Machine Learning System Design

Quiz, 5 questions

1 point

1.

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's precision (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

Enter answer here

Machine Learning System Design

Ouiz.	. 5	questions
QUIL		questions

1	
point	

2.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Which are the two?

The features x contain sufficient
information to predict \boldsymbol{y} accurately. (For example, one
way to verify this is if a human expert on the domain
can confidently predict y when given only x).
We train a learning algorithm with a
small number of parameters (that is thus unlikely to
overfit).
We train a learning algorithm with a
large number of parameters (that is able to
learn/represent fairly complex functions).
We train a model that does not use regularization.

3.

1 point

Suppose you have trained a logistic regression classifier which is outputing $h_{\theta}(x)$.

Currently, you predict 1 if $h_{\theta}(x) \ge$ threshold, and predict 0 if $h_{\theta}(x) <$ threshold, where currently the threshold is set to 0.5.

Suppose you **increase** the threshold to 0.9. Which of the following are true? Check all that apply.

	. The classifier is likely to now have lower recall. earning System Design
Quiz, 5 questions	The classifier is likely to have unchanged precision and recall, but
	higher accuracy.
	The classifier is likely to have unchanged precision and recall, but
	lower accuracy.
	The classifier is likely to now have lower precision.
	1 point 4.
	Suppose you are working on a spam classifier, where spam
	emails are positive examples ($y=1$) and non-spam emails are
	negative examples ($y=0$). You have a training set of emails
	in which 99% of the emails are non-spam and the other 1% is
	spam. Which of the following statements are true? Check all
	that apply.
	If you always predict non-spam (output
	y=0), your classifier will have an accuracy of
	99%.
	A good classifier should have both a
	high precision and high recall on the cross validation
	set.
	If you always predict non-spam (output
	y=0), your classifier will have 99% accuracy on the
	training set, and it will likely perform similarly on

Machine L	.earni	the cross validation set. ing System Design
Quiz, 5 questions		If you always predict non-spam (output
		y=0), your classifier will have 99% accuracy on the
		training set, but it will do much worse on the cross
		validation set because it has overfit the training
		data.
	1 point	
	5.	
	Which	of the following statements are true? Check all that apply.
		The "error analysis" process of manually
		examining the examples which your algorithm got wrong
		can help suggest what are good steps to take (e.g.,
		developing new features) to improve your algorithm's
		performance.
		If your model is underfitting the
		training set, then obtaining more data is likely to
		help.
		After training a logistic regression
		classifier, you must use 0.5 as your threshold
		for predicting whether an example is positive or
		negative.
		It is a good idea to spend a lot of time
		collecting a large amount of data before building

Using a very large training set
makes it unlikely for model to overfit the training
data.
I, George Wolberg , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code
Submit Quiz

r r