

Analytical Geometry and Linear Algebra I, Lab 14

Quadric surfaces: Cone, Cylinder

Ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

In plane z = p; an ellipse In plane $v = \alpha$; an ellipse In plane x = r: an ellipse

If a = b = c, then this surface is a sphere.

Elliptic Cone

 $\frac{x^2}{x^2} + \frac{y^2}{4x^2} - \frac{z^2}{x^2} = 0$

In plane z = p; an ellipse In plane y = q; a hyperbola In plane x = r, a hyperbola

In the xz - plane: a pair of lines that intersect at the origin In the yz - plane: a pair of lines that intersect at the origin

The axis of the surface corresponds to the variable with a negative coefficient. The traces in the coordinate planes parallel to the axis are intersecting lines. Elliptic Paraboloid

 $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

Hyperboloid of One Sheet

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{a^2} = 1$

In plane z = p; an ellipse In plane y = q: a hyperbola In plane x = r, a hyperbola

In the equation for this surface, two of the variables have positive coefficients and one has a penative coefficient The axis of the surface corresponds to the variable with the negative coefficient.

In plane z = p; an ellipse In plane y = g: a parabola In plane x = c a parabola

The axis of the surface corresponds to the linear variable.

Hyperboloid of Two Sheets

 $\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

In plane z = p: an ellipse or the empty set (no trace) to plane v = m a hyperhola In plane x = r; a hyperbola

In the equation for this surface, two of the variables have negative coefficients and one has a positive coefficient The axis of the surface corresponds to the variable with a positive coefficient. The surface does not intersect the coordinate plane perpendicular to the axis.

Hyperbolic Paraboloid

In plane z = p; a hyperbola In plane y = q: a parabola In plane x = r, a parabola

The axis of the surface corresponds to the linear variable.

Case studies of 2nd order curve equation (RUS)

Definition

A line all points of which lie on a quadric is called **a generator of the quadric**. An elliptic cone is a quadric surface which is generated by a straight line which passes through a fixed point and which intersect an ellipse.

Then, the equation of generator is:

$$\frac{x-x_{v}}{I}=\frac{y-y_{v}}{m}=\frac{z-z_{v}}{n}$$

Find the equation of the cone with its vertex at (1, 1, 1) and which passes through the curve $x^2 + y^2 = 4$, z = 2.

Answer

Let's find a generator of the cone, when V(1, 1, 1). Also, let's consider that our line intersects the plane z = 2:

$$\frac{x-1}{l} = \frac{y-1}{m} = \frac{1}{n}, \Rightarrow x = \frac{1}{n} + 1, \ y = \frac{m}{n} + 1$$
 (1)
This point lies on the curve $x^2 + y^2 = 4$, hence - put (1) into

This point lies on the curve $x^2 + y^2 = 4$, hence – put (1) into the circle

$$\left(\frac{1}{n} + 1\right)^2 + \left(\frac{m}{n} + 1\right)^2 = 4$$
 (2)

Our goal to eliminate *I*, *m*, *n* from equation above.

$$\frac{1}{n} = \frac{x-1}{z-1}, \ \frac{m}{n} = \frac{y-1}{z-1} \to (2)$$

$$\left(\frac{x-1}{z-1}+1\right)^2 + \left(\frac{y-1}{z-1}+1\right)^2 = 4 \text{ after simplification} \Rightarrow$$

$$\Rightarrow x^2 + y^2 - 2z^2 + 2xz + 2yz - 4x - 4y + 4 = 0$$

Find the equation of the cone with its vertex at the origin, which passes through the curve $ax^2 + by^2 + cz^2 - 1 = 0 = \alpha x^2 - \beta y^2 - 2z$.

Answer

This task is an upgraded version on the 1-st task.

Right now, we don't know neither the center of a given curve, nor the conic section passed through the center. Let's find it

$$ax^{2} + by^{2} + cz^{2} - 1 - \alpha x^{2} + \beta y^{2} + 2z = 0 \Rightarrow$$

$$\Rightarrow (a - \alpha)x^{2} + (b + \beta)y^{2} + (z + \frac{1}{c})^{2} = \frac{c + 1}{c}$$

The center of the curve is $(0, 0, = -\frac{1}{c})$. Let's find a conic section in a plane, paralel to z axis (just simplification, can choose any).

$$(a-\alpha)x^2 + (b+\beta)y^2 = \frac{c+1}{c}$$
 (3)

Now, the task is the same as the first one. We know the vertex (origin) and a curve, which should be passed through.

$$\frac{x-0}{l} = \frac{y-0}{m} = \frac{-\frac{1}{c}-0}{n}, \Rightarrow x = -\frac{l}{cn}, y = -\frac{m}{cn}$$
Put x, y into (3):

$$(a-\alpha)\frac{l^2}{c^2n^2} + (b+\beta)\frac{m^2}{c^2n^2} = \frac{c+1}{c}$$
 (4)

Based on equation of generator we will receive

$$\frac{1}{n} = \frac{x}{z}; \frac{m}{n} = \frac{y}{z}. \text{ Put it into (4)}$$

$$(a - \alpha)\frac{x^2}{z^2} + (b + \beta)\frac{y^2}{z^2} = c^2 + c \Rightarrow$$

$$(a-\alpha)x^2 + (b+\beta)y^2 - (c^2+c)z^2 = 0$$

Find the equation of the cone, which passes through the axes.

Answer

The cone passes through the axes. Therefore, the vertex of the cone is the origin.

The equations of the cone is a homogeneous equation of second degree in x, y and z.

(i.e.)
$$ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy = 0$$
 (15.25)

Given that x-axis is a generator.

Then y = 0, z = 0 must satisfy the equation (15.25)

$$\therefore a = 0$$

Since *y*-axis is a generator b = 0.

Since z-axis is a generator c = 0.

Hence the equation of the cone is fyz + gzx + hxy = 0.

Find the equation of the right circular cone whose vertex is at the origin, whose axis is the $\begin{pmatrix} x & y & z \\ line & - & - & - \\ 1 & 2 & 3 \end{pmatrix}$ and which has a vertical angle of 60°.

Answer

The axis of the cone is $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$.

Therefore, the direction ratios of the axis of the cone are 1, 2, 3.

The direction cosines are $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$.

Let P(x, y, z) be any point on the surface of the cone. Let PL be perpendicular to OA.

$$\angle POL = 30^{\circ}$$

 $\frac{OL}{OP} = \cos 30^{\circ} \text{ or } 2OL = \sqrt{3}OP$
Also, $OP^2 = x^2 + y^2 + z^2$

OL = Projection of OP on OA

 $= \frac{x}{\sqrt{14}} + y \times \frac{2}{\sqrt{14}} + z \times \frac{3}{\sqrt{14}} = \frac{x + 2y + 3z}{\sqrt{14}}$ $\therefore \frac{2(x + 2y + 3z)}{\sqrt{14}} = \sqrt{3}\sqrt{x^2 + y^2 + z^2}$ $4(x + 2y + 3z)^2 = 42(x^2 + y^2 + z^2)$

$$19x^2 + 13y^2 + 3z^2 - 8xy - 24yz - 12zx = 0$$

The **direction cosines** of the vector a are the cosines of angles that the vector forms with the coordinate axes.

$$\cos \alpha = \frac{a_x}{|\overline{a}|}; \quad \cos \beta = \frac{a_y}{|\overline{a}|}; \quad \cos \gamma = \frac{a_z}{|\overline{a}|}$$

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma =$$

or

Oleg Bulichev AGLA1 8

Answer

The equations of the generator through P and parallel to the line

$$\frac{x}{-1} = \frac{y}{2} = \frac{z}{3}$$
 are $\frac{x - x_1}{-1} = \frac{y - y_1}{2} = \frac{z - z_1}{3}$

$$\frac{x - x_1}{-1} = \frac{y - y_1}{2} = \frac{z - z_1}{3}$$

The guiding curve is
$$x^2 + y^2 = 9, z = 1$$

When the generator through P meets the guiding curve.

$$\frac{x - x_1}{-1} = \frac{y - y_1}{2} = \frac{z - z_1}{3}$$

$$\therefore x = x_1 - \frac{1 - z_1}{3} = \frac{3x_1 + z_1 - 1}{3}, y = y_1 + \frac{2(1 - z_1)}{3} = \frac{3y_1 - 2z_1 + 2}{3}$$

Since this point lies on the curve (16.9),

$$(3x_1 + z_1 - 1)^2 + (3y_1 - 2z_1 + 2)^2 = 81$$

The locus of
$$(x_1, y_1, z_1)$$
 is $(3x + z - 1)^2 + (3y - 2z + 2)^2 = 81$

(i.e.)
$$9x^2 + 9y^2 + 5z^2 + 6xz - 12yz - 6x + 12y - 10z - 76 = 0$$

$$\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}.$$

Answer

The equations of the axis are

$$\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}$$

- (1, 3, 5) is a point on the axis.
- 2, 2, -1 are the direction ratios of the axis.
- \therefore direction cosines are $\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}$

QL = Projection of PQ on the axis = $(x - x_1)l + (y - y_1)m + (z - z_1)n$ = $(x_1 - 1)\frac{2}{3} + (y_1 - 3)\frac{2}{3} - (z_1 - 5)\frac{1}{3}$ = $\frac{2x_1 + 2y_1 - z_1 - 3}{3}$

Also, $PQ^2 = QL^2 + LP^2$

(i.e.)
$$(x_1 - 1)^2 + (y_1 - 3)^2 + (z_1 - 5)^2 = \left(\frac{2x_1 + 2y_1 - z_1 - 3}{3}\right)^2 + 9$$

The locus of (x_1, y_1, z_1) is

$$\begin{split} 9(x^2-2x+1+y^2-6y+9+z^2-10z+25) \\ &= 4x^2+4y^2+z^2+9+8xy-4xz-12x-4yz-12y+6z+81 \\ \text{(i.e.)} \quad 5x^2+5y^2+8z^2-8xy+4xz+4yz-6x-42y-96z+225=0 \end{split}$$

Let $P(x_1, y_1, z_1)$ be any point on the cylinder. This is the equation of the required cylinder.

Find the equation of the enveloping cylinder of the sphere $x^2 + y^2 + z^2 - 2x + 4y = 1$ having its generators parallel to the line x = y = z.

Answer

Let $P(x_1, y_1, z_1)$ be any point on a tangent, which is parallel to the line x = y = z.

Hence, the equation of the tangent lines are

$$\frac{x - x_1}{1} = \frac{y - y_1}{1} = \frac{z - z_1}{1} \tag{5}$$

Any point on this line is $(x_1 + \tau, y_1 + \tau, z_1 + \tau)$. This point lies in this sphere.

$$x^{2} + y^{2} + z^{2} - 2x + 4y - 1 = 0$$
 (6)

$$(x_1 + \tau)^2 + (y_1 + \tau)^2 + (z_1 + \tau)^2 - 2(x_1 + \tau) + 4(y_1 + \tau) - 1 = 0 \Rightarrow$$

$$\Rightarrow 3\tau^2 + 2\tau(x_1 + y_1 + z_1 + 1) + (x_1^2 + y_1^2 + z_1^2 - 2x_1 + 4y_1 - 1) = 0$$

If (5) touches (6), τ is unique ($\mathcal{D} = 0$).

$$\mathscr{D} = 4(x_1 + y_1 + z_1 + 1)^2 - 12(x_1^2 + y_1^2 + z_1^2 - 2x_1 + 4y_1 - 1) = 0 \quad (7)$$

Solving (7) and change P to general form, we are obtaining the answer

$$x^2 + y^2 + 5y + z^2 - 4x - z - xy - xz - yz - 2 = 0$$

Reference material

- Cone, generatrix (OnlineMSchool)
- Direction cosines (OnlineMSchool)

