CD MEDS CD

Matrix Equivalence Digital Signature

Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Lars Ran, Tovohery Hajatiana Randrianarisoa, Krijn Reijnders, Simona Samardjiska, Monika Trimoska

Radboud University

MEDS: a new code-based signature scheme

matrix code

A k-dimensional subspace $\mathscr{C} \subseteq \mathbb{F}_q^{m \times n}$ equipped with the rank metric

$$d(C_1, C_2) = \operatorname{Rank}(C_1 - C_2) \qquad C_1, C_2 \in \mathscr{C}$$

$$C_1, C_2 \in \mathscr{C}$$

matrix code

A k-dimensional subspace $\mathscr{C} \subseteq \mathbb{F}_q^{m \times n}$ equipped with the rank metric

$$d(C_1, C_2) = \text{Rank}(C_1 - C_2)$$
 $C_1, C_2 \in \mathscr{C}$

$$q = 13, \quad m = 4, \quad n = 6, \quad k = 5$$

$$C = \lambda_{1} \cdot \begin{bmatrix} 2 & 8 & 10 & 4 & 5 & 7 \\ 1 & 11 & 7 & 9 & 6 & 12 \\ 3 & 0 & 13 & 5 & 4 & 8 \\ 9 & 6 & 3 & 2 & 10 & 11 \end{bmatrix} + \lambda_{2} \cdot \begin{bmatrix} 12 & 0 & 4 & 11 & 9 & 3 \\ 5 & 6 & 8 & 13 & 2 & 1 \\ 10 & 7 & 3 & 9 & 4 & 6 \\ 2 & 5 & 11 & 8 & 1 & 10 \end{bmatrix} + \lambda_{3} \cdot \begin{bmatrix} 5 & 2 & 9 & 11 & 4 & 8 \\ 3 & 7 & 1 & 10 & 12 & 0 \\ 6 & 9 & 2 & 13 & 11 & 8 \\ 1 & 5 & 6 & 3 & 10 & 7 \end{bmatrix} + \lambda_{4} \cdot \begin{bmatrix} 9 & 4 & 6 & 1 & 13 & 2 \\ 8 & 0 & 5 & 12 & 6 & 11 \\ 3 & 7 & 10 & 9 & 4 & 5 \\ 2 & 8 & 11 & 3 & 7 & 1 \end{bmatrix} + \lambda_{5} \cdot \begin{bmatrix} 7 & 10 & 4 & 6 & 8 & 3 \\ 1 & 5 & 2 & 11 & 9 & 0 \\ 13 & 7 & 6 & 4 & 12 & 2 \\ 8 & 3 & 1 & 9 & 5 & 10 \end{bmatrix}$$

$$\lambda_{i} \in \mathbb{F}_{q}$$

matrix code

A k-dimensional subspace $\mathscr{C} \subseteq \mathbb{F}_q^{m \times n}$ equipped with the rank metric

$$d(C_1, C_2) = \operatorname{Rank}(C_1 - C_2) \qquad C_1, C_2 \in \mathscr{C}$$

$$q = 13, \quad m = 4, \quad n = 6, \quad k = 5$$

$$C = \lambda_{1} \cdot \begin{bmatrix} 2 & 8 & 10 & 4 & 5 & 7 \\ 1 & 11 & 7 & 9 & 6 & 12 \\ 3 & 0 & 13 & 5 & 4 & 8 \\ 9 & 6 & 3 & 2 & 10 & 11 \end{bmatrix} + \lambda_{2} \cdot \begin{bmatrix} 12 & 0 & 4 & 11 & 9 & 3 \\ 5 & 6 & 8 & 13 & 2 & 1 \\ 10 & 7 & 3 & 9 & 4 & 6 \\ 2 & 5 & 11 & 8 & 1 & 10 \end{bmatrix} + \lambda_{3} \cdot \begin{bmatrix} 5 & 2 & 9 & 11 & 4 & 8 \\ 3 & 7 & 1 & 10 & 12 & 0 \\ 6 & 9 & 2 & 13 & 11 & 8 \\ 1 & 5 & 6 & 3 & 10 & 7 \end{bmatrix} + \lambda_{4} \cdot \begin{bmatrix} 9 & 4 & 6 & 1 & 13 & 2 \\ 8 & 0 & 5 & 12 & 6 & 11 \\ 3 & 7 & 10 & 9 & 4 & 5 \\ 2 & 8 & 11 & 3 & 7 & 1 \end{bmatrix} + \lambda_{5} \cdot \begin{bmatrix} 7 & 10 & 4 & 6 & 8 & 3 \\ 1 & 5 & 2 & 11 & 9 & 0 \\ 13 & 7 & 6 & 4 & 12 & 2 \\ 8 & 3 & 1 & 9 & 5 & 10 \end{bmatrix}$$

$$\lambda_{i} \in \mathbb{F}_{q}$$

$$D = \lambda_1 \cdot \begin{bmatrix} 4 & 12 & 9 & 9 & 12 & 12 \\ 6 & 3 & 2 & 2 & 5 & 7 \\ 5 & 7 & 12 & 12 & 0 & 6 \\ 12 & 3 & 7 & 12 & 2 & 7 \end{bmatrix} + \lambda_2 \cdot \begin{bmatrix} 0 & 1 & 12 & 9 & 1 & 9 \\ 11 & 2 & 0 & 11 & 5 & 6 \\ 9 & 6 & 9 & 10 & 11 & 0 \end{bmatrix} + \lambda_3 \cdot \begin{bmatrix} 1 & 1 & 3 & 9 & 3 & 7 \\ 9 & 5 & 12 & 9 & 1 & 1 \\ 4 & 3 & 7 & 12 & 10 & 7 \\ 7 & 4 & 9 & 3 & 2 & 4 \end{bmatrix} + \lambda_4 \cdot \begin{bmatrix} 2 & 12 & 2 & 3 & 4 & 5 \\ 12 & 9 & 10 & 6 & 12 & 1 \\ 3 & 3 & 11 & 11 & 11 & 2 \\ 9 & 6 & 0 & 12 & 11 & 7 \end{bmatrix} + \lambda_5 \cdot \begin{bmatrix} 10 & 2 & 12 & 8 & 9 & 9 \\ 2 & 10 & 2 & 11 & 1 & 11 \\ 9 & 2 & 9 & 10 & 3 & 6 \\ 9 & 11 & 7 & 10 & 11 & 6 \end{bmatrix}$$

$$\lambda_i \in \mathbb{F}_q$$

matrix code

A k-dimensional subspace $\mathscr{C} \subseteq \mathbb{F}_q^{m \times n}$ equipped with the rank metric

$$d(C_1, C_2) = \operatorname{Rank}(C_1 - C_2) \qquad C_1, C_2 \in \mathscr{C}$$

Two matrix codes $\mathscr C$ and $\mathscr D$ are *equivalent* if we have a linear map $\mu:\mathscr C\to\mathscr D$ that preserves the metric (isometry): Rank $\mu(C)=\operatorname{Rank} C$, $\forall C\in\mathscr C$

$$q = 13, \quad m = 4, \quad n = 6, \quad k = 5$$

$$C = \lambda_{1} \cdot \begin{bmatrix} 2 & 8 & 10 & 4 & 5 & 7 \\ 1 & 11 & 7 & 9 & 6 & 12 \\ 3 & 0 & 13 & 5 & 4 & 8 \\ 9 & 6 & 3 & 2 & 10 & 11 \end{bmatrix} + \lambda_{2} \cdot \begin{bmatrix} 12 & 0 & 4 & 11 & 9 & 3 \\ 5 & 6 & 8 & 13 & 2 & 1 \\ 10 & 7 & 3 & 9 & 4 & 6 \\ 2 & 5 & 11 & 8 & 1 & 10 \end{bmatrix} + \lambda_{3} \cdot \begin{bmatrix} 5 & 2 & 9 & 11 & 4 & 8 \\ 3 & 7 & 1 & 10 & 12 & 0 \\ 6 & 9 & 2 & 13 & 11 & 8 \\ 1 & 5 & 6 & 3 & 10 & 7 \end{bmatrix} + \lambda_{4} \cdot \begin{bmatrix} 9 & 4 & 6 & 1 & 13 & 2 \\ 8 & 0 & 5 & 12 & 6 & 11 \\ 3 & 7 & 10 & 9 & 4 & 5 \\ 2 & 8 & 11 & 3 & 7 & 1 \end{bmatrix} + \lambda_{5} \cdot \begin{bmatrix} 7 & 10 & 4 & 6 & 8 & 3 \\ 1 & 5 & 2 & 11 & 9 & 0 \\ 13 & 7 & 6 & 4 & 12 & 2 \\ 8 & 3 & 1 & 9 & 5 & 10 \end{bmatrix}$$

$$\lambda_{i} \in \mathbb{F}_{q}$$

$$D = \lambda_1 \cdot \begin{bmatrix} 4 & 12 & 9 & 9 & 12 & 12 \\ 6 & 3 & 2 & 2 & 5 & 7 \\ 5 & 7 & 12 & 12 & 0 & 6 \\ 12 & 3 & 7 & 12 & 2 & 7 \end{bmatrix} + \lambda_2 \cdot \begin{bmatrix} 0 & 1 & 12 & 9 & 1 & 9 \\ 11 & 2 & 0 & 11 & 5 & 6 \\ 9 & 6 & 9 & 10 & 11 & 0 \end{bmatrix} + \lambda_3 \cdot \begin{bmatrix} 1 & 1 & 3 & 9 & 3 & 7 \\ 9 & 5 & 12 & 9 & 1 & 1 \\ 4 & 3 & 7 & 12 & 10 & 7 \\ 7 & 4 & 9 & 3 & 2 & 4 \end{bmatrix} + \lambda_4 \cdot \begin{bmatrix} 2 & 12 & 2 & 3 & 4 & 5 \\ 12 & 9 & 10 & 6 & 12 & 1 \\ 3 & 3 & 11 & 11 & 11 & 2 \\ 9 & 6 & 0 & 12 & 11 & 7 \end{bmatrix} + \lambda_5 \cdot \begin{bmatrix} 10 & 2 & 12 & 8 & 9 & 9 \\ 2 & 10 & 2 & 11 & 1 & 11 \\ 9 & 2 & 9 & 10 & 3 & 6 \\ 9 & 11 & 7 & 10 & 11 & 6 \end{bmatrix}$$

$$\lambda_i \in \mathbb{F}_q$$

$$A = \begin{bmatrix} 0 & 0 & 5 & 7 \\ 5 & 1 & 2 & 7 \\ 0 & 4 & 4 & 0 \\ 4 & 3 & 7 & 7 \end{bmatrix} \in GL_m(q)$$

$$B = \begin{bmatrix} 9 & 0 & 8 & 11 & 2 & 3 \\ 2 & 7 & 4 & 7 & 4 & 9 \\ 3 & 3 & 10 & 10 & 12 & 12 \\ 10 & 6 & 8 & 3 & 5 & 10 \\ 0 & 7 & 5 & 1 & 5 & 7 \\ 0 & 0 & 1 & 1 & 8 & 12 \end{bmatrix} \in GL_n(q)$$

C

$$q = 13, \quad m = 4, \quad n = 6, \quad k = 5$$

$$C = \lambda_{1} \cdot \begin{bmatrix} 2 & 8 & 10 & 4 & 5 & 7 \\ 1 & 11 & 7 & 9 & 6 & 12 \\ 3 & 0 & 13 & 5 & 4 & 8 \\ 9 & 6 & 3 & 2 & 10 & 11 \end{bmatrix} + \lambda_{2} \cdot \begin{bmatrix} 12 & 0 & 4 & 11 & 9 & 3 \\ 5 & 6 & 8 & 13 & 2 & 1 \\ 10 & 7 & 3 & 9 & 4 & 6 \\ 2 & 5 & 11 & 8 & 1 & 10 \end{bmatrix} + \lambda_{3} \cdot \begin{bmatrix} 5 & 2 & 9 & 11 & 4 & 8 \\ 3 & 7 & 1 & 10 & 12 & 0 \\ 6 & 9 & 2 & 13 & 11 & 8 \\ 1 & 5 & 6 & 3 & 10 & 7 \end{bmatrix} + \lambda_{4} \cdot \begin{bmatrix} 9 & 4 & 6 & 1 & 13 & 2 \\ 8 & 0 & 5 & 12 & 6 & 11 \\ 3 & 7 & 10 & 9 & 4 & 5 \\ 2 & 8 & 11 & 3 & 7 & 1 \end{bmatrix} + \lambda_{5} \cdot \begin{bmatrix} 7 & 10 & 4 & 6 & 8 & 3 \\ 1 & 5 & 2 & 11 & 9 & 0 \\ 13 & 7 & 6 & 4 & 12 & 2 \\ 8 & 3 & 1 & 9 & 5 & 10 \end{bmatrix}$$

$$\lambda_{i} \in \mathbb{F}_{q}$$

$$D = \lambda_1 \cdot \begin{bmatrix} 4 & 12 & 9 & 9 & 12 & 12 \\ 6 & 3 & 2 & 2 & 5 & 7 \\ 5 & 7 & 12 & 12 & 0 & 6 \\ 12 & 3 & 7 & 12 & 2 & 7 \end{bmatrix} + \lambda_2 \cdot \begin{bmatrix} 0 & 1 & 12 & 9 & 1 & 9 \\ 11 & 2 & 0 & 11 & 5 & 6 \\ 5 & 9 & 4 & 12 & 2 & 12 \\ 9 & 6 & 9 & 10 & 11 & 0 \end{bmatrix} + \lambda_3 \cdot \begin{bmatrix} 1 & 1 & 3 & 9 & 3 & 7 \\ 9 & 5 & 12 & 9 & 1 & 1 \\ 4 & 3 & 7 & 12 & 10 & 7 \\ 7 & 4 & 9 & 3 & 2 & 4 \end{bmatrix} + \lambda_4 \cdot \begin{bmatrix} 2 & 12 & 2 & 3 & 4 & 5 \\ 12 & 9 & 10 & 6 & 12 & 1 \\ 3 & 3 & 11 & 11 & 11 & 2 \\ 9 & 6 & 0 & 12 & 11 & 7 \end{bmatrix} + \lambda_5 \cdot \begin{bmatrix} 10 & 2 & 12 & 8 & 9 & 9 \\ 2 & 10 & 2 & 11 & 1 & 11 \\ 9 & 2 & 9 & 10 & 3 & 6 \\ 9 & 11 & 7 & 10 & 11 & 6 \end{bmatrix}$$

$$\lambda_i \in \mathbb{F}_q$$

$$A = \begin{bmatrix} 0 & 0 & 5 & 7 \\ 5 & 1 & 2 & 7 \\ 0 & 4 & 4 & 0 \\ 4 & 3 & 7 & 7 \end{bmatrix} \in GL_m(q)$$

$$B = \begin{bmatrix} 9 & 0 & 8 & 11 & 2 & 3 \\ 2 & 7 & 4 & 7 & 4 & 9 \\ 3 & 3 & 10 & 10 & 12 & 12 \\ 10 & 6 & 8 & 3 & 5 & 10 \\ 0 & 7 & 5 & 1 & 5 & 7 \\ 0 & 0 & 1 & 1 & 8 & 12 \end{bmatrix} \in GL_n(q)$$

we get $ACB \in \mathcal{D}$ for all $C \in \mathcal{C}$

$$q = 13, \quad m = 4, \quad n = 6, \quad k = 5$$

$$C = \lambda_{1} \cdot \begin{bmatrix} 2 & 8 & 10 & 4 & 5 & 7 \\ 1 & 11 & 7 & 9 & 6 & 12 \\ 3 & 0 & 13 & 5 & 4 & 8 \\ 9 & 6 & 3 & 2 & 10 & 11 \end{bmatrix} + \lambda_{2} \cdot \begin{bmatrix} 12 & 0 & 4 & 11 & 9 & 3 \\ 5 & 6 & 8 & 13 & 2 & 1 \\ 10 & 7 & 3 & 9 & 4 & 6 \\ 2 & 5 & 11 & 8 & 1 & 10 \end{bmatrix} + \lambda_{3} \cdot \begin{bmatrix} 5 & 2 & 9 & 11 & 4 & 8 \\ 3 & 7 & 1 & 10 & 12 & 0 \\ 6 & 9 & 2 & 13 & 11 & 8 \\ 1 & 5 & 6 & 3 & 10 & 7 \end{bmatrix} + \lambda_{4} \cdot \begin{bmatrix} 9 & 4 & 6 & 1 & 13 & 2 \\ 8 & 0 & 5 & 12 & 6 & 11 \\ 3 & 7 & 10 & 9 & 4 & 5 \\ 2 & 8 & 11 & 3 & 7 & 1 \end{bmatrix} + \lambda_{5} \cdot \begin{bmatrix} 7 & 10 & 4 & 6 & 8 & 3 \\ 1 & 5 & 2 & 11 & 9 & 0 \\ 13 & 7 & 6 & 4 & 12 & 2 \\ 8 & 3 & 1 & 9 & 5 & 10 \end{bmatrix}$$

$$\lambda_{i} \in \mathbb{F}_{q}$$

$$D = \lambda_1 \cdot \begin{bmatrix} 4 & 12 & 9 & 9 & 12 & 12 \\ 6 & 3 & 2 & 2 & 5 & 7 \\ 5 & 7 & 12 & 12 & 0 & 6 \\ 12 & 3 & 7 & 12 & 2 & 7 \end{bmatrix} + \lambda_2 \cdot \begin{bmatrix} 0 & 1 & 12 & 9 & 1 & 9 \\ 11 & 2 & 0 & 11 & 5 & 6 \\ 9 & 6 & 9 & 10 & 11 & 0 \end{bmatrix} + \lambda_3 \cdot \begin{bmatrix} 1 & 1 & 3 & 9 & 3 & 7 \\ 9 & 5 & 12 & 9 & 1 & 1 \\ 4 & 3 & 7 & 12 & 10 & 7 \\ 7 & 4 & 9 & 3 & 2 & 4 \end{bmatrix} + \lambda_4 \cdot \begin{bmatrix} 2 & 12 & 2 & 3 & 4 & 5 \\ 12 & 9 & 10 & 6 & 12 & 1 \\ 3 & 3 & 11 & 11 & 11 & 2 \\ 9 & 6 & 0 & 12 & 11 & 7 \end{bmatrix} + \lambda_5 \cdot \begin{bmatrix} 10 & 2 & 12 & 8 & 9 & 9 \\ 2 & 10 & 2 & 11 & 1 & 11 \\ 9 & 2 & 9 & 10 & 3 & 6 \\ 9 & 11 & 7 & 10 & 11 & 6 \end{bmatrix}$$

$$\lambda_i \in \mathbb{F}_q$$

$$A = \begin{bmatrix} 0 & 0 & 5 & 7 \\ 5 & 1 & 2 & 7 \\ 0 & 4 & 4 & 0 \\ 4 & 3 & 7 & 7 \end{bmatrix} \in GL_m(q)$$

$$B = \begin{bmatrix} 9 & 0 & 8 & 11 & 2 & 3 \\ 2 & 7 & 4 & 7 & 4 & 9 \\ 3 & 3 & 10 & 10 & 12 & 12 \\ 10 & 6 & 8 & 3 & 5 & 10 \\ 0 & 7 & 5 & 1 & 5 & 7 \\ 0 & 0 & 1 & 1 & 8 & 12 \end{bmatrix} \in GL_n(q)$$

we get $ACB \in \mathcal{D}$ for all $C \in \mathcal{C}$

the map $\mu = (A, B)$ preserves rank!

$$q = 13, \quad m = 4, \quad n = 6, \quad k = 5$$

$$C = \lambda_{1} \cdot \begin{bmatrix} 2 & 8 & 10 & 4 & 5 & 7 \\ 1 & 11 & 7 & 9 & 6 & 12 \\ 3 & 0 & 13 & 5 & 4 & 8 \\ 9 & 6 & 3 & 2 & 10 & 11 \end{bmatrix} + \lambda_{2} \cdot \begin{bmatrix} 12 & 0 & 4 & 11 & 9 & 3 \\ 5 & 6 & 8 & 13 & 2 & 1 \\ 10 & 7 & 3 & 9 & 4 & 6 \\ 2 & 5 & 11 & 8 & 1 & 10 \end{bmatrix} + \lambda_{3} \cdot \begin{bmatrix} 5 & 2 & 9 & 11 & 4 & 8 \\ 3 & 7 & 1 & 10 & 12 & 0 \\ 6 & 9 & 2 & 13 & 11 & 8 \\ 1 & 5 & 6 & 3 & 10 & 7 \end{bmatrix} + \lambda_{4} \cdot \begin{bmatrix} 9 & 4 & 6 & 1 & 13 & 2 \\ 8 & 0 & 5 & 12 & 6 & 11 \\ 3 & 7 & 10 & 9 & 4 & 5 \\ 2 & 8 & 11 & 3 & 7 & 1 \end{bmatrix} + \lambda_{5} \cdot \begin{bmatrix} 7 & 10 & 4 & 6 & 8 & 3 \\ 1 & 5 & 2 & 11 & 9 & 0 \\ 13 & 7 & 6 & 4 & 12 & 2 \\ 8 & 3 & 1 & 9 & 5 & 10 \end{bmatrix}$$

$$\lambda_{i} \in \mathbb{F}_{q}$$

$$D = \lambda_1 \cdot \begin{bmatrix} 4 & 12 & 9 & 9 & 12 & 12 \\ 6 & 3 & 2 & 2 & 5 & 7 \\ 5 & 7 & 12 & 12 & 0 & 6 \\ 12 & 3 & 7 & 12 & 2 & 7 \end{bmatrix} + \lambda_2 \cdot \begin{bmatrix} 0 & 1 & 12 & 9 & 1 & 9 \\ 11 & 2 & 0 & 11 & 5 & 6 \\ 9 & 6 & 9 & 10 & 11 & 0 \end{bmatrix} + \lambda_3 \cdot \begin{bmatrix} 1 & 1 & 3 & 9 & 3 & 7 \\ 9 & 5 & 12 & 9 & 1 & 1 \\ 4 & 3 & 7 & 12 & 10 & 7 \\ 7 & 4 & 9 & 3 & 2 & 4 \end{bmatrix} + \lambda_4 \cdot \begin{bmatrix} 2 & 12 & 2 & 3 & 4 & 5 \\ 12 & 9 & 10 & 6 & 12 & 1 \\ 3 & 3 & 11 & 11 & 11 & 2 \\ 9 & 6 & 0 & 12 & 11 & 7 \end{bmatrix} + \lambda_5 \cdot \begin{bmatrix} 10 & 2 & 12 & 8 & 9 & 9 \\ 2 & 10 & 2 & 11 & 1 & 11 \\ 9 & 2 & 9 & 10 & 3 & 6 \\ 9 & 11 & 7 & 10 & 11 & 6 \end{bmatrix}$$

$$\lambda_i \in \mathbb{F}_q$$

Can think of a matrix code as a 3-tensor over \mathbb{F}_q

Equivalence then becomes tensor isomorphism

$$\mathscr{C} \subseteq \mathbb{F}_q^{m \times n \times k}$$

symmetry

Viewed as a 3-tensor, we can see $\mathscr C$ using three orientations

- a k-dimensional code in $\mathbb{F}_q^{m\times n}$ an m-dimensional code in $\mathbb{F}_q^{n\times k}$ an n-dimensional code in $\mathbb{F}_q^{m\times k}$

combinatorial

Attacks using isometry-invariant substructures

Example: find low-rank codewords in both codes and construct collisions using the birthday paradox

- Graph-based algorithm
- Leon's like algorithm

 $\tilde{\mathcal{O}}(q^{\min(n,m,k)})$

combinatorial

Attacks using isometry-invariant substructures

Example: find low-rank codewords in both codes and construct collisions using the birthday paradox

- Graph-based algorithm
- Leon's like algorithm

 $\tilde{\mathcal{O}}(q^{\min(n,m,k)})$

algebraic

Attacks reducing MCE to solving a system of polynomial equations using Gröbner basis techniques

Example: use the tensor isomorphism formulation to get a trilinear system or, consider transformed codewords AC_iB as dual to the dual code \mathcal{D}^{\perp}

- direct modelling
- minor's modelling
- *improved* modelling

$$\widehat{O}\left(n^{\omega\frac{n}{4}}\right)$$

equations

$$\mathscr{C}(Ax, By, z) = \mathscr{D}(x, y, T^{-1}z)$$

equations

$$\mathscr{C}(Ax, By, z) = \mathscr{D}(x, y, T^{-1}z)$$

system

Three bilinear systems:

$$\mathscr{C}(Ax, By, z) = \mathscr{D}(x, y, T^{-1}z)$$

$$\mathscr{C}(Ax, y, Tz) = \mathscr{D}(x, B^{-1}y, z)$$

$$\mathscr{C}(x, By, Tz) = \mathscr{D}(A^{-1}x, y, z)$$

Equations:

$$k(nm - k) + m(kn - m) + n(mk - n)$$

Variables:

$$n^2 + m^2 + k^2$$

SETUP

- Assume parameter set q, n, m, k. and "starting" code $\operatorname{\mathscr{C}}$
- Generate secret key $A \in \operatorname{GL}_{\mathrm{m}}(q), B \in \operatorname{GL}_{\mathrm{n}}(q)$
- Generate **public key** $\mathscr{D} = A\mathscr{C}B$

SETUP

- Assume parameter set q, n, m, k. and "starting" code $\operatorname{\mathscr{C}}$
- Generate secret key $A \in \operatorname{GL}_{\mathrm{m}}(q), B \in \operatorname{GL}_{\mathrm{n}}(q)$
- Generate **public key** $\mathscr{D} = A\mathscr{C}B$

COMMIT

- Generate **ephemeral** $\tilde{A} \in \mathrm{GL}_{\mathrm{m}}(q), \, \tilde{B} \in \mathrm{GL}_{n}(q)$
- Generate ephemeral code $\tilde{\mathscr{C}} = \tilde{A}\mathscr{C}\tilde{B}$

SETUP

- Assume parameter set q, n, m, k. and "starting" code $\operatorname{\mathscr{C}}$
- Generate secret key $A \in \operatorname{GL}_{\mathrm{m}}(q)$, $B \in \operatorname{GL}_{n}(q)$
- Generate **public key** $\mathscr{D} = A\mathscr{C}B$

COMMIT

- Generate **ephemeral** $\tilde{A} \in \mathrm{GL}_{\mathrm{m}}(q), \, \tilde{B} \in \mathrm{GL}_{n}(q)$
- Generate ephemeral code $\tilde{\mathscr{C}} = \tilde{A}\mathscr{C}\tilde{B}$

SETUP

- Assume parameter set q, n, m, k. and "starting" code $\operatorname{\mathscr{C}}$
- Generate secret key $A \in \operatorname{GL}_{\mathrm{m}}(q), B \in \operatorname{GL}_{n}(q)$
- Generate **public key** $\mathscr{D} = A\mathscr{C}B$

COMMIT

- Generate **ephemeral** $\tilde{A} \in \mathrm{GL}_{\mathrm{m}}(q), \, \tilde{B} \in \mathrm{GL}_{n}(q)$
- Generate ephemeral code $\tilde{\mathscr{C}} = \tilde{A}\mathscr{C}\tilde{B}$

CHALLENGE

- Pick a bit $b \in \{0,1\}$

RESPONSE

- if b=0, reply with (\tilde{A},\tilde{B})
- if b=1, reply with $(\tilde{A}\cdot A^{-1},B^{-1}\cdot \tilde{B})$

Fiat-Shamir

SETUP

- Assume parameter set q, n, m, k. and "starting" code $\operatorname{\mathscr{C}}$
- Generate secret key $A \in \operatorname{GL}_{\mathrm{m}}(q), B \in \operatorname{GL}_{\mathrm{n}}(q)$
- Generate **public key** $\mathscr{D} = A\mathscr{C}B$

COMMIT

- Generate **ephemeral** $\tilde{A} \in \mathrm{GL}_{\mathrm{m}}(q), \, \tilde{B} \in \mathrm{GL}_{n}(q)$
- Generate **ephemeral code** $\tilde{\mathscr{C}} = \tilde{A}\mathscr{C}\tilde{B}$

CHALLENGE

- Pick a bit $b \in \{0,1\}$

RESPONSE

- if b=0, reply with (\tilde{A},\tilde{B})
- if b=1, reply with $(\tilde{A}\cdot A^{-1},B^{-1}\cdot \tilde{B})$

Fiat-Shamir

SETUP

- Assume parameter set q, n, m, k. and "starting" code $\operatorname{\mathscr{C}}$
- Generate secret key $A \in \operatorname{GL}_{\mathrm{m}}(q), B \in \operatorname{GL}_{\mathrm{n}}(q)$
- Generate **public key** $\mathscr{D} = A\mathscr{C}B$

COMMIT

- Generate **ephemeral** $\tilde{A} \in \mathrm{GL}_{\mathrm{m}}(q), \, \tilde{B} \in \mathrm{GL}_{n}(q)$
- Generate ephemeral code $\tilde{\mathscr{C}} = \tilde{A}\mathscr{C}\tilde{B}$

CHALLENGE

- Pick a bit $b \in \{0,1\}$

RESPONSE

- if b=0, reply with (\tilde{A},\tilde{B})
- if b=1, reply with $(\tilde{A}\cdot A^{-1},B^{-1}\cdot \tilde{B})$

soundness 1/2

Fiat-Shamir

[1] L. De Feo and S. D. Galbraith. SeaSign: Compact isogeny signatures from class group actions. EUROCRYPT 2019.
[2] W. Beullens, S, Katsumata, and F. Pintore. Calamari and Falafl: Logarithmic (linkable) ring signatures from isogenies and lattices. ASIACRYPT 2020

[1] L. De Feo and S. D. Galbraith. SeaSign: Compact isogeny signatures from class group actions. EUROCRYPT 2019.
[2] W. Beullens, S, Katsumata, and F. Pintore. Calamari and Falafl: Logarithmic (linkable) ring signatures from isogenies and lattices. ASIACRYPT 2020.

L. De Feo and S. D. Galbraith. SeaSign: Compact isogeny signatures from class group actions. EUROCRYPT 2019.
 W. Beullens, S, Katsumata, and F. Pintore. Calamari and Falafl: Logarithmic (linkable) ring signatures from isogenies and lattices. ASIACRYPT 2020.

L. De Feo and S. D. Galbraith. SeaSign: Compact isogeny signatures from class group actions. EUROCRYPT 2019.
 W. Beullens, S, Katsumata, and F. Pintore. Calamari and Falafl: Logarithmic (linkable) ring signatures from isogenies and lattices. ASIACRYPT 2020.

[3] J. Ding, M-S Chen, A. Petzoldt, D. Schmidt, B-Y. Yang, M. Kannwischer, and J. Patarin. Rainbow. NIST 2020.
[4] W. Beullens, M-S. Chen, S-H. Hung, M. Kannwischer, B. Peng, C-J. Shih, and B-Y. Yang. Oil and Vinegar: Modern parameters and implementations.

improved compression (ongoing work)

MCE can be solved efficiently with two full rank collisions

present two collisions as proof of knowledge of the secret isometry

two collisions

$$AP_{o}B = R_{o}, AP_{i}B = R_{i}$$

$$AP_{o} = R_{o}B^{-1}, AP_{i} = R_{i}B^{-1}$$

isometry diagram

$$P_{o}$$
, P_{o} , P

improved compression (ongoing work)

MCE can be solved efficiently with two full rank collisions

present two collisions as proof of knowledge of the secret isometry

two collisions

$$AP_{o}B = R_{o}, AP_{i}B = R_{i}$$

$$AP_{o} = R_{o}B^{-1}, AP_{i} = R_{i}B^{-1}$$

challenge response

parameters	q	n = m = k	t (rounds)	S (no. of pk's)	W (seed tree)	Public Key (bytes)	Signature (bytes)
MEDS-9923	4093	14	1152	4	14	9923	9896
MEDS-13220	4093	14	192	5	20	13220	12976
MEDS-41711	4093	22	608	4	26	41711	41080
MEDS-69497	4093	22	160	5	36	55604	54736
MEDS-134180	2039	30	192	5	52	134180	132528
MEDS-167717	2039	30	112	6	66	167717	165464

parameters	q	n = m = k	t (rounds)	S (no. of pk's)	W (seed tree)	Public Key (bytes)	Signature (bytes)
MEDS-9923	4093	14	1152	4	14	9923	9896
MEDS-13220	4093	14	192	5	20	13220	12976
MEDS-41711	4093	22	608	4	26	41711	41080
MEDS-69497	4093	22	160	5	36	55604	54736
MEDS-134180	2039	30	192	5	52	134180	132528
MEDS-167717	2039	30	112	6	66	167717	165464

advantages

- single hardness assumption: MCE
- simple design and arithmetic
- great flexibility in sizes
- generic: room for improvements!

parameters	q	n = m = k	t (rounds)	S (no. of pk's)	W (seed tree)	Public Key (bytes)	Signature (bytes)
MEDS-9923	4093	14	1152	4	14	9923	9896
MEDS-13220	4093	14	192	5	20	13220	12976
MEDS-41711	4093	22	608	4	26	41711	41080
MEDS-69497	4093	22	160	5	36	55604	54736
MEDS-134180	2039	30	192	5	52	134180	132528
MEDS-167717	2039	30	112	6	66	167717	165464

advantages

- single hardness assumption: MCE
- simple design and arithmetic
- great flexibility in sizes
- *generic*: room for improvements!

limitations

- resulting pk's and sig's still large
- scaling to higher parameters
- needs more research on MCE
- opportunity: lots of cool research!

parameters	q	n = m = k	t (rounds)	S (no. of pk's)	W (seed tree)	Public Key (bytes)	Signature (bytes)
MEDS-9923	4093	14	1152	4	14	9923	9896
MEDS-13220	4093	14	192	5	20	13220	12976
MEDS-41711	4093	22	608	4	26	41711	41080
MEDS-69497	4093	22	160	5	36	55604	54736
MEDS-134180	2039	30	192	5	52	134180	132528
MEDS-167717	2039	30	112	6	66	167717	165464

advantages

- single hardness assumption: MCE
- simple design and arithmetic
- great flexibility in sizes
- *generic*: room for improvements!

limitations

- resulting pk's and sig's still large
- scaling to higher parameters
- needs more research on MCE
- opportunity: lots of cool research!

advancing

- new technique to reduce sig. size
- MEDS-13220 to **2088** bytes (-84%)
- still analysing security of technique
- explore: potential for new ideas!

Thank you for your attention!

https://www.meds-pqc.org/

