Convergence

1 Definitions

Suppose we are working on a probability space (Ω, \mathcal{F}, P) and we consider random variables $\{X_n\}$, where $n = 1, 2, \ldots$ each with distributions functions F_n :

Almost Surely Used in the Strong Law of Large Numbers. Defined

$$P\left(\lim_{n\to\infty}X_n=X\right)=1.$$

In Probability Note, this is the type of convergence established by the *Weak Law of Large Numbers*.

$$\lim_{n\to\infty} P(|X_n - X| > \epsilon) = 0, \quad \forall \epsilon$$

In p-norm All X_n and X have finite pth moment and

$$\lim_{n \to \infty} E[|X_n - X|^p] = 0, \qquad 0$$

In Distribution We say X_n with distributions F_n converge In Distribution to X with distribution F if

$$\lim_{n \to \infty} F_n(x) = F(x)$$

for all $x \in \mathbb{R}$ at which F is continuous. Also called **Weak Convergence**.

2 Relationships

The concepts just defined are related in the following way:

- Almost surely \Rightarrow In Probability.
- In Probability ⇒ there's a deterministic subsequence that converges Almost Surely.
- In p-norm \Rightarrow In Probability.
- Almost Surely and In p-norm, undecidable.
- Almost Surely, In Probability, and In p-norm each \Rightarrow In Distribution.

3 Related Concepts

Consistency A sequence of estimators $\{\hat{\theta}_n\}$ where n = 1, 2, ... is consistent for parameter θ if $\hat{\theta}_n$ converges In Probability to θ .

Strongly Consistent If convergence of $\hat{\theta}_n$ to θ holds with probability 1.