Inhalt des Übungsblatts:

- Extremstellen und -Punkte (S. 27)
- Exponentialfunktion (S. 31)
- Funktionenscharen (S. 33)
- Integral (S. 37), Rotationskörper (S. 40), Flächeninhalte (S. 41)
- Funktionsanalyse (S. 45), gebrochenrationale Funktionen, Asymptoten (S. 46)

A1: Gleichung lösen Löse die Gleichung $e^{5x} - e^{3x} = 6e^x$. *Hinweis: Du brauchst ungefähr alle gelernten Methoden!*

A2: Exponentialfunktion

- a) Gib $f(x) = 25^x$ als natürliche Exponentialfunktion an.
- b) Wie unterscheidet sich der Graph von $-e^{-x}$ von e^{x} ? Formuliere die Erklärung schrittweise.

A3: Extrempunkte

- a) Führe eine vollständige Graphanalyse von f durch. (Dazu gehören Nullstellen, Wendepunkte, Extrempunkte, Monotonie, Verhalten für $\pm \infty$, Definitionsbreich und Wertemenge bzw Definitonslücken)
- b)

A4: Funktionenscharen:

a) Berechne die Nullstellen der Funktionenscharen in Abhängigkeit von $a \in \mathbb{R}, a \neq 0$:

•
$$f_a(x) = x^2 + 2ax + 9$$

$$\bullet \ h_a(x) = x^3 - a^2$$

•
$$g_a(x) = 5ax + 15a$$

•
$$j_a(x) = (x - 3a)(x + 6a)$$

- b) Gegeben ist die Funktionenschar f_a mit $f_a(x) = (x+a) \cdot e^{-x}$, $x \in \mathbb{R}$.
 - Untersuche die Lage des Maxmimums.
 - Gib die Gleichung der Funktion an, auf der die Maxima aller Scharkurven liegen.
- A5: Stammfunktion berechnen: Berechne jeweils ein Stammfunktion zu den angegebenen Funktionen:

a)
$$f(x) = x^2 + x - 3$$

c)
$$f(x) = -5\sin(3x+2)$$

e)
$$f(x) = \frac{1}{x \cdot \ln x}$$

b)
$$f(x) = (2x - 3)^8$$

d)
$$f(x) = e^{3x+7}$$

f)
$$f(x) = e^{x - e^x}$$

A6: Integral:

a) Welche der Auswahlmöglichkeiten können eingesetzt werden?

$$\int_{0}^{5} \left(3x^2 + \frac{1}{5}x \right) \, \mathrm{d}x = \square$$

$$\bullet \left[6x + \frac{1}{5}\right]_0^5$$

•
$$\left[x^3 + 0, 1x^2\right]_0^5$$

•
$$\left[x^3 + \frac{1}{10}x^2\right]_1^6$$

b) Berechne den Gesamtinhalt der Flächen, die durch die Schaubilder der Funktionen f und g eingeschlos-

•
$$f(x) = x^2, g(x) = 2 - x^2$$

•
$$h(x) = x^3, i(x) = x^2$$

•
$$j(x) = x^3, k(x) = x$$
 (Achtet auf Flächen über und unter der x-Achse)

A7: Integral: Die Gerade y=x und die x-Achse begrenzen zusammen mit den Geraden x=2 und x=u mit u>2 eine Fläche. Bestimmen Sie einen Wert für u so, dass $f(x)=x-rac{8}{x^2}$ diese Fläche in zwei inhaltsgleiche (CAS) Teile zerlegt.

A8: Rotationskörper:

a) Die Fläche, welche von der x-Achse und dem Graphen der Funktionen vollständig eingeschlossen wird, rotiert um die x-Achse. Berechne den Rauminhalt des entstandenen Körpers.

$$f(x) = x^2 - 2x$$

•
$$h(x) = \frac{1}{3}x^2 - x$$

•
$$g(x) = \sqrt{x} \cdot (x-2)$$

•
$$j(x) = x^2 - 5x + 4$$

b) Die Fläche, welche von den Graphen der Funktionen vollständig eingeschlossen wird, rotiert um die x-Achse. Berechne den Rauminhalt des entstandenen Körpers.

•
$$f(x) = -x^2 + 4$$
, $g(x) = x + 2$

•
$$h(x) = x^2 - x + 1$$
, $j(x) = 4x - 3$

A9: Asymptoten

a) Gib die x- und y-Werte der senkrechten bzw. waagrechten Asymptoten der Funktionen an:

$$\bullet \ f(x) = \frac{1}{x}$$

$$h(x) = \frac{2x}{x^2 - 1}$$

$$i(x) = e^{-x} + 1$$

$$\bullet \ j(x) = -\mathrm{e}^x - 4$$

$$\bullet \ g(x) = \frac{1}{x-1}$$

$$\bullet \ i(x) = e^{-x} + 1$$

•
$$k(x) = \frac{x^2 + 4x - 5}{2x^2 - 4}$$

b) Gib die Gleichung der gebrochenrationalen Funktion f mit folgenden Eigenschaften an: Asymptoten: x = -2, x = 2, y = -4 und Nullstellen: x = 3