## Toric Code

University of Florida, August 19, 2020

## Recap of last time

- Error detection big picture:
  - 1. Add redundancy  $k \to n$  qubits:  $|\psi\rangle \to |\psi\rangle_L$
  - 2. Errors:  $|\psi\rangle_L \to E_L |\psi\rangle_L$
  - Considering only X-type and Z-type errors is enough to account for all errors.
  - 4. Add ancilla and measure the ancilla
- Stabilizer codes:
  - 1.  $C = \operatorname{span}\{|\psi\rangle_L \in \mathcal{H}: S_i |\psi\rangle_L = |\psi\rangle_L\}$
  - 2.  $S_i^2 = 1$
  - 3. For error detection,  $\{E_L, S_i\} = 0$  for at least one  $S_i$ .
  - 4. Syndrome extraction:

$$(1+S_i)E_L |\psi\rangle_L |0\rangle + (1-S_i)E_L |\psi\rangle_L |1\rangle$$

# Two approaches to Kitaev toric code (Kitaev, 2003)

#### As a discrete gauge theory

- ▶ It's a  $\mathbb{Z}_2$  gauge theory
- It has anyonic excitations
- Long range entanglement and topological order

#### As a quantum code

- It implements a specific type of quantum code
- Allow error detection and error correction
- Allows for a restricted qubit operations

This talk will focus on the quantum code aspect.

### Outline

1. Kitaev toric code

The model
The code

How to perform logical operations

2. Anyonic nature of the excitations

## Outline

#### 1. Kitaev toric code

The model
The code
How to perform logical operations

2. Anyonic nature of the excitation:

#### Kitaev Toric Model

- ► A lattice model of spin-1/2 particles.
- ► Each unit cell has 2 spin sites, 1 and 2.
- ▶ Local operators:  $\{\vec{\sigma}_1(\mathbf{R}_i), \vec{\sigma}_2(\mathbf{R}_i)\}$
- Operators at different lattice sites commute.



### Kitaev Toric Model

- ▶ A lattice model of spin-1/2 particles.
- ▶ Each unit cell has 2 spin sites, 1 and 2.
- ▶ Local operators:  $\{\vec{\sigma}_1(\mathbf{R}_i), \vec{\sigma}_2(\mathbf{R}_i)\}$
- Operators at different lattice sites commute.

#### The Hamiltonian:

$$H = -\sum_{\mathbf{R}_i} (A(\mathbf{R}_i) + B(\mathbf{R}_i))$$

$$A(\mathbf{R}_i) = \sigma_2^x(\mathbf{R}_i)\sigma_1^x(\mathbf{R}_i)$$

$$\sigma_2^x(\mathbf{R}_i + e_x)\sigma_1^x(\mathbf{R}_i + e_y),$$

$$B(\mathbf{R}_i) = \sigma_1^z(\mathbf{R}_i)\sigma_2^z(\mathbf{R}_i)$$

$$\sigma_1^z(\mathbf{R}_i - e_x)\sigma_2^z(\mathbf{R}_i - e_y)$$



## Ground state of the Kitaev model



#### Notation:

 $\sigma^x$ : line perpendicular to unit cell edge at the spin site.

 $\sigma^z$ : line along the unit cell edge at the spin site.

## Ground state of the Kitaev model



#### Notation:

 $\sigma^x$ : line perpendicular to unit cell edge at the spin site.

 $\sigma^z$ : line along the unit cell edge at the spin site.

- ▶  $A(\mathbf{R}_i)$  and  $B(\mathbf{R}_i)$  are two different *loops* in the system.
- ▶ They only look like loops because of our choice of notation.
- ▶ No need for arrows on the loops.
- ▶  $A^2(\mathbf{R}_i) = 1$  and  $B^2(\mathbf{R}_i) = 1$ . Both have eigenvalues of  $\pm 1$ .
- $[A(\mathbf{R}_i), B(\mathbf{R}_i)] = 0$

## Ground state of the Kitaev model



#### Notation:

 $\sigma^x$ : line perpendicular to unit cell edge at the spin site.

 $\sigma^z$ : line along the unit cell edge at the spin site.

- ▶  $A(\mathbf{R}_i)$  and  $B(\mathbf{R}_i)$  are two different *loops* in the system.
- ▶ They only look like loops because of our choice of notation.
- ▶ No need for arrows on the loops.
- ▶  $A^2(\mathbf{R}_i) = 1$  and  $B^2(\mathbf{R}_i) = 1$ . Both have eigenvalues of  $\pm 1$ .
- $(A(\mathbf{R}_i), B(\mathbf{R}_i)) = 0$

Ground sates  $|\Omega_0\rangle$  of  $H=-\sum_{m{R}_i}\left(A(m{R}_i)+B(m{R}_i)
ight)$  is defined by,

$$A(\mathbf{R}_i) |\Omega_0\rangle = |\Omega_0\rangle, \ B(\mathbf{R}_i) |\Omega_0\rangle = |\Omega_0\rangle$$

#### The code

We consider a  $N \times N$  lattice on a torus.

- ▶ The Hilbert space,  $\mathcal{H}$ , is  $2^{2N^2}$  dimensional.
- ightharpoonup Codeword space, C, is defined as

$$\mathcal{C} = \operatorname{span}\{\left|\Omega_{0}\right\rangle \in \mathcal{H} : A(\boldsymbol{R}_{i})\left|\Omega_{0}\right\rangle = \left|\Omega_{0}\right\rangle, \ B(\boldsymbol{R}_{i})\left|\Omega_{0}\right\rangle = \left|\Omega_{0}\right\rangle\}$$

- ▶ This quantum code is called TOR(N), the toric code.
- ▶  $A(\mathbf{R}_i)$ , and  $B(\mathbf{R}_i)$  are the code stabilizers.

### The code

We consider a  $N \times N$  lattice on a torus.

- ▶ The Hilbert space,  $\mathcal{H}$ , is  $2^{2N^2}$  dimensional.
- ightharpoonup Codeword space, C, is defined as

$$\mathcal{C} = \operatorname{span}\{\left|\Omega_{0}\right\rangle \in \mathcal{H} : A(\boldsymbol{R}_{i})\left|\Omega_{0}\right\rangle = \left|\Omega_{0}\right\rangle, \ B(\boldsymbol{R}_{i})\left|\Omega_{0}\right\rangle = \left|\Omega_{0}\right\rangle\}$$

- ▶ This quantum code is called TOR(N), the toric code.
- ▶  $A(\mathbf{R}_i)$ , and  $B(\mathbf{R}_i)$  are the code stabilizers.
- ▶ There are  $2N^2-2$  independent stabilizers. There are  $N^2$   $A(\mathbf{R}_i)$ , and  $N^2$   $B(\mathbf{R}_i)$  operators, but we have the following dependencies,

$$\prod_{\boldsymbol{R}_i} A(\boldsymbol{R}_i) = 1, \prod_{\boldsymbol{R}_i} B(\boldsymbol{R}_i) = 1 \leftarrow \text{No edges left}.$$

 $\blacktriangleright \ \mathcal{C} \text{ is } (2^{2N^2})/(2^{2N^2-2})=2^2 \text{ dimensional. It can encode 2 qubits.}$ 



## What labels the ground states

Since the code stabilizers defines  $2^{2N^2-2}$  4D subspaces, we must label the 4 states within each subspace by other independent operators that commute with all the  $A(\boldsymbol{R}_i)$  and  $B(\boldsymbol{R}_i)$ .

# What labels the ground states

Since the code stabilizers defines  $2^{2N^2-2}$  4D subspaces, we must label the 4 states within each subspace by other independent operators that commute with all the  $A(\mathbf{R}_i)$  and  $B(\mathbf{R}_i)$ .

- ▶ Every contractible loop can be decomposed into smaller loops of  $A(\mathbf{R}_i)$  or  $B(\mathbf{R}_i)$ .
- ► There are 4 different non-contractible loops.
- ▶  $\{Z_1, Z_2, X_1, X_2\}$  commute with all contractible loops.
- ▶ The entire  $2^{2N^2}$  Hilbert space can be labeled by the eigenvalues of,

$$\{Z_1, Z_2, A(\mathbf{R}_i), B(\mathbf{R}_i)\}$$



### **Errors**

A general error can be any linear combination of,

$$E(\{\alpha_i^l, \beta_j^m\}) = \prod_{\substack{\mathbf{R}_i, \mathbf{R}_i \\ l, m}} (\sigma_l^x(\mathbf{R}_i))^{\alpha_i^l} (\sigma_m^z(\mathbf{R}_j))^{\beta_j^m},$$

#### **Errors**

A general error can be any linear combination of,

$$E(\{\alpha_i^l, \beta_j^m\}) = \prod_{\substack{\mathbf{R}_i, \mathbf{R}_i \\ l, m}} (\sigma_l^x(\mathbf{R}_i))^{\alpha_i^l} (\sigma_m^z(\mathbf{R}_j))^{\beta_j^m},$$

These can be divided broadly into 3 categories:

- 1. Contain only closed contractible loops.  $E_1$ .
- 2. Contain one or more open strings.  $E_2$ .
- 3. Contain one or more closed non-contractible loops.  $E_3$ .

#### Errors

A general error can be any linear combination of,

$$E(\{\alpha_i^l, \beta_j^m\}) = \prod_{\substack{\mathbf{R}_i, \mathbf{R}_i \\ l, m}} (\sigma_l^x(\mathbf{R}_i))^{\alpha_i^l} (\sigma_m^z(\mathbf{R}_j))^{\beta_j^m},$$

These can be divided broadly into 3 categories:

- 1. Contain only closed contractible loops.  $E_1$ .
- 2. Contain one or more open strings.  $E_2$ .
- 3. Contain one or more closed non-contractible loops.  $E_3$ .
- ▶ Errors of type 1 are not errors at all,  $E_1 |\Omega_0\rangle = |\Omega_0\rangle$ .
- Errors of type 2 can be detected by a syndrome measurement.
- Errors of type 3 cannot be detected.

#### **Frrors**

A general error can be any linear combination of,

$$E(\{\alpha_i^l, \beta_j^m\}) = \prod_{\substack{\mathbf{R}_i, \mathbf{R}_i \\ l, m}} (\sigma_l^x(\mathbf{R}_i))^{\alpha_i^l} (\sigma_m^z(\mathbf{R}_j))^{\beta_j^m},$$

These can be divided broadly into 3 categories:

- 1. Contain only closed contractible loops.  $E_1$ .
- 2. Contain one or more open strings.  $E_2$ .
- 3. Contain one or more closed non-contractible loops.  $E_3$ .
- Errors of type 1 are not errors at all,  $E_1 |\Omega_0\rangle = |\Omega_0\rangle$ .
- Errors of type 2 can be detected by a syndrome measurement.
- Errors of type 3 cannot be detected.

Errors of type 3, must at least be N long. And assuming errors act independently on each qubit, these errors would be exponentially suppressed,  $e^{-\alpha N}$ 

## Error detection, and correction

Open string operations anticommute with two stabilizer operators, one surrounding each end of the open ended loop.

$$B(\mathbf{R}_i)E_2|\Omega_0\rangle = -E_2|\Omega_0\rangle,$$

$$A(\mathbf{R}_j)E_2|\Omega_0\rangle = -E_2|\Omega_0\rangle.$$



## Error detection, and correction

Open string operations anticommute with two stabilizer operators, one surrounding each end of the open ended loop.

$$B(\mathbf{R}_i)E_2|\Omega_0\rangle = -E_2|\Omega_0\rangle$$
,

$$A(\mathbf{R}_j)E_2|\Omega_0\rangle = -E_2|\Omega_0\rangle.$$



- ▶ These errors can be detected using a syndrome measurements.
- Notice that  $E_2 |\Omega_0\rangle$  are excited states of the Hamiltonian, with  $\Delta E \geqslant 2$ .
- ► Kitaev also suggested fixing these errors by coupling the system to a heat bath and cooling the system down.

### Excitations of the toric code

Let's look at low energy excitations of the toric code.

ightharpoonup We cannot have excitation with  $\Delta E=1$ . This would violate

$$\prod_{\mathbf{R}_i} A(\mathbf{R}_i) = 1, \quad \prod_{\mathbf{R}_i} B(\mathbf{R}_i) = 1.$$

▶ The lowest energy excitations have  $\Delta E = 2$  and are obtained by applying string operators to the ground states.

### Excitations of the toric code

Let's look at low energy excitations of the toric code.

ightharpoonup We cannot have excitation with  $\Delta E=1$ . This would violate

$$\prod_{\mathbf{R}_i} A(\mathbf{R}_i) = 1, \quad \prod_{\mathbf{R}_i} B(\mathbf{R}_i) = 1.$$

▶ The lowest energy excitations have  $\Delta E = 2$  and are obtained by applying string operators to the ground states.

$$S^{x}(t)\left|\Omega_{0}\right\rangle ,\ S^{z}(t)\left|\Omega_{0}\right\rangle ,$$
 which depend on

- 1. The two end points
- The homotopy of string connecting the two ends, how many non-contractible loops it make. Not the detailed path.



# Allowed logic operaion using kitaev model

The non-contractible loops of the toric code behave as Pauli matrices acting on two qubits:

$$[Z_1, Z_2] = 0$$
  $[X_1, X_2] = 0$   $\{Z_1, X_1\} = 0$   $\{Z_2, X_2\} = 0$ 

- 1. Z operation.
  - Create an a z-type particles pair.
  - Move one around one non-contractible loop. The direction determine which qubit get acted on.
  - Annihilate the two particles.
- 2. *X* operation. Using the same steps but with an *x*-type particle.

These operations do not give us a universal quantum computer.

#### The dual lattice

For the same arrangement of spins there are two ways of defining the lattice. Both of them are equally valid.

► This highlights an important property of the system.

Let  $R_y(\theta)$  be the rotation operation around the y-axis then:

$$R_y(90^\circ)A(\mathbf{R}_i)R_y^{-1}(90^\circ) = B'(\mathbf{R}_i)$$
  
 $R_y(90^\circ)B(\mathbf{R}_i)R_y^{-1}(90^\circ) = A'(\mathbf{R}_i)$ 



This operation takes an x-type particle to a z-type particle.

## Outline

1. Kitaev toric code

The mode

The code

How to perform logical operations

2. Anyonic nature of the excitations

# The toric code in different geomtries

A (surprising) aspect about the toric code is that the ground state degeneracy depends on the genus, g, of the manifold. The toric code is  $4^g$  degenerate.

# The toric code in different geomtries

A (surprising) aspect about the toric code is that the ground state degeneracy depends on the genus, g, of the manifold. The toric code is  $4^g$  degenerate.

On a sphere there are no non-contractible loops.  $A(\mathbf{R}_i)$  and  $B(\mathbf{R}_i)$  can label the entire Hilbert space.

- ► Hilbert space is  $2^{12N^2}$  dimensional.
- ▶  $6N^2 B(\mathbf{R}_i)$  operators.
- $ightharpoonup 6N^2 + 2 A(\mathbf{R}_i)$  operators.



# The toric code in different geomtries

A (surprising) aspect about the toric code is that the ground state degeneracy depends on the genus, g, of the manifold. The toric code is  $4^g$  degenerate.

On a sphere there are no non-contractible loops.  $A(\mathbf{R}_i)$  and  $B(\mathbf{R}_i)$  can label the entire Hilbert space.

- ► Hilbert space is 2<sup>12N²</sup> dimensional.
- ▶  $6N^2 B(\mathbf{R}_i)$  operators.
- $ightharpoonup 6N^2 + 2 A(\mathbf{R}_i)$  operators.



The dependance of the ground state degeneracy on the geometry of the manifold is one of the defining features of topological order.

### Particle content of the toric code

- No particles, 1.
- ightharpoonup z-type particle, referred to as electric charge, e.
- ightharpoonup x-type particle, referred to as a magnetic vortex, m.
- $\blacktriangleright$  A combinations of an e and an m particle,  $\psi = e \times m$
- ► For convince we drop the lattice from the background, and distinguish different strings by different colors.







### Particle content of the toric code

- No particles, 1.
- ightharpoonup z-type particle, referred to as electric charge, e.
- ightharpoonup x-type particle, referred to as a magnetic vortex, m.
- $\blacktriangleright$  A combinations of an e and an m particle,  $\psi = e \times m$
- ► For convince we drop the lattice from the background, and distinguish different strings by different colors.







Next we ask what is the statistics of these particles.

- ▶ It's natural to consider a braid group because of the strings attached to the particles.
- ► There are three kinds of strings. The group is then said to be a colored braid group.

### Rules and fusion rules

- ightharpoonup The electric charge, e is a boson.
- ightharpoonup The magnetic vortex, m is a boson.
- ightharpoonup e going around m gives a -1.
- $\blacktriangleright \psi$  is a fermion.
- ► The braid group is Abelian.













# Anyons front and center

Anyons implies the ground state degeneracy.

We can think of the how the anyons braid, as defining the topological order in the system.

- ▶ The ground state(s) is a sate with no particles in it. If  $|\Omega_0\rangle$  is a ground state, so are  $Z_i |\Omega_0\rangle$  and  $X_i |\Omega_0\rangle$ .
- Braiding rules implies
  - 1.  $Z_1^2 + Z_2^2 + X_1^2 + X_2^2 = 1$
  - 2.  $[Z_1, Z_2] = [X_1, X_2] = 0$
  - 3.  $\{Z_1, X_1\} = \{Z_2, X_2\} = 0$ .
- This implies the ground state is fourfold degenerate.



# Summary

- Quantum codes encode k qubits into n qubits.
- Quantum codes allow for error correction
- ightharpoonup The Kitaev toric code encode 2g qubits into a spin lattice.
- ▶ The Kitaev code has  $e^{-\alpha N}$  probability of missing errors.
- By moving anyons around, one can perform quantum operations on the qubits.
- ► The anyon content of a theory is enough to define its topological order.

A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, Jan 2003. ISSN 00034916. doi: 10.1016/S0003-4916(02)00018-0.