

創維集團有限公司 Skyworth 创维 SKYWORTH (GROUP) CO., LTD.

临 2008.03.13

ENGINEERING EVALUATION REPORT

REVISED

(COMPONI	ENTS) * 2008-5-16				
REPORT NO. : EDE0803056	SAMPLE IS:				
MODEL : 8M19	☑ NEW PARTS				
DATE COMPLETED: 2008 -03- 13	□ 1 st SUBMISSION				
QTY SUBMITTED : □ 2 nd SUBMISSION					
DESCRIPTIONS :	☐ ALTERNATE SOURCE				
31.5" CHI MEI TFT LCD V315B3-LN1	□ OTHER REMARKS				
WXGA(1366 X 768)	SPECIFICATION ATTACHED YES☑ NO□				
REMARKS :					
SUPPLIER'S PART NO.: V315B3-LN1					
OUR PARTS NO. : 7608-T31500-0000					
SUPPLIER :					
MANUFACTURER : CHI MEI OPTOEI	LECTRONICS CORP				
TEST RESULT : ☑ APPROVED	□ REJECTED				
□ CONDITIONALLY	Y APPROVED : SEE ITEMS LISTED BELOW				
3. 请在内/外包装箱	問題而引起的損失,元件生產廠家需負全責。 上打印我公司物料编号 7608-T31500-0000 。 未能提供 ROHS 声明和测试报告。				
IF CONDITIONALLY APPROVED:					
\square (a) SUPPLIER IS REQUESTED TO SUBMI	T PIECES SAMPLES AGAIN.				
□ (b) FOR PURCHASING TO BUY	PIECES FOR PILOT PRODUCTION.				
TESTED BY ENGINEER (S)	APPROVED BY ENGINEERING MANAGER				
ELECTRICAL	1/14 1/14				

创维集团有限公司研究院

新增电子 EDE 编号申请表

资料室填写:

EDE号: EDE v3o4o5h

通用物料编号: _______

专用物料编号: 1008-731500-0000

设计师填写: (请在相关项目栏的"□"中打上"√",即为 ☑,并在内容栏中填写具体信息。)

序号	项 目		内 容				
1	☑ 申请新物料编号	口 申请通用厂家物料纸	端号 ログ	申请专用厂家	尽物料编号	两者选	
2	口 在现有编号下增加其他厂家的规格书	*.				填一项	
3	🗹 申请原因	新属一旁美	きる対南	海科科	In		
4	☑ 物料名称及种类	科					
5	☑ 物料型号		3- INI			必须填写	
6	☑ 机芯/机型	奉美	- 8M19	7-32LD	1		
7	☑ 厂家信息	点	有美.				
8	口 代理商信息	,					
9	口IC功能						
10	口 IC 类型	口 单片数字集成	│ │ □ 単片非数	字集成	口 混合集成	IC	
10		线宽:				必须填写	
11	口 物料本体丝印						
12	口 尺寸封装规格		•				
13	12 主要技术参数	1366 x 7	768			建议 填写	
14	可符合 ROHS	讨多名	常. Ro	的隐都	版社		
15	备注	, ,	, ,				
申	请(设计师签名)	来柳		日期	2008.3.	12	
审相	亥(项目经理签名)	孝 煜	月 1岁 日期)	
ŧ	批准(领导签名) ———	1 Sily	7	日期	2.8.3.1	レ・	

注意事项:

- 1、 物料名称及种类: 请写明物料具体名称及种类:
- 2、在现有编号下增加其他厂家的规格书: 请写明现有编号;
- 3、物料型号: 请填写完整准确的物料型号或厂家编号;
- 4、厂家信息:请写明完整准确的厂家信息;代理商信息:如果有代理商,请写明完整准确的代理商信息;
- 5、IC 功能描述: 如果您申请的是 IC, 请在相对应的栏目中写明 IC 的中文功能;
- 6、物料本体丝印:如果您申请的是 IC,请在相对应的栏目中写明来料 IC 本体上的丝印(注明主体部分即可);
- 7、符合 ROHS (即环保要求): 若符合,请提供相关资料,并注明"符合"字样(只有在资料完整的情况下才可以打勾!)
- 8、批准栏均由各所副所长级别以上领导亲笔签名。

創維集團有限公司 Skyworth 创维 SKYWORTH (GROUP) CO., LTD.

EDE 更改记录 **EDE REVISION RECORD** EDE 更改 序号 更改内容 更改人 更改日期 申请编号 替换规格书,改接口定义。 全晓荣 2008-5-16 08050013 1

制表:研究院技术管理部

EDE更改申请表

NO: OSOSOVIA

兹于原EDE_0803056 有以下内容需申请EDE更改,并要求于___2008-05-15 正式执行。

更改 项目	物料编号	EDE编号	是否更改型号	更改内容	更改页码
1	7608-T31500-0000	0 803056	否	替换规格书(故後の定义)	全部
2					
3					
4					
5					
6					
7					
8					
-	申请			全晓荣 全晚带	日期2008-05-14
	批准			A 19	日期 2008-5-16

TFT LCD Preliminary Specification

MODEL NO.: V315B3 - LN1

Customer:	
Approved by:	
Note:	

Approved By	TV Head Division				
Approved by	LY Chen				
5	QRA Dept.	Product Development Div.			
Reviewed By	Tomy Chen	WT Lin			

Prepared By	LCD TV Marketing an	d Product Management Div.
1 Toparca By	WY Li	Vincent Chou

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 PACKAGE STORAGE 2.3 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT 2.4 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT INVERTER UNIT 3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACT	TERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		8
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 BLOCK DIAGRAM OF INTERFACE 5.4 LVDS INTERFACE 5.5 COLOR DATA INPUT ASSIGNMENT		9
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		13
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		16
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL		20
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		21
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 STORAGE PRECAUTIONS		23
11.MECHANICAL CHARACTERISTICS		24

②

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 1.0	Mar 19,'08	All	All	Preliminary Specification was first issued.
		All		Preliminary Specification was first issued.
	15			

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V315B3- LN1 is a 31.5" TFT Liquid Crystal Display module with 6U-CCFL Backlight unit and RSDS interface. This module supports 1366 x 768 WXGA format and can display 16.7M colors (6-bit+FRC colors)

1.2 FEATURES

- -High brightness (450 nits)
- Ultra-high contrast ratio (3000:1)
- Faster response time (6.5ms)
- High color saturation NTSC 72%
- Ultra wide viewing angle: 176(H)/176(V) (CR>20) with Super MVA technology
- RSDS (Reduced Swing Differential Signaling) interface
- Color reproduction (nature color)
- Optimized response time for both 50 / 60 Frame rate

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

TOLINEINAL OF CONTRACTOR	Specification		
Item	Unit	Note	
Active Area	697.6845 (H) x 392.256 (V) (31.51" diagonal)	mm	(1)
Bezel Opening Area	703.8 (H) x 398.4 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1366 x R.G.B. x 768	pixel	
Pixel Pitch (Sub Pixel)	0.17025(H) x 0.51075 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16.7M	color	
Display Operation Mode	Transmissive mode / Normally black	-	
Surface Treatment	Anti-Glare coating (Haze 17%), Hard coating (3H)	-	

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	759	760	761	mm	(1)
Module Size	Vertical(V)	449	450	451	mm	(1)
	Depth(D)	40.5	41.5	42.5	mm	
Weight		5900	6100	6300	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Issued Date: Mar. 19, 2008 Model No.: V315B3 - LN1 Preliminary

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	(+50)	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35℃ at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

		•			
Item	Symbol	Value)	Unit	Note
item	Symbol	Min	Max	Offic	
Power Supply Voltage	VAA	-0.3	+17.0	V	
	VGH	-0.3	+30.0	V	(1)
	VGL	-10.0	-0.3	V	(1)
Logic Input Voltage	V _{IN}	-0.3	4.0	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

2.3.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Lamp Voltage	V _w	_	3000	V_{RMS}	
Power Supply Voltage	V_{BL}	0	30	V	(1)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

	Parameter	Cumbal		Value		Unit	Note
	Parameter	Symbol	Min.	Тур.	Max.	Ullit	Note
		VGH	22	23	24	V	
Power Supply Voltage	VGL	-6.0	-5.5	-5.0	V		
	VAA	15.7	16	16.25	V		
			2.4	2.5	2.6	V	
		VREF	15.15	15.3	15.45	V	
		IGH	-	10	-	mA	
	Power Supply Current	IGL	_	3	-	mA	
r	Power Supply Current	IAA	-	220	-	mA	
		I2.5V	-	210	-	mA	
CMOS	Input High Threshold Voltage	V _{IH}	2.7	-	3.3	V	>
interface	Input Low Threshold Voltage	VII	0	-	0.7	V	

3.2 RSDS CHARACTERISTICS

Ta = -10~+85 °C

Item	Symbol	Condition			Unit	
item	Symbol	Condition	Min	Тур	Max	Offic
RSDS high input Voltage	V_{DIFFRSDS}	$V_{CMRSDS} = +1.2 V (1)$	100	200	ı	mV
RSDS low input Voltage	V _{DIFFRSDS}	$V_{CMRSDS} = +1.2 V (1)$	_	-200	-100	mV
RSDS common mode	V	V _{DIFFRSDS} = 200mV (2)	VSSD+0.1	Note(3)	VDDD-1.2	V
input voltage range	V _{CMRSDS}	V DIFFRSDS - ZOOTTV (Z)	V33D10.1	Note(3)	VDDD-1.2	V
RSDS Input leakage	l	D _{xx} P, D _{xx} N ,CLKO ,CLPN	-10	_	10	μ A
current	I _{DL}	D _{XX} I , D _{XX} IV , CERO , CEI IV	-10	_	10	μ Λ

Note (1) $V_{CMRSDS} = (VCLKP + VCLKN)/2$ or $V_{CMRSDS} = (VD_{XX}P + VD_{XX}N)/2$

Note (2) $V_{DIFFRSDS} = VCLKP - VCLKN$ or $V_{DIFFRSDS} = VD_{XX}P - VD_{XX}N$

Note (3) $V_{CMRSDS} = 1.2V(VDDD = 3.3V)$

3.3 BACKLIGHT INVERTER UNIT

3.3.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value		Unit	Note
raiametei	Symbol	Min. Typ.		Max.	Offic	Note
Lamp Voltage	V_W	-	1900	-	Lamp	V_{W}
Lamp Current(HI-Side)	Ι _L	8.8	9.5	10.2	Lamp	Ι _L
Laws Ctarting \/altaga	Vs	ı	TBD	-	Lamp	Vs
Lamp Starting Voltage		-	2300	-		
Operating Frequency	Fo	40	-	70	Operati	Fo
Lamp Life Time	L_BL	50,000		-	Lamp	L_{BL}

Preliminary

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Preliminary

5. PIN CONNECTION

5.1 TFT LCD MODULE

Pin assignment

CN1(XL) Connector Pin Assignment

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	XRP2	Line repair trace	29	B2N	RSDS data signal (Blue 2)
2	XRP1	Line repair trace	30	B1P	RSDS data signal (Blue 1)
3	GND	Ground	31	B1N	RSDS data signal (Blue 1)
4	GM14	Gamma Power supply	32	B0P	RSDS data signal (Blue 0)
5	GM13	Gamma Power supply	33	B0N	RSDS data signal (Blue 0)
6	GM12	Gamma Power supply	34	CLKP	Data driver clock
7	GM11	Gamma Power supply	35	CLKN	Data driver clock
8	GM10	Gamma Power supply	36	G2P	RSDS data signal (Green 2)
9	GM9	Gamma Power supply	37	G2N	RSDS data signal (Green 2)
10	GM8	Gamma Power supply	38	G1P	RSDS data signal (Green 1)
11	GM7	Gamma Power supply	39	G1N	RSDS data signal (Green 1)
12	GM6	Gamma Power supply	40	G0P	RSDS data signal (Green 0)
13	GM5	Gamma Power supply	41	G0N	RSDS data signal (Green 0)
14	GM4	Gamma Power supply	42	R2P	RSDS data signal (Red 2)
15	GM3	Gamma Power supply	43	R2N	RSDS data signal (Red 2)
16	GM2	Gamma Power supply	44	R1P	RSDS data signal (Red 1)
17	GM1	Gamma Power supply	45	R1N	RSDS data signal (Red 1)
18	VCM	VCM Power supply	46	R0P	RSDS data signal (Red 0)
19	VDA	Driver Power supply	47	R0N	RSDS data signal (Red 0)
20	VDA	Driver Power supply	48	GND	Ground
21	VREF	Gamma Power supply	49	STV_R	Scan driver start pulse 2
22	VDD	Logic Power supply	50	STV	Scan driver start pulse 1
23	EIO4	source driver start pulse (4)	51	CKV	Scan driver clock
24	STH	source driver start pulse	52	OE	Scan driver output enable
25	TP1	RSDS data latch	53	VGL	Driver Power supply
26	POL	polarity invert	54	VGH	Driver Power supply
27	GND	Ground	55	GND	Ground
28	B2P	RSDS data signal (Blue 2)			

Preliminary

CN2(XR) Connector Pin Assignment

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	GND	Ground	29	R1P	RSDS data signal (Red 1)
2	GM14	Gamma Power supply	30	R2N	RSDS data signal (Red 2)
3	GM13	Gamma Power supply	31	R2P	RSDS data signal (Red 2)
4	GM12	Gamma Power supply	32	G0N	RSDS data signal (Green 0)
5	GM11	Gamma Power supply	33	G0P	RSDS data signal (Green 0)
6	GM10	Gamma Power supply	34	G1N	RSDS data signal (Green 1)
7	GM9	Gamma Power supply	35	G1P	RSDS data signal (Green 1)
8	GM8	Gamma Power supply	36	G2N	RSDS data signal (Green 2)
9	GM7	Gamma Power supply	37	G2P	RSDS data signal (Green 2)
10	GM6	Gamma Power supply	38	CLKN	Data driver clock
11	GM5	Gamma Power supply	39	CLKP	Data driver clock
12	GM4	Gamma Power supply	40	B0N	RSDS data signal (Blue 0)
13	GM3	Gamma Power supply	41	B0P	RSDS data signal (Blue 0)
14	GM2	Gamma Power supply	42	B1N	RSDS data signal (Blue 1)
15	GM1	Gamma Power supply	43	B1P	RSDS data signal (Blue 1)
16	VCM	VCM Power supply	44	B2N	RSDS data signal (Blue 2)
17	VDA	Driver Power supply	45	B2P	RSDS data signal (Blue 2)
18	VDA	Driver Power supply	46	GND	Ground
19	VREF	Gamma Power supply	47	DRL	Control the direction of start pulse
20	VDD	Logic Power supply	48	STV	Scan driver start pulse 1
21	STH_R	source driver start pulse (6)	49	VSCM	VSCM Power supply
22	EIO4	source driver start pulse (4)	50	NC	No connection
23	TP1	RSDS data latch	51	VGL	Driver Power supply
24	POL	polarity invert	52	NC	No connection
25	GND	Ground	53	GND	Ground
26	R0N	RSDS data signal (Red 0)	54	XRP2	Line repair trace
27	R0P	RSDS data signal (Red 0)	55	XRP1	Line repair trace
28	R1N	RSDS data signal (Red 1)			

Note (1) CN1 · CN2 Connector Part No.: STARCONN 089H55-000000-G2-C or equal.

Preliminary

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN2-CN7 (Housing): BDAMR-02VAS-3 or equivalent

Pin No.	Symbol	Description	Wire Color
1	HV	High Voltage	PINK
2	HV	High Voltage	WHITE

Note (1) The backlight interface housing for high voltage side is a model BDAMR-02VAS-3, manufactured by JST or equivalent. The mating header on inverter part number is SM02-BDAS-3-TB

Issued Date: Mar. 19, 2008 Model No.: V315B3 - LN1

Preliminary

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input

												Da	ata	Sigr	nal			1							
	Color			1	Re	ed							G	reer	1						Blı	ue			_
	1	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	ВЗ	B2	В1	В
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	(
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Scale	:	:	:	:	:	:	:	:	:	:		:):	:	:	:	:	:	:	:	:	:	:	:	
ocale Of	:	:	:	:	:	:	:	:						:	:	:	:	:	:	:	:	:	:	:	
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
\eu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
Scale	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Of	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
-	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Scale Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
3lue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	
Jiue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Preliminary

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

1 0 01					0		
Signal	Item	Symbol	Min.	Typ.	Max.	Unit	Note
	Frequency	1/Tc	60	76	82	MHz	
VDS Receiver Clock VDS Receiver Data	Input cycle to cycle jitter	Trcl	-	-	200	ps	
LVDS Descriver Date	Setup Time	Tlvsu	600	-	-	ps	
LVD3 Receiver Data	Hold Time	Tlvhd	600	-	-	ps	
	Frame Rate	Fr5	47	50	53	Hz	
	riaille Rate	Fr6	57	60	63	Hz	
Vertical Active Display Term	Total	Tv	778	806	888	Th	Tv=Tvd+Tvb
	Display	Tvd	768	768	768	Th	_
	Blank	Tvb	10	38	120	Th	-
	Total	Th	1442	1560	1936	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1366	1366	1366	Tc	-
	Blank	Thb	76	194	570	Tc	_

Note: Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Preliminary

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Power ON/OFF Sequence

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Please apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off, the display may, instantly, function abnormally.
- (3) In case of vcc = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power on/off periods.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Preliminary

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	5.0	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current (High side)	L	9.5mA ± 0.7	mA
Oscillating Frequency (Inverter)	F_W	66 ±3	KHz
Frame rate		60	Hz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR			(3000)		-	(2)	
Response Time Center Luminance of White White Variation		Gray to gray average			(6.5)		ms	(3)	
		L _C			(450)	•	cd/m ²	(4)	
		δW		-	-	1.3	-	(7)	
Cross Talk		СТ	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$	-	-	4.0	%	(5)	
	Red	Rx	Viewing Angle at		(0.639)		-		
	Reu	Ry			(0.331)		-		
	Green	Gx	Normal Direction	Typ -0.03	(0.270)	_	-		
Color	Green	Gy			(0.591)	Тур	-	(6)	
Chromaticity	Blue	Bx			(0.146)	+0.03	-		
Cilionialicity	Dide	Ву			(0.063)		-		
	White	Wx			0.280		-		
	vviille	Wy			0.290		-		
	Color Gamut	CG			(72)		%	NTSC	
	Horizontal	θ_{x} +			(88)	-			
Viewing	TIONZONIA	θ_{x} -	CR≥20		(88)	-	Dea	(1)	
Angle	Vertical	θ_{Y} +	UN≥20		(88)	-	Deg.	(1)	
	vertical	θ _Y -			(88)	-			

Issued Date: Mar. 19, 2008 Model No.: V315B3 - LN1

Preliminary

-Note (1)Definition of Viewing Angle (θx , θy):

Viewing angles are measured by EZ-Contrast 160R (Eldim)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time:

Issued Date: Mar. 19, 2008 Model No.: V315B3 - LN1

Preliminary

The driving signal means the signal of luminance 0%, 20%, 40%, 60%, 80%, 100%. Gray to gray average time means the average switching time of luminance 0%,20%,

40%, 60%, 80%, 100% to each other.

Note (4) Definition of Luminance of White (L_C, L_{AVE}):

Measure the luminance of gray level 255 at center point and 5 points

$$L_{C} = L (5)$$

$$L_{AVE} = [L (1)+ L (2)+ L (3)+ L (4)+ L (5)] / 5_delteted.$$

where L (x) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Preliminary

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Preliminary

8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- Model Name: V315B3-LN1 (a)
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

- (a) Manufactured Date: Year: 1~9, for 2001~2009
 - Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

- (b) Revision Code: Cover all the change
- Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Preliminary

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 5 LCD TV modules / 1 Box

(2) Box dimensions: 834(L) X 380 (W) X 530 (H)

(3) Weight: approximately 38.5Kg (5 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

Figure.9-1 packing method

Issued Date: Mar. 19, 2008 Model No.: V315B3 - LN1

Preliminary

Sea / Land Transportation (40ft Container)

Sea / Land Transportation (40ft HQ Container)

Air Transportation

Figure.9-2 packing method

22

Preliminary

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 STORAGE PRECAUTIONS

When storing modules as spares for a long time, the following precaution is necessary.

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (2) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

23

Preliminary

11. MECHANICAL CHARACTERISTICS

Preliminary

②

Issued Date: Mar. 19, 2008 Model N<u>o.: V315B3 - LN1</u>

Preliminary

