- 6.1 પ્રાસ્તાવિક
- 6.2 થરમૉડાઇનેમિક તંત્ર અને પરિસરનું અર્થઘટન
- 6.3 તાપીય સંતુલન અને તાપમાનની વ્યાખ્યા (થરમૉડાઇનેમિક્સનો શૂન્ય ક્રમનો નિયમ)
- 6.4 ફેઝ (અવસ્થા) ડાયાગ્રામ
- 6.5 ઉષ્મીય પ્રસરણ
- 6.6 રૂપાંતરણની ઉષ્મા (ગુપ્ત ઉષ્મા)
- 6.7 ઉષ્મા, આંતરિક ઊર્જા અને કાર્ય
- 6.8 થરમાંડાઇનેમિક્સનો પ્રથમ નિયમ
- 6.9 ઉષ્માધારિતા અને વિશિષ્ટ ઉષ્મા
- 6.10 કેટલીક થરમૉડાઇનેમિક પ્રક્રિયાઓ
- 6.11 પ્રતિવર્તી અને અપ્રતિવર્તી પ્રક્રિયાઓ
- 6.12 કેલોરીમેટી
- 6.13 ઉષ્મા-એન્જિન અને તેની કાર્યક્ષમતા
- 6.14 રેફ્રિજરેટર–હીટપંપ અને પરફૉર્મન્સ ગુણાંક
- 6.15 થરમૉડાઇનેમિક્સનો બીજો નિયમ
- 6.16 કાર્નીચક્ર અને કાર્નો-એન્જિન
 - 🂌 ઉપસંહાર
 - સ્વાધ્યાય

6.1 પ્રસ્તાવના (Introduction)

શિયાળાની કડકડતી ઠંડી રાત હોય કે ઉનાળાની પરસેવે રેબઝેબ કરી નાખતી બપોર, આપશા શરીરનું તાપમાન 98.60 °F એટલે કે 37.00 °C જેટલું જળવાઈ રહે તે જરૂરી છે. આપશા શરીરની આંતરિક રચના એવી છે કે જેથી સામાન્ય સંજોગોમાં આપશા શરીરના તાપમાનનું નિયમન જૈવિક પ્રક્રિયાઓ દ્વારા થાય છે, પરંતુ જ્યારે વાતાવરણમાં ખૂબ જ ઠંડી કે ગરમી હોય ત્યારે આપણે શરીરને બહારથી રક્ષણ આપવું પડે છે.

તમે અનુભવ્યું હશે કે જ્યારે કોલ્ડ (ઠંડી) કૉફ્રીનો કપ અને ગરમ ચાનો કપ થોડા સમય માટે ખુલ્લો રાખવામાં આવે, તો કૉફ્રી ગરમ થાય છે, જ્યારે ચા ઠંડી થાય છે અને છેવટે બન્નેનું તાપમાન ઓરડાના તાપમાન જેટલું થઈ જાય છે. આ પ્રકારની પ્રક્રિયાઓ થરમૉડાઇનેમિક્સના શૂન્ય ક્રમના નિયમ સુધી દોરી જાય છે.

પ્રસ્તુત પ્રકરણમાં અમુક ચોક્કસ તાપમાન અને દબાણે દ્રવ્યના અમુક ચોક્કસ સ્વરૂપનું અસ્તિત્વ ફેઝ ડાયાગ્રામ વડે સમજાવેલ છે.

તાપમાન અને ઉપ્મા જેવા શબ્દો દરરોજની જીવનશૈલીમાં એક્સરખા અર્થમાં ઉપયોગમાં લેવાય છે, પરંતુ ભૌતિકવિજ્ઞાનમાં આ બન્ને શબ્દોના અર્થ તદન જુદા છે. આ પ્રકરણમાં તાપમાનની વ્યાખ્યા, દ્રવ્યના ભૌતિક (ઉષ્મીય) ગુણધર્મોના વિષેયના રૂપમાં તથા જુદાં-જુદાં માપક્રમ અને તેમની વચ્ચેના સંબંધોના રૂપમાં આપવામાં આવી છે. બે પદાર્થો વચ્ચે તાપમાનના તફાવત સાથે સંકળાયેલ ઉષ્મા એટલે કે વિનિમય પામતી ઉષ્મા-ઊર્જાની પણ ચર્ચા કરેલ છે.

થરમૉડાઇનેમિક્સનો પહેલો નિયમ ઊર્જા-સંરક્ષણના નિયમનું વ્યાપક સ્વરૂપ છે, જે મુજબ ઊર્જાનો વિનિમય એ ઉષ્માના વિનિમય, યાંત્રિક ઊર્જાના રૂપમાં કાર્ય, અને તંત્રની આંતરિક ઊર્જા સાથે સંકળાયેલ છે. વિશિષ્ટ ઉષ્મા તેમજ ઉષ્માધારિતાની ચર્ચા પણ આ પ્રકરણમાં કરેલ છે.

આજે આપણે ગૃહઉપયોગી સાધનો જેવા કે રેફ્રિજરેટર અને ઍરકંડિશનરની ગુણવત્તાના સ્ટાર રેટિંગ જોઈએ છીએ, વાહનોની ગુણવત્તા વાહન ઉત્પાદકો, પેટ્રોલ કે ડીઝલના સંદર્ભમાં km/litre ની વાહનની ઈંધણ ક્ષમતા વડે દર્શાવે છે. આ બધાં સાધનો એક પ્રકારની ઊર્જાનું બીજા પ્રકારની ઊર્જામાં રૂપાંતરણ થરમાં ડાઇનેમિક્સ 123

કરવાની તેમની કાર્યક્ષમતા દર્શાવે છે. થરમૉડાઇનેમિક્સનો બીજો નિયમ આ પ્રક્રિયાઓની મર્યાદા વ્યાખ્યાયિત કરે છે.

ઉષ્મા-એન્જિન અને કાર્નીટ-એન્જિનની કાર્યપદ્ધતિ પ્રસ્તુત પ્રકરણમાં સમજાવેલ છે.

6.2 થરમાંડાઇનેમિક તંત્ર અને પરિસરનું અર્થઘટન (Concept of Thermodynamic System and Environment)

થરમૉડાઇનેમિક્સમાં 'વસ્તુ'ને બદલે વ્યાપક રીતે તંત્ર શબ્દ પ્રયોજવામાં આવે છે. વિશ્વના જે ભાગનો થરમૉડાઇનેમિક અભ્યાસ કરવાનો હોય તે ભાગને **થરમૉડાઇનેમિક તંત્ર (system)** કહે છે. તંત્ર એક પારિમાણિક, દ્વિ-પારિમાણિક કે ત્રિ-પારિમાણિક હોઈ શકે છે. તે એક જ વસ્તુ કે પછી અનેક વસ્તુઓનું બનેલું હોઈ શકે. તંત્ર જે વસ્તુઓનું બનેલું હોય તે વસ્તુઓને તંત્રના **ઘટકો** કહેવાય. તંત્ર **વિકિરણ (radiation)**નું બનેલું પણ હોઈ શકે અથવા વિકિરણ એ તંત્રનો કોઈ ઘટક હોઈ શકે છે.

તંત્રની આસપાસના બાકીના ભાગ (વિશ્વ) કે જેની સીધી અસર તંત્ર પર થતી હોય, તેને તંત્રનું પરિસર કે વાતાવરણ (surrounding or environment) કહે છે. તંત્ર અને તેના પરિસરને જુદા પાડતી હદને તંત્રની પરિસીમા (સરહદ) કહે છે. તંત્ર તેના પરિસર સાથે કેવા પ્રકારની આંતરક્રિયા (interaction) કરશે, તેનો આધાર પરિસીમાના પ્રકાર પર રહેલો છે.

ભૌતિકવિજ્ઞાનની દરેક શાખામાં કોઈ પણ તંત્રનું સ્થૂળ (macroscopic) વર્ણન તેના અમુક માપી શકાય તેવા ગુણધર્મોના આધારે કરવામાં આવે છે. દા. ત., દઢ વસ્તુની ચાકગતિનો અભ્યાસ કરતી વખતે તેના આંતરિક પાસાની ચિંતા કર્યા સિવાય, કોઈ યામાક્ષોની સાપેક્ષે જુદા-જુદા સમયે તેના દ્રવ્યમાનકેન્દ્રના સ્થાન અને વેગ જેવી સ્થૂળ રાશિઓનો અભ્યાસ કરવામાં આવે છે. આવી રાશિઓને યાંત્રિક યામો (mechanical co—ordinates) કહે છે. યાંત્રિક યામોની મદદથી કોઈ યામાક્ષોની સાપેક્ષે દઢ વસ્તુની સ્થિતિ-ઊર્જા અને ગતિ-ઊર્જાનાં મૂલ્યો અને તે પરથી યાંત્રિક-ઊર્જાનું મૂલ્ય નક્કી થાય છે.

થરમૉડાઇનેમિક્સમાં તંત્રની આંતરિક અવસ્થા પર સીધી રીતે અસર કરનાર સ્થૂળ રાશિઓને ધ્યાનમાં લેવામાં આવે છે. આવી રાશિઓને **થરમૉડાઇનેમિક યામો** (thermodynamic co-ordinates) કહે છે. થરમૉડાઇનેમિક યામો વડે રજૂ થતા તંત્રને થરમૉડાઇનેમિક તંત્ર કહે છે.

તંત્રના યાંત્રિક અને ઉષ્મીય ગુણધર્મોનાં મૂલ્યો પરથી તંત્રની થરમોડાઇનેમિક અવસ્થા (state) નક્કી થાય છે. દા. ત., કોઈ વાયુતંત્રનું દબાણ, કદ જેવા યાંત્રિક ગુણધર્મો તથા તાપમાન, ઉષ્માનો જથ્થો જેવા ઉષ્મીય ગુણધર્મો તંત્રની થરમોડાઇનેમિક અવસ્થા નક્કી કરે છે.

તંત્ર અને તેના પરિસર વચ્ચે થતી આંતરક્રિયાને થરમોડાઇનેમિક પ્રક્રિયા (process) કહે છે.

જો તંત્ર પોતાના પરિસર સાથે આંતરક્રિયા ન કરતું હોય તો તે અલગ કરેલું તંત્ર (isolated system) કહેવાય છે. આવા તંત્રના ઉષ્મીય અને યાંત્રિક ગુણધર્મો અચળ રહે છે અને તંત્ર કોઈ ચોક્કસ સંતુલિત થરમૉડાઇનેમિક અવસ્થામાં છે તેમ કહેવાય.

તંત્ર પોતાના પરિસર સાથે આંતરક્રિયા કરીને ઉષ્મા-ઊર્જા અને/અથવા યાંત્રિક-ઊર્જાનો વિનિમય કરે ત્યારે તેના ઉષ્મીય અને/અથવા યાંત્રિક ગુણધર્મોમાં સતત ફેરફાર થાય છે. આવી અનેક અવસ્થાઓમાંથી પસાર થતું-થતું તંત્ર અંતે બીજી કોઈ નિશ્ચિત સંતુલિત થરમોડાઇનેમિક અવસ્થા પ્રાપ્ત કરે છે. તંત્રની પરિસર સાથેની આંતરક્રિયા દરમિયાન વિનિમય પામતી ઉષ્મા-ઊર્જાને ઉષ્મા (Q) અને વિનિમય પામતી યાંત્રિક-ઊર્જાને કાર્ય (W) કહે છે.

થરમૉડાઇનેમિક તંત્રની સંતુલિત અવસ્થા અમુક ચલ-રાશિઓ વડે નક્કી થતી હોય છે. આવી રાશિઓને થરમૉડાઇનેમિક ચલરાશિઓ કે અવસ્થા ચલરાશિઓ (state variables) કહે છે. અવસ્થા ચલરાશિઓ વચ્ચેના સંબંધને અવસ્થા-સમીકરણ (equation of state) કહે છે. દા. ત., 'વાયુનો ગતિવાદ'ના પ્રકરણમાં તમે ભણ્યા તે મુજબ આદર્શ વાયુનાં દબાણ, કદ, તાપમાન અને વાયુના જથ્થાને સાંકળતું સમીકરણ PV = μRT એ આદર્શ વાયુનું અવસ્થા સમીકરણ છે.

થરમૉડાઇનેમિક અવસ્થા ચલરાશિઓ બે પ્રકારની હોય છે:

- (i) એક્સ્ટેન્સિવ ચલરાશિઓ (Extensive Variables): તંત્રના પરિમાણ પર આધારિત હોય તેવી રાશિઓને એક્સ્ટેન્સિવ ચલરાશિઓ કહે છે. દા. ત., દળ, કદ, આંતરિક ઊર્જા વગેરે.
- (ii) ઇન્ટેન્સિવ ચલરાશિઓ (Intensive Variables) : તંત્રના પરિમાણ પર આધારિત ન હોય તેવી

124

રાશિઓને ઇન્ટેન્સિવ ચલરાશિઓ કહે છે. દા. ત., દબાણ, તાપમાન વગેરે.

6.3 તાપીય સંતુલન અને તાપમાનની વ્યાખ્યા (થરમૉડાઇનેમિક્સનો શૂન્યક્રમનો નિયમ) Thermal Equilibrium and Definition of Temperature (Zeroth Law of Thermodynamics)

જયારે જુદા-જુદા તાપમાન ધરાવતાં બે તંત્રોને એકબીજાના ઉષ્મીય સંપર્કમાં લાવવામાં આવે છે, ત્યારે ઉષ્માનું વહન વધારે તાપમાનવાળા તંત્ર તરફથી ઓછા તાપમાનવાળા તંત્ર તરફ થાય છે. જ્યારે બન્ને તંત્રોનાં તાપમાન સરખાં થઈ જાય ત્યારે તેમની વચ્ચે વિનિમય પામતી ઉષ્માનું મૂલ્ય શૂન્ય થાય છે. આ વખતે બન્ને તંત્રો એકબીજાં સાથે તાપીય (ઉષ્મીય) સંતુલનમાં છે, તેમ કહેવાય.

જ્યારે જુદા-જુદા તાપમાન ધરાવતા તંત્ર અને તેના પરિસરને જુદા પાડતી પરિસીમા (દીવાલ) ઉષ્મીય અવાહક (insulating or adiabatic wall) હોય ત્યારે તંત્ર અને પરિસર વચ્ચે ઉષ્માનો વિનિમય થતો નથી, પરંતુ જ્યારે આ તંત્ર અને તેના પરિસરને જુદા પાડતી સીમા ઉષ્માની સુવાહક (conducting or diathermic wall) હોય ત્યારે તંત્ર અને પરિસર વચ્ચે ઉષ્માનો વિનિમય થાય છે અને જ્યારે તંત્ર અને પરિસરનાં તાપમાન સરખાં થઈ જાય, ત્યારે ઉષ્માનો વિનિમય શૂન્ય થાય છે.

જ્યારે તંત્ર અને તેના પરિસર વચ્ચે કોઈ અસંતુલિત બળ ન લાગતું હોય ત્યારે તંત્ર યાંત્રિક સંતુલનમાં છે તેમ કહેવાય. જ્યારે તંત્રમાં કોઈ રાસાયણિક પ્રક્રિયા ન થતી હોય અને તંત્રના એક ભાગથી બીજા ભાગ તરફ કોઈ રાસાયણિક ઘટકની ગતિ ન થતી હોય ત્યારે તંત્ર રાસાયણિક સંતુલનમાં છે તેમ કહેવાય. જ્યારે તંત્ર ઉષ્મીય, યાંત્રિક અને રાસાયણિક સંતુલનમાં હોય ત્યારે તે થરમોડાઇનેમિક સંતુલનમાં છે, તેમ કહેવાય.

6.3.1 થરમાંડાઇનેમિક્સનો શૂન્ય ક્રમનો નિયમ (Zeroth Law of Thermodynamics):

કોઈ તંત્ર અને તેનું પરિસર અથવા કોઈ બે તંત્રો એકબીજાની સાથે ઉષ્મીય સંતુલનમાં છે કે નહીં તે જાણવા માટે કોઈ એક ત્રીજી વસ્તુ (દા. ત., થરમૉમીટર)નો ઉપયોગ કરી શકાય (આદર્શ રીતે આ ત્રીજી વસ્તુ, બન્ને તંત્રો સાથે ઉષ્માનો વિનિમય (શોષણ કે ઉત્સર્જન) ન કરતું હોવું જોઈએ).

આકૃતિ 6.1(a)માં દર્શાવ્યા મુજબ, ધારો કે કોઈ બે તંત્રો A અને B ને એકબીજાંથી ઉષ્મીય અવાહક દીવાલ વડે જુદાં પાડેલ છે તથા આ બન્ને તંત્રો ત્રીજા એક તંત્ર C સાથે સુવાહક દીવાલ દ્વારા સંપર્કમાં છે. આ સમગ્ર રચનાની આજુબાજુ અવાહક દીવાલ છે. આકૃતિ 6.1(b)માં દર્શાવ્યા મુજબ અમુક સમય બાદ આ બન્ને તંત્રો A અને B, તંત્ર C સાથે ઉષ્મીય સંતુલન પ્રાપ્ત કરે છે.

(a) ઉષ્મીય સંતુલન પહેલાં

(b) ઉખીય સંતુલિત સ્થિતિ

(c) ઉષ્મીય સંતુલિત સ્થિતિ

તંત્ર A, B અને C વચ્ચે સ્થપાતું ઉષ્મીય સંતુલન આકૃતિ 6.1

હવે આકૃતિ 6.1(c)માં દર્શાવ્યા મુજબ A અને Bને જુદા પાડતી અવાહક દીવાલ દૂર કરી તેના સ્થાને સુવાહક દીવાલ રાખવામાં આવે અને તંત્ર Cને A અને Bથી અવાહક દીવાલ વડે અલગ કરવામાં આવે તોપણ તેમની સંતુલિત સ્થિતિમાં કોઈ ફેરફાર નોંધાતો નથી.

હવે આ તંત્રો A અને Bને એક જ સમયે C સાથે ઉષ્મીય સંતુલન પ્રાપ્ત કરવા દેવાને બદલે તેમને વારાફરતી C સાથે સંતુલન પ્રાપ્ત કરવા દેવાય અને ત્યાર બાદ A, B અને C ને સુવાહક દીવાલ દ્વારા સંપર્કમાં લાવવામાં આવે, તો પણ પહેલાંની માફક જ ઉષ્મીય સંતુલન સ્થપાશે. આમ,

"જો તંત્ર A અને B કોઈ ત્રીજા તંત્ર C સાથે ઉષ્મીય સંતુલનમાં હોય, તો A અને B પણ એકબીજા સાથે ઉષ્મીય સંતુલનમાં હોય છે."

આ વિધાનને **થરમાંડાઇનેમિક્સનો શૂન્ય ક્રમનો નિયમ** કહે છે.

વ્યવહારમાં આપણે વસ્તુના ગરમ કે ઠંડાપણાની માત્રા સાથે, તાપમાન નામના ખ્યાલનો ઉપયોગ કરીએ છીએ. શૂન્ય ક્રમનો નિયમ આ ખ્યાલના સંદર્ભમાં દર્શાવે છે કે તાપમાન એ તંત્રનો ગુણધર્મ છે. એકબીજા સાથે ઉષ્મીય સંપર્કમાં રહેલી વસ્તુઓ ઉષ્મીય સંતુલન પ્રાપ્ત કરે, ત્યારે તેમનાં તાપમાન સરખાં થઈ જાય છે. સ્થૂળ રીતે વિચારતાં શૂન્ય ક્રમના નિયમ પરથી લખી શકાય કે ''તાપમાન નામની એક અગત્યની ભૌતિક રાશિ અસ્તિત્વ ધરાવે છે."

6.4 ફેઝ (અવસ્થા) ડાયાગ્રામ (Phase Diagram)

દ્રવ્ય કયા (ઘન, પ્રવાહી કે વાયુ) સ્વરૂપમાં રહેશે, તેનો આધાર દબાણ અને તાપમાન જેવાં પરિબળો પર હોય છે. કેટલીક ખાસ પરિસ્થિતિઓમાં દ્રવ્યનાં બે અથવા ત્રણ સ્વરૂપો એકીસાથે પણ સંતુલનમાં અસ્તિત્વ ધરાવે છે. દબાણ અને તાપમાનનાં જુદાં-જુદાં મૂલ્યો માટે આપેલ દ્રવ્ય કેવું સ્વરૂપ ધરાવે છે, તે દર્શાવતાં દબાણ (P) વિરુદ્ધ તાપમાન (T)ના આલેખને તે દ્રવ્યનો ફેઝ ડાયાગ્રામ કહે છે. આકૃતિ 6.2માં કોઈ એક પદાર્થ માટે ફેઝ ડાયાગ્રામ દર્શાવેલ છે.

ફેઝ ડાયાગ્રામ પરના વક AB પરનાં બિંદુઓ વડે મળતાં દબાણ-તાપમાનનાં મૂલ્યો માટે પદાર્થની ઘન અને પ્રવાહી અવસ્થાઓ સંતુલનમાં સહ-અસ્તિત્વ ધરાવે છે. માટે AB વક્રને ફ્યુઝન-વક્ર કહે છે.

આ જ રીતે વક OA પરનાં બિંદુઓ વડે મળતાં દબાણ-તાપમાનનાં મૂલ્યો માટે પદાર્થનાં ઘન અને વાયુ અવસ્થા સ્વરૂપો સંતુલનમાં સહ-અસ્તિત્વ ધરાવે છે. માટે વક OA ને સબ્લિમેશન-વક કહે છે.

વક AC પરનાં બિંદુઓ વડે મળતાં દબાશ-તાપમાનનાં મૂલ્યો માટે પદાર્થનાં વાયુ અને પ્રવાહી અવસ્થા સ્વરૂપો સંતુલનમાં સહ-અસ્તિત્વ ધરાવે છે. માટે વક ACને વેપરાઇઝેશન (બાષ્પીકરણ) વક કહે છે.

વેપરાઇઝેશન વક, ફયુઝન-વક અને સબ્લિમેશન-વક A બિંદુ પર મળે છે, એટલે કે દબાણ-તાપમાનનાં જે મૂલ્યો માટે પદાર્થનાં ત્રણેય સ્વરૂપો સહ-અસ્તિત્વમાં અને સંતુલનમાં હોય છે. તે બિંદુને તે દ્રવ્ય(પદાર્થ)નું ટ્રીપલ પોઇન્ટ કહે છે. આકૃતિમાં બિંદુ A આપેલ દ્રવ્યનું ટ્રીપલ પોઇન્ટ છે.

જુદાં-જુદાં દ્રવ્યો માટે ચોક્કસ દબાશે અને તાપમાને જ તેમના બે અથવાં ત્રણ સ્વરૂપો સંતુલનમાં સહ-અસ્તિત્વ ધરાવતાં હોય તેવી પરિસ્થિતિ મેળવી શકાય છે. પાણીનું ટ્રીપલ પોઇન્ટ 4.58 mm પારાના દબાશે અને 273.16 K તાપમાને મળે છે. પાણીના ટ્રીપલ પોઇન્ટનો ઉપયોગ થરમોમિટરનો સ્કેલ નક્કી કરવામાં થાય છે.

6.4.1 તાપમાનનું માપન : થરમોંમેટ્રી (Measurement of temperature thermometry) :

કોઈ પણ પદાર્થ ઠંડો છે કે ગરમ તે, ચોકસાઈપૂર્વક, ફક્ત સ્પર્શ કરીને નક્કી કરી શકાતું નથી. દા.ત., ડાબા હાથને ગરમ તથા જમણા હાથને ઠંડા પાણીમાં થોડીવાર રાખ્યા બાદ, બંને હાથને નવશેકા પાણીમાં રાખવામાં આવે, તો નવશેકું પાણી ડાબા હાથને ઠંડું તથા જમણા હાથને ગરમ અનુભવાય છે. આ ઉપરાંત સ્પર્શથી અનુભવેલ પરિણામ વ્યક્તિલક્ષી પણ હોય છે.

કોઈ વસ્તુની ઉષ્મીય સંતુલનની પરિસ્થિતિમાં તેના તાપમાનને કોઈ ચોક્કસ વાસ્તવિક સંખ્યા વડે સાંકળીએ, અને આ પ્રમાણે તેની જુદી-જુદી ઉષ્મીય સંતુલનની સ્થિતિઓ વખતના તાપમાનને અનન્ય એવી વાસ્તવિક સંખ્યાઓ વડે સાંકળીએ, તો આ રીતે ઉષ્મીય (તાપીય) સંતુલન પર વ્યાખ્યાયિત થતાં વિધેયને તાપમાન-વિધેય કહે છે.

થરમૉડાઇનેમિક્સનો શૂન્યક્રમનો નિયમ દર્શાવે છે કે તાપમાન વિષેય એક-એક વિષેય છે.

જે સાધન વડે આપેલા ઉષ્મીય સંતુલન સાથે સંકળાયેલી નિશ્ચિત અનન્ય વાસ્તવિક સંખ્યા (એટલે કે તાપમાન) માપી શકાય, તેવા સાધનને થરમૉમીટર કહે છે.

સામાન્ય રીતે થરમૉમીટર તૈયાર કરવા માટે તાપમાન સાથે પ્રવાહીના કદમાં થતાં ફેરફારના ગુણધર્મનો ઉપયોગ કરવામાં આવે છે. મોટા ભાગે પ્રવાહી સહિત કાચના થરમૉમીટરમાં પારો અને આલ્કોહૉલ જેવા પ્રવાહીનો ઉપયોગ કરવામાં આવે છે.

થરમૉમીટરનું કેલિબરેશન (અંકન) એવી રીતે કરવામાં આવે છે કે જેથી તાપમાનના દરેક ચોક્કસ મૂલ્ય સાથે કોઈ નિશ્ચિત અંક સાંકળી શકાય. સર્વમાન્ય માપક્રમનું કેલિબરેશન

(અંકન) કરવા માટે, તાપમાનના બે ચોક્કસ (જાણીતા) મૂલ્યો જરૂરી છે. સરળતા માટે 1 વાતાવરણના દબાણે પાણીનું ઠારણબિંદુ (32°F અથવા 0°C) અને પાણીનું ઉત્કલનબિંદુ (212°F અથવા 100°C) ચોક્કસ મૂલ્ય તરીકે લેવામાં આવે છે.

જુદા-જુદા પ્રવાહીના ઉષ્મીય પ્રસરણના ગુણધર્મો જુદા-જુદા હોવાથી બે ચોક્કસ બિંદુઓ પરના તાપમાન સિવાય બીજા તાપમાનનાં મૂલ્યો માટે પ્રવાહી-સહિત-થરમૉમીટરો જુદાં-જુદાં અવલોકન આપે છે. પરંતુ, જેમાં પૂરતા ઓછા દબાણે કોઈ પણ વાયુઓ ભરેલા હોય તેવા અચળ કદ થરમૉમીટર એક જ તાપમાન માટે એકસમાન અવલોકનો જ આપે છે.

પૂરતાં ઓછા દબાણે રહેલો આપેલ જથ્થાનો વાયુ આદર્શવાયુ અવસ્થા-સમીકરણ,

PV = μ RTનું પાલન કરે છે. જ્યાં, μ = વાયુના મોલની સંખ્યા, અને R = 8.31 J mol $^{-1}$ K $^{-1}$

આથી વાયુનું કદ અચળ રાખીએ, તો $P\alpha$ T. આમ, અચળ કદ વાયુ થરમૉમીટર વડે તાપમાનનું માપન તેના દબાણના સંદર્ભમાં કરી શકાય છે. આકૃતિ 6.3માં દર્શાવ્યા મુજબ P-T નો આલેખ સીધી રેખા મળે છે.

ઓછી ઘનતાવાળા અચળ કદના વાયુ માટે દબાણ વિરુદ્ધ તાપમાનનો આલેખ આકૃતિ 6.3

નીચા તાપમાને વાસ્તવિક વાયુઓ વડે કરેલું તાપમાનનું માપન આદર્શ વાયુ માટે અનુમાન કરેલ માપન કરતાં થોડું જુદું પડે છે. પરંતુ આપેલ તાપમાનના ગાળા માટે આ સંબંધ સુરેખ જ હોય છે. જો વાયુ પોતાનું વાયુસ્વરૂપ જાળવી રાખે, તો તાપમાનના ઘટાડા સાથે દબાણ શૂન્ય સુધી પહોંચે છે. આ સુરેખ આલેખને આગળ લંબાવવામાં આવે તો આદર્શવાયુ માટે તેનું મૂલ્ય તાપમાન અક્ષને –273.15°C પાસે મળે છે, જેને નિરપેક્ષ શૂન્ય તાપમાન કહે છે. (જુઓ આકૃતિ 6.4).

P – T નો આલેખ અને ઓછી ઘનતાવાળા વાયુઓ માટે સુરેખાઓને લંબાવતા તે એકસરખું નિરપેક્ષ શૂન્ય તાપમાન દર્શાવે છે આકૃતિ 6.4

આકૃતિ 6.4 પરથી જોઈ શકાય છે કે, ઓછી ઘનતા વાળા અને જુદા-જુદા ઉષ્મીય પ્રસરણ ધરાવતા વાયુઓ માટે એકસરખું નિરપેક્ષ શૂન્ય તાપમાન મળે છે. નિરપેક્ષ શૂન્ય એ કૅલ્વિન માપક્રમ અથવા નિરપેક્ષ માપક્રમનો પાયો છે, જેનું મૂલ્ય 0 K જેટલું લેવામાં આવે છે.

વ્યવહારમાં તાપમાનના માપન માટે સેલ્સિયસ માપક્રમ અને ફેરનહીટ માપક્રમ પ્રચલિત છે, જે આ મુજબ છે.

સેલ્સિયસ માપક્રમ : જો સેલ્સિયસ માપક્રમનું તાપમાન T_C વડે અને કૅલ્વિન માપક્રમ પરનું તાપમાન T વડે દર્શાવવામાં આવે તો,

$$T_C = T - 273.15$$

પાશીના ટ્રીપલ પૉઇન્ટ તાપમાનને સેલ્સિયસ માપક્રમમાં માપતાં,

 $T_C = 273.16 - 273.15 = 0.01$ °C તાપમાન મળે છે.

આ માપક્રમમાં વાતાવરણના દબાણે શુદ્ધ પાણી અને તેની બાષ્ય વચ્ચે સંતુલન રચાય ત્યારે તાપમાન 100°C લેવામાં આવે છે, જેનું મૂલ્ય કૅલ્વિન માપક્રમમાં,

$$T = 100 + 273.15 = 373.15 K$$

ફેરનહીટ માપક્રમ : ફેરનહીટ માપક્રમ પરના તાપમાન \mathbf{T}_{F} અને સેલ્સિયસ માપક્રમ પરના તાપમાન \mathbf{T}_{C} વચ્ચેનો સંબંધ આ મુજબ છે.

$$T_F = \frac{9}{5}T_C + 32^{\circ}$$

એક માપક્રમમાં પાણીનું ઉત્કલનબિંદુ અને ઠારણબિંદુ (Freezing point) જાણતા હોઈએ, તો તાપમાનનું માપન કર્યા પછી તેને બીજા કોઈ માપક્રમમાં સહેલાઈથી દર્શાવી શકાય છે. આકૃતિ 6.5 માં કેલ્વિન, સેલ્સિયસ અને ફેરનહીટ માપક્રમની સરખામણી દર્શાવી છે.

થરમાંડાઇનેમિક્સ 127

પાણી માટે કૅલ્વિન, સેલ્સિયસ અને ફેરનહીટ માપક્રમની સરખામણી આકૃતિ 6.5

સેલ્સિયસ અને ફેરનહીટ માપક્રમમાં તાપમાનનું માપન દર્શાવવા માટે અનુક્રમે C અને F અક્ષરો લખવામાં આવે છે. દા.ત., $0^{\circ}C = 32^{\circ}F$

એટલે કે સેલ્સિયસ માપક્રમમાં 0° એટલે ફેરનહીટ માપક્રમ મુજબ તેટલું જ તાપમાન 32°, પરંતુ તાપમાનનો તફાવત આ બંને માપક્રમમાં જુદી રીતે દર્શાવવામાં આવે છે.

5 C° = 9 F°નો મતલબ એ કે, સેલ્સિયસ માપક્રમ મુજબ 5 સેલ્સિયસ ડિગ્રી (નોંધો કે ડિગ્રીની સંજ્ઞા C પછી આવે છે)નો તફાવત અને 9 ફેરનહીટ ડિગ્રીનો તફાવત સમતુલ્ય છે.

માત્ર જાણકારી માટે :

પાણીનાં ઉત્કલનબિંદુ અને ઠારણબિંદુ વચ્ચે તફાવત 100 કેલ્વિન (100 K) અને 100 સેલ્સિયસ ડિગ્રી (100 C°) હોય છે. પરંતુ પાણીનાં ઉત્કલનબિંદુ અને ઠારણબિંદુ વચ્ચે ફેરનહીટનો તફાવત 180 F° છે. આમ,

 $\Delta T = 180 \text{ F}^{\text{o}} = 100 \text{ K} = 100 \text{ C}^{\text{o}}$

એટલે કે એક ફેરનહીટનું મૂલ્ય સેલ્સિયસ કે કૅલ્વિનના

 $\left(\frac{100}{180} = \frac{5}{9}\right) \; \frac{5}{9}$ ભાગ જેટલું હોય છે, જે દર્શાવે છે કે ફેરનહીટમાં દર્શાવેલો તાપમાનનો તફાવત સેલ્સિયસ કે

કેલ્વિન માપક્રમના તફાવત કરતાં $\frac{9}{5}$ ગણો હોય છે.

તાપમાન અને તાપમાનનો તફાવત બંને અલગ છે. 10 K તાપમાન એ 10°C કે 18°F નથી, પરંતુ 10 K તાપમાનનો તફાવત એ 10 C° કે 18 F° જેટલો હોય છે.

6.5 ઉષ્મીય પ્રસરણ (Thermal Expansion)

આપણે જાણીએ છીએ કે કોઈ પદાર્થનું તાપમાન વધારતાં (ઉષ્મા આપતાં) તેના પરિમાણમાં વધારો થાય છે અને તાપમાન ઘટાડતાં (ઉષ્મામુક્ત કરીને) તેના પરિમાણમાં ઘટાડો થાય છે. આમ, પદાર્થ દ્વારા ઉષ્માનું શોષણ કરીને તેના પરિમાણમાં થતા વધારાને ઉષ્મીય પ્રસરણ અને ઉષ્મા-મુક્ત કરીને પદાર્થના પરિમાણમાં થતા ઘટાડાને ઉષ્મીય સંકોચન કહે છે.

ઘન પદાર્થની આંતર-રચનામાં તેના ઘટકક્શો (અશુ, પરમાશુ કે આયનો) ચોક્કસ રીતે ગોઠવાયેલા હોય છે. તેઓ એકબીજા પર આકર્ષણ અને અપાકર્ષણ બળો લગાડીને પોતપોતાના મધ્યમાન સ્થાનની આસપાસ દોલનો કરતા હોય છે. આમ, આ ઘટકક્શો જાશે કે સ્પ્રિંગથી જોડાયેલા હોય તેમ કલ્પી શકાય છે (જુઓ આકૃતિ 6.7).

તાપમાનના વધવા સાથે આ દોલનોનો કંપવિસ્તાર વધે છે અને અશુઓ વચ્ચેનાં સરેરાશ અંતરો વધે છે. આમ, ઘન પદાર્થનું તાપમાન વધતાં તેના કદમાં વધારો થાય છે.

કાલ્પનિક સ્પ્રિંગ વડે જોડાયેલા ઘટકકણો આકૃતિ 6.7

આકૃતિ 6.8માં આંતરઅણું-સ્થિતિ-ઊર્જા વિરુદ્ધ અંતરનો આલેખ દર્શાવ્યો છે, જેના પરથી સ્પષ્ટ થાય છે કે આ વક્ષ આંતરઅણુ સંતુલન-અંતર (r_0) ને અનુલક્ષીને સંમિત નથી. r_0 કરતાં વધારે અંતરે આકર્ષી સ્થિતિ-ઊર્જા જે દરે વધે છે, તે દરથી r_0 કરતાં ઓછા અંતર માટે અપાકર્ષીય સ્થિતિ-ઊર્જા વધતી નથી.

આંતરઅશુ સ્થિત-ઊર્જા વિરુદ્ધ અંતરનો આલેખ આકૃતિ 6.8

આપેલા તાપમાને (એટલે કે સ્થિતિ-ઊર્જા U(T)ના કોઈ એક મૂલ્ય માટે) ઘટકક્શો r_{\min} અને r_{\max} ની વચ્ચે દોલનો કરતાં હોય છે (જુઓ આકૃતિ 6.8). જો આ તાપમાને પાસપાસેના ઘટકક્શો વચ્ચેનું સરેરાશ અંતર r હોય તો

$$r = \frac{r_{\min} + r_{\max}}{2}$$

આમ, આ વક્રની અસંમિતતા પરથી સ્પષ્ટ થાય છે કે તાપમાનના વધારા સાથે આ સરેરાશ અંતરો વધતાં જાય છે. આ અસંમિતતા ઉષ્મીય પ્રસરણ માટે જવાબદાર છે.

રેખીય પ્રસરણ (Linear Expansion)

તાપમાનમાં થતા વધારા સાથે પદાર્થની લંબાઈમાં થતા વધારાને રેખીય પ્રસરણ કહે છે. તાપમાનના નાના ફેરફારો માટે વસ્તુની લંબાઈમાં થતો વધારો (Δl) એ વસ્તુની મૂળ

લંબાઈ 'l' અને તાપમાનના વધારા ' Δ T'ના સમપ્રમાણમાં હોય છે.

 $\Delta l \propto l$, अने

 $\Delta l \propto \Delta T$

 $\Delta l \propto l\Delta T$

$$\therefore \Delta l = \alpha l \Delta T \tag{6.5.1}$$

અહીં 'α' એ સમપ્રમાણતા અચળાંક છે, જેને વસ્તુના દ્રવ્યનો રેખીય પ્રસરણાંક (coefficient of linear expansion) કહે છે. 'α'નું મૂલ્ય પદાર્થની જાત પર અને તેના તાપમાન પર આધારિત છે. જો તાપમાનનો ગાળો મોટો ન હોય તેવા સંજોગોમાં 'α' તાપમાન પર આધારિત નથી.

 α નો એકમ $(C^\circ)^{-1}$ અથવા K^{-1} છે કેટલાક પદાર્થોના રેખીય પ્રસરણાંકના મૂલ્યો ટેબલ 6.1માં (માત્ર જાણ સારુ) આપ્યા છે.

ટેબલ 6.1 કેટલાક ઉષ્મીય પ્રસરણાંકનાં મૂલ્યો (માત્ર જાણકારી માટે)

પદાર્થ	α (10 ⁻⁵ C ⁰⁻¹)	$\gamma \ (10^{-5}C^{o-1}$ or K^{-1})		
ઍલ્યુમિનિયમ	2.4	7.2		
બ્રાસ (કાંસુ)	2.0	6.0		
લોખંડ	1.2	3.6		
સામાન્ય કાચ	0.4 - 0.9	1.2 - 2.7		
પાયરેક્ષ કાચ	0.32			

કેટલાક પદાર્થો દરેક દિશામાં એકસરખું ઉષ્મીય પ્રસરણ ધરાવતા હોય છે. આવા પદાર્થો ને આઇસોટ્રોપિક (isotropic) પદાર્થ કહે છે. તાપમાન વધવા સાથે આવા પદાર્થની લંબાઈમાં જેટલા ગણો વધારો થાય છે, તેટલા જ ગણો વધારો પહોળાઈ અને જાડાઈમાં થાય છે. આથી તેનું પ્રસરણ જાણે કે ફોટોગ્રાફિક વિવર્ધન થયું હોય તેમ લાગે છે (જુઓ આકૃતિ 6.9).

સ્ટીલની ફૂટપટ્ટીનું તાપમાન વધારતાં તેનું આઇસોટ્રોપિક પ્રસરણ (વધારીને બતાવેલું છે.) આકૃતિ 6.9

આથી,

ક્ષેત્રફળમાં થતો વધારો $\Delta A=2$ α $A\Delta T$, અને કદમાં થતો વધારો $\Delta V=3\alpha V\Delta T=\gamma V\Delta T$ કેટલાક પદાર્થોના કદ પ્રસરણાંક ($\gamma=3\alpha$)નાં મૂલ્યો ટેબલ 6.1માં (માત્ર જાણકારી માટે) આપ્યાં છે.

કદમાં થતો વધારો ઘન પદાર્થ કરતાં પ્રવાહીમાં વધારે હોય છે અને આ વધારો વાયુમાં મહત્તમ હોય છે.

પાણીનું અનિયમિત ઉષ્મીય પ્રસરણ

તાપમાન સાથે પાણીનું ઉષ્મીય પ્રસરણ અનિયમિત હોય છે. પાણીનું તાપમાન 4° C સુધી ઘટાડવામાં આવે, તો પાણીનું કદ ઘટતું જાય છે, પરંતુ જ્યારે તાપમાન 4° Cથી 0° C, સુધી ઘટાડવામાં આવે, તો પાણીના કદમાં વધારો થાય છે (જુઓ આકૃતિ 6.10(a)). આમ, પાણીના આપેલ જથ્થા માટે, 4° C તાપમાને પાણીનું કદ લઘુતમ હોય છે. આથી, 4° C તાપમાને પાણીની ઘનતા મહત્તમ હોય છે (જુઓ આકૃતિ 6.10(b)).

પાણીની આ પ્રકારની વર્તણૂકના કારણે તળાવનાં પાણીની ઉપરની સપાટી, નીચેની સપાટી કરતાં વહેલી ઠારણ પામે છે. (નીચેથી ઉપરના બદલે ઉપરથી નીચે તરફ ઠારણ પામે છે). જેમ પાણીના ઉપરના સ્તરનું તાપમાન (ધારો કે 10°C થી) ઘટતું જાય છે, તેમ ઉપરનું સ્તર નીચેના સ્તર કરતાં વધુ ઘટ્ટ બને છે અને તેથી તે નીચે જાય છે. આ પ્રક્રિયા ત્યાં સુધી ચાલુ રહે છે કે જ્યાં સુધી તળાવનું સંપૂર્ણ પાણી 4°C તાપમાને પહોંચે. હવે જ્યારે પાણીના ઉપરના સ્તરનું તાપમાન 4°Cથી ઓછું થાય ત્યારે તેની ઘનતા ઘટે છે (જુઓ આકૃતિ 6.5 b), અને તેથી તે પાણીની સપાટી પર જ રહે છે અને વધુ ને વધુ ઠંડું થતું જાય છે. આ રીતે પાણીની ઉપરની સપાટી થીજી જાય છે જયારે નીચેનું પાણી પ્રવાહી સ્વરૂપમાં જ રહે છે.

પાણીની આવી અનિયમિત વર્તણૂકના કારણે જ પાણીમાં રહેલી જળસૃષ્ટિ ઘણા નીચા તાપમાને પણ જીવી શકે છે.

ઉદાહરણ 1: એક લુહાર લોખંડની રિંગને ગાડાના પૈડાની ધાર પર જડે છે. 27° C તાપમાને પૈડાની ધાર અને રિંગના વ્યાસ અનુક્રમે 1.5 m અને 1.495 m છે. રિંગને કેટલા તાપમાન સુધી તપાવવી પડે કે જેથી તે પૈડાની ધાર પર ચઢાવી શકાય ? લોખંડ માટે $\alpha=12 \times 10^{-6} \, \mathrm{K}^{-1}.$

ઉકેલ :

અહીં,
$$T = 27^{\circ}C = 273 + 27 = 300 \text{ K}$$
 $T' = ?$
 $\alpha = 12 \times 10^{-6} \text{ K}^{-1}$
પૈડાની ધારનો વ્યાસ $d_1 = 1.5 \text{ m}$
લોખંડની રિંગનો વ્યાસ $d_2 = 1.495 \text{ m}$
ધારની કુલ લંબાઈ $l_1 = \pi d_1$
રિંગની કુલ લંબાઈ $l_2 = \pi d_2$
 $\therefore \Delta l = l_1 - l_2 = \pi d_1 - \pi d_2$
પરંતુ, $\Delta l = \alpha l \Delta T$
 $\therefore \pi (d_1 - d_2) = \alpha \pi d_2 (T' - T)$
 $\therefore T' - T = \frac{d_1 - d_2}{\alpha d_2}$
 $\therefore T' = \frac{d_1 - d_2}{\alpha d_2} + T$

$$= \frac{1.5 - 1.495}{12 \times 10^{-6} \times 1.495} + 300$$

$$= 278.7 + 300$$

130 ભૌતિકવિશાન

$$T' = 578.7 \text{ K}$$

$$T' = 578.7 - 273 = 305.7$$
°C

આમ, રિંગને 305.7°C સુધી તપાવવી જોઈએ. (વાસ્તવમાં આનાથી થોડી વધારે તપાવવી જોઈએ.)

ઉદાહરણ 2 : જો બ્રાસ અને ઍલ્યુમિનિયમના સિળયાઓની લંબાઈ વચ્ચેનો તફાવત કોઈ પણ તાપમાને 5 cm જેટલો રાખવો હોય, તો 0°C તાપમાને આ સિળયાઓની લંબાઈ કેટલી રાખવી જોઈએ ?

(બ્રાસ માટે $\alpha=18\times 10^{-6}~{
m C}^{{
m o}-1}$, ઍલ્યુમિનિયમ માટે $\alpha=24\times 10^{-6}~{
m C}^{{
m o}-1})$

ઉકેલ : ધારો કે 0°C તાપમાને બ્રાપ્ત અને ઍલ્યુમિનિયમ સિળયાઓની લંબાઈ અનુક્રમે l_1 અને l_2 છે. અહીં કોઈ પણ તાપમાને આ સિળયાઓની લંબાઈ વચ્ચેનો તફાવત સરખો રહે છે. તેથી તાપમાનના સરખા વધારા સાથે બંને સિળયાની લંબાઈમાં થતો વધારો સરખો હોવો જોઈએ.

$$\begin{array}{l} \therefore \ \Delta l_1 = \Delta l_2 \\ \\ \therefore \ \alpha_1 \ l_1 \ \Delta T = \alpha_2 \ l_2 \ \Delta T \end{array}$$

$$\therefore \frac{l_1}{l_2} = \frac{\alpha_2}{\alpha_1} = \frac{24 \times 10^{-6}}{18 \times 10^{-6}} = \frac{4}{3}$$
 (1)

હવે, આપેલ શરત મુજબ $l_1-l_2=5~{
m cm}$ (2) પરિશામ (1) અને (2) પરથી,

$$\frac{l_1}{l_1 - 5} = \frac{4}{3}$$

$$\therefore 3l_1 = 4l_1 - 20$$

$$\therefore l_1 = 20$$
 cm અને $l_2 = 15$ cm

આમ, 0°C તાપમાને બ્રાસ અને ઍલ્યુમિનિયમના સિળયાઓની લંબાઈ અનુક્રમે 20 cm અને 15 cm લેવી જોઈએ.

ઉદાહરણ 3: T તાપમાને V કદની ઘન વસ્તુની ઘનતા ρ છે. સાબિત કરો કે તાપમાનમાં dT જેટલો સૂક્ષ્મ વધારો કરવાથી વસ્તુની ઘનતામાં $\gamma \rho dT$ જેટલો ઘટાડો થાય છે. (સૂચન : $\frac{dx^n}{dx} = n \ x^{n-1}$)

ઉકેલ :

ઘનતા
$$\rho = \frac{M}{V}$$
, (1) જ્યાં, $M = \text{વસ્તુનું } \text{દળ, અને } V = \text{વસ્તુનું } \text{કદ }$ વસ્તુનું કદ dV , તાપમાન પર આધારિત છે. તાપમાનમાં dT જેટલો વધારો કરવાથી તેના કદમાં વધારો થાય છે.

$$\therefore dV = \gamma V dT \tag{2}$$

સ્પષ્ટ છે કે કદમાં વધારો થવાથી વસ્તુની ઘનતામાં ઘટાડો થાય છે. ધારો કે ઘનતામાં થતો ઘટાડો d
ho છે.

∴ સમીકરણ (1) પરથી,

$$d\rho = -\frac{M}{V^2} dV$$

$$= -\frac{M}{V^2} \cdot \gamma V dT$$

$$= -\frac{M}{V} \gamma \cdot dT$$
(3)

 $\therefore d\rho = -\rho \gamma dT$ (4) અહીં, ૠશ નિશાની સૂચવે છે કે તાપમાનના વધારા સાથે ρ ઘટે છે.

ઉદાહરણ 4: સાબિત કરો કે અચળ દબાણે તાપમાનના વધારા સાથે આદર્શ વાયુનો કદ-પ્રસરણાંક ઘટે છે. આદર્શવાયુ માટે 0°C તાપમાને કદ-પ્રસરણાંક કેટલો હશે ?

6કેલ : આદર્શવાયુ માટે, PV = μ RT (1) અચળ દબાણે તાપમાનમાં Δ T જેટલો વધારો કરવાથી કદમાં થતો વધારો, ધારો કે Δ V છે.

$$\therefore \ P\Delta V = \mu R\Delta T \eqno(2)$$
 સમીકરણ (2)ને સમીકરણ (1) વડે ભાગતાં,

$$\frac{\Delta V}{V} = \frac{\Delta T}{T}$$

$$\therefore \ \frac{\Delta V}{V\Delta T} \ = \ \frac{1}{T}$$

$$\therefore \ \gamma = \frac{1}{T} \ (\because \Delta V = \gamma V \Delta T) \eqno(3)$$

સમીકરણ (3) દર્શાવે છે કે આદર્શ વાયુ માટે તાપમાનના વધારા સાથે કદ-પ્રસરણાંક ઘટે છે.

T = 0°C = 273.15 K તાપમાને

$$\gamma = \frac{1}{273.15} = 3.66 \times 10^{-3} \text{ K}^{-1}$$

ઉદાહરણ 5: ગ્લિસરિન (glycerine)નો કદ-પ્રસરણાંક 49×10^{-5} C°-1 છે, તો તેના તાપમાનમાં 30 C° નો વધારો કરતાં તેની ઘનતામાં થતો પ્રતિશત ઘટાડો શોધો.

ઉદેવ :
$$V = V_0 (1 + \gamma \Delta T)$$

 હવે, $V = \frac{M}{\rho}$, $V_0 = \frac{M}{\rho_0}$
 ∴ $\frac{M}{\rho} = \frac{M}{\rho_0} (1 + \gamma \Delta T)$

થરમાંડાઇનેમિક્સ 131

$$\therefore \frac{\rho_0}{\rho} = 1 + \gamma \Delta T$$

$$\therefore \frac{\rho}{\rho_0} = \frac{1}{1 + \gamma \Delta T}$$

$$\therefore \frac{\rho - \rho_0}{\rho_0} = \frac{-\gamma \Delta T}{1 + \gamma \Delta T}$$

$$= -\frac{(49)(10^{-5})(30)}{1 + (49)(10^{-5})(30)}$$

$$= -0.0145$$

∴ ઘનતામાં થતો પ્રતિશત ઘટાડો = 1.45 %

નોંધ : γ નું મૂલ્ય પ્રમાણમાં ઘણું નાનું હોવાથી, આ ઉદાહરણ તમે ઉદાહરણ 3માં મેળવેલ સૂત્ર પરથી પણ ઉકેલી શકો છો.

ઉદાહરણ 6 : જ્યારે પૃથ્વી અસ્તિત્વમાં આવી ત્યારે તેનું સરેરાશ તાપમાન 300 K હતું. હાલમાં તેનું સરેરાશ તાપમાન 3000 K છે. (પૃથ્વીના પેટાળમાં રહેલા રેડિયો-ઍક્ટિવ તત્ત્વોના વિભંજનના કારણે જે ઉષ્મા ઉત્પન્ન થઈ તેના કારણે આમ બન્યું છે). તો પૃથ્વીના જન્મકાળ વખતે તેની ત્રિજ્યા કેટલી હશે ? પૃથ્વીના દ્રવ્ય માટે $\gamma=3\times 10^{-5}~{\rm K}^{-1}$ લો. હાલની, પૃથ્વીની ત્રિજ્યા = 6400 km.

ઉકેલ :

$$V = V_0 (1 + \gamma \Delta T)$$
∴ $\frac{4}{3}\pi R^3 = \frac{4}{3}\pi R_0^3 (1 + \gamma \Delta T)$
∴ $R = R_0 (1 + \gamma \Delta T)^{\frac{1}{3}}$
∴ $R_0 = \frac{R}{(1 + \gamma \Delta T)^{\frac{1}{3}}}$

$$= \frac{6400}{[1 + (3 \times 10^{-5})(2700)]^{\frac{1}{3}}}$$

$$= 6236 \text{ km}$$

6.6 રૂપાંતરણની ઉષ્મા (ગુપ્ત ઉષ્મા) (Heat of Transformation (Latent Heat))

જ્યારે કોઈ ઘન કે પ્રવાહી પદાર્થને ઉષ્મા આપવામાં આવે, ત્યારે તેનું તાપમાન વધે જ તેવું જરૂરી નથી. ક્યારેક પદાર્થ ઉષ્માનું શોષણ કરીને બીજી અવસ્થા પ્રાપ્ત કરે છે. કોઈ ઘન પદાર્થને પિગાળીને પ્રવાહી અવસ્થામાં લાવવા માટે, એટલે કે ઘન પદાર્થના દઢ માળખામાં રહેલા અશુઓને

મુક્ત કરવા માટે, ઉષ્મા આપવી પડે છે (દા.ત., બરફનું પાણીમાં રૂપાંતરણ). તે જ રીતે જ્યારે પ્રવાહી થીજીને ઘન અવસ્થામાં રૂપાંતરણ પામે ત્યારે પ્રવાહીમાંથી ઊર્જા મુક્ત (ઓછી) થાય છે.

કોઈ પ્રવાહીનું વરાળ (વાયુ)માં રૂપાંતરણ કરવા માટે ઉષ્મા આપવી પડે છે (દા.ત., પાણીનું વરાળમાં રૂપાંતરણ). તે જ રીતે જ્યારે વાયુના અણુઓ ભેગા થઈને પ્રવાહી સ્વરૂપમાં ઠારણ પામે ત્યારે વાયુમાંથી ઊર્જા મુક્ત (ઓછી) થાય છે. વ્યાપક રીતે, એકમ દળના કોઈ પદાર્થનું એક અવસ્થા (ઘન, પ્રવાહી કે વાયુ)માંથી બીજી અવસ્થામાં રૂપાંતર કરવા માટે આપવી પડતી ઉષ્માને રૂપાંતરણની ઉષ્મા (ગુપ્ત ઉષ્મા) (Latent heat) L કહે છે. m દળના પદાર્થનું સંપૂર્ણ રીતે બીજી અવસ્થામાં રૂપાંતરણ કરવા માટે જરૂરી ઉષ્મા Q = Lm

કોઈ પ્રવાહીનું વાયુ (વરાળ)માં અથવા વાયુ (વરાળ)નું પ્રવાહીમાં રૂપાંતરણ કરવા માટે જરૂરી ઉષ્માને બાષ્યાયન ગુપ્ત ઉષ્મા (ઉત્કલન ગુપ્ત ઉષ્મા) L_v કહે છે.

સામાન્ય રીતે પાણી માટે $L_{\rm V} = 2256~{\rm kJ/kg}$ છે.

એકમ દળના ઘન પદાર્થનું પ્રવાહીમાં રૂપાંતરણ કરવા (ત્યારે પદાર્થ ઉષ્મા મેળવશે) અથવા પ્રવાહીનું ઘનમાં રૂપાંતરણ કરવા (ત્યારે પદાર્થ ઉષ્મા ગુમાવશે) માટે જરૂરી ઉષ્માને ગલનગુષ્ત ઉષ્મા $\mathbf{L}_{\mathbf{F}}$ કહે છે.

સામાન્ય રીતે પાણી માટે $L_F=333~{
m kJ/kg}$ પાણીના અમુક જથ્થા માટે તાપમાન વિરુદ્ધ ઉષ્માનો આલેખ આકૃતિ 6.11માં દર્શાવ્યો છે.

1 વાતાવરણના દબાણે પાણી માટે તાપમાન વિરુદ્ધ ઉષ્માનો આલેખ (સ્કેલમાપ મુજબ નથી.) આકૃતિ 6.11

આકૃતિ દર્શાવે છે કે જ્યારે અવસ્થા રૂપાંતરણ દરમ્યાન ઉષ્મા ઉમેરવામાં (કે ઘટાડવામાં) આવે તોપણ તાપમાન અચળ રહે છે. બધી ફેઝ રેખાઓના ઢાળ એકસરખા નથી, જે દર્શાવે છે કે જુદી-જુદી અવસ્થાઓની વિશિષ્ટ ઉષ્મા એક સરખી નથી. પાણી માટે $L_{\rm F}=333~{\rm kJ/kg}$ દર્શાવે છે કે 1 kg બરફને 0°C તાપમાને પિગાળવા માટે 333 kJ જેટલી ઉષ્મા જોઈએ છે, અને $L_{\rm V}=2256~{\rm kJ/kg}$ દર્શાવે છે કે 1 kg પાણીને 100°C તાપમાને વરાળમાં રૂપાંતરિત કરવા માટે

2256 kJ ઉષ્મા આપવી પડે છે. આથી 100°C તાપમાને રહેલા વરાળ, 100°C તાપમાને રહેલા પાણી કરતાં 2256 kJ/kg જેટલી વધુ ઉષ્મા ધરાવે છે. આ જ કારણથી મોટા ભાગે ઊકળતા પાણી કરતાં વરાળ વધારે નુકસાનકારક (દઝાડે) છે.

6.7 ઉષ્મા, આંતરિક ઊર્જા અને કાર્ય (Heat, Internal Energy and Work)

સ્થિર વાયુપાત્રમાં વાયુના અશુઓની વાયુના દ્રવ્યમાન-કેન્દ્રને અનુલક્ષીને અસ્તવ્યસ્ત ગતિના કારણે તેમને વેગમાન અને ગતિ-ઊર્જા હોય છે. વાયુના અશુઓની અસ્તવ્યસ્ત ગતિની સંભાવના દરેક દિશામાં સમાન હોવાના કારણે વાયુના અશુઓનું આ અસ્તવ્યસ્ત ગતિ સાથે સંકળાયેલ કુલ વેગમાન

શૂન્ય થશે ($\overrightarrow{P}_{int}=0$), પરંતુ અશુઓની આ અસ્તવ્યસ્ત ગતિ સાથે સંકળાયેલ કુલ ગતિ-ઊર્જા શૂન્ય થશે નહીં ($K_{int}\neq 0$).

વાયુના અશુઓની અસ્તવ્યસ્ત ગતિ સાથે સંકળાયેલ (કુલ વેગમાન શૂન્ય હોય તેવી ગતિ) કુલ ગતિ-ઊર્જાને વાયુમાં રહેલ ઉખ્મા-ઊર્જા કહે છે.

હવે જો વાયુના અશુઓ વચ્ચે આંતરક્રિયા થતી હોય તો અશુઓ આ આંતરક્રિયા સાથે સંકળાયેલ સ્થિતિ-ઊર્જા ($U_{\rm int}$) પણ ધરાવતા હોય. બીજું, વાયુ પર જો કોઈ બહારનું પરિબળ (જેમકે ગુરુત્વાકર્ષણ) આંતરક્રિયા કરતું હોય, તો સમગ્ર વાયુ વધારાની સ્થિતિ-ઊર્જા $U_{\rm ext}$ પણ ધરાવતો હોય.

વાયુ ભરેલ વાયુપાત્રની ગતિ આકૃતિ 6.12

આકૃતિ 6.12માં દર્શાવ્યા મુજબ ધારો કે વાયુ ભરેલું એક વાયુપાત્ર ગતિ કરે છે. આ કિસ્સામાં વાયુપાત્ર સાથે વાયુ પણ ગતિ કરે છે. આથી વાયુના અશુઓ અસ્તવ્યસ્ત ગતિ ઉપરાંત સરેરાશ વેગમાન $\overrightarrow{P}_{\rm ext}$ અને ગતિ-ઊર્જા $\mathbf{K}_{\rm ext}$

ધરાવે છે.

આમ, વાયુ કુલ ચાર પ્રકારની ઊર્જા ધરાવી શકે છે : (1) $K_{\rm int}$, (2) $U_{\rm int}$, (3) $K_{\rm ext}$, (4) $U_{\rm ext}$

પ્રથમ બે ઊર્જાઓના સરવાળા $(K_{int} + U_{int})$ ને વાયુની આંતરિક ઊર્જા (E_{int}) કહે છે, જ્યારે છેલ્લી બે ઊર્જાના સરવાળા $(K_{ext} + U_{ext})$ ને વાયુની યાંત્રિક-ઊર્જા કહે છે.

વાયુ સાથે સંકળાયેલ ઊર્જાની આ પરિસ્થિતિ પદાર્થના કોઈ પણ સ્વરૂપ માટે સાચી છે.

આપણે જાણીએ છીએ કે જ્યારે બે અસમાન તાપમાન-વાળા પદાર્થો એકબીજાના ઉષ્મીય સંપર્કમાં આવે ત્યારે વધુ તાપમાનવાળા પદાર્થના તાપમાનમાં ઘટાડો થાય છે અને ઓછા તાપમાનવાળા પદાર્થના તાપમાનમાં વધારો થાય છે. આમ બંને પદાર્થો વચ્ચે ઉષ્મા-ઊર્જાનો વિનિમય થાય છે. વિનિમય પામતી આ ઉષ્મા-ઊર્જા એટલે જ ઉષ્મા. એટલે કે તંત્ર અને પરિસર વચ્ચે, માત્ર તાપમાનના તફાવતના કારણે થતા ઊર્જાના વિનિમયને ઉષ્મા કહે છે.

આ પરથી સ્પષ્ટ થાય છે કે કોઈ તંત્ર ઉષ્મા-ઊર્જા ધરાવી શકે પણ ઉષ્મા ધરાવી શકે નહિ.

તંત્ર જો ઉષ્માનું શોષણ કરે, તો તેને ધન અને જો ઉષ્મા ગુમાવે તો ઋણ ગણવામાં આવે છે.

6.7.1 થરમોડાઇનેમિક્સમાં કાર્ય (Work in Thermodynamics) :

બે વસ્તુઓ વચ્ચે થતી યાંત્રિક આંતરક્રિયાને કારણે જે યાંત્રિક-ઊર્જાનો વિનિમય થાય છે, તેને કાર્ય કહે છે. આમ, કાર્ય એ યાંત્રિક આંતરક્રિયા સાથે સંકળાયેલી રાશી છે. તંત્ર યાંત્રિક-ઊર્જા ધરાવી શકે પણ કાર્ય ધરાવી શકે નહિં.

અગાઉ તમે કાર્ય વિશે ભણ્યા છો તે મુજબ તંત્ર વડે બળની વિરુદ્ધમાં થતાં કાર્યને ઋણ અને તંત્ર પર થતા કાર્યને ધન ગણાય છે. પરંતુ **થરમાંડાઇનેમિક્સમાં તંત્ર વડે થતા કાર્યને ધન અને તંત્ર પર થતા કાર્યને ઋણ લેવામાં આવે** છે. આવી સંજ્ઞા પ્રણાલીનું કારણ ઉષ્માયંત્ર (heat engine)ની કાર્યપદ્ધતિ છે કે જેમાં એન્જિન પરિસરમાંથી Q જેટલી ઉષ્મા શોષી તેનું કાર્ય W માં રૂપાંતર કરે છે. એટલે કે W જેટલી ઊર્જા તંત્રમાંથી ઓછી થાય છે.

6.7.2 અચળ તાપમાને વાયુનું સંકોચન કરતાં વાયુ પર થતા કાર્યનું સૂત્ર :

નળાકાર વાયુપાત્રમાં રહેલો μ મોલ આદર્શવાયુ આકૃતિ 6.13

આકૃતિ 6.13માં દર્શાવ્યા મુજબ એક નળાકાર પાત્રમાં પૂરતી ઓછી ઘનતાવાળો μ મોલ આદર્શવાયુ ભરી તેમાં હવા યુસ્ત અને ઘર્ષણરહિત સરકી શકે તેવો A આડછેદના ક્ષેત્રફળવાળો પિસ્ટન રાખેલો છે. નળાકારના સુવાહક તળિયે તાપમાનનું નિયંત્રણ કરી શકાય તેવું ઉષ્મા-પ્રાપ્તિસ્થાન રાખેલ છે. અચળ તાપમાને વાયુના જુદા-જુદા દબાણને અનુરૂપ કદનાં અવલોકનો લઈ આકૃતિ 6.14માં દર્શાવ્યા મુજબ P-V નો આલેખ દોરી શકાય. આવી પ્રક્રિયાઓ સમતાપી પ્રક્રિયાઓ કહેવાય, તથા P-V ના વક્રને સમતાપી વક્ર કહેવાય.

આપેલ વાયુ માટે P - V નો આલેખ (અચળ તાપમાને) આકૃતિ 6.14

ધારો કે પ્રારંભિક અવસ્થા iમાં વાયુના દબાશ અને કદ અનુક્રમે P_i અને V_i છે. વાયુનું તાપમાન T અચળ રહે તે રીતે પિસ્ટન પર બળ લગાડીને ધીમે-ધીમે વાયુનું કદ ઘટાડતાં, ધારો કે વાયુનું અંતિમ દબાશ P_f અને અંતિમ કદ V_f થાય છે.

આ પ્રક્રિયા દરમિયાન કોઈ એક તબક્કે જ્યારે વાયુનું દબાણ P હોય અને કદ V હોય, ત્યારે ધારો કે પિસ્ટન Δx જેટલું અંતર અંદરની તરફ ખસે છે. જેના કારણે વાયુના કદમાં ΔV જેટલો ઘટાડો થાય છે. આ સ્થાનાંતર એટલું સૂક્ષ્મ છે કે વાયુના દબાણ Pમાં ખાસ નોંધપાત્ર ફેરફાર થતો નથી. આથી,

$$\Delta W = F\Delta x \qquad (6.7.1)$$

$$= PA\Delta x \quad (\because F = PA)$$

$$\therefore \Delta W = P\Delta V \quad (\because A\Delta x = \Delta V)$$

આવા સૂક્ષ્મ ફેરફારોના લીધે વાયુનું કદ \mathbf{V}_i થી ઘટીને \mathbf{V}_f થતું હોય, તો આ માટે વાયુ પર થતું કુલ કાર્ય

$$W = \Sigma \Delta W = \sum_{V_i}^{V_f} P \Delta V$$
 (6.7.2)

આ સરવાળામાં $\lim_{\Delta V o 0}$ લક્ષ લેતાં, સરવાળો સંકલનમાં પરિણમે છે.

$$\therefore W = \int_{V_i}^{V_f} P dV$$
 (6.7.3)

પરંતુ અચળ તાપમાને μ મોલ વાયુના જથ્થા માટે આદર્શવાયુ અવસ્થા-સમીકરણ મુજબ

$$PV = \mu RT$$

$$\therefore P = \frac{\mu RT}{V}$$

દબાણની આ કિંમત સમીકરણ (6.7.3)માં મૂકતાં,

$$W = \int_{V_i}^{V_f} \frac{\mu RT}{V} dV$$
 (6.7.4)

$$\therefore W = \mu RT \int_{V_i}^{V_f} \frac{dV}{V}$$

$$= \mu RT [ln V]_{V_i}^{V_f}$$

$$= \mu RT [ln V_f - ln V_i]$$

$$\therefore W = \mu RT ln \frac{V_f}{V_i}$$
(6.7.5)

સમીકરણ (6.7.5)માં $\mathbf{V}_f < \mathbf{V}_i$ હોવાથી $\ln \frac{\mathbf{V}_f}{\mathbf{V}_i} < 0.$ આથી કાર્ય \mathbf{W} નું મૂલ્ય ઋણ મળે છે, જે દર્શાવે છે કે અચળ તાપમાને વાયુનું સંકોચન કરતાં વાયુ પર કાર્ય થાય છે.

જો અચળ તાપમાને વાયુનું પ્રસરણ કરવામાં આવે (કદ વધતું હોય), તો $\mathbf{V}_f > \mathbf{V}_i$ થવાથી સમીકરણ (6.7.5)માં $\ln \frac{\mathbf{V}_f}{\mathbf{V}_i} > 0 \, \, \text{મળે. } \, \mathbf{\mathring{v}}$ થવાથી સમીકરણ છે. જે દર્શાવે છે કે વાયુના કદપ્રસરણ દરમિયાન વાયુ વડે કાર્ય

થાય છે.

6.7.3 અચળ કદ અને અચળ દબાશે થતું કાર્ય :

સમીકરણ (6.7.5) આદર્શ વાયુ માટે દરેક થરમાંડાઇનેમિક પ્રક્રિયા દરમિયાન થતું કાર્ય W નથી આપતું, પરંતુ તે ફક્ત સમતાપી પ્રક્રિયા માટે થતું કાર્ય જ આપે છે. જો તાપમાન બદલાતું હોય તો સમીકરણ (6.7.4)માં તાપમાન Tને સંકલનની બહાર ન લઈ શકાય અને પરિણામે સમીકરણ (6.7.5) મળે નહિ.

સમીકરણ (6.7.3)માં જો વાયુનું કદ V અચળ રાખવામાં આવે, તો ($dV=\Delta V=0$ થવાથી)

$$W = 0$$
 (અંચળ કદ માટે) (6.7.6)

તે જ રીતે જો કદ બદલાતું હોય, પરંતુ દબાણ P અચળ રહેતું હોય તો સમીકરણ (6.7.3) પરથી,

$$\mathbf{W} = \mathbf{P} \int_{\mathbf{v}_i}^{\mathbf{v}_f} d\mathbf{V} = \mathbf{P}[\mathbf{V}]_{\mathbf{v}_i}^{\mathbf{v}_f}$$

$$= P[V_f - V_i]$$

$$\therefore$$
 W = P Δ V (અચળ દબાણ માટે) (6.7.7)

ઉદાહરણ 7:(a) એક મોલ ઑક્સિંજન (આદર્શ વાયુ તરીકે ગણતાં)નું 310 K જેટલા અચળ તાપમાને પ્રસરણ કરતાં તેનું કદ $V_i=12$ Lથી વધીને $V_f=19$ L થાય છે. આ પ્રસરણ દરમિયાન વાયુ વડે કેટલું કાર્ય થયું હશે ? (b) આ તાપમાન અચળ રાખીને 1 મોલ ઑક્સિંજનનું કદ 19 Lથી ઘટાડીને 15 L કરવા માટે બાહ્ય બળ વડે વાયુતંત્ર પર કેટલું કાર્ય કરવું પડે ?

$$(R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1})$$

(३देख :

$$T = 310 \text{ K}$$

$$V_i = 12 L$$

$$V_f = 19 L$$

અહીંયા, ઑક્સિજનનું પ્રસરણ સમતાપી પ્રક્રિયા હોવાથી,

$$\therefore W = \mu RT \ln \frac{V_f}{V_i}$$

$$= 1 \times 8.31 \times 310 \times ln \frac{19}{12}$$

$$W = 1183.6 \text{ J}$$

જે દર્શાવે છે કે સમતાપી પ્રસરણ દરમ્યાન ઑક્સિજન વડે 1183.6 Joule જેટલું કાર્ય થયું હશે.

(b) બીજા કિસ્સામાં,

$$\mu = 1$$
 મોલ

$$T = 310 \text{ K}$$

$$V_i = 19L$$

$$V_f = 15 L$$

અહીંયા ઑક્સિજનનું સંકોચન પણ સમતાપી પ્રક્રિયા હોવાથી,

$$\therefore W = \mu RT \ln \frac{V_f}{V_i}$$

$$\therefore W = 1 \times 8.31 \times 310 \times ln \left(\frac{15}{19}\right)$$

∴
$$W = -608.7 J$$

એટલે કે સમતાપી સંકોચન દરમિયાન ઑક્સિજન વડે થયેલું કાર્ય -608.7~J છે. એટલે કે, બાહ્ય બળ વડે ઑક્સિજનનું સંકોચન (19~L થી 15~L) કરવા માટે થયેલું કાર્ય 608.7~Joule જેટલું હશે.

6.7.4 ઉપ્મા અને કાર્યની વિશેષ સમજૂતી (More understanding of Heat and Work) :

ધારો કે કોઈ એક તંત્રને ધીમે-ધીમે (દરેક તબક્કે તંત્ર અને પરિસર વચ્ચે તાપીય સંતુલન જળવાતું રહે તે રીતે) પ્રારંભિક અવસ્થા 1માંથી અંતિમ અવસ્થા 2 સુધી લઈ જવામાં આવે છે. આ માટેના જુદા-જુદા માર્ગો (પ્રક્રિયાઓ) આકૃતિ 6.15માં દર્શાવ્યા છે.

તંત્રને પ્રારંભિક અવસ્થાથી અંતિમ અવસ્થા સુધી લઈ જવાના જુદા-જુદા માર્ગો

આકૃતિ 6.15

આ પ્રક્રિયાઓ દરમિયાન થતું કાર્ય સમીકરણ (6.7.3)

પરથી $W=\int\limits_{1}^{2}PdV$, મુજબ શોધી શકાય છે. સંકલનનું આ મૂલ્ય અવસ્થા 1 અને 2 ને જોડતા માર્ગ વડે V-અક્ષ સાથે ઘેરાયેલા ક્ષેત્રફળ જેટલું હોય છે. આમ, તંત્રને પ્રારંભિક અવસ્થા 1 થી અંતિમ અવસ્થા 2 સુધી 1a2, 1c2 અને 1b2

માર્ગ લાવતાં તંત્ર વડે થતું કાર્ય આકૃતિ 6.16માં પ્રક્રિયા માર્ગ વડે ઘેરાયેલા ક્ષેત્રફળ વડે અનુક્રમે દર્શાવેલ છે.

આકૃતિ 6.16 દર્શાવે છે કે તંત્રને અવસ્થા 1થી અવસ્થા 2 સુધી લાવતાં તંત્ર વડે થતું કાર્ય 1a2 માર્ગ પર મહત્તમ (મહત્તમ ક્ષેત્રફળ) થાય છે, જ્યારે લઘુતમ કાર્ય 1b2 માર્ગ પર (લઘુતમ ક્ષેત્રફળ) થાય છે.

જો તંત્રને 2a1, 2c1 અથવા 2b1 માર્ગ અવસ્થા 2 પરથી અવસ્થા 1 પર લઈ જવામાં આવે તો (કદમાં ઘટાડો થતો હોવાથી ΔV ૠણ થશે) થતું કાર્ય ૠણ મળે છે, જે દર્શાવે છે કે તંત્ર પર બાહ્ય બળ વડે કાર્ય થાય છે.

આકૃતિ 6.17માં દર્શાવ્યા મુજબ કોઈ તંત્રને પ્રારંભિક અવસ્થા 1થી 1a2 માર્ગે અવસ્થા 2 સુધી લઈ જઈને પાછું 2b1 માર્ગે પ્રારંભિક અવસ્થા 1 સુધી લાવવામાં આવે, તો આવી પ્રક્રિયા ચક્રીય પ્રક્રિયા કહેવાય. આ ચક્રીય પ્રક્રિયા દરમિયાન તંત્ર વડે થતું કુલ કાર્ય બંધ વક્ર વડે ઘેરાયેલા ક્ષેત્રફળ જેટલું હોય છે. (1a2 માર્ગે તંત્ર વડે થતું કાર્ય ધન હોય છે, જયારે 2b1 માર્ગે તંત્ર પર કાર્ય થતું હોવાથી તંત્ર વડે થતું કાર્ય ઋષ્ણ હોય છે. આથી 1a2b1 માર્ગે થતું કુલ કાર્ય બંધ વક્ર વડે ઘેરાયેલ ક્ષેત્રફળ જેટલું હોય છે.)

6.8 થરમાંડાઇનેમિક્સનો પ્રથમ નિયમ (First Law of Thermodynamics)

ધારો કે કોઈ એક તંત્ર ઉષ્માનું શોષણ કરે છે અને તેના વડે (તંત્ર વડે) કાર્ય થાય છે. તંત્રને પ્રારંભિક અવસ્થા i માંથી અંતિમ અવસ્થા f માં લઈ જવા માટે જુદા-જુદા અનેક માર્ગો (પ્રક્રિયાઓ) વિચારી શકાય.

તંત્રને પ્રારંભિક અવસ્થા *i*માંથી અંતિમ અવસ્થા *f*માં લઈ જવા માટેના માર્ગો

આકૃતિ 6.18

આકૃતિ 6.18માં દર્શાવ્યા મુજબ ધારો કે માર્ગો iaf, ibf, icf દરિમિયાન તંત્ર દ્વારા શોષાતી ઉષ્મા અનુક્રમે \mathbf{Q}_a , \mathbf{Q}_b , \mathbf{Q}_c અને તંત્ર વડે થતા કાર્યનાં મૂલ્યો અનુક્રમે \mathbf{W}_a , \mathbf{W}_b , \mathbf{W}_c છે. અહીંયાં $\mathbf{Q}_a \neq \mathbf{Q}_b \neq \mathbf{Q}_c$ તથા $\mathbf{W}_a \neq \mathbf{W}_b \neq \mathbf{W}_c$ હોય છે, પરંતુ આ દરેક માર્ગ માટે ઉષ્મા અને કાર્યનો તફાવત લેવામાં આવે તો તેનું મૂલ્ય એકસરખું આવે છે. એટલે કે,

$$Q_a - W_a = Q_b - W_b = Q_c - W_c.$$

આમ, તંત્રને કોઈ પ્રારંભિક અવસ્થા *i* પરથી અંતિમ અવસ્થા *f* સુધી લઈ જવામાં આવે, તો ઉષ્મા Q અને કાર્ય W નાં મૂલ્યો, પ્રક્રિયા (માર્ગ) પર આધાર રાખે છે. પરંતુ Q — Wનું મૂલ્ય પ્રક્રિયા પર આધાર રાખતું નથી. Q — Wનું મૂલ્ય ફક્ત તંત્રની પ્રારંભિક અને અંતિમ અવસ્થા પર જ આધાર રાખે છે.

આ ચર્ચા પરથી કહી શકાય કે તંત્રની જુદી-જુદી ઘરમોડાઇનેમિક અવસ્થા માટે એક એવું ઘરમોડાઇનેમિક અવસ્થા માટે એક એવું ઘરમોડાઇનેમિક અવસ્થા-વિધેય વ્યાખ્યાયિત કરી શકાય કે કોઈ પણ બે અવસ્થા વચ્ચે તેના મૂલ્યનો તફાવત Q — W જેટલો થાય. આ વિધેયને તંત્રની આંતરિક ઊર્જા (internal energy) E_{in} કહે છે.

તંત્રને Q જેટલી ઊર્જા, ઉષ્મા-ઊર્જા રૂપે મળે છે અને W જેટલી ઊર્જા તંત્ર દ્વારા કાર્ય થતાં તંત્રમાંથી ઓછી થાય છે. આમ, તંત્રની આંતરિક ઊર્જામાં Q-W જેટલો ફેરફાર થાય છે.

તંત્રની પ્રારંભિક અવસ્થા i અને અંતિમ અવસ્થા f માં તંત્રની આંતરિક ઊર્જાઓ અનુક્રમે \mathbf{E}_i અને \mathbf{E}_f હોય તો,

$$\mathbf{E}_f - \mathbf{E}_i = \Delta \mathbf{E}_{\text{int}} = \mathbf{Q} - \mathbf{W}$$
 (6.8.1)
જે થરમાંડાઇનેમિક્સનો પ્રથમ નિયમ છે.

જો તંત્રને Q જેટલી ઉખ્મા મળતી હોય, તો તેની આંતરિક ઊર્જા $E_{\rm int}$ વધે છે, જ્યારે તંત્ર વડે થતાં કાર્ય W દરમિયાન તેની આંતરિક ઊર્જા ઘટે છે.

કુદરતમાં થતા કોઈ પણ ફેરફારો દરમિયાન થરમોડાઇનેમિક્સનો પ્રથમ નિયમ પળાય છે.

ઉદાહરણ 8: આકૃતિ 6.19માં દર્શાવ્યા મુજબ 100 °C તાપમાને રહેલ 1.00 kg પાણીનું 1.00 વાતાવરણના દબાણે ગરમ કરીને 100 °C તાપમાને વરાળમાં રૂપાંતર કરવામાં આવે છે. આ પ્રક્રિયા દરમ્યાન પાણીનું પ્રારંભિક કદ $1.00 \times 10^{-3} \ m^3$ થી વધીને વરાળના કદ $1.671 \ m^3$ જેટલું થાય છે.

(a) આ પ્રક્રિયા દરિમયાન તંત્ર વડે કેટલું કાર્ય થયું હશે ? (b) આ પ્રક્રિયા દરિમયાન કેટલી ઉષ્માનો વિનિમય થયો હશે ? (c) આ પ્રક્રિયા દરિમયાન તંત્રની આંતરિક ઊર્જામાં કેટલો ફેરફાર થયો હશે ?

પાણી માટે
$$L_{
m V} = 2256 \; rac{{
m kJ}}{{
m kg}}$$

અચળ દબાણે ઊકળતું પાણી આકૃતિ 6.19

ઉકેલ :

(a)
$$V_i = 1.00 \times 10^{-3} m^3$$
, $V_f = 1.671 m^3$

$$P = 1.00 \text{ atm} = 1.01 \times 10^5 P_a$$

અહીંયા અચળ દબાણે કદમાં વધારો થતો હોવાથી તંત્ર વડે થતું કાર્ય ધન હશે, જેનું મૂલ્ય

$$W = \int_{V_i}^{V_f} P dV = P \int_{V}^{V_f} dV$$

(P અચળ હોવાથી સંકલનની બહાર લઈ શકાય.)

$$= P[V]_{V_i}^{V_f} = P[V_f - V_i]$$

$$W = 1.01 \times 10^5 \times [1.671 - 1.00 \times 10^{-3}]$$
$$= 1.69 \times 10^5$$

$$\therefore W = 169 \text{ kJ} \tag{1}$$

(b) 100°C તાપમાને ઊકળતા પાણીનું 100°C તાપમાને રહેલી બાષ્યમાં રૂપાંતર થતું હોવાથી, તંત્રને મળતી ઉષ્મા,

$$Q = L_V m$$

= 2256 × 1.00
∴ $Q = 2256 \text{ kJ}$ (2)

(c) થરમૉડાઇનેમિક્સના પ્રથમ નિયમ મુજબ, તંત્રની આંતરિક ઊર્જામાં થતો ફેરફાર

$$\Delta E_{int} = Q - W = 2256 - 169$$

$$= 2087 \text{ kJ}$$
(3)

 ΔE_{int} ધન છે, જે દર્શાવે છે કે તંત્રની આંતરિક ઊર્જામાં વધારો થાય છે. આ ઊર્જા પાણીના અશુઓને પાણીની સપાટી પરથી મુક્ત કરીને બાષ્ય (વરાળ)માં રૂપાંતરિત કરવામાં વપરાય છે.

6.9 ઉષ્માધારિતા અને વિશિષ્ટ ઉષ્મા (Heat Capacity and Specific Heat)

પદાર્થમાં જેમ વધારે અને વધારે ઉષ્મા ઉમેરતાં જઈએ તેમ તેનું તાપમાન પણ વધતું જાય છે. જુદા-જુદા પદાર્થી માટે તાપમાનનો સમાન ફેરફાર કરવા માટે જરૂરી ઉષ્માનો જથ્થો જુદો-જુદો હોય છે. વિજ્ઞાનીઓએ એક કિલોગ્રામ શુદ્ધ પાણીનું તાપમાન 14.5 °Cથી 15.5 °C સુધી વધારવા માટે જરૂરી ઉષ્માના જથ્થાને એક કિલો કેલરી તરીકે વ્યાખ્યાયિત કરેલ છે. એક કિલો કેલરીના હજારમાં ભાગને એક કેલરી કહે છે.

પદાર્થને આપેલ ઉષ્મા Q અને તદ્નુરૂપ તેના તાપમાનના ફેરફાર ∆Tના ગુશોત્તરને પદાર્થની ઉષ્માધારિતા (heat capacity, H_c) કહે છે. એટલે કે,

$$H_{C} = \frac{Q}{\Lambda T} \tag{6.9.1}$$

 H_C નો SI એકમ J K^{-1} અથવા cal/K

પદાર્થની ઉષ્માધારિતાનું મૂલ્ય પદાર્થની જાત તેમજ પદાર્થના દળ પર પણ આધારિત છે. એક જ દ્રવ્યના બનેલા જુદા-જુદા દળવાળા પદાર્થોની ઉષ્માધારિતા જુદી-જુદી હોય છે.

ઉષ્માધારિતા (heat capacity)નો મતલબ કાંઈ ડોલની કેપેસિટી (ધારિતા) જેવો નથી કે તે કેટલું પાણી ધારણ કરી શકશે. પદાર્થ અમુક ઉષ્મા ધરાવી શકતો હશે કે શોષી શકતો હશે તેવો અર્થ પણ નથી. ઉષ્માનું શોષણ કે ઉત્સર્જન ત્યાં સુધી ચાલુ રહે છે કે જ્યાં સુધી જરૂરી તાપમાનનો તફાવત જળવાઈ રહે. આ પ્રક્રિયા દરમિયાન પદાર્થ પીગળી કે બાષ્યમાં રૂપાંતરિત પણ થઈ શકે છે.

પદાર્થના એકમ દળ દીઠ તેના તાપમાનમાં એક એકમ જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે પદાર્થના દ્રવ્યની વિશિષ્ટ ઉષ્મા (C) કહે છે. વિશિષ્ટ ઉષ્માનો એકમ cal g⁻¹K⁻¹ અથવા J kg⁻¹ K⁻¹ છે. આમ,

$$\therefore C = \frac{Q/\Delta T}{m} = \frac{Q}{m\Delta T}$$
 (6.9.2)

યાદ રહે કે તાંબાના સિક્કા માટે ઉષ્માધારિતા સિક્કાની છે તેમ કહેવાય, પરંતુ વિશિષ્ટ ઉષ્મા તો તાંબાની જ કહેવાય. ઉષ્મા ધારિતા કે વિશિષ્ટ ઉષ્મા એ બંનેમાંથી કોઈ રાશિ અચળ નથી અને તેમનાં મૂલ્યો તાપમાનનો ગાળો ΔT કયા તાપમાને લેવાયો છે, તેના પર આધાર રાખે છે. સમીકરણો (6.9.1) અને (6.9.2) તે ગાળા દરમિયાનનાં તેમના સરેરાશ મૂલ્યો આપે છે. સમીકરણ (6.9.2) પરથી,

$$Q = mC\Delta T (6.9.3)$$

ટેબલ 6.2 માં ઓરડાના તાપમાને કેટલાક પદાર્થોની વિશિષ્ટ ઉષ્માનાં મુલ્યો માહિતી માટે આપેલ છે.

> ટેબલ 6.2 ઓરડાના તાપમાને પદાર્થોની વિશિષ્ટ ઉષ્મા (માત્ર જાણકારી માટે)

પદાર્થ	વિશિષ્ટ	ઉષ્મા	મોલર વિશિષ્ટ ઉષ્મા
	Cal g-1K-1	J kg-1K-1	J mol ⁻¹ K ⁻¹
ચાંદી	0.0564	236	25.5
તાંબું	0.0923	386	24.5
ઍલ્યુમિનિય મ	0.215	900	24.4
બરફ(−10°C)	0.530	2220	-
પાણી	1.00	4190	-
સમુદ્રનું પાણી	0.93	3900	-

6.9.1 વાયુની વિશિષ્ટ ઉષ્માઓ (Specific heats of gases) :

સિમેસ્ટર Iમાં વાયુનો ગતિવાદ પ્રકરણમાં તમે વિશિષ્ટ ઉષ્મા અને વાયુની મોલર વિશિષ્ટ ઉષ્માનો અભ્યાસ કર્યો હતો. આ વ્યાખ્યાઓ ફરીથી યાદ કરીને વાયુની વિશિષ્ટ ઉષ્માઓ વચ્ચેનો સંબંધ પ્રસ્થાપિત કરીશું.

મોલર વિશિષ્ટ ઉપ્મા : વાયુના એક મોલ દીઠ તેના તાપમાનમાં 1K (અથવા 1 C°) જેટલો ફેરફાર કરવા માટે જરૂરી ઉપ્માના જથ્થાને તે વાયુની મોલર વિશિષ્ટ ઉપ્મા કહે છે.

કેટલાક પદાર્થોની મોલર વિશિષ્ટ ઉષ્માનાં મૂલ્યો ટેબલ 6.2 માં જાશ સારું આપેલ છે.

અચળ કદે વિશિષ્ટ ઉષ્મા (C_v)

એક મોલ વાયુનું કદ અચળ રાખી તેના તાપમાનમાં એક કેલ્વિન જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની અચળ કદે વિશિષ્ટ ઉષ્મા $\mathbf{C}_{\mathbf{v}}$ કહે છે.

138 ભૌતિકવિશાન

અચળ દબાણે વિશિષ્ટ ઉષ્મા (C_p)

એક મોલ વાયુનું દબાશ અચળ રાખી તેના તાપમાનમાં એક કૅલ્વિન જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની અચળ દબાશે વિશિષ્ટ ઉષ્મા C_p કહે છે.

C_p અને C_v વચ્ચેનો સંબંધ :

થરમૉડાઇનેમિક્સના પ્રથમ નિયમ મુજબ, અતિ સૂક્ષ્મ ફેરફારો માટે

$$d\mathbf{E}_{\mathrm{int}} = d\mathbf{Q} - d\mathbf{W}$$

$$\therefore d\mathbf{Q} = d\mathbf{E}_{\mathrm{int}} + d\mathbf{W}$$

$$\therefore d\mathbf{Q} = d\mathbf{E}_{\mathrm{int}} + Pd\mathbf{V}$$
પરંતુ અચળ કંદે $d\mathbf{V} = 0$ હોવાથી
$$d\mathbf{Q} = d\mathbf{E}_{\mathrm{int}}$$

$$\therefore \left(\frac{dQ}{dT}\right)_{V} = \left(\frac{dE_{int}}{dT}\right)_{V}$$

વાયુનો ગતિવાદ પ્રકરણ (સિમેસ્ટર I)માં તમે ભણ્યા, તે મુજબ જે વાયુના અશુઓની મુક્તતાના અંશો f હોય તેવા એક મોલ વાયુની આંતરિક ઊર્જા

$$E_{int} = \frac{fRT}{2} (\mu = 1)$$
 (6.9.5)

$$\left(\frac{dQ}{dT}\right)_{V} = C_{V} = \left(\frac{dE_{int}}{dT}\right)_{V} = \frac{fR}{2}$$
 (6.9.6)

તે જ રીતે સમીકરણ (6.9.4)માં અચળ દબાણે એક મોલ વાયુને ઉખ્મા આપતાં,

$$(dQ)_{P} = dE_{int} + PdV$$

પરંતુ, એક મોલ (આદર્શ) વાયુ માટે
 $PV = RT \quad (\mu = 1)$
 $\therefore PdV = RdT$
આથી,
 $(dQ)_{P} = dE_{int} + RdT$

$$\therefore \left(\frac{dQ}{dT}\right)_{P} = \left(\frac{dE_{int}}{dT}\right)_{P} + R$$

અહીં સમીકરણ (6.9.5)નો ઉપયોગ કરતાં,

$$\left(\frac{dQ}{dT}\right)_{p} = C_{p} = \frac{fR}{2} + R \tag{6.9.7}$$

સમીકરણ (6.9.6) અને (6.9.7) પરથી,

$$C_{p} - C_{v} = R \tag{6.9.8}$$

અચળ દબાણે વિશિષ્ટ ઉષ્મા \mathbf{C}_{p} અને અચળ કદે વિશિષ્ટ ઉષ્મા \mathbf{C}_{v} ના ગુણોત્તરને γ વડે દર્શાવવામાં આવે છે. આથી,

$$\gamma = \frac{C_{P}}{C_{V}} = \frac{\frac{fR}{2} + R}{\frac{fR}{2}} = \frac{fR + 2R}{fR}$$

$$\therefore \gamma = \frac{f+2}{f} = 1 + \frac{2}{f} \tag{6.9.9}$$

એક પરમાણ્વિક વાયુની મુક્તતાના અંશો f=3 હોય છે. આથી એક પરમાણ્વિક અણવાળા વાયુ માટે

$$C_{V} = \frac{3R}{2}$$
, $C_{P} = \frac{5R}{2}$, $\gamma = \frac{5}{3}$

દ્ધિ-પરમાણ્વિક વાયુ (rigid rotator) માટે f=5

$$C_V = \frac{5R}{2}$$
 , $C_P = \frac{7R}{2}$, $\gamma = \frac{7}{5}$

તથા દ્વિ-પરમાણ્વિક વાયુ (with vibrations) માટે f=7

$$\therefore C_{V} = \frac{7R}{2}, C_{P} = \frac{9R}{2}, \gamma = \frac{9}{7}$$

દ્ધિ-પરમાણ્વિક અને બહુ-પરમાણ્વિક વાયુઓ માટે વિશિષ્ટ ઉષ્માનાં મૂલ્યો પ્રમાણમાં ઊંચાં છે. વાયુના અશુમાં પરમાણુઓની સંખ્યા વધવાની સાથે વિશિષ્ટ ઉષ્માનાં મૂલ્યોમાં પણ વધારો જોવા મળે છે. આનો અર્થ એ થાય કે બહુ-પરમાણ્વિક અશુઓને ગરમ કરવા માટે વધારે ઉષ્મા જોઈએ છે, જેનું કારણ આ મુજબ છે. એક-પરમાણ્વિક અશુઓ ફક્ત રેખીય ગતિ-ઊર્જા ધરાવતા હોય છે. આથી તેમને ઉષ્મા આપતાં તેમની રેખીય ગતિ ઊર્જા વધે છે. જ્યારે બહુ પરમાણ્વિક અશુઓ તેમની મુક્ત રેખીય ગતિ ઉપરાંત ચાકગતિ અને દોલનગતિ પણ ધરાવતા હોય છે. આથી આ વાયુઓને ઉષ્મા આપતાં તે ઉષ્મા અશુઓની ઉપરોક્ત ત્રણેય પ્રકારની ગતિઓની ઊર્જા વધારવા માટે વપરાતી હોવાથી તેમને વધુ ઉષ્મા આપવી પડે છે. આમ, બહુપરમાણ્વિક અશુઓની વિશિષ્ટ ઉષ્મા વધુ હોય છે.

ઉદાહરણ 9 : (a) -10°C તાપમાને રહેલા 720 gના બરફના એક ટુકડાને 0°C તાપમાને પાણીમાં રૂપાંતરિત કરવા માટે કેટલી ઉષ્મા આપવી પડે ? થરમાં ડાઇનેમિક્સ 139

(b) 0°C તાપમાને રહેલા આ પાણીનું તાપમાન વધારીને 100°C કરવા માટે કેટલી ઉષ્મા આપવી પડે ?

- (c) 100°C તાપમાને રહેલા પાણીને સંપૂર્ણપણે બાષ્યમાં રૂપાંતરિત કરવા માટે કેટલી ઉષ્મા આપવી પડે ?
- (d) −10°C તાપમાને રહેલા 720 g બરફનું સંપૂર્શ રીતે બાષ્યમાં રૂપાંતરણ કરવા માટે કુલ કેટલી ઉષ્મા આપવી પડે ?

$$(C_{ice} = 2220 \text{ J kg}^{-1} \text{ K}^{-1}, C_{water} = 4190 \text{ J kg}^{-1} \text{ K}^{-1},$$

 $L_F = 333 \text{ kJ/kg}, L_V = 2256 \text{ kJ/kg})$

ઉકેલ : (a) જયાં સુધી બરફનું તાપમાન ગલનબિંદુ સુધી નહીં જાય, ત્યાં સુધી બરફ ઓગળશે નહિ. આથી બરફનું તાપમાન $T_i = -10^{\circ}\text{C}$ થી $T_f = 0^{\circ}\text{C}$ સુધી લઈ જવા (ત્યાર બાદ બરફ પીગળવાનું શરૂ થશે) માટે આપવી પડતી ઉષ્મા

$$Q_1 = C_{ice} m (T_f - T_i)$$
 whi.

 ${
m C}_{
m ice} = -10^{
m o}{
m C}$ તાપમાને રહેલા બરફની વિશિષ્ટ ઉષ્મા $= 2220~{
m rac{J}{k\,{
m g}~K}}$

$$\therefore Q_1 = (2220) (0.720) [0 - (-10)]$$
$$= 15,984 J$$

$$\therefore Q_1 = 15.98 \text{ kJ}$$
 (1)

જ્યાં સુધી બરફ પૂરેપૂરો પીગળી નહિ જાય ત્યાં સુધી તેનું તાપમાન 0°C થી વધશે નહિ. આથી બરફને પૂરેપૂરો પિગાળવા માટે આપવી પડતી ઉષ્મા

$$Q_2 = L_F m = (333) (0.720)$$

 $\therefore Q_2 = 239.8 \text{ kJ}$ (2)

(b) હવે ${
m T}_i=0$ °C તાપમાને રહેલા 0.720 kg પાણીનું તાપમાન ${
m T}_f=100$ °C સુધી વધારવા માટે આપવી પડતી ઉષ્મા

$$Q_3 = C_{\text{water}} \ m(T_f - T_i)$$

$$\therefore Q_3 = (4190) (0.720) (100 - 0)$$

$$\therefore Q_3 = 301680$$

$$\therefore Q_3 = 301.68 \text{ kJ}$$
 (3)

(c) 100°C તાપમાને રહેલા પાણીનું સંપૂર્ણપણે બાષ્યમાં રૂપાંતરણ કરવા માટે આપવી પડતી ઉખ્મા

$$Q_4 = L_V m$$

= (2256) (0.720)
 $\therefore Q_4 = 1624.32 \text{ kJ}$ (4)

(d) −10°C તાપમાને રહેલા 720 g બરફનું સંપૂર્ણપણે બાષ્યમાં રૂપાંતર કરવા માટે આપવી પડતી કુલ ઉષ્મા

$$Q = Q_1 + Q_2 + Q_3 + Q_4$$

$$\therefore Q = 2181.78 \text{ kJ}$$
 (5)

ઉદાહરણ 10 : −10°C તાપમાને રહેલા 1 kg બરફને 210 kJ ઉષ્મા આપવામાં આવે, તો મળતા પાણીનું દ્રવ્યમાન અને તાપમાન કેટલું હશે ?

$$(C_{ice} = 2220 \text{ J kg}^{-1} \text{ K}^{-1})$$

ઉકેલ : બરફનું દળ m = 1 kg

બરફનું તાપમાન $\mathbf{T}_i = -\ 10^{\circ}\mathrm{C}$ થી $\mathbf{T}_f = 0^{\circ}\mathrm{C}$, સુધી લઈ જવા માટે આપવી પડતી ઉપ્મા

$$Q_{1} = C_{ice} m(T_{f} - T_{i})$$

$$= 2220 \times 1 \times [0 - (-10)]$$

$$= 22200 J$$

$$\therefore Q_{1} = 22.2 kJ$$
 (1)

જયાં સુધી બરક પૂરેપૂરો પીગળી ન જાય ત્યાં સુધી તેનું તાપમાન 0°C થી વધશે નિષ્ઠ. બરકને આપવામાં આવેલી ઉષ્મા $Q_1=210~\mathrm{kJ}$ છે. જેમાંથી $Q_1=22.2~\mathrm{kJ}$ જેટલી ઉષ્મા બરકનું તાપમાન -10°C થી 0°C સુધી લઈ જવામાં વપરાઈ ગઈ છે. આથી 0°C તાપમાને આવ્યા પછી બરકને મળેલી ચોષ્ખી ઉષ્મા

$$Q' = Q - Q_1 = 210 \text{ kJ} - 22.2 \text{ kJ}$$

 $\therefore Q' = 188.8 \text{ kJ}$ (2)

આ ઉષ્મા વડે પીગળેલો બરફનો જથ્થો (દળ)

$$m = \frac{Q'}{L_F} = \frac{188.8}{333}$$

$$m = 0.564 \text{ kg}$$
 (3)

જે દર્શાવે છે કે 1 kg બરફમાંથી 0.564 kg જેટલો બરફ પીગળ્યો છે. (એટલે કે 0.564 kg જેટલું પાણી બન્યું છે) અને 1 kg - 0.564 kg = 0.436 kg જેટલો બરફ પીગળ્યા વગરનો છે. આમ 1 kg બરફમાંથી મળતાં પાણીનું દ્રવ્યમાન m = 0.564 kg (4)

એકનું એક પરિણામ મેળવવાની રીતો ઘણી વખત જુદી-જુદી હોઈ શકે છે. થરમાંડાઇનેમિક્સમાં પણ કેટલીક વખત એકનું એક પરિણામ ઘણી રીતે મેળવી શકાય છે. જેમકે નળાકાર અને હવાચુસ્ત, ઘર્ષણરહિત સરકતા પિસ્ટનની સંરચનામાં ભરેલા વાયુનું તાપમાન વધારવું હોય તો પિસ્ટન પર ઝડપથી દબાણ વધારી વાયુનું તાપમાન વધારી શકાય અથવા બહારથી જ્યોત વડે નળાકારને ગરમ કરી તેમાં રહેલા વાયુનું તાપમાન વધારી શકાય. આમ, થરમાં ડાઇનેમિક્સમાં તંત્ર અને પરિસર વચ્ચે થતી આંતરક્રિયાઓ પરની શરતો ઘણી અગત્યની છે અને તેવી શરતો મુજબ તેને ચોક્ક્સ પ્રક્રિયા તરીકે ઓળખવામાં આવે છે, તો ચાલો આવી કેટલીક પ્રક્રિયાઓનો આપણે અભ્યાસ કરીએ.

સમદાબ પ્રક્રિયા (Isobaric process) : "જે પ્રક્રિયા દરમિયાન તંત્રનું દબાશ અચળ રહે છે, તે પ્રક્રિયાને સમદાબ પ્રક્રિયા કહે છે."

આ પ્રક્રિયા દરમિયાન તંત્રની થરમૉડાઇનેમિક સંતુલન અવસ્થાઓ બદલાતી જશે. વચગાળાની સંતુલિત અવસ્થાઓ દરમિયાન તંત્રના થરમૉડાઇનેમિક વિધેયોનાં ચોક્કસ મૂલ્યો અસ્તિત્વ ધરાવતાં હોય છે. તે પરથી આ પ્રક્રિયા માટે P – V આલેખ દોરતાં તે V-અક્ષને સમાંતર સુરેખા મળશે.

સમીકરણ (6.7.3) પરથી
$$\mathrm{W}=\int\limits_{\mathrm{V}_{i}}^{\mathrm{V}_{f}}\mathrm{P}d\mathrm{V}$$

P અચળ હોવાથી, W =
$$\Pr \int\limits_{V_i}^{V_f} dV$$
 = $\Pr(V_f - V_i)$ (6.10.1)

સમકદ પ્રક્રિયા (Isochoric process): આ પ્રક્રિયા દરમિયાન તંત્રનું કદ અચળ રહેતું હોય છે. આવી પ્રક્રિયા દરમિયાન તંત્ર પર કે તંત્ર વડે કોઈ કાર્ય થતું ન હોવાથી થરમોડાઇનેમિક્સના પ્રથમ નિયમ મુજબ $Q = \Delta E_{int}$ થશે. આમ, સમકદ ફેરફાર દરમિયાન તંત્રની આંતરિક ઊર્જાનો ફેરફાર તંત્ર વડે વિનિમય પામતી ઉષ્મા જેટલો હોય છે.

સમોષ્મી પ્રક્રિયા (Adiabatic process): આવી પ્રક્રિયા દરમિયાન તંત્ર અને તેના પરિસર વચ્ચે ઉષ્મા-ઊર્જાનો વિનિમય થતો હોતો નથી. આવી પ્રક્રિયા કરવા માટે (1) તંત્રની પરિસીમા ઉષ્માની અવાહક હોવી જોઈએ અથવા તો (2) પ્રક્રિયા અત્યંત ઝડપથી થવી જોઈએ.

ધ્વનિ-તરંગોના પ્રસરણ દરમિયાન માધ્યમમાં સંઘનન અને વિઘનન રચાવાની પ્રક્રિયા ઘણી ઝડપી હોવાથી તેને સમોષ્મી ગણી શકાય. સાઇકલમાં હવા પૂરવાનો પંપ ઝડપથી ચલાવતાં શા માટે તે ગરમ થઈ જાય છે તેનો ખ્યાલ હવે તમને આવશે. સમોષ્મી પ્રક્રિયા દરમિયાન $\Delta Q=0$ હોવાથી થરમોં ડાઇનેમિક્સના પ્રથમ નિયમ મુજબ $\Delta E_{\rm int}=-W$ થશે. એટલે કે જો તંત્ર વડે કાર્ય થાય (W>0) તો તંત્રની આંતરિક ઊર્જામાં ઘટાડો થાય છે અને જો તંત્ર પર કાર્ય થાય, તો તંત્રની આંતરિક ઊર્જામાં વધારો થાય છે.

આદર્શવાયુ માટે સમોષ્મી પ્રક્રિયા દરમિયાન દબાણ અને કદ વચ્ચેનો સંબંધ નીચે મુજબ છે :

(તારવણીની ચિંતા ભવિષ્ય પર છોડો.)

$$PV^{\gamma}$$
 = અચળ, જ્યાં $\gamma = rac{C_P}{C_V}$

સમતાપી પ્રક્રિયા (Isothermal process) : "જે થરમાં ડાઇનેમિક પ્રક્રિયા દરમિયાન તંત્રનું તાપમાન અચળ જળવાઈ રહેતું હોય તેવી પ્રક્રિયાને સમતાપી પ્રક્રિયા કહે છે."

આદર્શવાયુના સમતાપી વિસ્તરણ દરમિયાન થતું કાર્ય : ધારો કે μ મોલ આદર્શવાયુનું કદ, અચળ તાપમાને V_1 માંથી વધીને V_2 થાય છે. સમીકરણ (6.7.3) પરથી,

$$W = \int_{V_1}^{V_2} P dV$$

આદર્શવાયુના અવસ્થા-સમીકરણ PV = μRT પરથી,

$$P = \frac{\mu RT}{V} \tag{6.10.2}$$

$$\therefore W = \int_{V_1}^{V_2} \frac{\mu RT}{V} dV$$
$$= \mu RT \int_{V_1}^{V_2} \frac{1}{V} dV$$

(સમતાપી પ્રક્રિયામાં તાપમાન અચળ હોવાથી Tને સંકલનની નિશાનીની બહાર લીધેલ છે.)

$$= \mu RT [ln V]_{V_1}^{V_2}$$

$$= \mu RT [ln V_2 - ln V_1]$$

$$\therefore W = \mu RT ln \left(\frac{V_2}{V_1}\right)$$
(6.10.3)

આદર્શવાયુની આંતરિક ઊર્જા ફક્ત તાપમાન પર આધારિત હોવાથી સમતાપી ફેરફાર દરમિયાન આંતરિક ઊર્જાનો ફેરફાર

શૂન્ય હોય છે. તેથી થરમોં ડાઇનેમિક્સના પ્રથમ નિયમ $(Q=W+\Delta E_{\rm int}) ~\text{માં}~ \Delta E_{\rm int}=0 ~\text{મૂકતાં,}~ Q=W ~\text{થાય છે}$ અને પરિણામે સમીકરણ (6.10.3)ને નીચે મુજબ લખી શકાય :

$$W = Q = \mu RT \ln \left(\frac{V_2}{V_1} \right)$$
 (6.10.4)

ચક્રીય પ્રક્રિયા (Cyclic process) : ''જે થરમૉડાઇનેમિક પ્રક્રિયા દરમિયાન તંત્રાને તેની એક થરમૉડાઇનેમિક સંતુલન અવસ્થામાંથી શ્રેજ્ઞીબદ્ધ પ્રક્રિયાઓ કરી અંતે મૂળ અવસ્થામાં પાછું લાવવામાં આવે છે, તેવી પ્રક્રિયાને ચક્રીય પ્રક્રિયા કહે છે.''

ચક્રીય પ્રક્રિયામાં તંત્રની પ્રારંભિક અને અંતિમ અવસ્થાઓ એક જ હોવાથી તંત્રની આંતરિક ઊર્જામાં કોઈ ફેરફાર થતો નથી. (અર્થાત્ $\Delta E_{\rm int}=0$) અને તેથી ઘરમોડાઇનેમિક્સના પ્રથમ નિયમ મુજબ Q=W હોય છે. આમ, ચક્રીય પ્રક્રિયા દરમિયાન તંત્ર અને પરિસર વચ્ચે વિનિમય પામતી ઉખ્મા-ઊર્જાનો ચોખ્ખો જથ્થો તંત્ર વડે થતા ચોખ્ખા કાર્ય જેટલો હોય છે.

6.11 પ્રતિવર્તી અને અપ્રતિવર્તી પ્રક્રિયાઓ (Reversible and Irreversible Processes)

ધારો કે સિલિન્ડર-પિસ્ટન રચનામાં વાયુ ભરેલ વાયુતંત્ર કોઈ પ્રારંભિક સંતુલિત અવસ્થા *i*માં છે કે જેમાં તેના દબાણ, કદ અને તાપમાનનાં મૂલ્યો અનુક્રમે P, V અને T છે. આ તંત્રનું અચળ તાપમાને કદ અડધું કરીને બીજી કોઈ સંતુલિત અવસ્થા fમાં લઈ જવું હોય, તો તે માટેની ઘણી શક્ય પ્રક્રિયાઓ વિચારી શકાય.

આવી એક પ્રક્રિયામાં પિસ્ટનને ઝડપથી નીચે ધકેલી દઈ શકાય અને પછી તંત્ર, તેના પરિસર સાથે સંતુલન પ્રાપ્ત કરી પાછું પોતાનું તાપમાન T સ્થાપિત કરી લે ત્યાં સુધી રાહ જોઈ શકાય. પરંતુ આ રીતે વાયુનું ઝડપથી સંકોચન કરતાં તેમાં અસંતુલન પેદા કરતી અસરો ઉત્પન્ન થાય છે. પરિશામે તંત્ર અવસ્થા i અને f વચ્ચે અનેક અસંતુલિત સ્થિતિઓમાંથી ઝડપથી પસાર થાય છે. જોકે ઉપર જણાવ્યું તેમ સારી એવી રાહ જોયા પછી તંત્ર અંતે સંતુલિત અવસ્થા fમાં આવે છે ખરું.

હવે આ પ્રક્રિયાને ઉલટાવીએ એટલે કે પિસ્ટનને પાછો ઝડપથી ઊંચે લઈ જઈ વાયુનું કદ કરી V જેટલું (પ્રારંભિક કદ જેટલું) કરી નાખીએ તો સંકોચન વખતે વાયુ વચગાળાની જે-જે અસંતુલિત અવસ્થાઓમાંથી પસાર થયો હતો, તે જ અસંતુલિત અવસ્થાઓમાંથી પાછો પસાર થઈને અવસ્થા f માંથી i માં જશે નહિ. આવી પ્રક્રિયાને અપ્રતિવર્તી પ્રક્રિયા કહે છે.

હવે એક બીજા પ્રકારની પ્રક્રિયા વિચારીએ કે જેમાં વાયુના કદમાં અત્યંત સૂક્ષ્મ ઘટાડો કરતાં કરતાં છેવટે વાયુનું કદ અડધું કરી શકીએ. વાયુના કદમાં અત્યંત સૂક્ષ્મ ઘટાડો કરતાં તેમાં સહેજ ક્ષણિક અસંતુલન જરૂર ઉત્પન્ન થશે, તાપમાન પણ સહેજ જરૂર વધશે, પરંતુ પ્રક્રિયા અત્યંત ધીમી હોવાથી મળતા પૂરતા સમયમાં તંત્ર વધારાની ઉખ્મા પરિસરને આપી દઈને પાછું સંતુલન અવસ્થામાં આવી જશે અને વચગાળાના દરેક તબક્કે તંત્રનું તાપમાન T જેટલું જ જળવાઈ રહેશે. આમ, કદ ઘટાડાના દરેક તબક્કે તંત્ર સંતુલિત અવસ્થાઓમાંથી જ પસાર થાય છે તેમ કહેવાય. આ રીતે થતી પ્રક્રિયાને ક્વોસાઈ-સ્ટેટિક (quasi-static) પ્રક્રિયા કહે છે. આ રીતે તંત્રનું તાપમાન અચળ રહે તેમ તેનું કદ અડધું કરી શકાય છે. આ જ રીતે આ પ્રક્રિયાને ઉલટાવીને એટલે કે તંત્ર પરના દબાણમાં અત્યંત સૂક્ષ્મ ઘટાડો કરતાં-કરતાં ધીરે-ધીરે તંત્રનું કદ વધારીને તંત્રને મૂળ માર્ગે જ (એટલે કે પ્રક્રિયા થઈ ત્યારે તંત્ર વચગાળાની જે-જે સંતુલિત અવસ્થાઓમાંથી પસાર થયું હતું તેમાંથી જ પાછું પસાર કરાવીને) પ્રારંભિક અવસ્થા *i* માં પાછું લાવી શકાય છે. આવી પ્રક્રિયાને પ્રતિવર્તી પ્રક્રિયા કહેવાય છે. પરંતુ એ વાતનું સ્મરણ રાખવું ઘટે કે પ્રસ્તુત ઉદાહરણમાં આપણે સમતાપી પ્રતિવર્તી પ્રક્રિયાનો વિચાર કર્યો છે અને ઊર્જાનો કોઈ રીતે વ્યય ન થાય તેમ પિસ્ટનને ઘર્ષણરહિત ગતિ કરતો ધાર્યો છે. જ્યારે પ્રતિવર્તી પ્રક્રિયા ઉલટાવીએ ત્યારે માત્ર તંત્ર જ નહિ, પરંતુ પરિસર પણ પોતાની મૂળ અવસ્થામાં આવી જાય છે.

આટલી ચર્ચા પછી એ તો સ્પષ્ટ થશે જ કે ઊર્જાનો વ્યય કરે તેવાં પરિબળોની ગેરહાજરી એ તો એક આદર્શ પરિસ્થિતિ હોવાથી વ્યવહારમાં સંપૂર્ણપણે પ્રતિવર્તી પ્રક્રિયા શક્ય નથી. બધી જ કુદરતી પ્રક્રિયાઓ (એટલે કે આપમેળે થતી પ્રક્રિયાઓ) અપ્રતિવર્તી છે. દા.ત., લોખંડનું કટાવું, ખડકોનું ઘસાવું, પ્રાણીમાત્રને વૃદ્ધત્વ આવવું વગેરે.

ઉદાહરણ 11 : સાબિત કરો કે જ્યારે આદર્શ વાયુતંત્ર સમોષ્મી પ્રક્રિયા દ્વારા પ્રારંભિક અવસ્થા (P_1, V_1, T_1) માંથી અંતિમ અવસ્થા (P_2, V_2, T_2) માં જાય ત્યારે તેના વડે થતું કાર્ય.

$$W = \frac{P_1V_1 - P_2V_2}{\gamma - 1} = \frac{\mu R(T_1 - T_2)}{\gamma - 1}$$
 %zej

હોય છે.

[સમોષ્મી પ્રક્રિયા માટે $PV^{\gamma} = A$ અચળાંક]

ઉકેલ : સમોષ્મી પ્રક્રિયા માટે

$$W = \int_{V_1}^{V_2} P dV$$

$$= A \int_{V_{1}}^{V_{2}} \frac{1}{V^{\gamma}} dV \qquad (\because P = \frac{A}{V^{\gamma}})$$

$$\therefore W = A \int_{V_{1}}^{V_{2}} V^{-\gamma} dV$$

$$= A \left[\frac{V^{-\gamma+1}}{-\gamma+1} \right]^{V_{2}}$$

$$= A \left[\frac{V^{-\gamma+1}_{2} - V^{-\gamma+1}_{1}}{(1-\gamma)} \right]$$

$$= \frac{AV^{-\gamma+1}_{2} - AV^{-\gamma+1}_{1}}{(1-\gamma)}$$

$$= \frac{P_{2}V^{-\gamma+1}_{2} - P_{1}V^{-\gamma+1}_{1}}{(1-\gamma)}$$

$$= \frac{P_{2}V^{-\gamma+1}_{2} - P_{1}V^{-\gamma+1}_{1}}{(1-\gamma)} \qquad (1)$$

$$\therefore W = \frac{P_{1}V_{1} - P_{2}V_{2}}{\gamma-1} \qquad (2)$$

$$\forall \dot{x}_{1}, PV = \mu RT$$

$$\therefore W = \frac{\mu R T_1 - \mu R T_2}{\gamma - 1} = \frac{\mu R (T_1 - T_2)}{\gamma - 1}$$
 (3)

6.12 કૅલોરીમેટ્રી (Calorimetry)

કેલોરીમેટ્રી એટલે ઉષ્માનું માપન : જ્યારે ઊંચા તાપમાને રહેલા પદાર્થને નીચા તાપમાને રહેલા બીજા પદાર્થના સંપર્કમાં લાવવામાં આવે, ત્યારે ગરમ પદાર્થ ગુમાવેલી ઉષ્મા બરાબર ઠંડા પદાર્થે મેળવેલી ઉષ્મા થાય છે (જો ઉષ્માનો પરિસરમાં વ્યય ન થવા દેવાય તો). આ ત્યારે જ શક્ય બને કે જ્યારે તંત્ર અલગ કરેલું (isolated) હોય, એટલે કે તંત્ર અને પરિસર વચ્ચે ઉષ્માનો વિનિમય ન થતો હોય.

જે સાધન ઉષ્માનું માપન કરે તેને કેલોરીમીટર કહે છે. તે તાંબું કે ઍલ્યુમિનિયમ જેવી ધાતુના પાત્ર અને હલાવવા માટેના તે જ ધાતુના સળીયાનું બનેલું હોય છે. આ પાત્રને લાકડાના ખોખામાં એક આવરણમાં મૂકવામાં આવે છે, જે ઉષ્માના અવાહક પદાર્થો જેવા કે કાચ, ઊન વગેરેનું બનેલું હોય છે. બહારનું આવરણ (ખોખું) ઉષ્માના અવાહક તરીકે વર્તે છે અને અંદરના પાત્રમાંથી થતો ઉષ્માનો વ્યય ઘટાડે છે. બહારના આવરણમાં એક છિદ્ર હોય છે, જેમાંથી કેલોરીમીટરમાં થરમૉમીટર દાખલ કરી શકાય છે.

6.13 ઉષ્મા-એન્જિન અને તેની કાર્યક્ષમતા (Heat Engine and its Efficiency)

ઉષ્માનું કાર્યમાં રૂપાંતર કરતી રચનાને ઉષ્મા-એન્જિન કહે છે.

આકૃતિ 6.20માં સાદું ઉષ્મા-એન્જિન (heat engine) દર્શાવ્યું છે. અહીં પિસ્ટન સાથેના સિલિન્ડરમાંના વાયુને બર્નરની જ્યોત વડે ગરમ કરતાં વાયુ ઉષ્મા મેળવે છે. આ ઉષ્માને લીધે વાયુનું પ્રસરણ થાય છે અને પિસ્ટન પર દબાણ લગાડી વાયુ પિસ્ટનને ઉપર ધકેલે છે. પરિણામે વ્હીલ ચાકગતિ કરે છે. વ્હીલની આવી ચાકગતિ ચાલુ રાખવા માટે ઉષ્મા-એન્જિનમાં પિસ્ટન પુનરાવર્તિત રીતે ઉપર-નીચે સરકી શકે તેવી વ્યવસ્થા કરવામાં આવે છે. આ માટે પિસ્ટન વધુ ઉપર સરકે ત્યારે ઉપર આવેલા છિદ્રમાંથી ગરમ વાયુ (ઠારણવ્યવસ્થામાં) બહાર નીકળે છે.

અહીં વાયુને કાર્યકારી પદાર્થ (working substance) કહે છે. બર્નરની જ્યોતને ઉષ્મા-પ્રાપ્તિસ્થાન (source) કહે છે, અને પ્રસરણ બાદ વાયુને (ઉષ્માને) જેમાં છોડી મૂકવામાં આવે છે, તેને ઠારણવ્યવસ્થા (sink) કહે છે.

આકૃતિ 6.21માં ઉષ્મા-એન્જિનની કાર્યપદ્ધતિ રેખાચિત્ર દ્વારા દર્શાવી છે.

રેખાચિત્ર દ્વારા ઉષ્મા-એન્જિનની કાર્યપદ્ધતિ આકૃતિ 6.21

થરમાં ડાઇનેમિક્સ 143

ઉષ્મા-એન્જિનમાં કાર્યકારી પદાર્થ ચિક્રિય પ્રિક્રિયા અનુભવે છે. આ માટે કાર્યકારી પદાર્થ ઊંચા તાપમાન \mathbf{T}_1 વાળા ઉષ્માપ્રાપ્તિસ્થાનમાંથી ઉષ્મા \mathbf{Q}_1 શોષે છે. તેમાંથી અમુક ઉષ્મા-ઊર્જાનું યાંત્રિક-ઊર્જા (\mathbf{W})માં રૂપાંતર થાય છે, જ્યારે બાકીની ઉષ્મા \mathbf{Q}_2 ઠારણવ્યવસ્થામાં છોડી દેવામાં આવે છે.

આથી, કાર્યકારી પદાર્થે શોષેલ ઉષ્માનો ચોખ્ખો જથ્થો, $Q = Q_1 - Q_2 \tag{6.13.1}$

ચક્રીય પ્રક્રિયા દરમિયાન તંત્ર દ્વારા શોષાતી ચોખ્ખી ઉષ્મા, તંત્ર દ્વારા થતાં ચોખ્ખા કાર્ય જેટલી હોય છે. આથી,

$$Q = W$$

$$\therefore Q_1 - Q_2 = W$$
(6.13.2)

ચક્રીય પ્રક્રિયા દરમિયાન એક ચક્ર દીઠ મળતા ચોખ્ખા કાર્ય (W) અને ચક્ર દીઠ શોષાતી ઉષ્માના ગુણોત્તરને ઉષ્મા- એન્જિનની કાર્યક્ષમતા (ŋ) કહે છે. એટલે કે,

કાર્યક્ષમતા,
$$\eta = \frac{$$
ચક્ર દીઠ મળતું ચોખ્ખું કાર્ય ચક્ર દીઠ શોષાતી ઉષ્મા $\therefore \; \eta \; = \frac{W}{Q_1} = \frac{Q_1 - Q_2}{Q_1}$

$$\therefore \ \eta = 1 - \frac{Q_2}{Q_1} \tag{6.13.3}$$

સમીકરણ (6.13.3) પરથી કહી શકાય કે જો $Q_2=0$ હોય, તો એન્જિનની કાર્યક્ષમતા $\eta=1$ મળે. એટલે કે એન્જિનની કાર્યક્ષમતા 100% મળે અને કાર્યકારી પદાર્થને આપવામાં આવેલી બધી જ ઉષ્માનું કાર્યમાં રૂપાંતર થાય. વ્યવહારમાં કોઈ પણ એન્જિન માટે $Q_2\neq 0$. એટલે કે, થોડી ઉષ્મા Q_2 હંમેશાં વેડફાય છે. આથી $\eta<1$.

સામાન્ય રીતે ઉષ્મા-એન્જિન બે પ્રકારનાં બનાવવામાં આવે છે :

- (1) બાહ્ય દહન (External combustion) એન્જિન, જેમ કે, સ્ટીમ એન્જિન.
- (2) અંતર્દહન (Internal combustion) એન્જિન, જેમ કે ડીઝલ એન્જિન, પેટ્રોલ એન્જિન.

6.14 રેફ્રિજરેટર/હીટપંપ અને પરફૉર્મન્સ-ગુણાંક Refrigeratior/Heat Pump and Coefficient of Performance

ઉષ્મા-એન્જિનમાં કાર્યકારી પદાર્થ પર થતી ચક્રીય પ્રક્રિયાને જો ઉલટાવવામાં આવે, તો તે તંત્ર રેફ્રિજેરેટર કે હીટપંપ તરીકે કાર્ય કરે છે. આકૃતિ 6.22માં રેફ્રિજરેટર/ હીટપંપની કાર્યપદ્ધતિને રેખાચિત્ર દ્વારા દર્શાવેલ છે.

રેખાચિત્ર દારા રેક્રિજરેટર / હીટપંપની સમજ આકૃતિ 6.22

રેફ્રિજરેટરમાં કાર્યકારી પદાર્થ, \mathbf{T}_2 જેટલા નીચા તાપમાનવાળી વ્યવસ્થામાંથી \mathbf{Q}_2 ઉષ્મા શોષે છે. કાર્યકારી પદાર્થ પર \mathbf{W} જેટલું કાર્ય કરવામાં આવે છે. કાર્યકારી પદાર્થ, \mathbf{Q}_1 જેટલી ઉષ્મા \mathbf{T}_1 જેટલા ઊંચા તાપમાનવાળા પરિસરમાં છોડી દે (મુક્ત કરે) છે.

કાર્યકારી પદાર્થે શોષેલી ઉષ્મા Q_2 અને તેના પર કરવામાં આવેલા કાર્ય Wના ગુણોત્તરને રેફ્રિજરેટરનો પરકોર્મન્સ-ગુણાંક (α) કહે છે. એટલે કે,

$$\alpha = \frac{Q_2}{W} \tag{6.14.1}$$

અહીં, પરિસરમાં છોડી દેવાતી ઉષ્મા

$$Q_1 = W + Q_2$$

$$\therefore W = Q_1 - Q_2 \tag{6.14.2}$$

$$\therefore \alpha = \frac{Q_2}{Q_1 - Q_2} \tag{6.14.3}$$

અહીં α નું મૂલ્ય 1 કરતાં વધુ હોઈ શકે ($\because Q_2 > Q_1 - Q_2$), પરંતુ અનંત ન હોઈ શકે.

6.15 થરમૉડાઇનેમિક્સનો બીજો નિયમ (Second Law of Thermodynamics)

ઉષ્મા-એન્જિન અને રેફ્રિજરેટરના સંદર્ભમાં વિવિધ વિજ્ઞાનીઓએ કરેલાં વિધાનોને થરમૉડાઇનેમિક્સના બીજા નિયમનાં વિધાનો કહે છે, જે આ મુજબ છે : 144 ભૌતિકવિશાન

ઠારણવ્યવસ્થા તાપમાન : T_2

આદર્શ ઉષ્મા-એન્જિન (Q₁ = W) આકૃતિ 6.23

કેલ્વિન-પ્લાન્કનું વિધાન :

એવું એન્જિન બનાવવું અશક્ય છે કે જે, ચક્રીય પ્રક્રિયા દરિમયાન ઉષ્માપ્રાપ્તિસ્થાનમાંથી ઉષ્માનું શોષણ કર્યા બાદ પૂરેપૂરી ઉષ્માનું તેટલા જ કાર્યમાં રૂપાંતર કરે. (જુઓ આકૃતિ 6.23)

ક્લોસિયસનું વિધાન (Statement of Rudolf Clausius):

એવું એન્જિન બનાવવું અશક્ય છે કે જેમાં કાર્ય દ્વારા એન્જિનને ઉષ્મા (ઊર્જા) આપ્યા વગર, ઉષ્માનો વિનિમય સતત, ઓછા તાપમાનવાળા પ્રાપ્તિસ્થાનમાંથી વધુ તાપમાનવાળા પરિસરમાં થયા કરે (જુઓ આકૃતિ 6.24).

અશક્ય એવું આદર્શ રેફ્રિજરેટર (ઉધ્મા-એન્જિન કે જેમાં $\mathbf{Q}_1 = \mathbf{Q}_2$ હોય, તથા $\mathbf{W} = \mathbf{0}$ હોય) આકૃતિ 6.24

ઉદાહરણ 12 : એક ઉષ્મા-એન્જિન ઉષ્મા પ્રાપ્તિસ્થાનમાંથી 360 J ઉષ્મા મેળવે છે અને 25 J જેટલું કાર્ય કરે છે. તો (a) ઉષ્મા-એન્જિનની કાર્યક્ષમતા શોધો. (b) ચક્રીય પ્રક્રિયાના દરેક ચક્ર દરમિયાન ઉખ્મા-એન્જિન પરિસરને કેટલી ઉખા આપશે ?

(a) ઉષ્મા-એન્જિનની કાર્યક્ષમતા

$$\eta = \frac{W}{Q_1} = \frac{25J}{360J} = 0.07 = 7\%$$

(b) દરેક ચક્ર દરમિયાન પરિસરને મળતી ઉષ્મા

$$Q_2 = Q_1 - W = 360 - 25 = 335 \text{ J}$$

ઉદાહરણ 13 : એક ઉષ્મા-એન્જિન તેણે કરેલા કાર્ય કરતાં ત્રણ ગણી ઉષ્માનું શોષણ કરે છે તો,

- (a) તેની કાર્યક્ષમતા કેટલી હશે ?
- (b) તેણે શોષેલી ઉષ્માનો કેટલામો ભાગ તે ઠારણ-વ્યવસ્થામાં મુક્ત કરશે ?

ઉકેલ : અહીંયાં $Q_1 = 3W$ છે. આથી,

(a)
$$\eta = \frac{W}{O_1} = \frac{W}{3W} = \frac{1}{3} = 0.333$$

આથી, કાર્યક્ષમતા $\eta = 33.3\%$

(b) એન્જિને દરેક ચક્ર દરમિયાન પરિસરને આપેલી ઉષ્મા

$$Q_2 = Q_1 - W = 3W - W = 2W$$

આમ, $\frac{Q_2}{Q_1} = \frac{2W}{3W} = \frac{2}{3}$

આથી, એન્જિન તેણે શોષેલી ઉષ્માનો $\frac{2}{3}$ ભાગ ઠારણ-વ્યવસ્થામાં મુક્ત કરશે.

ઉદાહરણ 14: એક રેફ્રિજરેટરનો પરફૉર્મન્સ-ગુણાંક 5 છે. જો રેફ્રિજરેટર દરેક ચક્ર દરમિયાન ઠંડા ઉષ્મા-પ્રાપ્તિસ્થાનમાંથી 120 J જેટલી ઉષ્મા શોષતું હોય, તો દરેક ચક્ર દરમિયાન

- (a) તે કેટલું કાર્ય કરતું હશે ?
- (b) તે કેટલી ઉષ્મા ઊંચા તાપમાને રહેલા પરિસરમાં મુક્ત કરતું હશે ?

ઉકેલ : અહીં
$$\alpha = 5$$
, $Q_2 = 120$ J

(a)
$$\alpha = \frac{Q_2}{W}$$

આથી, કાર્ય
$$W = \frac{Q_2}{\alpha} = \frac{120J}{5} = 24 J$$

(b) પરિસરમાં મુક્ત કરેલી ઉષ્મા

$$Q_1 = W + Q_2 = 24 J + 120 J = 144 J$$

થરમાંડાઇનેમિક્સ 145

6.16 કાર્નો-ચર્ક અને કાર્નો-એન્જિન (Carnot Cycle and Carnot Engine)

સિમેસ્ટર Iમાં આપણે વાસ્તવિક વાયુઓની વર્તણૂકનો અભ્યાસ, આદર્શવાયુઓનાં પૃથક્કરણ પરથી કર્યો કે જેઓ PV = μ RT સમીકરણનું પાલન કરે છે. ભલે વાસ્તવમાં આદર્શવાયુઓ હોતા નથી, પરંતુ જ્યારે વાસ્તવિક વાયુની ઘનતા પૂરતી ઓછી હોય ત્યારે તે આદર્શ વાયુ જેવી વર્તણૂક ધરાવે છે.

આદર્શ એન્જિનમાં બધી જ પ્રક્રિયાઓ પ્રતિવર્તી હોય છે અને કોઈ પણ પ્રકારની ઊર્જાનો વ્યય (ઘર્ષણ કે પ્રક્ષુબ્ધતા વગેરે કારણે) થતો નથી.

આ મુદ્દામાં આપણે કાર્નો-એન્જિનનો અભ્યાસ કરીશું કે જેની સૌપ્રથમ રજૂઆત 1824માં ફ્રેન્ચ વૈજ્ઞાનિક અને એન્જિનિયર સાડી કાર્નોએ કરી હતી.

કાર્નો-એન્જિન, બે સમોષ્મી પ્રક્રિયાઓ અને બે સમતાપી પ્રક્રિયાઓ દ્વારા પૂરી થતી ચક્રીય પ્રતિવર્તી પ્રક્રિયા દ્વારા ઉષ્મા-ઊર્જાનું યાંત્રિક-ઊર્જામાં રૂપાંતરણ કરે છે. આમ, જે પ્રતિવર્તી ઉષ્મા-એન્જિન બે તાપમાન વચ્ચે કાર્ય કરે, તેને કાર્નો-એન્જિન કહે છે.

કાર્નો-એન્જિનમાં તળિયા સિવાય બધી જ અવાહક બાજુઓ ધરાવતા એક સિલિન્ડરમાં ઘર્ષણરહિત સરકતો પિસ્ટન હોય છે. આ એન્જિનનો કાર્યકારી પદાર્થ μ મોલ જેટલો પૂરતા ઓછા દબાણે રહેલો વાયુ છે. (જે આદર્શ-વાયુ તરીકે વર્તે છે). એન્જિનના દરેક ચક્ર દરમિયાન, અચળ તાપમાને રહેલા ઉષ્માપ્રાપ્તિસ્થાનમાંથી કાર્યકારી પદાર્થ ઉષ્મા શોષે (મેળવે) છે અને નીચા અચળ તાપમાન $T_2 < T_1$ પર રહેલ ઠારણવ્યવસ્થામાં ઉષ્મા મુક્ત કરે (ગુમાવે) છે.

આકૃતિ 6.25 માં દર્શાવેલ P – Vના આલેખ મુજબ આ ચક્રીય પ્રક્રિયા અને તેના જુદા-જુદા તબક્કા આકૃતિ 6.25માં દર્શાવ્યા છે.

(i) પ્રથમ તબક્કો : વાયુનું સમતાપી વિસ્તરણ (a o b)

આકૃતિ (6.26 a)માં દર્શાવ્યા મુજબ, સૌપ્રથમ કાર્યકારી પદાર્થ થરમૉડાઇનેમિક સંતુલન અવસ્થા ($\mathbf{P_1},\ \mathbf{V_1},\ \mathbf{T_1}$)માં છે.

હવે, સિલિન્ડરના સુવાહક તળિયાને T_1 તાપમાને રહેલા ઉષ્માપ્રાપ્તિસ્થાન પર મૂકી, વાયુનું ધીમે-ધીમે સમતાપી વિસ્તરણ કરીને થરમૉડાઇનેમિક સંતુલન અવસ્થા $b\ (P_2,\ V_2,\ T_1)$ માં લાવવામાં આવે છે (જુઓ આકૃતિ 6.26 b) ધારો કે $a\to b$ પ્રક્રિયા દરમિયાન વાયુ Q_1 ઉષ્મા શોષે છે. આથી સમીકરણ (6.10.4) અનુસાર, વાયુ વડે થયેલું કાર્ય

$$W_1 = Q_1 = \mu RT_1 ln \left(\frac{V_2}{V_1} \right)$$
 (6.16.1)

આ ઉપરાંત, સમતાપી પ્રક્રિયા માટે

$$P_1 V_1 = P_2 V_2 \tag{6.16.2}$$

(ii) બીજો તબક્કો : વાયુનું સમોષ્મી વિસ્તરણ (b o c)

હવે સિલિન્ડરના તિળયાને ઉષ્માના અવાહક સ્ટૅન્ડ પર મૂકી વાયુનું સમોષ્મી વિસ્તરણ થવા દઈને થરમૉડાઇનેમિક સંતુલન અવસ્થા c (P_3 , V_3 , T_2)માં લાવવામાં આવે છે (જુઓ આકૃતિ 6.26(c)). આ સમોષ્મી પ્રક્રિયા દરમિયાન વાયુ ઉષ્માનું શોષણ કરતો નથી, પરંતુ વિસ્તરણ દરમિયાન કાર્ય કરે છે, આથી તેનું તાપમાન ઘટે છે. આ પ્રક્રિયા માટે

$$P_{2}V_{2}^{\gamma} = P_{3}V_{3}^{\gamma} \tag{6.16.3}$$

(iii) ત્રીજો તબક્કો : વાયુનું સમતાપી સંકોચન (c ightarrow d)

હવે, સિલિન્ડરના સુવાહક તળિયાને T_2 તાપમાને રહેલી ઠારણવ્યવસ્થાના સંપર્કમાં લાવીને તેનું ધીમે-ધીમે સમતાપી સંકોચન કરવામાં આવે છે કે જેથી વાયુ સંતુલિત અવસ્થા $d\ (P_4,\,V_4,\,T_2)$ પર આવે છે (જુઓ આકૃતિ $(6.\,\,26d)$). $c\,\,\to\,\,d\,$ અવસ્થા સુધીના વાયુના સમતાપી સંકોચન દરમિયાન વાયુ પર થતું કાર્ય

કાર્નોટ-એન્જિનના વિવિધ તબક્કા આકૃતિ 6.26

$$W_2 = Q_2 = - \mu RT_2 \ln \left(\frac{V_4}{V_3} \right)$$

(અહીં વાયુ તંત્ર પર કાર્ય થતું હોવાથી ઋણ સંજ્ઞા મૂકેલ છે.)

$$\therefore W_2 = Q_2 = \mu RT_2 \ln \left(\frac{V_3}{V_4}\right) \qquad (6.16.4)$$

અહીં, $\mathbf{Q}_2 =$ વાયુ વડે ઠારણવ્યવસ્થામાં છોડી દેવાયેલી ઉષ્મા

આ ઉપરાંત, સમતાપી પ્રક્રિયા માટે

$$P_3 V_3 = P_4 V_4 \tag{6.16.5}$$

(iv) ચોથો તબક્કો : વાયુનું સમોષ્મી સંકોચન (d ightarrow a)

હવે સિલિન્ડરના તિળયાને ઉષ્મા અવાહક સ્ટૅન્ડ પર મૂકી વાયુનું સમોષ્મી સંકોચન કરી પોતાની મૂળ અવસ્થા a (P_1 , V_1 , T_1) માં લઈ જવામાં આવે છે. આ પ્રક્રિયા સમોષ્મી છે, આથી વાયુ પરિસર સાથે ઉષ્માનો વિનિમય કરતો નથી, પરંતુ વાયુ પર કાર્ય થાય છે અને તેનું તાપમાન T_2 થી વધીને T_1 જેટલું થાય છે.

આ સમોષ્મી પ્રક્રિયા માટે

$$P_{\underline{A}}V_{\underline{A}}^{\gamma} = P_{\underline{1}}V_{\underline{1}}^{\gamma} \tag{6.16.6}$$

આ સમગ્ર ચક્રીય પ્રક્રિયા દરમિયાન વાયુ વડે શોષાતી ઉષ્મા \mathbf{Q}_1 છે અને છોડી દેવાતી ઉષ્મા \mathbf{Q}_2 છે તે નોંધો. આથી, કાર્નોટ-એન્જિનની કાર્યક્ષમતા $\mathbf{\eta}$ નું મૂલ્ય,

$$\eta = 1 - \frac{Q_2}{Q_1}$$

$$\therefore \eta = 1 - \frac{T_2 \ln\left(\frac{V_3}{V_4}\right)}{T_1 \ln\left(\frac{V_2}{V_1}\right)}$$
 (6.16.7)

સમીકરણો (6.16.2), (6.16.3) (6.16.5) અને (6.16.6)નો ગુણાકાર કરતાં

 $P_{1}V_{1}P_{2}V_{2}^{\gamma}P_{3}V_{3}P_{4}V_{4}^{\gamma} = P_{2}V_{2}P_{3}V_{3}^{\gamma}P_{4}V_{4}P_{1}V_{1}^{\gamma}$

$$(V_2V_4)^{\gamma-1} = (V_3V_1)^{\gamma-1}$$

$$\therefore V_2 V_4 = V_3 V_1$$

$$\therefore \frac{V_2}{V_1} = \frac{V_3}{V_4} \tag{6.16.8}$$

$$\therefore \ln\left(\frac{V_2}{V_1}\right) = \ln\left(\frac{V_3}{V_4}\right) \tag{6.16.9}$$

આ કિંમત સમીકરણ (6.16.7)માં મૂકતાં,

$$\eta = 1 - \frac{T_2}{T_1} \tag{6.16.10}$$

સમીકરણ (6.16.10) દર્શાવે છે કે કોર્નોટ-એન્જિનની કાર્યક્ષમતા ઉષ્માપ્રાપ્તિસ્થાન અને ઠારણવ્યવસ્થાના તાપમાન પર જ આધાર રાખે છે. તેની કાર્યક્ષમતા કાર્યકારી પદાર્થ પર આધારિત નથી (જો તે આદર્શ વાયુ હોય તો). જો ઉષ્માપ્રાપ્તિસ્થાનનું તાપમાન (T_1) અનંત હોય અથવા ઠારણવ્યવસ્થાનું તાપમાન (T_2) નિરપેક્ષ શૂન્ય હોય (જે શક્ય નથી) તો જ કાર્નોટ-એન્જિનની કાર્યક્ષમતા 100 % મળે, જે અશક્ય છે.

થરમાઁડાઇનેમિક્સ 147

ઉદાહરણ 15 : એક કાર્નો-એન્જિનમાં ઠારણ-વ્યવસ્થાનું તાપમાન 280 K છે અને તેની કાર્યક્ષમતા 40 % છે. ઠારણવ્યવસ્થાનું તાપમાન અચળ રાખીને, ઉષ્માપ્રાપ્તિસ્થાનનું તાપમાન કેટલું વધારતા એન્જિનની કાર્યક્ષમતા વધીને 50 % જેટલી થાય ?

Gen:
$$T_2 = 280 \text{ K}, \ \eta_1 = 0.4, \ \eta_2 = 0.5$$

$$\eta_1 = 1 - \frac{T_2}{T_1}$$

$$\therefore \ \frac{T_2}{T_1} = 1 - \eta_1 = 1 - 0.4 = 0.6 \qquad (1)$$

$$\therefore \ T_1 = \frac{T_2}{0.6} = \frac{280}{0.6} = 466.6 \text{ K}$$

 $\eta_2 = 1 - \frac{\mathrm{T}_2}{\mathrm{T}_1 + x} \ (જ્યાં \ x = ઉષ્માપ્રાપ્તિ- સ્થાનના તાપમાનનો વધારો)$

$$\therefore \ \frac{\mathrm{T_2}}{\mathrm{T_1} + x} = 1 - \eta_2 = 1 - 0.5 = 0.5 \quad (2)$$
સમીકરણ (1) અને (2) ગુણોત્તર લેતાં,

$$\frac{T_1 + x}{T_1} = \frac{0.6}{0.5}$$

$$\therefore 5T_1 + 5x = 6T_1$$

$$\therefore T_1 = 5x$$

$$\therefore x = \frac{T_1}{5} = \frac{466.6}{5} = 93.32 \text{ K}$$

ઉદાહરણ 16 : 1 mole આદર્શવાયુનું દબાણ $\mathbf{P}_{_{\! A}}$ અને તાપમાન $\mathbf{T}_{_{\! A}}$ છે. પ્રથમ તેનું સમતાપી વિસ્તરણ

કરી કદ બમણું કરવામાં આવે છે. હવે તેનું અચળ

દબાશે સંકોચન કરી મૂળ કદ પ્રાપ્ત કરવામાં આવે છે અને ત્યાર પછી અચળ કદે દબાશ વધારી મૂળ દબાશ P_A પ્રાપ્ત કરવામાં આવે છે, તો આ સંપૂર્શ પ્રક્રિયા માટે P-V અને P-T આલેખો સ્કેચ કરો.

ઉકેલ :

આકૃતિ 6.27

સારાંશ

- તંત્ર : વિશ્વના જે ભાગનો થરમૉડાઇનેમિક અભ્યાસ કરવાનો હોય તે ભાગને થરમૉડાઇનેમિક તંત્ર કહે છે.
- 2. પરિસર: તંત્રની આસપાસના બાકીના ભાગ (વિશ્વ) કે જેની સીધી અસર તંત્ર પર થતી હોય, તેને તંત્રનું પરિસર (કે વાતાવરણ) કહે છે.
- પરિસીમા : તંત્ર અને તેના પરિસરને જુદા પાડતી હદને તંત્રની પરિસીમા (સરહદ) કહે છે.
- 4. **થરમાઁડાઇનેમિક પ્રક્રિયા** : તંત્ર અને તેના પરિસર વચ્ચે થતી આંતરક્રિયાને થરમાઁડાઇનેમિક પ્રક્રિયા કહે છે.
- 5. અલગ કરેલું તંત્ર : જો તંત્ર પોતાના પરિસર સાથે આંતરક્રિયા ન કરતું હોય તો તે અલગ કરેલું તંત્ર કહેવાય છે.
- 6. થરમૉડાઇનેમિક્સનો શૂન્ય ક્રમનો નિયમ : જો તંત્ર A અને B કોઈ ત્રીજા તંત્ર C સાથે ઉષ્મીય સંતુલનમાં હોય, તો A અને B પણ એકબીજા સાથે ઉષ્મીય સંતુલનમાં હોય.
- ફેઝ ડાયાગ્રામ : દબાણ અને તાપમાનનાં જુદાં-જુદાં મૂલ્યો માટે આપેલ દ્રવ્ય કેવું સ્વરૂપ ધરાવે
 છે, તે દર્શાવતા દબાણ (P) વિરુદ્ધ તાપમાન (T)ના આલેખને તે દ્રવ્યનો ફેઝ ડાયાગ્રામ કહે છે.

8. ટ્રીપલ પોઇન્ટ : દબાશ-તાપમાનનાં જે મૂલ્યો માટે પદાર્થના ઘન, પ્રવાહી અને વાયુ એમ ત્રશેય સ્વરૂપો સહ-અસ્તિત્વમાં અને સમતોલનમાં હોય, તે બિંદુને તે દ્રવ્ય (પદાર્થ)નું ટ્રીપલ પોઇન્ટ કહે છે.

- 9. ઉષ્મીય પ્રસરણ / સંકુચન : કોઈ પદાર્થનું તાપમાન વધારતાં (ઉષ્મા આપતાં) તેના પરિમાણમાં વધારો થાય છે અને તાપમાન ઘટાડતાં (ઉષ્મા મુક્ત કરીને) તેના પરિમાણમાં ઘટાડો થાય છે. આમ, પદાર્થ દ્વારા ઉષ્માનું શોષણ થતાં તેના પરિમાણમાં થતા વધારાને ઉષ્મીય પ્રસરણ અને ઉષ્મા મુક્ત કરીને પદાર્થના પરિમાણમાં થતા ઘટાડાને ઉષ્મીય સંકુલન કહે છે.
- 10. રેખીય પ્રસરણ : તાપમાનમાં થતા વધારા સાથે પદાર્થની લંબાઈમાં થતા વધારાને તેનું રેખીય પ્રસરણ કહે છે. જે પદાર્થો દરેક દિશામાં એકસરખું ઉષ્મીય પ્રસરણ ધરાવતા હોય તેવા પદાર્થીને આઇસોટ્રોપિક પદાર્થો કહે છે.
- ઉષ્મા-ઊર્જા : વાયુના અશુઓની અસ્તવ્યસ્ત ગિત સાથે સંકળાયેલ (કુલ વેગમાન શૂન્ય હોય તેવી ગિત) કુલ ગિતિ-ઊર્જાને વાયુમાં રહેલ ઉષ્મા-ઊર્જા કહે છે.
- 12. ઉષ્મા ઃ તંત્ર અને પરિસર વચ્ચે, માત્ર તાપમાનના તફાવતના કારણે થતાં ઊર્જાના વિનિમયને ઉષ્મા કહે છે.
- 13. થરમોડાઇનેમિક કાર્ય : બે વસ્તુઓ વચ્ચે થતી યાંત્રિક આંતરક્રિયાને કારણે જે યાંત્રિક-ઊર્જાનો વિનિમય થાય છે, તેને થરમૉડાઇનેમિક કાર્ય કહે છે.
- 14. **થરમૉડાઇનેમિક્સનો પ્રથમ નિયમ** : જો તંત્રને પ્રારંભિક અવસ્થા i પરથી અંતિમ અવસ્થા f સુધી લઈ જવામાં આવે, તો તેની આંતરિક ઊર્જામાં થતો ફેરફાર (ΔE_{int}) તેણે મેળવેલ ઉષ્મા Q અને તંત્ર દ્વારા થયેલ કાર્ય Wના તફાવત જેટલો હોય છે. એટલે કે,

$$\Delta E_{int} = Q - W$$

- 15. સમોષ્મી પ્રક્રિયા : જો તંત્ર અને તેના પરિસર વચ્ચે ઉષ્માનો વિનિમય ન થતો હોય (Q = 0), તો તેવી પ્રક્રિયાને સમોષ્મી પ્રક્રિયા કહે છે.
- 16. સમકદ પ્રક્રિયા : જે થરમૉડાઇનેમિક પ્રક્રિયા દરિમયાન તંત્રનું કદ અચળ રાખવામાં આવે તેવી પ્રક્રિયા સમકદ પ્રક્રિયા કહેવાય.
- 17. ચકીય પ્રક્રિયા : જે થરમૉડાઇનેમિક પ્રક્રિયા દરમિયાન તંત્રને તેની એક થરમૉડાઇનેમિક સંતુલન અવસ્થામાંથી શ્રેણીબદ્ધ પ્રક્રિયાઓ દ્વારા બીજી સંતુલિત અવસ્થામાં લઈ જઈને અંતે મૂળ અવસ્થામાં પાછું લાવવામાં આવે, તેવી પ્રક્રિયાને ચક્રીય પ્રક્રિયા કહે છે.
- 18. **કેલરી :** એક કિલોગ્રામ શુદ્ધ પાણીનું તાપમાન 14.5 °Cથી 15.5 °C સુધી વધારવા માટે જરૂરી ઉષ્માના જથ્થાને એક કિલો કેલરી કહે છે. તેના હજારમા ભાગને કેલરી કહે છે.
- 19. ઉષ્માધારિતા : પદાર્થને આપેલ ઉષ્મા Q અને તદ્દ્નુરૂપ તેના તાપમાનના ફેરફાર ΔT ના ગુણોત્તરને પદાર્થની ઉષ્માધારિતા H_C કહે છે.
- 20. વિશિષ્ટ ઉષ્મા : પદાર્થના એકમ દળ દીઠ તેના તાપમાનમાં એક એકમ જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે પદાર્થના દ્રવ્યની વિશિષ્ટ ઉષ્મા કહે છે.
- 21. મોલર વિશિષ્ટ ઉષ્મા : વાયુના એક મોલ દીઠ તેના તાપમાનમાં 1 કેલ્વિન (કે 1 C°) જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની મોલર વિશિષ્ટ ઉષ્મા કહે છે.
- 22. અચળ કદે વિશિષ્ટ ઉપ્મા (C_v) : એક મોલ વાયુનું કદ અચળ રાખી તેના તાપમાનમાં એક કેલ્વિન જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની અચળ કદે વિશિષ્ટ ઉષ્મા કહે છે.

થરમાં ડાઇનેમિક્સ 149

23. અચળ દબાણે વિશિષ્ટ ઉષ્મા (C_p): એક મોલ વાયુનું દબાણ અચળ રાખી તેના તાપમાનમાં એક કૅલ્વિન જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની અચળ દબાણે વિશિષ્ટ ઉષ્મા કહે છે.

- 24. રૂપાંતરણની ઉપ્સા (ગુપ્ત ઉપ્સા L): એકમદળના કોઈ પદાર્થનું એક અવસ્થા (ઘન, પ્રવાહી કે વાયુ)માંથી બીજી અવસ્થામાં રૂપાંતર કરવા માટે આપવી પડતી ઉપ્માને રૂપાંતરણની ઉપ્મા (ગુપ્ત ઉપ્મા) કહે છે.
- 25. ગલનગુપ્ત ઉષ્મા (L_p): એકમદળના ઘન પદાર્થનું પ્રવાહીમાં રૂપાંતરણ થાય (ત્યારે પદાર્થ ઉષ્મા મેળવે છે.) અથવા પ્રવાહીનું ઘનમાં રૂપાંતરણ થાય (ત્યારે પદાર્થ ઉષ્મા ગુમાવે છે), ત્યારે રૂપાંતરણની આ ઉષ્માને ગલનગુપ્ત ઉષ્મા કહે છે.
- 26. અપ્રતિવર્તી પ્રક્રિયા : જો કોઈ પ્રક્રિયા એવી રીતે ઉલટાવવામાં આવે કે જેથી તે તંત્ર પોતાની પ્રારંભિક અવસ્થામાંથી અંતિમ અવસ્થામાં વચગાળાની જે અસંતુલિત અવસ્થાઓમાંથી પસાર થયું હોય તેવી જ અસંતુલિત અવસ્થાઓ અંતિમ અવસ્થામાંથી પ્રારંભિક અવસ્થા દરમિયાન ન આવે, તો તેને અપ્રતિવર્તી પ્રક્રિયા કહે છે.
- 27. પ્રતિવર્તી પ્રક્રિયા : જો કોઈ પ્રક્રિયાને ખૂબ ધીમેથી એવી રીતે ઉલટાવવામાં આવે કે જેથી પ્રારંભિક અવસ્થામાં તે પોતાના મૂળ માર્ગે જ પાછી ફરે (તંત્ર પોતાની પ્રારંભિક અવસ્થામાંથી અંતિમ અવસ્થા સુધી વચગાળાની જે-જે સંતુલિત અવસ્થામાંથી પસાર થયું હતું, તેમાંથી જ પાછું પસાર કરાવીને), તો તેવી પ્રક્રિયાને પ્રતિવર્તી પ્રક્રિયા કહે છે.
- 28. ઉષ્મા-એન્જિન : ઉષ્માનું કાર્યમાં રૂપાંતર કરતી રચનાને ઉષ્મા-એન્જિન કહે છે.
- 29. ઉષ્મા-એન્જિનની કાર્યક્ષમતા : ચક્રીય પ્રક્રિયા દરમિયાન એક ચક્ર દીઠ મળતા ચોખ્ખા કાર્ય (W) અને ચક્ર દીઠ શોષાતી ચોખ્ખી ઉખ્માના ગુણોત્તરને ઉખ્મા-એન્જિનની કાર્યક્ષમતા કહે છે.
- 30. **રેક્જિરેટરનો પરફૉર્મન્સ-ગુણાંક :** કાર્યકારી પદાર્થે (એન્જિને) શોષેલી ઉષ્મા અને તેના પર કરવામાં આવેલા કાર્યના ગુણોત્તરને રેક્જિરેટરનો પરફૉર્મન્સ-ગુણાંક કહે છે.

31. થરમાંડાઇનેમિક્સનો બીજો નિયમ :

- (1) કૅલ્વિન-પ્લાન્કનું કથન : એવું એન્જિન બનાવવું અશક્ય છે કે જે, ચક્રીય પ્રક્રિયા દરમિયાન ઉષ્માપ્રાપ્તિસ્થાનમાંથી ઉષ્માનું શોષણ કર્યા બાદ પૂરેપૂરી ઉષ્માનું તેટલા જ કાર્યમાં રૂપાંતર કરે.
- (2) ક્લોસિયસનું કથન : એવું એન્જિન બનાવવું અશક્ય છે કે જેમાં કાર્ય દ્વારા એન્જિનને ઉષ્મા (ઊર્જા) આપ્યા વગર, ઉષ્માનો વિનિમય સતત ઓછા તાપમાનવાળા પ્રાપ્તિસ્થાનમાંથી વધુ તાપમાનવાળા પરિસરમાં થયા કરે.
- 32. કેલોરીમેટ્રી : કેલોરીમેટ્રી એટલે ઉષ્માનું માપન.
- **33. કેલોરીમીટર :** જે સાધન ઉષ્માનું માપન કરે તેને કૅલોરીમીટર કહે છે.
- 34. કાર્નોટ-એન્જિન : કાર્નોટ-એન્જિન, બે સમોષ્મી પ્રક્રિયાઓ અને બે સમતાપી પ્રક્રિયાઓ દ્વારા પૂરી થતી પ્રતિવર્તી ચક્રીય પ્રક્રિયા દ્વારા ઉષ્મા-ઊર્જાનું યાંત્રિક-ઊર્જામાં રૂપાંતરણ કરે છે.
- 35. કાર્નોટ-એન્જિનની કાર્યક્ષમતા : કાર્નોટ-એન્જિનની કાર્યક્ષમતા નીચેના સમીકરણ દ્વારા આપવામાં આવે છે. $\eta=1-rac{T_2}{T_1}$. જે દર્શાવે છે કે કાર્નોટ-એન્જિનની કાર્યક્ષમતા ઉષ્માપ્રાપ્તિસ્થાનના તાપમાન (T_1) અને ઠારણવ્યવસ્થાના તાપમાન (T_2) પર જ આધાર રાખે છે. તેની કાર્યક્ષમતા કાર્યકારી પદાર્થ પર આધારિત નથી.

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

1. એક આદર્શવાયુનું પ્રારંભિક દબાણ 3 એકમ અને પ્રારંભિક કદ 4 એકમ છે. કોઠામાં વાયુના અંતિમ દબાણ અને કદના પાંચ પ્રક્રિયાઓ માટેનાં મૂલ્યો તે જ એકમોમાં દર્શાવ્યા છે. કઈ પ્રક્રિયા સમતાપી પ્રક્રિયા હશે ?

	i	ii	iii	iv	v
P	12	6	5	4	1
V	1	2	7	3	12

	P	12	6	5	4	1					
	V	1	2	7	3	12					
((A)	i, ii,	iii, iv	(B)	ii, iii	i, iv, v	(C)	i, iii, i	v, v	(D) <i>i, ii,</i>	iv, v
. (Q જેટલ	ાી ઉષ્મા	વડે 1 ફ	g જેટલા	ા પદાર્થ	Aનું ત	ાપમાન 3	Cº श्रेट	ું વધે ર	ત્રને 1 g જે	ડેટલા પદાર્ <u>થ</u>
]	Bનુંત	ાપમાન	4 C° 8	૪ેટલું વ [ા]	ધે છે, ત	તો કયા	પદાર્થની	વિશિષ્ટ	ઉષ્મા વ	ાધારે હશે	?
((A) A						(B)				
	(C) A						, ,			એકેય ના	_
		ટ્રીપલ	પૉઇ ન્ ટ	તાપમા•	તને સેલિ	સેયસ	માપક્રમમાં	. માપતાં .	•••••	°C તા	ાપમાન મળે
	છે.										
	(A) 0									(D) 0.01	
			_	પાશી	અને તેન	ાં બાષ્ય	. વચ્ચે સંત્	નુલન રચા	ય ત્યારે	તાપમાન .	K
		આવે છે).			_					
	(A) 10									(D) 273.	16
		શૂન્ય ત	ાપમાન	· •			•	t			
	(A) 0			` '	-273			-459.6		(D) -350	5.67
		ાના કયા	. મૂલ્ય			'F માપ		લ્યો સરખ 40			
	(A) 0	വച്ച 46	50 as1	(B)		63 63		-40		(D) 32	, તો તંત્રની
		યુત્ત <i>ત</i> 4. ક ઊર્જામ		_				43 200	cai si	.વ વાવ છ	, a. a.
	(A) 25		ા વતા		650	. car e		325		(D) શૂન્ય	
			احل ماج			ยวเสโ	શકે નહિ			(D) &	
				, 451	•••••	૧૨ાલા		 ઉષ્મા-ઊ	of 622		
	-	મા, ઉષ્મ સંદ		2			• •		•		
		મા, યાંતિ				_		કાર્ય, ઉ		1	
		_	_			તમજ .		ર આધારિ		c	
		ાર્થની જ								પદાર્થના ત	
		ાર્થના દ					(D) P	પદાર્થના	કદ, પ	.દાર્થના દળ	l
0.	આપેલ ર	આકૃતિમ	i P – V	'ના આ	ાલેખમાં		P	i = f			
:	એક ચક	કીય પ્રક્રિ	યા દર્શા	ોવી છે.	ચક્રીય						
1	પ્રક્રિયા (બાદ (<i>a</i>)	વાયુની	આંતરિ	ક ઊર્જા			Ĭ	X		
4	ΔE_{int}	અને (i	b) ચોષ્	ખો ઉ	ષ્માનો						
	int	(-	/								

(A) ધન, ઋશ

વિનિમય.

(C) શૂન્ય, ઋશ

(B) ધન, શૂન્ય

(D) शून्य, धन

- 11. થરમૉડાઇનેમિક્સમાં તંત્ર વડે થતા કાર્યને અને તંત્ર પર થતા કાર્યને ગણવામાં આવે છે.
 - (A) ધન, શૂન્ય
- (B) ધન, ઋણ
- (C) ઋણ, ધન
- (D) શૂન્ય, અનંત
- - (A) $\frac{998}{992 \times 20}$
- (B) $\frac{992}{998 \times 20}$
- (C) $\frac{6}{998 \times 20}$ (D) $\frac{6}{992 \times 20}$
- 13. આદર્શવાયુની સમોષ્મી પ્રક્રિયા માટે દબાણ-તાપમાનનો સંબંધ છે.
 - (A) $P^{1-\gamma} T^{\gamma} = અચળ$

(B) $P^{\gamma-1} T^{\gamma} =$ અথળ

(C) $P^{\gamma} T^{1-\gamma} = અચળ$

- (D) $P^{\gamma} T^{\gamma-1} =$ અথળ
- 14. આકૃતિમાં દર્શાવેલ ચક્રીય પ્રક્રિયાના પ્રત્યેક ચક્ર દીઠ તંત્ર J જેટલી ચોખ્ખી ઉષ્માનું શોષણ કરશે.

- (B) 900
- (C) 200
- (D) 300

આકૃતિ 6.29

- 15. આકૃતિમાં દર્શાવ્યા મુજબ આદર્શવાયુ 1, 2 અને 3 આંક વડે રજૂ કરેલ અલગ-અલગ પથ પર પ્રારંભિક અવસ્થા iથી અંતિમ અવસ્થા f સુધી જાય છે. આ પથો પર થતું કાર્ય અનુક્રમે $\mathbf{W_1}$, $\mathbf{W_2}$ અને $\mathbf{W_3}$ હોય તો,
 - (A) $W_1 > W_2 > W_3$
 - (B) $W_1 = W_2 = W_3$
 - (C) $W_1 < W_2 < W_3$
 - (D) $W_1 > W_3 > W_2$

આકૃતિ 6.30

- 16. 0°C તાપમાને રહેલ 100 g બરફને 100°C તાપમાને રહેલ 100 g પાશીમાં મૂકતાં મિશ્રણનું અંતિમ તાપમાન થાય. (બરફની ગલનગુપ્ત ઉખ્મા 80 cal/g અને પાણીની વિશિષ્ટ ઉખ્મા 1 cal/g C°) છે.
 - (A) 10°C
- (B) 20°C
- (D) 30°C
- (D) 50°C
- 17. આદર્શવાયુની કોઈ પ્રક્રિયામાં $d\mathbf{W}=0$ અને $d\mathbf{Q}<0$ છે, તો વાયુ માટે
 - (A) તાપમાન વધશે

(B) કદ વધશે

(C) દબાશ અચળ રહેશે

(D) તાપમાન ઘટશે

18.	1 મોલ આદર્શવાયુનું તાપમાન અર છે.	ાળ દબાણે 0°C	'થી 100°C જેટ	લું વધારતાં થતું કા	ાર્ય
	(A) $8.3 \times 10^{-3} \text{ J}$ (B) $8.3 \times 10^{-3} \text{ J}$	$\times 10^{-2} \text{ J} (\text{C})$	$8.3 \times 10^2 \text{ J}$	(D) $8.3 \times 10^3 \text{ J}$	
19.	એક આદર્શવાયુના સમોષ્મી પ્રસરણ દ	રમિયાન તેના ક	કદમાં 24 % જેટ	લો વધારો થાય છે,	તો
	તેના દબાજ્ઞમાં ઘટાડો થાય.	$(\gamma = \frac{5}{3})$			
	(A) 24% (B) 76%	(C)	48%	(D) 30%	
20.	27°C જેટલા અચળ તાપમાને 10 ક દબાગ્ર 8 atm માંથી 4 થતું હોય, તો		-		.નું,
	(A) 2079 R (B) 903	R (C)	187 R	(D) 81.3 R	
21.	એક ઉષ્મા-એન્જિન ઉષ્માપ્રાપ્તિસ્થાનમ	ાંથી 50 kJ ઉષ્મા	. પ્રાપ્ત કરતું હોય	ા અને તેની કાર્યક્ષમ	તા
	40 % હોય, તો તેના પરિસરને તે કે	ટલી ઉષ્મા આપ	.શે ?		
	(A) 40 kJ (B) 20	J (C)	30 k J	(D) 20 k J	
22.	એક ઉષ્મા-એન્જિનની કાર્યક્ષમતા 30	_	_	ઉષ્મા આપતું હોય,	તો
	તે ઉષ્માપ્રાપ્તિસ્થાનમાંથી kJ	_			
	(A) 9 (B) 39	• •	29	(D) 42.8	
23.	જો ઉષ્મા-એન્જિન, ઉષ્માપ્રાપ્તિસ્થાનમ	_	•	અને તે 1.5 kJ ઉષ્	મા
	ઠારણવ્યવસ્થામાં છોડી દેતું હોય, તો				
	(A) 25% (B) 50%	• •	75%		_
24.	તાપમાનના કયા મૂલ્ય માટે ફેરનહીટ મળશે ?	માપક્રમ અને	કેલ્વિન માપક્રમ	પર એક સરખા મૂલ	યો
	(A) 459.67 (B) 574.	32 (D)	-32	(E) 100	
25.	એક દ્વિ-પરમાણ્વિક (rigid rotator)	•			
	ઉપયોગ કરવામાં આવ્યો છે. ચક્રીય :	_	_		કદ
	Vથી વધીને 32 V જેટલું હોય તો ક				
	(A) 0.35 (B) 0.25	` ´		(D) 0.75	
26.	એક ગરમ દિવસે અમદાવાદથી એક				
	(કશ્મીર) પહોંચાડે છે, જ્યાંનું તાપમાન			Ü	લુ
	ડીઝલ પહોંચાડ્યું (આપ્યું) હશે ? ડીઝ (ટ્રકની સ્ટીલ ટેન્કનું ઉખ્મીય પ્રસરણ∹	•		7 . C .	
	(A) 808 L (B) 36,1	•		(D) 37,000 L	
27.			37,606 L	(D) 37,000 L	
	ુ ધરાવતી એક જ દ્રવ્યની બનેલી :				
	લંબચોરસ પ્લેટ દર્શાવી છે. જો તે	મનું 4 †			
	તાપમાન T થી વધારીને $T+\Delta T$ કરવ	2 1			
	આવે, તો (<i>a</i>) તેમની ઊંચાઈમાં થતા વધ	યારા ²	2	3	
	અને (<i>b</i>) તેમના ક્ષેત્રફળમાં થતા વધા	રાને 1		4	
	ઊતરતા ક્રમમાં ગોઠવો.		1 2 3 4	5 6 7 8	b (cm)
	(A) 2, 3, 1, 4 (B) 1, 2,				
	(C) 4, 1, 2, 3 (D) 3, 2,	1, 4	આકૃતિ હ	31	

થરમાં ડાઇનેમિક્સ

જવાબો

1. (D) 2. (A) 3. (D) 4. (C) 5. (C) 6. (C) 7. (A) 8. (B) 9. (A) **10.** (C) **11.** (B) **12.** (D) **13.** (A) **14.** (C) 15. (A) **16.** (A) **18.** (C) 17. (D) **19.** (D) 20. (A) **21.** (C) **22.** (D) 23. (A) 24. (B) **25.** (D) **26.** (B) 27. (D)

નીચે આપેલ પ્રશ્નોનો જવાબ ટૂંકમાં આપો :

- 1. ફેઝ ડાયાગ્રામ એટલે શું ?
- 2. એક કિલો કૅલરી કોને કહેવાય ?
- 3. અપ્રતિવર્તી પ્રક્રિયા કોને કહેવાય ?
- આઇસોટ્રોપિક પદાર્થ કોને કહે છે ?
- 5. ઊકળતા પાણી કરતાં વરાળથી કેમ વધારે દઝાય છે ?
- 6. ક્વોસાઈ સ્ટેટીક પ્રક્રિયા કોને કહેવાય ?
- 7. કાર્નોટ-એન્જિનની કાર્યક્ષમતા કયા સંજોગોમાં 100% થાય છે ?
- 8. બે તંત્રો થરમૉડાઇનેમિક સંતુલનમાં છે તેમ ક્યારે કહેવાય ?
- 9. સમોષ્મી પ્રક્રિયા એટલે શું ?
- 10. ચક્રીય પ્રક્રિયા સમજાવો.
- 11. શા માટે બહુ પરમાણ્વિક અણુઓની વિશિષ્ટ ઉષ્મા વધુ હોય છે ?
- 12. રેક્રિજરેટરનો પરફૉર્મન્સ-ગુણાંક એટલે શું ?
- 13. સમદાબ પ્રક્રિયા એટલે શું ?
- 14. આપેલ આકૃતિમાં એક તંત્રની 1-2-1 માર્ગ ચક્રીય પ્રક્રિયા (દરેક વખતે તંત્ર અને પરિસર વચ્ચે તાપીય સંતુલન સ્થપાય તે રીતે) માટેના જુદા-જુદા માર્ગ P Vના આલેખમાં દર્શાવ્યા છે. કયા બંધ માર્ગ માટે તંત્ર વડે થતું કુલ કાર્ય મહત્તમ ધન મળશે ?

આકૃતિ 6.32

15. તાપમાનના કયા મૂલ્ય માટે ફેરનહીટ માપક્રમ પરનું અવલોકન (a) સેલ્સિયસ માપક્રમની બમણી કિંમત જેટલું મળશે ? (b) સેલ્સિયસ માપક્રમની અડધી કિંમત જેટલું મળશે ?

નીચે આપેલ પ્રશ્નોના જવાબ આપો :

- થરમૉડાઇનેમિક્સનો શૂન્ય ક્રમનો નિયમ સમજાવો.
- થરમૉડાઇનેમિક્સનો પ્રથમ નિયમ લખો અને સમજાવો.
- ઉખ્મા-એન્જિનનું કાર્ય તથા તેની કાર્યક્ષમતાની સમજૂતી આપો.
- અચળ તાપમાને વાયુનું સંકોચન કરતાં વાયુ પર થતા કાર્યનું સૂત્ર મેળવો.
- 5. કોઈ તંત્રને તેની પ્રારંભિક અવસ્થાથી અંતિમ અવસ્થા સુધી જુદા-જુદા માર્ગે લઈ જતાં થતા કાર્યની સમજૂતી P – V ના આલેખો દ્વારા આપો. ચક્રીય પ્રક્રિયા દરમિયાન થતું કુલ કાર્ય સમજાવો.

- 6. પ્રતિવર્તી અને અપ્રતિવર્તી પ્રક્રિયાઓ સમજાવો.
- 7. થરમૉડાઇનેમિક્સના બીજા નિયમનાં માત્ર કથનો લખો.
- 8. આકૃતિમાં તંત્રને પ્રારંભિક અવસ્થા iથી અંતિમ f સુધી લઈ જવા માટેના ચાર માર્ગ દર્શાવ્યા છે :
 - (a) કયા માર્ગ પર આંતરિક ઊર્જાનો ફેરફાર $\Delta {
 m E}_{
 m int}$ મહત્તમ હશે ?
 - (b) કયા માર્ગ (પ્રક્રિયા) પર તંત્ર વડે મહત્તમ કાર્ય W થશે ?
 - (c) કયા માર્ગ પર ઉષ્માનો વિનિમય મહત્તમ હશે ?

આકૃતિ 6.33

નીચેના દાખલા ગણો :

- 1. $200 \ g$ દળના ઍલ્યુમિનિયમના એક ગોળાને 26° C તાપમાનથી 66° C તાપમાન સુધી લઈ જવા માટે કેટલી ઉષ્મા આપવી પડશે ? ઍલ્યુમિનિયમના આ ગોળાની ઉષ્માધારિતા કેટલી થશે ? $C=0.215 \ cal \ g^{-1} \ C^{o-1}$. [જવાબ: 1720 cal, 43 cal C^{o-1}]
- 2. $10~{\rm g}~{\rm O}_2$ ના દબાણ અને તાપમાન અનુક્રમે $3\times 10^5~{\rm N}~{\rm m}^{-2}$ અને $10~{\rm ^{\circ}C}$ છે. જ્યારે અચળ દબાણે આ વાયુને તપાવવામાં આવે છે, ત્યારે તેનું કદ $10~{\rm L}$ થાય છે, તો
 - (a) વાયુએ મેળવેલ ઉષ્મા
 - (b) વાયુની આંતરિક ઊર્જામાં થતો ફેરફાર
 - (c) વાયુ વડે વિસ્તરણ દરમિયાન થતું કાર્ય શોધો. R = 8.3 J $\mathrm{mol}^{-1}~\mathrm{K}^{-1}.~\mathrm{O_2}$ એ દ્વિ-પરમાણ્વિક (rigid rotator) છે. [જવાબ : (a) 7929 J (b) 5664 J (c) 2265 J]
- 3. એક કાર્નો-એન્જિનમાં ઠારણવ્યવસ્થાનું તાપમાન 300 K છે અને તેની કાર્યક્ષમતા 40% છે. જો આ એન્જિનની કાર્યક્ષમતા 50 % કરવી હોય, તો ઉષ્માપ્રાપ્તિસ્થાનનું તાપમાન અચળ રાખીને ઠારણવ્યવસ્થાનું તાપમાન કેટલું ઘટાડવું પડે ? [જવાબ: 50 K]
- 4. એક કાર્નો-એન્જિનમાં ઉષ્માપ્રાપ્તિસ્થાનનું તાપમાન 500 K અને ઠારણવ્યવસ્થાનું તાપમાન 375 K છે. જો એન્જિન તેના પ્રત્યેક ચક્ર દીઠ 600 k cal ઉષ્મા શોષતું હોય, તો (i) કાર્યક્ષમતા ગણો. (ii) પ્રત્યેક ચક્ર દીઠ થતું ચોખ્ખું કાર્ય શોધો. (iii) ઠારણવ્યવસ્થામાં પાછી મેળવાતી ઉષ્માની ગણતરી કરો. (J = 4.2 J/cal)

[**%al4**: (i) 25% (ii) 6.3 × 10⁵ J (iii) 450 k cal]

- 5. 27° C તાપમાને અને 2 atm દબાણે 1 મોલ આદર્શવાયુનું સમોષ્મી સંકોચન કરતાં તેનું કદ પ્રારંભિક કદના આઠમા ભાગનું થાય છે, તો વાયુના અંતિમ દબાણ અને તાપમાન શોધો. વાયુ માટે $\gamma = 1.5$ લો. [જવાબ: 45.2 atm, 848 K]
- **6.** ઉપર્યુક્ત દાખલા 8માં વાયુ પર થતું કુલ કાર્ય શોધો. $R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1}$.

[**%વાબ**: 9097 J]

7. એક પરમાણ્વિક આદર્શવાયુને $1.6 \times 10^6 \ Pa$ ના દબાણે, $300 \ K$ તાપમાને $0.0083 \ m^3$ કદ ધરાવતા બંધ પાત્રમાં રાખેલો છે. આ વાયુને $2.49 \times 10^4 \ J$ ઉષ્મા આપવામાં આવે છે, તો તેના અંતિમ તાપમાન અને દબાણ શોધો. પાત્રનું કદ પ્રસરણ અવગણો.

 $R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1}$. [84] \$\cdot 675 \text{ K}, 3.6 \times 10^6 \text{ Pa}\$]