COMP 445 Data Communications & Computer networks Winter 2022

Learning objectives

- To understand principles behind network control plane:
 - traditional routing algorithms
 - SDN controllers
 - network management, configuration
- To verify the application of routing principles in the actual implementation of Internet protocols: OSPF, BGP
- To understand the implementation of the control plane using OpenFlow

Network Layer – Control plane

- ✓ Introduction
- ✓ Routing algorithms
- ✓ Intra-ISP routing: OSPF
- ✓ Routing among ISPs: BGP
- ✓ SDN control plane
- ✓ Internet Control Message Protocol

Network Layer – Control plane

- ✓ Introduction
- ✓ Routing algorithms
- ✓ Intra-ISP routing: OSPF
- ✓ Routing among ISPs: BGP
- ✓ SDN control plane
- ✓ Internet Control Message Protocol

Network-layer functions

- routing: determine route taken by packets from source to destination
- forwarding: move packets from router's input to appropriate router output

control plane

data plane

Two approaches to structuring network control plane:

- per-router control (traditional)
- logically centralized control (software defined networking)

Per-router control plane

Individual routing algorithm components in each and every router interact in the control plane

Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

Per-router control plane

SDN control plane

Network Layer – Control plane

- ✓ Introduction
- ✓ Routing algorithms
- ✓ Intra-ISP routing: OSPF
- ✓ Routing among ISPs: BGP
- ✓ SDN control plane
- ✓ Internet Control Message Protocol

Routing algorithm

Routing algorithm goal: determine "good" paths (equivalently, routes), from sending hosts to receiving host, through network of routers

- path: sequence of routers packets traverse from given initial source host to final destination host
- "good": least "cost", "fastest", "least congested"
- routing: a "top-10" networking challenge!

Graph abstraction: link costs

 $c_{a,b}$: cost of *direct* link connecting a and b e.g., $c_{w,z} = 5$, $c_{u,z} = \infty$

cost defined by network operator: could always be 1, or inversely related to bandwidth, or related to congestion

graph: G = (N, E)

N: set of routers = $\{u, v, w, x, y, z\}$

E: set of links = { (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Routing algorithm classification

decentralized: iterative process of computation, exchange of info with neighbors

- routers initially only know link costs to attached neighbors
- ("distance vector") algorithms

global or decentralized information?

Dijkstra's link-state routing algorithm

- centralized: network topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ("source") to all other nodes
 - gives *forwarding table* for that node
- iterative: after *k* iterations, know least cost path to *k* destinations

notation

- $C_{a,b}$: direct link cost from node a to b; = ∞ if not direct neighbors
- D(a): current estimate of cost of least-cost-path from source to destination a
- p(a): predecessor node along path from source to a
- N': set of nodes whose leastcost-path definitively known

Dijkstra's link-state routing algorithm

```
1 Initialization:
   N' = \{u\}
                                 /* compute least cost path from u to all other nodes */
   for all nodes a
    if a adjacent to u
                                 /* u initially knows direct-path-cost only to direct neighbors
       then D(a) = c_{u,a}
                                /* but may not be minimum cost!
    else D(a) = \infty
   Loop
     find a not in N' such that D(a) is a minimum
    add a to N'
     update D(b) for all b adjacent to a and not in N':
        D(b) = \min (D(b), D(a) + c_{a,b})
     /* new least-path-cost to b is either old least-cost-path to b or known
     least-cost-path to a plus direct-cost from a to b */
15 until all nodes in N'
```

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1						
2						
3						
4						
5						

Initialization (step 0):

For all a: if a adjacent to u then $D(a) = c_{u,a}$

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
1	UX)					
2						
3						
4						
5						

- find a not in N' such that D(a) is a minimum
- 10 add a to N'

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
1	UX	2,u	4,x		2,x	∞
2						
3						
4						
5						

- find a not in N' such that D(a) is a minimum
- 10 add *a* to *N'*
- 11 update D(b) for all b adjacent to a and not in N':

$$D(b) = \min (D(b), D(a) + c_{a,b})$$

$$D(v) = min (D(v), D(x) + c_{x,v}) = min(2, 1+2) = 2$$

 $D(w) = min (D(w), D(x) + c_{x,w}) = min (5, 1+3) = 4$
 $D(y) = min (D(y), D(x) + c_{x,v}) = min(inf, 1+1) = 2$

		V	W	X	<u>(Y)</u>	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,U	(1,u)	∞	∞
1	ux	2,tJ	4,x		(2,X)	∞
2	uxy					
3						
4						
5						

- find α not in N' such that $D(\alpha)$ is a minimum
- 10 add *a* to *N'*

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
1	ux	2,u	4,x		(2,x)	∞
2	uxy	2,u	3,y			4 ,y
3			•			
4						
5						

- 9 find a not in N' such that D(a) is a minimum
- 10 add *a* to *N'*
- 11 update D(b) for all b adjacent to a and not in N':

$$D(b) = \min \left(D(b), D(a) + c_{a,b} \right)$$

$$D(w) = min (D(w), D(y) + c_{x,w}) = min (4, 2+1) = 3$$

 $D(z) = min (D(z), D(y) + c_{y,x}) = min(inf, 2+2) = 4$

		V	W	X	У	Z
Step	N'	Ø(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	/ 2,u	5,u	(1,u)	∞	∞
1	ux	2 ,u	4,x		(2,X)	∞
2	uxy /	(2,u)	3,y			4,y
3	uxvv					
4						
5						

- find α not in N' such that $D(\alpha)$ is a minimum
- 10 add a to N'

			V	W	X	У	Z
St	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	(1,u)	∞	∞
	1	ux	2,u	4,x		(2,X)	∞
	2	uxy	(2,u)	3,y			4 ,y
	3	uxyv		3,y			4,y
	4						-
	5						

- 9 find a not in N' such that D(a) is a minimum
- 10 add a to N'
- 11 update D(b) for all b adjacent to a and not in N':

$$D(b) = \min \left(D(b), D(a) + c_{a,b} \right)$$

$$D(w) = min(D(w), D(v) + c_{v,w}) = min(3, 2+3) = 3$$

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
1	ux	2 ,u	4,x		(2,X)	∞
2	uxy	(2,u)	3,y			4 ,y
3	uxyv		<u>3,y</u>			4,y
4	uxyvw					
5						

- find a not in N' such that D(a) is a minimum
- 10 add a to N'

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
1	ux	2,u	4,x		(2,X)	∞
2	uxy	(2,u)	3,y			4 ,y
3	uxyv		<u>3,y</u>			4,y
4	uxyvw					4,y
5						

- 9 find a not in N' such that D(a) is a minimum
- 10 add *a* to *N'*
- 11 update D(b) for all b adjacent to a and not in N':

$$D(b) = \min (D(b), D(a) + c_{a,b})$$

$$D(z) = min (D(z), D(w) + c_{w,z}) = min (4, 3+5) = 4$$

			V	W	X	У	Z
St	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	(1,u)	∞	∞
	1	ux	2,u	4,x		(2,x)	∞
	2	uxy	(2,u)	3,4			4 ,y
	3	uxyv		<u>3,y</u>			4 ,y
	4	uxyvw					<u>4,y</u>
	5	UXVVWZ					

- find a not in N' such that D(a) is a minimum
- 10 add *a* to *N'*

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
1	ux	2,u	4,x		(2,X)	∞
2	uxy	(2,u)	3,y			4,y
3	uxyv		<u>3,y</u>			4,y
4	uxyvw					<u>4,y</u>
5	UXVVWZ					

- 8 Loop
- 9 find a not in N' such that D(a) is a minimum
- 10 add a to N'
- update D(b) for all b adjacent to a and not in N': $D(b) = \min (D(b), D(a) + c_{a,b})$

resulting least-cost-path tree from u:

resulting forwarding table in u:

	destination	outgoing link	
·	V	(u,v) —	route from u to v directly
	X	(u,x)	
	У	(u,x)	route from u to all
	W	(u,x)	other destinations
	Z	(u,x)	via <i>x</i>

notes:

- construct least-cost-path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm: discussion

algorithm complexity: *n* nodes

- each of n iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$ complexity
- more efficient implementations possible: O(nlogn)

message complexity:

- each router must broadcast its link state information to other n routers
- efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a broadcast message from one source
- each router's message crosses O(n) links: overall message complexity: $O(n^2)$

Dijkstra's algorithm: oscillations possible

- when link costs depend on traffic volume, route oscillations possible
- sample scenario:
 - routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
 - link costs are directional, and volume-dependent

initially

given these costs, find new routing.... resulting in new costs given these costs, find new routing.... resulting in new costs

Distance vector algorithm

Based on *Bellman-Ford* (BF) equation (dynamic programming):

Bellman-Ford Example

Suppose that u's neighboring nodes, x,v,w, know that for destination z:

Bellman-Ford equation says:

$$D_{u}(z) = \min \{ c_{u,v} + D_{v}(z), c_{u,x} + D_{x}(z), c_{u,w} + D_{w}(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

node achieving minimum (x) is next hop on estimated leastcost path to destination (z)

Distance vector algorithm

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from any neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c_{x,v} + D_v(y)\}$$
 for each node $y \in N$

• under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

Distance vector algorithm:

each node:

wait for (change in local link cost or msg from neighbor)

recompute my DV estimates using DV received from neighbor

if my DV to any destination has changed, *send my new DV* my neighbors, else do nothing.

iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbor

distributed, self-stopping: each node notifies neighbors *only* when its DV changes

- neighbors then notify their neighbors – only if necessary
- no notification received, no actions taken!

Distance vector: another example

- All nodes have distance estimates to nearest neighbors (only)
- All nodes send their local distance vector to their neighbors

DV in a: $D_a(a)=0$ $D_a(b) = 8$

 $D_a(c) = \infty$

 $D_a(d) = 1$

 $D_a(e) = \infty$

 $D_a(f) = \infty$

 $D_a(g) = \infty$

 $D_a(h) = \infty$

 $D_a(i) = \infty$

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

.... and so on

Let's next take a look at the iterative computations at nodes

(T) t=0

b receives DVs from a, c, e

DV in a:

 $D_{a}(a)=0$

$$D_{a}(b) = 8$$

$$D_a(c) = \infty$$

 $D_a(d) = 1$

$$D_a(e) = \infty$$

$$D_a(f) = \infty$$

$$D_a(g) = \infty$$

$$D_a(h) = \infty$$

$$D_a(i) = \infty$$

DV in b:

$$D_b(a) = 8$$
 $D_b(f) = \infty$
 $D_b(c) = 1$ $D_b(g) = \infty$

$$D_b(d) = \infty$$
 $D_b(h) = \infty$

$$D_b(e) = 1$$
 $D_b(i) = \infty$

(C)

$D_{c}(a) = \infty$ $D_{c}(b) = 1$

$$D_{c}(b) = 1$$

 $D_{c}(c) = 0$

$$D_c(d) = \infty$$

DV in c:

$$D_c(e) = \infty$$

$$D_c(f) = \infty$$

$$D_c(g) = \infty$$

$$D_c(h) = \infty$$

$$D_c(i) = \infty$$

DV in e:

$$D_e(a) = \infty$$

$$D_{e}(b) = 1$$

$$D_e(c) = \infty$$

$$D_{e}(d) = 1$$

$$D_{e}(e) = 0$$

$$D_e(f) = 1$$

$$D_e(g) = \infty$$

$$D_{e}(h) = 1$$

$$D_e(i) = \infty$$

t=1

b receives DVs from a, c, e, computes:

DV in a:

$$D_{a}(a)=0$$

$$D_{a}(b) = 8$$

$$D_{a}(c) = \infty$$

$$D_{a}(d) = 1$$

$$D_{a}(e) = \infty$$

$$D_{a}(f) = \infty$$

$$D_{a}(g) = \infty$$

$$D_{a}(h) = \infty$$

$$D_{a}(i) = \infty$$

DV in b:

$$D_b(a) = 8 D_b(f) = \infty$$

$$D_b(c) = 1 D_b(g) = \infty$$

$$D_b(d) = \infty D_b(h) = \infty$$

$$D_b(e) = 1 D_b(i) = \infty$$

DV in e:

DV in c:

 $D_c(a) = \infty$

 $D_{c}(b) = 1$

 $D_c(c) = 0$

 $D_c(d) = \infty$

 $D_c(e) = \infty$

 $D_c(f) = \infty$

 $D_c(g) = \infty$

 $D_c(h) = \infty$

 $D_c(i) = \infty$

$$D_e(a) = \infty$$

$$D_{e}(b) = 1$$

$$D_e(c) = \infty$$

$$D_{e}(d) = 1$$

$$D_{e}(e) = 0$$

$$D_{e}(f) = 1$$

$$D_e(g) = \infty$$

$$D_{e}(h) = 1$$

$$D_e(i) = \infty$$

$$\begin{split} &D_b(a) = \min\{c_{b,a} + D_a(a), \, c_{b,c} + D_c(a), \, c_{b,e} + D_e(a)\} = \min\{8, \infty, \infty\} = 8 \\ &D_b(c) = \min\{c_{b,a} + D_a(c), \, c_{b,c} + D_c(c), \, c_{b,e} + D_e(c)\} = \min\{\infty, 1, \infty\} = 1 \\ &D_b(d) = \min\{c_{b,a} + D_a(d), \, c_{b,c} + D_c(d), \, c_{b,e} + D_e(d)\} = \min\{9, 2, \infty\} = 2 \\ &D_b(e) = \min\{c_{b,a} + D_a(e), \, c_{b,c} + D_c(e), \, c_{b,e} + D_e(e)\} = \min\{\infty, \infty, 1\} = 1 \\ &D_b(f) = \min\{c_{b,a} + D_a(f), \, c_{b,c} + D_c(f), \, c_{b,e} + D_e(f)\} = \min\{\infty, \infty, 2\} = 2 \\ &D_b(g) = \min\{c_{b,a} + D_a(g), \, c_{b,c} + D_c(g), \, c_{b,e} + D_e(g)\} = \min\{\infty, \infty, \infty\} = \infty \\ &D_b(h) = \min\{c_{b,a} + D_a(h), \, c_{b,c} + D_c(h), \, c_{b,e} + D_e(h)\} = \min\{\infty, \infty, \infty\} = \infty \\ &D_b(i) = \min\{c_{b,a} + D_a(i), \, c_{b,c} + D_c(i), \, c_{b,e} + D_e(i)\} = \min\{\infty, \infty, \infty\} = \infty \\ \end{split}$$

New DV in b

DV in b:

$$D_b(a) = 8$$
 $D_b(f) = 2$
 $D_b(c) = 1$ $D_b(g) = \infty$
 $D_b(d) = 2$ $D_b(h) = 2$
 $D_b(e) = 1$ $D_b(i) = \infty$

-a-

-d-

t=1

c receives DVs from b

DV in a:

D_a(a)=0

$$D_{a}(b) = 8$$

$$D_a(c) = \infty$$

$$D_a(d) = 1$$

$$D_a(e) = \infty$$

 $D_a(f) = \infty$

$$D_a(g) = \infty$$

$$D_a(h) = \infty$$

$$D_a(i) = \infty$$

DV in b:

$$D_b(a) = 8$$
 $D_b(f) = \infty$
 $D_b(c) = 1$ $D_b(g) = \infty$

$$D_b(d) = \infty$$
 $D_b(h) = \infty$

$$D_b(e) = 1$$
 $D_b(i) = \infty$

-b-

e-

DV in c:

$$D_c(a) = \infty$$

$$D_{c}(b) = 1$$

$$D_{c}(c) = 0$$

$$D_c(d) = \infty$$

$$D_c(e) = \infty$$

$$D_c(f) = \infty$$

$$D_c(g) = \infty$$

$$D_c(h) = \infty$$

$$D_c(i) = \infty$$

DV in e:

$$D_e(a) = \infty$$

$$D_{e}(b) = 1$$

$$D_e(c) = \infty$$

$$D_{e}(d) = 1$$

$$D_{e}(e) = 0$$

$$D_e(f) = 1$$

$$D_e(g) = \infty$$

$$D_{e}(h) = 1$$

$$D_e(i) = \infty$$

DV in b:

$$D_b(a) = 8$$
 $D_b(f) = \infty$
 $D_b(c) = 1$ $D_b(g) = \infty$
 $D_b(d) = \infty$ $D_b(h) = \infty$
 $D_b(e) = 1$ $D_b(i) = \infty$

compute

DV in c:

 $D_c(a) = \infty$ $D_c(b) = 1$

 $D_{c}(c) = 0$

 $D_c(d) = \infty$

 $D_c(e) = \infty$

 $D_c(f) = \infty$

 $D_c(g) = \infty$

 $D_c(h) = \infty$

$$D_c(i) = \infty$$

t=1
c receives

c receives DVs from b computes:

$$D_c(a) = min\{c_{c,b} + D_b(a)\} = 1 + 8 = 9$$

$$D_c(b) = min\{c_{c,b} + D_b(b)\} = 1 + 0 = 1$$

$$D_c(d) = min\{c_{c,b}+D_b(d)\} = 1+ \infty = \infty$$

$$D_c(e) = min\{c_{c,b} + D_b(e)\} = 1 + 1 = 2$$

$$D_c(f) = min\{c_{c,b} + D_b(f)\} = 1 + \infty = \infty$$

$$D_c(g) = min\{c_{c,b}+D_b(g)\} = 1+ \infty = \infty$$

$$D_c(h) = min\{c_{bc,b} + D_b(h)\} = 1 + \infty = \infty$$

$$D_c(i) = min\{c_{c,b}+D_b(i)\} = 1+ \infty = \infty$$

New DV in c

DV in c:

$$D_{c}(b) = 1$$

$$D_c(c) = 0$$

$$D_c(d) = \infty$$

$$D_c(e) = 2$$

$$D_c(f) = \infty$$

$$D_c(g) = \infty$$

$$D_c(h) = \infty$$

$$D_c(i) = \infty$$

-a-

⊆g-

DV in b:

$$D_b(a) = 8 D_b(f) = \infty$$

$$D_b(c) = 1 D_b(g) = \infty$$

$$D_b(d) = \infty D_b(h) = \infty$$

$$D_b(e) = 1 D_b(i) = \infty$$

t=1

e receives DVs from b, d, f, h

DV in d:

$$D_{c}(a) = 1$$

$$D_c(b) = \infty$$

$$D_{c}(c) = \infty$$

$$D_c(d) = 0$$

$$D_{c}(e) = 1$$

$$D_c(f) = \infty$$

$$D_c(g) = 1$$

$$D_c(h) = \infty$$

$$D_c(i) = \infty$$

b-

h-

DV in h:

$$D_c(a) = \infty$$

$$D_c(b) = \infty$$

$$D_c(c) = \infty$$

$$D_c(d) = \infty$$

$$D_{c}(e) = 1$$

$$D_c(f) = \infty$$

$$D_c(g) = 1$$

$$D_{c}(h) = 0$$

$$D_c(i) = 1$$

DV in f:

$$D_c(a) = \infty$$

DV in e:

 $D_e(a) = \infty$

 $D_{e}(b) = 1$

 $D_e(c) = \infty$

 $D_e(d) = 1$

 $D_e(e) = 0$

 $D_e(f) = 1$

 $D_e(g) = \infty$

 $D_{e}(h) = 1$

 $D_e(i) = \infty$

$$D_c(b) = \infty$$

$$D_c(c) = \infty$$

$$D_c(d) = \infty$$

$$D_{c}(e) = 1$$

$$D_c(f) = 0$$

$$D_c(g) = \infty$$

$$D_c(h) = \infty$$

$$D_c(i) = 1$$

Distance vector: state information diffusion

Iterative communication, computation steps diffuses information through network:

- t=0 c's state at t=0 is at c only
- c's state at t=0 has propagated to b, and may influence distance vector computations up to **1** hop away, i.e., at b
- c's state at t=0 may now influence distance vector computations up to 2 hops away, i.e., at b and now at a, e as well
- c's state at t=0 may influence distance vector computations up to 3 hops away, i.e., at d, f, h
- c's state at t=0 may influence distance vector computations up to 4 hops away, i.e., at g, i

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- updates routing info, recalculates local DV
- if DV changes, notify neighbors

"good news travels fast"

 t_0 : y detects link-cost change, updates its DV, informs its neighbors.

 t_1 : z receives update from y, updates its DV, computes new least cost to x, sends its neighbors its DV.

t₂: y receives z's update, updates its DV. y's least costs do not change, so y does not send a message to z.

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- "bad news travels slow" count-to-infinity

- probles Mirect link to x has new cost 60, but z has said it has a path at cost of 5. So y computes "my new cost to x will be 6, via z); notifies z of new cost of 6 to x.
- z learns that path to x via y has new cost 6, so z computes "my new cost to x will be 7 via y), notifies y of new cost of 7 to x.
- y learns that path to x via z has new cost 7, so y computes "my new cost to x will be 8 via y), notifies z of new cost of 8 to x.
- z learns that path to x via y has new cost 8, so z computes "my new cost to x will be 9 via y), notifies y of new cost of 9 to x.

• • •

• see text for solutions. *Distributed algorithms are tricky!*

Comparison of LS and DV algorithms

message complexity

LS: n routers, $O(n^2)$ messages sent

DV: exchange between neighbors; convergence time varies

speed of convergence

LS: $O(n^2)$ algorithm, $O(n^2)$ messages

may have oscillations

DV: convergence time varies

- may have routing loops
- count-to-infinity problem

robustness: what happens if router malfunctions, or is compromised?

LS:

- router can advertise incorrect link cost
- each router computes only its own table

DV:

- DV router can advertise incorrect path cost ("I have a really low-cost path to everywhere"): black-holing
- each router's DV is used by others: error propagate thru network

References

Figures and slides are taken/adapted from:

- Jim Kurose, Keith Ross, "Computer Networking: A Top-Down Approach", 7th ed. Addison-Wesley, 2012. All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved
- Jim Kurose, Keith Ross, "Computer Networking: A Top-Down Approach", 8th ed. Pearson, 2020. All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved