Fondamenti dell'Informatica

12 giugno 2017

Esercizio 1

Sia $f: \mathbb{N} \to \mathbb{N}$ una funzione parziale ricorsiva che sia anche iniettiva e totale. Si dica se la funzione inversa $f^{-1}: \mathbb{N} \to \mathbb{N}$

$$f^{-1}(y) = \begin{cases} x, & \text{se } f(x) = y, \\ \uparrow, & \text{altrimenti,} \end{cases}$$

è parziale ricorsiva, dimostrando formalmente ogni affermazione.

Esercizio 2

Sia $\Sigma = \{0, 1\}$ e, per $b \in \Sigma$, sia $n_b(\varepsilon) = 0$ e, per ogni $a \in \Sigma$ ed ogni $w \in \Sigma^*$, $n_b(aw) = 1 - |a - b| + n_b(w)$. Sia $L = \{x \in \Sigma^* \mid n_0(w) < n_1(w)\}$. Si collochi L nella gerarchia di Chomsky, dimostrando formalmente ogni affermazione.

Esercizio 3

Si fornisca una semantica formale per il comando

if
$$E$$
 then C_1 else C_2

dal significato intuitivo seguente: si valuti l'espressione E; se il risultato è diverso da nil si esegua l'istruzione C_1 , altrimenti si esegua l'istruzione C_2 . Si dimostri formalmente che l'aggiunta di un tale comando al linguaggio WHILE non ne aumenta il potere espressivo.

Esercizio 4

Si consideri il seguente programma:

```
int i, a[10];
void R(int i, int x) {
    x = x + 3;    a[x] = 5;    i = 6;    x = x - 2;
}

void main () {
    for (i = 0; i < 10; ++i) {
        a[i] = i;
    }
    i = 4;
    R(i, a[i]);
    print(i);    print(a);
}</pre>
```

Per ognuna delle seguenti modalità di passaggio dei parametri si dica cosa viene stampato: per valore (v), per riferimento (r), per valore-risultato (w), per nome (n). La risposta va fornita compilando una tabella come la seguente:

m	i	a[0]	a[1]	a[2]	a[3]	a[4]	a[5]	a[6]	a[7]	a[8]	a[9]
V											
r											
W											
n											

Esercizio 5

Si consideri l'assegnamento a = b + c in un linguaggio di programmazione sconosciuto. Si esplicitino non meno di 6 comportamenti <u>sostanzialmente diversi</u> di tale assegnamento che siano possibili e plausibili. Possibilmente, se ne esplicitino molti più di 6.