### La théorie des graphes

### 1. Introduction

Un graphe est une modélisation d'un ensemble d'objets reliés : les objets sont appelés  $n\alpha uds$ , et les liens sont appelés  $ar\hat{e}tes$ .

## 2. Notion de graphe

## a. Graphe non orienté:

Définition:

Un graphe non orienté est un couple (S,A)

- **S** : l'ensemble des **sommets** de l'arbre
- X: l'ensemble des **arêtes** joignant deux sommets tel que  $X \subseteq A$
- {x<sub>1</sub>,x<sub>2</sub>} : l'arête d'extrémité x<sub>1</sub>et x<sub>2</sub>

Un graphe non orienté est dit **simple** s'il n'a ni boucle ni arête multiple

## b. Graphe orienté:

Définition

Un graphe orienté est un couple (S, A)

- S: l'ensemble des sommets de l'arbre e
- X: l'ensemble des arcs joignant deux sommets tel que  $X \subseteq A$
- $\{x_1,x_2\}$  :un **arc** ou  $x_1$ est un prédécesseur de  $x_2$ (ou réciproquement)

Un graphe orienté est dit simple s'il n'a ni boucle ni arc multiple

# c. Graphe pondéré

Un graphe pondéré est un graphe où les arcs ou les arêtes sont munis de poids

## 3. Matrice d'adjacence

#### **Définition**

Une matrice d'adjacence A associée au graphe G=(S, A) est une matrice à valeur  $a_{ij}=n$  ( n est le nombre d'arêtes ou arc entre  $a_i$  et  $a_i$ ) telle que :

- a. si le graphe est simple les éléments de la diagonale sont nuls et  $a_{ii} \in \mathbb{Z}/2\mathbb{Z}$
- b. si le graphe est non orienté, la matrice d'adjacence est symétrique

# 4. Représentation d'un graphe

Il existe différentes manières de représenter un graphe en machine. A l'aide :

- d'une liste de listes
- d'une matrice
- d'un dictionnaire

## 5. Exemple d'une représentation matricielle

Soit le graphe suivant avec sa représentation matricielle :



$$M = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0, 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

# 6. Exemple2 représentation d'un graphe sous forme d'un dictionnaire

$$G = \{ \quad \text{'a':['b','d','e'],} \\ \quad \text{'b':['a','c'],} \\ \quad \text{'c':['b','d'],} \\ \quad \text{'d':['a','c','e'],} \\ \quad \text{'e':['a','d','f','g'],} \\ \quad \text{'f':['e','g'],} \\ \quad \text{'g':['e','f','h'],} \\ \quad \text{'h':['g']} \}$$



### 7. **Terminologies**

- Ordre du Graphe : le nombre de sommets du Graphe
- Degré d'un sommet : nombre d'arêtes reliées à ce sommet
- Adjacences: Deux arcs sont dits adjacents s'ils ont une extrémité en commun. Et deux sommets sont dits adjacents si un arc les relie.
- Boucle : est un arc qui part d'un sommet vers le même sommet
- *Chaîne*: Une chaine de longueur **n** est une suite de **n** arêtes permettant de relier un sommet **i** à un autre **j** ou à lui-même.
- *Cycle*: Un cycle est une chaine qui permet de partir d'un sommet et revenir à ce sommet en parcourant <u>une</u> et une seule fois les autres sommets.
- Distance entre deux sommets i et j est la longueur de la chaine la plus courte qui les relie
- Chemin : c'est une chaine bien orientée
- Circuit: est un cycle "bien orienté", à la fois cycle et chemin.
- Chaine eulérienne: est une chaine comportant exactement <u>une fois</u> toutes les arêtes du graphe.
- Cycle eulérien : si le sommet de départ d'une chaine eulérienne est celui d'arrivé
- Graphe eulérien : Un graphe admettant une chaine eulérienne est dit Graphe eulérien
- *Cycle hamiltonien :* c'est un cycle passant une seule fois par tous les **sommets** d'un graphe et revenant au sommet de départ.
- *Graphe connexe*: c'est un graphe dont tout couple de sommet peut être relié par une chaine de longueur n>=1.

## Théorème d'Euler:

Un graphe connexe admet une chaine eulérienne si deux sommets ou 0 sommet exactement sont de degré impair.

Un graphe comporte un Cycle eulérien s'il est connexe et n'admet aucun sommet de degré impair Un graphe comporte une chaine entre deux sommets i et j s'il est connexe et i et j sont deux sommets de degré impair

→ Conséquence: tout graphe connexe comporte plus de deux sommets de degré impair n'est pas eulérien

## 8. Parcours de graphe

**8.1 Le parcours en largeur (Breadh First Search ):** on procède par niveau en considérant d'abord tous les sommets à une distance donnée, avant de traiter ceux du niveau suivant.

```
Nous utiliserons les éléments suivants :

• Un graphe G défini à l'aide d'un dictionnaire

• Un dictionnaire P pour définir les sommets visités en précisant pour chaque sommet le père du nœud.

• Une file Q de type FIFO.

def BFS(G,s):

P,Q={s :None},[s]

while Q:

u=Q.pop(0)

for v in G[u]:

if v not in P:

P[v]=u
Q.append(v)

return P
```

**8.2** Le parcours en profondeur DFS (Depht First Search) : on va aussi loin que possible en faisant des choix lors des branchements, et ensuite on remonte aussi près que possible pour faire les choix restants ;

```
Nous utiliserons les éléments suivants :
                                                               From random import choice
                                                               def DFS(G,s):
    Un graphe G défini à l'aide d'un dictionnaire
                                                                 P,Q=\{s:None\},[s]
    Un dictionnaire P pour définir les sommets visités
                                                                 while Q:
    en précisant pour chaque sommet le père du nœud.
                                                                    u = Q[-1]
    Une file Q de type LIFO.
                                                                    R=[v \text{ for } v \text{ in } G[u] \text{ if } v \text{ not in } P]
                                                                    if R :
                                                                      v = choice(R)
                                                                       P[v]=u
                                                                       Q.append(v)
                                                                    else:
                                                                       Q.pop()
                                                                  return P
```

#### 9. Recherche du plus court chemin (Dijkstra)

L'algorithme dû à Dijkstra est basé sur le principe suivant : Si le plus court chemin reliant S à D passe par les sommets s1, s2, ..., sk alors, les différentes étapes sont aussi les plus courts chemins reliant E aux différents sommets s1, s2, ..., sk.

On construit de proche en proche le chemin cherché en choisissant à chaque itération de l'algorithme, un sommet  $s_i$  du graphe parmi ceux qui n'ont pas encore été traités, tel que la longueur connue provisoirement du plus court chemin allant de S à  $s_i$  soit la plus courte possible.

## Initialisation de l'algorithme :

**Étape 1 :** On affecte le poids 0 au sommet origine (s) et on attribue provisoirement un poids  $\infty$  aux autres sommets.

Répéter les opérations suivantes tant que le sommet de sortie (s) n'est pas affecté d'un poids définitif

Étape 2 : Parmi les sommets dont le poids n'est pas définitivement fixé choisir le sommet X de poids p minimum. Marquer définitivement ce sommet X affecté du poids p(X).

Étape 3 : Pour tous les sommets Y qui ne sont pas définitivement marqués, adjacents au dernier sommet fixé X :

- Calculer la somme s du poids de X et du poids de l'arête reliant X à Y.
- Si la somme s est inférieure au poids provisoirement affecté au sommet Y, affecter provisoirement à Y le nouveau poids s et indiquer entre parenthèses le sommet X pour se souvenir de sa provenance.

## Quand le sommet s est définitivement marqué

Le plus court chemin de **S** à **D** s'obtient en écrivant de gauche à droite le parcours en partant de la fin **D**.

```
def dijkstra(M,s):
                                                            while C!=[]:
  # M : matrice, s: sommet de départ
                                                               C.sort(key=lambda i:distance[i])
  infini=M[0.0] #valeur des cases non définies
  n = len(M) # le nombre de sommets
                                                            for c in C:
  A=[]
                                                               if distance[a] + M[a,c] < distance[c]:
  C=list(range(0,n))
                                                                 distance[c]=distance[a]+M[a,c]
                                                                 pred[c]=a
  distance=ones(n)* infini
  distance[s]=0 # on somme les poids
                                                            A.append(a)
  pred=ones(n)*s
                                                            C.remove(a)
                                                            return s,pred,distance,infini
```

#### Exercice01:

1. Dessiner les Graphes suivants G1,G2 et G3 (remarque :99 signifié pas d'arc directe entre les deux nœuds )

| $G1=\{ 'a':['b','d','e'], $ | G2=                             | G3=                        |
|-----------------------------|---------------------------------|----------------------------|
| 'b':['a','c'],              | [[99,1,1,99,99,99,99,99],       | [[99,1,2,99,99,99],        |
| 'c':['b','d'],              | [ 99 ,99 ,99 ,5 ,99 ,99,99,99], | [ 99, 99, 99, 99, 1, 99],  |
| 'd' :['a','c','e'],         | [99,99,99,99,3,1,99,99],        | [99,3,99,3,99,99],         |
| 'e' :['a','d','f','g'],     | [ 99, 99, 99, 99, 99, 99, 90],  | [ 99 ,99 ,99 ,99 ,99 ,2],  |
| 'f' :['e','g'],             | [ 99 ,99 ,99 ,99 ,99,2,99 ,99], | [99,99,99,2,99,5],         |
| 'g' :['e','f','h'],         | [ 99, 99, 99, 99, 99, 99, 99],  | [ 99, 99, 99, 99, 99, 99]] |
| 'h' :['g']}                 | [ 99 ,99 ,99 ,99 ,99 ,99 ,2],   |                            |
|                             | [ 99, 99, 99, 99, 99, 99, 99] ] |                            |

#### Exercice02:

Définir les fonctions suivantes :

- 1. **def BFS(G,s):** qui permet de parcourir un Graphe en **largeur**
- 2. def DFS(G,s): qui permet de parcourir un Graphe en profondeur
- **3. def chercher(G,x):** qui retourne True si **x** existe dans G ,False sinon
- 4. def OrdreDuGraphe (G): qui retourne le nombre de sommet du graphe
- 5. def DegreSommet(G,s) : qui retourne le nombre d'arêtes reliées à ce sommet
- **6.** def Adjacences(G,s1,s2):qui retourne True si s1 et s2 deux sommets adjacents False sinon.
- 7. comporteBoucle(G): qui retourne True si G admet une boucle False sinon.
- **8. def grapheSimple**(M): qui retourne True si un graphe M est simple ,False sinon
- 9. def admetChaineEulerienne (G): qui retourne True si G admet une chaine eulérien False sinon.
- 10. def is Eulerien (G): qui retourne True si G est eulérien False sinon.
- 11. def comporteCycleEulerien(G): qui retourne True si G comporte un cycle eulérien False sinon.

12. def dijkstra(M,s):qui permet d'afficher Le plus court chemin entre deux sommets .

13. def grapheNonOriente(M) : qui retourne True si le graphe est non orienté, False sinon

**Remarque :**G :le dictionnaire d'un graphe

M :la matrice d'adjacence d'un graphe

s,s1,s2 :sont des sommets