

Representación de Conocimientos

Asunción Gómez-Pérez

asun@fi.upm.es Despacho 2209

Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid, Spain

Indice

- 1. Introducción. (1 hora)
- 2. Sistemas de Producción (6 horas)
- 3. Representaciones taxonómicas: Marcos. (8 horas)
- 3. Examen 15 de octubre a las 9.30.

Bibliografía

A. Gómez, N. Juristo, C. Montes, J. Pazos

Reglas, Marcos, Redes Semánticas

• Inteligencia Artificial (ED Ceura)

D. Borrajo, N. Juristo, V. Martínez, J. Pazos

Reglas

• Artificial Intelligence

Rich and Knight

Libro de Consulta

Transparencias en http://delicias.dia.fi.upm.es/wiki/index.php/InteligenciaArtificial-grado-11-12

Introducción a la Representación de Conocimientos

Asunción Gómez-Pérez

asun@fi.upm.es

Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid, Spain

Indice

- 1. Ciclo básico de un sistema inteligente
- 2. Sistemas tradicionales versus sistemas inteligentes
- 3. La Hipótesis Simbolista
- 4. Sintaxis versus Semántica
- 5. Criterios para seleccionar los formalismos

Ciclo Básico de un Sistema Inteligente

Formalismos

Representar declarativamente los conceptos de un dominio, sus propiedades, relaciones (de clasificación, de agregación, etc.) entre conceptos así como los elementos individuales que aparecen en el dominio

Cada formalismo de representación tiene Motores de Inferencia asociados,

Motor de Inferencia

independientes del dominio de la aplicación,
capaces de razonar con cualquier conjunto de conocimientos
representados mediante su formalismo propietario

La estrategia de control gobierna el sistema y decide qué hacer en cada momento

Hipótesis Simbolista

El módulo de la BC del sistema está separado del módulo de razonamiento

Base de Conocimientos: Contienen conocimientos del dominio:

- conceptos
- taxonomías
- relaciones "a medida" entre conceptos
- propiedades de conceptos
- hechos
- heurísticas
- Restricciones
-

Motor de Inferencias:

- •Permite que el sistema razone.
- •Apartir de los datos y conocimientos de entrada el sistema pueda producir una salida.

Marcos

- Se representa utilizando taxonomías de conceptos en tiempo de diseño
- Conocimiento declarativo y procedimental

Sistemas de Producción

R1: Si (Animal \$A) ^ (Esqueleto \$A sí) Entonces (Vertebrado \$A)

R2: Si (Animal \$A) ^(Esqueleto \$A no) Entonces (Invertebrado \$A)

R3: Si (Vertebrado \$A) (Ladra \$A) Entonces (Perro \$A)

Sintaxis versus Semántica

- Sintaxis:
 - Símbolos que se utilizan para representar
 - Aspectos de Notación
 - Cada formalismo tiene su sintaxis

- Semántica:
 - Significado de lo que se ha representado utilizando una sintaxis determinada

Criterios para Seleccionar un Formalismo

- Expresividad: hacer distinciones sutiles y precisas ¿Qué es lo que puedo decir con ese formalismo?
- Completud: Todos los conocimientos conceptualizados pueden representar ¿Puedo expresar TODO lo que conozco?
- Adecuación: al tipo de conocimientos que se va a representar: taxonomías, clases, relaciones, ...

 Al tipo de razonamiento que se va a simular

Rendimiento del sistema inteligente

Introducción a la Representación de Conocimientos

Asunción Gómez-Pérez

asun@fi.upm.es

Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid, Spain