

10ª Jornada de Jóvenes Investigadores de Química y Física de Aragón

Implementación en FPGA de un Segmentador de Fonocardiogramas basado en la U-Net

Daniel Enériz¹, Antonio J. Rodríguez-Almeida², Himar Fabelo³, Nicolás Medrano¹, Belén Calvo¹, Gustavo M. Callicó²

¹Grupo de Diseño Electrónico, Instituto de Investigación en Ingeniería de Aragón, Pedro Cerbuna, 12, 50009, Zaragoza ²Insituto Universitario de Microelectrónica Aplicada, Universidad de Las Palmas de Gran Canaria ³Fundación Canaria Instituto de Investigación Sanitaria de Canarias, Las Palmas de Gran Canaria

Introducción

- Fonocardiogramas PCG: sonidos corazón
- Segmentación de PCG: división en ciclos
- 4 estados cardiacos: S1→Síst→ S2→ Días

- U-Net: Segmentación de imágenes
- Adaptación para señales 1D (PCG)
- Soporte Hardware:

- Edge computing
- Capacidad de optimizar
- Datos de punto fijo arbitrario
- Herramientas de Síntesis de Alto Nivel (HLS)

Bases de datos y preprocesado

- The CirCor dataset (2022 CinC Challenge)
- 942 sujetos Preprocesado:

 - BP 25-400 Hz
- Reducción de picos
- Decimado 50 Hz
- 4 envolventes

• 3163 PCGs

Arquitectura, validación, entrenamiento y reducción

- Red Basada en la U-Net, presentada en F. Renna et al. 2019
 - Entrada: N muestras temporales de las 4 envolventes
 - La versión completa del modelo tiene $n_{\rm enc}$ =4 encoders/decorders y n_0 =8 filtros en el primer encoder, los cuales se duplican en cada etapa
 - Tres parámetros de reducción del modelo identificados: N, $n_{\rm enc}$ y n_0
- Validación: Training set 60%, Validation set 20% y Test set 20%
- Entrenamiento: Optimizador Adam, learning rate 10⁻⁴, batch size de 1, 5 épocas con los datos de 2016 y 5 con los de 2022

n _{enc} 8	4	3	2		
8					
	0.913	0.910	0.901	0.851	<u>S</u> 0.90 -
7	0.911	0.911	0.898	0.853	$\frac{1}{2} = 0$
0 6	0.911	0.910	0.898	0.849	Number of parameters $N = 12$ $N = 12$
5	0.911	0.909	0.897	0.838	$0.88 - \frac{1}{1000} = 1000000000000000000000000000000000000$
4	0.910	0.908	0.894	0.800	0.0 0.2 0.4 0.6 0.8 1.0

Implementación

- Objetivo: Xilinx Zynq 7010 & 7020: Low-spec FPGA & dual-core ARM CPU
- Datos de punto fijo (16,8)
- Uso de HLS: programación desde C/C++
- Uso de recursos para *N*=64:

			•							
	$n_{ m enc}$	4	3	2	1	4	3	2	1	
BRAM	8	287	103	51	31	8382	6565	4761	2975	- - - - 무
	7	287	103	51	31	9466	7346	5253	3187	
	n_0 6	175	79	49	31	9403	7298	5220	3173	
	5	175	79	49	31	9306	7215	5149	3139	
	4	121	69	49	31	8144	6372	4613	2887	
LUT	8	17724	13975	10186	6351	23	18	13	8	
	7	20396	16016	11577	7100	23	18	13	8	
	n_0 6	20396	16016	11577	7100	23	18	13	8	DSP
	5	20282	15928	11515	7068	23	18	13	8	U
	4	17673	13939	10166	6328	23	18	13	8	

BRAM y LUT recursos limitantes

*Límites: 7010 en cursiva 7020 tachados

Instituto Universitario de Investigación en Ingeniería de Aragón **Universidad** Zaragoza

Instituto Universitario de Microelectrónica Aplicada

Daniel Enériz Orta

Facultad de Ciencias

Contacto y mas información

eneriz@unizar.es Grupo de Diseño Electrónico (GDE) Instituto Universitario de Investigación en Ingeniería de Aragón (I3A) Universidad de Zaragoza