Random Forest

A Gentle Introduction

Report Error 1

Outline

Introduction

What is a Random Forest?

- · An ensemble of decision trees
- Combines predictions from multiple trees
- · Trained on different subsets of data and features
- Used for classification and regression

Why Use Random Forests?

- · Reduces overfitting of individual decision trees
- Increases predictive accuracy
- · Handles high-dimensional and missing data well
- · Requires minimal parameter tuning

How It Works

Algorithm Overview

- 1. Draw N bootstrap samples from training data
- 2. Train a decision tree on each sample:
 - · At each split, consider only a random subset of features
- 3. Aggregate predictions:
 - · Majority vote (classification)
 - · Average (regression)

Voting and Averaging

· Classification:

$$\hat{y} = \text{majority vote of all trees}$$

· Regression:

$$\hat{y} = \frac{1}{T} \sum_{t=1}^{T} f_t(x)$$

· Intuition: reduces variance, like averaging noisy opinions

Features and Parameters

Key Hyperparameters

- · n_estimators: Number of trees
- · max_depth: Max depth of each tree
- max_features: Number of features considered at each split
- min_samples_split: Minimum samples required to split a node
- bootstrap: Whether to use bootstrap samples

Out-of-Bag (OOB) Error Estimate

- · Each tree is trained on a bootstrap sample
- About 1/3 of data is left out ("out-of-bag")
- These OOB samples are used to:
 - · Estimate generalization error
 - · Avoid cross-validation

Pros and Cons

Advantages of Random Forest

- · High accuracy with minimal tuning
- Works well on many data types and tasks
- Robust to outliers and noise
- · Handles large datasets and features efficiently
- · Feature importance analysis available

Limitations

- Slower for large number of trees or very deep trees
- · Less interpretable than a single decision tree
- · May overfit if trees are too deep and data is noisy
- Not ideal for extrapolation tasks (in regression)

Applications & Tools

Common Applications

- · Medical diagnosis
- Credit scoring and fraud detection
- Recommendation systems
- Image and text classification

Tools and Libraries

- · Scikit-learn: RandomForestClassifier, RandomForestRegressor
- · Spark MLlib, H2O.ai, Weka
- · Deep integration in data science workflows

Summary

Key Takeaways

- Random Forests = Ensemble of Decision Trees
- · Based on bagging + random feature selection
- · Reduces overfitting, improves accuracy
- Useful, robust, and easy to use

