Homework Assignment 4

Matthew Tiger

April 12, 2016

Problem 1. Find the first three terms in the asymptotic expansions of $x \to 0^+$ of the following integrals:

$$\int_x^1 \cos(xt)dt, \qquad \int_0^{1/x} e^{-t^2}dt.$$

Problem 2. Find the full asymptotic behavior as $x \to 0^+$ of the following integral:

$$\int_0^1 \frac{e^{-t}}{1 + x^2 t^3} dt$$

 \Box

Problem 3. Find the full asymptotic expansion of $\int_0^x \text{Bi}(t)dt$ as $x \to +\infty$.

Solution.

Problem 4. Find the first five terms in the asymptotic expansion as $x \to +\infty$ of the integral

$$\int_0^{\pi/4} e^{-xt^2} \sqrt{\tan t} dt$$

- a. by using a suitable change of variables and then applying Watson's lemma.
- b. by applying Laplace's method directly to the given integral.

Problem 5. Use Laplace's method of moving maxima to obtain the first two terms in the asymptotic expansion as $x \to +\infty$ of the integral

$$\int_0^\infty \exp\left[-t - \frac{x}{\sqrt{t}}\right] dt. \tag{1}$$

Problem 6. Let f(x,t) be differentiable in x and continuous in (x,t) on $I \times J$, where I and J are intervals, and suppose that there exist functions g(t) and $g_1(t)$ that are integrable on J such that for all $(x,t) \in I \times J$ we have that

$$|f(x,t)| \le g(t)$$
 and $|\partial_x f(x,t)| \le g_1(t)$.

Then

$$\frac{d}{dx} \int_{I} f(x,t)dt = \int_{I} \partial_{x} f(x,t)dt.$$

a. Let $0 < a < b < \infty$. Use the above theorem to show that if $x \in (a, b)$, then

$$\frac{d^3}{dx^3} \int_0^\infty \exp\left[-t - \frac{x}{\sqrt{t}}\right] dt = -\int_0^\infty t^{-3/2} \exp\left[-t - \frac{x}{\sqrt{t}}\right] dt.$$

b. Use integration by parts to show that

$$\int_0^\infty \exp\left[-t - \frac{x}{\sqrt{t}}\right] dt = \frac{x}{2} \int_0^\infty t^{-3/2} \exp\left[-t - \frac{x}{\sqrt{t}}\right] dt.$$

c. Combine parts (a) and (b) to prove that integral (1) is a solution of the differential equation xy''' + 2y = 0 that also satisfies the initial condition y(0) = 1. Then use integration by parts to give an easy direct proof that the integral also satisfies the condition $y(+\infty) = 0$.

 \Box

Problem 7. a. Find the leading behavior as $x \to +\infty$ of Laplace integrals of the form

$$\int_{a}^{b} (t-a)^{\alpha} g(t) e^{x\phi(t)} dt$$

where $\phi(t)$ has a maximum at t=a, g(a)=1. Suppose further that $\alpha>-1$ and $\phi'(a)<0$.

b. Repeat the analysis of part (a) when $\alpha > -1$ and $\phi'(a) = \phi''(a) = \cdots = \phi^{(p-1)}(a) = 0$ and $\phi^{(p)}(a) < 0$.