DESCRIPTION

PT6955 is an LED Controller driven on a 1/4 to 1/7 duty factor. Twelve/nine segment output lines, 4 to 7 grid output lines, one display memory, control circuit are all incorporated into a single chip to build a highly reliable peripheral device for a single chip microcomputer. Serial data is fed to PT6955 via a three-line serial interface. Housed in a 24-pin SOP, PT6955's pin assignments and application circuit are optimized for easy PCB Layout and cost saving advantages.

FEATURES

- CMOS Technology
- Low Power Consumption
- 8-Step Dimming Circuitry
- Serial Interface for Clock, Data Input, Strobe Pins
- Available in 24-pin, SOP

APPLICATION

• Micro-computer Peripheral Device

BLOCK DIAGRAM

APPLICATION CIRCUIT

Notes:

- 1. The capacitor (0.1μF) connected between the GND and VDD Pins must be located as near as possible to the PT6955 chip.
- 2. The PT6955 power supply is separate from the application system power supply.

COMMON CATHODE TYPE LED PANEL

ORDER INFORMATION

Valid Part Number	Package Type	Top Code
PT6955	24pins, SOP, 300mil	PT6955

PIN CONFIGURATION

PIN DESCRIPTION

Pin Name	I/O	Description	Pin No.
osc	I	Oscillator Input Pin A resistor is connected to this pin to determine the oscillation frequency	1
DIN	I	Data Input Pin This pin inputs serial data at the rising edge of the shift clock (starting from the lower bit)	2
CLK	Ι	Clock Input Pin This pin reads serial data at the rising edge.	3
STB	ı	Serial Interface Strobe Pin The data input after the STB has fallen is processed as a command. When this pin is "HIGH", CLK is ignored.	4
VDD	-	Power Supply	5, 18
SG1 ~ SG9	0	Segment Output Pins (p-channel, open drain)	6 ~ 14
SG10/GR7 ~ SG12/GR5	0	Segment Output Pin/Grid Output Pin (CMOS Output)	15 ~ 17
GND	-	Ground Pin	19, 24
GR4 ~ GR1	0	Grid Output Pins (n-channel, open drain)	20 ~ 23

INPUT/OUTPUT CONFIGURATIONS

The schematic diagrams of the input and output circuits of the logic section are shown below.

Input Pins: CLK, STB & DIN

Output Pins: SG10/GR7, SG11/GR6, SG12/GR5

Output Pins: GR1 to GR4

Output Pins: SG1 to SG9

FUNCTION DESCRIPTION

COMMANDS

A command is the first byte (b0 to b7) inputted to PT6955 via the DIN Pin after STB Pin has changed from "HIGH" to "LOW" State. If for some reason the STB Pin is set to "HIGH" while data or commands are being transmitted, the serial communication is initialized, and the data/commands being transmitted are considered invalid.

COMMAND 1: DISPLAY MODE SETTING COMMANDS

PT6955 provides 4 display mode settings as shown in the diagram below: As stated earlier a command is the first one byte (b0 to b7) transmitted to PT6955 via the DIN Pin when STB is "LOW". However, for these commands, Bit No. 3 to Bit No. 6 (b2 to b5) are ignored, Bit No. 7 & Bit No. 8 (b6 to b7) are given a value of "0".

The Display Mode Setting Commands determine the number of segments and grids to be used (1/4 to 1/7 duty, 12 to 9 segments). When these commands are executed, the display is forcibly turned off. A display command "ON" must be executed in order to resume display. If the same mode setting is selected, no command execution is take place, therefore, nothing happens.

When Power is turned "ON", the 7-Grid, 9-Segment Mode is selected.

COMMAND 2: DATA SETTING COMMANDS

The Data Setting Commands executes the Data Write Mode for PT6955. The Data Setting Command, the bits 5 and 6 (b4, b5) are ignored, bit 7 (b6) is given the value of "1" while bit 8 (b7) is given the value of "0". Please refer to the diagram below.

When power is turned ON, bit 4 to bit 1 (b3 to b0) are given the value of "0".

COMMAND 3: ADDRESS SETTING COMMANDS

Address Setting Commands are used to set the address of the display memory. The address is considered valid if it has a value of "00H" to 0DH". If the address is set to 0EH or higher, the data is ignored until a valid address is set. When power is turned ON, the address is set at "00H".

Please refer to the diagram below.

DISPLAY MODE AND RAM ADDRESS

Data transmitted from an external device to PT6955 via the serial interface are stored in the Display RAM and are assigned addresses. The RAM Addresses of PT6955 are given below in 8 bits unit.

SG1	SG	4	SG5	SG8	SG9	SG12	
	00HL		0	0HU		01HL	DIG1
	02HL		0:	2HU		03HL	DIG2
	04HL		04	4HU		05HL	DIG3
	06HL		0	6HU		07HL	
	08HL		08HU			09HL	
	0AHL		0AHU			0BHL	
	0CHL		0CHU			0DHL	DIG7
	b0			b3	b4		b7
	xxHL				xxHU		
	Lower 4 bits Higher 4 bits			Higher 4 bits			

COMMAND 4: DISPLAY CONTROL COMMANDS

The Display Control Commands are used to turn ON or OFF a display. It also used to set the pulse width. Please refer to the diagram below. When the power is turned ON, a 1/16 pulse width is selected and the displayed is turned OFF.

DISPLAY TIMING WAVEFORM

SERIAL COMMUNICATION FORMAT

The following diagram shows the PT6955 serial communication format.

RECEPTION (DATA/COMMAND WRITE)

SWITCHING CHARACTERISTICS WAVEFORM

where: PW_{CLK} (Clock Pulse Width) \geq 400ns t_{setup} (Data Setup Time) \geq 100ns $t_{CLK-STB}$ (Clock - Strobe Time) \geq 1 μ s t_{TZH} (Rise Time) \leq 1 μ s

 $t_{TZL} \le 1 \mu s$

 $\begin{array}{l} PW_{STB} \; (Strobe \; Pulse \; Width) \geq 1 \mu s \\ t_{hold} \; (Data \; Hold \; Time) \geq 100 ns \\ t_{THZ} \; (Fall \; Time) \leq 10 \mu s \\ fosc \; = \; Oscillation \; Frequency \\ t_{TLZ} \leq 10 \mu s \end{array}$

APPLICATIONS

Display memory is updates by incrementing addresses. Please refer to the following diagram.

Data

Command 3

Data

DIN where:

Command 2: Data Setting Command Command 3: Address Setting Command

Command 2

Command 3

Data: Display Data

RECOMMENDED SOFTWARE FOLWCHART

Notes:

- 1. Command 1: Display Mode Commands
- 2. Command 2: Data Setting Commands
- 3. Command 3: Address Setting Commands
- 4. Command 4: Display Control Commands
- 5. When IC power is applied for the first time, the contents of the Display RAM are not defined; thus, it is strongly suggested that the contents of the Display RAM must be cleared during the initial setting.

SOP 24L (300MIL) THERMAL PERFORMANCE IN STILL AIR

JUNCTION TEMPERATURE: 100 $^{\circ}$

V1.6 11 November 2012

ABSOLUTE MAXIMUM RATINGS

(Unless otherwise stated, Ta=25°C, GND=0V)

Parameter	Symbol	Rating	Units
Supply Voltage	VDD	-0.3 to +7.0	V
Logic Input Voltage	VI	-0.3 to VDD+0.3	V
Driver Output Current/Die	IOLGR	+250	mA
Driver Output Current/Pin	IOHSG	-50	mA
Maximum Driver Output Current/Total	ITOTAL	400	mA
Operating Temperature	Topr	-40 ~ +85	$^{\circ}\!\mathbb{C}$
Storage Temperature	Tstg	-40 ~ +150	$^{\circ}\!\mathbb{C}$

RECOMMANDED OPERATING RANGE

(Unless otherwise stated, Topr=-40 to +85°C, GND=0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Logic Supply Voltage	VDD	4.5	5	5.5	V
Dynamic Current (see note)	IDDdyn	-	-	5	mA
High-Level Input Voltage	VIH	0.8VDD	-	VDD	V
Low-Level Input Voltage	VIL	0	-	0.3VDD	V

Note: Test Condition: Set Display Control Commands=80H (Display Turn Off State)

ELECTRICAL CHARACTERISTICS

(Unless otherwise stated, VDD=5V, GND=0V, Ta=25°℃)

Parameter	Symbol	nbol Test Condition N		Тур.	Max.	Unit
High Lovel Output Current	IOHSG(1)	VO=VDD-1V SG1 to SG9, SG10/GR7 to SG12/GR5		-14	-30	mA
High-Level Output Current	IOHSG(2)	VO=VDD-2V SG1 to SG9, SG10/GR7 to SG12/GR5	-20	-25	-50	mA
Low-Level Output Current	IOLGR	VO=0.3V GR1 to GR4, 100 SG10/GR7 to SG12/GR5		140	-	mA
Segment High-Level Output Current Tolerance	ITOLSG	VO=VDD-1V SG1 to SG9, SG10/GR7 to SG12/GR5	-	-	±5	%
High-Level Input Voltage	VIH	-	0.8VDD	-	-	V
Low-Level Input Voltage	VIL	-	_	_	0.3VDD	V
Oscillation Frequency	fosc	R=51KΩ	350	500	650	KHz

PACKAGE INFORMATION

24-PIN, SOP, 300MIL

Symbol	Min.	Nom.	Max.		
Α	2.35	-	2.65		
A1	0.10	-	0.30		
b	0.33	-	0.51		
С	0.23	-	0.32		
D	15.20	-	15.60		
E	10.00	-	10.65		
E1	7.40	-	7.60		
е	1.27 BSC.				
Ĺ	0.40	-	1.27		
θ	0°	-	8°		

Notes:
1. All controlling dimensions are in millimeters.
2. Refer to JEDEC MS-013 AD.

IMPORTANT NOTICE

Princeton Technology Corporation (PTC) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. PTC cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a PTC product. No circuit patent licenses are implied.

Princeton Technology Corp. 2F, 233-1, Baociao Road, Sindian, Taipei 23145, Taiwan

Tel: 886-2-66296288 Fax: 886-2-29174598 http://www.princeton.com.tw