

DeiT: Data-efficient Image Transformers

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou

Sébastien Meyer

08 mars 2022

ToC

- 1. Available packages
- 2. My modifications
- 3. Some results

1. Available packages

Introducing Vision Transformers

Attention mechanisms for NLP

- Greatly improved in 2017 by Vaswani et al.
- Focused on NLP tasks (language translation, parsing)

Attention mechanisms for Computer Vision

- Dosovitskiy et al. (2021) have adapted Transformers for vision tasks
- Models have to be trained on large datasets to achieve good results

Fig. 1: Vision Transformer architecture

1. Available packages

Data-efficient Vision Transformers (2021)

- Small changes to ViT (lots of data aug) to allow training on smaller datasets
- Introduced teacher-student distillation (concatenated token & loss)

Model	ImageNet	CIFAR-10	CIFAR-100	Flowers	Cars	iNat-18	iNat-19	im/sec
Grafit ResNet-50 49	79.6	_	_	98.2	92.5	69.8	75.9	1226.1
Grafit RegNetY-8GF [49]	_	_	_	99.0	94.0	76.8	80.0	591.6
ResNet-152 [10]	_	_	_	_	_	69.1	_	526.3
EfficientNet-B7 [48]	84.3	98.9	91.7	98.8	94.7	-	-	55.1
ViT-B/32 [15]	73.4	97.8	86.3	85.4	_	_	_	394.5
ViT-B/16 [15]	77.9	98.1	87.1	89.5	_	_	_	85.9
ViT-L/32 [15]	71.2	97.9	87.1	86.4	_	_	_	124.1
ViT-L/16 [15]	76.5	97.9	86.4	89.7	-	-	-	27.3
DeiT-B	81.8	99.1	90.8	98.4	92.1	73.2	77.7	292.3
DeiT-B↑384	83.1	99.1	90.8	98.5	93.3	79.5	81.4	85.9
DeiT-B [*]	83.4	99.1	91.3	98.8	92.9	73.7	78.4	290.9
DeiT-B ? ↑384	84.4	99.2	91.4	98.9	93.9	80.1	83.0	85.9

Fig. 2: Comparison of accuracy between ViT and DeiT models

Expediting Vision Transformers via Token Reorganization (2022)

 Merged inattentive image patches between each Transformerto speed up both training & testing

2. My modifications

- Forked repo
 - See code: https://github.com/sebastienmeyer2/Project-deit
- Support for CIFAR10
 - Added CIFAR10 to the datasets preparation
 - Transfer learning of a teacher RegNetY for distillation
- Integration of EviT for comparison
 - Largely taken from https://github.com/youweiliang/evit
 - Combine both distillation and token pooling?

3. Some results

- Comparison of training with and without distillation of DeiT (tiny, patch 16, size 224)
 - Only the last classification layer of the teacher was modified
 - Approx. accuracy on CIFAR10 is 78% for the teacher after 100 epochs (can do much better!)

3. Some results

- Comparison of training with and without distillation of EViT (tiny, patch 16, size 224)
 - Same teacher as for DeiT does not seem to help as much

3. Some results

Comparison of DeiT with EViT

- As specified by the authors, EViT is slightly less accurate than DeiT
- No speed difference for CIFAR10: EViT 785 img/s & DeiT 785 img/s

Concluding remarks

- Easy-to-use models but very long to train -> use timm!
- Speed up training by precomputing teacher's predictions?

References

- Ashish Vaswani et al. Attention Is All You Need. December 2017. (Available at: https://arxiv.org/abs/1706.03762)
- Alexey Dosovitskiy et al. *An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale*. ICLR 2021. (Available at: https://arxiv.org/abs/2010.11929)
- Touvron et al. *Training data-efficient image transformers & distillation through attention*. January 2021. (Available at: https://arxiv.org/abs/2012.12877)
- Liang et al. Not all Patches are What You Need: Expediting Vision Transformers via Token Reorganizations. ICLR 2022. (Available at: https://arxiv.org/abs/2202.07800)