Logic Synthesis & Verification, Fall 2023

National Taiwan University

Reference Solution to Problem Set 3

Due on 2023/10/28 (Saturday) 23:59.

1 [Cofactor and Generalized Cofactor]

(a) Let $xf_x \oplus (\neg x)f_{\neg x} = h$. Then

$$h_x = (1f_x) \oplus 0$$

= f_x , and

$$h_{\neg x} = 0 \oplus (1f_{\neg x})$$
$$= f_{\neg x}.$$

Therefore,

$$xf_x \oplus (\neg x)f_{\neg x} = xh_x + (\neg x)h_{\neg x}$$
$$= xf_x + (\neg x)f_{\neg x}$$
$$= f.$$

(b) Let $f_{\neg x} \oplus x(f_{\neg x} \oplus f_x) = h$. Then

$$h_x = f_{\neg x} \oplus 1(f_{\neg x} \oplus f_x)$$

$$= f_{\neg x} \oplus f_{\neg x} \oplus f_x$$

$$= (f_{\neg x} \oplus f_{\neg x}) \oplus f_x$$

$$= 0 \oplus f_x$$

$$= f_x, \text{ and}$$

$$h_{\neg x} = f_{\neg x} \oplus 0(f_{\neg x} \oplus f_x)$$
$$= f_x \oplus 0$$
$$= f_{\neg x}.$$

Therefore,

$$xf_x \oplus (\neg x)f_{\neg x} = xh_x + (\neg x)h_{\neg x}$$
$$= xf_x + (\neg x)f_{\neg x}$$
$$= f.$$

(c) Let
$$f_x\oplus (\neg x)(f_{\neg x}\oplus f_x)=h.$$
 Then
$$h_x=f_x\oplus 0(f_{\neg x}\oplus f_x)\\ =f_x\oplus 0\\ =f_x, \text{ and }$$

$$h_{\neg x}=f_x\oplus 1(f_{\neg x}\oplus f_x)$$

$$h_{\neg x} = f_x \oplus 1(f_{\neg x} \oplus f_x)$$

$$= f_x \oplus f_{\neg x} \oplus f_x$$

$$= (f_x \oplus f_x) \oplus f_{\neg x}$$

$$= 0 \oplus f_{\neg x}$$

$$= f_{\neg x}.$$

Therefore,

$$xf_x \oplus (\neg x)f_{\neg x} = xh_x + (\neg x)h_{\neg x}$$
$$= xf_x + (\neg x)f_{\neg x}$$
$$= f.$$

$$\begin{split} (\mathbf{d}) & g \wedge co(f,g) \vee \neg g \wedge co(f,\neg g) \\ &= ((g,0,\neg g) \wedge (fg,\neg g,(\neg f)g)) \vee ((\neg g,0,g) \wedge (f(\neg g),g,(\neg f)(\neg g))) \\ &= (fg,0,(\neg f)g \vee (\neg g)) \vee (f(\neg g),0,g \vee (\neg f)(\neg g)) \\ &= (f,0,\neg f) \\ &= f. \end{split}$$

(e)
$$\begin{aligned} co(co(f,g),h) \\ &= co((fg,\neg g,(\neg f)g),h) \\ &= ((fg)h,\neg g \vee \neg h,((\neg f)g)h) \\ &= (f(gh),\neg (gh),(\neg f)(gh)) \\ &= co(f,gh) \end{aligned}$$

(f)
$$co(f,h) + co(g,h)$$

$$= (fh, h', f'h) \lor (gh, h', g'h)$$

$$= (fh + gh, h', f'g'h)$$

$$= ((f+g)h, h', (f+g)'h)$$

$$= co(f+g,h)$$

Note. Operations on incompletely specified functions can be derived from operations on don't cares. Take the \wedge operation for example. Suppose $F=(f_F,d_F,r_F)$ and $G=(f_G,d_G,r_G)$ are incompletely specified functions. Then $H=F\wedge G$ is also an incompletely specified function. Let $H=(f_H,d_H,r_H)$. According to the truth table of 3-valued logic, $x\wedge y=1$ if and only if x=y=1, so $f_H=f_F\wedge f_G$. Similarly, $x\wedge y=0$ if and only if x=0 or y=0, so $r_H=r_F\vee r_G$. Finally, the value of $x\wedge y$ cannot be decided for the rest of the conditions, so $d_H=(d_F\wedge f_G)\vee (f_F\wedge d_G)\vee (d_F\wedge d_G)$.

Following the same idea, here are some operations on incompletely specified functions.

$$(f_F, d_F, r_F) \wedge (f_G, d_G, r_G) = (f_F f_G \quad , d_F f_G \vee f_F d_G \vee d_F d_G \quad , r_F \vee r_G)$$

$$(f_F, d_F, r_F) \vee (f_G, d_G, r_G) = (f_F \vee f_G \quad , d_F r_G \vee r_F d_G \vee d_F d_G \quad , r_F r_G)$$

$$\neg (f_F, d_F, r_F) = (r_F \quad , d_F \quad , f_F)$$

2 [Operation on Cube Lists]

- 1. Trying to add the cube (1-0--0): (1-0--0) is not orthogonal to the second cube (-0-10-0). (1-0--0)-(-0-10-0) results in
- $\{(110--0),(1000-0),(10011-0)\}.$ 2. Trying to add the cube (110--0):

(110 - - 0) is orthogonal to the cube list. Now the cube list becomes

$$\begin{pmatrix} 0 - 0 - 1 & 1 & 0 \\ - & 0 - 1 & 0 - 0 \\ - & 1 & 1 & 0 - - - \\ 1 & 1 & 0 - - - & 0 \end{pmatrix}.$$

3. Trying to add the cube (1000 - -0): (1000 - -0) is orthogonal to the cube list. Now the cube list becomes

$$\begin{pmatrix}
0 - 0 - 1 & 1 & 0 \\
- 0 - 1 & 0 - 0 \\
- 1 & 1 & 0 - - - 0 \\
1 & 0 & 0 & - - 0
\end{pmatrix}.$$

4. Trying to add the cube (10011 - 0): (10011 - 0) is orthogonal to the cube list. The final cube list is

$$\begin{pmatrix}
0 - 0 - 1 & 1 & 0 \\
- 0 - 1 & 0 - 0 \\
- 1 & 1 & 0 - - - \\
1 & 1 & 0 - - - 0 \\
1 & 0 & 0 & 0 - - 0 \\
1 & 0 & 0 & 1 & 1 - 0
\end{pmatrix}.$$

3 [Symmetric Functions]

(a) Here we show the process to derive the necessary and sufficient condition of f to be S_1 -symmetric on variables x_1 and x_2 . By definition, if f is S_1 -symmetric on variables x_1 and x_2 , then $f(x_1, x_2, x_3, \ldots) = f(x_2, x_1, x_3, \ldots)$. For the left-hand side, we can expand $f(x_1, x_2, x_3)$ as

$$f(x_1, x_2, x_3, \ldots) = \overline{x_1} \cdot \overline{x_2} \cdot f(0, 0, x_3, \ldots) + \overline{x_1} \cdot x_2 \cdot f(0, 1, x_3, \ldots) + x_1 \cdot \overline{x_2} \cdot f(1, 0, x_3, \ldots) + x_1 \cdot x_2 \cdot f(1, 1, x_3, \ldots).$$

For the right-hand side, we can expand $f(x_2, x_1, x_3,...)$ as

$$f(x_2, x_1, x_3, \ldots) = \overline{x_1} \cdot \overline{x_2} \cdot f(0, 0, x_3, \ldots) + \overline{x_1} \cdot x_2 \cdot f(1, 0, x_3, \ldots) + x_1 \cdot \overline{x_2} \cdot f(0, 1, x_3, \ldots) + x_1 \cdot x_2 \cdot f(1, 1, x_3, \ldots).$$

Note that this form can be obtained by grouping minterms in the minterm canonical form into four groups according to x_1 and x_2 , so this form is also canonical. Therefore, $f(x_1, x_2, x_3, \ldots) = f(x_2, x_1, x_3, \ldots)$ if and only if $f(0, 1, x_3, \ldots) = f(1, 0, x_3, \ldots)$. In other words, $f_{x_1, \overline{x_2}} = f_{\overline{x_1} \cdot x_2}$.

Following the same idea, the necessary and sufficient condition of f to be S_i -symmetric on variables x_1 and x_2 are as follows.

$$S_1$$
: $f_{x_1 \cdot \overline{x_2}} = f_{\overline{x_1} \cdot x_2}$

$$S_2: f_{\overline{x_1} \cdot \overline{x_2}} = f_{x_1 \cdot x_2}$$

 S_3 : f can never be S_3 -symmetric

 S_4 : f can never be S_4 -symmetric

$$S_5$$
: $f_{\overline{x_1} \cdot \overline{x_2}} = f_{\overline{x_i} \cdot x_2} = f_{x_1 \cdot \overline{x_2}} = f_{x_1 \cdot x_2}$ (i.e., f does not depend on x_1 and x_2)

$$S_6$$
: $f_{\overline{x_1} \cdot \overline{x_2}} = f_{\overline{x_i} \cdot x_2} = f_{x_1 \cdot \overline{x_2}} = f_{x_1 \cdot x_2}$ (i.e., f does not depend on x_1 and x_2)

$$S_7$$
: $f_{\overline{x_1} \cdot \overline{x_2}} = (\neg f_{\overline{x_1} \cdot x_2}) = (\neg f_{x_1 \cdot \overline{x_2}}) = f_{x_1 \cdot x_2}$

$$S_8: f_{\overline{x_1} \cdot x_2} = (\neg f_{\overline{x_1} \cdot x_2}) = (\neg f_{x_1 \cdot x_2}) = f_{x_1 \cdot x_2}$$

- (b) Only S_2 does not satisfy transitivity.
 - S_1 satisfies transitivity. The proof is as follows. Suppose f is S_1 -symmetric on (x_1, x_2) and (x_2, x_3) , then

$$\begin{split} f_{x_1 \cdot \overline{x_3}} &= \overline{x_2} \cdot f_{x_1 \cdot \overline{x_2} \cdot \overline{x_3}} + x_2 \cdot f_{x_1 \cdot x_2 \cdot \overline{x_3}} \\ &= \overline{x_2} \cdot f_{x_1 \cdot \overline{x_2} \cdot \overline{x_3}} + x_2 \cdot f_{x_1 \cdot \overline{x_2} \cdot x_3} \\ &= \overline{x_2} \cdot f_{\overline{x_1} \cdot x_2 \cdot \overline{x_3}} + x_2 \cdot f_{\overline{x_1} \cdot x_2 \cdot x_3} \\ &= \overline{x_2} \cdot f_{\overline{x_1} \cdot \overline{x_2} \cdot x_3} + x_2 \cdot f_{\overline{x_1} \cdot x_2 \cdot x_3} \\ &= \overline{x_2} \cdot f_{\overline{x_1} \cdot \overline{x_2} \cdot x_3} + x_2 \cdot f_{\overline{x_1} \cdot x_2 \cdot x_3} \\ &= f_{\overline{x_1} \cdot x_3}, \end{split} \quad (\because f_{x_2 \cdot \overline{x_3}} = f_{\overline{x_2} \cdot x_3})$$

so f is also S_1 -symmetric on (x_1, x_3) .

• S_2 does not satisfy transitivity. Here is a counterexample.

$$f = x_1 x_2' + x_2' x_3 + x_1 x_3,$$

where f is S_2 -symmetric on (x_1, x_2) and (x_2, x_3) , but $f_{\overline{x_1} \cdot \overline{x_3}} = 0 \neq 1 = f_{x_1 \cdot x_3}$, so f is not S_2 -symmetric on (x_1, x_3) .

- S_5 and S_6 satisfies transitivity. The proof is as follows. Suppose f is $S_{5(6)}$ -symmetric on (x_1, x_2) and (x_2, x_3) , then f does not depend on x_1, x_2 and x_3 . Therefore, f is also $S_{5(6)}$ -symmetric on (x_1, x_3) .
- S_7 and S_8 satisfies transitivity. The proof is as follows. Suppose f is $S_{7(8)}$ -symmetric on (x_1, x_2) and (x_2, x_3) , then

$$\begin{split} f_{\overline{x_1} \cdot \overline{x_3}} &= \overline{x_2} \cdot f_{\overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}} + x_2 \cdot f_{\overline{x_1} \cdot x_2 \cdot \overline{x_3}} \\ &= \overline{x_2} \cdot (\neg f_{x_1 \cdot \overline{x_2} \cdot \overline{x_3}}) + x_2 \cdot f_{\overline{x_1} \cdot x_2 \cdot \overline{x_3}} \qquad (\because f_{\overline{x_1} \cdot \overline{x_2}} = \neg f_{x_1 \cdot \overline{x_2}}) \\ &= \overline{x_2} \cdot (\neg f_{x_1 \cdot \overline{x_2} \cdot \overline{x_3}}) + x_2 \cdot (\neg f_{x_1 \cdot x_2 \cdot \overline{x_3}}) \qquad (\because f_{\overline{x_1} \cdot x_2} = \neg f_{x_1 \cdot x_2}) \\ &= \neg f_{x_1 \cdot \overline{x_3}}, \text{ and} \end{split}$$

$$\begin{split} f_{\overline{x_1} \cdot \overline{x_3}} &= \overline{x_2} \cdot f_{\overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}} + x_2 \cdot f_{\overline{x_1} \cdot x_2 \cdot \overline{x_3}} \\ &= \overline{x_2} \cdot (\neg f_{\overline{x_1} \cdot \overline{x_2} \cdot x_3}) + x_2 \cdot f_{\overline{x_1} \cdot x_2 \cdot \overline{x_3}} \qquad (\because f_{\overline{x_2} \cdot \overline{x_3}} &= \neg f_{\overline{x_2} \cdot x_3}) \\ &= \overline{x_2} \cdot (\neg f_{\overline{x_1} \cdot \overline{x_2} \cdot x_3}) + x_2 \cdot (\neg f_{\overline{x_1} \cdot x_2 \cdot x_3}) \qquad (\because f_{x_2 \cdot \overline{x_3}} &= \neg f_{x_2 \cdot x_3}) \\ &= \neg f_{\overline{x_1} \cdot x_3}, \text{ and} \end{split}$$

$$\begin{split} f_{\overline{x_1} \cdot \overline{x_3}} &= \overline{x_2} \cdot f_{\overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}} + x_2 \cdot f_{\overline{x_1} \cdot x_2 \cdot \overline{x_3}} \\ &= \overline{x_2} \cdot (\neg f_{\overline{x_1} \cdot \overline{x_2} \cdot x_3}) + x_2 \cdot f_{\overline{x_1} \cdot x_2 \cdot \overline{x_3}} & (\because f_{\overline{x_2} \cdot \overline{x_3}} &= \neg f_{\overline{x_2} \cdot x_3}) \\ &= \overline{x_2} \cdot (\neg f_{\overline{x_1} \cdot \overline{x_2} \cdot x_3}) + x_2 \cdot (\neg f_{\overline{x_1} \cdot x_2 \cdot x_3}) & (\because f_{x_2 \cdot \overline{x_3}} &= \neg f_{x_2 \cdot x_3}) \\ &= \overline{x_2} \cdot (f_{x_1 \cdot \overline{x_2} \cdot x_3}) + x_2 \cdot (\neg f_{\overline{x_1} \cdot x_2 \cdot x_3}) & (\because f_{\overline{x_1} \cdot \overline{x_2}} &= \neg f_{x_1 \cdot \overline{x_2}}) \\ &= \overline{x_2} \cdot (f_{x_1 \cdot \overline{x_2} \cdot x_3}) + x_2 \cdot (f_{x_1 \cdot x_2 \cdot x_3}) & (\because f_{\overline{x_1} \cdot x_2} &= \neg f_{x_1 \cdot x_2}) \\ &= f_{x_1 \cdot x_3}, \end{split}$$

so f is also $S_{7(8)}$ -symmetric on (x_1, x_3) .

4 [Unate Functions]

(a) True. The proof is as follows.

Let the unate cover without having any single-cube containment be F, and let F be the cover of function f. If F is not a prime, by definition, there exists a literal v in a cube c, where $c \in F$, such that $(F \setminus \{c\}) \cup \{c_v\} = f$. Without loss of generality, let $c = v \cdot v_2 \cdot \ldots \cdot v_k$, $F = c + c_2 + \ldots + c_\ell$, and let F depend on variables $\{v, v_2, \ldots, v_k, x_1, \ldots, x_n, y_1, \ldots, y_m\}$, where F is positive unate in x_1, \ldots, x_n and negative unate in y_1, \ldots, y_n . For v, v_2, \ldots, v_k , we do not make any assumptions, and f can be either positive or negative unate in each of them.

Since $(F \setminus \{c\}) \cup \{c_v\} = (v_2 \dots v_k) + c_2 + \dots + c_\ell = f$, f should contain the minterm $m_0 = (\overline{v})(v_2 \dots v_k)(\overline{x_1} \dots \overline{x_n})(y_1 \dots y_m)$. However, if we inspect each cube in F, we will find that c cannot contain m_0 because $v \in c$ and $\overline{v} \in m_0$. As for any other c_i , since there is not any single-cube containment in F, c_i must contain some variables in $\{x_1, \dots, x_n, y_1, \dots, y_m\}$ to avoid containing c. If c_i contains the variable x_j , then $x_j \in c_i$ because F is positive

unate in x_j , so c_i cannot contain m_0 . If c_i contains the variable y_j , then $\overline{y_j} \in c_i$ because F is negative unate in y_j , so c_i cannot contain m_0 . To sum up, there does not exist any cube in F to contain m_0 , so f cannot contain m_0 , which leads to a contradiction. Therefore, F must be a prime cover.

(b) True. The proof is as follows.

Let the unate function be f, and the prime cover be F. If F is not unate, by definition, there exist a variable v and two cubes $c_1, c_2 \in F$ such that $v \in c_1$ and $\overline{v} \in c_2$. Consider the two possibilities.

- (1) If f is positive unate in v:
 - By definition, $f_{\overline{v}} \subseteq f_v$. Since f contain $c_2 = \overline{v} \cdot c_2 = \overline{v} \cdot (c_2)_{\overline{v}}$, f should also contain $v \cdot (c_2)_{\overline{v}}$. Therefore, f contains $(c_2)_{\overline{v}}$, and the literal \overline{v} in c_2 can be removed without affecting the functionality of F. However, F should be a prime, so $(F \setminus \{c_2\}) \cup \{(c_2)_{\overline{v}}\} \neq f$, which leads to a contradiction.
- (2) If f is negative unate in v: By definition, $f_v \subseteq f_{\overline{v}}$. Since f contain $c_1 = v \cdot c_1 = v \cdot (c_1)_v$, f should also contain $\overline{v} \cdot (c_1)_v$. Therefore, f contains $(c_1)_v$, and the literal v in c_1 can be removed without affecting the functionality of F. However, F should be a prime, so $(F \setminus \{c_1\}) \cup \{(c_1)_v\}) \neq f$, which leads to a contradiction. Therefore, F must be a unate cover.

5 [Threshold and Unate Functions]

- (a) $x_1 \wedge x_2 \wedge x_3 = f(x_1, x_2, x_3 \mid w_1 = w_2 = w_3 = 1, T = 3)$
- (b) Without loss of generality, let the threshold function f be defined on variables $\{x_1,\ldots,x_n\}$, where $w_i\geq 0$ for $1\leq i\leq m$, and $w_i<0$ for $m< i\leq n$. Let $s(x_1,\ldots,x_n)=\sum_{i=1}^n w_ix_i$. Then $f(x_1,\ldots,x_n)=1$ if and only if $s(x_1,\ldots,x_n)\geq T$.

Consider an arbitrary input assignment (a_1, \ldots, a_n) . For any $1 \le i \le m$, we have

$$f(a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots a_n) = 1$$

$$\Rightarrow s(a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots a_n) \ge T$$

$$\Rightarrow s(a_1, \dots, a_{i-1}, 1, a_{i+1}, \dots a_n) = s(a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots a_n) + w_i \ge T \quad (\because w_i \ge 0)$$

$$\Rightarrow f(a_1, \dots, a_{i-1}, 1, a_{i+1}, \dots a_n) = 1.$$

Since the above relation holds for any input assignment, we can conclude

$$f(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)\to f(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n).$$

Therefore, $f_{\overline{x_i}} \subseteq f_{x_i}$, indicating that f is positive unate in $x_i \ \forall 1 \leq i \leq m$. Similarly, for any $m < i \leq n$, we have

$$f(a_1, \dots, a_{i-1}, 1, a_{i+1}, \dots a_n) = 1$$

$$\Rightarrow s(a_1, \dots, a_{i-1}, 1, a_{i+1}, \dots a_n) \ge T$$

$$\Rightarrow s(a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots a_n) = s(a_1, \dots, a_{i-1}, 1, a_{i+1}, \dots a_n) - w_i \ge T \quad (\because w_i < 0)$$

$$\Rightarrow f(a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots a_n) = 1.$$

Since the above relation holds for any input assignment, we can conclude

$$f(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots x_n)\to f(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots x_n).$$

Therefore, $f_{x_i} \subseteq f_{\overline{x_i}}$, indicating that f is negative unate in $x_i \ \forall m < i \leq n$. Since f is unate in every variable, f must be a unate function.

6 [Unate Recursive Paradigm: Complementation]

$$f_{b'a'd'} = 1 \qquad \Rightarrow (f_{b'a'd'})' = 0$$
 Minimal column covers of $f_{b'a'd} = \{\{3\}\}$ $\Rightarrow (f_{b'a'd'})' = c'$ Minimal column covers of $f_{b'a} = \{\{4\}\}$ $\Rightarrow (f_{b'a})' = d$ Minimal column covers of $f_{bc'} = \{\{4\}\}$ $\Rightarrow (f_{bc'})' = d'$ Minimal column covers of $f_{bc} = \{\{1,5\}, \{4,5\}\}$ $\Rightarrow (f_{bc})' = ae + d'e$

Therefore,

$$f' = b'a'd' \cdot (f_{b'a'd'})' + b'a'd \cdot (f_{b'a'd})' + b'a \cdot (f_{b'a'})' + bc' \cdot (f_{bc'})' + bc \cdot (f_{bc})'$$

= $a'b'c'd + ab'd + bc'd' + abce + bcd'e$.

7 [Quine-McCluskey]

(a) The prime implicants are $\{a'c'd, b'cd', a'bc', bc'd, acd', a'b, bd', ad', bc\}$.

(b) The Boolean matrix for column covering is as follows, where empty entries mean 0.

	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9
0 1 0 0 1 0			1						
$0\ 1\ 0\ 1\ \ 1\ 0$	1		1	1					
$1\ 0\ 1\ 0\ \ 1\ 0$		1			1				
$1\ 1\ 1\ 0\ \ 1\ 0$					1				
0100 01			1			1	1		
$0\ 1\ 0\ 1\ \ 0\ 1$			1			1			
$0\ 1\ 1\ 1\ \ 0\ 1$						1			1
$1\ 0\ 0\ 0\ \ 0\ 1$								1	
$1\ 0\ 1\ 0\ \ 0\ 1$					1			1	
$1\ 1\ 0\ 0\ \ 0\ 1$							1	1	
$1\ 1\ 1\ 1\ \ 0\ 1$									1

- (c) First we list all essential primes. The essential primes are $\{p_3, p_5, p_8, p_9\}$. Then all rows are covered by essential primes and removed. Therefore, the cyclic core is empty.
- (d) The minimum column covering is $\{p_3, p_5, p_8, p_9\}$, which corresponds to the minimum multi-output cover $\{a'bc', acd', ad', bc\}$. We verify that $\{a'bc', acd'\}$ is a cover of f, and $\{a'bc', acd', ad', bc\}$ is a cover of g.