

用霍尔位置传感器测量杨氏模量

物理实验中心 理学院

实验目的

- 1.了解霍尔位置传感器的原理和工作方法
- 2.学习用霍尔位置传感器测微小位移的方法
- 3.掌握用横梁弯曲法测定材料的杨氏模量

实验原理

杨氏模量,由托马斯杨于1807年提出,是沿纵向的弹性模量,属于材料力学名词。1807年因物理学家托马斯·杨(ThomasYoung,1773-1829)所得到的结果而命名。

根据<mark>胡克定律</mark>,在物体的弹性限度内,应力与应变成正比,比值被 称为材料的杨氏模量,它是表征材料性质的一个物理量。

杨氏弹性模量是选定机械零件材料的依据之一,是工程技术设计中常用的参数。杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。

测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等, 还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递 技术(微波或超声波)等实验技术和方法测量杨氏模量。

霍尔位置传感器是一种重要的电磁传感器,有线性和非线性霍尔传感器等多种分类。广泛应用于汽车、工业控制等领域。

1.杨氏模量

杨氏模量是物体所受应力与应变的比值:

$$E = rac{F/A}{\Delta L/L}$$

2.横梁弯曲法测杨氏模量

$$\Delta X = \frac{\Delta Mgd^3}{4a^3bE}$$

$$E = \frac{\Delta Mgd^3}{4a^3b\Delta X}$$

A为梁的厚度; b为梁的宽度; d可视为梁的长度

实验原理

3.霍尔位移传感器原理

由霍尔效应: $U_H = K_H \bullet I_S B$

可知,当 $I_{\mathbf{S}}$ 恒定, $U_H \propto B(x)$

因此:霍尔元件在磁场中移动时,其输出的 U_H 的变化反映了霍尔元件的位移量 Δx 。

霍尔元件灵敏度高, 其检测位移量程较小, 适合微小位移及机械 振动的测量, 还可应用到压力、压差、加速度的测量。

实验仪器

1.读数显微镜; 2.横梁; 3.杠杆(顶端贴有霍尔传感器);

4.磁铁; 5.有机玻璃盒(内装磁铁); 6.刀口; 7.砝码; 8.铜刀口上刻度线

注意实验需在弹性限度内完成,测量时砝码应处于静止状态

实验仪器

水平可移动叉丝——位于读数显微镜

读数标志线——位于铜刀口侧面

读数:分划板主尺读数(mm)+微动鼓轮读数(0.01mm)

1.调目镜 2.调节铜刀口 3.调物镜 4.调显微镜角度/高度

实验内容及步骤

1.调节仪器,连接线路

M/g	20	40	60	80	100	120	Δ	k
Xi/mm								
Vi/mv								

3.<mark>测量另一种材料</mark>,记录每增加20g砝码时传感器信号输出电压U,完成6组测量并记录到下表。

表 3.23.2 测量输出电压与砝码质量增量的关系

M/g	20	40	60	80	100	120	Δ۷
Vj/mv							

实验内容及步骤

4. 其他长度量测量,用米尺、游标卡尺、干分尺分别测量d、b、a,各测量3次,记录到下表,并计算两种材料的杨氏模量,并与标准值比较求相对误差(E铜=10.55x10¹⁰N/m², E铁=18.15x10¹⁰N/m²)。

表 3.23.3 材料的外形结构数据测量表

	黄 铜				铸 铁			
d/cm	1	2	3	平均值	1	2	3	平均值
b/cm								
a/mm								

讨论及拓展

- 1. 杨氏模量作为一种重要的材料力学量,在众多领域有重要应用,同时发展出多种测量方法,比如光纤位移传感器法、光电图像传感衍射法、莫尔条纹法等,请选一种方法,查阅资料,对测量原理、测量公式、测量方案做简要说明?
- 2. 霍尔传感器作为一类重要的传感器,在工业生产中有重要应用,请 查阅资料,简述其在汽车、自动控制领域的应用及工作原理?
- 3.利用已学习的大学物理实验知识及仪器,<mark>设计一个实验或装置</mark>,如何 使用线性霍尔传感器测量电机工作时振动的频率及振幅。

4.
$$E = \frac{\Delta Mgd^3}{4a^3b\Delta X}$$
 依据胡克定律和微元法详细推导测量公式。

【实验拓展】

霍尔线性传感器工作原理及应用(如G1322)