

Quiz 2

What to Study?

Where We Are

Plotting Coordinates

Matplotlib

Koch Snowflakes

Let's Code

Discrete Structures: CMPSC 102

Oliver BONHAM-CARTER

Fall 2019 Week 11

Quiz 2 is Coming Up

Quiz 2 What to Study?

Where We Are Plotting

Coordinates Matplotlib

Koch Snowflakes

Let's Code

Please note

Quiz 2 is coming up Friday 15^{th} November

- Quiz 2 topics to come on Wednesday
- Start going through your slides and notes!

Quiz 2
What to Study?

Plotting Coordinates

Are

Matplotlib

Koch Snowflakes

- Given on Friday 15th November during class time (11am)
- Online format
- One hour to complete; although more time is given if necessary
- Around Fifteen questions: Multi-choice, True/False, Matching and Short answer
- Code: Picking out bugs from code or determining output

What to study

Quiz 2 What to Study?

What to Study
Where We
Are

Plotting Coordinates

 ${\sf Matplotlib}$

Koch Snowflakes

- Slides, notes, with chapters to add detail to class material
 - Main ideas since Exam 1 and associated samples of code
 - Graph Theory
 - Explain the initial (first) problem of graph theory
 - Terms: adjacency, vertex degrees, isolated nodes, order, size, paths
 - Applications of graphs
 - Objects and Classes
 - Functions versus Methods
 - Recognizing correct class syntax in code
 - Classes and their variables, as opposed to root variables
 - Self variables versus non-self variables
 - The __init__ method and the concept of docstrings
 - Conceptual questions concerning the use of classes and building plots

Where Are We Now? Saha's Book

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

Koch Snowflakes

Let's Code

Saha, Chapter 2: Visualizing Data with graphs

- How to present data with graphics
- Plotting basic numbers
- Plotting results from equations
- Plotting all kinds of things!

A Number Line: x Denoted R

Quiz 2

Where We Are

Plotting Coordinates

- 1 Dimensional
- 2 Dimensional 3 Dimensional
- Matplotlib

Koch Snowflakes

- The x-axis runs horizontally left to right
- The middle of the number line is where x=0
- Left of 0: negative numbers (all kinds of numbers!)
- Right of 0: positive numbers (all kinds of numbers, too!)

Cartesian System, 2-D Coordinates: x and y Denoted \mathbb{R}^2

Quiz 2

Where We Are

Plotting Coordinates

1 Dimensional

Dimensional
 Dimensional

Matplot<u>lib</u>

Koch Snowflakes

- The x-axis runs along the bottom (horizontally left to right)
- The y-axis runs along the side (vertically bottom to top)
- \bullet Typically, the (0,0) point (the origin) is shown where x=0 and

2-D Coordinates: x and yDenoted R^2

Quiz 2

Where We Are

Plotting Coordinates

1 Dimensiona

2 Dimensional
3 Dimensional

Matplotlib

Koch Snowflakes

- The two number lines are called the *x*-axis and the *y*-axis and are called the *coordinate axes*
- The intersection of the values of x and y creates the 2-D point (called the ordered pair) on the canvas.
- There are four quadrants defined by:
 - Quadrant I: (x, y)
 - **Q** Quadrant II: (-x, y)
 - **3** Quadrant III: (-x, -y)
 - 4 Quadrant IV: (x, -y)

Example Coordinates: x and y

Quiz 2

Where We Are

Plotting Coordinates

1 Dimensional

2 Dimensional
3 Dimensional

Matplotlib

Koch Snowflakes

- Origin: (0,0)
- Green: (2,3)
- Red: (-3,1)
- Blue: (-1.5, -2.5)

3-D Coordinates: x, y, and z

Quiz 2

Where We Are

Plotting Coordinates

1 Dimensional
2 Dimensional

3 Dimensional

Matplotlib

Koch Snowflakes

- The three number lines are called the *x*-axis, the *y*-axis, and the *z*-axis and are called the *coordinate axes*
- The intersection of the values of x, y and z creates the point defined by the ordered triple on the canvas.
- The z-axis:

3-D Coordinates: x, y, and zExample plot

Quiz 2

Where We Are

Plotting Coordinates

1 Dimensional

2 Dimensional

Matplotlib

Koch Snowflakes

Matplotlib

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

More Plots Adding Legends Adding Titles Plotting Equations

Koch Snowflakes

- Matplotlib is a Python 2D plotting library
- Produces publication quality figures in Python in a variety of hardcopy formats and interactive environments across platforms.
- Allows you to plot your data without much extra coding

Installing Matplotlib

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

More Plots
Adding Legends
Adding Titles
Plotting
Equations

Koch Snowflakes

Let's Code

Installing Software

^{75%}

Website

https://matplotlib.org/3.1.1/users/installing.html

Installation Commands from Bash or Command Prompt

```
python -m pip install -U pip # install PIP python -m pip install -U matplotlib #install Matplotlib core
```

Checking the Version

```
import matplotlib
matplotlib.__version__ # '3.1.1'
```


Creating Plots with Matplotlib

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

More Plots Adding Legends Adding Titles Plotting Equations

Koch Snowflakes

Let's Code

 We first need to know that the library is installed on your machine.

python3

from pylab import plot, show

- https://matplotlib.org/index.html
- https://matplotlib.org/3.0.0/users/installing.html

Your First Plot Plot some simple points

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

More Plots Adding Legends Adding Titles Plotting Equations

Koch Snowflakes

Let's Code

Place in python3 or in a python3 program file

```
from pylab import plot, show #get the library
x_num = [1,2,3,4,5] #def of x
y_num = [1,5,3,7,9] # def of y
plot(x_num, y_num) # gives mem addr of obj
show() # draw the plot on canvas
```


Gimme Points, Not Lines

Plot some basic numbers using points

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

More Plots Adding Legends Adding Titles Plotting Equations

Koch Snowflakes

Let's Code

Place in python3 or in a python3 program file

```
from pylab import plot, show #get the library
x_num = [1,2,3,4,5] #def of x
y_num = [1,5,3,7,9] # def of y
plot(x_num, y_num, marker ='o')
# also including 'o', '*', 'x', and '+' as points
show() # draw the plot on canvas
```


Another Amazing Example!

Plot the sin wave

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

More Plots Adding Legends Adding Titles Plotting Equations

Koch Snowflakes

Let's Code

Place in python3 or in a python3 program file

```
from pylab import plot, show #get the library
import math
x_num = [i for i in range(50)]
y_num = [math.sin(i) for i in x_num]
plot(x_num, y_num, marker ='o')
# also including 'o', '*', 'x', and '+' as points
show() # draw the plot on canvas
```


Yet, Another Amazing Example!

Plot the temperature in NYC and save the file too!

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

More Plots

Adding Legends

Adding Titles

Plotting

Equations

Koch
Snowflakes

Let's Code

Place in python3 or in a python3 program file

from pylab import plot, show, savefig #note savefig
nyc_temp = [53.9, 56.3, 56.4, 53.4, 54.5, 55.8,
56.8, 55.0, 55.3, 54.0, 56.7, 56.4, 57.3]
years = range(2000, 2013)
plot(years, nyc_temp, marker='o')
also including 'o', '*', 'x', and '+' as points
savefig('mygraph.png') #save in root directory
show() # draw the plot on canvas

Three Plots Together! Amazing! Plot the temperature in NYC aggregated by time

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

More Plots
Adding Legends
Adding Titles
Plotting
Equations

Koch Snowflakes

Let's Code

Place in python3 or in a python3 program file

from pylab import plot, show, savefig #note savefig
months = range(1, 13)

nyc_temp_2000 = [31.3, 37.3, 47.2, 51.0, 63.5, 71.3, 72.3, 72.7, 66.0, 57.0, 45.3, 31.1]

nyc_temp_2006 = [40.9, 35.7, 43.1, 55.7, 63.1, 71.0, 77.9, 75.8, 66.6, 56.2, 51.9, 43.6]

nyc_temp_2012 = [37.3, 40.9, 50.9, 54.8, 65.1, 71.0, 78.8, 76.7, 68.8, 58.0, 43.9, 41.5]

plot(months, nyc_temp_2000, months, nyc_temp_2006,
months, nyc_temp_2012)
savefig('mygraph.png') #save in root directory
show() # draw the plot on canvas

Three Plots Together! Amazing! Plot the temperature in NYC aggregated by time

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

More Plots

Adding Legends Adding Titles Plotting Equations

Koch Snowflakes

Three Plots Together! And a LEGEND Too!

Plot the temperature in NYC aggregated by time

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib More Plots

Adding Legends
Adding Titles
Plotting
Equations

Koch Snowflakes

Let's Code

```
Place in python3 or in a python3 program file
```

```
from pylab import plot, show, savefig, legend months = range(1, 13)
nyc_temp_2000 = [31.3, 37.3, 47.2, 51.0, 63.5, 71.3, 72.3, 72.7, 66.0, 57.0, 45.3, 31.1]
```

nyc_temp_2006 = [40.9, 35.7, 43.1, 55.7, 63.1, 71.0, 77.9, 75.8, 66.6, 56.2, 51.9, 43.6]

nyc_temp_2012 = [37.3, 40.9, 50.9, 54.8, 65.1, 71.0, 78.8, 76.7, 68.8, 58.0, 43.9, 41.5]

plot(months, nyc_temp_2000, months, nyc_temp_2006,
months, nyc_temp_2012)
legend([2000, 2006, 2012]) # make the legend
savefig('mygraph.png') #save in root directory
show() # draw the plot on canvas

Three Plots Together! And a LEGEND Too!

Plot the temperature in NYC aggregated by time

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib More Plots

Adding Legends
Adding Titles
Plotting

Equations

Koch
Snowflakes

Add Title and Axes Descriptions!

Plot the temperature in NYC aggregated by time

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

More Plots

Adding Legends

Adding Titles
Plotting

Equations

Snowflakes

Let's Code

```
Place in python3 or in a python3 program file
```

```
from pylab import plot, show, title, savefig, xlabel, ylabel, legend, axis months = range(1, 13) \,
```

```
nyc_temp_2000 = [31.3, 37.3, 47.2, 51.0, 63.5, 71.3, 72.3, 72.7, 66.0, 57.0, 45.3, 31.1]
```

```
nyc_temp_2006 = [40.9, 35.7, 43.1, 55.7, 63.1, 71.0, 77.9, 75.8, 66.6, 56.2, 51.9, 43.6]
```

```
nyc_temp_2012 = [37.3, 40.9, 50.9, 54.8, 65.1, 71.0, 78.8, 76.7, 68.8, 58.0, 43.9, 41.5]
```

```
plot(months, nyc_temp_2000, months, nyc_temp_2006, months, nyc_temp_2012)
title('Average monthly temperature in NYC')
xlabel('Month') #x-axis label
ylabel('Temperature') #y-axis label
legend([2000, 2006, 2012]) #legend
```

savefig('mygraph.png') #save in root directory
show() # draw the plot on canvas

Sorry about the fine print. :-(

Add Title and Axes Descriptions!

Plot the temperature in NYC aggregated by time

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib More Plots Adding Legends

Adding Titles
Plotting
Equations

Koch Snowflakes

Changing the Field of View

Start with this plot, then we will change axis focus

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib More Plots Adding Legends

Adding Titles
Plotting
Equations

Koch Snowflakes

```
nyc_temp = [53.9, 56.3, 56.4, 53.4, 54.5, 55.8,
56.8, 55.0, 55.3, 54.0, 56.7, 56.4, 57.3]
plot(nyc_temp, marker='o')
axis()
#(-0.60, 12.6, 53.205, 57.495)
show()
```


COOL!!! The Field of View Has Been Changed!

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib More Plots

Adding Legends
Adding Titles

Plotting Equations

Koch Snowflakes

```
Set the x-axis, min and max
```

```
plot(nyc_temp, marker='o')
axis(xmin = 3, xmax = 7)
show()
```


Plotting the Log Equation

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib
More Plots
Adding Legends
Adding Titles

import math

Plotting Equations

Koch Snowflakes

Let's Code

```
Log Plot
from pylab import plot, show, title, savefig, xlabel, ylabel, legend
```

```
x = [i for i in range(1,20)]
y = [math.log(i) for i in x]

plot(x,y, marker = 'o')

title(' Log Equation plot')
xlabel('t Values') #x-axis label
ylabel('log(x)') #y-axis label
legend(['log(x)']) #legend
```

savefig('myLogPlot.png') #save in root directory

show() # draw the plot on canvas

Sorry about the fine print. :-(

The Plotted Log(x)Plot the temperature in NYC aggregated by time

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib
More Plots
Adding Legends
Adding Titles
Plotting

Equations

Koch
Snowflakes

Koch Snowflakes

Source file: kochSnowflake.py

import matplotlib.pyplot as plt

import numpy as np

```
Quiz 2
```

Where We Are

Plotting Coordinates

Matplotlib

Koch Snowflakes

```
def koch_snowflake(order, scale=10):
    """ ref: https://matplotlib.org/3.1.1/gallery/lines_bars_and_markers
          /fill.html#sphx-glr-gallery-lines-bars-and-markers-fill-py"""
    def _koch_snowflake_complex(order):
        if order == 0:
            # initial triangle
            angles = np.array([0, 120, 240]) + 90
            return scale / np.sqrt(3) * np.exp(np.deg2rad(angles) * 1i)
        else:
            ZR = 0.5 - 0.5j * np.sqrt(3) / 3
            p1 = _koch_snowflake_complex(order - 1) # start points
            p2 = np.roll(p1, shift=-1) # end points
           dp = p2 - p1 # connection vectors
           new_points = np.empty(len(p1) * 4, dtype=np.complex128)
           new points[::4] = p1
           new_points[1::4] = p1 + dp / 3
           new_points[2::4] = p1 + dp * ZR
           new_points[3::4] = p1 + dp / 3 * 2
            return new_points
    points = _koch_snowflake_complex(order)
    x, v = points.real, points.imag
    return x. v
x, y = koch_snowflake(order = 5) # thhe order is recursion dept
plt.figure(figsize=(8, 8))
plt.axis('equal')
plt.fill(x, y)
plt.show()
```


Other Types of Plots: The Koch Snowflake

Source file: kochSnowflake.py

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

Koch Snowflakes

Let's Code Application: A Frequency Calculator

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

Koch Snowflakes

Let's Code

The string is, hello there

Let's Code Now, Go Play With a Plot From the Gallery!

Quiz 2

Where We Are

Plotting Coordinates

Matplotlib

Koch Snowflakes

Let's Code

Gallery Website

https://matplotlib.org/3.1.1/gallery/index.html

