6.M on lattice

free 4 = (m) 1/2 exp (Imx) to

Review of PI in QM

Propagator (Green's function) in configuration space U(Xf, tf, Xi, ti)

- 1) Draw all possible paths connecting xixf that are usuatout in time,
- D Evaluate classical action Su along each path assign factor eiscett

Can show this is equivalent to that stained from wave mechanity.

- Scl is stationary with respect to varietien in parth along clearical trajectory, xelf), hence nearby paths Contribute coherently to the phase factor. For those levisible a let from Xact), eiSalt rapidly oscillating hours to carculation.
 - =) Only knot) and nearly paths dontrates U(xf,tf, xi,ti).

DI can give analytic results for VIX) = a+bx tcx+dx texx, Heaton...

numeric issues @ I son paras

o elsa A

D witt-rotation 7=it

$$Sa = \int \left[\frac{dx}{dt} \right]^{2} - V(x) dt = i \int \left[\frac{dx}{dt} \right]^{2} +$$

Sanity check: Most cases Xc(1) n'injoile S, mimportant parks glamped. maximize

Sceldle point stationery?

U is hermitian instead of unitary, U= I (x) in a like = Enox

lina U = (x/o>co/xi) e-Eoo?

All state unwher orthogonal & as will eventually wolve to GS.

- Smilar to Gibbs distribution in stat much

If tale trace of U141, (periodic B.C.), integrate over all possible is,

Compourision with Stat mech:

Temp -> 0, no thermal fluctuations

1 -> 0, e deminated by classical path, no quantum

fluctuations

Now on our 1-10 lattice sites

$$S_{\overline{t}} = \int_{\overline{t}} \frac{1}{a} \left[\frac{(x_{i+1} + x_{i})^{2}}{a} + V(x_{i})^{a} \right]$$

By variation can show
$$(\frac{3F}{5x_{k}}) = \frac{1}{5}(F\frac{3S_{E}}{5x_{k}})$$

From
$$0$$
 $\frac{3SE}{3X_k} = M\left[\frac{(X_k - X_{k-1})}{\alpha} - \frac{(X_{k+1} - X_k)}{\alpha}\right] + \alpha V(x_k)$

So
$$\langle \frac{\lambda F}{\lambda x_{k}^{2}} \rangle = \frac{\alpha}{\hbar} \langle F \left[m \left(\frac{\chi_{k} - \chi_{k}}{\alpha^{2}} - \frac{\chi_{k+1} - \chi_{k}}{\alpha^{2}} \right) + \sqrt{1 \chi_{k}} \right] \rangle$$

Take
$$F = x_{k}$$
, $(17 = \frac{\alpha^{2}}{5}) + V(x_{k})$

suppose VIA) is Smooth

$$\langle n \chi \langle \frac{\chi_{lc} - \chi_{k-1}}{\alpha} \rangle - \langle n \chi_{lc} \rangle = t_0$$

$$\chi_{lc} - \chi_{k-1} \rangle = t_0$$

$$\chi_{lc} - \chi_{k-1} \rangle = t_0$$

with
$$O(E)$$
 $\langle mX_k \frac{x_{k-1}}{\alpha} \rangle = \langle mX_{k+1} \frac{X_{k+1} - x_k}{\alpha} \rangle$

$$\Rightarrow \langle \frac{(x_{k+1}-x_k)(x_{k+1}-x_k)}{\alpha} \rangle = \frac{t}{m} \Rightarrow \langle \frac{(x_{k+1}-x_k)^2}{\alpha^2} \rangle = \frac{t}{\alpha m} + O(0)$$

Paths that are important in QM are highly irregular at fine sales

<V> 1's Well-defined but not <V'>

m 7 m(HE)

1. Schounger by
$$\frac{Em}{2} \left[\frac{|X_0+1-X_0|^2}{\alpha} \right]$$
 See what's life.

Here
$$S \ge \frac{\varepsilon m}{2} \left[\frac{(x_{c+1} + x_c)^2}{\alpha} - \frac{\varepsilon t}{2} \right] \sim T = \frac{m}{2} \left[\frac{(x_{c+1} - x_c)^2}{\alpha^2} - \frac{t_n}{2\alpha} \right]$$

$$= 0 + 0(\frac{1}{n})$$
.

In fact this is finite.

$$\frac{\sqrt{\frac{m_{1}(X_{k+1}-X_{k})(X_{k}-X_{k-1})}{\alpha^{2}}}}{\sqrt{\frac{m_{1}(X_{k+1}-X_{k})}{\alpha^{2}}}} > -\frac{\frac{1}{m_{1}}}{m_{1}}$$

the cartinum limit

Hnother solution: vind theorem

$$H(t) = \frac{1}{2} \times nV(x_n) + V(x_n)$$

Observables,

. . discussed above

OGS (Wavefunction):
probability

The pts fall within
$$(X, X+OX) = P(V)$$

overity

The phase not important $(P(X) = \overline{P(V)})$

consider
$$\langle \hat{X}_{l}(t_{2}) \hat{X}_{l}(t_{1}) \rangle = \sqrt{\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{$$

Elos is odd

Define
$$G(n) = \langle \hat{x}(\tau_i + na) \hat{x}(\tau_i) \rangle$$
 $n \rightarrow \infty$

then
$$\lim_{h\to\infty}\frac{G_7(n)}{G_7(h+1)}=e^{+(F_1-F_0)\alpha}$$

$$= \sum_{i=1}^{n} E_{i} - E_{o} = \frac{1}{a} \ln \left[\frac{G_{i}(n_{i})}{G_{i}(n_{i})} \right]$$
 Gives energy split.

(D) higher energy states. (agoin assume [p, vi] 20).

Fift [[Csn+1] e - (Fx-Fo)ot for higher sold parity excited states
or over correlator (xict) xicts) for ever parity excited state,

to other.

tunding ::

Effectively choose paths?

the troplis algorithm D start with an arbitrous parth, cularlate SE. prev.

B Therete through lattice i=1,.... N-1. for each site i,

i. update xi = xit yti , R is a random # from uniform distribution & [-1,1]

ii. Calculate SE, now after updating each site i, calculate SE, new, SE= SE, mn

Still.

iii. It DSE <0, accept this update at latthe site i, go to next site;

Gibbs: If OSE >0, pick randon # ti +(0,1) from uniform distribution.

Notroylis updates. If I'ce beg the update; ele rejected and reverse to previous partition Xi.

A sweep through all lattice sites is called a Monte Carlo Totoration.

D Add this path to allection, repeat The four step D

Perioditis: this approach generate paths obeys Boltzmann constribution $P + e^{-SE/\hbar}$. Z can be replaced by Niter

2) can be shown by using Markov chain.

(edition) le tails
1) Thermulization.
If tritted path is for from "Classical" path, it'll take some time
to arrive at a equilibrium configuration. Fixet N-therm McI throw away.
(villerion for thermalization: (0) convergence.
D' De correlation" Randomness. ' la multiple updated et illush léttes in one 7tr)
Nearly Monte Cools Iterations are somewhat consoluted. Throw away
Nearr Merceftons between earl every Nearr Harothins.
E. Museoli Mishin Mishin Mishin Mishing Mishin
itu.
- The state of the

De choice of y. y too small: And towergance 2/ parameter space not explored enough.

h to large " many updates will be rejected optimally rejection rate ~ 60% - 8.% > 5%

Example: $V(x) = \lambda (x^2 - f^2)^2$

Choose parameter Nn 102-103

Characteristic the scale Te = 275/F.

a/20 ~ []

Na/7, ≈ [3, 10].

Nthon ~ 10-50

Norr - 3 - 5

06 ~ JW = 181

In tapical paths.

f= 0.T

