Exam 1

Nathan Warner

Computer Science Northern Illinois University United States

Contents

1	Axioms	2
2	Definitions	3
3	Theorems	4
4	Propositions	7

Axioms

Axiom of distance: For all points P, Q

- 1. $PQ \geqslant 0$
- 2. $PQ = 0 \iff P = Q$
- 3. PQ = QP

Axioms of incidence

- 1. There are at least two different lines
- 2. Each line contains at least two different points
- 3. Each pair of points are together in at least one line
- 4. Each pair of points P, Q, with $PQ < \omega$ are together in at most one line

Betweenness of points axiom (Ax. BP): If A, B, C are distinct, collinear points, and if $AB + BC \leq \omega$, then there exists a betweenness relation among A, B, C

What this is really saying is that if **any** of AB + BC, BA + AC, AC + CB is $\leq \omega$, then there is a betweenness relation.

Note: If Ax.BP is true for a plane \mathbb{P} , and if $AB + BC \leq \omega$ for distinct collinear A, B, C, then there is a betweenness relation, but not necessarily A-B-C

When $\omega = \infty$, then for any distinct collinear $A, B, C, AB + BC < \infty = \omega$, so there will be a betweenness relation

Quadrichotomy Axiom for Points (Ax.QP): If A, B, C, X are distinct, collinear points, and if A-B-C. Then, at least one of the following must hold

$$X-A-B$$
, $A-X-B$, $B-X-C$, or $B-C-X$

Thus, Ax.QP says that whenever A-B-C (say on line ℓ), then any other point X on line ℓ is in either \overrightarrow{BA} or \overrightarrow{BC} . That is,

$$\ell = \overrightarrow{BA} \cup \overrightarrow{BC}$$

Nontriviality Axiom (Ax.N): For any point A on a line ℓ there exists a point B on ℓ with $0 < AB < \omega$

This axiom is true for the planes in which $\omega = \infty$ (\mathbb{E} , \mathbb{M} , \mathbb{H} , \mathbb{G} , \mathbb{R}^3 , $\hat{\mathbb{E}}$, ws)

This axiom is also true for S and Fano, where $\omega < \infty$

Real ray Axiom (Ax.RR): For any ray \overrightarrow{AB} , and for any real number s with $0 \le s \le \omega$, there is a point X in \overrightarrow{AB} with AX = s

Separation Axiom Ax.S: for each line m, there exists a pair of opposite halfplanes with edge m.

Definitions

- **Definition (Endpoints)**. Point A is called an endpoint of ray \overrightarrow{AB}
- Definition (Interior points and length for a segment): Given a segment \overline{AB} , A and B are called its endpoints. All other points of \overline{AB} are called Interior points of \overline{AB}

Distance AB is called the **length** of \overline{AB}

The interior of \overline{AB} , denoted \overline{AB} or \overline{AB}^0 , means the set of all interior points of \overline{AB} . That is, $\overline{AB} = \overline{AB}^0 = \{X : A-X-B\}$

• **Definition**. Assume $\omega < \infty$. Let A be a point on a line m. The unique point A_m^* on m such that $AA_m^* = \omega$ is called the **antipode** of A on m. Thus,

$$\begin{cases} A, A_m^* \text{ are on m, } AA_m^* = \omega \\ \text{and } A\text{-}X\text{-}A_m^* \text{ for all other points } X \text{ on } m \end{cases}$$

• **Definition (interior points of a ray)**: Let $h = \overrightarrow{AB}$ be a ray. All points of h that are not endpoints of h are called *interior points* of h.

The *interior* of h is the set of all interior points of h, and is denoted by h° , \overline{AB}° , or Int \overline{AB} .

- **Definition (Opposite rays)**: Two rays with the same endpoint whose union is a line are called **opposite rays**
- Notation: Denote the ray opposite to ray h by h'. So, \overrightarrow{AB}' means the ray opposite \overrightarrow{AB}
- **Definition**: Let H, K be opposite halfplanes with edge m. Two points in the same halfplane are said to be on the **same side** of m.
- **Definition**: A^* is called the **antipode** of A

Theorems

- Theorem 6.1 (Symmetry of betweenness). For a general plane \mathbb{P} with points, lines, distance, and satisfy the seven axioms, $A B C \iff C B A$
- Theorem 6.2 (UMT): If A B C then B A C and A C B are false.
- Theorem 7.6: For any point A on a line ℓ there exists a point C not on ℓ with $0 < AC < \omega$
- Triangle inequality for the line: If A,B,C are any three distinct, collinear points, then

$$AB + BC \geqslant AC$$

- Rule of insertion:
 - If A-B-C and A-X-B, then A-X-B-C
 - If A-B-C and B-X-C, then A-B-X-C
- Theorem 8.1: If $\omega = \infty$, then $\mathbb{D} = [0, \infty)$; if $\omega < \infty$, then $\mathbb{D} = [0, \omega]$
- Theorem 8.2 Each segment, ray, and line has infinitely many points.
- Theorem 8.3. If $X \neq Y$ are points different from A on ray \overrightarrow{AB} , then one of A-X-Y or A-Y-X is true.
- Theorem 8.4. If C is any point on ray \overrightarrow{AB} with $0 < AC < \omega$, then $\overrightarrow{AC} = \overrightarrow{AB}$
- Theorem 8.6 (UDR) For any ray \overrightarrow{AB} and any real number s with $0 \le s \le \omega$, there is a **unique** point X on \overrightarrow{AB} with AX = s. X is in \overline{AB} if and only if $s \le AB$
- Theorem 9.1 (Antipode on line theorem): Let A be a point on a line m (in a plane with the 11 axioms). Assume that $\omega < \infty$. Then, there exists a unique point A_m^* on m such that $AA_m^* = \omega$. Further, if X is any other point on m, then A-X- A_m^*
- Theorem 9.2 (Almost-uniqueness for Quadrichotomy): Suppose that A, B, C, X are distinct points on a line m, and that A-B-C. Then **exactly one** of the following holds:

$$X-A-B$$
, $A-X-B$, $B-X-C$, $B-C-X$

with the *only exception* that both X-A-B and B-C-X are true when $\omega<\infty$ and $X=B_m^*$.

(Note that $B_m^* - A - B$ and $B - C - B_m^*$ are both true by Thm. 9.1)

- **Theorem 9.4**. If h is a ray with two endpoints A and P, then $\omega < \infty$ and $P = A_m^*$, where m is the carrier of h ($h \subseteq m$).
- Theorem 9.6 (Opposite ray theorem): If B-A-C, then \overrightarrow{AB} and \overrightarrow{AC} are opposite rays

Also, for $m = \overrightarrow{AB}$

$$\overrightarrow{AB} \cap \overrightarrow{AC} = \begin{cases} \{A\} & \text{if } \omega = \infty \\ \{A, A_m^*\} & \text{if } \omega < \infty \end{cases}$$

- Corollary 9.7: Each ray has a unique opposite ray.
- Corollary 9.8: Let A, B be points on line m with $0 < AB < \omega < \infty$. Then $\overrightarrow{AB'} = \overrightarrow{AB_m^*}$
- Corollary 9.9: Let A, B be points on line m with $0 < AB < \omega < \infty$. Then, $m = \overline{AB} \cup \overline{BA_m^*} \cup \overline{A_m^*B_m^*} \cup \overline{B_m^*A}$, with the interiors of these segments being disjoint.
- Theorem 9.10: Let A,B be points on line m with $0 < AB < \omega < \infty$. Let $C \neq A,B,A_m^*,B_m^*$ be another point on m. Then there is no betweenness relation for A,B,C if and only if $C \in \overline{A_m^*B_m^{*-0}}$
- **Definition**. A subset S of \mathbb{P} is **convex** if for each pair of points $X \neq Y$ in S with $XY < \omega$, $\overline{XY} \subseteq S$ holds.
- Theorem 10.1: If S_1 and S_2 are convex sets in \mathbb{P} , then so is $S_1 \cap S_2$
- Theorem 10.2: Segments, rays, and lines are convex.
- **Definition**: A pair of sets H, K in \mathbb{P} is called **opposed around a line** m if
 - $-H, K \neq \emptyset$
 - -H, K are convex
 - $-H\cap K=\varnothing$
 - $-H \cup K = \mathbb{P} m$
- Theorem 10.3 Let H, K be sets opposed around a line m in \mathbb{P} . Suppose that A, C are points so that $C \in m$, $A \in H$, $AC < \omega$. Then, $\operatorname{Int}\overrightarrow{CA} \subseteq H$, and $\operatorname{Int}\overrightarrow{CA}' \subseteq K$
- Corollary 10.4: let H, K be sets opposed around a line m, let A, B be points not on m, with A-X-B for some point $X \in m$. Then, A, B lie one in each of H and K, in some order.
- Definition: Let m be a line. Sets H, K are called **opposite halfplanes with edge** m if:

H, K are opposed around m, and whenever $X \in H, Y \in K$ and $XY < \omega$, then, $\overline{XY} \cap m \neq \emptyset$

• Theorem 10.5: Suppose that m is a line so that there exists a pair H, K of opposite half planes with edge m. Suppose also that $\omega < \infty$ and A is a point on m. If B is any point in $\mathbb P$ with $AB = \omega$, then $B \in m$ (so $B = A_m^*$, and there is only one point B in all of $\mathbb P$ with $AB = \omega$)

In other words, let H, K be opposite halfplanes with edge a line m, let $A \in m$, $\omega < \infty$. If $B \in \mathbb{P}$, $AB = \omega$, then $B \in m$, and B unique in \mathbb{P}

- Theorem 10.6: Suppose that there is a pair H, K of opposite halfplanes with edge m. Let $A \neq B$ be points not on m. Then,
 - A, B lie one in each of $H, K \iff$ there is a point X on m such that A-X-B
- Corollary 10.7 (Needs proof): Suppose that there is a pair H, K of opposite halfplanes with edge a line m. Then, H, K is the only pair of sets opposed around m.
- Theorem 10.8: Suppose that $\omega < \infty$. For each point A, there is exactly one point A^* in \mathbb{P} with $AA^* = \omega$. Also, every line through A goes through A^* as well.
- Corollary 10.9: Suppose that $\omega < \infty$. For any line m and point P, there are just two possibilities:

$$\begin{cases} P, P^* & \text{both on } m \\ P, P^* & \text{on opposite sides of } m \end{cases}$$

- Theorem 10.10 (Pasch's Axioms) (needs proof): Let A, B, C be three non-collinear points. Let X be a point with B-X-C, and m a line through X but not through A, B, or C. Then, exactly one of
 - 1. m contains a point Y with A-Y-C
 - 2. m contains a point Z with A-Z-B
- Theorem 10.11: Assume that $\omega < \infty$. Then, any two distinct lines must have a point (in fact, a pair of antipodes) in common.

Propositions

- Proposition 6.3
 - (a) \overline{AB} lies in one line, the line \overleftrightarrow{AB}
 - (b) $\overline{AB} = \overline{BA}$
 - (c) If $x \in \overline{AB}$, with $X \neq B$, then AX < AB
- **Proposition 6.4**: Let A, B, C, D be collinear points with $0 < AB < \omega$, $0 < CD < \omega$, and $\overline{AB} = \overline{CD}$, then
 - (a) Either $\{A, B\} = \{C, D\}$ or $\{A, B\} \cap \{C, D\} = \emptyset$
 - (b) AB = CD
- **Proposition 7.1**: If A-B-C and A-C-D, then A, B, C, D are distinct and collinear
- Proposition 7.2 If A-B-C-D, then A, B, C, D are distinct and collinear, and D-C-B-A
- **Proposition 7.5**: If $X \neq Y$ are points distinct from A or ray \overrightarrow{AB} , then at least one of A-X-Y or A-Y-X or X, Y in \overline{AB} is true.
- Important fact: Suppose X is a point on a ray \overrightarrow{AB} in a general plane.
 - 1. If A-X-B then AX < AB
 - 2. If A-B-X then AX > AB
 - 3. IF X = B then AX = AB
- **Proposition 8.11** Let A, B be any two points on line m, with $0 < AB < \omega$. Then, there exists a point C on m with C-A-B and $CB < \omega$.
- Proposition 8.5: A ray has at most two endpoints
- **Proposition 8.7**: Let \overline{AB} be a segment and $X, Y \in \overline{AB}$. Then, $XY \leqslant AB$, and if XY = AB, then $\{X, Y\} = \{A, B\}$
- Proposition 8.8 If $\overline{AB} = \overline{CD}$, then $\{A, B\} = \{C, D\}$
- **Proposition 8.9**: In each segment \overline{AB} there is a unique point M, called the **midpoint** of \overline{AB} , with the property that $AM = \frac{1}{2}AB$. Further, AM = MB
- Proposition 9.3: Assume $\omega < \infty$. Let A, B be points on line m with $0 < AB < \omega$. Then
 - (a) $\overrightarrow{AB} = \overline{AB} \cup \overline{BA_m^*}$ and $\overline{AB}^{\circ} \cap \overline{BA_m^*}^{\circ} = \emptyset$.
 - (b) $\overrightarrow{AB} = \overrightarrow{A_m^*B}$, so that if A is an endpoint of a ray with carrier m, then so is A_m^* .
- **Proposition between** Let \overrightarrow{AB} and \overrightarrow{AC} be opposite rays, and points $X \in \operatorname{Int} \overrightarrow{AB}$, $Y \in \operatorname{Int} \overrightarrow{AC}$ with $AX + AY \leq \omega$, then X A Y
- Proposition Noncollinear: If A, B, C are three noncollinear points (not all on the same line), then AB, AC, BC all less than ω .