Commencé le	mardi 8 novembre 2022, 13:32
État	Terminé
Terminé le	mardi 8 novembre 2022, 14:31
Temps mis	58 min 58 s
Note	17,08 sur 22,00 (77,65 %)
Feedback	Moyenne de la promo : 13,56

Non répondue

Non noté

Si une question vous semble comporter des erreurs ou imprécisions, vulgairement parlant des bugs, ne posez pas de question oralement, mais signalez-le ci-dessous en précisant :

- le numéro de la question concernée
- vos interrogations sur cette question
- éventuellement l'interprétation ou les choix faits pour votre (vos) réponse(s) à cette question.

Partiellement correct

Note de 0,83 sur 1,00

Dans la formule ci-dessous :

- x, y, z, t sont des variables
- p et q des prédicats d'arité 1
- r un prédicat d'arité 2.

Donner l'ensemble des variables libres FV et l'ensemble de variables liées BV, dans la formule ci-dessous :

```
[ p(z) \land \{\exists x \ q(x) \Rightarrow p(y)\}\] \lor [ \ \forall t \ (r(z,t) \land \ \forall y \ r(y,x))\]
```

Réponse : (régime de pénalités : 0 %)

Réinitialiser la réponse

```
# Complétez FV et BV en séparant les variables par une virgule ',' ou un espace ' '
# Les variables peuvent être écrites dans un ordre quelconque
# Exemple (faux ou pas) : FV = {t,y,z,x}
# Exemple (faux ou pas) : FV = {t y z x}
FV = {x z}
BV = {t x y}
```

Got	Expected	Mark	
FV = {x z} BV = {t x y}	{'x', 'y', 'z'} {'t', 'x', 'y'}	0.83333333333333	

Partiellement correct

Note pour cet envoi: 0,83/1,00.

Partiellement correct

Note de 0,75 sur 1,00

Dans la formule ci-dessous :

- x, y, z, t sont des variables
- p et q des prédicats d'arité 1
- r un prédicat d'arité 2.

Donner l'ensemble des variables libres FV et l'ensemble de variables liées BV, dans la formule ci-dessous :

```
\forall z [ (p(z) \lor q(x) \land \forall y q(y)) \Rightarrow (\forall t (r(x,t) \land \forall y r(y,x))) ]
```

Réponse : (régime de pénalités : 0 %)

Réinitialiser la réponse

```
# Complétez FV et BV en séparant les variables par une virgule ',' ou un espace ' '
# Les variables peuvent être écrites dans un ordre quelconque
# Exemple (faux ou pas) : FV = {t,y,z,x}
# Exemple (faux ou pas) : FV = {t y z x}
FV = {x}
BV = {z t x y}
```

Got	Expected	Mark	
		0.75	
$FV = \{x\}$	{'x'}		
$BV = \{z t x y\}$	{'z', 'y', 't'}		

Partiellement correct

Note pour cet envoi: 0,75/1,00.

Question 4

Incorrect

Note de 0,00 sur 1,00

Si toutes les variables d'une formule ϕ sont liées alors

Veuillez choisir une réponse.

- φ est nécessairement close *
- Aucune des autres réponses
- φ n'est pas nécessairement close

Une formule est close ssi il n'y a aucune variables libres. Or toutes les variables liées peuvent être également libres, donc : Si toutes les variables d'une formule ϕ sont liées alors ϕ n'est pas nécessairement close.

La réponse correcte est : φ n'est pas nécessairement close

Question 5	
Correct	
Note de 1,00 sur 1,00	

Pour cette question:

- x et y sont des variables
- a et b sont des constantes
- f1 est une fonction d'arité 1
- f2 est une fonction d'arité 2
- P est une proposition
- p1 est un prédicat d'arité 1
- p2 est un prédicat d'arité 2.

Parmi les expressions suivantes, cochez celles qui sont des *atomes* et elles seules :

Veuillez choisir au moins une réponse.

- $\neg p1(f2(x,a))$
- f2(a,b)
- p2(f2(x,a),f2(a,x))
 ✓
- p2(f1(f2(a,b)))

Les réponses correctes sont : p1(f2(a,b)), p2(f2(x,a),f2(a,x)), P

Question 6

Correct

Note de 1,00 sur 1,00

Pour cette question:

- x et y sont des variables
- a et b sont des constantes
- f1 est une fonction d'arité 1
- f2 est une fonction d'arité 2
- P est une proposition
- p1 est un prédicat d'arité 1
- p2 est un prédicat d'arité 2.

Parmi les expressions suivantes, cochez celles qui sont des **formules syntaxiquement correctes** et elles seules (a priori, ces expressions sont correctement parenthésées, donc les éventuelles erreurs de syntaxe sont ailleurs) :

Veuillez choisir au moins une réponse.

- $\forall x [(P \Rightarrow p1(f1(x))) \lor p1(x)]$
- $\forall x \forall y [\neg(p2(x,y) \Rightarrow p1(y)) \land p1(b)]$
- \forall y [p1(f2(f1(y),a)) \vee { \forall x (P \Rightarrow p1(f1(x)))}

Les réponses correctes sont : $\forall x \ \forall y \ [\ \neg(p2(x,y) \Rightarrow p1(y) \) \ \land \ p1(b)], \ \forall x \ [(P \Rightarrow p1(f1(x)) \) \ \lor \ p1(x) \], \ \forall y \ [p1(f2(f1(y),a) \) \ \lor \ \{\forall x \ (P \Rightarrow p1(f1(x)) \) \ \} \]$

Question 7	
Correct	
Note de 1,00 sur 1,00	

Dans cette question:

- x et y sont des variables
- a et b sont des constantes
- f1 est une fonction d'arité 1
- f2 est une fonction d'arité 2
- p1 est un prédicat d'arité 1
- p2 est un prédicat d'arité 2.

Parmi les expressions suivantes, cochez toutes celles qui sont des termes et elles seules.

Veuillez choisir au moins une réponse.

- f2(b,p1(x))
- √
 f2(f1(x), a)
 √
- p1(f1(x))
- √
 f2(f1(a), f2(b,b))
 √
- f2(f1(x))

Les réponses correctes sont : f2(f1(a), f2(b,b)), b, f2(f1(x), a)

Question 8

Correct

Note de 1,00 sur 1,00

On considère 2 propositions P et Q.

La formule :

La formule $P \Rightarrow (P \Rightarrow Q)$: est satisfiable mais pas universellement valide

La formule $(Q \Rightarrow P) \Rightarrow P$: est satisfiable mais pas universellement valide

La formule $P \Rightarrow (Q \Rightarrow P)$: est universellement valide

Votre réponse est correcte.

La réponse correcte est :

La formule $P\Rightarrow (P\Rightarrow Q): \rightarrow$ est satisfiable mais pas universellement valide,

La formule (Q \Rightarrow P) \Rightarrow P : \rightarrow est satisfiable mais pas universellement valide,

La formule $P \Rightarrow (Q \Rightarrow P)$: \rightarrow est universellement valide

Question 9	
Correct	
Note de 1,00 sur 1,00	

Pour cette question:

- x, y sont des variables
- p est un prédicat d'arité 1

Soit la formule :

 $\Phi:\exists x\ [p(x)\Rightarrow (\forall y\ p(y)\)\]$

Cochez tout ce qui est vrai et seulement ce qui est vrai :

- Φ est universellement valide
- Φ est satisfiable mais pas universellement valide
- Φ est fausse
- Aucune des autres réponses proposées

Votre réponse est correcte.

En remplaçant $A \Rightarrow B$ par (Non A) ou B:

 Φ : $\exists x [(Non p(x)) ou (\forall y p(y))]$

comme ($\forall y p(y)$ ne contient pas de x :

 Φ : [$\exists x$ (Non p(x))] ou ($\forall y p(y)$)

qui est toujours vrai, Φ est universellement valide (ce qui ne "saute pas aux yeux")

La réponse correcte est :

Φ est universellement valide

	4	
Question	-	u

Correct

Note de 1,00 sur 1,00

Pour cette question:

- x, y sont des variables
- p est un prédicat d'arité 1

Soit la formule :

 $\Phi: \forall x [p(x) \Rightarrow (\forall y p(y))]$

Cochez tout ce qui est vrai et seulement ce qui est vrai :

- Φ est universellement valide
- Φ est satisfiable mais pas universellement valide
 ✓
- Φ est fausse
- Aucune des autres réponses proposées

Votre réponse est correcte.

Une suite de la question précédente.

En remplaçant $A \Rightarrow B$ par (Non A) ou B:

Ф : ∀x [(Non p(x)) ou (∀y p(y))]

comme ($\forall y p(y)$ ne contient pas de x :

 Φ : [$\forall x$ (Non p(x))] ou ($\forall y p(y)$)

qui n'est vrai que si p est toujours vrai ou toujours faux, et sinon Φ est faux, donc Φ satisfiable mais pas universellement valide (là aussi, ça ne "saute pas aux yeux").

La réponse correcte est :

Φ est satisfiable mais pas universellement valide

Question 11

Correct

Note de 1,00 sur 1,00

Dans le cadre de la logique propositionnelle, on considère 3 propositions P, Q et R.

Dans la formule ϕ ci-dessous, par quel opérateur remplacer le '?' pour que ϕ devienne universellement valide

$$\phi: [(P ~\ref{eq} ~Q~) \Rightarrow R~] \Leftrightarrow [(P \Rightarrow R) ~\wedge ~(Q \Rightarrow R)~]$$

Veuillez choisir une réponse.

- ∨
 ✓
- O Aucun des opérateurs proposés ne permet de rendre φ universellement valide
- O ^
- \bigcirc \Rightarrow

Votre réponse est correcte.

La réponse correcte est : v

Partiellement correct

Note de 0,50 sur 1,00

Pour cette question:

- x, y sont des variables
- p1 et q1 sont des prédicats d'arité 1
- p2 est un prédicat d'arité 2

Soient les formules :

 $\Phi_1 \colon [\forall \, x \exists y \; (p1(x) \; v \; q1(y) \;) \;] \; \Leftrightarrow [\exists y \, \forall \, x \; (p1(x) \; \vee \; q1(y) \;) \;]$

 Φ_2 : [$\forall x \exists y \ p2(x,y)$] \Leftrightarrow [$\exists y \forall x \ p2(x,y)$]

Cochez tout ce qui est vrai et seulement ce qui est vrai :

Veuillez choisir au moins une réponse.

- \square Φ_1 est universellement valide
- \Box Φ_1 est satisfiable mais pas universellement valide
- \Box Φ_1 est fausse
- \Box Φ_2 est universellement valide
- \Box Φ_2 est fausse

Les réponses correctes sont : Φ_1 est universellement valide, Φ_2 est satisfiable mais pas universellement valide

Question 13

Incorrect

Note de 0,00 sur 1,00

Dans cette question:

- x, y et z sont des variables
- p et q sont 2 prédicats d'arité 2.

On se place dans l'interprétation suivante :

- le domaine D est l'ensemble des droites du plan
- p(x,y) signifie que la droite x est parallèle à la droite y
- q(x,y) signifie que la droite x est perpendiculaire à la droite y (q comme perpendiCUlaire)

Écrire en calcul des prédicats :

Si deux droites x et y sont parallèles, alors toute droite z perpendiculaire à x est perpendiculaire à y.

(écrire votre réponse en respectant la syntaxe du calcul des prédicats, votre réponse sera évaluée via une bibliothèque Python)

Réponse: (régime de pénalités : 0 %)

Réinitialiser la réponse

```
1 # répondre ci-dessous
2 \forall x \forall y [ p(d1,d2) \Rightarrow (\forall z (q(x,z) \Rightarrow q(y,z))) ]
```

	Got	Expected	Mark	
×	$\forall X \forall Y (P(D1,D2) \Rightarrow (\forall Z(Q(X,Z) \Rightarrow Q(Y,Z))))$	$\forall X \forall Y \forall Z ((P(X,Y)\&Q(X,Z))>>Q(Y,Z))$	0	×

Incorrect

Note pour cet envoi: 0,00/1,00.

Incorrect

Note de 0,00 sur 1,00

Dans cette question:

- x et y sont des variables
- p1, p2 et p3 sont 3 prédicats d'arité 1.

On se place dans l'interprétation suivante :

- le domaine D est l'ensemble des étudiants d'une promotion
- pi(x) signifie que l'étudiant x est dans le groupe i, pour i valant 1, 2 ou 3.

Écrire en calcul des prédicats :

Aucun étudiant n'est dans 2 groupes différents.

(écrire votre réponse en respectant la syntaxe du calcul des prédicats, votre réponse sera évaluée via une bibliothèque Python)

Réponse: (régime de pénalités : 0 %)

```
Réinitialiser la réponse
```

	Got	Expected	Mark	
×	$\forall X(P1(X) \Rightarrow \neg(P2(X) \lor P3(X)))$	∀X((~P1(X)&~P2(X)) (~P1(X)&~P3(X)) (~P2(X)&~P3(X)))	0	×

Incorrect

Note pour cet envoi: 0,00/1,00.

Correct

Note de 1,00 sur 1,00

Dans cette question:

- x et y sont des variables
- p1, p2 et p3 sont 3 prédicats d'arité 1.

On se place dans l'interprétation suivante :

- le domaine D est l'ensemble des étudiants d'une promotion
- pi(x) signifie que l'étudiant x est dans le groupe i, pour i valant 1, 2 ou 3.

Écrire en calcul des prédicats :

Tout étudiant est dans au moins un groupe.

(écrire votre réponse en respectant la syntaxe du calcul des prédicats, votre réponse sera évaluée via une bibliothèque Python)

Réponse: (régime de pénalités : 0 %)

Réinitialiser la réponse

```
# répondre ci-dessous
\forall x [\neg p1(x) \Rightarrow (p2(x) \lor p3(x))]
```

	Got	Expected	Mark	
~	$\forall X(\neg P1(X) \Rightarrow (P2(X) \lor P3(X)))$	∀X(P1(X) P2(X) P3(X))	1	~

Tous les tests ont été réussis! ✓

Correct

Note pour cet envoi : 1,00/1,00.

Correct

Note de 2,00 sur 2,00

Mettre la formule suivante sous Forme Normale Conjonctive (FNC) :

$$\neg$$
(P2 V \neg (P6 V P2)) V \neg (\neg (P1 V P2) V P1)

Si vous trouvez que la FNC est :

- True : répondre True (avec une casse quelconque)
- False : répondre False (avec une casse quelconque)
- dans les autres cas écrire la FNC trouvée.

Réponse: (régime de pénalités : 0 %)

Réinitialiser la réponse

	Got	Expected	Mark	
~	(¬P1V¬P2)∧(P2VP6)	(P2VP6) \(\tau_P1V\tau_P2\)	1	~

Tous les tests ont été réussis! ✓

Note pour cet envoi: 2,00/2,00.

Question 17

Correct

Note de 2,00 sur 2,00

Mettre la formule suivante sous Forme Normale Disjonctive (FND) :

(P5 V (P4
$$\wedge$$
 P2)) \wedge (P5 \Rightarrow (P2 \Rightarrow P5))

Si vous trouvez que la FND est :

- True : répondre True (avec une casse quelconque)
- False : répondre False (avec une casse quelconque)
- dans les autres cas écrire la FND trouvée.

Réponse: (régime de pénalités : 0 %)

Réinitialiser la réponse

1 # (P5 V (P4
$$\wedge$$
 P2)) \wedge (P5 \Rightarrow (P2 \Rightarrow P5)) 2 $(P2 \wedge P4) \vee P5$

	Got	Expected	Mark	
~	(P2∧P4)∨P5	P5∨(P2∧P4)	1	~

Tous les tests ont été réussis! 🗸

(Correct)

Note pour cet envoi: 2,00/2,00.

Correct

Note de 1,00 sur 1,00

Donner la liste des mintermes (= impliquant d'ordre 0) qui sont factorisés dans l'impliquant (d'ordre 2) : -0-10

Les mintermes sont à donner sous forme d'entiers écrits en base dix.

Exemples:

- o le minterme 01100 doit être écrit 12
- o le minterme 10011 doit être écrit 19.

Réponse: (régime de pénalités : 0 %)

Réinitialiser la réponse

	Got	Expected	Mark
~	[2, 6, 18, 22]	[2, 6, 18, 22]	1

Tous les tests ont été réussis! ✓

Correct

Note pour cet envoi: 1,00/1,00.

Correct

Note de 1,00 sur 1,00

Dans le cadre de l'application de l'algorithme QMC sur une formule Φ avec 4 propositions ($\mathbf{X_3}$, $\mathbf{X_2}$, $\mathbf{X_1}$, $\mathbf{X_0}$) la table des impliquants d'ordre 1, suivante a été obtenue :

	_	_	_	_
N° de l'impliquant	X ₃	X ₂	X ₁	X ₀
1	-	0	0	0
2	0	-	0	0
3	-	0	0	1
4	0	-	1	0
5	1	-	0	1
6	1	0	-	1
7	-	1	1	0
8	0	1	-	1
9	1	1	-	1

Donnez tous les impliquants premiers (et seulement eux) de la table ci-dessus.

Réponse: (régime de pénalités : 0 %)

Réinitialiser la réponse

séparer les impliquants premiers par (au moins) un espace ou une virgule ',' avec ou sans espace
5,7

	Got	Expected	Mark		
~	[5, 7]	[5, 7]	1	~	

Tous les tests ont été réussis! 🗸

Correct

Note pour cet envoi: 1,00/1,00.

Correct

Note de 1,00 sur 1,00

Dans le cadre de l'application de l'algorithme QMC sur une formule Φ avec 4 propositions ($\mathbf{X_3}$, $\mathbf{X_2}$, $\mathbf{X_1}$, $\mathbf{X_0}$), on obtient comme table des impliquants premiers :

	m0	m1	m2	m3	m4	m5	m6	m7	m8	m9
ip0	0		0							
ip1	0		0		0		0	0		
ip2		0	0					0		0
ip3				0			0		0	0
ip4				0	0	0			0	

Dans cette table, les mintermes sont notés m0, m1, ... et les impliquants premiers ip0, ip1, Les impliquants premiers essentiels n'ont pas été matérialisés, à vous de le faire si vous en avez besoin.

Donner le nombre d'impliquants de toute expression minimale obtenue à la fin de l'exécution de l'algorithme QMC.

Réponse: (régime de pénalités : 0 %)

Réinitialiser la réponse

1 # Donner le nombre d'impliquants de toute expression minimale obtenue à la fin de l'exécution de l'algorithme 2 3

	Got	Expected	Mark	
~	[3]	[3]	1	~

Tous les tests ont été réussis! 🗸

Note pour cet envoi : 1,00/1,00.

Incorrect

Note de 0,00 sur 1,00

Dans le cadre de l'application de l'algorithme QMC sur une formule Φ avec 4 propositions ($\mathbf{X_3}$, $\mathbf{X_2}$, $\mathbf{X_1}$, $\mathbf{X_0}$), on obtient comme table des impliquants premiers :

	m0	m1	m2	m3	m4	m5	m6	m7	m8	m9	m10
ip0		0	0							0	0
ip1		0		0			0			0	
ip2				0	0		0	0			
ip3	0							0	0	0	
ip4					0	0		0	0		
ip5				0		0		0			0

Dans cette table, les mintermes sont notés m0, m1, ... et les impliquants premiers ip0, ip1,

Les impliquants premiers essentiels n'ont pas été matérialisés, à vous de le faire si vous en avez besoin.

A la fin de l'exécution de l'algorithme QMC, l'algorithme retourne une expression ayant le nombre minimum d'impliquants.

Donner le nombre d'expressions possibles ayant ce nombre minimum d'impliquants.

Réponse : (régime de pénalités : 0 %)

Réinitialiser la réponse

- 1 # Donner le nombre d'expressions possibles ayant ce nombre minimum d'impliquants.
- . .

	Got	Expected	Mark	
×	[4]	[3]	0	×

Incorrect

Note pour cet envoi: 0,00/1,00.