Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder Mitchell Chapter 4

Syntax and Semantics of Programs

"...theoretical frameworks have had an impact on the design of programming languages and can be used to identify problem areas in programming languages."

- Syntax Assignment Project Exam Help
 - The symbols used to write a program
 https://powcoder.com
- Semantics
 - The actions that occur where the actions that occur where the occur is experited
- Programming language implementation
 - Syntax → Semantics
 - Transform program syntax into machine instructions that can be executed to cause the correct sequence of actions to occur

Add WeChat powcoder

Add WeChat powcoder

Studying compilers makes it easier to separate the main issues and discuss them in a given order.

A Typical Compiler

Compiler Phases

Lexical Analysis

- Input symbols are scanned from left to right and grouped into meaningful units called tokens.
- Distinguishes numbers, identifiers, symbols and keywords.
- Example: temp := x+1
 Tokens are Assignment Project Exam Help

Syntax Analysis https://powcoder.com

- Parsing: tokens are grouped into syntactic units such as expressions, statements, and Addrawio that post contern to the grammatical rules of the programming language.
- If the program does not meet the syntactic requirement to be a wellformed program, an error message is reported, and the compiler terminates.
- The result is a parse tree.
- To be discussed in more detail.

Compiler Phases

Semantic Analysis

- Context information is used to augment the parse tree, i.e., type information (from type inference)
- Note the difference between semantic analysis and program semantics (i.e. program meaning)
- Intermediate Assignment Project Exam Help
 - It is difficult to generate efficient code in one phase.
 It is important to use an intermediate representation that is
 - It is important to use an intermediate representation that is easy to produce and easy to translate into the target language.

Code Optimization

 Different techniques are applied over and over to the intermediate representation. (See next page.)

Code Generation

- Converts the intermediate code into a target machine code.
- Involves choosing memory locations and registers for variables.
- Efficiency is important.

Some Standard Code Optimizations

- Common Subexpression Elimination
 - If a program calculates the same value more than once, then calculate only once and store for later use.
- Copy Propagation
 - If a program contains an assignment x=y then it may be possible to change a statement of the Examinated of to x and remove the assignment.
- Dead-Code Elimination

 https://powcoder.com
 - Eliminate sequences of code that can never be reached.
- Loop Optimizations
 - Move expressions that occur inside a loop to outside the loop if they don't change value.
- In-lining Function Calls
 - Substitute function calls with the body of the function when possible. This often allows further optimizations to be performed by removing jumps.

Syntax: Grammars and Parse Trees

Grammar

• Expressions in language represented the derimotions, e.g.,

$$e \rightarrow e-e$$

 $\rightarrow e-e+e \rightarrow n-n+n$ https://powcoder.com
 $\rightarrow ... \rightarrow 27-4+$ Add WeChat powcoder

Grammar defines a language

Expressions in language derived by sequence of productions

Syntax: Grammars and Parse Trees

Grammar

```
e ::= n | e+e | e-e

n ::= d | nd

d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

- A Grammar includes:
 - A start symbol significate Project Exam Help
 - A set of nonterminals
 - A set of terminal (MASCH/PROPERCOCIAL EXPINESSIONS of the language generated by the grammar)
- In this example: Add WeChat powcoder
 - Nonterminals: e, n, d
 - Terminals: 0,...9,+, −
- Examples:
 - **–** 0, 1+3+5, 2+4-6-8

Nonterminals keep track as a valid expression is being formed. They must eventually be replaced.

Parse Trees (Derivation Trees)

Derivation represented by tree

Tree shows parenthesization of expression. A grammar is *ambiguous* if some expression has more than one parse tree.

Parse Trees (Derivation Trees)

- Exercise: draw 2 parse trees for 10—15 + 12
- Grammar

```
s ::= v:=e | s;s | if b then s | if b then s else s

v ::= x | Assignment Project Exam Help

e ::= v | 0 | 1 | 2 | 3 | 4

b ::= e=e

https://powcoder.com
```

Add WeChat powcoder

Exercise: draw 2 parse trees for
 if b1 then if b2 then s1 else s2
 What happens when b1=true and b2=false?

Parsing

- Parsing
 - Given a language L defined by a grammar G, and a string of symbols s, an algorithm that decides whether s is in L, and constructs a parse tree if it is, is called a parsing algorithm for G.
- Ambiguity
 Assignment Project Exam Help
 - Expression 27-4+3 can be parsed two ways
 - Problem: 27 https://powcodes.com
- Ways to resolve and we Chat powcoder
 - Precedence
 - By convention * has higher *precedence* than + or —
 - For example, parse 3*4 + 2 as (3*4) + 2
 - Associativity
 - Parenthesize operators of equal precedence to left (or right)
 - Parse 3-4+5 as (3-4)+5