分子生物计算 (Perl 语言编程)

天津医科大学 生物医学工程与技术学院

> 2019-2020 学年上学期(秋) 2017 级生信班

TIMTOWTDI <u>(条条</u>大路通罗马)

伊现富(Yi Xianfu)

天津医科大学(TIJMU) 生物医学工程与技术学院

2019年11月

帮助文档

```
# The Perl 5 language interpreter
  man perl
3 # Look up Perl documentation in Pod format
4 man perldoc
  perldoc perldoc
6
  # Perl built-in function
  perldoc -f BuiltinFunction
  perldoc -f substr
10 # FAO
11 peridoc -q FAQKeyword
12 perldoc - g random
13 # Perl predefined variable
14 peridoc -v Perivariable
15 perldoc -v '$ '
```


启用警告

```
Method1
  # 使用命令行选项-w
  perl -w script.pl
4
5
  # Method2
  # 在命令解释行使用-w
  #!/usr/bin/perl -w
8
  # Method3
  # 使用use
10
  use warnings;
```



```
# Method1
  $DNA3 = "$DNA1$DNA2"; print "$DNA3\n";
3
4 # Method2
  print "$DNA1$DNA2\n";
6
  # Method3
  print $DNA1, $DNA2, "\n";
9
10 # Method4
11|$DNA3 = $DNA1 . $DNA2; print "$DNA3\n";
12
13 # Method5
14 $DNA3 = join "", $DNA1, $DNA2; print "$DNA3\n
    ";
```



```
# Method1 (只读取一行)
  $protein = <PROTEINFILE>;
3
  # Method2 (读取所有行,一次性保存进数组)
  @proteins = <PROTEINFILE>;
6
  # Method3 (依次读取每一行)
  while (<PROTEINFILE>) {
9
    ...actions...
10
11
12 # Method4 (读取所有行, 一次性保存进标量)
13 | $protein = do { local $/; <PROTEINFILE>; };
```

获取数组元素个数

```
1 # Methods1
2 $num = scalar @bases;
3
4 # Methods2
5 $num = @bases;
6
7 #Methods3
8 $num = $#bases + 1;
```


获取数组的第一个元素

```
# Method1
  $first gene = $genes[0];
  #($first gene) = $genes[0];
4
  # Method2
6
  ($first gene) = @genes;
  # Method3
  $first gene = shift @genes;
10 # 注意: shift会影响原始的@genes数组
```


获取数组的最后一个元素

```
1 # Method1
2 $last_gene = $genes[-1];
3
4 # Method2
5 $last_gene = $genes[$#genes];
6
7 # Method3
8 $last_gene = pop @genes;
9 # 注意: pop会影响原始的@genes数组
```


变量值 +1

```
# Methods1
  $count++;
3
  # Methods2
  ++$count;
6
  # Methods3
  $count += 1;
9
10
  # Methods4
11 | $count = $count + 1;
```


10/16

计数核苷酸

```
1 # Methods1 (使用数组)
2 @DNA = split( '', $DNA );
3 foreach $base (@DNA) { ...count... }
4 # Methods2 (操作字符串)
5 \mid \text{for ( $pos=0 ; $pos < length $DNA ; ++$pos )}
6
    $base = substr( $DNA, $pos, 1 ); ..count..
8 # Methods3 (模式匹配)
9|while ( $DNA = ~ /a/ig ) { $a++ }
10 while ( DNA = /[^acgt]/ig ) { e++ }
11 # Methods4 (使用tr函数)
12 a = (SDNA = tr/Aa/Aa/);
13 | $basecount = ($DNA =~ tr/ACGTacgt/ACGTacgt/);
14 | $nonbase = (length $DNA) - $basecount;
```


考试

考试安排

• 时间:1.15(周二), 10:30-12:10

地点:西楼 510时长:100 分钟

● 总分:100 分

题型与分值

● 单选题:25×1=25

② 多选题:20×1=20

③ 简答题:4×5 = 20

④ 编程题:5×5 = 25

⑤ 应用题:1×10=10

考试

考试安排

• 时间:1.15(周二), 10:30-12:10

● 地点:西楼 510

● 时长:100 分钟

● 总分:100 分

题型与分值

● 单选题:25×1=25

② 多选题:20×1=20

③ 简答题:4×5 = 20

④ 编程题:5×5=25

⑤ 应用题:1×10 = 10

知识点

- 生物学基础:拉丁语,数据库,碱基/氨基酸代码,限制酶,点突变
- R:常用包
- Markdown:基本语法,格式转换
- Git:基本使用
- Perl 基础: CPAN,变量,赋值,use*,三大数据类型,上下文, 子程序,调试器,排序,命令行参数,随机,关系数据库,my,编 程流程,特殊变量,编程策略,构思步骤,字符串拼接,文件读取 写入,perldoc,模块,设计理念,流程控制
- 数组:索引,操作,split,join
- 测试:条件操作符,字符串/数字/文件测试,真假
- 正则表达式:元字符,修饰符,匹配,替换,tr
- 编程:DNA 突变,相似性计算,限制酶的正则表征,子程序传递,序列两两比较,阅读框翻译,……

FATSQ

```
1) Read Name --- @SRR190851, 108390742/1
2) Sequence Bases+ GAGATTGAGTCTTGCTTTGTCCCCAGGCTGGAGTGCAATGG
                                                     Identifier @SRR566546.970 HWUSI-EAS1673 11067 FC7070M:4:1:2299:1109 length=50
                                                     Sequence TTGCCTGCCTATCATTTTAGTGCCTGTGAGGTGGAGATGTGAGGATCAGT
4) Base Qualities -+ : agga :>5?BaDABBFAG=EE@E@FEFFHF=BECEFFED>F
                                                     '+' sign - +
1) Read Name - @SRR190851.61391872/1
2) Sequence Bases + CAACATGGTGAAACCCCGTCTCTACTAACATACAAAATTAG
                                                 Identifier  SRR566546.971 HWUSI-EAS1673_11067_FC7070M:4:1:2374:1108 length=50
4) Base Qualities --- CBEBEFIIEIGDJHIJJ?GGHGKFGJEIGGIIIIKKKEIIK
                                                     Sequence — GATTTGTATGAAAGTATACAACTAAAACTGCAGGTGGATCAGAGTAAGTC
1) Read Name --- @SRR190851, 22176085/1
2) Sequence Bases TAGACTGAGGCCTAAGTCTCAGTCTGGGGCCTGGTACATGG
                                                     '+' sign - +
                                                 Quality scores hhhhgfhhcghghggfcffdhfehhhhcehdchhdhahehffffde'bVd
4) Base Qualities → @@?CCHECAEBEGDEHFDHEHGFGHB>GFAEHBEE; EGGI>
               Label
                               Sequence
                                                     starting
                                                                                                                      sequence
@FORJUSP@2AJWD1
                                                                                                                      identifier
                                                     symbol
CCGTCAATTCATTTAAGTTTTAACCTTGCGGCCGTACTCCCCAGGCGGT
                                                                @HWI-EAS3X 10102 2 120 19829 1823#0/2
                                                                TCTAACTCTTACTTAGCATAGCTGTTAAAATTTTTGAGTT
AAAAAAAAAAA::99@::::??@@::FFAAAAACCAA::::BB@@?A?
                                                                                                                        sequence
                                                                +(optionally the same identifier)
                          O scores (as ASCII chars)
                                                                DEAEE:B:BE5EEED=:DEA:-AE5DDBDFFEDEEDFAE
                                                sequence end
                                                   start QS
                                                                                                                      quality
                 Base=T, O=':'=25
                                                                                                                      score
    !"#$%&'()*+.-./0123456789::<=>?@ABCDEFGHIJKLMNOPORSTUVWXYZ[\]^ `abcdefghiiklmnopgrstuvwxvz{|}~
   33
                                     59
                                                                                              104
                                                                                                                          126
                                   . 26 . . . 31
          SANGER/Illumina 1.8+: Phred+33
                                   -5....9......9......
                                                         Solexa: Solexa+64
                                                       Illumina 1.3+: Phred+64
```

15/16

Illumina 1.5+: Phred+64

3.....9.........

Powered by

16/16