Mục lục

PHƯƠNG PHÁP LŨY THỪA TÌM GIÁ TRỊ RIÊNG TRỘI	1
1. Giá trị riêng trội	
2. Phương pháp lũy thừa tìm GTR trội là nghiệm đơn của đa thức đặc trưng	
2. Trường hợp giá trị riêng trội là nghệm bội của đa thức đặc trưng	
3. Giá trị riêng trội là nghiệm đơn của đa thức đặc trưng và là một GTR của	
4. Giá trị riêng trội là nghiệm đơn của đa thức đặc trưng và là một GTR của	
PHƯƠNG PHÁP XUỐNG THANG TÌM GIÁ TRỊ RIỆNG TRỘI TIẾP THEO	13
1. Ma trận xuống thang	
2. Ma trận sau khi xuống thang	15
4. Ma trận xuống thang dựa vào	
5. Phụ lục các hàm con	

Mọi đóng góp xin gửi về email: tam.doduc@hust.edu.vn

PHƯƠNG PHÁP LŨY THỪA TÌM GIÁ TRỊ RIÊNG TRỘI

1. Giá trị riêng trội

Giá trị riêng trội

- Giả sử ma trận A vuông cỡ n thực có các giá trị riêng khác nhau xếp theo thứ tự:

$$|\lambda_1| \ge |\lambda_2| \ge \dots \ge |\lambda_s|$$

- Các vector riêng ứng với các giá trị riêng:

$$Av_i = \lambda_i v_i, i = \overline{1, s}$$

- Khi đó

 $|\lambda_1| > |\lambda_2| \Rightarrow \lambda_1$ là giá trị riêng trội.

 $|\lambda_1| = |\lambda_2| > \lambda_3 \Rightarrow \lambda_1, \lambda_2$ là các giá trị riêng trội.

Ví dụ 1:

```
clc
clear all
format long
A=[1 2 3 4;2 1 2 3;3 2 1 2;4 3 2 1]
```

```
[eigVectors, eigValues]=eig(A);
disp(eigValues)
```

Ma trận A có giá trị riêng trội là $\lambda_1 = 9.0990$.

2. Phương pháp lũy thừa tìm GTR trội λ_1 là nghiệm đơn của đa thức đặc trưng.

Do λ_1 là GTR trội và là nghiệm đơn nên $\lambda_1 > \lambda_k \ \forall k = \overline{1,s}$. Xét vector $v = c_1 v_1 + c_2 v_2 + \cdots + c_s v_s$ là tổ hợp tuyến tính của các vector riêng.

Ta có

$$A(v) = A\left(\sum_{i=1}^{s} c_i v_i\right) = \sum_{i=1}^{s} c_i A v_i = \sum_{i=1}^{s} c_i \lambda_i v_i.$$

$$A^{2}v = A(Av) = A\left(\sum_{i=1}^{s} c_{i}\lambda_{i}v_{i}\right) = \sum_{i=1}^{s} c_{i}\lambda_{i}Av_{i} = \sum_{i=1}^{s} c_{i}\lambda_{i}^{2}v_{i}.$$

Tiếp tục quá trình như trên

$$A^{k}v = A(A^{k-1}v) = A\left(\sum_{i=1}^{s} c_{i}\lambda_{i}^{k-1}v_{i}\right) = \sum_{i=1}^{s} c_{i}\lambda_{i}^{k-1}Av_{i} = \sum_{i=1}^{s} c_{i}\lambda_{i}^{k}v_{i}.$$

Xét

$$A^{k+1}v = \lambda_1^{k+1} \left(c_1 v_1 + \sum_{i=2}^{s} c_i \frac{\lambda_i^{k+1}}{\lambda_1^{k+1}} v_i \right). \tag{1}$$

Do $\lambda_1 > \lambda_k \ \forall k = \overline{1, s}$ nên

$$\lim_{k \to +\infty} \frac{\lambda_i^{k+1}}{\lambda_1^{k+1}} = 0.$$

Do đó từ (1) suy ra với k đủ lớn ta có:

$$A^{k+1}v \approx c_1 \lambda_1^{k+1} v_1 = c_1 \lambda_1 (\lambda_1^k v_1) = c_1 \lambda_1 A^k v_1 \approx \lambda_1 (A^k v).$$
 (2).

Từ (2) theo định nghĩa vector riêng thì $A^k v$ là một vector gần đúng của vector riêng ứng với giá trị riêng λ_1 .

Ngoài ra, giá trị riêng λ_1 có thể tính gần đúng như sau: $\lambda_1 \approx \frac{(A^{k+1}v)(i)}{(A^{k+1}v)(i)}$ với i là một chỉ số bất kỳ $1, 2, 3, \cdots, n$.

Ví du 2.

clc
%clear all
format long

```
A=[1 2 3 4;2 1 2 3;3 2 1 2;4 3 2 1]
A = 4 \times 4
    1
          2
                3
                     4
                2
                      3
    2
          1
    3
          2
                1
                      2
                2
          3
k=20;
v = [5;-2;1;-3];
disp('vector v la:')
vector v la:
disp(v)
    5
    -2
    1
    -3
x=v;
for i = 1:k
    x = A*x;
    y = A*x;
    if i==k, break, end
end
disp('vector A^19v la')
vector A^19v la
disp(x)
  1.0e+18 *
  5.340223957821464
  4.377936387828187
  4.377936277154168
  5.340223690630745
disp('vector A^20v la')
vector A^20v la
disp(y)
  1.0e+19 *
  4.859080032746332
  3.983492792967168
  3.983492830753642
  4.859080123970949
disp(y./x)
  9.099019200551631
  9.099019355425821
  9.099019671759750
  9.099019826633953
```

Vậy vector riêng trội λ_1 có thể chọn là một trong những giá trị trên, chẳng hạn

$$lambda_1 = y(1)/x(1)$$

lambda_1 =
 9.099019200551631

và vector riêng v_1 lấy bằng

$$v_1 = y/norm(y,2)$$

 $v_1 = 4 \times 1$

- 0.546835467184198
- 0.448297852224490
- 0.448297856476938
- 0.546835477450515

So sánh với giá trị chính xác sử dụng câu lệnh MATLAB

eigVectors(:,4)

ans = 4×1

- 0.546835472317356
- 0.448297854350714
- 0.448297854350714
- 0.546835472317356

2. Trường hợp giá trị riêng trội λ_1 là nghệm bội r của đa thức đặc trưng.

Giả sử $|\lambda_1| = |\lambda_2| = \cdots = |\lambda_r| > |\lambda_{r+1}| \ge \cdots \ge |\lambda_s|$ và $\lambda_1 = \lambda_2 = \cdots = \lambda_s$. Xét vector $v = c_1v_1 + c_2v_2 + \cdots + c_sv_s$ là tổ hợp tuyến tính của các vector riêng.

Ta có

$$A(v) = A\left(\sum_{i=1}^{s} c_i v_i\right) = \sum_{i=1}^{s} c_i A v_i = \sum_{i=1}^{s} c_i \lambda_i v_i.$$

$$A^{2}v = A(Av) = A\left(\sum_{i=1}^{s} c_{i}\lambda_{i}v_{i}\right) = \sum_{i=1}^{s} c_{i}\lambda_{i}Av_{i} = \sum_{i=1}^{s} c_{i}\lambda_{i}^{2}v_{i}.$$

Tiếp tục quá trình như trên

$$A^{k}v = A(A^{k-1}v) = A\left(\sum_{i=1}^{s} c_{i}\lambda_{i}^{k-1}v_{i}\right) = \sum_{i=1}^{s} c_{i}\lambda_{i}^{k-1}Av_{i} = \sum_{i=1}^{s} c_{i}\lambda_{i}^{k}v_{i}.$$

Xét

$$A^{k+1}v = \lambda_1^{k+1} \left(\sum_{i=1}^r c_i v_i + \sum_{i=r+1}^s c_i \frac{\lambda_i^{k+1}}{\lambda_1^{k+1}} v_i \right).$$
 (3)

Do $\lambda_1 > \lambda_k \ \forall k = \overline{r+1}, \overline{s} \ \text{nen}$

$$\lim_{k \to +\infty} \frac{\lambda_i^{k+1}}{\lambda_1^{k+1}} = 0.$$

Do đó từ (3) suy ra với k đủ lớn ta có:

$$A^{k+1}v \approx \lambda_1^{k+1} \left(\sum_{i=1}^r c_i v_i \right) = \lambda_1 \left(\lambda_1^k \sum_{i=1}^r c_i v_i \right) = \lambda_1 A^k \left(\sum_{i=1}^r c_i v_i \right) \approx \lambda_1 (A^k v). \tag{4}$$

Từ (4) theo định nghĩa vector riêng thì $A^k v$ là một vector gần đúng của vector riêng ứng với giá trị riêng λ_1 .

Ngoài ra, giá trị riêng λ_1 có thể tính gần đúng như sau: $\lambda_1 \approx \frac{(A^{k+1}v)(i)}{(A^{k+1}v)(i)}$ với i là một chỉ số bất kỳ $1, 2, 3, \cdots, n$.

Chú ý: Ở đây ta chỉ tìm được một vector riêng ứng với GTR λ_1 .

3. Giá trị riêng trội λ_1 là nghiệm đơn của đa thức đặc trưng và $\lambda_2=-\lambda_1$ là một GTR của A.

Giả sử $|\lambda_1|=|\lambda_2|>|\lambda_3|\geq\cdots\geq |\lambda_s|$ và $\lambda_1=-\lambda_2.$ Tương tự như trên ta có:

$$A^{2k}v = \lambda_1^{2k}c_1v_1 + \lambda_2^{2k}c_2v_2 + \sum_{i=3}^s \lambda_i^{2k}c_iv_i.$$
 (5)

$$A^{2k+1}v = \lambda_1^{2k+1}c_1v_1 - \lambda_2^{2k+1}c_2v_2 + \sum_{i=3}^{s} \lambda_i^{2k+1}c_iv_i.$$
 (6)

$$A^{2k+2}v = \lambda_1^{2k+2}c_1v_1 + \lambda_2^{2k+2}c_2v_2 + \sum_{i=3}^{s} \lambda_i^{2k+2}c_iv_i.$$
 (7)

Do $|\lambda_1| = |\lambda_2|$ trội hơn các GTR khác nên từ (6)-(7) suy ra

$$A^{2k}v \approx \lambda_1^{2k}c_1v_1 + \lambda_2^{2k}c_2v_2.$$
 (8)

$$A^{2k+1}v \approx \lambda_1^{2k+1}c_1v_1 - \lambda_2^{2k+1}c_2v_2. \tag{9}$$

$$A^{2k+2}v \approx \lambda_1^{2k+2}c_1v_1 + \lambda_2^{2k+2}c_2v_2.$$
 (10)

Từ (8) và (10) suy ra

$$A^{2m+2}v \approx \lambda_1^2 A^{2m}v \Rightarrow \lambda_1^2 = \frac{(A^{2m+2}v)(i)}{(A^{2m}v)(i)},$$

với i bất kỳ trong các số $1, 2, 3, \dots, n$. Tiếp theo $\lambda_1 * (8) + (9)$ ta có:

$$\lambda_1 A^{2k} v + A^{2k+1} v \approx 2c_1 \lambda_1^{2k+1} v_1.$$
 (11).

Lại có, từ (11) suy ra

$$A(\lambda_1 A^{2k} v + A^{2k+1} v) \approx A(2c_1 \lambda_1^{2k+1} v_1) = 2c_1 \lambda_1^{2k+1} A v_1 = \lambda_1 (2c_1 \lambda^{2k+1} v_1) \approx \lambda_1 \big(\lambda_1 A^{2k} v + A^{2k+1} v\big).$$

Do đó có thể lấy $\lambda_1 A^{2k} v + A^{2k+1} v$ là vector riêng gần đúng của A ứng với giá trị riêng λ_1 .

Tiếp theo $\lambda_1 * (8) - (9)$ ta có:

$$\lambda_1 A^{2k} v - A^{2k+1} v \approx 2c_2 \lambda_1^{2k+1} v_2.$$
 (12).

Lại có, từ (12) suy ra

$$A(\lambda_1 A^{2k} v - A^{2k+1} v) \approx A(2c_2 \lambda_1^{2k+1} v_2) = 2c_2 \lambda_1^{2k+1} A v_2 = -\lambda_1 (2c_2 \lambda_2^{2k+1} v_2) \approx -\lambda_1 (\lambda_1 A^{2k} v - A^{2k+1} v).$$

Do đó có thể lấy $\lambda_1 A^{2k} v - A^{2k+1} v$ là vector riêng gần đúng của A ứng với giá trị riêng $-\lambda_1$.

Ví dụ 3: Xét ma trận A như sau:

```
clc
A=eigVectors*diag([10,-10,2,1])/eigVectors;
disp(A)
```

```
k=10;
v = [5;-2;1;-3];
x=v;
for i=1:k
    x =A*x;
    y=A*x;
    z=A*y;
    if i==k,break,end
end
disp(['A^',num2str(k),'v',' la'])
```

A^10v la

```
disp(x)
```

```
1.0e+10 *
```

- 3.530970692162448
- 0.405224000740662
- -1.983862743942811
- -2.236796489384589

```
disp(['A^',num2str(k+1),'v',' la'])
```

A^11v la

```
disp(y)
```

```
1.0e+11 *
     2.236796397991143
     1.983862964711653
    -0.405224221445853
    -3.530970600691362
  disp(['A^',num2str(k+2),'v',' la'])
  A^12v la
  disp(z)
     1.0e+12 *
     3.530970582408791
     0.405224265596438
    -1.983863008855873
    -2.236796379700809
  disp(z./x)
     1.0e+02 *
     0.999999968916860
     1.000000653603379
     1.000000133533967
     0.999999950963898
Có thể lấy giá trị riêng trội \lambda_1 là
  lambda_1 = sqrt(z(1)/x(1))
  lambda_1 =
     9.999999844584298
Có thể lấy giá trị riêng trội \lambda_2 là
  lambda_2 = -sqrt(z(1)/x(1))
  lambda 2 =
    -9.999999844584298
Vector riêng ứng v_1 với giá trị riêng \lambda_1 là
  v_1 = lambda_1*x+y;
  v_1 = v_1/norm(v_1)
  v_1 = 4 \times 1
     0.653281496837517
     0.270598013963744
    -0.270598011177651
    -0.653281499106863
Vector riêng v_2 ứng với giá trị riêng \lambda_2 là
  v_2 = lambda_1*x-y;
  v_2 = v_2/norm(v_2)
  v_2 = 4 \times 1
```

0.448297870508028

- -0.546835555201823
- -0.546835389414842
- 0.448297838215399

So sánh với giá trị tính bằng câu lệnh MATLAB

[eigVectors, eigValues]=eig(A); disp(eigValues)

0	0	0	-9.9999999999999
0	0	10.0000000000000012	0
0	0.99999999999998	0	0
2.00000000000000001	0	0	0

disp(eigVectors)

```
0.448297854350714
                   -0.653281482438188
                                        -0.546835472317355
                                                            -0.270598050073099
-0.546835472317357
                   -0.270598050073098
                                       -0.448297854350715
                                                             0.653281482438188
-0.546835472317356
                    0.270598050073098
                                       -0.448297854350713
                                                           -0.653281482438189
0.448297854350714
                    0.653281482438188
                                       -0.546835472317357
                                                             0.270598050073098
```

4. Giá trị riêng trội λ_1 là nghiệm đơn của đa thức đặc trưng và $\lambda_2=\overline{\lambda_1}$ là một GTR của A.

Tương tự như trên ta có:

$$A^k v \approx c_1 \lambda_1^k v_1 + c_2 \lambda_2^k v_2. \tag{13}.$$

$$A^{k+1}v \approx c_1 \lambda_1^{k+1} v_1 + c_2 \lambda_2^{k+1} v_2. \tag{14}$$

$$A^{k+2}v \approx c_1 \lambda_1^{k+2} v_1 + c_2 \lambda_2^{k+2} v_2. \tag{15}$$

Xét

$$(15) - (\lambda_1 + \lambda_2)(14) + \lambda_1\lambda_2(13)$$
.

$$VT = A^{k+2}v - (\lambda_1 + \lambda_2)A^{k+1}v + \lambda_1\lambda_2A^kv.$$

$$VP = (c_1\lambda_1^{k+2}v_1 + c_2\lambda_2^{k+2}v_2) - (\lambda_1 + \lambda_2)(c_1\lambda_1^{k+1}v_1 + c_2\lambda_2^{k+1}v_2) + \lambda_1\lambda_2(c_1\lambda_1^{k}v_1 + c_2\lambda_2^{k}v_2) = 0.$$

Do đó

$$A^{k+2}v - (\lambda_1 + \lambda_2)A^{k+1}v + \lambda_1\lambda_2A^kv = 0.$$

Nếu tìm được hai số p và q sao cho

$$A^{k+2}v + pA^{k+1}v + qA^kv = 0$$

thì $\lambda_1 + \lambda_2 = -p$ và $\lambda_1 \lambda_2 = q$ hay λ_1 , λ_2 là nghiệm của phương trình $z^2 + pz + q = 0$. Ta tìm p và q bằng cách lấy hai chỉ số r và s nào đó và thành lập hệ phương trình

$$\begin{cases} (A^{k+2}v)(r) + p(A^{k+1}v)(r) + q(A^kv)(r) = 0\\ (A^{k+2}v)(s + p(A^{k+1}v)(s) + q(A^kv)(s) = 0. \end{cases}$$

Giải hệ này ta sẽ tìm được p và q. Kết hợp với phương trình $z^2 + pz + q = 0$ ta thành lập hệ

$$z^{2} + pz + q = 0 \\ (A^{k+2}v)(r) + p(A^{k+1}v)(r) + q(A^{k}v)(r) = 0 \Leftrightarrow \begin{pmatrix} z^{2} \\ A^{k+2}v)(r) \\ (A^{k+2}v)(s) + p(A^{k+1}v)(s) + q(A^{k}v)(s) = 0. \end{pmatrix} + p \begin{pmatrix} z \\ (A^{k+1}v)(r) \\ (A^{k+1}v)(s) \end{pmatrix} + q \begin{pmatrix} 1 \\ (A^{k}v)(r) \\ (A^{k}v)(s) \end{pmatrix} = 0 \Leftrightarrow \det \begin{vmatrix} z^{2} & z & 1 \\ (A^{k+2}v)(r) & (A^{k+1}v)(r) & (A^{k}v)(r) \\ (A^{k+2}v)(s) & (A^{k+1}v)(s) & (A^{k+1}v)(s) \end{vmatrix} = 0 \Leftrightarrow \det \begin{vmatrix} z^{2} & z & 1 \\ (A^{k+2}v)(r) & (A^{k+1}v)(r) & (A^{k}v)(r) \\ (A^{k+2}v)(s) & (A^{k+1}v)(s) & (A^{k+1}v)(s) \end{vmatrix} = 0$$

Để tìm vector riêng ta làm như sau:

Xét $(14) - \lambda_1(13)$ và $(14) - \lambda_2(13)$, ta có:

$$A^{k+1}v - \lambda_1 A^k v \approx c_2 \lambda_2^k (\lambda_2 - \lambda_1) v_2,$$

$$A^{k+1}v - \lambda_2 A^k v \approx c_1 \lambda_1^k (\lambda_1 - \lambda_2) v_1.$$

Do đó

$$A(A^{k+1}v - \lambda_1 A^k v) \approx c_2 \lambda_2^k (\lambda_2 - \lambda_1) A v_2 = \lambda_2 (c_2 \lambda_2^k (\lambda_2 - \lambda_1) v_2) \approx \lambda_2 A(A^{k+1}v - \lambda_1 A^k v),$$

$$A(A^{k+1}v - \lambda_2 A^k v) \approx c_1 \lambda_1^k (\lambda_1 - \lambda_2) A v_1 = \lambda_1 (c_1 \lambda_1^k (\lambda_1 - \lambda_2) v_1) \approx \lambda_1 (A^{k+1}v - \lambda_2 A^k v).$$

Có thể chọn $v_1 = A^{k+1}v - \lambda_2 A^k v$ là vector riêng gần đúng ứng với λ_1 và $v_2 = A^{k+1}v - \lambda_1 A^k v$ là vector riêng gần đúng ứng với λ_2 .

Ví du 4:

```
clc
clear i
A=[-2 1 1 1;-7 -5 -2 -1;0 -1 -3 -2;-1 0 -1 0];
disp(A)

-2  1  1  1  1
-7  -5  -2  -1
0  -1  -3  -2
-1  0  -1  0
```

```
k=10;
v = [5;-2;1;-3];
x=v;
for i=1:k
    x =A*x;
    y=A*x;
    z=A*y;
    if i==k,break,end
end
disp(['A^',num2str(k),'v',' la'])
```

A^10v la

```
disp(x)
```

```
10659267
    -43270058
    -10631955
        11313
  disp(['A^',num2str(k+1),'v',' la'])
  A^11v la
  disp(y)
    -75209234
    162988018
     75143297
       -27312
  disp(['A^',num2str(k+2),'v',' la'])
  A^12v la
  disp(z)
    388522471
    -438734734
   -388363285
        65937
  syms t
  B=[t^2 t 1;
      z(1) y(1) x(1);
      z(2) y(2) x(2)];
  disp(B)
                    t
   388522471 -75209234 10659267
   -438734734 162988018 -43270058J
 g = det(B);
 disp(g)
  1516975115652766 t^2 + 12134799182593340 t + 30327604223418722
Hai gia trị riêng trội liên hợp là
   s= double(solve(g))
  s = 2 \times 1 complex
  -3.999669822326533 - 1.998699080206798i
  -3.999669822326533 + 1.998699080206798i
   lambda_1 = s(1);
   lambda_2=s(2);
   v_1 = y-lambda_2*x;
   v_1 = v_1/norm(v_1, 2);
   v_2 = y-lambda_1*x;
```

```
v_2 = v_2/norm(v_2,2);
disp('v_1=')
v 1=
disp(v_1)
-0.316229361192943 - 0.206815641462244i
-0.097831755008307 + 0.839544107618141i
0.316649716374285 + 0.206285722397489i
0.000174116782182 - 0.000219499647758i
disp('v_2=')
v_2=
disp(v_2)
-0.316229361192943 + 0.206815641462244i
-0.097831755008307 - 0.839544107618141i
0.316649716374285 - 0.206285722397489i
0.000174116782182 + 0.000219499647758i
[eigVectors, eigValues]=eig(A);
disp(eigValues)
0.414213562373095 + 0.00000000000000000
                  0.00000000000000 + 0.000000000000000 i -3.999999999997 - 2.000000000000
0.000000000000000 + 0.0000000000000000i
                  disp(eigVectors)
```

Code MATLAB cho phương pháp lũy thừa tìm giá trị riêng trội

```
tol =1e-10;
M=20;
%tol là giá tri điều chỉnh
%M số lần lặp nhiều nhất cho phép
%example1
                                       8;
T = [10
            9
                 10;
                         10
                                               5
                                                           10];
%A= T*diag([11,-11, 2])*inv(T);
%example2
A=[-2\ 1\ 1\ 1;-7\ -5\ -2\ -1;\ 0\ -1\ -3\ -2;\ -1\ 0\ -1\ 0];
%example3
% A=[2 3 2;4 3 5;3 2 9]
%tol =1e-3;
n = size(A,1);
```

```
x = ones(n,1);
m = 1;
check = false;
lambda = [];
v = zeros(n,0);
% truong hop 1 gtr troi
y1 = x;
while check == false && (m <= M)</pre>
    y1 = A*y1;
    y2 = A*y1;
    m=m+1;
    check = KTsongsong(y1,y2,tol);
end
if check == true
    lambda = [lambda; mean(y2(y2\sim=0)./y1(y1\sim=0))];
   v1 = y1./norm(y1,2);
    V = [V, V1];
    return
end
%truong hop 2 nghiem doi nhau
if check == false
    m = 1;
    y1 = x;
    while check ==false && (m <= M)</pre>
        y1 = A*y1;
        y2 = A*y1;
        y3 = A*y2;
       m=m+1;
        check = KTsongsong(y1,y2,tol);
    end
if check == true
    lambda1 = sqrt(mean(y3(y3~=0)./y1(y1~=0)));
    lambda = [lambda;lambda1;-lambda1];
    v1 = y2 + lambda1*y1;
    v1 = v1/norm(v1,2);
    v2 = y2-lambda1*y1;
    v2 = v2./norm(v2,2);
    v=[v,v1,v2];
    return
end
end
%truong hop 2 nghiem phuc lien hop
if check == false
     y1 = ((A^{(2*m+2)})*x);
     y2 = ((A^{(2*m)})*x);
     y3 = ((A^{(2*m+1)})*x);
    index = find(y1\sim=0);
    r = index(1);
    s = index(2);
end
```

- -4.000000000000131 2.000000000005039i
- -4.000000000000131 + 2.000000000005039i

disp(v)

```
-0.422983016352157 + 0.220905159604306i -0.422983016352157 - 0.220905159604306i 0.648896696371944 - 0.351433683804697i 0.422983016352791 - 0.220905159604659i 0.000000000000262 - 0.0000000000000146i 0.00000000000262 + 0.00000000000000146i
```

PHƯƠNG PHÁP XUỐNG THANG TÌM GIÁ TRỊ RIÊNG TRỘI TIẾP THEO

1. Ma trận xuống thang $\theta(v,i)$

Cho ma trận $A=(a_{ij})_{n\times n}$ có các giá trị riêng $\lambda_1,\lambda_2,\cdots$ và các vector riêng tương ứng v_1,v_2,\cdots . Không mất tính tổng quát giả sử các giá trị riêng được sắp xếp theo thứ tự độ lớn giảm dần

$$|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_s|$$
.

Giả sử ta đã tìm được giá trị riêng và vector riêng trội λ_1 và ν_1 (dùng phương pháp lũy thừa). Do $\nu_1 \neq 0$ nên bằng cách chia các tọa độ cho thành phần có mô đun lớn nhất của ν_1 có thể coi

 $v_1 = (v_1(1), v_1(2), \dots, 1, \dots, v_1(n))^T$ trong đó số 1 nằm ở vị trí thứ i. Thành lập ma trân

$$\theta(v_{1}, i) = \begin{pmatrix} \mathscr{E}_{1}, \mathscr{E}_{2}, \cdots, \mathscr{E}_{i-1}, \mathscr{E}_{i} - v_{1}, \mathscr{E}_{i+1}, \cdots, \mathscr{E}_{n} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \cdots & -v_{1}(1) & 0 & \cdots & 0 \\ 0 & 1 & \cdots & -v_{1}(2) & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & -v_{1}(n) & 0 & \cdots & 0 \end{pmatrix}.$$

Xét vector $z = (z(1) \ z(2) \ \cdots \ z(n))^T$ bất kỳ. Ta có

$$\theta(v_1,i)z = \begin{pmatrix} 1 & 0 & \cdots & -v_1(1) & 0 & \cdots & 0 \\ 0 & 1 & \cdots & -v_1(2) & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & -v_1(n) & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} z(1) \\ z(2) \\ \cdots \\ z(i) \\ \cdots \\ z(n) \end{pmatrix} = \begin{pmatrix} z(1) - v_1(1)z(i) \\ z(2) - v_1(2)z(i) \\ \cdots \\ z(i) \\ \cdots \\ z(n) - v_1(n)z(i) \end{pmatrix} = z - z(i)v_1.$$

Đặc biệt, nếu $z = v_1$ thì

$$\theta(v_1, i)v_1 = v_1 - v_1(i)v_1 = v_1 - 1 * v_1 = 0.$$

Ví dụ 1. Cho ma trận

```
A=[1 2 3 4;2 1 2 3;3 2 1 2;4 3 2 1]
```

[eigVectors,eigValues] = eig(A)

```
eigVectors = 4 \times 4
 0.653281482438188 -0.448297854350714 0.270598050073098
                                         0.546835472317356
 -0.653281482438188 -0.448297854350714 -0.270598050073099
                                         0.546835472317356
eigValues = 4 \times 4
 -3.414213562373095
                                                   0
            0 -1.099019513592785
                                                   0
            0
                         0 -0.585786437626905
                                                   0
            0
                                         9.099019513592784
```

```
lambda_1 = eigValues(4,4);
disp('Giá trị riêng trội')
```

Giá trị riêng trội

```
disp(lambda_1)
```

9.099019513592784

```
disp('Vector riêng v_1')
```

Vector riêng v_1

```
v_1 = eigVectors(:,4);v_2 = eigVectors(:,1);v_3 = eigVectors(:,2);v_4 =
eigVectors(:,3);
disp(v_1);
```

- 0.546835472317356
- 0.448297854350714
- 0.448297854350714
- 0.546835472317356

```
[~,i] = max(abs(v_1))

i =
    4

theta_1 = eye(size(A));
v_1 = v 1/v 1(i);
```

Ma trận xuống thang

theta_1(:,i) = theta_1(:,i)-v_1;

disp('Ma trận xuống thang')

```
disp(theta_1)
```

```
theta_1*v_1
```

```
ans = 4×1
0
0
0
```

2. Ma trận sau khi xuống thang $A^1 = \theta(v_1, i)A$.

Giống phần trên, giả sử ta đã tìm được giá trị riêng và vector riêng trội λ_1 và v_1 (dùng phương pháp lũy thừa). Đặt $A^1 = \theta(v_1, i)A$. Dễ thấy

$$A^{1} = A_{1}(\mathcal{A}_{1} \mathcal{A}_{2} \cdots \mathcal{A}_{n})$$

$$= (\mathcal{A}_{1} - \mathcal{A}_{1}(i)v_{1} A_{2} - \mathcal{A}_{2}(i)v_{1} \cdots A_{n} - \mathcal{A}_{n}(i)v_{1})$$

$$= A - v_{1}A_{i}.$$

Nhắc lại ta kí hiệu \mathcal{A}_i là cột thứ i của ma trận A, và A_i là dòng thứ i của ma trận A.

Tiếp theo, ta xét

$$A^{1}v_{1} = \theta(v_{1}, i)Av_{1} = \theta(v_{1}, i)\lambda_{1}v_{1} = \lambda_{1}\theta(v_{1}, i)v_{1} = 0 = 0v_{1}.$$

Suy ra v_1 là vector riêng của A^1 ứng với giá trị riêng 0. Lại có

$$A^{1}\theta(v_{1}, i)v_{k} = A^{1}(v_{k} - v_{2}(i)v_{1}) = A_{1}v_{k} - v_{k}(i)A^{1}v_{1} = \theta(v_{1}, i)Av_{k} - v_{k}(i)\theta(v_{1}, i)Av_{1}$$

$$= \theta(v_{1}, i)\lambda_{k}v_{k} - v_{k}(i)\theta(v_{1}, i)\lambda_{1}v_{1} = \lambda_{k}\theta(v_{1}, i)v_{k} - v_{k}(i)\lambda_{k}\theta(v_{1}, i)v_{1} = \lambda_{k}\theta(v_{1}, i)v_{k}, \forall k = 2, 3, \cdots.$$

Từ đẳng thức trên ta thấy $\theta(v_1, i)v_k$ chính là vector riêng của ma trận A^1 ứng với giá trị riêng λ_k . Tóm lại, ma trận A^1 có các giá trị riêng là $0, \lambda_2, \lambda_3, \cdots$ và các vector riêng tương ứng là $v_1, \theta(v_1, i)v_2, \theta(v_1, i)v_3, \cdots$.

Tiếp theo dùng phương pháp lũy thừa để tìm giá trị riêng và vector riêng trội cho ma trận A^1 . Quá trình này có thể lặp đến n-1 lần để tìm hết các giá trị riêng và vector riêng.

Trong quá trình xuống thang thì giá trị riêng của ma trận A không thay đổi nhưng vector riêng tương ứng sẽ thay đổi. Việc tìm ra VTR v_2 của ma trận A từ VTR w_2 của ma trận A^1 sẽ khó khăn.

Ví du 2. Ma trân sau khi xuống thang của A ở ví du 1.

8.387603857165166 4.486360491807390 2.125917206146348

```
A1 = theta 1*A;
 disp('Ma trận sau khi xuống thang')
 Ma trận sau khi xuống thang
 disp(A1)
   1.0000000000000001
                                                              3.0000000000000000
   -1.279215610874227
                                           0.360392194562887
                                                              2.180196097281443
                      -1.459411708155670
   -0.279215610874227
                      -0.459411708155670
                                          -0.639607805437113
                                                              1.180196097281443
                                                                             0
 disp('Các giá trị riêng và vector riêng của A1 là')
 Các giá trị riêng và vector riêng của A1 là
  [eigVectors,eigValues] = eig(A1)
 eigVectors = 4 \times 4
    0.838642421086450
                       0.485056825163434
                                           0.000000000000000
                                                              0.546835472317356
    0.517449697293714
                      -0.386689643760970
                                           0.707106781186548
                                                              0.448297854350715
    0.170072632498297
                       0.784341122070228
                                           0.707106781186547
                                                              0.448297854350715
                                                              0.546835472317355
 eigValues = 4 \times 4
                                       0
                                                                             0
   -3.414213562373092
                                                          0
                                                                             0
                      -0.585786437626905
                                                          0
                    0
                    0
                                         -1.099019513592784
                                                                             0
                                       0
                    0
                                       0
                                                                             0
Code MATLAB
 clc
 clear all
 tol = 1e-5;
 A = [4]
              2
                     2; 2
                                5
                                       1; 2
                                                 1
                                                        6]
 A = 3 \times 3
                  2
            2
      4
      2
            5
                  1
      2
            1
 v = eigvalues(A,tol) % lấy ra các giá trị riêng của ma trận A
 v = 3 \times 1
```

4. Ma trận xuống thang dựa vào A^T .

Tiếp theo đây ta sẽ xây dựng một phương pháp xuống thang giữ nguyên được các giá trị riêng và vector riêng.

Giả sử ta có λ_1 là giá trị riêng trội của ma trận A. Do A và A^T có cùng tập các giá trị riêng $(\det(A - tE) = \det(A - tE)^T = \det(A^T - tE))$. Gọi w_1 là vector riêng tương ứng giá trị riêng λ_1 của A^T . Xét ma trận

$$A^{1} = A - \frac{\lambda_{1}}{w_{1}^{T} v_{1}} v_{1} w_{1}^{T}.$$

Ta có

$$A^{1}v_{1} = Av_{1} - \frac{\lambda_{1}}{w_{1}^{T}v_{1}}v_{1}w_{1}^{T}v_{1} = Av_{1} - \frac{\lambda_{1}}{w_{1}^{T}v_{1}}v_{1}(w_{1}^{T}v_{1}) = Av_{1} - \lambda_{1}v_{1} = 0.$$

Ngoài ra còn có, từ điều kiện

$$A^{T}w_{1} = \lambda_{1}w_{1} \Rightarrow w_{1}^{T}Av_{k} = \lambda_{1}w_{1}^{T}v_{k} \Rightarrow w_{1}^{T}\lambda_{k}v_{k} = \lambda_{1}w_{1}^{T}v_{k}$$

$$\Rightarrow (\lambda_{k} - \lambda_{1})w_{1}^{T}v_{k} = 0 \Rightarrow w_{1}^{T}v_{k} = 0, \forall \lambda_{k} \neq \lambda_{1}.$$

Do đó

$$A^{1}v_{k} = Av_{k} - \frac{\lambda_{1}}{w_{1}^{T}v_{1}}v_{1}w_{1}^{T}v_{k} = Av_{k} - \frac{\lambda_{1}}{w_{1}^{T}v_{k}}v_{1}(w_{1}^{T}v_{k}) = Av_{k} = \lambda_{k}v_{k}, \forall k \neq 1.$$

Do đó A^1 có các giá trị riêng là $0, \lambda_2, \lambda_3, \cdots$ và các vector riêng tương ứng là v_1, v_2, v_3, \cdots .

Code MATLAB

$$A = \begin{bmatrix} 4 & 5 & 2; 2 & 5 & 1; 2 & 1 & 6 \end{bmatrix}$$
 $A = 3 \times 3$

```
-0.673812763418024
                      -0.878471293213417
                                            -0.362477992929097
  -0.463602138030256
                        0.384229384469249
                                            -0.388553435007200
  -0.575368940305906
                        0.283999942095644
                                             0.847133952091521
Y = 3 \times 3
   9.147941325966132
                                                              0
                        1.166501824513442
                                                              0
                    0
                                             4.685556849520423
```

```
tol = 1e-5; %tham số điều chỉnh
M=50;%số lần lặp tối đa
n = size(A,1);
```

```
for i=1:n
    [lambda_1,v_1] = powerMethod(A,tol,M);
    [~,w 1] = powerMethod(A',tol,M);
    A = A-lambda_1*v_1*w_1'/(w_1'*v_1);
    fprintf('Giá tri riêng thứ %d là %8.7f\n',i,lambda_1)
    fprintf('Vector riêng thứ %d là\n %8.7f\n %8.7f\n %8.7f\n',i,v_1)
end
Giá trị riêng thứ 1 là 9.1479432
Vector riêng thứ 1 là
0.6738180
0.4636075
0.5753585
Giá trị riêng thứ 2 là 4.6855732
Vector riêng thứ 2 là
0.3624971
0.3885751
-0.8471158
Giá trị riêng thứ 3 là 1.1665018
Vector riêng thứ 3 là
-0.8784714
```

5. Phụ lục các hàm con

0.3842117
0.2840235

```
function [v] = eigvalues(A,tol)
% sử dụng phương pháp lũy thừa và xuống thang để tìm các
% giá trị riêng của A
if nargin ==1
    tol = 1e-5;
end
        v = zeros(0,1);
        theta = eye(size(A,1));
        while length(v) < size(A,1)</pre>
            [vtr,vectr] = powerMethod(A,tol);
            if size(vectr, 2)==1
                A = XuongThang(A, vectr);
            else
                 [A,theta] = XuongThang(A, vectr(:,1));
                 [A,~] = XuongThang(A, theta*vectr(:,2));
              end
            v=[v;vtr(:)];
        end
end
function [lambda, v] = powerMethod(A,tol,M)
if nargin ==1
    tol =1e-10;
    M=200;
end
if nargin ==2
    M=200;
end
```

```
%tol là giá tr? ?i?u ch?nh
%M s? 1?n 1?p nhi?u nh?t cho phép
%example1
%T = [10
          9 10;
                         10
                              2
                                     8; 5 5
                                                         10];
%A= T*diag([11,-11, 2])*inv(T);
%example2
A=[-2\ 1\ 1\ 1;-7\ -5\ -2\ -1;\ 0\ -1\ -3\ -2;\ -1\ 0\ -1\ 0];
%example3
% A=[2 3 2;4 3 5;3 2 9]
%tol =1e-3;
n = size(A,1);
x = ones(n,1);
m = 1;
check = false;
lambda = [];
v = zeros(n,0);
% truong hop 1 gtr troi
y1 = x;
while check == false && (m <= M)
    y1 = A*y1;
    y2 = A*y1;
    m = m+1;
    check = KTsongsong(y1,y2,tol);
end
if check == true
    index1 = y2\sim=0;
    index2=y1\sim=0;
    index = index1&index2;
    lambda = [lambda; mean(y2(index)./y1(index))];
   v1 = y1./norm(y1,2);
    V = [V, V1];
    return
end
%truong hop 2 nghiem doi nhau
if check == false
    m = 1;
    y1 = x;
    while check ==false && (m <= M)</pre>
        y1 = A*y1;
        y2 = A*y1;
        y3 = A*y2;
       m=m+1;
        check = KTsongsong(y1,y2,tol);
    end
if check == true
    index1 = y3\sim=0;
    index2=y1\sim=0;
    index = index1&index2;
    lambda1 = sqrt(mean(y3(index)./y1(index)));
```

```
lambda = [lambda;lambda1;-lambda1];
   v1 = y2+lambda1*y1;
   v1 = v1/norm(v1,2);
   v2 = y2-lambda1*y1;
   v2 = v2./norm(v2,2);
   v=[v,v1,v2];
    return
end
end
%truong hop 2 nghiem phuc lien hop
if check == false
    y1 = ((A^{(2*m+2)})*x);
    y2 = ((A^{(2*m)})*x);
    y3 = ((A^{(2*m+1)})*x);
    index = find(y1\sim=0);
    r = index(1);
   s = index(2);
end
   syms z
    p = det([1, y2(r), y2(s);...
         z, y3(r), y3(s); z^2 y1(r) y1(s);
   lambda = double(solve(p,z));
   v1 = y3-lambda(2)*y1;
   v1 = v1/norm(v1,2);
   v2 = y3-lambda(1)*y1;
   v2 = v2/norm(v2,2);
   v = [v1, v2];
end
function check = KTsongsong(u,v,tol)
   norm(v,2), 2) <= tol);
end
function [A1, theta] = XuongThang(A,v)
%tra ra ma tran A1 da xuong thang
%và ma trận để xuống thang theta
[\sim,i] = \max(abs(v));
v = v/v(i);
n = size(A);
theta = eye(n);
theta(:,i) = theta(:,i) - v;
A1 = theta*A;
end
```