МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3344	Жаворонок Д.Н.
Преподаватель	Иванов Д.В.

Санкт-Петербург

2023

Цель работы

Получить навык работы с машиной Тьюринга, научиться создавать таблицы состояний.

Задание.

Вариант 2

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}.

Напишите программу, которая заменяет в исходной строке символ, идущий после последних двух встретившихся символов 'a', на предшествующий им символ(гарантируется, что это не пробел). Наличие в строке двух подряд идущих символов 'a' гарантируется.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит:

a

b

c

" " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 15.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Выполнение работы

Считываем s — ленту машины Тьюринга в список. Инициализируем текущее состояние state значением "st1", устанавливаем индекс элемента, на который указывает каретка index = 0. Описываем словарь состояний states.

- st1 начальное состояние, используемое для нахождения начала строки.
- st2 состояние, используемое для нахождения конца строки.
- st3 состояние, используемое для поиска последнего символа "a".
- st4 состояние, используемое для поиска предпоследнего символа "a".
- st5 состояние, используемое для определения символа перед "aa".
- st6 состояние, используемое для замены символа после "aa", на символ, стоящий перед "aa", в случае, если это символ "a".
- st7 состояние, используемое для замены символа после "aa", на символ, стоящий перед "aa", в случае, если это символ "b".
- st8 состояние, используемое для замены символа после "aa", на символ, стоящий перед "aa", в случае, если это символ "c".
 - st9 терминирующее состояние.

Описываем цикл *while*, работающий до тех пор, пока состояние *state* не станет *st9*. Из *states* распаковываем символ для замены *symbol*, шаг индекса каретки *step* и новое состояние *state* в соответсвии с текущим положением.

После завершения цикла на экран выводим изменённую строку. Ниже Таблица 1 – Таблица состояний.

Таблица 1 - Таблица состояний

	«a»	«b»	«c»	«»
st1	"a", 1, "st2"	"b", 1, "st2"	"c", 1, "st2"	"", 1, "st1"
st2	"a", 1, "st2"	"b", 1, "st2"	"c", 1, "st2"	" ", -1, "st3"
st3	"a", -1, "st4"	"b", -1, "st3"	"c", -1, "st3"	
st4	"a", -1, "st5"	"b", -1, "st3"	"c", -1, "st3"	

st5	"a", 1, "st6"	"b", 1, "st7"	"c", 1, "st8"	
st6	"a", 1, "st6"	"a", 0, "st9"	"a", 0, "st9"	"a", 0, "st9"
st7	"a", 1, "st7"	"b", 0, "st9"	"b", 0, "st9"	"b", 0, "st9"]
st8	"a", 1, "st8"	"c", 0, "st9"	"c", 0, "st9"	"c", 0, "st9"

Тестирование.

Результаты тестирования представлены в табл. 2.

Таблица 2 - результаты тестирования.

№ п/п	Входные данные	Выходные данные	Комментарии
	abcbcbaaa	abcbcbaaaa	-
	abcccaaaaaac	abcccaaaaaaa	-

Выводы

В ходе выполнения работы был изучена работа машины Тьюринга. Была написана программа для обработки входной строки по принципу машины Тьюринга. Был получен навык составления таблиц для машины Тьюринга.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
s = list(input())
state = "st1"
index = 0
states = {
     "st1": {"a": ["a", 1, "st2"], "b": ["b", 1, "st2"], "c": ["c", 1,
"st2"], " ": [" ", 1, "st1"]},
     "st2": {"a": ["a", 1, "st2"], "b": ["b", 1, "st2"], "c": ["c", 1,
"st2"], " ": [" ", -1, "st3"]},
     "st3": {"a": ["a", -1, "st4"], "b": ["b", -1, "st3"], "c": ["c",
-1, "st3"]},
     "st4": {"a": ["a", -1, "st5"], "b": ["b", -1, "st3"], "c": ["c",
-1, "st3"]},
     "st5": {"a": ["a", 1, "st6"], "b": ["b", 1, "st7"], "c": ["c", 1,
"st8"]},
     "st6": {"a": ["a", 1, "st6"], "b": ["a", 0, "st9"], "c": ["a", 0,
"st9"], " ": ["a", 0, "st9"]},
     "st7": {"a": ["a", 1, "st7"], "b": ["b", 0, "st9"], "c": ["b", 0,
"st9"], " ": ["b", 0, "st9"]},
    "st8": {"a": ["a", 1, "st8"], "b": ["c", 0, "st9"], "c": ["c", 0,
"st9"], " ": ["c", 0, "st9"]}
}
while state != "st9":
    symbol, step, state = states[state][s[index]]
    s[index] = symbol
    index += step
print("".join(s))
```