DD2434 Machine Learning, Advanced Course Assignment 1A, 2024

Yunhao Xu, Yonghong Huang

20 november 2024

1.1 Dependencies in a Directed Graphical Model

1.1.1 Answer

No

1.1.2 Answer	
No	
1.1.3 Answer	
Yes	
1.1.4 Answer	
No	
1.1.5 Answer	
No	
1.1.6 Answer	
No	
1.2 CAVI	

Derivation of the Exact Joint Posterior Distribution for μ and τ

1.2.9 What is the exact posterior?

To derive the exact joint posterior distribution $p(\mu, \tau \mid D)$, we use Bayes' theorem along with the given prior distributions and likelihood function. The steps are as follows:

Bayes' Theorem

Bayes' theorem gives:

$$p(\mu, \tau \mid D) \propto p(D \mid \mu, \tau) p(\mu, \tau)$$

and in this case, we have:

$$p(\mu, \tau) = p(\mu \mid \tau)p(\tau)$$

hence:

$$p(\mu, \tau \mid D) \propto p(D \mid \mu, \tau) p(\mu \mid \tau) p(\tau)$$

Likelihood and Prior

The likelihood function in this case is given by:

$$p(D \mid \mu, \tau) = \left(\frac{\tau}{2\pi}\right)^{N/2} \exp\left(-\frac{\tau}{2}\sum_{n=1}^{N}(x_n - \mu)^2\right)$$

The prior distributions are:

$$\begin{split} p(\mu \mid \tau) &= \sqrt{\frac{\lambda_0 \tau}{2\pi}} \exp\left(-\frac{\lambda_0 \tau}{2} (\mu - \mu_0)^2\right) \\ p(\tau) &= \frac{b_0^{a_0}}{\Gamma(a_0)} \tau^{a_0 - 1} \exp(-b_0 \tau) \end{split}$$

Combining All Terms

$$p(\mu, \tau \mid D) \propto \left(\frac{\tau}{2\pi}\right)^{N/2} \exp\left(-\frac{\tau}{2} \sum_{n=1}^{N} (x_n - \mu)^2\right) \times \sqrt{\frac{\lambda_0 \tau}{2\pi}} \exp\left(-\frac{\lambda_0 \tau}{2} (\mu - \mu_0)^2\right) \times \frac{b_0^{a_0}}{\Gamma(a_0)} \tau^{a_0 - 1} \exp(-b_0 \tau)$$

Taking the logarithm of the posterior and substituting into Bayes' theorem, we have:

$$\begin{split} \ln p(\mu,\tau \mid D) &\stackrel{+}{=} \ln p(D \mid \mu,\tau) + \ln p(\mu \mid \tau) + \ln p(\tau) \\ &= \sum_{n=1}^{N} \ln p(x_n \mid \mu,\tau) + \ln p(\mu \mid \tau) + \ln p(\tau) \\ &= \sum_{n=1}^{N} \left[\frac{1}{2} \ln \frac{\tau}{2\pi} - \frac{\tau}{2} (x_n - \mu)^2 \right] + \frac{1}{2} \ln \frac{\lambda_0 \tau}{2\pi} - \frac{\lambda_0 \tau}{2} (\mu - \mu_0)^2 + \ln \frac{b_0^{a_0}}{\Gamma(a_0)} + (a_0 - 1) \ln \tau - b_0 \tau \\ &\stackrel{+}{=} \sum_{n=1}^{N} \left[\frac{1}{2} \ln \tau - \frac{\tau}{2} (x_n - \mu)^2 \right] + \frac{1}{2} \ln \tau - \frac{\lambda_0 \tau}{2} (\mu - \mu_0)^2 + (a_0 - 1) \ln \tau - b_0 \tau \\ &= \ln \tau (\frac{N+1}{2} + a_0 - 1) - \frac{\tau}{2} (\sum_{n=1}^{N} (x_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2) - b_0 \tau \end{split}$$

The term $\sum_{n=1}^{N} (x_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2$ can be expanded and rewritten as:

$$\sum_{n=1}^{N} (x_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 = A(\mu - \mu_N)^2 + B$$

where:

$$A = N + \lambda_0$$

$$\mu_N = \frac{N\bar{x} + \lambda_0 \mu_0}{N + \lambda_0}$$

$$B = \sum_{n=1}^{N} x_n^2 - \frac{(N\bar{x} + \lambda_0 \mu_0)^2}{N + \lambda_0}$$

Substituting back and return to the posterior, we have:

$$p(\mu, \tau \mid D) \propto \tau^{\frac{N+1}{2} + a_0 - 1} \exp\left(-\frac{\tau}{2}A(\mu - \mu_N)^2 - \frac{\tau}{2}B - b_0\tau\right)$$

Summering

This expression above reveals that $p(\mu, \tau \mid D)$ factorizes into:

$$p(au \mid D) \sim \operatorname{Gamma}\left(rac{N+1}{2} + a_0, rac{1}{2}B + b_0
ight)$$

$$p(\mu \mid au, D) \sim \mathscr{N}\left(\mu_N, rac{1}{ au A}
ight)$$

Thus, the exact joint posterior is given by:

$$p(\mu, \tau \mid D) = p(\mu \mid \tau, D) \cdot p(\tau \mid D)$$

1.2.7 - 1.2.10

Other programming part will be shown in the notebook below:

Assignment 1.2 - CAVI

Consider the model defined by Equation (10.21)-(10-23) in Bishop, for which DGM is presented below:

Question 1.2.7:

Implement a function that generates data points for the given model.

```
import numpy as np
def generate_data(mu, tau, N):
    # Insert your code here
    sigma = np.sqrt(1 / tau)
    D = np.random.normal(mu, sigma, N)
    return D
```

Set $\mu = 1$, $\tau = 0.5$ and generate datasets with size N=10,100,1000. Plot the histogram for each of 3 datasets you generated.

```
In [2]: mu = 1
         tau = 0.5
        dataset_1 = generate_data(mu, tau, 10)
         dataset_2 = generate_data(mu, tau, 100)
        dataset_3 = generate_data(mu, tau, 1000)
         # Visulaize the datasets via histograms
         # Insert your code here
        from matplotlib import pyplot as plt
        N_values = [10, 100, 1000]
datasets = [dataset_1, dataset_2, dataset_3]
         plt.figure(figsize=(15, 5))
         for i in range(3):
             plt.subplot(1, 3, i + 1)
             plt.hist(datasets[i], bins=15, alpha=0.7, color='blue', edgecolor='black')
             plt.title(f'Histogram of Generated Data (N={N_values[i]})')
             plt.xlabel('Value')
             plt.ylabel('Frequency')
        plt.tight_layout()
         plt.show()
```


Question 1.2.8:

Find ML estimates of the variables μ and τ

```
In [3]: def ML_est(data):
    # insert your code
    N = len(data)
    mu_ml = np.mean(data)
```

```
tau_ml = N / np.sum((data - mu_ml) ** 2)
return mu_ml, tau_ml
```

Question 1.2.9:

What is the exact posterior? First derive it in closed form, and then implement a function that computes it for the given parameters:

```
In [4]: def compute_exact_posterior(D, a_0, b_0, mu_0, lambda_0):
    N = len(D)
    x_mean = np.mean(D)
    x_var = np.sum((D - x_mean)**2)

mu_N = (lambda_0 * mu_0 + N * x_mean) / (lambda_0 + N)
    a_N = a_0 + N / 2
    b_N = b_0 + 0.5 * x_var + 0.5 * lambda_0 * (mu_N - mu_0)**2
    lambda_N = lambda_0 + N * (a_N / b_N)

exact_post_dist_parameters = {'a_N': a_N, 'b_N': b_N, 'mu_N': mu_N, 'lambda_N': lambda_N}
    return exact_post_dist_parameters
```

Question 1.2.10:

You will implement the VI algorithm for the variational distribution in Equation (10.24) in Bishop. Start with introducing the prior parameters:

```
In [5]: # prior parameters
mu_0 = 0
lambda_0 = 1
a_0 = 2
b_0 = 1
```

Continue with a helper function that computes ELBO:

```
In [6]: from scipy.special import psi, gammaln
                        def compute_elbo(D, a_0, b_0, mu_0, lambda_0, a_N, b_N, mu_N, lambda_N):
                                    ELBO = E_{q}[log \ p(D \ | \ mu, \ tau)] \ + \ E_{q}[log \ p(mu)] \ + \ E_{q}[log \ p(tau)] \ - \ E_{q}[log \ q(mu)] \ - \ E_{q}[log \ q(tau)] \ 
                                  N = len(D)
                                  E_{\log_{a}} = psi(a_N) - np.log(b_N)
                                   E_tau = a_N / b_N
                                   E_mu = mu_N
                                   Var_mu = 1 / lambda_N
                                  # E_q[log p(D | mu, tau)]
                                   sq\_diff = (D - E\_mu) ** 2
                                   E_xn_mu_sq = Var_mu + sq_diff
                                   sum_E_xn_mu_sq = np.sum(E_xn_mu_sq)
                                   E_{\log_pD_given_mu_tau} = (
                                           N * 0.5 * (E_log_tau - np.log(2 * np.pi))
                                              - 0.5 * E_tau * sum_E_xn_mu_sq
                                   )
                                   # E_q[log p(mu)]
                                   E_mu_mu0_sq = Var_mu + (E_mu - mu_0) ** 2
                                   E_log_p_mu = (
                                              -0.5 * np.log(2 * np.pi / lambda_0)
                                              - 0.5 * lambda_0 * E_mu_mu0_sq
                                   # E_q[log p(tau)]
                                   E_{\log_p_{au}} = (
                                             (a_0 - 1) * E_log_tau
                                              - b_0 * E_tau
                                              - gammaln(a_0)
                                              + a_0 * np.log(b_0)
                                   # E_q[log q(mu)]
                                   E_log_q_mu = (
                                              -0.5 * np.log(2 * np.pi / lambda_N)
                                              - 0.5
                                   # E_q[log q(tau)]
                                   E_{\log_q-tau} = (
                                              (a_N - 1) * E_log_tau
                                              - b_N * E_tau
                                              - gammaln(a_N)
                                              + a_N * np.log(b_N)
                                   )
                                   # ELBO
                                   elbo = (
                                            E_log_p_D_given_mu_tau
                                              + E_log_p_mu
                                              + E_log_p_tau
                                              - E_log_q_mu
                                              - E_log_q_tau
```

return elbo

Now, implement the CAVI algorithm:

```
In [7]: def CAVI(D, a_0, b_0, mu_0, lambda_0, max_iter=100):
           # make an initial guess for the expected value of tau
           initial_guess_exp_tau = a_0 / b_0
           # CAVI iterations ...
           # save ELBO for each iteration, plot them afterwards to show convergence
           N = len(D)
           elbos = []
           exp_tau = initial_guess_exp_tau
           a_N, b_N, mu_N, lambda_N = a_0, b_0, mu_0, lambda_0
           for _ in range(max_iter):
               lambda_N = lambda_0 + N * exp_tau
               mu_N = (lambda_0 * mu_0 + exp_tau * np.sum(D)) / lambda_N
               exp_tau = a_N / b_N
               elbo = compute_elbo(D, a_0, b_0, mu_0, lambda_0, a_N, b_N, mu_N, lambda_N)
               elbos.append(elbo)
           return a_N, b_N, mu_N, lambda_N, elbos
In [8]: def plot_elbo(elbo_values):
           plt.figure(figsize=(8, 5))
           plt.plot(elbo_values, color='red')
           plt.title('ELBO over Iterations')
           plt.xlabel('Iteration')
           plt.ylabel('ELBO')
           plt.show()
```

Run the VI algorithm on the datasets. Compare the inferred variational distribution with the exact posterior and the ML estimate. Visualize the results and discuss your findings.

```
def test(dataset):
    mu_ml, tau_ml = ML_est(dataset)
    a_N, b_N, mu_N, lambda_N, elbos = CAVI(dataset, a_0, b_0, mu_0, lambda_0)
    plot_elbo(elbos)
    exact_post_dist_param = compute_exact_posterior(dataset, a_0, b_0, mu_0, lambda_0)
    cavi_post_dist_param = {'a_N': a_N, 'b_N': b_N, 'mu_N': mu_N, 'lambda_N': lambda_N}
    ml_e_dist_param = {'mu_ml': mu_ml, 'tau_ml': tau_ml}
    return exact_post_dist_param, cavi_post_dist_param, ml_e_dist_param

test_results = [(test(dataset), dataset) for dataset in [dataset_1, dataset_2, dataset_3]]
```



```
In [10]:

def plot_results(test_results):
    plt.figure(figsize=(15, 5))
    for i, ((exact_post_dist_param, cavi_post_dist_param, ml_e_dist_param), dataset) in enumerate(test_results):
        plt.subplot(1, 3, i + 1)
        plt.hist(dataset, bins=15, alpha=0.7, color='blue', edgecolor='black')
        plt.axvline(exact_post_dist_param['mu_N'], color='red', label='Exact Posterior')
        plt.axvline(cavi_post_dist_param['mu_N'], color='green', label='CAVI Posterior')
        plt.axvline(ml_e_dist_param['mu_ml'], color='orange', label='ML Estimate')
        plt.title(f'N={len(dataset)}')
        plt.legend()
        plt.tight_layout()
        plt.show()

plot_results(test_results)

for result in test_results:
        print(f"Results for dataset with N = {len(result[1])}")
```

print(f"Exact Posterior: {result[0][0]}")
print(f"CAVI Posterior: {result[0][1]}")
print(f"ML Estimate: {result[0][2]}")
print("\n")

Results for dataset with N = 10

Exact Posterior: {'a_N': 7.0, 'b_N': 8.246056803736828, 'mu_N': 1.3380064318896074, 'lambda_N': 9.488905869321496} CAVI Posterior: {'a_N': 7.0, 'b_N': 7.975661001057302, 'mu_N': 1.3212647886896758, 'lambda_N': 9.776702017640968} ML Estimate: {'mu_ml': 1.4718070750785681, 'tau_ml': 0.7872867427894785}

Results for dataset with N = 100

Exact Posterior: {'a_N': 52.0, 'b_N': 106.98437029344821, 'mu_N': 1.0780353751321907, 'lambda_N': 49.60523070554027} CAVI Posterior: {'a_N': 52.0, 'b_N': 107.43974245493843, 'mu_N': 1.0667745777506275, 'lambda_N': 49.39922249609771} ML Estimate: {'mu_ml': 1.0888157288835125, 'tau_ml': 0.4743684938567458}

Results for dataset with N = 1000

Exact Posterior: {'a_N': 502.0, 'b_N': 1026.2445821127876, 'mu_N': 0.9636591312475273, 'lambda_N': 490.16214394672295} CAVI Posterior: {'a_N': 502.0, 'b_N': 1026.802825569814, 'mu_N': 0.962653755326952, 'lambda_N': 489.89620041843966} ML Estimate: {'mu_ml': 0.9646227903787749, 'tau_ml': 0.48790947505759086}