

Revision-Convolution vs FIR

1. **Convolution** is the basic operation:

$$y[n] = \sum h[k] \cdot x[n-k]$$

- 2. Different choices of h[n] shape different outputs:
 - h[n] = [1, 1, 1]/3: averaging (smoothing)
 - h[n] = [1, 0, -1]: edge detection (high-pass)
- 3. It's a local, weighted sum like a sliding window
- In frequency domain, convolution = multiplication →
 "Sculpting the spectrum" YES, it becomes obvious once you see it.

So you've covered the core idea of FIR filtering already.

Then What's Worth Adding to Remember for FIR Filters?

Here's where real filter design and usage go beyond just convolution:

1. Filter Design Strategy Matters

You didn't just "pick" h[n] randomly — you need **rules** to generate:

- A low-pass filter with cutoff 1 kHz
- · A notch at 50 Hz
- A linear-phase filter with minimal ringing

This is why you need:

- Windowed sinc design
- Kaiser, Hamming, Blackman windows
- Tools like firwin, remez

What to remember:

FIR filters aren't just "any" h[n]. They're designed for specific spectral goals using formal methods.

2. Linear Phase FIR Is Special

A symmetric FIR filter:

- Has linear phase
- Preserves signal shape and delay
- Very important in comms, audio, image processing

What to remember:

Symmetry in $h[n] \to \text{constant group delay} \to \text{no waveform distortion}$.

⋄ 3. Tradeoffs: Length vs Transition Sharpness

- More taps (longer h[n]) = sharper filter
- · But this means:
 - More computation
 - More delay
 - Higher design complexity

What to remember:

Filter sharpness comes at a cost — delay and compute. Optimize per use case.

4. FIR Filters Are Always Stable

- No feedback → no poles → always stable
- · You can't "blow up" an FIR filter like you can an IIR

What to remember:

⋄ 5. Multirate FIR Filters (later)

- · Used in decimation, interpolation
- · Comb + sinc-like filters

♦ Not needed now, but remember: FIRs scale well with sample rate changes — key for SDR, RF systems.

③ Summary: What to Remember Beyond Basic Convolution

Concept	Why It Adds Value
FIR = Convolution	You already get this. ≪
Shape of $h[n]$ defines frequency response	This you've felt hands-on. ≪
FIR = Designed $h[n]$, not guessed	Think firwin(), windowed sinc
Symmetric $h[n]$ = linear phase	Preserves waveform shape
Filter length affects sharpness + delay	Crucial in real-time systems
FIR is unconditionally stable	Advantage over IIR