

Ինտեգրալ սխեմաներում ջերմաստիճանի բաշխվածության եռաչափ արտապատկերման համակարգի մշակումը և հետազոտումը

บาเป๋า บาร 523ป

Ուսանող՝ Վարդան Միքայելյան

Ղեկավար` տ.գ.թ. Արա Գևորգյան

Բովանդակություն

- Ներածություն
- Գրականության ակնարկ
- Խնդրի դրվածք
- Տեսական առնչություններ
- Փորձնական հետազոտություններ
- Ստացված արդյունքներ
- Փորձարարական տեխնիկա
- Եզրակացություն
- Գրականության ցանկ

Ներածություն

Միկրոպրոցեսորների զարգացման միտումները

- Միկրոպրոցեսորների զարգացումը խոչընդոտվում է դրանց էներգասպառման և ջերմանջատման աճող արագությամբ։
- Միջին տեսակարար հզորությունը և արագագործությունը աճում են։
- Տեխնոլոգիայի զարգացմանը զուգահեռ մակերեսը մնում է հաստատուն։

Միկրոպրոցեսորների զարգացման միտումները

Թվական	2009	2012	2015	2018	2021	2024
ԻՍ-ների փականի երկարությունը (նմ)	54	35	22	15.7	11.1	7.9
Բյուրեղի մակերեսը (մմ²)	750	750	750	750	750	750
Միջին տեսակարար սպառող հզորությունը (Վտ/մմ²)	0.45	0.6	0.75	0.9	1.05	1.2
Արագագործությունը (ԳՀց)	5.45	6.82	8.52	10.65	13.32	15.41
Առավելագույն ջերմաստիձանը բջջային սարքերի դեպքում (°C)	105	105	105	105	105	105
Միջավայրի ջերմաստիձանն օդի օպտիմալ հոսքի դեպքում (ºC)	45	45	45	45	45	45

Գրականության ակնարկ

Պրոցեսորի ջերմային շեմը իջեցնելու համար, կարելի է կիրառել դինամիկ ջերմաստիճանային կառավարում

Դինամիկ ջերմաստիճանային կառավարման միջոցներ։

- Ծրագրային։
 - Իրականացվում է միայն ծրագրային ապահովման մեջ
 - Օրինակ։ Առաջադրանքների ջերմային պլանավորում
- Ապարատային։
 - o Գլոբալ
 - Ամբողջ չիպի համար
 - o Տեղային
 - Չիպի հատվածների համար
 - o Օրինակ։ Սինքրոազդանշանի հաճախականության նվազարկում
- Յիբրիդային։
 - Նախորդների համադրում:

Խնդրի դրվածքը

- Ինտեգրալ սխեմաներում ջերմաստիճանի բաշխվածության եռաչափ արտապատկերման համակարգի և արաջադրանքների պլանավորման ալգորիթմի մշակումը
- Մշակված ալգորիթմի արագագործության և ջերմաստիճանային հետազոտումը կախված կատարվող արաջադրանքներից և համեմատումը առկա պլանավորիչների հետ։

Տեսական առնչություններ

Առաջադրանքների ջերմային պլանավորում միահոսք պրոցեսորի համար

- ՕՅ-մակարդակի պլանավորիչ:
 - Պրոցեսների կառավարում:
 - Ապարատային օգտագործում։
- Արձագանքում է ջերմային աղետներին։
- Տաք պրոցեսները դանդաղեցվում են:

Առաջադրանքների ջերմային պլանավորում միահոսք պրոցեսորի համար

- Առավելություններ.
 - Սարքի գերտաքացում չի առաջացնում
 - Դանդաղեցվում են միայն տաք պրոցեսները, մնացածը աշխատում են նախկին արագությամբ
 - ճշգրտության բարձր աստիճան
- Թերություններ.
 - Սահմանափակ սառեցման ունակություն
 - Դանդաղեցնում է առավել պահանջված պրոցեսները

Առաջադրանքների ջերմային պլանավորում զուգահեռ բազմահոսք պրոցեսորի համար։

Ենթադրություն.

Ծրագրի ջերմային ակտիվությունը բնութագրվում է int և fp
ռեգիսստորներին դիմումների ինտենսիվությամբ

Մոտեցում

 Կատարել հերթական գործողությունը այն հոսքից, որը համեմատաբար սառն է կամ ավելի քիչ է դիմում ռեգիստորներին

Արտադրողականության սարքային հաշվիչներ

- Որոշել բարձր ինտենսիվությամբ հոսքերը
- Արձանագրել ջերմային վտանգները

Առաջադրանքների ջերմային պլանավորում զուգահեռ բազմահոսք պրոցեսորի համար։

- Առավելություններ.
 - Սարքի գերտաքացում չի առաջացնում:
 - Չի դանդաղեցնում ամբողջ պրոցեսորը:
- Թերություններ.
 - Սահմանափակ սառեցման ունակություն։
 - Աշխատում է միայն զուգահեռ բազմահոսք պրոցեսորների վրա։
 - o Նվազեցնում է hոսքերի

Փորձնական հետազոտություններ

Չերմաստիճանային համեմատություն։

Առավելագույն ջերմաստիձանը

Random	135
Balancing by core	127
Round Robin	126
Balancing By stack	127
Master_Slave Scheduler	118

Փորձարարական տեխնիկա

Ինտեգրալ սխեմաներում ջերմաստիճանի բաշխվածության եռաչափ արտապատկերման համակարգի ստեղծման և հետազոտման համար օգտագործվել են հետևյալ ապարատային և ծրագրային միջոցները.

- Intel (R) Core(TM)i7-3520M CPU @ 2.90GHz(4 CPUs) ~2.9GHz, 4Gb RAM, 250 GB Swap hամակարգիչ
- C++ 11, Qt 5.8 ծրագրավորման լեզուների համար նախատեսված թարգմանիչները
- Microsoft Windows 10 Enterprise, RedHat Enterprise Linux 6.4 օպերացիոն համակարգերը

Գրականության ցանկ

- 1. N. Bansal, T. Kimbrel, K. Pruhs, "Dynamic speed scaling to manage energy and temperature," the 45th IEEE FOCS, pp. 520-529, 2004.
- 2. N. Bansal, K. Pruhs, "Speed scaling to manage temperature," Symposium on Theoretical Aspects of Computer Science, pp. 460-471, 2005.
- 3. F. Bellosa, "The benefits of event-driven energy accounting in power-sensitive systems," the 9th ACM SIGOPS European Workshop, 2000.
- 4. F. Bellosa, A. Weissel, M. Waitz, S. Kellner, "Event-driven energy accounting for dynamic thermal management," Workshop on COLP, 2003.
- 5. D. Bovet, M. Cesati, "Understanding the Linux kernel, 3rd Edition," O'Reilly Publisher, November, 2005.
- 6. D. Brooks, M. Martonosi, "Dynamic thermal management for high-performance microprocessors," the 7th HPCA, pp. 171-180, 2001.
- 7. J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, P. Bose, "Thermal-aware task scheduling at the system software level," ISLPED, pp. 213-218, 2007.

