

Ranked List Loss for Deep Metric Learning

Xinshao Wang, Yang Hua, Elyor Kodirov,

Guosheng Hu, Romain Garnier, and

Neil M. Robertson

CVPR 2019, Poster

Background

- What is deep metric learning (DML)?
 - Objective: a deep embedding space such that relative locations of input samples are based on their semantic similarities.

Key point:

Input Space Embedding Space

Background

- DML is fundamental and learns deep representations => diverse applications
 - Image Retrieval (Lifted Struct, Song et al., CVPR 2016)
 - Person ReID (RCN, McLaughlin et al. CVPR 2016)
 - Clustering (Lifted Struct, Song et al., CVPR 2017)
 - Verification (FaceNet, Schroff et al., CVPR 2015)
 - Few-shot Learning (ProtoNet, Snell et al., NeurIPS 2017)
 - Generative Networks (BourGAN, Xiao et al., NIPS 2018)

Deep Metric Learning versus Few-shot Learning

- Shared goal: learning representations (embedding function)
- Training settings can also be shared
 - Few-shot: learn iteratively on K-shot C-way classification tasks
 - Deep Metric: learn iteratively on mini-batches with C classes x K images per class
- Test settings are different
 - Few-shot: test iteratively on K-shot C-way classification tasks
 - Deep Metric: test on one task with unseen classes generally.

Limitations of Existing Methods

- Exploiting only a proportion informative examples
 We argue that utilising all non-trivial data points can be better.
- Tending to shrink class-level distribution into one point, i.e., kill all intraclass variances in the metric space.
 We argue that regularising the metric space by pulling all intraclass examples into a hypersphere is better.
- Imbalanced number of positive examples and negative ones.

Hypersphere Regulator: Non-excessively Reduce Intraclass Variance

Illustration of different ranking-motivated structured losses.

The blue circle is an anchor (query).

Different shapes (circle, triangle and square) represent different classes. For simplicity, only 3 classes are shown.

The intraclass hypersphere diameter: $\alpha - m$

Exploiting All Non-trivial Training Examples

Illustration of different ranking-motivated structured losses.

The blue circle is an anchor (query).

Different shapes (circle, triangle and square) represent different classes. For simplicity, only 3 classes are shown.

The intraclass hypersphere diameter: $\alpha - m$

The optimisation objective of RLL

Red shapes: trivial examples
Yellow ones: informative points

Arrow: pull/push effect to query by non-trivial examples in the gallery list

Learning: the query's representation is updated based on a weighted combination of their effects.

Pairwise Constraint

$$L_{\rm m}(\mathbf{x}_i, \mathbf{x}_j; f) = (1 - y_{ij})[\alpha - d_{ij}]_+ + y_{ij}[d_{ij} - (\alpha - m)]_+,$$

where $y_{ij} = 1$ if $y_i = y_j$, and $y_{ij} = 0$ otherwise. $d_{ij} = ||f(\mathbf{x}_i) - f(\mathbf{x}_j)||_2$ is the Euclidean distance between two points.

- Non-trivial Sample Mining
 - Before Mining

The positive set with respect to the query x_i^c :

$$P_{c,i} = \{\mathbf{x}_j^c | j \neq i\}, |\mathbf{P}_{c,i}| = N_c - 1.$$

The corresponding negative set:

$$N_{c,i} = \{ \mathbf{x}_{i}^{k} | k \neq c \}, |\mathbf{N}_{c,i}| = \sum_{k \neq c} N_{k}.$$

After Mining

$$\mathbf{P}_{c,i}^* = {\{\mathbf{x}_j^c | j \neq i, d_{ij} > (\alpha - m)\}}$$

$$\mathbf{N}_{c,i}^* = \{\mathbf{x}_j^k | k \neq c, d_{ij} < \alpha\}$$

- Loss-based Negative Examples Weighting
 - The original weight is one for any representation

$$\left|\left|\frac{\partial L_{\mathbf{m}}(\mathbf{x}_i, \mathbf{x}_j; f)}{\partial f(\mathbf{x}_j)}\right|\right|_2 = \left|\left|\frac{f(\mathbf{x}_i) - f(\mathbf{x}_j)}{\left|\left|f(\mathbf{x}_i) - f(\mathbf{x}_j)\right|\right|_2}\right|\right|_2 = 1.$$

Weighting scheme

$$w_{ij} = \exp(T \cdot (\alpha - d_{ij})), \mathbf{x}_j^k \in \mathbf{N}_{c,i}^*.$$

T=0: Treating all non-trivial negative examples equally.

 $T=+\infty$: Mining the hardest negative example

- Optimisation Objective
 - Positive set

$$L_{\mathrm{P}}(\mathbf{x}_{i}^{c};f) = rac{1}{|\mathbf{P}_{c,i}^{*}|} \sum_{\mathbf{x}_{j}^{c} \in \mathbf{P}_{c,i}^{*}} L_{\mathrm{m}}(\mathbf{x}_{i}^{c}, \mathbf{x}_{j}^{c};f)$$

Negative set

$$L_{\mathrm{N}}(\mathbf{x}_{i}^{c};f) = \sum_{\mathbf{x}_{i}^{k} \in |\mathbf{N}_{c,i}^{*}|} \frac{w_{ij}}{\sum_{\mathbf{x}_{j}^{k} \in |\mathbf{N}_{c,i}^{*}|} w_{ij}} L_{\mathrm{m}}(\mathbf{x}_{i}^{c}, \mathbf{x}_{j}^{k};f) \mathbf{y'}$$

Combination

$$L_{\text{RLL}}(\mathbf{x}_i^c; f) = L_{\text{P}}(\mathbf{x}_i^c; f) + \lambda L_{\text{N}}(\mathbf{x}_i^c; f).$$

$$L_{\mathrm{RLL}}(\mathbf{X}; f) = \frac{1}{N} \sum_{\forall c, \forall i} L_{\mathrm{RLL}}(\mathbf{x}_{i}^{c}; f).$$

Imbalanced number of

positive and negative examples

Overall Framework

 \Box Computational Complexity: $O(N^2)$

Experiments: Fine-grained Image Retrieval and Clustering Tasks

CARS196 dataset

CUB-200-2011 dataset

Experiments: Fine-grained Image Retrieval and Clustering Tasks

COLVISION.

Experiments: Fine-grained Image Retrieval and Clustering Tasks

Evaluation on Fine-grained Image Retrieval and Clustering Tasks

□ Results on CARS196 and CUB-200-2011

	CARS196			CUB-200-2011						
	R@1	R@2	R@4	R@8	NMI	R@1	R@2	R@4	R@8	NMI
Triplet Semihard [25]	51.5	63.8	73.5	82.4	53.4	42.6	55.0	66.4	77.2	55.4
Lifted Struct [21]	53.0	65.7	76.0	84.3	56.9	43.6	56.6	68.6	79.6	56.5
<i>N</i> -pair-mc [29]	53.9	66.8	77.8	86.4	57.8	45.4	58.4	69.5	79.5	57.2
Struct Clust [30]	58.1	70.6	80.3	87.8	59.0	48.2	61.4	71.8	81.9	59.2
Spectral Clust [17]	73.1	82.2	89.0	93.0	64.3	53.2	66.1	76.7	85.3	59.2
Proxy NCA [20]	73.2	82.4	86.4	88.7	64.9	49.2	61.9	67.9	72.4	59.5
RLL-H	74.0	83.6	90.1	94.1	65.4	57.4	69.7	79.2	86.9	63.6
RLL-(L,M,H)	82.1	89.3	93.7	96.7	71.8	61.3	72.7	82.7	89.4	66.1

Evaluation on Fine-grained Image Retrieval and Clustering Tasks

Results on SOP

	SOP				
	R@1	R@10	R@100	NMI	
Triplet Semihard [25]	66.7	82.4	91.9	89.5	
Lifted Struct [21]	62.5	80.8	91.9	88.7	
N-pair-mc [29]	66.4	83.2	93.0	89.4	
Struct Clust [30]	67.0	83.7	93.2	89.5	
Spectral Clust [17]	67.6	83.7	93.3	89.4	
Proxy NCA [20]	73.7	_	_	90.6	
RLL-H	76.1	89.1	95.4	89.7	
RLL-(L,M,H)	79.8	91.3	96.3	90.4	

Mining Non-trivial Examples

Table 3: The impact of α on the distance distribution of negative examples. SOP is used. Recall@K (%) results are reported. In all experiments, m=0.4, T=10.

m = 0.4, T = 10	R@1	R@10	R@100
$\alpha = 1.4$	76.2	89.4	95.6
$\alpha = 1.2$	79.8	91.3	96.3
$\alpha = 1.0$	78.7	90.5	95.9

Mining Non-trivial Examples

Table 4: The impact of the distance margin m between negative and positive examples. The Recall@K (%) results on SOP are shown with $\alpha = 1.2, T = 10$ in all experiments.

$\alpha = 1.2, T = 10$	R@1	R@10	R@100
m = 0	76.1	89.8	95.7
m = 0.2	79.0	91.2	96.3
m = 0.4	79.8	91.3	96.3
m = 0.6	79.2	90.6	96.0
m = 1.2	79.1	90.5	95.8

Weighting Negative Examples

Table 5: The results of different T on SOP in terms of Recall@K (%). We fix $m=0.4, \alpha=1.2$ in all experiments.

$m = 0.4, \alpha = 1.2$	R@1	R@10	R@100
T = 0	78.8	90.7	96.1
T = 5	79.1	91.0	96.2
T = 10	79.8	91.3	96.3
T = 15	79.3	90.9	96.0
T = 20	78.6	90.5	95.7

Single-level versus Multilevel Embeddings

Table 6: Single-level embeddings versus multilevel embedding on SOP in terms of Recall@K (%). L, M and H represent the low-level, mid-level and high-level embedding respectively. (L,M,H) means the concatenation of low-level, mid-level and high-level embeddings.

Embedding	R@1	R@10	R@100
L	76.1	88.8	94.9
M	76.9	89.6	95.5
H	76.1	89.1	95.4
(L,M,H)	79.8	91.3	96.3

The Impact of Batch Size

Table 7: The results of different batch size on SOP.

Batch size	R@1	R@10	R@100
$120 = 40 \times 3$	79.2	90.9	96.2
$150 = 50 \times 3$	79.5	91.1	96.2
$165 = 55 \times 3$	79.7	91.2	96.3
$180 = 60 \times 3$	79.8	91.3	96.3
$195 = 65 \times 3$	79.8	91.3	96.3

Summary

Key motivations of RLL

Exploiting all non-trivial training examples

Hypersphere Regularisation:
Non-excessively Reduce Intraclass Variance

Imbalanced number of positive and negative examples

Simple, Intuitive & Effective.

Ranked List Loss for Deep Metric Learning

Many Thanks!

Comments Are Appreciated!

Questions Are Welcome!