CH 3030 Tutorial 7

1. The following equilibrium data for phenol adsorption on a special clay has been obtained at 30°C. Here, c is the concentration in equilibrium in the liquid in mg/l and q is the uptake in mg/g of adsorbent. Which isotherm model among Freundlich and Langmuir best fits the data and what are the isotherm parameters.

c (mg/L)	q (mg/g)
3.9	9.6
6.8	11.6
9.9	14.9
12.0	17.6
16.0	21.0
23.0	25.6
35.7	32.1
61.8	38.2
80.2	40.1

- 2. 10 litres of water containing 3.5 mg/L of an organic compound is to be treated with charcoal to reduce the final concentration to 0.1 mg/L. The average particle diameter of the charcoal used is 2 mm and the specific surface area is 5m²/kg. The adsorption equilibrium at 25°C is represented by q=50c^{0.32} where q is mg of the organic compound per gram of charcoal and c is mg of organic compound per litre of solution. The adsorption is mass transfer controlled with the Sherwood number determined to be 30 and the binary diffusivity estimated to be 1.5x10⁻⁵ cm²/s.
- a) What is the minimum amount of adsorbent required?
- b) Using twice the minimum amount of adsorbent required, estimate the batch time required for the desired final concentration of the solution to be attained.
- 3. Adsorption breakthrough of methyl ethyl ketone (MEK) from air on a zeolite based packed bed adsorber was studied at 20°C and atmospheric pressure. The length of the bed for this experiment was 0.2 m and the superficial gas velocity was 0.29 m/s and the bed density was 700 kg/m³. The concentration in the feed ci was 0.11 gmol/m³. The following breakthrough data was obtained.

Time (min)	9.5	19	21	25.7	34.3	39	42	46.7	51.4	56.2
c/ci	0	0.018	0.037	0.083	0.287	0.435	0.491	0.62	0.713	0.768

64.7	68.6	72.4	77.1	84.8	97.1	104.7	108.6
0.852	0.935	0.952	0.963	0.97	0.981	0.991	1

- a) If the maximum permissible concentration of MEK in the effluent gas is specified as c/ci=0.03, determine the breakthrough time and the length of the mass transfer zone.
- b) Using the above data, design a bed for treating 3000 m³/h of the same gas if an adsorption cycle of 8 hours is allowed. What is the average loading of the bed at the breakthrough time? Calculate the maximum solute loading at the given inlet concentration of MEK in the gas.