

Licenciatura em Engenharia Informática

Tecnologia e Arquitetura de Computadores 2023/2024

Trabalho Prático nº 2

Desenvolvimento de Aplicação para Controlo de Elevadores

Nelson Cunha a2023 | 4268 |

Índice

I. Introdução	
2. Métodos	
3. Capítulo 3: Resultados	
4. Discussão	
5. Conclusão	11
6. Referências	11

I. Introdução

Este trabalho tem como objetivo desenvolver uma aplicação para gestão de parque de estacionamento para a unidade curricular "Tecnologia e Arquitetura de Computadores ", este trabalho foi executado com os conhecimentos adquiridos anteriormente (em todos os trabalhos do ano), e juntando todo esse conhecimento é possível.

2. Métodos

Para a realização do trabalho comecei por montar um circuito muito primitivo no tinkercard para começar a estruturar ideias na minha cabeça para daí prosseguir com a realização do algoritmo e fluxograma.

Depois da execução do algoritmo e do fluxograma finalizei a parte do tinkercard começando assim a parte do código. Como já tinha tudo estruturado e organizado foi mais fácil a realização do código para o mesmo porém, tive algumas dificuldades devido ao numero de variáveis e circuito mais complexo que requisitaram uma maior atenção e cuidado meu. No código foi usada um estratégia de código esquematizado dividido varias funções .

Para a realização do tinker card foi utilizado os seguintes componentes:

- 1 breadboard
- 1 piezos (alarmes sonoros)
- 1 leds amarelo
- 2 micro servos
- 2 Arduíno Uno R3
- 10 resistências 1k Ω
- 1 visor de 7 segmentos
- 2 butões
- Diversos cabos para efetuar as ligações

Os testes que fiz para validar o projeto foi simular a subida e descida do elevador

Materiais utilizados:

Trabalho prático n° 2: Desenvolvimento de Aplicação para Controlo de Elevadores

Nome	Quantidade	Componente
UA UB	2	Arduino Uno R3
S1 S2	2	Botão
D1	1	Amarelo LED
R1 R2 R3 R4 R5 R7 R8 R9 R10	10	1 kΩ Resistor
PIEZO1	1	Piezo
SERV01 SERV02	2	Posicional Micro servo
Digit2	1	Catódica Visor de sete segmentos

Desenho do circuito : Arduino I :

Arduino2

3. Capítulo 3: Resultados

Com a junção dos materiais citados anteriormente segue-se a seguinte montagem no tinkercard:

Como dá para observar esta é a minha montagem do tinkercard acerca o projeto. Podemos ver que na parte superior existe dois micro servos que servem como fossem as portas do elevador debaixo dos microservos temos um piezo (alarme sonoro) que serve para fazer barulho quando tu tentas ir para o mesmo andar que já te encontras debaixo do alarme tens um led amarelo que liga quando o elevador está em movimento , á direita encontra-se dois butões que representa o andar 1 e o andar 2 mais á direita na outra breadboard verificamos a existência de um visor de 7 segmentos que tem como objetivo mostrar o andar em que o elevador se encontra .

Neste teste pusemos o elevador a subir para o 2 andar porem como as pessoas precisam de entrar as portas tem que abrir para as pessoas entrarem daí o microservo estar a 90º Elevador iniciando deslocamento para o andar 2

Neste caso verificamos que a led está acessa ou seja está o elevador está em movimento Elevador parou no andar 2

Neste teste o elevador já se encontra no 2 andar.

Algoritmo do código:

No inicio crio variáveis e dou valores ás mesmas , sejam elas para atribuir pinos ou até para usar com uma bool.

Na função setup defino os pinos se é saída ou entrada

Começo o serial.

Depois do setup crio varias funções que servem para meter o mecanismo a funcionar , seja abrir porta, fechar porta , exibir andar mover para andar etc.

Tenho também comunicação entre dois arduinos utilizando o protocolo I2C

Depois da função loop "chamo" pelas funções para obter o resultado desejado.

Segue-se então o código arduino 1

```
#include <Servo.h>
#include <Wire.h>

const int butao_elevador_1 = 2;
const int butao_elevador_2 = 3;
const int led_elevador = 4;
const int alarme = 5;
const int porta_elevador = 6;
const int porta_elevador2 = A0;
const int segA = 7;
const int segB = 8;
const int segC = 9;
```

```
const int segD = 10;
const int segE = 11;
const int segF = 12;
const int segG = 13;
volatile bool chamarAndar1 = false;
volatile bool chamarAndar2 = false;
int and arAtual = 1;
int viagens = 0;
Servo portaServo;
Servo porta2Servo;
void setup() {
 pinMode(butao_elevador_1, INPUT_PULLUP);
 pinMode(butao_elevador_2, INPUT_PULLUP);
 pinMode(led elevador, OUTPUT);
 pinMode(alarme, OUTPUT);
 portaServo.attach(porta_elevador);
 portaServo.write(0);
 porta2Servo.attach(porta_elevador2);
 porta2Servo.write(0);
 pinMode(segA, OUTPUT);
 pinMode(segB, OUTPUT);
 pinMode(segC, OUTPUT);
 pinMode(segD, OUTPUT);
 pinMode(segE, OUTPUT);
 pinMode(segF, OUTPUT);
 pinMode(segG, OUTPUT);
 Serial.begin(9600);
 Serial.println("Sistema de controle do elevador iniciado.");
 Wire.begin();
 attachInterrupt(digitalPinToInterrupt(butao_elevador_1), chamarAndar1Handler, FALLING);
 attachInterrupt(digitalPinToInterrupt(butao_elevador_2), chamarAndar2Handler, FALLING);
 exibirAndar();
}
void loop() {
 if (chamarAndar1) {
  chamarAndar1 = false;
  moverParaAndar(1);
 if (chamarAndar2) {
  chamarAndar2 = false;
  moverParaAndar(2);
 }
}
void chamarAndar1Handler() {
 chamarAndar1 = true;
void chamarAndar2Handler() {
 chamarAndar2 = true;
void moverParaAndar(int andar) {
```

```
if (andarAtual == andar) {
   digitalWrite(alarme, HIGH);
   abrirPorta();
   delay(1000);
   digitalWrite(alarme, LOW);
   delay(4000);
   fecharPorta();
   Serial.print("Elevador parou no andar ");
   Serial.println(andarAtual);
 } else {
   abrirPorta();
   delay(5000);
   fecharPorta();
   Serial.print("Elevador iniciando deslocamento para o andar ");
   Serial.println(andar);
   digitalWrite(led elevador, HIGH);
   Wire.beginTransmission(25);
        Wire.write('x');
        Wire.endTransmission();
   delay(5000);
   digitalWrite(led_elevador, LOW);
   andarAtual = andar;
   abrirPorta();
   Serial.print("Elevador parou no andar ");
   Serial.println(andarAtual);
   delay(5000);
   fecharPorta();
 exibirAndar();
void abrirPorta() {
 if (andarAtual == 1) {
  for (int pos = 0; pos \neq = 90; pos += 1) {
    portaServo.write(pos);
    delay(15);
 } else if (andarAtual == 2) {
   for (int pos = 0; pos \neq 90; pos \neq 1) {
    porta2Servo.write(pos);
    delay(15);
  }
 }
}
void fecharPorta() {
 if (andarAtual == 1) {
   for (int pos = 90; pos >= 0; pos -= 1) {
    portaServo.write(pos);
    delay(15);
 } else if (andarAtual == 2) {
   for (int pos = 90; pos >= 0; pos -= 1) {
    porta2Servo.write(pos);
```

```
Trabalho prático n° 2: Desenvolvimento de Aplicação para Controlo de Elevadores
    delay(15);
 }
}
void exibirAndar() {
 if (andarAtual == 1) {
  digitalWrite(segA, LOW);
  digitalWrite(segB, HIGH);
  digitalWrite(segC, HIGH);
   digitalWrite(segD, LOW);
   digitalWrite(segE, LOW);
   digitalWrite(segF, LOW);
   digitalWrite(segG, LOW);
 } else if (andarAtual == 2) {
   digitalWrite(segA, HIGH);
   digitalWrite(segB, HIGH);
   digitalWrite(segC, LOW);
   digitalWrite(segD, HIGH);
   digitalWrite(segE, HIGH);
  digitalWrite(segF, LOW);
  digitalWrite(segG, HIGH);
}
Segue-se então o código arduino 2
#include <Wire.h>
unsigned long total_viagens = 0;
unsigned int viagens_ultimo_minuto = 0;
unsigned long iniciotimer = 0;
unsigned long timer_antigo = 0;
const long intervalo = 60000;
unsigned long minutos_total = 0;
void setup() {
 Wire.begin(25);
 Wire.onReceive(receberEvento);
 Serial.begin(9600);
 iniciotimer = millis();
}
void loop() {
 unsigned long correnteMillis = millis();
 if (correnteMillis - timer_antigo >= intervalo) {
  timer_antigo = correnteMillis;
```

void receberEvento(int quantos) {
 while (Wire.available()) {
 char c = Wire.read();
}

enviarMetricasParaComputador(); viagens_ultimo_minuto = 0;

minutos total++;

if $(c == 'x') \{$

}

```
total viagens++;
    viagens_ultimo_minuto++;
 }
}
void enviarMetricasParaComputador() {
 float media viagens minuto;
 if (minutos_total > 0) {
   media viagens minuto = (float)total viagens / minutos total;
   media_viagens_minuto = 0;
 Serial.print("Total de viagens: ");
 Serial.println(total_viagens);
 Serial.print("Viagens no último minuto: ");
 Serial.println(viagens ultimo minuto);
 Serial.print("Média de viagens por minuto: ");
 Serial.println(media viagens minuto);
}
```

4. Discussão

Agora que finalizei o trabalho posso dizer que a realização do fluxograma ajuda e muito na realização do código, porém mesmo assim enfrento um problema no meu código que sei porque é que acontece, mas não sei resolver.

Apesar disso acho que o trabalho foi bem executado e de forma eficiente mas com aquele problema que pode levar a erros pontuais, mas que nada seja impossível de resolver.

Para um futuro talvez pensava em organizar melhor o tinkercard caso queira aumentar o numero de slots de andares .

5. Conclusão

Em suma, apesar dos desafios enfrentados, considero que o trabalho foi bem <u>executado</u>. Senti que adquiri as capacidades suficientes para a realização deste projeto mas sinto que necessito de mais prática.

```
Tempo gasto por semana ula -3 horas semanais de aula prática +-
Tempo gasto por semana extra-aula - entre 3-5 horas
```

```
Link TinkerCard
```

link fluxo

6. Referências

Para me ajudar na realização deste projeto usei o os trabalhos anteriormente utilizados e os documentos de PDF que continham alguma informação sobre projetos anteriores. Usei o conhecimento anteriormente obtido das unidades curriculares Fundamentos de Programação e Sistemas Digitais.

E procurei informação no tinkercard fazendo um tutorial que os mesmos disponibilizam acerca o wire.