Análisis de Correspondencia (CA)

José A. Perusquía Cortés

Análisis Multivariado Semestre 2023-2

¿De qué va?

 Una técnica multivariada para analizar las asociaciones entre un conjunto de variables categóricas de forma gráfica (reducción de la dimensión).

¿De qué va?

 Una técnica multivariada para analizar las asociaciones entre un conjunto de variables categóricas de forma gráfica (reducción de la dimensión).

Es una técnica meramente descriptiva conocida desde Hirschfeld (1935) y redescubierta e impulsada por Jean-Paul Benzécri en Francia en los años 60's

¿De qué va?

 Una técnica multivariada para analizar las asociaciones entre un conjunto de variables categóricas de forma gráfica (reducción de la dimensión).

Es una técnica meramente descriptiva conocida desde Hirschfeld (1935) y redescubierta e impulsada por Jean-Paul Benzécri en Francia en los años 60's.

· Técnica similar a PCA pero para datos categóricos.

Punto en un espacio multidimensional

- Punto en un espacio multidimensional
- Un peso (o masa) asignado a cada punto

- Punto en un espacio multidimensional
- Un peso (o masa) asignado a cada punto
- Una función de distancia entre puntos: chi-squared distance
 - Para dos renglones i, i'

$$d(i, i') = \sqrt{\sum_{j=1}^{p} \left(\frac{f_{ij}}{f_{i.}} - \frac{f_{i'j}}{f_{i'.}}\right)^2 \cdot \frac{1}{f_{.j}}}$$

- Punto en un espacio multidimensional
- Un peso (o masa) asignado a cada punto
- Una función de distancia entre puntos: chi-squared distance
 - Para dos renglones i, i'

$$d(i, i') = \sqrt{\sum_{j=1}^{p} \left(\frac{f_{ij}}{f_{i\cdot}} - \frac{f_{i'j}}{f_{i'\cdot}}\right)^2 \cdot \frac{1}{f_{\cdot j}}}$$

- Para dos columnas j, j'

$$d(j,j') = \sqrt{\sum_{i=1}^{n} \left(\frac{f_{ij}}{f_{\cdot j}} - \frac{f_{ij'}}{f_{\cdot j'}}\right)^{2} \cdot \frac{1}{f_{i\cdot}}}$$

Estado de salud por grupo de edades

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Totales Ren.
16-24	243	789	167	18	6	1223
25-34	220	809	164	35	6	1234
35-44	147	658	181	41	8	1035
45-54	90	469	236	50	16	861
55-64	53	414	306	106	30	909
65-74	44	267	284	98	20	713
75+	20	136	157	66	17	396
Totales Col.	817	3542	1495	414	103	6371

rabla de frecuencias por renglón

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Promedio
16-24	0.199	0.645	0.137	0.015	0.005	0.192
25-34	0.178	0.656	0.133	0.028	0.005	0.194
35-44	0.142	0.636	0.175	0.040	0.008	0.162
45-54	0.105	0.545	0.274	0.058	0.019	0.135
55-64	0.058	0.455	0.337	0.117	0.033	0.143
65-74	0.062	0.374	0.398	0.137	0.028	0.112
75+	0.051	0.343	0.396	0.167	0.043	0.062
Promedio	0.128	0.556	0.235	0.065	0.016	1.000

Puntos en un espacio multidimensional: perfiles por renglón

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Promedio
16-24	0.199	0.645	0.137	0.015	0.005	0.192
25-34	0.178	0.656	0.133	0.028	0.005	0.194
35-44	0.142	0.636	0.175	0.040	0.008	0.162
45-54	0.105	0.545	0.274	0.058	0.019	0.135
55-64	0.058	0.455	0.337	0.117	0.033	0.143
65-74	0.062	0.374	0.398	0.137	0.028	0.112
75+	0.051	0.343	0.396	0.167	0.043	0.062
Promedio	0.128	0.556	0.235	0.065	0.016	1.000

Pesos (masas) de cada perfil: promedios por renglón

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Promedio
16-24	0.199	0.645	0.137	0.015	0.005	0.192
25-34	0.178	0.656	0.133	0.028	0.005	0.194
35-44	0.142	0.636	0.175	0.040	0.008	0.162
45-54	0.105	0.545	0.274	0.058	0.019	0.135
55-64	0.058	0.455	0.337	0.117	0.033	0.143
65-74	0.062	0.374	0.398	0.137	0.028	0.112
75+	0.051	0.343	0.396	0.167	0.043	0.062
Promedio	0.128	0.556	0.235	0.065	0.016	1.000

La distancia chi-squared definida por: promedios por columna

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Promedio
16-24	0.199	0.645	0.137	0.015	0.005	0.192
25-34	0.178	0.656	0.133	0.028	0.005	0.194
35-44	0.142	0.636	0.175	0.040	0.008	0.162
45-54	0.105	0.545	0.274	0.058	0.019	0.135
55-64	0.058	0.455	0.337	0.117	0.033	0.143
65-74	0.062	0.374	0.398	0.137	0.028	0.112
75+	0.051	0.343	0.396	0.167	0.043	0.062
Promedio	0.128	0.556	0.235	0.065	0.016	1.000

Algoritmo

Definir matrices diagonales \mathbf{D}_r y \mathbf{D}_c con las masas por renglón y columna.

Definir matrices diagonales \mathbf{D}_r y \mathbf{D}_c con las masas por renglón y columna.

- Obtener la descomposición GSVD de ${f R}-{f 1c}^T$, i.e.,

$$\mathbf{R} - \mathbf{1c} = \mathbf{N}\Lambda\mathbf{M}^T \qquad \mathbf{N}^T\mathbf{D}_r\mathbf{N} = \mathbf{M}^T\mathbf{D}_c^{-1}\mathbf{M} = \mathbf{I}$$

- R es la matriz de perfiles por renglón
- $-\mathbf{c} = \mathbf{D}_c \mathbf{1}$ es el centroide

 $lackbox{ }$ Definir matrices diagonales \mathbf{D}_r y \mathbf{D}_c con las masas por renglón y columna.

- Obtener la descomposición GSVD de ${f R}-{f 1c}^T$, i.e.,

$$\mathbf{R} - \mathbf{1}\mathbf{c} = \mathbf{N}\Lambda\mathbf{M}^T \qquad \mathbf{N}^T\mathbf{D}_r\mathbf{N} = \mathbf{M}^T\mathbf{D}_c^{-1}\mathbf{M} = \mathbf{I}$$

- R es la matriz de perfiles por renglón
- $-\mathbf{c} = \mathbf{D}_c \mathbf{1}$ es el centroide
- Las primeras dos coordenadas se encuentran con $N_{(2)}\Lambda_{(2)}$

Las matrices diagonales son:

$$\mathbf{D}_r = diag(.192,.194,.162,.135,.143,.112,.062)$$

$$\mathbf{D}_c = diag(.128,.556,.235,.065,.016)$$

Las matrices diagonales son:

$$\mathbf{D}_r = diag(.192,.194,.162,.135,.143,.112,.062)$$
 $\mathbf{D}_c = diag(.128,.556,.235,.065,.016)$

El centroide es

$$\mathbf{c} = (.128,.556,.235,.065,.016)^T$$

Las matrices diagonales son:

$$\mathbf{D}_r = diag(.192,.194,.162,.135,.143,.112,.062)$$
 $\mathbf{D}_c = diag(.128,.556,.235,.065,.016)$

El centroide es

$$\mathbf{c} = (.128, .556, .235, .065, .016)^T$$

• $\mathbf{R} - \mathbf{1}\mathbf{c}^T$ está dado por:

0.071	0.089	-0.098	-0.050	-0.011
0.050	0.100	-0.102	-0.037	-0.011
0.014	0.080	-0.065	-0.025	-0.008
-0.023	-0.011	0.039	-0.007	0.003
-0.070	-0.101	0.102	0.052	0.017
-0.066	-0.182	0.163	0.072	0.012
-0.077	-0.213	0.161	0.102	0.027

- Tenemos una representación en \mathbb{R}^2 de los grupos de edad

Usamos la transpuesta de la tabla de contingencia y repetimos.

Graficamos las dos variables al mismo tiempo

. Calcular la matriz de correspondencia $\mathbf{P} = \frac{\mathbf{N}}{n}$

. Calcular la matriz de correspondencia
$$\mathbf{P} = \frac{\mathbf{N}}{n}$$

 $lackbox{ }$ Definir matrices diagonales $lackbox{ } \mathbf{D}_r$ y $lackbox{ } \mathbf{D}_c$ con las sumas por renglón y columna.

- . Calcular la matriz de correspondencia $\mathbf{P} = \frac{\mathbf{N}}{n}$
- Definir matrices diagonales \mathbf{D}_r y \mathbf{D}_c con las sumas por renglón y columna.
- Obtener la descomposición SVD de

$$\mathbf{D}_r^{-\frac{1}{2}} \left(\mathbf{P} - \mathbf{r} \mathbf{c}^T \right) \mathbf{D}_c^{-\frac{1}{2}} = \mathbf{U} \Lambda \mathbf{V}^T$$

. Calcular la matriz de correspondencia
$$\mathbf{P} = \frac{\mathbf{N}}{n}$$

- $lackbox{ }$ Definir matrices diagonales \mathbf{D}_r y \mathbf{D}_c con las sumas por renglón y columna.
- Obtener la descomposición SVD de

$$\mathbf{D}_r^{-\frac{1}{2}} \left(\mathbf{P} - \mathbf{r} \mathbf{c}^T \right) \mathbf{D}_c^{-\frac{1}{2}} = \mathbf{U} \Lambda \mathbf{V}^T$$

Obtener las coordenadas estándar

$$\mathbf{X} = \mathbf{D}_r^{-\frac{1}{2}} \mathbf{U} \qquad \qquad \mathbf{Y} = \mathbf{D}_c^{-\frac{1}{2}} \mathbf{V}$$

. Calcular la matriz de correspondencia
$$\mathbf{P} = \frac{\mathbf{N}}{n}$$

- Definir matrices diagonales \mathbf{D}_r y \mathbf{D}_c con las sumas por renglón y columna.
- Obtener la descomposición SVD de

$$\mathbf{D}_r^{-\frac{1}{2}} \left(\mathbf{P} - \mathbf{r} \mathbf{c}^T \right) \mathbf{D}_c^{-\frac{1}{2}} = \mathbf{U} \Lambda \mathbf{V}^T$$

Obtener las coordenadas estándar

$$\mathbf{X} = \mathbf{D}_r^{-\frac{1}{2}} \mathbf{U} \qquad \qquad \mathbf{Y} = \mathbf{D}_c^{-\frac{1}{2}} \mathbf{V}$$

Obtener las coordenadas principales

$$\mathbf{F} = \mathbf{X}\Lambda$$
 $\mathbf{G} = \mathbf{Y}\Lambda$

Encuesta a trabajadores de una empresa sobre sus hábitos de fumar

Staff\Nivel	None	Light	Medium	Heavy	Totales Ren.
Sr Managers	4	2	3	2	11
Jr Managers	4	3	7	4	18
Sr Employees	25	10	12	4	51
Jr Employees	18	24	33	13	88
Secretaries	10	6	7	2	25
Totales Col.	61	45	62	25	193

Graficamos las dos variables al mismo tiempo

Como PCA se busca que explicar la mayor cantidad de varianza definida como:

Inercia =
$$\sum_{i,j} \frac{\left(p_{ij} - r_i c_j\right)^2}{(r_i c_j)}$$

Como PCA se busca que explicar la mayor cantidad de varianza definida como:

Inercia =
$$\sum_{i,j} \frac{\left(p_{ij} - r_i c_j\right)^2}{(r_i c_j)}$$

. Equivalentemente, Inercia $=\frac{\chi^2}{n}$, donde χ^2 es el estadístico de Pearson y n el total de observaciones

Como PCA se busca que explicar la mayor cantidad de varianza definida como:

Inercia =
$$\sum_{i,j} \frac{\left(p_{ij} - r_i c_j\right)^2}{(r_i c_j)}$$

- Equivalentemente, Inercia $=\frac{\chi^2}{n}$, donde χ^2 es el estadístico de Pearson y n el total de observaciones
- Los valores singulares al cuadrado $\lambda_1^2, \lambda_2^2, \dots$ son las inercias principales y explican la inercia total.

La inercia total:

Inercia =
$$0.08518986$$

Las inercias principales:

$$\lambda_1^2 = 0.07475911;$$
 $\lambda_2^2 = 0.01001718;$ $\lambda_3^2 = 0.0004135741$

Porcentaje explicado acumulado:

ullet Las coordenadas de los renglones ${f F}$ y la de las columnas ${f G}$ están relacionadas

$$\mathbf{F} = \mathbf{R}\mathbf{G}\Lambda^{-1} \qquad \qquad \mathbf{G} = \mathbf{C}\mathbf{F}\Lambda^{-1}$$

$$\mathbf{G} = \mathbf{CF} \Lambda^{-1}$$

ullet Las coordenadas de los renglones ${f F}$ y la de las columnas ${f G}$ están relacionadas

$$\mathbf{F} = \mathbf{R}\mathbf{G}\Lambda^{-1} \qquad \qquad \mathbf{G} = \mathbf{C}\mathbf{F}\Lambda^{-1}$$

Nos da una forma de añadir perfiles suplementarios para columnas y renglones

riginar que se tiene un promedio nacional de fumadores

Staff\Nivel	None	Light	Medium	Heavy
Sr Managers	4	2	3	2
Jr Managers	4	3	7	4
Sr Employees	25	10	12	4
Jr Employees	18	24	33	13
Secretaries	10	6	7	2
Promedio	42%	29%	20%	9%

Imaginar que se tiene un promedio nacional de fumadores

Staff\Nivel	None	Light	Medium	Heavy
Sr Managers	4	2	3	2
Jr Managers	4	3	7	4
Sr Employees	25	10	12	4
Jr Employees	18	24	33	13
Secretaries	10	6	7	2
Promedio	42%	29%	20%	9%

Encontramos su representación como:

$$f_{11} * = \frac{(.42* - 0.39330845) + (.29* 0.09945592) + (.2* 0.19632096) + (.09* 0.29377599)}{.2734211} = .258$$

$$f_{12} * = \frac{(.42* - 0.030492071) + (.29* 0.141064289) + (.2* 0.007359109) + (.09* - 0.197765656)}{0.1000859} = .118$$

Lo graficamos

De forma similar podemos añadir columnas

Staff\Nivel	None	Light	Medium	Heavy	Drinking	Not Drinking
Sr Managers	4	2	3	2	0	11
Jr Managers	4	3	7	4	1	17
Sr Employees	25	10	12	4	5	46
Jr Employees	18	24	33	13	10	78
Secretaries	10	6	7	2	7	18
Promedio	42%	29%	20%	9%		

Dbs: Ya no es una tabla de contingencia

Lo graficamos

