# Machine Learning (IT3190E)

#### **Quang Nhat NGUYEN**

quang.nguyennhat@hust.edu.vn

Hanoi University of Science and Technology
School of Information and Communication Technology
Academic year 2020-2021

#### The course's content:

- Introduction
- Performance evaluation of ML system
- Supervised learning
  - Probabilistic learning
- Unsupervised learning
- Ensemble learning
- Reinforcement learning

#### Probabilistic learning

- Statistical approaches for the learning problem
- In this lecture, we focus on the classification problem
  - Classification is done based on a statistical model
  - Classification is done based on the probabilities of the possible class labels

#### Main topics:

- Introduction of probability theorem
- Bayes theorem
- Maximum a posteriori
- Maximum likelihood estimation
- Naïve Bayes classification

### Basic probability concepts

- Suppose we have an experiment (e.g., a dice roll) whose outcome depends on chance
- Sample space S. A set of all possible outcomes E.g., S= {1,2,3,4,5,6} for a dice roll
- Event E. A subset of the sample space
  E.g., E= {1}: the result of the roll is one
  E.g., E= {1,3,5}: the result of the roll is an odd number
- Event space W. The possible worlds the outcome can occur E.g., W includes all dice rolls
- Random variable A. A random variable represents an event, and there is some degree of chance (probability) that the event occurs

# Visualizing probability

P(A): "the fraction of possible worlds in which A is true"



[http://www.cs.cmu.edu/~awm/tutorials]

#### Boolean random variables

A Boolean random variable can take either of the two Boolean values, true or false

#### The axioms

- $0 \le P(A) \le 1$
- P(true) = 1
- P(false) = 0
- $P(A \ V \ B) = P(A) + P(B) P(A \land B)$

#### The corollaries

- $P(\text{not } A) \equiv P(\sim A) = 1 P(A)$
- $P(A) = P(A \wedge B) + P(A \wedge \sim B)$

#### Multi-valued random variables

A multi-valued random variable can take a value from a set of k (>2) values  $\{v_1, v_2, ..., v_k\}$ 

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor ... \lor A = v_k) = 1$$

$$P(A = v_1 \lor A = v_2 \lor ... \lor A = v_i) = \sum_{j=1}^{i} P(A = v_j)$$

$$\sum_{j=1}^{k} P(A = v_j) = 1$$

$$P(B \land [A = v_1 \lor A = v_2 \lor ... \lor A = v_i]) = \sum_{j=1}^{i} P(B \land A = v_j)$$

[http://www.cs.cmu.edu/~awm/tutorials]

### Conditional probability (1)

- P(A|B) is the fraction of worlds in which A is true given that B is true
- Example
  - A: I will go to the football match tomorrow
  - B: It will be not raining tomorrow
  - P(A|B): The probability that I will go to the football match if (given that) it will be not raining tomorrow

# Conditional probability (2)

Definition: 
$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

#### Corollaries:

$$P(A, B) = P(A|B) \cdot P(B)$$

$$P(A|B) + P(\sim A|B) = 1$$

$$\sum_{i=1}^{k} P(A = v_i \mid B) = 1$$



### Independent variables (1)

- Two events A and B are statistically independent if the probability of A is the same value
  - when B occurs, or
  - when B does not occur, or
  - when nothing is known about the occurrence of B

#### Example

- A: I will play a football match tomorrow
- •B: Bob will play the football match
- $\bullet P(A|B) = P(A)$ 
  - → "Whether Bob will play the football match tomorrow does not influence my decision of going to the football match."

### Independent variables (2)

From the definition of independent variables P(A|B) = P(A), we can derive the following rules

- $P(\sim A \mid B) = P(\sim A)$
- P(B|A) = P(B)
- $P(A,B) = P(A) \cdot P(B)$
- $P(\sim A, B) = P(\sim A) \cdot P(B)$
- $P(A, \sim B) = P(A) \cdot P(\sim B)$
- $P(\sim A, \sim B) = P(\sim A) \cdot P(\sim B)$

#### Conditional probability for >2 variables

P(A|B,C) is the probability of A given B and C

#### Example

- A: I will walk along the river tomorrow morning
- B: The weather is beautiful tomorrow morning
- C: I will get up early tomorrow morning
- P(A|B,C): The probability that I will walk along the river tomorrow morning if (given that) the weather is nice and I get up early



P(A|B,C)

### Conditional independence

- Two variables A and C are conditionally independent given variable B if the probability of A given B is the same as the probability of A given B and C
- Formal definition: P(A|B,C) = P(A|B)
- Example
  - A: I will play the football match tomorrow
  - B: The football match will take place indoor
  - C: It will be not raining tomorrow
  - P(A|B,C) = P(A|B)
    - → Given knowing that the match will take place indoor, the probability that I will play the match does not depend on the weather

#### Probability – Important rules

#### Chain rule

- P(A, B) = P(A|B) . P(B) = P(B|A) . P(A)
- P(A|B) = P(A,B)/P(B) = P(B|A).P(A)/P(B)
- P(A,B|C) = P(A,B,C) / P(C) = P(A|B,C) . P(B,C) / P(C)= P(A|B,C) . P(B|C)

#### (Conditional) independence

- P(A|B) = P(A); if A and B are independent
- P(A,B|C) = P(A|C).P(B|C); if A and B are conditionally independent given C
- $P(A_1,...,A_n | C) = P(A_1 | C) ... P(A_n | C)$ ; if  $A_1,...,A_n$  are conditionally independent given C

#### Bayes theorem

$$P(h | D) = \frac{P(D | h).P(h)}{P(D)}$$

- P(h): Prior probability of hypothesis (e.g., classification) h
- P(D): Prior probability that the data D is observed
- P(D|h): Probability of observing the data D given hypothesis h
- P(h|D): Probability of hypothesis h given the observed data D
  - Probabilistic classification methods use this this posterior probability!

### Bayes theorem – Example (1)

Assume that we have the following data (of a person):

| Day | Outlook  | Temperature | Humidity | Wind   | Play Tennis |
|-----|----------|-------------|----------|--------|-------------|
| D1  | Sunny    | Hot         | High     | Weak   | No          |
| D2  | Sunny    | Hot         | High     | Strong | No          |
| D3  | Overcast | Hot         | High     | Weak   | Yes         |
| D4  | Rain     | Mild        | High     | Weak   | Yes         |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes         |
| D6  | Rain     | Cool        | Normal   | Strong | No          |
| D7  | Overcast | Cool        | Normal   | Strong | Yes         |
| D8  | Sunny    | Mild        | High     | Weak   | No          |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes         |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes         |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes         |
| D12 | Overcast | Mild        | High     | Strong | Yes         |

### Bayes theorem – Example (2)

- Dataset D. The data of the days when the outlook is sunny and the wind is strong
- Hypothesis h. The person plays tennis
- Prior probability P(h). Probability that the person plays tennis (i.e., irrespective of the outlook and the wind)
- Prior probability P(D). Probability that the outlook is sunny and the wind is strong
- P(D|h). Probability that the outlook is sunny and the wind is strong, given knowing that the person plays tennis
- P (h | D). Probability that the person plays tennis, given knowing that the outlook is sunny and the wind is strong
  - → We are interested in this posterior probability!!

# Maximum a posteriori (MAP)

- Given a set H of possible hypotheses (e.g., possible classifications), the learner finds the most probable hypothesis h (∈H) given the observed data D
- Such a maximally probable hypothesis is called a maximum a posteriori (MAP) hypothesis

$$h_{MAP} = \underset{h \in H}{\operatorname{arg\,max}} P(h \mid D)$$

$$h_{MAP} = \underset{h \in H}{\operatorname{arg\,max}} \frac{P(D \mid h).P(h)}{P(D)}$$
 (by Bayes theorem)

$$h_{MAP} = \underset{h \in H}{\operatorname{arg\,max}} P(D \mid h).P(h)$$
 (P(D) is a constant, independent of h)

### MAP hypothesis – Example

- The set H contains two hypotheses
  - h<sub>1</sub>: The person will play tennis
  - h<sub>2</sub>: The person will not play tennis
- Compute the two posteriori probabilities  $P(h_1 | D)$ ,  $P(h_2 | D)$
- The MAP hypothesis:  $h_{MAP} = h_1$  if  $P(h_1 | D) \ge P(h_2 | D)$ ; otherwise  $h_{MAP} = h_2$
- Because  $P(D) = P(D, h_1) + P(D, h_2)$  is the same for both  $h_1$  and  $h_2$ , we ignore it
- So, we compute the two formulae:  $P(D|h_1) \cdot P(h_1)$  and  $P(D|h_2) \cdot P(h_2)$ , and make the conclusion:
  - If  $P(D|h_1) \cdot P(h_1) \ge P(D|h_2) \cdot P(h_2)$ , the person will play tennis;
  - Otherwise, the person will not play tennis

#### Maximum likelihood estimation (MLE)

- Phương pháp MAP: Với một tập các giả thiết có thể H, cần tìm một giả thiết cực đại hóa giá trị: P(D|h).P(h)
- Giả sử (assumption) trong phương pháp đánh giá khả năng có thể nhất (Maximum likelihood estimation – MLE): Tất cả các giả thiết đều có giá trị xác suất trước như nhau: P (h<sub>i</sub>) =P (h<sub>j</sub>), ∀h<sub>i</sub>,h<sub>j</sub>∈H
- Phương pháp MLE tìm giả thiết cực đại hóa giá trị P(D|h); trong đó P(D|h) được gọi là khả năng có thể (likelihood) của dữ liệu D đối với h
- Giả thiết có khả năng nhất (maximum likelihood hypothesis)

$$h_{ML} = \arg\max_{h \in H} P(D \mid h)$$

Machine Learning

### ML hypothesis – Example

- The set H contains two hypotheses
  - h<sub>1</sub>: The person will play tennis
  - h<sub>2</sub>: The person will not play tennis
  - D: The data of the dates when the outlook is sunny and the wind is strong
- Compute the two likelihood values of the data D given the two hypotheses: P(D|h₁) and P(D|h₂)
  - P(Outlook=Sunny, Wind=Strong  $| h_1 \rangle = 1/8$
  - P(Outlook=Sunny, Wind=Strong |  $h_2$ ) = 1/4
- The ML hypothesis  $h_{ML}=h_1$  if  $P(D|h_1) \ge P(D|h_2)$ ; otherwise  $h_{ML}=h_2$ 
  - $\rightarrow$  Because P(Outlook=Sunny, Wind=Strong|h<sub>1</sub>) < P(Outlook=Sunny, Wind=Strong|h<sub>2</sub>), we arrive at the conclusion: The person will not play tennis

### Naïve Bayes classifier (1)

#### Problem definition

- A training set D, where each training instance x is represented as an n-dimensional attribute vector:  $(x_1, x_2, \dots, x_n)$
- A pre-defined set of classes: C= { C<sub>1</sub>, C<sub>2</sub>, ..., C<sub>m</sub>}
- Given a new instance z, which class should z be classified to?
- We want to find the most probable class for instance z

$$\begin{split} c_{MAP} &= \arg\max_{c_i \in C} P(c_i \mid z) \\ c_{MAP} &= \arg\max_{c_i \in C} P(c_i \mid z_1, z_2, ..., z_n) \\ c_{MAP} &= \arg\max_{c_i \in C} \frac{P(z_1, z_2, ..., z_n \mid c_i).P(c_i)}{P(z_1, z_2, ..., z_n)} \end{split} \tag{by Bayes theorem)}$$

### Naïve Bayes classifier (2)

To find the most probable class for z (continued...)

$$c_{MAP} = \underset{c_i \in C}{\text{arg max }} P(z_1, z_2, ..., z_n \mid c_i).P(c_i) \qquad \begin{array}{l} (\mathbb{P}(z_1, z_2, \ldots, z_n) \text{ is} \\ \text{the same for all classes)} \end{array}$$

Assumption in Naïve Bayes classifier. The attributes are conditionally independent given classification

$$P(z_1, z_2,..., z_n \mid c_i) = \prod_{j=1}^n P(z_j \mid c_i)$$

Naïve Bayes classifier finds the most probable class for z

$$c_{NB} = \underset{c_i \in C}{\operatorname{arg max}} P(c_i) \cdot \prod_{j=1}^{n} P(z_j \mid c_i)$$

# Naïve Bayes classifier - Algorithm

- The learning (training) phase (given a training set)
  For each classification (i.e., class label) c; ∈C
  - Estimate the priori probability: P(c<sub>i</sub>)
  - For each attribute value  $x_j$ , estimate the probability of that attribute value given classification  $c_i$ :  $P(x_j | c_i)$
- The classification phase (given a new instance)
  - For each classification c₁ ∈ C, compute the formula

$$P(c_i).\prod_{j=1}^n P(x_j \mid c_i)$$

Select the most probable classification c\*

$$c^* = \underset{c_i \in C}{\operatorname{arg\,max}} P(c_i) \cdot \prod_{j=1}^n P(x_j \mid c_i)$$

### Naïve Bayes classifier – Example (1)

Will a young student with medium income and fair credit rating buy a computer?

| Rec. ID | Age    | Income | Student | Credit_Rating | Buy_Computer |
|---------|--------|--------|---------|---------------|--------------|
| 1       | Young  | High   | No      | Fair          | No           |
| 2       | Young  | High   | No      | Excellent     | No           |
| 3       | Medium | High   | No      | Fair          | Yes          |
| 4       | Old    | Medium | No      | Fair          | Yes          |
| 5       | Old    | Low    | Yes     | Fair          | Yes          |
| 6       | Old    | Low    | Yes     | Excellent     | No           |
| 7       | Medium | Low    | Yes     | Excellent     | Yes          |
| 8       | Young  | Medium | No      | Fair          | No           |
| 9       | Young  | Low    | Yes     | Fair          | Yes          |
| 10      | Old    | Medium | Yes     | Fair          | Yes          |
| 11      | Young  | Medium | Yes     | Excellent     | Yes          |
| 12      | Medium | Medium | No      | Excellent     | Yes          |
| 13      | Medium | High   | Yes     | Fair          | Yes          |
| 14      | Old    | Medium | No      | Excellent     | No           |

#### Naïve Bayes classifier – Example (2)

- Representation of the problem
  - x = (Age=Young, Income=Medium, Student=Yes, Credit\_Rating=Fair)
  - Two classes: c<sub>1</sub> (buy a computer) and c<sub>2</sub> (not buy a computer)
- Compute the priori probability for each class
  - $P(c_1) = 9/14$
  - $P(c_2) = 5/14$
- Compute the probability of each attribute value given each class

• 
$$P(Age=Young|c_1) = 2/9;$$

• 
$$P(Income=Medium|c_1) = 4/9;$$

• P(Student=Yes|
$$C_1$$
) = 6/9;

• P(Credit\_Rating=Fair|
$$c_1$$
) = 6/9;

$$P(Age=Young|c_2) = 3/5$$

$$P(Income = Medium | c_2) = 2/5$$

$$P(Student=Yes|c_2) = 1/5$$

$$P(Credit_Rating=Fair|c_2) = 2/5$$

#### Naïve Bayes classifier – Example (3)

- Compute the likelihood of instance x given each class
  - For class  $c_1$   $P(x|c_1) = P(Age=Young|c_1).P(Income=Medium|c_1).P(Student=Yes|c_1).$   $P(Credit\_Rating=Fair|c_1) = (2/9).(4/9).(6/9).(6/9) = 0.044$
  - For class  $c_2$   $P(x|c_2) = P(Age=Young|c_2).P(Income=Medium|c_2).P(Student=Yes|c_2).$   $P(Credit\_Rating=Fair|c_2) = (3/5).(2/5).(1/5).(2/5) = 0.019$
- Find the most probable class
  - For class  $c_1$  $P(c_1).P(x|c_1) = (9/14).(0.044) = 0.028$
  - For class  $c_2$  $P(c_2).P(x|c_2) = (5/14).(0.019) = 0.007$
  - → Conclusion: The person x will buy a computer!

## Naïve Bayes classifier – Issues (1)

■ What happens if no training instances associated with class  $c_i$  have attribute value  $x_i$ ?

$$P(x_j \mid c_i) = 0$$
, and hence:  $P(c_i) \cdot \prod_{j=1}^n P(x_j \mid c_i) = 0$ 

Solution: to use a Bayesian approach to estimate P (x₁ | C₁)

$$P(x_j \mid c_i) = \frac{n(c_i, x_j) + mp}{n(c_i) + m}$$

- n ( $c_i$ ): number of training instances associated with class  $c_i$
- n (c\_i, x\_j): number of training instances associated with class c\_i that have attribute value  $x_{\rm i}$
- p: a prior estimate for P (x<sub>j</sub> | c<sub>i</sub>)
  - $\rightarrow$  Assume uniform priors: p=1/k, if attribute f<sub>i</sub> has k possible values
- m: a weight given to prior
  - ightarrow To augment the n (c<sub>i</sub>) actual observations by an additional m virtual samples distributed according to p

# Naïve Bayes classifier – Issues (2)

- The limit of precision in computers' computing capability
  - + P (x  $_{\rm j}$  | c  $_{\rm i}$ ) <1, for every attribute value x  $_{\rm j}$  and class c  $_{\rm i}$
  - So, when the number of attribute values is very large

$$\lim_{n\to\infty} \left( \prod_{j=1}^n P(x_j \mid c_i) \right) = 0$$

Solution: to use a logarithmic function of probability

$$c_{NB} = \underset{c_i \in C}{\operatorname{arg\,max}} \left[ \log \left[ P(c_i) \cdot \prod_{j=1}^n P(x_j \mid c_i) \right] \right)$$

$$c_{NB} = \underset{c_i \in C}{\operatorname{arg\,max}} \left( \log P(c_i) + \sum_{j=1}^{n} \log P(x_j \mid c_i) \right)$$

Machine Learning

#### Document classification by NB – Training

#### Problem definition

- A training set D, where each training example is a document associated with a class label: D = {(dk, Ci)}
- A pre-defined set of class labels: C = {C₁}

#### The training algorithm

- From the documents collection contained in the training set D, extract the vocabulary of distinct terms (keywords):  $T = \{t_i\}$
- Let's denote D\_c\_i ( $\subseteq$ D) the set of documents in D whose class label is c\_i
- For each class Ci
  - Compute the priori probability of class  $c_i$ :  $P(c_i) = \frac{|D_c_i|}{|D|}$
  - For each term  $t_j$ , compute the probability of term  $t_j$  given class  $c_i$

$$P(t_j \mid c_i) = \frac{\left(\sum_{d_k \in D\_c_i} n(d_k, t_j)\right) + 1}{\left(\sum_{d_k \in D\_c_i} \sum_{t_m \in T} n(d_k, t_m)\right) + \left|T\right|} \qquad \text{(n } (\mathbf{d_k}, \mathbf{t_j}) \text{ : the number of occurrences of term } \mathbf{t_j} \text{ in document } \mathbf{d_k})$$

#### Document classification by NB – Classifying

- To classify (assign the class label for) a new document d
- The classification algorithm
  - From the document d, extract a set  $\mathbb{T}_d$  of all terms (keywords)  $t_j$  that are known by the vocabulary  $\mathbb{T}$  (i.e.,  $\mathbb{T}_d \subseteq \mathbb{T}$ )
  - Additional assumption. The probability of term  $t_j$  given class  $c_i$  is independent of its position in document

$$P(t_j \text{ at position } k \mid c_i) = P(t_j \text{ at position } m \mid c_i), \forall k,m$$

For each class c<sub>i</sub>, compute the likelihood of document d given c<sub>i</sub>

$$P(c_i). \prod_{t_j \in T_d} P(t_j \mid c_i)$$

Classify document d in class c\*

$$c^* = \underset{c_i \in C}{\operatorname{arg max}} P(c_i). \prod_{t_j \in T_d} P(t_j \mid c_i)$$

#### Naïve Bayes classifier – Summary

- One of the most practical learning methods
- Based on the Bayes theorem
- Very fast in performance
  - For the training: only one pass over (scan through) the training set
  - For the classification: the computation time is linear in the number of attributes and the size of the documents collection
- Despite its conditional independence assumption, Naïve Bayes classifier shows a good performance in several application domains
- When to use?
  - A moderate or large training set available
  - Instances are represented by a large number of attributes
  - Attributes that describe instances are conditionally independent given classification