Temas Presentes en la siguiente guía:

GUIA DE ECUACIONES DIFERENCIALES 2da PARTE.

Con más de 250 ejercicios.

- (1) Algunos Tipos de Sustituciones.
- (2) Reducción de Ordenes
- (3) Sistema de Ecuaciones Diferenciales.
- (4) A coeficientes constantes....
 - (5.1) Homogéneos.
 - (5.2) No Homogéneos.
- (5) Ecuaciones diferencial de orden "n" Homogéneas.
- (6) Método de Variación de Parámetros.
- (7) Método del Anulador.
- (8) Método de Coeficientes Indeterminados.
- (9) Ecuación de Euler.

GUIA DE ECUACIONES DIFERENCIALES.

SEGUNDA PARTE.

DIFERENTE TIPO DE CAMBIO DE VARIABLE¹.

1.- Realice el cambio de variable $z = y/x^n$ con la n indicada.

$$i.-\frac{dy}{dx} = \frac{1-xy^2}{2x^2y}$$

$$n = -\frac{1}{2}$$

i.
$$\frac{dy}{dx} = \frac{1 - xy^2}{2x^2y}$$
 $n = -\frac{1}{2}$ ii. $\frac{dy}{dx} = \frac{2 + 3xy^2}{4x^2y}$ $n = \frac{3}{4}$

$$n = \frac{3}{4}$$

iii.-
$$\frac{dy}{dx} = \frac{y - xy^2}{x + x^2y} \qquad n = -1$$

$$n = -1$$

2.- Pruebe que y' + P(x)y = Q(x). $y \cdot \log(y)$ puede resolverse mediante el cambio de variable $z = \log(y)$ y aplique esto para resolver.

$$xy' = 2x^2y + y\log(y)$$

SOLUCIONES FUNDAMENTALES DE ECUACIONES HOMOGENEAS².

3.- En las siguientes ecuaciones determine.

(a) Verificar que las funciones y_1, y_2 son soluciones LI de la ecuación dada.

(b) Encuentre la solución general de la ecuación diferencial dada.

(c) Encuentre la solución que satisfaga las condiciones iníciales.

i.-
$$y'' - 5y' + 6y = 0$$
 $y_1 = e^{2x}$ $y_2 = e^{3x}$ $y(0) = -1$ $y'(0) = -4$

ii.
$$y'' - 2y' + 5y = 0$$
 $y_1 = e^x \cos(2x)$ $y_2 = e^x \sin(2x)$ $y(0) = 2$ $y'(0) = 0$

iii.-
$$x^2y'' - 2y = 0$$
 $y_1 = x^2$ $y_2 = x^{-1}$ $y(1) = -2$ $y'(1) = -7$

iv.-
$$y'' + y' - 2y = 0$$
 $y_1 = e^x$ $y_2 = e^{-2x}$ $y(0) = 8$ e $y'(0) = 2$

v.-
$$y'' + y' - 2y = 0$$
 $y_1 = e^x$ $y_2 = e^{-2x}$ $y(1) = 0$ e^x $y'(1) = 0$

vi.-
$$y'' + 5y' + 6y = 0$$
 $y_1 = e^{-2x}$ $y_2 = e^{-3x}$ $y(0) = 1$ e $y'(0) = 1$

¹ Este ejercicio muestra que puede haber varios tipos de cambio de variable o sustituciones, pero el curso solo se adapta a las enseñadas en clases.

² Trate los siguientes ejercicios como ecuaciones lineales de orden "n". Acuérdese de Wronskiano el cual permite saber si dos soluciones son LI.

vii.-
$$y'' + y' = 0$$
 $y_1 = 1$ $y_2 = e^{-x}$ $y(2) = 0$ $y'(2) = e^{-2}$

4.- Considere la ecuación diferencial

$$y'' + 5y' - 6y = 0$$

- (a) Demuestre que $S_1 = \{e^x; e^x 6e^{-6x}\}$ es un conjunto fundamental de soluciones de la ecuación.
- (b) Demuestre que $S_2 = \{e^x; 3e^x + e^{-6x}\}$ es otro conjunto fundamental de soluciones de la ecuación.
- (c) 3 Verifique que $\varphi_{(x)} = e^{-6x}$ es solución de la ecuación; exprese luego $\varphi_{(x)}$ como combinación lineal de funciones pertenecientes a S_1 . Análogamente hágalo con S_2 .

COMO OBTENER UNA SEGUNDA SOLUCION CONOCIDA UNA.

5.- Demuestre que la segunda solución se obtiene mediante la siguiente igualdad $y_2(x) = f(x)y_1(x)$ donde $y_1(x)$ es la solución conocida de la ecuación diferencial.

$$y'' + P(x)y' + Q(x)y = 0$$

6.- La ecuación.

$$xy''' + (1-x)y'' + xy' - y = 0$$

Tiene a f(x) = x como solución. Use la sustitución y(x) = v(x)f(x) para reducir esta ecuación de tercer orden a una ecuación lineal homogénea de segundo orden en la variable w = v'.

7.- En los siguientes problemas se da una ecuación diferencial y una solución NO trivial. Determine una segunda solución linealmente independiente.

i.-
$$y'' - 3y' + 2y = 0$$
 $f(x) = e^x$
ii.- $y'' + 2y' - 15y = 0$ $f(x) = e^{3x}$
iii.- $x^2y'' + 6xy' + 6y = 0$ $x > 0$ $f(x) = x^{-2}$
iv.- $x^2y'' - 2xy' - 4y = 0$ $x > 0$ $f(x) = x^{-1}$
v.- $xy'' - (x + 1)y' + y = 0$ $x > 0$ $f(x) = e^x$
vi.- $xy'' + (1 - 2x)y' + (x - 1)y = 0$ $x > 0$ $f(x) = e^x$

 $^{^{3}}$ Describa la solución general como combinación lineal cuyo resultado es e^{-6x}

SISTEMAS DE ECUACIONES LINEALES DE GRADO UNO. HOMOGENEO Y NO HOMOGENEO

10.- Determine la solución de los sistemas que se presentan a continuación, algunos son homogéneos otros son no homogéneos. La prima (') indica derivada respecto a t.

ECUACIONES LINEALES DE ORDEN "n" HOMOGENEAS.

11.- Encuentre la solución de la ecuación diferencial.

i.-
$$y'' + y' - 2y = 0$$

ii.-
$$y'' + 5y' + 6y = 0$$

iii.-
$$y'' - 8y' + 16y = 0$$

iv.-
$$v'' + 6v' + 9v = 0$$

v.-
$$y'' + y' - y = 0$$

$$vi.-y'' - 5y' + 6y = 0$$

vii.-
$$7y' + 10y = 0$$

viii.-
$$y'' - y' - 11y = 0$$

ix.-
$$6y'' + y' - 2y = 0$$

$$x.-4y'' - 4y' - y = 0$$

$$xi.- 4y'' + 20y' + 25y = 0$$

$$xii.-3y'' + 11y' - 7y = 0$$

12.- Resuelva el problema con valor inicial.

i.-
$$y'' + y' = 0$$

$$y(0) = 2;$$
 $y'(0) = 1$

ii.-
$$y'' + 2y' - 8y = 0$$

$$y(0) = 3$$
 ; $y'(0) = -12$

iii.-
$$y'' + 2y' + y = 0$$

$$y(0) = 1$$
 $y'(0) = -3$

iv.-
$$y'' - 4y' + 3y = 0$$

$$y(0) = 1$$
 $y'(0) = \frac{1}{3}$

$$v.- y'' - 2y' - 2y = 0$$

$$y(0) = 0$$
 $y'(0) = 3$

$$vi.- y'' - 6y' + 9y = 0$$

$$y(0) = 2$$
 $y'(0) = \frac{25}{3}$

vii.-
$$y'' - 4y' + 4y = 0$$
 $y(1) = 1$ $y'(1) = 1$

$$v(1) = 1$$
 $v'(1) = 1$

viii.-
$$y'' - 4y' - 5y = 0$$

$$y(-1) = 3$$
 $y'(-1) = 9$

13.- Resuelva los siguientes apartados

(a) Comprobar que $y_1 = e^{-x}$ $y_2 = e^{2x}$ son soluciones de la ecuación reducida y'' - y' - 2y = 0 ¿Cuál es la solución general?.

(b) Hallar a y b tales que $y_p = ax + b$ sea una solución particular de la ecuación completa y'' - y' - 2y = 4x. Usar esta solución junto con el resultado en a.- para escribir la solución general de esta ecuación.

5

14.- Determine la solución general de cada una de las ecuaciones.⁴

i.-
$$y'' + y' - 6y = 0$$

ii.-
$$y'' + 2y' + y = 0$$

iii.-
$$y'' + 8y = 0$$

iv.-
$$2y'' - 4y' + 8y = 0$$

$$v - y'' - 4y' + 4y = 0$$

$$vi.-y'' - 9y' + 20y = 0$$

vii.-
$$2y'' + 2y' + 3y = 0$$

viii.-
$$-12y' + 9y = -4y''$$

$$ix.- v'' + v' = 0$$

$$x - y'' - 6y' + 25y = 0$$

$$xi.-25y = -4y'' - 20y'$$

$$xii.- y'' + 2y' + 3y = 0$$

xiii.-
$$y'' = 4y$$

$$xiv.- 4y'' - 8y' + 7y = 0$$

$$xv.- 2y'' + y' - y = 0$$

xvi.-
$$16y'' - 8y' + y = 0$$

xvii.-
$$v'' + 4v' + 5v = 0$$

xviii.-
$$y'' + 4y' - 5y = 0$$

15.- Resuelva las siguientes ecuaciones diferenciales de valor inicial.

i.-
$$y'' - 5y' + 6y = 0$$
 $y(1) = e^2$ e $y'(1) = 3e^2$

$$y(1) = e^2 e^y$$

$$e \ y'(1) = 3e^2$$

ii.-
$$y'' - 6y' + 5y = 0$$
 $y(0) = 3$ e $y'(0) = 11$

$$y(0) = 3 \ e \ y'(0) = 11$$

iii.-
$$y'' - 6y' + 9y = 0$$

iii.-
$$y'' - 6y' + 9y = 0$$
 $y(0) = 0$ e $y'(0) = 5$

iv.-
$$y'' + 4y' + 5y = 0$$

iv.-
$$y'' + 4y' + 5y = 0$$
 $y(0) = 1$ e $y'(0) = 0$

$$y - y'' + 4y' + 2y = 0$$

v.-
$$y'' + 4y' + 2y = 0$$
 $y(0) = -1$ $e y'(0) = 2 + 3\sqrt{2}$

$$vi.-y'' + 8y' - 9y = 0$$

vi.-
$$y'' + 8y' - 9y = 0$$
 $y(1) = 2$ e $y'(1) = 0$

ECUACIONES LINEALES DE ORDEN "n" GENERAL

33.- Encuentre la solución general de la ecuación diferencial.

i.-
$$y''' - 3y'' - y' + 3y = 0$$

ii.-
$$6y''' + 7y'' - y' - 2y = 0$$

iii.-
$$y''' + 3y'' - 4y' - 6y = 0$$
 iv.- $y''' - y'' + 2y = 0$

iv.-
$$y''' - y'' + 2y = 0$$

v.-
$$y''' - 9y'' + 27y' - 27y = 0$$
 vi.- $y''' + 5y'' + 3y' - 9y = 0$

$$vi.-y''' + 5y'' + 3y' - 9y = 0$$

vii.-
$$y^4 + 4y'' + 4y = 0$$

viii.-
$$y''' - 3y'' + 2y' = 0$$

$$ix.-y''' - 3y'' + 4y' - 2y = 0$$

$$x.-y'''-y=0$$

⁴ Aquí le presento mas ejercicios referente a la pregunta 11 y 12.

$$xi.-y''' + y = 0$$
 $xii.-y''' + 3y'' + 3y' + y = 0$

xiii-
$$y^4 + 4y''' + 6y'' + 4y' + y = 0$$
 xiv.- $y^4 - y = 0$

$$xv.- y^4 + 5y'' + 4y = 0$$
 $xvi.- y^4 - 2a^2y'' + a^4y = 0$

xvii.-
$$y^4 + 2a^2y'' + a^4y = 0$$
 xviii.- $y^4 + 2y''' + 2y'' + 2y'' + y = 0$

$$xix.- y^4 + 2y''' - 2y'' - 6y' + 5y = 0$$
 $xx.- y''' - 6y'' + 11y' - 6y = 0$

xxi.-
$$y^4 + y''' - 3y'' - 5y' - 2y = 0$$
 xxii.- $y^5 - 6y^4 - 8y''' + 48y'' + 16y' - 96y = 0$

34.- En este ejercicio se indica la ecuación característica determine las soluciones.

i.-
$$(r-1)^2(r+3)(r^2+2r+5)^2=0$$

ii.-
$$(r+1)^2(r-6)^3(r+5)(r^2+1)(r^2+4) = 0$$

iii.-
$$(r-1)^3(r-2)(r^2+r+1)(r^2+6r+10)^3=0$$

iv.-
$$(r+4)(r-3)(r+2)^3(r^2+4r+5)^2r^5=0$$

35.- Resuelva el problema de valor inicial.

i.-
$$y''' + 7y'' + 14y' + 8y = 0$$
 $y(0) = 1$ $y'(0) = -3$ $y''(0) = 13$

ii.
$$y''' - y'' - 4y' + 4y = 0$$
 $y(0) = -4$ $y'(0) = -1$ $y''(0) = -19$

iii.-
$$y''' - 4y'' + 7y' - 6y = 0$$
 $y(0) = 1$ $y'(0) = 0$ $y''(0) = 0$

ECUACIONES AUXILIARES CON RAICES COMPLEJAS.

16.- Determine la ecuación auxiliar de la ecuación diferencial dada. La misma tiene raíces complejas. Encuentre la solución general.

i.-
$$y'' + y = 0$$
 ii.- $y'' - 6y' + 10y = 0$

iii.-
$$y'' + 4y' + 6y = 0$$
 iv.- $4y'' + 4y' + 6y = 0$

17.- Obtenga la solución general de la ecuación diferencial.

i.-
$$y'' + 4y' + 8y = 0$$
 ii.- $y'' + 10y' + 25y = 0$

iii.-
$$y'' + 2y' + 5y = 0$$
 iv.- $y'' - 3y' - 11y = 0$

v.-
$$y'' - y' + 7y = 0$$
 vi.- $3y'' + 4y' + 9y = 0$

18.- Resuelva el problema con valor inicial dado.

i.-
$$y'' + 2y' + 2y = 0$$
 $y(0) = 2$ $y'(0) = 1$
ii.- $y'' - 4y' + 2y = 0$ $y(0) = 0$ $y'(0) = 1$
iii.- $y'' - 2y' + y = 0$ $y(0) = 1$ $y'(0) = -2$
iv.- $y'' - 2y' + 2y = 0$ $y(\pi) = e^{\pi}$ $y'(\pi) = 0$

19.- En el estudio de un circuito eléctrico que consta de una resistor, capacitor, inductor y una fuerza electromotriz se llega a un problema de valor inicial de la forma

$$L.\frac{di}{dt} + Ri + \frac{q}{C} = E(t) \quad q(0) = q_0 \quad i(0) = i_0$$

Donde L es la inductancia en henrios, R es la resistencia en ohmios, C es la capacitancia en faradios,, E(t) es la fuerza electromotriz en voltios, q(t) es la carga en coulombios en el capacitor en el tiempo t e $i = \frac{dq}{dt}$ es la corriente en amperios. Encuentre la corriente en el instante t si la carga en el capacitor es inicialmente 0, la corriente inicial es 0, L=10 H, R=20 ohmios, C=1/6260 F y E(t)=100 V.

Sugerencia: derive para obtener una ecuación homogénea y de orden 2. 5

ECUACIONES DIFERENCIALES NO HOMOGENEAS METODOS PARA DETERMINAR LA SOLUCION PARTICULAR

METODO (1) COEFICIENTES INDETERMINADOS

20.- Encuentre una solución particular de la ecuación diferencial dada.

i.-
$$y'' + 2y' - y = 10$$

ii.- $y'' + y = 5e^{2x}$
iii.- $2y' + y = 3x^2 + 10x$
iv.- $y'' + y' + y = 2\cos(2x) - 3\sin(2x)$
v.- $y'' - 5y' + 6y = xe^x$
vi.- $y'' - y = x\sin(x)$
vii.- $y'' - 2y' + y = 8e^x$
viii.- $y'' - 6y' + 9y = x^2 + e^x$

⁵ Este tipo de problema lo estará resolviendo en física 4 aquellas persona quienes lleguen ahí. Son conocidos como circuitos RLC. Resistencia Capacitancia Condensador.

21.- Encuentre la solución general de la ecuación diferencial dada.

i.-
$$y'' - y = -11x + 1$$

ii.-
$$y'' + y' - 2y = x^2 - 2x + 3$$

iii.-
$$y'' - 3y' + 2y = e^x \sin(x)$$

iii.-
$$y'' - 3y' + 2y = e^x \sin(x)$$
 iv.- $y'' + 2y' + 2y = e^{-x} \cos(x)$

$$v - y'' - 4y' + 4y = xe^{2x}$$

vi.-
$$y'' + 4y' + 5y = e^{-x} - \sin(2x)$$

vii.-
$$y'' + y' + y = \cos(x) - x^2 e^x$$
 viii.- $y'' + 3y' - 10y = 6e^{4x}$

viii.-
$$y'' + 3y' - 10y = 6e^{4x}$$

$$ix.-y'' + 4y = 3\sin(x)$$

$$x.-y'' + 10y' + 25y = 14e^{-5x}$$

$$xi.-y'' - 2y' + 5y = 25x^2 + 12$$
 $xii.-y'' - y' - 6y = 20e^{-2x}$

$$xii.-y'' - y' - 6y = 20e^{-2x}$$

$$xv.-y'' - 2y' = 12x - 10$$
 $xvi.-y'' - 2y' + y = 6e^x$

xvii.-
$$y'' - 2y' + 2y = e^x \sin(x)$$
 xviii.- $y'' + y' = 10x^4 + 2$

xviii.-
$$y'' + y' = 10x^4 + 2$$

22.- Encuentre la solución del problema de valor inicial.

i.-
$$y' - y = 1$$

$$y(0) = 0$$

 $xiii.-y'' - 3y' + 2y = 14\sin(2x) - 18\cos(2x)$ $xiv.-y'' + y = 2\cos(x)$

$$y(0) = 0$$
 ii.- $y'' + y = 2e^{-x}$ $y(0) = 0 = y'(0)$

iii.-
$$y'' - y' - 2y = \cos(x) - \sin(2x)$$
 $y(0) = -\frac{7}{20}$ $y'(0) = \frac{1}{5}$

$$y(0) = -\frac{7}{20} \quad y'(0) = \frac{1}{5}$$

iv.-
$$y'' + y' - 12y = e^x + e^{2x} - 1$$
 $y(0) = 1$ $y'(0) = 3$

$$y(0) = 1$$
 $y'(0) = 3$

v.-
$$y'' - y = \sin(x) - e^{2x}$$

23.- Determine como es la forma de una solución particular de la ecuación diferencial.

i.-
$$y'' + y = \sin(x) + x\cos(x) + 10^x$$

ii.-
$$y'' - y' - 2y = e^x \cos(x) - x^2 + x + 1$$

iii.-
$$y'' - 4y' + 4y = x^2 e^{2x} - e^{2x}$$

iv.-
$$y'' - y = e^x - 7 + \cos(x)$$

24.- Sea

$$y'' + 2y' + 5y = g(x)$$
 $y(0) = 0$ $y'(0) = 0$

Con

$$g(x) = \begin{cases} 10, & 0 \le x \le \frac{3\pi}{2} \\ 0, & x > \frac{3\pi}{2} \end{cases}$$

- (a) Encuentre una solución del problema de valor inicial para $0 \le x \le \frac{3\pi}{2}$.
- (b) Encuentre la solución general para $x > \frac{3\pi}{2}$
- (c) Elija ahora las constantes de la solución general de la parte (b) de manera que la solución de la parte (a) y la solución de (b) coincidan en $x=\frac{3\pi}{2}$. Esto proporciona una función continua que satisface la ecuación diferencial excepto en $x=\frac{3\pi}{2}$.

25.- Si $y_1(x)$ e $y_2(x)$ son soluciones de

$$y'' + P(x)y' + Q(x)y = R_1(x)$$
 $y'' + P(x)y' + Q(x)y = R_2(x)$

Pruebe que $y(x) = y_1(x) + y_2(x)$ es una solución de

$$y'' + P(x)y' + Q(x)y = R_1(x) + R_2(x)$$

(a) Utilice este método para determinar.

i.-
$$y'' + 4y = 4\cos(2x) + 6\cos(x) + 8x^2 - 4x$$

ii.-
$$y'' + 9y = 2\sin(3x) + 4\sin(x) - 26e^{-2x} + 27x^3$$

METODO (2) VARIACION DE PARAMETROS.

26.- Hallar una solución particular de cada una de estas ecuaciones.

$$i.-y'' + 4y = \tan(2x)$$

ii.-
$$y'' + 2y' + y = e^{-x}\log(x)$$

iii.-
$$y'' - 2y' - 3y = 64e^{-x}$$

iv.-
$$y'' + 2y' + 5y = e^{-x} \sec(2x)$$

$$v.-2y'' + 3y' + y = e^{-3x}$$

vi.-
$$y'' - 3y' + 2y = (1 + e^{-x})^{-1}$$

27.- Encuentre la solución general de la ecuación diferencial empleando el método de variación de parámetros.

$$i.-y'' + 4y = \tan(2x)$$

ii.-
$$2y'' - 2y' - 4y = 2e^{3x}$$

iii.-
$$y'' - 2y' + y = x^{-1}e^x$$

iv.-
$$y'' + 16y = \sec(4x)$$

$$v.-y'' + 4y = \csc^2 2x$$

28.- Encuentre la solución general de la ecuación diferencial dada.

i.-
$$y'' + y = \tan(x) + e^{3x} - 1$$

ii.-
$$y'' + 4y = \sec^4(2x)$$

iii.-
$$y'' + y = 2 \sec(x) - x^2 + 1$$

iv.
$$-\frac{1}{2}y'' + 2y = \tan(2x) - \frac{1}{2}e^x$$

METODO (3) ANULADOR.

29.- Encuentre un operador diferencial que anule a la función dada.

i.-
$$3x^2 - 6x + 1$$

ii.-
$$x^4 - x^2 + 11$$

iii.-
$$e^{5x}$$

$$iv - e^{-7x}$$

$$v - e^{2x} - 6e^x$$

$$vi. - x^2 - e^x$$

vii.-
$$x^2e^{-x}\sin(2x)$$

viii.-
$$xe^{3x}\cos(5x)$$

$$ix.-x^2e^x - xsin(4x) + x^3$$

$$x - x e^{-2x} + x e^{-5x} \sin(3x)$$

30.- Utilice el método de los anuladores para determinar la forma de la solución particular las siguientes ecuaciones. Halle el valor de las constantes.

i.-
$$y'' - 5y' + 6y = \cos(2x) + 1$$

ii.-
$$y'' - 5y' + 6y = e^{3x} - x^2$$

iii.-
$$y'' + 2y' + y = x^2 - x + 1$$

iv.-
$$y'' + 2y' + 2y = e^{-x}\cos(x) + x^2$$

$$y - y''' - 2y'' + y' = x - e^x$$

SUPERPOSICION DE SOLUCIONES.

31.- Se le da una ecuación no homogénea y una solución particular de ella. Encuentre la solución general de la ecuación.

i.-
$$y'' + y' = 1$$
 $y_p(x) = x$

ii.-
$$y'' - y' - 2y = 1 - 2x$$
 $y_n(x) = x - 1$

iii.-
$$y'' + 2y' + 4y - 4\cos(2x) = 0$$
 $y_p(x) = \sin(2x)$

iv.
$$\frac{d^2\theta}{dt^2} - \frac{d\theta}{dt} + \theta = \sin(t)$$
 $\theta_p(t) = \cos(t)$

v.-
$$y'' = 2y + 2 \tan^2(x)$$
 $y_p(x) = \tan(x)$

32.- Puesto que $y_1(x) = \cos(x)$ es solución de $y'' - y' + y = \sin(x)$ y $y_2(x) = e^{2x}/3$ es solución de $y'' - y' + y = e^{2x}$ determine soluciones a cada una de las siguientes ecuaciones:

i.-
$$y'' - y' + y = 5\sin(x)$$

ii.-
$$y'' - y' + y = \sin(x) - 3e^{2x}$$

iii.-
$$y'' - y' + y = 4\sin(x) + 18e^{2x}$$

ECUACION DE EULER

36.- Resuelva el siguiente sistema mediante el método de Euler.

$$\begin{cases} tx' = 2x - y + t^{-1} \\ ty' = 3x - 2y + 1 \end{cases}$$

37.- Para determinar la resistencia de una pequeña esfera que se mueve a velocidad constante en un fluido viscoso, es necesario resolver la ecuación diferencial

$$x^3y^4 + 8x^2y''' + 8xy'' - 8y' = 0$$

Determine su solución y demuestre que es exactamente $y=c_1x^2+c_2x^{-1}+c_3x^{-3}+c_4$

38.- Hallar la solución general de las siguientes ecuaciones diferenciales.

i.-
$$x^2y'' + 3xy' + 10y = 0$$

ii.-
$$2x^2y'' + 10xy' + 8y = 0$$

iii.-
$$x^2y'' + 2xy' - 12y = 0$$

iv.-
$$4x^2y'' - 3y = 0$$

$$v.- x^2y'' - 3xy' + 4y = 0$$

$$vi.- x^2y'' + 2xy' - 6y = 0$$

$$vii.- x^2y'' + 2xy' + 3y = 0$$

viii.-
$$x^2y'' + xy' - 2y = 0$$

ix.-
$$x^2y'' + xy' - 16y = 0$$

$$x - x^3 v''' + 3x^2 v'' = 0$$

$$xi.- x^3y''' + x^2y'' - 2xy' + 2y = 0$$

$$xii.- x^3y''' + 2x^2y'' + xy' - y = 0$$

xiii.-
$$xy'' + 3y' - \frac{3}{x}y = x^2$$

$$xiv.- x^4y'' - 6x^2y = 1 - 6x^2$$

$$xv - x^2y'' + 3xy' + 5y = x^2$$

xvi.-
$$x^2y'' + xy' + y = \ln(x)\sin(\ln(x))$$

xvii.-
$$x^2y'' - y = \ln^2(x) - 1$$

xviii.-
$$x^2y'' + 3xy' - 8y = \ln^3(x) - \ln(x)$$

$$xix.- x^2y'' = xy' - 10y + sin(ln(x))$$

$$xx.- x^2y'' + 3xy' + 4y = \cos(4\ln(x))$$

$$xxi.-x^3y''' + x^2y'' - 2xy' + 2y = 0$$
 $x > 0$

xxii.-
$$x^4y^4 + 6x^3y''' + 2x^2y'' - 4xy' + 4y = 0$$
 $x > 0$

xxiii.-
$$x^3y''' - 2x^2y'' + 13xy' - 13y = 0$$
 $x > 0$

$$xxiv.-x^2y'' - 4xy' + 4y = 0$$
 $y(1) = -2$ $y'(1) = -11$

xxv.-
$$x^2y'' - 3xy' + 3y = 9 \ln^2(x) + 4$$
 $y(1) = 6$ $y'(1) = 8$

EXTRA.

Use el método de Euler para demostrar que

$$ax^3y''' + bx^2y'' + cxy' + dy = 0$$
 $x > 0$

Es igual a

$$ay'''(t) + (b - 3a)y''(t) + (2a - b + c)y' + dy(t) = 0$$

Ahora resuelva.

a.-
$$x^3y''' - 2x^2y'' + 3xy' - 3y = 0$$

b.-
$$x^3y''' + x^2y'' - 8xy' - 4y = 0$$

REVISION

39.- Utilice el método de variación de parámetros y resuelva lo siguiente:

$$a.-y'' + y = \sec^2 t \tan t$$

b.-
$$y'' - y = \frac{2}{1+e^t}$$

c.-
$$y'' + 2y' - 8y = 2e^{-2t} - e^{-t}$$
 $y(0) = y'(0) = 0$

d.-
$$y'' + 2y' + y = e^{-t} \ln(t)$$

e.-
$$y''' + y' = \tan(t) - \frac{\pi}{2} < t < \frac{\pi}{2}$$

40.- Use el método de coeficientes indeterminados

a.-
$$y'' + 8y = 5t + 2e^{-t}$$

b.-
$$y'' - y'' = t + e^t$$

c.-
$$y^4 - 16y = 1 - 16\cos(2t)$$

d.-
$$y'' + 4y' + 5y = 10$$
 $y(0) = y'(0) = 0$

e.-
$$y'' + 4y' + 5y = 8\sin(t)$$
 $y(0) = y'(0) = 0$

f.-
$$y^4 - 4y'' = 5t - e^{2t}$$

41.- Resuelva por medio del polinomio anulador.

$$a.-y'' + a^2y = \sin(at)$$

b.-
$$y''' - y' = e^t + 1$$

c.-
$$y'' + 2y' + y = \frac{1}{4}t + e^{-t}$$

42.- Encuentre la solución general de la ecuación diferencial dada.

i.-
$$y'' + 8y' - 9y = 0$$

ii.-
$$4y'' - 4y' + 10y = 0$$

iii.-
$$9y'' - 30y' + 25y = 0$$

iv.-
$$36y'' + 24y' + 5y = 0$$

$$v.-16y'' - 56y' + 49y = 0$$

vi.-
$$x^2y''(x) + 5y(x) = 0$$
 $x > 0$

vii.-
$$y(y')^3 - y'' = 0$$

viii.-
$$3y''' + 10y'' + 9y' + 2y = 0$$

ix.-
$$y''' + 3y'' + 5y' + 3y = 0$$

$$x.-4y''' + 8y'' - 11y' + 3y = 0$$

$$xi. - y'' - 3y' + 7y = 7x^2 - e^x$$

$$xii.-y'' + 16y = tan(4x)$$

xiii.-
$$4y'' - 12y' + 9y = e^{5x} + e^{3x}$$

xiii.
$$4y'' - 12y' + 9y = e^{5x} + e^{3x}$$
 xiv. $x^2y'' + 2xy' - 2y = 6x^{-2} + 3x$

43.- Determine la solución con condición inicial.

i.-
$$4y'' - 4y' + 5y = 0$$

i.-
$$4y'' - 4y' + 5y = 0$$
 $y(0) = 1$ $y'(0) = -\frac{11}{2}$

ii.-
$$y'' - 2y' + 10y = 6\cos(3x) - \sin(3x)$$
 $y(0) = 2$ $y'(0) = -8$

$$v(0) = 2$$
 $v'(0) = -8$

iii.-
$$y''' - 12y'' + 27y' + 40y = 0$$

iii.-
$$y''' - 12y'' + 27y' + 40y = 0$$
 $y(0) = -3$ $y'(0) = -6$ $y''(0) = -12$

44.- Encuentre la solución general de la ecuación dada.

i.-
$$y''' - 2y'' - 5y' + 6y = e^x + x^2$$

ii.-
$$y''' + 3y'' - 4y = e^{-2x}$$

iii.-
$$y''' + 4y'' + y' - 26y = e^{-3x} \sin(2x) + x$$

iv.-
$$y''' + 2y'' - 9y' - 18y = -18x^2 - 18x + 22$$
 $y(0) = -2$ $y'(0) = -8$ $y''(0) = -12$

v.-
$$y''' - 2y'' - 3y' + 10y = 34xe^{-2x} - 16e^{-2x} - 16e^{-2x} - 10x^2 + 6x + 34$$

$$y(0) = 3$$
 $y'(0) = y''(0) = 0$

COLUCIONES A LOS DDODI EMAS
SOLUCIONES A LOS PROBLEMAS
16

PREGUNTA 1.

i.-
$$x = ce^{xy^2}$$
 ii.- $2 + 5xy^2 = cx^{\frac{5}{2}}$ iii.- $x = cye^{xy}$

PREGUNTA 2.

$$\log(y) = 2x^2 + cx$$

PREGUNTA 3.

i.- (b)
$$y = c_1 e^{2x} + c_2 e^{3x}$$
 (c) $y = e^{2x} - 2e^{3x}$

ii.-
$$(b)y = c_1 e^x \cos(2x) + c_2 e^x \sin(2x)$$

$$(c)y = 2e^x \cos(2x) - e^x \sin(2x)$$

iii.-
$$(b)y = c_1x^2 + c_2x^{-1}$$
 $(c) y = -3x^2 + x^{-1}$

iv.-
$$6e^x + 2e^{-2x}$$
 v.- $y = 0$ vi.- $y = 4e^{-2x} - 3e^{-3x}$

vii.-
$$y = e^{-2} - e^{-x}$$

PREGUNATA 4.

(c)
$$\varphi(x) = e^x + (-1)(e^x - e^{-6x})$$

$$\varphi(x) = (-3)e^x + (1)(3e^x + e^{-6x})$$

PREGUNTA 5

Sea $y_2 = f(x)$, $y_1(x)$ derivamos dos veces

$$y'_{2}(x) = f(x).y'_{1} + f'.y_{1}$$

$$y''_2 = f.y''_1 + 2y'_1f' + f''.y'_1$$

$$f(x)(y''_1 + P(x)y'_1 + Q(x)y_1) + f''(x)y_1 + f'(2y'_1 + Py_1) = 0$$

Como y_1 es solución se tiene

$$f''(x)y_1 + f'(2y'_1 + Py_1) = 0$$

$$f''(x)y_1 = -f'(2y'_1 + Py_1)$$

PREGUNTA 10

i.-
$$\begin{cases} x = \frac{3}{2}c_1e^{2t} - c_2e^{-3t} \\ y = c_1e^{2t} + c_2e^{-3t} \end{cases}$$

ii.-
$$\begin{cases} x = -\frac{1}{2}c_1e^{3t} + \frac{1}{2}c_2e^{-t} \\ y = c_1e^{3t} + c_2e^{-t} \end{cases}$$

iii.-
$$\begin{cases} x = -5 \\ y = 1 \end{cases}$$

iv.-
$$\begin{cases} x = c_1 + c_2 e^{-t} + \frac{1}{2} e^t + \frac{5}{3} t \\ y = c_1 - 2c_2 e^{-t} + \frac{5}{3} t \end{cases}$$

v.-
$$\begin{cases} x = c_1 e^t + \frac{1}{4} \cos(t) - \frac{1}{4} \sin(t) \\ y = -3c_1 e^t - \frac{3}{4} \cos(t) - \frac{1}{4} \sin(t) \end{cases}$$

vi.-
$$\begin{cases} x = -c_1 \sin(t) + c_2 \cos(t) + 2t - 1 \\ y = c_1 \cos(t) + c_2 \sin(t) + t^2 - 2 \end{cases}$$

vii.-
$$\begin{cases} x = -\frac{2}{3}c_1e^{2t} + c_2e^{7t} + t + 1\\ y = c_1e^{2t} + c_2e^{7t} - 5t - 2 \end{cases}$$

$$\begin{cases} x = \frac{1}{2}e^{t}((c_{1} - c_{2})\cos(t) + (c_{1} + c_{2})\sin(t)) + c_{3}e^{2t} \\ y = e^{t}(c_{1}\cos(t) + c_{2}\sin(t)) \\ z = \frac{3}{2}e^{t}((c_{1} - c_{2})\cos(t) + (c_{1} + c_{2})\sin(t)) + c_{3}e^{2t} \end{cases}$$

$$\text{x.-} \begin{cases} x = 2c_1e^{-t} + c_2e^t \\ y = c_1e^{-t} + c_2e^t \end{cases}$$

Sustituimos en
$$y'' + P(x)y' + Q(x)y = 0$$
 reordenamos $xi.-\begin{cases} x = e^{3t}(2c_1\cos(3t) + 2c_2\sin(3t)) \\ y = e^{3t}(c_1(\cos(3t) + 2\sin(3t)) + c_2(\sin(3t) - 3\cos(3t)) \end{cases}$

xii.-
$$\begin{cases} x = e^{3t}(c_1 \cos(2t) + c_2 \sin(2t)) \\ y = e^{3t}(c_1(\sin(2t) - \cos(2t)) - c_2(\sin(2t) + \cos(2t)) \end{cases}$$

xiii.-
$$\begin{cases} x = -2c_1e^{3t} + c_3(1+2t)e^{3t} \\ y = c_1e^{3t} - c_2te^{3t} \end{cases}$$

xiv.-
$$\begin{cases} x = 3c_1 + c_2 e^{-2t} \\ y = 4c_1 + 2c_2 e^{-2t} \end{cases}$$

$$\frac{f''(x)}{f'(x)} = -\frac{2y'_1}{y_1} - Py_1 = \log(f'(x)) - 2\log(y_1) - \int P \, dx \, \text{xv.-} \begin{cases} x = c_1 e^{2t} \\ y = c_2 e^{3t} \end{cases}$$

$$f'(x) = \frac{1}{y_1^2} e^{-\int P(x) dx} \implies f(x) = \int \frac{1}{y_1^2} e^{-\int P(x) dx} dx \qquad \text{xvi.-} \begin{cases} x = c_1 e^{-3t} + c_2 (1-t) e^{-3t} \\ y = -c_1 e^{-3t} + c_2 t e^{-3t} \end{cases}$$

$$xvi.- \{ y = -c_1 e^{-3t} + c_2 t e^{-3t} \}$$

i.-
$$y = e^{2x}$$
 iii.- $y = x^{-3}$

$$y - y = x + 1$$

xvii.-
$$\begin{cases} x = 2c_1e^{10t} + 3c_2e^{3t} \\ y = c_1e^{10t} - 2c_2e^{3t} \end{cases}$$

xviii.-
$$\begin{cases} x = C_1 e^{2t} - C_2 e^{-t} - C_3 e^{-t} + t e^{-t} + e^{-t} \\ y = C_1 e^{2t} + C_3 e^{-t} \\ z = C_1 e^{2t} + C_2 e^{-t} - t e^{-t} + 1 \end{cases}$$

i.-
$$c_1 e^x + c_2 e^{-2x}$$

i.-
$$c_1 e^x + c_2 e^{-2x}$$
 ii.- $c_1 e^{-2x} + c_2 e^{-3x}$

iii.-
$$c_1 e^{4x} + c_2 x e^{4x}$$
 iv.- $c_1 e^{-3x} + c_2 x e^{-3x}$

iv.-
$$c_1 e^{-3x} + c_2 x e^{-3x}$$

v.-
$$c_1 e^{\frac{(-1-\sqrt{5})x}{2}} + c_2 e^{\frac{(-1+\sqrt{5})x}{2}}$$
 vi.- $c_1 e^{2x} + c_2 e^{3x}$

vii.-
$$c_1 e^{-\frac{10x}{7}}$$
 viii.- $c_1 e^{\frac{(1+3\sqrt{5})x}{2}} + c_2 e^{\frac{(1-3\sqrt{5})x}{2}}$

viii.-
$$c_1 e^{\frac{c_1}{2}} + c_2 e^{\frac{c_2}{2}}$$

ix.-
$$c_1 e^{\frac{x}{2}} + c_2 e^{-\frac{2x}{3}}$$

ix.-
$$c_1 e^{\frac{x}{2}} + c_2 e^{-\frac{2x}{3}}$$
 x.- $c_1 e^{\frac{(1+\sqrt{2})x}{2}} + c_2 e^{\frac{(1-\sqrt{2})x}{2}}$

$$xi. - c_1 e^{-\frac{5x}{2}} + c_2 x e^{-\frac{5x}{2}}$$

xi.-
$$c_1 e^{-\frac{5x}{2}} + c_2 x e^{-\frac{5x}{2}}$$
 xii.- $c_1 e^{\frac{(-11+\sqrt{205})x}{2}} + c_2 e^{\frac{(-11-\sqrt{205})x}{2}}$

PREGUNTA 12

i.-
$$3 - e^{-x}$$
 ii.- $3e^{-4t}$

iii.-
$$e^{-x} - 2xe^{-x}$$
 iv.- $\frac{4}{3}e^t - \frac{1}{3}e^{3t}$

v.-
$$\left(\frac{\sqrt{3}}{2}\right)\left(e^{(1+\sqrt{3})x}-e^{(1-\sqrt{3})x}\right)$$

vii.-
$$(2-x)e^{2x-2}$$

PREGUNTA 13

(a)
$$y = c_1 e^{-x} + c_2 e^{2x}$$

(b)
$$y = c_1 e^{-x} + c_2 e^{2x} - 2x + 1$$

PREGUNTA 14

i.-
$$c_1 e^{2x} + c_2 e^{-3x}$$
 ii.- $c_1 e^{-x} + c_2 x e^{-x}$

ii.-
$$c_1 e^{-x} + c_2 x e^{-x}$$

iii.-
$$c_1 \cos(2\sqrt{2}x) + c_2 \sin(2\sqrt{2}x)$$

iv.-
$$e^x(c_1\cos(\sqrt{3}x) + c_2\sin(\sqrt{3}x))$$

v.-
$$c_1 e^{2x} + c_2 x e^{2x}$$
 vi.- $c_1 e^{5x} + c_2 e^{4x}$

$$vi. - c_1 e^{5x} + c_2 e^{4x}$$

vii.-
$$e^{-\frac{x}{2}} \left(c_1 \cos \left(\frac{\sqrt{5}x}{2} \right) + c_2 \sin \left(\frac{\sqrt{5}x}{2} \right) \right)$$

viii.-
$$c_1 e^{\frac{3x}{2}} + c_2 x e^{\frac{3x}{2}}$$
 ix.- $c_1 + c_2 e^{-x}$

ix.-
$$c_1 + c_2 e^{-x}$$

$$x - e^{3x}(c_1 \cos(4x) + c_2 \sin(4x))$$

xi.-
$$c_1 e^{-\frac{5x}{2}} + c_2 x e^{-\frac{5x}{2}}$$
 xii.- $e^{-x} (c_1 \cos(\sqrt{2}x) + c_2 \sin(\sqrt{2}x))$

xiii.-
$$c_1 e^{2x} + c_2 e^{-2x}$$
 xiv.- $e^x \left(c_1 \cos\left(\frac{\sqrt{3}x}{2}\right) + c_2 \sin\left(\frac{\sqrt{3}x}{2}\right)\right)$

xv.-
$$c_1 e^{\frac{x}{2}} + c_2 e^{-x}$$
 xvi.- $c_1 e^{\frac{x}{4}} + c_2 x e^{\frac{x}{4}}$

xvii.-
$$e^{-2x}(c_1\cos(x) + c_2\sin(x))$$

xviii.-
$$c_1 e^x + c_2 e^{-5x}$$

PREGUNTA 15

i.-
$$e^{3x-1}$$
 ii.- $e^x + 2e^{5x}$

iii.-
$$5xe^{3x}$$
 iv.- $e^{-2x}(\cos(x) + 2\sin(x))$

v.-
$$y = e^{(-2+\sqrt{2})x} - 2e^{(-2-\sqrt{2})x}$$

vi.-
$$y = \frac{9}{5}e^{x-1} + \frac{1}{5}e^{-9(x-1)}$$

PREGUNTA 16

i.-
$$c_1 \cos(x) + c_2 \sin(x)$$

ii.-
$$c_1 e^{3x} \cos(x) + c_2 e^{3x} \sin(x)$$

iii.-
$$c_1 e^{-2x} \cos(\sqrt{2}x) + c_2 e^{-2x} \sin(\sqrt{2}x)$$

iv.-
$$c_1 e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{5}x}{2}\right) + c_2 e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{5}x}{2}\right)$$

PREGUNTA 17

i.-
$$c_1 e^{-2x} (\cos(2x) + c_2 e^{-2x} \sin(2x)$$

ii.-
$$c_1 e^{-5x} + c_2 x e^{-5x}$$

iii.-
$$c_1 e^{-x} \cos(2x) + c_2 e^{-x} \sin(2x)$$

iv.-
$$c_1 e^{\frac{(3+\sqrt{53})x}{2}} + c_2 e^{\frac{(3-\sqrt{53})x}{2}}$$

$$\text{v.- } c_1 e^{\frac{x}{2}} \cos\left(\frac{3\sqrt{3}x}{2}\right) + c_2 e^{\frac{x}{2}} \sin\left(\frac{3\sqrt{3}x}{2}\right)$$

PREGUNTA 18

i.-
$$e^{-x}\cos(x) + 3e^{-x}\sin(x)$$

ii.-
$$\frac{\sqrt{2}}{4} \left(e^{(2+\sqrt{2})x} - e^{(2-\sqrt{2})x} \right)$$

iii.-
$$e^x - 3xe^x$$

iv.-
$$e^x \sin(x) - e^x \cos(x)$$

i.-
$$y_p = -10$$
 ii.- $y_p = e^{2x}$

iii.-
$$y_p = 3x^2 - 2x + 4$$

iv.-
$$y_p = \sin(2x)$$
 v.- $y_p = \frac{xe^x}{2} + \frac{3e^x}{4}$

vi.-
$$y_p = -\frac{x\sin(x) + \cos(x)}{2}$$

vii.-
$$4x^2e^x$$
 viii.- $\frac{x^2}{9} + \frac{4x}{27} + \frac{2}{27} + \frac{e^x}{4}$

i.-
$$c_1 e^x + c_2 e^{-x} + 11x - 1$$

ii.-
$$c_1 e^x + c_2 e^{-2x} - \frac{x^2}{2} + \frac{x}{2} - \frac{7}{4}$$

iii.-
$$c_1 e^x + c_2 e^{2x} + \frac{e^x(\cos(x) - \sin(x))}{2}$$

iv.-
$$e^{-x}(c_1\cos(x) + c_2\sin(x)) + xe^{-x}\sin(x)/2$$

$$v - c_1 e^{2x} + c_2 x e^x + x^3 e^{2x} / 6$$

vi.-
$$e^{-2x}(c_1\cos(x) + c_2\sin(x)) + \frac{e^{-x}}{2} - \frac{1}{65}\sin(2x) + \frac{8}{65}\cos(2x)$$

vii.-
$$e^{-\frac{x}{2}} \left(c_1 \cos \left(\frac{\sqrt{3}}{2} x \right) + c_2 \sin \left(\frac{\sqrt{3}}{2} x \right) \right) + \sin(x) + e^x \left(-\frac{x^2}{3} + \frac{2}{3} x - \frac{4}{9} \right)$$

viii.-
$$c_1 e^{2x} + c_2 e^{-5x} + \frac{1}{2} e^{4x}$$

ix.-
$$c_1 \sin(2x) + c_2 \cos(2x) + \sin(x)$$

$$x - c_1 e^{-5x} + c_2 x e^{-5x} + 7x^2 e^{-5x}$$

$$xi.-e^{x}(c_1\cos(2x)+c_2\sin(2x))+2+4x+5x^2$$

$$xii. - c_1 e^{3x} + c_2 e^{-2x} - 4xe^{-2x}$$

xiii.-
$$c_1 e^x + c_2 e^{2x} + 2\sin(2x) + 3\cos(2x)$$

$$xiv.-c_1\sin(x)+c_2\cos(x)+x\sin(x)$$

$$xv.-c_1 + c_2e^{2x} + 2x - 3x^2$$

xvi.-
$$c_1 e^x + c_2 x e^x + 3x^2 e^x$$

xvii.-
$$e^{x}(c_1 cos(x) + c_2 sin(x)) - \frac{1}{2} x e^{x} cos(x)$$

xviii.-
$$c_1 + c_2 e^{-x} + 2x^5 - 10x^4 + 40x^3 - 120x^2 + 242x$$
 PREGUNTA 27

PREGUNTA 22

i.-
$$e^x - 1$$
 ii.- $e^{-x} + \sin(x) - \cos(x)$

iii.
$$\frac{3}{20}\sin(2x) - \frac{1}{20}\cos(2x) - \frac{3}{10}\cos(x) - \frac{1}{10}\sin(x)$$

iv.
$$-\frac{e^{-4x}}{60} + \frac{1}{12} - \frac{e^x}{10} - \frac{e^{2x}}{6} + \frac{7e^{3x}}{6}$$

$$v - \frac{1}{2}\sin(x) - \frac{e^{2x}}{3} + \frac{3}{4}e^x + \frac{7}{12}e^{-x}$$

PREGUNTA 23

i.-
$$(Ax^2 + Bx)\sin(x) + (Cx^2 + Dx)\cos(x) + E10^x$$

ii.-
$$e^x(A\cos(x) + B\sin(x)) + Cx^2 + Dx + E$$

iii.-
$$e^{2x}(Ax^4 + Bx^3 + Cx^2)$$

iv.-
$$Axe^x + B + Csin(x) + Dcos(x)$$

PREGUNTA 24

(a)
$$-e^{-x}\sin(2x) - 2e^{-x}\cos(2x) + 2$$

(b)
$$e^{-x}(c_1 \sin(2x) + c_2 \cos(2x))$$

$$y = \begin{cases} -e^{-x}\sin(2x) - 2e^{-x}\cos(2x) + 2 & 0 \le x \le \frac{3\pi}{2} \\ \left(-1 - e^{\frac{3\pi}{2}}\right)e^{-x}\sin(2x) + \left(-2 - e^{\frac{3\pi}{2}}\right)e^{-x} & x \ge \frac{3\pi}{2} \end{cases}$$

PREGUNTA 25

i.-
$$c_1 \sin(2x) + c_2 \cos(2x) + x\sin(2x) + 2\cos(x) - 1 - x + 2x^2$$

ii.-
$$c_1 \sin(3x) + c_2 \cos(3x) - \frac{1}{3}x\cos(x) + \frac{1}{2}\sin(x) - 2e^{-2x} + 3x^3 - 2x$$

i.-
$$y_p = -\frac{1}{4}\cos(2x)\log(\sec(2x) + \tan(2x))$$

ii.-
$$y_p = \frac{1}{2}x^2e^{-x}\log(x) - \frac{3}{4}x^2e^{-x}$$

iii.-
$$y_p = -e^{-x}(16x - 4)$$

iv.-
$$y_p = \frac{1}{2}xe^{-x}\sin(2x) + \frac{1}{4}e^{-x}\cos(2x)\log(\cos(2x))$$

$$v.- y_p = \frac{1}{10} e^{-3x}$$

vi.-
$$y_p = e^x \log(1 + e^{-x}) - e^x + e^{2x} \log(1 + e^{-x})$$

i.-
$$c_1 \cos(2x) + c_2 \sin(2x) - \frac{1}{4} \cos(2x) \ln(\sec(2x) + \tan(2x))$$

ii.-
$$c_1 e^{2x} + c_2 e^{-x} + \frac{1}{4} e^{3x}$$

iii.-
$$c_1 e^x + c_2 x e^x + x e^x \ln(x)$$

iv.-
$$c_1 \cos(4x) + c_2 \sin(4x) + \frac{x}{4} \sin(4x) +$$

$$\frac{1}{16}\cos(4x)\ln(\cos(4x))$$

v.-
$$c_1 \cos(2x) + c_2 \sin(2x) + \frac{1}{4}(\cos(2x)\ln(\csc(2x) + \cot g(2x) - 1))$$

i.-
$$c_1 \cos(x) + c_2 \sin(x) + \frac{e^{3x}}{10} - 1 - \cos(x) \ln(\sec(x) + \tan(x))$$

ii.-
$$c_1 \cos(2x) + c_2 \sin(2x) + \frac{1}{24} \sec^2(2x) - \frac{1}{8} + \frac{1}{24} \sin(2x) \cdot \ln(\sec(2x) + \tan(2x))$$

iii.-
$$c_1 \cos(x) + c_2 \sin(x) - x^2 + 3 + 3x\sin(x) + 3\cos(x)\ln(\cos(x))$$

iv -

$$c_1 \cos(2x) + c_2 \sin(2x) - \frac{e^x}{5} - \frac{1}{2} (\cos(2x) \ln(\sec(2x) + \tan(2x)))$$

PREGUNTA 29

i.-
$$D^3$$
 iii.- $D - 5I$ v.- $(D - 2I)(D - I)$

vii.-
$$((D+I)^2+4I)^3$$

ix.-
$$D^4(D-I)^3(D^2+16I)^2$$

PREGUNTA 30

i.-
$$c_3 \cos(2x) + c_4 \sin(2x) + c_5$$

$$c_3 = \frac{1}{52}$$
; $c_4 = -\frac{5}{52}$; $c_5 = \frac{1}{6}$

ii.-
$$c_3 x e^{3x} + c_4 x^2 + c_5 x + c_6$$

$$c_3 = 1$$
; $c_4 = -\frac{1}{6}$; $c_5 = -\frac{5}{18}$; $c_6 = -\frac{57}{18^2}$

iii.- $c_3 x^2 + c_4 x + c_5$

$$c_3 = 1$$
; $c_4 = -5$; $c_5 = 9$

iv.-
$$c_3 x e^{-x} \cos(x) + c_4 x e^{-x} \sin(x) + c_5 x^2 + c_6 x + c_7$$

$$c_3 = 0$$
; $c_4 = \frac{1}{2}$; $c_5 = \frac{1}{2}$; $c_6 = -1$; $c_7 = \frac{1}{2}$

$$v - c_2 x + c_3 x^2 + c_6 x^2 e^x$$

$$c_2 = 2$$
; $c_3 = \frac{1}{2}$; $c_6 = -\frac{1}{2}$

PREGUNTA 31

i.-
$$c_1 + c_2 e^{-x} + x$$

ii.-
$$c_1 e^{2x} + c_2 e^{-x} + x - 1$$

iii.-
$$e^{-x}$$
 $\left(c_1\cos\left(\sqrt{3}x\right) + c_2\sin\left(\sqrt{3}x\right)\right) + \sin(2x)$

iv.-
$$e^{\frac{t}{2}} \left(c_1 \cos \left(\frac{\sqrt{3}}{2} x \right) + c_2 \sin \left(\frac{\sqrt{3}}{2} x \right) \right) + \cos(t)$$

$$v - c_1 e^{\sqrt{2}x} + c_2 e^{-\sqrt{2}x} + \tan(x)$$

PREGUNTA 32

i.-
$$5\cos(x)$$
 ii.- $\cos(x) - e^{2x}$

iii.-
$$4\cos(x) + 6e^{2x}$$

i.-
$$c_1 e^x + c_2 e^{-x} + c_3 e^{3x}$$
 ii.- $c_1 e^{-x} + c_2 e^{-\frac{2}{3}x} + c_3 e^{\frac{x}{2}}$

iii.-
$$c_1 e^{-x} + c_2 e^{(-1+\sqrt{7})x} + c_3 e^{(-1-\sqrt{7})x}$$

iv.-
$$c_1 e^{-x} + c_2 e^x \cos(x) + c_3 e^x \sin(x)$$

$$v - c_1 e^{3x} + c_2 x e^{3x} + c_3 x^2 e^{3x}$$

vi.-
$$c_1 e^x + c_2 e^{-3x} + c_3 x e^{-3x}$$

vii.-
$$c_1 \cos(\sqrt{2}x) + c_2 x \cos(\sqrt{2}x) + c_3 \sin(\sqrt{2}x) + c_4 \sin(\sqrt{2}x)$$

viii.-
$$c_1 + c_2 e^x + c_3 e^{2x}$$

ix.-
$$c_1 e^x + e^x (c_2 \cos(x) + c_3 \sin(x))$$

$$x - c_1 e^x + e^{-\frac{x}{2}} \left(c_2 \cos \left(\frac{\sqrt{3}}{2} x \right) + c_3 \sin \left(\frac{\sqrt{3}}{2} x \right) \right)$$

xi.-
$$c_1 e^{-x} + e^{\frac{x}{2}} \left(c_2 \cos \left(\frac{\sqrt{3}}{2} x \right) + c_3 \sin \left(\frac{\sqrt{3}}{2} x \right) \right)$$

xii.-
$$(c_1 + c_2 x + c_3 x^2)e^{-x}$$

xiii.-
$$(c_1 + c_2 x + c_3 x^2 + c_4 x^3)e^{-x}$$

$$xiv.- c_1e^x + c_2e^{-x} + c_3\cos(x) + c_4\sin(x)$$

$$xv.-c_1\cos(x) + c_2\sin(x) + c_3\cos(2x) + c_4\sin(4x)$$

xvi.-
$$(c_1 + c_2 x)e^{ax} + (c_3 + c_4 x)e^{-ax}$$

xvii.-
$$(c_1 + c_2 x) \cos(ax) + (c_3 + c_4 x) \sin(ax)$$

xviii.-
$$(c_1 + c_2 x)e^{-x} + c_3 \cos(x) + c_4 \sin(x)$$

$$xix.-(c_1+c_2x)e^x + e^{-2x}(c_3\cos(x) + c_4\sin(x))$$

$$xx - c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$$

$$xxi.-c_1e^{2x}+(c_2+c_3x+c_4x^2)e^{-x}$$

xxii.-
$$(c_1 + c_2 x)e^{2x} + (c_3 + c_4 x)e^{-2x} + c_5 e^{6x}$$

i.-
$$c_1 e^x + c_2 x e^x + c_3 e^{-3x} + (c_4 + c_5 x) e^{-x} \cos(2x) + (c_6 + c_7 x) e^{-x} \sin(2x)$$

iii.-
$$(c_1 + c_2 x + c_3 x^2)e^x + c_4 e^{2x} + c_5 e^{-\frac{x}{2}}\cos\left(\frac{\sqrt{3}}{2}x\right) + c_6 e^{-\frac{x}{2}}\sin\left(\frac{\sqrt{3}}{2}x\right) + (c_7 + c_8 x + c_9 x^2)e^{-3x}\cos(x) + (c_{10} + c_{11}x + c_{12}x^2)e^{-3x}\sin(x)$$

PREGUNTA 35

i.-
$$e^{-x} - e^{-2x} + e^{-4x}$$

i.-
$$e^{-x} - e^{-2x} + e^{-4x}$$
 iii.- $e^{2x} - \sqrt{2}e^x \sin(\sqrt{2}x)$

PREGUNTA 36

$$\begin{cases} x = C_1 t + C_2 t^{-1} - \frac{3}{4} t^{-1} - \frac{1}{2} t^{-1} \ln(t) + 1 \\ y = C_1 t + 3C_2 t^{-1} - \frac{3}{4} t^{-1} - \frac{3}{2} t^{-1} \ln(t) + 2 \end{cases}$$

PREGUNTA 38

i.-
$$x^{-1}(c_1 \cos(\log(x^3)) + c_2 \sin(\log(x^3))$$

ii.-
$$c_1 x^{-2} + c_2 x^{-2} \log(x)$$

iii.-
$$c_1 x^3 + c_2 x^{-4}$$

iv.-
$$c_1 x^{\frac{3}{2}} + c_2 x^{-\frac{1}{2}}$$

$$v - c_1 x^2 + c_2 x^2 \log(x)$$

$$vi.- c_1 x^2 + c_2 x^{-3}$$

vii.-
$$x^{-\frac{1}{2}}(c_1\cos\left(\frac{\sqrt{11}}{2}\log(x)\right) + c_2\sin\left(\frac{\sqrt{11}}{2}\log(x)\right)$$

viii.-
$$c_1 x^{\sqrt{2}} + c_2 x^{-\sqrt{2}}$$

ix.-
$$c_1 x^4 + c_2 x^{-4}$$

$$x - c_1 + c_2 x + c_3 x^{-1}$$

$$xi.- c_1x + c_2x^2 + c_3x^{-1}$$

$$xii.-c_1x + c_2\cos(\log(x)) + c_3\sin(\log(x))$$

$$xiii.- C_1 x + C_2 x^{-3} + \frac{x^3}{12}$$

xiv.-
$$C_1 x^3 + C_2 e^{-2} - \frac{1}{5} x^{-2} \ln(x) + 1$$

xv.-
$$x^{-1}(C_1\cos(2\ln(x)) + C_2\sin(2\ln(x)) + \frac{x^2}{13}$$

xvi.-
$$C_1 \cos(\ln(x) + C_2 \sin(\ln(x)) - \frac{1}{4} \ln^2(x) \cos(\ln(x))$$

$$-\frac{1}{4}\ln(x)\sin(\ln(x))$$

$$xxiv.-x-3x^4$$

$$xxv.-6x + 2x^3 + 3 ln^2(x) + 8 ln(x) + 10$$

EXTRA.

a.-
$$C_1 x + C_2 x ln(x) + C_3 x^3$$

b.-
$$C_1 x^{-1} + C_2 x^{-1} \ln(x) + C_3 x^4$$

PREGUNTA 39.40.41

Revise el libro de Viola Prioli para las soluciones.

i.-
$$c_1 e^{-9x} + c_2 e^x$$

ii.-
$$c_1 e^{\frac{x}{2}} \cos\left(\frac{3}{2}x\right) + c_2 e^{\frac{x}{2}} \sin\left(\frac{3}{2}x\right)$$

iii.-
$$c_1 e^{\frac{5}{3}x} + c_2 x e^{\frac{5}{3}x}$$

iv.-
$$c_1 e^{-x/3} \cos\left(\frac{x}{6}\right) + c_2 e^{-x/3} \sin\left(\frac{x}{6}\right)$$

$$v - c_1 e^{\frac{7}{4}x} + c_2 x e^{\frac{7}{4}x}$$

vi.-
$$x^{\frac{1}{2}}((c_1 \cos(\frac{\sqrt{19}}{2}ln(x)) + c_2 \sin(\frac{\sqrt{19}}{2}ln(x)))$$

vii.-
$$x = c_1 + c_2 y - \frac{y^3}{6}$$
 ó $y \equiv C$

viii.-
$$c_1 e^{-2x} + c_2 e^{-x} + c_3 e^{-\frac{x}{3}}$$

ix.-
$$e^{-x}$$
 $\left(c_1 + c_2 \cos\left(\sqrt{2}x\right) + c_3 \sin\left(\sqrt{2}x\right)\right)$

$$x - c_1 e^{-3x} + c_2 e^{\frac{x}{2}} + c_3 x e^{\frac{x}{2}}$$

$$xi. - c_1 e^{\frac{3}{2}x} \cos\left(\frac{\sqrt{19}}{2}x\right) + c_2 e^{\frac{3}{2}x} \sin\left(\frac{\sqrt{19}}{2}x\right) - \frac{e^x}{5} + x^2 + \frac{6}{7}x + \frac{4}{10}$$

xii.-
$$c_1 \cos(4x) + c_2 \sin(4x) - \frac{1}{16} \cos(4x) \ln(\sec 4x + \tan(4x))$$

xiii.-
$$c_1 e^{\frac{3}{2}x} + c_2 x e^{\frac{3}{2}x} + \frac{e^{3x}}{9} + \frac{1}{49} e^{5x}$$

xiv.-
$$c_1 x + c_2 x^{-2} - 2x^{-2} \ln(x) + x \ln(x)$$

i.-
$$e^{\frac{1}{2}x}\cos(x) - 6e^{\frac{1}{2}x}\sin(x)$$

ii.-
$$2e^x \cos(3x) - \frac{7}{3}e^x \sin(3x) - \sin(3x)$$

iii.-
$$-e^{-x} - 3e^{5x} + e^{8x}$$

i.-
$$c_1 e^x + c_2 e^{3x} + c_3 e^{-2x} - \frac{1}{6} x e^x + \frac{1}{6} x^2 + \frac{5}{18} x + \frac{37}{108}$$

ii.-
$$c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x} - \frac{1}{6} x^2 e^{-2x}$$

iii.-
$$c_1 e^{2x} + c_2 e^{-3x} \cos(2x) + c_3 e^{-3x} \sin(2x) +$$

iii.-
$$c_1 e^{2x} + c_2 e^{-3x} \cos(2x) + c_3 e^{-3x} \sin(2x) + \frac{5}{116} x e^{-3x} \cos(2x) - \frac{1}{58} x e^{-3x} \sin(2x) - \frac{1}{26} x - \frac{1}{676}$$

iv.-
$$-2e^{3x} + e^{-2x}c_3xe^{-2x} - \frac{1}{6}x^2e^{-2x}$$

$$v - x^2 e^{-2x} - x^2 + 3$$

PUNTOS FINALES.

- **1.-** Para mayor apoyo en la resolución de los ejercicios descargue la guía de ayuda teórica publicada en la página.
- **2.-** Practique muy bien la resolución de esta segunda parte para el segundo parcial, son temas muy fáciles pero que si se equivoca en una raíz, autovector, es un error horrible.
- **3.-** Habrá notado que hay presente en la guía gran cantidad de ejercicios de ecuaciones diferenciales de orden 2, aunque en el curso de matemática 4 no se detalla como un tema en particular (corresponde a ecuaciones lineales de orden "n") por lo tanto trate todas estas ecuaciones como de orden "n=2". Dicho tema se especifica más delante de la guía cuyos órdenes llegan hasta orden 5. La razón porque detallé las ecuaciones de grado 2 es que estas ecuaciones representan gran utilidad en la ingeniera aplicada por lo cual lo considero de gran importancia.
- **4.-** La SUPERPOSICION de las soluciones es una herramienta muy útil que le permite determinar soluciones a ecuaciones NO HOMOGENEAS cuando el término forzante está compuesto por varias funciones específicas.
- **5.-** Recuerde muy bien cómo obtener la solución particular de los SISTEMAS DE ECUACIONES diferenciales, y tengo siempre en cuenta la diferencia con las ECUACIONES LINEALES DE ORDEN "n".

SIRVASE DE AYUDA PARA PRATICAR ECUACIONES DIFERENCIALES PARA EL SEGUNDO PARCIAL DE MATEMATICAS 4.

CUALQUIER ERROR TIPOGRAFICO O DE REDACCION FAVOR AVISAR A magt_123@hotmail.com PARA SU CORRECION, MENCIONE NUMERO DE PAGINA, EJERCICIO QUE DICE Y QUE DEBERIA DECIR.

REFERENCIA BIBLIOGRAFICA.

- (1) Ana M de Viola-Prioli, ECUACIONES DIFERENCIALES ORDINARIAS. Editorial Equinoccio Universidad Simón Bolívar, Publicación Libros de EL NACIONAL.
- (2) George F. Simmons, DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES, Ediciones McGraw-Hill
- (3) R. Kent Nagle, Edward B. Saff, A. David Snider "FUNDAMENTALS OF DIFFERENTIAL EQUATIONS AND BOUNDARY VALUE PROBLEMS" FOURTH EDITION, PEARSON ADDISON WESLEY, 2004.

Elaborado por : Miguel Guzmán ACTUALIZADA: AGOSTO 2011