1.1: Secuencias y sistemas

- Secuencias y representación
- Procesado discreto de la señal
- Aplicación del procesado discreto de la señal
- ◆ Ejemplos de secuencias
- Sistemas

Secuencias

◆ Secuencias: Conjunto ordenado de números

$$x = \{x[n]\}, -\infty < n < \infty$$

n: Variable entera -> ordinal tiempo discreto

- **♦** Representación
 - > Analítica:

$$x[n] = \begin{cases} 1, & 0 \le n \le 7 & \text{(Longitud 8)} \\ 0, & \text{otro caso} \end{cases}$$

- > Numérica:
- ➤ Gráfica:

- $x[n] = \{...,0,0,\underline{1},1,1,1,1,1,1,1,0,0,0...\}$ (1 indica x[0])
- 1 0.8 0.8 0.6 0.4 0.2 0.4 0.2 0.2 4 6 8 10 12

Secuencias y representación binaria

- Representación numérica: $x[n] = \{ ..., 0, 1, 1, 2, 0, 3, \}$
- ◆ Representación binaria: | 00 | 01 | 01 | 10 | 00 | 11 |
- Ventajas de la representación binaria:

Robustez de la representación

- puede reproducirse de forma exacta
- robusto respecto a los componentes de los sistemas

Procesado de la representación

- uso de cualquier sistema discreto
- "un sistema = muchos sistemas"
- nuevas perspectivas:
 - filtros con fase lineal
 - procesar en el dominio frecuencial
 - filtros de mediana
- algoritmos rápidos (FFT)
- equipos más rápidos

Procesado discreto de señales analógicas

lacktriangle Señal analógica: $x_a(t)$ se define para t real

• Secuencia discreta: x[n] se define para n entero (ix[1.5] no existe!)

Proceso de muestreo (ideal)

T = Periodo de muestreo

$$x[n] = x_a(nT)$$

Aplicación del procesado digital de la señal

- Telecomunicaciones
 - > Filtros
 - > Análisis de espectros
 - Codificación de fuente
 - Modulación / detección
 - Mejora de la señal (ecualización, eliminación de ruido, cancelación de eco, etc.)
- Radar, sonar, navegación (GPS)
- Sistemas médicos: ultrasonidos, eeg, etc.
- Instrumentación

- Exploración geofísica
- ◆ Gran consumo:
 - > CD audio
 - > DAT
 - > Teléfonos (GSM)
 - > Periféricos de PC (módem, etc.)
 - > TV digital (satélite)
 - Cámara digital de fotografía
 - Cámara digital de vídeo

Entorno de trabajo típico

◆ Entorno discreto:

x[n] y[n] → 1

Ordenador: Microprocesador

DSP: Microprocesador + funciones

específicas (convolución, FFT, etc.)

Entorno analógico: Chip especializado

Ejemplos de secuencias: Impulso y escalón unidad

Impulso unidad:

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & \text{otro caso} \end{cases}$$

Nota: el impulso unidad <u>no</u> es la distribución Delta de Dirac

ii
$$\delta[n] \neq \delta(t)$$
 !! Delta de Dirac : $\int_{-\infty}^{\infty} \delta(t) f(t) dt = f(0)$

Escalón unidad:

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & \text{otro caso} \end{cases}$$

Descomposición de una señal en función de $\delta[n]$

Secuencia exponencial compleja

$$x[n] = Az^{n}$$
, $si A = |A|e^{j\theta}$, $z = re^{j\omega}$
 $= |A|r^{n}e^{j(\omega n + \theta)}$ ω : Pulsación
 $= |A|r^{n}(\cos(\omega n + \theta) + j\sin(\omega n + \theta))$

Caso particular:

> |z| < 1: Exponencial decreciente

>|z| > 1: Exponencial creciente

≽|z| = 1: Oscilación mantenida

Componente frecuencial

◆ Exponencial compleja con r=A=1:

$$x[n] = e^{j\omega n}$$

◆ Estudio de la igualdad entre componentes frecuenciales:

$$x_{1}[n] = x_{2}[n] con \begin{vmatrix} x_{1}[n] = e^{j\omega_{1}n} \\ x_{2}[n] = e^{j\omega_{2}n} \end{vmatrix}$$

Estudio de la periodicidad de la componentes frecuenciales:

$$x[n] = x[n+P] con x[n] = e^{j\omega n}, \forall n$$

Igualdad de componentes frecuenciales (I)

◆ Dos componentes frecuenciales analógicas diferentes pueden tener la misma representación discreta:

$$\omega_1 \neq \omega_2$$
 pero $x_1[n] = x_2[n]$

Igualdad de componentes frecuenciales (II)

Análisis:

El ejemplo anterior exige

$$x_1[n] = x_2[n] \operatorname{con} \begin{vmatrix} x_1[n] = e^{j\omega_1 n} \\ x_2[n] = e^{j\omega_2 n} \end{vmatrix} \Rightarrow e^{j\omega_1 n} = e^{j\omega_2 n}, \forall n$$

Esto es posible con

$$\begin{aligned} &\omega_2=\omega_1+2k\pi\\ &\text{ya que}\\ &e^{j\omega_1n}=e^{j(\omega_1+2k\pi)n},\quad \forall k,n \text{ enteros} \end{aligned}$$

 $\{ \omega + 2k\pi \}$ 1) Pulsaciones diferentes 2) Misma forma de onda x[n]

Periodicidad de componentes frecuenciales (I)

◆ Una componente frecuencial no siempre es periódica:

Periodicidad de componentes frecuenciales (II)

Análisis:

$$x[n] = x[n+P] \text{ con } x[n] = e^{j\omega n}, P \text{ entero}$$

$$e^{j\omega n} = e^{j\omega(n+P)}, \quad \forall n$$

$$e^{j\omega n} = e^{j\omega n} e^{j\omega P}, \quad \forall n \implies e^{j\omega P} = 1$$

$$\omega P = 2k\pi \implies P = \frac{2k\pi}{\omega} \quad \text{iEntero!}$$

$$\omega = \frac{2k\pi}{P}$$

Para ser periódica una componente frecuencial discreta ha de tener una frecuencia racional: f = k/P o $\omega = 2\pi k/P$

Nota: una componente frecuencial analógica siempre es periódica

$$e^{j\Omega t} = e^{j\Omega(t+T)}, \quad \forall t, \Omega$$
 $e^{j\Omega T} = 1$
 $T = 2k\pi/\Omega, \quad \text{real}$

Ejemplos de componentes frecuenciales periódicas

◆ Ciclos y periodos:

Periodo: 6 muestras Ciclos: 1 por periodo

Periodo: 5 muestras Ciclos: 2 por periodo

Sistemas discretos

◆ T1: Retardo

$$\rightarrow$$
 y[n] = x[n-M]

◆ T2: Reflexión temporal

$$>$$
 $y[n] = x[-n]$

◆ T3: Promediador

$$\Rightarrow$$
 y[n] = $\frac{1}{2M+1} \sum_{k=-M}^{M} x[n-k]$

1.1-17

Composición de sistemas (I)

? T1{T2{.}} = T2{T1{.}}

- Reflexión temporal

$$\begin{cases} x_1[n] = x[n-1] \\ x_2[n] = x_1[-n] \\ \Rightarrow x_2[n] = x[-n-1] \end{cases}$$

Reflexión temporal

◆ Retardo (M=1)

$$\Rightarrow$$
 $x_2[n] = x[-(n-1)] = x[-n+1]$

Composición de sistemas (II)

Composición de sistemas ↓↓
Sustitución del parámetro temporal n

Propiedades de los sistemas (I)

◆ Lineal:

$$x'[n] = a x_1[n] + b x_2[n]$$

- $ightharpoonup T\{x'[n]\} = a T\{x_1[n]\} + b T\{x_2[n]\}, \forall n, a, b, x_1, x_2$
- ⇒ El sistema conmuta con la combinación lineal

◆ Invariante con el tiempo:

- ightharpoonup Si y[n]= T{x[n]} \Rightarrow T {x[n-M]} = y[n-M], \forall n, M, x
- ⇒ El sistema conmuta con el retardo
- ⇒ El comportamiento del sistema no depende del origen de tiempos

Propiedades de los sistemas (II)

◆ Causal:

- $ightharpoonup T\{x[n]\} = f\{x[n-k], k ≥ 0\}$
- ⇒ La salida sólo depende de las entradas pasadas.

◆ Estable:

- $ightharpoonup \forall x[n] \text{ tq } \forall n |x[n]| < \infty, \Rightarrow |y[n]| < \infty$
- ⇒ La respuesta a cualquier entrada acotada es acotada.

Resumen

- **♦** Secuencias:
 - $> \delta[n]$
 - > u[n]
 - $ightharpoonup z^n \Rightarrow e^{j\omega n}$: componente frecuencial: $\{\omega + 2k\pi\}$ misma forma de onda

ω=2kπ/N secuencia periódica

- **♦** Sistemas:
 - Composición: sustitución del parámetro temporal n
 - > Propiedades: Lineal

Invariante

Causal

Estable