

09 Multiple Lineare Regression

Dominic Schmitz & Janina Esser

Beispieldaten

• Für die folgenden Beispiele werden wir Daten folgender Studie nutzen:

Compensatory Vowel Shortening in German¹

 Stressed Vowels sind k\u00fcrzer je nachdem wie viele Konsonanten ihnen folgen:

¹Schmitz, D., Cho, H.-E., & Niemann, H. (2018). Vowel shortening in German as a function of syllable structure.

Proceedings 13. Phonetik Und Phonologie Tagung (P&P13), 181–184.

Beispieldaten

Für die folgenden Beispiele werden wir Daten folgender Studie nutzen:

Compensatory Vowel Shortening in German¹

 Unabhängig von diesem Vowel Shortening gilt, dass offene Vokale länger sind als halb-offene Vokale, und halb-offene Vokale sind länger als geschlossene Vokale:

¹Schmitz, D., Cho, H.-E., & Niemann, H. (2018). Vowel shortening in German as a function of syllable structure.

Proceedings 13. Phonetik Und Phonologie Tagung (P&P13), 181–184.

Einfache Lineare Regression

(Zu) Einfache Lineare Regression

Einfache Lineare Regression

Multiple Lineare Regression: Formel

Multiple Lineare Regression in R

- Mehr Variablen = mehr Zeitaufwand
- Typische Schritte bei Multipler Linearer Regression sind
 - 1. Verteilung der abhängigen Variable überprüfen
 - 2. "volles" Modell erstellen
 - 3. "bestes" Modell finden
 - 4. Annahmen überprüfen
 - 5. Modell interpretieren

1. Verteilung der abhängigen Variable

- Wie wir bereits wissen, nutzen wir hierzu den Shapiro-Wilk Test
- Die abhängige Variable in unserem Beispiel, duration, ist nicht normalverteilt
- Daher nutzen wir wieder eine log-transformierte Version der Variable, durationLog

2. "Volles" Modell

- Unsere abhängige Variable ist durationLog
- Als nächstes müssen wir die unabhängigen Variablen identifizieren, die wir nutzen möchten
- In diesem Beispiel sind es die folgenden Variablen:
 - structure = coda structure
 - vowel = vowel quality
 - rate = speech rate
 - **number** = slide number during experiment

2. "Volles" Modell

Erstellen des "vollen" Modells:

- Theoretisch müssten wir nun alle möglichen Variabel-Kombinationen testen um das "beste" Modell zu finden
- Allerdings ist dieser Vorgang manuell durchgeführt fehleranfällig und zeitaufwendig (und macht wirklich keinen Spaß)
- Zum Glück gibt es eine Funktion, die diesen Schritt übernimmt:

step(model)

> step(model)

> step(model)

Start: AIC=-1167.31

Akaike Information CriterionJe niedriger, desto besser der Fit

durationLog ~ structure + vowel + rate + number

> step(model)

Akaike Information Criterion je niedriger, desto besser der Fit

Start: AIC=-1167.31

durationLog ~ structure + vowel + rate + number

	Df	Sum of Sq	RSS	AIC	
- number	1	0.0536	31.839	-1168.55	ein Model ohne number
<none></none>			31.786	-1167.31	Hamber
- rate	1	0.8500	32.636	-1157.48	
- vowel	4	3.4109	35.197	-1129.64	ein Model ohne vowe1
- structure	2	14.9708	46.756	-998.41	

Step: AIC=-1168.55

durationLog ~ structure + vowel + rate

bestes gefundenes Model und sein AIC-Wert

zusätzlicher Beweis dafür, dass eine weitere Reduzierung den Fit des Modells nicht verbessert

bestes gefundenes Model und seine Struktur

call:

lm(formula = durationLog ~ structure + vowel + rate, data = data)

Coefficients:

(Intercept) structuresingle vowele structureopen -1.50620.4340 0.1219-0.1441voweli vowelo vowelu rate -0.2532-0.2365-0.2374-0.1229

Koeffizienten des Models – mehr dazu bei Schritt 5

- Multiple Lineare Regression folgt den gleichen Annahmen, denen auch Simple Lineare Regression folgt
 - Linearität / Linearity
 - Homoskedastizität / Homoscedasticity
 - Normalität / Normality
 - Unabhängigkeit / Independence

Annahme: Linearität

Die Beziehung zwischen X und dem Mittelwert von Y ist linear.

• Die Linie sollte horizontal und flach verlaufen.

Annahme: Homoskedastizität

Die Varianz der Residuen ist für jeden Wert von X gleich.

 Die Daten sollten gleichmäßig über die Linie verteilt sein und keine offensichtlichen Muster aufweisen.

Annahme: Normalität

Für jeden festen Wert von X ist Y normalverteilt.

 Die Verteilung der Residuen eines linearen Modells sollte einer Normalverteilung folgen.

5. Interpretation

- Generell sind wir an zwei Dingen interessiert:
 - 1. den p-Werten der einzelnen Prädiktoren
 - 2. den Effekten der einzelnen Prädiktoren

5. Interpretation – *p*-Werte

1. Mit der anova() Funktion erhalten wir *p*-Werte

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
structure	2	15.131	7.5654	104.4874	< 2.2e-16 *	***
vowel	4	3.507	0.8767	12.1079	2.41e-09 [;]	***
rate	1	0.842	0.8416	11.6241	0.0007112 *	***
Residuals	439	31.786	0.0724			

2. Mit der summary () Funktion können wir einen Blick auf die einzelnen Effekte der Prädiktoren werfen

	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	-1.506		0.105	-14.364	0.000	***
structureopen	0.434		0.031	13.947	0.000	* * *
structuresingle	0.122		0.031	3.910	0.000	***
vowele	-0.144		0.040	-3.572	0.000	***
voweli	-0.237		0.040	-5.883	0.000	* * *
vowelo	-0.123		0.040	-3.048	0.002	**
vowelu	-0.237		0.040	-5.864	0.000	***
rate	-0.253		0.074	-3.410	0.001	***

 Mit der summary() Funktion können wir einen Blick auf die einzelnen Effekte der Prädiktoren werfen

 Mit der summary() Funktion können wir einen Blick auf die einzelnen Effekte der Prädiktoren werfen

Estimate Std. Error t value Pr(>|t|)0.105 * * * (Intercept) -1.506-14.3640.000 structureopen structure:double + vowel:a + rate:start structuresing e vowele geschätzter Durchschnitt von durationLog voweli vowelo vowelu rate

 Mit der summary() Funktion können wir einen Blick auf die einzelnen Effekte der Prädiktoren werfen

Estimate Std. Error t value Pr(>|t|)0.105 * * * (Intercept) -1.506-14.3640.000structureopen structure:double + vowel:a + rate:start structuresingle Standardfehler des geschätzten Durchschnitts vowele voweli vowelo vowelu rate

2. Mit der summary() Funktion können wir einen Blick auf die einzelnen

Effekte der Prädiktor structure:double + vowel:a + rate:start Std. Error t value Pr(>|t|)Estimate 0.105 * * * (Intercept) -1.506-14.3640.000 structureopen structuresingle 0.122 0.031 3.910 * * * 0.000vowele um den geschätzten Durchschnitt von durationLog in structure:single Wörtern zu berechnen, wird der voweli Schätzwert von structure: single zum Estimatevowelo Schätzwert addiert, d.h. vowelu -1.506 + 0.122 = -1.384rate

2. Mit der summary() Funktion können wir einen Blick auf die einzelnen

Effekte der Prädiktor structure:double + vowel:a + rate:start Estimate Stu. Error t value Pr(>|t|)0.105 -14.364 * * * (Intercept) -1.5060.000 structureopen structuresingle 0.122 0.0313.910 * * * 0.000vowele voweli -0.237* * * 0.040-5.8830.000 vowelo um den geschätzten Durchschnitt von durationLog in structure:single Wörtern mit vowel: i zu berechnen, wird ebenfalls vowelu die Summe gebildet, d.h.

rate

-1.506 + 0.122 - 0.237 = -1.621

2. Mit der summary() Funktion können wir einen Blick auf die einzelnen

Effekte der Prädiktor structure:double + vowel:a + rate:start Estimate Sta. Error t value Pr(>|t|)-1.506* * * (Intercept) durationLogist structureopen * * * 0.434 signifikant höher in Silben ohne structuresingle 0.122 Coda * * * signifikant höher in Silben mit vowele einfacher Coda voweli im Vergleich zu Silben mit komplexer vowelo Coda vowelu rate

2. Mit der summary() Funktion können wir einen Blick auf die einzelnen

Effekte der Prädiktoran structure:double + vowel:a + rate:start							
	Estimate	Sta. Error	t value	Pr(> t)			
(Intercept)	-1.506	0.105	-14.364	0.000	***		
structureopen	0.434	0.031	13.947	0.000			
structuresingle	0.122	0.031	3.910	0.000			
vowele	-0.144	durationLog	g ist	0	***		
voweli	-0.237	- signifikant niedriger in Silben mit					
vowelo	-0.123	/e, i, o, u/			**		
vowelu	-0.237	als in Silben mi	t /a/	0	***		
rate	-0.253	0.074	-3.410	0.001			

2. Mit der summary () Funktion können wir einen Blick auf die einzelnen Effekte der Prädiktoren werfen

		Estimate	Std. Error	t value	Pr(> t)	
(Interce	ept)	-1.506	0.105	-14.364	0.000	
structur	eopen	0.434	0.031	13.947	0.000	
structur	esingle	0.122	0.031	3.910	0.000	
vowele		-0.144	0.040	-3.572	0.000	
voweli		0 227	0.040	-5.883	0.000	
vowelo	je höher die Sprechgeschwindigkeit, desto niedriger durationLog			-3.048	0.002	
vowelu		-0.237	0.040	-5.864	0.000	
rate		-0.253	0.074	-3.410	0.001	***

2. Mit der summary () Funktion können wir einen Blick auf die einzelnen Effekte der Prädiktoren werfen

	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	-1.506		0.105	-14.364	0.000	***
structureopen	0.434		0.031	13.947	0.000	***
structuresingle	0.122		0.031	3.910	0.000	***
vowele	-0.144		0.040	-3.572	0.000	***
voweli	-0.237		0.040	-5.883	0.000	***
vowelo	-0.123		0.040	-3.048	0.002	**
vowelu	-0.237		0.040	-5.864	0.000	***
rate	-0.253		0.074	-3.410	0.001	***

Der s.g. Tukey-Contrast zeigt uns die Unterschiede innerhalb eines kategorischen Prädiktors

```
> tukey(model = mdl_fin, predictor = structure)
```

```
Estimate Std. Error t value Pr(>|t|) open - double == 0 0.43395 0.03112 13.95 < 1e-04 *** single - double == 0 0.12186 0.03117 3.91 0.00031 *** single - open == 0 -0.31209 0.03111 -10.03 < 1e-04 ***
```