

## Ficha de Trabalho 5: Técnicas de Agrupamento de Dados (Clustering)

### -Resolução-

**Objetivo**: Pretende-se promover a aquisição de conhecimentos e desenvolvimento de competências relativas aos <u>fundamentos</u> de algumas técnicas utilizadas para agrupar dados (Clustering & Data Mining)

- 1) Considere dois pontos representados por  $x_1=(1,1)$  e  $x_2=(3,3)$ . Determine a distância entre estes dois pontos utilizando as seguintes medidas: Euclidiana, Pombalina (ou *City Block*), Chebychev, Minkowski (utilizando a raiz quadrada) (T/**P**) *Sugestão: utilize a função pdist do Matlab.*
- 2) Considere o seguinte conjunto de dados, representado na Tabela 1:

Tabela 1: Conjunto de Dados 1 # Amostra  $(x_1, x_2)$ (-2,-2)1 2 (3,3)3 (-1,1)4 (3,1)5 (-2,-1)6 (2, 3)7 (0,-2)8 (2,1)

i) Represente os pontos num gráfico (T/P).R:



ii) Considere agora que se pretende agrupar os dados apresentados na Tabela 1 em dois grupos (clusters). Assume-se os dois centroides iniciais apresentados na Tabela 1. Represente os centroides no gráfico anterior utilizando um símbolo diferente das amostras.

R:

© Paulo Moura Oliveira 1/6





- iii) Complete a Tabela 2 calculando a distância Euclidiana entre os pontos da amostra e os dois centroides.
- iv) Com base na minimização das distâncias calculadas classifique os pontos no cluster C1 ou C2.

Tabela 2: Conjunto de Dados 1 com centroides iniciais

|           | Centroides  | <b>c</b> 1 | <b>c</b> 2 |           |
|-----------|-------------|------------|------------|-----------|
|           | Iniciais    | (-2 1)     | (4,1)      | Clusters  |
| # Amostra | $(x_1,x_2)$ | dist       | dist       | C1 ou C2? |
| 1         | (-2,-2)     | 3.00       | 6.71       | C1        |
| 2         | (3,3)       | 5.39       | 2.24       | C2        |
| 3         | (-1,1)      | 1.00       | 5.00       | C1        |
| 4         | (3,1)       | 5.00       | 1.00       | C2        |
| 5         | (-2,-1)     | 2.00       | 6.32       | C1        |
| 6         | (2, 3)      | 4.47       | 2.83       | C2        |
| 7         | (0,-2)      | 3.61       | 5.00       | C1        |
| 8         | (2,1)       | 4.00       | 2.00       | C2        |
|           | Centroides  | <i>C</i> 1 | $c_2$      |           |
|           | Novos       | (-1.25,-1) | (2.5,2.0)  |           |
|           | SSE         | 6,75       | 4,50       |           |

v) Represente um gráfico diferenciando os pontos de acordo com o cluster a que pertencem.

© Paulo Moura Oliveira 2/6



- vi) Determine os novos valores para os dois centroides conforme o agrupamento feito.
- vii) Represente a nova localização dos centroides.



- viii) Determine a soma dos erros quadráticos (SSE) para os dois clusters.
- ix) Repita os cálculos para a nova iteração e preencha a Tabela 3

Tabela 3: Conjunto de Dados 1 ao fim de uma iteração

|           | Centroides  | <i>c</i> <sub>1</sub> | <i>c</i> <sub>2</sub> |           |
|-----------|-------------|-----------------------|-----------------------|-----------|
|           | Iniciais    | (-1.25,-1)            | (2.5,2.0)             | Clusters  |
| # Amostra | $(x_1,x_2)$ | dist                  | dist                  | C1 ou C2? |
| 1         | (-2,-2)     | 1.25                  | 6.02                  | C1        |
| 2         | (3,3)       | 5.84                  | 1.12                  | C2        |
| 3         | (-1,1)      | 2.02                  | 3.64                  | C1        |
| 4         | (3,1)       | 4.70                  | 1.12                  | C2        |
| 5         | (-2,-1)     | 0.75                  | 5.41                  | C1        |
| 6         | (2, 3)      | 5.15                  | 1.12                  | C2        |

© Paulo Moura Oliveira 3/6

| 7 | (0,-2)     | 1,60       | 4.72       | C1 |
|---|------------|------------|------------|----|
| 8 | (2,1)      | 3.82       | 1.12       | C2 |
|   | Centroides | <b>C</b> 1 | <b>C</b> 2 |    |
|   | Novos      | (-1.25,-1) | (2.5,2.0)  |    |
|   | SSE        | 2.19       | 1.25       |    |

3) Considere o seguinte conjunto de dados com duas dimensões, representado na Tabela 4:

Tabela 4: Conjunto de Dados 2

| rabera 4. Conj | unto de Dados 2 |
|----------------|-----------------|
| # Amostra      | $(x_1, x_2)$    |
| 1              | (-2,-2)         |
| 2              | (-1,1)          |
| 3              | (-2,-1)         |
| 4              | (0,-2)          |
| 5              | (2,1)           |
| 6              | (2, 3)          |
| 7              | (3,1)           |
| 8              | (3,3)           |
| 9              | (3,-2)          |
| 10             | (3,-1)          |
| 11             | (2,-1)          |
| 12             | (2.5,-2.5)      |

i) Represente os pontos num gráfico (T/P).R:



ii) Aplique o algoritmo k-médias (k-means) com três clusters e confirme que o resultado obtido está de acordo com a seguinte figura e Tabela 4.

© Paulo Moura Oliveira 4/6



Tabe<u>la 5: Resultado do k-means para os dados da</u> Tabela 4

| # Cluster | $(c_1, c_2)$ | $(x_1,x_2)$ |
|-----------|--------------|-------------|
|           | (-1.25,-1.5) | (-2,-2)     |
| 1         |              | (-1,1)      |
| 1         |              | (-2,-1)     |
|           |              | (0,-2)      |
|           | (2.5,2.0)    | (2,1)       |
|           |              | (2,3)       |
| 2         |              | (3,1)       |
|           |              | (3,3)       |
|           | (2.63,-1.63) | (3,-2)      |
| 2         |              | (3,-1)      |
| 3         |              | (2,-1)      |
|           |              | (2.5,-2.5)  |

iii) Calcule o valor da métrica Silhueta para a primeira amostra do primeiro cluster (-2,2) e para a primeira amostra do terceiro cluster e confirme se os valores obtidos são  $S_{1,1}$ =0.8945 e  $S_{3,1}$ = 0.933.

#### R:

## *Para o ponto (2,2):*

 $a_1$ =2.33;  $b_{1,2}$ =37.5;  $b_{1,3}$ =22.125

 $b_{11}=min(b_{1,2}, b_{1,3})=min(37.5, 22.125)=22.125$ 

 $max(a_1,b_{11}) = max(2,33, 22.125) = 22.125$ 

$$S_{11} = \frac{b_{11} - a_1}{\max(a1, b11)} = \frac{22.125 - 2.33}{22.125} = 0.8945$$

© Paulo Moura Oliveira 5/6



# Para o ponto (3,2):

 $a_3=1.1667$ ;  $b_{3,2}=17.5$ ;  $b_{3,1}=17.25$ 

 $b_{31}=min(b_{3,1}, b_{3,2})=min(17.25, 17.5)=17.25$ 

 $max(a_3,b_{31})=max(1.67, 17.25)=17.25$ 

$$S_{11} = \frac{b_{31} - a_3}{\max(a_3, b_{31})} = \frac{17.25 - 1.1667}{17.25} = 0.932$$



© Paulo Moura Oliveira 6/6