Reinforcement Learning for Business, Economics, and Social Sciences

Unit 1-4: Thompson Sampling

Davud Rostam-Afschar (Uni Mannheim)

How to update your priors about rewards?

Thompson Sampling

- Notation:
 - $ightharpoonup r_t^a = r_t | A_t = a$ random variable for a's rewards
 - $R(a) = q(a) = \mathbb{E}[r_t^a]$ unknown average reward
- Idea:
 - Sample several potential average rewards: $R_1(a), \dots, R_d(a) \sim \mathbb{P}(R(a) \mid r_1^a, \dots, r_t^a)$ for each a
 - Sample empirical average

$$\hat{R}(a) = \frac{1}{d} \sum_{i=1}^{d} R_i(a)$$

- Coin example
- ▶ $\mathbb{P}(R(a) \mid r_1^a, \dots, r_t^a) = \text{Beta}(\theta_a; \alpha_a, \beta_a)$ where $\alpha_a - 1 = \#\text{heads}$ and $\beta_a - 1 = \#$ tails

3

Bayesian Learning

Bayesian Learning

- Notation:
 - $ightharpoonup \mathbb{P}(r^a;\theta)$: unknown distribution (parameterized by θ)
- ► Idea:
 - ightharpoonup Express uncertainty about θ by a prior $\mathbb{P}(\theta)$
 - ► Compute posterior $\mathbb{P}(\theta \mid r_1^a, r_2^a, \dots, r_t^a)$ based on
 - ► Samples $r_1^a, r_2^a, \dots, r_t^a$ observed for a so far
- ▶ Bayes theorem:

$$\mathbb{P}\left(\theta\mid r_{1}^{a}, r_{2}^{a}, \ldots, r_{t}^{a}\right) \propto \mathbb{P}\left(\theta\right) \mathbb{P}\left(r_{1}^{a}, r_{2}^{a}, \ldots, r_{t}^{a}\mid \theta\right)$$

5

Distributional Information

- \triangleright Posterior over θ allows us to estimate
 - Distribution over next reward r^a

$$\mathbb{P}\left(r^{a} \mid r_{1}^{a}, r_{2}^{a}, \ldots, r_{t}^{a}\right) = \int_{\theta} \mathbb{P}\left(r^{a}; \theta\right) \mathbb{P}\left(\theta \mid r_{1}^{a}, r_{2}^{a}, \ldots, r_{t}^{a}\right) d\theta$$

ightharpoonup Distribution over R(a) when θ includes the mean

$$\mathbb{P}\left(R(a)\mid r_1^a,r_2^a,\ldots,r_t^a\right)=\mathbb{P}\left(\theta\mid r_1^a,r_2^a,\ldots,r_t^a\right) \text{ if } \theta=R(a)$$

- ► To guide exploration:
 - ► UCB: $\mathbb{P}(R(a) > \text{bound}(r_1^a, r_2^a, \dots, r_t^a)) \ge p$
 - ▶ Bayesian techniques: $\mathbb{P}(R(a) \mid r_1^a, r_2^a, \dots, r_t^a)$

Coin Example

▶ Consider two biased coins C_1 and C_2

$$R(C_1) = \mathbb{P}(C_1 = \text{head})$$

 $R(C_2) = \mathbb{P}(C_2 = \text{head})$

- ► Problem:
 - ► Maximize # of heads in d flips
 - ▶ Which coin should we choose for each flip?

Bernoulli Variables

- $ightharpoonup r^{c_1}$, r^{c_2} are Bernoulli variables with domain $\{0,1\}$
- ▶ Bernoulli dist. are parameterized by their mean

i.e.
$$\mathbb{P}\left(r^{C_1}; \theta_1\right) = \theta_1 = R(C_1)$$

 $\mathbb{P}\left(r^{C_2}; \theta_2\right) = \theta_2 = R(C_2)$

8

Beta Distribution

- Let the prior $\mathbb{P}(\theta)$ be a Beta distribution Beta $(\theta; \alpha, \beta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$
- \triangleright $\alpha 1$: # of heads
- \triangleright $\beta 1$: # of tails
- ightharpoonup $\mathbb{E}[heta] = lpha/(lpha + eta)$

Belief Update

- ▶ Prior: $\mathbb{P}(\theta) = \text{Beta}(\theta; \alpha, \beta) \propto \theta^{\alpha 1} (1 \theta)^{\beta 1}$
- ► Posterior after coin flip:

$$\begin{split} \mathbb{P}(\theta \mid \mathsf{head}) & \propto \quad \mathbb{P}(\theta) \quad \mathbb{P}(\mathsf{head} \mid \theta) \\ & \propto \theta^{\alpha-1} (1-\theta)^{\beta-1} \quad \theta \\ & = \theta^{(\alpha+1)-1} (1-\theta)^{\beta-1} \\ & \propto \mathsf{Beta}(\theta; \alpha+1, \beta) \\ \mathbb{P}(\theta \mid \mathsf{tail}) & \propto \quad \mathbb{P}(\theta) \quad \mathbb{P}(\mathsf{tail} \mid \theta) \\ & \propto \theta^{\alpha-1} (1-\theta)^{\beta-1} \quad (1-\theta) \\ & = \theta^{\alpha-1} (1-\theta)^{(\beta+1)-1} \\ & \propto \mathsf{Beta}(\theta; \alpha, \beta+1) \end{split}$$

Thompson Sampling Algorithm: Bernoulli Rewards

```
ThompsonSampling (T)
   V \leftarrow 0
   For t = 1 to T
      Sample R_1(a), \ldots, R_d(a) \sim \mathbb{P}(R(a)) \ \forall a
       \hat{R}(a) \leftarrow \frac{1}{d} \sum_{i=1}^{d} R_i(a) \ \forall a
      a^* \leftarrow a \hat{R}(a)
       Execute a^* and receive r
       V \leftarrow V + r
       Update \mathbb{P}(R(a^*)) based on r
Return V
```

Exploration vs Exploitation

Thompson (1933, 1935) Sampling

- ► Beta-Bernoulli Thompson sampling
- ► Models uncertainty about the shape of the distribution and the expected outcome *R* explicitly Click to watch!

Comparison

Thompson Sampling

- Samples $r_i^a \sim \mathbb{P}(r^a; \theta)$ $R_i(a) \sim \mathbb{P}(R_i(a) \mid r_1^a \dots r_t^a)$
- Empirical mean $\hat{R}(a) = \frac{1}{d} \sum_{i=1}^{d} R_i(a)$
- Action Selection $a^* = \underset{a}{\operatorname{argmax}} \hat{R}(a)$
- ► Some exploration

Greedy Strategy

- Samples $r_i^a \sim \mathbb{P}(r^a; \theta)$
- Empirical mean $\tilde{R}(a) = \frac{1}{t} \sum_{i=1}^{t} r_i^a$
- Action Selection $a^* = \underset{a}{\operatorname{argmax}} \tilde{R}(a)$
- ▶ No exploration

(Russo, Van Roy, Kazerouni, Osband, Wen, et al., 2018)

Sample Size

- ▶ In Thompson sampling, amount of data t and sample size d regulate amount of exploration
- As t and d increase, $\hat{R}(a)$ becomes less stochastic, which reduces exploration
 - ► As $t \uparrow$, $\mathbb{P}(R(a) \mid r_1^a, \dots, r_t^a)$ becomes more peaked
 - As $d \uparrow$, $\hat{R}(a)$ approaches $\mathbb{E}[R(a) \mid r_1^a, \dots, r_t^a]$
- ▶ The stochasticity of $\hat{R}(a)$ ensures that all actions are chosen with some probability

Analysis

- ► Thompson sampling converges to best arm
- ► Theory:
 - ightharpoonup Expected cumulative regret: $\mathcal{O}(\log T)$
 - ightharpoonup On par with UCB and ε -greedy
- ► Practice:
 - Sample size d often set to 1

References I

- AGARWAL, D., B. LONG, J. TRAUPMAN, D. XIN, AND L. ZHANG (2014): "LASER: A Scalable Response Prediction Platform for Online Advertising," in *Proceedings of the 7th ACM International Conference on Web Search and Data Mining*, WSDM '14, p. 173–182, New York, NY, USA. Association for Computing Machinery.
- CHAPELLE, O., AND L. LI (2011): "An Empirical Evaluation of Thompson Sampling," in *Advances in Neural Information Processing Systems*, ed. by J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, vol. 24. Curran Associates, Inc.
- Graepel, T., J. Q. Candela, T. Borchert, and R. Herbrich (2010): "Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft's Bing search engine," in *Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML '10)*, pp. 13–20. Omnipress, Madison, WI, USA,.

References II

- HILL, D. N., H. NASSIF, Y. LIU, A. IYER, AND S. VISHWANATHAN (2017): "An Efficient Bandit Algorithm for Realtime Multivariate Optimization," in *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '17. ACM.
- Russo, D. J., B. Van Roy, A. Kazerouni, I. Osband, Z. Wen, et al. (2018): "A tutorial on thompson sampling," Foundations and Trends® in Machine Learning, 11(1), 1–96.
- Scott, S. L. (2010): "A modern Bayesian look at the multi-armed bandit," *Applied Stochastic Models in Business and Industry*, 26(6), 639–658.
- Scott, S. L. (2015): "Multi-armed bandit experiments in the online service economy," *Applied Stochastic Models in Business and Industry*, 31(1), 37–45.
- THOMPSON, W. R. (1933): "On the likelihood that one unknown probability exceeds another in view of the evidence of two samples," *Biometrika*, 25(3-4), 285–294.
- THOMPSON, W. R. (1935): "On the Theory of Apportionment," *American Journal of Mathematics*, 57(2), 450–456.

Takeaways

What is Thompson Sampling?

- Models uncertainty about expected rewards using probability distributions
- Samples from posterior of each arm's reward distribution
- Selects the arm with the highest sampled value
- Posterior is updated after each observation
- Achieves log regret
- ▶ Applied at, e.g., Google, Amazon, Facebook, Salesforce, and Netflix

What is Thompson Sampling?

- Models uncertainty about expected rewards using probability distributions
- Samples from posterior of each arm's reward distribution
- Selects the arm with the highest sampled value
- Posterior is updated after each observation
- Achieves log regret
- Applied at, e.g., Google, Amazon, Facebook, Salesforce, and Netflix (e.g., Hill, Nassif, Liu, Iyer, and Vishwanathan, 2017; Scott, 2015; Agarwal, Long, Traupman, Xin, and Zhang, 2014; Chapelle and Li, 2011; Scott, 2010; Graepel, Candela, Borchert, and Herbrich, 2010)