Лабораторная работа №2а Решение задачи Дирихле для уравнения Пуассона в непрямоугольной области

Выполнил(а):	
Группа: Вариант №	
Метод Постановка тестовой задачи	
$\Delta u(x, y) = \underline{\hspace{1cm}}$	
при $x \in (___, ___)$, $y \in (___$	=(,);
$u(___, y) = ___$	$u(\underline{\hspace{1cm}},y)=\underline{\hspace{1cm}},$
$u(x, \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}$	$u(x, \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}.$
$u(x, y) = $ Выбитый прямоугольник: пра левый нижний, правый нижний Дополнительные граничные уси $u($, $y) = $ при $x \in u(x, $) = при $y \in u(x, $ при $y \in u(x, $) = при $y \in u(x, $) при $y \in u(x, $) при $y \in u(x, $ при $y \in u(x,)$	вый верхний, левый верхний, і (подчеркнуть ваш вариант). повия = (,)
Постановка основной задачи	
$\Delta u(x, y) = \underline{\hspace{1cm}}$	
при $x \in (___, ___)$, $y \in ($	=(,);
$u(___, y) = ___$	$u(\underline{\hspace{1cm}}, y) = \underline{\hspace{1cm}},$
$u(x, \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}$	$u(x, \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}.$
Выбитый прямоугольник: пра левый нижний, правый нижний Дополнительные граничные ус $u(\underline{\hspace{0.2cm}},y)=\underline{\hspace{0.2cm}}$ при $x\in u(x,\underline{\hspace{0.2cm}})=\underline{\hspace{0.2cm}}$ при $y\in u(x,\underline{\hspace{0.2cm}})$	й (подчеркнуть ваш вариант). ловия задайте самостоятельно ∈ (,)

1.	Начальное приближение:
2.	Параметры метода:
3.	Для тестовой задачи запишите метод в матричной и поком-
	понентной формах, а также все выкладки расчета первой ите-
	рации метода.
4.	Результаты тестирования на сетке небольшого размера

- 4. Результаты тестирования на сетке небольшого размера $n = ____, m = ____$ запишите в приложении 1.
- 5. В приложении 2 приведите тест, показывающий наличие второго порядка сходимости в задаче.
- 6. В приложении 3 приведите код вашей программы.

Приложение 1.

Основные результаты тестирования должны быть показаны в таблицах 1–3.

В таблице №1 запишите результат первой итерации метода, посчитанной вручную.

В таблице №2 приведите результат первой итерации метода, посчитанной вашей программой.

В таблице №3 запишите результат работы метода после многих итераций (напр., при $\varepsilon_l = 10^{-12}$).

Таблица №1

<i>y</i> ₅						
<i>y</i> ₄						
у з						
<i>y</i> ₂						
y_I						
Уо						
	x_0	x_1	x_2	x_3	X_4	x_5

Таблица №2

<i>y</i> ₅						
<i>y</i> ₄						
<i>y</i> ₃						
<i>y</i> ₂						
y_I						
уо						
	x_0	x_1	x_2	x_3	x_4	x_5

Таблица №3

<i>y</i> ₅						
<i>y</i> ₄						
у з						
y_2						
<i>y</i> ₁						
Уо						
	x_0	x_1	x_2	χ_3	χ_4	<i>x</i> ₅

Приложение 2. Анализ порядка сходимости для тестовой задачи Укажите параметры итерационного метода

n×m	max U-V
Порядок сходимости	
Порядок	

Анализ порядка сходимости для основной задачи Укажите параметры итерационного метода

n×m	<i>max</i> <i>V</i> − <i>V</i> 2
Порядок	
Порядок сходимости	

Список методов для реализации (03)

<u>№</u> по спи- ску	ФИО	Задача из варианта	Метод
1.	АХМЕДЖАНОВ	1	Простой итерации $\tau = \tau_{opt}$
2.	БАЙКОВА	2	Минимальных невязок
3.	БЕСПАЛОВ	3	Простой итерации с чебышев- ским набором параметров
4.	волокитин	4	Сопряженных градиентов
5.	ГЕРАСИМОВ	5	Простой итерации $\tau = \tau_{opt}$
6.	КАРЧКОВ	6	Минимальных невязок
7.	КРИВОНОСОВ	7	Простой итерации с чебышев- ским набором параметров
8.	ЛАПТЕВА	8	Сопряженных градиентов
9.	МАЛЮТИНА	9	Простой итерации $\tau = \tau_{opt}$
10.	медведик	10	Минимальных невязок
11.	метелев	1	Простой итерации с чебышев- ским набором параметров
12.	мошкина	2	Сопряженных градиентов
13.	НАУМОВ	3	Простой итерации $\tau = \tau_{opt}$
14.	НОВАК	4	Минимальных невязок
15.	ОВСЮХНО	5	Простой итерации с чебышев- ским набором параметров
16.	ПИЧУГИН	6	Сопряженных градиентов
17.	ПОЛКАНОВ	7	Простой итерации $\tau = \tau_{opt}$
18.	CAXAPOB	8	Минимальных невязок
19.	СЕМЕРЕНКО	9	Простой итерации с чебышев- ским набором параметров
20.	СЕМИЧЕВ	10	Сопряженных градиентов
21.	СТАРКОВ	1	Простой итерации τ=τ _{opt}
22.	МОРОЗОВА	2	Минимальных невязок