

I/O Devices – ADC/DAC

EECS 388 – Spring 2023

© Prof. Tamzidul Hoque. Lecture notes based in part on slides created by Dr. Mohammad Alian

Context

- ADC (analog-to-digital converter)
 - Convert an analog signal into a digital one
- DAC (digital-to-analog converter)
 - Convert a digital signal into an analog one

Analog to Digital, Digital to Analog

DAC0808: 8-Bit D/A Converter

- The digital inputs are converted to current (I_{out})
- The total current provided by the I_{out} pin is basically a function of the binary numbers at the input pins A1-A8
- The I_{ref} is the input current. This must be provided into the pin 14 by connecting a resistor. Generally 2.0mA is used as I_{ref}

$$I_{out} = I_{ref}(\frac{A1}{2} + \frac{A2}{4} + \dots + \frac{A8}{256})$$

Dual-In-Line Package

Source: DAC0808 datasheet

Using the DAC

The reference pin:

- A +10V power source is connected as reference voltage for the device and the negative reference is grounded
- Reference voltage defines the output voltage range of analog output signal from op-amp output. If Vref=10V, when all inputs are high → Vout=10V

 Reference voltage defines the output voltage range of analog output signal from op-amp output

Pin Number	Pin Name	Function
1	NC	No Connection that means not used
2	GND	Power supply ground terminal
3	VEE	Used for external compensation capacitor connection between VEE and Comp pins
4	IOUT	input/output terminal for analog signal
5-12	MSB A1 – LSB A8	These are the eight bits of DAC0808 input. A1 is the first bit or MSB of that input and A8 is the least significant bit of input applied
13	Vcc	Positive Power supply
14	VREF+	Positive reference voltage
15	VREF-	Negative Reference voltage
16	Compensation	COMP is a compensation pin for DAC where we connect an external capacitor

Using the DAC

The output pin:

- The analog output from DAC is a current quantity and this needed to be converted in to voltage parameter for using in applications
- We connect the I_{out} pin to the op-amp circuit as shown in circuit diagram to convert the current to voltage
- The output analog voltage from op-amp is in linear relation with input digital value

$$V_0 = 10V \left(\frac{A1}{2} + \frac{A2}{4} + \dots \frac{A8}{256} \right)$$

Inside DAC 0808

- DAC0808 uses R/2R ladder method.
- The R-2R resistor ladder network directly converts a parallel digital symbol/word into an analog voltage.
- Each digital input (A1, A2, etc.) adds its own weighted contribution to the analog output.
- Example: LSB A8 has less weight (achieved putting more Resistors between Vout and A8.)

$$I_{out} = I_{ref}(\frac{A1}{2} + \frac{A2}{4} + \dots + \frac{A8}{256})$$

DAC Resolution

- Number of data inputs decides the resolution of DAC.
- So if there are n digital input pin, there are 2ⁿ analog levels.
- So 8 input DAC has 256 discrete voltage levels.

Input-Output relation for 4-bit DAC

In class quiz 5

- Say we are sending data to DAC from 8-bit GPIO register X10
- Considering the following +10V DAC, fill in the table:

Context

- ADC (analog-to-digital converter)
 - Convert an analog signal into a digital one
- DAC (digital-to-analog converter)
 - Convert a digital signal into an analog one

Why Analog to Digital Coverter

- Sensors are a form of transducers that convert a physical parameter like temperature into electrical signals that the microcontroller can understand.
 - Analog Sound Sensors, Analog Pressure Sensors, etc.
- However, analog sensors output data in an analog format which a microcontroller cannot understand.
- Therefore, to convert this analog data to a digital format, Analog to Digital converters or ADCs are used.

Analog to Digital Convertor

- An analog signal has a continuously changing amplitude with respect to time.
- A digital signal, on the contrary, is a stream of 0s and 1s.
- ADC Periodically samples the analog input and maps analog signals to their binary equivalents
- ADCs use various techniques such as Flash conversion, slope integration, or successive approximation.

Example

 Let us say we have an input signal which varies from 0 to 10 volt

 we use a 3-bit ADC to convert this signal to binary data.

 A 3-bit ADC can represent 2³ or 8 different voltage levels using 3 bits of data.

	10.00		
Amplitude (volts)	8.75		40 hit
	7.50	110	16-bit resolution
	6.25	10:1	3-bit resolution
	5.00	100	3-Dit Tesolution
	3.75	011	
	250	010	
	1.25	001	
	0	000	
	(50 100	
	Time (ms)		

Input voltage	Binary equivalent
0.00-1.24 volt	000B
1.25-2.40 volt	001B
2.50-3.74 volt	010B
••••	•••••
8.75-10.0 volt	111B

13

200

Example

- The minimum change ADC can detect in this example is 1.25 volt.
- If the change is smaller than 1.25 volt, the ADC can't detect it.
- This minimum change that an ADC can detect is known as the step size of the ADC.
- Step size=Vmax-Vmin/2n =(10-0)/8=1.25V
- n is the number of bits(resolution) of an ADC

higher n can detect smaller changes, but this increases the

cost of ADC chip production.

Example: TI ADC080x 8-Bit

- The ADC0801, ADC0802, ADC0803, ADC0804 etc. (all 8 bit input).
- Operates With Processors or as a Stand-Alone Device
- Interface to Temp Sensors, Voltage Sources, and Transducers

Pin Functions

-V_{CC} (OR V_{REF})

- CLK R

- DB1

DB2

DB3

DB4

DB6

-DB7 (MSB)

Pin function

• 5v-0v/28 = 15.53 mv

 VREF (+) and VREF (-) cs - $20 - V_{CC} (OR V_{REF})$ These two pins are used to \overline{RD} - 2 19 — CLK R provide the upper and the $\overline{WR} - 3$ 18 - DB0 (LSB) lower limit of voltages which CLK IN -417 - DB1 determine the step size for the INTR -5 16 **─** DB2 conversion. $V_{IN}(+) - 6$ 15 DB3 $V_{IN}(-)$ 14 **─** DB4 If Vref(+) has an input voltage A GND **—** 8 5v and Vref(-) has a voltage of 13 - DB5 V_{REF}/2 **−** 9 Ov then the step size will be DB6

D GND — 10

— DB7 (MSB)

Timing

- When we decide we need to read from the ADC, we use the processor to assert CS (make CS = 0)
- At the same time WR must be asserted (WR=0)

CS: asserted by from uP

RD: asserted by uP

WR: asserted by uP

INTR: sent to uP

Timing

- After receiving the signal from the processor (CS and WR asserted), ADC starts conversions
- Once conversion is done, ADC sends a signal via INTR pin
- This means data can be read now from ADC

CS: asserted by from uP

RD: asserted by uP

WR: asserted by uP

INTR: sent to uP

Timing

- Once INTR is asserted (INTR=0), the processor starts reading data from D0-D7
- To do that, the processor asserts the read data signal (RD=0)
- Keep asserted as long as data must be read

CS: asserted by from uP

RD: asserted by uP

WR: asserted by uP

INTR: sent to uP

Question

 What signals must be asserted to different GPIO to read from the sensor? Timing of the ADC is shown in the previous slide. Assume that GPIO pins 0 to 8 are already configured as input.

