Feature Selection in Machine Learning with Python

DataTalks.Club

August 2022

Soledad Galli, PhD

About me

- Data science instructor: www.trainindata.com
- Open-source developer: Feature-engine https://feature-engine.readthedocs.io/en/latest
- Book: Feature selection in machine learning: https://leanpub.com/feature-selection-in-machine-learning/

@Soledad_Galli

in/soledad-galli/

About this talk

Slides and code:

https://github.com/solegalli/DataTalks.Club2022

Feature selection

Feature selection is the process of selecting a subset of features

to train machine learning models.

$$\begin{array}{c} x & X & X \\ X & X & X \end{array} \longrightarrow \begin{array}{c} X & X \\ X & X \end{array}$$

Feature selection vs dimension reduction

- > Feature selection is not the same as dimensionality reduction.
- > In feature selection the nature of the features is not changed.

$$\begin{array}{c} x & X & X \\ X & X & X \end{array} \longrightarrow \begin{array}{c} X & X \\ X & X \end{array}$$

Why do we select features?

Simpler models are:

- ✓ Easier to understand.
- ✓ Faster.
- ✓ Less storage.
- ✓ Easier to maintain.

Uses of machine learning models

Insurance Claims

Marketing

Fraud

Premium

Credit Risk

Customer Churn

How do we select features?

Many feature selection algorithms

Many feature selection algorithms

Many feature "optimal" subsets

Many "optimal" feature subsets.

Python open-source - feature selection

First: variable redundancy

Constant variables Only 1 value per variable

Quasi – constant Variables > 99% of observations show same value

Duplication

Same variable multiple times in the dataset

First: variable redundancy

Constant variables Only 1 value per variable

Quasi – constant Variables > 99% of observations show same value

Duplication

Same variable multiple times in the dataset

Feature selection methods

Based on algorithms characteristics.

Embedded methods

Feature selection methods

Based on algorithms characteristics.

Feature selection methods

Based on algorithms characteristics.

• Filter methods

AKA: Ranking methods

Filter methods

Rank features

Select highest ranking features

Statistical tests

Chi-square

- ✓ Categorical variables
- ✓ Categorical target

ANOVA

- ✓ Continuous variables
- ✓ Categorical target

Correlation

- ✓ Continuous variables
- ✓ Continous target

Null hypothesis: the populations are the same / no correlation.

Ranking criteria: p-value.

These tests make assumptions on the data.

Chi-square

 χ^2 = sum (Observed – expected)² / expected

Observed

30

Female Male
Died 120 60

92

Expected

	Female	Male
Died	120	53
Surived	85	36

 $E = (Row \times Column) / Total$

Data consists of 200 women and 100 man

Surived

Chi-square

 χ^2 = sum (Observed – expected)² / expected

Chi-square: use scipy

Scikit-learn's chi2 implementation is not suitable for categorical variables:

https://github.com/scikit-learn/scikit-learn/issues/21455

Filter methods - characteristics

• Wrapper methods

Wrapper methods

Create feature subsets

Train model on each subset

Select best subset

Get model performance

Wrapper methods

Create feature subsets

Train model on each subset

Select best subset

Get model performance

Roc-auc 0.65

Roc-auc 0.59

Roc-auc 0.59

Roc-auc 0.74

Roc-auc 0.72

Roc-auc 0.74

Roc-auc 0.72

Roc-auc 0.75

Roc-auc 0.75

When to stop the search

- Ideal: When performance does not increase beyond a threshold
 - ✓ Threshold to be defined by the user

- MLXtend implementation: when certain number of features is reached
 - ✓ Number of features defined by the user

Wrapper methods - characteristics

Embedded methods

Embedded methods - characteristics

Other methods

Other feature selection methods

Other feature selection methods

Drop

Thank you

https://www.trainindata.com/p/feature-selection-for-machine-learning

https://leanpub.com/feature-selection-in-machine-learning/

