

PepTrust: A Probabilistic Framework for High-Confidence Peptide Identification

Zhao Juntao ¹, Bian Yuqian ¹, Hao Jingyu ¹, Yu Weichuan ¹

¹Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology

Abstract

Mass spectrometry-based peptide identification is fundamental to proteomics, yet evaluating identification accuracy without ground truth remains a critical challenge. We present **PepTrust**, a probabilistic framework that estimates confidence scores for peptide identifications by modeling search algorithms as information sources in a truth discovery framework.

Innovation: PepTrust evaluates multiple combination methods (MSblender, Voting, Geometric Mean) by measuring their ability to explain observed data distributions, identifying the optimal method without requiring ground truth.

Results: On PRIDE dataset PDX004732, PepTrust achieved 70.29% precision, surpassing individual search methods (avg. 64.91%). MSblender emerged as the optimal combination method with significantly higher log-likelihood scores across all datasets.

Key Words: Mass Spectrometry, Peptide identification, ground-truth-absent evaluation, probabilistic framework, truth discovery

Method

1. Problem Formulation

Given MS/MS spectra $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ and peptide database \mathcal{P} , each search algorithm S_i produces:

$$S_i: \mathcal{X} \to \mathcal{P} \times \mathbb{R}^+$$

mapping spectrum x_i to peptide p_{ij} .

2. Bayesian Source Reliability Estimation

The posterior reliability of search algorithm S_i given combination method M_i :

$$\tau_{S_{i}|M_{j}} = \frac{P(M_{j} \mid \tau_{S_{i}}) P(\tau_{S_{i}})}{P(M_{j})} \\
= \frac{\prod_{k=1}^{N} P(p_{M_{j},k} \mid p_{S_{i},k}, \tau_{S_{i}}) P(\tau_{S_{i}})}{\sum_{\tau'} \prod_{k=1}^{N} P(p_{M_{j},k} \mid p_{S_{i},k}, \tau') P(\tau')} \tag{1}$$

3. Information-Theoretic Method Selection

The optimal combination method minimizes KL divergence:

$$M^* = \arg\max_{M_j} \sum_{S_i \in \mathcal{S}} \sum_{k=1}^N P(\phi_{S_i,k}) \log P(\phi_{S_i,k} \mid M_j)$$

where $\phi_{S_i,k}$ represents the observation of source S_i on spectrum k.

4. Truth Discovery Framework

Algorithm 1 PepTrust Algorithm

- 1: **for** each combination method M_i **do**
- for each search engine S_i do
- Calculate trustworthiness $\tau_{S_i|M_i}$
- end for
- Compute log-likelihood $\mathcal{L}(M_i)$
- 6: end for
- 7: return $\arg\max_{M_j} \mathcal{L}(M_j)$

Implementation

Search Engines

Comet, X!Tandem, MS-GF+

Combination Methods

- MSblender: Weighted probabilistic model
- Voting: Majority consensus
- Geometric Mean: $p_{combined} = \sqrt[n]{\prod_{i=1}^n p_i}$

Results on Synthetic Data

- Five sub-pools from PRIDE PDX004732.
- Each 10K spectra.
- Ground truth available for validation (not used in method).

Figure 1. Search engine trustworthiness scores.

Figure 2. Log-likelihood across 5 dataset pools. MSblender maintains superior performance.

Figure 3. MSblender achieves significantly better performance (lower is better).

Validations on Synthetic Data

Figure 4. Precision heatmap of the 5 sub-pools.

		_
Method	Log-Likelihood Precision	
MSblender	-16252.1	70.29%
Voting	-16405.4	67.73%
Geometric Mean	-20001.3	66.68%
Individual Avg.	_	64.91%

Table 1. Performance comparison on the 5 sub-pools.

Discussion & Future Work

Discussion

- No ground truth dependency: Enables evaluation on any proteomics dataset.
- Principled framework: Based on established truth discovery theory.
- Extensible: Can incorporate new search engines and combination methods.

Future Work

- Extension to post-translational modification (PTM) identification.
- Development of confidence intervals for peptide identifications.

References

- 1. Fang et al. (2020) From Appearance to Essence: Comparing Truth Discovery Methods without Using Ground Truth. ACM TIST 11(6): 1-24.
- 2. Zolg et al. (2017) Building ProteomeTools based on a complete synthetic human proteome. Nature Methods 14: 259-262.
- 3. T. Kwon*, H. Choi*, C. Vogel, A.I. Nesvizhskii, and E.M. Marcotte, MSblender: a probabilistic approach for integrating peptide identifications from multiple database search engines. J. Proteome Research, 10(7): 2949-2958 (2011)