

Institute of Geodesy

Übung 06

Numpy

Monitoringmessung

- Aufgabe:
 - Scriptname: "ue06_Monitoringmessung.py"
 - Schreiben Sie ein Python Script zur Punktüberwachung:
 - Sinnvolle Verwendung des Moduls Numpy
 - Am Ende Vergleich zu Referenzpunkten erstellen

Worum geht es?

- Richtungsmessungen zur Punktüberwachung
- Hang droht Haus wegzuschieben

Punkte werden regelmäßig neu eingemessen

Messverfahren

- Richtungen werden mit sehr präzisem Theodolit (Wild RDS) gemessen
- Distanzermittlung über Basislatte
- Drei Sätze Basislattenmessungen
- Mittelbildung notwendig

Basislattenvermessung

- Im Prinzip:
 - Zwei Punkte (Endmarken) mit Theodolit anvisiert
 - Winkel zwischen Punkten wird gemessen
 - Distanz zwischen den Endmarken bekannt!

Wie ermittelt man nun die Distanz?

Formel zur Ermittlung der Horizontaldistanz:

$$s=rac{b}{2}\mathrm{cot}\,rac{\gamma}{2}$$

- Wobei b = 2 [m] und $\gamma = Winkel\ zwischen\ Marken\ [Gon]$
- Winkel bei Berechnungen immer in Rad!
- Vorteile:
 - Genauigkeit im Submillimeterbereich (für Strecken ≤ 50 Meter)
 - Strecke muss nicht "verebnet" werden

Was haben wir gegeben?

- Folgende Dateien sind gegeben:
 - Standpunkt.txt Aufstellpunkt des Theodoliten
 - Gemittelte Orientierte Richtungen.txt fertige Richtungen zur Punktbestimmung
 - Basislattenmessungen.txt Winkel der Basislatte (3 Sätze!)
 - Monitoringmessung November 2019.txt zur Gegenüberstellung

Was ist zu tun?

- Daten einlesen
- 2. Sätze der drei Basislattenmessungen mitteln (Achtung: Die drei Sätze stehen in einer Reihe!)
- 3. Horizontaldistanz ermitteln
- 4. Über die zweite geod. Hauptaufgabe die Neupunkte berechnen
- 5. Ergebnisse mit den Punkten von 2019 vergleichen (Differenz der MP-Werte 2019 und heute Ausgabe in [mm]!)

Tipps:

•
$$s=rac{b}{2} \cot rac{\gamma}{2}$$
 ... Der Cotangens ist $rac{1}{ an(\gamma)}$ und somit gleich $rac{\cos(\gamma)}{\sin(\gamma)}$

- Einlesen mit numpy.loadtxt() guter Tipp: **skiprows**, um Überschriften in .txt-Dateien auszublenden
- Verwendung von Funktionen, um sich das Kopieren zu sparen

Formeln:

- $s=\frac{b}{2}\cot\frac{\gamma}{2}$... wobei γ der Mittelwert der Winkel einer Reihe aus Basislattenmessungen.txt ist.
- $X_{MP_i} = X_S + s_{SMP} \cdot \cos \nu_{SMP}$
- $Y_{MP_i} = Y_S + s_{SMP} \cdot \sin \nu_{SMP}$
- X_S und Y_S sind die Koordinaten aus Standpunkt.txt
- $lacktriangledown_{SMP}$ ist die orientierte Richtung vom Standpunkt zum Neupunkt, in der Gemittelte Orientierte Richtungen.txt

Ausgabe Beispiel:

```
>>>
Monitoringmessung
Standpunkt X[m] = 230792.0684
Standpunkt Y[m] = -76954.26375
MP-Punkte 2019:
MP-Punkte 2022:
Vergleich:
\delta X_{MP1} [mm] = \dots
```

Übung 06 – Abgabe

TeachCenter

- Abgabe der Übung erfolgt über das TeachCenter.
- Immer nur eine zip-Datei abgeben.
- Bitte Namensgebung beachten:
 - "ue06_Monitoringmessung.zip"
- Maximal 3 Abgabeversuche (Abgabeversionen), wobei immer nur die letzte Abgabe benotet wird!
- Bearbeitungszeit bis 02.12.2022, 10:00 Uhr.