Generating Random Logic Programs Using Constraint Programming

Paulius Dilkas $^{[0000-1111-2222-3333]}$

University of Edinburgh, Edinburgh, UK p.dilkas@sms.ed.ac.uk

Abstract. The abstract should briefly summarize the contents of the paper in 150–250 words.

Keywords: Constraint Programming \cdot Logic Programming \cdot Probabilistic Logic Programming.

1 Introduction

Motivation:

- Generating random programs that generate random data.
- Learning: how this can be used for (targeted) learning, when (atomic) probabilities can be assigned based on counting and we can have extra constraints.
 A more primitive angle: generate structures, learn weights.

We will often use \square as a special domain value to indicate some kind of exception. We write $\mathbf{a}[b] \in c$ to mean that \mathbf{a} is an array of variables of length b such that each element of \mathbf{a} has domain c. Similarly, we write $\mathbf{c}[b]$ a to denote an array \mathbf{a} of length b such that each element of \mathbf{a} has type \mathbf{c} . All constraint variables in the model are integer variables, but, e.g., if the integer i refers to a logical variable X, we will use i and X interchangeably. All indices start at zero.

We also use Choco 4.10.2 [3]. This works with both Prolog [1] and ProbLog [4]. Tested with SWI-Prolog [5].

1.1 TODO

- A constraint for logical equivalence. An algorithm to reduce each tree to some kind of normal form. Not doing this on purpose. Leaving for further work.
- Perhaps negative cycle detection could use the same graph as the independence propagator? If we extend each domain to -1, 0, 1, but that might make propagation weaker or slower.
- Could investigate how uniform the generated distribution of programs is.
 Distributions of individual parameters will often favour larger values because,
 e.g., there are more 5-tuples than 4-tuples.

- Inference options to explore. Logspace vs normal space. Symbolic vs nonsymbolic. Propagate evidence (might be irrelevant)? Propagate weights? Supported knowledge compilation techniques: sdd, sddx, bdd, nnf, ddnnf, kbest, fsdd, fbdd.
- Mention the random heuristic. Mention that restarting gives better randomness, but duplicates become possible. Restarting after each run is expensive. Periodic restarts could be an option.

1.2 Parameters

Parameters:

- a list of predicates \mathcal{P} ,
- a list of their arities \mathcal{A} (including zero),
- maximum arity $\mathcal{M}_{\mathcal{A}} := \max \mathcal{A}$. a list of variables \mathcal{V} ,
- and a list of constants \mathcal{C} .
 - Each of them can be empty, but $|\mathcal{C}| + |\mathcal{V}| > 0$.
- a list of probabilities that are randomly assigned to clauses,
- option to forbid all cycles or just negative cycles,
- $-\mathcal{M}_{\mathcal{N}} \geq 1$: maximum number of nodes in the tree representation of a clause,
- $-\mathcal{M}_{\mathcal{C}} \geq |\mathcal{P}|$: maximum number of clauses in a program,
- maximum number of solutions,

We also define $\mathcal{T} = \{\neg, \land, \lor, \top\}$. All decision variables of the model are contained in two arrays:

- Body[$\mathcal{M}_{\mathcal{C}}$] bodiesOfClauses,
- Head[$\mathcal{M}_{\mathcal{C}}$] headsOfClauses

Heads of Clauses

Our definition is slightly more involved because we want to eliminate some symmetries.

Definition 1. The head of a clause is composed of:

- $a \text{ predicate} \in \mathcal{P} \cup \{\Box\}, \text{ where } \Box \text{ denotes } a \text{ disabled clause},$
- and arguments $[\mathcal{M}_{\mathcal{A}}] \in \mathcal{C} \cup \mathcal{V}$.

Definition 2. The predicate's arity $\in [0, \mathcal{M}_{\mathcal{A}}]$ can then be defined using the table constraint as

$$\mathtt{arity} = egin{cases} 0 & \textit{if} \ \mathtt{predicate} = \square \ \textit{the arity of} \ \mathtt{predicate} & \textit{otherwise}. \end{cases}$$

Constraint 1 For $i = 0, ..., \mathcal{M}_{A} - 1$,

$$i \geq \texttt{arity} \implies \texttt{arguments}[i] = |\mathcal{C}| + |\mathcal{V}| - 1.$$

In other words, we fix the unused arguments to be the last variable in \mathcal{V} if there are any, and a constant otherwise. Because of the way constants and variables are ordered, this is the only constant value in $\{0,\ldots,|\mathcal{C}|+|\mathcal{V}|-1\}$ that satisfies all other constraints on the head.

Fig. 1. A tree representation of the formula from Example 1

3 Bodies of Clauses

Definition 3. The body of a clause is defined by:

- treeStructure $[\mathcal{M}_{\mathcal{N}}] \in [0, \mathcal{M}_{\mathcal{N}} 1]$ such that:
 - treeStructure[i] = i: the i-th node is a root.
 - treeStructure[i] = j: the i-th node's parent is node j.
- Node $[\mathcal{M}_{\mathcal{N}}]$ treeValues.

Auxiliary variables: numNodes, numTrees $\in \{1, \dots, \mathcal{M}_{\mathcal{N}}\}$. The former counts the number of nodes in the main tree. The latter counts the number of trees in total.

Example 1. Let $\mathcal{M}_{\mathcal{N}} = 8$. Then $\neg \mathsf{P}(X) \lor (\mathsf{Q}(X) \land \mathsf{P}(X))$ corresponds to the tree in Fig. 1 and can be encoded as:

$$\begin{split} \texttt{treeStructure} &= [0,0,0,\quad 1,\quad 2,\quad 2,\quad 6,\, 7],\\ \texttt{treeValues} &= [\vee,\neg,\wedge,\mathsf{P}(X),\mathsf{Q}(X),\mathsf{P}(X),\top,\top],\\ \texttt{numNodes} &= 6,\\ \texttt{numTrees} &= 3. \end{split}$$

In the rest of this section, we will describe how the elements of treeValues are encoded and list a series of constraints that make this representation unique.

3.1 Nodes

Definition 4. A node has a name $\in \mathcal{T} \cup \mathcal{P}$ and arguments $[\mathcal{M}_{\mathcal{A}}] \in \mathcal{V} \cup \mathcal{C} \cup \{\Box\}$, where \Box denotes a disabled argument (the reason why this value is needed will become clear in Section 4). The node's arity $\in [0, \mathcal{M}_{\mathcal{A}}]$ is defined by a table constraint as

$$\texttt{arity} = \begin{cases} \textit{the arity of} \; \texttt{name} & \textit{if} \; \texttt{name} \in \mathcal{P} \\ 0 & \textit{otherwise}. \end{cases}$$

Constraint 2 For $i = 0, ..., \mathcal{M}_{A} - 1$, if $i \geq \texttt{arity}$, then $\texttt{arguments}[i] = \square$, else $\texttt{arguments}[i] \neq \square$.

Example 2. Let $\mathcal{M}_{\mathcal{A}} = 2$, $\mathcal{P} = [\mathsf{P}, \dots]$, $\mathcal{A} = [1, \dots]$, and $X \in \mathcal{V}$. Then the node representing atom P(X) has:

$$\begin{aligned} & \texttt{name} = \mathsf{P}, \\ & \texttt{arguments} = [X, \square], \\ & \texttt{arity} = 1. \end{aligned}$$

3.2Constraints

Constraint 3 treeStructure represents numTrees trees, i.e.,

tree(treeStructure, numTrees)1.

Constraint 4 treeStructure[0] = 0.

Constraint 5 numTrees + numNodes = $M_N + 1$.

Constraint 6 treeStructure is sorted.

Constraint 7 For $i = 0, ..., \mathcal{M}_{\mathcal{N}} - 1$, if numNodes $\leq i$, then

treeStructure[i] = i and $treeValues[i].name = \top$,

else

treeStructure[i] < numNodes.

Constraint 8 For $i = 0, ..., \mathcal{M}_{\mathcal{N}} - 1$,

```
count(i, treeStructure_{-i}) = 0 \iff treeValues[i].name \in \mathcal{P} \cup \{\top\},\
count(i, treeStructure_{-i}) = 1 \iff treeValues[i].name = \neg,
\mathtt{count}(i,\mathtt{treeStructure}_{-i}) > 1 \iff \mathtt{treeValues}[i].\mathtt{name} \in \{\land,\lor\}.
```

 $treeStructure_{-i}$ denotes array treeStructure with position i skipped.

Each constraint corresponds to node i having no children, one child, and multiple children, respectively.

Constraint 9 For $i = 0, ..., \mathcal{M}_{\mathcal{N}} - 1$,

 $treeStructure[i] \neq i \implies treeValues[i].name \neq \top.$

Constraint 10 For $i = 0, ..., \mathcal{M}_{\mathcal{C}} - 1$, if headsOfClauses[i].predicate = \square , then

bodiesOfClauses[i].numNodes = 1,

and

 $bodiesOfClauses[i].treeValues[0].name = \top.$

¹ This constraint uses dominator-based filtering by Fages and Lorca [2].

4 Eliminating Variable Symmetries

Given any clause, we can permute the variables in it without changing the meaning of the clause or the entire program. Thus, we want to fix an order on variables to eliminate unnecessary symmetries. Informally, we can say that variable X goes before variable Y if its first occurrence in either the head or the body of the clause is before the first occurrence of Y.

Definition 5. Head:

```
size: |\mathcal{C}| + |\mathcal{V}|
domain: \{0, \dots, \mathcal{M}_{\mathcal{A}} - 1\}
condition: for i = 0, \dots, \mathcal{M}_{\mathcal{A}} - 1 \ and \ t \in \mathcal{C} \cup \mathcal{V},
arguments[i] = t \iff i \in \text{occurrences}[t].
Body:
size: |\mathcal{C}| + |\mathcal{V}| + 1
domain: \mathcal{M}_{\mathcal{N}} \times \mathcal{M}_{\mathcal{A}}
condition: for i = 0, \dots, \mathcal{M}_{\mathcal{N}} - 1, \ j = 0, \dots, \mathcal{M}_{\mathcal{A}} - 1, \ t \in \mathcal{C} \cup \mathcal{V} \cup \{\Box\},
\mathsf{treeValues}[i].arguments[j] = t \iff i \times \mathcal{M}_{\mathcal{N}} + j \in \mathsf{occurrences}[t]
```

We define an array occurrences of sets such that, for all $t \in C \cup V$, occurrences[t] is a subset of that stores the indices of arguments at which t is located. It is defined by the setsIntsChanneling constraint equivalent to the following condition:

Definition 6. We define a $|\mathcal{V}| \times 2$ matrix \mathbf{M} with domain $[0, \mathcal{M}_{\mathcal{N}} \times \mathcal{M}_{\mathcal{A}}]$ such that for $v = 0, \dots, |\mathcal{V}| - 1$,

$$M_{v,0} = |\mathsf{occurrences}[v]|.$$

$$M_{v,1} = \begin{cases} \min \mathsf{occurrences}[v] & \textit{if} \; \mathsf{occurrences}[v] \neq \emptyset \\ \mathcal{M}_{\mathcal{N}} \times \mathcal{M}_{\mathcal{A}} & \textit{otherwise}. \end{cases}$$

Constraint 11 We can then impose the lexChainLessEq constraint on M which means that for $v = 1, ..., |\mathcal{V}| - 1$,

$$|\mathsf{occurrences}[v-1]| \le |\mathsf{occurrences}[v]|,$$

and if $|\operatorname{occurrences}[v-1]| = |\operatorname{occurrences}[v]| > 0$, then

 $\min \operatorname{occurrences}[v-1] \leq \min \operatorname{occurrences}[v].$

Example 3. Let $\mathcal{M}_{\mathcal{A}}=4$, $P\in\mathcal{P}$, $\mathcal{C}=\{a\}$, $\mathcal{V}=\{X,Y,Z\}$. Then P(Z,Y,Z) would be represented as:

$$\begin{split} \text{predicate} &= \mathsf{P}, \\ \text{arguments} &= [Z,Y,Z,0], \\ \text{arity} &= 3, \\ \text{occurrences} &= [\emptyset,\emptyset,\{1\},\{0,2\}], \\ \mathbf{M} &= \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 2 & 0 \end{bmatrix}. \end{split}$$

5 Interactions Between Clauses

Constraint 12 For $i = 0, ..., \mathcal{M}_{\mathcal{C}} - 1$, let $p_i = \text{headsOfClauses}[i]$.predicate. Then $(p_i)_{i=0}^{\mathcal{M}_{\mathcal{C}} - 1}$ is sorted.

Constraint 13 Each predicate gets at least one clause. Let

$$P = \{h.\mathtt{predicate} \mid h \in \mathtt{headsOfClauses}\}.$$

Then

$$\mathtt{nValues}(P) = \begin{cases} \mathtt{numPredicates} + 1 & \textit{if} \ \mathtt{count}(\square, P) > 0 \\ \mathtt{numPredicates} & \textit{otherwise}. \end{cases}$$

Here, nValues(P) counts the number of unique values in P.

Constraint 14 Let \prec be any total order defined over bodies of clauses, and let \preceq be its extension with equality (in the same way as \leq extends <). If

headsOfClauses[i-1].predicate = headsOfClauses[i].predicate,

then bodiesOfClauses $[i-1] \leq bodiesOfClauses[i]$.

For example, \leq can be implemented as lexLessEq over the decision variables of each body.

6 Counting Programs

Let p_a be the number of predicates in \mathcal{P} with arity $a \in \mathcal{A}$. Number of atoms (leaves of the tree):

$$A = \sum_{a \in \mathcal{A}} p_a (|\mathcal{V}| + |\mathcal{C}|)^a$$

Number of clauses:

$$C = 1 + \sum_{n=1}^{\mathcal{M}_{\mathcal{N}}} T(n),$$

where T(n) is defined recursively as:

$$T(1) = A$$

and

$$T(n) = T(n-1) + 2 \sum_{\substack{c_1 + \dots + c_k = n-1, i=1\\k \ge 2,\\c_i \ge 1 \text{ for all } i}} \prod_{i=1}^k T(c_i).$$

Number of heads for a specific predicate with arity $a \in \mathcal{A}$:

$$H_a = \sum_{v=0}^{a} |\mathcal{C}|^{a-v} \sum_{k=1}^{\min\{|\mathcal{V}|,a\}} p_k(a),$$

where $p_k(a)$ denotes the number of ways to partition integer a into exactly k parts.

Let us order the elements of \mathcal{P} , and let a_i be the arity of the *i*-th predicate. The number of programs is then:

$$\sum_{\substack{\sum_{i=1}^{|\mathcal{P}|} h_i = n, \\ |\mathcal{P}| \leq n \leq \mathcal{M}_C, \\ k \geq 1 \text{ for all } i}} \prod_{i=1}^{|\mathcal{P}|} \binom{C}{h_i} H_{a_i}^{h_i},$$

where

$$\binom{n}{k} = \binom{n+k-1}{k}.$$

This is without any kind of cycle detection and without probabilities.

7 Predicate Independence

Definition 7. Let \mathscr{P} be a probabilistic logic program. Its predicate dependency graph is a directed graph $G_{\mathscr{P}} = (V, E)$ with the set of nodes V consisting of all predicates in \mathscr{P} . We add an edge from predicate P to predicate Q if there is a clause in \mathscr{P} with Q as the head and P mentioned in the body.

Definition 8. Let P be a predicate in a program \mathscr{P} . The dependencies of P is the smallest set D_P such that:

- $-P \in D_{\mathsf{P}}$
- for every $Q \in D_P$, the nodes with arrows to Q in $G_{\mathscr{P}}$ are all in D_P .

Definition 9. Two predicates P and Q are independent if $D_P \cap D_Q = \emptyset$.

Definition 10 (Adjacency matrix representation). An $|\mathcal{P}| \times |\mathcal{P}|$ adjacency matrix **A** defined by

$$A_{i,j} = 0 \iff \nexists k : \mathtt{headsOfClauses}[k].\mathtt{predicate} = j \ and$$

$$i \in \{a.\mathtt{name} \mid a \in \mathtt{bodiesOfClauses}[k].\mathtt{treeValues}\}.$$

A dependency is an algebraic data type that is either determined (in which case it holds only the index of the predicate) or undetermined (in which case it also holds the indices of the source and target vertices, corresponding to the edge responsible for making the dependency undetermined).

Propagation for independence:

- Two types of dependencies: determined and one-undetermined-edge-awayfrom-being-determined.
- Look up the dependencies of both predicates. For each pair of matching dependencies:
 - If both are determined, fail.
 - If one is determined, the selected edge of the other must not exist.

Algorithm 1: Propagation

Algorithm 2: Entailment

8 Entailment Checking for Negative/All Cycles

1. Let C be a set of clauses such that their bodies and predicates in their heads are fully determined.

Algorithm 3: Computing the dependencies of a predicate

```
Data: an n \times n adjacency matrix A
Function getDependencies(p):
     D \leftarrow \{p\};
     repeat
          D' \leftarrow D;
         for d \in D do
              for i \leftarrow 1 to n do
                   \mathsf{edgeExists} \leftarrow \mathbf{A}[i][d.\mathsf{predicate}] = \{1\};
                   if edgeExists and d.isDetermined() then
                        D' \leftarrow D' \cup \{i\};
                   else if edgeExists and not d.isDetermined() then
                        D' \leftarrow D' \cup \{(i, d.\mathsf{source}, d.\mathsf{target})\};
                   else if |A[i][d].predicate] | > 1 and d.isDetermined() then
                        D' \leftarrow D' \cup \{(i, i, d.\mathsf{predicate})\};
     until D' = D;
     return D;
```

- 2. If $C = \emptyset$, return UNDEFINED.
- 3. Construct an adjacency list representation of a graph where vertices represent predicates. Each edge is either *positive* or *negative*. There is an edge from p to q if q appears in the body of a predicate with p as its head. The edge is negative if, when traversing the tree to reach some instance of q, we pass through a \neg node. Otherwise, it's positive.
- 4. Run a modified cycle detection algorithm that detects all cycles that have at least one negative edge.
- 5. If we found a cycle, return FALSE.
- 6. If C encompasses all clauses, return TRUE.
- 7. Return UNDEFINED.

Acknowledgments

The author would like to thank Vaishak Belle for his comments. This work was supported by the EPSRC Centre for Doctoral Training in Robotics and Autonomous Systems, funded by the UK Engineering and Physical Sciences Research Council (grant EP/S023208/1).

References

- 1. Bratko, I.: Prolog Programming for Artificial Intelligence, 4th Edition. Addison-Wesley (2012)
- 2. Fages, J., Lorca, X.: Revisiting the tree constraint. In: Lee, J.H. (ed.) Principles and Practice of Constraint Programming CP 2011 17th International Conference, CP

- 2011, Perugia, Italy, September 12-16, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6876, pp. 271–285. Springer (2011). https://doi.org/10.1007/978-3-642-23786-7_22
- 3. Prud'homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC LS2N CNRS UMR 6241, COSLING S.A.S. (2017), http://www.choco-solver.org
- 4. Raedt, L.D., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its application in link discovery. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007. pp. 2462–2467 (2007), http://ijcai.org/Proceedings/07/Papers/396.pdf
- 5. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. TPLP $\mathbf{12}(1-2)$, 67–96 (2012). https://doi.org/10.1017/S1471068411000494