本赛题代码由相同方向的论文 PointSIFT 项目借鉴修改而成,该论文源代码可参考 https://github.com/MVIG-SJTU/pointSIFT (PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic SegmentationCreated by Mingyang Jiang, Yiran Wu, Cewu Lu (corresponding author).)

原论文数据集是室内场景 scannet https://arxiv.org/pdf/1702.04405.pdf

Pointsift 源代码运行流程可参考 https://blog.csdn.net/Felaim/article/details/81088936

本次赛题针对数据集的差异,做了一些修改,使之适应比赛数据。下面叙述一下给方面的具体细节:

- 1. 运行环境: Tensorflow, CUDA, python的 numpy 等工具包
- 2. **运行流程:**第一次需要编译 cuda 代码 tf_sampling_compile.sh(程序文件中已编译好)

进行训练时如果有多个 GPU 可以用如下命令

CUDA_VISIBLE_DEVICES=0,1,2,3 python train_and_eval_scannet.py --gpu_num=4 --batch_size 16 --data_path./

训练好的结果(评测得分高的)模型会保存在 model_param 文件夹中。

进行预测时(单 GPU)使用如下命令

CUDA_VISIBLE_DEVICES=0 python predict.py --gpu_num=1 --batch_size 8 --data_path ./

通过修改代码中结果最好一次结果的文件名称,读入模型并进行预测。结果输出在 predictivalue 文件要中,每个场景输出一个文件(如 x.npy)。

再执行 python submit.py 把预测出的值转换成比赛要求的文件格式和文件名。

3. 程序各文件解释

scannet_dataset.py 训练集、测试集、预测集数据的预处理 predict.py 加载训练好的模型和参数,读入预测数据集,进行预测后输出每个场景的预测值 train_and_eval_scannet.py 数据、模型的加载 训练参数,流程控制 submit.py 把预测后的每个场景的值根据比赛格式要求转换成 .csv 文件 filenames.npy 预测数据集中每个场景对应的文件名,用来给输出结果重命名,一维 filenums.npy 预测数据集中每个场景中点的个数,用来截断输出结果符合实际点的数量,一维 predictvalue 文件夹 存放预测过程中生成的第 n 个场景的预测结果,如 123.npy predictdata 文件夹 存放需要被预测的数据集,如 scannet_predict2.pickle models 文件夹 pointSIFT_pointnet.py 用来搭建模型 model_param 文件夹 存放训练过程中当前评估结果最好的模型 submit 文件夹 预测后的值按照比赛要求的格式修改成 xxx.csv 存放在这 tf utils 文件夹 包含模型的各个基本模块 log 文件夹 存放训练过程中的信息,可以用 tensorboard 查看训练的阶段状态 csvToPickle.py predictCsvToPickle.py transer.py 为比赛数据预处理,统一格式为 pickle

4. 数据预处理和细节说明

训练时只用到了前两万个场景,并把源 csv 格式数据转换成 pickle 格式文件,再通过修改训练集的场景大小,缩小 x,y,z 范围,去除坐标原点周围的点,然后再随机抽取出 8192 个点放到网络中训练。模型中的 radius 值从原先的 0.1 等根据 scannet 室内和比赛场景的不同,统一放大到原来的 8 倍。预测时也同样缩小了预测范围,为了不打乱点的顺序,不在范围内的点的坐标值会被修改到原点,最后网络的输出即为当前场景的预测值。根据每个场景的点数量不同,和模型的输入大小,统一成 8192 个点输入,每个场景会被按照文件 xyz 中的顺序分成 8 份,每份 8192 个点,不足的部分通过在后部分填充点(0,0,0)来满足。预测集因为文件大小缘故被平分成 7 份分别进行。