А. Ю. Пирковский

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

Лекция 7

7.1. Сопряженное пространство и сопряженный оператор

Пусть X — нормированное пространство над полем \mathbb{K} (как обычно, $\mathbb{K} = \mathbb{R}$ или \mathbb{C}).

Определение 7.1. Нормированное пространство $X^* = \mathcal{B}(X, \mathbb{K})$ называется *сопряженным* к X. Его элементы называются *ограниченными линейными функционалами* на X.

Из теоремы 3.18 следует, что X^* — банахово пространство (независимо от того, полно X или нет).

Конструкция «навешивания звездочки» естественна (в категорном смысле): она определена не только на пространствах, но и на операторах.

Определение 7.2. Пусть X и Y — нормированные пространства и $T\colon X\to Y$ — ограниченный линейный оператор. Его *сопряженным оператором* называется отображение

$$T^*: Y^* \to X^*, \quad T^*(f) = f \circ T.$$

Легко видеть, что T^* — линейный оператор.

Предложение 7.1. Пусть X u Y - нормированные пространства.

- (i) Для каждого $T \in \mathcal{B}(X,Y)$ оператор $T^*: Y^* \to X^*$ ограничен, $u \|T^*\| \leqslant \|T\|^1$.
- (ii) Ecau $S, T \in \mathcal{B}(X, Y)$ $u \lambda, \mu \in \mathbb{K}$, mo $(\lambda S + \mu T)^* = \lambda S^* + \mu T^*$.
- (iii) $(\mathbf{1}_X)^* = \mathbf{1}_{X^*}$.
- (iv) Ecau $T \in \mathcal{B}(X,Y)$ u $S \in \mathcal{B}(Y,Z)$, mo $(ST)^* = T^*S^*$.

Доказательство. Для каждого $f \in Y^*$ имеем

$$||T^*(f)|| = ||f \circ T|| \le ||f|| ||T||.$$

Это доказывает (i). Остальные утверждения докажите сами в качестве упражнения. $\ \square$

Замечание 7.1. Из предложения 7.1 следует, что сопоставление $X \mapsto X^*$ и $T \mapsto T^*$ представляет собой контравариантный функтор из категории $\mathscr{N}orm$ в категорию $\mathscr{B}an$ (или из категории $\mathscr{N}orm_1$ в категорию $\mathscr{B}an_1$); по поводу обозначений см. замечание 4.3.

Сопряженные пространства и сопряженные операторы играют очень важную роль в функциональном анализе. На них основана так называемая *теория двойственности* — совокупность методов и результатов, устанавливающих взаимосвязи свойств банаховых пространств и линейных операторов со свойствами их сопряженных. Через некоторое время мы увидим, что взаимосвязи эти весьма тесны. А пока для примера сформулируем самое простое (но важное) утверждение из теории двойственности.

¹Через некоторое время мы докажем, что на самом деле $||T^*|| = ||T||$.

Предложение 7.2. Пусть X u Y - нормированные пространства.

- (i) $E cлu\ T\colon X\to Y$ топологический изоморфизм, то и $T^*\colon Y^*\to X^*$ топологический изоморфизм.
- (ii) Если $T\colon X\to Y$ изометрический изоморфизм, то и $T^*\colon Y^*\to X^*$ изометрический изоморфизм.

Доказательство. Топологический изоморфизм — это то же самое, что изоморфизм в категории Norm, а изометрический изоморфизм — то же самое, что изоморфизм в категории $Norm_1$ (см. замечание 2.2). Остается воспользоваться тем, что любой функтор переводит изоморфизмы в изоморфизмы.

Посмотрим теперь, как устроены сопряженные пространства к некоторым классическим банаховым пространствам. Начнем с гильбертовых пространств.

Пример 7.1. Пусть H — предгильбертово пространство. Каждый вектор $y \in H$ определяет линейный функционал

$$f_y \colon H \to \mathbb{C}, \quad f_y(x) = \langle x, y \rangle.$$

Из неравенства Коши-Буняковского-Шварца немедленно следует, что f_y ограничен и $||f_y|| \leq ||y||$. Поскольку $f_y(y) = ||y||^2$, мы видим, что $||f_y|| = ||y||$.

Оказывается, если H — гильбертово пространство, то других ограниченных линейных функционалов на H, кроме описанных выше, не бывает. Прежде чем формулировать соответствующее утверждение, дадим одно определение.

Определение 7.3. Пусть X и Y — векторные пространства над \mathbb{C} . Отображение $\varphi \colon X \to Y$ называется *антилинейным*, если

$$\varphi(\lambda x + \mu y) = \bar{\lambda}\varphi(x) + \bar{\mu}\varphi(y) \quad (x, y \in X, \ \lambda, \mu \in \mathbb{C}).$$

Теорема 7.3 (Рисс). Пусть H — гильбертово пространство. Рассмотрим отображение $R\colon H\to H^*$, переводящее каждый вектор $y\in H$ в функционал f_y , действующий по правилу $f_y(x)=\langle x,y\rangle$. Тогда R антилинейно, биективно и изометрично.

Доказательство. Антилинейность отображения R очевидна, а его изометричность уже была установлена выше (см. пример 7.1). Поэтому остается доказать его сюръективность.

Пусть $f \in H^*$ — ненулевой функционал. Положим $H_0 = \operatorname{Ker} f$. По теореме об ортогональном дополнении, $H = H_0 \oplus H_0^{\perp}$. Поскольку $\operatorname{Im} f = \mathbb{C}$, имеем изоморфизмы векторных пространств $H_0^{\perp} \cong H/H_0 \cong \mathbb{C}$. Следовательно, $\dim H_0^{\perp} = 1$, и

$$H = H_0 \oplus \mathbb{C}y \tag{7.1}$$

для любого ненулевого $y \in H_0^{\perp}$. Зафиксируем такой y и покажем, что $f = \lambda f_y$ для некоторого $\lambda \in \mathbb{C}$. Для этого заметим, что как f, так и λf_y обращаются в нуль на H_0 для любого $\lambda \in \mathbb{C}$. Поэтому с учетом (7.1) нам достаточно подобрать λ так, чтобы $f(y) = \lambda f_y(y)$. А такое λ , разумеется, существует — а именно, $\lambda = f(y)/\|y\|^2$.

Лекция 7

Замечание 7.2. Обратите внимание, что, хотя теорема Рисса и позволяет отождествить H и H^* , это отождествление не является изоморфизмом: оно антилинейно. Впрочем, изоморфизм между H и H^* все же существует, хотя и не канонический. Для случая сепарабельного H мы вскоре в этом убедимся.

Замечание 7.3. Полезно проследить путь, по которому мы пришли к теореме Рисса. Если H — гильбертово пространство, то из его полноты следует теорема об ортогональном дополнении, из которой, в свою очередь, следует, что

$$(\operatorname{Ker} f)^{\perp} \neq 0$$
 для любого $f \in H^* \setminus \{0\}.$ (7.2)

Но, в сущности, именно утверждение (7.2) и использовалось в доказательстве теоремы Рисса (убедитесь!); полнота H как таковая в доказательстве не фигурировала. Если же для какого-то предгильбертова пространства H справедливо утверждение теоремы Рисса, то ясно, что H должно быть полным (почему?). Таким образом, мы видим, что для предгильбертова пространства H следующие утверждения эквивалентны:

H полно \iff для H справедлива теорема об ортогональном дополнении \iff для H справедливо утверждение (7.2) \iff для H справедлива теорема Рисса.

Опишем теперь пространство, сопряженное к ℓ^p .

Предложение 7.4. Пусть числа $p, q \in (1, +\infty)$ связаны соотношением 1/p + 1/q = 1. Тогда существует изометрический изоморфизм $\ell^q \to (\ell^p)^*$, переводящий каждый вектор $y \in \ell^q$ в функционал $f_y \in (\ell^p)^*$, действующий по правилу

$$f_y(x) = \sum_{i=1}^{\infty} x_i y_i \qquad (x \in \ell^p).$$
 (7.3)

Доказательство. Из неравенства Гёльдера (см. задачу 1.3 из листка 1) следует, что для любых $y \in \ell^q$ и $x \in \ell^p$ ряд (7.3) абсолютно сходится, причем сумма его по модулю не превосходит $\|y\|_q \|x\|_p$. Следовательно, формула (7.3) определяет ограниченный линейный функционал f_y на ℓ^p , и $\|f_y\| \leq \|y\|_q$. Таким образом, определено линейное отображение

$$\alpha \colon \ell^q \to (\ell^p)^*, \quad \alpha(y) = f_y \qquad (y \in \ell^q).$$

Для каждого $n \in \mathbb{N}$ обозначим через $e_n \in \ell^p$ последовательность с единицей на n-ом месте и нулем на остальных. Тогда $f_y(e_n) = y_n$ для каждого $y \in \ell^q$, откуда следует, что Кег $\alpha = 0$. Остается доказать, что α сюръективно и изометрично.

Зафиксируем произвольный $f \in (\ell^p)^*$. Мы должны подобрать $y \in \ell^q$ так, чтобы $f = f_y$. Для этого положим $y_n = f(e_n)$ для каждого $n \in \mathbb{N}$ (никакая другая последовательность на роль y, понятно, не подойдет). Чтобы показать, что $y \in \ell^q$, для каждого $i \in \mathbb{N}$ положим

$$x_i = \begin{cases} |y_i|^q/y_i & \text{при } y_i \neq 0, \\ 0 & \text{при } y_i = 0. \end{cases}$$

Тогда для произвольного $N \in \mathbb{N}$ имеем

$$\sum_{i=1}^{N} |y_i|^q = \sum_{i=1}^{N} x_i y_i = f\left(\sum_{i=1}^{N} x_i e_i\right) \le ||f|| \left(\sum_{i=1}^{N} |x_i|^p\right)^{1/p} =$$

$$= ||f|| \left(\sum_{i=1}^{N} |y_i|^{(q-1)p}\right)^{1/p} = ||f|| \left(\sum_{i=1}^{N} |y_i|^q\right)^{1/p}.$$

После сокращения получаем неравенство

$$\left(\sum_{i=1}^N |y_i|^q\right)^{1/q} \leqslant ||f||.$$

Ввиду произвольности $N \in \mathbb{N}$ отсюда следует, что $y \in \ell^q$ и $\|y\|_q \leqslant \|f\|$. Поскольку линейная оболочка e_n -ых плотна в ℓ^p , а функционалы f и f_y линейны и непрерывны, из равенств $f(e_n) = f_y(e_n) = y_n$ следует, что $f = f_y$. Следовательно, α — биекция. Кроме того, $\|y\|_q \leqslant \|f\| = \|f_y\| \leqslant \|y\|_q$ (см. выше), так что α — изометрия.

Упражнение 7.1. Постройте изометрические изоморфизмы $(\ell^1)^* \cong \ell^\infty$ и $(c_0)^* \cong \ell^1$.

Предостережение 7.4. Может возникнуть предположение, что пространство $(\ell^{\infty})^*$ изоморфно ℓ^1 , однако это не так (см. задачу 5.8 из листка 5)! Чему изоморфно пространство $(\ell^{\infty})^*$, мы узнаем через некоторое время.

Опишем теперь сопряженные к некоторым линейным операторам. Прежде чем это делать, договоримся о том, какие операторы следует считать «одинаковыми».

Определение 7.4. Пусть X и Y — нормированные пространства. Операторы $S \in \mathscr{B}(X)$ и $T \in \mathscr{B}(Y)$ называются *подобными* (соответственно, *изометрически эквива- лентными*), если существует топологический (соответственно, изометрический) изоморфизм $U \colon X \to Y$, делающий следующую диаграмму коммутативной:

$$X \xrightarrow{S} X$$

$$U \downarrow \qquad \qquad \downarrow U$$

$$Y \xrightarrow{T} Y$$

Про такой оператор U говорят, что он *осуществляет подобие* (соответственно, *изометрическую эквивалентность*) между S и T.

В случае гильбертовых пространств изометрическую эквивалентность чаще называют унитарной эквивалентностью (см. следствие 5.2).

Смысл этого определения в том, что операторы $S \in \mathcal{B}(X)$ и $T \in \mathcal{B}(Y)$ следует считать «одинаковыми», если пространства X и Y можно отождествить (топологически либо изометрически) так, что оператор S «превратится» в оператор T.

Лекция 7 51

Предложение 7.5. Пусть числа $p, q \in (1, +\infty)$ связаны соотношением 1/p + 1/q = 1. Зафиксируем $\lambda \in \ell^{\infty}$ и рассмотрим следующие операторы:

```
M_{\lambda}^{(p)} \colon \ell^p 	o \ell^p - диагональный оператор (см. пример 2.2); T_r^{(p)} \colon \ell^p 	o \ell^p - оператор правого сдвига (см. пример 2.3); T_\ell^{(p)} \colon \ell^p 	o \ell^p - оператор левого сдвига (см. пример 2.3); \alpha \colon \ell^q 	o (\ell^p)^* - изометрический изоморфизм из предложения 7.4.
```

Тогда α осуществляет изометрическую эквивалентность между $M_{\lambda}^{(q)}$ и $(M_{\lambda}^{(p)})^*$, между $T_r^{(q)}$ и $(T_\ell^{(p)})^*$ и между $T_\ell^{(q)}$ и $(T_r^{(p)})^*$.

Доказательство. Прямая проверка (упражнение).