

Что-то по генераторам крутое

Выполнила: Величкина А. С.

Руководитель: Усков Г. К.

Цель и задачи

<u>Цель</u>: разработка способа формирования сверхширокополосных (СШП) электрических импульсов субнаносекундной длительности с возможностью управления формой, амплитудой и длительностью результирующих сигналов.

Задачи:

- анализ различных подходов к формированию импульсов и выбор наиболее подходящего для формирования сверхкоротких электрических импульсов (СКИ) с заданными требованями;
- моделирование и изготовление сверхширокополосных сумматоров конструкции Уилкинсона для сложения СКИ и получения импульсов в форме производных от гауссовой кривой;
- реализация схем генерации однополярных СКИ на основе ДНЗ;
- разработка программного обеспечения для автоматизированной обработки результатов экспериментов
- экспериментальное подтверждение метода формирования электрических импульсов различных форм.

Сумматоры конструкции Уилкинсона

Рис. 1. Модель сумматора

Таблица 1. Параметры сумматора

Параметр	Значение	Параметр	Значение
H_1	74 мм	W_2	1.25 мм
H_2	35.49 мм	W_3	2.17 мм
r_1	11.17 мм	W_4	3.49 мм
r_2	4.88 мм	L	5 MM
r ₃	5.09 мм	Res ₁	132 Ом
r ₄	15 мм	Res ₂	185 Ом
\mathbf{W}_1	0.92 мм	Res ₃	250 Ом

Рис. 2. Фото экспериментальной установки

S-параметры сумматора

Рис. 3. S-параметры сумматора

Цели оптимизации:

- S₁₁, S₂₂ не более -15 дБ;
- S₂₁ не менее -5 дБ;
- S₂₃ не более -15 дБ.

Расширение частотного диапазона сумматора Уилкинсона для формирования сверхкоротких импульсов / К. В. Смусева, А. Е. Елфимов, Г. К. Усков, **А. С. Величкина** // Радиолокация, навигация, связь : Сборник трудов XXVIII Международной научнотехнической конференции

Пятипортовый сумматор

Рис. 4а. Пятипортовый сумматор: модель

Таблица 2. Параметры сумматора

		,	
Параметр	Значение	Параметр	Значение
H1	80.03 мм	W2	1.25 мм
H2	35.49 мм	W3	2.17 мм
Н3	183.54 мм	W4	3.49 мм
r1	11.17 мм	L	5 мм
r2	4.88 мм	Res1	132 Ом
r3	5.09 мм	Res2	185 Ом
r4	15 мм	Res3	250 Ом
W1	0.92 мм		

Рис. 4б. Пятипортовый сумматор: экспериментальный макет

Рис. 5. S-параметры сумматора

Цели оптимизации:

- S₂₂, S₂₅ не более -15 дБ;
- S₂₁ не менее -5 дБ;
- S₂₃ не более -15 дБ.

Двухканальный генератор СКИ

Рис. 6. Электрическая схема

Рис. 7. Экспериментальный образец

Рис. 8. Формирование импульса

Результаты эксперимента

1.5

Рис. 9. Четыре импульса на входе сумматора и импульсы с выхода с разными задержками

Формирование дуплета Гаусса с помощью конфигурируемого генератора СШП сигналов / Г. К. Усков, А. Е. Елфимов, К. В. Смусева, **А. С. Величкина** // Журнал радиоэлектроники. — 2023. - N = 9.

Спектры СКИ

Рис. 9. Спектры сигналов на выходе сумматора: a) – спектр дуплета Гаусса; б) – спектр моноцикла Гаусса; в) – спектр импульса Эрмита

Возможности перестройки

Таблица 3. Зависимости ширины спектра от длительности импульса

Длительно сть, пс	Ширина по уровню - 3 дБ, ГГц	Ширина по уровню -10 дБ, ГГц
235	1.77	3.08
190	2.02	3.69
165	2.31	4.29
150	2.58	4.53

Изменения длительности гауссовых биполярных импульсов с помощью реконфигурируемого генератора сверхкоротких импульсов / А. С. Величкина, А. Е. Елфимов, Г. К. Усков, К. В. Смусева // Радиолокация, навигация, связь : Сборник трудов XXIX Международной научно-технической конференции

Оценка импульсов

Формулы для оценки

$$s(t) = A * \exp\left(-4 * ln(2) * \frac{(t - \Delta t)^2}{\tau^2}\right)$$
(1)

$$s(t) = A * \sqrt{2 * e} \frac{(t - \Delta t)}{\tau} * \exp\left(-\frac{(t - \Delta t)^2}{\tau^2}\right)$$
(2)

$$NMSE = \sum_{i} \frac{(x_i - y_i)^2}{N}$$
 (3)

 $NMSE = -9.78 \, дБ$

Елфимов, А. Е. Оценка квазигауссовских импульсов с помощью метода NMSE / А. Е. Елфимов, **А. С. Величкина**, Г. К. Усков // Информационные технологии. Радиоэлектроника. Телекоммуникации (ITRT-2023) : Сборник тезисов докладов X Международной заочной научно-технической конференции, Тольятти, 20 апреля 2023 года

Заключение

Спасибо за внимание

Результаты автоматизированных измерений

Двумерная диаграмма амплитуд (а) и длительностей (б) отрицательных импульсов

Результаты автоматизированных измерений

Двумерная диаграмма амплитуд (а) и длительностей (б) положительных импульсов

Зависимость длительностей импульсов от параметров запускающих сигналов

Схема эксперимента

Результаты эксперимента