Prinsip Induksi Matematika

Kuliah Logika Matematika Semester Ganjil 2015-2016

MZI

Fakultas Informatika Telkom University

FIF Tel-U

November 2015

MZI (FIF Tel-U)

Acknowledgements

Slide ini disusun berdasarkan materi yang terdapat pada sumber-sumber berikut:

- Discrete Mathematics and Its Applications (Bab 1), Edisi 7, 2012, oleh K. H. Rosen (acuan utama).
- Discrete Mathematics with Applications (Bab 4), Edisi 4, 2010, oleh S. S. Epp.
- Slide kuliah Matematika Diskret 1 (2012) di Fasilkom UI oleh B. H. Widjaja.
- Slide kuliah Matematika Diskret 1 (2010) di Fasilkom UI oleh A. A. Krisndahi.

Beberapa gambar dapat diambil dari sumber-sumber di atas. *Slide* ini ditujukan untuk keperluan akademis di lingkungan FIF Telkom University. Jika Anda memiliki saran/ pendapat/ pertanyaan terkait materi dalam *slide* ini, silakan kirim email ke <ple>pleasedontspam>@telkomuniversity.ac.id.

Bahasan

- 1 Pengantar: Motivasi, Arti, dan Analogi
- 2 Contoh Pembuktian dengan Induksi Matematika (Biasa)
- Soal-soal Latihan Induksi Matematika (Biasa)
- 4 Induksi Kuat: Motivasi dan Arti
- 5 Contoh Pembuktian dengan Induksi Kuat
- 6 Soal-soal Latihan Induksi Kuat

Bahasan

- 1 Pengantar: Motivasi, Arti, dan Analogi
- 2 Contoh Pembuktian dengan Induksi Matematika (Biasa)
- ③ Soal-soal Latihan Induksi Matematika (Biasa)
- Induksi Kuat: Motivasi dan Arti
- ち Contoh Pembuktian dengan Induksi Kuat
- 6 Soal-soal Latihan Induksi Kuat

• Dari kuliah sebelumnya, kita sudah mengetahui berbagai jenis metode pembuktian matematis seperti: bukti langsung, bukti tak langsung dengan kontraposisi, maupun bukti tak langsung dengan kontradiksi.

- Dari kuliah sebelumnya, kita sudah mengetahui berbagai jenis metode pembuktian matematis seperti: bukti langsung, bukti tak langsung dengan kontraposisi, maupun bukti tak langsung dengan kontradiksi.
- Dalam bahasan ini, kita akan mengkaji suatu metode pembuktian yang berkaitan dengan himpunan bilangan cacah $\{0,1,2,\ldots\}$ atau himpunan bilangan asli $\{1,2,3,\ldots\}$.

- Dari kuliah sebelumnya, kita sudah mengetahui berbagai jenis metode pembuktian matematis seperti: bukti langsung, bukti tak langsung dengan kontraposisi, maupun bukti tak langsung dengan kontradiksi.
- Dalam bahasan ini, kita akan mengkaji suatu metode pembuktian yang berkaitan dengan himpunan bilangan cacah $\{0,1,2,\ldots\}$ atau himpunan bilangan asli $\{1,2,3,\ldots\}$.
- Untuk mempermudah, kita akan menotasikan $\{0,1,2,\ldots\}$ dengan \mathbb{N}_0 dan $\{1,2,3,\ldots\}$ dengan \mathbb{N} .

- Dari kuliah sebelumnya, kita sudah mengetahui berbagai jenis metode pembuktian matematis seperti: bukti langsung, bukti tak langsung dengan kontraposisi, maupun bukti tak langsung dengan kontradiksi.
- Dalam bahasan ini, kita akan mengkaji suatu metode pembuktian yang berkaitan dengan himpunan bilangan cacah $\{0,1,2,\ldots\}$ atau himpunan bilangan asli $\{1,2,3,\ldots\}$.
- Untuk mempermudah, kita akan menotasikan $\{0,1,2,\ldots\}$ dengan \mathbb{N}_0 dan $\{1,2,3,\ldots\}$ dengan \mathbb{N} .

Beberapa teorema yang berkaitan dengan \mathbb{N}_0 atau \mathbb{N} dapat dibuktikan dengan bukti langsung secara mudah, seperti:

Teorema

Jika n adalah bilangan bulat tak negatif, maka $n^2 + 1 \ge 2n$.

- Dari kuliah sebelumnya, kita sudah mengetahui berbagai jenis metode pembuktian matematis seperti: bukti langsung, bukti tak langsung dengan kontraposisi, maupun bukti tak langsung dengan kontradiksi.
- Dalam bahasan ini, kita akan mengkaji suatu metode pembuktian yang berkaitan dengan himpunan bilangan cacah $\{0,1,2,\ldots\}$ atau himpunan bilangan asli $\{1,2,3,\ldots\}$.
- Untuk mempermudah, kita akan menotasikan $\{0,1,2,\ldots\}$ dengan \mathbb{N}_0 dan $\{1,2,3,\ldots\}$ dengan $\mathbb{N}.$

Beberapa teorema yang berkaitan dengan \mathbb{N}_0 atau \mathbb{N} dapat dibuktikan dengan bukti langsung secara mudah, seperti:

Teorema

Jika n adalah bilangan bulat tak negatif, maka $n^2 + 1 \ge 2n$.

Teorema lain "agak sulit" (atau bahkan agak mustahil) dibuktikan secara langsung, seperti:

Teorema

Jika n adalah bilangan bulat tak negatif, maka $2^{n-1} \le n!$.

Induksi matematika merupakan suatu metode pembuktian yang digunakan untuk membuktikan pernyataan-pernyataan yang berbentuk

Induksi matematika merupakan suatu metode pembuktian yang digunakan untuk membuktikan pernyataan-pernyataan yang berbentuk

• $\forall nP(n)$

Induksi matematika merupakan suatu metode pembuktian yang digunakan untuk membuktikan pernyataan-pernyataan yang berbentuk

- $\forall nP(n)$
- $\forall n (n \geq a \rightarrow P(n))$, untuk suatu $a \in \mathbb{N}_0$

n merupakan variabel pada \mathbb{N}_0 atau \mathbb{N} .

Catatan

- Bagaimana langkah-langkah pembuktian dengan induksi matematika?
- Misalkan terdapat suatu pernyataan yang berbentuk: $\forall nP\left(n\right)$, dengan n variabel atas \mathbb{N}_{0} .

Prinsip Induksi Matematika (Biasa)

Untuk membuktikan bahwa $\forall nP(n)$ benar, maka

- Bagaimana langkah-langkah pembuktian dengan induksi matematika?
- Misalkan terdapat suatu pernyataan yang berbentuk: $\forall nP\left(n\right)$, dengan n variabel atas \mathbb{N}_{0} .

Prinsip Induksi Matematika (Biasa)

Untuk membuktikan bahwa $\forall nP(n)$ benar, maka

9 Buktikan bahwa P(0) benar, karena 0 adalah elemen terkecil pada \mathbb{N}_0 . Langkah pembuktian ini disebut dengan tahap basis/ langkah basis.

- Bagaimana langkah-langkah pembuktian dengan induksi matematika?
- Misalkan terdapat suatu pernyataan yang berbentuk: $\forall nP\left(n\right)$, dengan n variabel atas \mathbb{N}_{0} .

Prinsip Induksi Matematika (Biasa)

Untuk membuktikan bahwa $\forall nP\left(n\right)$ benar, maka

- **9** Buktikan bahwa P(0) benar, karena 0 adalah elemen terkecil pada \mathbb{N}_0 . Langkah pembuktian ini disebut dengan tahap basis/ langkah basis.
- ② Buktikan bahwa untuk sembarang bilangan bulat $k \ge 0$, jika P(k) benar maka P(k+1) juga benar. Langkah pembuktian ini disebut dengan tahap induktif/ langkah induktif.

- Bagaimana langkah-langkah pembuktian dengan induksi matematika?
- Misalkan terdapat suatu pernyataan yang berbentuk: $\forall nP\left(n\right)$, dengan n variabel atas \mathbb{N}_{0} .

Prinsip Induksi Matematika (Biasa)

Untuk membuktikan bahwa $\forall nP\left(n\right)$ benar, maka

- **9** Buktikan bahwa P(0) benar, karena 0 adalah elemen terkecil pada \mathbb{N}_0 . Langkah pembuktian ini disebut dengan tahap basis/ langkah basis.
- ② Buktikan bahwa untuk sembarang bilangan bulat $k \ge 0$, jika P(k) benar maka P(k+1) juga benar. Langkah pembuktian ini disebut dengan tahap induktif/ langkah induktif.

Induksi matematika bekerja seperti "efek domino".

- Perhatikan bahwa dua langkah pembuktian pada prinsip induksi matematika sudah cukup untuk membuktikan bahwa $\forall nP\left(n\right)$ benar.
- Jika tahap induktif dapat dibuktikan, maka kita memiliki implikasi $P\left(k\right) \rightarrow P\left(k+1\right)$ yang bernilai benar untuk k berapapun. Ini setara dengan formula logika predikat $\forall k \left(P\left(k\right) \rightarrow P\left(k+1\right)\right)$, dengan domain untuk k adalah \mathbb{N}_{0} .

- Perhatikan bahwa dua langkah pembuktian pada prinsip induksi matematika sudah cukup untuk membuktikan bahwa $\forall nP\left(n\right)$ benar.
- Jika tahap induktif dapat dibuktikan, maka kita memiliki implikasi $P\left(k\right) \rightarrow P\left(k+1\right)$ yang bernilai benar untuk k berapapun. Ini setara dengan formula logika predikat $\forall k \left(P\left(k\right) \rightarrow P\left(k+1\right)\right)$, dengan domain untuk k adalah \mathbb{N}_{0} .
- Akibatnya jika $P\left(0\right)$ benar, dengan fakta $P\left(0\right) \rightarrow P\left(1\right)$ benar dan modus ponens, kita memiliki

- Perhatikan bahwa dua langkah pembuktian pada prinsip induksi matematika sudah cukup untuk membuktikan bahwa $\forall nP\left(n\right)$ benar.
- Jika tahap induktif dapat dibuktikan, maka kita memiliki implikasi $P\left(k\right) \rightarrow P\left(k+1\right)$ yang bernilai benar untuk k berapapun. Ini setara dengan formula logika predikat $\forall k \left(P\left(k\right) \rightarrow P\left(k+1\right)\right)$, dengan domain untuk k adalah \mathbb{N}_{0} .
- Akibatnya jika $P\left(0\right)$ benar, dengan fakta $P\left(0\right) \to P\left(1\right)$ benar dan modus ponens, kita memiliki $P\left(1\right)$ benar.

- Perhatikan bahwa dua langkah pembuktian pada prinsip induksi matematika sudah cukup untuk membuktikan bahwa $\forall nP\left(n\right)$ benar.
- Jika tahap induktif dapat dibuktikan, maka kita memiliki implikasi $P\left(k\right) \to P\left(k+1\right)$ yang bernilai benar untuk k berapapun. Ini setara dengan formula logika predikat $\forall k \left(P\left(k\right) \to P\left(k+1\right)\right)$, dengan domain untuk k adalah \mathbb{N}_{0} .
- Akibatnya jika $P\left(0\right)$ benar, dengan fakta $P\left(0\right) \to P\left(1\right)$ benar dan modus ponens, kita memiliki $P\left(1\right)$ benar.
- Selanjutnya karena $P\left(1\right)$ benar, dengan fakta $P\left(1\right) \to P\left(2\right)$ benar dan modus ponens, kita memiliki

- Perhatikan bahwa dua langkah pembuktian pada prinsip induksi matematika sudah cukup untuk membuktikan bahwa $\forall nP\left(n\right)$ benar.
- Jika tahap induktif dapat dibuktikan, maka kita memiliki implikasi $P\left(k\right) \to P\left(k+1\right)$ yang bernilai benar untuk k berapapun. Ini setara dengan formula logika predikat $\forall k \left(P\left(k\right) \to P\left(k+1\right)\right)$, dengan domain untuk k adalah \mathbb{N}_{0} .
- Akibatnya jika $P\left(0\right)$ benar, dengan fakta $P\left(0\right) \to P\left(1\right)$ benar dan modus ponens, kita memiliki $P\left(1\right)$ benar.
- Selanjutnya karena $P\left(1\right)$ benar, dengan fakta $P\left(1\right) \rightarrow P\left(2\right)$ benar dan modus ponens, kita memiliki $P\left(2\right)$ benar.

- Perhatikan bahwa dua langkah pembuktian pada prinsip induksi matematika sudah cukup untuk membuktikan bahwa $\forall nP\left(n\right)$ benar.
- Jika tahap induktif dapat dibuktikan, maka kita memiliki implikasi $P\left(k\right) \to P\left(k+1\right)$ yang bernilai benar untuk k berapapun. Ini setara dengan formula logika predikat $\forall k \left(P\left(k\right) \to P\left(k+1\right)\right)$, dengan domain untuk k adalah \mathbb{N}_{0} .
- Akibatnya jika $P\left(0\right)$ benar, dengan fakta $P\left(0\right) \to P\left(1\right)$ benar dan modus ponens, kita memiliki $P\left(1\right)$ benar.
- Selanjutnya karena $P\left(1\right)$ benar, dengan fakta $P\left(1\right) \to P\left(2\right)$ benar dan modus ponens, kita memiliki $P\left(2\right)$ benar.
- \bullet Dan seterusnya, sehingga kita dapat menyimpulkan bahwa $P\left(n\right)$ benar untuk sembarang n.
- Pada implikasi $P(k) \rightarrow P(k+1)$, P(k) disebut sebagai <u>hipotesis induksi</u>.
- Langkah basis pada induksi matematika tidak harus mulai dari 0.

Bahasan

- Pengantar: Motivasi, Arti, dan Analogi
- 2 Contoh Pembuktian dengan Induksi Matematika (Biasa)
- ③ Soal-soal Latihan Induksi Matematika (Biasa)
- 4 Induksi Kuat: Motivasi dan Arti
- ち Contoh Pembuktian dengan Induksi Kuat
- 6 Soal-soal Latihan Induksi Kuat

Contoh Pembuktian dengan Induksi Matematika (Biasa)

Teorema (Teorema 1)

Jika n adalah bilangan asli, maka $1+2+3+\cdots+n=\frac{n(n+1)}{2}$.

Misalkan $P\left(n\right)$ adalah pernyataan $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, dengan $n\in\mathbb{N}.$ Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}.$

Langkah basis:

Misalkan P(n) adalah pernyataan $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $P\left(1\right)$ adalah pernyataan

MZI (FIF Tel-U)

Misalkan P(n) adalah pernyataan $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

<u>Langkah basis:</u> tinjau bahwa $P\left(1\right)$ adalah pernyataan $1=\frac{1(1+1)}{2}$. Jelas bahwa $P\left(1\right)$ benar.

Langkah induktif:

MZI (FIF Tel-U)

Misalkan P(n) adalah pernyataan $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $P\left(1\right)$ adalah pernyataan $1=\frac{1(1+1)}{2}$. Jelas bahwa $P\left(1\right)$ benar.

Langkah induktif: misalkan $k \in \mathbb{N}$ dan P(k), yaitu pernyataan

 $1+2+3+\cdots+k=rac{k(k+1)}{2}$, benar. Akan ditunjukkan bahwa $P\left(k+1
ight)$, yaitu pernyataan

4 D > 4 A > 4 B > 4 B > B = 40 Q Q

Misalkan P(n) adalah pernyataan $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $P\left(1\right)$ adalah pernyataan $1=\frac{1(1+1)}{2}$. Jelas bahwa $P\left(1\right)$ benar.

Langkah induktif: misalkan $k \in \mathbb{N}$ dan P(k), yaitu pernyataan

 $1+2+3+\cdots+k=rac{k(k+1)}{2}$, benar. Akan ditunjukkan bahwa $P\left(k+1
ight)$, yaitu pernyataan $1+2+3+\cdots+k+k+1=$

MZI (FIF Tel-U)

Misalkan P(n) adalah pernyataan $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $P\left(1\right)$ adalah pernyataan $1=\frac{1(1+1)}{2}$. Jelas bahwa $P\left(1\right)$ benar.

Langkah induktif: misalkan $k \in \mathbb{N}$ dan P(k), yaitu pernyataan $1+2+3+\cdots+k=\frac{k(k+1)}{k}$ benar. Akan ditunjukkan bahwa P(k)

 $1+2+3+\cdots+k=rac{k(k+1)}{2}$, benar. Akan ditunjukkan bahwa $P\left(k+1
ight)$, yaitu pernyataan $1+2+3+\cdots+k+k+1=rac{(k+1)(k+2)}{2}$ juga benar.

Perhatikan bahwa

$$(1+2+3+\cdots+k)+k+1 = \frac{k(k+1)}{2}$$

MZI (FIF Tel-U)

Misalkan P(n) adalah pernyataan $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $P\left(1\right)$ adalah pernyataan $1=\frac{1(1+1)}{2}.$ Jelas bahwa $P\left(1\right)$ benar.

<u>Langkah induktif</u>: misalkan $k \in \mathbb{N}$ dan P(k), yaitu pernyataan $1+2+3+\cdots+k=\frac{k(k+1)}{2}$, benar. Akan ditunjukkan bahwa P(k+1), yaitu pernyataan $1+2+3+\cdots+k+k+1=\frac{(k+1)(k+2)}{2}$ juga benar.

Perhatikan bahwa

$$(1+2+3+\cdots+k)+k+1 = \frac{k(k+1)}{2}+(k+1)$$
 (dari hipotesis induksi) =

Misalkan P(n) adalah pernyataan $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $P\left(1\right)$ adalah pernyataan $1=\frac{1(1+1)}{2}$. Jelas bahwa $P\left(1\right)$ benar.

<u>Langkah induktif</u>: misalkan $k \in \mathbb{N}$ dan P(k), yaitu pernyataan $1+2+3+\cdots+k=\frac{k(k+1)}{2}$, benar. Akan ditunjukkan bahwa P(k+1), yaitu pernyataan $1+2+3+\cdots+k+k+1=\frac{(k+1)(k+2)}{2}$ juga benar. Perhatikan bahwa

$$\begin{array}{rcl} \left(1+2+3+\cdots+k\right)+k+1&=&\frac{k(k+1)}{2}+(k+1) \text{ (dari hipotesis induksi)}\\ &=&\frac{k(k+1)}{2}+\frac{2k+2}{2}= \end{array}$$

Misalkan P(n) adalah pernyataan $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $P\left(1\right)$ adalah pernyataan $1=\frac{1(1+1)}{2}$. Jelas bahwa $P\left(1\right)$ benar.

<u>Langkah induktif</u>: misalkan $k \in \mathbb{N}$ dan P(k), yaitu pernyataan $1+2+3+\cdots+k=\frac{k(k+1)}{2}$, benar. Akan ditunjukkan bahwa P(k+1), yaitu pernyataan $1+2+3+\cdots+k+k+1=\frac{(k+1)(k+2)}{2}$ juga benar. Perhatikan bahwa

$$\begin{array}{rcl} (1+2+3+\cdots+k)+k+1 & = & \frac{k(k+1)}{2}+(k+1) \text{ (dari hipotesis induksi)} \\ & = & \frac{k(k+1)}{2}+\frac{2k+2}{2}=\frac{k^2+3k+2}{2} \\ & = & \end{array}$$

Misalkan P(n) adalah pernyataan $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $P\left(1\right)$ adalah pernyataan $1=\frac{1(1+1)}{2}$. Jelas bahwa $P\left(1\right)$ benar.

<u>Langkah induktif</u>: misalkan $k \in \mathbb{N}$ dan $P\left(k\right)$, yaitu pernyataan $1+2+3+\cdots+k=\frac{k(k+1)}{2}$, benar. Akan ditunjukkan bahwa $P\left(k+1\right)$, yaitu pernyataan $1+2+3+\cdots+k+k+1=\frac{(k+1)(k+2)}{2}$ juga benar. Perhatikan bahwa

$$\begin{array}{rcl} (1+2+3+\cdots+k)+k+1 & = & \frac{k(k+1)}{2}+(k+1) \text{ (dari hipotesis induksi)} \\ & = & \frac{k(k+1)}{2}+\frac{2k+2}{2}=\frac{k^2+3k+2}{2} \\ & = & \frac{(k+1)(k+2)}{2}. \end{array}$$

Dengan demikian $P\left(k+1\right)$ juga benar.

Berdasarkan prinsip induksi matematika $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ untuk sembarang $n\in\mathbb{N}.$

- (ロ) (**日**) (主) (主)

Teorema (Teorema 2)

Jika n adalah bilangan asli, maka $1+3+5+\cdots+(2n-1)=n^2$.

Bukti (Bukti Teorema 2)

Misalkan $P\left(n\right)$ menyatakan $1+3+5+\cdots+(2n-1)=n^2$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$. Langkah basis:

MZI (FIF Tel-U) Induksi Matematika November 2015 12 / 29

Teorema (Teorema 2)

Jika n adalah bilangan asli, maka $1+3+5+\cdots+(2n-1)=n^2$.

Bukti (Bukti Teorema 2)

Misalkan P(n) menyatakan $1+3+5+\cdots+(2n-1)=n^2$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

<u>Langkah basis</u>: tinjau bahwa $P\left(1\right)$ menyatakan $1=1^2$. Jelas bahwa $P\left(1\right)$ benar. <u>Langkah induktif</u>:

12 / 29

MZI (FIF Tel-U) Induksi Matematika November 2015

Jika n adalah bilangan asli, maka $1+3+5+\cdots+(2n-1)=n^2$.

Bukti (Bukti Teorema 2)

Misalkan P(n) menyatakan $1+3+5+\cdots+(2n-1)=n^2$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa P(1) menyatakan $1=1^2$. Jelas bahwa P(1) benar. Langkah induktif: misalkan $k \in \mathbb{N}$ dan $P(k): 1+3+5+\cdots+(2k-1)=k^2$

benar. Akan ditunjukkan bahwa

$$P(k+1)$$
:

12 / 29

MZI (FIF Tel-U) Induksi Matematika November 2015

Jika n adalah bilangan asli, maka $1+3+5+\cdots+(2n-1)=n^2$.

Bukti (Bukti Teorema 2)

Misalkan $P\left(n\right)$ menyatakan $1+3+5+\cdots+(2n-1)=n^2$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$.

<u>Langkah basis</u>: tinjau bahwa P(1) menyatakan $1=1^2$. Jelas bahwa P(1) benar. Langkah induktif: misalkan $k \in \mathbb{N}$ dan $P(k): 1+3+5+\cdots+(2k-1)=k^2$

benar. Akan ditunjukkan bahwa

$$P(k+1): 1+3+5+\cdots+(2k-1)+(2k+1) =$$

12 / 29

MZI (FIF Tel-U) Induksi Matematika November 2015

Jika n adalah bilangan asli, maka $1+3+5+\cdots+(2n-1)=n^2$.

Bukti (Bukti Teorema 2)

Misalkan P(n) menyatakan $1+3+5+\cdots+(2n-1)=n^2$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa P(1) menyatakan $1 = 1^2$. Jelas bahwa P(1) benar.

Langkah induktif: misalkan $k \in \mathbb{N}$ dan $P(k): 1+3+5+\cdots+(2k-1)=k^2$

benar. Akan ditunjukkan bahwa

$$P(k+1): 1+3+5+\cdots+(2k-1)+(2k+1)=(k+1)^2$$
 juga benar.

Perhatikan bahwa

$$1+3+5+\cdots+(2k-1)+(2k+1) =$$

November 2015

12 / 29

MZI (FIF Tel-U) Induksi Matematika

Jika n adalah bilangan asli, maka $1+3+5+\cdots+(2n-1)=n^2$.

Bukti (Bukti Teorema 2)

Misalkan $P\left(n\right)$ menyatakan $1+3+5+\cdots+(2n-1)=n^2$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa P(1) menyatakan $1=1^2$. Jelas bahwa P(1) benar. Langkah induktif: misalkan $k \in \mathbb{N}$ dan $P(k): 1+3+5+\cdots+(2k-1)=k^2$

benar. Akan ditunjukkan bahwa

$$P(k+1): 1+3+5+\cdots+(2k-1)+(2k+1)=(k+1)^2$$
 juga benar.

Perhatikan bahwa

$$1+3+5+\cdots+(2k-1)+(2k+1) = k^2+(2k+1)$$
 (dari hipotesis induksi)

12 / 29

MZI (FIF Tel-U) Induksi Matematika November 2015

Jika n adalah bilangan asli, maka $1+3+5+\cdots+(2n-1)=n^2$.

Bukti (Bukti Teorema 2)

Misalkan $P\left(n\right)$ menyatakan $1+3+5+\cdots+(2n-1)=n^2$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa P(1) menyatakan $1=1^2$. Jelas bahwa P(1) benar. Langkah induktif: misalkan $k \in \mathbb{N}$ dan $P(k): 1+3+5+\cdots+(2k-1)=k^2$

benar. Akan ditunjukkan bahwa

$$P(k+1): 1+3+5+\cdots+(2k-1)+(2k+1)=(k+1)^2$$
 juga benar.

Perhatikan bahwa

$$1+3+5+\cdots+(2k-1)+(2k+1) = k^2+(2k+1)$$
 (dari hipotesis induksi)
$$= (k+1)^2\,.$$

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト 9 Q G

November 2015

12 / 29

Jika n adalah bilangan asli, maka $1+3+5+\cdots+(2n-1)=n^2$.

Bukti (Bukti Teorema 2)

Misalkan $P\left(n\right)$ menyatakan $1+3+5+\cdots+(2n-1)=n^2$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$.

<u>Langkah basis</u>: tinjau bahwa P(1) menyatakan $1=1^2$. Jelas bahwa P(1) benar. <u>Langkah induktif</u>: misalkan $k \in \mathbb{N}$ dan $P(k): 1+3+5+\cdots+(2k-1)=k^2$

benar. Akan ditunjukkan bahwa

$$P(k+1): 1+3+5+\cdots+(2k-1)+(2k+1)=(k+1)^2$$
 juga benar.

Perhatikan bahwa

$$1+3+5+\cdots + (2k-1) + (2k+1) = k^2 + (2k+1)$$
 (dari hipotesis induksi)
$$= (k+1)^2 \, .$$

Dengan demikian P(k+1) juga benar.

Berdasarkan prinsip induksi matematika $1+3+5+\cdots+(2n-1)=n^2$ untuk sembarang $n\in\mathbb{N}$.

MZI (FIF Tel-U) Induksi Matematika November 2015 12 / 29

4日 > 4回 > 4 至 > 4 至 >

Untuk sembarang bilangan asli $n \geq 3$ berlaku $2n + 1 < 2^n$.

Bukti (Bukti Teorema 3)

Misalkan $P\left(n\right):2n+1<2^n$, dengan $n\in\mathbb{N}$ dan $n\geq3$. Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap bilangan asli $n\geq3$.

Langkah basis:

Untuk sembarang bilangan asli $n \ge 3$ berlaku $2n + 1 < 2^n$.

Bukti (Bukti Teorema 3)

Misalkan $P\left(n\right):2n+1<2^n$, dengan $n\in\mathbb{N}$ dan $n\geq 3$. Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap bilangan asli $n\geq 3$. Langkah basis: tinjau bahwa $P\left(3\right):2\left(3\right)+1<2^3$, karena 7<8 benar, maka

P(3) benar.

Langkah induktif:

Untuk sembarang bilangan asli $n \ge 3$ berlaku $2n + 1 < 2^n$.

Bukti (Bukti Teorema 3)

Misalkan $P(n): 2n+1 < 2^n$, dengan $n \in \mathbb{N}$ dan $n \geq 3$. Akan dibuktikan bahwa P(n) benar untuk setiap bilangan asli $n \geq 3$.

<u>Langkah basis</u>: tinjau bahwa $P\left(3\right)$: $2\left(3\right)+1<2^{3}$, karena 7<8 benar, maka $P\left(3\right)$ benar.

Langkah induktif: misalkan $k \in \mathbb{N}$ dan $P(k): 2k+1 < 2^k$ benar. Akan ditunjukkan bahwa P(k+1):

Untuk sembarang bilangan asli $n \ge 3$ berlaku $2n + 1 < 2^n$.

Bukti (Bukti Teorema 3)

Misalkan $P\left(n\right):2n+1<2^{n}$, dengan $n\in\mathbb{N}$ dan $n\geq3$. Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap bilangan asli $n\geq3$.

Langkah basis: tinjau bahwa $P\left(3\right):2\left(3\right)+1<2^{3}$, karena 7<8 benar, maka $P\left(3\right)$ benar.

<u>Langkah induktif</u>: misalkan $k\in\mathbb{N}$ dan $P\left(k\right):2k+1<2^{k}$ benar. Akan ditunjukkan bahwa $P\left(k+1\right):2k+3<2^{k+1}$ juga benar.

$$2k + 3 =$$

Untuk sembarang bilangan asli $n \ge 3$ berlaku $2n + 1 < 2^n$.

Bukti (Bukti Teorema 3)

Misalkan $P(n): 2n+1 < 2^n$, dengan $n \in \mathbb{N}$ dan $n \geq 3$. Akan dibuktikan bahwa P(n) benar untuk setiap bilangan asli $n \geq 3$. Langkah basis: tinjau bahwa $P(3): 2(3)+1 < 2^3$, karena 7 < 8 benar, maka

 $\overline{P(3)}$ benar.

Langkah induktif: misalkan $k \in \mathbb{N}$ dan $P(k): 2k+1 < 2^k$ benar. Akan ditunjukkan bahwa $P(k+1): 2k+3 < 2^{k+1}$ juga benar.

$$2k+3 = (2k+1)+2$$

Untuk sembarang bilangan asli $n \ge 3$ berlaku $2n + 1 < 2^n$.

Bukti (Bukti Teorema 3)

Misalkan $P(n): 2n+1 < 2^n$, dengan $n \in \mathbb{N}$ dan $n \geq 3$. Akan dibuktikan bahwa P(n) benar untuk setiap bilangan asli $n \geq 3$. Langkah basis: tinjau bahwa $P(3): 2(3)+1 < 2^3$, karena 7 < 8 benar, maka

 $\overline{P(3)}$ benar.

Langkah induktif: misalkan $k\in\mathbb{N}$ dan $P\left(k\right):2k+1<2^{k}$ benar. Akan ditunjukkan bahwa $P\left(k+1\right):2k+3<2^{k+1}$ juga benar.

$$\begin{array}{rcl} 2k+3 & = & (2k+1)+2 \\ & < & 2^k+2 \mbox{ (dari hipotesis induksi)} \\ & \leq & \end{array}$$

Untuk sembarang bilangan asli $n \ge 3$ berlaku $2n + 1 < 2^n$.

Bukti (Bukti Teorema 3)

Misalkan $P(n): 2n+1 < 2^n$, dengan $n \in \mathbb{N}$ dan $n \geq 3$. Akan dibuktikan bahwa P(n) benar untuk setiap bilangan asli $n \geq 3$. Langkah basis: tinjau bahwa $P(3): 2(3)+1 < 2^3$, karena 7 < 8 benar, maka

 $\overline{P(3)}$ benar.

Langkah induktif: misalkan $k\in\mathbb{N}$ dan $P\left(k\right):2k+1<2^{k}$ benar. Akan ditunjukkan bahwa $P\left(k+1\right):2k+3<2^{k+1}$ juga benar.

$$\begin{array}{rcl} 2k+3 & = & (2k+1)+2 \\ & < & 2^k+2 \text{ (dari hipotesis induksi)} \\ & \leq & 2^k+2^k \text{ (karena jelas bahwa } 2 \leq 2^k \text{ untuk setiap } k \in \mathbb{N}) \end{array}$$

Untuk sembarang bilangan asli $n \ge 3$ berlaku $2n + 1 < 2^n$.

Bukti (Bukti Teorema 3)

Misalkan $P(n): 2n+1 < 2^n$, dengan $n \in \mathbb{N}$ dan $n \geq 3$. Akan dibuktikan bahwa P(n) benar untuk setiap bilangan asli $n \geq 3$. Langkah basis: tinjau bahwa $P(3): 2(3)+1 < 2^3$, karena 7 < 8 benar, maka

 $\overline{P(3)}$ benar.

<u>Langkah induktif</u>: misalkan $k \in \mathbb{N}$ dan $P(k): 2k+1 < 2^k$ benar. Akan ditunjukkan bahwa $P(k+1): 2k+3 < 2^{k+1}$ juga benar. Perhatikan bahwa

$$\begin{array}{lll} 2k+3 & = & (2k+1)+2 \\ & < & 2^k+2 \text{ (dari hipotesis induksi)} \\ & \leq & 2^k+2^k \text{ (karena jelas bahwa } 2 \leq 2^k \text{ untuk setiap } k \in \mathbb{N}) \end{array}$$

 $= 2 \cdot 2^k = 2^{k+1}$

Dengan demikian P(k+1) juga benar.

Berdasarkan prinsip induksi matematika $2n+1<2^n$ untuk sembarang bilangan asli $n\geq 3$.

Bahasan

- Pengantar: Motivasi, Arti, dan Analogi
- Contoh Pembuktian dengan Induksi Matematika (Biasa)
- Soal-soal Latihan Induksi Matematika (Biasa)
- 4 Induksi Kuat: Motivasi dan Arti
- 5 Contoh Pembuktian dengan Induksi Kuat
- 6 Soal-soal Latihan Induksi Kuat

Latihan 1: Induksi Matematika (Biasa)

Latihan

- Untuk bilangan asli n berapa sajakah pertidaksamaan $n^2 < 2^n$ berlaku? Jelaskan jawaban Anda. (Petunjuk: Anda mungkin memerlukan hasil pada Teorema 3, yaitu: $2n+1 < 2^n$ untuk setiap bilangan asli $n \geq 3$).
- $\begin{tabular}{ll} \textbf{9} & \textbf{Untuk bilangan asli } n \ \mbox{berapa sajakah pertidaksamaan } 2^n < n! \ \mbox{berlaku?} \\ & \mbox{Jelaskan jawaban Anda.} \end{tabular}$
- ① Diberikan bilangan real x>0. Untuk bilangan asli n berapa sajakah pertidaksamaan $(1+x)^n\geq 1+nx$ berlaku? Jelaskan jawaban Anda.
- ullet Untuk bilangan asli n berapa sajakah n^3-n habis dibagi 3? Jelasakan jawaban Anda.

Bahasan

- Pengantar: Motivasi, Arti, dan Analogi
- Contoh Pembuktian dengan Induksi Matematika (Biasa)
- 🗿 Soal-soal Latihan Induksi Matematika (Biasa)
- 4 Induksi Kuat: Motivasi dan Arti
- 5 Contoh Pembuktian dengan Induksi Kuat
- 6 Soal-soal Latihan Induksi Kuat

Induksi Kuat: Motivasi

Tidak selamanya prinsip induksi matematika (biasa) dapat digunakan secara mudah untuk membuktikan pernyataan-pernyataan yang berbentuk $\forall nP\left(n\right)$.

Teorema

Misalkan a_n adalah barisan yang didefinisikan sebagai berikut: $a_1=1$, $a_2=2$, $a_3=3$, $a_n=a_{n-1}+a_{n-2}+a_{n-3}$, untuk $n\geq 4$. Barisan a_n memenuhi sifat $a_n<2^n$ untuk setiap $n\in\mathbb{N}$.

Misalkan $P\left(n\right)$: $a_n<2^n$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$.

Langkah basis:

18 / 29

Misalkan $P\left(n\right):a_{n}<2^{n}$, dengan $n\in\mathbb{N}.$ Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}.$

<u>Langkah basis</u>: tinjau bahwa $P\left(1\right)$: $a_{1}<2^{1}$. Karena $a_{1}=1$, maka jelas bahwa $P\left(1\right)$ benar.

Langkah induktif:

Misalkan $P\left(n\right):a_{n}<2^{n}$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $P\left(1\right)$: $a_1 < 2^1$. Karena $a_1 = 1$, maka jelas bahwa $P\left(1\right)$ benar.

Langkah induktif: asumsikan $P(k): a_k < 2^k$ benar.

Misalkan $P\left(n\right):a_{n}<2^{n}$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $P\left(1\right)$: $a_{1}<2^{1}$. Karena $a_{1}=1$, maka jelas bahwa $P\left(1\right)$ benar.

Langkah induktif: asumsikan $P\left(k\right)$: $a_k<2^k$ benar. Akan ditunjukkan bahwa $P\left(k+1\right)$: $a_{k+1}<2^{k+1}$ juga benar. Tinjau bahwa

$$\begin{array}{rcl} a_{k+1} & = & a_k + a_{k-1} + a_{k-2} \\ & < & 2^k + a_{k-1} + a_{k-2} \mbox{ (dari hipotesis induksi)} \end{array}$$

MZI (FIF Tel-U)

Misalkan $P\left(n\right)$: $a_n<2^n$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$.

<u>Langkah basis</u>: tinjau bahwa $P\left(1\right)$: $a_{1}<2^{1}$. Karena $a_{1}=1$, maka jelas bahwa $P\left(1\right)$ benar.

Langkah induktif: asumsikan $P\left(k\right):a_k<2^k$ benar. Akan ditunjukkan bahwa $P\left(k+1\right):a_{k+1}<2^{k+1}$ juga benar. Tinjau bahwa

$$\begin{array}{rcl} a_{k+1} & = & a_k + a_{k-1} + a_{k-2} \\ & < & 2^k + a_{k-1} + a_{k-2} \mbox{ (dari hipotesis induksi)} \end{array}$$

Selanjutnya ???

MZI (FIF Tel-U)

Misalkan $P(n):a_n<2^n$, dengan $n\in\mathbb{N}$. Akan dibuktikan bahwa P(n) benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $P\left(1\right)$: $a_1 < 2^1$. Karena $a_1 = 1$, maka jelas bahwa $P\left(1\right)$ benar.

 $\frac{\text{Langkah induktif:}}{P\left(k+1\right):a_{k+1}} < 2^{k+1} \text{ juga benar. } P\left(k\right):a_{k} < 2^{k} \text{ benar. Akan ditunjukkan bahwa}$

$$\begin{array}{rcl} a_{k+1} & = & a_k + a_{k-1} + a_{k-2} \\ & < & 2^k + a_{k-1} + a_{k-2} \mbox{ (dari hipotesis induksi)} \end{array}$$

Selanjutnya ???

- Kita tidak dapat menyelesaikan bukti teorema di atas hanya dengan induksi matematika biasa, karena kita tidak memiliki informasi apapun mengenai a_{k-1} dan a_{k-2} .
- Induksi kuat (strong induction) merupakan salah satu bentuk induksi matematika yang dapat digunakan untuk membuktikan pernyataan-pernyataan yang serupa dengan teorema di atas.

◆□ ➤ ◆圖 ➤ ◆를 ➤ ◆를 ➤ ◆의 ●

Induksi Kuat: Arti

- Bagaimana langkah-langkah pembuktian dengan induksi kuat?
- Misalkan terdapat suatu pernyataan yang berbentuk: $\forall nP(n)$, dengan n variabel atas \mathbb{N}_0 .

Prinsip Induksi Kuat (Strong Induction)

Untuk membuktikan bahwa $\forall nP\left(n\right)$ benar, dilakukan:

Induksi Kuat: Arti

- Bagaimana langkah-langkah pembuktian dengan induksi kuat?
- Misalkan terdapat suatu pernyataan yang berbentuk: $\forall nP(n)$, dengan n variabel atas \mathbb{N}_0 .

Prinsip Induksi Kuat (Strong Induction)

Untuk membuktikan bahwa $\forall nP\left(n\right)$ benar, dilakukan:

1 Tahap basis/ langkah basis: buktikan bahwa P(k) benar untuk beberapa k yang diperlukan (bisa lebih dari satu). Jelas bahwa harus dibuktikan bahwa P(0) benar karena 0 adalah elemen terkecil pada $ℕ_0$.

Induksi Kuat: Arti

- Bagaimana langkah-langkah pembuktian dengan induksi kuat?
- Misalkan terdapat suatu pernyataan yang berbentuk: $\forall nP(n)$, dengan n variabel atas \mathbb{N}_0 .

Prinsip Induksi Kuat (Strong Induction)

Untuk membuktikan bahwa $\forall nP\left(n\right)$ benar, dilakukan:

- **1** Tahap basis/ langkah basis: buktikan bahwa P(k) benar untuk beberapa k yang diperlukan (bisa lebih dari satu). Jelas bahwa harus dibuktikan bahwa P(0) benar karena 0 adalah elemen terkecil pada \mathbb{N}_0 .
- ② Tahap induktif/ langkah induktif: buktikan bahwa untuk sembarang bilangan bulat i dengan $0 \le i \le k$, jika P(i) benar maka P(k+1) juga benar. Dengan perkataan lain, buktikan bahwa implikasi berikut benar

$$(P(0) \land P(1) \land \cdots \land P(k)) \rightarrow P(k+1)$$
.

• Sebagaimana induksi matematika biasa, langkah basis pada induksi kuat tidak harus mulai dari 0.

November 2015

19 / 29

Bahasan

- Pengantar: Motivasi, Arti, dan Analogi
- Contoh Pembuktian dengan Induksi Matematika (Biasa)
- ③ Soal-soal Latihan Induksi Matematika (Biasa)
- 4 Induksi Kuat: Motivasi dan Arti
- 5 Contoh Pembuktian dengan Induksi Kuat
- 6 Soal-soal Latihan Induksi Kuat

Contoh Pembuktian dengan Induksi Kuat

Teorema (Teorema 4)

Misalkan a_n adalah barisan yang didefinisikan sebagai berikut: $a_1=1, a_2=2,$ $a_3=3, a_n=a_{n-1}+a_{n-2}+a_{n-3},$ untuk $n\geq 4$. Barisan a_n memenuhi sifat $a_n<2^n$ untuk setiap $n\in\mathbb{N}$.

21 / 29

Misalkan $P\left(n\right)$: $a_n<2^n$, dengan $n\in\mathbb{N}$. Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$. Langkah basis:

22 / 29

Misalkan $P(n): a_n < 2^n$, dengan $n \in \mathbb{N}$. Akan dibuktikan dengan induksi kuat bahwa P(n) benar untuk setiap $n \in \mathbb{N}$.

Langkah basis: tinjau bahwa $a_1=1<2^1$, $a_2=2<2^2$, $a_3=3<2^3$,

Misalkan $P\left(n\right):a_n<2^n$, dengan $n\in\mathbb{N}$. Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $a_1=1<2^1$, $a_2=2<2^2$, $a_3=3<2^3$, jadi P(1), P(2), P(3) benar.

Langkah induktif:

Misalkan $P\left(n\right):a_n<2^n$, dengan $n\in\mathbb{N}$. Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$.

Langkah basis: tinjau bahwa $a_1=1<2^1$, $a_2=2<2^2$, $a_3=3<2^3$, jadi $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

 $\frac{\mathsf{Langkah \ induktif:}\ \mathsf{misalkan}\ P\left(1\right), P\left(2\right), \ldots, P\left(k\right)\ \mathsf{benar,\ akan\ dibuktikan\ bahwa}}{P\left(k+1\right): a_{k+1}} < 2^{k+1}\ \mathsf{juga\ benar}.$

Misalkan $P\left(n\right):a_n<2^n$, dengan $n\in\mathbb{N}.$ Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}.$

<u>Langkah basis</u>: tinjau bahwa $a_1=1<2^1$, $a_2=2<2^2$, $a_3=3<2^3$, jadi $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

 $\frac{\mathsf{Langkah \ induktif:}}{P\left(k+1\right):a_{k+1}} \in \mathsf{misalkan}\ P\left(1\right), P\left(2\right), \ldots, P\left(k\right) \ \mathsf{benar, \ akan \ dibuktikan \ bahwa}$

$$a_{k+1} = a_k + a_{k-1} + a_{k-2}$$

MZI (FIF Tel-U)

Misalkan $P\left(n\right):a_n<2^n$, dengan $n\in\mathbb{N}.$ Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}.$

<u>Langkah basis</u>: tinjau bahwa $a_1=1<2^1$, $a_2=2<2^2$, $a_3=3<2^3$, jadi $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

 $\frac{\mathsf{Langkah \ induktif:}\ \mathsf{misalkan}\ P\left(1\right), P\left(2\right), \ldots, P\left(k\right)\ \mathsf{benar,\ akan\ dibuktikan\ bahwa}}{P\left(k+1\right): a_{k+1}} < 2^{k+1}\ \mathsf{juga\ benar.\ Perhatikan\ bahwa}$

$$\begin{array}{rcl} a_{k+1} & = & a_k + a_{k-1} + a_{k-2} \\ & < & 2^k + 2^{k-1} + 2^{k-2} \text{ (dari hipotesis induksi)} \\ & - & \end{array}$$

Misalkan $P\left(n\right):a_n<2^n$, dengan $n\in\mathbb{N}.$ Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}.$

<u>Langkah basis</u>: tinjau bahwa $a_1=1<2^1$, $a_2=2<2^2$, $a_3=3<2^3$, jadi $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

 $\frac{\mathsf{Langkah \ induktif:}\ \mathsf{misalkan}\ P\left(1\right), P\left(2\right), \ldots, P\left(k\right)\ \mathsf{benar,\ akan\ dibuktikan\ bahwa}}{P\left(k+1\right): a_{k+1}} < 2^{k+1}\ \mathsf{juga\ benar.\ Perhatikan\ bahwa}$

$$\begin{array}{rcl} a_{k+1} & = & a_k + a_{k-1} + a_{k-2} \\ & < & 2^k + 2^{k-1} + 2^{k-2} \text{ (dari hipotesis induksi)} \\ & = & 2^k + \frac{2^k}{2} + \frac{2^k}{4} = \left(1 + \frac{1}{2} + \frac{1}{4}\right) 2^k = \end{array}$$

MZI (FIF Tel-U)

Misalkan $P\left(n\right):a_n<2^n$, dengan $n\in\mathbb{N}.$ Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}.$

<u>Langkah basis</u>: tinjau bahwa $a_1=1<2^1$, $a_2=2<2^2$, $a_3=3<2^3$, jadi $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

 $\frac{\mathsf{Langkah \ induktif:}}{P\left(k+1\right):a_{k+1}} \in \mathsf{misalkan}\ P\left(1\right), P\left(2\right), \ldots, P\left(k\right) \ \mathsf{benar, \ akan \ dibuktikan \ bahwa}$

$$\begin{array}{rcl} a_{k+1} & = & a_k + a_{k-1} + a_{k-2} \\ & < & 2^k + 2^{k-1} + 2^{k-2} \text{ (dari hipotesis induksi)} \\ & = & 2^k + \frac{2^k}{2} + \frac{2^k}{4} = \left(1 + \frac{1}{2} + \frac{1}{4}\right) 2^k = \frac{7}{4} \cdot 2^k \end{array}$$

22 / 29

MZI (FIF Tel-U) Induksi Matematika November 2015

Misalkan $P\left(n\right):a_n<2^n$, dengan $n\in\mathbb{N}.$ Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}.$

Langkah basis: tinjau bahwa $a_1=1<2^1$, $a_2=2<2^2$, $a_3=3<2^3$, jadi $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

 $\frac{\mathsf{Langkah} \; \mathsf{induktif:} \; \mathsf{misalkan} \; P\left(1\right), P\left(2\right), \ldots, P\left(k\right) \; \mathsf{benar, \; akan \; dibuktikan \; bahwa}}{P\left(k+1\right) : a_{k+1}} < 2^{k+1} \; \mathsf{juga \; benar. \; Perhatikan \; bahwa}$

$$\begin{array}{rcl} a_{k+1} & = & a_k + a_{k-1} + a_{k-2} \\ & < & 2^k + 2^{k-1} + 2^{k-2} \text{ (dari hipotesis induksi)} \\ & = & 2^k + \frac{2^k}{2} + \frac{2^k}{4} = \left(1 + \frac{1}{2} + \frac{1}{4}\right) 2^k = \frac{7}{4} \cdot 2^k < \frac{8}{4} \cdot 2^k \\ & = & \end{array}$$

MZI (FIF Tel-U)

Misalkan $P\left(n\right):a_n<2^n$, dengan $n\in\mathbb{N}.$ Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}.$

Langkah basis: tinjau bahwa $a_1=1<2^1$, $a_2=2<2^2$, $a_3=3<2^3$, jadi $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

 $\frac{\mathsf{Langkah \ induktif:}}{P\left(k+1\right):a_{k+1}} < 2^{k+1} \ \mathsf{juga \ benar.} \ \mathsf{P}\left(1\right), P\left(2\right), \ldots, P\left(k\right) \ \mathsf{benar, \ akan \ dibuktikan \ bahwa}$

$$\begin{array}{rcl} a_{k+1} & = & a_k + a_{k-1} + a_{k-2} \\ & < & 2^k + 2^{k-1} + 2^{k-2} \text{ (dari hipotesis induksi)} \\ & = & 2^k + \frac{2^k}{2} + \frac{2^k}{4} = \left(1 + \frac{1}{2} + \frac{1}{4}\right) 2^k = \frac{7}{4} \cdot 2^k < \frac{8}{4} \cdot 2^k \\ & = & 2 \cdot 2^k = 2^{k+1}. \end{array}$$

Dengan demikian P(k+1) juga benar.

MZI (FIF Tel-U)

Misalkan $P\left(n\right):a_n<2^n$, dengan $n\in\mathbb{N}.$ Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}.$

Langkah basis: tinjau bahwa $a_1=1<2^1$, $a_2=2<2^2$, $a_3=3<2^3$, jadi $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

<u>Langkah induktif</u>: misalkan $P\left(1\right),P\left(2\right),\ldots,P\left(k\right)$ benar, akan dibuktikan bahwa $P\left(k+1\right):a_{k+1}<2^{k+1}$ juga benar. Perhatikan bahwa

$$\begin{array}{rcl} a_{k+1} & = & a_k + a_{k-1} + a_{k-2} \\ & < & 2^k + 2^{k-1} + 2^{k-2} \text{ (dari hipotesis induksi)} \\ & = & 2^k + \frac{2^k}{2} + \frac{2^k}{4} = \left(1 + \frac{1}{2} + \frac{1}{4}\right) 2^k = \frac{7}{4} \cdot 2^k < \frac{8}{4} \cdot 2^k \\ & = & 2 \cdot 2^k = 2^{k+1}. \end{array}$$

Dengan demikian P(k+1) juga benar.

Berdasarkan prinsip induksi kuat $a_n < 2^n$ untuk setiap $n \in \mathbb{N}$.

MZI (FIF Tel-U) Induksi Matematika

Misalkan a_n adalah barisan yang didefinisikan sebagai berikut: $a_1=1$, $a_2=3$, $a_n=a_{n-2}+2a_{n-1}$, untuk setiap $n\geq 3$. Barisan a_n memenuhi sifat bahwa a_n selalu bernilai ganjil untuk semua $n\in\mathbb{N}$.

Misalkan $P\left(n\right)$: a_n bernilai ganjil, dengan $n\in\mathbb{N}$. Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap $n\in\mathbb{N}$. Langkah basis:

Misalkan $P(n): a_n$ bernilai ganjil, dengan $n \in \mathbb{N}$. Akan dibuktikan dengan induksi kuat bahwa P(n) benar untuk setiap $n \in \mathbb{N}$.

<u>Langkah basis</u>: tinjau bahwa $a_1=1$, $a_2=3$, dan $a_3=7$, jadi a_1 , a_2 , dan a_3 bernilai ganjil. Akibatnya $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar. Langkah induktif:

Misalkan $P(n): a_n$ bernilai ganjil, dengan $n \in \mathbb{N}$. Akan dibuktikan dengan induksi kuat bahwa P(n) benar untuk setiap $n \in \mathbb{N}$.

<u>Langkah basis:</u> tinjau bahwa $a_1=1$, $a_2=3$, dan $a_3=7$, jadi a_1 , a_2 , dan a_3 bernilai ganjil. Akibatnya $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

<u>Langkah induktif</u>: misalkan $P\left(1\right), P\left(2\right), \ldots, P\left(k\right)$ benar, yaitu a_1, a_2, \ldots, a_k bernilai ganjil. Akan dibuktikan bahwa $P\left(k+1\right)$: a_{k+1} benilai ganjil juga benar. Perhatikan bahwa

$$a_{k+1} = a_{k-1} + 2a_k$$
 (definisi barisan a_n)

Misalkan $P(n): a_n$ bernilai ganjil, dengan $n \in \mathbb{N}$. Akan dibuktikan dengan induksi kuat bahwa P(n) benar untuk setiap $n \in \mathbb{N}$.

<u>Langkah basis:</u> tinjau bahwa $a_1=1$, $a_2=3$, dan $a_3=7$, jadi a_1 , a_2 , dan a_3 bernilai ganjil. Akibatnya $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

<u>Langkah induktif</u>: misalkan $P\left(1\right), P\left(2\right), \ldots, P\left(k\right)$ benar, yaitu a_1, a_2, \ldots, a_k bernilai ganjil. Akan dibuktikan bahwa $P\left(k+1\right)$: a_{k+1} benilai ganjil juga benar. Perhatikan bahwa

$$\begin{array}{lll} a_{k+1} &=& a_{k-1}+2a_k \text{ (definisi barisan } a_n \text{)} \\ &=& (2p+1)+2\left(2q+1\right)\text{, untuk suatu } p,q\in\mathbb{Z} \\ && \text{karena } a_{k-1} \text{ dan } a_k \text{ bernilai ganjil berdasarkan hipotesis induksi} \end{array}$$

Misalkan $P(n): a_n$ bernilai ganjil, dengan $n \in \mathbb{N}$. Akan dibuktikan dengan induksi kuat bahwa P(n) benar untuk setiap $n \in \mathbb{N}$.

<u>Langkah basis</u>: tinjau bahwa $a_1=1$, $a_2=3$, dan $a_3=7$, jadi a_1 , a_2 , dan a_3 bernilai ganjil. Akibatnya $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

<u>Langkah induktif</u>: misalkan $P\left(1\right), P\left(2\right), \ldots, P\left(k\right)$ benar, yaitu a_1, a_2, \ldots, a_k bernilai ganjil. Akan dibuktikan bahwa $P\left(k+1\right)$: a_{k+1} benilai ganjil juga benar. Perhatikan bahwa

$$\begin{array}{lll} a_{k+1} &=& a_{k-1}+2a_k \text{ (definisi barisan } a_n \text{)} \\ &=& (2p+1)+2\left(2q+1\right)\text{, untuk suatu } p,q\in\mathbb{Z} \\ && \text{karena } a_{k-1} \text{ dan } a_k \text{ bernilai ganjil berdasarkan hipotesis induksi} \\ &=& 2p+1+4q+2=2p+4q+3 \\ &-& \end{array}$$

Misalkan P(n): a_n bernilai ganjil, dengan $n \in \mathbb{N}$. Akan dibuktikan dengan induksi kuat bahwa P(n) benar untuk setiap $n \in \mathbb{N}$.

<u>Langkah basis</u>: tinjau bahwa $a_1=1$, $a_2=3$, dan $a_3=7$, jadi a_1 , a_2 , dan a_3 bernilai ganjil. Akibatnya $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

<u>Langkah induktif</u>: misalkan $P\left(1\right), P\left(2\right), \ldots, P\left(k\right)$ benar, yaitu a_1, a_2, \ldots, a_k bernilai ganjil. Akan dibuktikan bahwa $P\left(k+1\right)$: a_{k+1} benilai ganjil juga benar. Perhatikan bahwa

$$\begin{array}{ll} a_{k+1} &=& a_{k-1}+2a_k \text{ (definisi barisan } a_n \text{)} \\ &=& (2p+1)+2\left(2q+1\right)\text{, untuk suatu } p,q\in\mathbb{Z} \\ &\text{karena } a_{k-1} \text{ dan } a_k \text{ bernilai ganjil berdasarkan hipotesis induksi} \\ &=& 2p+1+4q+2=2p+4q+3 \\ &=& 2\left(p+2q+1\right)+1. \end{array}$$

Ini berarti a_{k+1} juga bernilai ganjil. Dengan demikian $P\left(k+1\right)$ juga benar.

1 D > 1 D > 1 E > 1 E > 2 9 Q C

Misalkan P(n): a_n bernilai ganjil, dengan $n \in \mathbb{N}$. Akan dibuktikan dengan induksi kuat bahwa P(n) benar untuk setiap $n \in \mathbb{N}$.

<u>Langkah basis</u>: tinjau bahwa $a_1=1$, $a_2=3$, dan $a_3=7$, jadi a_1 , a_2 , dan a_3 bernilai ganjil. Akibatnya $P\left(1\right)$, $P\left(2\right)$, $P\left(3\right)$ benar.

<u>Langkah induktif</u>: misalkan $P(1), P(2), \ldots, P(k)$ benar, yaitu a_1, a_2, \ldots, a_k bernilai ganjil. Akan dibuktikan bahwa $P(k+1): a_{k+1}$ benilai ganjil juga benar. Perhatikan bahwa

$$\begin{array}{lll} a_{k+1} &=& a_{k-1}+2a_k \mbox{ (definisi barisan } a_n \mbox{)} \\ &=& (2p+1)+2 \left(2q+1\right) \mbox{, untuk suatu } p,q \in \mathbb{Z} \\ && \mbox{ karena } a_{k-1} \mbox{ dan } a_k \mbox{ bernilai ganjil berdasarkan hipotesis induksi} \\ &=& 2p+1+4q+2=2p+4q+3 \end{array}$$

$$= 2p + 1 + 4q + 2 = 2p + 4q + 3$$
$$= 2(p + 2q + 1) + 1.$$

Ini berarti a_{k+1} juga bernilai ganjil. Dengan demikian P(k+1) juga benar. Berdasarkan prinsip induksi kuat a_n bernilai ganjil untuk setiap $n \in \mathbb{N}$.

Setiap bilangan asli n>1 dapat dinyatakan sebagai:

- hasil kali dua atau lebih bilangan-bilangan prima, atau
- hasil kali sebuah bilangan prima dan 1.

Ilustrasi untuk Teorema 6:

ullet Jika n=18, kita memiliki 18=

Setiap bilangan asli n > 1 dapat dinyatakan sebagai:

- hasil kali dua atau lebih bilangan-bilangan prima, atau
- o hasil kali sebuah bilangan prima dan 1.

- Jika n=18, kita memiliki $18=2\cdot 3\cdot 3$, perhatikan bahwa 2 dan 3 adalah bilangan prima.
- Jika n = 81, kita memiliki 81 =

Setiap bilangan asli n>1 dapat dinyatakan sebagai:

- hasil kali dua atau lebih bilangan-bilangan prima, atau
- hasil kali sebuah bilangan prima dan 1.

- Jika n=18, kita memiliki $18=2\cdot 3\cdot 3$, perhatikan bahwa 2 dan 3 adalah bilangan prima.
- Jika n=81, kita memiliki $81=3\cdot 3\cdot 3\cdot 3$, perhatikan bahwa 3 adalah bilangan prima.
- Jika n = 39, kita memiliki 39 =

Setiap bilangan asli n>1 dapat dinyatakan sebagai:

- hasil kali dua atau lebih bilangan-bilangan prima, atau
- 1. hasil kali sebuah bilangan prima dan 1.

- Jika n=18, kita memiliki $18=2\cdot 3\cdot 3$, perhatikan bahwa 2 dan 3 adalah bilangan prima.
- Jika n=81, kita memiliki $81=3\cdot 3\cdot 3\cdot 3$, perhatikan bahwa 3 adalah bilangan prima.
- Jika n=39, kita memiliki $39=3\cdot 13$, perhatikan bahwa 3 dan 13 adalah bilangan prima.
- Jika n=23, kita memiliki 23=

Setiap bilangan asli n > 1 dapat dinyatakan sebagai:

- hasil kali dua atau lebih bilangan-bilangan prima, atau
- hasil kali sebuah bilangan prima dan 1.

- Jika n=18, kita memiliki $18=2\cdot 3\cdot 3$, perhatikan bahwa 2 dan 3 adalah bilangan prima.
- Jika n=81, kita memiliki $81=3\cdot 3\cdot 3\cdot 3$, perhatikan bahwa 3 adalah bilangan prima.
- Jika n=39, kita memiliki $39=3\cdot 13$, perhatikan bahwa 3 dan 13 adalah bilangan prima.
- Jika n=23, kita memiliki $23=23\cdot 1$, perhatikan bahwa 23 adalah bilangan prima.
- Jika n=41, kita memiliki 41=

Setiap bilangan asli n > 1 dapat dinyatakan sebagai:

- hasil kali dua atau lebih bilangan-bilangan prima, atau
- 1. hasil kali sebuah bilangan prima dan 1.

- Jika n=18, kita memiliki $18=2\cdot 3\cdot 3$, perhatikan bahwa 2 dan 3 adalah bilangan prima.
- Jika n=81, kita memiliki $81=3\cdot 3\cdot 3\cdot 3$, perhatikan bahwa 3 adalah bilangan prima.
- Jika n=39, kita memiliki $39=3\cdot 13$, perhatikan bahwa 3 dan 13 adalah bilangan prima.
- Jika n=23, kita memiliki $23=23\cdot 1$, perhatikan bahwa 23 adalah bilangan prima.
- Jika n=41, kita memiliki $41=41\cdot 1$, perhatikan bahwa 41 adalah bilangan prima.

Misalkan $P\left(n\right)$: n adalah hasil kali dua atau lebih bilangan-bilangan prima atau n adalah hasil kali sebuah bilangan prima dan 1. Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap bilangan asli $n\geq 2$. Langkah basis:

Misalkan $P\left(n\right)$: n adalah hasil kali dua atau lebih bilangan-bilangan prima atau n adalah hasil kali sebuah bilangan prima dan 1. Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap bilangan asli $n\geq 2$.

<u>Langkah basis</u>: perhatikan bahwa $2=2\cdot 1,\ 3=3\cdot 1,\ 4=2\cdot 2,$ dengan 2 dan 3 adalah bilangan prima. Jadi $P\left(2\right),P\left(3\right),P\left(4\right)$ benar. Langkah induktif:

Misalkan P(n): n adalah hasil kali dua atau lebih bilangan-bilangan prima atau nadalah hasil kali sebuah bilangan prima dan 1. Akan dibuktikan dengan induksi kuat bahwa P(n) benar untuk setiap bilangan asli $n \ge 2$.

Langkah basis: perhatikan bahwa $2 = 2 \cdot 1$, $3 = 3 \cdot 1$, $4 = 2 \cdot 2$, dengan 2 dan 3 adalah bilangan prima. Jadi P(2), P(3), P(4) benar.

Langkah induktif: misalkan $P(2), P(3), \ldots, P(k)$ benar, akan dibuktikan bahwa P(k+1) juga benar.

Misalkan $P\left(n\right):n$ adalah hasil kali dua atau lebih bilangan-bilangan prima atau n adalah hasil kali sebuah bilangan prima dan 1. Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap bilangan asli $n\geq 2$.

<u>Langkah basis</u>: perhatikan bahwa $2=2\cdot 1$, $3=3\cdot 1$, $4=2\cdot 2$, dengan 2 dan 3 adalah bilangan prima. Jadi $P\left(2\right),P\left(3\right),P\left(4\right)$ benar.

Langkah induktif: misalkan $P(2), P(3), \ldots, P(k)$ benar, akan dibuktikan bahwa P(k+1) juga benar. Tinjau dua kasus berikut:

• Kasus 1:

Misalkan $P\left(n\right)$: n adalah hasil kali dua atau lebih bilangan-bilangan prima atau n adalah hasil kali sebuah bilangan prima dan 1. Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap bilangan asli $n\geq 2$.

<u>Langkah basis</u>: perhatikan bahwa $2=2\cdot 1$, $3=3\cdot 1$, $4=2\cdot 2$, dengan 2 dan 3 adalah bilangan prima. Jadi $P\left(2\right),P\left(3\right),P\left(4\right)$ benar.

Langkah induktif: misalkan $P(2), P(3), \ldots, P(k)$ benar, akan dibuktikan bahwa P(k+1) juga benar. Tinjau dua kasus berikut:

• Kasus 1: Jika k+1 bilangan prima, maka

Misalkan $P\left(n\right):n$ adalah hasil kali dua atau lebih bilangan-bilangan prima atau n adalah hasil kali sebuah bilangan prima dan 1. Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap bilangan asli $n\geq 2$.

<u>Langkah basis</u>: perhatikan bahwa $2=2\cdot 1,\ 3=3\cdot 1,\ 4=2\cdot 2,$ dengan 2 dan 3 adalah bilangan prima. Jadi $P\left(2\right),P\left(3\right),P\left(4\right)$ benar.

Langkah induktif: misalkan P(2), P(3), ..., P(k) benar, akan dibuktikan bahwa P(k+1) juga benar. Tinjau dua kasus berikut:

• Kasus 1: Jika k+1 bilangan prima, maka $k+1=(k+1)\cdot 1$.

MZI (FIF Tel-U)

Misalkan $P\left(n\right):n$ adalah hasil kali dua atau lebih bilangan-bilangan prima atau n adalah hasil kali sebuah bilangan prima dan 1. Akan dibuktikan dengan induksi kuat bahwa $P\left(n\right)$ benar untuk setiap bilangan asli $n\geq 2$.

<u>Langkah basis</u>: perhatikan bahwa $2=2\cdot 1,\ 3=3\cdot 1,\ 4=2\cdot 2,$ dengan 2 dan 3 adalah bilangan prima. Jadi $P\left(2\right),P\left(3\right),P\left(4\right)$ benar.

<u>Langkah induktif</u>: misalkan $P\left(2\right),P\left(3\right),\ldots,P\left(k\right)$ benar, akan dibuktikan bahwa $P\left(k+1\right)$ juga benar. Tinjau dua kasus berikut:

• Kasus 1: Jika k+1 bilangan prima, maka $k+1=(k+1)\cdot 1$. Jadi k+1 dapat dinyatakan sebagai hasil kali sebuah bilangan prima dan 1.

MZI (FIF Tel-U)

• Kasus 2:

ullet Kasus 2: Jika k+1 bukan bilangan prima, maka

• Kasus 2: Jika k+1 bukan bilangan prima, maka haruslah terdapat bilangan bulat a dan b yang memenuhi $k+1=a\cdot b$ dan $2\leq a\leq b< n+1$.

• Kasus 2: Jika k+1 bukan bilangan prima, maka haruslah terdapat bilangan bulat a dan b yang memenuhi $k+1=a\cdot b$ dan $2\leq a\leq b< n+1$. Dari hipotesis induksi, kita memiliki $P\left(a\right)$ dan $P\left(b\right)$ benar, dengan perkataan lain:

- Kasus 2: Jika k+1 bukan bilangan prima, maka haruslah terdapat bilangan bulat a dan b yang memenuhi $k+1=a\cdot b$ dan $2\leq a\leq b< n+1$. Dari hipotesis induksi, kita memiliki $P\left(a\right)$ dan $P\left(b\right)$ benar, dengan perkataan lain:
 - a adalah hasil kali dua atau lebih bilangan-bilangan prima atau hasil kali sebuah bilangan prima dan 1,

- Kasus 2: Jika k+1 bukan bilangan prima, maka haruslah terdapat bilangan bulat a dan b yang memenuhi $k+1=a\cdot b$ dan $2\leq a\leq b< n+1$. Dari hipotesis induksi, kita memiliki $P\left(a\right)$ dan $P\left(b\right)$ benar, dengan perkataan lain:
 - ullet a adalah hasil kali dua atau lebih bilangan-bilangan prima atau hasil kali sebuah bilangan prima dan 1,
 - b adalah hasil kali dua atau lebih bilangan-bilangan prima atau hasil kali sebuah bilangan prima dan 1.

- Kasus 2: Jika k+1 bukan bilangan prima, maka haruslah terdapat bilangan bulat a dan b yang memenuhi $k+1=a\cdot b$ dan $2\leq a\leq b< n+1$. Dari hipotesis induksi, kita memiliki $P\left(a\right)$ dan $P\left(b\right)$ benar, dengan perkataan lain:
 - a adalah hasil kali dua atau lebih bilangan-bilangan prima atau hasil kali sebuah bilangan prima dan 1,
 - b adalah hasil kali dua atau lebih bilangan-bilangan prima atau hasil kali sebuah bilangan prima dan 1.

Akibatnya k+1 juga merupakan hasil kali dua atau lebih bilangan-bilangan prima.

Dari kedua kasus di atas, dapat disimpukan bahwa P(k+1) benar.

- Kasus 2: Jika k+1 bukan bilangan prima, maka haruslah terdapat bilangan bulat a dan b yang memenuhi $k+1=a\cdot b$ dan $2\leq a\leq b< n+1$. Dari hipotesis induksi, kita memiliki $P\left(a\right)$ dan $P\left(b\right)$ benar, dengan perkataan lain:
 - ullet a adalah hasil kali dua atau lebih bilangan-bilangan prima atau hasil kali sebuah bilangan prima dan 1,
 - b adalah hasil kali dua atau lebih bilangan-bilangan prima atau hasil kali sebuah bilangan prima dan 1.

Akibatnya k+1 juga merupakan hasil kali dua atau lebih bilangan-bilangan prima.

Dari kedua kasus di atas, dapat disimpukan bahwa $P\left(k+1\right)$ benar. Dengan prinsip induksi kuat, kita telah membuktikan bahwa $P\left(n\right)$: n adalah hasil kali dua atau lebih bilangan-bilangan prima atau n adalah hasil kali sebuah bilangan prima dan 1 adalah benar untuk setiap bilangan asli $n\geq 2$.

Bahasan

- Pengantar: Motivasi, Arti, dan Analogi
- 2 Contoh Pembuktian dengan Induksi Matematika (Biasa)
- ③ Soal-soal Latihan Induksi Matematika (Biasa)
- 4 Induksi Kuat: Motivasi dan Arti
- 5) Contoh Pembuktian dengan Induksi Kuat
- 6 Soal-soal Latihan Induksi Kuat

Latihan 2: Induksi Kuat

Latihan

Periksa kebenaran dari pernyataan-pernyataan berikut:

- Misalkan a_n adalah barisan yang didefinisikan sebagai berikut: $a_0=0$, $a_1=4$, $a_n=6a_{n-1}-5a_{n-2}$, untuk $n\geq 2$. Barisan a_n memenuhi sifat $a_n=5^n-1$ untuk setiap bilangan asli $n\geq 2$.
- ② Misalkan b_n adalah barisan yang didefinisikan sebagai berikut: $b_1=1$, $b_2=2$, $b_n=\frac{1}{2}\,(b_{n-1}+b_{n-2})$, untuk $n\geq 3$. Barisan b_n memenuhi sifat $1\leq b_n\leq 2$ untuk setiap $n\in\mathbb{N}$.
- ullet Periksa kebenaran pernyataan ini: setiap barang yang harganya tidak kurang dari 12 sen dapat dibayar menggunakan uang pecahan 4 sen dan 5 sen saja, tanpa kembalian.

Selesaikan permasalahan berikut:

• Ada sebuah negeri yang menggunakan mata uang galleon. Uang sejumlah berapa saja yang dapat dibentuk hanya dari pecahan 2 galleon dan 5 galleon saja (selain 2 galleon dan 5 galleon itu sendiri)