信号与系统

信息学院 主干基础课

上节课内容要点回顾

- * 傅里叶级数的定义
- * 傅里叶级数的存在条件
- * 周期信号的傅里叶分析

第三章 傅里叶分析

- § 3.2 非周期信号的傅氏分析_傅里叶变换
- § 3.3 典型非周期信号的频谱
- § 3.4 傅里叶变换的基本性质

傅立叶理论的两个核心思想:

• 周期信号均可被表示为各种简谐波的加权和

• 非周期信号均可用简谐波信号的加权积分表示

从周期信号的傅氏级数说起:

$$T_1 \to \infty$$
 $\omega_1 = \frac{2\pi}{T_1} \to 0 \to d\omega$ $n\omega_1 \to \omega$

§3.2 非周期信号的傅氏分析 傅里叶变换

周期信号的谱线间隔 T_1 越大则谱线越密,对于非周期信号而言相当于 $T_1 \rightarrow \infty$,这 时离散谱线有可能转变成连续谱,周期信号则转变为非周期,从这一点开始分析:

为避免由于T→∞ 时使得:
$$F_k = \frac{1}{T_1} \int_0^{T_1} f(t) e^{-jk\omega_1 t} dt \Rightarrow 0$$

选取新的频谱函数:
$$F(\omega) = \lim_{T \to \infty} T \cdot F_n = \lim_{T \to \infty} \int_{-\frac{T_1}{2}}^{\frac{T_1}{2}} f(t) e^{-jn\omega_1 t} dt$$
 $\Rightarrow F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$

将离散变量改为连续变量: $n\omega_1 \Rightarrow \omega$

将原函数的展开式:
$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_1}$$
 也作替换: $F_n = \frac{F(\omega)}{T}$ 、 $\frac{1}{T} = \frac{\Delta\omega}{2\pi}$ $\Rightarrow \frac{d\omega}{2\pi}$ 、 $\sum_{n=-\infty}^{\infty} \Rightarrow \int_{-\infty}^{\infty}$

得到:
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

は数数的展升式:
$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{j\omega t}$$
 记作台操: $\Gamma_n - \frac{1}{T}$ 、 $\frac{1}{T} - \frac{1}{2\pi}$ $\xrightarrow{} \frac{1}{2\pi}$ 、 $\frac{1}{2\pi}$ 、

$$f(t) = \mathcal{F}^{-1} F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

傅里叶变换存在条件(即傅里叶积分收敛性条件):

f(t)在(- ∞ , ∞)上满足狄式条件且绝对可积,则有:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{j\omega t}d\omega$$

$$F(\omega) = |F(\omega)| \cdot e^{j\varphi(\omega)}$$

$$|F(\omega)| \quad \mathbf{幅频特性}$$

$$\varphi(\omega) \quad \mathbf{相频特性}$$

例:

试求双边指数信号 $f(t) = e^{-a|t|}, a > 0$ 的傅氏变换

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt = \int_{-\infty}^{0} e^{at}e^{-j\omega t}dt + \int_{0}^{\infty} e^{-at}e^{-j\omega t}dt$$
$$= \frac{1}{a - j\omega} + \frac{1}{a + j\omega} = \frac{2a}{a^2 + \omega^2}$$

§ 3.3 典型非周期信号的频谱

一、矩形脉冲信号:

主要能量集中在第一个过零点的波形内,通常认为其带宽为:

$$B_{\omega} = \frac{2\pi}{\tau}$$
 或: $B_f = \frac{1}{\tau}$

二、直流信号:

$$F(\omega) = \int_{-\frac{\epsilon}{2}}^{\frac{\epsilon}{2}} A e^{-j\omega t} dt = \frac{2A}{\omega} \sin \frac{\omega \tau}{2} = A \tau S a(\frac{\omega \tau}{2})$$

设:
$$A = \lim_{\tau \to \infty} f(t)$$

$$\lim_{\tau \to \infty} f(t) = \lim_{\tau \to \infty} F(\omega) = \lim_{\tau \to \infty} \frac{2A}{\omega} \sin \frac{\omega \tau}{2} = k\delta(\omega)$$

$$\mathcal{F} \quad A = \mathcal{F} \quad \lim_{\tau \to \infty} f(t) = \lim_{\tau \to \infty} F(\omega) = \lim_{\tau \to \infty} \frac{2A}{\omega} \sin \frac{\omega \tau}{2} = k\delta(\omega)$$

$$\int_{-\infty}^{\infty} k\delta(\omega) d\omega = \lim_{\tau \to \infty} \int_{-\infty}^{\infty} \frac{2A}{\omega} \sin \frac{\omega \tau}{2} d\omega$$

利用特殊函数的积分:
$$\int_{-\infty}^{\infty} \frac{\sin ax}{x} dx = \pi$$

所以:
$$k = \lim_{\tau \to \infty} \int_{-\infty}^{\infty} \frac{2A}{\omega} \sin \frac{\omega \tau}{2} d\omega = 2A\pi$$

三、阶跃信号:

将阶跃信号看作指数函数的极限: $u(t) = \lim_{a \to 0} e^{-at} u(t)$

$$\mathcal{F}\{\lim_{a\to 0} e^{-at} u(t)\} = \lim_{a\to 0} \frac{1}{a+j\omega} = \lim_{a\to 0} \left(\frac{a}{a^2+\omega^2} - j\frac{\omega}{a^2+\omega^2}\right) = \lim_{a\to 0} \frac{a}{a^2+\omega^2} + \frac{1}{j\omega}$$

其中:
$$\lim_{a\to 0} \frac{a}{a^2 + \omega^2} = \begin{cases} \lim_{a\to 0} \frac{1}{a} & \omega = 0 \\ 0 & \omega \neq 0 \end{cases}$$
 这表明频谱的实部类似在 $\omega = 0$ 处的 冲激,以下确定其冲激强度:

$$\int_{-\infty}^{\infty} k\delta(\omega)d\omega = \int_{-\infty}^{\infty} \lim_{a\to 0} \frac{a}{a^2 + \omega^2} d\omega = \lim_{a\to 0} \int_{-\infty}^{\infty} \frac{a}{a^2 + \omega^2} d\omega = \lim_{a\to 0} \left. arctg(\frac{\omega}{a}) \right|_{-\infty}^{\infty} = \pi$$

综合上述分析:
$$u(t) \leftrightarrow F(\omega) = \frac{1}{j\omega} + \pi \delta(\omega)$$

四、符号函数:

$$\operatorname{sgn}(t) = 2u(t) - 1$$

$$\mathcal{F}\{\operatorname{sgn}(t)\} = 2\left[\frac{1}{j\omega} + \pi\delta(\omega)\right] - 2\pi\delta(\omega) = \frac{2}{j\omega}$$

五、冲激信号:

$$F(\omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t} dt = 1$$

§ 3.4 傅里叶变换的基本性质

一、对称性:

时频变换对的对称性: 若: $F(\omega) = \mathcal{F}\{f(t)\}\$ 则: $\mathcal{F}\{F(t)\} = 2\pi f(-\omega)$

时频中心纵坐标的对称性:
$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) d\omega$$
 $F(0) = \int_{-\infty}^{\infty} f(t) dt$

对于实函数时间信号f(t):

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{j\omega t}dt = \int_{-\infty}^{\infty} f(t)\cos \omega t dt - j\int_{-\infty}^{\infty} f(t)\sin \omega t dt$$

具有如下共轭对称性:

$$F(-\omega) = F^*(\omega)$$
, $Re F(\omega) = Re F(-\omega)$, $Im F(\omega) = -Im F(-\omega)$

例: 试求信号 $f(t) = \frac{2}{t^2 + 1}$ 的傅氏变换

$$g(t) = e^{-a|t|} \Leftrightarrow \mathcal{F}\left\{g(t)\right\} = \frac{2a}{a^2 + \omega^2} \qquad e^{-|t|} \Leftrightarrow \frac{2}{1 + \omega^2}$$

$$F(\omega) = \mathcal{F}\{f(t)\} = 2\pi g(-\omega) = 2\pi e^{-a|\omega|}$$

例.已知因果信号f(t)的频谱函数的实部 $Re[F(\omega)]$ 如图中 $G_{2\omega,0}(\omega)$,试求f(t)。

根据时间信号的奇偶分量关系式: $f_e(t) = \frac{1}{2}[f(t) + f(-t)]$

可将因果信号用其偶分量表示为: $f(t) = 2f_e(t)u(t)$

因为偶函数的频谱为实函数且偶对称,根据对称性关系即可从 $G_{2\omega 0}(\omega)$ 求得 $f_{e}(t)$

根据对称性性质:
$$\mathcal{F}{F(t)} = 2\pi f(-\omega), f(-\omega) = \frac{1}{2\pi} \mathcal{F}{F(t)}$$

已知单矩形脉冲的频谱: $G_{\tau}(t) \leftrightarrow \tau Sa(\frac{\omega \tau}{2})$

进行参数及变量代换: $2\omega_0 \leftrightarrow \tau$ 、 $t \leftrightarrow \omega$

求得矩形频谱所对应原信号的偶分量: $G_{2\omega_0}(\omega) \leftrightarrow \frac{1}{2\pi} \{2\omega_0 Sa(\omega_0 t)\} = \frac{\omega_0}{\pi} Sa(\omega_0 t) = f_e(t)$

$$\therefore f(t) = 2f_e(t)u(t) = \frac{2\omega_0}{\pi} Sa(\omega_0 t)u(t)$$

二、线性性质:

若有: $f(t) \Leftrightarrow F(\omega)$ $g(t) \Leftrightarrow G(\omega)$

则: $af(t) + bg(t) \Leftrightarrow aF(\omega) + bG(\omega)$ a、b为常数

物理意义:

在时域上对信号进行的幅度改变或波形合成,必将对应着信号频谱的 线性改变和频谱叠加。线性性质是傅里叶变换应用于线性系统分析问题 的基本前提。

三、比例变换(相似性)性质:

若
$$F[f(t)] = F(\omega), \quad a \neq 0,$$
则
$$F[f(at)] = \frac{1}{|a|}F(\frac{\omega}{a}) \quad ; F^{-1}[F(at)] = \frac{1}{|a|}f(\frac{t}{a})$$

物理意义:

时域上的压缩(a>1)对应着频谱的扩展,反之亦然。

例: 线性系统的时频关系

对于时、频傅氏积分的原点值: $f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) d\omega$ 、 $F(0) = \int_{-\infty}^{\infty} f(t) dt$

可将频域积分面积 $f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) d\omega = ($ 等效看成为)高×宽= $F(0) \times 2B_0$

其中B₀可被看作为是频域中"带宽"的量度: $B_0 = \frac{\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) d\omega}{2F(0)} = \frac{f(0)}{2F(0)}$

将时域积分面积 $F(0) = \int_{-\infty}^{\infty} f(t)dt = (也等效看成为)高×宽 = f(0)×T_0$

其中 T_0 可被看作为是时域中持续时间的量度: $T_0 = \frac{\int f(t)dt}{f(0)} = \frac{F(0)}{f(0)}$

则信号时域持续时间与频域带宽乘积就可等效定量计算: $T_0B_0 = \frac{F(0)}{f(0)} \cdot \frac{f(0)}{2F(0)} = \frac{1}{2}$

例: 判断命题 $f(t) \equiv \mathcal{F}^{-1} \mathcal{F}[f(t)]$ 是否成立?

结合线性性质和比例变换性质比较两个信号的频谱:

$$\begin{split} f_1(t) &= 1 \Leftrightarrow 2\pi\delta(\omega) = F_1(\omega) \\ f_2(t) &= u(t) + u(-t) \Leftrightarrow \left[\frac{1}{j\omega} + \pi\delta(\omega)\right] + \left[-\frac{1}{j\omega} + \pi\delta(-\omega)\right] = 2\pi\delta(\omega) = F_2(\omega) \\ F_1(\omega) &= F_2(\omega) \Rightarrow f_1(t) ? f_2(t) \end{split}$$

在不连续点处傅里叶积分取值为 : $\frac{1}{2}[f(t_0+0)+f(t_0-0)]$

设: $f(t) \Leftrightarrow F(\omega)$

则有:

四、时移性质: $f(t-t_0) \Leftrightarrow F(\omega)e^{-j\omega t_0}$

五、频移性质: $f(t)e^{j\omega_0 t} \Leftrightarrow F(\omega-\omega_0)$

例:已知 $f_0(t)$ 的傅里叶变换试求 f(t) 的傅里叶变换式:

设:

$$F_0(\omega) = A \tau Sa(\frac{\omega \tau}{2})$$

$$\begin{array}{c|c}
A & f(t) \\
\hline
-\frac{\tau}{2} & \frac{\tau}{2} & T_1
\end{array}$$

$$f(t) = f_0(t+T) + f_0(t) + f_0(t-T)$$

$$F_0(\omega) = A\tau Sa(\frac{\omega_1 \tau}{2})$$

$$\therefore F(\omega) = F_0(\omega) \left(e^{j\omega T} + 1 + e^{-j\omega T} \right) = A\tau Sa(\frac{\omega_1 \tau}{2}) \left(1 + 2\cos\omega T \right)$$

六、卷积定理:

设: $f_1(t) \Leftrightarrow F_1(\omega), f_2(t) \Leftrightarrow F_2(\omega)$

则有频域卷积定理: $f_1(t)f_2(t) \leftrightarrow \frac{1}{2\pi}F_1(\omega)*F_2(\omega)$

时域卷积定理: $f_1(t) * f_2(t) \leftrightarrow F_1(\omega) \cdot F_2(\omega)$

例: 试求f(t)的傅氏变换

解:将函数看作: $f(t) = f_1(t)f_2(t) = f_1(t)\cos 10\pi t$

而三角波 $f_1(t)$ 又可以被看成是由两个相同的方波脉冲 $f_0(t)$ 相卷积而形成:

利用时域卷积定理:
$$f_1(t) = f_0(t) * f_0(t) \leftrightarrow F_0(\omega) F_0(\omega) = Sa^2(\frac{\omega}{2})$$

根据频域卷积定理: $f(t) = f_1(t)f_2(t) \leftrightarrow F(\omega)$

$$F(\omega) = \frac{1}{2\pi} F_1(\omega) * F_2(\omega) = \frac{1}{2\pi} \{ Sa^2(\frac{\omega}{2}) * [\pi \delta(\omega - 10\pi) + \pi \delta(\omega + 10\pi)] \}$$
$$= \frac{1}{2} [Sa^2(\frac{\omega - 10\pi}{2}) + Sa^2(\frac{\omega + 10\pi}{2})]$$

设:
$$f(t) \Leftrightarrow F(\omega)$$

则有:

时域微分:
$$f'(t) \leftrightarrow j\omega F(\omega)$$
 $f^{(n)}(t) \leftrightarrow (j\omega)^n F(\omega)$

七、微分性质:
$$\begin{cases} \textbf{时域微分:} \quad f'(t) \leftrightarrow j\omega F(\omega) \qquad \qquad f^{(n)}(t) \leftrightarrow (j\omega)^n F(\omega) \\ \\ \textbf{频域微分:} \quad (-jt)f(t) \leftrightarrow F'(\omega) \qquad \qquad (-jt)^n f(t) \leftrightarrow F^{(n)}(\omega) \end{cases}$$

时域积分:
$$\Im[\int_{0}^{t} f(\tau)d\tau] = \frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$$

八、积分性质:
$$\begin{cases} \textbf{时域积分:} & \Im[\int_{-\infty}^{t} f(\tau)d\tau] = \frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega) \\ \frac{\omega}{\int_{-\infty}^{\omega}} F(u)du = \Im[\frac{f(t)}{-jt} + \pi f(0)\delta(t)] \end{cases}$$

证 频域积分性质:
$$\int_{-\infty}^{\infty} F(u)du = \Im\left[\frac{f(t)}{-jt} + \pi f(0)\delta(t)\right]$$

理想积分器是对阶跃函数的卷积: $\int_{-\infty}^{\omega} F(u)du = F(\omega) * u(\omega)$

根据频域卷积定理: $F(\omega)*u(\omega) \leftrightarrow 2\pi f(t)\Im^{-1}[u(\omega)]$

根据对称性质求 $u(\omega)$ 的原函数: $f(t) \leftrightarrow F(\omega)$ 、 $F(t) \leftrightarrow 2\pi f(-\omega)$

$$u(t) \leftrightarrow \frac{1}{j\omega} + \pi\delta(\omega)$$

$$\frac{1}{jt} + \pi \delta(t) \leftrightarrow 2\pi u(-\omega)$$

根据比例性质: $-\frac{1}{jt} + \pi\delta(t) \leftrightarrow 2\pi u(\omega)$

$$\therefore F(\omega) * u(\omega) \leftrightarrow 2\pi f(t) \left\{ \frac{1}{2\pi} \left[\frac{1}{-jt} + \pi \delta(t) \right] \right\} = \frac{f(t)}{-jt} + \pi f(0) \delta(t)$$

例: 求下图函数y(t)的傅里叶变换

y(t)不绝对可积,不能用定义式求积分,将其看作是对右边方波脉冲的积分:

$$y(t) = \int_{-\infty}^{t} f(\tau) d\tau$$

脉宽 t_0 方波的变换为: $t_0Sa(\frac{\omega t_0}{2})$

考虑时移及信号幅度: $f(t) \leftrightarrow Sa(\frac{\omega t_0}{2})e^{-j\frac{\omega t_0}{2}}$

使用积分性质并注意 $\Im[\int_{-\infty}^{t} f(\tau)d\tau] = F(\omega)\left[\frac{1}{j\omega} + \pi\delta(\omega)\right] = \frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$ 到 F(0)=1:

$$y(t) = \int_{0}^{t} f(\tau)d\tau \leftrightarrow \frac{1}{j\omega} Sa(\frac{\omega t_0}{2})e^{-j\frac{\omega t_0}{2}} + \pi\delta(\omega)$$

利用上述方法需注意一点:

一般来说函数求导后再积分不一定等于原函数,可能相差一个积分常数:

$$f(t) \underset{\mathbb{R}}{\Longrightarrow} f'(t) \underset{\mathbb{R}}{\Longrightarrow} f(t) - f(-\infty)$$

这时的积分性质应调整为:

$$\mathfrak{I}[f(t)] = \frac{1}{j\omega} \mathfrak{I}[f'(t)] + [f(\infty) + f(-\infty)]\pi \delta(\omega)$$

另一种方法是:如能计算出此时信号的直流分量A,则在完成积分变换后的频谱函数上加上一个 $2\pi A \delta(\omega)$ 即可。

例: 求下图函数f(t)的傅里叶变换

注意这时:
$$\int_{-\infty}^{t} \frac{df(\tau)}{d\tau} d\tau \neq f(t)$$

例用微积分性质,其微分函数的变换:

$$\Im[f'(t)] = -2Sa(\omega), f(\infty) = 1, f(-\infty) = 3$$

$$\Im[f(t)] = \frac{1}{j\omega}\Im[f'(t)] + [f(\infty) + f(-\infty)]\pi\delta(\omega) = -\frac{2}{j\omega}Sa(\omega) + 4\pi\delta(\omega)$$

九. 相关定理及能量积分公式

设:
$$f_1(t) \leftrightarrow F_1(\omega)$$
 $f_2(t) \leftrightarrow F_2(\omega)$

相关定理:
$$\Im[R_{12}(\tau)] = F_1(\omega)F_2^*(\omega)$$

$$\Im[R_{21}(\tau)] = F_1^*(\omega)F_2(\omega)$$

$$\Im[R(\tau)] = |F(\omega)|^2$$

能量积分公式 (Parseval公式):
$$\int_{-\infty}^{\infty} f^2(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega$$

广义Parseval公式:
$$\int_{-\infty}^{\infty} f_1(t) f_2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) d\omega$$

结合相关定理,能量积分公式还有另外一种表现形式:

$$R(0) = \int_{-\infty}^{\infty} f^{2}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^{2} d\omega$$

信号的能量: E = R(0)

由于物理量 $|F(\omega)|^2$ 体现着频域上信号能量的分布情况,因而定义能量密度(能谱)为:

$$\varepsilon(\omega) = |F(\omega)|^2$$

$$E = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varepsilon(\omega) d\omega$$

结合相关定理有: $\varepsilon(\omega) = \Im[R(\tau)]$

即:能谱函数与自相关函数是一对傅里叶变换。

$$f(t) \leftrightarrow F(\omega)$$

设基带信号为: $f(t) \leftrightarrow F(\omega)$ 其信号带宽为: ω_m

实际发射信号为经过调制(脉冲幅度调制)的信号:

$$f_0(t) = f(t)\cos\omega_0 t = \frac{1}{2}f(t)(e^{j\omega_0 t} + e^{-j\omega_0 t}) \leftrightarrow \frac{1}{2}[F(\omega + \omega_0) + F(\omega - \omega_0)]$$

设基带信号为: $f(t) \leftrightarrow F(\omega)$ 其信号带宽为: ω_m

在接收端进行相反的"解调"过程: $f_0(t) = f(t) \cos \omega_0 t \qquad f_1(t) = f_0(t) \cos \omega_0 t \qquad \text{低逾滤波} \qquad -\frac{f(t)}{2}$ $f_1(t) = f_0(t) \cos \omega_0 t \qquad \text{低逾滤波} \qquad -\frac{f(t)}{2}$ $f_1(t) = f_0(t) \cos \omega_0 t = f(t) \cos^2 \omega_0 t = \frac{f(t)}{2} (1 + \cos 2\omega_0 t)$ $F_1(\omega) = \frac{1}{2} F(\omega) + \frac{1}{4} [F(\omega + 2\omega_0) + F(\omega - 2\omega_0)]$

The bands listed before are the official ITU (International Telecommunications Union) names and based on the wavelengths.

无线电频率频段划分及主要用途

名称	甚低频	低频	中频	高频	甚高频	超高频	特高频	极高频
符号	VLF	LF	MF	HF	VHF	UHF	SHF	EHF
频率	3-30KHz	30-300KHz	0.3-3MHz	3-30MHz	30-300MHz	0.3-3GHz	3-30GHz	30-300GHz
波段	超长波	长波	中波	短波	米波	分米波	厘米波	毫米波
波长	1Km-100Km	10Km-1Km	1Km-100m	100m-10m	10m-1m	1m-0.1m	10cm-1cm	10mm-1mm
主要用途	潜艇与海岸 陆基通信; 远距离通信; 超远距离导 航	越洋通信; 中距离通信; 地下岩层通 信;远距离 导航	船用通信; 业余无线电 通信;调幅 广播;中距 离导航	远距离短波 通信;国际 定点通信; 短波广播	对空间飞行体通信;调频广播;电视广播	中容量微波通信;移动通信;雷达应用	数字通信; 卫星通信; 国际海事卫 星通信	射电天文应用

举例.....

无线传感器在应用中选择什么频段?

ISM (Industrial Scientific Medical) BANDS

1,85	中心频率(Hz)	频率范围(Hz)
nRF905 Si4432	6.780 MHz	6.765–6.795 MHz
MF905	13.560 MHz	13.553–13.567 MHz
PRIORIE - LE PRIOR	27.120 MHz	26.957–27.283 MHz
	40.68 MHz	40.66–40.70 MHz
EZRadio IA4221	133.92 MHz	433.05-434.79 MHz
	915 MHz	902–928 MHz
	2.450 GHz	2.400–2.500 GHz
	5.800 GHz	5.725–5.875 GHz
Chipcon \ RFM \ NORDIC \ ATMEL	24.125 GHz Ch	24–24.25 GHz

典型应用:

无线遥控器、无线抄表、无线传感器、汽车胎压监视、智能家居、智能交通管理系统、无线键盘、遥控玩具、门禁系统、小区传呼、小型无线数据终端、安防系统、生物信号采集、医护数据录入、气象监控、RFID ······

硬件设计原理

举例: 关于常用信号线

用于视频信号传输时双绞线与同轴电缆的比较

D135-G

9-6MHz SYV75-5 扫频测试信号

600m 900m 1200m 1500m

传输1000M距离时各频段信号衰减数据

线缆型号	50KHz	0.5MHz	1MHz	2MHz	4MHz	4.8MHz	5.8MHz
D135-G	7.19db	12.91db	18.8db	26.5db	37.73db	41.55db	45.69db
SYV75-5	3.95db	6.43db	8.78db	12.2db	17.7db	19.7db	21.7db

习题:

3-15, 3-19, 3-21, 3-22, 3-23, 3-28

