Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio
Lez. 24: Esercitazione Matlab®

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2020-2021

In questa lezione

- ▷ Esempio: controllo di un segway
- ▶ Alcune funzioni utili di Matlab[®]
- $\, \triangleright \, \mathsf{Implementazione} \, \, \mathsf{in} \, \, \mathsf{Matlab}^{\circledR}$

Segway, a.k.a. pendolo su carrello

 $\phi = {\rm posizione~angolare~pendolo}$

s = posizione carrello

M = massa carrello

m = massa pendolo

 $\ell=$ distanza dal baricentro pendolo a cerniera

J = momento inerzia pendolo rispetto al baricentro

u = forza esterna

$$M \gg m \implies M\ddot{s} = u$$

$$x=(x_1,x_2)=(\phi,\dot{\phi})$$

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = \frac{g}{\rho'} \sin(x_1) - \frac{1}{M\rho'} u \cos(x_1) \end{cases}$$

$$\ell' = \frac{J + m\ell^2}{m\ell}$$

G. Baggio

Lez. 24: Esercitazione Matlab

16 Aprile 2021 3 / 7

Segway linearizzato attorno a $\bar{x} = (0,0)$

 $\phi = {\rm posizione~angolare~pendolo}$

s = posizione carrello

M = massa carrello

m = massa pendolo

 $\ell=$ distanza dal baricentro pendolo a cerniera

J = momento inerzia pendolo rispetto al baricentro

u = forza esterna

$$\bar{x} = (0,0), \ u(\cdot) = 0$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \phi \\ \dot{\phi} \end{bmatrix}$$

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 1 \\ \frac{g}{\ell'} & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ -\frac{1}{M\ell'} \end{bmatrix} u & \overline{x} = (0,0) \text{ instabile} \end{cases}$$

$$x = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

G. Baggio

Lez. 24: Esercitazione Matlab

16 Aprile 2021 4 / 7

-	

Progettazione di un regolatore stabilizzante

Calcolo controllore (matrice K) e stimatore (matrice L) in Matlab[®]

G. Baggio

Lez. 24: Esercitazione Matlab

16 Aprile 2021

Algebra lineare e matrici: funzioni utili

- eig(F): autovalori F [T,D] = eig(F): autovalori (matrice diagonale D) e autovettori (matrice T) di F
- jordan(F): forma di Jordan di F [T,J] = jordan(F): forma di Jordan (matrice J) e cambio base (matrice T) di F
- rank(F): rango di F
- det(F): determinante di F
- expm(F): esponenziale di matrice di F (e^F)
- orth(F): base (ortonormale) di im(F)
- null(F): base (ortonormale) di ker(F)

Control System Toolbox: funzioni utili • sys = ss(F,G,H,J): sistema in spazio di stato con matrici (F,G,H,J) (t.c.) sys = ss(F,G,H,J,-1): sistema in spazio di stato con matrici (F,G,H,J) (t.d.)

	. ,	- () ·) ·) · (· · ·)	
	P. C		
• ti(sys): funzione	di trasferimento del sistema sys		
• K = place(F,G,p)): matrice di retroazione K tale che F-GK	ha autovalori in p	
(N.B. se p contiend	e autovalori multipli usare K = acker(F,0	G,p))	
$\bullet R = ctrh(eve) \cdot m$	natrice di raggiungibilità R di sys		
0 = obsv(sys): m	natrice di raggiungibilità il di sys natrice di osservabilità 0 di sys		
	evoluzione libera dell'uscita di sys con c		
ISIM(Sys,u,I,XO	 evoluzione dell'uscita di sys con condiz e ingresso u per tempi nel vettore T 	ione iniziale xu	
G. Baggio	Lez. 24: Esercitazione Matlab	16 Aprile 2021 7 / 7	