Architecture of Grammar, day 3

Uli Sauerland Leibniz-Centre General Linguistics (ZAS), Berlin

University of Buenos Aires, May 14-16, 2025

Effability & Economy

Can any conceptual representation that can be articulated in one language also articulated in another if the basic concepts are expressible in both languages?

Counterexamples: Paradigm gaps

- (1) a. Der wievielte Tag des Monats ist heute? (GERMAN) the how-many-th Tag des Monats is today
 - b. *The how manyth day of the month is (it) today?
 - c. Which day of the month is today?
- (2) *forgoed / *forwent

But semantic and syntactic conditions exhibit more flexibility.

cases: Scope and Binding Economy (Fox 2000)

Wide scope blocked first, then becomes available:

- (3) Some boy admires every teacher. Every girl does too. $(\exists \gg \forall, *\forall \gg \exists)$
- (4) Some boy admires every teacher. Some girl does too. $(\exists \gg \forall, \forall \gg \exists)$

Long binding blocked first, then becomes available:

- (5) a. John said that he likes his mother. Bill does too.
 - b. *Bill said that John likes Bill's mother.
- (6) a. John said that Mike likes his mother. Bill does too.
 - b. Bill said that Mike likes Bill's mother.

cases: Superiority and Weak Crossover

Pesetsky (1987): Object over subject blocked first, then becomes available.

- (7) a. Who invited who?
 - b. *Who did who invite?
- (8) a. Which girl invited which boy?
 - b. Which boy did which girl invite?

Accounting for effability

Y-model:

■ requires look-ahead to meaning

Meaning first model:

- preference for economical conceptual representations
- closely related to exhaustification

Binding Economy

Longer dependencies are less economical:

(14) [[the 'J]
$$\lambda_x$$
 [@ [x [said [he $_x$ [λ_y [y [like [the [his $_y$ mother]]]]]]]]]]

(15) *[[the 'J] [
$$\lambda_x$$
 [@ [x [said [he $_x$ [like [the [his $_x$ mother]]]]]]]]]

Relevant alternatives of p for economy calculation are structures q with:

- \blacksquare q must have same meaning as p
- \blacksquare q must only contain the same atoms p contains
- \blacksquare q can have a different pronunciation for p (contra Fox 1998)

Only the most economical structure (i.e. lowest dependency complexity) is licit.

Scope Economy

Fox (1998): lowering of the raised subject for narrow scope

- (9) a. [[every girl] λ_x [[every teacher] λ_y [x [likes y]]]
 - b. [[every teacher] λ_y [[every girl] [likes y]]]]

Sauerland (2018): representations different

(19) a. [[every girl] [λ_x [[every teacher] [λ_y [@ [x [admire y]]]]]]] b. *[[every teacher] [λ_y [[every girl] [λ_x [@ [x [admire y]]]]]]]

Dependency length exponentially contributes to complexity.

(10) Dependency Complexity (DC) Let $\operatorname{var}(\mathbf{A})$ be the set of occurrences of bound⁶ variables in A and $\operatorname{len}(x)$ be the number of complex concept units between a single occurrence $x \in \operatorname{var}(\mathbf{A})$ and its binder λ_x within **A**. Then we define the dependency complexity of **A** as:

$$DC(\mathbf{A}) = \sum_{x \in var(\mathbf{A})} 2^{len(x)}$$

Account of superiority

- (10) a. Which girl invited which boy?
 - b. Which boy did which girl invite?

Singular which has uniqueness presupposition, who doesn't:

- (11) a. Which girl invited the teacher? Mary / #None of them / Mary and Sue.
 - b. Who invited the teacher? Mary / No one / Mary and Sue.

The uniqueness presuppositions project differently in (10a) and (10b):

- (12) a. Each girl invited exactly one boy.
 - b. Each boy invited exactly one girl.

(24)	a.	Abe Ben Cid	b.	Abe Ben Cid	c.	Abe Ben Cid
	Ann	*	Ann		Ann	*
	Bea	*	Bea	* *	Bea	* *
	Cel	*	Cel	*	Cel	