格式A		格式B		N4.
位	值	位	值	注
011 0000	1	0111 000	1.	
101 1110	15 2	1001 111	$\frac{15}{2}$	
010 1001	25 32	0110 100	34	向下舍人
110 1111	31	1011 000	16	向上舍人
000 0001	164	0001 000	$\frac{1}{64}$	非规格化→规格化

2.53 一般来说,使用库宏(library macro)会比你自己写的代码更好一些。不过,这段代码似乎可以在多种机器上工作。

假设值 1e400 溢出为无穷。

#define POS_INFINITY 1e400

#define NEG_INFINITY (-POS_INFINITY)

#define NEG_ZERO (-1.0/POS_INFINITY)

- 2.54 这个练习可以帮助你从程序员的角度来提高研究浮点运算的能力。确信自己理解下面每一个答案。
 - A. x == (int) (double) x

真,因为 double 类型比 int 类型具有更大的精度和范围。

 $B_* x == (int) (double) x$

假,例如当x为TMax时。

C. d == (double) (float) d

假,例如当 d为 le40 时,我们在右边得到+∞。

D. f == (float) (double) f

真,因为 double 类型比 float 类型具有更大的精度和范围。

E. f == -(-f)

真,因为浮点数取非就是简单地对它的符号位取反。

F. 1.0/2 == 1/2.0

真,在执行除法之前,分子和分母都会被转换成浮点表示。

G. d*d>=0.0

真,虽然它可能会溢出到+∞。

H. (f+d)-f == d

假,例如当 f 是 1.0e20 而 d 是 1.0 时,表达式 f+d 会舍人到 1.0e20,因此左边的表达式求值得到 0.0,而右边是 1.0。