ГУАП

КАФЕДРА № 42

ОТЧЕТ ЗАЩИЩЕН С ОЦЕН	ІКОЙ		
ПРЕПОДАВАТЕЛЬ			
канд. техн. наук,			А. В. Аграновский
должность, уч. степен	вь, звание	подпись, дата	инициалы, фамилия
	ОТЧЕТ О ЛА	БОРАТОРНОЙ РАБ	OTE № 4
ИССЛЕДОВАН		СКАДНОГО ЭЛЕКТ ЛЯРНОМ ТРАНЗИС	РОННОГО УСИЛИТЕЛЯ СТОРЕ
		по курсу:	
	ЭЛЕКТРОН	ИКА И СХЕМОТЕХ	КНИКА
РАБОТУ ВЫПОЛНИ	ИЛ		
СТУДЕНТ гр. №	4326	подпись, дата	Г. С. Томчук инициалы, фамилия

1 Цель работы

Цель работы: изучение и практическое исследование принципа работы и характеристик электронных усилителей.

2 Электронные модели экспериментальной установки

На рис. 1-3 изображены схемы экспериментальной установки, составленные в Місго-Сар. За неимением полупроводникового транзистора типа КТ608А в библиотеке программы, было решено заменить его на аналогичный 2N3055.

Рисунок 1 — Схема для исследования статической линии нагрузки

Рисунок 2 – Схема для определения рабочей точки

Рисунок 3 — Схема для исследования амплитудно-частотных характеристик усилителя

3 Таблицы с результатами практических исследований

По итогу симуляции и анализа заданных схем в Місго-Сар были составлены таблицы 1-5. В таблицу 1 были занесены данные исследования статической линии нагрузки.

Таблица 1 – Исследование статической линии нагрузки

$$E_K = 10B$$

U _{БЭ} , В	200	400	600	800	1000	1200
Іь, мА	1.993	3.995	5.997	7.993	10.001	11.996
I _K , мA	192.067	194.649	194.963	195.151	195.263	195.367
$U_{K\mathfrak{I}}, B$	0.205	0.073	0.057	0.047	0.041	0.036

В таблицы 2-5 были занесены данные исследования АЧХ усилителя. Путем подбора сопротивлений резисторов $R_1 = 8$ кОм и $R_2 = 2$ кОм (так, чтобы U_{КЭ=}=5В) была определена рабочая точка усилительного каскада.

Таблица 2 – Исследование АЧХ усилителя

$$R_{\rm H} = 500 \; {\rm Om}$$

$$C_H = 0$$

$$C_H = 0$$
 $C_1 = C_2 = 10 \text{ мк}\Phi$

Г ВХ, ГЦ	100	200	400	800	1600	3000	6000	12000	24000
U_{mBbIX} , B	27.3	53.2	90.1	122.3	137.6	142.1	143.5	143.4	141.5

Таблица 3 – Исследование АЧХ усилителя

$$R_{\rm H} = 500 \; {\rm Om}$$

$$C_{\rm H} = 0.1 \, {\rm Mk} \Phi$$

$$C_H = 0,1 \text{ мк}\Phi$$
 $C_1 = C_2 = 10 \text{ мк}\Phi$

F _{ВХ,} Гц	100	200	400	800	1600	3000	6000	12000	24000
U_{mBbIX} , B	27.1	52.8	89.4	121.3	136.3	140.5	140.6	135.9	119.8

Таблица 4 – Исследование АЧХ усилителя

$$R_{\rm H} = 500 \; {\rm Om}$$

$$C_{\rm H} = 0.2 \, {\rm M}{\rm K}\Phi$$

$$C_1 = C_2 = 10 \text{ мк}\Phi$$

$F_{ m BX}$, Γ ц	100	200	400	800	1600	3000	6000	12000	24000
U_{mBbIX} , B	26.9	52.4	88.6	120.2	134.9	138.2	135.1	120.8	89.0

Таблица 5 – Исследование АЧХ усилителя

$$R_H = 500 \text{ Om}$$

$$C_H = 0.1$$
 мк Φ

$$C_1 = 10 \text{ мк}\Phi C_2 = 3 \text{ мк}\Phi$$

$F_{ m BX}$, Γ ц	100	200	400	800	1600	3000	6000	12000	24000
U_{mBbIX} , B	20.1	47.3	85.5	118.2	133.5	137.8	138.0	133.5	118.1

4 Статическая линия нагрузки усилителя

На рис. 4 изображены графики выходных BAX транзистора 2N3055 с наложенной сверху статической линией нагрузки усилителя. Также на графике выделена рабочая точка усилителя.

Рисунок 4 – Статическая линия нагрузки усилителя

5 Амплитудно-частотные характеристики усилителя

На рис. 5-8 изображены графики амплитудно-частотных характеристик усилителя с разными параметрами конденсаторов на схеме.

Рисунок 5 — АЧХ усилителя. $R_H = 500~{\rm Om},~C_H = 0,~C_1 = C_2 = 10~{\rm mk}\Phi$

Рисунок 6 — АЧХ усилителя. $R_{\rm H} = 500$ Ом, $C_{\rm H} = 0.1$ мк Φ , $C_1 = C_2 = 10$ мк Φ

Рисунок 7 — АЧХ усилителя. $R_H = 500$ Ом, $C_H = 0.2$ мк Φ , $C_1 = C_2 = 10$ мк Φ

Рисунок 8 — АЧХ усилителя. $R_H = 500$ Ом, $C_H = 0.1$ мк Φ , $C_1 = 10$ мк Φ , $C_2 = 3$ мк Φ

6 Выводы

В ходе лабораторной работы была исследована работа однокаскадного усилителя на биполярном транзисторе. Были получены и проанализированы статическая линия нагрузки и амплитудно-частотные характеристики усилителя.

Статическая линия нагрузки была построена на основе закона Ома и закона Кирхгофа и представляет собой прямую в координатах $I_{\rm K}U_{\rm K9}$. Её наклон определяется сопротивлением в коллекторной цепи, а пересечение с вольт-амперной характеристикой транзистора задает рабочую точку усилителя. В данном случае рабочая точка соответствовала току покоя базы $I_{\rm B}=875~{\rm Mk}A~(I_{\rm K}=100~{\rm M}A,U_{\rm K9}=5~{\rm B})$. Она расположена на линейном участке характеристики, примерно посередине нагрузочной прямой, что обеспечит линейную работу усилителя без искажений.

Амплитудно-частотная характеристика усилителя показывает зависимость коэффициента усиления от частоты входного сигнала. Анализ полученных графиков показал, что при низких частотах усиление уменьшается за счёт реактивного сопротивления разделительных и эмиттерного конденсаторов. В средней полосе частот наблюдается плато — область стабильного усиления. При дальнейшем увеличении частоты усиление снова начинает снижаться, что связано с влиянием паразитных емкостей транзистора и монтажной схемы.

Изменение значения конденсатора C_H оказывает существенное влияние на форму АЧХ. При малом значении C_H наблюдается провал усиления на низких частотах. При увеличении емкости граница полосы пропускания смещается в сторону низких частот, и усиление становится более равномерным по всему диапазону.

Таким образом, было подтверждено, что форма и параметры статической линии нагрузки определяют рабочую точку усилителя, а элементы схемы, особенно емкостные, существенно влияют на его частотные свойства. Полученные результаты соответствуют теоретическим представлениям о работе биполярных транзисторных усилителей.