Top-Down Parsing and Intro to Bottom-Up Parsing

Lecture 7

Prof. Aiken CS 143 Lecture 7

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
 - In practice, LL(1) is used

Prof. Aiken CS 143 Lecture 7

2

LL(1) vs. Recursive Descent

- In recursive-descent,
 - At each step, many choices of production to use
 - Backtracking used to undo bad choices
- · In LL(1),
 - At each step, only one choice of production
 - That is
 - When a non-terminal ${\bf A}$ is leftmost in a derivation
 - · The next input symbol is t
 - There is a unique production $\textbf{\textit{A}} \rightarrow \alpha$ to use
 - Or no production to use (an error state)
- · LL(1) is a recursive descent variant without backtracking

Prof. Aiken CS 143 Lecture 7

. .

Predictive Parsing and Left Factoring

Recall the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- · We need to <u>left-factor</u> the grammar

Prof. Aiken CS 143 Lecture 7

Left-Factoring Example

· Recall the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

Factor out common prefixes of productions

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$
 $Y \rightarrow * T \mid \epsilon$

Prof. Aiken CS 143 Lecture 7

LL(1) Parsing Table Example

· Left-factored grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

• The LL(1) parsing table: next input token

	()					
	int	*	+ *	()	\$
Ε	ΤX			ΤX		
Х			+ E		3	3
Т	int Y			(E)		
У		* T	3		3	ε

leftmost non-terminal

rhs of production to use

Prof. Aiken CS 143 Lecture 7

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production $E \to TX$ "
 - This can generate an int in the first position
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only if Y $\rightarrow \epsilon$

Prof. Aiken CS 143 Lecture 7

7

LL(1) Parsing Tables. Errors

- · Blank entries indicate error situations
- · Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Prof. Aiken CS 143 Lecture 7

Using Parsing Tables

- · Method similar to recursive descent, except
 - For the leftmost non-terminal 5
 - We look at the next input token a
 - And choose the production shown at [S,a]
- · A stack records frontier of parse tree
 - Non-terminals that have yet to be expanded
 - Terminals that have yet to matched against the input
 - Top of stack = leftmost pending terminal or non-terminal
 - Top of Stack left most pending terminal of non
- · Reject on reaching error state
- · Accept on end of input & empty stack

Prof. Aiken CS 143 Lecture 7

Q

LL(1) Parsing Algorithm

```
initialize stack = <S $> and next repeat case stack of <X, rest> : if T[X,*next] = Y<sub>1</sub>...Y<sub>n</sub> then stack \leftarrow <Y<sub>1</sub>...Y<sub>n</sub> rest>; else error (); <t, rest> : if t == *next ++ then stack \leftarrow <rest>; else error (); until stack == < >
```

Stack	Input	Action
E\$	int * int \$	ΤX
TX\$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
ГХ\$	int \$	int Y
nt Y X \$	int \$	terminal
/ X \$	\$	ε
< \$	\$	ε
\$	\$	ACCEPT
	Prof. Aiken CS 143 Lecture 7	12

Constructing Parsing Tables: The Intuition

- Consider non-terminal A, production $A \rightarrow \alpha$, & token t
- $T[A,t] = \alpha$ in two cases:
- If $\alpha \rightarrow^* \dagger \beta$
 - α can derive a t in the first position
 - We say that $t \in First(\alpha)$
- If $A \rightarrow \alpha$ and $\alpha \rightarrow^* \epsilon$ and $S \rightarrow^* \beta A \dagger \delta$
 - Useful if stack has A, input is t, and A cannot derive t
 - In this case only option is to get rid of A (by deriving ϵ)

 Can work only if t can follow A in at least one derivation

 - We say $t \in Follow(A)$

Prof. Aiken CS 143 Lecture 7

13

15

Computing First Sets

```
Definition
```

```
\mathsf{First}(\mathsf{X}) = \{ \ t \ | \ \mathsf{X} \to^* t\alpha \} \cup \{ \epsilon \ | \ \mathsf{X} \to^* \epsilon \}
```

Algorithm sketch:

- 1. First(t) = { t }
- 2. $\varepsilon \in First(X)$
 - if $X \rightarrow \epsilon$
 - if $X \to A_1 \dots A_n$ and $\epsilon \in First(A_i)$ for $1 \le i \le n$
- 3. First(α) \subseteq First(X) if X \rightarrow $A_1 ... A_n <math>\alpha$
 - and $\varepsilon \in First(A_i)$ for $1 \le i \le n$

Prof. Aiken CS 143 Lecture 7

First Sets. Example

```
· Recall the grammar
```

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \epsilon$

First sets

Prof. Aiken CS 143 Lecture 7

Computing Follow Sets

Definition:

Follow(X) =
$$\{ \dagger \mid S \rightarrow^* \beta X \dagger \delta \}$$

- Intuition
 - If $X \rightarrow A$ B then $First(B) \subseteq Follow(A)$ and $Follow(X) \subseteq Follow(B)$ • if $B \rightarrow^* \epsilon$ then $Follow(X) \subseteq Follow(A)$
 - If S is the start symbol then $\$ \in Follow(S)$

Prof. Aiken CS 143 Lecture 7

Computing Follow Sets (Cont.)

Algorithm sketch:

- 1. $\$ \in Follow(S)$
- 2. First(β) { ϵ } \subseteq Follow(X)
 - For each production $A \rightarrow \alpha \times \beta$
- 3. $Follow(A) \subseteq Follow(X)$
 - For each production $A \rightarrow \alpha \times \beta$ where $\epsilon \in First(\beta)$

Prof. Aiken CS 143 Lecture 7

17

Follow Sets. Example

```
· Recall the grammar
```

```
E \rightarrow TX X \rightarrow + E \mid \epsilon

T \rightarrow (E) \mid int Y Y \rightarrow * T \mid \epsilon
```

Follow sets

Prof. Aiken CS 143 Lecture 7

18

Constructing LL(1) Parsing Tables

- · Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do
 - $T[A, t] = \alpha$
 - If $\epsilon \in \mathsf{First}(\alpha),$ for each $t \in \mathsf{Follow}(A)$ do
 - $T[A, t] = \alpha$
 - If $\epsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do
 - T[A, \$] = α

Prof. Aiken CS 143 Lecture 7

19

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If \boldsymbol{G} is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language CFGs are not LL(1)

Prof. Aiken CS 143 Lecture 7

Bottom-Up Parsing

- Bottom-up parsing is more general than topdown parsing
 - And just as efficient
 - Builds on ideas in top-down parsing
- · Bottom-up is the preferred method
- · Concepts today, algorithms next time

Prof. Aiken CS 143 Lecture 7

...

23

An Introductory Example

- Bottom-up parsers don't need left-factored grammars
- Revert to the "natural" grammar for our example:

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

Consider the string: int * int + int

Prof. Aiken CS 143 Lecture 7

The Idea

Bottom-up parsing *reduces* a string to the start symbol by inverting productions:

```
\begin{array}{lll} \operatorname{int} \star \operatorname{int} + \operatorname{int} & T \to \operatorname{int} \\ \operatorname{int} \star T + \operatorname{int} & T \to \operatorname{int} \star T \\ T + \operatorname{int} & T \to \operatorname{int} \\ T + T & E \to T \\ T + E & E & E \end{array}
```

Prof. Aiken CS 143 Lecture 7

Observation

- Read the productions in reverse (from bottom to top)
- · This is a rightmost derivation!

$$\begin{array}{lll} \text{int} \star \text{int} + \text{int} & & T \rightarrow \text{int} \\ \text{int} \star T + \text{int} & & T \rightarrow \text{int} \star T \\ T + \text{int} & & T \rightarrow \text{int} \\ T + T & & E \rightarrow T \\ T + E & & E \rightarrow T + E \\ E & & \end{array}$$

Prof. Aiken CS 143 Lecture 7

Important Fact #1 Important Fact #1 about bottom-up parsing: A bottom-up parser traces a rightmost derivation in reverse

A Trivial Bottom-Up Parsing Algorithm

```
Let I = input string repeat pick a non-empty substring \beta of I where X \rightarrow \beta is a production if no such \beta, backtrack replace one \beta by X in I until I = "S" (the start symbol) or all possibilities are exhausted
```

Prof. Aiken CS 143 Lecture 7

33

Questions

- · Does this algorithm terminate?
- · How fast is the algorithm?
- · Does the algorithm handle all cases?
- How do we choose the substring to reduce at each step?

Prof. Aiken CS 143 Lecture 7

34

Where Do Reductions Happen?

Important Fact #1 has an interesting consequence:

- Let $\alpha\beta\omega$ be a step of a bottom-up parse
- Assume the next reduction is by $X\!\!\to\beta$
- Then $\boldsymbol{\omega}$ is a string of terminals

Why? Because $\alpha X\omega \to \alpha\beta\omega$ is a step in a rightmost derivation

Prof. Aiken CS 143 Lecture 7

35

Notation

- Idea: Split string into two substrings
 - Right substring is as yet unexamined by parsing (a string of terminals)
 - Left substring has terminals and non-terminals
- The dividing point is marked by a
 - The | is not part of the string
- Initially, all input is unexamined $|x_1x_2...x_n|$

Prof. Aiken CS 143 Lecture 7

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

Prof. Aiken CS 143 Lecture 7

37

39

Shift

Shift: Move | one place to the right
 Shifts a terminal to the left string

$$ABC|xyz \Rightarrow ABCx|yz$$

Prof. Aiken CS 143 Lecture 7

- -

Reduce

- Apply an inverse production at the right end of the left string
 - If $A \rightarrow xy$ is a production, then

 $Cbxy|ijk \Rightarrow CbA|ijk$

Prof. Aiken CS 143 Lecture 7

The Example with Reductions Only

The Example with Shift-Reduce Parsing |int * int + int shift int | * int + int shift int * | int + int shift int * int | + int reduce $T \rightarrow int$ int * T | + int reduce $T \rightarrow int * T$ T | + int shift T + | int shift T + int reduce $T \rightarrow int$ T + T | reduce $E \rightarrow T$ T+E| reduce $E \rightarrow T + E$ EΙ Prof. Aiken CS 143 Lecture 7 41

A Shift-Reduce Parse in Detail (2) |int * int + int | int | * int + int | int | * int + int | Prof. Aiken CS 143 Lecture 7 | 43

```
A Shift-Reduce Parse in Detail (3)

|int * int + int | int | * int + int | int * | int + int |
| int * | int + int |
| m
| Prof. Aiken CS 143 Lecture 7 44
```


The Stack

- Left string can be implemented by a stack
 Top of the stack is the |
- · Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols off of the stack (production rhs) and pushes a nonterminal on the stack (production lhs)

Prof. Aiken CS 143 Lecture 7

53

Conflicts

- In a given state, more than one action (shift or reduce) may lead to a valid parse
- If it is legal to shift or reduce, there is a *shift-reduce* conflict
- If it is legal to reduce by two different productions, there is a *reduce-reduce* conflict
- · You will see such conflicts in your project!
 - More next time . . .

Prof. Aiken CS 143 Lecture 7