Lernziele

- Ich kann die prinzipielle Funktionsweise des Transistors als Halbleiter-Schalter erklären.
- Ich kann die wichtigsten Daten eines Halbleiterschalters aus dem Datenblatt lesen.
- Ich kann sinngemäss erklären, wie der Schaltvorgang einen Halbleiterschalter gefährdet.
- Ich kann mindestens vier Anwendungen von Transistoren als Halbleiterschalter beschreiben.
- Ich kann den Vorwiderstand für die Ansteuerung des Bipolar-Transistorschalters berechnen.

Schalttransistor: Funktionsprinzip

Ein mechanisches Modell veranschaulicht die Funktionsweise des Transistors als Schalter.

Ein kleiner Basis-Strom (Kleiner Wasserstrom) bewirkt einen grossen Collector-Emitter-Strom (grosser Wasserstrom).

Schalttransistor: Funktionsprinzip

Aufbau und Bezeichnungen von Transistoren.

Schalttransistor: Spannungen und Ströme am Transistor

Spannungs- und Strompfeile werden bei NPN und PNP Transistoren gleich eingetragen. Da beim PNP Transistor die Polaritäten umgekehrt sind, wird der Bezeichnung ein - Zeichen vorgestellt.

Schalttransistor: Wichtige Beziehungen

Die wichtigsten Beziehungen zum Schalttransistor lauten wie folgt:

$$I_{E}$$
 = $I_{B} + I_{C}$
 U_{CE} = $U_{CB} + U_{BE}$
 B = I_{C} / I_{B}
 P_{V} ~ $U_{CE} \bullet I_{C}$

Verlustleistung des Transistors Stromverstärkung des Transistors

Schalttransistor: Prinzip des Schaltbetriebes

Nur durch die Anwendung des Schaltbetriebes ist es möglich, grosse bis sehr grosse Leistungen mit Stromrichtern zu übertragen.

Beispiel: Die Spannung am Motor soll 60 V sein.

Verluste: $P_V = 60V \cdot 30A = 1800W$

$$P_V = \frac{0.3V \cdot 30A}{2} = 4.5W$$

Wirkungsgrad:
$$\eta = \frac{P_{ab}}{P_{zu}} = 50\%$$

$$\eta = \frac{P_{ab}}{P_{ab} + P_V} = 99,75\%$$

Schalttransistor: Vor- und Nachteile des Schaltbetriebes

Merke: Durch den Schaltbetrieb sind die Verluste in Stromrichtern gering bzw. die Wirkungsgrade sehr gross. In der Praxis sind Wirkungsgrade von 98% bis 99% realistisch.

Vorteile:

- Kein Verschleiss
- Guter Wirkungsgrad
- Hohes Potential für Energiesparmassnahmen
- Kostengünstige Anlagen

Nachteile:

- Netzrückwirkungen
- Abstrahlung höherfrequenter Felder (EMV)

Schalttransistor: Berechnung des Vorwiderstandes

Für kleinere Leistungen finden Schalttransistoren in Bipolar-Technik Anwendung:

Um ein sicheres Schalten zu gewährleisten wird der Transistor mit einem um den Übersteuerungsfaktor ü grösseren Basisstrom übersteuert.

Beispiel:

Der Transistor BCY 58 mit $U_{BEsat} = 0.9 \text{ V}$; $U_{CEsat} = 0.3 \text{ V}$; $I_{C} = 200 \text{ mA}$ und $B_{min} = 60 \text{ wird als}$ Schalttransistor eingesetzt. Der Übersteuerungsfaktor ist ü = 2, die Betriebsspannung ist $U_{b} = 24 \text{ V}$ und die Eingangsspannung $U_{1} = 4.8 \text{ V}$. Berechnen Sie den Basisvorwiderstand R_{V} .

$$R_V = \frac{(U_1 - U_{BEsat}) \cdot B_{\min}}{\ddot{u} \cdot I_C} =$$

$$R_V = \frac{(4.8V - 0.9V) \cdot 60}{2 \cdot 200mA} = \underline{585\Omega}$$

Grundschaltung des Transistorschalters

Schalttransistor: Schaltvorgang

Der Wechsel vom Aus-Zustand zum Ein-Zustand und umgekehrt sind die für alle Halbleiterschalter gefährlichen Vorgänge:

Vom Hersteller werden im Datenblatt folgende Schaltzeiten angegeben:

 t_d = Verzögerungszeit (delay)

 t_r = Anstiegszeit (rise)

 t_s = Speicherzeit (storage)

 $t_f = Abfallzeit (fall)$

Damit werden folgende wichtige Zeiten berechnet:

$$t_{ein(on)} = t_d + t_r$$

$$t_{aus(off)} = t_s + t_f$$

Schalttransistor: Schaltvorgang

Die grössten Verluste treten während des Schaltvorganges auf. Hier dargestellt am Beispiel mit *ohmscher Last*:

Somit bildet die Fläche die Einschalt- bzw. die Ausschaltverluste:

$$P_{E \max} = P_{A \max} \approx \frac{U_B}{2} \cdot \frac{I_{C \max}}{2}$$

Schalttransistor: Pulsweitenmodulation

Der Betrieb des Transistorschalters nach dem Prinzip der *Pulsweitenmodulation* hat in vielen Geräten Einzug gehalten.

Ein Verbraucher (z.B. Glühlampe oder Elektromotor) wird schnell ein- und ausgeschaltet. Auf der X-Achse ist die Zeit aufgetragen und auf der Y-Achse die Spannung.

Das Verhältnis zwischen Periodendauer und Einschaltzeit beträgt 50%, damit ist der Mittelwert der Spannung auch 50%. Wird die Einschaltzeit verkürzt, so sinkt der Mittelwert und umgekehrt.

Prufs Bildung Baden

Schalttransistor: Anwendungen

In folgenden Geräte wird die Schalttechnik heute angewendet:

- Dimmer für LED-Leuchten
- Netzgeräte für Notebook, Handy etc.
- Geschwindigkeitsregler für Gleichstrommotoren (z.B. Akkuschrauber)
- Schaltschrank-Netzgeräte (24VDC)
- Frequenzumrichter für Drehstrommotoren
- etc.

