

Estrategias de control para la desaturación de ruedas de reacción en satélites tipo CubeSat.

Sebastian Augusto Zapata Gil

Trabajo de grado presentado para optar al título de Ingeniero Aeroespacial

Tutor Felipe Andrés Obando Vega, PhD Ciencias Agrarias

Universidad de Antioquia
Facultad de Ingeniería
Ingeniería Aeroespacial
El Carmen de Viboral, Antioquia, Colombia
2023

Referencia	[1] Zapata Gil, S. A " Estrategias de control para la desaturación de
Referencia	
reciei ellela	ruedas de reacción en satélites tipo CubeSat.", [Trabajo de grado
Estilo IEEE (2020)	profesional]. Universidad de Antioquia, El Carmen de Viboral,
150110 11111 (2020)	Colombia, 2023.

Biblioteca Seccional Oriente (El Carmen de Viboral))

Repositorio Institucional: http://bibliotecadigital.udea.edu.co

Universidad de Antioquia - www.udea.edu.co

Rector: John Jairo Arboleda Céspedes.

Decano/Director Julio César Saldarriaga.

Jefe departamento: Pedro León Simanca.

El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. Los autores asumen la responsabilidad por los derechos de autor y conexos.

Dedicatoria

Texto de dedicatoria centrado.

${\bf Agradecimientos}$

Texto de agradecimientos centrado.

TABLA DE CONTENIDO

RESUMEN
. ABSTRACT
I. INTRODUCCIÓN
II. PLANTEAMIENTO DEL PROBLEMA
III. ESTADO DEL ARTE
IV. JUSTIFICACIÓN
V. OBJETIVOS
A. Objetivo general
B. Objetivos específicos
VI. MARCO TEÓRICO
A. CubeSat y EyasSat
B. Sistema de determinación y control de actitud (ADCS)
1) Ruedas de reacción
2) Magnetorquers
C. Fundamentos de dinámica de satélites
1) Marcos de referencia
a) Marco de Referencia Orbital (ORF):
b) Marco de Referencia centrado en el cuerpo (BRF):
c) Marco de Referencia centrado en la tierra (ECI):
2) Ángulos de Euler
D. Teoría de Control
1) Modelo dinámico
E. Ambiente espacial en LEO
VII. METODOLOGÍA
A. Modelo dinámico
B. Diseño de estrategia de control
C. Análisis de órbitas
VIII. MODELO DINÁMICO
1) PROPIEDADES INERCIALES

LISTA DE TABLAS

Tabla I	PROBLEMAS DEL MILENIO: LA RESOLUCION DE UNO DE ES-	
TOS	PROBLEMAS SE PREMIAN CON UN MONTO DE US\$ 1 MILLON	39
Tabla II	MEDALLA FIELDS: MATEMÁTICOS GALARDONADOS CON ES-	
TE I	PREMIO DESDE 2010; LA MEDALLA FIELDS SE COMENZÓ A EN-	
TRE	GAR DESDE 1936	40
Tabla III	ALGUNOS NÚMEROS PRIMOS DE MERSENNE	41

LISTA DE FIGURAS

Fig. 1	CubeSat EyasSat equipado con 1 rueda de reacción y 2 magnetorquers.	13
Fig. 2	Ensamble Jaula de Helmholtz	16
Fig. 3	CubeSat de entrenamiento EyasSat	18
Fig. 4	ADCS EyasSat.	18
Fig. 5	Ejes coordenados del EyasSat	19
Fig. 6	Efecto de RW en la velocidad ω de un satélite	19
Fig. 7	Marco Orbital	21
Fig. 8	Marco de referencia centrado en el cuerpo	22
Fig. 9	Marco de referencia centrado en el cuerpo y orbital	22
Fig. 10	Marco de referencia inercial centrado en la tierra (ECI)	23
Fig. 11	Marco de referencia fijo centrado en la tierra (ECEF)	24
Fig. 12	Ángulos de Euler : Roll-Pitch-Yaw	24
Fig. 13	Sistema en lazo cerrado con perturbaciones externas	25
Fig. 14	Órbita baja (LEO)	26
Fig. 15	Diagrama estrategia metodológica	31
Fig. 16	Variación en el tiempo de un marco de referencia rotante	32
Fig. 17	Función hiperbólica	39
Fig. 18	Imagen corporativa Institute of Electrical and Electronics Engineers (IEEE)	41
Fig. 19	Logo Universidad de Antioquia	42

Siglas, acrónimos y abreviaturas

Cms. Centímetros

ERIC Education Resources Information Center

Esp. Especialista

IEEE Institute of Electrical and Electronics Engineers

MP Magistrado Ponente

MSc Magister Scientiae

Párr. Párrafo

PhD Philosophiae Doctor

PBQ-SF Personality Belief Questionnaire Short Form

PostDoc PostDoctor

UdeA Universidad de Antioquia

RESUMEN

Las ruedas de reacción (Reaction Wheels, RW) son dispositivos ampliamente usados en los sistemas de control de actitud satelital debido a su precisión de orientación. Sin embargo, presentan un fenómeno de saturación debido a la acumulación de momento angular. Esta acumulación conlleva a que alcancen su límite de velocidad de rotación e impidan el intercambio de momento con el cuerpo del satélite para garantizar la estabilidad. Debido a esto, es de particular interés estudiar técnicas de desaturación de estos dispositivos empleando otros actuadores de control como los magnetorquers, los cuales, por medio de su interacción con campos magnéticos, generan un torque que contribuye a la desaceleración de las RW. Para ello, se propone un análisis computacional, que parta de un modelo dinámico basado en el CubeSat de entrenamiento EyasSat . Una vez obtenido dicho modelo, se propone realizar una comparación de diferentes controladores de actitud, con la capacidad de desaturar las RW, mediante índices de desempeño relacionados con el consumo energético, el tiempo de respuesta y el error en estado estable. A su vez se evaluará el rendimiento en diferentes escenarios al modificar parámetros orbitales e incluir fenómenos del medio ambiente espacial como la variación del campo magnético terrestre.

Palabras clave — Desaturación de ruedas de reacción, Sistema de determinación y control de actitud, Cubesats, EyasSat, Estrategias de Control

ABSTRACT

Reaction Wheels (RW) are widely used devices in satellite attitude control systems due to their orientation accuracy. However, they present a saturation phenomenon due to the accumulation of angular momentum. This accumulation leads them to reach their rotational speed limit and prevent the exchange of momentum with the satellite body to ensure stability. Due to this, it is of particular interest to study unloading techniques using other control actuators such as magnetorquers, which, through their interaction with magnetic fields, generate a torque that contributes to the deceleration of the RW. For this purpose, a computational analysis is proposed, starting from a dynamic model based on the EyasSat training CubeSat. Once this model is obtained, a comparison of different attitude controllers with the ability to desaturate the RW is proposed, by means of performance indexes related to energy consumption, response time and steady state error. At the same time, the performance will be evaluated in different scenarios by modifying orbital parameters and including space environment phenomena such as the variation of the Earth's magnetic field.

Keywords — Reaction Wheel Unloading, Attitude Determination and Control System, Cubesats, EyasSat, Control Strategies

I. INTRODUCCIÓN

La determinación y el control de actitud en satélites son esenciales para el éxito de una misión espacial. Existen diferentes métodos de control de actitud, los cuales pueden clasificarse como pasivos y activos. El control pasivo recurre principalmente al diseño geométrico y magnético del satélite, buscando aprovechar los principios físicos y fuerzas naturales que actúan sobre el satélite, aumentando los efectos de una mientras se minimizan los de otras. Por otro lado, el control activo emplea actuadores como propulsores, magnetorquers (barra de torsión) o ruedas de reacción (Reaction Wheels, RW) para modificar la actitud del satélite mediante la generación de torques correctivos [1]. Durante una misión espacial, se pueden utilizar diferentes modos de control de actitud para sus diferentes fases y tareas del satélite. En los últimos años, se ha presentado un aumento de misiones espaciales que involucran Cube-Sats, el cual es un tipo de nanosatélite formado a partir de unidades cúbicas (U) de 10 cm de lado, y que cada vez presentan una mayor complejidad. Por lo tanto, ha sido de gran interés el incremento de la vida útil y el rendimiento de las misiones, donde el sistema de determinación y control de actitud (Attitude Determination and Control System, ADCS) juegan un papel fundamental para garantizar la probabilidad de éxito [2]. En este sentido, el control de actitud de un CubeSat es fundamental para cumplir el perfil de misión, normalmente situado en órbita baja (Low Earth Orbit, LEO), donde se busca tener precisión de apuntamiento y estabilidad para las cargas útiles, antenas y paneles solares, que son componentes críticos para el funcionamiento de la nave espacial y del éxito de la misión. El control de actitud en CubeSats es normalmente provisto por RW, las cuales intercambian momento con la nave sin consumir propelente. No obstante, una desventaja de este tipo de dispositivos electromecánicos es que acumulan el momento para mantener una actitud deseada y, en consecuencia, las RW se saturan cuando alcanzan su velocidad máxima de rotación lo cual impiden que estas puedan intercambiar momentos que garanticen a la estabilidad del satélite. Por tal motivo, surge un desafío en el área de control de actitud que busca la desaturación de dichas ruedas de reacción mientras se conserva la actitud del satélite. Algunos de los desafíos que se presentan frente a este fenómeno se deben a que comúnmente el control de actitud y la desaturación de

RW son tratados por separado, y a pesar de que existen numerosos estudios sobre el control de actitud con torques magnéticos, hay pocos artículos que involucran la desaturación del momento de las RW mediante magnetorquers [3]. Por otro lado, se requieren controladores que garanticen la estabilidad del satélite anticipando y actuando ante perturbaciones presentes en el ambiente espacial como por ejemplo torques externos debido a gradientes gravitacionales, torques aerodinámicos o torques de radiación solar [4]. Debido a esto, es de particular interés estudiar técnicas de desaturación con controladores, que permitan asistir estos dispositivos recurriendo a otros actuadores auxiliares como los magnetorques, los cuales, por medio de su interacción con campos magnéticos, generan un par que desatura las ruedas de reacción. No obstante, a diferencia de las RW que pueden generar un torque en cualquier dirección y en cualquier momento, los magnetorques dependen de la interacción con el plano ortogonal del campo geomagnético instantáneo, el cual cambia a medida que el satélite orbita alrededor de la tierra [5]. Adicionalmente, a pesar de que los magnetorques son dispositivos confiables en LEO, producen una respuesta más lenta en comparación con otros actuadores lo cual reduce la capacidad de maniobra del satélite y su tiempo de reacción ante perturbaciones externas. En este sentido, se propone evaluar estrategias de control de actitud que incorporen la desaturación de las ruedas reacción, mediante simulaciones computacionales a partir de un modelo dinámico basado en el CubeSat de entrenamiento EyasSat [6]. Adicionalmente, se pretende realizar una comparación de diferentes controladores bajo algunos escenarios o perfiles de misión propuestos, con el fin de determinar las condiciones donde mejor se desempeñan las estrategias de control propuestas. La elección de este modelo en particular de CubeSat se debe a que dicho satélite se encuentra disponible en el programa de Ingeniería Aeroespacial; y es de especial interés incluirlo en el planteamiento de las simulaciones porque puede ser aprovechado junto con otros equipos, como la Jaula de Helmholtz, para consolidar una futura línea de investigación en control satelital.

II. PLANTEAMIENTO DEL PROBLEMA

El fenómeno de desaturación de ruedas de reacción será abordado en un picosatélite tipo CubeSat (Fig. 1), particularmente en el modelo EyasSat, el cual está equipado con:

- Una rueda de reacción en el eje Z, por lo que se tendrá control unicamente en un grado de libertad. En este actuador es donde se presenta el fenómeno de estudio, ya que a pesar de proporcionar una respuesta rápida en el control de actitud, sufre de un incremento gradual de su tasa de giro. Lo anterior, debido a su incapacidad para alterar el momento angular total del satélite en presencia de perturbaciones externas.
- Magnetorquers en el eje X e Y respectivamente, los cuales pueden ejercer torques en los 3 ejes debido a la interacción del campo magnético terrestre. No obstante, el modelo estará restringido a contemplar solo los torques generados en el eje Z con el fin de disminuir la velocidad de rotación que pueda presentar la rueda de reacción.

De esta manera, el problema tratado en este trabajo consiste en el diseño de estrategias de control que permitan eliminar la saturación de ruedas de reacción mediante los magnetorquers, que sirven como actuadores secundarios en el sistema de control de actitud. Dichos dispositivos, deberán garantizar que el momento angular de las ruedas de reacción sea igual momento angular del satélite, evitando una acumulación progresiva de la velocidad de rotación de las RW. Ya que el rendimiento de los magnetorquers depende de su interacción con el campo geomagnético, es de interés evaluar 3 inclinaciones de órbitas circulares que permitan identificar el escenario mas favorable donde se podrían desempeñar.

Ademas de eliminar el exceso de momento angular, dichas estrategias de desaturación, simultáneamente deben permitir que el satélite alcance una actitud deseada en el marco de referencia del cuerpo ante diferentes respuestas:

- Respuesta de equilibrio ante perturbaciones.
- Respuesta tipo escalón de un angulo deseado.
- Respuesta tipo rampa para alcanzar una velocidad de rotación constante.

Fig. 1. CubeSat EyasSat equipado con 1 rueda de reacción y 2 magnetorquers.

III. ESTADO DEL ARTE

La desaturación de ruedas de reacción es un problema común en los satélites, incluidos los Cubesats, que pueden llevar a una pérdida de control de actitud. La ley de producto cruzado (CCPL) es una solución clásica en ingeniería comúnmente utilizado para resolver este paradigma desde una aproximación lineal [5]. Pero en los últimos años se han desarrollado diferentes controladores que involucran sistemas no lineales. Sin embargo, tal como se expresa en [3], el problema de control de actitud y la saturación de ruedas de reacción es comúnmente abordado como temas separados desde el punto de vista de diseño, por lo cual, no existen tantos artículos en los que se incluyan ambos objetivos. En su trabajo se propone un método de diseño de un LQR periódico variable en el tiempo donde se incluyen los torques generados por gradientes gravitacionales y los efectos periódicos del campo geomagnético alrededor de la órbita. Además, señala que los artículos existentes no suelen estos efectos mencionados anteriormente. Por otro lado, Yang menciona esfuerzos como el de [5], en el cual se estudió al mismo tiempo el problema de la estabilización y el de desaturación de ruedas de reacción. A

su vez se consideró la variación temporal del campo magnético en el marco del cuerpo (BRF), y su marco de referencia era el marco inercial (ECI). Sin embargo, para una nave espacial en LEO que utiliza el campo geomagnético, el marco de referencia más idóneo es el marco local vertical local horizontal (LVLH). Además, su diseño se compone de dos bucles, que es esencialmente una idea de tratar con el control de actitud y la desaturación en consideraciones separadas. En esa misma línea, de Angelis [7] propuso un controlador proporcional heurístico y utilizó una función de Lyapunov para probar que el controlador puede simultáneamente estabilizar la nave espacial con respecto al marco LVLH y lograr la desaturación de ruedas de reacción. Pero este método de diseño no tiene en cuenta el efecto variable en el tiempo del campo geomagnético en el marco del cuerpo. Finalmente, al estudiar las estrategias de control ya implementadas y conocer, tanto los efectos que incluyen como las simplificaciones de sus sistemas, es necesario recurrir a un modelo dinámico del EyasSat, el cual es el punto de partida para diseñar los controladores que se evaluarán bajo las condiciones de saturación y de estabilidad. A pesar de, no encontrar modelos dinámicos específicos para el EyasSat, Groenewald y Steyn [8] elaboraron una propuesta para un nuevo ADCS integrado en este cubesat, y en él se incluyen propiedades inerciales y dimensiones útiles para la formulación de un modelo dinámico. A su vez, en [9] se realiza un desarrollo matemático de la dinámica de un cubesat de 1U, donde describe los diferentes torques y perturbaciones externas, modela los actuadores en Simulink y sus diferentes configuraciones para ser evaluados bajo diferentes condiciones como la desaturación de ruedas de reacción.

IV. JUSTIFICACIÓN

Dentro del proceso de diseño de una misión espacial, es fundamental evaluar el rendimiento de los subsistemas de un vehículo con el fin de garantizar el cumplimiento del perfil de misión. Especialmente, en el sector espacial es de vital importancia limitar el consumo de potencia eléctrica para maximizar la vida útil del misión. En este sentido, las técnicas de desaturación de ruedas de reacción, ademas de garantizar la estabilidad y el control de actitud, permiten establecer un balance entre el rendimiento y el consumo de potencia eléctrica al tratar de minimizar la acción de control de los actuadores sin afectar la estabilidad del sistema.

Por otro lado, conocer el desempeño de los magnetorquers según su órbita, permite tener un criterio a la hora de evaluar perfiles de misión que cumplan con los requerimientos y a su vez sean eficientes en materia de consumo de potencia.

Finalmente, el diseño teórico de controladores crea la oportunidad de evaluarlos en un ambiente controlado, donde se puedan implementar las estrategias de control en sistemas ADCS reales. Para ello, se pretende fomentar una linea de investigación en sistemas de control de actitud, donde se cuenta con una Jaula de Helmholtz (Fig. 2) funcional y operativa, como parte del inventario del grupo de investigación ASTRA de la Universidad de Antioquia.

Fig. 2. Ensamble Jaula de Helmholtz.

V. OBJETIVOS

A. Objetivo general

Validar computacionalmente una estrategia de control de actitud para el picosatélite CubeSat EyasSat que integre la desaturación de sus ruedas de reacción mediante magnetorquers a partir de su modelo dinámico.

B. Objetivos específicos

- Simular el comportamiento dinámico del nanosatélite EyasSat a partir del desarrollo de un modelo fenomenológico de este.
- Determinar una estrategia de control de actitud para el nanosatélite EyasSat que integre la desaturación de las ruedas de reacción empleando magnetorquers a partir de simulaciones computacionales basadas en su modelo dinámico.
- Identificar aquellas órbitas donde la estrategia de control presente el mejor desempeño al utilizar los magnetorquers como elementos de desaturación de las ruedas de reacción.

VI. MARCO TEÓRICO

A. CubeSat y EyasSat

El concepto CubeSat se refiere a un nanosatélite estándar cuyo diseño fue propuesto por los profesores Jordi Puig-Suari, de la Universidad Politécnica Estatal de California, y Bob Twiggs, de la Universidad de Stanford en 1999. Corresponde a un pequeño satélite constituido por unidades (U) con forma de cubo de 10 cm y una masa de hasta 1.3 kilogramos [10]. Son ampliamente utilizados alrededor el mundo por universidades ya que representan una alternativa para desplegar cargas científicas en el espacio con un presupuesto inferior a los 100.000 dólares [11]. No obstante, también son diseñados con fines educativos para que los estudiantes se familiaricen con los principales sistemas que componen estos vehículos espaciales y puedan hacer pruebas de integración y rendimiento en un aula de clase. En este sentido, surge el CubeSat EyasSat [12] como parte de un programa de entrenamiento del Departamento de Astronáutica de la Academia de las Fuerzas Aéreas de Estados Unidos (USAFA). El EyasSat (Fig. 3), se centra en seis subsistemas de los que constan la mayoría de los satélites. Estos subsistemas son: estructuras, potencia, comunicación y tratamiento de datos, control y determinación de actitud (ADCS), propulsión y sistemas térmicos. No obstante, el diseño modular del EyasSat permite la integración y mejora de subsistemas adicionales que pueden ampliar sus capacidades. Por ejemplo, 8 propone una nueva versión del ADCS, sistema de particular interés en esta investigación, el cual se extiende a tres ejes y permite la capacidad de ser probado en un cojinete de aire.

B. Sistema de determinación y control de actitud (ADCS)

Este sistema se encarga de estabilizar y orientar el vehículo en las direcciones deseadas durante la misión a pesar de los torques de perturbaciones externos que actúan sobre él. Para ello es necesario que el vehículo determine su actitud mediante sensores, y la controle, mediante actuadores.

El Módulo ADCS del EyasSat (Fig. 4), se compone de dos tipos de actuadores: una

Fig. 3. CubeSat de entrenamiento EyasSat.

Fig. 4. ADCS EyasSat.

rueda de reacción en el eje Z y dos magnetorquers en el eje X e Y respectivamente. En la **Fig.** 5 se evidencian los ejes coordenados en el marco del cuerpo. Por otro lado, la medición de la posición se realiza mediante dos sensores solares (situados en la parte superior e inferior del EyasSat) y un sensor solar diferencial-posicional (compuesto por dos células fotovoltaicas) [13]. En este sentido, es posible realizar pruebas de actitud recurriendo a un control de lazo cerrado de un grado de libertad.

1) Ruedas de reacción Las ruedas de reacción (RW) son motores de alto torque acoplados a rotores de gran inercia. Permiten reposicionar vehículos espaciales y satélites controlables mientras están en órbita ya que contienen energía rotacional, almacenada mediante la conser-

Fig. 5. Ejes coordenados del EyasSat

Nota. Fuente [8]

vación del momento angular, y pueden activar el intercambio de momento para proporcionar estabilidad a una nave espacial o al satélite.

Fig. 6. Efecto de RW en la velocidad ω de un satélite.

Nota. Fuente [14]

Como puede apreciarse en la Fig. 6, en cuanto cambia la velocidad de rotación ω de la nave espacial, la RW desencadena una contra rotación del satélite, en la misma proporción,

a través de la conservación del momento angular. Dicha contra rotación se produce a lo largo de un único eje, por lo que, para tener un control completo del sistema, es necesario recurrir a ensambles de tres ruedas de reacción. Son ampliamente utilizadas ya que sólo requieren energía eléctrica para funcionar y no necesitan actuadores externos de torque como cohetes o propelentes. Pueden asegurar el control de actitud en tres ejes de forma autónoma. Además, las ruedas de reacción pueden gestionar la orientación de un satélite o nave espacial con una precisión superior a otros dispositivos. Se trata de un elemento crítico para las misiones espaciales tanto de acción como de observación que requieren una precisión de apuntamiento muy elevada.

2) Magnetorquers Por su parte, estos dispositivos utilizan bobinas magnéticas o electroimanes para generar momentos dipolares magnéticos, producen un par proporcional (y perpendicular) al campo magnético variable de la Tierra [15]. Esto puede representar un desafío
ya que la magnitud del campo geomagnético varia con el tiempo y su desempeño disminuye
a medida que aumenta la altura de la órbita como se ve en la La eq. 1 , donde \vec{B} es la
constante magnética terrestre y corresponde a $\vec{B}=m/R^3$, donde $m=7.96*10^{15}~Wb/m$ y R
es la distancia al centro de la tierra. De esta manera, se tiene una expresión para la magnitud
del torque:

$$\vec{\tau} = \vec{M} \times \vec{B} \tag{1}$$

Donde $\vec{\tau}$ es el torque creado, \vec{B} es el vector de campo geomagnético, y \vec{M} es el momento dipolar magnético generado por el magnetorquer especificado en $Amperios \cdot vuelta \cdot m^2$. No obstante, los electroimanes tienen la ventaja de no tener piezas móviles, ya que sólo necesitan un magnetómetro para detectar el campo y una varilla electromagnética enrollada en cada eje. Como utilizan los campos magnéticos naturales de la Tierra, son menos eficaces en órbitas altas donde disminuye la magnitud del campo. Por otro lado, según Wertz y Larson [1], en el diseño de un ADCS, normalmente se requiere conocer la ubicación del centro de masa o gravedad (CG), así como los elementos de la matriz de inercia: los momentos y productos de inercia en torno a ejes de referencia elegidos. La dirección de los ejes principales, aquellos

ejes para los que la matriz de inercia es diagonal y los productos de inercia son cero, también son de interés. Por último, es necesario saber cómo cambian estas propiedades con el tiempo, a medida que se utiliza combustible u otros componentes se desplazan o despliegan.

C. Fundamentos de dinámica de satélites

1) Marcos de referencia El primer paso para analizar y diseñar un sistema de control de actitud es definir los sistemas de referencia de coordenadas con los que trabajar, lo cual permite describir la actitud de un satélite como una desviación con respecto a un sistema de referencia elegido. Hay tres marcos de referencia comunes utilizados para la descripción de la actitud: Marco de referencia orbital (ORF), el marco de referencia centrado en el cuerpo (BRF) y el marco de referencia centrado en la tierra (ECI).

a) Marco de Referencia Orbital (ORF): Es un marco no inercial donde el origen coincide con el CG del satélite. El eje X_o apunta hacia el centro de la Tierra (nadir). El eje Y_o apunta en la dirección de la velocidad tangencialmente a la órbita. El eje Z_o completa el sistema usando la regla de la mano derecha como se muestra en la **Fig. 7**.

Fig. 7. Marco Orbital.

Nota. Fuente [16]

b) Marco de Referencia centrado en el cuerpo (BRF): Se fija con respecto al centro de masa del satélite (Fig. 8). Se utiliza para determinar la orientación de los instrumentos a bordo. Si algunos de los instrumentos a bordo dependen de de la orientación del satélite, por ejemplo una cámara, es conveniente definir el BRF con uno de los ejes paralelos al campo de visión de este instrumento. Por otro lado, la orientación del satélite se describe en relación con el marco orbital como se ve en la Fig. 9.

Fig. 8. Marco de referencia centrado en el cuerpo

Fig. 9. Marco de referencia centrado en el cuerpo y orbital

Nota. Fuente [17]

c) Marco de Referencia centrado en la tierra (ECI): Este marco está fijo en el espacio, por lo que es un marco de referencia no acelerado que permite la aplicación de las Leyes de Newton, donde su origen está situado en el centro de la Tierra. El eje Z apunta hacia el Polo Norte, el eje X hacia el Equinoccio de Primavera y el eje Y completa el sistema de coordenadas cartesianas como se ve en la **Fig. 10**.

Fig. 10. Marco de referencia inercial centrado en la tierra (ECI)

Nota. Fuente [16]

Cuando se requiere considerar la rotación de la tierra, se recurre a un marco centrado y unido a la tierra (ECEF). Éste también se encuentra en el centro de la Tierra, sin embargo, los ejes X e Y giran con la tierra respecto al marco ECI alrededor del eje Z. El eje X apunta hacia la intersección del meridiano de Greenwich y el Ecuador. Finalmente, el eje Y completa el sistema siguiendo la regla de la mano derecha como se ve en la **Fig.11**.

Estos marcos de coordenadas permiten describir la actitud en términos de la orientación del BRF con respecto al ORF o ECI. Para ello se utiliza la representación de cuaterniones o ángulos de Euler en una matriz de dirección coseno (DCM) o matriz de transformación. Esta matriz permite transformar vectores de un sistema de referencia a otro.

2) Ángulos de Euler La actitud de un vehículo puede representarse mediante los ángulos de roll (ϕ) , pitch (θ) y yaw (ψ) . Estos ángulos representan las rotaciones consecutivas sobre

Fig. 11. Marco de referencia fijo centrado en la tierra (ECEF)

Nota. Fuente [16]

los ejes X, Y y Z con el fin de pasar de un marco a otro (**Fig.12**). El orden en que estas rotaciones son efectuadas tienen efectos en la matriz de rotación.

Fig. 12. Ángulos de Euler : Roll-Pitch-Yaw

Nota. Fuente [9]

Debido a que el problema discutido en este trabajo se restringió para solo un grado de libertad, solo basta realizar una rotacion de un ángulo ϕ en el eje Z_o del marco orbital (ORF) para pasar al marco del cuerpo (BRF). Lo anterior puede lograrse con la matriz de

transformación R_B^O :

$$\mathbf{R_{B}^{O}} = \mathbf{R_{z,\psi}} = \begin{bmatrix} cos\psi & -sin\psi & 0 \\ sin\psi & cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

D. Teoría de Control

Como se mencionó en la sección del ADCS, para garantizar la estabilidad de un satélite primero es necesario conocer su orientación angular en el BRF y determinar su actitud respecto al ORF. No obstante, la acción de los actuadores depende de la posición instantánea y sus cambios para poder compensar y anticipar el efecto de las perturbaciones en la actitud. Por tal motivo, los ADCS se fundamentan en la teoría de control. De tal manera, la ingeniería de control recurre a los sistemas retroalimentados o en lazo cerrado, en los cuales, se alimenta al controlador con la señal de error de actuación, que es la diferencia entre la señal de entrada y la señal de realimentación (que puede ser la propia señal de salida o una función de la señal de salida y sus derivadas y/o integrales), con el fin de reducir el error y llevar la salida del sistema a un valor deseado [18]. Así mismo, los sistemas en lazo cerrado tienen la habilidad de rechazar perturbaciones externas y mejorar la atenuación del ruido de medición. Las perturbaciones y el ruido de medición se incorporan en el diagrama de bloques como entradas externas, como se ilustra en la Fig.13.

Fig. 13. Sistema en lazo cerrado con perturbaciones externas

1) Modelo dinámico Para comprender y controlar sistemas complejos, es preciso obtener modelos matemáticos cuantitativos de dichos sistemas. Es necesario, pues, analizar las relaciones entre las variables del sistema y obtener un modelo matemático. Dado que los sistemas considerados son dinámicos, las ecuaciones descriptivas suelen ser ecuaciones diferenciales. Además, si estas ecuaciones se pueden linealizar, es posible utilizar la transformada de Laplace para simplificar el método de solución. En la práctica, debido a la complejidad de los sistemas y nuestro desconocimiento de todos los factores relevantes, se hace necesaria la introducción de suposiciones relativas al funcionamiento del sistema. Por lo tanto, a menudo resultará útil considerar el sistema físico, expresar y linealizar el sistema.

E. Ambiente espacial en LEO

La órbita baja (LEO, por sus siglas en inglés) es una región del espacio que se encuentra a una altitud de aproximadamente 160 a 2000 kilómetros sobre la superficie de la Tierra, como se muestra en la **Fig.14**. Los satélites en LEO experimentan diversas condiciones ambientales, incluyendo gradientes de gravedad, arrastre aerodinámico, presión solar y el campo magnético terrestre.

Fig. 14. Órbita baja (LEO)

Nota. Fuente [19]

Los gradientes de gravedad son causados por la variación de la fuerza gravitacional

a medida que el satélite se mueve a través de diferentes regiones de la gravedad terrestre. Estos gradientes pueden causar momentos de torsión no deseados en el satélite, lo que puede afectar su orientación y estabilidad [15].

Por otro lado, el arrastre aerodinámico es causado por la interacción del satélite con la atmósfera terrestre, que puede causar una desaceleración y una disminución de la altitud de la órbita. Por su parte, el campo geomagnético puede afectar la orientación y el control de los vehículos que usan magnetorquers.

Estos factores pueden afectar el sistema de control en LEO de diversas maneras. Por ejemplo, los gradientes de gravedad y el arrastre aerodinámico pueden causar momentos de torsión no deseados, lo que puede añade energía al sistema en forma de momento angular, afectando la precisión del sistema de control.

Para mitigar estos efectos, se utilizan diversas técnicas de control, como el control de actitud, que utiliza dispositivos como los ya mencionados magnetorquers, ruedas de reacción y propulsores para controlar la orientación. También se pueden utilizar técnicas de control adaptativo y control predictivo para compensar los efectos del arrastre aerodinámico y los gradientes de gravedad [20]. Dado que el desempeño del ADCS se ve influenciado por las condiciones del ambiente espacial, es necesario conocer las particularidades de la órbita donde se encontrará el CubeSat. De esta manera, es posible incluir estos parámetros en el modelo dinámico y en los controladores que se evaluarán.

VII. METODOLOGÍA

La estrategia metodológica tiene un enforque cuantitativo, ya que toma como punto de partida un fenómeno, que puede ser amplio en el campo de la dinámica de satélites, pero que se acota cada vez más según se definen las preguntas de investigación, su alcance y su definición de variables. Por otro lado, se define un conocimiento mínimo, consolidado en el marco teórico, y una revisión de los métodos e investigaciones que se han realizado hasta el momento, consignado en el estado del arte. En este sentido, el desarrollo de este trabajo de grado se divide en tres etapas:

A. Modelo dinámico

Primero es necesario interpretar el fenómeno de estudio, partiendo de la realidad y llevándola a un entorno matemático que permita su simulación. Para ello se recurre a un modelo dinámico, constituido por las ecuaciones diferenciales involucradas en el fenómeno físico y sus propiedades inerciales. De esta manera se pretende resolver las siguientes preguntas: ¿Cuál es el marco de referencia idóneo para plantear las ecuaciones del modelo dinámico? ¿De qué manera se puede comprobar que el modelo dinámico se acerca al modelamiento real del fenómeno? ¿Qué torques internos y externos deben tenerse en cuenta según las necesidades del proyecto? Para ello se plantean las siguientes actividades:

- a) Recopilación y comprensión de modelos dinámicos similares al caso de estudio según el estado del arte. Para esto se consultarán diversas fuentes de libros, bases de datos y revistas indexadas.
- b) Adaptación de dichos modelos para la construcción de un modelo propio: se parte de un modelo simple y se hacen suposiciones como: orbita circular, campo magnético constante, simetrías, etc.
- c) Simulación realizando ajustes de parámetros usando la herramienta computacional de Matlab Simulink: se busca conocer el comportamiento del modelo dinámico que corresponda a la realidad.

B. Diseño de estrategia de control

Una vez se tiene un modelo dinámico, se realizarán simulaciones con diferentes estrategias de control que garanticen condiciones de estabilidad e incluyan la desaturación de ruedas de reacción. De tal manera que, en la medida que se realicen y se desarrollen las simulaciones esta etapa se responderán las preguntas: ¿Qué estrategia de control es la que más se emplea actualmente? ¿Qué deficiencias tiene?, comparando la estrategia de control de referencia ¿cómo se desempeñan los otros controladores? Para esto se proponen las siguientes actividades y experimentos:

- a) Búsqueda bibliográfica de controladores para justificar para identificar aquellos que comúnmente utilizados para hacer frente al fenómeno de estudio. De esta manera, se seleccionará el controlador más usado para usarlo como punto de comparación.
- b) Definir índices de desempeño del comportamiento de los controladores justificando la incorporación de las diferentes variables que hacen parte de este, teniendo en cuenta parámetros como el consumo energético, el tiempo de reacción y error en estado estable.
- c) Diseño y simulación de controladores de actitud con desaturación de RW, como por ejemplo LQR, PID, anti wind up Multi agente, modelo predictivo, static input allocation.
- d) Definir escenarios: Se plantearán diferentes escenarios correspondientes a un uso específico del cubesat, donde el objetivo varía según la órbita o el perfil de misión. De esta manera se evaluará el desempeño de los controladores para distintas aplicaciones, como un apuntamiento constante hacia una base terrena, disminución de consumo energético o aumento en la respuesta para alcanzar la estabilidad.
- e) Realizar pruebas con los diferentes controladores en los diferentes escenarios propuestos y compararlos a partir de sus índices de desempeño.

C. Análisis de órbitas

Como se mencionó en la sección de modelo dinámico, este parte de realizar suposiciones y simplificaciones. Algunas de estas conciernen la órbita y las perturbaciones del medio ambiente espacial. En esta etapa se quiere determinar la influencia de ciertos parámetros orbitales de la órbita baja, sus correspondientes intensidades de campo geomagnético y como éstas afectan el desempeño de los magnetorquers en el fenómeno de desaturación. Luego de implementar condiciones de ambiente espacial, las simulaciones deberían dilucidar las siguientes preguntas: ¿En qué órbitas de presenta un mejor desempeño por parte de los magnetorquers y con cual controlador? ¿Qué tipo de perfil de misiones son las más indicadas para los controladores seleccionados? Para ello se plantean las siguientes actividades y experimentos:

- a) Integrar las intensidades de campo magnético terrestre según una órbita deseada en el modelo dinámico, a partir de recursos como el paquete SEET del software multifísico STK o su alternativa de código abierto GMAT, entre otros de uso libre.
- b) Nuevamente realizar pruebas y comparaciones de los controladores de actitud con desaturación de RW basados en los índices de desempeño. De esta manera, se evalúan diferentes escenarios donde se varían espacial y temporalmente algunos parámetros orbitales como la inclinación, excentricidad y la variación del campo geomagnético.

Finalmente, el esquema de la estrategia metodológica puede apreciarse en la Fig.15, donde se plantea el entregable u objetivo a cumplir al término cada etapa, el cual es fundamental para el desarrollo de la etapa posterior. De esta manera se consolida una estrategia secuencial pero que puede estar sujeta a diferentes iteraciones según el desarrollo de las actividades.

Fig. 15. Diagrama estrategia metodológica

VIII. MODELO DINÁMICO

La de actitud de una nave espacial como un CubeSat puede ser representada por las ecuaciones dinámicas de Newton-Euler, las cuales describen los efectos de los torques externos e internos que modifican la aceleración del satélite. Para llegar a dichas ecuaciones se parte de la dinámica rotacional tal como se describen en [21].

Fig. 16. Variación en el tiempo de un marco de referencia rotante

La Fig.16 muestra la geometría esencial del sistema. Se tiene el vector de posición ρ en el marco del cuerpo en rotación, si se desea conocer su variación en el tiempo respecto al marco inercial se tiene:

$$\left(\frac{\mathrm{d}\rho}{\mathrm{d}t}\right)_{i} = \left(\frac{\mathrm{d}\rho}{\mathrm{d}t}\right)_{b} + \omega \times \boldsymbol{\rho} \tag{2}$$

Donde ω es la velocidad angular en el marco del cuerpo. Por otro lado, se requieren determinar el vector posición \vec{r} y sus derivadas \vec{v} y \vec{a} . Del sistema vectorial se tiene una relación entre r y p:

$$r = R + \rho \tag{3}$$

De esta manera, velocidad y la aceleración pueden ser determinadas:

$$\boldsymbol{v} = \left(\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}\right)_i = \frac{\mathrm{d}\boldsymbol{R}}{\mathrm{d}t} + \left(\frac{\mathrm{d}\boldsymbol{\rho}}{\mathrm{d}t}\right)_b + \omega \times \boldsymbol{\rho} \tag{4}$$

$$\boldsymbol{a} = \left(\frac{\mathrm{d}^2 \boldsymbol{r}}{\mathrm{d}t^2}\right)_i = \frac{\mathrm{d}^2 \boldsymbol{R}}{\mathrm{d}t^2} + \left(\frac{\mathrm{d}^2 \boldsymbol{\rho}}{\mathrm{d}t^2}\right)_b + 2\omega \times \left(\frac{\mathrm{d}\boldsymbol{\rho}}{\mathrm{d}t}\right)_b + \frac{\mathrm{d}\omega}{\mathrm{d}t} \times \boldsymbol{\rho} + \omega \times (\omega \times \boldsymbol{\rho})$$
 (5)

En la dinámica rotacional, dos cantidades fundamentales de interés son el momento de inercia y el momento angular. El momento angular de una colección de puntos de masa es el momento de su momento lineal alrededor de un origen definido. A partir de Fig.16, el momento angular de la masa mi alrededor del origen en el sistema de inercial es:

$$H_t = \sum r_i \times m_i v_i \tag{6}$$

Si aplicamos las eq.(4) y eq.(5) con $V = \frac{dR}{dt}$ y si suponemos que 1) el origen del marco de rotación se encuentra en el centro de masa del cuerpo ($\sum m_i \rho_i = 0$), y 2) los vectores de posición ρ_i están fijos en el marco del cuerpo, es decir, tenemos un cuerpo rígido $\frac{d\rho}{dt} = 0$. Se obtiene el momento angular total así:

$$H_t = \left(\sum m_i\right) R \times V + \sum m_i \rho_i \times \frac{\mathrm{d}\rho_i}{\mathrm{d}t} = H_{orb} + H_b \tag{7}$$

El primer término de la derecha es el momento angular del cuerpo rígido debido a su velocidad traslacional V en el marco de inercia. El segundo término es el momento angular del cuerpo debido a su velocidad de rotación alrededor de su propio centro de masa. La eq. (7) provee un importante resultado ya que indica que, en un cuerpo rígido, es posible escoger un marco de coordenadas que desacopla el momento angular del cuerpo y del momento angular orbital. Por tal motivo, el análisis se centrará únicamente en el segundo término, donde la eq.(2) se simplificaría de la siguiente manera:

$$\frac{\mathrm{d}\rho_j}{\mathrm{d}t} = \omega \times \rho_i \tag{8}$$

De esta manera, a partir de la eq.(7) tenemos que el momento angular en el marco del cuerpo es:

$$H = \sum m_i \rho_i \times \frac{\mathrm{d}\rho_i}{\mathrm{d}t} = \sum m_i \rho_i \times (\omega \times \rho_i) = I\omega \tag{9}$$

Donde I es una matriz real y simétrica, llamada matriz de inercia, con componentes:

$$\begin{split} I_{11} &= \sum m_i \left(\rho_{i2}^2 + \rho_{i3}^2 \right) \\ I_{22} &= \sum m_i \left(\rho_{i1}^2 + \rho_{i3}^2 \right) \\ I_{33} &= \sum m_i \left(\rho_{i1}^2 + \rho_{i2}^2 \right) \\ I_{12} &= I_{21} = -\sum m_i \rho_{i1} \rho_{i2} \\ I_{13} &= I_{31} = -\sum m_i \rho_{i1} \rho_{i3} \\ I_{23} &= I_{32} = -\sum m_i \rho_{i2} \rho_{i3} \end{split}$$

La eq.(9) nos indica que el momento angular total depende de la matriz de inercia del cubesat y del vector de velocidades angulares. Sin embargo, es necesario introducir el efecto de las ruedas de reacción, las cuales también disponen de un momento angular h_w . Por lo tanto, se tiene a partir de la eq.(9) que:

$$H = I\omega_b + h_w \tag{10}$$

Por otro lado, el efecto de los torques externos se incluye al considerar una fuerza F_i aplicada en una posición ρ_i en las coordenadas del marco del cuerpo. Esta fuerza tiene un efecto dado por:

$$T_i = \rho_i \times F_i \tag{11}$$

En este sentido, el torque neto de fuerzas externas es:

:

$$T = \sum \rho_i \times F_i = \sum \rho_i \times m_i \frac{\mathrm{d}^2 r_i}{\mathrm{d}t^2}$$
 (12)

Al expandir la expresión para la aceleración tal como se hizo en la eq.(5), se tiene que

$$T = \frac{\mathrm{d}H}{\mathrm{d}t} = \left(\frac{\mathrm{d}H}{\mathrm{d}t}\right)_{body} + \omega \times H \tag{13}$$

O visto de otra manera, asumiendo un marco fijo del cuerpo con ejes principales, se puede expresar el cambio del momento angular como el efecto de los torques y el producto cruz entre la velocidad angular y el momento angular total del sistema.

$$\left(\frac{\mathrm{d}H}{\mathrm{d}t}\right)_{body} = T - \omega \times (I\omega + h_w) \tag{14}$$

Análogamente, se puede obtener otra expresión para el cambio de momento angular al derivar la eq.(10) respecto al tiempo :

$$\dot{H_b} = \left(\frac{\mathrm{d}H}{\mathrm{d}t}\right)_{body} = I\frac{\mathrm{d}\omega_b}{\mathrm{d}t} + \dot{h_w} \tag{15}$$

Tomando el principio del intercambio de momentos, se tiene que el momento angular producido por las ruedas de reacción se aplica al satélite con signo opuesto. Entonces si definimos T_c como el par de control:

$$\dot{h_w} = -T_c \tag{16}$$

Al igualar las ecuaciones (14) y (15) se obtiene una expresión para las aceleraciones angulares, conocida como ecuación dinámica de Newton-Euler, la cual consolida el modelo dinámico del CubeSat:

$$\frac{d\omega_b}{dt} = I^{-1} \left[-\omega_b \times (I\omega_b + h_w) + T + T_C \right]$$
 (17)

donde:

$$\mathbf{I} = \left[\begin{array}{ccc} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{array} \right] : \text{ Matriz de inercia del CubeSat}$$

$$\omega_{\bf b}=\left[\begin{array}{c}\omega_x\\\omega_y\\\omega_z\end{array}\right]$$
: Vector de velocidad angular del satélite en el marco del cuerpo.

$$\mathbf{h_w} = \begin{bmatrix} h_x \\ h_y \\ h_z \end{bmatrix}$$
: Vector de momento de angular de las RW.

Realizando las respectivas multiplaciones matriciales, se tienen las ecuaciones en cada eje:

$$\dot{\omega}_x = \left[T_x + T_{Cx} + \omega_y \omega_z \left[I_{yy} - I_{zz}\right] - h_z \omega_y + h_y \omega_z\right] / I_{xx}$$
(18)

$$\dot{\omega}_y = \left[T_y + T_{Cy} + \omega_x \omega_z \left[I_{zz} - I_{xx} \right] - h_x \omega_z + h_z \omega_x \right] / I_{yy}$$
(19)

$$\dot{\omega}_z = \left[T_z + T_{Cz} + \omega_x \omega_y \left[I_{xx} - I_{yy}\right] - h_y \omega_x + h_x \omega_y\right] / I_{zz}$$
(20)

Finalmente, usando las componentes del vector de velocidades angulares es posible determinar la actitud del CubeSat. La interpretación de los ángulos de Euler es más intuitiva, pero para evitar que surjan singularidades, los cuaterniones resultan mas convenientes para los cálculos de simulación [22]. La ecuación diferencial cinemática de los cuaterniones está descrita en la eq.(21):

$$\dot{\mathbf{q}} = \frac{1}{2}\Omega\mathbf{q} \tag{21}$$

Donde

$$\Omega = \begin{bmatrix} 0 & w_z & -w_y & w_x \\ -w_z & 0 & w_x & w_y \\ w_y & -w_x & 0 & w_z \\ -w_x & -w_y & -w_z & 0 \end{bmatrix}$$

у

$$\mathbf{q} = \left[\begin{array}{cccc} q_1 & q_2 & q_3 & q_4 \end{array} \right]^T$$