Theoretical Proofs for Fast Higher-order Count Sketch: Algorithm and Application to Tensor Contraction Approximations

Xingyu Cao, Yipeng Liu Senior Member, IEEE, Jiani Liu, Zhen Long, Ce Zhu Fellow, IEEE

Abstract

This supplement contains the derivation of FHCS for generalized tensors and the proofs of Proposition 1 and Corollary 1.

I. DERIVATION OF FHCS FOR GENERAL TENSORS

For more convenience of representation, we assume the index of arrays starts at 0. Given $\mathcal{T} = \mathbf{u}^{(1)} \circ \mathbf{u}^{(2)} \circ \cdots \circ \mathbf{u}^{(N)} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$, assign $l = \sum_{n=1}^N i_n \prod_{j=1}^{n-1} I_j$, we have $\text{vec}(\mathcal{T})_l = \mathbf{u}_{i_1}^{(1)} \cdots \mathbf{u}_{i_N}^{(N)}$. By definition of HCS, we have:

$$\sum_{i_{1}=1}^{I_{1}} \cdots \sum_{i_{N}=1}^{I_{N}} \operatorname{vec}(\mathcal{T})_{l} \mathbf{s}_{1}(i_{1}) \cdots \mathbf{s}_{N}(i_{N}) w^{t(\mathbf{h}_{1}(i_{1})+\cdots+\mathbf{h}_{N}(i_{N}))}$$

$$= \sum_{i_{1}=1}^{I_{1}} \cdots \sum_{i_{N}=1}^{I_{N}} \mathbf{u}_{i_{1}}^{(1)} \cdots \mathbf{u}_{i_{N}}^{(N)} \mathbf{s}_{1}(i_{1}) \cdots \mathbf{s}_{N}(i_{N}) w^{t(\mathbf{h}_{1}(i_{1})+\cdots+\mathbf{h}_{N}(i_{N}))}$$

$$= \sum_{i_{1}} \mathbf{u}_{i_{1}}^{(1)} \mathbf{s}_{1}(i_{1}) w^{t\mathbf{h}_{1}(i_{1})} \cdots \sum_{i_{N}} \mathbf{u}_{i_{N}}^{(N)} \mathbf{s}_{N}(i_{N}) w^{t\mathbf{h}_{N}(i_{N})}$$

$$= \mathbb{F}(\operatorname{CS}_{1}(\mathbf{u}^{(1)})) * \cdots * \mathbb{F}(\operatorname{CS}_{N}(\mathbf{u}^{(N)})).$$
(1)

Let $\mathbf{s}_{N+1}(l) = \mathbf{s}_1(i_1) \cdots \mathbf{s}_N(i_N)$, $\mathbf{h}_{N+1}(l) = \mathbf{h}_1(i_1) + \cdots + \mathbf{h}_N(i_N)$, we have

$$\sum_{i_{1}=1}^{I_{1}} \cdots \sum_{i_{N}=1}^{I_{N}} \operatorname{vec}(\mathcal{T})_{l} \mathbf{s}_{1}(i_{1}) \cdots \mathbf{s}_{N}(i_{N}) w^{t(\mathbf{h}_{1}(i_{1})+\cdots+\mathbf{h}_{2}(i_{N}))}$$

$$= \sum_{l} \operatorname{vec}(\mathcal{T})_{l} \mathbf{s}_{N+1}(l) w^{t\mathbf{h}_{N+1}(l)}$$

$$= \mathbb{F}(\operatorname{FHCS}(\mathcal{T})). \tag{2}$$

Therefore, we have

$$FHCS(\mathcal{T}) = \mathbb{F}^{-1}(\mathbb{F}(CS_1(\mathbf{u}^{(1)})) * \cdots * \mathbb{F}(CS_N(\mathbf{u}^{(N)})))$$
(3)

which completes the proof.

II. PROOFS FOR PROPOSITION 1 AND COROLLAR 1

A. Proof for Proposition 1

First we prove consistency of FHCS. We proceed by proving a more general case, i.e., for any 3-order 1 tensors \mathcal{M} , \mathcal{N} with the same size, $\langle \mathrm{HCS}(\mathcal{M}), \mathrm{HCS}(\mathcal{N}) \rangle$ is a consistent estimator of $\langle \mathcal{M}, \mathcal{N} \rangle$. To this end we prove it is unbiased with bounded variance.

Unbiasedness

$$\langle HCS(\mathcal{M}), HCS(\mathcal{N}) \rangle = \sum_{\substack{t_1, t_2, t_3}} HCS(\mathcal{M})_{t_1, t_2, t_3} HCS(\mathcal{N})_{t_1, t_2, t_3}$$

$$= \sum_{\substack{t_1, t_2, t_3 \\ h_1(i_1) = t_1 \\ h_2(i_2) = t_2 \\ h_3(i_3) = t_3}} (\sum_{\substack{\mathbf{h}_1(j_1) = t_1 \\ h_2(j_2) = t_2 \\ h_3(j_3) = t_3}} \mathbf{s}_1(j_1) \mathbf{s}_2(j_2) \mathbf{s}_3(j_3) \mathcal{N}_{j_1, j_2, j_3}), \tag{4}$$

$$\mathbb{E}_{\mathbf{h},\mathbf{s}} \langle \text{HCS}(\mathcal{M}), \text{HCS}(\mathcal{N}) \rangle = \sum_{\substack{i_1, i_2, i_3 \\ j_1, j_2, j_3}} \mathbb{E} \left[\delta(\mathbf{h}_1(i_1), \mathbf{h}_1(j_1)) \delta(\mathbf{h}_2(i_2), \mathbf{h}_2(j_2)) \delta(\mathbf{h}_3(i_3), \mathbf{h}_3(j_3)) \right]$$

$$\mathbb{E}[\mathbf{s}_1(i_1) \mathbf{s}_2(i_2) \mathbf{s}_3(i_3) \mathbf{s}_1(j_1) \mathbf{s}_2(j_2) \mathbf{s}_3(j_3)] \mathcal{M}_{i_1, i_2, i_3} \mathcal{N}_{j_1, j_2, j_3}$$
(5)

¹For simplicity we focus on 3-order tensors. The conclusion generalizes to tensors with any order.

Given $h_1, h_2, h_3, s_1, s_2, s_3$ are 2-wise independent, we have

$$\mathbb{E}[\mathbf{s}_1(i_1)\mathbf{s}_2(i_2)\mathbf{s}_3(i_3)\mathbf{s}_1(j_1)\mathbf{s}_2(j_2)\mathbf{s}_3(j_3)] = \begin{cases} 1, \ i_1 = j_1, i_2 = j_2, i_3 = j_3 \\ 0, \text{ otherwise} \end{cases}$$
(6)

Obviously $\mathbb{E}[\delta(\mathbf{h}_1(i_1), \mathbf{h}_1(j_1))]|_{i_1=j_1} = \mathbb{E}[\delta(\mathbf{h}_2(i_2), \mathbf{h}_2(j_2))]|_{i_2=j_2} = \mathbb{E}[\delta(\mathbf{h}_3(i_3), \mathbf{h}_3(j_3))]|_{i_3=j_3} = 1$. Hence

$$\mathbb{E}_{\mathbf{h},\mathbf{s}} \langle \mathrm{HCS}(\mathcal{M}), \mathrm{HCS}(\mathcal{N}) \rangle = \sum_{i_1, i_2, i_3} \mathcal{M}_{i_1, i_2, i_3} \mathcal{N}_{i_1, i_2, i_3} = \langle \mathcal{M}, \mathcal{N} \rangle$$
 (7)

· Variance boundedness

$$\langle \text{HCS}(\mathcal{M}), \text{HCS}(\mathcal{N}) \rangle^{2} = \sum_{\substack{i_{1}, i_{2}, i_{3} \\ j_{1}, j_{2}, j_{3} \\ i'_{1}, i'_{2}, i'_{3} \\ j'_{1}, j'_{2}, j'_{3} \\ j'_{1}, j'_{2}, j'_{3} \\ \beta(\mathbf{h}_{1}(i'_{1}), \mathbf{h}_{1}(j'_{1})) \delta(\mathbf{h}_{2}(i'_{2}), \mathbf{h}_{2}(j'_{2})) \delta(\mathbf{h}_{3}(i'_{3}), \mathbf{h}_{3}(j'_{3}))$$

$$\delta(\mathbf{h}_{1}(i'_{1}), \mathbf{h}_{1}(j'_{1})) \delta(\mathbf{h}_{2}(i'_{2}), \mathbf{h}_{2}(j'_{2})) \delta(\mathbf{h}_{3}(i'_{3}), \mathbf{h}_{3}(j'_{3}))$$

$$\mathbf{s}_{1}(i_{1}) \mathbf{s}_{2}(i_{2}) \mathbf{s}_{3}(i_{3}) \mathbf{s}_{1}(j_{1}) \mathbf{s}_{2}(j_{2}) \mathbf{s}_{3}(j_{3}) \mathbf{s}_{1}(i'_{1}) \mathbf{s}_{2}(i'_{2}) \mathbf{s}_{3}(i'_{3}) \mathbf{s}_{1}(j'_{1}) \mathbf{s}_{2}(j'_{2}) \mathbf{s}_{3}(j'_{3})$$

$$\mathcal{M}_{i_{1}, i_{2}, i_{3}} \mathcal{N}_{j_{1}, j_{2}, j_{3}} \mathcal{M}_{i'_{1}, i'_{2}, i'_{3}} \mathcal{N}_{j'_{1}, j'_{2}, j'_{3}}$$

$$(8)$$

Denote $G_1 = \{i_1, j_1, i'_1, j'_1\}$, $G_2 = \{i_2, j_2, i'_2, j'_2\}$, $G_3 = \{i_3, j_3, i'_3, j'_3\}$. We say G_k has best match if $i_k = j_k, i'_k = j'_k$ for $k \in [3]$. then (8) can be grouped into following cases:

Case 1 G_1, G_2, G_3 all have best matches, then

$$S_{1} = \sum_{\substack{i_{1}, i_{2}, i_{3} \\ i'_{1}, i'_{2}, i'_{3}}} \mathcal{M}_{i_{1}, i_{2}, i_{3}} \mathcal{N}_{i_{1}, i_{2}, i_{3}} \mathcal{M}_{i'_{1}, i'_{2}, i'_{3}} \mathcal{N}_{i'_{1}, i'_{2}, i'_{3}} = \langle \mathcal{M}, \mathcal{N} \rangle^{2}$$

$$(9)$$

Case 2 One out of G_1, G_2, G_3 does not have best matches, take G_1 for example. Suppose $i_1 = i'_1 \neq j_1 = j'_1$, then

$$S_{2} = {3 \choose 1} {2 \choose 1} \sum_{\substack{i_{1}, i_{2}, i_{3} \\ j_{1}, i'_{2}, i'_{3}}} \mathbb{E}[\delta(\mathbf{h}_{1}(i_{1}), \mathbf{h}_{1}(j_{1}))^{2}] \mathcal{M}_{i_{1}, i_{2}, i_{3}} \mathcal{N}_{j_{1}, i_{2}, i_{3}} \mathcal{M}_{i_{1}, i'_{2}, i'_{3}}$$

$$= \frac{6}{J} \sum_{\substack{i_{1}, i_{2}, i_{3} \\ j_{1}, i'_{2}, i'_{3}}} \mathcal{M}_{i_{1}, i_{2}, i_{3}} \mathcal{N}_{j_{1}, i_{2}, i_{3}} \mathcal{M}_{i_{1}, i'_{2}, i'_{3}} \mathcal{N}_{j_{1}, i'_{2}, i'_{3}}$$

$$= \frac{6}{J} \sum_{\substack{i_{1}, j_{1} \\ i_{1}, j_{1}}} \langle \mathcal{M}(\mathbf{e}_{i_{1}}, \mathbf{I}, \mathbf{I}), \mathcal{N}(\mathbf{e}_{j_{1}}, \mathbf{I}, \mathbf{I}) \rangle^{2}$$

$$\leq \frac{6}{J} \sum_{\substack{i_{1}, j_{1} \\ i_{1}, j_{1}}} \|\mathcal{M}(\mathbf{e}_{i_{1}}, \mathbf{I}, \mathbf{I})\|_{F}^{2} \|\mathcal{N}(\mathbf{e}_{j_{1}}, \mathbf{I}, \mathbf{I})\|_{F}^{2}$$

$$= \frac{6}{J} \|\mathcal{M}\|_{F}^{2} \|\mathcal{N}\|_{F}^{2},$$

$$(10)$$

where the inequality holds due to Cauchy-Schwartz inequality.

Case 3 One out of G_1, G_2, G_3 has best matches, take G_1 for example. Suppose $i_2 = i'_2 \neq j_2 = j'_2, i_3 = i'_3 \neq j_3 = j'_3$, then

$$S_{3} = \begin{pmatrix} 3\\1 \end{pmatrix} \begin{pmatrix} 2\\1 \end{pmatrix} \sum_{\substack{i_{1},i_{2},i_{3}\\j_{2},j_{3},i'_{1}}} \mathbb{E}[\delta(\mathbf{h}_{2}(i_{2}),\mathbf{h}_{2}(j_{2}))^{2}][\delta(\mathbf{h}_{3}(i_{3}),\mathbf{h}_{3}(j_{3}))^{2}] \mathcal{M}_{i_{1},i_{2},i_{3}} \mathcal{N}_{i'_{1},i_{2},i_{3}} \mathcal{N}_{i'_{1},j_{2},j_{3}}$$

$$= \frac{12}{J^{2}} \sum_{\substack{i_{1},i_{2},i_{3}\\j_{2},j_{3},i'_{1}}} \mathcal{M}_{i_{1},i_{2},i_{3}} \mathcal{N}_{i_{1},j_{2},j_{3}} \mathcal{M}_{i'_{1},i_{2},i_{3}} \mathcal{N}_{i'_{1},j_{2},j_{3}}$$

$$= \frac{12}{J^{2}} \sum_{\substack{i_{2},i_{3}\\j_{2},j_{3}}} \langle \mathcal{M}(\mathbf{I},\mathbf{e}_{i_{2}},\mathbf{e}_{i_{3}}), \mathcal{N}(\mathbf{I},\mathbf{e}_{j_{2}},\mathbf{e}_{j_{3}}) \rangle^{2}$$

$$\leq \frac{12}{J^{2}} \sum_{\substack{i_{2},i_{3}\\j_{2},j_{3}}} \|\mathcal{M}(\mathbf{I},\mathbf{e}_{i_{2}},\mathbf{e}_{i_{3}})\|_{F}^{2} \|\mathcal{N}(\mathbf{I},\mathbf{e}_{j_{2}},\mathbf{e}_{j_{3}})\|_{F}^{2}$$

$$= \frac{12}{J^{2}} \|\mathcal{M}\|_{F}^{2} \|\mathcal{N}\|_{F}^{2}$$

$$(11)$$

Case 4 None of G_1, G_2, G_3 has best matches. Suppose $i_1 = i'_1 \neq j_1 = j'_1, i_2 = i'_2 \neq j_2 = j'_2, i_3 = i'_3 \neq j_3 = j'_3$, then

$$S_{4} = \binom{2}{1} \binom{2}{1} \binom{2}{1} \sum_{\substack{i_{1}, i_{2}, i_{3} \\ j_{1}, j_{2}, j_{3}}} \mathbb{E}[\delta(\mathbf{h}_{1}(i_{1}), \mathbf{h}_{1}(j_{1}))^{2}] [\delta(\mathbf{h}_{2}(i_{2}), \mathbf{h}_{2}(j_{2}))^{2}] [\delta(\mathbf{h}_{3}(i_{3}), \mathbf{h}_{3}(j_{3}))^{2}] \mathcal{M}_{i_{1}, i_{2}, i_{3}}^{2} \mathcal{N}_{j_{1}, j_{2}, j_{3}}^{2}$$

$$= \frac{8}{J^{3}} \sum_{\substack{i_{1}, i_{2}, i_{3} \\ j_{1}, j_{2}, j_{3}}} \mathcal{M}_{i_{1}, i_{2}, i_{3}}^{2} \mathcal{N}_{j_{1}, j_{2}, j_{3}}^{2}$$

$$= \frac{8}{J^{3}} \|\mathcal{M}\|_{F}^{2} \|\mathcal{N}\|_{F}^{2}$$

$$(12)$$

As a result, we have

$$\mathbb{E}_{\mathbf{h},\mathbf{s}}[\langle HCS(\mathcal{M}), HCS(\mathcal{N}) \rangle^{2}] = S_{1} + S_{2} + S_{3} + S_{4}$$

$$\leq \langle \mathcal{M}, \mathcal{N} \rangle^{2} + \frac{6J^{2} + 12J + 8}{J^{3}} \|\mathcal{M}\|_{F}^{2} \|\mathcal{N}\|_{F}^{2}$$
(13)

Therefore

$$V_{\mathbf{h},\mathbf{s}}[\langle HCS(\mathcal{M}), HCS(\mathcal{N}) \rangle] = \mathbb{E}_{\mathbf{h},\mathbf{s}}[\langle HCS(\mathcal{M}), HCS(\mathcal{N}) \rangle^{2}] - \mathbb{E}_{\mathbf{h},\mathbf{s}}[\langle HCS(\mathcal{M}), HCS(\mathcal{N}) \rangle]^{2}$$

$$< \frac{6J^{2} + 12J + 8}{I^{3}} ||\mathcal{M}||_{F}^{2} ||\mathcal{N}||_{F}^{2}.$$
(14)

Combining (7, 14) the consistency is proved.

We further prove HCS computes a better estimator for tensor inner product than TS:

$$\langle \text{TS}(\mathcal{M}), \text{TS}(\mathcal{N}) \rangle^{2} = \sum_{\substack{i_{1}, i_{2}, i_{3} \\ j_{1}, j_{2}, j_{3} \\ i'_{1}, i'_{2}, i'_{3} \\ j'_{1}, j'_{2}, j'_{3} \\ j'_{1}, j'_{2}, j'_{3} \\ \delta(\mathbf{h}_{1}(i'_{1}) + \mathbf{h}_{2}(i'_{2}) + \mathbf{h}_{3}(i'_{3}), \mathbf{h}_{1}(j'_{1}) + \mathbf{h}_{2}(j'_{2}) + \mathbf{h}_{3}(j'_{3}) \% J)$$

$$\delta(\mathbf{h}_{1}(i'_{1}) + \mathbf{h}_{2}(i'_{2}) + \mathbf{h}_{3}(i'_{3}), \mathbf{h}_{1}(j'_{1}) + \mathbf{h}_{2}(j'_{2}) + \mathbf{h}_{3}(j'_{3}) \% J)$$

$$\mathbf{s}_{1}(i_{1})\mathbf{s}_{2}(i_{2})\mathbf{s}_{3}(i_{3})\mathbf{s}_{1}(j_{1})\mathbf{s}_{2}(j_{2})\mathbf{s}_{3}(j_{3})\mathbf{s}_{1}(i'_{1})\mathbf{s}_{2}(i'_{2})\mathbf{s}_{3}(i'_{3})\mathbf{s}_{1}(j'_{1})\mathbf{s}_{2}(j'_{2})\mathbf{s}_{3}(j'_{3})$$

$$\mathcal{M}_{i_{1},i_{2},i_{3}}\mathcal{N}_{j_{1},j_{2},j_{3}}\mathcal{M}_{i'_{1},i'_{2},i'_{3}}\mathcal{N}_{j'_{1},j'_{2},j'_{3}}.$$

$$(15)$$

Define G_1, G_2, G_3 similarly as abovementioned. Then (15) can be grouped into following cases: **Case 1** G_1, G_2, G_3 all have best matches, then

$$S_{1} = \sum_{\substack{i_{1}, i_{2}, i_{3} \\ i'_{1}, i'_{2}, i'_{3}}} \mathcal{M}_{i_{1}, i_{2}, i_{3}} \mathcal{N}_{i_{1}, i_{2}, i_{3}} \mathcal{M}_{i'_{1}, i'_{2}, i'_{3}} \mathcal{N}_{i'_{1}, i'_{2}, i'_{3}} = \langle \mathcal{M}, \mathcal{N} \rangle^{2}$$

$$(16)$$

Case 2 One out of G_1, G_2, G_3 does not have best matches, take G_1 for example. Suppose $i_1 = i_1' \neq j_1 = j_1'$, then

$$S_{2} = {3 \choose 1} {2 \choose 1} \sum_{\substack{i_{1}, i_{2}, i_{3} \\ j_{1}, i'_{2}, i'_{3}}} \mathbb{E}[\delta(\mathbf{h}_{1}(i_{1}), \mathbf{h}_{1}(j_{1}))^{2}] \mathcal{M}_{i_{1}, i_{2}, i_{3}} \mathcal{N}_{j_{1}, i_{2}, i_{3}} \mathcal{M}_{i_{1}, i'_{2}, i'_{3}}$$

$$= \frac{6}{J} \sum_{\substack{i_{1}, i_{2}, i_{3} \\ j_{1}, i'_{2}, i'_{3}}} \mathcal{M}_{i_{1}, i_{2}, i_{3}} \mathcal{N}_{j_{1}, i_{2}, i_{3}} \mathcal{M}_{i_{1}, i'_{2}, i'_{3}} \mathcal{N}_{j_{1}, i'_{2}, i'_{3}}$$

$$\leq \frac{6}{J} \|\mathcal{M}\|_{F}^{2} \|\mathcal{N}\|_{F}^{2}$$

$$(17)$$

Case 3 One out of G_1, G_2, G_3 has best matches, take G_1 for example. Suppose $i_2 = i_2' \neq j_2 = j_2', i_3 = i_3' \neq j_3 = j_3'$, then

$$S_{3} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \sum_{\substack{i_{1}, i_{2}, i_{3} \\ j_{2}, j_{3}, i'_{1}}} \mathbb{E}[\delta(\mathbf{h}_{2}(i_{2}) + \mathbf{h}_{3}(i_{3}), \mathbf{h}_{2}(j_{2}) + \mathbf{h}_{3}(j_{3})\%m)] \mathcal{M}_{i_{1}, i_{2}, i_{3}} \mathcal{N}_{i_{1}, j_{2}, j_{3}} \mathcal{M}_{i'_{1}, i_{2}, i_{3}} \mathcal{N}_{i'_{1}, j_{2}, j_{3}}$$

From 2-wise independence of h_2 and h_3 , we have

$$\mathbb{P}[\mathbf{h}_{2}(i_{2}) + \mathbf{h}_{3}(i_{3}) = t] = \begin{cases} \sum_{k=0}^{t} \mathbb{P}[\mathbf{h}_{2}(i_{2}) = k, \mathbf{h}_{3}(i_{3}) = t - k] = \frac{t+1}{J^{2}}, & t \leq J - 1\\ \sum_{k=t-J+1}^{J-1} \mathbb{P}[\mathbf{h}_{2}(i_{2}) = k, \mathbf{h}_{3}(i_{3}) = t - k] = \frac{2J - 1 - t}{J^{2}}, & t \geq J \end{cases}$$

$$\mathbb{P}[\mathbf{h}_{2}(j_{2}) + \mathbf{h}_{3}(j_{3}) \% J = t] = \begin{cases} \mathbb{P}[\mathbf{h}_{2}(j_{2}) + \mathbf{h}_{3}(j_{3}) = t] + \mathbb{P}[\mathbf{h}_{2}(j_{2}) + \mathbf{h}_{3}(j_{3}) = t + J] = \frac{1}{J}, & t < J - 1 \\ \mathbb{P}[\mathbf{h}_{2}(j_{2}) + \mathbf{h}_{3}(j_{3}) = t] = \frac{1}{J}, & t = J - 1 \end{cases}$$

i.e. $\mathbb{P}[\mathbf{h}_2(j_2) + \mathbf{h}_3(j_3) \% J = t] = \frac{1}{J} \text{ for } t = 0, \dots, J - 1.$ Hence

$$\mathbb{P}[\delta(\mathbf{h}_2(i_2) + \mathbf{h}_3(i_3), \mathbf{h}_2(j_2) + \mathbf{h}_3(j_3)\%J) = 1] = \frac{1}{J^3}(1 + 2 + \dots + J) = \frac{1 + J}{2J^2}$$

Therefore we have

$$S_{3} = \frac{6(1+J)}{J^{2}} \sum_{\substack{i_{1}, i_{2}, i_{3} \\ j_{2}, j_{3}, i'_{1}}} \mathcal{M}_{i_{1}, i_{2}, i_{3}} \mathcal{N}_{i_{1}, j_{2}, j_{3}} \mathcal{M}_{i'_{1}, i_{2}, i_{3}} \mathcal{N}_{i'_{1}, j_{2}, j_{3}} \leq \frac{6(1+J)}{J^{2}} \|\mathcal{M}\|_{F}^{2} \|\mathcal{N}\|_{F}^{2}$$

$$(18)$$

Case 4 None of G_1, G_2, G_3 has best matches. Suppose $i_1 = i_1' \neq j_1 = j_1', i_2 = i_2' \neq j_2 = j_2', i_3 = i_3' \neq j_3 = j_3'$, then

$$S_{4} = {2 \choose 1} {2 \choose 1} \sum_{\substack{i_{1}, i_{2}, i_{3} \\ i_{1}, i_{2}, i_{3}}} \mathbb{E}[\delta(\mathbf{h}_{1}(i_{1}) + \mathbf{h}_{2}(i_{2}) + \mathbf{h}_{3}(i_{3}), \mathbf{h}_{1}(j_{1}) + \mathbf{h}_{2}(j_{2}) + \mathbf{h}_{3}(j_{3}) \% J)] \mathcal{M}_{i_{1}, i_{2}, i_{3}}^{2} \mathcal{N}_{j_{1}, j_{2}, j_{3}}^{2}$$

$$(19)$$

Denote $\mathbf{h}_4(i_2, i_3) = \mathbf{h}_2(i_2) + \mathbf{h}_3(i_3)$. From **Case 3**:

$$\mathbb{P}[\mathbf{h}_4(i_2, i_3) = t] = \begin{cases} \frac{t+1}{J^2}, t \le J - 1\\ \frac{2J - 1 - t}{J^2}, t \ge J \end{cases}$$

Since $\mathbb{P}[\mathbf{h}_1(i_1) = t] = \frac{1}{J}$ for $t = 0, \dots, J - 1$, we have

$$\mathbb{P}[\mathbf{h}_1(i_1) + \mathbf{h}_2(i_2) + \mathbf{h}_3(i_3) = t] = \mathbb{P}[\mathbf{h}_1(i_1) + \mathbf{h}_4(i_2, i_3) = t]$$

$$= \begin{cases} \sum_{k=0}^{t} \mathbb{P}[\mathbf{h}_{4}(i_{2}, i_{3}) = k, \mathbf{h}_{1}(i_{1}) = t - k] = \frac{(t+1)(t+2)}{2J^{3}}, & t \leq J - 1 \\ \sum_{k=t-J+1}^{t} \mathbb{P}[\mathbf{h}_{4}(i_{2}, i_{3}) = k, \mathbf{h}_{1}(i_{1}) = t - k] = \frac{-2t^{2} + 6(J-1)t + 9J - 3J^{2} - 4}{2J^{3}}, & t \leq 2J - 2 \\ \sum_{k=t-J+1}^{J-1} \mathbb{P}[\mathbf{h}_{4}(i_{2}, i_{3}) = k, \mathbf{h}_{1}(i_{1}) = t - k] = \frac{(3J-1-t)(3J-2-t)}{2J^{3}}, & t \geq 2J - 1 \end{cases}$$

$$\mathbb{P}[\mathbf{h}_{1}(i_{1}) + \mathbf{h}_{2}(i_{2}) + \mathbf{h}_{3}(i_{3}) \% J = t] = \mathbb{P}[\mathbf{h}_{1}(i_{1}) + \mathbf{h}_{4}(i_{2}, i_{3}) \% J = t]$$

$$= \begin{cases} \sum_{k=0}^{2} \mathbb{P}[\mathbf{h}_{4}(i_{2}, i_{3}) + \mathbf{h}_{1}(i_{1}) = t + kJ] = \frac{1}{J}, & t \leq J - 3 \\ \sum_{k=0}^{1} \mathbb{P}[\mathbf{h}_{4}(i_{2}, i_{3}) + \mathbf{h}_{1}(i_{1}) = t + kJ] = \frac{1}{J}, & t \geq J - 2 \end{cases}$$

i.e. $\mathbb{P}[\mathbf{h}_1(i_1) + \mathbf{h}_2(i_2) + \mathbf{h}_3(i_3) \% J = t] = \frac{1}{I}$ for $t = 0, \dots, J - 1$. Hence we have

$$\mathbb{P}[\delta(\mathbf{h}_{1}(i_{1}) + \mathbf{h}_{2}(i_{2}) + \mathbf{h}_{3}(i_{3}), \mathbf{h}_{1}(j_{1}) + \mathbf{h}_{2}(j_{2}) + \mathbf{h}_{3}(j_{3}) \% J) = 1] = \frac{1}{J}(\frac{1}{J^{3}} + \frac{3}{J^{3}} + \frac{6}{J^{3}} + \dots + \frac{1+J}{2J^{2}})$$

$$= \frac{(J+1)(J+2)}{6J^{3}}$$

Hence

$$S_4 = {2 \choose 1} {2 \choose 1} {2 \choose 1} \frac{(J+1)(J+2)}{6J^3} \|\mathcal{M}\|_F^2 \|\mathcal{N}\|_F^2 = \frac{4(J+1)(J+2)}{3J^3} \|\mathcal{M}\|_F^2 \|\mathcal{N}\|_F^2.$$
 (20)

As a result, we have

$$\mathbb{E}_{\mathbf{h},\mathbf{s}}[\langle TS(\mathcal{M}), TS(\mathcal{N}) \rangle^{2}] = S_{1} + S_{2} + S_{3} + S_{4}$$

$$\leq \langle \mathcal{M}, \mathcal{N} \rangle^{2} + \frac{40J^{2} + 30J + 8}{3J^{3}} \|\mathcal{M}\|_{F}^{2} \|\mathcal{N}\|_{F}^{2}$$
(21)

Therefore

$$\mathbb{V}_{\mathbf{h},\mathbf{s}}[\langle \mathrm{TS}(\mathcal{M}), \mathrm{TS}(\mathcal{N}) \rangle] = \mathbb{E}_{\mathbf{h},\mathbf{s}}[\langle \mathrm{TS}(\mathcal{M}), \mathrm{TS}(\mathcal{N}) \rangle^{2}] - \mathbb{E}_{\mathbf{h},\mathbf{s}}[\langle \mathrm{TS}(\mathcal{M}), \mathrm{TS}(\mathcal{N}) \rangle]^{2} \\
\leq \frac{40J^{2} + 30J + 8}{3J^{3}} \|\mathcal{M}\|_{F}^{2} \|\mathcal{N}\|_{F}^{2}.$$
(22)

Clearly we have $\mathbb{V}_{\mathbf{h},\mathbf{s}}[\langle \mathrm{HCS}(\mathcal{M}), \mathrm{HCS}(\mathcal{N}) \rangle] < \mathbb{V}_{\mathbf{h},\mathbf{s}}[\langle \mathrm{TS}(\mathcal{M}), \mathrm{TS}(\mathcal{N}) \rangle]$, especially when the sketch dimension is small. The conclusion fits in FHCS

B. Proof for Corollary 1

(14) can be represented as $\mathbb{V}_{\mathbf{h},\mathbf{s}}[\langle \mathrm{HCS}(\mathcal{M}),\mathrm{HCS}(\mathcal{N})\rangle] = O(\frac{\|\mathcal{M}\|_F^2\|\mathcal{N}\|_F^2}{J})$. By substituting $\mathcal{M} = \mathcal{T}$, $\mathcal{N} = \mathbf{u} \circ \mathbf{u} \circ \mathbf{u}$, and $\mathcal{M} = \mathcal{T}$, $\mathcal{N} = \mathbf{e}_i \circ \mathbf{u} \circ \mathbf{u}$, respectively, from Chebychev's inequality we prove the corollary immediately since \mathbf{u} is unit vector and hence both $\mathbf{u} \circ \mathbf{u} \circ \mathbf{u}$ and $\mathbf{e}_i \circ \mathbf{u} \circ \mathbf{u}$ equals 1.