## Lecture 11

Austin Baird
UNC Department of Mathematics
UNC Department of Biology

May 21, 2014

# Summary

Today we will:

Try and understand series approximations and transforms (Fourier Analysis!)

#### Periodic Functions

A period function satisfies the relationship:

$$f(t+nP) = f(t)$$
$$n \in \mathcal{Z}$$

Here the period is denoted P and so this relations shows that for any chosen n the graph will repeat itself with period P. Think of reconstructing a graph to have as large of a domain as you'd like by reflecting a function over and over again about the period!

# Series Expansion of Periodic Functions

Sometimes, Periodic functions can be written as an infinite series of sin and cos's. This can be referred to as the Fourier series of a function:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$

Here our coefficients  $a_n$  and  $b_n$  can be written as:

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

## Let's Try It!

Find the Fourier series of the sawtooth function:

$$f(x) = x - L < x < L$$
  
$$f(x + 2L) = f(x)$$

Now we want to graphically show that if we truncate this series it gives a good approximation. Do It!

# Let's Try It!

Find the Fourier series of the sawtooth function:

$$f(x) = x - L < x < L$$
  
$$f(x + 2L) = f(x)$$

Now we want to graphically show that if we truncate this series it gives a good approximation. Do It!

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = 0 \quad n = 0, 1, 2 \dots$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{-2L}{n\pi} (-1)^n \quad n = 1, 2, 3 \dots$$

## **Example Continued**

We now have a full formula for the series of our sawtooth function:

$$f(x) = \sum_{n=1}^{\infty} \left[ \frac{-2L}{n\pi} (-1)^n \sin\left(\frac{n\pi x}{L}\right) \right]$$

This function is an exact approximation to our function except at the discontinuities!

## Comparison

Sampling a finite number of series terms we can get a pretty good representation:



# Fourier Integral Representation

Unfortunately the fourier series representation of a function only works for periodic functions, what about non-periodic functions? For this we use the Fourier integral representation:

$$f(x) = \int_0^\infty a(k)\cos(kx)dk + \int_0^\infty b(k)\sin(kx)dk$$
$$a(k) = \frac{1}{\pi} \int_\infty^\infty f(x)\cos(kx)dx$$
$$b(k) = \frac{1}{\pi} \int_\infty^\infty f(x)\sin(kx)dx$$

This definition now has a continuous frequency resolution and is defined for non-period functions defined on  $(-\infty, \infty)$ 

#### Fourier transform!

We can now write this representation using a singular integral and using Eulers equation:  $e^{i\theta} = \cos(\theta) + i\sin\theta$ .

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} f(x)e^{-2\pi ixk} dx$$

With an inverse defined to be:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k)e^{2\pi ixk}dk$$

Similarly we could transform a function defined with time (t). Also note that k is the frequency of the function.

#### Discrete Transform

Now assume that we aren't transforming a function but a sequence of data,  $\{f_k\}_{k=0}^{N-1}$  which we know contains some oscillations: (sample the sin wave) we get:

$$\hat{F}_n = \sum_{n=0}^{N-1} f_k e^{\frac{-2\pi i k n}{N-1}}$$

Here  $\hat{F}_n$  is the Fourier transform of the data  $f_k$  sampled at N data points. Here k is the frequency. Note that  $\hat{F}_n$  is a sequence of numbers:  $n = 0, 1, \ldots N - 1$  which is the same size as the number of times we sampled the data:  $f_k$ 

Note: We cannot compute zero or negative indices in matlab, so we will shift this formula by 1:

$$\hat{F}_n = \sum_{n=1}^{N} f_k e^{\frac{-2\pi i(k-1)(n-1)}{N-1}}$$

#### Discrete Transform

Turns out we can write this as matrix vector multiplication! If we define an NxN matrix for  $\omega_n = e^{\frac{-2\pi i}{n}}$  we can define it to be:

$$\begin{pmatrix} F_0 \\ F_1 \\ \vdots \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \omega_n^{1 \cdot 1} & \cdots & \omega_n^{1 \cdot (n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{(n-1) \cdot 1} & \cdots & \omega_n^{(n-1) \cdot (n-1)} \end{pmatrix} \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_{n-1}) \end{pmatrix}$$

Now we have what we need to get  $[F_n]$ . Since we know  $f_k$ , sampled data, and we can compute the matrix!

## Fast Fourier Transform

So what is wrong with what we just computed? Computational Cost! To compute this directly  $= \mathcal{O}(n^2)$ , but there is a new way! FFT! Idea:

- Use symmetry of the matrix to compute the multiplication without recomputing matrix terms!
- Speeds up computational time to  $\mathcal{O}(n \log(n))$

## Examples

Periodic data = frequency analysis:



But how do we get the frequency!?

## Frequency

To get the frequency spectrum of the data you are analyzing, do the following (in Matlab):

```
Fs = 150; sampling frequency
t = 0:1/Fs:1; discretized time domain
f = 5; frequency of our sin wave
y = sin(2*pi*f*t);
nfft = 1024; length of the fft domain, power of 2
x = fft(y,nfft);
x = abs(x(1:nfft/2)); Half of the data, fft is symmetric
f = (0:nfft/2-1)*Fs/nfft; frequency vector
```

#### Homework 10

We want to gain an understanding of Fouier analysis a variety of ways:

• Compute the series expansion for the top hat periodic function:

$$f(x) = \begin{cases} -1 & -1 < x < 0 \\ 1 & 0 \le x < 1 \end{cases}$$
  
$$f(x+2) = f(x) \text{ (periodic condition)}$$

Graph the actual function and the series representation truncated at the first 2,4,8,10 terms.

#### Homework 10

- Program the Discrete Fourier transform for a periodic function and compute it's frequency.
- Use the periodic function  $f(t) = sin(2\pi 50t) + sin(2\pi 120t)$  in your computations (it has what frequencies?)
- Vary the number of sampling points and test the time it takes to compute.
  - Let sampling be power of 2 and compute the time it takes to compute the problem (graph the data x-axis = sample points, y-axis = compute time)
  - Watch this movie: http://blogs.mathworks.com/pick/ 2008/02/12/timing-code-in-matlab/, it will help you!

### This is what it should look like



#### Homework 10

- Use the data provided
- The data is a loaded elastic material extended into a sin wave, immersed into a fluid. The deformed boundary is released and then vibrates to rest.
- Goal: Extract the frequency of the vibrating boundary!
  - Load it into matlab
  - make a graph of it over time (it contains two columns, position and time)
  - Take an fft of the data
  - Graph the frequency spectrum
  - Explain issues and why there are several predominant frequencies.