PTM2 – Badanie regulatora proporcjonalnego

Michał Łopatka, 248969

1. Zadanie do wykonania

Opracować układ pomiarowy, zmontować układ do badania regulatora, opracować algorytm sterowania w układzie regulacji proporcjonalnej i przetestować.

2. Założenia projektowe

2.3. Zadawanie parametrów regulacji:

Zakres pomiarowy (0-400) °C/(0-5)V

- a) Po RESET SP=60%, Xp=20%
- b) Gdy SW2=1, SP=50%
- c) Gdy SW6=1, SP=40%
- d) Gdy SW10=1, Xp=30%
- e) Gdy SW14=1, Xp=40%
 - 2.4 Projekt wykorzystania wyświetlacza

2. Regulator proporcjonalny

3. Tabela pomiarowa

4. TABELA PO Bodone regula	tena dla SP=40	0%, XP=20%, viaoy: [0-400)		
E[Xp] E[%] -1.00 Xp -20,8 -0.35 Xp -10.0 -0.45 Xp -9.0 -0.45 Xp -9.0 -0.40 Xp -2.0 0.40 Xp -2.0 0.40 Xp 2.0 0.40 Xp 8.0 0.40 Xp 8.0	9V[9/0] PV[ADC] 60.0 614 51.0 523 50.0 511 43.0 501 43.0 450 450 450 40.0 409 389 360 369 370 327 210 307 2810 307 2810 307 2810 281	1000 250 1560 245 1000 250 1560 245 1920 240 1680 240 1680 240 1680 240 1680 180 1240 185 1200 180 1240 155 1200 145 800 100	CVPS +HI 100 100 100 100 100 100 100 10	0 000

4. Uwagi i wnioski

Dioda D3.10 świeci przez odcinki czasu proporcjonalne do zadanego napięcia. Regulator proporcjonalny ma przebieg schodkowy. Układ pomiarowy działa prawidłowo, występuje jednakże pewien błąd przy pomiarze tH.

5. Załączniki:


```
ADC = ADC 10bit();
pv = ADC;
_ipv = _pv/10;
_e = _sp - _ipv; //Michał Łopatka, Mateusz Bartkowiak
_decpv = (_pv-_ipv*10); //czesc po przecinku
int cv;
cv=5*(50-ipv);
for(int i=0; i<100; i+=5) {
    if(i < cv)
        sbi(PORTC, PC3);
    }
    else
       cbi(PORTC, PC3);
    delay_ms(10);
}
if(!(PINB &(8<<PB0)))
    _sp=50;
}
if(!(PINB &(4<<PB0)))</pre>
{
    _sp=40;
}
if(!(PINB &(2<<PB0)))</pre>
    h=30;
if(!(PINB &(1<<PB0)))
{
    _h=40;
}
```