Multi-Agent Path Finding

Luigi Palopoli, Enrico Saccon

What?

• The standard Multi-Agent Path Finding (MAPF) problem [1] consists in:

given a map and N agents, finding the best feasible joint plan Π such that each agent moves from its initial position to its final position minimizing an objective function

- It's a combinatorial problem
- In the standard definition, the map is usually a grid
- Solution minimizes objective function --> time, space, resource, etc.
- Centralized approach

Why?

- Robotics is a main topic in the Industrial Revolution 4.0 and 5.0
- Used in an increasing number of scenarios
- Challanging problem [2]
- Algorithms can be applied to other scenarios

Map Decomposition

- How do I deal with obstacles and map borders?
- Many algorithms to partition the map in cells:
 - Exact cell decomposition
 - Approximate cell decomposition
 - Maximum clearence
 - Morse decomposition
 - Brushfire decomposition
- Each cell is a node --> connectivity graph

Map Decomposition

- How do I deal with obstacles and map borders?
- Many algorithms to partition the map in cells:
 - Exact cell decomposition
 - Approximate cell decomposition
 - Maximum clearence
 - Morse decomposition
 - Brushfire decomposition
- Each cell is a node --> connectivity graph

Single-Agent Path Finding (SAPF)

- Given a graph G = (V, E), find the *best feasible* plan π_i to go from an initial position to a final position
- The problem usually consists in computing the shortest path between two nodes on a graph
- Deterministic algorithms, e.g., Dijkstra's
- Heuristic algorithms, e.g., A*

Single-Agent Path Finding (SAPF)

Dijkstra's

- Complete
- Optimal
- Evolution of BFS
- Cost function:

$$f(x) = g(x)$$

<u>A</u>*

- Complete?
- Optimal?
- Admissible heuristic h(x):

$$f(x) = g(x) + h(x)$$

$$h(x) \le d(x, y) + h(y)$$

- Given a graph G = (V, E) and k agents, find the best feasible joint plan Π such that each agent moves from its initial position to its final position minimizing an objective function
- A joint plan is a set of single plans: $\Pi = \{\pi_1, ..., \pi_k\}$
- A path if feasible if no conflict arises [1]:
 - Vertex conflicts
 - Edge conflicts
 - Swap conflicts
- Objective functions:
 - Makespan (MKS)
 - Sum of individual costs (SIC)

Multi-Agent Path Finding Cost Functions

Π_i	$\mathtt{SIC}(\Pi_i)$	$\texttt{MKS}(\Pi_i)$
$\Pi_1 = \begin{cases} \pi_1 = \{3, 10, 11, 12, 13, 7\} \\ \pi_2 = \{2, 4, 8, 9\} \\ \pi_3 = \{1, 2, 4, 8\} \end{cases}$	14	6
$\Pi_2 = \begin{cases} \pi_1 = \{3, 4, 5, 6, 7\} \\ \pi_2 = \{2, 2, 4, 8, 9\} \\ \pi_3 = \{1, 1, 2, 4, 8\} \end{cases}$	15	5

- Given a graph G = (V, E) and k agents, find the best feasible joint plan Π such that each agent moves from its initial position to its final position minimizing an objective function
- Time is discretized
- Each agent can either
 - move to an adjacent cell; or
 - stay on the same cell --> variation

- Given a graph G = (V, E) and k agents, find the best feasible joint plan Π such that each agent moves from its initial position to its final position minimizing an objective function
- Time is discretized
- Each agent can either
 - move to an adjacent cell; or
 - stay on the same cell --> variation
- Edges have unitary costs

- Given a graph G = (V, E) and k agents, find the best feasible joint plan Π such that each agent moves from its initial position to its final position minimizing an objective function
- Time is discretized
- Each agent can either
 - move to an adjacent cell; or
 - stay on the same cell --> variation
- Edges have unitary costs

- Given a graph G = (V, E) and k agents, find the best feasible joint plan Π such that each agent moves from its initial position to its final position minimizing an objective function
- Time is discretized
- Each agent can either
 - move to an adjacent cell; or
 - stay on the same cell --> variation
- Edges have unitary costs

- Given a graph G = (V, E) and k agents, find the best feasible joint plan Π such that each agent moves from its initial position to its final position minimizing an objective function
- Time is discretized
- Each agent can either
 - move to an adjacent cell; or
 - stay on the same cell --> variation
- Edges have unitary costs

- Given a graph G = (V, E) and k agents, find the best feasible joint plan Π such that each agent moves from its initial position to its final position minimizing an objective function
- Time is discretized
- Each agent can either
 - move to an adjacent cell; or
 - stay on the same cell --> variation
- Edges have unitary costs

- Given a graph G = (V, E) and k agents, find the best feasible joint plan Π such that each agent moves from its initial position to its final position minimizing an objective function
- Time is discretized
- Each agent can either
 - move to an adjacent cell; or
 - stay on the same cell --> variation
- Edges have unitary costs

- Given a graph G = (V, E) and k agents, find the best feasible joint plan Π such that each agent moves from its initial position to its final position minimizing an objective function
- Time is discretized
- Each agent can either
 - move to an adjacent cell; or
 - stay on the same cell --> variation
- Edges have unitary costs

Enhanced Versions of A* [3]

- Instead of considering one position, considers a tuple
- At each timestep:
 - the current state space contains the position of all N agents
 - the next state space has to consider all possible movements of the agents
- This gets bad pretty fast
- Operator decomposition (OD)
- Simple independence detection (SID)

Enhanced Versions of A* – OD

- Do not consider N agents per each time step
- Considers 1 agent at a time and it requires N operations to advance 1 timestep
- The order in which the agents are chosen is fixed
- It's not complete or optimal without the correct heuristic

Enhanced Versions of A* – SID

- Also in OD, the search space is still exponential in the number of agents
- Agents whose path does not collide, are in independent group and should be considered separetely
- The algorithm follow these steps:
 - Start with the optimal paths as if the agents were alone
 - If there are conflicts, divide the agents in conflict groups
 - Solve the conflicts in the group
 - Repeat

Priority Planning (PP) [4]

- Each agent has a fixed priority
- The higher the priority, the first the agent's path is computed
- Pros:
 - This allows for keeping the complexity small
- Cons:
 - Not complete [5]
 - Not optimal
- Many works, focus on using ML or DL approaches to learning the priorities

Priority Planning (PP)

 There are some instances in which priority planning cannot solve the problem [5]

Priority Planning (PP)

 There are some instances in which priority planning cannot solve the problem [5]

- A MAPF instance must be well-formed to be solvable
 - Agents can wait for any amount of time on the initial or final node without blocking other agents

Conflict Based Search (CBS)

 Proposed in 2015 by G. Sharon, R.Stern, A. Felner - Joint plan Sturtevant [6] constraint tree List of constraints - CT node cost Optimalagevithimtdividedinitwoeghases: 1. Htg/lo-kelvied seearch → manages conflicts - Joint plan - Joint plan - List of constraints

- List of constraints

- CT node cost

CT node cost

- 2. Low Agent gearppt be appropriation tAgent a_i cannot be on node n at time t

 - The search continues until a joint plan without conflicts is found
 - Nodes to be explored are chosen based on their joint cost
- 2. Low-level search → SAPF problem
 - The algorithm should be adapted to the problem

CBS Implementation – High-Level

- Start from a root node with:
 - No constraints
 - Joint plan computed as SAPF
- Iterate until a feasible solution is found
 - If one or more vertex conflicts were found, then create two new nodes:
 - Child 1: agent a_i cannot be on node n at time t
 - Child 2: agent a_i cannot be on node n at time t
 - If one or more swap conflicts were found, then create two new nodes:
 - Child 1: agent a_i cannot move from node n_1 to node n_2 at time t
 - Child 2: agent a_i cannot move from node n_2 to node n_1 at time t
- Conflicts are checked by comparing the positions of the solutions
- A joint plan is updated only for the new constraint's agent

CBS Implementation – Low-Level Spanning Tree

- Observation: difficult to find alternative paths when faced with contraints
- The algorithm computes all the possible paths between two points on a graph
- Then it starts from the shortest path and check if any conflicts arises with the constraints
- If it does, then it inserts waiting actions
- Finally, the shortest path is returned

CBS Implementation – Low-Level TDSP

- This algorithm strongly takes from Dijkstra's
- The connectivity matrix is changed with Connection types
- Connection stores:
 - A vector of time steps
 - Type of connections: ONE, ZERO, LIMIT_ONCE, LIMIT_ALWAYS
- Adds placeholders to avoid vertex and swap conflicts by miming the wait action.
- Usually A* is used

Increasing Cost Tree Search (ICTS)

- It was proposed in 2013 by G. Sharon, R. Stern, M. Goldenberg and A. Felner and it is optimal [7]
- Similarly to CBS, ICTS is divided in two searches: high-level and low-level
- It uses an Increasing Cost Tree
- For each new level, k new nodes are created
- The search continues until a feasible solution is found

ICTS – Low-Level Search

 The low-level search is implemented using Multi-value Decision Diagrams (MDDs) [8]

 An MDD contains all the paths for an agent going from its initial position to their goal with a certain cost

ICTS – Low-Level Search

- We can merge the MDDs of different agents to check for possible solutions
- The branches that have conflicts are removed

Constraint Programming (CP) [9]

- MAPF has been proven to be NP-Hard [10] → it can be reduced to SAT and MILP
- Constraint programming is a mathematical modeling paradigm in which some constraints are placed over some variables.
- Some constraints are:
 - Agents must be only on one vertex at each time step;
 - A node can be occupied by at most one agent at a time;
 - Agents start from their initial position and must be on their arrival position at the end;
 - Agents must move along edges.

Constraint Programming – Implementation

- Started from the work of Bartak et al using Picat
- Moved to IBM's CPLEX for performance
- Decision variables:

```
X[n_steps][n_nodes][n_agents] movement[n_agents][n_steps] goal_points[n_steps][n_nodes][n_agents] edges[n_agents][n_steps]
```

• An agent a can be only on one node n at a time s:

```
\forall s \in S, \forall a \in A, \sum_{n \in N} X[s][n][a] = 1
\bullet \text{ C++:}
\text{for s in steps:}
\text{for a in agents:}
\text{m.add\_constraint}((\text{m.sum}(x[(s, n, a)] \text{ for n in nodes}) == 1))
```

```
FOREACH(s, steps) {
  FOREACH(a, agents) {
    IloExpr expr(env);
  FOREACH(n, nodes) {
      expr += x[s][n][a];
    }
    model.add( x: expr <= 1);
}</pre>
```

Constraint Programming – Constraints

- Examples of constraints are:
 - Agents cannot be on more than node each time step
 - A node cannot be occupied by more than one agent at time
 - An agent must occupy a neighbor of the node it is on at time t+1 or stay on the same node
 - Agents start on their initial positions and end on their final positions
 - At a certain time, an edge cannot be used in more than one direction
 - The movement cost of an agent at a given time is the cost of the edge it is traversing
 - The agent must go through all the goals and only once before reaching the final position

Extended ICTS [11]

- Standard MAPF considers edges with unit costs
- Assumptions on agents' movements:
 - Wait on the center of the node
 - Moves in a straight line
 - Collision is the overlapping in an instant of time
- Two problem:
 - Partial time overlap conflict detection
 - Detect conflicts
 - Partial time overlap successor generation
 - Generate successive states

Extended ICTS

Extended ICTS – Optimal

- In ICTS, the MDD had one root and one sink
- The next child is not obtained with an increment of 1, but we need to set an increment value δ
 - If δ is small --> the depth of the ICT may become too big
 - If δ is large --> search is reduced, but the solution may not be optimal
- The ICT nodes now contain intervals:
 - Lower bound is the solution minimum
 - Higher bound is the solution maximum
- The low-level is changed from a satisfactory problem to an optimal one: find the solution with the minimum cost in the interval

Extended ICTS – Heuristics

- ϵ -ICTS: considers the low-level a satisfactory problem
 - This allows the algorithm to find a solution that is bounded sub-optimal
- w-ICTS: we can bound the sub-optimality for the generation of the next step to values of δ by adding a weight value w

CBS Heuristics

- CBS has been the start of the show with many improvements:
 - Bypassing conflicts [12]
 - Prioritizing conflicts [13]
 - Symmetry reasoning [14]
- And also a number of different heuristics:
 - ECBS [15]
 - EECBS [16]
 - EEEEECBS (Saccon et al., 2025)
 - EEEEEEEEEEEEECBS (Saccon et al., 2030).

CBS Heuristics

- CBS has been the start of the show with many improvements:
 - Bypassing conflicts [12]
 - Prioritizing conflicts [13]
 - Symmetry reasoning [14]
- And also a number of different heuristics:
 - ECBS [15]
 - EECBS [16]

CBS Heuristics

- Bypassing conflicts:
 - Do not split the node every time a conflict is found
 - When analyzing a conflict, modify the agents' path
 - If the cost if the new solution is the same as before and the number of conflicts is reduced --> do not split, but substitute
- Prioritizing conflicts:
 - A conflict is cardinal iff by solving the cost of both child CT nodes increases
 - A conflict is semi-cardinal iff the cost of only one child increases
 - A conflict is non-cardinal iff neither children's cost increased
- Symmetry reasoning

Enhanced CBS (ECBS)

- Instead of using A* uses Focal search [17]
 - Bounded suboptimal algorithm
 - Uses OPEN and FOCAL sets
 - FOCAL contains all those nodes that are have a weights suboptimal cost
 - The values in FOCAL are sorted using a function to estimate the cost-to-go
- ECBS implements focal search both for the low-level search and the high-level search:
 - The low-level is not sped up --> given an agent and a CT node, it returns
 - the path that minimizes the number of conflicts with other agents
 - the cost of the shortest path
 - The high-level search gets the costs of the shortest paths and can use focal search to speed up the analyses of the tree

Explicit Estimation Search

- Two main problems with ECBS high-level search:
 - It considers only the cost-to-go --> solution cost may be greater than the suboptimality bound
 - At each time, the number of CT nodes with a similar cost is large --> FOCAL is rarely emptied
- The world is full of heuristic searches!
- Explicit Estimation Search (EES) [18] is a bounded-suboptimal search algorithm --> uses one more heuristic to overcome said focal behavior

Explicit Estimation Search (EES)

- EES is a bounded-suboptimal search algorithm --> uses one more heuristic to overcome said focal behavior
- It uses \hat{h} and \hat{d} to estimate the cost-to-go and the distance-to-go
- It keeps track of:
 - $best_f$, the node minimizing f(n) = g(n) + h(n) from the FOCAL list
 - $best_{\hat{f}}$, the lowest predicted solution cost
 - $best_{\hat{d}}$, the node between the w admissible ones that appears closer to the target
- The node to explore is chosen based on
 - 1. $\hat{f}(best_{\hat{d}}) \leq w \cdot f(best_f) \rightarrow best_{\hat{d}} -->$ chose the node nearest to the goal
 - 2. $\hat{f}(best_{\hat{f}}) \leq w \cdot f(best_{\hat{f}}) \rightarrow best_{\hat{f}} \longrightarrow chose$ the node with the best path
 - 3. $best_f \longrightarrow trust A^*$

Explicit Estimation CBS (EECBS)

- EECBS improves on ECBS by using EES on the high-level search
- It maintains 3 lists of CT nodes:
 - CLEANUP: regular list of A* sorted by the lower bound
 - OPEN: regular list of A* sorted by a potentially inadmissible function
 - FOCAL: nodes with cost bounded by w sorted by the distance-to-go
- The choice of the node to expand is similar to EES:
 - $cost(best_{h_c}) \le w \cdot lb(best_{lb}) \rightarrow best_{h_c}$
 - $cost(best_{\hat{f}}) \le w \cdot lb(best_{lb}) \rightarrow best_{\hat{f}}$
 - best_{lb}

Anytime Solvers

- We have seen that:
 - optimal algorithms do not scale well for the problem, but
 - sub-optimal algorithms may return a solution that is too inadequate
- Here come anytime solvers!
- The idea is:
 - return a sub-optimal solution in the shortest amount of time possible;
 - refine said solution in the remaining time available
- Many algorithms focus on intersections --> nodes with two or more neighbors
- We will see:
 - MAPF-LNS [19]
 - X* [21]

MAPF-LNS

- The algorithm uses Large-Neighborhood Search (LNS) [20]
 - The idea is to take a solution, remove an area, consider what remains as good and replan only on the sub-area which is a sub-problem of the initial
- It starts by finding an initial sub-optimal solution with either
 - EECBS, PP, or heuristics on PP
- The important aspect is how to extract a neighborhood
 - Agent-based
 - Map-based
 - Random-based

MAPF-LNS

- Agent-based neighborhood:
 - 1. Extract those agents that are not following the shortest path they could
 - 2. For each, compute a shorter random path
 - 3. Find agents that are colliding
 - 4. Replan groups of agents
- Map-based neighborhood:
 - 1. Identify the intersections --> higher probability of collision
 - 2. Identify agents moving through intersection, or in the area
 - 3. Change order in which agents pass through intersection
- Random neighborhood:
 - 1. Randomly choose N agents to replan for
 - 2. Replan

X*

- They introduce a concept called *window*
 - · Identify agents and states around a conflict and repair the conflict
 - Each window has a successor, which basically is a larger window --> windows can grow
 - Two windows can also be merged together
- How does it work?
 - 1. Plan each agent individually
 - 2. Then starting by time t_0 it looks for conflicts
 - 3. For each conflict it creates a window and tries to solve it locally to the window
 - 4. The fixes are optimal within the window
- By enlarging windows and merging them, it can produce an optimal solution
- By preventing changes to following windows, it can produce a suboptimal solution

X* – Example

are used to form a global path. An agent-agent collision ning inside w^{ab} . The global path is now guaranteed to occurs in the path between a and b at t = 3.

(a) Individually planned paths for each agent from $\mathfrak s$ to $\mathfrak g$ (b) Collision between $\mathfrak a$ and $\mathfrak b$ is repaired by jointly planbe valid, but not guaranteed to be optimal.

anteed to be optimal.

(c) w^{ab} is grown and a new repair is generated for a and (d) w^{ab} is grown and a new repair is generated. The reb. The window does not yet encapsulate the search from pair search is from \mathfrak{s}^{ab} to \mathfrak{g}^{ab} and unimpeded by w^{ab} , \mathfrak{s}^{ab} and \mathfrak{g}^{ab} , so the repaired global path is not yet guarthus allowing w^{ab} to be removed and the global path returned as optimal.

X*- Merging

(a) Individually planned paths for each agent from $\mathfrak s$ to $\mathfrak g$ are used to form a global path. An agent-agent collision occurs between $\mathfrak g$ and $\mathfrak b$ at t=1.

(d) All windows are grown in order to improve repair quality.

(b) Collision between a and b is repaired by jointly planning inside w^{ab} . The repair creates a collision between a and c at t=7.

(e) As they overlap in agent set and states, w^{ab} and w^{ac} are merged to form w^{abc} , and a new repair is generated and inserted into the global path.

(c) Collision between a and c and is repaired by jointly planning inside w^{ac} . No collisions exist, thus producing a valid global path.

(f) w^{abc} is repeatedly grown and searched until the search of w^{abc} takes place from \mathfrak{s}^{abc} to \mathfrak{g}^{abc} unimpeded, thus allowing w^{abc} to be removed and the global path returned as optimal.

X* – Example

are used to form a global path. An agent-agent collision ning inside wab, b now side steps into the slot to allow a occurs in the path between a and b between t=3 and to pass, but this repair causes a collision with c at t=9. t = 4. Walls are depicted by thick black lines.

(a) Individually planned paths for each agent from \mathfrak{s} to \mathfrak{g} (b) Collision between \mathfrak{a} and \mathfrak{b} is repaired by jointly plan-The region of the paths repaired by w^{ab} is surrounded by dashed lines.

MAPF – Variants

- Different types of conflicts
- Different behaviors of agents when reaching goal
- MAPF with agents of different sizes
- Lifelong MAPF
- MAPF with non discrete time
- Multi-Objective MAPF
- MAPF in combination with task planning

Recap

- Optimal:
 - Enhanced A* [2] (complete with correct heuristic)
- Complete and optimal:
 - CBS [6]
 - ICTS [7]
 - Constraint/logic programming [9]
- Fast:
 - PP [4]
- Suboptimal:
 - ϵ -ICTS and w-ICTS
 - CBS with improvements
 - ECBS
 - EECBS
- Anytime solvers:
 - MAPF-LNS
 - X*

Recap

- Optimal:
 - Enhanced A* [2] (complete with correct heuristic)

MAPF Bible

- Complete and optimal:
 - CBS [6]
 - ICTS [7]
 - Constraint/logic programming [9]
- Fast:
 - PP [4]
- Suboptimal:
 - ϵ -ICTS and w-ICTS
 - CBS with improvements
 - ECBS
 - EECBS
- Anytime solvers:
 - MAPF-LNS
 - X*

References

- [1] Stern, Roni, et al. "Multi-agent pathfinding: Definitions, variants, and benchmarks." *Proceedings of the International Symposium on Combinatorial Search*. Vol. 10. No. 1. 2019.
- [2] https://www.leagueofrobotrunners.org/
- [3] Standley, T. (2010). Finding Optimal Solutions to Cooperative Pathfinding Problems. *Proceedings of the AAAI Conference on Artificial Intelligence*, 24(1), 173-178. https://doi.org/10.1609/aaai.v24i1.7564
- [4] Silver, D. (2021). Cooperative Pathfinding. *Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment*, 1(1), 117-122. https://doi.org/10.1609/aiide.v1i1.18726
- [5] Ma, H., Harabor, D., Stuckey, P. J., Li, J., & Koenig, S. (2019). Searching with Consistent Prioritization for Multi-Agent Path Finding. *Proceedings of the AAAI Conference on Artificial Intelligence*, *33*(01), 7643-7650. https://doi.org/10.1609/aaai.v33i01.33017643
- [6] Sharon, Guni, et al. "Conflict-based search for optimal multi-agent pathfinding." Artificial Intelligence 219 (2015): 40-66.
- [7] Sharon, Guni, et al. "The increasing cost tree search for optimal multi-agent pathfinding." *Artificial intelligence* 195 (2013): 470-495.
- [8] A. Srinivasan, T. Ham, S. Malik and R. K. Brayton, "Algorithms for discrete function manipulation," 1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers, Santa Clara, CA, USA, 1990, pp. 92-95, doi: 10.1109/ICCAD.1990.129849.
- [9] R. Barták, N. -F. Zhou, R. Stern, E. Boyarski and P. Surynek, "Modeling and Solving the Multi-agent Pathfinding Problem in Picat," 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), Boston, MA, USA, 2017, pp. 959-966, doi: 10.1109/ICTAI.2017.00147.
- [10] Yu, J., & LaValle, S. (2013). Structure and Intractability of Optimal Multi-Robot Path Planning on Graphs. *Proceedings of the AAAI Conference on Artificial Intelligence*, 27(1), 1443-1449. https://doi.org/10.1609/aaai.v27i1.8541
- [11] Walker, Thayne T., Nathan R. Sturtevant, and Ariel Felner. "Extended Increasing Cost Tree Search for Non-Unit Cost Domains." *IJCAI*. 2018.

References

- [12] Boyrasky, Eli, et al. "Don't split, try to work it out: Bypassing conflicts in multi-agent pathfinding." *Proceedings of the International Conference on Automated Planning and Scheduling*. Vol. 25. 2015.
- [13] Boyarski, Eli, et al. "Icbs: The improved conflict-based search algorithm for multi-agent pathfinding." *Proceedings of the International Symposium on Combinatorial Search*. Vol. 6. No. 1. 2015.
- [14] Li, Jiaoyang, et al. "New techniques for pairwise symmetry breaking in multi-agent path finding." *Proceedings of the International Conference on Automated Planning and Scheduling*. Vol. 30. 2020.
- [15] Barer, Max, et al. "Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem." *Proceedings of the International Symposium on Combinatorial Search*. Vol. 5. No. 1. 2014.
- [16] Li, J., Ruml, W., & Koenig, S. (2021). EECBS: A Bounded-Suboptimal Search for Multi-Agent Path Finding. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(14), 12353-12362. https://doi.org/10.1609/aaai.v35i14.17466
- [17] Pearl, Judea, and Jin H. Kim. "Studies in semi-admissible heuristics." *IEEE transactions on pattern analysis and machine intelligence* 4 (1982): 392-399.
- [18] Thayer, Jordan Tyler, and Wheeler Ruml. "Bounded suboptimal search: A direct approach using inadmissible estimates." *IJCAI*. Vol. 2011. 2011.
- [19] Li, Jiaoyang, et al. "Anytime multi-agent path finding via large neighborhood search." *International Joint Conference on Artificial Intelligence 2021*. Association for the Advancement of Artificial Intelligence (AAAI), 2021.
- [20] Shaw, Paul. "Using constraint programming and local search methods to solve vehicle routing problems." *International conference on principles and practice of constraint programming*. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998
- [21] Vedder, Kyle, and Joydeep Biswas. "X*: Anytime multi-agent path finding for sparse domains using window-based iterative repairs." *Artificial Intelligence* 291 (2021): 103417.