Course Code	18CSC203J	Course Name	co	MPUTER ORGA	NIZATION A	ND ARCHITECTURE		ourse tegory	С	Professional Core	L 3	T 0	P 2	C 4
Pre-requisi Courses	Nii			Co-requisite Courses	Nil			Progress Course		18CSC207J				
Course Offer	ing Department	Compu	iter Science and	Engineering		Data Book / Codes/Sta	ndards	Nil						

Course L	earning Rationale (CLR): The purpose of learning this course is to:	L	.earni	ing						Prog	jram	Learn	ning O	utcor	comes (PLO)							
CLR-1:	Utilize the functional units of a computer	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
CLR-2:	Analyze the functions of arithmetic Units like adders, multipliers etc.																					
CLR-3:	Understand the concepts of Pipelining and basic processing units																					
CLR-4:	Study about parallel processing and performance considerations.																					
CLR-5:	Have a detailed study on Input-Output organization and Memory Systems.								£			lity										
CLR-6:	Simulate simple fundamental units like half adder, full adder etc	Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	sis	lopment	Analysis, Design, Research	sage	<u>r</u> e	Sustainability		ndividual & Team Work	_	Finance	arning					
01	0. 0. 1	of Thinkir	ted Profic	ted Attair		ering Kn	roblem Analysis	Jesign & Development	is, Desig	n Tool Usage	y & Culture	Environment &		ual & Tea	Communication	roject Mgt. & l	Long Learr	-	2	က္		
Course L	earning Outcomes (CLO): At the end of this course, learners will be able to:	evel	Expec	Expec		Engine	Proble	Design	Analys	Modem -	Society &	Enviro	Ethics	ndivid	Comm	Project	Life Lo	PSO-	PSO-	- OSd		
CLO-1 :	Identify the computer hardware and how software interacts with computer hardware	2	80	70		Н	Н	-	-	-	-	-	-	_М	L	-	M	-	-	-		
CLO-2:	Apply Boolean algebra as related to designing computer logic, through simple combinational and sequential logic circuits	3	85	75		Н	Н	Н	-	Н	-	-	-	М	L	-	М	-	-	-		
CLO-3:	Analyze the detailed operation of Basic Processing units and the performance of Pipelining	2	75	70		Н	Н	Н	Н	-	-	-	-	М	L	-	М	-	-	-		
CLO-4:	Analyze concepts of parallelism and multi-core processors.	3	85	80		Н	-	-	Н	-	-	-	-	М	L	-	М	-	-	-		
CLO-5:	Identify the memory technologies, input-output systems and evaluate the performance of memory system	3	85	75		Н	-	Н	Н	-	-	-	-	М	L	-	М	-	-	-		
CLO-6:	Identify the computer hardware, software and its interactions	3	85	75	1	Н	Н	Н	Н	Н	-	-	-	М	L	-	М	-	-	-		

	ıration hour)	15	15	15	15	15
S-1	SLO-1	Functional Units of a computer	9	Fundamental concepts of basic processing unit	Parallelism	Memory systems -Basic Concepts

	SLO-2	Operational concepts	Problem solving	Performing ALU operation	Need, types of Parallelism	Memory hierarchy
	SLO-1	Bus structures	Design of fast adders	Execution of complete instruction, Branch instruction	applications of Parallelism	Memory technologies
S-2	SLO-2	Memory locations and addresses	Ripple carry adder and Carry look ahead adder	Multiple bus organization	Parallelism in Software	RAM, Semiconductor RAM
S-3	SLO-1	Memory operations	Multiplication of positive numbers	Hardwired control	Instruction level parallelism	ROM, Types
	SLO-2	Memory operations	Problem Solving	Generation of control signals	Data level parallelism	Speed,size cost
S	SLO-1	Lab 1: To recognize various components of PC- Input Output systems	Lab4:Study of TASM	Lab-7: Design of Half Adder	Lab-10: Study of Array Multiplier	Lab-13: Study of Carry Save Multiplication
4-5	SLO-2		Addition and Subtraction of 8-bit number	Design of Full Adder	Design of Array Multiplier	Program to carry out Carry Save Multiplication
	SLO-1	Instructions, Instruction sequencing	Signed operand multiplication	Micro-programmed control-	Challenges in parallel processing	Cache memory
S-6	SLO-2	Addressing modes	Problem solving	Microinstruction	Architectures of Parallel Systems - Flynn's classification	Mapping Functions
S-7	SLO-1	Problem solving	Fast multiplication- Bit pair recoding of Multipliers	Micro-program Sequencing	SISD,SIMD	Replacement Algorithms
	SLO-2	Introduction to Microprocessor	Problem Solving	Micro instruction with Next address field	MIMD, MISD	Problem Solving
	SLO-1	Introduction to Assembly language	Carry Save Addition of summands	Basic concepts of pipelining	Hardware multithreading	Virtual Memory
S-8	SLO-2	Writing of assembly language programming	Problem Solving	Pipeline Performance	Coarse Grain parallelism, Fine Grain parallelism	Performance considerations of various memories
S	SLO-1	Lab-2:To understand how different components of PC are connected to work	Lab 5: Addition of 16-bit number	Lab-8: Study of Ripple Carry Adder	Lab-11: Study of Booth Algorithm	Lab-14: Understanding Processing unit
9-10	SLO-2	properly Assembling of System Components	Subtraction of 16-bit number	Design of Ripple Carry Adder	, , , ,	Design of primitive processing unit
S-11	SLO-1	ARM Processor: The thumb instruction set	Integer division – Restoring Division	Pipeline Hazards-Data hazards	Uni-processor and Multiprocessors	Input Output Organization

	SLO-2	Processor and CPU cores	Solving Problems	Methods to overcome Data hazards	Multi-core processors	Need for Input output devices
	SLO-1	Instruction Encoding format	Non Restoring Division	Instruction Hazards	Multi-core processors	Memory mapped IO
S-12	SLO-2	Memory load and Store instruction in ARM	ISOIVING Problems	Hazards on conditional and Unconditional Branching	Memory in Multiprocessor Systems	Program controlled IO
S-13		Basics of IO operations.	Floating point numbers and operations	Control hazards	Cache Coherency in Multiprocessor Systems	Interrupts-Hardware, Enabling and Disabling Interrupts
	SLO-2	Basics of IO operations.	Solving Problems	Influence of hazards on instruction sets	MESI protocol for Multiprocessor Systems	Handling multiple Devices
S 14-15	SLO-2	Lab -3To understand how different components of PC are connected to work properly Disassembling of System Components	·	Lab-9: Study of Carry Look-ahead Adder Design of Carry Look-ahead Adder	Lab-12: Program to carry out Booth	Lab-15: Understanding Pipeline concepts Design of basic pipeline.

Learning
Resources

- Carl Hamacher, Zvonko V ranesic, Safwal Zaky, Computer Organization, 5th ed., McGraw-Hill, 2015
 Kai Hwang, Faye A. Briggs, Computer Architecture and Parallel Processing", 5th ed., McGraw Hill, 2016
 Ghosh T. K., Computer Organization and Architecture, 3th ed., Tata McGraw-Hill, 2011
 P. Hayes, Computer Architecture and Organization, 3th ed., McGraw Hill, 2015.

- 5. William Stallings, Computer Organization and Architecture Designing for Performance, 10th ed., Pearson
- 6. David A. Patterson and John L. Hennessy Computer Organization and Design A Hardware software interface, 5th ed., Morgan Kaufmann, 2014

Learning Assessment

	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination (50% weightage)			
	Level of Thinking	CLA – 1 (10%)		CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		, ,		
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	20%	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
	Understand												
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
	Analyze												

Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100) %	100) %	100) %	100) %		-

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Higher Technical Institutions	Internal Experts							
Prof. A.P. Shanthi, ANNA University Chennai, a.p.shanthi@cs.annauniv.edu	1.Dr. V. Ganapathy, SRMIST							
	2. Dr. C. Malathy, SRMIST							
	3. MrsM.S.Abirami, SRMIST							
	·							