L4 Characteristic Problems Number of operations

- Eigen Problems
- Eigen Vectors
- Eigenvalues

Power Method

Iterative Solutions

Inverse Method
Shifting Method

QR Method

- Iterative Solution
- General method
- Solving for all eigenvalues

Linear System

$$Ax = b$$
 or $\sum_{j=1}^{n} a_{ij} x_j = b_i$

With

A = system matrix
b = forcing function or vector
x = eigen vector

For system with **no** forcing function such that b = 0The linear system will become Ax = 0

,

 $|A| \neq 0$ then x = 0 Trivial solution

|A| = 0 then x can have infinite no. of solutions

Eigenvalue Problem

$$Ax = \lambda x$$

λ= eigenvalue

$$\lambda = \lambda I$$
$$(A - \lambda I) x = 0$$

For non-trivial solution

$$|A - \lambda I| = 0$$

This equation generates a polynomial solution of degree n for n eigenvalues.

MatLab

$$eig(A) = \lambda_i$$

Or

$$c = poly(A)$$

 $\lambda = roots(c)$

c = coeff's of polynomial equation for λ of order n

Rules of eigenvalue problems

• If matrix A has n distinctive eigenvalues,

Determinant of A

A is diagnosable

• If A symmetric

A has n real and independent eigenvalues

• If A is L or a U

$$\lambda_i = a_{ii}$$

$$|A| = \prod_{i+1}^n \lambda_i = \lambda_1 \lambda_2 \lambda_3 \dots \lambda_n$$

• Trace (A) = $\sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i$

Determine eigenvalues and eigenvectors for matrix

$$A = [2,1;1,2]$$

This matrix has real eigenvalues (?)

Determine λ of this matrix

Determine the corresponding eigenvectors

Power Method

 $Ax = \lambda x$ For

And matrix A diagonizable n distinct eigenvalues orthonormal

Then

$$|\lambda_1| > |\lambda_2| > |\lambda_3| > \cdots |\lambda_n|$$

Power method determines the largest eigenvalue λ_1

1. Set
$$x^o = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

- 2. Calculate $Ax^{(0)} = y^{(1)}$
- Divide $y^{(1)}$ components by its largest element λ^1 $v^{(1)} = \lambda^1 x^1$
- 4. λ^1 and χ^1 are first estimate of largest λ and χ^1 the corresponding to eigen vector
- 5. Continue the iteration: $Ax^{(k)} = y^{(k+1)}$ and determine $\lambda^{(k+1)}$ and $x^{(k+1)}$ $\lambda^{(k+1)}$ converges to λ_1

Convergence issues

Note that iterations go with the λ_1^k

- 1. Power method convergence according to $\frac{|\lambda_1|}{|\lambda_2|}$. Convergence slow when $|\lambda_1|$ and $|\lambda_2|$ are close and the ratio is close to unity.
- 2. If $|\lambda_1| < 1$ when $k \to \infty$ $\lambda_1^k \to 0$
- 3. If $|\lambda_1| > 1$ when $k \to \infty$ $\lambda_1^k \to \infty$
- 4. If λ_1 is complex, no convergence

Use power method to determine eigenvalues for matrix

$$A = [2,1;1,2]$$

Inverse Power method

For $Ax = \lambda x$

multiply both sides by A^{-1}

$$A^{-1}x = \frac{1}{\lambda} x$$

Use power method to solve for $\frac{1}{\lambda}$

 $\frac{1}{\lambda}$ should be maximum eigenvalue, so λ is the minimum eignevalue

Shifted Power method

With s as a constant, deduct sI form both sides of the $Ax = \lambda x$

$$(A - sI)x = (\lambda - s)x$$
$$A_s x = \lambda_s x$$

or

With inverse method, the closest eigenvalue to s

With shifting s, iteration converges to λ_3