(APPENDIX)

Knowledge Graph Structure as Prompt: Improving Small Language Models Capabilities for Knowledge-based Causal Discovery

No Author Given

No Institute Given

The subsequent sections constitutes the appendix.

A Baseline (GPT-3.5-turbo-instruct) hyperparameters

In this work, we used OpenAI¹ API with gpt-3.5-turbo-instruct engine. In general we assume only query access to the LLMs (i.e., no gradients, no log probabilities). Table 1 summarizes the hyperparameter values for the ICL model experiment with gpt-3.5-turbo-instruct.

Table 1. Hyperparameter values.

hyperparameter	value
temperature	0.7
max token	$100\sim400$
top p	1
frequency penalty	0
presence penalty	0

B MLM hyperparameters settings

We used the biomed_roberta_base² for all biomedical datasets (COMAGC, GENEC, and DDI), and roberta-base³ for the SEMEVAL dataset. We used both models from the huggingface models library. All models are implemented in Python with Pytorch⁴ and Transfomer⁵ library. The random seed of 203 is set for all experiments. Table 2 summarizes the hyperparameter values for fine-tuning the model experiments.

¹ https://platform.openai.com/

² https://huggingface.co/allenai/biomed_roberta_base

³ https://huggingface.co/FacebookAI/roberta-base

⁴ https://pytorch.org/

⁵ https://huggingface.co/docs/transformers/en/index

 Table 2. MLM hyperparameter values.

hyperparameter	COMAGC	GENEC	DDI	SEMEVAL
batch size	8	8	8	8
max length	256	256	256	256
optimizer	Adam	Adam	Adam	Adam
lr	3e-5	3e-5	3e-5	3e-5
gradient acc. steps	4	4	4	4
adam eps.	1e-06	1e-06	1e-06	1e-06
warmup proportion	0.06	0.06	0.06	0.06
weight decay	0.01	0.01	0.01	0.01
max grad norm	1	1	1	1
epoch	30	30	30	20

C CLM/decoder-only hyperparameters settings

In all evaluation experiments, the bloomz-560m⁶ model from the huggingface models library were used for all datasets. All models are implemented in Python with Pytorch⁷ and Transfomer⁸ library. The random seed of 203 is set for all experiments. Table 3 summarizes the hyperparameter values for fine-tuning the bloomz-560m model experiments.

Table 3. bloomz-560m hyperparameter values.

hyperparameter	COMAGC	GENEC	DDI	SEMEVAL
batch size	4	4	4	4
max length	256	256	256	256
optimizer	AdamW	AdamW	AdamW	AdamW
lr	3e-5	3e-5	3e-5	3e-5
gradient acc. steps	4	4	4	4
warmup proportion	0.06	0.06	0.06	0.06
max grad norm	1	1	1	1
epoch	30	10	15	20

D Seq2SeqLM hyperparameters settings

In all evaluation experiments, the ${\tt t5-base}^9$ model from the huggingface models library were used for training all datasets. All models are implemented in Python

⁶ https://huggingface.co/bigscience/bloomz-560m

⁷ https://pytorch.org/

⁸ https://huggingface.co/docs/transformers/en/index

⁹ https://huggingface.co/google-t5/t5-base

with Pytorch¹⁰ and Transfomer¹¹ library. The random seed of 203 is set for all experiments. Table 4 summarizes the hyperparameter values for fine-tuning the t5-base model experiments.

hyperparameter	COMAGC	GENEC	DDI	SEMEVAL
batch size	8	4	8	8
max length	256	256	256	256
optimizer	\mathtt{AdamW}	${\tt AdamW}$	${\tt AdamW}$	${\tt AdamW}$
lr	3e-3	3e-4	3e-4	3e-4
gradient acc. steps	4	4	4	4
warmup proportion	0.06	0.06	0.06	0.06
max grad norm	1	1	1	1
epoch	30	20	20	20

Table 4. t5-base hyperparameter values.

E Querying the KGs

We access the **Hetionet** KG through its official public Neo4j API¹², with neo4j.v1 Python library. Neo4j¹³ is a third-party graph database that supports the Cypher language for querying and visualizing a knowledge graph. Hetionet also provides a public Neo4j browser app¹⁴.

As for the **Wikidata**, we access the KG through its official public SPARQL endpoint¹⁵, with SPARQLWrapper Python library. We employ the official wikidata API (e.g., wbsearchentities and wbgetentities functions) for extracting the Wikidata IDs for all variable pairs.

On Hetionet, we query up to 4 hops for extracting the KGs structures. However, for Wikidata, we query up to one hops to extract the KG structures, constrained by its huge sizes. To train a robust models that generalize well given any KG structures, we opted to not optimize the content from the KG structures to be included in the prompt. For instance, when there are more than m metapaths for a pair, we randomly select m of them, m being a hyperparameter of the number of metapaths to be included as prompt.

In all experiments, we include up to the following: 4 neighbors nodes, 5 common neighbors nodes, and 1 metapath, to be included in the prompt.

¹⁰ https://pytorch.org/

¹¹ https://huggingface.co/docs/transformers/en/index

¹² bolt://neo4j.het.io

¹³ https://neo4j.com/

¹⁴ https://neo4j.het.io/browser/

¹⁵ https://query.wikidata.org/sparql

4 No Author Given

F Prompt hyperparameters and example

(to-be-added)

References