Workflow

Andy Grogan-Kaylor

5/3/23

Table of contents

1	Introduction	1
2	Visually and Conceptually	1
3	Characteristics of Good Workflows	1
4	Complex Workflows	3
5	Example	4
6	Multiple Person Workflows	6

1 Introduction

I have increasingly been thinking about the idea of workflow in data science / data analysis work.

So many workflows follow the same conceptual pattern.

2 Visually and Conceptually

3 Characteristics of Good Workflows

Increasingly, we want to think about workflows that are

Figure 1: A Common Workflow

- documentable, transparent, and auditable: We have a record of what we did if we want to double check our work, clarify a result, or develop a new project with a similar process. We, or others, can find the inevitable errors in our work, and correct them.
- replicable: Others can replicate our findings with the same or new data.
- scalable: We are developing a process that can be as easily used with thousands or millions of rows of data as it can with ten rows of data. We are developing a process that can be easily repeated if we are constantly getting new or updated data, e.g. getting new data every week, or every month.

4 Complex Workflows

For **complex workflows**, we will often want to write a script.

The more graphs or calculations I have to make, the more complex the project, the more the desires of the client are likely to change, the more frequently the data is being updated, the more team members that are involved in the workflow, and/or the more mission critical the results (i.e. I need auditability, documentation, and error correction) the more likely I am to use a scripting tool like Stata or R.

Table 1: Tools for Different Workflows

	Simple Process: Single Graph or Calculation	Complex Process: Multiple Graphs or Calculations.
Process Run	Spreadsheet: Excel	Scripting Tool: Stata or
Only Once	or Google	R
Process Run	Scripting Tool:	Scripting Tool: Stata or
Multiple Times	Stata or R	R
(Perhaps As		
Data Are		
Regularly		
Updated)		

Always (or usually) beginning with the raw data, and then writing and running a script that generates our results allows us to develop a process that is **documentable**, **auditable**, **replicable** and **scalable**.

Related to this issue is the idea that it is usually best to store quantitative data in a statistical format such as SPSS or Stata. Spreadsheets are likely to be a bad tool for storing quantitative data.

5 Example

Below is an example that uses the Palmer Penguins data set.

The example below is in Stata, due to Stata's ease of readability, but could as easily be written in any other language that has scripting, such as SPSS, SAS, R, or Julia

- * Learning About Penguins
- * Ask A Question
- * What can I learn about penguins?

```
* Open The Raw Data

use "https://github.com/agrogan1/Stata/raw/main/do-files/penguins.dta", clear

* Clean and Wrangle Data
```

generate big_penguin = body_mass_g > 4000 // create a big penguin variable

* Descriptive Statistics

summarize culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g

tabulate big_penguin

tabulate species

Variable	Obs	Mean	Std. dev.	Min	Max
culmen_len~m	342	43.92193	5.459584	32.1	59.6

culmen_dep~m	342	17.15117	1.974793	13.1	21.5
flipper_le~m	342	200.9152	14.06171	172	231
body_mass_g	342	4201.754	801.9545	2700	6300

big_penguin	Freq.	Percent	Cum.
0 1	170 174	49.42 50.58	49.42 100.00
Total	344	100.00	
species	Freq.	Percent	Cum.
species 	Freq. 152 68 124	Percent 44.19 19.77 36.05	Cum. 44.19 63.95 100.00

* Visualize The Data

```
graph bar body_mass_g, over(species) scheme(s1color) // bar graph
quietly graph export "mybargraph.png", replace
twoway scatter culmen_length_mm body_mass_g, scheme(s1color) // scatterplot
quietly graph export "myscatterplot.png", replace
```

* Analyze

regress culmen_length_mm body_mass_g // regress culmen length on body mass

Source		SS	df	MS	Number of ob	s =	342
	-+-				F(1, 340)	=	186.44
Model	1	3599.71136	1	3599.71136	Prob > F	=	0.0000

Figure 2: Bar Graph of Penguin Species
Figure 3: Scatterplot of Culmen Length by Body Mass

Residual	6564.49417	340	19.3073358	1	= = be	0.3542 0.3523
Total		341	29.8070543		=	4.394
culmen_len~m				P> t [95%	conf.	interval]
body_mass_g _cons	.0040514 26.89887	.0002967 1.269148	13.65 21.19	0.000 .0034 0.000 24.4	4678 4025	.004635 29.39524

6 Multiple Person Workflows

When workflows involve multiple people, all of the above considerations apply, but the situation often becomes more complex. Two hypothetical multiple person workflows are illustrated below.

In the diagram below, the workflow on the left is *uncoordinated*. Each person's work is not available to the others, which may cause difficulties if people's work is supposed to build on the work of others. If one team member makes updates or corrects errors, the results of these efforts are not automatically available to the others.

In contrast, in the diagram below, the workflow on the right is *coordinated*. Each person's work is available to the others so that updates and corrections to errors are propagated through the workflow, and into final analyses and visualizations.

It is often the case that a *coordinated* workflow requires more *coordination*, *time* and *energy* to implement than an *uncoordinated* workflow, but a *coordinated* workflow is likely to pay benefits in terms of all of the advantages of good workflows listed above.

Figure 4: Multiple Person Workflows