

Profesor: Jose Daniel Ramirez Soto

Tarea #: 1

Tema: Exploración de datos Y PCA

Fecha entrega: 11:59 pm 11 de Marzo de 2024

Objetivo: Utilizar conceptos estadísticos para entender la relación entre las variables de una base de datos. Adicionalmente, utilizar python como herramienta de exploración de datos y validación de hipótesis.

Entrega: Crear un repositorio en su github personal. Dentro del proyecto debe existir una carpeta llamada tarea 1, dentro debe tener una carpeta doc con este documento incluyendo todas las respuestas y los gráficos. Adicionalmente, debe existir una carpeta src con el código del notebook utilizado. Debe adicionar la cuenta jdramirez como colaborador del proyecto y enviar un email antes de q se termine el dia indicando el commit desea le sea calificado.

1. Utilizas el siguiente set de datos para calcular paso por paso (mostrar procedimiento y fórmulas):

DEPARTAENTO	PIB MILLONES(X1)	Poblacion(X_2	PIB_percapita en) MILLONES(x3)
Amazonas	1067855.672	76589	13.94267678
Antioquia	212514957.4	6407102	33.16865524
Arauca	8548114.653	262174	32.60473828
Atlántico	63764770.77	2535517	25.1486268
Bogotá D.C.	357258620.8	7412566	48.19634938
Bolívar	51404352.37	2070110	24.83170091
Boyacá	38858162.12	1217376	31.91960588
Caldas	23953112.45	998255	23.9949837
Caquetá	5461366.78	401849	13.59059443
Casanare	23660657.37	420504	56.26737766
Cauca	25758151.71	1464488	17.58850309
Cesar	37523918.98	1200574	31.25498218
Chocó	6001844.915	534826	11.2220515
Córdoba	24991953.76	1784783	14.00279685
Cundinamarca	91945942.28	2919060	31.49847632
Guainía	497704.0127	48114	10.34426597
Guaviare	1123857.696	82767	13.57857232
Huila	24011616.06	1100386	21.82108466

Profesor: Jose Daniel Ramirez Soto

La Guajira	22262575.88	880560	25.28229295
Magdalena	19738417.36	1341746	14.710994
Meta	58439500.07	1039722	56.20685151
Nariño	21775426.15	1630592	13.35430699
Norte de Santander	23056874.23	1491689	15.45689097
Putumayo	5616558.269	348182	16.13109888
Quindío	11941644.16	539904	22.11808795
Risaralda	23786362.42	943401	25.21341659
San Andrés, Providencia y Santa Catalina (Archipiélago)	2125410.333	61280	34.68358898
Santander	92276678.16	2184837	42.23504003
Sucre	11516270.76	904863	12.7270877
Tolima	30438180.15	1330187	22.8826324
Valle del Cauca	139863153.5	4475886	31.2481492
Vaupés	381851.6785	40797	9.359797989
Vichada	956576.6785	107808	8.872965629

 $Tabla\ tomada\ del\ DANE\ https://www.dane.gov.co/files/operaciones/PIB/departamental/anex-PIBDep-TotalDepartamento-2022pr.xlsx.$

Profesor: Jose Daniel Ramirez Soto

1.1. ¿Cuál es la media, mediana y desviación estándar?, y la moda y los valores repeticiones de la moda para los datos categóricos.

1.2. Dibujar un boxplot a mano. Utilizando los datos de la tabla 1 y las siguientes proporciones.

1.3. Cual es la covarianza entre las 2 variables X1, X2

$$Cov(x,y) = \frac{\sum (x_i - \overline{x}) * (y_i - \overline{y})}{N}$$

1.4. Cuál es la correlación entre la variable x1 y x2 (Calcularla a mano). Correlación puede ser escrita también como:

$$Cor(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}},$$

- 1.5. Explica la relación entre covarianza y correlación.
- Calcule el resultado del algoritmo K-means sobre este set de datos a mano como lo hicimos en excel. Vamos a crear 4 grupos, es decir, k=4 (clusters).
- 1.7. Calcula el resultado de un dedograma utilizando la distancia maxima en un excel

Profesor: Jose Daniel Ramirez Soto

2. PCA. Utilizar los datos de la tabla 1, para calcular PCA y reducir la dimensionalidad de 2 dimensiones a 1. Para este ejercicio se debe utilizar las variables X1, y X2 y crear un vector con una sola dimensión.

- 2.1. Cual es la matriz de covarianza
- 2.2. Cuales son los eigenvalues
- 2.3. Cuál es la varianza explicada por el eigenvalue.
- 2.4. Cual es el valor del eigenvector
- 2.5. Cuál es la matriz proyectada.
- 2.6. Cual es el error o diferencia entre la matriz proyectada

3. PCA (20%)

Cargar el data set de caras que está en la carpeta datos de la tarea 2 (ver notebook https://github.com/jdramirez/UCO_ML_Al/blob/master/src/notebook/PCA.ipynb):

- Calcular la mean face. Que es la cara con el promedio de los pixeles y visualizarla.
- 2. Centrar los datos, utilizar PCA. ¿Cuántos componentes se deben utilizar para mantener el 90% de las características?. Crear una tabla para mostrar las primeras 5 caras utilizando, la mean face + los datos reconstruidos utilizando la primera componente, después con 3 componentes, después con las primeras 20 componentes, después con las componentes que explican el 95% de la varianza y por último con el numero de componentes que tiene el 99% de la varianza. ¿Qué se puede concluir de los resultados?

Cara original	MeanFace + 1 comp	MeanFace + 3 comp	MeanFace + 20 comp	MeanFace + 95% comp	MeanFac e + 99% comp
1					
2					
3					
4					

Profesor: Jose Daniel Ramirez Soto

4. Utilizando el dataset del <u>proyecto</u> data/CARS.csv crear: **Utilizar la librería de plotly**.

- 4.1. Distribución de cada variables:
 - 4.1.1. Para las variables categóricas un gráfico de barras. Categoría numero de observaciones.
 - 4.1.2. Para las variables numéricas crear histogramas. Listar los modelos de carros que están más lejos de 5 estándares de desviación, y serían considerados outliers. Hacer test de si es una distribución normal o no.
- 4.2. Gráfico de la relación de cada variable con respecto a MPG City:
 - 4.2.1. Variables categóricas debes crear un boxplot. Explique cómo interpreta el gráfico
 - 4.2.2. Variables numéricas vas a crear un scatter plot. Explique cómo interpreta el gráfico
- 4.3. Matriz de correlación.
 - 4.3.1. Cree la matriz de correlación, cuales son las variables más importantes para explicar la variabilidad de MPG_City. Explique por qué el coeficiente es negativo o positivo.
 - 4.3.2. Cree las dummy variables para todas las variables categóricas y genere la matriz de correlación nuevamente. ¿Cuál es el valor de variable categórica con mayor correlación?
 - 4.3.3. Cree la matriz de correlación nuevamente removiendo todas los modelos de carro que fueron catalogados como un outlier. (Puede utilizar .query('Model in["MDX","TSX 4dr"]'). Existe alguna variación en la correlación.