Last mile cost prediction

x1: Distance [km]	x2:Load [lon]	x3: Speed	x4: Petrol	y: Last-mile.cost	
24.51	0.340	50.2	2.78	2217.744594526721	
33.98	0.620	50.1	9.79	3945.8800002868384	
9.57	0.320	52.4	3.15	1860.7997606335186	

Times

Learning rate	0.0005	0.001	0.005	0.01	0.05	0.1	0.5
Computing time (seconds)	4.33788180	2.14248991	0.42367625	0.21722865	0.04648375	0.02516675	0.00425791
Iterations	200901	100449	20087	10042	2005	1001	197

Es necesario que los datos de testing realicen un feature scaling con los mismos parámetros (mean, standard variation) para poder utilizarlos datos con la predicción, sin mencionar que es necesario agregarle una columna de 1 como la data set de training. De esta manera es posible obtener la predicción con solo multiplicar las dos matrices para obtener la predicción.

En la tabla se aprecia que mientras más grande es learning rate menos iteraciones y más rápido corre el código, sin embargo es menos preciso los valores w. Esto es debido a que realizan "saltos más grandes" con el learning rate más grande.