Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1. (Currently Amended) A compound of Formula (Ia) or (Ib):

wherein:

where:

R5 and R5a are independently is hydrogen or alkyl; and

R⁶-and-R^{6a} are independently is selected from the group consisting of hydrogen, alkyl, haloalkyl, carboxyalkyl, alkoxycarbonylalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocyclyl, heterocyclylalkyl, cyano, -alkylene-X-R¹² (where X is – O-, -NR¹³-, -CONR¹³-, -S(O)_n1-, -NHCO-, -CO-, or -C(O)O- where n1 is 0-2, and R¹² and R¹³ are independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl) wherein the aromatic or alicyclic ring in R⁶ and R^{6a} is optionally substituted with one, two, or three R^a independently selected from alkyl, haloalkyl, alkoxy,

hydroxy, haloalkoxy, halo, carboxy, alkoxycarbonyl, amino, monsubstituted amino, disubstituted amino, nitro, aryloxy, benzyloxy, acyl, or arylsulfonyl where the aromatic or alicyclic ring in R^a is optionally substituted with one or two substituents independently selected from alkyl, halo, alkoxy, haloalkyl, haloalkoxy, hydroxy, amino, alkylamino, dialkylamino, carboxy, or alkoxycarbonyl; or

R⁵-and-R⁶-and R^{5a} and R^{6a} taken together with the carbon atom to which both R⁵-and-R⁶ and R^{5a} and R^{5a} are attached form (i) cycloalkylene optionally substituted with one or two R^b independently selected from alkyl, halo, alkylamino, dialkylamino, aryl, aralkyl, cycloalkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroaralkyl, alkoxycarbonyl, or aryloxycarbonyl, or (ii) heterocycloalkylene optionally substituted with one to four R^c which are independently selected from alkyl, haloalkyl, hydroxy, hydroxyalkyl, alkoxyalkyl, alkoxyalkyloxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, aminoalkyl, acyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocyclyl, heterocyclylalkyl, cycloalkyl, cycloalkylalkyl, -S(O)₀₂R¹⁴, -alkylene-S(O)₀₂-R¹⁵, -COOR¹⁶, -alkylene-COOR¹⁷, -CONHR¹⁸R¹⁹, or -alkylene-CONHR²⁰R²¹ (where n2 is 0-2 and R¹⁴-R¹⁷, R¹⁸ and R²⁰ are independently hydrogen, alkyl, haloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkyl, cycloalkylalkyl, or heterocyclyl and R¹⁹ and R²¹ are independently hydrogen or alkyl) wherein the aromatic or alicyclic ring in the groups attached to cycloalkylene or heterocycloalkylene is optionally substituted with one, two, or three substituents independently selected from alkyl, haloalkyl, alkoxy, hydroxy, haloalkoxy, halo, carboxy, alkoxycarbonyl, amino, monsubstituted amino, disubstituted amino, or acyl;

R7-is hydrogen or alkyl:

R8 is hydroxy; or

R7 and R8 together form oxo:

R9 is hydrogen, halo, alkyl, aralkyl or heterogralkyl; and

R¹⁰ is alkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, eyeloalkyl, eyeloalkylalkyl, heteroeyelyl, or heteroeyelylalkyl wherein the aromatic or alicyclic ring in R¹⁰ is optionally substituted with one, two, or three R^d independently selected from alkyl, haloalkyl, alkoxy, eyeloalkyl, hydroxy, haloalkoxy, halo, carboxy, alkoxycarbonyl, aryl, heteroaryl, amino, monsubstituted amino, disubstituted amino, or acyl wherein the aromatic or alicyclic ring in R^d is

optionally-substituted with one, two, or three substitutents independently selected from alkyl, haloalkyl, alkoxy, haloalkoxy, halo, hydroxy, carboxy, alkoxycarbonyl, amino, alkylamino, or dialkylamino; and

R11-is hydrogen or alkyl; or

(iii) a group of formula (a):

where:

n is 0, 1, or 2:

X⁴ is selected from NR²³, S., or O where R²³ is hydrogen, alkyl, or alkoxy; and X⁵ is O, S., SO₂, or NR²³ where R²³ is selected from hydrogen, alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, aminoalkyl, acyl, aryl, arylkyl, heteroaryl, h

R5 is as defined above:

R1 is hydrogen or alkyl;

R^{1a} is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocyclylalkyl, or –alkylene-X-R³² [wherein X is –NR³³-, -O-, -S(O)_{n4}-, -CO-, -COO-, -OCO-, -NR³³CO-, -CONR³³-, -NR³³SO₂-, -SO₂NR³³-, -NR³³COO-, -OCONR³³-, -NR³³CONR³⁴- (where R³³ and R³⁴ are independently hydrogen, alkyl, or acyl

and n4 is 0-2) and R³² is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, aryl, aralkyl, heteroaralkyl, heterocyclyl, or heterocyclylalkyl] wherein said alkylene chain is optionally substituted with one to six halo and wherein the aromatic or alicyclic ring in R^{1a} is optionally substituted with one, two, or three R^a independently selected from alkyl, haloalkyl, alkoxy, hydroxy, haloalkoxy, halo, nitro, cyano, carboxy, alkoxycarbonyl, aryl, heteroaryl, cycloalkyl, cycloalkylalkyl, aralkyl, heteroaralkyl, amino, monsubstituted amino, disubstituted amino, or acyl; or

 R^{\dagger} and $R^{\dagger a}$ -together with the carbon atoms to which they are attached form cycloalkylene or heterocycloalkylene ring wherein said cycloalkylene or heterocycloalkylene is optionally substituted with one or two R^{f} independently selected from alkyl, halo, hydroxyalkyl, keto, or $SO_{a}R^{2a}$ -where R^{2a} -is alkyl, cycloalkyl, eycloalkylalkyl, aryl, aralkyl, heteroaryl or heteroaralkyl where the aromatic or alicylic ring in R^{f} is optionally substituted with one, two, or three substitutents independently selected from alkyl, alkoxy, haloalkyl, haloalkoxy, hydroxy, halo, earboxy, or alkoxyearbonyl;

R2 is hydrogen or alkyl;

R³ is hydrogen, alkyl, haloalkyl, cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocyclyl, heterocyclylalkyl, amino, mono or disubstituted amino, or –alkylene-X³-R³5 [wherein X X³ is ¬NR³6-, -O-, -S(O)n5-, -CO-, -COO-, -OCO-, -NR³6-CO-, -CONR³6-, -NR³6-SO₂-, -SO₂NR³6-, -NR³6-CO-, -CONR³6-, -NR³6-SO₂-, -SO₂NR³6-, -NR³6-COO-, -OCONR³6-, -NR³6-CONR³7-, or ¬NR³6-SO₂NR³7- (where R³6 and R³7 are independently hydrogen, alkyl, or acyl and n5 is 0-2) and R³5 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl] wherein the aromatic or alicyclic rings in R³ are optionally substituted by one, two, or three R³ independently selected from alkyl, halo, hydroxy, alkoxy, haloalkyl, haloalkoxy, oxo, cyano, nitro, acyl, acyloxy, aryl, heteroaryl, cycloalkyl, heterocyclyl, aryloxy, benzyloxy, carboxy, alkoxycarbonyl, aryloxycarbonyl, arbamoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, arylthio, arylsulfonyl, arylsulfinyl, alkoxycarbonylamino, aryloxycarbonylamino, alkylcarbamoyloxy, alkylsulfonylamino, arylsulfonylamino, animosulfonyl, alkylaminosulfonyl, arylaminosulfonyl, arylaminosulfonyl, arylaminosulfonyl, arylaminosulfonyl, arylaminosulfonyl, amino, monosubsituted or disubstituted amino, and further wherein the aromatic and alicyclic rings in R³ are optionally substituted with one, two, or

three R^h wherein R^h is independently selected from alkyl, halo, haloalkyl, haloalkoxy, hydroxy, nitro, cyano, hydroxyalkyl, alkoxy, alkoxyalkyl, aminoalkyl, alkylthio, alkylsulfonyl, amino, alkylamino, dialkylamino, aryl, heteroaryl, cycloalkyl, carboxy, carboxamido, or alkoxycarbonyl;

R⁴ is -S(O)₂R³⁸ where R³⁸ is phenyl or naphthyl optionally substituted with one, two, or three R¹ independently selected from alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy, alkylthio, alkylsulfonyl, arylsulfonyl, aminosulfonyl, acyl, amino, monosubstituted amino, disubstituted amino, carboxy, alkoxycarbonyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, aryl, heteroaryl, heteroaryl, aryloxycarbonyl, heteroaryloxy, - NHSO₂R³ where R³ is alkyl, aryl, or heteroaryl, -SO₂NR⁸R¹ where R⁸ is hydrogen or alkyl and R¹ is alkyl, aryl, heteroaryl, or -NHCONRⁿR^o where Rⁿ and R^o are independently hydrogen, alkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl; where the aromatic or alicyclic ring in R¹ is optionally substituted with one or two substituents independently selected from alkyl, halo, alkoxy, haloalkyl, haloalkoxy, hydroxy, amino, alkylamino, dialkylamino, carboxy, or alkoxyoarbonyl;

R^{4a} is hydrogen, alkyl, halo, haloalkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, alkoxy, hydroxy, aryl, aralkyl, aroyl, heteroaryl, heteraralkyl, heteroaroyl, -C(O)OR⁴⁰ where (R⁴⁰ is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, aryl, or aralkyl), alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, alkylaminosulfonyl, arylaminosulfonyl, or cycloalkyl wherein the aromatic rings in R^{4a} are optionally substituted with one, two or three halogen, hydroxy, alkyl, alkoxy, haloalkyl, haloalkoxy, carboxy, nitrile, nitro, or -CONH₂; or a pharmaceutically acceptable salts thereof.

2. (Original) The compound of Claim 1 wherein R^4 is $-S(O)_2R^{38}$ where R^{38} is phenyl or naphthyl optionally substituted with one, two, or three R^1 independently selected from alkyl, alkoxy, halo, haloalkoy, hydroxy, alkylthio, alkylsulfonyl, arylsulfonyl, aminosulfonyl, acyl, amino, monosubstituted amino, disubstituted amino, carboxy, alkoxycarbonyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, aryl, heteroaryl, or heterocyclyl where the aromatic or alicyclic ring in R^1 is optionally substituted with one or two substituents

independently selected from alkyl, halo, alkoxy, haloalkyl, haloalkoxy, hydroxy, amino, alkylamino, dialkylamino, carboxy, or alkoxycarbonyl.

- 3. (Canceled)
- 4. (Canceled)
- 5. (Canceled)
- 6. (Canceled)
- 7. (Currently amended) The compound of Claim 1 or 2 wherein E is -CR^{5a}R^{6a}CN where R^{5a} and R^{6a} together with the carbon atom to which they are attached form cycloalkylene optionally substituted with one or two R^b independently selected from alkyl, halo, dialkylamino, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroaralkyl, alkoxycarbonyl, or aryloxycarbonyl.
- 8. (Currently amended) The compound of Claim 1 e=2 wherein E is -CR^{5a}R^{6a}CN where R^{5a} and R^{6a} together with the carbon atom to which they are attached form cyclopropylene, cyclobutylene, cyclopentylene, or cyclohexylene optionally substituted with with one or two R^b independently selected from alkyl, halo, dialkylamino, aryl, aralkyl, cycloalkyl, cycloalkyl, heteroaryl, heteroaralkyl, alkoxycarbonyl, or aryloxycarbonyl.
- 9. (Currently amended) The compound of Claim 1 er-2 wherein E is -CR^{5a}R^{6a}CN where R^{5a} and R^{6a} together with the carbon atom to which they are attached form heterocycloalkylene optionally substituted with one to two R^c which are independently selected from alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, aminoalkyl, acyl, aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkyl, cycloalkylalkyl, -S(O)_{n2}R¹⁴, -alkylene-S(O)_{n2}R¹⁵, -COOR¹⁶, -alkylene-COOR¹⁷, -CONHR¹⁸R¹⁹, or -alkylene-CONHR²⁰R²¹ (where n2 is 0-2 and R¹⁴-R¹⁷, R¹⁸ and R²⁰ are independently hydrogen, alkyl, haloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkyl, cycloalkylalkyl, or heterocyclyl and R¹⁹ and R²¹ are independently hydrogen or alkyl) wherein the aromatic or alicyclic ring in the groups attached to

heterocycloalkylene is optionally substituted with one, two, or three substituents independently selected from alkyl, haloalkyl, alkoxy, hydroxy, haloalkoxy, halo, carboxy, alkoxycarbonyl, amino, monsubstituted amino, disubstituted amino, or acyl.

- 10. (Canceled)
- 11. (Currently amended) The compound of any of the Claims 4–10 1, 2, 7, 8 or 9, wherein:

R1 is hydrogen; and

R^{1a} is alkyl, cycloalkyl, aralkyl, heteroaralkyl, cycloalkylalkyl, heterocyclylalkyl, or – alkylene-X-R³² [wherein X is –NR³³, -O-, -S(O)_{n4}-, -CO-, -COO-, -OCO-, -NR³³CO-, -CONR³³-, -NR³³SO₂-, -SO₂NR³³-, -NR³³COO-, -OCONR³³-, -NR³³CONR³⁴-, or – NR³³SO₂NR³⁴- (where R³³ and R³⁴ are independently hydrogen, alkyl, or acyl and n4 is 0-2) and R³² is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, aryl, aralkyl, heteroaralkyl, heteroaralkyl, heterocyclyl, or heterocyclylalkyl] wherein said alkylene chain is optionally substituted with one to six halo and wherein the aromatic or alicyclic ring in R^{1a} is optionally substituted with one, two, or three R^e independently selected from alkyl, haloalkyl, alkoxy, hydroxy, haloalkoxy, halo, nitro, cyano, carboxy, alkoxycarbonyl, aryl, heteroaryl, cycloalkyl, cycloalkylalkyl, aralkyl, heteroaralkyl, amino, monsubstituted amino, disubstituted amino, or acyl.

12. (Currently amended) The compound of any of the Claims 1-10 1, 2, 7, 8 or 9, wherein:

R^{1a} is 2-methylpropyl, 2,2-dimethylpropyl, 4,4-dimethylcyclohexylmethyl, 4-ethyl-4-methylcyclohexylmethyl, 4,4-diethylcyclohexylmethyl, 3,5-dimethylcyclohexylmethyl, 1-ethoxycarbonylpiperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, cyclohexylmethyl, cyclooctylmethyl, 3,3-dimethylbutyl, 3-methylbutyl, 2-cyclohexylethyl, 2,2,3-trimethylbutyl, 2-cyclohexyl-2-methylpropyl, 3,3-dimethylpentyl, 3-ethyl-3-methylpentyl, 2-(1-methylcyclohexyl)ethyl, tetrahydronaphthylmethyl, 2-tetrahydropyran-4-ylethyl, 2-(1-methylcyclopropyl)-2-methylpropyl, 2-

cyclopentylethyl, 2-cyclopentyl-2-methylpropyl, 4-isopropyl-4-methylcyclohexylmethyl, phenylmethanethiomethyl, phenylmethanesulfinylmethyl, dimethylaminomethyl, pyrrolidin-1vlmethyl, piperidin-1-ylmethyl, morpholin-4-ylmethyl, thiomorpholin-4-ylmethyl, 1-oxothiomorpholin-4-ylmethyl, 1,1-dioxothiomorpholin-4-ylmethyl, tetrahydrothiopyran-4-ylmethyl, 1-oxotetrahydrothiopyran-4-ylmethyl, 1,1-dioxotetrahydrothiopyran-4-ylmethyl, 1methylpiperazin-4-ylmethyl, benzyloxymethyl, n-butyl, ethoxymethyl, ethylthiomethyl, ethylsulfinylmethyl, ethylsulfonylmethyl, isopropylthiomethyl, isopropyloxymethyl, 2dimethylaminoethyl, 2-piperidin-1-ylethyl, 2-pyrrolidin-1-ylethyl, 2-methylthioethyl, 2methylsulfinylethyl, 2-methysulfonylethyl, tert-butylthiomethyl, tert-butyloxymethyl, benzyl, 4methoxybenzyl, imidazol-4-ylmethyl, 4-dimethylaminobutyl, indol-3-ylmethyl, 2dimethylaminocarbonylethyl, 2-pyrrolidin-1-ylcarbonylethyl, dimethylaminocarbonylmethyl, pyrrolidin-1-ylcarbonylmethyl, methoxycarbonylmethyl, 2-fluorophenylmethanesulfonylmethyl, 2-chlorophenylmethanesulfonylmethyl, 2-nitrophenylmethanesulfonylmethyl, 2cyanophenylmethanesulfonylmethyl, pyridin-3-ylmethanesulfonylmethyl, pyridin-2ylmethanesulfonylmethyl, pyridin-4-ylmethanesulfonylmethyl, 2-fluorophenylmethanethiomethyl, 2-chlorophenyl-methanethiomethyl, 2-cyanophenylmethanethiomethyl, 2nitrophenylmethanethiomethyl, cyclohexylmethanethiomethyl, cyclohexylsulfinylthiomethyl, cyclohexylmethanesulfonylmethyl, 3,4-dichlorobenzyl, 2-chlorobenzyl, 4-ethoxybenzyl, 4nitrobenzyl, biphen-4-ylmethyl, naphth-1-ylmethyl, 2-methylbutyl, 1-methylpropyl, naphth-2vlmethyl, 4-chlorobenzyl, 3-chlorobenzyl, 4-fluorobenzyl, indol-2-ylmethyl, 1-benzylimidazol-4-vlmethyl, 2-phenethyl, 4-hydroxybenzyl, 2-(4-hydroxyphenyl)ethyl, 4-ethyl-4methylpiperidin-1-ylmethyl, 2-methylcyclohexylmethyl, 4-methoxycyclohexylmethyl, indol-1vlmethyl, 1-methylpiperidin-2-ylmethyl, 2-bicylo[2.2.1]hep-3-tylethyl, 8-methyl-8-azabicyclo[3,2,1]oct-3-vlmethyl, bicyclo[3,2,1]oct-3-vlmethyl, bicyclo[3,1,1]hept-3-vlmethyl, 6,6dimethylbicyclo[3.1.1]hept-3-ylmethyl, 6,6-dimethylbicyclo[3.1.1]hept-4-ylmethyl, 2bicyclo[2.2.1]hept-1-ylethyl, bicyclo[2.2.1]hept-2-ylethyl, thiophene-2-sulfonylmethyl, 3-chloro-2-fluorophenylmethane-sulfonylmethyl, benzenesulfonylmethyl, phenylmethanesulfonylmethyl, 2-benzenesulfonylethyl, 2-(pyridin-2-ylsulfonyl)ethyl, 2-(pyridin-4-vlsulfonyl)ethyl, 2-phenylmethanesulfonyl-ethyl,

- oxypyridin-2-ylmethanesulfonylmethyl, 4-methoxyphenyl-methanesulfonylmethyl, p-tolylmethanesulfonylmethyl, 4-chlorophenylmethanesulfonylmethyl,
- o-tolylmethanesulfonylmethyl, 3,5-dimethylphenylmethanesulfonylmethyl,
- 4-trifluoromethylphenylmethanesulfonylmethyl, 4-trifluoromethoxyphenylmethanesulfonylmethyl, 2-bromophenylmethanesulfonylmethyl, naphth-2-ylmethanesulfonylmethyl, and the properties of the p
- 3-methylphenylmethanesulfonylmethyl, 3-trifluoromethylphenylmethanesulfonylmethyl,
- 3-trifluoromethoxyphenylmethane-sulfonylmethyl,
- 4-fluoro-2-trifluoromethoxyphenylmethanesulfonylmethyl,
- 2-fluoro-6-trifluoromethylphenylmethanesulfonylmethyl, 2,6-difluorobenzyl, 1-methylcyclopentylmethyl, cyclohexyl, pyridin-4-ylmethyl,
- 3-chlorophenylmethanesulfonylmethyl, 2-trifluoromethylphenylmethanesulfonylmethyl,
- $4-\textit{tert}\text{-}\text{butylphenylmethane} sulfonylmethyl, 2-fluoro-3-methylphenylmethane sulfonyl-methyl,}$
- 3-fluorophenylmethanesulfonylmethyl, 4-fluorophenylmethanesulfonylmethyl,
- 2,5-difluorophenylmethanesulfonylmethyl, 2,6-difluorophenylmethanesulfonylmethyl,
- 2.5-dichlorophenylmethanesulfonylmethyl, 3.4-dichlorophenylmethanesulfonylmethyl,
- $2\hbox{--}(1,1\hbox{--}diffuor omethoxy) phenyl methane sulfonyl methyl,\ 3\hbox{--}cyan ophenyl methane-sulfonyl methyl,}$
- 2-trifluoromethoxyphenylmethanesulfonylmethyl,
- $3-trifluoromethoxyphenylmethanesulfonylmethyl,\,2,3-difluorophenylmethane-sulfonylmethyl,\,$
- 2,5-difluorophenylmethanesulfonylmethyl, biphenyl-2-ylmethane-sulfonylmethyl,
- cyclohexylmethyl, 3-fluorophenyl-methanesulfonylmethyl, 2-pyridin-2-ylsulfonylethyl, 2-phenylsulfonylethyl, 2,2-difluoro-3-phenylpropyl, 2,2-dichloro-3-phenylpropyl, 2,2,2-
- trichloroethyl, 2,2-dichloroethyl, 1,4-dimethylcyclopentylmethyl,
- 3,4-difluorophenylmethanesulfonylmethyl, 2,4-difluorophenylmethanesulfonylmethyl,
- $2,\!4,\!6\text{-trifluor} ophenylmethan esulfonylmethyl, 2,\!4,\!5\text{-trifluor} ophenylmethan esulfonylmethyl, \\$
- 2,3,4-trifluorophenylmethanesulfonylmethyl, 2,3,5-trifluorophenylmethanesulfonylmethyl,
- 2,5,6-trifluorophenylmethanesulfonyl-methyl, 2-chloro-5-trifluoromethylphenylmethanesulfonylmethyl, 2-methylpropane-1-sulfonylmethyl, 2-fluoro-3-trifluoromethylphenyl-
- methan esul fonyl methyl, 2-fluoro-4-trifluoromethyl phenyl methan esul fonyl methyl,
- 2-fluoro-5-trifluoromethyl-phenylmethanesulfonylmethyl, 4-fluoro-3-trifluoromethyl-

phenylmethanesulfonylmethyl, 2-methoxyphenylmethanesulfonylmethyl, 3,5-bis-trifluoromethylphenyl-methanesulfonylmethyl, 4-difluoromethoxyphenylmethanesulfonylmethyl, 3-difluoromethoxyphenylmethanesulfonylmethyl, 2,6-dichlorophenylmethanesulfonylmethyl, biphenyl-4-ylmethanesulfonylmethyl, 3,5-dimethylisoxazol-4-vlmethanesulfonvlmethyl, 5-chlorothien-2-vlmethane-sulfonvlmethyl, 2-[4-(1.1-difluoromethoxy)benzenesulfonyl]ethyl, 2-[2-(1,1-difluoromethoxy)benzenesulfonyllethyl, 2-[3-(1,1-difluoromethoxy)benzenesulfonyllethyl, 2-(4-trifluoromethoxybenzenesulfonyl)ethyl, 2-(3-trifluoromethoxybenzenesulfonyl)-ethyl, 2-(2-trifluoromethoxybenzenesulfonyl)-ethyl, (cyanomethylmethylcarbamoyl)methyl, biphenyl-3-vlmethyl, 2-oxo-2-pyrrolidin-1-vlethyl, 2-benzenesulfonylethyl, isobutylsulfanylmethyl, 2-phenylsulfanylethyl, cyclohexylmethanesulfonylmethyl, 2-cyclohexylethanesulfonyl, benzyl, naphth-2-yl, phenylmethanesulfanylmethyl, 2-trifluoromethylphenylmetahnesulfanylmethyl, phenylsulfanylethyl, cyclopropylmethanesulfonylmethyl, 2-methylpropylsulfonylmethyl, 5-bromothien-2-ylmethyl, 3phenylpropyl, 2.2-difluoro-3-phenylpropyl, 3.4,5-trimethoxy-phenylmethanesulfonyl-methyl, 2.2-difluoro-3-thien-2-vlpropyl, cyclohexylethyl, cyclohexylmethyl, cyclopentylmethyl, tertbutylmethyl, 1-methylcyclohexylmethyl, 1-methylcyclopentylmethyl, 2,2-difluoro-3phenylpropyl, 2.2-dimethyl-3-phenylpropyl, 1-benzylcyclopropylmethyl, or benzyloxymethyl; and

R1 is hydrogen.

 (Currently amended) The compound of any of the Claims 4-12 1, 2, 7, 8 or 9, wherein:

R³ is hydrogen, alkyl, cycloalkyl, phenyl, benzyl, naphthyl, alkylSO₂alkyl, cycloalkylSO₂alkyl, arylSO₂alkyl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, indolinyl, pyranyl, thiopyranyl, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyridinyl, isoxazolyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolyl, quinolinyl, benzofuranyl, benzthienyl, benzimidazolyl, benzthiazolyl, benzoisoxazolyl, benzoxazolyl or

amino; wherein the aromatic or alicyclic ring in \mathbb{R}^3 is optionally substituted by one, two, or three \mathbb{R}^g :

each Rg is independently alkyl, halo, hydroxy, oxo, carboxy, cyano, nitro, carboxamide, cycloalkyl, phenyl, naphthyl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, furanyl, thienyl, oxazolyl, thiazolyl, imidazolyl, triazolyl, tetrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, alkoxy, -COR (where R is alkyl), -OC(O)R (where R is alkoxy or aryl), aryloxy, benzyloxy, alkoxycarbonyl, aryloxycarbonyl, carbamoyl wherein the nitrogen atom may be independently mono or di-substituted by alkyl, aryl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, furanyl, thienyl, oxazolyl, thiazolyl, imidazolyl, triazolyl, tetrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzthiazolyl, quinolinyl, isoquinolinyl, quinazolinyl or quinoxalinyl, -NHCOR (where R is alkyl or aryl), alkylthio, arvithio, alkylsulfinyl, alkylsulfonyl, arvisulfinyl, arvisulfonyl, alkoxycarbonylamino, aryloxycarbonylamino, alkylcarbamoyloxy, arylcarbamoyloxy, alkylsulfonylamino, arylsulfonylamino, alkylaminosulfonyl, arylaminosulfonyl, amino wherein the nitrogen atom may be independently mono or di-substituted by alkyl, aryl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, furanyl, thienyl, oxazolyl, thiazolyl, imidazolyl, triazolyl, tetrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzthiazolyl, quinolinyl, isoquinolinyl, quinazolinyl or quinoxalinyl, where the aromatic or alicyclic rings in R8 may be further optionally substituted by one, two or three Rh independently selected from alkyl, aryl, cycloalkyl, alkoxy, haloalkyl, haloalkoxy, halo, hydroxy, carboxy, carboxamido, cyano, or nitro;

R2 is hydrogen or methyl; and

R4a is hydrogen, alkyl, cycloalkyl, aryl, alkoxy, or hydroxy.

14. (Currently amended) The compound of any of the Claims $\frac{1-12}{1}$, $\frac{1}{2}$, $\frac{2}{7}$, $\frac{8}{8}$ or $\frac{9}{9}$, wherein:

R³ is hydrogen, methyl, ethyl, isopropyl, cyclopropyl, cyclopentyl, cyclohexyl, phenyl, benzyl, naphthyl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, furanyl, thienyl, thiazolyl, imidazolyl, pyridinyl, pyrazinyl, or amino where the nitrogen atom is mono or disubstituted with alkyl and wherein the aromatic or alicylic rings in R3 are optionally substituted with one, two, or three Rg independently selected from methyl ethyl, fluoro, chloro, bromo, iodo, hydroxy, oxo, carboxy, cyano, nitro, carboxamide, cyclopropyl, phenyl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, thienyl imidazolyl, methoxy, acetyl, acetoxy, phenoxy, benzyloxy, methoxycarbonyl, phenoxycarbonyl, benzoyloxy, carbamoyl wherein the nitrogen atom is mono or disubstituted independently with methyl, ethyl or phenyl, acetylamino, benzovlamino, methylthio, phenylthio, phenylsulfonyl, methylsulfonyl, methoxycarbonylamino, phenoxycarbonylamino, methylcarbamoyloxy, phenylcarbamoyloxy, methylsulfonylamino, phenylsulfonylamino, methylaminosulfonyl, phenylaminosulfonyl, amino wherein the nitrogen atom is mono or disubstituted independently with methyl or phenyl: wherein the aromatic or alicyclic rings in Rg are further optionally substituted with one, two, or three Rh independently selected from methyl, cyclopropyl, phenyl, methoxy, fluoro, chloro, hydroxy, carboxy or carboxamido.

15. (Currently amended) The compound of any of the Claims 1-12 1, 2, 7, 8 or 9, wherein:

R³ is hydrogen, methyl, carboxy, ethyl isopropyl, cyclopropyl, cyclohexyl, phenyl, benzyl, naphthyl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, furanyl, thientyl, thiazolyl, imidazoly, pyridinyl, pyrazinyl or amino where the nitrogen atom is optionally substituted with alkyl and wherein the aromatic or alicyclic rings in R³ are optionally substituted with one, two, or three R⁵ independently selected from methyl, chloro, fluoro, phenyl, thienyl, methoxy, acetyl, acetoxy, phenoxy, benzyloxy, methoxycarbonyl, carbamoy wherein the nitrogen atom is mono or disubstitued independently with methyl or phenyl, acetylamino, methylthio, phenylthio, phenylsulfonyl, methylsulfonyl, methoxycarbonylamino, methylcarbamoyloxy, phenylcarbamoyloxy, methylsulfonylamino, phenylsulfonylamino, amino wherein the nitrogen atom is mono or disubstituted independently with methyl or phenyl;

R4a is hydrogen, alkyl or alkoxy; and

 R^4 is $-S(O)_2R^{38}$ where R^{38} is phenyl or naphthyl optionally substituted with one, two, or three R^i independently selected from alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy, alkylthio, alkylsulfonyl, aminosulfonyl, acyl, amino, monosubstituted amino, disubstituted amino, hydroxyalkyl, alkoxyalkyl, aminoalkyl, aryl, heteroaryl, or heterocyclyl where the aromatic or alicyclic ring in R^i is optionally substituted with one or two substituents independently selected from alkyl, halo, alkoxy, haloalkyl, haloalkoxy, hydroxy, amino, alkylamino, dialkylamino, carboxy, or alkoxycarbonyl.

- 16. (Currently amended) The compound of any of the Claims 1–15 1, 2, 7, 8 or 9, where R⁴ is -S(O)₂R³⁸ where R³⁸ is phenyl optionally substituted with one, two, or three Rⁱ independently selected from alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy, alkylthio, alkylsulfonyl, aminosulfonyl, acyl, amino, monosubstituted amino, disubstituted amino, hydroxyalkyl, alkoxyalkyl, aminoalkyl, aryl, heteroaryl, or heterocyclyl where the aromatic or alicyclic ring in Rⁱ is optionally substituted with one or two substituents independently selected from alkyl, halo, alkoxy, haloalkyl, haloalkoxy, hydroxy, amino, alkylamino, dialkylamino, carboxy, or alkoxycarbonyl.
 - (Currently amended) A compound of formula:

wherein:

R1, R2, and R4a are hydrogen;

 R^{18} is cycloalkylalkyl wherein the alicyclic ring is optionally substituted with alkyl, heteroaralkyl, or -alkylene-S(O)_{n4}- R^{32} where n4 is 0 to 2 and R^{32} is aralkyl where the aromatic ring is optionally substituted with haloalkoxy;

R3 is hydrogen, alkyl, heterocyclyl, or alkylthio;

R4 is phenylsulfonyl;

E is $-\text{CHR}^6\text{COR}^{10}$ where R^6 is alkyl and R^{10} is heteroaryl optionally substituted with alkyl or aryl, $-\text{CH}_2\text{CN}$, or $-\text{CR}^{5n}R^{6n}$ $-\text{CR}^{5n}R^{6n}$ CN where R^{5n} and R^{6n} together with the carbon atom to which they are attached form cycloalkylene or heterocycloalkylene; or a pharmaceutically acceptable salt thereof.

- (Currently amended) A pharmaceutical composition comprising a compound of any of the Claims 1-17 1, 2, 7, 8, 9 or 17 in admixture with one or more suitable excipients.
- 19. (Currently amended) A method for treating a disease in an animal mediated by cysteine proteases which method comprises administering to the animal a therapeutically effective amount of a compound of any of the Claims 1-17 1, 2, 7, 8, 9 or 17.
 - 20. (Original) The method of Claim 19 wherein the disease is psoriasis.