Section 1.8: Inhaduction to Linear Transformations:

Note: A matrix eq. $4\vec{x} = \vec{b}$ can arise in Linear Algebra in a way that is not directly connected u/ linear combination of vectors

This occurs when:

We think of the matrix A as on object that 'acts' on a vector \vec{x} by multiplication to produce a new vector called $A\vec{x}$.

Illustration:

$$\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$$

$$\uparrow$$

$$\downarrow$$

Note: This equation says that multiplication by A transforms vector \vec{x} into vector \vec{b} .

This new P.O.V. : Solving the eq. $A\overrightarrow{x} = \overrightarrow{b}$ amounts to finding all vectors \overrightarrow{x} in \mathbb{R}^4 that are transformed into the vector \overrightarrow{b} in \mathbb{R}^2 under the action of multiplication by A.

* Iransforming Vectors via Matrix Multiplication *

Note: The correspondence from \$\forall to A\$\forall 1s a function from one set of vectors to another.

Definition:

A Transformation. (or Function, or Mapping) 'T' from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns each vector \mathbb{X} in \mathbb{R}^n to a vector $\mathbb{T}(\mathbb{X})$ in \mathbb{R}^m

→ Denoted: T: R" -> R"

* The Set IR" is called: The Domain of T

* The Set IRM is called: The Codomain of T

* The vector T(x) in R" is called: The Image of x

*The set of all images T(x) is called: The Range of T

*Illustration of the Domain, Codomain, & Range of T: R" -> Rm:

Example (Matrix Transformations):

Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $\vec{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\vec{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$

and define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\vec{x}) = A\vec{x}$ such that:

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} \chi_1 - 3\chi_2 \\ 3\chi_1 + 5\chi_2 \\ -\chi_1 + 7\chi_2 \end{bmatrix}$$

Find the Following:

- (a) Find $T(\vec{u})$, the image of \vec{u} under the transformation T.
- (b) Find a \overrightarrow{x} in \mathbb{R}^2 whose image under T is \overrightarrow{b} .
- (c) Is there more than one of whose image under T is b?

 ** uniqueness question! "Is to the image of a unique of in Rn?"
- (d) Determine if \vec{c} is in the range of the transformation \vec{c} .

 *In existence question! "Does \vec{d} whose image is \vec{c} ?"

 Answer:

kPart (a): Find the image of \vec{u} under the transformation T:

to find $T(\vec{u})$ we compute: $T(\vec{u}) = A\vec{x}$

$$T(\vec{u}) = A\vec{u} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 2(1) - 1(-3) \\ 2(3) - 1(5) \\ 2(-1) - 1(7) \end{bmatrix} = \begin{bmatrix} 2 + 3 \\ 6 - 5 \\ -2 - 7 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ -9 \end{bmatrix}$$

0

Note: Here we are asked to solve T(文)= b For 文.

=> IOW: Since T(x)= Ax, solve Ax= b

· Convert $A\vec{x} = \vec{b}$ to the equivalent aug. matrix $[+]\vec{b}$:

 $\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix} \iff \begin{bmatrix} 1 & -3 & | & 3 \\ 3 & 5 & | & 2 \\ -1 & 7 & | & -5 \end{bmatrix}$ *We want to verify that this system is consistent (i.e. 3 and 2) are as a solution.

· Row reduce the aug. matrix [A;b] to find general solution: see next page :

Example (Matrix Transformation) Continued.

$$\begin{array}{c} -3R_{1} \\ + R_{2} \\ \hline \text{New } R_{2} \end{array} \longrightarrow \begin{bmatrix} 1 & -3 & | & 3 \\ 0 & | & 4 & | & -7 \\ -1 & 7 & | & -5 \end{bmatrix} \xrightarrow{14} R_{2} \begin{bmatrix} 1 & -3 & | & 3 \\ 0 & | & 1 & | & -1/2 \\ -1 & 7 & | & -5 \end{bmatrix}$$

$$\begin{array}{cccc}
 & -R_2 \\
 & +R_3 \\
 & -R_3
\end{array}$$

$$\begin{array}{ccccc}
 & 1 & -3 & 3 \\
 & 0 & 1 & -V_2 \\
 & 0 & 0 & 0
\end{array}$$

$$\begin{array}{ccccc}
 & 0 & 0 & 0
\end{array}$$

$$\begin{array}{c}
3R_{2} \\
+ R_{1} \\
- New R_{1}
\end{array}$$

$$\begin{bmatrix}
1 & 0 & | & 3/2 \\
0 & 1 & | & -1/2 \\
0 & 0 & | & 0
\end{bmatrix}$$

$$\begin{array}{c}
\overrightarrow{\chi} = \begin{bmatrix} \chi_{1} \\
\chi_{2} \end{bmatrix} = \begin{bmatrix} 3/2 \\
- 1/2 \end{bmatrix}$$
Answer \(\)

The image of
$$\vec{x} = \begin{bmatrix} 3/2 \\ -1/2 \end{bmatrix}$$
 under $\vec{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$

Part (c): Is the more than one x whose image under T is b?

Note: Any \vec{x} whose image under \vec{T} is \vec{b} must satisfy the equation: $A\vec{x} = \vec{b} \rightarrow \begin{bmatrix} 1 & -3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$

Part (d): Determine if to is in the range of the

transformation T:

Note: 2 is in the Ronge of T if: 2 is the image of some

$$\overrightarrow{x}$$
 in $\mathbb{R}^2 \Rightarrow \overrightarrow{c} = T(\overrightarrow{x})$

$$\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix} \iff \begin{bmatrix} 1 & -3 & | & 3 \\ 3 & 5 & | & 2 \\ -1 & 7 & | & 5 \end{bmatrix}$$
#Hant to verify /check
is consistent:

*Row reduce the augmented matrix:

$$\begin{array}{c} -3R_{1} \\ + R_{2} \\ \hline \\ rew R_{2} \end{array} \longrightarrow \begin{bmatrix} 1 & -3 & | & 3 \\ 0 & 14 & | & -7 \\ -1 & 7 & | & 5 \end{bmatrix} \begin{array}{c} + R_{2} \\ \hline \\ -1 & 7 & | & 5 \end{bmatrix}$$

$$\begin{array}{c} R_{1} \\ + R_{3} \\ \hline New R_{3} \end{array} \longrightarrow \begin{bmatrix} 1 & -3 & | & 3 \\ 0 & 1 & | & -1/2 \\ 0 & 4 & | & 8 \end{bmatrix} \xrightarrow{4R_{3}} \begin{bmatrix} 1 & -3 & | & 3 \\ 0 & 1 & | & -1/2 \\ 0 & 1 & | & 2 \end{bmatrix}$$

-Rz
+R3
$$\rightarrow$$
 0 11-1/2
R3 produces a contradiction
New R3 0 015/2 \rightarrow \rightarrow : The system is inconsistent
(i.e. No solution \exists)

Since
$$4\vec{x} = \vec{c}$$
 produces an inconsistent system, \vec{c} is NOT in the Range of the transformation T.

Example: Define
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 by $T(\vec{x}) = A\vec{x}$. Find $T(\vec{t}) \notin T(\vec{v})$.

Let
$$A = \begin{bmatrix} \sqrt{8} & 0 & 0 \\ 0 & \sqrt{8} & 0 \\ 0 & 0 & \sqrt{8} \end{bmatrix}$$
, $\vec{U} = \begin{bmatrix} 8 \\ 16 \\ 24 \end{bmatrix}$, $\vec{V} = \begin{bmatrix} 6 \\ a \\ d \end{bmatrix}$

Answer:

* Transformation:
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 by $T(\vec{x}) = A\vec{x}$

* Find
$$T(\vec{u}) = A\vec{u}$$
: Reads: "The image of \vec{u} under the transformation T "

$$T(\vec{\alpha}) = \begin{bmatrix} \frac{1}{8} & 0 & 0 \\ 0 & \frac{1}{8} & 0 \\ 0 & 0 & \frac{1}{8} \end{bmatrix} \begin{bmatrix} 8 \\ 16 \\ -24 \end{bmatrix} = \begin{bmatrix} 8(\frac{1}{8}) + 0 + 0 \\ 0 & +16(\frac{1}{8}) + 0 \\ 0 + 0 & -24(\frac{1}{8}) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$
Answer.

* Find
$$T(\vec{v}) = A\vec{v}$$
: Reads: "The image of \vec{v} under the transformation T "

$$T(\vec{V}) = \begin{bmatrix} \frac{1}{8} & 0 & 0 \\ 0 & \frac{1}{8} & 0 \\ 0 & 0 & \frac{1}{8} \end{bmatrix} \begin{bmatrix} \frac{1}{8}b & + & 0 & + & 0 \\ 0 & + & \frac{1}{8}a & + & 0 \\ 0 & + & \frac{1}{8}a & + & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{8}b & + & 0 & + & 0 \\ 0 & 0 & \frac{1}{8}b & - & 0 & + & \frac{1}{8}d \end{bmatrix} = \begin{bmatrix} \frac{1}{8}b & + & 0 & + & 0 \\ 0 & 0 & \frac{1}{8}b & - & 0 & + & \frac{1}{8}d \end{bmatrix}$$

Answer.

Example: IF T is defined by
$$T(\vec{x}) = A\vec{x}$$
, find a vector \vec{x} whose image under T is \vec{b} , and determine whether \vec{x} is unique. Let $A = \begin{bmatrix} 1 & -4 & 4 \\ 0 & 1 & -4 \\ 4 & -17 & 16 \end{bmatrix}$ $\vec{b} = \begin{bmatrix} -4 \\ -10 \\ -2 \end{bmatrix}$

$$\begin{bmatrix} 1 & -4 & 4 \\ 0 & 1 & -4 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} -4 \\ -10 \end{bmatrix} \iff \begin{bmatrix} 1 & -4 & 4 & -4 \\ 0 & 1 & -4 & -10 \\ 4 & -17 & 16 \end{bmatrix} \begin{bmatrix} \chi_3 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$
Now solve the aug. matrix to row-reduced exhelen form.

$$\begin{array}{c}
R_{2} \\
+ R_{1} \\
\hline
New R_{1}
\end{array}
\longrightarrow
\begin{bmatrix}
1 & 0 & -12 & | -44 \\
0 & 1 & -4 & | -10 \\
0 & 0 & -4 & | 4
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
1 & 0 & -12 & | -44 \\
0 & 1 & -4 & | -10 \\
0 & 0 & 1 & | -1
\end{bmatrix}$$

* Recall:
$$A\overrightarrow{x} = \overrightarrow{b}$$
 is equivalent to the aug. matrix $[A \mid \overrightarrow{b}]$

Example Continued...

$$\begin{array}{c}
4R_3 \\
+R_2 \\
\hline
\text{new } R_2
\end{array}$$

$$\begin{bmatrix}
1 & 0 & -12 & -44 \\
0 & 1 & 0 & -14 \\
0 & 0 & 1 & -14
\end{bmatrix}$$

$$\begin{array}{c}
12R_{3} \\
+ R_{1} \\
New R_{1}
\end{array}$$

$$\begin{bmatrix}
1 & 0 & 0 & | -56 \\
0 & 1 & 0 & | -14 \\
0 & 0 & | & -14
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
1 \times \chi_{1} \\
\chi_{2} \\
\chi_{3} \\
-1
\end{bmatrix}$$

Therefore: A vector
$$\vec{x}$$
 whose image under \vec{T} is \vec{b} is $\vec{\chi} = \begin{bmatrix} -56 \\ -14 \\ -1 \end{bmatrix}$ *Since NO Free variables \vec{J} , this solution is unique.

Inswer.

Example: If T is defined by $T(\vec{x}) = A\vec{x}$, find a vector \vec{x} whose image under T is \vec{b} , and determine if \vec{x} is unique. Let $A = \begin{bmatrix} 1 & -3 & -4 \\ -3 & 1 & -12 \end{bmatrix}$ & $\vec{b} = \begin{bmatrix} 1 \\ -11 \end{bmatrix}$

Answer:

* Find a vector \vec{x} whose image under T is \vec{b} :

TOW: Find
$$\vec{x}$$
 ST $A\vec{x} = \vec{b}$:

Solve the aug. matrix For \vec{x}

$$\begin{bmatrix} 1 & -3 & -4 \\ -3 & 1 & -12 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -11 \end{bmatrix} \iff \begin{bmatrix} 1 & -3 & -4 \\ -3 & 1 & -12 \\ \end{bmatrix} - 11 \end{bmatrix}$$

Note: I more unknowns than equations => linear dependent v

$$\begin{array}{c}
3R_{2} \\
+ R_{1} \\
\text{New } R_{1}
\end{array}
\longrightarrow
\begin{bmatrix}
1 & 0 & 5 & | 4 \\
0 & 1 & 3 & | 1
\end{bmatrix}
\Longrightarrow
\begin{bmatrix}
\chi_{1} = 4 - 5\chi_{3} \\
\chi_{2} = 1 - 3\chi_{3} \\
\chi_{3} \text{ is free}
\end{bmatrix}$$

: General Solution for vector x whose image under T is bis

$$\vec{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 4 - 5\chi_3 \\ 1 - 3\chi_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} + \chi_3 \begin{bmatrix} -5 \\ -3 \end{bmatrix} + \chi_3 \begin{bmatrix} -5 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 4 - 5\chi_3 \\ 1 - 3\chi_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} + \chi_3 \begin{bmatrix} -5 \\ -3 \end{bmatrix} + \chi_3 \begin{bmatrix} -5 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 4 - 5\chi_3 \\ 1 - 3\chi_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} + \chi_3 \begin{bmatrix} -5 \\ -3 \end{bmatrix} + \chi_3 \begin{bmatrix} -5 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 4 - 5\chi_3 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} + \chi_3 \begin{bmatrix} -5 \\ -3 \end{bmatrix} + \chi_3 \begin{bmatrix} -5 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 - 5\chi_3 \\ 1 \end{bmatrix} = \begin{bmatrix}$$

Is b in the range of the linear transformation \$ → A \$? Explain why or why not.

Answer:

$$\Rightarrow$$
 Iow: \vec{b} is in the range of \vec{T} if \vec{b} is the image of some $\vec{x} \Rightarrow Solve: A\vec{x} = \vec{b}$

* Convert
$$A\vec{x} = \vec{b}$$
 to its equivalent aug. matrix

Form $[A;\vec{b}]$ & row reduce:

$$\begin{bmatrix} 1 & -4 & 4 & -4 \\ 0 & 1 & -4 & 4 \\ 3 & -10 & 4 & -3 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} \iff \begin{bmatrix} 1 & -4 & 4 & -4 & 1 & -1 \\ 0 & 1 & -4 & 4 & 1 & 1 \\ 3 & -10 & 4 & -3 & 1 & -1 \end{bmatrix}$$

* Note: # of unknowns > # of eavahor > Linear Dependent :

=>[A; b] is a consistent system & b is in the range of T.

* Geometric Representations of Matrix Transformations *

Note: Looking at matrix transformations geometrically can help to reinforce the view of a matrix as something that transforms vectors into other vectors:

Illustration (A projection transformation):

If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, then the transformation $\overrightarrow{X} \mapsto A\overrightarrow{X}$

projects points in IR3 onto the x,x2-plane.

* Computation: \$\forall \to A \forall \forall

$$A\vec{\chi} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 1 \cdot \chi_1 + 0 \chi_2 + 0 \chi_3 \\ 0 \chi_1 + 1 \chi_2 + 0 \chi_3 \end{bmatrix} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ 0 \end{bmatrix} \in \mathbb{R}^2$$

$$\therefore \vec{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} \in \mathbb{R}^3 \quad \longrightarrow \quad A\vec{\chi} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ 0 \end{bmatrix} \in \mathbb{R}^2$$

*Illustration (A Shear Transformation):

Let $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$

defined by $T(\vec{x}) = A\vec{x}$ is called a <u>Shear Transformation</u>.

IF T acts on each point in the 2×2 square, then

the set of images forms the shaded parallelogram.

*Note: The key idea is to show that T maps line segments to line segments, and then to check that the corners of the squares map to the vertices of

(the paralleogram.

Let
$$\vec{u} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
 & $\vec{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. Find $T(\vec{u})$ & $T(\vec{v})$.

transformation T

*
$$T(\vec{\alpha}) = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0(1) + 2(3) \\ 0(0) + 2(1) \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$kT(\overrightarrow{v}) = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2(1) + 2(3) \\ 2(0) + 2(1) \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$$

*Matrix Transformations *

For each \vec{x} in \mathbb{R}^n , $T(\vec{x})$ is computed as $A\vec{x}$, where A is an $m \times n$ matrix.

Note: We sometimes denote such a matrix transformation by: $\sqrt{\chi} \mapsto A \chi$

Observations:

- The domain of T is Rn when A has n columns
- The codomain of T is Rm when each column of A has m entries.
- The range of T is the set of all linear combinations of the columns of A
 - \Rightarrow because each image of $T(\vec{x})$ is of the form $A\vec{x}$:
 - → A vector B is in the range of T if

 [A | B] is a consistent system:

*General Observations/Conclusions *

- O A linear transformation is a Function From IRn to IRM that assigns to each vector in IRn, a vector in IRM.
- ② If A is a 3×5 matrix & T is a transformation defined by $T(\vec{x}) = A\vec{x}$, Then...
 - *# of columns in A = # of rows in $\overrightarrow{X} \Rightarrow Domain$ of T
 - : Since A has n=5 columns, the domain is R5
 - $\exists \underline{\text{In the product } A\vec{x}}: \underline{\text{If } A \text{ is a } m \times n \text{ matrix, then}}$ $\vec{x} \in \mathbb{R}^n :$
 - * Domain => # of columns
- 3 If A is an $m \times n$ matrix, then the RANGE of the transformation $\overrightarrow{x} \mapsto A\overrightarrow{x}$ is:
 - The set of all linear combinations of the columns of A b/c each image of the transformation is of the form $A\vec{x}$
 - * Rn -> Domain

Unestion: How many rows & columns must matrix & have in order to define a mapping from \mathbb{R}^4 into \mathbb{R}^7 by the rule $T(\vec{x}) = J\vec{x}$? $\Rightarrow Jat T: \mathbb{R}^4 \longrightarrow \mathbb{R}^7$ Such that $T(\vec{x}) = A\vec{x}$ *Note: For the product Ax to 3 => The # of columns in matrix & must match the # of rows in vector \$ · $\overrightarrow{\chi} \in \mathbb{R}^4$ ($\overrightarrow{\chi}$ is in the Domain of T) → 4 nows in $\overrightarrow{\chi}$ • A > 7 x 4 matrix {-7 rows (4 columns) (heck: $A\vec{x} = \begin{bmatrix} a_{11} & a_{14} \\ \vdots & \vdots \\ a_{71} & a_{74} \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{bmatrix} = \begin{bmatrix} \chi_1 a_{11} + \chi_2 a_{12} + \chi_3 a_{13} + \chi_4 a_{14} \\ \chi_1 a_{71} + \chi_2 a_{72} + \chi_3 a_{73} + \chi_4 a_{74} \\ \chi_1 a_{71} + \chi_2 a_{72} + \chi_3 a_{73} + \chi_4 a_{74} \end{bmatrix}$

Each column has 7 entries:

*Linear Transformations *

The properties of the Matrix-Vector Product $A\overrightarrow{x}$, written in function notation, identify the most important class of transformations in Linear Algebra!

Definition:

Let u d v be vectors in R. Let cER. be a scalar.

A transformation (or mapping) T is linear if:

(ii)
$$T(c\vec{u}) = cT(\vec{u})$$
 \(\text{V scalars } c & \text{V } \tau \) in the domain of T

Every matrix transformation is a linear transformation.

*CAUTION: The reverse is NOT necessarily the -> its we will see later in chapters 4 & 5 :

Linear Transformations preserve the operations of vector addition & scalar multiplication, leading to the Following:

Additional Properties:

If T is a Linear Transformation, then:

(ii)
$$T(c_1\vec{u}_1 + c_2\vec{u}_2 + \cdots + c_p\vec{u}_p) = c_1T(\vec{u}_1) + c_2T(\vec{u}_2) + \cdots + c_pT(\vec{u}_p)$$

4 vectors は= { ば, ば,..., ばp3 \$ Y scalars c={c1, (2,..., (p3)

Example 1 (Linear Transformation): Given a scalar r, define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\vec{x}) = r\vec{\chi}$. Tis called a contraction when 0 = r = 1 and called a dilation when r>1. Let r=3 and show that T is a linear transformation. Answer: * Given: . A transformation (or mapping): T: R² → R² by T(x) = rx, where r is a scalar. · A scalar: r=3 => T(x)=3x Recall: If T is a linear transformation, then: Y vectors is the domain of T & Y scalars c. Let U, & Uz be vectors in R2 & Let C,,Cz be scalars Since $T(\vec{x}) = 3\vec{x}$: $T(c_1\vec{u}_1 + c_2\vec{u}_2) = 3(c_1\vec{u}_1 + c_2\vec{u}_2)$ = 3 c, T, +3 c, T, $= C_1(3\vec{u}_1) + C_2(3\vec{u}_2)$ $= C_1 T(\overrightarrow{U_1}) + C_2 T(\overrightarrow{U_2})$

Since T(C, \vec{u}_1 + C_2\vec{u}_2) = C, T(\vec{u}_1) + C_2T(\vec{u}_2), T is a

Example 2 (Linear Transformation):

Define a linear transformation T: R2 -> IR2 by

$$T(\overrightarrow{x}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} -\chi_2 \\ \chi_1 \end{bmatrix}.$$

Find the images under T of $\vec{u} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $\vec{V} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, and

$$\vec{u} + \vec{v} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

i)
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Notes:

i)
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Notes:

$$T(\vec{u}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} -u_2 \\ u_1 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

$$T(\overrightarrow{\vee}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -V_2 \\ V_1 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

Recall:
$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

$$T(\overrightarrow{u} + \overrightarrow{V}) = \begin{bmatrix} -1 \\ 4 \end{bmatrix} + \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}$$

Example: The figure below shows vectors u, v, & w, along with $T(\vec{u})$ & $T(\vec{v})$ under the action of the linear transformation T: IR2 -> IR2. Draw the image of I (W) as

Answer:

Note: We can create a parallelogram using U, V, & W. 1) Draw a line parallel to V, through w

@Draw a line parallel to it, through w

Notes:
One side length is \vec{u} Shorter side length $\approx 2\vec{v}$

$$\Rightarrow \overrightarrow{u} = \overrightarrow{u} + 2\overrightarrow{v}$$

*Using the Properties of a Linear Transformation:

$$T(\overrightarrow{w}) = T(\overrightarrow{u} + \overrightarrow{\lambda} \overrightarrow{v}) = T(\overrightarrow{u}) + T(\overrightarrow{\lambda} \overrightarrow{v}) = T(\overrightarrow{u}) + \overrightarrow{\lambda} T(\overrightarrow{v})$$

:
$$T(\vec{w}) = T(\vec{w}) + 2T(\vec{v})$$
 Sketch on the next page:

Example Continued...

* Draw the image of T(w):

Notes: To sketch $T(\vec{w})$, we again use a parallelogram \vec{v} Since $T(\vec{w}) = T(\vec{v}) + 2T(\vec{v})$ O Side Lengths are " $T(\vec{u})$ " # " $2T(\vec{v})$ "

O $T(\vec{w})$ is the diagonal of the parallelogram

Example: Let
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 be a linear transformation that maps $\vec{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ into $\begin{bmatrix} 6 \\ 1 \end{bmatrix}$ and maps $\vec{v} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$ into $\begin{bmatrix} -1 \\ 4 \end{bmatrix}$.

Use the fact that T is linear to find the images under T of 3世, 2寸, 自 3世+ 2寸.

Answer:

• For
$$\vec{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
, $T(\vec{u}) = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$

• For
$$\vec{V} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$
, $T(\vec{V}) = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$

$$T(c_{1}\vec{u}_{1} + c_{2}\vec{u}_{2} + \cdots + c_{p}\vec{u}_{p}) = c_{1}T(\vec{u}_{1}) + \cdots + c_{p}T(\vec{u}_{p})$$

For vectors {u,,..., up3 & scalars {c,..., cp3

Since T is a linear transformation:

Since T is a linear transformation:
*
$$T(3\vec{u}) = 3T(\vec{u}) = 3\begin{bmatrix} 6 \\ 1 \end{bmatrix} = \begin{bmatrix} 18 \\ 3 \end{bmatrix}$$
 * The image of 2th

*
$$T(2\vec{v}) = 2T(\vec{v}) = 2\begin{bmatrix} -1\\4 \end{bmatrix} = \begin{bmatrix} -2\\8 \end{bmatrix}$$
 * The image of $2\vec{v}$ under $T_{\vec{v}}$

*
$$T(3\vec{u}+2\vec{v})=T(3\vec{u})+T(2\vec{v})=\begin{bmatrix}18\\3\end{bmatrix}+\begin{bmatrix}-2\\8\end{bmatrix}=\begin{bmatrix}16\\11\end{bmatrix}$$
 * The image of $3\vec{u}+2\vec{v}$ under T

Example: Let
$$\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 & $\vec{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and let

$$\vec{y}_1 = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$
 & $\vec{y}_2 = \begin{bmatrix} -1 \\ 8 \end{bmatrix}$, and let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps e_1 into y_1 and e_2 into y_2

Find the images of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Answer:

For
$$\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
: $T(\vec{e}_1) = \vec{y}_1 = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$

For
$$\vec{e}_z = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
: $T(\vec{e}_z) = \vec{y}_z = \begin{bmatrix} -1 \\ 8 \end{bmatrix}$

* Find the image of
$$\begin{bmatrix} 5 \\ -3 \end{bmatrix}$$
: Let $\vec{\chi} = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$ Find $T(\vec{x})$

i) Rewrite x in terms of E, & Ez.

$$\vec{X} = \begin{bmatrix} 5 \\ -3 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + (-3) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 5\vec{e_1} - 3\vec{e_2}$$

$$\Rightarrow \vec{x} = 5\vec{e}_1 - 3\vec{e}_2$$

ii) Use prop. of Linear Transformations to Find T(x):

$$T(\vec{x}) = T(\vec{5}\vec{e}, -3\vec{e}_2) = 5T(\vec{e}_1) - 3T(\vec{e}_2) = 5\begin{bmatrix} 4\\6 \end{bmatrix} - 3\begin{bmatrix} -1\\8 \end{bmatrix} = \cdots$$

$$T(\vec{x}) = 5\begin{bmatrix} 4 \\ 6 \end{bmatrix} - 3\begin{bmatrix} -1 \\ 8 \end{bmatrix} = \begin{bmatrix} 20 + 3 \\ 30 - 24 \end{bmatrix} = \begin{bmatrix} 23 \\ 6 \end{bmatrix}$$

$$T(\vec{x}) = \begin{bmatrix} 23 \\ 6 \end{bmatrix}$$

*Find the image of
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
: Let $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Let
$$\vec{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$$

Note: Want to find T(文) :

i) Rewrite
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 in terms of \vec{e} , \vec{q} \vec{e}_z .

$$\vec{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \chi_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \chi_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \chi_1 \vec{e}_1 + \chi_2 \vec{e}_2$$

ii) Find T(文) -> Use properties of linear Transformations:

$$T(\vec{\chi}) = T(\chi_1\vec{e_1} + \chi_2\vec{e_2}) = \chi_1T(\vec{e_1}) + \chi_2T(\vec{e_2})$$

$$= \chi_1 \overline{y_1} + \chi_2 \overline{y_2} = \chi_1 \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \chi_2 \begin{bmatrix} -1 \\ 8 \end{bmatrix}$$

$$= \begin{bmatrix} 4x_1 - x_2 \\ 6x_1 + 8x_2 \end{bmatrix}$$

$$T(\vec{x}) = \begin{bmatrix} 4x_1 - x_2 \\ 6x_1 + 8x_2 \end{bmatrix}$$

Example: Let
$$\vec{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$$
, $\vec{V}_1 = \begin{bmatrix} 9 \\ 2 \end{bmatrix}$, $\vec{x} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$.

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \vec{x} into $\vec{x}, \vec{v}_1 + \vec{x}_2 \vec{v}_2$. Find a matrix \vec{A} such that $T(\vec{x})$ is $\vec{A}\vec{x}$ for each \vec{x} .

Answer:

* Given the Linear Transformation:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 ST : $T(\vec{x}) = \chi_1 \vec{V}_1 + \chi_2 \vec{V}_2$
= $\left[\vec{V}_1 \vec{V}_2\right] \left[\begin{matrix} \chi_1 \\ \chi_2 \end{matrix}\right]$

$$A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} = \begin{bmatrix} q & 1 \\ 2 & 7 \end{bmatrix}$$

Answer

Example: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let $\{\overrightarrow{V_1}, \overrightarrow{V_2}, \overrightarrow{V_3}\}$ be a linearly dependent set in \mathbb{R}^n . Explain why the set $\{T(\overrightarrow{V_1}), T(\overrightarrow{V_2}), T(\overrightarrow{V_3})\}$ is linearly dependent.

Answer:

* Want to show: The Set {T(\(\nabla_1\)), T(\(\nabla_2\)), T(\(\nabla_3\))} is linearly dependent.

[Iow(Gral) > { $T(\vec{v_1}), T(\vec{v_2}), T(\vec{v_3})$ } is linearly dependent if \vec{z}). Weights { C_1, C_2, C_3 }, not all zero, \vec{z} : $C_1T(\vec{v_1}) + C_2T(\vec{v_2}) + C_3T(\vec{v_3}) = \vec{o}$

* Given:

- · Linear Transformation: T: R" → RM
- · Linearly Dependent Set: {V1, √2, √3} ∈ IR^

By Definition (1.7), since {\vec{V}_1,\vec{V}_2,\vec{V}_3} \in \mathbb{R}^n are linearly dependent,

I weights/scalars (not all zero) st:

$$C_1\overrightarrow{V_1} + C_2\overrightarrow{V_2} + C_3\overrightarrow{V_3} = \overrightarrow{O}$$

By Properties of Linear Transformations (1.8), Since T is a linear transformation: $T(C, \vec{V}_1 + C_2\vec{V}_2 + C_3\vec{V}_3) = T(\vec{O})$

$$c_{1}T(\vec{v_{1}}) + c_{2}T(\vec{v_{2}}) + c_{3}T(\vec{v_{3}}) = \vec{o}$$

: {T(Vi), T(Vz), T(V3)} is linearly dependent.