

Permuted LU decomposition.

If A is regular

then A = LUL $\begin{pmatrix} \alpha_{1} & \alpha_{2} \\ \lambda_{3} & \lambda_{4} \end{pmatrix} = \begin{pmatrix} \lambda_{1} \\ \lambda_{2} & \lambda_{3} \end{pmatrix} U$

Definition Define Sn to be the set of all permutations of n elements

 $S_{3} = \left\{ \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 &$

with order!

$$C' = 5(1+r_2) \quad (2)$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \xrightarrow{\Gamma_2' = S_1 + \Gamma_2} \begin{pmatrix} 2 \\ 8 & 14 \end{pmatrix}$$

$$\frac{34}{34}$$

$$\frac{5wcr^{1/2}}{12}$$

$$\frac{814}{12}$$

CLILLY > smab -> CLIL! +L9 -> smap Smobs -> ri+1,9 so interchanging the now operations changes the resulting when anguing now reduced matrix! PA = LU, Lis not quite as easy to compute as before, you have been tack of permuting Lasuell.

Perall that every row operation (s an elementary matrix. E ~ cri+rig P~ swap U = 67 6 8 6 6 6 7, A = (E2E6 E E3E2P5 P, A) Lower triangular Êy Ē, Ē, means that you have to fine some new our operations to make this work.

A =
$$\begin{pmatrix} 1 & 2 & -1 & 0 \\ 3 & 6 & 2 & -1 \\ 1 & 1 & -7 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix}$$

Ex Compute permuted LU decomposition $\sqrt{5}$ A

$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 3 & 6 & 2 & -1 \\ 4 & 1 & -7 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix}$$

$$L^{2}\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 5 & -1 \\ 0 & -1 & -6 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 0 & 5 & -1 \\ 0 & 0 & 5 & -1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 0 & 5 & -1 \\ 0 & 0 & 5 & -1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 2 \\ 0 & -3 & 3 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 12 - 10 \\ 010 5 - 1 \\ 0 + 1 - 102 \\ 0 + 3 3 1 \end{pmatrix}$$

$$Tf A was regular to P = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 + 1 \end{pmatrix}$$

$$gwap (213)$$

$$A = \begin{pmatrix} 12 - 10 \\ 0 + 1 - 102 \\ 0 + 102 \\ 0 + 1 - 102 \\ 0 + 1$$

6 : (10 /)

$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -1 & -1 & 2 \\ 0 & 0 & 5 & -1 \\ 0 & 0 & 21 & -6 \end{pmatrix} \quad L^{2} \begin{pmatrix} 1 \\ 1 \\ 3 \\ 1 \end{pmatrix}$$

$$\mathcal{P} = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)$$

 $P = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$

The permuted LU decomp. is

PA = LU

(1000)
(302-1)
(100)
(11-72)
(100)

Ex
$$\begin{pmatrix} 0 & 1 & 2 \\ 3 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

Swap 1,3

$$\begin{pmatrix} 1 & 1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

$$P = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

$$P = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix}$$

$$-3c_1 * c_2$$

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 1 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 1 & 2 \\ 3 & 2 & 2 \\ 3$$

 $\begin{pmatrix} 1 & 1 & 2 \\ 0 & -3 & -5 \\ 0 & 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & \begin{pmatrix} 1 \\ 3 & 1 \end{pmatrix} \\ \end{pmatrix}$

$$P = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

(1) (3 0 1) (1 2)

LDV decomposition:

Let A be a regular matrix.

Let A be a regular matrix.

Ex let
$$A = \begin{bmatrix} 1 & 2 \\ 30 & 1 \\ 0 & 2 \end{bmatrix}$$

A = $\begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$

A = $\begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$

To war to make $-3 \rightarrow 1$

$$\begin{bmatrix} 2 & -\frac{1}{3} & 2 \\ 2 & -\frac{1}{3} & 2 \end{bmatrix}$$

To $\begin{bmatrix} 1 & 2 \\ 2 & -\frac{1}{3} & 2 \end{bmatrix}$

Det An upper D mostris is Uniuppertriangular if

Mii = 1 4i.

A lower A matrix is unilsur

A if lii = 1 4i.

The LDV decomp writes A as a property of onicegonal.

$$\begin{pmatrix} 0 & 0 & 1 \\ 2 & -1 & 1 \\ -1 & 4 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 4 & 2 \\ \hline 2 & -1 & 1 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 00 \\ 2-11 \\ -142 \end{pmatrix} = \begin{pmatrix} 1 \\ 21 \\ 1 \end{pmatrix} \begin{pmatrix} -142 \\ 00 \\ 00 \end{pmatrix}$$

2) by P, Q be permutation matries, QP 15 a 150 a permutation. QP(i) $O(1) o(2) \dots o(n)$ IGN 7(2) ---- T(N) QP(in) = Q(in)

at (o(in) Doing 2

in a row is

a construction on a row is

another rearrangement

pernatation Wens is 90 modrix. $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $QP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $= \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ This is

matrix! (0,0) > 2

A permutation is a byection $\{1,\ldots,n\}\longrightarrow\{1,\ldots,n\}$ You compose tot, you'll get anothe biguition. § 1.5/1.6 Invers, Transposes Symmetric Matrices Define An nxn matrix A is wartiple if how exight a matrix B such that AB = I = BA Normally we Call B = A-1
A' 15 called on invene
No A. In ---> 1 A-' ~ " L "

Not every matrix has an merse! (00) has no invense! (You can't dies ide by 0) (01) also has no inverse. Most on mourible, How to compute A' using now reduction. let A he nonsingular -> you can now reduce A -, u usng critig. nanco entrics

We can use free to compute At. The mueroe A-1 solves the matrix equation $\chi = \begin{pmatrix} \chi, \kappa_1 & \ldots & \kappa_n \end{pmatrix}$ AX = I.

 $\left(Ax, \ldots Ax_n\right) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \end{pmatrix}$

You can solve A_{x} = (?) A_{x} = (?) Air = (i) ar one now reducing augmented mosting $\left(A \mid I_{n} \right)$. ou reduction (u| +) back substitution $\left(I \right) A'$

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 3 \end{pmatrix} \quad \text{Find the norm } A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{Swop } 2 \cdot 3 \\ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad \begin{array}{c} 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array} \quad \begin{array}{c} -3C_3 + C_2 = C_2' \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array} \quad \begin{array}{c} -3C_3 + C_2 = C_2' \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array} \quad \begin{array}{c} -3C_3 + C_2 = C_2' \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array} \quad \begin{array}{c} -3C_3 + C_2 = C_2' \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array} \quad \begin{array}{c} -3C_3 + C_2 = C_2' \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ \end{array} \quad \begin{array}{c} -3C_3 + C_2 = C_1' \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ \end{array} \quad \begin{array}{c} -3C_3 + C_2 = C_1' \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ \end{array} \quad \begin{array}{c} -3C_3 + C_2 = C_1' \\ 0 & 1 & 0 \\ \end{array}$$

The Tf
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

then
$$A^{1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
2 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

Prop Matrix inverses ar unique. PF Assume A' and B one both muerous & A. Then, $= A^{-1}In = A^{-1}(AB)$ = (ATA)B = InB = B. So A-1 = B.

[tombstone)

1 >square) let's say we have a system of eq'ns

Ax=b, and we know A1.

ATAX = ATS

え = Ab.

Pop If A is regular, then me un duamp. Into a unilour D marise on upper A 15 unique. A = LU = ~~. Turns out I and To are mountable! $\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right)^{2} \cdot \left(\begin{array}{c} \Sigma_{n} \end{array} \right) \longrightarrow \left(\begin{array}{c} \Sigma_{n} \middle| \widetilde{\mathcal{L}}^{-1} \end{array} \right)$ (Substitution (In | W')

Upper D

715 = 24

Corollary: The LDV decomp. is also unique.

Let A he as man matrix. Then define "A transpose", A" to be the nxm which results from turning rows of A into columns at columns v.A no mus. (AT) is Aji $\begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 0 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$

Def An non matrix is Symmetric if $A = A^T$.

EX (03) is symmetric.

(3 5 6)
The traspose is also

 $\begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & 5 \\ 3 & 5 & 6 \end{pmatrix}$.

Thm 1.34 Let A be a regular symmetric matrix.

Then $A = LDL^T$.

$$Pop$$
 $(AB)^{-1} = B^{-1}A^{-1}$.

(BA)AB = BB = I AB (B'A') = AA' = I.

 $P_{op} (AB)^T = B^T A^T$

Compare elements.