PPT PRESENTATION

Enjoy your stylish business and campus life with BIZCAM

목차 Contents

- 1 MAML Network
 - . 1 Problem
 - .2 MAML Algorithm
 - .3 Experiment
 - .4 Conclusion
- **2** UWB
 - . 1 Additional Experiments
 - .2 SCI List
- 3 SEM

MAML Network-Problem

- Meta-Learning은 다른 Task를 위해 학습된 AI 모델을 이용해서, 적은 Dataset을 가지는 다른 Task도 잘 수행할 수 있도록 학습시키는 방식
- Meta Learning은 크게 Model-based model, Metric-based Approach와 Optimization-based Approach 존재
- Metric-based는 저차원의 공간에 새로 들어온 데이터를 Mapping시키고, 저차원에서 '데이터 간의 거리'가 가까운 방향으로 새로운 Task의 Dataset을 Classification하는 방식(대표 : Siamese Network)
- Model-based model는 적은 수의 학습 단계로도 모델의 파라미터를 효율적으로 학습할 수 있는 방식(대표 : MANN(Memory-Augmented Neural Networks))
- Optimization-based Approach는 적은 수의 샘플에 대한 최적화 기법
- $D_{meta-train}$ 를 이용하여 효율적인 update 방법(θ)을 배워 새로운 데이터 D가 들어오면 빠른 학습(adaptation)이 가능
- Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 은 모델에 구속 받지 않는 Meta-Learning을 이용한 학습이며, 새로운 task에 빠르게 적용하기 위한 Gradient 기반의 모델 이다.

MAML Network-Problem

- 적은 데이터
 - ✓ N-way, K shot
 - Class 개수: N 개
 - Example 개수: k 개

2-way 1 shot classification

- Train data는 총 n * k 개의 (이미지, 라벨)로 이루어져 있음
- Test data는 크기는 상관이 없으며 test의 label은 학습에 사용하지 않음

MAML Network-Problem

■ **D**meta-train는 train data와 비슷한 Task를 할 수 있는 다양한 데이터셋들로 이루어져 있음

$$D_{meta-train} = (D_1, D_2, D_3, \dots)$$

- 기존 : Train-set 학습 → Test-set 평가 / 변경 : Meta-train dataset 학습 -> Meta-test dataset 학습+평가
- 메타 러닝 학습 (Meta-train set 이용) → Adaptation 학습 (Support set 이용) → Test-set 평가 (Query set 이용)
- 즉, 우리는 위와 같이 적게 주어지는 Support set으로부터 Query set의 label을 올바르게 예측하기 위해서 Meta-train dataset을 활용해 사전 학습을 진행

■ Optimization-based Approach : $D_{meta-train}$ 를 이용하여 효율적인 update 방법(θ)을 배워 새로운 데이터 D가 들어오면 빠른 학습(adaptation)이 가능

■ IDEA : 1) $\mathsf{D}_{\mathsf{meta-train}}$ 을 이용하여 θ 를 구하고 2) 새로운 D 와 θ 를 이용하여 새로운 Task 의 \emptyset (wieght)를 빠르게 구함

■ HOW : $\theta = \emptyset$ 의 weight initialization으로 정의 Adaptation : $\emptyset_i \leftarrow \theta - \alpha \nabla_{\theta} L(\theta, D_i^{tr})$

Meta-learning: $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum L(\emptyset_i, D_i^{test})$

■ 해당 방식은 각 Task 마다 최적의 Parameter φi 가 다르다는 Assumption부터 시작하기 때문에, 기존에 학습된 모델의 Parameter φ와 새로운 Dataset의 특성 사이의 Correlation에 대한 새로운 Parameter θ를 찾는 과정을 통해, θ에서 새로 들어온 Task의 φ를 찾는 순서로 진행

- $\emptyset_i \leftarrow \theta \alpha \nabla_{\theta} L(\theta, D_i^{tr})$
 - Θ를 φ의 weight initialization으로 사용
 - D_i^{tr} 의 양이 적기 때문에 적은 update 만으로 $\Theta \rightarrow \phi$
- $\theta \leftarrow \theta \beta \nabla_{\theta} \sum L(\emptyset_i, D_i^{test})$
 - L(⊘_i, D^{test})가 최소인 경우는 L(⊘_i*, D^{test})
 - 즉, Ø_i = Ø_i* 가 되는 방향으로 Θ 업데이트

■ Θ_i 적은 update 만으로 \emptyset_i^* 를 구할 수 있는 Θ_i 를 찾을 수 있다

1. D_i 를 D_i^{train} , D_i^{test} 로 분할

2. Θ 와 D_i^{train} 을 이용하여, ϕ_l 를 구함(모델 학습)

3. Θ 와 D_i^{test} 을 이용하여, Θ update (Regression인 경우에는 Mean Square Error (MSE), Classification의 경우 Cross Entropy)

$$\begin{split} \theta^* &= \arg\min_{\theta} \sum_{\tau_i \sim p(\tau)} \mathcal{L}_{\tau_i}^{(1)}(f_{\theta_i'}) = \arg\min_{\theta} \sum_{\tau_i \sim p(\tau)} \mathcal{L}_{\tau_i}^{(1)}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\tau_i}^{(0)}(f_{\theta})}) \\ \theta &\leftarrow \theta - \beta \nabla_{\theta} \sum_{t} \mathcal{L}_{\tau_i}^{(1)}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\tau_i}^{(0)}(f_{\theta})}) \end{split} ; \text{updating rule}$$

4. Θ를 이용하여 새로운 Task에 빠르게 학습 진행

ex)5-way, 1-shot classification

New data : Dnew train, Dnew test

optimize
$$\emptyset_{new} \leftarrow \theta - \alpha \nabla_{\theta} L(\theta, D_{train}^{new})$$

$$\hat{y} = f_{\emptyset_{new}}(\mathbf{x_{test}})$$

MAML Network - Experiments

- Omniglot dataset 사용
 - ✓ 50개의 다른 언어로 된 1623개의 글자 존재
 - ✓ 글자 별 샘플은 각각 20개
 - ✓ 50개의 언어 중 40의 언어를 alphabet background set, 10개의 언어를 alphabet evaluation set으로 나눔
 - ✓ background set은 hyperparameter를 학습해 model을 develop하는 데 쓰인다.
 - ✓ valuation set은 one-shot classification performance를 평가하는 데에만 쓰인다

MAML Network - Experiments

- 실험은 Match network 구조를 그대로 사용
- Match network: attention mechanism을 통해서 4개의 support set과 1개의 batch set과의 similarity를 구하고 argmax를 취해 가장 similarity가 높은 클래스를 batch image의 label로 주는 것
- Meta-train: 1200 characters, test: 423 characters
- 다른 모델과 비교해서 준수한 성능을 보임
- 저자는 이 작업이 모든 문제 및 모든 모델에 적용할 수 있는 간단하고 일반적인 meta-learning 기술을 향한 한 걸음 이라 평가

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	_	-
MAML, no conv (ours)	$89.7 \pm 1.1\%$	$97.5 \pm 0.6\%$	_	-
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$

Figure 1: Matching Networks architecture

MAML Network-Conclusion

- 몇 회만의 update 만으로 target task 에서 높은 정확도를 낼 수 있었다. (fast adaptation)
- Gradient descent만 사용하기 때문에 간단하고, 원래 모델의 구조를 공유하기 때문에 추가적인 모델링 과정이 필요 없음
- 개념적으로 어렵지 않고, Model-Agnostic하다는 장점 때문에 많은 Meta-Learning 논문의 뼈대로 주로 사용
- 하지만, Meta-Learning에서 말하는 '비슷한 Task'가 어느 정도로 비슷해야 하는지, Gradient Descent는 몇번으로 해야하는지, Few shot이라는게 몇 개정도의 Sample을 의미하는지 등 논문에 애매한 부분 존재
- 추후 연구된 방법을 통해 좀 더 뼈대보다 실용적이고 활용적인 방법을 추가로 공부해야겠다.

UWB-Additional Experiments

- 1. 이미지 채널 3개-4개-5개-6개 일 때 성능 비교
 - 기존 방식은 교점을 구하는 방식이라 3개의 쌍곡선 방정식만 있으면 된다.
 - 그 이상 존재할 경우 resource만 소비하고 무의미한 연산 계속 진행
 - 하지만 이러한 추정의 경우 힌트가 많으면 더욱 좋은 성능을 보일 가능성 높음
 - 이미지 채널의 개수에 따라 어떠한 변화를 보이는지 추가 실험!
- 2. TDOA는 다 같고 채널 순서를 서로 섞어서 했을 때 같은 값을 예측을 하는지 검정
 - 해당 방식은 새로운 추정 방식
 - 기준 앵커는 사용자가 임의로 지정
 - 기준 앵커를 뭐로 하느냐에 따라 결과값이 바뀌면 안됨
 - 이러한 방식을 통해 이미지로 변환하는 과정이 기존에 쌍곡선 방정식을 통해 해를 구하는 방식과 동일하다는 것을 증명하는 추가 실험!

UWB-SCI list

ACM TRANSACTIONS ON SENSOR NETWORKS	1550-4859
AD HOC NETWORKS	1570-8705
AD HOC & SENSOR WIRELESS NETWORKS	1551-9899
ANNALS OF TELECOMMUNICATIONS	0003-4347
COMPUTER COMMUNICATIONS	0140-3664
ETRI JOURNAL	1225-6463
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING	1687-1472
ICT EXPRESS	2405-9595
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS	1536-1225
IEEE INTERNET OF THINGS JOURNAL	2327-4662
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS	0733-8716
IEEE NETWORK	0890-8044
IEEE PERVASIVE COMPUTING	1536-1268
IEEE SYSTEMS JOURNAL	1932-8184
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS	0018-9251
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION	0018-926X
IEEE TRANSACTIONS ON BROADCASTING	0018-9316
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING	2332-7731
IEEE TRANSACTIONS ON COMMUNICATIONS	0090-6778
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS	0098-3063
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY	0018-9375
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING	2168-6750
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING	2473-2400
IEEE TRANSACTIONS ON MOBILE COMPUTING	1536-1233
IEEE TRANSACTIONS ON MULTIMEDIA	1520-9210
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS	2373-776X
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING	2377-3782
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY	0018-9545
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS	1536-1276
IEEE VEHICULAR TECHNOLOGY MAGAZINE	1556-6072
IEEE WIRELESS COMMUNICATIONS	1536-1284
IEEE WIRELESS COMMUNICATIONS LETTERS	2162-2337
IEICE TRANSACTIONS ON COMMUNICATIONS	0916-8516
IETE JOURNAL OF RESEARCH	0377-2063
IET RADAR SONAR AND NAVIGATION	1751-8784
INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING	1743-8225
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS	1074-5351

IEEE SYSTEMS JOURNAL	1932-8184
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS	0018-9251
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION	0018-926X
IEEE TRANSACTIONS ON BROADCASTING	0018-9316
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING	2332-7731
IEEE TRANSACTIONS ON COMMUNICATIONS	0090-6778
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS	0098-3063
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY	0018-9375
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING	2168-6750
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING	2473-2400
IEEE TRANSACTIONS ON MOBILE COMPUTING	1536-1233
IEEE TRANSACTIONS ON MULTIMEDIA	1520-9210
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS	2373-776X
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING	2377-3782
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY	0018-9545
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS	1536-1276
IEEE VEHICULAR TECHNOLOGY MAGAZINE	1556-6072
IEEE WIRELESS COMMUNICATIONS	1536-1284
IEEE WIRELESS COMMUNICATIONS LETTERS	2162-2337
EICE TRANSACTIONS ON COMMUNICATIONS	0916-8516
IETE JOURNAL OF RESEARCH	0377-2063
IET RADAR SONAR AND NAVIGATION	1751-8784
INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING	1743-8225
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS	1074-5351
INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS	1550-1477
INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES	1759-0787
INTERNATIONAL JOURNAL OF SENSOR NETWORKS	1748-1279
IT PROFESSIONAL	1520-9202
JOURNAL OF COMMUNICATIONS AND NETWORKS	1229-2370
JOURNAL OF INTERNET TECHNOLOGY	1607-9264
MOBILE INFORMATION SYSTEMS	1574-017X
PERVASIVE AND MOBILE COMPUTING	1574-1192
PHYSICAL COMMUNICATION	1874-4907
SECURITY AND COMMUNICATION NETWORKS	1939-0114
WIRELESS COMMUNICATIONS & MOBILE COMPUTING	1530-8669
WIRELESS NETWORKS	1022-0038
WIRELESS PERSONAL COMMUNICATIONS	0929-6212

SCI 제외 총 26개 후보군 / 해당 후보군은 2개 이상의 UWB tracking 논문 & 3개 이상의다른 UWB 관련 논문이 있는 통신 관련 저널들!

SEM

채널 수 : [64,128,256,512]

Output_activation = None

Activation = Leaky Relu

backnone_: imagenet_Resnet, Freeze

Loss = MSE

Optimizer: Adam

Epoch = 100

SEM

• 제출 결과 base code 보다 안좋았고 오차의 패턴이 안보였다