p	q	$\sim q$	$p \wedge q$	$p \wedge \sim q$	$(p \wedge q) \vee (p \wedge \sim q)$
T	Т	F	Т	F	T
T	F	Т	F	T	T
F	Т	F	F	F	I F I F
F	F	Т	F	F	F

Notice that the first and last columns of the truth table are identical. This means that the complicated circuit shown can be replaced by a simpler circuit that contains just switch p! In other words, logic can be used to replace a complex electrical circuit by a simpler one.

Exercises

Symbolize each circuit using \wedge , \vee , \sim , and letters given for the switches in each diagram.

- 7. Draw a diagram for the circuit $p \land \sim p$; also for the circuit $p \lor \sim p$. Electricity can always pass through one of these circuits and can never pass through the other. Which is which?
- 8. According to the commutative rule, $p \land q \equiv q \land p$. This means that the circuit $p \land q$ does the same thing as the circuit $q \land p$. Make a diagram of each circuit.
- 9. According to the associative rule, $(p \lor q) \lor r \equiv p \lor (q \lor r)$. Draw diagrams for each circuit.
- 10. The distributive rule says that $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$. Draw diagrams for each circuit.
- 11. Make both a diagram and a truth table for the circuit $(p \lor q) \lor \sim q$. Notice that the last column of your table is always T so that current always flows. This means that all of the switches could be eliminated.
- 12. Make both a diagram and a truth table for the circuit $(p \lor q) \land (p \lor \sim q)$. Describe a simpler circuit equivalent to this circuit.