ECM404 – Estruturas de Dados e Técnicas de Programação

INSTITUTO MAUÁ DE TECNOLOGIA

Grafos

Caminho mínimo e Arvore Geradora Mínima

Dijkstra

Dijkstra O(n²)

Exemplo

Perguntinhas

0	2
1	3
2	5
$u_0 = 3$	0
4	7
5	6
6	11
7	13
8	1
9	9
10	10

Qual a distância mínima entre os vértices:

•3 e 0 ?

Resposta: 2

- •3 e 1?
- Resposta: 3

- 3 e 10 ?
- Resposta: 10

- •3 e 9?
- Resposta: 9

•3e7?

Resposta: 13

Qual <u>caminho</u> possui distância mínima entre os vértices 3 e 7 ?

O Caminho do 3 até o 7

Perguntinhas

0	3
1	0
2	1
$u_0 = 3$	-1
4	5
5	1
6	10
7	6
8	3
9	4
10	9

Qual caminho possui distância mínima entre os vértices:

• 3 e 7 ?

Resposta: $7 \leftarrow 6 \leftarrow 10 \leftarrow 9 \leftarrow 4 \leftarrow 5 \leftarrow 1 \leftarrow 0 \leftarrow 3$

•3 e 1?

Resposta: 1←0←3

• 3 e 10 ?

Resposta: $10 \leftarrow 9 \leftarrow 4 \leftarrow 5 \leftarrow 1 \leftarrow 0 \leftarrow 3$

•3 e 9?

Resposta: 9←4←5←1←0←3

Matriz de Pesos do Exemplo

Quantos nulos! Tá sobrando, <u>esparso!</u>

									_				
	0	1	2	3	4	5	6	7	8	9	10		
0	0	1	0	2	6	0	0	8	0	0	0		
1	1	0	2	0	5	3	9	0	0	0	0		
2	0	2	0	0	0	0	7	9	0	0	0		
3	2	0	0	0	8	0	0	0	1	0	0		
4	6	5	0	8	0	1	0	0	7	2	0		
5	0	3	0	0	1	0	6	0	0	4	0		
6	0	9	7	0	0	6	0	2	0	3	1		
7	0	0	9	0	0	0	2	0	0	0	4		
8	0	0	0	1	7	0	0	0	0	9	0		
9	0	0	0	0	2	4	3	0	9	0	1		
10	0	0	0	0	0	0	1	4	0	1	0		

Árvore de Cobertura Mínima

Prim

Prim

Diferença entre algoritmos

Dijkstra:

- Determina o custo mínimo, a partir do vértice de origem, para cada um dos demais vértices;
- determina a árvore de custos mínimos, a partir do vértice de origem;
- para cada vértice de origem, os custos para alcançar os demais deverão variar.

Prim:

- Determina uma árvore (grafo simples que interliga todos os vértices, sem formar laços) com o menor CUSTO GLOBAL possível;
- o custo mínimo independe do vértice de origem;
- a árvore pode ser diferente em função do vértice de origem
- considera o problema como um TODO.

Exercício Manual

Determine a árvore geradora mínima para o grafo a seguir.

Exercício Manual

Determine a árvore geradora mínima para o grafo a seguir.

