de test du récepteur 2. Configurer la radio sur la fréquence de test (121.500 MHz) 3. Injecter un signal modulé à 1 kHz, 30% de modulation 4. Réduire progressivement le niveau du signal jusqu'au seuil de détection 5. Noter le niveau minimum détectable 6. Répéter pour chaque radio VHF (COM1, COM2, COM3)

Critères d'acceptation: - Sensibilité nominale: $2\mu V$ - Tolérance: $\pm 1\mu V$ (1-3 μV) - Rapport signal/bruit: >10dB au seuil de détection

3.3 Test de portée courte distance

Objectif: Vérifier les performances de communication à courte distance.

Procédure: 1. Positionner la station mobile à 5 km de l'aéronef avec ligne de vue dégagée 2. Établir la communication sur la fréquence de test 3. Évaluer la qualité de la communication (échelle 1-5) 4. Tester la transmission de messages standard 5. Répéter pour chaque radio VHF (COM1, COM2, COM3)

Critères d'acceptation: - Qualité de communication: ≥4/5 - Intelligibilité: 100% des messages compréhensibles - Absence d'interférences significatives

3.4 Test de portée moyenne distance

Objectif: Vérifier les performances de communication à moyenne distance.

Procédure: 1. Positionner la station mobile à 25 km de l'aéronef avec ligne de vue dégagée 2. Établir la communication sur la fréquence de test 3. Évaluer la qualité de la communication (échelle 1-5) 4. Tester la transmission de messages standard 5. Répéter pour chaque radio VHF (COM1, COM2, COM3)

Critères d'acceptation: - Qualité de communication: ≥3/5 - Intelligibilité: >95% des messages compréhensibles - Stabilité de la liaison: <5% de pertes de communication

3.5 Test de portée longue distance

Objectif: Vérifier les performances de communication à longue distance.

Procédure: 1. Positionner la station mobile à 100 km de l'aéronef (ou distance maximale avec ligne de vue) 2. Établir la communication sur la fréquence de test 3. Évaluer la qualité de la communication (échelle 1-5) 4. Tester la transmission de messages standard 5. Répéter pour chaque radio VHF (COM1, COM2, COM3)

Critères d'acceptation: - Qualité de communication: ≥2/5 - Intelligibilité: >80% des messages compréhensibles - Communication établie à la distance maximale théorique (selon conditions)

3.6 Test de résistance aux interférences

Objectif: Vérifier la robustesse du système face aux interférences.

Procédure: 1. Positionner la station mobile à 15 km de l'aéronef 2. Établir la communication sur la fréquence de test 3. Activer une source d'interférence contrôlée à proximité de la station mobile 4. Évaluer la dégradation de la qualité de communication 5. Augmenter progressivement le niveau d'interférence 6. Noter le niveau d'interférence causant une dégradation significative

Critères d'acceptation: - Maintien de la communication avec rapport signal/interférence >12dB - Récupération automatique après cessation de l'interférence - Absence de verrouillage ou de dysfonctionnement permanent

4. ANALYSE DES RÉSULTATS

4.1 Calcul de la portée effective

Formule de calcul: Portée effective (km) = Portée maximale mesurée × Facteur de qualité

Où: - Portée maximale mesurée = Distance maximale avec communication établie - Facteur de qualité = (Qualité mesurée / 5) × Facteur de correction environnemental

Facteurs de correction environnementaux: - Conditions idéales: 1.0 - Légère brume/ humidité: 0.9 - Pluie légère: 0.8 - Environnement urbain: 0.7 - Terrain montagneux: 0.6

4.2 Interprétation des résultats

Paramètre	Excellent	Bon	Acceptable	Dégradé	Défaillant
Portée effective	>120 km	100-120 km	80-100 km	60-80 km	<60 km
Qualité à 5 km	5/5	4/5	3/5	2/5	1/5
Qualité à 25 km	5/5	4/5	3/5	2/5	1/5
Qualité à 100 km	4-5/5	3/5	2/5	1/5	0/5
Résistance interférences	>20 dB	15-20 dB	12-15 dB	8-12 dB	<8 dB

4.3 Analyse des défaillances

En cas de résultats non conformes, utiliser le tableau suivant pour orienter le diagnostic:

Symptôme	Cause possible	Vérification recommandée	
Faible puissance d'émission	Émetteur défectueux	Test de puissance en atelier	
	Câble/connecteur défectueux	Mesure d'atténuation du câble	
	Antenne défectueuse	Mesure SWR de l'antenne	
Faible sensibilité	Récepteur défectueux	Test de sensibilité en atelier	
	Câble/connecteur défectueux	Mesure d'atténuation du câble	
	Préamplificateur défectueux	Test du préamplificateur	
Portée réduite	Problème d'émission	Voir "Faible puissance d'émission"	
	Problème de réception	Voir "Faible sensibilité"	
	Problème d'antenne	Inspection visuelle et test SWR	
Interférences	Source externe	Analyse spectrale de l'environnement	
	Problème d'isolation	Vérification blindage et mise à la masse	
	Intermodulation	Test d'intermodulation en atelier	

5. FINALISATION ET DOCUMENTATION

5.1 Remise en configuration normale

Objectif: Remettre l'aéronef en configuration d'exploitation.

Procédure: 1. Déconnecter tous les équipements de test 2. Vérifier l'intégrité des connexions d'antenne 3. Configurer les radios VHF sur les fréquences opérationnelles 4. Effectuer un test de communication final avec le contrôle sol 5. Vérifier l'absence d'alarmes liées au système 6. Remettre en place les panneaux d'accès si nécessaire

Critères d'acceptation: - Communication normale établie avec le contrôle sol - Absence d'alarmes système - Configuration conforme aux exigences opérationnelles

5.2 Documentation des résultats

Compléter la fiche d'enregistrement FORM-VHF-TEST-A320 avec: - Identification de l'aéronef - Date et conditions du test - Équipement utilisé et références d'étalonnage - Résultats

détaillés pour chaque étape - Calculs de portée effective - Anomalies constatées - Actions correctives effectuées

5.3 Certification

Je certifie que les tests de portée VHF ont été effectués conformément aux procédures approuvées selon: - EASA CS-25.1301 (Fonction et installation) - EASA CS-25.1309 (Équipement, systèmes et installations) - EASA CS-25.1431 (Équipement électronique) - EASA Part-145.A.50 (Certification après maintenance) - FAA 14 CFR Part 25.1301 (Fonction et installation) - FAA 14 CFR Part 25.1309 (Équipement, systèmes et installations) - FAA 14 CFR Part 25.1431 (Équipement électronique)

Technicien:		
Nom: Licence:		
Signature: Date:		
Vérificateur:		
Nom: Licence:		
Signature: Date:		

Note concernant le changement de pièce:

Niveau d'urgence: FAIBLE

Le remplacement des composants du système VHF peut être planifié lors de la prochaine maintenance programmée, sauf indication contraire suite à un test révélant une anomalie critique affectant la portée ou la fiabilité des communications.