66.70 Estructura del Computador

Diseño de circuitos combinacionales

¿Qué es ANALIZAR un circuito?

Dado un circuito lógico determinar el comportamiento de dicho circuito

¿Qué es DISEÑAR un Circuito?

Dado un problema encontrar un circuito lógico que resuelva dicho problema

Ejemplo: Diseñar un circuito que controle el encendido de una alarma sonora en función de varios sensores de temperatura, presencia, apertura de puertas y ventanas, etc.

Expr. informal -> Expresión formal -> Expresión mínima -> Circuito -> implementación

Lógica combinacional

- Lógica de dos niveles
 - Suma de productos
 - Producto de sumas
- Lógica multinivel

Ejemplo: x'y + xy' + xz = x'y + x(y' + z)

Complejidad de una solución

• ¿Cómo podemos medir la complejidad de una solución?

• ¿Cómo podemos comparar dos expresiones equivalentes?

Complejidad de una solución

- $comp = \sum Tc. Ce$
 - Tc: Tipo de compuerta
 - Ce: Cantidad de entradas
 - Ej: $Comp = 6_{AND}$. $4_{Entradas} + 1_{OR}$. $6_{Entradas} = 26$

Las compuertas tienen una cantidad limitada de entradas

PIN CONNECTIONS

Métodos de Simplificación

• Algebraico

- Se trabaja directamente sobre la expresión algebraica (prueba y error)
- Se basa en eliminar términos y literales aplicando los postulados y los teoremas del Algebra de Boole

Gráfico

Mapa de Karnaugh

• Tabular

Algoritmo de Quine-McCluskey

Simplificación por método algebraico

Ejemplo:

$$F = A'C' + ABC + BC' + A'B'C + A'BC$$
 $F = A'C' + BC' + BC(A + A') + A'C(B + B')$
 $F = A'C' + BC' + BC + A'C$
 $F = A'(C' + C) + B(C' + C)$
 $F = A' + B$

Método algebraico Características

- No incluye un procedimiento formal que asegure llegar a una expresión mínima
- Proclive a que se comentan errores de copia en los literales
- Se torna difícil con más de 4 o 5 variables

Método algebraico

ABCD	Q
0000	0
0001	0
0010	0
0011	0
0100	1
0101	0
0110	0
0111	0
1000	1
1001	1
1010	0
1011	0
1100	1
1101	1
1110	1
1111	0

$$A\overline{B} \ \overline{C} \ \overline{D} + A\overline{B} \ \overline{C} \ D + \dots$$

$$A\overline{B} \ \overline{C} \ (\overline{D} + D)$$

$$A\overline{B} \ \overline{C}$$

$$Para la combinación$$

$$A=1; B=0; C=0$$

$$la función vale 1$$

$$valor de D$$

¡¡SON ADYACENTES!!

- Relación entre el mapa de K y la tabla de verdad
- Definiciones:
 - Adyacencias
 - Implicante primo
 - Implicante primo esencial
- Permite encontrar las expresiones mínimas en forma de Suma de Productos o Producto de Sumas (mínima cantidad de términos y mínima cantidad de entradas)
- Se basa en: (1) encontrar todos los implicantes primos
 - (2) seleccionar un conjunto mínimo de implicantes que cubra la función

Por los 1's de la función

F(A, B, C, D)

Tabla de verdad

- 1. Marcar implicantes primos
- 2. Marcar Imp. primos esenciales
- 3. Construir expr.algebr c/ IPE
- 4. Agregar 1's hasta completar F

EXPRESION/es MÍNIMA/s

"Suma de Productos"

Resolver:

F = A'C' + ABC + BC' + A'B'C + A'BC

Por los 1's de la función

Por los 0's de la función

F(A, B, C, D)

Tabla de verdad

	0		
0			0
		0	0
	0	0	

- 1. Marcar implicantes primos
- 2. Marcar Imp. primos esenciales
- 3. Construir expr.algebr c/ IPE
- 4. Agregar 0's hasta completar F

EXPRESION/es MÍNIMA/s

"Producto de Sumas"

Resolver:

F = A'C' + ABC + BC' + A'B'C + A'BC

Aplicar Mapas de Karnaugh

Para un proceso que se produce en una fábrica, nos pidien diseñar un circuito que encienda una alarma según tres sensores T1, T2 y P

- T1 sensa la temperatura del proceso
 - $T1 = 1 \text{ si } T > 50^{\circ}$
 - -T1 = 0 caso contrario
- T2 también sensa la temperatura del proceso
 - $T2 = 1 \text{ si } T < 10^{\circ}$
 - T2 = 0 caso contrario
- P sensa la presión del proceso
 - P = 1 si Presión > 10 atm
 - P = 0 caso contrario

La alarma deberá sonar siempre que T sea menor a 10° y P sea mayor a 10atm o siempre que la temperatura supere los 50°

Diseñar el circuito más simple que cumpla con esa función.

Redundancias

o "Funciones incompletamente especificadas"

- Significado
- Como manejarlas en los Mapas de Karnaugh
 - ✓ Cuando conviene incluirlas en un implicante
 - ✓ Relación entre las redundancias de distintos implicantes
 - ✓ Redundancias e implicantes primos esenciales

Simplificación por mapas de Karnaugh

Con redundancias

F(A, B, C, D)

Tabla de verdad

1	X	1	1
	Х	Х	
	1	1	

"Aprovechar" redundancias

Sólo sin son útiles para simplificar

- 1. Marcar implicantes primos
- 2. Marcar Imp. primos esenciales
- 3. Construir expr.algebr c/ IPE
- 4. Agregar 1's hasta completar F

EXPRESION/es MÍNIMA/s

"Producto de Sumas"

Mapas de Karnaugh de 5 variables

Vecindades?

Mapas de Karnaugh de 6 variables

Vecindades?

Simplificación por mapa de Karnaugh

Ventajas

- Da un procedimiento formal hacia la expresión mínima
- Aplicable para S de P y para P de S
- Fácil de aplicar (con pocas variables)

Desventajas

- No es aplicable a más de 5 o ¿6? variables
- Depende de la habilidad visual y experiencia
- No es apropiado para implementar en software

Bajando más los costos

- ✓ Reducir número de compuertas y mínimo número de entradas
- Elegir entre solución por suma de productos o por producta de sumas
- Reducir el número de inversores
- Reducir el número de circuitos integrados
 (los CI comerciales incluyen varias compuertas en el mismo chip dependiendo del número de entradas)
- Utilizar sólo compuertas NAND
 - Ventajas:
 - Menor costo que AND OR
 - Unificar el tipo de compuertas utilizadas en la implementación
 - Como?
- Compuertas NOR: idem NAND

Problemas de salida múltiple

Ejemplo: columna de 8 leds encendida en correspondencia con datos de tres bits a la entrada

Problemas de salida múltiple

$$F_1(A, B, C, D) = \sum m(11, 12, 13, 14, 15)$$

 $F_2(A, B, C, D) = \sum m(3, 7, 11, 12, 13, 15)$
 $F_3(A, B, C, D) = \sum m(3, 7, 12, 13, 14, 15)$

¿Qué compuertas puedo ahorrar respecto del problema de salida única?

Problemas de salida múltiple

$$F_{1}(A, B, C, D) = \sum m(11, 12, 13, 14, 15)$$

$$F_{2}(A, B, C, D) = \sum m(3, 7, 11, 12, 13, 15)$$

$$F_{3}(A, B, C, D) = \sum m(3, 7, 12, 13, 14, 15)$$

Implementación directa de F₁ F₂ y F₃

Consideradas como salida múltiple

Pasos para diseñar un circuito lógico combinacional

- 1. Planteo informal del problema
- 2. Identificación de variables dependientes e independientes
- 3. Formalizar las salidas como funciones lógicas
- 4. Encontrar todas las expresiones mínimas posibles (por 1's y por 0's)
- 1. Diagrama circuital de una de esas expr. mínimas (cuál?)
- 2. Elegir circuitos integrados (un único tipo de compuerta?)
- 3. Implementación física

Ver tranparencia:

"Bajando más los costos"

- Resulta apropiado para implementarlo en software
- Se organiza en forma tabular
- > No impone límites, en principio, sobre el **número de variables**

Básicamente consiste en:

- Eliminar tanto literales como sea posible aplicando sistemáticamente XY + XY' = X
- 2. Usar una **tabla de implicantes primos** para seleccionar un conjunto mínimo de implicantes primos que combinados por medio de OR producen la función a simplificar

Pueden combinarse

No pueden combinarse

A'BC'D + A'BCD' 0 1 0 1 + 0 1 1 0

- 1. Encontrar todos los implicantes primos
 - 1. Agrupar minitérminos según la cantidad de 1's
 - 2. Comparar grupos adyacentes solamente
 - 3. Combinar minitérminos -> implicantes
 - 4. Combinar implicantes en pasos sucesivos (tildar cada implicante usado en cada combinación)
 - 5. Eliminar implicantes duplicados
- 2. Elegir un conjunto mínimo de implicantes primos
 - 1. Construir la tabla de implicantes con:
 - a. Los implicantes de menor orden que no fueron tildados
 - b. Los implicantes de mayor orden
 - 2. Elegir los implicantes primos esenciales
 - Completar por medio de otros implicantes primos todos los minitérminos de la función

Ejemplo: $F(A,B,C,D) = \sum m(0,1,2,5,6,7,8,9,10,14)$

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Paso 1

Agrupar minitérminos según la cantidad de 1's

Sólo debemos comparar grupos adyacentes

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Paso 2 (Combinar implicantes de grupos vecinos)

	Co	lumna	Ι	Columna II			
grupo 0 grupo 1-{	0 1 2 8	0000 0001 0010 1000		0,1 000- 0,2 00-0 0,8 -000 1,5 0-01 1,9 -001			
grupo 2-{	5 6 9 10	0101 0110 1001 1010		2,6 0-10 2,10 -010 8,9 100- 8,10 10-0			
grupo 3 {	7 14	0111 1110		5,7 01-1 6,7 011- 6,14 -110 10,14 1-10			

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Paso 3 (Agrupar la columna 2 y combinar implic. de grupos vecinos)

Columna I	Columna II	Columna III				
grupo 0 0000	0,1 000-	0,1,8,9 -00- 0,2,8,10 -0-0 0,8,1,9 -00- 0,8,2,10 -0-0 2,6,10,1410				
grupo 2 \begin{cases} 5 & 0101 & \\ 6 & 0110 & \\ 9 & 1001 & \\ 10 & 1010 & \\ \end{cases} \] grupo 3 \begin{cases} 7 & 0111 & \\ 14 & 1110 & \\ \end{cases} \]	2,6 0-10	2,10,6,1410				
grupo 5 14 1110 🗉	6,7 011- 6,14 -110 10,14 1-10					

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Paso 4 (Eliminar combinaciones repetidas)

	Columna I	Columna II	Columna III
grupo 0 grupo 1-{	0 0000	0,1 000- 0,2 00-0 0,8 -000 1,5 0-01	0,1,8,9 -00- 0,2,8,10 -0-0 -0,8,1,9 -00- -0,8,2,10 -0-0
grupo 2-{	5 0101	1,9 -001	2,6,10,1410 2,10,6,1410
grupo 3 {	7 0111 = .14 1110 =	5,7 01-1 6,7 011- 6,14 -110 1 10,14 1-10 1	

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Paso 5 (Formar F con los términos no tildados)

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Resultado obtenido:

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Resultado obtenido:

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Resultado obtenido:

$$F = a'bd + cd' + b'c'$$

Necesitamos un método para eliminar los términos redundantes

(Segunda parte del algoritmo de Quine-McCluskey)

f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'

minitérminos

(0,1,8,9) (0,2,8,10) (2,6,10,14) (1,5) (5,7) (6,7)

		0	1	2	5	6	7	8	9	10	14
	b'c'	X	X					X	X		
	b'd'	X		X				X		X	
ļ)	cd'			X		X				X	X
•	a'c'd		X		X						
	a'bd				X		X				
	a'bc					X	X				

¿Cómo sabemos cuáles son los ímplicantes primos esenciales?

(Segunda parte del algoritmo de Quine-McCluskey)

						n	nin	itér	mir	าดร	i	
ਜ			0	1	2	5	6	7	8	9	10	14
<u>p</u>	(0,1,8,9)	b'c'	X	X					X	(X)		
Ca	(0,2,8,10)	b'd'	X		X				X		X	
nte	(2,6,10,14)	cď'			X		X				X	(X)
Š	(1,5)	a'c'd		X		X						
OT.	(5,7)	a'bd				X		X				
mplicantes primos	(6,7)	a'bc					X	X				

Una vez que un implicante fue incluido en F, todos los minitérminos que este abarca dejan de ser tenidos en cuenta para formar F

(Segunda parte del algoritmo de Quine-McCluskey)

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

Una vez que un implicante fue incluido en F, todos los minitérminos que este abarca dejan de ser tenidos en cuenta.

(Segunda parte del algoritmo de Quine-McCluskey)

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

Con los Implicantes primos esenciales no cubrimos toda la función.

Con qué criterio elegimos la cantidad mínima de IP- NE?

(Segunda parte del algoritmo de Quine-McCluskey)

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

Con los Implicantes primos esenciales no cubrimos toda la función.

Con qué criterio elegimos la cantidad mínima de IP- NE?

Elegimos los implicantes que incluyen mayor cantidad de minitérminos

Bibliografía

SISTEMAS NUMERICOS Y ARITMETICA BINARIA
- Teoría de Conmutación y Diseño Lógico – Hill F., Peterson G Ed. Limusa Capitulo 2
- La PC por dentro – GINZBURG Mario - Ed. Biblioteca Técnica Superior - 3º Edición Apéndice 1
- La PC por dentro – GINZBURG Mario - Ed. Biblioteca Técnica Superior - 3º Edición Complemento a la unidad 1 (Aritmética binaria, al final del libro)
- MURDOCCA M.J., HEURING V. P. "Principios de Arquitectura de Computadoras", Prentice Hall, 2002
- JOHN F. WAKERLY, "Diseño digital: Principios y prácticas", Pearson Educación, 2001
Adicionalmente una referencia a la norma IEEE 754 puede consultarse en: http://es.wikipedia.org/wiki/IEEE_punto_flotante
ALGEBRA DE BOOLE Y DISEÑO DE CIRCUITOS COMBINACIONALES
- Introducción a las Técnicas Digitales con CI – Mario GINZBURG - Ed Biblioteca Técnica Superior - 8º Ed. Capítulos 4, 5 y 6
- Teoría de Conmutación y Diseño Lógico – HILL F., PETERSON G Ed. Limusa Capítulos 3, 4, 6 y 7
- MURDOCCA M.J., HEURING V. P. "Principios de Arquitectura de Computadoras", Prentice Hall, 2002 (Apéndice)

- JOHN F. WAKERLY, "Diseño digital: Principios y prácticas", Pearson Educación, 2001