CHAPTER 2

2.1 (a)

xyz	x + y + z	(x+y+z)'	x'	y'	z'	x'y'z'	xyz	(xyz)	(xyz)'	<i>x</i> ′	y'	z'	x' + y' + z'
000	0	1	1	1	1	1	000	0	1	1	1	1	1
001	1	0	1	1	0	0	001	0	1	1	1	0	1
010	1	0	1	0	1	0	010	0	1	1	0	1	1
0 1 1	1	0	1	0	0	0	0 1 1	0	1	1	0	0	1
100	1	0	0	1	1	0	100	0	1	0	1	1	1
101	1	0	0	1	0	0	101	0	1	0	1	0	1
110	1	0	0	0	1	0	110	0	1	0	0	1	1
111	1	0	0	0	0	0	111	1	0	0	0	0	0

(b)	xyz	(xy+z)	(x+z)	(y +	z) $(x+z)(y$	+ z)
	000	0	0		0	0
	001	1	1		1	1
	010	0	0		1	0
	0 1 1	1	1		1	1
	100	0	1		0	0
	101	1	1		1	1
	1 1 0	1	1		1	1
	1 1 1	1	1		1	1
	1 1	1 1	1	1	1	

(c)	x y z	x(y+z)	xy	xz	xy + xz
	0 0 0	0	0	0	0
	001	0	0	0	0
	010	0	0	0	0
	0 1 1	0	0	0	0
	100	0	0	0	0
	101	1	0	1	1
	110	1	1	0	1
	111	1	1	1	1

(d)	x y z	x	y+z	x + (y + z)	(x+y)	(x+y)+z
	000	0	0	0	0	0
	0 0 1	0	1	1	0	1
	010	0	1	1	1	1
	0 1 1	0	1	1	1	1
	100	1	0	1	1	1
	101	1	1	1	1	1
	110	1	1	1	1	1
	111	1	1	1	1	1

2.2 (a)
$$x'y' + x'y = x'(y' + y) = x'$$

(b)
$$(x' + y)(x' + y') = x' + x'y' + x'y + yy' = x'$$

(c)
$$x'y'z + xy'z + yz = y'z + yz = z$$

(d)
$$(A + B)'(A' + B')' = (A'B')(A B) = (A'B')(BA) = A'(B'B)A = 0$$

(e)
$$(a + b + c')(a'b' + c) = aa'b' + ac + ba'b' + bc + c'a'b' + c'c = ac + bc + a'b'c'$$

(f)
$$a'b'c + ab'c + abc + a'bc = b'c + bc = c$$

2.3 (a)
$$A'B'C + AB'C + BC = B'C + BC = C$$

(b)
$$x'y'z' + y'z = y'(x'z' + z) = y'(x' + z) = x'y' + y'z$$

(c)
$$(x + y)'(x' + y') = x'y'(x' + y') = x'y'$$

(d)
$$x'y'z' + w'x'yz' + wx'yz' = x'z'(y' + w'y) + wx'yz' = x'z'(y' + w'y + wy) = x'z'$$

(e)
$$(BC' + A'D)(AB' + CD') = BC'AB' + BC'CD' + A'DAB' + A'DCD' = 0$$

(f)
$$(a + c)(a' + b + c)(a' + b' + c) = (ab + ac + a'c + bc + c)(a' + b' + c)$$

$$= (ab + c)(a' + b' + c) = abc + a'c + b'c + c$$

$$= abc + c(a' + b' + 1)$$

$$= c$$

2.4 (a)
$$A'C' + ABC + AC = A'C' + AC(B+1) = A'C' + AC = (A XNOR C)$$

(b)
$$(x'y' + z)' + z + xy + wz = (x'y')'z' + z + xy + wz = [(x + y)z' + z] + xy + wz$$

= $(z + z')(z + x + y) + xy + wz = z + wz + x + xy + y$
= $z(1 + w) + x(1 + y) + y = x + y + z$

(c)
$$A'B(D' + C'D) + B(A + A'CD) = B(A'D' + A'C'D + A + A'CD) = B(A'D' + A + A'D(C + C')$$

= $B(A + A'(D' + D)) = B(A + A') = B$

(d)
$$(A' + C)(A' + C')(A + B + C'D) = (A' + CC')(A + B + C'D)$$

= $A'(A + B + C'D) = AA' + A'B + A'C'D = A'(B + C'D)$

(e)
$$A'BD' + ABC'D' + ABCD' = BD'(A' + AC' + AC)$$

= BD'

2.5 (a) x'y' + x'y = x'

(b) (x' + y)(x' + y') = x'

(c) x'y'z + xy'z + yz = z

(**d**)

(e)

(f) a'b'c + ab'c + abc + a'bc = c

2.6 (a) A'B'C + AB'C + BC = C

Simplified diagram is same as 2.6 (f) simplified diagram, F = C.

(b)
$$x'y'z' + y'z = x'y' + y'z = F$$

(f) (a+c)(a'+b+c)(a'+b'+c) = C = F

2.7 (a) A'C' + ABC + AC = A'C' + AC = F

(b)

(c)

A B C D F Simplified

(e)
$$A'BD' + ABC'D' + ABCD' = BD' = F$$

2.8
$$F = AC + BD$$

$$F' = (AC + BD)' = (AC)'(BD)' = (A' + C')(B' + D')$$

$$F.F' = (AC + BD)(AC)'(BD)'$$

$$= (AC) (AC)' + (BD) (BD)'$$

$$= ((AC) + (AC)')' + ((BD) + (BD)')'$$

$$= (1)' + (1)' \qquad \text{because,} \qquad (AC) + (AC)' = 1 \text{ and} \qquad (BD) + (BD)' = 1$$

$$= 0$$

$$F + F' = (AC + BD) + (A' + C')(B' + D')$$

Digital Design With An Introduction to the Verilog HDL – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2012, All rights reserved.

$$= ((AC)'(BD)')' + (AC)'(BD)'$$

$$= X' + X$$

$$= (XX')' = (0)'$$
because, $X.X' = 0$

$$= 1$$

2.9

(a) $F = x'y' + xy$

$$F' = (x'y' + xy)' = (x'y)'(xy)' = (x + y) (x' + y') = xy' + x'y$$
(b) $F = acc + ab' + a'bc'$

$$= (ac)'(ab')'(a'bc')'$$

$$= (ac)'(ab')'(a'bc')'$$

$$= (a' + ab' + a'c' + bc)(a + b' + c)$$

$$= (a' + ab' + a'c' + bc)(a + b' + c)$$

$$= (a' + bc')(a + b' + c')$$

$$= (b' + bc')(a + b' + c')$$

$$= (b' + bc')(a + bc')(a + bc')(a + bc')$$

$$= (b' + bc')(a + bc')(a + bc')(a + bc'$$

0 0 1

0

- **2.12** A = 10110001 B = 00001110
 - (a) A AND B = 00000000
 - **(b)** A OR B = 10111111
 - (c) $A \times A = 101111111$
 - (d) NOT B = 11110001
 - (e) NOT A = 01001110
 - **(f)** A NAND B = 111111111
 - (g) A NOR B = 01000000
- **2.13** (a) F = (u + x')(y' + z')'

(b)

(c)

(d)

(f) F = u + x + x' (u + y') + x'y'

2.14 (a) F = x'y' + x'z + xy

(b) F = x'y' + x'z + xy = (x + y)' + (x + z')' + (x' + y')'

(d) F = x'y' + x'z + xy = [(x'y')'(x'z)'(xy)']'

(e) F = x'y' + x'z + xy = (x + y)' + (x + z')' + (x' + y')'

Digital Design With An Introduction to the Verilog HDL – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2012, All rights reserved.

2.15
$$T_1 = A'BC' + A'BC + AB'C' + AB'C = A'B + AB' = A \oplus B$$

$$T_2 = A'B'C' + A'B'C + ABC' + ABC = A'B' + AB = (A \bigoplus B)'$$

2.16 (a) Logical product of all the 3 variable maxterms can be written as,

$$F(a, b, c) = M_7 M_6 M_5 M_4 M_3 M_2 M_1 M_0$$

$$= m_7' m_6' m_5' m_4' m_3' m_2' m_1' m_0'$$

$$= (m_7 + m_6 + m_4 + m_3 + m_2 + m_1 + m_0)'$$

$$= ((a' + a) (b'c' + b'c + bc' + bc))'$$

$$= ((b' + b) (c' + c))'$$

$$= (1)'$$

$$= 0$$
because; $mi' = Mi$
because; $mi' = Mi$

OR

$$= M_7.M_6.M_5.M_4.M_3.M_2.M_1.M_0$$

$$= (a + b + cc') (a + b' + cc') (a' + b + cc') (a' + b' + cc')$$

$$= (a + bb') (a' + bb')$$
because; $cc' = 0 & (a + b) (a + b') = a + bb'$

$$= aa'$$

$$= 0$$

(b) Logical product of all *n* variable maxterms can be written as,

$$= \Sigma(Mi \ Mi') \qquad \text{for,} \qquad i = 0, 1, \dots, (2^{n} - 1)$$

$$= M_0 M_0' + M_1 M_1' + M_2 M_2' + \dots + M_2^{n-1} M_2^{n-1}'$$

$$= 0 + 0 + \dots + 0 \qquad \text{because,} \qquad X.X' = 0$$

$$= 0$$

2.17 (a)
$$(b + c'd)(a' + cd') = a'b + bcd' + a'c'd + 0$$

= $a'b (c + c')(d + d') + (a + a')bcd' + a'(b + b')c'd$
= $\Sigma(1, 4, 5, 6, 7, 14) = \pi(0, 2, 3, 8, 9, 10, 11, 12, 13, 15)$

(b)
$$(ad + b'c + bd')(b + d) = abd + bd' + ad + b'cd$$

= $ab(c + c')d + (a + a')b(c + c')d' + a(b + b')(c + c')d + (a + a')b'cd$
= $\Sigma(3, 4, 6, 9, 11, 12, 13, 14, 15)$
= $\pi(0, 1, 2, 5, 7, 8, 10)$

(c)
$$(b+d)(b+d')(a+c) = (aa'+b+cc'+d)(aa'+b+cc'+d')(a+bb'+c+dd')$$

= $\Sigma(6, 7, 12, 13, 14, 15) = \pi(0, 1, 3, 4, 5, 8, 9, 11, 10, 2)$

(d)
$$ad + bcd + ab'c' + b'c'd' = a(b + b')(c + c')d + (a + a')bcd + ab'c' (d + d') + (a + a')b'c'd'$$

= $axyd + xbcd + ab'c'x + xb'c'd' = 1x41 + x111 + 100x + x000$
= $\Sigma(0, 7, 8, 9, 11, 13, 15) = \pi(1, 2, 3, 4, 5, 6, 10, 12, 14)$

2.18
$$F = xy'z' + x'y'z' + xy + x'y = xy'z' + x'y'z' + xyz + xyz' + x'yz + x'yz' = \Sigma(0, 2, 3, 4, 6, 7)$$

(c)
$$F = xy'z' + x'y'z' + xy + x'y = y'z' + y = y + z'$$

Total number of gates is
$$= 2(1 - NOT \text{ and } 1 - OR)$$

Total number of gates as per (b) are $= 8(3 - NOT, 4 - AND \text{ and } 1 - OR)$

2.19
$$F(A, B, C, D) = B'D + A'D + BD + BCD$$

$$= 0 - 1 + 0 - 1 + B - D + B C D$$

$$= 0 - 1 \rightarrow 0001(1), 0011(3), 1001(9), 1011(11)$$

$$0 - 1 \rightarrow 0001(1), 0011(3), 0101(5), 0111(7)$$

$$- 1 - 1 \rightarrow 0101(5), 0111(7), 1101(13), 1111(15)$$

$$- 1 1 \rightarrow 0111(7), 1111(15)$$

$$= \Sigma(1, 3, 5, 7, 9, 11, 13, 15)$$

$$= \pi(0, 2, 4, 6, 8, 10, 12, 14)$$

2.20 (a)
$$F(A, B, C, D) = \Sigma(0, 3, 5, 7, 9, 11, 13)$$

 $F'(A, B, C, D) = \Sigma(1, 2, 4, 6, 8, 10, 12, 14, 15)$

(b)
$$F(x, y, z) = \pi(2, 4, 6, 8)$$

 $F'(x, y, z) = \Sigma(2, 4, 6, 8)$

2.21 (a)
$$F(w, x, y, z) = \Sigma(1, 3, 5, 7, 9) = \pi(0, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15)$$

(b)
$$F(A, B, C, D) = \pi(3, 5, 8, 11, 13, 15) = \Sigma(0, 1, 2, 4, 6, 7, 9, 10, 12, 14)$$

2.22 (a)
$$(u + x'w)(x + u'v) = ux + x'wu'v$$
 \rightarrow (SOP form)
= $(u + x'wu'v)(x + x'wu'v)$
= $(u + x')(u + w)(u + v)(x + w)(x + u')(x + v) \rightarrow$ (POS form)

(b)
$$x' + z (x + y') (y + z') = x' + (xz + zy') (y + z') = x' + xyz$$

= $x' + yz$ \rightarrow SOP form
= $(x' + y)(x' + z)$ \rightarrow POS form

2.23 (a)
$$BC' + AB + ACD + CD$$

(b)
$$(A + B)(C + BD)(A' + B + D)$$

(c) (AB + A'B')(CD' + C'D)(A'B + AB')

(d) A + CD + (A + D')(C' + D) + C'D'

2.24
$$x \oplus y = x'y + xy'$$
 and $(x \oplus y)' = (x + y')(x' + y)$

Dual of
$$x'y + xy' = (x' + y)(x + y') = (x \oplus y)'$$

2.25 (a)
$$x/y = xy' \neq y / x = x'y$$
 Not commutative $(x/y)/z = xy'z' \neq x/(y/z) = x(yz')' = xy' + xz$ Not associative

(b)
$$(x \oplus y) = xy' + x'y = y \oplus x = yx' + y'x$$
 Commutative

$$(x \oplus y) \oplus z = \Sigma(1, 2, 4, 7) = x \oplus (y \oplus z)$$
 Associative

2.26 NOR (+ve logic) NAND (-ve logic)
$$x y z$$
 $x y z$

0	0	1	0	0	1
0	1	0	0	1	1
1	0	0	1	0	1
1	1	0	1	1	0

In positive logic LOW = 0 HIGH = 1 In negative logic LOW = 1 HIGH = 0

2.27 $f_1 = \Sigma(0, 2, 3, 5, 6)$ $f_1(a, b, c) = a'b'c' + a'bc' + a'bc + ab'c + abc'$

2.28 (a)
$$y = a(bcd)'e = a(b' + c' + d')e$$
 $y = a(b' + c' + d')e = ab + ac + ad = \Sigma(17, 19, 21, 23, 25, 27, 29)$

У	a bcde	у
0	1 0000	0
0	1 0001	1
0	1 0010	0
0	1 0011	1
0	1 0100	0
0	1 0101	1
0	1 0110	0
0	1 0111	1
0		0
0	1 1000	0
0	1 1001	1
0	1 1010	0
0	1 1011	1
0	1 1100	0
0	1 1101	1
0	1 1110	0
0	1 1111	0
	0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0000 0 1 0001 0 1 0010 0 1 0011 0 1 0100 0 1 0101 0 1 0110 0 1 1000 0 1 1000 0 1 1001 0 1 1011 0 1 1010 0 1 1011

 $y_1 = \Sigma \ (2, \, 3, \, 6, \, 7, \, 8, \, 9, \, 10$,11, 12, 13, 14, 15, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35)

$y_2 = \Sigma (3, 7, 9,$, 13, 15, 35,	39, 41, 43,	45, 47, 51, 55)

ab cdef	y_1 y_2	ab cdef	$y_1 y_2$	ab cdef	y_1 y_2	ab cdef	y_1 y_2
				10.000			
00 0000	0 0	01 0000	0 0	10 0000	1 0	11 0000	0 0
00 0001	0 0	01 0001	0 0	10 0001	1 0	11 0001	0 0
00 0010	1 0	01 0010	1 0	10 0010	1 0	11 0010	0 0
00 0011	1 1	01 0011	1 0	10 0011	1 1	11 0011	0 1
00 0100	0 0	01 0100	0 0	10 0100	0 0	11 0100	0 0
00 0101	0 0	01 0101	0 0	10 0101	0 0	11 0101	0 0
00 0110	1 0	01 0110	1 0	10 0110	0 0	11 0110	0 0
00 0111	1 1	01 0111	1 0	10 0111	0 1	11 0111	0 1
00 1000	1 0	01 1000	1 0	10 1000	0 0	11 1000	0 0
00 1001	1 1	01 1001	1 0	10 1001	0 1	11 1001	0 0
00 1010	1 0	01 1010	1 0	10 1010	0 0	11 1010	0 0
00 1011	1 0	01 1011	1 0	10 1011	0 1	11 1011	0 0
00 1100	1 0	01 1100	1 0	10 1100	0 0	11 1100	0 0
00 1101	1 1	01 1101	1 0	10 1101	0 1	11 1101	0 0
00 1110	1 0	01 1110	1 0	10 1110	0 0	11 1110	0 0
00 1111	1 1	01 1111	1 0	10 1111	0 1	11 1111	0 0

- **2.29** (a) True.
 - **(b)** False.

2.30
$$(b+d)(a'+b'+c)(a+c) = (a'b+bc+a'd+db'+cd)(a+c)$$

$$= ab'c+a'b'd+acd+a'bc+b'c+a'dc+cb'd+cd$$

$$= bc+ab'd+cd+a'dc+cb'd$$

2.31
$$a'b + a'c' + bc = a'b(c + c') + a'(b + b')c' + (a + a')bc$$

 $= a'bc + a'bc' + a'b'c' + abc = m_3 + m_2 + m_0 + m_7$
 $= \Sigma(0, 2, 3, 7) = \pi(1, 4, 5, 6) = (a + b + c')(a' + b + c)(a' + b + c')(a' + b' + c)$