Statistic with pandas

Presented to you by

Dipl. Inform.(FH) Jony Sugianto, M. Comp. Sc.

WA:0812-130-86659

Github: https://github.com/jonysugianto

Sample Data

import pandas as pd

	name	age	preTestScore	postTestScore
Θ	Jason	42	. 4	25
1	Molly	52	24	94
2	Tina	36	31	57
3	Jake	24	2	62
4	Amy	73	3	70

Sum, Cumulative Sum

```
age preTestScore postTestScore
   name
0 Jason
          42
                                      25
1 Molly
          52
                                      94
                       24
  Tina
          36
                       31
                                      57
   Jake
          24
                                      62
          73
                                      70
   Amv
```

```
sum_age=df['age'].sum()
print('sum_age=', sum_age)
```

```
sum_age=227
```

```
cumsum_age=df['age'].cumsum()
print('cumsum_age:')
print(cumsum_age)
```

```
cumsum_age:
0 42
1 94
2 130
3 154
4 227
Name: age, dtype: int64
```

Min, Max, Mean

	name	age	preTestScore	postTestScore
Θ	Jason	42	4	25
1	Molly	52	24	94
2	Tina	36	31	57
3	Jake	24	2	62
4	Amy	73	3	70

min_age=df['age'].min()
print('min_age:', min_age)

min_age=24

max_age=df['age'].max()
print('max_age:', max_age)

max_age=73

mean_age=df['age'].mean()
print('mean_age:', mean_age)

mean_age=45.4

Shape Dataframe, Count

	name	age	preTestScore	postTestScore
0	Jason	42	4.0	25.0
1	Molly	52	24.0	94.0
2	Tina	36	NaN	57.0
3	Jake	24	2.0	62.0
4	Amy	73	3.0	NaN

print('shape:',df.shape)

shape=(5,4)

count_preTestScore=df['preTestScore'].count()
print('count_preTestScore:',count_preTestScore)

count_preTestScore: 4

Median

	name	age	preTestScore	postTestScore
Θ	Jason	42	4	25
1	Molly	52	24	94
2	Tina	36	31	57
3	Jake	24	2	62
4	Amy	73	3	70

median_age=df['age'].median()
print('median_age:',median_age)

median_age: 42.0

Median

	name	age	preTestScore	postTestScore
0	Jason	42	4	25
1	Molly	52	24	94
2	Tina	36	31	57
3	Jake	24	2	62
4	Amy	73	3	70
5	Carsten	10	5	75

median_age=df['age'].median()
print('median_age:',median_age)

median_age: 39.0

Mode

import pandas as pd

print()
print(df)

	name	age	preTestScore	postTestScore
0	Jason	42	4	25
1	Molly	52	24	60
2	Tina	36	31	70
3	Jake	24	2	70
4	Amy	73	3	70
5	Carsten	10	5	60

mode_postTestScore=df['postTestScore'].mode()

mode: 0 70

dtype: int64

Variance, Standard Deviation

variance =
$$\sigma^2 = \frac{\sum (x_r - \mu)^2}{n}$$

standard deviation
$$\sigma = \sqrt{\frac{\sum (x_r - \mu)^2}{n}}$$

$$\mu = \text{mean}$$

Variance, Standard Deviation

import pandas as pd

```
data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'],
     'age': [42, 52, 36, 24, 73],
     'preTestScore': [4, 24, 31, 2, 3],
     'postTestScore': [25, 94, 57, 62, 70]}
df = pd.DataFrame(data, columns = ['name', 'age', 'preTestScore', 'postTestScore'],
index=[0,1,2,3,4])
df=df.sort index()
                                          preTestScore postTestScore
                               name
                                     age
                             Jason
                                      42
print()
                           1 Molly
                                      52
                                                                     94
print(df)
                                     36
                              Tina
                                                     31
                                                                     57
                               Jake
                                      24
                                                                     62
                                      73
                                                                     70
                                Amv
```

```
var_postTestScore=df['postTestScore'].var()
print('var postTestScore=', var_postTestScore)
var postTestScore= 620.3
std_postTestScore=df['postTestScore'].std()
print('std postTestScore=', std_postTestScore)
std postTestScore= 24.90582261239327
```

Skewness

$$\gamma_1 = \mathrm{E}\!\left[\left(rac{X - \mu}{\sigma}
ight)^3
ight]$$

Skewness

```
data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'],
     'age': [40, 50, 30, 20, 60],
     'preTestScore': [4, 5, 40, 2, 3],
     'postTestScore': [10, 90, 85, 80, 75]}
df = pd.DataFrame(data, columns = ['name', 'age', 'preTestScore', 'postTestScore'],
index=[0,1,2,3,4])
df=df.sort index()
print()
print(df)
print()
sk_age=df['age'].skew()
print('skewness age=', sk_age)
print()
sk preTestScore=df['preTestScore'].skew()
print('skewness preTestScore=', sk preTestScore)
print()
sk_postTestScore=df['postTestScore'].skew()
print('skewness postTestScore=', sk_postTestScore)
print()
```

Skewness

```
        name
        age
        preTestScore
        postTestScore

        0 Jason
        40
        4
        10

        1 Molly
        50
        5
        90

        2 Tina
        30
        40
        85

        3 Jake
        20
        2
        80

        4 Amy
        60
        3
        75
```

skewness age= 0.0

skewness preTestScore= 2.2100079064682228

skewness postTestScore= -2.0763297220115997

Kurtosis

$$\operatorname{Kurt}[X] = \operatorname{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right]$$
 :

Kurtosis

import pandas as pd data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy', 'Lukas', 'Jony'], 'age': [10, 22, 27, 30, 33, 38, 50], 'preTestScore': [5,18, 19, 20, 21, 22,35], 'postTestScore': [35, 40, 45, 50, 55, 60, 65]} df = pd.DataFrame(data, columns = ['name', 'age', 'preTestScore', 'postTestScore'], index=[0,1,2,3,4,5,6]df=df.sort index() print() print(df) print() kurt_age=df['age'].kurtosis() print('kurtosis age=', kurt_age) print() kurt preTestScore=df['preTestScore'].kurtosis() print('kurtosis preTestScore=', kurt preTestScore) print() kurt postTestScore=df['postTestScore'].kurtosis() print('kurtosis postTestScore=', kurt_postTestScore) print()

Kurtosis

	name	age	preTestScore	postTestScore
0	Jason	10	5	35
1	Molly	22	18	40
2	Tina	27	19	45
3	Jake	30	20	50
4	Amy	33	21	55
5	Lukas	38	22	60
6	Jony	50	35	65

kurtosis age= 0.7640949541632951

kurtosis preTestScore= 2.64145179584121

kurtosis postTestScore= -1.2000000000000000

Correlation

Correlation coefficients are used in statistics to measure how strong a relationship is between two variables.

Pearson Correlation Coefficient

Where

$$x = X - \overline{X}$$
and
$$y = Y - \overline{Y}$$

Spearman's correlation

Spearman's correlation is a measure of monotonic relationship. It can be used for ordinal variables. It is less sensitive to outliers. If spearman correlation coefficient of a variable is close to 0, it means there is no monotonic relationship between variables.

Hoeffding's D Correlation

Hoeffding's D correlation is a measure of linear, monotonic and non-monotonic relationship. It has values between –0.5 to 1. The signs of Hoeffding coefficient has no interpretation.

If a variable has a very low rank for Spearman (coefficient - close to 0) and a very high rank for Hoeffding indicates a non-monotonic relationship.

If a variable has a very low rank for Pearson (coefficient - close to 0) and a very high rank for Hoeffding indicates a non-linear relationship.

If a variable has poor rank on both the spearman and hoeffding correlation metrics, it means the relationship between the variables is random.

Type of relationship

Type of relationship

Correlation

Correlation matrix example code

import pandas as pd data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy',' Lukas', 'Jony'], 'age': [10, 20, 30, 40, 50, 60, 70], 'glucose level':[100,105,120,130,140,150,160], 'preTestScore': [5, 10, 19, 3, 21, 4, 6], 'postTestScore': [100, 95, 93, 70, 67, 60, 55]} df = pd.DataFrame(data,columns = ['name', 'age', 'glucose_level', 'preTestScore', 'postTestScore'], index=[0,1,2,3,4,5,6]) df=df.sort index() print() print(df) print() corr_coeffs=df.corr(method='pearson') print('correlation matrix') print(corr coeffs)

Correlation matrix example

	name	age	glucose_	level	preTestS	core	postTest:	Score		
Θ	Jason	10	_	100		5		100		
1	Molly	20		105		10		95		
2	Tina	30		120		19		93		
3	Jake	40		130		3		70		
4	Amy	50		140		21		67		
5	Lukas	60		150		4		60		
6	Jony	70		160		6		55		
cor	relatio	n mat	rix							
			age	gluco	se_level	preTe	estScore	postTe	stScore	
age	<u>}</u>		1.000000		0.997041	- 6	9.073107	- 0	.968709	
glu	icose_le	vel	0.997041		1.000000	-6	0.071814	- 0	.968581	
pre	TestSco	re -	0.073107	_	0.071814]	L.000000	0	. 194108	
pos	tTestSc	ore -	0.968709	_	0.968581	6	0.194108	1	.000000	