

ISLAMIC UNIVERSITY OF TECHNOLOGY Department of Computer Science and Engineering (CSE) Course Outline and Course Plan

Name of the Teacher	S. M. Sabit Bananee	Position	Lecturer		
Department	CSE	Program	BSc. Eng. SWE		
Course Code	CSE 4501	Course Title	Operating Systems		
Academic Year	2023-24	Semester	Winter		
Contact Hours	3.0	Credit Hours	3.0		
Textbooks and Reference books	 Operating System Concepts 10th Edition Modern Operating Systems 4th Edition Operating Systems: Principles a Practice 2nd Edition Operating Systems: Three Easy Pieces 1.00 Edition 	Authors	 Abraham Silberschatz, Greg Gagne, and Peter B. Galvin Andrew S. Tanenbaum and Herbert Bos Thomas Anderson and Mike Dahlin Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau 		
Prerequisites	1. CSE 4303: Data Structures				
(If any) Course Homepage	2. CSE 4305: Computer Organ https://classroom.google.com/				
Teaching Methods/ Approaches	☐ Lecture √ ☐ Group discu	ssion√ Demons	stration√		
Teaching aids		Board and	Marker√ Others		

Course Assessment Method											
Attendance (10%)		Quiz 15% of Total Marks (Best 3 out of 4) Mid Semester (25%) Semester Final (50%)									
	1 st Quiz	2 nd Quiz	3 rd Quiz	4 th Quiz	Oth	ers	Wash/Data	Wash/Data			
	Week/Date	Week/Date	Week/Date	Week/Date	Assignment Homework		Week/Date	Week/Date			
	3 rd Week	6 th Week	10th Week	13th Week	Will be		As per the	As per the			
	18 Sep	09 Oct	04 Dec	18 Dec	2/3 Assignments	given time	schedule of	schedule of			
	2024	2024	2024	2024	Assignments	to time	IUT	IUT			

	Grading Policy									
Marks out of 100	Letter Grade	Grade Point	Marks out of 100	Letter Grade	Grade Point					
80 - 100	A+	4.00	55 - 59	B-	2.75					
75 - 79	A	3.75	50 - 54	C+	2.50					
70 - 74	A-	3.50	45 - 49	С	2.25					
65 - 69	B+	3.25	40 - 44	D	2.00					
60 - 64	В	3.00	00 - 39	F	0.00					

	Class Schedule
Monday	09:15 AM – 10:30 AM
Wednesday	11:45 AM – 01:00 PM

Student's consulting hour	Wednesday 10:30 AM to 11:30 AM
Student's consulting nour	Thursday 10:30 AM to 11:30 AM

Course Contents

Operating System Overview, Unix / Windows History, POSIX, GNU / GLP, Homebrew Club, Open-Source OS Linux. Process Description and Control 2 and 5 states process models, Process Control Structures, Modes of Execution, Process Switching Threads User-Level and Kernel-Level Threads, Performance on Multicore, Linux Process and Thread Management Concurrency: Mutual Exclusion and Synchronization Race Condition, Interrupt Disabling, Producer/Consumer Problem, Monitors, Message Passing Concurrency: Deadlock and Starvation Principles of Deadlock, Hold and Wait, Circular wait, Deadlock Detection Algorithm Memory Management Relocation, Protection, Memory Partitioning, Paging, Segmentation Scheduling Types of Processor Scheduling, Scheduling Algorithms, Traditional UNIX Scheduling I/O Management DMA, I/O Buffering, Disk Scheduling, UNIX SVR4 I/O, Linux I/O OS Security & Threats, Threats, Attacks, and Assets, Malicious Software, Viruses, Worms and Bots, Rootkits

Course Objectives

After completing the course, the student must be able to:

Explain operating systems, what they do, and how they are designed and constructed.

Discuss various methods for process management and CPU scheduling.

Explain the principals involved in the internal algorithms and primary and secondary memory management structures.

Identify and discuss the protection mechanisms that operating systems may provide.

	Mapping with CO, PO, and Bloom's Taxonomy								
CO No.	Course Outcomes (CO) Statement	levels of Bloom's Taxonomy	Matching with Program Outcome (PO)						
CO1	Describe the evolution, types, structure, and functions of operating systems.	C2	PO1, PO2						
CO2	Explain techniques involved in the process, memory, device, and file management.	C2	PO2						
CO3	Describe security and protection measures used in operating systems	C2	PO3						
CO4	Execute Linux basic commands and shell scripts	С3	PO2						
CO5	Implement processor scheduling, synchronization, deadlocks and disk allocation algorithms for a given scenario	С3	PO1, PO2						

	Weekly plan for course content and mapping with CO								
Weeks	Topics	COs							
1	Class orientation Discussion of course goals, expected outcomes, course policies, and grading system								
2	Introduction to Operating Systems	CO1							

3 & 4	Computer System Structures	CO1, CO2
5	Process Management	CO2, CO3
6 & 7	CPU Scheduling	CO5
8 & 9	MID-TERM EXAMINATIONS	
10 & 11	Virtual Memory	CO2
12 & 13	Memory Management	CO2
14 & 15	Disk Scheduling	CO5
16	Case Study of Different Platforms • MS-DOS • MAC-OS • UNIX/LINUX • IBM MVS/DOS • ANDROID • SYMBIAN, etc.	CO4, CO5
17 - 19	FINAL EXAMINATIONS	

Mapping of Course Outcomes (COs), Program Outcomes (POs), and Evaluation Methods									
Assessment Method	Marks	Mark distributions (as %) on COs and POs							
CO1 CO2 CO4 CO5									
		CO1	CO2	CO3	CO4	CO5			
		PO1 PO2	PO2	PO3	PO2	PO1 PO2			
Attendance (Class Participation)	10%	-	-	-	-	-			
Quiz 1/Quiz 2/Quiz 3/Quiz 4	15%	5%	5%	-	-	5%			
Midterm Exam.	25%	8.33%	8.33%	-	-	8.33%			
Final Exam.	50%	5%	5%	10%	10%	20%			
Total	100%	18.33%	18.33%	10%	10%	33.33%			

	Mapping of COs and POs [Correlation level 1 for low, 2 for moderate, and 3 for high]											
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	√	√										
CO2		V										
CO3	V											
CO4		V										
CO5	1	√										

	Program Outcomes
PO 1	Engineering Knowledge: Apply knowledge of mathematics, natural science, engineering fundamentals and system fundamentals, software development, networking & communication, and information assurance & security to the solution of complex engineering problems in computer science and engineering.
	Problem Analysis:
PO 2	Ability to identify , formulate and analyze complex Computer Science and Engineering problems in the areas of hardware, software, theoretical Computer Science and applications to reach significant conclusions by applying Mathematics, Natural sciences, Computer Science and Engineering principles.
PO 3	Design/ Development of Solutions: Design solutions for complex computer science and engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
PO 4	Investigation: Ability to use research-based knowledge and research methods to perform literature survey, design experiments for complex problems in designing, developing and maintaining a computing system, collect data from the experimental outcome, analyze and interpret valid/interesting patterns and conclusions from the data points.
PO 5	Modern Tool Usage: Ability to create, select and apply state of the art tools and techniques in designing, developing and testing a computing system or its component.
PO 6	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice in system development and solutions to complex engineering problems related to system fundamentals, software development, networking & communication, and information assurance & security.
PO 7	Environment and Sustainability: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice in system development and solutions to complex engineering problems related to system fundamentals, software development, networking & communication, and information assurance & security.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of computer science and engineering practice.
PO 9	Individual Work and Teamwork: Ability to function as an individual and as a team player or leader in multidisciplinary teams and strive towards achieving a common goal.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project Management and Finance: Demonstrate knowledge and understanding of engineering management principles and economic decision making and apply these to one's own work, as a member and leader in a team to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

Instructors contact details:

S. M. Sabit Bananee

Lecturer

Department of Computer Science and Engineering

Islamic University of Technology

Room No: 207, Academic Building-2, Mobile: 01925215306

Email: smsabitbananee@iut-dhaka.edu