$12a_{0512} \ (K12a_{0512})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{75} + u^{74} + \dots + u^2 - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 75 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{75} + u^{74} + \dots + u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} + u \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} - u \\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{12} - u^{10} - 3u^{8} - 2u^{6} - 2u^{4} - u^{2} + 1 \\ u^{14} + 2u^{12} + 5u^{10} + 6u^{8} + 6u^{6} + 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{19} + 2u^{17} + 6u^{15} + 8u^{13} + 11u^{11} + 10u^{9} + 6u^{7} + 2u^{5} - u^{3} - 2u \\ -u^{21} - 3u^{19} + \dots + u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{26} + 3u^{24} + \dots - 3u^{2} + 1 \\ -u^{28} - 4u^{26} + \dots + 7u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{31} + 4u^{29} + \dots - 4u^{3} - 2u \\ u^{31} + 5u^{29} + \dots - 2u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{59} - 8u^{57} + \dots + 12u^{5} + 7u^{3} \\ u^{61} + 9u^{59} + \dots - u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{73} + 4u^{72} + \cdots + 8u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{75} + 33u^{74} + \dots + 2u + 1$
c_2, c_6	$u^{75} - u^{74} + \dots + u^2 - 1$
c_3, c_4, c_8	$u^{75} + u^{74} + \dots - 110u - 25$
c_5,c_{11}	$u^{75} + u^{74} + \dots + u^2 - 1$
	$u^{75} - 3u^{74} + \dots - 8u + 3$
<i>c</i> ₉	$u^{75} - 5u^{74} + \dots + 21044u - 3477$
c_{10}, c_{12}	$u^{75} + 23u^{74} + \dots + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{75} + 19y^{74} + \dots - 10y - 1$
c_2, c_6	$y^{75} - 33y^{74} + \dots + 2y - 1$
c_3, c_4, c_8	$y^{75} - 81y^{74} + \dots + 28950y - 625$
c_5,c_{11}	$y^{75} + 23y^{74} + \dots + 2y - 1$
<i>C</i> ₇	$y^{75} - 5y^{74} + \dots + 562y - 9$
<i>c</i> ₉	$y^{75} - 29y^{74} + \dots + 182318326y - 12089529$
c_{10}, c_{12}	$y^{75} + 59y^{74} + \dots + 22y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.682193 + 0.732664I	-0.302285 + 0.979820I	0
u = 0.682193 - 0.732664I	-0.302285 - 0.979820I	0
u = -0.101406 + 0.992248I	-4.21065 - 6.07424I	-4.70014 + 8.18701I
u = -0.101406 - 0.992248I	-4.21065 + 6.07424I	-4.70014 - 8.18701I
u = -0.044728 + 0.980361I	-5.29212 + 0.73505I	-7.97312 + 0.I
u = -0.044728 - 0.980361I	-5.29212 - 0.73505I	-7.97312 + 0.I
u = 0.231455 + 1.000170I	-0.58521 + 2.91346I	0
u = 0.231455 - 1.000170I	-0.58521 - 2.91346I	0
u = 0.748094 + 0.708104I	1.49916 - 5.73552I	0
u = 0.748094 - 0.708104I	1.49916 + 5.73552I	0
u = 0.277622 + 1.006300I	3.26637 - 3.71880I	0
u = 0.277622 - 1.006300I	3.26637 + 3.71880I	0
u = 0.099815 + 0.950570I	-2.03163 + 1.90280I	-1.00812 - 4.53925I
u = 0.099815 - 0.950570I	-2.03163 - 1.90280I	-1.00812 + 4.53925I
u = -0.265572 + 1.012460I	4.96981 - 1.56282I	0
u = -0.265572 - 1.012460I	4.96981 + 1.56282I	0
u = -0.586679 + 0.867149I	-1.77126 + 1.03509I	0
u = -0.586679 - 0.867149I	-1.77126 - 1.03509I	0
u = -0.746947 + 0.736867I	3.53722 + 1.18244I	0
u = -0.746947 - 0.736867I	3.53722 - 1.18244I	0
u = -0.242468 + 1.028110I	4.79959 - 4.64962I	0
u = -0.242468 - 1.028110I	4.79959 + 4.64962I	0
u = 0.234800 + 1.034640I	2.95579 + 9.94979I	0
u = 0.234800 - 1.034640I	2.95579 - 9.94979I	0
u = 0.647448 + 0.875979I	0.73242 + 2.51663I	0
u = 0.647448 - 0.875979I	0.73242 - 2.51663I	0
u = -0.758459 + 0.794993I	4.55012 - 0.14668I	0
u = -0.758459 - 0.794993I	4.55012 + 0.14668I	0
u = -0.628084 + 0.921139I	-2.04419 - 5.77241I	0
u = -0.628084 - 0.921139I	-2.04419 + 5.77241I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.835257 + 0.742674I	6.35107 + 2.04623I	0
u = -0.835257 - 0.742674I	6.35107 - 2.04623I	0
u = 0.758172 + 0.825776I	3.58561 + 4.71802I	0
u = 0.758172 - 0.825776I	3.58561 - 4.71802I	0
u = -0.847393 + 0.734484I	10.08040 + 9.29957I	0
u = -0.847393 - 0.734484I	10.08040 - 9.29957I	0
u = 0.846821 + 0.739280I	11.94220 - 3.91143I	0
u = 0.846821 - 0.739280I	11.94220 + 3.91143I	0
u = 0.845301 + 0.751762I	12.17070 - 0.58717I	0
u = 0.845301 - 0.751762I	12.17070 + 0.58717I	0
u = -0.844440 + 0.757264I	10.49740 - 4.80557I	0
u = -0.844440 - 0.757264I	10.49740 + 4.80557I	0
u = 0.738716 + 0.913060I	3.31838 + 0.95336I	0
u = 0.738716 - 0.913060I	3.31838 - 0.95336I	0
u = 0.682106 + 0.959266I	-0.98202 + 4.31584I	0
u = 0.682106 - 0.959266I	-0.98202 - 4.31584I	0
u = -0.731393 + 0.936292I	4.12042 - 5.50383I	0
u = -0.731393 - 0.936292I	4.12042 + 5.50383I	0
u = 0.158699 + 0.795794I	-0.93723 + 1.74811I	1.58765 - 5.17968I
u = 0.158699 - 0.795794I	-0.93723 - 1.74811I	1.58765 + 5.17968I
u = -0.709189 + 0.967062I	2.84545 - 6.72964I	0
u = -0.709189 - 0.967062I	2.84545 + 6.72964I	0
u = 0.702838 + 0.980436I	0.68737 + 11.26350I	0
u = 0.702838 - 0.980436I	0.68737 - 11.26350I	0
u = -0.753756 + 0.996096I	5.57098 - 7.98818I	0
u = -0.753756 - 0.996096I	5.57098 + 7.98818I	0
u = -0.765394 + 0.991927I	9.77291 - 1.20159I	0
u = -0.765394 - 0.991927I	9.77291 + 1.20159I	0
u = 0.763313 + 0.995423I	11.41870 + 6.58981I	0
u = 0.763313 - 0.995423I	11.41870 - 6.58981I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.758437 + 1.002770I	11.1297 + 9.9017I	0
u = 0.758437 - 1.002770I	11.1297 - 9.9017I	0
u = -0.756608 + 1.005470I	9.2451 - 15.2850I	0
u = -0.756608 - 1.005470I	9.2451 + 15.2850I	0
u = 0.686093 + 0.028981I	6.40339 + 6.93089I	7.58937 - 5.03714I
u = 0.686093 - 0.028981I	6.40339 - 6.93089I	7.58937 + 5.03714I
u = -0.685171 + 0.015873I	8.17683 - 1.59594I	10.20433 + 0.32100I
u = -0.685171 - 0.015873I	8.17683 + 1.59594I	10.20433 - 0.32100I
u = 0.652464	2.61478	4.37850
u = -0.334129 + 0.411688I	-1.50019 + 1.55713I	0.650340 - 0.272682I
u = -0.334129 - 0.411688I	-1.50019 - 1.55713I	0.650340 + 0.272682I
u = -0.480157 + 0.207491I	-0.60976 - 4.42214I	4.50486 + 7.49216I
u = -0.480157 - 0.207491I	-0.60976 + 4.42214I	4.50486 - 7.49216I
u = 0.429074 + 0.095570I	1.039040 + 0.315096I	9.75730 - 1.79361I
u = 0.429074 - 0.095570I	1.039040 - 0.315096I	9.75730 + 1.79361I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{75} + 33u^{74} + \dots + 2u + 1$
c_2, c_6	$u^{75} - u^{74} + \dots + u^2 - 1$
c_3, c_4, c_8	$u^{75} + u^{74} + \dots - 110u - 25$
c_5,c_{11}	$u^{75} + u^{74} + \dots + u^2 - 1$
c_7	$u^{75} - 3u^{74} + \dots - 8u + 3$
<i>c</i> 9	$u^{75} - 5u^{74} + \dots + 21044u - 3477$
c_{10}, c_{12}	$u^{75} + 23u^{74} + \dots + 2u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{75} + 19y^{74} + \dots - 10y - 1$
c_2, c_6	$y^{75} - 33y^{74} + \dots + 2y - 1$
c_3, c_4, c_8	$y^{75} - 81y^{74} + \dots + 28950y - 625$
c_5,c_{11}	$y^{75} + 23y^{74} + \dots + 2y - 1$
	$y^{75} - 5y^{74} + \dots + 562y - 9$
<i>c</i> ₉	$y^{75} - 29y^{74} + \dots + 182318326y - 12089529$
c_{10}, c_{12}	$y^{75} + 59y^{74} + \dots + 22y - 1$