Numerieke Benadering

Pieter Vanderschueren

Academiejaar 2024-2025

Inhoudsopgave

Lineai	re Benaderingsproblemen	2
1	Benadering van vectoren	3
	1.1 Terminologie	3
	1.2 QR-factorisatie	6
		8
2	Benadering van functies	9
	2.1 Metrische ruimte	9
	2.2 Vectorruimte	10
	2.3 Unitaire ruimte en orthogonaliteit	13
3	Benadering door middel van veeltermen	15
4	Discrete benadering op basis van meetdata	15
5	Regularisatietechnieken	L5
Data,	Grafen en Eigenwaarden	L 6
6	Grafen en eigenwaarden in datawetenschappen	17
7	Eigenwaardenalgoritmes	ι7
Niet-l	ineaire Benaderingsproblemen	18
8	Niet-lineaire benaderingsproblemen	19
9	Optimalisatie-algoritmes	19
10	Ijle representatie en benaderingen	

Lineaire Benaderingsproblemen

1 Benadering van vectoren

1.1 Terminologie

Definitie 1.1: Orthogonale en orthonormale basissen

We spreken van een orthogonale, respectievelijk orthonormale basis als de basisvectoren $\{a_1, \ldots, a_n\}$ orthogonaal, respectievelijk orthonormaal zijn. Als een basis niet orthogonaal is, spreken we van een scheve basis.

Definitie 1.2: Grammatrix

Voor een basis $\{a_1, \ldots, a_n\}$ van deelruimte \mathcal{D} en twee vectoren $v, w \in \mathcal{D}$ ontbonden als

$$v = \sum_{i=1}^{n} \alpha_i a_i, \ w = \sum_{i=1}^{n} \beta_i a_i$$

geldt dat het inwendig product $(\langle v, w \rangle = v^*w)$ van v en w gelijk is aan

$$\langle v, w \rangle = \left(\sum_{i=1}^{n} \alpha_{i} a_{i}^{*}\right) \left(\sum_{i=1}^{n} \beta_{i} a_{i}\right) = \begin{bmatrix} \alpha_{1} & \cdots & \alpha_{n} \end{bmatrix} \underbrace{\begin{bmatrix} \langle a_{1}, a_{1} \rangle & \cdots & \langle a_{1}, a_{n} \rangle \\ \vdots & \ddots & \vdots \\ \langle a_{n}, a_{1} \rangle & \cdots & \langle a_{n}, a_{n} \rangle \end{bmatrix}}_{G} \begin{bmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{bmatrix}$$

waarbij deze G de zogenaamde grammatrix is horende bij de basis $\{a_1, \ldots, a_n\}$.

Eigenschap 1.1: Grammatrix

- Is de basis orthogonaal, dan is de grammatrix diagonaal.
- Is de basis orthonormaal, dan is de grammatrix de eenheidsmatrix.

Definitie 1.3: Projector

Een projector is een matrix $P \in \mathbb{C}^{m \times m}$ die idempotent is, dit is $P^2 = P$. De meetkundige betekenis is als volgt. Matrix P projecteert een vector op de ruimte $\mathcal{R}(P)$, waarbij de richting bepaald wordt door de nullspace $\mathcal{N}(P)$.

Toepassing 1.1: Projector

Stel $v \in \mathbb{C}^m$ een willekeurige vector en $P \in \mathbb{C}^{m \times m}$ een projector, dan is $Pv \in \mathcal{R}(P)$ olgens de definitie van het bereik, en is $(I - P)v \in \mathcal{N}(P)$, omdat

$$P(I-P)v = (P-P^2)v \stackrel{\text{idempotent}}{=} (P-P)v = 0$$

We kunnen dus v ontbinden in componenten volgens $\mathcal{R}(P)$ en $\mathcal{N}(P)$ als

$$v = Pv + (I - P)v$$

Deze ontbinding is uniek.

Eigenschap 1.2: Projector

- Als $v \in \mathcal{R}(P)$, dan is Pv = v.
- Er geldt dat $\mathcal{R}(P) \cap \mathcal{N}(P) = \{0\}.$
- Er geldt dat $\dim(\mathcal{R}(P)) + \dim(\mathcal{N}(P)) = m$.
- De ontbinding in componenten volgens $\mathcal{R}(P)$ en $\mathcal{N}(P)$ is uniek.

Bewijs 1.1: Projector

- Als $v \in \mathcal{R}(P)$, dan $\exists u : v = Pu$, en dus is $Pv = P^2u = Pu = v$.
- Stel $x \in \mathcal{R}(P)$ en $x \in \mathcal{N}(P)$. Er volgt dat x = Px = 0.
- Dit volgt uit de eerste dimensiestelling en vorige eigenschap.
- Stel $v = x_1 + y_1 = x_2 + y_2$, met $x_1, x_2 \in \mathcal{R}(P)$ en $y_1, y_2 \in \mathcal{N}(P)$. Er geldt voor $i \in 1, 2$ dat $Pv = Px_i + Py_i = x_i$. Hieruit volgt dat $x_1 = x_2$.

Definitie 1.4: Complementaire projector

Stel P een projector, dan is $\tilde{P} = I - P$ de **complementaire projector** van P. Hierbij geldt:

$$\mathcal{R}(P) = \mathcal{N}(I - P) = \mathcal{N}(\tilde{P})$$
 en $\mathcal{N}(P) = \mathcal{R}(I - P) = \mathcal{R}(\tilde{P})$.

De ontbinding kan geschreven worden als

$$v = \underbrace{(I - \tilde{P})v}_{\in \mathcal{R}(P)} + \underbrace{\tilde{P}v}_{\in \mathcal{N}(P)}$$

Matrix \tilde{P} projecteert dus op $\mathcal{N}(P)$ waarbij de richting bepaald wordt door $\mathcal{R}(P)$.

Definitie 1.5: Orthogonale projector

Een projector P is orthogonaal indien $\mathcal{R}(P)$ en $\mathcal{N}(P)$ onderling orthogonale ruimte zijn. Een prokector die niet orthogonaal is, noemen we een scheve projector.

Eigenschap 1.3: Orthogonale projector

Een projector P is orthogonaal als en alleen als $P = P^*$.

Bewijs 1.2: Orthogonale projector

"\Rightarrow": Beschouw een orthonormale basis $\{q_1, \ldots, q_n\}$ van $\mathcal{R}(P)$ en een orthonormale basis $\{q_{n+1}, \ldots, q_m\}$ van $\mathcal{N}(P)$. Omdat volgens de definitie beide ruimten orthogonaal zijn, volgt dat

$$Q = \begin{bmatrix} q_1 & \cdots & q_n & q_{n+1} & \cdots & q_m \end{bmatrix}$$

een unitaire matrix is. We verkrijgen:

$$PQ = \begin{bmatrix} q_1 & \cdots & q_n & 0 & \cdots & 0 \end{bmatrix} \Rightarrow Q^*PQ = \begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix}.$$

Vermits Q^*PQ dus reëel is, geldt:

$$Q^*PQ = (Q^*PQ)^* = Q^*P^*Q$$

waaruit het gestelde volgt.

"\(= \)": Neem willekeurige $x = Pu \in \mathcal{R}(P)$ en $y \in \mathcal{N}(P)$. Dan is:

$$\langle x, y \rangle = x^* y = (Pu)^* y = u^* P^* v y = u^* P y = 0.$$

De ruimten $\mathcal{R}(P)$ en $\mathcal{N}(P)$ zijn dus orthogonaal.

1.2 QR-factorisatie

Algoritme 1.1: Gram-Schmidt orthogonalisatie

```
1: for j = 1 to n do

2: v_j = a_j

3: for i = 1 to j - 1 do

4: r_{ij} = q_i^* a_j

5: v_j = v_j - r_{ij} q_i \ (= a_j - P_{< q_1, ..., q_{j-1} >} a_j)

6: end for

7: r_{jj} = ||v_j||_2

8: q_j = v_j / r_{jj}

9: end for
```

Algoritme 1.2: Gewijzigde Gram-Schmidt orthogonalisatie

```
1: for j = 1 to n do
2: v_j = a_j
3: for i = 1 to j - 1 do
4: r_{ij} = q_i^* v_j \ (a_j \to v_j)
5: v_j = v_j - r_{ij} q_i \ (= (\mathbb{I} - P_{< q_{j-1}>}) \dots (\mathbb{I} - P_{< q_{2}>}) (\mathbb{I} - P_{< q_{1}>}) a_j)
6: end for
7: r_{jj} = ||v_j||_2
8: q_j = v_j / r_{jj}
9: end for
```

Toepassing 1.2: Herorthogonalisatie van Gram-Schmidt

De Gram-Schmidt orthogonalisatie is numeriek instabiel. Dit kan verholpen worden door herorthogonalisatie, hieronder twee varianten waarvan de eerste de meest gebruikte is.

1. Stapsgewijze variant:

```
1: v_j = a_j

2: for j = 1 to j - 1 do

3: r_{ij} = q_i^* v_j

4: v_j = v_j - r_{ij}q_i

5: end for

6:

7: w_j = v_j

8: for i = 1 to j - 1 do

9: s_{ij} = q_i^* w_j

10: v_j = v_j - s_{ij}q_i

11: r_{ij} = r_{ij} + s_{ij}

12: end for
```

2. Simultane variant: Na het berekenen van de onvolledige QR-factorisatie, die resulteert in factoren \hat{Q}_1 en \hat{R}_1 wordt het algoritme opnieuw toegepast met als input de eerste factor, wat resulteert in $\hat{Q}_1 \approx \hat{Q}_2 \hat{R}_2$. We bepalen dan $\hat{Q} = \hat{Q}_2$ en $\hat{R} = \hat{R}_2 \hat{R}_1$. Bij het gewijzigde algoritme van Gram-Schmidt (Algoritme 1.2) is dit meestal voldoende om orthogonaliteit van de kolommen van \hat{Q} te garanderen, bij het standaard algoritme (Algoritme 1.1) is soms meermaals herhalen van deze procedure noodzakelijk.

Algoritme 1.3: QR-facrotisatie met Givens-rotaties

```
1: Q = I, R = A
   2: for j = 1 to n do
                     for i = m downto j + 1 do
c = \frac{r_{(i-1)j}}{\sqrt{r_{(i-1)j}^2 + r_{ij}^2}}, s = \frac{r_{ij}}{\sqrt{r_{(i-1)j}^2 + r_{ij}^2}}
                               r_{ij} = 0, \ r_{(i-1)j} = \sqrt{r_{(i-1)j}^2 + r_{ij}^2}
\mathbf{for} \ k = j + 1 \ \mathbf{to} \ n \ \mathbf{do}
\begin{bmatrix} r_{(i-1)k} \\ r_{ik} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{s} \\ -s & c \end{bmatrix} \begin{bmatrix} r_{(i-1)k} \\ r_{ik} \end{bmatrix}
end for
   6:
   7:
   8:
                                  for k = 1 to m do
   9:
                                             \begin{bmatrix} q_{k(i-1)} & q_{ki} \end{bmatrix} = \begin{bmatrix} q_{k(i-1)} & q_{ki} \end{bmatrix} \begin{bmatrix} \overline{c} & \overline{s} \\ -s & c \end{bmatrix}
10:
                                  end for
11:
12:
                       end for
13: end for
```

Algoritme 1.4: QR-facrotisatie met Householder-rotaties

```
1: R = A
 2: for j = 1 to n do
        x = R(j:m,j)
        v_j = x + \operatorname{sign}(x_1) ||x||_2 \boldsymbol{e}_1
        v_j = v_j / \|v_j\|_2
        R_{jj} = -\operatorname{sign}(x_1) ||x||_2, \ R(j+1:m,j) = 0
        for k = j + 1 to n do
            R(j:m,k) = R(j:m,k) - 2(v_i^*R(j:m,k))v_j
 8:
        end for
10: end for
11: for j = 1 to m do
        w = e_i
12:
        for k = n downto 1 do
13:
            w_{k:m} = w_{k:m} - 2(v_k^* w_{k:m}) v_k
14:
        end for
15:
        Q(:,i) = w
16:
17: end for
```

1.3 Beste benadering van een vector in een deelruimte

Lemma 1.1: Beste benaderingsstelling

Een vector \hat{y} is een beste benadering in deelruimte \mathcal{D} voor b als $b - \hat{y}$ orthogonaal is ten opzichte van \mathcal{D} .

Bewijs 1.3: Beste benaderingsstelling

Neem een willekeurige $y \in \mathcal{D}$. Vermits $y - \hat{y} \in \mathcal{D}$ en dus orthogonal is ten opzichte van $b - \hat{y}$ geldt, volgens de stelling van Pythagoras:

$$||b - y||_2^2 = ||b - \hat{y}||_2^2 + ||\hat{y} - y||_2^2 \ge ||b - \hat{y}||_2^2$$

m.a.w. y benadert b niet beter dan \hat{y} .

Lemma 1.2: Orthogonale projectiestelling

De beste benadering in deelruimte \mathcal{D} voor vector b bestaat en is uniek. Ze wordt gegeven door de orthogonale projectie van b op \mathcal{D} , namelijk:

$$\hat{y} = P_{\mathcal{D}} y$$

met $P_{\mathcal{D}}$ de orthogonale projector op \mathcal{D} .

Bewijs 1.4: Orthogonale projectiestelling

Per definitie van een projector, kan b ontbonden worden als

$$b = \underbrace{P_{\mathcal{D}}b}_{\in \mathcal{R}(P_{\mathcal{D}})} + \underbrace{(I - P_{\mathcal{D}})b}_{\in \mathcal{N}(P_{\mathcal{D}})}$$

waaruit volgt dat $b - \hat{y} = b - P_{\mathcal{D}}b \in \mathcal{N}(P_{\mathcal{D}}) = \mathcal{R}(P_{\mathcal{D}^{\perp}})$. Volgens de beste benaderingsstelling (Stelling 1.1) is \hat{y} een beste benadering. De uniciteit volgt uit het voorgaande bewijs (Bewijs 1.3).

Lemma 1.3: Normaalstelsel

Een vector \hat{x} is een oplossing van het kleinste-kwadratenprobleem, namelijk

$$\min_{x \in \mathbb{C}^n} \|Ax - b\|_2,$$

als en alleen als $x=\hat{x}$ voldoet aan het zogenaamde normaalstelsel:

$$A^*Ax = A^*b.$$

Bewijs 1.5: Normaalstelsel

"\(\Rightarrow\)": Veronderstel dat $A\hat{x}=\hat{y}$, met \hat{y} gegeven door $\hat{y}=P_{\mathcal{D}}y$. We weten dat $(b-A\hat{x})\perp\mathcal{D}=< a_1,\ldots,a_n>$ waaruit volgt

$$\forall i \in [1, n]: \langle a_i, (b - A\hat{x}) \rangle = 0 \Leftrightarrow a_i^*(b - A\hat{x}) = 0$$

wat equivalent is aan het gestelde in matrixvorm.

"\(\neq\)": De gelijkheid kan geschreven worden als $A^*(A\hat{x}-b)$, wat impliceert $(A\hat{x}-b)\perp\mathcal{D}$ en dus is \hat{x} de beste benadering.

2 Benadering van functies

2.1 Metrische ruimte

Definitie 2.1: Afstand

Men zegt dat over een verzameling A een afstand gedefinieerd is als er met elk paar elementen $x, y \in A$ een reëel getal $\rho(x, y)$ overeenstemt dat voldoet aan de volgende eigenschappen:

- Positief definitief: $\rho(x,y) \ge 0$ en $\rho(x,y) = 0 \Leftrightarrow x = y$
- Symmetrisch: $\rho(x,y) = \rho(y,x)$
- Driehoeksongelijkheid: $\rho(x,y) \leq \rho(z,x) + \rho(z,y)$

Een afstandsfunctie is bijgevolg een functionaal van de productverzameling $A \times A$ naar de verazmeling $\mathbb R$ van de reële getallen.

Definitie 2.2: Metrische ruimte

De verzameling A met een afstandsfunctie ρ noemt men een **metrische ruimte** (A, ρ) . De afstandsfunctie noemt men ook wel de **metriek** van de ruimte. De afstand tot een deelverzameling D van een metrische ruimte wordt gedefinieerd als:

$$\rho(x, D) = \inf \{ \rho(x, y) \mid y \in D \}$$

Definitie 2.3: Beste benadering

Zij D een deelverzameling van een metrische ruimte (A, ρ) . Een element $d \in D$ noemt men een beste benadering van een gegeven element $x \in A$, als er geen enkel ander element van D dichter bij x gelegen is dan d.

2.2 Vectorruimte

Definitie 2.4: Vectorruimte

Een vectorruimte V over het veld \mathbb{F} is een verzameling van elementen waarop twee bewerkingen zijn gedefinieerd: optelling en een scalaire vermenigvuldiging met een element uit \mathbb{F} . Deze bewerkingen moeten voldoen aan volgende voorwaarden:

- 1. $\forall \vec{u}, \vec{v} \in V : \vec{u} + \vec{v} \in V$
- 2. $\forall \vec{u}, \vec{v}, \vec{w} \in V : \vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$
- 3. Er bestaat een element $\vec{0} \in V$ zodat $\forall \vec{u} \in V: \vec{u} + \vec{0} = \vec{u}$
- 4. Voor elke $\vec{v} \in V$ bestaat er element $-\vec{v} \in V$ zodat $\vec{v} + (-\vec{v}) = \vec{0}$
- 5. $\forall \vec{u}, \vec{v} \in V : \vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 6. $\forall \vec{v} \in V, \ \forall f \in \mathbb{F}: \ f\vec{v} \in V$
- 7. $\forall \vec{v} \in V, \ \forall f, g \in \mathbb{F}: \ f(g\vec{v}) = (fg)\vec{v}$
- 8. Als 1 het eenheidselement is van \mathbb{F} , dan geldt $\forall \vec{v} \in V: 1\vec{v} = \vec{v}$
- 9. $\forall \vec{u}, \vec{v} \in V, \ \forall f \in \mathbb{F}: \ f(\vec{u} + \vec{v}) = f\vec{u} + f\vec{v}$
- 10. $\forall \vec{v} \in V, \ \forall f, g \in \mathbb{F}: \ (f+g)\vec{v} = f\vec{v} + g\vec{v}$

Definitie 2.5: Norm en genormeerde ruimte

Een **norm** over de vectorruimte V is een functionaal van V naar \mathbb{R} waarvan de beelden voldoen aan de volgende eigenschappen:

- Positief definiet: $\|\vec{x}\| \ge 0$ en $\|\vec{x}\| = 0 \iff \vec{x} = \vec{0}$
- Homogeniteit: $||a\vec{x}|| = |a|||\vec{x}||$
- Driehoeksongelijkheid: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$

Een vectorruimte waarover een norm gedefinieerd is, is een genormeerde ruimte.

Lemma 2.1: Metriciteit van de vectorruimte

Als een vectorruimte genormeerd is, dan is ze ook metrisch. De functie

$$\rho(\vec{x}, \vec{y}) = \|\vec{x} - \vec{y}\|$$

voldoet aan de definitie van afstand.

Bewijs 2.1: Metriciteit van de vectorruimte

De norm is per definitie positief definiet en triviaal symmetrisch. We willen nu aantonen dat het volgende geldt:

$$\|\vec{x} - \vec{y}\| \le \|\vec{x} - \vec{z}\| + \|\vec{y} - \vec{z}\|.$$

Welnu voor normen geldt per definitie de driehoeksongelijkheid:

$$\|\vec{\alpha} + \vec{\beta}\| \le \|\vec{\alpha}\| + \|\vec{\beta}\|;$$

stel hierin $\vec{\alpha} = \vec{x} - \vec{z}$ en $\vec{\beta} = \vec{z} - \vec{y}$, dan volgt het gestelde, namelijk:

$$\|\vec{x} - \vec{y}\| = \|\vec{x} - \vec{z} + \vec{z} - \vec{y}\| \le \|\vec{x} - \vec{z}\| + \|\vec{z} - \vec{y}\|.$$

Lemma 2.2: Translatie-invariantie en homogeniteit

Een metrische vectorruimte kan genormeerd worden met een norm die voldoet aan de definitie van afstand als en slechts als de afstandsfunctie voldoet aan:

- 1. Translatie-invariantie: $\forall \vec{x}, \vec{y}, \vec{z} \in V: \ \rho(\vec{x}, \vec{y}) = \rho(\vec{x} + \vec{z}, \vec{y} + \vec{z})$
- 2. Homogeniteit: $\forall \vec{x}, \vec{y} \in V, \ \forall a \in \mathbb{R}^+ : \ \rho(a\vec{x}, a\vec{y}) = a\rho(\vec{x}, \vec{y})$

Definitie 2.6: Convexe en strikte convexe deelverzameling van een vectorruimte

Een deelverzameling C van een vectorruimte V is convex wanneer voor alle $\lambda > 0$ en $\mu > 0$ met $\lambda + \mu = 1$ en voor alle $\vec{x}, \vec{y} \in C$ geldt dat $\lambda \vec{x} + \mu \vec{y} \in C$. Wanneer al deze punten tot het inwendige van C behoren, dan noemt men C stikt convex. Meetkundig betekent dit dat elk open lijnstuk L(x, y) dat twee punten x en y van C verbindt, volledig in C ligt.

Eigenschap 2.1: Convexiteit en genormeerde ruimte

In een genormeerde ruimte is elke gesloten bol $B(\vec{a},r)$ convex.

Bewijs 2.2: Convexiteit en genormeerde ruimte

Inderdaad, zij \vec{x}_1 en \vec{x}_2 twee punten van $B(\vec{a},r)$. Dan moeten we aantonen dat $\lambda \vec{x}_1 + (1-\lambda)\vec{x}_2$ tot de bol behoort, of nog dat $\|\lambda \vec{x}_1 + (1-\lambda)\vec{x}_2 - \vec{a}\| \le r$. Welnu:

$$\|\lambda \vec{x}_1 + (1 - \lambda)\vec{x}_2 - \vec{a}\| \le \lambda \|\vec{x}_1 - \vec{a}\| + (1 - \lambda)\|\vec{x}_2 - \vec{a}\| \le \lambda r + (1 - \lambda)r = r.$$

Definitie 2.7: Strikt genormeerde ruimte en strike norm

Een genormeerde ruimte is strikt genormeerd als de eenheidsbol $B(\vec{0}, 1)$ strikt convex is. De eenheidsbol is strikt convex als er geen 'rechte' lijnstukken in voorkomen, of wiskundig:

$$(\vec{x} \neq \vec{y} \land ||\vec{x}|| = ||\vec{y}|| = 1) \Rightarrow ||\vec{x} + \vec{y}|| < 2.$$

Men spreekt dan van een strikte norm.

Opmerking: De 1-norm en de ∞ -norm in \mathbb{R}^n zijn **geen** strikte normen, omdat de eenheidsbol in deze normen niet strikt convex is.

Lemma 2.3: Beste benadering in een deelruimte

Zij \mathcal{D} een eindigdimensionale deelruimte van een strikt genormeerde ruimte V en zij $\vec{v} \in V$. Dan bestaat de beste benadering van $\vec{v} \in \mathcal{D}$ en is deze uniek.

Bewijs 2.3: Beste benadering in een deelruimte

• Existentie: Noem $d = \inf\{\|\vec{v} - \vec{w}\| | \vec{w} \in \mathcal{D}\}$. We tonen aan dat dit infimum in feite een minimum is. Volgens de definitie van een infimum bestaat er een rij van vectoren $\{\vec{w}_k\}_{k>1}$ in \mathcal{D} zodat $\{\|\vec{v} - \vec{w}\|\}_{k>1}$ een dalende rij is die convergeert naar d. De rij $\{\vec{w}_k\}_{k>1}$ is bovendien uniform begrensd omdat

$$\forall k > 1: \|\vec{w}_k\| = \|(\vec{w}_k - \vec{v}) + \vec{v}\| < \|\vec{w}_k - \vec{v}\| + \|\vec{v}\| < \|\vec{w}_1 - \vec{v}\| + \|\vec{v}\|$$
 (1)

Stel n gelijk aan de dimensie van \mathcal{D} en beschouw $\{\vec{a}_1, \ldots, \vec{a}_n\}$ van \mathcal{D} . Dan kunnen we \vec{w}_k met k > 1 ontbinden als:

$$\vec{w}_k = \sum_{i=1}^n \alpha_{ki} \vec{a}_i$$

Uit (1) volgt dat de rij $\{\alpha_{k1}, \ldots, \alpha_{kn}\}_{k>1}$ uniform begrensd is. Deze rij heeft bijgevolg steeds een convergente deelrij (**stelling van Weierstrass-Bolzano**) waarvan we de limiet $(\hat{\alpha}_1, \ldots, \hat{\alpha}_n)$ noemen. Daarom kunnen we, zonder algemeenheid in te boeten, in wat volgt veronderstellen dat de rij $\{\alpha_{k1}, \ldots, \alpha_{kn}\}_{k>1}$ convergeert naar $(\hat{\alpha}_1, \ldots, \hat{\alpha}_n)$. Stel nu dat

$$\vec{\zeta} = \sum_{i=1}^{n} \hat{\alpha}_i \vec{a}_i$$

dan geldt er voor alle $k \ge 1$ dat

$$\|\vec{v} - \vec{\zeta}\| \le \underbrace{\|\vec{v} - \vec{w}_k\|}_{\rightarrow d} + \underbrace{\|\vec{w}_k - \vec{\zeta}\|}_{\rightarrow 0},$$

wat $\|\vec{v} - \vec{\zeta}\| = d$ impliceert. De vector $\vec{\zeta}$ is bijgevolg de beste benadering van \vec{v} in \mathcal{D} .

• Uniciteit: Het bewijs is uit het ongeruijmde. Veronderstel dat er twee verschillende beste benaderingen zijn, $\vec{\zeta}_1$ en $\vec{\zeta}_2$, zodat

$$\|\vec{v} - \vec{\zeta_1}\| = \|\vec{v} - \vec{\zeta_2}\| = d.$$

Merk dat $\vec{e}_i = \frac{1}{d}(\vec{v} - \vec{\zeta}_i)$ op de eenheidsbol in V ligt voor i = 1, 2. Omdat de eenheidsbol strikt convex is geldt

$$\left\| \vec{v} - \frac{\vec{\zeta}_1 + \vec{\zeta}_2}{2} \right\| = d \left\| \underbrace{\frac{1}{2}}_{\lambda} \vec{e}_1 + \underbrace{\frac{1}{2}}_{\mu} \vec{e}_2 \right\| < d,$$

Dus $\frac{1}{2}(\vec{\zeta_1} + \vec{\zeta_2}) \in \mathcal{D}$ is een betere benadering van \vec{v} dan $\vec{\zeta_1}$ en $\vec{\zeta_2}$, wat in tegenspraak is met de veronderstelling.

2.3 Unitaire ruimte en orthogonaliteit

Definitie 2.8: Unitaire ruimte

en noemt een vectorruimte V over de complexe getallen unitair als er met elk paar elementen $\vec{x}, \vec{y} \in V$ een complex getal (\vec{x}, \vec{y}) overeenstemt dat voldoet aan de volgende eigenschappen:

- 1. $\forall a \in \mathbb{C} : (\vec{x}, a\vec{y}) = a(\vec{x}, \vec{y})$
- 2. $(\vec{x} + \vec{y}, \vec{z}) = (\vec{x}, \vec{z}) + (\vec{y}, \vec{z})$
- 3. $(\vec{x}, \vec{y}) = \overline{(\vec{y}, \vec{x})}$
- 4. $(\vec{x}, \vec{x}) > 0$ als $\vec{x} \neq \vec{0}$

Men noemt (\vec{x}, \vec{y}) het scalair product van \vec{x} en \vec{y} .

Opmerking: Uit de derde eigenschap volgt dat (\vec{x}, \vec{x}) reëel is. Hierdoor is het scalair product over het veld \mathbb{R} symmetrisch.

Lemma 2.4: Unitair impliceert genormeerd

Als een vectorruimte unitair is, dan is ze ook genormeerd. De functie

$$\|\vec{x}\| = \sqrt{(\vec{x}, \vec{x})}$$

voldoet aan de definitie van een norm.

Bewijs 2.4: Unitair impliceert genormeerd

De eerste 'drie' normeigenschappen (positief definitief, homogeniteit) zijn gemakkelijk te bewijzen. De driehoeksongelijkheid volgt (voor $\vec{x} + \vec{y} \neq \vec{0}$) uit de Cauchy-Schwarz ongelijkheid:

$$\begin{split} (\vec{x}+\vec{y},\vec{x}+\vec{y}) &= (\vec{x},\vec{x}+\vec{y}) + (\vec{y},\vec{x}+\vec{y}) \\ &\leq \sqrt{(\vec{x},\vec{x})} \sqrt{(\vec{x}+\vec{y},\vec{x}+\vec{y})} + \sqrt{(\vec{y},\vec{y})} \sqrt{(\vec{x}+\vec{y},\vec{x}+\vec{y})} \end{split}$$

en dus

$$\sqrt{(\vec{x} + \vec{y}, \vec{x} + \vec{y})} \le \sqrt{(\vec{x}, \vec{x})} + \sqrt{(\vec{y}, \vec{y})}.$$

Voor het geval $\vec{x} + \vec{y} = \vec{0}$ is de driehoeksongelijkheid triviaal.

Lemma 2.5: Genormeerd naar unitair

Een genormeerde vectorruimte is een unitaire ruimte met een scalair product dat voldoet aan Stelling 2.4, als en slechts als de norm voldoet aan de parallellogramongelijkheid:

$$\|\vec{x} + \vec{y}\|^2 + \|\vec{x} - \vec{y}\|^2 = 2(\|\vec{x}\|^2 + \|\vec{y}\|^2).$$

Bewijs 2.5: Genormeerd naar unitair

Het nodig zijn wordt als volgt aangetoond:

$$\|\vec{x} + \vec{y}\|^2 + \|\vec{x} - \vec{y}\|^2 = (\vec{x} + \vec{y}, \vec{x} + \vec{y}) + (\vec{x} - \vec{y}, \vec{x} - \vec{y})$$
$$= 2(\vec{x}, \vec{x}) + 2(\vec{y}, \vec{y}).$$

Voor een reële vecorruimte wordt het voldoende zijn bewezen door aan te tonen dat

$$(\vec{x}, \vec{y}) = \frac{1}{4} \left\{ \|\vec{x} + \vec{y}\|^2 - \|\vec{x}\|^2 - \|\vec{y}\|^2 \right\}$$

een scalair product is, en dat de natuurlijke norm van dit scalair product de oorspronkelijke norm is. Het bewijs is nogal technisch en laten we achterwege.

Lemma 2.6: Eenheidsbol in unitaire ruimte

De eenheidsbol in een unitaire ruimte is strikt convex.

Bewijs 2.6: Eenheidsbol in unitaire ruimte

Het volstaat aan te tonen dat de geziene formule in Definitie 2.7 geldt. Welnu, neem $\vec{x} \neq \vec{y}$ met $\|\vec{x}\| = \|\vec{y}\| = 1$. Dan volgt uit de parallellogramongelijkheid

$$\|\vec{x} + \vec{y}\|^2 = -\|\vec{x} - \vec{y}\|^2 + 2(\|\vec{x}\|^2 + \|\vec{y}\|^2) = -\|\vec{x} - \vec{y}\|^2 + 4 < 4.$$

En dus is $\|\vec{x} + \vec{y}\| < 2$.

- 3 Benadering door middel van veeltermen
- 4 Discrete benadering op basis van meetdata
- 5 Regularisatietechnieken

Data, Grafen en Eigenwaarden

- 6 Grafen en eigenwaarden in datawetenschappen
- ${\bf 7}\quad {\bf Eigenwaarden algoritmes}$

 ${\bf Niet\text{-}lineaire\ Benaderingsproblemen}$

- 8 Niet-lineaire benaderingsproblemen
- $9\quad {\bf Optimal is a tie-algoritmes}$
- 10 Ijle representatie en benaderingen