STANISLAS Exercices

Intégrales à paramètre Chapitre XII

PSI

2021-2022

I. Convergence dominée, Intégration terme à terme

Indications pour l'exercice 1. Commencer par le changement de variable : $u\mapsto u^{1/n}$

Avant d'utiliser le théorème de convergence dominée, utiliser une fonction indicatrice pour intégrer sur [1, e].

Indications pour l'exercice 2. Penser au théorème des séries alternées pour la convergence de la série numérique (en pensant au théorème de convergence dominée pour montrer la convergence de

$$\left(\int_0^{\pi/2} \cos^n(t) \, \mathrm{d}t\right)_{n \in \mathbb{N}}.$$

En posant $f_n: t \mapsto \sum_{k=0}^{n-1} (-1)^k \cos^k(t)$, majorer f_n pour appliquer le théorème de convergence dominée.

Indications pour l'exercice 3. Penser à utiliser une suite (u_n) telle que $u_n \to +\infty$.

Pour la domination, une fonction constante suffit.

Indications pour l'exercice 4. La suite des intégrandes converge simplement vers $x \mapsto e^{-x} \mathbb{1}_{[0,1]}(x)$. La domination sur \mathbb{R}_+ est grossière.

Indications pour l'exercice 5.

- 1. Une domination par une fonction constante suffit.
- 2. Penser au théorème des séries alternées.
- 3. La minoration s'obtient à l'aide de la formule de binôme de Newton. Remarquer ensuite que la série diverge lorsque x = 1.

Indications pour l'exercice 6. Utiliser la relation de Chasles pour exprimer l'intégrale sur [0, x] puis utiliser le théorème de convergence dominée.

Indications pour l'exercice 7.	Utiliser le développement	${\rm en}\ {\rm s\'erie}$	entière
$de x \mapsto \frac{1}{1+x^2}$.			
Penser ensuite au théorème d	l'intégration terme à terme		

Penser ensuite au théorème d'intégration terme à terme.

Indications pour l'exercice 8. Utiliser le théorème d'intégration terme à terme.

II. Régularité des intégrales à paramètres

Indications pour l'exercice 9. Utiliser le théorème des bornes pour borner f.

Vérifier les hypothèses de dérivation sous le signe intégral pour monter que H'=G'.

Indications pour l'exercice 10.

- 1. Utiliser le théorème de continuité sous le signe intégral.
- 2. Utiliser le théorème de dérivation sous le signe intégral. Une intégration par parties permet d'exprimer f' en fonction de f.
- 3. Résoudre l'équation différentielle obtenue à la question précédente.

Indications pour l'exercice 11. La présence de la racine carrée suggère que F soit définie sur \mathbb{R}_+ . On vérifie ensuite l'intégrabilité.

Pour prouver la continuité, on pourra se limiter à des études sur des segments.

La dérivabilité s'obtient grâce au théorème de dérivation sous le signe intégral.

Indications pour l'exercice 12.

1. On montre que F est définie sur \mathbb{R} . Les symétries de la fonction permettent de réduire le domaine d'étude.

On montre la continuité en utilisant le théorème de continuité sous le signe intégral.

On montre la dérivabilité en utilisant le théorème de dérivabilité sous le signe intégral.

2. On remarque que $\frac{1}{(1+x^2)(1+t^2x^2)} = \frac{1/(1-t^2)}{1+x^2} - \frac{t/(1-t^2)}{1+t^2x^2}$, ce qui permet de calculer F'.

Chapitre 12 PSI

3. On primitive la relation précédente qu'on évalue ensuite en 1.

Indications pour l'exercice 13.

- **1.** Penser à une intégration par parties en utilisant $t \mapsto 1 \cos(t)$.
- **2.** On pourra effectuer une intégration par parties avec les fonctions $u: t \mapsto \int_{t}^{+\infty} \frac{\sin t}{t} dt$ et $v: t \mapsto (1 e^{-xt})$.
- **3.** Montrer que $F(x) = C + \arctan(x)$ puis évaluer en 0.

En déduire la valeur de I en remarquant que $\left| \int_0^{+\infty} \frac{\sin t}{t} e^{-xt} dt \right| \le \frac{1}{x}$.

Indications pour l'exercice 14.

- 1. Pour le domaine définition, calculer un équivalent en 1.
- 2. Pour la continuité, utiliser le théorème de continuité sous le signe intégral.
- **3.** Pour la dérivabilité, on remarquera pour montrer la domination, que l'étude s'effectue sur [0,1].

Indications pour l'exercice 15. On pourra effectuer le changement de variable $\varphi: u \mapsto xu$ puis utiliser le théorème de convergence dominée.

Indications pour l'exercice 16.

1. On montre que F est continue sur \mathbb{R} .

La parité de F incite ensuite à travailler sur \mathbb{R}_+ . On montre ensuite la continuité en dominant par $t \mapsto \mathrm{e}^{-t^2}$ et la dérivabilité en effectuant des dominations locales.

2. On obtient l'équation différentielle F' = -2F qu'on résout. On utilise enfin la valeur F(0) donnée dans l'énoncé.

Indications pour l'exercice 17.

- 1. Rédiger une intégration par parties.
- **2.** Utiliser un développement en série entière de $x \mapsto \ln(1-x)$ puis appliquer le théorème d'intégration terme à terme en utilisant le résultat de la question précédente.

Indications pour l'exercice 18.

- 1. Introduire la fonction arctangente puis utiliser le théorème de convergence dominée.
- **2.** On effectue une domination locale pour montrer le caractère dérivable. On obtient alors f'=2g'g.
- 3. On intègre la relation précédente en utilisant les conditions initiales.
- **4.** Montrer que h admet une limite puis raisonner par l'absurde pour montrer que cette limite est nulle.
- 5. Utiliser une comparaison série / intégrale.
- **6.** En utilisant la question précédente, montrer que $S(t) \sim_0 \frac{J}{t}$.
- **7.** Utiliser la question précédente avec $S(\sqrt{-\ln(x)})$.

Indications pour l'exercice 19.

- 1. Utiliser l'imparité de la fonction arctangente pour limiter le domaine d'étude. On montre ensuite des dominations locales.
- **2.** Montrer la monotonie de f et en déduire que (u_n) est croissante et majorée.

L'étude de f' permet de montrer l'unicité du point fixe de f.

La formule de Taylor-Young permet de déterminer une limite de $\left(\frac{1}{u_{n+1}^2} - \frac{1}{u_n^2}\right)$.
On conclut à l'aide du lemme de Cesaro.

Indications pour l'exercice 20.

- 1. Effectuer un développement limité pour montrer l'intégrabilité en 0. Utiliser ensuite une majoration locale pour montrer le caractère \mathscr{C}^1 de I(a).
- **2.** Le changement de variables $\varphi: u \mapsto e^{-u}$ permet de retrouver I(1,2).

Indications pour l'exercice 21.

1. Sur $[1, +\infty[$, dominer par $t \mapsto \frac{1}{t(1+t^3)}$. Sur [0, 1], dominer par $t \mapsto \frac{1}{1+t^3}$.

Utiliser ensuite le théorème de convergence dominée.

2. Utiliser la domination précédente puis utiliser la décomposition

$$\frac{1}{1+t^3} = \frac{1/3}{1+t} + \frac{1}{3} \cdot \frac{2-t}{1-t+t^2}$$

III. Avec Python

Indications pour l'exercice 22.

- 1. On conjecture une convergence uniforme de (f_n) vers la fonction nulle.
- 2. Utiliser la fonction quad.

La domination peut être effectuée par $t \mapsto \frac{1}{2(1+t^2)}$.

3. On effectue des dominations locales.

4.