(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 January 2001 (11.01.2001)

PCT

(10) International Publication Number WO 01/02464 A1

(51) International Patent Classification7: G02B 1/04

(21) International Application Number: PCT/EP00/06203

(22) International Filing Date:

3 July 2000 (03.07.2000)

C08G 73/06,

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

99112596.4

1 July 1999 (01.07.1999) EP

- (71) Applicant (for all designated States except US): PIRELLI CAVI E SISTEMI S.P.A. [IT/IT]; Viale Sarca, 222, 1-20126 Milano (IT).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BAUER, Monika [DE/DE]; Wendenstrasse 40, D-15754 Senzig (DE). BAUER, Jörg [DE/DE]; Wendenstrasse 40, D-15754 Senzig (DE). DREYER, Christian [DE/DE]; Hauptstrasse 53a, D-55758 Niederwörresbach (DE). KEIL, Norbert [DE/DE]; Nieplitzsteig 11a, D-14089 Berlin (DE). ZAWADZKI, Crispin [DE/DE]; Pechsteinstrasse 80, D-12309 Berlin (DE).

- (74) Common Representative: PIRELLI CAVI E SISTEMI S.P.A.; Viale Sarca, 222, I-20126 Milano (IT).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID. IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: WAVEGUIDE SYSTEMS OR STRUCTURES OR PARTS THEREOF, CONTAINING POLYCYANATE COPOLY-MERS PREPARED FROM POLYFUNCTIONAL CYANATES AND FLUORINATED MONOCYANATES

(57) Abstract: The present invention is directed to wave guide systems or structures or parts thereof, characterized in that they consist of or comprise a resin composed of at least one polycyanate copolymer, obtainable by copolymerization of at least one specific difunctional cyanate with at least one monocyanate of the formula N≡C-O-R, wherein R is a straight or branched non-aromatic hydrocarbon radical or a non-aromatic hydrocarbon radical comprising a cyclic structure, the radical having the formula C(R')2-CFR"2 wherein each R' is, independently from the other, hydrogen or fluorine or an optionally substituted, preferably fluorinated alkyl or alkenyl group, and each of R" may independently be defined as R' or may have an arylic structure. The at least one difunctional cyanate is selected from aromatic dicyanates having two arylic rings, connected with each other by a group Z wherein Z is a chemical bond, SO₂, CF₂ CH₂, CHF, CH(CH₃), isopropylene, hexafluoroisopropylene, n- or iso-C₁-C₁₀ alkylene, O, NR⁹, N=N, CH=CH, C(O)O, CH=N, CH=N-N=CH, alkyl oxyalkylene having 1 to 8 carbon atoms, S, Si(CH₃)₂, and R⁹ is hydrogen or C₁-C₁₀ alkyl. The polycyanate copolymer may further comprise an aromatic monocyanate and/or one or more of brominated cyanates. The polycyanate copolymers are advantageously selected for the preparation of optical waveguide systems or structures or parts thereof because they have low optical losses at 1.3 and 1.55 µm.