1 Constant Velocity Model

Der Zustand $\underline{x}_{k|k-1}$ an dem Zeitschritt k, der die Bewegung des Objekts beschreibt, erhält die Postionen $x_{k|k-1}$ und $y_{k|k-1}$ und die Geschwindigkeiten $v_{k|k-1}^x$ beziehungsweise $v_{k|k-1}^y$.

$$\underline{x}_{k-1} = \begin{bmatrix} x_{k-1} \\ v_{k-1}^x \\ y_{k-1} \\ v_{k-1}^y \end{bmatrix} . \tag{1}$$

 x_{k-1} und y_{k-1} können gemessen werden und v_{k-1}^x und v_{k-1}^y werden geschätzt, somit:

$$\underline{y}_{k-1} = \begin{bmatrix} x_{k-1} \\ y_{k-1} \end{bmatrix} = \mathbf{H}\underline{x}_{k-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \underline{x}_{k-1}, \tag{2}$$

die Matrix **H** wird als *Ausgangsmatrix* betrachtet. Es wird angenommen, dass die Objekte sich mit näherungsweise einer konstanten Geschwindigkeit bewegen. Aus dem Grund, können die Postionen und Geschwindigkeiten folgendermaßen beschrieben werden.

$$x_{k} = x_{k-1} + Tv_{k-1}^{x},$$

$$y_{k} = y_{k-1} + Tv_{k-1}^{y},$$

$$v_{k}^{x} = v_{k-1}^{x},$$

$$v_{k}^{y} = v_{k-1}^{y},$$
(3)

wo ${\cal T}$ die Bildaufnahmezeit darstellt. Zusammenfassend stellt man das diskrete dynamische System vor:

$$\underline{x}_{k} = \mathbf{F}\underline{x}_{k-1} = \begin{bmatrix} 1 & T & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & T \\ 0 & 0 & 0 & 1 \end{bmatrix} \underline{x}_{k-1}, \tag{4}$$

wo die Matrix F die diskrete Systemmatrix darstellt.