## Математический анализ

Предел последовательности

Теорема: Последовательность  $a_n=(1+\frac{1}{n})^n$  монотонно возрастает и ограничена.

$$1+1, (1+\frac{1}{2})^2, \dots (1+\frac{1}{15000000})^{15000000} < e \approx 2,718...$$

$$(a+b)^k = C_k^0*a^k + C_k^1*a^{k-1}*b + \ldots + C_k^m*a^{k-m}*b^m + C_k^k*b^k \; ; \; C_n^k = \frac{n!}{k!(n-k)!}$$

$$a_n = (1 + \frac{1}{n})^n = 1 + n * \frac{1}{n} + \frac{n(n-1)}{2} * \frac{1}{n^2} + \dots \frac{n(n-1)(n-2)\dots(n-k+1)}{k!} * \frac{1}{n^k} + \dots + \frac{1}{n^2} = 2 + \frac{(1 - \frac{1}{n})}{2!} + \frac{(1 - \frac{1}{n})(1 - \frac{2}{n})}{3!} + \dots + \frac{(1 - \frac{1}{n})(1 - \frac{2}{n})\dots(1 - \frac{n-1}{n})}{k!} + \dots + \frac{(1 - \frac{1}{n})\dots(1 - \frac{n-1}{n})}{n!}$$

$$a_{n+1} = (1 + \frac{1}{n+1})^{n+1} = 2 + \frac{1 + \frac{1}{n+1}}{2!} + \frac{(1 + \frac{1}{n+1})(1 + \frac{2}{n+1})}{3!} + \dots + \frac{(1 + \frac{1}{n+1})(1 + \frac{2}{n+1})\dots(1 - \frac{k-1}{n+1})}{k!} + \frac{(1 + \frac{1}{n+1})\dots(1 - \frac{n-1}{n+1})}{n!} + \frac{(1 + \frac{1}{n+1})\dots(1 + \frac{n}{n+1})}{(n+1)!}$$

Задано для любого п $a_{n+1} > a_n$ 

$$a_n < 2 + \frac{1}{2!} + \frac{n}{3!} + \ldots + \frac{1}{k!} + \ldots + \frac{1}{n!} < 2 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \ldots + \frac{1}{2^{n-1}} = 2 + \left(1 - \frac{1}{2^{n-1}} = 3 - \frac{1}{2^{n-1}} \text{ T.K. } \frac{1}{n!} < \frac{1}{2^{n-1}} \; \forall n \geq 2 + \frac{1}{2^{n-1}} + \frac{1}{2^{n-1}} < \frac{1}{(2*2*\ldots*2)_{n-1}}$$

Опр. 
$$\lim_{n\to\infty} a_n = +\infty <=> \forall \varepsilon > 0 \exists N(\varepsilon) : \forall n > N_{\varepsilon}, n \in N => a_n > \varepsilon$$

Опр. 
$$\lim_{n\to\infty} a_n = -\infty <=> \forall \varepsilon > 0 \; \exists \; N(\varepsilon) : \forall n > N_\varepsilon, \; n \in N => a_n < -\varepsilon$$

Опр. 
$$u_R(+\infty) = \{x \in R : x > R\} = > \lim_{n \to \infty} a_n = +\infty <=> \forall R > 0 \exists N_R : \forall n > N_R => a_n \in u_R(+\infty)$$

Опр. 
$$\lim_{n\to\infty} a_n = \infty <=> \lim_{n\to\infty} |a_n| = +\infty$$

Пример

Опр.  $\{a_n\}$  называется бесконечно большой, если  $\lim_{n \to \infty} a_n = \infty$ 

Опр.  $\{b_n\}$  называется бесконечно малой, если  $\lim_{n\to\infty} b_n=0$ 

Пример: если  $\{a_n\}$  - бесконечно большая, то  $b_n = \frac{1}{a_n}$  - бесконечно малая.

## Принцип вложенных отрезков

Теорема: пусть  $\{[a_n,\ b_n]\}$  - система отрезков такая, что  $I_{n+1}=[a_n+1,\ b_n+1]\subset I_n[a_n,\ b_n]$  и кроме того заметим, что  $\exists\lim_{n\to\infty}(b_n-a_n)=0$ 

 $n\to\infty$  Тогда существует единственная такая  $C\in\mathbb{R},$  что С  $=\bigcap_{n=1}^\infty [a_n,\ b_n]$ 

Тут доказательство теоремы должно быть, хз нужно ли оно

Опр. Число  $a \in \mathbb{R}$  называется точной верхней (нижней) границей множества  $x \in X$ , если:

- 1)  $\forall x \in X => x \le M(x \ge M)$
- 2)  $\forall \varepsilon > 0 \ \exists \ x_{\varepsilon} \in X : M \varepsilon < X_{\varepsilon} \le M(M \le X_{\varepsilon} < M + \varepsilon)$

Обозначим  $\sup X = M(\inf X = M)$ 



$$\sup(0;1) = 1, \inf(0;1) = 0$$

Теорема: Всякая ограниченное сверху(снизу) множество Х имеет точную верхнюю (нижнюю) грань.

$$\exists M_1 : x \in X => x < M_1$$



Пусть  $x_1 \in X$  - любой  $I_1 = [x_1, M_1]$ , делим пополам и из двух отрицательных выбираем самый правый, содержащий хотя бы один  $x \in X$  -  $I_2$  - повторяем предыдущий шаг -  $I_3$  с  $I_2$  строим аналогично (правее получившегося отрицательного нет ни одной  $x \in X$ )

Получаем систему  $I_n$  вложенных отрезков, тогда по теореме  $\exists !\ C = \bigcap_{n=1}^\infty\ I_n$ , тогда  $C = \sup X$  Пусть  $I_n = [a_n; b_n]$ , по построению  $X \leq b_n \ \forall n$ , то  $C = \lim_{n \to \infty} b_n => X \leq C$  Пусть  $\varepsilon > 0$ 



Пусть  $\{a_n\}$  - некоторая грань, и  $a_{i1}, a_{i2}, ... a_{ik}$  такие, что  $a_{ij} \in \{a_n\} i_1 \leq i_2 \leq ... \leq i_k$ 

Тогда  $a_i k$  - подпоследовательность последовательности  $\{a_n\}$ 

Пример:  $\{a_n\} = (-1)^n$ 

 ${a_{2k}} = {1, 1, 1, ... 1, 1...}$  - подпоследовательность

(-):

Из всякой ограниченной последовательности  $\{a_n\}$  можно выбрать такую подпоследовательность  $\{a_{n_k}\}$ :  $\exists \lim_{k \to \infty} a_{n_k} = A, A \in \mathbb{R}$ 

Доказательство:



 $I_0 = [-M; M]$ , выбираем  $\forall a_{i1} \in I_0$ , делим  $I_0$  пополам, из двух отрезков выбираем тот, в котором содержится бесконечное число членов последовательности  $\{a_n\}$  -  $I_1$  и в  $I_1$  выбираем любой  $a_{i2}:i_2>i_1$ 

Повторем шаг: из  $I_2$  выбираем  $a_i 3: i_3 > i_2$ 

Получаем последовательность  $\{a_{in}\}$ , где  $a_{ik}\in I_{k-1}$ , но  $\{I_k\}$  - система вложенных отрезков  $=>\lim_{k\to\infty}a_{ik}=C,$ 

где 
$$C = \bigcap\limits_{k=1I_k}^{\infty}$$
 Пусть  $I_k = [d_k, e_k]$ 

 $d_{k-1} \leq a_{ik} \leq e_{k-1}$ , т.к.  $a_{ik} \in I_{k-1}$ , но  $\lim_{k \to \infty} d_k = C$ ,  $\lim_{k \to \infty} e_k = C => \lim_{k \to \infty} a_{ik} = C$  (по теореме о двух м-рах) Опр. точка (число)  $a \in \mathbb{R}$  называется предельной точкой последовательности  $\{a_n\}$ , если  $\exists \{a_{n_k}\} \subset \{a_n\}$  -

подпоследовательность  $=>\lim_{n\to\infty}a_{n_k}=a$ 

Пример  $a_n=(-1)^n$  имеет две предельные точки -  $A_1=1, A_2=-1$ 

 $\{a_{2n}\}\subset\{a_k\}$ 

 $\{a_{2n}\}=\{1,1,1,1,1...\}$  - сходится к 1

 $\{a_{2n+1}\} \subset \{a_k\}$ 

$${a_{2n+1}} = {-1, -1, -1, -1...}$$

Пусть  $\{b_n\}$  - произвольная последовательность  $b_n \in \mathbb{R}$ , тогда  $\exists \{a_n\}$  - последовательность:  $\forall b_n$  есть предельная точка последовательности  $\{a_n\}$ 

$$\begin{vmatrix} b_1 & b_2 & b_3 & \dots \\ b_1+1 & b_2+1 & b_3+1 & \dots \\ b_1+\frac{1}{2} & b_2+\frac{1}{2} & b_3+\frac{1}{2} & \dots \\ b_1+\frac{1}{3} & \dots & \dots & \dots \\ \dots & b_2+\frac{1}{k} & \dots & \dots \\ b_1+\frac{1}{n} & b_2+\frac{1}{n} & b_3+\frac{1}{n}0 & \dots \end{vmatrix}$$

$$\lim_{n \to \infty} (b_1 + \frac{1}{n}) = b_1$$

 $\{a_n\}$  - новая последовательность(см табл.), элементы пронумерованы уголком.