TD 11: Fonctions d'une variable (compléments)

1 Dérivation

1.1 Définition et développements limités

Exercice 1 (Calculs de taux d'accroissements)

- **1.** Montrer que pour les fonctions suivantes, le taux d'accroissement entre *a* et *x* est donné par les formules ci-contre.
- **2.** En faisant le passage à la limite $x \rightarrow a$, retrouver les dérivées de ces fonctions.

fonction	taux d'acct
$f_1(x) = x^2$ $f_2(x) = x^3$	$a + x$ $a^2 + ax + x^2$
$f_2(x) = x$ $f_3(x) = \frac{1}{x}$	$\frac{a + ax + x}{\frac{-1}{ax}}$
$f_4(x) = \sqrt{x}$	$\frac{1}{\sqrt{a}+\sqrt{x}}$

Exercice 2 (Étude du taux d'accroissement de exp)

Soit
$$\tau : \mathbb{R} \to \mathbb{R}$$
 définie par $\forall x \in \mathbb{R}, \ \tau(x) = \begin{cases} \frac{e^x - 1}{x} & \text{pour } x \neq 0 \\ 1 & \text{pour } x = 0 \end{cases}$

- **1.** Montrer que la fonction τ est continue.
- **2.** Montrer que pour $x \neq 0$, on a : $\tau'(x) = e^x \cdot \frac{e^{-x} (1 x)}{x^2}$.
- **3.** En déduire que τ est croissante.
- **4. a)** Montrer que pour $x \neq 0$, on a : $\frac{\tau(x) 1}{x} = \frac{e^x (1 + x)}{x^2}$.
 - **b)** Grâce au développement limité de la fonction exp, montrer que $\lim_{x\to 0} \frac{\tau(x)-1}{x} = \frac{1}{2}$.
 - c) En déduire que τ est dérivable en 0.
- **5. a)** Montrer que $\lim_{x\to 0} \tau'(x) = \frac{1}{2}$.
 - **b)** En déduire que la fonction τ est de classe \mathcal{C}^1 sur \mathbb{R} .

1.2 Développements limités

express ⁿ	dev ^{nt} limité			
$e^x =$	1+x+	$\frac{x^2}{2}$	+	$o(x^2)$
$\ln(1+h) = h \to 0$	h -	$\frac{h^2}{2}$	+	$o(h^2)$
$\ln(x) = (x-1) - \frac{(x-1)^2}{2} + o((x-1)^2)$				

expression	dev ^{nt} limité
$(1+x)^a = 1 +$	$ax + \frac{a(a-1)}{2}x^2 + o(x^2)$
$(1+x)^1 = 1 +$	$\cdot x$
$(1+x)^2 = 1 +$	$2x + x^2$
$(1+x)^3 = 1 +$	$3x + 3x^2 + o(x^2)$
$\frac{1}{1+x} = 1 -$	$+x^2 + o(x^2)$

Exercice 3 (Applications des développements limités)

Lever les formes indéterminées suivantes quand $t \rightarrow 0$

$$A = \lim_{t \to 0} \frac{\ln(1+t) - t}{t^2} \qquad B = \lim_{t \to 0} \frac{e^t - 1 - t}{t^2} \qquad C = \lim_{t \to 0} \frac{\frac{1}{1+t} - 1 + t}{t^2} \qquad D = \lim_{t \to 0} \frac{\sqrt{1+x^2} - 1 - \frac{1}{2}t}{t^2}$$

Exercice 4 (Applications des développements limités (bornes du programme))

Lever les formes indéterminées suivantes quand $t \rightarrow 0$

$$A = \lim_{t \to 0} \frac{e^{2t} - 1}{t}$$

$$A = \lim_{t \to 0} \frac{e^{2t} - 1}{t} \qquad B = \lim_{t \to 0} \frac{e^{-2t} - 1 + 2t}{t^2} \qquad C = \lim_{t \to 0} \frac{\ln(1 + t^2)}{t^2}$$

$$C = \lim_{t \to 0} \frac{\ln(1 + t^2)}{t^2}$$

$$D = \lim_{t \to 0} \frac{a(1+t)^b - b(1+t)^a + b - a}{t^2}$$

$$E = \lim_{t \to 0} \frac{\ln(1 + t^2) - t^2}{t^4}$$

Proposition 1 (Formule de Taylor à l'ordre 2)

Si $f: I \to \mathbb{R}$ est \mathcal{C}^2 au voisinage de x_0 , alors pour $x \to x_0$, et $h \to 0$:

$$(avec \ h = x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + o(x - x_0)^2$$

$$f''(x_0) + f'(x_0) + f'(x_0) + f'(x_0) + o(x_0)^2$$

$$f(x_0 + h) = f(x_0) + f'(x_0) h$$
 $+ \frac{f''(x_0)}{2} h^2 + o(h^2)$

Exercice 5 (Application de la formule de Taylor)

Soit f, g les fonctions définies $\forall x \in]0; +\infty[$ par $f(x) = \frac{1}{2}(x - \frac{1}{x}),$ et $g(x) = 2 - \frac{4}{1+x}.$

- **1.** Calculer la dérivée et la dérivée seconde de f et g en $x_0 = 1$.
- 2. En déduire que f et g admettent en 1 le dév $^{\rm t}$ limité :
- $(x-1) \frac{(x-1)^2}{2} + o((x-1)^2).$
- 3. De quelle fonction de référence reconnaît-on ici le développement limité?

La méthode de Newton

Exercice 6 (Méthode de Newton)

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 telle que

- f' ne s'annule pas
- f s'annule une seule fois, en α .

Soit $x_0 \in \mathbb{R}$, on note \mathcal{T}_0 la tangente en x_0 .

Si $x_0 \simeq \alpha$, alors x_1 est une estimation encore meilleure.

La **méthode de Newton** définit une suite (x_n) par $\forall n \ge 0, x_{n+1} = g(x_n)$.

- **2.** Trouver les points fixes de g. En déduire que si (x_n) converge, c'est vers α .
- **3.** Quelle est la fonction g pour $f(x) = x^2 2$?

1.4 Études de fonctions

Exercice 7 (Études de fonctions)

Pour $n \in \mathbb{N}$, étudier les variations, et proposer un encadrement sur le domaine indiqué :

- 1. $f_n: x \mapsto x^n e^{-x} \sup [0; +\infty[$,
- **2.** $g_n: x \mapsto x^n \ln(x) \text{ sur }]0; +\infty[,$ **3.** $h_n: x \mapsto x^n e^{-\frac{x^2}{2}} \text{ sur } [0; +\infty[.$

Exercice 8 (Inégalités et études de fonction)

Montrer les inégalités suivantes, et trouver les conditions d'égalité.

- 1. $\forall x \in \mathbb{R}$, $e^x \ge 1 + x$ puis $\forall x \in [0; +\infty[$, $e^x \ge 1 + x + \frac{x^2}{2}]$.
- 2. $\forall x > 0$, $1 \frac{1}{x} \le \ln(x) \le x 1$. 3. $\forall x \ge 0$, $1 + \frac{x}{2} \frac{x^2}{8} \le \sqrt{1 + x} \le 1 + \frac{x}{2}$. 4. $\forall x \ge 0$, et $n \in \mathbb{N}^*$, $1 + x \le \left(1 + \frac{x}{n}\right)^n \le e^x$. (Et pour $x \in [-1; 0]$?)

1.5 L'inégalité des accroissements finis

Exercice 9 (Une suite récurrente)

On considère la fonction $f: \begin{cases} [0; +\infty[\to \mathbb{R} \\ x \mapsto \sqrt{1+x} \end{cases}$.

- a) Montrer que f est dérivable et que $f'(x) = \frac{1}{2\sqrt{1+x}}$. En déduire que f est strictement croissante.
 - **b)** Résoudre l'équation $f(\ell) = \ell$, d'inconnue ℓ .
 - c) Étudier le signe de f(x) x, pour $x \in]0; +\infty[$.
- **2.** On définit la suite (u_n) par $u_0 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.
 - **a)** Montrer que $\forall n \in \mathbb{N}$, on a $0 \le u_n \le \ell$.
 - **b)** Montrer que la suite (u_n) est croissante.
 - c) En déduire que la suite (u_n) converge. Préciser sa limite.

(il vient donc $\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}} = \frac{1+\sqrt{5}}{2}$)

- a) Montrer que $\forall t \in [0; \ell]$, on a $f'(t) \leq \frac{1}{2}$.
 - **b)** En déduire que $\forall x \in [0; \ell]$, on a $\ell f(x) \le \frac{\ell x}{2}$.
 - c) Montrer que $\forall n \in \mathbb{N}$, $0 \le \ell u_n \le \frac{\ell}{2^n}$.

2 Convexité

2.1 Inégalités de convexité

Exercice 10 (Concavité de ln)

- **1.** Montrer que : $\forall x \in [1, e], \frac{x-1}{e-1} \le \ln(x) \le \frac{x}{e}$
- **2.** Montrer que : $3\ln(6) \ge \ln(4) + 2\ln(7)$. (« En déduire » que 216 \ge 196).
- **3.** Minorer ln(13) en fonction de ln(5) et ln(17).

Exercice 11 (Loi normale)

- 1. Montrer que pour $x \ge 1$, on a : $e^{-\frac{x^2}{2}} \le e^{-x + \frac{1}{2}}$.
- **2.** En déduire que si $X \hookrightarrow \mathcal{N}(0,1)$, alors $\mathbb{P}(X \ge 1) \le \frac{1}{\sqrt{2\pi}} = 0.24$.

2.2 Convexité et inflexions

Exercice 12 (Inflexions de la Gaussienne)

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie pour $x \in \mathbb{R}$ par : $f(x) = \alpha \exp\left(-\frac{x^2}{2}\right)$, où $\alpha > 0$.

- 1. Montrer que la fonction f est paire et de classe C^{∞} .
- **2.** Faire l'étude des variations de la fonction f sur \mathbb{R} .
- 3. Faire l'étude de la convexité de la fonction f sur \mathbb{R} .
- **4.** Pour $\mu \in \mathbb{R}$, $\sigma > 0$, où sont le max, et les inflexions de $g: x \mapsto \alpha \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$? (*réponse: maximum: en* μ , *inflexion: en* $\mu \pm \sigma$)

Exercice 13 (Recherche de points d'inflexion)

Rechercher les points d'inflexion sur $]0;+\infty[$ des fonctions :

1. $f: x \mapsto x e^{-x} \operatorname{sur} \mathbb{R}$.

(**réponse :** max en 1, inflexion en 2)

2. $g_n: x \mapsto x^n \ln(x)$.

(réponse : min en $e^{-\frac{1}{n}}$, inflexion en $e^{-\frac{2n-1}{n(n-1)}}$)

2.3 Moyennes

Définition 2 (Moyennes)

Exercice 14 (Propriété de moyenne)

Soient a, b > 0. On définit leurs moyennes :

Montrer que pour $a \le b$, on a bien

► arithmétique par : $A(a,b) = \frac{a+b}{2}$ ► géométrique par : $G(a,b) = \sqrt{ab}$. $a \le A(a,b) \le b$ $a \le G(a,b) \le b$

► **harmonique** par : $H(a,b) = \frac{2ab}{a+b}$

 $a \le H(a,b) \le b$

Exercice 15 (Moyenne harmonique)

- 1. Montrer que la fonction $x \mapsto \frac{1}{x}$ est convexe sur $]0; +\infty[$.
- **2.** En déduire que pour a, b > 0, on a : $\frac{1}{\frac{a+b}{2}} \le \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$.
- **3.** Conclure que l'on a : $H(a,b) \le A(a,b)$.

Exercice 16 (Moyenne géométrique)

- **1.** Montrer que la fonction $x \mapsto \ln(x)$ est concave sur $]0; +\infty[$.
- **2.** En déduire que pour a, b > 0, on a : $\frac{1}{2} \left[\ln(a) + \ln(b) \right] \le \ln \left(\frac{a+b}{2} \right)$.
- **3.** Conclure que l'on a : $G(a,b) \le A(a,b)$.

Exercice 17 (Moyenne géométrique des deux autres)

- **1.** Calculer le produit $A(a,b) \times H(a,b)$.
- **2.** En déduire la moyenne géométrique de A(a,b) et de H(a,b).
- **3.** En déduire l'encadrement $H(a,b) \le G(a,b) \le A(a,b)$.

2.4 Intégration et convexité

Exercice 18 (Intégrale d'une fonction convexe)

Soit $f:[a;b] \to \mathbb{R}$ une fonction convexe. On s'intéresse à l'intégrale $\int_a^b f(t) \, \mathrm{d}t$. (où a < b)

- **1.** a) Montrer que pour $x \in [a; b]$, on a: $f(x) \le \frac{b-x}{b-a} \cdot f(a) + \frac{x-a}{b-a} \cdot f(b).$
 - **b)** En déduire que : $\int_a^b f(t) dt \le (b-a) \cdot \frac{f(a) + f(b)}{2}.$
- **2.** On suppose que f est dérivable.
 - **a)** Montrer pour $m \in [a;b]$, que $\forall t \in [a;b]$: $f(t) \ge f(m) + f'(m) \cdot (t-m)$. **b)** On pose $m = \frac{a+b}{2}$. En déduire que : $\int_a^b f(t) \, \mathrm{d}t \ge (b-a) \cdot f(m).$
- **3. a)** Que changer pour une fonction concave?
 - **b)** Montrer que dans le cas où f est une fonction affine, on a égalité.
 - c) Montrer que si f est un trinôme du second degré, on a : (formule de Simpson)

$$\int_{a}^{b} f(t) dt = (b-a) \cdot \left[\frac{1}{3} \cdot \frac{f(a) + f(b)}{2} + \frac{2}{3} \cdot f(m) \right].$$

Remarque

On a donc obtenu l'encadrement valable pour toutes les fonctions convexes :

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \cdot \int_a^b f(t) \, \mathrm{d}t \le \frac{f(a)+f(b)}{2}$$

(avec l'estimation de gauche « en moyenne » (trinôme) 2 fois meilleure que celle de droite) (on peut reconnaître à gauche l'inégalité de Jensen : $f\left(\frac{1}{b-a}\int_a^b t\,\mathrm{d}t\right) \leqslant \frac{1}{b-a}\int_a^b f(t)\,\mathrm{d}t$)

Exercice 19 (Application à la fonction inverse)

1. Montrer pour $0 < a \le b$, que : $(b-a) \cdot \frac{1}{\frac{a+b}{2}} \le \ln(b) - \ln(a) \le \frac{b-a}{2} \cdot \left[\frac{1}{a} + \frac{1}{b}\right]$.

2. En déduire que $\forall x \ge 1$, on a : $2 - \frac{4}{1+x} \le \ln(x) \le \frac{1}{2} \left(x - \frac{1}{x}\right)$ Que se passe-t-il pour $x \in]0;1]$?

3. Vérifier pour x > 0: $\begin{cases} \frac{1}{2} \left(x - \frac{1}{x} \right) = A \left(x - 1, 1 - \frac{1}{x} \right) \\ 2 - \frac{4}{1+x} = H \left(x - 1, 1 - \frac{1}{x} \right) \end{cases}$

3 Compléments : exemples d'inégalités et de convergences

3.1 Inégalités

Exercice 20 (Inégalité géométrique-arithmétique)

- **1.** Soient r > 0, et $n \in \mathbb{N}$.
 - a) Étudier sur $[0; +\infty[$ les variations de la fonction $f: t \mapsto t^{n+1} (n+1)r^n t$.
 - **b)** Montrer que pour $t \ge 0$, on a : $-nr^{n+1} \le t^{n+1} (n+1)r^n t$.

Soit $(u_k)_{k \ge 1}$ une suite de réels > 0.

Pour $n \ge 1$, on note : $a_n = \frac{1}{n} \cdot \sum_{k=1}^n u_k$, (moyenne **arithmétique** des n premiers termes)

• $g_n = \left(\prod_{k=1}^n u_k\right)^{\frac{1}{n}}$. (moyenne **géométrique** des n premiers termes)

2. Montrer que, pour $n \ge 1$, on a : $n \cdot (a_n - g_n) \le (n+1) \cdot (a_{n+1} - g_{n+1})$.

(On posera:
$$u_{n+1} = t^{n+1}$$
 et $g_n = r^{n+1}$.)

- 3. Montrer que la moyenne géométrique est inférieure à la moyenne arithmétique.
- **4. a)** Pour $n \ge 1$, on pose: $h_n = \sum_{k=1}^n \frac{1}{k}$. Montrer alors: $n! \ge \left(\frac{n}{h_n}\right)^n$
 - **b)** Pour $n \ge 1$, montrer de même : $n! \le \left(\frac{n+1}{2}\right)^n$.

Exercice 21 (Application de l'inégalité arithmético-harmonique)

1. Soit $(x_i)_{i \in [1,n]}$ une suite de réels > 0. On définit : $\qquad \qquad a = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$

$$d = \frac{1}{n} \cdot \sum_{i=1}^{n} \frac{1}{x_i} \quad \text{et} \quad h = \frac{1}{d}.$$

- **a)** Soient $\alpha, \beta > 0$. Montrer, pour u > 0, l'inégalité : $\frac{u}{\alpha} + \frac{\beta}{u} \ge 2 \cdot \sqrt{\frac{\beta}{\alpha}}$.
- **b)** Montrer la minoration : $\sum_{i=1}^{n} \left(\frac{x_i}{h} + \frac{a}{x_i} \right) \ge 2 \cdot \sqrt{\frac{a}{h}} \cdot n.$
- c) En déduire l'inégalité : $h \le a$.
- **2.** Soit $(\epsilon_i)_{i \in [\![1,n]\!]}$ une suite de réels tels que : $\sum_{i=1}^n \epsilon_i = 0$ $\forall i \in [\![1,n]\!] \quad \epsilon_i > -1$

Pour $t \in [0;1]$, on note: $p(t) = \prod_{i=1}^{n} (1 + \epsilon_i \cdot t)$.

- **a)** Montrer, pour $t \in [0;1]$, les formules : $\frac{p'(t)}{p(t)} = \sum_{i=1}^{n} \frac{\epsilon_i}{1 + \epsilon_i \cdot t} = \frac{n}{t} \cdot \left(1 \frac{1}{n} \cdot \sum_{i=1}^{n} \frac{1}{1 + \epsilon_i \cdot t}\right).$
- **b)** Montrer, pour $t \in [0;1]$, que: $\frac{1}{n} \cdot \sum_{i=1}^{n} (1 + \epsilon_i \cdot t) = 1$.
- c) Par l'inégalité de la question 1.c), en déduire, pour $t \in]0;1]$ que : $p'(t) \le 0$
- **d)** Montrer: $\prod_{i=1}^{n} (1 + \epsilon_i) \le 1.$
- **3.** Soient n réels > 0 dont la somme est n. Déduire que leur produit est ≤ 1 .

Exercice 22 (Inégalité de Jensen)

1. Soit $\varphi: I \to \mathbb{R}$ une fonction convexe. On suppose que φ est dérivable.

Soient $p_1, \ldots, p_n \in [0;1]$ tels que : $\sum_{i=1}^n p_i = 1$. Soient $u_1, \ldots, u_n \in I$. On définit : $m = \sum_{k=1}^n p_i \cdot u_i$. (m est la **moyenne** des u_i , avec les coeffs p_i .) **a)** Montrer que : $\sum_{i=1}^n p_i \cdot (u_i - m) = 0$.

- **b)** Montrer que pour $i \in [1,n]$, on a : $\varphi(u_i) \ge \varphi(m) + \varphi'(m) \cdot (u_i m)$.
- **c)** En déduire que : $\sum_{i=1}^{n} p_i \cdot \varphi(u_i) \ge \varphi(\sum_{i=1}^{n} p_i \cdot u_i)$. (moyenne des images, image de la moyenne.)
- **2.** Soient $x_1, ..., x_n > 0$. Pour $i \in [1, n]$, on note : $u_i = \ln(x_i)$.
 - **a)** Montrer que : $\exp\left(\frac{1}{n} \cdot \sum_{i=1}^{n} u_i\right) = \frac{1}{n} \cdot \sum_{i=1}^{n} \exp(u_i)$.
 - **b)** En déduire : $\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} \le \frac{1}{n} \cdot \sum_{i=1}^n x_i$. (inégalité moyennes géométrique/arithmétique.)
- **3.** Soit $\varphi : \mathbb{R} \to \mathbb{R}$ une fonction convexe. On suppose que φ est dérivable. Soit X une variable aléatoire réelle. On suppose que X et $\varphi(X)$ admettent une espérance.
 - a) Montrer que : $\varphi(X) \ge \varphi(\mathbb{E}[X]) + \varphi'(\mathbb{E}[X]) \cdot (X \mathbb{E}[X])$.
 - **b)** En déduire que : $\mathbb{E}[\varphi(X)] \ge \varphi(\mathbb{E}[X])$.
 - c) Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction densité. Montrer, sous réserve de convergence : $\int_{-\infty}^{+\infty} \varphi(x) \cdot f(x) \, \mathrm{d}x \ge \varphi \left(\int_{-\infty}^{+\infty} x \cdot f(x) \, \mathrm{d}x \right).$

Autour de la formule de Taylor

Exercice 23 (Série de Taylor de l'exponentielle)

Soit $S_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$.

- **1.** Montrer que $S'_n(x) = S_{n-1}(x) = S_n(x) \frac{x^n}{n!}$
- **2.** On pose $f_n(x) = S_n(x) \cdot e^{-x}$
 - a) Montrer que $f'_n(x) = -\frac{x^n}{n!}$
 - **b)** Étudier les variations de f_n sur $[0; +\infty[$.
 - c) En déduire, pour $n \in \mathbb{N}$, et $x \ge 0$, que : $\sum_{k=0}^{n} \frac{x^k}{k!} \le e^x$.
- a) Montrer que $1 f_n(x) = \int_0^x \frac{t^n}{n!} \cdot e^{-t} dt$
 - **b)** En déduire pour $x \ge 0$, l'encadrement : $0 \le 1 f_n(x) \le \int_0^x \frac{t^n}{n!} dt$.
 - c) Montrer pour $x \ge 0$, l'encadrement : $0 \le e^x \sum_{k=0}^n \frac{x^k}{k!} \le \frac{x^{n+1}}{(n+1)!} \cdot e^x$.

Conclure, pour $x \ge 0$, sur la convergence et la somme de la série : $\sum_{k=1}^{\infty} \frac{x^k}{k!}$.

Exercice 24 (Sommes de Taylor)

Soit $f: I \to \mathbb{R}$ une fonction de classe \mathcal{C}^{n+1} .

Pour $b \in I$, on considère la fonction définie pour $t \in I$, par : $S_n(t) = \sum_{k=0}^n f^{(k)}(t) \cdot \frac{(b-t)^k}{k!}$.

- **1.** Par une sommation télescopique, montrer pour $t \in I$ que : $S'_n(t) = f^{(n+1)}(t) \cdot \frac{(b-t)^n}{n!}$.
- **2.** Soient $a, b \in I$. Déduire la formule : $f(b) = \sum_{k=0}^{n} f^{(k)}(a) \cdot \frac{(b-a)^k}{k!} + \int_{a}^{b} f^{(n+1)}(t) \cdot \frac{(b-t)^n}{n!} dt$.
- **3.** Soit la fonction f définie pour $x \in]-1;1[$, par : $f(x) = \frac{1}{1-x}$.
 - **a)** Montrer $f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$
 - **b)** Pour $x \in]-1;1[$, en déduire : $\frac{1}{1-x} = \sum_{k=0}^{n} x^k + \int_0^x \frac{(n+1)\cdot(x-t)^n}{(1-t)^{n+2}} dt$.
- **4.** Soit la fonction f définie pour $x \in]-1;1[$, par : $f(x) = \frac{1}{(1-x)^{p+1}}$.

 - **a)** Montrer: $f^{(n)}(x) = \frac{(n+p)!}{p!} \cdot \frac{1}{(1-x)^{n+p+1}}$. **b)** Pour $x \in]-1;1[$, en déduire : $\frac{1}{(1-x)^{p+1}} = \sum_{k=0}^{n} {k+p \choose p} \cdot x^k + {n+p \choose p} \cdot \int_0^x \frac{(n+p+1)\cdot(x-t)^n}{(1-t)^{n+p+2}} \, dt$.

Autour de la formule $(1+\frac{x}{n}) \rightarrow e^x$

Exercice 25 (Adjacence de suites eulériennes)

Soit $p_n(x) = \left(1 + \frac{x}{n}\right)^n$

- **1. a)** Montrer que $p'_n(x) = (1 + \frac{x}{n})^{n-1}$.
 - **b)** Montrer que la fonction p_n est positive et croissante sur $]-n;+\infty[$.
 - c) Pour $x \ge -n$, montrer l'inégalité : $p_n(x) \ge 1 + x$. (On pourra utiliser la convexité de p_n)
- **2.** On définit sur $]-n; +\infty[$ la fonction $q_n = \frac{p_{n+1}}{p_n}$.
 - **a)** Montrer que la dérivée de q_n est donnée, pour $x \ge -n$, par : $q'_n(x) = \frac{\left(1 + \frac{x}{n+1}\right)^n}{\left(1 + \frac{x}{n+1}\right)^{n+1}} \cdot \frac{x}{n(n+1)}$.
 - **b)** En déduire les variations de la fonction q_n sur $]-n;+\infty[$.
 - **c)** Montrer que pour $x \ge -n$, on a : $p_n(x) \le p_{n+1}(x)$.
- **3.** Pour $x \in]-n; n[$, on définit : $f_n(x) = \frac{1}{p_n(-x)}$.
 - a) Pour $x \in]-n$; n[, montrer: $f_n(x) \ge f_{n+1}(x)$.
 - **b)** Montrer l'identité : $\frac{p_n(x)}{f_n(x)} = \left(1 \frac{x^2}{n^2}\right)^n.$
 - **c)** En déduire l'encadrement : $1 \frac{x^2}{n} \le \frac{p_n(x)}{f_n(x)} \le 1$. (On appliquera l'inégalité 1.c) à $p_n(-\frac{x^2}{n})$.)
- **4.** Soit $x \in \mathbb{R}$. On définit deux suites, pour n > |x|, par : $a_n = p_n(x)$,
 - $b_n = f_n(x)$.

Déduire des résultats précédents que ces deux suites sont adjacentes.

Exercice 26 (Convergence de la suite d'Euler)

On définit : $p_n(x) = (1 + \frac{x}{n})^n$.

- **1.** Montrer que : $p'_n(x) = p_n(x) \cdot \frac{n}{n+x}$.
- **2.** Soit $u_n(x) = p_n(x) \cdot e^{-x}$.
 - **a)** Montrer que : $u'(n)(x) = -\frac{x}{n+x} \cdot u_n(x)$.
 - **b)** Étudier les variations de u_n sur $]-n;+\infty[$
 - c) En déduire : $\left(1+\frac{x}{n}\right)^n \le e^x$.
- **a)** Montrer que pour x > -n, on a : $\left| u'_n(x) \right| \le \frac{|x|}{n+x}$.
 - **b)** En applicant l'inégalité des accroissements finis, déduire : $1 \frac{x^2}{n+x} \le u_n(x) \le 1$.
 - c) En déduire que pour $x \in \mathbb{R}$, on a : $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$.

3.4 Autour de la formule de Stirling

Exercice 27 (Fonction Digamma)

Pour $x \ge 0$, et $n \ge 1$, on définit : $c_n(x) = \ln(n+x) - \sum_{k=1}^n \frac{1}{k+x}$. $(c_0(x) = \ln(x) \text{ est définie pour } x > 0)$

On rappelle que la suite $\left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n)\right)_{n \ge 1}$ est convergente. On note γ sa limite.

- a) En déduire que la suite $c_n(0)$ est convergente et que : $\lim c_n(0) = -\gamma$.
 - **b)** Montrer, pour $x \ge 0$, $n \ge 1$, que: $c_n(x) c_n(0) = \ln\left(1 + \frac{x}{n}\right) + \sum_{k=1}^n \frac{x}{k(k+x)}$.
 - c) Montrer la convergence de la série : $\sum_{k \ge 1} \frac{x}{k(k+x)}$.
 - **d)** En déduire l'existence de la limite : $\lim_{n\to\infty} c_n(x)$.

On note, pour $x \ge 0$, $\alpha(x) = \lim_{n \to \infty} c_n(x)$. On admet que la fonction α est continue sur $[0; +\infty[$.

- **a)** Pour $n \ge 1, x \ge 0$, montrer: $c_n(x+1) c_{n+1}(x) = \frac{1}{x+1}$.
 - **b)** Pour $x \ge 0$, en déduire : $\alpha(x+1) \alpha(x) = \frac{1}{x+1}$.

3. a) Montrer, pour $n \ge 1$, que: $\int_0^1 c_n(t) \, \mathrm{d}t = n \cdot \ln\left(1 + \frac{1}{n}\right) - 1$. **b)** En déduire: $\lim_{n \to +\infty} \int_0^1 c_n(t) \, \mathrm{d}t = 0$. On admet que: $\int_0^1 \lim_{n \to +\infty} c_n(t) \, \mathrm{d}t = \lim_{n \to +\infty} \int_0^1 c_n(t) \, \mathrm{d}t$, c'est-à-dire que: $\int_0^1 \alpha(t) \, \mathrm{d}t = 0$. **4.** Pour $x \ge 0$, on note: $\varphi(x) = \int_0^x \alpha(t) \, \mathrm{d}t$.

- - **a)** Vérifier : $\varphi(1) = \varphi(0) = 0$.
 - **b)** Pour $x \ge 0$, montrer: $\varphi(x+1) \varphi(x) = \ln(x+1)$. (Dériver: $\varphi(x+1) \varphi(x) \ln(x+1)$.)
- **5.** Pour $n \in \mathbb{N}$, montrer: $\varphi(n) = \ln(n!)$.

Exercice 28 (Formule de Stirling)

- **1. a)** Calculer, pour $n \ge 0$: $\ln((n+1)!) \ln(n!)$ et, pour $n \ge 1$: $\ln(n!) \ln((n-1)!)$.
 - **b)** Montrer que la fonction ln est concave sur $]0; +\infty[$.

Soit *F* la fonction définie , pour x > 0, par : $F(x) = x \cdot \ln(x) - (x - 1)$.

- c) Montrer, pour x > 0, que: $F(x) = \int_{1}^{x} \ln(t) dt$
- **2. a)** Montrer, pour $n \ge 1$, et t > 0, que: $\ln(t) \le \ln(n) + \frac{1}{n} \cdot (t n)$.
 - **b)** En déduire, pour $n \ge 1$, que : $\int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \ln(t) dt \le \ln(n).$

On définit une suite, pour $n \ge 0$, par : $a_n = \ln(n!) - F(n + \frac{1}{2})$.

- c) En déduire, pour $n \ge 1$, que : $a_n a_{n-1} \ge 0$.
- **3. a)** Montrer, pour $n \ge 1$, et t > 0, que : $\ln(t) \ge (n+1-t) \cdot \ln(n) + (t-n) \cdot \ln(n+1)$.
 - **b)** En déduire, pour $n \ge 1$, que : $\frac{1}{2} \cdot (\ln(n) + \ln(n+1)) \le \int_{n}^{n+1} \ln(t) dt$.

On définit une suite, pour $n \ge 1$, par : $b_n = \ln(n!) - F(n) - \frac{1}{2} \cdot \ln(n)$.

- c) En déduire, pour $n \ge 1$, que : $b_{n+1} b_n \le 0$.
- **4. a)** Montrer, pour $n \ge 1$, l'encadrement : $\frac{1}{2} \cdot \ln(n) \le \int_n^{n+\frac{1}{2}} \ln(t) \, dt \le \frac{1}{2} \cdot \ln(n+1)$.
 - **b)** En déduire : $\lim_{n \to \infty} F(n + \frac{1}{2}) F(n) \frac{1}{2} \cdot \ln(n) = 0.$
 - c) Montrer que les suites (a_n) et (b_n) sont adjacentes.
- **5.** On note $\ell = \lim(a_n)$.

Montrer alors l'équivalent : $n! \sim \frac{n^n}{e^n} \cdot e^{\ell} \cdot \sqrt{n}$.

(Formule de Stirling)