Listas de Variedades

henrique

August 21, 2025

Contents

0	Introdução e Notação	1
1	Lista 1 (18/08/2025)	1

0 Introdução e Notação

Ao decorrer do curso, vou escrever minhas resoluções dos exercícios nesse arquivo. Tem alguns motivos para isso:

- 1. Posso reutilizar resultados passados.
- 2. Está tudo organizado se um futuro henrique quiser rever.
- 3. Há uma certo senso de completude no final do curso.

Por isso, peço desculpa ao monitor e ao professor se não gostarem desse formato, me avisem que eu posso separar os arquivos. O código fonte pode ser encontrado em https://github.com/hnrq104/variedades/tree/main/listas.

1 Lista 1 (18/08/2025)

Problem 1.1.

Proof. Defina (S^1, \mathcal{F}) a parametrização do círculo pelas projeções esfereográficas. Isto é,

$$\mathcal{F} = \langle (S^1 - \{(0,1)\}, \pi_N), (S^1 - \{(0,-1)\}, \pi_S) \rangle$$

Onde $\pi_N: S^1 - \{(0,1)\} \to \mathbb{R}$ e $\pi_S: S^1 - \{(0,-1)\} \to \mathbb{R}$ são as projeções do polo norte e sul respectivamente. Vimos em aula que, com essas coordenadas, (S^1, \mathcal{F}) é uma variedade C^{∞} . Defina \mathcal{G} elevando \mathcal{F} ao cubo,

$$\mathcal{G} = \langle (S^1 - \{(0,1)\}, (\pi_N)^3), (S^1 - \{(0,-1)\}, (\pi_S)^3) \rangle$$

Afirmo que \mathcal{G} é uma estrutura diferenciável de S^1 . Isso segue do fato que π_N^3 e π_S^3 continuam sendo homeomorfismos e a composição de cartas dão a mesma coisa que em \mathcal{F} . Para verificar isso, escreva $s(t) = t^3$,

então, no intervalo de definição \mathbb{R}^* ,

$$[(\pi_N)^3] \circ [(\pi_S)^3]^{-1}(t) = (s \circ \pi_N) \circ (s \circ \pi_S)^{-1}(t)$$

$$= s \circ \pi_N \circ \pi_S^{-1} \circ s^{-1}(t)$$

$$= s \circ \pi_N \circ \pi_S^{-1}(t^{1/3})$$

$$= s \left(\frac{1}{t^{1/3}}\right) = \frac{1}{t} \in C^{\infty}$$

Onde na quarta igualdade usamos que $\pi_N \circ \pi_S^{-1}(x) : \mathbb{R}^* \to \mathbb{R}^* = 1/x$. A mesma conta serve para a outra composição $[s \circ \pi_S] \circ [s \circ \pi_N]^{-1}$.

Vamos provar que $\mathcal{F} \neq \mathcal{G}$. Suponha que fossem iguais, então a composição $\pi_N \circ [s \circ \pi_N]^{-1}(t) = s^{-1}(t) = t^{1/3}$ seria C^{∞} que sabemos que é falso.

Para provar que são diffeomorfas, considere:

$$F: (S^1, \mathcal{F}) \to (S^1, \mathcal{G})$$

$$p \neq (0, 1) \mapsto (\pi_N^{-1}) \circ s^{-1} \circ \pi_N(p)$$

$$p \neq (0, -1) \mapsto (\pi_S^{-1}) \circ s^{-1} \circ \pi_S(p)$$

Do jeito que está, F pode não parecer bem definida. Seja $p \neq (0,1)$, (0,-1). Queremos mostrar que:

$$(\pi_N^{-1}) \circ s^{-1} \circ \pi_N(p) = (\pi_S^{-1}) \circ s^{-1} \circ \pi_S(p) \tag{1}$$

Mas temos que todas as funções são homeomorfismos e, principalmente, $\pi_N \circ \pi_S^{-1} = 1/x$. Seja $\pi_N(p) = t$, então $t = [\pi_N \circ \pi_S^{-1}] \circ \pi_S(p) = 1/(\pi_S(p))$, ou seja $\pi_S(p) = 1/t$. Substituindo em (1)

$$(\pi_N^{-1}) \circ s^{-1}(t) = (\pi_S^{-1}) \circ s^{-1}(1/t)$$
$$s^{-1}(t) = (\pi_N \circ \pi_S^{-1}) \circ s^{-1}(1/t)$$
$$t^{1/3} = \frac{1}{s^{-1}(1/t)} = t^{1/3}$$

Onde na segunda igualdade aplicamos π_N dos dois lados e na terceira usamos a composição usual. Como tudo pode ser feito de trás para frente, provamos que F está bem definida.

Agora basta provar que os seguintes mapas são diffeos C^{∞} em seus dominios (interseções das cartas):

- 1. $[s \circ \pi_N] \circ F \circ \pi_N^{-1}$
- 2. $[s \circ \pi_N] \circ F \circ \pi_S^{-1}$
- 3. $[s \circ \pi_S] \circ F \circ \pi_N^{-1}$
- 4. $[s \circ \pi_S] \circ F \circ \pi_S^{-1}$

E para isso é só expandi-los, farei (1) e (2) pois os outros dois são análogos.

- 1. $s \circ \pi_N \circ F \circ \pi_N^{-1} = s \circ \pi_N \circ (\pi_N^{-1}) \circ s^{-1} \circ \pi_N \circ \pi_N^{-1} = id$
- 2. $s \circ \pi_N \circ F \circ \pi_S^{-1} = s \circ \pi_N \circ (\pi_N^{-1}) \circ s^{-1} \circ \pi_N \circ \pi_S^{-1} = 1/x$

Para não perder nenhum detalhe, vou enunciar aqui a principal ferramenta desta lista.

Theorem 1.1. Seja M uma variedade diferenciável e $\{U_{\alpha} : \alpha \in A\}$ uma cobertura aberta de M. Então existe uma partição contável da unidade $\{\varphi_i : i \in \mathbb{N}\}$ subordinada a cobertura $\{U_{\alpha}\}$ com supp φ_i compacto para cada i. Se não for preciso suportes compactos, então existe uma partição da unidade $\{\varphi_{\alpha}\}$ subordinada à $\{U_{\alpha}\}$ (supp $\varphi_{\alpha} \subset U_{\alpha}$) com no máximo contáveis φ_{α} não identicamente nulos.

Problem 1.2.

Proof. Pelo Teorema da Partição da Unidade 1.1, dada uma cobertura $\{U_{\alpha}\}$, existe uma partição φ_{α} subordinada. Tome $V_{\alpha} = \varphi_{\alpha}^{-1}[(0,2)]$ abertos. Temos $\overline{V_{\alpha}} = \operatorname{supp} \varphi_{\alpha} \subset U_{\alpha}$ e, para todo $p \in M$, como $\sum_{\alpha} \varphi_{\alpha}(p) = 1$, existe α tal que $\varphi_{\alpha}(p) > 0$, logo $p \in V_{\alpha}$. Portanto $M \subset \{V_{\alpha}\}$ e temos um refinamento de $\{U_{\alpha}\}$.

Problem 1.3.

Proof. Dada M, seja $\{U_{\alpha}\}$ a cobertura aberta das cartas. Seja $\{V_{\beta}\}$ refinamento localmente finito de $\{U_{\alpha}\}$ com $\overline{V_{\beta}} \subset U_{\alpha}$ compacto para todo β .