## Squeeze-and-Excitation Networks



Jie Hu<sup>1,\*</sup>



Li Shen<sup>2,\*</sup>



Gang Sun<sup>1</sup>





<sup>2</sup> Department of Engineering Science, University of Oxford

#### Large Scale Visual Recognition Challenge

Squeeze-and-Excitation Networks (SENets) formed the foundation of our winner entry on ILSVRC 2017 Classification



#### Convolution

A convolutional filter is expected to be an informative combination

Fusing channel-wise and spatial information



Within local receptive fields

## **A Simple CNN**





## A Simple CNN



#### Channel dependencies are:

- Implicit: Entangled with the spatial correlation captured by the filters
- Local: Unable to exploit contextual information outside this region





## **Exploiting Channel Relationships**

Can the representational power of a network be enhanced by channel relationships?

#### Design a new architectural unit

- Explicitly model interdependencies between the channels of convolutional features
- Feature recalibration
  - Selectively emphasise informative features and inhibit less useful ones
  - ☐ Use *global* information

#### **Squeeze-and-Excitation Blocks**

Given transformation  $F_{tr}$ : input  $X \rightarrow$  feature maps U

- Squeeze
- Excitation



## **Squeeze: Global Information Embedding**

- Aggregate feature maps through spatial dimensions using global average pooling
- Generate channel-wise statistics



U can be interpreted as a collection of local descriptors whose statistics are expressive for the whole image.

## **Excitation: Adaptive Recalibration**

- Learn a nonlinear and non-mutually-exclusive relationship between channels
- Employ a self-gating mechanism with sigmoid function
  - ☐ Input: channel-wise statistics
  - ☐ Bottleneck configuration with two FC layers around non-linearity
  - ☐ Output: channel-wise activations



## **Excitation: Adaptive Recalibration**

- Rescale the feature maps U with the channel activations
  - Act on the channels of U
  - ☐ Channel-wise multiplication



#### **Example Models**





Residual Residual  $H \times W \times C$ Global pooling  $1 \times 1 \times C$  $\widetilde{\mathbf{X}}$ FC  $1 \times 1 \times \frac{C}{r}$ **ResNet Module** ReLU  $1 \times 1 \times \frac{C}{}$ FC  $1 \times 1 \times C$ Sigmoid  $1 \times 1 \times C$ Scale  $H \times W \times C$  $H \times W \times C$ 

 $\mathbf{X}$ 

**SE-Inception Module** 

**SE-ResNet Module** 

## **Object Classification**

#### Experiments on ImageNet-1k dataset

- Benefits at different depths
- Incorporation with modern architectures

#### **Benefits at Different Depths**

SE blocks consistently improve performance across different depths at minimal additional computational complexity (no more than 0.26%).

- ✓ SE-ResNet-50 exceeds ResNet-50 by 0.86% and approaches the result of ResNet-101.
- ✓ SE-ResNet-101 outperforms ResNet-152.



#### **Incorporation with Modern Architectures**

SE blocks can boost the performance of a variety of network architectures on both *residual* and *non-residual* settings.

|                          | top-1 error |                  | top-5 error |                 |
|--------------------------|-------------|------------------|-------------|-----------------|
|                          | plain       | SENet            | plain       | SENet           |
| ResNeXt-50 [47]          | 22.11       | $21.10_{(1.01)}$ | 5.90        | $5.49_{(0.41)}$ |
| ResNeXt-101 [47]         | 21.18       | $20.70_{(0.48)}$ | 5.57        | $5.01_{(0.56)}$ |
| VGG-16 [39]              | 27.02       | 25.22(1.80)      | 8.81        | $7.70_{(1.11)}$ |
| BN-Inception [16]        | 25.38       | $24.23_{(1.15)}$ | 7.89        | $7.14_{(0.75)}$ |
| Inception-ResNet-v2 [42] | 20.37       | $19.80_{(0.57)}$ | 5.21        | $4.79_{(0.42)}$ |
| MobileNet [13]           | 29.1        | 25.3(3.8)        | 10.1        | $7.9_{(2.2)}$   |
| ShuffleNet [52]          | 33.9        | $31.7_{(2.2)}$   | 13.6        | $11.7_{(1.9)}$  |

## **Beyond Object Classification**

SE blocks can generalise well on different datasets and tasks.

Places365-Challenge Scene Classification

|                     | top-1 err. | top-5 err. |
|---------------------|------------|------------|
| Places-365-CNN [37] | 41.07      | 11.48      |
| ResNet-152 (ours)   | 41.15      | 11.61      |
| SE-ResNet-152       | 40.37      | 11.01      |

Single-crop error rates (%) on Places365 validation set.

Object Detection on COCO

|               | AP@IoU=0.5 | AP   |
|---------------|------------|------|
| ResNet-50     | 45.2       | 25.1 |
| SE-ResNet-50  | 46.8       | 26.4 |
| ResNet-101    | 48.4       | 27.2 |
| SE-ResNet-101 | 49.2       | 27.9 |

Object detection results on the COCO 40k validation set by using the basic Faster R-CNN.

#### **Role of Excitation**

The role at different depths adapts to the needs of the network

Early layers: Excite informative features in a class agnostic manner





#### **Role of Excitation**

The role at different depths adapts to the needs of the network

Later layers: Respond to different inputs in a highly class-specific manner





#### Conclusion

- Designed a novel architectural unit to improve the representational capacity of networks by dynamic channel-wise feature recalibration.
- Provided insights into the limitations of previous CNN architectures in modelling channel dependencies.
- Induced feature importance may be helpful to related fields, e.g. network compression.

Code and Models: <a href="https://github.com/huiie-frank/SENet">https://github.com/huiie-frank/SENet</a>

# Thank you!