Tecnologia em Análise e Desenvolvimento de Sistemas - TADS

Redes de Computadores

Prof. Luciano Vargas Gonçalves

E-mail: luciano.goncalves@riogrande.ifrs.edu.br

Aula 4 – Nível Físico

Sumário

Redes de Computadores

- Modelos de Referência Padrões
 - RM-OSI
 - TCP/IP

Camada – Interface de Rede

Camada 1 – Modelo TCP/IP

Nível Físico

Camada – Interface de Rede

Modelos RM-OSI e TCP/IP

Camada nível 1:

- Camada Física do modelo OSI
- Camada Interface de Rede Modelo TCP/IP

- Camada Física (1):
 - A camada física provê os meios mecânicos, elétricos, funcionais e os procedimentos necessários para ativar, manter e desativar conexões físicas que são usadas para transmitir bits entre entidades de enlace. As entidades da camada física são interconectadas através de um meio físico.
 - Interliga dois pontos (dois equipamentos).
 - Quem desenvolve o **Hardware de rede** deve se preocupar com estes padrões da camada física, operadoras de telecomunicações, etc.

- Funções do camada Física (o que ele faz):
 - Ativação e desativação de um enlace físico,
 - Codificação e decodificação do canal (Binário ↔ Impulsos),
 - Multiplexação/Demultiplexação de canais lógicos em um meio físico,
 - Controle e sincronização da transmissão e recepção de dados(bits),
 - Supervisão, manutenção e controle da qualidade de enlace físicos,
 - Transmissão da informação (bits).

- Principal função Nível Físico é a transmissão de Sinal:
 - Transmissão de Sinal:
 - É a Propagação de ondas por meio de um *meio físico* que pode ter suas características alteradas no tempo.
 - Função é levar a informação(sinal) entre dois pontos adjacentes(Ligados).

- Codificação do Sinal
 - Binário para Analógico e vice-versa

Tipos de Meios de Transmissão – Nível

Meios de Transmissão de Sinal

- Meios guiados
 - Cabos de Par Trançado
 - Cabos Coaxiais
 - Fibras Ópticas
- Sem fio
 - Ondas de rádio
 - Micro-ondas
 - Infravermelho
 - Luz

Tipos de Meios de Transmissão - Guiado

Par trançado

- Consiste de 2 fios de cobre encapados enrolados de forma helicoidal (como no DNA)
 - Bastante utilizados no sistema telefônico
- Par Trançado para Redes de Computadores
 - UTP Unshielded Twisted Pair
 - Cabo não blindado
 - Sinal Duplicado e invertido (Garantia)
 - STP Shielded Twisted Pair
 - Cabo blindado, usado em ambientes sujeitos a interferências eletromagnéticas constantes (ex.: plantas industriais).

Cabo Par trançado

Cabo UTP

Par trançado

UTP – Unshielded Twisted Pair (Cabo não blindado)

STP – Shielded Twisted Pair (Cabo blindado)

STP (par trançado blindado)

Par trançado

- Limitações físicas Recomendações:
 - Cabos com no máximo 100m
 - Topologia em Estrela é a mais usada.

Cabo UTP

Categorias de cabos UTP

Categoria	Norma	Largura de Banda	Cab o	Utilização
Cat3	TIA ISO/IEC NBR CENELEC	16 MHz	UTP e F/UTP	Telefonia Ethernet
Cat4	Não Reconhecido	20 MHz	UTP/STP	Token Ring
Cat5	Não Reconhecido	100 MHz	UTP	Fast-Ethernet
Cat5e	TIA ISO/IEC NBR CENELEC	125 MHz	UTP e F/UTP	Fast-Ethernet Gigabit-Ethernet
Cat6	TIA ISO/IEC NBR CENELEC	250 MHz	UTP e F/UTP	Gigabit-Ethernet
Cat6A	TIA ISO/IEC	500 MHz	UTP e F/UTP	10 Gbps
Cat7	ISO/IEC NBR	600 MHz	S/FTP e F/FTP	40 Gbps
Cat7A	Em Desenvolvimento	1 GHz	S/FTP e F/FTP	100 Gbps
(*) A Classe F (equivalente ao Cat7) não é reconhecida pela ANSI/TIA.				

http://labcisco.blogspot.com.br/2013/04/categorias-de-cabos-de-par-trancado.html

Conectores!!

Conector RJ 45 Macho

Conector RJ 45 Fêmea

Conectorização de RJ45 Cat6

Padrão T568 A

• Padrão montagem de Cabos!! T568 A

- Da esquerda para a direita, com o conector RJ 45 com a trava voltada para baixo.
 - BRANCO/VERDE
 - VERDE
 - BRANCO/LARANJA
 - AZUL
 - BRANCO/AZUL
 - LARANJA
 - BRANCO/MARROM
 - MARROM

Cabo Paralelo (Comum)

Aplicação:

- Ligação direta de equipamentos diferentes;
 - Terminal / Nó Central(Hub / Switch)
 - Pontas iguais (Pino a pino)

Cabo Paralelo (Comum)

- Aplicação:
 - Ligação direta de equipamentos diferentes;
 - Terminal / Nó Central(Hub / Switch)

Padrão T568 B

Padrão montagem de Cabos!! T568 B

- Da esquerda para a direita, com o conector RJ 45 com a trava voltada para baixo.
 - BRANCO/LARANJA
 - LARANJA
 - BRANCO/VERDE
 - AZUL
 - BRANCO/AZUL
 - VERDE
 - BRANCO/MARROM
 - MARROM

Cabo Crossover (Cruzado)

- Aplicação:
 - Ligação direta de equipamentos iguais;
 - Terminal / Terminal

Padrões diferentes

Cabo Crossover (Cruzado)

- Aplicação:
 - Ligação direta de equipamentos iguais;
 - Terminal (PC) / Terminal (PC)

Cabos

- TX Transmissor
- RX Receptor

Equipamentos diferentes

Paralelo / Diretos

Equipamentos diferentes Equipamentos preparados

Cruzado / Crossover

Equipamentos iguais Equipamentos não preparados

Aplicação Cabos

Cabo Paralelo HUB Cabos de Rede Directos

Cabo Crossover

Aplicação Cabos

Cabos Crossorver

(Equipamentos semelhantes – linha pontilhada)

PC/PC;

HUB / Switch;

PC / Roteador

Tipos de Meios de Transmissão

Cabo Coaxial

- Apresentam boa imunidade a ruídos (pois apresenta uma blindagem) e boa largura de banda (os cabos modernos podem chegar a até 1 GHz)
- Atualmente bastante utilizado na rede de TV a cabo e em redes metropolitanas (MANs)

Tipos de Meios de Transmissão

Fibras Ópticas

- As fibras contém um núcleo de material ótico flexível que transmite luz.
- Por usarem luz as fibras ópticas são imunes a ruído eletromagnético (como um raio e de motores elétricos, por exemplo)
- Podem atingir altas taxas de transmissão de dados (até 50 Gbps)
- São utilizadas atualmente em troncos de alta velocidade de redes de computadores e no sistema telefônico.
- Existem tecnologias, inclusive, que permitem utilizá-las em redes locais

Tipos de Meios de Transmissão

Fibras Ópticas

Componentes físicos

- Placa de Rede NIC(Network Interface Card)
 - É um tipo de placa que é conectada diretamente com a placa-mãe do computador

- Repetidores (Hubs)
 - Características:
 - As estações se conectam a um hub
 - Opera como nó central através de cabos par trançado (UTP)

Hubs são passivos(sem poder processamento);

- A bridge
 - É um dispositivo que permite interligar dois segmentos de rede diferentes.

Ex: Par Trançado e Coaxial

Comutadores (Switches)

- O uso de comutadores (switches) possibilita a criação de domínios de colisão, evitando que o sinal seja propagado indiscriminadamente para todas as portas.
- O switch faz uso de uma tabela contento os números físicos de todas as estações conectadas, e através da análise dos quadros, endereço de destino e de origem, estabelece uma ligação.
 - Ativo de rede (tem poder de processamento)
 - Atua como nó central na topologia em estrela (Comunicação Ponto a Ponto)
 - Usado em Redes Locais (LAN)

Switch 8. 16 ou 24 portas

Switch 48 a 96 portas

Router

- Interliga diferentes Redes
 - Interna e externa
 - Duas redes internas
- Traça caminhos para os pacotes recebidos
- Opera nas três primeiras camadas do RM-OSI

Simulador de Redes

Packet Tracer

Packet Tracer 7

- Software da Cisco para Estudo:
- Destinado a área de Redes
- Alunos curso de Redes

Packet Tracer 7

• Permite criar, gerenciar e testar redes simples e

complexas

Packet Tracer 7

- Podemos analisar:
 - Os componentes de rede:
 - Parte física(Hardware)
 - Lógica (Software)
 - Arquitetura de Rede
 - LAN, MAN, WAN
 - Configuração lógica das redes
 - Simulação de operações
 - Ping, telnet, DNS, DHCP, HTTP e etc

Packet Tracer 7

Interface

Equipamentos disponíveis Ambiente de simulação

Packet Tracer 7

Interface

PROF

Packet Tracer 7 - Testes

Todo terminal tem um de comando prompt testar para configurações, semelhante ao CMD do windows. **Exemplo:** Comando ping IP ipconfig netstat

PROF. LUCIANO VARGAS GONÇALVES

Packet Tracer 7 - Cabos

Dicas:

- Para adicionar componentes basta clicar no componente e clicar na área de trabalho;
- Para adicionar vários componentes do mesmo tipo, basta pressionar e manter CTRL até clicar no componente, após solte o CTRL e clique na tela várias vezes.
- Utilize os cabos apropriados:
 - Par-trançado
 - Entre terminais e equipamento
 - Crossover
 - Entre dois terminais
 - Entre dois equipamentos de rede
 - Cabo universal

Packet Tracer 7 - Conectividade

- Dicas:
 - Luzes dos Link
 - Verdes está pronto para uso a rede;
 - Laranja em configuração
 - Vermelha erro de configuração

Packet Tracer 7 – Terminal rede

Packet Tracer 7 – Configuração Rede

Packet Tracer 7 - testes

Packet Tracer 7 - Download

Links:

Link para Download Packet Tracer

https://www.netacad.com/group/offerings/packet-tracer/

Link para uma vídeo aula Packet Tracer

http://www.youtube.com/watch?v=pv8SWKDtHso

PROF. LUCIANO VARGAS GONÇALVES

Exercício

- Crie uma rede (LAN) com as seguintes especificações;
 - Equipamentos:
 - 3 terminais
 - 1 Hubs
 - Utilize os cabos par trançado para conectar os equipamentos
 - Configure os terminais com os endereços IP Classe C:
 - IP: 192.168.10.1 até 192.168.10.254
 - Mascará(subnet mask): 255.255.255.0
 - Salve o projeto com o nome Simulacao1Hub.pkt

Exercício

- Crie uma rede (LAN) com as seguintes especificações;
 - Equipamentos:
 - 3 terminais
 - 1 Switch
 - Utilize os cabos par trançado para conectar os equipamentos
 - Configure os terminais com os endereços IP Classe C:
 - IP: 192.168.10.1 até 192.168.10.254
 - Mascará(subnet mask): 255.255.255.0
 - Salve o projeto com o nome Simulacao1Hub.pkt

Exercício

Troque os Hubs por Switchs e mantenha o restante;

- Equipamentos:
- 8 terminais
- 1 servidor
- 1 Switchs
- 1 Impressora
- Utilize os cabos par trançado ou crossover para conectar os equipamentos
- Configure os terminais com os endereços IP Classe:
- IP: 192.168.10.1 até 192.168.10.254
- Mascará(subnet mask): 255.255.255.0
- Salve o projeto com o nome Simulacao2Switch.pkt

Dúvidas??

