This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

◎ 公 開 特 許 公 報 (A) 平2-167264

®Int. Cl. ⁵

識別記号

庁内整理番号 8314-4C ❷公開 平成2年(1990)6月27日

C 07 D 213/74 A 61 K 31/33

ABX

*

審査請求 未請求 請求項の数 5 (全11頁)

の発明の名称

カルバジン酸誘導体、その製造法及び製剤

宛特 颜 平1-173369

②出 願 平1(1989)7月4日

優先権主張 図明

@昭63(1988) 9月8日@日本(JP)@特顯 昭63-225198

@発 明 者

左右田

隆

大阪府高槻市東上牧2丁目27番20号

⑫発 明 奢

池 田

衡

大阪府東大阪市西岩田3丁目3番13-712号

@発 明 者

瀬

祐 大阪府賽屋川市三井南町30番 2 - 903号

勿出 願 人 武田薬品工業株式会社

大阪府大阪市中央区道修町2丁目3番6号

砂代 理 人 弁理士 岩 田

最終頁に続く

明細さ

1. 発明の名称

カルバジン酸誘導体、その製造法及び製剤

- 2 特許請求の範囲
- , (1)式,

R'-N=CH-NHNH-R'

[式中、R は複素環路を、R はエステル化されたカルボキシル語を示す]で表わされるカルバジン酸誘導体またはその塩。

- (2)R が分子量60~300の複素環長である 請求項(1)記載のカルバジン酸誘導体またはその 塩。
- (3) R 'がシクロヘキシルフェニルまたはクロロベンジルオキシフェニルで置換されていてもよいチェブリル基である請求項(1)記載のカルバジン酸誘導体またはその塩。

(4)式

R' - N = CH - OR'

[式中、R 1は複素環蓋を、R 3は低級アルキル基 を示す]で表わされる化合物とカルバジン酸のエ ステルまたはその塩とを反応させることを特徴と する、式

R'-N=CH-NHNH-R'

[式中、R は前記と同意義を、R はエステル化されたカルボキシル基を示す]で表わされるカルバジン酸誘導体またはその塩の製造法。

(5)式

R - N = CH - NHNH - R*

[式中、Rは複素環基またはアリール基を、R*は エステル化されたカルボキシル店を示す]で表わ されるカルバジン酸誘導体またはその塩を含有す るACE生成抑制剤。

3 発明の詳細な説明

(産業上の利用分野)

本発明は、AGE生成抑制作用を有するカルバジン酸誘導体またはその塩に関する。

(従来の技術)

近年態尿病や動脈硬化に伴う多様な生態的障害 を引き起こすものとして、非酵素的グリコシル化 (nonenzynatic glycosylation)による蛋白の糖

化が注目されている。すなわち、血中のブドウ苣 が単純な化学反応により非酵素的に蛋白のアミノ 故とシップ塩基で結合し、さらにアマドリ転位に より比較的安定なケトアミン誘導体(1-アミノ - 1 - デォキシフルクトース)を形成するもので、 **蛋白の構造および機能に変化をもたらす。このア** マドリ転位生成物はさらに数カ月から数年のうち に脱水反応を起こしてAGE(advanced glycosylation end products)となずけられたプドウ 結誘導体へと不可逆的に変わる。 ACEは黄褐色 で蛍光を発し、近くにある蛋白と結合して架橋を 形成する性質をもっている。AGEにより架槓を 形成した蛋白は種々の組織において障害を生じる と考えられている。糖尿病では血糖の上昇に比例 してこの蛋白の非酢素的糖化が増加するが、これ が額尿病性合併症をひきおこす原因のひとつにな るとされている[A. セラミ(Cerami)ら、メタボ リズム(Metabolism)、28巻(Suppl 1)431 頁、1979年。V. M. モニエール(Nonnier) ら、ニューイングランド ジャーナル オブ メ

ているアミノグアニジンはその作用が充分である とは云えないので、優れたAGE生成抑制作用を 有する物質の出現が期待されている。

(課題を解決するための手段)

本発明者らは、AGEの生成を風害することにより前述の諸疾患を予防するのに有用な化合物について幅広く鋭意研究を行い、式

R'-N=CH-NHNH-R" (1)
[式中、R'は複索環基を、R'はエステル化されたカルボキシル基を示す]で表わされる新規なカルバジン酸誘導体またはその塩が、式

R'-N=CH-OR。 (I)
[式中、R'は前記と同意義を、R°は低級アルキル技を示す]で表わされる化合物とカルバジン酸のエステルまたはその塩とを反応させると得られること、及び得られたカルバジン酸誘導体(I)またはその塩をも含む式

R - N = C H - N H N H - R ³ (四) [式中、R は複素環基またはアリール基を、R ³は 前記と同意義を示す]で表わざれるカルバジン酸 デイスン(The New England Journal of Medicine)、3 1 4 色、4 0 3 頁、1 9 8 6 年]。
この過程はまた老化の原因とも考えられる。たと
えば、老人性白内障は目の水晶体の蛋白であるクリスクリンの A G E 化が関与している。さらに、
アテローム性動脈硬化症の病変にも A G E の形成
が関係している。老化に伴う細い血管の基底膜の
肥厚、腎臓の機能低下を引き起こす腎糸球体基底
膜の肥厚にも A G E の関与が確認されている[M.
ブラウンリー(Brownlee)ら、サイエンス(Science)
、2 3 2 巻、1 6 2 9 頁、1 9 8 6 年]。

M ブラウンリーらは、アミノグアニジンがアマドリ転位生成物からACEへの移行を抑制することを報告し[M. ブラウンリーら、サイエンス、232巻、1629頁、1986年]老化に伴う疾患を予防する医薬品として注目されている。(発明が解決しようとする課題)

蛋白のAGEへの移行が原因となって引き起こ される疾病の予防、治療のため、AGE生成抑制 作用を示す物質が待たれているが、既に報告され

誘導体またはその塩が優れたAGE生成抑制作用を有することを見出し、これらに基づいて本発明を完成した。

即ち、本発明は、

- (1)カルバジン酸誘導体(1)またはその塩、
- (2)R が分子屋60~300の複素環基である 第(1)項記載のカルバジン酸誘導体(1)またはそ の塩、
- (3) R 'がシクロヘキシルフェニルまたはクロロベンジルオキシフェニルで置換されていてもよいチアソリル基である第(1)項記載のカルバジン酸 誘導体(1)またはその塩、
- (4)化合物(II)とガルバジン酸のエステルまたは その塩とを反応させることを特徴とする、カルバ ジン酸誘導体(I)またはその塩の製造法、
- (5)カルバジン酸誘導体(Ⅲ)またはその塩で含有するAGE生成抑制剤 に関するものである。

上記式中、R'及びRで示される複素項基は、 用形成炭素原子に結合手を有する複素環基等であ り、钎ましくは珥形成ヘテロ原子として窒素、酸 素、イオの等を1ないし4個含有する5または6 員の不飽和複素頑猛またはその箱合頑猛等である。 この複素原基の分子皿は、通常60~300、軒 ましくは60~200である。この様な投票項基 の具体例として、2-、3-または4-ピリジル、 2 - または3 - チェニル、2 - または3 - フリル、 2.-、4-または8-キノリル、1-、4-また は8-イソキノリル、2-、4-または5-ピリ ミジニル、3-または4-ピリダジニル、2-、 4 - または5 - チアゾリル、2 - 、4 - または5 ーオキサゾリル、3一、4一または5ーイソオキ サンリル、3m、4~または5~ピランリル、2 ー、4-または5-イミダソリル、4-または5 -(1,2,3-オキサジアゾリル)、3-または5 -(1,2,4-オキサジアソリル)、1,3,4-オ キサジァソリル、1,2.5ーオキサジアソリル、 3-または5-(1.2.4ーチアジアゾリル)、1. 3,4ーチャジァソリル、ペンズイミダソリル、 マンズチアゾリル、テトラヒドロベンズチアゾリ

ブチル、ペンチル、イソペンチル、ネオペンチル、シクロペンチル、ヘキシル、シクロヘキシル、ヘ ブチル、シクロヘブチル、2ーメチルシクロヘキシル、オクチル、ノニル、デシル等が用いられる。 ハロゲンの例としてはファ素、塩素、臭素及び ョウ素等が用いられ、とりわけ塩素が呼ましい。

水酸基としては、水酸基及びこの水酸基に適宜の置換基、特に水酸基の保護基としてもちいられるものを有した、例えばアルコキシ(たとえば炭素数が1-8のアルコキシ等であり、具体的にはメトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソプトキシ、sec-ブトキシ、セントキシ、ネオペントキシ、tert-ブトキシ、ペントキシ、ネオペントキシ、

CHs (キシルオキシ、一OCB: 等)、アラルキルオキシ(たとえばハロゲン(Cl、Br、1等)で1~4個置換されていてもよいフェニルーCi-・アルキルオキシ等であり、具体的にはベンジルオキシ、フェネチルオキシ、p-クロロベンジルオキシなど)、アシルオキシ(たとえば炭素数2~4のアル

ル、キノリル、キナソリル、プテリジニルまたはベンズオキサソリル基等が用いられる。また、RI及びRで示される複素環基は、環上にしないしく個の同一または相異なる競換基を有するものをも含み、この様な置換基はたとえば次の(i)~(x)等から選択されてもよい。

(i) 汚香族茲、たとえばフェニル、ナフチル、テトラヒドロナフチル、アントリル等のC・・・アリール等であり、これらはたとえばアルキル茲、ハロゲン、水酸茲、ニトロ茲、アシル甚、アシルアミノ茲、アミノ茲、アルキルチオ茲、アラルキルチオ茲等でしないし4個置換されていてもよい。

ここにおいて、アルキル茲としてはたとえば炭素数1-10の直角状、分枝状、環状のもの等が好んで用いられ、酒宜の位置にハロゲン原子(Br、Cl、1等)1~4個が置換していてもよく、例えばメチル、トリフルオロメチル、エチル、2、2、2ートリフルオロエチル、2、2、2ートリクロロエチル、プロピル、イソプロピル、ブチル、イソプロピル、アチル、イソプロピル、アチル、イソプロピル、アチル、メクロ

カノイルオキシ等であり、具体的にはアセチルオキシ、プロピオニルオキシ、nーブチリルオキシ、イソブチリルオキシなど)、アリールオキシ(たとえばハロゲン(CQ、Br、1等)で1~4個置換されていてもよいC・・・アリールオキシ等であり、具体的にはフェノキシ、pークロロフェノキシ等)等が用いられる。

アシル甚としては、たとえば炭素数1-10の
アルキルとカルボニルの結合したもの(例、アセチル、ブロピオニル、ブチリル、イソブチリル、
ベレリル、イソバレリル、ピパロイル、ヘキサノイル、ハフタノイル、オクタノイル、ノナノイル
等)、ハロゲン(Cl、Br、1等)またはC1...アルコキン(メトキシ、エトキシ等)等で1~4個置換されていてもよいC1...アリールとカルボニルの
粘合したもの(例、ベンソイル、アークロロベンソイル、アーメトキシベンソイル、ナフトイル等)等が用いられる。

アシルアミノ茲としては、たとえば上記アシル 基の例としてあげたアシル茲とアミノ基の結合し たものが用いられる。

アミノ基としては、アミノ基、たとえば炭素数 1-10のアルキル、炭素数7-12のアラルキ ル又はスルホニルで I ~ 2個置換されたもの(例、 メチルアミノ、エチルアミノ、プロピルアミノ、 ブチルアミノ、ベンチルアミノ、シクロヘキシル アミノ、ジメチルアミノ、ジブチルアミノ、ジヘ キシルアミノ、ベンジルアミノ、Nーベンジルー Nーメチルアミノ、スルホニルアミノ等)等が用 いられる。

(ii)複素環基、たとえば窒素原子、酸素原子また

(vii)アシル基、たとえば上記(i)で述べたもの等が用いられる。

(幅)アシルアミノ基、たとえば上記(i)で述べた もの等が用いられる。

(ix)アミノ苺、たとえば上記(i)で述べたもの等が用いられる。

(x)アルキルチオ基。たとえば上記(i)で述べた もの等が用いられる。

(xi)アラルキルチオ基、たとえば上記(i)で述べたもの等が用いられる。

R '及びR で示される複素原基の好ましい例としては、たとえば低級アルキル基(たとえばメチル、エチル、プロピル、ローブチル、iーブチル等のC - - - でリール基(たとえばフェニル、ナフチル等で、たとえばシクロプロピル、シクロプチル、シクロペンチル、シクロペンチル、シクロペンチル、シクロペンテル、シクロペンテル・シクロペンジルオキシ等のハロゲンで1~4個置換されていてもよいフェーニーC - - - アルキルオキシ基等で置換されてい

は破策原子のようなヘテロ原子を少なくとも1個を含む5または6員の飽和または不飽和複素単語はたとえばピロリル、イミグソリル、ピラソリル、ピリシル、ナトランリル、オキサソリル、オキサソリル、オキサソリル、オキサソリル、インチアソリル、ベンズナスニル等)ではたとえば上記(i)で述べたごとをアルキル誌、ハロゲン、水酸基、ニトロ語、アシルチオ芸等でしないし4個置換されていまい。

(前)アルキル灰、たとえば上記(i)で述べたもの 写が用いられる。

(iv)ハロゲン、たとえば上記(i)で述べたもの等が用いられる。

(v)水酸基、たとえば上記(i)で述べたもの等が 用いられる。

(vi)ニトロ基。

てもよい) 事で 1 ないし 2 個置換されていてもよいチアゾリル延等が用いられる。

上記式(田)中Rで示されるアリール基は、たとえばフェニル、ナフチル等のConstrueの基準であり、上記R'及びRで示される複素環基で述べたごとき置換器(i)~(xi)等で1ないし4個置換されていてもよい。Rで示されるアリール基の好ましい例としては、たとえばハロゲン(Cl、及r等)、Construeが表はメトキシ、エトキシ等)、ハロゲノーConstrueがよりフロロメチル、ジクロロエチル、トリプロロメチル等)等の1ないし2個で環換されていてもよいフェニル基等が用いられる。

上記式(1)、(車)中R*は、エステル化された カルポキシル弦を示し、たとえば式-COOR*** (R** はエステル残路を示す)で表わされる落等 である。

R **で示されるエステル残甚としでは、たとえば 上記R'及びRで示される複素頑猛の置換器で述 べた様なC,.,。アルキル苺、℃。-,。アリール兹、 フェニルーC,...アルキル基等が用いられ、これ らはハロゲン(Cl、Br、F帯)、Cl-17ルコキ シ(メトキシ、エトキシ、プロポキシ、tープトキ シ、nープトキシ、iープトキシ哥)等でしないし 3個旗換されていてもよい。R**で示されるエス テル程法の具体例としては、たとえばメナル、エ チル、プロピル、イソプロピル、nープチル、イ ソプチル、tert-ブチル、sec-ブチル、シクロ プチル、ペンチル、イソペンチル、ネオペンチル、 シクロベンチル、ヘキシル、シクロヘキシル、ヘ プチル、シクロベキシルメチル、シクロヘブチル、 クーシクロヘキシルエテル、オクテル等のCire アルキル茲、たとえばフェニル、4-クロロフェ ニル、4-メトキシフェニル、2-クロロフェニ ル ナフチル等の置換益を有していてもよい C....アリール茲、ペンジル、フェネチル、4-クロロベンジル、3、4-ジメトキシフェネチル、 3-(3-トリフルオロフェニル)プロピル等の置 換基を有していてもよいフェニルーC.-.アルキ

化合物またはその塩等である。

カルバジン酸誘導体(1)及び(凹)は塩として用いることもでき、たとえば常法により適宜の酸を用いて得られる薬理学的に許容しうる塩等としては例えば鉱酸塩(塩酸塩、臭化水素酸塩、硫酸塩など)、有碳酸塩(コハク酸塩、マレイン酸塩、フマル酸塩、りんご酸塩、酒石酸塩など)、スルホン酸塩(ジウンスルホン酸塩、ベンゼンスルホン酸塩、ドルエンスルホン酸塩など)等が用いられ、これらの塩はいずれも公知の手段により製造することができる。

なお、カルバジン酸誘導体(|)及び(□)は、それぞれ次式の互変異性体(|')及び(□')と平衡関係にあると考えられるが、

$$R'-N=CH-NHNH-R'$$
 (1)

$$R^{-} - NH - CH = NNH - R^{-}$$
 (1)

$$R - N = C H - N H N H - R.$$

$$R - NH - CH = NNH - R'$$
 (E')

ル基等が用いられる。好ましいR**で示されるエステル技法は、たとえばメチル、エチル、プロピル、nープチル、tープチル等のC,...アルキル基、フェニル等のC,...アリール基等である。

また、上記式(II)中R*で示される低級アルキル茲としては、たとえばメチル、エチル、プロピル、イソプロピル、nープチル、iーブチル、tープチル等のCi..アルキル茲等が好んで用いられる。

本発明の新規カルバジン酸誘導体(l)またはその垣の好ましい例は、たとえば式

$$N = CH - MHNHCOOB, p \qquad (I_g)$$

[式中、R^{1b}はメチル、エチル、プロピル、n-ブ チル、t-ブチル等のC_{1・*}アルキル甚、フェニル 等のC_{****}アリール甚を示す]または式

本願においては(| ')、(□')はそれぞれ(|)、(□)に含まれ、かつ式(|)、(□)に基づいて化合物の命名をする。さらに、化合物(|)または(| ')及び(□)または(□')は、二重結合 – N = C H または – C H = N – に関してシスートランスの異性体を生ずるが、それらの異性体単独及びその混合物のいずれもが化合物(|)及び(□)それぞに含まれる。

本発明における化合物(I)は、たとえば次の様 にして製造できる。すなわち

式

$$R'-N=CH-OR'$$

[式中の記号は前記と同意義を示す。]で表わされ シ る化合物と式

$$NH_*NH-R^* \qquad \qquad (N)$$

【式中、 R *は前記と同意義を示す。】で表わされるカルバジン酸のエステルまたはその塩(たとえば上記カルバジン酸誘導体(1)及び(Ⅲ)の塩で述べたごとき塩等)とを反応させることにより、化合物(1)またはその塩を製造することができる。

本反応では化合物(Ⅱ)と(Ⅲ)をを当モル豊反応 させることに行うことができるが、どちらかの化 合物を少し過剰に用いてもよい。また、反応を適 当な溶媒中で行うこともできる。かかる溶媒とし ては、例えばメタノール、エタノール、2-ブロ **パノール、ブタノール、2-メトキシエタノール** などのアルコール類、ジオキサン、テトラヒドロ フラン、ジメトキシエタンなどのエーテル頭、ベ ンゼン、トルエン、キシレンなどの芳香族炭化水 **去類、クロロホルム、ジクロロメタン、1、2-**ジクロロエタン、1、1、2、2ーテトラクロロ エタン等のハロゲン化炭化水素類あるいはこれら の混合溶媒などが用いられる。溶媒の使用量は、 反応に支降のない限り特に制限されないが、通常 化合物(Ⅱ)1モルに対し0 1~10ℓ、好ましく は0.5~5ℓである。反応温度は通常~20℃~ 100℃,好ましくは約0℃~80℃である。反 応時間は、通常10分~50時間、好ましくは 0.5~10時間である。このようにして得られ るカルバジン酸誘導体(1)またはその塩は公知の

クロロボルム、ジクロロメタン、1・2・ジクロロエタン、1・1・2・2・テトラクロロエタンあるいはこれらの混合溶媒などが用いられる。反応温度は通常約10℃である、反応時間は、好ましくは約20℃~約150℃である、反応時間は、通常10分~50時間、好ましくは約05~10時間である。かくして得られる化合物(I)は、上記公知の手段により分離した後に本発明の原料として供することもできるが、分離することをできる。

なお、上記化合物(II)の製造方法で用いられる
アミン誘導体(V)は、たとえばケミカル アブス
トラクツ(Chemical Abstracts),53巻。
14089e(1959年):ケミカル アブストラ
クツ、105巻、221003s(1986年):ヨーロピアン ジャーナル オブ メディシナル ケ
ミストリー(European Journal of Medicinal Chemistry),16巻、355頁(1981年):新実験化学講座、14巻、「有機化合物の合成と反応[N]

分離抗製手段だとえば濃裕、減圧濃裕、熔媒抽出、 品出、再結晶、転溶、クロマトグラフィーなどに より単離抗型することができる。さらに、化合物 (1)またはその塩が異性体の混合物である場合は、 常法に基づいて分離することもできる。

なお、本発明の原料化合物(I)は、例えば次ぎ に示す方法等で製造することも出来る。

$$R'-NH, \frac{CH(OR^3)}{}, R'-N=CH-OR^3$$

[式中、R'及びR'は前記と同意義を示す。]

この方法では、アミン誘導体(V)とオルトエステル(VI)との反応で(II)を製造する。本反応は適宜の溶媒中、あるいは溶媒なしで(V)と(VI)とを加熱することにより行われてもよい。該溶媒としては、たとえばジオキサン、テトラヒドロフラン、ジメトキシエタンなどのエーテル類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、酢酸エチル、アセトニトリル、ピリジン、N,Nージメチルホルムアミド、ジメチルスルホキシド、

J(1976年)等に記載の方法あるいはそれに準 じた方法により、オルトエステル(Ⅵ)は、たとえ ば新実験化学講座、14巻、「有機化合物の合成と 反応[Ⅳ]J(1976年)等に記載の方法あるいは それに準じた方法により製造することができる。

また、本発明方法におけるもう一方の原料化合物(IV)のカルバジン酸エステルまたはその塩は、たとえばジャーナル オブ オーガニック ケミパストリー(Journal of Organic Chemistry)。37巻.2413頁(1972年)等に記載の公知方法あるいはそれに準じた方法により製造することができる。

カルバジン酸誘導体(皿)またはその塩は、優れたAGE生成抑制作用を有しているので、人及び家畜の医薬として利用され、蛋白のAGEへの移行によって引起される種々の疾病を治療及び予防するAGE生成抑制剤として安全に使用される。

カルバジン酸誘導体(皿)またはその塩は、甲唑でまたは他の活性成分と組合せて、必要により中和剤、安定剤、分散剤等の補助剤を加えて常法に従っ

てたとえばカブセル、錠剤、粉末、溶液、整濁液 またはエリキシル等の製剤として使用することが できる。これらは、非経口的に(たとえば直腸投 与)又は経口的に役与することができる。

カルバジン酸誘導体(皿)またはその塩は、結合 耐たとえばシロップ,アラピヤゴム,ゼラチン,ソ ルピトール,トラガカントゴム,ポリピニルピロリ ドンなど、充填剤たとえばラクドース,簡類,とう もろこし設粉,燐酸カルシウム,ソルビトール,グ リシンなど、かったく剤だとえばステアリン酸マ、 グネシウム,タルク,ポリエチレングリコール,シ リカなど, 崩かい剤たとえば馬鈴著澱粉などまた は湿潤剤たとえばナトリウムラウリルサルフェー ト等と適宜混合したのち、常法に従って経口投与 用の錠剤.カブセル剤,散剤,粉末等とすることが できる。錠剤,散剤等は自体公知の方法によって フィルムコーティングすることもできる。経口用 製剤は、水性または油性懸濁液、溶液、乳濁液、 シロップ、エリキシルなどの波状製剤として用い てもよい。

を加えることもできる。

また、これらの製剤に、たとえば公知の酸化防止剤、防腐剤、かったく剤、粘稠剤または風味剤等の成分を常法に従って混合してもよい。さらに、製剤に他の活性成分を混合して目的のAGE生成抑制作用を示す製剤とすることもできる。

カルバジン酸誘導体(型)またはその塩を含有す る直腸投与用製剤は、常法に従って座剤用芯剤、 添加刑およびカルバジン散誘導体(皿)またはその 塩を混合し、たとえば油性の固型坐剤,半固型の 軟膏状坐剤,液状組成物をソフトカブセルに充填 したカプセル坐剤等とすることによって製造する。 カルバジン酸誘導体(皿)またはその塩は製剤全体 に対して、通常ほぼ0、5~50重量%程度の範 囲から選ばれるが、何もこれに限定されるもので はない。本発明においてカルバジン放誘導体(四) またはその塩の吸収をより増大させ、あるいは吸 収速度コントロールする等の目的で、数剤に他の 非イオン性界面活性剤、たとえばポリオキシエチ レン脂肪酸エステル,ポリオキシエチレン高級ア ルコールエーテルなどを併用してもよく、あるい はアニオン性界面活性剤を配合することもできる。 また、カルバジン酸誘導体(亚)またはその塩の溶 解性あるいは安定性を増すために種々の塩あるい は安定化剤を配合、添加することもできる。その ほか、製剤的に必要な場合には分散剤、防腐剤等

である。

さらに付言すれば、カルパジン酸誘導体(II)またはその塩は、体内分布に優れかつ実質的に副作用がなく蛋白のAGEへの移行による疾病に対して優れた治療及び予防効果を示す理想的なAGE生成抑制剤である。

(作用)

カルパジン酸誘導体(皿)またはその塩は、優れた糖化蛋白の変成物質(AGE)生成抑制作用を示す。

実験例

Advanced Glycosylation End products (AGE)の生成とその測定はブラウンリーらの報告[サイエンス、232巻、1629頁、1986年]に準じて行った。即ち、0 5 Mーリン酸級衝液 (pH7.4)中に牛血清アルブミン(フラクションV、和光純爽製、20%)、Dーグルコース (100 mM)及びアジ化ナトリウム(3 mM)を溶解し、反応液とした(対照)。試験化合物(下記の実施例で得られた化合物)をジメチルスルホキシド

に溶解し1 ■Mになるように反応波に添加した。これらの溶液を37℃で7日間インキュペートした。インキュペート前および後に溶液をリン酸緩 街液にて希釈し、励起液長370 na、蛍光波長440 naにて蛍光を耐定(RF-510型蛍光光 度計、盛体製作所製)し、その変化量(△F)を用いて次式に従いAGE生成率(%)を算出した。なお、窗検としてDーグルコースを含まぬ反応液を用いた。結果を第1表に示す。

(以下 介白)

第1表は、反応液にカルバジン酸誘導体(皿)またはその塩を添加した場合のAGEの生成が添加しない場合(AGE生成率=100%)に比べて極めて少ないことを明らかにしているので、カルバジン酸誘導体(皿)またはその塩が優れたAGE生成抑制作用を有していることを明白に立証する。(実施例)

つぎに参考例および実施例をあげて本発明をさらに具体的に説明する。なお、融点(ap)はすべて 然仮法で測定し未補正である。

参考例 1

2ーアミノー4ー(4ーシクロへキシルフェニル)チアゾール塩酸塩(1 0g)及びオルトギ酸エチルエステル(5 起)の混合物を130℃で1時間かきまぜた。反応混合物を被圧下に濃縮し残留する結晶をヘキサンに溶かしろ過した。ろ液を濃縮し4ー(4ーシクロヘキシルフェニル)ー2ーエトキシメチレンアミノチアゾールの結晶(1.02g、収率95 6%)を得た。ジェチルエーテルーへキサンから再結晶した。淡黄色ブリズム晶、mp84

A.G.E 生成率(%)= $\frac{\Delta F(検体) - \Delta F(盲検)}{\Delta F(対照) - \Delta F(盲検)} \times 100$

第 1 表

化 合物	A C E 生成率
实施例 No.	(対照値に対する%)
1	6 6
2 .	6 4
3	5 9
4	2 2
5	4 7
9	4 6
1 0	4 3
1.1	6 1
14	5 6
1 7	6 6
2 6	· 5 4
27 .	4 5
2 8	6 3
3 1	6 6
3 3	4 7
3 4	4 1
4 1	0

~ 85°C.

元素分析: C.H.N.OSとして

計算值: C, 68.76; H, 7.05; N, 8.91。 分析值: C, 68.73; H, 7.06; N, 8.93。

実施例1

4-(4-シクロヘキシルフェニル)-2-エトキシメチレンアミノチアゾール(500 ag)、カルバジン酸エチルエステル(170 ag)及びエタノール(10 ag)の混合物を氷冷下1時間ついで窒温(約15℃)で18時間かきまぜた。反応液を減圧下に濃縮し折出結晶にヘキサンを加えてろ過し、3-[4-(4-シクロヘキシルフェニル)-2-チアゾリルイミノメチル]カルバジン酸エチル(515 ag、収率87%)を得た。ジメチルホルムアミドー水から再結晶した。無色プリズム晶、ap188~189℃。

元素分析: C.H.N.O.Sとして

計算值 C. 61.27; H. 6 49; N. 15 04。 分析值 C. 61 32; H. 6 52; N. 14 97。

実施例2

2-アミノー4-(5.6.7.8-テトラヒドロー2ーナフチル)チアゾール(1 5g)およびオルトギ酸エチルエステル(30g)の混合物を130~135℃で2時間かきまぜた後減圧下に濃縮した。残留物をエタノール(20g)に溶かしたかんがジン酸エチルエステル(680g)を加え室温(約15℃)で6時間かきまぜた。溶媒を留去し残留する結晶にジイソプロピルエーテルを加えてろ過し、3-[4-(5.6.7.8-テトラヒドロー2ーナフチル)ー2ーチアゾリルイミノメチル]カルバジン酸エチルエステル(1.84g,収率82%)を得た。エタノールから再結晶した。無色プリズム晶、mp134~135℃。

元素分析: CitHioNiOiSとして

計算值: C. 59.28; H. 5.85; N. 16 29。

分析值: C. 59.61; H, 5.91; N. 16.05.

実施例3-40

実施例2と同様にして第2表の化合物を得た。

第 2 数

R - N = C H - N H N H - C O O R 18

実施例 No.	R	Rra	収率 (%)	可結品 洛 媒	(T)
3		CH.	85. 1	DNF — H 2 O	194~ 195
4	# © [s	tert- C.H.	87_8	DMF — H = O	203~ 204
5	H-O-F	- ©	65. 4	DMF H.O	210~ 212
6	CII. S	С.Н.	57.1	CH,CL,- EtOH	196~ 197
7	CE-O	C.H.	74, 7	DMF R _z O	195~
8	crO	C.H.	88 6	DMF —	198~ 199
9	CR*0 - ☐ I	C.H.	70.8	Et.O	136~ 137
10	CE - ○ CH.0 ○ -	C.H.	57. 1	CHCe	212-

つづく

11 Ce	実施例	R	R 2 a	収率	再結晶	£Ω	
11 C2 CH_O CH_O CH_S C_H, 82.8 E10H 200 12 (CH_S)_SCCH_O O N		Δ.	A.	(%)	溶媒	(3)	
12 (CH ₃) ₃ CCH ₂ O (O) N C ₂ H ₃ C ₃ H ₄ S CH ₃ CQ ₂ - 165~ 166 13 CQ (CH ₃ S (O) N C ₃ H ₄ S CH ₃ CQ ₂ - 200~ 166 14 CH ₃ N C ₃ H ₄ S C ₄ H ₅ S CH ₃ CQ ₂ - 200~ 160 15 CH ₃ N C ₄ H ₅ S C ₅ H ₅ S CH ₃ CQ ₂ - 182~ 183~ 15 16 O ₄ N C ₄ H ₅ 76.4 CH ₄ CQ ₂ - 189~ 190 16 O ₄ N C ₅ H ₅ C ₅ H ₅ S CHCQ ₂ - 211~ 190 17 CH ₃ O N C ₅ H ₅ 37.7 CH ₄ CQ ₂ - 185~ 186 18 CQ (O) O (O) N C ₅ H ₅ 37.7 CH ₆ CQ ₂ - 185~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₅ CQ ₂ - 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ CH ₆ CQ ₂ - 173~ 173~ 186 18 CQ (O) O (O) N C ₅ H ₅ C ₅ H ₅ CH ₆ CQ ₂ - 173~ 186 18 CQ (O) O (O		C0_@C11-0@			CH.Ce	199~	
12 CH.7.5CC.20 CH.5 C.H. 81.8 iPr.0 166 13 CC CH.5 CH. 90.8 CH.CC. 200~ Et OH 201 14 CH. 20 CH.5 C.H. 68.0 CH.CC. 182~ Et OH 183. 15 C.H. 76.4 CH.CC. 189~ Et OH 190 16 O.K C.H. 58.7 CH.C. 211~ MEOH 212 17 CH.0 S C.H. 37.7 CH.CC. 185~ Et OH 185~ CH.C C.H. 37.7 CH.CC. 185~ Et OH 185~ CH.C C.H. 37.7 CH.CC. 185~ Et OH 185	11		C.R.	82. 8	ELOH	200	
13 CQ CH, S CH, S C, H, 90.8 CH, CQ, - 200~ 14 CH, S C, H, 90.8 CH, CQ, - 182~ 15 C, H, 68.0 CH, CQ, - 183~ 16 C, H, 76.4 CH, CQ, - 189~ 16 CH, CQ, - 189~ 17 CH, O, N C, H, 58.7 CH, CQ, - 211~ 18 CH, CQ, - 211~ 18 CH, CQ, - 185~ 17 CH, O, N C, H, 58.7 CH, CQ, - 185~ 18 CH, CQ, - 185~ 19 CQ O, O, N C, H, 37.7 CH, CQ, - 185~ 10 CH, CQ, - 185~ 11 CH, CQ, - 185~ 12 CQ O, O, N C, H, 37.7 CH, CQ, - 173~ 13 CQ O, O, N C, H, 57.1 CH, CQ, - 173~		(CH) CCH (Q)			CH.Ce	165~	
13 CQ CH, S H S C, H, 90.8 Et OH 201 CH CH, S C, H, 68.0 CH, CQ, - 182~ Et OH 183. C, H, 68.0 CH, CQ, - 189~ Et OH 190 CH, CQ, - 189~ Et OH 201 CH, CQ, - 189~ Et OH 201 CH, CQ, - 189~ Et OH 201 CH, CQ, - 185~ Et OH 185	12	S. S.	C.H.	81.8	iPr ₂ O	166	
13 CH ₃ C ₁ C ₁ C ₁ CH ₂ C ₂ CH ₃ CC ₄ C		COOCH-SO-Y			CH.CC	200~	
15 CH.O CH. 37.7 CH.CL. 189~ 16 CH.O CH. 58.7 CH.CL. 185~ 17 CH.O CH.O CH. 37.7 CH.CL. 185~ 18 CH.O CH.O CH.O CH.O CH.CL. 185~ 18 CH.O CH.O CH.O CH.O CH.CL. 185~	13	ST ST	C _z H _s	90.8	Et OH-	201	
15 CH.O CH. 37.7 CH.CL. 189~ 16 CH.O CH. 58.7 CH.CL. 185~ 17 CH.O CH.O CH. 37.7 CH.CL. 185~ 18 CH.O CH.O CH.O CH.O CH.CL. 185~ 18 CH.O CH.O CH.O CH.O CH.CL. 185~	-	CH ₂			CH.CC	182~	
15 C.H. 76.4 E10H 190 16 O.K C.H. 58.7 CHCC.— 211~ 17 CH.O. C.H. 37.7 CH.CC.— 185~ 18 CCO— 0 — 3 tert— 67.1 CH.CC.— 173~	14	(S)	C.H.	68. 0	EtoH	183	'r.
16 O. N C.H. 58.7 CHCC. 211~ 16 CH.O. N C.H. 37.7 CH.CC. 185~ 17 CH.O. N C.H. 37.7 CH.CC. 185~ 18 CCO O O N CH. 67.1 CH.CC. 173~					CH.CC	189~	
16 0, N S C.H. 58.7 MeOH 212 17 CH.O S C.H. 37.7 CH.C2 185~ 186 CH.O CH.O CH.O CH.O CH.O CH.O CH.O CH.O	15	الهاب	C.H.	76. 4	EtOH	190	
17 CH ₂ O CH ₂ O C ₂ H ₂ C ₃ H ₄ C ₄ H ₅ CH ₂ CQ ₄ - 185~ EtOH 186				Ī	CHCC	211~	ļ
17 CH ₃ O C ₂ H ₃ 37.7 EtOH 186	16	0. N S	C.H.	58. 7	HOSK	212	
CH ₂ O CH ₂ O CH ₂ CC ₁ -173-	i	CH.O			CH.CC.	185~	
1. CQ (Q)-0-Q)-T-1 67.1	1.7	CH ₂ O	C.H.	37.7	ELOH	186	
18 C.H. 57. 1 ELOR 174		CO - 0 - 0 - 3	tert-		CH.CL.	173~	
	18		C.H.	57. 1	EtOR	174	
CH.O tert- CH.CO 187~		1	tert-			187~	
19 CH-O O N C.H. 80. 9 EtOH 188	19	CII-0 -(C)-1-1	с.в.	80 9	EtOH	188	

21 CH3 CH3 C.H. 69 9 - initially 22 CCC CH3 C.H. 73.0 Ne.CO- 146~ iPr.O 147 23 CH.O C.H. 47.5 CH.CC 142~ iPr.O 143 24 CH3 C.H. 40.3 DMSO- 207~ II.O 208 25 CH3 C.H. 80.1 CHCC 215~ E10H 216 26 CH3 C.H. 80.1 CH.CC 159~ E10H 160 27 C.H. 61.9 E10H 160 27 C.H. 61.9 CH.CC 103~						 _
No. 20 Ce C C C N	実施例	•	prā	収率	再結品	20
20	No.	K	Α	(%)	榕 媒	(35)
21		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	tert-		CH.CL.	213~
21 CH3 CH3 C.H. 69 9 - itely 17 22 CQ O	20.		С.Н.	79.4	ELOU	214
22 C2 C2 C3 C3 C4 C5 C5 C5 C6	21		С.Я.	69 9	-	註1) 油状物
23		C4 (5)			Me, CO-	146~
23 CH.O O K C.H. 47.5 iPr.O 143 24 CH.S C.H. 40.3 DMSO- 207~ 11.0 208 25 CH.S C.H. 80.1 CHC2 215~ 26 CH.S C.H. 61.9 CH.C2 159~ E10H 160	22		C.H.	73.0	iPrz0	147
23 CH.O O R C.H. 11 iPr.O 143 24 CH.S C.H. 40.3 II.O 208 25 CH. N C.II. 80.1 CHC2 215~ 26 CH. O R C.H. 61.9 CH.C2 159~ E10H 160		(BXCH,			CH.CC.	142~
24 CH3 CH4 40.3 DMSO- 208 25 CH4 40.3 DMSO- 208 26 CH5 CH6 80.1 CHC2- 215~ 216 CH5 CH6 61.9 CH-C2- 159~ E10H 160	23	CH+0 () - K	C.H.	47. 5	iPr ₂ O	143
25 CH 215~ C.H. 80.1 CHC2 215~ 216 26 CH 2.H. 61.9 CH.C2 159~ E10H 160					DYSO-	207~
25 CH ₃ C ₂ H, 80.1 CHC2, - 215~ 26 CH ₃ C ₂ H, 61.9 CH ₂ C2, - 159~ 26 CH ₃ CH ₃ CH ₃ CH ₄ C2, - 159~ E10H 160	24	CH. FS.	C.H.	40 3	11.0	208
26 CH ₃ C ₂ H ₃ C ₄ H ₅ CH ₅ Ce ₇ -159~ C ₄ H ₅ 61.9 EtOH 160					CHC6 -	215~
26 C.H. 61. 9 ELOH 160	25	3	C.H.	80. 1	ELOH	21.6
·	-	CH			CH.Ce	159~
27 K-Y CH. C.II. 84. 4 CH.CC. 103-	26	1	C.H.	61. 9	ELOH	160
27		(O)−CU.				103-
CH:	.27	CH,	C,II,	84. 4	ヘキサン	104
						184~
28 C. II. 31.4 Et OH 185	28	©;⊢	C, II,	31.4	Et OH	185

実施例 No.	R	R. a. a.	収率 (%)	再結晶 溶 蝶	(°C)
29	CH.	C.H.	41. 2	Ne.CO- iPr.O	153~ 154
30	©©;	Стя	68. I	CU.CQ	180~
31		С.н.	56. 9	CH.CQ	200~ 201
32	CF,	С.Я.	71.4	CHCQ	167~ 168
33	ce-⊘-	C.H.	67, 0	ELOH- H ₂ O	167— 168
34	сн•о Ф−	C.R.	84.4	CH,CQ:-	131~
35	US.	Cells	67. 2	CH.CQ	112~
3,6	⊘ -CH.0 ○	Czij.	75 5	CH.CC	187~ 188
37		C.H.	85. 3	CH.CQ	183~ 184

つづく

H, broad s), 10.76(1H, broad s).

表中、DMFはジメチルホルムアミドを、 EtOHはエタノールを、iPr.Oはジイソプロピルエーテルを、MeOHはメタノールを、Me.C Oはアセトンを示す。

(発明の効果)

カルバジン酸誘導体(皿)またはその塩は、優れたAGE生成抑制作用を有しているので、本発明は蛋白のAGEへの移行が原因となって引き起こされる疾病の予防、治療のために有用な新たなAGE生成抑制剤を提供することができる。

代理人 弁理士 岩田 弘

実施例	R	R**	収率	再結晶	ар
No.			(%)	溶媒	(°C)
		tert-	68 D	CR,CQ,-	192~
38	S. I.	C.H.	58. U	EtOII	193
	cu. O.	tert-		cn.ce	184~
39	g. c.	С.П.	65. 7	FIOH	185
	6	tert-		CH,CQ,-	143~
40	CH² — O →◎	C.H.	53 1	iPr.O	144
		tert-		CH.CQ	219~
41	ce-⊙- ch.o -⊙-\n 's"	C.H.	91. 4	EtOH	221
42	CQ-⟨◯→ CH.N-⟨◯ TS. SO⟨◯→CH.	C.H.	88 1	_	註2) 油状物
	30,1-07-011		L		l

- 注1) NMR(δ ppm in CDC ℓ₃): 1.28(3H, t, J = 7Hz), 1.0~2 1(10H, m), 2.3~2.7(4H, m), 4.28(2H, q, J= 7Hz), 7.05~7.6(6H, m)。
- EE 2) NMR (8 ppm in d.-DMSO): 1.21(3H, 1, J=7Hz), 2.41(3H, s), 4.09(2H, q, J=7Hz), 4.78(2H, broad s), 7.05(2H, d, J=8.5Hz), 7.25~7.8(11H, m), 8.09(1H, broad s), 10.25(1

第1頁の続き ⑤Int. CL ⁹		識別記号		庁内整理番号
	31/42 31/425 31/44	AED ACV		7375-4C
C 07 D 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	31/47 31/505	ADP ABL	Z	8413-4 C 8413-4 C 6529-4 C 6529-4 C 6529-4 C 6529-4 C 7624-4 C 7624-4 C 7431-4 C