Let n be in $\mathbb{N} \setminus \{0\}$. Let k, x be in \mathbb{Z} . We define the congruence class \overline{k} of the integer k as the set

$$\overline{\mathbf{k}} = \{ x \in \mathbb{Z} \mid x - k = 0 (\operatorname{mod} n) \}$$

$$x \in \mathbb{Z} \mid \exists a \in \mathbb{Z} : (x - k = n \cdot a) \}$$

We now define $\mathbb{Z}/n\mathbb{Z}$ (sometimes written \mathbb{Z}_n) as the set of all congruence classes modulo n. Euclidean divison implies that this set is a finte set containing n elements:

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, ..., \overline{\mathbf{n-1}}\}$$

For all $\overline{\mathbf{a}}, \overline{\mathbf{b}} \in \mathbb{Z}_n$, we define

$$a \oplus b := \overline{a+b}$$

- **a** . Show that (\mathbb{Z}_n, \oplus) is a group. Is it abelian?
- \mathbf{b} . We now define another operation \otimes for all a and b in \mathbb{Z}_n as

$$a \otimes b = \overline{a \times b}$$

where $a \times b$ represents the usual multiplication in \mathbb{Z} .

Let n=5. Draw the times table of the elements of $\mathbb{Z}_5\setminus\left\{\overline{0}\right\}$ under \otimes .

Conclude that is an Abelian group.

- **c** . Show that $(\mathbb{Z}_8 \setminus {\overline{0}}\}, \otimes)$ is not a group.
- **d**. We recall that the 'Bézout theorem states that two integer a and b are relatively prime (i.e $(\gcd(a,b)=1)$ if and only if there exist two integers u and v such that au+bv=1. Show that (\mathbb{Z}_n,\oplus) is a group if and only if $n\in\mathbb{N}\setminus\{0\}$ is prime.

We now show that (\mathbb{Z}_n, \oplus) is a group

to be a group the mathematical structure must hold the following properties

- · identity element
- closure for the provided operator
- each element in the set has an inverse
- · associativity property

We start by proving the associativity property, a * (b * c) = (a * b) * c

$$a*(b*c)$$

$$x-a\oplus(x-b\oplus x-c)$$

$$x-a+\overline{(x-b+x-c)}$$

$$\overline{x-a+(\overline{x-b+x-c})}$$

$$\overline{x-a+(\overline{2x-b-c})}$$

$$\overline{x-a+(0-b\bmod n-c\bmod n)}, \text{ apply mod n operation}$$

$$\overline{x-a-\overline{b}-\overline{c}}$$

$$\overline{x-\overline{d}}$$

$$0-\overline{d}$$

$$\overline{d}$$

$$(a*b)*c$$

$$(x-a\oplus x-b)\oplus x-c$$

$$\overline{x-a+x-\overline{b}}\oplus x-c$$

$$\overline{x-a+x-\overline{b}}+x-c$$

$$\overline{(2x-a-b)+x-c}$$

$$\overline{(0-a\bmod n-b\bmod n)+x-c}$$

$$\overline{d+x}$$

$$\overline{d}$$

we know that \overline{d} must each belong to a congruence class, thus must be a number in \mathbb{Z}_n so associativity holds.

now we prove identity element, a * e = a

$$a * e$$
 $a \oplus e$
 $\overline{a + e}$
 $\overline{a + 0}$, set e to 0

note that $a \in \mathbb{Z}_n$ thus a < n it must be the case that $a = \overline{a}$, thus identity property also holds. now we prove the inverse property, $a * a^{-1} = e$

$$a*a^{-1}$$

$$a\oplus a^{-1}$$

$$\overline{a+a^{-1}}$$

$$\overline{a}+\overline{a^{-1}} \ , \text{ set the second term to be n - a}$$

$$\overline{b}=0=\overline{0}$$

thus note that 0 < (n-a) < n , thus it must be the case that $\forall (n-a) \in \mathbb{Z}_n$, so inverse property holds.

now we prove closure property, $a * b \in \mathbb{Z}_n$

$$a * b$$

$$a \oplus b$$

$$\overline{a+b}$$

$$\overline{c}$$

note that $\overline{c} \in \mathbb{Z}_n$ it must be one of the congruent classes by definition of congruent class, thus closure property holds.

all previous mentioned property holds, thus this structure must be a group, now we check if such group is abelian.

to prove is abelian, is enough to a * b = b * a, that is check for commutativity.

$$a * b$$

$$a \oplus b$$

$$\overline{a+b}$$

$$\overline{c}$$

$$b * a$$

$$b \oplus a$$

$$\overline{b+a}$$

 $\overline{\boldsymbol{c}}$, due to commutativity of addition

note that both expressions result in the same value and such value belongs to \mathbb{Z}_n thus the group is indeed abelian.

now we check the second group, $\left(\mathbb{Z}_5\setminus\left\{\overline{0}\right\},\otimes\right)$

first we "draw" the table for n=5

	1	2	3	4
1	1	2	ಌ	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

note that is closed, by inspection, note also that identity element is preset $\overline{1}$ which is 1. each element has indeed an inverse, defined as the following pairs (1,4),(2,3), now we prove associativity

$$a*(b*c)$$

$$a \otimes (b \otimes c)$$

$$a \otimes \left(\overline{b \times c}\right)$$

$$a\otimes\left(\overline{b}\times\overline{c}\right)$$

$$\overline{a \times \left(\overline{b} \times \overline{c}\right)}$$

$$\overline{a} \times \overline{b} \times \overline{c}$$

$$(a*b)*c$$

$$(a \otimes b) \otimes c$$

$$\overline{a \times b} \otimes c$$

$$\left(\overline{a} \times \overline{b}\right) \otimes c$$

$$\overline{\left(\overline{a}\times\overline{b}\times c\right)}$$

$$\overline{a} \times \overline{b} \times \overline{c}$$

we also know that the matrix is closed, so this multipliation must be one of the congruence classes. thus the mathematical structure is a group, now we prove is abelian, a * b = b * a

$$a * b$$

$$a \otimes b$$

$$\overline{a \times b}$$

$$\overline{c}$$

$$b * a$$
$$b \otimes a$$
$$\overline{b \times a}$$

 \overline{c} , note that multiplation is commutative

thus this group is indeed abelian, so $(\mathbb{Z}_5 \setminus \{\overline{0}\}, \otimes)$ is an abelian group.

now we prove $(\mathbb{Z}_8 \setminus \{\overline{0}\}, \otimes)$ is not a group we prove by counterexample

	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	4	6	0	2	4	6
3	3	6	1	4	7	2	5
4	4	0	4	0	4	0	4
5	15	2	7	4	1	6	3
6	6	4	2	0	6	4	6
7	7	6	5	4	3	6	1

note that multiple times $a*b\equiv 0$ thus belongs to $\overline{0}$ and such congruence class is restricted in the set $\mathbb{Z}_8\setminus\{\overline{0}\}$, so is not a group, lacks closure.

now we prove d)

we need to prove that $\mathbb{Z}_n \setminus \{\overline{0}\}$ is a group $\Rightarrow n$ is prime and if n is prime $\Rightarrow \mathbb{Z}_n \setminus \{\overline{0}\}$ is a group let's do a contrapositive proof

suppose n is not prime, then it must be the case that

$$x \equiv 0 \bmod n$$

that is one of the numbers must be a divisor of n, by definition of being composite

but note that would invalidate $x \in \mathbb{Z}_n \setminus \{\overline{0}\}$, that would put $x \in \overline{0}$, but the set restricts this congruence class, thus it must be the case that n is prime, otherwise a contradiction happens.

now we prove the other proposition

recalling Bézout's identity

$$gcd(a, b) = 1 \Leftrightarrow au + bv = 1$$

thus

$$xu + bn = 1$$

meaning that $xu - 1 = bn \Rightarrow x \equiv 1 \mod n$

note that x, x + 1, ...x + (n - 2) must be present in this set

meaning every number in the congruence class $\overline{1}$ to $\overline{n-1}$ is present thus $(\mathbb{Z}_n\setminus\{\overline{0}\},\otimes)$ is a group, note that is closed, has identity, has inverse and also is associative.