COMP3203 Final Exam Summary

William Findlay
December 14, 2018

Contents

1	Units
2	'ormulas
	.1 Frequency
	.2 Period
	.3 Wavelength
	4 Bandwidth
	.5 Delay
	2.5.1 Propagation
	2.5.2 Transmit
	2.5.3 Queue
	2.5.4 Round Trip Time
	•
	.6 Overhead
3	error Checking
4	Λ RQ
	.1 Sliding Window
	4.1.1 Go Back N
	4.1.2 Selective Reject
	2 Stop and Wait
4	2 Stop and Walt
	Iultiaccess
	.1 LANs
	5.1.1 Switched LANs
	5.1.2 Broadcast LANs
	.2 Uncoordinated Access Control
	.3 MAC Protocol
	5.3.1 Centralized
	5.3.2 Distributed
	.4 How Does MAC Work?
	5.4.1 Measure
	5.4.2 Coordinate
	5.4.3 Select a Winner
	5 MAC Efficiency
	o Mile Emokiney
	thernet
	1 Limitations
	.2 Backoff Protocols
	6.2.1 Implementation
	.3 Collision-Free Protocols
	6.3.1 Bitmap
	6.3.2 Tree Splitting
	6.3.3 Binary Countdown
7	Vireless
1	.1 Cellular
	.2 Ad Hoc
	3 Bluetooth
	7.3.1 Formation
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1 Units

 \bullet unit chart

prefix	base 10	base 2
pico	10^{-12}	2^{-40}
nano	10^{-9}	2^{-30}
micro	10^{-6}	2^{-20}
milli	10^{-3}	2^{-10}
	10^{0}	2^{0}
kilo	10^{3}	2^{10}
mega	10^{6}	2^{20}
giga	10^{9}	2^{30}
tera	10^{12}	2^{40}
peta	10^{15}	2^{50}

• $Hz \implies$ cycles per second $- GHz \implies 10^9$ cycles per second

- etc.

2 Formulas

2.1 Frequency

$$f=\frac{1}{T}$$

2.2 Period

$$T = \frac{1}{f}$$

2.3 Wavelength

$$\lambda = vT$$
$$\lambda = \frac{v}{f}$$

2.4 Bandwidth

$$B = vT$$

2.5 Delay

$$D = D_P + D_T + D_Q$$

2.5.1 Propagation

$$D_P = \frac{\text{distance}}{\text{speed of light}}$$

2.5.2 Transmit

$$D_T = \frac{\text{packet size}}{\text{bandwidth}}$$

2.5.3 Queue

$$D_Q = \sum_{\text{nodes}} (\text{buffering} + \text{switching})$$

2.5.4 Round Trip Time

$$RTT = 2D$$

• how long does it take a packet to go there and back

2.6 Overhead

$$T_O = \frac{h}{p}$$
 where $h =$ overhead bits, $p =$ message bits

• extra over what we want

3 Error Checking

- VRC
- LRC
- CRC
 - this guy is usually used
 - use in tandem with ARQ
- \bullet checksum

4 ARQ

- automatic repeat request
- handle errors by requesting they be resent
- use in tandem with error detection
 - CRC
 - checksum
- main parts
 - ACKS
 - NAKS
 - timers

4.1 Sliding Window

- number frames sequentially
- window of either fixed or variable size
 - see TCP section

4.1.1 Go Back N

- go back to the beginning of the window and resend everything
- w i = N

4.1.2 Selective Reject

- only resend the damaged frame
- \bullet need sorting logic
 - frames may be out of order

4.2 Stop and Wait

• like sliding window with a window size = 1

5 Multiaccess

- problem of shared channels
 - who gets a turn?
 - how do we make sure things get to the right place?
- point-to-point is easy (by contrast)

5.1 LANs

- local area network
- shared channel

5.1.1 Switched LANs

- \bullet interconnection by transmission
- complex
 - routing tables
 - hierarchical addressing

5.1.2 Broadcast LANs

- information received by all
- simple
 - no routing
 - flat addressing scheme
- MAC (medium access control)
- used more often

5.2 Uncoordinated Access Control

- sucks
- $P(\text{exactly one talks}) = np(1-p)^{n-1}$

5.3 MAC Protocol

- Medium Access Control
- dynamic
- \bullet on demand
- must **minimize** collisions
- \bullet two classes

- random access
- scheduling

MAC vs Static

 $MAC \implies dynamic, on demand$

Static \implies separate dedicated channels

5.3.1 Centralized

- one master node
 - makes decisions for slaves nodes
- dependent on master
 - what if it fails?
 - less efficient

5.3.2 Distributed

- all nodes equivalent
- make a decision together
 - distributed fashion

5.4 How Does MAC Work?

- i) **measure** prop time
- ii) coordinate access
- iii) select a winner

5.4.1 Measure

- \bullet ping
- $T_{prop} = \frac{d}{v}$

5.4.2 Coordinate

```
def coordinateTwoHosts(A,B):
 1
 2
      A. listen (channel)
 3
 4
      if channel not busy:
 5
        A. transmit (m)
        while no message from B:
 6
 7
          A. listen (channel)
        if time > T_{prop}:
 8
 9
           break
10
        else:
11
          A. retransmit (m)
12
13
      repeat for B
```

5.4.3 Select a Winner

- let T_A = time for a collision detected by A
- let T_B = time for a collision detected by B
- A wins $\iff T_A < T_B$

- loser is quiet until winner completes
- winner is quiet after transmission for RTT

5.5 MAC Efficiency

$$E = \frac{1}{1 + 2\frac{T_{prop}}{L}}$$

6 Ethernet

- broadcast network
 - every node can hear every other
- ullet when collision occurs
 - stop sending
 - wait to retransmit

6.1 Limitations

- very large packet size as bandwidth increases
- MAC is technology dependent
 - are measurements accurate?
 - measurements may differ between hosts
- but it is **realistic**
 - uptime is important

6.2 Backoff Protocols

- queue of nodes waiting to transmit
- keep track of number of attempts
- define P(x)
 - probability you transmit on attempt x
 - decreasing in x

6.2.1 Implementation

- station i has bck_i
- \bullet set it to 0
- if queue not empty
 - attempt transmission with $p(bck_i)$
 - fails $\implies bck_i + +$
 - succeeds $\implies bck_i := 0$
- if queue was empty, don't change bck_i

6.3 Collision-Free Protocols

6.3.1 Bitmap

- contention period = 8 slots
- station *i* inserts one bit into *i*th slot
- \bullet after N slots, each station knows who wants to transmit
- transmit in order
- a station i is out of luck if it becomes ready just after slot i passes

6.3.2 Tree Splitting

- nodes are leaves
- recursive
- keep taking left subtree until one node in contention
 - that node wins
 - take right subtree if applicable
 - walk back up to root

6.3.3 Binary Countdown

- assume all addresses are same length
- node writes its bit from highest to lowest order
 - if I have a 0 and somebody else has a 1
 - I drop out
 - otherwise
 - I stay in
- last man standing wins

7 Wireless

7.1 Cellular

- organized into cells
 - hexagons
- ullet neighboring cells \Longrightarrow different frequency bands

7.2 Ad Hoc

- temporary connection
- decentralized
- model with a Unit Disk Graph
 - points and circles for range
 - -G = (V, E) where
 - vertices are nodes
 - edges are nodes that can each each other
 - asymmetric ranges \implies directed graph

7.3 Bluetooth

7.3.1 Formation

- master nodes
- slave nodes
 - bridge nodes (a special slave)

Rules

- 1. master only next to slaves (and bridges)
- 2. slaves only next to a master
- 3. each master's **piconet** can have **max 7 slaves**
- 4. bridge between TWO masters ONLY