Finite state transducer (FST)

LING 570 Fei Xia

Applications of FSTs

- ASR
- Tokenization
- Stemmer
- Text normalization
- Parsing
- ...

Outline

Regular relation

Finite-state transducer (FST)

Regular relation

Definition of regular relation

- The set of regular relations is defined as follows:
 - For all $(x,y)\in \Sigma_1\times \Sigma_2$, $\{(x,y)\}$ is a regular relation
 - The empty set is a regular relation
 - If R_1 , R_2 are regular relations, so are $R_1 \cdot R_2 = \{(x_1 \ x_2, \ y_1 \ y_2) \mid (x_1, \ y_1) \in R_1, \ (x_2, \ y_2) \in R_2\},$ $R_1 \cup R_2$, and R^* .
 - Nothing else is a regular relation.

Closure properties

- Like regular languages, regular relations are closed under
 - union
 - concatenation
 - Kleene closure
- Unlike regular languages, regular relations are <u>NOT</u> closed under
 - Intersection: R1={(aⁿb*, cⁿ)}, R2={(a*bⁿ, cⁿ)},
 the intersection is {(aⁿbⁿ, cⁿ)} and it is not regular
 - difference:
 - complementation

Closure properties (cont)

- New operations for regular relations:
 - Composition: $\{(x,z) \mid \exists y, (x,y) \in R_1 \text{ and } (y,z) \in R_2 \}$
 - Projection: $\{x \mid \exists y, (x,y) \in R\}$
 - Inversion: $\{(y,x) \mid (x,y) \in R\}$
 - Take a regular language and create the identity regular relation: $\{(x,x) \mid x \in L\}$
 - Take two regular languages and create the cross product relation: $\{(x,y) \mid x \in L_1, y \in L_2\}$

- A question about the notation: If you have something like (x, yz), where it seems like there's nothing in the input that corresponds to the output z, is there an implicit *e* in the input?
- In other words (x*e*, yz)?

Finite state transducer

Finite-state transducers

- x:y is a notation for a mapping between two alphabets: $x \in \Sigma_1, y \in \Sigma_2$
- An FST processes an input string, and outputs another string as the output.
- Finite-state automata equate to regular languages, and FSTs equate to regular relations.
 - Ex: R = { (aⁿ, bⁿ) | n >= 0} is a regular relation.
 It maps a string of a's into an equal length string of b's.

FST examples

 $R(T) = \{ (\epsilon, \epsilon), (a, b), (aa, bb), ... \}$

$$R(T) = \{ (a, x), (ab, xy), (abb, xyy), ... \}$$

Definition of FST

A FST is $(Q, \Sigma, \Gamma, I, F, \delta)$

- Q: a finite set of states
- Σ: a finite set of input symbols
- Γ: a finite set of output symbols
- I: the set of initial states
- F: the set of final states
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \times Q$: the transition relation between states.
- → FSA can be seen as a special case of FST.

Definition of transduction

• The extended transition relation δ^* is the smallest set such that

$$\delta \subseteq \delta^*$$
$$(q, x, y, r) \in \delta^* \land (r, a, b, s) \in \delta \Rightarrow (q, xa, yb, s) \in \delta^*$$

 T transduces a string x into a string y if there exists a path from an initial state to a final state whose input is x and whose output is y:

$$x[T]y \quad (a.k.a. \quad (x,y) \in R(T))$$

 $iff \quad \exists q \in I \ \exists f \in F \ s.t. \ (q,x,y,f) \in \delta^*$

More FST examples

Case folding:
"Go away" → "go away"

Tokenization:

he said: "Go away." → he said: "Go away."

Morphological analysis:
 cats → cat s

POS tagging:
 He called Mary → PN V N

Map Arabic numbers to words
 123 → one hundred and twenty three

Operations on FSTs

• Union:

$$(x, y) \in R(T_1 \cup T_2)$$
 iff $(x, y) \in R(T_1)$ or $(x, y) \in R(T_2)$

Concatenation:

$$(wx, yz) \in R(T_1 \bullet T_2) iff (w, y) \in R(T_1) and (x, z) \in R(T_2)$$

Composition:

$$(x, z) \in R(T_1 \circ T_2)$$
 iff $\exists y \ s.t. (x, y) \in R(T_1)$ and $(y, z) \in R(T_2)$

An example of composition operation

FST Algorithms

- Recognition: Is a given pair of strings accepted by an FST?
 - $-(x,y) \rightarrow yes/no$
- Composition: Given two FSTs T₁ and T₂ defining regular relations R₁ and R₂, create the FST that computes the composition of R₁ and R₂.
 - R1={(x,y)}, R2={(y,z)} \rightarrow { $(x,z) | (x,y) \in R_1, (y,z) \in R_2$ }
- Transduction: given an input string and an FST, provide the output as defined by the regular relation?
 - x **→** y

Weighted FSTs

A FST is $(Q, \Sigma, \Gamma, I, F, \delta, P)$

- Q: a finite set of states
- Σ: a finite set of input symbols
- Γ: a finite set of output symbols
- I: Q → R⁺ (initial-state probabilities)
- F: Q → R⁺ (final-state probabilities)
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \times Q$: the transition relation between states.
- P: $\delta \rightarrow R^+$ (transition probabilities)

Summary

- Finite state transducers specify regular relations
- FST closure properties: union, concatenation, composition
- FST special operations:
 - creating regular relations from regular languages (Id, crossproduct);
 - creating regular languages from regular relations (projection)
- FST algorithms
 - Recognition
 - Transduction
 - Composition
 - **–** ...
- Not all FSTs can be determinized.
- Weighted FSTs are used often in NLP.