### **Chlorophyll and Chloroplasts**

**Pigments:** Light- absorbing molecule that gathers the sun's energy

- Plant's principal pigment is chlorophyll
- 2 types of chlorophyll found in plants, chlorophyll a and b, absorb light very well in blue- violet and red regions of visible spectrum. Chlorophyll does not absorb light well in the green region of the spectrum
- Leaves reflect green light, plant looks green
- Plants contain red and orange pigments that absorb light in other regions of the spectrum
- Temperature drops, chlorophyll molecules break down first



### Chloroplast

- Contain an abundance of saclike photosynthetic membranes- thylakoids- interconnected and arranged in stacks known as grana
- Pigments such as chlorophyll are located in the thylakoid membranes
- Fluid portion of the chloroplast, outside the thylakoids, is the **stroma**

When chlorophyll absorb light, a large fraction of the light energy is transferred to the electrons in the chlorophyll molecule itself. By raising the energy level of these electrons, light energy can produce a steady supply of high- energy electrons, which is what makes photosynthesis work

### **High- Energy Electrons**

- Electron carriers transport high energy electrons from chlorophyll to other molecules
- An electron carrier is a compound that can accept a pair of high- energy electrons and transfer them, along with most of their energy, to another molecule
- One carrier molecule is NADP+

**Reaction of Photosynthesis:**  $6CO_2 + 6H_2O$  (+ light energy)  $\rightarrow C_6H_{12}O_6 + 6O_2$ .

Photosynthesis involves two sets of reactions

### **Cellular Respiration**

| Stage                                                     | Location                                  | Amount of ATP                        | Oxygen Required         |
|-----------------------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------|
| 1.Glycolysis<br>sugar splitting<br>2.Krebs Cycle<br>3.ETC | 1.Cytoplasm 2.Mitochondria 3.Mitochondria | 1.4 ATP<br>2.2 ATP<br>3.32 ATP/9 ATP | 1. No<br>2.Yes<br>3.Yes |



Fluid portion of chloroplast, outside the thylakoids, is the stroma

# **Light Dependent Reactions: Generating ATP and**

### **NADPH**

- Light- dependent reactions use energy from sunlight to produce oxygen and convert ADP and NADP+ into energy carriers ATP and NADPH
- Light dependent reactions occur in thylakoids of chloroplasts
- Thylakoids, saclike membranes, containing most of machinery needed to carry out reactions. Contain clusters of chlorophyll and proteins, photosystems
- Photosystems surrounded by accessory pigments, essential to the light- dependent reactions. Absorb sunlight and generate high- energy electrons that are passed to a series of electron carriers embedded in the thylakoid

membrane

## **Light Independent Reactions: Producing Sugar**

- ATP and NADPH formed by light- dependent contain an abundance of chemical energy, but are not stable enough to store energy for more than a few minutes
- Light Independent Reaction: Calvin Cycle
- Plants use energy that ATP and NADPH contain to build stable high- energy carbohydrate compounds that can be stored for a long time

Light-independent reactions, ATP and NADPH from light-depende reactions used to produce high-energy sugars

The 2 reactions work together to capture the energy of sunlight and transform it into energy-rich compounds such as CO2





Factors Affecting Photosynthesis: Temperature, light intensity and availability of water.

### **Light Dependent Reaction**

Reactants:H<sub>2</sub>0 (water), ADP, and NADP<sup>+</sup>.

Products:Oxygen, ATP, and NADPH.

### **E.Light Independent Reactions**

Reactants-ATP, NADPH, and Carbon Dioxide.

**Products:**Glucose

### Components of a leaf

Cuticle-protects from environmental stresses and prevents water loss (transpiration)

**Upper Epidermis-** tough and prevents tearing-covered by cuticle

Lower Epidermis-tough and prevents tearing-covered by cuticle

Palisade Mesophyll-absorbs sunlight for photosynthesis

**Spongy Mesophyll**-allows the exchange of gases  $(H_2O, CO_2, and O_2)$ 

Stoma-allow carbon dioxide, oxygen, and water to diffuse in and out of the cell

**Xylem**: Transports water

**Phloem**: Transports sugars

**Bundle Sheath**: Surrounds xylem and phloem.

### D. Components of a root

**Root hairs**: Increase surface area to allow more water and minerals to enter

Cortex: Water and minerals pass through the cortex

from the epidermis to the center

Endodermis: Waxy and encloses vascular cylinder.

Forces water to go through cells and not between.

Vascular cylinder: Xylem and phloem

**Root Cap**: Protects the root as it expands in the soil.

**Types of Roots**: Fibrous and taproot

IV. Transpiration: Loss of water through leaves. Cools leaves on hot days but can be threatening when

water is scarce. Regulated by stomata

### V. Tendencies and Hormones

**Phototropism**: Tendency of a plant to grow toward a light source

**Gravitropism**: Response of a plant to gravity-stem grows upright and roots grow down.

**Auxins**: stimulate cell elongation and the growth of new roots.

**Gibberellins**: stimulate growth and may cause dramatic increases in size (stems and fruit)

**Cytokinins**: Stimulate cell division, help balance root and shoot growth, regenerate damaged tissues, and delay the aging of leaves

Phototropism: Growth response of plant stems to light: plants demonstrate phototropism

- Some raw materials are needed to make enzymes, the lipids in cell membranes and DNA
- Nutrients that the body needs: water, carbohydrates, fats, proteins, vitamins and minerals

