NVMe Better File System

中期报告

目录

- 什么是NVMe? 什么是文件系统?
- 文件系统为什么需要针对NVMe优化?
- 怎么做?

什么是NVMe? 什么是文件系统?

- 1. 什么是NVMe?
- 2. NVMe 队列管理
- 3. 文件系统I/O队列机制

HDD与SSD

HDD与SSD

SATA与NVMe

SATA与NVMe

商品介绍 规	格与包装 售后假	障 商品评价(50万+) 商品问	商品介绍	规格与包装 售后	保障 商品评价(100万+)	
主体	型号	MZ-N6E500BW	主体	型号	MZ-V8V500BW	
	系列	860 EVO 系列		系列	980	
	品牌	三星(SAMSUNG)		品牌	三星(SAMSUNG)	
规格	顺序写入	最大520 MB/s	规格	顺序写入	高达2600 MB/s	
	缓存	512M		缓存	无缓存	
	闪存类型	TLC		闪存类型	TLC	
	顺序读速	最大550 MB/s		顺序读速	高达3100 MB/s	
特性	TBW	300TBW	特性	TBW	300	
	工作温度	0 - 70 °C		工作温度	0 - 70 °C	
	产品尺寸 (mm)	Max. 80.15 x Max. 22.15 x Max.2.38 (mm)		产品尺寸 (mm)	80.15 x 22.15 x 2.38 (mm)	
	保存温度	-45°C to 85°C		保存温度	-40~85°C	

包装清单 硬盘×1说明书×1,包装彩盒*1

包装清单 硬盘 \times 1, 说明书 \times 1, 包装彩盒 \times 1

协议、总线、接口

NVMe

NVMe

什么是文件系统?

文件系统1/0队列机制

NVMe的队列管理

NVMe定义的命令

Admir	n Commands
Create I/O Subr	nission Queue
Delete I/O Subn	nission Queue
Create I/O Com	pletion Queue
Delete I/O Com	pletion Queue
Get Log Page	
Identify	
Abort	
Set Features	
Get Features	
Asynchronous E	vent Request
Firmware Activa	ate (optional)
Firmware Image	Download (optional)
Format NVM (o)	ptional)
Security Send (optional)
Security Receiv	e (optional)

NVM I/O Command	s
Read	
Write	
Flush	
Write Uncorrectable (optional,)
Compare (optional)	
Dataset Management (options	al)
Write Zeros (optional)	110
Reservation Register (optional	al)
Reservation Report (optional)	
Reservation Acquire (optional	1)
Reservation Release (optional	11)

NVMe的队列管理

NVMe特性

AHCI

Uncacheable Register Reads Each consumes 2000 CPU cycles	4 per command 8000 cycles, ~ 2.5 μs	0 per command	
MSI-X and Interrupt Steering Ensures one core not IOPs bottleneck	No	Yes	
Parallelism & Multiple Threads Ensures one core not IOPs bottleneck	Requires synchronization lock to issue command	No locking, doorbell register per Queue	
Maximum Queue Depth Ensures one core not IOPs bottleneck	1 Queue 32 Commands per Q	64K Queues 64K Commands per Q	
Efficiency for 4KB Commands 4KB critical in Client and Enterprise	Command parameters require two serialized host DRAM fetches	Command parameters in one 64B fetch	

NVMe的队列管理

Admin SQ/CQ 和 IO SQ/CQ

为什么需要针对NVMe优化?

当前文件系统不足

为什么需要针对NVMe优化?

文件系统1/0队列机制

为什么需要针对NVMe优化?

文件系统I/0队列机制

单队列机制

多队列机制

为什么要做针对NVMe优化的文件系统?

当前文件系统不足

- 1. 中断
- 2. 长1/0
- 3. 落后的"优化"
- 4. 队列

- 1. 用户态文件系统
- 2. SPDK
- 3. 测试

FUSE (Filesystem in Userspace)

文件系统I/0队列机制

使用SPDK搭建用户态文件系统

Storage Performance Development Kit

- 用户态
- 中断->轮询

测试

以下是一些文件系统测试工具:

- 1. pjd-fstest (posix 接口兼容性测试): fstest 是一套简化版的文件系统 POSIX 兼容性测试套件,它可以工作在 FreeBSD, Solaris, Linux 上用于测试 UFS, ZFS, ext3, XFS 和 NTFS-3G 等文件系统。 fstest 目前有3601个回归测试用例,测试的系统调用覆盖 chmod, chown, link, mkdir, mkfifo, open, rename, rmdir, symlink, truncate, unlink。
- 2. IOZone (读写模式测试): IOZone 是目前应用非常广泛的文件系统测试标准工具,它能够产生并测量各种的操作性能,包括 read, write, re-read, re-write, read backwards, read strided, fread, fwrite, random read, pread, mmap, aio_read, aio_write 等操作。
 IOZone 目前已经被移植到各种体系结构计算机和操作系统上,广泛用于文件系统性能测试、分析与评估的标准工具。
- 3. <u>FIO (顺序、随机IO测试)</u>: flexible I/O tester . FIO 可以模拟给定的IO工作负载而无需编写量身定制的测试案例。它支持13种不同类型的 I/O引擎 (sync, mmap, libaio, posixaio, SG v3, splice, null, network, syslet, guasi, solarisaio等), I/O priorities(for newer Linux kernels), rate I/O, forked or threaded jobs 等等。 fio 可以支持块设备和文件系统测试,广泛用于标准测试、QA、验证测试等,支持 Linux, FreeBSD, NetBSD, OS X, OpenSolaris, AIX, HP-UX, Windows 等操作系统。
- 4. Filebench (文件系统应用负载生成测试) Filebench 是一款文件系统性能的自动化测试工具,它通过快速模拟真实应用服务器的负载来测试文件系统的性能。它不仅可以仿真文件系统微操作(如 copyfiles, createfiles, randomread, randomwrite), 而且可以仿真复杂的应用程序(如 varmail, fileserver, oltp, dss, webserver, webproxy)。 Filebench 比较适合用来测试文件服务器性能,但同时也是一款负载自动生成工具,也可用于文件系统的性能。
- 5. IOR/mdtest (利用并行IO来测试文件系统的IO性能和元数据性能) IOR 是并行IO基准,可用于使用各种接口和访问模式来测试并行存储系统的性能。 IOR 存储库还包括 mdtest 基准测试,该基准测试专门测试不同目录结构下存储系统的峰值元数据速率。这两个基准测试均使用通用的并行I/O抽象后端,并依赖 MPI 进行同步。
- 6. dd-benchmark dd 是 linux 内核程序,但可以用其测试文件系统的各种性能(因此不是自动测试程序,需要自己定义测试内容)

Summary

实现路线

谢谢!

祝大家劳动节快乐!

