

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática

Álgebra Lineal (R211 - CE9)

2023

1. Cuerpos

A modo de introducción veamos una estructura algebraica abstracta que nos servirá como punto de partida para la definición de Espacios Vectoriales (recordemos la definición que vimos en Álgebra y Geometría Analítica II). ¿Conocemos cuerpos? Si!! \mathbb{R} , \mathbb{Q} , \mathbb{C} . Sabemos además que \mathbb{Z} y \mathbb{N} no lo son. ¿Cuál es la diferencia? ¿Cómo definimos cuerpo de escalares? Como toda estructura algebraica, la definimos de manera axiomática.

Definición: Sea F un conjunto no vacío dotado de dos operaciones: $+: F \times F \to F$ llamada suma y $\cdot: F \times F \to F$ llamada multiplicación. Decimos que $(F, +, \cdot)$ es un cuerpo o que F es un cuerpo con la suma + y el producto · si se verifican los siguientes axiomas:

- (i) la suma es asociativa: para todos $a, b, c \in F$ tenemos que a + (b + c) = (a + b) + c,
- (ii) existe un elemento neutro para la suma: existe un elemento $0 \in F$ tal que para todo $a \in F$, a+0=0+a=a,
- (iii) existencia de opuestos para la suma: dado $a \in F$ existe $b \in F$ tal que a + b = b + a = 0,
- (iv) la suma es conmutativa: para todos $a, b \in F$ tenemos que a + b = b + a,
- (v) la multiplicación es asociativa: para todos $a, b, c \in F$ tenemos que $a \cdot (b \cdot c) = (a \cdot b) \cdot c$,
- (vi) existe un elemento neutro para la multiplicación: existe un elemento $1 \in F$ tal que para todo $a \in F, a \cdot 1 = c \cdot a = a,$
- (vii) existencia de inversos para la multiplicación: dado $a \in F^*$ (donde definimos $F^* := F \setminus \{0\}$) existe $b \in F$ tal que $a \cdot b = b \cdot a = 1$,
- (viii) el producto es conmutativo: para todos $a, b \in F$ tenemos que $a \cdot b = b \cdot a$,
- (ix) distributiva de la multiplicación respecto de la suma: para todos $a,b,c\in F$ tenemos que $a\cdot (b+c)=a\cdot b+a\cdot c$.

A los elementos de F los llamamos escalares.

Ejemplos:

- 1. \mathbb{Q} , \mathbb{R} , \mathbb{C} con las operaciones usuales son cuerpos. EJERCICIO!
- 2. Z con las operaciones usuales no es un cuerpo. EJERCICIO!
- 3. Un subconjunto $\mathbb{F} \subset \mathbb{C}$ es un *subcuerpo* si con las operaciones restringidas tenemos que $(\mathbb{F}, +, \cdot)$ es un cuerpo.

 \mathbb{Q} y \mathbb{R} son subcuerpos de \mathbb{C} y $\mathbb{Q} \subsetneq \mathbb{R} \subsetneq \mathbb{C}$. EJERCICIO!

Puesto que la asociatividad, conmutatividad y distributivas se heredan del cuerpo, bastará con chequear:

- a) para todos $a, b \in \mathbb{F}$ tenemos que $a + b \in \mathbb{F}$, esto es que la suma sea cerrada en \mathbb{F} ,
- b) para todos $a,b\in\mathbb{F}$ tenemos que $a\cdot b\in\mathbb{F}$, esto es que la multiplicación también sea cerrada en \mathbb{F} ,

- c) $0,1\in\mathbb{F}$ (es decir que ambos neutros para la suma y la multiplicación de \mathbb{C} también sean elementos de \mathbb{F})
- d) para todo $a \in \mathbb{F}$ su opuesto $-a \in \mathbb{C}$ también sea un elemento de \mathbb{F} , es decir $-a \in \mathbb{F}$,
- e) para todo $a \in \mathbb{F}^*$ su inverso $a^{-1} \in \mathbb{C}$ también sea un elemento de \mathbb{F} , es decir $a^{-1} \in \mathbb{F}$.

Observemos que aquí hemos usado la notación de opuesto e inverso puesto que estamos en \mathbb{C} y sabemos de su unicidad. Para un cuerpo general, luego de probar la unicidad de opuestos e inversos podríamos dar la misma definición y caracterización de subcuerpo.

Más arriba mencionamos la cadena de contenciones estrictas $\mathbb{Q} \subsetneq \mathbb{R} \subsetneq \mathbb{C}$. Éstos no son los únicos subcuerpos de \mathbb{C} . Veamos un subcuerpo de \mathbb{C} que contiene estrictamente a \mathbb{Q} y está estrictamente contenido en \mathbb{C} .

Sea el conjunto $\mathbb{Q}[\sqrt{2}] := \{x + \sqrt{y} : x, y \in \mathbb{Q}\}$. Este conjunto $\mathbb{Q}[\sqrt{2}]$ es un subcuerpo de \mathbb{C} . EJERCICIO! Aclaración: $\mathbb{Q}[\sqrt{2}]$ es sólo una notación. Decimos que $\mathbb{Q}[\sqrt{2}]$ es la extensión de \mathbb{Q} por $\sqrt{2}$. Extensión de cuerpos es un tema de importancia en álgebra abstracta, y es la base para la llamada teoría de Galois, que tiene importantes aplicaciones por ejemplo en Ecuaciones Diferenciales. Si no conocen a Galois, googleen su historia, es muy interesante (spoiler: se batió duelo a los 20 años!).

