Projektowanie Algorytmów i Metody sztucznej inteligencji

Projekt 2

Mateusz Broszczak, 253988

10.05.2021, poniedziałek, 15:15-16:10

Prowadząca - Mgr inż. Marta Emirsajłow

1 Wprowadzenie

Projekt polegał na zaimplementowaniu grafu ważonego oraz badaniu algorytmu znalezienia najkrótszej ścieżki. Graf zaimplementowano dla dwóch reprezentacji: za pomocą listy sąsiedztwa oraz macierzy sąsiedztwa. Zastosowano algorytm Bellmana-Forda. W badaniach złożoności czasowej wygenerowano 100 instancji grafu o rozmiarach 10, 50, 100, 500, 1000 i gęstościach 25%, 50%, 75%, 100%.

2 Algorytm Bellmana-Forda

Algorytm ten służy do znalezienia najkrótszej ścieżki w grafie ważonym. Wykorzystuje on metodę relaksacji, czyli wyszukiwanie wszystkich połączeń pomiędzy dwoma wierzchołkami, w których ścieżka zamieniana jest połączeniami o mniejszym koszcie, aż do uzyskania najkrótszej ścieżki. Złożoność czasowa algorytmu wynosi $O(|V| \cdot |E|)$ (V-liczba wierzchołków, E-liczba krawędzi).

3 Przebieg eksperymentu i otrzymane wyniki

reprezentacja:		lista	macierz
gęstość [%]	liczba wierzchołków	czas [s]	
25	10	0,00000488	0,00002189
	50	0,0002018	0,0013777
	100	0,001485	0,010013
	500	0,269	1,294
	1000	3,92	13,98
50	10	0,00000346	0,00001043
	50	0,0003629	0,0016086
	100	0,003116	0,012990
	500	0,857	1,684
	1000	6,02	17,66
75	10	0,00000449	0,00001093
	50	0,000527	0,001653
	100	0,00484	0,01295
	500	1,224	1,766
	1000	8,26	18,57
100	10	0,00001	0,00002
	50	0,00071	0,00149
	100	0,00767	0,01167
	500	1,508	1,609
	1000	13,40	17,61

Tabela 1: Tabela uzyskanych uśrednionych czasów

Rysunek 1: Uśrednione czasy dla różnych gęstości grafu reprezentowanego na liście sąsiedztwa

Rysunek 2: Uśrednione czasy dla różnych gęstości grafu reprezentowanego na macierzy sąsiedztwa

Rysunek 3: Porównanie uśrednionych czasów dla obu reprezentacji dla gęstości grafu25%

Rysunek 4: Porównanie uśrednionych czasów dla obu reprezentacji dla gęstości grafu50%

Rysunek 5: Porównanie uśrednionych czasów dla obu reprezentacji dla gęstości grafu75%

Rysunek 6: Porównanie uśrednionych czasów dla obu reprezentacji dla gęstości grafu 100%

4 Wnioski i podsumowanie

- Dla liczby wierzchołków 10, 50, 100 algorytm dla obu reprezentacji działa w zbliżonym czasie, dla liczby wierzchołków 500 i 1000 reprezentacja wykorzystująca listę sąsiedztwa okazuje się szybsza
- Im większa gęstość grafu tym algorytm dla reprezentacji wykorzystującej listę sąsiedztwa był wolniejszy, na algorytm wykorzystujący macierz sąsiedztwa gęstość grafu nie ma większego wpływu

Literatura

- [1] Drozdek A. C++ Algorytmy i struktury danych. Helion
- [2] Cormen T., Leiserson C.E., Rivest R.L., Stein C. Wprowadzenie do algorytmów. WNT
- [3] https://pl.wikipedia.org/wiki/Algorytm_Bellmana-Forda
- [4] https://eduinf.waw.pl/inf/alg/001_search/0138a.php
- [5] https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/
- [6] https://brilliant.org/wiki/bellman-ford-algorithm/