UNIVERZITET U BEOGRADU - ELEKTROTEHNIČKI FAKULTET MULTIPROCESORKI SISTEMI (13S114MUPS, 13E114MUPS)

DOMAĆI ZADATAK 2 - MPI

Izveštaj o urađenom domaćem zadatku

Predmetni saradnici: Studenti:

doc. dr Marko Mišić Lazar Erić 2019/0235

dipl. ing. Pavle Divović Aleksa Račić 2019/0235

Beograd, decembar 2022.

SADRŽAJ

SA	ADRZAJ		2
1.	PR∩	BLEM 1 - PRIME	
1.			
	1.1. 1.2.	TEKST PROBLEMA	
	1.2. 1.2.1.		
	1.2.1.		
	1.3.	REZULTATI	
	1.3.1.		
	1.3.2.		
	1.3.3.		
2.		BLEM 2 - FEYMAN	
۷.			
	2.1.	TEKST PROBLEMA	
	2.2.	DELOVI KOJE TREBA PARALELIZOVATI	
	2.2.1.	J	
		. Način paralelizacije	
	2.3.	REZULTATI	
	2.3.1.		
	2.3.2.	- ·y · · · · · · · · · · · · · · · · · ·	
	2.3.3.	. Diskusija dobijenih rezultata	12
3.	PRO	BLEM 3 - MOLDYN	13
	3.1.	TEKST PROBLEMA	13
	3.2.	DELOVI KOJE TREBA PARALELIZOVATI	
	3.2.1.		
	3.2.2.		
	3.3.	REZULTATI	
	3.3.1.	. Logovi izvršavanja	14
	3.3.2.		
	3.3.3.	. Diskusija dobijenih rezultata	16
4.	PRO	BLEM 4 - MOLDYN	17
	4.1.	TEKST PROBLEMA	17
	4.2.	DELOVI KOJE TREBA PARALELIZOVATI	
	4.2.1.		
	4.2.2.		
	4.3.	REZULTATI	
	4.3.1.		
	4.3.2.		
	4.3.3.	J	

1.PROBLEM 1 - PRIME

1.1. Tekst problema

Paralelizovati program koji vrši određivanje ukupnog broja prostih brojeva u zadatom opsegu. Prilikom zadavanja izvršne konfiguracije jezgra, koristiti 1D rešetku (grid). Obratiti pažnju na efikasnost paralelizacije i potrebu za redukcijom. Program se nalazi u datoteci prime.c u arhivi koja je priložena uz ovaj dokument. Program testirati sa parametrima koji su dati u datoteci run.

1.2. Delovi koje treba paralelizovati

1.2.1. Diskusija

U okviru ovog zadatka mozemo uociti vise funkcija od kojih je nama od najveceg interesa prime_number. U ostalim funkcijama i main-u ne postoji delova koda koji bi mogli da budu paralelizovani ili smesteni u task-ove.

1.2.2. Način paralelizacije

Iako imamo 2 for petlje, rezultat prve zavisi od druge tako da jedan thread mora da izvrsi unutrasnju petlju kako bi nasao da li je broj prost. Da bi se maksimalno iskoristio uredjaj, broj blokova unutar grida je takav da BlockSize * GridSize bude jednak broju iteracija.

1.3. Rezultati

U okviru ove sekcije su izloženi rezultati paralelizacije problema 1.

1.3.1. Logovi izvršavanja

Ovde su dati logovi izvršavanja za definisane test primere i različit broj niti. Obavezno uključiti u ispis i vremena izvršavanja. Logove pojedinačno uokviriti i obeležiti.

19 January 2023 12:37:42 AM

PRIME TEST

Call PRIME_NUMBER to count the primes from 1 to N.

N Pi Time

1	0	0.063463
2	1	0.000106
4	2	0.000123
8	4	0.000104
16	6	0.000102
32	11	0.000103
64	18	0.000107
128	31	0.000141
256	54	0.000132
512	97	0.000164
1024	172	0.000247
2048	309	0.000389
4096	564	0.000698
8192	1028	0.001347
16384	1900	0.002614
32768	3512	0.005837
65536	6542	0.016828
131072	12251	0.056249

PRIME_TEST

Normal end of execution.

19 January 2023 12:37:42 AM

19 January 2023 12:37:42 AM

PRIME TEST

Call PRIME_NUMBER to count the primes from 1 to N.

N	Pi	Time
5	3	0.053804
50	15	0.000089
500	95	0.000142
5000	669	0.000802
50000	5133	0.010586
500000	41538	0.668534

PRIME_TEST

Normal end of execution.

19 January 2023 12:37:43 AM

19 January 2023 12:37:43 AM

PRIME TEST

Call PRIME_NUMBER to count the primes from 1 to N.

N	Pi	Time
1	0	0.044637
4	2	0.000082
16	6	0.000086
64	18	0.000093
256	54	0.000108
1024	172	0.000197
4096	564	0.000622
16384	1900	0.002336
65536	6542	0.015649

PRIME_TEST

Normal end of execution.

19 January 2023 12:37:43 AM

19 January 2023 12:37:43 AM

PRIME TEST

Call PRIME_NUMBER to count the primes from 1 to N.

N	Pi	Time
1	0	0.000001
2	1	0.000000
4	2	0.000000
8	4	0.000000
16	6	0.00000

32	11	0.000001
64	18	0.000001
128	31	0.000003
256	54	0.000009
512	97	0.000032
1024	172	0.000113
2048	309	0.000403
4096	564	0.001480
8192	1028	0.005144
16384	1900	0.018555
32768	3512	0.068269
65536	6542	0.256072
131072	12251	0.957547

PRIME_TEST

Normal end of execution.

19 January 2023 12:37:45 AM

19 January 2023 12:37:45 AM

PRIME TEST

Call PRIME_NUMBER to count the primes from 1 to N.

N	Pi	Time
5	3	0.000000
50	15	0.000000
500	95	0.000029
5000	669	0.002024
50000	5133	0.152914
500000	41538	12.550401

PRIME_TEST

Normal end of execution.

19 January 2023 12:37:57 AM

19 January 2023 12:37:57 AM

Call PRIME_	NUMBER to c	ount the primes i	from 1 to N	
N	Pi	Time		
1	0	0.000001		
4	2	0.00000		
16	6	0.000001		
64	18	0.000001		
256	54	0.000009		
1024	172	0.000109		
4096	564	0.001402		
16384	1900	0.018864		
65536	6542	0.261888		
RIME TEST				
_				
Normal end	of execution	n.		

Listing 1. Paralelno neoptimizovano i optimizovano izvršavanje programa

U okviru ove sekcije su dati grafici ubrzanja u odnosu na sekvencijalnu implementaciju.

Slika 1. Grafik zavisnosti ubrzanja programa programa: run 1 -./prime 1 131072 2, run 2 - ./prime 5 500000 10, run 3 - ./prime 1 65536 4

1.3.3. Diskusija dobijenih rezultata

Sa grafika mozemo uociti da sto je veci paralelni deo to je ubrzanje vece.

2. PROBLEM 2 - FEYMAN

2.1. Tekst problema

1. Paralelizovati program koji vrši izračunavanje 3D Poasonove jednačine korišćenjem Feyman-Kac algoritma. Algoritam stohastički računa rešenje parcijalne diferencijalne jednačine krenuvši N puta iz različitih tačaka domena. Tačke se kreću po nasumičnim putanjama i prilikom izlaska iz granica domena kretanje se zaustavlja računajući dužinu puta do izlaska. Proces se ponavlja za svih N tačaka i konačno aproksimira rešenje jednačine. Program se nalazi u datoteci feyman.c u arhivi koja je priložena uz ovaj dokument. Program testirati sa parametrima koji su dati u datoteci run.

2.2. Delovi koje treba paralelizovati

2.2.1. Diskusija

U okviru ovog problema vidimo veci broj funkcija, ali one su sve pomocne koje nam sluze da izvrsimo neke jednostavne matematicke operacije. Zato se one izvrsavaju sekvencijalno, a najveci fokus je na main-u gde ima vise ugnjezndenih for pelji.

2.2.2. Način paralelizacije

Postoje 4 for petlje. Svaka torka vrednosti 3 vanjske petlje predstavlja jednu koordinatu bloka unutar grida. Tok je jedan Blok zaduzen za obradu N trialsa.

2.3. Rezultati

U okviru ove sekcije su izloženi rezultati paralelizacije problema 2

2.3.1. Logovi izvršavanja

Ovde su dati logovi izvršavanja za definisane test primere i različit broj niti. Obavezno uključiti u ispis i vremena izvršavanja. Logove pojedinačno uokviriti i obeležiti.

```
-----optimized-----
```

19 January 2023 12:34:23 AM

A = 3.000000

B = 2.000000

C = 1.000000

N = 1000

H = 0.0010

19 January 2023 12:34:24 AM A = 3.000000B = 2.000000C = 1.000000N = 5000H = 0.0010RMS absolute error in solution = 2.076798e-02 19 January 2023 12:34:28 AM 19 January 2023 12:34:28 AM A = 3.000000B = 2.000000C = 1.000000N = 10000H = 0.0010RMS absolute error in solution = 2.096349e-02 19 January 2023 12:34:36 AM 19 January 2023 12:34:36 AM A = 3.000000B = 2.000000C = 1.000000N = 20000H = 0.0010RMS absolute error in solution = 2.108210e-02 19 January 2023 12:34:52 AM 19 January 2023 12:34:52 AM A = 3.000000B = 2.000000C = 1.000000N = 1000

RMS absolute error in solution = 2.731885e-02

19 January 2023 12:34:24 AM

```
H = 0.0010
RMS absolute error in solution = 2.171700e-02
19 January 2023 12:34:55 AM
19 January 2023 12:34:55 AM
A = 3.000000
B = 2.000000
C = 1.000000
N = 5000
H = 0.0010
RMS absolute error in solution = 2.127277e-02
19 January 2023 12:35:10 AM
19 January 2023 12:35:10 AM
A = 3.000000
B = 2.000000
C = 1.000000
N = 10000
H = 0.0010
RMS absolute error in solution = 2.109998e-02
19 January 2023 12:35:41 AM
19 January 2023 12:35:41 AM
A = 3.000000
B = 2.000000
C = 1.000000
N = 20000
H = 0.0010
RMS absolute error in solution = 2.102653e-02
19 January 2023 12:36:41 AM
```

Listing 2. Paralelno neoptimizovano i optimizovano izvršavanje programa

U okviru ove sekcije su dati grafici ubrzanja u odnosu na sekvencijalnu implementaciju.

Slika 2. Grafik ubrzanja

2.3.3. Diskusija dobijenih rezultata

Sa grafika mozemo videti da kako se povecava paralelni deo workloada tako se povecava ubrzanje programa. Preko 50 posto izvrsavanja ide na upis

3. PROBLEM 3 - MOLDYN

3.1. Tekst problema

Paralelizovati jednostavan program koji se bavi molekularnom dinamikom. Kod predstavlja simulaciju molekularne dinamike argonovog atoma u ograničenom prozoru (prostoru) sa periodičnim graničnim uslovima. Atomi se inicijalno nalaze raspoređeni u pravilnu mrežu, a zatim se tokom simulacije dešavaju interakcije između njih. U svakom koraku simulacije u glavnoj petlji se dešava sledeće:

- Čestice (atomi) se pomeraju zavisno od njihovih brzina i brzine se parcijalno ažuriraju u pozivu funkcije domove.
- Sile koje se primenjuju na nove pozicije čestica se izračunavaju; takođe, akumuliraju se prosečna kinetička energija (virial) i potencijalna energija u pozivu funkcije forces.
- Sile se skaliraju, završava ažuriranje brzine i izračunavanje kinetičke energije u pozivu funkcije mkekin.
 - Prosečna brzina čestice se računa i skaliraju temperature u pozivu funkcije velavg.
- Pune potencijalne i prosečne kinetičke energije (virial) se računaju i ispisuju u funkciji prnout.

Program se nalazi u datoteci direktorijumu MolDyn u arhivi koja je priložena uz ovaj dokument. Program se sastoji od više datoteka, od kojih su od interesa datoteke main.c i forces.c, jer se u njima provodi najviše vremena. Analizirati dati kod i obratiti pažnju na redukcione promenljive unutar datoteke forces.c. Ukoliko je potrebno međusobno isključenje prilikom paralelizacije programa, koristiti kritične sekcije ili atomske operacije. [1, N]

3.2. Delovi koje treba paralelizovati

3.2.1. Diskusija

U okviru ovog zadatka mozemo uociti fise .c fajlova od kojih je nama od najveceg interesa forces.c i main.c. U ostalim fajlovima se najvise nalazi kod koji ne moze biti paralelizovan.

3.2.2. Način paralelizacije

Paralelizaciju smo uradili u dva fajla – forces.c i main.c . U fajlu forces.c se odvija najvise izracunavanja. Paralelizacija je izvrsena atomicnim dodavanjem

3.3. Rezultati

U okviru ove sekcije su izloženi rezultati paralelizacije problema 3.

3.3.1. Logovi izvršavanja

Ovde su dati logovi izvršavanja za definisane test primere i različit broj niti. Obavezno uključiti u ispis i vremena izvršavanja. Logove pojedinačno uokviriti i obeležiti.

Molecular Dynamics Simulation example program							
number	of partic	les is	13500				
side le	ength of th	ne box is	25.3	323179			
cut off	f is		3.7	50000			
reduced	d temperati	ure is	0.7	22000			
basic t	timestep is	s	0.0	64000			
tempera	ature scale	e interval	10				
stop so	caling at m	move	20				
print i	interval .		5				
total r	no. of step	ps	20				
i	ke	pe	е	temp	pres	vel	rp
5	12619.17	58 -91985.3542	-79366.1784	0.6232	-5.2880	0.1821	39.7
10	14619.41	70 -86181.5919	-71562.1749	0.7220	-2.8265	0.1336	14.1
15	11405.170	07 -82966.3254	-71561.1547	0.5633	-1.5094	0.1714	33.6
20	10825.042	23 -82385.8646	-71560.8222	0.5346	-1.2219	0.1679	32.2
Time =	1.644527						
rm *.o n	nd						
gcc -03	-fopenmp	-c main.c					
gcc -03	-fopenmp	-c dfill.c					
gcc -03	-fopenmp	-c domove.c					
gcc -03	-fopenmp	-c dscal.c					
gcc -03	-fopenmp	-c fcc.c					
gcc -03	-fopenmp	-c forces.c					

```
gcc -03 -fopenmp -c mkekin.c
gcc -03 -fopenmp -c mxwell.c
gcc -03 -fopenmp -c prnout.c
gcc -03 -fopenmp -c velavg.c
gcc -03 -fopenmp
                -o md main.o dfill.o domove.o dscal.o fcc.o forces.o mkekin.o
mxwell.o prnout.o velavg.o -lm
Molecular Dynamics Simulation example program
number of particles is .....
 side length of the box is ......
                                      25.323179
 cut off is .....
                                      3.750000
 reduced temperature is ......
                                      0.722000
basic timestep is ......
                                      0.064000
 temperature scale interval ......
 stop scaling at move ......
                                      20
print interval .....
                                      5
 total no. of steps ......
                                      20
   i
           ke
                                           temp
                                                              vel
                     pe
                                                    pres
                                                                      rp
        12619.1758 -91985.3542 -79366.1784
                                           0.6232
                                                    -5.2880
                                                              0.1821
                                                                     39.7
    10 14619.4170 -86181.5919 -71562.1749
                                           0.7220
                                                    -2.8265
                                                              0.1336
                                                                     14.1
        11405.1707 -82966.3254 -71561.1547
                                           0.5633
                                                    -1.5094
                                                              0.1714
                                                                     33.6
        10825.0423 -82385.8646 -71560.8222
                                           0.5346
                                                    -1.2219
                                                              0.1679
                                                                     32.2
Time = 5.713348
```

Listing 3.

U okviru ove sekcije su dati grafici ubrzanja u odnosu na sekvencijalnu implementaciju.

Slika 3. Grafik zavisnosti ubrzanja programa za N = 1000 kada rade 1,2,3 i 4 niti

3.3.3. Diskusija dobijenih rezultata

Sa grafika vidimo da je ubrzanje oko 3.5 puta

4.PROBLEM 4 - MOLDYN

4.1. Tekst problema

4.2. Delovi koje treba paralelizovati

Prethodni program paralelizovati korišćenjem *manager - worker* modela. Proces gospodar (master) treba da učita neophodne podatke, generiše poslove, deli posao ostalim procesima i ispiše na kraju dobijeni rezultat. U svakom koraku obrade, proces gospodar šalje procesu radniku na obradu jednu jedinicu posla čiji veličinu treba pažljivo odabrati. Proces radnik prima podatke, vrši obradu, vraća rezultat, signalizira gospodaru kada je spreman da primi sledeći posao i ponavlja opisani postupak dok ne dobije signal da prekine sa radom. Veličinu jedne jedinice posla prilagoditi karakteristikama programa. Ukoliko je moguće, koristiti rutine za neblokirajuću komunikaciju za razmenu poruka. Način pokretanja programa se nalazi u datoteci **run**. [1, N]

4.2.1. Diskusija

U okviru ovog zadatka mozemo uociti fise .c fajlova od kojih je nama od najveceg interesa forces.c i main.c. U ostalim fajlovima se najvise nalazi kod koji ne moze biti apralelizovan.

4.2.2. Način paralelizacije

Paralelizaciju smo uradili u dva fajla – forces.c i main.c . U fajlu forces.c se odvija najvise izracunavanja. Izvrsili smo paralelizaciju for direktivom i redukciju epot i vir promenjivih uz pomoc broadcasta kada svi procesi salju masteru koji na kraju to redukuje. S tim stoe je sada razlika da master sam ne ucestvuje u obradi vec deli poslove worker-ima, pa sje tako kada imamo N=2, tj. Jednog worker-a i master-a sporije neko sekvencijalno.

4.3. Rezultati

U okviru ove sekcije su izloženi rezultati paralelizacije problema 5.

4.3.1. Logovi izvršavanja

Ovde su dati logovi izvršavanja za definisane test primere i različit broj niti. Obavezno uključiti u ispis i vremena izvršavanja. Logove pojedinačno uokviriti i obeležiti.

Threa	Thread_Num Time				
1	10.778501				
2	10.845185				
3	8.841843				
4	7.049351				

Listing 4.

U okviru ove sekcije su dati grafici ubrzanja u odnosu na sekvencijalnu implementaciju.

Slika 4. Grafik zavisnosti ubrzanja programa za N = 1,2,3 i 4 niti

4.3.3. Diskusija dobijenih rezultata

Sa datih grafika možemo primeniti da je ubrzanje sve uocljivije kako se povecava broj niti i kako se povecava.