Содержание

1.	Основные понятия	2
	1.1. Комплексное число	2
	1.2. Комплексная плоскость	2
	1.3. Предел	4
2.	Комплексная функция	5
	2.1. Определение	5
	2.2. Предел функции	6
	2.3. Элементарные комплексные функции	7
	2.4. Дифференцирование ФКП	8
	2.5. Конформные отображения	11
2	Интеграл по комплексной переменной	13
J.		
U.	3.1. Определения	13
υ.	3.1. Определения	
υ.		14
	3.2. Теорема Коши	14 16
	3.2. Теорема Коши	14 16
	3.2. Теорема Коши	14 16 17
	3.2. Теорема Коши	14 16 17 17 17

1. Основные понятия

1.1. Комплексное число

 $Mem. \ \mathbb{C} = \{(a, b) \mid a, b \in \mathbb{R}\}\$

Обозначение: z = (a, b) = a + bi, где $i = (0, -1) = \sqrt{-1}$

Основные операции:

- 1. $\operatorname{Re} z = a$ вещественная часть, $\operatorname{Im} z = b$ мнимая часть
- 2. $z_1 + z_2 = (a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2) = (a_1 + a_2) + i(b_1 + b_2)$
- 3. $z_1 \cdot z_2 = (a_1 + b_1 i) * (a_2 + b_2 i) = (a_1 a_2 b_1 b_2) + i(a_1 b_2 + a_2 b_1)$
- 4. $z^n = \rho^n(\cos n\varphi + i\sin n\varphi)$ формула Муавра, где $\rho = |z|, \varphi = \arg z$
- 5. $\sqrt[n]{z} = \sqrt[n]{\rho} \left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right)$, где $\rho = |z|, \varphi = \arg z, k \in \mathbb{Z}$

6. При
$$n=2$$
 $\sqrt{z}=\sqrt{a+bi}=\pm(c+di),$ где $c=\sqrt{\frac{a+\sqrt{a^2+b^2}}{2}}, d=\mathrm{sign}(b)\sqrt{\frac{-a+\sqrt{a^2+b^2}}{2}}$

Тригонометрическая форма:

$$z=a+bi=
ho(\cos\varphi+i\sin\varphi),$$
 где $\rho=|z|=\sqrt{a^2+b^2}, \varphi=$ $\arg z\in[0;2\pi)$

 $\operatorname{Arg} z = \operatorname{arg} z + 2\pi k, k \in \mathbb{Z}$

По формуле Эйлера $z = \rho(\cos \varphi + i \sin \varphi) = \rho e^{i\varphi}$

1.2. Комплексная плоскость

Def. Окрестность точки $z_0 \in \mathbb{C}$ определяется как $U_\delta(z_0) = \{z \in \mathbb{C} \mid |z-z_0| < \delta\}$

Тогда $\overset{\circ}{U}_{\delta}(z_0) = U_{\delta}(z_0) \setminus \{z_0\}$ - выколотая окрестность

 ${f Def.}$ Для данной множества точек A точка z_0 считается

- ullet внутренней, если для любого δ $U_{\delta}(z_0)\subset A$
- ullet граничной, если для любого δ $\exists z \in U_\delta(z_0) \Big| z \in A$ и $\exists z \in U_\delta(z_0) \Big| z \notin A$
- **Def.** Открытое множество состоит только из внутренних точек
- **Def.** Закрытое множество содержит все свои граничные точки
- $\mathbf{Def.}$ Границой $\Gamma_{\!D}$ (иногда обозн. $\delta D)$ для множества D называют множество всех граничных точек D
- **Def.** Если любые две точки множества можно соединить ломаной линией конечной длины, то множество считается связным
- $\mathbf{Def.}$ Множество $D\subset\mathbb{C}$ называется областью, если D открытая и связная

Def. Кривая $l\subset \mathbb{C}$ считается непрерывной, если $l=\{z\in \mathbb{C}\ |\ z=\varphi(t)+i\psi(t), t\in \mathbb{R}\}$, где $\varphi(t),\psi(t)$ - непрерывные функции

Nota. Если $\varphi(t)$ и $\psi(t)$ дифференцируемы и их производные непрерывные, то кривая l гладкая Def. Непрерывная замкнутая (то есть начальная и конечная точки совпадают) без самопересечений кривая называется контуром

Nota. Односвязную область можно стянуть в точку

 $Ex.\ 1.\ D=\{z\in\mathbb{C}\ \Big|\ 0<|z|<\delta\}$ - область свя-

заная, но не односвязная, ее нельзя стянуть $Ex.\ 2.\ D=\{z\in\mathbb{C}\ \middle|\ 0<|z|<\delta,\arg z\neq 0\}$ - область связная и односвязная

$$Ex.\ 3.\ D=\{z\in\mathbb{C}\ \Big|\ |\operatorname{Re}z|<\delta\}$$
 - несвязная область

$$Ex. \ 4. \ D = \{z \in \mathbb{C} \ \Big| \ \mathrm{Im} \ z \geq 0, z \notin [0,i] \} \ - \ \mathrm{здесь}$$

$$Ex. \ 3. \ D = \{z \in \mathbb{C} \ \Big| \ |\mathrm{Re} \ z| < \delta \} \ - \ \mathrm{несвязная} \ \mathrm{of-} \ \ \mathrm{под} \ [0,i] \ \mathrm{подразумевается} \ \mathrm{линейный} \ \mathrm{отрезок}$$
 на оси

Nota. Дальше все рассматриваемые Γ_D будут состоять из кусочногладких и изолированных кривых

1.3. Предел

Mem. Последовательность $\{z_n\} = z_1, z_2, z_3, \dots, z_n, \dots$

Def. Пределом $\{z_n\}$ называют число z такое, что $\forall \varepsilon > 0$ $\exists n_0 = \mathbb{N} \mid \forall n > n_0 \mid z_n - z \mid < \varepsilon$ Обозначается $\lim_{n \to \infty} z_n = z$

 $Nota. \{z_n\}$ можно представить как $x_n + iy_n$, то есть двумя \mathbb{R} -последовательностями

Th.
$$\exists \lim_{n \to \infty} z_n = x + iy \iff \exists \lim_{n \to \infty} x_n = \lim_{n \to \infty} \operatorname{Re} z_n = x$$

 $\exists \lim_{n \to \infty} y_n = \lim_{n \to \infty} \operatorname{Im} z_n = y$

Nota. Для комплексных чисел работают теоремы для пределов (сумма пределов, произведение пределов и т.д.), критерий Коши и другие

Def.
$$\lim_{n\to\infty} z_n = \infty \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \left| \ n > n_0 \ |z| > \varepsilon \right|$$

Def. Точка z, определенная как предел, равный ∞ , называется бесконечно удаленной. Но существует множество последовательностей, чьи пределы удаляются на бесконечность разными путями на плоскости

Def. Стереографическая проекция (сфера Римана)

Поместим сферу на комплексную плоскость и сделаем биекцию точек плоскости на точки сферы: проведем из верхней точки сферы лучи вниз на плоскость, и точка, где луч пересекает сфера, будет считаться отображением для данной точки. Заметим, что в этом случае бесконечно удаленные точки будут отображаться в верхнюю точку сферы

Def. $\mathbb{C} \cup \{\infty\} = \overline{\mathbb{C}}$ - расширенная комплексная плоскость Однако $z + \infty$ не определена, $\infty + \infty$ не определена. Но $\infty = \lim_{n \to \infty} \frac{1}{z_n}$ при $z_n \xrightarrow[n \to \infty]{} 0$; $\infty = \infty \cdot \lim_{n \to \infty} z_n$ при $z_n \longrightarrow z$

Записью $[-\infty; +\infty]$ обозначается ось $\overline{\mathbb{R}}$;

 $[-i\infty;+i\infty]$ - мнимая расширенная ось

Путь $x \pm i \infty$ при фикс. x - вертикальная прямая;

 $iy \pm \infty$ - горизонтальная прямая;

 $e^{i\varphi}\cdot\infty$ - прямая, проходящая через начало координат

2. Комплексная функция

2.1. Определение

 $Mem.\ f: E\subset \mathbb{R}\longrightarrow D\subset \mathbb{R} \ \stackrel{def}{\Longleftrightarrow} \$ отображение такое, что $\forall x\in E\ \exists !y\in D\ |\ y=f(x)$

Def. $f:D\subset\mathbb{C}\longrightarrow G\subset\mathbb{C}\iff$ отображение такое, что $\forall z\in D\ \exists w\in G\mid f(z)=w$

Def. Если $\forall z \in D \ \exists ! w \in G$, то f называется однозначной функцией

Def. Если $\forall z_1,z_2 \in D(z_1 \neq z_2) \Longrightarrow f(z_1) \neq f(z_2),$ то f называется однолистной функцией

 $Ex. 1. w = \sqrt{z}$ - неоднозначная функция

$$\exists z = 1 = 1(\cos 0 + i \sin 0)$$
$$\sqrt{z} = \sqrt{1} \left(\cos \frac{2\pi k}{2} + i \sin \frac{2\pi k}{2} \right)$$
$$w_1 = 1, \quad w_2 = -1$$

$$Ex.\ 2.\ \mathbf{w} = \mathbf{z}^2$$
 - неоднолистная функция

$$z_1 = 1, z_2 = -1$$
 $w(z_1) = w(z_2) = 1$

Nota. Если f(z) однозначна и однолистна, то f(z) - взаимно однозначное соответствие (биекция). Тогда $\exists q(x) \mid q(f(x)) = x$

Комплексную функцию f(z) можно представить как u(x,y)+iv(x,y), где x+iy=z

Ex.
$$w = z^2 = (x + iy)^2 = x^2 + 2ixy - y^2 = (x^2 - y^2) + i \cdot 2xy$$

 $u(x, y) = (x^2 - y^2),$ $v(x, y) = 2xy$

2.2. Предел функции

Def.
$$L \in \mathbb{C}, f: D \longrightarrow G, \quad L \stackrel{def}{=} \lim_{z \to z_0} f(z) \Longrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \middle| \ z \in D, z \in \overset{\circ}{U}_{\delta}(z_0) \ f(x) \in U_{\varepsilon}(L)$$

В определении существование и значение L не должно зависеть от пути, по которому zприближается к точке сгущения z_0 . Может быть так, что для любого направления стремления предел есть, но в общем смысле не существует

$$Ex. \ f(z) = \frac{1}{2i} \left(\frac{z}{\overline{z}} - \frac{\overline{z}}{z} \right) \qquad \exists z = \rho e^{i\varphi}$$

$$f(z) = \frac{1}{2i} \left(\frac{\rho e^{i\varphi}}{\rho e^{-i\varphi}} - \frac{\rho e^{-i\varphi}}{\rho e^{i\varphi}} \right) = \frac{1}{2i} \left(e^{2i\varphi} - e^{-2i\varphi} \right) = \frac{1}{2i} (\cos 2\varphi + i \sin 2\varphi) = \sin 2\varphi$$

Зафиксируем
$$\varphi = \varphi^* \in [0; 2\pi)$$
, тогда $\sin 2\varphi^* \in [-1; 1]$

$$\lim_{z \to 0} f(z) = \lim_{\begin{subarray}{c} \rho \to 0 \\ \varphi = \varphi^* \end{subarray}} f(z) = \lim_{\begin{subarray}{c} \rho \to 0 \\ \varphi = \varphi^* \end{subarray}} \sin 2\varphi = \sin 2\varphi^* \in [-1; 1]$$

Значения предела занимает отрезок $[-1;1] \implies$ $\nexists \lim_{z \to 0} f(z)$

На рисунке изображена $\sin 2\varphi$, на оси Oz изображена

Re w. Черные линии - это возможные пути приближе-

ния z к 0

Nota. Путь следования предела аналогичен левостороннему и правостороннему пределами R-функций

Def. Непрерывность функций в точке z_0 .

 $f:D\longrightarrow G, z_0\in D,\, f(z)$ называется непрерывной в $z_0,\,$ если $\lim_{z\to z_0}f(z)=f(z_0)$

На языке приращений: $\Delta f = f(z_0 + \Delta z) - f(z_0) \xrightarrow[\Delta z \to 0]{} 0$

$$\Delta z = z - z_0 = \Delta x + i \Delta y \to 0 \Longrightarrow \begin{cases} \Delta x \to 0 \\ \Delta y \to 0 \end{cases} \Longrightarrow \Delta \rho \to 0$$

2.3. Элементарные комплексные функции

Ex. 1. Линейная f(z) = az + b,

Эта функция однозначная, однолистная $\Longrightarrow \exists f^{-1}(z) = g(z) = \frac{z-b}{z}$

Геометрический смысл:

 $a \in \mathbb{C}, z \in \mathbb{C}$

 $az = |a||z|(\cos(\varphi_a + \varphi_z) + i\sin(\varphi_a + \varphi_z))$ - поворот и растяжение $(\varphi_a = \arg a, \varphi_z = \arg z)$

 $az + b = (x_{az} + x_b) + i(y_{az} + y_b)$ - сдвиг

То есть линейная функция - композиция из поворота, растяжения и сдвига

 $Ex.\ 2.\$ Степенная $w=z^n,\quad n\in\mathbb{N}$ - однозначная, может быть неоднолистной

Для $n \in \mathbb{Q}$ функция становится неоднозначной

Ex.
$$w = z^2$$
 $z = \rho e^{i\varphi}, w = \rho^2 e^{2i\varphi}$

Пусть $z_1 \neq z_2$ и $w(z_1) = w(z_2)$, тогда $\arg z_1 = \arg z_2 \pm \pi$

$$w(z_1) = \rho^2 e^{2i \arg z_1} = \rho^2 e^{2i(\arg z_1 + 2\pi k)}$$

$$w(z_2) = \rho^2 e^{2i \arg z_2} = \rho^2 e^{2i(\arg z_1 + \pi)} = \rho^2 e^{i(2 \arg z_1 + 2\pi)} = w(z_1)$$

Область однолистности z^2 - множество точек, для которых $\arg z \in [0;\pi)$

Точку w = 0 называют точкой разветвления

Ex.
$$w = z^{-1} = \frac{1}{z}$$
 $w(0) = \infty, w(\infty) = 0$

$$z \in \mathbb{C} \setminus \{0\}$$
 - функция обратима $w = re^{i\psi} = \frac{1}{\rho e^{i\phi}} = \frac{1}{\rho} e^{-i\varphi} \Longrightarrow |w| = \frac{1}{|z|}, \arg w = -\arg z$

Преобразование $|w| = \frac{1}{|z|}$ называется инверсией, а $\arg w = -\arg z$ дает симметрию относительно $\operatorname{Re} z$

$$2. \ (e^{z_1})^{z_2} = e^{z_1 z_2}$$

3. $e^{z+2\pi i}=e^z\cdot e^{2\pi i}=e^z$ - показательная функция периодична с периодом $2\pi i$

Ex. 5. Логарифмическая w = Ln z

Если
$$e^w = e^{u+vi} = e^u(\cos v + i\sin v) = z = |z|e^{i\arg z}$$
, то $u = \ln|z|$, $v = \arg z + 2\pi k$

Тогда
$$\operatorname{Ln} z = \ln |z| + i(\arg z + 2\pi k)$$

 $\ln z = \operatorname{Ln} z$ при k = 0 - т. н. главное значение

Заметим, что $w=e^z=e^x(\cos y+i\sin y)$ - многолистная функция, а $w=\operatorname{Ln} z=\ln \rho+i(\arg z+2\pi k)$ - многозначная

Ех. 6. Тригонометрические и гиперболические

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

sh
$$z = \frac{e^z - e^{-z}}{2}$$

ch $z = \frac{e^z + e^{-z}}{2}$

Nota. Рассмотрим уравнение $\sin z = A \in \mathbb{C}$

$$\frac{e^{iz} - e^{-iz}}{2i} = A \Longrightarrow e^{2iz} - 2iAe^{iz} - 1 = 0$$

При $t = e^{iz}$ получаем квадратное уравнение, у которого в \mathbb{C} всегда будет два корня. Это значит, что в \mathbb{C} sin и сов принимают любые значения (то есть $|\sin z| > 1$)

2.4. Дифференцирование $\Phi K\Pi$

 $\mathbf{Def.}\ w = f(z), w: D \subset \mathbb{C} \longrightarrow \mathbb{C}, z_0 \in D.$ Производная функции $w(z_0)$ - это предел $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z}$, если он существует и не зависит от пути $z \to z_0$

Mem. Дифференцирование y = f(x):

B
$$\Phi_1\Pi$$
: $\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$

B
$$\Phi_2\Pi$$
: $\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + B\Delta y + \alpha_1 + \alpha_2 = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + o(\Delta x) + o(\Delta y)$

Def. f(z) называется дифференцируемой в точке z_0 , если $\exists f'(z_0) \in \mathbb{C}$

Def. Дифференцируемая в точке z_0 функция w = f(z), производная $f'(z_0)$ которой непрерывна в z_0 , называется аналитической (или аналитичной) функцией в z_0

Тh. Критерий аналитичности (или Условие Коши-Римана)

$$f(x) = u(x,y) + iv(x,y) \text{ аналитична в точке } z_0 = x + iy$$

$$\bigoplus$$

$$\exists \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \text{ непрерывны в } z \text{ и} \begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

Причем, $f'(z) = u_x + iv_x = v_y - iu_y = u_x - iu_y = v_y + iv_x$

Nota. Используя Условие Коши-Римана, получим равенство $u_x + iv_x = v_y - iu_y = u_x - iu_y = v_y + iv_x$ Nota. Коши-Риман в ПСК:

$$\begin{cases} \frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \\ \frac{\partial u}{\partial \varphi} = -\frac{1}{\rho} \frac{\partial v}{\partial \rho} \end{cases}$$
 Тогда $f'(z) = \frac{1}{z} \left(\frac{\partial v}{\partial \varphi} - i \frac{\partial u}{\partial \varphi} \right) = \frac{\rho}{z} \left(\frac{\partial u}{\partial \rho} + i \frac{\partial v}{\partial \rho} \right)$

$$\begin{split} u_{\rho} &= u_{x} \frac{\partial x}{\partial \rho} + u_{y} \frac{\partial y}{\partial \rho} = u_{x} \cos \varphi + u_{y} \sin \varphi \\ v_{\varphi} &= v_{x} \frac{\partial x}{\partial \varphi} + v_{y} \frac{\partial y}{\partial \varphi} = -\rho v_{x} \sin \varphi + \rho v_{y} \cos \varphi = \rho u_{y} \sin \varphi + \rho u_{x} \cos \varphi = \rho u_{\rho} \\ \underline{\text{Lab.}} \frac{\partial u}{\partial \varphi} &= -\frac{1}{\rho} \frac{\partial v}{\partial \rho} \end{split}$$

Свойства аналитических функций

Пусть f,g - аналитические функции, тогда:

 1° Линейность: af + bg - аналитическая

 2° Композиция: f(g(z)) - аналитическая

 3° Произведение: $f \cdot g$ - аналитическая

Nota. Доказательства свойств элементарные, все сводится к сведению к u и v

$$Ex. \ w = \frac{1}{z} = \frac{1}{x + iy} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2} = u(x, y) + iv(x, y)$$

$$u_x = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$v_y = \frac{-x^2 - y^2 + 2y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = u_x$$

$$u_y = \frac{-2xy}{(x^2 + y^2)^2}$$

$$v_x = \frac{2xy}{(x^2 + y^2)^2} = -u_y$$

Таким образом, $\frac{1}{z}$ - аналитическая функция

$$Ex. \ w = \overline{z} = x - iy$$

 $u_x=1,\; v_y=-1\neq u_x$ - не аналитическая функция

 $4^{\circ}~f(z)$ аналитична в $D~(f:D\longrightarrow D'),\,f'(z)\neq 0~\forall z\in D.$ Тогда $\exists g(w)=f'(z)~(g:D'\longrightarrow D)$ и $\forall z_0\in D~f'_z(z_0)=rac{1}{g'_w(w_0)},$ где $w_0=w(z)$

$$f(z) = u(x, y) + iv(x, y)$$

Заметим, что
$$f'(z) \neq 0 \Longleftrightarrow \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = J \neq 0$$

Действительно, если якобиан равен 0, то $\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} = 0 \Longrightarrow \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} \frac{\partial v}{\partial x} = 0$.

Аналогично $\frac{\partial u}{\partial y} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \frac{\partial v}{\partial y} = 0$

Значит, $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} = 0$ — противоречие

Если $J \neq 0$, то преобразование $f(z)$ приводит (x, y) в (u, v) взаимно однозначно. Тогда $\exists !$ решение
$$\begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$$
, то есть взаимно однозначно определены
$$\begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$$
 Обозначим $g(w) = x(u, v) + iy(u, v)$

Найдем $f'_z(z_0) = \frac{1}{g'_w(w_0)}$. Рассмотрим отношение $\frac{\Delta z}{\Delta w} \frac{\Delta w \to 0}{\Delta z \to 0} \lim_{\Delta w \to 0} \frac{\Delta z}{\Delta w} = \lim_{\Delta w \to 0} \frac{1}{\Delta w} = \frac{1}{\int_{z}'(z_0)} \lim_{\Delta w \to 0} \frac{\Delta z}{\Delta w} = \lim_{\Delta w \to 0} \frac{1}{\Delta w} = \frac{1}{g'_w(w_0)}$

 $5^{\circ}~f(z)=u(x,y)+iv(x,y)$ аналитична в D. Тогда u(x,y),v(x,y) — гармонические функции в D

Функция считается гармонической, если $\Delta u=0$ (здесь $\Delta=\nabla^2$ – лапласиан) \Longleftrightarrow $u_{xx}+u_{yy}=0$ <u>Lab.</u>

6° Если f(z) = u(x,y) + iv(x,y) аналитична в D и известна u(x,y) или v(x,y), то f(z) определяется однозначно с точностью до const

Пусть известна $\operatorname{Re} f(z) = u(x,y)$. Нужно найти v(x,y). По условию Коши-Римана $\int u(x,y), \int v(x,y)$ не зависят от пути (<u>Lab.</u> доказать, что $\int_{AB} dv$ не зависит от пути) $v(x,y) = \int_{(x_0,y_0)}^{(x,y)} dv(x,y) = \int_{(x_0,y_0)}^{(x,y)} v_x dx + v_y dy = \int_{(x_0,y_0)}^{(x,y)} (-u_y) dx + u_x dy$ Интеграл будет найден с точностью до $\operatorname{const} = C(x_0,y_0)$

2.5. Конформные отображения

Найдем геометрический смысл производной. Рассмотрим отображение w = f(z) ($w : D \longrightarrow G$) – дифференцируема в точке $z_0 \in D$ и $f'(z_0) \neq 0$

Аргумент: В области D рассмотрим гладкую кривую $\gamma(t) = \varphi(t) + i\psi(t)$. Образ $\gamma(t)$ — кривая $\sigma(t)$ в G

 $\gamma(t)$ в окрестности некоторой точки z_0 гладкая, \exists касательная с углом $\theta = \arg \gamma'(t)$

 $\sigma(t)$ в окрестности $w_0=w(z_0)$ гладкая, \exists касательная с углом $\theta'=\arg\sigma'(t)$

A
$$\sigma'(t_0) = w'(t_0) == f'(z_0) \cdot \underbrace{\gamma'(t_0)}$$

$$z'(t_0)$$

$$\arg w'(t_0) = \arg f'(z_0) + \arg \gamma'(t_0)$$

$$\theta' = \arg f'(z_0) + \theta$$

 $\theta' - \theta = \arg f'(z_0)$ — поворот кривой $\gamma(t)$ вокруг z_0 на угол $\arg f'(z_0)$ при отображении w = f(z)

Модуль: w = f(z) — дифференцируема $\iff \Delta w = f'(z_0) \Delta z + o(\Delta z)$

Рассмотрим
$$\lim_{\Delta z \to 0} \left| \frac{\Delta w}{\Delta z} \right| = |f'(z_0)| \Longrightarrow |\Delta w| = |f'(z_0)| \cdot |\Delta z| + o(|\Delta z|)$$

Рассмотрим малый контур $|\Delta z| = |z - z_0| = \rho$. Тогда $|\Delta w| = |w(z) - w(z_0)| = |f'(z)|\rho + o(\rho)$

Таким образом w(z) растягивает круг $|z-z_0|=\rho$ в $|f'(z_0)|$ раз с точностью до малых высших порядков

Итак, w = f(z) в точке z_0 поворачивает точку у окрестности на угол $\alpha = \arg f'(z_0)$ и растягивает отрезки $[z_0, z]$ в $k = |f'(z_0)|$ раз

Def. Конформное отображение – отображение w(z), сохраняющее углы (между образами и прообразами) и постоянство растяжений

Th. Условия конформности:

однолистность

⇔ конформно

$$f'(z) \neq 0$$
 в D

Ex. w = az + b

Мет. Геометрический смысл линейного отображения: b - перенос z=0 в точку z=b; $a=|a|e^{i\varphi}$, тогда |a| - коэффициент растяжения, φ - угол поворота

Заметим, w' = (az + b)' = a, тогда $k = |w'(z_0)| = |a|$, $\varphi = \arg w'(z_0) = \arg a$

Lab. Проверить, что $w = z^2$ не конформное отображение, найдя $w'(z_0)$

3. Интеграл по комплексной переменной

3.1. Определения

В \mathbb{C} задана кусочно-гладкая кривая K (с концами в точках M и N) параметрическими уравнениями:

$$\begin{cases} x = \varphi(t) & t \in [lpha, eta] \subset \mathbb{R} \ y = \psi(t) & arphi, \psi - \mathbb{R}$$
-функции

 $\begin{cases} x=\varphi(t) & t\in [\alpha,\beta]\subset \mathbb{R}\\ y=\psi(t) & \varphi,\psi-\mathbb{R}\text{-функции} \end{cases}$ Тогда $z(t)=\varphi(t)+i\psi(t)$ - задание K в \mathbb{C} . Введем отображение w=f(z), действующее на KОпределим интегральные суммы:

- 1. дробление отрезка MN на частичные дуги: $M=z_0,z_1,\ldots,z_{n-1},z_n=N$ Тогда $\alpha=t_0,t_1,\ldots,t_{n-1},t_n=\beta$
- 2. Выбор средных точек в отрезках кривой $\zeta_i = (\xi_i, \eta_i)$
- 3. Сопоставим интегральную сумму $\sigma_n = \sum_{i=1}^n f(\zeta_i) \Delta z_i$
- 4. Интегралом от w=f(z) по кривой K называется $\lim_{\substack{n\to\infty\\ \tau=\max\Delta z_i\to 0}}=\int_K f(z)dz$, если он существует, конечен и не зависит от способа разбиения, выбора средних точек и т. д.

При этом интеграл можно представить как $\lim_{n\to\infty} \sigma_n = \lim_{n\to\infty} \sum_{i=1}^n f(\zeta_i) \Delta z_i = \lim_{n\to\infty} \sum_{i=1}^n f(\xi_i, \eta_i) (\Delta x_i + \zeta_i)$

$$i\Delta y_i) = \lim_{n \to \infty} \sum_{i=1}^n (u(\xi_i, \eta_i) + iv(\xi_i, \eta_i))(\Delta x_i + i\Delta y_i) = \lim_{n \to \infty} \sum_{i=1}^n (u_i \Delta x_i - v_i \Delta y_i) + i \lim_{n \to \infty} \sum_{i=1}^n (u_i \Delta y_i + v_i \Delta x_i) = \int_K u dx - v dy + i \int_K u dy + v dx$$

Nota. Мы свели \mathbb{C} -интеграл к двум криволинейным \mathbb{R} -интегралам, все свойства интегралов сохраняются

$$Ex.$$
 $\int_{\gamma=[0;1+i]} \overline{z}dz = \int_{\gamma} (x-iy)(dx+idy) = \int_{\gamma} xdx+ydy+i\int_{\gamma} xdy-ydx = 2\int_{0}^{1} xdx = 1$

- 1° Линейность
- 2° Аддитивность
- 3° Смена знака: $\int_{\mathbb{R}^2} = -\int_{\mathbb{R}^2}$
- 4° Оценка, модуль: $\left| \int_{V} \right| \leq \int_{V} |f(z)| dz$
- 5° $\int_{V} f(z)dz \stackrel{z=g(w)}{=} \int_{C} f(g(w))g'(w)dw = [$ В частности переход к параметру $t] = \int_{C(t)} f(t)g'(t)dt$

$$Ex. \ I = \int_{K:|z-z_0|=\rho} \frac{dz}{z-z_0} \stackrel{z-z_0=\rho e^{i\varphi}}{=} \int_K \frac{d\rho e^{i\varphi}}{\rho e^i \varphi} = \int_K \frac{i e^{i\varphi} d\varphi}{e^i \varphi} = i \int_0^{2\pi} d\varphi = 2\pi i$$

Интеграл I не зависит от радиуса и центра окружности (то есть контура интегрирования), то есть интеграл функции $\frac{1}{z-z_0}$ будет равен $2\pi i$ для любой окружности в качестве контура

3.2. Теорема Коши

Th. 1. f(z) аналитическая и однозначная в односвязной области D Если f(z) непрерывна на Γ_D , то $\oint_{\Gamma_D} f(z) dz = 0$

Запишем интеграл по контуру $K\subset D$ (K - кусочно гладкая):

$$\int_{K} f(z)dz = \int_{K} udx - vdy + i \int_{K}^{2} udy + vdx = I_{1} + I_{2}i$$

$$I_1 = \int_K \underbrace{P(x,y)}_K \underbrace{u(x,y)}_d dx - \underbrace{Q(x,y)}_d \underbrace{v(x,y)}_d dy = \begin{bmatrix} f(z) - \text{аналитическая} \Longrightarrow \\ u_x, u_y, v_x, v_y \text{ существуют} \\ \text{и непрерывны} \end{bmatrix} =$$

$$\iint_{G} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_{G} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy = \iint_{G} \left(\frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} \right) dx dy = 0$$
Формула Грина

Аналогично
$$I_2 = \int_{k}^{u} u dy + v dx = \iint_{G} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx dy = \iint_{G} \left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} \right) dx dy = 0$$

Таким образом, $\oint_{K\subset D} f(z)dz = 0$ - формула Коши

Так как f(z) непрерывна на Γ_D , то можно взять $K = \Gamma_D$

Nota. Получим, что интеграл по любому замкнутому Γ_D контуру в области аналитичности равен нулю

То есть $\int_{AB} f(z)dz$ в условиях **Th. 1.** не зависит от пути, и его можно решать как $\int_{AB} = \int_{A}^{B}$

Nota. Обобщим **Th. 1.** на многосвязную область. Выколотые области тоже имеют границы, которые включены в границу всей области

Th. 2. Дана многосвязная область D, f(z) - аналитична в D и непрерывна на Γ_D Граница $\Gamma_D = \Gamma_0 \cup \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_n$, где положительным обходом области считается тот, при котором область обхода слева

Тогда
$$\int_{\Gamma_D^+}^1 f(z)dz = 0$$
 или $\int_{\Gamma_0^+}^1 f(z)dz = \sum_{i=1}^n \int_{\Gamma_i^+}^1 f(z)dz$

Сделаем разрезы как на картинке. Разрезы превратили область D в односвязную с границей $\Gamma' = \Gamma_0 \cup (\gamma_1^+ \cup \gamma_1^- \cup \Gamma_1) \cup \dots = \Gamma_0 \cup \bigcup_{i=1}^n (\gamma_i^+ \cup \gamma_i^- \cup \Gamma_i)$

По **Th. 1.**
$$\int_{\Gamma'} f(z)dz = 0 \Longleftrightarrow \int_{\Gamma_D} f(z)dz + \int_{\gamma_1^+} f(z)dz + \int_{\gamma_1^-} f(z)dz + \int_{\Gamma_1} f(z)dz + \cdots = 0$$
 Ho
$$\int_{\gamma_1^+} = -\int_{\gamma_1^-}$$
, поэтому
$$\int_{\Gamma_D^+} = \sum_{\Gamma_i^-} \int_{\Gamma_i^-} \text{или } \int_{\Gamma_0^-} = \sum_{\Gamma_i^-} \int_{\Gamma_i^-} \int_$$

$$Ex.$$
 $\int_{|z|=2} f(z)dz$ По $Th.$ 2. $\int_{\Gamma_0} f(z)dz + \int_{\Gamma_1} f(z)dz + \int_{\Gamma_2} f(z)dz = 0$ Тогда $\int_{|z|=2} f(z)dz = \int_{|z-1|=\rho_1} f(z)dz + \int_{|z+1|=\rho_2} f(z)dz$, где ρ_1 , ρ_2 - $\frac{2}{2}$ Обрания бесконечно малой длины

3.3. Неопределенный интеграл

Mem. По теореме Барроу $\Phi(x)=\int_{x_0}^x f(t)dt$ - интеграл с переменным верхним пределом

Тогда $\Phi(x)$ - дифференцируема, и $\Phi'(x) = f(x)$, то есть $\Phi(x)$ - первообразная f(x)

Th.
$$f(z)$$
 непрерывна в односвязной области D и $\forall \Gamma \subset D$ $\int_{\Gamma} f(z)dz = 0$ Тогда при фиксированном $z_0 \in D$ $\Phi(z) = \int_{z_0}^z f(\zeta)d\zeta$ аналитична в D и $\Phi'(z) = f(z)$

Если
$$\forall \Gamma$$
 $\int_{\Gamma} f(z)dz = 0$, то $\Phi(z) = \int_{z_0}^z F(\zeta)d\zeta$ - интеграл, не зависящий от пути, а только от z_0 и z Рассмотрим $\frac{\Phi(z + \Delta z) - \Phi(z)}{\Delta z} = \frac{1}{\Delta z} \left(\int_{z_0}^{z + \Delta z} f(\zeta)d\zeta - \int_{z_0}^z f(\zeta)d\zeta \right) = \frac{1}{\Delta z} \int_z^{z + \Delta z} f(\zeta)d\zeta + \frac{1}{\Delta z} \int_z^{z + \Delta z} f(\zeta)d\zeta = \frac{1}{\Delta z} \int_z^{z + \Delta z} f(\zeta)d\zeta + \frac{1}{\Delta z} \int_z^{z + \Delta z} f(\zeta)d\zeta = \frac{1}{\Delta z}$

$${f Def.}\,\,\Phi(z)=\int_{z_0}^z f(\zeta)d\zeta$$
 называют первообразной для $f(z)$

Следствие - формула Ньютона-Лейбница:
$$\int_{z_1}^{z_2} f(\zeta) d\zeta = \Phi(z_2) - \Phi(z_1)$$

3.4. Интеграл Коши

Nota. Установим связь между щначениями f(z) во внутренних точках области и на ее границе

f(z) аналитична в обносвязной области $D, z_0 \in D$. Окружаем z_0 контуром $\Gamma \in D$ и меньшим контуром $\gamma: |z-z_0| = \rho$

По **Th. 2.** для $\varphi(z)$ в многосвязной области $\int_{\Gamma} \varphi(\zeta) d\zeta = \int_{\gamma} \varphi(\zeta) d\zeta$ - не зависит от пути

То есть выбор окружности в качестве
$$\gamma$$
 не важен:
$$\int_{\gamma} \varphi(\zeta) d\zeta \stackrel{z-z_0=\rho e^{i\varphi}}{=} \int_0^{2\pi} \frac{f(\zeta)\rho i e^{i\varphi} d\varphi}{\rho e^{i\varphi}} = i \int_0^{2\pi} f(\zeta) d\varphi = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{стягиваем } \gamma \text{ в точку } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{стягиваем } \gamma \text{ в точку } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{стягиваем } \gamma \text{ в точку } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{стягиваем } \gamma \text{ в точку } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{стягиваем } \gamma \text{ в точку } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{стягиваем } \gamma \text{ в точку } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{стягиваем } \gamma \text{ в точку } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{стягиваем } \gamma \text{ в точку } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{стягиваем } \gamma \text{ в точку } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{стягиваем } \gamma \text{ в точку } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(z_0)) d\zeta}_{\text{ctoring } z_0, \int \to 0}^{2\pi} f(z_0) d\zeta = \underbrace{i \int_0^{2\pi} (f(\zeta)-f(\zeta)) d\zeta}_{\text{ctoring } z_0$$

$$if(z_0)\cdot 2\pi$$
 Тогда $\int_{\Gamma} \frac{f(z)}{z-z_0} dz = \int_{\gamma} \varphi(\zeta) d\zeta = 2\pi i f(z_0)$

Nota. Доказали теорему: в области аналитичности $\forall z_0 \in D$ $\int_{\Gamma_0} \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$

$$Ex. \int_{|z|=2^{\epsilon}} \frac{f(z)}{(z-1)(z+1)} dz = \int_{|z-1|=\rho_1} \frac{\frac{f(z)}{z+1}}{z-1} dz + \int_{|z+1|=\rho_2} \frac{\frac{f(z)}{z-1}}{z+1} dz = 2\pi i \left(\frac{f(1)}{2} + \frac{f(-1)}{-2} \right)$$

4. Ряды

4.1. Числовой ряд в комплексной плоскости

 $\mathbf{Def.}\ \mathbf{1.}\ z_1+z_2+\cdots+z_n+\cdots=\sum_{i=1}^\infty z_i$, где $z_n\in\mathbb{C}$ - числовой ряд

Def. 2. Сумма ряда - $S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^n z_k$

Если сумма существует и конечна, то ряд называют сходящимся.

 $\mathbf{Def.}\ f(z)$ называется регулярной в точке $z_0,$ если $f(z_0)=\sum_{n=1}^\infty c_n,$ где $c_n\in\mathbb{C}$

Nota. Для комплексных числовых рядов остаются справедливыми:

- 1. Необходимое условие сходимости
- 2. Признак Даламбера
- 3. Радикальный признак Коши
- 4. Критерий Коши
- 5. Абсолютная сходимость

4.2. Функциональный ряд в комплексной плоскости

$${f Def.} \ \sum_{n=1}^\infty u_n(z),$$
 где $u_n(z):\ D\subset {\Bbb C} \longrightarrow {\Bbb C}$ - функциональный ряд

Th. Признак Вейерштрасса.

$$\exists \sum_{n=1}^{\infty} \alpha_n, \ \alpha_n \in \mathbb{R}_0^+, \ \sum_{n=1}^{\infty} \alpha_n \in \mathbb{R}, \ |u_n(z)| \leq \alpha_n \ \forall z \in D \Longrightarrow \sum_{n=1}^{\infty} u_n(z) \ \text{сходится равномерно в } D$$

Lab. Сверить формулировку и доказательства для $\mathbb C$ и $\mathbb R$ -случая

Nota. Сумма равномерно сходящегося ряда непрерывна

Th.
$$u_n(z)$$
 непрерывна в D и $f(z) = \sum_{n=1}^{\infty} u_n(z)$ сходится равномерно в D

Тогда
$$\int_K f(\zeta)d\zeta = \sum_{n=1}^\infty \int_K u_n(\zeta)d\zeta$$
, где $K\subset D$ - кусочно гладкая кривая

Докажем, что
$$\left| \int_{K} f(\zeta) d\zeta - \sum_{k=1}^{n} \int_{K} u_{k}(\zeta) d\zeta \right| \xrightarrow{n \to \infty} 0$$
 $\left| \int_{K} \left(f(\zeta) - \sum_{k=1}^{n} u_{k}(\zeta) \right) d\zeta \right| = \left| \int_{K} \left(\sum_{k=1}^{\infty} u_{k}(\zeta) - \sum_{k=1}^{n} u_{k}(\zeta) \right) d\zeta \right| = \left| \int_{K} \sum_{k=n+1}^{\infty} u_{k}(\zeta) d\zeta \right| = \left| \int_{K} r_{n}(\zeta) d\zeta \right| \le \int_{K} |r_{n}(\zeta)| |d\zeta| \le \varepsilon$ по кр. Коши

4.3. Степенной ряд

Def. Степенной ряд -
$$\sum_{n=0}^{\infty} c_n (z-a)^n$$
 $\left(a=0:\sum_{n=0}^{\infty} c_n z^n\right), c_n \in \mathbb{C}$

Nota. Область сходимости - круг с центром $a, |z-a| \le R$ - радиус сходимости $\lim_{n\to\infty} \left| \frac{c_{n+1}(z-a)^{n+1}}{c_n(z-a)^n} \right| = \lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| |z-a| < 1 \Longrightarrow |z-a| < \left| \frac{c_n}{c_{n+1}} \right|$

Nota. Также справедлива теорема Абеля

Th. Абеля.

Если степенной ряд сходится в точке z_1 , то он сходится абсолютно и равномерно в любой точке z_2 такой, что $|z-z_1|>|z-z_2|$

Если степенной ряд расходится в точке z_1 , то он расходится в любой точке z_2 такой, что $|z-z_1|<|z-z_2|$

Следствие: Если $f(z) = \sum_{n=0}^{\infty} c_n z^n$, то f(z) - непрерывна в круге сходимости ряда

Тh. Почленное дифференцирование суммы ряда.

 $\sum_{n=0}^{\infty}c_nz^n=f(z)$ - сходящийся в круге радиуса $R\neq 0.$ Тогда f(z) дифференцируема и

$$f'(z) = \sum_{n=0}^{\infty} n c_n z^{n-1}$$

Рассмотрим ряд (и его сумму) $\sum_{n=0}^{\infty} nc_n z^{n-1}$ - он сходится в круге радиуса ρ таком, что

 $0 \le |z| \le \rho < R$ (см. сходимость по Даламберу) (Обозначим круг $K_1: |z| = \rho$)

Докажем, что
$$\sum_{n=0}^{\infty} nc_n z^{n-1} = S(z) = f'(z)$$

В круге K_1 выберем кривую γ , соединяющую $z_0=0$ и z

Рассмотрим $\int_{\gamma} \zeta^k d\zeta$, функция ζ^k аналитическая, тогда $\int_{\gamma} \zeta^k d\zeta$ не зависит от пути

$$\int_{\gamma} \zeta^k d\zeta = \int_0^z \zeta^k d\zeta = \frac{\zeta^{k+1}}{k+1} \Big|_0^z = \frac{z^{k+1}}{k+1}$$
Тогда
$$\int_0^z nc_n \zeta^{n-1} d\zeta = \frac{nc_n \zeta^n}{n} \Big|_0^z = c_n z^n$$

Возьмем интеграл от суммы $\int_0^z S(\zeta) d\zeta = \int_0^z \left(\sum_{n=0}^\infty nc_n\zeta^{n-1}\right) d\zeta = \sum_{n=0}^\infty \int_0^z nc_n\zeta^{n-1} d\zeta =$

$$\sum_{n=0}^{\infty} c_n z^n = f(z)$$

Таким образом, f(z) является первообразной для S(z), то есть S(z)=f'(z)

При этом $f'(z) = \sum_{n=0}^{\infty} nc_n z^{n-1} = \sum_{m}^{\infty} c_m z^m$ - этот ряд можно дифференцировать дальше, и область, в которой функция дифференцируется, - круг K_1 , где ρ вплотную подходит к R Таким образом, доказали, что если f(z) регулярна $\forall z$ в круге |z| < R, то f(z) сколько угодно раз дифференцируема в этом круге и $f'(z) = \left(\sum_{n=0}^{\infty} c_n z^n\right)'$

Следствие: $f'(z) = (c_0 + c_1 z + c_2 z^2 + \dots + c_n z^n + \dots)'$ или $f'(z) = (c_0 + c_1 (z - a) + c_2 (z - a)^2 + \dots + c_n (z - a)^n + \dots)' \Longrightarrow c_0 = f(a), c_1 = f'(a), c_2 = \frac{f''(z)}{2!}$ и так далее Получили ряд Тейлора $f(z) = \sum_{|z-a|<\rho}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n$

Th. f(z) аналитическая в области $D \Longrightarrow f(z)$ регулярна в области D

По формуле Коши $f(z) = \frac{1}{2\pi i} \int_{\gamma_{\rho}} \frac{f(\zeta)}{\zeta - z} d\zeta \ \forall z \in K,$ где $K = \{z \mid |z - a|, \rho\}, \ \gamma_{\rho} = \{\zeta \mid |\zeta - a| = \rho\}$

и $K \subset D$

Разложим в ряд $\frac{1}{\zeta - z}$:

$$\frac{1}{\zeta-z} = \frac{1}{\zeta-(z-a)-a} = \frac{1}{\zeta-a} \cdot \frac{1}{1-\frac{z-a}{\zeta-a}} = \frac{1}{\zeta-a} \sum_{n=0}^{\infty} \left(\frac{z-a}{\zeta-a}\right)^n, \text{ где } \left|\frac{z-a}{\zeta-a}\right| < 1$$

To есть $\sum_{n=0}^{\infty} \frac{(z-a)^n}{(\zeta-a)^{n+1}}$ - равномерно сходящийся

Тогда $\frac{f(\zeta)}{\zeta-z} = \sum_{n=0}^{\infty} \frac{f(\zeta)(z-a)^n}{(\zeta-a)^{n+1}}$ - равномерно сходящийся

$$\frac{1}{2\pi i} \int_{\gamma_{\rho}} \frac{f(\zeta)}{\zeta - z} = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{\gamma_{\rho}} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta (z - a)^n$$

 $f(z) = \sum_{n=0}^{\infty} b_n (z-a)^n$ - едиственное разложение по Тейлору

Итак
$$\frac{1}{2\pi i} \int_{\gamma_o} \frac{f(\zeta)d\zeta}{(\zeta-a)^{n+1}} = \frac{f^{(n)}(a)}{n!}$$