CS 188 Fall 2022 Introduction to Artificial Intelligence

Written HW 7 Sol.

Solutions for HW 7 (Written)

Q1. [30 pts] Quadcopter: Spectator

Flying a quadcopter can be modeled using a Bayes Net with the following variables:

- W (weather) \in {clear, cloudy, rainy}
- S (signal strength) \in {strong, medium, weak}
- X (true position) = (x, y, z, θ) where x, y, z each can take on values $\in \{0, 1, 2, 3, 4\}$ and θ can take on values $\in \{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\}\$
- Z (reading of the position) = (x, y, z, θ) where x, y, z each can take on values $\in \{0, 1, 2, 3, 4\}$ and θ can take on values $\in \{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\}\$
- C (control from the pilot) \in {forward, backward, rotate left, rotate right, ascend, descend} (6 controls in total)
- A (smart alarm to warn pilot if that control could cause a collision) \in {bad, good}

(a) Representation

(i) [3 pts] What is N_x , where N_x is the domain size of the variable X? Please explain your answer.

Answer: $N_x = 500$ Explanation: 5 * 5 * 5 * 4 = 500

(ii) [4 pts] Please list all of the Conditional Probability Tables that are needed in order to represent the Bayes Net above. Note that there are 6 of them.

P(W), P(S|W), P(X), P(Z|S, X), P(C|Z), P(A|C, X)

(iii) [3 pts] What is the size of the Conditional Probability Table for \mathbb{Z} ? You may use N_x in your answer.

P(Z|S,X) has size 750000 or $3*(N_x)^2$

Now, assume that we look at this setup from the perspective of Spencer – a spectator who can observe A and W. Spencer observes A=bad and W=clear, and he now wants to infer the signal strength. In BN terminology, he wants to calculate P(S|A = bad, W = clear).

(b) [5 pts] Inference by Enumeration

If Spencer chooses to solve for this quantity using inference by enumeration, what are the different probability terms that need to be multiplied together in the summation?

Solution 1: There are six product terms in the sum.

$$P(S|A,W) = \frac{P(S,A,W)}{P(A,W)}$$

We know
$$P(S,A,W) = \sum_c \sum_x \sum_z P(W,S,z,x,A,c)$$
 = $\sum_c \sum_x \sum_z P(W)P(S|W)P(Z|S,x)P(c|z)P(A|c,x)P(x)$

And
$$P(A, W) = \sum_{s} P(s, A, W)$$
.

So all 6 factors need to be multiplied together for Spencer to calculate P(S|A, W).

Solution 2: We can alternatively solve $P(S|A,W) = \frac{P(S,A|W)}{P(A|W)}$.

We can do
$$P(S, A|W) = \sum_{c} \sum_{x} \sum_{z} P(S, z, x, A, c|W)$$

= $\sum_{c} \sum_{x} \sum_{z} P(S|W) P(Z|S, x) P(c|z) P(A|c, x) P(x)$

And
$$P(A|W) = \sum_{s} P(s, A|W)$$

Using this formulation, you would only need to multiply 5 factors together to calculate P(S|A, W).

(c) [15 pts] Inference by Variable Elimination

Spencer chooses to solve for this quantity by performing variable elimination in the order of Z - X - C. Answer the following prompts to work your way through this procedure.

- (1a) First, we need to eliminate Z. Which factors (from the 6 CPTs above) are involved? P(Z|S,X), P(C|Z)
- (1b) Describe how you eliminate the variable of interest by multiplication of those factors. What conditional probability **factor** results from this step?

```
Eliminating Z out of P(z|S,X) * P(C|z) results in P(C|S,X)
```

- (2a) Second, we need to eliminate X. Which factors are involved? P(A = bad|C, X), P(X), P(C|S, X)
- (2b) Describe how you eliminate the variable of interest by multiplication of those factors. What conditional probability **factor** results from this step?

```
Eliminating X out of P(A = bad|C, X) * P(X) * P(C|S, X) results in P(A = bad, C|S)
```

- (3a) Third, we need to eliminate C. Which factor/s are involved? P(A = bad, C|S)
- (3b) Describe how you eliminate the variable of interest by multiplication of those factors. What conditional probability **factor** results from this step?

```
Eliminating C out of P(A = bad, C|S) results in P(A = bad|S)
```

(4) List the 3 conditional probability factors that you calculated as a result of the 3 elimination steps above, along with their domain sizes. You may use N_x in your answer. Which factor is the biggest? Is this bigger or smaller than the biggest factor from the "inference by enumeration" approach?

The 3 conditional probability factors are P(C|S,X) with size $18 * N_x$, P(A = bad, C|S) with size 18, P(A = bad|S) with size 3.

Biggest is P(C|S, X), whose size is $6 * 3 * N_x = 18 * N_x$. This is smaller than the biggest factor from inference by enumeration.

(5) List the **1** unused conditional probability factor from the 3 that you calculated above, and also list the **2** remaining conditional probability factors from the 6 original CPTs.

$$P(A = bad|S), P(S|W = clear), P(W = clear)$$

(6) Finally, let's solve for the original quantity of interest: P(S|A = bad, W = clear). After writing the equations to show how to use the factors from (5) in order to solve for f(S|A = bad, W = clear), don't forget to write how to turn that into a probability P(S|A = bad, W = clear).

Hint: use the definition of conditional probability, and use the 3 resulting factors that you listed in the previous question.

By definition of conditional probability, $P(S|A = bad, W = clear) = \frac{P(A = bad, S, W = clear)}{P(A = bad, W = clear)}$. To get the numerator, we multiply the three resulting factors from previous part P(A = bad|S)P(S|W = bad|S)clear)P(W = clear) to get the joint factor P(A = bad, S, W = clear). We then normalize the factor over S to get P(A = bad, S, W = clear).

To get the denominator we marginalize out S from the numerator to get P(A = bad, W = clear).

(Alternatively, we can do $P(S|A=bad,W=clear)=\frac{f(A=bad,S,W=clear)}{\sum_s f(A=bad,s,W=clear)}$ and not need to normalize anything.)