# Rhythm is gradient: evidence from -ative and -ization\*

Juliet Stanton, NYU • AMP 2020, UCSC • September 19, 2020

## 1 Introduction

- **Commonly assumed**: stress is the manifestation of linguistic rhythm (Liberman & Prince 1977).
- Rhythm implies alternation, or the timed succession of weak and strong beats.
- In English, rhythmic alternation can be found at the phrase level.
  - (1) Rhythmic alternation within a phrase (Hayes 1995:28)

- Rhythmic alternation is also found at the word level.
  - (2) Rhythmic alternation within a word (Hayes 1995:29)

- Alternation implies distance: weak and strong beats are separated in time.
- Question: how do we measure rhythmic distance?
- The way in which rhythmic distance is measured differs in foot-based and foot-free approaches to stress.
- Distance, in recent foot-based approaches to stress (e.g. Kager 1999):
  - > Constraints like PARSESYL requires syllables to be parsed into feet.
- > Constraints on foot form (e.g. IAMB, TROCHEE) and alignment (e.g. ALLFTLEFT) regulate distance between stresses.
- \*My thanks to A. Albright, D. Steriade, and NYU's PEP Lab for comments on this material.

- Distance, in recent foot-free approaches to stress (e.g. Gordon 2002):
  - > Constraints like \*LAPSE and \*CLASH directly regulate the distance between stressed and stressless syllables.
    - (3) \*LAPSE assign one violation for each sequence of two adjacent stressless syllables.
    - (4) \*CLASH: assign one violation for each sequence of two adjacent stressed syllables.
  - > These constraints are often referred to as *rhythmic* constraints.
- These approaches are superficially different, but share something fundamental: they calculate distance over units of formal structure (syllables and feet).
- **This talk** explores an alternative: rhythm is calculated not over units of formal structure, but over duration, in a more direct way.

#### **Outline**

- The evidence for this alternative: suffixal stress in American English -ative (Stanton 2019) and -ization.
  - In both -ative and -ization, stress on the inner suffix is variable.
  - Claim: this variability is, at least in part, governed by rhythm.
- In both cases, inner suffix stress becomes more likely as its distance from the rightmost stem stress increases.
  - From *-ization*: words like *culturalization* (with a lapse) more likely to bear *-ize* stress than words like *realization* (without one).
  - From -ative: words like *legislative* (with a pre-ate cluster) more likely to bear -ate stress than words like *speculative* (with a pre-ate sonorant).
- **Main point**: the metric of distance speakers use references duration in a more direct way than is generally assumed by theories of stress.

# 2 Stress in -ization

• Our interest: words ending in -ization vary in whether or not -ize bears stress.

(5) Stress on -ize- is variable (Data source: OED)

a. Stressed -ize-: solarization, lemmatization

b. Stressless -ize-: fascization, functionalization

c. Variable: relativization, serialization

 Necessary to first review more general properties of stress in -ization to answer a few questions: what factors favor/disfavor stress on -ize?

## 2.1 Background

- It is useful to separate words that end in *-ization* into two domains: the stem (pre-*ization* material) and the suffixal domain (*-ization*).
  - (6) Division of *-ization* forms into stem and suffixal domains

- We need just a few assumptions, for now, to illustrate why -ization stress varies.
  - Stress on -ize is compelled by a suffix-specific constraint, STRESS-ize.
    - (7) STRESS-*ize*: assign one \* if the suffix -*ize* does not bear stress.
- Stressing -ize and -ate violates \*CLASH; -ize destressing can thus be seen as a clash-avoidance strategy.
- > We'll assume that the relevant version of \*CLASH is specific to -ate.
- > Well-known that the verbal -ate repels stress; it's a strong retractor, in the sense of Liberman & Prince 1977.
- Preference for -izátion (vs. -ízation) due to \*LAPSER (Gordon 2002).
  - (8) \*LAPSER: assign one \* if neither of the final two syllables is stressed.
- \*LAPSER  $\gg$  STRESS<sub>-ize</sub> explains why it's -ize stress that varies.

|     | sérial-ize-ate-ion | *LAPSER | *CLASH-ate | STRESS_ize |
|-----|--------------------|---------|------------|------------|
| (0) | 🖙 a. sèrialìzátion |         | *          |            |
| ()) |                    |         | -          | *          |
|     | c. sérialization   | *!      |            |            |

## 2.2 Rhythmic effects in -ization stress

- The question: can we predict when -ize is more or less likely to bear stress?
- Corpus study conducted to see if rhythmic factors are implicated in *-ization* stress (following Stanton 2019:7.2).<sup>1</sup>
- Corpus: all relevant -ization forms in the OED as of 2/2019 (n=773).
- Inner suffix counted as "stressed" if -ize transcribed as [aiz].
- Inner suffix counted as "stressless" if -ize transcribed as [ $\ni$ ] or [1].
- Variable cases are assigned to the "stressed" category (doesn't affect results).
- Results (10) demonstrate a rhythmic effect in *-ization* stress: *-ize* stress is more frequent when it resolves a lapse than when it creates a clash.<sup>2</sup>

|      | Effect of -ize stress | Stressed -ize  | Stressless -ize | % stressed |
|------|-----------------------|----------------|-----------------|------------|
|      | *CLASH                | còncrètìzátion | mètronòmizátion | 64.1%      |
|      | violation             | (n=59)         | (n=33)          | (59/92)    |
| (10) | *LAPSE                | chànnelìzátion | dichòtimizátion | 94.3%      |
|      | satisfaction          | (n=529)        | (n=32)          | (529/561)  |
|      | *EXTLAPSE             | fèderalìzátion | cùlturalizátion | 98.5%      |
|      | satisfaction          | (n=202)        | (n=3)           | (202/205)  |

- Available evidence suggests that speaker productions mirror the OED trends.
  - Productions are from forvo.com, a pronunciation dictionary.
  - Dictionary was searched (in 2/2019) for all -ization words in (10). Native speaker status and -ize stress were determined by ear.

|      | Effect of -ize stress | Stressed -ize | Stressless -ize | % stressed |
|------|-----------------------|---------------|-----------------|------------|
|      | *CLASH                | rèalìzátion   | tàblòidizátion  | 19%        |
|      | violation             | (n=4)         | (n=21)          | (4/25)     |
| (11) | *LAPSE                | fòssilìzátion | demòbilizátion  | 24.5%      |
|      | satisfaction          | (n=49)        | (n=151)         | (49/200)   |
|      | *EXTLAPSE             | àctualìzátion | lábializátion   | 29.2%      |
|      | satisfaction          | (n=21)        | (n=51)          | (21/72)    |

<sup>&</sup>lt;sup>1</sup>For the OED: a logistic regression finds a significant comparison between \*LAPSE vs. \*CLASH (p < .001) and \*LAPSE vs. \*EXTLAPSE (p < .05). For Forvo: a logistic regression finds a significant comparison between \*LAPSE vs. \*EXTLAPSE contexts (p < .01) but not \*LAPSE vs. \*CLASH. All models control for the frequency of the *-ization* form as well as the frequency of its *-ize* base.

<sup>&</sup>lt;sup>2</sup>Numbers in (10) adds up to more than 773 because some stems have two stress patterns, e.g. *multimer-ization* can be 202-?10 or 020-?10. In such cases, variants are counted as separate stems.

- A more detailed look at the OED data shows that there is variance within some
  of these rhythmic categories.
  - Focusing on the cases where *-ize* stress results in a \*CLASH violation (12), we see that the rate of *-ize* stress varies with the interstress material.<sup>3</sup>

| (12) | Interstress seg(s). | Stressed ize           | Stressless ize         | % stressed |
|------|---------------------|------------------------|------------------------|------------|
|      | Congrant (D)        | xè <b>n</b> ìzátion    | rèa <b>l</b> izátion   | 53.1%      |
|      | Sonorant (R)        | (n=17)                 | (n=15)                 | (17/32)    |
|      | Objection 2014 (O)  | stỳlò <b>p</b> ìzátion | fà <b>sc</b> izátion   | 60.7%      |
|      | Obstruent (O)       | (n=17)                 | (n=11)                 | (17/28)    |
|      | Cluster (CC)        | bà <b>pt</b> ìzátion   | òbjè <b>ct</b> izátion | 76.9%      |
|      |                     | (n=20)                 | (n=6)                  | (20/26)    |

- The rate of *-ize* stress does not vary noticeably within the \*LAPSE and \*EXT-LAPSE resolution contexts; the numbers are close to ceiling.

## 2.3 Hypothesis

- **Hypothesis**: -*ize* stress is sensitive to duration. The longer the distance between the rightmost stem stress and -*ize*, the more likely -*ize* is to be stressed.
- Analytically: -ize stress is governed by a gradient version of \*CLASH.
  - If this is correct: as the number of syllables between the rightmost stem stress and -ize increases, so should the duration (expected given (10-11)).
    - (13) Different interstress durations (in black) in -ization forms
      - a.  $\bigvee C_0$  -izátion (fascization): shortest  $\bigvee C_0$  izátion
      - b.  $\bigvee C_0 \bigvee C_0$  -izátion (*channelization*): longer  $\bigvee C_0 \bigvee C_0 \bigvee C_0$  izátion
      - c.  $\grave{V} C_0 V C_0 V C_0$  -izátion (federalization): longest  $\grave{V} \boxed{C_0 V C_0 V C_0}$  izátion
    - > Seems obvious: more syllables should mean more duration.
  - > However, Nespor & Vogel (1989:102) hint at the existence of lapse compression in English, so this prediction should be verified.

- Given (12), we might also expect for clashes with sonorants to be shorter than those with obstruents, which might be shorter than those with clusters.
  - (14) Different clash lengths in *-ization* forms (clash is in black)
    - a.  $\hat{V} R$  -izátion (xenization: shortest

**Ù R** ìzátion

o.  $\hat{V}$  **O** -izátion (*stylopization*): longer

**V O** *ìzátion* 

c. **V CC** -ìzátion (ba**pt**ization): longest

**V CC** izátion

• We need to know whether or not trends in the dictionary data correlate with trends in duration, and whether or not speakers' preferences match these trends.

# 3 Experimental support

- To test the hypothesis, I ran a forced-choice task, asking participants to choose between *-ìzátion* and *-izátion* variants of the same form.
- **Result**: speakers are sensitive to duration! The longer the duration between the rightmost stem stress and -*ize*, the greater the preference for -*ize* stress.
- Analysis of the experimental items supports predictions in (13-14).

## 3.1 Items and acoustic analysis

- For the experiment, I recorded one speaker producing -izátion and -izátion variants of forms that ended in -ization, all placenames or demonyms (Table 1).
- Ten items where -ize stress would violate \*CLASH, and ten where -ize stress would satisfy \*LAPSE, and ten where -ize stress would satisfy \*EXTLAPSE.
- Within categories, segmentals following the rightmost stem stress differed.
- Duration between the rightmost stem stress and -ize measured as in Fig. 1.4

Figure 1: Duration from rightmost stem stress to -ize Quebècìzátion



<sup>&</sup>lt;sup>4</sup>All acoustic analysis was done in Praat (Boersma & Weenink 2017).

<sup>&</sup>lt;sup>3</sup>A logistic regression finds that neither the R vs. O nor the O vs. CC comparisons are significant. In addition, there are 6 cases where a vowel-final stem takes *-ization* (e.g *Maoization*). In 5/6, *-ize* is reported to at least variably bear a stress. Because the number of such forms is small, and it is possible that there are additional constraints on ÝV hiatus, I do not include these forms here.

Table 1: -ization items, by rhythmic profile and interstress C(s)

|                  | , , , ,          |                     |
|------------------|------------------|---------------------|
| *CLASH (n=10)    | *LAPSE (n=10)    | *EXTLAPSE (n=10)    |
| Interstress C(s) | Interstress C(s) | Interstress C(s)    |
| Pràgueizátion    | Ègyptizátion     | Pròvidenceizátion   |
| [g]              | [dʒ], [pt]       | [v], [d], [ns]      |
| Quebècizátion    | Wyòmingizátion   | Sènegalizátion      |
| [k]              | [m], [ŋ]         | [n], [g], [l]       |
| Chàdizátion      | Cùbanizátion     | Ìndianàpolisizátion |
| [d]              | [b], [n]         | [n], [p], [l]       |
| Ròmeizátion      | Bròoklynizátion  | Antàrcticanizátion  |
| [m]              | [kl], [n]        | [J(k)t], [k], [n]   |
| Japànizátion     | Àustinizátion    | Blòomingtonizátion  |
| [n]              | [st], [n]        | [m], [ŋt], [n]      |
| Brònxizátion     | Tèxasizátion     | Mèxicanizátion      |
| [ŋks]            | [ks], [s]        | [ks], [k], [n]      |
| Vermòntizátion   | Phòenixizátion   | Mìchiganizátion     |
| [nt]             | [n], [ks]        | $[\int], [g], [n]$  |
| Frànceizátion    | Alàskanizátion   | Òberlinizátion      |
| [ns]             | [sk], [n]        | [b], [ɪl], [n]      |
| Bàsqueizátion    | Rùssianizátion   | Màdisonizátion      |
| [k]              | [∫], [n]         | [d], [s], [n]       |
| Mìnskizátion     | Ìcelandizátion   | Ròchesterizátion    |
| [nsk]            | [sl], [nd]       | [t∫], [st], [л]     |

- Durational properties of these forms are in line with the predictions above.
  - Distance from the rightmost stem stress is shortest in the \*CLASH context, longer in \*LAPSE, and longest in \*EXTLAPSE (Fig. 2).<sup>5</sup>
  - Sonorants between two stresses are shorter than obstruents (though not by much), which are shorter than clusters (Fig. 3).
- First part of the hypothesis is plausible: broad trends discovered in the dictionary study correlate with properties of the productions.

## 3.2 Experiment 1

## 3.2.1 Design

- Stimuli were created from the forms in Table 1, differing only in suffixal stress (examples: *Quebècizátion-Quebècizátion, Mèxicanizátion-Mèxicanizátion*).
- Participants were told they were helping a travel company pronounce words in new slogans (*Prepare for the Quebecization of your vacation!*).

Figure 2: Interstress duration by the number of interstress syllables



Figure 3: Interstress duration by the type of interstress consonant(s)



<sup>&</sup>lt;sup>5</sup>Figure 3 and all other plots were produced with R's ggplot2 (Wickham 2016).

• They were asked to choose between two possible pronunciations of the bolded and italicized word, which they could listen to a maximum of twice.<sup>6</sup>

#### 3.2.2 Participants

• Fifty participants recruited using Mechanical Turk. All indicated that they are native speakers of English from the U.S. None were excluded from the analysis.

#### 3.2.3 Results

- Patterns in the data suggest that the hypothesis is correct.
  - Distinctions among rhythmic categories are what we would expect, given the dictionary data and acoustic results.
  - > For the \*CLASH context (xènizàtion), 34.9% prefer -ize stress.
  - > For the \*LAPSE context (chànnelizátion), 39.4% prefer -ize stress.
  - > For the \*EXTLAPSE context (fèderalizátion), 40.2% prefer -ize stress.
- The positive correlation between -ize stress and interstress duration is also expected: the worse the clash, the more likely -ize destressing (Figure 4).
- Interestingly, the statistics indicate that only duration (and *not* rhythmic category) played a role in participants' responses.
- A mixed-effects logistic regression finds a significant effect for duration.

(15) Model with duration as fixed effect

| Factor      | Coefficient | z value | Significant?    |
|-------------|-------------|---------|-----------------|
| (Intercept) | -0.66       | _       |                 |
| Duration    | 1.29        | 2.52    | Yes $(p < .05)$ |

- Adding a predictor for rhythmic category does not improve the fit of the model ( $\chi^2$  (2) = 1.25, p = .53), nor does adding an interaction.
- What we can take away from these results:
  - Gradient rhythmic information plays a role in speakers' judgments about whether or not to destress -ize in -ization.
  - It's the duration between the last stem stress and -ize that matters. The rhythmic category the form belongs to (\*CLASH, \*LAPSE, \*EXTLAPSE) only matters insofar as these categories are shorthand for duration.

Figure 4: Preference for -ize stress by interstress duration



# 4 Towards an analysis

- Results from Experiment 1 support the hypothesis. The longer the distance between the rightmost stem stress and -ize, the more likely -ize is to be stressed.
- Analytically speaking: these results support the addition of a gradient \*CLASH constraint, defined over duration, to CON.
- But a few things aren't clear, given the available evidence: how this constraint should be defined, and what kinds of representations it evaluates.
- Constraint could be defined in terms of milliseconds (as in Stanton 2019): predicts sensitivity to speech rate, length of intervening segments.
- Constraint could be defined in more abstract terms; predicts no sensitivity to speech rate, length of intervening segments, etc.
- Results from a second judgment task suggest that an abstract definition is more appropriate; I sketch a possible one, based on these results, in Section 4.2.

<sup>&</sup>lt;sup>6</sup>The order of stressed and stressless *-ization* was randomized by item and participant; item order was randomized by participant. Experiments were made with Experigen (Becker & Levine 2013).

<sup>&</sup>lt;sup>7</sup>All models were fitted using the glmer function of R's lme4 (Bates & Maechler 2011) and include a random intercept for participant,. Significance values are from lmerTest (Kuznetsova et al. 2016).

## 4.1 Experiment 2

• Experiment 2 used half of the *-ization* items from Experiment 1 (Table 2). It was in all other ways identical to Experiment 1.

Table 2: Experiment 1 items, by rhythmic profile and interstress C(s)

| 1                | , <u>, , , , , , , , , , , , , , , , , , </u> | <u> </u>                               |
|------------------|-----------------------------------------------|----------------------------------------|
| *CLASH (n=5)     | *LAPSE (n=5)                                  | *EXTLAPSE (n=5)                        |
| Interstress C(s) | Interstress C(s)                              | Interstress C(s)                       |
| Quebècizátion    | Ègyptizátion                                  | Ròchesterizátion                       |
| [k]              | [dʒ], [pt]                                    | $[t \int]$ , $[st]$ , $[\mathfrak{I}]$ |
| Chàdizátion      | Cùbanizátion                                  | Sènegalizátion                         |
| [d]              | [b], [n]                                      | [n], [g], [1]                          |
| Ròmeizátion      | Àustinizátion                                 | Ìndianàpolisizátion                    |
| [m]              | [st], [n]                                     | [n], [p], [1]                          |
| Brònxizátion     | Tèxasizátion                                  | Antàrcticanizátion                     |
| [ŋks]            | [ks], [s]                                     | [x(k)t], [k], [n]                      |
| Bàsqueizátion    | Phòenixizátion                                | Mèxicanizátion                         |
| [sk]             | [n], [ks]                                     | [ks], [k], [n]                         |

- For this experiment, two versions of each item were used.
- The first version: both forms were presented at the normal speech rate.
- The second version: both forms were artificially slowed by 20%, using Praat Vocal Toolkit (Corretge 2012).
- **The prediction:** if phonetic \*CLASH is defined in terms of milliseconds, we should find a stronger preference for -*ize* stress in the slowed items.
- The results are clear, and do not support this prediction.
  - First, a sanity check: does the result from Experiment 1 replicate?
    - > Yes: duration is a significant predictor of *-ize* stress (16). Trend is visible in both the normal and slowed forms (Fig. 5).

(16) Model with duration as a fixed effect

| Factor      | Factor Coefficient z value Significant? |         |                 |  |  |  |  |
|-------------|-----------------------------------------|---------|-----------------|--|--|--|--|
|             |                                         | 2 value | Significant:    |  |  |  |  |
| (Intercept) | -0.66                                   | _       |                 |  |  |  |  |
| Duration    | 0.99                                    | 2.26    | Yes $(p < .05)$ |  |  |  |  |

- $\Rightarrow$  Adding a rhythmic context factor does not improve fit ( $\chi^2(2)=4.58$ , p=.1).
- Item type (slowed vs. not slowed) is not a significant predictor; adding it to the model also does not improve fit ( $\chi^2$  (1) = .72).
- The takeaway: gradient \*CLASH likely assesses violations at a more abstract level than milliseconds, though more systematic investigation is necessary.

Figure 5: Preference for -ize stress by duration (faceted by speech rate)



Figure 6: Preference for -ize stress by speech rate



## 4.2 Defining gradient rhythmic constraints

- Results of the above experiment limit the hypothesis space as to how gradient \*CLASH is defined, but the hypothesis space is still large.
- A possibility: each segment is associated with an idealized duration, stored as milliseconds. Rhythmic constraints reference idealized duration.
- Another possibility: segments are split up into durational categories. Rhythmic constraints reference durational categories.
- Further work is required to further narrow down this hypothesis space!
- For the purposes of this talk, I'll define gradient \*CLASH as the following.
  - (17) \*CLASH: for each pair of stressed vowels  $\acute{V}_1$  and  $\acute{V}_2$ , assign a base violation score of 1. For each segment between  $\acute{V}_1$  and  $\acute{V}_2$ , multiply the violation score by 1/x, where x is valued according to (a-b).
    - a. Sonorant consonants = 2
    - b. Obstruent consonants = 3
  - For Quebècizátion, violation score is 1/3; for Tèxasizátion, it's 1/27.
- In addition to gradient \*CLASH, we should also consider the possibility that gradient \*LAPSE plays a role in speakers' judgments.
  - Argued in Stanton (2019) that phonetic \*LAPSE is active in English.
  - For Tèxasizátion vs. Mèxicanizátion, possible that the preference for more
     -ize stress on the latter is due to gradient \*LAPSE.
  - (18) \*LAPSE: for each pair of stressed vowels  $\acute{V}_1$  and  $\acute{V}_2$ , assign a base violation score of 1. For each segment between  $\acute{V}_1$  and  $\acute{V}_2$ , multiply the violation score by x, where x is valued according to (a-b).
    - a. Sonorant consonants = 2
    - b. Obstruent consonants = 3
  - For Quebècizátion, violation score is 3; for Tèxasizátion, it's 27.
- Where is the evidence that we need to define these constraints with reference to the identity of segments, rather than just the number of segments?
- Sporadic evidence that R vs. O matters: in the \*LAPSE context, for example, Texasization has a higher rate of -ize stress (48%) than Austinization (40%).
- Evidence is more consistent for *-ative*, where the segmentals of experimental stimuli were more tightly controlled. We'll come back to this.

 What's important here is the idea: the strength of violation is correlated with the distance between two stresses. These precise formulations can be revised.

## 4.3 Analysis

- To demonstrate how an analysis of these data might work, I consider four items: *Quebècizátion, Frànceizátion, Tèxasizátion*, and *Mexicanizátion*.
- For an analysis of these results, I include the following constraints:
- (19) \*CLASH-ate: assign one \* for each sequence of two adjacent stressed syllables that includes the verbal suffix -ate.
- (20) STRESS<sub>-ize</sub>: assign one \* if the suffix -ize doesn't bear stress.
- (21) \*LAPSE, \*CLASH: as in (17, 18).
- I used the Maxent grammar tool (Hayes et al. 2009) to find weights for the above constraints, given the candidates and violation scores in Table 3.

Table 3: Candidates and violations fed to the Maxent grammar tool

|                   | STRESS-ize | *CLASH-ate | *CLASH | *Lapse |
|-------------------|------------|------------|--------|--------|
| a. Quebècìzátion  |            | 1          | 1/3    | 3      |
| b. Quebècizátion  | 1          |            | 1/9    | 9      |
| c. Frànceìzátion  |            | 1          | 1/6    | 6      |
| d. Frànceizátion  | 1          |            | 1/18   | 18     |
| e. Tèxasìzátion   |            | 1          | 1/27   | 27     |
| f. Tèxasizátion   | 1          |            | 1/81   | 81     |
| g. Mèxicanìzátion |            | 1          | 1/54   | 54     |
| h. Mèxicanizátion | 1          |            | 1/162  | 162    |

• The tool finds the weights in (22), and makes the predictions in (23).

|                                                                                        | Constraint | Waiaht | •   | Eams           | Rate of - | ize stress |
|----------------------------------------------------------------------------------------|------------|--------|-----|----------------|-----------|------------|
|                                                                                        | Constraint |        |     | Form           | Predicted | Observed   |
|                                                                                        | *CLASH     | 2.553  | -   | Quebècìzátion  | 30%       | 30%        |
| (22) *CLASH <sub>-ate</sub> 0.280 (23)<br>*LAPSE 0.006<br>STRESS <sub>-ize</sub> 0.000 | (23)       | ~      | 38% | 40%            |           |            |
|                                                                                        | *Lapse     | 0.006  |     |                |           |            |
|                                                                                        | STRESS_iza | 0.000  |     | Tèxasìzátion   | 50%       | 48%        |
|                                                                                        |            |        |     | Mèxicanìzátion | 59%       | 60%        |

• The main takeaway: phonetic, gradient versions of \*CLASH and \*LAPSE play a role in judgments of -ize stress. Rhythm drives variation.

# A parallel from -ative

- The suffix -ative behaves like -ization, in that stress on the inner suffix varies.
- The OED lists -ate as stressed in motivative and stressless in communicative
- It also lists some -ative forms as having variable stress, like mollificative.
- Crucial: I assume that the morphological composition of these forms is *X-ate*ive, and that the -ate in -ative is the same verbal -ate that is in -ization.

#### **5.1 Background**

• Unlike -ization, there are rhythmic limitations on -ate stress. As shown in (24), -ate stress is dispreferred under clash (data in this section from Stanton 2019).

|      | Effect of -ate stress | Stressed -ate | Stressless -ate | % stressed |
|------|-----------------------|---------------|-----------------|------------|
|      | *CLASH                | òrnàtíve      | quótatìve       | 6.4%       |
|      | violation             | (n=15)        | (n=216)         | (15/231)   |
| (24) | *LAPSE                | législàtive   | spéculatìve     | 68.6%      |
|      | satisfaction          | (n=229)       | (n=105)         | (229/334)  |
|      | *EXTLAPSE             | amélioràtive  | detérioratìve   | 90.0%      |
|      | satisfaction          | (n=9)         | (n=1)           | (9/10)     |

- To understand why this is, it's useful to assume that \*CLASH-ate is active.
- To analyze the fact that stress varies within the suffixal domain, I assume for now that the suffix -ive prefers to bear stress when possible (25).8
- (25)STRESS\_*ive*: assign one \* if the suffix -*ive* does not bear stress.
- Variation: STRESS-ive conflicts with \*LAPSE (evaluated syllabically, for now).

(26)-ate stressing as \*LAPSE resolution

| investigative    | *CLASH-ate | *LAPSE | STRESS_ive |
|------------------|------------|--------|------------|
| a. invéstigàtive |            |        | *          |
|                  |            | *      | l          |
| c. invéstigàtive | *!         |        | 1          |
| quotative        |            |        |            |
| d. quótàtive     | *!         |        | *          |
| r e. quótatìve   |            |        | I          |
| f. quótàtìve     | *!*        |        | I          |

<sup>&</sup>lt;sup>8</sup>It's possible that -ive is not stressed in your dialect. With some modification, the analysis proposed here works for dialects where -ive is stressless. See Stanton (2019) for more.

- Question: can we predict when -ate is more or less likely to bear stress?
- Answer (Stanton 2019): The longer the lapse that would result were -ate not stressed, the higher the likelihood that -ate will bear stress.
  - Observation (due to Nanni 1977): -ate stress depends on content of the lapse.

|      | Interstress seg(s). | Stressed -ate        | Stressless -ate      | % stressed |
|------|---------------------|----------------------|----------------------|------------|
| (27) | Sonorant (R)        | muti <b>l</b> ative  | specu <b>l</b> ative | 57%        |
|      |                     | (n=85)               | (n=65)               | (85/150)   |
|      | Obstruent (O)       | depre <b>c</b> ative | dubi <b>t</b> ative  | 83%        |
|      |                     | (n=91)               | (n=19)               | (91/110)   |
|      | Cluster (CC)        | legi <b>sl</b> ative | ade <b>qu</b> ative  | 96%        |
|      | Clustel (CC)        | (n=27)               | (n=1)                | (27/28)    |

- Note a similarity to how clash works in the -ization corpus: the rate of -ate stress increases as we go from sonorant to obstruent to cluster.
- A small production study suggests that this cline reflects duration: categories associated with higher rates of -ate stress are associated with longer lapses.

500

Figure 7: Lapse length by category of the pre-ate consonant(s) (Stanton 2019)



## 5.2 Experimental evidence

- Evidence that speakers are sensitive to lapse duration: there is a positive correlation between lapse duration and a preference for *-ate* stress (Stanton 2019<sup>9</sup>).
- Unlike -ization: for -ative, \*CLASH has a categorical effect. This may be due to differences in morphological composition between the two classes of forms.

### **5.2.1** Design and participants

- Stimuli: 80 pairs of nonce *-ative* forms, differing only in suffixal stress (examples: *bádjaspàtive-bádjaspatìve*, *sidjólatìve-sidjólàtive*).
  - Forms varied in two ways: the pre-*ative* material (e.g. *r* vs. *s* vs. *sp*) and the rhythmic profile of the stem (iambic, *bádja* or trochaic, *sidjó*-).
  - There were three times as many trochaic as iambic stems; my interest in this task was on forms with lapses, or the trochaic forms.
- Design and presentation was identical to the *-ization* tasks in all relevant ways; recruitment was also identical, though one participant's data was excluded.

#### 5.2.2 Results

- Results demonstrate a clear distinction between the jambic and trochaic stems.
  - For iambic forms (sidjólative-sidjólative), 20.6% preferred -ate stress.
- For trochaic forms (bádjaspàtive-bádjaspative), 54.3% preferred -ate stress.
- Interstress duration has a clear effect for the trochaic stems (Figure 8), but not for the iambic stems (Figure 9).
- A mixed-effects logistic regression (with random intercepts for item, participant) confirms an interaction between stem type and interstress duration. <sup>10</sup>

| Factor                  | Coefficient                                         | z value                                                              | Significant?                                                                                                                    |
|-------------------------|-----------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| (Intercept)             | -1.58                                               | _                                                                    | _                                                                                                                               |
| RhType (Trochee)        | -0.11                                               | -0.40                                                                | No $(p = .69)$                                                                                                                  |
| Interstress dur.        | 2.68                                                | 1.86                                                                 | Almost $(p = .06)$                                                                                                              |
| RhType*Interstress dur. | -3.83                                               | -2.65                                                                | Yes $(p < .01)$                                                                                                                 |
|                         | (Intercept)<br>RhType (Trochee)<br>Interstress dur. | (Intercept) -1.58<br>RhType (Trochee) -0.11<br>Interstress dur. 2.68 | (Intercept)       -1.58       -         RhType (Trochee)       -0.11       -0.40         Interstress dur.       2.68       1.86 |

<sup>&</sup>lt;sup>9</sup>Stanton (2019) actually reports two judgment studies; I focus on the first (the study described in that paper's Section 5.3). The two tasks have equivalent results for the present purposes.

Figure 8: Preference for -ate stress by lapse duration (trochaic subset)



Figure 9: Preference for -ate stress by clash duration (iambic subset)



<sup>&</sup>lt;sup>10</sup>The RhType factor is sum-coded. The model is a better fit to the data than one that does not include an interaction ( $\chi^2$  (1) = 6.74, p < .01).

• **Takeaway**: gradient \*LAPSE influences speakers' judgments about *-ate* stress. Gradient \*CLASH does not; this may be because clash with *-ate* is dispreferred.

## 5.3 Analysis

- To demonstrate how an analysis of these data might work, I consider four items: *sidjópative*, *sidjósprative*, *bádjapative*, and *bádjasprative*.
- For an analysis of these results, I include the following constraints: STRESS-ive, \*CLASH-ate, \*LAPSE, and \*CLASH.
- As before, I used the Maxent grammar tool (Hayes et al. 2009) to find weights for these constraints, given the candidates and violation scores in Table 4.

Table 4: Candidates and violations fed to the Maxent grammar tool

|                  | STRESS-ive | *CLASH-ate | *LAPSE | *CLASH |
|------------------|------------|------------|--------|--------|
| a. sidjópàtive   | 1          | 1          | 3      | 1/3    |
| b. sidjópatìve   |            | <br>       | 9      | 1/9    |
| c. sidjósklàtive | 1          | 1          | 18     | 1/18   |
| d. sidjósklatíve |            |            | 54     | 1/54   |
| e. bádjapàtive   | 1          |            | 9      | 1/9    |
| f. bádjapatìve   |            |            | 27     | 1/27   |
| g. bádjaspràtive | 1          |            | 108    | 1/108  |
| h. bádjasprative |            |            | 324    | 1/324  |

• The tool finds the weights in (29), and makes the predictions in (30).

|      | *CLASH-ate 1.443<br>*LAPSE 0.004<br>STRESS-ive 0.000 |       | Form          |             | Rate of -ate stress |          |
|------|------------------------------------------------------|-------|---------------|-------------|---------------------|----------|
| (29) |                                                      |       |               |             | Predicted           | Observed |
|      |                                                      | (30)  | sidjósàtive   | 19%         | 24%                 |          |
|      |                                                      |       | sidjóspràtive | 21%         | 18%                 |          |
|      | *CLASH                                               | 0.000 |               | bádjapàtive | 52%                 | 61%      |
|      | CLASH 0.000                                          | =     | bádiaspràtive | 70%         | 69%                 |          |

- Picking up on a loose thread: there's evidence that talking about segment identity, and not just segment count, is necessary to accurately model these results.
- Participants preferred -ate stress on -Rative items 47.6% of the time.
- By comparison: -ate stress on -Oative items preferred 56.9% of the time.
- Any proposed definition of \*LAPSE that counts segments, ignoring their quality, would entirely miss this distinction.
- **Takeaway**: phonetic \*LAPSE plays a role in *-ative* stress. Categorical \*CLASH prevents us from seeing any effects of phonetic \*CLASH.

## 6 Discussion

- **In short**: gradient, phonetically informed versions of \*LAPSE and \*CLASH are necessary to account for the full range of rhythmic effects in English.
- Supporting evidence: stress in English words ending in -ative and -ization.
- Why have we focused on this small slice of the lexicon?
- > Words ending in *-ative* and *-ization* are perhaps the two corners of the English lexicon where evidence for gradient rhythm is most easily available.
- > Clashes and lapses are in principle allowed in these forms: -ative and -ization are largely stress-preserving (Stanton & Steriade in prep).
- > Both of the inner suffixes, -ate and -ize, have stressed and stressless forms. Their realization can depend on rhythmic context.
- Words in *-ative* and *-ization* are infrequent; must be the case that evidence for gradient rhythm is more widespread in English than we've seen here.
  - One likely corner: the rhythm rule (Hayes 1984, Beames 2020).
  - Another likely corner: English post-tonic syncopation (Hooper 1978).
    - > Small pilot in 2015: does syncopation depend on rhythmic context?
    - > Participants presented with related pairs of items like *delíberàte-delíbràte*, *delíberate-delíbrate*, *delíberateness-delíbrateness*.
    - > Rhythmic context matters; the best-fit statistical model is one that references duration, not rhythmic context per se (just as we saw for *-ization*).
- These results add to a growing base of evidence that rhythmic constraints pay greater attention to duration than is commonly assumed. A couple of examples:
  - Secondary stress in Russian compounds
  - > Gouskova & Roon (2013): the further away the secondary stress from the primary stress (counting by syllables), the more acceptable the compound.
  - > Additional work (done by me in 2018) found that replacing the number of syllables with the duration of the interstress interval improves model fit.
  - Secondary stress in Finnish
  - > Karvonen (2008): for long odd-parity words, secondary stress on antepenult if words ends in -ia (érgonòmia), penult otherwise (kólesteròli).
  - > Potentially understandable as an effect of gradient \*LAPSER: maybe stress wants to be a consistent distance from the edge, and -ia is short.
- All work discussed here is consistent with a broader view in which stress placement is directly informed by phonetics (e.g. Lunden 2013, 2014; Ryan 2014).

## References

- Bates, Douglas & Martin Maechler (2011). Package 'lme4'. R.
- Beames, Samantha (2020). Experimental Evidence for the Rhythm Rule in English. Senior Honors Thesis, New York University. Available at https://as.nyu.edu/linguistics/undergraduate/senior-honors-theses.html.
- Becker, Michael & Jonathan Levine (2013). Experigen an online experiment platform. Available at http://becker.phonologist.org/experigen.
- Boersma, Paul & David Weenink (2017). Praat: doing phonetics by computer [computer program]. version 6.0.31. http://www.praat.org.
- Corretge, Ramon (2012). Praat Vocal Toolkit. http://www.praatvocaltoolkit.com/index.html.
- Gordon, Matt (2002). A factorial typology of quantity insensitive stress. <u>Natural Language</u> and Linguistic Theory 20, 491–552.
- Gouskova, Maria & Kevin Roon (2013). Gradient clash, faithfulness, and sonority sequencing effects in Russian compound stress. Laboratory Phonology 4, 383–434.
- Hayes, Bruce (1984). The Phonology of Rhythm in English. <u>Linguistic Inquiry</u> 15:1, 33–74.
- Hayes, Bruce (1995). Metrical Stress Theory: Principles and Case Studies. The University of Chicago Press, Chicago/London.
- Hayes, Bruce, Colin Wilson & Ben George (2009). Maxent grammar tool. Software package Software tool (https://linguistics.ucla.edu/people/hayes/MaxentGrammarTool/).
- Hooper, Joan B. (1978). Constraints on Schwa-Deletion in English. Fisiak, Jacek (ed.), Recent Developments in Historical Phonology, De Gruyter, Berlin, 183–207.
- Kager, René (1999). Optimality Theory. Cambridge University Press, Cambridge.
- Karvonen, Daniel (2008). Explaining Nonfinality: Evidence from Finnish. Chang, Charles B. & Hannah J. Haynie (eds.), <u>Proceedings of the 26th West Coast Conference on Formal Linguistics</u>, Cascadilla Proceedings Project, Somerville, MA, 306–314.
- Kuznetsova, Alexandra, Per Bruun Brockhoff & Rune Haubo Bojesen Christensen (2016). Package 'Imertest'. R.
- Liberman, Mark & Alan Prince (1977). On Stress and Linguistic Rhythm. <u>Linguistic</u> Inquiry 8, 249–336.
- Lunden, Anya (2013). A proportional theory of weight. The Journal of Comparative Germanic Linguistics 16, 1–31.
- Lunden, Anya (2014). Motivating stress system asymmetries. Invited talk at the Conference on Stress and Accent, University of Leiden.
- Nanni, Debbie L. (1977). Stressing Words in -Ative. Linguistic Inquiry 8, 752–763.
- Nespor, Marina & Irene Vogel (1989). On Clashes and Lapses. Phonology 6, 69–116.
- Ryan, Kevin M. (2014). Onsets contribute to syllable weight: statistical evidence from stress and meter. Language 90, 309–341.
- Stanton, Juliet (2019). Phonetic lapse in American English -ative. Glossa: A Journal of General Linguistics 4, p. 55.
- Stanton, Juliet & Donca Steriade (in prep). English stress and the cycle. Ms., NYU and MIT.
- Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Spring-Verlag, New York.