

The Patent Office Concept House Cardiff Road

Newport South NP10

1 NOV 2003

PCT WIPO

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

28 October 2003

Patents Form 1/77

Patents Act 1977 (Rule 16)

Request for

(See the notes on the pack of this form. You can also an explanatory leafler from the Patent Office to help you fill in this form)

Cardiff Road Newport South Wales NP10 8QQ

1. Your reference

SCG/CP6077770

150CT02 E755693-1 002823 P01/7700 0.00-0223860.8

2. Patent application number (The Patent Office will fill in this part) 223860.8

3. Full name, address and postcode of the or of each applicant (underline all surnames) Patents ADP number (if you know it)

0848114500g

CAMBRIDGE UNIVERSITY TECHNICAL SERVICES LTD THE OLD SCHOOLS CAMBRIDGE CB2 1TS UNITED KINGDOM

If the applicant is a corporate body, give the country/state of its incorporation

GB

4. Title of the invention

POLYPEPTIDE METHODS AND MEANS

5. Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Patents ADP number (if you know it)

MEWBURN ELLIS

YORK HOUSE 23 KINGSWAY LONDON WC2B 6HP

109006

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number (if you know it)

Date of filing (day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month /year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer "Yes" if:

a) any applicant named in part 3 is not an inventor, or

there is an inventor who is not named as an applicant,

c) any named applicant is a corporate body. See note (d))

YES

Patents Form 1/77

			F. C. C.
9.	Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document		
	Continuation sheets of this form	0	
	Description	50 ~	
	Claim(s)	3 / h	1
	, Abstract	0	
	Drawing(s)	40 + 40/	
0.	If you are also filing any of the following, state how many against each item		
	Priority documents	0	
	Translations of priority documents	0	
	Statement of inventorship and right to grant of a patent (Patents Form 1/11)	0 .	,
	Request for preliminary examination and search (Patents Form 9/77)	0	
	Request for substantive examination (Patents Form 10/77)	0	
•	Any other documents (Please specify)	0	
11.		I/We request the grant of a patent on the basis of this application.	
		Signature Newhon Eltis	Date 11 OCTOBER 2002
12.	Name and daytime telephone number of person to contact in the United Kingdom	STEPHEN C GILL	020 7240 4405

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed it it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

POLYPEPTIDE METHODS AND MEANS

The present invention concerns polypeptide methods and means relating to RAD51, BRCA2 and BRC repeat sequences.

Inheritance of one defective copy of the BRCA2 gene causes increased susceptibility to breast, ovarian and other cancers, with a penetrance approaching 70% by age 70 years ¹. BRCA2 encodes a large protein (3,418 amino acids), which localizes to the nucleus of mitotic cells during S phase of the cell cycle, and is also highly expressed during meiosis. The amino acid sequence of the BRCA2 protein offers few clues to its biological role, because it does not closely resemble other proteins of known function, and has no orthologues in the yeast, fly, or worm genomes.

10

15

20

25

30

One remarkable feature of the BRCA2 protein ² is the presence of eight conserved sequence motifs - the BRC repeats - of about 30 amino acids each, positioned between residues 990 to 2940 in human BRCA2. The high degree of conservation between the BRC repeats in different species is particularly striking when compared to the limited overall sequence similarity among BRCA2 orthologs 3,4, suggesting that the BRC motifs perform an essential function in physiological processes where BRCA2 is implicated. Indeed, the BRC repeats are the primary sites through which BRCA2 binds directly to RAD51 $^{5-7}$, a protein with a crucial role in DNA recombination. Like its bacterial homologue RecA, RAD51 coats single-stranded DNA substrates to form a helical nucleoprotein filament, which can invade duplex DNA and pair with homologous nucleotides to initiate the strand exchange reactions that culminate in genetic recombination. When expressed in vitro 5-7, each of the eight BRC repeats in BRCA2 can interact directly with recombinant RAD51. BRC3 and BRC4 encoded in human BRCA2 are particularly efficient at RAD51 binding, whereas BRC5 and BRC6 are not.

There is growing evidence that the interaction between BRCA2 and RAD51 is critical for the biological functions of both molecules 8,9 . Discrete nuclear foci containing RAD51 usually accumulate within the nucleus of mammalian cells exposed to DNA damage. RAD51 foci fail to form in BRCA2-deficient cells 7,10,11, suggesting that BRCA2 transports RAD51 to sites where DNA damage is processed by recombination. Indeed, BRCA2 deficiency leads to a severe defect in the repair of DNA double-strand breaks by recombination 12, and like RAD51 deficiency 13,14 , provokes spontaneous instability of chromosome structure during cell division 15,16. Surprisingly " - and in apparent conflict with these data - the activity of RAD51 in nucleoprotein filament formation is suppressed by its interaction with peptides encoding BRC repeats 17. Collectively, the experimental evidence suggests models in which the intracellular transport of BRCA2-RAD51 complexes and their activity in nucleoprotein filament formation are regulated following DNA damage, perhaps resulting in

10

15

A major factor holding back further elucidation of RAD51 and BRCA2 functionality and interaction is the lack of determined crystal structures for these proteins. One reason for this is the difficulty, well known in the art, of forming protein crystals having a quality which is sufficiently high to allow the protein structures to be determined by X-ray crystallography. To date, as far as we are aware, no investigators have been able to identify suitable crystallisation procedures for forming BRCA2/RAD51 complex crystals of the required quality.

transitions from 'inactive' to 'active' states 9,17.

An additional difficulty associated specifically with RAD51 is the tendency for RAD51 to aggregate in solution. This tendency has defeated previous attempts to crystallise RAD51.

Disclosure of the Invention

5

10

15

20

In general aspects, the present invention is concerned with the provision of a RAD51-BRC repeat sequence complex structure and its use e.g. in modelling the interaction of molecular structures such as potential pharmaceutical compounds.

In further general aspects, the present invention is concerned with the provision of mutant RAD51 and BRCA2 polypeptides and preferably a mutant RAD51 polypeptide which has a reduced tendency to aggregate in solution. Such a mutant may be used e.g. in assays for finding compounds which interact with or form part of a RAD51 pathway.

Another general aspect of the present invention concerns a RAD51-BRC repeat sequence chimaera protein. Such a chimaera can be used to form crystals which may be analysed by X-ray crystallography.

These and other aspects and embodiments of the present invention are discussed below.

The above aspects of the invention, both singly and in combination, all contribute to features of the invention which are advantageous.

The present invention is described below in relation to the following figures in which:

Brief Description of the Drawings

Figure 1 sets out Table 1, providing the coordinates of a RAD51-BRCA2 BRC4 complex structure,

Figures 2 sets out Table 2, providing crystallographic data for the complex structure of Table 1,

Figures 3 sets out Table 3, providing a structure-based analysis of BRCA2 BRC sequence conservation,

10

Figure 4 shows (a) ribbon representations of the RAD51 and BRC4 structures in the RAD51-BRCA2 BRC4 complex, the shorter BRC4 structure being positioned in front of the RAD51 structure and amino- and caboxyl-termini being indicated N and C respectively, and (b) a schematic topology diagram of the complex, the RAD51 secondary structures that are part of the RecA-homology domain being numbered and disordered RAD51 loops L1 and L2 respectively connecting beta strand B4 to alpha helix A5 and B5 to B6 shown as dashed lines (the flexible polypeptide linker connecting the RAD51 to BRC4 being omitted in both (a) and (b)),

Figure 5 shows the interface of the RAD51-BRCA2 BRC4 complex as (a) a solvent-accessible molecular surface generated for the RAD51 interface residues and superimposed with a tube representing the BRC4 interface backbone chain, with stick representations of BRC4 side chains projecting from the BRC4 backbone chain, and (b) a ribbon diagram of the RAD51 interface residues superimposed with a tube representation of the BRC4 interface backbone chain, stick representations of BRC4 side chains projecting from the BRC4 backbone chain, RAD51 side chains projecting from the RAD51 ribbon diagram, and dashed lines representing hydrogen bonds,

Figure 6 shows (a) a close view of the RAD51 ATP-binding pocket, side chains of residues important for ATP binding and hydrolysis, together with adjacent, interacting amino acids, being shown as sticks, the sphere indicating the position of a buried water molecule, and dashed lines representing hydrogen bonds, and (b) a superposition of the phosphate-binding loops of RAD51 and ADP-bound RecA, the atoms of the ADP molecule being drawn as spheres of Van der Waals radii,

Figure 7 shows (a) a superposition of the RAD51-BRCA2 complex on a subunit of the crystallographic RecA filament (omitting RAD51 for clarity), the BRC motif being positioned at the interface between adjacent RecA subunits in the filament, (b) a close view of part of the interface between subunits in the crystallographic RecA filament, the sequence 26-IMRL-29 in the amino terminal tail of RecA mediating polymerisation by antiparallel beta strand pairing, and residues Ile26 and Leu29 representing points of hydrophobic contacts between subunits, (c) a close view of part of the interface between RAD51 and the BRC motif, the BRCA2 sequence 1524-FHTA-1527 interacting with RAD51 via antiparallel beta strand pairing, and residues Phe1524 and Ala1527 contacting RAD51 hydrophobically, and (d) a demonstration of evolutionary conservation of RAD51 residues predicted to be involved in nucleoprotein filament formation, sequences of human DMC1, pyrococcus (an archea bacterium) RADA, bacterial RecA and human BRCA2 with a comparable structural role being aligned underneath, and RAD51 residues completely or highly conserved being boxed, and

10

15

Figures 8(a) to (d) shows microscope images obtained from transfected 293T cells. Nuclei in the middle panels of (a), (c) and (d) are stained with the DNA dye ToPro3 (Molecular Probes). In (a) GFP-RAD51 accumulates in nuclear foci. In (b) focus formation is dependent on RAD51 multimerization because co-expression of BRC3/4 (middle panel) prevents GFP-RAD51 focus formation, resulting in its diffuse nuclear distribution. Merged staining in the right hand panel marks cells that co-express GFP-RAD51 with BRC3/4. The cell denoted with a white arrow expresses GFP-RAD51 but not BRC3/4. GFP-RAD51 focus formation occurs in this cell, providing an internal experimental control. In (c) and (d) GFP-tagged mutants of RAD51 do not accumulate in foci.

Detailed Description of the Invention

A. Chimaeras

15

20

25

The present invention provides a RAD51-BRC repeat sequence chimaera protein in which the RAD51 is covalently joined to a BRC repeat sequence. The present invention further provides a nucleic acid encoding the chimaera protein.

Such a protein and such a nucleic acid may be obtained using the methods described in the accompanying examples.

By covalently binding RAD51 to a BRC repeat sequence we have formed a chimaera which for the first time allows RAD51 to be crystallized in a form suitable for X-ray structural analysis.

A flexible polypeptide linker (such as $(Gly)_{12}$, $(Ser)_{12}$, or $(GlySer)_6$) may be used to join the RAD51 and the BRC repeat sequence. Preferably the linker allows substantially unrestrained interaction between the BRC repeat sequence and the RAD51.

The RAD51 is preferably human RAD51. The RAD51 may be a wild-type protein or a variant thereof which is modified, for example by N-terminal truncation so that the truncated RAD51 spans the RecA homology domain. The BRC repeat sequence is preferably a BRCA2 BRC repeat, more preferably a human BRCA2 BRC repeat and even more preferably the human BRCA2 BRC3 or BRC4 repeat.

The same approach may be used to form chimaeras of RAD51 paralogues (such as DMC1, RAD51B, RAD51C, xrcc2, xrcc3, RAD52, RAD54, RAD55 and RAD57) with BRC repeat sequences. The chimaeras should be crystallizable in a form suitable for X-ray structural analysis, even though, insofar as is known, the paralogues themselves have a tendency to agglomerate in solution like RAD51. Thus more general aspects of the present

invention provide (a) a chimaera protein in which a RAD51 paralogue is covalently joined to a BRCA2 BRC repeat and (b) a nucleic acid encoding the chimaera protein.

B. Protein Crystals

15

20

In a further aspect, the present invention provides a crystal of a RAD51-BRC repeat sequence complex having the orthorhombic space group $P2_12_12_1$, and unit cell dimensions a=57.30 Å, b=59.14 Å, c=77.20 Å. The crystal contains one complex in the asymmetric unit. Unit cell variability of 5% may be observed in all dimensions. The complex is preferably a RAD51-BRCA2 BRC repeat sequence complex.

Such a crystal may be obtained using the methods described in the accompanying examples. The RAD51 may be N-terminal truncated so that it spans the RecA homology domain. The RAD51-BRC repeat sequence complex may be formed by interaction between the RAD51 and BRC repeat sequence portions of a RAD51-BRC repeat sequence chimaera protein described above.

The methodology used to provide a RAD51-BRC repeat sequence complex crystal illustrated herein may be used generally to provide a RAD51-BRC repeat sequence complex crystal which diffracts X-rays for the determination of atomic coordinates of the complex to a resolution of better than 2.0 Å and preferably better than 1.8 or 1.7 Å.

The invention thus further provides a RAD51-BRC repeat

sequence complex crystal which diffracts X-rays for the
determination of atomic coordinates of the complex to a
resolution of better than 2.0 Å and preferably better than 1.8
or 1.7 Å.

C. Crystal Coordinates

 \leftarrow

10

15

20

25

In a further aspect, the present invention also provides a crystal of a RAD51-BRC repeat sequence complex having the three dimensional atomic coordinates of Table 1. An advantageous feature of the structure defined by the atomic coordinates is that it has a high resolution of about 1.7 Å.

Thus for the first time we have been able to provide atomic coordinate data for human RAD51 and a BRC repeat sequence of human BRCA2. More specifically we have provided atomic coordinate data for the interface between RAD51 and the BRC repeat sequence. As shown in relation to the examples, these data reveal the structural basis for the BRCA2-dependent regulation of RAD51 function in DNA recombination, and provide insight into BRCA2 mutations associated with increased susceptibility to cancer.

Table 1 gives atomic coordinate data for a RAD51-BRC repeat sequence complex. In Table 1 the third column denotes the atom; the fourth the residue type; the fifth (where present) the chain identification (A is RAD51, B is BRC repeat sequence, C is an artificial tetrapeptide sequence, and AC1 and AC2 represent alternative side chain conformations for RAD51 amino acids 158, 208, 220, 326 and BRC repeat sequence amino acid 1519); the sixth the residue number (the residue numbering is with respect to the full length wild type protein); the seventh, eighth and ninth columns are the X, Y, Z coordinates respectively of the atom in question in A; the tenth column the occupancy of the atom; the eleventh the temperature factor of the atom; and the twelfth (where present) the chain identification.

The coordinates of Table 1 provide a measure of atomic location in Å, to 3 decimal places. The coordinates are a relative set of positions that define a shape in three

dimensions, but the skilled person would understand that an entirely different set of coordinates having a different origin and/or axes could define a similar or identical shape. Furthermore, the skilled person would understand that varying the relative atomic positions of the atoms of the structure so that the root mean square deviation of the residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of the protein amino acid residues) is less than 2.0 A, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.64 Å and most preferably less than 0.5 A, when superimposed on the coordinates provided in Table 1 for the residue backbone atoms, will generally result in a structure which is substantially the same as the structure of Table 1 in terms of both its structural characteristics and usefulness for RAD51/BRC repeat sequence structure-based analysis. Likewise the skilled person would understand that changing the number and/or positions of the water and ethylene glycol molecules and the magnesium and chloride ions of Table 1 will not generally affect the usefulness of the structure for structure-based analysis.

10

20

25

30

Thus for the purposes described herein as being aspects of the present invention, it is within the scope of the invention if: the Table 1 coordinates are transposed to a different origin and/or axes; the relative atomic positions of the atoms of the structure are varied so that the root mean square deviation of residue backbone atoms is less than 2.0 Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.64 Å and most preferably less than 0.5 Å, when superimposed on the coordinates provided in Table 1 for the residue backbone atoms; and/or the number and/or positions of water molecules, ethylene glycol molecules, magnesium ions and/or chloride ions is varied.

Reference herein to the coordinate data of Table 1 thus includes the coordinate data in which one or more individual values of the Table are varied in this way. By "root mean square deviation" we mean the square root of the arithmetic mean of the squares of the deviations from the mean.

Those of skill in the art will appreciate that in many applications of the invention, it is not necessary to utilise all the coordinates of Table 1 but merely a portion of them. For example, as described below, in methods of modelling candidate compounds with RAD51 or BRC repeat sequences, selected coordinates from Table 1 may be used, for example at least 5, preferably at least 10, more preferably at least 50 and even more preferably at least 100 atoms of the RAD51-BRC repeat sequence structure. Likewise, the other applications of the invention described herein, including homology modelling and structure solution, and data storage and computer assisted manipulation of the coordinates, may also utilise all or a portion of the coordinates of Table 1.

D. Mutants

10

15

30

A mutant is a protein characterized by replacement or deletion of at least one amino acid from the wild type protein, or insertion of at least one amino acid into the wild type protein. Such a mutant may be prepared for example by site-specific mutagenesis, or incorporation of natural or unnatural amino acids.

To produce mutants of RAD51 or BRCA2, amino acids present in RAD51 or BRCA2 can be replaced by other amino acids having similar or contrary properties, for example hydrophobicity, hydrophobic moment, antigenicity, propensity to form or break α -helical or β -sheet structures, and so on. Substitutional variants of a protein are those in which at least one amino acid in the protein sequence has been removed and a different

residue inserted in its place. Amino acid substitutions are typically of single residues but may be clustered depending on functional constraints e.g. at a crystal contact. Insertional amino acid variants are those in which one or more amino acids are introduced. This can be amino-terminal and/or carboxy-terminal fusion as well as intrasequence. Examples of amino-terminal and/or carboxy-terminal fusions are affinity tags, MBP tags, and epitope tags.

In some instances, it may be particularly advantageous or convenient to substitute, delete and/or add amino acid residues to a RAD51 or BRCA2 binding pocket or catalytic residue in order to provide convenient cloning sites in cDNA encoding the polypeptide, to aid in purification of the polypeptide, etc. Such substitutions, deletions and/or additions which do not substantially alter the three dimensional structure of RAD51 or the BRCA2 will be apparent to those having skills in the art.

10

15

20

25

30

It should be noted that the mutants contemplated herein need not exhibit enzymatic activity. Indeed, amino acid substitutions, additions or deletions that interfere with the activity of RAD51 or BRCA2 but which do not significantly alter the three-dimensional structure of the catalytic region are specifically contemplated by the invention. Such crystalline polypeptides, or the atomic structure co-ordinates obtained there from, can be used to identify compounds that bind to the protein.

One aspect of the present invention provides a mutant RAD51 which has been modified to reduce or eliminate the tendency of RAD51 to spontaneously aggregate into high molecular weight complexes. Thus preferably the mutant RAD51 maintains a monomeric form in solution. The present invention further provides a nucleic acid encoding the mutant RAD51.

The formation of such mutants is described in the accompanying examples. The mutant may be formed by substitution, deletion and/or addition of at least one amino acid in the 85-GFTTATE-91 sequence of human RAD51, or the corresponding sequence in other forms of RAD51.

Such corresponding sequences in other forms of RAD51 are highly conserved and are readily identifiable e.g. by sequence alignment techniques. The sequences for mouse, hamster, fruit fly and yeast are provided in the accompanying examples.

of the sequence. For example, in the accompanying examples we replaced the hydrophobic residue Phe86 or Ala89 in the 85-GFTTATE-91 sequence of human RAD51 with hydrophilic glutamic acid. Other suitable mutations would be apparent to the skilled person.

Advantageously, the mutant RAD51 may be crystallised in a form suitable for further X-ray analysis of the RAD51 structure. The mutant RAD51 may also be used in an assay for identifying compounds (e.g. proteins) which interact with or form part of a RAD51 pathway.

E. Homology Modelling

20

25

 \leftarrow

The invention also provides a means for homology modelling of other proteins (referred to below as target proteins). By "homology modelling", it is meant the prediction of related RAD51 or BRC repeat sequence structures based either on X-ray crystallographic data or computer-assisted *de novo* prediction of structure, and involving the manipulation of the coordinate data of Table 1.

Homology modelling as such is a technique that is well known to those skilled in the art (see e.g. Greer, Science, Vol. 228, (1985), 1055, and Blundell et al., Eur. J. Biochem, Vol.

172, (1988), 513). The techniques described in these references, as well as other homology modelling techniques generally available in the art, may be used in performing the present invention.

- Homology modelling extends to target proteins which are analogues or homologues of the RAD51 or BRC repeat sequence whose structures have been determined in the accompanying examples. It also extends to protein mutants of the RAD51 or BRC repeat sequence.
- In general, the method involves comparing the amino acid sequences of the RAD51 or BRC repeat of Table 1 with a target protein by aligning the amino acid sequences. Amino acids in the sequences are then compared and groups of amino acids that are homologous (conveniently referred to as "corresponding regions") are grouped together. This method detects conserved regions of the polypeptides and accounts for amino acid insertions or deletions.

Homology between amino acid sequences can be determined using commercially available algorithms. The programs BLAST, gapped BLAST, BLASTN, PSI-BLAST and BLAST 2 sequences (provided by the National Center for Biotechnology Information) are widely used in the art for this purpose, and can align homologous regions of two amino acid sequences. These may be used with default parameters to determine the degree of homology between the amino acid sequence from Table 1 and other target proteins which are to be modelled.

20

Analogues are defined as proteins with similar threedimensional structures and/or functions and little evidence of a common ancestor at a sequence level.

Homologues are defined as proteins with evidence of a common ancestor i.e. likely to be the result of evolutionary

divergence and are divided into remote, medium and close subdivisions based on the degree (usually expressed as a percentage) of sequence identity.

A homologue is defined here as a protein which has at least 15% sequence identity with RAD51 in the RecA homology domain or with a BRC repeat sequence, or one functional domain which is characteristic of RAD51 in the RecA homology domain or of a BRC repeat sequence.

There are two types of homologue: orthologues and paralogues. Orthologues are defined as homologous genes in different organisms, i.e. the genes share a common ancestor coincident with the speciation event that generated them. Paralogues are defined as homologous genes in the same organism derived from a gene/chromosome/genome duplication, i.e. the common ancestor of the genes occurred since the last speciation event.

10

15

20

25

30

For the purpose of homology modelling, the present invention also contemplates mutants which are polypeptides obtained (a) by replacing at least one amino acid residue in the native or synthetic RecA homology domain of RAD51 with a different amino acid residue and/or (b) by adding and/or deleting at least one amino acid residue within and/or at the N- and/or C-terminus of the native or synthetic RecA homology domain of RAD51, the polypeptide corresponding to the RecA homology domain of RAD51 and having substantially the same three-dimensional structure as the RecA homology domain of RAD51 from which it is derived.

For the purpose of homology modelling, the present invention further contemplates mutants which are polypeptides obtained (a) by replacing at least one amino acid residue in a native or synthetic BRC repeat sequence with a different amino acid residue and/or (b) by adding and/or deleting at least one amino acid residue within and/or at either or both ends of a native or synthetic BRC repeat sequence, the polypeptide

having one or more sequences corresponding to a BRC repeat sequence and in those sequences having substantially the same three-dimensional structure as the BRC repeat from which they are derived.

By having substantially the same three-dimensional structure is meant having a set of atomic structure co-ordinates that have a root mean square deviation (r.m.s.d.) of less than or equal to about 2.0 Å when superimposed with the atomic structure co-ordinates of the RAD51 from which the mutant is derived when at least about 50% to 100% of the C_{α} atoms of the RAD51 are included in the superposition.

Once the amino acid sequences of the polypeptides with known and unknown structures are aligned, the structures of the conserved amino acids in a computer representation of the polypeptide with known structure are transferred to the corresponding amino acids of the polypeptide whose structure is unknown. For example, a tyrosine in the amino acid sequence of known structure may be replaced by a phenylalanine, the corresponding homologous amino acid in the amino acid sequence of unknown structure.

15

20

25.

The structures of amino acids located in non-conserved regions may be assigned manually by using standard peptide geometries or by molecular simulation techniques, such as molecular dynamics. The final step in the process is accomplished by refining the entire structure using molecular dynamics and/or energy minimization.

Thus the invention provides a method of homology modelling comprising the steps of:

(a) aligning a representation of an amino acid sequence
of a target protein of unknown three-dimensional structure
with the amino acid sequence of the RAD51 or the BRC repeat
sequence of Table 1 to match homologous regions of the amino

acid sequences;

6

10

15

30

- (b) modelling the structure of the matched homologous regions of said target protein of unknown structure on the corresponding regions of the RAD51 or BRC repeat sequence structure as defined by Table 1; and
- (c) determining a conformation (e.g. so that favourable interactions are formed within the target protein of unknown structure and/or so that a low energy conformation is formed) for said target protein of unknown structure which substantially preserves the structure of said matched homologous regions.

Preferably one or all of steps (a) to (c) are performed by computer modelling.

In respect of RAD51, the data of Table 1 will be particularly advantageous for homology modelling of proteins such as DMC1, RAD51B, RAD51C, xrcc2, xrcc3, RAD52, RAD54, RAD55 and RAD57. These proteins may be the target protein in the method of the invention described above.

F. Structure Solution

The structure of the RAD51-BRC repeat sequence complex can also be used to solve the crystal structure of other target proteins such as other crystal forms of RAD51, RAD51 mutants, RAD51 homologues, and other complexes of RAD51, and corresponding crystal forms relating to a BRC repeat sequence, where X-ray diffraction data of these target proteins has been generated and requires interpretation in order to provide a structure.

Thus, where X-ray crystallographic or NMR spectroscopic data is provided for a target protein of unknown three-dimensional structure, the structure of the RAD51-BRC repeat sequence complex as defined by Table 1 may be used to interpret that

data to provide a likely structure for the target protein by techniques which are well known in the art, e.g. phasing in the case of X-ray crystallography and assisting peak assignments in NMR spectra.

One method that may be employed for these purposes is molecular replacement. In this method, the unknown crystal structure may be determined using the RAD51 or BRC repeat sequence structure coordinates of this invention as provided herein. This method will provide an accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information ab initio.

Examples of computer programs known in the art for performing molecular replacement are CNS (Brunger A.T.; Adams P.D.; Rice L.M., Current Opinion in Structural Biology, Volume 8, Issue 5, October 1998, Pages 606-611 (also commercially available from Accelerys San Diego, CA) or AMORE (Navaza, J. (1994). AMORe: an automated package for molecular replacement. Acta Cryst. A50, 157-163).

15

Thus, in a further aspect the invention provides a method for determining the structure of a protein, which method comprises;

providing the co-ordinates of Table 1, and positioning the co-ordinates in the crystal unit cell of said protein so as to provide a structure for said protein.

In a preferred aspect of this invention the RAD51 co-ordinates are used to solve the structure of, for example, DMC1, RAD51B, RAD51C, xrcc2, xrcc3, RAD52, RAD54, RAD55 or RAD57.

The invention may also be used to assign peaks of NMR spectra of such proteins, by manipulation of the data of Table 1.

G. Computer Systems

15

25

30

In another aspect, the present invention provides a system, particularly a computer system, the system containing either:

- (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of the RAD51-BRC repeat sequence complex or at least selected coordinates thereof;
- (b) structure factor data (where a structure factor comprises the amplitude and phase of the diffracted wave) for the RAD51-BRC repeat sequence complex, said structure factor data being derivable from the atomic coordinate data of Table 1;
 - (c) atomic coordinate data of a target protein generated by homology modelling of the target based on the data of Table 1;
 - (d) atomic coordinate data of a target protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; or
- (e) structure factor data derivable from the atomic 20 coordinate data of (c) or (d).

Such data is useful for a number of purposes, including the generation of structures to analyse the mechanisms of action of RAD51, BRC repeat sequences or related proteins and/or to perform rational drug design of compounds which interact with RA51 or BRC repeat sequences.

As used herein, "a computer system" refers to the hardware means, software means and data storage means used to analyse the atomic coordinate and/or structure factor data of the present invention. The minimum hardware means of the computer-based systems of the present invention typically comprises a central processing unit (CPU), a working memory and data storage means, and e.g. input means, output means etc.

Desirably a monitor is provided to visualize structure data.

The data storage means may be RAM or means for accessing a computer readable medium of the invention. Examples of such systems are microcomputer workstations available from Silicon Graphics Incorporated and Sun Microsystems running Unix based, Windows NT or IBM OS/2 operating systems.

5

10

15

20

In a further aspect, the present invention provides a computer readable storage medium on which is stored thereon either:

- (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of the RAD51-BRC repeat sequence complex or at least selected coordinates thereof;
- (b) structure factor data (where a structure factor comprises the amplitude and phase of the diffracted wave) for the RAD51-BRC repeat sequence complex, said structure factor data being derivable from the atomic coordinate data of Table 1;
- (c) atomic coordinate data of a target protein generated by homology modelling of the target based on the data of Table 1;
- (d) atomic coordinate data of a target protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; or
- (e) structure factor data derivable from the atomic coordinate data of (c) or (d).
- As used herein, "computer-readable storage medium" refers to any medium or media which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media such as floppy discs, hard disc storage medium and magnetic tape; optical storage media such as optical discs or CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

By providing such a storage medium, the atomic coordinate data can be routinely accessed to model RAD51, a BRC repeat sequence, or selected coordinates thereof. For example, RASMOL (Sayle et al., TIBS, Vol. 20, (1995), 374) is a publicly available computer software package which allows access and analysis of atomic coordinate data for structure determination and/or rational drug design.

On the other hand, structure factor data, which are derivable from atomic coordinate data (see e.g. Blundell et al., in *Protein Crystallography*, Academic Press, New York, London and San Francisco, (1976)), are particularly useful for calculating e.g. difference Fourier electron density maps.

10

15

20

25

30

A further aspect of the invention provides a method of providing data for generating structures and/or performing drug design with RAD51/BRC repeat sequences, RAD51/BRC repeat sequence homologues or analogues, complexes of RAD51/BRC repeat sequence with a compound, or complexes of RAD51/BRC repeat sequence homologues or analogues with compounds, the method comprising:

(i) establishing communication with a remote device containing computer-readable data comprising at least one of:

(a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of the RAD51-BRC repeat sequence complex or at least selected coordinates thereof; (b) structure factor data (where a structure factor comprises the amplitude and phase of the diffracted wave) for the RAD51-BRC repeat sequence complex, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a target protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; or (e) structure factor data

derivable from the atomic coordinate data of (c) or (d); and (ii) receiving said computer-readable data from said remote device.

Thus the remote device may comprise e.g. a computer system or a computer-readable storage medium of one of the previous aspects of the invention. The device may be in a different country or jurisdiction from where the computer-readable data is received.

The communication may be via the internet, intranet, e-mail etc. Typically the communication will be electronic in nature, but some or all of the communication pathway may be optical, for example, over optical fibers.

H. Uses of the Structure of the Invention

15

20

25

30

The crystal structure obtained according to the present invention may be used in several ways for drug design.

We show in the examples below that the BRC repeats encoded in BRCA2 structurally mimic a sequence in RecA that contributes to the interface between successive subunits in the RecA filament, and we present evidence that RAD51 multimerization in nucleoprotein filament formation proceeds through a similar interface. The sequence 85-GFTTATE-91 in RAD51 closely resembles the conserved BRC repeat sequence (GFxTASG) that mimics RecA. Furthermore, replacement of Phe86 or Ala89 in RAD51 with glutamic acid, predicted to disrupt critical hydrophobic contacts, creates mutants that are no longer capable of filament formation when expressed in mammalian cells. Thus, our findings uncover an evolutionarily conserved structural motif that enables RecA and RAD51 to assemble into multimeric filaments essential for DNA recombination, and that has become incorporated into BRCA2, a protein exclusive to higher eukaryotes.

Our work provides a structural rationale for the conservation of residues in different BRC repeats from several different species. Alteration of certain of these residues by cancerassociated mutations is predicted to perturb RAD51 binding, emphasizing the importance of the RAD51-BRC repeat interaction as a target for BRCA2 mutations associated with cancer susceptibility.

5

10

20

25

BRC repeats are found not only in BRCA2 of vertebrates but also in novel proteins of uncertain function expressed in several parasitic species (such as leishmania and trypanosomes), which our structural analysis suggests will bind and regulate RAD51 orthologues expressed in those species in a manner similar to BRC4. Thus the RAD51-BRC repeat structure may have a role in identifying compounds for 15 treating parasite infection.

Structure-based analysis also identifies several residues in BRC repeats and in RAD51 whose modification by phosphorylation or other means is predicted to affect complex formation, providing a means of linking BRCA2-RAD51 regulation to the pathways that signal DNA damage, blocked replication or cell cycle progression.

Thus our findings provide a structural blueprint that may be useful in structure based drug design. Our work shows that the RAD51-BRCA2 interaction will be particularly vulnerable to small molecule inhibitors because it critically depends on spatially constrained hydrophobic contacts to RAD51 made by three residues (Phe1526, Phe1546 and Ala1527) in BRC4, also conserved in different BRC repeats. Because BRCA2 and RAD51 participate in the repair of DNA breakage 8,9, such inhibitors may prove useful adjuncts to radiation therapy or anti-cancer drugs that induce DNA damage.

Therefore, the determination of the three-dimensional structure of the RAD51-BRC repeat sequence complex provides a basis for the design of new compounds which interact with RAD51 and/or BRC repeat sequences in novel ways.

5 H.1. Obtaining and Analysing Crystal Complexes

In one approach, the structure of a compound bound to RAD51 or a BRC repeat sequence may be determined by experiment. This will provide a starting point in the analysis of the compound bound to RAD51 or the BRC repeat, thus providing those of skill in the art with a detailed insight as to how that particular compound interacts with RAD51 or a BRC repeat sequence.

Many of the techniques and approaches to structure-based drug design described rely at some stage on X-ray analysis to identify the binding position of a ligand in a ligand-protein 15 complex. A common way of doing this is to perform X-ray crystallography on the complex, produce a difference Fourier electron density map, and associate a particular pattern of electron density with the ligand. However, in order to produce the map (as explained e.g. by Blundell et al., mentioned 20 above) it is necessary to know beforehand the protein 3D structure (or at least the protein structure factors). Therefore, determination of the BRCA2 BRC repeat sequence and RAD51 structures also allows production of difference Fourier electron density maps of RAD51- or BRC repeat sequence-25 compound complexes and determination of the binding position of a drug, and hence may greatly assist the process of rational drug design.

Accordingly, the invention provides a method for determining the structure of a compound bound to RAD51 or a BRC repeat sequence, said method comprising:

30

providing a crystal of a complex in which the compound is

bound to RAD51 or a BRC repeat sequence; and determining the structure of said complex by employing the data of Table 1.

The analysis of such structures may employ (i) X-ray crystallographic diffraction data from the complex and (ii) a three-dimensional structure of RAD51 or the BRC repeat sequence, or at least selected coordinates thereof, to generate a difference Fourier electron density map of the complex, the three-dimensional structure being defined by atomic coordinate data according to Table 1. The difference Fourier electron density map may then be analysed.

10

15

20

25

Therefore, such complexes can be crystallized and analysed using X-ray diffraction methods, e.g. according to the approach described by Greer et al., J. of Medicinal Chemistry, Vol. 37, (1994), 1035-1054, and difference Fourier electron density maps can be calculated based on X-ray diffraction patterns of complexes containing RAD51 or the BRC repeat sequence and the solved structure of RAD51 or the BRC repeat sequence according to Table 1. These maps can then be analysed e.g. to determine whether and where a particular compound binds to RAD51 or the BRC repeat sequence and/or changes the conformation of RAD51 or the BRC repeat sequence.

Electron density maps can be calculated using programs such as those from the CCP4 computing package (Collaborative Computational Project 4. The CCP4 Suite: Programs for Protein Crystallography, Acta Crystallographica, D50, (1994), 760-763.). For map visualization and model building programs such as "O" (Jones et al., Acta Crystallograhica, A47, (1991), 110-119) can be used.

In addition, in accordance with this invention, RAD51 or BRC repeat sequence mutants may be crystallized in co-complex with known RAD51 or BRC repeat sequence substrates, inhibitors or

novel compounds. The crystal structures of a series of such complexes may then be solved by molecular replacement and compared with that of the structure of Table 1. Potential sites for modification within the various binding sites of the mutant may thus be identified. This information provides an additional tool for determining the most efficient binding interactions, for example, increased hydrophobic interactions, between RAD51 and a chemical entity or compound.

H.2. In Silico Analysis and Design

- Although the invention will facilitate the determination of actual crystal structures comprising RAD51 or a BRC repeat sequence and a compound which interacts with RAD51 or the sequence repeat, current computational techniques provide a powerful alternative to the need to generate such crystals and generate and analyse diffraction data. Accordingly, a particularly preferred aspect of the invention relates to in silico methods directed to the analysis and development of compounds which interact with the RAD51 structure or the BRC repeat sequence structure of the present invention.
- Thus as a result of the determination of the RAD51-BRC repeat sequence complex three-dimensional structure, more purely computational techniques for rational drug design may also be used to design structures whose interaction with RAD51 or the BRC repeat sequence is better understood (for an overview of these techniques see e.g. Walters et al (Drug Discovery Today, Vol.3, No.4, (1998), 160-178). For example, automated ligand-receptor docking programs (discussed e.g. by Jones et al. in Current Opinion in Biotechnology, Vol.6, (1995), 652-656) which require accurate information on the atomic coordinates of target receptors may be used.

The aspects of the invention described herein which utilize the RAD51 or the BRC repeat sequence structure in silico may

be equally applied to both the structure of Table 1 and the models of target proteins obtained by other aspects of the invention. Thus having determined a conformation of a target protein by the method described above, such a conformation may be used in a computer-based method of rational drug design as described herein.

Accordingly, the invention provides a computer-based method for the analysis of the interaction of a molecular structure with a RAD51 or BRC repeat sequence structure of the invention, which comprises:

providing the structure of a RAD51 or BRC repeat sequence of the invention;

providing a molecular structure to be fitted to said RAD51 or BRC repeat sequence structure; and

fitting the molecular structure to the RAD51 or BRC repeat sequence structure.

15

20

25

30

In an alternative aspect, the method of the invention may utilize the coordinates of atoms of interest of the RAD51 or BRC repeat sequence which are in the vicinity of a putative molecular structure binding region in order to model the pocket in which the structure binds. These coordinates may be used to define a space which is then analysed in silico. Thus the invention provides a computer-based method for the analysis of molecular structures which comprises:

providing the coordinates of at least two atoms of a RAD51 or BRC repeat sequence structure of the invention ("selected coordinates");

providing a molecular structure to be fitted to said coordinates; and

fitting the structure to the selected coordinates of the RAD51 or BRC repeat sequence.

In practice, it will be desirable to model a sufficient number of atoms of the RAD51 or BRC repeat sequence as defined by the

coordinates of Table 1 which represent a binding region. Thus, in this embodiment of the invention, there will preferably be provided the coordinates of at least 5, preferably at least 10, more preferably at least 50 and even more preferably at least 100 selected atoms of the RAD51 or BRC repeat sequence structure.

Preferably the selected atoms are atoms which are identified below as contributing to interactions in the RAD51-BRC4 interface or being involved in the RAD51 nucleotide-binding site.

10

Although different compounds may interact with different parts of the binding region of the RAD51 or BRC repeat sequence, the structure of the RAD51 or BRC repeat sequence allows the identification of a number of particular sites which are likely to be involved in many of the interactions of RAD51 or a BRC repeat sequence with the compound (which may be e.g. a drug candidate). The residues are set out in the accompanying example. Thus in this aspect of the invention, the selected coordinates may comprise coordinates of some or all of these residues.

In order to provide a three-dimensional structure of compounds to be fitted to a RAD51 or BRC repeat sequence structure of the invention, the compound structure may be modeled in three dimensions using commercially available software for this purpose or, if its crystal structure is available, the coordinates of the structure may be used to provide a representation of the compound for fitting to a RAD51 or BRC repeat sequence structure of the invention.

By "fitting", it is meant determining by automatic, or semiautomatic means, interactions between at least one atom of a molecular structure and at least one atom of a RAD51 or BRC repeat sequence structure of the invention, and calculating the extent to which such an interaction is stable. Interactions include attraction and repulsion, brought about by charge, steric considerations and the like. Various computer-based methods for fitting are described further herein.

5

25

More specifically, the interaction of a compound with a RAD51 or BRC repeat sequence can be examined through the use of computer modelling using a docking program such as GRAM, DOCK, or AUTODOCK (see Walters et al., Drug Discovery Today, Vol.3, No.4, (1998), 160-178, and Dunbrack et al., Folding and Design, 2, (1997), 27-42). This procedure can include computer fitting of compounds to the RAD51 or BRC repeat sequence to ascertain how well the shape and the chemical structure of the compound will bind to the RAD51 or BRC repeat sequence.

Also computer-assisted, manual examination of the binding region structure of RAD51 or a BRC repeat sequence may be performed. The use of programs such as GRID (Goodford, J. Med. Chem., 28, (1985), 849-857) - a program that determines probable interaction sites between molecules with various functional groups and an enzyme surface - may also be used to analyse the active site to predict, for example, the types of modifications which will alter binding interactions with a compound.

Detailed structural information can thus be obtained about the binding of the compound to RAD51 or a BRC repeat sequence, and in the light of this information adjustments can be made to the structure or functionality of the compound, e.g. to alter its interaction with RAD51 or the BRC repeat sequence. The above steps may be repeated and re-repeated as necessary.

30 Since the BRC repeat sequence is a natural ligand and inhibitor of RAD51, structural and spatial information can be usefully derived from the 3D structure of the RAD51-BRC repeat

sequence complex, to facilitate the identification of a compound that interacts with RAD51 by partially or completely mimicking the mode of interaction found in the complex. A pharmacophore, or more specifically a spatial arrangement of a small group of atoms or a functional group, with a positive contribution to compound affinity toward RAD51, can be derived by an analysis of the geometry of the RAD51-BRC repeat sequence interface. Such a pharmacophore-based approach can be applied in drug discovery. An aspect of the invention thus relates to the use of the RAD51 structure or the BRC repeat sequence structure, or information derived from them, for the design or identification of a compound that mimics the BRC repeat sequence in its mode of interaction with RAD51.

One application is the identification of a compound that satisfies a specified pharmacophore. Accordingly, the invention provides a method for the analysis of molecular structures which comprises:

10

15

20

25

30

providing the coordinates of at least two atoms of a RAD51 or BRC repeat sequence structure of the invention;

assigning chemical properties to a spatial arrangement derived from the coordinates; and

providing a molecular structure that satisfies the chemical properties in the specified spatial arrangement.

In one application, the specified pharmacophore can be used for scoring compounds fitted against RAD51, an aim being to select compounds that fulfil the criteria of the pharmacophore, or to screen out, from a number of compounds, those that do not fulfil the criteria. Thus, the method may further comprise:

fitting the structure to the selected coordinates; and evaluating the fitting based on the extent to which the chemical properties of the specified spatial arrangement are satisfied.

In general, the present invention provides for the use of the structure of a RAD51 or BRC repeat sequence of the invention, or for the use of selected coordinates of the structure, for analysing, designing or screening candidate compounds which (a) share RAD51 or BRC repeat sequence activity, (b) interact with RAD51 or BRC repeat sequence, (c) inhibit RAD51 multimerisation, or (d) inhibit or promote RAD51-BRC binding.

H.3. Compounds of the Invention.

10

15

Where the molecular structure of a compound which fits to the RAD51 or the BRC repeat sequence structure of the invention has been identified, the invention further includes the step of obtaining or synthesizing the compound and testing it in an in vivo or in vitro biological system in order to determine its activity (e.g. its ability to interact with RAD51 or to inhibit RAD51 multimerisation).

For example, compounds that fulfil the criteria of a specified pharmacophore can be assayed for activity against RAD51. Thus the invention may further comprise:

obtaining or synthesizing a compound having a molecular structure which satisfies the pharmacophore, and assaying the compound in vivo or in vitro in order to determine its activity.

In another aspect, the invention includes a compound which is identified by the methods of the invention described above.

Following identification of such a compound, it may be manufactured and/or used in the preparation, i.e. manufacture or formulation, of a composition such as a medicament, pharmaceutical composition or drug. These may be administered to individuals.

30 Thus, the present invention extends in various aspects not only to a compound as provided by the invention, but also a

pharmaceutical composition, medicament, drug or other composition comprising such a compound e.g. for treatment (which may include preventative treatment) of disease; a method comprising administration of such a composition to a patient, e.g. for treatment of disease; use of such an inhibitor in the manufacture of a composition for administration, e.g. for treatment of disease; and a method of making a pharmaceutical composition comprising admixing such an inhibitor with a pharmaceutically acceptable excipient, vehicle or carrier, and optionally other ingredients.

The invention is illustrated by the following examples and analysis:

I. Examples and Analysis

I.1. Protein Expression and Purification

In order to favour BRCA2 binding over RAD51 multimerisation, 15 we covalently joined the BRC repeat to RAD51. The BRCA2 BRC type 4 sequence (amino acids 1517 to 1551) was connected to the amino terminus of a RAD51 sequence spanning the RecA homology domain (Ser97 to the natural carboxyl terminus) via the flexible polypeptide linker: (ThrGlySer)4MetGly, designed 20 to allow for unrestrained interaction between the BRC repeat sequence and RAD51. The chimaeric protein was expressed in E.coli fused to a double amino-terminal tag consisting of a six histidine sequence followed by a GST tag. The soluble, overexpressed protein was first purified from the crude 25 bacterial lysate by Ni-NTA agarose chromatography. The tag was cleaved by incubation with TEV protease and removed by glutathione agarose chromatography. The protein was purified to homogeneity by two further steps of anion exchange chromatography on a ResourceQ column and gel filtration on a 30 Superdex200 10.30 HR column (Amersham-Pharmacia). The protein was concentrated to 12 mg/ml (0.36micromolar), flash frozen in liquid nitrogen and stored in aliquots at -80° C.

I.2. Protein Crystallization

10

15

30

Crystals of the RAD51-BRCA2 BRC4 complex were grown in hanging drops by the vapour diffusion method. Drops were prepared by mixing two microliters of protein to two microliters of a 25% ethylene glycol solution, and equilibrated against 750 microliters of the same crystallization solution. Crystals grew at 18° C within a few days to a maximum size of approximately $300\times100\times100$ micrometers. The crystals belong to the space group $P2_12_12_1$ (a = 57.30 Å, b = 59.14 Å, c = 77.20 Å), with one complex in the asymmetric unit.

I.3. Structure Determination and Refinement

The structure of the RAD51-BRC4 complex was determined using phasing information from SIRAS and MAD experiments. An initial screening by native gel electrophoresis 27 identified KAu(CN)₂ as a potential heavy atom derivative. X-ray data from a native crystal soaked in 0.5mM KAu(CN)2 for 16 hours were collected to 2 Å resolution. The position of the single gold site was readily determined using direct methods as implemented in Shake 'N' Bake 28. An initial set of phases was calculated with SHARP 29 and improved by the solvent modification routine available within the program. The resulting set of phases were further refined with ARP/WARP 30, which successfully traced the entire chain of the BRC4 repeat and most of the RAD51 ATPase domain. We also prepared selenomethionine-substituted protein that crystallized under the same conditions as the native material. The selenomethionine-containing crystals were used to collect a two-wavelength MAD dataset (peak and highenergy remote at the Se K edge) at station ID29 of the ESRF in Grenoble (France). The MAD phases proved to be of excellent quality and allowed us to extend the resolution of the

diffraction data to 1.7 Å and considerably improve our model. Crystallographic refinement was performed using the programs REFMAC 31 and CNS 32 .

The refined model comprises 1919 protein atoms, 239 water molecules and 4 ethylene glycole molecules. One magnesium ion and one chloride ion were also included in the final model to explain two strong, positive F_o - F_c difference peaks, located at the carboxyl terminus of the short helix in the initial strand-helix-strand motif, and at the amino terminus of helix A1. Crystallographic data for the structure of the human RAD51-BRCA2 BRC4 complex are summarized in Table 2 (shown in Figure 2), the coordinates of the complex structure are provided in Table 1 (shown in Figure 1), and Figure 4 shows (a) ribbon representations of the RAD51 and BRC4 structures and (b) a schematic diagram of the topology of the complex with numbering of the RAD51 secondary structures (the flexible polypeptide linker being omitted in both (a) and (b)).

237 amino acid residues (98.8%) are in the core region of the Ramachandran plot, 3 in the generously allowed region (1.2%) and none in the disallowed region. RAD51 residues 97, 230 to 236 (loop L1 between beta strand B4 and helix H5), 268 to 292 (loop L2 between strands B5 and B6) and BRCA2 BRC4 residues 1517 to 1518 are not visible in the electron density map and are presumably disordered. The linker joining the BRC repeat to RAD51 is also not detectable in the map, with the exception of the initial ThrGlySer triplet. The quality of the map for the RAD51 region between strands B7 and B8 (residues 316 to 321) is poor, indicating that they are partially disordered in the crystals; the conformation of the polypeptide chain for this loop must therefore be considered tentative. Surface area accessibility calculations were carried out in CNS. Figures were prepared with Molscript 33 and Raster3D 34.

I.4. Architecture of the RAD51-BRCA2 BRC4 Complex

10

The structure of the RAD51-BRCA2 BRC4 complex confirms that RAD51 belongs to the RecA-like family of ATPases (Figure 4), which includes the catalytic subunit of the F1 ATP synthase and the large families of DNA helicases, ABC transporters and the extended AAA-ATPases. RAD51 from Glu98 to its carboxyl terminal residue Asp339 folds into a 3-layer α/β structure with a central, nine-stranded mixed beta sheet (B1 to B9; strand order 987615423) surrounded by two long, parallel alpha helices (A4 and A5) on one side and three shorter helices (A1 to A3) on the other (Figure 4). The twist angle of the beta sheet increases towards the carboxyl terminus of RAD51, so that the last four antiparallel beta strands can wrap around the amino-terminal strand-loop-strand motif. The ATPase domains of human RAD51 and bacterial RecA 18 are topologically identical and their superposition results in a root mean square deviation of 1.7Å over 160 $C\alpha$ atoms (out of 210 present in the crystallographic model).

BRC4 remains in continuous contact with the ATPase domain of RAD51 over a sequence stretch of 28 amino acids (Leu1521 to 20 Glu1548), defining a minimal BRC repeat footprint on RAD51 (Figure 4). Residues Phe1524 to Val1532 fold into a beta hairpin with a 3:5 loop (1526-TASGK-1530) structured as a type I turn followed by a beta bulge at residue Gly1529, which has a positive ϕ torsion angle ¹⁹. The hairpin lines up alongside 25 beta strand B3, thereby extending RAD51's beta sheet by two short anti-parallel strands. After the hairpin, the BRC motif wraps around helix A4 of RAD51 by means of a short linker (residues Lys1533 to Ala1535) that kinks abruptly at residue Lys1536 and leads into an amphipathic alpha-helical segment 30 (residues Lys1536 to Val1542). The remaining residues at the carboxyl end of BRC4 (residues Val1542 to Glu1548) form an irregular coil with elements of a 3_{10} helix, that spans helices A4 and A5 of RAD51, making an angle of 60° to their axes. Altogether, the BRC motif encircles approximately a third of the hypothetical circumference of RAD51 at its point of maximum diameter.

5 I.5. The RAD51-BRC4 Interface

The RAD51-BRC4 interface is extensive and highly hydrophobic in nature. The total surface area buried during complex formation is 2026 Å². Figure 5(a) shows the solvent-accessible molecular surface of the RAD51 interface superimposed with tube and stick representations of the BRC4 interface residues. The BRC motif is decorated throughout its length with hydrophobic residues that keep it in close contact with RAD51. Three main points of contact stand out, involving the residues Phe1524, Ala 1527 and Phe1546.

Table 3 (shown in Figure 3) provides a structure-based 15 analysis of BRCA2 BRC sequence conservation and demonstrates that the residues Phel524, Ala 1527 and Phel546 are highly conserved in different BRC repeats. In Table 3 the BRC4 sequence from Leu1521 to Glu1548 is displayed horizontally across the top of the table. Residues within elements of 20 secondary structure are boxed. The twenty different amino acids are shown vertically on the left, grouped according to their chemical nature (hydrophilic at the top, hydrophobic at the bottom, the rest in the middle). Each figure in the table indicates the number of times a certain type of amino acid 25 occurs at a particular position in the BRC repeat. The table contains sequence information relative to a set of 56 BRC repeats from 7 different organisms. The information contained in the table is recapitulated by the BRC consensus sequence reported under it ('i' = hydrophobic; 'o' = hydrophilic; 'a' = 30 aromatic, x' = no preference).

Phe1524 is located on the strand of the beta hairpin in direct contact with RAD51, and its aromatic ring is completely buried within a hydrophobic cavity formed by the side chains of RAD51 residues Met158, Ile160, Ala190, Ala192, Leu203, Ala207 and Met210. Ala1527, in position L2 of the hairpin loop, places its beta carbon into a small pocket formed by the side chains of RAD51 residues Pro168 Phe166, Leu171, Leu186 and Val189. Phe1546, located in the carboxyl terminal end of the BRC repeat, acts together with Leu1545 to form a wedge embedded between RAD51 helices A4 and A5, and surrounded by residues Leu204, Tyr205, Ser208 (in helix A4) and Met251, Arg254, Leu255, Glu258 and Phe259 (in helix A5). The affinity between BRC4 and RAD51 is further enhanced by hydrophobic contacts involving residues Ile1534 in the linker region, and the hydrogen-bonded Ser1538, Leu1539 and Val1542 in the alpha helix.

15

20

25

Although not as numerous as the hydrophobic interactions, contacts of a polar and charged nature also take place (see Figure 5(b)). The beta hairpin keeps BRC4 in register relative to RAD51 through a set of three continuous, antiparallel main chain-to-main chain hydrogen bonds linking the BRC4 sequence 1525-HTA-1527 to the 190-AYA-192 sequence in strand B3 of RAD51. Asp187 of RAD51 accepts a hydrogen bond from Ser1528, in position L3 of the BRC4 hairpin loop, and interacts electrostatically with Lys1530. Moreover, Glu213 of RAD51 accepts a hydrogen bond from Ser1538 of BRC4, in what is likely to represent a particularly significant contact, because the two side chains are poised for interaction. The position of the Ser1538 side chain is determined by a stacking interaction with BRC4 Ala1535 and RAD51 Val212, while Glu213 is hydrogen bonded to the main chain nitrogen of Ala1535 and, via a water molecule, to the main chain carbonyl of Lys1533. Finally, Glu1548, at the carboxyl end of the BRC4 motif, forms an ion pair with Arg250 of RAD51.

Additional interactions involving residues that are not strongly conserved across BRC repeats help to explain the higher affinity ⁷ of the type 4 repeat towards RAD51 relative to other repeat types. For instance, the tandem repeat of leucine residues 1521 and 1522 are in hydrophobic contact with the side chains of RAD51 residues Phe195 and His199, and the main chain carbonyl of Leu1522 accepts a hydrogen bond from the His199 side chain. His1525 forms a pseudo-hydrophobic core by packing against the aliphatic portions of Lys1535 and Thr1520 side chains and is also hydrogen bonded to the main chain carbonyl of Thr1520, thus conferring further stability to the beta hairpin conformation.

I.6. A Structure-Based Analysis of BRCA2 BRC Sequence Conservation

10

The structure of the RAD51-BRC4 complex permits the rationalization of the pattern of sequence conservation displayed by BRC repeats across different repeat types and organisms (Table 3). The most amino-terminal residue to be significantly conserved, Gly1523, is found at a point of secondary structure transition, in a spatially constrained environment at the protein-protein interface. Glycine or serine account for 60% of occurrences at this position, with other less frequent residues being generally of a hydrophobic nature.

Residues 1524-FHTASGK-1530, with the exception of His1525, form a contiguous block of highly conserved amino acids. Phe1524 is the single most conserved BRC residue (present in 89% of the sequences in a set of 56 BRC repeats from seven different organisms): the structure shows that it is involved in a crucial recognition interaction with RAD51. Thr1526 does not contact RAD51, but accepts a hydrogen bond from the main chain nitrogen of Lys1530 that is essential for the conformation of the 3:5 hairpin loop. Thr1526 also donates a

hydrogen bond to the hydroxyl function of Ser1528, thus keeping it poised for interaction with RAD51 Asp187. The amino acids threonine or serine account for 93% of occurrences at this position. Like Phe1524, Ala1527 (conserved in 82% of BRC repeats) provides another important point of hydrophobic contact with RAD51. Ser1528 (59%) and Lys1530 (79% preference for a basic residue) are engaged in a polar interaction with Asp187 of RAD51. The preference for a glycine, serine or asparagine (combined frequency of 93%) at position 1529 is dictated by the conformational requirement for a residue that can tolerate a positive ϕ torsion angle.

Two positions in the linker connecting the beta hairpin to the alpha helix (Val1532 and Ile1534 in BRC4) show a strong preference for aliphatic, branched amino acids (80% and 93% respectively for isoleucine, leucine or valine). The structure demonstrates that Val1532 and Ile1534 contribute to the continuous adherence of the BRC4 motif to the RAD51 surface, through an hydrophobic contact with Met210 of RAD51. Position 1535 marks a point of conformational transition to an alpha helical region, and a serine is found to be prevalent here (with 70% occurrence), likely because of its propensity to cap the helix at its amino terminus.

Within the amphipathic helix, conserved residues including Ser1538 (50% preference) and Leu1539 (89% combined preference for Leu, Ile or Val) make hydrophobic and hydrogen bonded interactions with RAD51. BRC position 1542 shows a clear preference for Val, Ala or Ser (79% combined frequency), explained by the structure, where Val1542 marks a point of close contact between BRC4 and helix A4 of RAD51, defining the preference for a small amino acid capable of hydrophobic interaction. However, the strong preference for Lys at positions 1541 (79%) and 1543 (68% combined with arginine) is perplexing because these residues are solvent exposed and do

not contact RAD51. Interestingly, Arg rarely occupies position 1541, consistent with a specific role for lysine, and suggesting that sequence conservation within BRC sequences is not only dictated by their interaction with RAD51.

Leu1545 and Phe1546 in BRC4 are involved in extensive hydrophobic interactions with residues on helices A4 and A5 of RAD51. Indeed, hydrophobic residues are strongly represented at these positions in different BRC repeats (89% and 93% conservation respectively). The structure further demonstrates that, whereas BRC4 residue 1545 is partially solvent exposed, 10 and can therefore accommodate a number of different side chains, the spatial restraints on residue 1546 are much tighter, as its side chain penetrates deeper into the RAD51-BRC interface. In agreement with our observation, position 1545 shows only a general hydrophobic preference, whereas 15 position 1546 requires either a phenylalanine or a leucine. The most carboxyl terminal position to show a distinct sequence preference is 1548, which selects for an acidic residue (80% combined conservation for aspartic and glutamic acid). In the crystal structure, Glu1548 forms a salt link 20 with Arg250 of RAD51.

Our analysis shows that the BRC motif is reminiscent of a Velcro strip in the way it adheres to RAD51, that is, through a large number of contacts that are relatively independent from one another. This observation suggests that BRC repeats that differ widely from the consensus, may still retain the capacity to bind RAD51. The elimination of one or a few contact points would weaken the overall binding affinity, without abolishing binding altogether. The BRC sequence might therefore have arisen as a molecular frame suitable for the evolution of amino acid sequences with a wide range of affinities to RAD51, with potential implications for the regulation of RAD51 function by BRCA2.

25

I.7. The Human RAD51 Nucleotide-Binding Site

10

20

25

30

The structure of BRCA2-bound RAD51 reveals some unexpected features of its nucleotide-binding site (see Figures 6(a) and (b)). Lys133 and Thr134, in Walker motif A (127-GEFRTGKT-134), and Asp222, in Walker motif B (218-LLIVD-222), are sequestered in a solvent-inaccessible hydrogen-bonding network that extends to Tyr159, Asp161 and Thr165 via a buried water molecule (Figure 6(a)). Exposed Phel29 at the tip of the phosphate-binding loop (P-loop or Walker motif A) buries part of its aromatic ring in a hydrophobic interaction with Thr134 and Thr165. These contacts do not take place in RecA 18,20, because Lys72 and Thr73 of motif A are further apart from Asp144 in motif B, whereas Glu68 replaces Phe129 in the Ploop. Possibly reflecting the presence of this additional set of interactions, the overall conformation of the P-loop is different in RAD51. A 3-D superposition (Figure 6(b)) shows that, whereas the P-loop remains unchanged in the apo- and ADP-bound forms of RecA 18,20, in BRCA2-bound RAD51 it adopts a more closed conformation that is unlikely to be compatible with its occupation by the ATP phosphates. Although the BRC repeat does not directly mask the ATP-binding site, we speculate that it may cause an indirect conformational effect when bound to RAD51 that inhibits ATP binding.

I.8. Regulation of RAD51 Nucleoprotein Filament Formation by BRCA2

RAD51 forms helical nucleoprotein filaments on DNA substrates that catalyse pairing and strand exchange between homologous DNA molecules, an essential step in homologous recombination 21,22. Biological data show that filament formation is abolished when RAD51 is bound to BRC repeat peptides. *In vivo*, over-expression of BRC repeats suppresses the accumulation of RAD51 into nuclear foci after exposure of cells to DNA

damaging agents ⁷. In vitro, incubation of RAD51 with BRC repeat peptides removes its ability to form nucleoprotein filaments on DNA substrates ¹⁷. Finally, the tendency of RAD51 to spontaneously aggregate into high molecular weight complexes, even in the absence of DNA, is prevented by interaction with BRC repeats, which maintains RAD51 in a monomeric form ¹⁷.

The structural basis for filament formation by RAD51 is not known 23,24. In order to gain an insight into the mechanism deployed by BRCA2 to regulate RAD51 filament formation, we 10 analysed the RAD51-BRCA2 interaction in the context of the crystallographic RecA filament (see Figures 7(a) to (d)). In the crystal 18, the RecA molecules pack into a spiral that resembles the nucleoprotein filament formed in vivo. Overlaying the RAD51-BRCA2 complex on RecA results in the 15 localization of the BRC beta hairpin at the interface between two adjacent RecA molecules 18 within the crystallographic filament (Figure 7(a)). Surprisingly, BRC4 residues 1523-GFHTASG-1529 superimpose closely onto the RecA sequence 25-SIMRLGE-31, which is part of the interface between RecA 20 subunits. RecA residues 27-MRL-29 add in fact an anti-parallel beta strand to the central beta sheet of a neighbouring RecA molecule, in an identical fashion to the interaction of BRC4 residues 1525-HTA-1527 with RAD51 in the RAD51-BRCA2 complex 25 (see Figures 7(b) and (c)). Moreover, RecA residues Ile26 and Leu29 make comparable hydrophobic contacts to those made by Phe1524 and Ala1527 of BRC4 with RAD51.

The superposition analysis provides a strong clue concerning the mechanism adopted by BRCA2 to regulate RAD51 function
BRCA2 binding prevents formation of the nucleoprotein filament by interfering with a crucial contact between RAD51 subunits, and the specific role of the BRC repeats is to mimic the conformation of the RAD51 segment involved in such contact.

One prediction of our proposed mechanism is that sequence similarity should be found between the BRC motif and the region of the RAD51 sequence with a putative role in multimerization analogous to that performed by RecA sequence 25-SIMRLGE-31. Indeed, careful inspection of the RAD51 sequence for short motifs resembling the BRC consensus GFxTASG motif identifies the highly conserved sequence 85-GFTTATE-91 in the RAD51 linker between the amino terminal domain and the catalytic core (Figure 7(d)).

To test the proposed mechanism, we constructed mutant RAD51 molecules in which amino acids Phe86 and Ala89 within the sequence 85-GFTTATE-91 were replaced by glutamic acid.

I.9. Formation and Analysis of RAD51 Mutants

15

20

Mutant RAD51 molecules (Phe86Glu or Ala89Glu) were fused at their amino terminus to the green fluorescent protein (GFP) reporter before transfection into human cell lines. This was accomplished for each of the Phe86Glu and Ala89Glu mutations by using the QuickChange system (Stratagene) to perform sitedirected mutagenesis into a cDNA construct encoding the wildtype RAD51-GFP fusionin pEGFP-C1 (Clontech).

Furthermore, the sequence encoding BRC3 and BRC4 from human BRCA2 was fused at its C-terminus to three consensus nuclear localization signals in the vector pEF-Myc-Nuc (Clontech).

Constructs were verified by nucleotide sequencing. Experiments
were carried out 72-96 hrs after transfection of plasmids into
293T cells using the calcium phosphate method. Microscopic
images were obtained using a Zeiss LSM510 confocal system
equipped with ZeissVision software.

Each of the Phe86Glu and Ala89Glu mutations is predicted to eliminate a critical hydrophobic contact at the RAD51 subunit

interface and therefore abolish or significantly weaken RAD51's ability to form filaments.

GFP-RAD51 wild-type, GFP-RAD51 F86E and GFP-RAD51 A89E are expressed at equivalent levels after transfection. As previously observed for endogenous RAD51 ^{25,26}, GFP-RAD51 wild-type accumulates in discrete nuclear foci that represent presumptive sites of DNA damage processing in dividing cells (Figure 8(a)). Formation of these foci is dependent upon RAD51 multimerization, because it is not detected when peptides encoding BRC3 and BRC4 are co-expressed in the same cells (Figure 8(b)); a diffuse nuclear localization of wild-type RAD51 is observed instead, reminiscent of the distribution of GFP alone. Strikingly we find that, when expressed in cells, GFP-RAD51 F86E (Figure 8(c)) and GFP-RAD51 A89E (Figure 8(d)) fail to form foci and are distributed diffusely throughout the nucleus, thus confirming our prediction of an essential role for Phe86 and Ala89 in RAD51 filament formation.

10

15

20

25

Based on our crystallographic and biological data we therefore conclude that the RAD51 sequence 85-GFTTATE-91 forms an essential part of the interface between RAD51 monomers in the nucleoprotein filament, and residues Phe86 and Ala98 constitute essential points of hydrophobic contact. The sequences 85-GFTTATE-91 in RAD51 and 25-SIMRLGE-31 in RecA mediate a mode of association between subunits that represent a common structural feature of their nucleoprotein filaments.

We further conclude that BRCA2 blocks nucleoprotein filament formation by binding to RAD51 with the BRC consensus sequence GFxTASG, which structurally mimics the RAD51 sequence 85-GFTTATE-91. In the RAD51-BRC4 complex, BRC4 residues Phe1524 and Ala1527 play the same roles that RAD51 residues Phe86 and Ala89 have in the association between RAD51 monomers. The interaction surface between RAD51 and the BRC repeat is more

extensive than that provided by the GFxTASG sequence only, as would be expected for a dominant antagonist interaction.

I.10. Structure-Based Analysis of Cancer-Associated Mutations

Point mutations affecting conserved residues within the BRC repeats predicted to be important for RAD51 binding occur in patients who develop familial breast cancer (Breast Cancer Information Core database, accessible at http::// www.nhgri.nih.gov/Intramural research/Lab transfer/Bic/). The common cancer-associated Thr1526 -> Ala mutation impairs the . ability of a BRCA4 peptide to bind RAD51 7,17. The structure shows that formation of a hydrogen bond between the hydroxyl function of Thr1526 and the main chain nitrogen of Lys1530 is critical to the conformational integrity of the BRC hairpin loop (Figure 5b). The mutation therefore impairs the affinity of BRCA2 to RAD51 by destabilizing the conformation of the beta hairpin that apposes the BRC repeat to the surface of RAD51. Consistent with the notion that the hydroxyl function mediates an essential interaction, position 1526 is occupied by either a threonine or a serine in 52 out of 56 BRC repeat sequences from seven different organisms (Table 3). BRC repeats in which the threonine is replaced are unlikely to assume the 3:5 hairpin loop conformation required for efficient binding to RAD51. Loss of the critical hydroxyl function at a position analogous to that occupied by Thr1526 in BRC4 has been noted in breast cancer-associated mutations that affect BRC1 (Thr1012 -> Arg) or BRC7 (Thr1981 -> Ile).

10

15

20

25

30

Another point mutation associated with familial breast cancer changes Gly1529 in BRC4, at the fourth position of the 3:5 hairpin loop, to arginine. Conformational restraints on position 1529 lead to selection of amino acids able to adopt a positive ϕ torsion angle, and glycine, serine or asparagine are indeed found in 52 of 56 BRC sequences (Table 2).

Replacement of glycine by arginine will disrupt the conformation of the BRC beta hairpin and lead thereby to loss of RAD51 binding capacity.

Thus, structure-based analysis of cancer-associated point mutations affecting the BRC repeats suggests that inheritance of a single alteration that impairs RAD51 binding capacity in just one repeat is enough to cause increased breast cancer susceptibility. One explanation for why the remaining seven BRC repeats should not suffice to preserve function is that the eight BRC repeats present in all vertebrate species work together as a RAD51-binding module whose overall topology is critical for function. For instance, the spacing between individual BRC repeats observed in vertebrate species as evolutionarily distant as chickens and humans is highly conserved. This hints at the possibility 9 that interactions with successive BRC repeats in BRCA2 may help to order the distribution of RAD51 molecules in space when, for example, they are being loaded onto substrate DNA during nucleoprotein filament formation, or during removal from established filaments. Alterations that diminish the RAD51 binding capacity of just one of the eight BRC repeats could perturb such functions by interfering with spatial relationships between RAD51 molecules bound to BRCA2.

15

20

30

It has also been suggested that regulation of RAD51 function by BRCA2 may also be modulated by physiological modifications such as phosphorylation ^{9,17}. For instance, phosphorylation of Thr1526 in BRC4 would be predicted to decrease RAD51 binding affinity by destabilising the BRC repeat conformation, whereas phosphorylation of Ser1528 or Ser1538 would disrupt polar contacts with Asp187 or Glu213, respectively, in RAD51. The strong conservation of lysine residues at positions 1541 and 1543 in the helical region of BRC4, which do not make contacts with RAD51, raises the possibility that their solvent exposed

amino groups could serve as a target for covalent modifications. From this perspective, we speculate that cancer-associated changes that replace lysine residues corresponding to these conserved positions in BRC1 (Lys1026 ->Glu or Asn) and BRC5 (Lys1691->Asn) may interfere with such events.

Other point mutations in BRCA2 associated with cancer predisposition, such as the frequent change D1420Y near BRC3, fall outside the boundaries of the BRC repeat whose structure we have determined here. An extended BRC3 peptide, which spans the Asp1420 residue, efficiently inhibits nucleoprotein filament formation by RAD51, a property that is abolished in the D1420Y mutant ¹⁷. BRCA2 residues outside the BRC consensus sequence defined in this work can therefore additionally contribute to the BRC-RAD51 interaction.

10

20

25

30

Given that changes in BRCA2 which perturb RAD51 binding give rise to cancer predisposition, our findings raise the possibility that mutations or polymorphisms in RAD51 that impair its interaction with BRCA2 may work in a similar fashion. One reason why such alterations may not yet have been described in breast (or other) cancers is that only a limited number of cases has so far been analysed. Further studies that focus on the prevalence of RAD51 alterations in breast cancers with a familial pattern of incidence may therefore be warranted.

While the invention has been described in conjunction with the exemplary embodiments described above, many equivalent modifications and variations will be apparent to those skilled in the art when given this disclosure. Accordingly, the exemplary embodiments of the invention set forth are considered to be illustrative and not limiting. Various changes to the described embodiments may be made without departing from the spirit and scope of the invention.

References

5

15

These references, and the other references mentioned above, are hereby incorporated by reference.

- 1. Nathanson, KN, Wooster, R & Weber, BL. Breast cancer genetics: what we know and what we need. Nat Med 7, 552-556. (2001).
 - 2. Bork, P, Blomberg, N & Nilges, M. Internal repeats in the BRCA2 protein sequence [letter]. Nat Genet 13, 22-23 (1996).
- Bignell, G, Micklem, G, Stratton, MR, Ashworth, A &
 Wooster, R. The BRC repeats are conserved in mammalian BRCA2 proteins. Hum Mol Genet 6, 53-58 (1997).
 - 4. Warren, M, Smith, A, Partridge, N et al. Structural analysis of the chicken BRCA2 gene facilitates identification of functional domains and disease causing mutations. Hum Mol Genet 11, 841-851. (2002).
 - 5. Wong, AKC, Pero, R, Ormonde, PA, Tavtigian, SV & Bartel, PL. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. *J Biol Chem* 272, 31941-31944 (1997).
- 6. Chen, PL, Chen, CF, Chen, Y et al. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci U S A 95, 5287-5292 (1998).
- 7. Chen, CF, Chen, PL, Zhong, Q, Sharp, ZD & Lee, WH.

 Expression of BRC repeats in breast cancer cells disrupts the BRCA2- Rad51 complex and leads to radiation hypersensitivity and loss of G(2)/M checkpoint control. *J Biol Chem* 274, 32931-32935 (1999).

- 8. Scully, R & Livingston, DM. In search of the tumour-suppressor functions of BRCA1 and BRCA2. *Nature* 408, 429-432. (2000).
- 9. Venkitaraman, AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171-182. (2002).
 - 10. Chen, G, Yuan, SS, Liu, W et al. Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J Biol Chem 274, 12748-12752 (1999).
- 11. Yu, VPCC, Koehler, M, Steinlein, C et al. Gross

 10. chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev

 14, 1400-1406 (2000).
 - 12. Moynahan, ME, Pierce, AJ & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. *Mol Cell* 7, 263-272. (2001).

- 13. Lim, DS & Hasty, P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. *Mol Cell Biol* **16**, 7133-7143 (1996).
- 14. Tsuzuki, T, Fujii, Y, Sakumi, K et al. Targeted
 20 disruption of the Rad51 gene leads to lethality in embryonic
 mice. Proc Natl Acad Sci U S A 93, 6236-6240 (1996).
 - 15. Patel, KJ, Yu, VPCC, Lee, H et al. Involvement of Brca2 in DNA repair. Mol Cell 1, 347-357 (1998).
- 16. Tutt, A, Gabriel, A, Bertwistle, D et al. Absence of brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol 9, 1107-1110 (1999).

- 17. Davies, AA, Masson, JY, McIlwraith, MJ et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. *Mol Cell* 7, 273-282. (2001).
- 18. Story, RM, Weber, IT & Steitz, TA. The structure of the E. coli recA protein monomer and polymer. *Nature* 355, 318-325. (1992).
 - 19. Sibanda, BL & Thornton, JM. Beta-hairpin families in globular proteins. *Nature* 316, 170-174. (1985).
- 20. Story, RM & Steitz, TA. Structure of the recA protein-ADP complex. Nature 355, 374-376. (1992).
 - 21. Sung, P & Robberson, DL. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. *Cell* 82, 453-461 (1995).
- 22. Baumann, P, Benson, FE & West, SC. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. *Cell* 87, 757-766. (1996).
 - 23. Ogawa, T, Yu, X, Shinohara, A & Egelman, EH. Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259, 1896-1899. (1993).
- 24. Yu, X, Jacobs, SA, West, SC, Ogawa, T & Egelman, EH.

 Domain structure and dynamics in the helical filaments formed
 by RecA and Rad51 on DNA. Proc Natl Acad Sci U S A 98, 84198424. (2001).
- 25. Haaf, T, Golub, EI, Reddy, G, Radding, CM & Ward, DC.
 Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc Natl Acad Sci U S A 92, 2298-2302 (1995).

- 26. Scully, R, Chen, J, Plug, A et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88, 265-275. (1997).
- 27. Boggon, TJ & Shapiro, L. Screening for phasing atoms in protein crystallography. Structure Fold Des 8, R143-149.

 (2000).
 - 28. Deacon, AM, Weeks, CM, Miller, R & Ealick, SE. The Shake-and-Bake structure determination of triclinic lysozyme. *Proc Natl Acad Sci U S A* **95**, 9284-9289. (1998).
- 29. La Fortelle, E & Bricogne, G. Maximum-likelihood heavyatom parameter refinement in the MIR and MAD methods. *Methods Enzymol* 276, 472-294 (1997).
 - 30. Perrakis, A, Morris, R & Lamzin, VS. Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6, 458-463. (1999).

- 31. Murshudov, GN, Vagin, AA & Dodson, EJ. Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Crystallogr. D 54, 905-921 (1997).
- 32. Bruenger, A. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905-921 (1998).
 - 33. Kraulis, PJ. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. *J. Appl. Cryst.* **24**(1991).
- 25 34. Merritt, EA & Bacon, DJ. Raster3D photorealistic molecular graphics. Meth. Enzymol. 277, 505-524 (1997).

Claims

- A crystal of a RAD51-BRC repeat sequence complex.
- 2. A crystal according to claim 1 having the orthorhombic space group $P2_12_12_1$, and unit cell dimensions $a=57.30 \ \text{Å} \pm 5\%$, $b=59.14 \ \text{Å} \pm 5\%$, $c=77.20 \ \text{Å} \pm 5\%$.
- 3. A crystal according to claim 1 which diffracts X-rays for the determination of atomic coordinates of the complex to a resolution of better than 2.0 Å.
- 4. A crystal according to claim 1 having the three dimensional atomic coordinates of Table 1.
 - 5. A RAD51-BRC repeat sequence chimaera protein in which the RAD51 is covalently joined to the BRC repeat sequence.
 - 6. A RAD51 paralogue-BRC repeat sequence chimaera protein in which the RAD51 paralogue is covalently joined to the BRC repeat sequence.
 - 7. A nucleic acid encoding the chimaera protein of claim 5 or 6.
 - 8. A mutant RAD51 which has been modified to reduce or eliminate the tendency of RAD51 to spontaneously aggregate into high molecular weight complexes.
 - 9. A mutant RAD51 which has been modified by substitution, deletion and/or addition of at least one amino acid in the 85-GFTTATE-91 sequence of human RAD51, or the corresponding sequence in other forms of RAD51.
- 25 10. A nucleic acid encoding the mutant RAD51 of claim 8 or 9.
 - 11. A method of homology modelling comprising the steps of: (a) aligning a representation of an amino acid sequence of a target protein of unknown three-dimensional structure

with the amino acid sequence of the RAD51 or the BRC repeat sequence of Table 1 to match homologous regions of the amino acid sequences;

(b) modelling the structure of the matched homologous regions of said target protein of unknown structure on the corresponding regions of the RAD51 or BRC repeat sequence structure as defined by Table 1; and

5

10

15

25

30

- (c) determining a conformation for said target protein of unknown structure which substantially preserves the structure of said matched homologous regions.
- 12. A method for determining the structure of a protein, which method comprises;

providing the co-ordinates of Table 1, and positioning the co-ordinates in the crystal unit cell of said protein so as to provide a structure for said protein.

13. A method for determining the structure of a compound bound to RAD51 or a BRC repeat sequence, said method comprising:

providing a crystal of a complex in which a compound is bound to RAD51 or a BRC repeat sequence; and

determining the structure of said complex by employing the data of Table 1.

14. A computer-based method for the analysis of the interaction of a molecular structure with RAD51 or BRC repeat sequence, which comprises:

providing the structure of RAD51 or a BRC repeat sequence as defined by Table 1;

providing a molecular structure to be fitted to said RAD51 or BRC repeat sequence structure; and

fitting the molecular structure to the RAD51 or BRC repeat sequence structure.

15. A computer-based method for the analysis of the interaction of a molecular structure with RAD51 or BRC repeat sequence, which comprises:

providing the coordinates of at least two atoms of RAD51 or a BRC repeat sequence structure as defined by Table 1; providing a molecular structure to be fitted to said coordinates; and

fitting the structure to the said coordinates.

16. A method of determining the biological activity of a compound, which comprises:

5

15

identifying a compound which fits to RAD51 or a BRC repeat sequence by performing the method of claim 14 or 15; obtaining or synthesizing the compound; and testing the compound in an in vivo or in vitro biological system in order to determine the activity of the compound.

17. A compound which is identified by the method of claim 14 or 15.

FIGURE 1

Table 1 Coordinate data on the BRC4-RAD51 complex.

ATOM	1 CB GLU A 98	54.122	26.467	6.057	7 1.00 41.21	ת
ATOM	2 CG GLU A 98	55.636				A A
ATOM	3 CD GLU A 98	56.085				A
MOTA	4 OE1 GLU A 98			5.147		A
ATOM	5 OE2 GLU A 98	56.901		4.134		A
ATOM	6 C GLU A 98	51.999		4.744	1.00 34.53	A
ATOM	7 O GLU A 98	51.235				A
ATOM ATOM	8 N GLUA 98 9 CA GLUA 98	53.866				A
ATOM		53.509				A
ATOM		51.587				A
ATOM	11 CA ILE A 99 12 CB ILE A 99	50.181				A
ATOM	13 CG2 ILE A 99	49.982 48.540		3.143		A
ATOM	14 CG1 ILE A 99	50.421		3.115 1.790		A
ATOM	15 CD1 ILE A 99	50.399		. 678		A
ATOM	16 C ILE A 99	49.542	24.625	5.516		A
MOTA	17 O ILE A 99	50.152	23.893	6.292		A A
ATOM	18 N ILE A 100	48:299		5.728		A
ATOM	19 CA ILE A 100	47.524	24.619	6.885		A
ATOM	20 CB ILE A 100	46.967	25.825	7.679		A
MOTA	21 CG2 ILE A 100	45.957	25.344	8.714	1.00 18.72	A
ATOM	22 CG1 ILE A 100	48.113	26.580	8.358	1.00 19.95	A
ATOM	23 CD1 ILE A 100	47.669	27.845	9.089	1.00 22.55	Α
ATOM ATOM	24 C ILE A 100 25 O ILE A 100	46.356	23.824	6.315	1.00 15.59	A
ATOM	25 O ILE A 100 26 N GLN A 101	45.805	24.185	5.275	1.00 14.24	A
ATOM	27 CA GLN A 101	45.999	22.731	6.978	1.00 13.53	A
ATOM	28 CB GLN A 101	44.887 45.348	21.907 20.464	6.523	1.00 15.11	A
ATOM	29 CG GLN A 101	46.592	20.374	6.330 5.458	1.00 19.35 1.00 26.50	A
ATOM	30 CD GLN A 101	46.427	19.451	4.273	1.00 26.30	A
ATOM	31 OE1 GLN A 101	45.487	19.588	3.488	1.00 35.05	A A
ATOM	32 NE2 GLN A 101	47.350	18.507	4.129	1.00 33.03	A
ATOM	33 C GLN A 101	43.786	21.993	7.564	1.00 13.47	Ä
ATOM	34 O GLN A 101	43.959	21.568	8.706	1.00 15.75	A
ATOM	35 N ILE A 102	42.654	22.557	7.161	1.00 10.05	A
ATOM	36 CA ILE A 102	41.520	22.748	8.060	1.00 8.05	A
ATOM ATOM	37 CB ILE A 102		23.983	7.633	1.00 8.89	A
ATOM	38 CG2 ILE A 102 39 CG1 ILE A 102	39.544	24.206	8.599	1.00 8.83	A
ATOM	40 CD1 ILE A 102	41.620	25.215	7.602	1.00 11.08	A
ATOM	41 C ILE A 102	41.023 40.604	26.415	6.880	1.00 9.86	A
ATOM	42 O ILE A 102	40.166	21.531 21.054	8.085	1.00 8.43	A
ATOM	43 N THR A 103	40.309	21.034	7.042 9.282	1.00 8.83	A
ATOM	44 CA THR A 103	39.446	19.868	9.411	1.00 8.44 1.00 9.31	A
MOTA	45 CB THR A 103	39.386	19.368	10.872	1.00 10.02	A A
MOTA	46 OG1 THR A 103	38.605	18.164	10.929	1.00 11.79	A
ATOM	47 CG2 THR A 103	38.755	20.417	11.776	1.00 11.70	. A
ATOM	48 C THR A 103.	38.020	20.116	8.923	1.00 9.93	A
ATOM	49 O THR A 103	37.449		9.141	1.00 8.54	A
ATOM	50 N THR A 104	37.456	19.110	8.259	1.00 10.38	A
MOTA MOTA	51 CA THR A 104 52 CB THR A 104	36.091	19.174	7.737	1.00 11.01	A
ATOM	52 CB THR A 104 53 OG1 THR A 104	35.912	18.256	6.510	1.00 11.26	A
MOTA	54 CG2 THR A 104	36.128 36.892	16.896	6.914	1.00 14.11	A
MOTA	55 C THR A 104	35.090	18.613	5.415	1.00 12.62	A
MOTA	56 O THR A 104	33.878	18.688 18.830	8.784 8.604	1.00 11.39	A
MOTA	57 N GLY A 105	35.598	18.109	9.868	1.00 12.53 1.00 10.65	A
MOTA	58 CA GLY A 105	34.724	17.582	10.901	1.00 10.65	A A
MOTA	59 C GLY A 105	34.619	16.071	10.780	1.00 11.37	A
MOTA	60 O GLY A 105	34.156	15.390	11.699	1.00 13.32	Ä
TOM	61 N SER A 106	35.052	15.550	9.634	1.00 12.40	A
TOM	62 CA SER A 106	35.033	14.115	9.363	1.00 14.20	A
TOM	63 CB SER A 106	34.242	13.835	8.079	1.00 14.61	A

(
ATOM		OG SER A 106	34.505		7.589		A
ATOM	65 0		36.453		9.217		A
ATOM ATOM	66 C		37.230		8.391		A
MOTA		LYS A 107 A LYS A 107	36.788 38.117		10.017 9.951		A
ATOM		B LYS A 107	38.279		11.026		A
ATOM		G LYS A 107	38.184		12.456		A
ATOM		D LYS A 107	38.430		13.417		A A
ATOM		E LYS A 107	38.312		14.868		A
ATOM	73 N	Z LYS A 107	38.599		15.791		A
ATOM	74 C	LYS A 107	38.359	11.310	8.587	1.00 16.91	A
ATOM	75 O		39.446	11.430	8.020	1.00 16.59	A
MOTA	76 N		37.345	10.623	8.068	1.00 16.08	A
ATOM ATOM		A GLU A 108	37.464	9.970	6.770	1.00 16.56	A
ATOM	78 C		36.252 36.214	9.072 7.829	6:508 7.379	1.00 18.83	A
ATOM	80 · C		37.473	6.991	7.241	1.00 24.11 1.00 29.12	A
ATOM		E1 GLU A 108	37.798	6.583	6.104	1.00 31.85	A A
ATOM		E2 GLU A 108	38.136	6.742	8.268	1.00 31.72	A
ATOM .	83 C		37.611	10.973	5.641	1.00 14.32	A
MOTA	84 O		38.403	10.768	4.720	1.00 15.54	A
ATOM	85 N		36.842	12.057	5.703	1.00 14.02	A
ATOM	86 C		36.920	13.072	4.667	1.00 13.21	A
ATOM ATOM	87 C	•	35.772	14.076	4.823	1.00 14.04	A
ATOM		D1 LEU A 109	35.622 35.590	15.125 14.448	3.721 2.353	1.00 15.48 1.00 17.82	A
ATOM		D2 LEU A 109	34.345	15.925	3.958	1.00 17.82	A A
ATOM	91 C	LEU A 109	38.280	13.769	4.754	1.00 13.78	A
ATOM	92 O		38.896	14.070	3.731	1.00 15.30	A
ATOM	93 N	ASP A 110	38.751	14.014	5.977	1.00 13.76	A
ATOM	94 C		40.056	14.644	6.170	1.00 14.88	Α
MOTA	95 CI		40.349	14.864	7.661	1.00 15.02	A
ATOM ATOM	96 C0	G ASP A 110 D1 ASP A 110	39.606	16.057	8.240	1.00 15.43	A
ATOM		D2 ASP A 110	38.930 39.706	16.782 16.272	7.475	1.00 15.66	A
ATOM	99 C	ASP A 110	41.152	13.762	9.471 5.566	1.00 15.62 1.00 15.86	A
ATOM	.100 O	ASP A 110	42.067	14.261	4.910	1.00 15.60	A A
ATOM	101 N	LYS A 111	41.061	12.451	5.788	1.00 17.06	A
ATOM	102 CA		42.056	11.528	5.242	1.00 19.14	A
ATOM	103 CE		41.773	10.094	5.692	1.00 21.83	A
MOTA	104 CG		41.970	9.845	7.176	1.00 28.51	A
MOTA MOTA	105 CE		41.702	8.384	7.515	1.00 32.83	A
ATOM	100 CE		41.819 41.489	8.123 6.707	9.007 9.342	1.00 35.12 1.00 37.22	A
MOTA	108 C	LYS A 111	42.070	11.585	3.720	1.00 37.22	A A
MOTA	109 0	LYS A 111	43.136	11.599	3.098	1.00 19.72	A
MOTA	110 N	LEU A 112	40.885	11.616	3.119	1.00 18.52	A
ATOM	111 CA	•	40.771	11.680	1.666	1.00 18.11	A
ATOM	112 CB		39.300	11.662	1.244	1.00 18.15	A
ATOM ATOM	113 CG 114 CD	LEU A 112 1 LEU A 112	39.045	11.712	266	1.00 19.29	A
ATOM		2 LEU A 112	39.575 37.556	10.438 11.857	906 538	1.00 20.79	A
MOTA	116 C	LEU A 112	41.424	12.958	1.151	1.00 18.97 1.00 18.62	A A
ATOM	117 0	LEU A 112	42.010	12.979	.063	1.00 18.72	A
MOTA	118 N	LEU A 113	41.315	14.021	1.944	1.00 18.70	A
ATOM	119 CA		41.879	15.321	1.592	1.00 18.77	A
ATOM	120 CB		41.003	16.442	2.160	1.00 18.91	A
ATOM	121 CG		39.611	16.587	1.546	1.00 21.50	A
ATOM ATOM		1 LEU A 113 2 LEU A 113	38.779 39.735	17.536 17.096	2.391	1.00 21.32	A
ATOM	123 CD.	LEU A 113	43.313	17.096	.120 2.085	1.00 22.16 1.00 20.09	A A
ATOM	125 0	LEU A 113	43.843	16.606	2.003	1.00 20.09	A A
MOTA	126 N	GLN A 114	43.935	14.392	2.498	1.00 19.91	A
MOTA	127 CA		45.313	14.420	2.974	1.00 21.17	A.
ATOM	128 CB	GLN A 114	46.245	14.852	1.841	1.00 22.49	A
ATOM ATOM	129 CG	GLN A 114	46.229	13.937	. 635	1.00 23.81	A
MOTA MOTA	130 CD	GLN A 114 1 GLN A 114	47.072	14.475	504	1.00 24.77	A
	101 OE.	T GTN W TIA	48.272	14.698	351	1.00 27.78	A

(
ATOM	132		GLN 2		46.444			1.00 26.62	A
MOTA	133	С		A 114	45.521			1.00 20.81	A
ATOM	134	0		A 114	46.588	15.938		1.00 24.10	A
MOTA	135 136	N		A 115	44.506			1.00 18.52	A
MOTA	136	CA C		A 115 A 115	44.628	16.302		1.00 19.04	A
ATOM ATOM	138	Ö		A 115	43.440 43.026	17.215 17.462		1.00 17.02 1.00 18.66	A
ATOM	139	N		A 116	42.886	17.714		1.00 15.87	A A
ATOM	140	CA		1116	41.740	18.600		1.00 13.67	A
ATOM	141	С		A 116	41.760	19.626		1.00 14.23	A
ATOM	142	0		A 116	42.488	19.462		1.00 14.98	A
ATOM	143	N	ILE A	117	40.967	20.683	4.393	1.00 12.49	A
ATOM	144	CA	ILE A		40.907	21.738	3.384	1.00 11.37	· А
ATOM	145	CB.	ILE A		39.677			1.00 10.73	A
ATOM	146		ILE A		39.706	23.836		1.00 12.58	A
ATOM	147	CD1	ILE A		38.396	21.819		1.00 12.81	A
ATOM ATOM	148 149	CDI		1117	38.180 42.195	21.302 22.559		1.00 14.44 1.00 10.95	A A
ATOM	150	Ö	ILE A		42.193	23.093	4.466	1.00 10.93	A A
ATOM	151	N	GLU A		42.849	22.665		1.00 10.51	A
ATOM	152	CA	GLU A		44.132	23.343	2.151	1.00 12.58	A
ATOM	153	CB	.GLU A	118.	44.870	22.714	.968	1.00 15.64	A
ATOM	154	CG	GLU A		46.365	22.783	1.022	1.00 21.41	A
ATOM	155	CD	GLU A		46.996	21.963	085	1.00 20.95	A
ATOM	156		GLU A		47.180	22.499	-1.194	1.00 23.24	A
ATOM	157		GLU A		47.284	20.773	.156	1.00 26.48	A
ATOM ATOM	158 159	С 0	GLU A		44.120 43.449	24.861 25.384	1.982 1.098	1.00 12.88 1.00 12.57	A
ATOM	160	И	THR A		44.872	25.569	2.822	1.00 12.57	A A
ATOM	161	CA	THR A		44.962	27.017	2.681	1.00 11.45	Ā
ATOM	162	CB	THR A		45.553	27.700	3.946	1.00 11.65	A
MOTA	163	OG1			46.863	27.180	4.220	1.00 12.69	A
ATOM	164	CG2	THR A		44.650	27.468	5.149	1.00 11.67	A
MOTA	165	С	THR A		45.891	27.282	1.492	1.00 11.98	·A
ATOM	166	0	THR A		46.769	26.467	1.194	1.00 12.27	A
ATOM	167	N	GLY A		45.679	28.397	.798	1.00 10.27	A
ATOM ATOM	168 169	CA C	GLY A		46.526	28.740	333	1.00 10.55	A
ATOM	170	0	GLY A		46.071 46.737	28.245 28.490	-1.690 -2.700	1.00 10.39 1.00 11.43	A A
ATOM	171	N	SER A		44.948	27.534	-1.726	1.00 10.13	A
ATOM	172	CA	SER A		44.423	27.028	-2.984	1.00 9.86	A
ATOM	173	CB	SER A		45.008	25.645	-3.299	1.00 13.87	A
MOTA	174	ΘG	SER A	121	44.622	24.700	-2.326	1.00 19.34	A
ATOM	175	C	SER A		42.904	26.947	-2.918	1.00 9.08	A
ATOM	176	0	SER A		42.302	27.194	-1.875	1.00 8.68	. A
ATOM	177 178	n Ca	ILE A		42.298	26.611	-4.048	1.00 9.44	A
ATOM ATOM	179	CB	ILE A		40.854 40.360	27.090	-4.154 -5.505	1.00 10.10 1.00 10.40	. A
ATOM	180		ILE A		38.858	26.863	-5.663	1.00 10.40	. A A
ATOM	181		ILE A		40.702	28.579	-5.586	1.00 13.97	A
MOTA	182		ILE A		40.453	29.187	-6.952	1.00 14.82	A
ATOM	183	С	ILE A		40.381	25.056	-4.072	1.00 11.37	A
ATOM	184	0	ILE A		40.982	24.162	-4.666	1.00 12.71	A
ATOM	185	N	THR A		39.323	24.832	-3.304	1.00 9.56	A
ATOM	186 187	CA	THR A		38.708	23.513	-3.212	1.00 9.79	A
ATOM ATOM	188	CB OG1	THR A		38.526 39.811	23.041 22.851	-1.760 -1.158	1.00 10.66 1.00 13.42	A
ATOM	189		THR A		37.751	21.719	-1.724	1.00 13.42	A A
ATOM	190	C	THR A		37.339	23.769	-3.827	1.00 8.71	A
ATOM	191	0	THR A		36.581	24.603	-3.329	1.00 10.46	A
ATOM	192	N	GLU A		37.041	23.084	-4.926		A
ATOM	193	CA	GLU A		35.770	23.256	-5.624	1.00 9.53	A
ATOM	194		GLU A		36.043	23.472	-7.115	1.00 12.39	A
ATOM		·CG	GLU A		34.820	23.549	-8.006	1.00 13.73	A
ATOM ATOM	196 _. 197	CD OE 1	GLU A GLU A	124	35.199 36.273	23.914 23.462	-9.429 -9.887	1.00 17.73 1.00 16.72	A A
ATOM	198		GLU A		34.428	•	-10.086	1.00 18.72	A A
ATOM	199	C	GLU A		34.900	22.025	-5.399	1.00 10.21	A
			_						

(
MOTAT	200	_	GLU A 124	35.	283 20.93	11 -5.749	1.00 10.78	А
ATOM	201		MSE A 125		729 22.23			A
ATOM ATOM	202 203				825 21.14			A
ATOM	204				413 21.23			A
ATOM	205				605 21.45			A
ATOM	206				164 21.23 991 22.74			A
ATOM	207		MSE A 125		595 21.12			A A
ATOM	208	0	MSE A 125		878 22.12			A
ATOM	209		PHE A 126		361 19.98		1.00 13.37	A
MOTA	210				220 19.82			A
ATOM ATOM	211 212				634 19.08			A
ATOM	212		PHE A 126 1 PHE A 126			•		A
ATOM	214		2 PHE A 126			00 -8.783 55 -10.155		A
ATOM	215		1 PHE A 126					A
ATOM	216		2 PHE A 126			7 -10.966		A A
MOTA	217	CZ	PHE A 126	33.		3 -10.682		A
ATOM	218	С	PHE A 126	29.				A
ATOM	219	0	PHE A 126	29.				A
ATOM	220	N	GLY A 127	27.1				A
ATOM ATOM	221 222	CA C	GLY A 127 GLY A 127	26.				A
ATOM	223	o.	GLY A 127	25.0 25.9			1.00 24.79	A
ATOM	224	N	GLU A 128		354 · 19.56		1.00 24.48 1.00 27.02	A A
MOTA	225	CA	GLU A 128	23.2	•		1.00 27.02	A
ATOM	226	CB	GLU A 128	21.9			1.00 31.81	Α.
ATOM	227	CG	GLU A 128	21.8			1.00 36.61	A
ATOM ATOM	228	CD	GLU A 128	21.8	389 21.19		1.00 39.77	A
ATOM	229 ·230	OE1		21.1			1.00 42.32	A
ATOM	231	C	GLU A 128	22.6 23.0			1.00 41.49	A
MOTA	232	ŏ	GLU A 128	23.7			1.00 27.92 1.00 27.36	A
ATOM	233	N	PHE A 129	22.2	269 21.56		1.00 26.59	A A
MOTA	234	CA	PHE A 129	22.0			1.00 26.34	A
ATOM	235	CB	PHE A 129	, 20.9			1.00 26.99	A
ATOM	236	CG	PHE A 129	20.6			1.00 27.71	A
ATOM ATOM	237 238		PHE A 129 PHE A 129	21.6			1.00 26.29	A
ATOM	239	CE1	PHE A 129	19.3 21.2			1.00 27.59 1.00 27.10	A
ATOM	240		PHE A 129	18.9			1.00 27.10	A A
ATOM	241	CZ	PHE A 129	19.9			1.00 28.18	A
ATOM	242	С	PHE A 129	21.5		7 -1.312	1.00 26.38	A
ATOM	243	0	PHE A 129	20.7			1.00 26.54	A
ATOM ATOM	244 245	N CA	ARG A 130 ARG A 130	22.0			1.00 25.28	A
ATOM	246	CB	ARG A 130	21.7	_		1.00 24.10	A
ATOM	247	ĊĠ	ARG A 130	20.2 19.2			1.00 27.41 1.00 32.24	A A
ATOM	248	CD	ARG A 130	17.8			1.00 38.42	Ä
ATOM	249	NE	ARG A 130	17.0			1.00 44.65	A
ATOM	250	CZ	ARG A 130	15.7			1.00 48.26	A
ATOM ATOM	251 252		ARG A 130 ARG A 130	15.1			1.00 50.05	A
ATOM	253	C	ARG A 130	15.1 22.6			1.00 49.61	A
ATOM	254	ŏ	BDG B 130	. 22.6			1.00 21.02 1.00 20.30	A
ATOM	255	N	THR A 131	23.5			1.00 20.30	A A
ATOM	256	CA	THR A 131	24.4			1.00 17.15	A
ATOM	257	СВ	THR A 131	25.12		-2.351	1.00 19.70	A
ATOM	258		THR A 131	25.70			1.00 21.01	A
ATOM ATOM	259 260		THR A 131	24.07		-3.439	1.00 22.19	A
ATOM	261	С 0	THR A 131 THR A 131	25.60 26.45			1.00 16.43	A
ATOM	262	N	GLY A 132	25.58		.212 .810	1.00 15.57	A N
ATOM	263		GLY A 132	26.58		1.836	1.00 15.23 1.00 14.02	A A
ATOM	264	С	GLY A 132	27.45		1.598	1.00 13.72	A
ATOM	265		GLY A 132	28.11	18 19.935	2.524	1.00 13.81	A
ATOM	266		LYS A 133	27.46		.374	1.00 12.58	A
ATOM	267	CA	LYS A 133	28.30	6 21.140	.060	1.00 12.45	A

MOTA	268	CE	LYS A 133	28.111	21.557	-1.408	1.00 13.99	A
MOTA	269	CG	LYS A 133	26.687				A
ATOM	270) CE	LYS A 133	26.511				A
ATOM	271	. CE	LYS A 133	25.098				A
ATOM	272	NZ		24.906				A
ATOM	273		LYS A 133	28.111				
ATOM	274		LYS A 133	29.084				A
ATOM	275		THR A 134	26.866		_		A
ATOM	276			26.615		_		A
ATOM	277			25.169				A
ATOM	278		1 THR A 134	24.999				A
ATOM	279		2 THR A 134			. 622		A
ATOM	280		THR A 134	24.874 26.892				A
ATOM	281		THR A 134			3.585		A
ATOM	282		GLN A 135	27.315		4.357	1.00 11.86	A
ATOM	283			26.668 26.920		3.964	1.00 11.19	A
ATOM	284					5.339	1.00 9.68	A
ATOM	285			26.391	20.419	5.581	1.00 12.98	A
ATOM	286			24.923	20.247	5.243	1.00 15.40	A
ATOM	287		GLN A 135 1 GLN A 135	24.058	21.355	5.807	1.00 19.13	A
				23.318	22.011	5.071	1.00 22.64	A
MOTA	288		2 GLN A 135	24.141	21.570	7.115	1.00 16.98	A
MOTA	289	C	GLN A 135	28.420	21.868	5.605	1.00 10.76	A
ATOM	290	0	GLN A 135	28.859	22.279	6.679	1.00 9.99	A
ATOM	291	N	ILE A 136	29.204	21,432	4.624	1.00 9.71	Α
ATOM	292	CA	ILE A 136	30.655	21.449	4.761	1.00 10.04	A
ATOM	293	CB	ILE A 136	31.345	20.817	3.528	1.00 9.93	A
ATOM	294		2 ILE A 136	32.840	21.125	3.548	1.00 12.14	A
ATOM	295		1 ILE A 136	31.113	19.303	3.528	1.00 12.11	A
ATOM	296		1 ILE A 136	31.574	18.602	2.263	1.00 10.81	A
ATOM	297	С	ILE A 136	31.112	22.896	4.924	1.00 10.64	A
ATOM	298	0	ILE A 136	31.962	23.195	5.764	1.00 9.71	A
ATOM	299	N	CYS A 137	30.537	23.796	4.129	1.00 10.36	A
ATOM	300	CA	CYS A 137	30.896	25.209	4.210	1.00 10.00	A
ATOM	301	CB	CYS A .137	30.135	26.025	3.164	1.00 8.86	A
ATOM	302	SG	CYS A 137	30.711	25.760	1.458	1.00 13.33	A
ATOM	303	С	CYS A 137	30.620	25.777	5.598	1.00 7.98	Α
ATOM	304	0	CYS A 137	31.448	26.500	6.151	1.00 10.27	A
ATOM	305	N	HIS A 138	29.461	25.456	6.165	1.00 8.44	A
ATOM	306	CA	HIS A 138	29.131	25.960	7.493	1.00 7.87	A
MOTA	307	CB	HIS A 138	27.675	25.634	7.864	1.00 9.77	A
ATOM	308	CG	HIS A 138	26.672	26.585	7.280	1.00 9.79	A
ATOM	309		HIS A 138	25.904	27.537	7.861	1.00 10.42	Α
ATOM	310		HIS A 138	26.385	26.629	5.933	1.00 10.42	A
ATOM	311		HIS A 138	25.482	27.570	5.708	1.00 12.62	A
ATOM	312		HIS A 138	25.175	28.136	6.860	1.00 10.74	A
ATOM	313	С	HIS A 138	30.070	25.384	8.549	1.00 8.06	A
ATOM	314	0	HIS A 138	30.481	26.091	9.465	1.00 9.19	A
ATOM	315	N	THR A 139	30.412	24.107	8.422	1.00 7.84	A
ATOM	316	CA	THR A 139	31.306	23.489	9.395	1.00 8.21	A
ATOM	317	CB	THR A 139	31.439	21.970	9.154	1.00 9.18	A
ATOM	318		THR A 139	30.147	21.358	9.273	1.00 11.07	A
ATOM	319		THR A 139	32.372	21.344	10.186	1.00 9.48	Α
ATOM	320	С	THR A 139	32.684	24.151	9.336	1.00 8.27	Α
ATOM	321	0	THR A 139	33.249	24.504	10.365	1.00 8.65	Α
ATOM	322	N	LEU A 140	. 33.208	24.328	8.126	1.00 6.73	Α
ATOM	323	CA	LEU A 140	34.516	24.952	7.936	1.00 7.10	A
	. 324	CB	LEU A 140	34.900	24.938	6.454	1.00 6.22	A
ATOM	325	CG	LEU A 140	35.191	23.585	5.806	1.00 7.89	A
ATOM	326		LEU A 140	35.368	23.765	4.298	1.00 9.36	A
ATOM	327		LEU A 140	36.446	22.975	6.425	1.00 10.17	A
ATOM	328	С	LEU A 140	34.572	26.389	8.447	1.00 8.54	A
ATOM	329	0	LEU A 140	35.629	26.856	8.879	1.00 8.74	A
ATOM	330	N	ALA A 141	33.444	27.094	8.380	1.00 8.10	A
ATOM	331	CA	ALA A 141	33.397	28.479	8.840	1.00 7.81	A
ATOM	332	CB.	ALA A 141	32.044	29.098	8.513	1.00 7.95	Α
ATOM	333	С	ALA A 141	33.664	28.551	10.339	1.00 8.11	A
ATOM	334	0	ALA A 141	34.018	29.612	10.871	1.00 8.73	A
ATOM	335	N	VAL A 142	33.488	27.419	11.018	1.00 7.57	A

ATOM	336	CA	VA	LA	142		33.746	5 27.349	12.450	1.00	8.68	A
ATOM	337				142		32.628			1.00		
ATOM	338				142		32.926				9.23	A
ATOM	339				142		31.292					A
ATOM ATOM	340 341				142		35.087			1.00		A
ATOM	342				143		35.889 35.345			1.00	10.90	A
ATOM	343				143		36.601			1.00		A A
ATOM	344				143		36.637			1.00		A
ATOM '	345	OG1			143		36.497	23.550		1.00		A
ATOM	346				143		35.521			1.00	9.22	A
ATOM	347				143		37.839			1.00	9.03	A
ATOM ATOM	348 349	И			143 144		38.929				10.11	, A
ATOM	350	CA			144		37.688 38.848		11.010 10.580	1.00	8.10	A
ATOM	351	CB			144		38.514		9.345	1.00	9.39 9.38	A A
MOTA	352	SG			144		37.374		9.667		12.00	A
MOTA	353	С	CYS	A	144	٠	39.315	28.200	11.719	1.00	9.07	A
ATOM	354	0			144		40.447		11.712		10.50	A
MOTA	355	N			145		38.447		12.709	1.00	8.72	A
ATOM ATOM	356 357	CA CB			145 145		38.755 37.465		13.858		10.01	A
ATOM	358	CG			145		36.725		14.403		10.49	A A
ATOM	359	CD			145		35.499		13.976		13.67	. A
ATOM	360	OE1	GLN	Α	145		35.543	31.907	15.086		14.78	A
MOTA	361	NE2	GLN	Α	145		34.398	31.355	13.234		10.01	. А
ATOM	362	С			145		39.477	28.521	14.985		10.04	A
ATOM ATOM	363 364	O N			145		39.982	.29.143	15.926	1.00		A
ATOM	365	CA			146 146		39.524 40.179	27.198 26.373	14.886 15.898	1.00	9.00	A
ATOM	366	CB			146		39.875	24.893	15.653		10.02	A A
MOTA	367	CG			146		38.469	24.337	15.874		11.36	A
ATOM	368	CD1			146		38.393	22.952	15.256	1.00	11.83	A
ATOM ATOM	369 370	CD2			146		38.151	24.280	17.365		15.14	
ATOM	371	. С			146 146		41.692 42.309	26.528 26.979	15.932 14.968		11.26	A
ATOM	372	N			147		42.309	26.178	17.070		12.58	A A
ATOM	373	CD	PRO	A	147		41.680	25.866	18.367		12.30	A
ATOM	374	CA			147		43.764	26.265	17.202		11.87	A
ATOM ATOM	375 376	CB CG			147 147		44.010	25.732	18.608		13.51	A
ATOM	377	C			147		42.792	26.180 ⁻ 25.316	19.349 16.139		13.16	A A
ATOM	378	ō			147		43.670	24.321	15.796		12.36	A
ATOM	379	N	ILE	A	148		45.505	.25.602	15.620		12.68	A
ATOM	380	CA			148		46.072	24.736	14.596	1.00	13.79	A
MOTA	381	CB			148		47.433	25.279	14.105		15.52	A
ATOM ATOM	382 383	CG2	ILE				48.074	24.290 26.625	13.141		16.43	A
ATOM	384		ILE				47.216 48.492	27.326	13.397 12.980		19.02 23.77	A A
ATOM	385	C	ILE				46.212	23.285	15.060		12.90	A
ATOM	386	0	ILE	A	148		45.996	22.361	14.277		12.36	A
ATOM	387	N	ASP				46.538	23.074	16.335		13.06	A
ATOM	388	CA	ASP				46.687	21.708	16.833		13.17	A
ATOM ATOM	389 390	CB CG	ASP ASP				47.367 46.454	21.698 22.178	18.213		14.99	A
ATOM	391	OD1				۲.	46.334	23.404	19.326 19.522		15.68 15.33	A A
MOTA	392	OD2					45.856	21.318	20:005		18.19	A
MOTA	393	С	ASP	A	149		45.368	20.926	16.894	1.00		A
ATOM	394	0			149 .		45.374	19.700	17.034	1.00		A
ATOM ATOM	395 396	N CA	ARG ARG				44.237	21.624	16.789	1.00		A
ATOM	397		ARG				42.940 41.936	20.954 21.724	16.810 17.676	1.00		A A
ATOM	398		ARG				42.306	21.817	19.157	1.00		A
ATOM	399		ARG				41.143	22.378	19.964	1.00		A
ATOM ATOM	400		ARG				40.019	21.444	19.975	1.00		A
ATOM ATOM	401 402	CZ NH1	ARG				38.785 38.494	21.745 22.967	20.369	1.00		A
ATOM	403	NH2					37.838	20.815	20.791 20.338	1.00		A A
-					- -			,		1.00		t.

(_1			•.
MOTA	404 C ARG A 150	42.391 20.819 15.390 1.00 13.09	7
ATOM	405 O ARG A 150	41.246 20.404 15.195 1.00 13.09	A A
ATOM	406 N GLY A 151	43.212 21.183 14.407 1.00 12.45	A
ATOM	407 CA GLY A 151	42.797 21.082 13.017 1.00 12.19	A
ATOM	408 C GLY A 151	42.254 22.366 12.423 1.00 11.65	A
ATOM	409 O GLY A 151	41.647 22.354 11.353 1.00 12.49	Α
ATOM ATOM	410 N GLY A 152 411 CA GLY A 152	42.472 23.484 13.106 1.00 11.30	A
ATOM		41.969 24.747 12.599 1.00 10.67	A
ATOM	412 C GLY A 152 413 O GLY A 152	43.004 25.589 11.885 1.00 11.78	A
ATOM	414 N GLY A 153	44.135 25.155 11.659 1.00 10.04 42.603 26.805 11.522 1.00 11.68	A
ATOM	415 CA GLY A 153	42.603 26.805 11.522 1.00 11.68 43.504 27.713 10.842 1.00 12.29	A
ATOM	416 C GLY A 153	43.735 28.967 11.661 1.00 11.95	A
MOTA	417 O GLY A 153	44.413 29.892 11.210 1.00 14.26	A A
MOTA	418 N GLU A 154	43.178 28.991 12.870 1.00 13.09	· A
ATOM	419 . CA GLU A 154	43.310 30.138 13.765 1.00 13.65	A
ATOM	420 CB GLU A 154	44.722 30.185 14.359 1.00 15.09	A
ATOM	421 CG GLU A 154	44.924 29.184 15.479 1.00 17.51	A
ATOM ATOM	422 CD GLU A 154 423 OE1 GLU A 154	46.372 29.050 15.907 1.00 21.30	A
ATOM	423 OE1 GLU A 154 424 OE2 GLU A 154	47.095 30.070 15.921 1.00 21.05	Α
ATOM	425 C GLU A 154	46.779 27.920 16.244 1.00 21.68	A
ATOM	426 O GLU A 154	43.000 31.447 13.045 1.00 13.66 43.714 32.439 13.193 1.00 15.59	A
ATOM	427 N GLY A 155	43.714 32.439 13.193 1.00 15.59 41.921 31.444 12.271 1.00 12.01	A
ATOM	428 CA GLY A 155	41.549 32.638 11.540 1.00 11.09	A A
ATOM	429 C GLY A 155	40.055 32.792 11.354 1.00 11.53	A
ATOM	430 O GLY A 155	39.278 31.872 11.616 1.00 10.72	A
ATOM	431 N LYS A 156	39.654 33.976 10.903 1.00 11.50	A
ATOM	432 CA LYS A 156	38.252 34.277 10.655 1.00 11.09	· A
ATOM ATOM	433 CB LYS A 156 434 CG LYS A 156	38.048 35.789 10.561 1.00 11.40	A
ATOM	434 CG LYS A 156 435 CD LYS A 156	38.265 36.533 11.863 1.00 14.73	A
ATOM	436 CE LYS A 156	38.168 38.031 11.616 1.00 18.50 38.158 38.814 12.916 1.00 21.90	A
ATOM	437 NZ LYS A 156	38.158 38.814 12.916 1.00 21.90 38.016 40.271 12.640 1.00 26.01	A
ATOM	438 C LYS A 156	37.789 33.643 9.352 1.00 10.36	A
ATOM	439 O LYS A 156	38.599 33.213 8.529 1.00 9.77	A A
ATOM	440 N ALA A 157	36.477 33.593 9.168 1.00 9.56	A
ATOM	441 CA ALA A 157	35.919 33.037 7.949 1.00 8.82	A
ATOM	442 CB ALA A 157	35.042 31.831 8.262 1.00 9.17	A
ATOM ATOM	443 C ALA A 157 444 O ALA A 157	35.093 34.085 7.234 1.00 10.33	A
ATOM	445 N MSE 158	34.468 34.942 7.860 1.00 10.06 35.099 34.006 5.912 •.54 9.17	A
ATOM	446 CA MSE 158		AC1
ATOM	447 CB .MSE 158	34.321 34.913 5.097 .54 10.42 35.231 35.701 4.174 .54 11.72	AC1
ATOM	448 CG MSE 158	34.551 36.879 3.548 .54 13.13	AC1 AC1
ATOM	449 SE MSE 158	35.839 37.882 2.572 .54 15.92	AC1
ATOM	450 CE MSE 158	37.003 38.379 4.022 .54 11.46	AC1
ATOM	451 C MSE 158	33.391 34.013 4.298 .54 10.25	AC1
ATOM ATOM	452 O MSE 158 453 N TYR A 159	33.830 33.034 3.694 .54 10.22	AC1
ATOM		32.106 34.343 4.304 1.00 10.25	A
ATOM	454 CA TYR A 159 455 CB TYR A 159	31.111 33.534 3.616 1.00 10.01 30.201 32.892 4.676 1.00 9.57	A
ATOM	456 CG TYR A 159		A
ATOM	457 CD1. TYR A 159	29.410 31.677 4.242 1.00 10.37 28.533 31.730 3.158 1.00 11.98	A
ATOM	458 CE1 TYR A-159	27.786 30.609 2.783 1.00 13.38	A
ATOM	459 CD2 TYR A 159	29.520 30.474 4.943 1.00 11.85	A A
ATOM	460 CE2 TYR A 159	28.777 29.350 4.576 1.00 11.39	A
ATOM	461 CZ TYR A 159	27.914 29.425 3.498 1.00 13.64	A.
ATOM	462 OH TYR A 159	27.187 28.315 3.136 1.00 14.59	A
ATOM ATOM	463 C TYR A 159 464 O TYR A 159	30.267 34.333 2.630 1.00 10.25	A
ATOM	464 O TYR A 159 465 N ILE A 160	29.432 35.139 3.038 1.00 10.49	A
ATOM	466 CA ILE A 160	30.490 34.115 1.336 1.00 9.28 29.705 34.792 .314 1.00 9.69	A
ATOM	467 CB ILE A 160	29.705 34.792 .314 1.00 9.69 30.568 35.214896 1.00 9.03	A
ATOM	468 CG2 ILE A 160	29.678 35.780 -1.999 1.00 13.08	A A
ATOM	469 CG1 ILE A 160	31.592 36.265458 1.00 10.09	A
ATOM	470 CD1 ILE A 160	32.556 36.699 -1.554 1.00 8.81	A
MOTA	471 C ILE A 160	28.645 33.794135 1.00 10.60	A
		•	

MOTA	472	2 0	ILE A 160		28.960	22 751	700	1 00 10 00	•
ATOM	473		ASP A 161		27.390				A
ATOM	474				26.263				A
ATOM	475				25.293				A
ATOM	476				23.963				A
ATOM	477		1 ASP A 161		23.936				A
ATOM	478		2 ASP A 161		22.945				A A
ATOM	479		ASP A 161		25.520				A
ATOM	480	0	ASP A 161		25.437				A
ATOM	481	N	THR A 162		24.984	32.925	-2.226		A
ATOM	482	CA	THR A 162		24.221	33.347	-3.396		A
MOTA	483	CB	THR A 162		24.949	33.011	-4.718	1.00 16.70	A
MOTA	484	OG.	1 THR A 162		24.979	31.588	-4.897	1.00 17.06	A
ATOM	485	CG:	2 THR A 162		26.371	33.555	-4.708	1.00 16.05	A
MOTA	486	С	THR A 162		22.898	32.594	-3.409	1.00 18.68	A
MOTA	487	0	THR A 162		22.012	32.894	-4.212	1.00 19.52	A
MOTA	488	N	GLU A 163		22.771	31.629	-2.501	1.00 18.38	A
ATOM	489	CA	GLU A 163		21.589	30.772	-2.425	1.00 20.29	A
ATOM	490	CB	GLU A 163		22.031	29.318	-2.260	1.00 20.64	A
ATOM	491	CG	GLU A 163		23.048	28.837	-3.278	1.00 25.07	A
ATOM	492	CD	GLU A 163		22.527	28.909	-4.696	1.00 27.45	A
ATOM	493		L GLU A 163		22.624	29.991	-5.315	1.00 26.80	A
MOTA	494	OE2			22.009	27.883	-5.184	1.00 28.60	A
MOTA	495	С	GLU A 163		20.573	31.078	-1.332	1.00 20.03	A
MOTA	496	0	GLU A 163		19.466	30.539	-1.354	1.00 21.59	A
MOTA	497	N.	GLY A 164		20.948	31.915	372	1.00 19.41	Α
MOTA	498	CA	GLY A 164		20.043	32.234	.718	1.00 19.90	A
ATOM	499	C	GLY A 164		19.981	31.097	1.723	1.00 19.77	A
ATOM	500	0	GLY A 164		18.979	30.919	2.419	1.00 19.85	A
ATOM	501	N CZ	THR A 165		21.059	30.323	1.807	1.00 15.75	A
ATOM ATOM	502	CA ·CB	THR A 165		21.106	29.193	2.729	1.00 16.97	A
ATOM	503 504		THR A 165		21.388	27.879	1.973	1.00 16.58	A
ATOM	505	OG1 CG2			22.474	28.074	1.057	1.00 16.41	A
ATOM	506	C	THR A 165		20.149	27.435	1.205	1.00 19.06	Α
ATOM	507	Ö	THR A 165		22.117	29.344	3.864	1.00 16.78	A
ATOM	508	N	PHE A 166		22.512 22.543	. 28.359	4.492	1.00 16.85	A
ATOM	509	CA	PHE A 166		23.477	30.574 30.820	4.125 5.217	1.00 15.79	A
ATOM	510	СВ	PHE A 166		24.153	32.181	5.058	1.00 14.36 1.00 13.90	A
ATOM	511	CG	PHE A 166		25.137	32.498	6.154	1.00 13.90	A
MOTA	512	CD1			26.357	31.829	6.230	1.00 13.42	A A
ATOM	513	CD2			24.840	33.462	7.115	1.00 13.42	A
ATOM	514	CE1	PHE A 166		27.270	32.119	7.248	1.00 13.77	A
ATOM	515	CE2			25.744	33.759	8.135	1.00 13.84	A
MOTA	516	CZ	PHE A 166		26.963	33.086	8.202	1.00 14.21	A
ATOM	517	С	PHE A 166		22.650	30.805	6.498	1.00 16.02	A
ATOM	518	0	PHE A 166		21.637	31.502	6.592	1.00 15.82	A
ATOM	519	N	ARG A 167		23.073	30.018	7.482	1.00 14.61	A
ATOM	520	CA	ARG A 167		22.333	29.919	8.738	1.00 15.67	A
ATOM	521	CB	ARG A 167		21.574	28.590	8.785	1.00 17.46	A
MOTA	522	CG	ARG A 167		20.523	28.425	7.695	1.00 21.67	A
ATOM	523	CD	ARG A 167		19.307	29.307	7.944	1.00 26.33	Α
ATOM	524	NE	ARG A 167		18.267	29.086	6.940	1.00 30.64	A
ATOM	525	CZ	ARG A 167		18.256	29.639	5.731	1.00 32.90	A
ATOM	526		ARG A 167		19.229	30.462	5.362	1.00 32.52	Α.
ATOM	527		ARG A 167		17.272	29.362	4.884	1.00 34.53	. А
ATOM '	528	C	ARG A 167		23.206	30.046	9.984	1.00 14.69	A
ATOM	529	0	ARG A 167		23.897	29.099	10.375	1.00 13.43	A
ATOM ATOM	530 531	N	PRO A 168		23.186	31.223	10.627	1.00 14.89	A
ATOM	531 532	CD	PRO A 168		22.557	32.476	10.172	1.00 14.33	A
ATOM ATOM	532 533	CA CB	PRO A 168		23.984	31.445	11.836	1.00 15.39	A
ATOM	534	CG	PRO A 168 PRO A 168		23.561 23.315	32.846	12.273	1.00 14.97	A
ATOM	535	C .	PRO A 168		23.313	33.530 30.391	10.956	1.00 15.63	A
ATOM	536	Ö	PRO A 168	•	23.738	30.391	12.919 13.654	1.00 16.84 1.00 16.46	A
ATOM	537	N	GLU A 169		22.508	29.887	13.015	1.00 18.46	A A
ATOM	538	CA	GLU A 169		22.208	28.886	14.036	1.00 17.31	A A
ATOM	539	CB	GLU A 169		20.714	28.538	14.055	1.00 21.53	A
								~. ~~ ~~. ~~.	a

MOTA	540) CG	GLU A 169	20.140	28.117	12.717	1 00 26 56	
ATOM	541							A
				19.394				A
ATOM	542		1 GLU A 169	19.999			-	A
ATOM	543		2 GLU A 169	18.194			1.00 32.63	A
MOTA	544		GLU A 169	 23.029	27.614		1.00 16.74	A
MOTA	545	0	GLU A 169	23.365			1.00 15.48	A
ATOM	546	N	ARG A 170	23.349	27.268	12.615	1.00 14.29	A
ATOM	547	CA	ARG A 170	24.149			1.00 13.93	A
ATOM	548	СВ		24.206	25.757	10.867	1.00 15.66	A
ATOM	549			25.057	24.536			
ATOM	550						1.00 20.09	A
				24.452	23.251	11.095	1.00 23.76	A
ATOM	551			23.147	22.970	10.502	1.00 28.96	A
ATOM	552			22.019	22.859	11.197	1.00 31.03	A
MOTA	553		1 ARG A 170	22.031	23.000	12.514	1.00 33.04	A
MOTA	554	NH.	2 ARG A 170	20.875	22.616	10.573	1.00 35.19	A
ATOM	555	С	ARG A 170	25.557	26.301	12.899	1.00 13.95	A
ATOM	556	0	ARG A 170	26.167	25.387	13.455	1.00 12.96	A
MOTA	557	N	LEU A 171	26.070	27.518	12.736	1.00 12.17	A
ATOM	558	CA	LEU A 171	27.407	27.839	13.233	1.00 11.76	A
ATOM	559	СВ	LEU A 171	27.796	29.269	12.854	1.00 12.30	
ATOM	560	CG	LEU A 171					A
				27.693	29.625	11.371	1.00 11.31	A
ATOM	561		1 LEU A 171	28.133	31.070	11.170	1.00 12.66	A
ATOM	562		2 LEU A 171	28.552	28.677	10.546	1.00 12.20	A
ATOM	563	С	LEU A 171	27.447	27.687	14.755	1.00 11.70	A
MOTA	564	0	LEU A 171	28.425	27.190	15.311	1.00 11.76	A
MOTA	565	N	LEU A 172	26.382	28.114	15.427	1.00 11.75	A
ATOM	566	CA	LEU A 172	26.321	28.001	16.880	1.00 12.10	· A
ATOM	567	CB	LEU A 172	25.049	28.656	17.424	1.00 12.80	A
ATOM	568	CG	LEU A 172	24.981	30.178	17.302	1.00 14.86	A
ATOM	569		L LEU A 172	23.659	30.671	17.874	1.00 16.13	
ATOM	570		LEU A 172	26.153				A
ATOM	571	C			30.811	18.043	1.00 15.33	A
			LEU A 172	26.379	26.546	17.324	1.00 12.23	A
ATOM	572	0	LEU A 172	27.018	26.227	18.326	1.00 12.62	A
ATOM	573	N	ALA A 173 ·	25.712	25.665	16.580	1.00 12.72	A
ATOM	574	CA	ALA A 173	25.713	24.245	16.919	1.00 13.14	Α
ATOM	575	CB.	ALA A 173	24.720	23.486	16.041	1.00 11.87	Α
ATOM	576	С	ALA A 173	27.112	23.665	16.747	1.00 12.63	A
ATOM	577	0	ALA A 173	27.578	22.894	17.581	1.00 11.33	A
ATOM	578	N.	VAL A 174	27.787	24.034	15.662	1.00 10.42	A
ATOM	579	CA	VAL A 174	29.133	23.534	15.428	1.00 9.27	A
ATOM	580	, CB	VAL A 174	29.662	23.953	14.041	1.00 9.04	
ATOM	581	CG1		31.093	23.458	13.861		A
ATOM	582	CG2		28.763			1.00 8.42	A
					23.386	12.955	1.00 9.09	A
MOTA	583	C	VAL A 174	30.075	24.073	16.499	1.00 10.17	A
ATOM	584	0	VAL A 174	30.953	23.358	16.977	1.00 10.23	A
ATOM	585	N	ALA A 175	29.886	25.335	16.877	1.00 9.90	A
ATOM	586	CA	ALA A 175	30.725	25.951	17.897	1.00 10.67	A
MOTA	587	CB	ALA A 175	30.316	27.407	18.108	1.00 11.94	A
ATOM	588	С	ALA A 175	30.611	25,182	19.208	1.00 11.92	A
ATOM	589	0	ALA A 175	31.616	24.883	19.847	1.00 11.33	A
ATOM	590	N	GLU A 176	29.383	24.854	19.600	1.00 13.20	A
ATOM	591	CA	GLU A 176	29.163	24.119	20.845	1.00 13.21	A
ATOM	592	СВ	GLU A 176	27.664	23.932	21.099	1.00 15.61	
ATOM	593	CG	GLU A 176	27.349				A
ATOM	- 594	CD	GLU A 176		23.074	22.326	1.00 19.61	A
				25.879	23.099	22.705	1.00 23.95	A
ATOM	595	OE1		25.027	23.172	21.795	1.00 25.62	A
ATOM	596		GLU A 176	25.573	23.030	23.916	1.00 27.39	A
MOTA	597	С	GLU A 176	29.854	22.762	20.793	1.00 12.78	A
ATOM	598	0	GLU A 176	30.477	22.325.	21.762	1.00 13.68	A
ATOM	599	N	ARG A 177	29.740	22.099	19.650	1.00 11.89	A
ATOM	600	CA	ARG A 177	30.360	20.798	19.454	1.00 11.86	A
MOTA	601	CB	ARG A 177	30.078	20.329	18.026	1.00 10.78	A
ATOM	602	CG	ARG A 177	30.928	19.176	17.542	1.00 11.79	, A
ATOM	603	CD	ARG A 177	30.643	18.947	16.070	1.00 12.75	
ATOM	604	NE	ARG A 177	31.478	17.900	15.497		A
ATOM	605	CZ	ARG A 177				1.00 14.37	A
				31.587	17.681	14.193	1.00 13.51	A
ATOM	. 606		ARG A 177	30.915	18.440	13.337	1.00 13.86	. A
ATOM	607	NHZ	ARG A 177	32.366	16.708	13.746	1.00 13.82	A

<u>~</u>			_							
ATOM	608	С	ARG A 177	31	1.869	20.852	19.701	1 00	12.81	_
ATOM	609	Ö			2.447	19.941	20.297			A
ATOM	610		ARG A 177		2.510	21.924	19.243		11.57	A
ATOM	611	N CA	TYR A 178		3.952	22.068	19.406		12.95	A
			TYR A 178 TYR A 178		1.540	22.714			12.76	
ATOM ATOM	612	CB					18.146		13.24	A
	613		TYR A 178		1.686	21.722	17.018		12.79	A
ATOM	614		TYR A 178		763	20.834	16.987		12.88	A
ATOM	615		TYR A 178		890	19.891	15.971		14.50	A
ATOM	616		2 TYR A 178		3.736	21.642	16.002		12.10	A
ATOM	617		2 TYR A 178		1.853	20.700	14.980		13.48	A
ATOM	618	CZ	TYR A 178		.933	19.831	14.972		13.02	. A
ATOM	619	OH	TYR A 178		.066	18.902	13.966		16.93	A
ATOM	620	C	TYR A 178		.387	22.826	20.657		13.57	A
ATOM	621	0	TYR A 178			23.115	20.837		14.22	A
ATOM	622	N	GLY A 179	•	.427	23.140	21.522		14.01	A
ATOM	623	CA	GLY A 179		.742	23.841	22.755		14.86	A
ATOM	624	C	GLY A 179		.238	25.260	22.561		15.37	A
ATOM	625	0	GLY A 179		.016	25.769	23.368		16.81	A
ATOM ·	626	N	LEU A 180		.788	25.903	21.491		14.92	A
MOTA	627	CA	LEU A 180		.182	27.276	21.208		15.19	A
ATOM	628	CB	LEU A 180		.468	27.447	19.719		16.63	A
ATOM	629	CG	LEU A 180		.636	26.648	19.147		15.00	A
MOTA	630		LEU A 180		.705	26.872	17.641		17.63	A
MOTA	631		LEU A 180		.931	27.079	19.815		19.25	A
ATOM	632	C	·LEU A 180		.066	28.229	21.611		16.56	. A
MOTA	633	0	LEU A 180		.897	27.842	21.669		17.28	A
ATOM	634	N	SER A 181		.434	29.475	21.891		16.35	A
ATOM	635	CA	SER A 181		.463	30.497	22.261		16.39	
ATOM	636	CB	SER A 181		.177	31.792	22.647		17.27	A
ATOM	637	OG	SER A 181		.259	32.871	22.715		18.74	A
MOTA	638	C	SER A 181		.556	30.764	21.067		16.14	A
MOTA	639	0	SER A 181		.029	31.173	20.009		15.41	A
ATOM	640	N	GLY A 182		.258	30.534	21.240		15.64	A
ATOM	641	CA	GLY A 182		.320	30.759	20.156		14.80	A
MOTA	642	С	GLY A 182		.312	32.209	19.708		14.74	A
ATOM	643	0	GLY A 182		.257	32.502	18.508		14.19	A
MOTA	644	N	SER A 183		.377	33.124	20.673		16.05	. А
ATOM	645	CA	SER A 183	•	.377	34.549	20.365		17.71	A
ATOM	646	CB	SER A 183		.274	35.374	21.654		17.19	A
ATOM	647	OG	SER A 183		.314	35.052	22.557		21.78	A
ATOM	648	C	SER A 183		.626	34.942	19.579		16.35	A
ATOM	649 650	0	SER A 183		.534	35.682	18.595		16.95	A
ATOM	651	N C3	ASP A 184 ASP A 184		.789	34.453	20.006		15.79	A
ATOM ATOM	652	CA CB			.028	34.754	19.297		15.34	A
ATOM	653	CG	ASP A 184 ASP A 184		.243	34.153	20.009		17.96 21.29	A
ATOM	654		ASP A 184		.646	34.928	21.244 21.401	1.00		A
ATOM	655		ASP A 184		.198 .430	36.082 34.384	22.050		24.60	A
ATOM	656	C	ASP A 184		.966				14.07	A
ATOM	657	Ö	ASP A 184		.351	34.183 34.847	17.884 16.923		14.53	A
	658	N	VAL A 185		. 485	32.948	17.762		12.60	A A
ATOM	659	ÇA	VAL A 185		.393	32.309	16.451	1.00		A
ATOM	660	CB	VAL A 185		.812	30.875	16.565	1.00		A
ATOM	661		VAL A 185		.437	30.336	15.178	1.00		A
ATOM	662		VAL A 185		.854	29.957	17.206	1.00		
ATOM	663	C	VAL A 185		. 552	33.139	15.483	1.00		A
ATOM	664	Õ	VAL A 185		.947	33.347	14.336	1.00		A
ATOM	665	N	LEU A 186		. 406	33.633	15.937	1.00		A A
ATOM	666	CA	LEU A 186		. 568	34.441	15.056	1.00		A
ATOM	667	CB	LEU A 186		. 206	34.719	15.698	1.00		A
ATOM	668	CG	LEU A 186		.315	33.502	15.965	1.00		Ā
ATOM	669		LEU A 186		. 951	33.981	16.429	1.00		A
ATOM	670		LEU A 186		170	32.663	14.709	1.00		A
ATOM	671	C	LEU A 186		246	35.761	14.698		12.81	A
ATOM	672	ō	LEU A 186		.136	36.235	13.565	1.00		A
ATOM	673	N	ASP A 187		938	36.362	15.659	1.00	•	A
ATOM	674	CA	ASP A 187		619	37.627	15.394	1.00		· A
MOTA	675	CB	ASP A 187		163	38.255	16.678	1.00		A
•					-					

`~ATOM	676 C	G ASP A 187	31.074	38.721	17.619	1.00 20.35	A
MOTA		D1 ASP A 187	29.988	39.116			A
ATOM	_	D2 ASP A 187	31.324	38.706	18.843		A
ATOM	679 C		32.791			1.00 15.26	A
ATOM	680 O		33.259				A
MOTA	681 N		33.270				A
ATOM ATOM		A ASN A 188 B ASN A 188	34.403				A
ATOM		B ASN A 188 G ASN A 188	35.368 36.110				Α
ATOM		D1 ASN A 188	36.520				A
ATOM		D2 ASN A 188	36.306				A A
MOTA	687 C		34.050		12.072		A
MOTA	·688 O		34.929	34.904	11.343		A
ATOM	689 N		32.769		11.727		A
ATOM	· 690 C.		32.357		10.402		A
ATOM ATOM	691 C	B VAL A 189 G1 VAL A 189	31.309		10.446		A
ATOM		G2 VAL A 189	30.851 31.913		9.026	1.00 9.91	A
ATOM	694 C	VAL A 189	31.726	32.537 36.135	11.092 9.725	1.00 10.65	A
ATOM	695 O		30.705	36.642	10.187	1.00 13.11 1.00 14.95	A A
MOTA	696 N		32.352	36.614	8.653	1.00 11.72	A
ATOM	697 C		31.825	37.753	7.905	1.00 11.20	A
ATOM	698 CI		32.961	38.597	7.353	1.00 10.95	A
MOTA	699 C			37.170	6.773	1.00 11.60	A
ATOM ATOM	700 O	ALA A 190	31.458	36.303	6.032	1.00 12.58	Ą
ATOM	701 N 702 C	TYR A 191 A TYR A 191	29.765	37.658	.6.643	1.00 9.10	A
ATOM	702 CF		28.829 27.653	37.157 36.493	5.646 6.377	1.00 11.15	A
ATOM	704 CC			. 36.329	5.573	1.00 14.31 1.00 16.33	A A
MOTA	705 CI	Ol TYR A 191	26.292	35.384	. 4.550	1.00 18.03	A
MOTA		E1 TYR A 191	25.116	35.219	3.819	1.00 21.10	A
ATOM	707 CE	2 TYR A 191	25.259	37.110	5.846	1.00 19.21	A
ATOM		22 TYR A 191	24.077	36.955	5.120	1.00 21.77	A
ATOM ATOM	709 C2 710 OH		24.012	36.007	4.110	1.00 22.07	A
ATOM	·710 On	TYR A 191	22.842 28.296	35.844	3.399	1.00 24.46	A
ATOM	712 0	TYR A 191	28.083	38.219 39.363	4.701 5.091	1.00 9.98 1.00 10.36	A
ATOM	713 N	ALA A 192	28.085	37.823	3.452	1.00 10.30	A A
MOTA	. 714 CA	ALA A 192	27.527	38.718	2.452	1.00 10.77	A
ATOM	715 CB		28.635	39.455	1.709	1.00 11.74	A
ATOM	716 C	ALA A 192	26.725	37.881	1.478	1.00 12.63	A
ATOM ATOM	717 O 718 N	ALA A 192 ARG A 193	27.075		1.204	1.00 13.05	A
ATOM	719 CA		25.630 24.857	38.432 37.701	.974 013	1.00 14.15	A
ATOM	720 CB		23.381	37.701	.372	1.00 16.28 1.00 18.72	A A
ATOM	721 CG		22.590	36.823		1.00 18.20	· · · A
ATOM	722 CD	ARG A 193	21.215	36.423	216	1.00 21.34	A
ATOM ·	723 NE	ARG A 193	20.500	35.721	-1.275	1.00 20.08	A
ATOM ATOM	724 CZ 725 NH		19.286	35.204	-1.138	1.00 21.29	A
ATOM		1 ARG A 193 2 ARG A 193	18.647 18.709	35.307	.022	1.00 22.51	A
	727 C	ARG A 193	24.997	34.591 38.467	-2.161 -1.314	1.00 20.69 1.00 15.74	A
ATOM	728 O	ARG A 193	24.666	39.650	-1.314	1.00 15.74	A A
ATOM	729 N	ALA A 194	25.518	37.798	-2.339	1.00 13.91	A
MOTA	730 CA	ALA A 194	25.706	38.422	-3.641	1.00 15.22	A
ATOM	731 CB	ALA A 194	26.674	37.593	-4.482	1.00 13.64	A
ATOM	732 C	ALA A 194	24.353	38.530	-4.333	1.00 15.34	A
ATOM ATOM	733 O 734 N	ALA A 194 PHE A 195	23.612	37.550	-4.424	1:00 15.21	A
ATOM	735 CA	PHE A 195	24.040 22.770	39.730 39.999	-4.811 -5.478	1.00 16.95	A
ATOM	736 CB	PHE A 195	22.770	41.466	-5.478 -5.268	1.00 19.87 1.00 19.91	A A
ATOM	737 CG	PHE A 195	21.846	41.761	-3.894	1.00 19.91	A A
ATOM		PHE A 195	22.553	41.386	-2.757	1.00 24.87	A.
ATOM		PHE A 195	20.625		-3.737	1.00 22.22	A
ATOM		PHE A 195	22.051	41.648	-1.481	1.00 25.60	Α
ATOM ATOM	741 CE2	PHE A 195	20.114		-2.466	1.00 22.41	A
ATOM	742 CZ 743 C	PHE A 195 PHE A 195	20.829		-1.337	1.00 24.456	A
		A 133	22.789	39.670	∸6.967	1.00 19.68	A

۱ (<u>-</u> .			
' ATC	M 744 O PHE A 195	21.758 39.329 -7.550 1.00 21.50	
ATO	M 745 N ASNA 196	23.963 39.779 -7.577 1.00 17.00	A
ATO			A
ATO			A
ATO		23.633 40.658 -9.848 1.00 18.40	A
		24.312 41.964 -9.495 1.00 19.85	A
ATO		25.514 42.124 -9.689 1.00 20.52	A
ATO:	M 750 ND2 ASN A 196	23.540. 42.910 -8.966 1.00 22.23	
ATO:			A
ATO:			· A
ATO		26.427 39.344 -8.344 1.00 14.96	A
		25.959 38.858 -10.483 1.00 17.26	A
ATO		27.354 38.557 -10.791 1.00 16.17	A
ATO	M 755 CB THR A 197	27.494 37.932 -12.195 1.00 17.31	
ATO			A
ATO			A
ATO			A
		28.322 39.730 -10.654 1.00 16.37	A
ATO		29.496 39.525 -10.338 1.00 13.66	A
MOTA	1 760 N ASPA 198	27.857 40.956 -10.894 1.00 16.79	
ATON	1 761 CA ASP A 198	28.741 42.107 -10.742 1.00 18.01	A
ATOM		10.01	A
ATOM			A
ATOM		28.117 43.486 -12.786 1.00 26.46	A
		28.972 42.833 -13.420 1.00 29.30	A
ATOM		27.287 44.235 -13.341 1.00 31.93	A
ATOM	766 C ASP A 198	29.050 42.284 -9.259 1.00 17.29	
ATOM	767 O ASPA 198	20.12	A
ATOM		27.00	A
ATOM		28.014 42.165 -8.432 1.00 15.89	Α
ATOM		28.163 42.310 -6.989 1.00 14.74	A
		26.804 42.211 -6.296 1.00 14.97	А
ATOM		26.862 42.446 -4.818 1.00 13.46	A
ATOM	772 CD2 HIS A 199	27.658 43.249 -4.075 1.00 12.84	
ATOM	773 ND1 HIS A 199	11.04	A
MOTA		2,00 74.17	A
ATOM	775 NEO 115 A 199	26.290 42.223 -2.703 1.00 13.89	Α
		27.281 43.092 -2.763 1.00 14.41	A
ATOM	776 C HIS A 199	29.075 41.211 -6.454 1.00 13.93	A
ATOM	777 O HIS A 199	29.907 41.454 -5.581 1.00 12.91	
ATOM	778 N GLNA 200	00.000	A
ATOM	779 CA GLN A 200		A
ATOM	780 CB GLN A 200	**	Α
		29.331 37.642 -7.421 1.00 12.31	Α
ATOM	781 CG GLN A 200	30.026 36.352 -7.013 1.00 13.47	A
MOTA	782 CD GLN A 200	29.566 35.175 -7.848 1.00 13.16	A
ATOM	783 OE1 GLN A 200	28.375 35.028 -8.125 1.00 15.14	
ATOM	784 NE2 GLN A 200		A
ATOM	785 C GLN A 200	21 101 13.04	A
ATOM	786 O GLN A 200		Α
ATOM		31.994 38.816 -5.840 1.00 12.77	A
	787 N THR A 201	31.556 39.765 -7.834 1.00 11.64	A
ATOM	788 CA THR A 201	32.948 40.109 -8.086 1.00 12.73	A
ATOM	789 CB THR A 201	33.178 40.403 -9.593 1.00 11.84	
ATOM	790 OG1 THR A 201	2.00 41.04	A
ATOM	791 CG2 THR A 201	= 1.00 ±0.55	A
ATOM	792 C THR A 201	2.00 11.20	À
ATOM		33.377 41.313 -7.244 1.00 11.26	A
		34.495 41.350 -6.727 1.00 11.94	Α
ATOM		32.485 42.289 -7.092 1.00 12.98	Α
ATOM	795 CA GLN A 202	32.803 43.477 -6.312 1.00 13.80	A
ATOM	796 CB GLN A 202	21 620 (4 475	
ATOM	797 CG GLN A 202	20 27.33	A
ATOM	798 CD GLN A 202	20 000	A
ATOM		32.228 45.970 -4.400 1.00 28.15	Α
		33.065 46.738 -3.922 1.00 32.69	A
ATOM	800 NE2 GLN A 202	31.455 45.194 '-3.647 1.00 29.89	A
ATOM	801 C GLN A 202	33.123 43.115 -4.863 1.00 12.44	A
MOTA	802 O GLN A 202	22 222	
ATOM	803 N LEU A 203		A
ATOM	804 CA LEU A 203	2,00 22,10	Α
ATOM		32.672 41.655 -2.968 1.00 11.73	Α
	805 CB LEU A 203	31.704 40.519 -2.608 1.00 12.52	A
ATOM	806 CG LEU A 203	30.257 40.950 -2.332 1.00 12.51	A
ATOM	807 CD1 LEU A 203 ·	29.347 39.739 -2.274 1.00 14.88	A
ATOM	808 CD2 LEU A 203		
ATOM	809 C LEU A 203	24 175 41 025	A
ATOM	810 O LEU A 203	1.00 12.30	A
ATOM		34.605 41.288 -1.590 1.00 11.56	. A
112 012	811 N LEU A 204	34.801 40.768 -3.767 1.00 11.31	A
		- · · ·	

(
MOTA	812	CA	LEU .	A 204	36.185	40.339	-3.611	1.00 11.87	A
ATOM	813	CB	LEU .	A 204	36.672	39.614	-4.865	1.00 11.53	A
ATOM	814	CG	LEU .	A 204	35.976	38.285	-5.169	1.00 12.00	A
ATOM	815	CD1	LEU .	A 204	36.753	37.566	-6.269	1.00 12.14	A
ATOM	816	CD2	LEU .	A 204	35.920	37.417	-3.913	1.00 12.53	A
ATOM	817	С	LEU .	A 204	37.109	41.513	-3.294	1.00 11.61	A
ATOM	818	0	LEU .	A 204	38.158	41.335	-2.679	1.00 11.18	A
ATOM	819	N	TYR	A 205	36.730	42.712	-3.724	1.00 13.97	. A
ATOM	820	CA	TYR	A 205	37.544 ·	43.883	-3.425	1.00 16.07	A
ATOM	821	CB	TYR .	A 205	37.097	45.073	-4.274	1.00 19.68	A
ATOM	822	· CG	TYR	A 205	37.769	45.087	-5.621	1.00 23.06	A
ATOM	823	CD1	TYR	A 205	39.088	45.522	-5.752	1.00 26.38	A
ATOM ·	824	CE1	TYR	A 205	39.742	45.482	-6.977	1.00 28.42	A
MOTA	825	.CD3	TYR	A 205	37.114	44.616	-6.755	1.00 24.97	A
MOTA	826	CE 2	TÝR Z	A 205	37.760	44.569	-7.989	1.00 27.75	A
ATOM	827	CZ	TYR 2	A 205	39.073	45.004	-8.091	1.00 29.20	, A
ATOM	828	OH	TYR I	A 205	39.722	44.956	-9.304	1.00 32.07	A
MOTA	829	С	TYR A	A 205	37.415	44.192	-1.940	1.00 15.39	A
MOTA	830	0	TYR I	A 205	38.408	44.484	-1.268	1.00 14.26	A
ATOM	831	N	GLN A	A 206	36.191	44.113	-1.426	1.00 14.66	A
MOTA	832	CA	GLN A	A 206	35.957	44.355	007	1.00 14.18	A
ATOM	833	CB	GLN Z	A 206	34.459	44.298	.310	1.00 16.50	A
ATOM	834	CG	GLN A	A 206	33.621	45.297	469	1.00 21.42	A
MOTA	835	CD	GLN A	A 206	32.151	45.230	103	1.00 24.13	A
MOTA	·836	OE1	GLN A	A 206	31.282	45.253	975	1.00 26.96	A·
ATOM	837	NE2		A 206	31.863	45.156	1.193	1.00 26.12	A
MOTA	838	С		A 206	36.682	43.262	.768	1.00 11.99	A
ATOM	839	0		A 206	37.325	43.520	1.784	1.00 13.05	A
ATOM	840	N		a 207	36.577	42.033	.276	1.00 11.37	, A
ATOM	841	CA		A 207	37.224	40.901	.924	1.00 9.55	A
ATOM	842	CB		A 207	36.981	39.630	.112	1.00 11.15	A
ATOM	843	С		A 207	38.726 _.	41.137	1.086	1.00 9.68	A
ATOM	844	0		A 207	39.286	40.901	2.154	1.00 10.32	A
ATOM	845	N	SER	208	39.370	41.607	.021	.50 8.91	AC1
MOTA	846	CA	SER	208	40.809	41.855	.055	.50 8.84	AC1
MOTA	847	CB	SER	208	41.319	42.271	-1.332	.50 8.15	AC1
ATOM	848	OG.	SER	208	40.748	43.489	-1.778	.50 5.66	AC1
ATOM	849	С	SER	208	41.180	42.910	1.091	.50 8.91	AC1
MOTA	850 851	O N	SER	208 3 209	42.186	42.773	1.787 1.198	.50 9.06 1.00 9.46	AC1 A
ATOM ATOM	852	CA		1 209	40.364 40.613	43.955. 45.020	2.163	1.00 10.03	A
ATOM	853	CB		1 209	39.631	46.163	1.940	1.00 10.03	A
ATOM	854	C	ALA A		40.474	44.466	3.581	1.00 12.23	A
MOTA	855	Ö		1 209	41.252	44.796	4.474	1.00 12.25	, A
ATOM	856	N	MSE A		39.483	43.608	3.782	1.00 11.13	A
ATOM	857	CA	MSE A		39.263	43.015	5.093	1.00 11.31	A
ATOM	858	СВ	MSE A			42.245	5.087	1.00 11.10	A
ATOM	859	CG	MSE A		36.738	43.163	4.929	1.00 12.90	A
ATOM	860	SE	MSE A		35.166	42.285	4.275	1.00 19.56	A
ATOM	861	CE	MSE F		34.748	41.258	5.846	1.00 18.08	A
ATOM	862	C	MSE A		40.416	42.100	5.502	1.00 10.40	A ·
ATOM	863	ō.	MSE A		40.816		6.667	1.00 11.49	A
ATOM	864	N		211-		41.361	4.538	1.00 9.79	A
ATOM	865	CA	MSE A	211	42.054	40.442	4.809	1.00 9.90	A
MOTA	866	СВ	MSE P		42.246	39.502	3.622	1.00 11.35	A
ATOM	867	CG	MSE A	211	41.034	38.605	3.419	1.00 13.28	A
ATOM	868	SE	MSE A	211	41.249	37.350	1.970	1.00 19.97	A
ATOM	869	CE	MSE A	211	39.669	36.267	2.266	1.00 17.37	A
ATOM	870	С	MSE A	211	43.354	41.161	5.150	1.00 12.40	A
ATOM	871	0	MSE A	211	44.254	40.576	5.751	1.00 12.31	A
MOTA	872	N	VAL A	212	43.448	42.429	4.771.	1.00 13.63	A
ATOM	873	CA	VAL A	212	44.633	43.219	5.092	1.00 16.42	A
MOTA	874	CB	VAL A			44.499	4.215	1.00 16.91	A
ATOM	875		VAL A		45.666	45.507	4.837	1.00 20.67	A
ATOM	876		VAL A		45.179	44.141	2.815	1.00 16.11	A
MOTA	877	C	VAL A		44.566	43.633	6.565	1.00 18.07	A
ATOM	878	0.	VAL A		45.587	43.696	7.256	1.00 20.15	A
MOTA	879	N	GLU A	213	43.351	43.890	7.039	1.00 17.71	A

(•											
MOTA	880				A 213		4	3.111	44	.333	8	.412	1.	00	19.1	6	A
ATOM	881				A 213			1.801		.127		. 470	1.	00	21.15	5	A
ATOM	882 883				A 213			1.862		.502		.823	1.	00	24.5	3	A
ATOM ATOM	884				A 213 A 213			0.552 9.820		.263		.955 .940	Ι.	00	28.9	į.	. A
ATOM	885				A 213			0.257		.024		. 085	1.	00	29.96 30.33))	A
ATOM	886				A 213			3.076		.256		. 498			19.63		A A
ATOM	887	0	GL	U Z	A 213			3.546		. 486		614	1.	00	18.83	3	A
ATOM	888				A 214			2.509		.093	9.	. 184	1.	00	18.76	5	A
ATOM	889				A 214			2.399		.004		.159	1.	00	18.30)	Α
ATOM	890				A 214			0.945		.857		626	1.	00	20.42	2	Α
ATOM ATOM	891 892				A 214 A 214			0.397		.099		016			25.34		A
ATOM	893				1 214			2.839 2.840		.686 .540		.546 .324			17.21 15.90		A
ATOM	894	N			215			3.190	_	.719		391			16.03		A A
_ ATOM	895	CA	AR	G P	215			3.612		.419		891			14.50		A
ATOM	. 896				215		4	4.521	36	.686	10.	885	1.	00	17.55	,	A
ATOM	897	CG			215			4.837		. 257		414			20.04		A
ATOM ATOM	898 899	CD NE			1 215 1 215			5.692		.456		384			25.67		A
ATOM	900	CZ			215			5.705 6.186		.035		032 894			28.44 32.44		A
ATOM	901				215			6.710		.342		977			33.60		A A
ATOM	902				215			5.132		.232		664			33.47		· A
ATOM	903	С			215		42	2.444	36	.502	9.	568	1.	00	13.33		A
MOTA	904	0			215			1.666		.124		448			14.15		A
ATOM ATOM	905 906	N CA			216			2.337		.148		294			12.11		A
ATOM	907	CB			216			L.309 D.597		.235 .796		826 600			10.66		A A
ATOM	908	CG			216			5.502		.761		941			11.74		A
ATOM	909	CD1	TYF	R A	216		39	789		.074		311			13.91		A
MOTA	910				216			3.773		. 950		670			14.14		A
ATOM	911 912	CD2			216			3.172		.348.		939			13.07		Α
ATOM ATOM	913	CEZ			216			7.157 7.459		. 209 . 506		296 661			13.62 15.01		A
ATOM	914	OH			216			. 434		. 349		016			17.98		A A
ATOM	915	С			216			.996		942		435			10.55		A
ATOM	916	0			216			.151		952		012			11.94		· A
ATOM ATOM	917 918	N			217			.288		. 829		572	1.0		8.82		A
ATOM	919	CA CB			217 217			.849		.538 .599		200 403			8.08		A
ATOM	920	C			217			.023		927		082	1.0		8.74		A A
ATOM	921	0			217			. 492		030		380	1.0		9.17		A
ATOM	922	N			218			.811		440		889	1.0	00	8.26		A
ATOM ATOM	923	CA			218			.913		856		897·	1.0		9.02		A
ATOM	924 925	CB.			218 218			.089 _. .917		765 094		593 872	1.0		9.51 10.64	•	A
ATOM	926				218			.450		079		B70			11.06		A A
ATOM	927				218			.024		398		892			13.12		· A
MOTA	928	С			218			.946		799		184	1.0		7.66		A
ATOM ATOM	929 930	0			218			.368		697		794	1.0		8.43		A
ATOM	931	N CA			219 219			.778 .821		571 322		385 078	1.0		8.37 7.10		A
ATOM	932	CB			219			.507		171		000	1.0		9.27		A A
MOTA	933	CG	LEU					.542		707		75			10.99		A
ATOM	934.							.445		564	. 5	60			13.35		A
ATOM ATOM	935 936	CD2						.322		518	-1.1				12.85		A
ATOM .	937	С 0	LEU		219			.929 .412		294 419	1.3	395 568	1.0		7.22 7.85		A
ATOM	938	N	ILE		220			. 627		412	1.6		.5		6.12		A AC1
ATOM.	939	CA	ILE		220			. 644	30.		1.0		. 5		5.48		AC1
MOTA	940	CB	ILE		220			.706		953	2.1		. 5		5.16		AC1
ATOM ATOM	941 942	CG2			220			. 606	29.		1.4		. 5		5.91		AC1
ATOM	942	CG1			220 - 220			.509 .776	29. 28.		3.1 4.4		. 5 . 5		4.87		. AC1
ATOM	944	C	ILE		220			.785	31.			29	.5		5.49		AC1 AC1
ATOM	945	0	ILE		220			. 343	32.			81	.5		5.14		AC1
ATOM	946		VAL					. 555		616	-1.1		1.0		6.21		A
ATOM	947	CA	VAL	A	221		31	.713 .	31.	202	-2.1	.58	1.0	0	6.05		A

MOTAT	948	СВ	VAL	A 221	32.479	31.630	-3.418	1.00 8.43	А
ATOM	949	CG:		A 221	31.489				
ATOM	950	CG	2 VAL	A 221	33.545				
ATOM	951			A 221	30.747				
MOTA	. 952	0	VAL	A 221	31.097			1.00 9.66	A
ATOM	953			A 222	29.530				. A
ATOM	954	CA	· ASP	A 222	28.488				A
ATOM	955	CB	ASP	A 222	28.237				A
ATOM	956	CG	ASP	A 222	27.093	27.492	899		A
ATOM	957			A 222	26.893	26.851	-1.945		A
ATOM	958	OD2	2 ASP	A 222	26.407	27.343	.138	1.00 17.00	A
MOTA	959	С	ASP	A 222	27.218	29.870	-2.712	1:00 10.73	A
ATOM	960			A 222	26.485	30.447	-1.914	1.00 11.04	A
ATOM	961	N		A 223	26.926	29.815		1.00 11.76	A
MOTA	962	CA		A 223	27.693			1.00 11.53	A
ATOM	963	CB.		A 223	26.717	28.320		1.00 13.99	A
ATOM	964	OG		A 223	27.250	28.040		1.00 15.91	A
ATOM	965	C		A 223	28.470	30.107		1.00 12.18	A
ATOM	966	0		A 223	28.063	31.256	-6.113	1.00 12.29	A
ATOM ATOM	967 968	N		A 224	29.578	29.649		1.00 11.55	A
ATOM	969	CA		A 224	30.389	30.505		1.00 12.08	A
ATOM	970	CB C		A 224 A 224	31.815	29.960	-7.447	1.00 12.08	A
ATOM	971	0		A 224	29.812	30.646	-8.771	1.00 12.99	A
ATOM	972	N		A 225	30.159	31.578	-9.495	1.00 13.90	A
ATOM	973	CA		A 225	28.916 28.355	29.741	-9.150 -10.497	1.00 14.01	. A
ATOM	974	CB		A 225	28.715		-10.497	1.00 15.06	A ·
ATOM	975	OG1		A 225	28.169		-10.550	1.00 15.67 1.00 18.32	A
ATOM	976	CG2		A 225	30.227		-11.350	1.00 18.32	A ·
ATOM	977	C		A 225	26:844		-10.621	1.00 17.70	A
ATOM	978	Ō		A 225	26.353		-11.696	1.00 16.24	A
MOTA	979	N		A 226	26.111	29.742	-9.536	1.00 15.40	A
ATOM	980	CA		A 226	24.655	29.863	-9.569	1.00 17.16	A
MOTA	981	CB		A 226	24.087	29.724	-8.157	1.00 17.20	· A
MOTA	982	С		A 226	24.121		-10.218	1.00 18.11	A
ATOM	983	0	ALA	A 226	23.215		-11.050	1.00 19.76	A
ATOM	984	N	LEU	A 227	24.677	32.289	-9.849	1.00 17.52	A
ATOM	985	CA	LEU	A 227	24.207	33.558	-10.396	1.00 17.98	A
ATOM	986	CB	LEU .	A 227	24.802	34.726	-9.603	1.00 18.01	A
ATOM	987	CG		A 227	24.397	34.787	-8.123	1.00 18.20	A
ATOM	988			A 227	24.978	36.043	-7.489	1.00 19.48	A
ATOM	989			A 227	22.876	34.783	-7.992	1.00 21.19	A
ATOM	990	С		A 227	24.481		-11.890	1.00 18.80	A
ATOM ·	991	0		A 227	23.895		-12.530	1.00 18.94	· A
ATOM	992 993	N CA		A 228	25.360		-12.443	1.00 18.50	A
ATOM	994			A 228 A 228	25.693		-13.863	1.00 21.58	A
ATOM	995	CG		A 228	27.107 28.196		-14.099	1.00 17.41	A
ATOM	996			A 228	28.626		-13.689 -14.554	1.00 14.92	A
ATOM	997			A 228	29.620		-14.334	1.00 12.76 1.00 13.80	A
ATOM	998		TYR A		28.789		-12.430	1.00 13.00	A A
ATOM	999		TYR A		29.785	34.224		1.00 13.04	A
ATOM	1000	CZ		A 228	30.196	35.211		1.00 12.36	A
ATOM	1001	ОН		228	31.182	36.091		1.00 14.32	A
ATOM	1002	С	TYR A		24.699		-14.717	1.00 25.16	A
ATOM	1003	0	TYR A	228	24.694	32.327		1.00 27.01	A
ATOM	1004	N	ARG A	229	23.857	31.409		1.00 28.73	A
ATOM	1005	CA	ARG A	229	22.861	30.608		1.00 34.06	A
ATOM .	1006	CB	ARG A	229	22.862	29.173		1.00 37.97	A
MOTA	1007		ARG A		21.948	28.221		1.00 45.76	A
ATOM	1008		ARG A		22.082	26.795 -		1.00 50.57	. А
MOTA	1009		ARG A		21.591	26.658		1.00 56.15	A
ATOM	1010		ARG A		20.304	26.628		1.00 58.13	A
MOTA	1011		ARG A		19.366	26.723 -		1.00 59.34	· А
MOTA	1012		ARG A		19.955	26.504 -		1.00 59.67	· A
ATOM	1013		ARG A		21.469	31.210 -		1.00 35.05	A
ATOM NOTA	1014		ARG A		21.162	32.242 -		1.00 37.10	A
MOTA	1015	N ·	GLU A	237	26.455	36.730 -	-25.203	1.00 45.75	A

TATOM	1016	CA	GLU A	237	25.871	36.676 -23.8	70 1.0	0 45.26	A
MOTA	1017	СВ	GLU A		24.361	36.455 -23.9		0 47.65	A
ATOM	1018	CG	GLU A		23.661	36.374 ÷22.6		0 51.11	•
ATOM	1019	CD	GLU A		24.004	37.545 -21.7		0 52.82	A
ATOM ATOM	1020 1021	OE 1	GLU A		23.878 24.397	38.701 -22.1° 37.309 -20.5		0 54.95 0 53.95	A A
ATOM	1021	C	GLU A		26.505	35.558 -23.0		0 43.96	
ATOM	1023	ō	GLU A '		27.098	35.803 -22.0		0 43.47	A
ATOM -	1024	N	LEU A 2	238	26.371	34.329 -23.5	41 1.0	0 41.51	A
ATOM	1025	CA	LEU A 2		26.937	33.170 -22.8		0 39.97	A
ATOM	1026	CB	LEU A 2		26.619	31.896 -23.6		0 41.06	A
ATOM ATOM	1027 1028	CG	LEU A 2		27.342 27.008	30.621 -23.20 30.309 -21.75		0 42.05	A A
ATOM	1029	CD2			26.935	29.469 -24.10		0 42.50	A
MOTA	1030	C	LEU A 2		28.447	33.318 -22.7		0 38.07	A
MOTA	1031	0	LEU A 2	238	29.005	33.095 -21.6	51 1.0	0 36.76	A
ATOM	1032	N	SER A 2		29.105	33.693 -23.8		0 35.69	A
MOTA	1033	CA	SER A 2		30.552	33.870 -23.83			A
ATOM ATOM	1034 1035	CB OG	SER A 2 SER A 2		31.055 30.508	34.167 -25.23 35.377 -25.73		0 34.80	A A
ATOM	1033	C	SER A 2		30.308	35.005 -22.8		0 37.47	A
ATOM	1037	ŏ	SER A 2		32.013	34.973 -22.20		0 30.28	A
MOTA	1038	N	ALA A 2		30.082	36.008 -22.70		0 29.26	A
MOTA	1039	CA	ALA A 2	240	30.344	37.146 -21.89	97 1.0	0 27.57	A
MOTA	1040	CB.	ALA A 2		29.276	38.212 -22.09		0 28.86	A
ATOM	1041	C	ALA A 2		30.359	36.676 -20.44		0 26.33 0 24.83	A.
ATOM ATOM	1042 1043	O N	ALA A 2 ARG A 2		31.229 29.391	37.065 -19.66 35.837 -20.09		0 24.63	A A
ATOM	1044	CA	ARG A 2		29.298	35.308 -18.74		0 24.64	A
ATOM '	1045	CB	ARG A 2		27.986	34.545 -18.54		0 26.26	Α.
MOTA	1046	CG	ARG A 2	241	26.748	35.415 -18.61	1.0	0 30.40	A
MOTA	1047	CD	ARG A 2		25.509	34.636 -18.22		0 32.71	A
MOTA	1048	NE	ARG A 2		24.309	35.459 -18.32		0 37.68	A
ATOM ATOM	1049 1050	CZ NH1	ARG A 2		23.094 22.910	35.063 -17.96 33.848 -17.46		0 40.61 0 42.19	A A
ATOM	1051		ARG A 2		22.061	35.883 -18.10		0 41.34	A
ATOM	1052	C	ARG A 2		30.467	34.381 -18.43		0 23.05	A
ATOM	1053	0	ARG A 2		30.986	34.376 -17.32	21 1.0	0 21.52	A
MOTA	1054	N	GLN A 2		30.882	33.597 -19.42		0 21.32	A
ATOM	1055	CA	GLN A 2		31.991	32.675 -19.22		0 22.07	A
ATOM ATOM	1056 1057	CB CG	GLN A 2 GLN A 2		32.152 31.006	31.754 -20.44 30.759 -20.59	-	0 26.14 0 32.63	A A
ATOM	1058	CD	GLN A 2		31.207	29.788 -21.73		0 37.09	A
ATOM	1059	OE1			31.310	30.188 -22.89		0 39.23	A
ATOM	1060	NE2			31.259	28.499 -21.41		0 39.89	A
MOTA	1061	С	GLN A 2		33.291	33.417 -18.94		0 19.58	· A
ATOM ATOM	1062 1063	O N	GLN A 2 MSE A 2		34.074 33.519	32.992 -18.09 34.521 -19.65		0 17.88 0 18.13	A
MOTA	1064	CA	MSE A 2		34.729	35.313 -19.44		0 18.31	A A
ATOM	1065	СВ	MSE A 2		34.868	36.397 -20.51		0 20.88	A
ATOM	1066	CG	MSE A 2		35.243	35.872 ÷21.89		0 24.97	A
MOTA	10.67	SE	MSE A 2		35.643	37.308 -23.13		0 31.39	A
ATOM	1068	CE	MSE A 2		33.856	37.603 -23.80		0 31.87	A
ATOM ATOM	1,069 1070	С 0	MSE A 2 MSE A 2		34.701 35.715	35.976 -18.07 36.041 -17.38		0 17.43 0 15.93	A
ATOM	1070	N	HIS A 2		33.532	36.473 -17.68		0 15.35	A A.
ATOM	1072	CA	HIS A 2		33.382	37.135 -16.39		0 14.53	Α.
ATOM	1073	CB	HIS A 2		31.975	37.732 -16.28		0 16.88	A
ATOM	1074	CG	HIS A 2		31.813	38.698 -15.15		0 18.28	A
ATOM	1075		HIS A 2		31.863	40.050 -15.12		0 17.28	A
ATOM ATOM	1076 1077		HIS A 2 HIS A 2		31,585 31.502	38.294 -13.85 39.355 -13.07		0 17.51 0 17.03	. A
ATOM	1077		HIS A 2		31:502	40.435 -13.82		0 17.03	A Ar
ATOM	1079	C	HIS A 2		33.645	36.141 -15.26		0 13.42	A
MOTA	1080	0	HIS A 2		34.323	36.466 -14.29	0 1.0	0 11.85	A
MOTA	1081	N	LEU A 2		33.111	34.931 -15.40		0 12.32	A
MOTA	1082	CA	LEU A 2		33.313	33.894 -14.39		0 11.41	. A
MOTA	1083	СВ	LEU A 2	45	32.459	32.664 -14.71	.0 1.0	0 11.93	A

MOTAT	1084	CG	LEU A 245	32.704	31.410 -13.869	1.00 12.45	A
ATOM	1085		1 LEU A 245	32.472	31.715 -12.389		
ATOM	1086		2 LEU A 245	31.778			· A
MOTA	1087		LEU A 245	34.790		1.00 11.45	Α
ATOM ATOM	1088 1089		LEU A 245 ALA A 246	35.363	·	1.00 11.37	A
ATOM	1090		ALA A 246	35.411 36.822	32.976 -15.558	1.00 11.75 1.00 11.29	A
ATOM	1091		ALA A 246	37.298		1.00 11.29	A A
ATOM	1092		ALA A 246	37.655	33.998 -14.791	1.00 11.07	A
MOTA	1093	0 ·	ALA A 246	38.552	33.638 -14.032	1.00 10.62	A
ATOM	1094		ARG A 247	37.344	35.274 -14.985	1.00 11.10	A
ATOM	1095		ARG A 247	38.064	36.337 -14.300	1.00 12.88	A
ATOM	1096		ARG A 247	37.572	37.702 -14.774	1.00 17.27	A
ATOM ATOM	1097 1098	CG CD	ARG A 247 ARG A 247	38.347 39.732	38.868 -14.189 38.971 -14.804	1.00 25.65	A
ATOM	1099		ARG A 247	40.475	40.118 -14.287	1.00 32.96 1.00 39.20	· A
ATOM	1100	CZ	ARG A 247	41.244	40.089 -13.204	1.00 33.20	A
ATOM	1101	NH1	L ARG A 247	41.387	38.965 -12.512	1.00 42.95	A
MOTA	1102		2 ARG A 247	41.862	41.192 -12.807	1.00 43.69	A
ATOM	1103	С	ARG A 247	37.841	36.204 -12.795	1.00 11.48	A
ATOM	1104	0	ARG A 247	38.779	36.316 -12.005	1.00 11.35	A
ATOM ATOM	1105 1106	N CA	PHE A 248 PHE A 248	36.591	35.971 -12.406	1.00 9.96	A
ATOM	1107	CB	PHE A 248	36.257 34.775	35.809 -10.993 35.465 -10.831	1.00 8.76 1.00 8.82	A A
ATOM	1108	CG	PHE A 248	34.360	35.228 -9.402	1.00 8.05	A
MOTA	1109	CD1	PHE A 248	34.228	36.293 -8.515	1.00 9.83	A
ATOM	1110		PHE A 248	34.111	33.937 -8.942	1.00 9.86	A
ATOM	1111		PHE A 248	33.853	36.076 -7.186	1.00 8.69	A
MOTA	1112	CEZ	PHE A 248	33.735	33.708 -7.617	1.00 9.42	A
ATOM ATOM	1113 1114	C	PHE A 248 PHE A 248.	33.607 37.098	34.781 -6.738 34.698 -10.367	1.00 8.27	A
ATOM	1115	ō	PHE A 248	37.636	34.861 -9.274	1.00 8.86 1.00 9.14	A A
MOTA	1116	N	LEU A 249	37.205	33.567 -11.059	1.00 9.66	A
MOTA	1117	CA	LEU A 249	37.971	32.435 -10.542	1.00 9.31	A
ATOM	1118	CB	LEU A 249	37.736	31.195 -11.415	1.00 8.82	A
ATOM ATOM	1119 1120	CG	LEU A 249 LEU A 249	36.283	30.708 -11.405	1.00 13.09	A
ATOM	1121		LEU A 249	36.127 35.888	29.567 -12.393 30.265 -9.996	1.00 13.38 1.00 12.31	A
ATOM	1122	C	LEU A 249	39.462	32.744 -10.429	1.00 10.28	A A
MOTA	1123	0	LEU A 249	40.126	32.268 -9.505	1.00 9.43	A
MOTA	1124	N	ARG A 250	39.999	33.536 -11.355	1.00 9.79	A
ATOM	1125	CA	ARG A 250	41.410	33.897 -11.270	1.00 9.23	A
ATOM ATOM	1126 1127	CB	ARG A 250	41.899	34.549 -12.573	1.00 10.09	. A
ATOM	1128	CG CD	ARG A 250 ARG A 250	41.905 42.923	33.591 - 13.770 34.015 - 14.832	1.00 10.89 1.00 12.35	A
ATOM	1129	NE	ARG A 250	42.692	35.372 -15.318	1.00 12.35	A A
ATOM	1130	CZ	ARG A 250	41.768	35.713 -16.213	1.00 12.84	A
ATOM	1131		ARG A 250	40.968	34.793 -16.744	1.00 12.74	A
ATOM	1132		ARG A 250	41.642	36.985 -16.573	1.00 13.32	A
ATOM ATOM	1133 1134	С 0	ARG A 250	41.617	34.851 -10.087	1.00 9.42	A
ATOM	1135	N	ARG A 250 MSE A 251	42.674 40.603	34.852 -9.461 35.660 -9.786	1.00 10.80 1.00 8.99	A
ATOM	1136	CA	MSE A 251	40.693	36.585 -8.664	1.00 8.99 1.00 7.90	A A
ATOM	1137	CB	MSE A 251	39.503	37.546 -8.655	1.00 10.28	· A
ATOM	1138	CG	MSE A 251	39.546	.38.555 -9.787	1.00 10.58	A
ATOM	1139	SE	MSE A 251	37.927	39.597 -9.882	1.00 19.52	A
ATOM ATOM	1140	CE	MSE A 251	38.253	40.781 -8.392	1.00 16.71	A
ATOM	1141 1142	С 0	MSE A 251 MSE A 251	40.728	35.785 -7.368 36.134 -6.441	1.00 8.49	A
ATOM	1143	N	LEU A 252	39.946	36.134 -6.441 34.708 -7.306	1.00 8.06 1.00 8.09	A A
ATOM	1144	CA	LEU A 252	39.936	33.873 -6.109	1.00 8.04	A
ATOM.	1145	CB	LEU A 252	38.891	32.757 -6.222	1.00 8.32	A
ATOM	1146	CG	LEU A 252	37,411	33.159 -6.168	1.00 8.66	A
ATOM	1147		LEU A 252	36.544	31.914 -6.288	1.00 9.22	· A
ATOM ATOM	1148 1149	CD2	LEU A 252 LEU A 252	37.104	33.889 -4.867 33.262 -5.899	1.00 9.32	A
ATOM	1150		LEU A 252	41.314 41.800	33.262 -5.899 33.177 -4.771	1.00 9.42 1.00 9.61	A A
ATOM	1151		LEU A 253	41.944	32.834 -6.990	1.00 9.24	A
				•			

(
MOTAT '	1152		LE	U P	253		43.27	32.239	-6.910	1.00 11.62	A
ATOM	1153	-			253	•	43.696			1.00 13.39	A
ATOM	1154				253		45.049				A
ATOM ATOM	1155 1156				253		45.023				A
ATOM	1157				253		45.351 44.276				A
ATOM	1158				253		45.169		-5.627		A
ATOM	1159				254		44.129		-6.871		A A
ATOM	1160	CA			254		45.022		-6.450		Α.
ATOM	1161				254		44.700	36.888	-7.219		A
ATOM	1162				254		45.686		-7.004	1.00 21.07	A
ATOM	1163				254		47.047		-7.645		A
ATOM ATOM	1164 1165				254 254		47.962		-6.746		A
ATOM	1166		L ARG				48.623 48.474		-5.751 -5.527	1.00 38.24 1.00 41.13	A
ATOM	1167		2 ARC				49.434		-4.979	1.00 39.76	A A
ATOM	11.68				254		44.860		-4.943	1.00 12.40	A
ATOM	1169				254		45.843	36.054	-4.233	1.00 13.42	A
ATOM	1170				255		43:623		-4.452	1.00 11.26	A
ATOM	1171 1172	CA			255		43.383		-3.023	1.00 11.62	A
ATOM ATOM	1173	CB CG			255 255		41.879		-2.717	1.00 12.84	A
ATOM	1174	CDI			255		39.664		-3.105 -2.748	1.00 17.32 1.00 15.50	. A A
MOTA	1175		LEC				41.770		-2.372	1.00 16.31	A
ATOM	1176	. C	LEU	JA	255		44.043		-2.226	1.00 12.01	A
MOTA	1177	0			255		44.672		-1.197	1.00 10.55	Α
MOTA	1178	N			256		43.901	33.616	-2.701	1.00 12.67	A
ATOM ATOM	1179 1180	CA CB			256 256		44.507 44.103	32.474 31.165	-2.017	1.00 14.15	A
ATOM	1181	C			256		46.029	32.614	-2.701 -1.996	1.00 12.71 1.00 15.50	A A
ATOM	1182	ō			256		46.671	32.310	988	1.00 17.69	A
MOTA	1183	N	ASP	Α	257		46.601	33.077	-3.106	1.00 16.20	A
ATOM	1184	CA			257		48.050	33.266	-3.209	1.00 18.87	A
ATOM	1185	CB			257		48.465	33.654	-4.633	1.00 20.67	A
MOTA MOTA	1186 1187	CG OD1	ASP		257		48.336	32.520	-5.621	1.00 25.45	A
ATOM	1188		ASP				48.382 48.210	31.348 32.812	-5.202 -6.830	1.00 26.70 1.00 27.63	A A
MOTA	1189	C			257		48.536	34.380	-2.296	1.00 18.97	A
ATOM	1190	0			257		49.505	34.227.	-1.552	1.00 19.55	A
ATOM	1191	N	GLU				47.852	35.512	-2.374	1.00 15.45	A
ATOM ATOM	1192 1193	CA CB			258 258		48.214	36.695	-1.613	1.00 15.96	A
ATOM	1194	CG	GLU				47.364 47.812	37.874 39.233	-2.090 -1.579	1.00 15.35 1.00 19.78	A A
ATOM	1195	CD	GLU				49.205	39.596	-2.052	1.00 13.76	A
ATOM	1196	OE1	GLU	A	258		49.551	39.254	-3.204	1.00 24.81	A
ATOM	1197		GLU				49.949	40.232	-1.277	1.00 24.19	A
ATOM	1198	C	GLU				48.098	36.580	100	1.00 15.06	Α
ATOM ATOM	1199 1200	O N	GLU PHE				49.035 46.953	36.918 36.092	. 627	1.00 14.21	A
ATOM	1201	CA	PHE				46.678	36.092	.365 1.794	1.00 12.81 1.00 12.40	A A
ATOM	1202	CB	PHE				45.275	36.549	2.048	1.00 14.06	A
ATOM	1203	CG	PHE				45.103	37.973	1.612	1.00 13.57	A
ATOM	1204		PHE				45.752	39.002	2.290	1.00 15.40	A
ATOM	1205		PHE				44.322	38.288	.505	1.00 13.21	A
ATOM ATOM	1206 1207		PHE PHE				45.625	40.326	1.872	1.00 14.07	A
ATOM	1208	CZ	PHE				44.188	39.610 40.631	.078 .763	1.00 13.61 1.00 15.29	A A
ATOM	1209		PHE				46.828	34.642	2.461	1.00 13.29	Ā
ATOM	1210	0	PHE	A :	259		46.724	34.539	3.684	1.00 14.38	A
ATOM	1211	N	GLY				47.068	33.604	1.668	1.00 12.99	A
ATOM	1212	CA	GLY				47.242	32.276	2.227	1.00 13.13	A
ATOM ATOM	1213 1214	C	GLY GLY				45.980	31.705	2.844	1.00 14.85	A
ATOM	1214	N	VAL				46.039 44.832	30.916 32.120	3.785 2.330	1.00 17.57 1.00 12.38	A . A
ATOM	1216	CA	VAL				43.568	31.615	2.843	1.00 12.38	A
ATOM	1217	CB	VAL				42.446	32.672	2.766	1.00 12.70	A
ATOM	1218		VAL				42.764	33.841	3.681	1.00 13.51	A
ATOM	1219	CG2	VAL	A 2	261 .		42.274	33.140	1.334	1.00 13.33	A

)	(
	ATON	1 1220		AL A 261		43.11	.8 30.4	129 2.0	21 1	00 10.55	_
	ATOM	1 1221	0 V.	AL A 261		43.52				00 10.33 00 11.12	
	ATON			LA A 262		42.28					
	MOTA			LA A 262		41.72					
	ATOM			LA A 262		41.29					
	ATOM		C A	LA A 262		40.50					A
	ATOM			LA A 262		39.75				00 11.69	A
	ATOM			AL A 263		40.32			53 1.0		
	ATOM			AL A 263		39.16					A A
	ATOM			AL A 263		39.56	3 29.9				A
	ATOM		CG1 V	AL A 263		38.31	4 30.3		_		A
	ATOM			AL A 263		40.34		38 -1.69			A
	ATOM			L A 263		38.33	0 28.0	20 -1.15			· A
	ATOM			Li A 263		38.80		24 -1.84		0 10.31	A
	MOTA			L A 264		37.09		8466	4 1.0		A
	ATOM			L A 264	•	36.19		7093			A
	ATOM			L A 264		35.72		17 .38			A
	ATOM			L A 264		34.704			2 1.0	0 10.31	A
	ATOM	1238		L A 264		36.912			8 1.0		A
	MOTA	1239		L A 264	•	34.984			6 1.0	0 9.72	A
	MOTA	1240		L A 264		34.284			5 1.0	0 11.71	· A
	MOTA MOTA			E A 265		34.738		37 -2.86		0 10.40	A
	ATOM			E A 265		33.600				0 10.29	Α
	ATOM		CB IL	E A 265		34.047			7 1.0	0 10.14	A
	ATOM	1245	CC1 III	E A 265 E A 265		35.016				0 11.21	A
	ATOM		COI IN	E A 265		34.708				12.27	A
	ATOM			E A 265		35.143				13.03	A
	ATOM.			E A 265		32.748		3 -4.03		10.17	A
	ATOM			R A 266		33.236					A
	ATOM			R A 266		31.470			_		A
	ATOM			R A 266		30.584					Α
	ATOM		OG1 THE	R A 266		29.349		4 -3.760		10.99	A
	ATOM		CG2 THE	A 266		28.518 29.785				12.11	A
	ATOM			A 266						12.65	A
	ATOM			A 266		30.161 30.132				11.50	A
	ATOM			A 267		29.850	26.62			12.79	A
	ATOM			A 267		29.465	24.41 24.50			12.20	A
	ATOM			A 267		30.686	24.22			13.60	A
	ATOM			A 267		30.539		3 -9.103 3 -10.510		14.59	A
	ATOM	1260 C	D1 ASN	A 267		29.429		3 -10.310 3 -11.008		17.75	A
	MOTA	1261 N	D2 ASN	A 267		31.667		2 -11.166		19.43 17.66	A
	ATOM	1262 C		A 267		28.391	23.458			15.70	A
	MOTA	1263 C		A 267		28.267	22.495			15.21	A
	ATOM	1264 N	ALA	A 293		10.359		3 -14.750		25.75	A A
	ATOM		A ALA	A 293	4	10.748		-13.361		26.09	A
	ATOM	1266 C		A 293	4	0.228		5 -12.482		26.24	A
	ATOM	1267 C		A 293	4	2.263		-13.226		26.19	A
	ATOM	1268 0		A 293	4	3.008		-13.960		26.65	A
	ATOM	1269 N		A 294	. 4	2.712		-12.283		24.21	A
	ATOM	1270 C	,	A 294		4.140		-12.051		23.37	A
	ATOM`	1271 C	B HIS	A 294.	4	4.377		-11.098		23.08	A
	ATOM`	1272 C	G HIS	A 294.		5.820	26.933	-10.933	1.00	25.13	A
	ATOM ATOM	1273 CI	D2 HIS	A 294		6.623		-11.665	1.00	25.75	A
	ATOM	1274 NI	ol HIS	A 294		6.605	26.429		1.00	24.49	A
	ATOM	1275 CF 1276 NF	El HIS	A 294		7.831		-10.032		26.77	A
	ATOM	1276 NE	E2 HIS			7.867		-11.084		26.73	A
	ATOM		uto	A 294		4.713		-11.463		21.69	A
	ATOM	1278 O 1279 N		A 294		3.996		-10.841		20.98	A
	ATOM	1279 N		A 295 A 295		6.006		-11.672		20.58	A
	MOTA	1281 CE	ALTA S	A 295 A 295		6.677		-11.173		20.25	A
	MOTA	1282 C	ΑΥ.Δ	A 295		8.154		-11.553		20.07	A
	MOTA	1283 0		A 295		6.534	22.525	-9.662	1:00	19.38	A
	MOTA	1284 N		A 296		6.484 5.451	21.397	-9.170 -9.030	1.00		A
	MOTA	1285 CA		A 296		5.341	23.632 23.574	-8.930 -7.472	1.00		A
P	MOTA	1286 CB		A 296		5.902	24.858	-7.472 -6.953	1.00		A
A	MOTA	1287 OG		A 296			25,993	-6.853 -7.244	1.00		A
					7.		-3,773	-1.244	1.00	11.47	A

(
`-ATO	M 1288 C SER A 296	44.929 23.347 -6.943 1.00 18.00
ATO	M 1289 O SER A 296	
ATO	M. 1290 N THRA 297	
. ATO		23.430 7.018 1.00 15.86
ATO		
ATO		
ATO		1 2 2 3 4 3
ATO		2.00 10.10
ATO		42.186 21.804 -7.121 1.00 16.88
ATON		42.511 20.910 -7.899 1.00 19.37
ATON		41.522 21.579 -5.993 1.00 14.80
ATON	41. 11. 250	41.072 20.248 -5.609 1.00 14.89
ATON		41.282 19.988 -4.103 1.00 16.40 F
ATOM		42.680 19.966 -3.812 1.00 18.58
ATOM		d0.672 18.650 -3.697 1.00 18.79
		39.581 20.203 -5.890 1.00 13.32 A
ATOM		38.838 21.043 -5.398 1.00 12.51 a
ATOM		39.149 19.232 -6.688 1.00 13.14 A
ATOM		37.735 19.094 -7.007 1.00 13.42 A
ATOM	14.0 11 233	37.543 18.923 -8.513 1.00 14.70 h
ATOM		37 595 20 222 0 222 1 22 2
ATOM	1210 11 233	37 341 19 992 19 356 3 99 30
ATOM		37 000 21 244 11 455 1 22 2
MOTA	1310 CZ ARG A 299	36 981 21 349 -12 772 1 00 cp
MOTA	1311 NH1 ARG A 299	37 111 20 271 12 525 1 00 25.75 A
MOTA	1312 NH2 ARG A 299	36 730 22 520 12 202 1 00 23.24 A
ATOM	1313 C ARG A 299	37 101 17 010 6 076 1 00 1
ATOM	1314 O ARG A 299	A
ATOM	1315 N LEU A 300	A 2.00 10.01 A
ATOM	1316 CA LEU A 300	A 21.00 11.42 A
ATOM	1317 CB LEU A 300	35.302 17.181 -4.799 1.00 12.66 A
ATOM	1318 CG LEU A 300	35.158 17.594 -3.333 1.00 14.16 A
ATOM	1319 CD1 LEU A 300	36.415 18.043 -2.589 1.00 15.24 A
ATOM	1320 CD2 LEU A 300	36.058 18.364 -1.142 1.00 15.73 A
ATOM		37.469 16.963 -2.654 1.00 17.90 A
ATOM	:: 500	33.913 17.004 -5.391 1.00 13.73 A
ATOM		33.200 17.981 -5.615 1.00 14.00 A
		33.531 15.756 -5.649 1.00 13.54 A
ATOM	1324 CA TYR A 301	32.213 15.463 -6.197 1.00 13.49 A
ATOM	1325 CB TYR A 301	32.336 14.587 -7.446 1.00 15.65 A
ATOM	1326 CG TYR A 301	33.051 15.291 -8.577 1.00 17.58 A
ATOM	1327 CD1 TYR A 301	34.443 15.368 -8.606 1.00 18.47 A
ATOM	1328 CE1 TYR A 301	35.105 16.079 -9.602 1.00 19.95 A
ATOM	1329 CD2 TYR A 301	32 332 15 045 0 501 1 00 10
ATOM	1330 CE2 TYR A 301	32 995 16 661 10 502 1 00 70 70 R
ATOM	1331 CZ TYR A 301	34 371 16 725 10 504 5 00 00
ATOM	1332 OH TYR A 301	35 025 17 440 11 563 1 00 04 04
ATOM	1333 C TYR A 301	31 390 14 760 5 100 1 20 10
MOTA	1334 O TYR A 301	100 10.20 A
ATOM	1335 N LEU A 302 .	30 360 15 465 4 622 1 22 1 22
ATOM	1336 CA LEU A 302	29 519 14 045 2 570 4 00 40 40
ATOM	1337 CB LEU A 302	29 176 16 067 0 504 1 00 15
ATOM	1338 CG LEU A 302	30 341 16 010 0 005 1 00 13.33 A
ATOM	1339 CD1 LEU A 302	Z.00 11.00 A
ATOM	1340 CD2 LEU A 302	2. DOT 1. DOT 1. DOT 10. DOT A
ATOM	1341 C LEU A 302	n and an
ATOM	1342 O LEU A 302	28.221 14.332 -4.081 1.00 14.19 A
ATOM	1343 N ARG A 303	27.629 14.816 -5.046 1.00 15.47 A
ATOM		27.783 13.264 -3.427 1.00 14.19 A
ATOM		.26.531 12.624 -3.796 1.00 16.12 A
ATOM		26.757 11.496 -4.807 1.00 16.82 A
ATOM		27.559 10.303 -4.318 1.00 18.49 A
ATOM	1347 CD ARG A 303 1348 NE ARG A 303	27.532 9.215 ~5.390 1.00 20.58 A
		28.155 7.963 -4.968 1.00 22.33 A
ATOM	1349 CZ ARG A 303	29.466 7.745 -4.928 1.00 24.00 A
ATOM	1350 NH1 ARG A 303	30.318 8.698 -5.286 1.00 24.08 A
ATOM	1351 NH2 ARG A 303	29.926 6.561 -4.541 1.00 24.43 A
ATOM	1352 C ARG A 303	25.846 12.099 -2.543 1.00 17.08 A
ATOM	1353 O ARG A 303	26.469 11.966 -1.485 1.00 15.73 A
ATOM	1354 N LYS A 304	24 556 11 910 0 655 4 99
ATOM	1355 CA LYS A 304	23 B12 11 224 1 534 1 534
		23.612 11.354 -1.511 1.00 17.94 A
		•

ATOM 1359 CD LYS A 304 21.506 11.387 -2.35 1.00 ATOM 1360 NZ LYS A 304 19.806 11.807 1.199 1.00 ATOM 1361 C LYS A 304 19.806 11.807 1.199 1.00 ATOM 1362 O LYS A 304 24.025 9.868 -1.172 1.00 ATOM 1363 N GLY A 305 24.089 9.604 -128 1.00 ATOM 1364 CA GLY A 305 24.089 9.604 -128 1.00 ATOM 1365 C GLY A 305 24.089 9.604 -128 1.00 ATOM 1366 O GLY A 305 22.957 7.994 1.404 1.00 ATOM 1366 O GLY A 305 22.957 7.994 1.404 1.00 ATOM 1366 CA ARG A 306 22.838 6.844 2.057 1.00 ATOM 1368 CA ARG A 306 22.838 6.844 2.057 1.00 ATOM 1369 CB ARG A 306 22.838 6.844 2.057 1.00 ATOM 1369 CB ARG A 306 22.535 4.741 3.913 1.00 ATOM 1371 CD ARG A 306 22.53 4.741 3.913 1.00 ATOM 1371 CD ARG A 306 22.53 4.741 3.913 1.00 ATOM 1372 NE ARG A 306 21.515 5.110 3.261 1.00 ATOM 1373 CZ ARG A 306 21.051 2.699 5.067 1.00 ATOM 1374 NHI ARG A 306 21.051 2.699 5.067 1.00 ATOM 1375 NH2 ARG A 306 21.051 2.699 5.067 1.00 ATOM 1376 C ARG A 306 21.051 2.699 5.067 1.00 ATOM 1377 O ARG A 306 21.831 1.092 6.520 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.721 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.721 1.00 ATOM 1380 C GLY A 307 20.798 10.080 5.393 1.00 ATOM 1380 C GLY A 307 20.798 10.080 5.393 1.00 ATOM 1380 C GLY A 307 20.799 10.080 5.393 1.00 ATOM 1380 C GLY A 307 20.799 10.080 5.393 1.00 ATOM 1380 C GLY A 307 20.799 10.080 5.393 1.00 ATOM 1380 C GLY A 307 20.799 10.080 5.393 1.00 ATOM 1380 C GLY A 307 20.799 10.080 5.393 1.00 ATOM 1380 C GLY A 308 22.497 10.947 9.053 1.00 ATOM 1380 C GLY A 308 22.585 9.501 9.145 1.00 ATOM 1380 C GLY A 308 22.497 10.947 9.053 1.00 ATOM 1380 C GLY A 308 22.497 10.947 9.053 1.00 ATOM 1380 C GLY A 308 22.493 11.496 1.00 ATOM 1390 O GLU A 308 22.595 11.00 ATOM 1391 N THR A 309 24.032 1.0127 5.866 1.00 1.00 ATOM 1399 CA ARG A 310 22.695 1.00 1.00 ATOM 1399 CA GLU A 308 22.695 1.00 1.00 ATOM 1399 CA GLU A 308 22.695 1.00 1.00 ATOM 1399 CA GLU A 308 22.695 1.00 1.00 ATOM 1400 CB ARG A 310 22.695 1.00 1.00 ATOM 1401 CC ARG A 310 22.595 1.00 1.00 ATOM 1402 CO CYS A 312 23.14 1.00 2.555 1.00 1.00 ATOM 1401 CC LE A 311 29.891 1.225 1.00		(
ATOM 1355 CG LYS A 304 20.282 11.997 -2.35 1.00 ATOM 1359 CE LYS A 304 19.806 11.807 1.199 1.00 ATOM 1360 NZ LYS A 304 19.806 11.807 1.199 1.00 ATOM 1361 C LYS A 304 24.025 9.866 1.572 1.00 ATOM 1362 O LYS A 304 24.025 9.866 1.172 1.00 ATOM 1363 N GLY A 305 24.089 9.604 1.28 1.00 ATOM 1363 N GLY A 305 24.089 9.604 1.28 1.00 ATOM 1364 CA GLY A 305 24.297 8.254 1.00 ATOM 1365 C GLY A 305 22.957 7.994 1.404 1.00 ATOM 1366 O GLY A 305 22.957 7.994 1.404 1.00 ATOM 1366 C GLY A 305 22.957 7.994 1.404 1.00 ATOM 1366 C GLY A 305 22.957 7.994 1.404 1.00 ATOM 1366 C A ARG A 306 22.838 6.844 2.057 1.00 ATOM 1369 CB ARG A 306 21.614 6.569 2.798 1.00 ATOM 1369 CB ARG A 306 21.614 6.569 2.798 1.00 ATOM 1370 CC ARG A 306 20.253 4.741 3.913 1.00 ATOM 1371 N B ARG A 306 21.575 5.110 3.261 1.00 ATOM 1372 NE ARG A 306 21.575 5.110 3.261 1.00 ATOM 1373 N B ARG A 306 21.575 5.10 3.261 1.00 ATOM 1374 NH1 ARG A 306 21.575 5.10 3.261 1.00 ATOM 1376 C ARG A 306 21.831 1.092 6.520 1.00 ATOM 1376 C ARG A 306 21.831 1.092 6.520 1.00 ATOM 1377 O ARG A 306 21.448 7.493 4.002 1.00 ATOM 1378 N GLY A 307 20.988 10.080 5.393 1.00 ATOM 1378 N GLY A 307 20.988 10.080 5.393 1.00 ATOM 1380 C GLY A 307 20.988 10.884 3.4426 1.00 ATOM 1380 C GLY A 307 20.988 10.884 3.4426 1.00 ATOM 1380 C GLY A 307 20.988 10.884 3.4426 1.00 ATOM 1380 C GLY A 307 20.988 10.884 3.4426 1.00 ATOM 1380 C GLY A 307 20.988 10.884 3.4426 1.00 ATOM 1380 C GLY A 307 20.988 10.884 3.4426 1.00 ATOM 1380 C GLY A 308 22.399 11.838 8.182 1.00 ATOM 1380 C GLY A 308 22.399 11.838 8.182 1.00 ATOM 1380 C GLY A 308 22.399 11.838 8.182 1.00 ATOM 1380 C GLY A 308 22.399 11.838 8.182 1.00 ATOM 1380 C GLY A 308 22.399 11.838 8.182 1.00 ATOM 1381 C GLY A 308 22.399 11.838 8.182 1.00 ATOM 1380 C GLY A 308 22.399 11.838 8.182 1.00 ATOM 1380 C GLY A 308 22.399 11.838 8.182 1.00 ATOM 1380 C GLY A 308 22.399 11.838 8.182 1.00 ATOM 1390 C GLY A 308 22.399 11.838 8.182 1.00 ATOM 1391 N THR A 309 25.741 8.399 5.067 1.00 1.00 ATOM 1406 C ARG A 310 22.551 1.00 1.298 8.209 1.00 1.00 ATOM 1407 C ARG A 31	'	ATO	1 1356 CB LYS A 304	22 314 11 601 -1 600 1 00 10 70	
ATOM 1359 CD LYS A 304 ATOM 1360 NZ LYS A 304 ATOM 1360 NZ LYS A 304 ATOM 1361 C LYS A 304 ATOM 1361 C LYS A 304 ATOM 1362 O LYS A 304 ATOM 1362 O LYS A 304 ATOM 1363 NG LYS A 304 ATOM 1364 CA GLY A 305 ATOM 1364 CA GLY A 305 ATOM 1365 C GLY A 305 ATOM 1366 O GLY A 305 ATOM 1366 O GLY A 305 ATOM 1367 N ARG A 306 ATOM 1367 N ARG A 306 ATOM 1368 CA ARG A 306 ATOM 1370 C ARG A 306 ATOM 1370 C ARG A 306 ATOM 1371 CD ARG A 306 ATOM 1371 CD ARG A 306 ATOM 1371 CD ARG A 306 ATOM 1372 N ARG A 306 ATOM 1374 NH1 ARG A 306 ATOM 1374 NH1 ARG A 306 ATOM 1375 N ARG A 306 ATOM 1376 N ARG A 306 ATOM 1377 O ARG A 306 ATOM 1378 N GLY A 305 ATOM 1376 C ARG A 306 ATOM 1377 O ARG A 306 ATOM 1378 N GLY A 307 ATOM 1377 O ARG A 306 ATOM 1378 N GLY A 307 ATOM 1379 C A GLY A 307 ATOM 1370 C G ARG A 306 ATOM 1371 D CD ARG A 306 ATOM 1374 NH1 ARG A 306 ATOM 1376 C ARG A 306 ATOM 1377 O ARG A 306 ATOM 1378 N GLY A 307 ATOM 1380 C GLY A 308 ATOM 1398 C GLY A 308 ATOM 1399 C GLY A 308 ATOM 1390 C GLY A 308 ATOM 1390 C GLY A 308 ATOM 1391 C GLY A 308 ATOM 1391 C GLY A 308 ATOM 1391 C GLY A 308 ATOM 1398 C GLY A 308 ATOM 1398 C GLY A 308 ATOM 1399 C GLY A 308		ATO		1.000 1.00 18.38	A
ATOM 1360 NZ LYS A 304 19.806 11.807 1.199 1.00 ATOM 1361 C LYS A 304 24.025 9.868 -1.172 1.00 ATOM 1362 O LYS A 304 24.025 9.868 -1.172 1.00 ATOM 1363 N GLY A 305 24.089 9.604 .128 1.00 ATOM 1363 N GLY A 305 24.089 9.604 .128 1.00 ATOM 1364 CA GLY A 305 24.089 9.604 .128 1.00 ATOM 1365 C GLY A 305 22.957 7.994 .1404 1.00 ATOM 1365 C GLY A 305 22.957 7.994 .1404 1.00 ATOM 1366 O GLY A 305 22.957 7.994 .1404 1.00 ATOM 1366 CA ARG A 306 22.838 6.844 2.057 1.00 ATOM 1369 CB ARG A 306 22.838 6.844 2.057 1.00 ATOM 1369 CB ARG A 306 22.838 6.844 2.057 1.00 ATOM 1370 CG ARG A 306 22.533 4.741 3.913 1.00 ATOM 1371 CD ARG A 306 22.533 4.741 3.913 1.00 ATOM 1371 CD ARG A 306 22.533 4.741 3.913 1.00 ATOM 1372 NE ARG A 306 21.051 2.699 5.067 1.00 ATOM 1373 NH2 ARG A 306 21.051 2.699 5.067 1.00 ATOM 1374 NH1 ARG A 306 21.051 2.699 5.067 1.00 ATOM 1375 NH2 ARG A 306 21.831 1.092 6.520 1.00 ATOM 1376 C ARG A 306 22.409 7.795 4.710 1.00 ATOM 1377 O ARG A 306 22.409 7.795 4.710 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1380 C GLY A 307 20.220 7.954 4.221 1.00 ATOM 1380 C GLY A 307 20.988 10.8843 4.426 1.00 ATOM 1380 C GLY A 307 20.989 10.880 5.339 1.00 ATOM 1380 C GLY A 307 20.989 10.880 5.393 1.00 ATOM 1380 C GLY A 307 20.989 10.880 5.393 1.00 ATOM 1380 C GLY A 307 20.989 10.880 5.393 1.00 ATOM 1380 C GLY A 307 20.999 10.838 8.182 1.00 ATOM 1380 C GLY A 307 20.999 10.880 6.593 1.00 ATOM 1380 C GLY A 307 20.999 10.806 5.393 1.00 ATOM 1380 C GLY A 308 22.318 11.467 6.694 1.00 ATOM 1380 C GLY A 308 22.319 11.880 6.122 1.00 ATOM 1380 C GLY A 308 22.319 11.838 6.162 1.00 ATOM 1380 C GLY A 308 22.319 11.836 6.192 1.00 ATOM 1390 C GLU A 308 22.319 11.836 6.192 1.00 ATOM 1390 C GLU A 308 22.319 11.301 6.132 1.00 ATOM 1391 N THR A 309 24.032 1.0127 5.866 1.00 1.00 ATOM 1399 C GLU A 308 22.525 1.00 1.27 5.866 1.00 1.00 ATOM 1390 C GLU A 308 22.525 1.00 1.27 5.866 1.00 1.00 ATOM 1400 C B ARG A 310 22.555 1.00 1.00 1.00 ATOM 1401 C C RAG A 310 22.555 1.00 1.00 1.00 ATOM 1401 C C RAG A 310 22.555 1.00 1.00 1.00 ATOM 1401 C C		ATO	4 1358 CD LYS A 304		A
ATOM 1361 C LYS A 304 24.025 9.866 -1.172 1.00 ATOM 1362 O LYS A 304 24.025 9.866 -1.172 1.00 ATOM 1363 N GLY A 305 24.089 9.604 1.28 1.00 ATOM 1364 CA GLY A 305 24.089 9.604 1.28 1.00 ATOM 1365 O GLY A 305 24.089 9.604 1.28 1.00 ATOM 1366 O GLY A 305 22.957 7.994 1.404 1.00 ATOM 1367 N ARG A 305 22.957 7.994 1.404 1.00 ATOM 1368 CA ARG A 306 22.638 8.843 1.414 1.00 ATOM 1369 CB ARG A 306 22.839 6.844 2.057 1.00 ATOM 1370 CG ARG A 306 21.614 6.559 2.798 1.00 ATOM 1371 CD ARG A 306 21.614 6.559 2.798 1.00 ATOM 1372 NE ARG A 306 20.090 3.243 4.113 1.00 ATOM 1371 CD ARG A 306 20.090 3.243 4.113 1.00 ATOM 1372 NE ARG A 306 20.090 3.243 4.113 1.00 ATOM 1373 CZ ARG A 306 21.051 2.699 5.067 1.00 ATOM 1374 NH1 ARG A 306 19.853 7.68 5.399 1.00 ATOM 1375 NR2 ARG A 306 21.831 1.092 5.662 1.00 ATOM 1375 NR2 ARG A 306 21.831 1.092 6.520 1.00 ATOM 1376 C ARG A 306 21.488 7.493 4.002 1.00 ATOM 1377 O ARG A 306 22.409 7.795 4.710 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1388 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1388 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1380 C GLY A 307 20.220 7.954 4.221 1.00 ATOM 1381 O GLY A 307 20.220 7.954 4.221 1.00 ATOM 1382 N GLU A 308 22.318 11.467 6.694 1.00 ATOM 1384 CB GLU A 308 22.318 11.467 6.694 1.00 ATOM 1386 CG GLU A 308 22.329 11.838 8.182 1.00 ATOM 1387 ORI GLU A 308 23.297 10.947 9.053 1.00 ATOM 1389 N GLU A 308 23.297 10.947 9.053 1.00 ATOM 1389 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1399 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1399 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1399 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1391 N THR A 309 24.535 10.565 2.886 1.00 1 ATOM 1399 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1400 CB ARG A 310 24.535 10.565 2.886 1.00 1 ATOM 1401 CG ARG A 310 24.54					A
ATOM 1361 C LYS A 304 24.025 9.868 -1.172 1.00 ATOM 1362 O LYS A 304 24.151 9.015 -2.055 1.00 ATOM 1363 N GLY A 305 24.089 9.604 1.28 1.00 ATOM 1365 C GLY A 305 24.237 8.254 6.37 1.00 ATOM 1366 C GLY A 305 22.957 7.994 1.404 1.00 ATOM 1366 C GLY A 305 22.066 8.843 1.414 1.00 ATOM 1367 N ARG A 306 22.838 6.844 2.057 1.00 ATOM 1368 CA ARG A 306 21.614 6.569 2.798 1.00 ATOM 1369 CB ARG A 306 21.614 6.569 2.798 1.00 ATOM 1370 CG ARG A 306 20.253 4.741 3.913 1.00 ATOM 1371 CD ARG A 306 20.253 4.741 3.913 1.00 ATOM 1372 NE ARG A 306 20.990 3.243 4.113 1.00 ATOM 1373 CZ ARG A 306 20.914 1.520 5.662 1.00 ATOM 1374 NH1 ARG A 306 19.853 7.68 5.399 1.00 ATOM 1375 NH2 ARG A 306 21.448 7.493 4.002 1.00 ATOM 1377 O ARG A 306 21.448 7.493 4.002 1.00 ATOM 1377 O ARG A 306 21.448 7.493 4.002 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1379 CA GLY A 307 20.220 7.954 4.221 1.00 ATOM 1380 C GLY A 307 20.220 7.954 4.221 1.00 ATOM 1381 O GLY A 307 20.889 10.080 5.393 1.00 ATOM 1382 N GLY A 307 20.889 10.080 5.393 1.00 ATOM 1383 CA GLU A 308 21.476 10.289 6.519 1.00 ATOM 1384 CB GLU A 308 21.476 10.289 6.519 1.00 ATOM 1385 CG GLU A 308 22.399 11.838 8.182 1.00 ATOM 1386 CD GLU A 308 22.399 11.838 8.182 1.00 ATOM 1389 CC GLU A 308 22.399 11.838 8.182 1.00 ATOM 1389 CC GLU A 308 23.297 10.947 9.053 1.00 ATOM 1389 CC GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.566 8.595 9.095 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1390 C GLU A 308 23.297				The second secon	A
ATOM 1362 O LYS A 304 24.151 9.015 -2.055 1.00 ATOM 1364 CA GLY A 305 24.089 9.604 .128 1.00 ATOM 1365 C GLY A 305 22.957 7.994 1.001 ATOM 1366 O GLY A 305 22.957 7.994 1.001 ATOM 1366 C GLY A 305 22.066 8.843 1.414 1.00 ATOM 1366 CA ARG A 306 22.838 6.844 2.057 1.00 ATOM 1368 CA ARG A 306 22.838 6.844 2.057 1.00 ATOM 1369 CB ARG A 306 21.575 5.110 3.261 1.00 ATOM 1370 CG ARG A 306 21.575 5.110 3.261 1.00 ATOM 1371 CD ARG A 306 20.253 4.741 3.913 1.00 ATOM 1371 CD ARG A 306 20.090 3.243 4.113 1.00 ATOM 1372 NE ARG A 306 21.051 2.659 5.067 1.00 ATOM 1373 CZ ARG A 306 21.051 2.659 5.067 1.00 ATOM 1374 NH1 ARG A 306 19.853 .768 5.399 1.00 ATOM 1375 NH2 ARG A 306 21.481 1.092 6.520 1.00 ATOM 1375 NH2 ARG A 306 21.481 1.092 6.520 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1379 CA GLY A 307 19.946 8.824 5.350 1.00 ATOM 1380 C GLY A 307 20.220 7.954 4.221 1.00 ATOM 1380 C GLY A 307 20.988 10.080 5.393 1.00 ATOM 1381 O GLY A 307 20.988 10.080 5.393 1.00 ATOM 1382 N GLU A 308 22.318 11.467 6.694 1.00 ATOM 1383 CA GLU A 308 22.318 11.467 6.694 1.00 ATOM 1386 CD GLY A 307 20.989 10.080 5.393 1.00 ATOM 1386 CD GLU A 308 22.318 11.607 6.694 1.00 ATOM 1387 OEI GLU A 308 22.329 11.838 8.182 1.00 ATOM 1389 C GLU A 308 22.329 11.838 1.1067 6.694 1.00 ATOM 1389 C GLU A 308 22.329 1.034 6.924 5.500 1.00 ATOM 1389 C GLU A 308 22.329 1.034 6.924 5.004 1.				24 25 25 25 25 25 25 25 25 25 25 25 25 25	A
ATOM 1364 CA GIY A 305					A A
ATOM 1365 C GLY A 305 22,957 7,994 1,404 1.00 ATOM 1366 O GLY A 305 22,066 8.843 1,414 1.00 ATOM 1367 N ARG A 306 21.614 6.569 2.798 1.00 ATOM 1368 CA ARG A 306 21.614 6.569 2.798 1.00 ATOM 1370 CG ARG A 306 21.575 5.110 3.261 1.00 ATOM 1371 CD ARG A 306 21.575 5.110 3.261 1.00 ATOM 1371 CD ARG A 306 20.253 4.741 3.913 1.00 ATOM 1372 NE ARG A 306 21.051 2.699 5.067 1.00 ATOM 1373 CZ ARG A 306 21.051 2.699 5.067 1.00 ATOM 1374 NH1 ARG A 306 19.853 .768 5.399 1.00 ATOM 1375 NH2 ARG A 306 21.481 1.092 6.520 1.00 ATOM 1376 C ARG A 306 21.481 1.092 6.520 1.00 ATOM 1377 NH2 ARG A 306 21.481 1.092 6.520 1.00 ATOM 1378 N GLY A 307 20.220 7.795 4.221 1.00 ATOM 1379 CA GLY A 307 19.946 8.824 5.350 1.00 ATOM 1389 C GLY A 307 20.988 10.843 4.426 1.00 ATOM 1388 N GLY A 307 20.988 10.843 4.426 1.00 ATOM 1388 CB GLU A 308 22.318 11.467 6.694 1.00 ATOM 1388 CB GLU A 308 22.318 11.467 6.694 1.00 ATOM 1386 C GLY A 307 20.988 10.843 4.226 1.00 ATOM 1386 C GLY A 308 22.318 11.667 6.694 1.00 ATOM 1389 C GLU A 308 22.318 11.667 6.694 1.00 ATOM 1389 C GLU A 308 22.318 11.667 6.694 1.00 ATOM 1389 C GLU A 308 22.3297 10.947 9.053 1.00 ATOM 1389 C GLU A 308 22.3297 10.947 9.053 1.00 ATOM 1389 C GLU A 308 22.329 11.838 8.182 1.00 ATOM 1389 C GLU A 308 22.329 11.838 6.182 1.00 ATOM 1389 C GLU A 308 22.329 10.947 9.053 1.00 ATOM 1389 C GLU A 308 22.329 10.947 9.053 1.00 ATOM 1390 C GLU A 308 22.329 10.947 9.053 1.00 ATOM 1397 CR THR A 309 25.567 9.899 5.044 1.00 1.00 ATOM 1399 C A THR A 309 25.567 9.899 5.044 1.00 1.00 ATOM 1399 C A ARG A 310 24.745 13.562 2.886 1.00 1.00 ATOM 1399 C A ARG A 310 24.745 13.562 2.886 1.00 1.00 ATOM 1390 C GLU A 308 23.567 9.899 5.044 1.00 1.00 ATOM 1390 C GLU A 308 23.567 9.899 5.044 1.00 1.00 ATOM 1390 C GLU A 308 23.567 9.899 5.044 1.00 1.00 ATOM 1390 C GLU A 308 23.567 9.899 5.044 1.00 1.00 ATOM 1390 C GLU A 308 23.567 9.899 5.044 1.00 1.00 ATOM 1400 C C ARG A 310 24.745 13.562 2.886 1.00 1.00 1.00 ATOM 1401 CC ARG A 310 24.745 13.562 2.886 1.00 1.00 1.00 ATOM 1400 C C ARG A 310 24.745 13.562 2.896 1.00 1	•			04 000	A
ATOM 1366 C GLY A 305 22.957 7.994 1.404 1.00 ATOM 1367 N ARG A 306 22.838 6.844 2.057 1.00 ATOM 1368 CA ARG A 306 21.614 6.569 2.798 1.00 ATOM 1369 CB ARG A 306 21.651 6.529 1.00 ATOM 1370 CG ARG A 306 20.090 3.234 4.113 1.00 ATOM 1371 CD ARG A 306 20.090 3.234 4.113 1.00 ATOM 1372 NE ARG A 306 20.090 3.234 4.113 1.00 ATOM 1373 CZ ARG A 306 20.090 3.234 4.113 1.00 ATOM 1373 CZ ARG A 306 21.051 2.699 5.067 1.00 ATOM 1373 CZ ARG A 306 21.051 2.699 5.067 1.00 ATOM 1375 NH2 ARG A 306 19.853 7.68 5.399 1.00 ATOM 1375 NH2 ARG A 306 21.051 1.520 5.662 1.00 ATOM 1376 C ARG A 306 21.481 1.092 6.520 1.00 ATOM 1377 O ARG A 306 21.481 1.092 6.520 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1379 CA GLY A 307 19.946 8.224 5.350 1.00 ATOM 1380 C GLY A 307 20.798 10.880 5.393 1.00 ATOM 1381 O GLY A 307 20.798 10.880 5.393 1.00 ATOM 1382 CA GLY A 307 20.798 10.880 5.393 1.00 ATOM 1383 CA GLU A 308 22.399 11.838 8.182 1.00 ATOM 1386 CB GLU A 308 22.399 11.838 8.182 1.00 ATOM 1386 CB GLU A 308 22.399 11.838 8.182 1.00 ATOM 1387 N GLU A 308 22.399 11.838 8.182 1.00 ATOM 1389 CB GLU A 308 22.399 11.838 8.182 1.00 ATOM 1389 CB GLU A 308 22.399 11.838 8.182 1.00 ATOM 1389 CB GLU A 308 23.297 10.947 9.053 1.00 ATOM 1389 CB GLU A 308 23.297 10.947 9.053 1.00 ATOM 1389 CB GLU A 308 23.297 10.947 9.053 1.00 ATOM 1399 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1399 C GLU A 308 23.696 8.595 9.095 1.00 ATOM 1399 C GLU A 308 23.696 8.595 9.095 1.00 ATOM 1399 C GLU A 308 23.696 8.595 9.095 1.00 ATOM 1399 C GLU A 308 23.696 8.595 9.095 1.00 ATOM 1399 C ARR A 309 25.557 10.461 3.637 1.00 1.00 ATOM 1390 C GLU A 308 23.686 8.595 9.095 1.00 ATOM 1399 C ARR A 310 24.535 1.00 6.132 1.00 1.00 ATOM 1399 C GLU A 308 23.696 8.595 9.095 1.00 ATOM 1399 C GLU A 308 23.696 8.595 9.095 1.00 ATOM 1399 C GLU A 308 23.696 8.595 9.095 1.00 ATOM 1399 C GLU A 308 23.696 8.595 9.095 1.00 ATOM 1390 C GLU A 308 23.696 8.595 9.095 1.00 ATOM 1391 C THR A 309 24.535 1.00 6.132 1.00 1.00 ATOM 1400 CB ARG A 310 22.644 1.00 2.566 1.00 1.00 1.00 ATOM 1401 CG ARG					A
ATOM 1366 CA ARG A 306 22.086 8.843 1.414 1.00 ATOM 1369 CB ARG A 306 21.614 6.569 2.798 1.00 ATOM 1370 CG ARG A 306 21.614 6.569 2.798 1.00 ATOM 1370 CG ARG A 306 20.253 4.741 3.913 1.00 ATOM 1371 CD ARG A 306 20.253 4.741 3.913 1.00 ATOM 1372 NE ARG A 306 20.253 4.741 3.913 1.00 ATOM 1373 CZ ARG A 306 20.990 3.243 4.113 1.00 ATOM 1373 CZ ARG A 306 20.914 1.520 5.662 1.00 ATOM 1374 NH1 ARG A 306 19.853 .768 5.399 1.00 ATOM 1375 NH2 ARG A 306 21.081 1.092 6.520 1.00 ATOM 1376 C ARG A 306 21.448 7.493 4.002 1.00 ATOM 1377 O ARG A 306 21.448 7.493 4.002 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1380 C GLY A 307 20.220 7.954 4.221 1.00 ATOM 1380 C GLY A 307 20.288 10.883 4.266 1.00 ATOM 1381 O GLY A 307 20.988 10.883 4.266 1.00 ATOM 1382 N GLU A 308 22.318 11.467 6.694 1.00 ATOM 1385 CG GLU A 308 22.318 11.467 6.694 1.00 ATOM 1386 CD GLU A 308 22.399 11.838 8.182 1.00 ATOM 1386 CD GLU A 308 22.399 11.838 8.182 1.00 ATOM 1389 C GLU A 308 22.399 11.838 8.182 1.00 ATOM 1389 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1389 C GLU A 308 23.297 10.947 9.053 1.00 ATOM 1389 C GLU A 308 23.726 11.301 6.132 1.00 ATOM 1399 C A THR A 309 25.367 9.899 5.044 1.00 ATOM 1399 C A THR A 309 25.367 9.899 5.044 1.00 ATOM 1399 C A THR A 309 25.367 9.899 5.044 1.00 ATOM 1399 C A THR A 309 24.532 12.235 6.185 1.00 ATOM 1399 C A THR A 309 25.507 10.461 3.637 1.00 1 ATOM 1399 C A THR A 309 24.532 12.235 6.185 1.00 1 ATOM 1399 C A ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1401 CG ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1401 CG ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1401 CG ARG A 310 22.634 12.730 3.996 5.038 1.00 1 ATOM 1401 CG ARG A 310 22.634 12.730 3.997 5.004 1.00 1 ATOM 1401 CG ARG A 310 22.634 12.730 3.999 5.004 1.00 1 ATOM 1401 CG ARG A 310 22.634 12.730 3.999 5.004 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.926 2.632 1.00 1 AT				22.957 7.994 1.404 1.00 16.49	A
ATOM 1368 CA ARG A 306				22.066 8.843 1.414 1.00 16 52	A
ATOM 1369 CA ARG A 306				22.838 6.844 2.057 1.00 17.03	A
ATOM 1370 CG ARG A 306 21.575 5.110 3.261 1.00 ATOM 1371 CD ARG A 306 20.090 3.243 4.113 1.00 ATOM 1372 NE ARG A 306 20.090 3.243 4.113 1.00 ATOM 1373 NE ARG A 306 21.051 2.699 5.067 1.00 ATOM 1374 NH1 ARG A 306 19.853 .768 5.399 1.00 ATOM 1375 NR2 ARG A 306 19.853 .768 5.399 1.00 ATOM 1375 NR2 ARG A 306 21.448 7.493 4.002 1.00 ATOM 1377 O ARG A 306 21.448 7.493 4.002 1.00 ATOM 1377 O ARG A 306 22.409 7.795 4.710 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1380 C GLY A 307 19.946 8.824 5.350 1.00 ATOM 1381 O GLY A 307 20.798 10.080 5.393 1.00 ATOM 1381 O GLY A 307 20.798 10.080 5.393 1.00 ATOM 1382 CA GLU A 308 21.476 10.289 6.519 1.00 ATOM 1385 CG GLU A 308 22.399 11.638 8.182 1.00 ATOM 1386 CD GLU A 308 22.399 11.638 8.182 1.00 ATOM 1386 CD GLU A 308 22.399 11.638 8.182 1.00 ATOM 1386 CD GLU A 308 22.399 11.638 ATOM 1386 CD GLU A 308 22.399 10.90 7.90 0.53 1.00 ATOM 1388 OC2 GLU A 308 22.399 11.638 8.182 1.00 ATOM 1389 C GLU A 308 22.399 11.638 6.189 1.00 ATOM 1389 C GLU A 308 22.399 11.638 6.180 1.00 ATOM 1389 C GLU A 308 22.399 11.638 6.180 1.00 ATOM 1389 C GLU A 308 22.392 10.917 9.053 1.00 ATOM 1389 OC GLU A 308 22.392 10.917 9.053 1.00 ATOM 1389 C GLU A 308 22.528 9.501 9.145 1.00 ATOM 1389 C GLU A 308 22.528 9.501 9.145 1.00 ATOM 1399 C GLU A 308 22.526 6.185 1.00 ATOM 1399 C GLU A 308 24.532 12.235 6.185 1.00 ATOM 1399 C GLU A 308 24.532 12.235 6.185 1.00 ATOM 1399 C GLU A 308 24.532 12.235 6.185 1.00 ATOM 1399 C GLU A 308 24.532 12.235 6.185 1.00 ATOM 1399 C GLU A 308 24.532 12.235 6.185 1.00 ATOM 1399 C GLU A 308 24.532 12.235 6.185 1.00 ATOM 1399 C A ARG A 310 24.535 10.565 2.886 1.00 ATOM 1399 C GLU A 308 24.535 10.565 2.886 1.00 ATOM 1399 C A ARG A 310 24.535 10.565 2.886 1.00 ATOM 1399 C A ARG A 310 24.545 10.00 ATOM 1400 C B ARG A 310 24.545 10.00 ATOM 1400 C B ARG A 310 24.545 10.00 ATOM 1400 C B ARG A 310 24.546 10.00 ATOM 1400 C B ARG A 310 24.546 10.00 ATOM 1400 C A ARG A 310 24.546 10.00 ATOM 1400 C A ARG A 310 24.547 10.00 10.00 ATOM 1400 C A ARG A 310 24.549 10.00 ATOM 1400 C				21.614 6.569 2.798 1.00 18.22	A
ATOM 1371 CD ARG A 306				21.575 5.110 3.261 1.00 21.45	A
ATOM 1372 NE ARG A 306 ATOM 1373 CZ ARG A 306 ATOM 1374 NH1 ARG A 306 ATOM 1375 NH2 ARG A 306 ATOM 1375 NH2 ARG A 306 ATOM 1375 NH2 ARG A 306 ATOM 1376 C ARG A 306 ATOM 1377 O ARG A 306 ATOM 1377 O ARG A 306 ATOM 1378 N GLY A 307 ATOM 1378 N GLY A 307 ATOM 1379 C ARG A 306 ATOM 1379 C ARG A 307 ATOM 1380 C GLY A 307 ATOM 1381 O GLY A 307 ATOM 1381 O GLY A 307 ATOM 1382 N GLU A 308 ATOM 1382 N GLU A 308 ATOM 1385 CG GLU A 308 ATOM 1386 CB GLU A 308 ATOM 1386 CB GLU A 308 ATOM 1387 O GLU A 308 ATOM 1388 CG GLU A 308 ATOM 1389 C GLU A 308 ATOM 1389 O GLU A 308 ATOM 1380 C GLU A 308 ATOM 1390 C GLU A 308 ATOM 139				20.253 4.741 3.913 1.00 27.33	A
ATOM 1373 CZ ARG A 306 21.051 2.699 5.067 1.00 ATOM 1374 NH1 ARG A 306 19.853 .768 5.399 1.00 ATOM 1375 NH2 ARG A 306 21.488 7.493 4.002 1.00 ATOM 1377 O ARG A 306 21.488 7.493 4.002 1.00 ATOM 1377 O ARG A 306 22.409 7.795 4.710 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1379 CA GLY A 307 20.798 10.880 5.350 1.00 ATOM 1380 C GLY A 307 20.798 10.880 5.393 1.00 ATOM 1381 O GLY A 307 20.798 10.880 5.393 1.00 ATOM 1382 N GLU A 308 21.476 10.289 6.519 1.00 ATOM 1383 CA GLU A 308 21.476 10.289 6.519 1.00 ATOM 1384 CB GLU A 308 22.391 11.838 8.182 1.00 ATOM 1385 CG GLU A 308 22.299 11.838 8.182 1.00 ATOM 1386 CD GLU A 308 22.282 9.501 9.145 1.00 ATOM 1387 OE1 GLU A 308 22.828 9.501 9.145 1.00 ATOM 1389 O GLU A 308 22.828 9.501 9.145 1.00 ATOM 1399 C GLU A 308 22.610 9.266 9.285 1.00 ATOM 1399 C GLU A 308 22.610 9.266 9.285 1.00 ATOM 1399 C GLU A 308 24.532 12.235 6.185 1.00 ATOM 1399 C GLU A 308 24.532 12.235 6.185 1.00 ATOM 1399 C GLU A 309 24.032 10.127 5.586 1.00 ATOM 1399 C A THR A 309 24.032 10.127 5.586 1.00 ATOM 1399 C A THR A 309 25.507 10.461 3.637 1.00 ATOM 1399 C A THR A 309 25.507 10.461 3.637 1.00 ATOM 1399 C A THR A 309 25.507 10.461 3.637 1.00 ATOM 1399 C A RAG A 310 24.535 10.565 2.886 1.00 1 ATOM 1399 C A RAG A 310 24.535 10.565 2.886 1.00 1 ATOM 1399 C A RAG A 310 24.535 10.565 2.886 1.00 1 ATOM 1399 C A RAG A 310 22.574 13.926 2.632 1.00 1 ATOM 1400 CB ARG A 310 24.745 13.562 1.493 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1400 CB ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1402 CD ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1400 CB ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1402 CD ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1405 NH ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 140			1-10 11 000	1122 2100 32,41	A.
ATOM 1374 NH1 ARG A 306				21.051 2.699 5.067 1.00 36.11	A
ATOM 1375 NH2 ARG A 306 21.831 1.092 6.520 1.00 ATOM 1376 C ARG A 306 21.448 7.493 4.002 1.00 ATOM 1377 O ARG A 306 22.409 7.795 4.710 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1378 N GLY A 307 19.946 8.824 5.350 1.00 ATOM 1380 C GLY A 307 20.798 10.080 5.393 1.00 ATOM 1381 O GLY A 307 20.848 10.843 4.426 1.00 ATOM 1382 N GLU A 308 21.476 10.289 6.519 1.00 ATOM 1383 CA GLU A 308 22.318 11.467 6.694 1.00 ATOM 1385 CG GLU A 308 22.399 11.838 8.182 1.00 ATOM 1386 CD GLU A 308 22.399 11.838 8.182 1.00 ATOM 1387 OEI GLU A 308 22.828 9.501 9.145 1.00 ATOM 1388 OEZ GLU A 308 22.628 9.501 9.145 1.00 ATOM 1389 C GLU A 308 23.686 8.595 9.095 1.00 ATOM 1389 O GLU A 308 23.726 11.301 6.132 1.00 ATOM 1390 O GLU A 308 23.726 11.301 6.132 1.00 ATOM 1391 N THR A 309 25.567 9.899 5.044 1.00 ATOM 1393 CB THR A 309 25.515 7.794 6.416 1.00 ATOM 1394 OGI THR A 309 25.515 7.794 6.416 1.00 ATOM 1395 CGZ THR A 309 25.515 7.794 6.416 1.00 ATOM 1396 C THR A 309 25.515 7.794 6.416 1.00 ATOM 1397 O THR A 309 25.515 7.794 6.416 1.00 ATOM 1399 CA ARG A 310 27.027 11.410 1.989 1.00 ATOM 1399 C ARG A 310 27.027 11.410 1.989 1.00 ATOM 1399 C ARG A 310 27.027 11.410 1.989 1.00 ATOM 1390 N ARG A 310 27.027 11.410 1.989 1.00 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 ATOM 1401 CG ARG A 310 22.574 13.562 1.493 1.00 ATOM 1402 CD ARG A 310 22.574 13.562 1.493 1.00 ATOM 1404 CZ ARG A 310 22.574 13.562 1.493 1.00 ATOM 1405 NH1 ARG A 310 22.574 13.562 1.493 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 ATOM 1409 C BARG A 310 22.574 13.926 2.632 1.00 ATOM 1401 CG ARG A 310 22.574 13.926 2.632 1.00 ATOM 1402 CD ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 ATOM 1409 N LLE A 311 28.619 10.911 2.34 1.00 ATOM 1406 O ARG A 310 22.574 13.552 1.433 1.00 ATOM 1407 C ARG A 310 22.574 13.552 1.434 1.00 ATOM 1408 O				2.00 37.74	A
ATOM 1376 C ARG A 306 ATOM 1377 O ARG A 306 ATOM 1378 N GLY A 307 ATOM 1378 N GLY A 307 ATOM 1379 CA GLY A 307 ATOM 1380 C GLY A 307 ATOM 1381 O GLY A 307 ATOM 1382 N GLU A 308 ATOM 1383 C GLU A 308 ATOM 1384 CB GLU A 308 ATOM 1385 CG GLU A 308 ATOM 1386 CD GLU A 308 ATOM 1387 OE1 GLU A 308 ATOM 1387 OE1 GLU A 308 ATOM 1387 OE1 GLU A 308 ATOM 1389 O GLU A 308 ATOM 1389 O GLU A 308 ATOM 1389 OF GLU A 308 ATOM 1380 OF GLU A 308 ATOM 1380 OF GLU A 308 ATOM 1381 O GLU A 308 ATOM 1382 N GLU A 308 ATOM 1386 OE2 GLU A 308 ATOM 1387 OE1 GLU A 308 ATOM 1389 OF GLU A 308 ATOM 1390 O GLU A 308 ATOM 1391 N THR A 309 ATOM 1392 CA THR A 309 ATOM 1393 CB THR A 309 ATOM 1393 CB THR A 309 ATOM 1395 CG2 THR A 309 ATOM 1395 CG2 THR A 309 ATOM 1399 O THR A 309 ATOM 1390 O THR A 309 ATOM 1391 O THR A 309 ATOM 1395 CG2 THR A 309 ATOM 1396 C THR A 309 ATOM 1397 O THR A 309 ATOM 1398 N ARG A 310 ATOM 1400 CB ARG A 310 ATOM 1401 CG ARG A 310 ATOM 1401 CG ARG A 310 ATOM 1401 CG ARG A 310 ATOM 1402 CD ARG A 310 ATOM 1403 NE ARG A 310 ATOM 1404 CZ ARG A 310 ATOM 1405 NH1 ARG A 310 ATOM 1406 NH2 ARG A 310 ATOM 1407 C ARG A 310 ATOM 1408 O ARG A 310 ATOM 1409 N ILE A 311 ATOM 1406 O ARG A 310 ATOM 1407 C ARG A 310 ATOM 1408 O ARG A 310 ATOM 1409 N ILE A 311 ATOM 1401 CG ILE A 311 ATOM 1401 CG ILE A 311 ATOM 1402 CD LARG A 310 ATOM 1403 O ARG A 310 ATOM 1404 CC ILE A 311 ATOM 1406 O ARG A 310 ATOM 1407 C ARG A 310 ATOM 1408 O ARG A 310 ATOM 1409 N ILE A 311 ATOM 1406 O ILE A 311 ATOM 1407 C ARG A 310 ATOM 1408 O ARG A 310 ATOM 1409 N ILE A 311 ATOM 1406 O ILE A 311 ATOM 1407 C ARG A 310 ATOM 1408 O ARG A 310 ATOM 1409 C ILE A 311 ATOM 1406 O ILE A 311 ATOM 1407 C ARG A 310 ATOM 1408 O ARG A 310 ATOM 1409 C ILE A 311 ATOM 1406 O ILE A 311 ATOM 1407 C ARG A 310 ATOM 1408 O ILE A 311 ATOM 1408 O ILE A 311			1375 NH1 ARG A 306		А
ATOM 1377 O ARG A 306 22.409 7.795 4.710 1.00 ATOM 1378 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1379 CA GLY A 307 19.946 8.824 5.350 1.00 ATOM 1381 O GLY A 307 20.798 10.080 5.333 1.00 ATOM 1382 N GLU A 308 21.476 10.289 6.519 1.00 ATOM 1383 CA GLU A 308 21.476 10.289 6.519 1.00 ATOM 1384 CB GLU A 308 22.318 11.467 6.694 1.00 ATOM 1385 CG GLU A 308 22.399 11.838 8.182 1.00 ATOM 1386 CD GLU A 308 22.399 11.838 8.182 1.00 ATOM 1386 CD GLU A 308 22.828 9.501 9.145 1.00 ATOM 1388 OE2 GLU A 308 23.297 10.947 9.053 1.00 ATOM 1388 OE2 GLU A 308 23.297 10.947 9.053 1.00 ATOM 1389 C GLU A 308 23.686 8.595 9.095 1.00 ATOM 1389 C GLU A 308 23.686 8.595 9.095 1.00 ATOM 1391 N THR A 309 24.032 10.127 5.586 1.00 ATOM 1392 CA THR A 309 24.032 10.127 5.586 1.00 ATOM 1395 CG THR A 309 25.367 9.899 5.044 1.00 ATOM 1396 C THR A 309 25.515 7.794 6.416 1.00 ATOM 1395 CG THR A 309 25.515 7.794 6.416 1.00 ATOM 1399 C A THR A 309 25.515 7.794 6.416 1.00 ATOM 1399 C A THR A 309 25.507 10.461 3.637 1.00 ATOM 1399 C A THR A 309 25.507 10.461 3.637 1.00 ATOM 1399 C A ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1390 C A RG A 310 27.027 11.410 1.989 1.00 1 ATOM 1401 CG ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1401 CG ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1403 NE ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1404 CZ ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 CD ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 CD ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 CD ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 1.00 1 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 140					A
ATOM 1378 N GLY A 307 20.220 7.954 4.221 1.00 ATOM 1380 C GLY A 307 19.946 8.824 5.350 1.00 ATOM 1381 O GLY A 307 20.798 10.080 5.393 1.00 ATOM 1382 N GLU A 308 20.848 10.843 4.426 1.00 ATOM 1383 CA GLU A 308 21.476 10.289 6.519 1.00 ATOM 1383 CA GLU A 308 22.318 11.467 6.694 1.00 ATOM 1385 CG GLU A 308 22.318 11.467 6.694 1.00 ATOM 1386 CB GLU A 308 22.399 11.838 8.182 1.00 ATOM 1386 CD GLU A 308 22.399 11.838 8.182 1.00 ATOM 1387 OEI GLU A 308 22.828 9.501 9.145 1.00 ATOM 1388 OE2 GLU A 308 22.828 9.501 9.145 1.00 ATOM 1389 OE GLU A 308 21.610 9.266 9.285 1.00 ATOM 1389 OE GLU A 308 23.726 11.301 6.132 1.00 ATOM 1390 O GLU A 308 23.726 11.301 6.132 1.00 ATOM 1391 N THR A 309 24.032 10.127 5.586 1.00 ATOM 1392 CA THR A 309 25.367 9.899 5.044 1.00 ATOM 1395 CG2 THR A 309 25.515 7.794 6.416 1.00 ATOM 1395 CG2 THR A 309 25.515 7.794 6.416 1.00 ATOM 1397 O THR A 309 25.555 7.794 6.416 1.00 ATOM 1398 N ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1398 N ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1404 CZ ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1403 NE ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1404 CZ ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 2.565 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.565 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 2.565 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 12.938 2.099 1.00 1 ATOM 1407 C C ARG A 310 22.574 12.938 2.999 1.00 1 ATOM 1406 O ARG A 310 22.574 12.938 2.999 1.00 1 ATOM 1407 C C ARG A 310 22.574 12.938 2.999 1.00 1 ATOM 1407 C C ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1408 O ARG A 310 22.574 12.938 2.999 1.				20 122	A
ATOM 1379 CA GLY A 307 19.946 5.350 1.00 ATOM 1380 C GLY A 307 20.798 10.080 5.393 1.00 ATOM 1381 O GLY A 307 20.848 10.843 4.426 1.00 ATOM 1382 N GLU A 308 21.476 10.289 6.519 1.00 ATOM 1383 CA GLU A 308 22.318 11.467 6.694 1.00 ATOM 1385 CG GLU A 308 22.318 11.467 6.694 1.00 ATOM 1386 CD GLU A 308 22.399 11.838 8.182 1.00 ATOM 1386 CD GLU A 308 22.399 10.947 9.053 1.00 ATOM 1387 OEI GLU A 308 22.399 11.838 8.182 1.00 ATOM 1388 OE2 GLU A 308 23.297 10.947 9.053 1.00 ATOM 1389 OEI GLU A 308 21.610 9.266 9.285 1.00 ATOM 1389 OE GLU A 308 23.726 11.301 6.132 1.00 ATOM 1399 C GLU A 308 24.532 10.127 5.586 1.00 ATOM 1391 N THR A 309 24.032 10.127 5.586 1.00 ATOM 1393 CB THR A 309 25.367 9.899 5.044 1.00 ATOM 1394 OGI THR A 309 25.517 10.461 3.637 1.00 ATOM 1395 CG2 THR A 309 25.515 7.794 6.416 1.00 1.00 ATOM 1397 O THR A 309 25.515 7.794 6.416 1.00 1.00 ATOM 1399 CA ARG A 310 27.027 11.410 1.989 1.00 1.00 ATOM 1399 CA ARG A 310 27.027 11.410 1.989 1.00 1.00 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 1.00 ATOM 1401 CG ARG A 310 25.824 13.620 2.565 1.00 1.00 ATOM 1402 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1403 NE ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1404 CZ ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1409 N ILE A 311 29.871 10.404 -2.27 1.00 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1408 O ARG A 310 22.574 13.996 2.632 1.00 1.00 ATOM 1409 N ILE A 311 29.891 1.00 1.00 ATOM 1410 CG ILE A 311 29.891 1.00 1					Α
ATOM 1380 C GLY A 307 20.798 10.080 5.393 1.00 ATOM 1381 O GLY A 307 20.848 10.843 4.426 1.00 ATOM 1382 N GLU A 308 21.476 10.289 6.519 1.00 ATOM 1383 CA GLU A 308 22.399 11.838 8.182 1.00 ATOM 1385 CG GLU A 308 22.399 11.838 8.182 1.00 ATOM 1385 CG GLU A 308 22.399 11.838 8.182 1.00 ATOM 1386 CD GLU A 308 22.399 11.838 8.182 1.00 ATOM 1387 OEI GLU A 308 22.828 9.501 9.145 1.00 ATOM 1389 OE2 GLU A 308 21.610 9.266 9.285 1.00 ATOM 1389 OE2 GLU A 308 23.686 8.595 9.095 1.00 ATOM 1390 O GLU A 308 23.686 8.595 9.095 1.00 ATOM 1391 N THR A 309 24.532 12.235 6.185 1.00 ATOM 1393 CB THR A 309 24.032 10.127 5.586 1.00 ATOM 1393 CB THR A 309 25.367 9.899 5.044 1.00 1.00 ATOM 1395 CG2 THR A 309 25.5741 8.396 5.038 1.00 1.00 ATOM 1396 C THR A 309 25.557 10.461 3.637 1.00 1.00 ATOM 1397 O THR A 309 24.535 10.565 2.886 1.00 1.00 ATOM 1399 CA ARG A 310 26.730 10.843 3.296 1.00 1.00 ATOM 1399 CA ARG A 310 26.730 10.843 3.296 1.00 1.00 ATOM 1401 CG ARG A 310 27.027 11.410 1.989 1.00 1.00 ATOM 1402 CD ARG A 310 27.027 11.410 1.989 1.00 1.00 ATOM 1403 NE ARG A 310 27.027 11.410 1.989 1.00 1.00 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1405 NH2 ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1409 N ILE A 311 28.619 10.911 .224 1.00 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1409 N ILE A 311 28.619 10.911 .224 1.00 1.224 1.00 1.224 1.00 1.224 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00 1.225 1.00				1,221 1,00 10,74	A
ATOM 1381 O GLY A 307 20.848 10.843 4.426 1.00 ATOM 1382 N GLU A 308 21.476 10.289 6.519 1.00 ATOM 1383 CA GLU A 308 22.318 11.467 6.694 1.00 ATOM 1385 CG GLU A 308 22.319 11.4838 8.182 1.00 ATOM 1386 CD GLU A 308 22.399 11.838 8.182 1.00 ATOM 1386 CD GLU A 308 22.828 9.501 9.053 1.00 ATOM 1387 OEI GLU A 308 23.297 10.947 9.053 1.00 ATOM 1388 OE2 GLU A 308 23.297 10.947 9.053 1.00 ATOM 1389 C GLU A 308 23.686 8.595 9.095 1.00 ATOM 1389 O GLU A 308 23.686 8.595 9.095 1.00 ATOM 1390 O GLU A 308 24.532 12.235 6.185 1.00 ATOM 1391 N THR A 309 24.032 10.127 5.586 1.00 ATOM 1392 CA THR A 309 24.032 10.127 5.586 1.00 ATOM 1393 CB THR A 309 25.367 9.899 5.044 1.00 ATOM 1394 OCI THR A 309 25.567 7.794 6.416 1.00 ATOM 1395 CG THR A 309 24.535 10.565 2.886 1.00 ATOM 1397 O THR A 309 25.515 7.794 6.416 1.00 ATOM 1398 N ARG A 310 25.515 7.794 6.416 1.00 ATOM 1399 C ARG A 310 25.515 7.794 6.416 1.00 ATOM 1399 C ARG A 310 27.027 11.410 1.989 1.00 ATOM 1399 N ARG A 310 27.027 11.410 1.989 1.00 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 ATOM 1401 CG ARG A 310 27.027 11.410 1.989 1.00 ATOM 1403 NE ARG A 310 22.574 13.562 1.493 1.00 ATOM 1404 CZ ARG A 310 22.574 13.562 1.493 1.00 ATOM 1405 NH1 ARG A 310 22.574 13.562 1.493 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.562 1.493 1.00 ATOM 1407 C ARG A 310 22.574 13.562 1.493 1.00 ATOM 1408 O ARG A 310 22.574 13.562 1.493 1.00 ATOM 1409 N ILE A 311 28.619 10.911 2.34 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1407 C ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1408 O ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1407 C ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1407 C ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1408 O ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1407 C ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1408 O ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1408 O ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1408 O ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1408 O ARG A 310 22.574 13.562 1.493 1.00 1 ATOM 1408 O ARG A 310 22.575					A
ATOM 1382 N GLU A 308 21.476 10.289 6.519 1.00 ATOM 1383 CA GLU A 308 22.318 11.467 6.694 1.00 ATOM 1384 CB GLU A 308 22.318 11.467 6.694 1.00 ATOM 1385 CG GLU A 308 22.399 11.838 8.182 1.00 ATOM 1386 CD GLU A 308 23.297 10.947 9.053 1.00 ATOM 1387 OE1 GLU A 308 21.610 9.266 9.285 1.00 ATOM 1388 OE2 GLU A 308 21.610 9.266 9.285 1.00 ATOM 1389 C GLU A 308 23.686 8.595 9.095 1.00 ATOM 1399 O GLU A 308 23.686 8.595 9.095 1.00 ATOM 1391 N THR A 309 24.532 12.235 6.185 1.00 ATOM 1392 CA THR A 309 24.532 12.235 6.185 1.00 ATOM 1393 CB THR A 309 25.367 9.899 5.044 1.00 1.00 ATOM 1395 CG2 THR A 309 25.541 8.396 5.038 1.00 1.00 ATOM 1395 CG2 THR A 309 25.515 7.794 6.416 1.00 1.00 ATOM 1396 C THR A 309 25.555 7.794 6.416 1.00 1.00 ATOM 1398 N ARG A 310 26.730 10.843 3.296 1.00 1.00 ATOM 1399 CA ARG A 310 26.730 10.843 3.296 1.00 1.00 ATOM 1399 CA ARG A 310 27.027 11.410 1.989 1.00 1.00 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 1.00 ATOM 1401 CG ARG A 310 25.584 13.620 2.565 1.00 1.00 ATOM 1402 CD ARG A 310 25.584 13.620 2.565 1.00 1.00 ATOM 1404 CZ ARG A 310 22.574 13.552 14.340 1.830 1.00 1.00 ATOM 1405 NH1 ARG A 310 22.574 13.552 1.433 1.00 1.00 ATOM 1406 NA2 ARG A 310 22.574 13.552 1.433 1.00 1.00 ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1.00 ATOM 1409 C ARG A 310 22.574 13.552 1.433 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.552 1.433 1.00 1.00 ATOM 1401 CA ILE A 311 28.619 10.911 .234 1.00 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.552 1.493 1.00 1.00 ATOM 1407 C ARG A 310 22.574 13.552 1.493 1.00 1.00 ATOM 1408 O ARG A 310 22.574 13.552 1.493 1.00 1.00 ATOM 1407 C ARG A 310 22.574 13.552 1.493 1.00 1.00 ATOM 1408 O ARG A 310 22.574 13.552 2.343 1.00 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.552 1.493 1.00 1.00 ATOM 1407 C ARG A 310 22.574 13.552 1.493 1.00 1.00 ATOM 1408 O ARG A 310 22.574 13.552 1.493 1.00 1.00 ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1.00 ATOM 1408 O ARG A 310 22.574 12.730 3.199 1.00 1.00 ATOM 1410 CG ILE A 311 28.619 10.911 .234 1.00 1.00 ATOM 1410 CG ILE A 311 28.619 10.911 .234 1.00					A
ATOM 1383 CA GLU A 308				11.20 13.11	A
ATOM 1384 CB GLU A 308				-, 20,40	Α
ATOM 1385 CG GLU A 308 23.297 10.947 9.053 1.00 ATOM 1386 CD GLU A 308 22.828 9.501 9.145 1.00 ATOM 1387 OE1 GLU A 308 21.610 9.266 9.285 1.00 ATOM 1389 C GLU A 308 23.686 8.595 9.095 1.00 ATOM 1399 C GLU A 308 23.686 8.595 9.095 1.00 ATOM 1391 N THR A 309 24.032 10.127 5.586 1.00 ATOM 1392 CA THR A 309 25.367 9.899 5.044 1.00 1.00 ATOM 1393 CB THR A 309 25.367 9.899 5.044 1.00 1.00 ATOM 1393 CB THR A 309 25.547 8.396 5.038 1.00 ATOM 1395 CG2 THR A 309 25.5515 7.794 6.416 1.00 1.00 ATOM 1395 CG2 THR A 309 25.5515 7.794 6.416 1.00 1.00 ATOM 1395 CG2 THR A 309 25.5515 7.794 6.416 1.00 1.00 ATOM 1398 N ARG A 310 25.507 10.461 3.637 1.00 1.00 ATOM 1399 CA ARG A 310 25.507 10.461 3.637 1.00 1.00 ATOM 1399 CA ARG A 310 25.507 10.461 3.637 1.00 1.00 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 1.00 ATOM 1400 CD ARG A 310 27.027 11.410 1.989 1.00 1.00 ATOM 1400 CD ARG A 310 27.027 11.410 1.989 1.00 1.00 ATOM 1400 CD ARG A 310 22.5824 13.620 2.565 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.562 1.493 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 310 22.574 13.926 2.632 1.00 1.00 ATOM 1400 CD ARG A 3				200 17:50	A
ATOM 1386 CD GLU A 308 22.828 9.501 9.145 1.00 ATOM 1387 OE1 GLU A 308 21.610 9.266 9.285 1.00 ATOM 1389 C GLU A 308 23.686 8.595 9.095 1.00 ATOM 1390 O GLU A 308 24.532 12.235 6.185 1.00 ATOM 1391 N THR A 309 24.032 10.127 5.586 1.00 ATOM 1392 CA THR A 309 25.367 9.899 5.044 1.00 ATOM 1393 CB THR A 309 25.367 9.899 5.044 1.00 ATOM 1395 CG2 THR A 309 25.741 8.396 5.038 1.00 ATOM 1395 CG2 THR A 309 25.5741 8.396 5.038 1.00 ATOM 1395 CG2 THR A 309 25.515 7.794 6.416 1.00 ATOM 1396 C THR A 309 24.535 10.565 2.886 1.00 ATOM 1397 O THR A 309 24.535 10.565 2.886 1.00 ATOM 1399 CA ARG A 310 26.730 10.843 3.296 1.00 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 ATOM 1401 CG ARG A 310 27.027 11.410 1.989 1.00 ATOM 1401 CG ARG A 310 25.824 13.620 2.565 1.00 ATOM 1402 CD ARG A 310 22.574 13.926 2.632 1.00 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 10.846 1.532 1.00 ATOM 1408 NH2 ARG A 310 22.574 13.926 10.846 1.532 1.00 ATO		ATOM		0.1202 1.00 19.01	A
ATOM 1388 OE2 GLU A 308 23.686 8.595 9.095 1.00 ATOM 1389 OC GLU A 308 23.686 8.595 9.095 1.00 ATOM 1390 O GLU A 308 24.532 12.235 6.185 1.00 ATOM 1391 N THR A 309 24.032 10.127 5.586 1.00 ATOM 1392 CA THR A 309 25.367 9.899 5.044 1.00 ATOM 1393 CB THR A 309 25.741 8.396 5.038 1.00 ATOM 1394 OG1 THR A 309 25.741 8.396 5.038 1.00 ATOM 1395 CG2 THR A 309 25.515 7.794 6.416 1.00 ATOM 1395 CG2 THR A 309 25.551 7.794 6.416 1.00 ATOM 1396 C THR A 309 25.507 10.461 3.637 1.00 ATOM 1398 N ARG A 310 26.730 10.843 3.296 1.00 ATOM 1399 CA ARG A 310 26.730 10.843 3.296 1.00 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 ATOM 1401 CG ARG A 310 27.110 12.938 2.092 1.00 ATOM 1402 CD ARG A 310 24.745 13.562 1.493 1.00 ATOM 1402 CD ARG A 310 22.574 13.926 2.5632 1.00 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 ATOM 1406 NH2 ARG A 310 29.150 10.355 2.343 1.00 ATOM 1407 C ARG A 310 29.150 10.355 2.343 1.00 ATOM 1407 C ARG A 310 29.150 10.355 2.343 1.00 ATOM 1407 C ARG A 310 29.150 10.355 2.343 1.00 ATOM 1415 CB ILE A 311 29.633 9.181 -1.206 1.00 ATOM 1415 CB ILE A 311 29.633 9.181 -1.206 1.00 ATOM 1416 CB ILE A 311 29.633 9.181 -1.206 1.00 ATOM 1416 CB ILE A 311 29.633 9.181 -1.206 1.00 ATOM 1416 CB ILE A 311 29.989 12.222 -1.866 1.00 ATOM 1416 CB ILE A 311 29.989 12.222 -1.866 1.00 ATOM 1416 CB ILE A 311 29.989 12.222 -1.866 1.00 ATOM 1416 CB ILE A 311 29.989 12.222 -1.866 1.00 ATOM 1416 CB ILE A 311		ATOM ·		2.00	A
ATOM 1388 OE2 GLU A 308		ATOM	1387 OE1 GLU A 308	21.00	A
ATOM 1390 C GLU A 308 23.726 11.301 6.132 1.00 1 ATOM 1391 N THR A 309 24.532 12.235 6.185 1.00 1 ATOM 1392 CA THR A 309 25.367 9.899 5.044 1.00 1 ATOM 1393 CB THR A 309 25.741 8.396 5.038 1.00 1 ATOM 1394 CG1 THR A 309 25.741 8.396 5.038 1.00 1 ATOM 1395 CG2 THR A 309 25.515 7.794 6.416 1.00 1 ATOM 1396 C THR A 309 25.555 7.794 6.416 1.00 1 ATOM 1397 O THR A 309 25.555 7.794 6.416 1.00 1 ATOM 1398 N ARG A 310 26.730 10.843 3.296 1.00 1 ATOM 1399 CA ARG A 310 26.730 10.843 3.296 1.00 1 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1401 CG ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1402 CD ARG A 310 24.745 13.562 1.493 1.00 1 ATOM 1403 NE ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1404 CZ ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1401 CG ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1408 O ARG A 310 29.150 10.355 2.343 1.00 1 ATOM 1401 CA ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1410 CA ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1411 CB ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 12 ATOM 1416 O ILE A 311 28.929 8.079412 1.00 22 ATOM 1418 CA CYS A 312 31.907 11.560884 1.00 13 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1422 O CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 33.718 11.728 -2.440 1.00 14		ATOM	1388 OE2 GLU A 308		A
ATOM 1390 O GLU A 308 ATOM 1391 N THR A 309 ATOM 1392 CA THR A 309 ATOM 1392 CA THR A 309 ATOM 1394 OG1 THR A 309 ATOM 1395 CG2 THR A 309 ATOM 1395 CG2 THR A 309 ATOM 1396 C THR A 309 ATOM 1397 O THR A 309 ATOM 1398 N ARG A 310 ATOM 1399 CA ARG A 310 ATOM 1399 CA ARG A 310 ATOM 1400 CB ARG A 310 ATOM 1401 CG ARG A 310 ATOM 1402 CD ARG A 310 ATOM 1403 NE ARG A 310 ATOM 1404 CZ ARG A 310 ATOM 1405 NH1 ARG A 310 ATOM 1406 NH2 ARG A 310 ATOM 1407 C ARG A 310 ATOM 1408 O ARG A 310 ATOM 1409 N ILE A 311 ATOM 1411 CB ILE A 311 ATOM 1412 CG2 ILE A 311 ATOM 1414 CD1 ILE A 311 ATOM 1415 C ILE A 311 ATOM 1416 O ILE A 311 ATOM 1416 O ILE A 311 ATOM 1417 N CYS A 312 ATOM 1416 CB CYS A 312 ATOM 1410 CB CYS A 312 ATOM 1422 O CYS A 312 ATOM 1423 O CYS A 312 ATOM 1422 O CYS A 312 ATOM 1423 O CYS A 312 ATOM 1423 O CYS A 312 ATOM 1423 O CYS A 312 ATOM 1424 CD ILE A 311 ATOM 1422 O CYS A 312 ATOM 1423 O CYS A 312 ATOM 1424 CD ILE A 311 ATOM 1422 O CYS A 312 ATOM 1423 O CYS A 312 ATOM 1424 CD ILE A 311 ATOM 1420 O CYS A 312 ATOM 1422 O CYS A 312 ATOM 1423 O CYS A 312 ATOM 1423 O CYS A 312 ATOM 1424 CD ILE A 311 ATOM 1422 O CYS A 312 ATOM 1423 O CYS A 312 ATOM 1424 CD ILE A 311 ATOM 1424 CD ILE A 311 ATOM 1422 O CYS A 312 ATOM 1423 O CYS A 312 ATOM 1423 O CYS A 312 ATOM 1424 CD ILE A 311 ATOM 1424 CD ILE A 311 ATOM 1422 O CYS A 312 ATOM 1423 O CYS A 312 ATOM 1424 CD ILE A 311		ATOM		20.02	A
ATOM 1391 N THR A 309 24.032 10.127 5.586 1.00 1 ATOM 1392 CA THR A 309 25.367 9.899 5.044 1.00 1 ATOM 1393 CB THR A 309 25.741 8.396 5.038 1.00 1 ATOM 1394 OG1 THR A 309 24.944 7.694 4.077 1.00 1 ATOM 1395 CG2 THR A 309 25.515 7.794 6.416 1.00 1 ATOM 1396 C THR A 309 25.515 7.794 6.416 1.00 1 ATOM 1397 O THR A 309 25.557 10.461 3.637 1.00 1 ATOM 1398 N ARG A 310 26.730 10.843 3.296 1.00 1 ATOM 1399 CA ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1401 CG ARG A 310 27.110 12.938 2.092 1.00 1 ATOM 1402 CD ARG A 310 27.110 12.938 2.092 1.00 1 ATOM 1403 NE ARG A 310 24.745 13.562 1.493 1.00 1 ATOM 1404 CZ ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1410 CA ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1411 CB ILE A 311 29.633 9.181 -1.206 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 19 ATOM 1413 CG1 ILE A 311 29.633 9.181 -1.206 1.00 1 ATOM 1414 CD1 ILE A 311 29.633 9.181 -1.206 1.00 1 ATOM 1415 C ILE A 311 29.963 9.181 -1.206 1.00 1 ATOM 1416 O ILE A 311 29.963 9.181 -1.206 1.00 1 ATOM 1416 C ILE A 311 29.963 9.181 -1.206 1.00 1 ATOM 1416 C ILE A 311 29.963 9.181 -1.206 1.00 1 ATOM 1416 C ILE A 311 29.989 12.222 -1.866 1.00 1 ATOM 1416 C CYS A 312 33.516 13.393597 1.00 13 ATOM 1416 C CYS A 312 33.516 13.393597 1.00 13 ATOM 1412 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 SG CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 C CYS A 312 33.718 11.728 -2.440 1.00 14		MOTA	1390 O GLU A 308		A
ATOM 1392 CA THR A 309 25.367 9.899 5.044 1.00 1 ATOM 1394 OG1 THR A 309 25.741 8.396 5.038 1.00 1 ATOM 1395 CG2 THR A 309 24.944 7.694 4.077 1.00 1 ATOM 1395 CG2 THR A 309 25.515 7.794 6.416 1.00 1 ATOM 1396 C THR A 309 25.555 10.461 3.637 1.00 1 ATOM 1397 O THR A 309 24.535 10.565 2.886 1.00 1 ATOM 1398 N ARG A 310 26.730 10.843 3.296 1.00 1 ATOM 1399 CA ARG A 310 27.110 12.938 2.092 1.00 1 ATOM 1400 CB ARG A 310 27.110 12.938 2.092 1.00 1 ATOM 1401 CG ARG A 310 27.110 12.938 2.092 1.00 1 ATOM 1402 CD ARG A 310 25.824 13.620 2.565 1.00 1 ATOM 1403 NE ARG A 310 23.552 14.340 1.830 1.00 1 ATOM 1404 CZ ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1405 NHI ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1410 CA ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1411 CB ILE A 311 29.633 9.181 -1.266 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 19 ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 22 ATOM 1415 C ILE A 311 28.929 8.079412 1.00 23 ATOM 1416 O ILE A 311 28.929 8.079412 1.00 24 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 1 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 14 ATOM 1417 N CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1418 CA CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1420 SG CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 33.718 11.728 -2.440 1.00 14		ATOM		2.00 13.50	A
ATOM 1393 CB THR A 309					A
ATOM 1394 OG1 THR A 309				1.00 13.30	A
ATOM 1395 CG2 THR A 309			1394 OG1 THR A 309		A A
ATOM 1396 C THR A 309			1395 CG2 THR A 309		A
ATOM 1398 N ARG A 310 26.730 10.843 3.296 1.00 1 ATOM 1399 CA ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1400 CB ARG A 310 27.110 12.938 2.092 1.00 1 ATOM 1401 CG ARG A 310 27.110 12.938 2.092 1.00 1 ATOM 1402 CD ARG A 310 24.745 13.562 1.493 1.00 1 ATOM 1403 NE ARG A 310 24.745 13.562 1.493 1.00 1 ATOM 1404 CZ ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1407 C ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1408 O ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1409 N ILE A 311 28.362 10.846 1.532 1.00 1 ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1410 CA ILE A 311 29.851 10.404 -297 1.00 1 ATOM 1411 CB ILE A 311 29.871 10.404 -297 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 1 ATOM 1414 CD1 ILE A 311 28.929 8.079 -412 1.00 2 ATOM 1415 C ILE A 311 28.929 8.079 -412 1.00 2 ATOM 1416 O ILE A 311 28.947 6.931 -1.269 1.00 1 ATOM 1417 N CYS A 312 31.907 11.550 -884 1.00 1 ATOM 1418 CA CYS A 312 31.907 11.560 -884 1.00 1 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 SG CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1423 N MAG A 310 34.361 10.793 -1.956 1.00 14			1396 C THR A 309		A.
ATOM 1399 CA ARG A 310 26.730 10.843 3.296 1.00 1 ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1401 CG ARG A 310 27.110 12.938 2.092 1.00 1 ATOM 1402 CD ARG A 310 25.824 13.620 2.565 1.00 1 ATOM 1403 NE ARG A 310 24.745 13.562 1.493 1.00 1 ATOM 1404 CZ ARG A 310 23.552 14.340 1.830 1.00 1 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1407 C ARG A 310 22.634 12.730 3.199 1.00 1 ATOM 1408 O ARG A 310 21.523 14.708 2.854 1.00 1 ATOM 1409 N ILE A 311 28.362 10.846 1.532 1.00 1 ATOM 1410 CA ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1411 CB ILE A 311 29.871 10.404297 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 1 ATOM 1413 CG1 ILE A 311 29.633 9.181 -1.206 1.00 1 ATOM 1414 CD1 ILE A 311 28.929 8.079412 1.00 2 ATOM 1415 C ILE A 311 28.929 8.079412 1.00 2 ATOM 1416 O ILE A 311 28.929 8.079412 1.00 2 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 1 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 1 ATOM 1418 CA CYS A 312 31.907 11.560884 1.00 13 ATOM 1419 CB CYS A 312 31.907 11.560884 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 CGYS A 312 33.516 13.393597 1.00 14 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1423 N LYS A 312 34.361 10.793 -1.956 1.00 14				24.535 10.565 2.886 1.00 14.98	A
ATOM 1400 CB ARG A 310 27.027 11.410 1.989 1.00 1 ATOM 1401 CG ARG A 310 27.110 12.938 2.092 1.00 1 ATOM 1401 CG ARG A 310 25.824 13.620 2.565 1.00 1 ATOM 1402 CD ARG A 310 24.745 13.562 1.493 1.00 1 ATOM 1403 NE ARG A 310 23.552 14.340 1.830 1.00 1 ATOM 1404 CZ ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.634 12.730 3.199 1.00 1 ATOM 1407 C ARG A 310 21.523 14.708 2.854 1.00 1 ATOM 1408 O ARG A 310 28.362 10.846 1.532 1.00 1 ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1410 CA ILE A 311 29.871 10.404297 1.00 1 ATOM 1411 CB ILE A 311 29.871 10.404297 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 1 ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 2 ATOM 1414 CD1 ILE A 311 28.929 8.079412 1.00 2 ATOM 1415 C ILE A 311 29.989 12.222 -1.866 1.00 1 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 1 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 31.907 11.560884 1.00 13 ATOM 1419 CB CYS A 312 31.91 1.560884 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 CGY A 312 33.718 11.728 -2.440 1.00 14 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1423 N LYS A 312 34.361 10.793 -1.956 1.00 14				26.730 10.843 3.296 1.00 14.85	A
ATOM 1401 CG ARG A 310 27.110 12.938 2.092 1.00 1 ATOM 1401 CG ARG A 310 25.824 13.620 2.565 1.00 1 ATOM 1403 NE ARG A 310 24.745 13.562 1.493 1.00 1 ATOM 1403 NE ARG A 310 23.552 14.340 1.830 1.00 1 ATOM 1404 CZ ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1405 NH1 ARG A 310 22.634 12.730 3.199 1.00 1 ATOM 1406 NH2 ARG A 310 21.523 14.708 2.854 1.00 1 ATOM 1407 C ARG A 310 21.523 14.708 2.854 1.00 1 ATOM 1408 O ARG A 310 28.362 10.846 1.532 1.00 1 ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1410 CA ILE A 311 29.871 10.404297 1.00 1 ATOM 1411 CB ILE A 311 29.871 10.404297 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 1 ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 2 ATOM 1414 CD1 ILE A 311 28.929 8.079412 1.00 2 ATOM 1415 C ILE A 311 29.989 12.222 -1.866 1.00 1 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 1 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 31.907 11.560884 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 CGY A 312 33.718 11.728 -2.440 1.00 14 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1423 N LYSS A 312 34.361 10.793 -1.956 1.00 14			1399 CA ARG A 310	27.027 11.410 1.989 1.00 14.16	A·
ATOM 1402 CD ARG A 310 24.745 13.562 1.493 1.00 1 ATOM 1403 NE ARG A 310 23.552 14.340 1.830 1.00 1 ATOM 1404 CZ ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1405 NH1 ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1406 NH2 ARG A 310 22.634 12.730 3.199 1.00 1 ATOM 1407 C ARG A 310 21.523 14.708 2.854 1.00 1 ATOM 1408 O ARG A 310 28.362 10.846 1.532 1.00 1 ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1410 CA ILE A 311 29.871 10.404297 1.00 1 ATOM 1411 CB ILE A 311 29.871 10.404297 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 1 ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 23 ATOM 1414 CD1 ILE A 311 28.929 8.079412 1.00 23 ATOM 1415 C ILE A 311 28.929 8.079412 1.00 23 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 14 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 14 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 31.907 11.560884 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 CG CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1423 N LYSS A 312 34.361 10.793 -1.956 1.00 14				27.110 12.938 2.092 1.00 13.55	A
ATOM 1403 NE ARG A 310 23.552 14.340 1.830 1.00 1 ATOM 1404 CZ ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1405 NH1 ARG A 310 22.634 12.730 3.199 1.00 1 ATOM 1406 NH2 ARG A 310 21.523 14.708 2.854 1.00 1 ATOM 1407 C ARG A 310 28.362 10.846 1.532 1.00 1 ATOM 1408 O ARG A 310 29.150 10.355 2.343 1.00 1 ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1410 CA ILE A 311 29.871 10.404297 1.00 1 ATOM 1411 CB ILE A 311 29.633 9.181 -1.206 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 1 ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 23 ATOM 1414 CD1 ILE A 311 28.929 8.079412 1.00 23 ATOM 1415 C ILE A 311 28.947 6.931 -1.269 1.00 23 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 14 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 31.907 11.560884 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 SG CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1423 N LYSS A 312 34.361 10.793 -1.956 1.00 14				25.824 13.620 2.565 1.00 14.48	Α
ATOM 1404 CZ ARG A 310 22.574 13.926 2.632 1.00 1 ATOM 1405 NH1 ARG A 310 22.634 12.730 3.199 1.00 1 ATOM 1406 NH2 ARG A 310 21.523 14.708 2.854 1.00 1 ATOM 1407 C ARG A 310 28.362 10.846 1.532 1.00 1 ATOM 1408 O ARG A 310 29.150 10.355 2.343 1.00 1 ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1410 CA ILE A 311 29.871 10.404297 1.00 1 ATOM 1411 CB ILE A 311 29.871 10.404297 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 1 ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 2 ATOM 1414 CD1 ILE A 311 28.929 8.079412 1.00 2 ATOM 1415 C ILE A 311 28.929 8.079412 1.00 2 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 1 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 31.907 11.560884 1.00 13 ATOM 1419 CB CYS A 312 31.907 11.560884 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 CG CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1423 N LYSS A 312 34.361 10.793 -1.956 1.00 14					A
ATOM 1405 NH1 ARG A 310				1.00 10,70	A
ATOM 1406 NH2 ARG A 310 21.523 14.708 2.854 1.00 1 ATOM 1407 C ARG A 310 28.362 10.846 1.532 1.00 1 ATOM 1408 O ARG A 310 29.150 10.355 2.343 1.00 1 ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1410 CA ILE A 311 29.871 10.404297 1.00 1 ATOM 1411 CB ILE A 311 29.633 9.181 -1.206 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 1 ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 2 ATOM 1414 CD1 ILE A 311 28.929 8.079412 1.00 2 ATOM 1415 C ILE A 311 28.929 8.079412 1.00 2 ATOM 1416 O ILE A 311 30.599 11.477 -1.095 1.00 14 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 14 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 31.907 11.560884 1.00 13 ATOM 1419 CB CYS A 312 32.741 12.519 -1.588 1.00 13 ATOM 1420 SG CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1423 N LYSS ATOM 1424 N LYSS ATO				2,00 10,45	A
ATOM 1407 C ARG A 310 28.362 10.846 1.532 1.00 i ATOM 1408 O ARG A 310 29.150 10.355 2.343 i.00 i ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 i ATOM 1410 CA ILE A 311 29.871 10.404297 1.00 i ATOM 1411 CB ILE A 311 29.633 9.181 -1.206 1.00 i ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 i ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 20 ATOM 1414 CD1 ILE A 311 28.447 6.931 -1.269 1.00 20 ATOM 1415 C ILE A 311 30.599 11.477 -1.095 1.00 i ATOM 1416 O ILE A 311 30.599 11.477 -1.095 1.00 i ATOM 1417 N CYS A 312 31.907 i1.560884 1.00 i ATOM 1418 CA CYS A 312 31.907 i1.560884 1.00 i ATOM 1419 CB CYS A 312 32.741 i2.519 -1.588 i.00 i ATOM 1420 SG CYS A 312 33.516 i3.393597 i.00 i3 ATOM 1421 C CYS A 312 34.710 i4.505 -1.391 i.00 i4 ATOM 1421 C CYS A 312 33.718 i1.728 -2.440 i.00 i4 ATOM 1423 N LYS A 312 34.361 i0.793 -1.956 i.00 i4			1406 NH2 ARG A 310	0. 500	A
ATOM 1408 O ARG A 310 29.150 10.355 2.343 1.00 1 ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1411 CB ILE A 311 29.871 10.404297 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 1 ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 2 ATOM 1415 C ILE A 311 28.447 6.931 -1.269 1.00 2 ATOM 1416 O ILE A 311 30.599 11.477 -1.095 1.00 14 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 14 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 31.907 11.560884 1.00 13 ATOM 1419 CB CYS A 312 32.741 12.519 -1.588 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 SG CYS A 312 34.710 14.505 -1.391 1.00 16 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 34.361 10.793 -1.956 1.00 14			1407 C ARC A 310	20 200	A
ATOM 1409 N ILE A 311 28.619 10.911 .234 1.00 1 ATOM 1410 CA ILE A 311 29.871 10.404297 1.00 1 ATOM 1411 CB ILE A 311 29.633 9.181 -1.206 1.00 1 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 1 ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 2 ATOM 1414 CD1 ILE A 311 28.447 6.931 -1.269 1.00 2 ATOM 1415 C ILE A 311 30.599 11.477 -1.095 1.00 12 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 14 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 31.907 11.560884 1.00 13 ATOM 1419 CB CYS A 312 32.741 12.519 -1.588 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 SG CYS A 312 34.710 14.505 -1.391 1.00 16 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 34.361 10.793 -1.956 1.00 14			1408 O ARC A 310		A
ATOM 1410 CA ILE A 311 29.871 10.404297 1.00 1. ATOM 1411 CB ILE A 311 29.633 9.181 -1.206 1.00 1. ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 1. ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 2. ATOM 1414 CD1 ILE A 311 28.447 6.931 -1.269 1.00 2. ATOM 1415 C ILE A 311 30.599 11.477 -1.095 1.00 1. ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 1. ATOM 1417 N CYS A 312 31.907 11.560884 1.00 1. ATOM 1418 CA CYS A 312 31.907 11.560884 1.00 1. ATOM 1419 CB CYS A 312 32.741 12.519 -1.588 1.00 1. ATOM 1420 SG CYS A 312 33.516 13.393597 1.00 1. ATOM 1420 CCYS A 312 34.710 14.505 -1.391 1.00 1. ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 1. ATOM 1422 O CYS A 312 34.361 10.793 -1.956 1.00 1. ATOM 1423 N LYSS A 312 34.361 10.793 -1.956 1.00 1. ATOM 1424 N LYSS A 312 34.361 10.793 -1.956 1.00 1. ATOM 1424 N LYSS A 312 34.361 10.793 -1.956 1.00 1. ATOM 1424 N LYSS A 312 34.361 10.793 -1.956 1.00 1. ATOM 1425 N LYSS A 312 34.361 10.793 -1.956 1.00 1. ATOM 1425 N LYSS A 312 34.361 1				2.00 13.57	A
ATOM 1411 CB ILE A 311 29.633 9.181 -1.206 1.00 1.7 ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 1.9 ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 2.7 ATOM 1414 CD1 ILE A 311 28.447 6.931 -1.269 1.00 2.7 ATOM 1415 C ILE A 311 30.599 11.477 -1.095 1.00 1.7 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 1.7 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 1.7 ATOM 1418 CA CYS A 312 32.741 12.519 -1.588 1.00 1.7 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 1.7 ATOM 1420 SG CYS A 312 34.710 14.505 -1.391 1.00 1.7 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 34.361 10.793 -1.956 1.00 14 ATOM 1423 N LYS A 312 34.361 10.793 -1.956 1.00 14 ATOM 1423 N LYS A 312 34.361 10.793 -1.956 1.00 14				2.00 15.05	A.
ATOM 1412 CG2 ILE A 311 30.958 8.671 -1.751 1.00 19 ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 20 ATOM 1414 CD1 ILE A 311 28.447 6.931 -1.269 1.00 20 ATOM 1415 C ILE A 311 30.599 11.477 -1.095 1.00 16 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 14 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 32.741 12.519 -1.588 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 SG CYS A 312 34.710 14.505 -1.391 1.00 16 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 34.361 10.793 -1.956 1.00 14		ATOM			A
ATOM 1413 CG1 ILE A 311 28.929 8.079412 1.00 13 ATOM 1414 CD1 ILE A 311 28.447 6.931 -1.269 1.00 24 ATOM 1415 C ILE A 311 30.599 11.477 -1.095 1.00 14 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 14 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 32.741 12.519 -1.588 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 SG CYS A 312 34.710 14.505 -1.391 1.00 16 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 34.361 10.793 -1.956 1.00 14 ATOM 1423 N LYSS ATOM 1424 N LYSS ATOM 1424 N LYSS ATOM 1425 N LYSS ATOM	•	ATOM		200 17.45	Α.
ATOM 1414 CD1 ILE A 311 28.447 6.931 -1.269 1.00 24 ATOM 1415 C ILE A 311 30.599 11.477 -1.095 1.00 14 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 14 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 32.741 12.519 -1.588 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 SG CYS A 312 34.710 14.505 -1.391 1.00 16 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1423 N LYS A 312 34.361 10.793 -1.956 1.00 14				200 13.33	A
ATOM 1415 C ILE A 311 30.599 11.477 -1.095 1.00 24 ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 14 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 32.741 12.519 -1.588 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 SG CYS A 312 34.710 14.505 -1.391 1.00 16 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1423 N LYS A 312 34.361 10.793 -1.956 1.00 14		ATOM		2,00 21.10	A
ATOM 1416 O ILE A 311 29.989 12.222 -1.866 1.00 14 ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 ATOM 1418 CA CYS A 312 32.741 12.519 -1.588 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 SG CYS A 312 34.710 14.505 -1.391 1.00 16 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 34.361 10.793 -1.956 1.00 14				1.00 24,40	A
ATOM 1417 N CYS A 312 31.907 11.560884 1.00 13 1418 CA CYS A 312 32.741 12.519 -1.588 1.00 13 1419 CB CYS A 312 33.516 13.393597 1.00 13 1419 CB CYS A 312 33.516 13.393597 1.00 13 1419 CB CYS A 312 34.710 14.505 -1.391 1.00 16 14 1419 CB CYS A 312 33.718 11.728 -2.440 1.00 14 1419 CB CYS A 312 34.361 10.793 -1.956 1.00 14 1419 CB CYS A 312 34.361 10.793 -1.956 1.00 14 1419 CB CYS A 312 34.361 10.793 -1.956 1.00 14 1419 CB CYS A 312 34.361 10.793 -1.956 1.00 14 1419 CB CYS A 312 34.361 10.793 -1.956 1.00 14 1419 CB CYS A 312 34.361 10.793 -1.956 1.00 14		ATOM			A
ATOM 1418 CA CYS A 312 32.741 12.519 -1.588 1.00 13 ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 SG CYS A 312 34.710 14.505 -1.391 1.00 16 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 34.361 10.793 -1.956 1.00 14 ATOM 1423 N					A
ATOM 1419 CB CYS A 312 33.516 13.393597 1.00 13 ATOM 1420 SG CYS A 312 34.710 14.505 -1.391 1.00 16 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 34.361 10.793 -1.956 1.00 14			1418 CA CYS A 312		A
ATOM 1420 SG CYS A 312 34.710 14.505 -1.391 1.00 16 ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 34.361 10.793 -1.956 1.00 14 ATOM 1423 N 1423			1419 CB CYS A 312		A
ATOM 1421 C CYS A 312 33.718 11.728 -2.440 1.00 14 ATOM 1422 O CYS A 312 34.361 10.793 -1.956 1.00 14			1420 SG CYS A 312		Α.
ATOM 1422 O CYS A 312 34.361 10.793 -1.956 1.00 14			1421 C CYS A 312		A n
ATOM 1423 N TVO 2 212			1422 O CYS A 312		A A
	1	MOTA	1423 N LYS A 313	14.42	A
				2,00 14,10	А

(_			
	OM 1424 CA LYS A 313		
AT	OM 1425 CB LYS A 313	1.020 13.69	A
AT	OM 1426 CG LYS A 313	20.072 -3.093 1.00 18.29	A
AT		34.806 9.870 -6.650 1.00 21.66	A
AT		33.953 9.085 -7.636 1.00 27.84	. A
		34.818 8.203 -8.525 1.00 31 20	
AT		34.006 7.412 -9.494 1.00 36.03	A
AT	513	25 200	A
AT(OM 1431 O LYS A 313	25 200	A
ATO	OM 1432 N ILE A 314	3.020 2.00 13.03	A
ATO	OM 1433 CA ILE A 314	36.950 11.985 -5.391 1.00 17.72	A
ATO		37.977 12.812 -6.016 1.00 22.21	A
		39.083 13.192 -5.016 1.00 22.48	
ATO		40.135 14.053 -5.708 1.00 26.30	A
ATC		2.00 20,30	A
ATC	OM 1437 CD1 ILE A 314	22.03	A
ATC	M 1438 C ILE A 314	20.01	. A
ATC		38.580 12.015 -7.169 1.00 26.09	A
ATO	514	38.628 10.785 -7.119 1.00 24.64	A
		39.047 12.718 -8.197 1.00 31 43	
ATO		39.607 12.073 -9.383 1.00 37.29	A
. ATO		20 31.29	A.
ATO	M 1443 CG TYR A 315	2	A
ATO:	M 1444 CD1 TYR A 315	20:003 1:00 38.88	A
ATO	M 1445 CE1 TYR A 315	37.179 10.702 -11.197 1.00 39.92	A
ATO	A 313	35.887 10.198 -11.275 1.00 39.85	A
	11 313	36.342 12.736 -10.255 1.00 39 19	
ATO		35.046 12.242 -10.325 1.00 39.96	A
ATO			A
ATO	M 1449 OH TYR A 315		A
ATO	M 1450 C TYR A 315	1.00 41.38	A
ATON	1 1451 O TYR A 315	1.00 11.04	Α
ATOM	4 1452 N ASP A 316	41.827 12.818 -8.823 1.00 42.77	A
ATOM	17 310	41.488 11.867 -10.857 1.00 45.11	A
ATOM	1107 11 210	42.856 11.955 -11.364 1.00 48.76	A
		42.913 12.906 -12.562 1.00 51.10	
ATOM	60 1101 N 210		A
ATOM	1456 OD1 ASP A 316	2.00 33.20	A
ATOM	1457 OD2 ASP A 316	2.00 34.23	A
ATOM	1458 C ASP A 316	10 00,12	A
ATOM	A 1107 W 3TO	43.901 12.364 -10.339 1.00 50.29	A
ATOM	A 1701 W 2T0	44.235 13.541 -10.202 1.00 50 40	A
	OTIL M. DIL	44.419 11.370 -9.628 1.00 51.63	
ATOM	out Out N 31/	45.433 11.596 -8.611 1.00 53.06	A
ATOM	OUK Y OI	2.00 33.00	A
MOTA	1463 OG SER A 317.	1,217 1.00 33.24	A
ATOM	1464 C SER A'317	46 562 18 500	Α
ATOM	1465 O SER A 317		Α
ATOM		46.346 9.385 -8.752 1.00 54.39	A
ATOM	010	47.786 11.088 -9.079 1.00 54.06	A
	1467 CD PRO A 318	48.160 12.498 -9.289 1.00 54.37	
ATOM	1468 CA PRO A 318	48.940 10.210 -9.291 1.00 53.91	A
ATOM	1469 CB PRO A 318		A
ATOM	1470 CG PRO A 318	40 500 10	A
ATOM	1471 °C PRO A 318	40 44-	A
ATOM	1472 O PRO A 318	0.213 1.00 33.87	A
ATOM	1473 N CYS A 319	100 54,39	A
ATOM	015	48.320 9.321 -7.123 1.00 53.04	A
ATOM	11 313	48.323 8.365 -6.025 1 00 52 44	A
	1475 CB CYS A 319	48.105 9.089 -4.694 1.00 52.58	
ATOM	1476 SG CYS A 319	10 100 02.00	A
ATOM	1477 C CYS A 319	120. 1.00 32.30	A
MOTA	1478 O CYS A 319	1.00 32.16	A
ATOM	1479 N LEU A 320	1.00 32.41	. A
ATOM	1480 CA LEU A 320	46.079 7.776 -6.749 1.00 51.37	A
ATOM	1 J20	44.950 6.890 -7.020 1.00 50.25	A
ATOM	520	44.162 6.617 -5.735 1.00 51.58	A
	1482 CG LEU A 320	44.850 5.852 -4.600 1.00 52.61	
ATOM	1483 CD1 LEU A 320	43.919 5.791 -3.401 1.00 53.53	A
ATOM .	· 1484 CD2 LEU A 320	45 030	A
MOTA	1485 C LEU A 320	44 004 =	A
ATOM	1486 O LEU A 320	100 30.37	A
ATOM	1487 N PRO A 321	10 40.51	A
ATOM	321	43.681 6.769 -9.117 1.00 46.71	A
ATOM		44.099 5.390 -9.425 1.00 46.46	A
ATOM		42.795 7.290 -10.162 1.00 44.43	A
	1490 CB PRO A 321	42.474 6.047 -10.984 1.00 45.46	
ATOM	1491 CG PRO A 321	43.749 5.270 -10.895 1.00 46.59	A
		1.00 40.33	A

ATO			PRO	A 321	41.54	15 7.92	27 -9.56	2 1.0	0 41.95	7	
ATO				A 321	41.16				0 40.86	A A	
ATO				A 322	40.91				0 39.09	A	
ATOM				A 322	39.70	8 7.68	6 -7.97		0 36.24	A	
ATON				A 322	38.45	5 7.11	.3 -8.64		39.05	A	
ATOM				A 322	38.49		1 -10.16	5 1.00	43.79	A	
ATOM				A 322	37.22	6 6.52	4 -10.77		46.15	·A	
ATOM		OE1	GLU	A 322	36.68		5 -10.20	0 1.00	47.26	A	
ATOM				A 322	36.77	9 7.03	6 -11.81		48.33	A	
ATOM				A 322	39.74			_	32.58	A	
ATOM				A 322	40.26			3 1.00	31.65	A	
ATOM				A 323	39.19				26.73	A	
ATOM				A 323	39.15			7 1.00	23.49	A	
ATOM ATOM				A 323	40.36			1.00	24.09	A	
ATOM				A 323	37.87				21.23	A	
ATOM				A 323	37.43			1.00	18.44	A	
ATOM				A 324	37.27				20.46	A	
ATOM	1510	CA CB	CIU.	A 324	36.043				21.25	A	
ATOM	1511			A 324	34.849				23.33	A	
ATOM	.1512			A 324 A 324	34.651				27.34	A	
ATOM	1513			A 324 A 324	33.426				29.02	A	
ATOM	1514			A 324	33.318				31.71	A	
ATOM	1515			A 324	32.576				30.39	A	
ATOM	1516			A 324	36.074			•	20.52	A	
ATOM	1517			A 325	36.831				21.51	A	
ATOM	1518			A 325	35.237 35.120			1.00	18.38	A	
ATOM	1519			A 325	36.072				18.27	A	
ATOM	1520			A 325	33.684				18.87	A	
ATOM	1521			A 325	33.044				17.32	A	
. ATOM	1522		ISE	326	33.175	8.440			16.37	A	
ATOM	1523		ISE	326	31.814				16.14	AC1	
ATOM	1524		SE	326	31.127				15.49	AC1	
MOTA	1525		SE	326	29.621	7.477	3.722		16.90	AC1	
MOTA	1526	SE M	SE	326	28.788	5.774			17.28 21.71	AC1	
MOTA	1527	CE M	SE	326	29.498		2.874		24.72	AC1	
ATOM	1528	C M	SE	326	31.863	9.603			15.12	AC1	
ATOM	1529	0 M	SE	326	32.823	. 9.569			16.04	AC1 AC1	
ATOM	1530	N P	HE A	327	30.837	10.432	4.728		14.66		
ATOM	1531			327	30.746	11.333			13.34	A A	
MOTA	1532			327	31.439	12.686	5.582		14.23	A	
ATOM	1533	CG P	HE A	327	30.856	13.476	4.437		12.58	A	
ATOM	1534	CD1 P	HE A	327	31.180	13.169	3.119		13.45	A	
ATOM	1535	CD2 PI	HE A	327	30.024	14.568	4.685		14.05	A	
ATOM	1536	CE1 P			30.689	13.942	2.060	1.00		A	
ATOM	1537	CE2 PI			29.527	15.347	3.638	1.00		A	
ATOM	1538		IE A		29.863	15.033	2.321	1.00		A	
ATOM	1539		ie a		29.267	11.509	6.158	1.00	13.91	A	
ATOM	1540		IE A		28.416	10.945	5.466	1.00		A	
ATOM ATOM			AA		28.952	12.254	, 7.205	1.00	13.81	А	
ATOM			AA		.27.560	12.464	7.558	1.00	13.68	A	
ATOM			AA		27:187	11.586	8.744	1.00	15.04	· д	
ATOM			AA		27.306	13.919	7.893	1.00	14.38	A	
ATOM			AA		28.210	14.631	8.326	1.00	14.71	A	
ATOM			EA		26.077	14.365	7.668	1.00	14.86	A	
ATOM			EΑ		25.715	15.732	7.995	1.00 1	16.92	A	
ATOM		CB IL CG2 IL	EA	320	25.036	16.451	6.798	1.00	18.22	A	
ATOM	1550	CG2 IL	e A	320	25.997	16.493	5.619	1.00 1	7.39	A	•
ATOM		CGI IL			23.752	15.733	6.383	1.00 2	21.82	A	
ATOM					23.055	16.386	5.193	1.00 2	25.55	A	
ATOM		D III	EΑ	329 329	24.784	15.663	9.201	1.00 1	7.32	A	
				329 330	23.758	14.979	9.179	1.00 1	8.02	A	
ATOM			A N		25.170	16.349	10.268	1.00 1	7.70	A	
ATOM			A A		24.391	16.352	11.497	1.00 1	8.00	A	
ATOM			A		25.208	15.731	12.637	1.00 2	0.36	A	
ATOM		DD1 ASI	. A.	330	25.759	14.353	12.289	1.00 2	1.76	A	
ATOM	1559 N	ID2 ASI	I A	330	25.006 27.081	13.418 14.223	12.006	1.00 2	2.43	A	
			1		21.001	44.223	12.314	1.00 2	3.90	A	

•	·			•			
ATO	OM 1560	C ASN A 330	23.9	79 17.767	7 11 00	1 00 15	
ATO	M 1561	O ASN A 330	24.3				A
ATC	DM 1562	N ALA A 331	23.19				A
ATO		CA ALA A 331					A
ATC		CB ALA A 331	22.72				A
ATO			21.80			1.00 20.84	. A
ATO		C ALA A 331	23.90		13.837	1.00 18.41	A
		O ALA A 331	23.82	22 21.261	13.740		A
ATO		N ASP A 332	24.98	9 19.416	14.288	1.00 18.22	
ATO		CA ASP A 332	26.16	8 20.170			A
ATO		CB ASP A 332	26.64	0 19.752		1.00 19.49	A
ATO:		CG ASP A 332	26.83				A
ATO	M 1571	OD1 ASP A 332	26.69				A
ATO		OD2 ASP A 332	27.13			, _	А
ATO		C ASP A 332	27.13	6 17.803		1.00 25.43	A
ATO		O ASP A 332					A
ATO		N GLY A 333	28.48		14.065	1.00 15.11	A
ATO			26.95		12.410	1.00 15.38	A
ATOL			27.97		11.375	1.00 15.75	A
		C GLY A 333	28.34	4 18.547	10.796	1.00 13.57	· A
ATO		O GLY A 333	27.75	2 17.513	11.111	1.00 14.77	A
ATOM		N VAL A 334	.29.34	18.580	9.924	1.00 11.52	
ATOM		CA VAL A 334	29.84	17.391	9.254	1.00 10.99	A
ATOM		CB VAL A 334	30.746		8.063		A
ATOM	1 1582 (CG1 VAL A 334	31.534		7.549		. А
ATOM	1583 (CG2 VAL A 334	29.879			1.00 11.92	A
ATOM	1584 (30.614		6.952	1.00 12.03	A
ATOM					10.218	1.00 11.60	A
ATOM			31.450		10.989	1.00 12.63	A
ATOM			30.301		10.181	1.00 12.25	A
ATOM			30.975		11.036	1.00 12.89	A
ATOM			31.193		10.259	1.00 13.23	A
			30.982	12.931	9.048	1.00 13.01	A
ATOM			31.618	11.916	10.938	1.00 15.14	A
ATOM		A ASP A 336	31.834		10.244	1.00 16.51	
MOTA	1592 C		32.956		10.911	1.00 17.22	A
ATOM	1593 C		34.318	10.457	10.610		A
ATOM	1594 0	D1 ASP A 336	34.936	11.045		1.00 19.47	A
ATOM	1595 0	D2 ASP A 336	34.753	10.345	11.523	1.00 20.13	A
ATOM	1596 C	ASP A 336			9.443	1.00 19.26	A
ATOM	1597 O	ASP A 336	30.561	9.835	10.172	1.00 16.78	A
ATOM	1598 N		29.688	9.936	11.034	1.00 16.77	A
ATOM	1599 C		. 30.451	9.039	9.116	1.00 16.17	A
ATOM			29.285	8.195	8.920	1.00 17.98	A
ATOM			29.267	7.651	7.497	1.00 17.82	A
ATOM	1601 C	ALA A 337	29.322	7.053	9.926	1.00 19.32	A
	1602 0	ALA A 337	30.376	6.472		1.00 18.99	A
ATOM	1603 N	LYS A 338	28.163			1.00 20.19	· A
ATOM	1604 CA		28.053			1.00 22.21	
ATOM	1605 CE		27.738			1.00 23.47	A
ATOM	1606 CG	LYS A 338	28.784			1.00 25.47	A
ATOM	1607 CD	LYS A 338	30.111			1 00 00 00	A
ATOM	1608 CE		31.150			1.00 29.32	A
ATOM	1609 NZ		32.439			1.00 32.11	A
ATOM	1610 C	LYS A 338	26.946	4.702		1.00 34.51	Α
ATOM	1611 0	LYS A 338	25.977		11.099	1.00 23.93	A
ATOM	1612 N	ASP A 339		-	10.437	1.00 22.40	A
ATOM	1613 CA		27.093		11.508	1.00 25.44	A
ATOM	1614 CB	ASP A 339	26.068		11.228	L.00 27.67	A
ATOM	1615 CG	ASP A 339	26.693		10.924	1.00 29.98	. А
ATOM		MSP A 339	27.592		12.043 1	1.00 32.94	Α
ATOM	1616 OD:	1 ASP A 339	27.427		l3.201 1	00 33.12	A
ATOM	1610 ~	2 ASP A 339	28.462	267 1	11.761 1	.00 36.58	A
	1618 C		25.169	2.347 1	12.456 1	.00 28.80	A
ATOM	1619 0	ASP A 339	24.424			.00 28.88	A
ATOM		ASP A 339	25.220			.00 28.59	•
ATOM	1621 CB	PRO 1519	24.486		203	.50 37.27	A AC1
ATOM	1622 CG	PRO 1519	24.699		398	.50 37.27	AC1
ATOM	1623 C	PRO 1519	24.307		1.952	50 31.00	AC1
ATOM	1624 O	PRO 1519				.50 35.98	AC1
ATOM	1625 พ	PRO 1519			1 000	.50 37.38	AC1
ATOM	1626 CD	PRO 1519			1.883	.50 34.39	AC1
MOTA	1627 CA	PRO 1519		52.443		.50 33.96	AC1
			23.043	50.392	1.173	.50 35.12	AC1
		·					

(
` ATO			THR B1520	23.74	14 48.9	61 3.14	2 1.00 35.0	7 5
ATO ATO			THR B1520	24.09	8 47.83	38 4.01		
ATO		CB :	THR B1520 THR B1520	23.24			6 1.00 33.7	2 · B
ATO	-	CG2	THR B1520	21.87 23.30		_		
ATO	M 1633	C	THR B1520	23.95	17 49.24 2 46.47			. –
ATO		0 1	THR B1520	24.69			6 1.00 31.2	_
ATO	_		EU B1521	23.02	6 46.37			б в 7 в
ATOM ATOM		CA I	EU B1521 EU B1521	. 22.78	_		0 1.00 27.7	4 в
ATON		CG I	EU B1521	21.49 20.18	_			4 в
ATON		CD1 I	EU B1521	19.04				–
ATOM		CD2 L	EU B1521	19.91				_
ATOM			EU B1521	23.89	9 44.61			3 B
ATOM ATOM			EU B1521 EU B1522	23.95			2 1.00 26.28	3 в
ATOM			EU B1522 EU B1522	24.783 25.85				
ATOM	1645		EU B1522	25.976				_
ATOM		CG L	EU B1522	24.681				B B
ATOM			EU B1522	24.911	47.42			
ATOM ATOM	_		EU B1522	24.221			1.00 26.47	В
ATOM	1650		EU B1522 EU B1522	27.221 28.192				
ATOM	1651		LY B1523	27.303			, ,	-
ATOM	1652	CA GI	LY B1523	28.572				· B B
MOTA	1653		Y B1523	28.527	43.565			В
ATOM ATOM	1654 1655		LY B1523 IE B1524	27.592			1.00 18:20	В
ATOM			IE B1524	29.531 29.590			1.00 15.85	
ATOM			IE B1524	31.027			1.00 13.68 1.00 13.38	В
ATOM		CG PH	IE B1524	31.521	40.956		1.00 13.38	B B
ATOM ATOM	1659 . 1660	CD1 PH	E B1524	32.085		2.667	1.00 14.58	В
ATOM		CDZ PH	E B1524 E B1524	31.440	39.568		1.00 13.15	В
ATOM			E B1524	32.567 31.914	40.825		1.00 12.21	В
MOTA	1663		E B1524	32.482	38.805 39.437		1.00 13.77 1.00 14.06	В
ATOM		C PH	E B1524	29.088	42.622		1.00 14.06	B B
ATOM ATOM			E B1524	29.194	43.762	6.635	1.00 13.98	В
ATOM			S B1525 S B1525	28.547	41.613	6.865	1.00 11.84	В
MOTA			S B1525	28.078 26.553	41.733 41.694	8.241 8.327	1.00 13.15	В
ATOM		CG HIS	S B1525	25.881	42.936	7.844	1.00 15.13 1.00 18.82	В
ATOM	1670	D2 HIS	B1525	25.345	43.978	8.521	1.00 20.71	B
ATOM ATOM	1671 N 1672 C	ND1 HIS	B1525 B1525	25.675	43.198	6.507	1.00 23.42	. В
ATOM	1673 N	E2 HTS	B1525	25.036 24.824	44.349	6.382	1.00 21.27	Ė
ATOM			B1525	28.608	44.842	7.589 8.977	1.00 22.01	В
ATOM	1675 .0	HIS	B1525	28.847	39.468	8.358	1.00 12.75 1.00 12.86	B B
ATOM ATOM	1676 N 1677 C	THE	B1526	28.812	40.612	10.283	1.00 11.64	В
ATOM			B1526 B1526	29.261	39.439	11.023	1.00 11.86	В
ATOM		G1 THR	B1526	29.661 [.] 28.529	39.773 40.315	12.471	1.00 12.84	В
ATOM	1680 C	G2 THR	B1526 .	30.808	40.768	13.165 12.495	1.00 14.05 1.00 12.72	В
ATOM	1681 C		B1526	28.037	38.533	11.065	1:00 12.72	B B
ATOM ATOM	1682 O 1683 N		B1526	26.927	38.979	10.777	1.00 13.46	В
ATOM	1684 C		B1527 B1527	28.222 27.090	37.267	11.419	1.00 11.46	В
ATOM	1685 CI		B1527	27.577	36.355 34.923	11.486 11.695	1.00 14.41	В
ATOM	1686 C		B1527	26.144	36.771	12.614	1.00 12.82 1.00 15.41	В
ATOM ATOM	1687 0		B1527	25.014	36.286	12.695	1.00 13.41	B B
ATOM	1688 N 1689 CA		B1528 B1528	26.615	37.667	13.480	1.00 16.56	В
ATOM	1690 CE	SER	B1528	25.813 26.701	38.174 .		1.00 19.61	В
ATOM	1691 00		B1528	27.833	38.453 39.242	15.816 15.479	1.00 19.90	В
ATOM	1692 C	SER	B1528	25.045	39.438		1.00 23.75 1.00 20.84	B B∈
ATOM ATOM	1693 O 1694 N		B1528		40.041	15.025	1.00 22.21	В
ATOM	1694 N 1695 CA		B1529 B1529		39.840	12.934	1.00 20.05	В
	• •••		W1323	24.463	41.009	12.440	1.00 20.14	В.

ATO	M 169	6 C	GLY	81529	25	.170	42.352	12.50	1 1 0	0 19.33	
ATO		_	GLY	B1529		.563				0 20.61	-
OTA				B1530		. 444	42.355			0 17.30	
ATOM ATOM				B1530		.201				0 17.58	
ATOL				B1530 B1530		.286			_	0 17.52	E
ATON		-		B1530		.772				0 21.01	
ATOM				B1530		.925 .419				0 23.76	
ATOM				B1530		. 538				0 26.60	_
ATOM		5 C		B1530		853				0 30.15 0 18.75	_
ATOM		_		B1530	28.	533	43.182			0 17.86	
ATOM				B1531		649	45.237	11.228		0 17.05	
ATOM ATOM	•			B1531		251	45.718	9.991	1.00	0 19.95	В
ATOM				B1531		836		9.727		22.55	В
ATOM				B1531 B1531		565	47.851	8.567		28.55	В
ATOM				B1531		007 704	47.435	7.215		34.63	
ATOM				B1531		094	48.189 47.921	6.086 4.752		36.55 39.45	В
ATOM				B1531		767	45.629	10.134		19.45	В
ATOM				B1531	30.	314	45.892	11.206		20.19	B B
ATOM	1716			B1532	30.	446	45.235	9.062		19.36	В
ATOM ATOM	1717			B1532		899	45.140	9.091		19.78	В
ATOM	1718 1719	-	VAL 1 VAL	B1532	. 32.		43.938	8.268	_	19.96	В
ATOM	1720		2 VAL		33.		43.987	8.162		19.38	В
ATOM	1721			B1532	31. 32.		42.638	8.919		19.54	В
ATOM	1722			B1532	32.		46.419 46.738	8.496 7.337		20.72	В
ATOM	1723	N		B1533	33.		47.156	9.295		22.21	В
ATOM	1724	CA		B1533	33.1		48.405	8.829	1.00	25.01	B B
ATOM	1725	CB		B1533	34.0	009	49.375	10.000		29.14	В
ATOM ATOM	1726	CG		B1533	32.		49.823	10.635		33.73	В
ATOM	.1727 1728	CD		B1533 B1533	32.9		50.800	11.776	1.00	38.58	В
ATOM	1729	NZ		B1533	33.5		52.098	11.279		40.70	В
ATOM	1730	C		B1533	33.7 35.1		53.054 48.173	12.396 8.140		43.43	· B
MOTA	1731	0		B1533	35.9		47.369	8.592		24.17 · 24.48	
ATOM	1732	N	ILE I	B1534	35.3		48.882	7.037		23.24	B B
ATOM	1733	CA		B1534	36.6	05	48.775	6.264		24.18	В
ATOM ATOM	1734	CB		B1534	36.3		48.206	4.856	1.00	25.08	. В
ATOM	1735 1736	CG2 CG1		31534	37.6		48.049	4.090	1.00	25.82	В
ATOM	1737	CD1			35.6		46.860	4.967	1.00	25.24	В
ATOM	1738	c	ILE E		35.2 37.2		46.258 50.169	3.627		25.28	В
MOTA	1739	0	ILE E	31534	36.5		51.064	6.111 5.569	1.00	23.73 23.27	В
ATOM	1740	N	ALA E		38.4		50.351	6.591		24.35	B B
ATOM	1741	CA	ALA B		39.1	00	51.645	6.489		24.68	В
ATOM ATOM	1742	CB	ALA B		40.4		51.615	7.254		24.73	. в
ATOM	1743 1744	С 0	ALA B		39.3		51.984	5.025		26.08	В
ATOM	1745	N	LYS B		39.75 39.12			4.244		25.25	В
ATOM	1746	CA	LYS B	1536	39.3		53.242 53.681	4.655 3.279		26.80	В
ATOM	1747	CB	LYS B		39.04		55.178	3.145	1.00	27.59	В.
MOTA	1748	CG	LYS B		39.89		56.068	4.032	1.00		B B
ATOM	1749	CD	LYS B		. 39.56	55	57.545	3.836	1.00		В
ATOM ATOM	1750		LYS B		39.83		57.994	2.403	1.00		В
ATOM	1751 1752		LYS B		39.53		59.441	2.196	1.00		В
ATOM	1753		LYS B		40.76		53.393	2.819	1.00	25.80	В
ATOM	1754		GLU B		40.99 41.71		53.094	1.646	1.00		В
ATOM	1755		GLU B		43.11		53.485 53.219	3.741 3.409	1.00		В
ATOM	1756	CB	GLU B1	1537	44.02		53.519	4.600	1.00 2		В
ATOM	1757		GLU B		44.11		54.984	5.023	1.00		B B
MOTA			GLU B1		42.84	6 5	55.479	5.698	1.00		В
ATOM ATOM	1759 1760	OE1	GLU B1	1537	42.25		34.715	6.492	1.00 3	35.95	В
ATOM			GLU B1 GLU B1		42.45		6.639	5.449	1.00 3	37.98	В
ATOM			GLU B1		43.28 44.05		31.756	3.007	1.00 2		В
ATOM			SER B1		42.55		1.440 0.866		1.00 2 1.00 2		В
			•			- J		5.500	1.00 2	.1.3/	В

<u>~</u>									•
ATOM	1764	CA	SER	B1538	42.641	49.440	3.382	1.00 20.86	В
ATOM	1765	СВ		B1538	41.781	48.644	4.366	1.00 21.09	
ATOM	1766	OG		B1538	42.283	48.776	5.684	1.00 23.23	В
ATOM	1767	Ċ		B1538	42.211	49.134	1.949	1.00 20.08	В
ATOM	1768	ō		B1538	42.845	48.333		1.00 18.25	В
MOTA	1769	N		B1539	41.130	49.769	1.508	1.00 19.51	В
ATOM	1770	CA		B1539	40.635	49.577	.153	1.00 20.82	, B
ATOM	1771	CB		B1539	39.276	50.260	013	1.00 22.90	В
MOTA	1772	CG		B1539	38.104	49.588	.708	1.00 24.42	В
ATOM	1773	CD1	LEU	B1539	36.933	50.553	.816	1.00 26.46	
ATOM	1774	CD2	LEU	B1539	37.705	48.326	043	1.00 25.08	В
MOTA	1775	С	LEU	B1539	41.638	50.159	839	1.00 20.41	В
ATOM	1776	0	LEU	B1539	41.880	49.588	-1.903	1.00 20.85	В
MOTA	1777	N	ASP	B1540	42,230	51.293	481	1.00 20.18	В
MOTA	1778	CA	ASP	B1540	43.207	51.936	-1.348	1.00 20.28	В
ATOM	1779	CB	ASP	B1540	43.594	53.305	776	1.00 23.88	В
ATOM	1780	CG	ASP	B1540	44.384	54.147	-1.761	1.00 26.54	В
MOTA	1781	OD1	ASP	B1540	43.862	54.414	-2.865	1.00 29.37	В
ATOM	1782	OD2	ASP	B1540	45.522	54.547	-1.435	1.00 30.42	В
ATOM	1783	С	ASP	B1540	44.453	51.060	-1.490	1.00 20.02	В
MOTA	1784	0	ASP	B1540	45.038	50.967	-2.569	1.00 20.33	В
ATOM	1785	N	LYS	B1541	44.851	50.413	399	1.00 19.20	В
ATOM	1786	CA	LYS	B1541	46.035	49.556	405	1.00 19.77	В
MOTA	1787	CB	LYS	B1541	46.356	49.089	1.019	1.00 21.48	В
ATOM	1788	CG		B1541	46.809		1.946	1.00 24.88	В
ATOM	1789	CD		B1541	46.941			1.00 26.41	В
MOTA	1790	CE		B1541	47.320		4.309	1.00 28.15	В
ATOM	1791	NZ		B1541	47.277		5.743	1.00 31.20	В
ATOM	1792	С		B1541	45.918	48.342	-1.328	1.00 19.38	В
MOTA	1793	0		B1541	46.923	47.879	-1.873	1.00 19.13	В
ATOM	1794	N		B1542	44.701	47.836	-1.514	1.00 18.52	В
ATOM	1795	CA		B1542	44.485	46.669	-2.369	1.00 18.69	В
MOTA	1796	CB		B1542	43.539	45.650	-1.685	1.00 18.33	В
ATOM	1797			B1542	44.121		359	1.00 20.04	В
ATOM	1798			B1542	42.162	46.264	-1.483	1.00 19.59	В
MOTA	1799	C		B1542	43.906	47.015	-3.740	1.00 18.77	В
ATOM	1800	0		B1542	43.557	46.123	-4.513	1.00 19.16	В
MOTA	1801	N		B1543	43.822	48.309	-4.042	1.00 20.01	В
MOTA	1802	CA		B1543	43.268	48.784	-5.312	1.00 21.69	В
ATOM	1803	CB		B1543	43.488	50.299	-5.444	1.00 23.55	В
ATOM	1804	CG		B1543	44.954	50.700	-5.482	1.00 28.56	В
MOTA	1805	CD		B1543	45.158	52.205	-5.344	1.00 32.47	В
MOTA	1806	CE		B1543	44.767	52.961	-6.600	1.00 35.65	В
ATOM	1807	NZ		B1543	45.188		-6.512	1.00 38.75	·B
ATOM	1808	C		B1543	43.808	48.090	-6.564	1.00 20.66	В
MOTA	1809	0		B1543	43.067	47.879	-7.525	1.00 21.57	B B
ATOM	1810			B1544				1.00 20.57 1.00 19.97	В
MOTA	1811	CA		B1544 B1544	45.698	47.090 47.795	-7.720 -8.077	1.00 19.97	В
ATOM	1812 1813	CB		B1544	47.010 46.817	47.793	-8.392	1.00 22.42	В
ATOM		CG		B1544		49.624		1.00 26.96	В.
ATOM	1814			B1544	46.018 47.553	50.121	-7.692	1.00 26.00	В
ATOM	1815			B1544	45.974	45.598	-7.566	1.00 20.00	В
ATOM	1816 1817	С 0		B1544	46.583		-8.440	1.00 17.10	В
ATOM ATOM	1818	N		B1545 ·	45.518	45.007	-6.469	1.00 17.20	В
ATOM	1819	CA		B1545	45.762		-6.217	1.00 16.66	В
ATOM	1820	CB		B1545	45.054	43.156	-4.929	1.00 16.31	В
ATOM	1821	CG		B1545	45.166	41.665	-4.598	1.00 16.59	В
ATOM	1822			B1545	46.622	41.300	-4.352	1.00 16.66	· В
ATOM	1823			B1545	44.319	41.347	-3.379	1.00 17.51	В
ATOM	1824	C		B1545	45.362	42.637	-7.336	1.00 16.69	В
ATOM	1825.	Ö		B1545	46.047	41.641	-7.579	1.00 16.64	. В
ATOM	1826	N		B1546	44.258		-8.014	1.00 16.22	В
ATOM	1827	CA		B1546	43.775	42.047	-9.063	1.00 17.49	В
ATOM	1828	СВ		B1546	42.247	41.967	-8.998	1.00 15.66	В
ATOM	1829	CG		B1546	41.737	41.417	-7.699	1.00 11.70	В
ATOM	1830			B1546	41.945	40.081	-7.366	1.00 13.72	В
ATOM	1831			B1546	41.099	42.243	-6.780	1.00 13.72	В
						-		•	

	•		
` -1TC	OM 1832 CE1 PHE B1546	41 530 30 500 4 500	
ATO		41.530 39.577 -6.137 1.00 14.70	В
ATO	DIG 11.0 DIG 1	40.680 41.748 -5.544 1.00 14.99 :	· B
ATO	05 TIND DIGIO	40.897 40.413 -5.223 1:00 14.37	В
ATO	, a Erm DIO40	44.225 42.384 -10.474 1.00 18.64	В
ATO	0 DIO40	43.//4 41.763 -11.432 1.00 19.17	В
		45.116 43.358 -10.609 1.00 19.30	В
ATC	011 1101 11041	45.602 43.709 -11.934 1.00 22.97	
ATO	M 1839 CB ASP B1547	46.481 44.962 -11.901 1.00 25.04	В
ATO	M 1840 CG ASP B1547		В
ATO	M 1841 OD1 ASP B1547	= 00 20.33	В
ATO	M 1842 OD2 ASP B1547	2.00 30.07	В
ATO	M 1843 C ASP B1547	2.00 32.49	В
ATO	5103,	46.437 42.557 -12.464 1.00 22.48	В
ATO	22011	47.139 41.882 -11.712 1.00 24.30	В
ATO		46.346 42.329 -13.765 1.00 22.96	В
ATO		4/.118 41.288 -14.413 1.00 22.18	В
		46.195 40.276 -15.095 1.00 22.32	В
ATO		45.388 39.459 -14.099 1.00 21 84	В.
ATO		44.480 38.444 -14.759 1.00 21.72	
ATON		43.684 38.844 -15.632 1.00 20.97	В
MOTA	Bac Bagao .	2100 20.97	В
MOTA	1 1852 C GLU B1548	1.00 23.36	В
. ATOM	1 1853 O GLU B1548	1.00 23.17	В
ATOM	1 1854 N LYS B1549		В
ATOM		11.000 1.00 22.17	В
ATOM		49.742 43.713 -15.671 1.00 22.56	В
ATOM		50.412 44.764 -14.781 1.00 24.49	В
ATOM		49.486 45.834 -14.236 1.00 29.70	В
ATOM	DIJ4J	49.077 46.801 ~15.325 1.00 33.15	В
ATOM		48.328 47.985 -14.745 1.00 36.67	В
	mrn mrn pro40	49.149 48.714 -13.739 1.00 40 31	В
ATOM		50.822 42.838 -16.275 1.00 20.74	В
ATOM	1862 O LYS B1549	51.222 41.832 -15.687 1.00 20.95	
ATOM	1863 N GLU B1550	51.295 43.223 -17.452 1.00 19.67	В
ATOM	1864 CA GLU B1550		В
ATOM	1865 CB GLU B1550	2.00 20.42	В
ATOM	1866 CG GLU B1550	2.00 21.71	В
ATOM	1867 CD GLU B1550	2.00 20.10	В
ATOM	1868 OE1 GLU B1550	2.00 Z7.14	В
ATOM	1869 OE2 GLU B1550	52.801 43.271 -22.360 1.00 28.85	В
ATOM		50.611 43.440 -22.443 1.00 30.89	В
ATOM		53.610 42.632 -17.258 1.00 20.42	В
ATOM		53.912 43.722 -16.769 1.00 21.55	В
MOTA		54.329 41.532 -17.082 1.00 19.31	В
	1873 CA GLN B1551	55.542 41.516 -16.286 1.00 20.35	В
ATOM	1874 CB GLN B1551	55.559 40.255 -15.422 1.00 19.40	В
ATOM	1875 CG GLN B1551	54.349 40.114 -14.521 1.00 19.34	
ATOM	1876 CD GLN B1551	54.267 41.231 -13.504 1.00 22.39	В
ATOM	1877 OE1 GLN B1551	55.221 41.481 -12.770 1.00 21.26	В
MOTA	1878 NE2 GLN B1551	53.127 41.908 -13.455 1.00 22.77	В
ATOM	1879 C GLN B1551	EC 700 47 P44	В
ATOM	1880 O GLN B1551		В
ATOM	1881 N THR B1552	20.000 1.00 21.97	В
ATOM	1882 CA THR B1552	2.00 22.04	В
ATOM	1883 CB THR B1552	1.00 25.11	в .
ATOM	1884 OG1 THR B1552	ED DOD 12 500 10 10 1,00 27,42	В
ATOM	1885 CG2 THR B1552	59.999 43.692 -16.281 1.00 29.24	В
ATOM		61.645 42.228 -17.265 1.00 27.94	В
ATOM		59.567 40.172 -17.505 1.00 25.06	В
ATOM		59.769 39.432 -16.545 1.00 25.65	В
ATOM .	1888 N GLY B1553	59.637 39.756 -18.764 1.00 25.65	В
	1889 CA GLY B1553	59.967 38.373 -19.057 1.00 25.06	В
ATOM	1890 C GLY B1553	61.378 38.190 -19.573 1.00 26 56	В
ATOM	1891 O GLY B1553	61.927 39.065 -20.242 1.00 26.49	В
ATOM	1892 N SER B1554	61.972 37.046 -19.255 1.00 28.84	
ATOM	1893 CA SER B1554	63.325 36.743 -19.702 1.00 30.62	В
ATOM	1894 CB SER B1554	64.346 37.283 -18.696 1.00 32.10	В
ATOM	1895 OG SER B1554	64 100 04 5.5	В
ATOM. ·	1896 C SER B1554	1.00 33.76	В
ATOM	1897 O SER B1554	60 646 04 100	В
ATOM	1898 OXT SER B1554	64 503 24 045	В
ATOM	1899 C GLY C . 1		В
		23.040 64.501 10.728 1.00 25.62	С

00000000000000000000000

N (
,	4OTr	1 1	900	O GL	Y C 1	L	22.5	550	63.40			
	ATOM		901		Y C 1		23.6					0 24.58
	ATOM	1 19	902		Y C 1							26.62
	ATOM	1 19	903		RC 2		23.7		65.31			25.97
	ATOM		904		RC 2		23.0	129	65.03		09 1.0	24.78
	ATOM		05				22.3	84	64.36		35 1.00	25.77
	ATOM						21.6		65.39		35 1.00	24.41
			906		RC 2		20.6		66.09	1 8.30		23.97
	ATOM		07	C SEI			23.3	25	63.56	9 7.48		26.68
	ATOM		80	O SEF	RC 2		22.8		63.02			20.08
	ATOM		09	N · MSE	: C 3		24.6	01	63.49	6 7.84		25.80
	ATOM		10	CA MSE	; C 3		25.5		62.75			28.16
	ATOM	19	11	CB MSE	: С з		26.9	30				31.64
	ATOM	19	12	CG MSE					62.778			33.78
	MOTA	19		SE MSE			28.00	00	62.090		0 1.00	38.54
	ATOM	19		CE MSE			29.69		62.045		7 1.00	49.47
	MOTA	19:					30.39		63.745	7.18	2 1.00	43.04
	MOTA				_		25.08		61.305			32.89
		19:		O MSE			24.65	52	60.685	7.85		32.94
	MOTA	19:		N GLY			25.18	32	60.771			34.65
	MOTA	191		CA GLY	C 4		24.75	54	59.401			34.65
	MOTA		L9	C . GLY	C 4		25.68		58.384		7 1.00	36.89
F	MOTA	192	20 (O GLY	C 4		26.88		58.684			38.07
P	MOTA	192	21 (OXT GLY	C 4				50.084	6.21		38.86
A	MOT	192		нон с	1.		25.20		57.277	6.41	1.00	40.87
	MOT	192		нон С	<u>.</u>		27.20		32.665	-8.545	1.00	12.07
	TOM	192			2		31.15		37.373	-10.128	3 1.00	14.68
-	TOM		_ `	.,	3		24.81		29.097	1.505	1.00	19.02
		192			4		41.05	5	25.105	319	1.00	11.16
	TOM	192			5.		43.68	1	37.645	6.233		14.81
	TOM	192		нон (6		45.32		22.607	11.105		14.01
Α	TOM	192	8 C	нон (. 7		39.60		31 034	-14.585		13.75
A.	TOM	192	9 0	НОН	. В		43.64	n	26.446			13.20
A'	TOM	193	0 0		9		25.339	0		-6.581		14.05
A'	TOM	193			10				14.708	-6.366		21.76
A'	MOT	193	_				47.852		25.013	18.123		15.00
	rom	193	_		11		41.038		31.746	-16.720	1.00	15.00
	MO	1934			12		34.703		38.853	-12.674	1.00	14.66
	MO				13		41.935	5 :	21.373	230	1.00	15 53
		1935			14		33.052	2	8.732	7.686		
	MOT	1936	_	нон	15		29.065	;	32.805	23.625	1.00	
	MO	1937	_	нон	16		39.100		42.813	8.664	1.00	
	MO	1938	0	нон	17		45.225			-10.500	1.00	44.97
AT	'OM	1939	0	нон	18		34.758		6.368		1.00	4.90
PΑ	'OM	1940	0	HOH ·	19		27.240			4.080	1.00 2	20.01
AT	'OM	1941	. 0	нон	20				27.751	20.443	1.00 1	.8.69
AΤ	OM	1942		НОН	21		50.907		9.282	-16.750	1.00 2	0.51
AT		1943	_	нон			47.270		7.282	-4.465	1.00 2	1.63
AT		1944			22		40.136		5.218	21.558	1.00 1	9.04
AT		1945		нон	23		26.144		8.662	10.277	1.00 1	8.32
AT			_	НОН	24		42.725	4	5.381	-8.655	1.00 2	7 15
		1946	0	нон	25		40.507	2	6.175 -	-10.534	1.00 2	4 50
ATO		1947	0	HOH	26		28.530	1	6.165	13.719	1.00 3	3 54
ATO		1948	0	нон	27		49.779		4.277	1.640	1.00 2	J.J4
ATO		1949	0	HOH	28		37.754		7.604		1.00 2	6.13
ATO		1950	0	HOH	29		25.719		0.907	13.513	1.00 2	1.28
ATO	MC	1951	0	нон	30		46.444	3	4 000	4.909	1.00 2	6.13
ATO	M	1952	0	нон	31			3	4.000 -	14.485	1.00 3	0.70
ATC	M	1953	ō	нон	32		42.905		2.704	-2.761	1.00 2	1.06
ATC	•	1954	ō				45.201	3(6.882 -	11.552	1.00 2	3.24
ATO		1955	Ö	HOH	33		25.649	19	9.886	8.886	1.00 28	3.23
ATO		1956		нон	34		26.045		0.696	12.207	1.00 20	5.17
ATO		1957	0	НОН	35		32.469	36	5.471	23.268	1.00 30).94
			0	нон	36		45.943	28		19.548	1.00 23	R 84
ATO		1958	0	нон	37		43.494	30		16.264	1.00 19	57
ATO		1959	0	HOH	38		40.052	27		21.059	1.00 19	06
ATO		1960	0	НОН	39		30.163	11			1.00 15	. 30
ATO		1961	0	нон	40		22.655			-5.817	1.00 23	.16
ATO	M 1	1962	0	нон	41		47.443			-1.019	1.00 25	.88
ATO		1963	ō	нон	42			23	.123 -	-1.056	1.00 26	.06
ATO		964	ŏ	нон	43		43.351	38	.717 -1		1.00 31	.36
ATON		965	Ö	нон			47.439		.148	9.534	1.00 23	. 85
ATON		966	ŏ		44		39.265	8		3.837	1.00 24	. 72
ATOM	_	967		HOH	45		29.442	47	.107 1	13.465	1.00 28	. 59
01		507	0	нон	46		49.276	48			1.00 23	. 41
							•			· 		

(~.TO	M 1'9	68	о но	H 47	36.013 33.810 24.513 1 00 26 17
ATO:		69	О НО		200 20,1/
ATO:	M 19	70	О НО		
ATO	M . 19	71	О но		
ATO		72	О но	H 51	31.955 12.217 13.710 1.00 26.51 45.068 55.619 1.338 1.00 27.50
ATO		73	O HO	H 52	43.052 19.153 9.777 1.00 23.61
ATO			O HO	H 53	45.777 32.997 -12.641 1.00 28.74
ATO			O HO	H 54	28.793 15.549 -7.585 1.00 26.71
ATON	•		O HO		49.821 42.639 -12.216 1.00 30.32
ATON			O HOR		21.473 35.733 -4.098 1.00 21.73
ATOM			O HOR		42.925 18.920016 1.00 30 56
ATOM			HOH O		28.680098 15.206 1.00 24 41
ATOM			O HOR		30.575 22.738 24.395 1.00 28.00
ATOM ATOM			о нон		17.766 10.990 3.488 1.00 31.85
ATOM			о нон		49.649 49.378 -5.610 1.00 38.05
ATOM			нон С	_	47.518 52.219 -2.812 1.00 26.66
ATOM			нон С	-	41.787 11.851 9.383 1.00 31.75.
ATOM			нон нон С		19.342 13.836 4.361 1.00 26.81
ATOM					28.428 11.606 12.742 1.00 32.86
ATOM			нон Нон		26.186 41.935 .560 1.00 29.32
ATOM					29.916 3.091 12.731 1.00 35.96
ATOM	199				32.525 39.422 -19.919 1.00 28.79
ATOM	199	_			23.391 12.991 -5.165 1.00 27.70
ATOM	199			70	37.988 45.231 8.061 1.00 31.23
ATOM	199	_		72	51.112 27.635 -9.569 1.00 27.13 44.253 30.674 -13.637 1.00 26.49
ATOM	199	_		73	
ATOM	199	5 0		74	
ATOM	199	6 0		75	
ATOM	199	7 0	нон	76	21.00 27.00
MOTA	1998	в о	НОН	77	20.70
	, 1999	9 0	HOH	78	46.502 22.169 -3.457 1.00 30.26 53.219 46.329 -17.171 1.00 28.75
ATOM	2000		HOH	79	26.474 24.441 -5.560 1.00 27.23
ATOM	2001	L O	HOH	80	21.166 23.641 -4.948 1.00 35.36
ATOM	2002		HOH	81	46.816 32.597 16.414 1.00 35.59
ATOM	2003		нон	82	29.879 14.101 14.638 1.00 31.68
ATOM	2004		HOH	83	21.692 33.500 2.984 1.00 30.16
ATOM	2005		HOH	84 ·	29.295 27.121 22.187 1.00 25 57
ATOM	2006		HOH	85	28.731 12.779 -8.089 1.00 38.33
ATOM ATOM	2007	_	НОН	86	27.280 16.834 -9.400 1.00 46.09
ATOM	2008		нон	87	26.071 25.682 -7.687 1.00 35.23
ATOM	2009 2010		HOH	88	31.705 45.557 4.386 1.00 36.53
ATOM	2010		HOH	89	42.737 27.677 -16.494 1.00 43.50
ATOM	2012	0	нон Нон	90	35.195 13.995 13.837 1.00 34.72
ATOM	2013	ő	НОН	91 92	49.946 45.582 -18.866 1.00 29.05
ATOM	2014	ō	нон	93	49.674 15.137 4.173 1.00 42.43
MOTA	2015	ō	нон	94	24.992 40.863 2.394 1.00 29.44 35.938 29.931 22.590 1.00 33.47
ATOM	2016	ō	НОН	95.	
MOTA	2017	O	НОН	96	4.00 50.04
ATOM	2018	0	НОН	97	
ATOM	2019	0	нон	98	2,00 2,100
MOTA	2020	0	нон	99	1050 1.00 57.09
ATOM	2021	0	HOH	100	46 500 00 000
ATOM	2022	0	HOH	101	46.589 20.057 12.718 1.00 35.82 40.404 18.582 19.335 1.00 37.38
ATOM	2023	0	нон	102	36.397 37.290 23.171 1.00 38.30
MOTA	2024	0	нон	103	45.419 35.806 6.232 1.00 39.97
ATOM	2025	Ο.	HOH	104	39.400 18.431 15.599 1.00 28.80
MOTA	2026	0	HOH	105	32.747 22.249 25.771 1.00 35.21
MOTA	2027	.0	НОН	106	31.993 43.225 -12.811 1 00 31 67
MOTA	2028	0	НОН	107	36.965 41.556 8.934 1.00 34.98.
MOTA	2029	0	нон	108	28.311 37.534 18.638 1.00 41.87
MOTA MOTA	2030	0	НОН	109	43.152 40.996 -17.014 1.00 34.31
ATOM ATOM	2031	0	НОН	110	36.900 23.769 24.433 1.00 36.25
ATOM MOTA	2032 2033	0	HOH	111	22.163 15.646 14.398 1.00 36.85
TOM	2033	0	HOH	112	35.492 21.090 24.155 1.00 42.67
	2035	0	HOH	113	48.632 28.953 2.985 1.00 31.18
	~000	Ų	нон	114	39.959 28.401 -13.559 1.00 38.45

	(
))Th=	DM 2	036	о н	OH 115	20 011 44 010
	ATO		037		OH 116	32.211 44.343 12.977 1.00 35.11 57.018 43.358 -20 359 1.00 34.00
	ATC		038		OH 117	12 222
	ATC	M 2	039		OH 118	10 11 11 11 11 11 11 11 11 11 11 11 11 1
	ATC		040		OH 119	
	ATO	M 2	041	О но		1,00 40,00
	ATO		042	О но		0.132 1.00 31.10
	ATO	M · 2	043	О но		2.00 00,70
	ATO	M 20	044	О НО		40 000 02,02
	ATO		045	О НО		= 100 00,20
	ATO		146	О НО		10 10 10 10 10 10
	ATO)47	О НО	_	
	ATO		148	О НО		44.652 33.989 15.169 1.00 36.16
	ATO		149	О но		38.229 48.920 9.835 1.00 47.09
	ATO			О но		44.947 18.550 19.997 1.00 36.95
	ATON			О НО		19.249 33.307 -4.291 1.00 35.52
	ATO			О НО		20.932 42.677 5.492 1.00 38.75
	ATON			O HO		32.240 5.674 -7.678 1.00 42.41
	ATON			O HO	_	25.079 5.184 2.319 1.00 43.83
	ATOM			O HO		47.452 34.447 -8.833 1.00 33.02
	ATOM					31.823 25.421 -14.083 1.00 43.26
	ATOM			0 ноі 10н о		21.662 1.721 13.249 1.00 37.77
	ATOM			O HOM		43.284 20.715 -10.461 1.00 32.13
	ATOM					23.845 9.069 -4.875 1.00 37.96
	ATOM				_	42.205 23.336 -17.516 1.00 39 25
	ATOM					23.782 47.257 8.875 1.00 36 18
	ATOM			нон О нон		40.071 29.109 18.652 1.00 36.37
	ATOM				_	50.037 23.125 9.649 1.00 45.98
	ATOM		54 . 0		-	19.583 34.873 10.411 1.00 47.78
	ATOM	206				43.464 17.607 18.095 1.00 47.57
	ATOM	206				25.361 15.356 16.333 1.00 41.25
	ATOM	20.6	_			28.757 38.927 -17.342 1.00 34.49
	ATOM	206			-	23.938 -1.305 12.858 1.00 51.98
	ATOM	206				33.517 18.774 -13.399 1.00 46.54
	ATOM	207	_		148	49.091 33.188 18.209 1.00 46.77
	ATOM	207	-		149	50.357 27.234902 1.00 40.05
	ATOM	207			150	25.608 6.521 -2.912 1.00 43.02
	ATOM		3.0		151	38.264 4.869 -2.160 1.00 38.27
	ATOM	207			152	62.716 38.725 -15.633 1.00 47 64
	ATOM	207.		нон Нон	153	47.852 13.446 6.230 1.00 45.10
	ATOM	207		НОН	154	30.371 42.873 -21.841 1.00 49.83
	ATOM	207		НОН	155	25.807 26.178 -10.206 1.00 41.92
	ATOM	2078	-	НОН	156	20.377 17.443 -2.962 1.00 37.23
	MOTA	2079	_	нон	157 158	26.310 19.158 -9.197 1.00 40.75
	ATOM	2080		нон	159	44.764 43.862 -15.074 1.00 46.84
	ATOM	2081		нон	160	38.089 28.511 23.290 1.00 52.16
	ATOM	2082		НОН	161	39.671 34.256 14.970 1.00 52.34
	ATOM	2083		нон	162	20.912 34.446 6.722 1.00 51.80
	ATOM	2084	_	нон	163	47.355 17.692 16.464 1.00 44.35
	ATOM	2085		нон	164	40.877 24.164 -19.590 1.00 50.62 22.739 41.807 2.902 1.00 45.77
	ATOM	2086		нон	165	=
	ATOM	2087		нон	166	2.00 10.71
	ATOM	2088		нон	167	44.688 45.877 11.462 1.00 49.75
	ATOM	2089	ō	нон	168	65.941 38.623 -21.101 1.00 41.18
	ATOM	2090	ō	нон	169	20.892 37.818 3.324 1.00 36.26 23.791 54.770960 1.00 47.88
	ATOM	2091	. o	нон	170	2,00 47,00
	ATOM	.2092	ō	нон	171	37.603 28.849 -15.685 1.00 40.98 45.555 18.839 687 1.00 36.06
	ATOM	2093	ō	НОН		1.00 38.06
	ATOM	2094	ō	нон	172 173	35.456 41.167 -13.948 1.00 25.05
	ATOM	2095	ŏ	нон	174	31.200 38.910 -25.308 1.00 37.28
	ATOM	2096	ō	нон	175	21.554 13.921 10.766 1.00 36.99
	ATOM	2097	ō	нон	176	46.026 26.992 -15.385 1.00 39.58
	MOTA	2098	Ö.	нон	177	37.903 17.801 18.592 1.00 48.95
	MOTA	2099	o.	нон	178	43.747 13.395 8.035 1.00 39.48
	ATOM	2100	ō	нон	179	34.071 38.400 19.794 1.00 35.56
	ATOM	2101	ō	нон	180	43.250 39.476 13.165 1.00 37.82
	ATOM.	2102	ŏ	нон	181	41.483 7.783 2.019 1.00 45.02
	ATOM	2103	ō	нон	182	65.389 34.398 -23.115 1.00 42.44
			٠,		-02	33.931 41.093 14.772 1.00 41.75
			•			

<u> </u>								
-ATOM	2104	Ö	нон	183	20.39	4 26.531	-2.994	1.00 45.01
ATOM	2105	õ	нон	184	46.28			1.00 41.10
ATOM	2106	ő	нон	185	47.03			1.00 36.98
	2107		нон	186	49.95			1.00 30.98
MOTA				187				1.00 45.06
ATOM	2108	0	HOH		25.12			
ATOM	2109	0	нон	188	45.66			1.00 47.03
ATOM	2110	0	нон	189	53.06			1.00 44.55
MOTA	2111	0	HOH	190	21.90			1.00 45.52
MOTA	2112	0	нон	191	47.48			1.00 38.47
ATOM	2113	0	HOH	192	23.37		-12.261	1.00 36.78
ATOM	2114	0	HOH	193	32.82			1.00 31.69
MOTA	2115	0	HOH	194	21.77	6 33.149		1.00 43.71
MOTA	2116	0	HOH	195	25.94			1.00 41.21
ATOM	2117	0	HOH	196	37.45	7 24.842	-16.507	1.00 48.71
ATOM	2118	0	HOH	197	25.65	5 4.669	498	1.00 41.01
ATOM	.2119	0	HOH	198	34.99	3 41.490	-16.488	1.00 42.97
ATOM	2120	0	нон	199	51.57	2 32.788	-1.315	1.00 41.87
ATOM	2121	0	нон	200	34.14	7. 30.225	-17.326	1.00 37.43
ATOM	2122	0	нон	201	55.13		-21.602	1.00 41.06
MOTA	2123	0	нон	202	25.75			1.00 44.53
ATOM	2124	Ö	нон	203	37.54			1.00 38.07
ATOM	2125	ō	нон	204	16.64			1.00 42.39
ATOM	2126	ŏ	нон	205	49.73			1.00 43.85
ATOM	2127	ŏ	нон	206	46.25			1.00 42.68
ATOM	2128	ŏ	нон	207	. 37.67			1.00 45.70
	2129	ő	нон	208	23.63			1.00 40.00
ATOM					54.77			1.00 45.43
ATOM	2130	0	нон	209				1.00 43.43
ATOM	2131	0	нон	210	27.20		-13.388	
ATOM	2132	0	НОН	211	16.99			1.00 42.78
ATOM	2133	0	нон	212	44.57			1.00 45.11
ATOM	2134	0	нон	. 213	34.45		-18.339	1.00 40.15
MOTA	2135	0	нон	214	48.99			1.00 48.30
ATOM	2136	0	нон	215	47.16			1.00 40.03
ATOM	2137	0	нон	216	24.47			1.00 44.85
ATOM	2138	0	HOH	217	40.57	0 31.936	15.567	1.00 39.55
ATOM	2139	0	нон	218	47.67			1.00 46.30
MOTA	2140	0	нон	219	49.46	7 32.411	20.725	1.00 49.57
ATOM:	2141	0	HOH	220	40.56	4 48.980		1.00 38.53
MOTA	2142	. 0	HOH	221	51.81	7 27.969		1.00 45.36
MOTA	2143	0	HOH	222	45.30	3 19.657	10.595	1.00 50.38
ATOM	2144	0	нон	223	37.51	4 51.784	9.970	1.00 45.01
ATOM	2145	0	HOH	224	23.69	1 17.281	-6.725	1.00 34.27
ATOM	2146	0	HOH	225	39.83	2 6.213	004	1.00 43.18
MOTA	2147	0	нон	226	14.43	5 31.992	6.539	1.00 40.54
ATOM	2148	0	HOH	227	28.44	0 3.081	375	1.00 40.66
ATOM	2149	0	нон	228	32.18	5 1.604	032	1.00 39.88
ATOM	2150	Q	нон	229	31.50	4 47.620	2.802	1.00 38.71
ATOM	2151	0	нон	230	43.33	9 48.665	-10.895	1.00 40.50
ATOM	2152	0	нон	231	48.99			1.00 40.18
ATOM	2153	Ö	нон .		50.31		-10.063	1.00 38.69
ATOM	2154	ō	нон	233	45.88		-12.873	1.00 42.42
ATOM	2155	ō	нон	234	21.17			1.00 42.66
ATOM	2156	ō	нон	235	19.30		10.198	1.00 38.58
ATOM	2157	ō	нон	236	35.31		11.114	1.00 38.88
ATOM	2158	ō	нон	237	48.54		6.735	1.00 41.80
ATOM	2159		нон	238	37.97		6.733	1.00 39.07
ATOM	2160	Ö	нон	239	32.68		24.608	1.00 39.11
ATOM	2161	ŏ	нон	240	36.47		18.321	1.00 41.71.
ATOM	2162	ŏ	нон	241	25.50			1.00 35.13
ATOM	2163	0	нон	241	23.30		-15.172	1.00 33.13
				242			5.783	1.00 39.82
ATOM	2164	0	нон нон	243	49.14 29.53		-16.268	1.00 39.77
ATOM	2165	0					5.926	1.00 35.74
ATOM	2166	0	нон нон .	245	26.50		8.651	1.00 33.74
MOTA	2167	0		246	24.88			1.00.37.78
ATOM	2168	0	HOH	247	33.17		6.460	
ATOM	2169	C1	EDO	.1	49.67		17.913	1.00 32.33
ATOM	2170	01	EDO	1	48.32		18.334	1.00 32.24
MOTA	2171	C2	EDO	1	49.85	9 29.331	17.617	1.00 33.08

(_		_					
•	MOTa	2172	02	EDO	1	49.776	29.707		1.00 33.95	
	MOTA	2173	C1	EDO	2	35.821		-12.559	1.00 27.36	
	ATOM	2174	01	EDO	2	35.083	24.825	-12.633	1.00 26.99	
	ATOM	2175	C2	EDO	2	37.288	25.766	-12.507	1.00 27.04	• .
	MOTA	2176	02	EDO	2	37.823	25.421	-11.188	1.00 26.81	
	ATOM	2177	Cl	EDO	3	32.109	4.707	-1.196	1.00 32.05	
	ATOM	2178	01	EDO	3	30.999	3.924	720	1.00 34.90	
	ATOM	2179	C2	EDO	3	32.483	5.724	166	1.00 30.33	
	ATOM	2180	02		. 3	. 33.342	5.246	.915	1.00 32.01	
	ATOM	2181	C1	EDO	. 4	20.413	30.402	-8.539	1.00 38.13	
				EDO	4	20.413	29.723	-7.292	1.00 38.27	
	ATOM	2182	01							
	ATOM	2183	C2	EDO	4	20.600	31.879	-8.368	1.00 38.37	
	MOTA	2184	02	EDO	4	20.800	32.350	-6.995	1.00 38.66	
	ATOM	2185	C1	EDO	5	21.662	24.418	7.348	1.00 35.45	
	ATOM	2186	01	EDO	5		. 24.437	7.797	1.00 36.25	
	ATOM	2187	C2	EDO	5	21.624	24.463	5.852	1.00 35.50	
	MOTA	2188	02	EDO	5	21.767	25.789	5.249	1.00 36.44	
	ATOM	2189	MG+2	MG2	1 ·	43.852	18.841	2.109	1.00 27.78	
	ATOM	2190	CL-1	CL1	1	24.304	20.875	1.803	1.00 17.97	
	ATOM	2191	N	MSE	158	35.110	34.014	5.907	.44 10.21	AC2
	MOTA	2192	CA	MSE	158	34.354	34.920	5.054	.44 11.98	AC2
	ATOM	2193	СВ	MSE	158	35.299	35.639	4.091	.44 15.25	AC2
	ATOM	2194	CG	MSE	158	34.663	36.759	3.292	.44 19.01	AC2
	ATOM	2195	SE	MSE	158	35.246	38.493	3.909	.44 26.38	AC2
	ATOM	2196	CE	MSE	158	37.144	38.257	3.682	.44 20.56	AC2
						33.395	34.019	4.277	.44 11.27	AC2
	ATOM	2197	C	MSE	158				.44 11.23	
	ATOM	2198	0	MSE	158	33.821	33.037	3.669		AC2
	ATOM	2199	N	SER	208	39.368	41.606	.024	.50 5.19	AC2
	MOTA	2200	CA	SER	208	40.803	41.859	.059	.50 6.96	AC2
	ATOM	2201	CB	SER	208	41.287	42.307	-1.316	.50 6.77	AC2
	ATOM	2202	OG	SER	208	41.093	41.278	-2.266	.50 12.86	AC2
	ATOM	2203	С	SER	208	41.172	42.904	1.102	.50 5.34	AC2
	MOTA	2204	0	SER	208,	42.168	42.759	1.808	.50 2.94	AC2
	ATOM	2205	N	ILE	220 .	34.627	31.400	1.641	.50 1.35	AC2
	ATOM	2206	CA	ILE	220	33.627	30.506	1.061	.50 1.35	AC2
	MOTA	2207	CB	ILE	220	32.618	30.008	2.134	.50 1.35	AC2
	MOTA	2208	CG2	ILE	220	31.422	29.326	1.458	.50 1.35	AC2
		2209	CG1		220	33.312	29.085	3.141	.50 1.97	AC2
	ATOM	2210		ILE	220	33.863	27.818	2.556	.50 8.09	AC2
	ATOM	2211	C.	ILE	220	32.807	31.257	.020	.50 1.35	AC2
	ATOM	2212	Ö	ILE	220	32.421	32.406	.246	.50 1.35	AC2
	ATOM	2213	N	MSE	326	33.175	8.443	2.911	.39 17.50	AC2
		2214		MSE		31.818	8.709	3.360	.39 17.68	AC2
	ATOM		CA		326			3.748	.39 21.36	AC2
	ATOM	2215	СВ	MSE	326	31.105	.7.414		.39 24.62	
	ATOM	2216	CG	MSE	326	30.708	6.543	2.581		AC2
	ATOM	2217	SE	MSE	326	29.821	4.948	3.175	.39 34.10.	AC2
	ATOM	2218	CE	MSE	326	27.998	5.567	3.081	.39 30.04	AC2
	MOTA	2219	С	MSE	326	31.873	9.621	4.568	.39 16.52	AC2
		2220	Ο.	MSE	326	32.839	9.602	5.331	.39 17.10	AC2
		2221	CB.	PRO	1519	23.711	50.412	.520	.50 37.35	AC2
	ATOM	2222	CG	PRO	1519	24.961	50.755	261	.50 38.95	AC2
	MOTA	2223	С	PRO	1519	24.595	49.927	2.807	.50 36.73	AC2
	MOTA	2224	0	PRO	1519	25.750	49.985	3.197	.50 37.75	AC2
		2225	N	PRO	1519	25.010	52.092	1.661	.50 38.05	AC2
		2226	CD	PRO	1519	25.361	52.159	.229	50 38.46	AC2
		2227	CA	PRO	1519	24.029	50.997	1.887	.50 37.02	AC2
	END						-		•	
										1

Table 2 Crystallographic data on the BRC4-RAD51 complex.

Diffraction data (space group: P2₁2₁2₁: a=57.30Å, b=59.14Å, c=77.20Å)

Dataset	Resolution	Wavelength	Reflections ¹	Completeness	R _{sym} ²	l/σ(l)	Beamline
	 		(unique)	(outer shell)	(outer shell)		1
Native .	1.8Å	1.5418Å	169388	99.9 (99.1)	0.051 (0.308)	40.9	In-house
KA/OND		<u> </u>	(24702)			(6.7)	
KAu(CN)₂	2.0Å	1.5418Å	179758	100.0 (100.0)	0.059 (0.194)	36.6	In-house
			(18077)			(11.9)	
SeMet, peak	1.7Å	0.9792A	204230	99.9 (99.9)	0.077 (0.321)	23.5	ESRF, ID-
·			(29143)			(6.5)	29
SeMet, remote	1.7Å	0.90831Å	207259	99.9 (99.6)	0.070 (0.481)	24.7	ESRF, ID-
		L	(29329)			(4.2)	29

Phasing

	KAu(CN)₂	SeMet, peak	SeMet, remote		
Rcullis (iso/ano) ³	0.93 / 0.95	-, 0.70	0.84 / 0.84		
Phasing power (iso/ano) ⁴	0.72 / 0.74	-, 2.1	0.48 / 1.65		
Figure of merit ⁵	0.21	. 0.	.51		

Refinement⁶

Resolution (Å)	Reflections	Number of non-H atoms	R ⁷ (%)	R _{free}	 (A²)	Rmsd bonds	Rmsd angles
24.8-1.7	55746	2179	19.1	20.6	21.1	0.006	1.229

¹ For MAD data, the Bijvoet pairs were not merged.

$$^{7} \text{ R-factor} = \sum_{\mathit{hkl}} \left\| F_{\mathit{obs}} \right| - \left| F_{\mathit{calc}} \right\| / \sum_{\mathit{hkl}} \left| F_{\mathit{obs}} \right|.$$

 $^{^{2} \, \}mathrm{R}_{\mathrm{sym}} = \sum_{hkl} \, \sum_{i} \left| I_{i}(hkl) - \left\langle I_{i}(hkl) \right\rangle \right| / \sum_{hkl} \, \sum_{i} \, I_{i}(hkl)$ $^{3} \, \mathrm{R}_{\mathrm{cullis}} \, \mathrm{as} \, \mathrm{defined} \, \mathrm{in} \, \mathrm{SHARP}.$

⁴ Phasing power as defined in SHARP.

⁵ Figure of merit as defined in SHARP.

⁶ Statistics for all data.

FIGURE 3

Table 3 Structure-based analysis of BRCA2 BRC sequence conservation.

	J			٠. م1	β	β	_	7				3	3_	β				_0	. (χ.	α	α	α	α	0	ι			_		
-	Б	<u>-</u> -		G	F	_		_		S. C	ľ	()	<u> </u>	V	K	1	Α	F		Ξ :	s	L	D	K	٧	'n	N	L	F	D	Ë
	E	-	1			1		2	2 3		1	_						8		•			6	2	2		1	2	1	8	17
	[1	•	1		1			1	1	. J	3			2				12				3	4	1	1	4			7	28
	₹		4	•	1	8			1			9 2 2			2				2			1	8	44		27	12	2	1	9	1
ŀ	4				•	6			6	•	J	4			4	2	1	2					4	1		11	1	1		6	1
ı	1 3	3 .	1	1					1	7		7	1		4			3	•				5		1						
C	2			•	1	8	1	•	•	•	3			7	•			2 5	1	6)		5	1	2	1	.11			5	
S		3 7	' 1	2	1	17	7	2	33	8	-	_ _ _3	_	1		_	39	2		2		_	<u>8</u> 4	2	4.4		8				4_
7	1	2	_		:	2	45	1	1	1	5		8				5	2	3	3				2	11		3			14	
G	1		52					2		37	1						2	_	1	Ŭ			•		3	1	6	1		3	1
A P	1 -		7	•			1	46				5					4		8	15	;	;	3		19	1	1			1	
C	<u> </u>				_			1				1		1												•	•				1
ı	3	4	5	2	3				2				1	- 7								1	ī		_	2				_	-
Ĺ	8	16			J		1 1		^				16		12					2	8			;	3			6 2	2		1
v	2	1	4				,	1	3 1			2		_	7		1			1	38		}			1	1	71	7		
М	-	Ī	•					1	1		1.	•	23	2	33			1			4	1		1	4	7	•	7	2	2 .	1
F	14		3	50									1	1	4	4	7					_			,	4		3			
W													'	•	1					1	4	2						3 3	5 ·		
Y	3	•		2	7																4					•	. 6	3			
						_				-			—								<u>_</u> _						<u> </u>	_	_		

Consensus:

GFXTASGKOIXISOOSLXKAKXIFOD S S S A VR aL E N S

a

d

KADSI	H. sapiens	85-G F T T A T E-91
Ti	C. griseus	85-G F T T A T E-91
1N	X. laevis	82-G F T T A T E-88
	D. melanogaster	82-G F L S A R T-88
	S. cerevisiae	143-G F V T A A D-149
	H. sapiens	85-G F L T A F E-91
	P. furiosus	95-T F M R A D E-102
	E. coli	25-S I M R L G E-31
BRCA2	BRC4 H. sapiens	1523-G F H T A S G-1529

