Date: 21/03/2025 Submission by 06/04/2025

Submission URL: https://forms.gle/cYX6uA1ocC6MuFQD7

Original\_Data\_V561892\_2024.xlsx file contents original row data from 32-bit channel EEG. Every column defines the EEG electrode code/name/index.

### **Problem Statement:**

### 1. Alpha Spindle Count Comparison:

 Count the total number of alpha spindles in the sheets labelled ECBL and EOBL, then compare the counts to determine the difference.

# 2. Electrode-wise Alpha Spindle Count Comparison:

 For each electrode, count the number of alpha spindles in both ECBL and EOBL sheets. Compare the counts side by side for each electrode to highlight the differences.

## 3. Wavelet Transform (Scaleogram) and Spindle Visualization:

 Calculate the Scaleogram (wavelet transform coefficients) for a single electrode and for the complete dataset. Visualize the Scaleogram alongside the spindle activity on the same time scale.

## 4. Epoch-based Visualization and Spindle Counting:

 Divide the complete dataset into 10-second epochs. For each epoch, visualize the spindles and the corresponding Scaleogram, while also counting the total number of spindles within each epoch.

**Example:** This is not the actual result of the above data, shared for reference only.



#### Hints:

- 1. Use MNE Python
- 2. Appy ICA on the data with sampling frequency 512
- 3. Save data in fif and csv format
- 4. Dive the number of samples by Sampling Frequency the you will get the time, because time stamp is in the data as a separate column.
- 5. Alpha Spindle (8-13 Hz)
- 6. Use additional package PyWavelets for Scaleogram.