df

∑	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capit
0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family	White	Male	2174	
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	
32556	27	Private	257302	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	White	Female	0	
32557	40	Private	154374	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	White	Male	0	
32558	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Female	0	
32559	22	Private	201490	HS-grad	9	Never-married	Adm- clerical	Own-child	White	Male	0	
32560	52	Self-emp- inc	287927	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife	White	Female	15024	
32561	rows ×	15 columns										

Next steps: Generate code with df) (View recommended plots) (New interactive sheet

```
# 2. Generalization of Quasi-Identifiers
# -----
# Generalize Age into bins
def generalize_age(value):
    if value < 25:
       return "<25"
    elif value < 40:
       return "25-39"
    elif value < 60:
       return "40-59"
    else:
        return "60+"
df["age_generalized"] = df["age"].apply(generalize_age)
# Generalize Education
df["education_generalized"] = df["education"].replace({
    "Bachelors": "HigherEd",
    "Masters": "HigherEd",
    "HS-grad": "Secondary",
    "Some-college": "Secondary"
})
# Generalize Occupation
df["occupation_generalized"] = df["occupation"].replace({
    "Exec-managerial": "White-collar",
    "T--k -............". "!!!k:±- --11-..."
```

```
recn-support : wnite-coiiar ,
    "Craft-repair": "Blue-collar",
    "Other-service": "Service"
})
# Generalize Workclass
df["workclass_generalized"] = df["workclass"].replace({
    "Private": "Private",
"Self-emp-not-inc": "Self-Employed",
    "Self-emp-inc": "Self-Employed",
    "State-gov": "Government",
    "Federal-gov": "Government"
})
# Generalize Marital Status
df["marital_generalized"] = df["marital_status"].replace({
    "Never-married": "Single",
    "Married-civ-spouse": "Married",
    "Divorced": "Separated"
})
# Generalize Native Country: Map "United-States" to "USA", others to "Other"
df["native_generalized"] = df["native_country"].apply(lambda x: "USA" if x == "United-States" else "Other")
# 3. Set Privacy Parameters
K = 3
                        # Minimum group size for K-Anonymity
I = 2
                         # Minimum unique sensitive attribute values for L-Diversity
C_threshold = 50 / 100  # Maximum allowed difference (50%) in sensitive attribute distribution (C-Closeness)
sensitive_attribute = "income" # Sensitive attribute (e.g., ">50K" or "<=50K")</pre>
# 4. Compute Overall Sensitive Distribution
overall_distribution = df[sensitive_attribute].value_counts(normalize=True)
# -----
# 5. Apply LKC-Privacy Constraints
# -----
# Define the list of generalized quasi-identifier columns
qi cols = [
    "age_generalized",
    "education_generalized",
    "occupation_generalized",
    "workclass_generalized",
    "marital_generalized",
    "native_generalized"
1
# Initialize a "suppressed" flag for all records
df["suppressed"] = False
# For storing C-distance values for groups that pass the checks
c distances = []
# Process each equivalence class (group) based on the generalized QIs
grouped = df.groupby(qi_cols)
for group_key, group in grouped:
   group_size = len(group)
    # 4a. Check K-Anonymity
    if group_size < K:</pre>
       df.loc[group.index, "suppressed"] = True
       continue
    # 4b. Check L-Diversity
    if group[sensitive_attribute].nunique() < L:</pre>
       df.loc[group.index, "suppressed"] = True
        continue
    # 4c. Check C-Closeness:
    # Compute the group distribution for the sensitive attribute
    group_distribution = group[sensitive_attribute].value_counts(normalize=True)
    # For each category in overall distribution, compute absolute difference (assume 0 if missing)
    max diff = 0
    for category, overall_prop in overall_distribution.items():
       group_prop = group_distribution.get(category, 0)
        diff = abs(group_prop - overall_prop)
        if diff > max_diff:
           max_diff = diff
```

```
c_distances.append(max_diff)
   # If maximum difference exceeds threshold, mark group as suppressed
   if max_diff > C_threshold:
       df.loc[group.index, "suppressed"] = True
# 6. Prepare Final Anonymized Dataset & Statistical Info
# -----
# Final valid dataset: records not suppressed
df_valid = df.loc[~df["suppressed"]]
num_suppressed = len(df) - len(df_valid)
# Compute equivalence class size distribution among valid records
eq_class_sizes = df_valid.groupby(qi_cols).size()
# Compute C-Closeness statistics for groups that passed (if any groups passed)
if c distances:
   avg_c_distance = np.mean(c_distances)
   max_c_distance = np.max(c_distances)
else:
   avg_c_distance = 0
   max_c_distance = 0
# ============
# 7. Print Statistical Information
print("=== Statistical Information ===")
print(f"Original Dataset Size: {len(df)}")
print(f"Anonymized (Valid) Dataset Size: {len(df_valid)}")
print(f"Suppressed \ Records: \ \{num\_suppressed\} \backslash n")
print("Equivalence Class Size Distribution (Valid Groups):")
print(eq_class_sizes.value_counts(), "\n")
print(f"C-Closeness Statistics: Average Distance = {avg_c_distance:.4f}, Maximum Distance = {max_c_distance:.4f}")
⇒ === Statistical Information ===
    Original Dataset Size: 32561
    Anonymized (Valid) Dataset Size: 19707
    Suppressed Records: 12854
    Equivalence Class Size Distribution (Valid Groups):
    4
           62
    5
           57
    6
           44
    7
           37
    106
            1
    60
            1
    78
            1
    156
            1
    Name: count, Length: 115, dtype: int64
    C-Closeness Statistics: Average Distance = 0.1987, Maximum Distance = 0.7259
# 8. Save Final Anonymized Dataset
# Optionally, drop original QI columns if only generalized values are needed
df_final = df_valid.drop(columns=["age", "education", "occupation", "workclass", "marital_status", "native_country"])
df_final.to_csv("adult_lkc_privacy_merged.csv", index=False)
\verb|print("\nFinal anonymized dataset saved as 'adult_lkc_privacy_merged.csv'")| \\
     Final anonymized dataset saved as 'adult_lkc_privacy_merged.csv'
```