Liam Hardiman October 26, 2018

260A - Homework 1

Problem 1.

- (i) Show that ℓ^p , $1 \le p \le \infty$, is a Banach space.
- (ii) Prove that $\ell^{\infty} = (\ell^1)^*$, but $(\ell^{\infty})^* \neq \ell^1$.

Proof. (i) Let $a = (a^{(n)})$ and $b = (b^{(n)})$ be in ℓ^p , $1 . We have by Hölder's inequality for any complex <math>\lambda$

$$\begin{aligned} \|a + \lambda b\|_{p}^{p} &= \sum_{n=1}^{\infty} |a^{(n)} + \lambda b^{(n)}|^{p} \\ &= \sum_{n=1}^{\infty} |a^{(n)} + \lambda b^{(n)}| \cdot |a^{(n)} + \lambda b^{(n)}|^{p-1} \\ &\leq \sum_{n=1}^{\infty} |a^{(n)}| \cdot |a^{(n)} + \lambda b^{(n)}|^{p-1} + |\lambda| \sum_{n=1}^{\infty} |b^{(n)}| \cdot |a^{(n)} + \lambda b^{(n)}|^{p-1} \\ &\leq (\|a\|_{p} + |\lambda| \|b\|_{p}) \left(\sum_{n=1}^{\infty} |a^{(n)} + \lambda b^{(n)}|^{(p-1)\frac{p}{p-1}} \right)^{\frac{p-1}{p}} \\ &= (\|a\|_{p} + |\lambda| \|b\|_{p}) \|a + \lambda b\|_{p}^{p-1}, \end{aligned}$$

Which shows that $||a + \lambda b||_p \le ||a||_p + |\lambda| ||b||_p < \infty$. This shows both that ℓ^p , $1 , is a vector space (as linear combinations of elements of <math>\ell^p$ have finite p-norm) and that the p-norm satisfies the triangle inequality (take $\lambda = 1$).

 ℓ^1 is a vector space and the $\|\cdot\|_1$ norm satisfies the triangle inequality thanks to the triangle inequality on \mathbb{C} :

$$||a + \lambda b||_1 = \sum_{n=1}^{\infty} |a^{(n)} + \lambda b^{(n)}|$$

$$\leq \sum_{n=1}^{\infty} |a^{(n)}| + |\lambda| \sum_{n=1}^{\infty} |b^{(n)}|$$

$$= ||a||_p + |\lambda| ||b||_p.$$

Similarly, for $a, b \in \ell^{\infty}$ and $\lambda \in \mathbb{C}$ we have

$$||a + \lambda b||_{\infty} = \sup_{n \ge 1} |a^{(n)} + \lambda b^{(n)}| \le \sup_{n \ge 1} (|a^{(n)}| + |\lambda||b^{(n)}|) \le \sup_{n \ge 1} |a^{(n)}| + |\lambda| \sup_{n \ge 1} |b^{(n)}| = ||a||_{\infty} + |\lambda| ||b||_{\infty}.$$

We then have that ℓ^p is a normed complex vector space. We now need to show completeness. First let's treat the case of $p < \infty$. Suppose that $\{a_n\}$ is a Cauchy sequence in ℓ^p (here $a_i^{(j)}$ is the *j*-th entry in the *i*-th element of the sequence). Since this sequence is Cauchy we have that for any $\epsilon > 0$ we can find $N \in \mathbb{N}$ so that for all m, n > N

$$||a_m - a_n||_p < \epsilon \iff \sum_{k=1}^{\infty} |a_m^{(k)} - a_n^{(k)}|^p < \epsilon^p.$$

Since each term in the above sum is nonnegative, we must have that $|a_m^{(k)} - a_n^{(k)}| < \epsilon$ for each k. In particular, we have that for any fixed k, $\{a_n^{(k)}\}$ is a Cauchy sequence of complex numbers. Since \mathbb{C} is complete, we have that $a_n^{(k)} \to a^{(k)} \in \mathbb{C}$ as $n \to \infty$.

Let a be the sequence of complex numbers whose k-th entry is built from our original Cauchy sequence by $a^{(k)} = \lim_{n \to \infty} a_n^{(k)}$. Our plan is to show that $a_n \to a$ in ℓ^p and that a is in ℓ^p . Fix $\epsilon > 0$. Then for some N we have that $||a_m - a_n||_p < \epsilon$ for all m, n > N. Our trick is to pass to a finite sum and then take limits in a particular order. For any L > 0 and m, n sufficiently large we have

$$\sum_{k=0}^{L} |a_m^{(k)} - a_n^{(k)}|^p \le ||a_m - a_n||_p^p < \epsilon^p.$$

Now the right-hand side does not depend on m, so taking $m \to \infty$ gives

$$\sum_{k=0}^{L} |a^{(k)} - a_n^{(k)}|^p < \epsilon^p.$$

Then we take $L \to \infty$ which gives $||a - a_n||_p < \epsilon$, so $a_n \to a$ in ℓ^p . We can use this to show that a is in ℓ^p since for all n

$$||a||_p \le ||a - a_n||_p + ||a_n||_p$$
.

For n large enough the first term on the right is bounded by ϵ and the second term is finite since each a_n is in ℓ^p . Thus, ℓ^p is complete, and therefore, a Banach space for $1 \le p < \infty$.

Now let $p = \infty$. If $\{a_n\}$ is a Cauchy sequence in ℓ^{∞} then for $\epsilon > 0$ and m, n sufficiently large we have that $\sup_{k>0} |a_m^{(k)} - a_n^{(k)}| < \epsilon$. Just like in the finite p case, this implies that for any fixed k, $\{a_n^{(k)}\}$ is a Cauchy sequence of complex numbers, so we can speak of the entrywise limit a. Also similar to the finite p case we have that for L large

$$\sup_{1 \le k \le L} |a_m^{(k)} - a_n^{(k)}| \le ||a_m - a_n||_{\infty} < \epsilon.$$

Sending m to infinity gives $\sup_{1 \le k \le L} |a^{(k)} - a_n^{(k)}| < \epsilon$ and then sending L to infinity gives $||a - a_n||_{\infty} \to 0$. The argument used in the $p < \infty$ case also shows that $a \in \ell^{\infty}$.