RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION **** EXAMEN DU BACCALAURÉAT	Épreuve : MATHÉMATIQUES		
	Section: Mathématiques		
	Durée : 4 h	Coefficient : 4	
SESSION 2016	Session principale		

Le sujet comporte cinq pages numérotées de 1/5 à 5/5 La page 5/5 est à rendre avec la copie.

Exercice 1 (5 points)

Le plan est orienté.

Dans la figure 1 de l'annexe jointe, ABC est un triangle direct, rectangle en A et tel que AB < AC.

La médiatrice du segment [BC] coupe les droites (AB), (AC) et (BC) respectivement en E, F et G.

- Soit f la similitude directe de centre A et telle que f(B) = F.
 - a) Déterminer l'angle de f.
 - b) Montrer que l'image de la droite (BC) par f est la droite (GF).
 - c) Déterminer f(C).
- 2) Le cercle & de diamètre [BC] et le cercle & de diamètre [EF] se coupent en A et H.
 - a) Montrer que f(名) = 经.
 - b) Soit I = f(H). Construire le point l.
 - c) Montrer que le quadrilatère HEIF est un rectangle.
 - d) La droite (FI) coupe la droite (AE) en un point J. Montrer que f(F) = J.
- 3) Soit g la similitude indirecte de centre A et telle que g(B) = F.
 - a) Montrer que $g = S_{(AC)}$ o f.
 - b) Soit E' = f(E). Montrer que E' est un point de la droite (AC).
 - c) Soit F' = g(F) et H' = g(H). Construire l'image par g du rectangle FHEI.

Exercice 2 (3 points)

On considère dans l'ensemble $\mathbb C$ l'équation $(E): z^2 - (1+2i)m z - (1-i)m^2 = 0$, où m est un nombre complexe non nul, d'argument $\theta \in]0,\pi[$.

- a) Résoudre dans C l'équation (E).
 On note z₁ et z₂ les solutions de l'équation (E).
 - b) Montrer que $(z_1z_2$ est un réel strictement positif) si et seulement si $\theta = \frac{5\pi}{8}$.

 Dans la suite de l'exercice on prend $\theta = \frac{5\pi}{8}$.
- 2) Vérifier que $z_1 z_2 = |m|^2 \sqrt{2}$.
- 3) Soit t un réel strictement positif et $m=\frac{\sqrt{t}}{\sqrt[4]{2}}e^{i\frac{5\pi}{8}}$. On se propose de construire les points M_1 et M_2 , images des solutions z_1 et z_2 de l'équation (E), correspondant au nombre complexe m. Dans la figure 2 de l'annexe jointe , $\left(O,\vec{u},\vec{v}\right)$ est un repère orthonormé direct ;

B et C sont les points d'affixes respectives $-\frac{\sqrt{2}}{2}$ et t;

E est le point d'intersection du demi-cercle \mathscr{C} de diamètre [BC] avec l'axe $(0, \overline{v})$.

- a) Montrer que $OE^2 = OB.OC$.
- b) En déduire que m = OE.
- 4) a) Construire le point A d'affixe m.
 - b) En déduire une construction des points M_1 et M_2 images des solutions z_1 et z_2 de l'équation (E). (On convient que $|z_1| < |z_2|$).

Exercice 3 (4 points)

- 1) Soit a un entier tel que $a \equiv 1 \pmod{2^4}$ et $a \equiv 1 \pmod{5^4}$. Montrer que $a \equiv 1 \pmod{10^4}$.
- 2) Soit b = $(9217)^4$. Montrer que b = 1 (mod 5) et b = 1 (mod 2^4).
- 3) Pour tout entier naturel n, on pose $b_n = b^{5^n} 1$.
 - a) Montrer que pour tout entier naturel n, $b_{n+1} = (b_n + 1)^5 1$.
 - b) En déduire que pour tout entier naturel n, $b_{n+1} = b_n^5 + 5b_n^4 + 10b_n^3 + 10b_n^2 + 5b_n$.
- 4) a) Montrer que si 5ⁿ⁺¹ divise b_n alors 5ⁿ⁺² divise b_n⁵.
 - b) Montrer, par récurrence, que pour tout entier naturel n, $b_n \equiv 0 \pmod{5^{n+1}}$.
- 5) a) Montrer que $(9217)^{500} \equiv 1 \pmod{625}$.
 - b) Montrer que $(9217)^{500} \equiv 1 \pmod{10000}$.
 - c) Trouver un entier dont le cube est congru à 9217 modulo 10000.

Exercice 4 (8 points)

- A) On considère la fonction f définie sur $]0,+\infty[$ par $f(x) = \frac{e^{\sqrt{x}}}{\sqrt{x}}$.
 - On note (C_f) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .
 - 1) a) Calculer $\lim_{x\to 0^+} f(x)$. Interpréter graphiquement.
 - b) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement.
 - 2) a) Montrer que pour tout $x \in]0,+\infty[$, $f'(x) = \frac{(\sqrt{x}-1)e^{\sqrt{x}}}{2x\sqrt{x}}$.
 - b) Dresser le tableau de variation de f.
 - c) Tracer la courbe (Cf).
 - 3) Soit λ un réel de]0,1[. On désigne par S_{λ} l'aire de la partie du plan limitée par (C_f) , l'axe des abscisses et les droites d'équations $x = \lambda$ et x = 1.
 - Calculer S_{λ} en fonction de λ et déterminer $\lim_{\lambda \to 0^+} S_{\lambda}$.
- B) 1) Soit g_1 et g_2 les restrictions de f respectivement à chacun des intervalles]0,1] et $[1,+\infty[$. Montrer que g_1 réalise une bijection de]0,1] sur un intervalle I que l'on déterminera et que g_2 réalise une bijection de $[1,+\infty[$ sur l'intervalle I.
 - 2) Soit n un entier naturel non nul.
 - a) Montrer que l'équation $f(x) = e + \frac{1}{n}$ admet dans $]0,+\infty[$ exactement deux solutions notées α_n et β_n telles que $0 < \alpha_n < 1 < \beta_n$.
 - On définit ainsi, pour tout entier naturel non nul n, deux suites réelles (α_n) et (β_n) .
 - b) Montrer que les suites (α_n) et (β_n) sont convergentes et déterminer leur limite.
 - 3) On considère la fonction h définie sur $\left[0,+\infty\right[$ par $h(x)=\begin{cases} \sqrt{x}\left(f(x)-(e+\frac{1}{n})\right) & \text{si } x>0\\ 1 & \text{si } x=0. \end{cases}$
 - On note (C_h) sa courbe représentative dans le repère orthonormé (O, \vec{i}, \vec{j}) .
 - a) Montrer que h est continue à droite en 0.
 - b) Déterminer le signe de h(x) pour tout $x \in [0, +\infty[$.

- 4) Soit H la primitive de h sur [0,+∞[qui s'annule en 0.
 - a) Justifier que les fonctions $\mathbf{u}: \mathbf{x} \mapsto \int_0^{\mathbf{x}} \mathrm{e}^{\sqrt{t}} dt$ et $\mathbf{v}: \mathbf{x} \mapsto 2 + 2\left(\sqrt{\mathbf{x}} 1\right) \mathrm{e}^{\sqrt{\mathbf{x}}}$ sont continues sur $\left[0, +\infty\right[$ et dérivables sur $\left]0, +\infty\right[$.
 - b) Montrer que pour tout $x \ge 0$, u(x) = v(x).
 - c) Donner l'expression de H(x) pour tout $x \in [0, +\infty[$.
- 5) Soit \mathcal{A}_n l'aire de la partie du plan limitée par (C_h) , l'axe des abscisses et les droites d'équations x=0 et $x=\beta_n$. Montrer que $\lim_{n\to +\infty} \mathcal{A}_n=2-\frac{2}{3}e$.

Section:Série:	Signatures des surveillants
Nom et prénom :	
Date et lieu de naissance :	

		1
		ı
		ı
		ı
		•

Épreuve : Mathématiques (Section : Mathématiques) Session principale

Annexe (à rendre avec la copie)

Figure 1

Figure 2

