Riemann-Lebesgue の定理

Theorem.
$$\int_{-\infty}^{\infty} |f(x)| dx < \infty$$
 なる可測関数 $f: \mathbb{R} \to \mathbb{C}$ に対して
$$\lim_{R \to \pm \infty} \int_{-\infty}^{\infty} f(x) e^{iRx} dx = \lim_{R \to \pm \infty} \int_{-\infty}^{\infty} f(x) \cos Rx dx = \lim_{R \to \pm \infty} \int_{-\infty}^{\infty} f(x) \sin Rx dx = 0$$

Proof. $f: \mathbb{R} \to \mathbb{R}$ の場合に被積分関数に指数関数がある場合を示す. なぜなら, $f = \Re f + i\Im f, e^{iRx} = \cos Rx + i\sin Rx$ を用いればよいからである.

まず, $f=\chi_{[a,b]}$ $(\chi_{[a,b]}$ は [a,b] 上の定義関数, $a,b\in\mathbb{R}$) の場合に定理が成り立つことが

$$\lim_{R\to\pm\infty}\left|\int_{-\infty}^{\infty}f(x)e^{iRx}dx\right|=\lim_{R\to\pm\infty}\left|\int_{a}^{b}e^{iRx}dx\right|=\lim_{R\to\pm\infty}\frac{|e^{ibR}-e^{iaR}|}{|iR|}\leq\lim_{R\to\pm\infty}\frac{2}{|R|}=0$$

より確かめられる.

が成り立つ.

次に、単関数 $f=\sum_{i=1}^n a_i\chi_{I_k}$ $(I_k$ は有界閉区間, $a_i\in\mathbb{R}\setminus\{0\}$)の場合に定理が成り立つことが定義関数のときの結果を用いると

$$\lim_{R\to\pm\infty}\left|\int_{-\infty}^{\infty}f(x)e^{iRx}dx\right|\leq\lim_{R\to\pm\infty}\sum_{i=1}^{n}|a_{i}|\frac{2}{|R|}=0$$

より確かめられる.

最後に絶対可積分な一般の $f: \mathbb{R} \to \mathbb{R}$ の場合に定理が成り立つことを示す.

任意の $\varepsilon>0$ に対して, $\int_{-\infty}^{\infty}|f(x)-s(x)|dx<\varepsilon$ を満たす単関数 $s:\mathbb{R}\to\mathbb{R}$ が存在する. よって三角 不等式から

$$\begin{split} \limsup_{R \to \pm \infty} \left| \int_{-\infty}^{\infty} f(x) e^{iRx} dx \right| &= \limsup_{R \to \pm \infty} \left| \int_{-\infty}^{\infty} s(x) e^{iRx} dx + \int_{-\infty}^{\infty} (f(x) - s(x)) e^{iRx} dx \right| \\ &\leq \limsup_{R \to \pm \infty} \left| \int_{-\infty}^{\infty} s(x) e^{iRx} dx \right| + \int_{-\infty}^{\infty} |f(x) - s(x)| dx \\ &\leq \varepsilon \end{split}$$

となる.

以上より定理が示された. ■