Maximum Cardinality Matching Maximum Weighted Matching Triangle Counting References

Massive Data Algorithmics

The Streaming Model

Lecture 18: Graph Streams

Maximum Cardinality Matching (MCM)

- \bullet The input graph G is a graph stream.
- Output: A matching with maximum number of edges.

Algorithm

- Initialization: $M \leftarrow \emptyset$
- Process (u,v): If $M \cup \{(u,v)\}$ is a matching, $M \leftarrow M \cup \{(u,v)\}$
- Output: |M|

- Let *t* be the output of the algorithm.
- Let M^* be the maximum matching and $t^* = |M^*|$.
- Each edge of M kills at most two edges of M* (preventing to be added to M).
- If $t < t^*/2$, There exists an unkilled edge in M^* that could have been added to M. So M is not maximal which is a contradiction.
- Therefore, $t^*/2 \le t \le t^*$

- **Definition:** A path whose edges are alternatively in M and not in M is called a augmenting path.
- Theorem: If there is no augmenting path, then the matching
 M is maximum.
- We can find a matching M such that $(1-\varepsilon)t^* \le t \le t^*$ using constant (depnding on ε) number of passes
 - Find a matching in the first pass, and in Passes $2,3,\cdots$ find a short augmenting path (depending on ε) and increase the size of the matching.

Maximum Weighted Matching (MWM)

- The input graph G is a graph stream.
- Output: A matching with the maximum total weight.

Algorithm

- Initialization: $M \leftarrow \emptyset$
- Process (u,v): If $M \cup \{(u,v)\}$ is a matching, $M \leftarrow M \cup \{(u,v)\}$. Eles let $C = \{$ edges of M confilicting with $(u,v)\}$. If $w(u,v) > (1+\alpha)w(C)$, then $M \leftarrow (M-C) \cup \{(u,v)\}$
- Output: w(M)

- An edge is born when it is added to M.
- An edge is died when it is remvoed from M. The edge whose inclusion resulted in its removel is called killer.
- An edge survives if it exists in the final M.
- We can associate a killing tree T to each survior edge where survivor is the root.
- If edge e kills edge e', e can be seen as the parent of e'.
- In each killing tree, each node has at most two children.
- Let S be the set of all survivor edges and let T(S) be all descendant of the roots of the killing trees.

- We claim that $w(T(S)) \le w(S)/\alpha$.
 - Consider one tree rooted at $e \in S$.
 - $w(\text{descendants at level } i) \leq w(\text{descendants at level } i-1)/(1+\alpha)$
 - Therefore, $w(\text{descendants at level } i) \leq w(e)/(1+\alpha)^i$
 - $w(\operatorname{descendant}) \leq w(e)(\frac{1}{1+\alpha} + \frac{1}{(1+\alpha)^2} + \cdots = w(e)/\alpha$
 - $w(T(S)) = \sum_{e \in S} w(\text{descendant of } e) \leq \sum_{e \in S} w(e)/\alpha = w(S)/\alpha$

- We claim that $w(M^*) \le (1+\alpha)(w(T(S))+2w(S))$.
 - Let e_1^*, e_2^*, \cdots be the edges in M^* in the stream order.
 - If e_i^* is born, charge $w(e_i^*)$ to e_i^* which is in $T(S) \cup S$.
 - If e_i^* is not born, this is because of 1 or 2 conflicting edges
 - One conflicting edge e: note $e \in S \cup T(S)$. Charge $w(e_i^*)$ to e (indeed we charge $w(e_i^*)$ to the common endpoint of e and e_i^*). Since e_i^* could not kill e, $w(e_i^*) \le (1+\alpha)w(e)$.
 - Two conflicting edges e_1 and e_2 : Note $e_1, e_2 \in S \cup T(S)$. Charge $w(e_i^*) \cdot \frac{w(e_j)}{w(e_1) + w(e_2)}$ to e_j for j = 1, 2 (agian we charge to the common endpoint of e_j and e_i^*). Since e_i^* could not kill $e_1, e_2, \ w(e_i^*) \le (1 + \alpha)(w(e_1) + w(e_2))$. As before, we maintain the property that weight charged to an edge $e \le (1 + \alpha)w(e)$.
 - If an edge e is killed by e', transfer charge assigned to the common endpoint of e and e' from e to e'.
 - To each edge of T(s), at most one charge remains (one is transferred to its parent) but each edge in S is charged twice.

Combining two claims

$$w(M^*)$$
 $\leq (1+\alpha)(w(S)/\alpha + 2w(S)) = (\frac{1}{\alpha} + 3 + 2\alpha)w(S)$

.

- Best choice for α minimizing the above expression is $\frac{1}{\sqrt{2}}$.
- This gives us:

$$\frac{w(M^*)}{3+2\sqrt{2}} \le w(M) \le w(M^*)$$

Problem
Known Results
The First Algorithm
Intiution and Analysis
The Second Algorithm
Intiution and Analysis

Triangle Counting

- \bullet The input graph G is a graph stream.
- Output: A estimation of the number of triangles

Some Known Results

- We can not multiplicatively approximate the number of triangles in $o(n^2)$ space.
- We can approximate the number of triangles us to some additive error.
- If we are given that the number of triangles $\geq t$, then we can multiplicatively approximate it.

Problem Known Results The First Algorithm Intiution and Analysis The Second Algorithm Intiution and Analysis

The First Algorithm

- Pick a random edge (u, v) u.a.r. from the stream.
- Pick a vertex w u.a.r. fom $V \{u, v\}$.
- If (u,w) and (v,w) appears after (u,v) in the stream, output m(n-2) else output 0.

Intiution and Analysis

- The expectation of the output is the number of triangles.
- Run several copies of the algorithms in parallel and take the average of of their output to be the answer.
- Using Chebyshev's inequality, from the variance bound, we get the space usage to be $O(\frac{1}{\varepsilon^2}\log\frac{1}{\delta}\cdot(\frac{mn}{t})^2)$

The Second Algorithm

- Produce from the actual token $\{u,v\}$, the virtual tokens $\{u,v,w_1\},\{u,v,w_1\},\cdots,\{u,v,w_{n-2}\}\ (w_i\in V-\{u,v\})$
- Let F_k be the k-th frequency moment of the virtual stream.

Intiution and Analysis

- Let $T_i = |\{\{u, v, w\} : u, v, w \text{ are distinict vertices and } \exists \text{ exactly } i \text{ edges among } \{u, v, w\}\}$
- We know $T_0 + T_1 + T_2 + T_3 = C_3^n$
- $F_2 = \sum_{u,v,w} (\text{number of occurrences of } \{u,v,w\} \text{ in the virtual stream})^2 = 1^2 \cdot T_1 + 2^2 \cdot T_2 + 3^2 \cdot T_3 = T_1 + 4T_2 + 9T_3$
- Similarly, $F_2 = T_1 + 2T_2 + 3T_3$. On the other hand, $F_1 = m(n-2)$, the length of the virtual stream.
- $F_0 = T_1 + T_2 + T_3$
- If we had estimates for F_0 , F_1 and F_2 , we could compute T_3 by solving the above equations.
- So, we need to compute two sketches of the virtual stream, one to estimate F_0 and the other to estimate F_2 .

Maximum Cardinality Matching Maximum Weighted Matching Triangle Counting References

References

Data Stream Algorithms (Chapter 14)
 Lecture notes by A. Chakrabbarti and D. College