Inscribed Angles

Proofs.

Problem 1 In the figure below, \overline{AB} is a diameter of a circle with center P. Prove that $\angle B$ is a right angle.

(a) Beginning with the diagram on the left, Natalia draws \overline{PB} and marks the diagram to show segments that she knows to be congruent because each one is a \boxed{radius} of the circle.

- (b) Natalia sees that $\triangle APB$ and $\triangle BPC$ are $\lfloor isosceles \rfloor$ triangles, so she marks the figure to show angles that must congruent. (Note: Do we need a statement or citation of the theorem?)
- (c) In order to do some algebra with these congruent angles, Natalia labels their measures x and y, as shown in the picture on the right.
- (d) She writes an equation for the sum of the angles of $\triangle ABC$:

$$\boxed{x + (x+y) + y} = 180^{\circ}$$

(Note: Need a question about dividing the equation by 2.)

Author(s): Brad Findell

(e) Since $m \angle B = \boxed{x+y}$, she concludes that $m \angle B = 90^{\circ}$. (Note: Should call it $\angle ABC$ because of the new segment, or maybe note this earlier.)

Problem 2 New problem about relationship between inscribed angle and central angle.

