$\begin{tabular}{ll} \begin{tabular}{ll} \beg$

10/10 points (100%)

	✓ Congratulations! You passed!	Next Item					
~	1/1 point						
1.	ponie						
Which	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?						
	$a^{[8]\{7\}(3)}$						
	$a^{[8]\{3\}(7)}$						
0	$a^{[3]\{8\}(7)}$						
Corr	ect						
	$a^{[3]\{7\}(8)}$						
✓ 2.	1/1 point						
	of these statements about mini-batch gradient descent do you agree with?						
	Training one epoch (one pass through the training set) using mini-batch gradient descer using batch gradient descent.	nt is faster than training one epoch					
0	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.						
Corr	ect						
	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).						
~	1 / 1 point						
3. Why is	the best mini-batch size usually not 1 and not m, but instead something in-between?						
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.						
Un-s	elected is correct						
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the n	nini-batch.					

← ^{Cori}	Optimization algorithms Quiz, 10 questions	10/10 points (100%)		
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole making progress.	training set before		
Cori	rect			
If the mini-batch size is 1, you end up having to process the entire training set before making any progress. Un-selected is correct				
✓ 4.	1 / 1 point			

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
0	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
Corre	ect
	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

1 / 1

5. Optimization algorithms Suppose நேடி சுறுந்துக்குமுச் in Casablanca over the first three days of January are the same:

10/10 points (100%)

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
, $v_2^{corrected}=10\,$

Correct

$$v_2=10$$
, $v_2^{corrected}=10$

$$v_2=10$$
, $v_2^{corrected}=7.5\,$

$$v_2=7.5$$
 , $v_2^{corrected}=7.5$

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha=e^tlpha_0$$

Correct

$$lpha=0.95^tlpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$lpha = rac{1}{1+2*t} lpha_0$$

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta Q p timizat) v_t = \beta$

1/1 point 8. Consid Optimization algorithms
Quiz, 10 questions

10/10 points (100%)

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

	(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)			
	(1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)			
0	(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)			
Correct				
_				

(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

1/1 point

μ..

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

Try initializing all the weights to zero

Un-selected is correct

Try mini-batch gradient descent

Correct

Try better random initialization for the weights

Correct

Try using Adam

← ^{Corr}	Optimization algorithms Quiz, 10 questions	10/10 points (100%)
	Try tuning the learning rate $lpha$	
Corr	ect	
~	1/1 point	
10. Which	of the following statements about Adam is False?	
0	Adam should be used with batch gradient computations, not with mini-batches.	
Corr	ect	
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, $eta_2=0.9$	999, $arepsilon=10^{-8}$)
	Adam combines the advantages of RMSProp and momentum	
	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.	

