

Gerando Estimativas Confiáveis com COCOMO II e o Banco de Dados do ISBSG

Mauricio Aguiar, CFPS

PSM Qualified Instructor

ti MÉTRICAS Ltda

DEZ 2002

mauricio@metricas.com.br <u>www.metricas.com.br</u> Tel. (21) 2524-0283 Cel. (21) 9983-3278

Estimativas

Projeções quantitativas de características dos projetos, tais como:

- Tamanho do Produto
- Esforço Requerido
- Prazo Requerido
- Qualidade

Problemas

- Falta de dados históricos
- Falta de um processo sistemático, técnicas ou modelos adequados ao projeto
- Erro no escopo da estimativa (atividades ou produtos do projeto omitidos)
- Suposições ou expectativas pouco realísticas

Estimativas

 Uma ou mais medidas são utilizadas para projetar o valor de outra medida.

Influências

Processo de Estimativa

DEZ 2002

Abordagens Utilizadas

Modelos Paramétricos

Modelos Baseados em Atividades

Analogia

Modelos Paramétricos

- Relação matemática entre tamanho, esforço, prazo e qualidade
- Essa relação é afetada por fatores de performance, ou parâmetros
- Exemplos:COCOMO II, SLiM, KnowledgePlan

Modelos Paramétricos

A, B e C podem ser calibrados a partir de dados históricos.

Modelos Baseados em Atividades

- Visão bottom-up
- As estimativas são obtidas para as atividades de nível mais baixo, a partir de:
 - opinião de especialistas
 - dados históricos

Modelos Baseados em Atividades

- Funcionam melhor quando a organização possui uma estrutura de projeto (WBS) padronizada
- Costumam errar em função da não inclusão de atividades que só são descobertas mais adiante no projeto
- São mais úteis como opção adicional de verificação

Modelos Baseados em Atividades

O esforço e o custo podem ser calculados pelo próprio software de gerenciamento de projetos

Analogia

- Um ou mais projetos semelhantes servirão de base para a estimativa
- Identificar detalhadamente as diferenças
- Podem ser utilizadas as mesmas técnicas de estimativa dos projetos-modelo, ajustadas para as diferenças encontradas

- Simplificação da Abordagem Paramétrica
- Utiliza relações constantes, normalmente lineares
- Aplicabilidade restrita ao domínio que originou as relações utilizadas

Exemplo

Esforço = Tamanho x Produtividade

- Devem ser utilizadas para simplificar o processo e não devido ao desconhecimento de outras opções
- Exigem uma base histórica considerável e um processo de desenvolvimento estabilizado
- Devem ser utilizadas estritamente dentro das suposições usadas na calibragem
- Utilizar dados de terceiros apenas para validação dos resultados obtidos

Calibrado linearmente para a faixa 800-1400 Pontos de Função (Azul - COCOMO II Nominal - Vermelho - Ajuste Linear c/ 2 ptos.)

Selecionando as Abordagens

- Considerar:
 - Nível de entendimento do problema e dos requisitos
 - Disponibilidade de dados históricos
 - Dificuldade matemática de implementação e entendimento dos resultados

Selecionando as Abordagens

Abordagem para Estimativa	Entendimento Assumido	Dados Históricos Necessários	Complexidade Matemática
Modelos Paramétricos	Informação descritiva de natureza genérica	Dados para calibrar o modelo	Técnicas estatísticas complexas
Modelos Baseados em Atividades	Informação detalhada do produto e do processo	Dados bastante detalhados para alguns projetos	Aritmética
Analogia	Informação detalhada a respeito do produto	Pelo menos um projeto semelhante	Aritmética
Relação Simples de Estimativa	Informação descritiva de natureza genérica	Múltiplos projetos	Técnicas estatísticas simples

Avaliando as Estimativas

- Qualidade (consistência, completeza, confiabilidade)
- Atendimento às Restrições do Projeto
- Documentação
- Várias Abordagens Utilizadas

Escolhendo uma Abordagem

- Quando a organização não tem uma tradição de medição dos projetos, a abordagem mais recomendada é a paramétrica.
- Os modelos paramétricos mais conhecidos são o SLiM, o KnowledgePlan e o COCOMO II.
- O COCOMO II é o único desenvolvido por uma universidade e implementado através de ferramenta gratuita

COCOMO II

- O COCOMO II (COst COnstructive MOdel) foi obtido e calibrado com base em 161 projetos cuidadosamente selecionados a partir de 2000 projetos candidatos.
- Antes de ser usado, o modelo deve ser calibrado a partir dos dados históricos de projetos semelhantes àquele que se deseja estimar.

COCOMO IICalibrando o Esforço

COCOMO II Calibrando o Prazo

COCOMO II Estimando a Produtividade

COCOMO II

- O COCOMO II possui 22 parâmetros (5 com efeito exponencial e 17 com efeito linear) que permitem ajustar o modelo às características de um projeto específico.
- O Modelo COCOMO originalmente criado por
 - Barry Boehm data de 1981.
- A Versão atualmente utilizada,
 COCOMO II, é de 2000.

COCOMO II

- O COCOMO II é compatível com os métodos iterativos e incrementais tais como o Rational Unified Process - RUP.
- A Rational e a Microsoft são empresas que ajudam a financiar o COCOMO II.
- O modelo encontra-se completamente descrito em um livro e a USC promove encontros anuais sobre o método.

COCOMO II Ferramentas

- O COCOMO II pode ser implementado a partir da ferramenta gratuita USC COCOMO II.
- Outras ferramentas poderão ser utilizadas, conforme amadurecer o processo de estimativa da organização.
- O Excel resolve a maior parte dos problemas.
- Exemplos de ferramentas são COSTAR eCOST XPERT

COCOMO II USC COCOMO II

Ferramenta Gratuita USC COCOMO II

Parâmetros do COCOMO II Fatores de Escala

PREC - Grau de Familiaridade (*Precedentedness*)

FLEX - Flexibilidade do Desenvolvimento

(Development Flexibility)

RESL – Arquitetura e Resolução de Risco

(Architecture/Risk Resolution)

TEAM – Coesão da Equipe (*Team Cohesion*)

PMAT – Maturidade do Processo (*Process Maturity*)

Parâmetros do COCOMO II Multiplicadores do Esforço

- RELY Confiabilidade
- DATA Tamanho da Base de Dados
- CPLX Complexidade do Produto
- RUSE Desenvolvimento para Reutilização
- DOCU Nível de Documentação
- TIME Restrição no Tempo de Execução
- STOR Restrição de Uso da Memória Principal
- PVOL- Volatilidade da Plataforma
- SCED Compressão do Prazo

- ACAP Capacidade dos Analistas
- PCAP Capacidade dos Programadores
- PCON Continuidade do Pessoal
- APEX Experiência na Aplicação
- PLEX Experiência na Plataforma
- LTEX Experiência na Linguagem e Ferramentas
- TOOL Utilização de Ferramentas
- SITE Desenvolvimento Distribuido

Parâmetros do COCOMO II Ferramentas

Perguntas para melhor esclarecer o significado dos Multiplicadores (em colaboração com a USC)

3	COCOMO II Effort Multipliers				
4	Color Codes	Nominal			
5	Extra Low	High			
7	Verg Low Low	Yerq High Extra High			
	Highly nested structured programming operators with	3.4) The software can be considered of HIGH control			
	many compound predicates. Queue and stack control.	complexity because it has highly nested programming			
44	Homogeneus, distributed processing. Single processor operators.				
-1-1	soft real-time control. () Yes - go to question 4.1				
45		() No - next question			
40	3.5) The software can be considered of HIGH control				
40					
46		complexity because it uses queue and stack control.			
		() Yes - go to question 4.1			
47		() No - next question			
	3.6) The software can be considered of HIGH control				
	complexity because it controls a single processor via				
48	software in real-time.				
		() Yes - go to question 4.1			
49		() No - next question			
	Reentrant and recursive coding. Fixed-priority interrupt	3.7) The software can be considered of VERY HIGH			
	handling. Task synchronization, complex callbacks,	control complexity because it uses reentrant and			
50	heterogeneous distributed processing. Single-	recursive coding.			
	processor hard real-time control.	() Yes - go to question 4.1			
51		()No - next question			
		3.8) The software can be considered of VERY HIGH			
14	A N. W. Co. at Marking Course /				

Parâmetros do COCOMO II Ferramentas

	COCOMO II - Modelo de <i>Design</i> Inicial	
Marque X	1. RCPX/RELY - Confiabilidade Requerida do Software	Peso
	A falha do software causa um leve incômodo.	
	A falha do software causa pequenas perdas, facilmente recuperáveis.	
	A falha do software causa perdas moderadas, facilmente recuperáveis.	
	A falha do software causa altas perdas financeiras.	
	A falha do software traz risco para vidas humanas.	
Marque X	2. RCPX/DATA - Tamanho da Base de Dados de Teste	Peso
	D/P < 10 (onde D = tamanho em bytes da base de teste; P = linhas	
	de código fonte equivalentes)	
	10 <= D/P < 100	
	100 <= D/P < 1000	
	D/P >= 1000	
Marque X	3. RCPX/CPLX - Operações de Controle	Peso
	Código linear, com alguns operadores de programação estruturada,	
	não aninhados: DOs, CASEs, IF-THEN-ELSEs. Composição simples	
	dos módulos, via chamadas de procedures ou scripts simples.	
	Aninhamento direto de operadores de programação estruturada.	
	Predicados basicamente simples.	
	Aninhamento basicamente simples. Algum controle entre módulos.	
▶ ▶ \Dire	Tahelas de decisão. Algumas chamadas via call e nassagem de cionadores Base / Design Inicial / Alterações /	

Validando as Estimativas

- É recomendável utilizar mais de uma abordagem nas estimativas.
- Uma importante fonte de informações é o Banco de Dados do *International Software* Benchmarking Standards Group - ISBSG.
- A versão 7 do Banco de Dados do ISBSG contém cerca de 1300 projetos e pode ser adquirida por US\$ 450 (filiados ao IFPUG).
- O produto incorpora o programa ISBSG
 Reality Checker, uma ferramenta simples
 baseada nos dados do ISBSG.

Validando com o BD do ISBSG

Validando com o BD do ISBSG

 Os resultados obtidos devem ser comparados e as eventuais diferenças, explicadas.

Validando com o BD do ISBSG Diferenças

- O BD do ISBSG é constituído por submissões voluntárias. Por esse motivo, espera-se que os projetos enviados estejam acima da média da indústria.
- O ISBSG Reality Checker permite ajustar apenas Plataforma e Linguagem.
- Dessa forma, os resultados obtidos através de modelos mais sofisticados (como o COCOMO
 II) podem divergir bastante daqueles obtidos através do ISBSG Reality Checker.

Mais Informações

- http://sunset.usc.edu/research/cocomosuite/index.html
- Conheça a família de modelos COCOMO

International Software Benchmarking Standards Group

- http://www.isbsg.org.au/html/index2.html
- Conheça os produtos do ISBSG, que também podem ser adquiridos em http://www.ifpug.org

www.metricas.com.br

Agradecemos a sua participação

Mauricio Aguiar

ti MÉTRICAS

mauricio@metricas.com.br www.metricas.com.br

"Todas as marcas citadas são de propriedade de seus respectivos donos."

DEZ 2002

