MOwNiT Lab4 - Aproksymacja

Jakub Płowiec

19 Kwietnia 2023

1 Cel zadania

Wyznaczenie przybliżenia korzystając z aproksymacji średniokwadratowej wielomianami algebraicznymi dla zadanej funkcji:

$$e^{-3sin(x)} + 3sin(x) - 1, x \in [-3\pi, 4\pi]$$

Wykres 1: Wykres funkcji F(X)

2 Sprzęt

W zadaniu obliczeniowym posłużono się językiem Python 3.9.0 na systemie Windows 10 z procesorem Intel core i5-9600KF

3 Wyprowadzenie i wstęp teoretyczny

3.1 Szukanie wielomianu uogólnionego

Biorac pod uwage n węzłów aproksymacji mamy następujące dane:

- $(x_i, y_i) = (x_i, F(x_i)), \text{ gdzie } i \in [0, 1, ..., n-1]$
- Układ m funkcji bazowych za pomocą których będzie składana funkcja aproksymacyjna $\varphi_j(x)$, gdzie $j \in [0, 1, ..., m-1]$

Szukamy wielomianu uogólnionego w następującej postaci:

$$f(x) = \sum_{i=0}^{m-1} a_i \varphi_i(x) \tag{1}$$

Za funkcje bazowe można przyjąć ciąg jednomianów postaci $\varphi_j(x) = x^j$, przez co pozostają do wyliczenia tylko współczynniki a_j dla których spełniony jest warunek:

$$min!||F(x) - f(x)|| = min! \sum_{i=0}^{n-1} w(x_i) (F(x_i) - \sum_{i=0}^{m-1} a_i \varphi_i(x_i))^2$$
 (2)

Przyjmijmy następujące oznaczenie:

$$H(a_0, a_1, \dots, a_{m-1}) = \sum_{i=0}^{n-1} w(x_i) (F(x_i) - \sum_{i=0}^{m-1} a_i \varphi_i(x_i))^2$$
 (3)

Obliczając pochodne cząstkowe 1-szego rzędu dla współczynników a_k , gdzie $\mathbf{k} \in [0,1,\ldots,m-1]$ i przyrównując je do zera - otrzymujemy m równań liniowych o tej samej liczbie niewiadomych. Równania prezentują się w ten sposób:

$$\frac{\partial H}{\partial a_k} = -2\sum_{i=0}^{n-1} w(x_i)(F(x_i) - \sum_{j=0}^{m-1} a_j \varphi_j(x_i))\varphi_k(x_i) = 0$$
 (4)

Korzystając z rozdzielności mnożenia względem dodawania oraz podstawiając za $\varphi_i(x)=x^j$ otrzymujemy:

$$\sum_{i=0}^{n-1} w(x_i) F(x_i) x_i^k = \sum_{i=0}^{n-1} w(x_i) x_i^k \sum_{j=0}^{m-1} a_j x_i^j$$
 (5)

Przekształcając dalej równanie 5. oraz za wagi dla każdego z punktów przyjmujemy 1 dostajemy:

$$\sum_{i=0}^{n-1} F(x_i) x_i^k = \sum_{j=0}^{m-1} (\sum_{i=0}^{n-1} x_i^{j+k}) a_j$$
 (6)

Wszystkie zmienne poza a_i znamy, więc dodatkowo zapiszmy takie równania:

$$b_k = \sum_{i=0}^{n-1} F(x_i) x_i^k \tag{7}$$

$$g_{k,j} = \sum_{i=0}^{n-1} x_i^{j+k} \tag{8}$$

Biorąc pod uwagę równanie 7 oraz 8 otrzymujemy gotowy potrzebny wzór do wyliczenia współczynników:

$$b_k = \sum_{j=0}^{m-1} g_{k,j} a_j \tag{9}$$

Gotowy układ równań prezentuje się w następujący sposób:

$$\begin{bmatrix} \Sigma_{i=0}^{n-1} 1 & \Sigma_{i=0}^{n-1} x_i & \Sigma_{i=0}^{n-1} x_i^2 & \dots & \Sigma_{i=0}^{n-1} x_i^m \\ \Sigma_{i=0}^{n-1} x_i & \Sigma_{i=0}^{n-1} x_i^2 & \Sigma_{i=0}^{n-1} x_i^3 & \dots & \Sigma_{i=0}^{n-1} x_i^{m+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Sigma_{i=0}^{n-1} x_i^m & \Sigma_{i=0}^{n-1} x_i^{m+1} & \Sigma_{i=0}^{n-1} x_i^{m+2} & \dots & \Sigma_{i=0}^{n-1} x_i^{2m} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{m-1} \end{bmatrix} = \begin{bmatrix} \Sigma_{i=0}^{n-1} F(x_i) \\ \Sigma_{i=0}^{n-1} F(x_i) x_i \\ \vdots \\ \Sigma_{i=0}^{n-1} F(x_i) x_i^m \end{bmatrix}$$

Wyliczone współczynniki wystarczy podstawić teraz do wzoru 1, uwzględniając $\varphi_i(x) = x^j$

4 Analiza wyników

Całe doświadczenie zostało przeprowadzone na podstawie równoodległych punktów, a wykresy zostały narysowane na podstawie 1000 punktów.

$4.1 \quad n = 5 \text{ węzłów}$

Wykres 2: n = 5, m = 3

Wykres 3: n = 5, m = 5

$4.2 \quad n=7 \ \text{węzłów}$

Wykres 4: n = 7, m = 3

Zauważmy jak w porównaniu do wykresu 3, funkcja aproksymacyjna przestaje przechodzić przez punkty.

Wykres 5: n = 7, m = 7

Ważną adnotacją jest iż w przypadku kiedy m=n, to mamy do czynienia z efektem interpolacji

$4.3 \quad n=8 \ wezłów$

Wykres 6: n = 8, m = 8

Ciekawym zaobserwowaniem na wykresie 6 jest, że gdy stosujemy 8 punktów to układają się one w sposób liniowy tworząc linię prostą - a dokładniej poziomą

$4.4 \quad n=10 \ węzłów$

Wykres 7: n = 10, m = 5

Wykres 8: n = 10, m = 7

Wykres 9: n = 10, m = 10

Na wykresie 8 możemy zauważyć, że wreszcie nasza funkcja aproksymacyjna osiąga mniej więcej podobny kształt do funkcji z zadania.

$4.5 \quad n=15 \ \text{węzłów}$

Wykres 10: n = 15, m = 7

Wykres 11: n = 15, m = 11

Wykres 12: n = 15, m = 13

Niestety w metodzie aproksymacji towarzyszymy nam efekt Rungego, tak jak w zagadnieniu interpolacji. Już od wielomianu stopnia 12 efekt się pojawia, a zwiększając coraz bardziej jego stopień wykres staje się mniej czytelny i tracimy na dokładności m.in. na krańcach przedziału.

$4.6 \quad n = 20 \text{ węzłów}$

Wykres 13: n = 20, m = 14

Zwróćmy uwagę jak funkcja przyjmuje ciekawy kształt zarówno jak i przed 3-cim punktem jak i za 3-cim od końca.

Wykres 14: n = 20, m = 17

Tak jak zauważyliśmy już na wykresie 12, funkcja będzie niestety się pogarszała zwiększając stopień wielomianu aproksymacyjnego.

$4.7 \quad n = 30 \text{ węzłów}$

Wykres 15: n = 30, m = 12

Wykres 16: n = 30, m = 17

Analizując wszystkie wykresy i krótkie komentarze - warto zwrócić uwagę, iż jednak ciężko otrzymać w pełni podobną funkcję do funkcji z zadania. Kwestią tego jest pominięcie wag, oraz tego jak szybko efekt Rungego się pojawia uniemożliwiając uzyskania dokładniejszych wyników.

5 Błędy aproksymacji

W celu wyliczenia błędu aproksymacji posłużymy się wyliczeniami na podstawie ponownych 1000 punktów. Pierwsze zestawienie będzie polegało na ukazaniu największego błędu między wielomianem aproksymacyjnym, a funkcją z zadania obliczanego ze wzoru:

$$max|F(x_i) - f(x_i)|,$$

gdzie x_i to równoodległe od siebie punkty

m n	5	7	10	12	15	17	20	22	25	28	30
3	15.62	14.87	14.11	12.14	11.51	12.32	12.24	12.30	12.29	12.30	12.31
5	15.84	15.63	13.25	11.40	11.79	12.43	12.31	12.40	12.37	12.36	12.36
7		29.97	14.96	11.44	12.66	13.20	12.89	12.95	12.93	12.92	12.92
10			16.52	16.96	16.27	12.05	10.13	10.47	10.52	10.51	10.51
12				54.21	9.13	11.33	8.78	8.59	8.20	8.12	8.12
15					1280.75	12.06	11.66	14.16	16.10	12.84	10.62
17						2705.15	178.80	86.59	46.26	27.48	19.45
20							387874	2587.82	133.64	48.42	32.68
22								815.24	4832.06	60200.59	68.64
25									797.62	1338.88	373.77
28										535.48	487.64
30											829.24

Tabela 1: Maksymalne błędy bezwzględne

Korzystając z zestawienia widać, jak przy ustalonym m zwiększając kolejno liczbę węzłów błąd w większości przypadków na początku maleje, a następnie utrzymuje się w takich samych wartościach. To samo, gdy spojrzymy na otrzymywany błąd przy ustalonym n to z początku nasz błąd za każdym razem maleje, a następnie rośnie. Ciekawym zjawiskiem jest, że dla m=12 osiągamy jak najlepsze liczby dla prawie każdego z n. Jedynym wyjątkiem jest n=12 gdzie tracimy na dokładności przez występowanie efektu Rungego. Liczby też i pokazują, że zbliżając się z stopniem wielomianu do liczby węzłów uzyskujemy efekt Rungego.

Do wyliczenia średniego błędu aproksymacji potrzeba jedynie będzie zsumować błąd bezwzględny w każdym testowanym punkcie, a następnie podzielić przez ich ilość. Wzór wyglada tak:

$$\frac{\sum_{k=0}^{p-1} |F(x_k) - f(x_k)|}{p},$$

gdzie x_k to równoodległe od siebie punkty, a p to ich liczba.

$m \mid n$	5	7	10	12	15	17	20	22	25	28	30
3	3.70	4.79	4.24	4.74	4.40	4.12	4.13	4.11	4.13	4.13	4.13
5	3.75	4.78	4.31	4.82	4.46	4.15	4.15	4.14	4.15	4.15	4.15
7		8.07	4.62	4.36	4.05	3.80	3.78	3.79	3.80	3.80	3.80
10			4.20	4.21	3.85	3.32	3.13	3.06	3.05	3.03	3.02
12				11.28	3.45	3.27	2.90	2.83	2.83	2.84	2.84
15					120.78	2.41	2.52	2.62	2.63	2.46	2.38
17						209.55	13.49	6.96	4.40	3.34	2.92
20							153.28	97.22	7.85	3.52	2.77
22								39.35	128.32	1700.47	3.26
25									21.60	36.12	11.88
28										15.70	15.78
30											27.11

Tabela 2: Średnie błędy bezwzględne

Analizując wyniki w Tabeli 2 jesteśmy w stanie określić podobne stwierdzenia co w Tabeli 1. Wartości przy zwiększaniu n przy ustalonym m w większości na początku maleją, a następie utrzymują się na identycznym poziomie. To samo gdy, przy ustalonym n, zwiększamy m. Natomiast warto pamiętać o efekcie Rungego - stąd te zwiększone liczby na końcach. W tym przypadku również otrzymujemy dobre wyniki dla m=12 tak jak występowało to w błędach maksymalnych, natomiast w tym przypadku akurat dla wielomianu stopnia 11-tego otrzymujemy najlepsze rezultaty. Zauważmy też, iż nie jesteśmy w stanie zejść bliżej do zera z wartościami, nie jesteśmy w stanie otrzymać podobnej funkcji z zadania.

6 Podsumowanie

Wykonując aproksymację dla podanej funkcji w treści otrzymujemy często przeróżne wyniki. Nie jesteśmy w stanie ich dokładnie przewidzieć. Przy zbliżaniu się stopniem wielomianu aproksymacyjnego do liczby węzłów uzyskujemy efekt Rungego, który utrudnia nam odczytywanie wykresu, jak i tracimy dokładność.