

Features and Benefits

Absolute Rotary Position Sensor IC
Simple & Robust Magnetic Design
Tria⊗is™ Hall Technology
Programmable Angular Range up to 360 Degrees
Programmable Linear Transfer Characteristic
Selectable Analog (Ratiometric), PWM, Serial Protocol
12 bit Angular Resolution - 10 bit Angular Thermal Accuracy
40 bit ID Number
Single Die − SO8 Package RoHS Compliant
Dual Die (Full Redundant) − TSSOP16 Package RoHS Compliant

Applications

Absolute Rotary Position Sensor Pedal Position Sensor Throttle Position Sensor Ride Height Position Sensor Steering Wheel Position Sensor Motor-shaft Position Sensor Float-Level Sensor Non-Contacting Potentiometer

MLX90316

Rotary Position Sensor IC

Ordering Information¹

Part No.	Temperature Suffix	Package Code	Die Rev.	Option code	Packing ²
MLX90316	S (-20°C to 85°C)	DC [SOIC-8]	BCG	STANDARD ³	Reel
MLX90316	E (-40°C to 85°C)	DC [SOIC-8]	BCG	STANDARD ³	Reel
MLX90316	K (-40°C to 125°C)	DC [SOIC-8]	BCG	STANDARD ³	Reel
MLX90316	L (-40°C to 150°C)	DC [SOIC-8]	BCG	STANDARD ³	Reel
MLX90316	S (-20°C to 85°C)	GO [TSSOP-16]	BCG	STANDARD ³	Reel
MLX90316	E (-40°C to 85°C)	GO [TSSOP-16]	BCG	STANDARD ³	Reel
MLX90316	K (-40°C to 125°C)	GO [TSSOP-16]	BCG	STANDARD ³	Reel
MLX90316	L (-40°C to 150°C)	GO [TSSOP-16]	BCG	STANDARD ³	Reel
MLX90316	K (-40°C to 125°C)	DC [SOIC-8]	BCG	PPA⁴ _.	Reel
MLX90316	K (-40°C to 125°C)	GO [TSSOP-16]	BCG	PPA ^⁴	Reel
MLX90316	K (-40°C to 125°C)	DC [SOIC-8]	BCG	PPD ⁵	Reel
MLX90316	K (-40°C to 125°C)	GO [TSSOP-16]	BCG	PPD ^⁵	Reel
MLX90316	E (-40°C to 85°C)	DC [SOIC-8]	BDG	SPI ⁶	Reel
MLX90316	K (-40°C to 125°C)	DC [SOIC-8]	BDG	SPI ⁶	Reel
MLX90316	L (-40°C to 150°C)	DC [SOIC-8]	BDG	SPI ⁶	Reel
MLX90316	E (-40°C to 85°C)	GO [TSSOP-16]	BDG	SPI ⁶	Reel
MLX90316	K (-40°C to 125°C)	GO [TSSOP-16]	BDG	SPI ⁶	Reel
MLX90316	L (-40°C to 150°C)	GO [TSSOP-16]	BDG	SPI ⁶	Reel

¹ Example: MLX90316KDC-BCG-PPA-Reel

² For engineering purpose, a limited number of samples can also be ordered in tubes. In this case, the value "Reel" in the field "Packing" must be replaced by "Tube".

³ Fully end-user programmable version through the Melexis Programming Unit PTC-04

Pre-Programmed Analog – 360deg angular span for an analog output between 0.5V and 4.5V, Low Speed Mode (Locked)
 Pre-Programmed PWM – 360deg angular span, 10-90% at 1 kHz, High Speed Mode (Locked)

⁶ SPI Version pre-programmed and locked for 360deg rotary position application in SPI mode (High Speed). The standard version (Die Rev. BCG) can also be programmed in SPI but the application diagram described in section 17.4.3 is recommended.

1. Functional Diagram

Figure 1 - Block Diagram (Analog & PWM)

Figure 2 - Block Diagram (Serial Protocol)

2. Description

The MLX90316 is a monolithic sensor IC featuring the Tria⊗is™ Hall technology. Conventional planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is™ Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an Integrated Magneto-Concentrator (IMC®) which is deposited on the CMOS die (as an additional back-end step).

The MLX90316 is only sensitive to the flux density coplanar with the IC surface. This allows the MLX90316 with the correct magnetic circuit to decode the absolute rotary (angular) position from 0 to 360 Degrees. It enables the design of novel generation of non-contacting rotary position sensors that are frequently required for both automotive and industrial applications.

In combination with the appropriate signal processing, the magnetic flux density of a small magnet (diametral magnetization) rotating above the IC can be measured in a non-contacting way (Figure 3). The angular information is computed from both vectorial components of the flux density (i.e. B_X and B_Y). MLX90316 produces an output signal proportional to the decoded angle. The output is selectable between Analog, PWM and Serial Protocol.

Figure 3 - Typical application of MLX90316

MLX90316

Rotary Position Sensor IC

TABLE of CONTENTS

ATURES AND BENEFITS	
PLICATIONS	1
DERING INFORMATION	2
FUNCTIONAL DIAGRAM	3
DESCRIPTION	4
GLOSSARY OF TERMS – ABBREVIATIONS – ACRONYMS	7
PINOUT	7
ABSOLUTE MAXIMUM RATINGS	8
DETAILED DESCRIPTION	8
MLX90316 ELECTRICAL SPECIFICATION	11
MLX90316 ISOLATION SPECIFICATION	13
MLX90316 TIMING SPECIFICATION	13
MLX90316 ACCURACY SPECIFICATION	14
MLX90316 MAGNETIC SPECIFICATION	15
MLX90316 CPU & MEMORY SPECIFICATION	15
MLX90316 END-USER PROGRAMMABLE ITEMS	16
DESCRIPTION OF END-USER PROGRAMMABLE ITEMS	17
4.1. Output Mode	17
14.1.1. Analog Output Mode	17
1	
14.1.4. Switch Out	
4.3. IDENTIFICATION	
	20
4.4. Sensor Front-End	
	21
14.4.1. HIGHSPEED Parameter	21 21
14.4.1. HIGHSPEED Parameter	21 21 21
14.4.1. HIGHSPEED Parameter	21 21 21
14.4.1. HIGHSPEED Parameter	
14.4.1. HIGHSPEED Parameter	
14.4.1. HIGHSPEED Parameter	
	PLICATIONS

MLX90316

Rotary Position Sensor IC

14.6.1	!. RESONFAULT Parameter	25
14.6.2		
14.7.	LOCK	
14.7.1		
14.7.2	2. LOCK Parameter	25
15. MLX	90316 SELF DIAGNOSTIC	26
16. SERI	AL PROTOCOL	28
16.1.	Introduction	28
16.2.	SERIAL PROTOCOL Mode	
16.3.	MOSI (MASTER OUT SLAVE IN)	
16.4.	MISO (MASTER IN SLAVE OUT)	
16.5.	/SS (SLAVE SELECT)	
16.6.	MASTER START-UP	
16.7.	SLAVE START-UP	
16.8.	TIMING	
16.9.	SLAVE RESET	
16.10.	FRAME LAYER	
16.10.		
16.10.		
16.10.	3	
16.10.		
16.10.	0	
16.10.	o de la companya de	
17. REC	OMMENDED APPLICATION DIAGRAMS	
17.1.	ANALOG OUTPUT WIRING WITH THE MLX90316 IN SOIC PACKAGE	
17.2.	ANALOG OUTPUT WIRING WITH THE MLX90316 IN TSSOP PACKAGE	
17.3.	PWM Low Side Output Wiring	
17.4.	SERIAL PROTOCOL	
17.4.1	· · · · · · · · · · · · · · · · · · ·	
17.4.2	~	
17.4.3	3. Non SPI Version (Standard Version)	35
	NDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCT	
	FERENT SOLDERING PROCESSES	30
19. ESD	PRECAUTIONS	36
20. PACI	KAGE INFORMATION	37
20.1.	SOIC8 - PACKAGE DIMENSIONS	37
20.2.	SOIC8 - PINOUT AND MARKING	37
20.3.	SOIC8 - IMC POSITIONNING	38
20.4.	TSSOP16 - PACKAGE DIMENSIONS	
20.5.	TSSOP16 - PINOUT AND MARKING	40
20.6.	TSSOP16 - IMC Positionning	40
24 DISC	LAIMED	12

3. Glossary of Terms – Abbreviations – Acronyms

- ➤ Gauss (G), Tesla (T): Units for the magnetic flux density 1 mT = 10 G
- TC: **T**emperature **C**oefficient (in ppm/Deg.C.)
- NC: Not Connected
- > PWM: Pulse Width Modulation
- \triangleright %DC: **D**uty **C**ycle of the output signal i.e. $T_{ON} / (T_{ON} + T_{OFF})$
- > ADC: Analog-to-Digital Converter
- > DAC: Digital-to-Analog Converter
- LSB: Least Significant Bit
- > MSB: Most Significant Bit
- DNL: Differential Non-Linearity
- > INL: Integral Non-Linearity
- > RISC: Reduced Instruction Set Computer
- > ASP: Analog Signal Processing
- > DSP: Digital Signal Processing
- ATAN: trigonometric function: arctangent (or inverse tangent)
- ➤ IMC: Integrated Magneto-Concentrator (IMC®)
- CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)
- ➤ EMC: Electro-Magnetic Compatibility

4. Pinout

Pin#	SO	IC-8	TSSOP-16		
PIN#	Analog / PWM	Serial Protocol	Analog / PWM	Serial Protocol	
1	VDD	VDD	VDIG1	VDIG ₁	
2	Test 0	Test 0	VSS ₁ (Ground ₁)	VSS ₁ (Ground ₁)	
3	Switch Out	/SS	VDD ₁	V _{DD1}	
4	Not Used	SCLK	Test 0 ₁	Test 0 ₁	
5	Out	MOSI / MISO	Switch Out ₂	/SS ₂	
6	Test 1	Test 1	Not Used ₂	SCLK₂	
7	VDIG	Vdig	Out ₂	MOSI ₂ / MISO ₂	
8	Vss (Ground)	Vss (Ground)	Test 1 ₂	Test 1 ₂	
9			VDIG ₂	VDIG ₂	
10			VSS ₂ (Ground ₂)	VSS ₂ (Ground ₂)	
11			VDD ₂	VDD ₂	
12			Test 0 ₂	Test 0 ₂	
13			Switch Out₁	/SS ₁	
14			Not Used₁	SCLK ₁	
15			Out ₁	MOSI ₁ / MISO ₁	
16			Test 1₁	Test 1 ₁	

For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see section 17).

5. Absolute Maximum Ratings

Parameter	Value
Supply Voltage, VDD (overvoltage)	+ 20 V
Reverse Voltage Protection	– 10 V
Positive Output Voltage – Standard Version	+ 10 V
(Analog or PWM)	$+ 14 \text{ V } (200 \text{ s max} - \text{T}_{\text{A}} = + 25^{\circ}\text{C})$
Positive Output Voltage – SPI Version	VDD + 0.3V
Positive Output Voltage (Switch Out)	+ 10 V
	$+ 14 \text{ V } (200 \text{ s max} - \text{T}_{\text{A}} = + 25^{\circ}\text{C})$
Output Current (Iоит)	± 30 mA
Reverse Output Voltage	- 0.3 V
Reverse Output Current	- 50 mA
Operating Ambient Temperature Range, T _A	− 40°C + 150°C
Storage Temperature Range, Ts	− 40°C + 150°C
Magnetic Flux Density	± 700 mT

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6. Detailed Description

As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density parallel to the IC surface (i.e. B_{ii}) is sensed through the $Tria \otimes is^{TM}$ sensor front-end. This front-end consists into two orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (blue area on Figure 4) and an Integrated Magneto-Concentrator (IMC® yellow disk on Figure 4).

Figure 4 - Tria⊗is™ sensor front-end (4 Hall plates + IMC® disk)

Both components of the applied flux density $B_{//}$ are measured individually i.e. $B_{X//}$ and $B_{Y//}$. Two orthogonal components (respectively $B_{X\perp}$ and $B_{Y\perp}$) proportional to the parallel components (respectively $B_{X//}$ and $B_{Y//}$) are induced through the IMC and can be measured by both respective pairs of conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and the IC surface.

While a magnet (diametrically magnetized) rotates above the IC as described on Figure 3, the sensing stage provides two differential signals in quadrature (sine and cosine – Figure 5 and Figure 6)

Figure 5 – Magnetic Flux Density – $B_X \propto \cos(\alpha) \& B_Y \propto \sin(\alpha)$

Figure 6 – Tria \otimes isTM sensor front-end – Output signals – $V_X \propto B_X \propto cos(\alpha) \& V_Y \propto B_Y \propto sin(\alpha)$

MLX90316

Rotary Position Sensor IC

Those Hall signals are processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier).

The conditioned analog signals are converted through an ADC (configurable – 14 or 15 bits) and provided to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is the extraction of the angular position from the two raw signals (after so-called front-end compensation steps) through the following operation:

$$\alpha = ATAN\left(\frac{V_{Y}}{V_{X}}\right)$$

The DSP functionality is governed by the micro-code (firmware – F/W) of the micro-controller which is stored into the ROM (mask programmable). In addition to the "ATAN" function, the F/W controls the whole analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also the self-diagnostic modes.

In the MLX90316, the "ATAN" function is computed via a look-up table (i.e. it is not obtained through a CoRDiC algorithm).

Due to the fact that the "ATAN" operation is performed on the ratio " V_Y/V_X ", the angular information is intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects) affecting both signals. This feature allows therefore an improved thermal accuracy vs. rotary position sensor based on conventional linear Hall sensors.

In addition to the improved thermal accuracy, the realized rotary position sensor is capable of measuring a complete revolution (360 Degrees) and the linearity performances are excellent taking into account typical manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet).

Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the target transfer characteristic and it is provided at the output(s) as:

- an analog output level through a 12 bit DAC followed by a buffer
- a digital PWM signal with 12 bit depth (programmable frequency 100 Hz ... 1 kHz)
- a digital Serial Protocol (SP 14 bits computed angular information available)

For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary position sensor output transfer characteristic:

 $Vout(\alpha) = ClampHi \qquad \qquad \text{for } \alpha \geq \alpha \text{max}$

where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user.

The linear part of the transfer curve can be adjusted through either a 2 point or a 3 point calibration depending on the linearity requirement.

A digital output is also available and used as a programmable angular switch.

The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC).

The programming steps do not require any dedicated pins. The operation is done using the supply and output nodes of the IC. The programming of the MLX90316 is handled at both engineering lab and production line levels by the Melexis Programming Unit PTC-04 with the dedicated MLX90316 daughterboard and software tools (DLL – User Interface).

7. MLX90316 Electrical Specification

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for T_A as specified by the Temperature suffix (S, E, K or L).

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Nominal Supply Voltage	Vdd		4.5	5	5.5	V
Supply Current ⁽⁷⁾	ldd	Slow mode ⁽⁸⁾		8.5	11	mA
Supply Currenter	iuu	Fast mode ⁽⁸⁾		13.5	16	mA
POR Level	VDD POR	Supply Under Voltage	2	2.7	3	V
Output Current	lout	Analog Output mode	-8		8	mA
Output Ourient	lout	PWM Output mode	-20		20	mA
		Vout = 0 V		12	15	mA
Output Short Circuit Current	I _{short}	Vout = 5 V		12	15	mA
		Vout = 14 V (T _A = 25°C)		24	45	mA
Output Load	R_L	Pull-down to Ground	1	10	∞(10)	k Ω
Output Load	IXL	Pull-up to 5V ⁽⁹⁾	1	10	∞(10)	kΩ
Analog Caturation Output Laval	Vsat_lo	Pull-up load $R_L \ge 10 \text{ k}\Omega$			3	%VDD
Analog Saturation Output Level	Vsat_hi	Pull-down load $R_L \ge 10 \ k\Omega$	96			%VDD
	VsatD_lo	Pull-up Low Side $R_L \ge 10 \text{ k}\Omega$			4.5	%VDD
Digital Saturation Output Level		Push-Pull (IOUT = -20mA)			1.5	
	VsatD_hi	Push-Pull (IOUT = 20mA)	97			%VDD
	Diag_lo	Pull-down load $R_L \ge 10 \ k\Omega$			1	0/1/
Astina Diseasestia Outrott and		Pull-up load $R_L \ge 10 \text{ k}\Omega$			1.5	%VDD
Active Diagnostic Output Level	6	Pull-down load $R_L \ge 10 \ k\Omega$	97			0/1/
	Diag_hi	Pull-up load $R_L \ge 10 \text{ k}\Omega$	98			%VDD
	D) / DD	Broken Vss ⁽¹²⁾ &			4(44)	0/1/
	BVssPD	Pull-down load R _L ≤ 10 kΩ			4 (11)	%VDD
	D) / D()	Broken Vss ⁽¹²⁾ &	00	400		0/1/
Passive Diagnostic Output Level	BVssPU	Pull-up load $R_L \ge 1k\Omega$	99	100		%VDD
(Broken Track Diagnostic) (11)	D) /= - DD	Broken VDD ⁽¹²⁾ &		_	,	0/1/
	BVDDPD	Pull-down load $R_L \ge 1k\Omega$		0	1	%VDD
	D) /p p D! !	Broken VDD &	Na Dad	T!	-!:	0/1/55
	BVDDPU Pull-up load to 5V		No Broken Track diagnostic			%VDD
MLX 90316 Electrical Specifica	tion continu	ies	•			

⁷ For the dual version, the supply current is multiplied by 2

⁸ See section 14.4.1 for details concerning Slow and Fast mode

⁹ Applicable for output in Analog and PWM (Open-Drain) modes

 $^{^{10}}$ RL < ∞ for output in PWM mode

¹¹ For detailed information, see also section 15

¹² Not Valid for the SPI Version

4.35

MLX 90316 Electrical Specification								
Clamped Output Level	Clamp_lo	Programmable	0		100	%VDD ⁽¹³⁾		
	Clamp_hi	Programmable	0		100	%VDD ⁽¹³⁾		
Switch Out ⁽¹⁴⁾	Sw_lo	Pull-up Load 1.5k to 5V	0.55		1.1	V		

3.65

As an illustration of the previous table, the MLX90316 fits the typical classification of the output span described on the Figure 7.

Pull-up Load 1.5k to 5V

Sw hi

Figure 7 - Output Span Classification

¹³ Clamping levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi)

¹⁴ See section 14.1.4 for the application diagram

8. MLX90316 Isolation Specification

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for T_A as specified by the Temperature suffix (S, E, K or L). Only valid for the package code GO i.e. dual die version.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Isolation Resistance		Between 2 dies	4			ΜΩ

9. MLX90316 Timing Specification

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for T_A as specified by the Temperature suffix (S, E, K or L).

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Main Clock Frequency	Ck	Slow mode(15)		7		MHz
		Fast mode(15)		20		MHz
Sampling Rate		Slow mode ⁽¹⁶⁾		600		μs
		Fast mode ⁽¹⁶⁾		200		μs
Step Response Time	Ts	Slow mode ⁽¹⁵⁾ , Filter=5 ⁽¹⁶⁾			4	ms
		Fast mode(15), Filter=0(16)		400	600	μs
Watchdog	Wd	See Section 15			5	ms
Start-up Cycle	Tsu	Slow and Fast mode(15)			15	ms
Analog Output Slew Rate		C _{OUT} = 42 nF		200		\//ma
		C _{OUT} = 100 nF		100		V/ms
PWM Frequency	F _{PWM}	PWM Output Enabled	100		1000	Hz
Digital Output Rise Time		Mode 5 – 10nF, R_L = 10 k Ω		120		μs
		Mode 7 – 10nF, R_L = 10 k Ω		2.2		μs
Digital Output Fall Time		Mode 5 – 10nF, R_L = 10 k Ω		1.8		μs
		Mode 7 – 10nF, R_L = 10 k Ω		1.9		μs

¹⁵ See section 14.4.1 for details concerning Slow and Fast mode

¹⁶ See section 14.5 for details concerning Filter parameter

10. MLX90316 Accuracy Specification

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for T_A as specified by the Temperature suffix (S, E, K or L).

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
ADC Resolution on the raw	RADC	Slow Mode ⁽¹⁷⁾		15		bits
signals sine and cosine		Fast Mode(17)		14		bits
Thermal Offset Drift #1(18)		Thermal Offset Drift at the DSP				
		input (excl. DAC and output stage)				
		Temperature suffix S, E and K	-60		+60	LSB ₁₅
		Temperature suffix L	-90		+90	LSB ₁₅
Thermal Offset Drift #2		Thermal Offset Drift of the DAC				
(to be considered only for the		and Output Stage				
analog output mode)		Temperature suffix S, E and K	- 0.3		+ 0.3	%VDD
		Temperature suffix L	- 0.4		+ 0.4	%VDD
Thermal Drift of Sensitivity		Temperature suffix S, E and K	- 0.3		+ 0.3	%
Mismatch ⁽¹⁹⁾		Temperature suffix L	- 0.5		+ 0.5	%
Intrinsic Linearity Error ⁽²⁰⁾	Le	T _A = 25°C	-1		1	Deg
Analog Output Resolution	R _{DAC}	12 bits DAC		0.025		%Vdd/LSB
		(Theoretical – Noise free)				
		INL	-4		+4	LSB
		DNL	-2		+2	LSB
Output stage Noise		Clamped Output		0.05		%VDD
Noise pk-pk ⁽²¹⁾		RG = 9, Slow mode, Filter=5		0.03	0.06	Deg
		RG = 9, Fast mode, Filter=0		0.1	0.2	Deg
Ratiometry Error			-0.1	0	0.1	%VDD
PWM Output Resolution	R _{PWM}	12 bits		0.025		%DC/LSB
		(Theoretical – Jitter free)				
PWM Jitter(22)	J _{PWM}	RG = 6, F _{PWM} = 250 Hz - 800Hz			0.2	%DC
Serial Protocol Output	R _{SP}	14 bits – 360 Deg. mapping		0.022		Deg/LSB
Resolution		(Theoretical – Jitter free)				

 $^{^{17}}$ 15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to 0.005Deg/LSB₁₅ in Low Speed Mode and 0.01Deg/LSB₁₄ in High Speed.

3901090316 Page 14 of 42 Data Sheet Rev. 005 May. 09

¹⁸ For instance, Thermal Offset Drift #1 equal ± 60LSB₁₅ yields to max. ± 0.3 Deg. angular error for the computed angular information (output of the DSP). See Front End Application Note for more details. This is only valid if automatic gain is set (See Section 14.4.2)

¹⁹ For instance, Thermal Drift of Sensitivity Mismatch equal \pm 0.4% yields to max. \pm 0.1 Deg. angular error for the computed angular information (output of the DSP). See Front End Application Note for more details.

²⁰ The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the output linearity error increases. However, it can be improved with the multi point end-user calibration that is available on the MLX90316.

²¹ The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in application mode (Section 14.5).

²² Jitter is defined by \pm 3 σ for 1000 successive acquisitions and the slope of the transfer curve is 100%pc/360 Deg.

11. MLX90316 Magnetic Specification

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for T_A as specified by the Temperature suffix (S, E, K or L).

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Magnetic Flux Density	В		20	50	70(23)	mT
Magnet Temperature Coefficient	TCm		-2400		0	ppm/°C

12. MLX90316 CPU & Memory Specification

The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
ROM				10		kB
RAM				256		В
EEPROM				128		В

²³ Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.

13. MLX90316 End-User Programmable Items

Devemates		Defa	ult Value	s		
Parameter	Comments	STANDARD	SPI	PPA	PPD	# bit
Output Mode	Define the output stage mode	4	N/A	4	7	3
PWMPOL1	PWM Polarity	0	N/A	N/A	1	1
PWM_Freq	PWM Frequency	1000h	N/A	N/A	1kHz	16
CLOCKWISE		0	0	0	1	1
DP	Discontinuity Point	0h	0h	0h	0h	15
LNR_S0	Initial Slope	0h	N/A	N/A	N/A	16
LNR_A_X	AX Coordinate	8000h	0	0	0	16
LNR_A_Y	AY Coordinate	0h	0%	10%	10%	16
LNR_A_S	AS Coordinate	0h	100%/360d	80%/360d	80%/360d	16
LNR_B_X	BX Coordinate	FFFFh	FFFFh	FFFFh	FFFFh	16
LNR_B_Y	BY Coordinate	0h	FFFFh	FFFFh	FFFFh	16
LNR_B_S	BS Coordinate	0h	N/A	N/A	N/A	16
LNR_C_X	CX Coordinate	FFFFh	FFFFh	FFFFh	FFFFh	16
LNR_C_Y	CY Coordinate	FFFFh	FFFFh	FFFFh	FFFFh	16
LNR_C_S	CS Coordinate	0h	N/A	N/A	N/A	16
CLAMP_HIGH	Clamping High	8%	0%	10%	10%	16
CLAMP_LOW	Clamping Low	8%	100%	90%	90%	16
KD	Switch Out	FFFFh	FFFFh	FFFFh	FFFFh	16
KDHYST	Hysteresis on the Switch Out	0	N/A	N/A	N/A	8
DEADZONE		0	0	0	0	8
FHYST		4	0	0	0	8
MELEXISID1		MLX	MLX	MLX	MLX	16
MELEXISID2		MLX	MLX	MLX	MLX	16
MELEXISID3		MLX	MLX	MLX	MLX	16
CUSTUMERID1		1	1	1	1	8
CUSTUMERID2		6(24)	19	16	20	16
CUSTUMERID3		MLX	MLX	MLX	MLX	16
HIGHSPEED		0	1	0	1	1
FSWAP		1	1	0	1	1
FILTER		5	0	2	5	8
FILTER A1	Filter coefficient A1 for FILTER=6	6600h	N/A	N/A	N/A	16
FILTER A2	Filter coefficient A2 for FILTER=6	2A00h	N/A	N/A	N/A	16
ARGC	Auto Gain at Start Up	0	1	1	1	1
AUTO_RG	Automatic Rough Gain Selection	0	1	1	1	1
RoughGain		9	0	3	0	8
RGThresL		0	0	0	0	4
RGThresH		15	15	15	15	4
EEHAMHOLE		3131h	0	0	0	16
RESONFAULT		0	1	1	1	2
End-User Programmable Items	continues					

²⁴ for MLX90316SDC–BCG–STANDARD, the CUSTUMERID2 parameter might differ from the given value (28d instead of 6d)

3901090316 Page 16 of 42 Data Sheet Rev. 005 May. 09

End-User Programmable Item	s					
MLXLOCK		0	1	1	1	1
LOCK		0	1	1	1	1

14. Description of End-User Programmable Items

14.1. Output Mode

The MLX90316 output type is defined by the Output Mode parameter.

Parameter	Value	Description
Analog Output Mode	2, 4	Analog Rail-to-Rail
DWM Output Made	5	Low Side (NMOS)
PWM Output Mode	7	Push-Pull
Serial	N/A	Low Side (NMOS)

14.1.1. Analog Output Mode

The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration allows the use of a pull-up or pull-down resistor.

14.1.2. PWM Output Mode

If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width Modulation (PWM).

In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor to VDD.

In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up resistor to VDD.

The PWM polarity is selected by the PWMPOL1 parameter:

- PWMPOL1 = 0 for a low level at 100%
- PWMPOL1 = 1 for a high level at 100%

The PWM frequency is selected by the PWM_Freq parameter.

PWM Frequency Code						
Oscillator Mode Pulse-Width Modulation Frequency (Hz)						
Oscillator Mode	100 200 500 1000					
Low Speed	35000	17500	7000	3500		
High Speed	-	50000	20000	10000		

For instance, in Low Speed Mode, set PWM_Freq = 7000 (decimal) to set the PWM frequency at 500Hz.

14.1.3. Serial Protocol Output Mode

The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node. See the dedicated Serial Protocol section for a full description (Section 16).

14.1.4. Switch Out

Parameter	Value	Unit
KD	0359.9999	deg
KDHYST	0 1.4	deg

The switch is activated (Sw_lo) when the digital angle is greater than the value stored in the KD parameter. This angle refers to the internal angular reference linked to the parameter DP and not to the absolute physical 0° angle.

The KDHYST defines the hysteresis amplitude around the Switch point. The switch is actually activated if the digital angle is greater than KD+KDHYST. It is deactivated if the digital angle is less than KD-KDHYST.

The mandatory application diagram to use this feature is depicted in the Figure 8. See section 7 for the electrical characteristic.

If the Switch feature is not used in the application, the output pin needs to be connected to the ground.

Figure 8 - Application Diagram for the Switch Out

14.2. Output Transfer Characteristic

Parameter	Value	Unit
CLOCKWISE	0 → CCW	
CLOCKWISE	1 → CW	
DP	0 359.9999	deg
LNR_A_X LNR_B_X LNR_C_X	0 359.9999	deg
LNR_A_Y LNR_B_Y LNR_C_Y	0 100	%
LNR_S0 LNR_A_S LNR_B_S	0 17	%/deg
LNR_C_S	-17 0 17	%/deg
CLAMP_LOW	0 100	%
CLAMP_HIGH	0 100	%
DEADZONE	0 359.9999	deg

14.2.1. CLOCKWISE Parameter

The CLOCKWISE parameter defines the magnet rotation direction.

- CCW is the defined by the 1-4-5-8 pin order direction for the SOIC8 package and 1-8-9-16 pin order direction for the TSSOP16 package.
- CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC8 and 16-9-8-1 pin order direction for the TSSOP16 package.

Refer to the drawing in the IMC positioning sections (Section 20.3 and 20.6).

14.2.2. Discontinuity Point (or Zero Degree Point)

The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the origin at any location of the trigonometric circle. The DP is used as reference for all the angular measurements.

Figure 9 - Discontinuity Point Positioning

14.2.3. LNR Parameters

The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal.

The shape of the MLX90316 transfer function from the digital angle value to the output voltage is described by the drawing below. Six segments can be programmed but the clamping levels are necessarily flat.

Two, three, or even five calibration points are then available, reducing the overall non-linearity of the IC by almost an order of magnitude each time. Three or five point calibration will be preferred by customers looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for a cheaper calibration set-up and shorter calibration time.

14.2.4. CLAMPING Parameters

The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC. In SPI mode, the resolution is 14bits or 0.022deg over 360deg.

14.2.5. DEADZONE Parameter

The dead zone is defined as the angle window between 0 and 359.9999. When the digital angle lies in this zone, the IC is in fault mode (RESONFAULT must be set to "1" – See 14.6.1).

14.3. Identification

Parameter	Value	Unit
MELEXSID1 MELEXSID2 MELEXSID3	0 65535 0 65535 0 65535	
CUSTUMERID1 CUSTUMERID2 CUSTUMERID3	0 255 0 65535 0 65535	

Identification number: 40 bits freely useable by Customer for traceability purpose.

14.4. Sensor Front-End

Parameter	Value	Unit
HIGHSPEED	0 = Slow mode 1 = Fast mode	
ARGC	0 = disable 1 = enable	
AUTO_RG	0 = disable 1 = enable	
RoughGain	0 15	
RGThresL	0 15	
RGThresH	0 15	

14.4.1. HIGHSPEED Parameter

The HIGHSPEED parameter defines the main frequency for the DSP.

- HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock.
- HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock.

For better noise performance, the Slow Mode must be enabled.

14.4.2. ARGC, AUTO_RG, RoughGain Parameters

AUTO_RG and ARGC parameters enable the automatic gain control (AGC) of the analog chain. The AGC loop is based on

$$(V_X)^2 + (V_Y)^2 = (Amplitude)^2 = (Radius)^2$$

and it targets an amplitude of 90% of the ADC input span.

At Start-Up phase, the gain stored in the parameter RoughGain is always used. Depending of the AUTO_RG and ARGC settings, the AGC regulation acts as follow:

- If ARGC is set, the regulation proceeds by jump to reach the target gain. Note that this regulation is only valid if the starting gain does not saturate the ADC. Melexis recommendation is to use RoughGain ≤ 3 if ARGC=1.
- If ARGC is "0" and AUTO_RG is set to "1", the regulation adapts every cycle by one gain code the current gain to reach the 90% ADC span target. Note that if the value of RoughGain is too far from the actual gain, the chip will enter the normal operating mode (after the Start-Up phase) with an incorrect gain which will cause the device to go in diagnostic low (field too low/field too high See section 15).
- If ARGC and AUTO_RG are "0", the AGC regulation is off and the gain used is the value stored in the parameter RoughGain. Melexis does not advise the use of this mode.

The parameter AUTO_RG activates the automatic regulation during normal operation of the device as background task.

Melexis strongly recommend to set ARGC = "1", AUTO_RG = "1" and RoughGain \leq 3 for all types of application. If the magnetic specifications of the application are well known and under control, the appropriate RoughGain can also be programmed with ARGC set to "0" and AUTO_RG to "1".

Please note that the angular errors listed in the section 10 are only valid if the AUTO_RG is activated. AUTO_RG avoids also the saturation of the analog chain and the associated linearity error.

The current gain (RG) can be read out with the PTC-04 and gives a rough indication of the applied magnetic flux density (Amplitude).

14.4.3. RGThresL, RGThresH Parameters

RGThresL & RGThresH define the boundaries within the gain setting (Rough Gain) is allowed to vary. Outside this range, the output is set in diagnostic low.

14.5. FILTER

Parameter	Value	Unit
FHYST	0 11 ; step 0.04	deg
FILTER	0 6	
FSWAP	0 1	

The MLX90316 includes 3 types of filters:

- Hysteresis Filter: programmable by the FHYST parameter
- Low Pass FIR Filters controlled with the Filter parameter
- Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and FILTER A2

Note: if the parameter FSWAP is set to "1", the filtering is active on the digital angle. If set to "0", the filtering is active on the output transfer function.

14.5.1. Hysteresis Filter

The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step is smaller than the programmed FHYST parameter value. The output value is modified when the increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level.

Please note that for the programmable version, the FHYST parameter is set to 4 by default. If you do not wish this feature, please set it to "0".

14.5.2. FIR Filters

The MLX90316 features 6 FIR filter modes controlled with Filter = 0...5. The transfer function is described below:

$$y_n = \frac{1}{\sum_{i=0}^{j} a_i} \sum_{i=0}^{j} a_i x_{n-i}$$

The characteristics of the filters no 0 to 5 is given in the Table 1.

Filter No (j)	0	1	2	3	4	5
Туре	Disable	Finite Impulse Response				
Coefficients a ₀ a ₅	N/A	110000	121000	133100	111100	122210
Title	No Filter	Extra	Light		Light	
90% Response Time	1	2	3	4	4	5
99% Response Time	1	2	3	4	4	5
Efficiency RMS (dB)	0	2.9	4.0	4.7	5.6	6.2
Efficiency P2P (dB)	0	2.9	3.6	5.0	6.1	7.0

Table 1 - FIR Filters Selection Table

Figure 10 - Step Response and Noise Response for FIR (No 3) and FHYST=10

Rotary Position Sensor IC

14.5.3. IIR Filters

The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90316 is given in Figure 11. Only the parameter A1 and A2 are configurable (See Table 2).

Figure 11 - IIR Diagram

Filter No	6					
Туре		2 nd Order Infinite Impulse Response (IIR)				
Title			Mediu	m & Strong		
90% Response Time	11	16	26	40	52	100
Efficiency RMS (dB)	9.9	11.4	13.6	15.3	16.2	>20
Efficiency P2P (dB)	12.9	14.6	17.1	18.8	20	>20
Coefficient A1	26112	28160	29120	30208	31296	31784
Coefficient A2	10752	12288	12992	13952	14976	15412

Table 2 - IIR Filter Selection Table

The Figure 12 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2.

Figure 12 - Noise Response for the IIR Filter

14.6. Programmable Diagnostic Settings

Parameter	Value	Unit
RESONFAULT	0 1	
EEHAMHOLE	0 3131h	

14.6.1. RESONFAULT Parameter

This RESONFAULT parameter enables the soft reset when a fault is detected by the CPU when the parameter is set to 1. By default, the parameter is set to "0" but it is recommended to set it to "1" to activate the self diagnostic modes (See section 15).

Note that in the User Interface (MLX90316UI), the RESONFAULT is split in two bits:

- DRESONFAULT: disable the reset in case of a fault.
- DOUTINFAULT: disable output in diagnostic low in case of fault.

14.6.2. EEHAMHOLE Parameter

The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is detected by the CRC when it is equal to 3131h. Melexis strongly recommends to set the parameter to 0 (enable memory recovery).

14.7. Lock

Parameter	Value	Unit
MLXLOCK	0 1	
LOCK	0 1	

14.7.1. MLXLOCK Parameter

MLXLOCK locks all the parameters set by Melexis.

14.7.2. LOCK Parameter

LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the EEPROM values anymore.

Note that the lock bit should be set by the solver function "MemLock".

15. MLX90316 Self Diagnostic

The MLX90316 provides numerous self-diagnostic features. Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes ("fail-safe").

	Action	Effect on Outputs	Remark
ROM CRC Error at start up (64 words including Intelligent Watch Dog - IWD)	CPU Reset (25)	Diagnostic low ⁽²⁶⁾	All the outputs are already in Diagnostic low - (start-up)
ROM CRC Error (Operation - Background task)	Enter Endless Loop: - Progress (watchdog Acknowledge) - Set Outputs in Diagnostic low	Immediate Diagnostic low	
RAM Test Fail (Start up)	CPU Reset	Diagnostic low	All the outputs are already in Diagnostic low (start-up)
Calibration Data CRC Error (Start-Up)	Hamming Code Recovery		Start-Up Time is increased by 3 ms if successful recovery
Hamming Code Recovery Error (Start-Up)	CPU Reset	Immediate Diagnostic low	See 14.6.2
Calibration Data CRC Error (Operation - Background)	CPU Reset	Immediate Diagnostic low	
Dead Zone	Set Outputs in Diagnostic low. Normal Operation until the "dead zone" is left.	Immediate Diagnostic low	Immediate recovery if the "dead zone" is left
ADC Clipping (ADC Output is 0000h or 7FFFh)	Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery	Immediate Diagnostic low	
Radius Overflow (> 100%) or Radius Underflow (< 50 %)	Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery	Immediate Diagnostic low	(50 % - 100 %) No magnet / field too high See also 14.4.2
Fine Gain Clipping (FG < 0d or > 63d)	Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery	Immediate Diagnostic low	
Rough Offset Clipping (RO is < 0d or > 127d)	Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery	Immediate Diagnostic low	
Rough Gain Clipping (RG < RGTHRESLOW or RG > RGTHRESHIGH)	Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery	Immediate Diagnostic low	See also 14.4.2
DAC Monitor (Digital to Analog converter)	Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset	Immediate Diagnostic low	
MLX90316 Fault Mode continue	<i>9</i> S		

²⁵ CPU reset means

3901090316 Page 26 of 42 Data Sheet Rev. 005 May. 09

^{1.} Core Reset (same as Power-On-Reset). It induces a typical start up time.

^{2.} Periphery Reset (same as Power-On-Reset)

^{3.} Fault Flag/Status Lost

The reset can be disabled by clearing the RESONFAULT bit (See 14.6.1)

²⁶ Refer to section 7 for the Diagnostic Output Level specifications

MLX90316

Rotary Position Sensor IC

MLX90316 Fault Mode									
Fault Mode	Action	Effect on Outputs	Remark						
ADC Monitor (Analog to Digital Converter)	Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset	Immediate Diagnostic low	ADC Inputs are Shorted						
Undervoltage Mode	At Start-Up, wait Until VDD > 3V. During operation, CPU Reset after 3 ms debouncing	- VDD < POR level => Outputs high impedance - POR level < VDD < 3 V => Outputs in Diagnostic low.							
Firmware Flow Error	CPU Reset	Immediate Diagnostic low	Intelligent Watchdog (Observer)						
Read/Write Access out of physical memory	CPU Reset	Immediate Diagnostic low	100% Hardware detection						
Write Access to protected area (IO and RAM Words)	CPU Reset	Immediate Diagnostic low	100% Hardware detection						
Unauthorized entry in "SYSTEM" Mode	CPU Reset	Immediate Diagnostic low	100% Hardware detection						
VDD > 7 V	Set Output High Impedance (Analog)	Pull down resistive load => Diag. Low Pull up resistive load => Diag. High(26)	100% Hardware detection						
VDD > 9.4 V	IC is switched off (internal supply) CPU Reset on recovery	Pull down resistive load => Diag. Low Pull up resistive load => Diag. High	100% Hardware detection						
Broken Vss ⁽²⁷⁾	CPU Reset on recovery	Pull down resistive load => Diag. Low Pull up resistive load => Diag. High	100% Hardware detection. Pull down load ≤ 10 kΩ to meet Diag Low spec: - < 2% VDD (temperature suffix S and E) - < 4% VDD (temperature suffix K) - contact Melexis for temperature suffix L						
Broken VDD ⁽²⁷⁾	CPU Reset on recovery	Pull down resistive load => Diag. Low Pull up resistive load => Diag. High	No valid diagnostic for VPULLUP = VDD. Pull up load (≤ 10kΩ) to VPULLUP > 8 V to meet Diag Hi spec > 96% Vdd.						

²⁷ Not Valid for SPI Version

16. Serial Protocol

16.1. Introduction

The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node. The serial protocol of the MLX90316 is a three wires protocol (/SS, SCLK, MOSI-MISO):

- /SS pin is a 5 V tolerant digital input
- SCLK pin is a 5 V tolerant digital input
- MOSI-MISO pin is a 5 V tolerant open drain digital input/output

The basic knowledge of the standard SPI specification is required for the good understanding of the present section.

16.2. SERIAL PROTOCOL Mode

- CPHA = 1 → even clock changes are used to sample the data
- CPOL = 0 → active-Hi clock

The positive going edge shifts a bit to the Slave's output stage and the negative going edge samples the bit at the Master's input stage.

16.3. MOSI (Master Out Slave In)

The Master sends a command to the Slave to get the angle information.

16.4. MISO (Master In Slave Out)

The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 k Ω pull-up is used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of the MLX90316.

16.5./SS (Slave Select)

The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronization between Slave and Master in case of communication error.

16.6. Master Start-Up

/SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized before the first frame transfer.

16.7. Slave Start-Up

The slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance) until the Slave is selected by its /SS input. MLX90316 will cope with any signal from the Master while starting up.

16.8. Timing

To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle of a byte transfer.

Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not have seen /SS inactive.

Timings	Min ⁽²⁸⁾	Max	Remarks
t1	2.3 µs / 6.9 µs	-	No capacitive load on MISO. t1 is the minimum clock period for any bits within a byte.
t2	12.5 µs / 37.5 µs	-	t2 the minimum time between any other byte
t4	2.3 µs / 6.9 µs	-	Time between last clock and /SS=high=chip de-selection
t5	300 µs / 1500 µs	-	Minimum /SS = Hi time where it's guaranteed that a frame resynchronizations will be started.
t5	0µs	-	Maximum /SS = Hi time where it's guaranteed that NO frame resynchronizations will be started.
t6	2.3 μs / 6.9 μs	-	The time t6 defines the minimum time between /SS = Lo and the first clock edge
t7	15 µs / 45 µs	-	t7 is the minimum time between the StartByte and the Byte0
t9	-	<1 µs	Maximum time between /SS = Hi and MISO Bus High-Impedance
$T_{StartUp}$	-	< 10 ms / 16 ms	Minimum time between reset-inactive and any master signal change

²⁸ Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7 MHz (Slow Mode)

3901090316 Page 29 of 42 Data Sheet Rev. 005 May. 09

16.9. Slave Reset

On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is enabled only after the completion of the first synchronization (the Master deactivates /SS for at least t5).

16.10. Frame Layer

16.10.1. Command Device Mechanism

Before each transmission of a data frame, the Master should send a byte AAh to enable a frame transfer. The latch point for the angle measurement is at the last clock before the first data frame byte.

Timing diagram

16.10.2. Data Frame Structure

A data frame consists of 10 bytes:

- 2 start bytes (AAh followed by FFh)
- 2 data bytes (DATA16 most significant byte first)
- 2 inverted data bytes (/DATA16 most significant byte first)
- 4 all-Hi bytes

The Master should send AAh (55h in case of inverting transistor) followed by 9 bytes FFh. The Slave will answer with two bytes FFh followed by 4 data bytes and 4 bytes FFh.

16.10.3. Timing

There are no timing limits for frames: a frame transmission could be initiated at any time. There is no interframe time defined.

16.10.4. Data Structure

The DATA16 could be a valid angle, or an error condition. The two meanings are distinguished by the LSB.

DATA16: Angle A[13:0] with (Angle Span)/214

	Most Significant Byte							Less	Signi	ficant	Byte				
MSB							LSB	MSB							LSB
A13	A12	A11	A10	A9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0	0	1

DATA16: Error

	Most Significant Byte				Less Significant Byte										
MSB							LSB	MSB							LSB
E15	E14	E13	E12	E11	E10	E9	E8	E7	E6	E5	E4	E3	E2	E1	E0

BIT	NAME	
E0	0	
E1	1	
E2	F_ADCMONITOR	ADC Failure
E3	F_ADCSATURA	ADC Saturation (Electrical failure or field too strong)
E4	F_RGTOOLOW	Analog Gain Below Trimmed Threshold
		(Likely reason : field too weak)
E5	F_MAGTOOLOW	Magnetic Field Too Weak
E6	F_MAGTOOHIGH	Magnetic Field Too Strong
E7	F_RGTOOHIGH	Analog Gain Above Trimmed Threshold
		(Likely reason : field too strong)
E8	F_FGCLAMP	Never occurring in serial protocol
E9	F_ROCLAMP	Analog Chain Rough Offset Compensation : Clipping
E10	F_MT7V	Device Supply VDD Greater than 7V
E11	-	
E12	-	
E13	-	
E14	F_DACMONITOR	Never occurring in serial protocol
E15	-	

16.10.5. Angle Calculation

All communication timing is independent (asynchronous) of the angle data processing. The angle is calculated continuously by the Slave:

- Slow Mode: every 1.5 ms at most.
- Fast Mode: every 350 µs at most.

The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by the Slave, because any internal failure of the Slave will lead to a soft reset.

16.10.6. Error Handling

In case of any errors listed in section 16.10.4, the Serial protocol will be initialized and the error condition can be read by the master. The slave will perform a soft reset once the error frame is sent.

In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog error...) the Slave's serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error frames are sent).

17. Recommended Application Diagrams

17.1. Analog Output Wiring with the MLX90316 in SOIC Package

Figure 13 – Recommended wiring for the MLX90316 in SOIC8 package⁽²⁹⁾.

17.2. Analog Output Wiring with the MLX90316 in TSSOP Package

Figure 14 – Recommended wiring for the MLX90316 in TSSOP16 package (dual die).

²⁹ See section 14.1.4 if the Switch Output feature is used.

17.3. PWM Low Side Output Wiring

Figure 15 – Recommended wiring for a PWM Low Side Output configuration⁽³⁰⁾.

17.4. Serial Protocol

Generic schematics for single slave and dual slave applications are described.

17.4.1. SPI Version - Single Die

Figure 16 – MLX90316 SPI Version – Single Die – Application Diagram

3901090316 Page 33 of 42 Data Sheet Rev. 005 May. 09

 $^{^{30}}$ See section 14.1.4 if the Switch Output feature is used.

17.4.2. SPI Version - Dual Die

Figure 17 – MLX90316 SPI Version – Dual Die – Application Diagram

MLX90316

Rotary Position Sensor IC

17.4.3. Non SPI Version (Standard Version)

Figure 18 - MLX90316 - Single Die - Serial Protocol Mode

Application Type	μCtrl Supply (V)	Pull-up Supply (V)	90316 Supply (V)	R1 (Ω)	R2 (Ω)	R3 (Ω)	R4 (Ω)	R5 (Ω)	MOS Type
5V μCtrl w/o O.D. w/o 3.3V	5V	5V	5V	100	1000	20,000	1000	20,000	BS170
5V µCtrl w/o O.D. w/ 3.3V	5V	3.3V	5V	150	1000	N/A	1000	20,000	BS170
3.3V µCtrl w/o O.D. (31)	3.3V	3.3V	5V	150	1000	N/A	N/A	N/A	BS170
5V μCtrl w/ O.D. w/o 3.3V (32)	5V	5V	5V	100	1000	20,000	1000	20,000	N/A
3.3V µCtrl w/ O.D.	3.3V	3.3V	5V	150	1000	N/A	N/A	N/A	N/A

Table 3 - Resistor Values for Common Specific Applications

³¹ µCtrl w/ O.D.: Micro-controller with open-drain capability (for instance NEC V850ES series)

³² µCtrl w/o O.D.: Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR)

18. Standard information regarding manufacturability of Melexis products with different soldering processes

Melexis devices are qualified using state-of-the-art practices in accordance with automotive and environmental requirements.

Through qualifications, various soldering techniques are considered; please refer to "Soldering recommendations for Melexis products" (http://www.melexis.com/Asset/Soldering Application Note and Recommendations DownloadLink 544 6.aspx) for more information.

For components normally soldered using Surface Mounted Device techniques (eg: Reflow process), Melexis has defined and qualified Moisture Sensitivity Level and Peak Temperature in accordance with the Jedec J-STD-020 standard. Delivered material is conditioned accordingly. Moisture Sensitivity Level and Peak Temperature information can be found on the label identifying the material.

In case you intend to use a reflow soldering process for through hole devices (Melexis' package codes: SA, UA, VK, VM), please contact Melexis to verify your soldering process compatibility.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Based on Melexis commitment to environmental responsibility, Europe legislations (Direction on the Restriction of the Use of Certain Hazardous substances, RoHS) and customer requests, Melexis has deployed Pb free leadfinish (typically Matte Tin) on all ASSP products.

For through hole devices (Melexis' package codes: SA, UA, VA, VK, VM) Trim&Form, please refer to "Trim & Form recommendations for Melexis products" (http://www.melexis.com/Assets/Trim and form recommendations DownloadLink 5565.aspx) for more information.

19. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

20. Package Information

20.1. SOIC8 - Package Dimensions

20.2. SOIC8 - Pinout and Marking

20.3. SOIC8 - IMC Positionning

The MLX90316 is an absolute angular position sensor but the linearity error (Le – See Section 10) does not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through the discontinuity point – See 14.2.2).

20.4. TSSOP16 - Package Dimensions

NOTES:

All dimensions are in millimeters (anlges in degrees).

- * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).
- ** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot.

20.5. TSSOP16 - Pinout and Marking

20.6. TSSOP16 - IMC Positionning

MLX90316

Rotary Position Sensor IC

The MLX90316 is an absolute angular position sensor but the linearity error (Le – See Section 10) does not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through the discontinuity point – See 14.2.2).

21. Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application.

The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services.

© 2009 Melexis N.V. All rights reserved.

For the latest version of this document, go to our website at www.melexis.com

Or for additional information contact Melexis Direct:

Europe, Africa, Asia: America:
Phone: +32 1367 0495 Phone: +1 603 223 2362
E-mail: sales_europe@melexis.com E-mail: sales_usa@melexis.com

ISO/TS 16949 and ISO14001 Certified