Лабораторная работа №9

Приближенное вычисление площади фигуры методом Монте-Карло

Цель работы: изучение метода Монте-Карло (метода статистических испытаний) на примере вычисления площади фигуры.

Применим метод статических испытаний или метод Монте-Карло к задаче вычисления площади геометрической фигуры на плоскости.

Метод заключается в следующем. Поместим данную фигуру в квадрат и будем наугад бросать точки в этот квадрат. Будем исходить из того, что чем больше площадь фигуры, тем чаще в нее будут попадать точки. Таким образом, при большом числе N точек, наугад выбранных внутри квадрата, доля точек, содержащихся в данной фигуре k, приближенно равна отношению площади этой фигуры и площади квадрата:

Если площадь квадрата равна S_0 и в результате N испытаний, из которых при k исходах случайные точки оказались внутри фигуры, то площадь фигуры будет определяться выражением

$$S = \frac{k}{N}S_0$$

Рассмотрим алгоритм решения задачи на конкретном примере.

Рассмотрим фигуру, представленную на рис. 1а., площадь которой нам заранее известна и равна $S_t = 8,38404$. Вообще говоря, фигура может быть любой, но обязательно должны быть известны границы фигуры, в виде аналитического выражения или совокупности таких выражений и логических условий.

В нашем примере множество точек фигуры определяется следующей системой неравенств:

$$\begin{cases}
-2x^2 + y^3 < -1 \\
x^3 + 2y < 3 \\
-2 < x < 2 \\
-2 < y < 2
\end{cases}$$

Площадь этой фигуры составляет часть прямоугольника площадью $S_0 = 4 \times 4 = 16$.

- 1. Генерируем случайные числа x, y и равномерно распределенные на отрезке [-2; 2]. Это будут координаты случайной точки в квадрате, в которую заключена фигура, площадь которой требуется найти. Полученная точка может как попасть в исследуемую фигуру, так и не не попасть (рис. 16).
- 2. Проверяем принадлежность точки к исследуемой фигуре. Если попадания нет, т.е. не выполняется хотя бы одно из неравенств системы, то переходим к пункту 1 и генерируем координаты новой точки. Если попадание есть, то фиксируем это попадание. Значение счетчика числа попаданий увеличиваем на единицу и снова переходим к пункту 1.

Заметим, что попадание случайной точки точно на границу фигуры можно отнести как к первому, так и ко второму исходу.

Пункты 1 и 2 следует повторить в цикле достаточно большое число N раз. От этого, в конечном итоге, зависит точность вычислений. После проведения N повторов площадь фигуры найдем по формуле:

$$S = \frac{k}{N}S_0$$

Задания на лабораторную работу 9

Задание – Методом Монте-Карло вычислить площади закрашенных фигур.

Выполнить аналитический расчет площади и выполнить серию экспериментов с разным количеством испытаний (числа случайных точек). Результаты свести в таблицу:

Nº	Число точек	Число точек, принадлежащих фигуре	Площадь фигуры по методу Монте-Карло	Отклонение от истинной точности
1	100			
2	1000			
3	10000			
4	100000			
5	1000000			
6	10000000			

Номер варианта	Задания		
1	$y = 2$ $y = \sin x$ $y = \sin x$ $y = \sin x$ $y = \sin x$		
2	$x^{2} + y^{2} = 2$ $y = 1$ x $x^{2} + y^{2} = 2$ x		

