MATEMÁTICA DISCRETA

Conceptos Básicos de la Teoría de Conjuntos (Parte II)

Conceptos Básicos de la Teoría de Conjuntos (P-II)

- Operaciones con conjuntos.
- Diagramas de Venn.
- Leyes del Álgebra de conjuntos.

Operaciones con conjuntos

Sean A y B dos conjuntos.

• La unión de los conjuntos A y B, denotada por $A \cup B$, es el conjunto formado por todos los elementos que pertenecen a A o que pertenecen a B.

$$A \cup B = \{x : x \in A \lor x \in B\}.$$

 La intersección de los conjuntos A y B, denotada por A∩B, es el conjunto formado por todos los elementos que pertenecen a A y que pertenecen a B.

$$A \cap B = \{x : x \in A \land x \in B\}.$$

Ejemplo 10: Sea $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$ y $C = \{5, 6, 7, 8\}$.

- $A \cup B = \{1, 2, 3, 4, 5, 6\}.$
- $A \cup C = \{1, 2, 3, 4, 5, 6, 7, 8\}$. (Observa: $A \cup C = A \cup B \cup C$).
- $A \cap B = \{3, 4\} \text{ y } A \cap C = \emptyset.$

Operaciones con conjuntos

Sean A y B dos conjuntos.

• La diferencia de los conjuntos A y B, denotada por $A \setminus B$, es el conjunto formado por los elementos que pertenecen a A y que no pertenecen a B.

$$A \setminus B = \{x : x \in A \land x \notin B\}.$$

El complemento de A, denotado por A^c, es el conjunto de elementos que no pertenecen a A (con relación al conjunto universal U, es decir, al mayor conjunto que nos podamos imaginar en cada contexto).

$$A^c = \{x : x \in U \land x \notin A\} = \{x : x \notin A\}.$$

Ejemplo 11: Sea $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$ y $U = \{1, 2, 3, ...\}$.

- $B \setminus A = \{5,6\}$. $A \setminus B = \{1,2\}$.
- $A^c = \{5, 6, 7, \ldots\}$. $B^c = \{1, 2\} \cup \{7, 8, 9, \ldots\}$.

Ejercicio 1: Si $A \cup B = A \cup C$, ¿Podemos deducir que B = C? Justifica la respuesta.

Solución(Ejercicio 1): No necesariamente se cumple que B=C. Observa que si $B\subseteq A$, $C\subseteq A$ y $B\neq C$, entonces también se satisface que $A\cup B=A\cup C$.

$$A = \{1, 2, 3\}, B = \{1, 2\}, C = \{2, 3\} y A \cup B = A \cup C = A.$$

Ejercicio 2: Si $A \cap B = A \cap C$, ¿Podemos deducir que B = C? Justifica la respuesta.

Solución(Ejercicio 2): No necesariamente se cumple que B=C. Observa que si $A\subseteq B$, $A\subseteq C$ y $B\neq C$, entonces también se satisface que $A\cap B=A\cap C$.

$$A = \{1, 2\}, B = \{1, 2, 3\}, C = \{1, 2, 4\} \text{ y } A \cap B = A \cap C = A.$$

Ejercicio 3: Sean X e Y dos conjuntos. Demuestra que:

$$X \setminus Y = X \cap Y^c$$
.

Solución(Ejercicio 3): Observa que:

$$X \setminus Y = \{x : x \in X \land x \notin Y\} = \{x : x \in X \land x \in Y^c\} = X \cap Y^c.$$

Ejercicio 4: Sean X e Y dos conjuntos. Demuestra que:

$$(X \setminus Y) \cap Y = \emptyset.$$

Solución(Ejercicio 4): Observa que:

$$(X \setminus Y) \cap Y = \{x : x \in X \setminus Y \land x \in Y\}$$

$$= \{x : x \in X \land x \notin Y \land x \in Y\}$$

$$= \{x : x \in X\} \cap \{x : x \notin Y \land x \in Y\}$$

$$= \{x : x \in X\} \cap \emptyset$$

$$= \emptyset$$

Diagramas de Venn

- (Informalmente), un Diagrama de Venn es una representación gráfica que permite agrupar elementos en diferentes conjuntos y mostrar sus relaciones mediante el uso de círculos.
- Permiten mostrar la agrupación y relaciones de elementos organizados en distintos conjuntos.
- Generalmente, son útiles cuando se trata de mostrar de forma visual las relaciones entre elementos pertenecientes a distintos conjuntos que no son disjuntos entre sí.
- Entre las funciones de un Diagrama de Venn se tiene:
 - Definir los conjuntos de elementos que forman el conjunto universo o un subconjunto de éste (mediante círculos).
 - Determinar a qué conjunto o conjuntos pertenece cada uno de los elementos.
 - Identificar a aquellos elementos que no pertenecen a ningún conjunto.

Ejemplo 1: En cada uno de los siguientes Diagramas de Venn, sombrea: (i) $A \cup B$ (ii) $A \cap B$.

Solución(Ejemplo 1):

 $A \cup B$

 $A \cap I$

Ejemplo 2: En el siguiente Diagrama de Venn, sombrea B^c .

Solución(Ejemplo 2):

Ejemplo 3: En el siguiente Diagrama de Venn, sombrea $(A \cup B)^c$.

Solución(Ejemplo 3):

Ejemplo 4: En el siguiente Diagrama de Venn, sombrea $(B \setminus A)^c$.

Solución(Ejemplo 4):

Ejemplo 5: En el siguiente Diagrama de Venn, sombrea $A^c \cap B^c$.

Solución(Ejemplo 5):

 A^c and B^c

Leves del Álgebra de Conjuntos

Dados A, B, $C \in U$ se tiene:

Propiedades asociativas:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
 y $A \cap (B \cap C) = (A \cap B) \cap C$

Propiedades conmutativas:

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Propiedades distributivas:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Propiedades del elemento complementario:

$$A \cup A^c = U$$

$$A \cap A^c = \emptyset$$

Propiedades del elemento neutro:

$$A \cup \emptyset = A$$

$$A \cap U = A$$

Ejemplo 6: Demuestra la Propiedad distributiva

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C).$$

Solución(Ejemplo 6): Observa que:

$$A \cap (B \cup C) = \{x : x \in A \land x \in B \cup C\}$$

$$= \{x : x \in A \land (x \in B \lor x \in C)\}$$

$$= \{x : (x \in A \land x \in B) \lor (x \in A \land x \in C)\}$$

$$= \{x : x \in A \cap B \lor x \in A \cap C\}$$

$$= \{x : x \in A \cap B\} \cup \{x : x \in A \cap C\}$$

$$= (A \cap B) \cup (A \cap C).$$

Leyes del Álgebra de Conjuntos

Dados $A, B \in U$ se tiene:

Leves de idempotencia:

$$A \cup A = A$$

V

$$A \cap A = A$$

Leyes de acotación:

$$A \cup U = U$$

$$A \cap \emptyset = \emptyset$$

Leyes de absorción:

$$A \cup (B \cap A) = A$$

$$A \cup (B \cap A) = A$$
 y $A \cap (B \cup A) = A$

Leyes de involución:

$$(A^c)^c = A,$$

$$(A^c)^c = A,$$
 $\emptyset^c = U$ y $U^c = \emptyset$

Leyes de Morgan:

$$(A \cup B)^c = A^c \cap B^c$$

$$y \qquad (A \cap B)^c = A^c \cup B^c$$

Ejemplo 6: Demuestra la Ley de De Morgan

$$(A \cup B)^c = A^c \cap B^c.$$

Solución(Ejemplo 6): Observa que:

$$(A \cup B)^c = \{x : x \notin A \cup B\}$$

$$= \{x : \neg(x \in A \cup B)\}$$

$$= \{x : \neg(x \in A \lor x \in B)\}$$

$$= \{x : x \notin A \land x \notin B\}$$

$$= \{x : x \in A^c \land x \in B^c\}$$

$$= \{x : x \in A^c \cap B^c\}$$

$$= A^c \cap B^c.$$