Δομή τονικότητας στην μουσική Προσπάθεια δημιουργίας ενός συστήματος αναφοράς ως μνημονικό κανόνα

jimishol

Περιεχόμενα

1	Γεννηθήτω ο χρόνος	4
	Ο χρόνος του σύμπαντος	4
	Η διαδοχή συμβάντων	5
	Η ομαδοποίηση	5
	Ρυθμικότητα	6
	Η οιχονομία	7
	Η αλγεβρική δομή	8
	Αποδόμηση ρυθμικότητας	9
	Πρόοδος ρυθμικότητας	10
	Η φράκταλ αυτο-ομοιότητα	10
	11 φρακτακ αυτο-ομοιοτήτα	10
2	Τονικότητα	11
	2.1 Ομοιομορφισμός	11
	Η ακολουθία αναφοράς	11
	Η ομαδοποίηση σ^1_r	11
	Η ομαδοποίηση σ_r^n	11
	Η ρυθμικότητα	12
	Ο ρυθμός	12
	Η πράξη της συνήχησης	12
	2.2 Κλάσεις	12
	Οι κλάσεις συχνοτήτων	12
		13
	Η κλάση τόνων	13
	Το μονοειδές των χλάσεων	14
	Αποδόμηση τονικότητας	
	2.3 Ο χώρος τόνων και τονικότητας	14
	Η σαμπρέλα τόνων και τονικότητας	14
	Τα στοιχεία του συνόλου των τόνων	15
	Η απλή τονικότητα	18
	Περί πολλαπλότητας	18
		19
		19
	2.4 Η χαμένη τονικότητα	

2.5	Η τονικότητα ως εφαλτήριο μεταβολών	23
	Η ανυπαρξία	24
	Η καθολική τονικότητα	25
	Οι επιμέρους τονικότητες	26
	Οι τόνοι της ματζόρε κλίμακας	26
2.6	Μελωδίες	
	Η τυπική πρόοδος,	27
	Η εδραίωση της τονικότητας αναφοράς	28
2.7	Συγχορδίες και κλίμακες	29

Περίληψη

Σε μια προσπάθεια, λόγω περιέργειας, στοιχειώδους κατανόησης της μουσικής αρμονίας, χωρίς προτέρα ιδιαίτερη γνώση, διάβασα το Open Music Theory, που φαίνεται όμοιο με το Integrated Musicianship: Theory, και δύο βιβλία του Arnold Schoenberg, το THEORY OF HARMONY και το Structural Functions Of Harmony. Τα βιβλια του Schoenberg επηρέασαν ιδιαίτερα την οπτική μου.

Γνωρίζω αρχετά μαθηματικά ώστε να διαχρίνω την τέχνη πίσω από αυτά (χρειάστηκα πέντε έτη για να διαχρίνω την τέχνη πίσω από την γενική θεωρία της σχετικότητας) αλλά δεν γνωρίζω αρχετή μουσική ώστε να διαχρίνω τα μαθηματικά πίσω από αυτήν. Λογικά όμως, δεν μπορεί να υπάρξει η μαθηματική συνέπεια στην τέχνη.

Με τα μαθηματικά οδηγούμαστε με συνέπεια σε συγκεκριμένα αποτέλεσματα, οπότε η τέχνη έγκειται στην ελευθερία επιλογής του τρόπου με τον οποίο φθάνουμε σε αυτά. Στην τέχνη όμως η ελευθερία επιλογής αποτελέσματος οδηγεί στο ότι κάθε κανόνας ή απαγόρευση μπορεί να παραβιασθεί, αρκεί η παράβαση να μην συμβαίνει κατά τύχη. Η κάθε παράβαση οφείλει να αιτιολογείται από κάποια δομή που είναι δημιούργημα της αυθαίρετης επιλογής του καλλιτέχνη. Για να δημιουργηθεί όμως η όποια αυθαίρετη δομή, που αιτιολογεί την όποια παράβαση, χρειάζεται κάποιο σύστημα αναφοράς στου οποίου τους άξονες θα αναφέρεται. Όπως σε κάθε τι στο σύμπαν, τα μαθηματικά θα ενυπάρχουν σε αυτό το σύστημα αναφοράς, όμως η εύρεση ενός συστήματος αναφοράς με μαθηματική συνέπεια και πληρότητα είναι πέρα από τις δυνάμεις, τις λιγοστές μουσικές γνώσεις και τις ικανότητάς μου. Συνεπώς, σημειώνω τις σκέψεις μου αλλά δεν μπορεί να αναμένεται επιστημονική συνέπεια και πληρότητα σε αυτές.

Η χρήση μαθηματικών και φυσικών εννοιών (όπως φράκταλ, θεωρία κατηγοριών, θεωρία ομάδων, δυϊκοί χώροι, ενέργεια, βαρύτητα, ροή κ.α.) αποσκοπεί σε μια προσπάθεια δημιουργίας ενός συστήματος αναφοράς, ως μνημονικό κανόνα, με όσο μου είναι δυνατόν μεγαλύτερη συνέπεια, ώστε να ελαχιστοποιηθούν οι εξαιρέσεις που πρέπει να απομνημονευθούν, και πληρότητα, ώστε να σχετιστεί με όσο περισσότερο υλικό εξ όσων έχω διαβάσει.

Το παρόν δεν είναι κατάλληλο για όποιον θέλει να διδαχθεί αρμονία. Υπάρχει ο κίνδυνος μια ενδεχομένως στρεβλή και ελλιπής οπτική να θεωρηθεί ορθή ή πλήρης. Αντιθέτως, ένας ήδη γνώστης της αρμονίας μπορεί να κερδίσει από μια νέα οπτική, ακόμα και μέσω της απόδειξής του ότι αυτή η οπτική είναι λανθασμένη ή ελλιπής.

Ανυπαρξία

1 Γ εννη ϑ ήτω ο χρόνος

Ο χρόνος επιτρέπει την ύπαρξη στιγμών δημιουργίας. Χωρίς την ύπαρξη χρονιχών στιγμών δεν μπορεί να υπάρξει στιγμή δημιουργίας. Επιβάλει δε το τέλος αυτών των στιγμών και την ανυπαρξία μεταξύ αυτών των στιγμών, αλλιώς η μη μεταβολή της ύπαρξης θα ισοδυναμούσε με ανυπαρξία. Ο χρόνος είναι συνυφασμένος με την έννοια της μεταβολής. Διαδοχή γέννησης - θανάτου, ύπαρξης - ανυπαρξίας, bit - zero, κτύπου - ησυχίας. Χωρίς την βοήθεια εξωσυμπαντικού, υπερχρονικού παρατηρητή, δεν μπορώ, μόνον μέσα από το ίδιο το σύμπαν, να ξεχωρίσω αν ο χρόνος πραγματώνεται, ή γίνεται αντιληπτός, μέσω των μεταβολών ή αν οι μεταβολές πραγματώνονται, ή γίνονται αντιληπτές, μέσω του χρόνου. Πιστεύω πως ο χρόνος είναι το ουσιαστικότερο ίσως συστατικό του σύμπαντος και δεν υπάρχει ανεξάρτητος έξω από αυτό.¹

Κάθε γέννηση προϋποθέτει την ύπαρξη του χρόνου και αναφέρεται σε κάποια χρονική στιγμή, όποτε αυτή συνέβη. Η γέννηση του χρόνου είναι παραδοξότητα λόγω αυτής ακριβώς της κρυφής αυτοαναφοράς του χρόνου στον ευατό του.

Ο χρόνος του σύμπαντος δεν μπορεί να καθορίσει τον ευατό του και να ισχυριστεί "τότε γεννήθηκα". Δεν μπορεί να ορίσει το Big Bang με τρόπο που να καθορίζει στιγμές του χρόνου πριν από αυτό.

Αυτό που με εντυπωσίασε στην γενική θεωρία της σχετικότητας δεν είναι ότι ο χρόνος είναι σχετικός με τον εκάστοτε παρατηρητή, ούτε ότι συνυπάρχει με τον χώρο ως χωρόχρονος, ούτε ίσως ότι μέσα στις μαύρες τρύπες ο χρόνος, παρά το χρονικό βέλος που τον διαφοροποιεί από τις χωρικές διαστάσεις, μετουσιώνεται σε χώρο και ο χώρος σε χρόνο. Με εντυπωσίασε ότι το πέρας του άπειρου χρόνου εμφανίζεται "χωρικά" στους ορίζοντες γεγονότων. Ένα θνητό πλάσμα, που κατευθύνεται σε μιά μαύρη τρύπα, αποκτά κυριολεκτικά αθανασία σε σχέση με όποιον το παρατηρεί εκ του μακρόθεν και, όντας ζωντανό, πλησιάζει εσαεί την μαύρη τρύπα. Ακούγεται παράξενο αλλά αν δεν σας ενδιαφέρει αν ο αγαπημένος σας, για τον ίδιο, σκοτωθεί στα επόμενα πέντε λεπτά του αλλά θέλετε, για εσάς, περιγραφικά να ζήσει τόσο πολύ όσο τρισεκατομμύρια χρόνια μετά τον θάνατό σας και κυριολεκτικά να ζει στην αιωνιότητα, σπρώξτε τον προς μια μαύρη τρύπα.

Η μέτρηση του χρόνου αφορά στις διαχριτές στιγμές ύπαρξης. Η δομή του χρόνου, που επιτρέπει διαχριτές στιγμές ύπαρξης, επιτρέπει την αντιστοίχιση στιγμών ύπαρξης σε αχεραίους αριθμούς άρα και την σύγκριση χρονικών διαστημάτων του μέσω του πλήθους αυτών. Το, μεταξύ των χρονικών στιγμών ύπαρξης, χρονικό διάστημα ανυπαρξίας, αν βιώνεται, βιώνεται υποχειμενικά από τον εκάστοτε παρατηρητή του και δεν μπορεί να μετρηθεί αντικειμενικά χωρίς το σφάλμα της αυτοαναφοράς στον ίδιο τον χρόνο². Έτσι, ορίζουμε ότι δύο χρονικά διαστή-

¹Αν ρωτούσατε έναν κβαντικό φυσικό για την φύση του χρόνου στον μικρόκοσμο θα απαντούσε ότι ο χρόνος είναι απόλυτος και υπάρχει ανεξάρτητα του σύμπαντος. Δεν ασχολήθηκα όμως με κβαντική φυσική ούτε φιλοδοξώ να λύσω τις αντιθέσεις των δύο θεωριών. Απλά βρίσκω αρκετά διασκεδαστικό να μπλέκω την θεωρία της σχετικότητας μέσα σε σημειώσεις για την μουσική αρμονία.

²Το ίδιο σφάλμα αυτοαναφοράς συμβαίνει και με τη μέτρηση του χώρου. Εξ ου, η θεωρία της σχετικότητας, χωρίς το αξίωμα του απόλυτου χώρου και χρόνου, εξετάζει συμβάντα στον χωρόχρονο.

ματα είναι ίσα όταν κατά την διάρκειά τους συμβαίνουν ίσες μεταβολές διαδοχικής ύπαρξης - ανυπαρξίας κάποιου ίδιου φαινομένου. Το 1967 ορίστηκε ότι ένα δευτερόλεπτο έχει ίση διάρκεια με αυτήν που έχουν 9.192.631.770 μεταβολές που αφορούν στο χημικό στοιχείο Caesium-133.

Η διαδοχή συμβάντων ανά ίσα χρονικά διαστήματα, επί της δομής του χρόνου, δεν εξαρτάται από την κλίμακα αυτών των χρονικών διαστημάτων. Η όποια δομή του χρόνου, που κάνει δυνατή την δημιουργία ίσων χρονικών διαστημάτων, του επιτρέπει να αυτοκαθορίζεται ως φράκταλ. Έχει την ιδιότητα της αυτοομοιότητας. Όσο και αν μεγεθύνουμε ή σμικρύνουμε ένα χρονικό διάστημα θα έχει την ίδια δομή, που θα επιτρέπει την δημιουργία ίσων χρονικών διαστημάτων εντός αυτού³. Τα συμβάντα ανά ίσα χρονικά διαστήματα ας τα ονομάσουμε κτύπους, με την έννοια των συμβάντων ενός μετρονόμου. Η ακολουθία συμβάντων, στην οποία θα αναφερόμαστε ως ακολουθία αναφοράς, μετράται με το αντίστροφο του χρονικού διαστήματος μεταξύ δύο διαδοχικών κτύπων. Ένδειξή της στις παρτιτούρες είναι οι κτύποι ανά λεπτό (ΒΡΜ), όπου όμως το beat αντιστοιχεί σε τυπική ομάδα κτύπων και όχι στον ένα κτύπο της ακολουθίας αναφοράς.

Η ομαδοποίηση των διαδοχικών κτύπων ανά έναν, δύο, τρείς, τέσσερις κ.λ.π., εφοδιάζει την άπειρη ακολουθία κτύπων με σημαντικότατη δομή. Κάθε θέση σε μια τυπική ομάδα⁴ γίνεται αντιπρόσωπος κλάσεων (συνόλων) κτύπων. Με την ομαδοποίηση αναγνωρίζουμε ποιοι από τους κτύπους της φυσικής ακολουθίας είναι πρώτοι, ποιοι είναι δεύτεροι, τρίτοι, τέταρτοι κ.λ.π. εντός της κάθε ομάδας και έτσι μπορούμε να τους διαφοροποιήσουμε δημιουργικά, όπως συμβάντα με περισσότερη ένταση, με λιγότερη ένταση, με απουσία 5 , με διαφορετική διάρκεια ή χροιά και άλλα. Ως παράδειγμα, ας υποθέσουμε τέσσερις κτύπους (a, a, a, a). Αντιπροσωπεύουν την ομαδοποίηση της αχολουθίας ανά έναν χτύπο, δηλαδή αποτελούν μία μονομελή ομάδα που επαναλαμβάνεται ως ([a],[a],[a],[a]). Ομαδοποίηση ανά δύο σημαίνει ότι μία διμελής ομάδα επαναλαμβάνονται διαδοχικά ως ([a, c], [a, c]). Ομαδοποίηση ανά τρεις κτύπους σημαίνει ότι τριμελής ομάδα επαναλαμβάνεται κ.ο.κ. Τα μέτρα στις παρτιτούρες είναι δομή τέτοιων ομαδοποιήσεων. Με την ίδια λογική, μπορούμε να εφοδιάσουμε με παρόμοια δομή και τις διαδοχικές ομάδες, ομαδοποιώντας τες σε υπερομάδες. Ομαδοποίηση των διμελών ομάδων ανά δύο σημαίνει ότι διμελής ομάδα, που όμως τα μέλη της είναι διμελής ομάδες επίσης, επαναλαμβάνεται π.χ. ([[a, c], [b, c]], [[a, c], [b, c]]) που μπορεί να ιδωθεί ως ισοδύναμη με μία τετραμελή ομάδα [a, c, b, c] που επαναλαμβάνεται. Τα υπερμέτρα στις παρτιτούρες είναι

 $^{^3}$ Το ίδιο ισχύει και για τους ρητούς αριθμούς. Οποιοδήποτε διάστημα μεταξύ δύο ρητών αριθμών μπορεί να χωριστεί σε ίσα διαστήματα μεταξύ ρητών αριθμών

 $^{^4}$ Είναι προφανής ο ισομορφισμός μεταξύ των ομαδομοιήσεων και των τυπικών ομάδων τους, δια του πλήθους των τελευταίων, με τους ακέραιους θετικούς αριθμούς. Δεν έχει σημασία αν μία τριμελής τυπική ομάδα αντιπροσωπεύεται ως (A,a,a) ή (1,2,3) ή (a,A,a), σημασία έχει μόνον το μήκος της που ισούται με 3.

 $^{^5}$ Η απουσία, ως συμβάν αντίθετο της παρουσίας, αντιστοιχεί σε κτύπο. Με αυτήν πετυχαίνουμε επανάληψη συμβάντων ανά άνισα χρονικά διαστήματα. Έστω ομάδα [a,a,x] με x να συμβολίζει την απουσία συμβάντος. Κατά την επανάληψη της ομάδας το συμβάν a συμβαίνει κάθε φορά σε διαφορετικό χρονικό διάστημα απ' ότι συνέβη την προηγούμενη φορά.

δομή τέτοιων ομαδοποιήσεων. Το μέτρο είναι απλώς η βασική για τον συνθέτη, ομαδοποίηση της ακολουθίας.

Η διάκριση ομαδοποιήσεων γίνεται προς αποσαφήνιση ορολογιών που χρησιμοποιούνται στο παρόν ως η εξής:

Εν χρήση ομαδοποιήσεις είναι αυτές που, είτε λόγω διαφοροποίησης μεταξύ των μελών της τυπιχής ομάδας τους είτε ως μονομελής, χρησιμοποιούνται εν τη πράξη. Διαχρίνονται σε

Φανερές που χρησιμοποιούνται άμεσα π.χ. $(A, a, a)(A, a, a)(A, a, a) \dots$

Κρυφές ή χαμένες που εμφανίζονται έμμεσα λόγω συνύπαρξης π.χ. όταν η (A,a,a) συνυπάρχει με την (B,b), χρυφή είναι η (AB,ab,aB,Ab,aB,ab) των έξι κτύπων, όπως $(AB,ab,aB,Ab,aB,ab)(AB,ab,aB,Ab,aB,ab)\dots$

Εν δυνάμει ομαδοποιήσεις είναι αυτές που αναφερόμαστε σε αυτές αλλά, ως προς την αντίληψή μας, χωρίς διαφοροποίηση των μελών της τυπικής ομάδας τους στην πράξη υπερσκελίζονται από τις εν χρήση ομαδοποιήσεις. π.χ. επί της τριμελούς $(a, a, a)(a, a, a)(a, a, a) \dots$ η ομαδοποίηση ανά έναν κτύπο κυριαρχεί. Στο σχήμα 1, ακόμα κι αν δεν υπήρχαν οι παρεστιγμένες μισές νότες, εν δυνάμει θα ήταν υποψήφιες να υπάρξουν.

Σχήμα 1: Εν δυνάμει ομαδοποιήση 6 ογδόων

Ρυθμικότητα είναι το ελάχιστο τμήμα της ακολουθίας συμβάντων που περικλείει ακέραια όλα τα είδη των τυπικών ομάδων, των εν χρήση ομαδοποιήσεων. Η ρυθμικότητα επαναλαμβάνεται ανά ίσα χρονικά διαστήματα. Είναι πάντα εν χρήση, είτε ως κρυφή είτε ως φανερή ομαδοποίηση. Μετράται με το πλήθος των κτύπων της και ισούται με το ελάχιστο κοινό πολλαπλάσιο του πλήθους των κτύπων της κάθε τυπικής ομάδας που την υποστηρίζουν. Χωρίς εν χρήση ομαδοποιήσεις δεν μπορεί να υπάρξει ρυθμικότητα, εκτός της τετριμμένης με την τυπική ομάδα του ενός κτύπου. Η ομαδοποίηση ανά έναν κτύπο υποστηρίζει κάθε ρυθμικότητα. Είναι δε ισοδύναμη με την εσαεί επανάληψη του ίδιου συμβάντος ανά ίσα χρονικά διαστήματα.

Ρυθμός μιας ομαδοποίησης, σε σχέση με την ουθμικότητα που υποστηρίζει, είναι ο λόγος του πλήθους των μελών της ρυθμικότητας προς το πλήθος των μελών της τυπικής ομάδας της. Με διαφορετική διατύπωση, είναι το πόσες φορές χωράει η

τυπιχή ομάδα της ομαδοποίησης στην ρυθμιχότητα ή πόσο πιο συχνά εμφανίζεται, στην αχολουθία συμβάντων, η τυπιχή ομάδα της από αυτήν της ρυθμιχότητας. Εχ του ορισμού της ρυθμιχότητας, είναι πάντα αχέραιος αριθμός. Ο ρυθμός ομαδοποίησης της μεγαλύτερης δυνατής ομάδας, δηλαδή ο ρυθμός της ίδιας της ρυθμιχότητας, είναι η μονάδα. Η χρονική υπογραφή είναι σύμβαση μάλλον ελλιπής στο να περιγράψει χάθε πιθανή ομαδοποίηση που μπορεί να χρησιμοποιηθεί. Ωστόσο, ο άνω αριθμός της υπογραφής είναι σαφής ως προς το πόσοι χτύποι μετρώνται σε χάθε μέτρο. Το μέτρο είναι απλώς η βασιχή για τον συνθέτη ομαδοποίηση χαι τίποτε δεν εμποδίζει σε μια υπογραφή, ³/₄ για παράδειγμα, να χρησιμοποιηθούν έξι όγδοα, όσοι οι χτύποι της ρυθμιχότητας, αντί τριών τετάρτων, όπως θα ήταν, απ' την υπογραφή, αναμενόμενο. Σε χάθε αχολουθία αναφοράς ενυπάρχουν άπειρες όλο χαι μεγαλύτερες ρυθμιχότητες. Οι μεγαλύτεροι ρυθμοί αυτών, που αντιστοιχούν στις μονομελής ομάδες, έχουν όριο το άπειρο, όπου ένα συμβάν συμβαίνει άπαξ, με μηδενιχή συχνότητα, χαι δεν επαναλαμβάνεται.

Η οικονομία στην πληροφορία είναι ανάγκη και περιορισμός που επιβάλεται από το πεπερασμένο του ανθρώπινου εγκεφάλου. Η αντίληψή μας περιορίζεται στον συσχετισμό των πληροφοριών, όχι με βάση τα αχριβή δεδομένα αλλά, με απλά μοτίβα. Αν δούμε σε έναν πίνακα ζωγραφικής θάλασσα που καταλαμβάνει τμήμα του έργου με αναλογία 2/3.236, δηλαδή της χρυσής τομής, θα την αντιληφθούμε ως να καταλαμβάνει τα 2/3 του κάδρου. Σε σχέση με πληθυσμούς, η οικονομία στην πληροφορία προχαλεί στην αντίληψή μας πρωτίστως την αναζήτηση της αναλογίας 1/2, ως του πιο απλού μοτίβου σύγχρισης Ευνεπώς, δύο ομαδοποιήσεις ταυτίζονται στην αντίληψή μας όταν η τυπική ομάδα της μιας είναι διπλάσια της άλλης. Η ταύτιση είναι μεταβατική, οπότε όπου αναφέρονται [ρυθμικότητες], συμπεριλαμβανόμενων και των [ρυθμών], εννοούνται κλάσεις ρυθμικοτήτων ή ρυθμών, με συνέπεια διαφορετικοί ρυθμοί να είναι αυτοί που ο λόγος τους δεν είναι δύναμη του 2. Η ανάγκη της αντίληψής μας για απλότητα εφοδιάζει το σύνολο των ρυθμών με βαθμό εγγύτητας με την ουθμικότητα που υποστηρίζουν. Ένας ρυθμός είναι τόσο πιο κοντά στην ρυθμικότητα που υποστηρίζει όσο μικρότερος είναι ο μέγιστος μόνος αριθμός που τον διαιρεί. Παραδείγματος χάριν, ο ρυθμός 12 είναι πιο κοντά στην ρυθμικότητα 1 από τον ρυθμό 5, διότι το μέγιστο 3, που διαιρεί το 12, είναι μικρότερο του 5^7 .

Απλή ρυθμικότητα είναι η ρυθμικότητα που η κλάση της είναι η κλάση της τετριμμένης ομαδοποίησης ανά ένα κτύπο, είναι δηλαδή κλάσης [2]. Αυτό έχει σαν συνέπεια να συνηχούν μόνο ρυθμοί που είναι δύναμη του 2 επίσης. Όπως, παραδείγματος χάριν, όταν σε χρονική υπογραφή $\frac{4}{4}$ ακούγονται σε ένα μέτρο τέσσερις νότες του τετάρτου, δύο νότες μισής αξίας και μία ολόκληρη. Η ολόκληρη

 $^{^6}$ Επιπλέον, συμβολίζοντας με a την παρουσία συμβάντος και x την απουσία του, επειδή σε κάθε ομαδοποίηση ανά έναν κτύπο η παρουσία του συμβάντος, εκ των πραγμάτων, εναλλάσσεται με την απουσία του, αυτή η ομαδοποίηση μπορεί να εκληφθεί ως διπλάσια ομαδοποίηση [a,x] ανά δύο κτύπους, κατά την οποία όμως η εν δυνάμει ομαδοποίηση ανά έναν κτύπο είναι κρυφή.

 $^{^7}$ Πιθανολογώ ότι αν η αντίληψή μας ανιχνεύσει λόγο $\frac{1}{3}$ ίσως αναμένει το ίδιο μοτίβο, οπότε ίσως υπάρχει ταυτοποίηση και ως προς αυτόν τον λόγο. Με αυτό το σκεπτικό θα υπάρχουν τόσες κλάσεις ρυθμών όσοι οι πρώτοι αριθμοί μεγαλύτεροι της μονάδας.

νότα αντιπροσωπεύει την ομαδοποίηση των κτύπων ανά (2^2) τέσσερις κτύπους, που συμπίπτει με αυτήν του μέτρου και της ρυθμικότητας, οι μισές νότες την ομαδοποίηση ανά (2^1) δύο και κάθε νότα τετάρτου την ομαδοποίηση ανά (2^0) έναν κτύπο. Το πλήθος κτύπων κάθε ομάδας είναι δύναμη του 2, άρα όλοι οι ρυθμοί, συμπεριλαμβανομένης και της ρυθμικότητας, ταυτοποιούνται αφού ανήκουν στην ίδια κλάση [1] = [2]. Σύνθετη ρυθμικότητα είναι κάθε άλλη ρυθμικότητα.

Συνήχηση ρυθμών υπάρχει σε κάθε περίπτωση που οι ρυθμικότητες υποστηρίζονται από παραπάνω από μία κλάσεις ρυθμών. Ας υποθέσουμε ότι σε ένα μέτρο χρησιμοποιούνται μία παρεστιγμένη μισή νότα και δύο παρεστιγμένα τέταρτα. Προφανώς η ρυθμικότητα εκφράζεται ως δύο παρεστιγμένα τέταρτα και οι δύο ρυθμοί ανήκουν στην κλάση $[\frac{2}{2}]=[\frac{2}{1}]=[2]$ του απλού ρυθμού. Αν όμως προσθέσουμε την ανάπτυξη της παρεστιγμένης μισής νότας, με χρήση τριών τετάρτων, τότε η ρυθμικότητα εκφράζεται πλέον σε έξι όγδοα και αυτή η προσθήκη, που ανήκει στην κλάση ρυθμών $[\frac{6}{1}]=[6]=[3]$, συνηχεί με τον ρυθμό κλάσης $[\frac{6}{6}]=[\frac{6}{3}]=[2]$ των υπολοίπων. Η ομαδοποίηση μήκους ίσου με την ρυθμικότητα, που είναι ρυθμός κλάσης [2], είναι, είτε ως κρυφή είτε ως φανερή, πάντα εν χρήση.

Οι κλάσεις ρυθμικοτήτων και των ρυθμών τους θα συμβολίζονται με τον μέγιστο μονό αριθμό που τις διαιρεί. Η επόμενη κλάση, κατά σειρά εγγύτητας με την απλή [2], είναι η [3]. Η επόμενη κλάση [5] είναι πιο σπάνια. Πλην των [9] και [15], δεν φαίνεται να έχουν πρακτική χρήση οι επόμενες θεωρητικές κλάσεις [7], [11], [13], [17], κλπ. Όσες κλάσεις δεν αντιστοιχούν σε πρώτους αριθμούς μπορεί να αντιστοιχούν σε συνήχηση μιας ή περισσοτέρων ομαδοποιήσεων. Διευκρινιστικά, η ρυθμικότητα κλάσης [15] μπορεί να είναι αποτέλεσμα της συνήχησης των ρυθμών [2] (ως κρυφή ή φανερή κλάση), του [3] και του [5]. Και στα δύο μέτρα του σχήματος 2 η ρυθμικότητα είναι [15]. Στο πρώτο μέρος η Ντο είναι ρυθμός $[\frac{15}{15}] = [1] = [2]$, η Σολ είναι ρυθμός $[\frac{15}{5}] = [3]$, η Μι είναι ρυθμός $[\frac{15}{3}] = [5]$ και η Σι είναι ρυθμός $[\frac{15}{1}] = [15]$. Στο δεύτερο μέτρο ο ρυθμός [15] είναι κρυφός.

Σχήμα 2: Συνήχηση ρυθμών

Η αλγεβρική δομή μονοειδούς φαίνεται να διακρίνεται στα προαναφερόμενα. Έστω S το σύνολο των τυπικών ομάδων των ομαδοποιήσεων. Κάθε στοιχείο του ταυτίζεται με τυπική ομάδα ομαδοποίησης και την τετριμμένη ίσου μήκους ρυθμικότητα. Εφοδιάζουμε αυτό το σύνολο με την δυαδική πράξη $S \times S \to S$ της

 $^{^8}$ Θα συμβολίζονται με το γινόμενο των μονών πρώτων αριθμών, αν ταυτοποιούμε κάθε δύναμη πρώτου αριθμού με τον ίδιο.

συνήχησης, που θα την συμβολίζουμε με +. Το αποτέλεσμά της είναι η τυπιχή ομάδα ομαδοποίησης με πλήθος μελών ίσο με το ελάχιστο χοινό πολλαπλάσιο του πλήθους των μελών των δύο τυπιχών ομάδων. Το ζεύγος (S, +) είναι μονοειδές διότι ιχανοποιεί τα επόμενα δύο αξιώματα:

- Προσεταιριστικότητα: Για κάθε a, b και c που ανήκουν στο S, η σχέση (a+b)+c=a+(b+c) ισχύει. Η ρυθμικότητα με περισσότερους των δύο ρυθμών είναι αποτέλεσμα αυτής της ιδιότητας.
- Ύπαρξη ουδέτερου στοιχείου: Υπάρχει ένα στοιχείο e στο S, αυτό της μονομελούς τυπικής ομάδας, που είναι τέτοιο ώστε για κάθε στοιχείο a στο S, ισχύουν οι ισότητες e+a=a και a+e=a.

Επειδή ισχύει η αντιμεταθετική ιδιότητα, όπου a+b=b+a για κάθε $a,\ b\in S$, το (S,+) είναι αντιμεταθετικό ή αλλιώς αβελιανό μονοειδές. Όπως κάθε αντιμεταθετικό μονοειδές, το (S,+), δηλαδή το σύνολο των τυπικών ομάδων με τις συνηχήσεις τους, είναι εφοδιασμένο με την ασθενή διάταξη \leq , με την οποία ορίζεται ότι $a\leq b$ αν υπάρχει c τέτοιο ώστε a+c=b, δηλαδή το μήκος της a διαιρεί το μήκος της b^9 .

Αποδόμηση ρυθμικότητας θεωρώ ότι είναι η μετάλλαξή της σε ρυθμικότητα που η κλάση της είναι ίση με την κλάση ρυθμικότητας κάποιου γνήσιου υποσυνόλου των ομαδοποιήσεων που την υποστηρίζουν. 10 Κάθε ρυθμικότητα υποστηρίζεται από όποιες ομαδοποιήσεις χρησιμοποιεί ο συνθέτης, όπως ένα σπίτι υποστηρίζεται από τις χολώνες του. Δ εν μπορεί να χτιστεί στέρεη ρυθμιχότητα - οιχοδόμημα χωρίς να χρησιμοποιηθούν ομαδοποιήσεις - χολώνες της που να την υποστηρίζουν. Με την πάροδο του χρόνου αυξάνεται η εντροπία, άρα η φυσική φθορά της ρυθμιχότητας - οιχοδομήματος, απομένοντας, ως ερείπια, χάποιες από τις ομαδοποιήσεις - κολώνες που την στήριζαν. Η υποστηριχτική σχέση δεν αντιστρέφεται. Aν G είναι ομαδοποίηση - κολώνα της ρυθμικότητας - οικοδομήματος C, τότε η τελευταία, ως ομαδοποίηση κολώνα C, δεν μπορεί να υποστηρίζει την ρυθμικότητα - οιχοδόμημα G. Αυτό ισχύει εν ολίγοις διότι αν η [G] είναι ομαδοποίηση της [C]ισχύει $[G] = \frac{[C]}{2*k+1} \Rightarrow [C] = (2*k+1)*[G], \ \mu \varepsilon \ k \neq 0, \ [C] = 2^n * C \varkappa a\iota \ [G] = 2^m * G.$ Οπότε το [C] δεν έχει τη ζητούμενη μορφή $[C]=\frac{[G]}{2*k+1},$ άρα δεν είναι ομαδοποίηση της $[G]^{11}$. Πιο απλά, εκτός κλάσεων, αν η G διαιρεί την C τότε η C δεν διαιρεί την G.

 $^{^9{}m O}$ βαθμός εγχύτητας της σελίδας 7 είναι διαφορετική διάταξη. Με δεδομένη ρυθμικότητα b, ο βαθμός εγγύτητας διατάσσει τους διαιρέτες a του μήχους της.

¹⁰ Η ρυθμικότητα κενής ομαδοποιήσεων μπορεί να θεωρηθεί ότι ταυτίζεται με την ακολουθία αναφοράς, άρα με την ομαδοποίηση ανά έναν κτύπο, επομένως είναι κλάσης [2]. Πιστεύω όμως ότι το κενό δεν πρέπει να θεωρείται ως ομαδοποίηση που υποστηρίζει ρυθμικότητα. Έτσι αποδόμηση δεν μπορεί να γίνει σε τετριμμένη ρυθμικότητα που υποστηρίζεται μόνον από την ίδια της την ομαδοποίηση μοναδικού ρυθμού.

 $^{^{-11}}$ Αν k=0 τότε η ομαδοποίηση ταυτίζεται με την ρυθμικότητα που στηρίζει. Τότε όμως δεν πρόκειται για υποστηριχτική σχέση αλλά για ταυτολογία, εφόσον η C είναι κολώνα της ρυθμικότητας C τότε η C είναι κολώνα της ρυθμικότητας C.

Πρόοδος ρυθμικότητας είναι η μεταβολή της σε άλλης κλάσης ρυθμικότητα. Η ρυθμικότητα μιας σύνθεσης μπορεί να μείνει αμετάβλητη. Αν όμως υπάρχει η επιθυμία μεταβολής της, λαμβάνοντας υπόψην την προαναφερθείσα υποστηριχτική σχέση και την προσομοίωση του φαινομένου της εντροπίας, μπορούμε να διακρίνουμε την πρόοδο σε παθητική και ενεργητική.

Παθητική πρόοδος (ή αδύνατη ή κατιούσα πρόοδος) μιας ρυθμικότητας είναι η αποδόμησή της σε διαφορετική κλάση. Ω ς εκ τούτου, δεν υπάρχει παθητική μετάβαση από την απλή ρυθμικότητα κλάσης [2]. Αν περιοριστούμε μόνον στις κλάσεις [2] και [3] των ρυθμικοτήτων, τότε η μόνη δυνατή παθητική μετάβαση είναι αυτή από την κλάση ρυθμικότητας [3] = [6] = [2] + [3] στην κλάση [2] της απλής ρυθμικότητας.

Ενεργητική πρόοδος (ή δυνατή ή ανιούσα πρόοδος) μιας ρυθμικότητας είναι η όποια μη παθητική πρόοδός της σε νέα διαφορετικής κλάσης ρυθμικότητα. Η αρχική ρυθμικότητα μπορεί να υποστηρίζει, ως ομαδοποίηση, την νέα ρυθμικότητα μπορεί και όχι. Αν περιοριστούμε μόνον στις κλάσεις [2] και [3] των ρυθμικοτήτων, τότε η μόνη δυνατή ενεργητική μετάβαση είναι αυτή από την κλάση ρυθμικότητας [2] στην κλάση ρυθμικότητας [3] που, εκτός της συγκεκριμένης ομαδοποίησης κλάσης [2], φανερής ή κρυφής πλέον, υποστηρίζεται και από ομαδοποίηση κλάσης [3] = [6] = [2] + [3].

Στο σχήμα 3, παρά την χρονική υπογραφή, στο πρώτο μέτρο συνηχούν οι ρυθμοί της μίας παρεστιγμένης ολόκληρης νότας μήκους 4 και των τεσσάρων παρεστιγμένων τετάρτων μήκους 1, οπότε είναι εν χρήση η ρυθμικότητα [1]+[4]=[4], του απλού ρυθμού κλάσης [2] που την υποστηρίζει. Από το πρώτο στο δεύτερο μέτρο συντελείται ενεργητική πρόοδος ρυθμικοτήτων. Στο δεύτερο μέτρο, με δώδεκα όγδοα μήκους 1, προστίθεται ενεργητικά ρυθμός $[\frac{12}{1}]=[12]=[3]$, που συνηχεί με τον ρυθμό [4], υποστηρίζοντας την ρυθμικότητα [4]+[3]=[12], κλάσης [3]. Στο τρίτο μέτρο τόσο η ρυθμικότητα όσο και η κλάση της παραμένουν αμετάβλη-

Σχήμα 3: Πρόοδος ρυθμικότητας

τες, αφού η μετατροπή των τεσσάρων τετάρτων, κλάσης $[\frac{12}{3}]=[4]=[2]$, σε δύο μισές δεν επηρεάζουν την $[\frac{12}{6}]=[2]$ κλάση τους. Από το τρίτο μέτρο στο τέταρτο μέτρο, συντελείται παθητική πρόοδος ρυθμικοτήτων, διότι η ρυθμικότητα κλάσης [3]=[3]+[2] αποδομείται σε ρυθμικότητα κλάσης [4]=[2].

Η φράκταλ αυτο-ομοιότητα της δομής του χρόνου προβάλει την προαναφερόμενη δομή της ρυθμικότητας στην έννοια της δομής της τονικότητας. Σε

ρυθμικότητα, ρυθμούς, συνηχήσεις και ομαδοποιήσεις κτύπων αναφερόμαστε όταν η συχνότητα των κτύπων είναι της τάξεως του ενός κτύπου ανά δευτερόλεπτο (1Hz). Σε τονικότητα, τόνους, συγχορδίες και συχνότητες αντίστοιχα, αναφερόμαστε αν "απομακρυνθούμε", περίπου 20 με 20000 φορές "μακρύτερα", ώστε να αντιλαμβανόμαστε τα χρονικά διαστήματα μικρότερα και το 1Hz να αντιστοιχεί πλέον σε ηχητικές συχνότητες. Αν μάλιστα λάβουμε υπόψην και την προαναφερθείσα δομή του μονοειδούς, τότε συχνότητες και συγχορδίες μπορούν θεωρηθούν στοιχεία του ίδιου συνόλου και ίσως όχι τόσο διαφορετικά όσο νόμιζα.

Όρια στην αυτο-ομοιότητα τίθενται από το πεπερασμένο του αχουστικού φάσματος. Κτύποι του 1 Ηz θα ακουστούν σαν ηχητική συχνότητα αν επιταχυνθούν 440 φορές, αλλά μία ηχητική συχνότητα των 440 Ηz δεν θα ακουστεί αν επιβραδυνθεί 440 φορές, επειδή η πίεση του αέρα που το παράγει υπόχειται σε συνεχή μεταβολή. Θα έπρεπε ευθύς εξ αρχής να ήταν άλλη η φύση του συμβάντος, όπως κρούσεις και όχι ακουστικό κύμα. Η τονικότητα είναι πολλές φορές αρκετά μεγάλο υποπολλαπλάσιο των συχνοτήτων που την στηρίζουν. Δεν μπορώ εύχολα να δεχτώ ότι η αντίληψή μας θα προσδώσει οντότητα σε τονικότητα που βρίσκεται κάτω από το όριο ακοής. Για αυτό, σε μια συνήχηση, μία μπάσα συχνότητα κοντά στο όριο των 20 Ηz, όταν η ίδια δεν ταυτίζεται με την κλάση τονικότητας της συνήχησης, αφού η τελευταία θα βρίσκεται εκτός του ακουστικού φάσματος, ακούγεται ανεξάρτητη, εκτός της ομπρέλλας, της τονικότητας που παράγουν οι υπόλοιπες συχνότητες, δημιουργώντας μία ένταση που ζητά επίλυση. Για τον ίδιο λόγο, σε μια συνήχηση, μία υψηλή συχνότητα, κοντά στο όριο των 20000 Ηz, δεν μπορεί να έχει το ρόλο τονικότητας που υποστηρίζεται από υπόλοιπες υψηλότερες συχνότητες, αλλά μόνον τον ρόλο της υποστήριξης μιας τονιχότητας υποπολλαπλάσιας αυτής.

2 Τονικότητα

2.1 Ομοιομορφισμός

 $Pv\theta\mu ol$ και τόνοι συνδέονται με σχέση ομοιομορφισμού που είναι η αντιστοίχιση των χρονικών διαστημάτων, των φαινομένων του ενός, στα χρονικά διαστήματα των φαινομένων του άλλου. Ο δείκτης r θα χρησιμοποιηθεί για τα φαινόμενα των ρυθμών και ο δείκτης t για τα φαινόμενα των τόνων. Έτσι έχουμε:

Η ακολουθία αναφοράς κτύπων συχνότητας σ_r και περιόδου $T_r=1/\sigma_r$ αντιστοιχεί σε ηχητικό κύμα αναφοράς συχνότητας σ_t και περιόδου $T_t=1/\sigma_t$.

Η ομαδοποίηση σ_r^1 ανά ένα κτύπο *αντιστοιχεί* σε ηχητικό κύμα συχνότητας $\sigma_t^1=\sigma_t$ και περιόδου $T_t^1=1/\sigma_t^1=1/\sigma_t$.

Η ομαδοποίηση σ_r^n ανά n κτύπους aντιστοιχεί σε ηχητικό κύμα περιόδου $T_t^n = n * T_t = n/\sigma_t$ και συχνότητας $\sigma_t^n = 1/T_t^n = \sigma_t/n$.

Η ρυθμικότητα $\sigma_r^{n,m,\dots}$ της συνήχησης ομαδοποιήσεων σ_r^n αντιστοιχεί σε ηχητικό κύμα (τονικότητα) $\sigma_t^{n,m,\dots}$ περιόδου $T_t^{n,m,\dots} = lcm(T_t^n,T_t^m,\dots) = \frac{lcm(n,m,\dots)}{\sigma_t}$ και συχνότητας $\sigma_t^{n,m,\dots} = \frac{\sigma_t}{lcm(n,m,\dots)}$, όπου lcm() το ελάχιστο κοινό πολλαπλάσιο. Ισοδύναμα εκφράζεται και δια του μέγιστου κοινού διαιρέτη gcd^{12} .

$$\sigma_t^{n,m,\dots} = \frac{1}{lcm(1/\sigma_t^n,1/\sigma_t^m,\dots)} = gcd(\sigma^n,\sigma^m,\dots)$$

Ο ρυθμός λ_r^n μιας ομαδοποίησης σ_r^n , σε σχέση με μια ρυθμικότητα $\sigma_r^{n,m,\dots}$ που υποστηρίζει, *αντιστοιχεί* στον **τόνο**

$$\lambda_t^n = \frac{T_t^{n,m,\dots}}{T_t^n} = \frac{\sigma_t^n}{\sigma_t^{n,m,\dots}} = \frac{lcm(n,m,\dots)/\sigma_t}{n/\sigma_t} = \frac{lcm(n,m,\dots)}{n}$$

και είναι αδιάστατος ακέραιος αριθμός. Ισοδύναμα εκφράζεται ως

$$\lambda^n_{n,m,\dots} = rac{\sigma^n_t}{gcd(\sigma^n_t,\sigma^m_t,\dots)}$$

Αντικαταστάθηκε, στο λ, ο δείκτης t για να διευκρινιστεί ότι ο τόνος αναφέρεται στην τονικότητα που στηρίζει. Ο τόνος της τονικότητας $\lambda_t^{n,m,\dots}=\frac{T_t^{n,m}}{T_t^{n,m}}=1$ ισούται πάντα με την μονάδα. Συνεπώς, η τονικότητα είναι συχνότητα και οι τόνοι είναι αναλογίες, ακέφαια πολλαπλάσια, των εν χρήση συχνοτήτων προς αυτήν. Ο βαθμός εγγύτητας ορίζεται ίδιος όπως στη σελίδα 7.

Η συχνότητα της τονικότητας, επειδή υποστηρίζεται, εν δυνάμει, από τις άπειρες συχνότητες των ακέραιων πολλαπλασίων αυτής, δεν μπορεί να ορίσει καλώς ένα συγκεκριμένο σύνολο για εν χρήση υποστηριχτικούς τόνους.

Οι εν χρήση συχνότητες είναι αυτές που καθορίζουν την συχνότητα της τονικότητας.

Η πράξη της συνήχησης $+:S\times S\to S$, με S το σύνολο ομαδοποιήσεων, αντιστοιχεί σε συγχορδία συχνοτήτων και προβάλεται φυσικά ως $\sigma^n_t+\sigma^m_t=\sigma^{n,m}_t=\gcd(\sigma^n_t,\sigma^m_t)$, όπου \gcd ο μέγιστος κοινός διαιρέτης. Με την ύπαρξη της σ^1_t ως ουδέτερου στοιχείου $e=\sigma^1_t$, η δομή του αντιμεταθετικού μονοειδούς (σελ:8), με την ασθενή του διάταξη \leq , είναι προφανής. Ας σημειωθεί όμως ότι, επειδή αναφερόμαστε πλέον σε συχνότητες και όχι σε περιόδους, η διάταξη $a\leq b$ σημαίνει ότι η συχνότητα a διαιρείται από την b.

2.2 Κλάσεις

Οι κλάσεις συχνοτήτων $[\sigma]$ ορίζονται από την σχέση ισοδυναμίας \sim , όπου δύο συχνότητες σ_t^n και σ_t^m θεωρούνται ισοδύναμες αν ο λόγος τους είναι δύναμη του 2, δηλαδή $[\sigma_t^n] = [\sigma_t^m] \iff \sigma_t^n \sim \sigma_t^m \iff \frac{\sigma_t^n}{\sigma_t^m} = 2^{\pm k}, \ k \in \mathbb{Z}$. Το σύνολο όλων των κλάσεων είναι το $S/\sim:=\{[\sigma]: \sigma \in S\}$.

 $^{^{12}}$ Αν το lcd εχφραστεί με πρώτους αριθμούς, οι εχθέτες του θα είναι της μορφής $max(m_i,n_i,\ldots)=-min(-m_i,-n_i,\ldots)$ που αποδειχνύει την σχέση, διότι το min αντιστοιχεί στο gcd.

Αντιπρόσωπος κλάσης συχνότητας $[\sigma] \in S/\sim$, μιας συχνότητας σ , επιλέγεται ο ρητός αριθμός της μορφής $\frac{\sigma}{\sigma^0}*2^k$, $k\in \mathbb{Z}$ που ανήκει στο διάστημα [1,2) των άρρητων αριθμών, οπότε και αντιστοιχεί την συχνότητα αναφοράς σ^0 στην μονάδα, $[\sigma^0] = 1^{13}$. Επειδή οι τονικότητες είναι συχνότητες, οι κλάσεις τονικοτήτων $[\sigma^{n,m,\cdots}]$ αντιπροσωπεύονται από σημεία τον ίδιον διαστήματος [1,2) άρρητων αριθμών.

 \mathbf{H} κλάση τόνων $[\lambda^n]$ ορίζεται από την προβολή τους

$$[\lambda_{n,m,\ldots}^n] = rac{[\sigma_t^n]}{[ged(\sigma_t^n,\sigma_t^m,\ldots)]}$$

οπότε

$$[\lambda^n_t] = [\lambda^m_t] \iff \lambda^n_t \sim \lambda^m_t \iff \frac{\lambda^n_t}{\lambda^m_t} = 2^{\pm k}, \; k \in \mathbf{Z}$$

Αντιπρόσωπος της τονικής κλάσης $[\lambda^n_{n,m,\dots}] \in \mathbb{Z}/\sim$, του τόνου $\lambda^n_{n,m,\dots}$, επιλέγεται ο ρητός αριθμός της μορφής $\lambda^n_{n,m,\dots}*2^{-k},\ k\in\mathbb{Z}$ που ανήκει στο διάστημα [1,2) ρητών αριθμών.

Το μονοειδές των κλάσεων ορίζεται με την προβολή της πράξης της συγχορδίας σε αυτό. Προφανώς η προβολή π , της πράξης της συγχορδίας +, στο S/\sim , ως $\pi:S\to S/\sim$, $\pi(\sigma)=[\sigma]$, είναι αυτονόητη και καλώς ορισμένη. Έτσι

$$[\sigma^n] + [\sigma^m] = [\gcd(\sigma^n, \sigma^m)]$$

Η ασθενής διάταξη όμως αλλάζει ελαφρά νόημα. $[a] \leq [b]$ σημαίνει ότι υπάρχει k τέτοιο ώστε η $a*2^k$ διαιρείται από την b.

Επεκτείνοντας την παραπάνω σχέση και διαιρώντας με $\sigma^{n.m...}$ έχουμε ότι, σε σχέση με τους τόνους λ^n μιας συγχορδίας, ισχύει για την πράξη της συγχορδίας (όχι της συνήθους πρόσθεσης)

$$[\lambda^n] + [\lambda^m] + \ldots = [1]$$

Αν υποθέσουμε κάποια τονικότητα και η σχέση δεν ισχύει τότε προφανώς η υπόθεσή μας ήταν λανθασμένη και οι συγχορδία συχνοτήτων υποστηρίζει άλλη τονικότητα. Παραδείγματος χάριν, αν υποθέσουμε σαν τονικότητα και κλάση [1] την συχνότητα της Ντο και ακουστούν σε συγχορδία η Ντο [1], η Σολ [3/2] = [3] και η $\text{Pe}\ [9/8] = [9]$ τότε $[1] + [3] + [9] = [\gcd(1,3,9)] = [1]$ σωστά η τονικότητα της συγχορδίας είναι η Ντο. Αν αφαιρέσουμε όμως την Ντο τότε η συγχορδία των Σολ και $\text{Pe}\ [3] + [9] = [\gcd(3,9)] = [3]$, οπότε προφανώς η Ντο δεν είναι η σωστή τονικότητα αλλά η Σολ [3].

¹³Οι επτά συνήθεις νότες ή πληρέστερα οι δώδεχα συνήθεις τόνοι είναι, επτά ή δώδεχα αντίστοιχα, χλάσεις συχνοτήτων που αντιστοιχούν σε σημεία στο διάστημα [1,2) επί των άρρητων αριθμών. Οι νότες χρησιμοποιούνται ως χλάσεις συχνοτήτων στις μουσιχές αναλύσεις ενώ στις παρτιτούρες σημειώνονται ως συχνότητες.

Απλή τονικότητα είναι η τονικότητα που η κλάση της είναι η κλάση της συχνότητας αναφοράς. Αυτό έχει σαν συνέπεια να συνηχούν μόνο συχνότητες που ανήκουν στην $[\sigma^0]$.

Αποδόμηση τονικότητας είναι η μετάλλαξή της σε τονικότητα που η κλάση της είναι ίση με την κλάση τονικότητας κάποιου γνήσιου υποσυνόλου των συχνοτήτων που την υποστηρίζουν.

Πρόοδος τονικότητας είναι η μεταβολή της σε άλλης κλάσης τονικότητα.

Παθητική πρόοδος (ή *αδύνατη* ή κατιούσα πρόοδος) μιας τονικότητας είναι η αποδόμησή της σε διαφορετική κλάση.

Ενεργητική πρόοδος (ή δυνατή ή ανιούσα πρόοδος) μιας τονικότητας είναι η όποια μη παθητική πρόοδός της σε νέα διαφορετικής κλάσης τονικότητα.

2.3 Ο χώρος τόνων και τονικότητας

Το σύνολο των συχνοτήτων είναι μονοδιάστατος χώρος, δηλαδή είναι ισόμορφο με την ευθεία R των άρρητων αριθμών. Οφείλουμε να ορίσουμε κάποια συχνότητα αυτού του χώρου ως συχνότητα αναφοράς, στην οποία αναφέρονται οι αντιπρόσωποι των κλάσεων συχνοτήτων που παρουσιάστηκαν στα προηγούμενα. Η συχνότητα $\sigma^0=440Hz$ αναφέρεται συνήθως ως συχνότητα αναφοράς.

Η σαμπρέλα τόνων και τονικότητας είναι ο χώρος όπου αυτοί τοποθετούνται. Η ταύτιση των άχρων του διαστήματος των χλάσεων συχνοτήτων [1, 2) χρειάζεται μία αχόμα διάσταση για να οπτικοποιηθεί ως κύκλος. Χρειάζεται δηλαδή δισδιάστατο χώρο ώστε να χαμφθεί μέσα σ' αυτόν η ευθεία των συχνοτήτων. Ωστόσο, παρά την οπτικοποίηση του κόσμου των κλάσεων των τονικοτήτων σε κύκλο τονικοτήτων, η ευκλείδια εγγύτητα παραμένει ψευδαίσθηση, πιθανότα τελείως αντίθετη με τις σχέσεις διατάξης που προαναφέρθηκαν. Με την ίδια λογική, όλες οι κλάσεις τόνων $[\lambda^n]$ μιας τονικότητας $\sigma^{n,m,\dots}$, αντιστοιχούν σε κύκλο τόνων [1,2). Από κάθε σημείο $[\sigma^{n,m,...}]$ του κύκλου τονικοτήτων διέρχεται ένας κύκλος τόνων [1,2), όπου η μονάδα $[\lambda^{n,m,...}]=1$ συμπίπτει με την κλάση τονικότητας $[\sigma^{n,m,\dots}]$. Έτσι, χρειαζόμαστε ακόμα μία διάσταση ώστε να οπτικοποιήσουμε τον χύχλο των τόνων σε διαφορετική διάσταση από αυτόν του χύχλου τονιχοτήτων. Οπότε, σε τρισδιάστατο χώρο, οι κύκλοι όλων των δυνατών κλάσεων τόνων, επί καθενός σημείου του κύκλου των τονικοτήτων, είναι επιφάνεια μιας σαμπρέλας όπως εδώ. Η σαμπρέλα είναι το σύμπαν των κλάσεων των τονικοτήτων και των τόνων τους.

Κάθε τονικότητα σ^{n,m,...} ενυπάρχει πάντα, ως κρυφή ή φανερή, στο άκουσμα κάθε συχνότητας $\sigma^n = \sigma^0/n$ που την στηρίζει¹⁴. Ωστόσο, ο τόνος λ^n , της συχνότητας σ^n , σχεδόν ποτέ δεν ανήχει από μόνος του στον χύχλο τόνων της $\sigma^{n,m,...}$. Το σύνολο των σημείων $\{[\lambda^n], [\lambda^m], \ldots\}$, δηλαδή το σύνολο των τόνων συγχορδίας, είναι που ανήχει στον χύχλο τόνων που διέρχεται από την χλάση τονιχότητας $[\sigma^{n,m,...}]$. Ένα γνήσιο υποσύνολο ή υπερσύνολο αυτού μπορεί κάλλιστα, ως συγχορδία, να ανήκει σε κύκλο τόνων διαφορετικής τονικότητας. Παρά το γεγονός ότι στον χύχλο τόνων μιας τονικότητας δεν ανήχουν απομονωμένοι τόνοι, παρά μόνον συγχορδίες από τόνους, εντούτοις ο κύκλος τόνων [1,2) περιέχει άπειρα σημεία και γεννάται το ερώτημα ποία από αυτά μπορεί να είναι υποψήφια ώστε να αποτελούν στοιχεία του συνόλου των τόνων $\{[\lambda^n], [\lambda^m], \ldots\}$ που δημιουργούν τις συγχορδίες. Επειδή η τονικότητα $\sigma^{n,m,...}$ είναι κοινός διαιρέτης όλων των σ^n που την στηρίζουν, είναι προφανές ότι τα μόνα κατάλληλα σημεία του κύκλου των τόνων της, για στοιχεία του $\{[\lambda^n], [\lambda^m], \ldots\}$, είναι αυτά που, εξ ορισμού, αντιστοιχούν στις αρμονικές της, δηλαδή στις συχνότητες $n * \sigma^{n,m,\dots}$, $n \in \mathbb{Z}^+$. Οπότε $[\lambda^n] = [n]$, δηλαδή οι κλάσεις τόνων συμπίπτουν με τις κλάσεις ακεραίων. Έτσι, οι αντιπρόσωποι των κλάσεων των τόνων είναι όροι της ακολουθίας $\{1,3/2,5/4,7/4,9/8,11/8,\ldots\}^{15}$.

Τα στοιχεία του συνόλου των τόνων που δύνανται να υποστηρίζουν μια τονικότητα, πέρα από το ότι ανήκουν στους ακεραίους θετικούς, μπορούν να περιοριστούν δραστικά λόγω του ορίου που θέτει το ακουστικό φάσμα που αναφέρθηκε στη σελίδα 11. Εξ ορισμού ισχύει ότι

$$\lambda^n = \frac{\sigma^n}{\sigma^{n,m,\dots}} \Rightarrow 20Hz \lesssim \sigma^{n,m,\dots} = \frac{\sigma^n}{\lambda^n} \Rightarrow \lambda^n \lesssim \frac{\sigma^n}{20Hz}$$

Είναι τελείως υποκειμενικό αλλά, αν θέλουμε η συχνότητα 440Hz να υποστηρίζει τονικότητα εντός του ακουστικού φάσματος πρέπει $\lambda^n\lesssim \frac{440}{20}=22$. Όσο πιο κοντινοί στην μονάδα είναι κάποιοι τόνοι τόσο πιο πολύ προσλαμβάνεται ότι όντως είναι στοιχεία της τονικότητας που υποστηρίζουν. Τα πιο κοντινά διαφορετικά της μονάδας στοιχεία είναι το [3/2] και το [5/4]. Δεν θα προσθέσουμε άλλο στοιχείο για να μην ξεφεύγει εύκολα η τονικότητα εκτός ακουστικού φάσματος 16 .

Ο δυισμός τόνων και τονικοτήτων είναι μια αναγκαία πρόσθετη δομή, επί της σαμπρέλας στην οποία τοποθετούνται, ώστε να περιοριστούν οι κλάσεις τονικοτήτων οι οποίες, μέχρι τώρα, αντιπροσωπεύονται από τα άπειρα σημεία του διαστήματος [1,2) των άρρητων αριθμών. Κάθε τόνος λ^n , πολλαπλασιαζόμενος με την τονικότητα $\sigma^{n,m,\dots}$ που υποστηρίζει, αντιστοιχίζεται μονοσήμαντα στην

 $^{^{14}}$ Οι μικρότερες υποσυχνότητές της, $\sigma_n^k = \sigma^n/k$, ενυπάρχουν πάντα εν δυνάμει. Όμως, κατά την αντίληψή μας, υπερσκελίζονται από το άκουσμα της σ^n . Συμβαίνει δηλαδή το αντίθετο από ό,τι συμβαίνει στις αρμονικές $k*\sigma^n$, οι οποίες άλλοτε δημιουργούνται από τα μουσικά όργανα και άλλοτε όχι, εξαρτώμενες από το όργανο που παράγει την βασική συχνότητα σ .

 $^{^{15}}$ Είναι θέμα μουσιχής χουλτούρας πόσοι και ποίοι απ' αυτούς χρησιμοποιούνται και συνθέτουν ένα σύνολο εν χρήση τόνων στην πράξη.

 $^{^{16}}$ Αν είχαμε προσθέσει και το στοιχείο [7/4], για παράδειγμα, το γινόμενο με το [5] θα απαιτούσε όριο το [5*7]=[35], οπότε οι συνήθεις συχνότητες θα έπρεπε να είναι μία οκτάβα υψηλότερες στα 880Hz, ώστε $880/20=44\gtrsim 35$.

συχνότητα $\sigma^n = \lambda^n * \sigma^{n,m,\dots}$. Με την πρόσθετη δομή, επί του χύχλου τονικοτήτων, επιτρέπουμε, ως κλάσεις τονικοτήτων, μόνον τα σημεία που αντιστοιχούν σε συχνότητες τόνων. Αρκεί βέβαια να καθορίσουμε μια συχνότητα αναφοράς σ^0 , ώστε η τονικότητα $\sigma^{n,m,\dots}$ να αντιστοιχεί σε συγκεκριμένη συχνότητα $\sigma^{n,m,\dots} = \lambda * \sigma^0$. Δημιουργούμε έτσι ένα δένδρο τονικοτήτων, όπου κάθε τονικότητα συνδέεται με δύο άλλες τονικότητες μέσω των δύο κλαδιών που αντιστοιχούν στους δύο βασικούς τόνους [3/2] και [5/4]. Στο σχήμα 4 φαίνεται τμήμα του δένδρου, όπου, με κέντρο την τονικότητα αναφοράς [1], βλέπουμε τις κλάσεις τονικοτήτων δύο επιπέδων, τόσο κατά την κατεύθυνση εκ των δύο βασικών τόνων προς την τονικότητα που υποστηρίζουν, όπου σημειώνονται με 3 ο [3/2] και 5 ο [5/4], όσο και δύο επιπέδων κατά την αντίθετη κατεύθυνση, αφού, κατά την επιθυμητή πρόσθετη δομή μας, και η κεντρική τονικότητα [1] κάποιες άλλες τονικότητες οφείλει να στηρίξει.

Σχήμα 4: Σχέσεις τονικοτήτων ως τόνος η μιά της άλλης

Όλες οι κλάσεις, αναφορικά με την [1], θεωρούνται απλές αναλογίες χρησιμοποιώντας αριθμούς μικρότερους του 22, εκτός από τις [32/25] και [25/16]. Και οι δύο πλησιάζουν είτε τις απλές κλάσεις [9/7] και $[11/7]^{17}$ είτε τις απλές κλάσεις [5/4] και [8/5] αντίστοιχα. Ας δεχθούμε ότι τις αγνούμε ή η συνήθεια και η οικονομία της αντίληψής μας, της σελίδας 7, μας κάνει να αντιλαμβανόμαστε το άκουσμα της [32/25] ως [5/4] και της [25/16] ως [8/5]. Συμβολίζοντας την κλάση της τονικότητας [1] με [25/16] και τις υπόλοιπες σύμφωνα με τις συγκερασμένες συχνότητες, οι σχέσεις των κλάσεων των τονικοτήτων φαίνονται στο σχήμα [3]. Σε κάθε κα-

 $^{^{17}\}Delta$ εν έχουμε συνηθίσει όμως να ακούμε ούτε να χρησιμοποιούμε τόνους που βασίζονται στο 7.

Σχήμα 5: Σχέσεις ονομασμένων τονικοτήτων ως τόνος η μιά της άλλης

τεύθυνση, κάθετη, οριζόντια, διαγώνια αριστερά και διαγώνια δεξιά, υπάρχει $\pm 1^{18}$, $\pm 3, \pm 4$ και ± 5 σταθερή μεταβολή ημιτονίων αντίστοιχα. Η τοπολογία σαμπρέλας είναι έντονη και, αν αποτυπώναμε τις τριάδες συχνοτήτων, θα υπήρχε ταύτιση με το διάγραμμα Tonnetz της Neo-Riemannian θεωρίας. Ας σημειωθεί ότι οι παραπάνω σχέσεις είναι μεταβατικές. Αν η κλάση τονικότητας [X] στηρίζει την [Y] και η [Y] την [Z] τότε η [X] στηρίζει την [Z], απλά η στήριξη είναι πιο απόμαχρη. Στο παραπάνω σχήμα εμφανίζονται οι ένδεκα από τους γνωστούς τόνους, ενώ λείπει ο τόνος F# που αντιστοιχεί στο διάστηκα του τριτόνου $CF\#^{19}$. Δυστυχώς, όσο καθαρά και αν ακούγονται οι τονικότητες γύρω από την κεντρική κλάση [1], όσο απομακρυνόμαστε από αυτήν, πυκνώνουν οι κλάσεις στο διάστημα [1,2), καθώς ουδέποτε θα καταλήξουμε ξανά σε τονικότητα κλάσης [1]. Έτσι, οι απομακρυσμένες τονικότητες γίνονται δυσδιάκριτες σε σχέση με τις κλάσεις απλών αναλογιών και ο ήχος τους γίνεται συγκεχυμένος. Η παραπάνω δυσκολία ξεπερνιέται κατά ένα βαθμό μοιράζοντας το σφάλμα των απομαχρυσμένων κλάσεων σε όλες τις κλάσεις, υιοθετώντας κλάσεις τονικοτήτων που χωρίζουν το 2, την οκτάβα δηλαδή, σε kίσα αναλογικά διαστήματα, με τέτοιο λόγο a ώστε $a^k=2$. Δημιουργείται έτσι ένα ισοσυγχερασμένο σύστημα k εν χρήση συχνοτήτων. Παρόλο που δεν

 $^{^{18}}$ Οι ματζόρε χλίμαχες όλων των C#, A#, G#, D# του σχήματος έχουν συνήθως υπογραφές χλειδιών με υφέσεις, οπότε ίσως έπρεπε να συμβολιστούν ως Db, Bb, Ab, Eb. Όμως ο συμβολισμός με διέσεις χαταδειχνύει την ± 1 σχέση χατά την χάθετη χατεύθυνση.

 $^{^{19}{\}rm H}$ συνέπεια με τις σχέσεις των λοιπών κλάσεων τοποθετεί την [F#] στην μέση του σχήματος 5 αριστερά της [D#].

υπάρχουν πλέον οι τόνοι ως αχέραιοι αριθμοί, αφού δεν υπάρχει ούτε ο μέγιστος κοινός διαιρέτης των άρρητων συχνοτήτων σε συγχορδία, εντούτοις αν τα a^k είναι πολύ χοντά σε απλούς λόγους, η ανάγχη για οιχονομία της πληροφορίας προχαλεί την προσλαμβάνουσά τους ως απλούς ρητούς λόγους. Ο εν χρήση αριθμός για το k εξαρτάται από την μουσική κουλτούρα, την εξοικείωση με την σχέση συχνοτήτων που προχαλεί και από το πόσο χαλά προσεγγίζουν οι αναλογίες απλούς λόγους. Στη σύγχρονη εποχή έχει σχεδόν καθολικά επικρατήσει η τιμή k=12 με το δωδεχατονιχό ισοσυγχερασμένο σύστημα. Σε αυτό το σύστημα $a=2^{1/12}$. Οι δε λόγοι των ένδεκα κλάσεων τονικοτήτων, του τμήματος του δένδρου που εξετάσαμε, προσεγγίζονται πολύ καλά από τα εν χρήση $a^{k}=2^{k/12}$. Εφόσον καταλήξαμε σε δώδεκα σημεία επί του κύκλου των τονικοτήτων τότε, σε κάθε κύκλο τόνων, θα επιτρέψουμε δώδεκα σημεία κλάσης προς επιλογή των τόνων λ^n των συγχορδιών. Αντιστοιχώντας την μονάδα στην κλάση [C], οι καλύτερες προσεγγίσεις 20 των $2^{k/12}$ με απλούς λόγους φαίνονται στον πίνακα 1.

k	0:C	1:C#,Db	2:D	3:D#,Eb	4:E	5:F
$[\lambda]$	1	17/16	9/8	6/5	5/4	4/3
k	6:F#,Gb	7:G	8:G#,Ab	9:A	10:A#,Bb	11:B
$[\lambda]$	17/12	3/2	8/5	5/3	16/9	15/8

Πίναχας 1: Προσεγγίσεις των $2^{k/12}$ με απλούς λόγους

Η απλή τονικότητα διευρύνεται στο ισοσυγκερασμένο σύστημα ως η τετριμμένη τονικότητα που στηρίζεται μόνον στον μοναδιαίο τόνο της. Αυτό διότι όλες οι τονικότητες αποκτούν ίση σημασία 21, αφού κάθε οκτάβα κάθε μιας από αυτές διαιρείται σε ίσα αναλογικά τμήματα από τις υπόλοιπες. Όλες οι ασυνόδευτες μελωδίες, όπου αχούγονται μόνες συχνότητες, μη αποτελώντας στοιχείο χάποιας συγχορδίας, είναι αχολουθία απλών, τετριμμένων τονιχοτήτων. Ως εχ τούτου χάθε βήμα της μελωδικής ακολουθίας είναι ενεργητική πρόοδος τονικότητας, αφού δεν υπάρχει γνήσιο υποσύνολο συχνοτήτων της προηγούμενης συγχορδίας να την υποστηρίζει.

Περί πολλαπλότητας. Φανταστείτε ένα πλάσμα που ζει στην επιφάνεια της σαμπρέλας τόνων και τονικοτήτων της σελίδας 14. Το πλάσμα έχει την αίσθηση ότι ζει σε δισδιάστατο κόσμο και, κατά τον τοπικό χάρτη του, κάθε μετακίνησή του αναφέρεται σε κατεύθυνση κατά τους άξονες [3/2] και [5/4]. Όπου και να βρίσχεται, αυτούς τους άξονες έχει υπόψη του χαι σύμφωνα με αυτούς μεταχινείται. Αντιλαμβάνεται βέβαια ότι μετά από 12 βήματα κατά την κατεύθυνση [3/2] βρίσκεται ξανά εχεί από όπου ξεχίνησε, όπως το ίδιο συμβαίνει χαι μετά από 3 βήματα

 $[\]overline{\,}^{20}$ Οι προσεγγίσεις του $2^{1/12}=1.059463\sim 17/16=1.0625$ είναι καλύτερη του 16/15=1.0666, του $2^{6/12}=1.41421\sim 17/12=1.41666$ είναι καλύτερη του 45/32=1.40625 και του $2^{10/12}=1.78179\sim 10^{10}$ 16/9 = 1.77777 είναι καλύτερη του 9/5 = 1.8, δηλαδή από αυτές που υπολογίζονται διαφορετικές στο συγχερασμένο σύστημα. $^{21}{\rm H}~{\rm ign}~{\rm shape}~{\rm shape}~{\rm tonixothtag}~{\rm odhyei}~{\rm sthuevh}~{\rm papayrago}~{\rm pepi}~{\rm pollumpiag}.$

προς την κατεύθυνση [5/3]. Δεν μπορεί βέβαια να αντιληφθεί αυτό που εμείς, ζώντας σε τρισδιάστατο χώρο, αντιλαμβανόμστε εύκολα, ότι δηλαδή ο κόσμος του βρίσκεται πάνω σε μια επιφάνεια σαμπρέλας. Το καλύτερο που μπορεί να κάνει, ώστε να χαρτογραφήσει τον κόσμο του, είναι να σχεδιάσει τοπικούς χάρτες, όπου κάθε χάρτης θα έχει κοινά σημεία με κάθε γειτονικό του. Ένας τέτοιος τοπικός χάρτης, που αφορά στο σημείο της τονικότητα [C], είναι το σχήμα 5. Το σύνολο όλων των τοπικών χαρτών χαρτόγραφεί την επιφάνεια της σαμπρέλας ως πολλαπλότητα. Οι σχέσεις των τεσσάρων ρόμβων γύρω από την C, ως τοπικές, είναι ακριβής. Οι σχέσεις της C με πιο απομακρυσμένους τόνους, λόγω της τοπολογίας της σαμπρέλλας, αλλοιώνονται τόσο πιο πολύ όσο πιο απομακρυσμένοι είναι οι τόνοι από την [C].

2.4 Η χαμένη τονικότητα

Η προβολή του ομοιομορφισμού της χρυφής ρυθμιχότητας, ως χρυφή ομαδοποίηση της σελίδας 6, στο φάσμα των συχνοτήτων είναι η χρυφή ή χαμένη τονιχότητα ή αλλιώς η χαμένη θεμελιώδης συχνότητα. Κάθε συγχορδία συχνοτήτων παράγει θεμελιώδη σύνθετη χυματομορφή που επαναλαμβάνεται με συχνότητα ίση με την τονιχότητα της συγχορδίας. Κάθε επανάληψή της στο αχουστιχό φάσμα την εχλαμβάνουμε σαν συχνότητα. Η τονιχότητα μιας συγχορδίας είναι πάντα εν χρήση. Αν η χλάση της αντιστοιχεί σε συχνότητα της συγχορδίας, τότε είναι φανερή. Αν η χλάση της τονιχότητας δεν αντιστοιχεί σε συχνότητα της συγχορδίας, τότε είναι χρυφή ή χαμένη.

Η κλάση της τονικότητας μιας συγχορδίας καθορίζεται πλήρως από τις κλάσεις των συχνοτήτων που την υποστηρίζουν. Στο ισοσυγκερασμένο σύστημα, λόγω της ακριβούς αναλογικής διαίρεσης κάθε οκτάβας, χάνουν τη σημασία τους οι συχνότητες αυτές καθεαυτές και αποκτά σημασία ο λόγος μεταξύ τους, δηλαδή τα μουσικά διαστήματα. Αυτό σημαίνει ότι, για να υπολογίσουμε οποιαδήποτε τονικότητα συγχορδίας, θέτουμε ως μονάδα την κλάση μιας από τις συχνότητές της και την υπολογίζουμε, σε σχέση με k διαστήματα από αυτήν, από τις αναλογίες του πίνακα 1. Επειδή ισχύει η προσεταιριστική ιδιότητα (σελίδα 9) η τονικότητα μιας συγχορδίας υπολογίζεται εύκολα με βήματα ανά δύο συχνοτήτων. Αξίζει λοιπόν να υπολογίσουμε την τονικότητα όλων των διαστημάτων που ορίζονται από δύο συχνότητες. Ας λάβουμε υπόψη ότι όλες οι αναλογίες του πίνακα 1 είναι ανάγωγα κλάσματα.

• $[1] + [\frac{a}{2^n}] = [1] + [a] = [1]$ οπότε όλα τα διαστήματα που αντιστοιχούν σε αναλογία με παρονομαστή δύναμη του 2 έχουν σαν κλάση τονικότητας αυτήν που αντιστοιχεί στην συχνότητα αναφοράς. Παραδείγματος χάριν το [C], ως συχνότητα αναφοράς, συνηχώντας με τα [C#], [D], [E], [G], [B] έχει τονικότητα την ίδια την [C]. Αν εξαιρέσουμε την [C#], βγάζουμε το συμπέρασμα ότι παρούσης της [C] κάθε συγχορδία με υποσύνολο των συχνοτήτων της συγχορδίας C^9 έχει τονικότητα την [C], σε τέτοιο υποπολλαπλάσιο της C όσο αντιστοιχεί στον μεγαλύτερο παρονομαστή της δύναμης του 2. Κάθε συνήχηση με άλλης κλάσης συχνότητα έχει σαν αποτέλεσμα διαφορετική

από την [C] τονικότητα. Το [C#]=[17/16] μπορεί να εξαιρεθεί για τρεις λόγους. Πρώτον, με τονικότητα να αντιστοιχεί τέσσερις οκτάβες χαμηλότερα μπορεί να τίθεται εκτός ακουστικού φάσματος, δεύτερον, πρόκειται για πολύ ευαίσθητη αναλογία. Αρκεί να την εκλάβουμε ίση με την [16/15] του συγκερασμένου συστήματος και δεν θα ανήκει πια σε συχνότητα που υποστηρίζει την τονικότητα κλάσης [C] και τρίτον, η σχεδόν από πάντα χρήση της αναλογίας [16/15], στο συγκερασμένο σύστημα, έχει δημιουργήσει τέτοια συνήθεια που καθιστά απίθανη την ακουστική αποδοχή της.

- $[1] + [\frac{a}{b}] = [\frac{1}{b}], \ b \neq 2^n$ οπότε η τονικότητα αντιστοιχεί στην κλάση $[\frac{1}{b}]$ και στο υποπολλαπλάσιο 1/b της C. Έτσι,
 - $[C] + [D\#] = [1] + [\frac{6}{5}] = [\frac{1}{5}] = [G\#]$ δηλαδή η μινόρε τρίτη έχει την τονικότητα της ματζόρε συγχορδίας που την χρησιμοποιεί. Φυσικά, το ίδιο αποτέλεσμα ισχύει και για την ματζόρε έκτης $[C] + [A] = [1] + [\frac{5}{3}] = [\frac{1}{3}] = [F]$.
 - $[C] + [Ab] = [1] + [\frac{8}{5}] = [\frac{1}{5}] = [Ab]$ δηλαδή η μινόρε έκτη έχει την τονικότητα της αντίστοιχης ματζόρε τρίτης.
 - $[C] + [F] = [1] + [\frac{4}{3}] = [\frac{1}{3}] = [F]$ δηλαδή η τέλεια τετάρτη έχει την τονικότητα της τέλειας τετάρτης.
 - $[C] + [Bb] = [1] + [\frac{16}{9}] = [\frac{1}{9}] = [Bb]$ δηλαδή η μινόρε εβδόμη έχει την τονικότητα της μινόρε εβδόμης.
 - $[C] + [F\#] = [1] + [\frac{17}{12}] = [\frac{1}{12}] = [\frac{1}{3}] = [F]$ δηλαδή η αυξημένη πέμπτη έχει την τονικότητα της τέλειας πέμπτης, όμως περισσότερο από τρεις οκτάβες κάτω από την [C].

Συνοπτικότερα:

- Η διαφορά 2,4,7,11 ημιτονίων υποστηρίζει κλάση τονικότητας ίση με την κλάση της συχνότητας αναφοράς 22 .
- Η διαφορά 3 ημιτονίων υποστηρίζει τονικότητα ίση με την κλάση της συχνότητας 4 ημιτονίων πριν την συχνότητα αναφοράς.
- Η διαφορά 5,10 ημιτονίων υποστηρίζει τονικότητα ίση με την κλάση της συχνότητας της διαφοράς, δηλαδή τις κλάσεις [5] και [10] αντίστοιχα.
- Η διαφορά 6 ημιτονίων, του τριτόνου δηλαδή, υποστηρίζει τονικότητα ίση με την κλάση της συχνότητας 5 ημιτονίων μετά την συχνότητα αναφοράς, ισοδύναμα κατά 1 ημιτόνιο μικρότερο της διαφοράς.

Βλέπουμε ότι παρούσης της [C] κλάσης συχνότητας, εκτός της ιδίας, μόνον οι [F]=[4/3], [G#]=[8/5] και [Bb]=[15/8] κλάσεις τονικοτήτων μπορούν να υποστηριχθούν.

 $^{^{22}{\}rm A}$ ς αγνοήσουμε την διαφορά κατά 1, που υποστηρίζει την ίδια τονικότητα, για τους λόγους που αναφέρθηκαν κατά τον υπολογισμό της.

Οι συγχορδίες είναι σύνολο συχνοτήτων που συνηχούν. Δεν μπορεί παρά να υποστηρίζουν θεωρητικά μία συγκεκριμένη τονικότητα. Η τονικότητά τους υπολογίζεται προσεγγιστικά συνδυάζοντας τις συχνότητες ανά δύο. Η τονικότητα μπορεί να είναι η απλή τετριμμένη αλλά μια συγχορδία θα λέγεται ματζόρε ή πλήρης αν υποστηρίζεται από την κλάση της τονικότητας [1] και από τους δύο βασικούς τόνους της [3/2] και [5/4]. Η τονικότητα στην τυπιχή ματζόρε συγχορδία C-E-G είναι φανερή, εφόσον η [C] χρησιμοποιείται εν τη πράξη. Ας ονομάσουμε την κλάση [C] = [1] ρίζα ή \mathbf{root} της συγχορδίας με την έννοια της πρόθεσης να ταυτίζεται με την τονικότητά της. Ας ονομάσουμε την κλάση [G] = [3/2] πηγή ή source της συγχορδίας με την έννοια του ότι αποτελεί την κύρια πηγή στήριξης της ρίζας της συγχορδίας, ως προτιθέμενη τονικότητά της. Ας ονομάσουμε την κλάση [E] = [5/4] ποιότητα quality της συγχορδίας με την έννοια του ότι αποτελεί την δευτερεύουσα συχνότητα στήριξης της ρίζας της συγγορδίας, ως προτιθέμενη τονιχότητά της. Εφόσον η πηγή πάντα υποστηρίζει την ρίζα ως τονικότητα, η ποιότητα μιας συγχορδίας είναι αυτή που καθορίζει αν η ρίζα της συγχορδίας είναι όντως η φανερή τονικότητά της ή όχι. Ας σημειωθεί ότι το διάστημα τριών ημιτονίων, που αντιστοιχεί στην κλάση [6/5], είναι πάντα παρόν, ως E-G, σε κάθε ματζόρε συγχορδία. Για τον υπολογισμό της τονικότητας της ματζόρε συγχορδίας ας συνθέσουμε πρώτα την ρίζα [1] και την πηγή της [3/2]. Η τονικότητα αυτών βρίσκεται από το ελάχιστο κοινό πολλαπλάσιο των παρονομαστών, είναι δηλαδή [1/1]+[3/2]=[1/2]. Το αποτέλεσμα [1/2] το συνθέτουμε με την εναπομείνασα ποιότητα [5/4] και βρίσκουμε [1/2] + [5/4] = [1/4]. Η κλάση του αποτελέσματος είναι προφανώς η [1] και η τονικότητα βρίσκεται $2^2=4$ δύο οκτάβες χαμηλότερα της C. Αν προσθέσουμε και την [B]=[15/8], δημιουργώντας προφανώς την C^7 , το τελευταίο αποτέλεσμα [1/4] το συνθέτουμε με την [B] = [15/8] και βρίσκουμε [1/4] + [15/8] = [1/8]. Η κλάση της εβδόμης είναι και πάλι η [1] και η τονικότητα βρίσκεται $2^3=8$ τρεις οκτάβες χαμηλότερα της C, άρα εύχολα εντός του αχουστιχού φάσματος.

Ακριβής υπολογισμός τονικότητας χρειάζεται όταν εκτιμάται ότι η τονικότητα είναι πολύ απομακρυσμένη, οπότε δεν είναι εμφανές ποιο από τα $2^{k/12}$ την προσεγγίζει καλύτερα. Για αυτό το λόγο κατασκεύασα την συνάρτηση $G(x,y,\ldots)$ στο maxima ως

```
G([arguments]):= block([i,x,y,marg,minmarg,sol,ratprint,ratepsilon],
ratprint:false,
ratepsilon:le-2,
marg:mod(arguments,12),
minmarg:first(marg),
marg:mod(marg-minmarg,12),
y:apply('ezgcd,rat(bfloat(2^(args(marg)/12))))[1],
i:0,
while y*2^i < 1 do i:i+1,
sol:round(rhs(solve([2^(x/12)=2^i*y],[x])[1])),
[y,arguments,mod(sol+minmarg,12)]
)$</pre>
```

Τα x, y, \ldots είναι τα k που συμμετέχουν στην συγχορδία. Το αποτέλεσμά της δείχνει, με το πρώτο κλάσμα, σε τί υποπλλαπλάσιο της [x] βρίσκεται η τονικότητα, η οποία φαίνεται σαν ο τελευταίος αριθμός του αποτελέσματος. Ένα από τα πιο ενδιαφέροντα αποτελέσματα είναι το

```
(%i5) G(11,2,5,8);G(2,5,8,11);G(5,8,11,2);G(8,11,2,5);
(%o2)/R/ [1/60,[11,2,5,8],0]
(%o3)/R/ [1/60,[2,5,8,11],3]
(%o4)/R/ [1/60,[5,8,11,2],6]
(%o5)/R/ [1/60,[8,11,2,5],9]
```

Το αποτέλεσμα δείχνει ότι η συγχορδία B-D-F-Ab δεν χρειάζεται πια να θεωρείται ως κάποια από τις τέσσερις δεσπόζουσες ενάτης, που τους λείπει ο root τόνος και καταλήγει στην αντίστοιχη τονική της, αλλά ότι απ' ευθείας τείνει να καταλήγει σε μία από τις τέσσερις κρυφές τονικότητές της, δηλαδή σε μία εκ των [C], [Eb], [F#], [A].

Οφείλω όμως να είμαι σχεπτικιστής. Το υποπλλαπλάσιο είναι πολύ μιχρό για να γίνει δεκτό το ότι πρόχειται για "χοντινές" αποστάσεις συχνοτήτων. Δέχομαι το αποτέλεσμα λόγω της συμμετρίας της συγχορδίας. Πρόχειται για όλες τις τέσσερις διαφορετιχές χλάσεις χάθε οριζόντιας γραμμής του σχήματος 5. Όπως πιο εύχολα δέχομαι το αποτέλεσμα για την συγχορδία G#-E-C, όπου πρόχειται για όλες τις τρεις διαορετιχές χλάσεις της προς τα άνω αριστερά διαγωνίου.

Ένα μη αποδεκτό αποτέλεσμα, παραδείγματος χάριν, είναι το

```
(%i3) G(7,11,20,27);G(6,0,9,2);
(%o2)/R/ [1/80,[7,11,20,27],3]
(%o3)/R/ [1/60,[6,0,9,2],7]
```

Πρόκειται για παραφωνία που, σύμφωνα με την σελίδα 324 του βιβλίου Theory of harmony 23 , χρησιμοποίησε ο Mozart. Το πολύ μικρό υποπολλαπλάσιο 1/80 υποδαυλίζει το αποτέλεσμα 3=[D#] της πρώτης συγχορδίας. Το πιο συνετό είναι να θεωρηθεί η χαμηλότερη συχνότητα 7=[G] ως σχοπούμενη τονικότητα, αλλά η επόμενη συγχορδία, δεικνύει μεν την [G] ως τονικότητά της, όμως, και πάλι, ως απομακρυσμένη τονικότητα και ούτε καν δια της πιο συνηθισμένης [F#]-[A]-[C]-[Eb] αλλά δια της [F#]-[A]-[C]-[D] συγχορδίας.

Η μινόρε συγχορδία είναι η αποδόμηση της ματζόρε, με αφαίρεση της ρίζας της, καθιστώντας την τονικότητά της κρυφή. Κατ' ουσίαν πρόκειται για αποδόμηση της εβδόμης ματζόρε C-E-G-B. Ας ορίσουμε ως κλάση αναφοράς και ρίζα της μινόρε συγχορδίας την [E]=[5/4]/[5/4]=[1]. Η πηγή της στήριξής είναι η $[B]=[3/2]^{24}$. Η σύνθεσή τους έχει αποτέλεσμα την [1/2]. Αντί όμως για την αναμενόμενη ποιότητα, του έταιρου βασικού τόνου ως [5/4], χρησιμοποιείται η $[G]=[6/5]^{25}$. Το αποτέλεσμα της σύνθεσης με το τελευταίο αποτέλεσμα [1/2] είναι [1/2]+[6/5]=[1/10]=[1/5]=[8/5] που αντιστοιχεί σε 4 ημιτόνια πριν την

 $^{^{23} \}Psi$ άξτε την λέξη "fellow" για να δείτε το σχήμα 233 του βιβλίου.

 $^{^{24}[3/2]}$ γιατί η ${\rm B}$ απέχει από την συχνότητα αναφοράς ${\rm E}$ 7 ημιτόνια.

 $^{^{25}[6/5]}$ διότι η [G] απέχει από την συχνότητα αναφοράς [E] 3 ημιτόνια.

συχνότητα αναφοράς E, δηλαδή στην C, και είναι ίση με το 1/10 υποπολλαπλάσιο της [E]. Η συχνότητα C όμως, ενώ είναι εν χρήση, δεν παράγεται στην πράξη, άρα η [C] τονικότητα είναι κρυφή τονικότητα της E-G-B μινόρε συγχορδίας, που μαζί με την τελευταία σχηματίζουν μία αποδομημένη, από τη ρίζα της, C^7 συγχορδία. Προφανώς η E^7 εβδόμη μινόρε είναι η αποδομημένη, από τη ρίζα της, C^9 ενάτη ματζόρε συγχορδία.

Το πρώτο παράδειγμα ήρθε από την περιέργειά μου να εξετάσω τα έξι πρώτα μέτρα της πασίγνωστης moonlight sonata. Στο σχήμα 6 προστέθηκαν, με βιολοντσέλο, οι στιγμές όπου αλλάζει η τονικότητα, είτε κρυφή είτε φανερή. Στον ήχο του ακούγονται τα πρώτα έξι μέτρα πιάνου, τα οποία επαναλαμβάνονται με την προσθήκη όλων των τονικοτήτων σε βιολοντσέλο. Ακολουθούν μόνον οι τονικότητες σε βιολοντσέλο και κλείνει επαναλαμβάνοντας τα έξι μέτρα πιάνου βιολοντσέλου μαζί. Ας προσεχθεί ότι, με παρουσία της συχνότητας ρίζας, η εναλλαγή των τονικοτήτων στα αρπέτζιο συμβαίνει επειδή οι συγχορδίες είναι μινόρε. Στα ματζόρε αρπέτζιο, με παρουσία της συχνότητας ρίζας, η τονικότητα παραμένει σταθερή. Επίσης άξια παρατήρησης είναι η ανιούσα μελωδία της τονικότητας στο τέλος του τέταρτου μέτρου, που παράγεται από την πρόοδο $i_1^4 - V^7$.

Το δεύτερο παράδειγμα απαντά στο ερώτημα του ποίες διαφορετικές συγχορδίες υποστηρίζουν την ίδια τονικότητα. Η συγχορδία της τυπικής μινόρε τριάδας διαπιστώσαμε ότι υποστηρίζει χρυφή τονιχότητα που βρίσχεται στο $1/10\,$ της συχνότητας αναφοράς. Σ το ερώτημα τίθεται τέτοιος περιορισμός ώστε η τονικότητα των ζητούμενων συγχορδιών να είναι σε ίση ή μικρότερη, σε σχέση με αυτήν των μινόρε συγχορδιών, απόσταση από την συχνότητα αναφοράς τους. Στο πρώτο και δεύτερο μέτρο του σχήματος 7 αποτυπώνεται ότι χωρίς συχνότητες υπάρχει μόνον ρυθμός, το ίδιο όπως αν αχούγεται μόνον η τετριμμένη απλή τονιχότητα. Στο τρίτο μέτρο, με την συγχορδία δύο συχνοτήτων, η συχνότητα αναφοράς [C] συνοδεύεται από κάθε μία από τις συχνότητες της $[C^9]$, όπως δείξαμε προηγουμένως. Στα υπόλοιπα μέτρα αναπτύσσονται όλοι οι συνδυασμοί συγχορδιών 1, 2, 3, 4, και 5 συχνοτήτων, που απαντούν στο ερώτημα που τέθηκε. Υπάρχουν τελικά 23 τέτοιες διαφορετικές συγχορδίες. Ας σημειωθεί ότι οι κλάσεις συγνοτήτων [F] και [A], που δεν ανήκουν στην $[C^9]$, δεν χρησιμοποιούνται από αυτές τις συγχορδίες. Οι αριθμοί πάνω από το πεντάγραμμο δείχνουν σε τι υποπολλαπλάσιο βρίσκεται η [C] τονικότητα. Σ τον ήχο του σχήματος η ίδια διάταξη συχνοτήτων επαναλαμβάνεται για τις τονικότητες [F] και [G]. Ακούγεται εν τέλει η πρόοδος I-IV-V-I με εχτεταμένες αρμονίες δύο φορές.

2.5 Η τονικότητα ως εφαλτήριο μεταβολών

Ας φανταστούμε ότι είμαστε υπερχρονικοί παρατηρητές και αντιλαμβανόμαστε τον χρόνο σαν τρισδιάστατο χώρο. Είναι η αντίληψη ενός απέραντου άδειου χώρου στον οποίο είναι διασκορπισμένα μικρής ή μεγάλης διάρκειας συμβάντα²⁶.

²⁶Αν ένα συμβάν υπήρχε εσαεί, αυτό θα ισοδυναμούσε με την "ανυπαρξία" του. Θα γέμιζε όλον τον χώρο του χρόνου, οπότε θα άλλαζε και η αντίληψή μας για αυτόν. Θα τον αντιλαμβανόμασταν σαν ένα

Σχήμα 6: Κρυφές και φανερές τονικότητες στην "Moonlight sonata".

Η ανυπαρξία είναι η μέση κατάσταση στον χρόνο και η αφετηρία από την οποία αυτή η κατάσταση μεταβάλλεται, σε κατάσταση "ύπαρξης", για να επιστρέψει ξανά στη μέση κατάσταση της "ανυπαρξίας". Ας αντιληφθούμε την εκτέλεση μιας μουσικής σύνθεσης από μακριά, όπως θα αντιλαμβανόμασταν την γη από τις παρυφές του ηλιακού συστήματος. Θα την αντιλαμβανόμασταν ως χρονικό σημείο, μία τελεία στο αχανές του χώρου - χρόνου. Κάτι δημιουργήθηκε και τέλειωσε. Υπήρξε μεταβολή στην, κατά τα άλλα, άδεια δομή του χρόνου. Το όλο θέμα το περιγράφω λέγοντας ότι, από τόσο μακριά, η αρχέγονη τονικότητα κάθε σύνθεσης είναι η "ανυπαρξία" της. Η όποια σημασία της σύνθεσης δεν βρίσκεται στην τονικότητά της, δηλαδή στην ανυπαρξία της, αλλά στην μεταβολή της γύρω απ' αυτήν.

απέραντο συμπαγές στο οποίο είναι διασχορπισμένα μιχρής ή μεγάλης διαρχείας συμβάντα "ανυπαρξίας". Το απόλυτα σημαντικό είναι η μεταβολή, η διαφοροποίηση.

Σχήμα 7: Συγχορδίες που υποστηρίζουν την [C] τονικότητα.

Η καθολική τονικότητα προσεγγίζεται καλύτερα εφόσον πλησιάσουμε κοντύτερα και αντιληφθούμε την σύνθεση ως τέλεια σφαίρα. Αντιλαμβανόμαστε την τονικότητα της σύνθεσης ως την απόλυτα συμμετρική δομή της επιφάνειας της σφαίρας. Αυτή καθεαυτή η τέλεια επιφάνεια, εκτός του ότι δεν υπάρχει, δεν θα μπορούσε να περιγράψει οτιδήποτε δημιουργικά, διότι δεν ενέχει το στοιχείο της μεταβολής. Αν ονομάσουμε Ντο ματζόρε την επιφάνεια της σφαίρας, δεν έχει απολύτως καμία σημασία αν ισχυριστούμε ότι έχουμε σύνθεση σε Ντο ματζόρε. Πρέπει να πλησιάσουμε λίγο ακόμα, ώστε να διακρίνουμε βάθη ωκεανών, κοιλάδες και οροσειρές. Τότε μπορούμε να δούμε την Ντο ματζόρε ως την τέλεια, ιδεατή άρα ανύπαρκτη, μέση επιφάνεια γύρω από την οποία, εκ των πραγμάτων, μεταβάλλονται οι πραγματικές τονικότητες, παραδείγματος χάριν οι επιφάνειες Σολ ματζόρε των βυθών, Ντο ματζόρε των κοιλάδων και Φα ματζόρε των οροσειρών. Η σύνθεση λοιπόν είναι σε Ντο ματζόρε αλλά, η όποια σημασία της σύνθεσης δεν βρίσκεται στην τονικότητά της, αλλά στην μεταβολή των εν χρήση τονικοτήτων γύρω απ'

αυτήν.

Η μουσική αποτελείται αποκλειστικά από χρονικά συμβάντα. Είτε ασχολούμαστε με κτύπους ανά ίσα χρονικά διαστήματα είτε με συχνότητες, που είναι μοτίβα πίεσης του αέρα ανά ίσα χρονικά διαστήματα επίσης, ο χρόνος και μόνον είναι η θεμελιώδης ουσία της. Όποια δομή αναφοράς και αν δεχτούμε ότι υπάρχει και λειτουργεί στις σχέσεις των ομαδοποιήσεων μεταξύ τους, λόγω της φράκταλ φύσης του χρόνου, η ίδια δομή αναφοράς θα υπάρχει και θα λειτουργεί σε κάθε επίπεδο μεγέθυνσής του. Ό,τι ισχυριζόμαστε ότι λειτουργεί στις ρυθμικότητες, θα λειτουργεί και στις τονικότητες, θα λειτουργεί και στις τονικότητες τονικοτήτων και ούτω καθεξής σε κάθε εξέταση κάθε επιπέδου μεγένθυνσης της σύνθεσης. Η σημασία της μουσικής, βασίζεται στη δημιουργία και σύνθεση μεταβολών. Αν κάποια σύνθεση χαρακτηριστεί δημιουργία, πιθανότατα θα έχει σημασία η μεταβολή κλιμάκων. Αν υπάρχει μόνον μία κλίμακα, θα έχει σημασία η μεταβολή συγχορδιών. Αν υπάρχει μονότονη επανάληψη συγχορδιών, θα έχει σημασία η μεταβολή μελωδιών. Αν υπάρχει μόνον μία μελωδία, θα έχει σημασία η μεταβολή συχνοτήτων της μελωδίας. Αν υπάρχει μόνον μία συχνότητα, απομένει ο ρυθμός, οπότε θα έχει σημασία η μεταβολή ρυθμών. Αν υπάρχει μόνον ένας ρυθμός, θα έχει σημασία η μεταβολή της σημασίας στίχων σε σχέση με την μέση κατάσταση της καθημερινότητας. Αν υπάρχει πρόκειται για στίχους της ημέρας, κάτι άλλο θα έχει σημασία, αλλιώς ο χαραχτηρισμός, ότι πρόχειται για μουσιχή δημιουργία, είναι προφανώς λανθασμένος 27 .

Οι επιμέρους τονικότητες γίνονται αντιληπτές προσεγγίζοντας ακόμα περισσότερο την επιφάνεια. Στο μέσο επίπεδο θάλασσας, η κοιλάδα της Ντο ματζόρε δεν είναι τέλεια. Αποτελείται από μεταβαλλόμενες τονικότητες συγχορδιών που απομακρύνονται από αυτήν σχηματίζοντας λόφους και ρεματιές. Ακόμα και αυτά τα επιμέρους, αν πλησιάσουμε περισσότερο, μπορούμε να δούμε ότι δημιουργούνται από συχνότες εδάφους, θάμνων, δένδρων που μεταβάλλονται και αλληλεπιδρούν μεταξύ τους.

Οι τόνοι της ματζόρε κλίμακας αναδύονται από την συγκεκριμένη ομόνυμη κλάση αναφοράς τονικοτήτων και καταδεικνύουν τις πλησιέστερες αναχωρήσεις από και αφίξεις σε αυτήν, σύμφωνα με την αρχή ότι οι τονικότητες, εφόσον υπάρχουν, μεταβάλλονται. Κάθε κλάση συχνοτήτων, λόγω του δυϊσμού τόνων και τονικοτήτων που αναφέραμε στη σελίδα 15, είναι συνυφασμένη με την κλάση τονικότητας της ομώνυμης ματζόρε συγχορδίας, διότι η τελευταία χρησιμοποιεί και τους δύο βασικούς τόνους από τους οποίους προήρθε αυτός ο δυϊσμός. Εκ των δύο βασικών τόνων, ο τόνος [3/2] είναι αυτός που αντιστοιχεί στην πλησιέστερη μεταβολή τονικότητας. Σε ό,τι αφορά στην αναχώρηση από την τονικότητα [C], η πλησιέστερη σε αυτήν ενεργητική πρόοδος πραγματοποιείται με το να θεωρηθεί η

²⁷Ας υπενθυμίσω ότι πρόκειται για προσωπικές απόψεις βασισμένες σε μαθηματικη διαίσθηση, αφού δεν έχω γνώσεις μουσικής θεωρίας. Μάλιστα οι απόψεις μου περί τονικότητας άλλαξαν κατά την συγγραφή του παρόντος, διότι άλλο να νομίζεις ότι κατάλαβες κάτι και άλλο να προσπαθήσεις, χωρίς εύκολα αντιληπτές αντιφάσεις, να γράψεις αυτό που νομίζεις ότι κατάλαβες.

τονικότητα [C] πηγή της νέας ματζόρε συγχορδίας που υποστηρίζει την τονικότητα [F]. Η, με ενεργητική πρόοδο, αναχώρηση προς την πλησιέστερη τονικότητα είναι λοιπόν η $C \to F^{28}$. Με ακριβώς την ίδια λογική, η, με ενεργητική πρόοδο, άφιξη από την πλησιέστερη τονικότητα είναι η $G \to C$. Οι τόνοι της ματζόρε κλίμακας αναφοράς είναι οι τόνοι των ματζόρε συγχορδιών άφιξης, αναχώρησης και τονικότητας αναφοράς, εν προκειμένω για την [C] οι τόνοι των συγχορδιών $GBD \to CEG \to FAC$. Έτσι, οι κλάσεις συχνοτήτων της [C] ματζόρε κλίμακας είναι οι $\{[C],[D],[E],[F],[G],[A],[B]\}$. Μπορεί να θεωρηθεί ότι η ματζόρε κλίμακα είναι μίξη της ονομαστικής τονικότητας αναφοράς, και της τονικότητας των δύο άκρων, πριν και μετά από αυτήν. Διαφέρει δε από τις κλίμακες των άκρων της μόνον κατά μία κλάση συχνοτήτων. Χρησιμοποιεί την [F] αντί της [F#], που χρησιμοποιείται από την κλίμακα [F].

2.6 Μελωδίες

Κάθε μελωδία αποτελείται από μεταβολές συχνοτήτων και κάθε συχνότητα ταυτίζεται με την απλή τετριμμένη τονικότητά της. Εφόσον κάθε μεταβολή της τετριμμένης τονικότητας θεωρείται ενεργητική πρόοδος, είναι δυνατόν αυτές οι συχνότητες να κατατάσσονται κάτω από και να υποστηρίζουν μία συγκεκριμένη τονικότητα, ώστε να λέμε ότι έχουμε μια μελωδία π.χ. σε Ντο ματζόρε? Δεν ασχολήθηκα πολύ με αυτό το ερώτημα αλλά πιστεύω πως ναι. Θα πρέπει όμως να κάνουμε την παρακάτω παραδοχή.

Η τυπική πρόοδος, σε πλησιέστερη τονικότητα, είναι μονής κατεύθυνσης και αντιστοιχεί στα μουσικά διαστήματα τόνου-τόνου-ημιτονίου 29 . Συνεπώς, μια μελωδία γύρω από την τονικότητα [C] θα χρησιμοποιεί τόνους της τυπικής προόδου από την τονικότητα αναφοράς [C] προς την [F], δηλαδή τους [C]-[D]-[E]-[F], και τόνους της τυπικής προόδου από [G] προς την τονικότητα αναφοράς [C], δηλαδή τους [G]-[A]-[B]-[C].

Η μονή κατεύθυνση της τυπικής προόδου θα μπορούσε να δικαιολογηθεί ως εξής. Οι υποσυχνότητες σ/n είναι υπάρχουσες, όμως $\epsilon \nu$ δυνάμει τονικότητες, που ενώ θα μπορούσαν να υποστηρίζονται από την $[\sigma]$ υπερσκελίζονται $\epsilon \nu$ χρήση από το άκουσμά της. Έτσι, στο άκουσμα μόνης $\epsilon \nu$ χρήση της [G]=[3], η υποσυχνότητα-τονικότητα [3/3]=[1]=[C] είναι $\epsilon \nu$ δυνάμει τονικότητα. Ο προβιβασμός της τελευταίας από $\epsilon \nu$ δυνάμει [C] σε $\epsilon \nu$ χρήση [C] είναι ενεργητική πρόοδος. Ο υποβιβασμός της από $\epsilon \nu$ χρήση [C] σε $\epsilon \nu$ δυνάμει [C] είναι παθητική πρόοδος. Η μονή κατεύθυνση της τυπικής προόδου είναι η ισχυρή σύσταση, να χρησιμοποιούνται σχεδόν πάντα ενεργητικές πρόοδοι, εκφρασμένη σε ό,τι αφορά στις μελωδίες.

²⁹Τουλάχιστον αυτό βολεύει σε ό,τι αφορά στον Ιονικό τρόπο της διατονική κλίμακα.

 $^{^{28}{\}rm H}$ τονικότητα [F] της συγχορδίας F-A-C, με αποδόμηση των [F] και [A], μεταβάλλεται σε τονικότητα [C]. Επομένως η πρόοδος $F\to C$ είναι παθητική και η $C\to F$ ενεργητική πρόοδος.

Leading-tone είναι ο τόνος πριν το ημιτόνιο της τυπικής προόδου. Η ακοή των leading-tone από τον ακροατή εκλαμβάνεται ως ανακοίνωση του τέλους της περιπλάνησης, με αποτέλεσμα την προσμονή της επιστροφής στην "ασφάλεια" της μέσης τονικότητας αναφοράς. Στα παραπάνω παραδείγματα τυπικής προόδου, με την προϋπόθεση ότι η τονικότητα αναφοράς [F] ή [C] έχει προηγουμένως εδραιωθεί, το άκουσμα της συχνότητας, [E] ή [B] αντίστοιχα, ανακοινώνει το τέλος της μελωδικής περιπλάνησης και προκαλεί έντονα την προσμονή της [F] ή [C] αντίστοιχα, προς επιβεβαίωση.

Η εδραίωση της τονικότητας αναφοράς δεν μπορεί να επιτευχθεί μόνον με την χρήση του leading tone. Απαιτείται επαρκής χρήση των τόνων της κλίμακας, ώστε να εδραιώνεται η αίσθηση της αρχής μιας περιπέτειας απομάκρυνσης από την τονικότητα αναφοράς και της ασφαλούς επιστροφής σε αυτήν. Τα δύο πρώτα μέ-

Σχήμα 8: Κλίμακα C ματζόρε.

τρα του σχήματος 8 αποτελούν, κατά την γνώμη μου, ισχυρή ένδειξη ότι η τυπική πρόοδος και η χρήση των leading-tone, [B] και [E], δεν αρκούν για να εδραιώσουν μία αίσθηση ολοκλήρωσης ούτε καν η τυπική κατιούσα κλίμακα. Στο τρίτο μέτρο όμως, που είναι η ανιούσα C ματζόρε κλίμακα, απομακρυνόμαστε με την τυπική πρόοδο επαρκώς ώστε να αγγίξουμε την τονικότητα [F] και προσεγγίζουμε από την εξίσου μακρινή τονικότητα [G], οπότε η leading-tone [B] σηματοδοτεί το τέλος της περιπλάνησης και προκαλεί την προσμονή της τονικότητας αναφοράς [C], που την δεχόμαστε, ως ακροατές, με αίσθημα δικαίωσης.

Η κλάση [B]=[15/8] είναι η πιο απομακρυσμένη κλάση που μπορεί να υποστηρίξει την κλάση αναφοράς [C], αλλά λέγεται κάτω leading-tone αν η συχνότητα [Db]=[C#]=[17/16], που αποκλείσαμε από τους υποστηρικτικούς τόνους της [C] στη σελίδα 20, χρησιμοποιείται επίσης ως άνω leading-tone.

Ας σημειωθεί ότι η συνεχής χρήση της τυπικής προόδου προκαλεί αλλαγή της κλίμακας ή της τονικότητας αναφοράς σύμφωνα με τον κύκλο των πέμπτων. Θέτοντας την [C] μεταξύ δύο τυπικών προόδων, η ακολουθία [G-A-B-(C]-D-E-F) οφείλει να αντιμετωπίζεται περίπου σαν κύκλος, ταυτίζοντας σχεδόν τα άκρα της, όπως θα συνέβαινε σε ένα σπιράλ. Για την εδραίωση της τονικότητας [C] πρέπει να υπάρχει η αίσθηση ότι μετά την τυπική πρόοδο απομάκρυνσης C-D-E-F, δεν βγαίνουμε εκτός κλίμακας προς την [Bb] ματζόρε, αλλά προσεγγίζουμε δια της τυπικής προόδου προσέγγισης G-A-B-C. Η χρήση του leading-tone [B], της τυπικής προόδου G-A-B-C της κλίμακας [C], προστατεύει από το να θεωρηθεί ότι η [F] μπορεί να γίνει η τονικότητα αναφοράς. Δεν απαγορεύει όμως από το να θεωρηθεί η [G] ως τονικότητα αναφοράς, κατά την ακολουθία [D-E-F#-(G]-A-B-C). Για αυτό το λόγο πιστεύω ότι, εκτός του leading-tone [B], και η χρήση της [F] μπορεί να παίξει σημαντικό ρόλο στην εδραίωση της κλίμακας [C].

2.7 Συγχορδίες και κλίμακες