Projekt 1 z Optymalizacji

Martyna Skiwniewska & Klaudia Stępień

June 12, 2017

1 Temat projektu

Rozważamy następującą listę reguł wyboru zmiennych:

- LARGEST COEFFICIENT.
- LARGEST INCREASE.
- STEEPEST EDGE.
- BLAND'S RULE.
- RANDOM EDGE.

Zbadaj, jak wybór reguły wpływa na liczbę wykonywanych przez algorytm sympleks kroków. Zbadaj co najmniej osiem reguł (uzupełniając powyższą listę o reguły własne, np SMALLEST INCREASE), w tym powyższe, na co najmniej dziesięciu problemach testowych.

2 Metody

2.1 Metody obowiązkowe

- BLAND'S RULE MIN. Wybór zmiennej wchodzącej o najmniejszym indeksie; jeżeli jest wiele wyborów zmiennej wychodzącej, to wybór zmiennej wychodzącej o najmniejszym indeksie. Prosta metoda bazująca na poleceniu min(self.possible_entering()) i min(self.possible_leaving()).
- LARGEST COEFFICIENT. Wybór zmiennej o największym wspołczynniku funkcji celu. Do tej metody wykorzystałyśmy dodatkowo słownik. Trzymamy w nim pary liczb, na zerowym miejscu mamy współczynnik, a na pierwszym wartość. Dla tych par szukamy maksymalnej wartości i bierzemy jej indeks.
- STEEPEST EDGE. Wybór zmiennej, który prowadzi do wierzchołka w kierunku najbliższym wektorowi c (gradientowi funkcji celu). Wykorzystałyśmy wzór z wykładu:

$$c(x_{nowy} - x_{stary})/||x_{nowy} - x_{stary}||.$$

Ponownie użyłyśmy słownik, tym razem trzymamy w nim współczynnik i odległość od gradientu funkcji celu.

2.2 Metody dodatkowe

- BLAND'S RULE MAX. Wybór zmiennej wchodzącej o największym indeksie. Analogicznie do metody BLAND'S RULE MIN tylko wykorzystujemy MAX.
- RANDOM COEFFICIENT. Wybór losowej zmiennej. Prosta metoda bazująca na poleceniu random.choice(self.possible_entering()) oraz random.choice(self.possible_leaving()).
- SMALLEST COEFFICIENT. Wybor zmiennej o najmniejszym wspolczynniku funkcji celu. Analogicznie do metody LARGEST COEFFICIENT, tylko wykorzystujemy minimalną wartość klucza dla słownika.

- FLATTEST EDGE. Wybór zmiennej, który prowadzi do wierzchołka w kierunku najdalszym wektorowi c (gradientowi funkcji celu) analogicznie do DEEPEST EDGE.
- MIXED. Losowy wybór zmiennej wchodzącej sposród dostępnych metod i losowy wybór zmeinnej wychodzącej.

3 Testy

Poniżej przedstawiamy wyniki testów dla każdej z metod.

T1 - AmericanSteelProblem
T2 - BeerDistributionProblem
T3 - ComputerPlantProblem
T4 - Furniture
T5 - WhiskasModel
T6 - WhiskasModel2
$oxed{T7}$
T8
T9
$oxed{T10}$

Method	T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10
BLAND'S RULE MAX	3	3	8	2	2	2	3	1	13	2
BLAND'S RULE MIN	5	2	7	2	2	11	1	4	12	7
RANDOM COEFFICIENT	4/5	2/3	5/8	2	2	2	1/3	1/2/4	8	8
LARGEST COEFFICIENT	3	2	7	2	2	9	1	2	5	2
SMALLEST COEFFICIENT	5	4	8	2	2	5	3	7	19	11
STEEPEST EDGE	4	2	7	2	2	7	1	4	5	2
FLATTEST EDGE	4	4	8	2	2	5	3	4	17	11
MIXED	4	2/3/4	7	2	2	2/3/5	1/3	1/4/7	11	11

Table 1. Number of pivot steps.

```
T1: -150050000.0
(3000.0, 2000.0, 3000.0, 4000.0, 3000.0, 3000.0, 2000.0, 0.0, 3000.0, 2000.0, 3000.0, 1000.0, 2000.0,
4000.0, 2000.0)
T2: -86000000
(700, 200, 900, 0, 0, 0, 300, 200, 1800, 0)
T3: -2178000000
(0, 0, 0, 0, 27/20, 1500, 0, 0, 0, 0, 0, 0, 1200, 0, 0, 0, 0, 0, 27/20, 1700, 1000)
T4: 32000000.0
(8.0, 16.0)
T5: -4800.0
(0.0, 60.0)
T6: -4800.0
(0.0, 0.0, 0.0, 0.0, 60.0, 0.0)
T7: -2711.53846154
(0.02692307692, 0.0, 0.0, 0.1153846154)
T8: 24000000
(0, 500, 0, 0, 700)
T9: 122250000.0
(0.0, 310.0, 0.0, 0.0, 650.0, 0.0, 240.0, 390.0, 0.0, 10.0, 0.0)
T10: 101000000
(0, 500, 0, 0, 0, 0, 0, 0, 700)
```

4 Wnioski

	T1	T2	Т3	T4	T5	Т6	T7	Т8	T9	T10
rozstęp	2	2	1,5	0	0	9	2	6	14	9
mediana	4	2,75	7	2	2	5	2	3,5	11,5	7,5
średnia arytmetyczna	4,063	2,813	7,313	2	2	5,541	2	3,416	11,25	6,75
odchylenie standardowe	0,776	0,843	0,594	0	0	3,261	0,926	1,825	5,148	4,2
minimum	3	2	6,5	2	2	2	1	1	5	2
maksimum	5	4	8	2	2	11	3	7	19	11

Table 2. Statistical comparison.

- W przypadku testu T4 i T5 otrzymałyśmy taką samą liczbę kroków dla wszystkiech metod, w pozostałych testach pojawiły się rozbieżności.
- Najwięcej kroków, czyli 19 pojawiło się przy testowaniu testu T9 za pomocą metody Smallest Coefficient.
- Najmniej kroków, czyli 1 pojawiło się przy testowaniu testu T7 za pomocą metody Bland's Rule Min, Largest Coefficient, Steepest Edge oraz przy testowaniu testu T8 za pomocą metody Bland's Rule Max.