

DAT300 - Applied Deep Learning

Math from ANN

Data arrays

Indexing

$$i=1,\dots,n$$
 sample / instance index $j=0,\dots,m$ feature / instance index

$$j=0,...,m$$
 feature / instance index

Example of model for three classes with t=3

$$0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, 1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, 2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$z_{1}^{(h)} = a_{0}^{(in)} w_{0,1}^{(h)} + a_{1}^{(in)} w_{1,1}^{(h)} + \dots + a_{m}^{(in)} w_{m,1}^{(h)}$$

$$(1 \times 1) \quad (1 \times 1) \quad (1 \times 1) \quad (1 \times 1) \quad (1 \times 1)$$

Computations for one sample (row) x_i in X for one neuron in hidden layer

$$a_1^{(h)} = \phi\left(z_1^{(h)}\right)$$

22

m: features d: neurons # Samples: 1

(n x m)

$$\mathbf{z}^{(h)} = \mathbf{a}^{(in)} \mathbf{W}^{(h)}$$

(1 x d) (1 x m) (m x d)

 $\boldsymbol{a}^{(h)} = \phi(\mathbf{z}^{(h)})$

Computations for one sample (row) x_i in X for all neurons in hidden layer

m: features d: neurons

Samples: n

$$\mathbf{Z}^{(h)} = \mathbf{A}^{(in)} \mathbf{W}^{(h)}$$

 $(n \times d)$

 $(n \times m)$

 $(n \times m)$

 $(m \times d)$

$$\boldsymbol{A}^{(h)} = \phi(\boldsymbol{Z}^{(h)})$$

 $(n \times d)$

 $(n \times d)$

Computations for all n samples (rows) x_i in X for all neurons in hidden layer

Computations for all n samples (rows) x_i in X for all neurons in output layer

$$\mathbf{Z}^{(out)} = \mathbf{A}^{(h)} \mathbf{W}^{(out)}$$
(nxt) (nxd) (dxt)

$$A^{(out)} = \phi(Z^{(out)})$$
(nxt) (nxt)

 $(n \times m)$

One sample

$$\boldsymbol{\delta}^{(out)} = \boldsymbol{a}^{(out)} - \boldsymbol{y}$$

$$(1 x t)$$
 $(1 x t)$ $(1 x t)$

3 Compute the loss gradient:

Compute the loss gradient:
$$\frac{\partial}{\partial w_{i,j}^{(h)}}J(\boldsymbol{W})=a_{j}^{(in)}\delta_{i}^{(h)}$$

$$oldsymbol{\delta}^{(h)} = oldsymbol{\delta}^{(out)} \left(oldsymbol{W}^{(out)}
ight)^{ op} \odot \ rac{oldsymbol{\partial} \phi(\mathbf{z}^{(h)})}{oldsymbol{\partial} \mathbf{z}^{(h)}}$$

One sample

$$\boldsymbol{\delta}^{(out)} = \boldsymbol{a}^{(out)} - \boldsymbol{y}$$

$$(1 x t)$$
 $(1 x t)$ $(1 x t)$

$$\boldsymbol{\delta}^{(h)} = \boldsymbol{\delta}^{(out)} \left(\boldsymbol{W}^{(out)} \right)^T \odot \frac{\partial \phi \left(\boldsymbol{z}^{(h)} \right)}{\partial \boldsymbol{z}^{(h)}}$$

Derivative of activation function

 $(1 \times d)$

$$\frac{\partial \phi(z)}{\partial z} = \left(a^{(h)} \odot \left(1 - a^{(h)}\right)\right)$$

$$(1 x d)$$
 $(1 x d)$ $(1 x d)$

Derivative of <u>sigmoid</u> activation function

n samples

t: labels

d: neurons

Samples: n

$$\Delta^{(out)} = A^{(out)} - Y$$

$$(n x t)$$
 $(n x t)$ $(n x t)$

$$\Delta^{(h)} = \Delta^{(out)} (W^{(out)})^T \odot \frac{\partial \phi(Z^{(h)})}{\partial Z^{(h)}}$$

 $(n \times d)$

(n x t)

(t x d)

 $(n \times d)$

Derivative of activation function

$$\frac{\partial \phi(\boldsymbol{Z}^{(h)})}{\partial \boldsymbol{Z}^{(h)}} = (\boldsymbol{A}^{(h)} \odot (\boldsymbol{1} - \boldsymbol{A}^{(h)}))$$

 $(n \times d)$

 $(n \times d)$

 $(n \times d)$

Derivative of <u>sigmoid</u> activation function

Activation Fu	ınction Equatior	ı	Example	1D Graph
Linear	$\phi(z) = z$	z	Adaline, linear regression	
Unit Step (Heaviside Function)	$\phi(z) = \begin{cases} 0 \\ 0.5 \\ 1 \end{cases}$	z < 0 z = 0 z > 0	Perceptron variant	
Sign (signum)	$\phi(z) = \begin{cases} -1 \\ 0 \\ 1 \end{cases}$		Perceptron variant	
Piece-wise Linear	$\phi(z) = \begin{cases} 0 \\ z + \frac{1}{2} \\ 1 \end{cases}$	$z \le -\frac{1}{2}$ $-\frac{1}{2} \le z \le \frac{1}{2}$ $z \ge \frac{1}{2}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1}$	1 + e ^{-z}	Logistic regression, Multilayer NN	1
Hyperbolic Tangent (tanh)	$\phi(z) = \frac{e^z}{e^z}$	- e ^{-z} + e ^{-z}	Multilayer NN, RNNs	
ReLU	$\phi(z) = \begin{cases} 0 \\ z \end{cases}$	z < 0 z > 0	Multilayer NN, CNNs	

$$oldsymbol{\delta}^{(h)} = oldsymbol{\delta}^{(out)} \left(oldsymbol{W}^{(out)}
ight)^{ op} \odot \ rac{oldsymbol{\partial} \phi(oldsymbol{z}^{(h)})}{oldsymbol{\partial} oldsymbol{z}^{(h)}}$$

Derivative of activation function

Derivative of <u>sigmoid</u> activation function

$$\frac{\partial \phi(z)}{\partial z} = (a \odot (1-a))$$

Page 419, 3rd edition

$$a = \phi(z) = \frac{1}{1 + e^{-z}}$$

Derivative of <u>sigmoid</u> activation function

$$\frac{\partial \phi(z)}{\partial z} = (a \odot (1-a))$$

$$\boldsymbol{\delta}^{(h)} = \boldsymbol{\delta}^{(out)} \left(\boldsymbol{W}^{(out)} \right)^{\top} \odot \ \frac{\partial \phi(\mathbf{z}^{(h)})}{\partial \mathbf{z}^{(h)}}$$

$$\boldsymbol{\delta}^{(h)} = \boldsymbol{\delta}^{(out)} \left(\boldsymbol{W}^{(out)} \right)^{\top} \odot \left(\boldsymbol{a}^{(h)} \odot \left(1 - \boldsymbol{a}^{(h)} \right) \right)$$

a	1 - a	$a \odot (1-a)$
0.1	0.9	0.09
0.2	0.8	0.16
0.3	0.7	0.21
0.4	0.6	0.24
0.5	0.5	0.25
0.6	0.4	0.24
0.7	0.3	0.21
0.8	0.2	0.16
0.9	0.1	0.09

$$oldsymbol{\delta}^{(h)} = oldsymbol{\delta}^{(out)} \left(oldsymbol{W}^{(out)}
ight)^{ op} \odot \ rac{oldsymbol{\partial} \phi(\mathbf{z}^{(h)})}{oldsymbol{\partial} \mathbf{z}^{(h)}}$$

Derivative of activation function

Derivative of <u>sigmoid</u> activation function

$$\frac{\partial \phi(z)}{\partial z} = (a \odot (1-a))$$

$$a = \phi(z) = \frac{1}{1 + e^{-z}}$$

Derivative of <u>tanh</u> activation function

$$\frac{\partial \phi(z)}{\partial z} = (1 - a^2)$$

$$a = \phi(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

$$oldsymbol{\delta}^{(h)} = oldsymbol{\delta}^{(out)} \left(oldsymbol{W}^{(out)}
ight)^{ op} \odot \ rac{oldsymbol{\partial} \phi(oldsymbol{z}^{(h)})}{oldsymbol{\partial} oldsymbol{z}^{(h)}}$$

$$\boldsymbol{\delta}^{(h)} = \boldsymbol{\delta}^{(out)} \left(\boldsymbol{W}^{(out)} \right)^{\top} \odot \left(\boldsymbol{I} - \boldsymbol{a}^{(h)} \right)^{2}$$

Derivative of <u>tanh</u> activation function

$$\frac{\partial \phi(z)}{\partial z} = 1 - a^2$$

a	$1-a^2$
- 0.9	0.19
- 0.5	0.75
- 0.2	0.96
- 0.1	0.99
0.0	1.00
0.1	0.99
0.2	0.96
0.5	0.75
0.9	0.19

input layer hidden layer 1 hidden layer 2 output layer
$$oldsymbol{\delta}^{(out)}=oldsymbol{a}^{(out)}-oldsymbol{y}$$
 $oldsymbol{\delta}^{(h_2)}=oldsymbol{\delta}^{(out)}(oldsymbol{W}^{(out)})^T\odotrac{oldsymbol{\partial}\phi(oldsymbol{z}^{(h_2)})}{oldsymbol{\partial}oldsymbol{z}^{(h_2)}}$

$$\boldsymbol{\delta}^{(h_1)} = \boldsymbol{\delta}^{(h_2)} (\boldsymbol{W}^{(h_2)})^T \odot \frac{\boldsymbol{\partial} \phi(\boldsymbol{z}^{(h_1)})}{\boldsymbol{\partial} \boldsymbol{z}^{(h_1)}}$$

$$\boldsymbol{\delta}^{(h_1)} = \boldsymbol{\delta}^{(out)} (\boldsymbol{W}^{(out)})^T \odot \frac{\boldsymbol{\partial} \phi(\boldsymbol{z}^{(h_2)})}{\boldsymbol{\partial} \boldsymbol{z}^{(h_2)}} (\boldsymbol{W}^{(h_2)})^T \odot \frac{\boldsymbol{\partial} \phi(\boldsymbol{z}^{(h_1)})}{\boldsymbol{\partial} \boldsymbol{z}^{(h_1)}}$$