Operációs rendszerek

ELTE IK.

Dr. Illés Zoltán

zoltan.illes@elte.hu

Mi történt a múlt héten...

- Operációs rendszerek kialakulása
 - Sz.gép Op.rendszer generációk
- Op. Rendszer fogalma
- Fogalmak:
 - Fájlok, könyvtárak, processzek
- Rendszerhívások, rendszer struktúrák
- Rendszer struktúrák
- Háttértárak
- RAID

Mi következik ma...

- Fájlok
 - Fájltípusok
- Könyvtárak
 - Könyvtárszerkezetek
- Fájlrendszerek
- Fájlrendszer kérés ütemezések
- Biztonsági kérdések

) ...

Fájlrendszer

- Fájl: adatok egy logikai csoportja, névvel egyéb paraméterekkel ellátva.
- Könyvtár: fájlok (könyvtárak) logikai csoportosítása.
- Fájlrendszer: módszer, a fizikai lemezünkön, kötetünkön a fájlok és könyvtárak elhelyezés rendszerének kialakítására.

Fájlok

- A fájl az információtárolás egysége.
- Névvel hivatkozunk rá.
- Jellemzően egy lemezen helyezkedik el.
 - De általánosan az adathalmaz, adatfolyam akár képernyőhöz, billentyűzethez is köthető.
- A lemezen általában 3 féle fájl, állomány található:
 - Rendes felhasználói állomány.
 - Ideiglenes állomány
 - Adminisztratív állomány. Ez a működéshez szükséges, általában rejtett.

Fájl jellemzők

- Fájlnév: Karaktersorozat
 - Operációs rendszer függvénye, hogy milyen a szerkezete(hossza, megengedett karakterek, kisnagybetű különbözőség)
- Egyéb attribútumok (információ)
 - Mérete, tulajdonosa, utolsó módosítás ideje, rejtett (hidden) fájl-e, rendszer fájl-e, hozzáférési jogosítványok, tulajdonos,...
- Fizikai elhelyezkedés
 - Valódi fájl, link (hard), link (soft)

Könyvtárak

- Valójában egy speciális bejegyzésű állomány, tartalma a fájlok nevét tartalmazó rekordok listája.
- Könyvtár szerkezetek
 - Katalógus nélküli rendszer, szalagos egység
 - Egyszintű, kétszintű katalógus rendszer
 - Nem igazán használt
 - Többszintű, hierarchikus katalógus rendszer
 - · Fa struktúra
 - Hatékony keresés
 - Ma ez a tipikusan használt.
- Abszolút, relatív hivatkozás
 - PATH környezeti változó

Hozzáférési jogok

- Nincs általános jogosítvány rendszer
- Jellemző jogosítványok:
 - Olvasás
 - Írás, létrehozás, törlés
 - Végrehajtás
 - Módosítás
 - Full control
- Jogok nyilvántartása
 - Attribútumként
 - ACL
 - NFS-AFS különbözőség, hasonló elv, különböző implementáció

Fájlrendszer

- Fájl: adatok egy logikai csoportja, névvel egyéb paraméterekkel ellátva.
- Könyvtár: fájlok (könyvtárak) logikai csoportosítása.
- Fájlrendszer: módszer, a fizikai lemezünkön, kötetünkön a fájlok és könyvtárak elhelyezés rendszerének kialakítására.

Fájlok elhelyezése

- A partíció elején, az un. Szuperblokk (pl. FAT esetén a 0. blokk) leírja a rendszer jellemzőit.
- Általában következik a helynyilvántartás (FAT, láncolt listás nyilvántartás)
- Ezután a könyvtárszerkezet (inode), a könyvtár bejegyzésekkel, fájl adatokkal. (FAT16-nál a könyvtár előbb van, majd utána a fájl adatok.)
- Hova kerüljön az új fájl?
- Milyen módszert válasszunk?

Fájl elhelyezési stratégiák I.

- Folyamatos elhelyezésű
 - First Fit (első szabad hely, ahová befér)
 - Best Fit (arra a helyre, ahol a legkevesebb szabad hely marad)
 - Worst Fit (Arra a helyre illesztjük, ahol a legtöbb szabad hely marad)
 - Mindegyik veszteséges.

Fájl elhelyezési stratégiák II.

- Láncolt tárolás
 - Nincs veszteség (csak a blokk méret).
 - A fájl adatai egy láncolt blokk listában vannak.
 - Az utolsó blokk elérése lassú.
 - Szabad-foglalt blokkok: File Allocation Table, FAT
 - Nagy méretű lehet és a FAT mindig a memóriában van!

Fájl elhelyezési stratégiák III.

- Indextáblás elhelyezés
 - A könyvtár katalógus a file node-ok címét tartalmazza
 - Az inode cím mutat a fájl adatokra.

Könyvtárak megvalósítása

- A fő funkciója, hogy a névből meghatározza az adatok helyét. (keresés: lineáris, hash táblás, cache-elt)
- A könyvtárbejegyzés tartalmazhatja a:
 - A címét a teljes fájlnak (folyamatos elhelyezésnél)
 - Az első blokk címét (láncolt listánál)
 - Az i-node számot.
- Hogyan tárolja az attributumokat?
 - Bejegyzések hossza azonos, rögzített
 - I-node-okban

Fájlnév tárolás

- Korábban fix hosszúságú (8+3)
- Ma általában max 255 karakter hosszú
 - Helytakarékos megoldások:
 - Különböző hosszúságú bejegyzések.
 Az első helyen a bejegyzés hossza, majd az attribútumok, majd a név.
 - Egyforma hosszú bejegyzések, mutató a fájlnévre.

Diszk kvóták

- A felhasználói felnyitáskor
 - Megnyitja a fájl táblát a memóriában
 - A kvóta táblát a memóriában *

- Ha új blokkot foglal -> változik a kvóta tábla
- Bejelenkezéskor ellenőrzés
 - Szoft limit átlépésekor bejelentkezhet (kivéve túllépte a lehetséges figyelmeztetések számát)
 - Hard limit átlépésnél be sem jelentkezhet

Megosztott fájlok

- Megoldandó, hogy mindenki számára minden változás látszódjon!
- Két módszer használatos:
 - A fájl blokkjai egy struktúrában találhatóak és erre mutat a könyvtárbejegyzés (nem a blokkok maguk vannak felsorolva a bejegyzésben) (pl. UNIX, i-node) A user1és user2 ugyanarra a struktúrára mutat. (Mi történik törlésnél?)
 - Új link fájl létrehozásával. (symbolic link) (lassú elérés.)

Mentések

- Fizikai mentés(Full backup) (mindent lemásol)
 - Előny (simple, quick)
 - Hátrány (felesleges mentés, pl. szabad blokkok..)
- Logikai mentés (csak a módosítottat menti)
 - Előny (Igény esetén egy adott fájl vagy könyvtár is visszaállítható nemcsak az egész)
 - Hátrány (bonyolult algoritmus)
- Vegyes használat
 - Időnként fizikai mentés
 - Sűrűbben logikai mentés
- Visszaállítás (fizikai mentés, első logikai mentés,, utolsó logikai mentés

Logikai mentés - algoritmus

- A UNIX rendszerekben gyakran használt algoritmus
 - Minden módosított fájl és minden könyvtár megjelölése
 - Eltávolítjuk azokat a könyvtár jelöléseket, amelyekben (vagy amelyek alkönyvtáraiban) nem volt módosítás.
 - Mentjük a megjelölt könyvtárakat attribútumokkal).
 - Mentjük a megjelölt fájlokat attribútumokkal.

A logikai mentések kérdései

- A szabad blokk lista nem fájl (nincs mentve). (Visszaállítható, hiszen a komplementere a foglaltaknak.)
- Linkek minden könyvtárban, ahol a módosított állományra volt link, azt vissza kell állítani.
- A fájlok lyukakat tartalmazhatnak (pl. seek+write) - Visszaállításnál a nem használt helyeket nem kell lefoglalni!
- Nem valódi fájlokat pl. nevesített csővezetékeket nem kell menteni.

Fájl, könyvtár műveletek

- Fájl
 - Megnyitás
 - Műveletek: Írás, olvasás, hozzáfűzés
 - Lezárás
- Adatok
 - Bináris bájt sorozat
 - Szöveges- karakter sorozat
- Elérés módja, szekvenciális, random
- Könyvtár műveletek
 - Létrehozás, tartalom listázása, állomány törlés

Fájlrendszer típusok

- Merevlemezen alkalmazott fájlrendszer
 - FAT, NTFS, EXT2FS, XFS, stb.
- Szalagos rendszereken (elsősorban backup) alkalmazott fájlrendszer
 - Tartalomjegyzék, majd a tartalom szekvenciálisan
- CD, DVD, Magneto-opto Disc fájlrendszere
 - CDFS, UDF (Universal Disc Format), kompatibilitás
- RAM lemezek (ma már kevésbé használtak)
- FLASH memória meghajtó (FAT32)
- Hálózati meghajtó
 - NFS
- Egyéb pszeudó fájlrendszerek
 - Zip, tar.gz, ISO

Naplózott fájlrendszerek

- Fájlrendszer sérülés, áramszünet stb. esetén inkonzisztens állapotba kerülhet.
- Gyakran nevezik: LFS-nek (Log-structured File System) vagy JFS-nek(Journaled)
- Adatbázis kezelők mintájára: művelet + log
 - Tranzakciós alap
 - Leállás, hiba esetén a log alapján helyre lehet állítani.
 - Célszerűen a log másik lemez (másik partíció)
- Nagyobb erőforrás igény- nagyobb megbízhatóság

Fájlrendszer támogatás

- Mai operációs rendszerek "rengeteg" típust támogatnak
 - PL: Linux 2.6 kernel több mint 50-et.
- Fájlrendszer csatolása
 - Mount, eredményeképpen a fájlrendszer állományok elérhetők lesznek.
 - Automatikus csatolás (pl. USB drive)
 - Kézi csatolás (Linux, mount parancs)
- Külön névtérben való elérhetőség (Windows)
 - A,B,C,...
- Egységes névtér (UNIX)

Különböző fájlrendszerek együttes használata egy gépen

- Lehetséges több különböző fájlrendszert használni ugyanazon a gépen.
 - Pl. Windows: NTFS, FAT-32, UDF (DVD,CD) stb.
 - A rendszer egymástól függetlenül használja őket.
 Az hogy éppen melyiket kell használni, a drive betű határozza meg. (c:, a:)
 - Pl.:UNIX: ext2,ext3, UDF, stb.
 - A modern UNIX rendszereke egységesen kezelik létrehozva egy egy közbülső réteget a virtuális fájlrendszert! (VFS)

Alkalmazás- Diszk kapcsolat

- Réteges felépítés
 - Alkalmazói szint
 - Az alkalmazás, fejlesztői könyvtárak segítségével megoldja a lemezen tárolt adatok írását-olvasását.
 - Szöveges, bináris fájlműveletek
 - Operációs rendszer szint
 - Fájlrendszer megvalósítás
 - Elérhetőség, jogosultságok
 - Kötetkezelő (Volume manager)
 - Eszközmeghajtó (device driver)
 - BIOS-ra alapozva
 - Hardver eszköz szintje
 - I/O meghajtó,IDE, SATA stb.

FAT

- File Allocation Table
 - Talán a legrégebbi, ma is élő fájlrendszer!
- A FAT tábla a lemez foglaltsági térképe, annyi eleme van, ahány blokk a lemezen
 - Pl: Fat12, FDD, Cluster méret 12 bites. Ha értéke 0, szabad, ha nem foglalt.
 - Biztonság kedvéért 2 tábla van.
- Láncolt elhelyezés
 - A katalógusban a file adatok (név stb.) mellett csak az első fájl blokk sorszáma van megadva.
 - A FAT blokk azonosító mutatja a következő blokk címét.
 - Ha nincs tovább, FFF az érték.
- Rögzített bejegyzés méret, 32 bájt (max. 8.3 név)
- System, Hidden, Archive, Read only, könyvtár attribútumok
- A fájl utolsó módosítás ideje is tárolva van.

FAT jellemzők

- FAT16, 16 bites cluster leíró, 4 bájt (2x2) írja le a fájl kezdőblokkját
 - Max. 4 GB partíciós méret (64kb blokk méretnél), jellemzően 2 GB.
 - Fájl méret maximum is a 4 (2) GB.
 - Külön könyvtári terület (FDD-n ez a 0. sáv)
 - FDD-n 512 könyvtári bejegyzés
 - HDD-n 32736 könyvtári bejegyzés (16 bit előjelesen)
- FAT32 (1996-tól elérhető)
 - 28 bites cluster leíró
 - 2 TB partíciós méret (alap szektor mérettel)
- 32MB-ig, 1 blokk = 1 szektor(512bájt)
 - 64 MB, 1 blokk=1KB (2 szektor), 128MB, 1 blokk=2KB
 - 1 blokk max. 64 KB lehet.
- Támogatták már a hosszú fájl neveket is
 - Többszörös 8.3 részre fenntartott bejegyzésekkel.
 - Töredezettség mentesítés szükséges.

UNIX könyvtárszerkezet

- Indextáblás megoldás
- Boot blokk után a partíció szuperblokkja (fájlrendszer paraméterek)
- Ezt követi a szabad terület leíró rész.
- i-node tábla, majd gyökérkönyvtár bejegyzéssel)
- Moduláris elhelyezés, gyorsan elérhető az információ, sok kicsi táblázat, ez alkotja a katalógust.
- Egy fájlt egy i-node ír le!
 - 15 rekeszből áll, első 12 a fájl blokkokra mutat.
 - Ha kevés,a 13. rekesz újabb i-node-ra, ami +15 rekesz.
 - Ha ez is kevés, a 14. rekesz újabb i-node-ra ami az első mintáját ismétli.

i-node láncolás példa

NTFS

- New Technology File System
 - FAT-NTFS hatékonysági határ: kb. 400 MB.
- 255 karakteres fájl név, 8+3 másodlagos név
- Kifinomult biztonsági beállítások
- Ahogy a FAT esetén, itt is szükséges a töredezettség mentesítés.
- Titkosított fájlrendszer támogatása, naplózás
- POSIX támogatás
 - Hard link (fsutil hardlink parancs), időbélyegek, kisnagybetűk különböznek
- Tömörített fájl, mappa, felhasználói kvóta kezelés
- Az NTFS csak klasztereket tart nyilván, szektort (512bájt) nem

NTFS partíció felépítése

- A Master File Table egy táblázat.
- A Files System Data szintén

NTFS Master File Master File Boot Sector File Table System Data Table Copy

NTFS partíció Boot szektor

- Boot sector
 - JMP +0x52 (EB 52)
 - OEMID (8 byte, MSWINx.y)
 - BPB (Bios Paraméter Blokk)
 - Bytes per sector (512)
 - Sectors per cluster (8)
 - Extended BPB
 - Total Sector number (8 byte-on tárolva)
 - LCN Logical Cluster Number for MFT
 - Volume serial number
 - Betöltő kód (betölti az ntldr.dll-t, majd tovább az ntfs.sys,ntoskrnl.exe)
 - Sector end(0xAA55)

MFT

- NTFS partíció az MFT (Master File Table) táblázattal kezdődik
 - 16 attribútum ad egy fájl bejegyzést.
 - Minden attribútum max. 1kb. Ha ez nem elég akkor egy attribútum mutat a folytatásra.
 - Az adat is egyfajta attribútum, így egy bejegyzés több adatsort tartalmazhat. (PL: Betekintő kép)
 - Elvi fájlméret 2^64 bájt lehet
 - Ha a fájl < 1kb, belefér az attribútumba, közvetlen fájl.
 - Nincs fájl méret maximum.

Az NTFS partíció felépítése

0	\$Mft – Master File Table
1	\$MftMirr - MFT Mirror
2	\$LogFile – Naplófájl
3	\$Volume – Kötetfájl
4	\$AttrDef – Attribútum definíciók
5	\ - Gyökérkönyvtár
6	\$BitMap – Cluster foglaltság
7	\$Boot – Bootszektor
8	\$BadClus – Hibás clusterek
9	\$Secure – Biztonsági leírók
10	\$UpCase – Unicode karaktertábla
11	\$Extend – Egyéb metadata
12	Nem használt
15	Nem használt
16	Felhasználói fájlok és mappák

Köszönöm a figyelmet!

zoltan.illes@elte.hu