

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture 08

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Basic Psychological Research and Research Methods

RL – Implementation

$$lpha \sim Uniform\left(0,1
ight) \ au \sim Uniform\left(0,3
ight) \ p_{t}\left(C=A
ight) = rac{1}{1+e^{ au\left(V_{t}\left(B
ight)-V_{t}\left(A
ight)
ight)}} \ V_{t+1}^{c} = V_{t}^{C} + lpha\left(R_{t} - V_{t}^{C}
ight)$$

RL – Implementation


```
egin{align} lpha &\sim Uniform\left(0,1
ight) \ 	au &\sim Uniform\left(0,3
ight) \ p_t(C=A) = rac{1}{1+e^{	au(V_t(B)-V_t(A))}} \ V_{t+1}^c &= V_t^C + lpha\left(R_t - V_t^C
ight) \ \end{pmatrix}
```

```
transformed data {
  vector[2] initV;
 initV = rep vector(0.0, 2);
model {
  vector[2] v[nTrials+1];
  real pe[nTrials];
  v[1] = initV;
  for (t in 1:nTrials) {
    choice[t] ~ categorical logit( tau * v[t] );
    pe[t] = reward[t] - v[t,choice[t]];
    v[t+1] = v[t];
    v[t+1, choice[t]] = v[t, choice[t]] + lr * pe[t];
```

```
RL – Implementation
```

```
model {
 vector[2] v[nTrials+1];
 real pe[nTrials];
 v[1] = initV;
  for (t in 1:nTrials) {
   choice[t] ~ categorical_logit( tau * v[t] );
   pe[t] = reward[t] - v[t,choice[t]];
   v[t+1] = v[t];
   v[t+1, choice[t]] = v[t, choice[t]] + lr * pe[t];
```

```
model {
  vector[2] v;
  real pe;

v = initV;

for (t in 1:nTrials) {
  choice[t] ~ categorical_logit( tau * v );
  pe = reward[t] - v[choice[t]];

  v[choice[t]] = v[choice[t]] + lr * pe;
  }
}
```

RL – Fitting with Stan

statistics

.../06.reinforcement_learning/_scripts/reinforcement_learning_single_parm_main.R

TASK: fit the model for single participants

```
> source('_scripts/reinforcement_learning_single_parm_main.R') # a function
> fit_rl1 <- run_rl_sp(multiSubj = FALSE)</pre>
```

statistics

computing

RL – MCMC Output

statistics

computing

Fitting Multiple Participants as ONE


```
for (s in 1:nSubjects) {
  vector[2] v;
  real pe;
  v = initV;
  for (t in 1:nTrials) {
    choice[s,t] ~ categorical_logit( tau * v );
    pe = reward[s,t] - v[choice[s,t]];
    v[choice[s,t]] = v[choice[s,t]] + lr * pe;
```

Exercise X

statistics

```
.../06.reinforcement_learning/_scripts/reinforcement_learning_single_parm_main.R
```

TASK:

- (I) complete the model (Tip: the for-loop)
- (2) fit the model for multiple participants (assuming same parameters)

```
> source('_scripts/reinforcement_learning_single_parm_main.R')
```

> fit_rl2 <- run_rl_sp(multiSubj = TRUE)</pre>

computing

$$N = I$$

$$N = 10$$

statistics

computing

Fitting Multiple Participants Independently


```
mode1
  for (s in 1:nSubjects) {
   vector[2] v;
    real pe;
    v = initV;
    for (t in 1:nTrials) {
      choice[s,t] ~ categorical_logit( tau[s] * v );
      pe = reward[s,t] - v[choice[s,t];;;
      v[choice[s,t]] = v[choice[s,t]] + lr[s]
                                                pe;
```

statistics

computing

Individual Fitting

Comparing with True Parameters

statistics

computing

Posterior Means

True Parameters

HIERARCHICAL MODELING

cognitive model
statistics
computing

Why Hierarchical Bayesian Cognitive Modeling?

cognitive model

statistics

computing

Simulation study

Hierarchical Bayesian

Maximum likelihood A

Actual values O

Ahn et al. (2011)

Why Hierarchical Bayesian Cognitive Modeling?

cognitive model

statistics

computing

Fixed effects

- all subjects are fitted with the same set of parameters
- worse model fit than "random effects"

Random effects

- each subject is fitted independently of the others
- best model fit for each subject
- parameter estimates can be noisy

Adapted from Jan Gläscher's workshop

Fitting Multiple Participants

Fitting Multiple Participants

cognitive model

statistics

computing

Fitting Multiple Participants

cognitive model

statistics

computing

statistics

computing

Hierarchical Structure

statistics

computing

Hierarchical Structure

statistics

computing

Hierarchical Structure

statistics computing

$$P(\Theta, \Phi \mid D) = \frac{P(D \mid \Theta, \Phi)P(\Theta, \Phi)}{P(D)} \propto P(D \mid \Theta)P(\Theta \mid \Phi)P(\Phi)$$

