

GL = Global Illumination

Why GI?

Why GI?

- . Direct lighting sucks
- Direct + Indirect lighting cool

GI in 99 Lines of C++

2.4 GHz Intel Core 2 Quad, 1024 x 768, by Kevin Beason

GI in 99 Lines of C++

Brute force – really heavy

Hemisphere Lightning

Hemisphere Lightning

Hemisphere Lightning

- Fast & simple
- . Too simple

Hemisphere Lighting

Lightmaps

Lightmaps

. Only static objects

. No self-illumination of dynamic objects

Core Idea

- Sample lit surfaces
 - Treat them as secondary light sources
- Cluster samples into a uniform coarse 3D grid
 - Sum up and average radiance in each cell
- Iteratively propagate radiance to adjacent cells, works <u>only for diffuse</u>
- 4. Lit the scene with the resulting grid

Comparison with photon mapping

Light Propagation Volumes

Photon Mapping

- Dynamic lights
- . No indirect shadows

Algorithm

- Voxelize the geometry
- Construct sparse voxel octree (SVO)
- Inject direct lighting into the octree
- Propagate radiance
- Gather radiance by cone tracing

Voxel cone tracing

Reference

37 ms

32 ms

14 min

- Dynamic lights & objects
- . Shadow casting
- . Huge amount of memory

Check out more knowledge sharing here:

- Slideshare https://www.slideshare.net/Sperasoft/
- SpeakerDeck https://speakerdeck.com/sperasoft
- GitHub http://github.com/sperasoft

Learn more about Sperasoft:

- Company site http://www.sperasoft.com/
- On Facebook https://facebook.com/sperasoft
- On Twitter http://twitter.com/sperasoft