In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import accuracy_score
from sklearn.feature_selection import SelectKBest, chi2, f_regression
from sklearn.neighbors import NearestNeighbors
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import r2_score
```

In [2]:

```
df_results = pd.read_csv("results-0.2.csv")
```

In [3]:

df_results.head(21)

Out[3]:

	League	Year	position	team	matches	wins	draws	loses	scored	missed	р
0	Bundesliga	2014	1	Bayern Munich	34	25	4	5	80	18	-
1	Bundesliga	2014	2	Wolfsburg	34	20	9	5	72	38	(
2	Bundesliga	2014	3	Borussia M.Gladbach	34	19	9	6	53	26	(
3	Bundesliga	2014	4	Bayer Leverkusen	34	17	10	7	62	37	(
4	Bundesliga	2014	5	Augsburg	34	15	4	15	43	43	2
5	Bundesliga	2014	6	Schalke 04	34	13	9	12	42	40	4
6	Bundesliga	2014	7	Borussia Dortmund	34	13	7	14	47	42	2
7	Bundesliga	2014	8	Hoffenheim	34	12	8	14	49	55	4
8	Bundesliga	2014	9	Werder Bremen	34	11	10	13	50	65	2
9	Bundesliga	2014	10	Eintracht Frankfurt	34	11	10	13	56	62	4
10	Bundesliga	2014	11	FC Cologne	34	9	13	12	34	40	4
11	Bundesliga	2014	12	Mainz 05	34	9	13	12	45	47	2
12	Bundesliga	2014	13	Hannover 96	34	9	10	15	40	56	;
13	Bundesliga	2014	14	VfB Stuttgart	34	9	9	16	42	60	;
14	Bundesliga	2014	15	Hamburger SV	34	9	8	17	25	50	;
15	Bundesliga	2014	16	Hertha Berlin	34	9	8	17	36	52	;
16	Bundesliga	2014	17	Freiburg	34	7	13	14	36	47	;
17	Bundesliga	2014	18	Paderborn	34	7	10	17	31	65	;
18	Bundesliga	2015	1	Bayern Munich	34	28	4	2	80	17	{
19	Bundesliga	2015	2	Borussia Dortmund	34	24	6	4	82	34	-
20	Bundesliga	2015	3	Bayer Leverkusen	34	18	6	10	56	40	(

 $local host: 8888/nbc onvert/html/Downloads/Individual\ Project-Football\ statistics. ipynb? download=false$

In [4]:

```
df results.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 570 entries, 0 to 569
Data columns (total 11 columns):
League
            570 non-null object
Year
            570 non-null int64
            570 non-null int64
position
            570 non-null object
team
            570 non-null int64
matches
wins
            570 non-null int64
draws
            570 non-null int64
loses
            570 non-null int64
            570 non-null int64
scored
missed
            570 non-null int64
pts
            570 non-null int64
dtypes: int64(9), object(2)
memory usage: 49.1+ KB
In [5]:
```

```
df_results['League'].unique()
```

Out[5]:

In [6]:

```
df_results.describe()
```

Out[6]:

	Year	position	matches	wins	draws	loses	scored
count	570.000000	570.000000	570.000000	570.000000	570.000000	570.000000	570.000000
mean	2016.000000	10.061404	36.245614	13.531579	9.182456	13.531579	48.385965
std	1.415456	5.580982	2.906152	5.935200	2.927064	5.540700	17.634599
min	2014.000000	1.000000	30.000000	2.000000	2.000000	1.000000	13.000000
25%	2015.000000	5.000000	34.000000	9.000000	7.000000	10.000000	36.000000
50%	2016.000000	10.000000	38.000000	12.000000	9.000000	14.000000	45.000000
75%	2017.000000	15.000000	38.000000	17.000000	11.000000	17.000000	56.000000
max	2018.000000	20.000000	38.000000	32.000000	18.000000	29.000000	118.000000
4							•

In [7]:

In [8]:

```
team_list = df_results['team'].unique()
numer_list = []

count = df_results['team'].nunique()

for i in range(count):
    numer_list.append(i+1)

mapped_frame = pd.DataFrame(team_list)
number_frame = pd.DataFrame(numer_list)

zipObj = zip(team_list, numer_list)
diction = dict(zipObj)
df_results['TeamFill'] = df_results['team'].map(diction)
df_results.head(30)
```

Out[8]:

	League	Year	position	team	matches	wins	draws	loses	scored	missed	р
0	Bundesliga	2014	1	Bayern Munich	34	25	4	5	80	18	-
1	Bundesliga	2014	2	Wolfsburg	34	20	9	5	72	38	(
2	Bundesliga	2014	3	Borussia M.Gladbach	34	19	9	6	53	26	(
3	Bundesliga	2014	4	Bayer Leverkusen	34	17	10	7	62	37	(
4	Bundesliga	2014	5	Augsburg	34	15	4	15	43	43	4
5	Bundesliga	2014	6	Schalke 04	34	13	9	12	42	40	4
6	Bundesliga	2014	7	Borussia Dortmund	34	13	7	14	47	42	4
7	Bundesliga	2014	8	Hoffenheim	34	12	8	14	49	55	4
8	Bundesliga	2014	9	Werder Bremen	34	11	10	13	50	65	4
9	Bundesliga	2014	10	Eintracht Frankfurt	34	11	10	13	56	62	4
10	Bundesliga	2014	11	FC Cologne	34	9	13	12	34	40	4
11	Bundesliga	2014	12	Mainz 05	34	9	13	12	45	47	4
12	Bundesliga	2014	13	Hannover 96	34	9	10	15	40	56	;
13	Bundesliga	2014	14	VfB Stuttgart	34	9	9	16	42	60	;
14	Bundesliga	2014	15	Hamburger SV	34	9	8	17	25	50	;
15	Bundesliga	2014	16	Hertha Berlin	34	9	8	17	36	52	;
16	Bundesliga	2014	17	Freiburg	34	7	13	14	36	47	;
17	Bundesliga	2014	18	Paderborn	34	7	10	17	31	65	;
18	Bundesliga	2015	1	Bayern Munich	34	28	4	2	80	17	{
19	Bundesliga	2015	2	Borussia Dortmund	34	24	6	4	82	34	-
20	Bundesliga	2015	3	Bayer Leverkusen	34	18	6	10	56	40	(
21	Bundesliga	2015	4	Borussia M.Gladbach	34	17	4	13	67	50	ţ
22	Bundesliga	2015	5	Schalke 04	34	15	7	12	51	49	ţ
23	Bundesliga	2015	6	Mainz 05	34	14	8	12	46	42	ţ
24	Bundesliga	2015	7	Hertha Berlin	34	14	8	12	42	42	ţ
25	Bundesliga	2015	8	Wolfsburg	34	12	9	13	47	49	4
26	Bundesliga	2015	9	FC Cologne	34	10	13	11	38	42	2
27	Bundesliga	2015	10	Hamburger SV	34	11	8	15	40	46	4

		League	Year	position	team	matches	wins	draws	loses	scored	missed	р
-:	28	Bundesliga	2015	11	Ingolstadt	34	10	10	14	33	42	
:	29	Bundesliga	2015	12	Darmstadt	34	9	11	14	38	53	;
4												•

In [9]:

```
df_bundes_2014 = df_results.loc[(df_results['League'] == 'Bundesliga')&(df_results['Yea
r']==2014)]
df_bundes_2015 = df_results.loc[(df_results['League'] == 'Bundesliga')&(df_results['Yea
r']==2015)]
df_bundes_2016 = df_results.loc[(df_results['League'] == 'Bundesliga')&(df_results['Yea
r']==2016)]
df_bundes_2017 = df_results.loc[(df_results['League'] == 'Bundesliga')&(df_results['Yea
r']==2017)]
df_bundes_2018 = df_results.loc[(df_results['League'] == 'Bundesliga')&(df_results['Yea
r']==2018)]
df_epl_2014 = df_results.loc[(df_results['League'] == 'EPL')&(df_results['Year']==2014
)]
df_epl_2015 = df_results.loc[(df_results['League'] == 'EPL')&(df_results['Year']==2015
df_epl_2016 = df_results.loc[(df_results['League'] == 'EPL')&(df_results['Year']==2016
) ]
df_epl_2017 = df_results.loc[(df_results['League'] == 'EPL')&(df_results['Year']==2017
)]
df_epl_2018 = df_results.loc[(df_results['League'] == 'EPL')&(df_results['Year']==2018
)]
df_laliga_2014 = df_results.loc[(df_results['League'] == 'La_liga')&(df_results['Year']
==2014)]
df laliga 2015 = df results.loc[(df results['League'] == 'La liga')&(df results['Year']
==2015)]
df_laliga_2016 = df_results.loc[(df_results['League'] == 'La_liga')&(df_results['Year']
==2016)]
df_laliga_2017 = df_results.loc[(df_results['League'] == 'La_liga')&(df_results['Year']
==2017)]
df_laliga_2018 = df_results.loc[(df_results['League'] == 'La_liga')&(df_results['Year']
==2018)]
df ligue1 2014 = df results.loc[(df results['League'] == 'Ligue 1')&(df results['Year']
==2014)]
df_ligue1_2015 = df_results.loc[(df_results['League'] == 'Ligue_1')&(df_results['Year']
==2015)]
df_ligue1_2016 = df_results.loc[(df_results['League'] == 'Ligue_1')&(df_results['Year']
==2016)]
df_ligue1_2017 = df_results.loc[(df_results['League'] == 'Ligue_1')&(df_results['Year']
==2017)]
df_ligue1_2018 = df_results.loc[(df_results['League'] == 'Ligue_1')&(df_results['Year']
==2018)]
df_RFPL_2014 = df_results.loc[(df_results['League'] == 'RFPL')&(df_results['Year']==201
4)]
df RFPL 2015 = df results.loc[(df results['League'] == 'RFPL')&(df results['Year']==201
5)]
df_RFPL_2016 = df_results.loc[(df_results['League'] == 'RFPL')&(df_results['Year']==201
6)]
df_RFPL_2017 = df_results.loc[(df_results['League'] == 'RFPL')&(df_results['Year']==201
7)]
df_RFPL_2018 = df_results.loc[(df_results['League'] == 'RFPL')&(df_results['Year']==201
8)]
df_SerieA_2014 = df_results.loc[(df_results['League'] == 'Serie_A')&(df_results['Year']
==2014)]
df SerieA 2015 = df results.loc[(df results['League'] == 'Serie A')&(df results['Year']
==2015)]
```

```
df_SerieA_2016 = df_results.loc[(df_results['League'] == 'Serie_A')&(df_results['Year']
==2016)]
df_SerieA_2017 = df_results.loc[(df_results['League'] == 'Serie_A')&(df_results['Year']
==2017)]
df_SerieA_2018 = df_results.loc[(df_results['League'] == 'Serie_A')&(df_results['Year']
==2018)]
```

In [10]:

```
color_list = [df_SerieA_2014['position']]
```

In [11]:

```
##Goals scored per team per league 2014
plt.bar(df_bundes_2014['team'], df_bundes_2014['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in Bundesliga 2014")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_epl_2014['team'], df_epl_2014['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in EPL 2014")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_laliga_2014['team'], df_laliga_2014['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in La_liga 2014")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_ligue1_2014['team'], df_ligue1_2014['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in Ligue1 2014")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_RFPL_2014['team'], df_RFPL_2014['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in RFPL 2014")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_SerieA_2014['team'], df_SerieA_2014['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in Serie_A 2014")
plt.xticks(rotation=90)
plt.show()
```


In [12]:

```
plt.bar(df bundes 2015['team'], df bundes 2015['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in Bundesliga 2015")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_epl_2014['team'], df_epl_2014['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in EPL 2014")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_laliga_2014['team'], df_laliga_2014['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in La_liga 2014")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_ligue1_2014['team'], df_ligue1_2014['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in Ligue1 2014")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_RFPL_2014['team'], df_RFPL_2014['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in RFPL 2014")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_SerieA_2014['team'], df_SerieA_2014['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in Serie_A 2014")
plt.xticks(rotation=90)
plt.show()
```


In [13]:

```
##Goals scored per team per league 2018
plt.bar(df_bundes_2018['team'], df_bundes_2018['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in Bundesliga 2018")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_epl_2018['team'], df_epl_2018['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in EPL 2018")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_laliga_2018['team'], df_laliga_2018['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in La_liga 2018")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_ligue1_2018['team'], df_ligue1_2018['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in Ligue1 2018")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_RFPL_2018['team'], df_RFPL_2018['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in RFPL 2018")
plt.xticks(rotation=90)
plt.show()
plt.bar(df_SerieA_2018['team'], df_SerieA_2018['scored'])
plt.ylabel("Goals scored")
plt.title("Scored goals per team in Serie A 2018")
plt.xticks(rotation=90)
plt.show()
```


In [14]:

```
plt.bar(df_results['League'],df_results['matches'],align='center', alpha=0.5)
plt.xlabel("Leagues", labelpad=14)
plt.ylabel("Matches", labelpad=14)
plt.title("Comparing leagues on played matches")
```

Out[14]:

Text(0.5, 1.0, 'Comparing leagues on played matches')

In [15]:

```
#Making dataframes for each league every year
df_bundes_top3_2014_rows = df_results.loc[(df_results['League'] == 'Bundesliga')&
                                     (df results['Year']==2014)]
df bundes top3 2014 = df bundes top3 2014 rows[0:3]
df_bundes_top3_2015_rows = df_results.loc[(df_results['League'] == 'Bundesliga')&
                                     (df_results['Year']==2015)]
df_bundes_top3_2015 = df_bundes_top3_2015_rows[0:3]
df_bundes_top3_2016_rows = df_results.loc[(df_results['League'] == 'Bundesliga')&
                                     (df_results['Year']==2016)]
df bundes top3 2016 = df bundes top3 2016 rows[0:3]
df_bundes_top3_2017_rows = df_results.loc[(df_results['League'] == 'Bundesliga')&
                                     (df_results['Year']==2017)]
df_bundes_top3_2017 = df_bundes_top3_2017_rows[0:3]
df_bundes_top3_2018_rows = df_results.loc[(df_results['League'] == 'Bundesliga')&
                                     (df_results['Year']==2018)]
df bundes top3 2018 = df bundes top3 2018 rows[0:3]
df_epl_top3_2014_rows = df_results.loc[(df_results['League'] == 'EPL')&
                                     (df_results['Year']==2014)]
df_epl_top3_2014 = df_epl_top3_2014_rows[0:3]
df_epl_top3_2015_rows = df_results.loc[(df_results['League'] == 'EPL')&
                                     (df results['Year']==2015)]
df epl top3 2015 = df epl top3 2015 rows[0:3]
df_epl_top3_2016_rows = df_results.loc[(df_results['League'] == 'EPL')&
                                     (df results['Year']==2016)]
df_epl_top3_2016 = df_epl_top3_2016_rows[0:3]
df_epl_top3_2017_rows = df_results.loc[(df_results['League'] == 'EPL')&
                                     (df results['Year']==2017)]
df epl top3 2017 = df epl top3 2017 rows[0:3]
df_epl_top3_2018_rows = df_results.loc[(df_results['League'] == 'EPL')&
                                     (df_results['Year']==2018)]
df_epl_top3_2018 = df_epl_top3_2018_rows[0:3]
df laliga top3 2014 rows = df results.loc[(df results['League'] == 'La liga')&
                                     (df_results['Year']==2014)]
df_laliga_top3_2014 = df_laliga_top3_2014_rows[0:3]
df_laliga_top3_2015_rows = df_results.loc[(df_results['League'] == 'La_liga')&
                                     (df_results['Year']==2015)]
df_laliga_top3_2015 = df_laliga_top3_2015_rows[0:3]
df laliga top3 2016 rows = df results.loc[(df results['League'] == 'La liga')&
                                     (df results['Year']==2016)]
df_laliga_top3_2016 = df_laliga_top3_2016_rows[0:3]
df laliga top3 2017 rows = df results.loc[(df results['League'] == 'La liga')&
                                     (df_results['Year']==2017)]
df_laliga_top3_2017 = df_laliga_top3_2017_rows[0:3]
df laliga top3 2018 rows = df results.loc[(df results['League'] == 'La liga')&
                                     (df results['Year']==2018)]
df laliga top3 2018 = df laliga top3 2018 rows[0:3]
df_ligue1_top3_2014_rows = df_results.loc[(df_results['League'] == 'Ligue_1')&
                                     (df_results['Year']==2014)]
df ligue1 top3 2014 = df ligue1 top3 2014 rows[0:3]
df_ligue1_top3_2015_rows = df_results.loc[(df_results['League'] == 'Ligue_1')&
                                     (df results['Year']==2015)]
df_ligue1_top3_2015 = df_ligue1_top3_2015_rows[0:3]
df_ligue1_top3_2016_rows = df_results.loc[(df_results['League'] == 'Ligue_1')&
                                     (df_results['Year']==2016)]
df_ligue1_top3_2016 = df_ligue1_top3_2016_rows[0:3]
df ligue1 top3 2017 rows = df results.loc[(df results['League'] == 'Ligue 1')&
```

```
(df results['Year']==2017)]
df_ligue1_top3_2017 = df_ligue1_top3_2017_rows[0:3]
df ligue1 top3 2018 rows = df results.loc[(df results['League'] == 'Ligue 1')&
                                     (df_results['Year']==2018)]
df ligue1 top3 2018 = df ligue1 top3 2018 rows[0:3]
df RFPL top3 2014 rows = df results.loc[(df results['League'] == 'RFPL')&
                                     (df_results['Year']==2014)]
df RFPL top3 2014 = df RFPL top3 2014 rows[0:3]
df RFPL top3 2015 rows = df results.loc[(df results['League'] == 'RFPL')&
                                     (df_results['Year']==2015)]
df_RFPL_top3_2015 = df_RFPL_top3_2015_rows[0:3]
df_RFPL_top3_2016_rows = df_results.loc[(df_results['League'] == 'RFPL')&
                                     (df_results['Year']==2016)]
df_RFPL_top3_2016 = df_RFPL_top3_2016_rows[0:3]
df RFPL top3 2017 rows = df results.loc[(df results['League'] == 'RFPL')&
                                     (df_results['Year']==2017)]
df_RFPL_top3_2017 = df_RFPL_top3_2017_rows[0:3]
df_RFPL_top3_2018_rows = df_results.loc[(df_results['League'] == 'RFPL')&
                                     (df_results['Year']==2018)]
df RFPL top3_2018 = df_RFPL_top3_2018_rows[0:3]
df_SerieA_top3_2014_rows = df_results.loc[(df_results['League'] == 'Serie_A')&
                                     (df results['Year']==2014)]
df_SerieA_top3_2014 = df_SerieA_top3_2014_rows[0:3]
df_SerieA_top3_2015_rows = df_results.loc[(df_results['League'] == 'Serie_A')&
                                     (df results['Year']==2015)]
df SerieA top3 2015 = df SerieA top3 2015 rows[0:3]
df SerieA top3 2016 rows = df results.loc[(df results['League'] == 'Serie A')&
                                     (df_results['Year']==2016)]
df SerieA top3 2016 = df SerieA top3 2016 rows[0:3]
df_SerieA_top3_2017_rows = df_results.loc[(df_results['League'] == 'Serie_A')&
                                     (df results['Year']==2017)]
df SerieA top3 2017 = df SerieA top3 2017 rows[0:3]
df SerieA top3 2018 rows = df results.loc[(df results['League'] == 'Serie A')&
                                     (df_results['Year']==2018)]
df_SerieA_top3_2018 = df_SerieA_top3_2018_rows[0:3]
```

In [16]:

In [17]:

df_leagues_top3.head()

Out[17]:

	League	Year	position	team	matches	wins	draws	loses	scored	missed	р
0	Bundesliga	2014	1	Bayern Munich	34	25	4	5	80	18	-
1	Bundesliga	2014	2	Wolfsburg	34	20	9	5	72	38	ť
2	Bundesliga	2014	3	Borussia M.Gladbach	34	19	9	6	53	26	(
18	Bundesliga	2015	1	Bayern Munich	34	28	4	2	80	17	{
19	Bundesliga	2015	2	Borussia Dortmund	34	24	6	4	82	34	7
4											>

In [18]:

```
#Brief overview of how which teams appear on which position for all years
plt.bar(df_leagues_top3['team'], df_leagues_top3['position'], align='center', alpha=0.5
)
plt.ylabel("Finished positions", labelpad=14, fontsize = 15)
plt.xticks(rotation=90)
plt.gcf().set_size_inches(10, 8)
plt.show()
#plt.legend(df_leagues_top3['position'].value_counts()) doesn't work as wanted
```


In [19]:

```
#Counting the number of times teams have finished on first, second and third place
df_leagues_1 = df_leagues_top3.loc[(df_leagues_top3['position'] == 1)]
df_leagues_1['team'].value_counts().plot(kind = 'bar',rot=90)
plt.ylabel("Number of 1st Place", labelpad=14)
plt.title("Counting 1st place per team")
plt.show()
df_leagues_2 = df_leagues_top3.loc[(df_leagues_top3['position'] == 2)]
df_leagues_2['team'].value_counts().plot(kind = 'bar',rot=90)
plt.ylabel("Number of 2nd Place", labelpad=14)
plt.title("Counting 2nd place per team")
plt.show()
df leagues_3 = df_leagues_top3.loc[(df_leagues_top3['position'] == 3)]
df_leagues_3['team'].value_counts().plot(kind = 'bar',rot=90)
plt.ylabel("Number of 3rd Place", labelpad=14)
plt.title("Counting 3rd place per team")
plt.show()
```


In [20]:

```
#Making datasets for all top3 teams per league
df_bundes_top3_alltime = df_leagues_top3.loc[(df_leagues_top3['League']=='Bundesliga')]
df_ep1_top3_alltime = df_leagues_top3.loc[(df_leagues_top3['League']=='EPL')]
df_laliga_top3_alltime = df_leagues_top3.loc[(df_leagues_top3['League']=='La_liga')]
df_ligue1_top3_alltime = df_leagues_top3.loc[(df_leagues_top3['League']=='Ligue_1')]
df_RFPL_top3_alltime = df_leagues_top3.loc[(df_leagues_top3['League']=='RFPL')]
df_SerieA_top3_alltime = df_leagues_top3.loc[(df_leagues_top3['League']=='Serie_A')]

#Making datasets for all teams per league
df_bundes_alltime = df_results.loc[(df_results['League']=='Bundesliga')]
df_ep1_alltime = df_results.loc[(df_results['League']=='EPL')]
df_laliga_alltime = df_results.loc[(df_results['League']=='La_liga')]
df_ligue1_alltime = df_results.loc[(df_results['League']=='Ligue_1')]
df_RFPL_alltime = df_results.loc[(df_results['League']=='RFPL')]
df_SerieA_alltime = df_results.loc[(df_results['League']=='Serie_A')]
```

In [21]:

```
#Counting the amount of goals each team has scored through all seasons
df_bundes_alltime['pts'].groupby([df_bundes_alltime['team']]).sum().plot(kind = 'bar',r
ot=90)
plt.ylabel("Total points", labelpad=14)
plt.title("Total points for all years per team in Bundesliga")
plt.show()
df_epl_alltime['pts'].groupby([df_epl_alltime['team']]).sum().plot(kind = 'bar',rot=90)
plt.ylabel("Total points", labelpad=14)
plt.title("Total points for all years per team in EPL")
plt.show()
df laliga alltime['pts'].groupby([df laliga alltime['team']]).sum().plot(kind = 'bar',r
ot=90)
plt.ylabel("Total points", labelpad=14)
plt.title("Total points for all years per team in LaLiga")
plt.show()
df_ligue1_alltime['pts'].groupby([df_ligue1_alltime['team']]).sum().plot(kind = 'bar',r
ot=90)
plt.ylabel("Total points", labelpad=14)
plt.title("Total points for all years per team in Ligue1")
plt.show()
df_RFPL_alltime['pts'].groupby([df_RFPL_alltime['team']]).sum().plot(kind = 'bar',rot=9
plt.ylabel("Total points", labelpad=14)
plt.title("Total points for all years per team in RFPL")
plt.show()
df SerieA alltime['pts'].groupby([df SerieA alltime['team']]).sum().plot(kind = 'bar',r
ot=90)
plt.ylabel("Total points", labelpad=14)
plt.title("Total points for all years per team in Serie A")
plt.show()
```


In [22]:

```
df_bundes_top3_alltime.head(20)
```

Out[22]:

	League	Year	position	team	matches	wins	draws	loses	scored	missed
0	Bundesliga	2014	1	Bayern Munich	34	25	4	5	80	18
1	Bundesliga	2014	2	Wolfsburg	34	20	9	5	72	38
2	Bundesliga	2014	3	Borussia M.Gladbach	34	19	9	6	53	26
18	Bundesliga	2015	1	Bayern Munich	34	28	4	2	80	17
19	Bundesliga	2015	2	Borussia Dortmund	34	24	6	4	82	34
20	Bundesliga	2015	3	Bayer Leverkusen	34	18	6	10	56	40
36	Bundesliga	2016	1	Bayern Munich	34	25	7	2	89	22
37	Bundesliga	2016	2	RasenBallsport Leipzig	34	20	7	7	66	39
38	Bundesliga	2016	3	Borussia Dortmund	34	18	10	6	72	40
54	Bundesliga	2017	1	Bayern Munich	34	27	3	4	92	28
55	Bundesliga	2017	2	Schalke 04	34	18	9	7	53	37
56	Bundesliga	2017	3	Bayer Leverkusen	34	15	10	9	58	44
72	Bundesliga	2018	1	Bayern Munich	34	24	6	4	88	32
73	Bundesliga	2018	2	Borussia Dortmund	34	23	7	4	81	44
74	Bundesliga	2018	3	RasenBallsport Leipzig	34	19	9	6	63	29

4

In [23]:

```
# features = tuple(df_bundes_top3_alltime[['position','TeamFill']].values)
# df_bundes_top3_alltime.boxplot(column=features, by='TeamFill', figsize=(15,8));
```

In [24]:

```
features_goals = df_results[['Year','position','matches', 'wins','draws','loses','misse
d','pts']]
features_position = df_results[['Year','matches', 'wins','draws','loses','scored','miss
ed','pts']]
```

In [25]:

```
#SelectKBest for goals
from sklearn.feature_selection import SelectKBest, chi2, f_regression, f_classif
column_goals = SelectKBest(score_func=f_classif,k=5).fit_transform(features_goals,df_re
sults['scored'])
print(column_goals)

[[ 1 34 25 5 79]
  [ 2 34 20 5 69]
  [ 3 34 19 6 66]
  ...
  [18 38 10 20 38]
  [19 38 5 23 25]
  [20 38 2 22 20]]
```

In [26]:

```
#SelectKBest for position
from sklearn.feature_selection import SelectKBest, chi2, f_regression, f_classif
column_position = SelectKBest(score_func=f_classif,k=5).fit_transform(features_position
,df_results['position'])
print(column_position)
```

```
[[25     5     80     18     79]

[20     5     72     38     69]

[19     6     53     26     66]

...

[10     20     51     70     38]

[ 5     23     29     69     25]

[ 2     22     25     75     20]]
```

In [27]:

```
#Defining the columns(features) to use for training the algorithm and which column
#I want to predict(X is for features and Y is for the predicted column)
X_goals = df_results[['wins','loses','pts','missed','draws']]
y_goals = df_results['scored']
X_position = df_results[['wins','loses','scored','missed','pts']]
y_position = df_results['position']
```

In [28]:

```
#Splitting the data for predicting goals into test and train sets
X_train_goals, X_test_goals, y_train_goals, y_test_goals = train_test_split(X_goals, y_
goals, test_size=0.20)
#Splitting the data for predicting position into test and train sets
X_train_position, X_test_position, y_train_position, y_test_position = train_test_split
(X_position, y_position, test_size=0.20)
```

```
In [29]:
#KNN algorithm for predicting goals
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train_goals, y_train_goals)
pred = knn.predict(X test goals)
accuracy = r2_score(y_test_goals, pred)
print(accuracy)
print(pred)
0.7108168957431029
[71 46 33 44 22 28 75 62 37 41 40 27 40 72 29 54 49 39 42 27 35 29 45 47
 51 44 40 37 47 24 36 43 51 52 51 54 45 28 33 29 67 24 32 35 41 32 35 20
 13 24 39 25 46 47 35 34 25 44 37 52 22 28 44 34 42 40 33 28 55 45 36 72
 51 46 35 62 40 49 44 22 48 30 34 41 28 41 77 51 37 70 59 47 57 34 34 77
 50 48 61 44 37 46 47 30 24 44 47 43 31 41 61 28 39 41]
In [53]:
scores_goals = cross_val_score(knn, X_goals, y_goals, scoring='r2', cv=5)
scores_goals.mean()
C:\Users\plame\Anaconda3\lib\site-packages\sklearn\model_selection\_split.
py:657: Warning: The least populated class in y has only 1 members, which
is too few. The minimum number of members in any class cannot be less than
n splits=5.
 % (min_groups, self.n_splits)), Warning)
Out[53]:
0.5874966125323027
In [30]:
#SVM algorithm for predicting position
clf_position=svm.SVC(kernel='linear',C=3).fit(X_train_position,y_train_position)
predict = clf_position.predict(X_test_position)
score_goals=r2_score(y_test_position,predict)
print(score goals)
print(predict)
0.9483752218594561
[14  3 15 12  7  7 19 11  5 20 16  1 11  3 11 18 13 20 14 14
                                                             2 16 19
 15 15 7 3 19 2 5 7
                         6 4 15 9 17 16 2 17 18 10 14 9
                                                            9
 9 5 8 3 4 11 11 9 1 18 11 5 16 4 6
                                             6 17
                                                    3 13 9 13 4
  1 16 2 7 9 8 14 15 16
                            1 15 14 9 11 20
                                              3 13
                                                    6
                                                      5 11
                                                             3 14 11 16
    3 16 8 9 3 14 15 15 10 18 12 1 10 11
                                             2
```

In [51]:

```
scores_goals = cross_val_score(clf_position, X_position, y_position, scoring='r2', cv=5
scores goals.mean()
```

Out[51]:

0.9343220789891136

In [32]:

```
clf_gb = GradientBoostingRegressor(n_estimators=550)
clf_gb.fit(X_train_position,y_train_position)

y_pred_gb = clf_gb.predict(X_test_position)
scores = cross_val_score(clf_gb, X_position, y_position, cv=5)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
```

Accuracy: 0.91 (+/- 0.03)

In [33]:

```
clf_gb_goals = GradientBoostingRegressor(n_estimators=180)
clf_gb_goals.fit(X_train_goals,y_train_goals)

y_pred_gb_goals = clf_gb_goals.predict(X_test_goals)
scores_gb_goals = cross_val_score(clf_gb_goals, X_goals, y_goals, cv=2)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores_gb_goals.mean(), scores_gb_goals.std() *
2))
```

Accuracy: 0.81 (+/- 0.03)

In [34]:

```
#Testing SVM for predicting position on smaller DataFrame(Top 3 teams from Bundesliga f
or all time)
X_position2 = df_bundes_top3_alltime[['wins','loses','scored','missed','pts']]
y_position2 = df_bundes_top3_alltime['position']
clf_position2=svm.SVC(kernel='linear',C=5).fit(X_train_position,y_train_position)
X_train_position2, X_test_position2, y_train_position2, y_test_position2 = train_test_s
plit(X_position2, y_position2, test_size=0.20)
predict2 = clf_position2.predict(X_test_position2)
scores_svc2_position = cross_val_score(clf_position2, X_position, y_position, cv=4)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores_svc2_position.mean(), scores_svc2_position
n.std() * 2))
print(predict2)
```

Accuracy: 0.32 (+/- 0.08)
[3 5 2]

In [64]:

```
#Testing KNN for predicting goals on smaller DataFrame(Top 3 teams from Bundesliga for
all time)
X_goals2 = df_bundes_top3_alltime[['wins','loses','pts','missed','draws']]
y_goals2 = df_bundes_top3_alltime['scored']
X_train_goals2, X_test_goals2, y_train_goals2, y_test_goals2 = train_test_split(X_goals
2, y_goals2, test_size=0.20)
knn2 = KNeighborsClassifier(n_neighbors=2)
knn2.fit(X_train_goals2, y_train_goals2)
pred2 = knn2.predict(X_test_goals2)
scores_goals2 = cross_val_score(knn2, X_goals2, y_goals2, cv=2)
print(scores_goals2.mean())
print(pred2)
```

0.20833333333333331

[80 53 88]

C:\Users\plame\Anaconda3\lib\site-packages\sklearn\model_selection_split. py:657: Warning: The least populated class in y has only 1 members, which is too few. The minimum number of members in any class cannot be less than n_splits=2.

% (min_groups, self.n_splits)), Warning)