Why Random Sequences?

stical samples

rithms

ļ,.

random keys

g streams of random bits (e.g., SSL xon's your data with atable, pseudo-random bit stream that only you and the can generate).

se, games

3:54 2018 CS61B: Lecture #32 2

CS61B Lecture #32

bm Numbers (Chapter 11)

e random sequences?

andom sequences"?

bm sequences.

ne.

a library classes and methods.

hutations.

3:54 2018 CS61B: Lecture #32 1

Pseudo-Random Sequences

hable, a "truly" random sequence is difficult for a comman) to produce.

poses, need only a sequence that satisfies certain staerties, even if deterministic.

e.g., cryptography) need sequence that is *hard* or *im*predict.

pm sequence: deterministic sequence that passes some statistical tests.

look at lengths of *runs*: increasing or decreasing conequences.

ly, statistical criteria to be used are quite involved. For Knuth.

3:54 2018 CS61B: Lecture #32 4

What Is a "Random Sequence"?

"a sequence where all numbers occur with equal fre-

3, 4, ...?

w about: "an unpredictable sequence where all numbers qual frequency?"

0, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 0, 1, 1, 1, ...?

t is wrong with 0, 0, 0, 0, ... anyway? Can't that occur election?

3:54 2018 CS61B: Lecture #32 3

What Can Go Wrong (I)?

Is, many impossible values: E.g., a, c, m even.

erns. E.g., just using lower 3 bits of X_i in Java's 48-bit p get integers in range 0 to 7. By properties of modular

$$\mod 8 = (25214903917X_{i-1} + 11 \mod 2^{48}) \mod 8$$

= $(5(X_{i-1} \mod 8) + 3) \mod 8$

period of 8 on this generator; sequences like

$$0, 1, 3, 7, 1, 2, 7, 1, 4, \dots$$

le. This is why Java doesn't give you the raw 48 bits.

3:54 2018 CS61B: Lecture #32 6

erating Pseudo-Random Sequences

as you might think.

implex jumbling methods can give rise to bad sequences.

uential method is a simple method used by Java:

$$X_0 = arbitrary seed$$

 $X_i = (aX_{i-1} + c) \mod m, i > 0$

large power of 2.

sults, want $a \equiv 5 \mod 8$, and a, c, m with no common

nerator with a *period of* m (length of sequence before and reasonable *potency* (measures certain dependencies ant X_i .)

ts of a to "have no obvious pattern" and pass certain see Knuth).

=25214903917, c=11, $m=2^{48}$, to compute 48-bit pm numbers. It's good enough for many purposes, but aphically secure.

3:54 2018 CS61B: Lecture #32 5

Additive Generators

erator:

$$X_n = \begin{cases} \text{arbitary value}, & n < 55 \\ (X_{n-24} + X_{n-55}) \bmod 2^e, & n \ge 55 \end{cases}$$

es than 24 and 55 possible.

period of $2^f(2^{55}-1)$, for some f < e.

mentation with circular buffer:

55; +31) % 55]; // Why +31 (55-24) instead of -24? /* modulo 2³² */

54] is initialized to some "random" initial seed val-

3:54 2018 CS61B: Lecture #32 8

What Can Go Wrong (II)?

ds to bad correlations.

s IBM generator RANDU: c = 0, a = 65539, $m = 2^{31}$.

U is used to make 3D points: $(X_i/S, X_{i+1}/S, X_{i+2}/S)$, es to a unit cube, . . .

be arranged in parallel planes with voids between. So ts" won't ever get near many points in the cube:

uis Sanchez at English Wikipedia - Transferred from en.wikipedia to Commons |, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3832343]

aphic Pseudo-Random Number Generator Example

good block cipher—an encryption algorithm that ensof N bits (not just one byte at a time as for Enigma). ample.

rovide a key, K, and an initialization value I.

ido-random number is now E(K,I+j), where E(x,y) is on of message y using key x.

3:54 2018 C561B: Lecture #32 10

phic Pseudo-Random Number Generators

form of linear congruential generators means that one future values after seeing relatively few outputs.

you want unpredictable output (think on-line games iny or randomly generated keys for encrypting your web

hic pseudo-random number generator (CPRNG) has the

ts of a sequence, no polynomial-time algorithm can guess bit with better than 50% accuracy.

current state of the generator, it is also infeasible to ct the bits it generated in getting to that state.

3:54 2018 CS61B: Lecture #32 9

Adjusting Range (II)

ias problems when n does not evenly divide 2^{48} , Java alues after the largest multiple of n that is less than

```
integer in the range 0 ... n-1, n>0. */
\texttt{(int n) } \{
\texttt{next random long } (0 \le X < 2^{48});
2^k \textit{ for some } k)
\texttt{n top } k \textit{ bits of } X;
= \underset{\texttt{largest multiple of } n \textit{ that is} < 2^{48};
\texttt{i} >= \underset{\texttt{MAX}}{\texttt{MAX/n}};
\texttt{next random long } (0 \le X < 2^{48});
\texttt{i} / (\texttt{MAX/n});
```

3:54 2018 CS61B: Lecture #32 12

Adjusting Range and Distribution

quence of numbers, X_i , from above methods in range 48 , how to get uniform random integers in range 0 to

easy: use top k bits of next X_i (bottom k bits not as

be careful of slight biases at the ends. For example, if $X_i/(2^{48}/n)$ using all integer division, and if $(2^{48}/n)$ gets n, then you can get n as a result (which you don't want).

fix that by computing $(2^{48}/(n-1))$ instead, the probating n-1 will be wrong.

3:54 2018 CS61B: Lecture #32 11

Feneralizing: Other Distributions

nave some desired probability distribution function, and random numbers that are distributed according to that How can we do this?

normal distribution:

desired probability distribution. $P(Y \le X)$ is the probandom variable Y is $\le X$.

3:54 2018 CS61B: Lecture #32 14

Arbitrary Bounds

rbitrary range of integers (L to U)? m float, x in range $0 \le x < d$, compute

extInt(1<<24) / (1<<24);

ble a bit more complicated: need two integers to get

nd = ((long) nextInt(1<<26) << 27) + (long) nextInt(1<<27);
bigRand / (1L << 53);</pre>

Java Classes

(): random double in [0..1).

til.Random: a random number generator with construc-

herator with "random" seed (based on time).

1) generator with given starting value (reproducible).

random integer

nt in range [0..n).

andom 64-bit integer.

(), nextFloat(), nextDouble() Next random values of other types.

n() normal distribution with mean 0 and standard deviall curve").

. shuffle(L,R) for list R and R and R permutes L ing R).

3:54 2018 CS61B: Lecture #32 16

Other Distributions

e y uniformly between 0 and 1, and the corresponding x will be distributed according to P.

13:54 2018 CS61B: Lecture #32 15

Random Selection

que would allow us to select N items from list:

```
and return sublist of K>=0 randomly
ments of L, using R as random source. */
st L, int k, Random R) {
  L.size(); i+k > L.size(); i -= 1)
  nt i-1 of L with element
  t(i) of L;
  list(L.size()-k, L.size());
```

efficient for selecting random sequence of K distinct m [0..N) , with $K\ll N.$

3:54 2018 CS61B: Lecture #32 18

Shuffling

a random permutation of some sequence.

b technique for sorting N-element list:

N random numbers

ch to one of the list elements

ist using random numbers as keys.

a bit better:

```
ist L, Random R) {
= L.size(); i > 0; i -= 1)
ement i-1 of L with element R.nextInt(i) of L;
```

	1	2	3	4	_5_	Swap items	_ 0	_1_	2	_3_	4	5_
•	2♣	3♣	A♡	2♡	3♡	$3 \Longleftrightarrow 3$	A♣	3♡	2♡	A♡	3♣	2♣
•	3♡	3♣	A♡	2♡	2♣	$2 \Longleftrightarrow 0$	2♡	3♡	A♣	A♡	3♣	24
,	3♡	20	A♡	3♣	2♣	$1 \Longleftrightarrow 0$	3♡	2♡	A.	A♡	3♣	2.

3:54 2018 C561B: Lecture #32 13

