```
In [1]:
           import pandas as pd
           import warnings
           warnings.filterwarnings("ignore")
In [2]:
          data=pd.read csv("/home/placement/Downloads/fiat500.csv")
In [3]:
          data.describe()
Out[3]:
                           ID engine_power
                                             age_in_days
                                                                    km previous_owners
                                                                                                  lat
                                                                                                              lon
                                                                                                                          price
            count 1538.000000
                                 1538.000000
                                              1538.000000
                                                            1538.000000
                                                                             1538.000000 1538.000000
                                                                                                      1538.000000
                                                                                                                    1538.000000
                    769.500000
                                   51.904421
                                             1650.980494
                                                           53396.011704
                                                                                1.123537
                                                                                            43.541361
                                                                                                         11.563428
                                                                                                                    8576.003901
            mean
                                              1289.522278
                                                                                                          2.328190
              std
                    444.126671
                                    3.988023
                                                           40046.830723
                                                                                0.416423
                                                                                             2.133518
                                                                                                                    1939.958641
             min
                     1.000000
                                   51.000000
                                               366.000000
                                                            1232.000000
                                                                                1.000000
                                                                                            36.855839
                                                                                                         7.245400
                                                                                                                    2500.000000
             25%
                    385.250000
                                   51.000000
                                               670.000000
                                                                                1.000000
                                                                                            41.802990
                                                                                                         9.505090
                                                                                                                    7122.500000
                                                           20006.250000
             50%
                   769.500000
                                   51.000000
                                              1035.000000
                                                           39031.000000
                                                                                1.000000
                                                                                            44.394096
                                                                                                         11.869260
                                                                                                                    9000.000000
             75%
                  1153.750000
                                   51.000000
                                              2616.000000
                                                           79667.750000
                                                                                1.000000
                                                                                            45.467960
                                                                                                        12.769040
                                                                                                                   10000.000000
             max 1538.000000
                                   77.000000
                                              4658.000000
                                                          235000.000000
                                                                                4.000000
                                                                                            46.795612
                                                                                                        18.365520
                                                                                                                  11100.000000
          data.head()
In [4]:
Out[4]:
                  model engine_power age_in_days
                                                        km previous_owners
                                                                                              lon price
                                                                                    lat
            0
               1
                  lounge
                                    51
                                                882
                                                      25000
                                                                           1 44.907242
                                                                                         8.611560
                                                                                                   8900
               2
                                                      32500
                                                                                                   8800
                     pop
                                    51
                                               1186
                                                                             45.666359 12.241890
               3
                    sport
                                    74
                                               4658
                                                     142228
                                                                              45.503300
                                                                                       11.417840
                                                                                                   4200
                                    51
                                               2739
                                                    160000
                                                                              40.633171 17.634609
                                                                                                   6000
                  lounge
                                    73
                                               3074
                                                    106880
                                                                           1 41.903221 12.495650
                                                                                                   5700
               5
                     pop
```

In [5]: | data1=data.loc[(data.previous owners)==1]

In [6]: data1

Out[6]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
•••			•••						
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900
1389 r	ows ×	9 colum	nns						

In [7]: data2=data1.drop(['ID','lat','lon'],axis=1)

In [8]: data2

Out[8]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1389 rows × 6 columns

In [9]: data2=pd.get_dummies(data2)

In [10]: data2

Out[10]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
	•••							
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1389 rows × 8 columns

```
In [11]: y=data2['price']
x=data2.drop('price',axis=1)
```

```
In [12]: y
Out[12]: 0
                  8900
                  8800
          2
                  4200
          3
                  6000
                  5700
          4
          1533
                  5200
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1389, dtype: int64
In [13]: from sklearn.model selection import train test split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.33,random_state=42)
In [14]: x test.head()
Out[14]:
                                         km previous_owners model_lounge model_pop model_sport
               engine_power age_in_days
                                 3347 148000
           625
                        51
                                                        1
                                                                     1
                                                                               0
                                                                                          0
           187
                        51
                                 4322
                                      117000
                                                        1
                                                                     1
                                                                               0
                                                                                          0
                                     120000
           279
                        51
                                 4322
                                                        1
                                                                     0
                                                                               1
                                                                                          0
                                       12500
           734
                        51
                                  974
                                                        1
                                                                     0
                                                                               1
                                                                                          0
           315
                        51
                                 1096
                                       37000
                                                        1
                                                                     1
                                                                               0
                                                                                          0
In [15]: y test.head()
Out[15]: 625
                  5400
          187
                  5399
          279
                  4900
          734
                 10500
          315
                  9300
          Name: price, dtype: int64
```

```
In [16]:
          #LinearRearession
          from sklearn.linear model import LinearRegression
          reg=LinearRegression()
          req.fit(x train,y train)
Out[16]: LinearRegression()
         ypred=reg.predict(x test)
In [17]:
In [18]: ypred
Out[18]: array([ 5481.93168764,
                                  5127.11081209,
                                                   4798.43164854,
                                                                   9659.36578585,
                  9409.4127446 , 10351.98379749,
                                                                   8334.75329195,
                                                   9802.72406141,
                  5913.57169572, 10150.04762334,
                                                   5643.36202062,
                                                                   7780.90416594,
                  9721.15872463,
                                  4456.3882388 ,
                                                   6541.53947176,
                                                                   9829.09275112,
                 7574.52796156,
                                  5909.39873877, 10416.87928247,
                                                                   7409.77542821,
                                                   9441.1300824 , 10383.66774161,
                                  8182.36608361,
                  8693.13864599,
                  9857.9433171 , 10388.58335816,
                                                   9818.87050889,
                                                                   7023.92041959,
                                                                   9769.38528629,
                  9335.62476174, 10173.88293864,
                                                   5551.06753428,
                  4609.76045054,
                                  9962.4794893 ,
                                                   9789.3539293 ,
                                                                   8904.50209071,
                  3336.10690574, 10067.44590413,
                                                   8607.43409685,
                                                                   7682.12076521,
                 10206.23086655, 10451.29193617, 10428.25147613,
                                                                   9711.27231338,
                                                                   9083.60035288,
                  9296.17132987,
                                  7217.0720428 , 10459.74879956,
                 10416.67497977,
                                  8567.06083756, 10390.98325814,
                                                                   7953.60968003,
                  5590.45997234, 10404.33169149,
                                                   5658.96046682,
                                                                   8904.50209071,
                 9962.4794893 ,
                                  5204.32975664,
                                                                   6642.92293048,
                                                  8381.41911545,
                 6236.53789235,
                                  4815.11945754, 10356.87473279,
                                                                   7963.88315168,
                  5015.51747675,
                                  9896.61284815,
                                                  8728.78349613,
                                                                   5415.22108385,
                  9921.17107046,
                                  7314.69366999, 10088.79553655,
                                                                   8210.01253214,
                 10343.75594017, 10399.71785545,
                                                   9720.01037852,
                                                                   9579.33859859
In [19]: from sklearn.metrics import r2 score
          r2 score(y test,ypred)
```

Out[19]: 0.8601937431943694

	price	predicted
625	5400	5481.931688
187	5399	5127.110812
279	4900	4798.431649
734	10500	9659.365786
315	9300	9409.412745
652	10850	10351.983797
1472	9500	9802.724061
619	7999	8334.753292
992	6300	5913.571696
1154	10000	10150.047623
757	6000	5643.362021
1299	8500	7780.904166
400	8580	9721.158725
314	4600	4456.388239
72	7400	6541.539472

```
In [23]: Results['diff']=Results.apply(lambda row: row.price - row.predicted,axis=1)
```

In [24]: Results

Out[24]:

	price	predicted	diff
625	5400	5481.931688	-81.931688
187	5399	5127.110812	271.889188
279	4900	4798.431649	101.568351
734	10500	9659.365786	840.634214
315	9300	9409.412745	-109.412745
115	10650	10397.402425	252.597575
370	9900	10231.829592	-331.829592
1179	5900	6764.023619	-864.023619
93	10050	10378.419299	-328.419299
147	9900	10070.703624	-170.703624

459 rows × 3 columns

```
In [25]: #ridge regression
    from sklearn.model_selection import GridSearchCV
    from sklearn.linear_model import Ridge
    alpha=[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20,30]
    ridge=Ridge()
    parameters={'alpha':alpha}
    ridge_regressor=GridSearchCV(ridge,parameters)
    ridge_regressor.fit(x_train,y_train)
```

```
In [26]: ridge_regressor.best_params_
Out[26]: {'alpha': 20}
In [27]: ridge=Ridge(alpha=30)
    ridge.fit(x_train,y_train)
    y_pred_ridge=ridge.predict(x_test)

In [28]: from sklearn.metrics import mean_squared_error
    Ridge_Error=mean_squared_error(y_pred_ridge,y_test)
    Ridge_Error

Out[28]: 515419.96214274364

In [29]: from sklearn.metrics import r2_score
    r2_score(y_test,y_pred_ridge)
Out[29]: 0.8601972527555688
```

```
In [30]: Results=pd.DataFrame(columns=['actual','predicted'])
    Results['actual']=y_test
    Results['predicted']=y_pred_ridge
    Results=Results.reset_index()
    Results['Id']=Results.index
    Results.head(15)
```

Out[30]:

	index	actual	predicted	ld
0	625	5400	5480.612378	0
1	187	5399	5126.772562	1
2	279	4900	4823.164641	2
3	734	10500	9679.384113	3
4	315	9300	9404.679979	4
5	652	10850	10346.266387	5
6	1472	9500	9822.477584	6
7	619	7999	8367.522197	7
8	992	6300	5912.518318	8
9	1154	10000	10144.696863	9
10	757	6000	5642.568011	10
11	1299	8500	7777.488816	11
12	400	8580	9716.019608	12
13	314	4600	4466.017542	13
14	72	7400	6540.492059	14

```
In [31]: #Elastic Net
         from sklearn.linear model import ElasticNet
         from sklearn.model selection import GridSearchCV
         elastic = ElasticNet()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic regressor.fit(x train, y train)
Out[31]: GridSearchCV(estimator=ElasticNet(),
                      param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                            5, 10, 20]})
In [32]: elastic regressor.best params
Out[32]: {'alpha': 0.01}
In [33]: elastic=ElasticNet(alpha=.01)
         elastic.fit(x train,y train)
         y pred elastic=elastic.predict(x test)
In [34]: from sklearn.metrics import r2 score
         r2 score(y test,y pred elastic)
Out[34]: 0.8602162350730707
In [35]: from sklearn.metrics import mean squared error
         elastic Error=mean squared error(y pred elastic,y test)
         elastic Error
Out[35]: 515349.978787187
```

```
In [36]: Results=pd.DataFrame(columns=['actual','predicted'])
    Results['actual']=y_test
    Results['predicted']=y_pred_elastic
    Results=Results.reset_index()
    Results['Id']=Results.index
    Results.head(15)
```

Out[36]:

	index	actual	predicted	Id
0	625	5400	5482.171479	0
1	187	5399	5127.531740	1
2	279	4900	4803.203231	2
3	734	10500	9662.825235	3
4	315	9300	9408.645424	4
5	652	10850	10350.952605	5
6	1472	9500	9806.127960	6
7	619	7999	8341.142824	7
8	992	6300	5913.786719	8
9	1154	10000	10149.093829	9
10	757	6000	5643.649619	10
11	1299	8500	7780.541311	11
12	400	8580	9720.293317	12
13	314	4600	4459.155236	13
14	72	7400	6541.667411	14

```
In [ ]:
```