Développez une preuve de concept

Modèle Vision Transformer (ViT)

De la NLP à la Computer Vision

- Modèles Transformer => Révolution NLP
- Basés sur le mécanisme d'**Attention**
- Modèle Vision Transformer (ViT): Transformer de la NLP => Computer Vision

Mécanisme d'Attention

• Mécanisme d'Attention introduit en 2014 (Neural Machine Translation by Jointly Learning to Align and Translate) pour améliorer les modèles existants de transduction de séquences,

Attention et Self-Attention

En 2017, <u>Attention Is All You Need</u> => self-Attention

Scaled Dot-Product Attention

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Modèle Transformer

Modèle Vision Transformer

ViT: variants et benchmark

Variants de ViT

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants.

Benchmark

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k

Benchmark ViT Vs ResNet50

- Data set <u>Stanford Dogs</u> du projet 6 issu de Image Net (> 14 m images)
- Mise en place d'un benchmark du modèle ViT face au modèle ResNet50
- Utilisation de la partie "feature extraction" des deux modèles pré-entraînés sur Image Net
- "Fine-Tuning" de la partie dense (en sortie)
- Hyper-tuning des hyper-paramètres dans les deux cas.

ResNet 50

```
def my pretrained resnet50(hp,mode,num classes):
pretrained resnet50 = get pretrained model(tfkapp.resnet50.ResNet50,tfkapp.resnet50.preprocess input)
preprocess layer = tf.keras.models.Sequential(
dense layers = tf.keras.models.Sequential(
        soft max(units=num classes)
model = compose layers(preprocess layer,pretrained resnet50)
```


ViT

```
def my pretrained vit model(hp, mode, num classes,
 handle="https://tfhub.dev/sayakpaul/vit s16 fe/1"):
 hub layer = tfhub.KerasLayer(handle,trainable=False)
     layers= [
         soft max(units=num classes)
         optimizer=tf.keras.optimizers.RMSprop(learning rate=learning rate(hp,mode))
 return model
```


ResNet 50 Versus ViT

ResNet 50

ViT

ResNet 50 Versus ViT

Modèle	Accuracy (test)	Temps (User time GPU)
ResNet 50	0.7078	5h 6min 47s
ViT	0.8084	4h 43min 50s