Relative Photometry of HD 227858 and HD 338931 from Landholt Standard SA 113475

Evan Ott UT EID: eao466

December 9, 2013

Introduction

Methods

Results

Star	Filter	t(s)	$X = \sec z$	$S_{*,sky} = SUM$	$S_* = FLUX = SUM - MSKY * AREA$
HD 227858	В	30	1.294		
HD 227858	V	30	1.301		
HD 227858	R	30	1.307		
HD 227858	I	30	1.323		
HD 338931	В	30	1.394		
HD 338931	V	30	1.405		
HD 338931	R	30	1.413		
HD 338931	I	30	1.424		
SA 113475	В	30	1.206		
SA 113475	В	30	1.482		
SA 113475	V	30	1.207		
SA 113475	V	30	1.498		
SA 113475	R	30	1.209		
SA 113475	R	30	1.498		
SA 113475	I	30	1.213		
SA 113475	I	30	1.521		

From ?? and reference data for SA 113475, we arrive at the extinction coef-

ficients:

$$k_B = k_V = k_R = k_I =$$

$$m_1 - m_2 = k(X_1 - X_2) = -2.5 \log \frac{S_1 t_2}{S_2 t_1}$$
 (1)

Analysis

$$S_{*,sky} = \Delta \nu \overline{\Phi f} t A/g$$

Conclusion

References