MA 166: Quiz 5 Solutions

TA: Carlos Salinas

February 19, 2016

You have 15 minutes to complete this quiz. You may work in groups, but you are not allowed to use any other resources.

Problem 1. Evaluate the integral

$$\int_0^{\pi/2} \cos^2 x \ dx.$$

Problem 2. Evaluate the integral

$$\int \frac{x^2}{\sqrt{4-x^2}} \, dx.$$

(Use C for the constant of integration.)

Problem 3. Evaluate the integral

$$\int \frac{e^x}{1 - e^{2x}} \, dx$$

[HINT: First use a substitution and then partial fractions.]

Solutions

Solution to Problem 1. Use the double-angle identity

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2} \tag{1}$$

to rewrite the integral

$$\int_0^{\pi/2} \cos^2 x \, dx = \int_0^{\pi/2} \frac{1 + \cos 2x}{2} \, dx$$

$$= \frac{1}{2} \int_0^{\pi/2} 1 + \cos 2x \, dx$$

$$= \frac{1}{2} \int_0^{\pi/2} 1 \, dx + \frac{1}{2} \int_0^{\pi/2} \cos 2x \, dx$$

$$= \frac{1}{2} \left(x \Big|_0^{\pi/2} \right) + \frac{1}{2} \left(\frac{\sin 2x}{2} \Big|_0^{\pi/2} \right)$$

$$= \frac{1}{2} \left(\frac{\pi}{2} - 0 \right) + \frac{1}{2} \left(\frac{1}{2} \sin \pi - \frac{1}{2} \sin 2 \cdot 0 \right)$$

$$= \frac{1}{2} \left(\frac{\pi}{2} - 0 \right) + \frac{1}{2} (0 - 0)$$

$$= \frac{1}{2} \frac{\pi}{2} + \frac{1}{2} \cdot 0$$

$$= \boxed{\frac{\pi}{4}}.$$

Solution to Problem 2. Since we have something of the form $\sqrt{4-x^2}$ in the denominator, the best approach to this problem is to make a trigonometric substitution. Draw the triangle

$$\frac{2}{\theta} \sqrt{4-x^2}$$

$$(2)$$

from which we can deduce that

$$\cos \theta = \frac{x}{2} \qquad \qquad \sin \theta = \frac{\sqrt{4 - x^2}}{2}.$$
 (3)

Hence, $2\cos\theta = x$ and $-2\sin\theta \ d\theta = dx$ so substituting this into our original integral, we have

$$\int \frac{x^2}{\sqrt{4-x^2}} dx = \int \frac{(2\cos\theta)^2}{2\sin\theta} (-2\sin\theta) d\theta$$
$$= -4 \int \cos^2\theta d\theta$$

here, using the double-angle formula (1), we have

$$= -4 \int \frac{1}{2} (1 + \cos 2\theta) d\theta$$

$$= -2 \int 1 + \cos 2\theta d\theta$$

$$= -2 \int 1 d\theta + \int \cos 2\theta d\theta$$

$$= -2\theta - 2\left(\frac{1}{2}\sin 2\theta\right) + C$$

$$= -2\theta - \sin 2\theta + C.$$

Substituting back in, we have

$$\theta = \cos^{-1}(x/2)$$

and, to make things nicer, by the double angle formula for sin

$$\sin 2\theta = 2\cos\theta\sin\theta\tag{4}$$

(<u>C</u>)

we have

$$\sin 2\theta = 2\cos\theta\sin\theta = 2\left(\frac{x}{2}\right)\left(\frac{\sqrt{4-x^2}}{2}\right) = \frac{x\sqrt{4-x^2}}{2}$$

so our integral is

$$-2\cos^{-1}\left(\frac{x}{2}\right) - \frac{x\sqrt{4-x^2}}{2} + C.$$

Note that if you used a different substitution, say you labeled the adjacent side with $\sqrt{4-x^2}$, then $\sin\theta = x/2$ and you would get

$$2\sin^{-1}\left(\frac{x}{2}\right) - \frac{x\sqrt{4-x^2}}{2} + C'$$

where $C' = C - \pi$. This is because $\cos^{-1} \theta = \pi/2 - \sin^{-1} \theta$.

Solution to Problem 3. Make the substitution $u = e^x$, then $du = e^x dx = u dx$ and our integral turns into

$$\int \frac{e^x}{1 - e^{2x}} dx = \int \frac{u}{1 - u^2} \frac{du}{u}$$

$$= \int \frac{1}{1 - u^2} du$$

$$= \int \frac{1}{(1 - u)(1 + u)} du.$$

Now we find the partial fraction decomposition

$$\frac{1}{(1-u)(1+u)} = \frac{A}{1-u} + \frac{B}{1+u}$$

so, clearing denominators, we have

$$1 = A(1+u) + B(1-u) = (A-B)u + A + B.$$

so we must have A - B = 0 and A + B = 1. This tells us that A = B so substituting this into the former equation A + B = A + A = 2A = 1 so A = B = 1/2. Hence, our integral turns into

$$\int \frac{1}{(1-u)(1+u)} du = \frac{1}{2} \int \frac{1}{1-u} + \frac{1}{1+u} du$$

$$= \frac{1}{2} \int \frac{1}{1-u} du + \frac{1}{2} \int \frac{1}{1+u} du$$

$$= -\frac{1}{2} \ln|1-u| + \frac{1}{2} \ln|1+u| + C$$

substituting back our value of u, we have

$$= -\frac{1}{2}\ln|1 - u| + \frac{1}{2}\ln|1 + u| + C$$
$$= -\frac{1}{2}\ln|1 - e^x| + \frac{1}{2}\ln|1 + e^x| + C.$$

Note that this problem can also be done using a trig substitution. Looking back at the original integral after we made a substitution

$$\int \frac{1}{1 - u^2} \, du = \int \frac{1}{\left(\sqrt{1 - u^2}\right)^2} \, du$$

and making the trig substitution $\cos \theta = x$, $-\sin \theta \ d\theta = dx$ we have

$$\int \frac{1}{(\sqrt{1-u^2})^2} du = \int \frac{-\sin\theta}{\sin^2\theta} d\theta$$
$$= -\int \csc\theta d\theta$$
$$= -\ln|\csc\theta - \cot\theta| + C$$

where $\csc \theta = 1/\sqrt{1-u^2}$ and $\cot \theta = u/\sqrt{1-u^2}$ so

$$= -\ln|\csc\theta - \cot\theta| + C$$

$$= -\ln\left|\frac{1}{\sqrt{1 - u^2}} - \frac{u}{\sqrt{1 - u^2}}\right| + C$$

$$= -\ln\left|\frac{1 - u}{\sqrt{1 - u^2}}\right| + C$$

$$= -\ln\left|\frac{1 - u}{\sqrt{1 - u^2}}\right| + C$$

by properties of the logarithm, namely, $\ln(a/b) = \ln a - \ln b$, we have

$$= -\ln|1 - u| + \ln\left|\sqrt{1 - u^2}\right| + C$$

$$= -\ln|1 - u| + \frac{1}{2}\ln|1 - u^2| + C$$

$$= -\ln|1 - u| + \frac{1}{2}\ln|(1 - u)(1 + u)| + C$$

$$= -\ln|1 - u| + \frac{1}{2}\ln|1 - u| + \frac{1}{2}\ln|(1 + u)| + C$$

$$= -\frac{1}{2}\ln|1 - u| + \frac{1}{2}\ln|1 - u| + C$$

lastly, we substitute our original value of u

$$= -\frac{1}{2}\ln|1 - e^x| + \frac{1}{2}|1 + e^x| + C.$$

This integral was much tougher to compute than the partial fractions as it required you to know the integral of $\csc \theta$ (or $\sec \theta$ if your trig substitution was $\sin \theta = x$), which is why I wanted you to do the partial fractions. Still, some students took this approach. There's more than one way to skin a cat, I suppose.