

Page 1 of 4

COLLEGE OF SCIENCE AND TECHNOLOGY

COLLEGE EXAMINATIONS – ACADEMIC YEAR 2017- 2018

SCHOOL OF SCIENCE

DEPARTMENT OF MATHEMATICS

FIRST YEAR SEMESTER II

FINAL EXAMINATION

MATHEMATICS FOR ENGINEERERS II (MAT1264)

DATE: 14/MAY/2018 TIME: 2 hours

MAXIMUM MARKS = 50

INSTRUCTIONS:

- 1. This paper contains **TWO** sections.
- 2. Section A is compulsory, and Answer any **TWO** of the **THREE** questions in Section B.
- 3. No written materials allowed into the Examination Room.
- 4. Write all your answers in the answer booklet provided.
- 5. Do not forget to write your Registration Number.
- 6. Do not write any answers on this question paper.
- 7. Where appropriate draw large clearly labeled diagrams in your answers.

SECTION A (20 Marks)

Question1.

- a) Solve the following differential equation:
- $L\frac{di}{dt} + Ri = 0$, where L and R are none negativity constants. (3 Marks)
- b) Find the Wronskian of the set $\{e^{-2x}, -e^{-2x}, 5\}$ and state if the set of solutions is independent or not. (2 Marks)
- c) Calculate the Laplace transform of: $f(t) = te^{-t}$. (3 Marks)
- d) If $\vec{A} = xz\vec{i} y^2\vec{j} + 2x^2y\vec{k}$, then find: $\vec{\nabla} \times \vec{A}$. (3 Marks)
- e) Solve the following second order linear differential equation:

$$y''+3y'-4y=0$$
, with $y(0)=5$ and $y'(0)=-5$. (3 Marks)

- f) Find the inverse Laplace transform of $F(s) = \frac{2s+3}{s^2+3s}$. (2 Marks)
- g) Evaluate $\iint xydxdy$ over the area in the first quadrant bounded by the circle $x^2 + y^2 = a^2$. (3 Marks)
- h) State the Green's Theorem in the xy plane. (2 Marks)

SECTION B/30 Marks

Ouestion2:

a) Solve the following system of differential equations using Matrix method(eigenvalues method):

$$\begin{cases} \frac{dx}{dt} = -4x + y + z \\ \frac{dy}{dt} = x + 5y - z \\ \frac{dz}{dt} = y - 3z \end{cases}$$

(10 Marks)

b) Calculate the Laplace transform of $\int_0^t (x^2 + e^{-x}) dx$ (5 Marks)

Question3:

- a) Consider $u = x^2 y^2$ and v = 2xy. Determine the Jacobian of transformation of u and v at point (1,2). (6Marks)
- b) Use the change of variables for evaluating the following double integral:

$$\iint_{D} \frac{\sin(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}} dA \quad \text{where} \quad D = \{(x, y)/x^2 + y^2 = \frac{\pi^2}{9} \text{ and } x^2 + y^2 = \pi^2\}.$$
 (9 Marks)

Question 4:

- a) Evaluate $\int_{(0,1)}^{(1,2)} (x^2 y) dx + (y^2 + x) dy$ along the parabola x = t and $y = t^2 + 1$. (8Marks)
- b) Evaluate S where S is the surface of the paraboloid $z = 2 (x^2 + y^2)$ above the xy-plane and u(x, y, z) equal to $x^2 + y^2$. (7 Marks)

Question5:

a) Use the operator method described to find the general solution in the following linear systems:

$$\begin{cases} x' + y' - 2x - 4y = e^t \\ x' + y' - y = e^{4t} \end{cases}$$

b) Solve the following linear system of differential equation using the matrix method?

$$\begin{cases} x_1' = 3x_1 + x_2 - x_3 \\ x_2^{t'} = x_1 + 3x_2 - x_3 \\ x_3' = 3x_1 + 3x_2 - x_3 \end{cases}$$

Good luck!!!!!!

EMAIL: P.O. Box: 3900 Kigali WEBSITE: www.cst.ur.ac.rw