Module 1 – Section 4

Hypothesis Tests for a Population Proportion

Outline

- Binomial Exact Test for p
- Score Test for p
- Hypothesis Testing Errors and the Rejection Regions of a Hypothesis Test for p
- Power and Sample Size Calculations

Binomial Random Variables

- Random event with 2 outcomes
- Outcomes
 - Success = Category of Interest
 - Failure = Not in Category of Interest
- Probabilities
 - Success = p
 - Failure = 1 p

Binomial Random Variables

- Y = number of successes in n independent and identical trials of random event
- Independent outcome on one trial does not affect outcomes on other trials
- Identical same probability of success

- Value of p is generally unknown
- Conduct hypothesis test for value of p
- Null Hypothesis
 - H_0 : $p = p_0$
- Alternative Hypothesis
 - $H_A: p < p_0 \text{ or } H_A: p > p_0$

- If H_0 is true, Y follows a binomial distribution with number of trials (sample size) n and probability of success p_0 .
- Test Statistic
 - Observed value of Y: denoted y

- p-value
 - Obtained from binomial distribution with $p = p_0$
- H_A : $p < p_0$
 - p-value = $P(Y \le y | p = p_0)$
- $H_A: p > p_0$
 - p-value = $P(Y \ge y | p = p_0)$

Ex. ESP

A person claims to have ESP. You decide to test their claim by having the person guess the result on 20 flips of a coin. The person correctly guesses on 15 out of the 20 flips. Does this person's claim hold?

Ex. ESP – Data

Response

Correct

Correct

Correct

•

Incorrect

Incorrect

Response	Count	Proportion
Correct	15	0.75
Incorrect	5	0.25
Total	20	1.00

Ex. ESP

- Null Hypothesis
 - Person does not have ESP
 - H_0 : p = 0.5
- Alternative Hypothesis
 - Person has ESP
 - H_A : p > 0.5

Ex. ESP

- Test statistic: y = 15
- p-value = $P(Y \ge 15|p = 0.5) = 0.0207$
- Conclusion: We have moderately strong evidence to support the person's claim of having ESP.

4

Two-Sided Alternative Hypothesis

- What if H_A : $p \neq p_0$?
- For some other two-sided alternative hypotheses, test statistic has symmetric distribution (ex. z or t).
 - Double the p-value from one-sided hypothesis
- Except for p = 0.5, binomial distribution is not symmetric.

Two-Sided Alternative Hypothesis

- Methods for finding the p-value
 - Double the one-sided p-value
 - Use equal distance from expected value
 - Method of small p-values

A die is rolled 60 times, and the number of times a 6 appears is 6. Is there evidence the die is unbalanced?

- Null Hypothesis
 - Die is balanced
 - $H_0: p = \frac{1}{6}$
- Alternative Hypothesis
 - Die is unbalanced
 - $H_A: p \neq \frac{1}{6}$

- Double the one-sided p-value
 - Observed value: y = 6
 - Expected value: $E(Y) = np = 60 * \frac{1}{6} = 10$
 - One-sided *p*-value = $P(Y \le 6|p = \frac{1}{6}) = 0.1081$
 - Overall p-value = 2 * 0.1081 = 0.2162

- Use equal distance from expected value
 - Observed value: y = 6
 - Expected value: $E(Y) = np = 60 * \frac{1}{6} = 10$
 - y = 14 is equidistant to 10
 - p-value

$$P\left(Y \le 6|p = \frac{1}{6}\right) + P\left(Y \ge 14|p = \frac{1}{6}\right) = 0.2232$$

- Method of small p-values
 - $P\left(Y = 6|p = \frac{1}{6}\right) = 0.05686$
 - Find y such that $P(Y = y | p = \frac{1}{6}) < 0.05686$

•
$$P(Y = 13|p = \frac{1}{6}) = 0.0751$$
 $P(Y = 14|p = \frac{1}{6}) = 0.0504$

p-value

$$P\left(Y \le 6|p = \frac{1}{6}\right) + P\left(Y \ge 14|p = \frac{1}{6}\right) = 0.2232$$

- p-values
 - Double the one-sided p-value = 0.2162
 - Use equal distance from expected value = 0.2232
 - Method of small p-values = 0.2232
- Conclusion: We do not have sufficient evidence to conclude the probability of obtaining a six on this die is different from 1/6.

- Historically we used this test for small sample sizes n only.
 - Calculations for binomial distribution probabilities were difficult and time consuming.
- Today we could use this test for all sample sizes.
- Convention says we still use this test for small sample sizes n only where np and $n(1-p) \ge 10$ fails.

Sampling Distribution for \hat{p}

- Use $\hat{p} = \frac{Y}{n}$ as estimate for p.
- If $np \ge 10$ and $n(1-p) \ge 10$:

$$\widehat{p} \approx N\left(p, \sqrt{\frac{p(1-p)}{n}}\right) \text{ or } \frac{\widehat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \approx N(0,1)$$

Score Test for *p*

- Value of p is generally unknown
- Conduct hypothesis test for value of p
- Null Hypothesis
 - $H_o: p = p_o$
- Alternative Hypothesis
 - $\blacksquare H_A: p \neq p_o \text{ or } H_A: p < p_o \text{ or } H_A: p > p_o$

Score Test for *p*

- Assume H_0 is true and $np_0 \ge 10$ and $n(1-p_0) \ge 10$
- Define test statistic

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

• Distribution of test statistic z should be approximately equal to N(0,1).

Score Test for *p*

- p-value
 - ullet Obtained from the standard normal distribution (Z).
- $H_A: p < p_0$
 - p-value = P(Z < z)
- $H_A: p > p_0$
 - p-value = P(Z > z)
- $\blacksquare H_A: p \neq p_0$
 - p-value = 2 * P(Z > |z|)

The cracking rate of ingots used in manufacturing airplanes is 20%. A new process is designed to lower the proportion of cracked ingots. In a sample of 400 ingots, 64 of them were cracked. Did the new process actually lower the proportion of cracked ingots? Use $\alpha = 0.05$

Ex. Ingots – Data

Status

Cracked

Cracked

Cracked

•

Not Cracked

Not Cracked

Status	Count	Proportion
Cracked	64	0.16
Not Cracked	336	0.84
Total	400	1.00

- Null Hypothesis
 - Cracking rate is unchanged
 - $H_0: p = 0.2$
- Alternative Hypothesis
 - Cracking rate has decreased
 - H_A : p < 0.2

Check Assumption

$$np = 400(0.2) = 80$$

$$n(1-p) = 400(0.8) = 320$$

Test Statistic

$$z = \frac{0.16 - 0.2}{\sqrt{\frac{0.2(0.8)}{400}}} = -2$$

- p-value = P(Z < -2) = 0.0228
- Conclusion: We have moderately strong evidence the cracking rate of the ingots has decreased to less than 20%.

- Two Possible Truths
 - \blacksquare H_0 is true
 - We do not want to reject it
 - \blacksquare H_0 is false
 - We want to reject it
- "The Truth" is unknown.

	Decision		
"The Truth"	Reject H ₀	Do not reject H ₀	
H_0 is true	Type I error	Correct Decision	
H_0 is false	Correct Decision	Type II error	

- Two Errors
 - Type I Error = rejecting H_0 given H_0 is true
 - Type II Error = failing to reject H_0 given H_0 is false
- Since "The Truth" is unknown, we do not know if we committed one of these errors.

- Probability of Type I error
 - This is α
 - Control for probability of Type I error
- Probability of Type II error
 - This is called β
 - Want β to be small

- Inverse Relationship between probabilities of Type I and Type II errors
- All other things being equal,
 - If $\alpha \uparrow$, $\beta \downarrow$
 - If $\alpha \downarrow$, $\beta \uparrow$

Rejection Region

- Rejection Region of Hypothesis Test
 - Values of the test statistic where you will reject H_0
- Determined based on
 - Test Statistic
 - Alternative Hypothesis
 - probability of Type I Error

Binomial Exact Test for p

Alternative Hypothesis	Rejection Region
H_A : $p < p_0$	Find y so that $P(Y \le y) \le \alpha$
$H_A: p > p_0$	Find y so that $P(Y \ge y) \le \alpha$
$H_A: p \neq p_0$	Find y_1 and y_2 so that $P(Y \le y_1) + P(Y \ge y_2) \le \alpha$

Ex. ESP

y	$P(Y \ge y p = 0.5)$
16	0.0059
15	0.0207
14	0.0577
13	0.1316

Rejection Regions

•
$$Y \ge 16 \text{ if } \alpha = 0.01$$

•
$$Y \ge 15$$
 if $\alpha = 0.05$

•
$$Y \ge 14 \text{ if } \alpha = 0.1$$

Alternative Hypothesis	Rejection Region
H_A : $p < p_0$	For test statistic $z < -z_{1-\alpha}$
$H_A: p > p_0$	For test statistic $z > z_{1-\alpha}$
$H_A: p \neq p_0$	For test statistic $z<-z_{1-\frac{\alpha}{2}}$ or $z>z_{1-\frac{\alpha}{2}}$

Ex. Type I Error = 0.05

Alternative

Hypothesis

Rejection Region

 H_A : $p < p_0$

For test statistic z < -1.645

 $H_A: p > p_0$

For test statistic z > 1.645

 $H_A: p \neq p_0$

For test statistic z < -1.96 or z > 1.96

Observed Type 1 Error Rate and α

- Probability of obtaining a test statistic in the rejection region when the null hypothesis is true.
- For many applications, this probability is extremely close to α .
- Hypothesis tests for population proportions do not always have this property.

Observed Type 1 Error Rate and α

- Binomial Exact Test
 - Will be no more than the stated α level, but will usually be lower.
 - Discrete nature of binomial distribution.
- Score Test
 - Could be more or less than the stated α level.
 - Continuous approximation of a discrete distribution.

Ex. ESP

- For $\alpha = 0.05$, rejection region is $Y \ge 15$.
- Observed Type I Error Rate = Probability of obtaining 15 or more successes when the probability of success is 0.5.

$$P(Y \ge 15|p = 0.5) = 0.0207$$

- For $\alpha = 0.05$, rejection region is z < -1.645.
- Observed Type I Error Rate = Probability of obtaining a test statistic z of -1.645 or smaller when p=0.2

$$P(z < -1.645 | p = 0.2) = P\left(\frac{\hat{p} - 0.2}{\sqrt{\frac{0.2 (0.8)}{400}}} < -1.645\right)$$
$$= P(\hat{p} < 0.1671) = P\left(\frac{Y}{400} < 0.1671\right)$$
$$= P(Y < 66.85) = P(Y \le 66) = 0.0433$$

Power of Hypothesis Test

- Power = probability of (correctly) rejecting H_0 when H_0 is false
 - $P(\text{reject } H_0 | H_0 \text{ is false})$
- Power is complement of probability of Type II error.
 - Power = 1β .
- Want power to be large

Power of Hypothesis Test

- Helpful in understanding potential research results
 - Data collection not necessary for calculations
- Factors affecting power
 - Test Statistic
 - Type I error rate = α
 - Sample size n
 - Difference between true value of $p = p_a$ and p_0

Binomial Exact Test

$$P(\text{reject } H_0 | H_0 \text{ is false}) = P(\text{reject } H_0 | p = p_a)$$

Alternative Hypothesis	Power
$H_A: p < p_0$	$P(Y \le y p = p_a)$
$H_A: p > p_0$	$P(Y \ge y p = p_a)$
$H_A: p \neq p_0$	$P(Y \le y_1 p = p_a) + P(Y \ge y_2 p = p_a)$

The values of y, y_1 , y_2 come from rejection regions.

Ex. ESP

- Let $\alpha = 0.05$
- Rejection region is $Y \ge 15$
- Power
 - $P(Y \ge 15|p = p_a = 0.6) = 0.1256$
 - $P(Y \ge 15|p = p_a = 0.75) = 0.6172$
 - $P(Y \ge 15|p = p_a = 0.9) = 0.9887$

Power Curve

- Value of p_a versus power for all values of p_a in the alternative hypothesis.
- The greater the distance between p_a and 0.5, the larger the power of the hypothesis test.

■ Power when H_a : $p < p_0$

$$P\left(Z < \frac{p_0 - p_a - z_{1-\alpha}\sqrt{\frac{p_0(1 - p_0)}{n}}}{\sqrt{\frac{p_a(1 - p_a)}{n}}}\right)$$

• Power when $H_a: p > p_0$

$$P\left(Z > \frac{p_0 - p_a + z_{1-\alpha}\sqrt{\frac{p_0(1 - p_0)}{n}}}{\sqrt{\frac{p_a(1 - p_a)}{n}}}\right)$$

■ Power when H_a : $p \neq p_0$

$$2 * P \left(Z > \frac{|p_0 - p_a| + z_{1-\alpha/2} \sqrt{\frac{p_0(1 - p_0)}{n}}}{\sqrt{\frac{p_a(1 - p_a)}{n}}} \right)$$

- Let $\alpha = 0.05$
- Rejection region: Z < -1.645
- lacktriangle Two values of p_a
 - $p_a = 0.14$
 - $p_a = 0.18$
- n = 400

Power when $p_a = 0.14$

Power =
$$P\left(Z < \frac{0.2 - 0.14 - 1.645\sqrt{\frac{0.2(0.8)}{400}}}{\sqrt{\frac{0.14(0.86)}{400}}}\right)$$

= $P(Z < 1.56)$
= 0.9406

Power when $p_a = 0.18$

Power =
$$P\left(Z < \frac{0.2 - 0.18 - 1.645\sqrt{\frac{0.2(0.8)}{400}}}{\sqrt{\frac{0.18(0.82)}{400}}}\right)$$

= $P(Z < -0.67)$
= 0.2514

Power Curve

- Value of p_a versus power for all values of p_a in the alternative hypothesis.
- The greater the distance between p_a and 0.2, the larger the power of the hypothesis test.

- Before conducting study, determine sample size based on
 - Type I error rate = α
 - Value of p_a
 - Desired Power (1β) for given value of p_a

- Calculated for Score Test Only
 - Binomial Exact Test is used for inference for small sample sizes.
 - Assume planning is for large sample sizes

• $H_A: p < p_0$

$$n \geq \frac{\left[z_{1-\beta}\sqrt{p_a(1-p_a)} + z_{1-\alpha}\sqrt{p_0(1-p_0)}\right]^2}{(p_0 - p_a)^2}$$

• $H_A: p > p_0$

$$n \geq \frac{\left[z_{1-\beta}\sqrt{p_a(1-p_a)} + z_{1-\alpha}\sqrt{p_0(1-p_0)}\right]^2}{(p_0 - p_a)^2}$$

 $\blacksquare H_A: p \neq p_0$

$$n \geq \frac{\left[z_{(1-\beta)/2}\sqrt{p_a(1-p_a)} + z_{1-\alpha/2}\sqrt{p_0(1-p_0)}\right]^2}{(p_0 - p_a)^2}$$

- Let $\alpha = 0.05$
 - $z_{1-\alpha} = 1.645$
- $p_a = 0.17$
- Power = $1 \beta = 0.8$
 - $z_{1-\beta} = 0.84$

$$n \ge \frac{\left[0.84\sqrt{0.17(0.83)} + 1.645\sqrt{0.2(0.8)}\right]^2}{(0.2 - 0.17)^2}$$
$$= 1053.071$$

• Sample Size: n = 1054