Terminale STMG Chapitre 4

__4 __

Fonction inverse

I. Étude de la fonction

1. Définition

Définition 1

La fonction inverse est la fonction f définie $\sup \mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[\text{ par :}$

$$f(x) = \frac{1}{x}$$

! Remarque :

• Puisqu'on ne peut pas diviser par 0, alors le dénominateur x doit être non nul.

C'est pourquoi cette fonction est définie sur \mathbb{R}^* .

• La courbe représentative de la fonction inverse est appelée hyperbole.

2. Dérivée et variations

Propriété 1

La fonction inverse f est dérivable sur \mathbb{R}^* et pour $x \in \mathbb{R}^*$, on a $f'(x) = -\frac{1}{x^2}$.

🔔 Remarque :

Pour tout $x \in \mathbb{R}^*$, on a alors que f'(x) < 0 puisque $x^2 > 0$.

Année 2024/2025 Page 1/2

Terminale STMG Chapitre 4

Propriété 2

La fonction inverse est décroissante sur $]-\infty,0[$ et sur $]0,+\infty[$.

Exemple :

On considère $f: x \mapsto -\frac{2}{x}$ définie sur $]0, +\infty[$.

1. f est dérivable sur $]0, +\infty[$ et pour x > 0, on a $f'(x) = \dots$

2. Donc pour tout x > 0, f'(x)..... et alors f est sur $]0, +\infty[$.

II. Comportement aux bornes

Dans cette partie, on note f la fonction inverse définie sur \mathbb{R}^* et on étudie les valeurs que prend f(x) lorsque x devient très grand (autant dans les positifs, que les négatifs) ou lorsque x se rapproche de 0

1. En l'infini

x	-10000	-100	-10	-5	5	10	100	10000
f(x)	-0,0001	-0,01	-0,1	-0,2	0,2	0,1	0,01	0,0001

On remarque que lorsque x devient très grand dans les positifs, alors f(x) se rapproche de 0. On note : $\lim_{x\to +\infty} f(x) = 0$.

De la même façon, quand x devient très grand dans les négatifs, f(x) se rapproche aussi de 0 donc $\lim_{x\to -\infty}=0$.

2. Au voisinage de 0

x	-0,5	-0,1	-0,01	-0,0001	•••	0,0001	0,01	0,1	0,5
f(x)	-2	-10	-100	-10000		10000	100	10	2

On a déjà dit que f(0) n'existait pas, mais on peut étudier les valeurs de f(x) lorsque x est autour de 0. On remarque alors que celles-ci grandissent lorsque x se rapproche de 0, et que seul le signe change. On note donc :

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty \qquad \qquad \lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$$

Année 2024/2025 Page 2/2