Application of Machine Learning in Raw Material Classification

Using Hyperspectral Data and ML Algorithms for Mineral Resource Mapping

Alberto Anelli

IUSS Pavia

29/01/2025

Study Area and Topics of Interest [1]

Study Area: Sardinia

Focus on Minerals: Cobalt and Others

- Cobalt:
 - Importance in battery industry and green technology
- Other Minerals:
 - Copper, gold, lithium, etc.

Traditional Methods vs. Machine Learning [2]

• Traditional Methods:

- Linear Spectral Mixture Analysis, Principal Components Analysis, Fractional Abundance Maps
- Limited accuracy and processing time

• Machine Learning:

- Automated classification
- Higher accuracy and ability to handle large datasets
- Identification of complex patterns not evident manually

Mapping Process:

- Data preprocessing
- Model training and validation
- Generation of mineral maps

Hyperspectral Data and Machine Learning Algorithms [3][4][5]

Classical Algorithms:

- Spectral Unmixing:
 - Regression problem
 - Model interpretability

ML Algorithms (Supervised Classification):

- Random Forest:
 - Ideal for large datasets
 - High precision
 - Black-box model
- K-Nearest Neighbors (KNN):
 - Suitable for smaller datasets
 - Better explainability

Regression problem on continuous percentages

- Small datasets
- Model simplicity
- Careful parameter selection
- Suitable for accelerating analysis without losing in precision

Thesis Work Contribution

Work:

 Application of ML techniques to mineral mapping, studying a regression problem on continuous percentages

Expected Added Value:

- Improved accuracy over traditional methods
- Identification of the significant parameters

Impact on Raw Materials Project:

- Decision-making support for specific themes
- Facilitation of sustainable resource management

Future Developments

Next Steps:

- Implementation and testing of the proposed model
- Development of practical applications

Thanks for your attention Questions?

References I

- European Commission. Critical Raw Materials Act. https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials/critical-raw-materials-act_en
- Valentini, E., et al. (2023). Hyperspectral Mixture Models in the CHIME Mission Implementation for Topsoil Texture Retrieval. *Journal of Geophysical Research: Biogeosciences*, 128. https://doi.org/10.1029/2022JG007272
- Schodlok, M. C., et al. (2022). Implications of New Hyperspectral Satellites for Raw Materials Exploration. *Mineral Economics*, 35, 495–502. https://doi.org/10.1007/s13563-022-00327-1
 - Lobo, A., et al. (2021). Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor Conditions. *Remote Sens.*, 13, 3258. https://doi.org/10.3390/rs13163258

References II

Ghamisi, P., et al. (2021). The Potential of Machine Learning for a More Responsible Sourcing of Critical Raw Materials. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 14, 8971. https://doi.org/10.1109/JSTARS.2021.3108049