StatLect

Index > Fundamentals of probability

Jensen's inequality

by Marco Taboga, PhD

Jensens's inequality is a probabilistic inequality that concerns the expected value of convex and concave transformations of a random variable.

Convex and concave functions

Jensen's inequality applies to convex and concave functions.

The properties of these functions that are relevant for understanding the proof of the inequality are:

- the tangents of a convex function lie entirely below its graph;
- the tangents of a concave function lie entirely above its graph.

Also remember that a differentiable function is:

- (strictly) convex if its second derivative is (strictly) positive;
- (strictly) concave if its second derivative is (strictly) negative.

Statement

The following is a formal statement of the inequality.

Proposition Let X be an integrable random variable. Let $g : \mathbb{R} \to \mathbb{R}$ be a convex function such that

$$Y = g(X)$$

is also integrable. Then, the following inequality, called Jensen's inequality, holds:

$$\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$$

Proof

If the function g is strictly convex and X is not almost surely constant, then we have a strict inequality:

Proof

If the function g is concave, then

$$E[g(X)] \le g(E[X])$$

Proof

If the function g is strictly concave and X is not almost surely constant, then

$$\mathbb{E}[g(X)] < g(\mathbb{E}[X])$$

Proof

Example

Suppose that a strictly positive random variable *x* has expected value

$$E[X] = 1$$

and it is not constant with probability one.

What can we say about the expected value of $\ln(X)$, by using Jensen's inequality?

The natural logarithm is a strictly concave function because its second derivative

$$\frac{d^2}{dx^2}\ln(x) = -x^{-2}$$

is strictly negative on its domain of definition.

As a consequence, by Jensen's inequality, we have

$$E[\ln(X)] < \ln(E[X]) = \ln(1) = 0$$

Therefore, $\ln(X)$ has a strictly negative expected value.

Important applications

Jensen's inequality has many applications in statistics. Two important ones are in the proofs of:

- the non-negativity of the Kullback-Leibler divergence;
- the information inequality concerning the expected value of the loglikelihood.

Other inequalities

If you like this page, StatLect has other pages on probabilistic inequalities:

- Markov's inequality;
- Chebyshev's inequality.

Solved exercises

Below you can find some exercises with explained solutions.

Exercise 1

Let X be a random variable having finite mean and variance $\sigma^2 > 0$.

Use Jensen's inequality to find a bound on the expected value of X^2 .

Solution

Exercise 2

Let *x* be a positive integrable random variable.

Find a bound on the mean of \sqrt{X} .

Solution

How to cite

Please cite as:

Taboga, Marco (2021). "Jensen's inequality", Lectures on probability theory and mathematical statistics. Kindle Direct Publishing. Online appendix.

https://www.statlect.com/fundamentals-of-probability/Jensen-inequality.

The books

Discover why thousands of students and professionals use StatLect textbooks.

Probability and statistics

Matrix algebra

Featured pages

Uniform distribution
Chi-square distribution
Central Limit Theorem
F distribution
Student t distribution
Beta function

Explore

Convergence in distribution
Law of Large Numbers
Point estimation

Glossary entries

Precision matrix
Distribution function
Posterior probability
Critical value
Alternative hypothesis

Main sections

Mathematical tools
Fundamentals of probability
Probability distributions
Asymptotic theory
Fundamentals of statistics
Glossary

About

About Statlect
Contacts
Cookies, privacy and terms of use

Factorial

Share

To enhance your privacy, we removed the social buttons, but **don't forget to share**.