Introduction to Amazon EKS

Outline

- Kubernetes Basics
- EKS Basics
- Logging And Monitoring
- EKS Advanced Concepts
- Securing EKS
- Fargate
- Deploying EKS with DevOps
- Real World EKS Projects

What is EKS?

Kubernetes Architecture

Kubernetes Control Plane - Self Managed

Amazon EC2

- Need to make Control Plane Highly Available
 - Maintain multiple EC2 in multiple AZ
- Scale Control Plane if needed
- Keep etcd up and running
- Overhead of managing EC2s
 - AMI Rehydration
 - Security Patching
 - Replace failed EC2s
 - Orchestration for Kubernetes Version Upgrade

Kubernetes Control Plane - AWS Managed

AWS Manages Kubernetes Control Plane

- AWS maintains High Availability Multiple EC2s in Multiple AZs
- AWS Detects and Replaces Unhealthy Control Plane Instances
- AWS Scales Control Plane
- AWS Maintain etcd.
- Provides Automated Version Upgrade and Patching
- Supports Native and Upstream Kubernetes
- Integrated with AWS Ecosystem

EKS Data Plane

Amazon EC2 Self Managed Node Groups

- You maintain worker EC2s
- You orchestrate version upgrade, security patching, AMI Rehydration, keeping pods up during upgrade
- Can use custom AMI

Amazon EC2
Managed Node Groups

- AWS manages worker EC2s
- AWS provides AMI with security patches, version upgrade
- AWS manages pod disruption during upgrade
- Doesn't work with custom AMI

AWS Fargate

- No worker EC2 whatsoever!
- You define and deploy pods
- Container + Serverless!

EKS in AWS Ecosystem

EKS High Level Architecture

High Level Flow

Money Matters

Amazon Elastic Container Service for Kubernetes

Flat Charge 10 cents/Hour = \$72/Month

Price based on EC2

EKS with 3 m5.large in us-east-1 = EKS Control Plane + Worker Nodes (m5.large X 3)

\$72/mo

\$219.24/mo

= \$291.24/mo

eksctl & kubectl

Ways To Spin Up EKS Cluster

Learning Medium

Automation

What is eksctl?

- CLI tool for creating clusters on EKS
- Easier than console, for real!
- Abstracts lots of stuff VPC, Subnet, Sec. Group etc. using CloudFormation

eksctl create cluster

Amazon Elastic Container Service for Kubernetes

AWS Fargate (On EKS)

Available eksctl features (Only on EKS)

- Create, drain and delete nodegroups
- Scale a nodegroup
- Update a cluster
- Use custom AMIs
- Configure VPC Networking
- Configure access to API endpoints
- Support for GPU nodegroups

- IAM Management and Add-on Policies
- Spot instances and mixed instances
- List cluster Cloudformation stacks
- Install coredns
- Write kubeconfig file for a cluster
- Spot instances and mixed instances
- Create, get, list and delete clusters

eksctl Commands

Command	Brief Description
eksctl create cluster	Create EKS Cluster with one nodegroup containing 2 m5.large
eksctl create clustername <name>version 1.15node-type t3.micronodes 2</name>	Create EKS Cluster with K8 version 1.15 with 2 t3.micro nodes
eksctl create clustername <name>version 1.15nodegroup-name <nodegrpname>node-type t3.micronodes 2managed</nodegrpname></name>	Create EKS cluster with managed node group
eksctl create clustername <name>fargate</name>	EKS Cluster with Fargate Profile

What is kubectl?

- CLI for running commands against a cluster on K8s resources
- Communicate via cluster API Server
- Works for any K8s cluster EKS, K8s on EC2, GKE etc.

kubectl Command Syntax

All available command and resource type: https://kubernetes.io/docs/reference/kubectl/overview

kubectl Command Syntax

kubectl [command] [TYPE] NAME flags pod1 kubectl get pod kubectl get pod kubectl get po kubectl pod2 get pod

Most Used kubectl Commands

Command	Brief Description
kubectl apply -f ./manifest-file.yaml	Create resources based on manifest. Declarative Way! Best Way!
kubectl get nodes	List all node info
kubectl get services	List all services
kubectl get pods -o wide	List pods with more details
kubectl get pod my-pod -o yaml	Get a pod's YAML
kubectl get deployment my-dep	List a particular deployment
kubectl exec -it podname /bin/bash	Get a shell to the running Container

DEMO TIME!

- Spin up EKS Cluster using eksctl
- Use kubectl
 - Deploy nginx using manifest file
 - Get resources info

EKS Managed Nodegroups

EKS Regular Nodes and Pods

EKS Nodes Regular Update

- K8 Version needs to be updated
- Deploy Security Patches
- EC2 AMI Need to Be Updated
 - You need to create AMIs

- Application will be DOWN!!
- Or You have to orchestrate HA

EKS Managed Nodegroups

- Create and Manage EC2 Workers for you
- Amazon releases AMIs with bug fix, security patches for EKS Worker Nodes
 - Custom AMIs not supported (As of April, 2020)
- Automated deployment of updated AMIs with security patches, CVEs
 - No app downtime
 - No overhead of user managed orchestration
 - Auto scaling group is used behind the scenes

EKS Nodes: Managed Nodegroup Update

- Worker Node K8s Version updated with one click/API call
- AWS Provides AMI with security updates
 - No patching/Rehydrate effort for you

- Application will be up and running
- AWS orchestrate HA through Auto Scaling Group
- Respects Pod Disruption Budget

EKS Logging & Monitoring

EKS Logging

EKS Control Plane Logging

EKS Worker Nodes Logging

EKS Logging

- EKS Control Plane Logging
 - K8 api
 - o audit
 - o authenticator
 - controllerManager
 - o scheduler
- EKS Worker Nodes Logging

EKS Logging

- EKS Control Plane Logging
 - K8 api
 - o audit
 - authenticator
 - controllerManager
 - o scheduler
- EKS Worker Nodes Logging
 - System logs from kubelet, kube-proxy, or dockerd
 - Application logs from application containers

Logging Caveat

Logging Caveat

Kubernetes Worker Nodes

- Containerized application writes to
 - stdout and stderr
- System logs go to
 - systemd
- Container redirect logs to /var/log/containers/*.log files
- Now we know where to extract logs from!

Implementation

Implementation

Different Options

For Streaming to Multiple Log Backends

EFK Stack

Under Pressure!

- fluentd has 100+ plugins, fluentbit has around 20 (April 2020)
- However as traffic goes up, fluentd can't keep up
 - fluentd based on Ruby and memory intensive
 - Slow propagation of logs
 - Loss of logs
 - fluentd buffer can be increased to solve this, but not dynamic

Contd on next slide..

Under Pressure!

- fluentbit is lightweight and keeps up with higher traffic
- Ways to solve the high traffic problem
 - fluentd to Kinesis Data Firehose to Logging Backend
 - fluentbit to Logging Backend
 - Hard to replace fluentd coz of plugin support if already existing in enterprise

Implementation

EKS Control Plane Logging

EKS Control Plane Logging

- K8s api
- o audit
- authenticator
- controllerManager
- o scheduler

EKS Control Plane Logging

- EKS Control Plane Logging
 - K8s api
 - audit
 - authenticator
 - controllerManager
 - scheduler

Amazon CloudWatch

EKS Control Plane Logging

Kubernetes Dashboard

- Web-based Kubernetes user interface
- Overview of applications and resources running on cluster
- Create and modify resources!
 - Pod
 - Deployments
 - Jobs
 - o etc

Kubernetes Dashboard

EKS ADVANCED CONCEPTS

Quiz: What Resources Created?

Container Scaling

- Quick Look into EC2 Scaling
- Container Scaling
- Understand Pod Limits and Requests
- Horizontal Pod Autoscaler
- Understand Manifest File
- HPA Demo

Horizontal Pod Autoscaler

Going Back to EC2 Scaling

Going Back to EC2 Scaling

EKS Container Scaling

EKS Cluster Autoscaler


```
hpa-php-apache.yaml
     apiVersion: apps/v1
     kind: Deployment - - - - -
     metadata:
       name: php-apache
     spec:
       selector:
         matchLabels:
           run: php-apache
       replicas: 1
       template:
         metadata:
           labels:
12
13
             run: php-apache
         spec:
           containers:
           - name: php-apache
17
             image: k8s.gcr.io/hpa-example
             ports:
             - containerPort: 80
             resources:
               requests:
                 cpu: 500m
               limits:
                 cpu: 1000m
```



```
hpa-php-apache.yaml
                                                                            hpa-php-apache.yaml
    apiVersion: apps/v1
                                                                                apiVersion: apps/v1
                                                                                kind: Deployment
    kind: Deployment
    metadata:
                                                                                metadata:
      name: php-apache
                                                                                  name: php-apache
    spec:
      selector:
                                                                                  selector:
        matchLabels:
                                                                                    matchLabels:
          run: php-apache
                                                                                      run: php-apache
      replicas: 1
                                                                                  replicas: 1
                                                                                    metadata:
        metadata:
                                                                                      labels:
          labels:
                                                                           13
                                                                                         run: php-apache
            run: php-apache
          containers:
                                                                                       containers:
                                                                                       - name: php-apache
          - name: php-apache
            image: k8s.gcr.io/hpa-example
                                                                                         image: k8s.gcr.io/hpa-example
            ports:
                                                                                         ports:
            - containerPort: 80
                                                                                         - containerPort: 80
            resources:
                                                                                         resources:
              requests:
                                                                                           requests:
                                                                                             cpu: 0.5
                cpu: 500m
              limits:
                cpu: 1000m
                                                                                             cpu: 1
```


Pod Request And Limit + HPA

K8s HPA YAML

HPA Demo on EKS

- Install Metrics Server
- Deploy Deployment, Service, HPA
- Increase Load
- Pod scale!

Note - Need node larger than t3.micro

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough

Cluster Autoscaler

CLUSTER AUTOSCALER

Vertical Pod Autoscaler

Do NOT use this in Production! o Restarts PODs

Vertical Pod Autoscaler

- Vertical Vs Horizontal Scaling
 - Vertical Going up in Size
 - Horizontal Create more of same size
- Pods will go up or down in size (after restart!)
- Used in dev to determine optimal CPU and memory for the Pod
 - VPA recommends pod request, limit
 - Use the numbers for request, limits, HPA
 - VPA should not be used with HPA
- Accept VPA recommendation with grain of salt!

EKS Ingress


```
! loadbalancer-service.yaml
      apiVersion: v1
      kind: Service
      metadata:
        name: lb-service
        labels:
          app: lb-service
      spec:
        type: LoadBalancer
 9
        ports:
10
        - port: 80
11
        selector:
12
          app: frontend
```


Ingress Controllers

ALB Ingress Controller

Ingress resource

INGRESS CONTROLLER

- Monitors Ingress resources
- Creates necessary AWS resources for Ingress
 - Such as ALB for ALB Ingress Controller
- One Cluster can have more than one Ingress Controller!
 - Ingress Resource defines which Ingress Controller to use

INGRESS RESOURCE

- Selects which Ingress Controller to use
- Defines the URL Path and corresponding backend Service

INGRESS TRAFFIC

- instance mode
 - ALB to Nodeport to pods
- ip mode
 - ALB to pods directly
 - Require secondary IP address on ENI as pode IP for networking plugin (AWS CNI plugin for kubernetes)
 - Saves one hop
 - alb-ingress-controller specific feature

INGRESS TRAFFIC

- instance mode
 - ALB to Nodeport to pods
- ip mode
 - ALB to pods directly
 - Require secondary IP address on ENI as pode IP for networking plugin (AWS CNI plugin for kubernetes)
 - Saves one hop
 - alb-ingress-controller specific feature

Thank You