

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP WOJEWÓDZKI

9 marca 2023 r. godz. 9.00

Uczennico/Uczniu:

- 1. Arkusz składa się z 10 zadań, na rozwiązanie których masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- 3. Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i napisz inną odpowiedź.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Najpierw przeczytaj cały arkusz. Przeanalizowanie treści pozwoli Ci ocenić, jakie zadania pojawiły się w arkuszu, jakich działów dotyczą, które z nich są dla Ciebie najtrudniejsze, a które najłatwiejsze, oraz za które możesz uzyskać najwięcej punktów. Rozwiązywanie zadań rozpocznij od tych, które są dla Ciebie najprostsze.
- 6. W rozwiązaniach zadań otwartych przedstawiaj swój tok rozumowania za napisanie samej odpowiedzi nie otrzymasz maksymalnej liczby punktów.
- 7. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	20	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej WKK		

Zadanie 1. (0-1 pkt)/1

Najdłuższy bok *AB* trójkąta *ABC* ma 4 cm długości, a dwa jego kąty mają miary równe 30° i 60°. Na boku *AB* zbudowano trójkąt równoboczny *ADB* tak, że powstał czworokąt *ADBC*. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F, jeśli jest fałszywe.

Pole trójkąta <i>ABC</i> jest dwa razy mniejsze od pola trójkąta <i>ADB</i> .	P	F
Obwód czworokąta $ADBC$ jest o $2(\sqrt{3}-1)$ większy od obwodu trójkąta równobocznego ADB .	P	F

Zadanie 2. (0-1 pkt)/1

Jeżeli $\sqrt{\sqrt[3]{x}} = \frac{1}{2}$, to jaką liczbą jest x? Wybierz wszystkie poprawne odpowiedzi spośród podanych.

A.
$$\left(-\frac{1}{8}\right)^4$$
 B. $\left(\frac{1}{2}\right)^7$ **C.** $\left(\frac{1}{16}\right)^3$ **D.** $\left(-\frac{1}{4^2}\right)^3$

Zadanie 3. (0-1 pkt)/1

Dane są punkty A = (-3, 3) oraz B = (-3, -5). Trójkąt ABC jest prostokątny i równoramienny. Czy istnieją więcej niż cztery punkty, w których może znajdować się wierzchołek C? Wybierz odpowiedź \mathbf{T} (tak) albo \mathbf{N} (nie) i uzasadnienie \mathbf{A} lub \mathbf{B} , lub \mathbf{C} .

Т		A.	współrzędne wierzchołka <i>C</i> mogą wynosić: (5, 3) lub (5, –5).
	ponieważ	В.	współrzędne wierzchołka C mogą wynosić: $(5, 3)$ lub $(-11, 3)$, lub $(5, -5)$, lub $(-11, -5)$.
N		C.	współrzędne wierzchołka <i>C</i> mogą wynosić: (5, 3) lub (-11, 3), lub (5, -5), lub (-11, -5), lub (1, -1), lub (-7, -1)

Zadanie 4. (0-1 pkt)/1

Na wykresie wyrażającym zależność między liczbą pracowników a czasem potrzebnym na wykonanie pewnej pracy zaznaczono niektóre punkty.

Wybierz poprawną odpowiedź spośród oznaczonych literami A i B oraz C i D.

Trzech pracowników, pracujących z taką samą wydajnością, wykonają tę pracę w:

A. 7 godz. 10 minut

B. 6 godz. 40 minut

Pracując z taką samą wydajnością w ciągu 1 godz. 15 minut tę pracę wykona:

C. 17 pracowników

D. 16 pracowników

Zadanie 5. (0-3 pkt)

...../3

Pan Norbert na kwadracie o polu równym 64 dm² wykonał projekt numeru pawilonu wulkanizacji opon (patrz rysunek). Brzeg zaprojektowanego numeru 96 jest zbudowany z odcinków i części okręgów. Następnie wyciął z kwadratu ten numer i umieścił go na tle koła, w którym zajmuje on 25% powierzchni. Czy długość promienia tego koła jest większa niż 66 cm? Odpowiedź uzasadnij.

Zadanie 6. (0-2 pkt)

...../2

Pani Kasia kupiła sadzonki krzewów, które chce posadzić w równych odstępach wzdłuż jednego boku kwadratowej rabaty. Pierwszy i ostatni krzew postanowiła posadzić w rogach rabaty. Wówczas okazało się, że jeśli posadzi je co 45 cm, to zabraknie trzech sadzonek, a jeśli co 60 cm, to zostaną dwie sadzonki. Oblicz, ile sadzonek kupiła pani Kasia.

Zadanie 7. (0-3 pkt)/3

Pierwszą cyfrą liczby czterocyfrowej jest 5, zaś po przestawieniu jej na ostatnie miejsce, otrzymamy liczbę stanowiąca $\frac{5}{6}$ początkowej liczby. Zapisz wszystkie liczby czterocyfrowe, które można utworzyć z cyfr tych liczb.

Zadanie 8. (0-2 pkt)

Na rysunkach 1. i 2. są przystające pięciokąty foremne. Uzupełnij te rysunki tak, aby otrzymać dwie siatki różnych czworościanów.

Rys. 1

Rys. 2

Zadanie 9. (0-3 pkt)

...../3

Bartek miał w skarbonce kwotę większą od 232 zł, ale mniejszą od 245 zł w dwuzłotówkach i pięciozłotówkach. Na prezent imieninowy dla brata wydał pewną kwotę. Wtedy okazało się, że ma w skarbonce tyle dwuzłotówek, ile przedtem miał pięciozłotówek oraz tyle pięciozłotówek, ile przedtem miał dwuzłotówek, a obecna kwota w skarbonce do kwoty początkowej jest w stosunku 3: 4. Oblicz, ile złotych kosztował prezent dla brata Bartka.

Zadanie 10. (0-3 pkt)

...../3

W trapezie prostokątnym ABCD narysowano odcinek CE równoległy do odcinka AD, a następnie odcinki AC i ED przecinające się w punkcie O, jak na rysunku.

Pole trójkąta BCE jest równe 3 i stanowi $\frac{2}{3}$ pola trójkąta ECO. Oblicz pole trapezu ABCD.

Brudnopis

(zapisy w brudnopisie nie podlegają ocenie)