Main causes of low-frequency variability of the Brazil Current

Ivenis Pita

GFD I

11/18/2019

Outline

- Why is Brazil Current (BC) weaker than Gulf Stream?
- Description of BC
- Area I
- Area II
- Area III
- Takeaways

Why is BC weaker than Gulf Stream?

• Stommel (1965)

THERMO-SUM WIND -HALINE DRIVEN N. ATLANTIC **GULF STREAM** DEEP WATER INTERMEDIATE S. ATLANTIC DEEP WATER BRAZIL CURRENT ANTARCTIC BOTTOM WATER Stramma et al. (1990)

Why is BC weaker than Gulf Stream?

• Stommel (1965)

THERMO-SUM WIND -HALINE DRIVEN N. ATLANTIC GULF STREAM DEEP WATER INTERMEDIATE S. ATLANTIC DEEP WATER BRAZIL CURRENT **ANTARCTIC** BOTTOM WATER Stramma et al. (1990)

Why is BC weaker than Gulf Stream?

• Stommel (1965)

THERMO-SUM WIND -HALINE DRIVEN N. ATLANTIC **GULF STREAM** DEEP WATER INTERMEDIATE S. ATLANTIC DEEP WATER BRAZIL CURRENT ANTARCTIC BOTTOM WATER Stramma et al. (1990)

NBC – 12 Sv

BC - 04 Sv

Description of BC

Area I — BC origin

Area I – BC origin

Area II – Vitoria-Trindade Ridge

- Mata *et al.* (2012)
 - Variability of BC -> South Atlantic Gyre variability.
- Lima *et al.* (2016)
 - Confirmed Mata et al. (2012)
 - Continental Shelf 21% of BC transport
- Schimd & Majumder (2018)

Area II

- Schmid & Majumder (2018)
 - 2 to 4 years cycle
 - SAM Corr. of 0.4 with lag of 6 months
 - El Niño 3.4 Index Corr. of 0.4 with lag of 8 months
 - SASD Corr. of 0.5 with lag of 1month
 - EOF (Pressure and BC transp.)
 - 1st mode (36% of the variance)
 - Effect of Tropical Pacific on SAM
 - 2nd mode (15% of the variance)
 - ENSO impact on the BC transport
- Goes et al. (2019)
 - Wind stress Curl Corr. of 0.43

South Atlantic Subtropical Dipole Mode

Area III

- Goes et al. (2019)
 - Brazil-Malvinas Confluence zone could move southward strengthening of the BC and weakening of Malvinas Current.
- Goni & Wainer (2001)
 - BC variability sets the Brazil-Malvinas Confluence location
 - 75% of the frontal oscillations are explained by semi and annual processes.

Area III

- Lumpkin & Garzoli (2011)
 - No correlation with SAM
 - Confirmed by Schmid and Majumder (2018)
 - Agulhas Current eddies could influence the frontal zone position in low-frequency cycles.

Takeaways

- Lack of studies regarding BC variability northern of 20° S
- BC is a complex system.
 - Inumerous mechanisms causes the low frequency variability
 - Semi-annual, annual, 2-4 years
 - SAM explains 36% BC variability at area II
 - ENSO explains 15% BC variability at area II
 - BC variability dictates the Brazil-Malvinas Confluence location