

PES UNIVERSITY, BENGALURU-560100 (Estd. Under Karnataka Act 10 of 2013)

Sample Question paper for UNIT 1, 2, 3 practice

UE19CS205 - Automata Formal Languages and Logic

1.	a)	Consider the function defined by the rule $f(x)=\{2x+2 \text{ for } 0 < x < 5\}$, specify the range and domain of the function	2
	b)	Let L be the language,	4
		L={ w \in {a*} or w \in {b}*, Σ {a,b}*}	
		Construct a DFA that accepts all the strings that are in L and rejects all the strings that are not in L.	
	c)	Answer the following:	2+2
		i) Consider the following DFA,	
		q_0 q_1 q_2 q_3	
		Give one sentence description of the above DFA	
		ii) draw the transition diagram for the FA $M = \{(A,B,C,D),(0,1),\delta,c,(A,C)\}$ $\delta(A,0) = ,\delta(A,1) = \{A,B,C\}$ $\delta(B,0) = B,\delta(B,1) = \{A,C\}$ $\delta(C,0) = \{B,C\},\delta(C,1) = \{B,D\}$	
2	a)	$\delta(D,0)=\{A,B,C,D\}\delta(D,1)=\{A\}$ Construct an NFA with six states that accepts the string over the alphabet $\{a,b\}$ with either even number of a's or the number of b's is multiple of 3.	6

	b)	Convert the following NFA to DFA	4
		$\frac{1}{\sqrt{q1}}$ $\frac{1}{\sqrt{q2}}$ $\frac{1}{\sqrt{q3}}$	
3.	a)	Give a regular expression that accepts a binary strings whose decimal value is divisible by 5 but not by 10	5
	b)	Explain the closure properties of regular languages	5
4.	A	Consider the following grammar:	6
		$S \rightarrow aSb S \rightarrow aS S \rightarrow \epsilon$	
		(a) Give a one-sentence description of the language generated by this grammar.	
		(b) Show that this grammar is ambiguous by giving a string that can be parsed in two different ways. Draw both parse trees.	
		(c) Give an unambiguous grammar that accepts the same language as the grammar above $ \\$	
	В	Let the alphabet be {a, b} and the language be the set of strings with more a's than b's. Show that this language is not regular using Pumping Lemma for regular languages.	4

5.	a)	Consider the following CFG	6
		S -> aAS a	
		A -> SbA SS da	
		Answer the following questions:	
		i) What are the terminals, non-terminals and the start symbol of the grammar?	
		ii) Draw parse tree for the following:	
		aabbaa	
		iii) Give leftmost derivation for the above string	
	b)	Give equivalent grammar in CNF for the following CFG	4
		S -> aSbb T	
		T -> bTaa S lambda	
6.	a)	Give PDA for the following language:	4
		$D = \{ a^{i} b^{j} c^{k} \mid i, j, k \ge 0, \text{ and } i = j \text{ or } j = k \}$	
	b)	For the given grammar, check the acceptance of string w = 10010 using CYK Algorithm-	6
		$S \rightarrow XY / YZ$	
		$X \rightarrow YX / 0$	
		$Y \rightarrow ZZ / 1$	
		$Z \rightarrow XY / 0$	