Simple Linear Regression

Introduction

- In Chapters 17 to 19, we examine the relationship between interval variables via a mathematical equation.
- The motivation for using the technique:
 - Forecast the value of a dependent variable (Y) from the value of independent variables (X₁, X₂,...X_k.).
 - Analyze the specific relationships between the independent variables and the dependent variable.

The Model

The model has a deterministic and a probabilistic components

However, house cost vary even among same size houses!

Since cost behave uppredictably

The first order linear model

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Y = dependent variable

X = independent variable

 β_0 = Y-intercept

 β_1 = slope of the line

 ε = error variable

Estimating the Coefficients

- The estimates are determined by
 - drawing a sample from the population of interest,
 - calculating sample statistics.
 - producing a straight line that cuts into the data.

The Least Squares (Regression) Line

A good line is one that minimizes the sum of squared differences between the points and the line.

Let us compare two lines

The second line is horizontal

The smaller the sum of squared differences the better the fit of the line to the data.

The Estimated Coefficients

To calculate the estimates of the line coefficients, that minimize the differences between the data points and the line, use the formulas:

$$b_{1} = \frac{\text{cov}(X,Y)}{S_{X}^{2}} \left(= \frac{S_{XY}}{S_{X}^{2}} \right)$$

$$b_{0} = \overline{Y} - b_{1}\overline{X}$$

The regression equation that estimates the equation of the first order linear model is:

$$\hat{Y} = b_0 + b_1 X$$

The Simple Linear Regression Line

- Example 17.2 (Xm17-02)
 - A car dealer wants to find the relationship between the odometer reading and the selling price of used cars.
 - A random sample of 100 cars is selected, and the data recorded.
 - Find the regression line.

Car	Odometer	Price	
1	37388	14636	
2	44758	14122	
3	45833	14016	
4	30862	15590	
5	31705	15568	
6	34010	14718	
	Independe	ent Depende	ent
	variable >	variable	Υ
		•	

Solution

Solving by hand: Calculate a number of statistics

$$\overline{X} = 3600945$$
 $s_X^2 = \frac{\sum (X_i - \overline{X})^2}{n-1} = 43528690$

$$\overline{Y} = 14822823 \operatorname{cov}(X,Y) = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{n-1} = -2,712511$$
where $n = 100$.

$$b_1 = \frac{\text{cov}(X,Y)}{s_X^2} = \frac{-1,712511}{43528690} = -.06232$$

$$b_0 = \overline{Y} - b_1 \overline{X} = 14,82282 - (-.0623)(3600945) = 17,067$$

$$\hat{Y} = b_0 + b_1 X = 17,067 - .062 X$$

- Solution continued
 - Using the computer ($\underline{Xm17-02}$)

```
Tools > Data Analysis > Regression > [Shade the Y range and the X range] > OK
```

Xm17-0

SUMMARY OUTPUT

Regression Statis	stics
Multiple R	0.8063
R Square	0.6501
Adjusted R Square	0.6466
Standard Error	303.1
Observations	100

 $\hat{Y} = 17,067 - .0623$

ANOVA

	df	SS	MS	F	Significance F
Regression	1 /	16734111	16734111	182.11	0.0000
Residual	98/	9005450	91892		
Total	99	25739561			

	C <u>oefficients</u>	Standard Error	t Stat	P-value
Intercept	17067	169	100.97	0.0000
Odometer	-0.0623	0.0046	-13.49	0.0000

Interpreting the Linear Regression -Equation

The intercept is $b_0 = 17067 .

Do not interpret the intercept as the "Price of cars that have not been driven"

This is the slope of the line.

For each additional mile on the odometer, the price decreases by an average of \$0.0623

Error Variable: Required Conditions

- The error ε is a critical part of the regression model.
- Four requirements involving the distribution of ϵ must be satisfied.
 - The probability distribution of ε is normal.
 - The mean of ε is zero: $E(\varepsilon) = 0$.
 - The standard deviation of ε is σ_{ε} for all values of X.
 - The set of errors associated with different values of Y are all independent.

The Normality of ε

From the first three assumptions we have: Y is normally distributed with mean $E(Y) = \beta_0 + \beta_1 X$, and a constant standard deviation σ_s

Assessing the Model

- The least squares method will produces a regression line whether or not there are linear relationship between X and Y.
- Consequently, it is important to assess how well the linear model fits the data.
- Several methods are used to assess the model.
 All are based on the sum of squares for errors, SSE.

Sum of Squares for Errors

- This is the sum of differences between the points and the regression line.
- It can serve as a measure of how well the line fits the data. SSE is defined by

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2.$$

A shortcut formula

SSE=
$$(n-1)s_{\gamma}^{2} - \frac{[cov(X,Y)]^{2}}{s_{\chi}^{2}}$$

Standard Error of Estimate

- The mean error is equal to zero.
- If σ_ϵ is small the errors tend to be close to zero (close to the mean error). Then, the model fits the data well.
- Therefore, we can, use σ_ϵ as a measure of the suitability of using a linear model.
- An estimator of σ_{ϵ} is given by s_{ϵ}

StandardError of Estimates
$$s_{\varepsilon} = \sqrt{\frac{\text{SSE}}{n-2}}$$

• Example 17.3

Calculate the standard error of estimate for Example 17.2,
 and describe what does it tell you about the model fit?

Solution

$$s_Y^2 = \frac{\sum (Y_i - \hat{Y}_i)^2}{n - 1} = 259,996$$

$$SSE = (n - 1)s_Y^2 - \frac{[cov(X, Y)]^2}{s_X^2} = 99(259,996) - \frac{(-2,712,511)^2}{43,528,690} = 9,005,450$$

$$s_{\varepsilon} = \sqrt{\frac{\text{SSE}}{n-2}} = \sqrt{\frac{9,005,450}{98}} = 303.13$$

It is hard to assess the model based on s_{ϵ} even when compared with the mean value of Y.

$$s_{\varepsilon} = 303.1 \ \overline{y} = 14,823$$

Testing the Slope

 When no linear relationship exists between two variables, the regression line should be horizontal.

Linear relationship.

Different inputs (X) yield different outputs (Y).

The slope is not equal to zero

No linear relationship.

Different inputs (X) yield the same output (Y).

The slope is equal to zero

We can draw inference about β₁ from b₁ by testing

$$H_0: \beta_1 = 0$$

 $H_1: \beta_1 \neq 0 \text{ (or < 0,or > 0)}$

The test statistic is

$$t = \frac{b_1 - \beta_1}{s_{b_1}} \quad \text{where} \quad s_{b_1} = \frac{s_{\varepsilon}}{\sqrt{(n-1)s_{\chi}^2}}$$

The standard error of b₁.

 If the error variable is normally distributed, the statistic has Student t distribution with d.f. = n-2.

Example 17.4

– Test to determine whether there is enough evidence to infer that there is a linear relationship between the car auction price and the odometer reading for all three-year-old Tauruses, in Example 17.2. Use $\alpha = 5\%$.

Solving by hand

To compute "t" we need the values of b₁ and s_{b1}.

$$b_{1} = -.0623$$

$$S_{b_{1}} = \frac{S_{\epsilon}}{\sqrt{(n-1)S_{\chi}^{2}}} = \frac{3031}{\sqrt{(99)(43528690)}} = .0046$$

$$t = \frac{b_{1} - \beta_{1}}{S_{b_{1}}} = \frac{-.0623 \cdot 0}{.00462} = -1349$$

- The rejection region is $t > t_{.025}$ or $t < -t_{.025}$ with v = n-2 = 98. Approximately, $t_{.025} = 1.984$

<u>Xm17-0</u>

2

Using the computer

Price	Odometer	SUMMARY OU	TPUT					
14636	37388							
14122	44758	Regression	Statistics					
14016	45833	Multiple R	0.8063	Г				
15590		R Square	0.6501		There is	overwhelmir	ng e	vidence to infer
15568		Adjusted R Squ	0.6466			odometer rea	_	
14718	34010	Standard Error	303.1				aum	g aneolo ine
14470	45854	Observations	100		auction	selling price.		
15690	19057			_				
15072	40149	ANOVA						
14802			df	SS	MS	F		Significance F
15190	32359	Regression	1	1673411	1 16734	111 18	2.11	0.0000
14660		Residual	98	900545		92		
15612	32744	Total	99	2573956	1			
15610	34470							_
14634	37720		Coefficients	Standard Erro	r t Stat	P-value		
14632	41350	Intercept	17067	169	9 100,	97 0.0	0000	
15740	24469	Odometer	-0.0623	0.004	6 -13.	49 0.0	0000	

Coefficient of Determination

 To measure the strength of the linear relationship we use the coefficient of determination:

$$R^{2} = \frac{\left[\text{cov}(X,Y)\right]^{2}}{S_{X}^{2}S_{Y}^{2}} \quad \text{(or, } = r_{XY}^{2}\text{);}$$

$$\text{or, } R^{2} = 1 - \frac{\text{SSE}}{\sum (Y_{i} - \overline{Y})^{2}} \quad \text{(see p. 18 ab)}$$

 To understand the significance of this coefficient note:

• R² measures the proportion of the variation in Y that is explained by the variation in X.

$$R^{2} = 1 - \frac{\text{SSE}}{\sum (Y_{i} - \overline{Y})^{2}} = \frac{\sum (Y_{i} - \overline{Y})^{2} - \text{SSE}}{\sum (Y_{i} - \overline{Y})^{2}} = \frac{\text{SSR}}{\sum (Y_{i} - \overline{Y})^{2}}$$

• R² takes on any value between zero and one.

 R^2 = 1: Perfect match between the line and the data points.

 R^2 = 0: There are no linear relationship between X and Y.

Example 17.5

– Find the coefficient of determination for Example 17.2; what does this statistic tell you about the model?

Solution

Solving by hand;

$$R^2 = \frac{[\text{cov}(X,Y)]^2}{s_X^2 s_Y^2} = \frac{[-2,71251]^2}{(43,528688)(259999)} = .650$$

Using the computer From the regression output we have

Regression Statistics Multiple R 0.8063 R Square 0.6501 Adjusted R Square 0.6466 Standard Error 303.1 Observations 100				n in the auction lained by the ter reading. The sunexplained by			
ANOVA	df	SS	MS	F	Significance F		
Regression	1	16734111	16734111	182.11	0.0000		
Residual	98	9005450	91892				
Total	99	25739561					
	Coefficients	tandard Erro	t Stat	P-value			
Intercept	17067	169	100.97	0.0000			
Odometer	-0.0623	0.0046	-13.49	0.0000			