STAT 576 Bayesian Analysis

Lecture 6: Model Checking

Chencheng Cai

Washington State University

Model Checking Methods

Goal:

- Assess the fit of the model to the data.
- Assess the fit of the model to our substantive knowledge.
- ► Assess the adequacy/robusteness of the model.

Model Checking Methods

Goal:

- Assess the fit of the model to the data.
- Assess the fit of the model to our substantive knowledge.
- Assess the adequacy/robusteness of the model.

Methods:

- Sensitivity Analysis.
 - Check whether other models generate a similar posterior.
- External Validation.
 - Posterior predictive checking.
- Internal Validation.
 - Cross-validation predictive checking.

Sensitivity Analysis

- ▶ How the results are affected by different choices of the model structure?
 - different models (binomial v.s. Poisson, normal v.s. t)
 - different priors
 - different structures (hierarchical v.s. separate)
 - different distribution families (Gaussian v.s. mixed Gaussian)

Sensitivity Analysis

- ▶ How the results are affected by different choices of the model structure?
 - different models (binomial v.s. Poisson, normal v.s. t)
 - different priors
 - different structures (hierarchical v.s. separate)
 - different distribution families (Gaussian v.s. mixed Gaussian)
- Compare the sensitivity of essential inference quantities.
 - extreme quantities v.s. mean/median.
 - extrapolation v.s. interpolation.

Example: Election Prediction

- ▶ Posterior winning probability of Bill Clinton at each state in Oct. 1992.
- ► Hierarchical linear regression model.

Example: Election Prediction

- ▶ Posterior winning probability of Bill Clinton at each state in Oct. 1992.
- ► Hierarchical linear regression model.
- ▶ The model seems wrong at Texas and Florida.

Example: Election Prediction

- ▶ Posterior winning probability of Bill Clinton at each state in Oct. 1992.
- ► Hierarchical linear regression model.
- ▶ The model seems wrong at Texas and Florida.
- It is much easier to evaluate the performance afterwards.

▶ Idea: check the discrepancy between the predicted values and the observed values.

- ldea: check the discrepancy between the predicted values and the observed values.
- ► Procedure:
 - ► Generate simulated samples from the joint posterior predictive distribution
 - Compare the samples with the observed data.
 - Systematic differences imply the failings of the model.

- ▶ Simon Newcomb set up an experiment in 1882 to measure the light speed.
- ▶ The travel time of light was recorded for the round-trip between
 - his lab on the Potomac river
 - ▶ a mirror at the base of the Washington Monument
- ▶ The total travel distance is 7422 meters.

- ▶ Simon Newcomb set up an experiment in 1882 to measure the light speed.
- ▶ The travel time of light was recorded for the round-trip between
 - his lab on the Potomac river
 - a mirror at the base of the Washington Monument
- ▶ The total travel distance is 7422 meters.
- ▶ The measurement was repeated n = 66 times.

Histogram for deviations from 24800 ns

▶ We model the travel time by a normal distribution:

$$y_i \sim \mathcal{N}(\mu, \sigma^2)$$

▶ We model the travel time by a normal distribution:

$$y_i \sim \mathcal{N}(\mu, \sigma^2)$$

• We can choose a noninformative prior for μ and σ^2 :

$$p(\mu, \sigma^2) \propto \frac{1}{\sigma^2}$$

▶ We model the travel time by a normal distribution:

$$y_i \sim \mathcal{N}(\mu, \sigma^2)$$

• We can choose a noninformative prior for μ and σ^2 :

$$p(\mu, \sigma^2) \propto \frac{1}{\sigma^2}$$

ightharpoonup Recall our previous results for multiparameter Bayesian inference. The marginal posterior for μ is

$$\mu \mid y \sim t_{66} \left(\bar{y}, \frac{65}{66^2} s^2 \right)$$

▶ We model the travel time by a normal distribution:

$$y_i \sim \mathcal{N}(\mu, \sigma^2)$$

▶ We can choose a noninformative prior for μ and σ^2 :

$$p(\mu, \sigma^2) \propto \frac{1}{\sigma^2}$$

ightharpoonup Recall our previous results for multiparameter Bayesian inference. The marginal posterior for μ is

$$\mu \mid y \sim t_{66} \left(\bar{y}, \frac{65}{66^2} s^2 \right)$$

- ► A 95% credible interval is [23.6, 28.8].
- ▶ We know the true value should be around 33.0.

Generate posterior predictive replicates y^{rep}

- ▶ Draw $\mu^{(s)}, \sigma^{2(s)}$ from the joint posterior distribution $p(\mu, \sigma^2 \mid y)$.
- ightharpoonup Draw $y^{rep(s)}$ from $\mathcal{N}(\mu^{(s)}, \sigma^{2(s)})$.
- ightharpoonup Repeat the drawing to get n replicates of y^{rep} .

Generate posterior predictive replicates y^{rep}

- ▶ Draw $\mu^{(s)}, \sigma^{2(s)}$ from the joint posterior distribution $p(\mu, \sigma^2 \mid y)$.
- ightharpoonup Draw $y^{rep(s)}$ from $\mathcal{N}(\mu^{(s)}, \sigma^{2(s)})$.
- ▶ Repeat the drawing to get n replicates of y^{rep} .

We get the histogram of the **smallest** travel time for all replicates.

We get the histogram of the **smallest** travel time for all replicates.

▶ Can hardly observe an occurrence that is less than -20.

We get the histogram of the **smallest** travel time for all replicates.

- ▶ Can hardly observe an occurrence that is less than -20.
- ▶ Decide: whether the **data** was wrong or the **model** was wrong?

We get the histogram of the **smallest** travel time for all replicates.

- ► Can hardly observe an occurrence that is less than -20.
- ▶ Decide: whether the **data** was wrong or the **model** was wrong?
- ► The model was wrong: should use heavy-tailed distribution or contaminated normal (mixed Gaussian).

► Replicated datasets:

$$p(y^{rep} \mid y) = \int \underbrace{p(y^{rep} \mid \theta)}_{obs. \ model} \underbrace{p(\theta \mid y)}_{posterior} d\mu(\theta)$$

Replicated datasets:

$$p(y^{rep} \mid y) = \int \underbrace{p(y^{rep} \mid \theta)}_{obs. \ model} \underbrace{p(\theta \mid y)}_{posterior} d\mu(\theta)$$

- ▶ **Test quantity** (or discrepancy measure) $T(y, \theta)$
 - lacktriangle Summary quantity for the observed data $T(y,\theta)$
 - Summary quantity for a replicated data $T(y^{rep}, \theta)$.

Replicated datasets:

$$p(y^{rep} \mid y) = \int \underbrace{p(y^{rep} \mid \theta)}_{obs. \ model} \underbrace{p(\theta \mid y)}_{posterior} d\mu(\theta)$$

- ▶ **Test quantity** (or discrepancy measure) $T(y, \theta)$
 - lacktriangle Summary quantity for the observed data $T(y,\theta)$
 - Summary quantity for a replicated data $T(y^{rep}, \theta)$.
- ▶ The frequentist counter-part is known as **test statistics** T(y), which only depends on the data.

Replicated datasets:

$$p(y^{rep} \mid y) = \int \underbrace{p(y^{rep} \mid \theta)}_{obs. \ model} \underbrace{p(\theta \mid y)}_{posterior} d\mu(\theta)$$

- ▶ **Test quantity** (or discrepancy measure) $T(y, \theta)$
 - lacktriangle Summary quantity for the observed data $T(y,\theta)$
 - Summary quantity for a replicated data $T(y^{rep}, \theta)$.
- The frequentist counter-part is known as **test statistics** T(y), which only depends on the data.
- ▶ In the light speed example, we choose $T(y, \theta) = \min(y)$ (also a test statistic).

Classical p-values:

$$p_C = \mathbb{P}[T(y^{rep}) \ge T(y) \mid \theta]$$

Classical p-values:

$$p_C = \mathbb{P}[T(y^{rep}) \ge T(y) \mid \theta]$$

Posterior predictive p-values:

$$p_B = \mathbb{P}[T(y^{rep}, \theta) \ge T(y, \theta) \mid y]$$

Classical p-values:

$$p_C = \mathbb{P}[T(y^{rep}) \ge T(y) \mid \theta]$$

Posterior predictive p-values:

$$p_B = \mathbb{P}[T(y^{rep}, \theta) \ge T(y, \theta) \mid y]$$

- ▶ The classical p-values measure how likely the data is coming from the null model.
- ► The posterior predictive p-values measure how likely the data is similar to the postetior predictive replicates.

Classical p-values:

$$p_C = \mathbb{P}[T(y^{rep}) \ge T(y) \mid \theta]$$

Posterior predictive p-values:

$$p_B = \mathbb{P}[T(y^{rep}, \theta) \ge T(y, \theta) \mid y]$$

- ▶ The classical p-values measure how likely the data is coming from the null model.
- ► The posterior predictive p-values measure how likely the data is similar to the postetior predictive replicates.
- ▶ In Bayesian, θ is also random. p_B can be estimated by joint samples of (y^{rep}, θ) .

$$p_B = \iint \mathbb{I}\{T(y^{rep}, \theta) \ge T(y, \theta)\} p(y^{rep} \mid \theta) p(\theta \mid y) d\mu(\theta) d\mu(y^{rep})$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} \mathbb{I}\{T(y^{rep(s)}, \theta^{(s)}) \ge T(y, \theta^{(s)})\}$$

If we use the sample variance as the test quantity:

Cannot tell the discrepancy — because the sample variance is a sufficient statistics.

- A good test statistic is ancilliary
 - ancilliary: depends on the observed data but independent of the parameters.
- ▶ A **bad** test statsistic is highly dependent of the parameters.
 - ▶ i.e. sufficient statistics.

- A good test statistic is ancilliary
 - ancilliary: depends on the observed data but independent of the parameters.
- ► A **bad** test statsistic is highly dependent of the parameters.
 - i.e. sufficient statistics.
- ▶ If we have multiple test statistics, we do not conduct p-value justification.
 - See the smoking example in the textbook.

- A good test statistic is ancilliary
 - ancilliary: depends on the observed data but independent of the parameters.
- A bad test statsistic is highly dependent of the parameters.
 - i.e. sufficient statistics.
- ▶ If we have multiple test statistics, we do not conduct p-value justification.
 - See the smoking example in the textbook.
- ► An extreme p-value often suggests the weakness of the current model. The next step is to revise the model.

Data: the effects of coaching programs for the SAT-V scores for students in 8 schools.

	Estimated treatment	Standard error of effect	
School	effect, y_j	estimate, σ_j	
A	28	15	
В	8	10	
\mathbf{C}	-3	16	
D	7	11	
${f E}$	-1	9	
\mathbf{F}	1	11	
\mathbf{G}	18	10	
$_{ m H}$	12	18	

Separate estimation:

- ▶ Some schools have moderate effects (18-28).
- ▶ Most schools have small effects (0-12).
- Two have negative effects.
- Difficult to distinguish because of large variance.

Separate estimation:

- ► Some schools have moderate effects (18-28).
- ▶ Most schools have small effects (0-12).
- ► Two have negative effects.
- ▶ Difficult to distinguish because of large variance.

Pooled estimation:

- \triangleright All schools have identical effect θ .
- Use noninformative prior.
- Posterior mean: 7.7 with s.e. 4.1

Separate estimation:

- ▶ Some schools have moderate effects (18-28).
- ▶ Most schools have small effects (0-12).
- ► Two have negative effects.
- ▶ Difficult to distinguish because of large variance.

Pooled estimation:

- ightharpoonup All schools have identical effect θ .
- Use noninformative prior.
- Posterior mean: 7.7 with s.e. 4.1

Hierarchical model:

- lacksquare $\theta_1,\ldots,\theta_8\sim\mathcal{N}(\mu,\tau^2)$ i.i.d.
- ▶ $y_j \mid \theta_j \sim (\theta_j, \sigma_j^2)$ independent.
- ▶ choose flat prior $p(\mu, \tau) \propto 1$.

Hierarchical model:

- By drawing posterior samples:

 - lacksquare draw $heta_1^{(s)},\dots, heta_8^{(s)}$ from $p(heta_1,\dots, heta_8\mid \mu^{(s)}, au^{(s)},y)$

Hierarchical model:

- By drawing posterior samples:
 - ightharpoonup draw $\mu^{(s)}, \tau^{(s)}$ from $p(\mu, \tau \mid y)$
 - $\blacktriangleright \ \, \mathsf{draw} \,\, \theta_1^{(s)}, \ldots, \theta_8^{(s)} \,\, \mathsf{from} \,\, p(\theta_1, \ldots, \theta_8 \mid \mu^{(s)}, \tau^{(s)}, y)$
- we have the posterior quantiles for each school:

School	Posterior quantiles					
	2.5%	25%	median	75%	97.5%	
\overline{A}	-2	7	10	16	31	
В	-5	3	8	12	23	
\mathbf{C}	-11	2	7	11	19	
D	-7	4	8	11	21	
${f E}$	-9	1	5	10	18	
\mathbf{F}	-7	2	6	10	28	
\mathbf{G}	-1	7	10	15	26	
\mathbf{H}	-6	3	8	13	33	

- Assumptions:
 - ightharpoonup normality of y_i .
 - \triangleright exchangeability of the priors for θ_i 's.
 - **normality** of prior of θ_j .
 - flat hyperprior.

- Assumptions:
 - ightharpoonup normality of y_i .
 - ightharpoonup exchangeability of the priors for θ_j 's.
 - ightharpoonup normality of prior of θ_j .
 - lat hyperprior.
- Comparing posterior inferences to substantive knowledge:
 - Individual effects between 5 and 10 seems reasonable.
 - Some lower bounds go to negative.

- Posterior predictive checking.
 - $y^{rep} = (y_1^{rep}, \dots, y_8^{rep})$
 - Test statistics: max, min, mean, s.d.

Sensitivity Analysis:

- Uniform prior for τ : the marginal posterior for τ
 - no significant change if we multiply it by another prior

Sensitivity Analysis:

- Uniform prior for τ : the marginal posterior for τ
 - no significant change if we multiply it by another prior

▶ normality of $y_j \mid \theta_j, \sigma_j$: ensured by experimental designa and CLT.

Sensitivity Analysis:

- ▶ Uniform prior for τ : the marginal posterior for τ
 - no significant change if we multiply it by another prior

- ▶ normality of $y_j \mid \theta_j, \sigma_j$: ensured by experimental designa and CLT.
- ▶ normality of the prior for θ_j 's: One may consider other heavy-tailed distributions. But needs advanced sampling techniques.

