

InSightHire

Revolutionizing Candidate Assessment: A Comprehensive Al-Driven System for Video Interviews, Emotion Analysis, and Content Evaluation

Name: Haneen Ahmed Qandil

ID: 220456

Supervisor: Prof. Andreas Pester

Major: Al

Project parts

Speech recognition

Recognizing emotions in spoken language.

Answer evaluation

Evaluating candidate answers for correctness.

Report generation

Automatically generating reports based on data.

Why build an end-to-end Al interview tool?

Problem Statement

Research Questions

Methodology: End-to-End Pipeline

Methodology: End-to-End Pipeline

Speech Emotion Recognition

SER Model Selection Trials — 16 Trials

Performance of Different Model Architectures

Enhancing SER Model with Diverse Datasets

Audio Feature Vector Transformation

Dropout Rates in Conv1D Blocks

Block 1

Initial dropout rate for regularization

Block 2

Increased dropout for enhanced regularization

Block 3

SER Performance: Accuracy & Confusion Matrix

Key Finding:	Minimal gap between val/test confirms that overfitting has been effectively solved through progressive dropout, batch normalization, and delayed early-stopping
Test Accuracy:	95.43 %
Validation Accuracy:	94.93 %
Train Accuracy:	99.98 % → near-perfect fit

Overall Metrics

Macro-averaged F ₁ :	0.96
Overfitting addressed:	Regularization and callbacks ensured robust generalization
Supports	reliable emotion classification in AI-driven interview evaluation pipelines

Comparing to L2 Regularized Conv1D

Candidate Answer Evaluation

HR & Technical Datasets Preprocessing

Rubric-Based Generation Cycle

Audio/Video Recording Workflow

Transcription with Whisper

Score Integration Based on Retrieval Outcome

Enhancing GPT-40 Evaluation by RAG

Grammar Evaluation Process

Grammar Evaluation Process

Human Evaluation Results

Participant Expectations for an Automated Interview System

Technical Interview Question Evaluation

HR Interview Question Evaluation

Overall Assessment of LLM Evaluation Quality

Ethical Concerns

Ethical Concerns

Key Concerns

- Privacy & Consent
 - Audio/transcripts = personal data → explicit opt-in & clear usage disclosures
- Bias & Fairness
 - Accent/demographic gaps → risk of unequal performance
- Transparency
 - Opaque LLM decisions → need for explainable scores

Planned Mitigations

- Privacy by Design
 - End-to-end encryption, strict ACLs, auto-delete policies
- Bias Monitoring
 - Regular subgroup audits, diverse data augmentation, debiasing methods
- Explainable Scoring
 - Publish rubrics & weights, per-criterion rationales, confidence intervals, human-in-the-loop overrides
- Governance & Compliance
 - GDPR/CCPA alignment, Ethics Board oversight, continuous policy updates

Conclusion

Critical Analysis & Literature Comparison

SER Model Performance

Our Conv1D Network

95.4 % accuracy (macro-F1 \approx 0.96) on four heterogeneous English corpora

Light augmentations + optimized dropout (0.3→0.5) solved overfitting and boosted "calm" recall to 98 %

Compared to Prior Work

Liu et al. [1] & Wani et al. [2]: reported 77–86 % on similar English datasets

Issa et al. [3]: 71.6 % (RAVDESS), 86.1 % (EMO-DB), 95.7 % (trimmed EMO-DB)

Limitations: small, acted German speech → poor realworld generalization

Answer-Evaluation Pipeline

Our Retrieval-Augmented Approach

Custom rubrics + FAISS anchors + fresh GPT-4o scoring

93 % technical & 90 % HR score agreement with human raters

96.8 % user adoption willingness

Compared to Static Rubric Methods

Traditional fixed rubrics lack adaptability to varied Q&A types

Our dynamic retrieval blending historical & fresh scores yields higher alignment and user trust

Conclusion: Research Questions Revisitation

- 1. **SER Effectiveness:** The final 1-D Conv consistently classifies unseen emotional speech with high accuracy, and optimized dropouts are shown to significantly improve generalization, especially on under-represented classes.
- 2. LLM-Driven Answer Evaluation: AI-generated rubric scores closely mirror expert human ratings on both technical and behavioral prompts, confirming that the retrieval-augmented, multi-pass evaluation reliably captures content correctness and nuance.
- 3. Overall System Acceptance: Integrating SER and LLM-based scoring into a unified pipeline substantially streamlines the interview review process—reducing evaluation effort and inter-rater variability—and most users report they would adopt the platform for both practice and formal screening.

References

[1] Z.-T. Liu, M.-T. Han, B.-H. Wu, and A. Rehman, "Speech emotion recognition based on convolutional neural network with attention-based bidirectional long short-term memory network and multi-task learning," *Applied Acoustics*, vol. 202, pp. 109178, Dec. 2022. [Online]. Available: https://doi.org/10.1016/j.apacoust.2022.109178.

[2] T. M. Wani, T. S. Gunawan, S. A. A. Qadri, M. Kartiwi, and E. Ambikairajah, "A comprehensive review of speech emotion recognition systems," *IEEE Access*, vol. 9, pp. 47795–47813, 2021. [Online]. Available: https://doi.org/10.1109/ACCESS.2021.3068045.

[3] D. Issa, M. F. Demirci, and A. Yazici, "Speech emotion recognition with deep convolutional neural networks," *Biomedical Signal Processing and Control*, vol. 59, 2020, pp. 101894. [Online]. Available: https://doi.org/10.1016/j.bspc.2020.101894.

Thank You!