Municipal Solid Waste (MSW) Landfill Estimation for Top 10 Indian Cities

Project Goal: To estimate the required landfill area (in sq. km) for handling Municipal Solid Waste (MSW) for the top 10 major cities in India over a 20-year period, considering estimated population growth and per capita waste generation.

Project Stages:

Phase 1: Data Collection and Preparation

1. **Identify Top 10 Cities:** Determine the top 10 most populous cities in India (e.g., Mumbai, Delhi, Bangalore, Chennai, Hyderabad, Kolkata, Ahmedabad, Pune, Surat, Jaipur) based on the latest Census data or reliable sources.

2. Population Data:

- o Gather the current population for each city.
- Collect historical population data (if available) to analyse trends and estimate growth rates.
- Estimate the Population Growth Rate (GR) for each city for the next 10 years. Use historical data, UN projections, or reputable forecasting models to get the expected annual growth percentage.

3. Waste Generation Data:

- o Estimate the current MSW generation per person per day for each city.
 - This might vary city-to-city. You can use published reports, government data or research articles. (As a starting point, you might assume a average of 0.5kg/person/day to 0.8kg/person/day).
- Investigate projections if available for future per capita waste generation. We'll need a projection for the next 20 years or an assumption that per capita rate doesn't change over the 20 year period.

4. Data Consolidation

- o Create a dataset containing the following columns:
 - City Name
 - Current Population
 - Population Growth Rate (GR)
 - Current Waste Generation per Person per Day (kg)

Phase 2: Calculation and Analysis

1. Projected Population Calculation:

- Project the population for each city for 20 years using the calculated population growth rate (GR). Use the following formula for each of the 20 years.
 - Population in year n = Population in year (n-1) * (1 + (GR/100))

2. Total Waste Generation Calculation:

- o For each year (over the next 20 years) for each city calculate:
 - Daily Total MSW (tonnes/day) = Projected Population * Waste Generation per person per day (in kg) /1000 (to convert kg to tonnes)
 - Total Annual MSW (tonnes/year) = Daily Total MSW (tonnes/day) * 365
- Calculate the Total MSW over 20 years by adding all the yearly MSW for each city.

3. Landfill Volume Calculation (Using methodology from your example):

- o Convert the total MSW in tonnes to kg for 20 years.
- o Calculate the total landfill volume using the given landfill density of 600 kg/m³.
- o Account for the 20% soil cover by dividing by (1 0.2) = 0.8
- o Calculate Landfill area: total volume / 10 (10m is the height of the landfill cell)
- o Convert the Landfill area from square meters to square kilometres.

4. Estimated Landfills:

 Estimate the number of Landfills required for each city. (This can be a conceptual estimation based on the calculated land required, not an actual site count.) We can estimate that each landfill can take X sq km of the waste (X can be a variable here)

Phase 3: Dataset and Reporting

- 1. **Final Dataset:** Create a data frame and add the following columns:
 - o City Name
 - Current Population
 - Estimated GR
 - Estimated Total Waste (tonnes/day) Current
 - Estimated Total Waste (tonnes/year) current
 - Projected Population after 20 years
 - Total MSW generated in 20 Years (tonnes)

- o Total Landfill Area Required (km²)
- Estimated No of Landfills Required

2. Reporting & Visualization:

- Create a report with insights including:
 - A summary of current population and waste generation for each city.
 - Projected population growth and waste generation for each city over 20 years.
 - Landfill area required in sq km for each city.
 - Number of Landfills needed per city
 - Graphical representations (bar charts, maps, etc.) of the results to make it more presentable
- o Analyse if any city requires the most landfill area.
- Discussion on the importance of waste minimization and waste management to reduce landfill requirements.

Assumptions and Limitations:

- The landfill density is assumed to be 600 kg/m³, which may vary in reality.
- We are only accounting for MSW. We are ignoring construction and other types of waste.
- The calculation assumes a single 10 m lift of MSW and might be oversimplified compared to a real-world scenario.
- We assume that the per capita waste generation rate is constant. However, in reality, this can change.
- The growth rate assumption can be uncertain in the longer term.
- No advanced recycling or waste-to-energy processes are considered, which could significantly reduce the landfill requirements.

Technology Stack:

- **Programming Language:** Python (with libraries like pandas, numpy, matplotlib, seaborn for data manipulation, calculation and visualization)
- **Data Sources:** Census data, government waste management reports, research articles on MSW.
- Reporting: Markdown, HTML or PDF.

Key Deliverables:

- A clean and comprehensive dataset (.csv or similar format)
- A Python script to generate the calculations and datasets.
- A final report summarizing the findings with charts.

Project Benefits:

- Provides valuable data for urban planning and waste management decisions in major Indian cities.
- Highlights the growing need for improved MSW management infrastructure.
- Educates on the potential impact of population growth and waste generation on land resources.
- Can be used as a starting point to explore better waste management practices and technologies.