

Logică Matematică

Anul I, Semestrul II 2022

Laurențiu Leuștean

Pagina web: https://cs.unibuc.ro//~lleustean/Teaching/ 2022-LOGICMATH/index.html

Preliminarii

Fie A, B, T mulțimi a.î. $A, B \subseteq T$.

$$A \cup B = \{x \in T \mid x \in A \text{ sau } x \in B\}$$

$$A \cap B = \{x \in T \mid x \in A \text{ si } x \in B\}$$

$$A - B = \{x \in T \mid x \in A \text{ si } x \notin B\}$$

$$C_T A = T - A = \{x \in T \mid x \notin A\}$$

Notații: $\mathbb{N} = \{0,1,2,\ldots\}$ este mulțimea numerelor naturale; $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$; \mathbb{Z} este mulțimea numerelor întregi; \mathbb{R} este mulțimea numerelor raționale.

Mulţimea părţilor lui T se notează 2^T sau $\mathcal{P}(T)$. Aşadar, $2^T = \mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Exemplu.
$$\mathcal{P}(\emptyset) = \{\emptyset\}, \ \mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}, \ \mathcal{P}(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}.$$

Notăm cu (a, b) perechea ordonată formată din a și b (care sunt componentele lui (a, b)).

Observații: dacă $a \neq b$, atunci $(a, b) \neq (b, a)$; $(a, b) \neq \{a, b\}$; (7,7) este o pereche ordonată validă; două perechi ordonate (a, b) și (c, d) sunt egale ddacă a = c și b = d.

Produsul cartezian a două mulțimi A și B este definit astfel:

$$A \times B = \{(a, b) \mid a \in A \text{ si } b \in B\}$$

Exercițiu.

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

 $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Fie A și B mulțimi și $f: A \rightarrow B$ o funcție.

Spunem că f este definită pe A cu valori în B, A se numește domeniul de definiție al funcției f și B se numește domeniul valorilor lui f sau codomeniul lui f.

Notație: Mulțimea funcțiilor de la A la B se notează Fun(A, B), B^A sau $(A \to B)$.

Fie $f: A \to B$ o funcție, $X \subseteq A$ și $Y \subseteq B$.

- ▶ $f(X) = \{f(x) \mid x \in X\}$ este imaginea directă a lui X prin f; f(A) este imaginea lui f.
- ▶ $f^{-1}(Y) = \{x \in X \mid f(x) \in Y\}$ este imaginea inversă a lui Y prin f.
- ▶ Fie $f|_X: X \to B$, $f|_X(x) = f(x)$ pentru orice $x \in X$. Funcția $f|_X$ este restricția lui f la X.

Fie $f: A \rightarrow B$ o funcție.

- ▶ f este injectivă dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2$ implică $f(x_1) \neq f(x_2)$ (sau, echivalent, $f(x_1) = f(x_2)$ implică $x_1 = x_2$).
- ▶ f este surjectivă dacă pentru orice $y \in B$ există $x \in A$ a.î. f(x) = y (sau, echivalent, f(A) = B).
- f este bijectivă dacă f este injectivă și surjectivă.

Fie $f: A \to B$ și $g: B \to C$ două funcții. Compunerea lor $g \circ f$ este definită astfel:

$$g \circ f : A \to C$$
, $(g \circ f)(x) = g(f(x))$ pentru orice $x \in A$.

Funcția identică a lui A este $1_A: A \to A$, $1_A(x) = x$.

O funcție $f:A\to B$ este inversabilă dacă există $g:B\to A$ astfel încât $g\circ f=1_A$ și $f\circ g=1_B$. Funcția g este unică, se numește inversa lui f și se notează f^{-1} .

O funcție este bijectivă ddacă este inversabilă.

Fie $f: A \to A$. Pentru orice $n \in \mathbb{N}$, definim $f^n: A \to A$ astfel:

$$f^0 = 1_A$$
, $f^{n+1} = f^n \circ f$ pentru $n \ge 0$.

Fie A, T mulțimi a.î. $A \subseteq T$. Funcția caracteristică a lui A în raport cu T este definită astfel:

$$\chi_A: \mathcal{T} \to \{0,1\}, \quad \chi_A(x) = egin{cases} 1 & \mathsf{dac\check{a}} \ x \in A \ 0 & \mathsf{dac\check{a}} \ x
otin A \end{cases}$$

Proprietăți

Dacă A, $B \subseteq T$ și $x \in T$ atunci $\chi_{A \cap B}(x) = \min\{\chi_A(x), \chi_B(x)\} = \chi_A(x) \cdot \chi_B(x)$ $\chi_{A \cup B}(x) = \max\{\chi_A(x), \chi_B(x)\} = \chi_A(x) + \chi_B(x) - \chi_A(x) \cdot \chi_B(x)$ $\chi_{C \cap A}(x) = 1 - \chi_A(x).$

Observație

Funcția caracteristică se poate folosi pentru a arăta că două mulțimi sunt egale: A=B ddacă $\chi_A=\chi_B$.

Definiție

O relație binară între A și B este o submulțime a produsului cartezian $A \times B$.

O relație binară pe A este o submulțime a lui $A \times A$.

Exemple

$$ightharpoonup | \subseteq \mathbb{N} \times \mathbb{N}$$

$$|=\{(k,n)\mid \text{ există } m\in\mathbb{N} \text{ a.î. } mk=n\}$$

$$ightharpoonup$$
 $< \subseteq \mathbb{N} \times \mathbb{N}$

$$<=\{(k,n)\mid \text{ există } m\in\mathbb{N} \text{ a.î. } m\neq 0 \text{ și } m+k=n\}$$

,

Fie A, B, C mulțimi.

Definiție

▶ Dacă $R \subseteq A \times B$, atunci relația inversă $R^{-1} \subseteq B \times A$ este definită astfel:

$$R^{-1} = \{(b, a) \mid (a, b) \in R\}.$$

Dacă $R \subseteq A \times B$ și $Q \subseteq B \times C$, atunci compunerea lor $Q \circ R \subseteq A \times C$ este definită astfel:

$$Q \circ R = \{(a,c) \mid \text{ există } b \in B \text{ a.i. } (a,b) \in R \text{ și } (b,c) \in Q\}.$$

▶ Diagonala lui A este $\Delta_A = \{(a, a) \mid a \in A\}$.

Exercițiu

- Compunerea relaţiilor este asociativă.
- ▶ Dacă $R \subseteq A \times B$ atunci $R \circ \Delta_A = R$ și $\Delta_B \circ R = R$.

Relații binare

Fie A o mulțime nevidă și $R \subseteq A \times A$ o relație binară pe A. Notație: Scriem xRy în loc de $(x,y) \in R$ și $\neg(xRy)$ în loc de $(x,y) \notin R$.

Definiție

- ▶ R este reflexivă dacă xRx pentru orice $x \in A$.
- ▶ R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- ▶ R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- ► R este antisimetrică dacă pentru orice $x, y \in A$, xRy și yRx implică x = y.
- R este tranzitivă dacă pentru orice $x, y, z \in A$, xRy și yRz implică xRz.
- ▶ R este totală dacă pentru orice $x, y \in A$, xRy sau yRx.

Definiție

Fie A o mulțime nevidă. O relație binară R pe A se numește relație de echivalență dacă este reflexivă, simetrică și tranzitivă.

Notații: Vom nota relațiile de echivalență cu \sim . Scriem $x \sim y$ dacă $(x, y) \in \sim$ și $x \not\sim y$ dacă $(x, y) \notin \sim$.

Fie A o mulțime nevidă și \sim o relație de echivalență pe A.

Definiție

Pentru orice $x \in A$, clasa de echivalență [x] a lui x este definită astfel: $[x] = \{y \in A \mid x \sim y\}$.

Proprietăți

- $A = \bigcup_{x \in A} [x].$
- $ightharpoonup [x] = [y] \ ddacă \ x \sim y.$
- ▶ $[x] \cap [y] = \emptyset$ ddacă $x \not\sim y$ ddacă $[x] \neq [y]$.

Definiție

Mulţimea tuturor claselor de echivalenţă distincte ale elementelor lui A se numeşt mulţimea cât a lui A prin \sim şi se notează A/\sim . Aplicaţia $\pi:A\to A/\sim$, $\pi(x)=[x]$ se numeşte funcţia cât.

Definiție

Fie A o mulțime nevidă. O relație binară R pe A este relație de

- ordine parțială dacă este reflexivă, antisimetrică și tranzitivă.
- ordine strictă dacă este ireflexivă şi tranzitivă.
- ordine totală dacă este antisimetrică, tranzitivă și totală.

Notații: Vom nota relațiile de ordine parțială și totală cu \leq , iar relațiile de ordine strictă cu <.

Definiție

Dacă \leq este o relație de ordine parțială (totală) pe A, spunem că (A, \leq) este mulțime parțial (total) ordonată.

Fie (A, \leq) o mulțime parțial ordonată.

Proprietăți

- Orice relație de ordine totală este reflexivă. Prin urmare, orice mulțime total ordonată este mulțime parțial ordonată.
- ▶ Relația < definită prin $x < y \iff x \le y$ și $x \ne y$ este relație de ordine strictă.
- ▶ Dacă $\emptyset \neq S \subseteq A$, atunci (S, \leq) este mulțime parțial ordonată.

Dem.: Exercițiu.

Fie (A, \leq) o mulțime parțial ordonată și $\emptyset \neq S \subseteq A$.

Definiție

Un element $e \in S$ se numește

- element minimal al lui S dacă pentru orice $a \in S$, $a \le e$ implică a = e;
- ▶ element maximal al lui S dacă pentru orice $a \in S$, $e \le a$ implică a = e;
- ▶ cel mai mic element (sau minim) al lui S, notat min S, dacă $e \le a$ pentru orice $a \in S$;
- ▶ cel mai mare element (sau maxim) al lui S, notat max S, dacă $a \le e$ pentru orice $a \in S$.

Proprietăți

- Atât minimul, cât şi maximul lui S sunt unice (dacă există).
- Dacă min S există, atunci min S este element minimal al lui S.
- Dacă max S există, atunci max S este element maximal al lui S.
- ► S poate avea mai multe elemente maximale sau minimale.
- ► Un element minimal (maximal) al lui S nu este în general minim (maxim) al lui S.

Dem.: Exercițiu.

Mulțimi parțial ordonate

Fie (A, \leq) o mulțime parțial ordonată și $\emptyset
eq S \subseteq A$.

Definiție

Un element $e \in A$ se numește

- ▶ majorant al lui S dacă $a \le e$ pentru orice $a \in S$;
- ▶ minorant al lui S dacă $e \le a$ pentru orice $a \in S$;
- supremum al lui S, notat sup S, dacă e este cel mai mic majorant al lui S;
- ▶ infimum al lui S, notat inf S, dacă e este cel mai mare minorant al lui S.

Proprietăți

- Atât mulţimea majoranţilor, cât şi mulţimea minoranţilor lui S pot fi vide.
- ► Atât supremumul, cât și infimumul lui *S* sunt unice (dacă există).

Fie (A, \leq) o mulțime parțial ordonată.

Definiție

Spunem că (A, \leq) este mulțime bine ordonată dacă orice submulțime nevidă a lui A are minim. În acest caz, \leq se numește relație de bună ordonare pe A.

Exemple

 (\mathbb{N}, \leq) este bine ordonată, dar (\mathbb{Z}, \leq) nu este bine ordonată.

Observație

Orice mulțime bine ordonată este total ordonată.

Fie (A, \leq) o mulțime parțial ordonată.

Definiție

 (A, \leq) se numește inductiv ordonată dacă orice submulțime total ordonată a sa admite un majorant.

Lema lui Zorn

Orice mulțime inductiv ordonată are un element maximal.

• un instrument foarte util în demonstrații.

Fie / o mulţime nevidă.

Fie A o mulţime. O familie de elemente din A indexată de I este o funcţie $f:I\to A$. Notăm cu $(a_i)_{i\in I}$ familia $f:I\to A$, $f(i)=a_i$ pentru orice $i\in I$.

Dacă fiecărui $i \in I$ îi este asociată o mulțime A_i , obținem o familie (indexată) de mulțimi $(A_i)_{i \in I}$.

Fie $(A_i)_{i \in I}$ o familie de submulțimi ale unei mulțimi T. Reuniunea și intersecția familiei $(A_i)_{i \in I}$ sunt definite astfel:

$$\bigcup_{i \in I} A_i = \{x \in T \mid \text{ există } i \in I \text{ a.î. } x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

Dacă $A_i \cap A_j = \emptyset$ pentru orice $i, j \in I, i \neq j$, spunem că $\bigcup_{i \in I} A_i$ este o reuniune disjunctă.

Fie I o mulțime nevidă și $(A_i)_{i \in I}$ o familie de mulțimi.

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Pentru orice $j \in I$, aplicația $\pi_j : \prod_{i \in I} A_i \to A_j, \quad \pi_j((x_i)_{i \in I}) = x_j$ se numește proiecție canonică a lui $\prod_{i \in I} A_i$. π_j este surjectivă.

Exercițiu. Fie I, J mulțimi nevide. Atunci

$$\bigcup_{i\in I}A_i\times\bigcup_{j\in J}B_j=\bigcup_{(i,j)\in I\times J}A_i\times B_j \text{ si }\bigcap_{i\in I}A_i\times\bigcap_{j\in J}B_j=\bigcap_{(i,j)\in I\times J}A_i\times B_j.$$

$$I = \{1, \ldots, n\}$$

Fie *n* număr natural, $n \ge 1$, $I = \{1, ..., n\}$ și $A_1, ..., A_n \subseteq T$.

- $(x_i)_{i\in I}=(x_1,\ldots,x_n)$, un *n*-tuplu (ordonat)
- $\blacktriangleright \bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i \text{ si } \bigcap_{i \in I} A_i = \bigcap_{i=1}^n A_i$

Definiție

O relație *n*-ară între A_1, \ldots, A_n este o submulțime a produsului cartezian $\prod_{i=1}^n A_i$.

O relație n-ară pe A este o submulțime a lui A^n . Dacă R este relație n-ară, spunem că n este aritatea lui R.

Axioma alegerii (în engleză Axiom of Choice) (AC)

Dacă $(A_i)_{i \in I}$ este o familie de mulțimi nevide, atunci există o funcție f_C care asociază la fiecare $i \in I$ un element $f_C(i) \in A_i$.

- ► formulată de Zermelo (1904)
- a provocat discuţii aprinse datorită caracterului său neconstructiv: nu există nicio regulă pentru a construi funcţia alegere f_C.

Reformulare

Următoarea afirmație este echivalentă cu Axioma alegerii: Dacă $(A_i)_{i\in I}$ este o familie de mulțimi nevide, atunci $\prod_{i\in I}A_i$ este o mulțime nevidă.

- Gödel (1940) a demonstrat că axioma alegerii este consistentă cu ZF.
- Cohen (1963) a demonstrat că negația axiomei alegerii este consistentă cu ZF. Prin urmare, axioma alegerii este independentă de ZF. Cohen a primit în 1966 Medalia Fields.

Următoarele afirmații sunt echivalente cu Axioma alegerii:

- ▶ Lema lui 7orn
- Principiul bunei ordonări: Orice mulțime nevidă X poate fi bine ordonată (adică, pentru orice X există o relație binară \leq pe X a.î. (X, \leq) este mulțime bine ordonată).
- H. Rubin, J. Rubin, Equivalents of the Axiom of Choice II, North Holland, Elsevier, 1985

Definiția 1.1

Spunem că A este echipotentă cu B dacă există o bijecție $f:A\to B$. Notație: $A\sim B$.

Propoziția 1.2

Pentru orice mulțimi A, B, C au loc:

- (i) $A \sim A$;
- (ii) Dacă $A \sim B$, atunci $B \sim A$.
- (iii) Dacă $A \sim B$ și $B \sim C$, atunci $A \sim C$.

Dem.: Exercițiu.

Observație

Prin urmare, A este echipotentă cu B ddacă B este echipotentă cu A. De aceea, spunem de obicei că A și B sunt echipotente.

Mulțimi finite, numărabile

Definiția 1.3

O mulțime A se numește finită dacă $A=\emptyset$ sau dacă există $n\in\mathbb{N}^*$ a.î. A este echipotentă cu $\{0,1,\ldots,n-1\}$. În acest caz, notăm cu |A| numărul elementelor lui A.

O mulțime care nu este finită se numește infinită.

Definiția 1.4

O mulțime A este numărabilă dacă este echipotentă cu \mathbb{N} .

O mulțime finită sau numărabilă se numește cel mult numărabilă.

Exemple

- $ightharpoonup \mathbb{Z}$, $\mathbb{N} \times \mathbb{N}$ și \mathbb{Q} sunt numărabile.
- ▶ Orice submulţime infinită a lui N este numărabilă.

Teoremă Cantor

 $\mathcal{P}(\mathbb{N})$ nu este mulţime numărabilă.

Cardinale

Numerele cardinale sau cardinalele sunt o generalizare a numerelor naturale, ele fiind folosite pentru a măsura dimensiunea unei mulțimi; au fost introduse de Cantor.

Definiția 2.1

Pentru orice mulțime A, cardinalul lui A (sau numărul cardinal al lui A) este un obiect |A| asociat lui A a.î. sunt satisfăcute următoarele:

- ► |A| este unic determinat de A.
- lacktriangle pentru orice mulțimi A, B, avem că |A|=|B| ddacă $A\sim B$.

Această definiție nu specifică natura obiectului |A| asociat unei mulțimi A.

Prin urmare, este naturală întrebarea dacă există cardinale.

Un posibil răspuns este:

definim |A| ca fiind clasa tuturor mulțimilor echipotente cu A.

Un alt răspuns este definiția lui von Neumann din teoria axiomatică a mulțimilor. Conform acestei definiții, pentru orice mulțime A, |A| este tot o mulțime.

Colecția tuturor cardinalelor nu este mulțime, ci clasă. Vom nota cu Card clasa tuturor cardinalelor.

Notăm cardinalele cu α , β , γ , κ ,

Definiția 2.2

 α este cardinal ddacă există o mulțime A a.î. $\alpha = |A|$. Spunem, în acest caz, că A este un reprezentant al lui α .

Desigur, orice mulțime echipotentă cu A este, de asemenea, reprezentant al lui α .

Definiția 2.3

Fie $\alpha = |A|$ un cardinal. Dacă A este finită (respectiv infinită), spunem că α este un cardinal finit (respectiv cardinal infinit).

Notații

- Notăm $0 := |\emptyset|$ și, pentru orice $n \ge 1$, $n := |\{0, 1, \dots, n-1\}|$.
- ▶ $|\mathbb{N}|$ se notează \aleph_0 (se citește *alef zero*).
- $ightharpoonup |\mathbb{R}|$ se notează $\mathfrak c$ și se mai numește și puterea continuumului.

Observația 2.4

- (i) O mulțime A este finită ddacă există $n \in \mathbb{N}$ a.î. n = |A|. Prin urmare, putem identifica cardinalul |A| cu numărul elementelor lui A.
- (ii) O mulțime A este numărabilă ddacă $|A| = \aleph_0$.

Observația 2.5

- (i) Pentru orice mulțime A, $Fun(\emptyset, A)$ are un singur element, funcția vidă. Prin urmare, $|Fun(\emptyset, A)| = 1$.
- (ii) Pentru orice mulțime nevidă A, $Fun(A, \emptyset) = \emptyset$, deci $|Fun(A, \emptyset)| = 0$.

Definiția 2.6

Definim următoarea relație: pentru orice cardinale $\alpha = |A|$, $\beta = |B|$,

$$\alpha \leq \beta \iff \text{există o funcție injectivă } f: A \rightarrow B.$$

Observația 2.7

Definiția relației ≤ nu depinde de reprezentanți.

Dem.: Fie $\alpha = |A| = |A'|$, $\beta = |B| = |B'|$. Considerăm bijecțiile $u: A \to A'$ și $v: B \to B'$. Demonstrăm că

$$\alpha \leq \beta \iff$$
 există o funcție injectivă $g: A' \to B'$.

 \Rightarrow Fie $f: A \to B$ o funcție injectivă. Atunci $g:=v\circ f\circ u^{-1}: A'\to B'$ este injectivă.

 \Leftarrow Avem că $f := v^{-1} \circ g \circ u : A \to B$ este injectivă.

Deci, definiția nu depinde de reprezentanții A și B.

Relației \leq se asociază o nouă relație, definită astfel:

$$\alpha < \beta \iff \alpha \leq \beta \text{ si } \alpha \neq \beta.$$

Propoziția 2.8

- (i) Pentru orice mulțimi A, B, dacă $A \subseteq B$, atunci $|A| \le |B|$.
- (ii) Pentru orice cardinal finit α , avem că $\alpha < \aleph_0$.
- (iii) Pentru orice mulțime A și orice cardinal α , dacă $\alpha \leq |A|$, atunci există o submulțime B a lui A a.î. $|B| = \alpha$.
- (iv) $0 \le \alpha$ pentru orice cardinal α .
- (v) $1 \le \alpha$ pentru orice cardinal $\alpha \ne 0$.
- (vi) Relația < este reflexivă și tranzitivă.

Dem.: Exercitiu.

Următorul rezultat este fundamental.

Teorema 2.9 (Teorema Cantor-Schröder-Bernstein)

Fie A şi B două mulțimi astfel încât există $f:A\to B$ şi $g:B\to A$ funcții injective. Atunci $A\sim B$.

Dem.: (Schiță). Pentru orice $n \ge 0$, definim

$$h_n := (g \circ f)^n : A \to A, \quad A_n := h_n(A) \subseteq A, \quad B_n := h_n(g(B)) \subseteq A.$$

Evident, $h_0=1_A$, $A_0=A$ și $B_0=g(B)$. De asemenea, h_n este injectivă pentru orice $n\in\mathbb{N}$ și $h_m\circ h_n=h_{m+n}$ pentru orice $m,n\in\mathbb{N}$.

Afirmația 1: Pentru orice $n \in \mathbb{N}$, $B_{n+1} \subseteq A_{n+1} \subseteq B_n \subseteq A_n$. Prin urmare, $(A_n)_{n \in \mathbb{N}}$ și $(B_n)_{n \in \mathbb{N}}$ sunt șiruri descrescătoare de mulțimi a.î. $\bigcap_{n \geq 0} A_n = \bigcap_{n \geq 0} B_n$.

Dem.: Exercițiu suplimentar.

Introducem următoarele notații:

$$C:=\bigcap_{n\geq 0}A_n$$
 și, pentru orice $n\in\mathbb{N},\ A_n':=A_n-B_n,\ B_n':=B_n-A_{n+1}.$

Deoarece h_n , g sunt injective, avem că

$$A'_{n} = A_{n} - B_{n} = h_{n}(A) - h_{n}(g(B)) = h_{n}(A - g(B)),$$

$$B'_{n} = B_{n} - A_{n+1} = h_{n}(g(B)) - h_{n+1}(A)$$

$$= (h_{n} \circ g)(B) - (h_{n} \circ g)(f(A)) = (h_{n} \circ g)(B - f(A))$$

pentru orice $n \in \mathbb{N}$. Se observă ușor că mulțimile C, $\bigcup_{n \geq 0} A'_n$ și $\bigcup_{n \geq 0} B'_n$ sunt disjuncte două câte două.

Afirmația 2: $A = C \cup \bigcup_{n \geq 0} A'_n \cup \bigcup_{n \geq 0} B'_n$.

Dem.: Exercițiu suplimentar.

Definim

$$\Phi:A\to B,\ \, \Phi(a)=\begin{cases} f(a) & \text{dacă }a\in C\cup\bigcup_{n\geq 0}A'_n\\ b & \text{dacă }a\in\bigcup_{n\geq 0}B'_n\text{ și }b\text{ este unicul element}\\ & \text{din }B\text{ a.î. }g(b)=a.\end{cases}$$

Observăm că Φ e bine definită pe a doua ramură: deoarece

$$\bigcup_{n>0} B'_n \subseteq \bigcup_{n>0} B_n = B_0 = g(B),$$

avem, în acest caz, $a \in g(B)$. Din injectivitatea funcției g, rezultă că există un unic $b \in B$ a.î. g(b) = a.

Afirmaţia 3: Φ este bijectivă.

Dem.: Exercițiu suplimentar.

Prin urmare, $A \sim B$.

O reformulare a Teoremei Cantor-Schröder-Bernstein este

Teorema 2.10

Relația \leq este antisimetrică, adică pentru orice cardinale α , β avem:

$$\alpha \leq \beta$$
 și $\beta \leq \alpha$ implică $\alpha = \beta$.

Dem.: Fie $\alpha = |A|$ și $\beta = |B|$. Atunci

- ▶ $\alpha \leq \beta$ ddacă există o funcție injectivă $f: A \rightarrow B$.
- ▶ $\beta \leq \alpha$ ddacă există o funcție injectivă $g: B \rightarrow A$.
- $ightharpoonup \alpha = \beta$ ddacă $A \sim B$.

Teorema 2.11

Relația \leq este totală, adică pentru orice cardinale α , β avem că $\alpha \leq \beta$ sau $\beta \leq \alpha$.

Dem.: Fie $\alpha = |A|$ și $\beta = |B|$. Definim

$$\mathcal{F} = \{(X, f) \mid X \subseteq A \text{ si } f : X \to B \text{ este funcție injectivă} \}.$$

Evident, \mathcal{F} este nevidă. Definim relația \leq pe \mathcal{F} astfel:

$$(X_1, f_1) \leq (X_2, f_2) \Longleftrightarrow X_1 \subseteq X_2 \text{ si } f_2|_{X_1} = f_1.$$

Se observă ușor că (\mathcal{F}, \leq) este o mulțime parțial ordonată.

Afirmația 1: (\mathcal{F}, \leq) este inductiv ordonată.

Dem.: Exercițiu.

Aplicând Lema lui Zorn, obținem că \mathcal{F} are un element maximal (Y,g). Deoarece $Y\subseteq A$ și $g:Y\to B$ este injectivă, avem că $|Y|\le \alpha$ și $|Y|\le \beta$. Distingem următoarele două cazuri:

- **>** g este surjectivă. Atunci g este bijectivă, deci |Y| = |B|. Obținem că $\beta = |B| = |Y| \le \alpha$.
- ▶ g nu este surjectivă. Atunci există $b \in B g(Y)$. Dacă $Y \neq A$, luăm $a \in A Y$ și definim funcția $f : Y \cup \{a\} \rightarrow B$ astfel:

$$f|_{Y} = g \text{ si } f(a) = b.$$

Se observă ușor că $(Y \cup \{a\}, f) \in \mathcal{F}$ și $(Y, g) < (Y \cup \{a\}, f)$, ceea ce este o contradicție cu faptul că (Y, g) este element maximal al lui \mathcal{F} . Prin urmare, trebuie să avem Y = A. Rezultă atunci că $\alpha = |A| = |Y| \le \beta$.

Teorema 2.12

Relația \leq este o relație de ordine totală.

Dem.: Exercițiu.

Rezultă ușor că

Corolar 2.13

Relația < este o relație de ordine strictă.

Dem.: Exercițiu.

Pentru orice mulțime infinită A, $\aleph_0 \leq |A|$. Prin urmare, orice mulțime infinită are o submulțime numărabilă.

Dem.: Definim inductiv șirul $(a_n)_{n\in\mathbb{N}}$ din A cu proprietatea că $a_i \neq a_j$ pentru orice $i,j\in\mathbb{N}, i\neq j$.

Deoarece A este nevidă, există $a_0 \in A$.

Cum A este infinită, $A - \{a_0\}$ este nevidă, deci există $a_1 \in A$ a.î. $a_1 \neq a_0$.

Cum A este infinită, $A - \{a_0, a_1\}$ este nevidă, deci există $a_2 \in A$ a.î. $a_2 \neq a_0$ și $a_2 \neq a_1$.

În general, presupunem că am definit $a_0, \ldots, a_n \in A$ distincte două câte două. Cum A este infinită, $A - \{a_0, \ldots, a_n\}$ este nevidă, deci există $a_{n+1} \in A$ diferit de toți a_0, \ldots, a_n .

Definind funcția $f: \mathbb{N} \to A$ prin $f(n) = a_n$ pentru orice $n \in \mathbb{N}$, rezultă că f este injectivă. Prin urmare, $\aleph_0 \leq |A|$.

Deoarece f este injectivă, avem că $f(\mathbb{N}) \sim \mathbb{N}$. Rezultă că $f(\mathbb{N})$ este o submulțime numărabilă a lui A.

Propoziția 2.15

Fie α un cardinal finit și β un cardinal infinit. Atunci $\alpha < \beta$.

Dem.: Exercițiu.

Propoziția 2.16

Fie A o mulțime infinită și $F \subseteq A$ o submulțime finită a sa. Atunci |A - F| = |A|.

Dem.: Exercițiu.

Definiția 2.17

Fie $\alpha = |A|$ și $\beta = |B|$ două cardinale, reprezentanții A și B fiind aleși $a.\hat{i}.$ $A \cap B = \emptyset$. Definim suma cardinalelor α și β prin

$$\alpha + \beta := |A \cup B|.$$

Observația 2.18

Observăm mai întâi că pentru orice cardinale α , β putem alege mulțimi A, B cu $|A|=\alpha$, $|B|=\beta$ și $A\cap B=\emptyset$. Într-adevăr, dacă $\alpha=|U|$ și $\beta=|V|$, atunci luăm $A=U\times\{1\}$ și $B=V\times\{2\}$.

Observația 2.19

Definiția operației + nu depinde de reprezentanți.

Dem.: Fie $\alpha = |A| = |A'|$, $\beta = |B| = |B'|$ cu $A \cap B = A' \cap B' = \emptyset$. Considerăm bijecțiile $u : A \to A'$ și $v : B \to B'$. Definim

$$f:A\cup B\to A'\cup B',\quad f(x)=egin{cases} u(x) & \mathrm{dac}\check{\mathrm{a}}\ x\in A\ v(x) & \mathrm{dac}\check{\mathrm{a}}\ x\in B. \end{cases}$$

Se demonstrează ușor că f este bijectivă. Prin urmare, $\alpha + \beta = |A \cup B| = |A' \cup B'|$.

- (i) 0 este element neutru al lui +.
- (ii) Operația + este comutativă și asociativă.
- (iii) Pentru orice cardinale α , β , γ ,

$$\beta \leq \gamma$$
 implică $\alpha + \beta \leq \alpha + \gamma$.

În particular, $\alpha \leq \alpha + \gamma$.

Dem.: Exercițiu.

Pentru orice cardinal infinit α , avem $\alpha + \alpha = \alpha$.

Dem.: Fie $\alpha = |A|$. Definim

$$\mathcal{F} = \{(X, f) \mid \emptyset \neq X \subseteq A \text{ și } f : X \times \{0, 1\} \rightarrow X \text{ este funcție bijectivă}\}.$$

Afirmatia 1: \mathcal{F} este nevidă.

Dem.: Deoarece A este infinită, putem aplica Propoziția 2.14 pentru a obține o submulțime numărabilă $X = \{x_n \mid n \in \mathbb{N}\}$ a lui A. Definim

$$f: X \times \{0,1\} \to X$$
, $f(x_n,0) = x_{2n}$, $f(x_n,1) = x_{2n+1}$.

Se observă ușor că f este bijecție. Prin urmare, $(X, f) \in \mathcal{F}$.

Definim relația \leq pe \mathcal{F} astfel:

$$(X_1, f_1) \le (X_2, f_2) \iff X_1 \subseteq X_2 \text{ si } f_2|_{X_1 \times \{0,1\}} = f_1.$$

Se observă ușor că (\mathcal{F}, \leq) este o mulțime parțial ordonată.

Afirmația 2: (\mathcal{F}, \leq) este inductiv ordonată.

Demonstrație: Fie $\mathcal{G} = (X_i, f_i)_{i \in I}$ o submulțime total ordonată a lui \mathcal{F} . Fie $X := \bigcup_{i \in I} X_i \subseteq A$. Definim $f : X \times \{0, 1\} \to X$ astfel:

dacă $x \in X$, alegem un $i \in I$ a.î. $x \in X_i$ și definim $f(x,t) = f_i(x,t)$ pentru orice $t \in \{0,1\}$.

Definiția lui f este corectă, deoarece pentru orice $i, j \in I, i \neq j$, dacă $x \in X_i \cap X_j$, atunci $f_i(x,t) = f_j(x,t)$. De asemenea, se observă ușor că $(X_i, f_i) \leq (X, f)$ pentru orice $i \in I$. Rămâne să mai arătăm că f este bijectivă.

Suma cardinalelor

Demonstrăm că f este surjectivă. Fie $y \in X$ arbitrar. Atunci există $i \in I$ a.î. $y \in X_i$. Deoarece f_i este surjectivă, există $x \in X_i$, $t \in \{0,1\}$ a.î. $f_i(x,t) = y$. Conform definiției lui f, rezultă că $f(x,t) = f_i(x,t) = y$.

Demonstrăm că f este injectivă. Fie $x, y \in X, s, t \in \{0, 1\}$ a.î. f(x,s) = f(y,t). Atunci există $i,j \in I$ a.î. $x \in X_i$ și $y \in X_j$. Rezultă că $f(x,s) = f_i(x,s)$ și $f(y,t) = f_j(y,t)$, deci $f_i(x,s) = f_j(y,t)$. Deoarece $\mathcal G$ este total ordonată, avem următoarele două posibilități:

- ▶ $(X_i, f_i) \le (X_j, f_j)$. Atunci $x \in X_i \subseteq X_j$ și $f_j|_{X_i \times \{0,1\}} = f_i$, deci $f_j(x, s) = f_i(x, s)$. Obținem că $f_j(x, s) = f_j(y, t)$. Deoarece f_j este injectivă, rezultă că x = y și s = t.
- $lackbox(X_j,f_j)\leq (X_i,f_i)$. Se demonstrează similar că x=y și s=t.

Aplicând Lema lui Zorn, obţinem că \mathcal{F} are un element maximal (Y,g). Aşadar, $\emptyset \neq Y \subseteq A$ şi $g:Y \times \{0,1\} \to Y$ este bijecţie, deci $|Y \times \{0,1\}| = |Y|$.

Afirmația 3: A - Y este finită.

Demonstrație: Presupunem că A-Y este infinită. Din Propoziția 2.14, rezultă că A-Y are o submulțime numărabilă C. Obținem, ca în demonstrația Afirmației 1, o bijecție $h: C \times \{0,1\} \to C$. Definim

$$p: (Y \cup C) imes \{0,1\} o Y \cup C, \quad p(x,t) = egin{cases} g(x,t) & ext{dacă } x \in Y \ h(x,t) & ext{dacă } x \in C. \end{cases}$$

Deoarece g și h sunt bijecții, se arată ușor că p este, de asemenea, bijecție. Rezultă că $(Y \cup C, p) \in \mathcal{F}$ și $(Y, g) < (Y \cup C, p)$, ceea ce contrazice maximalitatea lui (Y, g). Prin urmare, A - Y este finită.

Aplicând Propoziția 2.16, avem că $|Y| = |A - (A - Y)| = |A| = \alpha$. Obținem

$$\alpha = |Y| = |Y \times \{0,1\}| = |(Y \times \{0\}) \cup (Y \times \{1\})|$$

= |Y \times \{0\}| + |Y \times \{1\}| = |Y| + |Y| = \alpha + \alpha.

Propoziția 2.22

Dacă α și β sunt cardinale cu α infinit și $\beta \leq \alpha$, atunci $\alpha + \beta = \alpha$.

Dem.: Exercițiu.

Propoziția 2.23

Fie α , β cardinale a.î. cel puțin unul dintre ele este infinit. Atunci $\alpha + \beta = \max\{\alpha, \beta\}$.

Dem.: Exercitiu.

Definiția 2.24

Fie $\alpha = |A|$ și $\beta = |B|$ două cardinale. Definim produsul cardinalelor α și β prin

$$\alpha \cdot \beta := |A \times B|$$
.

Observatia 2.25

Definiția operației · nu depinde de reprezentanți.

Dem.: Fie $\alpha = |A| = |A'|$, $\beta = |B| = |B'|$. Considerăm bijecțiile $u: A \to A'$ și $v: B \to B'$. Definim

$$f: A \times B \rightarrow A' \times B', \quad f(a,b) = (u(a), v(b)).$$

Se demonstrează ușor că f este bijectivă. Prin urmare, $\alpha \cdot \beta = |A \times B| = |A' \times B'|$.

- (i) $0 \cdot \alpha = \alpha \cdot 0 = 0$ pentru orice cardinal α .
- (ii) 1 este element neutru al lui ·.
- (iii) Pentru orice cardinale α , β , γ ,

$$\beta \leq \gamma$$
 implică $\alpha \cdot \beta \leq \alpha \cdot \gamma$.

- (iv) Pentru orice cardinale α , β a.î. $\beta \neq 0$, $\alpha \leq \alpha \cdot \beta$.
- (v) Operația · este comutativă, asociativă și distributivă față de +.

Dem.: Exercițiu.

Pentru orice cardinal infinit α , avem $\alpha \cdot \alpha = \alpha$.

Dem.: Fie $\alpha = |A|$. Definim

$$\mathcal{F} = \{(X,f) \mid X \subseteq A, X \text{ infinită} \text{ \sharp} f: X \to X \times X \text{ este funcție bijectivă}\}.$$

Afirmația 1: \mathcal{F} este nevidă.

Demonstrație: Deoarece A este infinită, putem aplica Propoziția 2.14 pentru a obține o submulțime numărabilă $B \subseteq A$. Prin urmare, există o bijecție $g: B \to \mathbb{N}$. Deoarece $\mathbb{N} \times \mathbb{N}$ este numărabilă, există o bijecție $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. Definim

$$h: B \times B \rightarrow B, \quad h(x,y) = (g^{-1} \circ f)(g(x),g(y)).$$

Se arată ușor că h este bijecție. Rezultă că $(B, h^{-1}) \in \mathcal{F}$.

Definim relația \leq pe \mathcal{F} astfel:

$$(X_1, f_1) \leq (X_2, f_2) \iff X_1 \subseteq X_2 \text{ si } f_2|_{X_1} = f_1.$$

Se observă ușor că (\mathcal{F}, \leq) este o mulțime parțial ordonată.

Afirmația 2: (\mathcal{F}, \leq) este inductiv ordonată.

Dem.: Exercițiu.

Aplicând Lema lui Zorn, obţinem că $\mathcal F$ are un element maximal (Y,g). Fie $\beta:=|Y|$. Cum Y este o submulţime infinită a lui A, avem că β este un cardinal infinit şi $\beta \leq \alpha$. Deoarece $g:Y \to Y \times Y$ este bijecţie, avem că

(*)
$$\beta = |Y| = |Y \times Y| = |Y| \cdot |Y| = \beta \cdot \beta$$
.

Afirmația 3: $\beta = \alpha$.

Dem.: Exercițiu suplimentar.

Aplicăm acum (*) pentru a conclude că $\alpha \cdot \alpha = \alpha$.

Definim inductiv α^n pentru orice $n \in \mathbb{N}^*$ astfel:

$$\alpha^1 = \alpha, \quad \alpha^{n+1} = \alpha^n \cdot \alpha.$$

Propoziția 2.28

Pentru orice cardinal infinit α și orice $n \in \mathbb{N}^*$, $\alpha^n = \alpha$.

Dem.: Exercițiu.

Propoziția 2.29

Dacă α și β sunt cardinale cu α infinit și $0 \neq \beta \leq \alpha$, atunci $\alpha \cdot \beta = \alpha$.

Dem.: Exercițiu.

Fie α , β cardinale nenule a.î. cel puțin unul dintre ele este infinit. Atunci $\alpha \cdot \beta = \max\{\alpha, \beta\}$.

Dem.: Presupunem că α este infinit. Deoarece \leq este totală, avem următoarele două cazuri:

- ▶ $\beta \leq \alpha$. Atunci $\max\{\alpha, \beta\} = \alpha$ și $\alpha \cdot \beta = \alpha$, conform Propoziției 2.29.
- ▶ $\alpha \leq \beta$. Atunci β este, de asemenea, infinit, $\max\{\alpha,\beta\} = \beta$ și $\alpha \cdot \beta = \beta \cdot \alpha = \beta$, conform Propoziției 2.29.

Definiția 2.31

Fie
$$\alpha = |A|$$
 și $\beta = |B|$ două cardinale. Definim

$$\alpha^{\beta} := |A^B| = |\operatorname{Fun}(B, A)|.$$

Observația 2.32

Definiția lui α^{β} nu depinde de reprezentanți.

Dem.: Fie $\alpha = |A| = |A'|$, $\beta = |B| = |B'|$. Considerăm bijecțiile $u: A \to A'$ și $v: B \to B'$. Definim $\Phi: Fun(B, A) \to Fun(B', A')$ astfel:

pentru orice funcție $f: B \to A$, $\Phi(f) := u \circ f \circ v^{-1}: B' \to A'$.

Se demonstrează ușor că Φ este inversabilă, inversa sa fiind

$$\Psi : \operatorname{Fun}(B', A') \to \operatorname{Fun}(B, A), \quad \Psi(g) = u^{-1} \circ g \circ v$$

Prin urmare,
$$\alpha^{\beta} = |Fun(B, A)| = |Fun(B', A')|$$
.

Observația 2.33

- (i) Pentru orice cardinal α , $1^{\alpha} = 1$, $\alpha^{0} = 1$.
- (ii) Pentru orice cardinal nenul α , $0^{\alpha} = 0$.

Dem.: Exercițiu.

Lema 2.34

Fie A, B, C mulțimi. Atunci

- (i) $Fun(A, Fun(B, C)) \sim Fun(A \times B, C)$.
- (ii) $Fun(A, B \times C) \sim Fun(A, B) \times Fun(A, C)$.
- (iii) Dacă în plus $A \cap B = \emptyset$, atunci Fun $(A \cup B, C) \sim Fun(A, C) \times Fun(B, C)$.

Dem.: Exercițiu.

Fie α , β , γ cardinale arbitrare.

(i)
$$\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$$
, $(\alpha \cdot \beta)^{\gamma} = \alpha^{\gamma} \cdot \beta^{\gamma}$ și $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$.

(ii) Dacă $\alpha \leq \beta$, atunci $\alpha^{\gamma} \leq \beta^{\gamma}$.

Dem.: Exercițiu.

Propoziția 2.36

Fie α un cardinal infinit și β un cardinal a.î. $2 \le \beta \le 2^{\alpha}$. Atunci $\beta^{\alpha} = 2^{\alpha}$.

Dem.: Exercițiu.

Fie α un cardinal.

- (i) Pentru orice reprezentant A al lui α , are loc $|\mathcal{P}(A)| = 2^{\alpha}$.
- (ii) $\alpha < 2^{\alpha}$.

Dem.: Fie $\alpha = |A|$.

(i) Avem că $2^{\alpha} = |Fun(A, \{0, 1\})|$. Definim

$$\Psi: \mathcal{P}(A) \rightarrow \mathit{Fun}(A, \{0,1\}), \quad \Psi(B) = \chi_B,$$

unde χ_B este funcția caracteristică a submulțimii B a lui A. Se demonstrează ușor că Ψ este bijectivă.

(ii) Deoarece funcția $f:A\to \mathcal{P}(A),\ f(a)=\{a\}$ este injectivă, avem că $\alpha\leq 2^{\alpha}$. Conform (S1.1), nu există funcții surjective cu domeniul A și codomeniul $\mathcal{P}(A)$. Rezultă că $\alpha\neq 2^{\alpha}$. Prin urmare, $\alpha<2^{\alpha}$.

Fie α un număr cardinal și $(A_i)_{i \in I}$ o familie de mulțimi $a.\hat{i}.$ $|A_i| \leq \alpha$ pentru orice $i \in I$. Atunci

$$\left|\bigcup_{i\in I}A_i\right|\leq \alpha\cdot |I|.$$

Dem.: Fie $\alpha = |A|$. Pentru orice $i \in I$, deoarece $|A_i| \leq \alpha$, există o funcție injectivă $f_i : A_i \to A$.

Definim $f: \bigcup_{i \in I} A_i \to A \times I$ astfel:

dacă
$$a \in \bigcup_{i \in I} A_i$$
, alegem $i_a \in I$ cu $a \in A_{i_a}$ și definim $f(a) = (f_{i_a}(a), i_a)$.

Rezultă ușor că f este injectivă: dacă $a,b\in\bigcup_{i\in I}A_i$ sunt a.î. $(f_{i_a}(a),i_a)=(f_{i_b}(b),i_b)$, atunci $i_a=i_b$ și $f_{i_a}(a)=f_{i_b}(b)$. Rezultă că $f_{i_a}(a)=f_{i_a}(b)$, deci a=b, deoarece f_{i_a} este injectivă. Prin urmare, $|\bigcup_{i\in I}A_i|\leq |A\times I|=\alpha\cdot |I|$.

Fie $\alpha = |A|$, $\beta = |B|$ două cardinale nenule. Următoarele afirmații sunt echivalente:

- (i) $\alpha \leq \beta$.
- (ii) Există o funcție surjectivă $g: B \rightarrow A$.

Dem.: (i) \Rightarrow (ii) Fie $f: A \rightarrow B$ injectivă. Fixăm $a_0 \in A$. Definim

Deoarece f este injectivă, g este bine definită. De asemenea, se observă imediat că g este surjectivă.

(ii) \Rightarrow (i) Fie $g: B \rightarrow A$ surjectivă. Pentru fiecare $a \in A$, alegem un element $b_a \in B$ a.î. $g(b_a) = a$. Definim

$$f: A \rightarrow B, \quad f(a) = b_a.$$

Se arată ușor că f este injectivă: dacă $a_1, a_2 \in A$ a.î. $b_{a_1} = b_{a_2}$, atunci $a_1 = g(b_{a_1}) = g(b_{a_2}) = a_2$. Prin urmare, $\alpha \leq \beta$.

Propoziția 2.40

Pentru orice mulțime infinită A, $|\bigcup_{n\in\mathbb{N}^*}A^n|=|A|$.

Dem.: Exercițiu.

Fie A o mulțime infinită și $\mathcal{P}_f(A)$ mulțimea tuturor submulțimilor finite ale lui A. Atunci $|\mathcal{P}_f(A)| = |A|$.

Dem.: Definim funcția $g: A \to \mathcal{P}_f(A)$, $g(a) = \{a\}$. Deoarece g este injectivă, rezultă că

$$|A| \leq |\mathcal{P}_f(A)|$$
.

Prin urmare, $\mathcal{P}_f(A)$ este o mulțime infinită. Fie $\mathcal{P}' = \mathcal{P}_f(A) - \{\emptyset\}$. Conform Propoziției 2.16, avem că $|\mathcal{P}'| = |\mathcal{P}_f(A)|$.

Definim $h: \bigcup_{n\in\mathbb{N}^*} A^n \to \mathcal{P}'$ astfel:

dacă $a=(a_1,\ldots,a_n)\in A^n\ (n\geq 1)$, atunci h(a)=A', unde A' este mulțimea obținută luând toți a_i diferiți.

Se observă ușor că h este surjectivă. Aplicând Propozițiile 2.39 și 2.40, rezultă că $|\mathcal{P}_f(A)| = |\mathcal{P}'| \leq \left|\bigcup_{n \in \mathbb{N}^*} A^n\right| = |A|$. Aplicâm Teorema Cantor-Schröder-Bernstein.

Cardinale - numărabilitate

Propoziția 2.42

- (i) Dacă A este numărabilă, atunci A^k este numărabilă pentru orice $k \in \mathbb{N}^*$.
- (ii) Orice submulțime infinită a unei mulțimi numărabile este
- (iii) O reuniune cel mult numărabilă de mulțimi cel mult numărabile este cel mult numărabilă.
- (iv) ℤ este numărabilă.
- (v) ℚ este numărabilă.

Dem.:

- (i) Avem că $|A| = \aleph_0$. Prin urmare, $|A^k| = \aleph_0^k = \aleph_0$, conform Propoziției 2.28.
- (ii) Fie B o mulțime numărabilă și $A \subseteq B$ o mulțime infinită. Atunci $|A| \le |B| = \aleph_0$. Pe de altă parte, avem din Propoziția 2.14 că $\aleph_0 \le |A|$. Aplicăm Teorema Cantor-Schröder-Bernstein.

Cardinale - numărabilitate

(iii) Fie I o mulțime cel mult numărabilă (deci $|I| \leq \aleph_0$) și $(A_i)_{i \in I}$ o familie de mulțimi cel mult numărabile. Rezultă că $|A_i| \leq \aleph_0$ pentru orice $i \in I$. Obținem

$$\left| \bigcup_{i \in I} A_i \right| \leq \aleph_0 \cdot |I| \quad \text{conform Propoziției 2.38}$$

$$\leq \aleph_0 \cdot \aleph_0 \quad \text{din Propoziția 2.26.(iii)}$$

$$= \aleph_0 \quad \text{din Propoziția 2.27.}$$

- (iv) $\mathbb{Z} = \mathbb{N} \cup A$, unde $A = \bigcup_{n \in \mathbb{N}^*} \{-n\}$. Aplicăm (iii) de două ori pentru a obține că A este cel mult numărabilă și, apoi, că \mathbb{Z} este cel cel mult numărabilă. Cum \mathbb{Z} este infinită, avem că \mathbb{Z} este numărabilă.
- (v) Pentru orice $n \in \mathbb{N}^*$, fie $A_n := \{ \frac{m}{n} \mid m \in \mathbb{Z} \}$ și $f_n : \mathbb{Z} \to A_n$, $f_n(m) = \frac{m}{n}$. Este evident că f_n este bijectivă, deci A_n este numărabilă pentru orice $n \in \mathbb{N}^*$. Deoarece $\mathbb{Q} = \bigcup_{n \in \mathbb{N}^*} A_n$, aplicăm (iii) și faptul că \mathbb{Q} este infinită.

$$2^{\aleph_0} = \mathfrak{c}$$
.

Dem.: Demonstrăm că $\mathfrak{c}=|\mathcal{P}(\mathbb{N})|$ și apoi aplicăm Propoziția 2.37.(i). Definim următoarea funcție

$$\Phi: \mathcal{P}(\mathbb{N}) \to \mathbb{R}, \quad \Phi(A) = \sum_{i=0}^{\infty} \frac{2\chi_A(i)}{3^i}.$$

Demonstrăm că seria considerată mai sus este convergentă. Deoarece seria este cu termeni pozitivi, e suficient să arătăm că șirul sumelor parțiale $\left(\sum_{i=0}^n \frac{2\chi_A(i)}{3^i}\right)_{n\in\mathbb{N}}$ este majorat. Observăm că, pentru orice $n\in\mathbb{N}$, avem

$$\sum_{i=0}^{n} \frac{2\chi_{A}(i)}{3^{i}} \le \sum_{i=0}^{n} \frac{2}{3^{i}} = 2 \sum_{i=0}^{n} \frac{1}{3^{i}} = 2 \cdot \frac{1 - \left(\frac{1}{3}\right)^{n+1}}{1 - \frac{1}{3}} < 3.$$

Aşadar, Φ este bine definită.

Afirmația 1: Φ este injectivă.

Demonstrație: Presupunem că $A \neq B$ și demonstrăm că $\Phi(A) \neq \Phi(B)$. Deoarece A și B sunt diferite, există $I := \min\{i \in \mathbb{N} \mid \chi_A(i) \neq \chi_B(i)\}$. Presupunem fără a restrânge generalitatea că $\chi_A(I) = 0$ și $\chi_B(I) = 1$. Definim

$$a := \sum_{i=0}^{I-1} \frac{2\chi_A(i)}{3^i} = \sum_{i=0}^{I-1} \frac{2\chi_B(i)}{3^i} \operatorname{dacă} I \neq 0 \quad \text{și} \quad a := 0 \operatorname{dacă} I = 0.$$

Pentru orice $n \ge l + 1$ avem

$$\sum_{i=0}^{n} \frac{2\chi_{A}(i)}{3^{i}} = a + \frac{2 \cdot 0}{3} + \sum_{i=l+1}^{n} \frac{2\chi_{A}(i)}{3^{i}} \le a + \frac{2}{3^{l+1}} \sum_{i=0}^{n-l-1} \frac{1}{3^{i}}$$
$$= a + \frac{2}{3^{l+1}} \cdot \frac{1 - \left(\frac{1}{3}\right)^{n-l}}{1 - \frac{1}{3}} < a + \frac{2}{3^{l+1}} \cdot \frac{1}{\frac{2}{3}} = a + \frac{1}{3^{l}}.$$

Rezultă că

$$\Phi(A) = \sum_{i=0}^{\infty} \frac{2\chi_A(i)}{3^i} \le a + \frac{1}{3^I}.$$

Pentru orice n > l + 1 avem

$$\sum_{i=0}^{n} \frac{2\chi_B(i)}{3^i} = a + \frac{2 \cdot 1}{3^l} + \sum_{i=l+1}^{n} \frac{2\chi_B(i)}{3^i} \ge a + \frac{2}{3^l}.$$

Aşadar,

$$\Phi(B) = \sum_{i=0}^{\infty} \frac{2\chi_B(i)}{3^i} \ge a + \frac{2}{3^I} > a + \frac{1}{3^I}.$$

Obţinem astfel că $\Phi(A) < \Phi(B)$, deci $\Phi(A) \neq \Phi(B)$.

Cum Φ este injectivă, avem că

$$(*) \quad |\mathcal{P}(\mathbb{N})| \leq \mathfrak{c}.$$

Deoarece $\mathbb Q$ este numărabilă, există o bijecție $j:\mathbb N\to\mathbb Q$. Definim funcția

$$\Psi: \mathbb{R} \to \mathcal{P}(\mathbb{N}), \quad \Psi(r) = \{n \in \mathbb{N} \mid j(n) \leq r\}.$$

Afirmația 2: Ψ este injectivă.

Demonstrație: Fie $r_1 \neq r_2$ două numere reale. Fără a restrânge generalitatea, putem presupune că $r_1 < r_2$. Deoarece $\mathbb Q$ este densă în $\mathbb R$, există $q \in \mathbb Q$ astfel încât $r_1 < q < r_2$. Cum j este bijectivă, există $m \in \mathbb N$ a.î. j(m) = q. Rezultă că $m \in \Psi(r_2)$ și $m \notin \Psi(r_1)$, demonstrând astfel că $\Psi(r_1) \neq \Psi(r_2)$.

Prin urmare,

$$(**) \quad \mathfrak{c} \leq |\mathcal{P}(\mathbb{N})|.$$

Aplicăm Teorema Cantor-Schröder-Bernstein pentru a obține, din (*) și (**), că $\mathfrak{c} = |\mathcal{P}(\mathbb{N})|$.

 \mathbb{R} nu este numărabilă.

Dem.: Aplicând Propozițiile 2.43 și 2.37.(ii), obținem că $\aleph_0 < 2^{\aleph_0} = \mathfrak{c}$, deci $\aleph_0 \neq \mathfrak{c}$.

Lema 2.45

Pentru orice numere reale a < b, c < d, |(a,b)| = |(c,d)|.

Dem.: Exercitiu.

Propoziția 2.46

Pentru orice numere reale a < b.

$$|(a,b)| = |[a,b)| = |(a,b]| = |[a,b]| = c.$$

Dem.: Exercițiu.