Equivalence relation

An equivalence relation on a set S is a subset $R \subseteq S \times S$ satisfying the reflexivity, symmetry and transitivity properties. We write $a \sim b$ to indicate that $(a, b) \in R$, and say that \sim is the equivalence relation.

Problems

1. Let $A = \{0, 1, 2, 3\}$ and define a relation R on A by

$$R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}.$$

Is it an equivalence relation? If so, what are the equivalence classes?

- 2. For $a, b \in \mathbb{Z}$, let $a \sim b$ iff a b is even. Show that \sim is an equivalence relation. What are the equivalence classes?
- 3. Let \mathbb{N} be the set of natural numbers, and define the relation $R \subseteq \mathbb{N} \times \mathbb{N}$ by $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid 2x + y = 10\}$. Show that the relation is neither reflexive, nor symmetric, nor transitive.
- 4. Define a partition of a set.

Show that every equivalence relation on a set S yields a partition of the set, and vice versa.

5. Let n be a fixed positive integer. Define a relation on \mathbb{Z} by

$$a \sim b$$
 iff $n|(b-a)$.

Show that the relation is an equivalent one and determine the equivalence

The set of equivalence classes of this relation is denoted by $\mathbb{Z}/n\mathbb{Z}$.

6. Let use define a relation on \mathbb{R}^n by

$$(a_1, a_2, \dots, a_n) \sim (b_1, b_2, \dots, b_n)$$
 iff $a_i = \lambda b_i$, $(i = 1, 2, \dots, n)$

for some $\lambda \in \mathbb{R}$. The equivalence classes are the lines through the origin and the set of all equivalence classes is called the real projective space \mathbb{RP}^n .

7. The 'similarity' relation on $M_n(\mathbb{R})$ is defined by

$$A \sim B$$
 iff $B = CAC^{-1}$

for some invertible $C \in M_n(\mathbb{R})$. Show that the relation is an equivalence relation.

What about the 'congruence' relation defined by

$$A \sim B$$
 iff $B = CAC^{\mathrm{T}}$?