Assignment – 1 : Implementation of Expectation Maximization Algorithm.

Artificial Intelligence Lab (CS:571) Deadline: 13th Aug 2018

Note:

- 1. Read all the instructions carefully and adhere to them.
- **2.** You may choose any programming language for the implementation, however, *Python* is recommended.
- **3.** Assignment has to be done in group of maximum three members.

Question: Assume there are two coins C_1 and C_2 .

- A. Choose a coin between C_1 and C_2 and toss it.
 - a. $p = \text{probability of choosing C}_1$
 - b. p_1 = probability of getting head from C_1
 - c. p_2 = probability of getting head from C_2
- B. Repeat Step A. for N number of times to generate a sequence of H and T using p (say 0.7), p_1 (say 0.6), and p_2 (say 0.3).
- C. Understand the properties of random number generator such that probability of choosing C_1 is 0.7. Generate another random number so that head is produced with probability 0.6 (for C_1) and 0.3 (for C_2).
- D. Estimate p, p₁ and p₂ using Expectation Maximization (EM) Algorithm
 - a. Initialize p, p_1 , and p_2 randomly.
 - b. **E step:** $E(z_i) = \frac{(p.p_1^{x_i}.(1-p_1)^{1-x_i})}{(p.p_1^{x_i}.(1-p_1)^{1-x_i})} + (1-p).p_2^{x_i}.(1-p_2)^{1-x_i}}$
 - c. M step:

$$egin{aligned} p &= rac{\sum_{i=1}^{N} E(z_i)}{N} \ p_1 &= rac{\sum_{i=1}^{N} x_i E(z_i)}{\sum_{i=1}^{N} E(z_i)} \ p_2 &= rac{M - \sum_{i=1}^{N} x_i E(z_i)}{N - \sum_{i=1}^{N} E(z_i)} \end{aligned}$$

Where M is the number of heads in the generated sequence, and x_i and z_i are i^{th} *indicator variable* and i^{th} *hidden variable*, respectively. $z_i = 1$, if C_1 is chosen, else 0, $x_i = 1$, if head, else 0.

d. Repeat steps b-c until the p, p_1 and p_2 values converges.