

CLAIMS

What is Claimed is:

1. A recyclable energetic composition for low temperature storage prepared by the process comprising:
 - 3 mixture of at least one binder compound having at least one pendant azido group component with at least one plasticizer component, and thereafter said
 - 4 mixture is cooled to room temperature; and
 - 5 at least one chain-extending diacetylene component, at least one crosslinking
 - 6 tri- or higher polyacetylene component, at least one metal, metallic, or non-metal
 - 7 fuel component, and at least one oxidizer component which are combined at or
 - 8 above room temperature, said diacetylene component(s) and said triacetylene
 - 9 component(s) are combined into said mixture without the aid of a solvent, said
 - 10 diacetylene component(s) is combined for a sufficient amount of time with said
 - 11 mixture before said triacetylene component(s) is combined with said mixture to
 - 12 produce longer oligomer chains on said binder(s), said triacetylene component(s),
 - 13 said metal, metallic, non-metallic fuel component(s), and said oxidizer component(s)
 - 14 are combined to produce a homogeneous composition wherein said composition is
 - 15 cured by chemically reacting said azido groups of said polymer binder(s) by cyclo-
 - 16 addition of said polyacetylene component(s) to form triazole linkages.
1. The energetic composition according to claim 1, wherein said mixture of said
- 2 binder(s) and said plasticizer(s) components are combined at temperatures of at least
- 3 approximately 100°F.

- 1 3. The energetic composition according to claim 1, further comprising at least one
- 2 stabilizer component combined with said mixture at temperatures of at least
- 3 approximately 100°F.

- 1 4. The energetic composition according to claim 1, wherein at least one said chain-extending diacetylene component and at least one said crosslinking triacetylene component are combined to said mixture while being heated.

- 1 5. The energetic composition according to claim 1, wherein at least one said diacetylene component comprises at least one dipropargyl isophthalate and/or dipropargyl terephthalate.

- 1 6. The energetic composition according to claim 1, wherein at least one said diacetylene component is selected from the group comprising at least one 1, 4-di-(cyanoethynyl) benzene and its isomers, 2,11 dodecanedione-1,12-dipropiolate, α , Ω -polyethylene glycol dipropiolate, aliphatic or aromatic organic compounds with two separated activated acetylenic moieties, or any combination thereof.

- 1 7. The energetic composition according to claim 1, wherein at least one said triacetylene component includes trimesic tripropargylate.

- 1 8. The energetic composition according to claim 1, wherein at least one said triacetylene component is selected from the group comprising trihydroxy compound

3 functionalized by esterification with propiolic acid to a triacetylene, tricarboxylic
4 acid functionalized with propargyl alcohol, polycarboxylic acid or polyol having
5 more than three acetylene groups, or any combination thereof.

1 9. The energetic composition according to claim 1, further comprising at least one
2 stabilizer component dissolved in a volatile solvent and first combined with said
3 plasticizer component(s) before combined with said binder(s) to prevent any
4 decomposition of said plasticizer(s), and thereafter, said solvent is removed.

1 10. The energetic composition according to claim 1, wherein said binder is selected
2 from the group comprising polyglycidyl azide (GAP), azidomethyl-methyl-oxetane
3 (AMMO), *bis*(azido-methyl)oxetane/nitratomethyl-methyloxetane
4 (BAMO/NMMO), *bis*(azido-methyl)oxetane/azidomethyl-methyl-oxetane
5 (BAMO/AMMO), poly-nitratomethyl-methyl oxetane (poly-NMMO) and
6 polyglycidyl nitrate (PGN) which have azido moieties added to the ends,
7 copolymers, derivatives, and any combinations thereof.

1 11. The energetic composition according to claim 1, wherein said binder is selected
2 from the group comprising conventional polyalkanes, hydroxyl-terminated
3 polyalkanes, polyalkenes, polyethers, polyesters, copolymers, derivatives, and any
4 combinations thereof with the hydroxyl end groups replaced or otherwise
5 restructured to azido-groups.

1 12. The energetic composition according to claim 1, wherein said plasticizer is selected
2 from the group comprising butanetriol trinitrate (BTTN), trimethyl-olethanetrinitrate
3 (TMEN), triethyleneglycoldinitrate (TEGDN), diethyleneglycol-dinitrate
4 (DEGDN), nitroglycerine (NG), *bis*(2,2-dinitropropyl)acetal/*bis*(2,2-
5 dinitropropyl)formal (BDNPF/BDNPA), nitratoethylnitramine (alkyl NENA's), *bis*-
6 (2,2-dinitropropyl) acetal/formal (BDNPF/A), polycyano-2-(difluoramino)-2,3-
7 epoxyethane (PCDE) , *bis*(2,2-dinitro-2-fluoroethoxy) methane (FEFO), *bis*[2,2-
8 **bis**(difluoramino)-5,5-dinitro-5-fluoropentoxy]methane (SYFO), 1,3-
9 **bis**(fluorodinitroethoxy)-2,2-*bis*(difluoramino) propane (SYEP), 1,2,3-*tris*[1,2-
10 *bis*(difluoramino)ethoxy]propane (TVOPA), acetyl triethyl citrate, dibutyl phthalate
11 (DBP), dibutyl sebacate (DBS), dioctyl adipate (DOA), dioctyl azelate (DOZ),
12 isodecyl pelargonate (IDP), triacetin, tributyrin, and any combination thereof.

1 13. The energetic composition according to claim 1, wherein said oxidizer component
2 are dinitramide salt oxidizers including ammonium dinitramide (ADN) and/or
3 potassium dinitramide.

1 14. The energetic composition according to claim 1, wherein at least one said oxidizer
2 component is ammonium dinitramide (ADN).

1 15. The energetic composition according to claim 1, wherein said oxidizer component is
2 further selected from the group comprising (Cl-20), polynitropolyacetylhexaaza-
3 isowurtzitanes, (RDX), (HMX), (TEX), 3-nitro-1,2,4-triazol-5-one (NTO),

4 nitroguanidine (NQ), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), 1,3,3-
5 trinitroazetidine (TNAZ), 1,1-diamino-2,2-dinitro ethane (DADNE), ammonium
6 perchlorate (AP), ammonium nitrate (AN), hydroxylammonium nitrate (HAN), and
7 any combination thereof.

1 16. The energetic composition according to claim 1, wherein said metal, metallic, non-
2 metal fuel is selected from the group comprising aluminum, particulate aluminum,
3 ultra fine aluminum, titanium, carbon black, graphite, boron, magnesium, zirconium,
4 beryllium, lithium, zirconium, bismuth, their hydrides and carbides, and any
5 combination thereof.

1 17. The energetic composition according to claim 1, wherein said metal fuel is selected
2 from the group comprising aluminum, particulate aluminum Al¹, Al², Al³, ultra fine
3 aluminum, spherical aluminum, H-30, and any other aluminum particle sizes.

1 18. The energetic composition according to claim 1, wherein other solid propellant
2 ingredients are added to the binder/plasticizer components including said oxidizer.

1 19. A method of making a recyclable energetic composition for low temperature storage
2 comprising:
3 mixing at least one binder compound having at least one pendant azido group
4 component with at least one plasticizer component;

5 heating said binder(s) and said plasticizer(s) mixture until the mixture is
6 homogeneous;
7 cooling said mixture to room temperature;
8 adding at least one diacetylene component to said mixture without the aid of a
9 solvent to produce longer polymer chains on said binder(s);
10 adding at least one metal, metallic, non-metal fuel, oxidizer component(s) to
11 said mixture at room temperature; and
12 adding at least one tri- or higher polyacetylene component without the aid of a
13 solvent to produce a homogeneous solid, elastomeric composition which is formed by
14 chemically reacting said azido groups of said polymer binder(s) by cyclo-addition of
15 said triacetylene component(s) to form triazole linkages.

1 20. The method according to claim 19, further comprising adding at least one stabilizer
2 component to said mixture and while heating said mixture.

1 21. The method according to claim 19, further comprising at least one stabilizer
2 component dissolved in a volatile solvent, combining said stabilizer to said
3 plasticizer first before combining with said binder to prevent any decomposition of
4 said plasticizer.

1 22. The method according to claim 19, wherein said diacetylene and said tri- or higher
2 polyacetylene component are combined to the mixture while being heated.

- 1 23. The method according to claim 19, wherein said heating of said binder(s) and said
- 2 plasticizer(s) mixture ranges from temperatures of about 100°F to about 130°F.
- 1 24. The method according to claim 19, further comprising adding other components to
- 2 said energetic composition selected from the group comprising burn rate catalysts
- 3 and modifiers, thermal, combustion and aging stabilizers, and opacifiers.
- 1 25. The method according to claim 19, wherein other solid propellant ingredients are
- 2 added to the binder/plasticizer components including said oxidizer.
- 1 26. The energetic low temperature storage composition obtained by the process defined
- 2 in claim 19.