Message Parsing on a Microcontroller

Using Finite State Machines

David J. Broderick, Ph.D.

February 10, 2019

Introduction

- Interfacing peripheral devices is a necessary task in robotic control systems
- How do we write code to receive a message?
- Relying on libraries is limiting

Problem Statement

 Objective: parse the message passed from the simulation PC to the Controller

BIN output format is - "AB" byte1 byte2 byte3 byte4 CR

"AB" - start of data identifier for the receiving micro controller

byte1 - reserved

byte2 - 8 bit binary number giving pitch/act1 demand in 0-255 scale

byte3 - 8 bit binary number giving roll/act2 demand in 0-255 scale

byte4 - 8 bit binary number giving heave/act3 demand in 0-255 scale

0x0D - single byte Carriage Return data terminator

Overview of Procedure

Procedure:

- 1. When will we service the state machine?
- 2. Define the states
- 3. Define the transitions
- 4. Taking action
- 5. Implementation

Assumptions:

- 1. UART Initialized (BAUD rate, Format etc.)
- 2. Interrupt Service Routine setup

Define States

BIN output format

"AB" - start of data identifier

byte1 - reserved

byte2 - 8 bit binary number

byte3 - 8 bit binary number

byte4 - 8 bit binary number

0x0D - CR data terminator

- \bullet "A" \rightarrow 0x41
- "B" \rightarrow 0x42

CR

(4)

(3)

Defining Transitions

BIN output format

"AB" - start of data identifier

byte1 - reserved

byte2 - 8 bit binary number

byte3 - 8 bit binary number

byte4 - 8 bit binary number

0x0D - CR data terminator

- "A" → 0x41
- "B" → 0x42

Taking Action on Transitions

BIN output format

"AB" - start of data identifier

byte1 - reserved

byte2 - 8 bit binary number

byte3 - 8 bit binary number

byte4 - 8 bit binary number

0x0D - CR data terminator

- "A" → 0x41
- $\bullet \quad \text{``B''} \, \to \, 0x42$

Implementation

1:	procedure UART RX INTERRUPT
2:	switch State do
3:	case A
4:	if 0×41 then Set State B
5:	case B
6:	if 0×42 then Set State 1
7:	else Set State A
8:	case 1
9:	Set State 2
10:	case 2
11:	Store Temp. Pitch SP
12:	Set State 3
13:	case 3
14:	Store Temp. Roll SP
15:	Set State 4
16:	case 4
17:	Store Temp. Yaw SP
18:	Set State CR
19:	case CR
20:	if 0x0D then Impl. SPs
21:	Set State A

Received Data

	Temp	SP
Pitch		
Roll		
Yaw		

Received Data

0×41

	Temp	SP
Pitch		
Roll		
Yaw		

Received Data

0x41

0x42

	Temp	SP
Pitch		
Roll		
Yaw		

Received Data
0×41
0×42
0×00

	Temp	SP
Pitch	0x7F	
Roll		
Yaw		

Received Data

0×41 0×42 0×00

0x7F

0xC8

	Temp	SP
Pitch	0×7F	
Roll	0xC8	
Yaw		

Received Data
0×41
0×42
0×00
0×7F
0×C8
0×4A

	Temp	SP
Pitch	0x7F	
Roll	0xC8	
Yaw	0×4A	

Received Data
0×41
0×42
0×00
0×7F
0×C8
0×4A
0x0D

	Temp	SP
Pitch	0x7F	0×7F
Roll	0xC8	0×C8
Yaw	0x4A	0x4A

Things Will Go Wrong

Sources of data loss include:

- Noise
- Framing Errors
- BAUD rate mismatch

You must:

- Identify how the receiver will act
- Consider the system level effect

Received Data

	Temp	SP
Pitch		
Roll		
Yaw		

Received Data

0x41

0×0D	()	0×41	
Implement new			
SPs for Controller	A		0x42
els	se 🖊	else	7
(CR)			(1)
<u></u>			\mathcal{L}
0xXX	4		0xXX
Store Yaw SP	$\overline{}$		<u>-</u>
			/
0×	XX	(3)	0xXX
Store	Roll SP		Store Pitch SP

else

	Temp	SP
Pitch		
Roll		
Yaw		

Received Data

0×41

0×42

Received Data
0×41
0×42
0×00

	Temp	SP
Pitch		
Roll		
Yaw		

Received Data
0×41
0×42
0×00
0x7F

	Temp	SP
Pitch		
Roll		
Yaw		

Received Data	
0×41	
0×42	
0×00	
0×7F	
0xC8	

	Temp	SP
Pitch		
Roll		
Yaw		

Received Data
0×41
0×42
0×00
0×7F
0xC8
0×4A

	Temp	SP
Pitch	0x4A	
Roll		
Yaw		

Received Data
0×41
0×42
0×00
0×7F
0xC8
0×4A
0x0D

	Temp	SP
Pitch	0x4A	
Roll	0x0D	
Yaw		

Received Data		
0×41	0×41	
0×42		
0x00		
0x7F		
0xC8		
0×4A		
0×0D		

	Temp	SP
Pitch	0x4A	
Roll	0x0D	
Yaw	0×41	

Received Data		
0×41	0×41	
0×42	0×42	
0×00		
0×7F		
0xC8		
0×4A		
0x0D		

	Temp	SP
Pitch		
Roll		
Yaw		

Receive	ed Data
0×41	0×41
0×42	0×42
0×00	0×00
0x7F	0x82
0xC8	0×C4
0×4A	0×4A
0x0D	0x0D

	Temp	SP
Pitch		
Roll		
Yaw		

Limitations

To be considered:

- This is not the only approach
- Buffering
- Checksum
- Variable data length

Questions?

