B. Lucky Number 2

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.

Petya loves long lucky numbers very much. He is interested in the **minimum** lucky number d that meets some condition. Let cnt(x) be the number of occurrences of number x in number d as a substring. For example, if d = 747747, then cnt(4) = 2, cnt(7) = 4, cnt(47) = 2, cnt(74) = 2. Petya wants the following condition to fulfil simultaneously: $cnt(4) = a_1$, $cnt(7) = a_2$, $cnt(47) = a_3$, $cnt(74) = a_4$. Petya is not interested in the occurrences of other numbers. Help him cope with this task.

Input

The single line contains four integers a_1 , a_2 , a_3 and a_4 ($1 \le a_1$, a_2 , a_3 , $a_4 \le 10^6$).

Output

On the single line print without leading zeroes the answer to the problem — the minimum lucky number d such, that $cnt(4) = a_1$, $cnt(7) = a_2$, $cnt(47) = a_3$, $cnt(74) = a_4$. If such number does not exist, print the single number "-1" (without the quotes).

Examples

input	
2 2 1 1	
output	
4774	

input			
4 7 3 1			
output			
-1			