Investigation on Optimal Mixing with Linkage Sets and Its Application

Presentor: 王士銘

Advisor: 于天立 教授

Outline

- 1. Background Knowledge
- 2. Motivation
- 3. Investigation on Different Masks
- 4. Optimal Mixing with Mask Selection
- 5. Conclusion

Outline

- 1. Background Knowledge
- 2. Motivation
- 3. Investigation on Different Masks
- 4. Optimal Mixing with Mask Selection
- 5. Conclusion

Simple GA ⇒ Model Building GA

Schemata	fitness
000	0.9
001,010,100	0.45
011,101,110	0
111	1

Optimal Mixing

 GA/MBGA: Large enough population ⇒ conquer sampling noise

• Optimal Mixing: Donation and evaluation ⇒ noise free

Linkage Tree (LT)

- Hierarchical Clustering
- Utilized (donation) in top-down order
- Robust since it is likely to cover all BBs

Outline

- 1. Background Knowledge
- 2. Motivation
- 3. Investigation on Different Masks
- 4. Optimal Mixing with Mask Selection
- 5. Conclusion

Motivational Experiment

- Small mask ⇒ find local optima
- Large Mask⇒ recombine local optima
- An experiment on trap problem with k=5

Two stage

 1^{st} generation: masks of size < 5

Other generations: masks of size ≥ 5

Outline

- 1. Background Knowledge
- 2. Motivation
- 3. Investigation on Different Masks
- 4. Optimal Mixing with Mask Selection
- 5. Conclusion

Problem Instances

- Homogeneous separable problem
- The one-max problem

• The (m, k)- trap problem

Linkage Set

- Homogeneous and isomorphic set of masks
- Marginal product model (MP)

 $(\ell, 1)$ -MP

123456 ...

(m,k)-MP

1,2,3

4,5,6

7,8,9

• (*m*, *k*)- LT

1,2,3 4,5,6 ... 1,2 4,5 ... 1) (2) (5) (4) (5) (6)

CP Index

•
$$CP_{theo}(\mathbb{M}, P) = \frac{E[GAIN(S_{\mathbb{M}, P}, S_{\mathbb{M}, P}, \mathbb{M})]}{E[COST(S_{\mathbb{M}, P}, S_{\mathbb{M}, P}, \mathbb{M})]}$$

- $S_{M,P}$: random variable of schemata
- Learn distribution of $S_{M,P}$ from population

			$Cost(r, d, \mathbb{M}) = 2$
Schemata	fitness	rank	(123)
000	0.9	2	
001,010,100	0.45	1	
011,101,110	0	0	1,2
111	1	3	1 2 5

GAIN(r, d, M) = 3 - 1 = 2

Model Efficiency

Model	Pop	NFEs
	316	<u>49982</u>
	264	129300
	Fail	Fail
	188	50013
	181	45889
	137	<u>39356</u>
	188	113440
	160	91393

Population sizing

- Decision making ⇒ noise-free decision making
- Model building⇒ rather robust hierarchal linkage tree
- Initial supply

Population sizing

- Perform OM+LT on the (m, k)-trap problem
- Discard masks of size 1 at different generation
- Small masks in early generations and large masks in late generations

Normalized CP

•
$$CP_{theo}(\mathbb{M}, P) = \frac{E[GAIN(S_{\mathbb{M}, P}, S_{\mathbb{M}, P}, \mathbb{M})]}{E[Cost(S_{\mathbb{M}, P}, S_{\mathbb{M}, P}, \mathbb{M})]}$$

$$\bullet \quad CP_{prac}(M,P) = \frac{E[\operatorname{GAIN}(S_{M,P}^e, S_{M,P}^e, \{M\})]}{E[\operatorname{COST}(S_{M,P}^e, S_{M,P}^e, \{M\})]}$$

•
$$CP_{norm}(M, P) = \frac{CP_{prac}(M, P)}{R(S_{M,P}^e)H(S_{M,P}^e)}$$

- $S_{M,P}^e$: (random variable) schemata in population
- $R(S_{M,P}^e)$: highest rank of
- $H(S_{M,P}^e)$: entropy of $S_{M,P}^e$

Outline

- 1. Background Knowledge
- 2. Motivation
- 3. Investigation on Different Masks
- 4. Optimal Mixing with Mask Selection
- 5. Conclusion

Modification of OM+LT

- Stage 1, OM+ 'some masks' : $P \Rightarrow O_{meta}$, CP_{norm} info
- $CP_{norm} \Rightarrow$ 'promising masks'
- Stage 2, OM + 'promising masks' : $O_{meta} \Rightarrow O$

CP Estimation

- Run OM one time, for each mask, CP= total gain/total cost
- Utilize (estimate CP) which masks for each receiver?
 Different layers for different parents
 All layers for all parents
 Parents(receivers)

1,2,3	7,8,9	1,5,9,13,17
1,2,3	4,5,6 (7) (8.9)	2,6,10,14,18
1,2 3	4 5,6 8 9	3,7,11,15,19
1 2	5 6	4,8,12,16,20

Experiment

- The one-max
- The trap problem
- The NK-landscape problem with no overlap general case of fully separable problem

Experiment Results – One-Max

Experiment Results – Trap

Experiment Results –NK-landscape

Summary & Conclusion

- OM is analyzed from the perspective of model efficiency and population sizing
- Mask pruning metric is designed
- OM-based algorithm with mask selection technique is designed
- Mask selection not only reduce NFEs but also make OM scale better
- This work can be extended to more complex scenario and help to improve OM

End

Overlap problem

The aggregate trap problem

Overlap problem

Fail
71433
68103
188352

Rank Estimation

Overlap NK-LandScape

Overlap NK-LandScape

