Análisis Matemático II - Tarea 6

Fecha límite: domingo 7 de noviembre a las 23:59 horas Andrés Casillas García de Presno

- 1. Demuestra las siguientes afirmaciones.
 - a) Si X es un subconjunto medible de \mathbb{R}^n y $\xi \in \mathbb{R}^n$, entonces $X + \xi := \{x + \xi : x \in X\}$ es medible y $|X + \xi| = |X|$.

Solución

Lema

Si X es un subconjunto medible de \mathbb{R}^n y $\xi \in \mathbb{R}^n$, $k \in \mathbb{N}$, entonces $X \cap \bar{B}(-\xi, k)$ es integrable.

Demostración

Sea $k \in \mathbb{N}$. Como X es medible entonces $X \cap \bar{B}(0,j)$ es integrable para toda $j \in \mathbb{N}$, en particular para toda $j_0 \geq k + \| - \xi \|$. Veamos que $\bar{B}(-\xi,k) \subset \bar{B}(0,j_0)$ ya que si $x \in \bar{B}(-\xi,k)$ entonces $\|x\| \leq \|x - (-\xi)\| + \| - \xi \| \leq k + \| - \xi \| \leq j_0$. Como todo subconjunto compacto de \mathbb{R}^n es integrable (consecuencia de la proposición 12.38) y $1_{X \cap \bar{B}(0,j)}$ es integrable entonces la proposición 12.43 afirma que $1_{X \cap \bar{B}(0,j)}|_{\bar{B}(-\xi,k)}$ (su restricción a $\bar{B}(-\xi,k)$) es integrable, pero $1_{X \cap \bar{B}(0,j)}|_{\bar{B}(-\xi,k)} = 1_{X \cap \bar{B}(-\xi,k)}$ de forma que $X \cap \bar{B}(-\xi,k)$ es integrable.

Sea $k \in \mathbb{N}$. Dado que $X \cap \bar{B}(-\xi,k)$ es integrable (lema) podemos aplicarle el teorema de cambio de variable lineal (proposición 12.34) a su función característica, con $\phi(x) = Ax - \xi$, $A = Id_{\mathbb{R}^n} \in GL(n,\mathbb{R})$, $-\xi \in \mathbb{R}^n$. Como la función $\phi(x) = x - \xi$ es una transformación rígida (pues es una traslación), entonces $\phi(\bar{B}(0,k)) = \bar{B}(-\xi,k)$. Además $1_{X\cap\bar{B}(-\xi,k)}\circ\phi(x) = 1 \iff 1_{X\cap\bar{B}(-\xi,k)}\circ(x-\xi) = 1 \iff (x-\xi) \in X \cap \bar{B}(-\xi,k) \Leftrightarrow x \in (X+\xi) \cap \bar{B}(0,k)$. Tenemos entonces que $1_{X\cap\bar{B}(-\xi,k)}\circ\phi = 1_{(X+\xi)\cap\bar{B}(0,k)}$, de forma que, por dicho teorema, $1_{(X+\xi)\cap\bar{B}(0,k)}$ es integrable y

$$\int_{\mathbb{R}^n} 1_{(X+\xi) \cap \bar{B}(0,k)} = \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(-\xi,k)}$$

de forma que $(X + \xi) \cap \bar{B}(0, k)$ es integrable en \mathbb{R}^n i.e. $(X + \xi)$ es medible. Además, por la igualdad anterior y dado que k fue arbitraria, tenemos que

$$|X + \xi| = \lim_{k \to \infty} \int_{\mathbb{R}^n} 1_{(X+\xi) \cap \bar{B}(0,k)} = \lim_{k \to \infty} \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(-\xi,k)}$$

Veamos ahora que

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(-\xi,k)} = \lim_{k \to \infty} \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(0,k)} = |X|$$

Afirmo que dada $k \in \mathbb{N}$ basta con tomar $j \in \mathbb{N}, j \geq k + \|-\xi\|$ para que $\bar{B}(0,k) \subset \bar{B}(-\xi,j)$. Si $x \in \bar{B}(0,k), \|x-(-\xi)\| \leq \|x\| + \|-\xi\| \leq k + \|-\xi\| \leq j$. Luego entonces $(X \cap \bar{B}(0,k)) \subset (X \cap \bar{B}(-\xi,j))$ de forma que $1_{X \cap \bar{B}(0,k)} \leq 1_{X \cap \bar{B}(-\xi,j)}$ y por monotonía de la integral

$$\int_{\mathbb{R}^n} 1_{X \cap \bar{B}(0,k)} \le \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(-\xi,j)}$$

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(0,k)} \le \lim_{j \to \infty} \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(-\xi,j)} \tag{1}$$

Analogamente, dada $j \in \mathbb{N}$, basta con tomar $k \in \mathbb{N}, k \geq j + \| - \xi \|$ para que $\bar{B}(-\xi,j) \subset \bar{B}(0,k)$ pues si $x \in \bar{B}(-\xi,j), \|x\| \leq \|x-(-\xi)\| + \| - \xi \| \leq j + \| - \xi \| \leq k$. Luego entonces $(X \cap \bar{B}(-\xi,j)) \subset (X \cap \bar{B}(0,k))$ de forma que $1_{X \cap \bar{B}(-\xi,j)} \leq 1_{X \cap \bar{B}(0,k)}$ y por monotonía de la integral

$$\int_{\mathbb{R}^n} 1_{X \cap \bar{B}(-\xi,j)} \le \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(0,k)}$$

$$\lim_{j \to \infty} \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(-\xi,j)} \le \lim_{k \to \infty} \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(0,k)} \tag{2}$$

De las desigualdades 1 y 2 se sigue que

$$\lim_{k\to\infty} \int_{\mathbb{R}^n} 1_{X\cap \bar{B}(-\xi,k)} = \lim_{k\to\infty} \int_{\mathbb{R}^n} 1_{X\cap \bar{B}(0,k)} = |X|$$

y en consecuencia

$$|X + \xi| = \lim_{k \to \infty} \int_{\mathbb{R}^n} 1_{(X+\xi) \cap \bar{B}(0,k)} = \lim_{k \to \infty} \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(-\xi,k)}$$
$$= \lim_{k \to \infty} \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(0,k)} = |X|$$

b) Si X y Y son subconjuntos medibles de \mathbb{R}^n y Y \subset X, entonces $|Y| \leq |X|.$

Solución

Sea $k\in\mathbb{N}$. Como $Y\subset X$ entonces $Y\cap \bar{B}(0,k)\subset X\cap \bar{B}(0,k)$ de forma que, por definición, $1_{Y\cap \bar{B}(0,k)}\leq 1_{X\cap \bar{B}(0,k)}$. Por monotonía de la integral tenemos que

$$\int_{\mathbb{R}^n} 1_{Y \cap \bar{B}(0,k)} \le \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(0,k)}$$

Dado que k fue arbitraria tenemos entonces que

$$|Y| = \lim_{k \to \infty} \int_{\mathbb{R}^n} 1_{Y \cap \bar{B}(0,k)} \le \lim_{k \to \infty} \int_{\mathbb{R}^n} 1_{X \cap \bar{B}(0,k)} = |X|$$

i.e.

$$|Y| \le |X|$$

c) Si $X_1 \subset \cdots \subset X_k \subset X_{k+1} \subset \cdots$ es una sucesión de subconjuntos medibles de \mathbb{R}^n , entonces $\bigcup_{j=1}^{\infty} X_j$ es medible y

$$\Big|\bigcup_{j=1}^{\infty} X_j\Big| = \lim_{j \to \infty} |X_j|.$$

Solución

La proposición 14.3 nos asegura que $\bigcup_{j=1}^{\infty} X_j$ es medible. Consideremos la siguiente familia ajena de conjuntos:

$$Y_1 = X_1$$

y para cada $n \in \mathbb{Z}^+, n > 1$

$$Y_n = X_n \setminus X_{n-1}$$

Por la proposición 14.3 (a) tenemos que cada Y_n es medible y, por la proposición 14.3 (b) tenemos que $\bigcup_{i=1}^{\infty} Y_i$ es medible.

Veamos que

- 1) $Y_i \cap Y_j = \emptyset$ para todo $i \neq j$. Sean $i \neq j, i > j$. Por la definición de los X_i tenemos que $X_j, X_{j-1} \subset X_{i-1}$ de forma que $Y_i \cap Y_j = (X_i \setminus X_{i-1}) \cap (X_j \setminus X_{j-1}) = \emptyset$.
- 2) $\bigcup_{i=1}^{\infty} Y_i = \bigcup_{i=1}^{\infty} X_i$. Veamos por inducción que, dado $n \in \mathbb{N}$, $X_n = \bigcup_{i=1}^n Y_i$. Para n = 1 es trivial (por definición de Y_1). Supongámoslo válido para k y veamos que se cumple para k + 1.

$$\bigcup_{i=1}^{k+1} Y_i = \bigcup_{i=1}^k Y_i \cup Y_{k+1} = X_k \cup Y_{k+1} = X_k \cup (X_{k+1} \setminus X_k) = X_{k+1}$$

Así,
$$X_n = \bigcup_{i=1}^n Y_i$$
 de forma que $\bigcup_{n=1}^\infty X_n = \bigcup_{n=1}^\infty \bigcup_{i=1}^n Y_i = \bigcup_{n=1}^\infty Y_n$

Por las propiedades recién demostradas y la segunda parte del ejercicio 1.(d) tenemos que

$$|\bigcup_{j=1}^{\infty} X_j| = |\bigcup_{j=1}^{\infty} Y_j| = \sum_{j=1}^{\infty} |Y_j|$$

Demostremos que $|Y_j| = |X_j \setminus X_{j-1}| = |X_j| - |X_{j-1}|$. Como cada uno es medible, por la proposición 12.38 y por construcción de la sucesión X_k tenemos que, para cada $k \in \mathbb{N}$, $vol((X_j \cap \bar{B}(0,k)) \setminus (X_{j_1} \cap \bar{B}(0,k))) = vol(X_j \cap \bar{B}(0,k)) - vol(X_{j-1} \cap \bar{B}(0,k))$. Pasando al límite (dado que k es arbitraria) tenemos que $|X_j \setminus X_{j-1}| = |X_j| - |X_{j-1}|$.

Así, para cada $n \in \mathbb{N}$ se tiene que $\sum_{j=1}^{n} |Y_j|$ es telescópica i.e. $\sum_{j=1}^{n} |Y_j| = |X_1| + \sum_{j=2}^{n} |X_j| - |X_{j-1}| = |X_n|$ de forma que

$$\sum_{j=1}^{\infty} |Y_j| = \lim_{n \to \infty} \sum_{j=1}^{n} |Y_j| = \lim_{n \to \infty} |X_n|$$

Así,

$$|\bigcup_{j=1}^{\infty} X_j| = \lim_{j \to \infty} |X_j|$$

d) Si $\{X_j : j \in \mathbb{N}\}$ es una familia numerable de subconjuntos medibles de \mathbb{R}^n , entonces $\bigcup_{j=1}^{\infty} X_j$ es medible y

$$\Big|\bigcup_{j=1}^{\infty} X_j\Big| \le \sum_{j=1}^{\infty} |X_j|.$$

Si además $X_i \cap X_j = \emptyset$ para todo $i \neq j$, entonces

$$\Big|\bigcup_{j=1}^{\infty} X_j\Big| = \sum_{j=1}^{\infty} |X_j|.$$

Solución

La proposición 14.3 afirma que $\bigcup_{j=1}^{\infty} X_j$ es medible.

Probemos que

$$|\bigcup_{j=1}^{\infty} X_j| \le \sum_{j=1}^{\infty} |X_j|$$

Sea $k \in \mathbb{N}$. Por definición, $(\bigcup_{j=1}^{\infty} X_j) \cap \bar{B}(0,k) = \bigcup_{j=1}^{\infty} (X_j \cap \bar{B}(0,k))$ y $X_j \cap \bar{B}(0,k)$ son integrables. Además, por definición de función característica, tenemos que

$$1_{(\bigcup_{j=1}^{\infty} X_j) \cap \bar{B}(0,k)} \le \sum_{j=1}^{\infty} 1_{(X_j \cap \bar{B}(0,k))}$$

Por monotonía de la integral

$$\int_{\mathbb{R}^n} 1_{(\bigcup_{j=1}^{\infty} X_j) \cap \bar{B}(0,k)} \le \int_{\mathbb{R}^n} \sum_{j=1}^{\infty} 1_{(X_j \cap \bar{B}(0,k))}$$

de forma que , como se cumple para toda $k \in \mathbb{N}$, tenemos que

$$\lim_{k\to\infty} \int_{\mathbb{R}^n} 1_{(\bigcup_{j=1}^{\infty} X_j)\cap \bar{B}(0,k)} \le \lim_{k\to\infty} \int_{\mathbb{R}^n} \sum_{j=1}^{\infty} 1_{(X_j\cap \bar{B}(0,k))}$$

i.e.

$$\left|\bigcup_{j=1}^{\infty} X_j\right| \le \lim_{k \to \infty} \int_{\mathbb{R}^n} \sum_{j=1}^{\infty} 1_{(X_j \cap \bar{B}(0,k))}$$

Ahora bien, como $1_{(X_j\cap \bar{B}(0,k))}\geq 0$ para toda $j\in\mathbb{N}$ el lema 13.3 asegura que

$$\int_{\mathbb{R}^n}^* \sum_{j=1}^{\infty} 1_{(X_j \cap \bar{B}(0,k))} \le \sum_{j=1}^{\infty} \int_{\mathbb{R}^n}^* 1_{(X_j \cap \bar{B}(0,k))}$$

pero como $1_{(X_j \cap \bar{B}(0,k))}$ es integrable, entonces la integral superior y la integral coinciden, de forma que

$$\int_{\mathbb{R}^n} \sum_{j=1}^{\infty} 1_{(X_j \cap \bar{B}(0,k))} \le \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} 1_{(X_j \cap \bar{B}(0,k))}$$

y así

$$|\bigcup_{j=1}^{\infty} X_j| \le \lim_{k \to \infty} \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} 1_{(X_j \cap \bar{B}(0,k))}$$

Por la observación 14.2, dado que $(X_j \cap \bar{B}(0,k))$ es integrable, sabemos que su volumen y su medida coinciden, de forma que

$$|\bigcup_{j=1}^{\infty} X_j| \le \lim_{k \to \infty} \sum_{j=1}^{\infty} |X_j \cap \bar{B}(0,k)|$$

Dado que para toda $j\in\mathbb{N},\,(X_j\cap\bar{B}(0,k))\subset X_j$ para toda $k\in\mathbb{N}$, por 1.(b) tenemos que

$$|X_j \cap \bar{B}(0,k)| \le |X_j|$$

entonces

$$\sum_{j=1}^{\infty} |X_j \cap \bar{B}(0,k)| \le \sum_{j=1}^{\infty} |X_j|$$

para toda $k \in \mathbb{N}$, de forma que

$$\lim_{k\to\infty}\sum_{j=1}^{\infty}|X_j\cap\bar{B}(0,k)|\leq\sum_{j=1}^{\infty}|X_j|$$

y así

$$|\bigcup_{j=1}^{\infty} X_j| \le \sum_{j=1}^{\infty} |X_j|$$

que es lo que se quería demostrar.

Ahora supongamos $X_i \cap X_j = \emptyset$ para todo $i \neq j$. Es claro que, para todo $n \in \mathbb{N}$

$$\bigcup_{j=1}^{n} X_j \subset \bigcup_{j=1}^{\infty} X_j$$

de forma que, por el inciso 1.(b)

$$\left|\bigcup_{j=1}^{n} X_{j}\right| \le \left|\bigcup_{j=1}^{\infty} X_{j}\right| \tag{3}$$

pero dado que $X_i \cap X_j = \emptyset$ para todo $i \neq j$ tenemos que para toda $k \in \mathbb{N}$ $(X_i \cap \bar{B}(0,k)) \cap (X_j \cap \bar{B}(0,k)) = \emptyset$ de forma que, por la proposición 12.38

$$vol((X_i \cap \bar{B}(0,k)) \cup (X_i \cap \bar{B}(0,k))) = vol(X_i \cap \bar{B}(0,k)) + vol(X_i \cap \bar{B}(0,k)))$$

pasando al límite cuando $k \to \infty$

$$|\bigcup_{j=1}^{n} X_j| = \sum_{j=1}^{n} X_j$$

de forma que

$$\sum_{j=1}^{n} X_j \le |\bigcup_{j=1}^{\infty} X_j|$$

Como la desigualdad 3 vale para toda $n \in \mathbb{N}$ se sigue que

$$\lim_{n\to\infty} \sum_{j=1}^{n} X_j = \sum_{j=1}^{\infty} X_j \le |\bigcup_{j=1}^{\infty} X_j|$$

pero por la primera parte de este ejercicio teníamos que

$$\sum_{j=1}^{\infty} X_j \ge |\bigcup_{j=1}^{\infty} X_j|$$

de forma que

$$\sum_{j=1}^{\infty} X_j = |\bigcup_{j=1}^{\infty} X_j|$$

e) Si $X_1 \supset \cdots \supset X_k \supset X_{k+1} \supset \cdots$ es una sucesión de subconjuntos medibles de \mathbb{R}^n y $|X_1| < \infty$, entonces $\bigcap_{j=1}^{\infty} X_j$ es medible y

$$\Big|\bigcap_{j=1}^{\infty} X_j\Big| = \lim_{j \to \infty} |X_j|.$$

Solución

La proposición 14.3 afirma que $\bigcap_{j=1}^{\infty} X_j$ es medible.

Consideremos la siguiente familia de conjuntos:

Para cada $k \in \mathbb{N}, k \ge 1$ sea

$$Y_k = X_1 \setminus X_k$$

Por la proposición 14.3 tenemos que Y_k es medible para toda $k \in \mathbb{N}$. Veamos que $Y_1 \subset Y_2 \subset \cdots \subset Y_k \subset \ldots$ Por definición de X_k tenemos que $X_j \supset X_{j+1}$ de forma que $(X_1 \setminus X_j) \subset (X_1 \setminus X_{j+1})$ y así $Y_1 = \emptyset \subset Y_2 = (X_1 \setminus X_2) \subset \cdots \subset Y_k = (X_1 \setminus X_k) \subset \ldots$ Dicho esto, la familia Y_k cumple con las hipótesis del ejercicio 1.(c) de forma que

$$|\bigcup_{j=1}^{\infty} Y_j| = \lim_{j \to \infty} |Y_j| \tag{4}$$

Por otro lado, veamos que

$$\bigcup_{j=1}^{\infty} Y_j = \bigcup_{j=1}^{\infty} X_1 \setminus X_j = X_1 \setminus \bigcap_{j=1}^{\infty} X_j$$

En el ejercicio 1.(c) demostramos que $|X_j \setminus X_{j-1}| = |X_j| - |X_{j-1}|$ siempre que $X_{j-1} \subset X_j$. Así, como $\bigcap_{j=1}^{\infty} X_j \subset X_1$ y, para cualquier $j \in \mathbb{N}, X_j \subset X_1$ entonces

$$|\bigcup_{j=1}^{\infty} Y_j| = |X_1 \setminus \bigcap_{j=1}^{\infty} X_j| = |X_1| - |\bigcap_{j=1}^{\infty} X_j|$$
 (5)

$$|Y_i| = |X_1 \setminus X_i| = |X_1| - |X_i|$$
 (6)

Así, por 4, 5 y 6

$$|\bigcup_{j=1}^{\infty} Y_j| = \lim_{j \to \infty} |Y_j| = \lim_{j \to \infty} (|X_1| - |X_j|) = |X_1| - \lim_{j \to \infty} |X_j|$$

$$=|X_1|-|\bigcap_{j=1}^{\infty}X_j|$$

i.e.

$$|X_1| - \lim_{j \to \infty} |X_j| = |X_1| - |\bigcap_{j=1}^{\infty} X_j|$$

Como $|X_1| < \infty$ (hipótesis) entonces

$$|\bigcap_{j=1}^{\infty} X_j| = \lim_{j \to \infty} |X_j|$$

2. **Teorema de Egorov.** Sean X un subconjunto medible de \mathbb{R}^n con $|X| < \infty$ y $f_k, f: X \to \mathbb{R}$ funciones medibles tales que $f_k(x) \to f(x)$ p.c.t. $x \in X$. Prueba que, para cada $\varepsilon > 0$, existe un subconjunto medible $Y \subset X$ tal que

 $|X \setminus Y| < \varepsilon$ y (f_k) converge uniformemente a f en Y.

(Sugerencia: Considera los conjuntos

$$Y_{m,k} := \bigcup_{j=k}^{\infty} \left\{ x \in X : |f_j(x) - f(x)| \ge \frac{1}{2^m} \right\}$$

y prueba que, para cada $m \in \mathbb{N}$, existe $k_m \in \mathbb{N}$ tal que $|Y_{m,k_m}| < \frac{\varepsilon}{2^m}$. Demuestra que $Y := X \setminus \bigcup_{m=1}^{\infty} Y_{m,k_m}$ tiene las propiedades deseadas.)

Solución

Sean $\epsilon > 0$, $m \in \mathbb{N}$ y Z el conjunto nulo para el que $f_k(x) \not\to f(x)$. Sea $x \in X \setminus Z$. Como $f_k(x) \to f(x)$ entonces existe $k_0 \in \mathbb{N}$ (que depende tanto de ϵ como de x) tal que $\forall k \geq k_0$, $|f_k(x) - f(x)| < \frac{1}{2^m}$. Es decir

$$x \notin \{x \in X : |f_j(x) - f(x)| \ge \frac{1}{2^m}\}$$

para toda $j \geq k_0$. Así

$$x \notin \bigcup_{j=k_0}^{\infty} \{x \in X : |f_j(x) - f(x)| \ge \frac{1}{2^m} \}$$

i.e.

$$x \notin Y_{m,k_0}$$

Como para cada $x \in X \setminus Z$ existe k_0 (que depende de x) con las propiedades anteriores, entonces tenemos que

$$\bigcap_{k=1}^{\infty} Y_{m,k} \subset Z$$

pues no existen x en $X \setminus Z$ que estén en dicha intersección.

Así, por la proposición 12.4 tenemos que $|\bigcap_{k=1}^{\infty}Y_{m,k}|=0$. Por definición $Y_{m,1}\supset Y_{m,2}\supset \cdots \supset Y_{m,k}\supset Y_{m,k+1}\supset \cdots$. Además, como $|X|<\infty$ entonces $|Y_{m,1}|<\infty$ (pues de no serlo, sería una contradicción con el ej 1.(b)). Así, por el ejercicio 1.(e) tenemos que

$$|\bigcap_{k=1}^{\infty} Y_{m,k}| = \lim_{j \to \infty} |Y_{m,k}|$$

de forma que

$$\lim_{i\to\infty} |Y_{m,k}| = 0$$

lo cual demuestra que existe $k_m \in \mathbb{N}$ tal que $|Y_{m,k_m}| < \frac{\epsilon}{2^m}$. Veamos ahora que $Y := X \setminus \bigcup_{m=1}^{\infty} Y_{m,k_m}$ tiene las propiedades deseadas.

1. Y es medible

Observación: $h: X \to \mathbb{R}$ es medible si y solo si $\bar{h}: \mathbb{R}^n \to \mathbb{R}$ es medible. Se sigue de que $\int_{\mathbb{R}^n} \bar{h} = \int_X h$, de forma que $\int_{\mathbb{R}^n \cap \bar{B}(0,k)} \bar{h} = \int_{X \cap \bar{B}(0,k)} h$. Para cada $k \in \mathbb{N}$ sea $g_k: X \to \mathbb{R}$

$$g_k(x) = \begin{cases} f_k(x) & si \quad x \in X \setminus Z \\ f(x) & si \quad x \in Z \end{cases}$$

Para cada $k \in \mathbb{N}$ tenemos que $g_k(x) = f_k(x)$ p.c.t. $x \in X$ de forma que, como f_k es medible, entonces g_k es medible (proposición 14.14). Por la observación \bar{g}_k es medible. Además, como $f_k(x) \to f(x)$ entonces $\bar{f}_k(x) \to \bar{f}(x)$ y por definición de g_k tenemos que $\bar{g}_k(x) \to \bar{f}(x)$ para toda $x \in \mathbb{R}^n$. Así \bar{f} es medible (proposición 14.9). Por la observación tenemos que f es medible.

Como f_k , f, \bar{f}_k y \bar{f} son medibles, entonces por la proposición 14.11 tenemos que $|\bar{f}_k - \bar{f}|$ y $|f_k - f|$ son medible. Por la proposición 14.12 tenemos que, para cada $m \in \mathbb{N}$, el conjunto $\{x \in \mathbb{R}^n : |\bar{f}_k - \bar{f}| \geq \frac{1}{2^m}\} = \{x \in X : |f_k - f| \geq \frac{1}{2^m}\}$ es medible. La proposición 14.3 asegura que,

para cualesquiera $m,k\in\mathbb{N},\,Y_{m,k}=\bigcup_{j=k}^\infty\{x\in X:|f_j-f|\geq\frac{1}{2^m}\}$ es medible. Aplicando otra vez dicho resultado tenemos que $\bigcup_{m=1}^\infty Y_{m,k_m}$ es medible. Dado que X es medible (hipótesis), la misma proposición asegura que $Y=X\setminus\bigcup_{m=1}^\infty Y_{m,k_m}$ es medible.

2. $|X \setminus Y| < \epsilon$

Por definición tenemos que $X \setminus Y = \bigcup_{m=1}^{\infty} Y_{m,k_m}$ de forma que

$$|X \setminus Y| = |\bigcup_{m=1}^{\infty} Y_{m,k_m}|$$

Como ya vimos que cada Y_{m,k_m} es medible, por el inciso 1.(d) y elección de k_m

$$\left|\bigcup_{m=1}^{\infty} Y_{m,k_m}\right| \le \sum_{m=1}^{\infty} \left|Y_{m,k_m}\right| \le \sum_{m=1}^{\infty} \frac{\epsilon}{2^m} = \epsilon$$

Así,

$$|X \setminus Y| < \epsilon$$

3. (f_k) converge uniformemente a f en Y

Sea $y \in Y$.

Veamos primero que $y \notin Z$.

Por definición

$$Y = \bigcap_{m=1}^{\infty} \bigcap_{j=k_m}^{\infty} \{x \in X : |f_j(x) - f(x)| < \frac{1}{2^m} \}$$

de forma que $y \notin Z$ pues de ser el caso $|f_j(y) - f(y)| > \frac{1}{2^m}$ para toda $j \in \mathbb{N}$ y para alguna $m \in \mathbb{N}$, de forma que $y \notin Y$ lo cual sería contradictorio.

Así, tenemos que $Y \cap Z = \emptyset$ ie. $f_k(y) \to f(y)$ para toda $y \in Y$.

Para ver que converge uniformemente, sea $\epsilon > 0$ y sea m tal que $\frac{1}{2^m} < \epsilon$. Propongo $k_0 := k_m$. Por definición de Y, sabemos que para la m en cuestión y $(\forall k > k_0 = k_m)$ se cumple que $|f_k(y) - f(y)| < \frac{1}{2^m} < \epsilon \ \forall y \in Y$, que es lo que se quería demostrar.