ML Lab Record

Sagar Reddy S N

1BM18CS156

Lab 1: Find S Algorithm

Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.

Dataset:

1	Weather	Temprature	Humidity	Goes
2	Sunny	Warm	Mild	Yes
3	Rainy	Cold	Mild	No
4	Sunny	Moderate	Normal	Yes
5	Sunny	Cold	High	Yes

```
import csv
a = []
with open('edata.csv', 'r') as csvfile:
    for row in csv.reader(csvfile):
         a.append(row)
    print(a)
print("\n The total number of training instances are : ",len(a))
num_attribute = len(a[0])-1
print("\n The initial hypothesis is : ")
hypothesis = ['0']*num_attribute
print(hypothesis)
for i in range(0, len(a)):
     if a[i][num_attribute] == 'positive':
        for j in range(0, num_attribute):
             if hypothesis[j] == '0' or hypothesis[j] == a[i][j]:
                hypothesis[j] = a[i][j]
             else:
                 hypothesis[j] = '?'
        print("\n The hypothesis for the training instance {} is : \n" .format(i+1),hypoth
esis)
print("\n The Maximally specific hypothesis for the training instance is ")
print(hypothesis)
```

```
### Superdiction of the properties of the properties of the training instance is in the properties of the training instance is into the training instanc
```

Lab 2: Candidate Elimination Algorithm

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

1	sky	airtemp	humidity	wind	water	forcast	enjoysport
2	sunny	warm	normal	strong	warm	same	yes
3	sunny	warm	high	strong	warm	same	yes
4	rainy	cold	high	strong	warm	change	no
5	sunny	warm	high	strong	cool	change	yes

```
import numpy as np
import pandas as pd
data = pd.DataFrame(data=pd.read_csv('edata.csv'))
concepts = np.array(data.iloc[:,0:-1])
print(concepts)
target = np.array(data.iloc[:,-1])
print(target)
def learn(concepts, target):
    specific_h = concepts[0].copy()
    print("initialization of specific_h and general h")
    print(specific_h)
    general_h = [["?" for i in range(len(specific_h))] for i in
 range(len(specific_h))]
    print(general_h)
    for i, h in enumerate(concepts):
        if target[i] == "yes":
            for x in range(len(specific_h)):
                if h[x]!= specific_h[x]:
                     specific_h[x] ='?'
                     general_h[x][x] ='?'
                print(specific_h)
        print(specific_h)
        if target[i] == "no":
            for x in range(len(specific_h)):
                if h[x]!= specific_h[x]:
                    general_h[x][x] = specific_h[x]
                else:
                    general_h[x][x] = '?'
        print(" steps of Candidate Elimination Algorithm",i+1)
        print(specific_h)
        print(general_h)
    indices = [i for i, val in enumerate(general_h) if val ==
['?', '?', '?', '?', '?', '?']]
    for i in indices:
        general_h.remove(['?', '?', '?', '?', '?'])
    return specific_h, general_h
s_final, g_final = learn(concepts, target)
print("Final Specific_h:", s_final, sep="\n")
print("Final General_h:", g_final, sep="\n")
```

Lab 3: Decision Tree

Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

Dataset:

1	sky	airtemp	humidity	wind	water	forcast	enjoysport
2	sunny	warm	normal	strong	warm	same	yes
3	sunny	warm	high	strong	warm	same	yes
4	rainy	cold	high	strong	warm	change	no
5	sunny	warm	high	strong	cool	change	yes

```
import math
import csv

def load_csv(filename):
    lines = csv.reader(open(filename, "r"))
    dataset = list(lines)
    headers = dataset.pop(0)
    return dataset, headers
```

```
class Node:
    def __init__(self, attribute):
        self.attribute = attribute
        self.children = []
        self.answer = ""
def subtables(data, col, delete):
    dic = \{\}
    coldata = [row[col] for row in data]
    attr = list(set(coldata))
    counts = [0] * len(attr)
    r = len(data)
    c = len(data[0])
    for x in range(len(attr)):
        for y in range(r):
            if data[y][col] == attr[x]:
                counts[x] += 1
    for x in range(len(attr)):
        dic[attr[x]] = [[0 for i in range(c)] for j in range(counts[x])]
        pos = 0
        for y in range(r):
            if data[y][col] == attr[x]:
                if delete:
                    del data[y][col]
                dic[attr[x]][pos] = data[y]
                pos += 1
    return attr, dic
def entropy(S):
    attr = list(set(S))
    if len(attr) == 1:
        return 0
    counts = [0, 0]
    for i in range(2):
        counts[i] = sum([1 for x in S if attr[i] == x]) / (len(S) * 1.0)
    sums = 0
    for cnt in counts:
        sums += -1 * cnt * math.log(cnt, 2)
    return sums
def compute_gain(data, col):
    attr, dic = subtables(data, col, delete=False)
    total_size = len(data)
    entropies = [0] * len(attr)
    ratio = [0] * len(attr)
```

```
total entropy = entropy([row[-1] for row in data])
    for x in range(len(attr)):
        ratio[x] = len(dic[attr[x]]) / (total_size * 1.0)
        entropies[x] = entropy([row[-1] for row in dic[attr[x]]])
        total_entropy -= ratio[x] * entropies[x]
    return total entropy
def build_tree(data, features):
    lastcol = [row[-1] for row in data]
    if (len(set(lastcol))) == 1:
        node = Node("")
        node.answer = lastcol[0]
        return node
   n = len(data[0]) - 1
   gains = [0] * n
   for col in range(n):
        gains[col] = compute_gain(data, col)
    split = gains.index(max(gains))
   node = Node(features[split])
   fea = features[:split] + features[split + 1:]
    attr, dic = subtables(data, split, delete=True)
    for x in range(len(attr)):
        child = build_tree(dic[attr[x]], fea)
        node.children.append((attr[x], child))
    return node
def print_tree(node, level):
    if node.answer != "":
        print("---" * level, node.answer)
        return
    print("---" * level, node.attribute)
    for value, n in node.children:
        print("---" * (level + 1), value)
        print_tree(n, level + 2)
def classify(node, x_test, features):
    if node.answer != "":
        print(node.answer)
   pos = features.index(node.attribute)
   for value, n in node.children:
        if x_test[pos] == value:
            classify(n, x_test, features)
'''Main Program'''
dataset, features = load_csv("edata.csv")
model = build_tree(dataset, features)
```

```
print("-----THE DECISION TREE-----")
print_tree(model, 0)
testdata, features = load_csv("test.csv")
for xtest in testdata:
    print("-----test instance: ", xtest)
    print("-----label for test instance: ", end=" ")
    classify(model, xtest, features)
```

```
attr, dic = subtables(data, split, delete=True)
                                                                                                                       agred@ROG-ZEPHYRUS:/mnt/c/Users/sagred/Desktop/War/College/6/ML/LAB-3$ ls
               x in range(len(attr)):
child = build_tree(dic[attr[x]], fea)
node.children.append((attr[x], child))
                                                                                                                     sagred@ROG-ZEPHYRUS:/mnt/c/Users/sagred/Desktop/War/College/6/ML/LAB-3$ python3 dec-tree.py
--------THE DECISION TREE--------
                                                                                                                      Outlook
         return node
                                                                                                                      Outlook
--- sunny
---- Humidity
----- normal
----- yes
----- high
def print_tree(node, level):
    if node.answer != "":
        print("---" * level, node.answer)
                                                                                                                      --- overcast
----- yes
       print("---" * level, node.attribute)
for value, n in node.children:
    print("---" * (level + 1), value)
    print_tree(n, level + 2)
                                                                                                                      --- rain
----- Wind
   lef classify(node, x_test, features):
    if node.answer != "":
        print(node.answer)
                                                                                                                     ------ yes
------- test instance: ['rain', 'cool', 'normal', 'strong']
------label for test instance: no
------test instance: ['sunny', 'mild', 'normal', 'strong']
------label for test instance: yes
        pos = features.index(node.attribute)
                                                                                                                    ------label for test instance: yes sagred@ROG-ZEPHYRUS:/mnt/c/Users/sagred/Desktop/War/College/6/ML/LAB-3$
          for value, n in node.children:
    if x_test[pos] == value:
        classify(n, x_test, features)
dataset, features = load_csv("data.csv'
model = build_tree(dataset, features)
classify(model, xtest, features)
```

Write a program to implement the naïve Bayesian classifier for a sample training data set st ored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets

Naïve Bayesian Classifier Example 1:

1	num_preg	glucose_conc	diastolic_bp	thickness	insulin	bmi	diab_pred	age	diabetes
2	6	148	72	35	0	33.6	0.627	50	1
3	1	85	66	29	0	26.6	0.351	31	0
4	8	183	64	0	0	23.3	0.672	32	1
5	1	89	66	23	94	28.1	0.167	21	0
6	0	137	40	35	168	43.1	2.288	33	1
7	5	116	74	0	0	25.6	0.201	30	0
8	3	78	50	32	88	31	0.248	26	1
9	10	115	0	0	0	35.3	0.134	29	0
10	2	197	70	45	543	30.5	0.158	53	1
11	8	125	96	0	0	0	0.232	54	1
12	4	110	92	0	0	37.6	0.191	30	0
13	10	168	74	0	0	38	0.537	34	1
14	10	139	80	0	0	27.1	1.441	57	0
15	1	189	60	23	846	30.1	0.398	59	1
16	5	166	72	19	175	25.8	0.587	51	1
17	7	100	0	0	0	30	0.484	32	1
18	0	118	84	47	230	45.8	0.551	31	1
19	7	107	74	0	0	29.6	0.254	31	1
20	1	103	30	38	83	43.3	0.183	33	0
21	1	115	70	30	96	34.6	0.529	32	1
22	3	126	88	41	235	39.3	0.704	27	0
23	8	99	84	0	0	35.4	0.388	50	0
24	7	196	90	0	0	39.8	0.451	41	1
25	9	119	80	35	0	29	0.263	29	1
26	11	143	94	33	146	36.6	0.254	51	1
27	10	125	70	26	115	31.1	0.205	41	1
28	7	147	76	0	0	39.4	0.257	43	1
29	1	97	66	15	140	23.2	0.487	22	0
30	12	1/15	22	10	110	22.2	0.245	57	0

```
import csv
import random
import math
def loadcsv(filename):
    lines = csv.reader(open(filename, "r"))
    dataset = list(lines)
    for i in range(len(dataset)):
        dataset[i] = [float(x) for x in dataset[i]]
    return dataset
def splitdataset(dataset, splitratio):
    trainsize = int(len(dataset) * splitratio)
    trainset = []
    copy = list(dataset);
    while len(trainset) < trainsize:</pre>
        index = random.randrange(len(copy));
        trainset.append(copy.pop(index))
    return [trainset, copy]
def separatebyclass(dataset):
    separated = {} #dictionary of classes 1 and 0
    for i in range(len(dataset)):
        vector = dataset[i]
        if (vector[-1] not in separated):
            separated[vector[-1]] = []
        separated[vector[-1]].append(vector)
    return separated
def mean(numbers):
    return sum(numbers)/float(len(numbers))
def stdev(numbers):
    avg = mean(numbers)
    variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
    return math.sqrt(variance)
def summarize(dataset): #creates a dictionary of classes
    summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
    del summaries[-1] #excluding labels +ve or -ve
    return summaries
def summarizebvclass(dataset):
```

```
separated = separatebyclass(dataset);
    summaries = {}
    for classvalue, instances in separated.items():
        summaries[classvalue] = summarize(instances) #summarize is used to cal to mean and
    return summaries
def calculateprobability(x, mean, stdev):
    exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
    return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
def calculateclassprobabilities(summaries, inputvector):
    probabilities = {} # probabilities contains the all prob of all class of test data
    for classvalue, classsummaries in summaries.items():#class and attribute information a
       probabilities[classvalue] = 1
        for i in range(len(classsummaries)):
            mean, stdev = classsummaries[i] #take mean and sd of every attribute for class
            x = inputvector[i] #testvector's first attribute
            probabilities[classvalue] *= calculateprobability(x, mean, stdev); #use normal
   return probabilities
def predict(summaries, inputvector): #training and test data is passed
    probabilities = calculateclassprobabilities(summaries, inputvector)
    bestLabel, bestProb = None, -1
    for classvalue, probability in probabilities.items():#assigns that class which has he
        if bestLabel is None or probability > bestProb:
            bestProb = probability
            bestLabel = classvalue
    return bestLabel
def getpredictions(summaries, testset):
   predictions = []
   for i in range(len(testset)):
        result = predict(summaries, testset[i])
        predictions.append(result)
    return predictions
def getaccuracy(testset, predictions):
    correct = 0
    for i in range(len(testset)):
        if testset[i][-1] == predictions[i]:
            correct += 1
    return (correct/float(len(testset))) * 100.0
def main():
    filename = 'edata.csv'
    splitratio = 0.67
```

```
dataset = loadcsv(filename);

trainingset = dataset
  testset = [['sunny','cool','high','strong']]
  print('Split {0} rows into train={1} and test={2} rows'.format(len(dataset), len(train ingset), len(testset)))
  # prepare model
  summaries = summarizebyclass(trainingset);
  #print(summaries)
  # test model
  predictions = getpredictions(summaries, testset) #find the predictions of test data wi
th the training data
  accuracy = getaccuracy(testset, predictions)
  print('Accuracy of the classifier is : {0}%'.format(accuracy))
main()
```

Naïve Bayesian Classifier Example 2:

Dataset:

1	day	outlook	temp	humidity	wind	play
2	D1	Sunny	Hot	High	Weak	No
3	D2	Sunny	Hot	High	Strong	No
4	D3	Overcast	Hot	High	Weak	Yes
5	D4	Rain	Mild	High	Weak	Yes
6	D5	Rain	Cool	Normal	Weak	Yes
7	D6	Rain	Cool	Normal	Strong	No
8	D7	Overcast	Cool	Normal	Strong	Yes
9	D8	Sunny	Mild	High	Weak	No
10	D9	Sunny	Cool	Normal	Weak	Yes
11	D10	Rain	Mild	Normal	Weak	Yes
12	D11	Sunny	Mild	Normal	Strong	Yes
13	D12	Overcast	Mild	High	Strong	Yes
14	D13	Overcast	Hot	Normal	Weak	Yes
15	D14	Rain	Mild	High	Strong	No

```
import pandas as pd
import numpy as np
from sklearn.model selection import train test split
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
from sklearn import preprocessing
dataf = pd.read_csv("./edata.csv")
feature col names = ['outlook','temp','humidity','wind']
predicted_class_names = ['play']
def MultiLabelEncoder(columnlist,dataframe):
    for i in columnlist:
        labelencoder_X=preprocessing.LabelEncoder()
        dataframe[i]=labelencoder X.fit transform(dataframe[i])
    return dataframe
le = preprocessing.LabelEncoder()
feature_col = ['outlook','temp','humidity','wind','play']
Xdata = MultiLabelEncoder(feature_col,dataf)
X = Xdata[feature_col_names]
yy = dataf[predicted_class_names]
y = Xdata[predicted_class_names]
print(dataf.head)
xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.33)
print ('\nThe total number of Training Data:',ytrain.shape)
print ('The total number of Test Data:',ytest.shape)
print(xtrain,ytrain)
classif = GaussianNB().fit(xtrain,ytrain)
print(classif)
predicted = classif.predict(xtest)
pri_enc = le.fit_transform(['sunny','cool','high','strong'])
predictTestData= classif.predict([pri_enc])
print('\nConfusion matrix')
print(metrics.confusion_matrix(ytest,predicted))
print('\nAccuracy of the classifier:',metrics.accuracy_score(ytest,predicted))
print('The value of Precision:', metrics.precision_score(ytest,predicted))
print('The value of Recall:', metrics.recall_score(ytest,predicted))
print("Predicted Value for individual Test Data:", predictTestData)
```


Lab 5: Bayesian Network

Write a program to construct a Bayesian network considering training data. Use this model to make predictions

1	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	heartdisease
2	63	1	1	145	233	1	2	150	0	2.3	3	0	6	0
3	67	1	4	160	286	0	2	108	1	1.5	2	3	3	2
4	67	1	4	120	229	0	2	129	1	2.6	2	2	7	1
5	37	1	3	130	250	0	0	187	0	3.5	3	0	3	0
6	41	0	2	130	204	0	2	172	0	1.4	1	0	3	0
7	56	1	2	120	236	0	0	178	0	0.8	1	0	3	0
8	62	0	4	140	268	0	2	160	0	3.6	3	2	3	3
9	57	0	4	120	354	0	0	163	1	0.6	1	0	3	0
10	63	1	4	130	254	0	2	147	0	1.4	2	1	7	2
11	53	1	4	140	203	1	2	155	1	3.1	3	0	7	1
12	57	1	4	140	192	0	0	148	0	0.4	2	0	6	0
13	56	0	2	140	294	0	2	153	0	1.3	2	0	3	0
14	56	1	3	130	256	1	2	142	1	0.6	2	1	6	2
15	44	1	2	120	263	0	0	173	0	0	1	0	7	0
16	52	1	3	172	199	1	0	162	0	0.5	1	0	7	0
17	57	1	3	150	168	0	0	174	0	1.6	1	0	3	0
18	48	1	2	110	229	0	0	168	0	1	3	0	7	1
19	54	1	4	140	239	0	0	160	0	1.2	1	0	3	0
20	48	0	3	130	275	0	0	139	0	0.2	1	0	3	0
21	49	1	2	130	266	0	0	171	0	0.6	1	0	3	0
22	64	1	1	110	211	0	2	144	1	1.8	2	0	3	0
23	58	0	1	150	283	1	2	162	0	1	1	0	3	0

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.models import BayesianModel
from pgmpy.inference import VariableElimination
heart_Disease = pd.read_csv('./heart.csv')
heart_Disease = heart_Disease.replace('?',np.nan)

print('Sample instances from the dataset are given below')
print(heart_Disease.head())

print('\n Attributes and datatypes')
print(heart_Disease.dtypes)
```

```
model= BayesianModel([('age', 'heartdisease'),('sex', 'heartdisease'),('exang', 'heartdisease
'),('cp', 'heartdisease'),('heartdisease', 'restecg'),('heartdisease', 'chol')])
print('\nLearning CPD using Maximum likelihood estimators')
model.fit(heart_Disease, estimator=MaximumLikelihoodEstimator)

print('\n Inferencing with Bayesian Network:')
Heart_Disease_test_infer = VariableElimination(model)

print('\n 1. Probability of HeartDisease given evidence= restecg')
q1=Heart_Disease_test_infer.query(variables=['heartdisease'],evidence={'restecg':1})
print(q1)

print('\n 2. Probability of HeartDisease given evidence= cp ')
q2=Heart_Disease_test_infer.query(variables=['heartdisease'],evidence={'cp':2})
print(q2)
```

/m/c/U/s/D/W/C/6/M/5.Bayesian_Network ② ② master ● ② python3 Bayesian_Network.py Sample instances from the dataset are given below

age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal heartdisease

0	63	1	1	145	233	1	2	150	0	2.3	3 0	6	0
1	67	1	4	160	286	0	2	108	1	1.5	2 3	3	2
2	67	1	4	120	229	0	2	129	1	2.6	2 2	7	1
3	37	1	3	130	250	0	0	187	0	3.5	3 0	3	0
4	41	0	2	130	204	0	2	172	0	1.4	1 0	3	0

Attributes and datatypes

age int64 int64 sex int64 trestbps int64 chol int64 int64 restecg int64 thalach int64 int64 exang oldpeak float64 slope int64 object ca object thal heartdisease int64

dtype: object

Learning CPD using Maximum likelihood estimators

Inferencing with Bayesian Network:

1. Probability of HeartDisease given evidence= restecg

Finding Elimination Order: : 100%

Eliminating: cp: 100%	
	5/5 [00:00<00:00, 251.50it/s]
++	0/5 [00:00 , ?it/s]</td
heartdisease phi(heartdisease)	
+=======+	
heartdisease(0) 0.1012	
++	
heartdisease(1) 0.0000	
++	
heartdisease(2) 0.2392	
<u>+</u>	
heartdisease(3) 0.2015	
<u>+</u>	
heartdisease(4) 0.4581	
+ <u>+</u>	
2. Probability of HeartDisease given evidence= cp	
Finding Elimination Order: : 100%	
	5/5 [00:00<00:00, 3916.25it/s]
Eliminating: restecg: 100%	
	5/5 [00:00<00:00, 487.52it/s]
++	0/5 [00:00 , ?it/s]</td
heartdisease phi(heartdisease)	
+======+	
heartdisease(0) 0.3610	
<u>+</u>	
heartdisease(1) 0.2159	
<u>+</u>	
heartdisease(2) 0.1373	
<u>+</u>	

| heartdisease(4) | 0.1321 |

Lab 6: K Means

Apply k-Means algorithm to cluster a set of data stored in a .CSV file.

one	two
0.22767982399693698	0.8582041480574577
0.9791882160551239	0.07715064988053028
0.504576604695406	0.5531144137299899
0.058132400743383585	0.52809798025712
0.7753430178214513	0.2179216898195512
0.5504238310550534	0.4708598154998745
0.04578653961976978	0.9185789498889001
0.5857699421693808	0.05803225463485838
0.7090721735923948	0.5818736617699065
0.018503930375096615	0.8865229185953829
0.8860650735174704	0.2395640162180548
0.6036387317795797	0.665583852216638
0.06942298413661226	0.858127672145648
0.6047387405995206	0.2781095847447219
0.7589891224957259	0.5120267751911348
0.08497507872469842	0.9911224601360906
0.6442858551230015	0.10730211335716414
0.6033125864818462	0.5364792610891768
0.0356326816753208	0.5874738213240243
0.0007170456636103	0.04656070001470005

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm
import pandas as pd
import numpy as np
iris = datasets.load_iris()
X = pd.DataFrame(iris.data)
X.columns = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']
y = pd.DataFrame(iris.target)
y.columns = ['Targets']
model = KMeans(n_clusters=3)
model.fit(X)
plt.figure(figsize=(14,7))
colormap = np.array(['red', 'lime', 'black'])
plt.subplot(1, 2, 1)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y.Targets], s=40)
plt.title('Real Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.subplot(1, 2, 2)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[model.labels_], s=40)
plt.title('K Mean Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
print('The accuracy score of K-Mean: ',sm.accuracy_score(y, model.labels_))
print('The Confusion matrixof K-Mean: ',sm.confusion_matrix(y, model.labels_))
```

Lab 7: EM Algorithm

Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm
import pandas as pd
import numpy as np
iris = datasets.load_iris()
X = pd.DataFrame(iris.data)
X.columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width']
y = pd.DataFrame(iris.target)
y.columns = ['Targets']
model = KMeans(n_clusters=3)
model.fit(X)
plt.figure(figsize=(14,7))
colormap = np.array(['red', 'lime', 'black'])
from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
scaler.fit(X)
xsa = scaler.transform(X)
xs = pd.DataFrame(xsa, columns = X.columns)
```

```
#xs.sample(5)

from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=3)
gmm.fit(xs)

y_gmm = gmm.predict(xs)

#y_cluster_gmm

plt.subplot(2, 2, 3)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y_gmm], s=40)
plt.title('GMM Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')

print('The accuracy score of EM: ',sm.accuracy_score(y, y_gmm))
print('The Confusion matrix of EM: ',sm.confusion_matrix(y, y_gmm))
```

```
/m/c/U/s/D/W/C/6/ML
/m/c/U/s/D/W/C/6/Ml
/m/c/U/s/D/W/C/6/M/6.K-Means
                                                                                           /m/c/U/s/D/W/C/6/ML
                                                                                                                                     7.EM-Algo/
                                                                                           /m/c/U/s/D/W/C/6/M/7.EM-Algo
/m/c/U/s/D/W/C/6/M/6.K-Means
                                                 python3 k-means.py
                                                                                          The accuracy score of EM: 0.966666666666667

The Confusion matrix of EM: [[50 0 0]]
The accuracy score of K-Mean: 0.24
The Confusion matrixof K-Mean: [[ 0 50 0]
                                                                                           [ 0 45 5]
[ 0 0 50]]
/m/c/U/s/D/W/C/6/M/6.K-Means
                                                                                          The accuracy score of K-Mean: 0.09333333333333334
The Confusion matrixof K-Mean: [[ 0 50 0]
                                                                                                                                            python3 em.py
[ 2 0 48]
[36 0 14]]
                                                                                           [ 0 5 45]
[ 0 50 0]]
/m/c/U/s/D/W/C/6/M/7.EM-Algo <mark>} ♭</mark> π
 /m/c/U/s/D/W/C/6/M/6.K-Means // master // python3 k-means.py
The accuracy score of K-Mean: 0.24
The Confusion matrixof K-Mean: [[ 0 50 0]
                                                                                                                                            python3 em.py
                                                                                          The accuracy score of EM:
[48 0 2]
[14 0 36]]
                                                                                          The Confusion matrix of EM: [[50 0 0]
/m/c/U/s/D/W/C/6/M/6.K-Means
                                                                                           /m/c/U/s/D/W/C/6/M/7.EM-Algo > ├/> master ● >
```

Lab 8: K Nearest

Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions.

```
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
Y = iris.target
print('sepal-length', 'sepal-width', 'petal-length', 'petal-width')
```

```
print(X)
print('target')
print(Y)
x_train, x_test, y_train, y_test = train_test_split(X,Y,test_size=0.3)
classier = KNeighborsClassifier(n_neighbors=5)
classier.fit(x_train, y_train)
y_pred=classier.predict(x_test)
print('confusion matrix')
print(confusion_matrix(y_test,y_pred))
print('accuracy')
print(classification_report(y_test,y_pred))
```


Lab 9: Linear Regression

Implement the Linear Regression algorithm in order to fit data points. Select ap propriate data set for your experiment and draw graphs.

YearsExperience	Salary
1.1	39343
1.3	46205
1.5	37731
2.0	43525
2.2	39891
2.9	56642
3.0	60150
3.2	54445
3.2	64445
3.7	57189
3.9	63218
4.0	55794
4.0	56957
4.1	57001

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('./data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
viz_train = plt
viz_train.scatter(X_train, y_train, color='red')
viz_train.plot(X_train, regressor.predict(X_train), color='blue')
viz_train.title('Salary VS Experience (Training set)')
viz_train.xlabel('Year of Experience')
viz_train.ylabel('Salary')
viz_train.show()
viz_test = plt
viz_test.scatter(X_test, y_test, color='red')
viz_test.plot(X_train, regressor.predict(X_train), color='blue')
viz_test.title('Salary VS Experience (Test set)')
viz_test.xlabel('Year of Experience')
viz_test.ylabel('Salary')
viz_test.show()
```


Lab 9: Locally Weighted Regression

Implement the non-parametric Locally Weighted Regression algorithm in order of data points. Select appropriate data set for your experiment and draw graphs

total_bill	tip	sex	smoker	day	time	size
16.99	1.01	Female	No	Sun	Dinner	2
10.34	1.66	Male	No	Sun	Dinner	3
21.01	3.5	Male	No	Sun	Dinner	3
23.68	3.31	Male	No	Sun	Dinner	2
24.59	3.61	Female	No	Sun	Dinner	4
25.29	4.71	Male	No	Sun	Dinner	4
8.77	2.0	Male	No	Sun	Dinner	2
26.88	3.12	Male	No	Sun	Dinner	4
15.04	1.96	Male	No	Sun	Dinner	2
14.78	3.23	Male	No	Sun	Dinner	2
10.27	1.71	Male	No	Sun	Dinner	2
35.26	5.0	Female	No	Sun	Dinner	4
15.42	1.57	Male	No	Sun	Dinner	2
18.43	3.0	Male	No	Sun	Dinner	4
14 02	2.02	Fomalo	No	Sup	Dinner	2

```
from numpy import *
from os import listdir
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np1
import numpy.linalg as np
from scipy.stats.stats import pearsonr
def kernel(point,xmat, k):
m,n = np1.shape(xmat)
weights = np1.mat(np1.eye((m)))
for j in range(m):
diff = point - X[j]
weights[j,j] = np1.exp(diff*diff.T/(-2.0*k**2))
return weights
def localWeight(point,xmat,ymat,k):
wei = kernel(point,xmat,k)
W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
def localWeightRegression(xmat,ymat,k):
m,n = np1.shape(xmat)
ypred = np1.zeros(m)
for i in range(m):
ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
return ypred
```

```
data = pd.read csv('tips.csv')
bill = np1.array(data.total_bill)
tip = np1.array(data.tip)
mbill = np1.mat(bill)
mtip = np1.mat(tip) # mat is used to convert to n dimesiona to 2 dimensional array form
m= np1.shape(mbill)[1]
one = np1.mat(np1.ones(m))
X= np1.hstack((one.T,mbill.T)) # create a stack of bill from ONE
ypred = localWeightRegression(X,mtip,2)
SortIndex = X[:,1].argsort(∅)
xsort = X[SortIndex][:,0]
fig = plt.figure()
ax = fig.add subplot(1,1,1)
ax.scatter(bill,tip, color='blue')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show()
import numpy as np
from bokeh.plotting import figure, show, output_notebook
from bokeh.layouts import gridplot
from bokeh.io import push_notebook
def local_regression(x0, X, Y, tau):
x0 = np.r [1, x0]
X = np.c_{np.ones(len(X)), X}
xw = X.T * radial_kernel(x0, X, tau)
beta = np.linalg.pinv(xw @ X) @ xw @ Y
return x0 @ beta
def radial_kernel(x0, X, tau):
return np.exp(np.sum((X - x0) ** 2, axis=1) / (-2 * tau * tau))
n = 1000
X = np.linspace(-3, 3, num=n)
print("The Data Set ( 10 Samples) X :\n",X[1:10])
Y = np.log(np.abs(X ** 2 - 1) + .5)
print("The Fitting Curve Data Set (10 Samples) Y :\n",Y[1:10])
X += np.random.normal(scale=.1, size=n)
print("Normalised (10 Samples) X :\n",X[1:10])
domain = np.linspace(-3, 3, num=300)
print(" Xo Domain Space(10 Samples) :\n",domain[1:10])
def plot_lwr(tau):
prediction = [local_regression(x0, X, Y, tau) for x0 in domain]
plot = figure(plot_width=400, plot_height=400)
plot.title.text='tau=%g' % tau
plot.scatter(X, Y, alpha=.3)
plot.line(domain, prediction, line_width=2, color='red')
return plot
show(gridplot([
[plot_lwr(10.), plot_lwr(1.)],
[plot lwr(0.1), plot lwr(0.01)]]))
```

