Решения на задачите от контролно 1 по СЕМ Софтуерно инженерство

05.12.2021

Четни факултетни номера, аналогично за нечетните

Задача 1 Три карти са оцветени в три различни цвята, а четвърта карта има и трите цвята. Нека $A_k, k = 1, 2, 3$ са събитията: случайно избрана карта съдържа цвят k.

- а) Независими ли са събитията A_k две по две? Независими ли са в съвкупност?
- b) Теглим с връщане 3 карти. Каква е вероятността да изтеглим веднъж трицветната карта, ако е известно че изтеглените карти са различни?

Решение: а) От $\mathbf{P}(A_k) = \frac{1}{2}$ и $\mathbf{P}(A_iA_j) = \frac{1}{4}$, следва $\mathbf{P}(A_iA_j) = \mathbf{P}(A_i)\mathbf{P}(A_j)$. Така A_k са независими две по две. Но $\mathbf{P}(A_1A_2A_3) = \frac{1}{4} \neq \frac{1}{8} = \mathbf{P}(A_1)\mathbf{P}(A_2)\mathbf{P}(A_3)$, следователно A_1, A_2, A_3 са зависими в съвкупност. За б) нека A и B са съответно събитията: при теглене на 3 карти с връщане - точно веднъж е изтеглена трицветната; изтеглените 3 карти са различни. Намираме

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(AB)}{\mathbf{P}(B)} = \frac{3!\binom{3}{2}/|V(4;3)|}{|V_4^3|/|V(4;3)|} = \frac{3}{4}.$$

Задача 2 По случаен начин и независимо едно от друго се избират n числа в интервала [0,1]. Да се определи вероятността сумата им да е по-малка от 1, ако

- а) n=2 и е известно, че сумата е по-голяма от $\frac{1}{2}$;
- b) n = 3 и е известно, че сумата е по-малка от 2.

Решение: а) Чертеж 1:
$$\mathbf{P}(\Sigma < 1 \mid \Sigma > 1/2) = \frac{\mathbf{P}(1/2 < \Sigma < 1)}{\mathbf{P}(\Sigma > 1/2)} = \frac{1/2 - 1/8}{1 - 1/8} = \frac{3}{7}$$
. b) Чертеж 2: $\mathbf{P}(\Sigma < 1 \mid \Sigma < 2) = \frac{\mathbf{P}(\Sigma < 1)}{\mathbf{P}(\Sigma < 2)} = \frac{1/6}{1 - 1/6} = \frac{1}{5}$.

Задача 3 На състезание участват 20 отбора: 8 отбора в категория джипове, 5 при камиони и 7 при мотоциклети. Джиповете завършват състезанието с вероятност 0.9, камионите с 0.7, а моторите с 0.6 След състезанието на случаен принцип се избират три отбора, за провеждане на технически контрол. Известно е, че един от избраните отбори е завършил състезанието, а другите два не. Каква е вероятността избраните три отбора да са от различни категории?

Решение: а) Нека $A_{i,j}$ и $H_{i,j,k}$ са съответно събитията: при избор на 3 отбора - i са завършили и j незавършили (i+j+k=3); i са джипки, j са камиони, k са мотори (i+j+k=3). Намираме

$$\mathbf{P}(H_{1,1,1} \mid A_{1,2}) = \frac{\mathbf{P}(A_{1,2} \mid H_{1,1,1})\mathbf{P}(H_{1,1,1})}{\sum_{i+j+k=3} \mathbf{P}(A_{1,2} \mid H_{i,j,k})\mathbf{P}(H_{i,j,k})}, \text{ където } \mathbf{P}(H_{i,j,k}) = \frac{\binom{8}{i}\binom{5}{j}\binom{7}{k}}{\binom{20}{3}}$$

 $\mathbf{P}(A_{1,2} \mid H_{i,j,k}) = i(0.9 \times 0.1^{i-1} \times 0.3^{j} \times 0.4^{k}) + j(0.1^{i} \times 0.7 \times 0.3^{j-1} \times 0.4^{k}) + k(0.1^{i} \times 0.3^{j} \times 0.6 \times 0.4^{k-1}).$

Задача 4 Хвърляме 3 зара n пъти. Считаме за "успех" всяко хвърляне, при което сумата от точките върху трите зара е нечетна и по-голяма от 12. Да се определи вероятността на:

- а) събитие $A = \{$ броят на успехите е по-голям от броя на неуспехите $\}$, за n = 10;
- b) събитие $B = \{$ седмия успех настъпва преди третия неуспех $\}$, за n = 12.

Решение: Ако p е вероятността за успех, то $p=\frac{34}{6^3}$ и нека $X\in \mathrm{Bi}(n,p)$. Имаме $A=\{X\geq 6\}$, т.е. $\mathbf{P}(A)=\mathbf{P}(X\geq 6)=\sum_{k=6}^{10}\binom{10}{k}p^k(1-p)^{10-k}$. За б) нека $B_k=\{$ седмия успех настъпва на k- тия опит $\}$. Следователно $B=\cup_{k=7}^9B_k$ и

$$\mathbf{P}(B) = \sum_{k=7}^{9} \mathbf{P}(B_k) = \sum_{l=0}^{2} {6+l \choose 6} p^6 (1-p)^l p.$$

Оценяване: 1a) 3+3=6p; 1b) 4p; 2a) 4p; 2b) 6p; 3) 10p; 4a) 5p; 4b) 5p. $\Sigma=40p.$