8.4- Improper Integrals: Infinite Integrands

Name	/ Uid:	Date
vame,	/ UIG:	Date:

Recall that the Fundamental Theorem of Calculus says that if f is **continuous** on [a, b] and F is any antiderivative of f, then

$$\int_a^b f(x) \ dx = F(b) - F(a).$$

If f is not continuous on [a, b], then this theorem is simply not true. If, for example, our function f has a vertical asymptote at x = a, then the area under the graph might very well be infinite.

Definition. We use the following limits to define three improper integrals involving discontinuous integrands:

• If f is continuous on [a,b) and discontinuous at b, then

$$\int_a^b f(x) \ dx = \lim_{t \to b^-} \int_a^t f(x) \ dx.$$

• If f is continuous on (a, b] and discontinuous at a, then

$$\int_a^b f(x) \ dx = \lim_{t \to a^+} \int_t^b f(x) \ dx.$$

ullet If f is continuous on [a,b] except at a point a < c < b, then

$$\int_{a}^{b} f(x) \ dx = \lim_{t \to c^{-}} \int_{a}^{t} f(x) \ dx + \lim_{t \to c^{+}} \int_{t}^{b} f(x) \ dx.$$

Again, if the limits on the right exist and are finite, then we say that the improper integral converges. Otherwise, it diverges.

Example 1. Compute the following improper integrals or show that they diverge.

$$(a) \int_0^1 \frac{\ln x}{x} \ dx$$

(b)
$$\int_{-1}^{2} \frac{x}{\sqrt{4-x^2}} dx$$

$$(c) \int_0^{\pi/4} \sqrt{\sin x} \cot x \ dx$$

$$(d) \int_{\pi/4}^{3\pi/4} \sec^2 x \ dx$$

Example 2. For what values of p > 0 is the integrand

$$\int_0^1 \frac{1}{x^p} \ dx$$

convergent?

Solution.