CISC 3220 Homework

Rachel Friedman

March 22, 2020

Problem 4.5-1 a

$$T(n) = 2T(n/4) + 1$$

$$a = 2$$

$$b = 4$$

$$f(n) = 1$$

$$n^{\log_b a} = n^{\log_4 2} = n^{0.5}$$
Case 1: $f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$

$$0 \le 1 \le c \cdot n^{.5 - \epsilon}$$
Let $\epsilon = .1$

For all asymptotically positive functions, there is a c such that: $0 \le 1 \le c \cdot n^{.4}$

So
$$T(n) = \Theta(n^{0.5})$$

Thus, $c_1 \cdot n^{0.5} \le 2T(n/4) + 1 \le c_2 \cdot n^{0.5}$
Let $c_1 = 1$
Let $c_2 = ???$

I can't seem to find a value for c_2 here that is not dependent on n. What am I doing wrong?? Using 10 for now.

