Contents

\mathbf{G}	lossa	\mathbf{ry}		xiii
\mathbf{A}	Acronyms			
1	Inti	roducti	ion and Literature Review	1
	1.1	Cance	r Research in the Post-Genomic Era	1
		1.1.1	Cancer is a Global Health Issue	2
			1.1.1.1 The Genetics and Molecular Biology of Cancers	3
		1.1.2	The Genomics Revolution in Cancer Research	4
			1.1.2.1 High-Throughput Technologies	4
			1.1.2.2 Bioinformatics and Genomics Data	6
		1.1.3	Genomics Projects	6
			1.1.3.1 The Cancer Genome Project	7
			1.1.3.2 The Cancer Genome Atlas Project	7
		1.1.4	Genomic Cancer Medicine	9
			1.1.4.1 Cancer Genes and Driver Mutations	10
			1.1.4.2 Precision Cancer Medicine	11
			1.1.4.3 Molecular Diagnostics and Pan-Cancer Medicine	11
			1.1.4.4 Targeted Therapeutics and Pharmacogenomics	11
		1.1.5	Systems and Network Biology	12
			1.1.5.1 Network Medicine and Polypharmacology	14
	1.2		thetic Lethal Approach to Cancer Medicine	15
		1.2.1	Synthetic Lethal Genetic Interactions	15
		1.2.2	Synthetic Lethal Concepts in Genetics	16
		1.2.3	Synthetic Lethality in Model Systems	17
			1.2.3.1 Synthetic Lethal Pathways and Networks	17
			1.2.3.2 Evolution of Synthetic Lethality	18
		1.2.4	Synthetic Lethality in Cancer	19
		1.2.5	Clinical Impact of Synthetic Lethality in Cancer	20
		1.2.6	High-throughput Screening for Synthetic Lethality	22
			1.2.6.1 Synthetic Lethal Screens	23
		1.2.7	Computational Prediction of Synthetic Lethality	26
			1.2.7.1 Bioinformatics Approaches to Genetic Interactions	26
			1.2.7.2 Comparative Genomics	27
			1.2.7.3 Analysis and Modelling of Protein Data	30
			1274 Differential Gene Expression	32

			1.2.7.5 Data Mining and Machine Learning
			1.2.7.6 Mutually Exclusive Bimodality
			1.2.7.7 Rationale for Further Development
	1.3	E-cad	herin as a Synthetic Lethal Target
		1.3.1	
			1.3.1.1 Cytoskeleton
			1.3.1.2 Extracellular and Tumour Micro-environment 38
			1.3.1.3 Cell-Cell Adhesion and Signalling
		1.3.2	CDH1 as a Tumour (and Invasion) Suppressor
			1.3.2.1 Breast Cancers and Invasion
		1.3.3	Hereditary Diffuse Gastric Cancer and Lobular Breast Cancer . 39
		1.3.4	Cell Line Models of <i>CDH1</i> Null Mutations
	1.4	Summ	ary and Research Direction of Thesis
		1.4.1	Thesis Aims
_	73 AT A		
2			and Resources 44
	2.1		formatics Resources for Genomics Research
		2.1.1	0
			2.1.1.1 Cancer Genome Atlas Data
	2.2	Data	
	2.2	2.2.1	Handling
		2.2.1 $2.2.2$	Sample Triage
		2.2.2	Metagenes and the Singular Value Decomposition
		2.2.0	2.2.3.1 Candidate Triage and Integration with Screen Data 49
	2.3	Techn	iques
	2.0	2.3.1	Statistical Procedures and Tests
		2.3.2	Gene Set Over-representation Analysis
		2.3.3	Clustering
		2.3.4	Heatmap
		2.3.5	Modeling and Simulations
			2.3.5.1 Receiver Operating Characteristic (Performance) 53
		2.3.6	Resampling Analysis
	2.4	Pathw	vay Structure Methods
		2.4.1	Network and Graph Analysis
		2.4.2	Sourcing Graph Structure Data
		2.4.3	Constructing Pathway Subgraphs
		2.4.4	Network Analysis Metrics
	2.5	Imple	mentation
		2.5.1	Computational Resources and Linux Utilities
		2.5.2	R Language and Packages
		2.5.3	High Performance and Parallel Computing 61

3	Met	thods	Developed During Thesis	63
	3.1	A Syn	thetic Lethal Detection Methodology	63
	3.2		etic Lethal Simulation and Modelling	66
		3.2.1	A Model of Synthetic Lethality in Expression Data	66
		3.2.2	Simulation Procedure	70
	3.3	Detect	ting Simulated Synthetic Lethal Partners	73
		3.3.1	Binomial Simulation of Synthetic lethality	73
		3.3.2	Multivariate Normal Simulation of Synthetic lethality	75
			3.3.2.1 Multivariate Normal Simulation with Correlated Genes	78
			3.3.2.2 Specificity with Query-Correlated Pathways	85
			3.3.2.3 Importance of Directional Testing	85
	3.4	Graph	Structure Methods	87
		3.4.1	Upstream and Downstream Gene Detection	87
			3.4.1.1 Permutation Analysis for Statistical Significance	88
			3.4.1.2 Hierarchy Based on Biological Context	89
		3.4.2	Simulating Gene Expression from Graph Structures	90
	3.5	Custo	mised Functions and Packages Developed	94
		3.5.1	Synthetic Lethal Interaction Prediction Tool	94
		3.5.2	Data Visualisation	95
		3.5.3	Extensions to the iGraph Package	98
			3.5.3.1 Sampling Simulated Data from Graph Structures	98
			3.5.3.2 Plotting Directed Graph Structures	98
			3.5.3.3 Computing Information Centrality	99
			3.5.3.4 Testing Pathway Structure with Permutation Testing.	99
			3.5.3.5 Metapackage to Install iGraph Functions	100
	a			
4	-		v i	101
	4.1			102
		4.1.1	· · · · · · · · · · · · · · · · · · ·	104
		4.1.2	ı v	105
	4.0		U 1 V V	108
	4.2			111
		4.2.1	9 ()	111
		4.2.2	1	111
		4.2.3	ı v	113
		4.2.4	ı v	115
		4.2.5		117
			ı Ü	119
		4.2.6	O O V	122
	4.3	_	, v	124
		4.3.1	v 1	125
		4.3.2		127
		4.3.3	v O	131
		4.3.4		132
	4.4	-		133
	4.5	Discus	ssion	134

		4.5.1	Strengths of the SLIPT Methodology
		4.5.2	Synthetic Lethal Pathways for E-cadherin
		4.5.3	Replication and Validation
			4.5.3.1 Integration with siRNA Screening
			4.5.3.2 Replication across Tissues
	4.6	Summ	ary
5	Syn	thetic	Lethal Pathway Structure 140
	5.1	Synthe	etic Lethal Genes in Reactome Pathways
		5.1.1	The PI3K/AKT Pathway
		5.1.2	The Extracellular Matrix
		5.1.3	G Protein Coupled Receptors
		5.1.4	Gene Regulation and Translation
	5.2	Netwo	rk Analysis of Synthetic Lethal Genes
		5.2.1	Gene Connectivity and Vertex Degree
		5.2.2	Gene Importance and Centrality
			5.2.2.1 Information Centrality
			5.2.2.2 PageRank Centrality
	5.3	Relati	onships between Synthetic Lethal Genes
		5.3.1	Hierarchical Pathway Structure
			5.3.1.1 Contextual Hierarchy of PI3K
			5.3.1.2 Testing Contextual Hierarchy of Synthetic Lethal Genes 153
		5.3.2	Upstream or Downstream Synthetic Lethality 157
			5.3.2.1 Measuring Structure of Candidates within PI3K 157
			5.3.2.2 Resampling for Synthetic Lethal Pathway Structure 159
	5.4	Discus	ssion
	5.5	Summ	ary
6	Sim	ulatio	and Modeling of Synthetic Lethal Pathways 165
Ū	6.1		etic Lethal Detection Methods
		6.1.1	
			6.1.1.1 Correlated Query Genes affects Specificity 170
		6.1.2	Alternative Synthetic Lethal Detection Strategies 172
			6.1.2.1 Correlation for Synthetic Lethal Detection 172
			6.1.2.2 Testing for Bimodality with BiSEp 174
	6.2	Simula	ations with Graph Structures
		6.2.1	Performance over a Graph Structure
			6.2.1.1 Simple Graph Structures
			6.2.1.2 Constructed Graph Structures
		6.2.2	Performance with Inhibitions
		6.2.3	Synthetic Lethality across Graph Structures
		6.2.4	Performance within a Simulated Human Genome 190
	6.3		ations in More Complex Graph Structures
	-	6.3.1	Simulations over Pathway-based Graphs 195
		6.3.2	Pathway Structures in a Simulated Human Genome 198
	6.4	Discus	·

		6.4.1	Simulation Procedure	
		6.4.2	Comparing Methods with Simulated Data	
		6.4.3	Design and Performance of SLIPT	
	6.5	6.4.4 Summe	Simulations from Graph Structures	
	0.0	Summe	шу	200
7	Disc	cussion		208
	7.1	Synthe	tic Lethality and CDH1 Biology	208
		7.1.1	Established Functions of CDH1	209
		7.1.2	The Molecular Role of $CDH1$ in Cancer	209
	7.2	Signific	cance	210
		7.2.1	Synthetic Lethality in the Genomic Era	
		7.2.2	Clinical Interventions based on Synthetic Lethality	
	7.3		Directions	
	7.4	Conclu	sions	215
	Refe	erences	S	217
Α	Sam	ıple Qı	ality	240
		_	e Correlation	240
		1	ate Samples in The Cancer Genome Atlas (TCGA) Breast	_
D	Soft	wara I	Jsed for Thesis	247
D	DOI	ware C		
С				
		tation .	Analysis in Breast Cancer	256
	Mut	t ation . Synthe		256 256
	Mut C.1 C.2	t ation . Synthe	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 256 259
	Mut C.1 C.2	tation Synthe Synthe Synthe Compa	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 256 259
	Mut C.1 C.2 C.3	Synthe Synthe Compa C.3.1	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 256 259 262 264 266
	Mut C.1 C.2 C.3	Synthe Synthe Compa C.3.1 Compa Metage	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 256 259 262 264 266 268
	Mut C.1 C.2 C.3 C.4 C.5 C.6	Synthe Synthe Compa C.3.1 Compa Metage Expres	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 256 259 262 264 266 268 269
	Mut C.1 C.2 C.3 C.4 C.5 C.6	Synthe Synthe Compa C.3.1 Compa Metage Expres	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 256 259 262 264 266 268 269
C	Mut C.1 C.2 C.3 C.4 C.5 C.6 C.7	Synthe Synthe Compa C.3.1 Compa Metage Expres Metage	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 256 259 262 264 266 268 269
C D	Mut C.1 C.2 C.3 C.4 C.5 C.6 C.7	Synthe Synthe Compa C.3.1 Compa Metage Expres Metage insic S	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 259 262 264 266 268 269 272
C D	Mut C.1 C.2 C.3 C.4 C.5 C.6 C.7	Synthe Synthe Compa C.3.1 Compa Metage Expres Metage insic S	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 259 262 264 266 268 269 272
C D	Mut C.1 C.2 C.3 C.4 C.5 C.6 C.7 Intr	Synthe Synthe Compa C.3.1 Compa Metage Expres Metage insic S mach E	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 259 262 264 266 268 269 272 275
C D	Mut C.1 C.2 C.3 C.4 C.5 C.6 C.7 Intr Stor E.1	Synthe Synthe Compa C.3.1 Compa Metage Expres Metage insic S	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 259 262 264 266 268 269 272 275 277 281
C D	Mut C.1 C.2 C.3 C.4 C.5 C.6 C.7 Intr Stor E.1	Synthe Synthe Compa C.3.1 Compa Metage Expres Metage insic S mach E Synthe Compa E.2.1	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 259 262 264 266 268 269 272 275 277 281 283
C D	Mut C.1 C.2 C.3 C.4 C.5 C.6 C.7 Intr Stor E.1 E.2	Synthe Synthe Compa C.3.1 Compa Metage Expres Metage insic S mach E Synthe Compa E.2.1 Metage	Analysis in Breast Cancer tic Lethal Genes and Pathways	256 259 262 264 266 268 269 272 275 277 281 283
D E	Mut C.1 C.2 C.3 C.4 C.5 C.6 C.7 Intr Stor E.1 E.2 E.3 Synt	Synthe Synthe Compa C.3.1 Compa Metage Expres Metage insic S mach E Synthe Compa E.2.1 Metage	Analysis in Breast Cancer tic Lethal Genes and Pathways tic Lethal Expression Profiles prison to Primary Screen Resampling Analysis tre Synthetic Lethal Interaction Prediction Tool (SLIPT) genes ene Analysis sion of Somatic Mutations ene Expression Profiles cxpression Analysis tic Lethal Genes and Pathways erison to Primary Screen Resampling Analysis ene Analysis ene Analysis ene Analysis ene Analysis ene Analysis	256 259 262 264 266 268 269 272 275 277 281 283 285

Patl	hway Structure for Mutation SLIPT	301
Peri	formance of SLIPT and χ^2	304
J.1	Correlated Query Genes affects Specificity	310
Gra	ph Structures	316
K.1	Simulations from Simple Graph Structures	316
	K.1.1 Simulations from Inhibiting Graph Structures	318
K.2	Simulation across Graph Structures	321
K.3	Simulations from Complex Graph Structures	325
	K.3.1 Simulations from Complex Inhibiting Graphs	328
K.4	Simulations from Pathway Graph Structures	334
	Peri J.1 Gra K.1 K.2 K.3	Pathway Structure for Mutation SLIPT Performance of SLIPT and χ^2 J.1 Correlated Query Genes affects Specificity

List of Figures

1.1	Synthetic genetic interactions	16
1.2	Synthetic lethality in cancer	20
2.1	Read count density	48
2.2	Read count sample mean	48
3.1	Framework for synthetic lethal prediction	64
3.2	Synthetic lethal prediction adapted for mutation	65
3.3	A model of synthetic lethal gene expression	67
3.4	Modeling synthetic lethal gene expression	68
3.5	Synthetic lethality with multiple genes	69
3.6	Simulating gene function	71
3.7	Simulating synthetic lethal gene function	71
3.8	Simulating synthetic lethal gene expression	72
3.9	Performance of binomial simulations	74
3.10		74
3.11	Performance of multivariate normal simulations	76
	Simulating expression with correlated gene blocks	79
	Simulating expression with correlated gene blocks	80
	Synthetic lethal prediction across simulations	81
	Performance with correlations	82
	Comparison of statistical performance with correlation structure	83
	Performance with query correlations	84
	Statistical evaluation of directional criteria	85
	Performance of directional criteria	86
	Simulated graph structures	90
	Simulating expression from a graph structure	92
	Simulating expression from graph structure with inhibitions	93
	Demonstration of violin plots with custom features	96
	Demonstration of annotated heatmap	96
	Simulating graph structures	99
4.1	Synthetic lethal expression profiles of analysed samples	107
4.2	Comparison of SLIPT to siRNA	111
4.3	Compare SLIPT and siRNA genes with correlation	112
4.4	Compare SLIPT and siRNA genes with correlation	113
4.5	Compare SLIPT and siRNA genes with viability	114

4.6	Compare SLIPT genes with siRNA viability	115
4.7	Resampled intersection of SLIPT and siRNA candidates	119
4.8	Pathway metagene expression profiles	126
4.9	Expression profiles for constituent genes of PI3K	128
4.10	Expression profiles for estrogen receptor related genes	129
4.11	Somatic mutation against the PI3K metagene	130
5.1	Synthetic Lethality in the PI3K Cascade	142
5.2	Synthetic Lethality in the Elastic Fibre Formation Pathway	144
5.3	Synthetic Lethality in the Fibrin Clot Formation	144
5.4	Synthetic Lethality and Vertex Degree	140
5.5		151
5.6	Synthetic Lethality and Centrality	$151 \\ 152$
5.7	Synthetic Lethality and PageRank	152 154
		154 155
5.8 5.9	Hierarchy Score in PI3K against Synthetic Lethality in PI3K Structure of Synthetic Lethality in PI3K	155 157
		$157 \\ 158$
5.10	Structure of Synthetic Lethality Resampling in PI3K	190
6.1	Performance of χ^2 and SLIPT across quantiles	168
6.2	Performance of χ^2 and SLIPT across quantiles with more genes	169
6.3	Performance of χ^2 and SLIPT across quantiles with query correlation .	170
6.4	Performance of χ^2 and SLIPT across quantiles with query correlation	
	and more genes	171
6.5	Performance of negative correlation and SLIPT	173
6.6	Simple graph structures	176
6.7	Performance of simulations on a simple graph	177
6.8	Performance of simulations is similar in simple graphs	179
6.9	Performance of simulations on a pathway	180
6.10	Performance of simulations on a simple graph with inhibition	182
6.11	Performance is higher on a simple inhibiting graph	183
6.12	Performance of simulations on a constructed graph with inhibition	184
6.13	Performance is affected by inhibition in graphs	186
	Detection of Synthetic Lethality within a Graph Structure with Inhibition	s188
6.15	Performance of simulations including a simple graph	191
6.16	Performance on a simple graph improves with more genes	192
6.17	Performance on an inhibiting graph improves with more genes	194
6.18	Performance of simulations on the PI3K cascade	197
6.19	Performance of simulations including the PI3K cascade	199
6.20	Performance on pathways improves with more genes	200
A.1	Correlation profiles of removed samples	241
A.2	Correlation analysis and sample removal	242
A.3	Replicate excluded samples	243
A.4	Replicate samples with all remaining	244
A.5	Replicate samples with some excluded	245
C 1	Synthetic lethal expression profiles of analysed samples	260

C.2	Comparison of mtSLIPT to siRNA	262
C.3	Compare mtSLIPT and siRNA genes with correlation	266
C.4	Compare mtSLIPT and siRNA genes with correlation	266
C.5	Compare mtSLIPT and siRNA genes with siRNA viability	267
C.6	Somatic mutation against PIK3CA metagene	269
C.7	Somatic mutation against PI3K protein	270
C.8	Somatic mutation against AKT protein	271
C.9	Pathway metagene expression profiles	272
C.10	Expression profiles for p53 related genes	273
	Expression profiles for BRCA related genes	274
E.1	Synthetic lethal expression profiles of stomach samples	279
E.2	Comparison of SLIPT in stomach to siRNA	281
₽ 1	Combatia Lathality in the DISK / AKT Dathway	206
F.1	Synthetic Lethality in the PI3K/AKT Pathway	286
F.2	Synthetic Lethality in the PI3K/AKT Pathway in Cancer	287
F.3	Synthetic Lethality in the Extracellular Matrix	288
F.4	Synthetic Lethality in the GPCRs	289
F.5	Synthetic Lethality in the GPCR Downstream	290
F.6	Synthetic Lethality in the Translation Elongation	291
F.7	Synthetic Lethality in the Nonsense-mediated Decay	292
F.8	Synthetic Lethality in the 3' UTR	293
G.1	Synthetic Lethelity and Vertey Dograe	294
	Synthetic Lethality and Vertex Degree	
G.2	Synthetic Lethality and Centrality	295
G.3	Synthetic Lethality and PageRank	296
H.1	Information centrality distribution	300
	·	
I.1	Synthetic Lethality and Heirarchy Score in PI3K	301
I.2	Heirarchy Score in PI3K against Synthetic Lethality in PI3K	302
I.3	Structure of Synthetic Lethality in PI3K	302
I.4	Structure of Synthetic Lethality Resampling	303
J.1	Derformance of 2 and CLIDT across quantiles	304
	Performance of χ^2 and SLIPT across quantiles	
J.2	Performance of χ^2 and SLIPT across quantiles	306
J.3	Performance of χ^2 and SLIPT across quantiles with more genes	308
J.4	Performance of χ^2 and SLIPT across quantiles with query correlation .	310
J.5	Performance of χ^2 and SLIPT across quantiles with query correlation .	312
J.6	Performance of χ^2 and SLIPT across quantiles with query correlation	04.4
	and more genes	314
K.1	Performance of simulations on a simple graph	317
K.2	Performance of simulations on an inhibiting graph	318
K.3	Performance of simulations on a constructed graph with inhibition	319
K.4	Performance of simulations on a constructed graph with inhibition	320
K.5	Detection of Synthetic Lethality within a Graph Structure	320
	Detection of Synthetic Lethality within an Inhibiting Graph Structure.	321
0.71	- Detection of Symmetic Lethanty within an inhibiting Gradii Structure .	0.20

K.7	Detection of Synthetic Lethality within an Inhibiting Graph Structure.	324
K.8	Performance of simulations on a branching graph	325
K.9	Performance of simulations on a complex graph	326
K.10	Performance of simulations on a large graph	327
K.11	Performance of simulations on a branching graph with inhibition	328
K.12	Performance of simulations on a branching graph with inhibition	329
K.13	Performance of simulations on a complex graph with inhibition	330
K.14	Performance of simulations on a complex graph with inhibition	331
K.15	Performance of simulations on a large constructed graph with inhibition	332
K.16	Performance of simulations on a large constructed graph with inhibition	333
K.17	Performance of simulations on the $G_{\alpha i}$ signalling pathway	334
K.18	Performance of simulations including the $G_{\alpha i}$ signalling pathway	335

List of Tables

1.1	Methods for Predicting Genetic Interactions	27
1.2	Methods for Predicting Synthetic Lethality in Cancer	28
1.3	Methods used by Wu et al. (2014)	29
2.1	Excluded Samples by Batch and Clinical Characteristics	47
2.2	Computers used during Thesis	57
2.3	Linux Utilities and Applications used during Thesis	58
2.4	R Installations used during Thesis	59
2.5	R Packages used during Thesis	59
2.6	R Packages Developed during Thesis	61
4.1	Candidate synthetic lethal gene partners of $\mathit{CDH1}$ from SLIPT	103
4.2	Pathways for <i>CDH1</i> partners from SLIPT	105
4.3	Pathway composition for clusters of $\mathit{CDH1}$ partners from SLIPT	109
4.4	Analysis of variance (ANOVA) for Synthetic Lethality and Correlation	
	with <i>CDH1</i>	113
4.5	Comparing SLIPT genes against secondary siRNA screen in breast cancer	116
4.6	Pathway composition for <i>CDH1</i> partners from SLIPT and siRNA screen-	
	ing	118
4.7	Pathways for <i>CDH1</i> partners from SLIPT	121
4.8	Pathways for $CDH1$ partners from SLIPT and siRNA primary screen .	123
4.9	Candidate synthetic lethal metagenes against $CDH1$ from SLIPT	132
5.1	ANOVA for Synthetic Lethality and Vertex Degree	149
5.2	ANOVA for Synthetic Lethality and Information Centrality	151
5.3	ANOVA for Synthetic Lethality and PageRank Centrality	153
5.4	ANOVA for Synthetic Lethality and PI3K Hierarchy	156
5.5	Resampling for pathway structure of synthetic lethal detection methods	160
B.1	R Packages used during Thesis	247
C.1	Candidate synthetic lethal gene partners of $\mathit{CDH1}$ from mtSLIPT	257
C.2	Pathways for <i>CDH1</i> partners from mtSLIPT	258
C.3	Pathway composition for clusters of $\mathit{CDH1}$ partners from mtSLIPT	261
C.4	Pathway composition for $\mathit{CDH1}$ partners from mtSLIPT and siRNA	263
C.5	Pathways for <i>CDH1</i> partners from mtSLIPT	264
C.6	Pathways for $CDH1$ partners from mtSLIPT and siRNA primary screen	265
C.7	Candidate synthetic lethal metagenes against CDH1 from mtSLIPT	268

D.1	Comparison of Intrinsic Subtypes	275
E.1	Synthetic lethal gene partners of <i>CDH1</i> from SLIPT in stomach cancer	277
E.2	Pathways for <i>CDH1</i> partners from SLIPT in stomach cancer	278
E.3	Pathway composition for clusters of CDH1 partners in stomach SLIPT	280
E.4	Pathway composition for CDH1 partners from SLIPT and siRNA screen-	
	ing	282
E.5	Pathways for <i>CDH1</i> partners from SLIPT in stomach cancer	283
E.6	Pathways for CDH1 partners from SLIPT in stomach and siRNA screen	284
E.7	Candidate synthetic lethal metagenes against CDH1 from SLIPT in	
	stomach cancer	285
G.1	ANOVA for Synthetic Lethality and Vertex Degree	297
	ANOVA for Synthetic Lethality and Information Centrality	
	ANOVA for Synthetic Lethality and PageRank Centrality	
TT 1	I for the second of the form of the last of the December of the last of the last of the December of the De	200
П.1	Information centrality for genes and molecules in the Reactome network	299
I.1	ANOVA for Synthetic Lethality and PI3K Hierarchy	301
I.2	Resampling for pathway structure of synthetic lethal detection methods	
	r G r r	

Glossary

RNA-Seq Transcriptome data from sequencing RNA.

synthetic lethal Genetic interactions where inactivation of

multiple genes is inviable (or deleterious) which are viable if inactivated separately.

Acronyms

ANOVA Analysis of Variance.

mRNA Messenger ribonucleic acid.

mtSLIPT Synthetic Lethal Interaction Prediction Tool

(with respect to mutation).

PAM50 Prediction Analysis of Microarray 50.

RNA Ribonucleic acid.

siRNA Short interfering ribonucleic acid.

SLIPT Synthetic lethal interaction prediction tool.

TCGA The Cancer Genome Atlas (genomics project).

UCSC University of California, Santa Cruz.

References

- Aarts, M., Bajrami, I., Herrera-Abreu, M.T., Elliott, R., Brough, R., Ashworth, A., Lord, C.J., and Turner, N.C. (2015) Functional genetic screen identifies increased sensitivity to weel inhibition in cells with defects in fanconi anemia and hr pathways. *Mol Cancer Ther*, **14**(4): 865–76.
- Adler, D. (2005) vioplot: Violin plot. R package version 0.2.
- Akobeng, A.K. (2007) Understanding diagnostic tests 3: receiver operating characteristic curves. *Acta Pdiatrica*, **96**(5): 644–647.
- American Cancer Society (2017) Genetics and cancer. https://www.cancer.org/cancer/cancer-causes/genetics.html. Accessed: 22/03/2017.
- Anjomshoaa, A., Lin, Y.H., Black, M.A., McCall, J.L., Humar, B., Song, S., Fukuzawa, R., Yoon, H.S., Holzmann, B., Friederichs, J., et al. (2008) Reduced expression of a gene proliferation signature is associated with enhanced malignancy in colon cancer. Br J Cancer, 99(6): 966–973.
- Araki, H., Knapp, C., Tsai, P., and Print, C. (2012) GeneSetDB: A comprehensive meta-database, statistical and visualisation framework for gene set analysis. *FEBS Open Bio*, **2**: 76–82.
- Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 25(1): 25–29.
- Ashworth, A. (2008) A synthetic lethal therapeutic approach: poly(adp) ribose polymerase inhibitors for the treatment of cancers deficient in dna double-strand break repair. *J Clin Oncol*, **26**(22): 3785–90.
- Audeh, M.W., Carmichael, J., Penson, R.T., Friedlander, M., Powell, B., Bell-McGuinn, K.M., Scott, C., Weitzel, J.N., Oaknin, A., Loman, N., et al. (2010) Oral

- poly(adp-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet, **376**(9737): 245–51.
- Babyak, M.A. (2004) What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. *Psychosom Med*, **66**(3): 411–21.
- Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., Flanagan, A., Teague, J., Futreal, P.A., Stratton, M.R., et al. (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer, 91(2): 355–358.
- Barabási, A.L. and Albert, R. (1999) Emergence of scaling in random networks. *Science*, **286**(5439): 509–12.
- Barabási, A.L., Gulbahce, N., and Loscalzo, J. (2011) Network medicine: a network-based approach to human disease. *Nat Rev Genet*, **12**(1): 56–68.
- Barabási, A.L. and Oltvai, Z.N. (2004) Network biology: understanding the cell's functional organization. *Nat Rev Genet*, **5**(2): 101–13.
- Barrat, A. and Weigt, M. (2000) On the properties of small-world network models. The European Physical Journal B - Condensed Matter and Complex Systems, 13(3): 547–560.
- Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehar, J., Kryukov, G.V., Sonkin, D., et al. (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483(7391): 603–607.
- Barry, W.T. (2016) safe: Significance Analysis of Function and Expression. R package version 3.14.0.
- Baryshnikova, A., Costanzo, M., Dixon, S., Vizeacoumar, F.J., Myers, C.L., Andrews, B., and Boone, C. (2010a) Synthetic genetic array (sga) analysis in saccharomyces cerevisiae and schizosaccharomyces pombe. *Methods Enzymol*, **470**: 145–79.
- Baryshnikova, A., Costanzo, M., Kim, Y., Ding, H., Koh, J., Toufighi, K., Youn, J.Y., Ou, J., San Luis, B.J., Bandyopadhyay, S., et al. (2010b) Quantitative analysis of

- fitness and genetic interactions in yeast on a genome scale. Nat Meth, 7(12): 1017–1024.
- Bass, A.J., Thorsson, V., Shmulevich, I., Reynolds, S.M., Miller, M., Bernard, B., Hinoue, T., Laird, P.W., Curtis, C., Shen, H., et al. (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 513(7517): 202–209.
- Bates, D. and Maechler, M. (2016) Matrix: Sparse and Dense Matrix Classes and Methods. R package version 1.2-7.1.
- Bateson, W. and Mendel, G. (1909) Mendel's principles of heredity, by W. Bateson. University Press, Cambridge [Eng.].
- Becker, K.F., Atkinson, M.J., Reich, U., Becker, I., Nekarda, H., Siewert, J.R., and Hfler, H. (1994) E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. *Cancer Research*, **54**(14): 3845–3852.
- Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., et al. (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353): 609–615.
- Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society Series B (Methodological)*, **57**(1): 289–300.
- Berx, G., Cleton-Jansen, A.M., Nollet, F., de Leeuw, W.J., van de Vijver, M., Cornelisse, C., and van Roy, F. (1995) E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. *EMBO J*, **14**(24): 6107–15.
- Berx, G., Cleton-Jansen, A.M., Strumane, K., de Leeuw, W.J., Nollet, F., van Roy, F., and Cornelisse, C. (1996) E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. *Oncogene*, **13**(9): 1919–25.
- Berx, G. and van Roy, F. (2009) Involvement of members of the cadherin superfamily in cancer. *Cold Spring Harb Perspect Biol*, **1**: a003129.
- Bitler, B.G., Aird, K.M., Garipov, A., Li, H., Amatangelo, M., Kossenkov, A.V., Schultz, D.C., Liu, Q., Shih Ie, M., Conejo-Garcia, J.R., *et al.* (2015) Synthetic lethality by targeting ezh2 methyltransferase activity in arid1a-mutated cancers. *Nat Med*, **21**(3): 231–8.

- Blake, J.A., Christie, K.R., Dolan, M.E., Drabkin, H.J., Hill, D.P., Ni, L., Sitnikov, D., Burgess, S., Buza, T., Gresham, C., et al. (2015) Gene Ontology Consortium: going forward. *Nucleic Acids Res*, **43**(Database issue): D1049–1056.
- Boettcher, M., Lawson, A., Ladenburger, V., Fredebohm, J., Wolf, J., Hoheisel, J.D., Frezza, C., and Shlomi, T. (2014) High throughput synthetic lethality screen reveals a tumorigenic role of adenylate cyclase in fumarate hydratase-deficient cancer cells. *BMC Genomics*, **15**: 158.
- Boone, C., Bussey, H., and Andrews, B.J. (2007) Exploring genetic interactions and networks with yeast. *Nat Rev Genet*, **8**(6): 437–49.
- Borgatti, S.P. (2005) Centrality and network flow. Social Networks, 27(1): 55 71.
- Boucher, B. and Jenna, S. (2013) Genetic interaction networks: better understand to better predict. *Front Genet*, **4**: 290.
- Bozovic-Spasojevic, I., Azambuja, E., McCaskill-Stevens, W., Dinh, P., and Cardoso, F. (2012) Chemoprevention for breast cancer. *Cancer treatment reviews*, **38**(5): 329–339.
- Breiman, L. (2001) Random forests. Machine Learning, 45(1): 5–32.
- Brin, S. and Page, L. (1998) The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, **30**(1): 107 117.
- Brouxhon, S.M., Kyrkanides, S., Teng, X., Athar, M., Ghazizadeh, S., Simon, M., O'Banion, M.K., and Ma, L. (2014) Soluble E-cadherin: a critical oncogene modulating receptor tyrosine kinases, MAPK and PI3K/Akt/mTOR signaling. *Oncogene*, **33**(2): 225–235.
- Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T. (2005) Specific killing of *BRCA2*-deficient tumours with inhibitors of polyadpribose polymerase. *Nature*, **434**(7035): 913–7.
- Bussey, H., Andrews, B., and Boone, C. (2006) From worm genetic networks to complex human diseases. *Nat Genet*, **38**(8): 862–3.

- Butland, G., Babu, M., Diaz-Mejia, J.J., Bohdana, F., Phanse, S., Gold, B., Yang, W., Li, J., Gagarinova, A.G., Pogoutse, O., et al. (2008) esga: E. coli synthetic genetic array analysis. Nat Methods, 5(9): 789–95.
- cBioPortal for Cancer Genomics (cBioPortal) (2017) cBioPortal for Cancer Genomics. http://www.cbioportal.org/. Accessed: 26/03/2017.
- Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., Schultz, N., Bader, G.D., and Sander, C. (2011) Pathway Commons, a web resource for biological pathway data. *Nucleic Acids Res*, 39(Database issue): D685–690.
- Chen, A., Beetham, H., Black, M.A., Priya, R., Telford, B.J., Guest, J., Wiggins, G.A.R., Godwin, T.D., Yap, A.S., and Guilford, P.J. (2014) E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. *BMC Cancer*, **14**(1): 552.
- Chen, S. and Parmigiani, G. (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol, 25(11): 1329–1333.
- Chen, X. and Tompa, M. (2010) Comparative assessment of methods for aligning multiple genome sequences. *Nat Biotechnol*, **28**(6): 567–572.
- Chipman, K. and Singh, A. (2009) Predicting genetic interactions with random walks on biological networks. BMC Bioinformatics, $\mathbf{10}(1)$: 17.
- Christofori, G. and Semb, H. (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. *Trends in Biochemical Sciences*, **24**(2): 73 76.
- Ciriello, G., Gatza, M.L., Beck, A.H., Wilkerson, M.D., Rhie, S.K., Pastore, A., Zhang, H., McLellan, M., Yau, C., Kandoth, C., et al. (2015) Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 163(2): 506–519.
- Clark, M.J. (2004) Endogenous Regulator of G Protein Signaling Proteins Suppress G o-Dependent -Opioid Agonist-Mediated Adenylyl Cyclase Supersensitization.

 Journal of Pharmacology and Experimental Therapeutics, 310(1): 215–222.
- Clough, E. and Barrett, T. (2016) The Gene Expression Omnibus Database. *Methods Mol Biol*, **1418**: 93–110.
- Collingridge, D.S. (2013) A primer on quantitized data analysis and permutation testing. *Journal of Mixed Methods Research*, **7**(1): 81–97.

- Collins, F.S. and Barker, A.D. (2007) Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. *Sci Am*, **296**(3): 50–57.
- Collisson, E., Campbell, J., Brooks, A., Berger, A., Lee, W., Chmielecki, J., Beer, D., Cope, L., Creighton, C., Danilova, L., et al. (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature, 511(7511): 543–550.
- Corcoran, R.B., Ebi, H., Turke, A.B., Coffee, E.M., Nishino, M., Cogdill, A.P., Brown, R.D., Della Pelle, P., Dias-Santagata, D., Hung, K.E., et al. (2012) Egfr-mediated reactivation of mapk signaling contributes to insensitivity of BRAF-mutant colorectal cancers to raf inhibition with vemurafenib. Cancer Discovery, 2(3): 227–235.
- Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L., Toufighi, K., Mostafavi, S., et al. (2010) The genetic landscape of a cell. Science, 327(5964): 425–31.
- Costanzo, M., Baryshnikova, A., Myers, C.L., Andrews, B., and Boone, C. (2011) Charting the genetic interaction map of a cell. *Curr Opin Biotechnol*, **22**(1): 66–74.
- Courtney, K.D., Corcoran, R.B., and Engelman, J.A. (2010) The PI3K pathway as drug target in human cancer. *J Clin Oncol*, **28**(6): 1075–1083.
- Croft, D., Mundo, A.F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M.R., et al. (2014) The Reactome pathway knowledge-base. *Nucleic Acids Res*, **42**(database issue): D472D477.
- Crunkhorn, S. (2014) Cancer: Predicting synthetic lethal interactions. *Nat Rev Drug Discov*, **13**(11): 812.
- Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research. *InterJournal*, Complex Systems: 1695.
- Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., and Shi, B. (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. *Am J Cancer Res*, **5**(10): 2929–2943.
- Davierwala, A.P., Haynes, J., Li, Z., Brost, R.L., Robinson, M.D., Yu, L., Mnaimneh, S., Ding, H., Zhu, H., Chen, Y., et al. (2005) The synthetic genetic interaction spectrum of essential genes. Nat Genet, 37(10): 1147–1152.

- De Leeuw, W.J., Berx, G., Vos, C.B., Peterse, J.L., Van de Vijver, M.J., Litvinov, S., Van Roy, F., Cornelisse, C.J., and Cleton-Jansen, A.M. (1997) Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. *J Pathol*, **183**(4): 404–11.
- De Santis, G., Miotti, S., Mazzi, M., Canevari, S., and Tomassetti, A. (2009) E-cadherin directly contributes to PI3K/AKT activation by engaging the PI3K-p85 regulatory subunit to adherens junctions of ovarian carcinoma cells. *Oncogene*, **28**(9): 1206–1217.
- Demir, E., Babur, O., Rodchenkov, I., Aksoy, B.A., Fukuda, K.I., Gross, B., Sumer, O.S., Bader, G.D., and Sander, C. (2013) Using biological pathway data with Paxtools. *PLoS Comput Biol*, **9**(9): e1003194.
- Deshpande, R., Asiedu, M.K., Klebig, M., Sutor, S., Kuzmin, E., Nelson, J., Piotrowski, J., Shin, S.H., Yoshida, M., Costanzo, M., et al. (2013) A comparative genomic approach for identifying synthetic lethal interactions in human cancer. Cancer Res, 73(20): 6128–36.
- Dickson, D. (1999) Wellcome funds cancer database. Nature, 401(6755): 729.
- Dienstmann, R. and Tabernero, J. (2011) *BRAF* as a target for cancer therapy. *Anti*cancer Agents Med Chem, **11**(3): 285–95.
- Dijkstra, E.W. (1959) A note on two problems in connexion with graphs. *Numerische Mathematik*, **1**(1): 269–271.
- Dixon, S.J., Andrews, B.J., and Boone, C. (2009) Exploring the conservation of synthetic lethal genetic interaction networks. *Commun Integr Biol*, **2**(2): 78–81.
- Dixon, S.J., Fedyshyn, Y., Koh, J.L., Prasad, T.S., Chahwan, C., Chua, G., Toufighi, K., Baryshnikova, A., Hayles, J., Hoe, K.L., et al. (2008) Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natl Acad Sci U S A, 105(43): 16653–8.
- Dong, L.L., Liu, L., Ma, C.H., Li, J.S., Du, C., Xu, S., Han, L.H., Li, L., and Wang, X.W. (2012) E-cadherin promotes proliferation of human ovarian cancer cells in vitro via activating MEK/ERK pathway. *Acta Pharmacol Sin*, **33**(6): 817–822.
- Dorogovtsev, S.N. and Mendes, J.F. (2003) Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press, USA.

- Dorsam, R.T. and Gutkind, J.S. (2007) G-protein-coupled receptors and cancer. *Nat Rev Cancer*, **7**(2): 79–94.
- Erdős, P. and Rényi, A. (1959) On random graphs I. Publ Math Debrecen, 6: 290–297.
- Erdős, P. and Rényi, A. (1960) On the evolution of random graphs. In *Publ. Math. Inst. Hung. Acad. Sci.*, volume 5, 17–61.
- Eroles, P., Bosch, A., Perez-Fidalgo, J.A., and Lluch, A. (2012) Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. *Cancer Treat Rev*, **38**(6): 698–707.
- Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., et al. (2005) Targeting the dna repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035): 917–21.
- Fawcett, T. (2006) An introduction to ROC analysis. *Pattern Recognition Letters*, **27**(8): 861 874. {ROC} Analysis in Pattern Recognition.
- Fece de la Cruz, F., Gapp, B.V., and Nijman, S.M. (2015) Synthetic lethal vulnerabilities of cancer. *Annu Rev Pharmacol Toxicol*, **55**: 513–531.
- Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., and Bray, F. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. *Int J Cancer*, 136(5): E359–386.
- Fisher, R.A. (1919) Xv.the correlation between relatives on the supposition of mendelian inheritance. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, **52**(02): 399–433.
- Fong, P.C., Boss, D.S., Yap, T.A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., Swaisland, H., Lau, A., O'Connor, M.J., et al. (2009) Inhibition of poly(adpribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med, 361(2): 123–34.
- Fong, P.C., Yap, T.A., Boss, D.S., Carden, C.P., Mergui-Roelvink, M., Gourley, C., De Greve, J., Lubinski, J., Shanley, S., Messiou, C., et al. (2010) Poly(adp)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol, 28(15): 2512–9.

- Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., et al. (2015) COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res, 43(Database issue): D805–811.
- Fraser, A. (2004) Towards full employment: using RNAi to find roles for the redundant. Oncogene, 23(51): 8346–52.
- Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N., and Stratton, M.R. (2004) A census of human cancer genes. *Nat Rev Cancer*, 4(3): 177–183.
- Futreal, P.A., Kasprzyk, A., Birney, E., Mullikin, J.C., Wooster, R., and Stratton, M.R. (2001) Cancer and genomics. *Nature*, **409**(6822): 850–852.
- Gao, B. and Roux, P.P. (2015) Translational control by oncogenic signaling pathways. Biochimica et Biophysica Acta, 1849(7): 753–65.
- Gatza, M.L., Kung, H.N., Blackwell, K.L., Dewhirst, M.W., Marks, J.R., and Chi, J.T. (2011) Analysis of tumor environmental response and oncogenic pathway activation identifies distinct basal and luminal features in HER2-related breast tumor subtypes. *Breast Cancer Res*, **13**(3): R62.
- Gatza, M.L., Lucas, J.E., Barry, W.T., Kim, J.W., Wang, Q., Crawford, M.D., Datto, M.B., Kelley, M., Mathey-Prevot, B., Potti, A., et al. (2010) A pathway-based classification of human breast cancer. Proc Natl Acad Sci USA, 107(15): 6994–6999.
- Gatza, M.L., Silva, G.O., Parker, J.S., Fan, C., and Perou, C.M. (2014) An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. *Nat Genet*, **46**(10): 1051–1059.
- Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol, 5(10): R80.
- Genz, A. and Bretz, F. (2009) Computation of multivariate normal and t probabilities. In *Lecture Notes in Statistics*, volume 195. Springer-Verlag, Heidelberg.
- Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., and Hothorn, T. (2016) mvtnorm: Multivariate Normal and t Distributions. R package version 1.0-5. URL.

- Glaire, M.A., Brown, M., Church, D.N., and Tomlinson, I. (2017) Cancer predisposition syndromes: lessons for truly precision medicine. *J Pathol*, **241**(2): 226–235.
- Globus (Globus) (2017) Research data management simplified. https://www.globus.org/. Accessed: 25/03/2017.
- Goodwin, S., McPherson, J.D., and McCombie, W.R. (2016) Coming of age: ten years of next-generation sequencing technologies. *Nat Rev Genet*, **17**(6): 333–351.
- Grady, W.M., Willis, J., Guilford, P.J., Dunbier, A.K., Toro, T.T., Lynch, H., Wiesner, G., Ferguson, K., Eng, C., Park, J.G., et al. (2000) Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet, 26(1): 16–17.
- Graziano, F., Humar, B., and Guilford, P. (2003) The role of the E-cadherin gene (*CDH1*) in diffuse gastric cancer susceptibility: from the laboratory to clinical practice. *Annals of Oncology*, **14**(12): 1705–1713.
- Güell, O., Sagus, F., and Serrano, M. (2014) Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis. *PLoS Comput Biol*, **10**(5): e1003637.
- Guilford, P. (1999) E-cadherin downregulation in cancer: fuel on the fire? Molecular $Medicine\ Today,\ 5(4):\ 172-177.$
- Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P., Taite, H., Scoular, R., Miller, A., and Reeve, A.E. (1998) E-cadherin germline mutations in familial gastric cancer. *Nature*, 392(6674): 402–5.
- Guilford, P., Humar, B., and Blair, V. (2010) Hereditary diffuse gastric cancer: translation of *CDH1* germline mutations into clinical practice. *Gastric Cancer*, **13**(1): 1–10.
- Guilford, P.J., Hopkins, J.B., Grady, W.M., Markowitz, S.D., Willis, J., Lynch, H., Rajput, A., Wiesner, G.L., Lindor, N.M., Burgart, L.J., et al. (1999) E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Hum Mutat, 14(3): 249–55.
- Guo, J., Liu, H., and Zheng, J. (2016) SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. *Nucleic Acids Res*, 44(D1): D1011–1017.

- Hajian-Tilaki, K. (2013) Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. *Caspian J Intern Med*, 4(2): 627–635.
- Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I.H. (2009) The weka data mining software: an update. *SIGKDD Explor Newsl*, **11**(1): 10–18.
- Hammerman, P.S., Lawrence, M.S., Voet, D., Jing, R., Cibulskis, K., Sivachenko, A., Stojanov, P., McKenna, A., Lander, E.S., Gabriel, S., et al. (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489(7417): 519–525.
- Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100(1): 57–70.
- Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation. *Cell*, **144**(5): 646–674.
- Hanna, S. (2003) Cancer incidence in new zealand (2003-2007). In D. Forman, D. Bray
 F Brewster, C. Gombe Mbalawa, B. Kohler, M. Piñeros, E. Steliarova-Foucher,
 R. Swaminathan, and J. Ferlay (editors), Cancer Incidence in Five Continents,
 volume X, 902-907. International Agency for Research on Cancer, Lyon, France.
 Electronic version http://ci5.iarc.fr Accessed 22/03/2017.
- Hansford, S., Kaurah, P., Li-Chang, H., Woo, M., Senz, J., Pinheiro, H., Schrader, K.A., Schaeffer, D.F., Shumansky, K., Zogopoulos, G., et al. (2015) Hereditary Diffuse Gastric Cancer Syndrome: CDH1 Mutations and Beyond. JAMA Oncol, 1(1): 23–32.
- Heiskanen, M., Bian, X., Swan, D., and Basu, A. (2014) caArray microarray database in the cancer biomedical informatics gridTM (caBIGTM). Cancer Research, **67**(9 Supplement): 3712–3712.
- Heiskanen, M.A. and Aittokallio, T. (2012) Mining high-throughput screens for cancer drug targets-lessons from yeast chemical-genomic profiling and synthetic lethality. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(3): 263–272.
- Hell, P. (1976) Graphs with given neighbourhoods i. problémes combinatorics at theorie des graphes. *Proc Coil Int CNRS, Orsay,* **260**: 219–223.

- Hillenmeyer, M.E. (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. *Science*, **320**: 362–365.
- Hoadley, K.A., Yau, C., Wolf, D.M., Cherniack, A.D., Tamborero, D., Ng, S., Leiserson, M.D., Niu, B., McLellan, M.D., Uzunangelov, V., et al. (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell, 158(4): 929–944.
- Hoehndorf, R., Hardy, N.W., Osumi-Sutherland, D., Tweedie, S., Schofield, P.N., and Gkoutos, G.V. (2013) Systematic analysis of experimental phenotype data reveals gene functions. *PLoS ONE*, **8**(4): e60847.
- Holm, S. (1979) A simple sequentially rejective multiple test procedure. *Scandinavian Journal of Statistics*, **6**(2): 65–70.
- Holme, P. and Kim, B.J. (2002) Growing scale-free networks with tunable clustering. *Physical Review E*, **65**(2): 026107.
- Hopkins, A.L. (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol, 4(11): 682–690.
- Hu, Z., Fan, C., Oh, D.S., Marron, J.S., He, X., Qaqish, B.F., Livasy, C., Carey, L.A., Reynolds, E., Dressler, L., et al. (2006) The molecular portraits of breast tumors are conserved across microarray platforms. *BMC Genomics*, 7: 96.
- Huang, E., Cheng, S., Dressman, H., Pittman, J., Tsou, M., Horng, C., Bild, A., Iversen, E., Liao, M., Chen, C., et al. (2003) Gene expression predictors of breast cancer outcomes. *Lancet*, **361**: 1590–1596.
- International HapMap 3 Consortium (HapMap) (2003) The International HapMap Project. *Nature*, **426**(6968): 789–796.
- Jeanes, A., Gottardi, C.J., and Yap, A.S. (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? *Oncogene*, **27**(55): 6920–6929.
- Jerby-Arnon, L., Pfetzer, N., Waldman, Y., McGarry, L., James, D., Shanks, E., Seashore-Ludlow, B., Weinstock, A., Geiger, T., Clemons, P., et al. (2014) Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell, 158(5): 1199–1209.

- Joachims, T. (1999) Making large-scale support vector machine learning practical. In S. Bernhard, lkopf, J.C.B. Christopher, and J.S. Alexander (editors), Advances in kernel methods, 169–184. MIT Press.
- Ju, Z., Liu, W., Roebuck, P.L., Siwak, D.R., Zhang, N., Lu, Y., Davies, M.A., Akbani, R., Weinstein, J.N., Mills, G.B., et al. (2015) Development of a robust classifier for quality control of reverse-phase protein arrays. Bioinformatics, 31(6): 912.
- Kaelin, Jr, W. (2005) The concept of synthetic lethality in the context of anticancer therapy. *Nat Rev Cancer*, **5**(9): 689–98.
- Kaelin, Jr, W. (2009) Synthetic lethality: a framework for the development of wiser cancer therapeutics. *Genome Med*, 1: 99.
- Kamada, T. and Kawai, S. (1989) An algorithm for drawing general undirected graphs. *Information Processing Letters*, **31**(1): 7–15.
- Kelley, R. and Ideker, T. (2005) Systematic interpretation of genetic interactions using protein networks. *Nat Biotech*, **23**(5): 561–566.
- Kelly, S.T. (2013) Statistical Predictions of Synthetic Lethal Interactions in Cancer. Dissertation, University of Otago.
- Kelly, S.T., Single, A.B., Telford, B.J., Beetham, H.G., Godwin, T.D., Chen, A., Black, M.A., and Guilford, P.J. (unpublished) Towards HDGC chemoprevention: vulnerabilities in E-cadherin-negative cells identified by genome-wide interrogation of isogenic cell lines and whole tumors. Submitted to *Cancer Prev Res*.
- Kim, N.G., Koh, E., Chen, X., and Gumbiner, B.M. (2011) E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. *Proc Natl Acad Sci USA*, **108**(29): 11930–11935.
- Kozlov, K.N., Gursky, V.V., Kulakovskiy, I.V., and Samsonova, M.G. (2015) Sequence-based model of gap gene regulation network. *BMC Genomics*, **15**(Suppl 12): S6.
- Kranthi, S., Rao, S., and Manimaran, P. (2013) Identification of synthetic lethal pairs in biological systems through network information centrality. *Mol BioSyst*, **9**(8): 2163–2167.
- Kroepil, F., Fluegen, G., Totikov, Z., Baldus, S.E., Vay, C., Schauer, M., Topp, S.A., Esch, J.S., Knoefel, W.T., and Stoecklein, N.H. (2012) Down-regulation of CDH1

- is associated with expression of SNAI1 in colorectal adenomas. *PLoS ONE*, **7**(9): e46665.
- Lander, E.S. (2011) Initial impact of the sequencing of the human genome. *Nature*, 470(7333): 187–197.
- Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001) Initial sequencing and analysis of the human genome. *Nature*, **409**(6822): 860–921.
- Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol*, **10**(3): R25.
- Latora, V. and Marchiori, M. (2001) Efficient behavior of small-world networks. Phys Rev Lett, 87: 198701.
- Laufer, C., Fischer, B., Billmann, M., Huber, W., and Boutros, M. (2013) Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping. *Nat Methods*, **10**(5): 427–31.
- Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. *Genome Biol*, **15**(2): R29.
- Le Meur, N. and Gentleman, R. (2008) Modeling synthetic lethality. *Genome Biol*, **9**(9): R135.
- Le Meur, N., Jiang, Z., Liu, T., Mar, J., and Gentleman, R.C. (2014) Slgi: Synthetic lethal genetic interaction. r package version 1.26.0.
- Lee, A.Y., Perreault, R., Harel, S., Boulier, E.L., Suderman, M., Hallett, M., and Jenna, S. (2010a) Searching for signaling balance through the identification of genetic interactors of the rab guanine-nucleotide dissociation inhibitor gdi-1. *PLoS ONE*, **5**(5): e10624.
- Lee, I., Lehner, B., Vavouri, T., Shin, J., Fraser, A.G., and Marcotte, E.M. (2010b) Predicting genetic modifier loci using functional gene networks. *Genome Research*, **20**(8): 1143–1153.
- Lee, I. and Marcotte, E.M. (2009) Effects of functional bias on supervised learning of a gene network model. *Methods Mol Biol*, **541**: 463–75.

- Lee, M.J., Ye, A.S., Gardino, A.K., Heijink, A.M., Sorger, P.K., MacBeath, G., and Yaffe, M.B. (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. *Cell*, **149**(4): 780–94.
- Lehner, B., Crombie, C., Tischler, J., Fortunato, A., and Fraser, A.G. (2006) Systematic mapping of genetic interactions in caenorhabditis elegans identifies common modifiers of diverse signaling pathways. *Nat Genet*, **38**(8): 896–903.
- Li, X.J., Mishra, S.K., Wu, M., Zhang, F., and Zheng, J. (2014) Syn-lethality: An integrative knowledge base of synthetic lethality towards discovery of selective anticancer therapies. *Biomed Res Int*, **2014**: 196034.
- Lokody, I. (2014) Computational modelling: A computational crystal ball. *Nature Reviews Cancer*, **14**(10): 649–649.
- Lord, C.J., Tutt, A.N., and Ashworth, A. (2015) Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. *Annu Rev Med*, **66**: 455–470.
- Lu, X., Kensche, P.R., Huynen, M.A., and Notebaart, R.A. (2013) Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets.

 Nat Commun, 4: 2124.
- Lu, X., Megchelenbrink, W., Notebaart, R.A., and Huynen, M.A. (2015) Predicting human genetic interactions from cancer genome evolution. *PLoS One*, **10**(5): e0125795.
- Lum, P.Y., Armour, C.D., Stepaniants, S.B., Cavet, G., Wolf, M.K., Butler, J.S., Hinshaw, J.C., Garnier, P., Prestwich, G.D., Leonardson, A., et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell, 116(1): 121–137.
- Luo, J., Solimini, N.L., and Elledge, S.J. (2009) Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction. *Cell*, **136**(5): 823–837.
- Machado, J., Olivera, C., Carvalh, R., Soares, P., Berx, G., Caldas, C., Sercuca, R., Carneiro, F., and Sorbrinho-Simoes, M. (2001) E-cadherin gene (*CDH1*) promoter methylation as the second hit in sporadic diffuse gastric carcinoma. *Oncogene*, 20: 1525–1528.

- Markowetz, F. (2017) All biology is computational biology. *PLoS Biol*, **15**(3): e2002050.
- Masciari, S., Larsson, N., Senz, J., Boyd, N., Kaurah, P., Kandel, M.J., Harris, L.N., Pinheiro, H.C., Troussard, A., Miron, P., et al. (2007) Germline E-cadherin mutations in familial lobular breast cancer. J Med Genet, 44(11): 726–31.
- Mattison, J., van der Weyden, L., Hubbard, T., and Adams, D.J. (2009) Cancer gene discovery in mouse and man. *Biochim Biophys Acta*, **1796**(2): 140–161.
- McLachlan, J., George, A., and Banerjee, S. (2016) The current status of parp inhibitors in ovarian cancer. *Tumori*, **102**(5): 433–440.
- McLendon, R., Friedman, A., Bigner, D., Van Meir, E.G., Brat, D.J., Mastrogianakis, G.M., Olson, J.J., Mikkelsen, T., Lehman, N., Aldape, K., et al. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. *Nature*, **455**(7216): 1061–1068.
- Miles, D.W. (2001) Update on HER-2 as a target for cancer therapy: herceptin in the clinical setting. *Breast Cancer Res*, **3**(6): 380–384.
- Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat Methods*, **5**(7): 621–628.
- Muzny, D.M., Bainbridge, M.N., Chang, K., Dinh, H.H., Drummond, J.A., Fowler, G., Kovar, C.L., Lewis, L.R., Morgan, M.B., Newsham, I.F., et al. (2012) Comprehensive molecular characterization of human colon and rectal cancer. *Nature*, **487**(7407): 330–337.
- Nagalla, S., Chou, J.W., Willingham, M.C., Ruiz, J., Vaughn, J.P., Dubey, P., Lash, T.L., Hamilton-Dutoit, S.J., Bergh, J., Sotiriou, C., et al. (2013) Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol, 14(4): R34.
- Neeley, E.S., Kornblau, S.M., Coombes, K.R., and Baggerly, K.A. (2009) Variable slope normalization of reverse phase protein arrays. *Bioinformatics*, **25**(11): 1384.
- Novomestky, F. (2012) matrixcalc: Collection of functions for matrix calculations. R package version 1.0-3.

- Oliveira, C., Senz, J., Kaurah, P., Pinheiro, H., Sanges, R., Haegert, A., Corso, G., Schouten, J., Fitzgerald, R., Vogelsang, H., et al. (2009) Germline CDH1 deletions in hereditary diffuse gastric cancer families. Human Molecular Genetics, 18(9): 1545–1555.
- Oliveira, C., Seruca, R., Hoogerbrugge, N., Ligtenberg, M., and Carneiro, F. (2013) Clinical utility gene card for: Hereditary diffuse gastric cancer (HDGC). Eur J Hum Genet, 21(8).
- Pandey, G., Zhang, B., Chang, A.N., Myers, C.L., Zhu, J., Kumar, V., and Schadt, E.E. (2010) An integrative multi-network and multi-classifier approach to predict genetic interactions. *PLoS Comput Biol*, **6**(9).
- Parker, J., Mullins, M., Cheung, M., Leung, S., Voduc, D., Vickery, T., Davies, S., Fauron, C., He, X., Hu, Z., et al. (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. *Journal of Clinical Oncology*, **27**(8): 1160–1167.
- Pereira, B., Chin, S.F., Rueda, O.M., Vollan, H.K., Provenzano, E., Bardwell, H.A., Pugh, M., Jones, L., Russell, R., Sammut, S.J., et al. (2016) Erratum: The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun, 7: 11908.
- Perou, C.M., Sørlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000) Molecular portraits of human breast tumours. Nature, 406(6797): 747–752.
- Polyak, K. and Weinberg, R.A. (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. *Nat Rev Cancer*, **9**(4): 265–73.
- Prahallad, A., Sun, C., Huang, S., Di Nicolantonio, F., Salazar, R., Zecchin, D., Beijersbergen, R.L., Bardelli, A., and Bernards, R. (2012) Unresponsiveness of colon cancer to *BRAF* (v600e) inhibition through feedback activation of egfr. *Nature*, **483**(7387): 100–3.
- R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R version 3.3.2.
- Ravnan, M.C. and Matalka, M.S. (2012) Vemurafenib in patients with *BRAF* v600e mutation-positive advanced melanoma. *Clin Ther*, **34**(7): 1474–86.

- Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Research*, **43**(7): e47.
- Robinson, M.D. and Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. *Genome Biol*, **11**(3): R25.
- Roguev, A., Bandyopadhyay, S., Zofall, M., Zhang, K., Fischer, T., Collins, S.R., Qu, H., Shales, M., Park, H.O., Hayles, J., et al. (2008) Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science, 322(5900): 405–10.
- Roychowdhury, S. and Chinnaiyan, A.M. (2016) Translating cancer genomes and transcriptomes for precision oncology. *CA Cancer J Clin*, **66**(1): 75–88.
- Rung, J. and Brazma, A. (2013) Reuse of public genome-wide gene expression data.

 Nat Rev Genet, 14(2): 89–99.
- Rustici, G., Kolesnikov, N., Brandizi, M., Burdett, T., Dylag, M., Emam, I., Farne, A., Hastings, E., Ison, J., Keays, M., et al. (2013) ArrayExpress update—trends in database growth and links to data analysis tools. Nucleic Acids Res, 41(Database issue): D987–990.
- Ryan, C., Lord, C., and Ashworth, A. (2014) Daisy: Picking synthetic lethals from cancer genomes. *Cancer Cell*, **26**(3): 306–308.
- Schena, M. (1996) Genome analysis with gene expression microarrays. *Bioessays*, **18**(5): 427–431.
- Scheuer, L., Kauff, N., Robson, M., Kelly, B., Barakat, R., Satagopan, J., Ellis, N., Hensley, M., Boyd, J., Borgen, P., et al. (2002) Outcome of preventive surgery and screening for breast and ovarian cancer in BRCA mutation carriers. *J Clin Oncol*, **20**(5): 1260–1268.
- Semb, H. and Christofori, G. (1998) The tumor-suppressor function of E-cadherin. *Am J Hum Genet*, **63**(6): 1588–93.
- Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2005) Rocr: visualizing classifier performance in r. *Bioinformatics*, **21**(20): 7881.

- Slurm development team (Slurm) (2017) Slurm workload manager. https://slurm.schedmd.com/. Accessed: 25/03/2017.
- Sørlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA, 98(19): 10869–10874.
- Stajich, J.E. and Lapp, H. (2006) Open source tools and toolkits for bioinformatics: significance, and where are we? *Brief Bioinformatics*, **7**(3): 287–296.
- Stratton, M.R., Campbell, P.J., and Futreal, P.A. (2009) The cancer genome. *Nature*, **458**(7239): 719–724.
- Ström, C. and Helleday, T. (2012) Strategies for the use of poly(adenosine diphosphate ribose) polymerase (parp) inhibitors in cancer therapy. *Biomolecules*, **2**(4): 635–649.
- Sun, C., Wang, L., Huang, S., Heynen, G.J.J.E., Prahallad, A., Robert, C., Haanen, J., Blank, C., Wesseling, J., Willems, S.M., et al. (2014) Reversible and adaptive resistance to BRAF(v600e) inhibition in melanoma. Nature, **508**(7494): 118–122.
- Telford, B.J., Chen, A., Beetham, H., Frick, J., Brew, T.P., Gould, C.M., Single, A., Godwin, T., Simpson, K.J., and Guilford, P. (2015) Synthetic lethal screens identify vulnerabilities in gpcr signalling and cytoskeletal organization in E-cadherin-deficient cells. *Mol Cancer Ther*, **14**(5): 1213–1223.
- The 1000 Genomes Project Consortium (1000 Genomes) (2010) A map of human genome variation from population-scale sequencing. *Nature*, **467**(7319): 1061–1073.
- The Cancer Genome Atlas Research Network (TCGA) (2012) Comprehensive molecular portraits of human breast tumours. *Nature*, **490**(7418): 61–70.
- The Cancer Genome Atlas Research Network (TCGA) (2017) The Cancer Genome Atlas Project. https://cancergenome.nih.gov/. Accessed: 26/03/2017.
- The Catalogue Of Somatic Mutations In Cancer (COSMIC) (2016) Cosmic: The catalogue of somatic mutations in cancer. http://cancer.sanger.ac.uk/cosmic. Release 79 (23/08/2016), Accessed: 05/02/2017.
- The Comprehensive R Archive Network (CRAN) (2017) Cran. https://cran.r-project.org/. Accessed: 24/03/2017.

- The ENCODE Project Consortium (ENCODE) (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. *Science*, **306**(5696): 636–640.
- The National Cancer Institute (NCI) (2015) The genetics of cancer. https://www.cancer.gov/about-cancer/causes-prevention/genetics. Published: 22/04/2015, Accessed: 22/03/2017.
- The New Zealand eScience Infrastructure (NeSI) (2017) NeSI. https://www.nesi.org.nz/. Accessed: 25/03/2017.
- The Pharmaceutical Management Agency (PHARMAC) (2012) Ucsc cancer genomics browser. Accessed 29th March 2012.
- Tierney, L., Rossini, A.J., Li, N., and Sevcikova, H. (2015) snow: Simple Network of Workstations. R package version 0.4-2.
- Tiong, K.L., Chang, K.C., Yeh, K.T., Liu, T.Y., Wu, J.H., Hsieh, P.H., Lin, S.H., Lai, W.Y., Hsu, Y.C., Chen, J.Y., et al. (2014) Csnk1e/ctnnb1 are synthetic lethal to tp53 in colorectal cancer and are markers for prognosis. Neoplasia, 16(5): 441–50.
- Tischler, J., Lehner, B., and Fraser, A.G. (2008) Evolutionary plasticity of genetic interaction networks. *Nat Genet*, **40**(4): 390–391.
- Tomasetti, C. and Vogelstein, B. (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. *Science*, **347**(6217): 78–81.
- Tong, A.H., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., Robinson, M., Raghibizadeh, S., Hogue, C.W., Bussey, H., et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science, 294(5550): 2364–8.
- Tong, A.H., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L., Chang, M., et al. (2004) Global mapping of the yeast genetic interaction network. Science, 303(5659): 808–13.
- Tran, B., Dancey, J.E., Kamel-Reid, S., McPherson, J.D., Bedard, P.L., Brown, A.M., Zhang, T., Shaw, P., Onetto, N., Stein, L., et al. (2012) Cancer genomics: technology, discovery, and translation. J Clin Oncol, 30(6): 647–660.
- Travers, J. and Milgram, S. (1969) An experimental study of the small world problem. Sociometry, **32**(4): 425–443.

- Tsai, H.C., Li, H., Van Neste, L., Cai, Y., Robert, C., Rassool, F.V., Shin, J.J., Harbom, K.M., Beaty, R., Pappou, E., et al. (2012) Transient low doses of dnademethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell, 21(3): 430–46.
- Tunggal, J.A., Helfrich, I., Schmitz, A., Schwarz, H., Gunzel, D., Fromm, M., Kemler, R., Krieg, T., and Niessen, C.M. (2005) E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. *EMBO J*, 24(6): 1146–1156.
- Tutt, A., Robson, M., Garber, J.E., Domchek, S.M., Audeh, M.W., Weitzel, J.N., Friedlander, M., Arun, B., Loman, N., Schmutzler, R.K., et al. (2010) Oral poly(adpribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet, 376(9737): 235–44.
- van der Meer, R., Song, H.Y., Park, S.H., Abdulkadir, S.A., and Roh, M. (2014) RNAi screen identifies a synthetic lethal interaction between PIM1 overexpression and PLK1 inhibition. *Clinical Cancer Research*, **20**(12): 3211–3221.
- van der Post, R.S., Vogelaar, I.P., Carneiro, F., Guilford, P., Huntsman, D., Hoogerbrugge, N., Caldas, C., Schreiber, K.E., Hardwick, R.H., Ausems, M.G., et al. (2015) Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J Med Genet, 52(6): 361–374.
- van Steen, K. (2012) Travelling the world of genegene interactions. *Briefings in Bioinformatics*, **13**(1): 1–19.
- van Steen, M. (2010) Graph Theory and Complex Networks: An Introduction. Maarten van Steen, VU Amsterdam.
- Vapnik, V.N. (1995) The nature of statistical learning theory. Springer-Verlag New York, Inc.
- Vizeacoumar, F.J., Arnold, R., Vizeacoumar, F.S., Chandrashekhar, M., Buzina, A., Young, J.T., Kwan, J.H., Sayad, A., Mero, P., Lawo, S., et al. (2013) A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities. Mol Syst Biol, 9: 696.
- Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., and Kinzler, K.W. (2013) Cancer genome landscapes. *Science*, **339**(6127): 1546–1558.

- Vos, C.B., Cleton-Jansen, A.M., Berx, G., de Leeuw, W.J., ter Haar, N.T., van Roy, F., Cornelisse, C.J., Peterse, J.L., and van de Vijver, M.J. (1997) E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer, 76(9): 1131–3.
- Waldron, D. (2016) Cancer genomics: A multi-layer omics approach to cancer. *Nat Rev Genet*, **17**(8): 436–437.
- Wang, K., Singh, D., Zeng, Z., Coleman, S.J., Huang, Y., Savich, G.L., He, X., Mieczkowski, P., Grimm, S.A., Perou, C.M., et al. (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res, 38(18): e178.
- Wang, X. and Simon, R. (2013) Identification of potential synthetic lethal genes to p53 using a computational biology approach. *BMC Medical Genomics*, **6**(1): 30.
- Wappett, M. (2014) Bisep: Toolkit to identify candidate synthetic lethality. r package version 2.0.
- Wappett, M., Dulak, A., Yang, Z.R., Al-Watban, A., Bradford, J.R., and Dry, J.R. (2016) Multi-omic measurement of mutually exclusive loss-of-function enriches for candidate synthetic lethal gene pairs. *BMC Genomics*, **17**: 65.
- Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W.H.A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., et al. (2015) gplots: Various R Programming Tools for Plotting Data. R package version 2.17.0.
- Watts, D.J. and Strogatz, S.H. (1998) Collective dynamics of 'small-world' networks. Nature, **393**(6684): 440–2.
- Weinstein, I.B. (2000) Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. *Carcinogenesis*, **21**(5): 857–864.
- Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M., Chang, K., et al. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet, 45(10): 1113–1120.
- Wickham, H. and Chang, W. (2016) devtools: Tools to Make Developing R Packages Easier. R package version 1.12.0.

- Wickham, H., Danenberg, P., and Eugster, M. (2017) roxygen2: In-Line Documentation for R. R package version 6.0.1.
- Wong, S.L., Zhang, L.V., Tong, A.H.Y., Li, Z., Goldberg, D.S., King, O.D., Lesage, G., Vidal, M., Andrews, B., Bussey, H., et al. (2004) Combining biological networks to predict genetic interactions. Proceedings of the National Academy of Sciences of the United States of America, 101(44): 15682–15687.
- World Health Organization (WHO) (2017) Fact sheet: Cancer. http://www.who.int/mediacentre/factsheets/fs297/en/. Updated February 2017, Accessed: 22/03/2017.
- Wu, M., Li, X., Zhang, F., Li, X., Kwoh, C.K., and Zheng, J. (2014) In silico prediction of synthetic lethality by meta-analysis of genetic interactions, functions, and pathways in yeast and human cancer. *Cancer Inform*, **13**(Suppl 3): 71–80.
- Yu, H. (2002) Rmpi: Parallel statistical computing in r. R News, 2(2): 10–14.
- Zhang, F., Wu, M., Li, X.J., Li, X.L., Kwoh, C.K., and Zheng, J. (2015) Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates. *J Bioinform Comput Biol*, **13**(3): 1541002.
- Zhang, J., Baran, J., Cros, A., Guberman, J.M., Haider, S., Hsu, J., Liang, Y., Rivkin, E., Wang, J., Whitty, B., et al. (2011) International cancer genome consortium data portala one-stop shop for cancer genomics data. Database: The Journal of Biological Databases and Curation, 2011: bar026.
- Zhong, W. and Sternberg, P.W. (2006) Genome-wide prediction of c. elegans genetic interactions. *Science*, **311**(5766): 1481–1484.
- Zweig, M.H. and Campbell, G. (1993) Receiver-operating characteristic (roc) plots: a fundamental evaluation tool in clinical medicine. *Clinical Chemistry*, **39**(4): 561–577.

Appendix C

Mutation Analysis in Breast Cancer

C.1 Synthetic Lethal Genes and Pathways

SLIPT expression analysis (described in Section 3.1) on TCGA breast cancer data (n = 969) found the following genes and pathways, described in sections 4.1 and 4.1.1.

Table C.1: Candidate synthetic lethal gene partners of $\mathit{CDH1}$ from mtSLIPT

Gene	Observed	Expected	χ^2 value	p-value	p-value ({glsFDR)
TFAP2B	8	36.7	89.5	3.60×10^{-20}	8.37×10^{-17}
ZNF423	15	36.7	78.8	7.89×10^{-18}	1.22×10^{-14}
CALCOCO1	11	36.7	76.8	2.09×10^{-17}	2.59×10^{-14}
RBM5	13	36.7	75.7	3.65×10^{-17}	4.00×10^{-14}
BTG2	7	36.7	71.7	2.72×10^{-16}	1.81×10^{-13}
RXRA	6	36.7	70.5	5.00×10^{-16}	2.97×10^{-13}
SLC27A1	11	36.7	70.3	5.42×10^{-16}	2.97×10^{-13}
MEF2D	12	36.7	69.6	7.86×10^{-16}	3.95×10^{-13}
NISCH	12	36.7	69.6	7.86×10^{-16}	3.95×10^{-13}
AVPR2	9	36.7	69.2	9.36×10^{-16}	4.58×10^{-13}
CRY2	13	36.7	68.9	1.07×10^{-15}	4.98×10^{-13}
RAPGEF3	13	36.7	68.9	1.07×10^{-15}	4.98×10^{-13}
NRIP2	10	36.7	68.2	1.58×10^{-15}	7.18×10^{-13}
DARC	12	36.7	66.4	3.76×10^{-15}	1.54×10^{-12}
SFRS5	12	36.7	66.4	3.76×10^{-15}	1.54×10^{-12}
NOSTRIN	5	36.7	65.1	7.40×10^{-15}	2.70×10^{-12}
KIF13B	12	36.7	63.4	1.69×10^{-14}	5.16×10^{-12}
TENC1	10	36.7	62.5	2.67×10^{-14}	7.40×10^{-12}
MFAP4	12	36.7	60.5	7.17×10^{-14}	1.67×10^{-11}
ELN	13	36.7	59.7	1.07×10^{-13}	2.32×10^{-11}
SGK223	14	36.7	59	1.51×10^{-13}	3.05×10^{-11}
KIF12	11	36.7	58.8	1.74×10^{-13}	3.34×10^{-11}
SELP	11	36.7	58.8	1.74×10^{-13}	3.34×10^{-11}
CIRBP	9	36.7	58.7	1.83×10^{-13}	3.41×10^{-11}
CTDSP1	9	36.7	58.7	1.83×10^{-13}	3.41×10^{-11}

Strongest candidate SL partners for CDH1 by mtSLIPT with observed and expected numbers of CDH1 mutant TCGA breast tumours with low expression of partner genes.

Table C.2: Pathways for CDH1 partners from mtSLIPT

Pathways Over-represented	Pathway Size	SL Genes	p-value ({glsFDR)
Eukaryotic Translation Elongation	86	60	2.0×10^{-128}
Peptide chain elongation	83	59	2.0×10^{-128}
Eukaryotic Translation Termination	83	58	2.3×10^{-125}
Viral mRNA Translation	81	57	2.5×10^{-124}
Nonsense Mediated Decay independent of the Exon Junction Complex	88	59	8.6×10^{-124}
Nonsense-Mediated Decay	103	61	5.2×10^{-117}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	103	61	5.2×10^{-117}
Formation of a pool of free 40S subunits	93	58	1.6×10^{-116}
L13a-mediated translational silencing of Ceruloplasmin expression	103	59	1.3×10^{-111}
3' -UTR-mediated translational regulation	103	59	1.3×10^{-111}
GTP hydrolysis and joining of the 60S ribosomal subunit	104	59	6.2×10^{-111}
SRP-dependent cotranslational protein targeting to membrane	104	58	2.9×10^{-108}
Eukaryotic Translation Initiation	111	59	3.0×10^{-106}
Cap-dependent Translation Initiation	111	59	3.0×10^{-106}
Influenza Viral RNA Transcription and Replication	108	57	5.1×10^{-103}
Influenza Infection	117	59	1.5×10^{-102}
Translation	141	64	3.7×10^{-101}
Influenza Life Cycle	112	57	1.4×10^{-100}
GPCR downstream signalling	472	116	1.0×10^{-80}
Hemostasis	422	105	1.4×10^{-78}

 $\hbox{Gene set over-representation analysis (hypergeometric test) for Reactome pathways in \ mtSLIPT \ partners \ for \ \textit{CDH1}. }$

The genes and pathways identified in Tables C.1 and C.2 were derived from comparing the expression profiles of potential partners to the mutation status of *CDH1* (as shown in Figure 3.2). Thus the following analysis is only limited the samples for which TCGA provides both expression and somatic mutation data.

C.2 Synthetic Lethal Expression Profiles

Similar to the analysis of synthetic lethal partners against low *CDH1* expression in 4.1.2, the partners detected from *CDH1* mutation were also examined for their expression profiles and the pathway composition of gene clusters. Hierachical clustering was performed on mtSLIPT partners for *CDH1* as showing in Figure C.1. Overrepresentation for Reactome pathways for each of the gene clusters identified is given in Table C.3.

Figure C.1: Synthetic lethal expression profiles of analysed samples. Gene expression profile heatmap (correlation distance) of all samples (separated by CDH1 somatic mutation status) analysed in TCGA breast cancer dataset for gene expression of 3743 candidate partners of E-cadherin (CDH1) from mtSLIPT prediction (with significant {glsFDR adjusted p < 0.05}. Deeply clustered, inter-correlated genes form several main groups, each containing genes that were SL candidates or toxic in an siRNA screen Telford $et\ al.\ (2015)$. Clusters had different sample groups highly expressing the synthetic lethal candidates in CDH1 mutant samples and often lowly expressing CDH1 wildtype samples (which were not tested for), although many of the CDH1 mutant samples had among the lowest CDH1 expression. In contrast to the expression analysis the (predominantly CDH1 wildtype) basal subtype and estrogen receptor negative samples have depleted expression among most candidate synthetic lethal partners.

Table C.3: Pathway composition for clusters of CDH1 partners from mtSLIPT

Olfactory Signalling Pathway			p-value ({glsFDR)
	57	8	7.1×10^{-9}
Assembly of the primary cilium Sphingolipid metabolism	149 62	14 8	8.0×10^{-9} 9.6×10^{-9}
Signalling by ERBB4 PI3K Cascade	133 65	12	5.1×10^{-8}
		7	4.9×10^{-7}
Circadian Clock	33	5	4.9×10^{-7}
Nuclear signalling by ERBB4	34	5	4.9×10^{-7}
Intraflagellar transport	35	5	4.9×10^{-7}
PI3K events in ERBB4 signalling	87	8	4.9×10^{-7}
PIP3 activates AKT signalling	87	8	4.9×10^{-7}
PI3K events in ERBB2 signalling	87	8	4.9×10^{-7}
PI-3K cascade:FGFR1	87	8	4.9×10^{-7}
PI-3K cascade:FGFR2	87	8	4.9×10^{-7}
PI-3K cascade:FGFR3	87	8	4.9×10^{-7}
PI-3K cascade:FGFR4	87	8	4.9×10^{-7}
Deadenylation of mRNA	22	4	5.6×10^{-7}
PI3K/AKT activation	90	8	5.6×10^{-7}
Cargo trafficking to the periciliary membrane	38	5	5.6×10^{-7}
Pathways Over-represented in Cluster 2	Pathway Size	Cluster Genes	p-value ({glsFDR)
$G_{\alpha s}$ signalling events	83	19	5.1×10^{-25}
Extracellular matrix organization	238	30	1.4×10^{-18}
Hemostasis	422	46	2.7×10^{-16}
Aquaporin-mediated transport	32	9	2.7×10^{-16}
Transcriptional regulation of white adipocyte differentiation	56	11	1.7×10^{-15}
Degradation of the extracellular matrix	102	15	1.7×10^{-15}
Integration of energy metabolism	84	13	8.8×10^{-15}
GPCR downstream signalling	472	48	2.8×10^{-14}
G _{az} signalling events	15	6	5.0×10^{-14}
Molecules associated with elastic fibres	33	8	5.4×10^{-14}
Phase 1 - Functionalization of compounds	67	11	5.6×10^{-14}
Platelet activation, signalling and aggregation	179	20	5.6×10^{-14}
Vasopressin regulates renal water homeostasis via Aquaporins	24	7	6.1×10^{-14}
Elastic fibre formation	37	8	$.03 \times 10^{-13}$
Calmodulin induced events	27	7	
			3.3×10^{-13}
CaM pathway	27	7	3.3×10^{-13}
cGMP effects	18	6	3.6×10^{-13}
$G_{\alpha i}$ signalling events	167	18	6.3×10^{-13}
Pathways Over-represented in Cluster 3	Pathway Size	Cluster Genes	p-value ({glsFDR)
Eukaryotic Translation Elongation	86	55	1.1×10^{-112}
Peptide chain elongation	83	54	1.3×10^{-112}
Viral mRNA Translation	81	53	1.6×10^{-111}
Eukaryotic Translation Termination	83	53	7.1×10^{-110}
Nonsense Mediated Decay independent of the Exon Junction Complex	88		
Formation of a pool of free 40S subunits		54	1.0×10^{-108}
	93	53	4.1×10^{-102}
Nonsense-Mediated Decay	93 103		4.1×10^{-102} 3.9×10^{-98}
Nonsense-Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex		53	4.1×10^{-102}
	103	53 54	4.1×10^{-102} 3.9×10^{-98}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	103 103	53 54 54	4.1×10^{-102} 3.9×10^{-98} 3.9×10^{-98}
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression	103 103 103	53 54 54 53	4.1×10^{-102} 3.9×10^{-98} 3.9×10^{-98} 1.2×10^{-95}
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation	103 103 103 103	53 54 54 53 53	4.1×10^{-102} 3.9×10^{-98} 3.9×10^{-98} 1.2×10^{-95} 1.2×10^{-95}
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane	103 103 103 103 104	53 54 54 53 53 53	4.1×10^{-102} 3.9×10^{-98} 3.9×10^{-98} 1.2×10^{-95} 1.2×10^{-95} 4.3×10^{-95}
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit	103 103 103 103 104 104	53 54 54 53 53 53 53	4.1×10^{-102} 3.9×10^{-98} 3.9×10^{-98} 1.2×10^{-95} 1.2×10^{-95} 4.3×10^{-95} 4.3×10^{-95}
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation	103 103 103 103 104 104 104	53 54 54 53 53 53 53 53 53	4.1×10^{-102} 3.9×10^{-98} 3.9×10^{-98} 1.2×10^{-95} 1.2×10^{-95} 4.3×10^{-95} 4.3×10^{-95} 9.6×10^{-93} 4.2×10^{-91}
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3' -UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation	103 103 103 103 103 104 104 108 111	53 54 54 53 53 53 53 53 53 53 53	4.1×10^{-102} 3.9×10^{-98} 3.9×10^{-98} 1.2×10^{-98} 1.2×10^{-95} 4.3×10^{-95} 4.3×10^{-95} 9.6×10^{-93} 4.2×10^{-91}
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle	103 103 103 103 104 104 108 111 111	53 54 54 53 53 53 53 53 53 53 53 53	4.1×10^{-102} 3.9×10^{-98} 3.9×10^{-98} 1.2×10^{-98} 1.2×10^{-95} 1.2×10^{-95} 4.3×10^{-95} 4.3×10^{-95} 4.2×10^{-91} 4.2×10^{-91} 4.2×10^{-91}
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 605 ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection	103 103 103 103 104 104 108 111 111 112	53 54 54 53 53 53 53 53 53 53 53 53 53	4.1×10^{-102} 3.9×10^{-98} 3.9×10^{-98} 1.2×10^{-95} 1.2×10^{-95} 4.3×10^{-95} 4.3×10^{-95} 9.6×10^{-93} 4.2×10^{-91} 4.2×10^{-91} 1.4×10^{-90} 6.2×10^{-88}
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 605 ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation	103 103 103 103 104 104 108 111 111 112 117	53 54 54 53 53 53 53 53 53 53 53 53 53 53 53 53	$\begin{array}{c} 4.1\times10^{-102}\\ 3.9\times10^{-98}\\ 3.9\times10^{-98}\\ 1.2\times10^{-95}\\ 1.2\times10^{-95}\\ 4.3\times10^{-95}\\ 4.3\times10^{-95}\\ 9.6\times10^{-93}\\ 4.2\times10^{-91}\\ 4.2\times10^{-91}\\ 1.4\times10^{-90}\\ 6.2\times10^{-88}\\ 3\times10^{-81}\\ \end{array}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size	53 54 54 53 53 53 53 53 53 53 53 53 53 53 53 55 Cluster Genes	$\begin{array}{c} 4.1\times10^{-102}\\ 3.9\times10^{-98}\\ 3.9\times10^{-98}\\ 3.9\times10^{-98}\\ 1.2\times10^{-95}\\ 1.2\times10^{-95}\\ 4.3\times10^{-95}\\ 4.3\times10^{-95}\\ 4.2\times10^{-91}\\ 4.2\times10^{-91}\\ 1.4\times10^{-90}\\ 6.2\times10^{-88}\\ 3\times10^{-81}\\ \textbf{p-value} \ (\{glsFDR\}\\ \end{array}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3' -UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66	53 54 54 53 53 53 53 53 53 53 53 53 53 53 53 53	4.1 × 10 ⁻¹⁰² 3.9 × 10 ⁻⁹⁸ 3.9 × 10 ⁻⁹⁸ 1.2 × 10 ⁻⁹⁵ 1.2 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.2 × 10 ⁻⁹¹ 4.2 × 10 ⁻⁹¹ 1.4 × 10 ⁻⁹⁰ 6.2 × 10 ⁻⁸⁸ 3 × 10 ⁻⁸¹ p-value ({gisFDR})
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3' -UTR-mediated translational protein targeting to membrane SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38	53 54 54 53 53 53 53 53 53 53 53 53 53 53 53 53	$\begin{array}{c} 4.1\times10^{-102} \\ 3.9\times10^{-98} \\ 3.9\times10^{-98} \\ 1.2\times10^{-98} \\ 1.2\times10^{-95} \\ 1.2\times10^{-95} \\ 4.3\times10^{-95} \\ 4.3\times10^{-95} \\ 4.2\times10^{-91} \\ 4.2\times10^{-91} \\ 1.4\times10^{-90} \\ 6.2\times10^{-88} \\ 3\times10^{-81} \\ \textbf{p-value (\{glsFDR)} \\ 2.9\times10^{-11} \\ 5.1\times10^{-10} \end{array}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41	53 54 54 53 53 53 53 53 53 53 53 53 53 53 53 73 77	$\begin{array}{c} 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 9.6 \times 10^{-93} \\ 4.2 \times 10^{-91} \\ 1.4 \times 10^{-90} \\ 6.2 \times 10^{-88} \\ 3 \times 10^{-81} \\ \mathbf{p-value} \ (\{\mathbf{glsFDR}\}\\ 2.9 \times 10^{-11} \\ 5.1 \times 10^{-10} \\ 1.1 \times 10^{-9} \end{array}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3' -UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gog signalling events	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149	53 54 54 53 53 53 53 53 53 53 53 53 53 53 53 77 7 14	$\begin{array}{c} 4.1\times10^{-102}\\ 3.9\times10^{-98}\\ 3.9\times10^{-98}\\ 3.9\times10^{-98}\\ 1.2\times10^{-95}\\ 1.2\times10^{-95}\\ 4.3\times10^{-95}\\ 4.3\times10^{-95}\\ 9.6\times10^{-93}\\ 4.2\times10^{-91}\\ 4.2\times10^{-91}\\ 1.4\times10^{-90}\\ 6.2\times10^{-88}\\ 3\times10^{-81}\\ \begin{array}{c} \mathbf{p-value}\;(\{\mathbf{glsFDR}\}\\ 2.9\times10^{-11}\\ 5.1\times10^{-10}\\ 1.1\times10^{-9}\\ 4.0\times10^{-9}\\ \end{array}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3' -UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism $G_{\alpha g} \text{ signalling events}$ HS-GAG degradation	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21	53 54 54 553 53 53 53 53 53 53 53 53 53 53 57 Cluster Genes 10 7 7 7 14	$\begin{array}{c} 4.1\times10^{-102} \\ 3.9\times10^{-98} \\ 3.9\times10^{-98} \\ 3.9\times10^{-98} \\ 1.2\times10^{-95} \\ 1.2\times10^{-95} \\ 4.3\times10^{-95} \\ 4.3\times10^{-95} \\ 4.2\times10^{-91} \\ 4.2\times10^{-91} \\ 1.4\times10^{-90} \\ 6.2\times10^{-88} \\ 3\times10^{-81} \\ \textbf{p-value} \left(\{ \textbf{glsFDR} \right) \\ 2.9\times10^{-11} \\ 5.1\times10^{-10} \\ 1.1\times10^{-9} \\ 4.0\times10^{-9} \\ 4.5\times10^{-9} \end{array}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3 -UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Goay signalling events HS-GAG degradation Uptake and actions of bacterial toxins	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22	53 54 54 55 53 53 53 53 53 53 53 53 53 53 53 73 77 7 14 55 5	$\begin{array}{c} 4.1\times10^{-102} \\ 3.9\times10^{-98} \\ 3.9\times10^{-98} \\ 1.2\times10^{-95} \\ 1.2\times10^{-95} \\ 1.2\times10^{-95} \\ 4.3\times10^{-95} \\ 4.3\times10^{-95} \\ 4.2\times10^{-91} \\ 4.2\times10^{-91} \\ 1.4\times10^{-90} \\ 6.2\times10^{-88} \\ 3\times10^{-81} \\ \textbf{p-value (\{glsFDR\}} \\ 2.9\times10^{-11} \\ 5.1\times10^{-10} \\ 1.1\times10^{-9} \\ 4.0\times10^{-9} \\ 4.5\times10^{-9} \\ 6.1\times10^{-9} \end{array}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Translation Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism $G_{\alpha q}$ signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK	103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170	53 54 54 55 53 53 53 53 53 53 53 53 53 53 77 7 14 5 5 5 15	$\begin{array}{c} 4.1\times10^{-102} \\ 3.9\times10^{-98} \\ 3.9\times10^{-98} \\ 3.9\times10^{-98} \\ 1.2\times10^{-95} \\ 1.2\times10^{-95} \\ 4.3\times10^{-95} \\ 4.3\times10^{-95} \\ 4.2\times10^{-91} \\ 4.2\times10^{-91} \\ 4.2\times10^{-91} \\ 1.4\times10^{-90} \\ 6.2\times10^{-88} \\ 3\times10^{-81} \\ \textbf{p-value (\{glsFDR)} \\ 2.9\times10^{-11} \\ 5.1\times10^{-10} \\ 1.1\times10^{-9} \\ 4.0\times10^{-9} \\ 4.5\times10^{-9} \\ 6.1\times10^{-9} \\ 6.1\times10^{-9} \end{array}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3' -UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gag signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase II, RNA Polymerase III, and Mitochondrial Transcription	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64	53 54 54 53 53 53 53 53 53 53 53 53 53 53 77 7 14 5 5 15 8	$\begin{array}{c} 4.1\times10^{-102} \\ 3.9\times10^{-98} \\ 3.9\times10^{-98} \\ 3.9\times10^{-98} \\ 1.2\times10^{-95} \\ 1.2\times10^{-95} \\ 4.3\times10^{-95} \\ 4.3\times10^{-95} \\ 9.6\times10^{-93} \\ 4.2\times10^{-91} \\ 1.4\times10^{-90} \\ 6.2\times10^{-88} \\ 3\times10^{-81} \\ \\ \textbf{p-value (\{glsFDR)} \\ 2.9\times10^{-11} \\ 5.1\times10^{-10} \\ 1.1\times10^{-9} \\ 4.0\times10^{-9} \\ 4.5\times10^{-9} \\ 6.1\times10^{-9} \\ 6.1\times10^{-9} \\ 6.1\times10^{-9} \end{array}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3' -UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gaq signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase II, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53	53 54 54 54 53 53 53 53 53 53 53 53 53 53 57 Cluster Genes 10 7 7 14 5 5 5 15 8 7	$\begin{array}{c} 4.1\times10^{-102} \\ 3.9\times10^{-98} \\ 3.9\times10^{-98} \\ 3.9\times10^{-98} \\ 1.2\times10^{-95} \\ 1.2\times10^{-95} \\ 4.3\times10^{-95} \\ 4.3\times10^{-95} \\ 4.2\times10^{-91} \\ 4.2\times10^{-91} \\ 1.4\times10^{-90} \\ 6.2\times10^{-88} \\ 3\times10^{-81} \\ \begin{array}{c} \mathbf{p-value} \ (\{\mathbf{glsFDR}\} \\ 2.9\times10^{-11} \\ 5.1\times10^{-9} \\ 4.0\times10^{-9} \\ 4.5\times10^{-9} \\ 6.1\times10^{-9} \\ 6.1\times10^{-9} \\ 6.1\times10^{-9} \\ 6.1\times10^{-9} \\ 1.5\times10^{-8} \end{array}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3' -UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gag signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase II, RNA Polymerase III, and Mitochondrial Transcription	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64	53 54 54 53 53 53 53 53 53 53 53 53 53 53 77 7 14 5 5 15 8	$\begin{array}{c} 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 9.6 \times 10^{-93} \\ 4.2 \times 10^{-91} \\ 1.4 \times 10^{-91} \\ 1.4 \times 10^{-90} \\ 6.2 \times 10^{-88} \\ 3 \times 10^{-81} \\ \\ \textbf{p-value (\{glsFDR)} \\ 2.9 \times 10^{-11} \\ 5.1 \times 10^{-10} \\ 1.1 \times 10^{-9} \\ 4.0 \times 10^{-9} \\ 4.5 \times 10^{-9} \\ 6.1 \times 10^{-9} \\ 6.1 \times 10^{-9} \\ 6.1 \times 10^{-9} \end{array}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3' -UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gaq signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53	53 54 54 54 53 53 53 53 53 53 53 53 53 53 57 Cluster Genes 10 7 7 14 5 5 5 15 8 7	$\begin{array}{c} 4.1\times10^{-102} \\ 3.9\times10^{-98} \\ 3.9\times10^{-98} \\ 3.9\times10^{-98} \\ 1.2\times10^{-95} \\ 1.2\times10^{-95} \\ 4.3\times10^{-95} \\ 4.3\times10^{-95} \\ 4.3\times10^{-91} \\ 4.2\times10^{-91} \\ 1.4\times10^{-91} \\ 1.4\times10^{-90} \\ 6.2\times10^{-88} \\ 3\times10^{-81} \\ \hline \textbf{p-value} \left(\{\textbf{glsFDR} \\ 2.9\times10^{-11} \\ 5.1\times10^{-10} \\ 1.1\times10^{-9} \\ 4.0\times10^{-9} \\ 4.5\times10^{-9} \\ 6.1\times10^{-9} \\ 6.1\times10^{-9} \\ 6.1\times10^{-9} \\ 1.5\times10^{-8} \end{array}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3' -UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 605 ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gag signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase II, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53 25	53 54 54 54 53 53 53 53 53 53 53 53 53 53 53 67 7 7 14 5 5 15 8 7 7 5	4.1 × 10 ⁻¹⁰² 3.9 × 10 ⁻⁹⁸ 3.9 × 10 ⁻⁹⁸ 1.2 × 10 ⁻⁹⁵ 1.2 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.2 × 10 ⁻⁹¹ 4.2 × 10 ⁻⁹¹ 1.4 × 10 ⁻⁹⁰ 6.2 × 10 ⁻⁸⁸ 3 × 10 ⁻⁸¹ p-value ({gisFDR}) 2.9 × 10 ⁻¹¹ 5.1 × 10 ⁻¹⁰ 1.1 × 10 ⁻⁹ 4.5 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 1.5 × 10 ⁻⁸
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational argulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 605 ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gag signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53 25 40	53 54 54 55 53 53 53 53 53 53 53 53 53 53 63 7 7 14 5 5 15 8 7 5 6	4.1×10^{-102} 3.9×10^{-98} 3.9×10^{-98} 1.2×10^{-95} 1.2×10^{-95} 1.2×10^{-95} 4.3×10^{-95} 4.3×10^{-95} 4.2×10^{-91} 4.2×10^{-91} 4.2×10^{-91} 4.2×10^{-91} 4.2×10^{-88} 3×10^{-81} $\mathbf{p-value} (\{\mathbf{glsFDR}\}\}$ 2.9×10^{-11} 5.1×10^{-10} 1.1×10^{-9} 4.0×10^{-9} 6.1×10^{-9} 6.1×10^{-9} 6.1×10^{-9} 1.5×10^{-8} 1.5×10^{-8} 2.3×10^{-8}
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3 - UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 605 ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gap signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions NOTCHI Intracellular Domain Regulates Transcription Synthesis of Leukotrienes and Eoxins	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53 25 40 15	53 54 54 55 53 53 53 53 53 53 53 53 53 53 7 7 7 14 5 5 5 15 8 7 5 6 4	4.1 × 10 ⁻¹⁰² 3.9 × 10 ⁻⁹⁸ 3.9 × 10 ⁻⁹⁸ 1.2 × 10 ⁻⁹⁸ 1.2 × 10 ⁻⁹⁵ 1.2 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹¹ 4.2 × 10 ⁻⁹¹ 4.2 × 10 ⁻⁹¹ 1.4 × 10 ⁻⁹⁰ 6.2 × 10 ⁻⁸⁸ 3 × 10 ⁻⁸¹ p-value ({glsFDR}) 2.9 × 10 ⁻¹¹ 5.1 × 10 ⁻¹⁰ 1.1 × 10 ⁻⁹ 4.0 × 10 ⁻⁹ 4.5 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 1.5 × 10 ⁻⁸ 1.5 × 10 ⁻⁸ 2.3 × 10 ⁻⁸ 2.3 × 10 ⁻⁸
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 605 ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism $G_{\alpha q}$ signalling events BS -GAG degradation Uptake and actions of bacterial toxins G astrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions NOTCH1 Intracellular Domain Regulates Transcription Synthesis of Leukotrienes and Eoxins Signalling by NOTCH1	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53 25 40 15 59	53 54 54 54 53 53 53 53 53 53 53 53 53 53 7 7 14 5 5 15 8 7 5 6 4 7	4.1 × 10 ⁻¹⁰² 3.9 × 10 ⁻⁹⁸ 3.9 × 10 ⁻⁹⁸ 3.9 × 10 ⁻⁹⁸ 1.2 × 10 ⁻⁹⁵ 1.2 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.2 × 10 ⁻⁹¹ 4.2 × 10 ⁻⁹¹ 1.4 × 10 ⁻⁹⁰ 6.2 × 10 ⁻⁸⁸ 3 × 10 ⁻⁸¹ p-value ({glsFDR}) 2.9 × 10 ⁻¹¹ 5.1 × 10 ⁻¹⁰ 1.1 × 10 ⁻⁹ 4.0 × 10 ⁻⁹ 4.5 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 1.5 × 10 ⁻⁸ 1.5 × 10 ⁻⁸ 1.5 × 10 ⁻⁸ 2.3 × 10 ⁻⁸ 3.2 × 10 ⁻⁸ 5.3 × 10 ⁻⁸
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 605 ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism $G_{\alpha q}$ signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions NOTCH1 Intracellular Domain Regulates Transcription Synthesis of Leukotrienes and Eoxins Signalling by NOTCH1 Regulation of insulin secretion	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53 25 40 15 59 44	53 54 54 54 53 53 53 53 53 53 53 53 53 53 53 77 7 14 55 55 15 8 7 56 6 4 7 6	4.1 × 10 ⁻¹⁰² 3.9 × 10 ⁻⁹⁸ 3.9 × 10 ⁻⁹⁸ 1.2 × 10 ⁻⁹⁸ 1.2 × 10 ⁻⁹⁵ 1.2 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.2 × 10 ⁻⁹¹ 4.2 × 10 ⁻⁹¹ 1.4 × 10 ⁻⁹⁰ 6.2 × 10 ⁻⁸⁸ 3 × 10 ⁻⁸¹ p-value ({gisFDR}) 2.9 × 10 ⁻¹¹ 5.1 × 10 ⁻¹⁰ 1.1 × 10 ⁻⁹ 4.0 × 10 ⁻⁹ 4.5 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 6.1 × 10 ⁻⁹ 1.5 × 10 ⁻⁸ 2.3 × 10 ⁻⁸ 2.3 × 10 ⁻⁸ 3.2 × 10 ⁻⁸ 5.3 × 10 ⁻⁸ 5.3 × 10 ⁻⁸ 6.0 × 10 ⁻⁸ 8.2 × 10 ⁻⁸
Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gag signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions Signalling by NOTCH1 Regulation of insulin secretion Metabolism of lipids and lipoproteins	103 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53 25 40 15 59 44 471	53 54 54 54 53 53 53 53 53 53 53 53 53 53 55 Cluster Genes 10 7 7 14 5 5 5 15 8 7 5 6 4 7 6 37	4.1×10^{-102} 3.9×10^{-98} 3.9×10^{-98} 1.2×10^{-95} 1.2×10^{-95} 4.3×10^{-95} 4.3×10^{-95} 4.2×10^{-91} 5.1×10^{-10} 1.1×10^{-9} 4.0×10^{-9} 4.5×10^{-9} 6.1×10^{-8} 2.3×10^{-8} 2.3×10^{-8} 3.2×10^{-8} 5.3×10^{-8} 6.0×10^{-8}

Pathway over-representation analysis for Reactome pathways with the number of genes in each pathway (Pathway Size), number of genes within the pathway identified (Cluster Genes), and the pathway over-representation p-value (adjusted by {glsFDR}) from the hypergeometric test.

C.3 Comparison to Primary Screen

The mutation synthetic lethal partners with *CDH1* were also compared to siRNA primary screen data (Telford *et al.*, 2015), as performed in Section 4.2.1. These are expected to be more concordant with the experimental results performed on a null mutant, however this not the case at the gene level: less genes overlapped with experimental candidates in Figure C.2. This may be affected by lower sample size for mutations in TCGA data or lower frequency (expected value) of *CDH1* mutations compared to low expression.

Figure C.2: Comparison of mtSLIPT to siRNA. Testing the overlap of gene candidates for E-cadherin synthetic lethal partners between computational (SLIPT) and experimental screening (siRNA) approaches. The χ^2 test suggests that the overlap is no more than would be expected by chance (p = 0.281).

Despite a lower sample size (and low number of a predicted partners) for mutation analysis, the pathway composition (Tables C.2 and C.4) is similar to expression analysis, as described in Section 4.2.5. In particular, the resampling analysis (Section C.3.1) supported many of the results of expression analysis (Section 4.2.5.1) with Tables C.5 and C.6 detecting many of the same or functionally-related pathways.

Table C.4: Pathway composition for CDH1 partners from mtSLIPT and siRNA

Predicted only by SLIPT (2901 genes)	Pathway Size	Genes Identified	p-value ({glsFDR)
Eukaryotic Translation Elongation	87	57	2.8×10^{-120}
Peptide chain elongation	84	56	3.1×10^{-120}
Eukaryotic Translation Termination	84	55	2.8×10^{-117}
Viral mRNA Translation	82	54	4.1×10^{-116}
Nonsense Mediated Decay independent of the Exon Junction Complex	89	55	3.7×10^{-113}
Formation of a pool of free 40S subunits	94	55	2.8×10^{-109}
Nonsense-Mediated Decay	104	57	8.4×10^{-108}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	104	57	8.4×10^{-108}
L13a-mediated translational silencing of Ceruloplasmin expression	104	56	3.4×10^{-105}
3' -UTR-mediated translational regulation	104	56	3.4×10^{-105}
GTP hydrolysis and joining of the 60S ribosomal subunit	105	56	1.4×10^{-104}
Eukaryotic Translation Initiation	112	56	2.8×10^{-100}
Cap-dependent Translation Initiation	112	56	2.8×10^{-100}
SRP-dependent cotranslational protein targeting to membrane	105	54	2.2×10^{-99}
Influenza Viral RNA Transcription and Replication	109	54	5.3×10^{-97}
Influenza Life Cycle	113	54	9.6×10^{-95}
Influenza Infection	118	55	1.7×10^{-94}
Translation	142	60	3.5×10^{-94}
Infectious disease	349	77	5.9×10^{-62}
Extracellular matrix organization	241	54	3.0×10^{-52}

Detected only by siRNA screen (1752 genes)	Pathway Size	Genes Identified	p-value ($\{glsFDR\}$
Class A/1 (Rhodopsin-like receptors)	282	69	1.9×10^{-59}
GPCR ligand binding	363	78	2.7×10^{-54}
Peptide ligand-binding receptors	175	41	1.5×10^{-42}
$G_{\alpha i}$ signalling events	184	41	1.1×10^{-40}
Gastrin-CREB signalling pathway via PKC and MAPK	180	37	1.5×10^{-35}
$G_{\alpha q}$ signalling events	159	34	3.7×10^{-35}
DAP12 interactions	159	27	1.1×10^{-24}
VEGFA-VEGFR2 Pathway	91	19	1.0×10^{-23}
Downstream signal transduction	146	24	1.9×10^{-22}
Signalling by VEGF	99	19	2.6×10^{-22}
DAP12 signalling	149	24	4.2×10^{-22}
Organelle biogenesis and maintenance	264	34	4.3×10^{-20}
Downstream signalling of activated FGFR1	134	21	4.3×10^{-20}
Downstream signalling of activated FGFR2	134	21	4.3×10^{-20}
Downstream signalling of activated FGFR3	134	21	4.3×10^{-20}
Downstream signalling of activated FGFR4	134	21	4.3×10^{-20}
Signalling by ERBB2	146	22	5.3×10^{-20}
Signalling by FGFR	146	22	5.3×10^{-20}
Signalling by FGFR1	146	22	5.3×10^{-20}
Signalling by FGFR2	146	22	5.3×10^{-20}

Intersection of SLIPT and siRNA screen (450 genes)	Pathway Size	Genes Identified	p-value ($\{glsFDR\}$
HS-GAG degradation	21	4	4.9×10^{-6}
Retinoid metabolism and transport	39	5	4.9×10^{-6}
Platelet activation, signalling and aggregation	186	13	4.9×10^{-6}
Signalling by NOTCH4	11	3	4.9×10^{-6}
$G_{\alpha s}$ signalling events	100	8	5.0×10^{-6}
Defective EXT2 causes exostoses 2	12	3	$5.0 imes 10^{-6}$
Defective EXT1 causes exostoses 1, TRPS2 and CHDS	12	3	5.0×10^{-6}
Class A/1 (Rhodopsin-like receptors)	289	18	2.2×10^{-5}
Signalling by PDGF	173	11	2.9×10^{-5}
Circadian Clock	34	4	2.9×10^{-5}
Signalling by ERBB4	139	9	4.3×10^{-5}
Role of LAT2/NTAL/LAB on calcium mobilization	99	7	$4.4 imes 10^{-5}$
Peptide ligand-binding receptors	181	11	4.5×10^{-5}
Defective B4GALT7 causes EDS, progeroid type	19	3	4.5×10^{-5}
Defective B3GAT3 causes JDSSDHD	19	3	4.5×10^{-5}
Signalling by NOTCH	80	6	4.5×10^{-5}
$G_{\alpha q}$ signalling events	164	10	5.1×10^{-5}
Response to elevated platelet cytosolic Ca^{2+}	84	6	$7.1 imes 10^{-5}$
Signalling by ERBB2	148	9	7.1×10^{-5}
Signalling by SCF-KIT	129	8	8.3×10^{-5}

C.3.1 Resampling Analysis

Table C.5: Pathways for CDH1 partners from mtSLIPT

Reactome Pathway	Over-representation	Permutation
Eukaryotic Translation Elongation	3.2×10^{-128}	$<7.035 \times 10^{-4}$
Peptide chain elongation	3.2×10^{-128}	$<7.035 \times 10^{-4}$
Eukaryotic Translation Termination	3.7×10^{-125}	$<7.035 \times 10^{-4}$
Viral mRNA Translation	4.1×10^{-124}	$<7.035 \times 10^{-4}$
Nonsense Mediated Decay independent of the Exon Junction Complex	1.4×10^{-123}	$<7.035 \times 10^{-4}$
Nonsense-Mediated Decay	8.4×10^{-117}	$<7.035 \times 10^{-4}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex	8.4×10^{-117}	$<7.035 \times 10^{-4}$
Formation of a pool of free 40S subunits	2.6×10^{-116}	$<7.035 \times 10^{-4}$
L13a-mediated translational silencing of Ceruloplasmin expression	2.0×10^{-111}	$<7.035 \times 10^{-4}$
3' -UTR-mediated translational regulation	2.0×10^{-111}	$<7.035 \times 10^{-4}$
GTP hydrolysis and joining of the 60S ribosomal subunit	9.9×10^{-111}	$<7.035 \times 10^{-4}$
SRP-dependent cotranslational protein targeting to membrane	4.7×10^{-108}	$<7.035 \times 10^{-4}$
Eukaryotic Translation Initiation	4.8×10^{-106}	$<7.035 \times 10^{-4}$
Cap-dependent Translation Initiation	4.8×10^{-106}	$<7.035 \times 10^{-4}$
Influenza Viral RNA Transcription and Replication	8.1×10^{-103}	$<7.035 \times 10^{-4}$
Influenza Infection	2.4×10^{-102}	$<7.035 \times 10^{-4}$
Translation	6.0×10^{-101}	$<7.035 \times 10^{-4}$
Influenza Life Cycle	2.2×10^{-100}	$<7.035 \times 10^{-4}$
Disease	2.1×10^{-90}	0.013347
GPCR downstream signalling	1.6×10^{-80}	0.095478
Hemostasis	2.1×10^{-78}	0.2671
Signalling by GPCR	1.2×10^{-73}	0.44939
Extracellular matrix organization	2.2×10^{-67}	0.054008
Metabolism of proteins	1.4×10^{-66}	0.9607
Signal Transduction	2.1×10^{-66}	0.48184
Developmental Biology	2.5×10^{-66}	0.54075
Innate Immune System	5.3×10^{-66}	0.9589
Infectious disease	9.6×10^{-66}	0.21075
Signalling by NGF	1.1×10^{-62}	0.43356
Immune System	2.8×10^{-62}	0.23052

Over-representation (hypergeometric test) and Permutation p-values adjusted for multiple tests across pathways ($\{glsFDR\}$). Significant pathways are marked in bold ($\{glsFDR < 0.05\}$) and italics ($\{glsFDR < 0.1\}$).

Table C.6: Pathways for CDH1 partners from mtSLIPT and siRNA primary screen

Reactome Pathway	Over-representation	Permutation
Visual phototransduction	1.2×10^{-9}	0.86279
$\mathbf{G}_{lpha s}$ signalling events	2.9×10^{-7}	0.023066
Retinoid metabolism and transport	2.9×10^{-7}	0.299
Acyl chain remodelling of PS	1.1×10^{-5}	0.42584
Transcriptional regulation of white adipocyte differentiation	1.1×10^{-5}	0.53928
Chemokine receptors bind chemokines	1.1×10^{-5}	0.95259
Signalling by NOTCH4	1.2×10^{-5}	0.079229
Defective EXT2 causes exostoses 2	1.2×10^{-5}	0.22292
Defective EXT1 causes exostoses 1, TRPS2 and CHDS	1.2×10^{-5}	0.22292
Platelet activation, signalling and aggregation	1.2×10^{-5}	0.48853
Serotonin receptors	1.4×10^{-5}	0.34596
Nicotinamide salvaging	1.4×10^{-5}	0.70881
Phase 1 - Functionalization of compounds	2×10^{-5}	0.31142
Amine ligand-binding receptors	2.5×10^{-5}	0.34934
Acyl chain remodelling of PE	3.8×10^{-5}	0.42615
Signalling by GPCR	3.8×10^{-5}	0.93888
Molecules associated with elastic fibres	3.9×10^{-5}	0.017982
DAP12 interactions	3.9×10^{-5}	0.71983
Beta defensins	3.9×10^{-5}	0.91458
Cytochrome P_{450} - arranged by substrate type	4.7×10^{-5}	0.83493
GPCR ligand binding	5.7×10^{-5}	0.95258
Acyl chain remodelling of PC	6.1×10^{-5}	0.42584
Response to elevated platelet cytosolic Ca ²⁺	6.4×10^{-5}	0.54046
Arachidonic acid metabolism	6.7×10^{-5}	0.026696
Defective B4GALT7 causes EDS, progeroid type	7.3×10^{-5}	0.24921
Defective B3GAT3 causes JDSSDHD	7.3×10^{-5}	0.24921
Hydrolysis of LPC	7.3×10^{-5}	0.80663
Elastic fibre formation	7.4×10^{-5}	0.0058768
HS-GAG degradation	9.4×10^{-5}	0.0083179
Bile acid and bile salt metabolism	9.4×10^{-5}	0.079905
Netrin-1 signalling	0.00011	0.92216
Integration of energy metabolism	0.00011	0.011152
Dectin-2 family	0.00011	0.10385
Platelet sensitization by LDL	0.00012	0.10363
DAP12 signalling	0.00012	0.62787
Defensins Defensins	0.00012	0.02787
GPCR downstream signalling	0.00012	0.79454
Diseases associated with glycosaminoglycan metabolism	0.00013	0.065927
Diseases of glycosylation	0.00013	0.065927
Signalling by Retinoic Acid	0.00013	0.22292
Signalling by Leptin	0.00013	0.34596
Signalling by SCF-KIT	0.00013	0.70881
Opioid Signalling	0.00013	0.96053
Signalling by NOTCH	0.00015	0.26884
Platelet homeostasis	0.00015	0.4878
Signalling by NOTCH1	0.00016	0.13043
Class B/2 (Secretin family receptors)	0.00016	0.13994
Diseases of Immune System	0.0002	0.0795
Diseases associated with the TLR signalling cascade	0.0002	0.0795
A tetrasaccharide linker sequence is required for GAG synthesis	0.0002	0.42615

Over-representation (hypergeometric test) and Permutation p-values adjusted for multiple tests across pathways ($\{glsFDR\}$). Significant pathways are marked in bold ($\{glsFDR < 0.05\}$) and italics ($\{glsFDR < 0.1\}$).

C.4 Compare SLIPT genes

The mutation synthetic lethal partners with *CDH1* were also compared to siRNA primary screen data (Telford *et al.*, 2015), by correlation and siRNA viability as described in sections 4.2.2 and 4.2.3.

Figure C.3: Compare mtSLIPT and siRNA genes with correlation. The mtSLIPT p-values were compared against Pearson's correlation of expression with *CDH1*. Genes detected by SLIPT or siRNA are coloured according to the legend.

Figure C.4: Compare mtSLIPT and siRNA genes with correlation. Genes detected by mtSLIPT against *CDH1* mutation and siRNA screening were compared against Pearson's correlation of expression with *CDH1*. There were no differences in correlation between the gene groups.

Figure C.5: Compare mtSLIPT and siRNA genes with siRNA viability. Genes detected as candidate synthetic lethal partners by mtSLIPT (in TCGA breast cancer) expression analysis against *CDH1* mutation and experimental screening (with siRNA) were compared against the viability ratio of *CDH1* mutant and wildtype cells in the primary siRNA screen. There were clear no differences in viability between genes detected by mtSLIPT and those not with the differences being primarily due to viability thresholds being used to detect synthetic lethality by Telford *et al.* (2015).

C.5 Metagene Analysis

Metagene analysis was also performed for synthetic lethal candidates for CDH1 mutation. These are described and compared to expression analysis in Section 4.3.3.

Table C.7: Candidate synthetic lethal metagenes against CDH1 from mtSLIPT

Pathway	ID	Observed	Expected	χ^2 value	p-value	p-value ($\{glsFDR\}$
Neurotoxicity of clostridium toxins	168799	8	36.7	79.4	5.71×10^{-18}	3.14×10^{-15}
Aquaporin-mediated transport	445717	8	36.7	76.3	2.73×10^{-17}	9.01×10^{-15}
Toxicity of botulinum toxin type G (BoNT/G)	5250989	8	36.7	76.3	2.73×10^{-17}	9.01×10^{-15}
ABC-family proteins mediated transport	382556	10	36.7	68.2	1.58×10^{-15}	1.86×10^{-13}
$G_{\alpha z}$ signalling events	418597	10	36.7	59.9	9.97×10^{-14}	5.48×10^{-12}
Regulation of IGF transport and uptake by IGFBPs	381426	9	36.7	56.3	5.88×10^{-13}	2.11×10^{-11}
GP1b-IX-V activation signalling	430116	8	36.7	55.7	8.20×10^{-13}	2.76×10^{-11}
GABA receptor activation	977443	12	36.7	55.1	1.07×10^{-12}	3.26×10^{-11}
Vasopressin regulates renal water homeostasis via Aquaporins	432040	9	36.7	54.1	1.77×10^{-12}	4.88×10^{-11}
Toxicity of botulinum toxin type D (BoNT/D)	5250955	14	36.7	53.4	2.54×10^{-12}	6.64×10^{-11}
Toxicity of botulinum toxin type F (BoNT/F)	5250981	14	36.7	53.4	2.54×10^{-12}	6.64×10^{-11}
STAT6-mediated induction of chemokines	3249367	16	36.7	52.2	4.72×10^{-12}	1.13×10^{-10}
Toxicity of botulinum toxin type B (BoNT/B)	5250958	14	36.7	50.8	9.5×10^{-12}	1.98×10^{-10}
S6K1 signalling	165720	12	36.7	50.2	1.24×10^{-11}	2.5×10^{-10}
$G_{\alpha s}$ signalling events	418555	11	36.7	49.2	2.08×10^{-11}	3.85×10^{-10}
RHO GTPases activate CIT	5625900	14	36.7	48.2	3.34×10^{-11}	5.9×10^{-10}
NADE modulates death signalling	205025	15	36.7	47.4	5.00×10^{-11}	8.32×10^{-10}
Keratan sulfate degradation	2022857	10	36.7	46.6	7.5×10^{-11}	1.15×10^{-9}
Signalling by Retinoic Acid	5362517	10	36.7	46.6	7.5×10^{-11}	1.15×10^{-9}
Adenylate cyclase inhibitory pathway	170670	14	36.7	45.9	1.11×10^{-10}	1.59×10^{-9}
Inhibition of adenylate cyclase pathway	997269	14	36.7	45.9	1.11×10^{-10}	1.59×10^{-9}
Fatty acids	211935	6	36.7	45.7	1.21×10^{-10}	1.72×10^{-9}
Ionotropic activity of Kainate Receptors	451306	13	36.7	44.6	2.03×10^{-10}	2.58×10^{-9}
Activation of Ca-permeable Kainate Receptor	451308	13	36.7	44.6	2.03×10^{-10}	2.58×10^{-9}
RA biosynthesis pathway	5365859	13	36.7	44.6	2.03×10^{-10}	2.58×10^{-9}

Strongest candidate SL partners for CDH1 by mtSLIPT with observed and expected numbers of mutant CDH1 TCGA breast cancer tumours with low expression of partner metagenes.

C.6 Expression of Somatic Mutations

Figure C.6: **Somatic mutation against PIK3CA metagene.** Mutations in *PIK3CA*, *PIK3R1*, *CDH1*, and *TP53* were examined in TCGA breast cancer for their effect on the PIK3CA (Gatza *et al.*, 2014) pathway metagene. The tumour suppressors *CDH1* and *TP53* showed an increase and decrease in the metagene respectively, whereas *PIK3CA* and *PIK3R1* mutations weaker evidence of decrease in metagene levels.

Figure C.7: **Somatic mutation against PI3K protein.** Mutations in PIK3CA, PIK3R1, CDH1, and TP53 were examined in TCGA breast cancer for their effect on the expression of the p110 α protein (encoded by PIK3CA). Protein levels were significantly elevated in samples with PIK3CA or PIK3R1 mutations and lower in samples with TP53 mutations.

Figure C.8: **Somatic mutation against AKT protein.** Mutations in *PIK3CA*, *PIK3R1*, *CDH1*, and *TP53* were examined in TCGA breast cancer for their effect on the expression of the AKT protein (a downstream target of *PIK3CA*). Protein levels were not significantly different in samples mutations in any of these cancer genes.

C.7 Metagene Expression Profiles

Figure C.9: **Pathway metagene expression profiles.** Expression profiles for metagene signatures from Gatza *et al.* (2014) in TCGA breast data, annotated for clinical factors and cancer gene mutations.

Figure C.10: Expression profiles for p53 related genes. Expression profiles the genes contained in the TP53 gene signature from Gatza et al. (2011) in TCGA breast data, annotated for clinical factors and cancer gene mutations. Samples are separated by CDH1 expression status and sorted by the metagene. In both cases, the majority of genes were consistent with the direction of the metagene, with few very exceptions. TP53 mutant samples had low metagene expression, consistent with loss of tumour suppressor functions, and were less likely to have CDH1 or PIK3CA mutations.

Figure C.11: Expression profiles for BRCA related genes. Expression profiles the genes contained in the gene signature related to BRCA1 and BRCA2 functions from Gatza et al. (2014) in TCGA breast data, annotated for clinical factors and cancer gene mutations. Samples are separated by CDH1 expression status and sorted by the metagene. In both cases, the majority of genes were consistent with the direction of the metagene, with few very exceptions. BRCA1 and BRCA2 mutant samples had higher metagene expression than most samples for the ductal subtype, although this was not the case (for the lobular samples for which the metagene was lower). However, the metagene was higher for basal subtype and estrogen receptor negative samples.

Appendix D

Intrinsic Subtyping

The intrinsic subtypes for TCGA breast cancer samples provided by University of California, Santa Cruz (UCSC) (TCGA, 2012) that were derived from microarray analysis have been compared to the Prediction Analysis of Microarray 50 (PAM50) results for performing subtyping from RNA-Seq data (Parker *et al.*, 2009). As shown in Table D.1, these subtypes were highly concordant for samples which had both procedures performed upon them ($\chi^2 = 1305.9$, $p = 2.73 \times 10^{-268}$). The main exception were the luminal A samples some of which were reclassified as luminal B or "normal-like".

Table D.1: Comparison of Intrinsic Subtypes

UCSC Subtype						
Basal-like	HER2-enriched	Luminal A	Luminal B	Normal-like		
100	58	232	128	30		
	PAM50 Subtype					
Basal-like	HER2-enriched	Luminal A	Luminal B	Normal-like		
208	94	314	334	227		

	${ m UCSC~Subtype}$				
PAM50 Subtype	Basal-like	HER2-enriched	Luminal A	Luminal B	Normal-like
Basal-like	96	4	2	2	1
HER2-enriched	0	47	5	3	0
Luminal A	1	0	141	1	0
Luminal B	2	7	49	121	0
Normal-like	1	0	35	1	29

The intrinsic subtypes of TCGA breast samples were compared between those provided by UCSC (TCGA, 2012) from microarray expression to those derived from RNA-Seq data (Parker *et al.*, 2009). Comparisons between these were limited to samples for which both data types were available.

The PAM50 subtypes are potentially more accurate given similarity of these subtypes and that the remainder of the subtypes were accurately recapitulated with RNA-Seq data. Furthermore, UCSC subtypes correctly identified ²²/₂₂ normal samples as "normal-like" and PAM50 subtyping in RNA-Seq data had a success rate of ¹¹²/₁₁₃ (including all of those identified from microarrays). Therefore the PAM50 subtypes (performed on a larger cohort of samples) are appropriate to use for further interpretation, superceeding the UCSC subtypes available for a limited set of samples.

Appendix E

Stomach Expression Analysis

The following results are a replication of the TCGA results (in Chapter 4) with stomach cancer data, using synthetic lethality (SLIPT) against *CDH1*.

E.1 Synthetic Lethal Genes and Pathways

Table E.1: Synthetic lethal gene partners of *CDH1* from SLIPT in stomach cancer

Gene	Observed	Expected	χ^2 value	p-value	p-value ($\{glsFDR\}$
PRAF2	17	50.4	121	3.54×10^{-25}	1.45×10^{-21}
EMP3	17	50.4	115	5.06×10^{-24}	1.48×10^{-20}
PLEKHO1	22	50.4	112	2.14×10^{-23}	4.75×10^{-20}
SELM	20	50.4	111	5.13×10^{-23}	8.09×10^{-20}
GYPC	20	50.4	110	5.77×10^{-23}	8.45×10^{-20}
COX7A1	18	50.4	109	1.15×10^{-22}	1.39×10^{-19}
TNFSF12	20	50.4	106	4.06×10^{-22}	4.38×10^{-19}
SEPT4	17	50.4	106	6.58×10^{-22}	5.91×10^{-19}
LGALS1	19	50.4	105	6.64×10^{-22}	5.91×10^{-19}
RARRES2	27	50.4	105	8.02×10^{-22}	6.85×10^{-19}
VEGFB	16	50.4	104	1.19×10^{-21}	9.74×10^{-19}
PRR24	22	50.4	102	2.96×10^{-21}	2.02×10^{-18}
SYNC	19	50.4	102	3.73×10^{-21}	2.39×10^{-18}
MAGEH1	17	50.4	100	9.52×10^{-21}	5.01×10^{-18}
HSPB2	23	50.4	99.6	1.19×10^{-20}	5.82×10^{-18}
SMARCD3	19	50.4	99	1.59×10^{-20}	7.57×10^{-18}
CREM	13	50.4	98.1	2.48×10^{-20}	1.13×10^{-17}
GNG11	20	50.4	97.3	3.68×10^{-20}	1.59×10^{-17}
GNAI2	17	50.4	96.4	5.75×10^{-20}	2.36×10^{-17}
FUNDC2	22	50.4	95.9	7.39×10^{-20}	2.91×10^{-17}
CNRIP1	21	50.4	95.3	1.0×10^{-19}	3.66×10^{-17}
CALHM2	22	50.4	93.1	2.94×10^{-19}	1.06×10^{-16}
ARID5A	18	50.4	92.7	3.47×10^{-19}	1.22×10^{-16}
ST3GAL3	27	50.4	92.2	4.49×10^{-19}	1.56×10^{-16}
LOC339524	21	50.4	92.1	4.8×10^{-19}	1.59×10^{-16}

SLIPT partners of CDH1 with observed and expected numbers of TCGA stomach cancer samples with low expression of both genes.

Table E.2: Pathways for CDH1 partners from SLIPT in stomach cancer

Pathways Over-represented	Pathway Size	SL Genes	p-value ({glsFDR)
Extracellular matrix organization	241	104	7.5×10^{-140}
Hemostasis	445	138	1.8×10^{-121}
Developmental Biology	432	125	9.2×10^{-107}
Axon guidance	289	94	1.5×10^{-102}
Eukaryotic Translation Termination	84	49	1.9×10^{-99}
GPCR ligand binding	373	108	3.8×10^{-99}
Viral mRNA Translation	82	48	3.3×10^{-98}
Formation of a pool of free 40S subunits	94	51	3.3×10^{-98}
Eukaryotic Translation Elongation	87	49	1.6×10^{-97}
Peptide chain elongation	84	48	7.2×10^{-97}
Class A/1 (Rhodopsin-like receptors)	289	90	2.7×10^{-96}
Nonsense Mediated Decay independent of the Exon Junction Complex	89	49	3.0×10^{-96}
Infectious disease	349	100	2.6×10^{-94}
GTP hydrolysis and joining of the 60S ribosomal subunit	105	52	3.4×10^{-94}
L13a-mediated translational silencing of Ceruloplasmin expression	104	51	2.8×10^{-92}
3' -UTR-mediated translational regulation	104	51	2.8×10^{-92}
Neuronal System	272	84	8.4×10^{-92}
SRP-dependent cotranslational protein targeting to membrane	105	51	9.5×10^{-92}
Eukaryotic Translation Initiation	112	52	2.0×10^{-90}
Cap-dependent Translation Initiation	112	52	2.0×10^{-90}

Gene set over-representation analysis (hypergeometric test) for Reactome pathways in SLIPT partners for $\it CDH1$.

Figure E.1: Synthetic lethal expression profiles of analysed samples. Gene expression profile heatmap (correlation distance) of all samples (separated by the 1 /3 quantile of CDH1 expression) analysed in TCGA stomach cancer dataset for gene expression of 4365 candidate partners of E-cadherin (CDH1) from SLIPT prediction (with significant {glsFDR adjusted p < 0.05}. Deeply clustered, inter-correlated genes form several main groups, each containing genes that were SL candidates or toxic in an siRNA screen Telford $et\ al.\ (2015)$. Clusters had different sample groups highly expressing the synthetic lethal candidates in CDH1 low samples, notably diffuse and CDH1 mutant samples have elevated expression in one or more distinct clusters, although there was less complexity and variation among candidate synthetic lethal partners than in breast data. CDH1 low samples also contained most of samples with CDH1 mutations.

Table E.3: Pathway composition for clusters of CDH1 partners in stomach SLIPT

Viral mRNA Translation Formation of a pool of free 40S subunits Eukaryotic Translation Elongation Peptide chain elongation Eukaryotic Translation Termination GTP hydrolysis and joining of the 60S ribosomal subunit Nonsense Mediated Decay independent of the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation	82		p-value ({glsFDR)
Eukaryotic Translation Elongation Peptide chain elongation Eukaryotic Translation Termination GTP hydrolysis and joining of the 60S ribosomal subunit Nonsense Mediated Decay independent of the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression		48	1.3×10^{-97}
Peptide chain elongation Eukaryotic Translation Termination GTP hydrolysis and joining of the 60S ribosomal subunit Nonsense Mediated Decay independent of the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression	94	51	1.3×10^{-97}
Eukaryotic Translation Termination GTP hydrolysis and joining of the 60S ribosomal subunit Nonsense Mediated Decay independent of the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression	87	49 48	4.8×10^{-97} 1.4×10^{-96}
GTP hydrolysis and joining of the 60S ribosomal subunit Nonsense Mediated Decay independent of the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression	84 84	48	1.4×10^{-96} 1.4×10^{-96}
Nonsense Mediated Decay independent of the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression	105	52	7.9×10^{-94}
L13a-mediated translational silencing of Ceruloplasmin expression	89	48	3.1×10^{-93}
3' -UTR-mediated translational regulation	104	51	5.1×10^{-92}
	104	51	5.1×10^{-92}
SRP-dependent cotranslational protein targeting to membrane	105	51	1.7×10^{-91}
Eukaryotic Translation Initiation	112	52	3.3×10^{-90}
Cap-dependent Translation Initiation	112	52	3.3×10^{-90}
Translation	142	56	3.6×10^{-85}
Nonsense-Mediated Decay	104	48	1.2×10^{-84}
Nonsense Mediated Decay enhanced by the Exon Junction Complex Influenza Viral RNA Transcription and Replication	104 109	48 48	1.2×10^{-84} 4.1×10^{-82}
Influenza Life Cycle	113	48	3.4×10^{-80}
Influenza Infection	118	48	6.4×10^{-78}
	way Size	Cluster Genes	p-value ({glsFDR)
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell	65	12	1.3×10^{-15}
Phosphorylation of CD3 and TCR zeta chains	18	6	1.7×10^{-12}
Generation of second messenger molecules	29	7	2.7×10^{-12}
PD-1 signalling	21	6	7.4×10^{-12}
TCR signalling	62	9	4.3×10^{-11}
Translocation of ZAP-70 to Immunological synapse	16	5	1.1 ×10 ⁻¹⁰
Interferon alpha/beta signalling	68	9	1.6 ×10 ⁻¹⁰
Initial triggering of complement	17	5	1.6 ×10 ⁻¹⁰
IKK complex recruitment mediated by RIP1	19 10	5 4	5.1 ×10 ⁻¹⁰
TRIF-mediated programmed cell death Creation of C4 and C2 activators	11	4	6.2×10^{-10} 1.3×10^{-9}
RHO GTPases Activate NADPH Oxidases	11	4	1.3 ×10 ⁻⁹
Interferon Signalling	175	15	2.3×10^{-9}
Chemokine receptors bind chemokines	52	7	4.0×10^{-9}
Interferon gamma signalling	74	8	1.6×10^{-8}
TRAF6 mediated induction of TAK1 complex	15	4	1.6×10^{-8}
Activation of IRF3/IRF7 mediated by TBK1/IKK epsilon	16	4	2.7×10^{-8}
Downstream TCR signalling	45	6	3.5×10^{-8}
Pathways Over-represented in Cluster 3 Path Uptake and actions of bacterial toxins	way Size	Cluster Genes	p-value ({glsFDR) 3.5×10^{-6}
Neurotoxicity of clostridium toxins	10	3	3.5×10^{-6}
Activation of PPARGC1A (PGC-1alpha) by phosphorylation	10	3	3.5×10^{-6}
SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription	28	4	1.4×10^{-5}
Assembly of the primary cilium	149	10	2.5×10^{-5}
Serotonin Neurotransmitter Release Cycle	15	3	2.5×10^{-5}
Glycosaminoglycan metabolism	114	8	3.3×10^{-5}
Platelet homeostasis	54	5	3.3×10^{-5}
	17	3	3.3×10^{-5}
Norepinephrine Neurotransmitter Release Cycle	17	3	
Acetylcholine Neurotransmitter Release Cycle	100	7	3.3×10^{-5}
Acetylcholine Neurotransmitter Release Cycle $G_{\alpha s}$ signalling events	10	7	5.5×10^{-5}
Acetylcholine Neurotransmitter Release Cycle $G_{\alpha s} \text{ signalling events}$ GABA synthesis, release, reuptake and degradation	19 39	3	5.5×10^{-5} 5.6×10^{-5}
Acetylcholine Neurotransmitter Release Cycle $G_{\alpha s}$ signalling events	19 39 20		5.5×10^{-5}
Acetylcholine Neurotransmitter Release Cycle $G_{\rm os} \mbox{ signalling events}$ GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex	39	3 4	5.5×10^{-5} 5.6×10^{-5} 6.7×10^{-5}
Acetylcholine Neurotransmitter Release Cycle $G_{os} \text{ signalling events}$ $GABA \text{ synthesis, release, reuptake and degradation}$ $\text{deactivation of the beta-catenin transactivating complex}$ $\text{Dopamine Neurotransmitter Release Cycle}$	39 20	3 4 3	5.5×10^{-5} 5.6×10^{-5} 6.7×10^{-5} 6.7×10^{-5}
Acetylcholine Neurotransmitter Release Cycle $G_{\alpha s} \text{ signalling events}$ $GABA \text{ synthesis, release, reuptake and degradation}$ deactivation of the beta-catenin transactivating complex $Dopamine \text{ Neurotransmitter Release Cycle}$ $IRS\text{-related events triggered by IGF1R}$	39 20 83	3 4 3 6	5.5×10^{-5} 5.6×10^{-5} 6.7×10^{-5} 6.7×10^{-5} 7.1×10^{-5}
Acetylcholine Neurotransmitter Release Cycle $G_{\alpha s}$ signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins	39 20 83 186 21 22	3 4 3 6 11 3	5.5×10^{-5} 5.6×10^{-5} 6.7×10^{-5} 6.7×10^{-5} 6.7×10^{-5} 7.1×10^{-5} 7.1×10^{-5} 7.4×10^{-5} 8.5×10^{-5}
Acetylcholine Neurotransmitter Release Cycle $G_{\alpha s}$ signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins	39 20 83 186 21	3 4 3 6 11 3	5.5 × 10 ⁻⁵ 5.6 × 10 ⁻⁵ 6.7 × 10 ⁻⁵ 6.7 × 10 ⁻⁵ 7.1 × 10 ⁻⁵ 7.1 × 10 ⁻⁵ 7.4 × 10 ⁻⁵ 8.5 × 10 ⁻⁵ p-value ({glsFDR)
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization	39 20 83 186 21 22 nway Size	3 4 3 6 11 3 3 Cluster Genes 97	5.5 × 10 ⁻⁵ 5.6 × 10 ⁻⁵ 6.7 × 10 ⁻⁵ 6.7 × 10 ⁻⁵ 7.1 × 10 ⁻⁵ 7.1 × 10 ⁻⁵ 7.4 × 10 ⁻⁵ 8.5 × 10 ⁻⁵ p-value ({glsFDR}) 8.8 × 10 ⁻¹²⁶
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization Axon guidance	39 20 83 186 21 22 22 241 289	3 4 3 6 11 3 3 Cluster Genes 97 75	5.5 × 10 ⁻⁵ 5.6 × 10 ⁻⁵ 6.7 × 10 ⁻⁵ 6.7 × 10 ⁻⁵ 7.1 × 10 ⁻⁵ 7.1 × 10 ⁻⁵ 7.4 × 10 ⁻⁵ 8.5 × 10 ⁻⁵ p-value ({glsFDR) 8.8 × 10 ⁻¹²⁶ 8.3 × 10 ⁻⁷²
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Extracellular matrix organization Axon guidance Hemostasis	39 20 83 186 21 22 22 241 289 445	3 4 3 6 11 3 3 Cluster Genes 97 75 101	5.5 × 10 ⁻⁵ 5.6 × 10 ⁻⁵ 6.7 × 10 ⁻⁵ 6.7 × 10 ⁻⁵ 6.7 × 10 ⁻⁵ 7.1 × 10 ⁻⁵ 7.1 × 10 ⁻⁵ 7.4 × 10 ⁻⁵ 8.5 × 10 ⁻⁵ p-value ({gisFDR) 8.8 × 10 ⁻¹²⁶ 8.3 × 10 ⁻⁷² 8.3 × 10 ⁻⁷²
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization Axon guidance Hemostasis Developmental Biology	39 20 83 186 21 22 1 22 1 22 1 241 289 445 432	3 4 3 6 11 3 3 Cluster Genes 97 75 101 95	$\begin{array}{c} 5.5 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.4 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ \textbf{p-value (\{glsFDR)} \\ 8.8 \times 10^{-120} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-72} \\ 3.0 \times 10^{-67} \end{array}$
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization Axon guidance Hemostasis Developmental Biology Response to elevated platelet cytosolic Ca ²⁺	39 20 83 186 21 22 1 22 1 289 241 289 445 432 84	3 4 3 6 11 3 3 Cluster Genes 97 75 101 95 37	$\begin{array}{c} 5.5 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.4 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ \textbf{P-value (\{glsFDR)} \\ 8.8 \times 10^{-120} \\ 8.3 \times 10^{-72} \\ 3.0 \times 10^{-67} \\ 5.8 \times 10^{-67} \end{array}$
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Extracellular matrix organization Axon guidance Hemostasis Developmental Biology Response to elevated platelet cytosolic Ca ²⁺ Platelet degranulation	39 20 83 186 21 22 241 229 445 432 84 79	3 4 3 6 11 3 3 Cluster Genes 97 75 101 95 37 36	$\begin{array}{c} 5.5 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.4 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ \textbf{P-value (\{glsFDR)} \\ 8.8 \times 10^{-126} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 5.8 \times 10^{-67} \end{array}$
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization Axon guidance Hemostasis Developmental Biology Response to elevated platelet cytosolic Ca ²⁺	39 20 83 186 21 22 1 22 1 289 241 289 445 432 84	3 4 3 6 11 3 3 Cluster Genes 97 75 101 95 37	$\begin{array}{c} 5.5 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.4 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ \textbf{P-value (\{glsFDR)} \\ 8.8 \times 10^{-120} \\ 8.3 \times 10^{-72} \\ 3.0 \times 10^{-67} \\ 5.8 \times 10^{-67} \end{array}$
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization Axon guidance Hemostasis Developmental Biology Response to elevated platelet cytosolic Ca ²⁺ Platelet degranulation Degradation of the extracellular matrix	39 20 83 186 21 22 1way Size 241 289 445 432 84 79 104	3 4 3 6 11 3 3 Cluster Genes 97 75 101 95 37 36 39	$\begin{array}{c} 5.5 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.4 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ \textbf{p-value (\{glsFDR)} \\ 8.8 \times 10^{-126} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 6.7 \times 10^{-63} \end{array}$
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization Axon guidance Hemostasis Developmental Biology Response to elevated platelet cytosolic Ca ²⁺ Platelet degranulation Degradation of the extracellular matrix Platelet activation, signalling and aggregation	39 20 83 186 21 22 22 241 289 445 432 445 432 104 1186	3 4 3 6 11 3 3 Cluster Genes 97 75 101 95 37 36 39 52	$\begin{array}{c} 5.5 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.4 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ \textbf{P-value (\{glsFDR)} \\ 8.8 \times 10^{-126} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-72} \\ 3.0 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 6.7 \times 10^{-63} \\ 6.6 \times 10^{-62} \end{array}$
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization Axon guidance Hemostasis Developmental Biology Response to elevated platelet cytosolic Ca ²⁺ Platelet degranulation Degradation of the extracellular matrix Platelet activation, signalling and aggregation ECM proteoglycans	39 20 83 186 21 22 22 wwy Size 241 289 445 432 84 79 104 186 66	3 4 3 6 111 3 3 Cluster Genes 97 75 101 95 37 36 39 52 31	$\begin{array}{c} 5.5 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.4 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ \textbf{P-value (\{glsFDR)} \\ 8.8 \times 10^{-126} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 6.6 \times 10^{-62} \\ 8.1 \times 10^{-61} \end{array}$
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization Axon guidance Hemostasis Developmental Biology Response to elevated platelet cytosolic Ca ²⁺ Platelet degranulation Degradation of the extracellular matrix Platelet activation, signalling and aggregation ECM proteoglycans Neuronal System Signalling by PDGF Integrin cell surface interactions	39 20 83 186 21 22 wwy Size 241 289 445 432 84 79 104 1186 66 272	3 4 3 6 11 3 3 Cluster Genes 97 75 101 95 37 36 39 52 31	$\begin{array}{c} 5.5 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.4 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ \textbf{P-value (\{glsFDR)} \\ 8.8 \times 10^{-126} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 6.7 \times 10^{-63} \\ 6.6 \times 10^{-62} \\ 8.1 \times 10^{-61} \\ 5.1 \times 10^{-60} \\ 9.7 \times 10^{-57} \\ 1.9 \times 10^{-53} \\ \end{array}$
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization Axon guidance Hemostasis Developmental Biology Response to elevated platelet cytosolic Ca ²⁺ Platelet degranulation Degradation of the extracellular matrix Platelet activation, signalling and aggregation ECM proteoglycans Neuronal System Signalling by PDGF Integrin cell surface interactions Collagen biosynthesis and modifying enzymes	39 20 83 1186 21 22 wway Size 241 289 445 432 84 79 104 186 66 272 173 82 56	3 4 3 6 111 3 3 Cluster Genes 97 75 101 95 37 36 39 52 31 64 47 31 26	$\begin{array}{c} 5.5 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ \textbf{P-value (\{glsFDR)} \\ 8.8 \times 10^{-120} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 6.6 \times 10^{-62} \\ 8.1 \times 10^{-61} \\ 5.1 \times 10^{-60} \\ 9.7 \times 10^{-57} \\ 1.9 \times 10^{-53} \\ 1.1 \times 10^{-52} \\ \end{array}$
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization Axon guidance Hemostasis Developmental Biology Response to elevated platelet cytosolic Ca ²⁺ Platelet degranulation Degradation of the extracellular matrix Platlete activation, signalling and aggregation ECM proteoglycans Neuronal System Signalling by PDGF Integrin cell surface interactions Collagen biosynthesis and modifying enzymes Collagen formation	39 20 83 186 21 22 22 wwy Size 241 289 445 432 84 79 104 186 66 272 173 82 56	3 4 3 6 111 3 3 Cluster Genes 97 75 101 95 37 36 39 52 31 64 47 31 26 28	$\begin{array}{c} 5.5 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.4 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ \textbf{P-value (\{glsFDR)} \\ 8.8 \times 10^{-126} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 6.7 \times 10^{-63} \\ 6.6 \times 10^{-62} \\ 8.1 \times 10^{-61} \\ 5.1 \times 10^{-60} \\ 9.7 \times 10^{-57} \\ 1.9 \times 10^{-57} \\ 1.1 \times 10^{-52} \\ 1.4 \times 10^{-52} \end{array}$
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization Axon guidance Hemostasis Developmental Biology Response to elevated platelet cytosolic Ca ²⁺ Platelet degranulation Degradation of the extracellular matrix Platelet activation, signalling and aggregation ECM proteoglycans Neuronal System Signalling by PDGF Integrin cell surface interactions Collagen biosynthesis and modifying enzymes Collagen formation Class A/1 (Rhodopsin-like receptors)	39 20 83 186 21 22 241 289 445 432 49 104 186 66 272 173 82 56 67 289	3 4 3 6 11 3 3 Cluster Genes 97 75 101 95 37 36 39 52 31 64 47 31 26 28 61	$\begin{array}{c} 5.5 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.4 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ \\ \textbf{P-value} \left(\left\{ \mathbf{glsFDR} \right\} \right. \\ 8.8 \times 10^{-72} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 6.7 \times 10^{-63} \\ 6.6 \times 10^{-62} \\ 8.1 \times 10^{-61} \\ 5.1 \times 10^{-60} \\ 9.7 \times 10^{-57} \\ 1.9 \times 10^{-53} \\ 1.1 \times 10^{-52} \\ 2.3 \times 10^{-52} \end{array}$
Acetylcholine Neurotransmitter Release Cycle Gas signalling events GABA synthesis, release, reuptake and degradation deactivation of the beta-catenin transactivating complex Dopamine Neurotransmitter Release Cycle IRS-related events triggered by IGF1R Generic Transcription Pathway Termination of O-glycan biosynthesis Kinesins Pathways Over-represented in Cluster 4 Path Extracellular matrix organization Axon guidance Hemostasis Developmental Biology Response to elevated platelet cytosolic Ca ²⁺ Platelet degranulation Degradation of the extracellular matrix Platlete activation, signalling and aggregation ECM proteoglycans Neuronal System Signalling by PDGF Integrin cell surface interactions Collagen biosynthesis and modifying enzymes Collagen formation	39 20 83 186 21 22 22 wwy Size 241 289 445 432 84 79 104 186 66 272 173 82 56	3 4 3 6 111 3 3 Cluster Genes 97 75 101 95 37 36 39 52 31 64 47 31 26 28	$\begin{array}{c} 5.5 \times 10^{-5} \\ 5.6 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 6.7 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.1 \times 10^{-5} \\ 7.4 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ 8.5 \times 10^{-5} \\ \textbf{P-value (\{glsFDR)} \\ 8.8 \times 10^{-126} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-72} \\ 8.3 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 5.8 \times 10^{-67} \\ 6.7 \times 10^{-63} \\ 6.6 \times 10^{-62} \\ 8.1 \times 10^{-61} \\ 5.1 \times 10^{-60} \\ 9.7 \times 10^{-57} \\ 1.9 \times 10^{-57} \\ 1.1 \times 10^{-52} \\ 1.4 \times 10^{-52} \end{array}$

Pathway over-representation analysis for Reactome pathways with the number of genes in each pathway (Pathway Size), number of genes within the pathway identified (Cluster Genes), and the pathway over-representation p-value (adjusted by {glsFDR}) from the hypergeometric test.

E.2 Comparison to Primary Screen

The synthetic lethal partners with *CDH1* expression in stoamch cancers were also compared to siRNA primary screen data (Telford *et al.*, 2015), as performed in Section 4.2.1. These are expected to be more concordant with the experimental results performed on a null mutant, however this not the case at the gene level: less genes overlapped with experimental candidates in Figure E.2. This may be affected by lower sample size for mutations in TCGA data or lower frequency (expected value) of *CDH1* mutations compared to low expression.

Figure E.2: Comparison of SLIPT in stomach to siRNA. Testing the overlap of gene candidates for E-cadherin synthetic lethal partners between computational (SLIPT) and experimental screening (siRNA) approaches. The χ^2 test suggests that the overlap is no more than would be expected by chance (p = 0.281).

Table E.4: Pathway composition for CDH1 partners from SLIPT and siRNA screening

Predicted only by SLIPT (3392 genes)	Pathway Size	Genes Identified	p-value ({glsFDR)
Extracellular matrix organization	238	90	3.4×10^{-107}
Eukaryotic Translation Termination	79	46	7.6×10^{-91}
Viral mRNA Translation	77	45	1.2×10^{-89}
Eukaryotic Translation Elongation	82	46	5.8×10^{-89}
Peptide chain elongation	79	45	2.1×10^{-88}
Nonsense Mediated Decay independent of the Exon Junction Complex	84	46	9.4×10^{-88}
Formation of a pool of free 40S subunits	89	47	3.3×10^{-87}
GTP hydrolysis and joining of the 60S ribosomal subunit	100	48	3.2×10^{-83}
Axon guidance	284	84	3.9×10^{-82}
Developmental Biology	426	111	4.2×10^{-82}
L13a-mediated translational silencing of Ceruloplasmin expression	99	47	1.4×10^{-81}
3' -UTR-mediated translational regulation	99	47	1.4×10^{-81}
SRP-dependent cotranslational protein targeting to membrane	99	47	1.4×10^{-81}
Nonsense-Mediated Decay	99	47	1.4×10^{-81}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	99	47	1.4×10^{-81}
Hemostasis	438	112	1.2×10^{-80}
Eukaryotic Translation Initiation	107	48	8.0×10^{-80}
Cap-dependent Translation Initiation	107	48	8.0×10^{-80}
Infectious disease	338	90	1.6×10^{-76}
Neuronal System	267	77	1.6×10^{-76}

Detected only by siRNA screen (1803 genes)	Pathway Size	Genes Identified	p-value ($\{glsFDR\}$
Class A/1 (Rhodopsin-like receptors)	282	62	8.1×10^{-50}
GPCR ligand binding	363	71	4.9×10^{-46}
Peptide ligand-binding receptors	175	38	7.9×10^{-38}
$G_{\alpha i}$ signalling events	184	37	1.1×10^{-34}
Gastrin-CREB signalling pathway via PKC and MAPK	180	35	1.4×10^{-32}
$G_{\alpha q}$ signalling events	159	32	4.8×10^{-32}
DAP12 interactions	159	29	1.4×10^{-27}
Downstream signal transduction	146	26	2.4×10^{-25}
DAP12 signalling	149	26	6.4×10^{-25}
VEGFA-VEGFR2 Pathway	91	19	8.1×10^{-24}
Signalling by PDGF	172	27	5.7×10^{-23}
Signalling by ERBB2	146	24	1.4×10^{-22}
Signalling by VEGF	99	19	2.0×10^{-22}
Visual phototransduction	85	17	1.3×10^{-21}
Downstream signalling of activated FGFR1	134	22	1.3×10^{-21}
Downstream signalling of activated FGFR2	134	22	1.3×10^{-21}
Downstream signalling of activated FGFR3	134	22	1.3×10^{-21}
Downstream signalling of activated FGFR4	134	22	1.3×10^{-21}
Signalling by FGFR	146	23	2.0×10^{-21}
Signalling by FGFR1	146	23	2.0×10^{-21}

Intersection of SLIPT and siRNA screen (547 genes)	Pathway Size	Genes Identified	p-value ($\{glsFDR\}$
Class A/1 (Rhodopsin-like receptors)	282	25	3.9×10^{-9}
Platelet activation, signalling and aggregation	182	17	3.9×10^{-9}
Response to elevated platelet cytosolic Ca2 ⁺	82	9	5.5×10^{-8}
Platelet homeostasis	53	7	5.7×10^{-8}
Nucleotide-like (purinergic) receptors	16	4	1.8×10^{-7}
Platelet degranulation	77	8	2.8×10^{-7}
Peptide ligand-binding receptors	175	14	3.8×10^{-7}
Molecules associated with elastic fibres	34	5	7.1×10^{-7}
Amine ligand-binding receptors	35	5	8.6×10^{-7}
$G_{\alpha i}$ signalling events	184	14	9.8×10^{-7}
GPCR ligand binding	363	27	1.1×10^{-6}
Elastic fibre formation	38	5	1.5×10^{-6}
$G_{\alpha q}$ signalling events	159	12	1.9×10^{-6}
Serotonin receptors	12	3	3.8×10^{-6}
P2Y receptors	12	3	3.8×10^{-6}
Signal amplification	16	3	2.3×10^{-5}
Gastrin-CREB signalling pathway via PKC and MAPK	180	12	2.3×10^{-5}
Complement cascade	33	4	2.4×10^{-5}
Glycosaminoglycan metabolism	110	8	2.5×10^{-5}
Glycogen breakdown (glycogenolysis)	17	3	2.7×10^{-5}

E.2.1 Resampling Analysis

Table E.5: Pathways for CDH1 partners from SLIPT in stomach cancer

Reactome Pathway	Over-representation	Permutation
Extracellular matrix organization	7.5×10^{-140}	0.070215
Hemostasis	1.8×10^{-121}	0.25804
Developmental Biology	9.2×10^{-107}	0.53032
Axon guidance	1.5×10^{-102}	0.6704
Eukaryotic Translation Termination	1.9×10^{-99}	$> 1.031 \times 10^{-5}$
GPCR ligand binding	3.8×10^{-99}	0.54914
Viral mRNA Translation	3.3×10^{-98}	$> 1.031 \times 10^{-5}$
Formation of a pool of free 40S subunits	3.3×10^{-98}	$> 1.031 \times 10^{-5}$
Eukaryotic Translation Elongation	1.6×10^{-97}	$> 1.031 \times 10^{-5}$
Peptide chain elongation	7.2×10^{-97}	$> 1.031 \times 10^{-5}$
Class A/1 (Rhodopsin-like receptors)	2.7×10^{-96}	0.58174
Nonsense Mediated Decay independent of the Exon Junction Complex		$> 1.031 \times 10^{-5}$
Infectious disease	2.6×10^{-94}	0.25484
GTP hydrolysis and joining of the 60S ribosomal subunit	3.4×10^{-94}	$> 1.031 \times 10^{-5}$
L13a-mediated translational silencing of Ceruloplasmin expression	2.8×10^{-92}	$> 1.031 \times 10^{-5}$
3'-UTR-mediated translational regulation	2.8×10^{-92}	$> 1.031 \times 10^{-5}$
Neuronal System	8.4×10^{-92}	0.53433
SRP-dependent cotranslational protein targeting to membrane	9.5×10^{-92}	$> 1.031 \times 10^{-5}$
Eukaryotic Translation Initiation	2.0×10^{-90}	$> 1.031 \times 10$ $> 1.031 \times 10^{-5}$
Cap-dependent Translation Initiation	2.0×10^{-90}	$> 1.031 \times 10$ $> 1.031 \times 10^{-5}$
Nonsense-Mediated Decay	7.4×10^{-90}	$> 1.031 \times 10$ $> 1.031 \times 10^{-5}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex	7.4×10^{-90} 7.4×10^{-90}	$> 1.031 \times 10^{-5}$ $> 1.031 \times 10^{-5}$
Adaptive Immune System	8.1×10^{-88}	0.14116
Translation Translation	1.3×10^{-87}	$> 1.031 \times 10^{-5}$
Platelet activation, signalling and aggregation Influenza Infection	1.3×10^{-86} 1×10^{-82}	0.28959
		$> 1.031 \times 10^{-5}$
Influenza Viral RNA Transcription and Replication	2.4×10^{-82}	$> 1.031 \times 10^{-5}$
Influenza Life Cycle	2×10^{-80}	$> 1.031 \times 10^{-5}$
Response to elevated platelet cytosolic Ca2 ⁺	4.9×10^{-78}	0.50817
Signalling by NGF	1.6×10^{-75}	0.38518
Rho GTPase cycle	5.1×10^{-75}	0.14864
Signalling by PDGF	7.4×10^{-74}	0.40493
Signalling by Rho GTPases	5.1×10^{-73}	0.077217
Glycosaminoglycan metabolism	1.4×10^{-68}	0.52984
$G_{\alpha i}$ signalling events	1.8×10^{-66}	0.9254
Metabolism of carbohydrates	1.1×10^{-65}	0.39501
$\mathrm{G}_{lpha s}$ signalling events	2.7×10^{-65}	0.0050293
Potassium Channels	2.7×10^{-65}	0.53359
Transmission across Chemical Synapses	1.8×10^{-64}	0.81833
ECM proteoglycans	3.4×10^{-64}	0.083482
Peptide ligand-binding receptors	4.8×10^{-64}	0.62817
Degradation of the extracellular matrix	1.1×10^{-63}	0.80879
Platelet homeostasis	5.3×10^{-63}	0.53134
NGF signalling via TRKA from the plasma membrane	6.1×10^{-63}	0.5717
Integration of energy metabolism	4.5×10^{-61}	0.10889
Collagen formation	5.4×10^{-61}	0.29896
Integrin cell surface interactions	7×10^{-59}	0.18167
Collagen biosynthesis and modifying enzymes	7×10^{-59}	0.30208
Neurotransmitter Receptor Binding And Downstream Transmission In The Postsynaptic Cell	8.7×10^{-57}	0.82522
Signalling by Wnt	8.7×10^{-57}	0.25468

Over-representation (hypergeometric test) and Permutation p-values adjusted for multiple tests across pathways ($\{glsFDR\}$). Significant pathways are marked in bold ($\{glsFDR < 0.05\}$) and italics ($\{glsFDR < 0.1\}$).

Table E.6: Pathways for CDH1 partners from SLIPT in stomach and siRNA screen

Reactome Pathway	Over-representation	Permutation
Platelet activation, signalling and aggregation	3.9×10^{-9}	0.49557
Class A/1 (Rhodopsin-like receptors)	3.9×10^{-9}	0.98432
Response to elevated platelet cytosolic Ca2 ⁺	5.5×10^{-8}	0.54349
Platelet homeostasis	5.7×10^{-8}	0.45017
Nucleotide-like (purinergic) receptors	1.8×10^{-7}	0.36966
Peptide ligand-binding receptors	3.8×10^{-7}	0.91294
Molecules associated with elastic fibres	7.1×10^{-7}	0.0025868
Amine ligand-binding receptors	$8.6 imes 10^{-7}$	0.43303
$G_{\alpha i}$ signalling events	9.8×10^{-7}	0.99626
GPCR ligand binding	1.1×10^{-6}	0.97733
Elastic fibre formation	1.5×10^{-6}	0.0025868
$G_{\alpha q}$ signalling events	1.9×10^{-6}	0.86089
P2Y receptors	3.8×10^{-6}	0.18795
Serotonin receptors	3.8×10^{-6}	0.37853
Signal amplification	2.3×10^{-5}	0.47856
Gastrin-CREB signalling pathway via PKC and MAPK	2.3×10^{-5}	0.98567
Complement cascade	2.4×10^{-5}	$> 3.4628 \times 10^{-6}$
Glycosaminoglycan metabolism	2.5×10^{-5}	0.38953
Glycogen breakdown (glycogenolysis)	2.7×10^{-5}	0.83772
Defective B4GALT7 causes EDS, progeroid type	4.9×10^{-5}	0.10792
Defective B3GAT3 causes JDSSDHD	4.9×10^{-5}	0.10792
Role of LAT2/NTAL/LAB on calcium mobilization	5.6×10^{-5}	0.35373
Cell surface interactions at the vascular wall	5.6×10^{-5}	0.47642
$G_{\alpha s}$ signalling events	6×10^{-5}	0.019858
Signalling by NOTCH	6×10^{-5}	0.19008
A tetrasaccharide linker sequence is required for GAG synthesis	0.00017	0.47642
Extracellular matrix organization	0.00018	0.0047308
Collagen formation	0.00018	0.19245
Effects of PIP2 hydrolysis	0.0002	0.37779
Syndecan interactions	0.0002	0.37779
Diseases associated with glycosaminoglycan metabolism	0.00023	0.01028
Diseases of glycosylation	0.00023	0.01028
Chondroitin sulfate/dermatan sulfate metabolism	0.00023	0.085541
Integrin alphaIIb beta3 signalling	0.00028	0.76936
Keratan sulfate biosynthesis	0.00028	0.68744
Rho GTPase cycle	0.00034	0.15675
Creation of C4 and C2 activators	0.00034	0.12275
Abacavir transport and metabolism	0.00035	0.12443
Amine compound SLC transporters	0.00037	0.69773
FCERI mediated NF-kB activation	0.00037	0.69846
Fc epsilon receptor (FCERI) signalling	0.00056	0.43303
Defective EXT2 causes exostoses 2	0.00067	0.45505
Defective EXT1 causes exostoses 2 Defective EXT1 causes exostoses 1, TRPS2 and CHDS	0.00067	0.16053
Collagen biosynthesis and modifying enzymes	0.00067	0.052911
Cottagen viosynthesis and montyging enzymes Keratan sulfate/keratin metabolism		
	0.00073	0.46533
G alpha (12/13) signalling events SEMA 2A Playin repulsion signalling by inhibiting Integrin adhesion	0.00078	0.59164
SEMA3A-Plexin repulsion signalling by inhibiting Integrin adhesion		0.038504
Signal attenuation	0.00084	0.37779
Eicosanoid ligand-binding receptors	0.0011	0.11117
SOS-mediated signalling	0.0011	0.25387

Over-representation (hypergeometric test) and Permutation p-values adjusted for multiple tests across pathways ({glsFDR}). Significant pathways are marked in bold ({glsFDR} < 0.05) and italics ({glsFDR} < 0.1).

E.3 Metagene Analysis

Metagene analysis was also performed for synthetic lethal candidates for CDH1 expression in stomach cancer.

Table E.7: Candidate synthetic lethal metagenes against *CDH1* from SLIPT in stomach cancer

Pathway	ID	Observed	Expected	χ^2 value	p-value	p-value ({glsFDR)
Cell-Cell communication	1500931	18	50.4	110	7.43×10^{-23}	1.53×10^{-20}
VEGFR2 mediated vascular permeability	5218920	19	50.4	109	1.36×10^{-22}	2.49×10^{-20}
Sema4D in semaphorin signalling	400685	20	50.4	104	1.62×10^{-21}	2.12×10^{-19}
Ion transport by P-type ATPases	936837	17	50.4	100	8.29×10^{-21}	8.06×10^{-19}
Sialic acid metabolism	4085001	19	50.4	95.3	9.95×10^{-20}	7.82×10^{-18}
Synthesis of pyrophosphates in the cytosol	1855167	26	50.4	94	1.86×10^{-19}	1.23×10^{-17}
Keratan sulfate/keratin metabolism	1638074	25	50.4	93.5	2.36×10^{-19}	1.44×10^{-17}
Ion channel transport	983712	19	50.4	92.8	3.37×10^{-19}	1.99×10^{-17}
Keratan sulfate biosynthesis	2022854	26	50.4	91.4	6.79×10^{-19}	3.62×10^{-17}
Arachidonic acid metabolism	2142753	22	50.4	90.6	9.81×10^{-19}	5.07×10^{-17}
RHO GTPases activate CIT	5625900	22	50.4	87	5.80×10^{-18}	2.66×10^{-16}
Stimuli-sensing channels	2672351	25	50.4	85.8	1.03×10^{-17}	4.58×10^{-16}
Synthesis of PI	1483226	19	50.4	85.6	1.15×10^{-17}	4.89×10^{-16}
G-protein activation	202040	19	50.4	85.3	1.34×10^{-17}	5.53×10^{-16}
NrCAM interactions	447038	22	50.4	84.3	2.1×10^{-17}	8.27×10^{-16}
Inwardly rectifying K^+ channels	1296065	24	50.4	83.5	3.19×10^{-17}	1.22×10^{-15}
Calcitonin-like ligand receptors	419812	20	50.4	82.2	6.07×10^{-17}	2.13×10^{-15}
Prostacyclin signalling through prostacyclin receptor	392851	24	50.4	81.8	7.27×10^{-17}	2.5×10^{-15}
Presynaptic function of Kainate receptors	500657	26	50.4	79.7	2.00×10^{-16}	6.34×10^{-15}
ADP signalling through P2Y purinoceptor 12	392170	23	50.4	79.2	2.57×10^{-16}	7.71×10^{-15}
regulation of FZD by ubiquitination	4641263	22	50.4	78.8	3.15×10^{-16}	9.3×10^{-15}
Toxicity of tetanus toxin (TeNT)	5250982	27	50.4	78.7	3.36×10^{-16}	9.75×10^{-15}
Gap junction degradation	190873	21	50.4	78.5	3.66×10^{-16}	1.04×10^{-14}
Nephrin interactions	373753	25	50.4	78.2	4.21×10^{-16}	1.14×10^{-14}
GABA synthesis, release, reuptake and degradation	888590	26	50.4	77	7.69×10^{-16}	1.95×10^{-14}

Strongest candidate SL partners for CDH1 by SLIPT with observed and expected numbers of TCGA stomach cancer samples with low expression of both genes.