Computer Networks Chap 7 Wireless and Mobile Networks

PART-1

Wireless and Mobile Networks: context

- more wireless (mobile) phone subscribers than fixed (wired) phone subscribers (10-to-1 in 2019)!
- more mobile-broadband-connected devices than fixedbroadband-connected devices devices (5-1 in 2019)!
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Characteristics of selected wireless links

ad hoc mode-

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops	
infrastructure (e.g., APs)	host connects to base station (WiFi, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: <i>mesh net</i>	
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET	

outline

Wireless

 Wireless links and network characteristics

Wireless link characteristics: fading (attenuation)

Wireless radio signal attenuates (loses power) as it propagates (free space "path loss")

Wireless link characteristics: multipath

multipath propagation: radio signal reflects off objects ground, built environment, arriving at destination at slightly different times

Wireless link characteristics: noise

- interference from other sources on wireless network frequencies: motors, appliances
- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoff
 - given physical layer: increase power -> increase SNR->decrease BER
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

---- QAM256 (8 Mbps)

-- QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless link characteristics: hidden terminals

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A, B, A hear each other C unaware of their interference at B

Attenuation also causes "hidden terminals"

- B, C hear each other
- A, C can not hear each other interfering at B

Chapter 7 outline

Wireless

 CDMA: code division multiple access

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- encoding: inner product: (original data) X (chipping sequence)
- decoding: summed inner-product: (encoded data) X (chipping sequence)

CDMA encode/decode

... but this isn't really useful yet!

CDMA: two-sender interference

Chapter 7 outline

Wireless

WiFi: 802.11 wireless LANs

IEEE 802.11 Wireless LAN

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30 m	2.4 Ghz
802.11g	2003	54 Mbps	30m	2.4 Ghz
802.11n (WiFi 4)	2009	600	70m	2.4, 5 Ghz
802.11ac (WiFi 5)	2013	3.47Gpbs	70m	5 Ghz
802.11ax (WiFi 6)	2020	14 Gbps	70m	2.4, 5 Ghz
802.11af	2014	35 – 560 Mbps	1 Km	unused TV bands (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 Mhz

- all use CSMA/CA for multiple access, and have base-station and adhoc network versions
- 802.11be, WiFi 7 (2024)

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels

- spectrum divided into channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!

802.11: Association

- arriving host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name ((Service Set Identifier) ,SSID) and MAC address
 - selects AP to associate with
 - then may perform authentication [Chapter 8]
 - then typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

passive scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to H1

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

IEEE 802.11: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with detected ongoing transmission by another node
- 802.11: no collision detection!
 - difficult to sense collisions: high transmitting signal, weak received signal due to fading
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/CollisionAvoidance

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for Distributed Interframe Space (DIFS) then

transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time

timer counts down while channel idle

transmit when timer expires

if no ACK, increase random backoff interval, repeat 2

802.11 receiver

if frame received OK
 return ACK after SIFS (Short IFS)
 (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

idea: sender "reserves" channel use for data frames using small reservation packets

- sender first transmits small request-to-send (RTS) packet to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions
- Although the RTS/CTS exchange can help reduce collisions, it also introduces delay and consumes channel resources. For this reason, the RTS/CTS exchange is only used (if at all) to reserve the channel for the transmission of a long DATA frame.

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

802.11 frame: addressing

802.11 frame: addressing-

802.11: mobility within same subnet

- H1 remains in same IP subnet: IP address can remain same
 - switch: which AP is associated with H1?
 - self-learning (Ch. 6): switch will see frame from H1 and "remember" which switch port can be used to reach H1

802.11: advanced capabilities

Rate adaptation

- base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies
 - 1. SNR decreases, BER increase as node moves away from base station
 - 2. When BER becomes too high, switch to lower transmission rate but with lower BER

802.11: advanced capabilities

power management

- node-to-AP: "I am going to sleep until next beacon frame"
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-tomobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent;
 otherwise sleep again until next beacon frame