Homework set 3

Problem 1. Let V be a normed vector space. Show that $E \subset V$ is bounded in the metrizable sense if and only if it is bounded in the usual sense, that is, there exists r > 0 such that $|x| \le r$ for all $x \in E$.

Solution. Suppose E is bounded in the metrizable sense. Take U=B(1). There is a $\lambda>0$ such that $E\subset \mu B(1)$ for any $\mu\geq\lambda$. But then $|x|\leq |\lambda|$ for any $x\in E$.

Suppose then that E is bounded in the norm sense. Then there exists r>0 such that $E\subset B(r)$. Let U be an open neighborhood around 0. Then there exists $\varepsilon>0$ such that $0\in B(\varepsilon)\subset U$. It follows that $E\subset (\mu/\varepsilon)B(\varepsilon)\subset (\mu/\varepsilon)U$ for any $\mu\geq r$.

Problem 2. Let V be finite-dimensional and let $|\cdot|_1$ and $|\cdot|_2$ be two norms on V. Show that the norms are equivalent, meaning that there exist constants c and C such that

$$c|x|_1 \le |x|_2 \le C|x|_1$$

for all $x \neq 0$.

Solution. Let's show that the map $x \mapsto |x|_1$ is continuous with respect to the metric defined by $|\cdot|_2$. Let $\varepsilon > 0$. We want to show that there is a $\delta > 0$ such that $|x|_1 < \varepsilon$ if $|x|_2 < \delta$.

Let's do this by constructing an increasing chain of subspaces of V on which this is true. First let $v \neq 0$ and let $L = \mathbf{R}v$ be a line. If $x, x_0 \in L$ then $x = \lambda v$ and $x_0 = \lambda_0 v$ for some $\lambda, \lambda_0 \in \mathbf{R}$, so

$$|x - x_0|_1 = |\lambda - \lambda_0||v|_1 = |\lambda - \lambda_0|\frac{|v|_1}{|v|_2}|v|_2 = \frac{|v|_1}{|v|_2}|x - x_0|_2.$$

If $\varepsilon > 0$ is given we pick $\delta > 0$ such that $|x - x_0|_2 < \varepsilon |v|_2/|v|_1$, and get that $|x - x_0|_1 < \varepsilon$.

Suppose then that $S \subset V$ is a proper subspace on which $|\cdot|_1$ is continuous and let $v \in V \setminus S$. We want to show $|\cdot|_1$ is continuous on $S + \mathbf{R}v$. Any vector therein can be written as $x + \lambda v$ with $x \in S$ and $\lambda \in \mathbf{R}$. Let $v_0 = x_0 + \lambda_0 v$ and $v = x + \lambda v$. Then

$$|v - v_0|_1 = |(x - x_0) + (\lambda - \lambda_0)v|_1 \le |x - x_0|_1 + |\lambda - \lambda_0||v|_1$$

$$= |x - x_0|_1 + |\lambda - \lambda_0| \frac{|v|_1}{|v|_2} |v|_2$$

$$= |x - x_0|_1 + \frac{|v|_1}{|v|_2} |\lambda v - \lambda_0 v|_2.$$

Let $\varepsilon > 0$ be given and let $\delta > 0$ be such that $|x - x_0|_1 < \varepsilon/2$ and $|\lambda v - \lambda_0 v|_2 < \varepsilon |v|_2/(2|v|_1)$ if $|v - v_0|_2 < \delta$. Then $|v - v_0|_1 < \varepsilon$, so $|\cdot|_1$ is continuous at v_0 .

We can thus construct an increasing flag $0 \subset L_1 \subset L_2 \subset \cdots$ of subspaces of V on which $|\cdot|_1$ is continuous. As V is finite dimensional, we eventually have $L_n = V$, so $|\cdot|_1$ is continuous.

Having proven this, we note that the unit sphere is compact since V is finite dimensional. As $x\mapsto |x|_1$ is continuous it attains a minimum c and maximum C on the unit sphere. If $x\in V$ there exists u in the unit sphere such that $x=|x|_2u$. Then

$$|x|_1 = |x|_2 |u|_1 \le C|x|_2$$

for all x, and similarly $|x|_1 \ge c|x|_2$.

Problem 3. 1. Show that the unit ball in a normed vector space is convex.

- 2. Show that a linear subspace $E \subset V$ is convex.
- 3. If $f: V \to W$ is linear and $E \subset V$ is convex, show that f(E) is convex.

Problem 4. Let V and W be normed vector spaces and let $f:V\to W$ be linear. Show that f is continuous if and only if it is bounded, in the sense that there exists a constant C>0 such that $|f(x)|\leq C|x|$ for all x.

Solution. Suppose f is continuous. Then there is a $\delta>0$ such that $f(B(\delta))\subset B(1)$, so $f(B(1))\subset B(1/\delta)$ by linearity. If $x\neq 0$ then $(1/|x|+\varepsilon)x\in B(1)$ for any $\varepsilon>0$, so

$$\frac{1}{|x|+\varepsilon}|f(x)| = \left|f\left(\frac{1}{|x|+\varepsilon}x\right)\right| \le \frac{1}{\delta}$$

and taking limits we get $|f(x)| \le |x|/\delta$.

Suppose that f is bounded. We know that f is continuous if and only if it is continuous at 0. Let $\varepsilon > 0$ and let $\delta < \varepsilon/C$; then

$$|f(x)| \le C|x| < \varepsilon$$

for any $x \in B(\delta)$, so f is continuous at 0.

Problem 5. Let V be a normed vector space. We are going to prove that V can be embedded in a Banach space.

1. Define *X* to be the set of Cauchy sequences in *V*. Show that *X* may be given the structure of a vector space.

- 2. Show that $(x_n) \mapsto \lim_{n \to \infty} |x_n|$ defines a seminorm on X; that is a function that satisfies the conditions to be norm except |x| = 0 does not imply x = 0.
- 3. Show that $N := \{x \in X \mid |x| = 0\}$ is a subspace of X, and that the seminorm on X induces a norm on the quotient space X/N.
- 4. Show that X/N is complete, and thus a Banach space.
- 5. Show that the map $f:V\to X/N$ that sends x to the image of the sequence (x,x,\ldots) under the quotient map is linear, injective, and continuous.
- 6. Show that X/N satisfies the following universal property: If Y is a Banach space and $f:V\to Y$ is a continuous linear map, then there is a unique continuous linear map $\hat{f}:X/N\to Y$ such that the following diagram commutes:

$$V$$

$$\downarrow \qquad f$$

$$X/N \xrightarrow{\hat{f}} Y$$

Solution. 1. We have $X = \{(x_n) \mid x_n \in V \text{ is Cauchy}\}$. Define $\lambda x = (\lambda x_n)$ and $x + y = (x_n + y_n)$. The first is clearly well defined and the second is also because

$$|x_n + y_n - (x_m + y_m)| = |(x_n - x_m) + (y_n - y_m)| \le |x_n - x_m| + |y_n - y_m|$$

so $(x_n + y_m)$ is Cauchy if (x_n) and (y_n) are. Then X is a vector space as it is a subspace of the space of all sequences in V, which is just $\prod_{\mathbf{N}} V$.

- 2. First off this is well-defined because if (x_n) is Cauchy then so is $(|x_n|)$ and $\mathbf R$ is complete. This behaves correctly with respect to scaling and satisfies the triangle inequality. However |x|=0 only implies that (x_n) converges to 0, not that it is zero, so this is a seminorm.
- 3. Since $|\cdot|$ is a seminorm we see that $N=\{x\in X\mid |x|=0\}$ is a linear subspace. We attempt to define a norm on X/N by |[x]|=|x|. Let [y]=0. Then

$$|[x+y]| = |x+y| \le |x| + |y| = |x| = |[x]|$$

and

$$|[x]| = |x| = |x + y - y| < |x + y| + |y| = |x + y| = |[x + y]|$$

so $|\cdot|$ is well-defined on X/N.

This satisfies $|\lambda[x]| = |\lambda||[x]|$ and

$$|[x] + [y]| = |[x + y]| = |x + y| \le |x| + |y| = |[x]| + |[y]|.$$

If |[x]| = 0 then |x| = 0 so $x \in N$ and |x| = 0. We thus have a norm.

4. Let (x_n) be a Cauchy sequence in X/N. Then there are x_{nm} in V such that $x_n = x_{mn}$, and each $(x_{mn})_m$ is a Cauchy sequence. Let $y = (x_{nn})$. Then

$$x_{nn} - x_{mm} = (x_{nn} - x_{nl}) + (x_{nl} - x_{ml}) + (x_{ml} - x_{mm})$$

each of which we can make $< \varepsilon/3$, so (x_{nn}) is Cauchy. Similarly we see that $(x_n) \to y$, so X is complete.

- 5. The map is clearly linear and injective. We have |(x, x, ...)| = |x|, so it is bounded and thus continuous.
- 6. Let Y be a Banach space and let $f:V\to Y$ be continuous. We define $\hat{f}:X/N\to Y$ by

$$\hat{f}([x]) = \lim_{n \to \infty} f(x_n),$$

where $[x]=(x_n)$ is the image of a Cauchy sequence in V. This is well-defined because (x_n) is a Cauchy sequence in V and f is continuous, so $(f(x_n))$ is a Cauchy sequence in Y and thus has a limit as Y is Banach. Further, if $x_n \to 0$ then $f(x_n) \to 0$, so this maps all of N to 0. We see that \hat{f} is a linear map.

As $f:V\to Y$ is continuous there is a C>0 such that $|f(x)|\le C|x|$ for all $x\in V$. Let $[x]\in X/N$ and let (x_n) be a Cauchy sequence that represents [x]. Then $|f(x_n)|\le C|x_n|$ for all n, so

$$|\hat{f}([x])| = \left| \lim_{n \to \infty} f(x_n) \right| = \lim_{n \to \infty} |f(x_n)| \le C \lim_{n \to \infty} |x_n| = C|[x]|$$

where we can pull the limit out because both limits exist. Then \hat{f} is bounded and thus continuous.