LAGRANGEANO NUMENTADO (CONVERGÊNCIA)

TEOREMA: SESAM $3x^{*}$ UMA SEQUÊNCIA GERADA PELO MÉTODO,

E x^{*} UM PONTO DE ACUMULAÇÃO VIÁVEL PARA P.

SE $g_{j}(x^{*}) < 0$ ENTAU $y^{*} = \left(\bar{\mu}_{j}^{*} + \rho_{\kappa} g_{j}(x^{\kappa})\right)_{+}, \quad \forall \kappa \gg 1.$

PROVA; ALLA PASSADA

P: min f(x) s.a. h(x) = 0, $g(x) \le 0$.

- O MÉTORO DE L.A. ENCONTRA
 - · PONTOS KKT DE P SE X* É VIÁVEC
- PONTOS KKT DA INVIABILIDADE.

TEOREMA: SESAM ? XXX UMA SEQUÊNCIA GERADA PECO MÉTODO, E X* UM PONTO DE ACUMULAÇÃO.

- (a) SE X* FOR VIÁVEL PARA P E REGULAR,
 ENTAD X* É PONTO KKT DE P.
- (b)

 X* É PONTO

 KKT PO PROBLEMA DA INVIABILIDADE

min
$$\|h(x)\|^2 + \|g(x)_+\|^2$$
.

PROVA:

$$SP(\rho_{\kappa}, \overline{\lambda}^{\kappa}, \overline{\rho}^{\kappa}): \min_{\mathbf{x}} f(\alpha) + \rho_{\kappa} \left[\sum_{i=1}^{m} \left(\frac{\overline{\lambda}_{i}^{\kappa}}{\rho_{\kappa}} + h_{i}(\alpha) \right)^{2} + \sum_{j=1}^{p} \left(\frac{\overline{\mu}_{i}^{\kappa}}{\rho_{\kappa}} + g_{j}(\alpha) \right)^{2} \right].$$

OU SEJA, A SEQUÊNCIA GERADA 32×5 SATISFAZ

(1)

ASSIM, A SOMA NA NORMA TENDE A ZERO VAMOS ARGUMENTAR QUE AS ESTIMATIVAS 3 (**1) & SÃO LIMITADAS. PE FATO, PEFINIMOS POR SK+1, OBTEMOS $\frac{\nabla J(\chi^{\kappa})}{\zeta^{\kappa+1}} + \sum_{i=1}^{\kappa+1} \frac{\lambda^{\kappa+1}}{\zeta^{\kappa+1}} \nabla h_{i}(\chi^{\kappa}) + \sum_{i=1}^{k} \frac{\lambda^{\kappa+1}}{\zeta^{\kappa+1}} \nabla g_{j}(\chi^{\kappa}) \longrightarrow 0.$

PELA DEFINIÇÃO DE STA CONSEGUIMOS EXTRAIR UMA SUBSEQUÊNCIA
COM ÍNDICES EM KCN TAL QUE

2 Xi SKHI (> 1 PARA ALGUM i

OU ZINI SKEK -> 1 PARA ALGUM j

OBSERVE QUE PECO TEOREMA ANTERIOR, ESSES TAIS j'S, SE EXISTIREM, SAU TAIS QUE $g_j(x^+) = 0$.

PASSANDO O LIMITG, OBTEMOS ENTAE

$$\sum_{i=1}^{m} \lambda_{i}^{*} \nabla h_{i}(x^{*}) + \sum_{j: q_{j}(x^{*})=0} \mu_{j}^{*} \nabla q_{j}(x^{*}) = 0$$

ONDE PELO MENOS UM TOS TERMOS : OU M' SÃO 1.

MAS 1550 CONTRARIA O FATO DE 2º SER REGULAR. 35K+16 É LIMITADA. como 35 K+1 9 E LIMITADA, AS SEQUÊNCIAS 3 X : 7 E PUIL ROSSUEM RONTOS DE ACUMULAÇÃO, DIGAMOS $\chi_{i}^{*} = \lim_{\kappa \in K} \chi_{i}^{*}, \quad \chi_{i}^{*}, \quad \chi_{i}^{*} = \lim_{\kappa \in K} \chi_{i}^{*}, \quad \chi_{i}^{*},$ $\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla h_i(x^*) + \sum_{j=1}^{i} \mu_j^* \nabla g_j(x^*) = 0$

TO TEOREMA ANTERIOR, $\mu_j^{k+1} = 0 \quad \forall x \gg 1 \quad \text{SEM PRE} \quad \text{DUE} \quad g_j(x^*) < 0.$ ASSIM, $\mu_j^* = 0 \quad \text{SEMPRE} \quad \text{QUE} \quad g_j(x^*) < 0 \quad \text{OU SEDA}, \quad \chi^* \in \text{KKT}.$

(b) QUERENOS PROVAR QUE, EM GERAL, $\chi^{\#}$ t' KKT

THE min $\|h(\alpha)\|^{2} + \|g(\alpha)_{+}\|^{2}$.

CASO 1: $\lambda = \delta$ of vivitable

CASO 1: 3 px { É LIMITA DA.

NESTE CASO, O TESTE DE ADMISSIBILIDADE DEU CERTO $\forall x \gg 1$. ISTO \in , $\max_{\alpha} \| h(x^{k-1}) \|_{\infty}$, $\| V^{k-1} \|_{\infty} \le \| a_{\alpha} \| h(x^{k}) \|_{\infty}$, $\| V^{k} \|_{\infty} \le \| b_{\alpha} \| b_$

PARTICULAR, lim || h(xx) || = 0, OU SETA, $h(x^*) = 0$. TAMBÉM, lim | | V | | = 0. $5\epsilon q_j(x^*) > 0$ ENTER $g_j(x^k) \geqslant g_j(x^*) > 0$, $\forall k \gg 1$. DA($V_{j}^{k} \leq -g_{j}(\chi^{k}) \leq -g_{j}(\chi^{*}) \leq 0, \forall x \gg 1.$ DESTA FORMA TERIAMOS $V_i^k \rightarrow 0$, um absurdo. CONCLUIMOS ASSIM QUE $q_j(\chi^k) \leq 0$. ON SEJA, χ^* & VIÁVEL. RESTE CASO, X* É MINIMIZAPOR GLOBAL DE min $\|h(\alpha)\|^2 + \|g(\alpha)_+\|^{\kappa}$,

E LOGO É KKT DESTE PROBLEMA.

CASO 2: Px -> 00.

TO MÉTOPO,

 $\nabla f(x^{*}) + \sum_{i=1}^{m} (\bar{\lambda}^{*} + \rho_{\kappa} h_{i}(x^{*})) \nabla h_{i}(x^{*}) + \sum_{j=1}^{p} (\bar{\mu}^{\kappa} + \rho_{\kappa} g_{j}(x^{*})) \nabla g_{j}(x^{*})$ $= \sum_{i=1}^{m} (\bar{\lambda}^{*} + \rho_{\kappa} h_{i}(x^{*})) \nabla h_{i}(x^{*}) + \sum_{j=1}^{p} (\bar{\mu}^{\kappa} + \rho_{\kappa} g_{j}(x^{*})) \nabla g_{j}(x^{*})$ $= \sum_{i=1}^{m} (\bar{\lambda}^{*} + \rho_{\kappa} h_{i}(x^{*})) \nabla h_{i}(x^{*}) + \sum_{j=1}^{p} (\bar{\mu}^{\kappa} + \rho_{\kappa} g_{j}(x^{*})) \nabla g_{j}(x^{*})$ $= \sum_{i=1}^{m} (\bar{\lambda}^{*} + \rho_{\kappa} h_{i}(x^{*})) \nabla h_{i}(x^{*}) + \sum_{j=1}^{p} (\bar{\mu}^{\kappa} + \rho_{\kappa} g_{j}(x^{*})) \nabla g_{j}(x^{*})$ $= \sum_{i=1}^{m} (\bar{\lambda}^{*} + \rho_{\kappa} h_{i}(x^{*})) \nabla h_{i}(x^{*}) + \sum_{j=1}^{p} (\bar{\mu}^{\kappa} + \rho_{\kappa} g_{j}(x^{*})) \nabla g_{j}(x^{*})$ $= \sum_{i=1}^{m} (\bar{\lambda}^{*} + \rho_{\kappa} h_{i}(x^{*})) \nabla h_{i}(x^{*}) + \sum_{j=1}^{p} (\bar{\mu}^{\kappa} + \rho_{\kappa} g_{j}(x^{*})) \nabla g_{j}(x^{*})$ $= \sum_{i=1}^{m} (\bar{\lambda}^{*} + \rho_{\kappa} h_{i}(x^{*})) \nabla h_{i}(x^{*}) + \sum_{j=1}^{p} (\bar{\mu}^{\kappa} + \rho_{\kappa} g_{j}(x^{*})) \nabla g_{j}(x^{*})$ $= \sum_{i=1}^{m} (\bar{\lambda}^{*} + \rho_{\kappa} h_{i}(x^{*})) \nabla h_{i}(x^{*}) + \sum_{j=1}^{p} (\bar{\mu}^{\kappa} + \rho_{\kappa} g_{j}(x^{*})) \nabla g_{j}(x^{*})$ $= \sum_{i=1}^{m} (\bar{\lambda}^{*} + \rho_{\kappa} h_{i}(x^{*})) \nabla g_{j}(x^{*}) + \sum_{j=1}^{p} (\bar{\mu}^{\kappa} + \rho_{\kappa} g_{j}(x^{*})) \nabla g_{j}(x^{*})$ $= \sum_{i=1}^{m} (\bar{\lambda}^{*} + \rho_{\kappa} h_{i}(x^{*})) \nabla g_{j}(x^{*}) + \sum_{j=1}^{p} (\bar{\mu}^{\kappa} + \rho_{\kappa} g_{j}(x^{*})) \nabla g_{j}(x^{*})$

 $\sum_{i=1}^{m} 2 h_{i}(x^{*}) \nabla h_{i}(x^{*}) + \sum_{j=1}^{p} 2 q_{j}(x^{*})_{+} \nabla q_{j}(x^{*}) = 0$

00 SETA , O GRADIENTE PA F.O. $\|h(x)\|^2 + \|g(x)\|^2 = \sum_{i=1}^{m} (h_i(x))^2 + \sum_{j=1}^{p} (g_j(x))_+^2$ SE ALULA EM Z* (z* c' KKT PESTE PROBLEM)