Solutions & Notes of Homework 6

Junda Wu, Student ID: 210320621

June 22, 2025

Figure 1: Picture from https://matthbeck.github.io/quotes.html, originally from https://xkcd.com/.

Problem 1

In \mathbb{R}^4 , let

$$U = \text{span}((1, 1, 0, 0), (1, 1, 1, 2)).$$

Find $u \in U$ such that ||u - (1, 2, 3, 4)|| is as small as possible.

Solution:
$$C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 0 & 2 \end{pmatrix}$$
, $\dim R(C) = 2$. Thus

$$u = C(C^T C)^{-1} C^T (1, 2, 3, 4)^T = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{7}{10} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2 \end{pmatrix} (1, 2, 3, 4)^T = \begin{pmatrix} \frac{3}{2}, \frac{3}{2}, \frac{11}{5}, \frac{22}{5} \end{pmatrix}^T.$$

! Note 1.1: You can also use Gram-Schmidt procedure to calculate the orthonormal basis

$$e_1 = \frac{1}{\sqrt{2}}(1, 1, 0, 0), \quad e_2 = \frac{1}{\sqrt{5}}(0, 0, 1, 2),$$

and use equation 6.57 (i) to find the answer.

Problem 2

Find $p \in \mathcal{P}_3(\mathbb{R})$ such that p(0) = 0, p'(0) = 0, and

$$\int_0^1 |2 + 3x - p(x)|^2 dx$$

is as small as possible.

Solution: p(0) = 0, p'(0) = 0 implies $p(x) = ax^3 + bx^2(a, b \neq 0)$. We can easily verify that all p(x)'s form a subspace of $\mathcal{P}_3(\mathbb{R})$, and x^2, x^3 forms a basis of it. Apply Gram-Schmidt procedure to x^2, x^3 and we get an orthonormal basis e_1, e_2 :

$$e_1 = \frac{x^2}{\sqrt{\int_0^1 (x^2)(x^2)dx}} = \sqrt{5}x^2,$$

$$f_2 = x^3 - \frac{\int_0^1 (x^2)(x^3)dx}{\int_0^1 (x^2)(x^2)dx}x^2 = x^3 - \frac{5}{6}x^2,$$

$$e_2 = \frac{f_2}{\sqrt{\int_0^1 f_2^2 dx}} = \frac{f_2}{\sqrt{\int_0^1 (x^6 + \frac{25}{36}x^4 - \frac{5}{3}x^5)dx}} = 6\sqrt{7}\left(x^3 - \frac{5}{6}x^2\right).$$

Use equation 6.57 (i), we find that

$$\begin{split} p(x) &= \langle 2 + 3x, \sqrt{5}x^2 \rangle \cdot \sqrt{5}x^2 + \left\langle 2 + 3x, 6\sqrt{7} \left(x^3 - \frac{5}{6}x^2 \right) \right\rangle \cdot 6\sqrt{7} \left(x^3 - \frac{5}{6}x^2 \right) \\ &= \int_0^1 (2x^2 + 3x^3) dx \cdot 5x^2 + \int_0^1 \left(2x^3 + 3x^4 - \frac{5}{3}x^2 - \frac{5}{2}x^3 \right) dx \cdot 252 \left(x^3 - \frac{5}{6}x^2 \right) \\ &= \left(\frac{2}{3} + \frac{3}{4} \right) \cdot 5x^2 + 252 \left(\frac{2}{4} + \frac{3}{5} - \frac{5}{9} - \frac{5}{8} \right) \left(x^3 - \frac{5}{6}x^2 \right) \\ &= \frac{85}{12}x^2 - \frac{203}{10}x^3 + \frac{203}{12}x^2 \\ &= -20.3x^3 + 24x^2. \end{split}$$

Problem 3

Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V.

- (a) Prove that if $U \subset \text{null } T$, then U is invariant under T.
- (b) Prove that if range $T \subset U$, then U is invariant under T.
- ✓ Proof: (a) If U ⊂ null T, then for every u ∈ U, we have T(u) = 0. 0 ∈ U, so U is invariant under T.
 (b) For every u ∈ U, we have T(u) = v, where v ∈ range T. Because range T ⊂ U, then v ∈ U, so U is invariant under T.

Problem 4

Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that range S is invariant under T.

Proof: For every $u \in \text{range } S$, we can find a $v \in V$ such that S(v) = u. T(u) = T(S(v)) = TS(v) = ST(v) = S(T(v)), thus $T(u) \in \text{range } S$. Thus range S is invariant under T. ■

Problem 5

Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that null S is invariant under T.

Proof: For every $u \in \text{null } S$, we have S(u) = 0. ST(u) = TS(u) = T(S(u)) = T(0) = 0, thus $T(u) \in \text{null } S$. Thus null S is invariant under T. ■

Problem 6

Define $T \in \mathcal{L}(\mathbb{F}^3)$ by

$$T(z_1, z_2, z_3) = (2z_2, 0, 5z_3)$$

Find all eigenvalues and eigenvectors of T.

✓ **Solution:** With respect to the standard basis, the matrix of T is $\begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}$. This matrix is upper triangular.

Thus by 5.41, the eigenvalues of T are 0, 0 and 5. For the eigenvalue 0, let Tx=0 where $x\in\mathbb{F}^3$, and we get a linearly independent vector (1,0,0); let (T-5I)x=0 where $x\in\mathbb{F}^3$ and I is the standard matrix of identity operator, and we get a linearly independent vector (0,0,1). So for $\lambda=0$ we have the eigenvector $k(1,0,0)(k\in\mathbb{F}\setminus\{0\})$; for $\lambda=5$ we have the eigenvector $k(0,0,1)(k\in\mathbb{F}\setminus\{0\})$.

Problem 7

Define $T: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ by Tp = p'. Find all eigenvalues and eigenvectors of T.

Solution: $(x^n)' = nx^{n-1}$. Suppose λ is an eigenvalue of T with an eigenvector q, then $q' = Tq = \lambda q$. If $\lambda \neq 0$, then $\deg \lambda q > \deg q'$, we get a contradiction. If $\lambda = 0$, then we can take q = c for nonzero $c \in \mathbb{R}$. Hence the only eigenvalue of T is zero with nonzero constant polynomials as eigenvectors.

Problem 8

Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is invertible.

- (a) Prove that T and $S^{-1}TS$ have the same eigenvalues.
- (b) What is the relationship between the eigenvectors of T and the eigenvectors of $S^{-1}TS$?
- **Proof:** (a) First, suppose $\lambda \in \mathbb{F}$ is an eigenvalue of T. Then there exists an eigenvector $x \in V$ such that $(T \lambda I)x = 0$. Since $S \in \mathcal{L}(V)$ is invertible, $I = SS^{-1}$, and $T \lambda I$ can be written as $T \lambda SS^{-1}$. Then $S(S^{-1}TS \lambda I)S^{-1}x = 0$. Because S is invertible, S is injective, which implies $(S^{-1}TS \lambda I)S^{-1}x = 0$.

3

Because x is nonzero and S^{-1} is injective, $S^{-1}x \neq 0$, which implies $S^{-1}TS - \lambda I$ maps a nonzero vector into 0. Thus $S^{-1}TS - \lambda I$ is not injective, so λ is an eigenvalue of $S^{-1}TS$.

Conversely, suppose $\lambda \in \mathbb{F}$ is an eigenvalue of $S^{-1}TS$, then there exists an eigenvector $x \in V$ such that $(S^{-1}TS - \lambda I)x = 0$. Then $(S^{-1}TS - \lambda S^{-1}S)x = 0$, which further implies $S^{-1}(T - \lambda I)Sx = 0$. Because S is invertible, S^{-1} is injective, which implies $(T - \lambda I)Sx = 0$. Because S is nonzero and S is injective, $Sx \neq 0$, which implies S = 00, which implies S = 01 is not injective, so S = 02 is an eigenvalue of S = 03. This completes the proof.

(b) Let $\lambda \in \mathbb{F}$ be an eigenvalue of T. As we showed in part (a), this is the case if and only if λ is an eigenvalue of $S^{-1}TS$. Define

$$E(\lambda, T) = \{ v \in V : v \neq 0, Tv = \lambda v \}$$
 and $E(\lambda, S^{-1}TS) = \{ u \in V : u \neq 0, (S^{-1}TS)(u) = \lambda u \}.$

That is, $E(\lambda, T)$ is the collection of eigenvectors of T corresponding to the eigenvalue λ and $E(\lambda, S^{-1}TS)$ is the collection of eigenvectors of $S^{-1}TS$ corresponding to the eigenvalue λ . Our calculations in part (a) show that

$$E(\lambda, T) = \{ Su : u \in E(\lambda, S^{-1}TS) \}$$
 and $E(\lambda, S^{-1}TS) = \{ S^{-1}v : v \in E(\lambda, T) \}.$

Problem 9

Find all eigenvalues and eigenvectors of the backward shift operator $T \in \mathcal{L}(\mathbb{F}^{\infty})$ defined by

$$T(z_1, z_2, z_3, \ldots) = (z_2, z_3, \ldots).$$

Solution: Suppose λ is an eigenvalue of T. For this particular operator, the eigenvalue-eigenvector equation $Tz = \lambda z$ becomes the system of equations $z_2 = \lambda z_1, z_3 = \lambda z_2, \ldots$ From this we see that we can choose z_1 arbitrarily and then solve for the other coordinates: $z_2 = \lambda z_1, z_3 = \lambda z_2 = \lambda^2 z_1, \ldots$ Thus each $\lambda \in \mathbb{F}$ is an eigenvalue of T and the set of corresponding eigenvector is $\{(w, \lambda w, \lambda^2 w, \ldots) : w \in \mathbb{F} \setminus \{0\}\}$.

Problem 10

If A is a matrix with $m \times n$ dimension, please show that A^TA and AA^T have the same nonzero eigenvalues.

Proof: Suppose x is the eigenvector for the eigenvalue λ of A^TA . Then $A^TAx = \lambda x$. Multiply both sides of the equation with A, then $AA^TAx = \lambda Ax$, so $AA^T(Ax) = \lambda(Ax)$. If Ax = 0, then $A^TAx = 0 = \lambda x$, which contradicts with the fact that $\lambda \neq 0$ and $x \neq 0$. Hence $Ax \neq 0$, which means λ is also an eigenvalue of AA^T with Ax as the corresponding eigenvector.

Conversely, suppose x is the eigenvector for the eigenvalue λ of AA^T . Then $AA^Tx = \lambda x$. Multiply both sides of the equation with A^T , then $A^TAA^Tx = \lambda A^Tx$, so $A^TA(A^Tx) = \lambda(A^Tx)$. If $A^Tx = 0$, then $AA^Tx = 0 = \lambda x$, which contradicts with the fact that $\lambda \neq 0$ and $x \neq 0$. Hence $A^Tx \neq 0$, which means λ is also an eigenvalue of A^TA with A^Tx as the corresponding eigenvector. This completes the proof.