

	Selt	f-assessm	nent	Where to go if you don't unde		
Knowledge Checklist These are the bits the exam board wants you to know, make sure you can do all of these	First review 4-7 months before exam	Second review 1-2 months before exam	Final review Week before exam	Primrose Kitten	Other places	
I can recognise that $a \times b$ is equal to ab	© © 8	© © 8	© © 8	https://youtu.be/ UcGbqIvtseE		
I can recognise that $4a$ is equal to $a + a + a + a$ or $4 \times a$	© © 8	© © 8	© © 8		TuitionKit http://bit.ly/ 2x4Bjam	
I can recognise that y^2 is equal to $y \times y$	© © 8	◎ ⊜ ⊗	© © Ø		TuitionKit http://bit.ly/ 2kbs3Qu	
I can recognise that $\frac{a}{b}$ is equal to $a \div b$	© © 8	© © 8	© © 8		TuitionKit http://bit.ly/ 2yOioT5	
I can use a x b is equal to ab	© ⊕ ⊗	◎ ⊜ ⊗	© © ©			
I can use $4a$ is equal to $a + a + a + a + a$	© © 8	© © 8	© © 8			
I can use y^2 is equal to $y \times y$	© © 8	◎ ⊜ ⊗	© © ©			
I can use $\frac{a}{b}$ is equal to $a \div b$	◎ ⊜ ⊗	◎ ⊜ ⊗	◎ ⊕ ⊗			
I can collect like terms in an algebraic expression	© © 8	© © 8	© © ®			
I can put numbers into an algebraic expression and if needed calculate an answer	© © 8	© © 8	◎ ⊕ ⊗	https://youtu.be/ h7i_qwLL7s8	TuitionKit http://bit.ly/ 2fyAMqN	
I can multiply out a number in front of a bracket	© © 8	© © 8	◎ ⊕ ⊗		TuitionKit http://bit.ly/ 2wVFchO	
I can factorise an algebraic expression by taking out common factors	© ((8	© © 8	(A)		TuitionKit http://bit.ly/2fGIqDf	
I can multiply two expressions	© © 8	© © 8	© ⊕ ⊗	https://youtu.be/ WikXr23klJI	TuitionKit http://bit.ly/ 2wVFchO	

T (© @ @	© @ 8	© () ()		T. :::: IV::
I can factorise $x^2 + bx + c$					TuitionKit
					http://bit.ly/
	© © 8	© © 8	©		<u>2kaUKwR</u>
I can simplify an algebraic					
expression	© © 8	© © 8	©	1	
I can rearrange an algebraic				https://youtu.be/	TuitionKit
expression to change the subject				LGzM_nddE	http://bit.ly/
	0.00	0.00	0.00		2xIeF9q
I can use and manipulate surds	◎ ⊜ ⊗	◎ ⊜ ⊗	⊕ ⊕	https://youtu.be/	TuitionKit
				<u>KfCtSYdvQoc</u>	http://bit.ly/
	0.00	0.00	0.00		2wqmvDo
I can use the laws of indices	◎ ⊜ ⊗	◎ ⊜ ⊗	⊕ ⊕		TuitionKit
					http://bit.ly/
	0.00	0.00	0.00		2fyF7dz
I can use functions	◎ ⊜ ⊗	◎ ⊜ ⊗	◎ ⊕ ⊗		TuitionKit
					http://bit.ly/
	0.00	0.00	0.00		2xFO3bD
I can plot and determine	◎ ⊜ ⊗	◎ ⊜ ⊗	© (C) (C)		
coordinate from a graph					
I can plot a line from the	◎ ⊜ ⊗	◎ ⊜ ⊗	© (C) (C)		TuitionKit
expression $y = mx + c$					http://bit.ly/
					2xSbIVW
I can identify parallel lines from	⊕ ⊕ ⊗	⊕ ⊕ ⊗	⊕ ⊕ ⊜		TuitionKit
the expression $y = mx + c$					http://bit.ly/
					2xSbIVW
I can determine the expression y	◎ ⊜ ⊗	◎ ⊜ ⊗	◎ ⊜ ⊗		TuitionKit
= mx + c from a graph					http://bit.ly/
					2xSbIVW
I can find the gradient of a line	◎ ⊜ ⊗	◎ ⊜ ⊗	© (C) (C)		TuitionKit
					http://bit.ly/
	0.00	0.00	0.00		2wplFGJ
I can find the intercept of a line	◎ ⊜ ⊗	© © 8	©		
I can identify roots from a graph	©	◎ ⊜ ⊗	© (B)		
I can identify intercepts from a	© © 8	◎ ⊜ ⊗	◎ ⊜ ⊗		
graph					
I can identify turning points from	◎ ⊜ ⊗	◎ ⊕ ⊗	© (C) (C)		
a graph					
I can recognise and sketch the	⊕ ⊕ ⊗	⊕ ⊕ ⊗	⊕ ⊕ ⊗		
graphs for linear functions					
I can recognise and sketch the	© © 8	© © 8	© (()		TuitionKit
graphs for quadratic functions					http://bit.ly/
					<u>2yNtzvs</u>

I can recognise and sketch the	© © 8	© © 8	© © 8		
graphs for cubic functions	0.00	0.00	0.00		
I can recognise and sketch the	◎ ⊜ ⊗	◎ ⊜ ⊗	◎		
graphs for $\frac{1}{x}$					
I can plot graphs	◎ ⊜ ⊗	◎ ≌ ⊗	◎ ⊜ ⊗		
I can interpret distance-time	© © 8	◎ ⊜ ⊗	◎ ⊕ ⊗		
graphs					
I can interpret velocity-time	◎ ⊜ ⊗	© © 8	© © 8		
graphs					
I can solve an equation	◎ ⊜ ⊗	© © 8	© © 8		TuitionKit
·					http://bit.ly/
					2yfcxcH
I can find approximate solutions	◎ ⊜ ⊗	◎ ⊜ ⊗	◎ ⊜ ⊗		TuitionKit
to an equation from a graph					http://bit.ly/
, , , , , , , , , , , , , , , , , , , ,					2kaJpgj
I can solve quadratic equations by	◎ ⊜ ⊗	⊕ ⊕ ⊗	© © ®		
factorising					
I can solve two simultaneous	◎ ⊜ ⊗	◎ ⊜ ⊗	◎ ⊜ ⊗	https://youtu.be/	TuitionKit
equations				y5BKXkTwHTU	http://bit.ly/
•					2x3Yuq0
I can make equations from a	◎ ⊜ ⊗	◎ ⊜ ⊗	© © Ø		
situation given in text					
I can solve linear inequalities and	◎ ⊜ ⊗	◎ ⊜ ⊗	© @ Ø		TuitionKit
show the answer on a number line					http://bit.ly/
					2xS7Xjj
I can find terms in a sequence	◎ ⊜ ⊗	⊕ ⊕ ⊗	© © Ø		TuitionKit
from the n th term					http://bit.ly/
					2×40507
I can find the n th term from a	⊕ ⊕ ⊜	© © Ø	© @ Ø		
sequence					
I can recognise and use square	© © 8	⊕ ⊕ ⊗	© © ®		
numbers					
I can recognise and use cube	© © 8	© © ®	© © ®		
numbers					
I can recognise and use triangular	© © 8	© © ®	© © ®		
numbers					
Higher tier only	<u> </u>				
I can simplify algebraic	© © 8	© © ®	© © 0		
expression involving fractions					
I can factorise quadratic	© © Ø	© @ 8	© @ Ø		TuitionKit
equations $(ax^2 + bx + c)$					http://bit.ly/
oquations (ux · bx ·c)					2fFU7d4
					<u>411 07 04</u>

I can use algebra to construct	© © Ø	◎ ⊜ ⊗	◎ ⊜ ⊗	https://youtu.be/	
proofs				nkzLA4c2sA0	
I can interpret inverse functions	© © Ø	©	©	IIRZLATCZSAO	TuitionKit
1 can interpret inverse functions					·
					http://bit.ly/
T can interpret compedite	©	©	©		<u>2fyD0Gv</u> TuitionKit
I can interpret composite functions					
functions					http://bit.ly/ 2xNOa47
T can identify a superchicular line	©	©	© © 8		<u>2XINU447</u>
I can identify perpendicular line					
from a graph	©	©	©		
I can identify turning points on a					
graph by completing the square	© © 8	©	©		- ··· · · · · · · · · · · · · · · · · ·
I can recognise, sketch and					TuitionKit
interpret graphs for exponential					http://bit.ly/
functions	0.00	0.00	0.00		<u>2yPqV8y</u>
I can recognise, sketch and	◎ ⊜ ⊗	◎ ⊜ ⊗	◎ ⊜ ⊗		
interpret graphs for					
trigonometric functions (sin, cos					
and tan)					
I can sketch translations of a	⊕ ⊕ ⊗	⊕ ⊕ ⊗	⊕ ⊕ ⊗		
functions					
I can sketch transformations of a	© © ®	© © Ø	© © Ø		TuitionKit
function					http://bit.ly/
					<u>2y065as</u>
I can plot and interpret	© © ®	© © ®	© © ®		
exponential graphs					
I can calculate and estimate the	© © ®	© © ®	© © ®		
gradients of graphs					
I can calculate and estimate the	◎ ⊜ ⊗	◎ ⊜ ⊗	◎ ⊜ ⊗		
area under a graph					
I can determine distance from a	⊕ ⊕ ⊗	© © Ø	© © Ø		
distance time graph					
I can determine speed from a	⊕ ⊕ ⊗	© © Ø	◎		
distance time graph					
I can determine distance from a	◎	◎	◎		
velocity time graph					
I can determine speed from a	◎ ⊜ ⊗	◎ ⊜ ⊗	◎ ⊜ ⊗		
velocity time graph					
I can use the equation of a circle	© © Ø	© © Ø	© © Ø		TuitionKit
to find the equation of a tangent					http://bit.ly/
,					2×4Vwww
	l	l .	l .	l .	<u> </u>

I can solve quadratic equations by	◎ ⊜ ⊗	◎ ⊜ ⊗	© © ®	TuitionKit
completing the square				http://bit.ly/
				2yzzi6Y
I can solve quadratic equations by	◎ ⊕ ⊗	◎ ⊕ ⊗	◎ ⊜ ⊗	TuitionKit
using the quadratic formula				http://bit.ly/
				2x4WyJb
I can find approximate solutions	◎ ⊕ ⊗	◎ ⊕ ⊗	◎ ⊜ ⊗	TuitionKit
to an equation using iteration				http://bit.ly/
				2ygxBiE
I can solve linear inequalities using	◎ ⊕ ⊗	◎ ⊕ ⊗	◎ ⊜ ⊗	
a graph				
I can find the n th term for	◎ ⊕ ⊗	◎ ⊕ ⊗	© © ®	TuitionKit
quadratic sequences				http://bit.ly/
				2wpuyAj

#1 Collecting like terms in an algebraic expression

Video link; https://youtu.be/UcGbqIvtseE

- I can use a x b is equal to ab
- I can use 4a is equal to a + a + a + a or $4 \times a$
- I can use y^2 is equal to $y \times y$
- I can use a/b is equal to a ÷ b
- I can collect like terms in an algebraic expression

For each of the following rewrite it in its simplest form.

- 1. $x \times y$
- 2. t + t + t
- 3. $5 \times f$
- 4. $e \times e \times e$
- 5. $x \div y$
- 6. $2a \times 4b$
- 7. $x \times 5y \times 4z$
- 8. 7d + 4d
- 9. 2e + 6e 3e
- $10.x^2 + x^2 + x^2 + x^2$
- 11. $3 \times e \times f$
- 12. $\frac{5y}{10}$
- $13.\frac{6ab}{2b}$
- 14.8 $ab \times 3ac$
- 15. 5f + 6e 2f + 3e

1.
$$2\sqrt{5} - 8 + 4\sqrt{5} + 2$$

2.
$$7 - 2\sqrt{3} - 5 + 4\sqrt{3}$$

3.
$$9\sqrt{7} + 6 - 4\sqrt{7} + 2$$

4.
$$8\sqrt{10} + 7 - 3\sqrt{10} - 12$$

5.
$$6\sqrt{2} - 3 - 5\sqrt{2} + 9$$

6.
$$8\sqrt{5} + 7 - \sqrt{5} + 3$$

7.
$$2\sqrt{7} + 6 - 5\sqrt{7} + 5$$

8.
$$3\sqrt{2} + 7\sqrt{5} - \sqrt{2} - 2\sqrt{5}$$

9.
$$8\sqrt{7} + 3\sqrt{3} + 2\sqrt{7} - 5\sqrt{3}$$

$$10.3\sqrt{10} - 2\sqrt{5} + \sqrt{10} - \sqrt{5}$$

11.
$$12\sqrt{2} + 7\sqrt{3} - 9\sqrt{2} + \sqrt{2}$$

$$12.7\sqrt{5} - 6\sqrt{7} - 4\sqrt{5} + 2\sqrt{7}$$

$$13.3\sqrt{10} - 8\sqrt{2} - 7\sqrt{10} - 3\sqrt{2}$$

$$14.7\sqrt{2} + 3\sqrt{3} - 4\sqrt{5} - \sqrt{2} + 2\sqrt{3}$$

$$15.5\sqrt{6} - 8\sqrt{7} + 2\sqrt{10} + 2\sqrt{6} + 4\sqrt{7} - \sqrt{10}$$

#2 Putting numbers into an algebraic expression

Video link; https://youtu.be/h7i_qwLL7s8

• I can put numbers into an algebraic expression and if needed calculate an answer

 Find th 	e value of	e when ·	f = 4
-----------------------------	------------	----------	-------

2. Find the value of T when
$$a = 2$$
 and $b = 3$

3. Find b when
$$x = 2$$
 and $y = 9$

4. Find x when
$$y = 7$$
 and $z = -2$

5. Find c when
$$f = 50$$

6. Find d when
$$t = 4$$
 and $v = -3$

7. Find v when
$$u = 12$$
, $a = -4$ and $t = 1$

8. Find s when
$$u = \frac{1}{2}$$
, $t = 6$ and $a = -1$

9. Find y when
$$x = -\frac{1}{2}$$
 and w = 5

10. Find a when
$$b = 2$$
 and $c = -8$

12. Find
$$x$$
 when $a = 6$ and $b = -1$

13. Find p when
$$r = 2$$
 and $s = -3$

14. Find y when
$$a = 5$$
, $b = 4$ and $c = -3$

15. Find a when
$$x = -7$$
 and $y = 1.2$

$$e = 5f - 2$$

$$T = 7a - b^2$$

$$b = \frac{4x+10}{y}$$

$$x = 3y + 2z$$

$$c = \frac{5}{9} (f - 32)$$

$$d = 3t^2 - 5v$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$y = 4x^2 - 2w$$

$$a = \frac{3b^2 + c}{5}$$

$$f = \sqrt{5d - 2e}$$

$$x = \frac{a^2}{3} - 2b$$

$$p = rs^2 + r^2s$$

$$y = \sqrt{a^2b} + \frac{5c}{2}$$

$$a = 2(x - 3)^2 - 5y^2$$

#3 Multiplying out a number in front of a bracket

Video link; https://youtu.be/aOKx403YuZY

I can multiply out a number in front of a bracket

- 1. 4(x + 7)
- 2. 8(a-3)
- 3. 3(c-1)
- 4. 5(3x 2)
- 5. 2(7a + 3)
- 6. 9(4d + 7)
- 7. 6(8e 2)
- 8. 7(5f -1)
- 9. 3(-2x + 7)
- 10. 8(-5y + 1)
- 11. 7(-3a 2)
- 12. 2(-6† + 9)
- 13. -5(-7a + 2)
- 14. -6(-3d 4)
- 15. -4(-8*x* -1)

#4 Factorising algebraic expressions

Video link; https://youtu.be/mebC9_5lEDw

• I can factorise an algebraic expression by taking out common factors

- 1. 3x + 9
- 2. 8y + 6
- 3. 24a 16
- 4. 10f 25
- 5. 2e + 8
- 6. 9x 15
- 7. 21d + 14
- 8. 15y 9
- 9. 4a 6b
- 10.3e + 12f
- 11. 9x 27y
- 12.5c 5d
- 13.12x -7xy
- 14.11 + 5ab
- 15.19d 3cd

- 1. $3x^2 + 5x$
- 2. $7a^2 2a$
- 3. $4f^2 9f$
- 4. $19d^2 + 12d$
- 5. $2e^2 6e$
- 6. $9y^2 + 12y$
- 7. $4c^2 + 8c$
- 8. $21t^2 7t$
- 9. $16r^3 12r^2$
- $10.15d^2 + 10d^3$
- 11. $7g^4 + 28g^2$
- $12.27t^3 15t^2$
- 13. $11x^5 + 33x^3$
- $14.10a^4 25a^3$
- $15.4e^2 14e^5$

#9 Indices. Non calculator.

This worksheet is fully supported by a video tutorial; https://youtu.be/HGHRWMw6sGQ

Easy

Simplify the following...

- 1. $x^5 \times x^3$
- 2. $y^7 \times y^4$
- 3. $f^6 \times f^{-2}$
- 4. $\frac{e^{12}}{e^4}$
- 5. $\frac{a^{18}}{a^3}$
- 6. $\frac{x^8}{x^2}$
- 7. $(y^5)^2$
- 8. $(f^3)^4$
- 9. $(e^2)^3$
- 10. a^0
- 11. $\frac{x^7 \times x^8}{x^{12}}$
- 12. $\frac{(y^8)^3}{y^6}$
- 13. $\frac{f^{15}}{f^5} \times f^4$
- 14. $(e^7 \times e^3)^2$
- 15. $\frac{(x^4)^3}{x}$

- 1. Write 5^{-2} as a fraction.
- 2. Write $\frac{1}{e^7}$ in the form a^{-m}
- 3. Write 2^{-4} as a fraction.
- 4. Simplify $x^7 \div \frac{1}{x^2}$
- 5. Simplify $e^{12} \div \frac{1}{e^5}$
- 6. Simplify $f^9 \times (f^3)^{-2}$
- 7. Evaluate $3^3 \times 4^{-2}$
- 8. Evaluate $2^5 \times 4^{-3}$
- 9. Evaluate $100^{\frac{1}{2}}$
- 10. Evaluate $125^{\frac{1}{3}}$
- 11. Evaluate $(\frac{1}{16})^{\frac{1}{4}}$
- 12. Evaluate $64^{\frac{2}{3}}$
- 13. Evaluate $4^{\frac{3}{2}}$
- 14. Evaluate $(\frac{8}{64})^{\frac{2}{3}}$
- 15. Evaluate $(\frac{27}{125})^{\frac{2}{3}}$

Hard

- 1. Evaluate $125^{-\frac{1}{3}}$
- 2. Evaluate $81^{-\frac{1}{4}}$
- 3. Evaluate $64^{-\frac{2}{3}}$
- 4. Evaluate $16^{-\frac{2}{4}}$
- 5. Evaluate $32^{-\frac{3}{5}}$
- 6. Evaluate $1000^{-\frac{4}{3}}$
- 7. Express $x \times \sqrt[3]{x}$ as a power of x
- 8. Express $y^2 \times \sqrt[2]{y}$ as a power of y
- 9. Write $16\sqrt{2}$ as a power of 2
- 10. Write $\frac{27}{81}$ as a power of 3
- 11. Express $\sqrt[5]{16}$ as a power of 2
- 12. Express $\sqrt[3]{9}$ as a power of 3
- 13. Express $\frac{32}{\sqrt{16}}$ as a power of 2
- 14. Express $\frac{27}{\sqrt[3]{81}}$ as a power of 3
- 15. Express $\frac{25}{\sqrt[4]{125}}$ as a power of 5

Answers

Answers-collecting like terms

Easy

1	***
1. $x \times y$	xy
2. $t + t + t$	3t
3. $5 \times f$	5 <i>f</i>
4. $e \times e \times e$	e^3
5. $x \div y$	$\frac{x}{y}$
6. $2a \times 4b$	8ab
7. $x \times 5y \times 4z$	20xyz
8. $7d + 4d$	11 <i>d</i>
9 . 2 <i>e</i> + 6 <i>e</i> − 3 <i>e</i>	5 <i>e</i>
$10. x^2 + x^2 + x^2 + x^2$	$4x^2$
11. $3 \times e \times f$	3ef
$12.\frac{5y}{10}$	$\frac{y}{2}$
$13.\frac{6ab}{2b}$	$\frac{2}{3a}$
$14.8ab \times 3ac$	$24a^2bc$
15. $5f + 6e - 2f + 3e$	9e + 3f

1. $2\sqrt{5} - 8 + 4\sqrt{5} + 2$	6√5 - 6
2. $7 - 2\sqrt{3} - 5 + 4\sqrt{3}$	2√3 + 2
3. $9\sqrt{7} + 6 - 4\sqrt{7} + 2$	5√7 + 8
4. $8\sqrt{10} + 7 - 3\sqrt{10} - 12$	5√10 - 5
5. $6\sqrt{2} - 3 - 5\sqrt{2} + 9$	$\sqrt{2} + 6$
6. $8\sqrt{5} + 7 - \sqrt{5} + 3$	7√5 + 10
7. $2\sqrt{7} + 6 - 5\sqrt{7} + 5$	11 - 3√5
8. $3\sqrt{2} + 7\sqrt{5} - \sqrt{2} - 2\sqrt{5}$	$2\sqrt{2} + 5\sqrt{5}$
9. $8\sqrt{7} + 3\sqrt{3} + 2\sqrt{7} - 5\sqrt{3}$	10√7 - 2√3
10. $3\sqrt{10}$ - $2\sqrt{5}$ + $\sqrt{10}$ - $\sqrt{5}$	4√10 - 3√5
11. $12\sqrt{2} + 7\sqrt{3} - 9\sqrt{2} + \sqrt{2}$	$3\sqrt{2} + 8\sqrt{3}$
12. $7\sqrt{5}$ - $6\sqrt{7}$ - $4\sqrt{5}$ + $2\sqrt{7}$	3√5 - 4√7
13. $3\sqrt{10}$ - $8\sqrt{2}$ - $7\sqrt{10}$ - $3\sqrt{2}$	-4√10 - 11√2
$14.7\sqrt{2} + 3\sqrt{3} - 4\sqrt{5} - \sqrt{2} + 2\sqrt{3}$	$6\sqrt{2} + 5\sqrt{3} - 4\sqrt{3}$

$$15.5\sqrt{6} - 8\sqrt{7} + 2\sqrt{10} + 2\sqrt{6} + 4\sqrt{7} - \sqrt{10}$$

 $7\sqrt{6} - 4\sqrt{7} + \sqrt{10}$

18

Answers- putting numbers into an algebraic expression

Easy

1. Find the value of e when f	= 4
-------------------------------	-----

2. Find the value of T when
$$a = 2$$
 and $b = 3$

3. Find b when
$$x = 2$$
 and $y = 9$

4. Find x when
$$y = 7$$
 and $z = -2$

5. Find c when
$$f = 50$$

6. Find d when
$$t = 4$$
 and $v = -3$

7. Find v when
$$u = 12$$
, $a = -4$ and $t = 1$

8. Find s when
$$u = \frac{1}{2}$$
, $t = 6$ and $a = -1$

9. Find y when
$$x = -\frac{1}{2}$$
 and w = 5

10. Find a when
$$b = 2$$
 and $c = -8$

11. Find f when
$$d = 6$$
 and $e = 7$

12. Find
$$x$$
 when $a = 6$ and $b = -1$

13. Find p when
$$r = 2$$
 and $s = -3$

14. Find y when
$$a = 5$$
, $b = 4$ and $c = -3$

15. Find a when
$$x = -7$$
 and $y = 1.2$

$$T = 7a - b^2$$
 5

$$b = \frac{4x+10}{y}$$

$$x = 3y + 2z$$
 17

$$c = \frac{5}{9} (f - 32)$$
 10

$$d = 3t^2 - 5v$$
 63

$$v = u + at$$
 16

$$s = ut + \frac{1}{2}at^2$$
 -15

$$y = 4x^2 - 2w$$
 -9

$$a = \frac{3b^2 + c}{5}$$

$$f = \sqrt{5d - 2e}$$

$$x = \frac{a^2}{3} - 2b$$
 14

$$p = rs^2 + r^2s$$
 6

$$y = \sqrt{a^2b} + \frac{5c}{2}$$
 2.5

$$a = 2(x - 3)^2 - 5y^2$$
 192.8

Answers- multiplying out numbers in front of a bracket

1.
$$4(x + 7)$$

4.
$$5(3x - 2)$$

5.
$$2(7a + 3)$$

6.
$$9(4d + 7)$$

9.
$$3(-2x + 7)$$

10.
$$8(-5y + 1)$$

$$4x + 28$$

$$3c - 3$$

$$15x - 10$$

$$-6x + 21$$

$$-40y + 8$$

11. 7(-3a - 2)12.2(-6+9)13. -5(-7a + 2)

14. -6(-3d - 4)

15. -4(-8x - 1)

-21a - 14

-12+18

35a - 10

18d + 24

32x + 4

Answers-factorising expressions

Easy

1. 3x + 9

2.8y + 6

3. 24a - 16

4. 10f - 25

5.2e + 8

6. 9x - 15

7. 21d + 14

8. 15y - 9

9. 4a - 6b

10.3e + 12f

11. 9x - 27y

12.5c - 5d

13. 12x - 7xy

14.11 + 5ab

15.19d - 3cd

3(x + 3)

2(4y + 3)

8(3a - 2)

5(2f - 5)

2(e + 4)

3(3x - 5)

7(3d + 2)

3(5y - 3)

2(2a - 3b)

3(e + 4f)

9(x - 3y)

5(c - d)

x(12 - 7y)

a(11 + 5b)

d(19 - 3c)

Medium

1. $3x^2 + 5x$

2. $7a^2 - 2a$

3. $4f^2 - 9f$

4. $19d^2 + 12d$

5. $2e^2 - 6e$

6. $9y^2 + 12y$

7. $4c^2 + 8c$

8. $21t^2 - 7t$

x(3x + 5)

a(7a - 2)

f(4f - 9)

d(19d + 12)

2e(e - 3)

3y(3y + 4)

4c(c + 2)

7t(3t - 1)

9. $16r^3 - 12r^2$

$$10.15d^2 + 10d^3$$

11.
$$7g^4 + 28g^2$$

13.
$$11x^5 + 33x^3$$

$$14.10a^4 - 25a^3$$

$$15.4e^2 - 14e^5$$

$$4r^2(4r - 3)$$

$$5d^2(3 + 2d)$$

$$7g^2(g^2 + 4)$$

$$3t^2(9t - 5)$$

$$11x^3(x^2 + 3)$$

$$5a^3(2a - 5)$$

$$2e^2(2-7e^3)$$

Answers

Easy

	_		_
1	225	X	χ^3
1.	X	X	X.

2.
$$y^7 \times y^4$$

3.
$$f^6 \times f^{-2}$$

4.
$$\frac{e^{12}}{e^4}$$
5. $\frac{a^{18}}{a^{2}}$

5.
$$\frac{a^{18}}{a^3}$$

6.
$$\frac{x^8}{3}$$

7.
$$(y^5)^2$$

8.
$$(f^3)^4$$

9.
$$(e^2)^3$$

10.
$$a^0$$

11.
$$\frac{x^7 \times x^8}{x^{12}}$$
12. $\frac{(y^8)^3}{y^6}$

12.
$$\frac{(y^8)^3}{y^6}$$

13.
$$\frac{f^{15}}{f^5} \times f^4$$

14.
$$(e^7 \times e^3)^2$$

15.
$$\frac{(x^4)^3}{x}$$

x^8

y¹¹

f^4

a^{15}

*x*⁶

$$f^{12}$$

$$e^6$$

$$\chi^3$$

$$v^{18}$$

f^{14}

$$e^{20}$$

$$x^{11}$$

medium

1. Write
$$5^{-2}$$
 as a fraction.

2. Write
$$\frac{1}{e^7}$$
 in the form a^{-m}

3. Write
$$2^{-4}$$
 as a fraction.

$$x^{-7}$$

4. Simplify $x^7 \div \frac{1}{x^2}$ 5. Simplify $e^{12} \div \frac{1}{e^5}$ 6. Simplify $f^9 \times (f^3)^{-2}$ x^9 e^{-11} f^{12} $\frac{27}{16}$ $\frac{1}{2}$ 7. Evaluate $3^3 \times 4^{-2}$ 8. Evaluate $2^5 \times 4^{-3}$ 9. Evaluate $100^{\frac{1}{2}}$ 10 10. Evaluate $125^{\frac{1}{3}}$ 5 11. Evaluate $(\frac{1}{16})^{\frac{1}{4}}$ 12. Evaluate $64^{\frac{2}{3}}$ 16 13. Evaluate $4^{\frac{3}{2}}$ 8 14. Evaluate $(\frac{8}{64})^{\frac{2}{3}}$ 15. Evaluate $(\frac{27}{125})^{\frac{2}{3}}$ Hard 1. Evaluate $125^{-\frac{1}{3}}$ 2. Evaluate $81^{-\frac{1}{4}}$

3. E	valuate 64 ⁻³
4. E	valuate $16^{-\frac{2}{4}}$
5. E	ivaluate 32 - 3 5
6. E	valuate $1000^{-\frac{4}{3}}$
7. E	express $x \times \sqrt[3]{x}$ as a power of x
8. E	express $y^2 imes \sqrt[2]{y}$ as a power of y
9. W	Vrite $16\sqrt{2}$ as a power of 2
10. W	Vrite $\frac{27}{81}$ as a power of 3
11. E	xpress $\sqrt[5]{16}$ as a power of 2
	xpress $\sqrt[3]{9}$ as a power of 3
13. E	xpress $\frac{32}{\sqrt{16}}$ as a power of 2
14. E	Express $\frac{27}{\sqrt[3]{81}}$ as a power of 3
15. E	Express $\frac{25}{\sqrt[4]{125}}$ as a power of 5