

EMT Bootcamp for BES IBR Studies
Part 2: System Impact Assessment
9/14/23

An initiative spearheaded by the Solar Energy Technologies Office and the Wind Energy Technologies Office

Thomas.McDermott@pnnl.gov

System-Level Session Agenda

- Course Completion Certificates from NERC
- Downloading Example Files
- NERC Guidelines for Use of EMT Models
 - Link: https://www.nerc.com/comm/RSTC/Pages/EMTTF.aspx and
 - https://www.nerc.com/comm/RSTC Reliability Guidelines/Reliability Guideline-EMT Modeling and Simulations.pdf
 - Comparison to IEEE P2800.2 Subgroup 3 Tests under Development
- Workflow Management for System Impact Studies
 - PSSE File Inputs
 - Common Information Model, IEC 61970-301 (network) and -302 (dynamics)
 - Dynamic Link Library (DLL) Models
- Technical Discussion: average, switching, and DC bus modeling
- Hands-on Sessions:
 - This meeting ends for all at 2:30 Eastern time; please join your tool-specific meeting then
 - Running IBR study cases in the IEEE 39-bus system
 - Tool-specific automation examples
 - Repository of Materials: https://github.com/pnnl/i2x/tree/develop/emt-bootcamp

Course Completion Certificates for 4-8 Hours.

- 1. Download: https://github.com/pnnl/i2x/blob/develop/emt-bootcamp/PDH_Hours.xlsx
- 2. Complete the highlighted cells:

- 3. Email the xlsx file to Thomas.McDermott@pnnl.gov by 9/22/2023
- 4. You will receive an e-signed certificate from Ryan Quint of NERC
- 5. It's your responsibility to determine suitability for any state PE licensing requirements

EMT Modeling Adoption Visualized in Stages

EMT Modeling Adoption Visualized in Stages

Performance Tests

& plant model

Unit Model Validation

EMT Modeling Visualized by Functional Entities

Recommended EMT Model Requirements

- Establish EMT modeling requirements per FAC-002 for all new IBR resources
- Create a "checklist" of EMT model requirements for GO and equipment manufacturers
- Require high quality EMT models as a prerequisite of interconnection
- Require the EMT models accurately represents all pertinent controls, and protections that could affect the electrical output of the facility during and after grid disturbances
- Require all submitted EMT models include
 - Attestations by the equipment manufacturers and
 - Attestations by GO that aggregate model represents the entire plant and includes site-specific models, settings, protections, and controls
- Include change management requirements and protocols regarding how changes should be reflected in EMT models by the GO
- Clearly define the purview and duration of EMT simulations

Chapter 2: Principles of Model Quality

Chapter 2: Model Quality Verification

Chapter 2: Model Quality Verification Processes

N SIC

Chapter 4: EMT Study Use Cases

Chapter 5 and Appendices

ing Positive Sequence Dynamic Models against the EMT Model

for Future EMT Study Needs
y and Use of IEEE 2800 Guidance

: EMT Model Terminology

sus Equipment Specific Models
Specific **Model Types**

Other Relevant Topics

ispecific **Model Types** nt EMT Models

" EMT Models
e" EMT Models

d Aggregate FMT Modeling

Key Takeaways

ry close EMT modeling knowledge gaps oundation of knowledge for new modeling requirements and practices o make quality-vetted EMT models available to TPs and PCs for the purposes of studies – interconnection studies per FAC-002 and planning assessments

ry close current gaps between interconnection studies and installed

EMTTF Supporting EMT Adoption Across NA

Upcoming Events

Stage 5

ing Boot Camps (Virtual) y U.S. Department of Er

1 – 3 pm Eastern

Stage 2

Energy	/ interconnection innovation e-xchange (i2x) and NEKC
	Session

Time

Pre-session

Stage 4

Boot Camp 1: Individual IBR Plant Performance Assessment 1 – 5 pm Eastern 2023 1 – 5 pm Eastern Boot Camp 2: System Impact Assessment

Stage 3

Boot Camp 1 Focus Boot Camp 2 Focus

tic fault simulations applied to a strong grid.

onditions don't change ities removed from service

$Z_{grid} = 10\angle 85^{\circ} = 0.8716 + j9.9619$	
$L_{grid} = 9.9619 / 377 = 0.0264$	

ases	Retained Voltage	Lf [H]
CG	80%	0.1057
CG	50%	0.0264
CG	25%	0.0088
CG	1%	0.0001
	80%	0.1057
	50%	0.0264
	25%	0.0088
	1%	0.0001

del testing framework on a weak grid; IEEE P2800.2 emplates testing at SCR = 2.5, details in D0.5, clause 7.

itialization, undervoltage, and control step tests are

ed with IBR control references and fault parameters.
eat-start tests to initialize *from zero* in 10s, remain stable for 10s

inverter continuous rating (ICR) and P_{min} , 7 variations each: $V_{rof}=1$; $Q_{rof}=[0.3287, 0, -0.3287]$; $pf_{rof}=[0.95, 1.0, -0.95]$

endervoltage ride-through tests, fault duration=0.16s, all at P=ICR exed Q values of 0.3287, 0, -0.3287 pure fault types [3\phi sag to 50% voltage, 3\phig, 1\phig, 2\phig, 2\phig, 2\phig] introl reference change tests plotted below

grid overvoltage, frequency change, and angle jump implemented with controlled grid sources.

ervoltage ride-through tests at P=ICR and 3 fixed Q values: 0, +0.3287, -0.3287

cuit ratio (SCR) ramp-down tests transition between ces during faults at 5-second intervals.

use 7.3.5.1.2 Informational Tests expected until SCR=2.5

xpected until 3CK-2.5						
SCR	X @ 230 kV					
20	26.45					
10	52.90					
5	105.80					
4	132.25					
3	176.33					
2.5	211.60					
2	264.50					
1.5	352.67					

529.00

This test is simulated manually, with sequenced faults and

ng NERC EMT Task Force and IEEE P2800.2 emphases.

mphasis nance of the hardware and controls to IEEE 2800-2022 requirements to match unit and plant commission tests, use in design evaluations

Task Force Emphasis includes P2800.2, plus
h EMT modeling and IBR performance criteria, including ride-through, for

gineers build and check models, organize simulations, yze the results.

s can help build the balance-of-system model for EMT.

st commercial EMT tools can import from PSSE files:

- positive sequence network bus and branch data for power flow

- zero-sequence and negative-sequence data for short circuit solution

dynamics data (machines, exciters, governors, stabilizers, IBR)

emember: e may be some gaps in data for controls, non-linearities, etc.

bus locations for visualization

ual edits to the EMT model files will be decoupled from the original

Information Model (CIM) has been used to maintain ange bulk electric system models, including dynamics.

represent line impedances and coupling in detail; ced distribution system models have been exchanged.

-302:2018 (CIM Dynamics) already supported machines.

ewable models were added for 61970-302:2022

els were added to IEC 61970-302:2022 and IEEE 1547.2 (in plution). These models support EMT simulation of DER.

Link Library (DLL) real-code model interfaces were ed by a joint IEEE AMPS / Cigre B4.82 task force.

presentations: http://www.electranix.com/ieee-pes-tass-realcodewg/

models use energy-conserving, controlled sources to the reference phase voltages.

sources:

odulation indices:

A

$$\downarrow I_A$$
 $\downarrow I_B$
 $\downarrow I_B$

DC current source:

Check power balance:

g (detailed) models are driven by the same reference or modulation indices, as the average models.

nodeling may be necessary to represent control system s and protective functions accurately.

nt Links and Instructions

s://github.com/pnnl/i2x/issues/16

eting now "ends for all"

pin your tool-specific meeting from 2:30 – 5:00 Eastern time
t meeting will be on a separate invitation that you should have received
ons, models, slides, videos, and other material:
github.com/pnnl/i2x/tree/develop/emt-bootcamp
uestions about software operation to your tool vendor
estions about the bootcamp materials here:

may benefit from the experience of others this way