

BUNDESREPUBLIK DEUTSCHLAND

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

E 04/11387

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 52 082.1

Anmeldetag: 07. November 2003

Anmelder/Inhaber: BAYER CropScience AG, 40789 Monheim/DE

Bezeichnung: Hexylcarboxanilide

Priorität: 23. Oktober 2003 DE 103 49 499.5

IPC: C 07 D, A 01 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 23. Juli 2004
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

Stremme

Hexylcarboxanilide

Die vorliegende Erfindung betrifft neue Hexylcarboxanilide, mehrere Verfahren zu deren Herstellung und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.

5

Es ist bereits bekannt, dass zahlreiche Carboxanilide fungizide Eigenschaften besitzen (vgl. z.B. WO 03/010149, WO 02/059086, WO 02/38542, WO 00/09482, EP-A 0 591 699, EP-A 0 589 301 und EP-A 0 545 099). So sind z.B. 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid aus WO 03/010149, N-Allyl-N-[2-(1,3-dimethylbutyl)phenyl]-1-methyl-3-(trifluormethyl)-1H-pyrazol-4-carboxamid aus WO 02/059086 und N-[2-(1,3-Dimethylbutyl)phenyl]-1-methyl-4-(trifluormethyl)-1H-pyrrol-3-carboxamid aus WO 02/38542 bekannt. Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.

10

Es wurden nun neue Hexylcarboxanilide der Formel (I)

15

gefunden, in welcher

20

wobei die mit * markierte Bindung mit dem Amid verbunden ist, während die mit # markierte Bindung mit der Alkylseitenkette verknüpft ist,

R¹ für Wasserstoff, C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen; (C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-Alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogenalkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogencycloalkyl)carbonyl mit

25

jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder $-C(=O)C(=O)R^4$, $-CONR^5R^6$ oder $-CH_2NR^7R^8$ steht,

R^2 für Wasserstoff, Fluor, Chlor, Methyl oder Trifluormethyl steht,

R^3 für Halogen, C_1-C_8 -Alkyl oder C_1-C_8 -Halogenalkyl steht,

5 R^4 für Wasserstoff, C_1-C_8 -Alkyl, C_1-C_8 -Alkoxy, C_1-C_4 -Alkoxy- C_1-C_4 -alkyl, C_3-C_8 -Cycloalkyl; C_1-C_6 -Halogenalkyl, C_1-C_6 -Halogenalkoxy, Halogen- C_1-C_4 -alkoxy- C_1-C_4 -alkyl, C_3-C_8 -Halogen-

gencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,

R^5 und R^6 unabhängig voneinander jeweils für Wasserstoff, C_1-C_8 -Alkyl, C_1-C_4 -Alkoxy- C_1-C_4 -alkyl, C_3-C_8 -Cycloalkyl; C_1-C_8 -Halogenalkyl, Halogen- C_1-C_4 -alkoxy- C_1-C_4 -alkyl, C_3-C_8 -Halogen-

10 cycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,

R^5 und R^6 außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C_1-C_4 -Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel 15 oder NR⁹ enthalten kann,

R^7 und R^8 unabhängig voneinander für Wasserstoff, C_1-C_8 -Alkyl, C_3-C_8 -Cycloalkyl; C_1-C_8 -Halogenalkyl, C_3-C_8 -Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,

R^7 und R^8 außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C_1-C_4 -Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR⁹ enthalten kann,

R^9 für Wasserstoff oder C_1-C_6 -Alkyl steht,

25

A für den Rest der Formel (A1)

(A1) steht, in welcher

30

R^{10} für Wasserstoff, Hydroxy, Formyl, Cyano, Fluor, Chlor, Brom, Nitro, C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_3-C_6 -Cycloalkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Halogenalkoxy oder C_1-C_4 -Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen, Amino-

carbonyl oder Aminocarbonyl- C_1-C_4 -alkyl steht,

R¹¹ für Wasserstoff, Chlor, Brom, Iod, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl oder C₁-C₄-Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen, steht und

5 R¹² für Wasserstoff, C₁-C₄-Alkyl, Hydroxy-C₁-C₄-alkyl, C₂-C₆-Alkenyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio-C₁-C₄-alkyl, C₁-C₄-Halogenalkoxy-C₁-C₄-alkyl mit jeweils 1 bis 5 Halogenatomen, oder für Phenyl steht,

oder

A für den Rest der Formel (A2)

(A2) steht, in welcher

10 R¹³ und R¹⁴ unabhängig voneinander für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit jeweils 1 bis 5 Halogenatomen stehen und

R¹⁵ für Halogen, Cyano oder C₁-C₄-Alkyl, oder C₁-C₄-Halogenalkyl oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

15 oder

A für den Rest der Formel (A3)

(A3) steht, in welcher

20 R¹⁶ und R¹⁷ unabhängig voneinander für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und

R¹⁸ für Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A4)

(A4) steht, in welcher

25 R¹⁹ für Halogen, Hydroxy, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht und

R²⁰ für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen, C₁-C₄-Alkylsulfinyl oder C₁-C₄-Alkylsulfonyl steht,

30

oder

A für den Rest der Formel (A5)

(A5) steht,

oder

5 A für den Rest der Formel (A6)

(A6) steht, in welcher

R²¹ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A7)

(A7) steht, in welcher

10

R²² für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A8)

(A8) steht, in welcher

15

R²³ und R²⁴ unabhängig voneinander für Wasserstoff, Halogen, Amino, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

R²⁵ für Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 to 5 Halogenatomen steht,

oder

20 A für den Rest der Formel (A9)

(A9) steht, in welcher

R²⁶ und R²⁷ unabhängig voneinander für Wasserstoff, Halogen, Amino, Nitro, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und

R²⁸ für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit bis 5 Halogenatomen steht,

25 oder

A für den Rest der Formel (A10)

(A10) steht, in welcher

R²⁹ für Wasserstoff, Halogen, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)amino, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

R³⁰ für Halogen, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₃-C₆-Cycloalkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

5

oder

A für den Rest der Formel (A11)

(A11) steht, in welcher

R³¹ für Wasserstoff, Halogen, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)amino, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

R³² für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A12)

(A12) steht, in welcher

15

R³³ für Wasserstoff oder C₁-C₄-Alkyl steht undR³⁴ für Halogen oder C₁-C₄-Alkyl steht,

oder

A für den Rest der Formel (A13)

(A13) steht, in welcher

20

R³⁵ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A14)

(A14) steht, in welcher

R³⁶ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

25

oder

A für den Rest der Formel (A15)

(A15) steht, in welcher

R³⁷ für Halogen, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

5

oder

A für den Rest der Formel (A16)

(A16) steht, in welcher

R³⁸ für Wasserstoff, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen, C₁-C₄-Alkoxy-C₁-C₄-alkyl, Hydroxy-C₁-C₄-alkyl, C₁-C₄-Alkylsulfonyl, Di(C₁-C₄-alkyl)aminosulfonyl, C₁-C₆-Alkylcarbonyl oder für jeweils gegebenenfalls substituiertes Phenylsulfonyl oder Benzoyl steht,

10

R³⁹ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

15

R⁴⁰ für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R⁴¹ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

20

A für den Rest der Formel (A17)

(A17) steht, in welcher

R⁴² für C₁-C₄-Alkyl steht.

Die erfindungsgemäßen Verbindungen können gegebenenfalls als Mischungen verschiedener möglicher isomerer Formen, insbesondere von Stereoisomeren, wie z. B. E- und Z-, threo- und erythro-, sowie optischen Isomeren, gegebenenfalls aber auch von Tautomeren vorliegen. Es werden sowohl die E- als auch die Z-Isomeren, wie auch die threo- und erythro-, sowie die optischen Isomeren, beliebige Mischungen dieser Isomeren, sowie die möglichen tautomeren Formen beansprucht.

25

Weiterhin wurde gefunden, dass man Hexylcarboxanilide der Formel (I) erhält, indem man

a) Carbonsäure-Derivate der Formel (II)

in welcher

A die oben angegebenen Bedeutungen hat und

X¹ für Halogen oder Hydroxy steht,

mit einem Anilin-Derivate der Formel (III)

in welcher L, R¹ und R³ die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Kondensationsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

oder

b) Hexylcarboxanilide der Formel (I-a)

in welcher L, A und R³ die oben angegebenen Bedeutungen haben

mit Halogeniden der Formel (IV)

in welcher

X² für Chlor, Brom oder Iod steht,

R^{1-A} für C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogenycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)-carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

(C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-Alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogen-

alkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogen-cycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸ steht,

wobei R⁴, R⁵, R⁶, R⁷ und R⁸ die oben angegebenen Bedeutungen haben,

5 in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt.

Schließlich wurde gefunden, dass die neuen Hexylcarboxanilide der Formel (I) sehr gute mikrobizide Eigenschaften besitzen und zur Bekämpfung unerwünschter Mikroorganismen sowohl im Pflanzenschutz als auch im Materialschutz verwendbar sind.

10

Die erfindungsgemäßen Hexylcarboxanilide sind durch die Formel (I) allgemein definiert. Bevorzugte Restedefinitionen der vorstehenden und nachfolgend genannten Formeln sind im Folgenden angegeben. Diese Definitionen gelten für die Endprodukte der Formel (I) wie für alle Zwischenprodukte gleichermaßen.

15

L steht bevorzugt für L-1, wobei R² jeweils die allgemeinen, bevorzugten, besonders bevorzugten, ganz besonders bevorzugten oder insbesondere bevorzugten Bedeutungen haben kann.

L steht außerdem bevorzugt für L-2.

20

L steht außerdem bevorzugt für L-3.

L steht außerdem bevorzugt für L-4.

L steht besonders bevorzugt für L-1, wobei R² jeweils die allgemeinen, bevorzugten, besonders bevorzugten, ganz besonders bevorzugten oder insbesondere bevorzugten Bedeutungen haben kann.

25

L steht außerdem besonders bevorzugt für L-2.

L steht ganz besonders bevorzugt für L-1, wobei R² jeweils die allgemeinen, bevorzugten, besonders bevorzugten, ganz besonders bevorzugten oder insbesondere bevorzugten Bedeutungen haben kann.

30

R¹ steht bevorzugt für Wasserstoff, C₁-C₆-Alkyl, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

35

(C₁-C₆-Alkyl)carbonyl, (C₁-C₄-Alkoxy)carbonyl, (C₁-C₃-Alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Cycloalkyl)carbonyl; (C₁-C₄-Halogenalkyl)carbonyl, (C₁-C₄-Halogenalkoxy)carbonyl, (Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸.

5 R¹ steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl, Pentyl oder Hexyl, Methylsulfinyl, Ethylsulfinyl, n- oder iso-Propylsulfinyl, n-, iso-, sec- oder tert-Butylsulfinyl; Methylsulfonyl, Ethylsulfonyl, n- oder iso-Propylsulfonyl, n-, iso-, sec- oder tert-Butylsulfonyl, Methoxymethyl, Methoxyethyl, Ethoxy-methyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Trifluormethyl, Trichlormethyl, Trifluorethyl, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Trifluormethoxymethyl; Formyl, -CH₂-CHO, -(CH₂)₂-CHO, -CH₂-CO-CH₃, -CH₂-CO-CH₂CH₃, -CH₂-CO-CH(CH₃)₂, -(CH₂)₂-CO-CH₃, -(CH₂)₂-CO-CH(CH₃)₂, -CH₂-CO₂CH₃, -(CH₂)₂-CO₂CH₂CH₃, -(CH₂)₂-CO₂CH(CH₃)₂, -CH₂-CO-CF₃, -CH₂-CO-CCl₃, -CH₂-CO-CH₂CF₃, -CH₂-CO-CH₂CCl₃, -(CH₂)₂-CO-CH₂CF₃, -(CH₂)₂-CO-CH₂CCl₃, -CH₂-CO₂CCl₂CCl₃, -(CH₂)₂-CO₂CH₂CF₃, -(CH₂)₂-CO₂CF₂CF₃, -(CH₂)₂-CO₂CH₂CCl₃, -(CH₂)₂-CO₂CCl₂CCl₃;

10 20 Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, iso-Propylcarbonyl, tert-Butylcarbonyl, Methoxycarbonyl, Ethoxycarbonyl, tert-Butoxycarbonyl, Cyclopropylcarbonyl; Trifluormethylcarbonyl, Trifluormethoxycarbonyl, oder -C(=O)C(=O)R⁵, -CONR⁶R⁷ oder -CH₂NR⁸R⁹.

15 R¹ steht ganz besonders bevorzugt für Wasserstoff, Methyl, Methoxymethyl, Formyl, -CH₂-CHO, -(CH₂)₂-CHO, -CH₂-CO-CH₃, -CH₂-CO-CH₂CH₃, -CH₂-CO-CH(CH₃)₂, -C(=O)CHO, -C(=O)C(=O)CH₃, -C(=O)C(=O)CH₂OCH₃, -C(=O)CO₂CH₃, -C(=O)CO₂CH₂CH₃.

25 R² steht bevorzugt für Wasserstoff.

30 R² steht außerdem bevorzugt für Fluor, wobei Fluor besonders bevorzugt in 4-, 5- oder 6-Position, ganz besonders bevorzugt in 4- oder 6-Position, insbesondere in 4-Position des Anilidrestes steht [vgl. oben Formel (I)].

R² steht außerdem bevorzugt für Chlor, wobei Chlor besonders bevorzugt in 5-Position des Anilidrestes steht [vgl. oben Formel (I)].

35 R² steht außerdem bevorzugt für Methyl, wobei Methyl besonders bevorzugt in 3-Position des Anilidrestes steht [vgl. oben Formel (I)].

R² steht außerdem bevorzugt für Trifluormethyl, wobei Trifluormethyl besonders bevorzugt in 4- oder 5-Position des Anilidrestes steht [vgl. oben Formel (I)].

R³ steht bevorzugt für Fluor, Chlor, Brom, Iod, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen.

R³ steht besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl, n-, iso-Propyl, n-, iso-, sec-, tert-Butyl oder für C₁-C₄-Halogenalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.

R³ steht ganz besonders bevorzugt für Fluor, Chlor, Methyl, Ethyl oder Trifluormethyl.

10

R⁴ steht bevorzugt für Wasserstoff, C₁-C₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.

R⁴ steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, tert-Butyl, Methoxy, Ethoxy, n- oder iso-Propoxy, tert-Butoxy, Methoxymethyl, Cyclopropyl; Trifluormethyl, Trifluormethoxy.

R⁵ und R⁶ stehen unabhängig voneinander bevorzugt für Wasserstoff, C₁-C₆-Alkyl, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.

R⁵ und R⁶ bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, bevorzugt einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Halogen oder C₁-C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 oder 6 Ringatomen, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR⁹ enthalten kann.

R⁵ und R⁶ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl; Trifluormethyl, Trichlormethyl, Trifluorethyl, Trifluormethoxymethyl.

30

R⁵ und R⁶ bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, besonders bevorzugt einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, Brom oder Methyl substituierten gesättigten Heterocyclus aus der Reihe Morpholin, Thiomorpholin oder Piperazin, wobei das Piperazin am zweiten Stickstoffatom durch R⁹ substituiert sein kann.

35

R⁷ und R⁸ stehen unabhängig voneinander bevorzugt für Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₃-C₆-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.

5 R⁷ und R⁸ bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, bevorzugt einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C₁-C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 oder 6 Ringatomen, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR⁹ enthalten kann.

10 R⁷ und R⁸ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl; Trifluormethyl, Trichlormethyl, Trifluoreethyl, Trifluormethoxymethyl.

15 R⁷ und R⁸ bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, besonders bevorzugt einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, Brom oder Methyl substituierten gesättigten Heterocyclus aus der Reihe Morpholin, Thiomorpholin oder Piperazin, wobei das Piperazin am zweiten Stickstoffatom durch R⁹ substituiert sein kann.

R⁹ steht bevorzugt für Wasserstoff oder C₁-C₄-Alkyl.

20 R⁹ steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl.

A steht bevorzugt für einen der oben angegebenen Reste

A1, A2, A3, A4, A5, A8, A9, A10, A11, A13, A15, A16 oder A17.

A steht besonders bevorzugt für einen der oben angegebenen Reste

A1, A2, A4, A5, A8, A10, A11, A13, A15, A16 oder A17.

A steht ganz besonders bevorzugt für den Rest A1.

A steht außerdem ganz besonders bevorzugt für den Rest A2.

A steht außerdem ganz besonders bevorzugt für den Rest A4.

A steht außerdem ganz besonders bevorzugt für den Rest A5.

30 A steht außerdem ganz besonders bevorzugt für den Rest A8.

A steht außerdem ganz besonders bevorzugt für den Rest A10.

A steht außerdem ganz besonders bevorzugt für den Rest A11.

A steht außerdem ganz besonders bevorzugt für den Rest A13.

A steht außerdem ganz besonders bevorzugt für den Rest A15.

35 A steht außerdem ganz besonders bevorzugt für den Rest A17.

- 5 R¹⁰ steht bevorzugt für Wasserstoff, Hydroxy, Formyl, Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, iso-Propyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Cyclopropyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen, Trifluormethylthio, Difluormethylthio, Aminocarbonyl, Aminocarbonylmethyl oder Aminocarbonylethyl.
- 10 R¹⁰ steht besonders bevorzugt für Wasserstoff, Hydroxy, Formyl, Fluor, Chlor, Brom, Methyl, Ethyl, iso-Propyl, Methoxy, Ethoxy, Monofluormethyl, Monofluorethyl, Difluormethyl, Trifluormethyl, Difluorchlormethyl, Trichlormethyl, Dichlormethyl, Pentafluorethyl, Cyclopropyl, Methoxy, Ethoxy, Trifluormethoxy, Difluormethoxy, Trichlormethoxy, Methylthio, Ethylthio, Trifluormethylthio oder Difluormethylthio.
- 15 R¹⁰ steht ganz besonders bevorzugt für Wasserstoff, Hydroxy, Formyl, Fluor, Chlor, Brom, Methyl, Ethyl, iso-Propyl, Methoxy, Cyclopropyl, Monofluormethyl, Monofluorethyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Difluorchlormethyl, Trichlormethyl, -CHFCH₃ oder Difluormethoxy.
- 20 R¹⁰ steht insbesondere bevorzugt für Wasserstoff, Hydroxy, Formyl, Chlor, Methyl, Ethyl, Methoxy, Cyclopropyl, Monofluormethyl, Difluormethyl, Dichlormethyl, Trifluormethyl, -CHFCH₃ oder Difluormethoxy.
- 25 R¹¹ steht bevorzugt für Wasserstoff, Chlor, Brom, Iod, Methyl, Ethyl, Methoxy, Ethoxy, Methylthio, Ethylthio, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen,
- R¹¹ steht besonders bevorzugt für Wasserstoff, Chlor, Brom, Iod, Methyl oder -CHFCH₃.
- R¹¹ steht ganz besonders bevorzugt für Wasserstoff, Chlor, Methyl oder -CHFCH₃.
- 30 R¹² steht bevorzugt für Wasserstoff, Methyl, Ethyl, n-Propyl, iso-Propyl, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen, Hydroxymethyl, Hydroxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl.
- R¹² steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, iso-Propyl, Trifluormethyl, Difluormethyl, Hydroxymethyl, Hydroxyethyl oder Phenyl.
- R¹² steht ganz besonders bevorzugt für Wasserstoff, Methyl, Trifluormethyl oder Phenyl.
- R¹² steht insbesondere bevorzugt für Methyl.

35 R¹³ und R¹⁴ stehen unabhängig voneinander bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R¹³ und R¹⁴ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Difluormethyl, Trifluormethyl, Difluorchlormethyl oder Trichlormethyl.

R¹³ und R¹⁴ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom oder Methyl.

R¹³ und R¹⁴ stehen insbesondere bevorzugt jeweils für Wasserstoff.

5 R¹⁵ steht bevorzugt für Fluor, Chlor, Brom, Iod, Cyano, Methyl, Ethyl, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R¹⁵ steht besonders bevorzugt für Fluor, Chlor, Brom, Iod, Cyano, Methyl, Trifluormethyl, Trifluormethoxy, Difluormethoxy, Difluorchlormethoxy oder Trichlormethoxy.

10 R¹⁵ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Iod, Methyl, Trifluormethyl oder Trifluormethoxy.

R¹⁵ steht insbesondere bevorzugt für Chlor oder Methyl.

R¹⁶ und R¹⁷ stehen unabhängig voneinander bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

15 R¹⁶ und R¹⁷ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Difluormethyl, Trifluormethyl, Difluorchlormethyl oder Trichlormethyl.

R¹⁶ und R¹⁷ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom oder Methyl.

R¹⁶ und R¹⁷ stehen insbesondere bevorzugt jeweils für Wasserstoff.

20 R¹⁸ steht bevorzugt für Wasserstoff, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R¹⁸ steht besonders bevorzugt für Wasserstoff, Methyl oder Trifluormethyl.

25 R¹⁸ steht ganz besonders bevorzugt für Methyl.

R¹⁹ steht bevorzugt für Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, C₁-C₄-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.

30 R¹⁹ steht besonders bevorzugt für Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl, Trichlormethyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, Trifluormethoxy, Difluormethoxy, Difluorchlormethoxy oder Trichlormethoxy.

35 R¹⁹ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Iod, Hydroxy, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.

- 2 R²⁰ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, C₁-C₄-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen, C₁-C₂-Alkylsulfinyl oder C₁-C₂-Alkylsulfonyl.
- 5 R²⁰ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Difluor-chlormethyl, Trichlormethyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Trifluormethoxy, Di-fluormethoxy, Difluorchlormethoxy, Trichlormethoxy, Methylsulfinyl oder Methylsulfonyl.
- 10 R²⁰ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Trichlor-methyl, Methylsulfinyl oder Methylsulfonyl.
- R²⁰ steht insbesondere bevorzugt für Wasserstoff oder Trifluormethyl.
- 25 R²¹ steht bevorzugt für Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 15 R²¹ steht besonders bevorzugt für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlor-methyl oder Trichlormethyl.
- R²¹ steht ganz besonders bevorzugt für Methyl, Trifluormethyl, Difluormethyl oder Trichlor-methyl.
- 20 R²² steht bevorzugt für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- R²² steht besonders bevorzugt für Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- R²³ und R²⁴ stehen unabhängig voneinander bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor; Chlor und/oder Bromatomen.
- 25 R²³ und R²⁴ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- R²³ und R²⁴ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom oder Methyl.
- 30 R²³ und R²⁴ stehen insbesondere bevorzugt jeweils für Wasserstoff.
- R²⁵ steht bevorzugt für Wasserstoff, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R²⁵ steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.

- R²⁵ steht ganz besonders bevorzugt für Wasserstoff, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- R²⁵ steht insbesondere bevorzugt für Methyl oder Trifluormethyl.
- 5 R²⁶ und R²⁷ stehen unabhängig voneinander bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Nitro, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R²⁶ und R²⁷ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Nitro, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 10 R²⁶ und R²⁷ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom oder Methyl.
- R²⁶ und R²⁷ stehen insbesondere bevorzugt jeweils für Wasserstoff.
- 15 R²⁸ steht bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R²⁸ steht besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 20 R²⁸ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- R²⁸ steht insbesondere bevorzugt für Methyl.
- 25 R²⁹ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, C₁-C₄-Alkylamino, Di(C₁-C₄-alkyl)amino, Cyano, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R²⁹ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Cyano, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 30 R²⁹ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- R²⁹ steht insbesondere bevorzugt für Wasserstoff, Chlor, Amino, Methylamino, Dimethylamino, Methyl oder Trifluormethyl.
- 35 R³⁰ steht bevorzugt für Fluor, Chlor, Brom, Hydroxy, Methyl, Ethyl, Methoxy, Eethoxy, Cyclopropyl, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

- 15 R³⁰ steht besonders bevorzugt für Fluor, Chlor, Brom, Hydroxy, Methyl, Ethyl, Methoxy, Ethoxy, Cyclopropyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlor-methyl.
- 5 R³⁰ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Hydroxy, Methyl, Methoxy, Cyclopropyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- R³¹ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, C₁-C₄-Alkylamino, Di(C₁-C₄-alkyl)amino, Cyano, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 10 R³¹ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Cyano, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- R³¹ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- 15 R³¹ steht insbesondere bevorzugt für Amino, Methylamino, Dimethylamino, Methyl oder Trifluormethyl.
- R³² steht bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 20 R³² steht besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- R³² steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- 25 R³² steht insbesondere bevorzugt für Methyl, Trifluormethyl oder Difluormethyl.
- R³³ steht bevorzugt für Wasserstoff, Methyl oder Ethyl.
- R³³ steht besonders bevorzugt für Methyl.
- R³⁴ steht bevorzugt für Fluor, Chlor, Brom, Methyl oder Ethyl,
- 30 R³⁴ steht besonders bevorzugt für Fluor, Chlor oder Methyl.
- R³⁵ steht bevorzugt für Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R³⁵ steht besonders bevorzugt für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlor-methyl oder Trichlormethyl.

- R³⁵ steht ganz besonders bevorzugt für Methyl, Trifluormethyl, Difluormethyl oder Trichlor-methyl.
- R³⁵ steht insbesondere bevorzugt für Methyl oder Trifluormethyl.
- 5 R³⁶ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R³⁶ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl oder Trifluormethyl.
- R³⁶ steht ganz besonders bevorzugt für Wasserstoff oder Chlor.
- 10 R³⁷ steht bevorzugt für Fluor, Chlor, Brom, Iod, Hydroxy, C₁-C₄-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R³⁷ steht besonders bevorzugt für Fluor, Chlor, Brom, Iod, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl, Trichlormethyl.
- 15 R³⁷ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Iod, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- R³⁸ steht bevorzugt für Wasserstoff, Methyl, Ethyl, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, C₁-C₂-Alkoxy-C₁-C₂-alkyl, Hydroxymethyl, Hydroxyethyl, methylsulfonyl oder Dimethylaminosulfonyl.
- R³⁸ steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Ethoxymethyl, Hydroxymethyl oder Hydroxyethyl.
- 25 R³⁸ steht ganz besonders bevorzugt für Methyl oder Methoxymethyl.
- R³⁹ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen.
- R³⁹ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl Trifluormethyl, Difluormethyl oder Trichlormethyl.
- 30 R³⁹ steht ganz besonders bevorzugt für Wasserstoff oder Methyl.
- R⁴⁰ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, iso-Propyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen.
- R⁴⁰ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, iso-Propyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 35 R⁴⁰ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Methyl oder Trifluormethyl.

- R⁴¹ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R⁴¹ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl oder Trifluormethyl.
- 5 R⁴¹ steht ganz besonders bevorzugt für Wasserstoff oder Trifluormethyl.
- R⁴² steht bevorzugt für Methyl, Ethyl, n-Propyl oder iso-Propyl.
- R⁴² steht besonders bevorzugt Methyl oder Ethyl.
- 10 Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R² die oben angegebenen allgemeinen Bedeutungen hat.
Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R² die oben angegebenen bevorzugten Bedeutungen hat.
Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R² die oben 15 angegebenen besonders bevorzugten Bedeutungen hat.
Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R² die oben angegebenen ganz besonders bevorzugten Bedeutungen hat.
Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R² die oben 20 angegebenen insbesondere bevorzugten Bedeutungen hat.
Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-2 steht.
Hervorgehoben sind Verbindungen der Formel (I), in welcher R¹ für Wasserstoff steht.
Hervorgehoben sind Verbindungen der Formel (I), in welcher R¹ für Formyl steht.
Hervorgehoben sind außerdem Verbindungen der Formel (I), in welcher R¹ für -C(=O)C(=O)R⁴ 25 steht, wobei R⁴ die oben angegebenen Bedeutungen hat.
Hervorgehoben sind Verbindungen der Formel (I), in welcher A für A1 steht.
- Gesättigte oder ungesättigte Kohlenwasserstoffreste wie Alkyl oder Alkenyl können, auch in Verbindung mit Heteroatomen, wie z.B. in Alkoxy, soweit möglich, jeweils geradkettig oder verzweigt sein.
- 30 Gegebenenfalls substituierte Reste können einfach oder mehrfach substituiert sein, wobei bei Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können.
- Durch Halogen substituierte Reste, wie z.B. Halogenalkyl, sind einfach oder mehrfach halogeniert.
- 35 Bei mehrfacher Halogenierung können die Halogenatome gleich oder verschieden sein. Halogen steht dabei für Fluor, Chlor, Brom und Iod, insbesondere für Fluor, Chlor und Brom.

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können jedoch auch untereinander, also zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.

5

Die genannten Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem können auch einzelne Definitionen entfallen.

- Bevorzugt, besonders bevorzugt oder ganz besonders bevorzugt sind Verbindungen der Formel (I),
10 welche jeweils die unter bevorzugt, besonders bevorzugt oder ganz besonders bevorzugt genannten Substituenten tragen.

Beschreibung der erfindungsgemäßen Verfahren zum Herstellen der Hexylcarboxanilide der Formel (I) sowie der Zwischenprodukte

15

Verfahren (a)

Verwendet man 3-Dichlormethyl-1-methyl-1H-pyrazol-4-carbonyl-chlorid und [2-(1,3,3-Trimethylbutyl)phenyl]amin als Ausgangsstoffe, so kann das erfindungsgemäße Verfahren (a) durch das folgende Formelschema veranschaulicht werden:

20

Die zur Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten Carbonsäure-Derivate sind durch die Formel (II) allgemein definiert. In dieser Formel (II) hat A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für A angegeben wurden. X¹ steht bevorzugt für Chlor, Brom oder Hydroxy.

25

Die Carbonsäure-Derivate der Formel (II) sind größtenteils bekannt und/oder lassen sich nach bekannten Verfahren herstellen (vgl. WO 93/11117, EP-A 0 545 099, EP-A 0 589 301 und EP-A
30 0 589 313).

3-Dichlormethyl-1H-pyrazol-4-carbonsäure-Derivate der Formel (II-a)

in welcher

R¹² die oben angegebenen Bedeutungen hat,

X¹ für Halogen oder Hydroxy steht,

5

können erhalten werden, indem man in einem ersten Schritt Ketoacetal der Formel (V)

in welcher

R⁴³ für C₁-C₄-Alkyl, bevorzugt für Methyl, Ethyl, n-, iso-Propyl, n-, sec-, tert-Butyl, steht,

10 R⁴⁴ und R⁴⁵ jeweils für Methyl oder Ethyl stehen, oder

R⁴⁴ und R⁴⁵ gemeinsam für -(CH₂)₃- oder -CH₂-C(CH₃)₂-CH₂- stehen,

mit Orthoameisensäurealkylestern der Formel (VI)

in welcher

15 R⁴⁶ für C₁-C₄-Alkyl, bevorzugt für Methyl, Ethyl, n-, iso-Propyl, n-, sec-, tert-Butyl, steht, in Gegenwart eines Anhydrids (z.B. Essigsäureanhydrid) umsetzt

und die so erhaltenen Verbindungen der Formel (VII)

20 in welcher R⁴³, R⁴⁴, R⁴⁵ und R⁴⁶ die oben angegebenen Bedeutungen haben, in einem zweiten Schritt mit Hydrazin-Derivaten der Formel (VIII)

in welcher R¹² die oben angegebenen Bedeutungen hat,

in Gegenwart eines Verdünnungsmittels (z.B. Methanol) umsetzt

25

und die so erhaltenen Pyrazol-Derivate der Formel (IX)

in welcher R¹², R⁴³, R⁴⁴ und R⁴⁵ die oben angegebenen Bedeutungen haben,
in einem dritten Schritt in Gegenwart einer Säure (z.B. Salzsäure) und in Gegenwart eines Verdünnungsmittels (z.B. Dioxan) umgesetzt

5

und die so erhaltenen 3-Formyl-1H-pyrazol-4-carbonsäureester der Formel (X)

in welcher R¹² und R⁴³ die oben angegebenen Bedeutungen haben,
entweder

- 10 a) in einem vierten Schritt in Gegenwart einer Base (z.B. Lithiumhydroxid) und in Gegenwart eines Verdünnungsmittels (z.B. Tetrahydrofuran) verseift

und die so erhaltenen 3-Formyl-1H-pyrazol-4-carbonsäuren der Formel (XI)

15

in welcher R¹² die oben angegebenen Bedeutungen hat,
anschließend mit einem Chlorierungsmittel (z.B. Phosphorpentachlorid) in Gegenwart eines Verdünnungsmittels (z.B. Dichlormethan) umgesetzt,

oder

- b) in einem vierten Schritt mit einem Chlorierungsmittel (z.B. Phosphorpentachlorid) in Gegenwart eines Verdünnungsmittels (z.B. Dichlormethan) umgesetzt

20

und die so erhaltenen 3-Dichlormethyl-1H-pyrazol-4-carbonsäureester der Formel (XII)

in welcher R¹² und R⁴³ die oben angegebenen Bedeutungen haben,
 anschließend in Gegenwart einer Base (z.B. Lithiumhydroxid) und in Gegenwart eines Verdünnungsmittels (z.B. Tetrahydrofuran) verseift.

- 5 Die zur Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe weiterhin benötigten Anilin-Derivate sind durch die Formel (III) allgemein definiert. In dieser Formel (III) haben L, R¹ und R³ bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.

Die Anilin-Derivate der Formel (III), in denen L für L-1 steht, sind teilweise neu. Anilin-Derivate der Formel (III), in denen L für L-1 steht, lassen sich herstellen, indem man

- c) in einem ersten Schritt ein Anilin-Derivat der Formel (XIII)

in welcher R¹ und R² die oben angegebenen Bedeutungen haben,

mit einem Alken der Formel (XIV)

20

in welcher R³ die oben angegebenen Bedeutungen hat,

in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart einer Base und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

und das so erhaltene Alkenanilin der Formel (XV)

in welcher R¹, R² und R³ die oben angegebenen Bedeutungen haben,

in einem zweiten Schritt gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators hydriert.

Die zur Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangsstoffe benötigten Anilin-Derivate sind durch die Formel (XIII) allgemein definiert. In dieser Formel (XIII) haben R¹ und R² bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.

Anilin-Derivate der Formel (XIII) sind bekannt oder können nach bekannten Methoden erhalten werden. Anilin-Derivate der Formel (XIII), in welcher R¹ nicht für Wasserstoff steht, können erhalten werden, indem man Aniline der Formel (XIII-a)

10

in welcher R² die oben angegebenen Bedeutungen hat,
mit Halogeniden der Formel (IV)

in welcher R^{1-A} und X² die oben angegebenen Bedeutungen hat,

15 in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt. [Die Reaktionsbedingungen des Verfahrens (b) gelten entsprechend.]

Die zur Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangsstoffe weiterhin benötigten Alkene sind durch die Formel (XIV) allgemein definiert. In dieser Formel (XIV) hat R³ bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diesen Rest als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.

Alkene der Formel (XIV) sind bekannt oder können nach bekannten Methoden erhalten werden.

25

Die bei der Durchführung des erfindungsgemäßen Verfahrens (c) als Zwischenprodukte durchlaufenden Alkenaniline sind durch die Formel (XV) allgemein definiert. In dieser Formel (XV) haben R¹, R² und R³ bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.

Alkenaniline der Formel (XV) sind teilweise bekannt.

Das erfindungsgemäße Verfahren (c) kann in verschiedenen Varianten durchgeführt werden. So ist es möglich, zunächst Aniline der Formel (XIII-a) mit Alkenen der Formel (XIV) zu den entsprechenden Anilin-Derivaten der Formel (III-a)

- 5 in welcher R² und R³ die oben angegebenen Bedeutungen haben,
umzusetzen, welche dann gegebenenfalls mit Halogeniden der Formel (IV)

- 10 in welcher R^{1-A} und X² die oben angegebenen Bedeutungen haben,
in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels zu den entsprechenden Anilin-Derivaten der Formel (III) umgesetzt werden. [Die Reaktionsbedingungen des Verfahrens (b) gelten entsprechend.]

Es ist jedoch auch möglich, auf der Stufe der Alkenaniline der Formel (XV) die Umsetzung mit einem Halogenid der Formel (IV) durchzuführen und anschließen zu hydrieren.

15

Anilin-Derivate der Formel (III-b)

in welcher

- a) R^{1-B} für Wasserstoff steht, und
 20 R^{3-B} für Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl steht,
 oder
 b) R^{1-B} für C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)-carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

(C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-Alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogenalkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogen-cycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder
5 -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸ steht, und

R^{3-B} für Wasserstoff, Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl steht,

und

R², R⁴, R⁵, R⁶, R⁷ und R⁸ jeweils die oben angegebenen Bedeutungen haben,
sind neu und ebenfalls Gegenstand dieser Anmeldung.

10

Die bevorzugten, besonders bevorzugten bzw. ganz besonders bevorzugten Bedeutungen von R¹ und R³ finden auf R^{1-B} und R^{3-B} entsprechend Anwendung, wobei im Fall a) R^{1-B} immer für Wasserstoff und R^{3-B} nicht für Wasserstoff, Methyl oder Ethyl steht und im Fall b) R^{1-B} nicht für Wasserstoff steht. Die bevorzugten, besonders bevorzugten bzw. ganz besonders bevorzugten Bedeutungen von 15 R², R⁴, R⁵, R⁶, R⁷ und R⁸ gelten ebenfalls für die neuen Verbindungen der Formel (III-b).

Hervorgehoben sind Verbindungen der Formel (III-b), in welcher R¹ und R² jeweils für Wasserstoff und R³ für Fluor, Chlor, Methyl, Ethyl, Trifluormethyl oder Pentafluorethyl steht.

20

Die Anilin-Derivate der Formel (III), in denen L für L-2, L-3 oder L-4 steht, sind bekannt und/oder können nach bekannten Verfahren erhalten werden (vgl. z.B. EP-A 1 036 793 und EP-A 0 737 682).

Anilin-Derivate der Formel (III), in denen L für L-2, L-3 oder L-4 steht und R¹ nicht für Wasserstoff steht, können erhalten werden, indem man Aniline der Formel (III-c)

in welcher

L¹ für L-2, L-3 oder L-4 steht und

L-2, L-3, L-4 und R³ die oben angegebenen Bedeutungen haben,
mit Halogeniden der Formel (IV)

30

in welcher R^{1-A} und X² die oben angegebenen Bedeutungen hat,

in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umgesetzt. [Die Reaktionsbedingungen des Verfahrens (b) gelten entsprechend.]

Verfahren (b)

Verwendet man 1,3,5-Trimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid und Ethyl-chlor(oxo)acetat als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (b) durch das folgende Formelschema veranschaulicht werden:

5

Die zur Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe benötigten Hexylcarboxanilide sind durch die Formel (I-a) allgemein definiert. In dieser Formel (I-a) haben R², R³ und A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diese Reste angegeben wurden.

10

Die Hexylcarboxanilide der Formel (I-a) sind ebenfalls erfindungsgemäße Verbindungen und Gegenstand dieser Anmeldung. Sie können nach dem erfindungsgemäßen Verfahren (a) erhalten werden (mit R¹ = Wasserstoff).

15

Die zur Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe weiterhin benötigten Halogenide sind durch die Formel (IV) allgemein definiert.

20

R^{1-A} steht bevorzugt für C₁-C₆-Alkyl, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-Halogenencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl;

25

Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

(C₁-C₆-Alkyl)carbonyl, (C₁-C₄-Alkoxy)carbonyl, (C₁-C₃-Alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Cycloalkyl)carbonyl; (C₁-C₄-Halogenalkyl)carbonyl, (C₁-C₄-Halogenalkoxy)carbonyl, (Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Halogenencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder

30

-CH₂NR⁷R⁸.

R^{1-A} steht besonders bevorzugt für Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl,

- Pentyl oder Hexyl, Methylsulfinyl, Ethylsulfinyl, n- oder iso-Propylsulfinyl, n-, iso-, sec- oder tert-Butylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder iso-Propylsulfonyl, n-, iso-, sec- oder tert-Butylsulfonyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Trifluormethyl, Trichlormethyl, Trifluorethyl,
 5 Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Trifluormethoxymethyl; Formyl, -CH₂-CHO, -(CH₂)₂-CHO, -CH₂-CO-CH₃, -CH₂-CO-CH₂CH₃, -CH₂-CO-CH(CH₃)₂, -(CH₂)₂-CO-CH₃, -(CH₂)₂-CO-CH₂CH₃, -(CH₂)₂-CO-CH(CH₃)₂,
 10 -CH₂-CO₂CH(CH₃)₂, -(CH₂)₂-CO₂CH₃, -(CH₂)₂-CO₂CH₂CH₃, -(CH₂)₂-CO₂CH(CH₃)₂, -CH₂-CO-CF₃, -CH₂-CO-CCl₃, -CH₂-CO-CH₂CF₃, -CH₂-CO-CH₂CCl₃, -(CH₂)₂-CO-CH₂CF₃,
 -(CH₂)₂-CO-CH₂CCl₃, -CH₂-CO₂CH₂CF₃, -CH₂-CO₂CF₂CF₃, -CH₂-CO₂CH₂CCl₃, -CH₂-CO₂CCl₂CCl₃, -(CH₂)₂-CO₂CH₂CF₃, -(CH₂)₂-CO₂CCl₂CCl₃,
 15 Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, iso-Propylcarbonyl, tert-Butylcarbonyl, Methoxycarbonyl, Ethoxycarbonyl, tert-Butoxycarbonyl, Cyclopropylcarbonyl; Trifluormethylcarbonyl, Trifluormethoxycarbonyl, oder -C(=O)C(=O)R⁵, -CONR⁶R⁷ oder -CH₂NR⁸R⁹.
 R^{1-A} steht ganz besonders bevorzugt für Methyl, Methoxymethyl, Formyl, -CH₂-CHO, -(CH₂)₂-CHO, -CH₂-CO-CH₃, -CH₂-CO-CH₂CH₃, -CH₂-CO-CH(CH₃)₂, -C(=O)CHO, -C(=O)C(=O)CH₃, -C(=O)C(=O)CH₂OCH₃, -C(=O)CO₂CH₃, -C(=O)CO₂CH₂CH₃.
 20 X² steht bevorzugt für Chlor oder Brom.

Halogenide der Formel (IV) sind bekannt.

25 Reaktionsbedingungen

Als Verdünnungsmittel zur Durchführung des erfundungsgemäßen Verfahrens (a) kommen alle internen organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie z.B. Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylool oder Decalin; halogenierte Kohlenwasserstoffe, wie z.B. Chlorbenzol; Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-Amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol oder Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid.

Das erfindungsgemäße Verfahren (a) wird gegebenenfalls in Gegenwart eines geeigneten Säure-akzeptors durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie z.B. Natriumhydrid, Natriumamid,

- 5 Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Natriumhydrogencarbonat oder Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylamino-pyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

Das erfindungsgemäße Verfahren (a) wird gegebenenfalls in Gegenwart eines geeigneten Kondensationsmittels durchgeführt. Als solche kommen alle üblicherweise für derartige Amidierungsreaktionen verwendbaren Kondensationsmittel infrage. Beispielhaft genannt seien Säurehalogenidbildner

- 15 wie Phosgen, Phosphortribromid, Phosphortrichlorid, Phosphorpentachlorid, Phosphoroxychlorid oder Thionylchlorid; Anhydridbildner wie Chlorameisensäureethylester, Chlorameisensäuremethylester, Chlorameisensäureisopropylester, Chlorameisensäureisobutylester oder Methansulfonylchlorid; Carbodiimide, wie N,N'-Dicyclohexylcarbodiimid (DCC) oder andere übliche Kondensationsmittel, wie Phosphorpentoxid, Polyphosphorsäure, N,N'-Carbonyldiimidazol, 2-Ethoxy-N-ethoxycarbonyl-1,2-dihydrochinolin (EEDQ), Triphenylphosphin/Tetrachlorkohlenstoff oder Brom-tripyrrolydinophosphonium-hexafluorophosphat.

- 20
25 Das erfindungsgemäße Verfahren (a) wird gegebenenfalls in Gegenwart eines Katalysators durchgeführt. Beispielsweise genannt seien 4-Dimethylaminopyridin, 1-Hydroxy-benzotriazol oder Dimethylformamid.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (a) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 0°C bis 80°C.

- 30 Zur Durchführung des erfindungsgemäßen Verfahrens (a) zur Herstellung der Verbindungen der Formel (I) setzt man pro mol des Carbonsäure-Derivates der Formel (II) im Allgemeinen 0,2 bis 5 mol, vorzugsweise 0,5 bis 2 mol an Anilin-Derivat der Formel (III) ein.

- 35 Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (b) kommen alle internen organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische

oder aromatische Kohlenwasserstoffe, wie z.B. Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylool oder Decalin; halogenierte Kohlenwasserstoffe, wie z.B. Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-Amyl-ether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol oder Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid.

Das erfindungsgemäße Verfahren (b) wird in Gegenwart einer Base durchgeführt. Als solche

kommen alle üblichen anorganischen oder organischen Basen in Frage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie z.B. Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat,

Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Natriumhydrogencarbonat oder Caesiumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO),

Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (b) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 20°C bis 110°C.

Zur Durchführung des erfindungsgemäßen Verfahrens (b) zur Herstellung der Verbindungen der

Formel (I) setzt man pro Mol des Hexylcarboxanilids der Formel (I-a) im Allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 2 Mol an Halogenid der Formel (IV) ein.

Als Verdünnungsmittel zur Durchführung des ersten Schrittes des erfindungsgemäßen Verfahrens (c) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise Nitrile,

wie Acetonitril, Propionitril, n- oder i-Butyonitril oder Benzonitril oder Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid.

Der erste Schritt des erfindungsgemäßen Verfahrens (c) wird gegebenenfalls in Gegenwart eines ge-

eigneten Säureakzeptors durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen in Frage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride,

-hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie z.B. Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Natriumhydrogencarbonat oder

5 Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicyclo-undecen (DBU).

10 Der erste Schritt des erfindungsgemäßen Verfahrens (c) wird in Gegenwart eines oder mehrerer Katalysatoren durchgeführt.

Dazu eignen sich besonders Palladiumsalze oder -komplexe. Hierzu kommen vorzugsweise Palladiumchlorid, Palladiumacetat, Tetrakis-(triphenylphosphin)-Palladium oder Bis-(triphenylphosphin)-Palladiumdichlorid in Frage. Es kann auch ein Palladiumkomplex in der Reaktionsmischung

15 erzeugt werden, wenn man ein Palladiumsalz und ein Komplexligand getrennt zur Reaktion zugibt.

Als Liganden kommen vorzugsweise Organophosphorverbindungen in Frage. Beispielhaft seien genannt: Triphenylphosphin, tri-o-Tolylphosphin, 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl, Di-

20 cyclohexylphosphinebiphenyl, 1,4-Bis(diphenylphosphino)butan, Bis(diphenylphosphino)ferrocen, Di(tert.-butylphosphino)biphenyl, Di(cyclohexylphosphino)biphenyl, 2-Dicyclohexylphosphino-2'-N,N-dimethylaminobiphenyl, Tricyclohexylphosphin, Tri-tert.-butylphosphin. Es kann aber auch auf Liganden verzichtet werden.

Der erste Schritt des erfindungsgemäßen Verfahrens (c) wird ferner gegebenenfalls in Gegenwart eines weiteren Metallsalzes, wie Kupfersalzen, beispielsweise Kupfer-(I)-iodid durchgeführt.

Die Reaktionstemperaturen können bei der Durchführung des ersten Schrittes des erfindungsgemäßen Verfahrens (c) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 20°C bis 180°C, vorzugsweise bei Temperaturen von 50°C bis 150°C.

30

Zur Durchführung des ersten Schrittes des erfindungsgemäßen Verfahrens (c) zur Herstellung der Alkenaniline der Formel (XV) setzt man pro Mol des Anilin-Derivates der Formel (XIII) im Allgemeinen 1 bis 5 mol, vorzugsweise 1 bis 3 mol an Alken der Formel (XIV) ein.

35

Als Verdünnungsmittel zur Durchführung des zweiten Schrittes (Hydrierung) des erfindungsgemäßen Verfahrens (c) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören

vorzugsweise aliphatische oder alicyclische Kohlenwasserstoffe, wie z.B. Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan oder Decalin; Ether, wie Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-Amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan oder 1,2-Diethoxyethan; Alkohole, wie Methanol, Ethanol, n- oder iso-Propanol, n-, iso-, sec- oder tert-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmonomethyl-ether, Diethylenglykolmonoethylether, deren Gemische mit Wasser oder reines Wasser.

Der zweite Schritt (Hydrierung) des erfindungsgemäßen Verfahrens (c) wird in Gegenwart eines Katalysators durchgeführt. Als solche kommen alle Katalysatoren infrage, die für Hydrierungen üblicherweise verwendet werden. Beispielhaft seien genannt: Raney-Nickel, Palladium oder Platin, gegebenenfalls auf einem Trägermaterial, wie z.B. Aktivkohle..

Die Hydrierung im zweiten Schritt des erfindungsgemäßen Verfahrens (c) kann statt in Gegenwart von Wasserstoff in Kombination mit einem Katalysator auch in Anwesenheit von Triethylsilan durchgeführt werden.

Die Reaktionstemperaturen können bei der Durchführung des zweiten Schrittes des erfindungsgemäßen Verfahrens (c) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 20°C bis 100°C.

Der zweite Schritt des erfindungsgemäßen Verfahrens (c) wird unter einem Wasserstoffdruck zwischen 0.5 und 200 bar, bevorzugt zwischen 2 und 50 bar, besonders bevorzugt zwischen 3 und 10 bar durchgeführt.

Wenn nicht anders angegeben, werden alle erfindungsgemäßen Verfahren im Allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder verminderter Druck – im Allgemeinen zwischen 0,1 bar und 10 bar – zu arbeiten.

Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.

Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen. Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.

Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

Xanthomonas-Arten, wie z.B. *Xanthomonas campestris* pv. *oryzae*;
Pseudomonas-Arten, wie z.B. *Pseudomonas syringae* pv. *lachrymans*;

5 Erwinia-Arten, wie z.B. *Erwinia amylovora*;

Pythium-Arten, wie z.B. *Pythium ultimum*;

Phytophthora-Arten, wie z.B. *Phytophthora infestans*;

Pseudoperonospora-Arten, wie z.B. *Pseudoperonospora humuli* oder

Pseudoperonospora *cubensis*;

10 Plasmopara-Arten, wie z.B. *Plasmopara viticola*;

Bremia-Arten, wie z.B. *Bremia lactucae*;

Peronospora-Arten, wie z.B. *Peronospora pisi* oder *P. brassicae*;

Erysiphe-Arten, wie z.B. *Erysiphe graminis*;

Sphaerotheca-Arten, wie z.B. *Sphaerotheca fuliginea*;

15 Podosphaera-Arten, wie z.B. *Podosphaera leucotricha*;

Venturia-Arten, wie z.B. *Venturia inaequalis*;

Pyrenophora-Arten, wie z.B. *Pyrenophora teres* oder *P. graminea*

(Konidienform: Drechslera, Syn: Helminthosporium);

Cochliobolus-Arten, wie z.B. *Cochliobolus sativus*

20 (Konidienform: Drechslera, Syn: Helminthosporium);

Uromyces-Arten, wie z.B. *Uromyces appendiculatus*;

Puccinia-Arten, wie z.B. *Puccinia recondita*;

Sclerotinia-Arten, wie z.B. *Sclerotinia sclerotiorum*;

Tilletia-Arten, wie z.B. *Tilletia caries*;

25 Ustilago-Arten, wie z.B. *Ustilago nuda* oder *Ustilago avenae*;

Pellicularia-Arten, wie z.B. *Pellicularia sasakii*;

Pyricularia-Arten, wie z.B. *Pyricularia oryzae*;

Fusarium-Arten, wie z.B. *Fusarium culmorum*;

Botrytis-Arten, wie z.B. *Botrytis cinerea*;

30 Septoria-Arten, wie z.B. *Septoria nodorum*;

Leptosphaeria-Arten, wie z.B. *Leptosphaeria nodorum*;

Cercospora-Arten, wie z.B. *Cercospora canescens*;

Alternaria-Arten, wie z.B. *Alternaria brassicace*;

Pseudocercosporella-Arten, wie z.B. *Pseudocercosporella herpotrichoides*.

35

Die erfindungsgemäßen Wirkstoffe weisen auch eine starke stärkende Wirkung in Pflanzen auf. Sie

eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.

Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang 5 solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mikroorganismen entfalten.

Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien 10 und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im Allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.

15 Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

20 Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie z.B. gegen Puccinia-Arten und von Krankheiten im Wein-, Obst- und Gemüseanbau, wie z.B. gegen Botrytis-, Venturia- oder Alternaria-Arten, einsetzen.

25 Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbicide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als 30 Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.

Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder 35 durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden

erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, 5 Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt 10 oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

15 Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können 20 technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfahrung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.

30 Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.

35

Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:

- Alternaria, wie Alternaria tenuis,
- Aspergillus, wie Aspergillus niger,
- Chaetomium, wie Chaetomium globosum,
- Coniophora, wie Coniophora puetana,
- 5 Lentinus, wie Lentinus tigrinus,
- Penicillium, wie Penicillium glaucum,
- Polyporus, wie Polyporus versicolor,
- Aureobasidium, wie Aureobasidium pullulans,
- Sclerophoma, wie Sclerophoma pityophila,
- 10 Trichoderma, wie Trichoderma viride,
- Escherichia, wie Escherichia coli,
- Pseudomonas, wie Pseudomonas aeruginosa,
- Staphylococcus, wie Staphylococcus aureus.
- 15 Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/ oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.
- 20 Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/ oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder Schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylen oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfaktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethyleketon, Methylisobutylketon oder
- 25 Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen infrage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum,
- 30 Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen infrage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum,
- 35 Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen

infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Bims, Marmor, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnusschalen, Maiskolben und Tabakstägel.

- 5 Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylaryl-polyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen infrage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

- 10 Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetable Öle sein.

- 15 Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurenährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im Allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

- 20 Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.
- 25

Als Mischpartner kommen zum Beispiel folgende Verbindungen infrage:

Fungizide:

- 30 2-Phenylphenol; 8-Hydroxychinolinsulfat; Acibenzolar-S-methyl; Aldimorph; Amidoflumet; Ampropylfos; Ampropylfos-potassium; Andoprim; Anilazine; Azaconazole; Azoxystrobin; Benalaxyl; Benodanil; Benomyl; Benthiavalicarb-isopropyl; Benzamacril; Benzamacril-isobutyl; Bilanafos; Binapacryl; Biphenyl; Bitertanol; Blasticidin-S; Bromuconazole; Bupirimate; Buthiobate; Butylamin; Calcium polysulfide; Capsimycin; Captafol; Captan; Carbendazim; Carboxin; Carpropamid; Carvone; Chinomethionat; Chlobenthiazole; Chlorfenazole; Chloroneb; Chlorothalonil; Chlozolinat; Clozylacon; Cyazofamid; Cyflufenamid; Cymoxanil; Cyproconazole; Cyprodinil; Cyprofuram; Dagger G; Debacarb; Dichlofluanid; Dichlone; Dichlorophen; Diclocymet; Diclomezine; Dicloran; Di-

ethofencarb; Difenoconazole; Diflumetorim; Dimethirimol; Dimethomorph; Dimoxystrobin; Dini-
conazole; Diniconazole-M; Dinocap; Diphenylamine; Dipyrithione; Ditalimfos; Dithianon; Dodine;
Drazoxolon; Edifenphos; Epoxiconazole; Ethaboxam; Ethirimol; Etridiazole; Famoxadone; Fenami-
done; Fenapanil; Fenarimol; Fenbuconazole; Fenfuram; Fenhexamid; Fenitropan; Fenoxyanil; Fen-
piclonil; Fenpropidin; Fenpropimorph; Ferbam; Fluazinam; Flubenzimine; Fludioxonil; Flumetover;
Flumorph; Fluoromide; Fluoxastrobin; Fluquinconazole; Flurprimidol; Flusilazole; Flusulfamide;
Flutolanil; Flutriafol; Folpet; Fosetyl-Al; Fosetyl-sodium; Fuberidazole; Furalaxyl; Furametpyr;
Furcarbanil; Furmecyclox; Guazatine; Hexachlorobenzene; Hexaconazole; Hymexazol; Imazalil;
Imibenconazole; Iminoctadine triacetate; Iminoctadine tris(albesil; Iodocarb; Ipconazole; Iprobenfos;
Iprodione; Iprovalicarb; Irumamycin; Isoprothiolane; Isovaliedione; Kasugamycin; Kresoxim-methyl;
Mancozeb; Maneb; Meferimzone; Mepanipyrim; Mepronil; Metalaxyl; Metalaxyl-M; Metconazole;
Methasulfocarb; Methfuroxam; Metiram; Metominostrobin; Metsulfovax; Mildiomycin; Myclobutanil;
Myclozolin; Natamycin; Nicobifen; Nitrothal-isopropyl; Noviflumuron; Nuarimol; Ofurace;
Orysastrobin; Oxadixyl; Oxolinic acid; Oxoconazole; Oxycarboxin; Oxyfenthiin; Paclobutrazol; Pe-
furazoate; Penconazole; Pencycuron; Phosdiphen; Phthalide; Picoxystrobin; Piperalin; Polyoxins;
Polyoxorim; Probenazole; Prochloraz; Procymidone; Propamocarb; Propanosine-sodium; Propicon-
azole; Propineb; Proquinazid; Prothioconazole; Pyraclostrobin; Pyrazophos; Pyrifenoxy; Pyrimethanil;
Pyroquilon; Pyroxyfur; Pyrrolnitrine; Quinconazole; Quinoxifen; Quintozene; Simeconazole; Spi-
roxamine; Sulfur; Tebuconazole; Tecloftalam; Tecnazene; Tetcyclacis; Tetraconazole; Thiabenda-
zole; Thicyofen; Thifluzamide; Thiophanate-methyl; Thiram; Tioxymid; Tolclofos-methyl; Tolyl-
fluanid; Triadimefon; Triadimenol; Triazbutil; Triazoxide; Tricyclamide; Tricyclazole; Tridemorph;
Trifloxystrobin; Triflumizole; Triforine; Triticonazole; Uniconazole; Validamycin A; Vinclozolin;
Zineb; Ziram; Zoxamide; (2S)-N-[2-[4-[[3-(4-Chlorphenyl)-2-propinyl]oxy]-3-methoxyphenyl]-
ethyl]-3-methyl-2-[(methylsulfonyl)amino]-butanamid; 1-(1-Naphthalenyl)-1H-pyrrol-2,5-dion;
2,3,5,6-Tetrachlor-4-(methylsulfonyl)pyridin; 2-Amino-4-methyl-N-phenyl-5-thiazolcarboxamid; 2-
Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamide; 3,4,5-Trichlor-2,6-pyri-
dindicarbonitril; Actinovate; cis-1-(4-Chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol; Methyl
1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat; Monokaliumcarbonat; N-(6-
Methoxy-3-pyridinyl)-cyclopropancarboxamid; N-Butyl-8-(1,1-dimethylethyl)-1-oxaspiro[4.5]de-
can-3-amin; Natriumtetrathiocarbonat; sowie Kupfersalze und -zubereitungen, wie Bordeaux mix-
ture; Kupferhydroxid; Kupfernaphthenat; Kupferoxychlorid; Kupfersulfat; Cufraneb; Kupferoxid;
Mancopper; Oxine-copper.

Bakterizide:

35 Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon,
Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere

Kupfer-Zubereitungen.

Insektizide / Akarizide / Nematizide:

Abamectin, ABG-9008, Acephate, Acequinocyl, Acetamiprid, Acetoprole, Acrinathrin, AKD-1022,
5 AKD-3059, AKD-3088, Alanycarb, Aldicarb, Aldoxycarb, Allethrin, Allethrin 1R-isomers, Alpha-
Cypermethrin (Alphamethrin), Amidoflumet, Aminocarb, Amitraz, Avermectin, AZ-60541, Azadi-
rachtin, Azamethiphos, Azinphos-methyl, Azinphos-ethyl, Azocyclotin, Bacillus popilliae, Bacillus
sphaericus, Bacillus subtilis, Bacillus thuringiensis, Bacillus thuringiensis strain EG-2348, Bacillus
thuringiensis strain GC-91, Bacillus thuringiensis strain NCTC-11821, Baculoviren, Beauveria
10 bassiana, Beauveria tenella, Benclothiaz, Bendiocarb, Benfuracarb, Bensultap, Benzoximate, Beta-
Cyfluthrin, Beta-Cypermethrin, Bifenazate, Bifenthrin, Binapacryl, Bioallethrin, Bioallethrin-S-
cyclopentyl-isomer, Bioethanomethrin, Biopermethrin, Bioresmethrin, Bistrifluron, BPMC, Brofem-
prox, Bromophos-ethyl, Bromopropylate, Bromfenvinfos (-methyl), BTG-504, BTG-505, Bufencarb,
Buprofezin, Butathiofos, Butocarboxim, Butoxycarboxim, Butylpyridaben, Cadusafos, Camphechlor,
15 Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA-50439, Chinomethionat, Chlor-
dane, Chlordimeform, Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluaz-
uron, Chlormephos, Chlorobenzilate, Chloropicrin, Chlorproxyfen, Chlorpyrifos-methyl, Chlorpyri-
fos (-ethyl), Chlovaporthrin, Chromafenozone, Cis-Cypermethrin, Cis-Resmethrin, Cis-Permethrin,
20 Clopythrin, Cloethocarb, Clofentezine, Clothianidin, Clothiazaben, Codlemone, Coumaphos, Cyano-
fenphos, Cyanophos, Cycloprene, Cycloprothrin, Cydia pomonella, Cyfluthrin, Cyhalothrin, Cyhexa-
tin, Cypermethrin, Cyphenothrin (1R-trans-isomer), Cyromazine, DDT, Deltamethrin, Demeton-S-
methyl, Demeton-S-methylsulphon, Diafenthiuron, Dialifos, Diazinon, Dichlofenthion, Dichlorvos,
Dicofol, Dicrotophos, Dicyclanil, Diflubenzuron, Dimefluthrin, Dimethoate, Dimethylvinphos, Dino-
buton, Dinocap, Dinotefuran, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn, DOWCO-439,
25 Eflusilanate, Emamectin, Emamectin-benzoate, Empenthrin (1R-isomer), Endosulfan, Entomophthora
spp., EPN, Esfenvalerate, Ethiofencarb, Ethiprole, Ethion, Ethoprophos, Etofenprox, Etoxazole,
Etrimfos, Famphur, Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenfluthrin, Fenitrothion, Fenobu-
carb, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropothrin, Fenpyrad, Fenpyrithrin, Fenpyroximate,
Fensulfothion, Fenthion, Fentrifanil, Fenvalerate, Fipronil, Flonicamid, Fluacrypyrim, Fluazuron,
30 Flubenzimine, Flubrocyclurate, Flucycloxuron, Flucythrinate, Flufenerim, Flufenoxuron, Flufen-
prox, Flumethrin, Flupyrazofos, Flutenzin (Flufenazine), Fluvalinate, Fonofos, Formetanate, Formo-
thion, Fosmethilan, Fosthiazate, Fubfenprox (Fluproxyfen), Furathiocarb, Gamma-Cyhalothrin,
Gamma-HCH, Gossyplure, Grandlure, Granuloseviren, Halfenprox, Halofenozide, HCH, HCN-801,
Heptenophos, Hexaflumuron, Hexythiazox, Hydramethylnone, Hydroprene, IKA-2002, Imidaclo-
prid, Imiprothrin, Indoxacarb, Iodofenphos, Iprobenfos, Isazofos, Isofenphos, Isoprocarb, Isoxathion,
35 Ivermectin, Japonilure, Kadethrin, Kernpolyederviren, Kinoprene, Lambda-Cyhalothrin, Lindane,

Lufenuron, Malathion, Mecarbam, Mesulfenfos, Metaldehyd, Metam-sodium, Methacrifos, Methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, Methidathion, Methiocarb, Methomyl, Methoprene, Methoxychlor, Methoxyfenozide, Metofluthrin, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Milbemycin, MKI-245, MON-45700, Monocrotophos, Moxidectin, MTI-
5 800, Naled, NC-104, NC-170, NC-184, NC-194, NC-196, Niclosamide, Nicotine, Nitrenpyram, Nitiazine, NNI-0001, NNI-0101, NNI-0250, NNI-9768, Novaluron, Noviflumuron, OK-5101, OK-
5201, OK-9601, OK-9602, OK-9701, OK-9802, Omethoate, Oxamyl, Oxydemeton-methyl, Paecilomyces fumosoroseus, Parathion-methyl, Páraphthon (-ethyl), Permethrin (cis-, trans-), Petroleum, PH-
10 6045, Phenothrin (1R-trans isomer), Phentoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phosphocarb, Phoxim, Piperonyl butoxide, Pirimicarb, Pirimiphos-methyl, Pirimiphos-ethyl, Potassium oleate, Prallethrin, Profenofos, Profluthrin, Promecarb, Propaphos, Propargite, Propetamphos, Propoxur, Prothiofos, Prothoate, Protrifenbute, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridalyl, Pyridaphenthion, Pyridathion, Pyrimidifen, Pyriproxyfen, Quinalphos, Resmethrin, RH-5849, Ribavirin, RU-12457, RU-15525, S-421, S-1833, Salithion, Sebufos, SI-0009, Silafluofen, Spinosad, Spirodiclofen, Spiromesifen, Sulfluramid, Sulfotep, Sulprofos, SZI-121, Tau-Fluvalinate, Tebufenozone, Tebufenpyrad, Tebupirimfos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbam, Terbufos, Tetrachlorvinphos, Tetradifon, Tetramethrin, Tetramethrin (1R-isomer), Tetrasul, Theta-Cypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thifanox, Thiometon, Thiosultap-sodium, Thuringiensin, Tolfenpyrad,
20 Tralocythrin, Tralomethrin, Transfluthrin, Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon, Trichoderma atroviride, Triflumuron, Trimethacarb, Vamidothion, Vaniliprole, Verbutin, Verticillium lecanii, WL-108477, WL-40027, YI-5201, YI-5301, YI-5302, XMC, Xylylcarb, ZA-3274, Zeta-Cypermethrin, Zolaprofos, ZXI-8901, die Verbindung 3-Methyl-phenyl-propylcarbamat (Tsumacide Z), die Verbindung 3-(5-Chlor-3-pyridinyl)-8-(2,2,2-trifluorethyl)-8-azabicyclo[3.2.1]octan-3-carbonitril (CAS-Reg.-Nr. 185982-80-3) und das entsprechende 3-endoisomere (CAS-Reg.-Nr. 185984-60-5) (vgl. WO 96/37494, WO 98/25923), sowie Präparate, welche
25 insektizid wirksame Pflanzenextrakte, Nematoden, Pilze oder Viren enthalten.

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und
30 Wachstumsregulatoren, Safener bzw. Semiochemicals ist möglich.

Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphärische Pilze (z.B. gegen
35 Candida-Spezies wie *Candida albicans*, *Candida glabrata*) sowie *Epidermophyton floccosum*, *Aspergillus*-Spezies wie *Aspergillus niger* und *Aspergillus fumigatus*, *Trichophyton*-Spezies wie

Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.

5 Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.

20 Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff „Teile“ bzw. „Teile von Pflanzen“ oder „Pflanzenteile“ wurde oben erläutert.

30 Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften („Traits“), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.

35

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden,

Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch über-additive („synergistische“) Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernterträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

10

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentchnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentchnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften („Traits“) verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernterträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Tabak, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften („Traits“) werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus *Bacillus Thuringiensis* (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im Folgenden „Bt Pflanzen“). Als Eigenschaften („Traits“) werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften („Traits“) werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, z.B. Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften („Traits“) verleihenden Gene können auch

- in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für „Bt Pflanzen“ seien Maissorten, Baumwollsorarten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel)
- 5 vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorarten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete)
- 10 Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften („Traits“).
- 15 Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.
- 20 Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den folgenden Beispielen hervor.

HerstellungsbeispieleBeispiel 1

- 5 Zu einer Lösung bestehend aus 250.2 mg (1.1 mmol) 3-Dichlormethyl-1-methyl-1H-pyrazol-4-carbonylchlorid und 161.9 mg (1.6 mmol) Triethylamin in 10 ml Tetrahydrofuran werden 191.3 mg (1.0 mmol) [2-(1,3,3-Trimethylbutyl)phenyl]amin gegeben. Die Reaktionslösung wird 16 h bei 60°C gerührt, über Silica filtriert und im Vakuum aufkonzentriert.
- 10 Säulenchromatographie (Cyclohexan/Essigsäureethylester 3:1) liefert 342.1 mg (89 % der Theorie) an 3-(Dichlormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid [$\log P$ (pH = 2.3) = 4.02].

- Analog den Beispiel 1, sowie entsprechend den Angaben in den allgemeinen Verfahrensbeschreibungen, werden die in der nachstehenden Tabelle 1 genannten Verbindungen der Formel (I) erhalten.

Tabelle 1

Bsp.	R ¹	R ²	R ³	A	logP
2	H	H	CH ₃		3.19
4	H	H	CH ₃		4.25

Bsp.	R ¹	R ²	R ³	A	logP
3	H	H	CH ₃		4.34
5	H	H	CH ₃		4.39

Bsp.	R ¹	R ²	R ³	A	logP
6	H	H	CH ₃		3.81
8	H	H	CH ₃		3.63
10	H	H	CH ₃		4.19
12	H	H	CH ₃		4.24
14	H	H	CH ₃		4.52
16	H	H	CH ₃		4.27
18	H	H	CH ₃		4.39
20	H	H	C ₂ H ₅		4.38
22	H	H	CH ₃		4.40
24	H	H	CH ₃		4.92
26	H	H	CH ₃		4.15

Bsp.	R ¹	R ²	R ³	A	logP
7	H	H	C ₂ H ₅		4.13
9	H	H	CH ₃		3.79
11	H	H	CH ₃		3.81
13	H	H	CH ₃		3.60
15	H	H	C ₂ H ₅		4.89
17	H	H	C ₂ H ₅		4.63
19	H	H	CH ₃		4.04
21	H	H	CH ₃		4.37
23	H	H	C ₂ H ₅		4.75
25	H	H	CH ₃		3.84
27	H	H	CH ₃		3.97

Bsp.	R ¹	R ²	R ³	A	logP
28	H	H	CH ₃		3.89
30	H	H	CH ₃		3.95

Bsp.	R ¹	R ²	R ³	A	logP
29	H	H	CH ₃		3.97
31	H	H	CH ₃		4.16

Herstellung von Ausgangsstoffen der Formel (II)Beispiel (II-1)

5

300.0 mg (1.9 mmol) 3-Formyl-1-methyl-1H-pyrazole-4-carbonsäure werden in 60 ml Dichlormethan gelöst und mit 1.0 g (4.9 mmol) Phosphorpentachlorid versetzt: Nach 1.5 h bei Raumtemperatur wird auf Eiswasser gegeben, mit Dichlormethan extrahiert, über Magnesiumsulfat getrocknet, filtriert und im Vakuum aufkonzentriert.

- 10 Man erhält so 384.0 mg (86 % der Theorie) an 3-Dichlormethyl-1-methyl-1H-pyrazol-4-carbonylchlorid [logP (pH 2.3) = 1.80].

Herstellung von Ausgangsstoffen der Formel (VII)Beispiel (VII-1)

15

- Zu einer Lösung bestehend aus 10.0 g (57 mmol) 4,4-Dimethoxy-3-oxo-buttersäure-methylester in 9.0 g (85 mmol) Orthoameisensäuretrimethylester werden 16.0 ml (170 mol) Essigsäureanhydrid gegeben. Die Reaktionsmischung wird für 16 h unter Rückfluss erhitzt.
Destillation aus der Reaktionsmischung (Siedepunkt 132-135°C, 0.2 bar) liefert 7.0 g (56 % der Theorie) an 4,4-Dimethoxy-2-methoxymethylene-3-oxo-buttersäuremethylester.

Herstellung von Ausgangsstoffen der Formel (IX)Beispiel (IX-1)

Bei -5°C wird eine Lösung bestehend aus 2.0 ml (38 mmol) Methylhydrazin in 340 ml Methanol langsam zu 7.5 g 4,4-Dimethoxy-2-methoxymethylen-3-oxo-buttersäuremethylester getropft. Nach beendeter Zugabe wird die Reaktionsmischung für 16 h bei Raumtemperatur gerührt und im Vakuum aufkonzentriert.

Säulenchromatographie (Laufmittelgradient Cyclohexan/Essigsäureethylester) liefert 6.5 g (77 % der Theorie) an 3-Dimethoxymethyl-1-methyl-1H-pyrazol-4-carbonsäuremethylester.

10

Herstellung von Ausgangsstoffen der Formel (X)Beispiel (X-1)

Eine Lösung aus 2.1 g (10 mmol) 3-Dimethoxymethyl-1-methyl-1H-pyrazol-4-carbonsäuremethylester in 20 ml Dioxan wird mit 10 ml konzentrierter Salzsäure versetzt und für 16 h bei Raumtemperatur gerührt. Zur Aufarbeitung wird im Vakuum aufkonzentriert, der Rückstand mit 200 ml Methylenechlorid aufgenommen und mit 50 ml Wasser gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet, filtriert und aufkonzentriert.

Man erhält 1.6 g (94 % der Theorie) an 3-Formyl-1-methyl-1H-pyrazole-4-carbonsäuremethylester [logP (pH 2.3) = 0.46].

Herstellung von Ausgangsstoffen der Formel (XI)Beispiel (XI-1)

6.0 g (35.68 mmol) 3-Formyl-1-methyl-1H-pyrazol-4-carbonsäuremethylester werden in 180 ml Tetrahydrofuran und 90 ml Wasser gelöst und mit 0.94 g (39.25 mmol) Lithiumhydroxid versetzt.

Die Reaktionsmischung wird für 16 h bei Raumtemperatur gerührt, das organische Lösungsmittel im Vakuum entfernt, die verbleibende wässrige Phase mit verdünnter Salzsäure angesäuert, dreimal mit je 100 ml Essigsäureethylester extrahiert. Die organischen Phasen werden über Magnesiumsulfat getrocknet, filtriert und aufkonzentriert.

- 5 Man erhält so 4.28 g (78 % der Theorie) an 3-Formyl-1-methyl-1H-pyrazole-4-carbonsäure mit dem logP (pH = 2.3) = -0.19.

Herstellung von Ausgangsstoffen der Formel (XII)

Beispiel (XII-1)

10

46.1 mg (0.27 mmol) 3-Formyl-1-methyl-1H-pyrazole-4-carbonsäuremethylester wurden in 10 ml Dichlormethan gelöst und mit 142.9 mg (0.67 mmol) Phosphorpentachlorid versetzt. Die Reaktionsmischung wird für 1.5 h bei Raumtemperatur gerührt, auf Wasser gegeben, mit Diethylether extrahiert, über Magnesiumsulfat getrocknet und im Vakuum konzentriert.

- 15 Man erhält so 53.0 mg (86 % der Theorie) an 3-(Dichlormethyl)-1-methyl-1H-pyrazol-4-carbonsäuremethylester mit dem logP (pH 2.3) = 1.80.

Dieser Methylester kann auf übliche Weise verseift werden. Man erhält die 3-(Dichlormethyl)-1-methyl-1H-pyrazol-4-carbonsäure, welche entweder direkt mit Verbindungen der Formel (III) gekuppelt wird oder zuvor in das Säurechlorid überführt wird.

20

Die Bestimmung der in den voranstehenden Tabellen und Herstellungsbeispielen angegebenen logP-Werte erfolgt gemäß EEC-Directive 79/831 Annex V.A8 durch HPLC (High Performance Liquid Chromatography) an einer Phasenumkehrsäule (C 18). Temperatur: 43°C.

Die Bestimmung erfolgt im sauren Bereich bei pH 2.3 mit 0,1 % wässriger Phosphorsäure und Acetonitril als Eluenten; linearer Gradient von 10 % Acetonitril bis 90 % Acetonitril.

Die Eichung erfolgt mit unverzweigten Alkan-2-onen (mit 3 bis 16 Kohlenstoffatomen), deren logP-Werte bekannt sind (Bestimmung der logP-Werte anhand der Retentionszeiten durch lineare Interpolation zwischen zwei aufeinanderfolgenden Alkanonen).

Die lambda-max-Werte wurden an Hand der UV-Spektren von 200 nm bis 400 nm in den Maxima der chromatographischen Signale ermittelt.

Anwendungsbeispiele

Beispiel A

5 **Podosphaera-Test (Apfel) / protektiv**

Lösungsmittel: 24,5 Gewichtsteile Aceton

 24,5 Gewichtsteile Dimethylacetamid

Emulgator : 1 Gewichtsteil Alkyl-Aryl-Polyglykolether

10

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension des Apfelmehltauerregers *Podosphaera leucotricha* inkuliert. Die Pflanzen werden dann im Gewächshaus bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70 % aufgestellt.

20

10 Tage nach der Inkulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Tabelle A

Podosphaera-Test (Apfel) / protektiv

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
	100	85
	100	94
	100	91
	100	98
	100	95
	100	96
	100	100
	100	97
	100	100

Beispiel B

Venturia - Test (Apfel) / protektiv

5 Lösungsmittel: 24,5 Gewichtsteile Aceton
 24,5 Gewichtsteile Dimethylacetamid
Emulgator : 1 Gewichtsteil Alkyl-Aryl-Polyglykolether

10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15 Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension des Apfelschorferregers Venturia inaequalis inkokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.

Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 90 % aufgestellt.

20 10 Tage nach der Inkokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Tabelle B

Venturia - Test (Apfel) / protektiv

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
	100	85
	100	100
	100	100
	100	93
	100	99
	100	95
	100	92
	100	100

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
------------------------------	--------------------------------------	----------------------

100

99

100

99

Beispiel C

Botrytis - Test (Bohne) / protektiv

5 Lösungsmittel: 24,5 Gewichtsteile Aceton.
 24,5 Gewichtsteile Dimethylacetamid
Emulgator : 1 Gewichtsteil Alkyl-Aryl-Polyglykolether

10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15 Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden auf jedes Blatt 2 kleine mit Botrytis cinerea bewachsene Agarstückchen aufgelegt. Die inkulierten Pflanzen werden in einer abgedunkelten Kammer bei ca. 20°C und 100 % relativer Luftfeuchtigkeit aufgestellt.

20 2 Tage nach der Inkulation wird die Größe der Befallsflecken auf den Blättern ausgewertet. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Tabelle C

Botrytis - Test (Bohne) / protektiv

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
	500	100
	500	95
	500	100
	500	88
	500	100
	500	100
	500	95
	500	97
	500	95

Beispiel D

Puccinia-Test (Weizen) / protektiv

- 5 Lösungsmittel: 50 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 1. Gewichtsteile Alkylarylpolyglykolether

10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15 Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer Konidiensuspension von Puccinia recondita besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.

- 20 Die Pflanzen werden dann in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von 80 % aufgestellt, um die Entwicklung von Rostpusteln zu begünstigen.
- 10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Tabelle D

Puccinia-Test (Weizen) / protektiv

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
	500	100
	500	100
	500	100
	500	100
	500	100
	500	100

Beispiel E

Sphaerotheca-Test (Gurke) / protektiv

- 5 Lösungsmittel: 49 Gewichtsteile N, N-Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit
10 Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Gurkenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Sphaerotheca fuliginea inkuliert. Anschließend werden die Pflanzen in
15 einem Gewächshaus bei 70 % relativer Luftfeuchtigkeit und einer Temperatur von 23°C aufgestellt.

7 Tage nach der Inkulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Tabelle E

Sphaerotheca-Test (Gurke) / protektiv

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
	750	95
	750	95
	750	90

Beispiel F

Erysiphe-Test (Gerste) / protektiv

- 5 Lösungsmittel: 25 Gewichtsteile *N,N*-Dimethylacetamid
Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit
10 Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit besprüht man junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. Nach Antrocknen des Spritzbelages werden die Pflanzen mit Sporen von *Erysiphe graminis* f.sp. *hordei* bestäubt.

- 15 Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt, um die Entwicklung von Mehltapusteln zu begünstigen.
- 20 7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Tabelle F

Erysiphe-Test (Gerste) / protektiv

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
	500	100
	500	100
	500	94
	500	100
	500	100

Patentansprüche

1. Hexylcarboxanilide der Formel (I)

5 in welcher

wobei die mit * markierte Bindung mit dem Amid verbunden ist, während die mit # markierte Bindung mit der Alkylseitenkette verknüpft ist,

10 R¹ für Wasserstoff, C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

15 (C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-Alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogenalkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder

20 -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸ steht,

R² für Wasserstoff, Fluor, Chlor, Methyl oder Trifluormethyl steht,

R³ für Halogen, C₁-C₈-Alkyl oder C₁-C₈-Halogenalkyl steht,

25 R⁴ für Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,

R⁵ und R⁶ unabhängig voneinander jeweils für Wasserstoff, C₁-C₈-Alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₈-Halogenalkyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl,

C_3 - C_8 -Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,

R^5 und R^6 außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C_1 - C_4 -Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden,
5 wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR^9 enthalten kann,

R^7 und R^8 unabhängig voneinander für Wasserstoff, C_1 - C_8 -Alkyl, C_3 - C_8 -Cycloalkyl; C_1 - C_8 -Halogenalkyl, C_3 - C_8 -Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder 10 Bromatomen stehen,

R^7 und R^8 außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C_1 - C_4 -Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR^9 enthalten kann,
15

R^9 für Wasserstoff oder C_1 - C_6 -Alkyl steht,

A für den Rest der Formel (A1)

20 R^{10} für Wasserstoff, Hydroxy, Formyl, Cyano, Fluor, Chlor, Brom, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, C_3 - C_6 -Cycloalkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkoxy oder C_1 - C_4 -Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen, Aminocarbonyl oder Aminocarbonyl- C_1 - C_4 -alkyl steht,

25 R^{11} für Wasserstoff, Chlor, Brom, Iod, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkyl oder C_1 - C_4 -Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen, steht und

30 R^{12} für Wasserstoff, C_1 - C_4 -Alkyl, Hydroxy- C_1 - C_4 -alkyl, C_2 - C_6 -Alkenyl, C_3 - C_6 -Cycloalkyl, C_1 - C_4 -Alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -Halogenalkoxy- C_1 - C_4 -alkyl mit jeweils 1 bis 5 Halogenatomen, oder für Phenyl steht,

oder

A für den Rest der Formel (A2)

(A2) steht, in welcher

R^{13} und R^{14} unabhängig voneinander für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit jeweils 1 bis 5 Halogenatomen stehen und
 R^{15} für Halogen, Cyano oder C₁-C₄-Alkyl, oder C₁-C₄-Halogenalkyl oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

5 oder

A für den Rest der Formel (A3)

(A3) steht, in welcher

R^{16} und R^{17} unabhängig voneinander für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und
 R^{18} für Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A4)

(A4) steht, in welcher

R^{19} für Halogen, Hydroxy, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht und

R^{20} für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen, C₁-C₄-Alkylsulfinyl oder C₁-C₄-Alkylsulfonyl steht,

oder

A für den Rest der Formel (A5)

(A5) steht,

25 oder

A für den Rest der Formel (A6)

(A6) steht, in welcher

R²¹ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A7)

(A7) steht, in welcher

5

R²² für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A8)

(A8) steht, in welcher

10

R²³ und R²⁴ unabhängig voneinander für Wasserstoff, Halogen, Amino, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht undR²⁵ für Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 to 5 Halogenatomen steht,

oder

15

A für den Rest der Formel (A9)

(A9) steht, in welcher

R²⁶ und R²⁷ unabhängig voneinander für Wasserstoff, Halogen, Amino, Nitro, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen stehen undR²⁸ für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit bis 5 Halogenatomen steht,

20

oder

A für den Rest der Formel (A10)

(A10) steht, in welcher

R²⁹ für Wasserstoff, Halogen, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)-amino, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

25

R³⁰ für Halogen, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₃-C₆-Cycloalkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

oder

5 A für den Rest der Formel (A11)

(A11) steht, in welcher

R³¹ für Wasserstoff, Halogen, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)-amino, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

10 R³² für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A12)

(A12) steht, in welcher

15 R³³ für Wasserstoff oder C₁-C₄-Alkyl steht und

R³⁴ für Halogen oder C₁-C₄-Alkyl steht,

oder

A für den Rest der Formel (A13)

(A13) steht, in welcher

20 R³⁵ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A14)

(A14) steht, in welcher

25 R³⁶ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A15)

(A15) steht, in welcher

R^{37} für Halogen, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

5 oder

A für den Rest der Formel (A16)

(A16) steht, in welcher

R^{38} für Wasserstoff, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen, C₁-C₄-Alkoxy-C₁-C₄-alkyl, Hydroxy-C₁-C₄-alkyl, C₁-C₄-Alkylsulfonyl, Di(C₁-C₄-alkyl)aminosulfonyl, C₁-C₆-Alkylcarbonyl oder für jeweils gegebenenfalls substituiertes Phenylsulfonyl oder Benzoyl steht,

10

R^{39} für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

15

R^{40} für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R^{41} für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A17)

(A17) steht, in welcher

20

R^{42} für C₁-C₄-Alkyl steht.

2. Hexylcarboxanilide der Formel (I) gemäß Anspruch 1, in welcher L für L-1 steht.

25 3. Verfahren zum Herstellen der Verbindungen der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, dass man

a) Carbonsäure-Derivate der Formel (II)

in welcher

A die oben angegebenen Bedeutungen hat und

X¹ für Halogen oder Hydroxy steht,

mit einem Anilin-Derivate der Formel (III)

in welcher L, R¹ und R³ die oben angegebenen Bedeutungen haben,
gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines
Kondensationsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und
gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

10

oder

b) Hexylcarboxanilide der Formel (I-a)

in welcher L, A und R³ die oben angegebenen Bedeutungen haben
mit Halogeniden der Formel (IV)

15

in welcher

X² für Chlor, Brom oder Iod steht,

R^{1-A} für C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogenycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)-carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

25

(C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-Alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogenalkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogenycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸ steht,

30

wobei R⁴, R⁵, R⁶, R⁷ und R⁸ die oben angegebenen Bedeutungen haben,
in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umgesetzt.

4. Mittel zum Bekämpfen unerwünschter Mikroorganismen, gekennzeichnet durch einen
5 Gehalt an mindestens einem Hexylcarboxanilid der Formel (I) gemäß Anspruch 1 neben
Streckmitteln und/oder oberflächenaktiven Stoffen.
- 10 5. Verwendung von Hexylcarboxaniliden der Formel (I) gemäß Anspruch 1 zum Bekämpfen
unserwünschter Mikroorganismen.
- 15 6. Verfahren zum Bekämpfen unerwünschter Mikroorganismen, dadurch gekennzeichnet, dass
man Hexylcarboxanilide der Formel (I) gemäß Anspruch 1 auf die Mikroorganismen
und/oder deren Lebensraum aus bringt.
- 20 7. Verfahren zum Herstellen von Mitteln zum Bekämpfen unerwünschter Mikroorganismen,
dadurch gekennzeichnet, dass man Hexylcarboxanilide der Formel (I) gemäß Anspruch 1 mit
Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
8. Anilin-Derivate der Formel (III-b)

25 in welcher

a) R^{1-B} für Wasserstoff steht, und

R^{3-B} für Halogen, C₃-C₈-Alkyl, C₁-C₈-Halogenalkyl steht,

oder

b) R^{1-B} für C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-
C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkyl-
thio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-
C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-,
Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)-
carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-
C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl
mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

(C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-Alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogenalkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸ steht, und

R^{3-B} für Wasserstoff, Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl steht,

und

R², R⁴, R⁵, R⁶, R⁷ und R⁸ jeweils die in Anspruch 1 angegebenen Bedeutungen haben.

10

9. 3-Dichlormethyl-1H-pyrazol-4-carbonsäure-Derivate der Formel (II-a)

in welcher

R¹² die in Anspruch 1 angegebenen Bedeutungen hat,

15

X¹ für Halogen oder Hydroxy steht.

10. Verfahren zum Herstellen von 3-Dichlormethyl-1H-pyrazol-4-carbonsäure-Derivaten der Formel (II-a) gemäß Anspruch 9, dadurch gekennzeichnet, dass man 3-Formyl-1H-pyrazol-4-carbonsäuren der Formel (XI)

20

in welcher R¹² die in Anspruch 1 angegebenen Bedeutungen hat,

mit einem Chlorierungsmittel in Gegenwart eines Verdünnungsmittels umsetzt.

11. 3-Dichlormethyl-1H-pyrazol-4-carbonsäureester der Formel (XII)

25

in welcher

R^{12} die in Anspruch 1 angegebenen Bedeutungen hat,
 R^{44} für C₁-C₄-Alkyl steht.

12. Verfahren zum Herstellen von 3-Dichlormethyl-1H-pyrazol-4-carbonsäureester der Formel
5 (XII) gemäß Anspruch 11, dadurch gekennzeichnet, dass man
3-Formyl-1H-pyrazol-4-carbonsäureester der Formel (X)

in welcher

10 R^{12} die in Anspruch 1 angegebenen Bedeutungen hat,
 R^{44} für C₁-C₄-Alkyl steht.

mit einem Chlorierungsmittel in Gegenwart eines Verdünnungsmittels umsetzt.

Hexylcarboxanilide

Z u s a m m e n f a s s u n g

Neue Hexylcarboxanilide der Formel (I)

in welcher L, R¹, R³ und A die in der Beschreibung angegebenen Bedeutungen haben,

mehrere Verfahren zum Herstellen dieser Stoffe und deren Verwendung zum Bekämpfen von unerwünschten Mikroorganismen, sowie neue Zwischenprodukte und deren Herstellung.