Esercitazione Sistemi Digitali

22/11/2022

Esercizio 1- Traccia

 Disegnare andamento temporale dell'uscita Q di un flip-flop D, in base agli impulsi applicati all'ingresso D

② Disegnare andamento temporale dell'uscita Q di un flip-flop T, in base agli impulsi applicati all'ingresso

Soluzione 1

Esercizio 2- Traccia

- Progettare una rete sequenziale per il controllo di una ventola. Gli input della rete sono i segnali relativi alla pressione del pulsante di accensione A e di spegnimento S. Output della rete O indica se la ventola è spenta (O=0) oppure accesa (O=1)
 - 1 Disegnare la macchina a stati finiti
 - 2 Scrivere la tabella di verità
 - 3 Trovare le forme SOP minime
 - 4 Disegnare il circuito

Notare che:

- Se A ed S sono premuti simultaneamente, S prevale
- Se la ventola è accesa/spenta e arriva un altro segnale di accensione/spegnimento la rete ignora il segnale

Soluzione 2 (1)

$$O = F$$

$$F^* = \bar{F}A\bar{S} + F\bar{A}\bar{S} + F\bar{A}\bar{S}$$

F	Α	S	_F*
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

F	0
0	0
1	1

Soluzione 2 (2)

$$O = F$$
 $F^* = A\bar{S} + F\bar{S}$

F	Α	S	F *
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

F	0
0	0
1	1

Soluzione 2 (3)

Esercizio 3- Traccia

1 Si disegni l'automa di Mealy specificato dalla seguente tabella

	0	1
<i>S</i> 0	<i>S</i> 1/0	<i>S</i> 0/0
<i>S</i> 1	<i>S</i> 2/0	<i>S</i> 3/0
<i>S</i> 2	<i>S</i> 2/0	S3/1
<i>S</i> 3	<i>S</i> 1/0	S0/1
S4	<i>S</i> 1/0	S0/0
<i>S</i> 5	<i>S</i> 2/0	S3/0

2 Disegnare l'automa di Moore equivalente

Soluzione 3 (1)

Soluzione 3 (2)

- Definito stato iniziale Q0/- che non produce output
- Per ogni stato dell'automa di Mealy si distingue stato a cui si arriva producendo output 0 e stato a cui si arriva producendo 1
- Definiti gli archi in maniera consistente all'automa di Mealy

Esercizio 4- Traccia

Dato il seguente circuito

Trovare l'automa corrispondente, eventualmente minimizzato. Assumere che il circuito abbia inizialmente tutti i FF resettati

Soluzione 4 (1)

Espressioni booleane del circuito:

- S=Q1 \bar{x}
- R=x
- T=x ⊕ Q0
- z=x Q0

Tabella degli stati futuri:

x Q1 Q0 (t)	SRT (t)	z(t)	Q1 Q0 (t+1)
0 0 0	0 0 0	0	0 0
0 0 1	0 0 1	0	0 0
0 1 0	1 0 0	0	1 0
0 1 1	1 0 1	0	1 0
1 0 0	0 1 1	0	0 1
1 0 1	0 1 0	1	0 1
1 1 0	0 1 1	0	0 1
1 1 1	0 1 0	1	0 1

Soluzione 4 (2)

Possiamo quindi ricavare la tabella dell'automa settando nel seguente modo gli stati

- S0 corrisponde a Q0=0 e Q1=0
- S1 corrisponde a Q0=0 e Q1=1
- S2 corrisponde a Q0=1 e Q1=0
- S3 corrisponde a Q0=1 e Q1=1

	0	1
S0	<i>S</i> 0/0	<i>S</i> 1/0
S1	<i>S</i> 0/0	S1/1
S2	<i>S</i> 2/0	S1/0
<i>S</i> 3	<i>S</i> 2/0	S1/1

Essendo S0 lo stato iniziale (FF inizialmente sono resettati quindi Q1=0 e Q0=0) notiamo che gli stati S2 ed S3 sono irraggiungibili e che l'automa è già minimo

Soluzione 4 (3)

Esercizio 5- Traccia

- Progettare un circuito il cui output è 1 quando viene riconosciuta una delle seguenti stringhe:
 - 00111
 - 00100
 - 00000
 - 00011

L'output è 0 altrimenti.

- 1 Disegnare automa di Mealy
- 2 Definire tabella degli stati futuri (utilizzare FF JK)
- 3 Trovare espressioni per ingressi FF e output utilizzando le mappe di Karnaugh

Note:

Il primo bit che viene letto è il bit più a sinistra.

Le stringhe sono sovrapponibili

Soluzione 5 (1)

Per semplicità mostrato l'output solo quando è 1

Soluzione 5 (2)

_	0	0		0 (4+1)	0 (411)	0 (411)	Y	T/	T	T/	T	T/Z	
Q_2	\mathbf{Q}_1	Q_0	X	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$	J_2	K_2	J_1	\mathbf{K}_{1}	J_0	K_0	У
0	0	0	0	0	0	1	0	X	0	X	1	X	0
0	0	0	1	0	0	0	0	X	0	X	0	X	0
0	0	1	0	0	1	0	0	X	1	X	X	1	0
0	0	1	1	0	0	0	0	X	0	X	X	1	0
0	1	0	0	0	1	1	0	X	X	0	1	X	0
0	1	0	1	0	1	1	0	X	X	0	1	X	0
0	1	1	0	1	0	0	1	X	X	1	X	1	0
0	1	1	1	1	0	1	1	X	X	1	X	0	0
1	0	0	0	0	1	0	X	1	1	X	0	X	1
1	0	0	1	0	0	0	X	1	0	X	0	X	0
1	0	1	0	0	0	1	X	1	0	X	X	0	0
1	0	1	1	0	0	0	X	1	0	X	X	1	1
1	1	0	0	X	X	X	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X	X	X	X

Soluzione 5 (3)

	$Q_0 X$						
	00	01	10				
00	0	0	0	0			
01	0	0	0 1				
11	-	-	-	-			
10	-	-	-	-			

$$Y = Q_2 \bar{Q}_0 \bar{x} + Q_2 Q_0 x$$

 Q_2Q_1

Soluzione 5 (4)

$$J_1 = Q_2 \bar{Q}_0 \bar{x} + \bar{Q}_2 Q_0 \bar{x} = \bar{x} (Q_2 \oplus Q_0)$$

$$K_1 = Q_0$$

Soluzione 5 (5)

$$J_0 = \bar{Q}_2 \bar{Q}_0 \bar{x} + \bar{Q}_2 Q_1$$

$$K_0 = \bar{Q}_2 \bar{Q}_1 + \bar{x} \bar{Q}_2 + Q_2 x$$