|                           | Utech                     |
|---------------------------|---------------------------|
| Name :                    |                           |
| Roll No.:                 | A Description and Collect |
| Inviailator's Signature : |                           |

## **ELECTROMAGNETIC FIELD THEORY**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

#### **GROUP - A**

# ( Multiple Choice Type Questions )

| 1. | Choose      | the | correct | alternatives | for | any | ten | of                 | the |  |
|----|-------------|-----|---------|--------------|-----|-----|-----|--------------------|-----|--|
|    | following : |     |         |              |     |     |     | $10 \times 1 = 10$ |     |  |

- Unit of Dipole moment i)
  - Coulomb/m<sup>2</sup> a)
- b) Newton-m
- Coulomb-m c)
- Newton/m. d)
- Given  $A = 2i + \alpha j + 2k$  and  $B = \alpha i + j + k$ . If A and B are ii) normal to each other,  $\alpha$  is
  - a) 1

b) -2/3

c) - 1

- d) 0.
- iii) Which statement is correct?
  - a)  $A \times B + B \times A = 1$  b)  $i \times j = k$
  - c)  $i \cdot j = k$
- d) A . B . C = B . C . A.

4305 (O) [ Turn over



- iv) If a vector field P is solenoidal, which of this is true 3
  - a)  $\oint_L P \cdot dI = 0$
  - b)  $\oint_L P.dS = 0$
  - c)  $\nabla \cdot P = 0$
  - d)  $\nabla \times P \neq 0$ .
- v) If a point is denoted by ( 3, 4, -2 ) in Cartesian Coordinate system, then which one of these is incorrect in spherical coordinate system?
  - a)  $r = \sqrt{29}$
- b)  $\theta = \tan^{-1}\left(\sqrt{5}/2\right)$
- c)  $\Phi = \tan^{-1}(4/3)$
- d) z = -2.
- vi) Which one of the following is zero?
  - a) grad div A
  - b) div gradient  $\nabla$
  - c) div curl A
  - d)  $\operatorname{curl} \operatorname{curl} A$ .
- vii) The magnetic field at any point on the axis of a current carrying circular coil will be
  - a) perpendicular to the axis
  - b) parallel to the axis
  - c) at an angle 45° to the axis
  - d) zero.



- viii) A plane wave in a homogeneous medium has  $E = 50 \sin \left(10^8 t + 2z\right) j \text{ V/m}$ . What is the direction of wave propagation?
  - a) y direction
  - b) z direction
  - c) -z direction
  - d) -y direction.
- ix) Skin depth is proportional to
  - a) frequency
  - b) permeability
  - c)  $1/\sqrt{\sigma}$
  - d)  $\sqrt{\sigma}$ .
- x) Which statement does not say that electrostatic field is conservative?
  - a) if the curl of E is identically zero
  - b) the potential difference between two points is zero
  - c) it is gradient of a scalar potential
  - d) the work done in a closed path inside the field is zero.



- xi) Which of the following is incorrect?
  - a) Continuity equation :  $\nabla \cdot J = -\partial \rho / \partial t$
  - b) Faraday's Law :  $\nabla \times E = \partial B / \partial t$
  - c) Ampere's circuital law :  $\nabla \times H = J + \partial D / \partial t$
  - d) Poisson's equation :  $\nabla^2 \nabla = 0$ .
- xii) The characteristic impedance of a transmission line is
  - a) directly proportional to its length
  - b) inversely proportional to its length
  - c) independent of its length
  - d) directly proportional to square root of its length.

### **GROUP - B**

### (Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$ 

- 2. Given points A ( x=2, y=3, z=1 ) & B (  $\rho=4$ ,  $\phi=-50^\circ$ , z=2 ). Find the distance from
  - a) A to origin
  - b) *B* to origin and
  - c) A to B.

$$1\frac{1}{2} + 1\frac{1}{2} + 2$$





- a) Find the magnitude of the electrical field intensity at a point 1 mtr from the charge,
- b) Find  $\overline{E}$  at (0.4, 0.6, -1.2). 2 + 3
- 4. Define vector & scalar field with proper examples. Show a point P in 3 different co-ordinate systems with standard notations. What is equipotential surface ? 2+2+1
- 5. Find the nature of the Field by determining its Divergence & Curl.  $B=\left(150/r^2\right)\stackrel{\wedge}{a}_r+10\stackrel{\wedge}{a}_\phi$  (cylindrical co-ordinate system).  $2\frac{1}{2}+2\frac{1}{2}$
- 6. Using Gauss's theorem find the charge density ( D ) outside a uniformly charged sphere ( where  $r>\alpha$  ).

4305 (O) 5 [ Turn over





Answer any three of the following.



 $3 \times 15 = 45$ 

- 7. The electric field associated with a EM wave propagating through a lossless medium of relative permittivity  $(\varepsilon_r)$  78 and  $\mu_r = 1$  at a frequency of 300 MHz is represented as  $E_y = 10 \cos \left(6\pi \times 10^8 \, t \beta x\right)^{6}$ . Determine
  - i) The phase constant
  - ii) Wave velocity
  - iii) Intrinsic impedance
  - iv) Wavelength and
  - v) Corresponding magnetic field *H*.

 $5 \times 3$ 

8. State and define Biot-Savart Law. An infinitely long conductor is bent into an L shape. If 15 Amp current flows find H at (0, 0, 2) and (0, -2, 0). 5 + 10

4305 (O)



- 9. State and define Ampere's Circuital law. Starting from Maxwell's equation Curl  $E=-\partial B/\partial t$  and Curl  $H=J+\partial D/\partial t$  respectively, show that Div B=0 and Div  $D=\rho$ . 5+10
- 10. State Gauss's law. What is Gaussian surface ? Derive an expression for electric field (  $\it E$  ) due to sheet of charge.

5 + 2 + 8

- 11. Write short notes on any *three* of the following:  $3 \times 5$ 
  - a) Waves in transmission lines
  - b) Polarisation in dielectrics
  - c) Helmholtz's theorem
  - d) Law of conservations of charges.

4305 (O)