

Intuition

• An example: "oranges" vs "lemons"

Binary classifier based on two simple features:

Nearest Neighbors

- Assume that your training examples corresponds to points in d-dimensional Euclidean space
 - Key idea: the value of the target function for a new sample is estimated from the known (stored) training examples
 - This is done by computing distances between the new sample and all the training samples
 - Decision rule: assign the label of the nearest example

Algorithm:

Find (x^*, y^*) (from the stored training set) closest to the test sample x i.e. $x^* = \underset{x^{(i)} \in TrainSet}{\min}$ Distance $(x^{(i)}, x)$. Output: $y = y^*$

Nearest Neighbors

• An example: "oranges" vs "lemons"

Binary classifier based on two simple features:

$$= |X - Y| = \sqrt{\sum_{i=1}^{i=n} (x_i - y_i)^2}$$

Compute distances (Euclidean):

$$d = \operatorname{sqrt}((x_q - x_p)^2 + (y_q - y_p)^2)$$

- Class 1
- Class 2

x_q°	y_q
10	8

x_q	y_q	d	x_q	y_q	d
9	2	6.1	16	11	6.7
5	3	7.1	14	12	5.7
14	3	6.4	18	12	8.9
8	4	4.5	18	14	10
3	5	7.6	20	14	11.7
6	5	5.0	11	15	7.1
13	5	4.2	15	15	8.6
12	6	2.8	6	16	8.9
6	7	4.1	15	17	10.3
8	7	2.2	13	18	10.4
15	7	5.1	10	19	11
5	10	5.4	20	19	14.9
15	7		10	19	
5	10		20	19	

• Compute distances (Euclidean):

V

- $d = \operatorname{sqrt}((x_q x_p)^2 + (y_q y_p)^2)$
- $x_q^{\circ} y_q^{\circ}$ $x_q^{\circ} y_q^{\circ} d$ $x_q^{\circ} y_q^{\circ} d$ 9 11 9 2 9.0 16 11 7.0

Class 1

Class 2

blue or red?

	:	:	:	:	:	:								:	:	:	:		:
l	:	:	:	:	<u>:</u>	:		:	: 🔼					:	:	:	:		:
	:	:		:	:	:			:			\triangle		:	:	:	:	:	:
	:		:	:	:	:								:	:	:	:		:
	÷ · · · ·		÷										 			·····			: '
	:		:		:	:			:				_	:		:		:	:
		÷ · · · ·	÷		<u> </u>	:							 . 🚗			· · · · ·	·····		: -
	:	:		:		:											:		÷
	· · · · ·									<u> </u>			 		:	·····			3 -
	:		:	:	:				: 4	_					:	:			:
	÷		.		.				<u>.</u>				 			<u>.</u>	<u>;</u>	<u>:</u>	:
	:	:	:		:		:		:						:		:	: .	:
	: :	i	<u>:</u>	<u>:</u>	<u>:</u>								 	:		.	<u>:</u>	i 🖊	ķ.
	:	:	:	:		:			:						:		:	:	:
	:		:	:	:					:					:	:			:
		:	:	:	:	:	:		:					:		:	:	:	:
	:	:	:		:				:						:	: 🛕	:	:	:
	÷ · · · ·		÷	• • • • •									 	· · · 🛣		: -			:
	:	:	:	:	-	:			:					_		:	:	:	:
	· · · · ·					:	:						 	:	:	·····	:		: :
	:	:	:		:	:								:		:		:	:
	·	-:					:						 		:	·	į	:	3.
		:	:						:						:			:	:
	ġ		į		į								 			<u>.</u>	į		ġ.
		:		:		:			:					:	:		:		:
.	:		<u>:</u>	<u>.</u>	<u>:</u>	:			: 				 	: 		<u>:</u>	: ?	; ;	i.
	:	:	:	:		:			:							:	:		:
		:		:		:	_		:					:	:		:		:
	:		:		:	:			:		_		 	:		:	:	:	:
	:	:	:		:				:						:	:	-	:	:
	:	_											 					:	: '
	:		:		-	:								:		:		:	:
	:								:				 	· · · · · ·	· · · · · ·		·····	:	: :
	:	:	:			: 1			:						:			:	:
	÷	÷		-		:			<u>:</u>				 	:			<u>:</u>	:	: -
l		:	:	:		:	:		:						:		:	:	:
	÷			:	į								 	:			<u>:</u>	<u>;</u>	Ξ.
l	:	:	:	:	:	:			:					:	:	:	:	:	:
l		<u>.</u>	<u>:</u>		<u>:</u>										:	<u>.</u>	<u>.</u>		i
l				:										:			:		:
l		:	:	:		:	:		:						:		:	:	:
$\overline{}$		•			_		_		_									_	_

9	2	9.0	16	11	7.0
5	3	8.9	14	12	5.1
14	3	9.4	18	12	9.1
8	4	7.1	18	14	9.5
3	5	8.5	20	14	11.4
6	5	6.7	11	15	4.5
13	5	7.2	15	15	7.2
12	6	5.8	6	16	5.8
6	7	5.0	15	17	8.5
8	7	4.1	13	18	8.1
15	7	7.2	10	19	8.1
5	10	4.1	20	19	13.6
15	7		10	19	
5	10		20	19	

NN is sensitive to the outliers!

A "generalization": from NN to k-NN

k-Nearest Neighbors

- Assume that your training examples corresponds to points in d-dimensional Euclidean space
 - Key idea: the value of the target function for a new sample is estimated from the known (stored) training examples
 - This is done by computing distances between the new sample and all the training samples
 - Decision rule: assign the label of the majority class among the k nearest neighbors

Algorithm:

Find k examples $(x^{(i)}, y^{(i)})$ (from training set) closest to the test sample x

Output: $y = \operatorname{argmax}_{y^{(z)}} \sum_{j=1}^{k} \delta(y^{(z)}, y^{(j)})$

Small k: sensitive to outliers

Class 2

- Parameter k has a very strong effect
 - Large k: everything is classified as the most frequent class

Class 2

the more data, the better! .. we might have issues with areas not well covered

Class 2

- k-NN recipe: how do we choose k?
 - Large k may lead to better performance (if the training set is sufficiently large)
 - If we pick k too large we may end up looking at examples that are not "real" neighbors (are far away the test sample)

Hyperparameter Selection

- For knn, k (the number of nearest neighbours) is an hyperparameter
- Different hyperparameters will affect how model generalizes over unknown data points
- How do we calculate the optimal hyperparameter?
 - The process is called model selection
 - we will see how we can do model validation in the next set of slides

 Think about the inference stage, what do we need to compute the classification?

- Think about the inference stage, what do we need to compute the classification?
 - The entire training set
 - it means that every time we want to infer the class of a data point
 - We need to compute its distance for each training point
 - Computationally expensive at testing time!!

What about the impact of the features?

- What about the impact of the features?
 - In the exemple, we used height and width, which are expressed with the same unit measure
 - What if it was height, width, and weight? how do you compare cm and grams?
- A possible solution is called feature scaling
 - e.g., Each numerical feature is transformed in a range [0, 1]
 - e.g., have each feature with mean = 0 and variance = 1

$$z = rac{x - \mu}{\sigma}$$

k-NN Summary

- k-NN naturally forms complex decision boundaries; it adapts to data density
- If we have lots of samples, k-NN typically works well
- Main limitations/problems:
 - Sensitive to class noise and scales of features (attributes)
 - Distances are less meaningful in high dimensions
 - Scales linearly with number of training examples: i.e. it is extremely expensive at test time

Restriction Bias

- How we Limit the Hypothesis Space
- KNN does not explicitly restrict the hypothesis space to a predefined set of functions like parametric models (e.g., linear regression). However, it implicitly limits the hypothesis space by assuming that:
 - The possible hypotheses are constrained to those that assign labels based on local neighborhoods.
 - The function is **non-parametric**, meaning it does not assume any specific functional form (e.g., linear or polynomial).

Preference Bias

- How we Order the Hypothesis Space
 - As we do not learn a real algorithm, we do not assume explicitly an "order" of the hypotheses
- KNN makes implicit assumptions about the data distribution and prioritizes certain hypotheses over others:
 - Locality assumption: Closer points are more relevant for classification or regression.
 - Majority rule: In classification, the label is determined by the majority vote within the neighborhood, preferring piecewise constant decision boundaries (region-based).
 - Distance metric matters: The preference is heavily influenced by the choice of the distance metric (e.g., Euclidean, Manhattan).