基于数学规划的最优招聘模型

摘要

本文通过整数规划、0-1 规划建立了最优招聘模型,并利用 Lingo 软件对其进行了模型求解。

针对问题一: 首先根据题意建立 0-1 规划模型,以公司的工资支出最少作为目标函数,约束条件为满足各季度市场需求,并用 Lingo求解出最优招聘人数,同时得出春、夏、秋三季的需求增加不会影响招聘计划,可以增加的需求即为公司员工的待业人数与工作时间之积。具体招聘计划为表 1,可以增加的需求为表 3。

针对问题二:讨论公司进行季度招聘,建立相应的整数规划模型,得出求解结果,发现只在春、夏、冬三季初进行招聘相应的员工即可,在秋季初不需要招聘新员工,具体招聘计划为表 4。

针对问题三: 若公司在每个季度会解雇一定比例的员工,则建立 0-1 规划模型,考虑每个季度结束后公司是否应该解雇员工,求解得出 的具体招聘计划为表 5。

本模型建立中运用 LINGO 18.0 x64, 从而使建模过程顺利进行, 使所建模型更加精简。

关键词:整数规划、0-1规划、招聘计划

一 问题重述

家政服务甲公司专门向雇主提供护理、保姆等各项服务。根据题中所给的 某城市下一年中各项家政服务在春、夏、秋、冬四个季度的需求,同时在每个季 度结束后有一定比例的员工离职,考虑在满足市场需求的条件下使得公司的利 润最大的员工招聘计划。

本题考察的是利用甲公司的相关数据,结合数学规划合理设计招聘计划模型,并基于模型解决以下问题:

- 1. 甲公司不主动解雇员工,每年只招聘一次,制定下一年的最优招聘计划, 并分析哪些季度需求的增加不会影响招聘计划,求出可增加的人数。
 - 2. 将条件改为每个季度招聘一次,其余条件不变,制定最优招聘计划。
- 3. 甲公司在每个季度结束后可以解雇一定比例的员工,制定下一年的最优招聘计划。

二 问题分析

问题一:

由题可知,要使公司所得利润最大,即公司的工资支出最少,于是可以将 利润最大问题转化为公司的工资支出最少问题,在满足每个季度的需求时,考 虑在哪个季度招聘最为合适,建立 0-1 规划模型进行求解。

问题二:

若每个季度都可以招聘员工,则在季度结束员工离职后,根据下一季度的需求招聘空缺的员工,目标函数仍为公司工资支出最少的线性函数,建立整数规划模型求解。

问题三:

如果考虑公司解雇的影响,如果使用问题一的年度最优招聘模型,分析得出并不是最优解;而基于问题二的季度最优招聘模型,需要建立 0-1 规划模型,考虑公司在每个季度结束后是否解雇员工,制定相关最优招聘计划。

三 模型假设

- 1. 公司的每位员工每季度工作 65 天;
- 2. 每种员工的招聘计划互不影响; 3. 在每个季度结束后, 员工将有一定比例的人数会自动离职, 离职比例为定值;
 - 4. 员工工作状态和工作环境为理想情况;
 - 5. 离职的员工与雇佣的员工不冲突;

- 6. 员工可以正常工作,公司运转正常;
- 7. 公司解雇的员工比例为定值。
- 8. 假设公司年初不解雇员工。

四 符号说明

	· · · · · · · · · · · · · · · · · · ·
一 符号表示	文字说明
x_{i0}	
S_i	第 i 种员工的月工资
n_{i1}	第i种员工的春季需求量
n_{i2}	第 i 种员工的夏季需求量
n_{i3}	第i种员工的秋季需求量
n_{i4}	第i种员工的冬季需求量
y_{i1}	第i种员工的春季人数
y_{i2}	第1种员工的夏季人数
y_{i3}	第i种员工的秋季人数
y_{i4}	第i种员工的冬季人数
c_{i1}	第i种员工春季初是否招聘
c_{i2}	第i种员工夏季初是否招聘
c_{i3}	第i种员工秋季初是否招聘
c_{i4}	第 i 种员工冬季初是否招聘
x_{i1}	第i种员工的春季招聘人数
x_{i2}	第i种员工的夏季招聘人数
x_{i3}	第i种员工的秋季招聘人数
x_{i4}	」 第 i 种员工的冬季招聘人数
r_i	第i种员工自动离职率
k	员工解雇率
z_{i1}	第 i 种员工春季结束后是否解雇
z_{i2}	第i种员工夏季结束后是否解雇
z_{i3}	第i种员工秋季结束后是否解雇

五 模型建立

5.1 模型一 年度最优招聘模型

由题意可知,第i种员工的最优招聘季度并未确定,即在春、夏、秋、冬四季之前都可以进行一年唯一一次的招聘,则需要建立 0-1 规划模型,招聘为 1,不招聘为 0。每个季度结束后员工离职后剩余人数向下取整,则每季度员工人数为:

春季有 $y_{i1} = c_{i1}x_{i1} + x_{i0}$ 人;

夏季有 $y_{i2} = c_{i2}x_{i2} + (1 - r_i)y_{i1}$ (向下取整) 人;

秋季有 $y_{i3} = c_{i3}x_{i3} + (1 - r_i)y_{i2}$ (向下取整) 人;

冬季有 $y_{i4} = c_{i4}x_{i4} + (1 - r_i)y_{i3}$ (向下取整) 人;

其中 $c_{i1} + c_{i2} + c_{i3} + c_{i4} = 1$, 且为 0-1 变量,目标函数为公司的工资支出,

约束条件为各季需求,建立0-1规划模型:

min
$$\sum_{i=1}^{18} 3s_i(y_{i1} + y_{i2} + y_{i3} + y_{i4})$$
 (1)
s.t.
$$y_{i1} = c_{i1}x_{i1} + x_{i0}$$
 (2)
$$y_{i2} = c_{i2}x_{i2} + (1 - r_i)y_{i1}(向下取整)$$
 (3)
$$y_{i3} = c_{i3}x_{i3} + (1 - r_i)y_{i2}(向下取整)$$
 (4)
$$y_{i4} = c_{i4}x_{i4} + (1 - r_i)y_{i3}(向下取整)$$
 (5)
$$y_{i1} \ge \frac{n_{i1}}{65}$$
 (6)
$$y_{i2} \ge \frac{n_{i2}}{65}$$
 (7)
$$y_{i3} \ge \frac{n_{i3}}{65}$$
 (8)
$$y_{i4} \ge \frac{n_{i4}}{65}$$
 (9)
$$c_{i1} + c_{i2} + c_{i3} + c_{i4} = 1$$
 (10)
$$y_{i1}, y_{i2}, y_{i3}, y_{i4}, x_{i1}, x_{i2}, x_{i3}, x_{i4}取整数$$
 (11)
$$c_{i1}, c_{i2}, c_{i3}, c_{i4} = 0$$
 可1 (12)
$$i = 1, 2, ..., 18$$
 (13)

利用 Lingo 求解出最优解为:

表 1: 年度最优招聘计划

第i种员工	春季前	夏季前	秋季前	冬季前
1		100		
2		91		
3		100		
4		100		
5				53
6		78		
7				41
8		86		
9		57		
10		76		
11		75		
12		89		
13		57		
14		95		
15	114			
16		73		
17		64		
18		83		

上表的数字即为该种员工在对应季度的招聘人数。 根据模型可以求出每个季度的待业人数:

表 2: 每个季度待业人数

第 i 种员工	春季	夏季	秋季	冬季
1	23	80	84	
2	6	58	66	
3	8	73	73	
4	11	76	72	
5	28	1	21	
6	34	75	78	
7	46	2	21	
8	8 7 54		67	
9	30	55	63	
10	37	75	77	
11	10	57	71	
12		51	62	
13	37	45	66	
14	21	82	77	
15	102	66	80	
16	31	65	73	
17	24	58	75	
18	46	77	77	

由表 2 可知,春、夏、秋的需求增加不会影响招聘计划,可以增加的需求人数即为公司员工待业人数与工作时间 65(天) 之积:

表 3: 可以增加的需求

第i种员工	5. 可以 春季	夏季	秋季	冬季
1	1495	5200	5460	
2	390	3770	4290	
3	520	4745	4745	
4	715	4940	4680	
5	1820	65	1365	
6	2210	4875	5070	
7	2990	130	1365	
8	455	3510	4355	
9	1950	3575	4095	
10	2405	4875	5005	
11	650	3705	4615	
12		3315	4030	
13	2405	2925	4290	
14	1365	5330	5005	
15	6630	4290	5200	
16	2015	4225	4745	
17	1560	3770	4875	
18	2990	5005	5005	

5.2 模型二 季度最优招聘模型

若公司在每个季度招聘员工,则为去除 0-1 变量的模型一,其整数规划模型为:

$$\min \sum_{i=1}^{18} 3s_i (y_{i1} + y_{i2} + y_{i3} + y_{i4})$$
 (15)

$$s.t. \quad y_{i1} = x_{i1} + x_{i0} \tag{16}$$

$$y_{i2} = x_{i2} + (1 - r_i)y_{i1}(\hat{p} + \hat{p} + \hat{p})$$
(17)

$$y_{i3} = x_{i3} + (1 - r_i)y_{i2}(\hat{\mathbf{p}} \hat{\mathbf{r}} \hat{\mathbf{p}} \hat{\mathbf{x}})$$
(18)

$$y_{i4} = x_{i4} + (1 - r_i)y_{i3}(\hat{\mathbf{p}} \hat{\mathbf{r}} \hat{\mathbf{p}} \hat{\mathbf{x}})$$
(19)

$$y_{i1} \ge \frac{n_{i1}}{65} \tag{20}$$

$$y_{i2} \ge \frac{n_{i2}}{65} \tag{21}$$

$$y_{i3} \ge \frac{n_{i3}}{65}$$

$$y_{i4} \ge \frac{n_{i4}}{65}$$
(22)

$$y_{i4} \ge \frac{n_{i4}}{65} \tag{23}$$

$$y_{i1}, y_{i2}, y_{i3}, y_{i4}, x_{i1}, x_{i2}, x_{i3}, x_{i4}$$
取整数 (24)

$$i = 1, 2, ..., 18$$
 (25)

(26)

Lingo 求解结果为:

表 4: 季度最优招聘计划

第 i 种员工	春季前	夏季前	秋季前	冬季前
1		20		58
2		33		46
3		27		53
4		24		58
5				53
6		3		57
7				41
8		32		44
9		2		44
10		1		56
11		18		47
12		38		41
13		12		37
14		13		63
15	12	26		52
16		8		50
17		6		50
18		6		55

上表数据即为季度招聘人数,可以看出,秋季初公司不需要招聘员工。

5.3 模型三 含解雇最优招聘模型

若每个季度结束时,甲公司可以选择解雇一定比例的员工,而 18 种员工被解雇的比例均为 0.02。如果运用年度最优招聘计划模型,由于冬季需求量最大,公司提前解雇员工会导致招聘更多的员工满足冬季需求,因此如果一年招聘一次,所得的招聘计划并不是最优情况。

于是选择季度招聘,可以建立 0-1 规划模型,解雇为 1,不解雇为 0,通过建立模型判断每个季度结束后是否应该解雇员工,则每个季度公司的员工数为:

春季有 $y_{i1} = x_{i1} + x_{i0}$ 人;

夏季有 $y_{i2} = x_{i2} + (1 - r_i - 0.02z_{i1})y_{i1}$ (向下取整)人;

秋季有 $y_{i3} = x_{i3} + (1 - r_i - 0.02z_{i2})y_{i2}$ (向下取整) 人;

冬季有 $y_{i4} = x_{i4} + (1 - r_i - 0.02z_{i3})y_{i3}$ (向下取整) 人。

得到的模型为:

min
$$\sum_{i=1}^{18} 3s_i(y_{i1} + y_{i2} + y_{i3} + y_{i4})$$
 (27)
s.t.
$$y_{i1} = x_{i1} + x_{i0}$$
 (28)
$$y_{i2} = x_{i2} + (1 - r_i - 0.02z_{i1})y_{i1}(向下取整)$$
 (29)
$$y_{i2} = x_{i3} + (1 - r_i - 0.02z_{i2})y_{i2}(向下取整)$$
 (30)
$$y_{i2} = x_{i4} + (1 - r_i - 0.02z_{i3})y_{i3}(向下取整)$$
 (31)
$$y_{i1} \ge \frac{n_{i1}}{65}$$
 (32)

$$y_{i2} \ge \frac{n_{i2}}{65}$$

$$y_{i3} \ge \frac{n_{i3}}{65}$$
(33)

$$y_{i3} \ge \frac{n_{i3}}{65}$$

$$y_{i4} \ge \frac{n_{i4}}{65}$$
(34)

$$y_{i1}, y_{i2}, y_{i3}, y_{i4}, x_{i1}, x_{i2}, x_{i3}, x_{i4}$$
 取整数 (36)

$$z_{i1}, z_{i2}, z_{i3} = 0 \, \text{\sharp} 1 \tag{37}$$

$$i = 1, 2, ..., 18$$
 (38)

(39)

用 Lingo 求解结果:

表 5: 含解雇最优招聘计划

第i种员工	春季前	是否解雇	夏季前	是否解雇	秋季前	是否解雇	冬季前
1			20	解雇			60
2			33	解雇			48
3			27	解雇			55
4			24	解雇			60
5		解雇	2	解雇			56
6			3	解雇			59
7		解雇	1	解雇			44
8			32	解雇			46
9			2	解雇			47
10			1	解雇			59
11			18	解雇			49
12			38	解雇			43
13			12	解雇			40
14			13	解雇			64
15	12		36	解雇			56
16			8	解雇			53
17			6	解雇			52
18			6	解雇			58

上表数据即为季度招聘人数和季度结束后的解雇情况,可以看出,有的工种先解雇再招聘,公司的工资支出会减少。

六 模型评价

当员工数刚好满足市场需求时公司的工资支出最少,获利最大。本文把所解决的问题归结为数学规划问题,建立的数学模型清晰合理。本模型是根据市场需求制定的招聘计划的简单模型,在数据准确、预测合理的情况下,该模型具有一定的参考价值。本题中的模型利用 Lingo 软件进行优化求解,结果可靠,符合题目要求。但是实际生活中的情况多变,本模型距离现实生活中的应用还有一些差距。

附录

以下代码均用 Lingo 编写。

6.1 **模型**一 Q1.lg4

```
sets:
staff /1..18/: spr, sum, aut, win, start, spring, summer, autumn, winter, rate, price, a, b, c, d, w, x, y
   ,z;
endsets
data:
start =@ole("D:\桌面\数学建模\招聘计划问题\甲公司第一年春季开始时拥有的员工数.xlsx
   ","start");
spring=@ole("D:\桌面\数学建模\招聘计划问题\某城市各个季度的员工需求量.xlsx","spring
   ");
summer=@ole("D:\桌面\数学建模\招聘计划问题\某城市各个季度的员工需求量.xlsx","
   summer");
autumn=@ole("D:\桌面\数学建模\招聘计划问题\某城市各个季度的员工需求量:xlsx","
   autumn");
winter=@ole("D:\桌面\数学建模\招聘计划问题\某城市各个季度的员工需求量.xlsx","winter
rate =@ole("D:\桌面\数学建模\招聘计划问题\甲公司员工的自动离职率.xlsx","rate");
price=@ole("D:\桌面\数学建模\招聘计划问题\甲公司的员工薪资表.xlsx","price");
enddata
min=@sum(staff(i):3*price(i)*(a(i)+b(i)+c(i)+d(i)));
@for(staff(i):a(i)>=spring(i)/65);
@for(staff(i):b(i)>=summer(i)/65);
@for(staff(i):c(i)>=autumn(i)/65);
@for(staff(i):d(i)>=winter(i)/65);
@for( staff ( i ): w(i)+x(i)+y(i)+z(i)=1);
@for(staff(i):w(i)*spr(i)+start(i)=a(i));
@for(staff(i):x(i)*sum(i)+(1-rate(i))*a(i)=b(i));
@for(staff(i):y(i)*aut(i)+(1-rate(i))*b(i)=c(i));
@for(staff(i):z(i)*win(i)+(1-rate(i))*c(i)=d(i));
@for( staff ( i ) : @bin(w(i)));
@for(staff(i):@bin(x(i)));
@for(staff(i):@bin(y(i)));
@for(staff(i):@bin(z(i)));
@for(staff(i):@gin(spr(i)));
@for(staff(i):@gin(sum(i)));
@for(staff(i):@gin(aut(i)));
@for(staff(i):@gin(win(i)));
```

```
@ole("D:\桌面\数学建模\招聘计划问题\Q1.xlsx","spr")=spr;
@ole("D:\桌面\数学建模\招聘计划问题\Q1.xlsx","sum")=sum;
@ole("D:\桌面\数学建模\招聘计划问题\Q1.xlsx","aut")=aut;
@ole("D:\桌面\数学建模\招聘计划问题\Q1.xlsx","win")=win;
@ole("D:\桌面\数学建模\招聘计划问题\Q1.xlsx","w")=w;
@ole("D:\桌面\数学建模\招聘计划问题\Q1.xlsx","x")=x;
@ole("D:\桌面\数学建模\招聘计划问题\Q1.xlsx","y")=y;
@ole("D:\桌面\数学建模\招聘计划问题\Q1.xlsx","z")=z;
enddata
     模型二 Q2.lg4
6.2
sets:
staff /1..18/: x,y,z,spr,sum,aut,win, start, spring,summer,autumn,winter,rate, price,a,b,c,d
endsets
data:
start =@ole("D:\桌面\数学建模\招聘计划问题\甲公司第一年春季开始时拥有的员工数.xlsx
   ","start");
spring=@ole("D:\桌面\数学建模\招聘计划问题\某城市各个季度的员工需求量:xlsx","spring
summer=@ole("D:\桌面\数学建模\招聘计划问题\某城市各个季度的员工需求量.xlsx","
   summer");
autumn=@ole("D:\桌面\数学建模\招聘计划问题\某城市各个季度的员工需求量.xlsx","
   autumn");
winter=@ole("D:\桌面\数学建模\招聘计划问题\某城市各个季度的员工需求量.xlsx","winter
   ");
rate=@ole("D:\桌面\数学建模\招聘计划问题\甲公司员工的自动离职率.xlsx","rate");
price=@ole("D:\桌面\数学建模\招聘计划问题\甲公司的员工薪资表.xlsx","price");
enddata
min=@sum(staff(i):3*price(i)*(a(i)+b(i)+c(i)+d(i)));
@for(staff(i):a(i)>=spring(i)/65);
(a) for (staff(i):b(i))=summer(i)/65);
@for(staff(i):c(i)>=autumn(i)/65);
(a) for (staff(i):d(i))=winter(i)/65);
@for(staff(i):spr(i)+start(i)=a(i));
@for(staff(i):sum(i)+(1-rate(i)-0.02*x(i))*a(i)>=b(i));
@for(staff(i):aut(i)+(1-rate(i)-0.02*y(i))*b(i)>=c(i));
@for(staff(i):win(i)+(1-rate(i)-0.02*z(i))*c(i)>=d(i));
@for(staff(i):@bin(x(i)));
```

data:

```
@for( staff (i):@bin(y(i)));
@for( staff (i):@bin(z(i)));
@for( staff (i):@gin(a(i)));
@for( staff (i):@gin(b(i)));
@for( staff (i):@gin(c(i)));
@for( staff (i):@gin(d(i)));
@for( staff (i):@gin(spr(i)));
@for( staff (i):@gin(sum(i)));
@for( staff (i):@gin(aut(i)));
@for( staff (i):@gin(aut(i)));
```

data:

- @ole("D:\桌面\数学建模\招聘计划问题\Q3.xlsx","spr")=spr; @ole("D:\桌面\数学建模\招聘计划问题\Q3.xlsx","sum")=sum;
- @ole("D:\桌面\数学建模\招聘计划问题\Q3.xlsx","aut")=aut;
- @ole("D:\桌面\数学建模\招聘计划问题\Q3.xlsx","win")=win;
- @ole("D:\桌面\数学建模\招聘计划问题\Q3.xlsx","x")=x;
- @ole("D:\桌面\数学建模\招聘计划问题\Q3.xlsx","y")=y;
- @ole("D:\桌面\数学建模\招聘计划问题\Q3.xlsx","z")=z; enddata