LYCEE NASRALLAH « 1S6 »

DEVOIR DE CONTROLE N°1

MATHEMATIQUES

25/10/2016

PROF: BenTaiebLotfi

EXERCICE 1

Répondre par vrai ou faux

- 1/ Si une suite est bornée alors elle est convergente
- 2/ Si une suite n'est pas convergente alors elle tend vers l'infini
- 3/ Si une suite croissante et bornée alors elle est convergente
- 4/ Si une suite U est convergente vers 0 alors la suite $V_n = (-1)^n U_n$ est divergente

5/La suite
$$U_n = \frac{3 + (-2)^n}{2 + (-2)^n}$$
, n>1, est convergente

EXERCICE 2

Soit la suite U_n définie sur \mathbb{N} par : $U_0 = 1$ et $U_{n+1} = U_n + \frac{1 + U_n}{1 + 2U_n}$

1/a. Montrer que $\forall n \in \mathbb{N}$ on a $U_n > 0$ et que U_n est croissante

b. Justifier que
$$\lim_{n\to+\infty}U_n=+\infty$$

2/ a. Montrer que
$$\forall n \in \mathbb{N}: U_{n+1} \ge U_n + \frac{1}{2}$$
 et $U_n \ge 1 + \frac{n}{2}$

b. Retrouver, alors
$$\lim_{n \to +\infty} U_n$$

EXERCICE 3

Soit la suite U définie sur
$$\mathbb{N}$$
 par : $U_0 = \frac{3}{2}$ et $U_{n+1} = 3 - \frac{2}{U_n}$

- 1/ a. Montrer que $\forall n \in \mathbb{N}$ on a : $1 < U_n < 2$
 - b. Montrer que la suite U est croissante. En déduire qu'elle est convergente
 - c. Calculer $\lim_{n\to+\infty}U_n$
- 2/ On considère la suite V définie sur \mathbb{N} par : $V_n = \frac{U_n 2}{U_n 1}$
- a. Montrer que V est une suite géométrique dont on précisera la raison et le premier terme
- b. Exprimer V_n puis U_n en fonction de n
- c. Calculer $\lim_{n\to+\infty} V_n$ et $\lim_{n\to+\infty} U_n$
- 3/ a.On pose $S = \sum_{k=0}^{n} V_k$. Calculer S

b. En déduire S' = = $\sum_{k=0}^{n} \frac{1}{U_k - 1}$

EXERCICE 4

On considère la suite U définie sur $\mathbb N$ par : $\begin{cases} U_0 = 0 \\ U_{n+1} = \sqrt{1 + \frac{1}{2} \; {U_n}^2} \end{cases}$

1/a. Montrer que $\forall n \in \mathbb{N}$ on a $0 \le U_n \le \sqrt{2}$

- b. Montrer que la suite Un est croissant
- c. En déduire que U_n est convergente et déterminer sa limite

2/ Soit la suite V_n définie sur IN par $V_n = 2 - U_n^2$

- a. Montrer que la suite V est géométrique puis exprimer $V_{\rm n}$ en fonction de n
- b. En déduire que $\forall n \ge 1$; $U_n = \sqrt{2 (\frac{1}{2})^{n-1}}$
- c. On pose $S_n = \sum_{k=1}^n U_k^2$. Exprimer S_n en fonction de n