

Compte Rendu

Ecole Nationale Supérieure de l'Electronique et de ses Applications

Conversion d'Energie

TP4: Forward

2^{eme} Année

Année: 2023 - 2024

Camille Lanfredi Rémi Weidle

1. Fonctionnement à vide

1.1. On observe la tension aux bornes de de la spire ainsi que la tension v_{arphi} .

Dans la prochaine capture on a en bleu la tension de la spire et en vert la tension du flux v_{φ} . Actuellement nous utilisons comme α maximum α =0.49

Fig1. Capture de la tension aux bornes de la spire (bleu) et de v_{arphi} (vert).

Avec les curseurs on mesure la crête à crête $\Delta B = B_{max} - B_{min}$. On a aussi :

$$\Delta B = \frac{\Delta \varphi}{S} = \frac{\Delta V_{\varphi} \cdot R \cdot C}{A_e}.$$

On essaye ainsi d'avoir ΔV_{φ} sur l'oscilloscope

Fig 1.2- Mesure de ΔV_{φ} à l'aide des curseurs

La variation du flux ΔV_{φ} =119mV.

 $\Delta B = \Delta V_{\varphi} \cdot A_e$ Où A_e est la surface effective D'après "Documentation du circuit magnétique (EPCOS N27)", A_e = 76.0mm2 De plus, $\Delta \varphi = R \cdot C \cdot \Delta V_{\varphi}$ avec R= 10k Ω et C= 10nF (schéma du montage). Ainsi, $\Delta B = R \cdot C \cdot \Delta V_{\varphi} \cdot A_e$ = 0,156T.

1.2 - On décide de vérifier la démagnétisation avec les courants i_1 et i_3 .

Fig 2.1 - Graphiques des courants i_1 (en Rose) et i_3 (en Jaune).

On remarque d'abord que ces deux courants ne sont pas parfaits avec du bruit. Les deux ne fonctionnent pas en même temps lors l'un n'est pas nul l'autre l'est. On affiche donc ensuite sur l'oscilloscope la valeur de V_{φ} afin de comparer. i1 assure la magnétisation et i3 la démagnétisation. On remarque que les deux courbes se croisent à chaque demi période.

Entre 0 et αT :La Diode D_{μ} est bloquée donc $i_3=0$. $\frac{i_1}{n_1}=R_{V\varphi}$ donc $i_1=R_{V\varphi}\cdot n_1$. Ainsi i_1 est proportionnel à $R_{V\varphi}$. Entre αT et T : La diode D_{μ} est bloquée donc $\frac{i_3}{n_3}=R_{v\varphi}$ et $i_3=R_{v\varphi}\cdot n_3$. Donc i_3 est proportionnel à $A_{v\varphi}$.

Fig 2.2 - Graphiques des courants i_1 (en Rose), i_3 (en Jaune) et V_{φ} (en Vert).

On remarque en comparant V_{φ} avec les courants i_1 et i_3 celui-ci correspond à la somme des deux.

1.3 - On cherche à déterminer la valeur de l'inductance magnétisante. Donc on essaye d'observer simultanément le courant i_1 et v_1 .

Fig 3.1 - On a ainsi i_1 en rose et v_1 en jaune.

On cherche maintenant à déterminer L1:

$$v_1 = L_1 \cdot \frac{di_1}{dt}$$
 = 1,57mH

De plus il n'y a pas d'entrefer dans le montage étudié car le montage est monté à vide. (Le secondaire n'est pas relié.)

1.4 - On va maintenant déterminer le nombre de spires n_1 , n_2 et n_3 avec les différences de tensions.

<u>Fig 4.1 - Graphique de V_{spire} en rose et V_1 en jaune.</u>

Fig 4.2 - Graphique de V_2 en bleu et V_3 en jaune.

On remarque V_1 et V_3 sont de même valeur mais de signes opposés. De plus on a des signaux identiques pour $\frac{V_1}{V_{spire}}$ et $\frac{V_2}{V_3}$.

<u>Fig 4.3 - Graphique de V_{spire} en jaune</u>

On peut relever alors $V_{spire}\ =\ 1.17 V$. De plus $V_1\ =\ 30 V$ et on prend $n_{spire}\ =\ 1$

$$\text{D'où}: \frac{V_1}{n_1} = \frac{V_{spire}}{n_{spire}} \leftrightarrow n_1 \cdot \frac{V_1}{V_{spire}} = 25 \cdot \frac{30}{1.17} = 25 \ spires = n_3$$

De même avec $V_2 \ = \ 40 V \ et \ n_{spire} \ = \ 1$

$$\frac{V_2}{n_2} = \frac{V_{spire}}{n_{spire}} \leftrightarrow n_2 \cdot \frac{V_2}{V_{spire}} = 34 \cdot \frac{40}{1.17} = 34 \text{ spires}$$

1.5 - On observe le courant i_1 ainsi que la tension V_{φ}

Fig 5.1 - Graphique de la tension V_{ω} et du courant i_1

En observant le courant on voit une montée linéaire qui suit $\frac{V}{L} = cste$. Sauf qu'à un moment donné cela augmente très rapidement donc L diminue fortement. Cependant L dépend de la perméabilité. Comme la perméabilité absolue reste constante c'est la perméabilité relative qui va chuter ce qui va laisser passer une grosse quantité de courant. On peut observer le même phénomène si on alimente un transformateur en continue. Le courant va évoluer linéairement et lorsque la bobine atteint sa saturation la perméabilité relative va chuter ce qui fera chuter L et donc augmenter fortement le courant.

2. Fonctionnement en charge

2.1 - On s'intéresse maintenant au fonctionnement des diodes secondaires.

On maintient la fréquence de découplage à 50kHz, le rapport cyclique à sa valeur maximale et on ajoute un

Rhéostat de charge.

<u>Fig 6.1 - Graphique des tensions V_2 et V_{drl} (en bleu et rose respectivement.)</u>

Fig 6.2 - Graphique des tensions V_2 et V_{dr1} (en bleu et rose respectivement) ainsi que i_s en vert.

La bobine sert à lisser le courant, son dimensionnement sert donc à diminuer ou non le taux d'ondulation du courant. Le rôle du condensateur est le même mais agit lui, sur la tension.

Fig. 6.3 - Graphique des intensités lat et lar

Quand l'une conduit, l'autre est bloquée, leur fonctionnement est complémentaire.