

ปรับปรุงแก้ไข กรกฎาคม 2564 6

ลำดับที่ 115

ใบบันทึกผลการทดลองที่ 1 การวัดและความเที่ยงในการวัด

ชื่อผู้ทดลอง ปุญญพัฒน์ สูงเกียรติกำจร เลขประจำตัว 6452106821

เวอร์เนียร์คาลิเปอร์

จงแสดงวิธีคำนวณหาความละเอียดของเวอร์เนียร์คาลิเปอร์

จำนวนของธากลาวอาณีย์ = 20 ช่อง ...ความละเอียคห้อานได้ = 1 mm 20 : 0.05 mm

ไมโครมิเตอร์

ข้อควรระวัง อย่าฝืนหมุนกระบอก T ของไมโครมิเตอร์ต่อไปอีก เมื่อแป้นวัด แตะกันแล้ว เพราะจะทำให้แป้น A และ B ขบกันจนเสียหายได้

- 1. กระบอกหมุน (T) ของไมโครมิเตอร์มีขีดแบ่งไว้ทั้งสิ้นกี่ช่อง **ตอบ**______ ช่อง
- 2. หมุนกระบอกหมุน (T) 1 รอบ แป้นวัด B เลื่อนไปเป็นระยะทางเท่าใด **ตอบ___**_<u>0.5</u>___หน่วย <u>มิคลิเมตร</u>
- 3. จงแสดงวิธีคำนวณหาความละเอียดของไมโครมิเตอร์

กระบอกนมุน (T) บองโมโครมิเทอใ แบ่งขีดไจ้ 50 ขืด ซึ่งนมุนคเบระบจะโล้ o.s mm

<u>เครื่องชั่งไฟฟ้าดิจิทัล</u>

ตัวอย่างการวัดมวลด้วยเครื่องชั่งไฟฟ้า

เราคิดความละเอียดของเครื่องชั่งไฟฟ้าดิจิทัลจากตัวเลขหลักสุดท้ายของการแสดงผล นิสิตตรวจสอบ เครื่องชั่งไฟฟ้าดิจิทัลในห้องปฏิบัติการพบว่ามีความละเอียดเท่ากับ <u>0.01</u> หน่วย <u>กัม (ๆ)</u>

การหาความหนาแน่นของแผ่นอลูมิเนียม

ให้เก็บข้อมูลการวัดชิ้นงานแผ่นอลูมิเนียมจำนวน 1 แผ่น โดยทำการวัดความกว้างและความยาวด้วย เวอร์เนียร์คาลิเปอร์ วัดความหนาด้วยไมโครมิเตอร์ และชั่งมวลด้วยเครื่องชั่งดิจิทัล หมายเหตุ รูปการวัดชิ้นงานอยู่ในหน้าที่ 4 เป็นต้นไป

$$VA = \left(\frac{94}{90}\right)_{J}(94)_{J} + \left(\frac{95}{90}\right)_{J}(94)_{J} + \left(\frac{95}{30}\right)(95)_{J}$$

$$A : AAS$$

วัดครั้งที่	ความกว้าง <i>W</i> (cm)	ความยาว $\it L$ (cm)	ความหนา <i>D</i> (cm)	มวล <i>m</i> (g)	
1	3.110	3,515	0.200	5.85	
2	3.120	3, 320	0.201	\$.86	
3	3. 120	3. 520	0.200	2.86	
ค่าเฉลี่ย	$\overline{W} = 3.117$	$\overline{L}=$ 3.518	$ar{D}$ = 0.100	$\overline{m} = 5.86$	
ค่าเบี่ยงเบนมาตรฐาน	$\sigma_{ar{W}}=$ 0.005774	$\sigma_{ar{L}}=$ 0.001887	$\sigma_{ar{D}} = 0.000$ § 33	$\sigma_{ar{m}}=$ 0.005774	
ค่าเบี่ยงเบนมาตรฐานของ ค่าเฉลี่ย ($\sigma_{ extit{mean}}$)	0.003	0.001	U.0003	0.00 \$	
ความละเอียดของเครื่องมือ (จากหน้าแรก)	0,005	0.005	0.001	0.01	
ค่าคลาดเคลื่อน (เลือกค่ามากที่สุดจาก 2 แถวบน)	δ₩ = 0.00 §	$\delta \overline{L} = 0.00 $	$\delta \overline{D} = 0.001$	$\delta \overline{m} = 0.01$	

1.	คำนวณหาปริมาตรแผ่นอลูมิเนียมเฉลี่ย $ar{V} = _$	2.19	675	หน่วย_	อบกานบาลหมายนาง ((พ))		
	(เขียนค	ค่าด้วยเลขนัย	มสำคัญ 5-6 ตำแหน่ง)				
2.	2. คำนวณค่าคลาดเคลื่อนของปริมาตรแผ่นอลูมิเนียมเฉลี่ย ตามสมการที่ (1.10)						
	$\delta ar{V} = oldsymbol{\sigma}_{ar{V}} = oldsymbol{arOmega}$. O กษาร		หน่วย <u>คาบาสกาชนต</u>	112mg c cm))		
	(เขียนค่าด้วยเลขนัยสำคัญ 5-6 ตำแหน่ง)		U				
3.	ปริมาตรแผ่นอลูมิเนียมเฉลี่ย $ar{V}\pm \delta ar{V}=$ 2	.19675	± 0.01193	หน่วย	อกยาศกาชนตามคร ((พ))		
	(เขียนค่าแล	ละความคลาด	ดเคลื่อน ด้วยเลขนัยสำคัญที่เ	เหมาะสม)			
4.	คำนวณหาความหนาแน่นของแผ่นอลูมิเนียมเฉลี่ย	$\bar{\rho}$ =	2.66606	หน่	วย <u>กรม/ลกยาส</u> กาชนตามตร ce		
		(เขียนค่าเ	จ้วยเลขนัยสำคัญ 5-6 ตำแห _้	น่ง)	U		
5.	คำนวณค่าคลาดเคลื่อนของความหนาแน่นของแผ่น	เอลูมิเนีย	มเฉลี่ย ตามสมการ	ที่ (1.11)			
	$\delta \overline{ ho} = \sigma_{\overline{ ho}} = 0.015181$		_หน่วย <u> 9 ⁄ ๓ ั</u>				
	(เขียนค่าด้วยเลขนัยสำคัญ 5-6 ตำแหน่ง)						

6. ความหนาแน่นแผ่นอลูมิเนียมเฉลี่ย $\bar{\rho} \pm \delta \bar{\rho} = 1.66606 \pm 0.01518$ หน่วย 9/cm (เขียนค่าและความคลาดเคลื่อน ด้วยเลขนัยสำคัญที่เหมาะสม)

การวัดชิ้นงานแผ่นอลูมิเนียมจำนวน 1 แผ่น (ในแต่ละด้านจะทำการวัด 3 ครั้ง) ความกว้าง

1.

ความยาว

ความหนา

มวล

