

Solventless Method for Determining Moisture Content of Solid Propellants

Rose Pesce-Rodriguez Rhonda Cumpton

ARL-MR-290 February 1996

DTIC QUALITY INSPECTED 4

19960212 252

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources gathering and meintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project(0704-0188), Washington, DC 20503. 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) February 1996 Final, July - August 1994 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Solventless Method for Determining Moisture Content of Solid Propellants PR: 1L161102AH43 6. AUTHOR(S) Rose Pesce-Rodriguez and Rhonda Cumpton 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Army Research Laboratory ATTN: AMSRL-WT-PC ARL-MR-290 Aberdeen Proving Ground, MD 21005-5066 9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING **AGENCY REPORT NUMBER** 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) A new method to determine moisture content of solid propellants has been developed. The method is based on mass spectrometric detection of thermally desorbed water. The main advantages of this method over existing methods is that sample preparation is very simple and no extraction with dry solvents is required. Furthermore, analysis can be performed even if only a very small quantity of a sample is available. The two main disadvantages of the method are that special instrumentation is required, and that multiple analyses must be performed to obtain representative results (since only small samples can be examined). Comparison with conventional methods of moisture analysis have not yet been performed. 14. SUBJECT TERMS 15. NUMBER OF PAGES GC-MS, moisture content, solid propellant, solventless method 16 16. PRICE CODE 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT 17. SECURITY CLASSIFICATION

OF ABSTRACT

UNCLASSIFIED

OF REPORT

OF THIS PAGE

UNCLASSIFIED

SAR

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

		Page
	LIST OF FIGURES	v
	LIST OF TABLES	v
1.	INTRODUCTION	1
2.	EXPERIMENTAL	2
2.1 2.2	Instrumentation	
3.	RESULTS	3
3.1 3.2 3.3	Instrument Calibration	5
4.	CONCLUSIONS	5
	DISTRIBUTION LIST	7

INTENTIONALLY LEFT BLANK.

LIST OF FIGURES

<u>Figure</u>		Page
1.	Schematic representation of experimental apparatus	3
2.	Gas chromatograms	4
3.	Calibration curve for moisture analysis	4

LIST OF TABLES

<u>Table</u>		Page
1.	Designation for JA2 Samples Analyzed	2
2.	Results for Moisture Analysis of JA2 Propellant	5

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

There are several methods that may be used to determine moisture content of solid propellants. Gravimetric techniques involve heating the propellant and monitoring weight loss. For single-base propellants, this is a simple matter. For double- and triple-base propellants, the presence of volatile plasticizers such as nitroglycerine (NG) and diethylene-glycol dinitrate (DEGDN) can complicate the determination. Other methods (i.e., MIL-STD-2668 and JANNAF 523.1) involve first extracting water with dry solvents, and then analyzing the extract by liquid or gas chromatography. Using these methods, extraction times can last as long as 16 hr; consumption of 50 mL of solvent per sample is not unusual. Furthermore, local environmental conditions such as high ambient humidity can make it difficult to keep solvents and glassware dry. Methods based on Karl Fisher titrations also require the use of dry solvents, reagents, and glassware. The disadvantages of these techniques are that they are time-consuming, require the use of volatile organic compounds (VOCs), and generate reactive hazardous waste.

An alternate method for moisture determination has recently been developed in response to an urgent request for analysis of JA2 samples suspected to have been exposed to excessive moisture. Conventional extraction methods could not be employed because there was neither time to dry the required solvents (MIL-STD-2868 recommends that solvents remain over molecular sieves for a minimum of two days before use) nor the local environmental conditions to keep the solvents dry (due to high ambient humidity and the absence of adequate air conditioning). To meet the suspense for the required analyses, it was decided that an alternate, solvent-free technique must be developed. This was successfully accomplished, and yielded results in a relatively short time (instrument calibration plus approximately 30 sample runs in 10 hr). In addition, the method did not require the use of VOCs and consumed only small amounts of propellant. Considering the high cost of disposal for reactive hazardous wastes, this resulted in a significant savings of both time and money.

The main disadvantages of the method are that 1) multiple analyses are required to assure representative results (since the test requires a very small sample size), and 2) the method required specialized instrumentation (e.g., a device in which materials may be desorbed from the propellant and then transferred directly into a gas chromatograph).

2. EXPERIMENTAL

- 2.1 <u>Instrumentation</u>. Moisture desorption was achieved via a CDS Model 122 Pyroprobe (coil type) connected to a heated interface chamber to the splitless injector of a Hewlett Packard GC-FTIR-MS system (Model 5890 GC, Model 5970 MSD, and Model 5965 IRD with narrow band MCT detector). The GC column used was a Quadrex capillary column (0.32 mm × 25 m; 3 µm OV-17 film). The injector temperature was 200° C. A 200° C isothermal GC program was used.
- 2.2 <u>Procedure.</u> Six JA2 samples (approximately 5 g each) were provided for chemical analysis (see Table 1 for sample description). A seventh sample of JA2 was also analyzed for comparative purposes. Using a razor blade, cross-sectional slices (<1 mm thickness) of the solid propellant were cut. Cross-sectional slices were then cut into strips (<1 mm diameter) and placed into preweighed quartz tubes containing a plug of glass wool. The glass wool was used to prevent propellant from coming out of the tube. Quartz tubes containing the propellant were then reweighed to determine propellant mass.

Table 1. Designation for JA2 Samples Analyzed

Sample	Lot No.	Designation
19 perf, Stick, Sample A	HCL94A015-002	A-19
19 perf, Stick, Sample B	HCL94A015-002	B-19
7 perf, Stick, Sample A	HCL93J014-001	A-7
7 perf, Stick, Sample B	HCL93J014-001	B-7
7 perf, Granular, Sample A	HCL93E-071425	A-G-7
7 perf, Granular, Sample B	HCL93E-071425	B-G-7
Unperforated, Stick, "STD"	RAD-PDI-002-1F	JA2-stk

The quartz tube containing the propellant was then placed within the coils of the pyroprobe heating element (see diagram in Figure 1), which was subsequently inserted into the pyroprobe interface and screwed into place. At the start of the GC run, a 150° C pulse (20-s duration) was given to the sample via the pyroprobe. It was confirmed that these conditions are sufficient for desorption of all moisture by giving a second pulse to the sample, and observing no subsequent moisture desorption. In preliminary

Figure 1. Schematic representation of experimental apparatus.

studies it was noted that if the sample size was too large (i.e., above 30 mg) or the propellant slices were packed too closely in the tube, it was difficult to desorb all the moisture with just one pulse.

For preparation of a calibration curve, aliquots $(0.1-0.8 \mu L)$ of water were transferred to a plug of glass wool in a quartz tube, and then analyzed as previously described.

Gas chromatograms, total ion chromatograms (TICs) (based on MS response), and total response chromatograms (TRCs) (based on IR response) were collected. For the purpose of this analysis, only the TICs were necessary. Selected ion chromatograms (SICs) were also obtained to distinguish between response due to desorbed water and plasticizer (the peaks overlap with one another). Integration of the m/z = 18 SIC yielded the peak area for water. An example of a TIC and SIC are given in Figure 2.

3. RESULTS

3.1 <u>Instrument Calibration</u>. The calibration curve obtained by analysis of known volumes of water is given in Figure 3 ($R^2 = 0.995$).

(a) Total Ion Chromatogram

(b) Selected Ion Chromatogram (m/z = 18, water)

Figure 2. Gas chromatograms.

Figure 3. Calibration curve for moisture analysis.

3.2 Moisture Content. Table 2 gives the results for moisture analysis. Given that the specifications for JA2 propellant call for 0.5 ± 0.3 weight-percent moisture, it is concluded that all seven samples fall within the limit of 0.2-0.8 weight-percent.

Table 2. Results for Moisture Analysis of JA2 Propellant

Sample ID	Peak Area	Mass	Water	Water
	(arb units)	(mg)	(µL)	(weight-percent)
A-19	2.85	19.0	0.127	0.67
A-19	2.17	16.3	0.104	0.64
B-19	2.53	19.7	0.116	0.59
B-19	3.35	24.3	0.144	0.59
A-7	3.23	24.5	0.140	0.57
A-7	3.83	27.4	0.160	0.58
B-7	3.50	24.0	0.148	0.62
B-7	2.94	19.3	0.126	0.67
A-G	2.82	29.2	0.126	0.43
A-G	3.24	26.7	0.140	0.52
B-G	2.43	17.5	0.113	0.64
B-G	1.55	11.2	0.081	0.74
JA2-Stk	1.71	13.4	0.088	0.66
JA2-Stk	2.23	20.0	0.106	0.53

3.3 <u>JA2 Soaked in Water</u>. To confirm that JA2 grains would not absorb excessive moisture even if soaked in water, a stick of 7-perf stick (Sample A) was soaked overnight at room temperature in filtered water. Prior to analysis, the stick was patted dry with a paper towel and then analyzed as previously described. No significant increase in moisture level was observed.

4. CONCLUSIONS

To meet the deadline on a "short-suspense" analysis of JA2 propellant, a new solvent-free analytical method for moisture determination was developed. Although the method was not validated by comparison with traditional methods, it did provide what appear to be reasonable results for several JA2 samples. The method is quick, consumes little propellant, and does not require the use of solvents. However, it does

require special instrumentation and multiple analyses (due to limitations on sample size). It is recommended that this method be run side-by-side with traditional methods to confirm that its results are reliable and to demonstrate applicability to other propellant samples.

NO. OF COPIES ORGANIZATION

- 2 ADMINISTRATOR
 DEFENSE TECHNICAL INFO CTR
 ATTN DTIC DDA
 CAMERON STATION
 ALEXANDRIA VA 22304-6145
- 1 DIRECTOR
 US ARMY RESEARCH LAB
 ATTN AMSRL OP SD TA
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 3 DIRECTOR
 US ARMY RESEARCH LAB
 ATTN AMSRL OP SD TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 1 DIRECTOR
 US ARMY RESEARCH LAB
 ATTN AMSRL OP SD TP
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

5 DIR USARL ATTN AMSRL OP AP L (305)

NO. OF		NO. OF	
COPIES	ORGANIZATION	COPIES	ORGANIZATION
1	HQDA	1	OFFICE OF NAVAL RESEARCH
	ATTN SARD TT DR F MILTON		DEPARTMENT OF THE NAVY
	PENTAGON		ATTN R S MILLER CODE 432
	WASHINGTON DC 20310-0103		800 N QUINCY STREET
			ARLINGTON VA 22217
1	HQDA		
	ATTN SARD TT MR J APPEL	1	COMMANDER
	PENTAGON		NAVAL AIR SYSTEMS COMMAND
	WASHINGTON DC 20310-0103		ATTN J RAMNARACE AIR 54111C
			WASHINGTON DC 20360
1	HQDA OASA RDA		
	ATTN DR C H CHURCH	2	COMMANDER
	PENTAGON ROOM 3E486		NAVAL SURFACE WARFARE CENTER
	WASHINGTON DC 20310-0103		ATTN R BERNECKER R 13
			G B WILMOT R 16
4	COMMANDER		SILVER SPRING MD 20903-5000
	US ARMY RESEARCH OFFICE		
	ATTN R GHIRARDELLI	5	COMMANDER
	D MANN		NAVAL RESEARCH LABORATORY
	R SINGLETON		ATTN M C LIN
	R SHAW		J MCDONALD
	P O BOX 12211		E ORAN
	RSCH TRNGLE PK NC 27709-2211		J SHNUR
			R J DOYLE CODE 6110
1	DIRECTOR		WASHINGTON DC 20375
	ARMY RESEARCH OFFICE		
	ATTN AMXRO RT IP LIB SERVICES	2	COMMANDER
	P O BOX 12211		NAVAL WEAPONS CENTER
	RSCH TRNGLE PK NC 27709-2211		ATTN T BOGGS CODE 388
			T PARR CODE 3895
2	COMMANDER		CHINA LAKE CA 93555-6001
	US ARMY ARDEC		·
	ATTN SMCAR AEE B D S DOWNS	1	SUPERINTENDENT
	PCTNY ARSNL NJ 07806-5000		NAVAL POSTGRADUATE SCHOOL
			DEPT OF AERONAUTICS
2	COMMANDER		ATTN D W NETZER
	US ARMY ARDEC		MONTEREY CA 93940
	ATTN SMCAR AEE J A LANNON		
	PCTNY ARSNL NJ 07806-5000	3	AL LSCF
			ATTN R CORLEY
1	COMMANDER		R GEISLER
	US ARMY ARDEC		J LEVINE
	ATTN SMCAR AEE BR L HARRIS		EDWARDS AFB CA 93523-5000
	PCTNY ARSNL NJ 07806-5000		
		1	AFOSR
2	COMMANDER		ATTN J M TISHKOFF
	US ARMY MISSILE COMMAND		BOLLING AIR FORCE BASE
	ATTN AMSMI RD PR E A R MAYKUT		WASHINGTON DC 20332
	AMSMI RD PR P R BETTS		
	DEDCTONE ADCENIAL AL		

REDSTONE ARSENAL AL

NO. OF		NO. OF	
	ORGANIZATION		ORGANIZATION
1	OSD SDIO IST ATTN L CAVENY PENTAGON WASHINGTON DC 20301-7100	3	DIRECTOR SANDIA NATIONAL LABORATORIES DIVISION 8354 ATTN S JOHNSTON
1	COMMANDANT USAFAS ATTN ATSF TSM CN		P MATTERN D STEPHENSON LIVERMORE CA 94550
	FORT SILL OK 73503-5600	1	BRIGHAM YOUNG UNIVERSITY DEPT OF CHEMICAL ENGINEERING
1	UNIV OF DAYTON RSCH INSTITUTE ATTN D CAMPBELL AL PAP		ATTN M W BECKSTEAD PROVO UT 84058
	EDWARDS AFB CA 93523	1	CALIFORNIA INSTITUTE OF TECH JET PROPULSION LABORATORY
1	NASA LANGLEY RESEARCH CENTER ATTN G B NORTHAM MS 168 LANGLEY STATION		ATTN L STRAND MS 125 224 4800 OAK GROVE DRIVE PASADENA CA 91109
	HAMPTON VA 23365	1	CALIFORNIA INSTITUTE OF TECHNOLOGY ATTN F E C CULICK MC 301 46
4	NATIONAL BUREAU OF STANDARDS US DEPARTMENT OF COMMERCE ATTN J HASTIE		204 KARMAN LAB PASADENA CA 91125
	M JACOX T KASHIWAGI H SEMERJIAN WASHINGTON DC 20234	1	UNIVERSITY OF CALIFORNIA LOS ALAMOS SCIENTIFIC LAB P O BOX 1663 MAIL STOP B216 LOS ALAMOS NM 87545
2	DIRECTOR LAWRENCE LIVERMORE NATIONAL LAB ATTN C WESTBROOK W TAO MS L 282 P O BOX 808 LIVERMORE CA 94550	1	UNIVERSITY OF CALIFORNIA BERKELEY CHEMISTRY DEPARMENT ATTN C BRADLEY MOORE 211 LEWIS HALL BERKELEY CA 94720
1	DIRECTOR LOS ALAMOS NATIONAL LAB ATTN B NICHOLS T7 MS B284 P O BOX 1663	1	UNIVERSITY OF CALIFORNIA SAN DIEGO ATTN F A WILLIAMS AMES B010 LA JOLLA CA 92093
2	LOS ALAMOS NM 87545 PRINCETON COMBUSTION RESEARCH LABORATORIES INC ATTN N A MESSINA	2	UNIV OF CALIFORNIA SANTA BARBARA QUANTUM INSTITUTE ATTN K SCHOFIELD M STEINBERG SANTA BARBARA CA 93106
	M SUMMERFIELD PRINCETON CORPORATE PLAZA BLDG IV SUITE 119 11 DEERPARK DRIVE MONMOUTH JUNCTION NJ 08852	1	UNIV OF COLORADO AT BOULDER ENGINEERING CENTER ATTN J DAILY CAMPUS BOX 427 BOULDER CO 80309-0427

NO. OF NO. OF COPIES ORGANIZATION COPIES ORGANIZATION PENNSYLVANIA STATE UNIVERSITY UNIV OF SOUTHERN CALIFORNIA DEPT OF MECHANICAL ENGINEERING **DEPT OF CHEMISTRY** ATTN K KUO ATTN R BEAUDET M MICCI S BENSON **C WITTIG** S THYNELL LOS ANGELES CA 90007 V YANG **UNIVERSITY PARK PA 16802** CORNELL UNIVERSITY 1 DEPARTMENT OF CHEMISTRY PRINCETON UNIVERSITY FORRESTAL CAMPUS LIBRARY ATTN T A COOL ATTN K BREZINSKY BAKER LABORATORY I GLASSMAN ITHACA NY 14853 P O BOX 710 PRINCETON NJ 08540 UNIVERSITY OF DELAWARE CHEMISTRY DEPARTMENT PURDUE UNIVERSITY 1 ATTN T BRILL SCHL OF AERONAUTICS & ASTRONAUTICS **NEWARK DE 19711** ATTN J R OSBORN **GRISSOM HALL** 1 UNIVERSITY OF FLORIDA **WEST LAFAYETTE IN 47906 DEPT OF CHEMISTRY** ATTN J WINEFORDNER PURDUE UNIVERSITY **GAINESVILLE FL 32611** 1 DEPARTMENT OF CHEMISTRY ATTN E GRANT GEORGIA INSTITUTE OF TECHNOLOGY **WEST LAFAYETTE IN 47906** SCHOOL OF AEROSPACE ENGINEERING ATTN E PRICE PURDUE UNIVERSITY 2 W C STRAHLE SCHL OF MECHANICAL ENGNRNG **B T ZINN** ATTN N M LAURENDEAU ATLANTA GA 30332 S N B MURTHY UNIVERSITY OF ILLINOIS TSPC CHAFFEE HALL 1 **WEST LAFAYETTE IN 47906** DEPT OF MECH ENG ATTN H KRIER RENSSELAER POLYTECHNIC INST 144MEB 1206 W GREEN ST DEPT OF CHEMICAL ENGINEERING URBANA IL 61801 ATTN A FONTUN TROY NY 12181 THE JOHNS HOPKINS UNIV CPIA ATTN T W CHRISTIAN STANFORD UNIVERSITY 1 10630 LITTLE PATUXENT PKWY DEPT OF MECHANICAL ENGINEERING SUITE 202 ATTN R HANSON COLUMBIA MD 21044-3200 STANFORD CA 94305 UNIVERSITY OF MICHIGAN 1 UNIVERSITY OF TEXAS GAS DYNAMICS LAB DEPT OF CHEMISTRY ATTN G M FAETH ATTN W GARDINER AEROSPACE ENGINEERING BLDG AUSTIN TX 78712 ANN ARBOR MI 48109-2140 VA POLYTECH INST AND STATE UNIV UNIVERSITY OF MINNESOTA DEPT OF MECHANICAL ENGINEERING ATTN J A SCHETZ **BLACKSBURG VA 24061** ATTN E FLETCHER

MINNEAPOLIS MN 55455

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	ORGANIZATION
1	APPLIED COMBUSTION TECHNOLOGY INC ATTN A M VARNEY P O BOX 607885 ORLANDO FL 32860	1	HERCULES INC ATTN R V CARTWRIGHT 100 HOWARD BLVD KENVIL NJ 07847
2	APPLIED MECHANICS REVIEWS ASME ATTN R E WHITE & A B WENZEL 345 E 47TH STREET NEW YORK NY 10017	1	ALLIANT TECHSYSTEMS INC MARINE SYSTEMS GROUP ATTN D E BRODEN MS MN50 2000 600 2ND STREET NE HOPKINS MN 55343
1	TEXTRON DEFENSE SYSTEMS ATTN A PATRICK 2385 REVERE BEACH PARKWAY EVERETT MA 02149-5900	1	ALLIANT TECHSYSTEMS INC ATTN R E TOMPKINS MN 11 2720 600 SECOND ST NORTH HOPKINS MN 55343
1	BATTELLE TWSTIAC 505 KING AVENUE COLUMBUS OH 43201-2693	1	IBM CORPORATION RESEARCH DIVISION ATTN A C TAM 5600 COTTLE ROAD
1	COHEN PROFESSIONAL SERVICES ATTN N S COHEN 141 CHANNING STREET REDLANDS CA 92373	1	SAN JOSE CA 95193 IIT RESEARCH INSTITUTE ATTN R F REMALY 10 WEST 35TH STREET
1	EXXON RESEARCH & ENG CO ATTN A DEAN ROUTE 22E ANNANDALE NJ 08801	1	CHICAGO IL 60616 LOCKHEED MISSILES & SPACE CO ATTN GEORGE LO 3251 HANOVER STREET
1	GENERAL APPLIED SCIENCE LABS INC 77 RAYNOR AVENUE RONKONKAMA NY 11779-6649	1	DEPT 52 35 B204 2 PALO ALTO CA 94304 OLIN ORDNANCE
1	GENERAL ELECTRIC ORDNANCE SYSTEMS ATTN J MANDZY 100 PLASTICS AVENUE PITTSFIELD MA 01203	1	ATTN V MCDONALD LIBRARY P O BOX 222 ST MARKS FL 32355-0222 PAUL GOUGH ASSOCIATES INC
1	GENERAL MOTORS RSCH LABS PHYSICAL CHEMISTRY DEPARTMENT ATTN T SLOANE WARREN MI 48090-9055	-	ATTN P S GOUGH 1048 SOUTH STREET PORTSMOUTH NH 03801-5423
2	HERCULES INC ATTN W B WALKUP E A YOUNT P O BOX 210 ROCKET CENTER WV 26726	1	HUGHES AIRCRAFT COMPANY ATTN T E WARD PO BOX 11337 TUCSON AZ 85734-1337

NO. OF COPIES ORGANIZATION

- 1 ROCKWELL INTERNATIONAL CORP ROCKETDYNE DIVISION ATTN J E FLANAGAN HB02 6633 CANOGA AVENUE CANOGA PARK CA 91304
- 1 SCIENCE APPLICATIONS INC ATTN R B EDELMAN 23146 CUMORAH CREST WOODLAND HILLS CA 91364
- 3 SRI INTERNATIONAL
 ATTN G SMITH
 D CROSLEY
 D GOLDEN
 333 RAVENSWOOD AVENUE
 MENLO PARK CA 94025
- 1 STEVENS INSTITUTE OF TECH
 DAVIDSON LABORATORY
 ATTN R MCALEVY III
 HOBOKEN NJ 07030
- 1 SVERDRUP TECHNOLOGY INC LERC GROUP ATTN R J LOCKE MS SVR 2 2001 AEROSPACE PARKWAY BROOK PARK OH 44142
- 1 SVERDRUP TECHNOLOGY INC ATTN J DEUR 2001 AEROSPACE PARKWAY BROOK PARK OH 44142
- 3 THIOKOL CORPORATION
 ELKTON DIVISION
 ATTN R BIDDLE
 R WILLER
 TECH LIB
 P O BOX 241
 ELKTON MD 21921
- 3 THIOKOL CORPORATION
 WASATCH DIVISION
 ATTN S J BENNETT
 P O BOX 524
 BRIGHAM CITY UT 84302
- 1 UNITED TECHNOLOGIES RSCH CENTER ATTN A C ECKBRETH EAST HARTFORD CT 06108

NO. OF COPIES ORGANIZATION

- 1 UNITED TECHNOLOGIES CORP CHEMICAL SYSTEMS DIVISION ATTN R R MILLER P O BOX 49028 SAN JOSE CA 95161-9028
- 1 UNIVERSAL PROPULSION COMPANY ATTN H J MCSPADDEN 25401 NORTH CENTRAL AVENUE PHOENIX AZ 85027-7837
- 1 VERITAY TECHNOLOGY INC ATTN E B FISHER 4845 MILLERSPORT HIGHWAY EAST AMHERST NY 14051-0305
- 1 FREEDMAN ASSOCIATES
 ATTN E FREEDMAN
 2411 DIANA ROAD
 BALTIMORE MD 21209-1525
- 3 ALLIANT TECHSYSTEMS
 ATTN C CANDLAND
 L OSGOOD
 R BECKER
 600 SECOND ST NE
 HOPKINS MN 55343
- 1 US ARMY BENET LABORATORY
 ATTN SAM SOPOK
 SMCAR CCB B
 WATERVLIET NY 12189

NO. OF

COPIES ORGANIZATION

ABERDEEN PROVING GROUND

36 DIR USARL

ATTN: AMSRL-WT-P, A HORST

AMSRL-WT-PC,

R A FIFER

G F ADAMS

W R ANDERSON

R A BEYER

S W BUNTE

C F CHABALOWSKI

K P MCNEILL-BOONSTOPPEL

A COHEN

R CUMPTON

R DANIEL

D DEVYNCK

N F FELL

B E FORCH

J M HEIMERL

A J KOTLAR

M R MANAA

W F MCBRATNEY

K L MCNESBY

S V MEDLIN

M S MILLER

A W MIZIOLEK

S H MODIANO

J B MORRIS

J E NEWBERRY

S A NEWTON

R A PESCE-RODRIGUEZ

B M RICE

R C SAUSA

M A SCHROEDER

J A VANDERHOFF

M WENSING

A WHREN

J M WIDDER

C WILLIAMSON

AMSRL-CI-CA, R PATEL

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers

to the items/questions	s below will aid us in our efforts.		
1. ARL Report Num	ber ARL-MR-290	Date of ReportFebruary	1996
2. Date Report Rece	ived		
-	atisfy a need? (Comment on purpose, re		•
4. Specifically, how	is the report being used? (Information	source, design data, procedure, so	ource of ideas, etc.)
	on in this report led to any quantitative sa es achieved, etc? If so, please elaborate		
	nts. What do you think should be chal content, format, etc.)	•	•
			·····
	Organization		
CURRENT	Name		
ADDRESS	Street or P.O. Box No.		
	City, State, Zip Code		
7. If indicating a Cha	ange of Address or Address Correction, pess below.	lease provide the Current or Con	rect address above and the
	Organization		
OLD	Name		
ADDRESS	Street or P.O. Box No.		
	City, State, Zip Code		
	(Remove this sheet, fold as indi	cated, tape closed, and mail.)	

(DO NOT STAPLE)