Database Systems - Formulas

Lasse Schuirmann

March 21, 2015

THIS PAGE INTENTIONALLY LEFT BLANK.

ER Diagramme

```
kunst \stackrel{N}{-} sein \stackrel{M}{=} Ausstellung
```

Lesen wie:

Kunst KANN in M Ausstellungen sein.

Eine Ausstellung MUSS (1-) N Kunstgegenstände enthalten.

Relationales Schema

```
Object: {[ <u>Primärschlüssel: Typ, Andere Schluessel: Andere Typen ]}</u>
Prädikat: {[ PrimärschlüsselVonObjekt1: Typ, PrimärschlüsselVonObjekt2: Typ, Eigenschaften: Typ ]}
```

Schlüssel

Superschlüssel

Ein Superschlüssel definiert implizit alle anderen Attribute der Relation.

Schlüsselkandidat

Ein Schlüsselkandidat ist ein minimaler Superschlüssel.

Primärschlüssel

Ein Primärschlüssel ist der ausgewählte Schlüsselkandidat.

Komische Symbole

Attributrelationen

```
\alpha \to \beta \Leftrightarrow \alpha bestimmt eindeutig/ist Superschlüssel für \beta\alpha \dot{\to} \beta \Leftrightarrow \alpha \text{ ist Schlüsselkandidat für } \beta
```

Queries

 $\sigma_c(R)$ ist eine Anfrage auf die Datenbank Rmit der Bedingung c.

Normalformen

1. NF

Attribute sind atomar.

2. NF

Attribute sind nicht abhängig von einer echten Teilmenge eines Schüsselkandidaten.

3. NF

Attribute sind ausschliesslich abhängig von dem Primärschluessel.

RAID

RAID 0

Reissverschlussverfahren um Zugriffszeiten zu optimieren.

RAID 1

Spiegelung - komplettbackup. Kein Performancegewinn.

RAID 5

Eine Paritaetsplatte, kompensiert Ausfall einer Platte. Performancegewinn durch aufteilung.

B+ Baum

Ähnlich eines binären Baums, kann zur Suche benutzt werden. Ein Baum mit der Tiefe d hat an jedem Knoten d bis 2*d Unterknoten. An dem Wurzelknoten können weniger Unterknoten vorhanden sein.

Ein geclusterter B+ Baum ist im Speicher ebenso sortiert nach beliebigen Kriterien.

An den Blättern sind üblicherweise Zeiger zu dem Zieldatensatz.