

Université Echahid Hama Lakhdar, El-oued Institut des sciences exactes Departement d'informatique

 $1^{er}Master$: Intelligence Artificielle et Systémes distribués **Semestre**: 1.2021

— TP1 : Analyse de données —

1 Exercice1:4pts

Soit, la série statistique $S = \{5,7,10,15,19,21,21,22,22,23,23,23,23,23,24,24,24,24,24,25\}$

- Calculer la médiane.
- Quelles sont les quartiles Q_0, Q_1, Q_2, Q_3, Q_4 .
- Calculer le rang interquartile IQR, $IRQ = Q_3 Q_1$.
- Calculer : $Q_3 + 1.5 \times IRQ$ et $Q_1 1.5 \times IRQ$

Les données qui se trouvent hors l'intervalle $]Q_1 - 1.5 \times IRQ...Q_3 + 1.5 \times IRQ[$ sont les données aberrantes (Outlier), les données de faible aberrantes $< Q_1 - 1.5 \times IRQ$ et les données d'aberrantes élevées $> Q_3 + 1.5 \times IRQ$.

- Trouver les données d'aberrants faibles et élevé.
- Dessiner Boxplot en R de la série S et expliquer votre résultat.

2 Exercice2: 12pts

On considère les données, data.csv, train.csv et test.csv tell que :

- data.csv : Les données totales (Figure 1).
- train.csv : Les données utilisées pour la création du modèle.
- test.csv : les données utilisées pour tester le modèle.

Les attribues des données X0 et X1 numérique et $y \in \{0,1\}$

FIGURE 1 -

- 1. Construire le modèle (linear model) de régression linéaire multiple de la forme y = f(X0, X1).
- $2. \ \,$ La forme de régression logistique de la forme :

$$\mathbb{P}(y=1|X=(X0,X1)) = \frac{\exp(\beta +_0 X_0 + \beta_1 X_1)}{1 + \exp(\beta +_0 X_0 + \beta_1 X_1)}$$
(1)

Construire le modèle (logistic model) de la régression logistique.

- 3. Prédire la classe de X=(2.75,1.5)
 - Par le modèle **linear** model
 - Par le modèle **logistic** model

- 4. Prédire les classes de données test.csv
 - Par le modèle **linear model**
 - Par le modèle **logistic** model
- 5. On veut évaluer les résultats des modèles **linear_model** et **logistic_model** par deux méthodes Confusion Matrix (Confusion Matrix) et la courbe CRO (ROC curve).
 - Évaluer la qualité des modèles linear_model et logistic_model par Confusion Matrix et ROC curve.
- 6. Quel est le modèle le plus judicieux {argumenter votre réponse}
- 7. Après la fin de ce Tp comment voyer vous le modèle linéaire et le modèle logistique.

3 La qualité de présentation des réponses 04 pts

- Pour assurer la meilleure présentation, je vous conseille d'utiliser : R notebook et LATEX.