SEMAINE DU 12/09 AU 16/09

1 Cours

Raisonnements et ensembles

Logique Conjonction, disjonction, négation de propositions logiques. Implication et équivalence. Quantificateurs.

Raisonnements Double implication. Raisonnement par l'absurde. Contraposition. Récurrence (simple, double, forte). Analyse/synthèse.

Ensembles Appartenance, inclusion. Union, intersection, complémentaire. Produit cartésien.

Sommes et produits

Techniques de calcul Symbole \sum et règles de calcul, sommes télescopiques, changement d'indice, sommation par paquets.

Sommes classiques Suites arithmétiques et géométriques, factorisation de $a^n - b^n$, coefficients binomiaux et formule du binôme de Newton.

Sommes doubles Définition, règles de calcul, interversion des signes \sum (cas de sommes triangulaires), sommation par paquets.

2 Méthodes à maîtriser

- ► Rédiger proprement une récurrence.
- ▶ Montrer une inégalité en raisonnant par équivalence.
- ▶ Résolution d'équations et d'inéquations avec valeurs absolues et racines carrées.
- ► Changement d'indice.
- ► Sommes télescopiques.
- \blacktriangleright Interversion des symboles \sum pour les sommes doubles.

3 Questions de cours

ightharpoonup Déterminer les applications $f: \mathbb{N} \to \mathbb{N}$ telles que

$$\forall (m,n) \in \mathbb{N}^2$$
, $f(m+n) = f(m) + f(n)$

- ▶ Soient $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. Calculer $\sum_{k=1}^{n} kx^k$.
- ▶ Énoncer et démontrer la formule du binôme de Newton par récurrence.
- Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^{n} {2n \choose 2k}$ et $\sum_{k=0}^{n-1} {2n \choose 2k+1}$.
- ▶ Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=1}^{n} k^2$ sous forme factorisée.