Development and Application of a Decentralized Domain Name Service

Guang Yang
University of California, Berkeley
guangyang19@berkeley.edu
2024 Cyber 201 Final Project

Figure 1: Probing the GFW's DNS poisoning from outside.

Figure 2: Verifying poisoned domains from inside the GFW.

External Probing and Internal Verification of the China's Great Firewall

Table 1: Comparison of Decentralized DNS Solutions

Feature	Traditional DNS	ENS	Namecoin	Handshake	Phicoin (This Work)
Decentralization	No	Yes	Yes	Yes	Yes
Performance	High	Medium	Medium	Medium	High
Censorship Resistant	Low	High	High	High	High
Cost (per domain)	High	High	Medium	Medium	Super Low (\$0.00025)
Blockchain Speed	N/A	15 sec	10 min	10 min	15 sec
Extensibility	Limited	Flexible	Limited	Limited	Flexible

• Name: Phicoin

The PoW High-Performance Infrastructure • DAG Size: > 4 GB

• Symbol: Φ .

• Block Time: 15 seconds.

• Block Size: 4 MB

• TPS: 1,092 TPS

• DAG Increasing: 25% / year

• Total Supply: unlimited

• Halving Times: 1

Steam Hardware Survey: September 2024

ALL VIDEO CARDS	MAY	JUN	JUL	AUG	SEP	
■ NVIDIA GeForce RTX 3060	6.19%	5.66%	5.88%	5.51%	5.86%	+0.35%
NVIDIA GeForce RTX 4060	2.82%	3.02%	3.47%	3.41%	4.58%	+1.17%
NVIDIA GeForce RTX 4060 Laptop GPU	2.84%	3.58%	3.21%	4.55%	4.37%	
■ NVIDIA GeForce RTX 4060 Ti	2.31%	2.45%	2.84%	2.90%	3.66%	+0.76%
NVIDIA GeForce GTX 1650	4.52%	4.16%	4.00%	3.91%	3.64%	-0.27%
NVIDIA GeForce RTX 3060 Ti	3.84%	3.56%	3.58%	3.43%	3.57%	+0.14%
NVIDIA GeForce RTX 3070	3.70%	3.36%	3.52%	3.15%	3.31%	+0.16%
NVIDIA GeForce RTX 2060	3.75%	3.40%	3.43%	3.14%	3.30%	+0.16%
NVIDIA GeForce RTX 3060 Laptop GPU	3.37%	3.36%	3.00%	3.50%	3.00%	
NVIDIA GeForce RTX 4070	2.46%	2.38%	2.76%	2.52%	2.91%	+0.39%

Phihash mining curves

Phicoin Network Peers
Last Updated: Dec 02, 2024 18:50:25 UTC
A listing of Phicoin network peers that have connected to the explorer node in the last 24 hours

Connections Add Nodes			
Show 25 ventries			
Address	Protocol	Sub-version	Country
154.47.19.209	70028	PHICOIN:1.1.1	Austria 💳
179.222.232.127	70028	PHICOIN:1.1.1	Brazil 📀
45.172.70.131	70028	PHICOIN:1.1.1	Brazil 📀
2804:14c:f286:fffb:4852:cdd6:b238:a547	70028	PHICOIN:1.1.1	Brazil 🥸
149.102.241.241	70028	PHICOIN:1.1.1	Bulgaria 🚃
2a02:6ea0:3701::1	70028	PHICOIN:1.1.1	Bulgaria 🚃
15.235.67.220	70028	PHICOIN:1.1.1	Canada 🎒
40.233.76.252	70028	Phicoin-seeder:4.3.1	Canada 🎒
51.161.116.66	70028	PHICOIN:1.1.1	Canada 🎒
51.222.240.201	70028	PHICOIN:1.1.1	Canada 🎒
70.50.41.64	70028	PHICOIN:1.1.1	Canada 🕙
seed6.phicoin.net			Canada 🕙
2603:c021:2:3464:8532:a438:7716:d54c	70028	PHICOIN:1.1.1	Canada 🕙
1.206.7.134	70028	PHICOIN:1.1.1	China 🌉
1.68.95.223	70028	PHICOIN:1.1.1	China 🍱
1.69.140.66	70028	PHICOIN:1.1.1	China 🍱
106.85.76.131	70028	PHICOIN:1.1.1	China 🌉
110.83.23.50			China 🌉
111.120.69.223	70028	PHICOIN:1.1.1	China 🍱
111.16.190.200	70028	PHICOIN:1.1.1	China 🌉
111.18.54.237	70028	PHICOIN:1.1.1	China 🌉
111.197.245.10	70028	PHICOIN:1.1.1	China 🌉
111.201.54.178	70028	PHICOIN:1.1.1	China 🌉
111.27.15.192	70028	PHICOIN:1.1.1	China 🌉
111.35.177.33	70028	PHICOIN:1.1.1	China 🌉
Showing 1 to 25 of 312 entries			< 1 2 3 4 5 13 >

209,276

Top Traffic Countries / Regions Previous 7 days	
Country / Region	Traffic
Indonesia	1,786,097
Nigeria	1,566,471
United States	955,095
Russian Federation	221,628

Bangladesh

DDNS System Architecture

Domain Types:

Category	Description	
Phicoin Top-Level Domains	Used to create Phicoin top-level domains (pTLDs), such as .ddns. Anyone with a GPU can mine Phicoin and create a TLD [25].	
Sub Domains	Used to create second-level domains with specific rules:	
Asset Structure	Maximum of 32 characters.	
Data Structure	! denotes root asset, / denotes separator.	
Properties	Non-reissuable.	
	• Quantity of 1.	
	• Unit of 1.	
Initial Binding Hash	000000 (64 zeros).	
Deactivation Hash	Qm000000 (46-character IPFS hash).	
Management Rights	Transferred to a specified address upon creation.	
Fees	• Creation Fee: 0.1 phi.	
	 Modification Fee: 0.1 phi. 	
No Annual Fees	Domains never expire.	
Subdomains	Supports creation of subdomains up to a total length of 30 characters	

Table 2: Phicoin Domain Rules and Properties

DDNS Domain Queries:

- 1. Retrieve the IPFS hash from the Phicoin blockchain based on the domainname.
- 2. 2. Fetch the domain configuration JSON file from IPFS using the hash.
- 3. 3. Parse the JSON file to extract the domain records.
- 4. 4. Return the resolution result to the user

Component	Description
Root Trust Element	Blockchain: Immutable ownership of domains and records. Ownership tracked as assets; private keys authorize all
	actions.
Validation and Integrity	IPFS: Stores domain data securely and decentrally. Content-addressed storage ensures authenticity; hashes bound to
	blockchain prevent tampering.
Participants	- pTLD Operators: Manage top-level domains like .ddns. Trust based on ownership of blockchain assets.
	- Subdomain Owners: Control second-level domains; rights transferred through blockchain.
	- Visitors: Perform domain name resolutions via verified blockchain-IPFS data.
Security Layers	- Private Key Cryptography: Ensures authorized actions.
	- Immutability: Prevents retroactive alterations.
	- Decentralization: Enhances availability and censorship resistance.
Anti-Attack Mechanisms	- DNS Hijacking: Local resolution via blockchain and IPFS mitigates risks.
	- Cache Poisoning: Cryptographic verification ensures only valid data is used.
	- Censorship Resistance: No central authority to enable censorship.
Operational Support	- Fees: Low-cost creation and modification.
	- Compatibility: Supports traditional and DDNS queries.
Future Enhancements	- Adding DNSSEC-like features for stronger identity verification.
	- Expanding record types for broader functionality.

Trust Chain Analysis for Decentralized Domain Name Service (DDNS)

Demo:

Successfully uploaded to IPFS

Demo:

Deployment on blockchain

Demo:

(base) root@DESKTOP-OGBKEB8:/mnt/c/Users/Administrator# nslookup -port=5553 www.cyber.ddns 127.0.0.1 Server: 127.0.0.1 Address: 127.0.0.1#5553 Name: WWW.CYBER.DDNS Address: 1.2.3.4 Name: WWW.CYBER.DDNS Address: 1.2.3.4 (base) root@DESKTOP-OGBKEB8:/mnt/c/Users/Administrator# nslookup -port=5553 ipv6.cyber.ddns 127.0.0.1 Server: 127.0.0.1 Address: 127.0.0.1#5553 Name: IPV6.CYBER.DDNS Address: 2001:0:130f::9c0:876a:130b Name: IPV6.CYBER.DDNS Address: 2001:0:130f::9c0:876a:130b (base) root@DESKTOP-OGBKEB8:/mnt/c/Users/Administrator# nslookup -port=5553 shop.cyber.ddns 127.0.0.1 Server: 127.0.0.1 Address: 127.0.0.1#5553 SHOP.CYBER.DDNS canonical name = example.com. example.com Address: 2606:2800:21f:cb07:6820:80da:af6b:8b2c (base) root@DESKTOP-OGBKEB8:/mnt/c/Users/Administrator# nslookup -port=5553 mail.cyber.ddns 127.0.0.1 Server: 127.0.0.1 Address: 127.0.0.1#5553 MAIL.CYBER.DDNS mail exchanger = 10 mail.example.com. MAIL.CYBER.DDNS mail exchanger = 10 mail.example.com.

Verify using nslookup

Future Work:

- Support for Additional DNS Protocols: Extend domain templates to include recordslike TLSA for DANE, enabling secure certificate verification without traditional Certifi-cate Authorities (CAs)
- User Interface Improvements: Develop intuitive tools and graphical interfaces for do-main registration and management to lower the entry barrier for non-technical users.
- **Public DDNS Resolution Nodes:** Deploy public nodes compatible with traditional DNSto facilitate adoption and ease of use for end-users.

References

- 1. ICANN, "DNSSEC What Is It and Why Is It Important?" [Online]. Available: https://www.icann.org/resources/pages/dnssec-what-is-it-why-important-2019-03-05-en
- 2. A. Vakali and G. Pallis, "Content Delivery Networks: Status and Trends," IEEE Internet Computing, vol. 7, no. 6, pp. 68–74, 2003.
- 3. IPFS Documentation. [Online]. Available: https://docs.ipfs.io/
- P. Mockapetris, "Domain Names Concepts and Facilities," RFC 1034, 1987.
- 5. H. Gao et al., "An Empirical Reexamination of Global DNS Behavior," in Proceedings of the ACM SIGCOMM 2013 Conference, 2013, pp. 267–278.
- 6. G. C. Moura et al., "Anycast vs. DDoS: Evaluating the November 2015 Root DNS Event," in Proceedings of the 2016 Internet Measurement Conference, 2016, pp. 255–270.
- 7. H. A. Kalodner et al., "An Empirical Study of Namecoin and Lessons for Decentralized Namespace Design," in WEIS, vol. 1, 2015, pp. 1–23.
- 8. Z. Li et al., "B-DNS: A Secure and Efficient DNS Based on the Blockchain Technology," IEEE Transactions on Network Science and Engineering, vol. 8, no. 2, pp. 1674–1686, 2021.
- 9. S. Son and V. Shmatikov, "The Hitchhiker's Guide to DNS Cache Poisoning," in International Conference on Security and Privacy in Communication Systems, Springer, 2010, pp. 466–483.
- 10. C. Patsakis et al., "Unravelling Ariadne's Thread: Exploring the Threats of Decentralised DNS," IEEE Access, vol. 8, pp. 118559–118571, 2020.
- 11. A. Herzberg and H. Shulman, "DNSSEC: Security and Availability Challenges," in 2013 IEEE Conference on Communications and Network Security (CNS), IEEE, 2013, pp. 365–366.
- 12. H. Liu et al., "A High Performance, Scalable DNS Service for Very Large Scale Container Cloud Platforms," in Proceedings of the 19th International Middleware Conference Industry, 2018, pp. 39–45.
- 13. S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2008.
- 14. J. Benet, "IPFS Content Addressed, Versioned, P2P File System," arXiv preprint arXiv:1407.3561, 2014.
- 15. ENS Documentation. [Online]. Available: https://docs.ens.domains/web/records
- 16. P. Xia et al., "Ethereum Name Service: The Good, the Bad, and the Ugly," arXiv preprint arXiv:2104.05185, 2021.
- 17. M. Carlsten et al., "On the Instability of Bitcoin Without the Block Reward," in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 2016, pp. 154–167.
- 18. M. Ali et al., "Blockstack: A Global Naming and Storage System Secured by Blockchains," in 2016 USENIX Annual Technical Conference (USENIX ATC 16), 2016, pp. 181–194.
- 19. P. Hoffman and J. Schlyter, "The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA," RFC 6698, 2012.
- 20. A. Yakubov et al., "A Blockchain-Based PKI Management Framework," in NOMS 2018 2018 IEEE/IFIP Network Operations and Management Symposium, IEEE, 2018, pp. 1–6.
- 21. X. Duan et al., "DNSLedger: Decentralized and Distributed Name Resolution for Ubiquitous IoT," in 2018 IEEE International Conference on Consumer Electronics (ICCE), IEEE, 2018, pp. 1–3.
- 22. A. Singla and E. Bertino, "Blockchain-Based PKI Solutions for IoT," in 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC), IEEE, 2018, pp. 9–15.
- 23. V. (vinced), "Namecoin A Distributed Naming System Based on Bitcoin," [Online]. Available: https://bitcointalk.org/index.php?topic=6017, April 18, 2011.
- 24. A. (Appamatto), "BitDNS and Generalizing Bitcoin," [Online]. Available: https://bitcointalk.org/index.php?topic=1790.0, November 15, 2010.
- 25. Phicoin Dev Team, "PHICOIN (PHI): The PoW High-Performance Infrastructure," version v0.3, 2024.

Acknowledgements

- I sincerely thank Professor Ross Burke from UC Berkeley's I School for his invaluable guidance and support throughout the course, which greatly helped shape this project.
- Special thanks to Peter Trinh who provided me with a solar farm so that I can use free electricity to run Phicoin's seeder nodes, mining pools, and mining machines.

Thank You!

