A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 7EC

Bookmark

Show all steps: ON

Problem

Prove the following for all integers a, b, c, d and all positive integers m and n:

If $a \equiv b \pmod{m}$, then $a + km \equiv b \pmod{m}$, for any integer k. In particular, $a + km \equiv a \pmod{m}$.

Step-by-step solution

	Step 1 of 5
Here, objective is to	prove that, $a + km \equiv b \pmod{m}$, if $a \equiv b \pmod{m}$
Comment	
	Step 2 of 5
Consider a,b are in	ntegers, <i>m</i> is a positive integer.
If m divides $a-b$,	then a is congruent to b modulo m which is represented by $a = b \pmod{m}$
Comment	

Step 3 of 5

Consider $a \equiv b \pmod{m}$(1)

Then, m divides a-b,

```
\frac{a-b}{m} = k; k is integer
a-b=km
a = b + km
b-a=-km
b = a + (-k)m
b = a + pm
b = a(\operatorname{mod} m)....(2)
Comment
                                        Step 4 of 5
To prove a + km \equiv b \pmod{m}:
Substitute equation ..(2) in equation..(1)
a = a \pmod{m} \pmod{m}
a = a \pmod{m}
a = a + km
Then, from equation..(1)
a + km = b \pmod{m}
Hence, proved
Comment
                                        Step 5 of 5
To prove a + km = a \pmod{m}:
a \equiv b \pmod{m}
b - a = km
b = a + km
From equation..(2)
a + km = a \pmod{m}
Hence, proved
Comment
```