Practice quiz on Exponents and Logarithms

PUNTOS TOTALES DE 12

1. Re write the number $784 = 2 \times 2 \times 2 \times 2 \times 7 \times 7$ using exponents.

1/1 punto

- \bigcirc (16⁴)(49²)
- \bigcirc (2⁴)(7²)
- $\bigcirc (2 \times 7)^6$
- \bigcirc (2⁶)(7⁶)

✓ Correcto

For this type of problem, count the number of times each relevant factor appears in the product. That number is the exponent for that factor.

2. What is $(x^2 - 5)^0$?

1/1 punto

- \bigcirc -4
- $\bigcirc (x^2)$
- 1
- $\bigcirc (x^2) 5$

✓ Correcto

Any real number (except zero) raised to the "zeroith" power =1.

3. Simplify $((x-5)^2)^{-3}$

1 / 1 punto

- $(x-5)^{-5}$
- $(x-5)^{-6}$
- $\bigcirc (x-5)$
- $(x-5)^{-1}$

✓ Correcto

By Rule 2, "Power to a Power," multiply the exponents and get:

$$(x-5)^{(2\times-3)} = (x-5)^{-6}$$

- $\bigcirc 8^{-1}$
- $\bigcirc 8^{-4}$
- $O 8^{-5}$

✓ Correcto

We can first simplify what is inside the parenthesis to 8^{-5} using the Division and Negative Powers Rule.

Then apply division and negative powers— the result is the same. $\dfrac{8^4}{8^{14}}=8^{-10}$

5. $\log 35 = \log 7 + \log x$

1/1 punto

Solve for \boldsymbol{x}

- 5
- O 28
- O 4
- O 7

✓ Correcto

 $\log(x) = \log 35 - \log 7$

$$\log(x) = \log\left(\frac{35}{7}\right)$$

By the Quotient Rule $\log x = \log 5$

6. $\log_2(x^2 + 5x + 7) = 0$

1/1 punto

Solve for \boldsymbol{x}

- $\bigcirc x = 2$
- $\bigcirc x = 3$
- r = 9 or r = 3

- $\bigcirc \log_2 63$
- $\bigcirc \log_2 4$
- 3
- O 4

✓ Correcto

By the quotient rule, this is $\log_2 \, rac{72}{9} = \log_2 2^3 = 3$

- 8. Simplify $\log_3 9 \log_3 3 + \log_3 5$
 - O 15
 - $\bigcirc \log_3 8$
 - \bigcirc $\log_3 15$
 - O 8

✓ Correcto

By the Quotient and Product Rules, this is $\log_3 \, rac{9 imes 5}{3} \, = \log_3 15$

- 9. Simplify $\log_2(3^8 \times 5^7)$
 - \bigcirc 56 $\times \log_2 15$
 - $\bigcirc \ (8 \times \log_2 3) + (7 \times \log_2 5)$
 - $\bigcirc \ (5 \times \log_2 3) + (8 \times \log_2 5)$
 - \bigcirc 15 $\times \log_2 56$

✓ Correcto

We first apply the Product Rule to convert to the sum: $\log_2(3^8) + \log_2(5^7)$. Then apply the power and root rule.

1/1 punto

1/1 punto

- O 20
- 332.19
- O 500
- 301.03

✓ Correcto

Use the change of base formula, $\log_a b = \dfrac{\log_x b}{\log_x a}$

Where the "old" base is \boldsymbol{x} and the "new" base is \boldsymbol{a} .

so
$$\frac{100}{\log_{10}(2)} = \frac{100}{0.30103} = 332.19$$

11. A tree is growing taller at a continuous rate. In the past 12 years it has grown from 3 meters to 15 meters. What is its rate of growth per year?

1/1 nunto

- 0 11.41%
- 13.41%
- O 12.41%
- $^{\circ}$ 10.41%

$$\frac{\ln\frac{15}{3}}{12} = 0.1341$$

 $^{12}\cdot$ Bacteria can reproduce exponentially if not constrained. Assume a colony grows at a continually compounded rate of 400% per day. How many days before a colony with initial mass of 6.25×10^{-10} grams weights 1000 Kilograms?

1 / 1 punto

- 8.75 days
- O.875 days
- O 87.5 days
- O 875 days

✓ Correcto

$$6.25 \times 10^{-10} \times e^{4t} = 10^6$$