

Programa del curso EL5409

Laboratorio de Control Automático

Escuela de Electrónica Carreras de Licenciatura en Ing. Electrónica y Licenciatura en Ing. Mecatrónica

[Última revisión de la plantilla: 05 mayo de 2015]

I parte: Aspectos relativos al plan de estudios

1 Datos generales

Nombre del curso: Laboratorio de Control Automático

Código: EL-5409

Tipo de curso: Taller

Electivo o no: No

Nº de créditos:

Nº horas de clase por semana: 4

Nº horas extraclase por semana: 2

% de las áreas curriculares: 30% ES y 70% ED

Ubicación en el plan de

estudios:

Curso de IX semestre de Ing. en Electrónica e Ing. en

Mecatrónica

Requisitos: EL-4409 Análisis de Sistemas Lineales o

MT-7001 Análisis y Simulación de Sistemas

Correquisitos: EL-5408 Control Automático

El curso es requisito de: EL-5616 Proyecto de Graduación

MT-9003 Proyecto Final de Graduación

Asistencia: Obligatoria

Suficiencia: No

Posibilidad de reconocimiento: Si

Vigencia del programa: I Semestre 2016

2 Descripción general

Los sistemas de control automático se encuentran en prácticamente todos los equipos electrónicos usados en los más diversos campos: desde sistemas de navegación usados en vehículos espaciales, aéreos, marinos y terrestres; pasando por equipos, maquinarias y procesos industriales, hasta sistemas de comunicaciones y entretenimiento casero. Es por ello imprescindible que el ingeniero en electrónica tenga conocimiento práctico de las técnicas usadas para el modelado, diseño, síntesis, verificación, prueba e implementación electrónica de los controladores y reguladores electrónicos.

Este es un curso de proyecto y se enfatiza en la solución de problemas reales, aunque en muchos casos se utilizan modelos a escala o sistemas que representan tipos o familias de problemas que no pueden ser llevados directamente al laboratorio por su tamaño o peligrosidad.

Se integran y aplican de forma práctica los conocimientos de Teoría de Sistemas y Control Automático a través de la planificación y desarrollo del control de uno o varios sistemas físicos. El curso provee una experiencia de diseño significativa e integra conocimientos de: a) Teoría de sistemas b) Análisis y Control de sistemas dinámicos; c) Procesamiento digital de señales; d) Electrónica analógica, digital y mixta; e) Normalización técnica, mediciones eléctricas y sensores.

Se ubica en el noveno semestre del plan de estudios en paralelo con el curso de Control Automático y posterior al curso de Análisis de Sistemas. El curso promueve en el estudiante la investigación, la experimentación y el descubrimiento científico; fomenta sus habilidades en el uso de herramientas computacionales, de trabajo en equipo y comunicación efectiva oral y escrita. Se espera que los estudiantes ganen experiencia en la solución de problemas de final abierto a través del diseño, planeamiento y evaluación de un proyecto que tiene como fin la elaboración de un producto tangible.

En este curso se da énfasis al desarrollo de manera intermedia de los atributos de: Uso de herramientas de Ingeniería, Diseño de Ingeniería, Trabajo individual y en equipo.

3 Objetivos

Al finalizar el curso el estudiante estará en capacidad de diseñar e implementar sistemas de control automático para la solución de problemas complejos de ingeniería de final abierto, tomando en cuenta requisitos técnicos, normas de seguridad y estándares de la industria.

Objetivos específicos

Al completar el curso el estudiante estará en capacidad de:

- Modelar plantas analítica y empíricamente.
- Diseñar un regulador electrónico, que satisfaga las exigencias estáticas y dinámicas ante variación de la consigna o ante perturbaciones.

- Simular el funcionamiento de la planta, el regulador y el sistema de control completo usando Matlab® u otra herramienta similar.
- Implementar reguladores de forma electrónica.

	Objetivo(s) del curso	Atributo(s) correspondiente(s)	Nivel Inicial - I, intermedio - M o avanzado - A
1.	Modelar plantas analítica y empíricamente.	Uso de herramientas de Ingeniería	(M)
2.	Diseñar un regulador electrónico, que satisfaga las exigencias estáticas y	Diseño de Ingeniería	(M)
	dinámicas ante variación de la consigna o ante perturbaciones.	Trabajo individual y en equipo	(M)
3.	Simular el funcionamiento de la planta, el regulador y el sistema de control completo usando Matlab® u otra herramienta similar	Uso de herramientas de Ingeniería	(M)
4.	Implementar reguladores de forma electrónica.	Diseño de Ingeniería Trabajo individual y en	(M)
		equipo	(M)

4 Contenidos

4.1 Introducción al Laboratorio de Control Automático	1S	
4.2 Cómo escribir un anteproyecto y cómo hacer una presentación	1S	
4.3 Modelado empírico de sistemas dinámicos		
4.3.1 Con señales determinísticas		
4.3.2 Con señales estocásticas		
4.4 Acondicionamiento de señales	2S	
4.4.1 Filtrado de ruido, limitación de ancho de banda		
4.4.2 Fusión de sensores		
4.5 Diseño de reguladores analógicos y digitales usando Matlab	3S	
4.5.1 Sisotool		
4.5.2 Simulink		
4.6 Implementación de reguladores digitales	3S	
4.6.1 Con microprocesadores		
4.6.2 Con sistemas de señal mixta		
4.7 Verificación de sistemas de control	2S	

Il parte: Aspectos operativos

5 Metodología de enseñanza y aprendizaje

Durante las clases se tienen al menos dos tipos de actividades:

- i) Clases magistrales a cargo del profesor para la introducción a los temas importantes
- ii) Sesiones de laboratorio en grupos homogéneos a cargo de los estudiantes y supervisados por el profesor para el desarrollo de los proyectos y tareas así como del proyecto final.

Dentro de la clase el estudiante trabajará de forma grupal creando y ejecutando mediciones y experimentos; creando algoritmos y programas; diseñando, simulando y verificando estrategias de control y circuitos electrónicos y evaluando los sistemas implementados.

Fuera de clase el estudiante además de trabajar en algunas de las actividades descritas antes, trabajará de forma individual o grupal haciendo investigaciones y lecturas. Para la mayoría de actividades debe contar con los libros recomendados de texto; para las consultas a los medios disponibles en línea debe contar con computador con acceso a Internet; y para las actividades de simulación y diseño con herramientas computacionales debe tener acceso a una computadora con Matlab, ya sea en su casa o en las instalaciones del TEC. Eventualmente requerirá, dependiendo de la plataforma utilizada para la solución de su proyecto algún tipo de programa, tarjeta de desarrollo o equipo de laboratorio que se pondrá a su disposición.

6 Evaluación

La evaluación se hará a través de varios medios

•	Proyectos cortos y tareas (3 mínimo)	20%
	Se evaluará el procedimiento, los resultados obtenidos	
	y el informe escrito.	
•	Presentaciones de avance orales y escritas (3 total)	30%
	Se evaluarán a través de una rúbrica.	
•	Presentación final y demostración final del funcionamiento	20%
	Se evaluarán a través de una rúbrica.	
•	Documentación escrita	
	Anteproyecto	5%
	Cuaderno de ingeniería	10%
	Informe final del proyecto	15%

7 Bibliografía Bibliografía obligatoria

Dorf, Richard, Bishop Robert. "**Sistemas de control moderno**", 10ª Ed., Prentice Hall, 2005, España.

Ogata, Katsuhiko. "**Ingeniería de Control Moderna**", Pearson, Prentice Hall, 2003, 4ª Ed., Madrid.

Ogata, Katsuhiko. "**Problemas de Ingeniería de Control utilizando MATLAB**", Prentice Hall, 1999, Madrid.

Bibliografía complementaria

Documentos disponibles en:

www.ie.tec.ac.cr/einteriano/Control/Laboratorio

8 Profesor

Eduardo Interiano Salguero es Ing. Dipl. en Electrotecnia con especialidad en Control y Regulación de la Universidad Técnica Hamburg-Harburg (TUHH), Alemania; posee además una Licenciatura y un Bachillerato en Ing. Electrónica del ITCR. Inició labores en el ITCR en 1986 y ha impartido cursos de Electrónica, Sistemas Digitales, Redes de Computadoras y Control Automático.

Consulta: K 15:00 a 17:00 y V de 9:30 a 11:30, of. F2-41.

Teléfono: 2550-9238

Email: einteriano@tec.ac.cr