Least Squares Problem

Over-determined Linear Systems (#equations >> #variables)

- Recall a linear system:
- What if we have much more data examples?

Person ID	Weight	Height	ls_smoking	Life-span					
1	60kg	5.5ft	Yes (=1)	66	_		_	$\cdot x_3 = \epsilon$	
2	65kg	5.0ft	No (=0)	74	$65x_1$	د5.0+	$c_2 + 0$	$\cdot x_3 = 7$	74
3	55kg	6.0ft	Yes (=1)	78	$55x_1$	+6.0x	c_2+1	$\cdot x_3 = 7$	78
:	:	:	:	:	•	•	•	•	

Matrix equation:

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \\ \vdots \end{bmatrix}$$

 $m \gg n$: more equations than variables

Usually no solution exists

Vector Equation Perspective

• Vector equation form:
$$\begin{bmatrix} 60 \\ 65 \\ 55 \\ \vdots \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \\ \vdots \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \\ \vdots \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \\ \vdots \end{bmatrix}$$
$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

• Compared to the original space \mathbb{R}^n , where \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , $\mathbf{b} \in \mathbb{R}^n$, Span $\{a_1, a_2, a_3\}$ will be a thin hyperplane, so it is likely that $\mathbf{b} \notin \text{Span} \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$

No solution exists.

Motivation for Least Squares

 Even if no solution exists, we want to approximately obtain the solution for an over-determined system.

 Then, how can we define the best approximate solution for our purpose?

Back to Over-Determined System

• Let's start with the original problem:

Person ID	Weight	Height	ls_smoking	Life-span		\boldsymbol{A}		X	=	b	
1	60kg	5.5ft	Yes (=1)	66	[60	5.5	1]	$[x_1]$		[66]	
2	65kg	5.0ft	No (=0)	74	65	5.55.06.0	0	$ x_2 $	=	74	
3	55kg	6.0ft	Yes (=1)	78	L55	6.0	1]	$[x_3]$	ı	L78J	

• Using the inverse matrix, the solution is
$$\mathbf{x} = \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix}$$
.

Back to Over-Determined System

Errors

Let's add an additional example:

Person ID	Weight	Height	ls_smoking	Life-span
1	60kg	5.5ft	Yes (=1)	66
2	65kg	5.0ft	No (=0)	74
3	55kg	6.0ft	Yes (=1)	78
4	50kg	5.0ft	Yes (=1)	72

• Now, let's plug in the previous solution $\mathbf{x} = \begin{bmatrix} 20 \\ -20 \end{bmatrix}$

 $\begin{bmatrix} A & \mathbf{x} & \neq \mathbf{b} \\ 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \\ 60 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 12 \end{bmatrix}$

Back to Over-Determined System

• How about using slightly different solution $\mathbf{x} = \begin{bmatrix} 16 \\ -95 \end{bmatrix}$?

$$(\mathbf{b} - A\mathbf{x})$$
 -5.3
 1.8

Errors

Which One is Better Solution?

Errors

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \\ 60 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 12 \end{bmatrix}$$

Least Squares: Best Approximation Criterion

• Let's use the squared sum of errors:

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.12 \\ 16 \\ -9.5 \end{bmatrix} = \begin{bmatrix} 71.3 \\ 69 \\ 79.9 \\ 64.5 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} \begin{bmatrix} 1.8 \\ -1.9 \\ 7.5 \end{bmatrix} = 9.55$$
Better solution

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \\ 60 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 12 \end{bmatrix} \begin{bmatrix} (0^2 + 0^2 + 0^2 + 12^2)^{0.5} \\ = 12 \end{bmatrix}$$

Least Squares Problem

- Now, the sum of squared errors can be represented as $\|\mathbf{b} A\mathbf{x}\|$.
- **Definition**: Given an overdetermined system $A\mathbf{x} \simeq \mathbf{b}$ where $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^n$, and $m \gg n$, a least squares solution $\hat{\mathbf{x}}$ is defined as $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{b} A\mathbf{x}\|$
- The most important aspect of the least-squares problem is that no matter what **x** we select, the vector A**x** will necessarily be in the column space Col A.
- Thus, we seek for **x** that makes A**x** as the closest point in Col A to **b**.

Geometric Interpretation of Least Squares

• The vector **b** is closer to $A\hat{\mathbf{x}}$ than to $A\mathbf{x}$ for other \mathbf{x} .

This means b − Ax̂ should be orthogonal to any vector in Col A:

$$\mathbf{b} - A\hat{\mathbf{x}} \perp (x_1\mathbf{a}_1 + x_2\mathbf{a}_2 \cdots + x_n\mathbf{a}_n)$$
 for any vector \mathbf{x}

Geometric Interpretation of Least Squares

- $\mathbf{b} A\hat{\mathbf{x}} \perp (x_1\mathbf{a}_1 + x_2\mathbf{a}_2 \cdots + x_n\mathbf{a}_n)$ for any vector \mathbf{x}
- · Or equivalently,

$$(\mathbf{b} - A\hat{\mathbf{x}}) \perp \mathbf{a}_{1} \qquad \mathbf{a}_{1}^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0$$

$$(\mathbf{b} - A\hat{\mathbf{x}}) \perp \mathbf{a}_{2} \qquad \mathbf{a}_{2}^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0 \longrightarrow A^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$(\mathbf{b} - A\hat{\mathbf{x}}) \perp \mathbf{a}_{n} \qquad \mathbf{a}_{n}^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0$$

Normal Equation

• Finally, given a least squares problem, $A\mathbf{x} \simeq \mathbf{b}$, we obtain $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

which is called a normal equation.

- This can be viewed as a new linear system, $C\mathbf{x} = \mathbf{d}$, where a square matrix $C = A^T A \in \mathbb{R}^{n \times n}$, and $\mathbf{d} = A^T \mathbf{b} \in \mathbb{R}^n$.
- If $C = A^T A$ is invertible, then the solution is computed as $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$

Another Derivation of Normal Equation

•
$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} ||\mathbf{b} - A\mathbf{x}|| = \arg\min_{\mathbf{x}} ||\mathbf{b} - A\mathbf{x}||^2$$

= $\arg\min_{\mathbf{x}} (\mathbf{b} - A\mathbf{x})^T (\mathbf{b} - A\mathbf{x}) = \mathbf{b}^T \mathbf{b} - \mathbf{x}^T A^T \mathbf{b} - \mathbf{b}^T A\mathbf{x} + \mathbf{x}^T A^T A\mathbf{x}$

Computing derivatives w.r.t. x, we obtain

$$-A^T\mathbf{b} - A^T\mathbf{b} + 2A^TA\mathbf{x} = \mathbf{0} \Leftrightarrow A^TA\mathbf{x} = A^T\mathbf{b}$$

• Thus, if $C = A^T A$ is invertible, then the solution is computed as $\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$

Partial Derivative

• For a multi-variate function, e.g., f(x,y), one can consider a univariate function by assigning particular values to all other variables, e.g., g(x) = f(x,y=1). Then, one can consider a partial derivative $\frac{d}{dx}g(x)$ with respect to x.

Life-Span Example

Person ID	Weight	Height	ls_smoking			\boldsymbol{A}	X	$\mathbf{x} \simeq \mathbf{b}$			
1	60kg	5.5ft	Yes (=1)	66	[60		5.5	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.]	$\begin{bmatrix} 66 \end{bmatrix}$	
2	65kg	5.0ft	No (=0)	74	65	5 S	5.0 5.0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \mid x_2 \mid$	$ \cdot = 0$	74 78	
3	55kg	6.0ft	Yes (=1)	78	5 L50		5.0 5.0	$\frac{1}{1}$ $[x_3]$; _	$\begin{bmatrix} 70 \\ 72 \end{bmatrix}$	
4	50kg	5.0ft	Yes (=1)	72	-3(U .	טינ	T_		-/	

• The normal equation $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ is

$$\begin{bmatrix} 60 & 65 & 55 & 50 \\ 5.5 & 5.0 & 6.0 & 5.0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 60 & 65 & 55 & 50 \\ 5.5 & 5.0 & 6.0 & 5.0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix}$$

$$\begin{bmatrix} 13350 & 1235 & 165 \\ 1235 & 116.25 & 16.5 \\ 165 & 16.5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 16600 \\ 1561 \\ 216 \end{bmatrix}$$

What If $C = A^T A$ is NOT Invertible?

- Given $A^{T}A\mathbf{x} = A^{T}\mathbf{b}$, what if $C = A^{T}A$ is NOT invertible?
- Remember that in this case, the system has either no solution or infinitely many solutions.
- However, the solution always exist for this "normal" equation, and thus infinitely many solutions exist.
- When $C = A^T A$ is NOT invertible? If and only if the columns of A are linearly dependent. Why?
- However, $C = A^T A$ is usually invertible. Why?

Orthogonal Projection Perspective

• Back to the case of invertible $C = A^T A$, consider the orthogonal projection of **b** onto Col A as

$$\hat{\mathbf{b}} = f(\mathbf{b}) = A\hat{\mathbf{x}} = A(A^TA)^{-1}A^T\mathbf{b} = C\mathbf{b}$$

where $C = A(A^TA)^{-1}A^T$.

- One can see that the orthogonal projection is actually a linear transformation $f(\mathbf{b}) = C\mathbf{b}$ where the standard matrix is defined as $C = A(A^TA)^{-1}A^T$.
- What if A has orthonormal columns? (More in the next slides.)

Orthogonal and Orthonormal Sets

- **Definition**: A set of vectors $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ in \mathbb{R}^n is an **orthogonal set** if each pair of distinct vectors from the set is orthogonal That is, if $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$.
- **Definition**: A set of vectors $\{\mathbf u_1, ..., \mathbf u_p\}$ in $\mathbb R^n$ is an **orthonormal set** if it is an orthogonal set of unit vectors.
- Is an orthogonal (or orthonormal) set also a linearly independent set? What about its converse?

Orthogonal and Orthonormal Basis

- Consider basis $\{\mathbf v_1, ..., \mathbf v_p\}$ of a p-dimensional subspace W in $\mathbb R^n$.
- Can we make it as an orthogonal (or orthonormal) basis?
 - Yes, it can be done by Gram–Schmidt process. → QR factorization.
- Given the orthogonal basis $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ of W, let's compute the orthogonal projection of $\mathbf{y} \in \mathbb{R}^n$ onto W.

Orthogonal Projection ŷ of y onto Line

• Consider the orthogonal projection \hat{y} of y onto one-dimensional subspace L.

•
$$\hat{\mathbf{y}} = \operatorname{proj}_L \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

If u is a unit vector,

$$\hat{\mathbf{y}} = \operatorname{proj}_L \mathbf{y} = (\mathbf{y} \cdot \mathbf{u})\mathbf{u}$$

Orthogonal Projection ŷ of y onto Plane

• Consider the orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto two-dimensional subspace W

•
$$\hat{\mathbf{y}} = \operatorname{proj}_L \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$$

- If \mathbf{u}_1 and \mathbf{u}_2 are unit vectors, $\hat{\mathbf{y}} = \text{proj}_L \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2) \mathbf{u}_2$
- Projection is done independently on each orthogonal basis vector.

Orthogonal Projection when $y \in W$

• Consider the orthogonal projection \hat{y} of y onto two-dimensional subspace W, where $y \in W$

•
$$\hat{\mathbf{y}} = \text{proj}_L \mathbf{y} = \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$$

• If \mathbf{u}_1 and \mathbf{u}_2 are unit vectors, $\hat{\mathbf{y}} = \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2)\mathbf{u}_2$

The solution is the same as before.
 Why?

Transformation: Orthogonal Projection

Consider a transformation of orthogonal projection b of b,
 given orthonormal basis {u₁, u₂} of a subspace W:

$$\begin{split} \hat{\mathbf{b}} &= f(\mathbf{b}) = (\mathbf{b} \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{b} \cdot \mathbf{u}_2) \mathbf{u}_2 \\ &= (\mathbf{u}_1^T \mathbf{b}) \mathbf{u}_1 + (\mathbf{u}_2^T \mathbf{b}) \mathbf{u}_2 \\ &= \mathbf{u}_1 (\mathbf{u}_1^T \mathbf{b}) + \mathbf{u}_2 (\mathbf{u}_2^T \mathbf{b}) \\ &= (\mathbf{u}_1 \mathbf{u}_1^T) \mathbf{b} + (\mathbf{u}_2 \mathbf{u}_2^T) \mathbf{b} \\ &= (\mathbf{u}_1 \mathbf{u}_1^T + \mathbf{u}_2 \mathbf{u}_2^T) \mathbf{b} \\ &= [\mathbf{u}_1 \quad \mathbf{u}_2] \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \end{bmatrix} \mathbf{b} = UU^T \mathbf{b} = C \mathbf{b} \Rightarrow \text{linear transformation!} \end{split}$$

Orthogonal Projection Perspective

• Let's verify the following, when $A = U = [\mathbf{u}_1 \quad \mathbf{u}_2]$ has orthonormal columns:

Back to the case of invertible $C = A^T A$, consider the orthogonal projection of **b** onto Col A as

$$\hat{\mathbf{b}} = A\hat{\mathbf{x}} = A(A^TA)^{-1}A^T\mathbf{b} = f(\mathbf{b})$$

•
$$C = A^T A = \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \end{bmatrix} [\mathbf{u}_1 \quad \mathbf{u}_2] = I$$
. Thus,

$$\hat{\mathbf{b}} = A\hat{\mathbf{x}} = A(A^T A)^{-1} A^T \mathbf{b} = A(I)^{-1} A^T \mathbf{b} = AA^T \mathbf{b} = UU^T \mathbf{b}$$