Valuations of Items in Counter-Strike: Global Offensive

Timothy Schwieg

July 21, 2018

The Problem

- People are randomly distributed items in the game.
- ► They have private valuations for each item that are not known to the designers
- ► A market is created in order to ensure an efficient outcome.
- ► Takes the form of a double auction converging to competitive equilibrium

Matching

- One context to think of the problem as one of matching individuals in order to maximize the total surplus.
- We know from Micro2 that this is equivalent to thinking about a decentralized market.
- ► The Objective function is valuation of the buyers and the sellers

Who Gets What

- Both buyers and sellers have the same distribution of valuations
- However, the masses of the buyers and sellers are not equal.
- ▶ Only some percentage are endowed with the item
- Market is efficient highest valuations end up with the item.

The Planner's Problem

$$\begin{split} \max_{\alpha_{i,j}} \sum_{i=1}^{I} \sum_{j=1}^{J} \big(V_i - V_j\big) \alpha_{i,j} \\ \text{subject to: } \forall j, 1 \leq j \leq J \quad \sum_{i=1}^{I} \alpha_{i,j} \leq 1 \\ \forall i, 1 \leq i \leq I \quad \sum_{i=1}^{J} \alpha_{i,j} \leq 1 \end{split}$$

Planner's Problem (cont)

- ▶ The solution to this is not unique.
- ► The difference in valuations is both sub and super-modular. This implies that both PAM and NAM are supported, and all permutations between the sellers and buyers selected are supported.
- ▶ This means we know who is matched but not with whom.

The dual

$$\min_{\substack{x,j}} \sum_{i=1}^{I} x_i + \sum_{j=1}^{J} y_j$$
 subject to: $\forall i,j; \quad 1 \leq j \leq J, \quad 1 \leq i \leq I$ $x_i + y_j \geq V_i - V_j$

- ► This has a unique solution for each buyer and seller it gives the shadow price: the surplus that each commands.
- ▶ Because the function is modular, the valuation plus the surplus for all sellers is equal this is the price the market supports.

What it looks like

Unequal Buyers and Sellers

Equilibrium

- Let the proportion of the population that received the item be denoted ξ .
- ▶ For normally distributed valuations, the price is defined by:

$$\Phi\left(\frac{p^* - \mu}{\sigma}\right) = \frac{1 - \xi}{\xi} \left[1 - \Phi\left(\frac{p^* - \mu}{\sigma}\right)\right]$$
$$p^* = \mu + \sigma\Phi^{-1}(1 - \xi)$$

Known ξ

- ▶ If we knew ξ , this model could be estimated via linear regression
- ► Can handle even if there is measurement error in calculating ξ .
- However, even if we know the quantity of sales, and the number of people playing, no idea of people engaging in the market.
- ▶ Need to use the price to endogenize ξ .

Dynamic Approach

- Let this process repeat over many time intervals.
- Assume no entry into the market.
- Since this market is efficient, the top portion of the buyers always purchases the item, and the price slowly falls
- This can only support a decreasing price.

A Simulation

$$\mu = 0, \sigma = 1, \xi = .05, N = 1000, T = 40$$

Specification

$$egin{aligned} \mathbb{E}[q_s] &= N \prod_{t=0}^{T-1} (1-\xi_t) \xi_T rac{\Phi\left(rac{\log(p_T^*) - \mu}{\sigma}
ight)}{\prod_{t=0}^{T-1} (1-\xi_t)} \ \mathbb{E}[q_d] &= N \prod_{t=0}^{T} (1-\xi_t) \left[1 - rac{\Phi\left(rac{\log(p_T^*) - \mu}{\sigma}
ight)}{\prod_{t=0}^{T-1} (1-\xi_t)}
ight] \ \log(p_T^*) &= \mu + \sigma \Phi^{-1} \left[\prod_{t=0}^{T} (1-\xi_t)
ight] \ q_T^* &= N \prod_{t=0}^{T} (1-\xi_t) \xi_T \end{aligned}$$

Problems with Data

- ► This model cannot support the prices increasing.
- One possibility is to add white noise, which increases the variance on all observations, and can explain some jumps in prices.
- ► This cannot explain trends in prices that are observed in some items.
- Worse yet, it predicts price to eventually fall to zero, which is not represented by some of the cases

Failure in Prediction

What can we predict?

- We are predicting the price to eventually drop to zero, but we do not have an equilibrium specification. So for data where the price is driven on a downward trend, we can estimate the data.
- ▶ We choose to group together data in periods of 5 days. Assume model is in equilibrium in each of those days. This generates moments for estimation

Generalized Method of Moments

► Function $g(Y_t, \mu, \sigma, \xi)$ which gives the moment condition for each time period

$$\mathbb{E}[g(Y_t, \mu, \sigma, \xi)] = 0$$

► Sample Analog: $\hat{m}(\mu, \sigma, \xi) = \frac{1}{M} \sum_{m=1}^{M} g(Y_m, \mu, \sigma, \xi)$

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \hat{m}(\theta)' W \hat{m}(\theta)$$

Generalized Method of Moments

- ▶ What is this W matrix? How do we get it?
- Using Iterated GMM Estimator

$$\hat{W}_i = \left[\frac{1}{M} \sum_{m=1}^{M} g(Y_m, \hat{\theta_{i-1}}) g(Y_m, \hat{\theta_{i-1}})'\right]^{-1}$$

$$\hat{\theta}_i = \arg\min_{\theta} \hat{m}(\theta_i)' \hat{W}_i \hat{m}(\theta_i)$$

Complication?

- ► Forming W this way involves inverting a matrix that may not be of full rank.
- Add some positive number times the identity matrix in order to obtain full rank as well as positive definiteness.
- ► One advantage of the Iterated Method is that the W matrix formed is invariant to the scale of the data, which is especially important for this data

Monte Carlo

- ► However, we are still estimating a dynamic system, and that is notoriously difficult.
- ▶ This is especially the case in our model since early estimated values of ξ have a large impact on the later values.
- ► These tests were not conducted near the magnitude of the data collected, as solving LPs of that size (10¹³) is not feasible
- ▶ These simulations may overstate the role of random noise.

Monte Carlo

- ▶ I ran 1000 simulations of this model, all with N = 1000, $\mu = 0$, $\sigma = 1$, $\xi = 0.05$, T = 50.
- ▶ Tested: Sargan Hansen Test, LR Test for ξ constant, LR Test for μ =0, σ = 1, ξ = 0.05
- Rejected with $\alpha = 0.05$

Sargan Hansen
$$\xi$$
 constant Simulation Primitives Reject % 3.7 44.0 100.0

Market Entry

- ► For the price to be able to increase, there must be new people entering the market.
- Let λ_t denote the percent of new entrants into the market.
- ► Since each new entrant has the original valuations, we must consider all owners of the item, even past owners.
- ► This leads to both buyers and sellers having a mixing distribution of valuations

Masses of Buyers and Sellers

$$egin{aligned} M_B(T) &= N(1-\xi_T) \prod_{t=0}^{T-1} (1-\xi_t + \lambda_t) \ M_S(T) &= N \sum_{i=0}^{T} \xi_i \prod_{t=0}^{i-1} (1-\xi_t + \lambda_t) \ M_B(T) &= NB_T(p_T) \ M_S(T) &= N \left(1-B_T(p_T) + \sum_{t=1}^{T-1} R_t(\lambda, p)
ight) \ R_i(\lambda, p) &= \lambda_i \left[B_{i-1}(p_{i-1}) + R_{i-1}(\lambda, p)
ight] \ R_0(\lambda, p) &= \lambda_0 \end{aligned}$$

Valuations of Buyers and Sellers

$$B_{T}(p) = \frac{B_{T-1}(p_{T-1})}{B_{T-1}(p_{T-1}) + \lambda_{1}} \min \left\{ 1, \frac{B_{T-1}(p)}{B_{T-1}(p_{T-1})} \right\}$$

$$+ \frac{\lambda_{1}}{B_{T-1}(p_{T-1}) + \lambda_{1}} B_{0}(p)$$

$$S_{T}(p) = \frac{M_{S}(T-1)}{M_{S}(T)} \max \left\{ 0, \frac{B_{T-1}(p) - B_{T-1}(p_{T-1})}{1 - B_{T-1}(p_{T-1})} \right\}$$

$$+ \frac{M_{S}(T) - M_{S}(T-1)}{M_{S}(T)} B_{T}(p)$$

▶ $B_t(p)$ and $S_t(p)$ are strictly increasing functions of p, so the intersection between q_d , q_s is uniquely defined.

Problems

► There are some serious identification problems with this model

- ▶ 2T Moments, but 2T+2 Primitives in the model.
- Assuming ξ constant over the lifetime is one possible identification strategy.
- ► However, a bigger problem with the estimation presents itself.

Figure: Time 10

Figure: Time 15

- ► As we can see, the supply becomes extremely elastic above the previous equilibrium price
- ► The demand also becomes very elastic below the equilibrium price of last period.
- This means that the quantity sold will be extremely volatile, and the price can be for large increases/decreases.

Non-Constant Valuations

- While the valuation of some items in the game might remain constant
- Items of interest such as the loot boxes have their values influenced by the prices as well as rarity of the items contained.
- Of interest is the magnitude of this over the lifetime of the item
- ► Use the fact that the distribution of the items reveals the quantiles of the distribution

Quantile Regression

▶ In the model without any growth:

$$\prod_{t=0}^{T} (1 - \xi_t) = F_V(p^*)$$

► The proportion of people given the item reveals quantiles of the true valuations.

Quantile Regression

- ▶ If we want to remain agnostic about the percent of people given the item, the only choice we have is to examine how different quantiles of the pricing distribution are affected.
- ► This involves quantile regression, and abandoning many of the structural results hoped for.
- One approach is to estimate many different quantiles and plot them

Multivariate Quantile Regression

- However, each loot box is drawn from a different distribution, so the quantile regression becomes a question of vector optimization.
- ► Following some fun in Convex Optimization, the scalarization where each box is given equal weight reduces to the simple weighted quantile regression problem.

Formulation

$$\min \sum_{j=1}^{J} \tau q_j^{\mathsf{T}} u_j + (1 - \tau) q_j^{\mathsf{T}} v_j$$
$$X_j \beta + Z_j \delta_j + u_j - v_j = Y_j \quad \forall j$$
$$u, v \ge 0$$

 $\delta_{\rm j}$ can be equivalently treated as indicators contained in X_j, and the problem treated as quantile regression over the entire data set, weighted by the quantities sold.

Loot box Averages

Loot box Averages

Loot box Averages

