Санкт-Петербургский политехнический университет Петра Великого
Высшая школа интеллектуальных систем и суперкомпьютерных
технологий

Отчёт по расчетной работе №1

Дисциплина: Теория вероятностей и математическая статистика **Тема:** Применение формулы Байеса для принятия решений.

Выполнил студент гр. 3530901/10001	 Д. Симоновский
Преподаватель	 К.В.Никитин

Санкт-Петербург 2023

1.2.	Описание.)
1.3.	Задание	3

2.	Теоретическая основа	4
3.	Решение	4

•		•
4.	Анализ результатов	6

5. Л	Іистинг.			7
-------------	----------	--	--	---

1. Задание

1.1. Вариант

Номер варианта: 1.3.

Вытягивание шаров из случайно выбранной корзины. Угадывание корзины. Набор корзин с шарами. Требуется угадать, где какая корзина путем последовательного извлечения шаров.

1.2. Описание.

Имеется N корзин, в каждой из которой находится известная комбинация шаров различного цвета. Игрок вначале случайно выбирает одну из корзин и затем последовательно K раз вынимает из нее по несколько d=2÷3 шаров с возвращением. Перед каждым подходом игрока к корзине ведущий с заданной вероятностью может случайно заменить ее на какую-то другую. По истечении опытов игроку необходимо определить, к какой из N корзин он скорее всего подходил.

```
Исходные данные (task 1 ball boxes.txt)
```

```
Source data:
n boxes: 6, m: 4, d: 4, p change box: 0.100, nExp = 10000
Box 1. Total: 250. Red: 39, White: 80, Black: 46, Green: 85
Box 2. Total: 240. Red: 41, White: 86, Black: 54, Green: 59
Box 3. Total: 300. Red: 63, White: 11, Black: 118, Green: 108
Box 4. Total: 230. Red: 96, White: 77, Black: 48, Green: 9
Box 5. Total: 220. Red: 22, White: 69, Black: 42, Green: 87
Box 6. Total: 280. Red: 76, White: 93, Black: 48, Green: 63
Experiments:
# 1, Balls: White, Black, Black, Green
#2, Balls: Black, Black, Red, White
#3, Balls: White, Black, Green, Red
#4, Balls: White, White, Red, Green
```

В примере есть 6 корзин с шарами 4-х цветов. В первой урне 250 шаров, 39 красных, 80 белых, 46 черных и 85 зеленых и т.д. Извлекается в каждый опыт по d=4 шара. Вероятность замены искомой корзины равна 0.1. Всего 10000 опытов. В первом опыте вытягиваются белый, черный, черный, зеленый шары и т.д

1.3. Задание

1а. После каждого к опыта необходимо вычислить ряд распределения апостериорных вероятностей гипотез – к какой из корзин подошел игрок. Представить соответствующие результаты визуально на графике в форме изменения с течением опытов диаграммы распределений вероятностей гипотез.

- 1b. Определять после каждого извлечения, какие корзины имеют наибольшую вероятность. Визуализировать эволюцию изменения наиболее вероятной корзины.
- 1с. Построить зависимость числа превалирующих гипотез от числа проведенных опытов.
- 2а. Определить приближенно частоту вынимания шаров каждого цвета из (экспериментальный профиль). Рассчитать теоретические вероятности вынимания шаров каждого цвета из каждой корзиныполучится N теоретических профилей для каждой корзины.
- 2b. Сравнить теоретический Профиль с каждым из полученных экспериментальными найти наиболее похожий. Сравнить с полученным результатов в п. 1
- 2с. Построить графики изменения экспериментальных профилей для различного количества опытов

2. Теоретическая основа

Формула Байеса имеет следующий вид:
$$P(H_i|A) = \frac{{}^{P(H_i)P(A|H_i)}}{\sum_{i=0}^n P(H_i)P(A|H_i)}.$$

Имеется N коробок, следовательно, гипотезы будут иметь следующий вид: $H_i - \mu$ игрок подошел к і ой коробке 1/N.

Тогда, чтобы рассчитать условные вероятности, что шар вынут из этой корзины будут иметь следующий вид:

$$P(A|H_i) = \frac{C_{n_{\text{всегокрасных}}}^{m_{\text{взято красных}}} C_{n_{\text{всегобелых}}}^{m_{\text{взято белых}}} C_{n_{\text{всегочерных}}}^{m_{\text{взято черных}}} C_{n_{\text{всегозеленых}}}^{m_{\text{взято зеленых}}} C_{n_{\text{всего-изрбых}}}^{m_{\text{взято телтых}}} C_{n_{\text{всего-изрбых}}}^{m_{\text{взято желтых}}} C_{n_{\text{всего-изрбых}}}^{m_{\text{взято желтых}}} C_{n_{\text{всего-изрбых}}}^{m_{\text{взято желтых}}} C_{n_{\text{всего-изрбых}}}^{m_{\text{взято желтых}}} C_{n_{\text{всего-изров}}}^{m_{\text{взято желтых}}} C_{n_{\text{всего-изров}}}^{m_{\text{взято желтых}}} C_{n_{\text{всего-изров}}}^{m_{\text{взято желтых}}} C_{n_{\text{всего-изров}}}^{m_{\text{взято келтых}}} C_{n_{\text{всего-изров}}}^{m_{\text{взято желтых}}} C_{n_{\text{всего-изров}}}^{m_{\text{взято желтых}}}} C_{n_{\text{всего-изров}}}^{m_{\text{взято желтых}}}} C_{n_{\text{всего-изров}}}^{m_{\text{взято желтых}}}} C_{n_{\text{всего-изров}}}^{m_{\text{взято желтых}}}} C_{n_{\text{всего-изров}}}^{m_{\text{взято желтых}}}} C_{n_{\text{всего-изров}}}^{m_{\text{взято желтых}}}} C_{n_{\text{взего-изров}}}^{m_{\text{взято желтых}}}} C_{n_{\text{взего-изров}}}^{m_{\text{взято желтых}}}} C_{n_{\text{взего-изров}}}^{m_{\text{взято желтых}}}} C_{n_{\text{взего-изров}}}^{m_{\text{взято желтых}}}} C_{n_{\text{взего-изров}}}^{m_{\text{взего-изров}}}} C_{n_{\text{взего-изров}}}^{m_{\text{взего-изров}}}} C_{n_{\text{взего-изров}}}^{m_{\text{взего-изров}}}} C_{n_{\text{взего-изров}}}^{m_{\text{взего-изров}}}} C_{n_{\text{взего-изров}}}^{m_{\text{взего-изров}}}} C_{n_{\text{взего-изров}}}^{m_{\text{взего-изров}}}$$

В цикле мы находим корзину с наиболее высокой условной вероятностью, а по окончании итераций можно определить наиболее вероятную корзину, к которой мог подойти игрок.

3. Решение

Для решения задачи был использован код на языке Matlab с отсечкой превалирующих гипотез на уровне 0.05. Результаты анализа требуют дальнейшего изучения.

Рис. 1. Ряд распределения апостериорных вероятностей гипотез с течением опытов

Рис. 2. Эволюция изменения наиболее вероятной корзины.

Рис. 3. Зависимость числа превалирующих гипотез от числа проведенных опытов.

Рис. 4. Экспериментальные профили.

Рис. 5. Изменение экспериментальных профилей.

4. Анализ результатов

По рисунку 1 видно, что наиболее вероятной оказалась корзина под номером 7.

Рисунок 2 представляет ту же информацию, что и рисунок 1, но с изменением выбранной корзины, к которой с наибольшей вероятностью подошел человек. По результатам более чем 30 экспериментов можно с

уверенностью близкой к 100% утверждать, что искомая корзина имеет номер 7.

Из рисунка 3 видно, что количество превалирующих гипотез уменьшалось с увеличением числа проведенных опытов.

Последний график на рис. 4 показывает профиль не конкретной корзины, а изменение вероятности выбора каждой корзины по ходу экспериментов. Видно, что профиль наиболее совпадает с корзиной №7.

Рисунок 5 показывает, что после 2000 экспериментов экспериментальный профиль уже окончательно сформирован. Также видно, что практические вероятности вынимания шаров различных цветов совпадают с теоретическими.

В результате проведения всех опытов мы установили, что наиболее вероятной корзиной является 7-ая, что также подтверждается эволюцией вероятностной корзины. Мы использовали формулу Байеса для определения корзины, к которой подошел человек, и практические вычисления подтверждают ее корректность.

5. Листинг

```
threshold = 0.05;
number_boxes = 7;
m_default = 7;
d = 5;
change_probability = 0.1;
not_change_probability = 1-change_probability;
PAHi = ones(1, number_boxes);
fid = fopen('Simonovsky1Balls.txt');
i = 1;
b = 1;
balls = zeros(2, number_boxes);
```

```
while ~feof(fid)
   balls(1, :) = zeros(1, number boxes);
   tline = fgetl(fid);
   if regexp(string(tline), '(\w+(: | = )\d+(.\d+)?(, )?)+', 'match') == string(tline)
       fblocks = regexp(string(tline), '[A-Za-z_: ,=]+', 'split');
       param = fblocks(1, 2:6);
       expProfiles = zeros(str2double(param(1, 5)), str2double(param(1, 2)));
   elseif regexp(string(tline), '\w+ \d+. \w+: \d+.([\w+:,]+)', 'match') ==
string(tline)
       temp(1, :) = string(regexp(tline, '[A-Za-z_: ,=.]+', 'split'));
       for c = 1:str2double(param(1, 2))
       boxes(b, c) = str2double(temp(1, 3 + c));
       end
       b = b + 1;
   elseif regexp(string(tline), '#', 'start') == 1
       str(i, 1) = string(tline);
       fblocks = regexp(string(regexp(tline, '([a-zA-Z, ]+)$', 'match')),',','split');
       for j = 1:d
           switch strtrim(fblocks(1, j))
               case "Red"
                   balls(2, 1) = balls(2, 1) + 1;
                   balls(1, 1) = balls(1, 1) + 1;
               case "White'
                   balls(2, 2) = balls(2, 2) + 1;
                   balls(1, 2) = balls(1, 2) + 1;
               case "Black
                   balls(2, 3) = balls(2, 3) + 1;
                   balls(1, 3) = balls(1, 3) + 1;
               case "Green'
                   balls(2, 4) = balls(2, 4) + 1;
                   balls(1, 4) = balls(1, 4) + 1;
               case "Blue'
                   balls(2, 5) = balls(2, 5) + 1;
                   balls(1, 5) = balls(1, 5) + 1;
               case "Yellow'
                   balls(2, 6) = balls(2, 6) + 1;
                   balls(1, 6) = balls(1, 6) + 1;
               case "Brown'
                   balls(2, 7) = balls(2, 7) + 1;
                   balls(1, 7) = balls(1, 7) + 1;
           end
       end
       for j = 1:m default
           expProfiles(i, j) = balls(2, j) / (i * d);
       end
       for j = 1:number boxes
           m = getPAHi(boxes(j, :), balls(1, :), d ) * not change probability;
           for k = 1:number_boxes
               if (k ~= j)
                   m = m + getPAHi(boxes(k, :), balls(1, :), d) * change_probability /
number_boxes;
               end
           end
           PAHi(j) = PAHi(j) * m;
       prevalCount = 0;
       for j = 1:number_boxes
           results(i, j) = PAHi(j) / sum(PAHi);
           if results(i, j) > threshold
               prevalCount = prevalCount + 1;
           end
       end
```

```
if ~isnan(results(i, 1))
                             results(i, number_boxes + 1) = prevalCount;
                  i = i + 1;
       else
       end
end
% 1a
nexttile
plot(results(:, 1:number_boxes));
legend("box1","box2","box3","box4","box5", "box6", "box7");
title('1a')
nexttile;
% 1b
[~,c]=find(results(:, 1:number boxes) == max(max(results(:, 1:number boxes))));
plot(results(:, c));
title('1b')
nexttile;
% 1c
plot(results(1:find(isnan(results)), number boxes + 1));
title('1c')
pause;
clf
% 2a
colorsnames = categorical({'Red' 'White' 'Black' 'Green' 'Blue', 'Yellow', 'Brown'});
formatTitle = 'Box № %d';
for box = 1:str2double(param(1, 1))
       nexttile;
        for color = 1:str2double(param(1, 2))
                  profile(box, color) = boxes(box, color) / sum(boxes(box, :));
       bar(colorsnames, profile(box, :));
       title (sprintf(formatTitle, box));
nexttile;
bar(colorsnames, expProfiles(str2double(param(1, 5)), :));
clf
% 2c
plot(expProfiles);
legend(colorsnames);
function res = getPAHi(boxes, balls, d)
res = power(boxes(1, 1), balls(1, 1)) * power(boxes(1, 2), balls(1, 2)) *
power(boxes(1, 3), balls(1, 3)) * power(boxes(1, 4), balls(1, 4)) * power(boxes(1, 5), balls(1, 4)) * power(boxes(1, 5), balls(1, 4)) * power(boxes(1, 4), balls(1, 4)) * power(boxes(1, 5), balls(1, 4)) * power(boxes(1, 4), balls(1, 4)) * powe
balls(1, 5)) * power(boxes(1,6),balls(1,6)) * power(boxes(1,7),balls(1,7))/
power(sum(boxes), d);
end
```