K131975

510(k) Summary

Alfa Wassermann Diagnostic Technologies, LLC 4 Henderson Drive West Caldwell, NJ 07006				
Contact: HKatz@AlfaW Hyman Katz, Ph Phone: 973-852- Fax: 973-852-	0158 2013			
September 26, 2013				
Trade Name:	ACE Direct Total Iron-Binding Capacity (TIBC) Reagent			
Classification:	Class 1			
Common/Classification Name:	Direct Total Iron-Binding Capacity (TIBC) (21 C.F.R. § 862.1415) Product Code JMO			
Trade Name:	ACE Total Iron Reagent			
Classification:	Class 1			
Common/Classification Name:	Photometric Method, Iron (Non-Heme) (21 C.F.R. § 862.1410) Product Code JIY			
Trade Name:	ACE LDH-L Reagent			
Classification:	Class 2			
Common/Classification Name:	NAD Reduction/NADH Oxidation, Lactate Dehydrogenase (21 C. F.R. § 862.1440) Product Code CFJ			
	4 Henderson Dri West Caldwell, N Contact: HKatz@AlfaW Hyman Katz, Ph Phone: 973-852- Fax: 973-852- September 26, 2013 Trade Name: Classification: Common/Classification Name: Trade Name: Classification: Common/Classification Name:			

Predicate	Manufacturer for reagent system predicates:
Devices:	Alfa Wassermann ACE Clinical Chemistry System and ACE Reagents (K930104, K944911, K931786)
Device Descriptions:	In the ACE Direct Total Iron-Binding Capacity (TIBC) Reagent assay, Direct TIBC Color Reagent, an acidic buffer containing an iron-binding dye and ferric chloride, is added to the serum sample. The low pH of Direct TIBC Color Reagent releases iron from transferrin. The iron then forms a colored complex with the dye. The colored complex at the end of the first step represents both the serum iron and excess iron already present in Direct TIBC Color Reagent. Direct TIBC Buffer, a neutral buffer, is then added, shifting the pH and resulting in a large increase in the affinity of transferrin for iron. The serum transferrin rapidly binds the iron by abstracting it from the dye-iron complex. The observed decrease in absorbance of the colored dye-iron complex is directly proportional to the total iron-binding capacity of the serum sample. The absorbance is measured at 647 nm.
	In the ACE Total Iron Reagent assay, transferrin-bound iron in serum is released at an acidic pH and reduced from ferric to ferrous ions. These ions react with ferrozine to form a violet colored complex, which is measured bichromatically at 554 nm/692 nm. The intensity of color produced is directly proportional to the serum iron concentration.
	In the ACE LDH-L Reagent assay, lactate dehydrogenase catalyzes the conversion of L-lactate to pyruvate. Nicotinamide adenine dinucleotide (NAD ⁺) acts as an acceptor for the hydrogen ions released from the L-lactate and is converted to reduced nicotinamide adenine dinucleotide (NADH). NADH absorbs strongly at 340 nm whereas NAD ⁺ does not. Therefore, the rate of conversion of NAD ⁺ to NADH can be determined by monitoring the increase in absorbance bichromatically at 340 nm/647 nm. This rate of conversion from NAD+ to NADH is directly proportional to the lactate dehydrogenase activity in the sample.

Intended Use: Indications for Use: The ACE Direct Total Iron-Binding (TIBC) Reagent is intended for the quantitative determination of total iron-binding capacity in serum using the ACE Alera Clinical Chemistry System. Iron-binding capacity measurements are used in the diagnosis and treatment of anemia. This test is intended for use in clinical laboratories and physician office laboratories. For in vitro diagnostic use only. The ACE Total Iron Reagent is intended for the quantitative determination of iron in serum using the ACE Alera Clinical Chemistry System. Iron (non-heme) measurements are used in the diagnosis and treatment of diseases such as iron deficiency anemia, hemochromatosis (a disease associated with widespread deposit in the tissues of two iron-containing pigments, hemosiderin and hemofuscin, and characterized by pigmentation of the skin), and chronic renal disease. This test is intended for use in clinical laboratories and physician office laboratories. For *in vitro* diagnostic use only.

The ACE LDH-L Reagent is intended for the quantitative determination of lactate dehydrogenase activity in serum using the ACE Alera Clinical Chemistry System. Lactate dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction and tumors of the lung or kidneys. This test is intended for use in clinical laboratories and physician office laboratories. For in vitro diagnostic use only.

Technological Characteristics:

The ACE Direct Total Iron-Binding Capacity (TIBC) Reagent is composed of two reagent bottles (Direct TIBC Color Reagent and Direct TIBC Buffer). The Direct TIBC Color Reagent (R1) contains: Chromazurol B, Cetrimide, ferric chloride and acetate buffer. The Direct TIBC Buffer (R2) contains: sodium bicarbonate buffer.

The ACE Total Iron Reagent is composed of two reagent bottles (Buffer and Color Reagent). The Buffer (R1) contains: hydroxylamine hydrochloride, acetate buffer (pH 4.5) and surfactant. The Color Reagent (R2) contains: ferrozine and hydroxylamine hydrochloride.

The ACE LDH-L Reagent is composed of two reagent bottles (Substrate and Coenzyme Reagent). The reagents contain L-lactic acid and nicotinamide adenine dinucleotide.

Device Comparison with Predicate

Comparison of similarities and differences with predicate device

ACE Direct Total Iron-Binding Capacity (TIBC) Reagent

ACE Direct TIBC	Candidate Device	Predicate Device
Reagent		k930104
	e to the second of the second	(ACE Direct TIBC Reagent)
Intended Use/	The ACE Direct Total Iron-Binding	The ACE Direct Total Iron-
Indications for Use	Capacity (TIBC) Reagent is intended for	Binding Capacity (TIBC)
	the quantitative determination of total	Reagent is intended for the
	iron-binding capacity in serum using the	quantitative determination of
	ACE Alera Clinical Chemistry System.	total iron-binding capacity in
	Iron-binding capacity measurements are	serum using the ACE
	used in the diagnosis and treatment of	Clinical Chemistry System.
	anemia. This test is intended for use in	Iron-binding capacity
	clinical laboratories and physician	measurements are used in the
•	office laboratories. For in vitro	diagnosis and treatment of
	diagnostic use only.	anemia. This test is intended
		for use in clinical
		laboratories. For in vitro
		diagnostic use only.
Method	Photometric	Same
Calibration Stability	30 days	Same
On Board Stability	30 days	Same
Sample Type	Serum	Same
Sample Volume	16 μL	Same
Reaction Volume	291 μL	Same
Expected values	250-425 μg/dL	250-450 μg/dL
Measuring range	52-700 μg/dL	From the lowest calibrator
		concentration to 700 µg/dL
Sample Stability	Separated from cells, serum TIBC is stable for 4 days at 18-26°C and 1 week at 2-8°C.	Same

ACE Total Iron Reagent					
Candidate Device	* i* s	4		Predicate Device	-

ACE Total Iron	Candidate Device	Predicate Device
Reagent		k944911
<u> </u>		: (ACE Total Iron Reagent)
Intended	The ACE Total Iron Reagent is intended	The ACE Total Iron Reagent
Use/Indications for	for the quantitative determination of iron	is intended for the
Use .	in serum using the ACE Alera Clinical	quantitative determination of
	Chemistry System. Iron (non-heme)	iron in serum using the ACE
	measurements are used in the diagnosis	Clinical Chemistry System.
	and treatment of diseases such as iron	Iron (non-heme)
•	deficiency anemia, hemochromatosis (a	measurements are used in the
	disease associated with widespread	diagnosis and treatment of
	deposit in the tissues of two iron-	diseases such as iron
	containing pigments, hemosiderin and	deficiency anemia,
	hemofuscin, and characterized by	hemochromatosis (a disease
	pigmentation of the skin), and chronic	associated with widespread
	renal disease. This test is intended for use	deposit in the tissues of two
	in clinical laboratories and physician	iron-containing pigments,
	office laboratories. For in vitro	hemosiderin and hemofuscin,
	diagnostic use only.	and characterized by
		pigmentation of the skin),
•		and chronic renal disease.
	•	This test is intended for use
,		in clinical laboratories. For
		in vitro diagnostic use only.
Method	Photometric	Same
Calibration Stability	30 days	Same
Cambration Stability	30 days	Same
On Board Stability	30 days	Same
Sample Type	Serum	Same
Sample Type	Serum	Same
Sample Volume	50 μL	Same
Reaction Volume	335 μL	Same
Expected values	Male: 65-175 μg/dL	Same
Expected values	Female: 50-170 µg/dL	54
Measuring range	9.15-600 μg/dL	2-600 μg/dL
Sample Stability	Separated from cells, serum iron is stable	Separated from cells, serum
	for 7 days at room temperature (20-25°C), 3 weeks at 4-8°C and up to 1 year at -20°C.	

ACE LDH-L Reagent

ACE LDH-L Reagent	Candidate Device	Predicate Device
		k931786
		(ACE LDH-L Reagent)
Intended	The ACE LDH-L Reagent is	The ACE LDH-L Reagent is
Use/Indications	intended for the quantitative	intended for the quantitative
for Use	determination of lactate	determination of lactate
	dehydrogenase activity in serum	dehydrogenase activity in
	using the ACE Alera Clinical	serum using the ACE Clinical
	Chemistry System. Lactate	Chemistry System. Lactate
	dehydrogenase measurements are	dehydrogenase measurements
	used in the diagnosis and	are used in the diagnosis and
	treatment of liver diseases such as	treatment of liver diseases such
	acute viral hepatitis, cirrhosis, and	as acute viral hepatitis,
	metastatic carcinoma of the liver,	cirrhosis, and metastatic
	cardiac diseases such as	carcinoma of the liver, cardiac
•	myocardial infarction and tumors	diseases such as myocardial
	of the lung or kidneys. This test is	infarction and tumors of the
	intended for use in clinical	lung or kidneys. This test is
	laboratories and physician	intended for use in clinical
	office laboratories. For in vitro	laboratories. For in vitro
	diagnostic use only.	diagnostic use only.
Method	Photometric	Same
•		
Calibration Stability	Not a calibrated test	Same
On Board Stability	30 days	Same
•		
Sample Type	Serum	Same
	·	
Sample Volume	5 μL	Same
Reaction Volume	170 µL	Same
Expected values	100-190 U/L	· Same
Measuring range	18-850 U/L	17-850 U/L
66 -		1
Sample Stability	Separated from cells, LDH activity	Separated from cells, LDH
L	is stable for 7 days at 20-25°C, 4	activity is stable for 3 days at
	days at 4-8°C and 6 weeks at -20°C.	both 2-8°C and room
	Loss of activity after freezing has	temperature. Loss of activity
	also been noted.	after freezing has also been
		noted.

Reportable Range

Performance data for the Alfa Wassermann ACE Reagents on the Alfa Wassermann ACE Alera Clinical Chemistry System

Detection Limits - ACE Alera Clinical Chemistry System

rest	TIBC	Iron	LDH-L	
LoB	II μg/dL	0 μg/dL	11 U/L	
LoD	LoD 24 μg/dL		1 8 U/L	
LoQ	52 μg/dL	9.15 μg/dL	18 U/L	

Linearity - ACE Alera Clinical Chemistry System

Reagent	Low Level Tested	High Level Tested	Linear to:	Linear Regression equation
TIBC	34 μg/dL	740 μg/dL	700 μg/dL	$y = 1.020x + 3.1$ $r^2 = 0.9981$
Iron	6 μg/dL	666 μg/dL	600 μg/dL	$y = 1.030x + 1.9$ $r^2 = 0.9986$
LDH-L	8 U/L	895 U/L	850 U/L	$y = 1.050x - 0.7$ $r^2 = 0.9981$

Interferences

Interferences - ACE Alera Clinical Chemistry System

	No Significant Interference at or below:				
Interferent	TIBE	fron	ĹDH-L		
Icterus	59 mg/dL	59 mg/dL	50 mg/dL		
Hemolysis	188 mg/dL*	125 mg/dL*	<31 mg/dL*		
Lipemia	1000 mg/dL	125 mg/dL	1000 mg/dL		
Ascorbic Acid	3 mg/dL	6 mg/dL	6 mg/dL		

^{*} Do not use hemolyzed samples.

Precision – In-House

Precision - ACE Alera Clinical Chemistry System

ACE Alera		Precision (SD, %CV)			
ACEA	l <i>lera</i>	Mean	Within-Run	Total	
<u></u> , · · · <u></u>	Low	217	4.1, 1.9%	6.7, 3.1%	
TIBC μg/dL	Mid	. 270	3.7, 1.4%	7.1, 2.6%	
μgσι	High	310	5.0, 1.6%	8.6, 2.8%	
	Low	62	3.2, 5.2%	4.6, 7.3%	
Iron μg/dL	Mid	145	2.2, 1.5%	4.2, 2.9%	
μБιαι	High	226	4.1, 1.8%	5.0, 2.2%	
	1	77	3.8, 4.9%	4.2, 5.5%	
LDH-L	2	119	5.1, 4.3%	5.2, 4.3%	
U/L	3	270	4.5, 1.7%	5.8, 2.1%	
	4	651	12.6, 1.9%	13.5, 2.1%	

Performance Data: Method Comparison – In-House

Method Comparison - ACE Alera Clinical Chemistry System

In-House ACE (x) vs. In-House ACE Alera (y)

Ten.	ТІВС	iron	LDH-L
n	50	48	58
Range	59 to 676 μg/dL	13 to 549 μg/dL	20 to 799 U/L
Slope	0.987	0.993	0.997
Intercept	3.6	0.9	-3.6
Correlation Coefficient	0.9960	0.9995	0.9991
Std. Error	9.2	3.6	6.8
CI Slope	0.962 to 1.013	0.984 to 1.003	0.985 to 1.008
CI Intercept	-7.2 to 14.4	-0.6 to 2.3	-6.1 to -1.1

Precision - POL

POL - Precision for ACE and ACE Alera Clinical Chemistry Systems

Direct T	ĬBC"		ACE Result	,	ACE Alera Result		ilt [†]
n=2		. د	μg/dL SI), %CV		μg/dL SD, %C	
Lab	Sample	Mean	Within-Run	Total	Mean	Within-Run	Total
1- 11	Ī .	336	2.9	5.5	330	5.1	5.8
In-House	1	330	0.9%	1.6%	330	1.5%	1.8%
DOL 1	,	200	10.8	15.6	284	8.3	9.6
POL 1	1	290	3.7%	5.4%	204	2.9%	3.4%
201.2	<u> </u>	276	3.5	11.4	259	5.6	8.5
POL 2	1	275	1.3%	4.1%	23 9	2.2%	3.3%
DOL 2	,	205	5.4	5.5	276	9.1	16.7
POL 3	1	295	1.8%	1.9%		3.3%	6.0%
				ings of the second second	1 . 1		The state of the s
I. II		155	5.0	8.1	450	4.9	6.8
In-House	2	455	1.1%	1.8%		1.1%	1.5%
POL 1	2	452	10.2	10.4	464	6.3	6.6
POL 1		432	2.3%	2.3%	404	1.4%	1.4%
POL 2	2	442	5.9	12.5	444	4.2	5.4
POL 2	2	442	1.3%	2.8%	1 444	1.0%	1.2%
POL 3	2	465	4.7	5.3	453	3.2	15.5
	2	463	1.0%	1.1%	433	0.7%	3.4%
1 . 1 . 1	. 0				8,45 .	e integral	* .
In-House	3	539	9.8	12.8	530	9.4	10.8
III-House	,	339	1.8%	2.4%] 330	1.8%	2.0%
POL 1	3	531	17.1	20.4	544	8.2	8.3
FOL I	,	331	3.2%	3.8%	, ,	1.5%	1.5%
POL 2	3	530	7.4	14.1	520	5.0	9.0
FOL 2		330	1.4%	2.7%	320	1.0%	1.7%
POL 3	3	551	4.6	5.9	533	12.6	20.2
ron 3	,	1 100	0.8%	1.1%	ررر [2.4%	3.8%

Precision - POL

POL - Precision for ACE and ACE Alera Clinical Chemistry Systems

Total Iron		ACE Result			ACE Alera Result		
n=20			μg/dL SD, %CV			μg/dL SD, %CV	
Lab	Sample	Mean	Within-Run	Total	Mean	Within-Run	Total
In House	1	117	1.4	2.6	119	1.8	2.5
III-riouse	In-House 1	117	1.2%	2.2%		1.5%	2.1%
POL 1	1	120	6.4	6.9	119	2.7	3.2
POLI	,		5.4%	5.8%		2.3%	2.7%
POL 2	1	120	6.3	6.6	122	3.1	3.1
FOL 2		120	5.3%	5.5%	122	2.6%	2.6%
POL 3	1	121	4.4	4.4	116	3.2	3.4
	'	121	3.7%	3.7%		2.8%	3.0%
			, ii		** **		
In-House	2	223	2.9	5.6	222	3.8	5.1
in-nouse			1.3%	2.5%		1.7%	2.3%
POL 1	2	· 227	3.4	3.9	229 -	2.0	2.5
FOL 1	2		1.5%	1.7%		0.9%	1.1%
POL 2	2	227	2.6	5.1	235	2.3	2.4
1002			1.1%	2.2%		1.0%	1.0%
POL 3	2	225	1.3	1.9	229	3.4	3.9
FOLS	2		0.6%	0.8%		1.5%	1.7%
		.,	r.		3 F		
In-House	3	416	8.7	9.1	412	5.2	5.7
III-110use			2.1%	2.2%		1.3%	1.4%
POL I	3	420	5.0	5.6	424	4.0	4.6
1021			1.2%	1.3%		0.9%	1.1%
POL 2	3	423	6.6	9.3	435	2.4	5.3
1002			1.6%	2.2%		0.5%	1.2%
POL 3	3	422	5.6	6.0	428	11.1	11.1
		722	1.3%	1.4%	720	2.6%	2.6%

Precision - POL

POL - Precision for ACE and ACE Alera Clinical Chemistry Systems

LDH-L,		ACE Result			ACE Alera Result		
n=20		,,	U/L SD, %CV		April 1	U/L SD, %CV	
Lab·	Sample	Mean	Within-Run	Total	Mean	Within-Run	Total
In-House	1	121	2.8	4.3	118	2.9	5.7
III-House	,		2.3%	3.6%	1.0	2.4%	4.8%
POL I	1	113	2.1	5.4	116	1.7	4.9
FOL I	1		1.9%	4.8%		1.5%	4.3%
POL 2	1	114	2.5	6.4	118	3.0	5.1
FOL 2			2.2%	5.6%	110	2.5%	4.3%
POL 3	1	117	2.1	2.7	124	3.4	4.7
LOUS	,		1.8%	2.3%	124	2.7%	3.8%
In-House	2	446	5.8	6.9	433	4.7	6.5
III-nouse	2		1.3%	1.5%		1.1%	1.5%
POL 1	2	433	5.8	8.1	437	2.9	5.8
FOL I			1.3%	1.9%		0.7%	1.3%
POL 2	2	433	4.8	5.7	449	3.7	5.2
			1.1%	1.3%		0.8%	1.2%
POL 3	2	437	4.5	5.2	446	5.8	6.6
			1.0%	1.2%		1.3%	1.5%
In-House	3	715	10.1	11.9	699	5.3	8.5
HI-HOUSE			1.4%	1.7%		0.8%	1.2%
POL 1	3	699	10.0	18.0	698	8.6	11.5
			1.4%	2.6%		1.2%	1.6%
POL 2	3	698	12.7	12.7	726	5.4	10.0
1062			1.8%	1.8%		0.8%	1.4%
POL 3	3	697	7.6	8.8	716	14.3	16.9
101.5		077	1.1%	1.3%	710	2.0%	2.4%

Performance Data:	POL - Method Comparison for ACE Clinical Chemistry System						
Method	•, •,	and the second	In-House (x)	In-House (x)	In-House (x)		
Comparison -	Reagent	Statistic	vs.	vs.	vs.		
POL on ACE	Reagent	Statistic	ACE POL 1 (y)	ACE POL 2 (y)	ACE POL 3 (y)		
FOL OII ACE			50	50	50		
		n Range	59 to 676	59 to 676	59 to 676		
	ll i	Regression	y = 0.979x + 4.3	y = 0.974x + 8.7	y = 1.006x - 1.4		
	TIBC	Correlation	0.9972	0.9966	0.9966		
		Std. Error Est.	7.7	8.4	8.7		
		Cl Slope	0.958 to 1.000	0.951 to 0.998	0.982 to 1.030		
		CI Intercept	-4.8 to 13.3	-1.2 to 18.5	-11.6 to 8.8		
		ח	48	48	48		
		Range	13 to 549	13 to 549	13 to 549		
		Regression	y = 0.977x - 1.3	y = 0.992x - 0.8	y = 0.992x + 0.9		
	Iron	Correlation	0.9990	0.9994	0.9994		
		Std. Error Est.	5.0	3.8	3.8		
	ļ l	CI Slope	0.964 to 0.990	0.982 to 1.003	0.982 to 1.002		
•		Cl Intercept	-3.3 to 0.6	-2.3 to 0.7	-0.6 to 2.4		
		n	51	51	51		
	i	Range	74 to 799	74 to 799	74 to 799		
		Regression	y = 0.996x + 1.3	y = 1.010x - 5.3	y = 0.978x + 7.2		
	LDH-L	Correlation	0.9979	0.9989	0.9989		
		Std. Error Est.	10.6	7.7	7.6		
		CI Slope	0.978 to 1.014	0.996 to 1.023	0.964 to 0.991		
		CI Intercept	-3.0 to 5.6	-8.5 to -2.2	4.2 to 10.3		
					•		
					•		
•							
<u>-</u>							
	1		•				
	1						
•	1						

Method			In-House (x)	In-House (x)	In-House (x)	
Comparison - POL on ACE	set	Statistic	vs.	vs.	vs. ACE Alera	
	Reagent		ACE Alera	ACE Alera		
Alera			POL 1 (y)	POL 2 (y)	POL 3 (y)	
ileru	<u> </u>	<u> </u>	50	50 S	50	
		n Danas	59 to 676	59 to 676	59 to 676	
		Range			y = 1.005x + 9.0	
		Regression	y = 0.994x + 12.4	y = 0.973x + 0.1	•	
	TIBC	Correlation	0.9934	0.9954	0.9898	
		Std. Error Est.	12.0	9.8	15.1	
	-	. CI Slope	0.961 to 1.027	0.946 to 1.001	0.963 to 1.047	
•		CI Intercept	-1.7 to 26.5	-11.4 to 11.6	-8.7 to 26.6	
		n '	48	48	48	
		Range	13 to 549	13 to 549	13 to 549	
		Regression	y = 0.976x + 1.0	y = 0.976x + 2.3	y = 0.951x + 0.8	
	Iron	Correlation	0.9986	0.9981	0.9966	
•		Std. Error Est.	5.9	6.8	8.9	
		CI Slope	0.960 to 0.991	0.959 to 0.994	0.927 to 0.974	
		CI Intercept	-1.4 to 3.3	-0.4 to 5.0	-2.7 to 4.4	
		n	51	51	51	
		Range	74 to 799	74 to 799	74 to 799	
		Regression	y = 0.992x + 3.5	y = 1.027x + 3.4	y = 1.010x + 2.5	
	LDH-L	Correlation	0.9986	0.9989	0.9984	
		Std. Error Est.	8.8	8.1	9.3	
	11	CI Slope	0.977 to 1.008	1.013 to 1.041	0.994 to 1.026	
		CI Intercept	-0.1 to 7.1	0.2 to 6.7	-1.3 to 6.2	
		O. mioropi	, V 11 10 711	0.2 00 01.		
	i					
			_			
Conclusions:	Deceded by the f	Sanagaina data tha	davida is safe and	effective for use in	clinical	

Food and Drug Administration 10903 New Hampshire Avenue Document Control Center - WO66-G609 Silver Spring, MD 20993-0002

October 2, 2013

Alfa Wassermann Diagnostic Technologies, LLC c/o Hyman Katz, Ph.D.
4 Henderson Drive
WEST CALDWELL NJ 07006

Re: K131975

Trade/Device Name: ACE LDH-L Reagent

ACE Direct Total Iron-Binding Capacity (TIBC) Reagent

ACE Total Iron Reagent

Regulation Number: 21 CFR 862,1440

Regulation Name: Lactate dehydrogenase test system

Regulatory Class: II, exempt, meets limitations of exemption per 21 CFR 862.9 (c)(9)

Product Code: CFJ, JMO, JIY Dated: August 30, 2013 Received: September 4, 2013

Dear Dr. Katz:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Parts 801 and 809); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820); and if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

If you desire specific advice for your device on our labeling regulations (21 CFR Parts 801 and 809), please contact the Division of Small Manufacturers, International and Consumer Assistance at its toll-free number (800) 638 2041 or (301) 796-7100 or at its Internet address http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm. Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to

http://www.fda.gov/MedicalDevices/Safety/ReportaProblem/default.htm for the CDRH's Office of Surveillance and Biometrics/Division of Postmarket Surveillance.

You may obtain other general information on your responsibilities under the Act from the Division of Small Manufacturers, International and Consumer Assistance at its toll-free number (800) 638-2041 or (301) 796-7100 or at its Internet address http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm.

Sincerely yours,

Carol C. Benson -S for

Courtney H. Lias, Ph.D.
Director
Division of Chemistry and Toxicology Devices
Office of In Vitro Diagnostics
and Radiological Health
Center for Devices and Radiological Health

Enclosure

Indications for Use

510(k) Number: k131975

Device Name:

ACE Direct Total Iron-Binding Capacity (TIBC) Reagent

Indications for Use:

The ACE Direct Total Iron-Binding Capacity (TIBC) Reagent is intended for the quantitative determination of total iron-binding capacity in serum using the ACE Alera Clinical Chemistry System. Iron-binding capacity measurements are used in the diagnosis and treatment of anemia. This test is intended for use in clinical laboratories and physician office laboratories. For in vitro

diagnostic use only.

Device Name:

ACE Total Iron Reagent

Indications for Use:

The ACE Total Iron Reagent is intended for the quantitative determination of iron in serum using the ACE Alera Clinical Chemistry System. Iron (non-heme) measurements are used in the diagnosis and treatment of diseases such as iron deficiency anemia, hemochromatosis (a disease associated with widespread deposit in the tissues of two iron-containing pigments, hemosiderin and hemofuscin, and characterized by pigmentation of the skin), and chronic renal disease. This test is intended for use in clinical laboratories and physician office laboratories. For in vitro

diagnostic use only.

Prescription Use X (21 CFR Part 801 Subpart D)

AND/OR

Over-The-Counter Use. (21 CFR Part 801 Subpart C)

(PLEASE DO NOT WRITE BELOW THIS LINE; CONTINUE ON ANOTHER PAGE IF NEEDED)

Concurrence of CDRH, Office of In Vitro Devices or Radiological Health (OIR)

Yung W. Chan -S

Division Sign-Off
Office of In Vitro Devices or Radiological Health
510(k) k131975

Indications for Use

510(k) Number: k131975

Device Name:

ACE LDH-L Reagent

Indications for Use:

The ACE LDH-L Reagent is intended for the quantitative determination of lactate dehydrogenase activity in serum using the ACE Alera Clinical Chemistry System. Lactate dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction and tumors of the lung or kidneys. This test is intended for use in clinical laboratories and physician office laboratories.

For in vitro diagnostic use only.

Prescription Use X (21 CFR Part 801 Subpart D)

AND/OR

Over-The-Counter Use. (21 CFR Part 801 Subpart C)

(PLEASE DO NOT WRITE BELOW THIS LINE; CONTINUE ON ANOTHER PAGE IF NEEDED)

Concurrence of CDRH, Office of In Vitro Devices or Radiological Health (OIR)

Yung W. Chan -S

Division Sign-Off
Office of In Vitro Devices or Radiological Health
510(k) k131975