Computer Arithmetic

Information - data

Numeric data

- Binary numbers
- Binary Codes
- Unsigned and Signed Magnitude numbers
- Fixed-Point numbers
- Floating-Point numbers

Binary numbers

$$(54.5)_{10} = (110110.1)_2$$

Why?

2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰		2 ⁻¹	2 ⁻²	2 ⁻³
1	1	0	1	1	0	•	1	0	•••

$$(110110.1)_2 = 1 * 2^5 + 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0 + 1 * 2^{-1}$$

= $32 + 16 + 0 + 4 + 2 + 0 + 0.5$
= 54.5

Binary-Octal-Hex

Decimal	Binary	Octal	Hex
0	0	0	0
1	1	1	-
2	10	2	2
3	11	3	3
4	100	3	3
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	0
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10

Code used by people, with low vision, to read

Braille

Special Codes

- > 8-4-2-1
- > BCD
- > Excess-3
- > Aiken
- > 2-out-of-5
- **>** ...

Binary (8-4-2-1)

	8421
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Binary Coded Decimal (BCD)

	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Excess-3

	XS3
	0000
	0001
	0010
0	0011
1	0100
2	0101
3	0110
4	0111
5	1000
6	1001
7	1010
8	1011
9	1100
	1101
	1110
	1111

Excess-3

	XS3
	0000
	0001
	0010
0	0011
1	0100
2	0101
3	0110
4	0111
5	1000
6	1001
7	1010
8	1011
9	1100
	1101
	1110
	1111

Aiken code

	H	ow	ar	d	Αi	ke
--	---	----	----	---	----	----

	Aiken
0	0000
1	0001
2	0010
3	0011
4	0100
	0101
	0110
	0111
	1000
	1001
	1010
5	1011
6	1100
7	1101
8	1110
9	1111

2-4-2-1 Code ...

Aiken code

Howard A	like
----------	------

	Aiken
0	0000
1	0001
2	0010
3	0011
4	0100
	0101
	0110
	0111
	1000
	1001
	1010
5	1011
6	1100
7	1101
8	1110
9	1111

Symmetric code

2-4-2-1 Code ...

2-out-of-5

	2-out-of-5
0	11000
1	00011
2	00101
3	00110
4	01001
5	01010
6	01100
7	10001
8	10010
9	10100

It is used as Error Detecting Code; ... natural even parity

2-out-of-5

	2-out-of-5
0	11000
1	00011
2	00101
3	00110
4	01001
5	01010
6	01100
7	10001
8	10010
9	10100

Except for the zero (0) which is decimal 24. The rest of the code follows the weights: 74210

2-out-of-5

This code is used by the U.S. Postal Service ---- Zip Code The first and last bars are the frame bars, used for aligning the scanner which reads the bar-code. The last digits are used for error correction (checksum).....

The first and last bars are the frame bars, used for aligning the scanner which reads the bar-code. The last digits are used for error correction (checksum).....

Bar Code based codes

- 1-D codes
- 2-D codes

1-D and 2-D Codes will not be included in the exams

1-D codes

- Code 39 = Code 3-of-9; alphanumeric (full ASCII) bar code; applications in inventory, asset tracking, ID badges
- Interleaved 2 of 5; Numeric-only bar code, industrial applications, carton labeling, laboratory uses
- UPC (Universal Product Code), Numeric Bar code; used in retail product labeling.
- Code 128 Alphanumeric (full ASCII);
 applications in Shipping, Warehouse management

2-D Code

 -PDF417; applications web postage stamp......

PDF417

More 2D Codes

Data Matrix

http://www.autoid.org

Alphanumeric codes

- Used to print, teletype or view information or other means of human alpha-numeric communication.
 - > EBCIDIC
 - > ASCII
 - > UniCode

> EBCIDIC

(Extended BCD Interchange Code)

8 bits = 256 characters

> ASCII

(American Standard Code for Information Interchange)

7 bits = 128 characters (now Super ASCII use all 8-bits)

ASCII codes for some of the keys on a keyboard.

```
SPACE
               00100000
           01000001
                               01100001
          01000010
                         b
                            = 01100010
          01000011
                         c = 01100011
    D = 01000100
                         d = 01100100
    E = 01000101
                         e = 01100101
    F = 01000110
                         f = 01100111
    etc ...
                         etc ...
   RETURN (end of a line) = 00001010
ASCII = American Standard Code for Information Interchange
(American — that's why '£' isn't a standard character on some printers!)
```

	В	7 B6	B5	000	Ø Ø 1	0 _{1 0}	Ø ₁	1.00	¹ ø ₁	110	111
BITS 84 B3 B2 B1				CONTROL		NUMBERS & SYMBOLS		UPPERCASE		LOWERCASE	
Ø	Ø	Ø	Ø	NUL	DLE	SP	0	@ 64	P 80	96	p,,,
Ø	Ø	Ø	1	SOH,	DC1	! 33	1 49	A 65	Q 81	a 97	q ,,
Ø	Ø	1	Ø	STX	DC2	11 34	2 50	B 66	R 82	b 98	r,,,
Ø	Ø	1	1	ETX	DC3	# 35	3	C 67	S 83	C 99	S
Ø	1	Ø	Ø	EOT	DC4	\$ 36	4 52	D 68	T 84	d	t.
Ø	1	Ø	1	ENQ ₅	NAK	% 37	5 53	E 69	U	e 101	u
Ø	1	1	Ø	ACK	SYN	& 38	6 54	F 70	٧	f 102	٧
Ø	1	1	1	BEL	ETB	/ 39	7	G 71	W	g 103	W
1	Ø	ø	ø	BS	CAN	(40	8	H 72	X	h 104	X
1	Ø	ø	1	HT	EM 25) 41	9 57	73	Υ	i 105	у
1	Ø	1	Ø	LF	SUB	* 42		J 74	Z	j	Z 12
1	Ø	1	1	VT	ESC	+ 43	;	K 75	[k 107	{
1	1	Ø	Ø	FF 12	FS 28	, 44	< 60	L 76	1	1	1
1	1	ø	1	CR ₁₃	GS 29	- 45	= 61	M 77]	m 109	}
1	1	1	Ø	SO ₁₄	RS 30	• 46	>	N 78	1	n 110	\sim
1	1	1	1	SI	US	/ 47	?	0 79		0	↓

Unicode

- ➤ EBCIDIC (Extended BCD Interchange Code): 8 bits = 256 characters
- ➤ ASCII (American Standard Code for Information Interchange): 7 bits = 128 characters
- Unicode (New standard for 16 bit alphanumeric code)

UniCode

8073	8074	8075		
腳	腴	腵		
8173	8174	8175		
艳	艴	艵		
8273	8274	8275		
荳	荴	荵		
8373	8374	8375		

Arial® Unicode® MS Bold

friður 和平 paz שלום ειρήνη 平和 mír शांति мир 평화 frieden শান্তি

WORLDWIDE LANGUAGE SUPPORT

Hòa bình ความสงบสุข Síochána

A useful code is the Gray

 Gray code is of cyclic nature having the following property:

"From one number to the next, the Gray code changes only one bit"

Bit changes ...

- Gray code is of cyclic nature having the following property:
- "From one number to the next, the Gray code changes only one bit"

Gray Code ...

 The Gray code is used for labeling Karnaugh maps for logic circuit simplification, for routing in parallel computer systems, etc...

Gray Codes

Gray Codes

Gray Codes

Gray Codes

A Ring embedded in a 3D Hypercube

Binary and BCD numbers

- Bits obtained from conversion, of binary numbers, are binary digits
- Bits obtained from coding (BCD) are combinations of 1's and 0's arranged according to the rules of the code (BCD).

•
$$(13)_{10} = (1101)_2$$

•
$$(7)_{10} = (111)_2$$

•
$$(7)_{10} = (111)_2$$

but,

(0111)BCD

710

Another Example

•
$$(15)_{10} = (1111)_2$$

Another Example

Binary & BCD

Binary number representation

- 1. Representing unsigned integers in binary
- 2. Representing **signed** integers in binary
 - a) Sign-magnitude
 - b) Ones' complement signed magnitude
 - c) Two's complement signed magnitude
- 3. Representing fractions in binary
 - a) Fixed-point numbers
 - b) Floating-point numbers

1. Representing unsigned integers

- Integers: numbers with no fractional part
 - Zero
 - Positive
 - Negative
- Integers ... straight binary representation

Unsigned binary

• The range is: 0 up to 2^{n-1} (min – max)

- Example-1: n = 3: $0 \rightarrow 8-1 = 7$
- Example-2: n = 8: $0 \rightarrow 256-1 = 255$

3-bit unsigned number

8-bit unsigned numbers

Largest unsigned 32-bit

- For a 32-bit computer ...
- What is the largest unsigned integer that can hold?

$$2^{32}-1 = 4,294,967,295$$

Binary unsigned numbers

$$(110110.1)_2 = 1 * 2^5 + 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0 + 1 * 2^{-1}$$

= $32 + 16 + 0 + 4 + 2 + 0 + 0.5$
= 54.5

Negative unsigned binary number?

 Need to place a minus sign in front of the number ... correct?

Binary number: -100101

- This is not a binary number system ... it is a trinary!
- Use signed binary numbers

2. Representing signed integers in binary

- a) Signed-magnitude
- b) 1's complement signed magnitude
- c) 2's complement signed magnitude

a) Signed-magnitude

- A n-bit binary number has 2ⁿ distinct values.
 - assign about half to positive integers and about half to negative
 - that leaves two values: one for the 0, and one extra
- Positive integers
 - just like unsigned zero in most significant bit
- Negative integers
 - Sign-magnitude one in most significant bit

Most significant bit: 0 = positive, 1 = negative

Negative-Positive

Positive and Negative numbers:

- 1 in the MSB position is negative
- 0 in the MSB position is positive

Example:

0 000-0010 +2

3-bit unsigned-magnitude numbers

3-bit signed-magnitude numbers

- A 3-bit binary number has a total of $2^3 = 8$ numbers.
- Using signed number representation, we have negative and positive numbers: Divide 8 by 2 → 4. We have:
 - 4-positive (+0 \rightarrow +3)
 - 4-negative (-0 \rightarrow -3) numbers.
- The only «problem» is that we have 2 different zeros (-0, +0).

Decimal	Unsigned	Signed
+7	111	
+6	110	
+5	100	
+4	100	
+3	011	011
+2	010	010
+1	001	001
+0	000	000
-0		100
-1		101
-2		110
-3		111
-4		

The range is: $+3 \rightarrow -3$ We have 2 ways to represent zero

Range: Signed-magnitude numbers

In general $2^{n-1}-1 \quad \text{to} \quad -(2^{n-1}-1)$

Decimal	Unsigned	Signed
+7	111	
+6	110	
+5	100	
+4	100	
+3	011	011
+2	010	010
+1	001	001
+0	000	000
-0		100
-1		101
-2		110
-3		111
-4		

For n = 4

В	Value represented		
$b_3^{}b_2^{}b_1^{}b_0^{}$	Sign and magnitude	1's complement	2's complement
0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0	+7 +6 +5 +4 +3 +2 +1 +0 -1 -2 -3 -4 -5	+7 +6 +5 +4 +3 +2 +1 +0 -7 -6 -5 -4 -3 -2	+ 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 - 8 - 7 - 6 - 5 - 4 - 3 - 2
1 1 1 1	- 7	- 0	- 1

8-bit signed-magnitude

Not used in modern computing ... because there are two representations for the zero

Range of n-bit numbers

1's complement-binary numbers

Replace ... all zeros with ones, and ones with zeros

- 100001
- 1's complement: 011110

b) 3-bit 1's complement signed-magnitude

The range is: $+3 \rightarrow -3$

In general

$$2^{n-1}-1$$
 to $-(2^{n-1}-1)$

Decimal	Unsigned	Signed	1's Comp.
+7	111		
+6	110		
+5	100		
+4	100		
+3	011	011	011
+2	010	010	010
+1	001	001	001
→ +0	000	000	000
→ -0		100	111
-1		101	110
-2		110	101
-3		111	100
-4			პ5

We have 2 ways to represent zero

8-bit 1's complement signed-magnitude

Binary value	1' complement	Unsigned
0000000	+0	0
0000001	1	1
01111101	125	125
01111110	126	126
01111111	127	127
1000000	-127	128
10000001	-126	129
10000010	-125	130
11111110	-1	254
11111111	-0	255

Not used in modern computing ... because there are two representations for the zero

2's complement-binary numbers

- Having the binary number in 1's complement ...
- Add 1 ...
- ... the result is the 2's complement of the initial binary number

- Binary number: 100001
- 2's complement: 011110 + 1 = 011111

c) 3-bit 2's complement signed magnitude

Decimal	Unsigned	Signed	1's Comp.	2's Comp
+7	111			
+6	110			
+5	100			
+4	100			
+3	011	011	011	011
+2	010	010	010	010
+1	001	001	001	001
+0	000	000	000	000
-0		100	111	000
-1		101	110	111
-2		110	101	110
-3		111	100	101
-4				100

The range is: Positive $(+0 \rightarrow +3)$ Negative $(-1 \rightarrow -4)$... we have 1 way to represent zero

8-bit 2's comp-signed magnitude

2's complement signed-magnitude

- Today's processors represent signed integers using two's complement ... Why? ... because...
- A 2's complement signed-magnitude representation has a single representation for zero (0)

Range for n-bit 2's complement signed

For our 3-bit $[2^3 = 8 \dots \text{ divide by } 2 \rightarrow 4 = 2^2]$ For our example the range is $(-4 \rightarrow +3)$:

$$2^{3-1} \rightarrow 2^{3-1} - 1 = -2^2 \rightarrow 2^2 - 1 = -4 \rightarrow +3$$

7

Modulo-16 system (4-bits)

В	V	/alue represented	
$b_3^{}b_2^{}b_1^{}b_0^{}$	Sign and magnitude	1's complement	2's complement
0 1 1 1	+ 7	+ 7	+ 7
0 1 1 0	+ 6	+ 6	+ 6
0 1 0 1	+ 5	+ 5	+ 5
0 1 0 0	+ 4	+ 4	+ 4
0 0 1 1	+ 3	+ 3	+ 3
0 0 1 0	+ 2	+ 2	+ 2
0 0 0 1	+ 1	+ 1	+ 1
0 0 0 0	+ 0	+ 0	+ 0
1 0 0 0	- 0	- 7	- 8
1 0 0 1	- 1	- 6	- 7
1 0 1 0	- 2	- 5	- 6
1 0 1 1	- 3	- 4	- 5
1 1 0 0	- 4	- 3	- 4
1 1 0 1	- 5	- 2	- 3
1 1 1 0	- 6	- 1	- 2
1 1 1 1	- 7	- 0 🛑	- 1

3-bit signed 2's complement representation

2s complement

- 2's complement numbers actually make sense since they follow normal modulo arithmetic except when they overflow
- Range is -2ⁿ⁻¹ to 2ⁿ⁻¹-1

(a) Circle representation of integers mod N

(b) Mod 16 system for 2's-complement numbers

Range of n-bit numbers

2's complement signed → decimal

2's complement signed > decimal

for n = 3, yields

n = 3, 2's complement signed \rightarrow decimal

$$a_{n-1}a_{n-2}...a_1a_0 = -2^{n-1} \times a_{n-1} + \sum_{i=0}^{n-2} 2^i \times a_i$$

$$a_{3-1}a_{3-2}...a_1a_0 = -2^2 \times a_2 + \sum_{i=0}^{1} 2^i \times a_i$$

n = 3, 2's complement signed \rightarrow decimal

SM2C = -4

Decimal	Unsigned	Signed	1's Comp.	2's Comp
+7	111			
+6	110			
+5	100			
+4	100			
+3	011	011	011	011
+2	010	010	010	010
+1	001	001	001	001
+0	000	000	000	000
-0		100	111	000
-1		101	110	111
-2		110	101	110
-3		111	100	101
-4				100

Position weighting with sign-bit for n = 3

Bit	a 2	a 1	a o
weight	-4	2	1

Range of 32-bit 2's comp. signed numbers

$$2^{31}-1 = 4,294,967,295$$

32 bit OS - 4 GB RAM

Sign and Zero-Extend

- Extend number from N to M bits (M > N)
 - Sign-Extend
 - Zero-Extend

Single-Cycle MIPS Processor

MIPS instruction: Sign Extend

 Arithmetic instructions (add, sub, ..., ori) sign extend immed(iates).

Also used for unsigned arithmetic.

Sign-Extend (4-bits to 8-bits)

- Sign bit copied to Most Significant Bits
- Number value is same

☐ Example 1:

- 4-bit representation of 3 = 0011
 - 8-bit sign-extended value: 00000011 <=
- **□** Example 2:
 - 4-bit representation of -3 = 1011
 - 8-bit sign-extended value: 11111011

Zero-Extend (4-bits to 8-bits)

- Zeros copied to Most Significant Bits
- Value changes for negative numbers

Example 1:

4-bit value =

$$0011_2 = 3_{10}$$

- 8-bit zero-extended value: $00000011 = 3_{10}$

Example 2:

4-bit value =

$$1011 = -3_{10}$$

- 8-bit zero-extended value: $00001011 = 3_{10}$

 $1011 = -3_{10} | From negative$ to positive with zero MSB

Sign-Extend in MIPS (to 32-bits)

- Instructions like: addiu \$t1,\$t1,1
- Add 16-bit and 32-bit values together.
- Extend the sign to the left, so both number are 32-bits...

Zero-Extend in MIPS (to 32-bits)

Instructions like: ori \$t1,\$0,0x3

- Extend the 16-bit to 32-bits
- Fill with zero's to the left, so both numbers are 32-bits

Sign-Extend in MIPS

32-bit and 64-bit

32-bit:

```
2<sup>32</sup> = 4,294,967,296
4,294,967,296 / (1,024 × 1,024) = 4,096 MB = 4GB (gigabytes)
```

64-bit:

2⁶⁴ = 18,446,744,073,709,551,616 18,446,744,073,709,551,616 / (1,024 x 1,024) = 16EB (exabytes)

Note that ... giga >> tera >> peta >> exa

32-bit and 64-bit

Example of general purpose processor evolution: More processing ability, more addressable memory

64-bit computers can realistically access 4 GB and 128 GB of RAM.

Arithmetic Operations

ALU and Math operations are the heart of the CPU

- The computer-CPU (ALU) performs math operations?
- Main mathematical operation in the ALU ?
- ADD
- All the other mathematical operations are performed, using addition, and ...
- HOW ?

Addition

Decimal addition

369

+ 32

401

Binary addition

1

+0

1 = sum

Binary addition

$$1 = sum$$
 $1 = sum$

Binary addition

$$1 = sum$$
 $1 = sum$

$$1 = sum$$

$$0 = sum$$

$$1 = carry$$

Binary example

10110

+10011

1 ← Result

Binary example

Add two binary numbers

Add two binary numbers

Add two binary numbers

Add two binary numbers

10011, 10110 and 101001 are stored in the CPU/ALU in Registers

Addition using Octal (1)

- 1476
- +3554

????

Addition using Octal (2)

$$6+4 = 10 = (1, 2)$$

Addition using Octal (3)

$$1+4+5 = 10 => (1, 2)$$

carry sum

Addition using Octal (4)

- +3554

$$1+1+3 = 5 => (0, 5)$$
carry sum

Addition using Hex (1)

- 59F

Addition using Hex (2)

$$F + 6 = 15 + 6 => (1, 5)$$

1

59F

E46

Addition using Hex (3)

$$1 + 9 + 4 = 14 \Rightarrow (0, E)$$

01

59F

E46

E5

Addition using Hex (4)

$$0 + 5 + E = 19 => (1, 3)$$

01

59F

E46

13E5

Subtraction

Decimal subtraction

401

- 32 369

0

- C

(

0 1

- 0 - 0

0 1 1

-0 -0 -1

0 1 0

1 0 1 1 0
$$= 2+4+16 = 22$$

$$-1 \quad 0 \quad 0 \quad 1 \quad 1 = 1+2+16 = 19$$

(1)

(a)

1

†
Therefore 10-1 = 1

(c)

Since we borrowed a 1 a 0 is left

(d)

(e)

Borrow 1 from next (left) column

(f)

Borrow 1 from next (left) column

1 0 1

1 0 1 1 0

-1 0 0 1 1

1 1

Therefore 10-1=1

(g)

Since we borrowed a 1 a 0 is left

0

1 0 1 1 0

-1 0 0 1 1

(h)

Since we borrowed a 1 a 0 is left

0

1 0 1 1 0

-1 0 0 1 1

$$\begin{array}{cccc}
0 & 1 & 1 \\
\uparrow & & \\
\end{array}$$
Therefore $0-0=0$

(i)

(j)

1-1 = 0

Result: 22-19=3

Multiplication and Division

Multiplication

• Shift + Add

Binary Multiplication

10100

Add

Binary Multiplier

- We need to design
 - An Adder
 - A Shifter

Next course CMPT281 ...

Subtraction...2's complement

- Signed numbers are used to simplify the binary subtraction operation
- ... and to remove the need to have an extra character (the minus) to represent negative numbers (signed representation).
- After all in computing the Binary System is used and not a Trinary System (1-0-minus) ...

•
$$M = 100\ 0100 = 68$$

• $-N = -101\ 0100 = -84$
 -16

Step-1: Find the 2's complement of the negative number (-84)

•
$$M = 100\ 0100 = 68$$
• $-N = -101\ 0100 = -84$
- -16

Step-2: ADD the 2's complement of the negative number (-84) with the positive number (68)

$$\cdot \quad M = 100 \ 0100 = 68$$

$$\cdot \quad -N = -101 \ 0100 = -84$$

$$-16$$

Therefore,

NC 111 0000

010 1100

Step-3: If there is no Carryout the result is NEGATIVE and in 2's Complement form

$$\cdot \quad M = 100 \ 0100 = 68$$

$$\cdot \quad -N = -101 \ 0100 = -84$$

$$-16$$

Therefore,

010 1100

NC 111 0000

Step-4: Since we use unsigned arithmeticplace a negative sign in front of the number

The answer is: -2's of $(111\ 0000) = -10000 = (-16)10$