

Energy scale cross-calibration of Hyper-Kamiokande detector using Deuterium-Tritium neutron generator

Abderrazaq El Abassi; Rafik Er-rabit, Mohamed Gouighri

Hyper-K

- Hyper-Kamiokande detector is a next-generation long baseline neutrinos experiment expected to start taking data in 2027
- Deuterium-Tritium neutron generator is used to cross check the energy scale
- DTG overcome some limitations of LINAC, such as isotropy and lower dead time, and lower shadowing effect.

¹⁶N is created by a neutron capture on ¹⁶O, and used as a source of calibration^[1] to be compared with LINAC calibration and combine both results to evaluate the total absolute energy scale.

Deuterium-Tritium neutron generator

The DTG generates neutrons by colliding deuterium and tritium ions with a fixed metal hydride target, containing equal parts of deuterium and tritium.

The neutron generator can be pulsed at maximum rate of 100 Hz, with each pulse yielding approximately 10⁶ neutrons.

DTG deployment

- DTG is a low energy cross calibration
- Used to generate an N16 cloud inside the inner detector:
- ${}^{16}_{8}O + {}^{1}_{0}n \rightarrow {}^{1}_{0}n + {}^{16}_{7}N$ • This N16 cloud beta decays
- isotopically: $^{16}N \rightarrow ^{16}O^* + \overline{V} + e$
- DTG device will be deployed through several calibration ports into different depths per port.
- After firing the neutrons, the device will be raised above the source before data taking to minimize shadowing effect.

Neutron activation simulation^[1]

GEANT4 simulation of a

- 4x4x4 m³ box of water
- Number of simulated neutrons: 5M
- Neutrons energy: 14.2 MeV
- Orientation: at the origin (0,0,0) directed towards -Z axis with an opening angle of 15 degrees.

expected ¹⁶N yield is 2.3%, while Super-K^[1] results found 1.3% and 1% observed in their data.

N16 Yield from (n,p) Reaction on Water 2.5 **≥** 2.0 1.0 0.5 12 18

Incident Neutron Energy [MeV]

Capture cross section on ¹⁶O on agreement with ITER measaurement^[2]

Visualization of generated neutron tracks in water

Preliminary results: ¹⁶N MC truth position

Mean: 0.02

WCSim^[4]: 16N x and y, z positions, the neutrons were directed towards -z

Y Coordinates (cm)

Truth N16 X Coordinates

Preliminary results: Reconstructed vertex and energy

Reconstructed Vertex_Z: Deployement Point (0,0,0) constructed: lean: -13.37 cm ntries: 90901 5 4000 **-**

 The peak of energy is around 6 MeV which corresponds to the dominant gamma ray.

 Above a certain threshold (between 5 and 6 MeV), the shape of the energy spectrum can be fit with a Gaussian.

• At lower energies, the distribution appears to be affected by a cut in the shape due to detector's efficiency.

Reconstructed mean values are close to truth mean values, 0.02 cm, 0 cm, and -13.73 cm for truth mean vtx_x, vtx_y, and vtx_z respectively. However, a wider distribution spread due to the resolution of the detector is observed, where $\frac{\sigma_{reco}}{\sigma_{truth}}$ is around 14

Conclusions

- Preliminary results indicates that the water activation simulation and ¹⁶N decay have been achieved, In particular, our ¹⁶N yield appears to be higher when compared to previous Super-K^[1] result.
- The reconstructed energy is dominated by 6.1 MeV gammas in coincidence with 4.3 MeV electron endpoint energy
- Next step is to reproduce the $SK^{[1]}$ results, adapt the simulation to HK environment, and identify a calibration strategy for deployment locations.

References

[1] Super-K collaboration: 16N as a calibration source for Super-Kamiokande: https://doi.org/10.1016/S0168-9002(00)00900-1 [2] M.Pillon: Measurement of the $^{16,17}O(n,p)^{16,17}N$ cross sections for validating the water activation experiment for ITER at the Frascati neutron generator: https://doi.org/10.1016/j.nima.2021.165107

[3] J.k.Bienlein: the half life of ¹⁶N: https://doi.org/10.1016/0029-5582(64)90202-0

[4] HK software: Water Cherenkov Simulation built on top of Geant4; BONSAI and FLOWER are reconstruction algorithms: https://github.com/WCSim/WCSim/WCSim

higgstan.com: https://higgstan.com