Algebra relazionale

Wednesday, 26 April 2023

10:4:

Differenze AR, SQL:

AR	SQL
Linguaggio formale, permette di comprendere le operazioni SQL Aka è la base dei linguaggi reali, se la impariamo bene SQL sarà facile	Linguaggio in sè per sè
Istruzioni equivalenti possono differire in efficenza	Istruzioni equivalenti hanno la stessa ef diversa leggibilità
Le relazioni sono intese in senso matematico	Relazioni sono intese come tabelle
No righe uguali siccome in un insieme non esistono elementi duplicati	Possono esistere righe duplicate

• Insieme di operatori:

- Relazioni
- Relazioni che producono relazioni

E possono essere:

Unarie

Operano su 1 sola relazione

- Selezione
 - Prendiamo tutti quelli che soddisfano una condizione $\sigma_{Ruolo='Associato'}(Personale_{docente})$
- o Proiezione
 - Considerare un sottoinsieme degli attributi di una relazione $Proj_{lista-attributi}(r)$ In lista-attributi mettiamo gli attributi che desideriamo
- Ridenominazione
 - Cambia il nome di un attributo

$$REN_{\gamma} < -_{x}(r)$$

Cambia il nome dell'attributo x della relazione r in y

Nota: questa modifica è momentanea, solo all'interno della query, poi è ci nulla fosse successo

■ D Docente II D non decente II DEN / _ (Ctudent

- Noi qui stiamo dando studente con matricola_st -> matricola_st (Studente Però, è come se creassimo una copia che viene cancellata finita la query Quindi studente non viene toccato
- Binarie

2 relazioni che produce 1 relazione

- Unione (mette uno sopra l'altro)
 - Date due relazioni r1, r2

 $r_1 \cup r_2$

Produce tutte le n-ple delle relazioni r1, r2 (ordinate)

Dato personale_docente(cognome,nome), personale_non_docente(cognome)

Formulare una relazione di algebra relazionale che comprende tutti i dipendenti dell'ateneo

L'inpse ci richiede il numero totale di personale.

Per averlo dobbiamo fare

Personal_Docente U Personale_Non_Docente

- Nota: siccome non possiamo avere righe duplicate, la cardinalità potre essere meno della somma delle cardinalità
- Intersezione
 - Date due relazioni r1, r2

 $r_1 \cap r_2$

Produce una relazione che contiene ennuple che contengono ad entramb

Abbiamo personale_docente, non_docente, studente
 Noi vogliamo sapere i non_docenti che sono anche studenti

 $non_docente \cap studente$

- Differenza
 - $r_1 r_2$ R1 senza r2
- Join (mette uno a sinistra dell'altro)
 - Combiniamo tuple apparenti a relazioni diverse
 - 2 tipologie che ci interessano:
 - Join naturale

R1(X1)>< R2(X2)

Controllo di tutti con lo stesso nome

□ Theta join

Un join con delle condizioni

 $Pers > <_{classe_{stipendio} = Classe} Stipendio$

- Tuple dangling sono tuple che vengono scartate dal join
- Ed i join possono essere:
 - □ Interno

Potremmo non avere valori null, ci possono essere delle tuple sca

□ Esterno

Potremmo avere valori nulli, e e nel caso delle tuple dovrebbero scartate, vengono comunque inserite con dei campi null E qui abbiamo 3 tipologie:

- Left join, quindi le ennuple scartate a sinistra vengono aggi valori nulli
- ◆ Right join, come prima solo a destra
- ◆ Full, tutti e due di sopra

Si aggiunge left/right/full come condizione nel join

 Ed in più un join si può chiamare "self" quando facciamo un join con se Utile quando vogliamo confrontare due righe della stessa tabella

E ricorda che le relazioni sono insiemi, siccome sono il prodotto cartesiano degli insier AxB = insieme di n-uple, aka insieme di coppie [Inserire foto prodotto cartesiano è un insieme di n-uple]
Le tuple sono ordinate

Viste

Sono delle query che ci teniamo in memoria: Nome vista = espressione AR Praticamente semplifichiamo le query spezzettandole

Nota:

- Strategia Pusing selection down
 Per questioni di efficenze, è sempre meglio fare prima tutte le selezioni, e poi le altre operazioni
- Algebra relazionale è case sensitive
- Se abbiamo un NULL, allora qualunque operazione è ???
 Se vogliamo prendere cose nulla, dobbiamo dire "IS NULL"
 Dire "X = 2100 or X <> 2100" ci darà tutti i valori non nulli
- Facendo il join, se ci sono 2 NULL essi non verranno presi: nel join solo se diversi da NU Quando usale quale query?

Segire questi passi:

- 1) Identificare dove sono le informazioni che ci servono, aka quali attributi e quali tabelle E se sono coinvolte più tabelle, comprendere se un join è necessario
- 2) Comprendere se dobbiamo fare operazioni insiemistiche, aka unioni
- Ora che abbiamo 1 unica tabella con tutte le soluzioni, facciamo eventuali selezioni pe delle righe
- 4) Facciamo una proiezione per tenere solo le colonne che ci interessano