CSM 61C

Potpourri/Other

Spring 2020

Exam Question Compilation

This document is a PDF version of old exam questions by topic, ordered from least difficulty to greatest difficulty.

Questions:

- Spring 2018 Final Q13 Potourri
- Fall 2019 Final Q10e, Q10f, Q10g
- Fall 2017 Final Q11 Atomic Instructions
- Fall 2017 Final Q13 Hamming Codes
- Summer 2018 Final Q12 Hamming Codes

Problem 13 [F-5] Potpourri

Ans	ver 1	the following questions								
(a)	You have a computer that, well, stinks. It goes down on average 6 times a day and it takes 1 hour to get working again. What is the current system's availability?									
	0	0.5	0	0.7						
	0	0.6	0	0.8						
(b)	Assume you have the computer from part (a) when the manufacturer offers you a deal. a: A new computer that only crashes 4 times per day or b: support that can reduce the time to fix to 6 minutes. Which one should you choose?									
	0	a	0	b						
(c)	You have a processor that has a clock rate of 2GHz, a time to poll of 200 cycles for I/O, and you need to poll I/O at 100 Hz. If you use polling, what is the percentage of time you will need to spend polling?									
	0	1%	0	0.01%						
	0	0.1%	0	0.001%						
(d)	If t	he data comes in very infrequently do y?	уо уо	u want to use interrupts or polling?						
	0	interrupts	0	polling						

(8 points)

e) Which of the following were discussed in Prof. David Patterson's lecture? (select all that apply) The power demands of machine learning are growing 10x per year; Moore's Law is only 10x in 5 years. The Tensor Processing Unit has a similar performance per watt to a CPU on production applications. The marketplace has decided: Open ISAs (e.g., RISC-V) are better than proprietary ones (e.g., ARM). Domain Specific Architectures achieve incredible performance but just for one application, like ASICs.									
f) Which of the following were discussed in James Percy's GPU lecture? (select all that apply) A square is the base shape used when rendering scenes. The GPU achieves its speed because all of the threads run different programs on the same data. A GPU has many more cores than a CPU and operates at a higher frequency. When pixels along polygon edges are different between new generations of GPUs, the team investigates it.									
y) You have an SSD which can transfer data in 32-byte chunks at a rate of 64 MB/second. No transfer can be nissed. If we have a 4GHz processor, which takes 200 cycles for a polling operation, what fraction of time loes the processor spend polling the SSD drive for data? Leave your answer in the box provided as a percentage.									
SHOW YOUR WORK									
h) You are designing a 64-bit ISA for a simplified CPU with 3 bit-fields: immediate register opcode.									
You reserve enough of the rightmost bits to handle 1,500 opcodes, and enough of the leftmost bits to encode									
unsigned numbers up to 500 trillion. What's the greatest number of registers can you have?									
SHOW YOUR WORK									

Q11: Atomic Instructions

Shown below is a simplified implementation of a thread pool. The goal of a thread pool is to manage the execution of multiple threads; the goal of this specific implementation is to limit the total number of threads doing work at any given moment.

```
// There should never be more than 4 threads doing work at any given
// moment.
int counter = 4;

// This method is run by each thread.
void run_thread() {
   acquire(&counter);
   // Do work...
   release(&counter);
}

// Publicly visible method to queue up a new thread to be run.
void queue_thread() {
   // Assume that this method creates and executes a new thread.
   create_and_execute_thread(&run_thread);
}
```

Your task is to implement the acquire() and release() methods in RISC-V using amoswap, lr, and/or sc. On your answer sheet, please complete the RISC-V code to implement both functions acquire() and release(). You may not need all of the lines provided.

The expected behavior of the two methods is below. Note: **&counter is stored in register a0**.

void acquire(int* c)	Repeatedly checks the value of counter until it finds that counter > 0, then attempts to decrement the value of the counter. Restart if the decrement fails for any reason.
void release(int* c)	Repeatedly attempts to increment value of the counter until successful in incrementing

The specifications for these instructions are reproduced from the Green Sheet below:

amoswap rd, rs1, rs2	Atomically, R[rd] = M[R[rs1]] and M[R[rs1]] = R[rs2]
sc rd, rs2, (rs1)	If there is a reservation on the memory address R[rs1], then M[R[rs1]] = R[rs2] and R[rd] = 0; otherwise, R[rd] = 1.
lr rd, (rs1)	R[rd] = M[R[rs1]]; registers a reservation on the memory address R[rs1].

acquire:		release:					
	beq t0,		addi	t0, t0,		1	
	bne t1,, acquire		bne	t1,			

Q13: KnocKnock

While working at KnockOff Corp., you are in charge of a "new and improved" Amazon's Alexa: KnockOff's Nicky. Your team will design a box to listen to user input, transmit it to KnockOff's servers, and process data. The Hamming code table is provided for your reference.

Bit	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Data	<u>P1</u>	<u>P2</u>	D1	<u>P4</u>	D2	D3	D4	<u>P8</u>	D5	D6	D7	D8	D9	D10	D11
P1	X		X		X		X		X		X		X		X
P2		X	X			X	X			X	X			X	X
P4				X	X	X	X					X	X	X	X
P8								X	X	X	X	X	X	X	X

- 1. Unfortunately the servers have a poor ComSat network connection and require error correcting codes to repair received packets. If compressed recordings are 34 bits, how many bits are needed to correct a single error using SEC Hamming codes?
 - A. 1 bit B. 2 bit C. 3 bits D. 4 bits E. 5 bits F. 6 bits G. More than 6 bits
- 2. To test your software, you use the following 7 bits (which include the correction code). What data bits are encoded by the following code word?

7-bit Code Word: **0101101**₂ Data Bits: _____

- 3. KnockOff's single server can't process millions of simultaneous requests. You decide to scale and find that the work comes in two parts: distributing and processing. Distribution cannot be parallelized and is 1% of the total work. Processing is the remainder. If you need an overall speedup of 50x, how many servers will you need to handle processing?
 - A. 1 B. 50 C. 55 D. 93 E. 99 F. 101 G. Not possible

4.	KnockOff would like your opinions on their dependable data storage on their server. Currently, the storage uses RAID 1 but you are suggesting to upgrade to RAID 5.									
	a. First, name one inventor of RAID:									
	 Assume we want to tolerate one disk failure. If a server has 3 disks (of equal capacity) filled with data, implementing RAID5 requires additional disk(s), while RAID1 requires additional disk(s). 									
	c. True/False: A single small write is faster with RAID5 than it is with RAID1.									
	d. Small random reads have throughput on RAID 5 than on RAID1									
	A. higher B. lower C. about the same									
	e. If a single disk fails, recovery time with RAID5 is recovery time with RAID1.									
	A. < B. = C. >									
5.	Knockoff also wants to improve their disk performance. Do each of the following improvements successfully decrease seek time:									
	 a. Decrease radius of the disk b. Decrease number of platters True / False True / False 									
6.	KnockOff Labs experiments with replacing servers with a neural botnet of smartphones to process Nicky data. Currently, 1 million (1,000,000) servers each consume 0.1 kW and result in a PUE of 2.0. The smartphone setup will have a PUE of 1.5. with 1 million									

smartphones that each consume **0.01 kW**. Electricity costs **\$0.01/kWh**. Assume there are **10,000 hours/year**. What are the **cost savings** from using smartphones for a year?

Question 12: Go Ham[ming] (10 pts)

We will consider a system that works with 7-bit codewords encoded with Single Error Correction (SEC) parity bits. The Hamming code table is provided for your reference to the right.

Bit	1	2	3	4	5	6	7
Data	<u>P1</u>	<u>P2</u>	D1	<u>P4</u>	D2	D3	D4
P1	X		X		X		X
P2		X	X			X	X
P4				X	X	X	X

Suppose we read a codeword of 0b1010101 from our disk. What are the data bits that were encoded?

				0b
Suppose two pesky alpha particles now, we retrieve 0b 01 10101 from o	` '	•		deword so that
				0b
What is the Hamming distance between the previous two codewords.	veen two valid 7-bit SEC	codewords? Hir	nt: you can solve this	with or without
We will now add in a fourth parity b from our disk, where \mathbf{p}_8 is the DED codeword contains a single correct	parity bit for the 7-bit strip			
What is the Hamming distance between	veen two valid 8-bit DED	codewords?		p ₈ = ①
Suppose we have a 5-disk RAID 3 the bubbles for the data request pa	•	•	-	-
long sequential reads	long sequential wr	ites ©	recovering from 1	disk failure
① small random reads	© small random write		capacity	
Consider adding a DMA controller to The DMA controller can either make per clock cycle, or cycle-stealing redata per clock cycle. The CPU returned would be better for the follow • Dealing with page fault; the	e transfers in burst mod e where it doesn't starns to normal instruction ing situations? Assume e	e , where it stalls all the CPU (i.e. i execution after t	the CPU and writes it runs normally) and he transfer is comple uses 1 clock cycle wi	32B of data writes 4B of ted. Which
 Playing a 200MB 5-minute v 	. •	A burst	•	e stealing
 Processing 10 keyboard street 		A burst	- ,	e stealing