

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Convergence of Sequences

Convergent sequence : A sequence <a_n> is said to be convergent iff limit of sequence is exist.

Result:

- (1) If any sequence <an> contain more than one limit points then this sequence is not convergent.
- (2) Every convergent sequence is bounded but the converse is not true.
- (3) Unbounded sequence never convergent.
- (4) A bounded sequence with unique limit point is convergent.

Divergent Sequence: If the sequence does not have any limit point then

this sequence is called divergent sequence.

Another Definition: If the limit of sequence is ±∞, then this sequence is

called divergent sequence.

Result:

- (1) A monotonic and unbounded above sequence is always divergence to ∞.
- (2) A monotonic and unbounded below sequence is always divergence to -∞.

Some important result on divergence sequence:

(1) If $\langle a_n \rangle$ and $\langle b_n \rangle$ are two divergence sequence then $\langle a_n + b_n \rangle$ is also divergence.

Example : Let $<a_n> = <n> & <b_n> = <2^n>$

Then $\langle n + 2^n \rangle$ is divergence sequence.

- (2) If $\langle a_n \rangle$ and $\langle b_n \rangle$ are two convergent sequence then $\langle a_n + b_n \rangle$ is also convergent.
- (3) If <a_n> and <b_n> are divergent sequence then <a_nb_n> is also divergent sequence.
- (4) Let $\langle a_n \rangle$ is a convergent sequence and $\langle b_n \rangle$ is divergent sequence then $\langle a_n + b_n \rangle$ is always divergent sequence.

Oscillatory Sequence: A sequence which is neither converges nor

divergent, then this sequence is called oscillatory sequence.

Another Definition: If sequence have more than one limit points then it is called oscillatory sequence.

Types of Oscillatory Sequence:

(1) Finitely Oscillatory Sequence: If limit point of oscillatory sequence are finite then this sequence is called finitely oscillatory sequence.

- Note: Any bounded sequence which does not converge is said to oscillate finitely.
 - (2) Infinitely oscillatory sequence: A sequence <a_n> is said to oscillate infinitely, if it is unbounded and is divergent neither ∞ nor -∞.

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Result:

(1) Every oscillatory sequence is non-monotonic but converse need not be true.

Monotonic sequence and their convergence

- (1) Every monotonically increasing sequence which is bounded above is always convergent and converge to its least upper bound.
- (2) Every monotonic decreasing sequence which is bounded below is always convergent and converges to greatest lower bound.

(3) A necessary and sufficient condition for a monotonic sequence to be convergent if it is bounded. Q.1. Let $\langle x_n \rangle$ be a real sequence such that $7x_{n+1} = x_n^3 + 6$ for $n \ge 1$. Then which of the following is/are true? IIT-JAM 2017

(a) If
$$x_1 = \frac{1}{2}$$
 then, $\langle x_n \rangle$ converges to 1.

(b) If
$$x_1 = \frac{1}{2}$$
 then, $\langle x_n \rangle$ converges to 2.

(c) If
$$x_1 = \frac{3}{2}$$
 then, $\langle x_n \rangle$ converges to 1.

(d) If
$$x_1 = \frac{3}{2}$$
 then, $\langle x_n \rangle$ converges to -3.

- Let $\langle x_n \rangle$ and $\langle y_n \rangle$ be sequence of real numbers defined by $x_1 = 1$, $y_1 = \frac{1}{2}$, $x_{n+1} = \frac{x_n + y_n}{2}$ and $y_{n+1} = \sqrt{x_n y_n}$ for all $n \in \mathbb{N}$. then which one of the following is true. **IIT JAM 2022**
 - (a) <xn> is convergent and <yn> is not convergent
 - (b) <xn> is not convergent and <yn> is convergent
 - (c) Both are convergent and $\lim_{n\to\infty} x_n > \lim_{n\to\infty} v_n$
 - (d) Both are convergent and $v \to \infty$ $v \to \infty$ $v \to \infty$

Let $0 < a \le 1$, $S_1 = \frac{a}{2}$ and for $n \in \mathbb{N}$. Let $S_{n+1} = \frac{1}{2}(S_n^2 + a)$.

Show that the sequence $\langle S_n \rangle$ is convergent and its limit are

IIT-JAM 2013

(a)
$$a - 1$$

(c)
$$1 - \sqrt{1 + a}$$

(b)
$$1 - \sqrt{1 - a}$$
(d) $1 + a$

$$(d) 1 + a$$

Trick: Let $< x_n >$ and $< y_n >$ are two sequence s.t. $< y_n >$ is monotonic

increasing sequence then
$$\lim_{n\to\infty} \left\langle \frac{x_n}{y_n} \right\rangle = \lim_{n\to\infty} \frac{(x_{n+1} - x_n)}{(y_{n+1} - y_n)}$$

Q.4. Let
$$\langle x_n \rangle$$
 be a sequence of real numbers such that $\lim_{n \to \infty} (x_{n+1} - x_n) = C$ where C is positive real number, then the

sequence
$$\left\langle \frac{x_n}{n} \right\rangle$$
. IIT-JAM 2014

(a) is not bounded

(b) is bounded but not convergent

(c) converge to C

(d) converge to 0

INTERACT WITH YOUR FAVOURITE

EDUCATOR

FOR LEARNERS WHO ATTEND THE SESSION

29TH OCTOBER ENROLL NOW

6:00 PM

Q5. Let $\langle a_n \rangle$, $\langle b_n \rangle$ and $c_n \neq \langle a_n + b_n \rangle$ are sequence s.t. $\lim_{n \to \infty} a_n = \infty$ and $\lim_{n \to \infty} b_n = -\infty$ then which of the following may be true?

- (a) <cn> convergent sequence
- (b) <c_n>divergent to ∞
- (c) <c_n> divergent to -∞
- (d) We can't say that <cn> will always convergent

Q6. Let $\langle a_n \rangle$ be a sequence defined by $a_n = \sin \frac{n\pi}{2}$ then $\langle a_n \rangle$ is

- (a) Convergent Sequence
- (b) Divergent Sequence
- (c) Oscillate Sequence
- (d) None of these

- Q7. Let $\langle a_n \rangle$, $\langle b_n \rangle$ and $\langle c_n \rangle = \langle a_n + b_n \rangle$ are sequence of real number. Which of the following is/are true?
 - (a) If $\langle a_n \rangle$ and $\langle b_n \rangle$ both are convergent then $\langle a_n + b_n \rangle$ is divergent.
 - (b) If $\langle a_n \rangle$ is convergent and $\langle b_n \rangle$ is divergent then $\langle c_n \rangle$ is convergent.
 - (c) If $\langle a_n \rangle$ is convergent and $\langle b_n \rangle$ is divergent then $\langle c_n \rangle$ is divergent.
 - (d) None of these.

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 - 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR