Physics

Projectiles, Form: A

Name:				
Date: _				
Period:				
		D ,		
Primar	y Peer	Reviewer	:	
+1	0	-1	Σ	

Section 1. Multiple Choice

The following information applies to questions 1-3:

A projectile is launched multiple times. The angle of launch is increased from 0° to 90° in 5° increments. The following data is collected:

Graph 1: Angle vs Range 2 1.6 Range (m) 1.2 0.8 0.4 10 20 30 50 70 40 60 80 90 Angle (deg)

1. At what angle is the range of the projectile greatest?

- (a) 0°
- (b) 45°
- (c) 90°
- (d) The range is the same for all angles.
- 2. At what angle was the projectile in the air the longest?
 - (a) 0°
 - (b) 45°
 - (c) 90°
 - (d) The time in the air is the same for all angles.
- 3. What two angles result in the same range?
 - (a) 30° and 40°
 - (b) 30° and 50°
 - (c) 30° and 60°
 - (d) 30° and 70°
- 4. At the top of its path, a projectile's acceleration is -
 - (a) 0 m/s^2
 - (b) $9.81 \text{ m/s}^2 \text{ downward}$
 - (c) $9.81 \text{ m/s}^2 \text{ horizontally}$
 - (d) cannot be determined without more information.

5. Two projectiles are launched at the same speed, but different angles. Their trajectories are shown below:

Figure 1: Two Projectiles

If projectile A was launched at a 45 degree angle to the ground, projectile B was launched at an angle -

- (a) greater than 45°
- (b) less than 45°
- (c) equal to 45°
- (d) there is no way to determine what angle projectile B was launched at.
- 6. A projectile's trajectory is shown below:

Figure 2: A Projectile's Path

At Point P, the horizontal velocity of the projectile is -

- (a) 0 m/s
- (b) 9.81 m/s downward
- (c) equal to the initial horizontal velocity.
- (d) impossible to determine.
- 7. At Point P, the vertical velocity of the projectile is -
 - (a) 0 m/s
 - (b) 9.81 m/s downward
 - (c) equal to the initial vertical velocity.
 - (d) impossible to determine.

Section 2. Free Response

- 8. A projectile is fired from a cannon at a 30-degree angle with the ground and an initial velocity of 100 m/sec. Assuming no air resistance and $g=9.81 \text{ m/s}^2$,
 - (a) calculate the time it will spend in the air.
 - (b) Calculate the maximum height of the cannonball.
 - (c) What is the distance the cannonball lands from the cannon?

Answer Key for Exam A

Section 1. Multiple Choice

The following information applies to questions 1-3:

A projectile is launched multiple times. The angle of launch is increased from 0° to 90° in 5° increments. The following data is collected:

Graph 1: Angle vs Range

- 1. At what angle is the range of the projectile greatest?
 - (a) 0°
 - (b) 45°
 - (c) 90°
 - (d) The range is the same for all angles.
- 2. At what angle was the projectile in the air the longest?
 - (a) 0°
 - (b) 45°
 - (c) 90°
 - (d) The time in the air is the same for all angles.
- 3. What two angles result in the same range?
 - (a) 30° and 40°
 - (b) 30° and 50°
 - (c) 30° and 60°
 - (d) 30° and 70°
- 4. At the top of its path, a projectile's acceleration is -
 - (a) 0 m/s^2
 - (b) $9.81 \text{ m/s}^2 \text{ downward}$
 - (c) $9.81 \text{ m/s}^2 \text{ horizontally}$
 - (d) cannot be determined without more information.

5. Two projectiles are launched at the same speed, but different angles. Their trajectories are shown below:

Figure 1: Two Projectiles

If projectile A was launched at a 45 degree angle to the ground, projectile B was launched at an angle -

- (a) greater than 45°
- (b) less than 45°
- (c) equal to 45°
- (d) there is no way to determine what angle projectile B was launched at.
- 6. A projectile's trajectory is shown below:

Figure 2: A Projectile's Path

At Point P, the horizontal velocity of the projectile is -

- (a) 0 m/s
- (b) 9.81 m/s downward
- (c) equal to the initial horizontal velocity.
- (d) impossible to determine.
- 7. At Point P, the vertical velocity of the projectile is -
 - (a) 0 m/s
 - (b) 9.81 m/s downward
 - (c) equal to the initial vertical velocity.
 - (d) impossible to determine.

Section 2. Free Response

- 8. A projectile is fired from a cannon at a 30-degree angle with the ground and an initial velocity of 100 m/sec. Assuming no air resistance and $g=9.81 \text{ m/s}^2$,
 - (a) calculate the time it will spend in the air.
 - (b) Calculate the maximum height of the cannonball.
 - (c) What is the distance the cannonball lands from the cannon?