Homework 1 Solutions

For these solutions, I collaborated with Cole Wittbrodt and Dru Horne.

Exercise 1.3

Claim: For a function $f: X \to Y$ and sets $A, B \subset Y$, the following statements are true.

a)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
, and

b)
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
.

Proof. For part a), for any $y \in A \cup B$, $y \in A$ or $y \in B$, so $f^{-1}(y) \subset f^{-1}(A) \cup f^{-1}(B)$, and $f^{-1}(A \cup B) \subset f^{-1}(A) \cup f^{-1}(B)$.

Similarly, for any $x \in f^{-1}(A) \cup f^{-1}(B)$, $f(x) \in A$ or $f(x) \in B$ and $f(x) \in A \cup B$. It follows that $x \in f^{-1}(A \cup B)$, so $f^{-1}(A) \cup f^{-1}(B) \subset f^{-1}(A \cup B)$.

For part b), for any $y \in A \cap B$, $f^{-1}(y) \subset f^{-1}(A)$ and $f^{-1}(y) \subset f^{-1}(B)$, so $f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$.

For any $x \in f^{-1}(A) \cap f^{-1}(B)$, x is in $f^{-1}(A)$ and x is in $f^{-1}(B)$, so $f(x) \in A \cap B$ and $f^{-1}(A) \cap f^{-1}(B) \subset f^{-1}(A \cap B)$.

Exercise 1.4

Claim: If $f: X \to Y$ is injective and $y \in Y$, then $f^{-1}(y)$ contains at most one point.

Proof. Let $a, b \in f^{-1}(y)$ be given. Then f(a) = f(b) = y, and by the definition of injectivity, a = b.

Exercise 1.5

Claim: If $f: X \to Y$ is surjective and $y \in Y$, then $f^{-1}(y)$ contains at least one point.

Proof. By the definition of surjectivity, there is some $x \in X$ such that f(x) = y, so $x \in f^{-1}(y)$.

Theorem 1.6

Claim: Let $2\mathbb{N}$ denote the even positive integers. Then $2\mathbb{N}$ has the same cardinality as \mathbb{N} , the natural numbers.

Proof. Define $f: \mathbb{N} \to 2\mathbb{N}$ as f(x) = 2x for $x \in \mathbb{N}$. Then for every $y \in 2\mathbb{N}$, y is even, so y/2 = x for some $x \in \mathbb{N}$ and f(x) = y, so f is surjective.

Let $a, b \in f^{-1}(y)$ be given. Then f(a) = f(b) = y = 2a = 2b, so a = b = y/2 and f is injective. \square

Theorem 1.7

Claim: The set \mathbb{Z} has the same cardinality as \mathbb{N} .

Proof. Define $f: \mathbb{Z} \to \mathbb{N}$ as

$$f(x) = \left\{ \begin{array}{ll} 2x, & \text{for } x \ge 0 \\ -2x - 1, & \text{for } x < 0 \end{array} \right\}.$$

Then for every $x \ge 0$, f(x) is even and for every x < 0, f(x) is odd. Let $y \in \mathbb{N}$ and let $a, b \in f^{-1}(y)$ be given. If y is even, f(a) = 2a = y and f(b) = 2b = y, so a = b. If y is odd, f(a) = -2a - 1 = y and f(b) = -2b - 1 = y, so -2a = -2b and a = b. So f is injective.

For every $y \in \mathbb{N}$, if y is even, there is some $x \in \mathbb{Z}$ where $x \geq 0$ and x = y/2, so $x \in f^{-1}(y)$. If y is odd, there is some $x \in \mathbb{Z}$ where x < 0 and $x = \frac{y+1}{-2}$, so f is surjective.

Theorem 1.8

Claim: Every subset of \mathbb{N} is either finite or has the same cardinality as \mathbb{N} .

Proof. For some $A \subset \mathbb{N}$, if $A = \{0\}$ then A is finite by definition. If $A \neq \{0\}$, let the least element $a \in A$ correspond with 1, the 2nd least element in A correspond with 2, repeating in this manner for the nth least element corresponding with $n \in \mathbb{N}$. This is a bijection from A to some $B \subset \mathbb{N}$.

For any $m \in \mathbb{N}$, if m is not in B, then B is finite so A is finite. If m is in B, then m corresponds with the mth least element of A, and the bijection holds.

Theorem 1.9

Claim: Every infinite set has a countably infinite subset

Proof. Let A be infinite and let $a \in A$ be given. Call this given element a_1 , and repeat for unique elements $a_i \in A$. Then we have a bijection between the set $B = \{a_1, a_2, \cdots, a_n\}$ and A. Assume there is some $n \in \mathbb{N}$ for which $A - B = \{\emptyset\}$. Then A is finite, and we have a contradiction. So every $n \in \mathbb{N}$ has one corresponding element $a_n \in B$, and there is a bijection from \mathbb{N} to B.

Theorem 1.10

Claim: A set is infinite if and only if there is an injection from the set into a proper subset of itself.

Proof. Let B be a proper subset of a set A, and let $f: A \to B$ be injective. Assume B is finite; then for each element $y_i \in B$, we have $\{y_1 = f(x_1), y_2 = f(x_2), \cdots, y_n = f(x_n)\} = B$ for some $C = \{x_1, x_2, \cdots, x_n\} \subset A$. But there is some $x_m \in (A - B)$ where $f(x_m) \in B$ and $x_m \notin C$, a condradiction. So B is infinite, and therefore A is infinite.

Conversely, assume A is infinite. By Theorem 1.9, A has a countably infinite subset, which by definition means there is a subset B of A for which a bijection f exists between B and \mathbb{N} . By definition, f is injective.

Theorem 1.11

Claim: The union of two countable sets is countable.

Proof. Let A, B be countable. Then for some subsets $C, D \subseteq \mathbb{N}$, there exist bijections $f: A \to C$ and $g: B \to D$, so $f(A) \cup g(B) = C \cup D \subseteq \mathbb{N}$.

Theorem 1.12

Claim: The union of countably many countable sets is countable.

Proof. Let A_1, A_2, \cdot, A_n be countably many countable sets. Then for each A_i there is a bijection $f_i : A_i \to B_i$ for some $B_i \subseteq \mathbb{N}$, so there are countably many subsets B_i , and their union is a subset of \mathbb{N} . Thus, $f^{-1}(A_1 \cup A_2 \cup \cdots \cup A_n)$ is countable.