AIOps

Table of Contents

- 1. Part 1: Problem Statement
- 2. Part 2: Standard ML Solution
- 3. Part 3: Ops Challenges
- 4. Part 4: AIOps with mlflow
- 5. Part 5: Analysis and Interpretation

Part I Problem Statement

Problem Statement: Predicting Quality of Service (QoS) Metrics for 5G Network Optimization

Overview

Telecom operators face challenges in maintaining optimal Quality of Service (QoS) for their users due to varying signal conditions, network congestion, and application-specific demands. The provided dataset includes time-series data on signal strength, latency, bandwidth requirements, allocated bandwidth, and resource allocation for different application types. The goal is to build a machine learning model to predict QoS metrics such as **latency** and **resource allocation efficiency**, enabling proactive network management and improved user experience.

Objective

Develop a machine learning model to predict:

- 1. **Latency**: Estimate the latency for a given user, application type, and signal condition.
- 2. **Resource Allocation Efficiency**: Predict the ratio of allocated bandwidth to required bandwidth under varying network conditions.

The predicted values will help identify potential QoS degradation before it occurs, allowing for targeted network adjustments.

Key Business Questions

- 1. **Latency Prediction**: Can we accurately predict latency based on signal strength, application type, and bandwidth requirements?
- 2. **Resource Allocation Optimization**: Can we predict whether the allocated bandwidth will meet user demand efficiently?
- 3. **Proactive QoS Management**: Can these predictions highlight potential QoS bottlenecks for specific users or applications?

Detailed Problem Description

1. Latency Prediction:

- Latency is a critical metric for QoS, particularly for applications like emergency services and online gaming that require real-time responses.
- Variations in signal strength and bandwidth availability often cause unpredictable latency spikes.
- The model will predict latency based on:
 - Signal strength.
 - Application type.
 - Required and allocated bandwidth.

2. Resource Allocation Efficiency Prediction:

- Resource allocation efficiency measures how effectively network bandwidth meets application demands.
- An efficiency ratio below a threshold indicates potential resource underprovisioning, affecting QoS.
- o The model will predict resource allocation efficiency using:
 - Application type.
 - Required bandwidth.
 - Allocated bandwidth.
 - Historical resource utilization patterns.

3. Data Patterns and Dependencies:

- Signal strength below a certain threshold may correlate with higher latency and lower resource allocation efficiency.
- Specific application types (e.g., video calls) may consistently experience resource constraints.
- Temporal patterns in data (e.g., peak vs. non-peak hours) could impact QoS metrics.

Dataset Fields and Their Roles

Field Name	Description	Role in Prediction
Timestamp	Date and time of the	Temporal analysis (peak/non-
	record	peak times)
User_ID	Unique identifier for the	Not directly used but useful for
	user	grouping if required
Application_Type	Type of application (e.g.,	Key feature for predicting QoS
	video call, gaming)	metrics
Signal_Strength	Signal strength in dBm	Predictor for latency and
		resource allocation efficiency
Latency	Observed latency in	Target variable for latency
	milliseconds	prediction
Required_Bandwidth	Bandwidth required by the	Predictor for resource
	application	allocation efficiency
Allocated_Bandwidth	Bandwidth allocated to	Predictor and part of target
	the application	(efficiency calculation)
Resource_Allocation	Efficiency of resource	Target variable for efficiency
	allocation (0-1 scale)	prediction

Potential Insights

1. Latency Predictors:

 Identify key contributors to high latency for different application types (e.g., weak signal strength, high bandwidth demand).

2. Bandwidth Efficiency Trends:

 Discover patterns of inefficient resource allocation and suggest improvements.

3. Application-Specific QoS Challenges:

 Highlight applications that consistently experience QoS degradation and the factors contributing to it.

Assumptions and Limitations

1. Assumptions:

- Data is clean, consistent, and representative of the overall network usage patterns.
- Signal strength and bandwidth metrics are accurately recorded in realtime.

2. Limitations:

- Geographic and user-specific metadata are not included, which could limit personalized predictions.
- o Predictions will be based solely on the provided features without additional contextual data (e.g., network topology).

Part 2: Proposed Solution

Proposed Approach

1. Exploratory Data Analysis (EDA):

- Identify trends, correlations, and anomalies in key features (e.g., signal strength, latency).
- Analyze the distribution of QoS metrics by application type and signal strength ranges.

2. Feature Engineering:

- Create derived features:
 - Bandwidth Efficiency:

Allocated Bandwidth/Required Bandwidth\text{Allocated Bandwidth} / \text{Required

Bandwidth | Allocated Bandwidth | Required Bandwidth

- Signal Quality Category: Group signal strength into ranges (e.g., strong, moderate, weak).
- Temporal Features: Extract time-related features (e.g., hour of day, day of week).

3. Machine Learning Models:

- Supervised Learning:
 - Target Variables:
 - Latency: A regression task to predict latency in milliseconds.
 - 2. **Resource Allocation Efficiency**: A regression task to predict bandwidth efficiency as a ratio.
 - Input Features:
 - Signal strength, application type, required bandwidth, allocated bandwidth, and temporal features.

o Candidate Models:

- Linear Regression, Random Forest, Gradient Boosting (e.g., XGBoost, LightGBM), and Neural Networks.
- Evaluate models using metrics like MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error).

4. Validation and Testing:

- Split data into training, validation, and test sets.
- Use cross-validation to ensure robust performance metrics.

Part 3: Current Challenges for Ops

Instructions:

1. Role-Playing

- Take on a role (e.g., Data Scientist, Operations Engineer, or Stakeholder).
- Discuss challenges your role faces in ML workflows (e.g., tracking, deployment, monitoring). Relate to current use case.
- Share key pain points and their impact.

2. Scenario Exploration

- Scenario: A deployed model's performance degrades after two weeks.
- Discuss:
 - o Possible causes of degradation.
 - o Metrics needed to investigate.
 - o Solutions to prevent this in the future.

3. Pain Point Mapping

- List the steps in the ML workflow (e.g., data prep, training, deployment).
- Identify pain points for each step (e.g., manual processes, lack of tracking).
- Share how addressing these could improve outcomes.

4. Challenge Prioritization

- Review and rank the top three challenges from discussions.
- Explain why they're critical and suggest possible solutions.
- Discuss tools or practices (e.g., tracking systems, automation) to resolve them.

1. Relate Challenges to Your Experience:

- Reflect on any past machine learning projects you've worked on. Think about the pain points during model development, deployment, or monitoring.
- Discuss examples of manual processes or inefficiencies that could benefit from automation or tracking.

2. Break Down the Workflow:

 Think about the end-to-end machine learning lifecycle, from data preparation to deployment. Identify areas where tracking, monitoring, or scaling were difficult.

3. Focus on Outcomes and Impact:

- o Consider what happens when models fail in production.
- Discuss scenarios where issues like lack of reproducibility, inconsistent results, or system bottlenecks negatively impacted project outcomes.

4. Challenge Current Practices:

- Explore if the current methods provide enough transparency, scalability, and collaboration.
- Think critically about what information was missing when troubleshooting or improving a model.

5. Prioritize Scalability and Maintenance:

Imagine your solution being deployed in a real-world, high-scale environment.
Discuss potential risks or challenges in maintaining the system.

Hint (Examples):

Experimentation and Tracking

- 1. "How do you currently keep track of the parameters, datasets, and metrics used during training? Have you ever struggled to reproduce a result from a previous experiment?"
- 2. "What happens when someone on the team modifies a model or pipeline? How do you ensure these changes are tracked and logged?"

Model Versioning and Governance

- 3. "Imagine deploying an updated model to production and it performs worse than the previous version. How would you roll back to the earlier version? Do you currently have a system for managing multiple versions?"
- 4. "How do you ensure that every version of a model is linked to the exact dataset and code used to train it?"

Monitoring Operational Metrics

- 5. "Once your model is deployed, what operational metrics would you track to ensure smooth functioning? Would you monitor things like CPU usage, memory, or latency?"
- 6. "How do you know if your deployed model is drifting in terms of accuracy or encountering degraded performance over time?"

Collaboration and Transparency

- 7. "How do team members currently share experiment results, model artifacts, or deployment processes? Is it easy to collaborate across roles?"
- 8. "Have you ever faced issues where one team member's changes to a pipeline broke something for someone else? How could better transparency have helped?"

Automation and Workflow Management

- 9. "What aspects of your current machine learning workflow are repetitive or manual? How could automating these processes help improve efficiency?"
- 10. "Imagine retraining and deploying a model every week with new data. What would make this process more streamlined and reliable?"

Scaling and Real-Time Use

- 11. "What happens when your model needs to handle 10x more data or user queries? Have you thought about how resource constraints might affect scalability?"
- 12. "If you needed to deploy multiple models for different tasks (e.g., latency and efficiency), how would you manage dependencies and scaling?"

Success Metrics

13. "How do you currently measure the success of your deployed models? Are these metrics tracked consistently across experiments and in production?"

14. "Have you ever struggled to define clear performance metrics for a model? How could a standardized system help?"		