An Introduction To Bayesian **Statistics**

Simon Thornewill von Essen

Data Analyst, Goodgame Studios

@sthornewillve 🐍

Why

How do we estimate the probability?

- Classical: By considering equal outcomes
- Frequentist: Relative Frequency over time
- Bayesian: By updating our beliefs for each obs.

Coin Toss: Classical Est.

```
Coin
|
|-----
| |
H T
0.5 0.5
```

Dice: Classical Est.

Classical Stats

- Requirements
 - All Outcomes are known
 - Outcomes are assumed to be equally likely
- Advantages
 - Fast Estimation
 - Easy to understand
- Disadvantages
 - o High Bias
 - Outcomes must be known
 - Cannot create sophisticated (high variance) models

How do we estimate the probability?

- Classical
- Frequentist
- Bayesian

Probability of Rain: Frequentist Est.

Probability of Rain: Frequentist Est.

How do we estimate the probability?

- Classical: By considering equal outcomes
- Frequentist: Relative Frequency over time
- Bayesian: By updating our beliefs for each obs.

Bayes Theorem

How

Foreshadow MCMC

Conclusion and "Call to Action"

Find Slides on Github

https://cutt.ly/zGqux9

Find me on Social Media!

@sthornewillve

000

