Analyse spatiale des Arbres du POSL

Florence Puech

Eric Marcon

February 14, 2022

Abstract

Représentations spatiales du jeu de données et dbmss.

Ce code crée des cartes en 2D et 3D du Parc Omnisport Suzanne Lenglen.

1 Données

```
load("data/POSL.RData")
```

2 Jeux de points

2.1 Genre-Espèce

```
library("dbmss")
BDD_Vivants_et_Abattus_renseignes_POSL %>%
    # Le poids est la surface terrière
mutate(PointWeight = Circonference^2/4/pi) %>%
    rename(PointType = GenrEsp) %>%
    as.wmppp(unitname = c("meter", "meters")) ->
    POSL_VA_wmppp
```

2.1.1 Carte

```
POSL_VA_wmppp %>%
  autoplot(alpha = 0.8, xlab = "X Lambert", ylab = "Y Lambert") +
  labs(title = "Arbres vivants et abattus du POSL") +
  labs(color = "Espèce", size = "Surface terrière")
```


2.2 Nom vernaculaire des espèces

```
BDD_Vivants_et_Abattus_renseignes_POSL %>%
# Le poids est la surface terrière
mutate(PointWeight = Circonference^2/4/pi) %>%
rename(PointType = EspeceFrancais) %>%
as.wmppp(unitname = c("meter", "meters")) ->
POSL_Esp_wmppp
```

2.2.1 Carte

```
POSL_Esp_wmppp %>%
  autoplot(alpha = 0.8, xlab = "X Lambert", ylab = "Y Lambert") +
  labs(title = "Arbres du POSL") + labs(color = "Espèce",
  size = "Surface terrière")
```


2.2.2 Vue en 2D

```
BDD_Vivants_et_Abattus_renseignes_POSL %>%
ggplot(aes(x = X, y = Y)) + geom_point() + geom_density_2d() +
ggtitle("Arbres vivants et abattus du POSL")
```

Arbres vivants et abattus du POSL

2.3 Abattus-vivants

```
BDD_Vivants_et_Abattus_renseignes_POSL %>%

# Le poids est la surface terrière

mutate(PointWeight = Circonference^2/4/pi) %>%

rename(PointType = Etat) %>%

as.wmppp(unitname = c("meter", "meters")) ->

BDD_V2022_A2022_Poids_POSL_wmppp
```

Carte

```
BDD_V2022_A2022_Poids_POSL_wmppp %>%
   autoplot(alpha = 0.8, xlab = "X Lambert", ylab = "Y Lambert") +
labs(title = "Arbres vivants et abattus du POSL") +
labs(color = "Espèce", size = "Surface terrière")
```


2.4 Cause de l'abattage

```
# Création du jeu de points
BDD_Vivants_et_Abattus_renseignes_POSL %>%
    # Arbres abattus seulement
filter(Etat == "Abattu") %>%
    # Le poids est la surface terrière
mutate(PointWeight = Circonference^2/4/pi) %>%
    rename(PointType = MotifAbattage) %>%
    as.wmppp(unitname = c("meter", "meters")) ->
    POSL_A_wmppp
```

Carte

```
POSL_A_wmppp %>%

autoplot(alpha = 0.8, xlab = "X Lambert", ylab = "Y Lambert") +
labs(title = "Arbres abattus du POSL") + labs(color = "Cause",
size = "Surface terrière")
```


Carte 3D densité arbres vivants et abattus à POSL

```
Density_POSL <- density(POSL_VA_wmppp, bw.diggle(POSL_VA_wmppp),
    dimyx = c(128, 128))
par(mar = c(0, 0, 0, 0))
persp.im(Density_POSL, shade = 0.5, scale = FALSE,
    axes = TRUE, border = NA, box = FALSE, phi = 60,
    main = "") -> Projection
```


4 Concentration spatiale

4.1 Question 1-a : les arbres abattus du POSL sont-ils plus concentrés qu'une distribution aléatoire ?

```
K_Abattus <- KEnvelope(POSL_A_wmppp, NumberOfSimulations = 1000,</pre>
   Alpha = 0.01, Global = TRUE)
## Generating 1000 simulations by evaluating
## expression ...
## 1, 2, 3, ......10.......20.......30.......40..
## ......80....
## .....90.......100.......110.......120.....
## ...130......140......150......160.....
## .170......180......190......200......210
## ........220.......230........240.......250...
## ......260......270......280......290....
## .....300.......310.......320........330......
## ...340......350......360.......370......
## .380......420
## .........430..........450.........460...
## ......470.......480......490......500....
## .....510........520.......530........540......
## ...550.......560......570......580......
## .590........600.......610........620.......630
## .......640.......650.......660.......670...
## ......680......700......710....
## .....720........730.......740........750......
## ...760.......770.......780.......790......
## ......900......910......920....
## .....930.......940.......950.......960......
## ...970.......980.......990....... 1000.
## Done.
plot(K_Abattus, legend = FALSE, xlab = "Distance (mètres)",
   ylab = "K(Distance)", main = "K de Ripley \n Arbres abattus en 2021 dans le POSL")
legend("topleft", c("K", expression(alpha == "1%, IC global"),
   "Centre IC"), col = c("black", "grey", "red"),
   lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
   text.col = "black", horiz = FALSE, inset = 0.04)
```


autoplot(K_Abattus)

Conclusion : interactions détectée entre les arbres abattus : attraction. Les arbres abattus sont plus concentrés qu'une distribution complètement aléatoire.

Densité arbres abattus en 2021 dans le POSL

4.2 Question 1-b : les arbres vivants du POSL sont-ils plus concentrés qu'une distribution aléatoire ?

```
K_Vivants <- KEnvelope(POSL_Esp_wmppp, NumberOfSimulations = 1000,</pre>
  Alpha = 0.01, Global = TRUE)
## Generating 1000 simulations by evaluating
## expression ...
## 1, 2, 3, .....10......20......30.......40..
## ......50......60......70......80....
## .....90.......100.......110.......120....
## ...130......140.......150......160.....
## .170......180......190......200......210
## ......220......230......240......250...
## ......260......270......280......290....
## .....300.......310.......320.......330......
## ...340......350......360......370......
## .380.......420
## ........430.......440.........450.......460..
## ......470.......480.......490.......500....
## .....510.......520.......530.......540......
## ...550......560......570......580......
## .590.......600.......610.......620.......630
## .......710.....
## .....720........740.......750......
## ........850.......860.......870.......880..
## ......900......910......920....
## .....930.......940.......950.......960......
## ...970.......980.......990.......... 1000.
## Done.
plot(K_Vivants, legend = FALSE, xlab = "Distance (mètres)",
ylab = "K(Distance)", main = "K de Ripley \n Abres vivants en 2022 dans le POSL")
legend("topleft", c("K", expression(alpha == "1%, IC global"),
   "Centre IC"), col = c("black", "grey", "red"),
```

```
lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
text.col = "black", horiz = FALSE, inset = 0.04)
```

K de Ripley Arbres vivants en 2022 dans le POSL

Conclusion : interactions détectée entre les arbres vivants : attraction. Les arbres vivants sont plus concentrés qu'une distribution complètement aléatoire.

4.3 Question 2 : les arbres abattus du POSL sont-ils plus concentrés que les vivants ?

4.3.1 mCas_contrôles pour les abattus

```
m_Abattus <- mEnvelope(BDD_V2022_A2022_Poids_POSL_wmppp,</pre>
    NumberOfSimulations = 1000, Alpha = 0.01, ReferenceType = "Abattu",
    SimulationType = "RandomLocation", Global = TRUE)
## Generating 1000 simulations by evaluating
## expression ...
## 1, 2, 3, ......10.......20.......30........40...
## ......50......60......70......80....
## .....90.......100.......110.......120......
## ...130.......140.......150.......160......
## .170. 180. 190. 200. 210
## ..... 220. ..... 230. ..... 240. ..... 250.
## ......260.......270.......280......290....
## .....300.......310.......320........330......
## ...340......350......360......370.....
## .380......390......400.....410......420
## ......430......440......450......460...
## ...550.......560......570......580......
## .590.......610......620......630
## .....720.......730......740.......750.....
## ...760.......770.......780.......790......
## ......900......910......920....
## .....930.......940.......950.......960......
## ...970.......980.......990.......... 1000.
## Done.
plot(m_Abattus, xlab = "Distance (mètres)", ylab = "m(Distance)",
    legend = FALSE, main = "m de Lang et al. \n Arbres abattus par rapport aux vivants dans le POSL")
legend("topright", c("m", expression(alpha == "1%, ICg "),
    "Centre IC"), col = c("black", "grey", "red"),
    lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
    text.col = "black", horiz = FALSE, inset = -0.02)
```

m de Lang et al. Arbres abattus par rapport aux vivants dans le POSL

autoplot(m_Abattus)

Conclusions:

- NS avec alpha 1% et $1000~\mathrm{sim}$
- avec alpha 10% concentration sign entre 175m et 200m avec 1000 sim, presque plus sign avec 10000 sim.

4.3.2 MCas_contrôles pour les abattus

```
M_Abattus <- MEnvelope(BDD_V2022_A2022_Poids_POSL_wmppp,
    NumberOfSimulations = 1000, Alpha = 0.01, ReferenceType = "Abattu",
    SimulationType = "RandomLocation", Global = TRUE)</pre>
```

```
## .....50.....60.....70.....80....
## ....90.....100.....110.....120.....
## ...130.......140.......150.......160.....
## 170. 180 190. 200 ...210
## ......220 .....230 .....240 ......250.
## ......260......270......280......290....
## ...300 ...310 ...320 ...330 ....
## ...340 ....350 ...360 ....370 .....
## ......470.......480.......490......500....
## ...510 ...520 ...530 ...540 ....
## ..550 ...560 ...570 ...580 .....
## .590.......600.......610.......620.......630
## .800......810......820......830......840
## ..........850...........870...........880..
## ......910......920....
## .....930.......940.......950.......960......
## ...970........980.......990......... 1000.
##
## Done.
plot(M_Abattus, legend = FALSE, xlab = "Distance (metres)",
ylab = "M(Distance)", xlim = c(0, 50), main = "M de Marcon et Puech \n Arbres abattus par rapport aux vivants dans le POSL") legend("topright", c("M", expression(alpha == "1%, IC global"),
   "Centre IC"), col = c("black", "grey", "red"),
lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
text.col = "black", horiz = FALSE, inset = 0.1)
```

M de Marcon et Puech Arbres abattus par rapport aux vivants dans le POSL

Generating 1000 simulations by evaluating

1, 2, 3,10......20......30.......40...

expression ...


```
plot(M_Abattus)
```

M_Abattus

Conclusion : un peu conc sign autour de 5m.

Attention: attention warning message lors de la compil.

Warning messages: 1: In FUN(newX[, i], ...) :
aucun argument trouvé pour min ; Inf est renvoyé"

- 4.4 Question 3 : les malades sont-ils plus concentrés ceux en délin par rapport aux vivants ?
- 4.4.1 Question 3-a : REFERENTIEL : ARBRES VIVANTS et ABATTUS POUR AUTRES MOTIFS

Création de la BDD :

M déclin

```
## Generating 1000 simulations by evaluating
## expression ...
## 1, 2, 3, ......10.......20.......30........40..
## ......50......60......70......80....
## .....90.......110.......120.....
## ...130......140.......150......160.....
## .170......180......190......200......210
## ......220.......230.......240.......250..
## ......260......270......280......290....
## .....300.......310.......320.......330......
## ...340......350.......360.......370......
## .380............420
## .........430..........450........460..
## ......470.......480.......490.......500....
## .....510........520........530........540......
## ...550.......560.......570.......580......
## .590.......600.......610.......620.......630
## ......710....
## .....720........730.......740........750......
## ...760.......770.......780.......790......
## .800......810......820......830......840
## .........850.........860..........870..........880...
## ......900......910.......920....
## .....930.......940.......950.......960......
## ...970.......980.......990.......... 1000.
## Done.
plot(M_Declin, legend = FALSE, xlim = c(0, 30), xlab = "Distance (mètres)",
ylab = "M(Distance)", main = "M de Marcon et Puech \n Arbres en déclin par rapport aux vivants et malades dans le POSL")
legend("topright", c("M", expression(alpha == "1%, IC global"),
```

"Centre IC"), col = c("black", "grey", "red"),

```
lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
text.col = "black", horiz = FALSE, inset = 0.1)
```

M de Marcon et Puech Arbres en déclin par rapport aux vivants et malades dans le POSL

autoplot(M_Declin)

Conclusion: NS.

```
m_Declin <- mEnvelope(BDD_V2022_A2022_Poids_POSL_wmppp2,
    NumberOfSimulations = 1000, Alpha = 0.01, ReferenceType = "Arbre en déclin physiologique irréversible",
    SimulationType = "RandomLocation", Global = TRUE)</pre>
```

m déclin

```
## expression ...
## 1, 2, 3, ......10......20......30.......40...
## ...130.......140.......150.......160.....
## 170. 180 190. 200 ...210
## ......220 .....230 .....240 ......250.
## ......260......270......280.......290....
## ...300....310....320....330....
## ...340.....350.....360.....370......
## .380.....390.....440......410......420
## .....430.....440......450......460...
## ......470.......480.......490.......500....
## ...510 ...520 ...530 ...540 ....
## ..550 ...560 ...570 ...580 .....
## .590.......600.......610.......620.......630
## ....720......730.....740.....750.....
## ...760......770.....780.....790......
## .800......810......820......830......840
## ......910......920....
## .....930.......940.......950.......960......
## ...970........980.......990......... 1000.
##
## Done.
plot(m_Declin, legend = FALSE, xlab = "Distance (mètres)",
    ylab = "m(Distance)", main = "m de Lang et al. \n Arbres en déclin par rapport aux vivants et malades dans le POSL")
legend("topright", c("m", expression(alpha == "1%, IC global"),
    "Centre IC"), col = c("black", "grey", "red"),
    lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
    text col = "PLSE" invot = 0.05)
```

m de Lang et al. Arbres en déclin par rapport aux vivants et malades dans le POSL

autoplot(m_Declin)

Generating 1000 simulations by evaluating

text.col = "black", horiz = FALSE, inset = 0.05)

Conclusion: conc sign jusqu'à 100m puis jusqu'à 250m.

```
M_Malades <- MEnvelope(BDD_V2022_A2022_Poids_POSL_wmppp2,
    NumberOfSimulations = 1000, Alpha = 0.01, ReferenceType = "Foyer d'agent(s) pathogène(s)",
    SimulationType = "RandomLocation", Global = TRUE)</pre>
```

M malade

```
## Generating 1000 simulations by evaluating
## expression ...
## 1, 2, 3, ......10.......20.......30........40...
## ......50.......60......70.......80....
## .....90.......110.......120......
## ...130.......140.......150.......160.....
## ......260......270......280......290....
## ...300 ...310 ...320 ...330 ....
## .340 ...350 ...360 ...370 .....
## .380......420
## ........430.......440........450.......460..
## ......470.......480.......490.......500....
## .....510.......520.......530.......540......
## ...550.......560.......570.......580......
## .590......610......620......630
## ........640.......650........660.......670..
## ......710....
## .....720.......730......740.......750.....
## ...760.......770.......780.......790......
## .800.......810......820.......830.......840
## .........850.........860..........870........880..
## ......920.....910......920....
  .....930.......940.......950......960.....
## ...970.......980.......990......... 1000.
##
## Done.
```

```
plot(M_Malades, legend = FALSE, xlim = c(0, 75), xlab = "Distance (mètres)",
   ylab = "M(Distance)", main = "M de Marcon et Puech \n Arbres malades par rapport aux vivants \n et autres abattus dans le POS
legend("topright", c("M", expression(alpha == "1%, IC global"),
   "Centre IC"), col = c("black", "grey", "red"),
   lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
   text.col = "black", horiz = FALSE, inset = 0.1)
```

M de Marcon et Puech Arbres malades par rapport aux vivants et autres abattus dans le POSL

Conclusion : conc à petites distances (environ 10m) Attention : warnings ${\rm FUN}$

```
m_Malades <- mEnvelope(BDD_V2022_A2022_Poids_POSL_wmppp2,
    NumberOfSimulations = 1000, Alpha = 0.01, ReferenceType = "Foyer d'agent(s) pathogène(s)",
    SimulationType = "RandomLocation", Global = TRUE)</pre>
```

m malade

```
## Generating 1000 simulations by evaluating
## expression ...
## 1, 2, 3, ......10........20........30..........40...
## ......50.......60......70......80....
## .....90.......110.......120......
## ...130.......140.......150.......160.....
## .170......180......190......200......210
## ......220......230......240......250..
## ......260......270......280......290....
## .....300.......310.......320........330......
## ...340......350......360......370......
## .380...........420
## ..........430...........450.........460...
## ......470.......480.......490......500....
## .....510.......520.......530.......540......
## .....720.......730.......740.......750......
## ...760.......790.......790......
## ......900......910......920....
## .....930.......940.......950.......960......
## ...970........980.......990......... 1000.
##
## Done.
```

```
plot(m_Malades, legend = FALSE, xlab = "Distance (mètres)",
    ylab = "m(Distance)", main = "m de Lang et al. \n Arbres malades par rapport aux vivants\n et aux autres abattus dans le POSL
legend("topright", c("m", expression(alpha == "1%, ICg"),
    "Centre IC"), col = c("black", "grey", "red"),
    lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
    text.col = "black", horiz = FALSE, inset = 0.05)
```

m de Lang et al. Arbres malades par rapport aux vivants et aux autres abattus dans le POSL

4.4.2 Question 3-b : REFERENTIEL : UNIQUEMENT LES ARBRES VIVANTS

 $\bf Jeux$ de points – Création de la BDD sans les 25 arbres en déclin donc contient vivant et abattus-patho :

```
BDD_Vivants_et_Abattus_renseignes_POSL %>%

# Le poids est la surface terrière

mutate(PointWeight = Circonference^2/4/pi) %>%

filter(MotifAbattage != "Arbre en déclin physiologique irréversible") %>%

mutate(PointType = ifelse(Etat == "Vivant", "Vivant",

"Foyer d'agent(s) pathogène(s)")) %>%

as.wmppp(unitname = c("meter", "meters")) ->

BDD_V2022_A2022_Poids_POSL_sans_abattus_declin_wmppp

autoplot(BDD_V2022_A2022_Poids_POSL_sans_abattus_declin_wmppp)
```


Création de la BDD sans les 23 arbres foyer patho donc reste uniquement vivants et en déclin:


```
M_Malades <- MEnvelope(BDD_V2022_A2022_Poids_POSL_sans_abattus_declin_wmppp,
    NumberOfSimulations = 1000, Alpha = 0.01, ReferenceType = "Foyer d'agent(s) pathogène(s)",
    SimulationType = "RandomLocation", Global = TRUE)</pre>
```

M malades

```
## Generating 1000 simulations by evaluating
## expression ...
## 1, 2, 3, ......10........20........30..........40...
## .......80.....
## .....90.......110.......120......
## ...130.......140.......150.......160.....
## .170......180......190......200......210
## ......220......230......240......250..
## ......260......270......280......290....
## .....300.......310.......320........330......
## ...340......350......360......370......
## .380.......420
## ........430.........450........460...
## ......470.......480.......490......500....
## .....510.......520.......530.......540......
## .....720.......730......740.......750......
## ...760.......770.......780.....790......
## ......900......910......920....
## .....930.......940.......950.......960......
## ...970.......980.......990....... 1000.
##
## Done.
```

```
plot(M_Malades, legend = FALSE, xlim = c(0, 20), xlab = "Distance (metres)",
    ylab = "M(Distance)", main = "M de Marcon et Puech \n Arbres malades par rapport aux vivants (uniquement) dans le POSL")
legend("topright", c("M", expression(alpha == "1%, IC global"),
    "Centre IC"), col = c("black", "grey", "red"),
    lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
    text.col = "black", horiz = FALSE, inset = 0.1)
```

M de Marcon et Puech Arbres malades par rapport aux vivants (uniquement) dans le POS

Conclusion : conc sign entre 6m et 8m et M est alors = 10 ou 11 !!! Remarque : warning fun.

```
m_Malades <- mEnvelope(BDD_V2022_A2022_Poids_POSL_sans_abattus_declin_wmppp,
    NumberOfSimulations = 1000, Alpha = 0.01, ReferenceType = "Foyer d'agent(s) pathogène(s)",
    SimulationType = "RandomLocation", Global = TRUE)</pre>
```

m malades

```
## Generating 1000 simulations by evaluating
## expression \dots
## 1, 2, 3, .....10......20......30......40..
## ......50......60......70......80....
## .....90.......110.......120......
## ...130.......140.......150.......160......
## .170......180......190......200......210
## .......220.......230.......240.......250..
## ......260......270......280......290....
## .....300.......310.......320.......330......
## ...340......350......360......370......
## .380.......420
## .........430..........450........460..
## ......470.......480.......490.......500....
## .....510........520........530........540......
## ...550.......560.......570.......580......
## .590......600.......610.......620.......630
## .......640.......650........660.......670..
## ......710....
## .....720.......730.......740.......750......
## ...760.......770.......780.......790......
## .800......810......820......830......840
## ..........850...........860...........870..........880...
## ......920.....910......920....
## .....930........940........950........960......
## ...970.......980.......990.......... 1000.
## Done.
```

```
plot(m_Malades, legend = FALSE, xlab = "Distance (mêtres)",
    ylab = "m(Distance)", main = "m de Lang et al. \n Arbres malades par rapport aux vivants (uniquement) dans le POSL")
legend("topright", c("m", expression(alpha == "1%, ICg"),
    "Centre IC"), col = c("black", "grey", "red"),
    lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
    text.col = "black", horiz = FALSE, inset = 0.05)
```

m de Lang et al.

Arbres malades par rapport aux vivants (uniquement) dans le POS

autoplot(m_Malades)


```
M_Declin <- MEnvelope(BDD_V2022_A2022_Poids_POSL_sans_patho_wmppp,

NumberOfSimulations = 1000, Alpha = 0.01, ReferenceType = "Arbre en déclin physiologique irréversible",

SimulationType = "RandomLocation", Global = TRUE)
```

M déclin

```
## Generating 1000 simulations by evaluating
## expression ...
## 1, 2, 3, ......10......20......30.......40...
## .....50.....60.....70.....80....
## ....90.....100.....110.....120.....
## ...130.......140.......150.......160.....
## 170. 180 190. 200 ...210
## ......220 .....230 .....240 ......250.
## ......260......270......280......290....
## ...300 ...310 ...320 ...330 ....
## ...340 ....350 ...360 ....370 .....
## ......470.......480.......490......500....
## ...510 ...520 ...530 ...540 ....
## ..550 ...560 ...570 ...580 .....
## .590.......600.......610.......620.......630
## .800......810......820......830......840
## ......910......920....
## .....930.......940.......950.......960.....
## ...970........980.......990......... 1000.
##
## Done.
```

```
plot(M_Declin, legend = FALSE, xlim = c(0, 30), xlab = "Distance (metres)",
    ylab = "M(Distance)", main = "M de Marcon et Puech \n Arbres en déclin par rapport aux vivants (uniquement) dans le POSL")
legend("topright", c("M", expression(alpha == "1%, IC global"),
    "Centre IC"), col = c("black", "grey", "red"),
    lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
    text.col = "black", horiz = FALSE, inset = 0.1)
```

M de Marcon et Puech Arbres en déclin par rapport aux vivants (uniquement) dans le POS

autoplot(M_Declin)


```
m_Declin <- mEnvelope(BDD_V2022_A2022_Poids_POSL_sans_patho_wmppp,
    NumberOfSimulations = 1000, Alpha = 0.01, ReferenceType = "Arbre en déclin physiologique irréversible",
    SimulationType = "RandomLocation", Global = TRUE)</pre>
```

m déclin

```
## Generating 1000 simulations by evaluating
## expression ...
## 1, 2, 3, ......10.......20.......30.........40...
## ......50......60......70.......80....
## .....90.......110.......120.....
## ...130......140.......150......160.....
## .170......180......190......200......210
## ......220.......230.......240.......250..
## ......260......270......280......290....
## .....300.......310.......320.......330......
## ...340......350......360......370......
## .380.......420
## .........430..........450........460..
## ......470.......480.......490.......500....
## .....510........520........530........540......
## ...550.......560.......570.......580......
## .590.......600.......610.......620.......630
## ......710....
## .....720........730.......740........750......
## ...760.......770.......780.......790......
## .800......810......820......830......840
## .........850..........860...........870..........880...
## ......900.......910.......920....
## .....930.......940.......950.......960......
## ...970.......980........990........ 1000.
## Done.
```

```
plot(m_Declin, legend = FALSE, xlab = "Distance (mètres)",
    ylab = "m(Distance)", main = "m de Lang et al. \n Arbres en déclin par rapport aux vivants (uniquement) dans le POSL")
legend("topright", c("m", expression(alpha == "1%, IC global"),
    "Centre IC"), col = c("black", "grey", "red"),
```

```
lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
text.col = "black", horiz = FALSE, inset = 0.05)
```

m de Lang et al.

Arbres en déclin par rapport aux vivants (uniquement) dans le POS

- 4.5 Question 4 : les érables malades sont-ils plus concentrés que les érables vivants ?
- 4.5.1 Jeu de points

M érables foyer patho

```
## Generating 1000 simulations by evaluating
## expression ...
## 1, 2, 3, ......10.......20.......30........40...
## .......80.....
## .....90.......100.......110.......120......
## ...130.......140.......150.......160.....
## .170......180......190......200......210
## .......220......230......240......250...
## ......260......270......280......290....
## .....300.......310.......320........330......
## ...340......350......360......370......
## .380......420
## .........430..........450.........460..
## ......470.......480.......490.......500....
## .....510.......520.......530.......540......
## ...550......560......570.......580......
## .590.......620.......630
## ......680......700......710....
```

M de Marcon et Puech Erables malades par rapport aux érables vivants dans le POSL

 $\mathtt{autoplot}(\mathtt{M_erables})$

Conclusion : sign conc à 6m à 1000 sim et alpha = 10%, très légèrement sign pour alpha = 1%.

m érables patho

```
## Generating 1000 simulations by evaluating
## expression \dots
## 1, 2, 3, ......10.......20......30.......40..
## ......50......60......70......80....
## .....90.......100.......110.......120......
## ...130......140.......150.......160.....
## .170......180.....190......200......210
## .........220...........240..........250...
## ......260......270......280......290....
## .....300.......310.......320........330......
## ...340......350......360......370......
## .380.......420
## .........430.........440.........450........460...
## ......470.......480.......490.......500....
## .....510........520........530........540......
  ...550......560.......570.......580......
## .590......600......610......620.......630
## ......640......650.......660.......670..
...760......770......780......790.....
## .800......810......820......830......840
## ......900......910......920....
## .....930.......940.......950.......960......
##
  ...970.......980.......990.........1000.
## Done.
```

```
plot(m_erables,
    legend = FALSE,
    xlab="Distance (mètres)", ylab="m(Distance)",
    main="m de Lang et al. \n Erables malades par rapport aux érables vivants dans le POSL")
legend("topright",c("m", expression(alpha=='10%, IC global'), "Centre IC"),
    col = c("black", "grey", "red"), lty = c(1, 1, 8), lwd = c(1, 10, 1), bty = "n",
    text.col = "black", horiz = FALSE, inset=0.01)
```

m de Lang et al. Erables malades par rapport aux érables vivants dans le POSL

Conclusion : NS si alpha 1%, NS le plus souvent si alpha =10%