Semiconductor Fundamentals – (II)

- 2.3 Energy Bands
- 2.4 The doping of semiconductors

Material developed by Prof. C. Z. Zhao

HW-1: solution

Si atomic density:

$$\frac{\#Atoms}{Volume} = \frac{8 \times (1/8) + 6 \times (1/2) + 4}{a_0^3} = \frac{8}{(5.43 \times 10^{-8} cm)^3} = 5 \times 10^{22} cm^{-3}$$

Number of atoms in a unit cell:

- 4 atoms completely inside cell
- Each of the 8 atoms on corners are shared among cells → count as 1 atom inside cell
- Each of the 6 atoms on the faces are shared among 2 cells → count as 3 atoms inside cell

Total number inside the cell = 4 + 1 + 3 = 8

Cell volume:

 $(.543 \text{ nm})^3 = 1.6 \times 10^{-22} \text{ cm}^3$

HW-2: solution

Why the Miller indices of this plane is (010)?

x-intercept of plane y-intercept of plane z-intercept of plane

h: inverse x-intercept of planek: inverse y-intercept of planel: inverse z-intercept of plane

h, k and l are reduced to 3 integers having the same ratio.

(010)

Last lecture:

Simplified version of energy band model, indicating

- bottom edge of the conduction band (E_c)
- top edge of the valence band (E_v)
- \succ $E_{\rm c}$ and $E_{\rm v}$ are separated by the **band gap energy E_{\rm g}**

2.3 Energy Bands

- Band theory
 - What's a Semiconductor
 - Fermi Level
 - Band model of e & h
 - Bond model of e & h
- Generation and recombination
- Intrinsic semiconductor

What is a Semiconductor?

- Low resistivity => "conductor" e.g. AI, Cu
- High resistivity => "insulator" e.g. SiO₂
- Intermediate resistivity => "semiconductor"
 - conductivity lies between that of conductors and insulators

Band Theory of Solids

- A useful way to visualize the difference between <u>conductors</u>, <u>insulators</u> and <u>semiconductors</u> is to plot the available energies for electrons in the materials. In conductors the valence band overlaps the conduction band, and in semiconductors/insulator there is a small/big gap between the valence and conduction bands.
- An important parameter in the band theory is the <u>Fermi level</u>, the top of the available electron energy levels at low temperatures.

Energy Bands of Silicon & Germanium

 At finite temperatures, the number of electrons which reach the conduction band and contribute to <u>current</u> can be modeled by the <u>Fermi function</u>.

Fermi function and Fermi level

概率 Probability **that** a **state** at energy level, *E*, is occupied by one electron is,

$$f(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})}$$

Students \rightarrow Electrons Seat row \rightarrow energy level, E. Seat \rightarrow state

Example: Students in a theatre class room.

Every row has different potential, E. For example, for row 7, its potential is E7.

The probability for one **student** to occupy a **seat** on **row** 7 can be calculated by f(E7).

 E_F is a energy level at which f(E) is 50%.

Fermi function and Fermi level

 Probability that a state at energy level, E, is occupied by one electron is,

$$f(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})}$$

- An increase in E will reduce f(E)
- ullet E_F --- Fermi-level
 - When $E = E_F$, $f(E = E_F) = 0.5$.

textbook P.66

Band Model of Electrons and Holes

- In an <u>pure semiconductor</u> like <u>silicon</u> at temperatures above absolute zero, there will be some electrons which are excited across the <u>band gap</u> into the conduction band and which can produce current.
- When the electron in pure silicon crosses the gap, it leaves behind an electron vacancy or "hole" in the regular <u>silicon lattice</u>.
- Under the influence of an external voltage, both the electron and the hole can move across the material.

Bond Model of Electrons and Holes

2-D representation: Covalent Bonds

When an electron breaks loose and becomes a conduction electron, a hole is also created.

Bond Model of Electrons and Holes

- When an electron
 breaks loose and becomes a conduction electron, a hole is also created.
- A hole (along with its associated positive charge) is mobile!
- Hole density = electron density in a pure Si.

2-D representation:

Pure Si

2.3 Energy Bands

- Band theory
 - What's a Semiconductor
 - Fermi Level
 - Band model of e & h
 - Bond model of e & h
- Generation and recombination
- Intrinsic semiconductor

Thermal Generation

- Inverse process: recombination
- Si has four valence electrons. Therefore, it can form covalent bonds with four of its nearest neighbors.

When temperature goes up, electrons can become free to move about the Si lattice.

Generation

Generation: A process to create electron-hole pairs.

Electron-Hole Pair Generation

- When a conduction electron is thermally generated, a "hole" is also generated.
- A hole is associated with a positive charge, and is free to move about the Si lattice as well.

A hole is mobile!

Generation

- We have seen that conduction (mobile) electrons and holes can be created in pure (intrinsic) silicon by thermal generation.
 - > Thermal generation rate increases exponentially with temperature *T*
- Another type of generation process which can occur is optical generation
 - The energy absorbed from a photon frees an electron from covalent bond
 - In Si, the minimum energy required is 1.1eV, which corresponds to ~1 μm wavelength (infrared region). 1 eV = energy gained by an electron falling through 1 V potential = q_eV = 1.6 x 10⁻¹⁹ C x 1 V = 1.6 x 10⁻¹⁹ J.
- Note that conduction electrons and holes are continuously generated, if T > 0

Light interactions with Semiconductors

Absorption of light in a semiconductor:

- For energies of light greater than the bandgap (hv > E_g), light is absorbed
- For energies less than the bandgap (hv<E_α), light is out
- Silicon is transparent to IR (can see through it with an IR camera)
- Diamond is a wide bandgap semiconductor (transparent to visible light)

Solar cell

Figure 6.2 | Creation of excess electron and hole densities by photons.

Recombination

- When a conduction electron and hole meet, each one is eliminated, a process called "recombination".
 The energy lost by the conduction electron (when it "falls" back into the covalent bond) can be released in two ways:
 - to the semiconductor lattice (vibrations)
 "thermal recombination" → semiconductor is heated
 - to photon emission"optical recombination" → light is emitted
 - It is the basis for light-emitting diodes and laser diodes.

2.3 Energy Bands

- Band theory
 - What's a Semiconductor
 - Fermi Level
 - Band model of e & h
 - Bond model of e & h
- Generation and recombination
- Intrinsic semiconductor

Intrinsic semiconductors

- Intrinsic: <u>pure semiconductor</u>
- A hole is created simultaneously with a free electron
 - \rightarrow **n**(free electron density) = **p**(hole density)
- E_F is in the middle of the bandgap
- Its resistivity is too high for most of devices

Carrier Concentrations in Intrinsic Si

- The "band-gap energy" E_g is the amount of energy needed to remove an electron from a covalent bond. $E_g=1.12eV$
- The concentration of conduction electrons in intrinsic silicon, n_i , depends exponentially on E_g and the absolute temperature (T):

$$n_i = 5.2 \times 10^{15} T^{3/2} \exp \frac{-E_g}{2kT}$$
 electrons/cm³
Boltzmann constant
8.62E-5 eV/K

$$n_i \cong 1 \times 10^{10}$$
 electrons/cm³ at 300K
 $n_i \cong 1 \times 10^{15}$ electrons/cm³ at 600K

Pure Si

$$n_i = 5.2 \times 10^{15} T^{3/2} \exp \frac{-E_g}{2kT} \text{ electrons/cm}^3$$

Covalent (shared e⁻) bonds exists between Si atoms in a crystal. Since the e⁻ are loosely bound, some will be free at any T, creating hole electron pairs.

p.75

$$\frac{5i}{n_i}$$
:
 $n_i = 3.9 \times 10^{16} \text{T}^{3/2} \text{e}^{-\frac{0.605 \text{eV}}{kT}/\text{cm}^3}$

 $n_i \cong 1.5 \times 10^{10} \text{ cm}^{-3}$ at room temperature

Intrinsic Semiconductor

Silicon has four valence electrons

- It covalently bonds with 4 adjacent atoms in the crystal lattice
- Increasing Temperature Causes Creation of Free Carriers. 10¹⁰cm⁻³ free carriers at 23°C (out of 2x10²³cm⁻³): Intrinsic Conductivity.
- Si atomic density: 5 ×10²² cm⁻³

Semiconductor Current

 Both <u>electrons and holes</u> contribute to current flow in an intrinsic semiconductor.

Electron-Hole Pair Generation

- When a conduction electron is thermally generated, a "hole" is also generated.
- A hole is associated with a positive charge, and is free to move about the Si lattice as well.

Summary of Section 2.3

- In a pure Si crystal, conduction electrons and holes are formed in pairs.
 - Holes can be considered as positively charged mobile particles which exist inside a semiconductor.
 - > Both holes and electrons can conduct current.
- Splitting of allowed atomic energy levels occurs in a crystal
 - Separation between energy levels is small, so we can consider them as bands of continuous energy levels
 - Highest nearly-filled band is the valence band
 - Lowest nearly-empty band is the conduction band
- The band gap energy is the energy required to free an electron from a covalent bond.
 - \rightarrow E_g for Si at 300K = 1.12eV

2.4 The doping of semiconductors

掺杂

- Doping elements
- Doping: N type

- Doping: P type
- Counter doping

The Doping

- The addition of a small percentage of foreign atoms in the regular <u>crystal lattice</u> of silicon or germanium produces dramatic changes in their electrical properties, producing <u>n-type</u> and <u>p-</u> <u>type</u> semiconductors.
- Definition of Terms:

```
n = \text{number of electrons/cm}^3

p = \text{number of holes/cm}^3

n_i = \text{intrinsic carrier concentration}

In a pure semiconductor,
```

 $n = p = n_i$

PL

Valence Electrons

 The electrons in the outermost shell of an atom are called valence electrons; they dictate the nature of the chemical reactions of the atom and largely determine the electrical nature of solid matter. The electrical properties of matter are pictured in the <u>band theory of solids</u> in terms of how much energy it takes to free a valence electron.

The Doping of Semiconductors

五价的杂质(施主杂质)

Pentavalent impurities (donor impurities = donors) Impurity atom with 5 valence electrons produce **n-type** semiconductors by contributing extra electrons.

三价的杂质(受主杂质)

Trivalent impurities (acceptor impurities = acceptors) Impurity atoms with 3 valence electrons produce **p-type** semiconductors by producing a "hole" or electron deficiency.

2.4 The doping of semiconductors

- Doping elements
- Doping: N type
- Doping: P type

Counter doping

Doping (N type)

Column V elements are donors, e.g. P, As, Sb

Doping (N type)

Column V elements are donors, e.g. P, As, Sb

By <u>substituting</u> a Si atom with a special impurity atom (Column V element), a conduction electron is created.

Phosphorus has 5 valence electrons

'Donates' one conduction electron to lattice

Free

Our substrate has 10¹⁵cm⁻³ phosphorus (1 in 10⁸)

Doping (N type)

If Si is doped with phosphorus (P), each P atom can contribute a conduction electron, so that the Si lattice has more electrons than holes, i.e. it becomes "N type":

Notation:

N_D = Concentration of donors

n =electron concentration

N_D⁺ = Concentration of ionized donors

Ionization energy < 50meV:

At RT,
$$N_D \approx N_D^+ >> n_{iD}$$

Doping (N type)

If Si is doped with phosphorus (P), each P atom can contribute a conduction electron, so that the Si lattice has more electrons than holes, i.e. it becomes "N type":

Notation:

 N_D = Concentration of donors

n =electron concentration

N_D⁺ = Concentration of ionized donors

Ionization energy < 50meV:

At RT,
$$N_D \approx N_D^+ >> n_{iD}$$

N-type

- Doped by impurities of 5 valence electrons (donors)
- At room temperature, one donor will create one free electron.
- Holes are not created
- $n = n_{iD} + N_{D}$
 - n_{iD}<<n_i = density of free electrons in the intrinsic semiconductor
 - \triangleright N_D = density of donors
- Normally, $N_D > 10^{14}$ cm⁻³ and $n_i \approx 10^{10}$ cm⁻³
- Since $N_D >> n_{iD}$, $n \approx N_D$. The density of free electron can be controlled through doping. $\bullet_{\perp} \rightarrow Ionized donor$

Electron and Hole Concentrations No E field, no B field, no light

 Under thermal equilibrium conditions, the product of the conduction-electron density and the hole density is ALWAYS equal to the square of n_i:

$$np = n_i^2 = (10^{10})^2 / \text{cm}^3 \text{ at RT}$$

N-type material at RT

$$n \approx N_D$$

$$p \approx \frac{n_i^2}{N_D}$$

Example: at RT

$$N_D = 10^{15} / \text{cm}^3$$
 $n = 10^{15} / \text{cm}^3$
 $N_D^+ = 10^{15} / \text{cm}^3$
 $p = 10^5 / \text{cm}^3$

N-Type Semiconductor

- The addition of pentavalent impurities such as Sb. As or P contributes free electrons, greatly increasing the conductivity of the intrinsic semiconductor.
- Phosphorus may be added by diffusion of phosphine gas (PH₃).

E_□ is shifted to the up-half of the bandgap for ntype.

Properties of n-type

- n>>p, so "n-type".
- Electrons are 'majority' charge carriers and holes are 'minority' charge carriers.
- Space charge: when an electron is freed, it left a positively charged atom behind, which is fixed in space
- Fermi potential: φ_f
 - > How 'strong' the n-type is

Doping (P type)

Column III elements are acceptors, e.g. B, Al, Ga

By <u>substituting</u> a Si atom with a special impurity atom (Column III element), a conduction hole is created.

Boron has 3 valence electrons

- 'Accepts' one electron from lattice
- Creates a 'hole'

Doping (P type)

Column III elements are acceptors, e.g. B

 If Si is doped with Boron (B), each B atom can contribute a hole, so that the Si lattice has more holes than electrons, i.e. it becomes "P type":

Notation:

N_A = concentration of
acceptors

p = hole concentration

 N_A^- = concentration of ionized acceptors

Hole is created when a neighboring valence electron moves to the B atom.

Doping (P type)

Column III elements are acceptors, e.g. B

 If Si is doped with Boron (B), each B atom can contribute a hole, so that the Si lattice has more holes than electrons, i.e. it becomes "P type":

$$p = N_{A}^{-} + p_{iA}$$

Notation:

 N_A = concentration of acceptors

p = hole concentration

 N_{A}^{-} = concentration of ionized acceptors

Ionization energy < 50meV:

At RT,
$$N_A \approx N_A^- >> p_{iA}$$

46

P-type

- Doped by impurities of 3 valence electrons (acceptors)
- At room temperature, one acceptor will create one hole.
- Free electrons are not created
- $p = p_{iA} + N_A \approx N_A$.
 - $p_{iA} < p_i = density of holes in the intrinsic semiconductor$
 - \rightarrow N_A = density of acceptors

Electron and Hole Concentrations

 Under thermal equilibrium conditions, the product of the conduction-electron density and the hole density is ALWAYS equal to the square of n_i:

$$np = n_i^2 = (10^{10})^2 / \text{cm}^3 \text{ at RT}$$

P-type material at RT

$$p \approx N_A$$

$$n \approx \frac{n_i^2}{N_A}$$

Example: at RT

$$N_A = 10^{15} / \text{cm}^3$$
 $p = 10^{15} / \text{cm}^3$
 $N_A^- = 10^{15} / \text{cm}^3$
 $n = 10^5 / \text{cm}^3$

P-Type Semiconductor

- The addition of trivalent <u>impurities</u> such as B, Al, or Ga to an <u>intrinsic semiconductor</u> creates deficiencies of valence electrons, called "holes".
- It is typical to use B₂H₆ diborane gas to diffuse boron into the silicon material.

 E_F is shifted to the down-half of the bandgap for ptype.

Properties of p-type

- p>>n, so "p-type".
- Holes are 'majority' charge carriers and electrons are 'minority' charge carriers.
- Space charge: negative charges bonded to Boron atoms
- Fermi potential: φ_f
 - How 'strong' the p-type is

Summary of doping

Types of charges in semiconductors

Mobile Charge Carriers
they contribute to current flow
with electric field is applied.

Immobile Charges
they DO NOT
contribute to current flow
with electric field is applied.
However, they affect the
local electric field

2.4 The doping of semiconductors

- Doping elements
- Doping: N type

Doping: P type

Counter doping

This is a n-type Si, $n = N_D + n_i$. Nomally $N_D >> n_i$, so $n = N_D$

Adding the same **B** as **P** causes the doping type to change.

$$p \approx N_A - N_D, \quad n \approx \frac{n_i^2}{N_A - N_D}$$

The addition of one more B than P causes the doping type to change from n-type to p-type

 $n \approx N_D - N_A, \ p \approx \frac{n_i^2}{N_D - N_A}$

The addition of one more P than B causes the doping type to change from p-type to n-type

Dopant Compensation

- An N-type semiconductor can be converted into P-type material by counter-doping it with acceptors such that N_A > N_D.
- A compensated semiconductor material has both acceptors and donors.

N-type material
$$(N_{D} > N_{A})$$

$$n \approx N_{D} - N_{A} \quad \text{``net doping''}$$

$$p \approx \frac{n_{i}^{2}}{N_{D} - N_{A}}$$

P-type material
$$(N_{A} > N_{D})$$

$$p \approx N_{A} - N_{D}$$

$$n \approx \frac{n_{i}^{2}}{N_{A} - N_{D}}$$

Counter Doping Process

To form pn junction

n-type (10¹⁵ cm⁻³) **Implant Boron** and Anneal p-type ($>10^{15}$ cm⁻³) n-type (10¹⁵ cm⁻³)

Counter Doping Process

Next week:

Semiconductor Fundamentals – (III)

2.5 Boltzmann approximation & E_F, n, p

2.6 Carrier drift and diffusion