Normalization of HiC data

Chromosomal Conformation Course 2017

CRG, Barcelona

enrique.vidal@crg.eu

HiC bias removal

Chromosomal Conformation Course 2017

CRG, Barcelona

enrique.vidal@crg.eu

Intro

Yaffe E, Tanay A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture.

Nat Genet. 2011 Oct 16;43(11):1059-65. doi: 10.1038/ng.947. PubMed PMID: 22001755.

Base

Ultra-simplistic example

One domain of interaction

Bias

Genomic bias

(different location)

Include bias

Fake domain

Fake interaction bands

Include decay

 $log(n) \sim 1 / log(distance)$

Fading at long distances

Include noise

Poisson

BIOINFORMATICS APPLICATIONS NOTE

Vol. 28 no. 23 2012, pages 3131–3133 doi:10.1093/bioinformatics/bts570

LGF

Genome analysis

Advance Access publication September 27, 2012

HiCNorm: removing biases in Hi-C data via Poisson regression

Ming Hu¹, Ke Deng¹, Siddarth Selvaraj^{2,3}, Zhaohui Qin⁴, Bing Ren² and Jun S. Liu^{1,*}

¹Department of Statistics, Harvard University, Cambridge, MA 02138, USA, ²Department of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA, ³Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA and ⁴Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322 USA

ARTICLES

Iterative correction of Hi-C data reveals hallmarks of chromosome organization

Maxim Imakaev^{1,5}, Geoffrey Fudenberg^{2,5}, Rachel Patton McCord³, Natalia Naumova³, Anton Goloborodko¹, Bryan R Lajoie³, Job Dekker³ & Leonid A Mirny^{1,2,4}

LGF

Regression on all cells

$$x_{ij} \sim NB(map_i \ map_j \ \lambda_{ij}, \theta)$$

$$log(\lambda_{ij}) = \beta_{cg} \ (cg_i \ cg_j) + \beta_{res} \ (res_i \ res_j)$$

$$n_{ij} = \frac{x_{ij}}{map_i \ map_j \ \lambda_{ij}}$$

ICE

Matrix balancing

Equal visibility

$$s_i^n = \frac{\sum_j x_{ij}^n}{\frac{\sum_i \sum_j x_{ij}^n}{N}}$$

$$x_{ij}^{n+1} = \frac{x_{ij}^n}{s_i^n s_j^n}$$

Vanilla

One ICE iteration

Timing

Performance

Aberrant karyotypes

K562

New proposal

New proposal

oneD

Regression on totals

$$t_i = \sum_j x_{ij}$$

$$t_i \sim NB(\lambda_i, \theta)$$

$$log(\lambda_i) = s(map_i) + s(cg_i) + s(res_i)$$

$$n_{ij} = \frac{x_{ij}}{\sqrt{\lambda_i \lambda_j}}$$

New proposal

Timing

Performance

#