1. 2-view special case: unknown yaw and horizontal translation Assume that a two-view configuration consists of two cameras with identical and known intrinsic parameters displaced as follows:

$$\mathbf{X_r} = R\mathbf{X_l} + \mathbf{t} \quad \text{where} \quad R = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}, \quad \mathbf{t} = \begin{bmatrix} t\cos \alpha \\ 0 \\ t\sin \alpha \end{bmatrix}$$

With t the magnitude of the translation, and X_r, X_r position vectors of points with the right and left camera coordinate system, respectively. Another way to think of this setup is one camera moving in the XZ plane.

Solution.

1.

$$E = [t] \times R = \begin{bmatrix} 0 & -t\sin\alpha & 0\\ t\sin(\alpha+\beta) & 0 & -t\cos(\alpha+\beta)\\ 0 & t\cos\alpha & 0 \end{bmatrix}$$

- 2. There are 3 unknown parameters in E, so the answer is 3.
- 3. The necessary and sufficient conditions:

$$\begin{cases}
E_{11} = E_{13} = E_{22} = E_{31} = E_{33} = 0 \\
E_{12}^2 + E_{32}^2 = E_{21}^2 + E_{23}^2
\end{cases}$$

To derive the unknowns of the problem α and β :

$$\begin{cases} \alpha = \arctan(-\frac{E_{12}}{E_{32}}) + k_1 \pi \\ \beta = \arctan(-\frac{E_{21}}{E_{23}}) - \alpha + k_2 \pi \end{cases}$$

4. Take the chirality constraint which ensures that points are in front of both cameras into consideration, so $0 \le \beta \le \pi$. So the answer is 2 pairs if we think about the angle between $-\pi$ and π .

5.

(a) Use the vector triple product identity:

$$a \times (b \times c) = (a \cdot c) \cdot b - (a \cdot b) \cdot c$$

(b) So, the equation becomes:

$$x_r^T[(x_r \cdot Rx_l) \cdot t - (x_r \cdot t) \cdot Rx_l] = 0$$

(c) Distribute the transpose and simplify:

$$(x_r \cdot Rx_l) \cdot x_r^T \cdot t - (x_r \cdot t) \cdot x_r^T \cdot Rx_l = 0$$

6. It is obvious that the intersection point lies on the Z-axes of both the left and right coordinate systems, so we can obtain the equation below:

$$\begin{bmatrix} 0 \\ 0 \\ Z_r \end{bmatrix} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ Z_l \end{bmatrix} + \begin{bmatrix} t \cos \alpha \\ 0 \\ t \sin \alpha \end{bmatrix}$$

Solve this equation,

$$Z_l = -\frac{t\cos\alpha}{\sin\beta}$$

So the answer is $(0, -\frac{t\cos\alpha}{\sin\beta})$

7. Considering the planar motion of the camera, we can derive the rate of change of image coordinates over time. Since there is no motion of the camera along the Y-axis, the Y-coordinate does not change over time, i.e., $\frac{dY}{dt} = 0$. However, the X and Z coordinates will change due to the motion of the camera:

$$\begin{cases} \frac{dX}{dt} = -V_x + \Omega_y Y \\ \frac{dZ}{dt} = -V_z \end{cases}$$

Now, we can substitute these rates of change into the rates of change of x and y:

$$\begin{cases} \frac{dx}{dt} = \frac{d}{dt}(f\frac{X}{Z}) = f\frac{\frac{dX}{dt}Z - X\frac{dZ}{dt}}{Z^2} \\ \frac{dy}{dt} = \frac{d}{dt}(f\frac{Y}{Z}) = f\frac{\frac{dY}{dt}Z - Y\frac{dZ}{dt}}{Z^2} \end{cases}$$

Substituting the expressions for $\frac{dX}{dt}$, $\frac{dY}{dt}$, and $\frac{dZ}{dt}$. After simplification, we obtain the optical flow equations:

$$\begin{cases} \frac{dx}{dt} = -f\frac{V_x}{Z} + \Omega_y y + f\frac{XV_z}{Z^2} \\ \frac{dy}{dt} = f\frac{YV_z}{Z^2} \end{cases}$$

Since $x = f\frac{X}{Z}$ and $y = f\frac{Y}{Z}$, we can represent X and Y in terms of x and y:

$$\begin{cases} \frac{dx}{dt} = -\frac{V_x}{Z} + \Omega_y y + \frac{xV_z}{Z} \\ \frac{dy}{dt} = \frac{yV_z}{Z} \end{cases}$$

These are the optical flow equations derived for the given planar motion of the camera.

8. Given the optical flow equations:

$$\begin{cases} \frac{dx}{dt} = -\frac{V_x}{Z} + \Omega_y y + \frac{xV_z}{Z} \\ \frac{dy}{dt} = \frac{yV_z}{Z} \end{cases}$$

The FOE can be found by setting the optical flow to zero. This means solving the following equations for x and y:

$$\begin{cases} 0 = -\frac{V_x}{Z} + \Omega_y y + \frac{xV_z}{Z} \\ 0 = \frac{yV_z}{Z} \end{cases}$$

From the second equation, it is clear that if $V_z \neq 0$, y must be zero for the flow to be zero. Substituting y = 0 into the first equation, we solve for x:

$$x = \frac{V_x}{V_z}$$

Thus, the coordinates of the FOE in the image plane are:

$$(\frac{V_x}{V_z},0)$$

9. We can express Z as:

$$Z = \frac{yV_z}{\frac{dy}{dt}}$$

Now, substitute this expression for Z into the first equation:

$$\frac{dx}{dt} = -\frac{V_x \frac{dy}{dt}}{yV_z} + \Omega_y y + \frac{x \frac{dy}{dt}}{y}$$

Simplifying this equation, we get:

$$\frac{dx}{dt} = -\frac{V_x \frac{dy}{dt}}{yV_z} + \Omega_y y + \frac{x \frac{dy}{dt}}{y}$$

10. Unclear about "the two unknowns".