MANUFATURA DE MATERIAIS COMPÓSITOS

Notas de aulas:

Prof. Sérgio Frascino Müller de Almeida

1. Introdução

O que são materiais compósitos?

- Materiais compósitos de uso estrutural em aeronáutica tipicamente são placas laminadas de plástico reforçado com fibras
- Os materiais mais comuns dessa classe são o carbono/epoxi, o vidro/epóxi e kevlar/epóxi
- Aviões mais modernos como o Boeing 787 e o Airbus A350 e A380 possuem um gande número de partes de materiais compósitos

DEFINIÇÕES BÁSICAS materiais compósitos

as fases constituintes de um compósito são:

- reforço: geralmente descontínua, mais rígida e mais resistente
- matriz: contínua e geralmente menos rígida e resistente

DEFINIÇÕES BÁSICAS

materiais compósitos

além da matriz e do reforço, a interface entre essas fases também afeta as propriedades mecânicas do compósito

uma boa interface (resultado da compatibilidade química entre as fases) é essencial para a resistência e rigidez do compósito

DEFINIÇÕES BÁSICAS materiais compósitos

DEFINIÇÕES BÁSICAS

funções da matriz

- mantém o reforço agregado e distribui as cargas
- protege o reforço de dano químico e mecânico
- componente dominante nas propriedades de:
 - > resistência ao impacto e tenacidade
 - > temperatura de serviço
 - > comportamento viscoelástico (creep)
 - > propriedades transversais

DEFINIÇÕES BÁSICAS

anisotropia

- muitas propriedades dos materiais, tais como rigidez, resistência, expansão térmica e condutividade térmica estão associadas com uma direção ou com a orientação dos eixos de referência
- um material é anisotrópico quando as suas propriedades variam com a direção ou com a orientação dos eixos de referência

unidirecional

bi-direcional

multidirecional

micrografia de corte transversal de lâmina (material préimpregnado)

micrografia de corte transversal de lâmina (tecido pré-impregnado)

as fibras são fornecidas em vária formas:

- roving (fio seco)
- lâmina unidirecional pré-impregnada (tape)
- tecido (pré-impregnado ou seco)

quanto ao tipo de reforço – arranjo geométrico

roving

Projeto e manufatura

- o processo de fabricação afeta a rigidez e resistência e o custo de materiais compósitos
- diferentes processos de fabricação necessitam matrizes com diferentes propriedade físicas e químicas
- não se deve projetar um componente de compósito sem antes definir o processo de manufatura

Motivações para o uso de compósitos

Requisitos: Redução de:

- peso
- custo

- flambagem
- instabilidade aeroelástica
- resistência
- durabilidade
- o custo do carbono/epóxi é maior do que o do alumínio ou aço
- redução de custo só é possível pelo processo de fabricação

Motivação para uso de compósitos

Redução

peso

Redução de peso depende do processo de fabricação

reforçador: compósito co-curado, colado ou rebitado

Motivação para uso de compósitos

- custo do alumínio é mais baixo mas o processo de fabricação é caro
- o custo do carbono/epóxi é alto mas o processo é barato; deve-se evitar eventuais delaminações

Projeto

pontos críticos

- juntas
- proteção eletromagnética
- resistência ao impacto
- flambagem

delaminação

módulo de elasticidade - arranjo geométrico rigidez

Material		E_x (GPa)	E_y (GPa)	G _{xy} (GPa)
Aço		210	210	83
Alumínio		70	70	28
Carbono /epóxi	[0] _s	147	10	7,0
	[0/90] _s	79	79	7,0
	[0/90/45/-45] _s	58	58	23

- · a rigidez do aço é maior que o carbono epóxi unidirecional
- · a rigidez do alumínio é da ordem do laminado [0/90]_s

módulo de elasticidade - arranjo geométrico rigidez por unidade de peso

Material		E_x/ρ (Mm)	E_y/ρ (Mm)	G_{xy}/ρ (Mm)
Aço		26,9	26,9	10,6
Alumínio		28,0	28,0	11,0
Carbono /epóxi	[0] _s	91,9	6,4	4,4
	[0/90] _s	49,3	49,3	4,4
	[0/90/45/-45] _s	36,4	36,4	14,1

- a rigidez do carbono/epóxi por unidade de peso é maior que a do aço e alumínio
- a rigidez do laminado de carbono/epóxi depende da orientação das camadas