## 计算机仿真与 matlab

第一次实验报告 谭超 1120161874

```
代码:
M=10;
K=20;
B=10;
f=50;
h=0.1;
x(1,:)=[0,1]; %初始值
Sarray=[0, -2; 1, -1];
Parray=[0,5];
for i=2:1000
   xs(i-1,:)=x(i-1,:)*Sarray+Parray;%求x(i-1)的导数
   xp(i,:)=x(i-1,:)+h.*xs(i-1,:); %通过欧拉法求得x(i)的初值
   xps(i,:)=xp(i,:)*Sarray+Parray;%通过x(i)初值的导数
   x(i,:)=x(i-1,:)+h/2.*(xs(i-1,:)+xps(i,:))%通过梯形法求得x(i)的值
end
t=0:1:999;
figure,
plot(t, x(:, 1));
figure,
plot(t,x(:,2));
```

## 运行结果:



## 中间结果:

| 名称▼    | 值                | 最小值    | 最大值    |
|--------|------------------|--------|--------|
| xs1    | [1.3775,3.5625]  | 1.3775 | 3.5625 |
| xs0    | [1,4]            | 1      | 4      |
| xs     | 999x2 double     | -2.08  | 4      |
| xps2   | [1.7338,3.1374]  | 1.7338 | 3.1374 |
| xps1   | [1.4000,3.5500]  | 1.4000 | 3.5500 |
| xps    | 1000x2 double    | -2.10  | 3.4000 |
| xp2    | [0.2578, 1.7338] | 0.2578 | 1.7338 |
| xp1    | [0.1000, 1.4000] | 0.1000 | 1.4000 |
| хр     | 1000x2 double    | -0.71  | 3.2985 |
| x2     | [0.2756,1.7125]  | 0.2756 | 1.7125 |
| x1     | [0.1200,1.3775]  | 0.1200 | 1.3775 |
| x0     | [0,1]            | 0      | 1      |
| x      | 1000x2 double    | -0.70  | 3.2900 |
| t      | 1x1000 double    | 1      | 1000   |
| Sarray | [0,-2;1,-1]      | -2     | 1      |
| Parray | [0,5]            | 0      | 5      |
| M      | 10               | 10     | 10     |
| K      | 20               | 20     | 20     |
| i      | 1000             | 1000   | 1000   |
| h      | 0.1000           | 0.1000 | 0.1000 |
| f      | 50               | 50     | 50     |
| В      | 10               | 10     | 10     |

```
命令行窗口
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
     2.5000 -0.0000
      2.5000 -0.0000
      2.5000 -0.0000
      2.5000 -0.0000
f_{\mathbf{x}} >>
```