

ELEMENTI DI INFORMATICA

DOCENTE: FRANCESCO MARRA

INGEGNERIA CHIMICA
INGEGNERIA ELETTRICA
SCIENZE ED INGEGNERIA DEI MATERIALI
INGEGNERIA GESTIONALE DELLA LOGISTICA E DELLA PRODUZIIONE
INGEGNERIA NAVALE

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

IL RAGIONAMENTO LOGICO

- Fin dagli albori dell'umanità, vi era il sogno di creare macchine in grado di emulare le attività umane
 - robot (attività meccaniche)
 - calcolatori (attività logico matematiche)
- L'aritmetica è relativamente facile da automatizzare
 - calcolatori meccanici (e.g., Pascalina), in grande uso fino agli anni 60, specificamente realizzati per il calcolo di logaritmi, derivate, etc.
- La matematica, e più in generale il "ragionamento" logico, sono meno facili da automatizzare

IL RAGIONAMENTO LOGICO

- Sillogismo di Aristotele
 - forma fondamentale di argomentazione logica
 - tre proposizioni dichiarative connesse in modo tale che dalle prime
 - due, assunte come premesse, si possa dedurre una conclusione
 - se A implica B, e se B implica C, allora A implica C
- Esempio
 - tutti gli uomini sono mortali, tutti i Greci sono uomini, quindi tutti i Greci sono mortali
 - Tutti gli Ateniesi hanno la barba, Socrate è ateniese, quindi Socrate ha la barba

IL RAGIONAMENTO LOGICO

- Comporta due azioni fondamentali
 - elaborare "fatti", verità, del mondo di interesse
 - dedurre nuove verità, sulla base di "regole logiche" → algoritmi
- Il ragionamento matematico (la capacità di dimostrare "teoremi") e ragionamento logico
 - se X > Y, e se Y > Z, allora X > Z
- Affinché un calcolatore possa emulare l'uomo, deve possedere sia capacità aritmetiche che capacità logiche

- L'algebra tradizionale manipola entità numeriche attraverso
 - operazioni ben definite (somma e moltiplicazione)
 - chiare di regole di manipolazione
- Boole scopri (1847) che il ragionamento logico sui fatti del mondo poteva altresì assumere la forma di un algebra
 - le entità numeriche sono sostituite da "insiemi"
 - ci sono operazioni base tra insiemi
 - le regole sono isomorfe (struttura simile) a quelle dell'algebra tradizionale

- Tali "Insiemi" contengono entità e "fatti" del mondo
- I fatti si esprimono attraverso "predicati" (frasi) veri o falsi
 - Marco è un mammifero
 - questo predicato è vero, poiché l'insieme dei mammiferi non è vuoto e Marco appartiene a tale insieme
 - Marco è un cavallo
 - questa predicato è falso

- Se denotiamo con
 - Ø l'insieme vuoto, l'insieme dei fatti che non esistono, cioè le cose false
 - 1 l'insieme totale ("universo"), cioè l'insieme dei fatti veri del mondo
 - * l'operazione ∩ di intersezione tra insiemi
 - + l'operazione U di unione tra insiemi

ØUØ=Ø		$\emptyset + \emptyset = \emptyset$
ØU1=1		Ø + 1 = 1
1 U Ø = 1		1 + Ø = 1
1 U 1 = 1		1+1=1
Ø		Ø * Ø = Ø
Ø∩1=Ø		Ø*1=Ø
1 ∩ Ø = Ø		1 * Ø = Ø
1 1 = 1		1 * 1 = 1

A parte un singolo caso, queste operazioni logiche su predicati booleani, «sembrano» operazioni matematiche su entità numeriche

- La logica sui fatti può essere trattata come un'algebra
 - quindi anche la nostra capacità di ragionare sui fatti del mondo e
 - derivarne ulteriori fatti (verità nuove)
- L'algebra booleana può essere concettualmente considerata come un modo di operare sulle verità, i fatti del mondo

• Quindi, la logica può essere in qualche modo automatizzata!!!!

- Un'algebra booleana opera su fatti rappresentati tramite variabili, dette "logiche" o "booleane", che possono assumere solamente due valori
 - 1/0, vero/falso, on/off, chiuso/aperto
 - il valore 1 è associato alla condizione logica vero (true, on, chiuso)
 - il valore 0 è associato alla condizione logica falso (false, off, aperto)
- Un'algebra booleana è adatta per rappresentare e ragionare su "eventi binari", che possono assumere solo due valori
 - ad esempio, una lampadina può essere accesa (a questa condizione si associa il valore 1, o vero) oppure spenta (valore 0, o falso)

ALGEBRA DI BOOLE: DEFINIZIONI

- Un insieme non vuoto V contenente almeno i due elementi logici 0 ed 1 si definisce un'algebra di Boole se tra i suoi elementi sono definite le seguenti operazioni logiche:
 - un'operazione binaria ($V \times V \rightarrow V$) di somma (indicata con +)
 - un'operazione binaria ($V \times V \rightarrow V$) di prodotto (indicata con •)
 - un'operazione unaria ($V \rightarrow V$) di inversione (indicata con Γ)
- ... e se tali operazioni soddisfano i seguenti assiomi:
 - proprietà commutativa
 - proprietà distributiva
 - esistenza dell'elemento neutro di + e •
 - esistenza del complemento

ASSIOMI DI UN'ALGEBRA DI BOOLE

Proprietà commutativa

•
$$a + b \Leftrightarrow b + a$$

Proprietà distributiva

•
$$a + (b \cdot c) \Leftrightarrow (a+b) \cdot (a+c)$$

ASSIOMI DI UN'ALGEBRA DI BOOLE

• Esistenza dell'elemento neutro

•
$$a + 0 \Leftrightarrow a$$

• Esistenza del complemento

•
$$a + a' \Leftrightarrow 1$$
 $con a' = \overline{a}$

ALTRE PROPRIETÀ DI UN'ALGEBRA DI BOOLE

- Associativa
 - della somma x + (y + z) = (x + y) + z
 - del prodotto $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- Idempotenza
 - per la somma x + x = x
 - per il prodotto $x \cdot x = x$
- Assorbimento
 - Della somma $x + (x \cdot y) = x$
 - Del prodotto $x \cdot (x + y) = x$
- Esistenza del minimo e del massimo
 - per il minimo $x \cdot o = 0$
 - per il massimo x + 1 = 1

ALTRE PROPRIETÀ DI UN'ALGEBRA DI BOOLE

- Tutti gli assiomi di un'algebra di Boole sono caratterizzati dal principio di dualità
 - da una qualsiasi identità booleana se ne ricava un'altra sostituendo l'operatore + con e l'elemento logico o con 1, e viceversa
- Relazioni di De Morgan

$$\bullet \ \overline{(x + y)} = \ \overline{x} \bullet \overline{y}$$

•
$$\overline{(x \cdot y)} = \overline{x} + \overline{y}$$

ALTRE ALGEBRE DI BOOLE

- Esistono diverse algebre di Boole
 - modelli di algebra di Boole con diverse interpretazioni degli elementi e degli operatori

Esempi

- Algebra booleana binaria
- Algebra degli insiemi
- Algebra delle proposizioni
- Algebra delle reti

ALGEBRA DELLE PROPOSIZIONI

Algebra di Boole		Algebra delle proposizioni	
Insieme di sostegnoV	{0,1}	Insieme di sostegnoV	{falso, vero}
Somma	+	Disgiunzione	OR
Prodotto	•	Congiunzione	AND
Complemento	7	Negazione	NOT
Minimo	0	Contraddizione	falso
Massimo	1	Tautologia	vero

ALGEBRA DELLE PROPOSIZIONI

Esempio:

- In questo momento sta piovendo (a)
- In questo momento non sta piovendo (b)
- In questo momento sta piovendo oppure non sta piovendo (c)
- In questo momento sta piovendo e non sta piovendo (d)

• NB

- la proposizione b è la negazione della proposizione a, e viceversa
- c è una tautologia, infatti c = a OR b = a OR (NOT a) = vero
- d è una contraddizione, infatti c = a AND b = a AND (NOT a) = falso

ALGEBRA BINARIA

Algebra di Boole		Algebra Binar	ia
Insieme di sostegnoV	{0,1}	Insieme di sostegnoV	{0,1}
Somma	+	Somma logica	OR
Prodotto	•	Prodotto logico	AND
Complemento		Negazione	NOT
Minimo	0	Zero	0
Massimo	1	Uno	1

- Le variabili booleane possono essere combinate per mezzo di operatori (o connettivi) logici booleani, che restituiscono anch'essi un valore logico booleano
- Gli operatori logici principali sono:
 - AND
 - OR
 - NOT
 - NAND
 - NOR
 - (E)XOR (E)XNOR

- Operatore AND di congiunzione logica
 - tale operatore viene denotato dai simboli
 ο Λ, spesso sottintesi
 - attenzione a non confondere con il prodotto aritmetico
 - si applica a due operandi logici e produce un valore in accordo alla seguente tabella di verità

a	b	a∧b
0	0	0
0	1	0
1	0	0
1	1	1

• Quindi, la congiunzione logica tra due operandi è vera **se e solo se** entrambi gli operandi sono veri

- Operatore OR di inclusione logica
 - tale operatore viene denotato dai simboli + o V
 - attenzione a non confondere + con la somma aritmetica
 - si applica a due operandi logici e produce un valore in accordo alla seguente tabella di verità

a	b	a∧b
0	0	0
0	1	0
1	0	0
1	1	1

• Quindi, la inclusione logia tra due operandi è vera se almeno uno degli operandi è vero

- Operatore NOT di negazione logica
 - ullet tale operatore viene denotato dal simbolo $\overline{}$ sopra la variabile da negare (ad esempio, \overline{a})
 - oppure tramite il simbolo prima ¬ della variabile (ad esempio, ¬a)
 - si applica a un solo operando logico (operatore unario) e produce un valore in accordo alla seguente tabella di verità

a	a
0	1
1	0

- il risultato della negazione logica è il valore logico opposto a quello dell'operando
 - ovvero, se l'operando è falso l'uscita è vera e viceversa

OPERATORI BOOLEANI BINARI

- Lavorano bit a bit sulle stringhe binarie
 - OR (o somma logica)
 - dati due bit restituisce il valore "0" se e solo se i bit erano entrambi posti a "0", in tutti gli altri casi il risultato è "1"
 - AND (o prodotto logico)
 - dati due bit restituisce il valore "1" se e solo se i bit erano entrambi posti a "1", in tutti gli altri casi il risultato è "0"
 - NOT (operatore di negazione o di complementazione)
 - dato un bit restituisce il valore "0" se esso era posto a "1", restituisce invece "1" se il bit era posto a "0"

OPERATORI BOOLEANI BINARI: ESEMPI

0	0	0	0	1	1	0	1	AND
1	1	1	0	1	1	0	0	=
0	0	0	0	1	1	0	0	
0	0	0	0	1	1	0	1	OR
1	1	1	0	1	1	0	0	=
1	1	1	0	1	1	0	1	
0	0	0	0	1	1	0	1	NOT
1	1	1	1	O	O	1	O	

FUZIONI BOOLEANE

- Funzioni booleane operano su variabili booleane e possono produrre anch'esse solo valori 0 o 1
- Una funzione booleane F, funzione di n variabili booleane, si indica con:

$$F(v_1, v_2, ..., v_n): \{0,1\}^n \to \{0,1\}$$

• **N.B.:** a differenza di quanto accade per le funzioni reali di variabili reali, il numero di funioni booleane definibili su *n* variabili booleane è un insieme finito

TABELLA DELLA VERITÀ

• Un modo per definire una funzione booleana $F(v_1,v_2,\ldots,v_n)$ è quella di specificare i suoi valori per tutte le 2^n possibili combinazioni delle n variabili booleane da cui dipende. Tale elenco viene chiamato **tabella della verità**

v_3	v_2	v_I	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1_	1	1	1

TABELLA DELLA VERITÀ: ESEMPIO

- Descrizione di un evento mediante una funzione booleana
- Un allievo passa l'esame se si verifica almeno una delle seguenti condizioni:
 - supera sia il compito di esonero dallo scritto sia la prova orale
 - non supera l'esonero, ma è sufficiente alla prova scritta di un appello regolare e supera la prova orale
- Si può assegnare ad ogni evento una variabile booleana
 - $a \rightarrow esonero$
 - b \rightarrow scritto regolare
 - $c \rightarrow prova orale$

TABELLA DELLA VERITÀ: ESEMPIO

- Con 3 variabili booleane ci sono 8 (23) possibili combinazioni
- La tabella della verità della funzione booleana "superamento esame"
 S(a,b,c) sarà:

a	b	c	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

TABELLA DELLA VERITÀ: ESEMPIO

Osservazioni

- si noti che per superare l'esame, cioè S=1, bisogna aver sostenuto e superato l'orale e l'esonero e/o lo scritto regolare
- a stretto rigore di logica la condizione a=0, b=0, c=1 non può verificarsi, in quanto si può accedere all'orale solo dopo aver superato una delle prove precedenti (o entrambe)
- il valore di S per quella combinazione si potrebbe più correttamente non specificare (valore detto don't care e solitamente rappresentato con il simbolo "—")

 $a \rightarrow esonero$

 $b \rightarrow scrittoregolare$

 $c \rightarrow provaorale$

а	b	c	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

ESPRESSIONI LOGICHE

- Un altro modo di definire una funzione booleana è tramite espressioni logiche che si ottengono combinando variabili logiche mediante i connettivi logici
- Sono espressioni composte da:
 - variabili booleane
 - le costanti logiche False (0) e True (1)
 - altre espressioni combinate tramite gli operatori logici
- Esempi:
 - (a+b)•c
 - ab + c(d+ae) + c⊕e

PRECEDENZA OPERATORI LOGICI

- NOT ha precedenza più alta di AND e OR
 - ¬a ∧ ¬b ∨ ¬c ⇔ (¬a) ∧ (¬b) ∨ (¬c)

- AND ha precedenza più alta di OR
 - a ∧ b ∨ c ⇔ (a ∧ b) ∨ c

- Le parentesi si usano per imporre una particolare precedenza nel calcolo di un'espressione logica
 - ad esempio, a ∧ (bVc)

 Si calcolano le tabelle di verità dei connettivi logici rispettando la precendeza

- Ad esempio, $F(a, b, c) = (a \land b \lor \neg c)$
 - si determina il numero di variabili non ripetute presenti nell'espressione (tre variabili in questo caso)
 - si costruisce una tabella elencando tutte le possibili combinazioni dei valori che le variabili possono assumere
 - a partire dai valori che possono assumere la variabili, si cominciano a valutare le espressioni secondo l'ordine di precedenza degli operatori

a	b	С	F(a, b, c)

- Si calcolano le tabelle di verità dei connettivi logici rispettando la precendeza
- Ad esempio, $F(a, b, c) = (a \land b \lor \neg c)$
 - si determina il numero di variabili non ripetute presenti nell'espressione (tre variabili in questo caso)
 - si costruisce una tabella elencando tutte le possibili combinazioni dei valori che le variabili possono assumere
 - a partire dai valori che possono assumere la variabili, si cominciano a valutare le espressioni secondo l'ordine di precedenza degli operatori

a	b	С	F(a, b, c)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- Si calcolano le tabelle di verità dei connettivi logici rispettando la precendeza
- Per $F(a, b, c) = (a \wedge b \vee \neg c)$

a	b	C	a ∧ b	٦C	F(a, b, c)
0	0	0			
0	0	1			
0	1	0			
0	1	1			

a	b	С	a∧b	¬C	F(a, b, c)
1	0	0			
1	0	1			
1	1	0			
1	1	1			

- Si calcolano le tabelle di verità dei connettivi logici rispettando la precendeza
- Per $F(a, b, c) = (a \wedge b \vee \neg c)$

а	b	C	a ∧ b	٦C	F(a, b, c)
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	0	0	0

a	b	C	a∧b	٦C	F(a, b, c)
1	0	0	0	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	1	0	1

ESPRESSIONI LOGICHE EQUIVALENTI

- Due funzioni/espressioni logiche F₁ e F₂ sono equivalenti (o logicamente equivalenti) se il loro valore di verità è identico per ogni assegnazione delle variabili:
 - tutte le combinazioni di variabili per cui F₁ vale 0 sono tali per cui anche F₂ vale 0, e viceversa
 - tutte le combinazioni di variabili per cui F₁ vale 1 sono tali per cui anche F₂ vale 1, e viceversa

• Ossia, ad ingressi uguali F₁ e F₂ danno uscite uguali

ESPRESSIONI LOGICHE EQUIVALENTI

- L'eguaglianza tra due espressioni logiche F₁ e F₂ può essere verificata tramite
 le rispettive tabelle di verità
- Ad esempio $F_1 = x + xy \in F_2 = x$ sono tra loro equivalenti

X	у	ху	х+ху
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

ESPRESSIONI LOGICHE COMPLEMENTARI

- Due funzioni/espressioni logiche F₁ e F₂ sono complementari quando si verificano entrambe le seguenti condizioni:
 - tutte le combinazioni di variabili per cui F₁ vale 0 sono tali per cui anche F₂ vale 1, e viceversa
 - tutte le combinazioni di variabili per cui F₁ vale 1 sono tali per cui anche F₂ vale 0, e viceversa

- Ossia, ad ingressi uguali $F_1 e F_2$ danno uscite opposte
 - ad esempio, F_1 = ab e F_2 = a NAND b, sono complementari fra loro

ESPRESSIONI LOGICHE DUALI

- Due funzioni/espressioni logiche F₁ e F₂ si dicono duali quando si verificano entrambe le seguenti condizioni:
 - tutti gli OR di F₁ corrispondo a AND di F₂, e viceversa
 - tutti gli 1 di F₁ corrispondo a o di F₂, e viceversa

- Esempio:
 - $F_1=a+b(c+1)$ e $F_2=ab+c$ •o sono tra loro duali

- Esercizio
 - Calcolare la tabella di verità della seguente espressione logica

$$F(a, b) = (a \wedge \neg b) \vee (b \wedge \neg a)$$

- Esercizio
 - Calcolare la tabella di verità della seguente espressione logica

$$F(a, b) = (a \land \neg b) \lor (b \land \neg a)$$

a	b	F(a, b)

- Esercizio
 - Calcolare la tabella di verità della seguente espressione logica

$$F(a, b) = (a \wedge \neg b) \vee (b \wedge \neg a)$$

a	b	¬а	¬b	a∧¬b	b∧¬a	F(a, b)
0	0					
0	1					
1	0					
1	1					

- Esercizio
 - Calcolare la tabella di verità della seguente espressione logica

$$F(a, b) = (a \land \neg b) \lor (b \land \neg a)$$

a	b	¬а	¬b	a∧¬b	b∧¬a	F(a, b)
0	0	1	1	0	0	
0	1	1	0	0	1	
1	0	0	1	1	0	
1	1	0	0	0	0	

- Esercizio
 - Calcolare la tabella di verità della seguente espressione logica

$$F(a, b) = (a \wedge \neg b) \vee (b \wedge \neg a)$$

a	b	¬а	¬b	a∧¬b	b∧¬а	F(a, b)
0	0	1	1	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	1
1	1	0	0	0	0	0

