Math 357 Short quiz 12

2024-04-10 (W)

Your name:	

Let $K: K_0$ be a field extension, let $\alpha \in K$ be algebraic over K_0 , and let $\sigma \in Aut(K: K_0)$. Characterize, as precisely and as fully as possible, the polynomials in $K_0[t]$ for which α or $\sigma(\alpha)$ is a zero.

Solution: By hypothesis, $\alpha \in K$ is algebraic over K_0 , so there exists a (unique) minimal polynomial $\mathfrak{m}_{\alpha,K_0}$, which satisfies the three defining axioms:

- (i) $\mathfrak{m}_{\alpha,K_0}(\alpha) = 0_K$ (view $\mathfrak{m}_{\alpha,K_0}$ as a function $K \to K$).
- (ii) $\mathfrak{m}_{\alpha,K_0}$ is irreducible. (Equivalently, for all nonzero $f\in K_0[t]$ such that $f(\alpha)=0_K$, $\deg\mathfrak{m}_{\alpha,K_0}\leqslant\deg f$.)
- (iii) $LC(m_{\alpha_{n}K_{0}}) = 1_{K_{0}}$.

Because $\sigma \in Aut(K:K_0)$ and $\mathfrak{m}_{\alpha,K_0} \in K_0[t]$, we have seen that

$$\mathfrak{m}_{\alpha,K_0}(\alpha) = 0_{\mathsf{K}} \qquad \Leftrightarrow \qquad \mathfrak{m}_{\alpha,K_0}(\sigma(\alpha)) = 0_{\mathsf{K}}$$

It follows that m_{α,K_0} satisfies the three defining axioms to be the minimal polynomial for $\sigma(\alpha)$ over K_0 , that is,

$$m_{\sigma(\alpha),K_0}=m_{\alpha,K_0}$$

We have seen that if $f \in K_0[t]$ has an algebraic element as a zero, then f is divisible by the minimal polynomial of that element over K_0 . We conclude that the polynomials in $K_0[t]$ for which α is a zero are the same as those for which $\sigma(\alpha)$ is a zero, and they are precisely the polynomials in the ideal generated by m_{α,K_0} in $K_0[t]$.