ASIAC 14364

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS SCHOOL OF ENGINEERING OLD DOMINION UNIVERSITY NORFOLK, VIRGINIA

LARGE-AMPLITUDE MULTIMODE RESPONSE OF CLAMPED RECTANGULAR PANELS TO ACOUSTIC EXCITATION

Ву

Chuh Mei, Principal Investigator

Interim Technical Report For the period October 1, 1980 - September 30, 1981

Prepared for the Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio

> Reproduced From Best Available Copy

Under Grant No. AFOSR-80-0107 Howard F. Wolfe, Program Manager AFWAL/FIBED Acoustics and Sonic Fatigue Group

DISTRIBUTION STATEMENT A

Approved for Public Release
Distribution Unlimited

20000510 022

Tistern to
Acrospect Statement
Informative Contact
StateMedia To Contact
MEADE CONTEST
MEADE

February 1982

1SING 14364

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS SCHOOL OF ENGINEERING OLD DOMINION UNIVERSITY NORFOLK, VIRGINIA

LARGE-AMPLITUDE MULTIMODE RESPONSE OF CLAMPED RECTANGULAR PANELS TO ACOUSTIC EXCITATION

Ву

Chuh Mei, Principal Investigator

Interim Technical Report For the period October 1, 1980 - September 30, 1981

Prepared for the Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433

Under Grant No. AFOSR-80-0107 Howard F. Wolfe, Program Manager AFWAL/FIBED Acoustics and Sonic Fatigue Group

Submitted by the Old Dominion University Research Foundation P.O. Box 6369
Norfolk, Virginia 23508-0369

333

February 1982

Return to
Aerospace Structures
Information & Analysis Center
WL/FIBAD/ASIAC
WPAFD OH 45433-7542

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

14364

REPORT DOCUMENTATION	BEFORE COMPLETING FORM						
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER					
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED Interim Technical Report					
Large-Amplitude Multimode Respon	Large-Amplitude Multimode Response of Clamped Rectangular Panels to Acoustic Excitation						
Rectangular Panels to Acoustic E							
7. AUTHOR(s)		AFOSR-80-0107 8. CONTRACT OR GRANT NUMBER(s)					
7. AUTHOR(S)							
Chuh Mei							
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS					
Old Dominion University Research	Foundation						
P.O. Box 6369							
Norfolk, Virginia 23508-0369							
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE					
AFWAL, FIBED, Air Force Flight		February 1982					
Dynamics Laboratory Wright-Patterson Air Force Base,	Ohio 45433	23					
14. MONITORING AGENCY NAME & ADDRESS(if different	nt from Controlling Office)	15. SECURITY CLASS. (of this report)					
		Unclassified					
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE					
16. DISTRIBUTION STATEMENT (of this Report)	•						
		•					
Distribution of this document is unlimited.							
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)							
·							
	Return to						
18. SUPPLEMENTARY NOTES		rroppace Structures					
		ation & Analysis Center					
·		MUFIBADIASIAC AFD OH 45433-7542					
		:					
19. KEY WORDS (Continue on reverse side if necessary a	and identify by block number;						
Large-Amplitude Response							
Nonlinear Random Response							
Acoustic Fatigue							
20. ABSTRACT (Continue on reverse side if necessary ar	nd identify by block number)	procedure for rectangular					
A mathematical formulation panels under broadband random ac	and the solution	are presented. Large-					
panels under broadband random ac amplitude effect and multiple mo	des are included	in the formulation. The					
amplitude effect and multiple mo	generalized lines	er stiffness matrix using 15					
generalized mass matrix and the generalized linear stiffness matrix using 15 terms in the assumed panel deflection function are derived. Subroutine pro-							
grams that generate the mass and linear stiffness matrices have been devel-							
oped. Continuing research efforts are outlined.							

FOREWORD

This report contains the research effort on large-amplitude multimode response of clamped rectangular panels to acoustic excitation during the period from October 1, 1980 to September 30, 1981. The work was performed at the Department of Mechanical Engineering and Mechanics, Old Dominion University, Norfolk, Virginia. The research was sponsored by the Air Force Office of Scientific Research (AFSC), Department of the Air Force, under Grant AFOSR-80-0107. The work was monitored under the supervision of Howard F. Wolfe, Technical Manager, Acoustics and Sonic Fatique Group, Air Force Wright Aeronautical Laboratories, and Dr. Alan H. Rosenstein, AFOSR/NE, Program Manager, Directorate of Aerospace Sciences, AFSC. The author gratefully acknowledges the encouragement and assistance from Mr. Howard F. Wolfe and Dr. Donald B. Paul of AFWAL.

TABLE OF CONTENTS

	Page
FOREWORD	iii
INTRODUCTION	1
NOMENCLATURE	4
MATHEMATICAL FORMULATION AND SOLUTION PROCEDURE	5
DEVELOPMENT OF GENERALIZED MATRICES AND COMPUTER PROGRAMS	10
Table 1. Generalized displacements for convergence studies	11
REFERENCES	19
APPENDIX: LISTINGS OF THE MASS AND LSTF SUBROUTINES	20
LIST OF FIGURES	
Figure	
1 Comparison of analytical and experimental mean-square	
stresses of clamped, square, aluminum panels	2
2 Strain responses at three different SPL's	3

LARGE AMPLITUDE MULTIMODE RESPONSE OF CLAMPED RECTANGULAR PANELS TO ACOUSTIC EXCITATION

Ву

Chuh Mei

INTRODUCTION

Acoustically induced fatigue failures in structural components have resulted in unacceptable maintenance and inspection burdens associated with aircraft and missile operation. In some cases, sonic fatigue failures have resulted in major structural redesigns and aircraft modifications. Thus, accurate prediction methods are needed to determine the fatigue life of structures.

Many analytical and experimental programs to develop sonic fatigue design criteria, however, have repeatedly shown a poor comparison between measured and calculated maximum RMS stress/strain (refs. 1, 2). Deviations in excess of 100 percent are not uncommon. Large deflection nonlinearity has been identified as a major factor for the enormous discrepancy between test data and computed results (ref. 3). A test program was conducted recently to check the analytical effort for the large-amplitude, single-mode response reported in reference 3. The acoustic response tests were performed in the Wideband Acoustic Facility at Wright-Patterson Air Force Base. A comparison of the results from two panels is shown in figure 1. The prediction of random responses is much improved with the single-mode computational method, especially at high excitation levels. Test results (fig. 2) also showed that there are more than one mode responding. Multiple modes were also observed by White in experimental studies on aluminum and carbon fiberreinforced plastics (CFRP) plates under acoustic loadings (ref. 4). White also showed that the fundamental mode responded significantly and contributed more than 80 percent of the total mean-square strain response; higher modes, up to third or fourth modes, account for 95% or more of the total mean-square strain response. In order to have an accurate prediction of the random response of a structure, multiple modes should be used in the formulation.

RESULTS COMPARISON

Figure 1. Comparison of analytical and experimental mean-square stresses of clamped, square, aluminum panels.

Figure 2. Strain response at three different SPL's.

NOMENCLATURE

a,b	panel length and width
С	generalized damping
D	flexural rigidity
E	Young's modulus
$f_m(x), g_n(y)$	displacement functions, eq. (21)
F	airy stress function
h	panel thickness
K .	generalized stiffness
L	mathematical operator, eq. (1)
М	generalized mass
p	pressure
q	normal ccoordinate
r	length-to-width ratio, a/b
$S_{p}(\omega)$	cross-spectral density of p(t)
t	time
w	lateral deflection
W	generalized displacement
x , y	coordinates
β	vector function, eq. (16)
ζ	damping ratio, c/co
ф	normal mode
· ω	linear frequency
Ω	equivalent linear or nonlinear frequency
Subscripts	
EL	equivalent linear
_	

linear

L

MATHEMATICAL FORMULATION AND SOLUTION PROCEDURE

The governing equations of a rectangular, isotropic plate undergoing large-deflection motions, neglecting the effects of both inplane and rotatory inertia forces, are (refs. 5, 6)

$$L(w,F) = D\nabla^{4}w + \rho hw, t + gw, t$$

$$- h(F,yy^{w},xx^{+}F,xx^{w},yy^{-}2F,xy^{w},xy^{)}$$

$$- p(t) = 0$$
(1)

$$\nabla^{4} F = E(w^{2}, y - w, xx w, yy)$$
 (2)

where a comma denotes the partial differentiation with respect to the corresponding variable, w is the lateral deflection, F is the stress function, D is the flexural rigidity, p is the mass density, h is the plate thickness, p is the pressure, E is the Young's modulus, and g is the viscous damping.

The lateral deflection is assumed as

$$w(x,y,t) = h \sum_{m} \sum_{n} W_{mn}(t) f_{m}(x) g_{n}(y)$$
 $m,n = 1,2,3,...$ (3)

where the functions $f_m(x)$ and $g_n(y)$ are so chosen that they satisfy the boundary conditions. By solving the compatibility equation, equation (2), the stress function can then be determined as

$$F = \overline{N}_{x} \frac{y^{2}}{2} + \overline{N}_{y} \frac{x^{2}}{2} + Eh^{2} \sum_{i} \sum_{j} F_{ij} N_{i}(x) M_{j}(y)$$

$$i, j = 0, 1, 2, ...$$
(4)

A quasi-exact solution has been obtained by Paul for thermal postbuckling of a clamped, rectangular plate. The expressions for the coefficients \overline{N} , \overline{N} , and F can be found in reference 7.

Apply the Bubnov-Galerkin method to the equation of motion in deflection, equation (1), as

$$\iint L(w,F) f_r g_s dxdy = 0 \quad r,s = 1,2,3...$$
 (5)

After performing the integration over the total area of the panel, a set of nonlinear, time-differential equations is obtained and can be written in matrix form as

$$[M]{W} + [C] {W} + [K]_{L} {W} + {\beta(W)} = {p(t)}$$
(6)

where the matrices [M], [C], and [K]_L are the generalized mass, damping, and linear stiffness matrices, respectively, and $\{\beta(W)\}$ is a vector function, cubic in the generalized displacements $\{W\}$.

An equivalent linear set of equations to equation (6) may be defined as (refs. 8-13):

$$[M] \{W\} + [C] \{W\} + ([K]_L + [K]_{EL}) \{W\} = \{p(t)\}$$
 (7a)

or

$$[M] \{W\} + [C] \{W\} + [K] \{W\} = \{p(t)\}$$
(7b)

where the elements of the equivalent linear stiffness matrix $\left[K\right]_{\mathrm{EL}}$ can be obtained from the expression

$$(K_{EL})_{ij} = E\left[\frac{\partial \beta_{j}(W)}{\partial W_{i}}\right]$$
 $i,j = 1,2,3,...$ (8)

where E[] is an expected value operator.

To determine the mean-square generalized displacements \overline{W}^2 in equation (7), an iterative solution procedure is introduced. The undamped linear equation of equation (7a) is solved first. This requires the determination of the eigenvalues and eigenvectors of the undamped linear equation

$$\omega_{j}^{2} [M] \{\phi\}_{j} = [K]_{L} \{\phi\}_{j}$$

$$(9)$$

where ω_j is the frequency of vibration and $\{\phi\}_j$ is the corresponding normal mode shape based on linear theory.

Apply a coordinate transformation, from the generalized displacements to the normal coordinates, by

$$\{W\} = [\phi] \{q\} \qquad n \leq m$$

$$m \times 1 \quad m \times n \quad n \times 1$$

$$(10)$$

in which each column of $[\phi]$ is a modal column of the linear system, and $\{q\}$ represents the normal coordinates. Substituting equation (10) into the damped linear equation of equation (7a) and premultiplying by the transpose of $[\phi]$, it becomes

$$[M] \{q\} + [C] \{q\} + [K]_{T} \{q\} = \{P(t)\}$$

$$(11)$$

where
$$[M] = [\phi]^T [M] [\phi]$$

$$[K]_L = [\phi]^T [K]_L [\phi] = [\omega^2] [M]$$

$$[C] = [\phi]^T [C] [\phi] = 2[\zeta\omega] [M]$$

$$\{P\} = [\phi]^T \{p\}$$
(12)

The jth row of equation (11) is

$$q_{j} + 2\zeta_{j} \omega_{j} \dot{q}_{j} + \omega_{j}^{2} q_{j} = \frac{P_{j}}{M_{j}}$$
(13)

The mean-square normal coordinate is simply

$$q_{j}^{2} = \frac{\pi S_{p}(\omega_{j})}{4 M_{j}^{2} \zeta_{j} \omega_{j}^{3}} = \frac{\pi \{\phi\}_{j}^{T} [S_{p}(\omega_{j})] \{\phi\}_{J}}{4 M_{j}^{2} \zeta_{j} \omega_{j}^{3}}$$
(14)

where $[S_p]$ is the cross-spectral density matrix of the excitation $\{p(t)\}$. The covariance matrix of the linear, generalized displacements is

$$[\overline{W_{i}W_{j}}]_{L} = \sum_{k} \{\phi\}_{k} \frac{\pi\{\phi\}_{k}^{T} [S_{p}(\omega_{k})] \{\phi\}_{k}}{4 M_{\kappa}^{2} \zeta_{k} \omega_{k}^{3}} \{\phi\}_{k}^{T}$$

$$(15)$$

The diagonal terms $[\overline{W_1W_j}]_L$ are the mean-square, linear, generalized displacement $\overline{W^2}$. This initial estimate of $\overline{W^2}$ can now be used to compute the equivalent linear stiffness matrix $[K]_{EL}^j$ through equation (8). Then equation (7) is again transformed to the normal coordinates and has the form as

$$[M] \{\ddot{q}\} + [C] \{\dot{q}\} + [K] \{q\} = \{P(t)\}$$
 (16)

where
$$[K] = [\phi]^T ([K]_L + [K]_{EL}) [\phi] = [\Omega^2] [M]$$
 (17)

The jth row of equation (17) is

and the displacement covariance matrix is given by

$$[\overline{W_{\underline{i}}W_{\underline{j}}}] = \sum_{k} \{\phi\}_{k} \frac{\pi\{\phi\}_{k}^{T} [S_{\underline{p}}(\Omega_{\underline{k}})] \{\phi\}_{\underline{k}}}{4 M_{\underline{k}}^{2} \zeta_{\underline{k}} \Omega_{\underline{\kappa}}^{2} \omega_{\underline{k}}} \{\phi\}_{\underline{k}}^{T}$$

$$(19)$$

Convergence is considered achieved whenever the difference of the RMS generalized displacements satisfies the requirement

$$\frac{(\text{RMS W}_{j})_{\text{iter}} - (\text{RMS W}_{j})_{\text{iter}}}{(\text{RMS W}_{j})_{\text{iter}}} \le 10^{-3}, \text{ for all j}$$
 (20)

Once the RMS displacements are determined, the RMS deflection of the panel and the maximum RMS strain can be determined from equation (3) and the strain-displacement relations, respectively.

DEVELOPMENT OF GENERALIZED MATRICES AND COMPUTER PROGRAMS

The deflection of the panel is represented by

$$w(x,y,t) = h \sum_{m} \sum_{n} W_{mn}(t) \left\{ \cos \frac{(m-1)\pi x}{a} - \cos \frac{(m+1)\pi x}{a} \right\}$$

$$\cdot \left[\cos \frac{(n-1)\pi y}{b} - \cos \frac{(n+1)\pi y}{b} \right]$$
(21)

The expression w satisfies the boundary condition for clamped edges:

$$w = w_{,x} = 0$$
 on $x = 0$ and a
 $w = w_{,y} = 0$ on $y = 0$ and b (22)

The stress function can be expressed in terms of the generalized displacement W_{mn} as

$$F = \overline{N}_{x} \frac{y^{2}}{2} + \overline{N}_{y} \frac{x^{2}}{2} + Eh^{2} \sum_{i} \sum_{j} F_{ij} \cos \frac{i\pi x}{a} \cos \frac{j\pi y}{b}$$
 (23)

where the coefficient F_{ij} is given by the expression

$$F_{ij} = \frac{1}{\left(\frac{i^2}{r} + j^2r\right)^2} \sum_{m} \sum_{n=k}^{\infty} \sum_{l} B_{ijmnkl} W_{mn} W_{kl}$$
 (24)

in which $B_{i\,jmnkl}$ are integers and r=a/b. The coefficients \overline{N}_{x} and \overline{N}_{y} , and the integers $B_{i\,jmnkl}$ are given explicitly in reference 7. The particular generalized displacements that are chosen to be nonzero in the convergence studies are shown in table 1.

Table 1. Generalized displacements for convergence studies.

	Number of terms					
Generalized Displacements	1	4	6	10	15	
w_{11}	х	X	X	X	X	
w_{13}		X	X	X	Х	
W ₃₁		X	X	X	X	
W3 3		X	X	Х	X	
W ₁₅			X	X	X	
W5 1			X	X	X	
W ₃₅				X	X	
W53				X	Х	
W ₁₇				X	X	
W7 1				х	Х	
- W ₅₅					X	
W3 7					х	
W ₇₃	e .				X	
W19					Х	
W ₉₁					X	

Utilizing the expressions for w and F, equations (21) and (23), respectively, and performing the integration of equation (5), the integral associated with the inertial force term in equation (1) has been derived as

$$\int_{0}^{b} \int_{0}^{a} \rho hw_{,tt} f_{r} g_{s} dxdy = \frac{\rho h^{2} ab}{4} \left(W_{r-2,s-2} - 2 W_{r-2,s} - 2 W_{r,s-2} - 2 W_{r,s-2} \right) + 4 W_{r,s} - 2 W_{r,s+2} - 2 W_{r+2,s} + W_{r-2,s+2} + W_{r+2,s-2} + W_{r+2,s+2} \right)$$
(25)

The generalized mass matrix [M] in equation (6) using 15 terms in the deflection function is given by:

$$[M] = \frac{\rho h^2 ab}{4}$$

$$\begin{bmatrix} 4 \\ -2 & 4 \\ -2 & 1 & 4 \\ 0 & -2 & 0 & 1 & 4 \\ 0 & 0 & -2 & 1 & 0 & 4 \\ 0 & 0 & -2 & -2 & 0 & 4 \\ 0 & 0 & 1 & -2 & 0 & -2 & 1 & 4 \\ 0 & 0 & 0 & 0 & -2 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & -2 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -2 & -2 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 0 & -2 & 0 & -2 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 & 0 & -2 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 1 & 0 & 4 \end{bmatrix}$$

(26)

A subroutine program MASS, which generates the mass matrix, has been coded and verified. A listing of the MASS subroutine is given in the Appendix.

Similarly, the integrals associated with the linear stiffness terms in equation (1) yield

$$\int_{0}^{b} \int_{0}^{a} D \frac{\partial^{4} w}{\partial x^{4}} f_{r} g_{s} dxdy = \frac{Dh\pi^{4} ab}{4a^{4}}$$

$$\cdot \left[\left[(r-1)^{4} + (r+1)^{4} \right] \left[(C_{1}+1)W_{r,s} - W_{r,s-2} - W_{r,s+2} \right] + (r-1)^{4} \left[W_{r-2,s-2} + W_{r-2,s+2} - (C_{1}+1)W_{r-2,s} \right] \right]$$

$$+ (r+1)^{4} \left[W_{r+2,s+2} + W_{r+2,s-2} - (C_{1}+1)W_{r+2,s} \right] \right\} \tag{27}$$

$$\int_{0}^{b} \int_{0}^{a} D \frac{\partial^{4} w}{\partial y^{4}} f_{r} g_{s} dxdy = \frac{Dh\pi^{4}ab}{4b^{4}}$$

$$\cdot \left[\left[(s-1)^{4} + (s+1)^{4} \right] \left[(C2+1)W_{r,s} - W_{r-2,s} - W_{r+2,s} \right] + (s-1)^{4} \left[W_{r-2,s-2} + W_{r+2,s-2} - (C2+1)W_{r,s-2} \right] \right]$$

$$+ (s+1)^{4} \left[W_{r+2,s+2} + W_{r-2,s+2} - (C2+1)W_{r,s+2} \right] \right]$$
(28)

$$\int_{0}^{b} \int_{0}^{a} 2D \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}} f_{r} g_{s} dxdy = \frac{Dh\pi^{4} ab}{a^{2} b^{2}}$$

$$\cdot \left\{ (r-1)^{2} (s+1)^{2} \left[W_{r,s} - W_{r,s+2} - W_{r+2,s} + W_{r+2,s+2} \right] + (r-1)^{2} (s+1)^{2} \left[W_{r,s} - W_{r,s+2} - W_{r-2,s} + W_{r-2,s+2} + (r+1)^{2} (s-1)^{2} \left[W_{r,s} - W_{r,s-2} - W_{r+2,s} + W_{r+2,s-2} \right] + (r-1)^{2} (s-1)^{2} \left[W_{r,s} - W_{r,s-2} - W_{r-2,s} + W_{r-2,s-2} \right] \right\}$$

$$(29)$$

The generalized linear stiffness matrix $[K]_L$ in equation (6) using 15 terms in the deflection function has been derived. It can be expressed as the sum of the three submatrices as

$$[K]_{L} = \frac{Dh\pi^{4}ab}{4} \left(\frac{1}{a^{4}} [K]_{1} + \frac{1}{b^{4}} [K]_{2} + \frac{4}{a^{2}b^{2}} [K]_{3}\right)$$
(30)

The nonzero elements of the three linear stiffness submatrices are given. Since the stiffness matrix is also symmetric, only the lower left-hand side elements are given. They are

 W_{53}

W_{3.5}

W₅₁

$$[K]_3 = \begin{bmatrix} w_{11} & w_{13} & w_{31} & w_{33} & w_{15} \\ (2 \cdot 2)^2 & & \text{symmetric} \\ -(2 \cdot 2)^2 & (2 \cdot 4)^2 + (2 \cdot 2)^2 & (4 \cdot 2)^2 + (2 \cdot 2)^2 & (4 \cdot 4)^2 \\ (2 \cdot 2)^2 & -(2 \cdot 4)^2 - (2 \cdot 2)^2 & -(4 \cdot 2)^2 - (2 \cdot 2)^2 & +2(4 \cdot 2)^2 + (2 \cdot 2)^2 \\ 0 & -(2 \cdot 4)^2 & 0 & (2 \cdot 4)^2 & (2 \cdot 6)^2 + (2 \cdot 4)^2 \\ 0 & 0 & -(4 \cdot 2)^2 & (4 \cdot 2)^2 & 0 \\ 0 & (2 \cdot 4)^2 & 0 & -(4 \cdot 4)^2 - (2 \cdot 4)^2 & -(2 \cdot 6)^2 - (2 \cdot 4)^2 \\ 0 & 0 & (4 \cdot 2)^2 & -(4 \cdot 4)^2 - (4 \cdot 2)^2 & 0 \\ 0 & 0 & 0 & 0 & -(2 \cdot 6)^2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The nonzero elements of the linear stiffness matrix, $k_L(i,j)$ for $i,j \ge 11$, are

$$k_1(11,4) = k_1(12,11) = 4^4$$

 $k_1(12,5) = k_1(14,12) = 2^4$
 $k_1(13,6) = k_1(13,11) = 6^4$
 $k_1(11,7) = -4^4(C_1 + 1)$
 $k_1(12,7) = -(2^4 + 4^4)$
 $k_1(11,8) = -(4^4 + 6^4)$
(34)

$$k_{1}(13,8) = -6^{4} (C_{1} + 1)$$

$$k_{1}(12,9) = -2^{4} (C_{1} + 1)$$

$$k_{1}(14,9) = -2^{4}$$

$$k_{1}(13,10) = -(6^{4} + 8^{4})$$

$$k_{1}(15,10) = -8^{4} (C_{1} + 1)$$

$$k_{1}(11,11) = (4^{4} + 6^{4})(C_{1} + 1)$$

$$k_{1}(11,11) = (4^{4} + 6^{4})(C_{1} + 1)$$

$$k_{1}(12,12) = (2^{4} + 4^{4})(C_{1} + 1)$$

$$k_{1}(13,13) = (6^{4} + 8^{4})(C_{1} + 1)$$

$$k_{1}(15,13) = 8^{4}$$

$$k_{1}(14,14) = 2^{4} (C_{1} + 1)$$

$$k_{1}(15,15) = (8^{4} + 10^{4})(C_{1} + 1)$$

$$k_{2}(11,4) = k_{2}(13,11) = 4^{4}$$

$$k_{2}(12,5) = k_{2}(12,11) = 6^{4}$$

$$k_{2}(21,5) = k_{2}(12,11) = 6^{4}$$

$$k_{2}(21,7) = -6^{4} (C_{2} + 1)$$

$$k_{2}(21,8) = -4^{4} (C_{2} + 1)$$

$$k_{2}(21,8) = -4^{4} (C_{2} + 1)$$

$$k_{2}(21,9) = -6^{4} + 8^{4})$$

$$k_{2}(21,9) = -8^{4} (C_{2} + 1)$$

$$k_{2}(21,11) = (4 + 6)(C_{2} + 1)$$

$$k_{2}(21,11) = (4 + 6)(C_{2} + 1)$$

$$k_{2}(21,12) = (6^{4} + 8^{4})(C_{2} + 1)$$

$$k_{2}(21,12) = (6^{4} + 8^{4})(C_{2} + 1)$$

$$k_{2}(21,13) = -2^{4} (C_{2} + 1)$$

$$k_{2}(21,14) = (8^{4} + 10^{4})(C_{2} + 1)$$

$$k_{2}(31,3) = (2^{4} + 4^{4})(C_{2} + 1)$$

$$k_{3}(11,4) = (4 \cdot 4)^{2}$$

$$k_{3}(17,7) = k_{3}(13,6) = (2 \cdot 6)^{2}$$

$$k_{3}(17,7) = k_{3}(11,8) = -(4 \cdot 4)^{2} - (4 \cdot 6)^{2}$$

$$k_{3}(12,7) = k_{3}(13,10) = -(2 \cdot 6)^{2} - (2 \cdot 8)^{2}$$

$$k_{3}(14,9) = k_{3}(15,10) = -(2 \cdot 8)^{2}$$

$$k_{3}(11,11) = (6 \cdot 6)^{2} + 2(6 \cdot 4)^{2} + (4 \cdot 4)^{2}$$

$$k_{3}(11,11) = (6 \cdot 6)^{2} + 2(6 \cdot 4)^{2} + (4 \cdot 4)^{2}$$

 $k_3(12,11) = k_3(13,11) = (4.6)^2$

(cont'd)

$$k_3(12,12) = k_3(13,13) = (4 \cdot 8)^2 + (2 \cdot 8)^2 + (4 \cdot 6)^2 + (2 \cdot 6)^2$$
 $k_3(14,14) = k_3(15,15) = (2 \cdot 8)^2 + (2 \cdot 10)^2$
(34)
(concl'd)

where

$$C_{1} = \frac{2}{1} \begin{cases} \text{for } s = 1 \\ \text{for } s \neq 1 \end{cases}$$

$$C_{2} = \frac{2}{1} \begin{cases} \text{for } r = 1 \\ \text{for } r \neq 1 \end{cases}$$
(35)

A subroutine program LSTF which generates the linear stiffness matrix has been coded and verified. A listing of the LSTF subroutine is presented in the Appendix.

Derivation of the generalized equivalent linear stiffness matrix $[K]_{EL}$ in equation (7a) has been initiated. It is in good progress. Continuing research effort will be devoted to the following tasks:

- (1) Completion of the derivation of equivalent linear stiffness;
- (2) Application of eigen solution and coordinate transformation;
- (3) Determination of mean-square linear generalized displacement;
- (4) Implementation of the iterative process;
- (5) Derivation of strains computation;
- (6) Coding, debugging, and verifying the complete computer program;
- (7) Convergence studies; and
- (8) Generation of design charts.7

REFERENCES

- 1. Holehouse, I., "Sonic Fatigue Design Techniques for Advanced Composite Aircraft Structures," AFWAL-TR-80-3019, Flight Dynamics Laboratory, AF Wright Aeronautical Laboratories, W-PAFB, OH, Apr. 1980.
- 2. Mei, C., "Large Amplitude Response of Complex Structures Due to High Intensity Noise," AFFDL-TR-79-3028, AF Flight Dynamics Laboratory, W-PAFB, OH, Apr. 1979.
- 3. Mei, C., "Response of Nonlinear Structural Panels Subjected to High Intensity Noise," AFWAL-TR-80-3018, Flight Dynamics Laboratory, AF Wright Aeronautics Laboratories, W-PAFB, OH, Mar. 1980.
- 4. White, R.G., "Comparison of the Statistical Properties of the Aluminium Alloy and CFRP Plates to Acoustic Excitation," J. Composites, Oct. 1978, pp. 251-258.
- 5. Chu, H.N. and Herrmann, G., "Influence of Large Amplitudes on Free Flexural Vibrations of Rectangular Elastic Plates," J. Appl. Mech., Vol. 23, Dec. 1956, pp. 532-540.
- 6. Volmir, A.S., "Flexible Plates and Shells," AFFDL-TR-66-126, AF Flight Dynamics Laboratory, W-PAFB, OH, Apr. 1967.
- 7. Paul, D.B., "Large Deflections of Clamped Rectangular Plates with Arbitrary Temperature Distributions," AFWAL-TR-81-3003, Flight Dynamics Laboratory, AF Wright Aeronautical Laboratories, W-PAFB, OH, Feb. 1981.
- 8. Spanos, P-T.D. and Iwan, W.D., "On the Existence and Uniqueness of Solutions Generated by Equivalent Linearization. Int. J. Nonlinear Mech., Vol. 13, 1978, pp. 71-78.
- 9. Atalik, T.S. and Utku, S., "Stochastic Linearization of Multi-Degree-of-Freedom Nonlinear Systems." Earthquake Eng. Struct. Dynamics, Vol. 4, 1976, pp. 411-420.
- 10. Iwan, W.D., "A Generalization of the Method of Equivalent Linearization," Int. J. Nonlinear Mech., Vol. 8, 1973, pp. 279-287.
- 11. Iwan, W.D. and Yang, I.M., "Application of Statistical Linearization Techniques to Nonlinear Multi-Degree-of-Freedom Systems," J. Appl. Mech., Vol. 39, June 1972, pp. 545-550.
- 12. Foster, E.T., Jr., "Semilinear Random Vibrations in Discrete Systems," J. Appl. Mech., Vol. 35, Nov. 1963, pp. 1706-1711.
- 13. Caughey, T.K., "Equivalent Linearization Techniques," J. Acoustical Soc. Am., Vol. 35, Nov. 1963, pp. 1706-1711.

APPENDIX

LISTINGS OF THE MASS AND LSTF SUBROUTINES

			LN48Q0_FOR FORTRAN V.5(515) /KI 29=JUN=81 14:38 PAGE 1
		MASS	LN48Q0.FOR FORTRAN V.5(515) /KI 29-JUN-81 14:38 PAGE 1
	•	• •	
	}	30091	SUBROUTINE MASS(AL, BL, H, RHO, SM, NTERM)
	2	22692	DIMENSION SM(NTERM, NTERM)
		00003	C
			C - THIS SUBROUTINE GENERATES THE SYSTEM MASS MATRIX OF THE PANEL USING
	,		C (NTERM) TERMS IN THE DEFLECTION FUNCTION
			C AL=PANEL LENGTH. C BL=PANEL WIDTH
.		A 1895	C H=PANEL THICKNESS
	Ť		C RHO=MASS DENSITY
		49 40 40 40	C SM(NIERM, NTERM) = SYSTEM OR GENERALIZED MASS MATRIX
- 2			C NTERM=1, 4, 6, 10, OH 15
	12.	00012	c '
	1.3	96913	COEF=0.25*RHO*H*H*AL*BL
			C INITIALIZED THE MASS MATRIX
i		00015	DC 10 I=1,NTERM
		00010	DO 10 J=1, NTERM
		00017	SM(I,J)=0.0
		00018	10 CONTINUE SM(1,1)=4.0*COEF
		00019 0002u	IF (NTERM EQ. 1) GO TO ZO
1			
		999 <u>22</u>	SM(1,2)=-2.0*COEF
		อดด์23	SM(1,3)=-2.0*COEF
		00024	Sb(1,4)=COEF
1	25	80825	SM(2,2)=4.0*COEF
, 1	26	00026	5 ^M (2,3)=COEF
- 3		99927	SM(2,4)=-2.0*COEF
	- 1	94928	SM(3,3)=4.6*COEF
٠,		90929	SM(3,4)=-2.4*COEF SM(4,4)=4.3*COEF
		00030 00031	IF (BTERM .EQ. 4) GO TO 20
		66632	
		00033	sM(2,5)=-2.0*COFF
		ออย34	SH(3,6)=-2.0*COFF
:	35.	89£35	SM(4,5)=COEF
		98836	SM(4,6)=COEF
		ชอง37	SM(5,5)=4.0*CoEF
. ;	38	30038 .	SM(6,6)=4.0*COEF
	,	00039 00043	IF (NTERM .EQ. 6) GO TO 20
		90941	SM(2,7)=COEF
		20042	SM(3,8)=COEF
		70043	SM(4,7)==2.0*COEF
		99944	SM(4,8)=-2.0*COEF
	45	00045	SM(5,7)=-2,0*COEF
		09946	SM(5,9)==2.0*COEF
		30047	SM(6,8)=-2.0*COEF
		00048	SM(6,10)=-2.0*COEF
		00049 00060	SM(7,7)=4.0*COEF SM(7,8)=COEF
		00650 00051	SM(7,8)=COEF
		UN052	SM(8,8)=4.0*COEF
		00053	SM(8,10)=COEF
		00054	SM(9,9)=4.0*COEF
1		ยย ช55	S"(10,10)=4.0*COEF
		øØ056	IF (NTERM LEG. 10) GO TO 20
(57		

```
LN48QU FOR
    MASS
                               FORTRAN V.5(515) /KI
                                                          29-JUN-81
                                                                                    PAGE 1
                                                                          14:38
  29857
  2 00058
                   SM(4.11)=COEF
                   SM(5,12)=COEF
  a 00059
  4 00065
                   5M(6,13)=COEF
  5 30061
                   SM(7,11)=-2.0*COEF
                   SM(7,12)=-2.0*COEF
  6:00062
 7 99963
                   SM(8,11)=-2.0+COEF
 8 99064
                   SM(8,13)=-2.0*COEF
  9 ผิปติ65
                   SM(9:12)=-2.0*COEF
                   51(9,14)=-2.0 +COEF
  ្យ ១០១១៦
111 20007
                   'SH(19,13)==2.0*COEF
                   SM(10,15)=-2.0+COFF
  BONNE ST
 13 800659
                   SM(11,11)=4.8+COEF
 14 20270
                   SM(11,12)=COEF
                   5M(11,13)=COEF
 13. 98671
 15 50072
                   SF(12,12)=4.0*COEF
 47 00073
                   SM(12,14)=COEF
 13 96274
                   SM(13,13)=4.0*COEF
 19: 00675
                   SM(13,15)=COEF
                   SM(14,14)=4.0*COEF
 20 99975
                   SM(15,15)=4.0*COEF
 21 00077
                   CONTINUE
 22 00078
 23 09079
                   DO 30 J=1.NTERM
 24 00080
                   DO 30 I=J.NTERM
                   SM(I.J)=SM(J.I)
 5 20081
                   CONTINUE
 28 98082
              30
                   RETURN
 27: 00683
 28 00084
                   END.
 31 SUBPROGRAMS CALLED
 22:
 33
 34
 SE SCALARS AND ARRAYS [ "** NO EXPLICIT DEFINITION
                                                                NOT REFERENCED 1
 36
 37 WNTERM
                     *COEF
                                                         #出口
                                                                            SM
                      .SA003 7
 38: *J
                                        .50002 10
                                                          .Seee1 11
         - 6
                                                                            .Seggo 12
 1391 *RHO 13
                     *AL
                              14
                                        .I9992 15
                                                          .Igna1 16
                                                                                    17
    .13200 20
 40
 41
 42 TEMPORARIES
 43
    .A0016 21
 44
 45
            I NO ERRORS DETECTED
   MASS
 ⊹6
 47
 48
 34
 50
 51
 52
 52
 E4
 55
 56
```

56 20056

SK(5,7)==((C1+1,0)*A4+97.0*B4+13.0*AB2)*COEF

		LSTF	LN785	SX.FOR	FORTRAN	V.5(515) /KI	29-JUL-	81	14:03	PAGE 1
<i>y</i> =1	2 3	00957 00058		SK(6,8)=-	(A4+81.0 (97.0*A4	+(C2+1.8) *B4+13.	,0*AB2]*C	OEF.		
٠,٠	5	34659 30060 30361		SK(7,7)=(SK(7,8)=1		+1.0)#A4 B4+AB2)#	+97.0*(C	2+1.0)*B		AB2) *COE	7
.:	7 8 9	99964 99965	•	SK(9,10)=	97.0*(C1: (81.0*A4:	+1.0)*A4 +B4+9.0*	+17.0*(C AB2)*COE	2+1.0)*B			
Ċ	11	99965 99967 39968	C	Sk(10,10)		(CC1+1.8) *A4+(C2				
	13 14	34969 99979		SK(4,11)= SK(5,12)=	(A4+81,0)	.P4+9.0*	AB2)*COE				
	16	00073		SK(6,13)= SK(7,11)= SK(7,12)=	:=(16.0+(c :=(17.0+A	1+1.0)*	A4+97.0* C2+1.0)*	B4+52.0*	AB2) +C0	ef ·	
ű,	19	20074 90075 90076		SK(8,11)= SK(8,13)= SK(9,12)=	:=(81.0*(c :=((C1+1.6	1+1.0)* 1)*A4+33	A4+17.0* 7.0*B4+2	84+45.0+ 5.0+AB2)	AB2)*CO *COEF		
(22 23	09877 00078 00079		SK(9,14)= SK(10,13) SK(10,15)	==(337.0)	+A4+(C2+ +(CC1+1.	1.0)#B4+ 0)#A4+B4	25.0*AB2 +16.0*AB) #COEF 2) #COEF	avines:	OFF
	25 26	00080 00081 00082 40083			=(16.0+A/ =(81.0+A/	1+81.∅ + 8 1+16.0+8	4+36.0*A 4+36.0*A	B2)*COEF B2)*COEF			
	28 29	99984	-	SK(12,12) SK(12,14) SK(13,13)	=(A4+256, =(337.0*)	Ø*B4+16 C1+1.0)	.0*AB2)* *A4+17.0	COEF *(C2+1.0	. ,		•
	31	90987	20	SK(13,15) SK(14,14) SK(15,15) CONTINUE	=((C1+1.6) *A4+88	1.0*(CC2	+1.0)*B4			
١.	34 35	39894 39891 39892	28	DO 30 J=1 DO 30 I=J 55(I,J)=3	NTERM						
	37 38	00093	30	CONTINUE RETURN END	, , , , , , , , , , , , , , , , , , ,						
	40 41	SUBPROGR	AMC C								
\. 	43 44 45			A C S (III							
-	46 47 48	SCALARS	AND A	RRAYS ["*	" NO EXPL	ICIT DE	FINITION 3	- "%" N(T REFE	RENCED]	5
ان	49 50 51	*CC1 .SUUU3 *CC2	6 13 20	+BL _50002 +C2	7 14 21	*J .S0001 *PI4	10 15	*D _S0000 *AL	11 16 23	*AB2 *B4 SK	12 17 24
	52 53 54	,10902	25	.10991	26 /	*1	27	.10000	30	*C1	31
! No !	55 56 57										