ΛΥΣΗ

α) Αφού -2 < -1 και f γνησίως φθίνουσα στο διάστημα $\begin{bmatrix} -3,0 \end{bmatrix}$ είναι f(-2) > f(-1) . Επίσης f άρτια οπότε f(-2) = f(2) . Συνεπώς f(-1) < f(2) .

β) Η συνάρτηση f είναι γνησίως αύξουσα στο διάστημα [0,3], οπότε $f(3) \ge f(x) \ge f(0)$ για κάθε $x \in [0,3]$.

Η συνάρτηση f είναι γνησίως φθίνουσα στο διάστημα [-3,0], οπότε $f(-3) \ge f(x) \ge f(0)$ για κάθε $x \in [0,3]$.

Επίσης f άρτια οπότε f(-3) = f(3).

Συνεπώς $f(3) \ge f(x) \ge f(0)$ για κάθε $x \in [-3,3]$.

γ) Αφού $f(x) \ge f(0)$ για κάθε $x \in [-3,3]$, συμπεραίνουμε ότι η f παρουσιάζει ελάχιστο στο 0, που είναι και η μοναδική θέση ελαχίστου, αφού λόγω μονοτονίας f(x) > f(0) για κάθε $x \in [-3,0) \cup (0,3]$.

Αφού $f(x) \le f(3)$ για κάθε $x \in [-3,3]$, συμπεραίνουμε ότι η f παρουσιάζει μέγιστο στο 3, όπως και στο -3 αφού f(-3) = f(3), που είναι και οι μοναδικές θέσεις μεγίστου, αφού λόγω μονοτονίας f(x) < f(3) για κάθε $x \in (-3,3)$.

δ) Από τους 4 τύπους μόνο ο α . και ο β . έχουν πεδίο ορισμού το $\left[-3,3\right]$.

Επίσης για τον τύπο α. ισχύει f(0) > f(3) οπότε δεν μπορεί να αντιστοιχεί στη συνάρτηση του προβλήματος. Συνεπώς ο σωστός τύπος είναι ο β. $f(x) = -\sqrt{9-x^2}$.

Στο παρακάτω σχήμα φαίνεται η γραφική παράσταση της $f(x) = -\sqrt{9-x^2}$.

