Hierarchical levels:

 $\mathbf{1} \pi(\theta)$

 $\mathbf{2} f(\mathbf{y}|\theta)$

Hierarchical levels:

- 1 $\eta \sim h(\eta)$
- $2 \pi(\theta|\eta)$
- 3 $f(\mathbf{y}|\theta)$

Hierarchical levels:

$$2 \pi(\theta|\eta)$$

$$\mathbf{3} f(\mathbf{y}|\theta)$$

$$p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})} = \frac{\int f(\mathbf{y}|\theta, \eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$$

Hierarchical levels:

- 1 $\eta \sim h(\eta)$
- $2 \pi(\theta|\eta)$
- 3 $f(\mathbf{y}|\theta)$

$$p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})} = \frac{\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})} = \frac{f(\mathbf{y}|\theta)\int \pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$$

NB: 3 hierarchical levels \Leftrightarrow two levels with *prior*: $\pi(\theta) = \int \pi(\theta|\eta) h(\eta) d\eta$

Hierarchical levels:

- 1 $\eta \sim h(\eta)$
- $2 \pi(\theta|\eta)$
- 3 $f(\mathbf{y}|\theta)$

$$p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})} = \frac{\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})} = \frac{f(\mathbf{y}|\theta)\int \pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$$

NB: 3 hierarchical levels \Leftrightarrow two levels with *prior*: $\pi(\theta) = \int \pi(\theta|\eta) h(\eta) d\eta$

can ease modeling and elicitation of the prior...

Hyperprior in the historical example

Historical example of birth sex with a Beta prior

 \Rightarrow two Gamma hyper-priors for α and β (conjugated):

 $\alpha \sim \text{Gamma}(4, 0.5)$

 $\beta \sim \text{Gamma}(4, 0.5)$

 $\theta | \alpha, \beta \sim \text{Beta}(\alpha, \beta)$

 $Y_i | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$

Empirical Bayes

Eliciting the *prior* according to its empirical marginal distribution

- ⇒ estimate the *prior* from the data
 - hyper-parameters
 - estimate them through frequentist methods (e.g. MLE) by $\hat{\eta}$
 - 3 plug-in estimates into the prior
 - $| \mathbf{4} \rangle \Rightarrow posterior: p(\theta | \mathbf{v}, \hat{\boldsymbol{\eta}})$

Empirical Bayes

Eliciting the *prior* according to its empirical marginal distribution

- ⇒ estimate the *prior* from the data
 - hyper-parameters
 - estimate them through frequentist methods (e.g. MLE) by $\hat{\eta}$
 - 3 plug-in estimates into the prior
 - $| \mathbf{4} \rangle \Rightarrow posterior: p(\theta | \mathbf{v}, \hat{\eta})$
 - Combines Bayesian and frequentist frameworks
 - Concentrated posterior (\sqrt variance) but \sqrt bias (data used twice !)
 - Approximate a fully Bayesian approach

Sequential Bayes

Bayes' theorem can be used sequentially:

$$p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta)\pi(\theta)$$

If $y = (y_1, y_2)$, then:

$$p(\theta|\mathbf{y}) \propto f(\mathbf{y}_2|\theta) f(\mathbf{y}_1|\theta) \pi(\theta) \propto f(\mathbf{y}_2|\theta) p(\theta|\mathbf{y}_1)$$

> posterior distribution updates as new observations are aquired/available (online updates)