

Kimia Unsur

A. PENDAHULUAN

- Kimia unsur adalah cabang ilmu kimia yang mempelajari sifat fisis dan sifat kimia unsur.
- Sistem periodik unsur modern sampai tahun 2011 terdiri atas 118 unsur, 98 di antaranya ditemukan secara alami, dan 20 lainnya disintesis di laboratorium.

B. KELIMPAHAN UNSUR DI ALAM

🦠 Kelimpahan unsur-unsur di kulit bumi:

Unsur	Kelimpahan	Unsur	Kelimpahan
0	49,20%	Ca	3,39%
Si	25,67%	Na	2,63%
Al	7,50%	K	2,40%
Fe	4,71%	Mg	1,93%

🔌 Kelimpahan senyawa di udara kering di bumi:

Rumus	Kelimpahan	Rumus	Kelimpahan
N ₂	78,09%	Ne	0,0018%
O ₂	20,94%	He	0,00052%
Ar	0,934%	CH ₄	0,00012%
CO ₂	0,0315%	Kr	0,00010%

🔌 Kelimpahan unsur di perairan bumi:

Unsur	Kelimpahan	Unsur	Kelimpahan
0	85,84%	Mg	0,13%
Н	10,82%	S	0,09%
Cl	1,94%	Ca	0,04%
Na	1,08%	K	0,04%

C. SUMBER UNSUR DI ALAM

- **◆ Unsur** di bumi secara alami dapat ditemukan dalam bentuk unsur bebas atau mineral.
- Mineral atau bijih (ore) adalah zat yang terbentuk secara alami yang mengandung bermacam-macam unsur dengan kadar tinggi, dan dapat dituliskan dalam suatu rumus mineral.
- Unsur non-logam kebanyakan ditemukan dalam bentuk bebasnya (tidak membentuk senyawa).

Unsur	Sumber mui	rni Senyawa/mineral		
Gas m	Gas mulia			
Hanya ditemukan dalam bentuk gas monoatomik di alam.				
Halog	Halogen			
F	F ₂ (g)	• fluorspaar/fluorit (CaF ₂)		
		• kriolit (Na ₃ AlF ₆)		
Cl	Cl ₂ (g)	• air laut/halit (NaCl)		
Br	Br ₂ (l)	• air laut/bromargirit (AgBr)		
I	l ₂ (s)	• air laut (NalO ₃)		

Non-logam lain		
Н	H₂(g)	
С	C(s), alotrop: grafit, intan, amorf	
N	N₂(g)	
0	O ₂ (g), alotrop: oksigen atomik, oksigen triatomik, ozon	
Р	$P_4(s)$, alotrop: fosfor merah, fosfor putih	
S	$S_8(s)$, alotrop: belerang α , belerang β	

Unsur logam kebanyakan ditemukan dalam bentuk senyawa/mineral, namun dapat juga ditemukan unsur bebasnya (kecuali logam alkali dan alkali tanah).

Unsur	Mineral/bijih		
Logam	alkali & alkali tanah		
Na	• sendawa Chili (NaNO ₃)		
	air laut/halit (NaCl)		
K	air laut/silvit (KCl)		
	• ortoklas/kalium feldspar (KAlSi ₃ O ₈)		
Mg	• air laut (MgCl ₂)		
	• magnesit (MgCO ₃)		
	 dolomit (MgCO₃.CaCO₃) 		
	• epsomit/garam inggris (MgSO ₄ .7H ₂ O)		
	• karnalit (KCl.MgCl ₂ .6H ₂ O)		
Ca	• kalsit/batu kapur/pualam (CaCO ₃)		
	• gipsum/batu tahu (CaSO ₄ .2H ₂ O)		
	• kaporit (Ca(OCl) ₂)		
Sr	• selestit (SrSO ₄)		
	• stronsianit (SrCO ₃)		
_	transisi		
Ti	• rutil (TiO ₂)		
Cr	• kromit (FeCr ₂ O ₄)		
Mn	• pirolusit (MnO ₂)		
Fe	• hematit (Fe ₂ O ₃) • siderit (FeCO ₃)		
	• magnetit (Fe ₃ O ₄) • kromit (FeO ₃)		
	• pirit (FeS ₂) • limonit (Fe ₂ O ₃ .H ₂ O)		
Ni	pentlandit (FeNiS)		
	• millerit (NiS)		
Cu	• kalkopirit (CuFeS ₂) • kuprit (Cu ₂ O)		
	• kalkosit (Cu ₂ S) • malasit		
7	(Cu ₂ (OH) ₂ CO ₃)		
Zn	• sfalerit (ZnS)		
Lawama	• smithsonit (ZnCO ₃)		
Logam Al	golongan utama & metaloidbauksit (Al₂O₃)		
Αl			
C:	• kriolit (Na ₃ AlF ₆)		
• pasir/kuarsa (SiO ₂)			
	• tanah liat (Al ₂ O ₃ .2SiO ₂ .2H ₂ O)		

Sn	• kasiterit (SnO ₂)
Pb	galena (PbS)anglesit (PbSO₄)
С	intan (C)grafit (C)

- Berdasarkan kandungan mineralnya, secara umum mineral dibagi menjadi:
 - 1) Unsur bebas, contohnya belerang, intan.
 - 2) **Sulfida** (S²⁻), contohnya pirit, kalkopirit.
 - 3) Oksida (O²-), contohnya hematit, bauksit.
 - 4) Halida (X⁻), contohnya kriolit, halit.
 - 5) **Karbonat** (CO₃²⁻), contohnya dolomit, pualam.
 - 6) **Sulfat** (SO₄²⁻), contohnya garam inggris.
 - 7) Fosfat (PO₄³⁻), contohnya fluorapatit.
 - 8) Silikat (Si), contohnya feldspar, kuarsa.

D. PEMBUATAN UNSUR NON-LOGAM

Unsur	Cara Pembuatan/Proses			
Halog	en			
F	• Elektrolisis leburan KF			
Cl	Elektrolisis lelehan NaCl	 Proses Weldon 		
		 Proses Deacon 		
Br	• Pendesakan Br ⁻			
I	• Pendesakan I ⁻	 Proses Weldon 		
Non-le	ogam lain			
Н	Elektrolisis air	Reaksi metana		
N	Distilasi bertingkat udara cair			
0	Distilasi bertingkat udara cair			
P	Proses Wohler	Proses Wohler		
S	Proses Frasch	 Proses Sisilia 		

Nembuatan fluorin:

Elektrolisis leburan KF

E : $2KF \rightarrow 2K^{+} + 2F^{-}$ K (-) : $2K^{+} + 2e \rightarrow 2K$ A (+) : $2F^{-} \rightarrow F_{2} + 2e + 2KF \rightarrow 2K + F_{2}$

Nembuatan klorin:

Elektrolisis lelehan NaCl

E : $2NaCl \rightarrow 2Na^{+} + 2Cl^{-}$ K (-) : $2Na^{+} + 2e \rightarrow 2Na$ A (+) : $2Cl^{-} \rightarrow Cl_{2} + 2e$ + $2NaCl \rightarrow 2Na + Cl_{2}$

Proses Weldon

Dilakukan dengan mencampurkan NaCl dengan batu kawi dan asam sulfat pekat.

$$2NaCl(aq) + MnO_2(s) + 2H_2SO_4(aq)$$

 $\rightarrow MnSO_4(aq) + Na_2SO_4(aq) + H_2O(l) + Cl_2(g)$

Proses Deacon

$$4HCl(g) + O_2(g) \rightarrow 2Cl_2(g) + 2H_2O(g)$$

Nembuatan bromin:

Pendesakan Br

$$2NaBr(aq) + Cl_2(g) \rightarrow 2NaCl(aq) + Br_2(l)$$

Nembuatan iodin:

Pendesakan I⁻

$$2KI(aq) + Br_2(g) \rightarrow 2KBr(aq) + I_2(s)$$

Proses Weldon

Dilakukan dengan mencampurkan KI dengan batu kawi dan asam sulfat pekat.

$$2KI(aq) + MnO_2(s) + 2H_2SO_4(aq)$$

 $\rightarrow MnSO_4(aq) + K_2SO_4(aq) + H_2O(l) + I_2(s)$

Nembuatan hidrogen:

Elektrolisis air

$$2H_2O_{(l)} + 2e \rightarrow 2OH_{(aq)} + H_{2(q)}$$

Reaksi metana

Reaksi metana dengan uap air menghasilkan suatu campuran CO dan H₂ yang disebut **sin-gas**.

$$CH_4(g) + H_2O(g) \rightarrow CO(g) + \mathbf{H_2}(g)$$

Nembuatan nitrogen dan oksigen:

Distilasi bertingkat udara cair

1) Penyaringan

Udara disaring dari pengotor padat.

2) Pencairan udara

Udara dikompresi lalu didinginkan, sehingga air dan CO_2 membeku dan dapat dipisahkan. Jadi, udara cair hanya mengandung N_2 , O_2 dan Ar.

3) Distilasi bertingkat

Udara diekspansi kembali dan didistilasi bertingkat dengan menurunkan tekanan.

Gas-gas dalam udara cair tersebut menguap pada tekanan yang berbeda, urutannya adalah N_2 , **Ar** lalu O_2 .

Pembuatan fosfor:

Proses Wohler (fosfor putih)

1) Reaksi dalam tanur listrik

$$2Ca_3(PO_4)_2(l) + 6SiO_2(l) \rightarrow 6CaSiO_3(l) + \underline{P_4O_{10}}(g)$$

2) Reduksi

$$P_4O_{10}(g) + 5C(s) \rightarrow P_4(s) + 5CO_2(g)$$

Fosfor putih lalu disimpan dalam CS_2 atau H_2O agar tidak teroksidasi.

Pembuatan belerang:

Proses Frasch

Adalah proses pengambilan belerang dari bawah permukaan tanah.

- 1) Belerang dicairkan dengan dialiri air bersuhu 1600°C dan bertekanan 16 atm.
- 2) Belerang cair dikeluarkan dengan pompa udara panas bertekanan 20-25 atm.
- 3) Belerang cair kemudian dibiarkan membeku menjadi belerang padat.

Proses Sisilia

Adalah proses pengambilan belerang permukaan tanah.

- 1) Mineral yang mengandung belerang dipanaskan hingga belerang terpisah.
- 2) Belerang kemudian dimurnikan dengan cara sublimasi.

E. PEMBUATAN UNSUR LOGAM

Unsur

Cara Pembuatan/Proses

Logam alkali & alkali tanah

Li, Na, K, Mg, Ca, Sr, Ba

- Elektrolisis cairan/lelehan garam halidanya
- Proses Down (Na)
- Proses Dow (Mg)

Logam transisi

Cu	Reduksi kalkopirit
Fe	Tanur tiup/tanur tinggi
Mn	Proses aluminotermi
Cr	Proses Goldschmidt

Logam golongan utama & metaloid		
Al	Proses Hall-Heroult	
Si	Reduksi kuarsa	

🔪 Pembuatan logam alkali dan alkali tanah:

Elektrolisis cairan/lelehan garam halidanya

Contoh:

Pembuatan kalium dari elektrolisis cairan KCl.

E :
$$2KCl \rightarrow 2K^{+} + 2Cl^{-}$$

K (-) : $2K^{+} + 2e \rightarrow 2K$

A (+) : $2Cl^{-} \rightarrow Cl_{2} + 2e$
 $2KCl \rightarrow 2K + Cl_{2}$

Nembuatan natrium:

Proses Down

Natrium berasal dari air laut yang diuapkan sehingga menghasilkan NaCl.

$$NaCl(aq) \rightarrow NaCl(s)$$

 $NaCl(s) \rightarrow NaCl(l)$

Selanjutnya proses elektrolisis lelehan NaCl yang dicampur dengan CaCl₂ untuk menurunkan titik

leleh NaCl. : 2NaCl → 2Na+ + 2Cl-

K (-) :
$$2Na^+ + 2e \rightarrow 2Na$$

A (+):
$$2Cl^- \rightarrow Cl_2 + 2e$$
 +

$$2NaCl \rightarrow 2Na + Cl_2$$

🔪 Pembuatan magnesium:

Proses Dow

Magnesium berasal dari air laut yang diproses sehingga menghasilkan MgCl₂, melalui tahap:

1) Pelarutan CaO dalam air

$$CaO(s) + H2O(l) \rightarrow 2Ca2+(aq) + 2OH-(aq)$$

2) Pengendapan Mg²⁺

$$Mg^{2+}(aq) + 2OH^{-}(aq) \rightarrow \underline{Mg(OH)_{2}}(s)$$

3) Reaksi dengan HCl pekat

$$Mg(OH)_2(s) + 2HCl(aq) \rightarrow \underline{MgCl}_2(aq) + 2H_2O(l)$$

4) Pencairan MgCl₂

$$MgCl_2(aq) \rightarrow MgCl_2(s)$$

 $MgCl_2(s) \rightarrow \underline{MgCl_2(l)}$

Selanjutnya proses elektrolisis lelehan MgCl₂.

E:
$$MgCl_2 \rightarrow Mg^{2+} + 2Cl^{-}$$

$$K(-)$$
: $Mg^{2+} + 2e \rightarrow Mg$

A (+):
$$2Cl^- \rightarrow Cl_2 + 2e$$
 +

$$MqCl_2 \rightarrow Mq + Cl_2$$

Pembuatan kromium:

Proses Goldschmidt

$$Cr_2O_3(s) + 2Al(s) \rightarrow Al_2O_3(s) + 2Cr(s)$$

🔦 Pembuatan mangan:

Proses aluminotermi

$$3MnO_2(s) \rightarrow Mn_3O_4(s) + O_2(g)$$

 $3Mn_3O_4(s) + 8Al(s) \rightarrow 9Mn(s) + 4Al_2O_3(s)$

Nembuatan besi:

Proses tanur tiup

Menghasilkan besi gubal (pig iron).

- 1) Hematit, kokas dan batu kapur diletakkan pada puncak tanur yang ditiup udara panas.
- 2) Pembakaran kokas
 - a. Menaikkan suhu sampai 2000°C

$$C(s) + O_2(g) \rightarrow \underline{CO}_2(g)$$
 (eksoterm)

b. Menghasilkan CO untuk reduksi hematit

$$CO_2(g) + C(s) \rightarrow 2\underline{CO}(g)$$

3) Reduksi hematit

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(l) + 3CO_2(g)$$

4) Pembentukan terak (cairan kental) dari pengotor bijih besi oleh batu kapur

$$\begin{aligned} &\mathsf{CaCO_3}(s) \to \mathsf{CaO}(s) + \mathsf{CO_2}(g) \\ &\mathsf{CaO}(s) + \mathsf{SiO_2}(s) \to \textbf{CaSiO_3}(l) \\ &3\mathsf{CaO}(s) + \mathsf{P_2O_5}(g) \to \textbf{Ca_3(PO_4)_2}(l) \end{aligned}$$

Nembuatan tembaga:

Reduksi kalkopirit

1) Flotasi

Serbuk kalkopirit diberi air dan minyak, sehingga tembaga berminyak dan mengapung.

2) Pemanggangan

$$4CuFeS_2(s) + 9O_2(g)$$

$$\rightarrow 2Cu_2S(s) + 2Fe_2O_3(s) + 6SO_2(g)$$

3) Peleburan

Peleburan menghasilkan lapisan Cu₂S dan Fe cair, dan lapisan FeSiO₃ cair (terak).

4) Reduksi

Menghasilkan tembaga kotor yang disebut tembaga lepuh.

$$2Cu_2S(l) + 3O_2(g) \rightarrow 2\underline{Cu_2O}(s) + 2SO_2(g)$$

$$Cu_2S(l) + Cu_2O(s) \rightarrow 2Cu(s) + SO_2(g)$$

5) **Elektrolisis** (pemurnian logam)

Cu murni dijadikan katoda, **Cu kotor** dijadikan anoda, dan larutan CuSO₄ dijadikan elektrolitnya.

Pengotor-pengotor Cu biasanya adalah Ag, Au, Pt, Fe dan Zn.

Selama elektrolisis, logam pengotor tidak akan larut, tetapi membentuk **lumpur anoda**, sehingga tembaga menjadi murni.

Nembuatan aluminium:

Proses Hall-Heroult

1) Pelarutan bauksit

$$Al_2O_3(s) + 2NaOH(aq) + 3H_2O(l)$$

 \rightarrow 2NaAl(OH)₄(aq)

2) Pengendapan

$$2NaAl(OH)_4(aq) + CO_2(q)$$

$$\rightarrow$$
 2Al(OH)₃(s) + Na₂CO₃(aq) + H₂O(l)

3) Pemanasan

$$2Al(OH)_3(s) \rightarrow \underline{Al_2O_3}(s) + 3H_2O(g)$$

Selanjutnya proses elektrolisis bauksit yang dicampur dengan lelehan kriolit agar titik didihnya turun.

E :
$$2Al_2O_3 \rightarrow 4Al^{3+} + 6Q^{2-}$$

$$K(-)$$
: $4Al^{3+} + 12e \rightarrow 4Al$

A (+):
$$6Q^{2-} \rightarrow 3Q_2 + 12e$$
 +

$$2Al_2O_3 \rightarrow 4Al + 3O_2$$

Elektroda yang digunakan adalah **grafit**. Oksigen yang dihasilkan bereaksi dengan grafit, sehingga anoda harus diganti ketika telah habis.

Nembuatan silikon:

Reduksi kuarsa

1) Reduksi kuarsa

$$SiO_2(l) + C(s) \rightarrow \underline{Si}(l) + 2CO(g)$$

2) Pemurnian

$$Si(l) \rightarrow \underline{Si}(s)$$

$$Si(s) + 2Cl_2(g) \rightarrow \underline{SiCl_4}(g)$$

3) Pengendapan

$$SiCl_4(g) + 2H_2(g) \rightarrow Si(s) + 4HCl(g)$$

F. PEMBUATAN SENYAWA

Cara Pembuatan/Proses		
Proses kontak		
Bilik timbal		
Proses klor-alkali		
Proses Solvay		
Proses Solvay		
Proses Haber-Bosch		
Proses Ostwald		
Proses tungku oksigen		

Proses kontak pada pembuatan H₂SO₄:

1) Pembakaran belerang

$$S(s) + O_2(q) \rightarrow SO_2(q)$$

2) Oksidasi belerang dioksida

$$2SO_2(q) + O_2(q) \rightleftharpoons \underline{2SO_3(q)}$$

Reaksi ini dilakukan pada suhu sekitar 500°C dan tekanan 1 atm, dan dengan katalis **V₂O₅**.

3) Pelarutan belerang trioksida

$$SO_3(s) + H_2SO_4(aq) \rightarrow \underline{H_2S_2O_7(l)}$$

4) Asam pirosulfat direaksikan dengan air

$$H_2S_2O_7(l) + H_2O(l) \rightarrow H_2SO_4(aq)$$

Proses klor-alkali adalah elektrolisis larutan NaCl pada pembuatan NaOH:

E : $2NaCl \rightarrow 2Na^+ + \frac{2Cl}{}$

K(-): $2H_2O + \frac{2e}{} \rightarrow 2OH^- + 2H_2$

:
$$2Cl^{-} \rightarrow Cl_2 + 2e$$
 +
2NaCl + 2H₂O \rightarrow 2Na⁺ + 2OH⁻ + 2H₂ + Cl₂

$$2NaCl + 2H_2O \rightarrow 2NaOH + 2H_2 + Cl_2$$

Na₂CO₃:

1) Pemanasan batu kapur

3) Penambahan amonia

$$CaCO_3(s) \rightarrow CaO(s) + \underline{CO}_2(g)$$

2) Pembentukan asam karbonat

$$CO_2(g) + H_2O(l) \rightarrow \underline{H_2CO_3}(aq)$$

 $H_2CO_3(aq) + NH_3(q) \rightarrow NH_4HCO_3(aq)$

4) Pembentukan NaHCO₃

 $NH_4HCO_3(aq) + NaCl(aq)$

 $\rightarrow NaHCO_3(s) + NH_4Cl(aq)$

Endapan NaHCO₃ kemudian dipisahkan melalui penyaringan, dan dapat diolah kembali menjadi Na₂CO₃.

5) Pemanasan NaHCO₃ menghasilkan Na₂CO₃ 2NaHCO₃(s) → Na₂CO₃(s) + H₂O(q) + CO₂(q)

NH3:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Reaksi ini dilakukan pada suhu tinggi dan tekanan tinggi, dan dengan katalis **serbuk Fe**. Untuk mengurangi reaksi balik, amonia yang terbentuk segera dipisahkan.

- Noses Ostwald pada pembuatan HNO3:
 - 1) Pembentukan nitrogen oksida

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

2) Pembentukan nitrogen dioksida

$$2NO(g) + O_2(g) \rightarrow 2\underline{NO_2}(g)$$

3) Pembentukan asam nitrat

$$3NO_2(g) + H_2O(l) \rightarrow 2HNO_3(aq) + NO(g)$$

- 🔌 Proses tungku oksigen pada pembuatan baja:
 - 1) Besi gubal dari proses tanur tiup dimasukkan ke dalam tungku oksigen.
 - Tungku oksigen lalu ditiupkan oksigen, sehingga kadar karbon turun karena teroksidasi menjadi CO, dan pengotor diikat CaO menjadi terak.

- Baja adalah aliasi logam yang dibentuk dari logam utama besi, sedikit karbon dan logam lain.
- Berdasarkan kadar karbon, baja terbagi menjadi:

Beda	Rendah	Menengah	Tinggi
Kadar C	0,05-0,3%	0,3-0,6%	0,6-1,5%
Sifat	mudah ditempa	sukar ditempa	sangat keras dan kuat
Contoh	badan mobil, pipa, rantai, corong, baut	poros as, rel, palu, obeng	bor, pemotong logam, palu pandai besi

Contoh-contoh baja:

Nama	Aliasi	Sifat	Contoh
Stainless steel	Cr, Ni	tahan karat	perkakas dapur, alat pemotong
Baja kromium- vanadium	Cr, V	kuat	poros as, roda gigi
Baja mangan	Mn	keras dan kuat	per, mesin penghancur
Baja silikon	Si	keras dan kuat	magnet
Baja invar	Ni	sukar memuai	alat ukur