The Coin Toss Space

Tianshu Huang

September 17, 2018

1 Introduction

The coin toss space \mathcal{C} is defined as a set of all sequences $\{-1,1\}^{\mathbb{N}}$, where for two points $x,y\in\mathcal{C}$, $d(x,y)=2^{-i(x,y)}$, where $i(x,y)=\inf\{i\in\mathbb{N}:x_i\neq y_i\}$ (the first place where x and y are different).

2 Visualizing the coin-toss space

Visualize the coin-toss space as a binary tree on the number line. If the next element is 1, move to the right on the binary tree; if the next element is -1, move left. Each level takes up half of the vertical height of the previous. Then, the distance between two branches is the vertical coordinate where they first diverge.

3 Balls

For any ε , first find $n: 2^{-n} \le \varepsilon$. Then, to find $B_{\varepsilon}(x)$, follow the branch represented by x down n levels. All $y \in \mathcal{C}$ that start with that branch are members of that ball.

4 Cylinders

A cylinder in the coin-flip space is generated by fixing some finite number of coin flips. Since balls are generated by fixing the first n coin flips, balls are therefore cylinders.

5 Relationship with $[-1,1] \in \mathbb{R}$

Now, map each $x=\{x_1,x_2,...\}$ to $\mathbb R$ by starting at 0 and moving left by 2^{i-1} if the next term is -1 and right by 2^{i-1} if the next term is 1. Then, $x\to \sum_i x_i 2^{i-1}$.