Ragionamenti

Isabella Bosia

Digressioni varie su argomenti interessosi.

1 Gioco di Banach-Mazur

Il giocatore g_1 sceglie un insieme A contenuto in $X_0 = [a, b] \subseteq \mathbb{R}$, il giocatore g_2 sceglie il complementare di A in [a, b].

Poi g_1 sceglie un intervallo chiuso X_1 dentro [a,b], poi g_2 un intervallo chiuso X_2 dentro X_1 , eccetera... Giocando per ω turni, i chiusi incapsulati convergono a un insieme X_∞ . Se $X_\infty \cap A \neq \emptyset$, vince g_1 , sennò vince g_2 .

La domanda è: per quali insiemi A esiste una strategia vincente per g_1 o g_2 ? E la risposta è: esiste una strategia se A ha la proprietà di Baire.

1.1 Variante

Il giocatore g_1 sceglie un insieme A in $X_0 = [0,1]$ e g_2 il complementare. Poi g_1 divide [0,1] nei due intervalli $\left[0,\frac{1}{2}\right]$ e $\left[\frac{1}{2},1\right]$, scegliendo X_1 tra uno dei due. Poi g_2 divide X_1 in due intervalli e ne sceglie uno... e così via. Dopo ω passi, la sequenza converge a un chiuso, se ha un punto in comune con l'insieme A vince g_1 , sennò vince g_2 .

La domanda è come prima: quali insiemi si possono scegliere per fare in modo che esista una strategia per uno dei due giocatori? Naturalmente se hanno la proprietà di Baire è tutto ok.

L'assioma di determinatezza implica tante belle cose, tra cui che ogni sottoinsieme di \mathbb{R} è misurabile e ha la proprietà di Baire, che per ogni famigila numerabile di insiemi non vuoti di \mathbb{R} esiste una funzione di scelta... e che l'assioma della scelta non vale.

Quindi, senza assumere la determinatezza, si può dire che per ogni possibile insieme che g1 può scegliere esiste una strategia vincente per g_1 o g_2 ? Se sì, come? Se no, assumendo la scelta, c'è un controesempio?

1.2 Seconda variante

Il giocatore g_1 sceglie un insieme A in $X_0 = [0,1]$ e g_2 il complementare. Poi g_1 divide [0,1] nei quattro intervalli $\left[0,\frac{1}{4}\right]$, $\left[\frac{1}{4},\frac{1}{2}\right]$, $\left[\frac{1}{2},\frac{3}{4}\right]$ e $\left[\frac{3}{4},1\right]$, ma non può

scegliere i due intervalli esterni, deve scegliere X_1 per forza tra $\begin{bmatrix} \frac{1}{4}, \frac{1}{2} \end{bmatrix}$ e $\begin{bmatrix} \frac{1}{2}, \frac{3}{4} \end{bmatrix}$. Poi g_2 divide X_1 in 4 parti e sceglie una delle due centrali... e così via. Dopo ω passi, la sequenza converge a un insieme, se ha un punto in comune con A vince g_1 , sennò vince g_2 .

La domanda è sempre: quali insiemi si possono scegliere per fare in modo che esista una strategia per uno dei due? Solo che questa volta ci sono dei "buchi", quindi se ad esempio un insieme $X \subseteq \left[\frac{1}{4}, \frac{3}{4}\right]$ ha la proprietà di Baire e $Y \subseteq \left(\frac{3}{4}, 1\right)$ no, allora anche scegliendo $X \cup Y$ esiste una strategia vincente per uno dei due giocatori.

Se *X* è un insieme di Bernstein, non ha la proprietà di Baire e nessuno dei due ha una strategia vincente. Se *X* non è di Bernstein invece?

Riferimenti bibliografici

- [1] Marianna Csörnye, Measure and Category Lecture notes http://www.ltcc.ac.uk/courses/Measure%20and%20Category/mc.pdf
- [2] John C. Oxtoby, Measure and Category http://math.rice.edu/~michael/teaching/426_Spr14/Banach_Mazur.pdf