事务的隔离级别

胡卉芪 华东师范大学 数据科学与工程学院 hqhu@dase.ecnu.edu.cn

事务的概念

ACID

- 原子性 (Atomicity)
 - 一个事务(transaction)要么没有开始, 要么全部完成,不存在中间状态。
- 致性 (Consistency)
 - 事务的执行不会破坏数据的正确性,即符合约束。
- 隔离性 (Isolation)
 - 多个事务不会相互破坏。
- 持久性(Durability)
 - 事务一旦提交成功,对数据的修改不会丢失。

请举例 Recall 第一节课我们讲 的一致性是什么?

事务面向的负载

- 从查询到更新
- 主要特征
 - 查询:较大数据集合的计算
 - 更新: 通常是小部分数据,点数据的更新

事务的实现

- 并发控制
 - 隔离性
- 日志
 - 原子性, 持久性
- 一致性
 - 应用或其他实现保证

并发控制的主要内容

- 事务的隔离级别
 - 多个读写集合操作 要达到一定的隔离 性要求
- 并发控制算法
 - 如何实现上述要求

隔离级别

- 单个数据的读/写操作(加上c和a)构成的调度
 - c : commit a: abort
- $-r_1(x_1), w_1(x_1), r_2(x_2), r_1(x_1), w_2(x_1), c_1, a_2$
- Critique of ANSI SQL Isolation Levels
- 假设数据只有一个版本
 - 最高的隔离级别
 - 一可串行化/冲突可串行化

异常等级

- 若不满足冲突可串行化,应用会产生何种异常?
 - 注:不是全部可能的异常,仅是应用中主要异常
 - 我们通常将异常分成4级
- A0-Dirty Write: T2 writes value modified by T1 before T1 commits
 - T2在T1提交之前修改同一数据
- A1 Dirty Read: T2 reads value modified by T1 before T1 commits
 - T2在T1提交之前读T1修改的数据
- A2 Non-Repeatable Read: T2 reads value, after which T1 modifies it
 - T2在T1修改并提交之前读了同一数据项,且有可能再次读同一数据项
- A3 Phantom: (see next)

A0-脏写 Dirty Write

- A0: T2 writes value modified by T1 before T1 commits
 - T2在T1提交之前修改同一数据
 - 下例中如果初始X.bal=50, 那么结果有X.bal=60的可能性, 左边事务的更新被覆盖掉.

- AO即所谓的写写冲突,是任何系统都要避免的

A1-脏读 Dirty Read

- A1-Dirty Read: T2 reads value modified by T1 before T1 commits
 - T2在T1提交之前读T1修改的数据
 - 图中T2读了一个未提交的x=50
- A1可看做一种读写冲突(先写 后读)

A1-脏读 Dirty Read

1		开始事务
2	开始事务	
3		查询账户余额为2000元
4		取款1000元,余额被更改为1000元
5	查询账户余额为1000元 (产生脏读)	
6		取款操作发生未知错误,事务回 滚,余额变更为2000元
7	转入2000元,余额被更改为 3000元 (脏读的1000+2000)	
8	提交事务	
备注	按照正确逻辑,此时账户余额应该为4000元	

A2-不可重复读

- A2 Non-Repeatable Read: T2 reads value, after which T1 modifies it
 - T2在T1修改并提交之前读了同一数据项,且有可能再次读同一数据项
 - 读写冲突(先读后写)

A2例子

Non-repeatable Read

1	开始事务	
2	第一次查询,小明的年龄为20岁	
3		开始事务
4	其他操作	
5		更改小明的年龄为30岁
5		提交事务
7	第二次查询,小明的年龄为30岁	
圣 注	按照正确逻辑,事务A前后两次读取到的数据应该一致	

A3-幻读

A3-Phantom

- Transaction T1 reads a set of data items satisfying some <search condition>. Transaction T2 then creates data items that satisfy T1's <search condition> and commits. If T1 then repeats its read with the same <search condition>, it gets a set of data items different from the first read.
- 稍微有点超过page model的描述范畴
- 两次范围查询之间,范围内写入了数据

幻读例子

```
T1
```

T2

```
Insert ("Joe", "Acct", 2000)
// X-lock the new record
Commit
```

隔离级别

- 防止产生不同的异常等级对应不同的隔离级别
 - AO必须都满足

Level	Dirty Read	Unrepeatable Read	Phantoms
READ UN- COMMITTED	Maybe	Maybe	Maybe
READ COMMITTED	No	Maybe	Maybe
REPEATABLE READ	No	No	Maybe
SERIALIZABLE	No	No	No

隔离级别与实现关系

- 隔离级别越高
 - 提供的隔离性保障越强
 - 事务间并发的能力越弱
 - 实现的代价越大
 - 现实中很多关系数据库仅做到RC级别

用锁实现来定义不同的隔离级别

- 读锁 shared lock
 - 所有读操作
- 写锁 exclusive lock
 - 所有写操作
- Short duration lock短锁
 - 动作完成前申请,完成后即释放锁
- Long duration Lock 长锁
- 锁的兼容性
 Mode of Data Item
 None Shared Exclusive
 Shared Y Y N
 Exclusive Y N

用锁实现定义不同的隔离级别

Table 2. Degrees of Consistency and Locking Isolation Levels defined in terms of locks.						
Consistency Level = Locking Isolation Level	Read Locks on Data Items and Predicates (the same unless noted)	Write Locks on Data Items and Predicates (always the same)				
Degree 0 Degree 1 = Locking READ UNCOMMITTED	none required none required	Well-formed Writes Well-formed Writes Long duration Write locks				
Degree 2 = Locking READ COMMITTED	Well-formed Reads Short duration Read locks (both)	Well-formed Writes, Long duration Write locks				
REPEATABLE READ	Well-formed Reads Long duration data-item Read locks Short duration Read Predicate locks	Well-formed Writes, Long duration Write locks				
Degree 3 = Locking SERIALIZABLE	Well-formed Reads Long duration Read locks (both)	Well-formed Writes, Long duration Write locks				

思考题

下面的调度至高是在那种隔离级别下产生的调度?

R1(x) W2(x) C2 W1(x) C1

思考题

下面的调度至高是在那种隔离级别下产生的调度?

R1(x) W2(x) C2 W1(X) C1

答案: RC级别下