Final Project ML Treatment Charges Prediction

IBM Machine Learning Professional Certificate – Supervised Machine Learning: Regression Bruno Facco Almeida

Summary

- O Introduction
- O Data Description
- O Data Normalization
- Normality Analisys
- Applying Regression Models
- Results from the models

Introduction

• This dataset provide information about treatment costs, and using linear regression and data analisys we will provide a model to predict the insurance costs based on the information provide by the data.

Data Description

- Dataset provide by Kaggle
- Medical Cost Personal Dataset
- O Columns:
 - O Age
 - Sex Male, Female
 - O Bmi Body Mass Index
 - O Children Number
 - O Smoker Smoke or not
 - O Region Residential Area
 - Charges Treatment Costs

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

Data Description

- No Null Values
- O Data Description

	age	sex	bmi	children	smoker	region	charges
count	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	0.505232	30.663397	1.094918	0.204783	1.515695	13270.422265
std	14.049960	0.500160	6.098187	1.205493	0.403694	1.104885	12110.011237
min	18.000000	0.000000	15.960000	0.000000	0.000000	0.000000	1121.873900
25%	27.000000	0.000000	26.296250	0.000000	0.000000	1.000000	4740.287150
50%	39.000000	1.000000	30.400000	1.000000	0.000000	2.000000	9382.033000
75%	51.000000	1.000000	34.693750	2.000000	0.000000	2.000000	16639.912515
max	64.000000	1.000000	53.130000	5.000000	1.000000	3.000000	63770.428010

```
df.isnull().sum()

age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64
```

Data Normalization

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

Normalization Analisys

charges	1.000000
smoker	0.787251
age	0.299008
bmi	0.198341
children	0.067998
sex	0.057292
region	-0.006208

Normality Analisys

Statistic: 336.88

P value: 7.019 e-74

Normality Analisys

Box Cox Transformation has the best suit with the data

Vanilla Regression Model:

O RMSE: 4496.56

Lasso Regression Model:

O RMSE: 4496.57

Ridge Regression Model:

O RMSE: 4494.68

Elastic Net Regression Model:

O RMSE: 4494.41

Results from the models

- O Based on the results from the different regression models, each regression model had a similar result, don't having a big difference applying each one.
- Considering this, we can use anyone of the models to determine the insurance costs.
- Other point is that the model is better to predic low values of cost compared with high costs.

	RMSE	R2
Linear	4496.560111	0.862103
Lasso	4496.577652	0.862102
Ridge	4494.682980	0.862218
ElasticNet	4494.417701	0.862234