Assignment 6

1 Chapter 6

1.1 Exercise 2

1. It is invalid when

	week 1	week 2	week 3
1	1	1	1
h	1	3	5

AS the algorithm said, it will choose no job in week 1, high-stress job in week 2, which will get 3 value. However, the optimal value should be 6 when low-stress job in week 1, no job in week 2 and high-stress job in week 3.

2. Suppose we use OPT(i) denotes the optimal value we can get until week i. If we choose no job in week i-1, then we can do high-stress job in this week, totally $h_i + OPT(i-2)$; if we choose low-stress job in week i-1, then we can do low-stress job in this week, totally $l_i + OPT(i-1)$. Then we can get the state transition equation as

$$OPT(i) = \max(l_i + OPT(i-1), h_i + OPT(i-2))$$

where i = 3, 4, ..., n and $OPT(1) = \max(l_1, h_1)$ and $OPT(2) = \max(l_2 + OPT(1), h_2)$. Therefore, we can construct the algorithm as

Obviously, the time complexity is O(n).