

Algorithme de compression de Huffman

M.BAIDADA

Qu'est ce que le codage de Huffman?

- Il s'agit d'un type de codage utilisé pour la compression de données sans perte
- Il est de type « codage de préfixe » : qui exige qu'il n'y ait pas de mode de code entier ne soit un préfixe d'un autre mot de code dans le système
- Exemple :
 - {101, 0, 111, 1100, 1101} est un code préfixe
 - {101, 0, 111, 10, 11, 1100, 1101} n'est pas un code préfixe

Historique

- Proposé, en 1951, par David Albert Huffman, étudiant à l'époque au MIT
- Il devait faire une recherche, dans un cours de théorie de l'information, pour trouver le code binaire le plus efficace
- Huffman, incapable de trouver les code optimaux, a eu l'idée d'utiliser un arbre binaire, et a trouvé que cette méthode est la plus efficace
- Ainsi, Huffman a surpassé son professeur Fano, inventeur de la théorie de l'information, qui avait développé avec Shannon, la méthode de codage de Shannon-Fano

Principe

- Consiste à représenter le texte à coder sus forme d'un arbre binaire
- Un parcours particulier de cet arbre permet d'associer à chaque lettre, selon sa fréquence dans le texte initial, un code binaire unique
- La technique assure que les lettre les plus fréquentes sont représentées par les codes les plus courts.

Etapes

- 1. Calculer le nombre d'occurrences de chaque caractère dans le texte initial
- Ces caractères seront placés comme feuilles d'un arbre, en associant à chaque nœud un poids qui vaut son nombre d'occurrence
- 3. L'arbre est ensuite construit du bas en haut de la manière suivante :
 - On associe à chaque fois les deux nœuds ayant le poids le plus faible pour créer un nœud père dont le poids est la somme des poids de ces deux nœuds
 - On continue jusqu'à obtenir un seul nœud (la racine de l'arbre)

Etapes

- 4. On associe ensuite, par exemple, le code 0 aux branches gauches et 1 aux branches droites
- 5. Le code binaire de chaque caractère (placés dans les feuilles), est obtenu en remontant l'arbre de la racine jusqu'aux feuilles, et en rajoutant à chaque fois un 1 ou un 0 selon la brache suivie.
- 6. L'arbre est ensuite construit du bas en haut de la manière suivante :
 - On associe à chaque fois les deux nœuds ayant le poids le plus faible pour créer un nœud père dont le poids est la somme des poids de ces deux nœuds
 - On continue jusqu'à obtenir un seul nœud (la racine de l'arbre)

Exemple

• Considérons le texte suivant :

this is an example of a huffman tree

Exemple tiré de wikipédia.org

Classement par fréquence

Caractère	Fréquence
X	1
Р	1
L	1
0	1
U	1
R	1
Т	2
Н	2
I	2
S	2
N	2
M	2
F	3
А	4
Е	4
Espace	7

Représentation dans un arbre binaire

Caractère	Fréquence
X	1
Р	1
L	1
0	1
U	1
R	1
Т	2
Н	2
1	2
S	2
N	2
M	2
F	3
Α	4
E	4
Espace	7

Codage

On associe des 1 aux branches droites et des 0 aux branches gauches

Table du codage

Le codage de chaque caractère est obtenu en parcourant l(arbre de la racine aux feuilles, et en regroupant les 0 et les 1 relatifs aux branches parcourues

Caractère	Fréquence	Code
Х	1	10010
Р	1	10011
L	1	11001
0	1	00110
U	1	00111
R	1	11000
Т	2	0110
Н	2	1010
I	2	1000
S	2	1011
N	2	0010
M	2	0111
F	3	1101
Α	4	010
E	4	000
Espace	7	111

Décodage

- Le texte compressé peut être décodé en le parcourant les bits le constituant et suivre les chemins droite/gauche selon la valeur rencontrée si c'est 1 ou0, jusqu'à arriver à une feuille, et afficher le caractère qu'elle contient.
- Notons que le message compressé doit être toujours accompagné de la table du codage ou bien de l'arbre correspondant, pour qu'il puisse être décodé.