Compito di Basi di dati

31 gennaio 2022

Esercizio 1:

Sia dato il seguente schema relazionale relativo a maratone internazionali:

Maratoneta (Codice Maratoneta, Nome, Cognome, Migliore Prestazione);

Maratona(Nome, Città);

SiTrovaIn(Città, Nazione);

Edizione Maratona(Nome, Anno);

Vincitore(Atleta, Maratona, Anno).

Si assuma che ogni maratoneta sia identificato univocamente da un codice e sia caratterizzato dal nome, dal cognome e dalla miglior prestazione da lui ottenuta in una maratona (si assuma, per semplicità, che il tempo impiegato da un maratoneta sia espresso in secondi). Si assuma che ogni maratona sia identificata dal suo nome e sia caratterizzata dalla città in cui ha luogo (non si escluda la possibilità che in una stessa città possono esservi due o più maratone diverse). Ad ogni città sia associata la nazione cui appartiene (si assuma, per semplicità, che non esistano città con lo stesso nome). Si assuma che ogni edizione di una certa maratona sia identificata dal nome e dall'anno in cui si svolta. Infine, si assuma che la relazione *Vincitore* registri i vincitori delle diverse edizioni delle maratone considerate.

Definire preliminarmente le chiavi primarie, le eventuali altre chiavi candidate e, se ve ne sono, le chiavi esterne delle relazioni date. Successivamente, formulare opportune interrogazioni in SQL che permettano di determinare (senza usare l'operatore CONTAINS e usando solo se necessario le funzioni aggregate):

- (a) i maratoneti che hanno vinto almeno una maratona tedesca, ma nessuna maratona italiana;
- (b) i maratoneti che hanno vinto tutte le edizioni di (almeno) una maratona.

(FACOLTATIVO) Formulare un'interrogazione in algebra relazionale per il punto (b), senza usare l'operatore di divisione e usando solo se necessario le funzioni aggregate.

Esercizio 2:

Sia dato il seguente insieme di requisiti relativi ad una base di dati che registra informazioni sulle persone che risiedono o sono sepolte in un dato comune italiano.

- Di ogni persona interessano nome, cognome, codice fiscale, sesso (m,f) e data di nascita (giorno, mese, anno). Una persona può essere residente nel comune (vivente) o sepolta nel comune (deceduta).
- Di ogni persona vivente interessano indirizzo (via, numero civico, interno), recapito telefonico, stato civile (celibe (nubile), coniugato(a), vedovo(a), separato(a), divorziato(a)) e famigliari conviventi.
- Si assuma, per semplicità, che il comune abbia un solo cimitero suddiviso in diverse aree, ciascuna identificata da un codice alfanumerico. All'interno di ciascuna area, ogni loculo sia identificato univocamente da un codice numerico (non si escluda la possibilità che loculi situati in aree diverse possano avere lo stesso numero).
- Di ogni persona sepolta nel cimitero del comune interessano loculo, data del decesso, età al momento del decesso e comune del decesso.

Si definisca uno schema Entità-Relazioni che descriva il contenuto informativo del sistema, illustrando con chiarezza le eventuali assunzioni fatte. Lo schema dovrà essere completato con attributi ragionevoli per ciascuna entità (identificando le possibili chiavi) e relazione. Vanno specificati accuratamente i vincoli di cardinalità e partecipazione di ciascuna relazione. Si definiscano anche eventuali regole di gestione (regole di derivazione e vincoli di integrità) necessarie per codificare alcuni dei requisiti attesi del sistema.

Esercizio 3:

Si immagini di voler progettare una base di dati che memorizza informazioni relative alle squadre partecipanti ad un campionato di pallavolo. La base di dati è costituita da due tabelle: **squadre** e **giocatori**.

La tabella **squadre** è caratterizzata dai seguenti attributi: **nome** (stringa di al più 50 caratteri; è la chiave primaria), **anno_fondazione** (specifica quando la squadra è stata creata; può essere nullo) e **capitano** (identificativo del giocatore che ha il ruolo di capitano nella stagione corrente; è chiave esterna verso **giocatori**, unica e non nulla). La tabella **giocatori** è caratterizzata dai seguenti attributi: **num_cartellino** (stringa di esattamente 5 caratteri; è la chiave primaria), **nome** (nome del giocatore, non nullo), **ingaggio** (ingaggio annuale del giocatore, non nullo) e **squadre** (la squadra a cui il giocatore appartiene; è una chiave esterna che fa riferimento alla chiave primaria di **squadre** e può essere nulla nel caso di giocatori temporaneamente svincolati).

Si scriva del codice SQL per creare (ma non popolare) le seguenti tabelle, usando dei tipi di attributo ragionevoli in tutti quei casi in cui non siano stati esplicitamente specificati:

Table 1: squadre				
nome	$anno_fondazione$	capitano		
SiamoFortissimi	=	c1111		
ANoiChiCiBatte	1994	c2222		
PerdiamoSempre	2020	c3333		

Table 2: giocatori				
$num_cartellino$	nome	ingaggio	squadra	
c1111	Tizio	105000	SiamoFortissimi	
c2222	Caio	100000	ANoiChiCiBatte	
c3333	Sempronio	80000	PerdiamoSempre	
c4444	Mevio	85000	PerdiamoSempre	
c5555	Filano	60000	-	
c6666	Calpurnio	75000	SiamoFortissmi	

Si ipotizzi di voler inserire un nuovo giocatore (*PincoPallo*) e la relativa squadra (*IDisperati*) (non presente nella basi di dati). Si specifichi, se esiste, il corretto ordine delle operazioni necessarie per effettuare i due inserimenti, motivando la risposta (non è necessario scrivere il codice SQL).

Inoltre, si assuma che durante la sessione di mercato il giocatore *Calpurnio* sia stato venduto dalla squadra *SiamoFortissmi* alla squadra *AnoiChiCiBatte*. Si scriva il codice SQL che effettua tale modifica.

Infine, si immagini che al termine della stagione, la squadra *PerdiamoSempre* sia acquisita dalla squadra *Siamo-Fortissmi*. Si scriva il codice SQL per spostare tutti i giocatori dalla squadra *PerdiamoSempre* alla squadra *SiamoFortissmi* ed eliminare la squadra *PerdiamoSempre* dalla base di dati.

Si consideri il seguente vincolo: una squadra di pallavolo deve essere costituita da al più 13 giocatori e almeno 6. Quali operazioni, e su quali tabelle, possono violare questo vincolo? Si scelga una di queste operazioni e si scriva un trigger SQL che eviti tale violazione.

Esercizio 4:

Si stabilisca se i seguenti schedule appartengono o meno a VSR, CSR, 2PL e 2PL stretto:

- 1. $s_1: r_3(y), r_3(z), r_1(x), w_1(x), w_3(y), w_3(z), r_2(z), r_1(y), w_1(y), r_2(y), w_2(y), r_2(x), w_2(x);$
- 2. (FACOLTATIVO) $s_2: r_2(z), r_2(y), w_2(y), r_3(y), r_3(z), r_1(x), w_1(x), w_3(y), w_3(z), r_2(x), r_1(y), w_1(y), w_2(x).$