Al and Deep Learning

뉴런과 학습

Jeju National University Yung-Cheol Byun

인간의 고차원 기능은 <mark>단순한 뉴렌</mark>의 수많은 연결로 가능

하지만, 연결만 되었다고 가능?

학습(Learning) 학습이란 무엇인가?

Agenda

- Artificial Intelligence
- Brain and Neurons
- Learning
- Regression
- Deep Neural Networks
- CNN
- RNN
- Unsupervised Learning
- Reinforcement Learning
- Al Applications

엄청난 수의 뉴런들, 그 뉴런들의 수많은 <mark>연결</mark>

신기하게도, 아기는 무엇인가를 경험할 때마다 뉴런 사이의 <mark>연결</mark>이 '자동으로' 조정된다. 이것이 학습

두 뉴런의 연결

1개 입력을 갖는 뉴런

뉴런의 동작

w: 0, 7, -5 등 임의의 값

뉴런의 동작은 매우 단순 입력(x) * 가중치(w)

y = wx

뉴런의 응용

- . 1시간(x) 공부하면 1시간(y) 게임하게 해 줄게
- . How much you get if study 4 hours? (prediction)

. 이를 위한 연결 w 값을 구하라. 게임 시간

학습이란?

연결 값 w를 조정하는 것

{강하게, 혹은 약하게}

(Q) Draw a neuron

Representing the following equation:

$$y = 1x$$

연결(시냅스)은 머디에 있을까?

연결(시냅스)은 머디에 있을까?

여러 입력을 갖는 뉴런

입력에 가중치를 곱하여 모두 더해서 (weighted sum) 출력 (x가 각각 1,1,1,1이면 출력 값은?)

입력의 수만큼 연결이 존재

(Synapses, Weights)

사실은..

- 뉴런은 모두 더해서(weighted sum) 일정한 값 이상일 때만 시그널 ON
- 그렇지 않으면 시그널 OFF

특정 값(T) 이상이면 ON(1), 아니면 OFF(0)

모두 더해서 특정 값(T) 이상이면 ON(1), 아니면 OFF(0)

모두 더해서 특정 값(T) 이상이면 ON(1), 아니면 OFF(0)

다음 뉴런을 그려보자.

$$(1) y = 1x$$

$$(2) y = x_1 + 2x_2 + x_3 + 2x_4$$

(3)
$$y = \begin{cases} 0 & if \ x_1 + 2x_2 + x_3 + 2x_4 > T \\ 1 & otherwise \end{cases}$$

학습이란 무엇이다?

어떻게 자동으로 학습할 수 있을까?

요약

- 뉴런의 연결 부분, 시냅스
- 학습은 연결을 조정하는 것
- 파라미터(₩) 튜닝
- 뉴런의 동작
- 뉴런 그리기

Learning occurs...

- while experiencing something
- the strength of connection between neurons is properly changed

학습 = 연결 값을 조정하는 것 {강하게, 약하게}

$$y = w1x1 + w2x2 + w3x3 + w4x4$$

$$y = [w1, w2, w3, w4] \begin{bmatrix} x1\\ x2\\ x3\\ x4 \end{bmatrix}$$

$$y = wx$$

column vector $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} w_1^1, w_2^1, w_3^1, w_4^1 \\ w_1^2, w_2^2, w_3^2, w_4^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ matrix

y = Wx

7 inputs 5 neurons

Name \$	Plot 	Equation \$	Derivative (with respect to x)
Identity		f(x)=x	f'(x)=1
Binary step		$f(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$	$f'(x) = \left\{egin{array}{ll} 0 & ext{for } x eq 0 \ ? & ext{for } x = 0 \end{array} ight.$
Logistic (a.k.a. Soft step)		$f(x)=rac{1}{1+e^{-x}}$	f'(x)=f(x)(1-f(x))
TanH		$f(x)=\tanh(x)=\frac{2}{1+e^{-2x}}-1$	$f^{\prime}(x)=1-f(x)^2$
ArcTan		$f(x) = an^{-1}(x)$	$f'(x) = \frac{1}{x^2+1}$
Softsign [7][8]		$f(x) = \frac{x}{1 + x }$	$f'(x)=\frac{1}{(1+ x)^2}$
Rectified linear unit (ReLU) ^[9]		$f(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	$f'(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$
Leaky rectified linear unit (Leaky ReLU)		$f(x) = egin{cases} 0.01x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(x) = \left\{egin{array}{ll} 0.01 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$
Parameteric rectified linear unit (PReLU) ^[11]		$f(lpha,x) = \left\{egin{array}{ll} lpha x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	$f'(lpha,x) = \left\{ egin{array}{ll} lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$
Randomized leaky rectified linear unit (RReLU) ^[12]		$f(lpha,x) = egin{cases} lpha x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(lpha,x) = egin{cases} lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$
Exponential linear unit (ELU) ^[13]		$f(lpha,x) = \left\{ egin{array}{ll} lpha(e^x-1) & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	$f'(lpha,x) = egin{cases} f(lpha,x) + lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$