Elaborating dependent (co)pattern matching

Jesper Cockx

Gothenburg University - Chalmers

31 January 2018

Jesper.

Jesper. You are talking about pattern matching . . .

Jesper. You are talking about pattern matching again???

Jesper. You are talking about pattern matching again???

Previously

From a case tree to eliminators

Jesper. You are talking about pattern matching again???

Previously

From a case tree

to eliminators

Now

From clauses to a

case tree

Motivation

Dependent pattern matching is a big part of Agda, so important to get it right.

- Preserve meaning of clauses
- Be flexible in placement of dot patterns
- Combine LHS and coverage checking?

Stepping stone for an Agda Core?

Disclaimer

This is work in progress, both the theory and the implementation.

If you have any suggestions I'd love to hear them!

Checking definitions by (co)pattern matching

Agda core v0.1

From clauses to a case tree

Example: maximum

```
\max : \mathbb{N} \to \mathbb{N} \to \mathbb{N}
\max zero \quad n = n
\max m \quad zero = m
\max (\operatorname{suc} m) \operatorname{suc} n = \operatorname{suc} (\max m n)
```

```
\vdash \max : \mathbb{N} \to \mathbb{N} \to \mathbb{N}

zero j \mapsto j

i \quad \text{zero} \mapsto i

(suc k) suc l \mapsto \text{suc} (\max k l)
```

```
(m: \mathbb{N}) \vdash \max m: \mathbb{N} \to \mathbb{N}
[\mathtt{zero} = m] \ j \qquad \mapsto j
[i = m] \qquad \mathtt{zero} \mapsto i
[\mathtt{suc} \ k = m] \ \mathtt{suc} \ l \mapsto \mathtt{suc} \ (\mathtt{max} \ k \ l)
```

```
\vdash max zero : \mathbb{N} \to \mathbb{N}
    [zero = zero] i \mapsto i
    [i = zero] zero \mapsto i
    [suc k = zero] suc l \mapsto suc (max k l)
(p:\mathbb{N})\vdash\max\left(\operatorname{suc}p\right):\mathbb{N}\to\mathbb{N}
    |zero = suc p| j \mapsto j
    [i = suc p] zero \mapsto i
    [suc k = \text{suc } p] suc l \mapsto \text{suc } (\max k l)
```

$$\vdash$$
 max zero : $\mathbb{N} \to \mathbb{N}$

$$j \mapsto j$$
$$[i = \texttt{zero}] \ \texttt{zero} \mapsto i$$

$$(p:\mathbb{N}) \vdash \max (\operatorname{suc} p): \mathbb{N} \to \mathbb{N}$$

$$[i = \operatorname{suc} p] \operatorname{zero} \mapsto i$$
$$[k = p] \quad \operatorname{suc} I \mapsto \operatorname{suc} (\operatorname{max} k I)$$

$$(n : \mathbb{N}) \vdash \max zero n : \mathbb{N}$$

$$[j = n] \mapsto j$$
 $[i = zero, zero = n] \mapsto i$

$$(p : \mathbb{N})(n : \mathbb{N}) \vdash \max (suc p) n : \mathbb{N}$$

$$[i = \text{suc } p, \text{zero} = n] \mapsto i$$

 $[k = p, \text{suc } l = n] \mapsto \text{suc } (\text{max } k \ l)$

```
(n:\mathbb{N}) \vdash \max \ \mathsf{zero} \ n \mapsto n:\mathbb{N}
(p:\mathbb{N})(n:\mathbb{N}) \vdash \max \ (\mathsf{suc} \ p) \ n:\mathbb{N}
[i = \mathsf{suc} \ p, \mathsf{zero} = n] \mapsto i
[k = p, \mathsf{suc} \ l = n] \mapsto \mathsf{suc} \ (\max \ k \ l)
```

$$(n:\mathbb{N}) \vdash \max \text{ zero } n \mapsto n:\mathbb{N}$$

$$(p:\mathbb{N}) \vdash \max (\operatorname{suc} p) \operatorname{zero} : \mathbb{N}$$

$$[i = \sec p] \mapsto i$$

$$(p:\mathbb{N})(q:\mathbb{N}) \vdash \max (\operatorname{suc} p) (\operatorname{suc} q):\mathbb{N}$$

$$[k = p, l = q] \mapsto suc(max k l)$$

$$(n:\mathbb{N}) \vdash \max \ \mathsf{zero} \ n \mapsto n:\mathbb{N}$$
 $(p:\mathbb{N}) \vdash \max \ (\mathsf{suc} \ p) \ \mathsf{zero} \mapsto \mathsf{suc} \ p:\mathbb{N}$ $(p:\mathbb{N})(q:\mathbb{N}) \vdash \max \ (\mathsf{suc} \ p) \ (\mathsf{suc} \ q):\mathbb{N}$

 $[k = p, l = q] \mapsto suc(max k l)$

```
(n:\mathbb{N}) \vdash \max \ \mathrm{zero} \ n \mapsto n:\mathbb{N}
(p:\mathbb{N}) \vdash \max \ (\mathrm{suc} \ p) \ \mathrm{zero} \mapsto \mathrm{suc} \ p:\mathbb{N}
(p:\mathbb{N})(q:\mathbb{N}) \vdash \max \ (\mathrm{suc} \ p) \ (\mathrm{suc} \ q)
\mapsto \mathrm{suc} \ (\max \ p \ q):\mathbb{N}
```

Example with copatterns

```
record UpFrom(n : \mathbb{N}): Type where
   hd · N
   pf: n < hd
   tl: UpFrom hd
from: (n:\mathbb{N}) \to \text{UpFrom } n
from n .hd = suc n
from n \cdot pf = \langle -suc n \rangle
from n \cdot tl = from (suc n)
```

```
(n:\mathbb{N}) \vdash \text{from } n: \text{UpFrom } n
```

$$[n = n]$$
 .hd \mapsto suc n
 $[n = n]$.pf \mapsto < -suc n
 $[n = n]$.tl \mapsto from (suc n)

$$(n : \mathbb{N}) \vdash \text{from } n \text{ .hd} : \mathbb{N}$$

$$[n = n] \mapsto \text{suc } n$$

$$(n : \mathbb{N}) \vdash \text{from } n \text{ .pf} : n < (\text{from } n \text{ .hd})$$

$$[n = n] \mapsto < -\text{suc } n$$

$$(n : \mathbb{N}) \vdash \text{from } n \text{ .tl} : \text{UpFrom (from } n \text{ .hd})$$

$$[n = n] \mapsto \text{from (suc } n)$$

$$(n : \mathbb{N}) \vdash \text{from } n \text{ .hd} \mapsto \text{suc } n : \mathbb{N}$$

$$(n : \mathbb{N}) \vdash \text{from } n \text{ .pf} : n < \text{suc } n$$

$$[n = n] \mapsto < -\text{suc } n$$

$$(n : \mathbb{N}) \vdash \text{from } n \text{ .tl} : \text{UpFrom } (\text{suc } n)$$

$$[n = n] \mapsto \text{from } (\text{suc } n)$$

 $(n:\mathbb{N}) \vdash \text{from } n \text{ .hd} \mapsto \text{suc } n:\mathbb{N}$

 $(n : \mathbb{N}) \vdash \text{from } n . \text{pf}$ $\mapsto < -\text{suc } n : n < \text{suc } n$

$$(n : \mathbb{N}) \vdash \text{from } n \text{.tl}$$

 $\mapsto \text{from } (\text{suc } n) : \text{UpFrom } (\text{suc } n)$

Example based on #2896

```
data D: \mathbb{N} \to \mathsf{Type} where c: (n: \mathbb{N}) \to D n

foo: (m: \mathbb{N}) \to D (suc m) \to \mathbb{N} foo m (c (suc n)) = m+n
```

$$m (c (suc n)) \mapsto m + n$$

data
$$D: \mathbb{N} \to Type$$
 where $c: (n: \mathbb{N}) \to D$ n

$$(m:\mathbb{N})(x:\mathbb{D} (\operatorname{suc} m)) \vdash \operatorname{foo} m x:\mathbb{N}$$

$$[m = m, c (suc n) = x] \mapsto m + n$$

data D:
$$\mathbb{N} \to \mathsf{Type}$$
 where c: $(n:\mathbb{N}) \to \mathsf{D}$ n

$$(m:\mathbb{N})\vdash \mathsf{foo}\; m\;(\mathsf{c}\;(\mathsf{suc}\; m)):\mathbb{N}$$

$$[m = m, c (suc n) = c (suc m)] \mapsto m + n$$

data
$$D: \mathbb{N} \to Type$$
 where $c: (n: \mathbb{N}) \to D$ n $(m: \mathbb{N}) \vdash foo m (c (suc m)) : \mathbb{N}$ $[m = m, n = m] \mapsto m + n$

```
data D: \mathbb{N} \to \text{Type where}
c: (n:\mathbb{N}) \to D n
(m:\mathbb{N}) \vdash \text{foo } m \text{ (c (suc } m))
\mapsto m + m: \mathbb{N}
```

General form of a LHS problem

$$\begin{bmatrix} p_{11} = v_{11} : A_{11} \\ \vdots \\ p_{1n_1} = v_{1n_1} : A_{1n_1} \end{bmatrix} q_{11} \dots \mapsto rhs_1$$

$$\vdots$$

$$\begin{bmatrix} p_{m1} = v_{m1} : A_{m1} \\ \vdots \\ p_{mn_m} = v_{mn_m} : A_{mn_m} \end{bmatrix} q_{m1} \dots \mapsto rhs_m$$

Operations on LHS problems

NextSplit(problem)

 \Rightarrow Spliton x

| SplitOnResult

| SPLITTINGDONE *rhs*

UPDATEPATTERNS(σ , problem)

 \Rightarrow problem'

UPDATETARGET(e, problem)

 \Rightarrow problem'

Checking definitions by (co)pattern matching

Agda core v0.1

From clauses to a case tree

Introducing: Agda Core v0.1

Included:

- Parametrized datatypes
- Coinductive records
- Equality type
- (Co)pattern matching

Introducing: Agda Core v0.1

Included:

- Parametrized datatypes
- Coinductive records
- Equality type
- (Co)pattern matching

Not included:

- Lambda expressions
- Mutual definitions
- Termination
- Metavariables

Introducing: Agda Core v0.1

Included:

- Parametrized datatypes
- Coinductive records
- Equality type
- (Co)pattern matching

Not included:

- Lambda expressions
- Mutual definitions
- Termination
- Metavariables , . . .

Introducing: Agda Core v0.1

Included:

- Parametrized datatypes
- Coinductive records
- Equality type
- (Co)pattern matching

Not included:

- Lambda expressions
- Mutual definitions
- Termination
- Metavariables , . . . , . . .

Term syntax

$$A, B, u, v ::= (x : A) \rightarrow B \mid \text{Type}_{\ell}$$

$$\mid D \overline{u} \mid R \overline{u} \mid u \equiv_{A} v$$

$$\mid x \overline{e} \mid c \overline{u} \mid \text{refl} \mid f \overline{e}$$
 $e ::= u \mid .\pi$

$$\Delta ::= \epsilon \mid (x : A)\Delta$$

Declarations

```
decl ::= data D \Delta : Type_{\ell} where c \Delta
         record R \Delta: Type<sub>\ell</sub> where \overline{f:A}
         definition f : A where \overline{cls}
cls ::= \bar{q} \mapsto u \mid \bar{q} \mapsto \text{impossible } u
q ::= p \mid .\pi
p ::= x \mid c \bar{p} \mid \lfloor u \rfloor \mid |c| \bar{p}
```

Signatures

```
\Sigma = \epsilon
          \Sigma, data D \Delta: Type<sub>\ell</sub>
          \Sigma, record R \Delta: Type<sub>\ell</sub>
          \Sigma, constructor c \Delta_c: D \Delta
          \Sigma, projection x : \mathbb{R} \Delta \vdash .\pi : A
           \Sigma, definition f : A
          \Sigma, clause \Delta \vdash u \mapsto v : B
```

Typing judgements

- Σ ⊢ Γ
- Σ ; $\Gamma \vdash u : A$
- Σ ; $\Gamma \mid u : A \vdash \bar{e} : B$
- Σ: Γ ⊢ Δ
- Σ ; $\Gamma \vdash \bar{u} : \Delta$
- Σ ; $\Gamma \vdash u = v : A$
- Σ ; $\Gamma \mid u : A \vdash \bar{e} = \bar{e}' : B$
- Σ ; $\Gamma \vdash \bar{u} = \bar{v} : \Delta$

Case trees

```
egin{aligned} Q &::= \mathsf{done} \ u \ & | \ \mathsf{intro}_x \ Q \ & | \ \mathsf{split}_x \left\{ \mathsf{c}_1 \ \Delta_i \mapsto Q_1; \dots; \mathsf{c}_n \ \Delta_n \mapsto Q_n 
ight\} \ & | \ \mathsf{cosplit} \left\{ \pi_1 \mapsto Q_1; \dots; \pi_n \mapsto Q_n 
ight\} \ & | \ \mathsf{eqsplit}_e \ 	au \ Q \ & | \ \mathsf{absurdsplit}_e \end{aligned}
```

Case tree typing

$$\Gamma \mid \mathbf{f} : A \vdash Q$$

"The case tree Q gives a well-typed implementation of a function \mathbf{f} of type A"

Case tree typing: done

$$\frac{\Gamma \vdash v : C}{\Gamma \mid u : C \vdash \text{done } v}$$

Case tree typing: done

$$\frac{\Gamma \vdash v : C}{\Gamma \mid u : C \vdash \text{done } v}$$

Note: also update Σ with clause $u \mapsto v!$

Case tree typing: intro_X

$$\frac{\Gamma(x:A) \mid u \times B \vdash Q}{\Gamma \mid u:(x:A) \to B \vdash \mathsf{intro}_{x} Q}$$

Case tree typing: split_X

```
egin{aligned} & (	ext{constructor} \ 	ext{c}_i \ \Delta_i' = \Delta_i [\Delta \mapsto ar{v}] & \sigma = [x \mapsto 	ext{c}_i \ \Delta_i'] \ & (\Gamma_1 \Delta_i' \Gamma_2 \sigma \mid u \sigma : C \sigma \vdash Q_i)_{i=1...n} \ \hline \Gamma_1 (x : D \ ar{v}) \Gamma_2 \mid u : C \ & \vdash 	ext{split}_x \left\{ 	ext{c}_1 \ \Delta_1 \mapsto Q_1; \ldots; 	ext{c}_n \ \Delta_n \mapsto Q_n 
ight\} \end{aligned}
```

Case tree typing: cosplit

```
 \frac{(\text{projection } x : \mathbb{R} \ \Delta \ \vdash \ .\pi_{i} : A_{i} \in \Sigma)_{i=1...n}}{(\Gamma \mid u .\pi_{i} : A_{i}[\Delta \mapsto \bar{v}, x \mapsto u] \vdash Q_{i})_{i=1...n}}{\Gamma \mid u : \mathbb{R} \ \bar{v}} \\ \vdash \text{cosplit} \{\pi_{1} \mapsto Q_{1}; \ldots; \pi_{n} \mapsto Q_{n}\}
```

Unification

If UNIFY(Γ , A, u, v) \Rightarrow (Γ' , σ , τ), then

- $\Gamma' \vdash \sigma : \Gamma$
- $\Gamma' \vdash u\sigma = v\sigma : A\sigma$
- $\Gamma(e: u \equiv_A v) \vdash \tau : \Gamma'$
- $\Gamma' \vdash \tau; \sigma = [] : \Gamma'$
- If $\Gamma'' \vdash \sigma' : \Gamma$ and $\Gamma'' \vdash u\sigma' = v\sigma' : A\sigma'$, then $\sigma' = \sigma; \tau; (\sigma'; [e \mapsto refl])$

Case tree typing: eqsplit_e

$$\begin{array}{c} \text{UNIFY}(\Gamma_1, A, v, w) \Rightarrow (\Gamma_1', \sigma, \tau) \\ \sigma' = \sigma; [e \mapsto \texttt{refl}] \\ \hline \Gamma_1' \Gamma_2 \sigma' \mid u \sigma' : C \sigma' \vdash Q \\ \hline \Gamma_1(e : v \equiv_a w) \Gamma_2 \mid u : C \vdash \texttt{eqsplit}_e \tau \ Q \end{array}$$

Case tree typing: absurdsplit_e

$$\frac{\text{UNIFY}(\Gamma_1, A, v, w) \Rightarrow \bot}{\Gamma_1(e: v \equiv_a w)\Gamma_2 \mid u: C \vdash \text{absurdsplit}_e}$$

Operational semantics

$$\text{EVAL}(Q, \sigma, \bar{e}) \Rightarrow v$$

EVAL(done
$$v, \sigma, \bar{e}$$
) $\Rightarrow v\sigma \bar{e}$

$$\frac{\text{EVAL}(Q, (\sigma; [x \mapsto u]), \bar{e}) \Rightarrow v}{\text{EVAL}(\underset{\bullet}{\text{intro}_{x}} Q, \sigma, u \; \bar{e}) \Rightarrow v}$$

Checking definitions by (co)pattern matching

Agda core v0.1

From clauses to a case tree

The clauses guide us in the construction of a well-typed case tree:

The clauses guide us in the construction of a well-typed case tree: as we construct the case tree, we deconstruct the clauses.

The clauses guide us in the construction of a well-typed case tree: as we construct the case tree, we deconstruct the clauses.

CHECKLHS(
$$\Gamma \vdash u : A, problem$$
) $\Rightarrow Q$

The clauses guide us in the construction of a well-typed case tree: as we construct the case tree, we deconstruct the clauses.

CHECKLHS(
$$\Gamma \vdash u : A, problem$$
) $\Rightarrow Q$
satisfying $\Gamma \mid u : A \vdash Q$

CHECKLHS: nothing to split

```
NEXTSPLIT(problem) \Rightarrow SPLITTINGDONE v
CHECKLHS(\Gamma \vdash u : A, problem) \Rightarrow done v
```

CHECKLHS: nothing to split

NEXTSPLIT(problem)
$$\Rightarrow$$
 SPLITTINGDONE v
CHECKLHS($\Gamma \vdash u : A, problem$) \Rightarrow done v

Note: also update Σ with clause $u \mapsto v!$

CHECKLHS: introduce new variable

NEXTSPLIT(problem)
$$\Rightarrow$$
 SPLITONRESULT
$$C \longrightarrow^{whnf} (x : A) \rightarrow B$$
UPDATETARGET(x, problem) \Rightarrow problem'
$$CHECKLHS(\Gamma(x : A) \vdash u \times : B, problem') \Rightarrow Q$$

$$CHECKLHS(\Gamma \vdash u : C, problem) \Rightarrow intro_{x} Q$$

CHECKLHS: split on variable

```
NEXTSPLIT(problem) \Rightarrow SPLITON x
                \Gamma = \Gamma_1(x:B)\Gamma_2 \qquad B \longrightarrow^{\text{whnf}} D \bar{v}
                constructor c_i \Delta_i : D \Delta \in \Sigma
         \Delta'_i = \Delta_i [\Delta \mapsto \bar{\mathbf{v}}] \quad \sigma_i = [\mathbf{x} \mapsto \mathbf{c}_i \ \Delta'_i]
                                  \Gamma_i = \Gamma_1 \Delta_i \Gamma_2 \sigma
UpdatePatterns(\sigma_i, problem) \Rightarrow problem<sub>i</sub>
CheckLHS(\Gamma_i \vdash u\sigma_i : A\sigma_i, problem<sub>i</sub>) \Rightarrow Q_i
     CHECKLHS(\Gamma \vdash u : A, problem)
          \Rightarrow split<sub>x</sub> {c_1 \Delta_1 \mapsto Q_1; ...; c_n \Delta_n \mapsto Q_n}
```

CHECKLHS: split on result

```
NEXTSPLIT(problem) \Rightarrow SPLITONRESULT
                                           A \longrightarrow^{\text{whnf}} \mathbf{R} \, \bar{\mathbf{v}}
           projection x : \mathbb{R} \Delta \vdash .\pi_{\mathtt{i}} : A_i \in \Sigma
\sigma_i = [\Lambda \mapsto \overline{u} \times L]
                          \sigma_i = [\Delta \mapsto \bar{\mathbf{v}}, \mathbf{x} \mapsto \mathbf{u}]
UPDATETARGET(.\pi_i, problem) \Rightarrow problem<sub>i</sub> CHECKLHS(\Gamma \vdash u . \pi_i : A_i \sigma, problem<sub>i</sub>) \Rightarrow Q_i
            CHECKLHS(\Gamma \vdash u : A, problem)
                 \Rightarrow cosplit \{\pi_1 \mapsto Q_1; \dots; \pi_n \mapsto Q_n\}
```

CHECKLHS: split on equation

NEXTSPLIT(problem)
$$\Rightarrow$$
 SPLITON e

$$\Gamma = \Gamma_1(x:B)\Gamma_2 \qquad B \longrightarrow^{\text{whnf}} v \equiv_C w$$

$$\text{UNIFY}(\Gamma_1,B,v,w) \Rightarrow (\Gamma_1',\sigma,\tau)$$

$$\sigma' = \sigma; [e \mapsto \text{refl}] \qquad \Gamma' = \Gamma_1'\Gamma_2\sigma$$

$$\text{UPDATEPATTERNS}(\sigma',\text{problem}) \Rightarrow \text{problem}'$$

$$\text{CHECKLHS}(\Gamma' \vdash u\sigma : A\sigma,\text{problem}') \Rightarrow Q$$

$$\text{CHECKLHS}(\Gamma \vdash u : A,\text{problem}) \Rightarrow \text{eqsplit}_e \tau Q$$

CHECKLHS: split on absurd equation

```
NEXTSPLIT(problem) \Rightarrow SPLITON e
\Gamma = \Gamma_1(x:B)\Gamma_2 \qquad B \longrightarrow^{\text{whnf}} v \equiv_C w
\text{UNIFY}(\Gamma_1,B,v,w) \Rightarrow \bot
\text{CHECKLHS}(\Gamma \vdash u:A,problem) \Rightarrow \text{absurdsplit}_e
```

Correctness of LHS checking

Theorem. Let $problem = \{\bar{q}_i \mapsto v_i\}_{i=1...n}$. If

- CHECKLHS($\Gamma \vdash \mathbf{f} : A, problem$) $\Rightarrow Q$
- MATCH $(\bar{q}_i, \bar{e}) \Rightarrow \bot$ for $j = 1 \dots i 1$
- MATCH $(\bar{q}_i, \bar{e}) \Rightarrow \sigma$

then $\text{EVAL}(Q, [], \bar{e}) \Rightarrow v_i \sigma$.