

Методы и технологии машинного обучения

Лекция 3: Линейные регрессионные модели

Светлана Андреевна Суязова (Аксюк) sa_aksyuk@guu.ru

осенний семестр 2021 / 2022 учебного года

План лекции

- Непрерывный Y: линейная регрессия
 - Качественные регрессоры, взаимодействие регрессоров
 - Выбор оптимальной модели

Я не доверяю линейной регрессии, если угадать направление связи по графику разброса труднее, чем нарисовать новое созвездие

xkcd.com/1725/

Линейная регрессия линейна по параметрам

$$Y = f(X) + \epsilon$$

$$f(X) = {\hateta}_0 + \sum_{j=1}^p X_j {\hateta}_j,$$

где \hat{eta}_0 , \hat{eta}_j – оценки параметров; X_j – регрессоры:

- непрерывные (количественные) переменные;
- ullet базисные функции ($\log X$, \sqrt{X} , X^2);
- ullet полиномиальные представления: $X_2 = X_1^2, X_3 = X_1^3$;
- фиктивные переменные (dummy);
- ullet взаимодействия между переменными: $X_3 = X_1 \cdot X_2$.

$$RSS(eta) = \sum_{i=1}^n \left(y_i - f(x_i)
ight)^2 = \sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p x_{ij}eta_j
ight)^2 o \min_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p x_{ij}eta_j
ight)^2$$

МНК-оценки:
$$\hat{eta} = (X^TX)^{-1}X^T\mathrm{y}$$

Допущения:

- остатки случайны и соответствуют условиям Гаусса-Маркова;
- ullet переменные $\mathbf{x}_1,\ldots,\mathbf{x}_j,\ldots,\mathbf{x}_p$ некоррелированы.

Теорема Гаусса-Маркова: МНК-оценки обладают наименьшей дисперсией в классе линейных несмещённых оценок:

$$Var(\hat{eta}) = (X^TX)^{-1}\hat{\sigma}^2$$
, где $\hat{\sigma}^2 = \hat{Var}(\epsilon)$

Однако, если пожертвовать несмещённостью, можно уменьшить дисперсию оценок параметров (LASSO, ридж-регрессия)

Пример 1 (маркетинговый план): Advertising

- n = 200, p = 3;
- обучающая выборка: 85%;
- Sales объём продаж продукта, тыс. единиц;
- TV размер рекламного бюджета на ТВ, тыс.долл.;
- Radio рекламный бюджет на радио;
- Newspaper рекламный бюджет в газетах.

Дисперсия оценок и устойчивость модели

Модель	Оценка.коэфф.b_1	Ошибка.коэфф.b_1
для ТВ (n=170)	0.048	0.0030
для газет (n=170)	0.062	0.0178

Два подхода к отбору объясняющих переменных

- 1. Эконометрический: на основе проверки гипотез. Ключевые метрики Р-значения для параметров, скорректированный R-квадрат, информационные критерии качества (Акаике, Байесовский и т.д.).
- 2. Машинного обучения: на основе точности модели (MSE на тестовой выборке), методов сжатия и снижения размерности.

План лекции

- ullet Непрерывный Y: линейная регрессия
- Качественные регрессоры, взаимодействие регрессоров
- Выбор оптимальной модели

Пример интерпретации модели с качественными регрессорами

Пример 2 (зарплаты, Москва, 2012): wages.ru

Цель: построить модель, чтобы обосновать влияние различных факторов на размер среднемесячной заработной платы.

Данные: Подвыборка данных по 150 жителям Москвы из репрезентативной выборки по индивидуумам 21-ой волны обследования (2012г.) «Российского мониторинга экономического положения и здоровья населения НИУ-ВШЭ (RLMS-HSE)» (http://www.hse.ru/rlms'http://www.hse.ru/rlms>).

Пример 2 (зарплаты, Москва, 2012): wages.ru

- salary среднемесячная зарплата после вычета налогов за последние 12 месяцев (рублей);
- male пол: **1** мужчина, **0** женщина;
- educ уровень образования:
- 1 0-6 классов,
- 2 незаконченное среднее (7-8 классов),
- 3 незаконченное среднее плюс что-то еще,
- 4 законченное среднее,
- 5 законченное среднее специальное,
- 6 законченное высшее образование и выше;
- forlang иност. язык: **1** владеет, **0** нет;
- exper официальный стаж с 1.01.2002 (лет).

Модель 1: salary =
$$\hat{\beta}_0 + \hat{\beta}_1 \cdot \text{male}$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	30213	4050.45	7.46	0.0000
male	18076	5705.78	3.17	0.0019

male =
$$0$$
: salary = $30213 + 18076 \cdot 0 = 30213$

$$\text{male} = 1: \hat{\text{salary}} = 30213 + 18076 \cdot 1 = 48289$$

Модель 2: salary =
$$\hat{\beta}_0 + \hat{\beta}_1 \cdot \text{exper} + \hat{\beta}_2 \cdot \text{male}$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	15123	10064.43	1.50	0.1355
exper	1728	1056.70	1.64	0.1044
male	17637	5674.28	3.11	0.0023

$$male = 0$$
: $salary = 15123 + 1728 \cdot exper$

$$male = 1$$
:

$$\hat{\text{salary}} = 15123 + 1728 \cdot \text{exper} + 17637 = 32760 + 1728 \cdot \text{exper}$$

Модель 3:

$$\hat{\text{salary}} = \hat{\beta}_0 + \hat{\beta}_1 \cdot \text{exper} + \hat{\beta}_2 \cdot \text{male} + \hat{\beta}_3 \cdot \text{male} \cdot \text{exper}$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	16857	13368.19	1.26	0.2097
exper	1530	1459.69	1.05	0.2967
male	13905	19679.44	0.71	0.4812
exper:male	421	2125.01	0.20	0.8433

Коэффициенты модели **незначимы**; эффект взаимодействия exper: male наименее значим.

Модель	R.квадрат	R. квадрат.скорр	F. расч	MSE.тест
1	0.074	0.067	10.037	1.65e+08
2	0.094	0.079	6.423	4.96e+07
3	0.094	0.072	4.262	5.56e+07

План лекции

- ullet Непрерывный Y: линейная регрессия
- Качественные регрессоры, взаимодействие регрессоров
- Выбор оптимальной модели

Первый подход: измерители точности с поправкой

 C_p – оценка среднеквадратичной ошибки на контрольной выборке:

$$C_p = rac{1}{n}igg(RSS + 2d\hat{\pmb{\sigma}}^2igg)$$

где $\hat{\sigma}^2$ – оценка дисперсии остатков ϵ для всех уникальных значений отклика регрессионной модели, d – количество предикторов, RSS – остаточная сумма квадратов регрессионной модели.

AIC – информационный критерий Акаике:

$$AIC = rac{1}{n\hat{\sigma}^2}igg(RSS + 2d\hat{\sigma}^2igg)$$

В формуле опущена константа.

Первый подход: измерители точности с поправкой

BIC – байсовский информационный критерий:

$$BIC = rac{1}{n}igg(RSS + \log(n)d\hat{\sigma}^2igg)$$

В формуле опущена константа.

 R^2_{adi} – скорректированный коэффициент детерминации:

$$R_{adj}^2=1-rac{RSS/(n-d-1)}{TSS/(n-1)}$$

При увеличении количества предикторов R^2 всегда растёт, а R^2_{adj} может как расти, так и снижаться.

Измерители точности с поправкой

Данные Credit Компромисс по минимумам C_p , AIC, максимуму R^2_{adj} и простоте модели: 4 объясняющих

Второй подход: оценка ошибки непосредственно на проверочных данных

Данные Credit Правило одной стандартной ошибки: (а) оценить стандартную ошибку оценок MSE ($\hat{\sigma}_{MSE}$); (б) выбрать модель в пределах $\pm \hat{\sigma}_{MSE}$ от MSE_{\min}

Источники

- 1. Джеймс Г., Уиттон Д., Хасти Т., Тибширани Р. Введение в статистическое обучение с примерами на языке R. Пер. с англ. С.Э. Мастицкого М.: ДМК Пресс, **2016** 450 с.
- 2. Данные Advertising (http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv).
- 3. Данные wage . ru (https://sites.google.com/a/kiber-guu.ru/msep/mag-econ/salary_data.csv? attredirects=0&d=1).
- 4. Данные Credit (https://rdrr.io/cran/ISLR/man/Credit.html).