ONKYO: SERVICE MANUAL

COMPACT DISC PLAYER **MODEL DX-6990**

Black model

Y-RELATED COMPONENT WARNING!!

ENTS IDENTIFIED BY MARK \triangle ON THE TIC DIAGRAM AND IN THE PARTS LIST ARE L FOR RISK OF FIRE AND ELECTRIC SHOCK. **3 THESE COMPONENTS WITH ONKYO PARTS** ART NUMBERS APPEAR AS SHOWN IN THIS

EAKAGE-CURRENT OR RESISTANCE MEA-NTS TO DETERMINE THAT EXPOSED PARTS CEPTABLY INSULATED FROM THE SUPPLY BEFORE RETURNING THE APPLIANCE TO TOMER.

SPECIFICATIONS

Signal readout system:

Reading rotation:

Optical non-contact About 500~200 r.p.m.

(constant linear velocity)

Linear velocity: 1.2~1.4m/s

Error correction system: Cross interleave readsolomon code

Decoded bits: 18 bits linear

Sampling frequency: 352.8kHz (8 times oversampling)

Number of channels: 2 (stereo) Frequency response: 2Hz~20kHz Total harmonic distortion: 0.0015% (at 1kHz)

Dynamic range:

103dB

Signal to noise ratio:

110dB

Channel separation:

103dB (at 1kHz)

Wow and Flutter:

Below threshold of measurability

Power comsumption:

24 watts

Output level.

2 volts r.m.s.

Dimensions (W x H x D): 477 x 142 x 427mm

18-3/4" x 5-9/16" x 16-13/16"

Weight:

27kg, 59.5 lbs.

Specifications are subject to change without notice.

E OF CONTENTS

cedures	2
ervicing	4
	•
ing labels	4
ompact disc	5
ing procedures	6
riptions	8
agram and descriptions	14
procedures	23
exploded view	27
loded view	30
uit board view	33
reta liat	35
ırts list	
liagram	40
of each section	45
oting guide	47
am	49
w	50

CE PROCEDURES

Release the Transport Lock

ect the optical assembly including the laser from vibration related damage during ships unit is equipped with a transport lock lever on the base.

en the screws with a Phillips screwdriver.

the lock lever in the direction of the arrow as it will go.

en the screw to secure the lock lever.

or shipping, restore the lock lever to its posion in the opposite direction from the arrow, en tighten down the screw to secure the lock ver in that position.

res for replacement of flat packaged ICs to be used:

lering iron Grounded soldering iron or soldering iron with leak resistance of 10 Mohms or more.

of soldering iron's tip:

Fig. 2

ifying glass . . . for checking finished works

zers for handling of IC forming of leads

(4) Grounding ring Countermeasure for electrostatic breakdown

(5) Nipper for removing defective IC

(6) Small brush for application of flux

(7) Enamel line

2. Work Procedures:

(1) Remove the defective IC

Cut all leads of the defective IC one by one using a nipper and remove the IC.

- 1. An enamel line has been pierced between the legs of the flat package IC.
- 2. Use a soldering iron to unsolder the legs one at a time.
- 3. Repeat the procedure of 1 and 2 above for the 3 sides only.

While holding the soldering against the enamel line, pull in the direction of the arrow.

(2) Clean the pattern surface of the PC board.

Get rid of the remaining leads and solder.

(3) Check and from the leads of the new flat packaged IC to be installed.

From every lead on the new IC using a pair of tweezers, so that all of them are aligned neatly without being risen, twisted or inclined toward one side. Especially the rising portion of every lead must be formed with greatest care.

Fig. 4

(4) Apply flux to the PC board.

Apply flux to the pattern surface of the PC board which has been cleaned, as shown in the illustration. The area to be applied with flux is the portion of about 2.5mm in width where the IC's leads are to be soldered.

Be careful to apply minimum amount of flux required so as not to smear it on unwanted areas.

Fia. 5

efully align the pattern and IC's leads, so that IC will be temporarily tightened to the pattern the four leads at the corners. At this time, solng is required, but no need to apply soldering erial.

ply flux to IC's leads

ply flux to the areas of IC's leads where soldering o be performed. Be careful not to smear flux on root portion of any lead or the body of IC.

While attaching the tip of the soldering iron to the soldering point as shown in the illustration, feed 2 –5mm of soldering wire. Then, slowly move the iron in the direction indicated by the arrow in the illustration, so that the leads will be soldered to the pattern. Move the iron in the rate of approximately 1cm in 5sec. Proceed with your work while confirming a clean fillet of solder is formed on each lead, subsequent to the melting of flux.

CAUTION

- 1) If you move the iron too quickly, loose soldering is likely to result.
- 2) Be especially careful when soldering the first lead where loose soldering is most liable to be formed.
- (8) Check the results

When soldering of all leads is finished, check the soldered portion on every lead with a magnifying glass. A tester must not be used or checking of any soldered position

ITION ON REPLACEMENT OF PICK-UP

er diode in the optical pick-up block is so sensitive c electricity, surge current and etc. that the com-; are liable to be broken down or its reliability ably deteriorated. During repair, carefulley take the following precautions. (The following precautions are included in the service parts).

AUTIONS

ound for the work-desk.

ace a conductive sheet such as a sheet of copper ith impedance lower than $10^6 \,\Omega$) on the worksk and place the set on the conductive sheet so at the chassis.

ounding for the test equipment and tools.

st equipments and toolings should be grounded order that their ground level is the same the ound of the power source.

3. Grounding for the human body.

Be sure to put on a wrist-strap for grounding whose other end is grounded.

Be particularly careful when the workers wear synthetic fiber clothes, or air is dry.

- 4. Select a soldering iron that permits no leakage and have the tip of the iron well-grounded.
- 5. Do not check the laser diode terminals with the probe of a circuit tester or oscilloscope.

UTION OF ETES FROM LASER DEAM DURING SERVICING

ploys a laser. Therefore, be sure to follow instructions below when servicing.

WARNING!!

ICING, DO NOT APPROACH THE LASER THE EYE TOO CLOSELY. IN CASE IT IS TO CONFIRM LASER BEAM EMMISION, OBSERVE FROM A DISTANCE OF MORE FROM THE SURFACE OF THE OBJECTIVE E OPTICAL PICK-UP BLOCK.

Laser Diode Properties

Material: GaAS/GaAlAsWavelength: 780nm

Emission Duration: continuous
Laser output: max. 0.5mW*

*This output is the value measured at a distance about 1.8mm from the objective lens surface on the Optical Pick-up Block.

WARNING LABEL

vn below are affixed.

el (Other models)

ocated on the back panel.

ADVARSEL

Denne mærkning er anbragt på apparatets højre side og indikerer, at apparatet arbejder med laserstråler af klasse 1, hvilket betyder, at der anvendes laserstråler af svageste klasse, og at man ikke på apparatets yderside kan blive udsat for utilladelig kraftig stråling.

APPARATET BØR KUN ÅBNES AF FAGFOLK MED SÆRLIGT KENDSKAB TIL APPARATER MED LASERSTRÅLER!

Indvendigt i apparatet er anbragt den her gengivne advarselsmærkning, som advarer imod at foretage sådanne indgreb i apparatet, at man kan komme til at udsætte sig for laserstråling.

VAROITUS! Laite sisältää laserdiodin, joka lähettää (näkymätöntä) silmille vaarallista lasersäteilyä.

ON COMPACT DISC

Compact Discs

pact Discs by the edges so that you do not touch e of disc. Remember that the side of the disc with ow" reflection is the side containing the audio on.

tach tape or paper to the label side of the disc s be careful not to leave fingerprints on the side

Compact Discs

npact Discs in a location protected from direct high heat and humidity and extremely high emperatures. Discs should never be left in the interior of an automobile in the sun since the re can become very high in such a closed environ-

ore Compact Discs in the holders in which they Never leave a disc in the player's disc holder for

• Cleaning Compact Discs

Before playing a disc wipe off the playing surface with a soft cloth to remove dust and other soil. Wipe the surface in straight lines from the center of the disc outward, not in a circular motion as you would with a phonograph record.

Do not use benzene, chemical cleansers or phonograph record cleaning solutions to clean Compact Discs. Also avoid static electricity prevention solutions since they can damage the surface of Compact Discs.

Problems Caused by Dew

Dew can form inside a Compact player when it is brought from a cold environment into a warm room, when a room is rapidly heated and if a player is left in a humid environment.

This dew can prevent the laser pickup from reading the data contained in the pits in the disc surface. If the player does not operate properly because of dew, remove the disc and leave the player's power switch on for about one hour to remove all moisture.

OLINDLIAM I ILOULDUILE

el removal

the four screws holding the side panels and side brackets. the four screws holding the top panel F (A302:Front side) and side brackets. the three screws holding the top panel B (A301:Back side) and back panel.

ircuit pc board ass'y removal (NAAF-3166-3)

the top covers F and B.

the four screws holding holder lid (A012) and Analog pcb ass'y.

ect the five fiber cables on the Analog pcb ass'y.

the two screws holding back panel and shielded plate (A008) on the Output terminal pcb ass'y. (NAAF-3167-2) the shielded plate (A026) on the mechanism CD. (Two screws)

ect the three sockets (JL212, JL502 and P542) on the Analog pcb ass'y.

the bracket PC (A011). (Two screws)

the bracket B (A014). (Two screws)

the analog circuit pcb ass'y.

N:Put the analog pcb on the insulated sheet.

ircuit pc board ass'y removal

the analog circuit pcb ass'y. the shielded plate (A015). (Two screws) the digital circuit pc board ass'y. (Four screws)

z diagram of loading section

he stringing from 1 to 5.

lley removal

edisc table in the closed position and no disc loaded, manually lift the chucking arm. the disc pulley by inserting a screwdriver under the small tab.

Remove from the small tab.

moving the loading section of the mechanism drive unit can be removed by unscrewing the tews which float the chassis assembly.

Take care not to expose the unit to static electricity when changing the chassis assembly. (See cautions regarding handling of the laser pickup.)

Note 2:	the tensions of the three spring on which the
	assembly rests are different, so take care not to
	mix them up.

Note 3: The drive unit (BU-1) is treated as a single assembly. Consequently, parts such as the RF circuit board cannot be replaced singly.

Spring	Colour
B S	Black White
G	Silver

ıg arm height

lisc loaded and the disc tray closed, adjust the of the portion marked "A" in the figure below 1. After adjusting, perform the loading operatumes to confirm that the arm and the cap ouch.

servo circuit

optical pickup objective lens, the emitted laser cused on the disc reflecting surface, an this rols the movement of the lens up and down.

letecting circuit

s detected by means of the astigmatic aberration d obtains its focus error signal from the optical out signal (A+C)-(B+D).

ual signals (A+C) and (B+D) input to pins 7 and are subtracted by means of the IC internal op rom pin 19, the F.E. signal is output. Also, in liminate the focus error, offset adjustment is by the semi-fixed resistor RV101of pin 18 of

correction and driver circuit

of the semi-fixed resistor R203, the gain adjusted passes by way of the phase correction circuit 3 of Q201, and from pin 5 of Q201 to the driver is feedback to the coil used for driving the tup objective lens. In addition, there are the FS N/OFF switch and FS3 phase characteristic tch.

zero cross circuit and focus search circuit

have mandatory drive of the objective lens in ; range of only $10\mu m$ at the focus point it is 2 turn off the above mentioned FS4 and close oop. The timing diagram for that operation is g. 2.

lar wave generated by means of the focus search mal to Q201 shifts the objective lens up/down nd at the correct focus point, the fall of F.E. tected by the focus zero cross (FZC) circuit to two loop. At this time, it is necessary that the FOK) signal be in the high level. In Fig. 2, the is the waveform of the focus capture failure.

Fig. 1 Focus servo circuit

Fig. 2 Capture operation of focus

Focus signal
Upper P201
Lower F0(TP)
Vertical:0.2V/div.
Holizontal:5ms/div.

Fig. 3 Tracking servo circuit

cking servo circuit

disc at a pitch of $1.6\mu m$, the laser beam accurately he center of the pits cut into the disc, and this is the circuit that shifts the objective lens in the radial m.

or detection circuit

3 is obtained from the tracking error (T.E.) signal by of a 3 beam method. The F.E. signal input to pins 10 of IC101 is subtracted internally, and is output as signal from pin 20. RV102 is the semi-fixed control for tracking offset.

ase correction and driver circuit

E. signal adjusted for gain by means of the semi-fixed R204 passes through the phase correction circuit in 45 of Q201, and from pin 11 by way of driver bjective lens. TM1 and TM7 are used as the tracking N/OFF switches, and TG1 and TG2 respectively are the phase selector and gain selector switches.

2-3. Tracking zero cross and track kick circuit

At the time the head comes out and when there is manual fast forward, in the event that is it necessary to skip over the track being traced, the T.E. signal receives a kick pulse, and by means of this, shifting of the objective lens can be achieved.

TM3 and TM4 respectively are the switches for providing the forward and reverse direction kick pulses. Also, the tracking zero cross (TZC) circuit counts the number of tracks skipped over and produces the signal in order to determine the timing of the servo ON/OFF.

The ON/OFF command for these switches is output from the microprocessor.

Tracking signal
Upper P201
Lower tr (TP)
Vertical: 1 V/div.
Holizontal: 5ms/div.

parator threshold value, the EFM signal low onent ASY (asymmetry) is input from pin 26, s achieved by this means.

uit, FOK circuit, and DFCT circuit

isignal is processed the detection, shaping, etc, the MIR, FOK, and DFCT signals are output, 28, and 21.

nirror) signal

ad is extended, at the time the signal becomes lisc track and between tracks, the number of unted, and this is used for determining the e ON/OFF of the servo.

ocus OK) signal

pes high at the time the focus servo is required.
3)

(defect) signal

lefect (scratch, dirt, etc.) in the disc, this signal e servo and gain are controlled, and the circuit und outburst.

70 circuit

act disc there is a CLV system (constant linear l at the replay position, because the disc rotary the clock is taken out of the HF signal, and cuit and its clock must be synchronized to sindle motor.

EFM output signal Vertical:1V/div. Holizontal:5ms/div. Insert the resistor 2.2kohm between probe of oscilloscope and test point.

Fig. 5 PLL circuit

i VCO are each built into Q201. The semi-fixed R228 is the control for adjusting the 4.3225 MHz frequency (WFCK = 7.35 KHz).

comparator (MDS) from pins 3 and 4 of Q213 is fed to pins 34 and 36 of Q201. Also, the spindle motor ON/OFF signal (MON) from pin 2 of Q213, and the phase selector signal (FSW) from pin 1, are output and fed to pin 36 of Q201. After these signals are processed in Q201, they are passed from pin 39 through the driver IC151, and are supplied to the spindle motor.

Fig. 7 slide motor circuit

motor circuit

cuit controls the slide motor which is used for the optical pickup from inside the disc to the In the normal playback time, the low region ent of the tracking driver output is amplified and ne motor, but when the head is extended, switches I TM6 internal to Q201 control the ON/OFF.

Il signal processor output signal (Q213) and ol signals are input into a digital filter lere they undergo 8-times oversampling and it at an 8-times higher rate. These signals 1gh the interface circuitry (Q303 - Q305) by are converted into signals to drive the C unit.

Fig. 8 Digital filter and interface circuit

Fig. 9 Opto. transfer circuit drive circuit

Voltage (V) A B C Emphasis ON 0 1.3 3.7 Emphasis OFF 1.0 2 4.3

Table 1

imposes the

itry illustrated in Fig. 9 superimposes the al on the emphasis signal and drives the opitry. WCO is a repeating 352.8kHz signal. is a "high" or "low" DC signal. When s high (emphasis on), Q309 is conductive lias of Q308 is determined by division of R313. On the other hand, if EMPHA is hasis off), Q309 is non-conductive, so the l308 is determined by division of R313, R314. The WCO signal is blocked by C310 in order to prevent it from changing the voltage changes which occur during emphaon are illustrated in Table 1.

ta transfer transmitter drive

mposed WCO and EMPHA signals are trans-1 an optical fiber cable and received by 2 are they are converted into an electrical 2 WCO signal is input into Q402 pin 1. R414 3 resistance. After being amplified by Q402, 3 it from pin 5. Next, after passing through 3 shaping circuit Q407, it is used as the D/A 3 word clock signal.

um operation point varies due to inconsisthe sensitivity of the optical transmitter or outputs (D302 and D402).

semi-fixed resistor R411 is provided for

Fig. 10 Optical data transfer receiver preamplifier circuitry

onsisting of C405 and R416. Only the DC signal is are input into Q406 pin 5. R415 is the load rest. The emphasis on and off center voltages are set mi-fixed resistor R418.

ul-parallel interface

data signal, after demodulation in the optical rer preamplifier, is converted into a parallel signal e interface circuitry illustrated in Fig. 11.

converted signal is then input into the parallel-t 18-bit D/A converter.

18 data bits (DAL) are assigned to the registers 19, Q411 and Q413) using the 18-bit bit clock 1. The 19th bit of the bit clock signal activates word clock (WCO) and the values of each of the ters are output. This output is held until the next its of data are collected.

erence)

sine wave is input (track 2 on test disc YEDS 18), B1 (MSB) waveform will be a short wave with a ratio of 50%.

erence) 8-times oversampling

n 8-times oversampling digital filter, the data is oled at 8-times the usual sampling frequency. At normal 44.1kHz sampling rate, noise elements are rated at a frequency 20kHz below the sampling 1ency, or 24.1kHz. In order to prevent this noise passing through the analog filter, a very steep dB/oct.) filter must be used. A steep filter of sort has a deleterious effect on the playback d. The 8 times oversampling digital filter raises sampling frequency to 352.8kHz. This, in turn, s the frequency at which noise begins to 332.8 so an analog filter with a more gentle attenuaslope (18dB/oct.) can be used. The adverse efon the playback sound typical of steep filters eliminated. Waveforms following D/A conversion te conventional sampling frequency and with 8s oversampling are given in Figs. 12 and 13.

Fig. 12 Waveform following D/A conversion at conventional sampling frequency (Fs= 44.1kHz)

Fig. 13 Waveform following D/A conversion with 8-times oversampling (Fs = 352.8kHz)

Fig. 14 and 15 show the difference between the waveforms in Figs. 12 and 13 above on the frequency spectrum.

Fig. 14 Fs = 44.1kHz

Fig. 15 Fs = 352.8kHz

JUN DIAGRAM AND DESURE HUNS

11081M (RF Amp)

ıbol	Function	Pin No.	Symbol	Function
FI	Input terminal of output signal of RF summing amplifier via the coupling capacitor	16	CC1	Defect bottom hold output terminal
₹O	Output terminal of RF summing amplifier	17	VEE	Negative power supply terminal
7_	Input terminal of RF summing amplifier feedback	18	FE BIAS	Non-inversion bias terminal of focus error amplifier CMR adjustment of focus error amplifier
N	Switching terminal of P-SUB/N-SUB of LD (laser diode)	19	FE	Output terminal of focus error amplifier
D	Output terminal of APC LD amplifier	20	TE	Output terminal of tracking error amplifier
2	Input terminal of APC PD (Pin diode) amplifier	21	DEFECT	Output terminal of defect comparator
)1	Inversion input terminal of RF I-V amplifier (1) Connect to A+C of PIN diodes.	22	MIRR	Output terminal of mirror comparator
12	Inversion input terminal of RF I-V amplifier (2) Connect to B+D of PIN diodes.	23	CP	Connection terminal of capacitor for mirror hold Non-inversion input of mirror comparator
С	Connect to GND.	24	СВ	Connection terminal of capacitor for defect bottom hold
,	Inversion input terminal of F I-V amplifier Connect to F of PIN diode.	25	DGND	Connect to GND
;	Inversion input terminal of E I-V amplifier Connect to E of PIN diode.	26	ASY	Auto asymmetry control input terminal
3	Output terminal of E I-V amplifier	27	EFM	Output terminal of EFM comparator
1	Feedback input terminal of E I-V amplifier Gain adjustment of E I-V amplifier	28	FOK	Output terminal of FOK comparator
3	DC voltage output terminal of (Vcc + VEE)/2	29	LD ON	ON/OFF switching terminal of laser diode
2	Input terminal from defect bottom hold output signal via the coupling capacitor	30	Vcc	Positive power supply

Symbol	Function	Pin No.	Symbol	Function
FGD	Insert the capacitor between this terminal and pin 3 when drop the high frequency gain of	28	PDI	Input terminal of phase comparator output PDO
FGD	focus servo	21 22	DIRCT XRST	
FS3	Switching terminal of high frequency gain of focus servo	23 24 25	DATA XTL CLK	Input terminals for microcomputer and interface
FLB	Time constant switching terminal when raise the low frequency gain of focus servo	33	LOCK	
FEO	Operation amplifier output terminals for power	29	ISET	Flow the current to decide the focus search, track jump, and kick height
TAO SLO SPDLO	transistor drive	30	VCOP	VCO free run frequency is proportion to resistor value between pins 30 and 31
FE-	Inversion input terminal of focus amplifier	32	C864	VCO (8.64MHz) output terminal
SRCH	Time constant terminal to make the focus search waveform	34	MDP	Connection terminal to terminal MDP of CXD1125QZ
TGU	Time constant terminal for high frequency gain switching of tracking	35	MON	Connection terminal to terminal MON of CXD1125QZ
TG2	Time constant terminal for high frequency gain switching of tracking	36	FSW	LPF time constant terminal of CLV servo error signal
TA-	Inversion input terminal of tracking amplifier	38	SPDL-	Inversion input terminal of spindle drive amplifier
SL+	Non-inversion input terminal of sled amplifier	40	WDCK	атрите
SL-	Inversion input terminal of sled amplifier	41	FOK MIRR	Input terminals for microcomputer and interface
SSTOP	Limit switch ON/OFF detector signal terminal for disc innermost position detector	44	DFCT	
	Terminal of peak of phase compensation of focus	45	TE	Tracking error signal input terminal
FSET	tracking and of setting of LPF	46	TZC	Tracking zero cross comparator input terminal
SENS C.OUT	Output terminals for microcomputer and interface	47	ATSC	Window comparator input terminal for ATSC detection
BW	Time constant terminal of loop filter	48	FE	Focus error signal input terminal

74P (D Flip-flop with preset)

74HC02 (NOR gates)

Symbol	Function	Pin No.	Symbol	Function
FSW	Time constant switching output terminal of output filter of spindle motor	49	RAWE	Write enable signal output to external RAM
MON	ON/OFF control output terminal of spindle	50	RACS	Chip selector signal output to external RAM
MON	motor	51	C4M	Divider output of crystal. f=4.2336MHz
MDP	Drive output terminal of spindle motor. Rough control when mode CLV-S and phase	52	Vss	Ground
	control when mode CLV-P	53	XTAI	Input terminal of crystal oscillator
MDS	Drive output terminal of spindle motor. Speed control when mode CLV-P	54	XTAO	Output terminal of crystal oscillator
EFM	EFM signal input terminal from RF amplifier	55	MD1	Mode switching input terminals
ASY	Output terminal to control the slice level of EFM signal	57	MD3 SLOB	Code switching input of audio data output.
LOCK	GFS sampling terminal		BEOB	Mode switching input of audio data output.
VCOO	VCO output terminal. 8.6436MHz when lock to EFM signal	59	PSSL	Serial output at low level, Parallel output at high level
VCOI	VCO input terminal	60	APTR	Control output for aperture correction. High level when Rch.
TEST	0V	61	APTL	Control output for aperture correction. High level when Lch.
PDO	Phase comparator output terminal of EFM signal and VCO/2	62	DA01	DA01 (LSB of parallel sound output) output
Vss	Ground			when PSSL = H. C1F1 output when PSSL = I
CLK	Serial data transmitter clock input terminal from microcomputer	63	DA02	DA02 output when PSSL = H. C1F2 output when PSSL = L.
XLT	Latch input terminal from microcomputer	64	DA03	DA03 output when PSSL = H. C2F1 output when PSSL = L.
DATA	Serial data input terminal from microcomputer	65	DA04	DA04 output when PSSL = H. C2F2 output when PSSL = L.
XRST	System rest input terminal. Reset at low level.	66	DA05	DA05 output when PSSL = H. C2FL output when PSSL = L.
CNIN	Tracking pulse input terminal			DA06 output when PSSL = H.
SENS	Inner condition output terminal correspond to address	67	DA06	C2PO output when PSSL = L.
MUTG	Muting input terminal	68	DA07	DA07 output when PSSL = H. RFCK output when PSSL = L.
CRCF	CRC check output terminal of subcode Q	69	DA08	DA08 output when PSSL = H.
EXCK	Clock input terminal for serial output of subcode	70	DA09	WFCK output when PSSL = L. DA09 output when PSSL = H.
SBSO	Serial output terminal of subcode			PLCK output when PSSL = L.
SUBQ	Subcode Q output terminal	71	DA10	DA10 output when PSSL = H. UGFS output when PSSL = L.
SCOR	Subcode sink S0 + S1 output terminal	72	DA11	DA11 output when PSSL = H.
SQCK	Clock terminal to read the subcode Q			GTOP output when PSSL = L.
SQEX	Selector input terminal of SQCK	73	VDD	Power supply (5V)
DOTX	Digital output terminal	74	DA12	DA12 output when PSSL = H. RAOV output when PSSL = L.
GFS	Indicator output of lock condition of frame sync	75	DA13	DA13 output when PSSL = H. C4LR output when PSSL = L.
DB08	Data terminals of external RAM	76	DA14	DA14 output when PSSL = H. C210 output when PSSL = L.
DB05 VDD	+5V	77	DA15	DA15 output when PSSL = H. C210 output when PSSL = L.
DB04		78	DAIE	DA16 (MSB of parallel sound output) output
DB01	Data terminals of external RAM	/0	DA16	when PSSL = H. DATA output when PSSL=L
	Address output terminals of external RAM	79	WDCK	Strobe signal output. 176.4kHz when DF is on 88.2kHz when DF is off.
RA11	-	80	LRCK	Strobe signal output. 88.2kHz when DF is on. 44.1kHz when DF is off.

PIN NO.	TERMINAL	I/O	DESCRIPTION
1	SHL	0	When one DAC(TD=L):Deglitching signal of left channel (when four times) When two DAC(TD=H):Deglitching signal of left and right channels(when eight times)
2 3	X0 XI	O I	Connect the x'tal oscillator between XI and XO. The clock frequency is 384×Fs.
4	VDD2		+5V:Power supply terminal for x'tal oscillator and deglitching signal.
5 6 7	BCI SDSY SDI	I I I	Bit clock input terminal. Clock shown L/Rch division of input data and input timing. 16 bits serial data input terminal.
8	VDDI		+5V:Power supply terminal for digital signal.
9	DLO	0	When one DAC(TD=L):Output terminal for L/R channel data (When four times) When two DAC(TD=H):Output terminal for L channel data (when eight times)
10 11 12	DRO WCO BCO	000	R channel data output terminal. Word clock of output data DLO/DRO. Bit clock of output data.
13	VSS		Ground terminal
14	TD	I	1DAC/2DAC selector terminal: 1DAC at low. 2DAC at high.
15	SYNCS	I	Asynchronous input jitter absorption synchronous signal. Synchronous input at high level. SDSY inhibiting at low level.
16	SHR	0	R channel deglitching signal when one DAC.

3 (Operation amp)

B INPUT 1 2 GIA GAIN SELECT 6 V5* 5 OUTPUT 1

μ PC813C (Operation amp)

NJM5532DD (Operation amp)

LC3517AS-15 (Static RAM)

μPD4053BC (Analog Switch)

-19-

LB1630 (Motor Drive)

STA341M (Transistor Array)

LA6500 (Power OP Amp)

IR2406 (LED driver)

74HC595P (8 bits shift resistor)

		INPUTS	Resulting function		
SI	SCK	SCLR	RCK	G	Resulting function
х	х	X	х	н	Output QA-QH are in the high impedance state.
x	х	х	х	L	Latch Outputs, QA-QH, are enabled.
x	х	L	х	X	Shift registor contents are cleared.
L	<u>_</u>	Н	х	Х	A low logic level is shifted into the shift registor.
Н	¥	Н	х	Х	A high logic level is shifted into the shift registor.
х	¥	Н	х	х	Shift registor remains unchanged.
х	х	х	<u>_</u>	x	Shift registor data stored in the 8-bit storage resistor.
х	х	х	¥	X	Storage registor remains unchanged.

X:Don't Care

- 1. Output disable (QA-QH)
- 2. Output enable (QA-QH)
- 3. Clear the shift registor

CXP5016H-229S (Microprocessor)

74HC04P (Hex inverter)

74HC86P (Exculsive 0R)

-21-

M51943ASL (System reset)

FIP13JM (Fluorescent tudbe)

TERMINAL NO.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
ELECTRODE	F	F	NP	7G	NP	NP	NP	7 G	NP	6G	NP	NP	NP	NP	NP	NP	6G	NP
TERMINAL NO.	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ELECTRODE	NP	5G	19	1ь	1e	1d	1c	1f	1a	5 G	1h	2h	S	4 G	2 a	2 f	2 c	2 d
TERMINAL NO.	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52		
ELECTRODE	4G	3 G	2e	2 b	2 g	3 G	2G	NP	1 G	NP	NP	NP	1G	NP	F	F		
	NOtes	F:	File	amen	t	NP: N	lo pi	n										

-22-

GND

ADJUSTMENT PROCEDURES

Instruments required:Dual trace oscilloscope(Use the high impedance probe:10:1),Frequency counter,AF oscillator,AC voltmeter,Distortion analyzer,Insulated adjustment bar
Test disc(SONY:YEDS18), 4P socket P201(Part No. 25050138)

Servo circuit adjustment

Preparation:Disconnect the five opto. fiber cabels and Analog circuit pc board ass'y.(Refer page 6)

1.VCO frequency adjustment

Connect the frequency counter to test point PLCK.

Turn the power switch to ON(No load the disc).

Adjust R228 until the frequency counter reading becomes $4.32 \pm 0.01 MHz$.

After adjustment, disconnect the frequency counter.

2.Tracking offset adjustment

Playback the track 2 of test disc.

Turn R204 to the minimum position(counterclockwise).

Connect the oscilloscope to pin 4 of plug P201.

Adjust RV102 until the center of tracking error signal on the oscillo

scope becomes GND(Ground) level.

Turn R204 to the mechanical center.

After adjustment, disconnect the oscilloscope.

Note: The pickup moves to the outer edge of the disc and stops at 15second intervals. When this happens, press the PLAY button again.

3.Focus gain adjustment

Set the output of AF oscillator to 800Hz,1~1.5Vp-p.

Playback the track 2 of test disc.

Connect the oscilloscope and the AF oscillator as shown below.

Adjust R203 until the 800Hz components of channel 1 and 2 become the same level.

After adjustment, disconnect the oscilloscope and AF oscillator.

Photo 2
Range: Vertical: 0.2V/div.
Holizontal: 0.5mS/div.

4.Tracking gain adjustment

Set the output of AF oscillator to 1.2kHz, 1~1.5Vp-p.

Playback the track 2 of test disc.

Connect the oscilloscope and the AF oscillator as shown below.

Adjust R204 until the 1.2kHz components of channel 1 and 2 become the same level.

After adjustment, disconnect the oscilloscope and AF oscillator.

Oscilloscope
Oscilloscope
CH1 GND CH2 GND

1 ② ③ 4 P201
To GND

Photo 3

Range: Vertical: 0.2V/div.

Holizontal:0.5mS/div

NOTE:After adjustment of servo circuit,connect the five opto. fiver cables and Analog circuit pc board ass'y.

2.Opto. transmitter circuit adjustment Adjust after switching on more than 2 minutes.

2-1 Bit clock adjustment

Connect the oscilloscope to test point BCK. Adjust R327 so that the duty ratio of the waveform is 4.5:5.5.

NOTE: Adjust R327 via the opening on the side bracket L side.

Duty ratio

Photo 4 Range:Vertical:1V/div. Holizontal:50nS/div

-24-

2-2 Word clock (WCK) adjustment

Put the unit into the stop mode. Connect the oscilloscope to test points WCK and BCK. Adjust R411 so that there is a 50ns gap between the leading edge of WCK and that of BCK. (The BCK leading edge should come 50ns after the leading edge of WCK.) (Refer photo 5)

Connect the oscilloscope to test point DAL. Load the test disc into the unit and play track 2. Adjust R317 so that the data waveform crosses the waveform immediately before its peak. (Refer photo 6)

Connect the oscilloscope to test point DAR. Load the test disc into the unit and play track 2. As above, adjust R322 so that the data waveform crosses the waveform immediately before its peak. (Refer photo 6)

Note: Adjust R317 and R322 via the opening on the side bracket L side.

Connect the AC voltmeter to test point TP411(VMU). The voltage when the unit is in the stop mode is V3. The voltage while track 1 of the test disc is playing is V4. Next, connect the AC voltmeter to test point TP412 VMR. Adjust R409 so that the voltage is (V3+V4)/2.

4.Emphasis level adjustment

Connect the AC voltmeter to test point TP413 (VEM). Load the test disc into the unit. The voltage while track 1 of the test disc is playing is V5. Next, the voltage while track 2 of the test disc is playing is V6. Next, connect the AC voltmeter to pin 6 of Q407.

5.D/A converter adjustment

Adjust R418 so that the voltage is (V5+V6)/2.

5-1.Audio output level adjustment

Connect the AC voltmeter to test point TP403. Adjust R433 so that the voltage is 10.00 ± 0.03 V.

Connect a 2needle AC voltmeter to the audio output (FIXED) terminals. Play the track 2 of test disc.

Adjust R434 so that the left and right channel output levels are the same. 5-2.B1~B4 adjustment

Connect the distortion analyzer to the audio output (FIXED) terminals. Play the track 2 of test disc.

Step 1 Adjust R439/R440 so that the distortion analyzer reading is minimum.(Refer photo 7)

Step 2 Adjust R435/R436 so that the distortion analyzer reading is minimum (Refer photo 8)

Step 3 Adjust R443/R444 so that the distortion analyzer reading is minimum. (Refer photo 9)

Step 4 Adjust R447/R448 so that the distortion analyzer reading is minimum. (Refer photo 10)

Photo 5 Range: Vertical: 1V/div. Holizontal:50nS/div. Synchronize with WCK.

Photo 6 Range: Vertical: 1V/div. Holizontal:50nS/div

Step 5 Repeat the steps 1,2,3 and 4 until no further adjustment is necessary.

Note 1:Synchronizing the distortion waveform with the signal on the oscilloscope makes it easier to

2:Turn both 400Hz HPF and 30kHz LPF on the distortion analyzer ON.

Reference:The audio output offset voltage (voltage at R511, R512 adjustment point arrows) in the stop mode should be less than 10mV.

Photo 7 Output waveform Distrotion ratio:0.00668% 0.00324%

Photo 9 Output waveform Distrotion ratio:0.00362% 0.00186%

Photo 8 Output waveform Distrotion ratio:0.00435%

Photo 10 Output waveform Distrotion ratio:0.00335% 0.00166%

MECHANISM EXPLODED VIEW

REF.NO.	PART NO.	DESCRIPTION	REF.NO.	PART NO.	DESCRIPTION
201	27190580	Holder	228	82543020	3B+20FN(BC), Binding screw
202	27270225	Spacer	229	82542616	2.6B+16F(BC), Binding screw
203	27180367	Spring G	230	834126107	2.6TTS+10S, Tapping screw
204	27180368	Spring S	231	801393	3SMPSW+5FN, Sems screw
205	27180369	Spring B	232	8930502	E-5, Circlip
206	27141170	Bracket, switch C	233	8930301S	ES-3S, Circlip
207	27130509	Bracket RO	234	834130057	3TTS+5S, Tapping screw
209	27141171	Bracket, belt	235	82543003	3B+3FN(BC), Binding screw
210	27301041	Cap CH	236	82112314	2.3P+14F,Pan head screw
211	27301042	Magnet	237	27301061	Sheet C
212	27301043	York	238	27301062	Sheet B
214	27301044	Arm ass'y	239	27180372	Spring, ground
215	27180370	Spring	240	260208	Binder
216	27301045	Adjustment plate	241	27270226	Spacer D
217	27141172	Bracket, switch D	242	28140783	Cushion
218	27270227	Washer	911	25133171	NCSW-3171, Pc board
219	27301046	Gear A	913	25133173	NCETC-3173, Pc board
220	27301047	Gear B	914	25133174	NCSW-3174, Pc board
221	27301048	Cam gear	915	25133175	NCSW-3175, Pc board
222	27100148	Sub-chassis	M651	24502223	Motor ass'y
223	27260238	Shaft arm	S651	25065329	NMS-1216, Microswitch
224	27141192	Bracket, switch C	S652	25065329	NMS-1216, Microswitch
225	27180371	Spring arm	S653	25065330	NMS-1217, Microswitch
226	82542603	2.6B+3F(BC), Binding screw	S654	25065331	NMS-1218, Microswitch
227	82112608	2.6P+8F, Pan head screw			

DESCRIPTION

REF.NO.

PART NO.

251	27141173	Bracket, motor	277	27267525	Guide, shaft
252	27267524	Guide	278	27260239	Shaft
253	27141193	Holding bracket ass'y	279	27141182	Bracket RO
254	27100149	Chassis	280	273907	Rope
255	27141174	Bracket, ground	281	27180374	Spring RO
257	27141175	Bracket L	282	28140784	Cushion A
258	27262465	Plate	283	27301054	Disc holder ass'y
259	27141176	Bracket, guide	284	27301064	Sheet
260	27141177	Bracket, holder	285	27301055	Pulley A
261	27267526	Guide S	286	27301056	Pulley C
262	27141194	Mounting bracket L ass'y	287	27301067	Belt A
263	27270227	Washer	288	27301068	Belt B
264	27301049	Cam plate L	289	27301057	Pulley B
265	27270229	Poly washer	291	8930301S	Circlip
266	27301051	Disc table	292	82542603	Screw
267	27301052	Lever	293	801394	+PSW2.6 x 8, Special screw
268	27141178	Bracket,table	295	834130057	3TTS+5S, Tapping screw
269	27301063	Sheet S	296	83812055	2.6STB+5B, Tapping screw
270	27141179	Bracket W	297	838130082	3STB+8BQ, Tapping screw
271	27180373	Spring D	298	838126057	2.6TTB+5S, Tapping screw
272	27301050	Cam plate R	299	838130167	3TTB+16S, Tapping screw
273	27301066	Cushion rubber	300	801393	3SMPSW+5FN, Sems screw
274	27141180	Bracket R	912	25133172	NCETC-3172, Pc board
275	27301053	Stopper T	M652	24502224	Motor ass'y
276	27141181	Bracket, shaft			

PART NO.

DESCRIPTION

REF.NO.	PART NO.	DESCRIPTION	REF.NO.	PART NO.	DESCRIPTION
BU-1	24506746	CD drive unit	321	27100150	Chassis PU
301	27141183	Bracket M	322	27301075	Ball bearing
302	27301058	Thrust holder	323	833426082	2.6STP+8BQ, Tapping screw
304	27301059	Rotor ass'y	324	82542604	2.6B+4F(BC), Binding screw
305	27270228	3,Poly washer	325	82542605	2.6B+5F(BC), Binding screw
306	27260240	Shaft PU	326	838126087	2.6TTB+8S, Tapping screw
307	27301069	Cushion rubber	327	801395	2.6×3WP,Screw
308	27301060	Turntable	329	838126107	2.6TTB+10S, Tapping screw
309	27180375	Spring	331	838126167	2.6TTB+16S, Tapping screw
310	27301065	Center ring cap	333	8930232	E-2.3Zn, Circlip
311	-27270227	Washer	334	27141184	Bracket SL
312	880016	NRP-335, Rivert	335	27301076	Holder PB
313	27301070	Locking lever	336	27141185	Bracket PB
314	27180376	Spring RL	337	82543006	3B+6FN(BC), Binding screw
315	27190586	Holder ROD	338	28140785	Cushion PB
316	27301071	Liner york ass'y	339	870142	W2.6×7F, Washer
317	27190581	Holder BR	928	25133176	NCETC-3176, Pc board
318	27301072	Bearing	929	25133177	NCETC-3177A, Flexible pc board
319	27301073	Lead wire holder A	M53	24502225	Coil D
320	27301074	Lead wire holder B	SE51	24502226	Coil S

CHASSIS- PARTS LIST

REF.NO.	PART NO.	DESCRIPTION	REF.NO.	PART NO.	DESCRIPTION
A001	27100147A	Chassis	A501	1H047121	Front panel ass'y
A002	27115231B	Side bracket L	A506	28135125	Badge
A003	27115232B	Side bracket R	A509	27210972	Tray panel
A004	27110385A	Front bracket	A510	27267521	Guide,knob
A005	27141165	Bracket, headphone	A511	28400361A	Lid
A006	27130505A	Bracket, power transformer	A512	1H031702	Bearing L ass'y
A007	27150255	Shielded plate, power	A516	27301040A	Bearing R
A008	27150242	Shielded plate	A517	27141268A	Bracket,ground Front panel,door
A009	27140881-1	Bracket S	A519 A520	27210907 27141169A	Bracket,door
A010 A011	27190651 27130510	Holder ass'y Bracket,pc board	A524	27270254	Spacer
A011 A012	27190588	Holder.lid	A525	28140804	Cushion
A013	27190589	Holder, bottom	A526	28140755	$t0.5\times6\times165$, Cushion
A014	27130525	Bracket B	A527	28140756	$t0.5 \times 30 \times 30$, Cushion
A015	27150246	Shielded plate	A528	28140672A	t1.5×158×190,Cushion
A016	28191442	Clear plate	A529	28140126	t0.5×53, Cushion
A017	28133201	Back plate	A532	28140827	$.6 \times 10 \times 40$, Cushion
A019	27273065	Joint	A533	28140828	$t1\times4\times10$, Cushion
A020	27262470	Plate	A534	28140829	$t1 \times 5 \times 40$, Cushion
A021	27141236A	Bracket SH	A535	29110075	Copper tape
A022	27150249	Shielded plate	A536	28140900	$t0.5\times6\times15$, Cushion
A023	27121142	Back panel	A537	27270260	t4×15×15,Spacer
A025	27300750	∆ Strainrelief	A538	27270261	t5.5×15×15,Spacer
A026	27150247	Shielded plate CD	A540	834430068	3TTS+6B(BC), Tapping screw
A027	27141228	Bracket CD	A541	835430065	3STF+6B(BC), Flat head tapping screw
A028	28140793	Cushion	A542	833430080	3TTP+8P(BC), Tapping screw
A029	27270243	Spacer	A543	82142604	2.6P+4F(BC),Pan head screw
A030	834430068	3TTS+6B(BC), Tapping screw	A544	84643008	3HSB×8FN(BC), Hexagonal head bolt
A032	831130088	3TTW+8B, Tapping screw	A545	870071	WW6, Wave washer
A033	830440089	4TTC+8C(BC), Tapping screw	A601	27175171A	Leg
A034	87313006	M-3B, Toothed washer	A603	27141168	Bracket D
A035	801230	3STS+8BQ(BC), Tapping screw	A604	27141167	Bracket ST
A036	28140814	$t1.5 \times 55 \times 30$, Cushion	A605	834430068	3TTS+6B(BC), Tapping screw
A037	28140815	$t1.5 \times 100 \times 30$, Cushion	A606	834230108	3TTS+10B(Ni), Nickel screw
A038	28140816	$t1.5 \times 160 \times 80$, Cushion	A607	834440168	4TTS+16B(BC), Tapping screw
A039	28140853	Cushion	A608	87314006	M-4B, Toothed washer
A040	28140817	$t4.5 \times 55 \times 10$, Cushion	A801	28323185A	Knob SH
A041	28175149	Insulated plate	A802	28323186A	Knob POWER
A042	29110050	12×340, Aluminium tape	A803	28323187	Knob TEN
A043	834430088	3TTS+8B(BC), Tapping screw	A804	28323188-1	Knob PE
A044	838426088	2.6TTB+8B(BC), Tapping screw	A805	28323188-2	Knob D
A045	831430088	3TTW+8B(BC),Tapping screw	A806	28323188-3	Knob S
A046	880011	NRP-355,Rivert	F301-F305	241058	FCPA00001AF,Photo coupler
A047	28140897	$t12\times35\times180$, Cushion	P801	253148 or	⚠ AS-CEE,Power supply cord
A048	28140898	$t1.5 \times 140 \times 70$, Cushion		253150	
A049	28140899	$t8 \times 70 \times 70$, Cushion	S801	25000004	SRGP-S-001,Encoder
A051	28140820	Cushion	SC151	2000766A	NSAS-4P722,Socket
A052	28140821	Cushion, disc	SC651	2000767A	NSAS-7P723,Socket
A055	29355142	Caution label	T911	2300296	⚠ NPT-981G,Power transformer
A056	29360911	Label,LASER 3	T951	2300300	⚠ NPT-982G,Power transformer
A301	28145124	Top panel B	U1	1H046560-3A	NADG-3160-3a, Digital circuit pc board ass'y
A302	28145125A	Top panel F	U2	1H046561-2	NADIS-3161-2,FL tube circuit pc board ass'y
A303	27141153A	Bracket T	U3	1H046530-2	NADIS-3230-2, Level indicator pc board ass'y
A304	801403	5×12(BC),Special screw			
A305	27265159	Decoration ring F			
A306	834430068	3TTS+6B(BC), Tapping screw			
A308 A309	28140812	t5×25×300,Cushion			
	1H046602	Side panel P ass'y			
A310	1H046603	Side panel R ass'y			
A311 A312	870086	4×12(BC), Special washer			
	836440303	4STV+30CQ(BC), Special screw			
A312 A313	87314006	M-4B, Toothed washer			

CHASSIS-EXPLODED VIEW

REF.NO.	PART NO.	DESCRIPTION
U4	1H046563-2	NADIS-3163-2, Remote control pc board ass'y
U5	1H046564-2	NAPS-3164-2, Power supply circuit pc board ass'y
U6	1H046565-2	NASW-3165-2, Operation switch pc board ass'y
U7	1H046566-3	NAAF-3166-3, Analog circuit pc board ass'y
U8	1H046567-2	NAAF-3167-2,Output terminal pc board ass'y
U9	1H046568-2	NAAF-3168-2, Headphone terminal pc board ass'y
U10	1H046570-2	NAAF-3170-2, Power supply pc board ass'y
U12	1H046506-2	NAAF-3206-2, Power supply pc board ass'y
W1	260208	Binder
Z1	24506735	CD mechanism ass'y

NOTE: THE COMPONENTS IDENTIFIED BY MARK A
ARE CRITICAL FOR RISK OF FIRE AND
ELECTRIC SHOCK. REPLACE ONLY WITH
PART NUMBER SPECIFIED.

FL TUBE CIRCUIT PC BOARD

0

0

----15 - J718 ----15 - J719 ----15 - J720 ----15 - J721 ----15 - J722 ----15 - J723 ----15 - J724 ----15 - J725

DIGITAL CIRCUIT PC BOARD

OPERATION SWITCH PC BOARD

PRINTED CIRCUIT BOARD - PARTS LIST

DIGITAL	_ CIRCUIT	PC	BOARD (NADG-3160-3A)	

CIRCUIT NO. PART NO.

CINCUIT NO.	PART NO.	DESCRIPTION
	ICs	C77 1 4000 1 O
Q201	22240030	CXA1082AQ
Q202	22240036	STA341M
Q203,Q206	22240033	LA6500
Q207	22240110	CXP5016H-229S
Q208	22240018	M51943ASL
Q212	222963	LB1630
Q213	22240129	CXD1125QZ
Q213 Q214	22240118	LC3517AS-15
-		
Q215	221282	DTC144ES
Q301	222755	74HCU04P
Q302	22240176	YM3414
Q303	222740025	74HC02P
Q304	222740745	74HC74P
Q305	222740865	74HC86P
Q911	222780052	78M05
Q912	222790053	79L05
Q913	222780123	78L12
Q913	Transistors	TOLIZ
0000		DT 4 124EC
Q209	2212600	DTA124ES
Q210	2211454 or	2SA1015-Y or
	2211455	2SA1015-GR
Q211	2211254 or	2SC1815-Y or
	2211255	2SC1815-GR
Q306,Q308	2211455	2SA1015-GR
Q307	2211255	2SC1815-GR
Q309-Q312	2211255	2SC1815-GR
Q914	2211643 or	2SA965-O or
Q314	2211644	2SA965-Y
		23A903 I
	Diodes	100100
D201-D208	223163	1SS133
D209,D211	223150 or	US1040 or
	223145	1S2076
D210	223163	1SS133
D911	22380018	DB103
D912-D914	223880 or	GP101N4003 or
	223896	1N4003
D915	224652702	HZ27E-B2
D916,D918	224650511	HZ5.1E-B1
D910,D918 D917		1SS133
D917	223163	133133
D 404 D 40#	Photo couplers	ECD + 00000 + T
D301-D305	24120013	FCPA00002AT
	X'tal	
X301	3010112	KD6586FFB
	Capacitors	
C207,C219	354780479	4.7 μ F,50V,Elect.
C221	354742209	22 μ F,16V,Elect.
C223,C224	354784799	0.47 \(\mu \) F,50V, Elect.
C228,C229	354742209	22 μF,16V,Elect.
C232,C233	354744709	47 \(\mu \), 16V, Elect.
		22 \(\mu\)F,16V,Elect.
C236	354742209	
C237	354762209	22 μ F,35V,Elect.
C240,C248	354744709	47 μ F,16V,Elect.
C244	354742209	22μ F,16V,Elect.
C246	354741009	10 \(\mu \) F,16V,Elect.
C308	354781099	0.1 \(\mu \) F,50V,Elect.
C317	354744709	47 \(\mu \) F,16V,Elect.
C915,C916	354744709	47 # F,16V,Elect.
C917,C918	354754719	470 \(\mu \) F,25V,Elect.
C919,C923	354742209	22 \(\mu \) F,16V,Elect.
. *		100 \(\mathcal{F} \), F,35V, Elect.
C920	354761019	
C921,C922	354761009	10 \(\mathcal{F}\), F,35V, Elect.
C924	354744709	47 μF,16V,Elect.

CIRCUIT NO.	PART NO.	DESCRIPTION
omoon no.	Resistors	
R203,R204	5210066	N06HR22KBD,Semi-fixed
R228	5210060	N06HR2.2KBD.Semi-fixed
R254-R261	49163472408	4.7K×8,1/8W,Network
R317,R322	5210135	N06HR2.2KBE,Semi-fixed
R327	5210135	N06HR2.2KBE,Semi-fixed
R911,R912	442521004	10ohm,1/2W,Metal oxide film
R917	441520474	4.7ohm,1/2W,Metal oxide film
101.	Plugs	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
P101	25055149	NPLG-5P133
P102	25055151	NPLG-7P135
P103	25055152	NPLG-8P136
P151,P201	25055045	NPLG-4P33
P651	25055137	NPLG-7P21
	Sockets	
JL203,JL204	25050269	NSCT-5P97
JL205	25050272	NSCT-8P100
JL206	25050273	NSCT-9P101
JL207	25050270	NSCT-6P98
SC208b	2000791A	NSAS-7P747
SC209b	2000790A	NSAS-3P746
JL210	25050267	NSCT-3P95
JL211	25050270	NSCT-6P98
	Radiator	
	27160029-1	RAD-07B
	Screw	
	82143006	3P+6FN(BC),Pan head screw
	Bracket	
	27141059	Ground
	Fuses	
QF901,QF902	252112	ICPN15,IC protector

OPERATION SWITCH PC BOARD(NASW-3165-2)

CIRCUIT NO.	PART NO.	DESCRIPTION
D711-D717	223163	1SS133,Diodes
S711-S731	25035570	NPS-111-S532,Push switches
SC209a	2000770A	NSAS-3P726,Socket
SC208a	2000771A	NSAS-7P727,Socket

FL TUBE CIRCUIT PC BOARD(NADIS-3161-2)

CIRCUIT NO.	PART NO.	DESCRIPTION
	Fluorescent tube	
Q701	212051	FIP13JM7
	Diodes	
D701-D706	223163	1SS133
	L.E.Ds	
D707,D708	225141	SEL2213C
	Switches	
S701-S706	25035548	NPS-111-S510
	Holder	
	27190454A	L.E.D
	Cushion	
	28140780	

PRINTED CIRCUIT BOARD VIEW FROM BOTTOM SIDE

POWER SUPPLY CIRCUIT PC BOARD

LEVEL INDICATOR
CIRCUIT PC BOARD

REMOTE CONTROL CIRCUIT PC BOARD (NADIS-3163-2)

CIRCUIT NO.	PART NO.	DESCRIPTION
U701	241068	BX1407,IC
D761,D762	225142	SEL2913K,L.E.Ds
C761	355742209	22 #F,16V,Elect. capacito
	27190454A	Holder, L.E.D

POWER SUPPLY CIRCUIT PC BOARD(NAPS-3164-2)

CIRCUIT NO.	PART NO.	DESCRIPTION
C901	3500065A	▲ DE7150F103PCSA, Capacitor IS
L901	231051	∧ NCH-1092,Line filter
S901	25035550	∧ NPS-111-L512P,Power switch
	27300601	⚠ Cover for C901
	25060092	

LEVEL INDICATOR CIRCUIT PC BOARD(NADIS-3230-2)

CIRCUIT NO.	PART NO. IC	DESCRIPTION
Q741	22240122	IR2406G
	L.E.Ds	
D741-D750	225141	SEL2213C
	Capacitor	
C742	354742209	22 μ F,16V,Elect.
	Switch	
S741,S742	25035548	NPS-111-S510,Push
	Holder	
	27190579	L.E.D

NOTE: THE COMPONENTS IDENTIFIED BY MARK A
ARE CRITICAL FOR RISK OF FIRE AND
ELECTRIC SHOCK. REPLACE ONLY WITH
PART NUMBER SPECIFIED.

PRINTED CIRCUIT BOARD VIEW FROM BOTTOM SIDE

ANALOG CIRCUIT PC BOARD

OUTPUT TEMINAL PC BOARD

HEADPHONE TERMINAL PC BOARD

POWER SUPPLY CIRCUIT PC BOARD

POWER SUPPLY CIRCUIT PC BOARD

CIRCUIT PC BOARD(NAAF-3166-3)

CINCUIT FC D	OAND(NAAL 5100 5)
PART NO.	DESCRIPTION
DAC ass'y	
1H046700	NAHC-3169
ICs	
22240035	NJM592D8
222465	NJM4558D
22240119	74HC4050P
222745955	74HC595P
222755	74HCU04P
22240120	μPC813C
222717	μPD4053BC
226027	HCPL-2601
222902	NJM5532D-D
222654	NJM4556D
222780155MIT	M5F78M15L
222790155MIT	M5F79M15L
222780053	78L05
222790053	79L05
222780055MIT	M5F78M05L
222790055MIT	M5F79M05L
Transistors	20C1015 CD
2211255	2SC1815-GR
2211945	2SK246-GR
221282	DTC144ES
Photo couplers	ECD 4 00001 A D 4
2410571	FCPA00001ARA
Diodes	100122
223163	1SS133
22380013	RDF02M
224650511 223163	HZ5.1EB1 1SS133
22460822 or	HZ8.2EB2 or
2243192	MTZ8.2B
223163	1SS133
Capacitors	133133
354744709	47 \(\mu \) F,16V,Elect.
372123314	330pF \pm 5%,50V,Styrole
372123314	3300pF \pm 5%,50V,Styrole
372122324	2200pF±5%,50V,Styrole
372122224	2200pF±5%,50V,Styrole
372123314	330pF \pm 5%,50V,Styrole
391242207	22 μF,16V,Elect.
391262217	220 "F,35V,Elect.
379121045	$0.1 \mu\text{F} \pm 10\%,50\text{V}$, Plastic
391242207	22 μ F,16V,Elect.
391262217	220 "F,35V,Elect.
391242207	220 \(\mu \), F,16V, Elect.
354743329	3300 \(\mu \) F,16V,Elect.
354742229	2200 # F,16V,Elect.
354742209	22 \(\mu \) F,16V,Elect.
354780479	4.7 \(\mu \) F,50V,Elect.
354784799	0.47 #F,50V.Elect.
354742209	22 \(\mu \) F,16V,Elect.
354742219	220 \(\mu \) F,16V,Elect.
375104745	$0.47 \mu\text{F} \pm 10\%, 125\text{V.Plastic}$
379121525	$1500 pF \pm 10\%, 50V, Plastic$
Resistors	•
5210062	N06HR4.7KBD,Semi-fixed
5210066	N06HR22KBD,Semi-fixed
5210064	N06HR10KBD,Semi-fixed
5210070	N06HR100KBD,Semi-fixed

CIRCUIT NO.	PART NO.	DESCRIPTION
R515,R516	5104218	N16RTL20KA10M, Variable resistor
	Relaies	
RL401-RL404	25065327	NRL-1P0.5A-DC05-044
	Sockets	
JL401	25050267	NSCT-3P95
SC501	2000772A	NSAS-6P728
JL502	25050267	NSCT-3P95
JL212	25050269	NSCT-5P97
	Radiators	
	27160145	RAD-51
	Screws	
	82143006	3P+6FN(BC),Pan head

OUTPUT TERMINAL PC BOARD(NAAF-3167-2)

CIRCUIT NO.	PART NO.	DESCRIPTION			
Q291	24120019	TOTX-175,Opto. module			
Q292	222755	74HCU04P,IC			
L291	232143	NSRF-2047,RF coil			
C291	352942206	22 \(\mu \) F,16V,Non-polar elect.capacitor			
C293	354744709	47 \(\mu \) F,16V,Elect.capacitor			
C541,C542	372522214	220pF ±5%,50V,Styrole capacitors			
C545,C546	372521514	150pF ±5%,50V,Styrole capacitors			
P291	25045220	NPJ-1PDOR97,Digital output terminal			
P541	25045236	NPJ-4PDBL110, Audio output terminal			
JL292	25050268	NSCT-4P96,Socket			
P542	25055037	NPLG-6P28,Plug			
S291	25065286	NSS-22112,Slide switch			
HEADPHONE TERMINAL PC BOARD(NAAF-3168-1)					
CIRCUIT NO.	PART NO.	DESCRIPTION			
P491	25045221	HLJ0540-01-410, Stereo headphone terminal			

POWER SUPPLY CIRCUIT PC BOARDS(NAAF-3170-2/3206-2

CIRCUIT NO.	PART NO.	DESCRIPTION
C913,C914	3500102	10,000 \(\mu \) F,50V, Elect. capacitors
C953,C954	3500102	10,000 # F,50V, Elect.capacitors

MATIC DIAGRAM

LOADING MOTOR BOARD

BSL MOTOR BOARD

RF BOARD

WAVEFORM OF EACH SECTION

Photo 1
EFM signal
Vertical:1V/div.
Holizontal:5 µs/div.
Insert the resistor 2.2kohm between probe of oscilloscope and test point.

Photo 2 Focus signal Upper P201 Lower F0(T.P) Vertical:0.2V/div. Holizontal:5ms/div.

Photo 3
Tracking signal
Upper P201
Lower TR(T.P)
Vertical:1V/div.
Holizontal:5ms/div.

Photo 4 Upper OSC output Pin 3 of Q302 Lower BCLK signal Pin 5 of Q302 Vertical:2V/div. Holizontal:0.1 µs/div.

Photo 5
Upper DATA signal Pin 7 of Q302
Lower LRCK signal Pin 5 of Q302
Vertical:2V/div.
Holizontal:5 \(\mu \) s/div.

Photo 6
Upper DLO signal Pin 3 of Q305
Lower DCO signal Pin 10 of Q303
Vertical:2V/div.
Holizontal:0.1 \(\mu \) s/div.

Photo 7
X'tal osc. output Pin 1 of Q301
Vertical:1V/div.
Holizontal:0.1 µs/div.

Photo 8
SLD signal(T.P) When play
Vertical:1V/div.
Holizontal:20ms/div.

Photo 9
Upper DAL signal(T.P)
Lower DAR signal(T.P)
Vertical:2V/div.
Holizontal:2 µs/div.

Photo 10 Serial/Parallel change Pins 1 & 15 of 0413 Vertical:2V/div. Holizontal:0.5ms/div.

Photo 11 Audio output Pins 6 of Q417 & Q418 Vertical:5V/div. Holizontal:0.5ms/div.

Photo 12
Digital output
Vertical:20mV/div.
Holizontal:0.2 \(\nu \) s/div.

Photo 13
Digital opto. output
Vertical:2V/div.
Holizontal:0.1 µs/div.

Photo 14
Grid signal of FL tube(Pin 50 of Q207)
Vertical:10mV/div.
Holizontal:1ms/div.

NOTE:Play the track 2 of test disc. (YEDS-18)

DX-6990

TROUBLESHOOTING GUIDE

PLL circuit trouble

PART NO.	DESCRIPTION	REF.NO.	PART NO.	DESCRIPTION
29051712	Master carton box	A912	29361029	Label,bottom
29091232	Pad L	A916	29355144	Caution label,door
29091231	Pad R	A900	Accessary bag ass'	ý
29095508	600×1300, Protection sheet		2010166	Connection cord
29100038A	720×950,Poly-vinyl bag		29341278	Instruction manual
260012	Damplon tape		2050005	Opto. code
282301	Sealing hook		24509395A	Single adaptor
29091230	Pad		9100006A	350×250,Poly-vinyl bag
29095509	70×120, Protection sheets		29365020	Warranty card
29355142	Caution sheet		29100094A	Poly-vinyl bag for warranty card
24140015	RC-112C,Remote control unit			
3010054	UM-3,Two batteries			
260013	Damplon tape			
29355143	Caution label			

ONKYO CORPORATION

Bracket ST

3TTS+10B(Ni),Nickel screw

27141167

34230102

International Division: No.24 Mori Bldg., 23-5, 3-chome, Nishi-Sinbashi, Minato-ku, Tokyo, Japan Telex: 2423551 ONKYO J. Tel. 03-432-6981

ONKYO DEUTSCHLAND GMBH, ELECTRONICS

8034 Munchen-Germering, Industriestrasse 18, West Germany Telex: 521726 Telefon: (089)-84-9320