Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 5A Spatial Data Structures

Spatial Data Structures

- Spatial data structures
 - Octrees
 - Bounding Volume Hierarchies
 - BSPs
 - Scene graphs

Goals in Real Time Rendering

- Haines and Moller describe four performance goals
 - More frames per second
 - Interactivity, reduced latency
 - 60-85 frames is considered sufficient
 - Higher resolution and sampling rates
 - Improve image quality reduce aliasing
 - More realistic materials and lighting
 - Improve realism
 - Increased scene complexity
 - More triangles!
 - Model smaller details of objects
- Conclusion: even with GPU advances there is a need for acceleration methods

Spatial Subdivision

Volume Rendering Techniques http://graphics.stanford.edu/projects/volume

Spatial Data Structures

- Spatial Data Structure
 - Organizes geometry in an n-dimensional space
- Can be used to accelerate queries about geometry of objects
 - Do they overlap / intersect?
 - Used in culling methods, ray tracing, collision detection
- Spatial data structures often organized in a hierarchical structure
 - Topmost level encloses the level below it, etc.
 - Queries can improve from O(n) to O(log n)
 - Construction of most spatial data structures is expensive
 - Usually done as a pre-process

Spatial Data Structures (cont.)

- Examples in 3D
 - Bounding Volume Hierarchies (BVH)
 - Spatial subdivision
 - Octrees
 - Binary Space Partitioning (BSP) trees
- Two types
 - Regular space is divided uniformly
 - Irregular arbitrary subdivision of space

Bounding Volume Hierarchies

- Bounding Volume (BV) encloses a set of objects
 - Simpler shape than the objects it contains
 - More efficient tests can be performed against the BV
 - Does not get rendered
 - Used to speed rendering and different computations
 - Wireframe can be rendered for debugging collision issues
 - Examples are bounding spheres, AABBs, OBBs
- Scene is organized into a hierarchical tree structure
 - Root topmost node
 - Internals nodes have pointers to their children
 - Leaf nodes holds geometry to be rendered
 - No children
- Each node has BV that encloses the geometry in its entire sub tree
 - Root has BV that encloses the entire scene

Bounding Volume Hierarchies (cont.)

- Useful for intersection queries
 - Recursive testing starting at the root
 - Test against the BV of children
 - If ray misses a node's BV testing on the subtree ends
 - If a ray hits a leaf node's BV then the object geometry is tested
 - Nesting BVs allows avoiding testing large amounts of geometry
- Creation of BVH is generally done in a pre-process or initialization (scene definition) method
- Dynamic scenes
 - If an object contained in a BV is moved
 - Check whether it is still in the parent's BV
 - If so, then the BVH is still valid
 - If not, remove the object node and recompute the parent's BV
 - Node is recursively inserted back into the tree
 - Another method is to grow the BV (and parent's BVs up the tree)
 - Temporal Bounding Volumes
 - Create a bounding volume around the space where an object can move
 - e.g., a pendulum

Updating the Scene Graph

- Scene graph nodes often contain BVs
 - Scene graph should support several types of updates
 - Moving objects change in modeling transformation
- Eberly suggests a recursive method to handle moving objects
 - 3D Game Engine Design
 - Update transforms on downward pass: from root to the leaves
 - Multiply matrices and store in the nodes
 - Update BVs on upward pass to the root of the scene graph
 - BV update at a node could affect the parent's BV
 - Need to compute BVs of children before parent's BV can be computed
- Methods to compute parent's BV from BVs of its children
 - Incrementally bound the children
 - Merge BV of first two children, merge that result with the next, etc.
 - Merging AABB is trivial
 - Merging bounding spheres from Lecture 1

