Package 'SymTS'

January 15, 2023

Type Package

Version 1.0-2 **Date** 2023-01-14

Title Symmetric Tempered Stable Distributions

Author Michael Grabenak <mgrabenaeunec.edu <="" <1cao2eunec.edu="" and="" cao="" lijuan="" th=""></mgrabenaeunec.edu>
Maintainer Michael Grabchak <mgrabcha@uncc.edu></mgrabcha@uncc.edu>
Description Contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions.
License GPL (>= 3)
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-01-15 01:00:02 UTC
R topics documented:
SymTS-package
dCTS
dPowTS
dSaS
pCTS
pPowTS
pSaS
qCTS
qPowTS
qSaS
rCTS
rPowTS
rSaS
Index 14

2 SymTS-package

SymTS-package	Symmetric Tempered Stable Distributions

Description

Contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions.

Details

The DESCRIPTION file:

Package: SymTS Type: Package

Title: Symmetric Tempered Stable Distributions

Version: 1.0-2 Date: 2023-01-14

Author: Michael Grabchak <mgrabcha@uncc.edu> and Lijuan Cao <lcao2@uncc.edu>

Maintainer: Michael Grabchak <mgrabcha@uncc.edu>

Description: Contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric stabl

License: GPL (>= 3)

Index of help topics:

SymTS-package	Symmetric Tempered Stable Distributions
dCTS	PDF of CTS Distribution
dPowTS	PDF of PowTS Distribution
dSaS	PDF of Symmetric Stable Distribution
pCTS	CDF of CTS Distribution
pPowTS	PDF of PowTS Distribution
pSaS	CDF of Symmetric Stable Distribution
qCTS	Quantile Function of CTS Distribution
qPowTS	Quantile Function of PowTS Distribution
qSaS	Quantile Function of Symmetric Stable
	Distribution
rCTS	Simulation from CTS Distribution
rPowTS	Simulation from PowTS Distribution
rSaS	Simulation from Symmetric Stable Distribution

Author(s)

Michael Grabchak <mgrabcha@uncc.edu> and Lijuan Cao <lcao2@uncc.edu>

Maintainer: Michael Grabchak <mgrabcha@uncc.edu>

dCTS 3

References

M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.

- S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011). Financial Models with Levy Processes and Volatility Clustering. Wiley, Chichester.
- J. Rosinski (2007). Tempering stable processes. Stochastic Processes and Their Applications, 117(6):677-707.
- G. Samorodnitsky and M. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton.

dCTS

PDF of CTS Distribution

Description

Evaluates the pdf for the symmetric classical tempered stable distribution. When alpha=0 this is the symmetric variance gamma distribution.

Usage

```
dCTS(x, alpha, c = 1, ell = 1, mu = 0)
```

Arguments

X	Vector of points.
alpha	Number in [0,2)
С	Parameter c >0
ell	Parameter ell>0
mu	Location parameter, any real number

Details

The integration is preformed using the QAWF method in the GSL library for C. For this distribution the Rosinski measure $R(dx) = c*delta_ell(dx) + c*delta_(-ell)(dx)$, where delta is the delta function. The Levy measure is $M(dx) = c*ell^(alpha) *e^(-x/ell)*x^(-1-alpha) dx$. The characteristic function is, for alpha not equal 0,1:

```
\begin{split} f(t) &= \exp(\ 2^*c^*gamma(-alpha)^*(1+ell^2\ t^2)^*(alpha/2)^*(\cos(alpha^*atan(ell^*t))-1))\ ^*e^*(i^*t^*mu), \\ for\ alpha &= 1\ it\ is \\ f(t) &= (1+ell^2\ t^2)^*c^*exp(-2^*c^*ell^*t^*atan(ell^*t))\ ^*e^*(i^*t^*mu), \\ and\ for\ alpha &= 0\ it\ is \\ f(t) &= (1+t^2\ ell^2)^*(-c)\ ^*e^*(i^*t^*mu). \end{split}
```

4 dPowTS

Note

When alpha=0 and c<=.5, the pdf is unbounded. It is infinite at mu and the method returns Inf in that case. This does not affect pCTS, qCTS, or rCTS.

Author(s)

Michael Grabchak and Lijuan Cao

References

M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.

Examples

```
x = (-10:10)/10
dCTS(x,.5)
```

dPowTS

PDF of PowTS Distribution

Description

Evaluates the pdf for the symmetric power tempered stable distribution.

Usage

```
dPowTS(x, alpha, c = 1, ell = 1, mu = 0)
```

Arguments

X	Vector of points
alpha	Number in [0,2)
С	Parameter c >0
ell	Parameter ell>0
	T

mu Location parameter, any real number

Details

The integration is preformed using the QAWF method in the GSL library for C. For this distribution the Rosinski measure $R(dx) = c*(alpha+ell+1)*(alpha+ell)*(1+|x|)^(-2-alpha-ell)(dx)$.

Note

We do not allow for the case alpha=0 and c<=.5*(1+ell), as, in this case, the pdf is unbounded. This does not affect pPowTS, qPowTS, or rPowTS.

dSaS 5

Author(s)

Michael Grabchak and Lijuan Cao

References

M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.

Examples

```
x = (-10:10)/10
dPowTS(x,.5)
```

dSaS

PDF of Symmetric Stable Distribution

Description

Evaluates the pdf for the symmetric alpha stable distribution. For alpha=1 this is the Cauchy distribution.

Usage

```
dSaS(x, alpha, c = 1, mu = 0)
```

Arguments

x Vector of points.

alpha Index of stability; Number in (0,2)

c Scale parameter, c>0

mu Location parameter, any real number

Details

The integration is preformed using the QAWF method in the GSL library for C. The characteristic function is

```
f(t) = e^{-ct} - ct^{-alpha} *e^{-ct} + t^{-alpha}.
```

Author(s)

Michael Grabchak and Lijuan Cao

References

G. Samorodnitsky and M. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton.

pCTS

Examples

```
x = (-10:10)/10
dSaS(x,.5)
```

pCTS

CDF of CTS Distribution

Description

Evaluates the cdf for the symmetric classical tempered stable distribution. When alpha=0 this is the symmetric variance gamma distribution.

Usage

```
pCTS(x, alpha, c = 1, ell = 1, mu = 0)
```

Arguments

X	Vector of probabilities.
alpha	Number in [0,2)
С	Parameter c >0
ell	Parameter ell>0
mu	Location parameter, any real number

Details

For details about this distribution see the the describtion of dCTS.

Author(s)

Michael Grabchak and Lijuan Cao

References

M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.

```
x = (-10:10)/10
pCTS(x,.5)
```

pPowTS 7

pPowTS	PDF of PowTS Distribution

Description

Evaluates the cdf for the symmetric power tempered stable distribution.

Usage

```
pPowTS(x, alpha, c = 1, ell = 1, mu = 0)
```

Arguments

Х	Vector of probabilities.
alpha	Number in [0,2)
С	Parameter c >0
ell	Parameter ell>0
mu	Location parameter, any real number

Details

The integration is preformed using the QAWF method in the GSL library for C. For this distribution the Rosinski measure $R(dx) = c*(alpha+ell+1)*(alpha+ell)*(1+|x|)^{-2-alpha-ell}(dx)$.

Author(s)

Michael Grabchak and Lijuan Cao

References

M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.

```
x = (-10:10)/10
pPowTS(x,.5)
```

pSaS

pSaS

CDF of Symmetric Stable Distribution

Description

Evaluates the cdf for the symmetric alpha stable distribution. For alpha=1 this is the Cauchy distribution.

Usage

```
pSaS(x, alpha, c = 1, mu = 0)
```

Arguments

x Vector of probabiliti

alpha Index of stability; Number in (0,2)

c Scale parameter, c>0

mu Location parameter, any real number

Details

The integration is preformed using the QAWF method in the GSL library for C. The characteristic function is

```
f(t) = e^{-ct} - ct^{alpha} *e^{-ct} + e^{-ct}
```

Author(s)

Michael Grabchak and Lijuan Cao

References

G. Samorodnitsky and M. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton.

```
x = (-10:10)/10
pSaS(x,.5)
```

qCTS 9

qCTS

Quantile Function of CTS Distribution

Description

Evaluates the quantile function for the symmetric classical tempered stable distribution. When alpha=0 this is the symmetric variance gamma distribution.

Usage

```
qCTS(x, alpha, c = 1, ell = 1, mu = 0)
```

Arguments

X	Vector of quantiles.
alpha	Number in [0,2)
С	Parameter c >0
ell	Parameter ell>0
mu	Location parameter, any real number

Details

For details about this distribution see the the describtion of dCTS.

Author(s)

Michael Grabchak and Lijuan Cao

References

M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.

```
x = (1:9)/10
qCTS(x,.5)
```

qSaS

qPowTS

Quantile Function of PowTS Distribution

Description

Evaluates the quantile function for the symmetric power tempered stable distribution.

Usage

```
qPowTS(x, alpha, c = 1, ell = 1, mu = 0)
```

Arguments

X	Vector of quantiles.
alpha	Number in [0,2)
С	Parameter c >0
ell	Parameter ell>0
mu	Location parameter, any real number

Author(s)

Michael Grabchak and Lijuan Cao

References

M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.

Examples

```
x = (1:9)/10

qPowTS(x,.5)
```

qSaS

Quantile Function of Symmetric Stable Distribution

Description

Evaluates the quantile function for the symmetric alpha stable distribution. For alpha=1 this is the Cauchy distribution.

Usage

```
qSaS(x, alpha, c = 1, mu = 0)
```

rCTS 11

Arguments

ector of	points.
	ector of

alpha Index of stability; Number in (0,2)

c Scale parameter, c>0

mu Location parameter, any real number

Details

```
The characteristic function is
```

```
f(t) = e^{-c|t|^a alpha} *e^{-c|t|^a}.
```

Author(s)

Michael Grabchak and Lijuan Cao

References

G. Samorodnitsky and M. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton.

Examples

```
x = (1:9)/10
qSaS(x,.5)
```

rCTS

Simulation from CTS Distribution

Description

Simulates from the symmetric classical tempered stable distribution. When alpha=0 this is the symmetric variance gamma distribution. The simulation is performed by numerically evaluating the quantile function.

Usage

```
rCTS(r, alpha, c = 1, ell = 1, mu = 0)
```

Arguments

r	Number of	t observations.

alpha Number in [0,2)c Parameter c >0 ell Parameter ell>0

mu Location parameter, any real number

rPowTS

Details

For details about this distribution see the the describtion of dCTS.

Author(s)

Michael Grabchak and Lijuan Cao

References

M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.

Examples

```
rCTS(10,.5)
```

rPowTS

Simulation from PowTS Distribution

Description

Simulates from the symmetric power tempered stable distribution. The simulation is performed by numerically evaluating the quantile function.

Usage

```
rPowTS(r, alpha, c = 1, ell = 1, mu = 0)
```

Arguments

r	Number of observations.
r	Number of observations.

alpha Number in [0,2)c Parameter c > 0ell Parameter ell>0

mu Location parameter, any real number

Details

For this distribution the Rosinski measure $R(dx) = c*(alpha+ell+1)*(alpha+ell)*(1+|x|)^{-2-alpha-ell}(dx)$.

Author(s)

Michael Grabchak and Lijuan Cao

rSaS 13

References

M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.

Examples

```
pPowTS(10,.5)
```

rSaS

Simulation from Symmetric Stable Distribution

Description

Simulates from the symmetric alpha stable distribution. When alpha=1 this is the Cauchy distribution. The simulation is performed using a well-known approah. See for instance Proposition 1.7.1 in Samorodnitsky and Taqqu (1994).

Usage

```
rSaS(r, alpha, c = 1, mu = 0)
```

Arguments

r Number of observations.

alpha Index of stability; Number in (0,2)

c Scale parameter, c>0

mu Location parameter, any real number

Details

The characteristic function is

```
f(t) = e^{-c |t|^2} alpha) *e^{-c}(i *t *mu).
```

Author(s)

Michael Grabchak and Lijuan Cao

References

G. Samorodnitsky and M. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton.

```
rSaS(10,.5)
```

Index

```
*\ Symmetric\ Stable\ Distributions
     SymTS-package, 2
* Symmetric Tempered Stable Distributions
     SymTS-package, 2
dCTS, 3
dPowTS, 4
dSaS, 5
pCTS, 6
pPowTS, 7
pSaS, 8
qCTS, 9
\mathsf{qPowTS},\, \textcolor{red}{10}
qSaS, 10
rCTS, 11
rPowTS, 12
rSaS, 13
SymTS (SymTS-package), 2
SymTS-package, 2
```