SECTION 3.4 The Integers and Division

- **2.** a) $1 \mid a \text{ since } a = 1 \cdot a$. b) $a \mid 0 \text{ since } 0 = a \cdot 0$.
- 4. Suppose $a \mid b$, so that b = at for some t, and $b \mid c$, so that c = bs for some s. Then substituting the first equation into the second, we obtain c = (at)s = a(ts). This means that $a \mid c$, as desired.
- **6.** Under the hypotheses, we have c = as and d = bt for some s and t. Multiplying we obtain cd = ab(st), which means that $ab \mid cd$, as desired.
- 8. The simplest counterexample is provided by a = 4 and b = c = 2.
- 10. In each case we can carry out the arithmetic on a calculator.
 - a) Since $8 \cdot 5 = 40$ and 44 40 = 4, we have quotient 44 div 8 = 5 and remainder 44 mod 8 = 4.
 - b) Since $21 \cdot 37 = 777$, we have quotient 777 div 21 = 37 and remainder 777 mod 21 = 0.
 - c) As above, we can compute 123 div 19 = 6 and 123 mod 19 = 9. However, since the dividend is negative and the remainder is nonzero, the quotient is -(6+1) = -7 and the remainder is 19-9=10. To check that -123 div 19 = -7 and -123 mod 19 = 10, we note that -123 = (-7)(19) + 10.
 - d) Since 1 div 23 = 0 and 1 mod 23 = 1, we have -1 div 23 = -1 and -1 mod 23 = 22.
 - e) Since 2002 div 87 = 23 and 2002 mod 87 = 1, we have -2002 div 87 = -24 and 2002 mod 87 = 86.
 - f) Clearly 0 div 17 = 0 and 0 mod 17 = 0.
 - g) We have 1234567 div 1001 = 1233 and 1234567 mod 1001 = 334.
 - h) Since 100 div 101 = 0 and 100 mod 101 = 100, we have -100 div 101 = -1 and -100 mod 101 = 1.
- 12. Assume that $a \equiv b \pmod{m}$. This means that $m \mid a b$, say a b = mc, so that a = b + mc. Now let us compute $a \mod m$. We know that b = qm + r for some nonnegative r less than m (namely, $r = b \mod m$). Therefore we can write a = qm + r + mc = (q + c)m + r. By definition this means that r must also equal $a \mod m$. That is what we wanted to prove.
- 14. By Theorem 2 we have a = dq + r with $0 \le r < d$. Dividing the equation by d we obtain a/d = q + (r/d), with $0 \le (r/d) < 1$. Thus by definition it is clear that q is $\lfloor a/d \rfloor$. The original equation shows, of course, that r = a dq, proving the second of the original statements.
- 16. In each case we just apply the division algorithm (carry out the division) to obtain the quotient and remainder, as in elementary school. However, if the dividend is negative, we must make sure to make the remainder positive, which may involve a quotient 1 less than might be expected.
 - a) Since $-17 = 2 \cdot (-9) + 1$, the remainder is 1. That is, $-17 \mod 2 = 1$. Note that we do not write $-17 = 2 \cdot (-8) 1$, so $-17 \mod 2 \neq -1$.
 - b) Since $144 = 7 \cdot 20 + 4$, the remainder is 4. That is, $144 \mod 7 = 4$.
 - c) Since $-101 = 13 \cdot (-8) + 3$, the remainder is 3. That is, $-101 \mod 13 = 3$. Note that we do not write $-101 = 13 \cdot (-7) 10$; we can't have $-101 \mod 13 = -10$, because $a \mod b$ is always nonnegative.
 - d) Since $199 = 19 \cdot 10 + 9$, the remainder is 9. That is, $199 \mod 19 = 9$.
- 18. Among the infinite set of correct answers are 4, 16, -8, 1204,and -7016360.
- **20.** From $a \equiv b \pmod{m}$ we know that b = a + sm for some integer s. Similarly, d = c + tm. Subtracting, we have b d = (a c) + (s t)m, which means that $a c \equiv b d \pmod{m}$.

- 22. From $a \equiv b \pmod{m}$ we know that b = a + sm for some integer s. Multiplying by c we have bc = ac + s(mc), which means that $ac \equiv bc \pmod{mc}$.
- 24. Write n = 2k + 1 for some integer k. Then $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4k(k + 1) + 1$. Since either k or k + 1 is even, 4k(k + 1) is a multiple of 8. Therefore $n^2 1$ is a multiple of 8, so $n^2 \equiv 1 \pmod{8}$.
- 26. In each case we need to compute k mod 101 by dividing by 101 and finding the remainders. This can be done with a calculator that keeps 13 digits of accuracy internally. Just divide the number by 101, subtract off the integer part of the answer, and multiply the fraction that remains by 101. The result will be almost exactly an integer, and that integer is the answer.
 - a) 58 b) 60 c) 52 d) 3
- 28. We just calculate using the formula. We are given $x_0 = 3$. Then $x_1 = (4 \cdot 3 + 1) \mod 7 = 13 \mod 7 = 6$; $x_2 = (4 \cdot 6 + 1) \mod 7 = 25 \mod 7 = 4$; $x_3 = (4 \cdot 4 + 1) \mod 7 = 17 \mod 7 = 3$. At this point the sequence must continue to repeat 3, 6, 4, 3, 6, 4, ... forever.
- **30.** We assume that the input to this procedure consists of a modulus $(m \ge 2)$, a multiplier (a), an increment (c), a seed (x_0) , and the number (n) of pseudorandom numbers desired. The output will be the sequence $\{x_i\}$.

procedure
$$pseudorondom(m, a, c, x_0, n : nonnegative integers)$$

for $i := 1$ to n
 $x_i := (ax_{i-1} + c) \mod m$

- 32. We just need to "subtract 3" from each letter. For example, E goes down to B, and B goes down to Y.a) BLUE JEANSb) TEST TODAYc) EAT DIM SUM
- 34. We know that $1 \cdot 0 + 2 \cdot 3 + 3 \cdot 2 + 4 \cdot 1 + 5 \cdot 2 + 6 \cdot 3 + 7 \cdot Q + 8 \cdot 0 + 9 \cdot 7 + 10 \cdot 2 \equiv 0 \pmod{11}$. This simplifies to $127 + 7Q \equiv 0 \pmod{11}$. We subtract 127 from both sides and simplify to $7Q \equiv 5 \pmod{11}$, since $-127 = -12 \cdot 11 + 5$. It is now a simple matter to use trial and error (or the methods to be introduced in Section 3.7) to find that Q = 7 (since $49 \equiv 5 \pmod{11}$).