Arbeits Packet Report

ld	AP	Start Date	End Date	ld Worker	WH
1.6	Festlegung der software- und hardwaretechnischen Anforderungen für die Programmierung von in Frage kommenden Modellen und Algorithmen und anschließende Auswahl geeigneter Soft- und Hardware	01.07.2025	31.07.2025	1	1.0
2.1	Definition einer Zielfunktion aus konstanter Formteil-Geometrie (Zielgröße), maximalen Gebrauchseigenschaften bzw. deren zeitliche Stabilität, minimalem Fertigungs-Energieaufwand bei gleichzeitig minimaler Zykluszeit (Nebenbedingungen)	01.08.2025	31.08.2025	1	1.0
2.1	Definition einer Zielfunktion aus konstanter Formteil-Geometrie (Zielgröße), maximalen Gebrauchseigenschaften bzw. deren zeitliche Stabilität, minimalem Fertigungs-Energieaufwand bei gleichzeitig minimaler Zykluszeit (Nebenbedingungen)	01.08.2025	31.08.2025	2	1.0
3.2	Materialauswahl und -beschaffung langfristig verfügbarer thermoplastischer Polymere (amorph und teilkristallin) - in Neuware als auch in Rezyklat-Qualität - mit der Möglichkeit zur Bestellung verschiedener Molmassen Molmassen und deren - verteilung im Falle der Neuware (abgebildet über verschiedene MFR-Werte)	01.10.2025	28.02.2026	1	0.5
4.1	Workshop(s) zur Klärung der Korrelationen und Wirkungszusammenhänge (qualitativ und quantitativ) zwischen Einstellparametern und Materialeigenschaften auf die resultierenden Prozessparameter (Prozess-Zustandskurven) anhand vorhandener kunststofftechnischer Expertise und Literaturangaben	01.12.2025	31.01.2026	1	1.5
4.2	Auswahl und/oder Generierung mehrerer Polymertypen mit charakteristisch unterschiedlichen Molmassen; restliche Materialkartenpakete identisch	01.10.2025	31.12.2025	1	0.25
4.2	Auswahl und/oder Generierung mehrerer Polymertypen mit charakteristisch unterschiedlichen Molmassen; restliche Materialkartenpakete identisch	01.10.2025	31.12.2025	2	0.25
4.3	Auswahl eines Start-Einstellparameterdatensatzes für die digitale Herstellung von Probekörpern aus den in AP 4.2 definierten Polymertypen auf Basis von Erfahrungswerten und Datenblattangaben	01.10.2025	31.12.2025	1	0.25
4.3	Auswahl eines Start-Einstellparameterdatensatzes für die digitale Herstellung von Probekörpern aus den in AP 4.2 definierten Polymertypen auf Basis von Erfahrungswerten und Datenblattangaben	01.10.2025	31.12.2025	2	0.25
4.5	Weitere Rheologiesimulationen Sampling bzw. gezielte Variation(en) der Einstellparameter Massetemperatur, Einspritzgeschwindigkeit, Werkzeugtemperatur, Nachdruck und Nachdruckzeit unter Berücksichtigung der in AP 2 definierten Zielfunktion (z. B. Monte-Carlo-Methode)	01.12.2025	28.02.2026	2	1.0
4.6	1.0 Generierung Datensatz Resultierende Prozessparameter (Prozess-Zustandskurven) in Abhängigkeit des jeweiligen Einsellparametersatzes und der jeweilgen Materialeigenschaften unter Berücksichtigung der in AP 2 definierten Zielfunktion und Erweiterung des erzeugten Datensatzes mit den in AP 3.3 gemessenen	01.02.2026	30.04.2026	1	2.0

5.1	Lernphase Pyro-Modell zur Abbildung der Einstellparameter und der Pseudo-Materialeigenschaften auf die resultierenden Prozessparameter (Prozess-Zustandskurven) mit der Nutzung des in AP 4.6 erzeugten Datensatzes als Trainingsdaten	01.04.2026	30.06.2026	1	0.75
5.1	Lernphase Pyro-Modell zur Abbildung der Einstellparameter und der Pseudo-Materialeigenschaften auf die resultierenden Prozessparameter (Prozess-Zustandskurven) mit der Nutzung des in AP 4.6 erzeugten Datensatzes als Trainingsdaten	01.04.2026	30.06.2026	2	3.0
5.2	1.0 Mapping der Materialeigenschaften/Einstellparameter- Kombinationen auf die in AP 2 definierte Zielgröße sowie Nebenbedingungen	01.06.2026	31.07.2026	1	1.0
5.3	Auswahl und/oder (Weiter-)Entwicklung eines Optimierungsalgorithmus (z.B. Gradientenabstiegsverfahren mit Simulated Annealing oder Bayesian Optimization) zur Optimierung der Einstellparameter gemäß Zielfunktion unter der Maßgabe bekannter Pseudo-Materialeigenschaften	01.11.2025	31.07.2026	0	1.5
5.3	Auswahl und/oder (Weiter-)Entwicklung eines Optimierungsalgorithmus (z.B. Gradientenabstiegsverfahren mit Simulated Annealing oder Bayesian Optimization) zur Optimierung der Einstellparameter gemäß Zielfunktion unter der Maßgabe bekannter Pseudo-Materialeigenschaften	01.11.2025	31.07.2026	1	0.25
5.3	Auswahl und/oder (Weiter-)Entwicklung eines Optimierungsalgorithmus (z.B. Gradientenabstiegsverfahren mit Simulated Annealing oder Bayesian Optimization) zur Optimierung der Einstellparameter gemäß Zielfunktion unter der Maßgabe bekannter Pseudo-Materialeigenschaften	01.11.2025	31.07.2026	2	1.75
6.1	Sampling möglicher Einstellparameterkombinationen unter Berücksichtigung der bereits in AP 4.5 gefundenen Zusammenhänge zur spritzgießtechnischen Herstellung von Demonstratoren aus den in AP 3 beschafften und charakterisierten Materialien	01.07.2026	31.10.2026	2	3.0
6.5	Lernphase Pyro-Modell zur Abbildung der Einstellparameter und der Materialeigenschaften auf die resultierenden Prozessparameter (Prozess-Zustandskurven) mit der Nutzung des in AP 6.4 erzeugten Datensatzes als Trainingsdaten	01.11.2026	31.12.2026	1	2.0
6.5	Lernphase Pyro-Modell zur Abbildung der Einstellparameter und der Materialeigenschaften auf die resultierenden Prozessparameter (Prozess-Zustandskurven) mit der Nutzung des in AP 6.4 erzeugten Datensatzes als Trainingsdaten	01.11.2026	31.12.2026	2	2.0
6.6	2.0 Mapping der Materialeigenschaften/Einstellparameter- Kombinationen auf die in AP 2 definierte Zielgröße sowie Nebenbedingungen	01.08.2026	31.10.2026	1	1.5
6.7	Auswahl und/oder (Weiter-)Entwicklung eines Optimierungsalgorithmus (z.B. Gradientenabstiegsverfahren mit Simulated Annealing oder Bayesian Optimization) zur Optimierung der Einstellparameter gemäß Zielfunktion unter der Maßgabe bekannter Materialeigenschaften und Grenztemperaturen bzwscherraten (siehe AP 3.3 bzw. AP 3.4)	01.02.2027	31.05.2027	1	3.5
6.8	Validierung des trainierten Pyro-Modells mittels Abgleich der in AP 3 tatsächlich gemessenen thermischen und rheologischen Charaktersierungsergebnisse	01.01.2027	28.02.2027	2	1.5

6.9	Validierung der optimalen Einstellparameterkombination bzw. der Optimierungsmethode mittels Abgleich der Qualifizierungsergebnisse aus AP 6.2 und AP 6.3 unter Berücksichtigung der in AP 2 definierten Zielfunktion (ggf. spritzgießtechnische Herstellung von Demonstratoren mit der optimalen Einstellparameterkombination notwendig)	01.01.2027	31.05.2027	0	2.75
6.9	Validierung der optimalen Einstellparameterkombination bzw. der Optimierungsmethode mittels Abgleich der Qualifizierungsergebnisse aus AP 6.2 und AP 6.3 unter Berücksichtigung der in AP 2 definierten Zielfunktion (ggf. spritzgießtechnische Herstellung von Demonstratoren mit der optimalen Einstellparameterkombination notwendig)	01.01.2027	31.05.2027	2	1.25
7.1	Projektbegleitende Dokumentation	01.03.2027	31.05.2027	2	1.0

Sum Worker Report

year	Sum Worker 1	Sum Worker 2
2025	3.61	2.24
2026	8.39	10.01
2027	3.5	3.75
Total	15.5	16.0

Sum Total Hours	hours not distributed	APs not distributed	Cost of Project	Number of APs
31.5	4.25	5.3, 6.9	€232,729.00	26

Worker Report for ID: 1

Year	Month	Hours Available		
2025				
2025	Januar	0.0		
2025	Februar	0.0		
2025	Marz	0.0		
2025	April	0.0		
2025	Mai	0.0		
2025	Juni	0.0		
2025	Juli	0.0		
2025	August	0.0		
2025	September	1.0		
2025	Oktober	0.65		
2025	November	0.4		
2025	Dezember	0.15		
2026				
2026	Januar	0.15		
2026	Februar	0.233		
2026	Marz	0.333		
2026	April	0.083		
2026	Mai	0.75		
2026	Juni	0.25		
2026	Juli	0.5		

2026	August	0.5
2026	September	0.5
2026	Oktober	0.5
2026	November	0.0
2026	Dezember	0.0
2027		
2027	Januar	1.0
2027	Februar	0.125
2027	Marz	0.125
2027	April	0.125
2027	Mai	0.125
2027	Juni	0.0
2027	Juli	0.0
2027	August	0.0
2027	September	0.0
2027	Oktober	0.0
2027	November	0.0
2027	Dezember	0.0

Worker Report for ID: 2

Year	Month	Hours Available		
2025				
2025	Januar	0.0		
2025	Februar	0.0		
2025	Marz	0.0		
2025	April	0.0		
2025	Mai	0.0		
2025	Juni	0.0		
2025	Juli	1.0		
2025	August	0.0		
2025	September	1.0		
2025	Oktober	0.833		
2025	November	0.483		

2025	Dezember	0.15
2026		
2026	Januar	0.317
2026	Februar	0.317
2026	Marz	0.65
2026	April	0.0
2026	Mai	0.0
2026	Juni	0.0
2026	Juli	0.25
2026	August	0.25
2026	September	0.25
2026	Oktober	0.25
2026	November	0.0
2026	Dezember	0.0
2027		
2027	Januar	0.0
2027	Februar	0.0
2027	Marz	0.417
2027	April	0.417
2027	Mai	0.417
2027	Juni	0.0
2027	Juli	0.0
2027	August	0.0
2027	September	0.0
2027	Oktober	0.0
2027	November	0.0
2027	Dezember	0.0

Dates distribution

AP Id	Dates	