ÁRBOLES

Joaquín Fernández-Valdivia
Javier Abad

Dpto.de Ciencias de la Computación e Inteligencia Artificial
Universidad de Granada

 Estructura de datos lineal → existe una relación de anterior y siguiente entre los elementos que la componen

• Estructura de datos no lineal → grafos y árboles

- Teoría de grafos: un árbol es un grafo acíclico donde cada nodo tiene grado de entrada I (excepto el nodo raíz que tiene grado de entrada 0) y el grado de salida 0 o mayor que cero
- Un árbol se compone de nodos
 - Raíz: no tiene padre, está en la parte superior de la jerarquía
 - Hoja: no tienen hijos, están en la parte inferior de la jerarquía
 - Interior: resto de nodos

- Algunas características de los árboles son:
 - I. Todos los nodos descienden de la raíz
 - 2. Los descendientes directos se llaman hijos
 - 3. Los nodos del mismo nivel y que descienden del mismo padre son hermanos
 - 4. Y los padres de los padres de un nodo son los ancestros de éste

- E es la raíz del árbol
- S1, S2, S3 son los hijos de E
- SI, DI componen un subárbol de la raíz
- DI,TI,T2,T3, D3, S3 son las hojas del árbol
- etc...

Árbol Etiquetado

• Se dice que un árbol está etiquetado si todos sus nodos contienen una etiqueta

• A los nodos que son hijos de un mismo padre se les denomina **hermanos**

Grado de un Árbol

Se llama grado de un nodo al número de subárboles (de hijos) que tiene dicho nodo. Los nodos de grado 0 se denominan hojas o nodos terminales. El resto se llaman nodos no terminales o interiores

El grado de un árbol es el máximo de los grados de sus nodos

Caminos

- El camino entre dos nodos, ni y nj se define como la secuencia de nodos del árbol necesaria para alcanzar el nodo ni desde el nodo ni
- La longitud del camino entre dos nodos es igual al número de nodos que forman el camino menos I (número de ejes del camino)

 $camino(a,f) = \{a,b,f\}$ Longitud 2

Ancestros y Descendientes

- Si existe un camino del nodo a al nodo b, entonces a es un ancestro de b y b es un descendiente de a
- La raíz es el único nodo que no tiene ancestros
- Una hoja es un nodo sin descendientes
- Un subárbol de un árbol es un nodo, junto con todos sus descendientes

Ancestros(i): {g, c, a}

Descendientes(b):{e, f}

Altura y Profundidad

Altura de un nodo

- Longitud del mayor de los caminos del nodo a cada hoja
- La altura de un árbol es la altura de su raíz

Profundidad de un nodo

 La profundidad de un nodo es la longitud del único camino de la raíz a ese nodo

Altura(c): 2

Profundidad(c): I

e

Niveles

Nivel de un nodo

Para un árbol de altura h, se definen los niveles 0, ..., hde manera que el nivel i está compuesto por todos los nodos de profundidad i

Base: El nivel del nodo raíz es 0

 Recurrencia: si un nodo está en el nivel i, todos sus hijos están en el nivel i+l

• Altura $h \rightarrow h+1$ niveles

Orden

- Los hijos de un nodo están ordenados de izq. a dcha.
- Si queremos ignorar el orden → árbol no-ordenado
- Si n_1 y n_2 son hermanos, y n_1 está a la izquierda de n_2 , todos los descendientes de n_1 están a la izquierda de todos los descendientes de n_2

Árbol n-ario

- Base: Un nodo es un árbol n-ario (si el árbol tiene un sólo nodo, éste es el nodo raíz)
- Recurrencia: Si n es un nodo y T_1 , ..., T_k son árboles narios con raíces n_1 ,..., n_k , respectivamente, podemos construir un árbol que tenga como raíz el nodo n y subárboles T_1 , ..., T_k

Árboles binarios

- Base: Un árbol vacío es un árbol binario
- Recurrencia: Si n es un nodo y T_{izq} y T_{der} son árboles binarios, podemos construir un nuevo árbol binario que tenga como raíz el nodo n y como subárboles T_{izq} y T_{der} (subárbol izquierdo y derecho, respectivamente)

Un árbol binario NO es un árbol n-ario de grado 2

Árboles binarios

- Árbol binario homogéneo: aquél cuyos nodos tienen grado 0 ó 2 (no hay ninguno de grado 1)
- Árbol binario completo: aquél que tiene todos los niveles llenos excepto, quizá, el último, en cuyo caso los huecos deben quedar a la derecha

En un árbol binario completo con n nodos el camino más largo de la raíz a las hojas no atraviesa más de log₂ n nodos

Árboles binarios

• En un árbol binario, el número máximo de nodos que puede haber en el nivel i es 2ⁱ

• En un árbol binario completo de altura k, el número máximo de nodos es 2^{k+1}-1

- En una estructura lineal resulta trivial establecer un criterio de movimiento
- En un árbol no hay un criterio único
- Cuando hablamos de recorridos en un árbol, nos referimos al orden en el que visitamos sus nodos
- Tipos:
 - Profundidad/Recursivos
 - Anchura/Iterativo o por niveles

Profundidad / Recursivos

- Visitan los nodos desde la raíz hacia las hojas, dejándose nodos en un mismo nivel sin visitar hasta más adelante
- Se puede realizar de tres formas:
 - **Preorden**: Al visitar un nodo, se procesa en ese momento (bien para imprimir o hacer algo con él)
 - Inorden: Al visitar un nodo se procesará cuando se haya procesado su hijo más a la izquierda
 - Postorden: Al visitar un nodo se procesará cuando se hayan procesados todos sus hijos

Anchura / Iterativo

 Se visitan y procesan en primer lugar todos los nodos del mismo nivel de izquierda a derecha

 Se parte de igual forma desde la raíz y se avanza hacia las hojas, procesando todos los nodos del nivel 0, luego los del nivel 1, etc.

Recorridos en profundidad:

- Preorden: raíz, Pre(T₁), Pre(T₂),..., Pre(T_k)
- Inorden: $In(T_1)$, raíz, $In(T_2)$,..., $In(T_k)$
- Postorden: Pos(T₁), Pos(T₂),..., Pos(T_k), raíz

• Recorrido en anchura: por niveles > de arriba a abajo y de izquierda a derecha, empezando por la raíz

- Recorridos en profundidad:
 - **Preorden**: raíz, Pre(T_{izq}), Pre(T_{der})
 - Inorden: In(T_{izq}), raíz, In(T_{der})
 - Postorden: Pos(T_{izq}), Pos(T_{der}), raíz

Se pueden realizar de forma recursiva, siguiendo el esquema de construcción recursivo de árboles binarios

- Recorrido en anchura:
 - Por niveles, de izquierda a derecha

Se realiza de forma iterativa

Preorden: abdecfhig a Inorden: dbeahficg b Postorden: debhifgca Por niveles: a b c d e f g h i Pre: Ta= a Tb Tc = a b Td Te Tc = a b d e Tc = a b d e c Tf Tg = = abdecfThTiTg = abdecfhig Ino: Ta = Tb a Tc = Td b Te a Tc = d b e a Tf c Tg = d b e a Th f Ti c Tg = d b e a h f i c g Pos: Ta = Tb Tc a = Td Te b Tc a = d e b Tf Tg c a = d e b Th Ti f Tg c a = d e b h i f g c a Niv: $Ta = \overline{a}$ b c d e f g h i

Uso para información ancestral:

Pre(n)<Pre(m) <=> n a la izqda de m || n ancestro de m
Post(m)<Post(n) <=> m a la izqda de n || m descendiente de n

Pre(n) < Pre(m) && Post(m) < => n ancestro de m

- Preorden: GEAIBMCLDFKJH
- Inorden: I A B E G L D C F M K H J

Inorden: vwyxzrtupsq Inorden: vwyxzrtupsq

En general, un árbol no puede recuperarse con sólo uno de sus recorridos

Inorden: d b e a h f i c g

Por normal general, con sólo uno de los recorridos de un árbol, no puede recuperarse de manera univoca, es decir, dos árboles diferentes pueden tener el mismo recorrido

Recuperar un Árbol

Podemos recuperar el árbol de forma univoca si los listados que nos dan son:

- Inorden y Preorden
- Inorden y Postorden
- Inorden y Por Niveles

No podremos recuperar si nos dan:

- Postorden y Preorden (hay alguna excepción para los árboles binarios pero en general no se puede)
- Preorden y Por Niveles
- Postorden y Por Niveles

Incluso si nos dieran el Preorden, Postorden y Por niveles no podemos definir el árbol

- Para guardar un árbol en disco, se realiza un preorden del árbol transformado
- Este árbol transformado consiste en añadirle a los nodos que no tienen los dos hijos (si es un árbol binario) un nuevo nodo ficticio, que tiene como etiqueta x
- Cuando hacemos el listado del árbol si el nodo existe se le antepone a la etiqueta n y si es un nodo ficticio simplemente listamos x

Preorden

n I n 2 n 4 x x n 5 x n 8 x x n 3 n 6 x x n 7 x x

12458367

Por niveles

Aplicación: árboles de expresión

- Árboles sintácticos: árboles que contienen las derivaciones de una gramática necesarias para obtener una frase del lenguaje
- Árboles de expresión: etiquetamos
 - hojas con un operando
 - nodos interiores con un operador

Preorden: *-xy/zt ➤ Representación prefija

Postorden: xy-zt/* > Representación postfija

No necesita paréntesis

- Resolución de ambigüedades: recorridos en preorden o postorden más
 - · Nivel de cada nodo, ó
 - Número de hijos de cada nodo

Ejemplo: x4-2^y2+3/* (postfijo)

Los operadores -, ^, +, / y * son binarios

$$((x-4)^2)$$
 y 2 + 3 / * $((x-4)^2)$ $(y+2)$

$$((x-4)^2)$$
 $((y+2)/3)$ * $((x-4)^2)$ * $((y+2)/3)$

- Las notaciones prefija y posfija facilitan la evaluación automática de expresiones aritméticas
- Ejemplo: ((15/(7-(1+1)))*3)-(2+(1+1))

$$\begin{bmatrix} (a+b)+(c*(d+e)+f) \end{bmatrix} * (g+h) \Rightarrow * E_{1}E_{2}$$

$$E_{1} \qquad E_{2}$$

$$[(a+b)+(c*(d+e)+f)] \Rightarrow * + E_{11}E_{12}E_{2}$$

$$E_{11} = +ab \Rightarrow * + +ab E_{12}E_{2}$$

$$E_{12} = [(c*(d+e)+f_{12}] \Rightarrow + E_{121}E_{122}$$

$$E_{121} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

$$E_{1211} = C * (d+e) \Rightarrow * cE_{1212} = * c + de$$

*++ab+*c+def+gh

Especificación

- Son árboles tal que cada nodo tiene 0, 1 o 2 hijos
- 2. Cada nodo tiene un nodo padre, a excepción del nodo raíz
- 3. El árbol vacío es un árbol binario

Definición de funciones en árboles

- Generalmente la forma más simple de definir una función sobre un árbol es trasladar la definición recurrente (recursiva) del dominio a la definición de ésta
- Esto no quiere decir que toda función definida sobre un árbol deba ser recursiva
- Podemos encontrar problemas cuya solución exija diseñar funciones iterativas, ya que no es posible encontrar una función recursiva (por extensión de la definición recurrente del dominio) que lo resuelva
- Ej:el recorrido por niveles del árbol

- Función f(t) sobre un árbol binario, t: definición por extensión de la definición del conjunto de árboles binarios
- **Base**: Valor de la función si t es el árbol vacío
- **Recurrencia**: se supone conocida la función para cada uno de los subárboles T_{izq} y T_{der} de t.

Se calcula el valor final de la función suponiendo conocidos los valores anteriores

Ejemplo: igualdad de árboles binarios

- Base: Si t₁ y t₂ son árboles binarios vacíos, son iguales
- Recurrencia: Hipótesis
 - igual(t_{izq1}, t_{izq2})
 - igual(t_{der1}, t_{der2})

t_{izqi} y t_{deri} son los subárboles izquierdo y derecho de t_i

- Tesis: Los árboles binarios t₁ y t₂ serán iguales si se cumplen las condiciones:
 - t₁.etiqueta() == t₂.etiqueta()
 - igual(t_{izq1}, t_{izq2}), e
 - igual(t_{der1}, t_{der2})

Ejemplo: altura de un árbol binario

- Base: Si t es un árbol binario vacío, su altura es 0
- Recurrencia: Hipótesis
 - $altura(t_{izq}) = a_{izq}$
 - $altura(t_{der}) = a_{der}$

t_{izq} y t_{der} son los subárboles izquierdo y derecho de t

• Tesis: la altura se calcula como:

- Ejercicios:
 - Contar el número de nodos de un árbol
 - Calcular el grado de un árbol

Ejemplo: árboles binarios isomorfos

- Base: Si t₁ y t₂ son árboles binarios vacíos, son isomorfos
- Recurrencia: Hipótesis
 - iso(t_{izq1}, t_{izq2}) iso(t_{izq1}, t_{der2})
 - iso(t_{der1}, t_{der2}) iso(t_{der1}, t_{izq2})

t_{izqi} y t_{deri} son los subárboles izquierdo y derecho de t_i

- Tesis: Los árboles binarios t₁ y t₂ serán isomorfos si se cumplen las condiciones:
 - t₁.etiqueta() == t₂.etiqueta()
 - iso(t_{izq1}, t_{izq2}) e iso(t_{der1}, t_{der2}), ó
 - iso(t_{izq1}, t_{der2}) e iso(t_{der1}, t_{izq2})

Representación Estática

- 1. Las etiquetas de los nodos se almacenan en un vector
- 2. Los nodos se enumeran de la siguiente forma:
 - A la raíz le corresponde el índice 0
 - Si a un nodo le corresponde el índice k:
 - Su hijo izquierdo, si tiene, está en la posición
 2*(k+1)-1 = 2*k+1
 - Su hijo derecho, si tiene, está en la posición
 2*(k+1) = 2*k+2
 - Su padre, si tiene, está en la posición (k-1)/2

Representación Estática

0	I	2	3	4	5	6	7	8	9	10		12	13	14	_ •••
a	b	С	В	е	f	æ					h				•••

Representación Estática

- Averiguar la información ancestral de los nodos es muy simple porque mantienen posiciones fijas
- Útil en árboles completos en los que el vector no tendría huecos

Por lo general, no es eficiente en espacio

Representación Dinámica

- La implementación dinámica la vamos a dividir por capas
- Primero definimos un objeto de tipo nodo (lo llamaremos info_nodo) en el que tendremos:
 - I. La información o etiqueta que almacena
 - 2. Enlaces al padre, hijo izquierda e hijo derecha
- Hay que tener en cuenta que dando el nodo raíz, tendremos la información del árbol completo

Representación Dinámica

```
#include <queue> //para hacer el recorrido por niveles
   using namespace std;
   template <class T>
   struct info_nodo {
         info_nodo *padre, //puntero al padre
5
         *hijoizq, //puntero al hijo izquierda
6
         *hijodcha; // puntero al hijo derecha
7
         T et; // etiqueta del nodo
9
         // Constructor por defecto del struct
10
         info_nodo() {
11
               padre = hijoizq = hijodcha = 0;
12
13
14
         info_nodo(const T &e) {
15
               et = e;
16
                padre = hijoizq = hijodcha = 0;
17
18
   };
19
```

80

Representación mediante celdas enlazadas

