1 HOMOTETIJA

Definicija 1.1. Dana je točka O i neki realan broj $k \neq 0$. Homotetija s centrom O i s koeficijentom k zovemo preslikavanje skupa točaka ravnine na sebe tako da vrijedi $O \to O$ i za svaku točku $T \neq O$ imamo $T \to T_1$, gdje su točke T, T_1, O kolinearne te za orjentirane duljine dužina OT, OT_1 vijedi $\frac{OT_1}{OT} = k$.

- Za | k |> 1 homotetiju zovemo **dilatacija**(rastezanje), a za | k |< 1 zovemo **kontrakcija**(stezanje). Za k = 1 imamo identitetu, a za k = -1 centralnu simetiju.
- Homotetija je specijalan slučaj sličnosti.
- Homotetija preslikava točke u točke, pravac u njemu paralelan pravac, dužinu u dužinu, kružnicu u kružnicu (ZNATI DOKAZATI)
- Homotetija preslikava trokute u slične trokute jednake orjentacije.

Lema 1.2 (Menelajev teorem). Neka su D, E, F točke na pravcima BC, CA, AB, gdje je ABC trokut. Točke D, E, F su kolinearne ako i samo ako za orjentirane duljine vrijedi

$$\frac{BD}{CD} \cdot \frac{CE}{AE} \cdot \frac{AF}{BF} = 1$$

(DOKAZ)

Teorem 1.3. Ako je $k_1k_2 \neq 1$, tada je kompozicija homotetije $h_1(O_1, k_1)$ i homotetije $h_2(O_2, k_2)$ opet homotetija h(O, k), gdje je $k = k_1k_2$, a O je točka pravca O_1, O_2 takva da vrijedi

$$\frac{O_1O}{O_2O} = \frac{k_2 - 1}{k_2(1 - k_1)}$$

DOKAŽI

Teorem 1.4. Kompozicija homotetije $h_1(O_1, k_1)$ i homotetije $h_2(O_2, \frac{1}{k_2})$ je translacija za vektor $\frac{k_1-1}{k_1}\overrightarrow{O_1O_2}$. DOKAŽI

Definicija 1.5. Neka je G neprezan skup i $*: GxG \to G$ binarna operacija na G. Uređen par (G,*) se zove grupa ako su zadovoljeni sljedeći uvjeti

1.
$$a * (b * c) = (a * b) * c, \forall a, b, c \in G$$

- 2. postoji $e \in G$ takav da je $a * e = e * a = a, \forall a \in G$
- 3. za svaki $a \in G$ postoji $a^{(-1)} \in G$ takav da vrijedi $a * a^{(-1)} = a^{(-1)} * a = e$ ako još vrijedi $a * b = b * a, \forall a, b \in G$ kažemo da je (G, *) komutativna grupa (Abelova grupa)
- **Teorem 1.6.** Homotetije s istim centrom O tvore komutatuvnu grupu. DOKAŽI
- **Teorem 1.7.** Sve homotetije i translacije tvore grupu. (dokazali smo i da je kompozicija homotetije i translacije (u oba poretka) opet homotetija) DOKAZ
- **Teorem 1.8.** Središte O opisane kružnice, težište G i ortocentar H trokuta leže na jednom pravcu (Eulerov pravac trokuta) i vrijedi $\frac{GH}{GO} = -2$. DOKAZ
- **Teorem 1.9.** Neka su D, E, F polovišta dužina BC, CA, AB, a $\overline{AA_1}, \overline{BB_1}, \overline{CC_1}$ visine trokuta ABC koje se sijeku u ortocentru H. Neka su D_1, E_1, F_1 polovišta od $\overline{HA}, \overline{HB}, \overline{HC}$. Točke $A_1, B_1, C_1, D, E, F, D_1, E_1, F_1$ leže na jednoj kružnici (Feuerbachovoj/Eulerovoj/ kružnica 9 točaka) kojoj su $\overline{DD_1}, \overline{EE_1}, \overline{FF_1}$ promjeri.
- **Teorem 1.10.** Dane su dvije kružnice $k_1(O_1, r_1)$ i $k_2(O_2, r_2)$. Neka je $\overline{O_1A_1}$ bilo koji polumjer kružnice k_1 i $\overline{A_2A_2}$ " njemu paralelan promjer kružnice k_2 , pri čemu točke A_1iA_2 leže s iste strane pravca O_1O_2 . Tada svi pravci A_1A_2 prolaze jednom čvrstom točkom V_{12} , a svi pravci A_1A_2 " čvrstom točkom U_{12} su tzv. vanjski i unutrašnji centri sličnosti kružnica k_1 i k_2 te leže na pravcu O_1O_2 .
- **Primjer 1.11.** Kada je vanjski centar sličnosti dviju kružnica unutar tih kružnica? Kada je jedna unutar druge.
- **Teorem 1.12.** Dane su kružnice $k_1(O_1, r_1)$, $k_2(O_2, r_2)$, $k_3(O_3, r_3)$. Neka su V_{23} , U_{23} ; V_{31} , U_{31} ; V_{12} , U_{12} vanjski i unutrašnji centri sličnosti parova kružnica k_2k_3 ; k_3k_1 ; k_1k_2 . Tada točke V_{23} , V_{31} , V_{12} ; V_{23} , U_{31} , U_{12} ; U_{23} , U_{31} , V_{12} leže na pojednom pravcu. Ta četiri pravca zovu se **osi sličnosti kružnica** k_1 , k_2 , k_3 .

1.1 Palman

Teorem 1.13. Dvije kružnice s različitim središtima i različitim polumjerima uvijek su homotetične. Postoje dvije homotetije(vanjska i unutarnja) koje takve kružnice prevode jedna na drugu.

 $\chi_1: A \mapsto A'$ i $\chi_2: A \mapsto A''$.

Sl. 8.5. Homotetija koncentričnih kružnica

Slika 1: K oncentične kružnice

Slika 2: K ružnice jednakih radijusa

Za dvije koncentrične kružnice postoje dvije homotetije koje s istim centrom S koje preslikavaju kružnicu k_1 i k_2 .

U slučaju kada kružnice imaju jednak radius, a različita središta. Takve dvije kružnicice su centralno simetrične s obzirom na točku S. Te se mogu dobiti translacijom za vektor K_1K_2 . Ovdje se cetralna simetrija i translacija pojavljuju kao posebni slučajevi homotetije.

Teorem 1.14. Trokuti kojima su pridružene stranice paralelne, ali ne i jednake su homotetični. Postoji, naime jedna homotetija koja preslikava $\triangle ABC$ u $\triangle A_1B_1C_1$. Spojnice AA_1 , BB_1 i CC_1 sijeku se u centru S te homotetije.