P1) (1.5 punts) Expliqueu raonadament (sense tenir en compte cap solució) en quins estats es podrien trobar els díodes d'aquest circuit. Digueu clarament per quins díodes es coneix segur el seu estat, i per quins no se sap a priori (el raonament no ha de fer cap referència a les solucions (tensions o corrents)).

Resol el circuit en tres casos: 1) D_1 i D_2 en directa, D_3 en inversa, 2) D_2 i D_3 en directa, D_1 en inversa, 3) tots tres en directa. Proporcioneu els corrents a totes les branques i tensions a tots els punts, però només en el cas correcte. Comproveu per tots els díodes i en tots els casos si la solució és correcta segons les suposicions fetes. Utilitzeu el model ideal dels díodes amb $V_{\gamma} = 0.7V$.

P2) (1 punt) Resoleu el circuit de la figura (doneu totes les tensions i corrents del circuit), prenent els següents valors: $Kn'\cdot W/L=1$ mA/V^2 , $V_T=2V$. Preneu també R com $1k\Omega$. (Si heu de resoldre en tríode, feu-lo en tríode lineal). Comproveu sempre si es compleixen les equacions en cada estat (tall, saturació i tríode (si s'ha resolt))

P3) (1.5 punt) Resoleu (obteniu V_0) el circuit de la figura de l'esquerra. Calculeu també el corrent que passa per R_1 . Determineu si el corrent entra o surt segons pel terminal d'entrada superior segons el signe de V_i .

Resoleu (obteniu V₀₂) el circuit de la figura de la dreta.

Suposant que les sortides dels dos circuits anteriors només poden valer 0V ó 5V, dissenyeu un circuit amb amplificadors operacionals que doni a la sortida 15V quan les dues sortides dels dos circuits anteriors siguin de 5V, i que doni 0V per qualsevol altra combinació possible de valors. (Pels dos circuits de les figures, preneu Vcc+=15V i Vcc-=-15V).

Feb/2021 1/1