Correction du jour 14 : fonction exp

1. La largeur de l'arc de chaînette est égal à 2x et sa hauteur est égale à $\frac{1}{2}(e^x + e^{-x} - 2)$.

Le problème étudié revient à résoudre l'équation $\frac{1}{2}(e^x + e^{-x} - 2) = 2x$

$$\frac{1}{2}(e^x + e^{-x} - 2) = 2x \iff e^x + e^{-x} - 2 = 4x \iff e^x + e^{-x} - 2 - 4x = 0$$

- 2. a. Pour x > 0, $x \left(\frac{e^x}{x} 4 \right) = x \times \frac{e^x}{x} 4x = e^x 4$ donc f(x) peut bien s'écrire sous la forme proposée.
 - **b.** $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ par croissance comparée, donc par somme puis produit,

$$\lim_{x \to +\infty} x \left(\frac{e^x}{x} - 4 \right) = +\infty; \lim_{x \to +\infty} e^{-x} = 0$$

Par somme, on obtient $\lim_{x \to +\infty} f(x) = +\infty$

- 3. **a.** $f'(x) = e^x e^{-x} 4$
 - **b.** $f'(x) = 0 \iff e^x \frac{1}{e^x} 4 = 0 \iff \frac{(e^x)^2 4e^x 1}{e^x} = 0 \iff (e^x)^2 4e^x 1 = 0.$
 - **c.** Si on pose $X = e^x$ alors $(e^x)^2 4e^x 1 = 0 \iff X^2 4X 1 = 0$

 $\Delta = 16 - 4 \times 1 \times (-1) = 16 + 4 = 20 > 0$ donc l'équation admet deux solutions :

$$X_1 = \frac{4 - \sqrt{20}}{2} = \frac{4 - 2\sqrt{5}}{2} = 2 - \sqrt{5} \approx -0.24 < 0 \text{ et } X_2 = 2 + \sqrt{5} \approx 4.24 > 0$$

 $e^x = 2 - \sqrt{5}$ n'a pas de solution car $e^x > 0$ et $e^x = 2 + \sqrt{5} \iff x = \ln(2 + \sqrt{5})$.

Donc f'(x) s'annule pour une seule valeur égale à $\ln(2+\sqrt{5})$

4. a. On obtient le tableau de variations suivant :

х	$0 \qquad \ln\left(2+\sqrt{5}\right) +\infty$
f(x)	$0 + \infty$ $f\left(\ln\left(2 + \sqrt{5}\right)\right)$

avec
$$f(0) = 1 + 1 - 0 - 2 = 0$$

et $f(\ln(2 + \sqrt{5})) \approx -3.3$

- **b.** Sur $[0; \ln(2+\sqrt{5})]$, f(x) < 0 donc l'équation f(x) = 0 n'a pas de solution.
 - Sur $[\ln(2+\sqrt{5}; +\infty)]$, f est continue et strictement croissante.

D'après le corollaire du théorème des valeurs intermédiaires, l'équation admet une unique solution α .

5. a.

m	a	b	b-a	f(m)
	2	3	1	
2,5	2	2,5	0,5 > 0,1	$\approx 0,26 > 0$
2,25	2,25	2,5	0,25 > 0,1	$\approx -1, 4 < 0$
2,375	2,375	2,5	0,125 > 0,1	$\approx -0.66 < 0$
2,4375	2,4375	2,5	0,0625 < 0,1	$\approx -0,22 < 0$

b. Grâce à cet algorithme, on obtient un encadrement de α : $2,4375 < \alpha < 2,5$

6.
$$e^{\frac{t}{39}} + e^{-\frac{t}{39}} - 4\frac{t}{39} - 2 = 0 \iff e^x + e^{-x} - 4x - 2 = 0 \text{ avec } x = \frac{t}{39}$$

Cette équation a une unique solution α et $\alpha=\frac{t}{39}\iff t=39\alpha$ donc la largeur de l'arche est $2t=78\alpha$

$$2,4375 < \alpha < 2,5 \iff 190,125 < 78\alpha < 195$$

donc la largeur de l'arche est comprise entre 190 et 195 mètres.