CE 784: Machine Learning and Data Analytics for Civil Engineering Applications Syllabus

Objectives: The objective of this course is to provide the students with the introduction of machine learning (ML) and large-scale data analytics tools with their applications in civil engineering. The course will emphasize on 1) traditional supervised algorithms such as support vector machines, 2) traditional unsupervised machine learning algorithms such as k-means clustering, 3) deep learning algorithms such as convolution neural networks, 4) fundamentals of tools used to handle large-scale data such as map-reduce, and 5) visualizing large scale data-bases. Fundamentals of these algorithms and tools and their applications in different real-world problems related to civil engineering will be covered along with a course project.

Pre-Requisites: Basic Probability and Statistics, Linear Algebra, Basic Programming Skills in Python

Course Contents:

S. No.	Broad Title	Topics	No. of
			lectures
1.	Introduction and	Introduction, Historical context, Necessities, ML in	4
	Background	modern civil engineering, Real-world application	
		examples. Recapitulation of linear regression. Logistic	
2	Challey Cymanicad	regression	6
2.	Shallow Supervised Algorithms	K-Nearest Neighbor, Neural Networks Learning, Backpropagation, Support Vector Machines,	б
	Algoritims	Applications to structural damage detection, soil	
		classification, etc.	
3.	Unsupervised Clustering	Hierarchical clustering, K-means clustering, Density	3
•	Charactering	based clustering. Applications on transportation mode	
		inference, level of service of roads, etc.	
4.	Convolutional Neural	Introduction to ConvNets, activation functions, hyper-	9
	Networks	parameter tuning, dropout, batch normalization.	
		Applications to camera-based classification and	
		object detection related to structural health	
		monitoring, vehicle detection, pavement distress	
_	T 1 10 6	detection, etc.	
5.	Tools and Software	Data Visualization tools such as Tableau, Power Bl	2
6.	Recurrent Neural	and Deep learning tools such as pytorch, keras, etc. Recurrent Neural Networks, Long-Short Term	4
0.	Networks	Memory. Applications to traffic state (speed, volume)	4
	Networks	prediction, soil strength prediction, rainfall-runoff	
		modelling, etc.	
7.	Generative Models	Variational Autoencoder, Generative Adversarial	3
		Networks. Applications to sensor data generation and	
		imputation such as traffic sensors, fault diagnostics in	
		structural health monitoring, etc.	
8.	Hadoop Map-Reduce	Map-Reduce fundamentals (key-value), interface,	9
	and Spark	algorithms (matrix multiplication, sorting, etc.),	
		Apache Pig, Hive, Spark Fundamentals, RDD, Spark	
		Streaming. Applications to large-scale traffic trajectory	
		data analysis, building information modelling in construction industry, etc.	
9.	Project*	Discussion and presentation of course project	2
J.	1 10,000	biocassion and presentation of course project	_

^{* 8-}week long course project where students will apply the tools/algorithms covered in the course on a topic of their choice of interest.

Recommended Books:

Textbooks: None Reference Books:

- a. "The Elements of Statistical Learning: Data Mining, Inference and Prediction", *Trevor Hastie, Robert Tibshirani, Jerome Friedman*, Springer
- b. "Pattern Recognition and Machine Learning", Christopher M. Bishop, Springer
- c. "Deep Learning", Ian Goodfellow, Yoshua Benjio, Aaron Courville, MIT Press
- d. "Hadoop: The Definitive Guide (4th Edition)", Tom White, O'Reilly Media
- e. "Learning Spark: Lightning Fast Big Data Analysis", *Matei Zaharia, Holden Karau, Andy Konwinski, Patrick Wendell*, O'Reilly Media
- f. "Hadoop in Practice", Alex Holmes, Manning Publications
- g. Relevant technical reports, journal, and conference publications
- h. Other online resources available