Assignment 2 - Program Structures & Algorithms Fall 2021

Name: Zhilue Wang

NUID: 001522973

Task

• Implement the Timer class

• Implement the InsertionSort class

• Write code to analyze insertion sort's time complexity

Conclusion

$$egin{aligned} Average \ time \ complexity = O(n^2) \ Best \ case = O(n) \ Worst \ case = O(n^2) \end{aligned}$$

Evidence

We tested the insertion sort algorithm time usage for six different size of array, with different types of array initialization method - random, ordered, partially ordered, reverse ordered. Each test was run 50 times and we calculated the mean time usage.

The size of array N is chosen using doubling method.

Below are the test results (in milliseconds):

N	1000	2000	4000	8000	16000	32000
random array	1.349	4.648	18.702	78.159	341.221	1531.445
ordered array	0.005	0.008	0.016	0.031	0.049	0.117
partially ordered array	0.602	2.444	9.344	38.983	159.053	665.519
reverse ordered array	2.342	9.217	37.424	157.718	635.131	2590.116

We can plot it in the log-log graph and use Excel to draw a regression line:

Best case

The best case scenario for insertion sort is when the input array is already a sorted array. For each element, when inserting, it will only need to compare with one element in the sorted array. As shown in the graph, the order of the regression line's formula is 0.9, which is close to linear relation. So in best case scenario the order of growth is O(n).

Average case / Worst case

The average case of insertion sort is just sorting a random array. As shown in the graph, the order of regression line's formula is around [2].

The worst case of insertion sort is to sort an reverse-ordered array. When inserting a new element to sorted array, it has to be compared to all elements. The order of worst case regression line's formula is still 2, but the coefficient of the formula is larger than average case.

-- Both average case and worst case have order of growth: $O(n^2)$

Code

Modified files:

src/main/.../util/Timer.java: implement timer class

src/test/.../util/TimerTest.java: adjust the unit test threshold

src/main/.../sort/elementary/InsertionSort.java: Implement insertion sort algorithm

New files:

src/main/.../sort/elementary/InsertionSortBenchmark.java: code for testing insertion sort time complexity

Unit tests

BenchmarkTest:

TimerTest:

(The testRepeat2 & testRepeat3 test cases cannot be passed on my PC, so I adjusted the test cases to allow larger delta)

