MA2001 LINEAR ALGEBRA

Linear Transformation

National University of Singapore Department of Mathematics

Linear Transformations from \mathbb{R}^n to \mathbb{R}^m	2
Definition	
Examples	
Linearity	
Representation	
Change of Bases	
Composition	
Ranges and Kernels	39
Range of Function	
Range of Linear Transformation	
Representation of Range	
Kernel of Linear Transformation	
Representation of Kernel	
Properties	61
Geometric Linear Transformations	63
Introduction	
Scalings	
Reflection	
Rotations	
Shears	
Translations	
2D Computer Graphic	94

Definition

• Recall that a linear equation has the form:

$$\circ \ a_1x_1 + a_2x_2 + \dots + a_nx_n = b,$$

 a_1, \ldots, a_n, b are constants, x_1, \ldots, x_n are variables.

• **Definition.** We say the mapping $f: \mathbb{R}^n \to \mathbb{R}$ defined by

$$\circ$$
 $f(x_1, x_2, \dots, x_n) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$

a linear transformation from \mathbb{R}^n to \mathbb{R} .

It can be viewed as the matrix form:

$$\circ f\left(\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}\right) = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

• In this chapter, all vectors are viewed as column vectors.

3 / 99

Definition

Recall that a linear system has the form:

$$\circ \begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots & \vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$

where a_{ij}, b_i are constants and x_1, \ldots, x_n are variables.

ullet Definition. We say the mapping $T:\mathbb{R}^n o \mathbb{R}^m$ defined by

$$\circ \quad T \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}$$

a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

o T is called a **linear operator** on \mathbb{R}^n if m=n.

Definition

• Recall that a linear system has the form:

$$\circ \begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots & \vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$

where a_{ij}, b_i are constants and x_1, \ldots, x_n are variables.

• A linear transformation is viewed as the matrix form:

$$\circ T \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

- $\circ T: \mathbb{R}^n \to \mathbb{R}^m$ such that T(x) = Ax, for $x \in \mathbb{R}^n$.
 - $A = (a_{ij})_{m \times n}$ is the standard matrix for T.

5/99

Examples

- **Definition.** Let $I: \mathbb{R}^n \to \mathbb{R}^n$ be the **linear transformation**
 - $\circ \quad I(oldsymbol{x}) = oldsymbol{x} \quad ext{for } oldsymbol{x} \in \mathbb{R}^n.$

It is called the **identity transformation**.

- It is the identity operator on \mathbb{R}^n .
- $\circ I(x) = x = I_n x \Rightarrow I_n$ is the standard matrix for I.
- **Definition.** Let $O: \mathbb{R}^n \to \mathbb{R}^m$ be the **linear transformation**
 - \circ $O(\boldsymbol{x}) = \boldsymbol{0}$ for $\boldsymbol{x} \in \mathbb{R}^n$.

It is called the zero transformation.

- o $O(x) = 0 = \mathbf{0}_{m \times n} \mathbf{0} \Rightarrow \mathbf{0}_{m \times n}$ is the standard matrix.
- Given a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$.
 - o Is the standard matrix unique?

- Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that
 - $\circ \quad T(x) = Ax = Bx \quad \text{for all } x \in \mathbb{R}^n.$
 - ullet For all $oldsymbol{x} \in \mathbb{R}^n$, $egin{array}{c} 0 = oldsymbol{A} oldsymbol{x} oldsymbol{B} oldsymbol{x} = (oldsymbol{A} oldsymbol{B}) oldsymbol{x}.$
 - Nullspace of A B is \mathbb{R}^n .
 - $\operatorname{nullity}(\boldsymbol{A} \boldsymbol{B}) = \dim \mathbb{R}^n = n.$
 - $rank(\mathbf{A} \mathbf{B}) = n nullity(\mathbf{A} \mathbf{B}) = n n = 0.$
 - $\therefore A B = 0$; or equivalently, A = B.
 - Alternatively: $Ae_1 = Be_1, \ldots, Ae_n = Be_n$.

$$oldsymbol{A} = ig(oldsymbol{A}oldsymbol{e}_1 \quad \cdots \quad oldsymbol{A}oldsymbol{e}_nig) = oldsymbol{B}oldsymbol{e}_1 \quad \cdots \quad oldsymbol{B}oldsymbol{e}_nig) = oldsymbol{B}.$$

- Conclusion:
 - The standard matrix of a linear transformation is unique.

7 / 99

Examples

- To show that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation,
 - o just find a matrix A so that T(x) = Ax for all $x \in \mathbb{R}^n$.
- **Example.** Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined as

$$\circ \quad T\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} x+y \\ 2x \\ -3y \end{pmatrix} \quad \text{for } \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^n.$$

•
$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x+y \\ 2x+0y \\ 0x-3y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- T is a linear transformation.
 - The standard matrix for T is $\begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 0 & -3 \end{pmatrix}$.

Linearity

- Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation.
 - \circ Let \boldsymbol{A} be the standard matrix for T.
 - That is, T(x) = Ax for all $x \in \mathbb{R}^n$.
 - 1. T(0) = A0 = 0.
 - 2. T(cv) = A(cv) = c(Av) = cT(v).
 - 3. T(u+v) = A(u+v) = Au + Av = T(u) + T(v).
 - 4. For any $v_1, \ldots, v_k \in \mathbb{R}^n$ and $c_1, \ldots, c_k \in \mathbb{R}$,

$$T(c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k) = \mathbf{A}(c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k)$$

$$= \mathbf{A}(c_1 \mathbf{v}_1) + \dots + \mathbf{A}(c_k \mathbf{v}_k)$$

$$= c_1 (\mathbf{A} \mathbf{v}_1) + \dots + c_k (\mathbf{A} \mathbf{v}_k)$$

$$= c_1 T(\mathbf{v}_1) + \dots + c_k T(\mathbf{v}_k).$$

9/99

Linearity

- Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - \circ $T(\mathbf{0}) = \mathbf{0}$. More precisely, $T(\mathbf{0}_n) = \mathbf{0}_m$.
 - \circ If $v_1, \ldots, v_k \in \mathbb{R}^n$ and $c_1, \ldots, c_k \in \mathbb{R}$,
 - $T(c_1\boldsymbol{v}_1 + \cdots + c_k\boldsymbol{v}_k) = c_1T(\boldsymbol{v}_1) + \cdots + c_kT(\boldsymbol{v}_k).$
- If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then
 - $\circ T(c\mathbf{v}) = cT(\mathbf{v})$ for all $\mathbf{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.
 - $\circ \quad T(\boldsymbol{u} + \boldsymbol{v}) = T(\boldsymbol{u}) + T(\boldsymbol{v}) \text{ for all } \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n.$
- ullet To show that a mapping T is **not** a **linear transformation**.
 - Show that $T(\mathbf{0}) \neq \mathbf{0}$; or
 - Find $v \in \mathbb{R}^n$, $c \in \mathbb{R}$ such that $T(cv) \neq cT(v)$; or
 - \circ Find $u \in \mathbb{R}^n$ such that $T(u + v) \neq T(u) + T(v)$.

• Let $T_1:\mathbb{R}^2 o \mathbb{R}^2$ be defined by

$$T_1\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x+1 \\ y+3 \end{pmatrix} \quad \text{for } \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2.$$

$$T_1\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow T_1 \text{ is not linear.}$$

o Alternatively,

•
$$T_1\left(2\begin{pmatrix}1\\1\end{pmatrix}\right) = T_1\left(\begin{pmatrix}2\\2\end{pmatrix}\right) = \begin{pmatrix}3\\5\end{pmatrix}$$
,

•
$$2T_1\left(\begin{pmatrix}1\\1\end{pmatrix}\right) = 2\begin{pmatrix}2\\4\end{pmatrix} = \begin{pmatrix}4\\8\end{pmatrix}$$
.

$$T_1\left(2\begin{pmatrix}1\\1\end{pmatrix}\right) \neq 2T_1\left(\begin{pmatrix}1\\1\end{pmatrix}\right) \Rightarrow T_1 \text{ is not linear.}$$

11/99

Examples

• Let $T_2:\mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$\circ \quad T_2\left(\begin{pmatrix} x\\y\\z\end{pmatrix}\right) = \begin{pmatrix} x^2\\yz\end{pmatrix} \quad \text{for } \begin{pmatrix} x\\y\\z\end{pmatrix} \in \mathbb{R}^3.$$

•
$$T_2\left(\begin{pmatrix}1\\0\\0\end{pmatrix}+\begin{pmatrix}1\\2\\3\end{pmatrix}\right)=T_2\left(\begin{pmatrix}2\\2\\3\end{pmatrix}\right)=\begin{pmatrix}4\\6\end{pmatrix}.$$

•
$$T_2\left(\begin{pmatrix}1\\0\\0\end{pmatrix}\right) + T_2\left(\begin{pmatrix}1\\2\\3\end{pmatrix}\right) = \begin{pmatrix}1\\0\end{pmatrix} + \begin{pmatrix}1\\6\end{pmatrix} = \begin{pmatrix}2\\6\end{pmatrix}.$$

$$\circ T_2\left(\begin{pmatrix}1\\0\\0\end{pmatrix}+\begin{pmatrix}1\\2\\3\end{pmatrix}\right) \neq T_2\left(\begin{pmatrix}1\\0\\0\end{pmatrix}\right) + T_2\left(\begin{pmatrix}1\\2\\3\end{pmatrix}\right).$$

• T_2 is **not** a linear transformation.

Representation

- Recall that for a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$:
 - \circ $T(\mathbf{0}) = \mathbf{0}$. More precisely, $T(\mathbf{0}_n) = \mathbf{0}_m$.
 - \circ If $v_1, \ldots, v_k \in \mathbb{R}^n$ and $c_1, \ldots, c_k \in \mathbb{R}$, then
 - $T(c_1\boldsymbol{v}_1 + \cdots + c_k\boldsymbol{v}_k) = c_1T(\boldsymbol{v}_1) + \cdots + c_kT(\boldsymbol{v}_k).$
- Let $E = \{e_1, \dots, e_n\}$ be the standard basis for \mathbb{R}^n .
 - \circ Every $\boldsymbol{v} \in \mathbb{R}^n$ has the form $v_1 \boldsymbol{e}_1 + \cdots + v_n \boldsymbol{e}_n$.

Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation.

$$T(\mathbf{v}) = T(v_1 \mathbf{e}_1 + \dots + v_n \mathbf{e}_n)$$

= $v_1 T(\mathbf{e}_1) + \dots + v_n T(\mathbf{e}_n)$.

 $\circ T(v)$ is completely determined by $T(e_1), \ldots, T(e_n)$.

13 / 99

Representation

- Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T.
 - $\circ \quad T(v) = Av \quad \text{for all } v \in \mathbb{R}^n.$
 - $\circ T(\boldsymbol{e}_1) = \boldsymbol{A}\boldsymbol{e}_1, \ldots, T(\boldsymbol{e}_n) = \boldsymbol{A}\boldsymbol{e}_n.$

$$egin{aligned} oldsymbol{A} &= oldsymbol{A} oldsymbol{I} &= oldsymbol{A} oldsymbol{e}_1 & \cdots & oldsymbol{e}_n \ &= oldsymbol{A} oldsymbol{e}_1 & \cdots & oldsymbol{A} oldsymbol{e}_n \ &= oldsymbol{T} oldsymbol{e}_1 & \cdots & oldsymbol{T} oldsymbol{e}_n \ &= oldsymbol{T} oldsymbol{e}_1 & \cdots & oldsymbol{T} oldsymbol{e}_n \ &= oldsymbol{T} oldsymbol{e}_1 & \cdots & oldsymbol{T} oldsymbol{e}_n \ &= oldsymbol{T} oldsymbol{e}_1 & \cdots & oldsymbol{T} oldsymbol{e}_n \ &= oldsymbol{T} oldsymbol{e}_1 & \cdots & oldsymbol{T} oldsymbol{e}_n \ &= oldsymbol{T} oldsymbol{e}_1 & \cdots & oldsymbol{T} oldsymbol{e}_n \ &= oldsymbol{T} oldsymbol{e}_1 & \cdots & oldsymbol{T} oldsymbol{e}_n \ &= oldsymbol{T} oldsymbol{e}_1 & \cdots & oldsymbol{T} oldsymbol{e}_n \ &= oldsymbol{T} oldsymbol{e}_1 & oldsymbol{e}_2 & oldsymbol{e}_1 & oldsymbol{e}_1 & oldsymbol{e}_2 & oldsymbol{e}_1 & oldsymbol{e}_2 & oldsymbol{$$

- ullet Example. If T is a linear transformation such that
 - $\circ T\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}1\\2\\3\end{pmatrix}, T\left(\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}4\\5\\6\end{pmatrix}.$
 - The standard matrix for T is $\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$.

Representation

• Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ is a mapping satisfying

$$T(c_1 \boldsymbol{v}_1 + \dots + c_k \boldsymbol{v}_k) = c_1 T(\boldsymbol{v}_1) + \dots + c_k T(\boldsymbol{v}_k)$$
 for all $\boldsymbol{v}_1, \dots, \boldsymbol{v}_k \in \mathbb{R}^n$ and $c_1, \dots, c_k \in \mathbb{R}$.

- \circ Let $A = (T(e_1) \cdots T(e_n)).$
 - Write $\boldsymbol{v} \in \mathbb{R}^n$ as $\boldsymbol{v} = v_1 \boldsymbol{e}_1 + \cdots + v_n \boldsymbol{e}_n$.

$$T(\mathbf{v}) = v_1 T(\mathbf{e}_1) + \dots + v_n T(\mathbf{e}_n)$$

$$= (T(\mathbf{e}_1) \dots T(\mathbf{e}_n)) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$= (T(\mathbf{e}_1) \dots T(\mathbf{e}_n)) \mathbf{v}$$

$$= \mathbf{A} \mathbf{v}.$$

T is a linear transformation with standard matrix A.

15/99

Representation

• A mapping $T:\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, i.e., T has the form $T(x) = Ax \Leftrightarrow$

$$T(c_1\boldsymbol{v}_1 + \dots + c_k\boldsymbol{v}_k) = c_1T(\boldsymbol{v}_1) + \dots + c_kT(\boldsymbol{v}_k)$$

- for all $v_1, \ldots, v_k \in \mathbb{R}^n$ and $c_1, \ldots, c_k \in \mathbb{R}$.
- Exercise. A mapping $T:\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, i.e., T has the form T(x) = Ax \Leftrightarrow

$$T(c\boldsymbol{u}+d\boldsymbol{v})=cT(\boldsymbol{u})+dT(\boldsymbol{v})$$

- for all $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$.
- ullet General Definition. Let V and W be vector spaces.
- o A mapping $T: V \to W$ is a linear transformation if

$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$

• for all $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$.

Representation

- Let $S = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_n \}$ be a basis for \mathbb{R}^n .
 - \circ For $\boldsymbol{v} \in \mathbb{R}^n$, write $(\boldsymbol{v})_S = (c_1, \dots, c_n)$;
 - i.e., $v = c_1 v_1 + \cdots + c_n v_n$.

Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation.

$$T(\mathbf{v}) = T(c_1\mathbf{v}_1 + \dots + c_n\mathbf{v}_n)$$

$$= c_1T(\mathbf{v}_1) + \dots + c_nT(\mathbf{v}_n)$$

$$= (T(\mathbf{v}_1) \quad \dots \quad T(\mathbf{v}_n)) \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

 \circ T(v) is completely determined by $T(v_1), \ldots, T(v_n)$.

17/99

Example

• Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation:

$$T \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, T \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix},$$

$$T \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}.$$

• Consider the given condition:

$$\circ \quad \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} \right\} \text{ is a basis for } \mathbb{R}^3,$$

$$\begin{array}{ccc}
 & \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \text{ is invertible.}$$

 \circ So the given information completely determines T.

- $\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\0\\-1 \end{pmatrix} \right\}$ is a basis for \mathbb{R}^3 .
 - Every vector in \mathbb{R}^3 is a unique linear combination:

•
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c_3 \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$$

19 / 99

Example

- $\bullet \quad \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} \right\} \text{ is a basis for } \mathbb{R}^3.$
 - Every vector in \mathbb{R}^3 is a unique linear combination:

•
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c_3 \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$$

$$\bullet \quad \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

• The standard matrix for T is $\begin{pmatrix} 2 & -1 & 0 \\ 1 & -1 & 3 \end{pmatrix}$.

21 / 99

Change of Bases

- Let $S = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_n \}$ be a basis for \mathbb{R}^n .
 - \circ For $\boldsymbol{v} \in \mathbb{R}^n$, write $(\boldsymbol{v})_S = (c_1, \dots, c_n)$;

$$\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n = \begin{pmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_n \end{pmatrix} [\mathbf{v}]_S.$$

 \circ Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

$$T(\mathbf{v}) = T(c_1\mathbf{v}_1 + \dots + c_n\mathbf{v}_n)$$

$$= c_1T(\mathbf{v}_1) + \dots + c_nT(\mathbf{v}_n)$$

$$= (T(\mathbf{v}_1) \quad \dots \quad T(\mathbf{v}_n)) \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

$$= (T(\mathbf{v}_1) \quad \dots \quad T(\mathbf{v}_n)) [\mathbf{v}]_S.$$

Change of Bases

- Let $S = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_n \}$ be a basis for \mathbb{R}^n .
 - \circ For $\boldsymbol{v} \in \mathbb{R}^n$, write $(\boldsymbol{v})_S = (c_1, \dots, c_n)$;

$$\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n = \begin{pmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_n \end{pmatrix} [\mathbf{v}]_S.$$

• Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

$$T(\mathbf{v}) = (T(\mathbf{v}_1) \cdots T(\mathbf{v}_n))[\mathbf{v}]_S = \mathbf{B}[\mathbf{v}]_S,$$

• where $\mathbf{B} = (T(\mathbf{v}_1) \cdots T(\mathbf{v}_n)).$

Let \boldsymbol{A} be the standard matrix for T. Then

- $T(\boldsymbol{v}) = \boldsymbol{A}\boldsymbol{v} = \boldsymbol{A} \begin{pmatrix} \boldsymbol{v}_1 & \cdots & \boldsymbol{v}_n \end{pmatrix} [\boldsymbol{v}]_S$.
- \therefore $oldsymbol{AP} = oldsymbol{B}$, where $oldsymbol{P} = ig(oldsymbol{v}_1 \quad \cdots \quad oldsymbol{v}_nig)$.
 - Or equivalently, $A = BP^{-1}$.

23 / 99

Example

• Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation:

$$T \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, T \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix},$$

$$T \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}.$$

- $\circ \quad \operatorname{Let} \boldsymbol{P} = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \text{: basis for } \mathbb{R}^n.$
- \circ Let $\boldsymbol{B} = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \end{pmatrix}$: the images.
- \therefore The standard matrix $A = BP^{-1} = \begin{pmatrix} 2 & -1 & 0 \\ 1 & -1 & 3 \end{pmatrix}$.

Change of Bases

- Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - \circ If $S = \{ \boldsymbol{u}_1, \dots, \boldsymbol{u}_n \}$ is a basis for \mathbb{R}^n ,
 - $T(\boldsymbol{v}) = \boldsymbol{B}[\boldsymbol{v}]_S, \boldsymbol{B} = (T(\boldsymbol{u}_1) \cdots T(\boldsymbol{u}_n))$
 - \circ If $R = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_n \}$ is a basis for \mathbb{R}^n ,
 - $T(\boldsymbol{v}) = \boldsymbol{C}[\boldsymbol{v}]_R, \boldsymbol{C} = (T(\boldsymbol{v}_1) \cdots T(\boldsymbol{v}_n))$

We can conclude the **relation** between B and C:

- Let P be the transition matrix from S to R:
 - $P[v]_S = [v]_R \Rightarrow CP[v]_S = C[v]_R = T(v)$ $\Rightarrow B = CP$
- Let $Q = P^{-1}$ be the transition matrix from R to S:
 - $Q[v]_R = [v]_S \Rightarrow BQ[v]_R = B[v]_ST(v)$ • $\Rightarrow C = BQ$.

25 / 99

Change of Bases

- Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operation on \mathbb{R}^n .
 - \circ Let A be the standard matrix. Then A is square.
 - $T(\boldsymbol{v}) = \boldsymbol{A}\boldsymbol{v}$ for all $\boldsymbol{v} \in \mathbb{R}^n$.

Let $S = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_n \}$ be a basis for \mathbb{R}^n .

- \circ Let $oldsymbol{P} = oldsymbol{(v_1 \ \cdots \ v_n)}$. Then $oldsymbol{P}$ is invertible.
 - $\boldsymbol{v} = \boldsymbol{P}[\boldsymbol{v}]_S$ for all $\boldsymbol{v} \in \mathbb{R}^n$.

Then we can write

- $\bullet \quad T(\boldsymbol{v}) = \boldsymbol{P}[T(\boldsymbol{v})]_S \text{ and } \boldsymbol{A}\boldsymbol{v} = \boldsymbol{A}\boldsymbol{P}[\boldsymbol{v}]_S.$
- $\circ P[T(\boldsymbol{v})]_S = \boldsymbol{AP}[\boldsymbol{v}]_S \Rightarrow [T(\boldsymbol{v})]_S = \boldsymbol{P}^{-1}\boldsymbol{AP}[\boldsymbol{v}]_S.$
- T can be represented by $[v]_S \mapsto B[v]_S$,
 - where $B = P^{-1}AP$. We say A and B are similar.

- Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} 0.2x + 0.2y \\ 0.8x + 0.8y \end{pmatrix}$.
 - $\circ \quad T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} 0.2 & 0.2 \\ 0.8 & 0.8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$
 - $\begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 0.2 & 0.2 \\ 0.8 & 0.8 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$
 - $\circ \quad \text{Let } S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2 \} \text{ where } \boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \boldsymbol{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$
 - Then T(u) = v, where
 - $\circ \quad [\boldsymbol{u}]_S = \begin{pmatrix} x \\ y \end{pmatrix} \text{ and } [\boldsymbol{v}]_S = \begin{pmatrix} x \\ 0 \end{pmatrix}.$
 - More precisely, $T(c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2)=c_1\boldsymbol{v}_1$.

27 / 99

Composition

• Consider two functions $f: X \to Y$ and $g: Y \to Z$.

- \circ Let $g \circ f$ denote the function $X \to Z$ such that
 - $\bullet \quad g\circ f(x)=g(f(x)), \quad \text{for all } x\in X.$

This is called the **composition** of g with f.

• Note: In general, $g \circ f \neq f \circ g$.

Composition

• Definition. Let $S:\mathbb{R}^n \to \mathbb{R}^m$ and $T:\mathbb{R}^m \to \mathbb{R}^k$ be linear transformations.

- \circ Let $T \circ S$ denote the mapping $\mathbb{R}^n \to \mathbb{R}^k$ such that
 - $(T \circ S)(\boldsymbol{u}) = T(S(\boldsymbol{u}))$, for all $\boldsymbol{u} \in \mathbb{R}^n$.

This is called the **composition** of T with S.

• Note. In general, $T \circ S \neq S \circ T$.

29 / 99

Example

• Let $S: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$\circ \quad S\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x+y \\ z \end{pmatrix}, \quad \text{for } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3.$$

Let $T:\mathbb{R}^2 o \mathbb{R}^3$ be defined by

$$\circ \quad T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} y \\ y \\ x \end{pmatrix}, \quad \text{for } \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2.$$

Then $T \circ S : \mathbb{R}^3 \to \mathbb{R}^3$ is the mapping given by

$$(T \circ S) \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \right) = T \left(S \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \right) \right)$$
$$= T \left(\begin{pmatrix} x+y \\ z \end{pmatrix} \right) = \begin{pmatrix} z \\ z \\ x+y \end{pmatrix}.$$

• Let $S: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$\circ \quad S\left(\begin{pmatrix} x\\y\\z\end{pmatrix}\right) = \begin{pmatrix} x+y\\z\end{pmatrix}, \quad \text{for } \begin{pmatrix} x\\y\\z\end{pmatrix} \in \mathbb{R}^3.$$

Let $T:\mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$\circ \quad T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} y \\ y \\ x \end{pmatrix}, \quad \text{for } \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2.$$

Then $T \circ S : \mathbb{R}^3 \to \mathbb{R}^3$ is the mapping given by

$$\circ \quad (T \circ S) \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \right) = \begin{pmatrix} z \\ z \\ x + y \end{pmatrix},$$

• The standard matrix for $T\circ S$ is $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

31 / 99

Example

• Let $S:\mathbb{R}^3 o \mathbb{R}^2$ be defined by

$$\circ \quad S\left(\begin{pmatrix} x\\y\\z\end{pmatrix}\right) = \begin{pmatrix} x+y\\z\end{pmatrix}, \quad \text{for } \begin{pmatrix} x\\y\\z\end{pmatrix} \in \mathbb{R}^3.$$

Let $T:\mathbb{R}^2 o \mathbb{R}^3$ be defined by

$$\circ \quad T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} y \\ y \\ x \end{pmatrix}, \quad \text{for } \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2.$$

Then $S \circ T : \mathbb{R}^2 \to \mathbb{R}^2$ is the mapping given by

$$(S \circ T) \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = S \left(T \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) \right)$$
$$= S \left(\begin{pmatrix} y \\ y \\ x \end{pmatrix} \right) = \begin{pmatrix} 2y \\ x \end{pmatrix}.$$

• Let $S: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$\circ \quad S\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x+y \\ z \end{pmatrix}, \quad \text{for } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3.$$

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$\circ \quad T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} y \\ y \\ x \end{pmatrix}, \quad \text{for } \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2.$$

Then $S \circ T : \mathbb{R}^2 \to \mathbb{R}^2$ is the mapping given by

- $\circ \quad (S \circ T) \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} 2y \\ x \end{pmatrix},$
 - The standard matrix for $S \circ T$ is $\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$.

33 / 99

Example

 $\bullet \quad \text{Standard matrix for } S:\mathbb{R}^3 \to \mathbb{R}^2 \colon \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

Standard matrix for $T: \mathbb{R}^2 \to \mathbb{R}^3$: $\begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- $\circ \quad \text{Standard matrix for } T \circ S: \mathbb{R}^3 \to \mathbb{R}^3 \text{:} \ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$
 - $\bullet \quad \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$

The standard matrix for $T \circ S$ is

• (Standard matrix for T) \times (Standard matrix for S).

 $\bullet \quad \text{Standard matrix for } S:\mathbb{R}^3 \to \mathbb{R}^2 \text{: } \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

Standard matrix for $T:\mathbb{R}^2 \to \mathbb{R}^3$: $\begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- $\circ \quad \text{Standard matrix for } S \circ T : \mathbb{R}^2 \to \mathbb{R}^2 \text{:} \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} .$
 - $\bullet \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}.$

The standard matrix for $S \circ T$ is

- (Standard matrix for S) × (Standard matrix for T).
- $\circ \quad$ Moreover, $T \circ S$ and $S \circ T$ are linear transformations.

35 / 99

Properties

• Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations.

- \circ Let \boldsymbol{A} be the standard matrix for S.
 - S(u) = Au for all $u \in \mathbb{R}^n$.
- Let \boldsymbol{B} be the standard matrix for T.
 - T(v) = Bv for all $v \in \mathbb{R}^m$.

Properties

- Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations.
 - \circ Let \boldsymbol{A} be the standard matrix for S.
 - S(u) = Au for all $u \in \mathbb{R}^n$.
 - \circ Let **B** be the standard matrix for T.
 - T(v) = Bv for all $v \in \mathbb{R}^m$.

For all $\boldsymbol{u} \in \mathbb{R}^n$,

$$(T \circ S)(\mathbf{u}) = T(S(\mathbf{u})) = T(\mathbf{A}\mathbf{u})$$
$$= \mathbf{B}(\mathbf{A}\mathbf{u}) = (\mathbf{B}\mathbf{A})\mathbf{u}.$$

 $T \circ S : \mathbb{R}^n \to \mathbb{R}^k$ is a linear transformation and its standard matrix is BA.

37 / 99

Composition

- Theorem. If $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ are linear transformations,
 - $\quad \text{o} \quad \text{then } T \circ S : \mathbb{R}^n \to \mathbb{R}^k \text{ is also a linear transformation}.$

Moreover, if A is the standard matrix for S and B is the standard matrix for T,

- then BA is the standard matrix for $T \circ S$.
- Exercises.
 - $\circ I \circ S = S \circ I = S; O \circ S = S \circ O = O;$
 - \circ $c(T \circ S) = (cT) \circ S = T \circ (cS);$
 - $\circ \quad U \circ (T \circ S) = (U \circ T) \circ S;$
 - $\circ (T_1 + T_2) \circ S = T_1 \circ S + T_2 \circ S;$
 - $\circ \quad T \circ (S_1 + S_2) = T \circ S_1 + T \circ S_2.$

Ranges and Kernels

39 / 99

Range of Function

• Let $f: X \to Y$ be a function:

- \circ The **range** of f is the set of all **images** of f:
 - $R(f) = \{f(x) \mid x \in X\} \subseteq Y$.
- Examples. Let $f(x) = x^2$. Then $R(f) = [0, \infty)$.

Let
$$f(x) = \sin x$$
. Then $R(f) = [-1, 1]$.

40 / 99

Range of Linear Transformation

- **Definition.** Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - \circ The range of T is the set of all images of T:
 - $R(T) = \{T(\boldsymbol{v}) \mid \boldsymbol{v} \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$.
- Examples. Let $T:\mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$\circ \quad T\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} x+y \\ y \\ x \end{pmatrix}, \quad \text{for } \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2.$$

•
$$R(T) = \left\{ \begin{pmatrix} x+y \\ y \\ x \end{pmatrix} \middle| x, y \in \mathbb{R} \right\}.$$

$$\bullet \quad \begin{pmatrix} x+y \\ y \\ x \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Range of Linear Transformation

- **Definition.** Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - \circ The range of T is the set of all images of T:
 - $R(T) = \{T(\boldsymbol{v}) \mid \boldsymbol{v} \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$.
- **Examples.** Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$\circ \quad T\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} x+y \\ y \\ x \end{pmatrix}, \quad \text{for } \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2.$$

•
$$R(T) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\} = \operatorname{vector space}.$$

•
$$\begin{pmatrix} x+y\\y\\x \end{pmatrix} = x \begin{pmatrix} 1\\0\\1 \end{pmatrix} + y \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$
.

42 / 99

Representation of Range

- Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - \circ How to determine the range of T?

Let $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ be a basis for \mathbb{R}^n .

 \circ For any $\boldsymbol{v} \in \mathbb{R}^n$, write $\boldsymbol{v} = c_1 \boldsymbol{v}_1 + \cdots + c_n \boldsymbol{v}_n$.

$$T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + \dots + c_n T(\mathbf{v}_n)$$

 $\in \text{span}\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)\}.$

$$\therefore R(T) = \{T(\boldsymbol{v}) \mid \boldsymbol{v} \in \mathbb{R}^m\}$$

$$\subseteq \operatorname{span}\{T(\boldsymbol{v}_1), \dots, T(\boldsymbol{v}_n)\}$$

On the other hand, every linear combination

- $c_1T(\boldsymbol{v}_1) + \cdots + c_nT(\boldsymbol{v}_n) = T(\boldsymbol{v}) \in \mathbf{R}(T)$.
- \therefore span $\{T(\boldsymbol{v}_1),\ldots,T(\boldsymbol{v}_n)\}\subseteq \mathrm{R}(T)$.

Representation of Range

- Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - \circ Then the range of T is given by
 - ullet R $(T)=\mathrm{span}\{T(oldsymbol{v}_1),\ldots,T(oldsymbol{v}_n)\},$ where $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_n\}$ is any basis for $\mathbb{R}^n.$
 - In particular, R(T) is a subspace of \mathbb{R}^m .
- Example. $T\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} x+y \\ y \\ x \end{pmatrix}$.
 - - $T\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}1\\0\\1\end{pmatrix}, \quad T\left(\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}1\\1\\0\end{pmatrix}.$
 - $R(T) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}.$

44 / 99

Representation of Range

- Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - \circ Let A be the standard matrix for T.
 - $T(\boldsymbol{v}) = \boldsymbol{A}\boldsymbol{v}$ for all $\boldsymbol{v} \in \mathbb{R}^n$.

Let $\{e_1, e_2, \dots, e_n\}$ be the standard basis for \mathbb{R}^n .

- $T(e_i) = Ae_i = j$ th column of A.
- Recall that $R(T) = \operatorname{span}\{T(e_1), T(e_2), \dots, T(e_n)\}.$
 - R(T) is the subspace of \mathbb{R}^m spanned by columns of \boldsymbol{A} .
 - \therefore R(T) = column space of **A**.
- Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and A the standard matrix for T.
 - Then R(T) = column space of A.

Representation of Range

- **Definition.** Let *T* be a linear transformation.
 - The rank of T is defined as the dimension of R(T):
 - $\operatorname{rank}(T) = \dim R(T)$.
- Let *A* be the standard matrix for a linear transformation *T*.
 - $\circ R(T) = \text{column space of } A.$
 - \circ rank $(T) = \dim R(T) = \dim (\text{coln space of } A) = \text{rank}(A).$
- Example. $T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x+y \\ y \\ x \end{pmatrix}$.
 - o Standard matrix: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$.

46 / 99

Representation of Range

- **Definition.** Let T be a linear transformation.
 - The rank of T is defined as the dimension of R(T):
 - $\operatorname{rank}(T) = \dim R(T)$.
- Let *A* be the standard matrix for a linear transformation *T*.
 - \circ R(T) = column space of **A**.
 - $\circ \operatorname{rank}(T) = \dim R(T) = \dim (\operatorname{coln} \operatorname{space} \operatorname{of} A) = \operatorname{rank}(A).$

• Example.
$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x+y \\ y \\ x \end{pmatrix}$$
.

$$\circ \quad \mathbf{R}(T) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}; \quad \operatorname{rank}(T) = 2.$$

• Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be defined by

$$\circ T\left(\begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x + 2y + z \\ x + 3y \\ x + 4y - z \\ y - z \end{pmatrix}, \quad \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} \in \mathbb{R}^4.$$

- Standard matrix: $\begin{pmatrix} 0 & 1 & 2 & 1 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}.$
- $R(T) = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 4 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \end{pmatrix} \right\}.$
- How to find a basis for R(T)?

48 / 99

Example

• Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be defined by

$$\circ T \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + z \\ x + 3y \\ x + 4y - z \\ y - z \end{pmatrix}, \quad \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} \in \mathbb{R}^4.$$

$$\bullet \quad \begin{pmatrix} 0 & 1 & 2 & 1 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix} \cdot \stackrel{\text{G.E.}}{\cdots} \rightarrow \begin{pmatrix} 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

•
$$R(T) = \operatorname{span} \left\{ \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\4\\1 \end{pmatrix} \right\}.$$

 $rank(T) = \dim R(T) = 2.$

ullet Let $T:\mathbb{R}^4 o \mathbb{R}^4$ be defined by

$$\circ T \begin{pmatrix} \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x + 2y + z \\ x + 3y \\ x + 4y - z \\ y - z \end{pmatrix}, \quad \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} \in \mathbb{R}^4.$$

$$\bullet \quad \begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
2 & 3 & 4 & 1 \\
1 & 0 & -1 & -1
\end{pmatrix}
\cdot \stackrel{\text{G.J.E.}}{\cdots} \rightarrow \begin{pmatrix}
1 & 0 & -1 & -1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

•
$$R(T) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix} \right\}.$$

 $rank(T) = \dim R(T) = 2.$

50 / 99

Kernel of Linear Transformation

• **Definition.** Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

- The **kernel** of T is the set of all vectors in \mathbb{R}^n whose image is the zero vector in \mathbb{R}^m .
 - $\operatorname{Ker}(T) = \{ \boldsymbol{v} \in \mathbb{R}^n \mid T(\boldsymbol{v}) = \boldsymbol{0} \} \subseteq \mathbb{R}^n.$
- Recall that T(0) = 0.
 - $\operatorname{Ker}(T)$ contains the zero vector in \mathbb{R}^n .

• Let $T_1: \mathbb{R}^3 \to \mathbb{R}^4$ be defined by

$$\circ \quad T_1\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} 2x - y \\ x - y + 3z \\ -5x + y \\ x - z \end{pmatrix}, \quad \text{for } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3.$$

 \circ Find the kernel of T_1 .

• Let
$$T_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - y \\ x - y + 3z \\ -5x + y \\ x - z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
.

$$\bullet \quad \begin{pmatrix} 2 & -1 & 0 \\ 1 & -1 & 3 \\ -5 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

52 / 99

Examples

• Let $T_1: \mathbb{R}^3 \to \mathbb{R}^4$ be defined by

$$\circ T_1\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} 2x - y \\ x - y + 3z \\ -5x + y \\ x - z \end{pmatrix}, \text{ for } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3.$$

 \circ Find the kernel of T_1 .

• Let
$$T_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - y \\ x - y + 3z \\ -5x + y \\ x - z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
.

$$\bullet \quad \begin{pmatrix}
2 & -1 & 0 \\
1 & -1 & 3 \\
-5 & 1 & 0 \\
1 & 0 & -1
\end{pmatrix}
\quad \xrightarrow{\text{G.J.E.}} \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

ullet Let $T_1:\mathbb{R}^3 o \mathbb{R}^4$ be defined by

$$\circ T_1\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} 2x - y \\ x - y + 3z \\ -5x + y \\ x - z \end{pmatrix}, \text{ for } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3.$$

 \circ Find the kernel of T_1 .

• Let
$$T_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - y \\ x - y + 3z \\ -5x + y \\ x - z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
.

•
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \operatorname{Ker}(T_1) = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

54 / 99

Examples

• Let $T_2: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$\circ \quad T_2\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} z - y \\ 0 \\ x \end{pmatrix}, \quad \text{for } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3.$$

 \circ Find the kernel of T_2 .

• Let
$$T_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z - y \\ 0 \\ x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
.

•
$$z = y$$
 and $x = 0 \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

•
$$\operatorname{Ker}(T_2) = \left\{ \begin{pmatrix} 0 \\ y \\ y \end{pmatrix} \middle| y \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

Representation of Kernel

- Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - \circ Let \boldsymbol{A} be the standard matrix for T.
 - $T(\boldsymbol{v}) = \boldsymbol{A}\boldsymbol{v}$ for all $\boldsymbol{v} \in \mathbb{R}^n$.

$$egin{aligned} \operatorname{Ker}(T) &= \{ oldsymbol{v} \in \mathbb{R}^n \mid T(oldsymbol{v}) = \mathbf{0} \} \ &= \{ oldsymbol{v} \in \mathbb{R}^n \mid oldsymbol{A} oldsymbol{v} = \mathbf{0} \} \ &= \operatorname{nullspace} \ oldsymbol{A}. \end{aligned}$$

- Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and A the standard matrix for T.
 - \circ Ker(T) = nullspace of A.

In particular, Ker(T) is always a subspace of \mathbb{R}^n .

56 / 99

Representation of Kernel

- **Definition.** Let T be a linear transformation.
 - The **nullity** of T is defined as the dimension of Ker(T).
 - $\operatorname{nullity}(T) = \dim \operatorname{Ker}(T)$.
- ullet Recall that if $oldsymbol{A}$ is the standard matrix for T, then
 - \circ Ker(T) = nullspace of \boldsymbol{A} .

$$\begin{split} \operatorname{nullity}(T) &= \dim \operatorname{Ker}(T) = \dim(\operatorname{nullspace} \operatorname{of} \boldsymbol{A}) \\ &= \operatorname{nullity}(\boldsymbol{A}). \end{split}$$

- Examples. $\operatorname{Ker}(T_1) = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$
 - \circ nullity $(T_1) = 0$.

Representation of Kernel

- **Definition.** Let *T* be a linear transformation.
 - The **nullity** of T is defined as the dimension of Ker(T).
 - $\operatorname{nullity}(T) = \dim \operatorname{Ker}(T)$.
- Recall that if \boldsymbol{A} is the standard matrix for T, then
 - \circ Ker(T) = nullspace of \boldsymbol{A} .

$$\operatorname{nullity}(T) = \dim \operatorname{Ker}(T) = \dim(\operatorname{nullspace} \operatorname{of} \mathbf{A})$$

= $\operatorname{nullity}(\mathbf{A})$.

- Examples. $\operatorname{Ker}(T_2) = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}.$
 - \circ nullity $(T_2) = 1$.

58 / 99

Example

• Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be defined by

$$\circ \quad T\left(\begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x+2y+z \\ x+3y \\ x+4y-z \\ y-z \end{pmatrix}, \quad \text{for } \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} \in \mathbb{R}^4.$$

• Standard matrix:
$$A = \begin{pmatrix} 0 & 1 & 2 & 1 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$
.
$$\begin{pmatrix} 0 & 1 & 2 & 1 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix} \cdot \overset{\text{G.J.E.}}{\longrightarrow} \begin{pmatrix} 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

w = s, z = t and x = -3t, y = t.

• Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be defined by

$$\circ \quad T\left(\begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x+2y+z \\ x+3y \\ x+4y-z \\ y-z \end{pmatrix}, \quad \text{for } \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} \in \mathbb{R}^4.$$

•
$$\operatorname{Ker}(T) = \operatorname{null} \operatorname{sp. of} \mathbf{A} = \left\{ \begin{pmatrix} s \\ -3t \\ t \\ t \end{pmatrix} \middle| s, t \in \mathbb{R} \right\}$$

$$\operatorname{Ker}(T) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -3 \\ 1 \\ 1 \end{pmatrix} \right\}$$

 $\operatorname{nullity}(T) = \dim \operatorname{Ker}(T) = \operatorname{nullity}(\mathbf{A}) = 2.$

60 / 99

Properties

- Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - \circ Let \boldsymbol{A} be the standard matrix for T.
 - \boldsymbol{A} is $m \times n$ such that $T(\boldsymbol{v}) = \boldsymbol{A}\boldsymbol{v}$ for all $\boldsymbol{v} \in \mathbb{R}^n$.

We have proved that

- 1. R(T) = column space of A.
 - \circ rank $(T) = \text{rank}(\mathbf{A})$.
- 2. Ker(T) = nullspace of A.
 - \circ nullity(T) = nullity(\boldsymbol{A}).

Recall Dimension Theorem for Matrices:

- $rank(\mathbf{A}) + nullity(\mathbf{A}) = number of colns of \mathbf{A} = n$.
- \therefore rank(T) + nullity(T) = n = dimension of domain.

Properties

• Dimension Theorem for Linear Transformations.

Let $T:\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then

- \circ rank(T) + nullity(T) = n.
- ullet Recall that T:V o W between vector spaces is a linear transformation if

$$\circ T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v}), \mathbf{u}, \mathbf{v} \in V, c, d \in \mathbb{R}.$$

We can similarly define and prove that

- $\circ R(T) = \{T(v) \mid v \in V\}$ is a subspace of W.
 - $\operatorname{rank}(T) = \dim R(T)$.
- $\circ \quad \operatorname{Ker}(T) = \{ \boldsymbol{v} \in V \mid T(\boldsymbol{v}) = \boldsymbol{0} \} \text{ is a subspace of } V.$
 - $\operatorname{nullity}(T) = \dim \operatorname{Ker}(T)$.
- $\circ \quad \operatorname{rank}(T) + \operatorname{nullity}(T) = \dim V.$

62 / 99

Geometric Linear Transformations

63 / 99

Introduction

• Recall that a linear transformation is uniquely determined by its images on a basis:

Let $T:\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and $S=\{\boldsymbol{v}_1,\dots,\boldsymbol{v}_n\}$ a basis for \mathbb{R}^n .

- \circ If $(\boldsymbol{v})_S = (c_1, \dots, c_n)$, then
 - $T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + \cdots + c_n T(\mathbf{v}_n)$.

In particular, let $\{e_1,\ldots,e_n\}$ be the standard basis for \mathbb{R}^n .

- \circ If $\boldsymbol{v}=(v_1,\ldots,v_n)$, then
 - $T(\mathbf{v}) = v_1 T(\mathbf{e}_1) + \cdots + v_n T(\mathbf{e}_n)$.
- To study the geometric interpretation a linear transformation,
 - it suffices to check the effect of the linear transformation on a basis (in particular, standard basis) for its domain.

Scalings

• Let $T:\mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that

$$\circ \quad T\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}\lambda_1\\0\end{pmatrix}, T\left(\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}0\\\lambda_2\end{pmatrix}.$$

Then the standard matrix for T is $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.

$$\circ \quad T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda_1 x \\ \lambda_2 y \end{pmatrix}.$$

Suppose that $\lambda_1 > 0$ and $\lambda_2 > 0$.

- \circ Then T is a scaling in \mathbb{R}^2
 - along the x-axis by a factor of λ_1 , and
 - along the y-axis by a factor of λ_2 .

65 / 99

Example

- Let $T:\mathbb{R}^2 o \mathbb{R}^2$ with standard matrix $\begin{pmatrix} 1.5 & 0 \\ 0 & 0.5 \end{pmatrix}$.
 - \circ Then T is a scaling in \mathbb{R}^2
 - along the x-axis by 1.5 & along the y-axis by 0.5.

- $\bullet\quad \text{Let }T:\mathbb{R}^2\to\mathbb{R}^2 \text{ with standard matrix } \begin{pmatrix} 1.5 & 0 \\ 0 & 0.5 \end{pmatrix}.$
 - $\circ\quad$ Then T is a scaling in \mathbb{R}^2
 - along the x-axis by 1.5 & along the y-axis by 0.5.

67 / 99

Remark

- Suppose that the scaling T satisfies $\lambda_1 = \lambda_2$.
 - \circ Let $\lambda = \lambda_1 = \lambda_2$. The standard matrix of T is $\lambda \boldsymbol{I}_2$.
 - T is a dilation if $\lambda > 1$.
 - T is a contraction if $0 < \lambda < 1$.

Remark

- Suppose that the scaling T satisfies $\lambda_1 = \lambda_2$.
 - Let $\lambda = \lambda_1 = \lambda_2$. The standard matrix of T is $\lambda \boldsymbol{I}_2$.
 - T is a dilation if $\lambda > 1$.
 - T is a contraction if $0 < \lambda < 1$.

69 / 99

Diagonalization

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation.
 - \circ Let A be the standard matrix.

Assume: A is diagonalizable with positive eigenvalues λ_1, λ_2 .

- \circ There exists invertible $oldsymbol{P}$ such that
 - $P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.
- $\circ \quad \mathsf{Let}\, \boldsymbol{P} = \begin{pmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{pmatrix} . \ T(\boldsymbol{v}_1) = \lambda_1 \boldsymbol{v}_1, T(\boldsymbol{v}_2) = \lambda \boldsymbol{v}_2.$
 - Let $S = \{ {m v}_1, {m v}_2 \}.$ Then S is a basis for $\mathbb{R}^2.$
 - $[T(\boldsymbol{v})]_S = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} [\boldsymbol{v}]_S.$
- \circ T can be viewed as a scaling
 - along the direction of v_1 by factor $\lambda_1 > 0$, &
 - along the direction of v_2 by factor $\lambda_2 > 0$.

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation with
 - $\circ \quad \text{Standard matrix } \boldsymbol{A} = \begin{pmatrix} 1 & 1 \\ 0.25 & 1 \end{pmatrix}.$
 - $\circ \quad \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ 0.25 & 1 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1.5 & 0 \\ 0 & 0.5 \end{pmatrix}.$
 - \circ T is a scaling
 - along the direction $(2,1)^T$ by a factor 1.5, and
 - along the direction $(-2,1)^T$ by a factor 0.5.

71 / 99

Scaling in \mathbb{R}^3

- $\bullet \quad \text{Let } T: \mathbb{R}^3 \to \mathbb{R}^3 \text{ be a linear transformation with }$
 - $\circ \quad \text{Standard matrix} \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \, \lambda_1, \lambda_2, \lambda_3 > 0.$

Then T is a scaling

- \circ along the *x*-axis by factor λ_1 ,
- along the y-axis by factor λ_2 ,
- along the z-axis by factor λ_3 .

Suppose that $\lambda_1 = \lambda_2 = \lambda_3 = \lambda$.

- \circ T is a dilation if $\lambda > 1$.
- \circ T is a contraction if $0 < \lambda < 1$.
- Suppose T has standard matrix A.
 - \circ Assume A is diagonalizable with positive eigenvalues.
 - \circ Then T can be viewed as a scaling with respect to a basis for \mathbb{R}^3 . (Exercise.)

Reflection

- Let $T:\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with
 - $\circ \quad \text{Standard matrix: } \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$
 - $\circ T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x \\ -y \end{pmatrix}$

T is the **reflection** with respect to the x-axis.

73 / 99

Reflection

- Let $T:\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with
 - Standard matrix: $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - $\circ T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} -x \\ y \end{pmatrix}.$

T is the **reflection** with respect to the y-axis.

Reflection

- $\bullet \quad \text{Let } T: \mathbb{R}^2 \to \mathbb{R}^2 \text{ be a linear transformation with }$
 - Standard matrix: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
 - $\circ \quad T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} y \\ x \end{pmatrix}$

T is the **reflection** with respect to the line y = x.

75 / 99

Reflection

• Consider a line ℓ passing through the origin (0,0).

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ denote the reflection with respect to ℓ .

 $\circ \quad \text{Then } T \text{ is a linear transformation (show by geometry)}.$

Reflection

• Let θ be the angle between ℓ and the x-axis.

$$\circ T\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}\cos(2\theta)\\\sin(2\theta)\end{pmatrix}.$$

77 / 99

Reflection

• Let θ be the angle between ℓ and the x-axis.

$$T\left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) = \begin{pmatrix} \cos(2\theta - \frac{\pi}{2})\\ \sin(2\theta - \frac{\pi}{2}) \end{pmatrix} = \begin{pmatrix} \sin(2\theta)\\ -\cos(2\theta) \end{pmatrix}$$

Reflection

• Let θ be the angle between ℓ and the x-axis.

- $\circ \quad \text{The standard matrix for } T \text{ is } \begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix}$
 - Every orthogonal matrix of det = -1 is in this form.

79 / 99

Remark

• Let ${\pmb n} = (\cos \theta, \sin \theta)^{\rm T}$ be a unit vector on ℓ .

- $\circ \;\; p$ is the projection of v onto $\mathrm{span}\{n\}.$
 - $p = (v \cdot n)n$.
- \circ p is the midpoint of v and T(v).
 - $\bullet \quad T(\boldsymbol{v}) = 2\boldsymbol{p} \boldsymbol{v} = 2(\boldsymbol{v} \cdot \boldsymbol{n})\boldsymbol{n} \boldsymbol{v}.$

Remark

• Let $n = (\sin \theta, -\cos \theta)^{\mathrm{T}}$ be a unit vector orthogonal to ℓ .

- \circ p is the projection of v onto $\mathrm{span}\{n\}$.
 - $\boldsymbol{p} = (\boldsymbol{v} \cdot \boldsymbol{n})\boldsymbol{n}$.
- $\circ \quad \text{Note that } T(\boldsymbol{v}) + 2\boldsymbol{p} = \boldsymbol{v}.$
 - $T(\mathbf{v}) = \mathbf{v} 2\mathbf{p} = \mathbf{v} 2(\mathbf{v} \cdot \mathbf{n})\mathbf{n}$.

81 / 99

Reflections in \mathbb{R}^3

- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation.
 - $\circ \quad \text{If the standard matrix is } \boldsymbol{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}\!,$
 - ullet then T is the reflection with respect to the xy-plane.
 - \circ If the standard matrix is $m{A} = egin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{pmatrix}$,
 - then T is the reflection with respect to the xy-plane.
 - \circ If the standard matrix is $m{A} = egin{pmatrix} -1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$
 - ullet then T is the reflection with respect to the yz-plane.

Reflections in \mathbb{R}^3

- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the **reflection** with respect to the plane ax+by+cz=0, where a,b,c not all zero.
 - \circ Then $\boldsymbol{n}=(a,b,c)^{\mathrm{T}}$ is orthogonal to the plane.

(Exercise)
$$T(oldsymbol{v}) = oldsymbol{v} - \left(2\,rac{oldsymbol{v}\cdotoldsymbol{n}}{\|oldsymbol{n}\|^2}
ight)oldsymbol{n}, \quad oldsymbol{v} \in \mathbb{R}^3.$$

- \circ *Hint*: The midpoint of ${m v}$ and $T({m v})$ is the projection of ${m v}$ onto the plane ax+by+cz=0.
- **Problem.** Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the reflection with respect to a straight line passing through the origin O.
 - \circ Can you find the formula of T?

83 / 99

Rotations

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the **rotation** about the origin by θ .
 - \circ Then T is a linear transformation.

• It suffices to determine $T(e_1)$ and $T(e_2)$.

Rotations

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the **rotation** about the origin by θ .
 - \circ Then T is a linear transformation.

$$\circ T\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}.$$

85 / 99

Rotations

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the **rotation** about the origin by θ .
 - \circ Then T is a linear transformation.

$$T \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} \cos(\theta + \frac{\pi}{2}) \\ \sin(\theta + \frac{\pi}{2}) \end{pmatrix} = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}.$$

Rotations

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the **rotation** about the origin by θ .
 - \circ Then T is a linear transformation.
 - The standard matrix for T is $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$
 - ullet Every orthogonal matrix of det=1 is in this form.
- Suppose standard matrix ${m A}$ for $T: \mathbb{R}^2 o \mathbb{R}^2$ is orthogonal.
 - \circ If $\det(\mathbf{A}) = 1$, T represents a rotation about the origin.
 - \circ If $\det(\mathbf{A}) = -1$, T represents the reflection with respect to a line passing through the origin.
- $\begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$.
 - Let ℓ denote the line span $\{(\cos \theta, \sin \theta)^T\}$.
 - Reflection with respect to ℓ
 - \Leftrightarrow reflection with respect to the x-axis
 - & rotation about the origin anticlockwise by $2\theta.$

87 / 99

Rotations in \mathbb{R}^3

- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the **rotation** about the *z*-axis anticlockwise by angle θ .
 - \circ The *z*-coordinate does not change.
 - \circ On the xy-plane, it is the rotation about the origin on the plane $z=z_0$ anticlockwise by θ .

•
$$T\left(\begin{pmatrix}1\\0\\0\end{pmatrix}\right) = \begin{pmatrix}\cos\theta\\\sin\theta\\0\end{pmatrix}$$
.

•
$$T\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\right) = \begin{pmatrix}-\sin\theta\\\cos\theta\\0\end{pmatrix}$$
.

•
$$T\left(\begin{pmatrix}0\\0\\1\end{pmatrix}\right) = \begin{pmatrix}0\\0\\1\end{pmatrix}$$
.

Rotations in \mathbb{R}^3

- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the rotation about the z-axis anticlockwise by angle θ .
 - o Standard matrix $\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the rotation about the x-axis anticlockwise by angle θ .
 - $\circ \quad \text{Standard matrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}.$
- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the rotation about the y-axis anticlockwise by angle θ .
 - $\circ \quad \text{Standard matrix} \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix}.$

89 / 99

Shears

• Let $T:\mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$\circ T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x + ky \\ y \end{pmatrix}.$$

Then T is a **shear** in the x-direction by a factor k.

Shears

• Let $T:\mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$\circ T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x \\ kx + y \end{pmatrix}.$$

Then T is a **shear** in the y-direction by a factor k.

91 / 99

Shears

• Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$\circ T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x + k_1 z \\ y + k_2 z \\ z \end{pmatrix}$$

Then T is a **shear** in the x-direction by factor k_1 , and in the y-direction by factor k_2 .

- On yz-plane x=0, it is a shear in y-direction by k_2 .
- o On xz-plane y=0, it is a share in x-direction by k_1 .
- \circ On the plane z=1,

•
$$T\left(\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}\right) = \begin{pmatrix} x + k_1 \\ y + k_2 \\ 1 \end{pmatrix}$$

Translations

- Let $T:\mathbb{R}^2 \to \mathbb{R}^2$ be defined by
 - $\circ \quad T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x+a \\ y+b \end{pmatrix}, a,b \text{ are real numbers.}$
- T is called a translation by $(a, b)^T$.
 - \circ T is **not** a linear transformation unless a=b=0.

93 / 99

2D Computer Graphic

- In 2D computer graphic, a figure is drawn by connecting
 - \circ points $(a_1, b_1), (a_2, b_2), \dots, (a_n, b_n).$

It can be written as an $2 \times n$ matrix:

$$\circ \quad \boldsymbol{M} = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}.$$

For example, $M = \begin{pmatrix} 0 & 3 & 3 & 0 & 0 & 3 & 1.5 & 0 & 3 \\ 0 & 0 & 2 & 0 & 2 & 2 & 3 & 2 & 0 \end{pmatrix}$.

2D Computer Graphic

- Primary geometric transformations on 2D graphics:
 - o Scalings, Reflections, Rotations and Translations.
- Let T be a scaling/reflection/rotation/translation on \mathbb{R}^2 .

Let v_1, v_2, \dots, v_n be a 2D computer graphic.

- The resulting graphic by T is $T(v_1), \ldots, T(v_n)$.
- Suppose T is a scaling, reflection or rotation.
 - \circ Then T is linear with standard matrix A.

If the 2D computer graphic is $oldsymbol{M} = (oldsymbol{v}_1 \quad oldsymbol{v}_2 \quad \cdots \quad oldsymbol{v}_n)$,

 \circ then the resulting graphic by T is

$$(T(\boldsymbol{v}_1) \cdots T(\boldsymbol{v}_n)) = (\boldsymbol{A}\boldsymbol{v}_1 \cdots \boldsymbol{A}\boldsymbol{v}_n)$$

= $\boldsymbol{A}(\boldsymbol{v}_1 \cdots \boldsymbol{v}_n) = \boldsymbol{A}\boldsymbol{M}$.

95 / 99

Example

- Let $M = \begin{pmatrix} 0 & 3 & 3 & 0 & 0 & 3 & 1.5 & 0 & 3 \\ 0 & 0 & 2 & 0 & 2 & 2 & 3 & 2 & 0 \end{pmatrix}$.
 - $\circ \quad \operatorname{Let} T\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} x+y \\ y \end{pmatrix}. \ \boldsymbol{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$
 - $AM = \begin{pmatrix} 0 & 3 & 5 & 0 & 2 & 5 & 4.5 & 2 & 3 \\ 0 & 0 & 2 & 0 & 2 & 2 & 3 & 2 & 0 \end{pmatrix}$.

Homogeneous Coordinate System

- Homogeneous coordinate system is formed by identifying \mathbb{R}^2 with plane z=1 in \mathbb{R}^3 : $\begin{pmatrix} a \\ b \end{pmatrix} \leftrightarrow \begin{pmatrix} a \\ b \\ 1 \end{pmatrix}$.
- A graphic $(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)$ is identified by
 - \circ $(a_1, b_1, 1), (a_2, b_2, 1), \dots, (a_n, b_n, 1).$

The associated matrix is $m{M} = egin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \\ 1 & 1 & \cdots & 1 \end{pmatrix}$.

Let T be the translation $T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x+a \\ y+b \end{pmatrix}$.

 $\circ \quad \text{The shear } T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x + az \\ y + bz \\ z \end{pmatrix} \text{ will do the job: }$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} . \mathbf{AM} = \begin{pmatrix} a_1 + a & \cdots & a_n + a \\ b_1 + b & \cdots & b_n + b \\ 1 & \cdots & 1 \end{pmatrix} .$$

97 / 99

Example

- $\bullet \quad \text{Let } \pmb{M} = \begin{pmatrix} 0 & 3 & 3 & 0 & 0 & 3 & 1.5 & 0 & 3 \\ 0 & 0 & 2 & 0 & 2 & 2 & 3 & 2 & 0 \end{pmatrix}.$
 - $\circ \quad \text{Let } T\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} x+2 \\ y+1 \end{pmatrix}.$

Set
$$M' = \begin{pmatrix} 0 & 3 & 3 & 0 & 0 & 3 & 1.5 & 0 & 3 \\ 0 & 0 & 2 & 0 & 2 & 2 & 3 & 2 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$
.

- $\circ \quad \text{Standard matrix of the shear: } \boldsymbol{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$
 - $AM' = \begin{pmatrix} 2 & 5 & 5 & 2 & 2 & 5 & 3.5 & 2 & 5 \\ 1 & 1 & 3 & 1 & 3 & 3 & 4 & 3 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}.$

 $\text{Result graph: } \begin{pmatrix} 2 & 5 & 5 & 2 & 2 & 5 & 3.5 & 2 & 5 \\ 1 & 1 & 3 & 1 & 3 & 3 & 4 & 3 & 1 \end{pmatrix}\!.$

Example

- $\bullet \quad \text{Let } \boldsymbol{M} = \begin{pmatrix} 0 & 3 & 3 & 0 & 0 & 3 & 1.5 & 0 & 3 \\ 0 & 0 & 2 & 0 & 2 & 2 & 3 & 2 & 0 \end{pmatrix}.$

 - $\circ \ \, \operatorname{Let} T\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} x+2 \\ y+1 \end{pmatrix}.$ $\circ \ \, \operatorname{Result graph:} \begin{pmatrix} 2 & 5 & 5 & 2 & 2 & 5 & 3.5 & 2 & 5 \\ 1 & 1 & 3 & 1 & 3 & 3 & 4 & 3 & 1 \end{pmatrix}$

