Großübung: Grundlagen der Theoretischen Informatik

Christopher Bischopink[™]

[⊠]bischopink@informatik.uni-oldenburg.de

6. Dezember 2019

Pumping Lemmata

für reguläre Sprachen

- $L_1 = \{ ccdcca^i b^i | i \in \mathbb{N} \}$
- $L_2 = \{a^i b^j | i > j, i, j \in \mathbb{N}\}$
- ► $L_3 = \{a^i b^j c^k | i = j \lor j = k, i, j, k \in \mathbb{N}\}$

für kontextfreie Sprachen

 $L_4 = \{a^i b^j | j = i^2, i \in \mathbb{N}\}$

deterministische Kellerautomaten

Fragen

- Welche Sprache akzeptiert der Automat?
- Ist der Automat deterministisch?

deterministische Kellerautomaten

Fragen

- Welche Sprache akzeptiert der Automat?
- Ist der Automat deterministisch?

deterministische Kellerautomaten

Fragen

- Welche Sprache akzeptiert der Automat?
- Ist der Automat deterministisch?

deterministisch kontextfreie Sprachen

K

- a, Z; AZ
- $a, A; \varepsilon$

Fragen:

- ► Gibt es einen deterministischen Kellerautomaten der dieselbe Sprache über Endzustände akzeptiert?
- Gibt es einen deterministischen Kellerautomaten der dieselbe Sprache mit leerem Keller akzeptiert?

Schnitt mit regulären Sprachen (aus Zeitgründen entfallen)

Synchrones Paralleles Fortschreiten

$$((q_1,q_2),Z) \xrightarrow{lpha} ((q_1',q_2'),\gamma')$$
 in K

gdw.

$$(q_1,Z)\stackrel{lpha}{
ightarrow}_1(q_1',\gamma')$$
 in K_1 und $q_2\stackrel{lpha}{
ightarrow}_2q_2'$ in A_2

Kellerautomat → Grammatik

Skript (Symbole wie S. 58 im Skript)

- ▶ **Typ (1):** $S \rightarrow [q_0, Z_0, r] \in P$ für alle $r \in Q$,
- ▶ **Typ (2):** Für jede Transition $(q, Z) \stackrel{\alpha}{\to} (r_0, Z_1 \dots Z_k)$ mit $\alpha \in \Sigma \cup \{\varepsilon\}$ und $k \ge 1$ in K: $[q, Z, r_k] \to \alpha[r_0, Z_1, r_1] \dots [r_{k-1}, Z_k, r_k] \in P$ für alle $r_1, \dots, r_k \in Q$.
- **Typ (3):** (Spezialfall von (2) für k = 0.) Für jede Transition $(q, Z) \xrightarrow{\alpha} (r_0, \varepsilon)$ in K: $[q, Z, r_0] \rightarrow \alpha \in P$.