Goal-Oriented Reduction for Automata Networks

Loïc Paulevé

LRI, CNRS / Université Paris-Sud, France loic.pauleve@lri.fr http://loicpauleve.name

Journées Bioss "Réduction", Marseille, May 28, 2015

Overview

Under-approximation of reachability Under-approximation of cut sets

NEW Model reduction

Goal-oriented reduction Motivations

Local causality analysis in previous work...

- ... decide efficiently reachability properties (and cut sets)
- ... but they can be inconclusive (abstractions).

We may still want to do exhaustive explorations of the state space. . .

- ... to ensure conclusive-ness
- ... to ensure that we are not missing cut-sets for reachability
- . . . to do any more precise analysis.

May local causality analysis help exhaustive analysis of the state space?

Model reduction

Model reductions

- merge/remove components/transitions,
- try to preserve some properties.

Goal-oriented reduction of automata networks

- dedicated to a given reachability property (reach a_i , then b_j , ...);
- · reduction by removing transitions;
- · conserve all minimal traces satisfying a reachability property
- valid for any update schedule.

Minimal traces (sequences of transitions)

A trace $\pi \vDash P$ is minimal w.r.t. P iff there is no sub-trace $\pi' \subsetneq \pi$ s.t. $\pi' \vDash P$.

Examples for $P = \text{reach } a_i$:

•
$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (YES)

•
$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $d_0 \xrightarrow{c_1} d_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (NO)

•
$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $b_1 \xrightarrow{a_0} b_0$, $d_0 \xrightarrow{c_1} d_1$, $b_0 \xrightarrow{d_1} b_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (NO)

Model reduction

Model reductions

- merge/remove components/transitions,
- · try to preserve some properties.

Goal-oriented reduction of automata networks

- dedicated to a given reachability property (reach a_i , then b_j , ...);
- reduction by removing transitions;
- · conserve all minimal traces satisfying a reachability property
- valid for any update schedule.

Minimal traces (sequences of transitions)

A trace $\pi \vDash P$ is minimal w.r.t. P iff there is no sub-trace $\pi' \subsetneq \pi$ s.t. $\pi' \vDash P$.

Examples for $P = \text{reach } a_i$:

•
$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (YES)

•
$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $\mathbf{d_0} \xrightarrow{\mathbf{c_1}} \mathbf{d_1}$, $a_0 \xrightarrow{b_1, c_1} a_i$ (NO)

•
$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $b_1 \xrightarrow{a_0} b_0$, $d_0 \xrightarrow{c_1} d_1$, $b_0 \xrightarrow{d_1} b_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (NO)

Model reduction

Model reductions

- merge/remove components/transitions,
- · try to preserve some properties.

Goal-oriented reduction of automata networks

- dedicated to a given reachability property (reach a_i , then b_j , ...);
- reduction by removing transitions;
- · conserve all minimal traces satisfying a reachability property
- valid for any update schedule.

Minimal traces (sequences of transitions)

A trace $\pi \vDash P$ is minimal w.r.t. P iff there is no sub-trace $\pi' \subsetneq \pi$ s.t. $\pi' \vDash P$.

Examples for $P = \text{reach } a_i$:

•
$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (YES)

•
$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $d_0 \xrightarrow{c_1} d_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (NO)

•
$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $\mathbf{b_1} \xrightarrow{\mathbf{a_0}} \mathbf{b_0}$, $\mathbf{d_0} \xrightarrow{\mathbf{c_1}} \mathbf{d_1}$, $\mathbf{b_0} \xrightarrow{\mathbf{d_1}} \mathbf{b_1}$, $a_0 \xrightarrow{b_1, c_1} a_i$ (NO)

Outline

1 Automata Networks

2 Local Causality Analysis Local Causality Graph Necessary conditions for reachability

3 Goal-oriented reduction

Outline

1 Automata Networks

Local Causality Analysis
 Local Causality Graph
 Necessary conditions for reachability

3 Goal-oriented reduction

a:
$$\ell_1 = \{c_0\}$$
 $\ell_2 = \{b_0\}$ $\ell_3 = \emptyset$ b: $\ell_4 = \{a_2, c_1\}$ $\ell_5 = \{a_0\}$ c: $\ell_6 = \{b_0\}$ $\ell_7 = \{b_0, a_1\}$ $\ell_8 = \{b_1\}$

a:
$$\ell_1 = \{c_0\}$$

$$\ell_2 = \{b_0\}$$

$$\ell_3 = \emptyset$$

b:
$$\ell_4 = \{a_2, c_1\}$$
 $\ell_5 = \{a_0\}$

$$\ell_5 = \{a_0\}$$

$$\ell_8 = \{b_1\}$$

c:
$$\ell_6 = \{b_0\}$$

$$\ell_7 = \{b_0, a_1\}$$

C:

a:
$$\ell_1=\{c_0\} \qquad \qquad \ell_2=\{b_0\} \qquad \qquad \ell_3=\emptyset$$
 b:
$$\ell_4=\{a_2,c_1\} \qquad \qquad \ell_5=\{a_0\}$$

$$\ell_6 = \{b_0\}$$
 $\ell_7 = \{b_0, a_1\}$ $\ell_8 = \{b_1\}$

C:

a:
$$\ell_1 = \{c_0\}$$
 $\ell_2 = \{b_0\}$ $\ell_3 = \emptyset$
b: $\ell_4 = \{a_2, c_1\}$ $\ell_5 = \{a_0\}$
c: $\ell_6 = \{b_0\}$ $\ell_7 = \{b_0, a_1\}$ $\ell_8 = \{b_1\}$

Loïc Paulevé 7/22

a:
$$\ell_1 = \{c_0\}$$
 $\ell_2 = \{b_0\}$ $\ell_3 = \emptyset$
b: $\ell_4 = \{a_2, c_1\}$ $\ell_5 = \{a_0\}$
c: $\ell_6 = \{b_0\}$ $\ell_7 = \{b_0, a_1\}$ $\ell_8 = \{b_1\}$

a:
$$\ell_1 = \{c_0\}$$
 $\ell_2 = \{b_0\}$ $\ell_3 = \emptyset$
b: $\ell_4 = \{a_2, c_1\}$ $\ell_5 = \{a_0\}$
c: $\ell_6 = \{b_0\}$ $\ell_7 = \{b_0, a_1\}$ $\ell_8 = \{b_1\}$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

1.
$$f^a(x) = x[b] \land x[c]$$
 transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

Loïc Paulevé

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

1.
$$f^a(x) = x[b] \land x[c]$$
 transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

1.
$$f^a(x) = x[b] \land x[c]$$
 transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

Traces

Step

- Set of local transitions
- At most one transition per automaton

$$\tau = \{b_0 \xrightarrow{c_0} b_1, a_0 \xrightarrow{b_0, d_1} a_2\}$$

$$\bullet \tau = \{b_0, c_0, a_0, d_1\}$$

• Is playable in state s iff ${}^{\bullet}\tau \subset s$.

Trace for a_i reachability

- Sequence π of playable steps with $\pi^{\#\pi} = \{a_i \xrightarrow{\cdots} a_i\}$.
- Minimal iff there is no sub-sequence ϖ for a_i reachability.

In the following:

- We consider only singleton steps (asynchronous update schedule)
- ...but results apply with any steps (any update schedule).

Outline

Automata Networks

2 Local Causality Analysis Local Causality Graph Necessary conditions for reachability

3 Goal-oriented reduction

Local Causality

local-paths(
$$a_0 \to^* a_2$$
) = $\{a_0 \xrightarrow{b_0} a_1 \xrightarrow{c_1} a_2, a_0 \xrightarrow{b_2} a_2\}$
local-paths# $(a_0 \to^* a_2)$ = $\{\{b_0, c_1\}, \{b_2\}\}$

Local Causality

local-paths(
$$a_0 \rightarrow^* a_2$$
) = $\{a_0 \xrightarrow{b_0} a_1 \xrightarrow{c_1} a_2,$
 $a_0 \xrightarrow{b_2} a_2\}$
local-paths# $(a_0 \rightarrow^* a_2)$ = $\{\{b_0, c_1\}, \{b_2\}\}$

For any trace π starting at some global state s with $a_0 \in s$ and reaching a_2 :

- either $a_0 \xrightarrow{b_0} a_1 \xrightarrow{c_1} a_2$ or $a_0 \xrightarrow{b_2} a_2$ is a sub-trace of π ;
- either b_1 and c_0 , or b_2 are reached before a_2 in π .

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

Objective completeness criteria

Objective is impossible from any state if at least one local state of each solution is disabled.

E.g. $a_0 \rightarrow^* a_2$ is impossible in $\mathcal{M} \ominus \{b_2, b_0\}$ and in $\mathcal{M} \ominus \{b_2, c_1\}$

Necessary conditions for reachability

Necessary condition for d_2 reachability from ς :

Example

There exists a traversal of the LCG s.t.:

- objective → follow at least one solution;
- local state → follow all objectives;
- no cycle.

Necessary conditions for reachability

Example

Necessary condition for d_2 reachability from ς :

There exists a traversal of the LCG s.t.:

- $\bullet \ \ \text{objective} \to \text{follow at least one solution;}$
- $\bullet \ \ \mathsf{local} \ \mathsf{state} \to \mathsf{follow} \ \mathsf{all} \ \mathsf{objectives};$
- no cycle.

Outline

1 Automata Networks

Local Causality Analysis
 Local Causality Graph
 Necessary conditions for reachability

3 Goal-oriented reduction

Reduction for single local reachability

Sketch

- $oldsymbol{0}$ Compute LCG $\mathcal G$ from initial context for given local reachability property
- Remove impossible objectives
- Sextends its context with local states nodes + intermediates given by local-paths
- **4** Repeat until fixpoint $\rightarrow \lceil \mathcal{G} \rceil$
- \Rightarrow keep only transitions in $\bigcup \{ \text{tr}(\text{local-paths}(a_i \rightarrow^* a_j)) \mid a_i \rightarrow^* a_j \in \lceil \mathcal{G} \rceil \}$

Reduction for single local reachability

Sketch

- \bullet Compute LCG \mathcal{G} from initial context for given local reachability property
- 2 Remove impossible objectives
- Sextends its context with local states nodes + intermediates given by local-paths
- **4** Repeat until fixpoint $\rightarrow \lceil \mathcal{G} \rceil$
- \Rightarrow keep only transitions in $\bigcup \{ \text{tr}(\text{local-paths}(a_i \rightarrow^* a_j)) \mid a_i \rightarrow^* a_j \in \lceil \mathcal{G} \rceil \}$

Reduction for single local reachability

Sketch

- **1** Compute LCG \mathcal{G} from initial context for given local reachability property
- Remove impossible objectives
- 3 Extends its context with local states nodes + intermediates given by local-paths
- **4** Repeat until fixpoint \rightarrow [\mathcal{G}]
- \Rightarrow keep only transitions in $\bigcup \{ \text{tr}(\text{local-paths}(a_i \rightarrow^* a_j)) \mid a_i \rightarrow^* a_j \in \lceil \mathcal{G} \rceil \}$

Goal-oriented reduction

Theorem

Given an AN $\mathcal{A} = (\Sigma, S, T)$, a global state $s \in S$, and one automaton local state a_i , for all minimal trace π from s to a_i , $\operatorname{tr}(\pi) \subset \operatorname{tr}(\lceil \mathcal{G} \rceil)$.

Consequence

The AN $\mathcal{A} = (\Sigma, S, \operatorname{tr}(\lceil \mathcal{G} \rceil))$ conserves all minimal traces for reaching a_i from s.

Goal oriented-reduction

Theorem

Given an AN $\mathcal{A} = (\Sigma, S, T)$, a global state $s \in S$, and one automaton local state a_i , for all minimal trace π from s to a_i , $\operatorname{tr}(\pi) \subset \operatorname{tr}(\lceil \mathcal{G} \rceil)$.

Sketch of proof

We proceed by contradiction.

Let us assume that π is a minimal trace, and $\exists t \in \pi$ such that $t \notin \text{tr}(\lceil \mathcal{G} \rceil)$.

We prove we can build a sub-trace of π that does not contain t but still reaches a_i . Hence π is not minimal.

Hence π is not minimal.

Sketch of proof

Let us focus on the last unknown transition π^{l} of π .

$$\pi: b_0 \xrightarrow{\{c_0\}} b_1, \ldots, d_i \xrightarrow{\cdots} d_j, e_i \xrightarrow{\cdots} e_j, \ldots, a_j \xrightarrow{\{b_i, c_j\}} a_i$$

Remember that local-paths($p_i \rightarrow^* p_j$) returns all *acyclic* sequences of trs between p_i and p_i .

If π^l is the last transition of π $(\pi^l = a_j \rightarrow a_i)$

Lemma: $a_j \to a_i \notin \operatorname{tr}(a_0 \to^* a_i) \Rightarrow$ any trace reaching a_j goes first to a_i .

By definition $a_0 \rightarrow^* a_i \in \lceil \mathcal{G} \rceil$.

 $\pi^{l} \notin \operatorname{tr}(\lceil \mathcal{G} \rceil) \Rightarrow \pi^{l} \notin \operatorname{tr}(\operatorname{local-paths}(a_0 \to^* a_i)) \Rightarrow \exists m < l : \pi^m = \star \to a_i,$ therefore π is not minimal.

Loïc Paulevé

Sketch of proof

Let us focus on the last unknown transition π^{l} of π .

$$\pi: b_0 \xrightarrow{\{c_0\}} b_1, \ldots, d_i \xrightarrow{\cdots} d_j, e_i \xrightarrow{\cdots} e_j, \ldots, a_j \xrightarrow{\{b_i, c_j\}} a_i$$

Remember that local-paths($p_i \rightarrow^* p_j$) returns all *acyclic* sequences of trs between p_i and p_i .

If π^l is the last transition of π ($\pi^l = a_i \rightarrow a_i$)

Lemma: $a_j \to a_i \notin \operatorname{tr}(a_0 \to^* a_i) \Rightarrow$ any trace reaching a_j goes first to a_i .

By definition $a_0 \rightarrow^* a_i \in \lceil \mathcal{G} \rceil$.

 $\pi^{l} \notin \operatorname{tr}(\lceil \mathcal{G} \rceil) \Rightarrow \pi^{l} \notin \operatorname{tr}(\operatorname{local-paths}(a_0 \to^* a_i)) \Rightarrow \exists m < l : \pi^m = \star \to a_i,$ therefore π is not minimal.

If $\pi^l = d_i o d_j$ and $exists d_r \in \pi^{l+1..}$

 $\pi^{1..l-1,l+1,...}$ is a valid trace which reaches a_i . Hence, π is not minimal.

Sketch of proof

Let us focus on the last unknown transition π^{l} of π .

$$\pi: b_0 \xrightarrow{\{c_0\}} b_1, \ldots, \frac{d_i}{\longrightarrow} \frac{\cdots}{d_j}, e_i \xrightarrow{\cdots} e_j, \ldots, a_j \xrightarrow{\{b_i, c_j\}} a_i$$

Remember that local-paths($p_i \rightarrow^* p_j$) returns all *acyclic* sequences of trs between p_i and p_i .

If
$$\pi^l = d_i \rightarrow d_i$$
 and $\exists d_r \in \pi^{l+1...}$

Basically,

- $d_0 \rightarrow^* d_r \in \lceil \mathcal{G} \rceil$;
- $d_i \to d_i \notin \text{tr}(\text{local-paths}(d_0 \to^* d_r))$ implies that $d_i \to d_i$ is part of a cycle
- we can prove that it is always part of a cycle that can be removed from π (be careful with intertwined cycles)

 π is not minimal.

Results Preliminary benchmarks with single reachability

			NuSMV		ITS		
Model		# tr	time	mem	time	mem	# states
Egf-r (20)	normal	68	0.1s	15Mb	0.35s	19Mb	4.200
	reduced	43	0.03s	11Mb	0.13s	8Mb	722
Egf-r (104)	normal	378	75s	2.1Gb	0.8s	750Mb	$\approx 10^7$
profile 1	reduced	0	-	-	-	-	1
Egf-r (104)	normal	378	KO	KO	540s	1.5Gb	$> 8.10^{14}$
profile 2	reduced	211	52s	100Mb	3.4s	100Mb	$\approx 6.10^7$
TCell-r (94)	normal	217	KO	KO	KO	KO	?
	reduced	42	10s	190Mb	0.25s	15Mb	60.000

For all cases, reduction step took between 0.01 and 0.1s.

Loïc Paulevé

Dealing with sequential reachability properties

We can support more complex reachability properties such as

reach
$$\langle a_i, b_j \rangle$$
 and then $\langle c_k \rangle$

Classical trick:

... and do reduction for the goal P_{\top} .

Conclusion

- Input Any automata network (works even with synchronous transitions); Initial state + seq. reachability prop. (reach a_i , then b_i , etc.)
- Output Automata network with removed local transitions
- Complexity Polynomial in the number of automata, exponential in their size.

Results

- All minimal paths satisfying reachability property are conserved.
- Can lead to drastic reduction of the state space.
- Almost costless...

Future work

- Efficient update of the reduction after a transition
- Detect when it is worth to redo a reduction from a new initial state
- Goal-driven unfolding of Petri nets (w/ LSV)
- Combine with model refinement (goal-driven model identification)

SASB'15

6th International Workshop on Static Analysis and Systems Biology

8 September 2015 - Saint-Malo (France) https://www.lri.fr/sasb2015/

Scope:

- · Quantitative and qualitative models
- · Topology vs dynamics
- Model reduction
- · Abstract interpreration frameworks
- · Practical methods for tackling biological models..

Program Co-Chairs

- Loïc Paulevé, CNRS/LRI, Univ. Paris-Sud, France
- · Nathalie Théret, INSERM, Rennes, France

Program Committee

- Reka Albert, Pennsylvania State University, USA
- Jérome Feret, Inria/École Normale Sup., France
- Giuditta Franco, University of Verona, Italy
- Johnatan Hayman, University of Cambridge, UK
- · Thomas Hinze, University of Jena, Germany

- Cédric Lhoussaine. Université de Lille. France
- · Gethin Norman, University of Glasgow, UK
- Tatjana Petrov, IST Austria
- David Safranek, Masaryk Univ., Czech Republic
- Thomas Sauter, University of Luxembourg
- Sylvain Sené, Aix-Marseille Université, France
- Andrei Zinovyev, Institut Curie, France
- Paolo Zuliani, Newcastle University, UK

Papers due on 5th June (ENTCS); Short presentation abstracts due on 23rd June.